diff --git a/.gitignore b/.gitignore index 5a2a78e6..9e28bb55 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,4 @@ .DS_Store *.log *.aux +.ipynb_checkpoints diff --git a/Compressing an Image with the svd.ipynb b/Compressing an Image with the svd.ipynb deleted file mode 100644 index 1394a450..00000000 --- a/Compressing an Image with the svd.ipynb +++ /dev/null @@ -1,375 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Helpful packages for working with images and factorizations\n", - "# using Pkg; Pkg.add(\"Images\")\n", - "# using Pkg; Pkg.add(\"ImageMagick\") # And this allows us to load JPEG-encoded images\n", - "using Images, LinearAlgebra, Interact" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using an SVD to compress an image\n", - "We take a matrix $A$ and factorize it so that\n", - "\n", - "$$A = USV^T$$\n", - "\n", - "where matrices $U$ and $V$ are orthogonal and hold our singular vectors. Matrix $S$ is diagonal and stores our singular values in decreasing order from top/left to bottom/right." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 38442 100 38442 0 0 162k 0 --:--:-- --:--:-- --:--:-- 161k\n" - ] - }, - { - "data": { - "text/plain": [ - "\"strang.jpg\"" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "strang = download(\"https://ocw.mit.edu/faculty/gilbert-strang/strang-blue.jpg\",\"strang.jpg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 82275 100 82275 0 0 1147k 0 --:--:-- --:--:-- --:--:-- 1164k\n" - ] - }, - { - "data": { - "text/plain": [ - "\"cb.jpg\"" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cb = download(\"https://i.barkpost.com/wp-content/uploads/2015/01/corgi2.jpg?q=70&fit=crop&crop=entropy&w=808&h=500\",\"cb.jpg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAAGrCAIAAAA+cdm8AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42kz92Y5sS5IliMmkqnswMx/OcMeIyIiormSNINkFNuqJAAn+C/kd/DaCD+QDwe4mesihIjPiTuf4ZGZ7UFUZ+GDnRqXC4XCHw9x9b9uqIrJkrSX4f/+//V/DTPfm22ZbjdagGwac/Odr2y91M7DjON2nMnWAvR1eNodw9trXbb0I2HEccpLnzR757oh3e8Oztph4HACsvfMDzcOV+y/b5dwWIhpSLsK2gmpX7yGAKZvDutu61w06AXrXte6rWmVYCGrArgJCu8OifQfsRB2wexBoADhAAAYQIjsQAOyhAICASIGIAQAAgJ7chiHfHefjPI1DKgmFERFBjuOQ51ISQgrLGIVJkNp9TZyZMoAgUC7pcBimeRjmwzzPH969LylnkcTS6+bu6Pm6rPu+X9bt6fn5+e38+enp8+fnt6fPTtwctl2bOmMgKJiNBE4pSLrz3lStZeahpJ+VP/3wk7f67nC8L8P9NH3/8euvPrz77n3sXZe9/vzy9nc//PKnX15qpHw4ff78S68dAhhgTHw3Hz+8e7y/vx+Al209X66fXp9fLhdA4Zy6aQNlJEQcxjyPU+89TMdxPB6GIilhQg+z6G7Lvq91f7vqXitSJOsfWP44Db8h/pBynk9Lu55R/9L3p0zvfnv/v/8PX/8f/uPvPn744AYvr8v/+g8//r//v3//Dz++ve7086czNtrXbUS8H4fHMs5I2PqY0/f/9rs//G/+5uPvv2kpfnhb/v6ny59/Xq4rpcOH+e5YEV+3c4QL9qgrant3dz/PZRwken/79PTD3/+Xz3/+xdf+vF0fDsPvvvnqm8fDV1/dHU4DTfAPf/r7/8f/+Llt9d3x4Sglef3u/eH3v3n3zcdT/puvhjTrzj/+5fWHH88vr/qy2HXZl7pN93m+iw+P/IfvHuaH8cf99S/Xl4n398fjN9PdDOK7vr1tL9d9UdXrh5fz5dOnt+eX8/PzK5hPWdbLtUZJhOHNVAlwPN6PxzvKpeM3md3aJdqZuTNaUAzTeJfq8X7++N27cho6otN43fynX176BtHWU/IJVXs9He+bwXA4yR/+2//salb3fd3aulndUR0BtK+zdrDdIY7D8Dgd72RIHuqXvW2177Fd9fJS93VTtV7LD08/nevL9modF+spjZZGNj5HT8YdgAylortFUSg8n0qzUA0HQ3T1QIeM8pUNbtZ73dx2B2WKJJCY57GbLrWdG2xmHUmJLGIdJnXopl2tqVc3c3P3mUnNFCAchAiIzd3MmDijZC7DMI1TziURAQBggFAgGiciJCAHRkxCoO7BRNM4T9N0OBzu7g+HwzQd5ixpnmdwBw8wb1vvvb+9/uX19e3p+fXp5fWnXz6fL2tVa62d3zZgMRB1dAgnYBAEckIHMUogiTl8l+7q1V8vl25tyDIMw1CGaRhKYgmEGAgcUAAs4hK2tR4a2r2jgACOKU+pDGkgI1t187pu67osrWoAWHjXbuEAgYKlFBGutbbWxpLHcXQ3dw8KBAAA/3WZdQjDIEZKjIJEgIhARACgqrX23aPuTbu7g6q6gaqamZm5uzuYGRFzEiEOgEBA4VDdW91qa13NLJKICCL2bvveZI5A5iRig2qL8KDkaBEBQBaACCmllBIRkQgTmPmyLNcBj1susxSQnIfE2NTaXltGpNjdl95e93Zcu0ndL/789PbyfF02qDV67yIJAHtvfffW2mQpSQyFPNADDQEQAYAQBWnA1Acae5rmvLdxuaw9GoIwsnZlYWEWpNv9bK0RoFJlwmHIaTgh1lq3va7b85tnBvLDA2EpysjDgQVF4vz2z6j7FfpWF29V7/qy9/G4ymenQPQ89aBKAuNMDCIyDkcPy612ayqpz7OXmTgl2K2uZH2CeGgbtx57rcv1+nf/n+s//bS9XVPgIFIOdylPurRPy1kIJTCggFVXdSJP8rSdEQwpGEEICvGAFCVrCCMVZkZSt71t1dUiaN8swFOKYVSkarFb7xY/ugKAMnUCT6KIChERe22NwAMpl1QGBVq2uu5bkBxyeXc8vP/w7vRwV8YcFBau51cAz1mGMRNFtxZEUOggB6Y8zXcPD+8fHh4Op3mep2HIObGrAUDd+77v27p+/vS8r+unT//49PTy6fPz8+vl9W3dmyMwsuxrBBMIEucAUDVHEITzXh08UgCjOuw16rartqsuOfFhmg7jcCzDcRqPZSgie8WuuK7xetHr1fcdandoLQSIITGXlAcs5Ngu6svCYlvdr5e19cbEBtBNgVCIIgIRCXBvNdRklpyz9i0i3D08ere97tu2bXU3i4Ag8ISQkBPCLa0hQAwI89ba3mHbaq1q3QkFGflfLCJGxF07E3qi7t7DIXF02vp+WbZ1166QJE8jj3nDALcvC3MSHgLIDQPdXR3QAt1AkFLJIoIYTlEkhdq6rsuUdrXulkCGYfjq7v7nvbu2HSkSnZv+eFmrwN0POfO4XfTHHz9/+rR1S5vxtvfp7ggBqlBr7bWB5yxesm6dFUIxghBJEvFIQhiKTdiSoBC6e987Ee7NA9DdgVFEzKz37lQzCxWIMCIQSa6KiAHUWr1qKgfZW8YqRsyYaqetCrtkHmKry3kJ7Yjp7Vq1k6zagCggGkfLGAGcU0oJUNWto0YgF+ZjobmgJG6nMlS6ZZge2Z22Wpf1c8I8/EO8vIyDpOOh3L9TK08/n//0d/99O5/pWnM1XTdVFVNxV+4lYREqTMlJghmFgTSLhgVCYQwHUipIBEhydA8UTnkI5K3uy7ZX7x+nwSMcogd08G6m4BEhw11Vq2aO5CRbs2u3CzhQHVHeRb+zfVLBWpv3bnokUDcOnCRBwq0jUHCm+4fH0+nh/vHj6Xg3zoc0pAhfrXnTZVnq3t/e3i6X5e3l7YcffrhclpfnH1/eztfLFiAORQmbhneQQOsIgRQcEb01CEuERnELJOCxN12vdVt31T7fpcM0vz8c5pQL85A5CQlabW1p+ny+fnp5eVuu6ioMyCZHTCCZyoiFjbCzaTdXLLbttfbuAJJKjwYdgEIktdZ6awiCHinnIRcMSCkRoJt7131v67Yu67p1CyQCZ0cBSO4YAGDu6rdSBREcu0fbWt3atraIQCQiQURERmBEBCDVqg4cjggd3BBQiHPa97ptVVufWI6H8XTY5/J6wWautVYkNCDAxERKrqHaQdUIkFOklDgnh+i9Z0wRrandtpkhRiCLTAIZrCtRoTzMIfltt+358vLWhzzqHs9Pl+tVA4cOSa1BkLtDB2vh3d06cBVUIung5uDCSMEohRG0b2Q5xTDKNJahJN99kAENu+4R4R4OqKrNraTCzEFm1rtjclAzAGEqgNbNmnptHWrtiAxp77Tu1QNFcnc410Zuvrfn61I5yZ/+l/+RhJHJwDwCBVPJpRSRbGYWLkJTJpSAFJGiDWxWEqMSQXcwS6PQlO79e19bS5ILDl9/mL//m0VTO/zc4e3H/+Ufzi+vpWr0vfXWO+jVkyVBzAIZIyEUSAOXxGmmbmaMMCQZExWkQdKYRadkrZk7hjPhmKTwhIjUGyIGgoNZhENEhEG0bW8GTaO5BrgTwzxZjDVdcoGC27AR0QZCDcMj3GTtFYSx7zjkBM5DPox8mqdvPr5//+Ejy+CAEb5s57fLK1V/eXl5e718/vz89nZ+ebv89NMv67K7w161aUppSHkKADNX0IIW7m7uaAAAjuDuAcQIKADYNbS21hoA5JTuxvT+7ng/HVJAQSSI2leMzqNtTd/2y6Vdq++Y+4DIguVwEkqFSo4sStjY9u7N32qt6g3CgQRRgFoAAYQ7BJiZtbj9xZwzIuZSQs30S957+wwASAEGDCEA7E7ugBZA7o6ImXNKmffaW2xr36+6rrtIVlXtbmYREQERAcxg1t2mlBDRzIRpmmcKaOtStwXtrkg6Duk4yAu5WWvr1bV7Lpgyc3LMEfu6ViLygZgoEw3DkFKqsRQqFtJ721XX2qr2YswsXldr6kaCMpSJkyz75W2pvJ+nYULn66Xue3BizJRzAkJENsNeoW5quyFBDtqRQ6ObegQjkXAicAgmF8IiMpY0DcVXKyIc+e26//Xa49fnk4iubRWwEQdmCRczN8feAnDfdlrWbLm5MBOoF8C+IRBhQ9qQmAACLx2im/wP/6//J4uklEgYBVNKZSw55zh+HWERMZSiFYRHopwzCr0AOOaMIBZGhDymlIufj2m+39/OFbRMJ3x4D5jZuH/+888Av/R2TGk+PASCElTQYT3uVrVv3ldUTW459WQQ7WxgxDhamowKYnZjh1MCMwv3gVPJMuaSJWURwISIgoRIDJECAgw8UiqTRERYeEQA0S2Rq9ZQGHvH5eqVMAlmQebdYKy9R6WqkIUZx+PphPbQ+0OzY1Xfr1vXprVez9vb88sPL5+ePr+8vP386flyXpa1vb1d1ILHe+TEGm3rO5w9UMOJxG3v7uoIUpiZAAkMPWxrhmK4VYN1q71XQRxzuk/pPg+HkgQiAyDBta6XxUaF5+v+fNmWXluYag/0MDjqWFIuVAplZg703Vy1n5uqaQckADMTxFkIADbVnFMiVm0IgIgiMpUBU3TzW3bNzCmlbOa9KQQCCEACyAACQYAAHuaMmFISEYBqPequ29ZqrYgMQYi3X8/CnCSPFHtfBCmzIKKbIeAwlsTe1ku9vNl+YoqJ7H5IT2hL37urY5AIhQsmIG4oe72SEHHynJFpnKfj8bC8npMLoi3Nr+v6ckmnx2n2Ief87cfHurWnp227LMIl93JZ1r0u7HXNO0dqzWoDUhM6plyIAALNYLdoV2gbcimlwFjNerfuVgAJQVIwOnRGwTCIwIgw7W2Ntu3bFpAAgP66DCLCzJwbMkaYxg1rADMESllqWNu3K4/hJgoc6AgKnAGCMCUZOIylsKzIWf7p7//51yIFf33PmJnTxxcCBIChpPXxMZYNvvnmcDqmvjqC5MTMYT6Q7JIJ8FqvW6+XXXOWU4y9we49CAmLYeLj3cfvfvO73/72/v1DPk7BRNvY6rItr/t21n1zM1CIiMu+1r4v+/LatwuomMK2W93z25UQMQKrpR0SXjkgDBKPQpCRB6ZMlAEIggByFkZioSwkAIyO1DH6OzkSMzBZYKvWayAZCozCU4Pu6GoKakhlu6YdcwK9ePvlEpxbr9fl/Pz69Hp5+flPz2+vl+vafFlo19zjUIMQL9tSSlHv0SohEBMwMHMgYNOmYbGknEsSgnBXQu8WTWO3cIAMMEmai9xzOrKMSERQciKifV8r7Puzfz7vz5d63X1v0lsTACSgDdECzY27o7rFbutm2woQhIwZIjA8i+SU3K3V/TBOEdHqfnvCMkvO2bDfamAA+LV2JUQMDwLIxAVgEM5MjE6Et9cyAQa5Q++mVXszRBROKSFz+hUMw4hAAALk2yu7uQMgU8CYSNelXs+xLZT4lPmr0/gy5b3uQYXYiSAQyC0RFxKXDIEB5BHuMQzD4XRkIdpDKDlA077Wvas6wpiH777/Zln282t9e13QZD4ddTetRkOYmYjkLA7evZlvhUWtETEYBFCvFLuApRQywrJp09bVnVGc3Bl7gHARxiJtGHAey1owusbt5iAQ4a8LbpgfMCOLhbZmjBhATDJPdydKGptX8ApmAK6BQcqlYljHTXNHNODw1CJ3lKenhYgSUxZhRiEWJmbO9R8pINzfXJfDQT//2H7z3cO7x7ibNRyTiOSIGDgNkjBAn5/685Oerw/zUStcX5bnbV3WaqvZrghpOj28/+679999c3o8YZIid11364tHhTDwW3yFsuba92u9bG0hsBJu+9aX5amBIEFrbd18r9gteuu1+XrlAHTHrr01ay16AzN0i2hYVVAFjMHDAQzmFco4lmkkTurW1C0cgR6OmSNYEnboAM01tYqVql7OP7zY3WMa5623z58//fjph7fL63pG3dpAiY2PkYxwoy6Sf+7bxKwUDWw4lDJKhFn4KsNaVda69Z4STyUhhHUfStr2FmGIBCQ55+M4jFOZUxqIGJAIc84k2EEY8/7a1hWWFWpP5gwQBF0IkgsrRXhDDYSIaFE7NKWMJIlJ3NDaIGku2Xo/uw3D0FozByZIxLcI4YC3DYy/Jn6q2ro7AgEQQQFKLJklYf/1JQ63yiUAzdzhFr+//NS9tbbv+1Zp2zYAcgsEd1Bn8ABgRPPEqK3qvoE2in4o5d3d4fE4/7S9Jcw5MWTuHggOEFkoaJQEIowIDi4iOWcACHNOIkJAHIDAv2Zedb9dFDoIpSmN5CEOMrWShsN4YErL1pZaXTgXum57wkJBRJkgQwxoBgYcjBZgHhGOAISB0MN1s17VDUpK8zzuh8lbQ+vNRRAQv+Bx8AULgNr3LEMwRDBzFomeSDAni15NK1i7JZQJJQlmtOpVqQY1dIOCOBqPnWT1F0Z0ys6JAMPCu4M5XlASE0HKqLL3ny/n+uPD08NwuNuSbGVIaeZOg+HhOFioL7C9bGHp0LYf//w/P+wP3fIvn9Z//OWHPeH0zeM+2bNfuV2vT30Yhnlobj1hEJq6ESeeijnUg+4rH/jjd+NRGkFzdgyDPZacMzF01arVws1UVW25aK+t7rpt3jer1Vu13mCt1jUhsEPfVlAlt77Xz929daw79zZBFHTUDtp/gkGYwRdvndxGyZIyILz8eZsOczv81EwvW+3BRXne0ok5nx6BxqXZ4l1L1NRXW//jfqima7hxllHyUMCjtf3j4b6Znuftre7Xthv0lIf5OCfLHx6nbbl8+vRJyB7vy+EwZxY+CmKw+FCmjIJKkx8k8lUaMGSIwRXcOyNPA8+ZaSRmYMbA3m3X1nxwyRhbIG5hhDDlmdM88Tgww/EcEbstOZGFb1qdY4cu+wwdWUYNP5/P58V2ZQfIlBKaJ4UCkD1Y2RAtjnu/CHkuaWjTfg31tvnWD+2lR9ZaLxYaMV5fXmu3HKhBwrIhIAsxt7YCw9GQ7DjIpGdYPjUW4COkkcq9x1M+rytKDsDx9IgRQxYCbt3EDCtyzsaxh2KSOQ+2LPu6TtOAEND09aefZt/f/e47mYfTiY/vYQl4a3sCnB/u69smcMh5GA5zKpmnSqu4CQYqQb9cj1lI8LJdr1XuWp5S2hOvEpe4UtDjfDdISnsfYn8jnA8ZwNZuE08XmhaDoBGi7ao5DXkYHKi3ytbIOrpaC+fZOO1q4TBkJgTsC1qzYFV2SB5ECJSpSE87ZE/Xnuav3r/qii02/SwpFQAwp6geEa52q38wAvZmZikThIikbTWmfTn3dZquxTVRbwRKw5UaKLy9DlhOMix1+/zDL+OnJ8JxWyA6kSd3rKu/vlyFX3LOUvInDYIoAsLgroAMkgNoStz2tiHu+SpfHkkioktbuDFiECIzZ+YkOZXc0aRLHgrf3eVbeyMAI179SgFDSYUpeiM3jDDVfQ3X5q1GrdCq1922zVpLq4dpb60tm7fWPap2V0XIn9fV1qWr1m7IRbhY0LsypWFELA6mPQS9JD5OI09YTVnr7g2TEFNQcGQMK1ke5rvR52trrXcAYqQiUIonFsRJiMYRh6wpYdUgjEAwqt0DAK1bmIpcM18TXZOogUuGckzTwe8wR4R5dFUG53ByD7OBSN1q7wEAhUkwBHo4AwYhGZJFznnOQ0nDlKc1e8Nea+29b7xW3izUKawToTmaS2AggDjCDS8EAAZkpMTcwlpr27YhHiPCLczsFoH3Hr2bhiMyEPZuu5tEkAgl2WvPQP12KJsxADOWknNqycjAQR20AzAmYUoAFBiIgIjdNBCGeTre3788X2+pat/bxfbjSGDQqx4l3ZUyErFCsp6apRQFwkKRwEMR0+EwIfJ1rcJ0GrLtMBAQmJo2SwHAkkzDHUxD1ZvaAImYU8nSCYGIjBlREJgMvGrPktAjCyXmjkE38L63u4MQBPZGKKUMTMkd3d1qEBGR+A3vCoOwMMxFikHqujLcwEUClJQkydR7r3u/VbwYhIjEnJNERHi17vsWW4bEkQRKmoMee7lfysOFeO9AZWgUuOMpHVdmunzy109Sl6xslQJ9Weo4DgvvP+uny9vKjAC+KwxCg2BmYEZEDmbidAAhZqQAJhICImJgEQW03t1diIVYiG7sKgEzM9fIxEXKIFmQMXC7G5iAyoBZEEIQhDF5HOhww1QjHFzNuls3s3eVrGvb97Zv3rq31vZaa+W6L8ul9eru+1br2pdru5w3a/sAmMjdwNABIAGL5F0Cg8lQXJwQBSGCkABdcpqm6X7MhtRUW2uhEfYmAjHk0+E+IjAcQJkDvDAHo5F3DwegCEB0sfNA13nYpcTEYAJcjNneTR9q022rbkoK2DVas27HedhNTTsiZgbOCBnVg1wcTFUj8HA43N3dl1KYmXyFWEO3UEVdxToouAEBQBgHcIQgCSEjAYCpAjAiZOSM3N3aXvf1avbuhmAjckS0qk3DARBuDBGwCHNwQslDyrk1RftC3ph6L2GJuGQ5zEnBNzDzbrUyiSMj4q9QEHWP3boAlmmaTnef4S9BkDn1va5b2L0zSgQJxDykuaSBmwdnVHaYORamlBgxhOFwHJkZwIWzQ+ym4NC0iUXT1kMGD0IkZA3Yd2/inZwJObMYhAdiSKIypDJm2flGXYmIL0gBM+MXTOHb06F2MwdGzMhB3BX2rSfA4GyBvXeHSDyidTel8MQhQkTUe61tAwAREeTiPcLNAAgIEN0jAtydiIASYmy7135uSpIP4+Pvhg/fTe++1vlx19RVYU6EppePHcvbda37vq3Gz0/D2rhhKSUcGAk8zi9nIPPo23bxdEwU7JXDBmGiG7TB6nQ8HkWoe2VGYBChYSzvhvetNYfI45BKDofuBgCJARwpkFEES+acJTOn9vRERClzZiYGIUwpEUOJlZkxYSAaRaCHEDO3sdAIcBgJHxmAEeeAKWzcQbURGiLuy/7p589//7/+6eUf/vRffvlzoSUTzykdpjkxU3RRbISGoELdKDAcEBGdkBl7r/tVsScZhpRSniYMaFtPKRFBRLipqnpXDx2SIAkRAXh4hCMQE8NxHErO9/emTC7UwFqYep+SgTWF1lzJjc2hVfd+AMFQQHcI8Ra+V/eIaBEAUMMi4XB3HO+PILxqS1WHzalCKCctxUxNFaAiEZCEJaCMnFgYkegGkQECkFsGqABh3br2rr3ZrWVCKF8eYgAHvEE7SRjBAiCEqBQ0DITa2rptd61HhDANSe4PQ/duzZpp7NUkejAihqOpNwJRb+5AkliAKZhUlZnHPFq9eI9wCedLv2JJeS55XFUZJSwUxLbd8OqTZeJAit4stKrpstK+dgIOVVU6XX08d8QYHqYhz6pb777tfUgyIlIm2MKsEkDOZZzH493UtF7Xy3ap5sD99i6TJJJEzCxtJ0Dnghju6s7uEMSAxS262rZcUy7IdIMkWl8HZyQXitp63XYHxwhZ1ysAoBDfIjBABER4tw4GidMwjGZ9WRftliTLb04yftjvvunHDxaE3mIM5F5PQ4Yhnl+vT//cwmB9tfNlbHH8+lt175u3lS/L2aOx+LK88fQYWqHtyVoioC9IOryW4TiPBGHaxpKHwoKQJX3a/3HvzYlkGngcjbmHB4L3llLKnAkzIycspYwl5cyLiHAiZmLGoCAiYphgJmYUckYlwCR5KKlIhDGzMDISEghSSTkXyTuKUEmZwFuJdT6dx/HniD/VPqQ+IZ6kvGeecmbmLJEkK0Yz3yw8TAIYEIhyLrXu5+tleapGMA/z4XAYy0BRmIVJACKiMUZw11oFHePWjA1z0ABCQUSBISVMFCGESZDpxiQtqi7cE7sGAxJYOErFrI3BE0GzgH2p0VsWi9iQpmnigYk4TwlTOKlq44bRKLqAIwUwEjOIWcUmgQIg7uSOYYAShCAAROiGHglJAMgjwvTL8t609+4OAMSMGKm5QiCnHNqa9aq2ax8AA7C1vq5ra5UAcuJxyKepLatvuwZIC0LkIANmThlMLbxbAAsImUEnssxr2wa1IgkRlmt9fVvmw0GmBpliLn2U7Wqua4aeRFsN1UZ8GHq+ni+hpup1b/t6hMhSjs6urq2O1geMTMhJBlSru1YMJXTCNCS5VuuOiClJ8RgP09j3fM15t1o1XMMc3MDD1TrsL5+3aT6OxwGEqqsFpTQM09yWVbFv13NrbZhUhKF4gDFFQkxMKXGN3nsPhFZVHDZiBnNVBQAWAQTreuvCB0Ee55Lv05Lc3cIufc3QFogLWRXZAWV0F4c0t05eaHp3+vbf/M39h15++gu/XuvULud9Xb1Vui7XxDI8jNM4XNZVQo+JD9Mo1sHcu68Gb5l27eAhAOHkDZfaXttVoTT15uFva6RkTAoYAEIht50KEI4RQSRCbF5zTpITZ5bMHbRbA4D34x0lERFARCZOZZjGYRjIKjOLCBEgABGM4zhN0/a05ywpk+pea93X+k+vL/90Pf8McJ9IGQ07wrZG5MgT55mpu+3hmztgABEJYXCFoGEsSSov+7I9vZ0vSx1zyWlMt34LIrgyM7jVaiI9AG8PaFc3QEAmIm2OGAGKbimlcZxLGiUYcgiWMQOhJHMpWgZuvfvSiNgIaq1Vo1vVvXYARciDfJgHYhxCuW2cUwZbu116XWszi62ZupEkTCX2HUDRAS2ia2dsAkDoIIABHrcInADCzFXNwix677XWWrsFAEDEr/mzWVclU1Tfentblog8UAq21lprTVUHGg7jOA7LwAFtZWYCJo6QIOQkGZO77RoRLCDs3TkXOo71er1su5fcHV6v7adPzzwNH8acU07TEeTtum+1+WEEZAMae6utem9uruDhHvt1szaW4TBP961H7ed1w9aIcAxrghLOrbWNtJfAxMxpzG6qag7sLJiKlKmkIR0OBHCNAA+9UcpVW2t8nJBEUs5GrK3v2gWDEmEaKMABm3Zu1NueE+Yip6kcnMm3kmVrHR2AQXuXf/W3v12W5fn5ue3w/v3D3/zmt+M47vsOjpfL5Xpdcs7zdLh/mFprItnbT97vWz9slmsJE4CJoWRcGcEkw7ffvfuPf/h3v+8P+Z//vv/44//w+vL5l/bypC0niMIij6djbXx++zSN5Q/fffXt451vF13Xfd1eXt42GVTVwxFlb96ZA/Ie0BNgShFo6q5xozOFYypsBo6NiJDCzHpvvXftyDkBBQjKmA1ja1sA/CKfmVkoEUAYgEdmEUoDKyKmlHJJIiJCtw18vboIUYq9b3urVfvT89tP17MGUCqUARl4LJhSs7Dea7dAqKYahoDh2iu4WquOWTgnynNytm1btna+rDmfb2yZcSwMyILMDBDWwR26WzVXC/NwZkRcW02C5N3qmgJrmgcew/D0/t4h3BgRiDwXlgITCJAQIJq3krpqBd/BqlsYvCdOiR1C9loQivm+74v20MVsrwartm6AmIlThiBAgaAA124dDcFAOvgtPRakwsIdtOu+78uyTHdDOCKyiGThcGneEBkAAbA1xeiZyRGu28rupYhwBoBa674tMuckdHfILwnIqnnyYMzdSYAEGTll1b3WjiLIhATD4Tg8PsDzy9oVADqAG1ybXmv/0HOehvv5/n54e/WK3XNJJVB43Lb69Pm1b3UsnFMKjbbXWl8hSIZ5q762cxr4ct2PZ328mwkzgNQaTN5UVSATpsy4V4AAcMdAQcksg4yb7LiqaagRhCB5eIRFmjpK81DvVVvramCAPWgEyZIHac3drVeh8nA8nA4y7mCX/daxAwAmigj59//hb3/88UfAniX95//8n/8v/6f/83fffbfv+5//6c8//fTL3/3d3/380ydV7d3WFXrvsf/Z9/u2H7Y69syQCuQBS6J1TYmPh+E9HL47xd/4dpT3cfDls0xjORy61unpee29j0Pput7N09fv7v7tv/7Xf/jm/fL08+Xp6XI+s/efG21qzXxXrW5c5vsPHx4/DH+5/JAkCbDXiN1BI5qrGzTwMGQYhjzNRQQBu1ovcMCOuzdDDw2VcFUgrNoLCXGQBTaP5s1cAVbcLexG60XECCOilBLInaMHW4+2WwWWptZUR+JBhinhaaDH+7ss5Xpda+3NAJkC3QDDra2tbXvdlnULJwimNJScMzpWtbY1YNh3MNzzeIdCAMicpYjtGAGGEQAK5kTmEBhL7AdOSRzN+wbXel72c69A4wwAjmqhhgoUIsSJpuORA9D8Jr1Qgg2sauetH6RAuIVj9yzGXuvr22lgwC4cOwAwbAYWDUMZiImZXNAJIMADIQi1NeKM4YwkxAjQO7R9u16v9/3EzKWUeZ6nabLda6uExIBOYKYYIWOWVHpbmxEQpZKJpPe+bVveJ4A4zFPJicDRzLVCVyMNVvBgRjXrXjl5oKfIeRym05Hn0d621g0AUiHKhXLB3Ycj03B8nO6e0hoRM8mBfD8c930/v1Wt6/vHIVMCxyxliPDY9nreNZCUMwD2rlfGOydCILPo3XqznkCDABA93B3QIwApRCgl7qFm1jWYnZlTohun8ry1DtcaQJw8MAmlBMKwuwunVIZ00+O5JpHjPA8ZUm/N+g2lv9Fs3F3m39T3h4wPXwvP/+G/+09f/eaPh/L49cPxNP/28f4vd+OH/1n+fz/++PNG3uq2bqs+c/3v/3x8zuUP+fUrtPybg74f98NT/2XByrR9M07/ftave6OP3Sb/jVn9rC/V294lIXLs9Wy1CcN/+7/93/2nf/dvPw45f/iqvj798pc//bP1+sn+cbn+1GoFBpTj/fE//R//u+nD3afPr29vLy+vn7f1jL3X87Y8b6Kw9jMapADAgcLU1bxRjt4bYWSEcOOtzkIZmTimTkhImYJlZ1+o9mASDknDMFDc2ELR2r7WK6pKf108agQgApHYfgT43TzdvX88DfIw4P1cmum2tTQ+LqDX5SWpjUwHIde+tB3JhtNkw66dWue6J9XMWWAaZGxZSo9l2RWlMDMAHA4HNs4RzbeqbtBNwAO7gXroC+LDUWS4bNfrZQcgRFa0/vmXlEkEDNWjseRxnMdUBhJtLZomhIlTihAQ4uF6z+6OGGbmocU4NMBQe/lqmDrUuu1WyhW2azU3v4dETKtvMgwyZQTISKPz1NNmtRyHMrT+9kYEhwxZQ6r1p1amA12C9o2httYDM3kAABk55iRFFa41kox3D6cFiRZz3RPn43HfjzuPaUrDlNOcpV63LNm8YeTWNBVojlhG6oBX5W48RDoM7+PxBz1e3W0s4E3RqXP/tF5xfJztPvF3ki6SnpttXjaDUY7vjtTWjajdv3v87vuPJeHlcoHXw3N9u6ZzM9wrvW1xf0lfP8yD50R2lPic+SlId0CEYQwxS+wRG5McjgdjXLuPx0dbP+HV3cAJA6J7D3AAgAoAmwGwZMlDGQ45j0y8m9RdrSFhyQnnMY8DIqzrUmrtm1fztb5dPszjm9Nr3SSldDwekcbMh8fHx/v7+7t8dxxPw6Hs2+X8PD++u387vyyfX3tbEsN1u1p3nJ/hcrZ3H8EcAJCBiOALYxsBgFmIGSi1Gq1i29Et5TTujbRt5vm/+dvf/P4Pv/n2+28eEHkpO3pfLpeHt/F6KWsRMwbOw/ztt9/+7d/+7enrD9d1e3l5+unnv7y+fOrbuj5dXuWlLvtyrra38Ki1ebcgVNemLsDMiTHCgIOIwKK3XQkpCMk75cGRKHFOiEyG3rX23kM7M6vt7sYCbixIiugiCYEtEnkWIb0+Hj+8OxYOhWqRU0N1Xaz1YSg55XBrZpu23RyTkJzAvW+t7nUcaRoHlqi1jSlFzjWCIziCiBIiuJtyaEJzD7Bwtega3UG9b/vexTdtisYsKZU04uX1RxFIiSgFEUJ2A+tuT625qgSON8VdhHoQhO/9xpxlgAAuiEgUqRhAIcJxVJHe+4xw5GoIYpzn4Z7HYZTMxOsGPQDhEr1GQGhFMAFwMIDqsfW2t+qSuiliSAJJ6AA3Ja3d/hPoTojEmfgUMgWOgdxM171d11gPnCVP5avH95e31u1ybqHeQ5UTNxaCCFczF4Dk0NUigkkfDmO0DdzALJOB9q6tBzXqI3MUjMTNtbdGzNME4cGJck53h/nbjx/ePRx7b28/tPSGvr69vm11s2TZbECSXjsjYECY9t4XgAvyGeBdPkKlQFA31BYWmXiUvJKICLMCkBmoOgAQwTSJcEZEVbXoHpuqIVOU/CVDZk5URNgdau3RIvXmqnxrBwpnR0ESACjjAAiJ5lJKznkYhnEc27oloQ/vHxL9YUz4d/wn1X2t7fPreY3Vn2b5eLG16r7DcvHugQCADmQQgESciIsRE2Y3qrVtrWOhZdXreSdM9+8Ox/tpnHOyiB3Moamte2UmxHB3C0gpvX//8Tff/+70zbvX6zIeRo1O5FrnQ5rI+IKv9fxm4AiABmowjnmaj3tvhWQsiZHcVJDGIVNAa3sivHUygtiAk7lCAFAeJncNNxHKQrWt67qGqS8FHLoHQwZtAD4QnYbyt3+8//1vvx/Znz9/elPtZm3b2uVtlPs5TxFxXuqytfOquxuXNJYBkUqxhHqYysNhIrDNW3YFAgijtktKpZQBXFXDBgJkZHE3ddMwhbAYxwKoteveWm0NoG+9MXMCVEWPkEBORJpaxa5mMwEyBwSCeYeqqEoWd+OIAG5dVSMCwW8SC7HOrlkSCRnKMc0Kk7ot215GCsKSswRadO+u4TWxETpAIJFkjkactePb5zO4DGO9Pl/7urL24hHe9oAgMAFAcAdDACUOspcXnEYoBZP7Rn3dQW0gcaa7x4f7l/Wn143MGc18B4e3qhiOqt62Eo7GoJ0JR253p2xbqsvmpgSxbQuxHdU33+cs6ZT5NPRzPW8NHIJ+Md01+mkYjofx8TR/8/4eQj/RWvPl7emclkhCALRVu14qvptzyXMqQxK0ZqENoiK7QGQhkYBADwEciCbJ2zRP48l1Ixx6N0JADBbc6k5kAGgOyG0YLGUlktPMChiuACWxgse+7NbrCQ7uLcwT01gSlSTV+IbgBkhDa73X3rqpIwQCuM3zcJy++u7ruw/vpnePx9N9+fHnX8z3txWXBIisnHag3vsCKyX5ouYDQuRADiBzEtKIfV3PT+cz5fGyX7dte3//MQ0pTTlPJTta2yFx89hbb712reoGgABQyjhNh5QKwELMQAhMpRQ+wOGwb5fFHdwgIRMhAc7z3fH+uPWWcU8svff12jpiASZGFOzgzCySgEQQBBMRIYu2CkjDmN49HOd5MG3LstTa11/g55dLuzRzA/MM9u50+JvvP/zr306no9dlCV2Ye3Ji73MGA+ytvb6un5/fqrkhKgSDmeqQU2GRAQsZtyWREbbEMQzAFu5N0EemFJtrJXJBN1SMatDFzR0wcDoMrWlr1a0CArIPI+Uh+2U2MCd3IUzUiFtQNLtwI4+M3AUHJMmckwjSEhoRvfd93z20eBmGTEQT2743DcksAUFZMrM3yxGE2ro5oqRB0iCI7MAFCMAQM+KMSshMmTvZa2u+UIm4LsfmHzCnZNVCu3WHZmCZpODMeCAo4L5US4IlBcCm+2Vdjss+Nm1jx8w4cKByplSgee/hhHNiFg7AnEwL45Aok2hRGYGyxVKJoYO+Vl1F71Za26Y8yrHMDzM9Lfvr7jsOh4UgyiSnu8PhOJ2m4f4wCIchXGJ41vK2qkQCT6awrK1tNsw45TQXGbQ7mjNFZsp5QJ4dwjPGwOQJHR2X657zhai7AQQzZURECIvdNAACkROScEqcAWBdVwyiAGRmJAAL91C06O5OATmloSQQlm4ELmUc3Gjfm/UvSkVEdPcyyGHKYK6bn2b53W/e1f1Z21vY48/P7XOk3R0dNnfV5oRCCARB6IgeGMgW1A1aO9d23tvb5eqQl7U3M+CR8njK5ViGuTjErHU+jPOUp5neKsCt2+BEklLKuTDlVHLSwjmVcWAzNCjjgESMxESERL/iT4jIiAgWHr3ty3oxC7VWJKkqMI7jKMLE5BCMwJlTyjJJQB8nev8u392NQnOrx1r7j3Z+vby6L+EioDPB1+/yH78/PYx6efnp+ell25UkYxh6P465qlz3fl7Wpauk4XCYOQELcgMCS1EL6cieHabEucjhMIvIuuZaq4iklJh5pYa8BbqG1t4G6RtbUwwn5oSwd2+GQAk42Zg95/g5vkCggiSYCMGtm+Pbp2dhmvNQh2HkVAAFKSGoNwDo0BsrAGSOgSNnVnTg7JIMubcWYBBe0aYxB/BNks7mEZhJTChAERF6iMbQhZ0SDKll8urdelqx1mPjr2U4lagKk7YtYgPsJDJIyQDWotcgN/JO3YkwsDbtvYNBay2nsWQpg2RwQMvYI+gUZU48yRAZsUYROOQ0lvSzEWwYOWAUQOzN9vAUblWtWTelhOWYhrnk66bgQ6YwRy5jngQFAHKhaeCLt+M2za9Dps1b37cWDZZTuVy34ZRIvlDna2u1Wh/YxRFv7mthru5ADMzMghHRWjN1CLlhKa6BciNcICOJ5MSMHu7gqkxJOJGbWYVwAr/JmcghIWVOxmyIFIYeEreQedPEIyCRQzTtZq31zet1vzyt16fQjXHz/jplncRpWe262FZRHRFJ0G5aZcCIMEAIQspI+WY3xcxE2AOB0C0cE+LsXvYmORQdUVKexukw3t0dh/ML7+325rXaezNoquFACIQoTAgeYRAazoLMyBHMlESEA8CZcYAUhCKcUgpX02gAETymktOYUgIAV/VwAjSL948nTnK6S+/fjYdjSSyt9esF6iPfv9DSiHmYEnx9oD/87v77b4YB3z4tr7XtkkfgUde9N5OciUC1EcFYSh6G4yHnBBjKsLu1Ien9SR4Pw6HwkCVLmufjOI77PqvqTVVLRPu+a18dTL1vrS+17bt3RQt+Pq+HSR5HUcBmULvudW3XpbdABiHAAHdzU3M0xQgCTCDJUt6BVm1hjogpEzM7syVGxIa4Aoj7BjoOA00HZGl7ba1ZuDElEUY2p6XH+bpsy87ImfPdlBOLN9Nu0AGB2bLXqJW1KkZTa+gx0yAZlOMDDJtajXASRg6EGtYCcSxZAMAjABVib3CtfN6xIw9+UH9PEroubUHAUSS3/Sg4JSAGT8EUs1hmXEruY7rOg3aIAIlgrWCEG8fufd0dcSh0dyjXN6mqdV3BIiObRd37ebku+0wsSDLPx3cP+y8/96e4bsvFGtR2Wi2q+Sw0DmlYcN277mFzkfAApPDetWt0R6LCJU9TGaeUEruBu92CCyJqQASAgfGt+KQAMNUskjkJsXd0b9oV1F0RhoKBFDfaOQY4gTOCrNvGXJpp79H7l4oIAMx7a3tGP0xJd1yXa91ewy5tq9BFfBB3JsFh5LHgOGxru7FczcE8QBKnoeRpSg+J61iGsWhOQyHYamO+J7qPOJgVCxRKUnKZxuk4TUu/cR5vG3hZlmVZSuG1bTeGfUSoe2utq1p4RGe08GBK05SHIZdEg6SJkruDxZU2s35dKlFHJK3atrbljIgsKCJo7ojPPy9392V4d383y+koQy77Rqitvy/VH+8/PJR8OI3p2xP9/p3cHfr5aQuzaZwhH7ZKHt0hRfDb+fVyWd2JhVu9bucljUTUR9unSR4fpm++Or5/nOehCBE63ShZrTUzyznftG+9d61qobW1rdXr3vYavaM7Po1vnIQkB6VqttR2ua7XbT9OnRmJQMNb071qraYdfBiFRaQAiRIaimdgZuyIzEE3wyQ0s2bdnLqRiZDxgYpME6Vet03B3iDAYu3Wtma977WySCZ3plHEuweGBfYINe/qmCQ2c2senRNxSUICAZijdM8ajMQOYdFpaJk4T47OxODhrdn2eunw/LL742SSYNfD89qXLTl24WA7jNskMbASemBHtGSdKhw7IA86HnXxdakpEgfgHn6NWCOqcpbTkO7n9JrCt81XdAvlwZqvS79ct+teeYjAueT5NPvjfVzvB60UsFOSPaB7APFhHA5jXhYUiAFllhKJQHFh2HpAFqIB1I59PJ3m62UHaPtmbiqSmdGIwsDwZpwgIkJBYGCtdwngTADCGRmYNCFZVwNztQh37SGI4IlBeu+I6Yvss7UbBTrnrD3cOiWYD+NyxW15Wy7Pra4vn5/WelCfyAPxJr5ADb25JH1RUAQCk4jAMArdgV8kchbCYeKxDLsepg8BA+CAkIGCKSUpKSXJEhEeGgG3luwXBfjN0kCYmCUlBHAERCSicDXrZlCCWOjGaE2JOcLVf+UDhQKkgJRlWbe2N+ZNRIYxTxM6oLv1vuGJCsMgMCach5SQ6rK+Sr2/H6bTOJTj3ZS/OcZEl2X57N1EpJS71dL15Xpda921dV/2vbVOaczEy/lq6GUuQ46POX/4ePfttw/v3093xzIOg4C4wyDjPM+3s+nm8EhEZpjGU1PdW13rPnBbOFoDd/p4f+cIzXxtWs1PMb27O+69/64KgHvYsq6vr2/P/XJRaAbntXXWunfMZAQOTjmVUu5jwF+LJpKEHLeCRTs1o/OlQqGHu3thMWt77VdUbf3ydiWPkoRO0zCOaSgbOGfx8ACq2roGue5qqm699rYgaB7SQAjJzaG7p4hiODhydxJIyTmx1+4IIiAEWt32ve12PTd4ncy8qYPGaCEkmqBHz924rrQllCAJIjfw5n2yewqpMj3bZdlUHFMkbb2Txu5kmIl5yIchpTCrkAT3FtX2t+dryXz3IFt7f8CyrX1Z9+WyaFWRPJWhuQHA2vrW2zGIE2ZhxpDAxGi1ISdCZAoiCoMO3txSpmHMw5DXpat2h4gezIyMGhYBXXtrLVG7qaaGu3sAiAhCIhECCA/V7oiKlswiNNzDHBESg9xH6Zx2sXbIDTylxIzODlFOx3fHiRJvH7x6q//8d3/6/F9+0U3H8WHKiAcs74fXA+/WQ9mjQSqxld7N3AEIWCXX/E7sjv8LPP9U5unxNE8PA87p9NHuP75xWgoOGNibu3lDtikRh4YqSGbE2Psa1HlAvAoBMxETcKZhxC13kt2YjSATttaWy8vdnEcGBB3zANEVlkttOwBBVk99N6O0QLh2dp0Frm89M52mecsMKT/cHe4P6d2phAencRpjOo7b8sMU6yPrhzJMCOfz0/X6WprM08O686efl58+XT7XvgIGwKd+0H45RZT+9g36d/fp/sjDyH/4bv748eO3X319PB6nYcw5m1nbdzmAejCAJ2JOGRkNbG+RK9We0A6CWahIbU0jYvCTuVfyQ8JG0cIaukpM7x567+vetizvhvLV8Xg+n5d1/77OS93XWrfmW3gDQO5p9J7fyuGAEdZ6SYfDPAFQhA5F1u261r3m2TOKyEidqrZl37RzomX1NSAN0h2o1977KRgttm1vTXf1fdsgJfI3RODETIUQeNmRNgB4NxwCAtnClXtk48GzmIwJE0drW68rEeRpfuPh0xqxvj3czcK+1jf1rkC2Z0plWpP57gPIKM7SUnIam6fJn+y6P66RFX/qHUe+9MVnyIl83/XzONYkRcTJmJvAAGOW6qTdrqpl3f0vf1nWNV/8fHnTp6d4uSZnwkNu2/qqOmxv15YmTcw+i59S7N3+9LzB/Xg3csLAbU0Vw0tj5jSsSafDaRjPiFtJDR0xzA3cPAEECAC36tjXzFSIz59fx2mCA2GChCCGyRI1WIZde/N9a/uSCcFhwMSowsx2s06IGzuYbnq9W5OwlDwNLFFtv3z3/Td/8/vvX54vLYbdpBO6KTgKSlPkJC4iIhIiYiLCxsGMbmFV3DLhoZTTPBUYp5JvbsNf7NYRb+H0tpiZEfrN3DQCAEKNmaHDl9ZlgNxCssiYE8cwsmSAwzQcTse7u7s8lonTdd9XbdPrWNuFEBAcPCKQhSgAwnTfUePm80HvBxLOx2M6zXScgTPHOMowrp8BfN9XmmWeZ/RtW9Ze9X4+BFHf4LrV866OBYgue211CzMHRffTHX/71btvvz7dn+bvv5tOp9Pd8SgiiUkSJmahUuOLow1BMCDdZJLMhsjsN58+RL/ZOIRjGbO7owmbsgm7cTJ3QLCU8CTDMOSxDdM0PD7eI+LW8LKsPz99/vT2Jh2cgLJwgoi0r2trDSMYqeR8Oh3nea7LGZik5JSSu/feiXiaptN83JtLWfWX18u67Ut9vboqxAgv285OtruqtUAFRA+zhgBocVPI3KCQAHheV0KkAHZgogHSAJHQiwW7g+2qlYhS20G8G/Z9e4o+sLNpEkqUEBJ1QuJw2pfal0uPkHLMIwHJ1rde3VuQ+kHyfJwPSs27uBUF3t1pZ8WhxyPnGIaqmm7eGtqXy9unT0IS675Alm31fe+mxiQ5ESxteesyHaT1pCGFBpJMScHDfN8uE6NAIkEyQDcAi+i5jHmsMgyYsmEPCCImpMLeDdVQgTECXFmSCyzXlw6tYCvjMHBygG4Ne8+2h/XYmyjkQoC8hRUFySlFSkztrybeX4BcppTSMAyHAwzcyd5//5uv/vivvj8/vT1dYL8MWkiRRhmOaV6NKmncPH+IkCkA3D3c0SpqldDsOoQfUuJgijCNCLx5ryAiMRDBX325iCDMb5yVm/LzJgFFxJxzcluYmTmxHI7zjjhxKsLzWIZhGubpeDpNKfGyvCyXUlLKFGqJyAM6IiMhBIMfRA4ZJ4DCNEX6Oh++OX54f3cc5kK5IJW1AfgPrru3HeIQpsvlspyvKUke0rLZ2mIzVJ6pHMFhff2s+3Y3lPuC99n++M3D3/7hm2++un/3cHp8X0opIhLmAMAYlIhujoSBRESqEQgR4IAA4IEBjAQEicWk3Eqm26HGEEbEEJlAQALhsmzhCIQ5MRIxZ3cApvfjsLXh+Mh3z+lt3zVo632rdd9zXaoZ5Iz7tr3+arymapxk5Nnda+0UkBJP4yRjGTo45QYw1EMgLuv1+fXy5vB2bYwgSIaoEUDgGJAZAMAD0MEC4ss+Xm7MHwQhIDLhyBDsXXqEd7QGAczOXoM1kITjrfeh2uA+cy5grhs4voERR8rhYO4u1vp2bRVQupCEhrifEt8Pw6y+7EuiPBrGda9rQ9li63N3IGkJA6R5V++2bpenl0Ru+5bGrJ1iQ25RhnGaB2pDa1teNzgveM6J85GGtYy6rb7WyECukgQyxBdj29Uhd5wDCVPmXEKqQwSyB4lKRCCnLAkArLdF9w6cS6SsUoAHSaWkIGDo3tOmrurdISIRAwj1zt3ktg2Y2V2t9S8aMPcbmpJSYkFMqQx8OKaHd9Ocovo6dEgM6ibEY560w6avZtpNDU1VO/XoLWoNq2w6IqRusG6xbt2t9uR+F/7FLvi/jj4BAL/ZHYK7354EjC9ngasRYE6ZXJn5NhkE3KzXHp55JJRARBJOmZhQ+MYSQ4zASAKBaJTcOvZeBD6Ow3en04mIexsD/kDz78v7YznJIFxygKxw1r5miXQYEuHb0/Pl7RmD7k/3QfF8vn569d1Sd7KG7oCGR47ffrz7zbvDxxn/+M39b7+6eziOd6chj5wSCSFmQQ9EjHAiIBw8sJkCQG8WZt7czRTs5rtOBCJYys3l1GzvABAQGJAQbsbLQGhZa61mUMo8j6Vpv65b780thkxfv384HufrVl+v2/P5whGoGYrdFCD7vp/7BRF770QxjyMzu0PfGnp4liyFJ8aE41w+8GMZ5+lwfHm7/PnPf9afn1dbAJhzju7kNzsXtJv+CBz81xAcAACcvwiSOkQEgCmYAoJ0DjcGYABxRHfncIAD56a6q5eIHTUhgbm7V92Hgqcy5DELMsJweatPLy/3x+NpTEV4TFRrRG993fq+MZdKra+KiCkPDPguT3fiXSnCdqvVm6Jno7w6YYO1M6ahoy19cihjJso7aN4rvV37lEY6TlM++HTp67ptMgqpswQKmQZTJHJHVw2MSMTDMM2zucYNl4nmXyzvhNxVoXWrAHD/MEAyyp4z52kcRCxTiJN3J2gKe8SYJAgswADEu8YQFAAeqmpdwR09vowUunlehgYocc+Dxg5I6o5qe+tr1828q8YtVpqZkZt7M43ewzRcEXwQFnddW1+beoDu4QyBiIRIABQRAR7hX9JmvymTf13uN4T85kKAFnLr/nrU5Xq9bJ02PuFhnIgEWZCTRQCKARIJkUB0IUaMSmLaAiIbHBC+KvJVGVJPoPWreTxN8zzf8WlMRbrWQfA4iZ7GiQ7Z/PXpk7X6cLp7ON5f9suy1nUHtbRdl9frp5TSkeHbr+7+ze+++t1Xh48n+ebddJrTXMrxNPHwJedPxDfIMNxvT7UjRUSDm0WNQwR4MDEgBIEDMwNDUDRFj+GLvTAHRMSNAReEURKaddNMMWTOiTFgx/28NZGccr6bRqZujT3TAPNxSLU18/52ubzV7TYohYi2uonkBITuFORm2mxf6wZGwtodEFiAGZlRRO5wAKsWnijIndQJ0MFvVjsAQPDrAIfbF4rwpdGPv0KeoAEDfqHkCrAAuVk36+7CJEgErOZnV2ZEBiOjSTSBFpwnnobRvay7voANYKc5DeM4DcVf47Isn5fr3v1hBGsaSBEofWdmCmBC9nAHjjQSQ0ImkSbkGtGTFAH2bcfacS15X7D3JEEt4qqWDfbwS4OzUXd/6x23OiEigwE7Fkg3hbghjwETIEju5Nq9uUJOqNb6Zn1FsoFsGmEeZZqxel/btQITSZpmSiRjhlb6rrWhBw4ZiaUngpSktcY+3Uxl49cUmpl7u33nYTf9RCc2SdYSSmaUcDIHVW8GNQgTp8r/tY7FW1cb0SEAIEtJIKjAmB0T0mAW7vSrCeyvCx1vzk4Bt8EzYO5q7h5qYF9KQYggoiyCiITBAIiAYQYRQIEMxIlzckwylTxlWWqNRCm+jOjxBDALHQAfEL8r+TAOL0nuvrkr72d7mOhhbmjb+VJTvzuN+4W4adu3fd3mkscyaY19M8Q0D4NFyXiBvkwAXz/M//733//xN48fH4eHIz2cSkl8OJxO948ANx+jG7TurmYGRBTQPdzMwJwCiAgZI9CFANDdVf1GMmdO7l0Gdnd1I/tyNc3U1RPSWIakamr7dQESAZxyue4t1JxCkAbIAw4qWCgySkSs+7auKwXc4v++ta3VJBkAE1ESJgkOYODzZU2JHd3C317q29vbtmrfW2ma3SqE1Z0AEgABMACCAECAESB+2cAE4OSOgIQkIjeoBQDQwwjAkZQYkZkdrfperU2mWQpzNtcGnRJhRjWLwp0dC0z3Y767z1GSo5wvOlP6cBhOx3EcXqWfdXtC2Am7KiNZUFdHqAmdIzg0R75B8TnnJBIda2tmBtFzbuM4grn23VrtrQmSK3iDtsbFVw1/vZz7WoXJwVtvMaAhBEg1jDDJVGDL11WuK5+vsG4cCBagtlh4GIITwDHB1w/l63fH+0PhSZ6u9sOrve1d17WTFHaGMGZjbGCA1omEERKXcZCbCHYAHLLeYhrGLfrdfDC/FF0BGlCRqlPBlDEFMIR4JA0xSdkht3BgIiQiupFDgAlIAohQCIQoD2WmKCyDdjcNN4B/uX9ve94dAwi/TM3qvbPal+M8IMzDXZBuHiWl5OPcc0olly91MjGypDxnkJSnUuacFkVDZAy4jblIAMec73O6F3kUPhHZKd0/jMNx7DlB4m29busZbC0Z0Pr1/GbLXrLcHU8MuF6u17VSZIYEZncZjw/8/fvy22/v/9VvP371YTpM8PBQ5nkI4DIfuIzRa2i4OzOBh1m4BjKYqweqdVUFB0RMxMGoiIhoQX4TORICIxh4dDN1u6UsEGbRmnbL0/EwsJpft32vHQlSSsFpKKHevV9q39S5CFiGVq06E3OWdJiO/s6v+7au67ZtPJamRtQDiRgSUSCGQQIKdwTD8G69626WDsMIg0b4uV4dIWehADbLxNoJwG/bmG65FgMDF2QCFCRhzsiMhOZBsVCTEGAmw5QSFdTgtUOvOhUe0tDFHHI5FCh+3S6f1xUKjuPh8cPju3fvsFG99PE0wj2Xr2Y+TZZSr+W6DOdtPi/tl7XS3oLFjRB8JChgDAFo4IGIydug6ZYfhXn3KrQerYvIryEkhmGybe9+eVvqTbq81rVrTSntG8QlQPaO4UjNCCLlvB3Cbd3lfM3bWtZqAYgcCJfQhDAyjAJf3ac/fnf/249393PWcfz5pYJv6NGAWdXN3BqpozqoxRdoybMRAEqWVEopxCnV/+oV5n5z4jEzd3JXd/Xo5q021nCL6G4O5uCOyknICD2+zAzB/7oniVMgRUA4MqecB9cSmG4D6/5q0XArhL/UfAAAwIi3UugmgLz9CBHNFMxu6agwY0TKMpQhcbrVvznncZzJM2EwFeGBOQEQBrm7JOkQDsBIg/AAQK27e5naFDEYkAL16FuVdTuaP0ME2LZt0u3u/vHx7rG11vbetmjVXp6ePz1vAvbH7x7/7e8ff//1cR6Pd1Mqo98fhmEeNkUn3FofHN0RgJkzY6iEgzGztb8OE/MI/Kvn2w1+/+vNuU0Gg8Btr7dpgQBETABMRIRa1z0PQwR6V+vKidwD3OYDbVt9u+zbroRF0qFkCA+/GBZkwHme85Do/Pb0+qRqNypJBLbePDoDcICIQIFaFwMLCnNonQnHXKbTw0lOGRZu3kspAkDqI7PWwPjytjIRMwkSIkrr4EEeEsgBYBZdQy3PkW4O9UFFaJiGIB41DGlMU6ZJN1VtZUoWtfc2OBDS3TA+HKfTPPVQYUqMdBC5G2DKFWLLWMe8lnLeDRCIMSgFBhh09DGAHfqIYW49qLfUW0YeJAnSZmodLtfzkMXMrDs4HgiP3t6W3bunlKdhpnAzB27Lm+5D8wSG4CIWAiElR2yvETGoHpGY2QGRE7EssKYsCX2A/jDJhzl/dcz3Q/pkPYeNSANCRGA3i9bbcvR0q0opALuROlZNhhKxIXZhAKKtrsHWfXEcBihLAzZJNCesTh9LfCP9p7DK3sfoZWu8ytympTEV2Mbcrjvh4MpahcZ7xhPTLj4kycam8+hy99xyMKdk5+nwi0cViZTMQSALz4wTW8wlJ4bVDNmrVsoUCQG8atWIQpwkG5Ltl9AFDdrSsEGaqMxSEMUDrTcZN6+YzH1JrOG7Qx6OE1+WwgN6ExommCeeyt3cfD1kOt7feUku2apPaezT8PpS61nrpbeqZUg8QMOzwbr3F8sZqtSX56P6v/nX7373m8PHd8Pp/nQ4tHkaTncfxvGOuEzoYRGqOykzJWJER4ahkKGZNaYSrsnZIVuYBQYBJhaZ3J3U8hDgX05VQj9OD9u2NdgRgRmNe4QTeV933WtHDIFE7G69be5Q8iRpVF48NsAUHUC9kIy57nXprQ8pQ2AyOvJhaTu80VZtnBNR2rQPgkzY1u385kAIUt7Way6l5Hx5eTnOXYlUdUx8LGNGFsAElFnW8lLSiEqx20ApE7E7E/Ak3a0H+k14GoaRAP1RxLonpHkYCW1rL6pL4XgHUtvOk5ev3v38c2vX7s3HbU6+TJzeTel+hMeHZIf59WVNL+8e7g9DKqepmNLMj/Z6josWbRoCCsyh4QFeAyoyCMCGgAigXzJBsnEY972FC5E/qaM3DIAAwUyrvwPHcAHMtS1bHxAZkMxWoTgz8ZDTRIKAHWmp+bzs6O7InI/3MdZaKzINw/DbOGVCtIq6HjxHTcs56U5RP+FSee852GJAHYWSpAm25/PyQmZjmabhIdTWds7l15GHzUFv9qruNwRY/joHAgAI/5rfCnMWEka+GVh4oAc7TYAF0QjMo7F2MoKGro7Qe1/2vfcynDAPRQE1ou69Ne2mtwqEE926yPM8j+NYSqLNvszevnWJ8TZZJdxdXf86vMcj/Fe4y2+CwHAzY/ky3la1w6+jbr9AYvDF+/rGlE6JKRgIbtouABIkAOq1L5f1+voM1uahnA6ziNRu1pF4GIJb2Dikdx+mP/z+++++Odwfy2GaD8dxHA7TfMppAExmNy8MTMIAQLeUw79UBBDmrrc+sAghoseXfsstGYow91v72iMM0D00wAACkf5F/1wQv9iJEGIAmlnv2rtBcTdAxFKKA9cWZoaEKSUL3GqrtQLLPM+AtO/7ebkm3Y30eJzHeZhyYggTTmtbW93qttf97v7+/bt3LyyhBq25qam7K6SEJIKs4aNhBojmuhuEAxET5iy7O0oemG7wmzACOHps2sjAzC/bGaGl7F+9u398d2qOn1+uz0u188vFmlBWhEY0zYfj/fDw8HB3PM3jUIFy4mlIQAEYHuqK0XfwnkIT+L0IJQmE2q3HzR6WEBFiQHTzimS3/v3QAxUqEgKS+c1H8wbBIfjKZOrkKgAZMbMkBkZBbaaKYcxNRJg8ZchBtlQiKqVkYUbB6FYtdD+NIgDu6tZj0/UFXnTLiaNdl81sdWwkEYQuwQTooHPKOPHInIldIiHoVsXM9lo3wK23tVd1Mwh3dwRk+pIMf5lpQw4BWimc40sWBMSDJMmZI0aEJUEHXaE3aAIm0R3CwAEVUAHc0Q2SYhQkD4hAIAamGx+zmVqEmamqR6B/cbe+2aD9Nav8wmr4Nck3Myfubn8lfgBAhN/K6Rs5lIX+hV1OBAQRpMy5UC5szpo4OAMQIAlnU94u9e3zeX3+Cft2GMphGhil1qqKIROsC5q+v8t/85uvf/vdx/cPeZ7TVPLx4X2SIaeJuEQgEWkghaXMqt273jx7wdz8Vvf6FxAFk1L8Ogz7y1XHr5Pt4F9qrZgiBDGIweMLcHg8Ttd9X9Z17epBRHLrA5r1cGTmYUjquNdqZuBAzNOQt21ba4PALGJjmaZps6VqxYYjDEMpkBOEh9vhkLOPuVd7i33fn5+ff/7pp33x7749MZpa760R5JIHC1VzVnPuffe+V3ZihJJkxLwbilpEs97DTIi+YKfEEYFhTH465d98//iv/vj9N9++f6HhH/7pz2//03/5/PmyejC4ouOQDrgNmeYpH8aUwrZWXXckbRpVt9Y9OlLo45THbz6i2J3nXAozN9O1V73dZojtIr1vtTFitL73ZplgyrwRemgAwW04IxKYAUSD1CMcQG7np3cMlMQZzSDCjbxKRwZPFUti3DQx3BHmnJlIgq317irNnBHQwHpTXylCuySCHqtGdCwGYgoe4oAee46RGcOTObRWEh/HodYqEbH3tgUsWi9123q7TdYBQmQOBEBwAIsAwoig8ETICBhxa9JiUMKUrRbEjaCxV+6VfSJnQkcvA58O47mKWd33TTNizoDkSA7kQIgYhB5hNwMhU/VwAHRX1WaK2mtvZkZEzEjut3146y25g/qXOfBfqmi6sT4C4Ka84VJKEmbGnHPXCu6IwBwpU8rIQTgMnEqwiOSUcr/GftmW13NGS2NJqQixG/YW69q1u6/7nOXd13fff3N3dxyHQodxmMZU8kQkQHwD0YGJbzA5BgWYe4RhQICFuao6BCEGuCMxRtzmbhO4a4QjBRPeZloHIMQNgQdmRIJfN/ltU3P8yl37a85CJI4avyYgZl9mHdW2w1jKMJWSam+7Vu+NJZ/ujov3eunXbU/rgpkAnRzMrF4XTunmE9bd9lpLKfNAWRgwuqu6ObiDW0DvbQMX82ahYEkSglNo0sYxed+jrth3ChACAogAGnJEkND9/eGbf/X93/673//hd1/fn0Ze8XXdGP7x5fPn6w4OwACn0ymlOsp8yjixo222V+0rRM9jGaaSM9W9k/fjWD5+eLx/mD8cjmUccs7NdKt7a63ffOdhqnVZ1jNidK3rsqdUiHgJVVW1bq2bmbbbs6ZbF9WEiJKTo++t9t4BwPkAaqjh3bqpdmgWm+k8AibuE+tI5ORdzEib9a0hIEA4uCM8b1VyJYKSiiMpoAFSRAJjRCZgGQUhAMHVerUOvdXWqtxmtLaIXfulbrt1/9KAB2S6KfhuHyQchLnwoCUli2bmPbrVWqnlzIGIyGQOChG3iZVIiXEs6TjSPNCG4aHmkSh3wy/pCd58nUgyc+bbtHVmRAUgsvBaa+z7X4Gx+BcLAJDpZuhzO3fiVwjtliffNjyGlJKGNCRJpeBer6hADJKIOVgcw2Ee05hSyZgzI/VtXS/nvleJEBIMcDVEEhLvuFz2ifr7x+PDw/3HD4fTYT4dp4e7qQwcPEUABN3EnkThYADw/+fqz5osObIsXWxPqmZ2jk8xYUhUZlZ11e0mLykUCoU/hUIRivAnk/1A3gdeVndVdVYOAAIR4X4GM1PdEx/0eABFf4gXAAF3P2aqe1jrWwwYlIiJicIQyUYgBOqRg7eaFgGYSQSZFDDeXkJEAnT3TE+Hbbve+mGQrzGCiHi5XMxsmqbpriZwa7qvTXVfniYE6OatdU8aluPruusWryBbFMdrb4Xp7nB48vvuex8kISIgIQFElCNf235Zt7XtAOCsiCBTVVUN94zIjEyF0ExPV8+eqgaAhEUyXa1la1AI/LqIvX2AxwMvhYiAiFqnHh5Cx2+W+//05u6P7+jDYWV4ouXdcX67yFuGxxkQYVrKu3eHI/q3T/TdPb6ZYQv/HDtkRwmRWmutlTp2jwZoy6E8Ph3f/vDNNE1URFWX3seTQ0SAbta7vqmVM/N6vRIVprLtl4gMh/SI0YlpM9PtEhEBhCRi4Wvr275b+A536eHWve3QO5ijRTrQEQbneAvWra/QVmvqVmFJgIRMJAcPS0xgxv3aiIAZKmElnEkqcUWOtRVCTljqnIhb25tZjxQYnn8mI9hNd7ulSxIxCiciMJEw1zLPc6l1hTNwAqcPHpG7eThgA3AetRJjMCYSCAFNJBNSRV0QsVCVeiGOAC6VuAJxgnmiwE3nPKpi9QwAzBwXMrgNcvK4QML19eUcTawRCxEl3fp2zyxEmT6yc9wVEWstRDieSyRgRhFkAQBLUJqQJqQCXNC0nZ4/XU+fOQ2QE2kowZgBLaA1aO3wvrz7cPfmzXL3ND29ffP0+P7uuAA7JEVABr9WFobJkUEI7BTMgM5EBFlF0t1GlxAeCZgJyAyIdGuGBV+36gYeFI6tbWNXf1urZSIwIpQCNvJKBnVZNTMHFNItPb1rQOA0H0SqWny+nPZ9610LVz6Shqdbgh8neTweevgyVSJy9zRwMzS/pRYxW/jWmwAy0m67ZXTIBDC3UKIB3L6qeUazxOLBGtb6DgD+cLlb/O0D/fF9/d3bercQUSaCNd4TdxS+X8pbbLOtJZcic2sE24PoD/fweFyKMEve3dndVJ7e8A/HWIp91sDYzXt3XXzEA3Ei9PBr2/P87FXbgZZlmaZpLL0HDIwA+vbMQihRD0VEsORtXXI8QhJDQSQCzAyIHmElbnojB/QAM1MLM9v4TUZ33XrbwZRRJAmAPvseavvaTs/Xc9teol/ALGCufIMZMQOJhiMmI68JFE6ZE6ZgztgrFcEs3QbWF+6kkGyJMB/qctu2AwhjFYNUiIAcxeotz5QZap2maT4cluPh55/+ZoCa3kN7OmI6QSI1BgUgrgyFgsSFgzK5MheEGjFhjFduzUGCrCQVSZJ6QDokMHHhHHapgFe9zldf4X9oC3/tdekWZDmKZy4itYgIM4+22UO3bRtmvde/wRFBhEplZoTbNDicHDkBrW3nL59/vp6fBWK6f2tmtqt72nY5fTm1y3VGfP/+6ZvfvXl8vHtz//j47pulvgViQAMxsgwkwdFpoGWmM42rMgMyw3Ro3BiRGMeQCSFGqzV+noAAAAJABIgAiDHTksKZRMi3Bx9kOCsrFc28btu1b617BMx1ORzuAuxGSCvF+0i4hJHzSATMzFWIy7r3ddvzekkcidQYXa/9ORwQIMwLEE3lcDwuhE27ts6ATNSUzLNDJmNatNTKUqXMggbmGD1s31dNDwCp8O6+/uHd/E/f1j8+2ocHfzwCcTRT8WOX+SrLyoecvLW1teNUph1PIPvjE/3D3x1+/+FDZcvYkPoEcZz2B7iyJvfMtre2rd2+LcfKM2IksCOddP/yaf3bBR+fXw6Hw2FeRESQRISJAOAgVCfO1P3caq29KyQxO84A4yrIAB8TREXwu0MQSkaGGRItyzQnquojFyTygHACiCILY4Xkd+Zt7y/PV/KP23kt085qyW6T7fuuHQQhHdQBAEgB632mhe96UzNhAyCAd3XyzLBYA9iyRWKpifAaWiNMzJkYr5OhkV0AhMAMKFLKtMzzPCMDCgPhmPeGWVMtYcwSiUBCQByMgRiMgQwoCJVwwtH6RYSnRHe7LZzjZmCoU5kPy/H+7nA4TBOvHYD5q7TrdlyNoWvS15X17S/BTMSbVrGUWusQJo6fZd/3UINXu8aN+ickQiwIkBG32ysoMLX19Xw5tW1lAnVqzXXvEhBN+7YupXx49/7Ddw/f/e6b+4flbn5z9/CUvqhlIYa4iYBvZx8Bhw9dzPh+wwwzMNPHBD4hCTCREnPMRQkQsUh5DenNr81tZh4Oc2Yi8kATA5hDIvK2XsaviIgQx2wemPm6nd3Sk91927aueybuTZn5MM8ikcyAAhBqvbW8ux9w7bQEU83EkREJkK/Vzc0xHmrbtrFUQ8N0w7SIdM1KJAhv70gt6t623jwsQWaS+8Mf3j/8z39897/9Xt6Vz0/T5c19Usm1eZ67zXWt/Iz8bKbX05VnCQa7NtjnO54/HH/4/liphbu508kr77NfwoBMMvrIYc6B3aKwAJDCdWrRzNr6p7+WUkopBCjMtdZJChG9qfci2PqVGeskbilSS5nOshMUhAopBMiSVVIKfJxOtU6U5BrM5VAPmNham2GVksAO2JEp0hPFgkQX7469Z1Nv3dXQEiNpNnIgABEohGEJAEXqLy9OYEOfmAAJBFAC5KW1iUshDC5UOBC4SI8uFXqPQ23zPeVkAe0sgIKHsnt4CbpzvAdOPvjDY5vkcS6gG8LKuDOC8aRxAJtFpsd6vei2n9NfpinKXLuVfDHUWvn+UM4XCN97Ow8Br3HbY1e3UgqTBLiTXfvJe6tDTZgR6VT5qo0ZQRtSJEHyzFh13234lESUWrjPLKVMlCxJqV5TUV3dd5YzJU74S/9SRWBv0toR4DHrUadqZWbaswAc6/QABmEautrli11eIDbh2k+7rekB0B01S22PR3izvF/g3fvD7w6HI3rP2AkRsEI5ZIRlIAMzUxI4khmwEAOyhjt4gwhIJKKUEcACmDjeOgAHUIIaYZ6OiIHWfevegiwMmQrzAJO45b5p771/eem963K4e7q7X7e27RqAn09f1DaWmgluxiCC2QMI6H457ntTC6lLciylxnwQKU55FJkzu6oQdTPPMITl+BAIm/bLuqmqUClAiDOSCdF1a1tAnTg8LntDFvMdIY6Hcn+Q8/l6vkDJ8sj3x28/vP2uPr3/cqRPPOm+TKhdUf2Ry1wXemvt8fLSd7csTfn5DuwR+NzXqZyO0pbq2+rRgXiPLIkYUMALdLNT1r3AlDzNtU6V0K+/PP/45XxWT/qkFwKYSFCpIL1/evP28Y7SnvHCnOv1tF4+lyoPd/d3y3GeDxt/MmO34ipEQjWlKEs4lkJbbxsDPtzfIb04+OHuSNTnw5QSAVYnKRyjnhN77grnazut+6dL/3hpBliX45tyF3KJ7DxNZZmH8QYIc39253DOhA5OoAzrIgQluOxLhfsnfnp43Bv/+Mvn83WVcB04+VEvf939IiZQZjqMqRAmc5ZJLC1AAADptoxnYMZq1oeT6Tf3KgPhVOvglYJHmrt7oGECdCNPjCQAQqTINI+uahaESRgB0NXNoBv027KUWYhusvjbwHl0ejdDVahqRCAR35Rat3hhtDAzMG/bZgB8i1OziPBk5HI4HGqtQGTu29a2bXePwqw9tKepUqRgzIfp8WH68O3bD99+c/fwSMJqRgSZiECMCMCIiURJ+KvGTNhNAwFZmBmwho0ZgtvNMIvjj187BfcYwypCSCRAAoxAqSUDE4GKVBELt23fesuECDfvbJOZZToTJtE0TQBkjiIyL1hDqCsiKuwAYd5DgXBmRimETIXJMyGCI3BEkhGxSER4xkj63TYjaIvIVKuHETMhMzlRGaK9fbfKIYzALCKHwwGpzXdv3rx9KwVEgDmJEikADTGZwXzMO7S11ruqoe5tl7xbAMkRPVMjCXBMMRJf5x3D2nGz0JVpKkVEMnPf933fzWzf983DEZCAWEgSPdw2bUCYyXtkuJ+It+N8OB6Cee1922DbVj+ddLuGA06TzAeslXoyArR1BYDlMCEiFXp4eCDQ+a6WSUhgmlmABKCyFFB1bi279a6tNQ+CMlUwh0hQD1SolYnVTVUpAQBJkAPAVQAOC90dpsfHfPf48M3T08M0Mcqnzyf6DPNEAhCUAeGvNgEMIECO7EhAGASOAEDElQ/3S6mz1CKTjxiBsIROsQNMtzg6D7eIQHKkxFKZhADTMyDD0IwEEhN7sGcBEhBBwqDc3bfWIYCJRYg8ANmSLUtAz/y6CYVX4A4RQSQDDmV8RPTehzUPX/XYhXnmkoiMqF01khHmqQoRpI+emqSICFNRxNb6trVuUGSZpvxyGa10ZnqZ6On+7rtv3/7u9z98/8Pvl+WAiOaJnojEzEAMhIjDegxDxkzEgBiKkDQWWRmICWYZ8Gtf8FVtcivyPcEdIsY2SpIdEJGSubt190IAST28mzbtUmZVyszQHubD7yEAVGYzSxvBeSWSVHVPB4aRU6YOJRnJRQA41233TCAaHcq2bQFZ6swVzSMiREgErEPvBpmlFKLCjOQBKRnQm+nemKEK4CFhnhKhTLXOpcx13GNSktGRPAGRkgiKVGJRg4hIj3TMCLTI8ARDCsYAMCYWBuIIx0QIyOE8b9otvJSCmMw87KlTLU/3DwCVL5vpPkmtLIgpaExG1AsDSCZYrW2e8v1beftYXW1dr4bzflVt7bqrA+w7bk1K5a1HRDS1TChlcw+u8vYtTuLL1cokMvOh4lzoOMlyV+uEqSEFSuFaRQo4EDODGbtTRGoHq8xkqvv1Yh3wpseJWvPxYf72m8f3bx/e3uP333z77ft30fX6sp3WLbIzoxRBpECCIfNXd89IJKcABA+NMMIOuu3btWnXpB7pOMLGgRGFSoHa8prgAek5JuOQSEkMGeiWbpRImIQpkADJGlNyIS7EQiUTsmlctZl+7eXAMbrG3kvi5p5EADB0EBEJQMxlpMYDfdVvjAlhtjANTw8KqLd7L1xNpgm1l1IIvSAw0i1EUJiKAEBTV8sicy+L275fGwNRobA+HaZvvv/www/fvv/u/Zu3H5DI1BOcUGDUJIDjh2SWxIigdMsETE5ikhLujJkGSZkYAYDMX+eFNwk6gEeQAQIRZI7GLqJwLRxdBDzSTM0AyDKAqEzTDAs4JFJERBrATWcQamaRHhAYoF1z269t3ekeuZBEiXFuQDj4SJZh5jJNxAylNNVu+qqBc2K8v7+/u8t9bX3dXB2SkdITfPh+UxA4wiMgHXbq47h9FYcpoAIiktPAH0PAmPZKCaTQW8NPwMNUE2HpxpgsQBg0Vj/gADBWJMjkkM20m01jRAWRHuGqqq1tbo6ZT8cnBoR0CpsqHQ90f0dTZYCDx2ZyWGp++/b+zdPBul7FZrmrRIJyXLx16Goarj17ywCwlCS0RAuTjtcdy/3SvWjLGsABE+Lhfv7w5s1y1/Y9nkWvex4P82HamsOIm5tYoIRFkMZwfYknj9spHQDmpbz/cP/7P37z3TdPb2Z8/+7t4/3Dly/PegkF27uZoyxFNhlqGFPzpl3NA7LMU2ttvWyXelom7ev5l58//vtf//LXn8/XM3557vt+H2YT0928LPOisOEt8RkBKYgd2IA4A9IFsrJMyIYQbm4qybWUwhWYmdmT0CHV9uu6bVtvfcxr+7Zv25Ye7gEA7glw282N6o5yZGoYzEFEyDRUiJtrG0GVvaMFlZs7D2jJVAhDN0IY2N4gmue5lGJUABSBpSwReHq+tK3XyogOqPNRPvzum2//7ncPT++w1DGnEgYmiSFiIEYkYgZBRMHQjATKDGcpGYDobpGogQjEIjUov+rDECI9EyghAYKIAEi1uUXCABZNmQF16qMJ9izEYzsCO7RGFuBpoRZAKRaWe9fMDCAAdM/Wm7Zm3jgqM88zB5M52t5671xApABRKUVK6ZnzPKMScQGm1kPDuAzriKwJe26m2XZt6X2EQnApZQr0bg0BLMAtkABGrguGR4vEBENKpPxq27CIBHf3UEvzTOQEScwB6kmvIjKktXBzRMuIgyFMSHP3m2ATIgLczWzbrufTaW0BWCpTuId2hDjUcjfXZeZ54oxFO0zgdzMcSz0g4CTTca4CC9a7SdYNT9f4/Hw9nbfWTYANMtATR8wTE89MFWUJpHQniKxUWR6O89vHaZpNp0ogz182dA3t4MySgFlZELGbDi+8EM918t6H9k4E5kq1IKL3aMRT0/2XU3x+eflyXa/dO8jWTKoAYxBEhI2U4O5mAXU67M3a9brWXRJbs/P5+nJef/60XU75+Vkvyty3OZTTKBToBrYmKcAByEHsSAghmcI8F9lNtnBvew8muEmmHNKRXmVeJAEVqABKgr3KfbkIBkbg2IKARwRkYAYIkEYmBiEWYh4XGlNEBmSoRdNUQxSgQfVIU1MyCK0ChdgTkCfkEgGeQDxJWYiKGlwvXW0dJMzlIO/evfnm2+/fvP1+ubv3BEJGJmFCGprRJC7JlEzInBiQnBJhQcAsCEnBEampNNj3xKO+xvGZZTpQAgECoTsSRVoABuQg2AOitg5JMmwq6hA5suV7Gg5Lt7m7AtWxQrPugCiCwJwjIFFyhtKCEgGZa1kA3OLSzcsQ3UXEtlHv7ZUxnJlFhBi0qZ6tT11QmHGeqzGrhZs7RPRk9kzMCACySLNoOHL6EMdEAm+jh9v8HSgzIRAZ8ysUDYmQK8tUCqGYRjpwLSKMYBmYA5sofIM3ve4Wb6L9SMgACAIkgqVOUg+XdsHIcCfBqS5TlUo8MVuAWmOwuZSKShGVqNSos99X6Pd1a+Xj51233M7q6VJl9SAPjQBimur98X5ZFpSCNBjsWoTuDuXxjh8WkJI4V3BZGKh37kBEE3JCy5tgKhIgwImozmU/78w0ViRCrOrPz6euO6x1Wi498nTVy9U+X835sNsmAEEwKhm4mQR9pGkh00RUveXFt/PL6fm0qaPp3Frf99a9c1+1r9EusL7Ewb+qggAZkB3JkTASMhlAGAsQA2ZYmEYEJGlCT58gkRiJmflepqfD3d18OrfdEcthrseFaik+WQYkRRrefI4REYwoNOQcZWAJBtHWALiWW95PYmEhwWmammIACPE8lakIEXimlFlEWu+qWurEXNqu29q7AZMDxnJcvn3/4R/+8e+//fb7eblDOQYgACaMohkdBuFXsAgQRGYkJCQAjcoaEgGR3NlKhzYkaMhCMmh1kTGGD8BIlJnZLMI8NQOloKADdNPshsiu2ratW4zH3X1gTIbJAUVkjLgQ0c1fPdKcAKVyDSGyFtjVAWERJK6IJbwZkdCvnchQ4SOTeWbmNE1LxnXbT6eLIM1SCguCWDTAQR1ws0HYAwBJiK5BkIhZCEfcaSmViIYhMobZPxmRkImJh6GFOTJIiKsUluoaZkGzCHKO/zIZKKncdIQ2Mn0IgamwsJD20NaHmiXSeu/pXYQmoYPIYapTkbnW+8O899TWiujTQ33zgDNrocSMOEhiQVzWXhjs8gyXkugAAkjYMTUTCj3cHx+Pd8cy2QwErK1HGDEdjnx/z/f3cFcPiMfY2wwwE91PJXBmoBah7uqmEQIiGUkEQMywzDJNEwBE+HrtiLnvPdYsy+GkfWvw+cu2vgTArJnyVRjxdabnGZnY1IXnWpr1/fT5008//fXzyy/btifOkelJedMuWoaG7e70W3HFmMEmUphGOGRSAiMNdAtSuqdnWIZ6KEQZWQ5EgnQsU0X2DE8nIhQ2yFJKuo0J1m9IO8FIIjJJGQXJbbjFXG5Oo1JEvJRlmqiyE1w2R8R5ng/zMpdKiJZJwofDAREBaPAoTtf1dLr0ro8TsODd/fx3v//+D3/4w+PTG7cCzjghEoVlDGnG4GZKASbIG2ktc+TGMkAADdQXA/Fr3UhfNSq/2qdHkwegphGubp5RS2UhVd1buys1HJrtbds9YFkWJlHAHfzmc0AoAbVOZZpZbdCIIuF1jI9M5IgB0lsL8DIlFUYYwiTM12EhERXmoWZVU9U2LQeZp8TnL1+uuwWnCrFaa223BCRAfh0uIlowJRDeznRmfl3R+4hau+3j8zZ8d3eEmwvdzDLA3cO8TiPVPTEJgF4XJkwUzJyENnbk9NXrAUOxo6qRVlgAqanWCeZaCtJSap3KJNOyHB4fH8r20nefazw9yds3pSJQKEG6AAtznY5ar9f9ONFcIBQsndALZwGguRyWMk8sAFEI3M266WoWwtMyw1Tzzf1970SxgunEdL8ceqd9615DVXeFSEAJh4QIz7g70N3xUOvcWr/uul5tdFcv1krgl3U/7fbTT+t2hg+Pd5ZVyLGQHMvdknuUAHUp6by5SiCe9fl6Pe9t/UXlL8/lr89Pfz3/sm58jUU3uWvz4nfPufTD02XWpoBUAWGH3sml0LLFF4la/JBXQip+bnE4yINPxyC7tOvamuchsmQQRlrXsqVedNdQwCTaw8K1ImyCyQg1Qo3AqFAidYMzVJ6LESrYkeyu8ANKXVWmKNqEIQtuqEKzQFwul7JhTZq6idmgTiVxwNRYnh6fdqnzfBDhH3/695AVljXcj3z33f0Pf3j/X97Mvw87KpByLeGAzDxMAl6q1GmCiX0qEEaGkgFJEAFuYAnYUzW0p4PA4piOSoDKgjnKPnfXiBhw2dz2vm9MNJcpEgqWJGjbS9oWib13HNysIYf24IRKvHcjwEMtSQDeplKgr8zhyJ580bSYFGX1dtlXmY7CpIiUUO/ujsSIGFphkACFB9yBoEwVI7HtCsfZyryVzSGue0hfa3ACAYQkFx6Rv7a2nbIxgUjpZmBcNbStTAcpE0uQFJHCJRCLm4NpMLiZqpvFvutYjEDKdesCOcNKmVTfRlbf94Wz50TRuWxE2LGsndW5TLXOc2/ONCNMbgiUGf14t0jh3rsnBXKmzvPx3VJnU4f6/vhY+bKkH8nrhEPSOk8xLRXKkvvMh9jl80tQl2ISiHXxLIDLfH+3HLnI7ol48DTgAA/t6cZzXR7u7/tcn9v6Anom90l4IV/VG+UiftPoCeWUjZ0i0x8WPi4U4Kt3N8h63PWwP9NGn49N3tx9Y/36pjx0P8n09Ph9lYFNICIqguFf1YvTclTVpnHd+r7786n97cfTv/2Pnz79dNo3bTsjCAKLCGBs+7UzuDslmoepx3TDwY58oiqTU61YBIuQMAlADHLqaAIBwCz2ff/y5cv5eu69JyQgvtpo3D0AgYAYRTA9CRMxMCJcO0paZ8wcNRgQDZfSqLTHgFfVzaxZALgH+OtXBDHGkA0fllndP3385cuXLxNY4cp4vXucvv3h7YfvHrFYwl6XA1UEqLfdT0Q63fhBkBCWHmMdNFTRMAzLqu5+MzgUkSjQh1gSkW4/5k0oOsD8XBA6AjEVZhIpFslcnp9PiByZQAwsBpjmFr4sCxGR2LCvaoyfUYloMD9fdWkxKEW3KuC1+Bo3JBEFjhoJu9ve1q3tnkZE5tnVgBEhpiKe3s0h4P8P7o2vejhXy7x5sN29996aeHchZkYhHj8yog0qc97u1ZskdmjAPWOwRxkQBzkMk4gc/HXpAJk4/kdf7S5D6z4eKuYiyUQUoRHjoUEWnIRZAMnnpQl5wZgmLzXmhQDFE0iyTAGS4gHUzNeuvRsAVWYopRQpy7LUWokFMP11BVhFDodyPC4i4u6MmIiR2SObebd0ChQafYRFcrqZAcRABWYpOU0ipSTXoiRzqUsiH/NpkiNCASAmX2o5zIWQZCo8C5fCZSqeNKy5hdiJsFYs86bw48eX//avP/7zv/z0pz99Ll6tZSg0921rmSlV1LU1wARgCk93T0JAzkCiWnheJBPLJVEQBYUQwzXSAZORqggTp4f2/vz8fGlr7zoeirHa3bYtgUC44CSMlJxYJLlAociuzZPM+qvKPxLCu2JkWkJE5SpIZkajzwCotZZSXpevICIsJQCIaLteP/7y03q+UIF6EJZ8/+HN3/3hd0/fPLlDcsjCAA48AREgUia9+ncRMn2Uz4HpMAKDIjKjtxYRCCE07PsSYWG/ooLidT6Xt4AVGchYKpWIEpFIap1xWhCxioxmsqmbGUVk98BAGrpMJKAAhyQD9AT10LRIJ+IqvEzldO3unuEZSerNY0A/e7fRQieYR1NbgVC4msWuHdJI5GE+KPtqa+8+VBMA+Yrguyl5aBhpAzEpPNrWWyFdd8i7gkMaAOmehAhARAA3MsFoI6RUKcOOggy/nuPESYA+zgumSMygsQIYDwxAitBXET0zJxCShPW0CAYiqMKlInMygcxriFaIOmepOc0FwCwABUUQCoohIpipGpgD3+Dks8zLvCy1zEBMnJ2xpZlpKTHN9XA4lEkAIhGA2AAtspnvZoaIM5HcKheWSlwsehgi0xZREVCE5sH6QyQA8JJ3btw2bVvPnrVQQU1yWZhOCJluGd102/e9Wya2bqWUUpdSjogT4lLK4/H4wV9e0tx7NLXrdTN3FA5wNahUmcpYKxMyswALJhUoM7qBsAZLimRmmO7WVm2723SjQkeG3gz6AEBDgOPeWtv3vSXLXDICkyhjPBmILAiaUFlkjEbCuhu9jk/HqExEmEtE1FqVe0lalqVWGVTkTB8Q7H3fN8qX0/P55ZmRve2r45v3d99+9/dvPvwA9Z4sQCbgaq1zHS0zAhIkYWa4RyYGxFhVj3kojj/DYrhPA0a6HGIgxOuyHAIME8MzHTKHLIuIExESPTI9ImFeDu++q8OYwXXKzFib98YAoadM97SE4bKG22sfEuYZGeNYIaoTE9fSu3uqqZknqAGaR2bu+0ZE03EutXKl3MNNSRKoZro1m5CP82Js2Q2iYd4EQDfmSdhtpAIIkETEgJkQPfZ1a+tm++YmFIAQkIEDLUIBeBuzW0QClMJcGDC+DmiG6g7iBjoGDqKaiQ6shmqJN8lMshDcaqAgEsqMgHDKBIhkRBZiAcZIUIS9cFTiQoVwJiyJktkJEIAhGbJkSHhJBwJkvsVgiggiZyYhEjIwBkSPXiwiExhEaGR9QRIAm0N3aG6auExllJVDr46I2jzSIuV+KhxUqQZTF/dAcAPk8yUsFABOp2siILLZ1d2FM9C7Wtu7Xvftsl73fVd1IXP3daRvIJcyCZcM2K9r7x1ABCled7ItI0ESMRFtLHiQEhkSM5MAJxZFnACXQstU6th4hqUruBEEITIwJdVa2doQdX51LJiZQVDwAOJAmGcAITNSggDMU6m1jgo0wgBDSAhopLWGpZOlAwFHRAyi+nCJZboHEXCdAtBdr5fn9XyhhO3cCPPwwz/+7vv/cvfwQ6aAMJYCIRCs4TgsBWMHFhkIkVkQAYfwPxARMJIJELgWygS3HNEMdNthDihCwk2K8hUHeNN4II433zNEZJ5nYVjXVd0Hr0RTPQ2RpbAlF8gA9MTI0AhIAK4s4UNRZ5luCWjmN6tg5pgak5TKMlgCu/aIYMESBSC6KXSkeS6lxLaR+RTJwFYqelyv6je4aBLymCEVJlcb1TRhZGR6ZAfbtJ/XaAt4IAEgICVmjsKWSEYxDGO9yoic6eFqmDDiBzLtplRDRGYEySR3UPWBoBjvcEB46GtXAh6JY7I6QPmETAHYITp5EknlufLMeMCUhA6ZhIVg8ZhcxXoJmyAKwCQjtQ9A1Tx2CSqVSKCruisAJEaCjzkvC5oHJoVTBgOQBWjoTOKZlmkA3YMSdjcYo8sLWO2OPc1pD3UbUp+Xy96sEdG291J5WupgYcnMyAjMxIWIOZASsbAclwMzt21fL5eXgkxWii8L+pQHJwk+dcLXEU4SQ6J5kt4CAd3SPSOAEQoDCjrjwnicymHhmpiVa5EqPJU6o5XpeFwOx+NxnmfpW952ML92VvUw1VnAIzTCPSV4pnqsmJ4e4wYGAGIceAAGgdc3oo/lOMYQCQcAMw8gVq2i6PM8F5nmeW4S63r58vypr72t/fFw9923f/z2u7+nwxvXjlwikYGlyOaXr/rH306SEZAAARMSgUdZjcgwLfMoPMJ6eiTcOr1h/xo3zddJKiWwQIHBflaHQELipIIIBhhmLYISCdAz3dJcd/cIiCRCwIxMd8/YWsYIO0ViDw/PCIjeWld1dXNAJBQilmJmUif2MPd17xaOLKVMyAKE81KjK5h765FYEEJKL5C9O9z66ciAm3qexilMyaOaHujkMEUvnMkZOY7pG5iCINETEyEoxwtAhGk5tkGlVGa23gcKBnBMoRmymJspEJEUGqtwM3+1pNLo85mYUIRQiImDKJmd0BmlIleuUz3OZSKKICCCWoWEPGDf+753t8ihNMwkEkja9z1S6wxTAIlc4GrmyDANfIvQEK6wAwWiJToRFIIGYZk2z/fT1H3tN4gKIHMeDsd9u67XlsA9cm1dI8f+vEPsHhhpmEXKcn8spVi4oBtxitB0WJoCy4gN43Zd53nmDApNu4JfCu3HOXwGj7DmHhp9v27r3jsc7oA5IyMggQA5E8divU5SC5O4EwhaIWcyV7OeoR3CCVKIaynzfDjOx2VZZD2PgnrMXW773ploomix9T1s7b4raLAXlj0zwzIKQoyZjWcykvsw/cuwocsAwRNhOPNtbCMiDCBCwx4A2E6n5+fPn8ys8vK7737/T//TPxzvDuAtBbhAbztjhcEiBCRAjESEsScjJBg3MQC8blCSMmPoX0e40W3xcQsoBxjKvzHrIhq7mCwzoVE0zXRhKkWAcWjIMpXQmQCZoqBqWu9EBGCjvhiXOjIIUHZIJhYpAdyNJTCJqMJLv8F34IYKDNV935t5Irj7ZXuJTGSRypmp3qcyVaG+9q5uAFhqpi/LAgDe24Dshd84FoUQkjDSzAVAiAQiHWYpE9+8uDn8MumegzWUtxEUYkBGRBakhJFiUYgZsI9oKOYGySyIFVPcrJsnjY8YPFR19OHjkESGIZfl18+dhXNkZEzsmDms6CwBtCFvhTsXIq6+X/auTZ8DNiTNcLNlDP96M/WeyICcvTfe0qEglFKXZZqXMWQhTuSAVMTgAjedIKSPEgyJbuyaUmqlaZlTwI5zm0r36GE9nZiYyQuYRWZ2iELA04zM5CD7eu1V4hBjBuhwK1nfPTwRAaYz+lzxsGAtDnk9X37ZWmy97Dtm29Z1bWuz+UhS0UaqKRERMGEIU5GCRRAJd7D05rZr3/a9Xzo9vzyez+d1PbbqbJbmkFlrHSXKV2n/mJq67Up22S/r+tIvVz193i5frttlknKFAW+8VVaZad4rTelBgFXKYIpMtbrZJdevA0OzbkY9uqpGQERo6Pl8Xte1MN8d777/7vd/9/tvkfp13+vdEQqmNgcFc6nHcVmOluzmJ0KEMHhN4gOAwNuQ1n/VcqcPkomZmZH8yrICAH6tOWplAO89AL1UqUuJiNa6aodQAicWZjBGSO3t+s2bby/rBtfr3i1uImtm5gPNEYCITW0MboWJiQ+Hg4h5Ro/s6plpptu2na9tOR4y83LZPe1wd0TBfW85yaEeiCjNm7oBlEQgQP4VAk5ECAgOCRmQjBgOkZ63joEoYSr1Jrmxr+k5AJmRgRivfmbMjASHcSj8JnPv9ltiBkig4WahG/7wdkjCr2OU2xcQIHkwEjOxjHIDRaiAEF4zIgGQeqIFXpNWKg6EQBTQuu1qJ+SNBDBjlAP463IkzdzC4QCZnkDAICLTNJWplILUhdPQAw0ImIExgSAu69qaengAcSJgZLKZ4XGyWZyppV3I1Q0SKPwoYOjuqZHdYjB+E11MrmlU93Xi+5P5ppu7HYswVaQklLvj8Z/+4T/97sObP3z/4V/+29Oi/Oe//KTn3WBndO0bZYiTqgAYUAaRQo2oRFrkVNPuC5769QDzU62fvUsYWq8Odn12v2x+UeKOnY+1LFWPa24qF4JroOPc+LDit3jU+c69g9kcHuBX02y7bOvVzstxtoQW8LQ8QZZoOE/VBDS1aa+1tt5RWMp0Rb1y+SbzEHT0LAhZeJ7f1OWpVmJI3fa//unfzy+f/8//p//y+eNfHv5eHx/vPTTcUCdgjm5BVFhcRtOalDGixoYaCUNgINqxACYCB1hEJ0QPxXDMDFPOIGYENO2FuQJFAno008FBkDT17mnMKJOI0Lq363ZptgGQTFWEzUKbQeBcj9c9e0vviJ1oEPAEkWjhdlnXrlHL4X4un7p+uV4dSZlPvml3vD3LMjHLMqF0xNx0H5ezaweHNNOkLbbKCx1p33eI2L21DhNgmBVirNUiLBwzGSCSScTSk0MQHKIQaOuWlwRS1VoXIFJMYVB3LtfMB8jJFJjzeGSWKDSd27VprxWctWeCoO+hqjQLEQZZgx1E58rr5n65Wn883N0Xa+16qRkeXU2FBAqCa4myZKlZoFUVAibGL8JYJ5SqyL5UR4y2Xc/UlroVPByOh8bl84qE9HYq/nBkqQbEMpNraheERajFeW8ZSlGMYprKXSkzYt3LesW25uniz057XaR1csP1fEKCUiAB0+d013VN3Zo+1G1lAddNwwkrMWSmX3yBpaUCwCRT5VpKuVwuQjeoGP2W1ZqZzZoQIuXhsBwPQh8e3r49fHj/GLsFBHy5fsJ1leKWDBKOmUmvuvybIgqYuQz9DfPgTGdhmasULZEDm4YjpuyGmyQCB0GpLIU0AesEhyPfPRSqhbhs4nGcbbucknjz9ZfLFT67Dx/ZTYY19pnIjIhmtm3bvu9AyLOM4/OrNug2JIuICFmWQHo5XxPo+9//4T/94z+9f3P8/R//YWyVKSXzVuONywZfQ33GfXtrgF+laOM3ORyamIEJZgZhmPE6tyQkzFJKqQI4lk+IeLtVmBKEqDJnIkKKB41u40bhxBCBDHJP7dCaXvunvrd0L1RFJBF3U9XGgsRwrEstCxtcu2/umpAt5jITmvrt3kvPdV1Vffioa61Nwz0hE5EiojeLgaRmQTSwwfJyRARIM4PbU5REBK80kcgIxkRIwIA8n069z7dJcgYh3f5B4kjJioBxo4bDaxn86xcTAQMxolRE9Ah3Nx1myTpNU2WBVwgxvkbSMlLQ2L0VFmSkwkiECT6qKLz5ogAikzATSjIqavPt2rdVm2YgovAr8jczkwhK4WkuhakBwWsNNYYjGBhOyFOAqaN5qKdFBlAAJqFnRgJRAaKIUHBw8JeTF0ACSCgMdXK87QfmG+oMctRWAGBmQoj0+ixqeO+9m6rbQxXEZE5V7XszW7fri/X14XEqNYrkMsmOSMnCSy13OwzPPeArgJmJhetXhcCQ+xKmMApkRwQPiITXzw0jI8L3TCMhYVJLLVPcPfD9I91Ppc6lzai96LLce4GTvtyfPpe/aL8lrYyqabzMY/9gZq21X/HR4+kAuLn8EQcE2zKSKtYlub7/7ofv3rz5/d///tOB3n14z6UmIrInUkDiKwUTxtwYcQxEMxNz8LNvegzChEC4rYWG3iMQAr+amRG5FhJOjzTVSEsAoABiZItMFC6YAIASjonCZX6c32j3CCAskBVysl7C6+n8o5liJJAApmY6pENiZCm1lorE6cqF6lIpQTanWbi7Xi8RzoCO4Gqt9cykyrXOnqHaMoGZQ6NFc6AqRWoJJfQdE4horqWZmjsC4GucHX7tgYbcgigBLfLly2lfj5hE4QHBJATk1lOQCAEoc9ivx1IKx0zhNm6AyHQCjNfz92AHki8AAIAASURBVOYA75qZI1IHEa316/Wqqu7uXd2DqqSPLMxbZDEzVbkdEIjJAIAOGePdxJCKhZxtje3c17XtFsgVp2mZajK6ulozs1kw0wh4LocsAQTLMh+WZSqzcC00td7VqHU3Rw/0ZKQKBElzty0DmACJAV241EkfVi7EGB7uQlR4SaI9dSeKiDHH+Qp4zEwpxBzDIWKttXXfd+0afl3XqdK4QNRa386mm5B3vyApunrb0Q002+5tSSiO/+FrNJ4SNzYbuGtoz6LZ1fbrrjRYc8MrP3pd62277LZ3tADPTAPUUmOa4R1TFb4G7MidGKblYbk71nme595sXBrw6vLP3yQ8Db7XcCmJCIOOPnOQaIc0HpmaWS3l+PDww9//YWobUJZSDoeZkJ2g0G1ML4UREYgJcNy0r+/tr2lGmXnLxQUHD7SgcA64AWRv91KivEbAvdYOzIxMIMxFXAkkkWKsQSOTeJqXsveemObuZhHedm/d1Pz+8UFbN9W03HvTBCxSlyX3PQG66b7tL9fttPUt0gEpJ48wVWumnqUoElFSpKt1pkJETKVnd4+MSIuuqoDIpYjA4GqDl1LqsmTDfdteaQs5doeIOQRTDpnADuBBewPVWyClIHGt4BTZGwBzQcQhyRra7EzwruljM+lpmObhw3uGEeme2r33nomDhXYDs+wNI4X41w/FfMhs0jXNEIxJMJ0SGBJpnLzjYWWiWkEyOHrqDr2BByCCY7gqDxhoBqEjRUbvmtPhyagD5GGZDlOtLARMUMyadjClxEKYhE5FELLMpW9qbu7OqQheC94d+S2/WaaZwfd91QykefXou5nZOCvHxTO0dIgoU6kSzHh76NWHnQSnaZ6Xou16etbLyy+Xl5/36/P5/OVy/UIY6c3WdSbhwtsY2Y+F5msqLLzinsf1w0iCxJDoFr3Zvm4Ntu3YdScIgMHAMlXNlr6Pne348AMggLKkl/SaMMLkmIIwmP5DPsPXl/brLGToQH5bXTP6rUp4/TaRqdSqEBbOtdzdHVz35y8fGfzhfgmkjORaSSowCRHEcBflwKyP2yYzRzmd6TDW3+EYCW7ggRFhHmav52Y6pozvp9RQwxiVaUmEZELhYLO8ma7Gh5KASLzM90W8s7VdVaNWZObDcd77tSHtmSPmJBLSDAmEhEjcoFtoT9VYe28eFrTvfdeOCQRgXYmLEM/z/HUIhIiQ3LtmmiaoQmJC1wo4loXxqpe4SVZvOKDRPgwLZA7JbAB4YAdwx96hOyyUXGmairUQlHHiQ1JmEDJzGTVKhmH6beaPOSxgBKB2O6PdQdUGAwCSplIFGABqrTFjXRsHsBQDxPTbx3fL9fQhQR/1LDEije6mEILpMKmgaphmWCKqK1w3m453xKVUmvlwf5hqodQdIjOMAYRBOBEs3dMcnCEwEyoXJsM0BsxQBpmYEADBIXZOX0gPDN9+gx/eTsdZWi+X1q/Jf7vsL5/NtiF3HuUzf0UvSS1l8sLMnDd56riRkCcE6j3O5+vl+bxeLm29ri/XpuruujfdtiliFm4cUkbgesTXPfttvnPrh4loKnUqhQHAG5iaobYOfjPE3fS6YZKIBhRYuKr1THQHN1RMMNfwxEByCHXfXC+tNVVFRK7lq3l1ZGkPsuy2bWYGhDds0qB9vQ57AZGLlHmqIq46Vy6E+3baTp/fP9QKBkkBISSADAk3wfPrq3t7WgfO86YZ4ldZWYAZmKcHZnjrZn0Iv4fSMBFH1fB1mXzLlGBKxLrM7N5txK+4R9xC1D0jQC26qbkBBhUkANjTzUKNAOc6gfna9na9IlQiKVQQ6nKsyn3163W/JmJ6CEo5LBGZQElYZTocqLXW/TVPBMgtmyYgRIIjrK03c0xMc0jovWvGrj1yMLQIAMZUTxBCRLszkCdCQlpceznt0JysJA92ExhwjvSATIzIkTyJwOMXi4hFqAoXBkMlep1eB+YQw7tHJH1NokFw9xGVnpljU3CYDm57YapFqgCBw7hCARmTGYayEgfhJ2X1CyeqoymGGsVY97VSamE08HQlzmk+3i8CKRdjBhD2ZcplwVpQKIWxIEkie0iM22sXCA/363MtOU9AmWle0Z4WeFrgj3//5Q8/8Pfv7yLx2suPK89/2ZvoT5fjeLxrrYfDYVkWMxMRuUkI4PamDS2jZSBNTFjkcHd8fDrUiX6n+/MvH3/sJV9+WSu/SKLt275d1NbdrkgCGF8vwFH/DJ5x+MinFiEaIjfCxEgPizHXGVOccHdngnANcyERIFNsG+xbnkEJbO8roLrtl/35cv28tefXpQJExDicRpOgryKQ8S+MflhVEV7r1dc0chApU61CkHp/PxeOtl/J2/18GDG94QFAHu4JFRkiBgn2NvOAX99eyLy5g0ch7Z7mt9Ac83CHBGQCH51hDiBDdDVVUH+dJ1IKAUL4uJeRGIPS1TITnd3DLMx6pBJHorm7wIEDOIGACCkZO5ImPJ+3sCSUw/Io85EQM5ob37IfEGiMkDLBxzIGmFmQMm6abeaC2hmBmBGyR3SPAljglmPW+m4wpm+UiYw8SFX8KkQOgACEyAT4fIrni29d+hyYHZ0tlSQzMRPdwy3hVRSdA+EQN6s/w4inSUr8asYEgAEtG2yAMHNCbb211rtbV5SC7jAUlQAiVFgIEyAZ8mauKCSMRE4AEegWQZ5hFhyBmFAJmOBOwJcHZLm2XbUBWMKh1JnQ25ZSQBjniZaD1AmLYBXigFF1jsIzW5uWgkL7mncHmpYSlr77IvDhAZ+e8u/f2x/fn7//0JH0avVwWT6f7M8CvzCPHriUMjrhcS+KjQTh3wQCd1NVNQ1lRuDj8f7t4enpvur2PIk82/7Xf/1pmT7P07aGe2+ABuDj5slb2MevA22IGOOEMSkYTznhTfv+Wv0CvdbAlOBq6Q5UE0I7tD33zVcJV937JaGnbefL87q97O1aax1Zf4NdPl5gZt7MhkuhlFK5jhhEMwNnwlcD1m1LSCgMEIAx1wJhbT0dKN4+3S93SzYG85vcKaMQpwNCIA+Uwq+ented5m2IheE3k31ERgrRCEW6qSYy3AWZwsESYuihBhl3Kkh0uX5RtzHjRUE2VM9wLziP0tpj8KVCbWttva9vcjYwH2JkSljqVGtF5svp2pq5pyQzMcvEotet9a4WnrmrOZAgi5lpHVNkSgCCFK613kRNWIQwtTW3AGJhKUgY3tURQEpB5ghIyngdaMkNQJ8ZOITMLxc7r94dLIEDwDeznGiM529VMdC4jTMCXM3dIG9D7WGoSr99fF9XJ68vM42j+VVDEAAgxEjUWtO+T1gYFqKhFkNiJCQWEBq61fHZYQTgRGCMDIgojLXAxHSc4cV9TEBGYh4BRlh6T5hzcGnYGA3ThqAS3YZ2zdoevWXoLLMIlzf08DhNM1+v2666SN5VuC/w3ZE+zPRAW+RGuDzAfHDmHYYAfpRvY3g02kM5a/YpzvV0xbt9gS9tveoXLCea2CCdgLhs1vHsqJFZNJ8Mjlimu7vZqy/HSlxJ5rWzyIx0l3y6xMvP9vzXvKxhjxe+nlz2yPUq23ZceELAWAtoCabYwpVpwmnqhPXxrhxseSC/xMmuHTFhe/HTiz5TW0TqZsfWcT2ff/l0/rydTnCBUgpAYUzf2vop87ukPG+rR/myrht5fWA9XSpA67qnEsDxOB/JF28HOLZoRt2LY62AmXbV7ZNtX+b5eFgeQZceOh0mJOBMRsA0ZHR3hjJuYAq6zZlJxsEFHjTNoLa3NpMAeGYod4BkQFdNNZlqAhsQru3xcDz7CsIpdHa7W+6WZUHb2vkMCakd0ifEfd/289kVmPGOl4qxtVM2Jwe/Kr6B48PxcDhsl/2yXqMrlUpMDwfk2a4r7u289ivyNM06tcvns8sk4Lx347lwqZmJpbbeAQKYiJEgiQOwA5gVSrR1V8AyFamIx+NUENdrE7k7b5fsNi3FmYzIezpkd5ukHLi0vo9xl6nuDf70Sf8/H+8e7+8+wC+lnVaia1aWufUwDUKM7tj2+VAmIvOkXWVhi9jCGvje4KnOULMeildhzr219dqWN1xrleMUiiAVsOxtv388JkbXa2uJEEnCzIfD3TxRwuoGPHNlkaQZJAO6d55KORTuU/c5Uny/TKpPzMqz0nKYRWNg+CEUEArD1NXQfI68J3yPMO9b0WWSaVe0Ate0lbGVoqUIS12kkN/z3TLR3T3dF/vUUhzuhB5KyVp90X3a02DfiKI8xdPycUJb5+MBkXdP4QyIAHNX2b+cV2r+UA/H+0daqkwTLlUOR4ZaEGs5XbXv1yTv2+mnn3769Jc/Xb587OvF+traDttVdY/U9CuSIyCnl8zF+Gg8n+Ha1h59bPwiMQOpVClze+lbCw8iEgRg90Phx0mejvd3e5t3rx49gLBmsCqbp0dcN++b9xWzFd8mX2tTs+YuY7AR13WTy8qlTPXIzKMhFRECUkwMK4CFinAtpQoVS0AgIsnM3vqm1/P5hYWk3nKhJp6GAO6r4QZu6OxICIy4DShxaLFwiIdAVXsfhWlkADgRMTEBpt+WXtM0QWEogXy7MdLTzFzNigkxeaqpa4d0CNNt39c1clqWqdRqyUOXQ1ym+WE+HnRv67apm4jMLM1jd902Kvwwz3ZZX9ZNp2MFKBA6z9Z7dw8RQZYRsKba3R0RAY1IhpiZmVlwU0tEswS00c+uewoAEDMRA+v4EV713Pkbn/BXoQEiZsKX5/2vf3t5frv8bq6MYt6Bq9+0XEKYQL/+t68Cu7iZlrky968X71gT9m6BIDL2lWPbh8PnuG3bUL0ej0eEOEwybKTE44wS9xbBt0RHIh4Wd09kjj7ckYHApQCijKFJDmcywFhtDE2oFMrC0wyH43w4LsthqpXc0jMCAelGSkNKIDR3dC+R5uBIVFBqlmWe7gohcaF5zgxOmncXmaJMsCzL4TDzoQQhMopQBhGgwJYQVtnfHeZepnApJtmwXVe5myJt6+16Olm/Xs5f/v3Pf/p//7/+6//413/5+OnLeYv10K3v5hppyQ3qhCZm5pCUXIzLzk0SBKFwYESkOYYnZem4XDt2p5GCzdlnweOhTsuBuLwOhCrJEnJwOpw9w/N06e3SfcP9Ott60PPhfPlovS1TWeYpSCzIM5GKWR+VkrpVIpECppk4SWHkQjJRZRBMF6yFJyrUXT99+ely/jTPMk3FIIKI6gRm6T4iiOKWlEzANOo59CAYbn7MgJuM9zUHLDJUGwAERJEyAEBjs1VK6emAoOHqhsCJiAljzCaAGJHqqZZh4Ba9p1o5GjIGAgqWaSk0A5OqdjdN94yebmE9cu26tb3rkcgimeWOpGdUprIcytU/v5wuvfcyLRCZSJE4LMG/mc3lK2IAXMdYA26gW/CmqRHzdJRSqMggFhCxIBlRun3NOh3h7Dd1LMCXT/pv//Llp2/K/+bbByzqaoH2ypUYPPDMXy29gXgLshthTohg6g6RCBZ53bR1QxSuhYqMOvyrikNVGWgqRbhwRq1FhGjYRZiFAiIAafAYkQhvepJwcAtsu/dmmSBUEighbPzlwMOtPXTHiAhgSCFSpomXpUyTSCG36OmW0cK6aU8XJEeIdETXhJ5gmSAVOLIwVHHwTPTxi6Z0aEHOB5ttKpOUqQZhgBMmIHGtMsO8BLyJSjwj49lUmsdu272R8mZ+7vbjl9PHX3789PFvf/7zv//Ln//0ty+fz1vfoBoJ+iCJt+CpUQnCQLwS7VWcpjzOB13gsFDdjWPwHMhCzKDWLW012zEaJmJ6payZy+y1NErDBOGcqtV5l9owLfzT1tq1Ywvr5dLnSz9cLt20A9A0ESJ7gAUwokYHikhT7Qxch8IWmYkwAcf1aQlAFesihzIJXvVy/mR9u6+MmM3DiCoiRHS3oYu/KX7LqJZh2F5v06wIz0i3IkIZUpicvO3NFBEDPG6CYGBGZgSM9XphCwo167XMxBSIpTILdVXMLAiEYJ5uLokzl3nBpuu+bkhSDnOdDh7g1+uXy2kqtd4dgvh8PnfrQcjLlG4v51MA1+l+Pkz77qaBTFKmiLAAQVLzyKi1Sp08Ogzk8s3XfBtTCEEyciaSDCtjQHpGgUwhLpKqGl4iBoO7p7uDj/cQA240/gCYrmp/+9j++qOu//l4dwzYr90aVQIsgIyMNOyYNFQvgZjM+CpdwExsTQkcECMpkgGYpRKzp6miqfd+KyVEhIWISPcdmH5zMAAiCHMCEAeNu3EIT9zN3cLc0Qx7D90jDYGTws0BiQqzsUBAW3clKoJr37zv5h7pg8pv1tTSM7vbtu/nbd32fZ4mz2FSJyDUBEtS5HS7aruYA9TM3JtGQFdZ9dpwmu6ZN0ywTPHITM+E6EoJUpoc1OeOh55F/YvZ/Xqtpy/w5nfaA0wrMUZup/X05do2PUyHx+NDtNVwnmUqkWgd9+30cI9R1b04cnWogcciMt9dD1LmXSTEykQLwtH7Q2+cHs1ae+l99cNsBA3i4rnXaRcyAsVINAfX8GYOBRXjCrGHUyYiKclOVOsBAeYyT3UpMokIC06lmDZiCExLG9JklMLumIZOEG692VZjkYoiVKK36+Xl+uUT9AtPU9uj924JFcHhVXoxgmFHAA0FCoAPSeBtAGPuwzczVAqB2r0nBr3u7lQV4zaqQSJ3Z6KABCYpZZzo6QFq1jU9GDEBPdRME7xOorGrqkYmFQJKCeIJ6hFjl3meuFqAXk6XvmuC1IK0lwUiU2NVh2T2yMu6E9UyLVJzWg7Xbe/qyFKJ2t7hFuDII2N5PO7MAMREnkSUaAEOCQCWt7XhiIO9jeIBcpgKyPEGhR97mADAhPJ8av/6l+tffu6Pxwl4cd0RGAJhBOq9ilsSXLV76PhmTIfzbkRYWuAg+1aSGZkdslvLlCE57L0j4rIsiRFhqs4pCICYiIAwlH+O6K+VwW01deNegidVIsmgNEhP4UQScHB37SOkQiKitYZQWmvRuyq8bqd9aG1Gnd97t1fIxGglSmERzCCP9KSI2D00oZSFCwSQJwSxJiThdD9PZ9BwQENISMRM74pIcnzRtKA439Pnstnh0h///G9+WE6naynFtOV6mf764+HPf3r7+Uu9rB+m6bvD8eWKlyQDmNp12s+yPV/ibfbeenrvv8/92/PL3fxy8O1RBbBgKTF1qb709bjDm+36XSpwHs+f+OVLymO/6umsLxf/6fPp+eXSViMHjL32VbYLrqc6vy1E91VoKoQZRm1CKXljliBxBmcUipmlFozExBhFFxiMHom9CGrhrJSUZrphXTgjTU+fPn/88d+ff/prrJfem0cJ8wwERBYZrt3b+igzwoERbqPsBA+MHADdQgjpbkoJw4jPtdzyBCLVLM23bQvC+c3jsixkkZmVok6iqqatrVclslD1jhAefvNjQTKRmlKRg9Td4rytqH7/9O74eJ+zudnWu1LyXEWniORaxPX9m8e9x88/n3b1+4f34nRat+u2l1K4VGTBZpmhqoQSYQAQMDbzt9wTZjKNwd6z9AD0DB2ky3QJs7y5hb6KOoYiPNIQbqFtoyBnDEheAf/HX07/3//+yzdvn6a7GkiQ4gAWEBE5pHvgnLjtV9WWOY/jD0BKqVSwc8KwgREjFSBMBIdgZsRb9T5mDRZqaoULMw4DaWVBtARPc5RRHfBvtvHMjOpBRAiMKYjMyEyMiFOpL5fr9XIFKYfDYSo1M6xreAIQYSVkQqEBj4KAaKEW7pV4nqbKQoAIWBAwATxdIxwYiBnrUnNIskcoIc5b18vuPeBwnLbe5rlaRlpCILDOpcr9R63a8ZPdvWTpMW/74arbTz/f/ed/K3WSbrTt8ctn+vmX77a9b/tzPufm6r07x3rin/9yuFsmu6x2TTqqF933O3j+4fDTXflL9R/9s+GpSQDVkOKTtrcZPRtO5Jg/7Gv529/a9dJeLqe/PJ9/3C8fr/7SZ4d3AIJ4jPzW/IMaaYjIcVrWAzhj842qv0j7aIoeqV136Ps1egNvqCXBVHuAk+DIXQuq7j4VWBZeZi6cEApZMlT7vr7sv/zlLy8ff5zy0lk4FwHEQHCH8RyYJQIzozAiDgAVUI7kXoQkgopESGFuZpMwMogQkXTdrTsBuFu6X6+XnvYmvzkcl3bZ8lWyP8LZTJWIDLKZumtYt3QsyCAsiMkoBaS0tantnrGkYQUI3i6XvutxPn7zu++f1FsmFTn9+HK6rOt6NSeEsjdKqFN9+umXfx9jnt6auwNhBtrr9AgwAPim7wcAiNH/R0DgLUB1iJy7G5uq2zDwR0SoQcRw8eevuOLX1ho68JROL5f4y48vn5+Xbw9CWIE4Fd3TYpBdEAAibYixxy5qyAmZS6nVigZkN9ce3WIUK6XykFIOkfP4AYd/mJOZmSAFiRgG6i/Rpdw6GqSEX804N75X72DqGFJIBpKeyuxmrVkFmmQqRSiGwI4ZoZRa66GURWQSriIh2b1rNMWEAsQJAkgkGQEGPbzvYT2wADMej0vA5kDgYQ7d6XS153Nc9wNIcFJdJnbX7BBZWe6Pd1J+ueTeCKKeGydw97q7fvzlpz//Lw/HOzKIvdtlvdusJGrrRc7HnEUpO2l/9swJdDp9PP31v5E8JT54iMD5KD9N/CeGj582CTVrO0CUkoeabyfmu+mbQ2mZvzPjj5+25/X6fHn5+Uv71O5wflMOVs2FCvNc6ncs3yL1HjPxsdR9iQ52bWDs9+z+9GS6HSrVQpPwJFQEC6Pt1vs+poVmoaoqpOp1omWWea4iRAM8l25tt87X02m7XErtoUZUhBgBwmz4pJAJMqkIitwexPwVUY0jFokRIn1o6KbKDMUKYOiq+7pOpUAkZrbWFCJUaa5DH/Z1Dz/uDWYGQjXr2iCcmeSmg6FM7BZt7601DSWeum3XnRGxmarpfZG7h/tuIWpO8Lvv/+HP/4//+ud//zhNj4nzT387mfNyOLp7meZhBhhOAOSCiL7vow4emuZXngLwSE+8XaQ37zMw3ETsGYRESGYRGZFB/B9417djAUATBI2hBNl1933TGOz3AbB4pUXnEIEnAAQRSBnC2IBMRiZiZndwVW3azcIdgFBKgVcrkoi4xigoaq2mATcj0SsMFBERp2mq9eaE+xpjF5Hd+95ka9aH+xYwxudKN9XI11ediGph2PextSgyCRdCIaqEQYBprr1H1zAcsIUigmYO4OZtM1XFdAKuLFJARDLAHU2zdWgtzcnCIpwFI3CAhAFgrlX+snoEgQPrVYgBA64/uXt7lCNI2UO6F6CAdJFyXBZ/8ghgjEV9f+btefrrz/Ij81sULxKHwBqVsniSShhkmwFN1a0XwprxDuKHuWxLeZhn/ef/5/Hn/3WapvXzy2zweLn+7yL+08FfMrZ0I1+Wwz9++cvjf1/h7hvNwCKGuV3Ol8/Pjx8/fd+oxyUp0RFA+LI9/fLl3TRNam/X8/zlPL/Yl5jXuaxd1+10D/Q+4wEpUJ8Buufi9AS4XPcf87NfPuXpZEf8DP7ttx9635ciUTgR1Q2FpNaICNOyzKwTYCR1JSBMT2dPIjaCDuAI1Fuda5nn68sX3TYWnA5lpF2auCCGNzI4xxdwmGmGtOj7tp4BdTnOk/NMtadPd2/qXHq79P2a0X/+pDJP891RWdZ91f2SGwP64fEdl/rLL7+czy93z29lOsp0f3x88+aN/M//x3/ouP/40xegS7nr1lY83P3+759enq+qPE2Tb2oaBS0QEQqgU5ilQiYzEnCYBksPN4a4TaM4lAgyINvuiJwJ+srTIRaXxbyl6wxZhNzCHQFrgU6GhWk6Hts0Pxv9EfD3d/Wn41WVwgO7EFGJBQCaR1m1MNM0K+rdfB8reKMeXHmSsmSR1e3s3pE9UVV1lctZT+frWdeMm5RVokoKZhA4UweAHh2wzyU5hvNKWgIw0yxuAECB7y9r31YbDjYHwzoBskeYOzAa4Zp+vHusBbf1eo554rXx1UuHwoFzAHq06Ido96iPglRkRVjDwH2iZXYkQ3fx1OsU/oH7Px7bt0+lhkWyJ8c2+2Vp17P7S7T7sPDLRhCFtHOz0vHhTr75v/9fBnjftUOE63C02LJu65fT+cdPbmvBkgghJDgdy+zWGRB5cuwF6SQSEf10mnyqgMnWGxC2l+hHsPbFjqUIcZFSGEtzPZtbPNjHaWPeTtQWrHVZV06RZsEPDfzb6Y6WyTKC+cPz88HU//avPTyFkEFbf7eu7XzdLudPtaQDYUmA8HzY4/5k0vaMywd3mur3zBpw2du1dff8g/r3St+v9pRZC5UlULe2vlyvJz03ySJIDglJ695y1xTMBEJh5qE2Q0SwRKIb9SfTMgRxzBWlToChLQgB3K1vvbeI+MpYGfOMscCUWoVrhkE6uH0tOMNhUzPClMmpOE1QMAxceXl42LTvIIfH+2+m5Xq5MKCjLPcPTxnbtv3840/nn34s9cjLOp/P7b2U+8N//t//0/HNx21TQH55+fLx48fD4V3cy+XStxYjL8Pd1R1eZWr8emeKODOru4fDq8rudfBzEyB/3RL99otvxK68TezBI6MImoX5/vkUP/28/vwp1h/uH5eZTDgYUyiBMRFCIMP72HmyoCAwZIAjCSIQ3yMeISCjcc6Ms/BR8JCvCEsiCrwZtIe5Yuyhv/a6r2qtm8ALA5B8yBMBSHgSAYRw37u5CRYUYHNlmeqBJBB77+u6wlwjgjF5zFle4yYjQsPN1XzPdGIWLOAAIO4gIgBIkcSBQrXCVKgQ3oBCQaa+7npZfWut9RHSPETBUJCLzMTz+3dv5If/2//VzKxrmmZEaB/iyuXz9a//9qeP//V/+ff/9V/Pp5N29yCm/EFInQmSiQALAaKGqj5hmxMWLlhodw/bpmj3RFvjJ56PXJJ5ZTyxqpggPcDO5kiyuxYD49I86LgwTbAFT3E8Vk9vuvv2S/PTLKv2luCAyK7Fcwaba78nySBBCkf1qNe94gl4dfiI23YfTiKR2AK2JHf/ocgB8c2mMyoTZ2zn/aW/8MfPz+efLzwxRkWKgHJdW1MredOgIgtEQgICmKawDWs1Fk4oPMarkZD2mpwIAF8puWMbPNcqtQoittZaa8e7O/R09WbKCW4dIAgFkWERAYK1XQxpSwDWmJvhw/v3xyId7LJejY8P7x+09S9fvux/+evD8fDh+++med625im75uVy+fn08ZsPv6vlGIzb3qdpEqmqvm2KIJnamiKWWsRDE3EMSwcKdaDSx6uZhATEGDEY0JkIhL9xUP62Xs7Mvu8FgQEJUhgFuVtqxsgxIpCAuO55vsal4aaFsHBU8iHPToHgNFS9TdEQADPDLc1Ci0wAc0ZV8/CCMAkvEx9KWQZ8Z7xFOabZr3p4opt9n27Y9/jtWBjQERMJgAA9Y6d8hfUgBXMCNwczKwN5129q+IEZkCJamOZJRiAX8atPC5p5sxypQATJCJWgRoSmq7q7VcbDzMvMtdBIb3PPfYuX5+3lJbc9zYmnW4S1RwhyqXK8m9++eZD73/39zfMBMRQ06R4R/XQ9Pb7tz9f/9q///s+fPu1752mWMr2JnyNCiIUgIjCBMM3svdiS1+PU63JQwUi9g3wS9EN9N5VDkWS4EpwLtglK4hJ3mDjXAgCCkpyb9aUsi+cGRpCbD2sptl2p6d3DcVfKzIGdLMwwu2OfehBxwRIETQP1gqv1iBk3MbvzZE4GjMhgAhacGL23bGmYRr1lPGPa5eVztks/vK1mYpJN8Xy6Xtb17cPNEAOA4YYAyKyqgZEemDcy69gtRbi33nsL10KMmWbadd/31a5bFX58fDzM82Gu3tW7Q5Ik9266bdna3tWa2mTsVe7mu+WuPEpLSuRIvF4u/eXLBvx4/5QQfe8ufHj7hjwNxPXSAzlRpE4TJcrhWIP4pwuuDX75fPr48+XHv322bpOUwo/7pstyhOS2K3IWAHP1VzfPDaoJt6S4qVTLoMQMIg8HzEDAESz4NSL0P1zCBM7EJbEQLLUwl7UbNbuGE0GRZUIH1K3juuPamLGyl0FHIAZAE2Aw01DAIAhwC1c12y2dKnpH60MRjOiFgNkJujuHw41yi4wISYHIhCRyo7Xc8C9AAE7EN+AhBxIiYQZEuPXUFqoOQKUyLFVLtm2zgARMBEKptU7zUufJiJaiVXiZaimvjj+EBCAaoZcekb1beuQidTpavpjZ1puqV0qmIETKW6FjmvvmLy96vmRXcqySwjI81pHZkWnieRaUe5kBgJEYxz+29HD3Xx6Q372Np/tfGP+0N0/A1mPvL+AAUAgBoEcygCAAwM9ExaHYnq03CPN+CLgD/G6a383TY51RsBX80tq67uTMcQCAeZGIGCyefWvHo7wLDMMiUlsK4MQLQoR1/GzWswgvdSpCc6nEoKqrnorIUoQkDDpyA1IDfYN3wpyUAkjAKDco8GcZDROxZe6poKYvdloN7j3QUtLRMq/7nnjeruevw1OIGJGNBMCIBKlhEGGm6R1ZCpGmpZtqM22pKYTbdt2267ZdWr/MS12WibnM87xvfXDYJqp7YNu2Fr73polUFwOx9gV4cplCDnWZap1AhIr88vzl589fgoCnmTJfXs7kucxHOdZtveyrpoN1XdezBjJPTdHUMqan+9/rdv/P//yvp+cvx+NxmqLIEbEAUAaoWqSjYEFGJEsYryYDikitedrXzJQhrMqBqB/RAvBbeM1XkWNlXoqgp4BPtYoIkWiJ6OduEGod/Eq6NVcDD2KFoW1KhqBxMQoaeg63MDJgAptbc4sIyR2CLT1xA9oB0P3FFCGevq6yMkediIREgFJQylB04c225gi/GUcNL7eHqRnn0czbru6JUqDUhN48kXLsoocAdjguIGWqODMdZhEe/kQeWItMdB+4TezmqZqBIgUog8JdwywLCaWAZTS3cOFMNsd1g8s11w1VsIARVevmquE7Q4JVjCbPLztSCg4YTqRHhkXEad8u165RyuHp8Zu/IypCZb3uZFtEGKaqXvt5PNwIsGkRC4Lwbo6AREvQkvgn297Z9iSlTNJn/qLteVXvMJdLJGFUtUH1ztT+IIenuDfTqpymlPFwWApTOvrLLxBxkHqstYhIFRRW1e5ZOO4WnzgjTDA4s0f/1g+IyMg42D2ZkE6BAYTJAlwcoIFauDJ3fOaLsbtpiUqFbUSupoZ3ZILU1EwITIIEogRERqTCRThUiDDM1n23fVNr1lsLxzS3btYjXHVb18u2X5f5OIJdzCLNsqdtbbucVbe9q2FBORanaTm0tu/QaXGpXEu9Oy7wZn777bvzet11L6Vk2PnlBK0fD4fT6ZQdKpf7w1GX40/2yy8fvzxvn708mIF7uMd66evF15Z1EWjWdsvAeTomgoWGAxEVKgBBAbs1VW3d9832TTv6jUEfg7mJwTf6/qvoEn9bQgsEhIMZMRxKmQ5LJHOp+CUvZ3VDTmAAoZHWaO6elCAEJZLBkRJLRoUUIhGaBB2ZiHr3tIglDcGDPPF1Le172A50436aGUYw0O07hES86TG/LsZoUIABMt2tJ3RMck9VLeUJA83Sg8IlTDpBwIwC5LfmopmfrutQfVdwQi9CQomYzDTw/a3H1sxf7VOGGeCemmO3H5qZhfGwlPsj3S81cgcHjOIK+5bXq2+N1GEEepolRKarNaPsAi5/+tsXGCQuzPEOj1b/p8+nj582yLs//sP/4e27/+nh+DjV43bdiU1VPb33ftku7k5EnvaiTua+bavvWXiapkmTr/Y/1v/+0uxyXW3b9/Bzxp4ABAXCMNIcAoAIPJDyIbd/zWjWJilmCuYHbIVYmJ03wjyAVd9RE5WAScOXJhPTfZ8qenpnSSpgrm/95TWqMzIz8qaDectFmGeSAmKhTlGOONN0iRMJYeiR6zwVIBBKjKa2TTwlhIePHJ+MQGbwcPcxGUlKQGzWXtZTe3mpVQiza7O2husIbXLT9XrervfLdFimeas9zNvWtFnfdb+u6/Z83nbL0l247pX4sjdjWd68aX19eWGgEMY3H/7wcKiz5dYbUby7X2AqCCH3TyXRtzMFFKAPj28mlC/Pl799/IWh1vJwiW27PkfuyHHZT28P970boCzLkgjXzXXXZu1uuRs7FUHqmWOnbeY5ASbgzUaZAOlumcSvDv7bcunr4jg8PQlgmcrd8VCn2RLqtHxL35Cd9t0k4DD7MvNckEg1OtdIiazogJYEMEc2D8wcWaIDdVa69ezWOvEkYYRQGaLyoZZjLQeGgsgRoOoUKcwZQzHWM6cxa7thJzB/Y0jISE8wHrx9Bt/MzCBH+s6knVQq8T1h23TX/x9Xf/ZjW5Kld2JrMrO99xnc/Q4xZVZmZQ1ZVWSRbAKNFiWqJaCBBhrsl37Sn6kXttBoAiKhRguSSKJZZHOAyGSycojMiDu4+5n23ma2Bj1svzdT7bi4EYGIcD/3nG1my9b6vu9ngWnLbo+ujuDJe5AJfUp0RNxcum6prrEu3WDgJAiErOargaqZWbzoPxINhYciTSgiau23a5xOepvZIZGUnAZhJnKmhEHgnSAGIfln//TfIjjFlsMGBJgYEfGy1Kfn88enGWA/He52u1e7cX/YGYwbptEjrLsBxTZA627Src23ud9iSOM4lgZ+Wg8fjvr+6fH0i8el6WwBQsCEMuockCqQQ2JkiJrBRpcT3MAgmFJK3XFZ9eJrwrwSoMUAmgAdHCsAY4eYrOZOU+/sZtEZAAEV4h6uiPgSHA7uAIjgAPcGA8OUBiLpvZrEBPt9pi/vgMdkHJ4YhM1MbV1uV9VWSgKPCGOWoPBQRoSIdZ21dVU112EYXHtrbZ6vKd2VoVTVVbXVtbfa16XWZYsyQsRhGEqpvdu6roLE8JKeeTo9zxXPiwPvUtfHy3UBn17djXd7ZyP2XPhPf4r3rx44M4diOEa4NuttmL6QfShTm68OSikvQOvtWq8fkAofGJ3W9dl5mY6ph8/zWqulPI67g+TUra2VI2KdlzLmnKWUEoTCJWUfB6t6owBWtHBzfYkkiZcIjv/NV0QQgBDnRFt8BADUpdXAV4eH+bn1+Qru6CYEkkA4mhsTgLykABoioAAW7eBEZhFIiGIWrYOB9yZexRXBgVFQ9lN52I/3rfFnQRgEBMWWGg7hn+LyXrzbm0xl88cT2SceFSFxBL6fr9uHldNENXWlIGKcUHrvbWlQqAxTHsqUE1tX0+6sABvQDbe4te6GIL35ujblhAgiL2nCwiLhRJsbXL2HdtOGaUyttWVu57Odz9AaSB7S7m4cdjkhUWPQMI5AIUxC8ov3o3bHkCQZ3Jdlaa0SOuSxdlxiBwcE5A8mj2vOmGympj0AAsy6ZkIh9tbXy9Oru/v9ntOyYNigKaLf8HqH+JS/u+yvNsD5/B1Qdwi3douUcibEYUg9au1NhS/rAjx+86c/+fO/8Zc//smPvv31L371i//w+P4356ePRxu2BKn37z4AAuRERL42l6G1BtaQKOVx0+uEO6Fsmy0QvqSrIwDiiM0NU2RoCJ5Y593T808ODOM39yNH++1hPf3BV988fXz+eF3ePdavbyuNk6NLQtVaz7d9KqHWOpyfnxatnNP+bm/Rnp4fU0Z+eIMlE4eQervMpydwZ+Y0J6v9Opzr8VaOx93ro6Gk6YDLsodXX+psq87uvenjb26X+ZmONE7H23n+9re/uL8/vP3m+Parw1dvXr0dVrZLvWbEoXZr8yVTRav+KMhBmYnHXkla3B3uf/wGYHm24F/85q9/9tv3jfYPX75ZnOttnfsi4g39Nt92vnf0QJyGI2aIiLW7eyAOJSNCC1vH2dSiByhgZ+hbo4g4NCEEb5qtiAgHDEFMmIZUGDVLLpJut/n58SmX3UPe3+937x4/OvVHg6fVapsI7oZpcs++3EbPQx4L1K6/NvwgfUnDIkwscbuo18AK01CBRir3fa5XPa90dcaztqlmhLlCXaB2dkmZhlFbX29zHqAmrIwLxKqedRVck5jDPQRLEKOQBGdubrX3bcsO8tneWaJCuc6oKpem0aQg76KMUbDCUi2AAR9IbxhTkd02JA8aA8npQllknFaF6iaJVnZgWJfzdTaILNkNVEbbH/baY+dniH3vu4tay93H1uOZzWh/3/ISslBdfUFSWmld9xcRfOAUWfI07RF4nedluZnZUiOjpgJcMmBqq7ar9g6JV2wR7kgICgrgqGZOuTSPutZ5voXpkBMCNDfgLMNwON5ntev6NC/XLc7RNwSEd4MGRGEQoeDw0z/50//2H/y3//l/8b/76qsvfvPtL//tv/zn/+Kf/7++l8FO3SFQmMfdMI7DYYfEc12t4mY92Qrm7fITEb75WsEtPII2+tAWYesR2ld3BDABmFd4frr6w5KmMUvaCxbwZLZc6+X9+24KRITRelvXta0rddPeF4WOweMgKQWn2urczLu+evU26vr8/HF+/Hh7vrS5RgSRuIdwAiBHSqmQiFOWPJlpznnc7x8eHtaln9dn1eoQQ9kx5VKwZAfg3XT84dc//vLr++U6zx+XWwNKe84pIeQysQhTV9BuOs/rOi/JRQDGsfzBT/7y+4+P/Lzsd8er0/VyPc26dr8b7nrvKWXmVGtXtQiqtb3MRnVTICZGMjN3IyICYwcHotjgpdtE2AHRAwKcwAE235GjFM5pSImYr8t8upwvtyuufSfiKaeU5t7mG5yf6+mpPkuk+0MgA2bkIbgEQARHjIy4dco8MBAw5TzpuN+NY+ZEhB28uq1AiaFmbuBJgtkJFTzcUdFCSKAbOBOkhENCYKCEwqBBpsHdHSEMwzpqiHrmNAB568tao0EE8woxN7stFbcPJmUjULduYeGInhMzDYV3RUbCYs3q6rZUbCYO0l0NBIF7RNXacF5CBAZBIEiF8pCAtVWoamvz2rSbxovNkRjBAVSVemfwccjTMGZJcnd3iIiS8zRNmXOtZZ3H3nuEAgUVppLU8Pnj+cN6O1+uvsp8u6kbMzmEhgZCRKSduWvKTOWwKUMtVENygRT1eP/GDNb1MZHeHw4PDw8dx3m+vvvwflluQA4IYQABD2X6e3/77/7nf/M/E4I7g/jtd4/jw/FY744pEDCl748faRh4GoCpqtUaG5MWXyjhL2PYZb2llCK8tWbWX9yh3i3m1sAjm6J1DV0zdqCyXk9xhDKGAKJpwZDQ+flxbXX7ttfrZV1X6w2z97XeiIbdVPbTqnat2tZOaT9NGQ1u1/n8/vH2+KjrssntHUPSIEWQszkGcBp2AGJBEfBiQC+Zc3L32pp2Op0qokIwYSl5OoyvEo1PH+eP33+31jAev/hq92q62x/GoeB8O1/b++fr7d3z87v3T5fnW4FykIkt8v4Lhf2bL/5w96Z+fJ5/9ovf6vWGzrv73ameiwyllKfTBYHHYYiI1c8bdiYciWjLJ2DmxLKFaRIEAiL5p1jdLbkaIjZ/ktNG2E6SxmGakhCu2lftiqG9Xm7nw6u3wzTWa+tm11ucTnSRlN1ZSNdMNLglpVhr1JuwJ4qkjdfARam5uQDIDgNBnQMyQAJDtJF0hJ7zwxXzEJIMoWvvdWsykaQcZcCx4ChoCTERJzHijgSB7mHgEBbmbM6Me9hkGCGdWJEurT7eKiKOaaRhgpwVEBgNwLbI3EJMkHMehilL6iGZO6gJYELCMDRHBF16XauWXe8X4BwcIJ2TsEjXVRTWhpe5X5beHCSnfdkfjofDblhC6+x9rnvXu+P49ni8n/aS06lrVYNWS6QEgZKcCAQSCPIAUlANfIFb7jMtz4/9er323kQEGHqYgqFwXmWa4HB3HMcdJ4mI1qpCIrx0cGRipMM03k1v//bf+Iu/+Iu/mNP+17/+5V/91V/9/Oc/X9eVmQFBo6eSX799s9/vz48fQe1u2P3hV9/8+PXrH+SRSkrj9Nff/+ZxvlxrU8EgJCu/y0AF2FYyEd3mU84ZwJdlUeuJtly7tlKtzZqiKrt69E7Rh5wonzxhJ2/RF11MIhJd2nyrq2ufl/n8fAIAZnQIxaChyDRESr3btVZvJigO6Te//Nn18eP5w2/Xywm05s2zMk6pFCkFJDV1tWBJENmbETNJDgQPYMm5jJwV3R5PczhT8FCm4e090/juu9Pj42+srm+//OaPf/yTr3/wowA6XU/vfvvx229/8fPv3v/m+/e//O7D6dQw+O3hzevdXQq8ze/HKb9+e3z1+qtpV00pQVkXx0CtbZ0XRiEA4FRKQUSC1lrTukVnbiLhTESLNgsH15fhf4DDdvRuWAPYli9u/8gchA6BTIBg7pykDIOtCuCGttkVAaAucn6CJ4TydOPkaw9CE8kUngDqUm0uqPB8Sln4NvtlhdUzyETgVN3mVGDakyIMozKvXnKk5lI9G2Awh6tqOEoZWJEMyQysoc+IPVGQKLIBBYZGmBl29d7seo7r2WoTkp0Qrx7VzJB2w0i5IFN3yyRpyIXF3Yf5/TgF0QowI2QIZkTmPmtrnyKkOxIhVsdlbZKOTWe0bRYHJEIpewDAoZvcWr9WVUi7/X5///ru4fWwP5zWuN4ee+2J4H6XXx/398NBvvv1v2999miJOeecKENkCD6kHxo5JAbhCLw+L8vzup6Wa/9Y+2y1gRGL9NDuillSv+vmN9U+DJzEENVNVa2dl/W0rCerz+Ht9cPxb/3Fn/+9/+Lv3abdz3729nQ6ffvtt/M8JyR3p2AsCbLgmHEqNOR0mB6+/nJg/MnxWMYhTTt+tUvvvreP7xfrQDjasB25nyeQm427jDCkHGFtLOabrAK61p6xdV/V1NENQI0DwvR4LHzgoN7yeoleQW+gdb7MvVbt67pa68MwkJADKARLnmtr16W7MSAhzdfL94+/+vjz/4DWydogrM7WdV0bYkr7iYeMWTS8uxVEkCRBrdNGml9aNQhOEgBLq60zIS5rr+ttmk7jIMjr7fr05Zu7t/evHsb96f2HX/zql99//NCiX65X2P/ow+3273/Z3r+/ZJ4+Htf7Qti71nf7/fDxdPfq6Xh3d/jmiy8f9q9Oz9f/9N0Th623s2lFFgydlyopjcdxG7ypvuQOIqIIDSmrKjYHg8DPw3EmfAk1CAwPF4TEIrK5DazW6gj24iJi94ZMrbXLfOvqCLCs9v33F7y214icFnVCSkKJATOh1X46Yx64O4nwWtOyRAdeFuoz8MVvDf02lKbghW+i3Gd83z4+wbyOgSVlZq5QVV0cWD1q1XXT988YnRkICkEIACA5eNfo1XTtH9/fnh/XvmDCsRNgb4OUdFe2JIBoDTIIDfshSU7qPkCbpmC+BZzcqfbenbUvl+3UhKgYKolSYEhFhhbqyg19QCIYci55zDpG5N59rn01hDSM0+F4PN4ddsNhMO7D06DEuwHud+U4DAMk+fm//dfmK2BLgikVpgEsh/ObN98bqIIZAUKqq16fltv5alaZW0o2oBTmwXWFHkH7qFQThlhLngRTRgL0CD2DXUJv63LC6NM0vHnz5vXbN8j0+u2r168fRAQiKMjdEdAJ51ZbGJbUBWe0G2gPiF2pzJGQplKO+9LmtqwWW2Lp77iEHk5IBsGJnAMcORN7ToQQgZRzzkki9R5C22EigOu8pB1QUilTGrNxNG+dMAg9Yktd3fiGzXvTDoTeoLY2rzcRycIIXqKd1/Pru10iL3ik6PV6m+clkIexoKAMlKaMmSzUrRELIAQCCQMTIAOxAS61Xa5z5/1+PwrjfJ3fvfugOr9+Pd4dDl++eqPr+q/+l3/2m9/85vl6K3f7L/7gD+5fv5KHv/juuzPFL2+zX+FKNWy4svU/+LqM41hr+08///U4Dn/4hz968+bN/jDMqoLttsw9FBM44LIuBmmIh0/x2uaOHsaUmDkl5saIgAS0hecGhBvHJurBTdibEItwKWUcpkQIbrGpbh02NSRzCgB3JSYJiMDLZZa1Re+AbIRAlCgxSgpGj8e1StZL7SnlaLk3wqB+VVjV0vzUbV5au5rk3p5u89IDej+fsvY94ZCIWZJpcysDTQkzOHaPFtHQG5sQzGNEdgdGBe+u4M21UpvdWpAyaXC31PXgmMfp0mZ3s4iUeaIo5ASKrsyWEwp7lhgyJ0FXJPbPeQYG4RZOZIFmQN4FglEpQhAIEDRcYVW6Ln5ZfVEAyXkcSklCmBNk5ERplLxLdsg8IaUg+e2v/w1CB1qJTVDAk/dsSr/41SXQnRCzlDwyDbr4clvrxXbMO+eDlEMaOvoKVQMoPgIla6ANIWfGkVjAzVtDO4NdWj0PAw7TUHYTIKrqMOTD4ZAl0RbdbGBgeykFmR0Sc0rJEeZWK9i75+dukYfy8fTcmlLQRluNHG7x+Q4cEQ4WDAGpR8SLVg4CMUyRCCNn9JDA/KLzzcRuK3U0iFLyISfxikp72R33b3nI9Cl+fTPfgdCw30HN5l0UE7qAs/ecXHd0uHs7n0/X54/L7bzerqpexj2AL7aMOJIASDSra5tzIIQMuwOktO6P+/25NUc6EVGZRo2UUhqnXZY8n5+t693+8IOv3/Z2fff89O2vf91Vv/nhN69/8IPd6wfI+T/87H9ZPv58D+cf30NJ+e3d8OZQRp7G+53weD33v/5w/vD+OaW8PwyH+/HHf/Cw39NtmW91rebNNRgduqpG+IaYMrONwiKJ2JgZhUghAMkdNuQWR7Aj0ct9OAlPkoeUmTghcBgHCHOHIItMgsApDznnai0IRCiVUpKc1lljCdyyBIidoCN5qBBBXdyzjKQGKydyW7232ghOza/uvXdovGSoLwPoGClIKDEwvWSjHAbI7GCqM10b2i23U5RM+4nHAcYBmMIxmvrcfG1Rl8bOGUS6pfBjUEZmDZJctTpAYRrJpC3RN8xKySTkCb2gF9BEnshd6gdaOs0tNQ6HEiAAbllAB4JEzhEJgR1sMXe8mV+v+nypl8VgwjJOu91uPw0RDq7RPLpScQIVxIGTzNf/CNg8FoDm7tFEe7IuT9cVBIKJkozjLvNOG7Sl7fyapt0xTVOajrIHxMXW7jHTag2qtlszS5LbXsqg4baOXedaz+t6SmlKmSUnAwyCYRj2hykXQeAsRULNHNdOVX2u7g09vOv1ekXv75y6+TAM58ulu9vc0CITN9a+hQx9Cj1ERCd0QusWAYJAxOYWAQHInYEAEBheTPnCjGRcQwCGkBHYWsPVxrR7vbvnlIgIzL2rUmt1LYfd/u5I1521vlhIgoERw7quOp9+e12fP7x//vCu3s69ta6OXFIpb/78R2ng6TCwsbr0XkUyE4JkMCIiTuIRvXeLGMdxWXFeFoEML5n1uN/vp93wy3//H01bWP3BV1/++d/8s92rNwtCDb/n059/M355/CmnfRIZoGdoZPP3a5kXaL2uc7/d2uU61153mO7vpoA2HWRY8nm5VaVgra35RkJIAoBm5hrMXEppVQWJmRMCEpk5uoXDJv7HCAYEpISUWBLLMi/AZNCRKWEKtTBPxM28MBNjWzsZIPm0G47jEHe59W5g6mYW0MFWVw2PJbCtDtpvqRt2wXDAdl3ainTzaJI0jFHqHNF7qzaOowAFAYMzw1RSEQJYTbVbuThywCVC0InssNOx0FhcuBqqhq/qtcfZolYGF7YYEHkYx+5qiEOS5g6emcQt2goUQpjznolMZZnheuks3MyuJ/XzrM9XuCwSAxFOIjsZe9HH/o4+cXmyQELioATSG8yrXm92W2AYPeW83++P+92ttu1K0tbakoX2xLgrg7yyfRoYMtS61Nq7U53jdl0JiUzMzcD6rXbUjYLd0tmpCnf2Ruu6J5ZWoXVAMl8jGsTS2YIOxvvmETaq6ft3vyKi+/vX92/e8pRb0kF3kU0yOJlBjFO53w0Y1x9+czcOzJmaFhh2Ph1m4dYXxJbGxGgtUxjFft8v1wgc0+uwVb0lTpJ4c+pBQOme82hmrWn4BkJ0Elo1mEsYRnPvKyPKxHvahcN6vtWB+sS9BkoZDney343jVC1ovydgdzqWh2GY4gnPQ9Bxmvw6Rn+1m+rN/tPj6cP75/PHpc6Q8Y8MvUzlfD5fzmdHjX+D8Kip1/KT+93D/TDsGUaKYtXa3LqbgWmolGEYj7fnRXxKgjmHtmfOt93hbl3XX/3q/benb//wBz/64z//k12eqGF/vCVmMPvxF3/0Bw96yAOaPT09zW1ew56vZ749tstNa331Kr96Pd3vh/Xx9PF6WhgRuanXtWJnCd45JbCn1Q6Hw5jTuq6361VNKULNrvOtmYoIblnm3mUDFvWaMyaWtnQP2DHvGW1dot6oDCklJHJEKXlSvd1uA6jP12Mp8/WKCLTfx/2DHna5h0Q38JRgyoxuvqx9qSmlIRIqzVWfbV28JY8C0JZ1aTWcJBdY9aqxLuV2U6zTaDtMuCw3gNiPLEDrrdXUB2GJ1teOIWUYOe3U7eGDp8QpE8vEYoBdba11PbeRiMBDPMSDrKcI72sBuwNQw+iafZ+H/dr77XaTO2Cfbta/xXf2oZVSAunpdPn1L/tyisFjT6Ka7BxGFUJL+J55IN6Dv4bEtZxOMSN+v76Zr3O5+fH5issF6VeYvQxvOg/j8v7h/Gvq17f4KtmkLWkHOd4nSgDsTIZgYNpFk/TXx3szW1t1B06squ7NwNGgLe1sVykmY3SR3lat7dzMUTljKaUUSmlkKopwWltfV52VEyTi3W63OxwOd8d1lkAZc9oNZczpfj9++WY35OPbt2/3h0mEyXWj1A7DkDM9vPkqp1Qk1doxgALrshLROO42cY1qu16vl8vZ3XPOmWMYhnBc11V1S5tzZg6UiKjL1VttWtW7GDbTKacIkZSAqPa2rm23twhTVbMXEpyFM0LOkvOgaz89nl/t7g5D8rbO1/N3399+9evnX/6mQcjb11kkDZzzIf3g4c1UZPVzUHziWSIAsAjk0a6nz0EcW6dn+yKnlGS3m4Yc80AbzPju7u5Hf/J/Pgz7+/2BgEOjjJPkcptn6IvVhpxYhHKuy/WyLnPrl8vzstaS06s33zy8enM8TOjrfD11rW5d1z6f5/N16T0AhSntd4e2zNfn2ntnpA12QQFvjve1t1V785i1dTcKNQP6pD0mgsw0TdMwDLXWPY9EG8bIKYKZLQmE997TbleypIS+UVSSpKGYV4DE7E6gEIzEeeSUVbB3lhA+4BB7JhN3Md8Bjuu6NguQPq/oKGmspXz3yw/6OHfQQIcwfv7IAAjQAEZcBskZuSR2CEJzjo98zUlySpIgJUw5IQrGsKvxmcGrvZuZd/XeRy4eWMNaN10qR6KABIJr7ThfZvuureu7J2ZWp/Nl/vXH2lq7O+zH8VWr0VoLQnfOtAeAIjwmFIDrxb73K/TLE/H10tdb8waIfbkspw/PjDDz7nq+mVmWzCxN7Xy+PT2exfwKFuAdfA1dtWlv7gCg1FrrvZdShiHV6r01cC9M1m3WeSApRSuAEtzQrteLUNzjeL+fhqEIZ/RkASXLc+0jADMfdvv7+/tpmihJpiDv4J1AOZTQ90M+7DMRbGZ3800qzzkVSfntF1/nnEsaWmsYhIhaNee8GeVT4nVdv/vuN/yhENH+sCuIu90OAJa51lpVjYhKKWV3VG23y+l2fj49vZ9vZwyLzbDNA2VxsPN1vZ7O43R3W5f5cj2zYFCtfQP4WriDDUEx7I/jSEynj7d/8j//1X//P/wjyeXffZc+fny6v/vru2n6wau7b/bDDx/usMgNnknh4at9zoPk4gFmxr1+Tmz8bIvZwpwkXgJop3FXShBEgE3T8Ortg65tru7aWtU9Sia+9DaUYdMAe1iU3ABuranDm7evUl6CxtdffvXm9VdDpvX2/ERL1gik+924SykFPj+vrTsLDmO2zFbKlqXY12atE9Gep7wF4qI7REu6RVzuOHtXV0eCnGUYchkSoGNv7kpAmyV3N40lYV0uDpEzO1KWtFpzCCVqiFBSoG/Jkm1pbiqBhLEiiekoRGms7CYgRNYaIsl+yupmWHaeUTjlWga76vP5aa5dshymA6eNLO47nCSQEYSJElsREAwC+GJK+3G33w/DMAxlGF5yF3B+2hBE2nqtta91w+jROan65To/n25LVY+VJCMyK+liN1vscn1OSCQevMztsdcwHKd9kqhtJY5pmqRMawvtzswlCQAuMzy2HpUf/dwah2JmYh7EuF3qDa43bPXxCosSk3W/Ps9P5bmkQQIMiRgAWaAMVlctUXJ+rjftxgDTSId9vsmWaA1HGZU6gXMRLeyJrXBl81uCiHEc3+7vjmMGAIswB2t2m5sAFJHj3eH+4VUZR0Jm6tZXrTdvq3azutb1mhmW9VbrYtaR8qeQbkwp52FfylhKkcEACMxb6qWUlEhEypAx5eF6mVpnwXGaMtG43wOA8xxJMsA07Q+HQ552Zn2Z78/Pey5o7+L0/GFRHRM5kgJpwNz0tq6199b7ss5lzjlnZjIAFMYkHkGJX33xGlI+vXv/P//Vv/6H/9P/59uL/u//j3//9mb45f/7f3p/unyJ64HSPdqHx+f3l8u7+nR8Nb3+5j4AEWRbbFbXLdp/0+6+pE+abb0YtTYvEA6E3rU/Pz/t97uH/sqNau/WOgDIZhsXGfcHDGhtbbXSbpDDLmslt/uH/cMrozyM453Z8vzxdH76eDl9zBPnNO12x7tpf5wO7/Lpcq3qdJ0vOQ+HwyScr9f5KZ5705QSts5mOdAJjbITypC7+UBc56VDQw9mwg01JazNEUKEtslwTpwTD0Pe7LXqTuCI4IQN/Oo2X08kTERBGJKJBZiRyKGqhlFSwNNSG9rInNQ4vJTRiS3I2AOTBVcnlxRSIvzw5u7P/+xPfvIHPxyE1mWpzdb51pcFrCKYQ4cUkuX+YToej/f3r6ZxX0rJeWAWACg+iwgTqWpd1nVdW2vuPtVxnpfv3z0u//FX73/9XV1uxAqAA3XBjnpNACVBTgV5MEskWoY8DNL6sqxP3QNSHXi4zmc3REwr5lmwLTyKh9IMBsyAZRwK50Ih7WaXPqOt/niLc4eUetTzrcViVEFa9cSSOCckJq4YjA6Up2wI1d0zo7ALdKFAhLfH3Wa2nPZ7EFYCL2LA5bAr4Yf9+Oawu885rPfem3tPaWYcAMqQ7+7uXr16tdvtxjy2HJ/xYlu8iVq/3VbEEOFSimKCedFuAJTTyJxEcinjZjnvvYNDsKSczUwtADkP47Q/bAJokoQsL+17JBEZpv3h7kGJ0GUk7L0N+wOfnrpHC7v0ht4Wwx2mlPdSah7GlPndd9+H+Zs3b8dhqF03rmEQDbvRe3v++O6f/ct/8X/9R//j+3n+P/yDf/BHP/2L07/6djpIMHz9w92f/NmbH+3Koa7tg9en5Ytv3n7x1Zf7/RG5IDKjaNNtm9+ijNd1XZal1tq7d+0pZQDtaoTe6zpfzhGW99M0jmGuqqUUv16tXlnE21JKWfu6ritAlN14B0d3//D9d4DMmGs9XS6X5XJF1cNY5uWpmw6SxqHwcZdAzue19/jF5aMtt1n7MO4S41gGgoZE45jNnULBPEKD0BUwXmKAcs6JOEv6DEMxCBbmnMBczZr2DV+eJYGbtYYRwyDT/sDDYIlwN72kYwTBduuuTbUOGdDYIOq6nq/Xa5t3Ke1THpKVnBFwnZfn09w6QvDzeWbgkvK0H//4Jz/+u3/n7/z0j/9wylKX2xnbcrmst3Po4t4MKgqmIiPt9vv94XAseRQZCBmA3F3SliuE7j7UNra2KbpU1c5XTtg+vv/+V+00LyIZgibUIjFmGAVsIJ4GThOTjFXGcRjHsWlXHC7zcqun59uTAoRvkzhDj/OQRwFvlUbexiSGAcFrtXmtRPQKRGYfPRUoYLSc1uVa61Vlv59e3e8PiaK3Vh3jolEtpM+tkDjZRhofhyIMktPX+z0AtdZAZLHuiJQEFu+kGSInnArtM0Wn1SKw7caDCAkDJ+GSp2kqacgpWcqcCuWEKSODEwdgVYtwpCAG39qREUnKOO7uD8ec8zTtDWIrBjRuoVE6revSe2JmQil5DLDtqrl9EmbhtjWpmUgCXwianCSPwzCMKaUyDKbXLEWBOQ/7u1e9VwdYWzt9+6uI2O/34zRFmIFREhKGRM8fnv7xP/nHf/Wv/te3bx7+y//qv/7DP/2b/+4//Mf/8K/+n3Y9/9HX+J/9yRd/8yev3ogc4Y6+fvhJ+vP7N29/9Cd/NIw7d0CALV8U6RNavfda67bTq4JI3u+nh1cT+Gq6EPJqdV6u3/7q2y/evhlSJgLmwaP1HpRhvVWPurR6vlwCLMzX+Wq1l2FiZslStZPrrqRpvy/Ct7UEIFMGNCbPyYcBmH3f07o0d/XeAJkBAcBUL9YDQQEtHBFzYqLcTJ4uzwBect6P08ZkUG211suyllJAErh7xK335BEsklCttroS0bTfTccD70fPkiVBBDkKICKv2vtSW6wkmFlQpbblclufr5cbke+n6e2QEqlBbcvHjx8v1yY81m4PDw8pHx7ePPzZT//4Rz/8+v44jonT3Xgcra/3oRW94+bDZqPEsow5D6UU5sQkzAxAZlZjsxuCIHK27E6IIvJufkcJaJn9OM4JrwASDkDV9cCyu9uVHe2mNO33gUyc+STTNB6OYyr89oevTtfr48fnp6fTd4+1eph1D8Dgufes4WpsNmRCRAoYQJgBAtFhHwYbWnQcMVEFuN1up/4kw84e7tOxpFhhXdvS6bz2udth2scYwLg/DNN+9OjumsfhGx4c4XqZewD1KMKym+p8+xjzIZVh5OOUH6YSHa/S7WrzdV7a2gKYnJNIyZmlUF7YuJQ87IF4VVALBcYgtea+Ja1iRIhsYQ6UmRIhkxNs0RpIEe52+vhUax2GIZdU56qtiQgFrWtDZNPQ7mZBFK21ZakmBOEYDoAUtIXOgqOMJUEoGFDe7e+v56elrnbSXHZ1udVaN7nyOO3G/egOl1/84l/803/6T/7hP6xd/6v/+r/5yz/70+8eP378Tz/78y+Of+OrP/+7f/uP/+gHryeGenrCblDw4dVhfzchYmtKkpnRAljIP3FVP1fRZhZBLLRhgVg45zKNec0pHC5PTwUJ7g+73UigQBstyJIYWCPysmN39NagczdtJqUMw1Ryr2jKGgMJGtDhyJKJpBvOs3KtgfPa5jY3QdmEn+rUzVkZgRvrFnynFuZqDtq7apdE3l2EypASC6jVpda2XKo16N1x431iNWYwlJSwdQ3twphzRqbVOnYbSXjjZ3BmSpwnzlpc9zsqntZLNTUTOWuD1gHg6x9N6ZjROC58teXd5ZTTjjilestD4kmooIuGRJpkKOnW+zQIx8jhvrFi0YECeUDEHtG6bXjR1tq6rk03FwplSSIiSCkl5Dwe9oB8vK/746GUgrIgpHBkSeNufPPFq1f3vJ9wGHNtLTCovCmDHO/G48O024+t24cPzx8/PD3+i//4+P35oiqERBSqDA0i2GGIzhgYsAMsKQuKED9FcwILR50JePE6R4secv9Q3nyxezVkW3hZkqLO3njV6HfMKMLDmDljbVFdQ+3uYefuoFrNUACGoRwP8+1yLXka893d4dXr49tpNG18jg51T4d9vd5B3b1+dfdwv9/vU0qMRCmXcSrTDiU5QHULZGTZ0ipESJC2v0fk3m25nHtOEcFJkIQJJBGhKEVKXkpJKa20Em34OVpuFR2FsKQk+EIJ5g1FGEBIWVJKST7lsHNyZ+yq5lFKYZbWatc6jId1Xc/n8/3DKylDSgkI13n52b/8N/+P/9v/8P4/LT/96f0hoL9/f0T5P/3tv7388bob6Cc/fKvr6fT+N9dbLTKlUrotqtpMj5ymwwEAtHWAFyfGpzzk332ptvO5BazTiPtdmYaBAFprQswYRXg3liTMOUVGhciIHU0E9+NOtXUM1CpGnHbDkAHgdrs9P34UQ5Ux3Dvr/X3aH4+chqW2NCZHVavxwUIQwAmBBYUYPWptz7C+sJeRc84T5825+bFf27L+LpUGYKsmnMADlt4joqQcrRGAu6e7Se0lODLCllbjNhs5LT0hDZgnGZIULDlSIk6nPg8AS1tPulahRtTDdgS4E7kbJbKcL5riooB+K3nE5XLI+2ubf/v0/vhxd7gvJaDVlemYkBgDPRic0YIQCDuBmbW2ttZbW9c6Pz8/n8/P6+05IhLLNE27YdymIUMuLeG66PX5XG+zLhU0toT4N3ev3rze/fAHX7594P0OJcXtdtPw6G9Spv0xvfnq7uHhTh3ybiy76evH/rj8vK0z5hQsrXa0SAm0MwS4KkB00ywlATOnW9ZmelnXasAJDCAUiEAktzTlcngzvsL59vFcL18u08NQbE7BnKcBmAJDUTvoOPBBxsO4myJdwX55vWmeaC339M0HXO/o+E35+m3+ehAG1jzuynW8pf5E41eHLyruIFLK+6Vr0UZewCRhHvNIAKgWViXZWmNdDEKEBEwJuuv16eOH3455HMd8u4pIktJ7ny+3dV1NrxGxLuMwDL1b79YruPtc59PpdH+8O0y7lRoVohFuMMeaiQgcVTP4yGk/jPunpyfvB8y8LO23cP3TH77+5qsffPjtL9p8vpzeCfHpeaYfDQ+713e7Anb69//8H/+j//t/P467/8t/91++vv9yf0w0tzd3ebx7oC9F14udPkosrw/TLtHptszLtcHkGR54KLudY/S1MgFJkraGqyMpZucxTcc8L+fl2q56i+5tzW+OmMWBfE3zqY+7+8KHvvjFHu/uS1+6gu7ujk8+MXCRIsAQqToogo/Tse3m5/n09NT6euRjkLlGzsUQlrkjXEkqAB3KUd6WQmU2vNzmZT21pcmw94QrtKf5uYPf39+3rhrGaYeCSVJ02lnB0Ifjw37cPz8+zZebEH/z5ofDdX58Pj+3dci5jGOgOdhuEhXWrC27huVCxOwdW7XLJdrlqfTlbpC7w356uPdUrrXnCRfCrqbX0/2lLh8X2w+Hu1cH3O0hAufXA96n8ZiqHI6KnZJCX5bfvnsm/Jn3btfXd+k+85LKNE2JOAKE+EW6i9z64Xa7XT99PV/Op9Ppdrvh+TvCHJhkGA53h+GYhkmmXSIcTeW77y8/++vHywoBQLGWhCmnL74oX39tb+6OmZVzLWV4/BieTkt3grc1H864D0LNerVLYKx1JgDV5h5b/lgnFNjNVgU4JW/mqKsQY9TQY1VUECAWys7YUKGpDOVhV14fxleJzFstcig5E4773c4BZBhAyDHqwivHfspTkTHTfkgeMtbaGIaUIvvxeDyOu/1+vz8e9qNAaCXWpb4d4ren51huQ5K73WEseUx5TMKch6GMYxnHURg+wddtU88jbpGUsRFx1jp///13wzAwy6byi8BlWVQ1bDWzrdLW/rvb7/nyRIBRVzse3Z2HjOjItFYlEnDUpV7Oz8v1th1XpRRmv9b1/YfLVw/jl/ev0Pr336nO+r59cJwut/n12zcA6M+X99/+Fhz/8m/9nb//9/+b3XTnuNR+Bg/CDADLbH1eQbu2rqGAkTI3wmGYpmliZt8a+hbhfbnN6JYlCbGqWuuJ+Lg/PHfrOvdKvYmpgAzhza1frh/3O2SRAoSI2mFuTf2qQsyszYhIVZdl7b0DwON6W/uykpbj7u7VnSCsdTGzoRoRBvR5WeuqOQ9lmN68eW0l//b797/5/v3SVycCHkSgDDzylFlw6yaYz/VKRBAkHEjm2lqfEaMMwkgBXpIMY05t7b3XeVHSLAhF2EYyIQ+EDjGajxCjAjc919Zvt/lybh9P54e17169jpQe3z+GEFlYXZPbyKGh0K6lHMcxAGGaYLfD41Gm1xOmKHivl3k+z+9/M19qzNWPIx8Eo9AwTITiCCkVBOrmEbEuWxbK6fn5+Xw+b8t4nhcBEE6BCbMc7+7Gu1ImGkYuSZbZn56Wd+8vl24BMAx52E9vX00PD8Pdcbw/TEyGzAzWClybqve1+uncVl0i4ny5XZb1uJe//Is/+vhx+fg4f3i6EnEedmtfEYw24zJvaRRQxIi4Lc8FQyLcwRoCAjk4hDCMhaeh7AYOrfNQpmlIJrtDzmpBKUHiCFMIVGeHh+M4kLAPyf2xycppv5ukw76NuzKOY5l2426fKUKItbbddcno6+X0+psv7/e7FAGqoFZ1qW0BgFLS1oll5pSymX1iYRng1vfrt9st5+zRtmAk4ezutTYz2w1sYW51Mz8hIktG9ITqanV+vtrq7pilL+cQWupKKBiita/zUudZAPdlzFkEnYQt+nXprx72+4e3S+/Lx6fH0y3443We01CA+PLh9Pzd08PDq7/4W3/56m/8FGprKmOIBHGa1tszjmp7tRWuj8v8PNfmzDmPw/Hubnc8ALP1voH6tLW2zgiQWBJzQmIkJh84jWVkpCzgmtY5wM06dgMWbbY0lR2OIjmIl7X3Bca7BAGkAWDeuq89VBERd4VTGUY67qe7h3sm4Fte13kPAkBugcva2lrbHOgppVcPxwirvf32/cfaZiqYBi5dCk0AAMSSUzha6wRQSvHMtc6q9XatVlWYEcOtlpT343Cb52vXdblRAIxIcIBeuCPFQJADJovBrXQgo6sSLRbz0ubqjS+jE0iKdkbhTDiaTYR3iStasRZ6Y9gzR6LOqDn7YeK0K6Rvn8/v6m1ubYXVns6thA0YOSnnpAbNg/LgxF3dAxFmVb1er9fTudbqDr1vLUaRlJu5X+upnac6cCZJcLfDjx8vz89NO0MgoHhKeb+/P9Bxx/uRxkwEDkQGyGAMqa793OZTf8K8Illfbrfr+oO3xz/60Q+vl/6LX7z/X//1zx6fLjsfsOI47FoHSXo8DoddmnZlKAkAstrm/2rmrXfbQE5M0usa4MIu0pO0kn0s5Cndlal2NWYUDMSVqBEUkUFCvI8EDWAA7xBDTrVI5pcIGyKSnIAjQcnLmJdrQiPvb+4Pbx/uMqG32pf5NOvz82Nt65YZuNUzRPQSBgEWW+NYEBHN+jTk3W7MadiuT70bhvXunxc/M2+QsA1phTout1u9XdbLqdeGTDIUZFJsiIIuoNya9row0m4c174awDBOowznpf/1t++PU4Z0l0mZYl31cpuJCAKvp2uO9KOf/OkXP/whJLhZw4GYBq/OiDgycULO2uNcl/Nyg8h307h79er+1cMw7sDR3REpVNd5Ro/oZnUF7YPwlNPtWntrhD4MlLMgQW1LQCciSipjqM23GTL74XBIUkraB+CxjNs7AwCNJAdu2xnd7wEAIyRREYyIaZDC0yG7qvZmwQOA3651Xi56USn7oeSvvnxdzd89XbquAFyGXEw2NipZAGCRRESD5GvMsrUCu24x5+CgVnMpu2k41MlOF48wB20RZqA9XBlgA10oeKBWUKDoAYt6BAGlWWM5z+Z+X7aqkTMC9ppdIWIIrauHAiKHkja3Fm4IzvN8nq+XpV6iUzjfVhmJ71Lu8Iw5L62dV6sOq28WHEa9ikhvzR0IIDOPmQVJhgMlqa2trWbkhJxINoyBza7XBjAwJiYaIOXgnK2IZfZEimERDuGo7paWWd/NpucTlFVSCK6h9gdv5PWrw5evy9evvsSqf/Uv/t1IMg3HNA3X28ICr+7GH//ozZdfvpl22czGdgMAdVDVbu4QRAQkErYiLiyLSJN0k3RNmcJKLncbgNgpiKgkbolzEfdVW1hTV/WuZl3dPEIAIMxdHZ0Sc2YgHHs/3E4PD7svvrj/4z/68Tdfvz3sJgCw3mtb5uWium5UvtZ6a41BAWCzB0Y4IjCzJEop5ZzHcSx53EbHvds2Ps3EAJCzMLO7boza1pqyR/RWb1bblk6GVYjopjOCQGQMdgd3jTBK3K4zhhG6U3qeb+8+nEsWRvyKIKh0jeenc1vWoeTe44tv/uCHP/2z49dfQaIxTzQFtNtab+jatd6u5+X04fb84XS9KuDxeHz1xdfT268Pd/fAbKaxoYUdtCq12tf1+ny6PJ16bRzA4Wgq0hFDOIFDAyCQnJixXeeLa04AoF2Ip2nPUvIwYQAT5ZRTSlaGIZfNoWVozCxCGKG9QVhBxJzXflbVrhoBKUvKuraIsKfHD8N4KGX84s2rWe3d07WDlWlHN9pSr9Z1jUAisohlWSosRFBydhI3S5xUFdyFY0hFD3t3WNd1rY0dbFXLtyAjUUEEqUFXhxxoEdasLV3BCJ2jQUIXERFIKQkzep/n+XZTG0C6WR/cD0gCYK671rwuOVCul+/X/kh4NQRHAuDD8fVXD4cBmgxDNXi8LB8v9cN5mesKShCu3l/cjrAFHBOTxPXEWUSbmJaUpoCBppwy1kgNckcAKIwF055SsXiJmBMSIXCAwEQoiWKF1nBeoZIgF8Y+CuUkx+NxnFKi4e39/rtvv/r5//fnHGiEhJbRhHxKeNyNb18fj/e7iJBFzGxTBCPy5t2BoA2HjUPGRCbSRJRFPFS1GYBFqIUgOICFWSgxMxsQUVDOGY0NyUWYSJC2C2oaCg9Cicz69Jz2h/zll69/8MMv7+4PZSp1rrVW99ba6qGSeFvDABCBzJtU2IkSESEGM6csTAlhoxMhYkpJ9ruEiBwAADknYlBtEda1qepm4t1mwEIcCC/EZSN3D2+IHEABnQiRoJRkRr3qrTYCXj1//Hg5PX3Ur9/mLAx0OZ9vl/mQU9nvf/gnP/3iD/8QphG0UgK7XevleTmtbOV6erxeHpfLo9VW8lje3N8/fLl/9fb+zRtOsnnkAYBRAFSIWm1tWefz6fz4cbms3lGI92Xsqam6ejcNFATcUorrbV6FuOTUVM/nc+92d3wYjuJRCSQAAgIpWBwpECEZUJgEbvglAt+AL7flllJmSiIBwTl7KUYk6+16OZ2xNCn7w+74/mlW9YEEAJApU1nXtZmVJIho7rv9IcyZuVp1jXBk4FRSYUTG/Ti2bmDO7okxDCL18AByQgA2wM6ISTwkhsxlHFwDKTXtzDjup3EnacgJibFf/Wk2MAOhVDV1L8lErXRPvad5pRoeMB/2NN4fnc2SG8EPv9j/+IvXdyUN+6NB/nhef/P+9Ne/fv/r7z5cb92Dc87gjhZjyqHmakAh1pIpojNBwl58HSENktfZM0hGjoAUkQhSWApVlwAmEmSBaA4RG33WFQBdJhke5HAEmh0tyGV/H1Juta7Vuy45M/SY12WfbGSfxrQrwuFgXjjnYYhMm1EHgVJKiV9sakIxMIyMmagmLJmyYFLMikG84WWcC1PZamlHJhFG6aw4DoSr98AG5GohQBjEDEzAEEGR2LB3q5yRE6krCRpYb9VcW1s3gwFusEdgREspEcEW6IwYZrYlWoEzhoBveGQgEGIQEa8RYa7g6qqBFOiIjoakiN0iNAAxPNTc3VM5dHWLAETfVEXQGDBllqCuFRA4Fex+rafvnuahPO1LeXMYl/Pt+nSCVw/leJTwBYlb196Y7HL6TV+ufY02I9SVOxzSHvOIiFym6fBmd/cqTTuwrccmQRYejDKWQR3Qzbpa62QhyANz5ACEAG0dW+8oUAZJA7NAGXGcdkPhgrGBmVLGktm4ezQ192ibMgQRhUWEEfFTJpp5BIA3q+6RpBCJt25qG5AJEQ7TnV4ut1vXOrvBbnfo8zrPS/IBiIZhdMZ+XbZmVio5J1RUdAyrGAyAEMiUCdx6g0BhFMIyTdNQhImGAc2xd4yNdMzEOSNzbjcO4SAZBKXON+uVYyebvIIYg1RyT9KFbzRU7VUrOayuPdwQFLyb3pfxeNh/8bCjpDX1avoHX77+4ev7u8M0jHtzmS6dy7hWPZ0u9dorhJmBeybZ+qDmii776ZBGDqrdKgo6QjfPBhW0gRo5AnZw15o8TySqQ/fkmAPZEW0roPFFj2QeQZnyZNHMALF/93gNf14uV136t+9+jeKJmRdEqwk0USL35Xp7+vhEQMM0LtY31SyjpOSJfcP9iNdkXVwTQIFIhKNAChjVNUnZEruDEJkCoZs1Uwo2DzMDoG5dl35dWmurQjEzD3VXN1LTZtp0nevc3Zr1phUFSdggtlM3wrc78CZmUNXf0WuQt4yrTwTd2P5zQHQggACgl1T1AO3bz7WUKaXiDiWGtqyrcJgLCyOKeyAsPYWbmwaFgak1g5UoEg6bGSjlTESrnq9raw6/eXo+JMn4ar5cT8/PrTVjvtX+ejdhyr7MXi/X9x/GTHfD3U2dNKQMzHuP1kwjTdPxbrp/Behu9nJLJArbzBVjz9maCFISiUGIU20dVrut5gaq3HugR3geyp5lL6lORRKaoJWchiEPWYi8RY8I633z0CBiyrmU5MDEmFhaC2sAECIiPEjXbcA+3xbtsGUBurtwOeyOVa+P52sj2e0Os+O79x/vhoyIqWQxVb/2tRHROND8vETEIIVZEhcGbNHA0Uybdg0Bc0Ycx/HusBdEzwm7oTKCI2SKkmFgzg3et3W+XK45xW7YbRxfBlj7mhCMGYJbYEOZnULRUZ3UEIGVE9AAnEMZhrKfhnQ8TCFrSqmAvno4vHp9N40Lp6FWFIkh5ZIGCQIFYDfvYAFMiBFgDg7gSplRgtzJHNxb65Gd2/M6P6+35oDYEIBCUXWPQ2AmHlkGSWOHDkbAgOzm2ntf1hbVtPeIBr4S6vvTdbldz48fbKmPHz7e2joQGxi6qmpd9HJCs1prfXq6MKWlJAAgRAFhZqHEzEIkT8vzonVVRTRHAqagQIY6s5nzICIBYRtzqfdwF3OotW9KTrNWClCLMQ3CoTHPyzIuxxIJ2xUu71td4nzF69rfvWfr3bpqG0jc6zHtP8Z9bwOlATFUdUhDVO4NLFgR12ZgaZ/fFBumMhRJY0lbRslnHEYBBAQWVqdaA4MSFxlLX5JMD8evv0HwCAtTDCCCU7fr9bost/DuzrV5r27NSMJaGyS1pUdExoRKXuPxrM+87qfDx/n29O6Dr8swDngY9zharUwazF9+9UcY3VT3WNeyEyH07q0K4XA8lLsjTAwtmYfVG3sXQHT3Ftoc0tR9lnyYxrnWc4cepdX1DCPf5hZlZ3kA4ksX/VCnLD2PdbHMfjcN4zgaU2utLyvvQUjQnLqJCBIhQGaypt61RRDRfihmtq6L9g7m8+UK5qmHrq2utakaxCz1ttK7Gh9maLZArLrivt2rRa3retbdcXd/fHg+P6lq10okiHC9zuCxmyZhERECvHmQJGsdwe4P435/ZGZrCs+PhKwtTk1J8bg/SE7BZHzneOI4U7+R2DQyZ776HP0QEZNQ7eoil7pGh3E5WG1w6xnFV1+RVpTc8U6mLMtxD1lu0914o+nSfeXSxvx6Ku4eqQuuiEsmDyMA5CjejYkYaL/f/+p0GhLQhDBoh544Bk4aXt2rt+XyHNdKCgzkjkSACBtbgfIN/FhYEi/oyjhdHDtdEPYT+53Amm44TZhGnu/zLL88/XqZrd/4w3f9+owc2eopFbSeQMGvxBrXU//Nx1sbrBEWX7aMlM2waWYiklKSTcO08dS3yJh59t6I4MBARIQMSP7Zreqf6BkeuhWlFJAY0243kuWtmwQIG9y9KywtdZ0s8DLb6QJzhaZe3ci22+DWoEJtAECA3Zq7ebSIhBKcCNHcVYgwIsyIGTeoIxGVAr25u4dFWFC4a61ee8sTg4S2wHAEQN+47qgrm1PrXtdqZgwIUoQDon9yVmzWAuu9q+o8KxI8Pj9/+Fiu8wIk4zhSQgzwVqOrMLOItzBrADQMxXs3QJrGaRrLbg+Se+0JMkMEEQZuWw6xi2DaHdZ5Gcdxt983j1h6DUgp6U3XpoZdIcK5937xJmj5cHBrGRu82h2HzCWRSKBDRJhb7RuFl5MIBqgAkDuo9q237+4b0gMRExEgV9MXMXZtq1ojqFXcCIFNq6qDpZSG5lVVzX2woYzDfr+f59kjtqdKRFxts1JlllQyNw2L3ntrNY37UlKRUrHOiyEzgG9kYYxNKx3X6zUixrFkYiY0dwp6MfSp3mqP2td19YBw2IxB2z7++VN7gSR6MHNKmFIqknuCcRxzKUT64pWI2FI0N6aouwdEhG2IiUyQRbKkLAJm4IqESTIBzhaqSp8Abr+HoYBPQNnPzpwXtujLS6JNZM2IZGHWtbX24f3j7bxen9vz+2t0OI45JRmyYDUEQNgIdcv5+XpjWAISQM5ABPv9vpTSWtvauvKChgEgQmYUISRzV2bcsIshjuTbMtuEhCjbFdVeinLGIRfOjaJ9tqQn4i0yuLR4xUMpZb/2fL5NrRNxA5jjBSQ9DMNQytJWVXUXYqcUQBHQiQDJurV5uSzz1bSFq4i8wDuImDmsm5m/pGEFBmrVpa6AvffaWwM32sCsgonYKZF0oubewY05bcqK3jszE8knnUVs3FdhU/DzrX7/4el0XYhFhslJYVX0YIItlE9V3YGRctqtsDrJsBvKcQ+coTm0DqSAIcwQtCE5ARkJMZc8jGW335sFC6SbAqjFx+WsFovW1SyQBmHoC1vvz7Mk2BUuzE/DLADjVHb3B40V3M2r1YZmoeKqEC5ljwHgqNripa/n4CAEKTEZa1UCTJxzRo/Wg0wDAkuauofqAkCJBRP03j1iG9SN44iIBhEIoUpJRKTXpqppYETMKTlBa42JWLAkJnLz6q7AmRDd1T8pwO3T5UJEGAkhwmNboq2vZBG1Q1PVJgxBsEFSPi+bTeO5yX6IKCfOeQvEJUZEJkPjJGTuqtuwXegFIIzwGXIMASZEG/xEIhEyIBMAkiCRgFsIsiPqhoN6gZ3HSxbqtkqJNtN4aLhBoLwsMIfA2KT5nbUXGm/WdbHokEh2424qlBJ5XVLK+1wSAs7zsq4cKAHqgQpEoIZRbZ7rHtP+MIgkYkFmlERD5GEYhgFNGex3ScvgLxfRiAACIpLMrM5qCM5ERai95HzDi3g9wLq2WqXZK8oPmcbrnJ9OY22Udk4hLImFADc//q1rb82GBBCbojaQiJ0IzFvTerldRx+RqSCY2ZazgYg5y+YuAsJNnbv21lpz72YW1sMVwz0MPcAtBFRVrRIoMIlQGFi3bQoNAMxpQ6EPZdztdlrBbLmu/u7x8nSrhgLCEA3MExMQA6ItS+9GwGUYiEsS4uSyHyBlUAeHRNlt3iIdAzHC3cDNTT2pOiClnMYpu5au0xTC6anxtcbtWldVDB4olTwkyLD2TCJAdYUP70/a67BLX/AXaAlAIWg7YRAAtPfFUHabKuET1IsAursTvWTjaO/WOwUmEqUgJ2vNOhBJ5tyxN/faO2QnonBflqX2pt6JKA2l9ta0Z0k5pdgufG64rpRTzozgwjjmBOC1rdfLs3mDoKbQe6dkSCGERDwMwyliXVcnHnISEeIXnxbG7wcGv0xQfnfkfqIxbceJ9uY+uEM3rQFKomgajpwYCSQNnAZJJaUN4UtM5BiuERZqhLElsFMHScLMgWEOCFiksKBqZ1YAe3lJAIhARJQk58w5ESl+Ot4AgDgFooardlQFVsEQhjGPhSrZnEj2ZbcrQ5IIbdibSBqZM/FKbSAxYma52YzMgOjAvdm89mHCVCYZhrzRW0UoHFno02H2oq+oWs3buq61Vibobo4MG5oxDMzDFIIBYEM0bDldblbn5fZ81ssstU8y+PNJ333Q89nu8lKr7F98sNsm+rINe1Tt3c3dgxCY4CVVb0x5KMM0jDsRgd6R1MPCo7DknDklAKi1tta7egCl4dUAAQDhW8N7WZdba03XRwgCA2IkJEZScA/7tFt93o1RRERkXXoFWDtQ89PcdItwcwNHYAbE6L2bSU5JMuUMkBKgJ0dE6927iTJiclVJL6hEM3OF1kKrqqo5BIsJOnEgCKGU8nCgx+ty7p7CAHkY81Fkx5jL2LvVZTWtp3OveklTHg+P9/siSIBJOCSnLNjdzLXOSyklSZJM7mLWm4e5uXcPaLW1tbalV4NFbVnb7LQsvffsiKrNrLuGNvN4GYC11qy6hZZSKIlFmFkDEBES5oiIWFpN4dM0lVJoa1has94CurY1glQjLBAxEQ/DgIinp2dVrdVQfCyZRZBx25oFCAO1WzMzsy2wZOvVfYKVvaxed6+1tnXRliKHJjQWEuHM22NWJBVJY8pbZLRFWDhjRFgYuCoDgge4ojkzMcGGcUNmYIkA26xw6JvUFxCYaatVOScRQQ5mDjR3N/fmoR6fNhonCEJnNHIiD1OVwDHJmJKwVVUhy4gSHV2xVzQNs1Abxrwt1N1u13vX2sZc9uMksPV4wDa6MWIQb1kIKefMSaqTOXwu8dW7EiG4hpuZWnNVs6i9Vau9903MzIDoEV1rrWS6SzDfZj8/+3Kz4/0KRobo28NvFIAB/KkgAaAADmQIMQvCNO4O+9dvdrvdNE3ubrUWSazq7kNO0243DAMA3NYlOGFamXnIDyIszGBa1/l2PqnRspwDEgW4B0IQcIShuyAEcQSqVkQMB1VV9dYUkbdA37lDd3ZKgFtqhEGEqak5ZUmSMRXYMiZsY0c2ImLHsIBwDAPfqJzmDoGECA4eSCQDptUrG4JBqCr0aLcTtEUYyiBIvJ/K61wOOfGQW7WbpNuNr9fTdV2kXHaHC5BMmQplTsiSgVx7b03B6ifM6ma1fyk1rdUAtR6ClFPyCHA3i+vtGsaZhzVMeyW0MmRGutT6Ul8RMjF/IlGJCDKr6rqumWXLc3f3ZVkQsQhHBLgFWMp4f5yu5EqpC43inAsAmHbkzVqAKWGStPnmtzkDb866MAAPMHNIjNM0fF60nzqaLyV3SVsdC9vd0MGcAoQNIiHSRlRB/lRCA1gP4oCXBoEwJ3RySLRtMw4UUlIIq1utzT/J9X//GkxEvIlOPrFFAWCbH62tdrcAFhFKAmQEHq5jkoETeyBEYSiC4yACfKBJHPbMGNAKL9Y1MCDW8CQ8TePd8dB7N+0lJyaU1teuTbU765bBX0qxXrxvJYEkTx79c9jato5fIMLg4AEeBNFaa9Z6767GgIkls2SWc7ggTiK9rqgVIYKhZ0ruEeFdvevnTdR6B0yEmUiIkjm0HgC02x0Pd6+Px2MppdYauKQS7q6qU5Jpv992cS6TB6PMInLY35eSckqufbllQL0sZ2SkVracACYAQHD1UGIHGjZnX5K82ea27TxJMUxqV0dQYI/tqhDI3HtXCEpCOQMlIAIWqCuAhlYyJSLkBMHdnDeUvRu4AaCIEDKglJ4019lmEJYhp5JveqnzvJ6erc2JckZ0IA4VklFEYU3MJUtvU8B6uV7x3ZynZ0r0sDsciowkToIIDs3CZPuUXpzGfRu8CTEThBk6MHPObOGpmZCAK7MEYKzNrOXCifLs5stGeERAwBexDZhZLjnnXM26bSNA9O4e4e59rSGE5JTYvWVhGQojdWAE5BArAwGs67rBOD9LYhExXnKmkTbgp2Aa0FXXjZsYsakaPpN0PlfU4ziOW6ziMCyEYNHdHMI8HJ080Bw9+HMFjggMsV0YwwS3jcIDK5IIglM4WXhrTZd19mXt3SKYkBE8Pllu8BPr3MId4fMrdAeP36WdIQJBMACGIxhYiwAIFbKSBR0PwtA0gVLQVHDnae1au9fFBlkhJzQF7aC9L/N8Psnvx6kBbi0KSpmvc1dVdPpcnGxVbkqJSZD191IUEYNZBKDH/9/GBBGh7uSKBBDq2t3VCJQgBRBR/O5rs2W23qyruREQIQoESRqPh92wP07H+1IKzLMhvxSitY7TbhwnEQkAMUTK4dUUQZRFODmgB6tF7bos/UKVzIIwOMuGDnFX+B0tBLcHaBtHx5bBgaGGDUIt1AI+9QKckYVSHiGwqVJISti1pghBAHMwB0Ag3GJGAPBT64UlZZDCpEwNzEkYWSTnYRiQoq9VyAtjZqQO2te6QgdX8PHt7nrV3gOAc5owLh8fL9U0l9AH88Mex7IfRTIXCGSBQCIKh63Y+dSbzAPmumi37uah1Gvv3awrM6KF9raus1orVJC813kcRyLyCA11CBZKKaFwh0gp9d63yTb6y8EoSO6uZgkIwDHIzACcCBl55IQyWBlCkgOAb/3q1pomJB42qzPnoYxj4YDkyBZhdjpdl8XO5/OXX8i2Ef/u6d2e5IAIR9zGWQihiIgMYRHw4ngL94gIhEAAIhFR7Z+/g7sr9O5QMqckRtHMWlhXU+29mipsVoKtkeX+0k6LT83nFwmgWTdF4a3bZ+HkCmxIQAxde7gCQGYYCk9jOe5TlV6W1d3YHCGYgmmLKYSHXTrud/vdtB9KI2xDKSUPwpKRoTuZwCqJCjc8SMHAKF9wJF0wOqAnNAO7kbNH8yR8P7b5MlHaBw8hlWQvw9AXcQdtbV2w7CCKa+GaHfYno5mHyWlw9FZHt4hwq6hV3GWbRQ0lTwNzHUfOCR1FjJLDjrhENK9qlZqfPn4U4pLK9Xp9dTiwmd5uw37vrno9+/UUtyvnbOsUhEREnnc49XS8ymn2C7aZmAiBDLaJCpmaGYxTItyPwhy99uXxKTWSlYY9qBo2DI3v3j211qEcU/UeRVJmJAgAsxQO0WDpyaktV7TGhACIkQAmgADoIBzYA2XIBSjB2rF3o9brytoHN2tae28lzccBW2FYvNbW53leUwE/3MN0+PD+w1q9dnQoVDDv99dzfPv9LeCvf/TV2+vd/rbf6d2yH8aUyn73duZfrjoDABIzEQD0rcStTYQxmfW+rH1elLDknHdxP1+f1nqVzFM6dMe1hYsQRUrUTKE7I4a5o025eLtpeMocwB0CMCAxAqqpMDu4Q4hkYfHQMCDAnFMadkx5QeJSQLjWOhUpmXVTcNWaoDBzn1s473cFEiqpb6osDfEJdJJy9JwxtQGsgEqhmq2FNciLt3AxlMy8J947j0OOph2jCy6hq3YOLEEW4s2IJJiV2D0O0y7Wrt1E8jiOq9XaqzuYRq+9+UZnzNs2LgA50VjSIZWREyJhGj2wuyPfMSbFGiyIxQ27rRkXDCdLkMWYHSERp1TCsVuU3aE8hy0xGA55TAnO80XtEhBNGHJmFO4Aq8VqSr6qSSBtnZtPN6XPzbPFYVlbv61Xg9XgTHJLZaKtZjAH8y1FUVVduLpSmIYbARACgIZrbBIq625bUMPnbnZEbP17AiTAAPCuvfcBUw4RYAugAAQiQHc/pDJwYuIsSbbhDxLG71rlZi8v5kW8pQHmGETgjCREjJSYg/mFG2zqEQAkkkWAnNR0Xbti3woqZHAIkYRb5clQa71er7Ae1rqmSIjo2wUNYetgRwSG/36PlDyADCIQA9TU1M0iBW53zlCE7VwiZt5KQeaUJE97uUbkiAnIQcL86XzutwWksQwa8Xw596AQRobT7Xq83j+fVWCFpmS2TLfdMAbq8CpF4KexJ32upEop1rV3C0cUJnL12PJ8RCQHRkD0cA8zcHeHl/DqlFJEdNXWWkQ4qkEAba1hcrdP1RyKCIJDqKp2CGJIKYWFRzTtDaATQ87EFIR9m91FfD7QNuChvNxv43P20Paoflbv/X4Ti4E/fxMzM0D/VGV5UEB4eHNTd4fYfn2uFrcbmauqMrp/7pO9vGO4tUXCDAJAEkaHCA8ARNh6wJK2NbQ50jcRoQdCbCR0+l2Z8PkFA7wgRdxd9WVFMBIKIZOFKVrH6BEEbtZrXyl8WZe5L0WxW5Nw7KoegcKIHAgWiiKES9O+tvm2PgFpxIKyAFv46200siXRaOuq6pS6G3toeAA4kkN4hLo1U/y0qFprqhrm25zvcwNg+wOrqirX29puta0dkjgSJ4nMDXw+n8hNJLe6QB4YMMLNLATczNvce7+1dbVeXSPIrFftyRjDq9Xae3XtoQqGL/qZCMRt7EUM0h3dYMt7YuYiUNUoeqvz2rq7IFzn2+W2gDB7jvrp2uMvLT7YutjoiIGIER4BAA6gjLhdgHttgdtyjnDzMK233lfV1V23B9LM3aFF3Fqb1+6BzMlMr4tpGAx93A0daHXXQEnkiXrEbS3XWQZG8poFgTomz8ADjRDxsqFs9zsIg8giW4AebdrKhFEhwnrvRCSCtWtEfKpPMcLcFQgBHHHriFnrxomJCWjjq8Dn0Q4RJREA33QL6DwOOaXkHNWh975CVBYw4+AtezAcPRAi1KEAIX6ayEf4710pP8t4XurheOmGoFmC9Gl5hKpqgCG6gZkpsscmAwnF6OE9fBufbOR392itgUHvXRwkl0/rSl9mIi8j3xfX0ksPCIDYJaHINnnGz1v59sxDEGIQEaEAwHY93i5sEYEEIok2vbqHu2I4MgoyMJh7A28YjaGAavQWSIhGZuIh7mjiSM3ct8KAISgMnBKDQUSoNVUlcURw194xmgIZONKGTv/0JvYADjdACzd3CwBHcOyq5C/DGTdzte1T2g7P7XcRoW0xA0ZKLhwsRtAxFtDnetV1vgu93EaR3Gubpn1Kaa5zhQ6CXSstVGtdlluttXvTCKk3Q+u2eug6z+fb4/N6OuncdZEt8JcoALdqAMIbuUs4iSkAIGcGikBf16Zm26N/er5cLhfIeaChWyBvO0FgAPCLJAcpghAC0RD8BZ5IaODq5mEdSAgQMJwUqHeva5+bVg0FhgCq3ZZVH6/18Xx5XhqkkSiz5MJ5EH6qH1wjSRkfSlNbalWw4ZCalqXJXIHRz2kOXp1rpJ6GtymllIQFP5k0kYjczTQsHBCIBNERAUnc67b7bKZlEYEAZ4+Xh9I/6yVe6oXEwNtMJFT9c0sjizAzOvh2TSSMCCYioaVqN9NAJ7bwcFM3gE/a9ni5oNrvN0h+r7eybSibSOtzy/fzgYbAiAQQ7uD4ubdB5h4ISBhMuKVPfw59gfgsn2KAzXCydaS21bv9uBSYc7XmDuDuAYYIwiBC2xomwgBzD/fttcP215dWHBEQR2Agbd06fEkYS1sHW8jJHcMZQV5EmuahFqAB1LxrzUIghUbhLiAY6OKBXV09tr0ZEIFCmLPdqS7gan1BAiIG79YR1ECNURJxYtk+xXh5Z/nlTq8RoWGGHt2U3Dadymb1JUT0ICJGAgAhyiJMgAFExGOhIWNhFIYUmEK9nW8fIfpyy0TkDrVekGRd15QSCNe2REStVbW9VENRXFVuwozhWutyvV7O63ONxbkDB0oC3qTrL+OHmToxCrKuLTQ0NMCSECLmMmC49/bx+en79x+gmyOJ4EYt3KIttx3VIoSCCMAZAzA2xU4Ha6EdNpwiEgB+Og4VsDlUj771YInIjXrzS2stUNIow95dQK2jMKa5A2TKZRxlsOu1Xk9Vax5T8YGYgwIIzU0N57r6ORBkv9/f3R9fDGgbNRTMwoEpSWFMraP6Jp2hnHOoRdMX4xTSVlCI0MtD6S8P5UvGnYgjBG51xUuvFRi2JEcD+53GMGArebupOQIjJ6Ekm6SYWBAJkIAAkMLh88JCRCL8NAbBTaPw+dLxuQX9WexB9Elk9XtCy891wQu5hujz/7IlHYoQuuXMBCH8uznzNovGnAeOQTW6rl1VNSKS4FAiZUJyIgjoZr33cPf4JDm2AEcCYtxosp83IQA16xDBG2gEExIDkRsHUDiHp4iBeESoAagA3VRUw33rrkS4u6h7twgEDU8AkoiZiaHosfcEvmhLgECZMRoBswMGIAAj8WYF/PRGUAABo4W3rhixGvbQcIkAJgb+nZ4GKZjok4VYRLZKhgCEkcHIOygMrgeCe46utf32V0YJCJkZh8kRVN1S8ohaq4f23gE85wzgWMpqp5fs2bBmrfeaWtuBypAAAMHA7GXrQQ6IG4ZpRwTTFs3VmrulxBYoIuYBqpfL+utf//p2Po/3hMweQQBACFt/MxwAbONj4na5CQiHXut8iuZ5OiQeNKD3Th5N16bL3C7remttBaVa+7yu61rXrorEZRihgIzzrV/Os4/nLwAAgABJREFUq9bmalAqiuUhoi3n62WeZ3BlDJHuYOawiYGz5CQJAk+nm1lsoce5vCwCDwWnnIeYAoPNnKgTIRCUUhw71b7Nb9Q3OEZs187t9977dnt0d3Q3CEP0CAAkIhQBBPTYztTEzAjMtB1oFaI2VRLIREk4CTFrOCJuHRN+CayMLXTi80r7vMEZvMinPyeQfP5Xv3cnQwQi3LolQiSEhoAEKICEuIHZPqkhP5WBjoUIevv8cz8v4FSKWuTWYEzdZzWNCGbOBVNG5qDt8HKN3+0jQiTuvmXLbBUfICEQIm/vRjdQ961ljY6gRh5oxg4paA/yWspVjLXDruQyGOJmyGNOWcqYBqmblBg5QIGQkgDrpigkqgD0/2Prz54kW7b0PmxN7r73jogcquqMd+qLBhrdQsPQBEESpAYTzfgi04NM/6oeKaMokUYYaQIJgBhI9IC+faczVVVmRsQe3H0NetiRdS9hSjsPp8qqsjIitrsvX+v7fl/EPthCRNqlM+xAEPQ76UVERDQPcw4gw2imHn3dbK0BYBCfWk3hLkiMYYi8r15iIQYAU+29T91kWeH5HBH04cP0fD6+XLfnqz6ficQhJKU0LOYugZwTO6TWAkxVmTHnHBHMS3MG2H98Y7ABLCIcg28e470OvFVK4fhAaVkqMKydFGhDnsGR6ZXaHDnJVtuvf/3r9+8//vTxc0BX7QCQWQBhv8ESUZgBBCEhEZiD9tbOL88f2EnyIMPYG6xrRWqtXrd6uV6e27Z5U2twvdTzy3XdWjjRIGygnerSnl7my/NlmbdW17uH5PZSN4+IeTnXtuSC4zhgu/Rua/gYouOJ4ZBiREPH7XJea/1uni8Pj/fjWG5FKYCIRB7ASIuNIwCjb4rqu64oeURw09vrAnCAICYA7OpwW8xgZvsCBkREgtfbPZjtyiHGjOEYHhHo+yzRjHi3VSKiIwChhffem9q4R1VAUASLfDo/P6km9wdp9zP8/hr7pIiGoP3HIaJ4PYEl9pCkCHNUJw8O4Jv89ybDJscs0np77cgo7dnuIpKzOpTWQF1qa90ibpKn1/YVEOMOUfj0wwBQN/MQQA5CR0AE2CWGcLsMh9DeDQpz6Iam2J0AS/bEgxbsRqXWJU/IsoFRsCMmLkMaR5lEVS1+F65FhMC7lLxGdCQjAiJHCkALiESMuH8cv/syCFMFCwwgAFALc6/da7+1+OB/o5thIsdXR9Fe8QT0rr339vHD+sMP2913ZmHnl/wy323NmzIkcOhmFE6+1a4OQMITD10bAJg5M2ZwtY6ILTgiHB3Ad4cn8h7ccSNz7GcnIu8r9CE/PK/oGVeQXqTm+kyzYyDizShbxGv74fsPH54+ftUf2UlVAWB/Q/ZXR0QBhvsRTAiO4N629Xo9F8r37rT7CFUDtt7qti1d66cmSq211gpApZRMgtXb0q7XNl/Xph7EIGVbt7r1+VpT4q41rB3G6eHuDqxjC7FOiATIkAhTBHKJy+Xy8eXjy7V017fvHlNiB+hu+0+ORDnzMEkIdt/0MkcAM4uEGn1yjFVvnwpod8f9iSdaa/v3J/+q1i3cMUBEAt21h98cU5+UzIEACGq2q9PMQruDQwA5EgVC0L7Dwu/NVz8dGLvm75MAa6+NP63nT4OAT/+zm33DHM3BHTwwgIEMMV7P8P2f3L9nN5fOFBF8673nwFKKbm1fn/tdHcCJeO+pIAYRMtM+e3/dd16v77tz4vWLmYGJ+SZBRcTX3peDGQKmwIRJk6wZwnnuHui7ahuEKGi3/soYVsK1rXikph0AbfW+Lla/e74oeWEopmea2BznWc4RXx4P7ekiDNOQTuNAnAMSU1LYFoIV7F6VqoN2TyAhq24f5rkw5bXp08vRHDPWVEwcqHqKi2OXocD21ZE18r/7H//lw/vrF3ejLc/6218+nt8f6rbNT6q6V0qfmii2mLx+xrcHC/Fme3QHAAcMRwd0g/3iwvn2ENz690GvLFstGc91PTDhYnn11vT9thYmbG2QBEubEnz//fftwzUvaNQmEbPAAO/eq4qIK4oeI7zaWgTAF12utGz+w0sMWb7u5+s3Hz+cH8rxbpg2E45R8Cerz3Od29Yw6DAUW5d16dAarbo+PX/88LLWKDzdjXdySOvy60279crpMB0OSY5DplACH5mHQTQl8MCtX2XoZWDZ8ttyD8Op6fb87fNyvj68ebi7Ox7SIyfZYFnqFgnzKW3XLdaNZTDt5BtaB8OwbhGeJrTxcnku+1NIkrO4O1JIyWBm0VU1gEo6eOOn+elaZxwPf3B/P8DUlrm6QhYqQ2z96fy+JR0zSafDeBzydN2u39VZ4mToCVgChYLZIlbXSYaShMwDADMAgrOrk2XCtIVY6s6X3t9wCKIUALTdU2Q9uppVgpotVkE2MFWNvSNDEejuHYlSSr7L+lk6GgkPMIZTNGvk/RCALMBHL1df0QMcIQhNQMk0WxXb7kBPBIdhwI/PP2y+Lv3aYR01va/1LGvOj9OYxIQYOYFBHlM+DsNBKIFzYM7jWMZ6dpFA5o6huKYiDwwtVqrXtSMMJ+H7rYf2kAHBqhQpt2YA7KMCr9tyvSzQx94JSVJiRLnNbBQ/rZDX6ath3ELcY7vseholFaC98fipBff79pHd5Lm3RvZv1d0MoJvPv/rtB8q/fv64nQbCXs/PeFnkvB23UA0iR7wl/YqgWTj571bvracMthM3RYTzbQBAgCUTkWQ021+om0XX3ru5O+euhq4KigC2rXpc/bi6ABqRm/dQ7PD+6eXX334L5iy8l2TgQQBCxIjhQCWDtugIZtuyzk9Py/PHeb4wntbr3BGvL+fvP/5m4vT2y3fTw3FFd5De4nJd5su6LLq12pr6drH5EnUmqEOSLFFKFMEih03NiWQsKQmjJQHCCAyB/U7ovfelImV0zAcWFty5lF23dmlmti3r27fvPvviM3c9z1dJhQjctZT05rGsrffwTY3URTgjsaBDDMOwPyn7IN3dtQcQklt2AIcAwABFa+DX2j5crsfx8PZ4SHf3BWCzfq7bt0/Pl7qWkpEpwJo1shwYIrQTSD9pElUVPBINtzaSSBf+/yNCBgywfWwDBIxyuwzv/eW9OwH2Opz+3Yj+1XjDt185vR7p4O7T6fAwjkLx3Oer2WW+Jkj2eux/Gh3vlLmIvToPD42gCHwt+D7Npb21Rpslr2XPqVZrrS3LloAmFivDbQJMER5m5uBESIlzSlMZTqzQ/GI2z/PSums7TQPRIDlnxltZI8SJyF23uYatCJMUHoZhsxndYp+CvL5xNzGj+36bykPpFZvuWg3b47v09Uj81G/4ZD/yqoKUkggHCwJAM6jN8cOTZrlc3w9HPh3zwQAquqJW2t3UEaFqRCECEdHp9lZ+quf3cms63SUumYQZHS3CUZCZElKP7ggoKTg6YiMFABI0xnFPSm6hix/nuNsASRNyDxQgRr8u8KvfftcNE9O+gSEi0g0DZB7gHq3rtmqv9XJZzi/rcgUAdLTuMgwE/MO3P2zn6xeX89uvPlOfutatb9u2bG1VD/dWdRltVW59ApHBQFjyjl1AG2tXA+EhM7NH4+gCQYkKYiZC1MBoGrU7ikPW6EEYTJTypL22Rb0tau/LMJRpGKfJwiOolOQQBSiISiYRyWFHKZt6bc0cc06qujdse/f900zA5AARYmGIEW4IjWE2+Ob5QuUQ4/FuPBHB5Xr5cHn+4fzsRIeh5DErUI9O3jqZCO3X5xtOmBgwPpnDbqI6Iny9Pe6f+O6E3f3nQpx4Z5EEYwDibRED7DbmWyPntbh194jd4n+7JbnftOqKXmttSUjI3R09zJAYf29e9ar9CPcEN338a0lvvjd0GXeHs+2O8bZ1j0q9O/Jt+wggoiHlUkqRhLtCANzNNVyIU8AgfCj5IR0CtXZfTZvW3qpqQwRRtda0b1VVODsxIIVaEzcpXHJpNkRLDp2Z9sAxVf3kydiNpgAATIGwGwAdwc19d3u7Y9w6zGGure87DQEnIWEkQs7MScz6stl0sIP4Ebcj4IkhKKuiC78IBdx6JOZg4Ob6SXyDALzTJQHM9vkrQje4JdZ6gIHbnld8u7vmAZiEkVlEJI3sCDK7rdY0BodsngDAnZgJgLgMyVXrL/76N+8/nL86PYC7q+2+ol0WBhHeN+tV19XW2dcavVvrhEAkUxn44S3TmDt99+vfRuDz8zkfPRW+e5NJhmHFOnfkbe3L5zm9fXz7ufbntc5qSDmce1dsIgwGyIWI0JTAUTCGgRPLwCAuhA7CjsWobAhbrex+PByOxwlN+7K1Xr//7mPt9rf+8Cd3d3drXQzQwfvztszX3tS1hqtIGscjr9s8X9SxlGLaCEO4hDsBA6IQELA4KoECGjFJROJI6bkZzjV3XDpE75fz8nTdGmMZSzlO0zTVHS2I6uiA5m7m3QOIsoigEINxEkdQVbAbdxoRzb17tzAkYuYiaShpEBlzQegSt/4oMzAS7L8gwPDfby/vixuBdvW07cHtZmbABE9PT163krmzx2kYSiGQttnvB1l9knwBwF4+ADgA76tXSAqnxsIMBASIRIg9Qq25RgQD5iyHcTocDlMpiNhqRURGIAx2Jwdy53CGmIhbwoUCh6ExBihSIIa0rW7Luq5b24hiizBGD2+llFwGTikZs3E4ZhHdzZ+txW4DpJRztv1UNNNwFslDufUgEHfH2d78AOD97+4NzMSAtNtANCUupbRtrc3hTeSR80iSHMDUtk3ZOpyTGfnOJemJ901DNaZX20oQ7tU4OIaZkju4m0tiQQDZY8Q6Ays6ADgZC+64k2DGzEwo2sAgqhpHl2gISKChLYAtQZJw+NUvvv2bf/fbr74+hGqYoQh4oAcQUgBiJEIHgN5BDVqdX16WuiScHJElHR/f/O0/ffjRlz/6cP64aJUTHA4jS9T1sCzLfFnKdxpyubNTOR4Xs28+Pp3nhaS4QV2sLo4EPSAlREYjCGMhGAoKQUEmEATHJC5FsTCZE3lAD9BgAqqhTdWCvvvuhzzyj37y1Xgqu1G0TDkvl3lZWp3rWjEdx/uCTC8vT9pj18uZgSq7wSt9EBidEQEogoKAmUSIOIHChvnKWY3n63l+WbQFZ6Jc9vbyAOSMTnDrJaFGWATdZo0iuyk7Iqo2UosIZApCd3cIMwuwAMNwQaIAhiB3BBcSZM4RBntoeHySfOxbwO8dpHRriQSahok7QPi+M9HebiqlpKF4+53rOGKXY/1ez0xiH4oy4D4fTSB5bwwDMCCJDJmJCtXVtd+0E+Z958QxdwNb1oJADEIs4QhBbtoDW8uEBWAQhiGPTGor0P4nSV5vqYSIQpgSM0MSkcQAwYCEgOBEQID7IsRdGIpCRBoBEd1NzRwBmQkp8PZeg8eOCcIAMLfWI4IRCVCIdhgTktMNGSE9GQ4cwqq2VV9b1KoOWJMZ2d61g3JrXEGHaLY30INAwQHA0R1dqKt7V+cVOREidK2190MagRCJncKJOHMIK1DfGidpHh7QMap4HbEe0BV6iwaQAcDwNI7bZfvw2499WW+tf4+9e4B7kzMUzCiczUJ1m+ePH35wMPyyYMq7plemw/iO3o5ycHXZpsMoyeuYhkM+HItkLGPCC8kw8LI+z9AVSqZEUhNcyGStzQITIktwkBMjgCBDADgEByUFcufWsESHICDaunWdwSPULGAqBwf/8P6JE/7Rmz8cD9Pz9Xw45uSH3vuHj2BdVVcIO0z5eCrt2ohhGLPpzqy9iZ+D1AM7oQfsGgNCTIHowaXIMFgaNQ9b8KZBjtYtq2rvXvvOiwXYtS2KuOtBwrybCRrvLNR4HWR88u8DwH5pvzW9zSBMe3VGGAM9MADB94399d4bnxbb79+BIxB26avDLUoaAJGOx+PdNA2ZK1kvmZk5oQ3ltY+zN4OQXnFxeNNR7kRkJGBGJGBX2y/j+8Jm5pRSCfTiicXdW63runamSPLang8GINwD4RSDwKwAZ4AIjTCgCIQIQwzZ+UxCLER7snYS2tEhZObezfqnK8cNY+fOe4pk3MwJ+/C9+6tdIQUQIu9lA+FeKdNtlA/mEeFqGE7ganX/JgAYmG4APU9hjFIE3UQN4gSmEWh2228QAaABGPlt+gX+KrsLYsA2g1k3re7wqUUPwRmkZEnszYECHbxb621qDAWhERoAgLKreC2uBN1AUPYkh0M+6Fzf//L7dV5EBJFxJ/iZUQQ4dG2+zDovvq7tcjl/eLqeXx7ePbz78nM5nqBkqwFdITxPh0A1vUNA1+puhJDLcP845HTf7ta1Vdc1jXzEYZSSiUOEoiHZUgMJd+klYAgjFwyD0HC0AHInr25YD3XOOSPytm3ucGvjA/NWD8djmXh3pDwUzoUCYhz5OJWHu+P56s+zq7ZEKScO62peculhvSlzQQfEUPS9f1NRLYBcQT2ZFYBxOnjKm3o5lHE6bfRBu266jcMA3aLVMIaQSAShvVcP3QfJ7t57ByYMaq1lGXPOQNR0bxRFEKLc+IoYQAhCTIAULgQEGObeVQ2N2EKD/NOK/TTuui1gQAgCoL158snYA3S7Le9HPZolTCml1+HQPuy9LeCbLhJj75juVDpwxNu4JDDQzLZNs7cEUEqZdf6kDBORtAMGAHePfXiEGphSSoklE49Esxnu2mzYSeJsprKutW+19947IfTem2q3ri0aUdPXGtjdXa317dPEeJ/F7WsvEZHwzh9o2kOC6BNiionp39PQAICqJ7pVEXs+iwEyCZiGARqLpwEPLAbQAm10q2rhwbshmyEiqGsNvc2RXz+V25wNwwjEyQDNg1kkl310OUwj5WIEIIlS6qZqRl2EODxpdA7CAEcPdGOABAkLNrTeopXz9fLLv/pFa/8IEUV4fxw+JUsgYq21L1e/Luvl8vL0Ydu2aZqCpbcaKQdz6x3UsKA5juUzJFVbwMCNMCJx8WHM47U9vdAFx8M4lUECxQnI5mpbk6Z667CGAzgBlZxVzTzcAYEddvinn0qAgYe2ph4he3aRant5+sndV19++UWPZWsrIk7TMK/X6BuRn06H+3tcdUYP72ra1nVG5JzzXn+K7OJE6m6Brmg9ujpmV+hB3TNTKmUNWNf1eHospSTm1tUYwhGDwNxit6QxYtS2qeonO8SusWfC1hpMYyqFmK12fe080c3/tJuBZMg5S8o5MyqCe6gbqoISfyp6f38N/94Cjn1uv1fRr6c0997XulmHa1SDUobiBN77v9cD/z2pptl+RuCuW9lx5yAiWYiVNlVdmsU6UEgp1+u1tcZIpZShFBEBs23bEkCAu5taE4eIYIQirMgCgOGAsbf89xmQRGIsRQENSYFNISAFiPKhiYBw72MPdCgKZ6QX8AKRDDylMmq8TeO2yjTnD9+dD0s6+pgJU9kEQuuS2Wv0ASeAiZAiVtBLCh1djtKvG6TyFmx4k8Zh2wBciQJPQUGHlQEgE8FYIK21dgQXAQpPhBwK3SDoQLmfrGuo4a1N5j0cCKYYAYGzRzQMAwbMShk8HZRRUDnIWjM1i6CA3hYgYgqMWhI8HKepr5nH4f0G4BVXZAiGj/XlTUrvX+q3v9z+9D/+g3X5BqZhfbqO5QR9Bb1aNW4zeO26rMvTx5fnw91jOb3Jdw+JM3TtbQYAHBkRJ0ZN10Qsjk5DMiHEXhvTcl17q+GdpjRhRiGmgNbaZ3gSvvJ12fRm4gMwwkCHJEUSdYPWo/VmgAx4bk1rrwbIA6HY+4XVjkN5eJymQ0oCfXOvbh0LHe4LrHq5J+rQ9Ncv8+WpjPnh8fD27u7ytCzNwIkkgVCPYASCRlgkcQ7brKYAcK6hQcyZAhi5IJfWzT1oGHgsdz4d8zRkSYkhcbBURwLUVk0rAAizqobjOB6Eh7E4hLnDy7xCwPHhUesPkiAHosfWanWlTMMhH/IwMJa3KA+53GfPmWYlyCIS4btYLAzcgEjCUT0ACbF6oAUOZXLdHT3ivWGWnKYxF/e0CTMmMN+2RTcb3I8Ii5nFnclo5hlIgBMIRK4K1UxdETpDJRZOXLiYUCAd0jShRw8vXqF3UwrKlLKkROSnBN+9RGC34Bgco7fA6EkQHqay1DfBCOncrpzl9Phwy/V8rZCJdm8dCiJRVHBxgzAF38Bb6Gpto2gIBN7QN0YamdyWuH6M6zNuF2pHtmBARiIQijyWIrt7N8Lc2lZ7a7v8CxF3tu04jjnnrdZuum3LplvvbBwOByAPcZRAR6DfyeU/6eSQcgeO0B3F56EMDITzpkQQiI5kAB4uRtQxGSgo7GocYkxZCXrgJIMCRF36UrW7WUj1gzIShd9IZoKUhXVr33///dPTCxCJZOiOiGAWvXvvW+u9d23tfL08Pb3U1g5DuX98TKkAENwEwojACEhECr5TAAF8Bwx7dA/t68YBp8Nh98313ud5vm4LbwJhOSUgVAgzJUQivFzPEaiAFuTBGhyIEPRUu+SJZURKYCGUxoFPxzwMtEPnrsvzuq5mNgxDq6rW1Pb0Jkq7KZZ5yDIMQ4/GzMSSM0SEq3btBhjgN2Md0f7qRCQ5fIKJE1HoLgpgvOXIplIKJFZANbAd1uXIHLvfGHaZ+Wtw9H7R9d4/GQwBAMGTUM4iCQJUrQaxqpkxeNr/IQbeAehhHV51+/6aRO3hEYAkKaVhGEItQXjFCOdX0wMG7p6JcNu1ZY54c8O+kmrcfffV7dSpXam118a3URM4EklKJEauuAsZ6N83Y7yaBUhkF1ro7bogGSMESYhvd16RvJuYGHCHa7vvYnRhZIpEXrEhiJJaAhU2EkA2jCooAcreRuDExBa6tsPyXrZ16A+la/YkyGQNXZj51XYfOw7W9kkSM4kzc8455yw53ca54BEOBJCISwSFkkFX7IjIsdNucRdmAxChC5E7UrjvP78QIkn+4n5XqHlA1d7VDcKBsLMC7FreNE5yd5KpDMwFRrfaXz6AfdB6ta3horJaEIaDEDPTyDKNhdS//f77X/3qNxCSUrHWCRle7eBmpu7d9Pn88u37D91jPN4/vP0iDwUI3R1uvQ4MAEiCYEgIAUjuau6q2lRbApp2hkFO3XRe19o7ECWGzNQo6u54tp5YypBEclPXpt18B7ioRffQfGQvtlC0PoAdMx5P6c3jeCh2OIylZHdflsXdT8f7Vn3btoiGHiIyDMOYU2byksdxnOvuyEX3yDlTShi5EQe4uzJKOKreZq0ipHtbVDIRq92mdwDELPsSBmE331vCEWDmgphSwn00eBNRglnU2ns33Tr023xyX8bMXIYQBrW1eRspqRFGpp2FuQ9+AYWEIpiQOBEJwG4IAwQOiL0hjHuvGIEACXFPJgMAQTLmzGIB+9ajROEGN8v+TQJ8g/IxCwEzC0dmqeLI5G4KxsycibHDPkMiYEYmJMBdZwN+aw8R791ld8W930RE0E2AEkOogXsWEZHEr9iBG8ApiEMQEwBxdDLcdxdmJ3Ygc4GIKjxRIsUQMqE4WOvmJrqJvQWcAlIwGnrDUDEz1XDJkJAAe+8RkVgyU3MPBHO324aKRCQ5l3GYjjwVHqasRLoGmiImdnDHALPAPa4Pf6c0vY0HeM+OSQKPD5JSzoW4GKBaqAcAoYJZqKoCpONxfPMox2Nkxhhsu27vRyBuDlpfth61q0M4QBYhBEYqOfM0zk/Pv/n1t1AVxqFvG2H61OG8WQLdr8s6r2sZj6fHx/F0TyIOYBHIxCL7IOSm0IVbH2inNPdeVVum3LF3UHQMRyIZpsMpANtau2vvdelLbwicErFkxwZou/6MUczJWo/We7p7eVk/fvcetvr14/Hd16e7U7k7cE6Sy2sakNleDe1jv9ZarZUwjqWMQx4SQXBKiYjU3W72pJCUEqfY2ZaBOx8lQl9567JfcD/5WEz3/pAQit9m9XDz8TswlTBQj3BMWV7FXrrHSu6tltYa9lebsIE7RIQgRlivMxJamijGnb/NBICOcZvuikhiisCU0k16iMLMYObhvbYV17ZtKLfGjZu5WajtgxgmYpZ+a1b9zr24Yyp2UsUrOCHAXwWIgCLiaG6OETdCgBu7MSDtoxlXMHftBmraEnI4Ovjez7hpFluzYMLEDr019c6p3DZKhFv3BYAoyJEpEkcGNfXe3Lqas0ty1x5NPYI4pYSJZQw4ChGgkt3fH18E36Q0BpHtzopwCFfTpj74biC01k01IQbiJ8jI3h/2vYe654tNwzjhMA4VqFMjRyEAJVV/pahABIJHysldd/krMxMz5Sw5tUFyKnkcWbIDmaF5OELrAWbRGRDxOMBxwLuCkgI4JNmS+8StpDVjTdxz0boEgCC9siXSgUgBPrx/efr48vjTewj0cFX8pKfrpmvtW+vN44u37+4e30EaYA9z2zVGxOFhERJwgwW46o5Yvz0MDv6aawcR7hSQkV3yy/ayra02VQBOI5K4ZI2sWIwiJCK4B27dXq592erHlw/n9x8v3394LOX49cPnn50e7pi45lIivPWNaD8kCYB2MUOt9XpZ1nVlgimnQ8lCmlJKKTHmHqTWa63aWmKsSOZ6g3UE7UF0N/3TjSAHe7zLbrhMuQDQttWyFirJIogzYYhkcIrw1jSllDKrWe89cQlHVdu/Oe2NL0dT8Bbew8JNW++VGCFSgAR02nt7n5CRvk8uxDF2N9BrH+uG1jCzHVp3A9MgEcBOO45w32mG5q+Djhv8HBHdTfU2y711y/ZTNABfhcMRoeHgBgYMNyOkh4Z5mIW5m5qxQ/eu+2bXDECNLJAi1B06RgBTaPRlM+oylX15i5m5GnigEyITZmYRLvOiwdgiuu+QRQgXd3JIDhLITMPAcC9DBiekd9P03rEwi3tYaISDgWBKqddKe+cQ8AaI79rRdptLHoc8lL1H3XvftlDD3QMdQoGIweIJCdydOvYeOy0k1DW09dlM0QKoI0m4uFloJx0Ce1TU1i28u5t7RKy2i0AjEGztejH3JZgyF1tnW56szea1Y/RMOiWvr/3trma2XCKPAxJ8+PD8N3/zm8efPKZU6tZDdeevzNs2z/O8Luu2AfLjZ18c37wDKfsVJQA8AuC2YVl4q0bg4KE9VN0UI5BInAxTTikXSWbWap2bN4W1e3MAKUkygFTzZWnPPvMw9LCt9Xlt52V7fpmfns+XZZmbkfmJ4cdfHv7gxw+fvZ2GQSEwJTGv2wZ7qbzfbnYTv3a/Xq/L5VryNOU8DSnJWMomIvvQ/XcPcQCVAUnMQt3czP0TGZ8CMBw/6W3dwVSxJFW/nGciyjaCpFyyOBKmPZ2o966aypACXNWJRiDaPX2ftPTu7spu4o5uaBrgQYmJAMF3DDV6ICIDCTKhuIWFfQJruYN7mNvuCd41j847RYSIqAhnSUKMXa33WitaWOv7y7mV4ABm5vxaA8ZtlLmfwIhIAV1fqclmZAAMJCIY4DstHOA2td7XvIfjTWJtgBEYN3cUWpA7qGvvzrbXJ4gotw1/L3uAADnTkFKRhCgDY0LzYEPSFhpRDHI3AfWAlFkOUop1DEeUDQgMUMHBgTBy8IhDLiu2Tx/7zg7NqkqOiHkYpmkax5FFdplPq9F6dI1qTuZdEBKyZ8EOwN4xtR1zEKZhnbZu4YqxB/6FezMD7IIKItJLJiFHCPRAJIZTDLDDUdVtufrlpTOqA4qYNVzX9HKVutI+/Q50vKVoEKIA7R6MNKRvv3n/v/ybP/+z//CPOI+wWYTiq0+11tpaq2pOfHp8c7x7Qyl5IBE5gpnzLeSALNCNEBncCFE4KEniAuCbrkKAAImEW7e1UlW7rj3QUQywBS/dL9u2rFVVg/vW2rK2y7w8X5bLUpe19nAC+OqU/s6P3/7JT9+9fQNmL6p8OE65UIT1bilzKWXbNoTCdFsk2rt1TRMfxuFQyuJ178f0bk5pL6cxgsAhZyQw42VbTe31EhGMzLAbdBFiN6mGdqvVZ4LZmnk/+n2eDnmX1jsiJ95HU727F/edRsRAhEgpZSLe5z4REJYpMkeGaESSUslpl0kQC9E+IEckZLwlCMKuef79aTAAMvyurYKvGGrBG7hDdgF/V2gd49UT6zcIi7vv/Oq9pXSbbO1gmU+jUzMkEpSK4O7BsL91vAcuESQmIkh067eZ1f2PEAE6IgKxSErA5A4YQRacbtrQRCzW9ZWvSwiAhMxJKL198xlKUZLrTmzXa7S5aTim5hRq7MIpJ8ocHVSpq9yAbDvkDTBBKsTMfCMD3hBhYL5fF4l5z0zbm527vMUAITgCbxY1FCAiYYFOiMbITKhEwKqqTbmwVomuGOAO3Uw93AyXDYW9bShgYEBOBMgUL56QwsC7d3MHbODdomvH/YJjIVtw69jNuu7lYEQk4lKSRM85J473759+8YtfrOs6jkd8NY//rpe4b+yIZZzyUCjlUAtCcDCz+KT9BKBdgSAS4YICyfYnoK8GvVntTZuttS3rdl3adTGHqrE0v1R9qTpX7aaI+PHluTW9zOvzdbnOtYUHMEL5YsK/89Ov//TvfPbVI4Oenz7O948Pbz57I2x7uZtLEpFaK2EtefhUABNRKWUYMzPftDfuEZBzRkpEVNe1bRsQpyyfYJeIcuvBxm0Bv3ZWEQBUdV0tzLUtiEi5gBQ32BXFzKkwoXV7vWff8HE3WOcOfH+VUjnhLQPAE+3YL0nMpZSchYX2JtanqTKR3MxIe4/pleCBiPvgNdTCDJ1vYw6AW+y8R1CABxMF8+v0eI9cCQ+/fUeRV66oExHxbUkDuIgIpE7kcFNluTsxEJEQ0I6UYk7IzlLNgIk5cfgOShCRUkq4Vw8C3Ptqgrf3RMKOaOLawhyhmLaqlUtdpeSczdyhe98CW6e2ed/6wvnNwMWXLTy0V25rrPOZ6hnqkJlTccp4HIfTdEksLx/Il+frh+PwJuPQutg2s59hCx4eCt8hFZTI2QvAwQd0XC5XWx2JgIGJDZApF+y2UzyZXUgNlNFEdMMgiYTe1ZuielaNiDXeA1AGFMeESEEEAkBqpNrMKyImoXDGBli1MdRaKeMgGZhK+EOHzze66LTrTy66tEzleHix/ub05tvl5Z//u29/+av2d9+ejL+V3OOqU7xdeGOJ7tt4n9ZYUPYACocQUFdtgJYyO+6AOEpMtVZGogBXTyknlm3byFEcdl/E+ePL84fL+WW+zMt3Z0Ue+xbLy7bMtXuknMepfKjP18tCw50hLNEGyAx6KPi//8Pyt37++HB35IDrvKwrHA+0Xq75mFprrdXDcUTw64dnuqPjm/GURzJJfBc4N7iWg+Yh/AxRN1vnnA8Ybm5IpOBchgwdutd5FeSch9oDEbjQZg+skZ1xU5E2AhkPLbB2C2qG/lGvDMMw3G1+WdZNYcFiNZoUAcaFnFlyTnhf61ppANN+GOm81mDvoZZnKshcpKu4s6urUNynztI4lhoRAw4i01HG+3RH6dqrdm21t7Wu3TsmJemTvuug5l61aizVqvROaTzCm1BYoTv7QGi9Pq/1w8v5vFpCKFkmymuwuR+OhOTNW3gj28K2HHVtLaUEzAc5ZugDSQh2UKKecy7CGUbCBDx4Lk24IyjsUTKJJAWSQmBgYCQIJGgcVbWbDbkQdAAYpmLkstblusllHdZ+GI20t2p1s8aHMh6PzIlLvlzDaxNNxfNOantt8as7uhoDSPAevIiOQixpAGw55z4O42GiwHHI63Vd1naZ55O1XgYXWAVsTHE3wt3YimCwQQ8OQ2hh0RRZjQKjX7cZkF9RZsCMghIRWSICQ8kUraE11sbuPoDSfgRgoIOrqys5A+GtKNsFmEEekZAYAZUBQwCUgjNq9hmXFVID7wELySS5BXMPr/2zobz89v1v/vwXf/dPfzrk3KPlKfeqiDiM493DfV3ntbZ90m5dW6+ArtEkoXkPRzfQYFcdhoxxS9bytr2s67qu87Lotnrt23l9/v78/HxZ5jYvzefY+vXjqh/mWsOmUzmdnGV+fLh7Pl/Xy7Ou6wD25lDe3D98/ub+Rz8e3rx7y0jz9bwsm7uFmndvW3U3YRRibf18PhPlt28+U+/deteVOaZDLiU52NbW1hoRpZydWe3GTmAiU0V0g9grXtsFrx7q50ACKVImGjwUYCDM4u3au5r3YcQppYdxnIaR1O/G8ULYmxJhTll2b4RHzIRdCAAMtZl3BwBOaZAkgfttM6UkKRGzI7StWSeEJFwS5oC8A8x9a9bU1+ZNo2s0jaagsEEFIExCObzjLqfv4c3NDALDCTpF037d1nltFiIIjqTqVTXITdEdUt4xZEnItbad3shJ1lZr056Sxk71AVVt/ZNw0GOnmr56cjLhwDwIJ0V1Y4QsNAjOQIiBOxLXVHsNNyaQgNp17nrcrR57i04yp3GajqdhGIB9rk+6Vosa2BMCuSYsAKGtd4ekKgED5oGMnVPgmHIugxAvw9iKEIEkKpIa1r4ul+vLvK31YdDQim4ZY2AtsWVv3jeLDh2EDAMdubt717557cyeEkcOQcLEvJcftEHszA3uxjuZxR3cLvuFBNy1uiF5R9+vbQyEfJPOu3MBYEZTAoxwBCsplVPChuulzcazxRZoPADm1GFAZffPjo8//Orbf/E//Yv/03/+Z/JmWLbzMKTOCsyn072EteVyucwEHtY2a8vaRUh2fQES7uoWTrO3dV2X+ZKADiUv58vThw8Q0Rp703ZdLh+eX354Xq513fo2rwMens7ztx8v3y1ruR+//uLd119P3p+H09fffffd5eXjYHBf4Edvx59+/eanX3/92QNP0zRfrsuy9N7T3mtofdXKjMfTOJXher2+PD2F4pdffN2iV63bNiPp/Wkajrlufanr3DZOkkquQb5THJCIqFsAoxtYGASBuweaKpEhMgmAdGcLcC0Ih0wqLIzhpYxZSsKUUAaSseFQgRqNyAmJuwFAHqQBACREUu+tw6YGAHvUb7fWtBqYC3SJzSr1+fMYPMgiIebAogHdorvdOsOIe5N5r3cRoYcTIyUPJiVTIAcwxg0M3N3cEziRBRhjZPANPMDUm4MHCqUyDrkMFr5p36yXsM36tbZl5do7cAoBzJJyhtEHwYSAodu29dp672F9F2/szF0IJWABpDCBYAgOJTckg+g3SpM16+R9IzjIhJpVsVbsXVqEQwYcEnnvUSsQYq++zbZdoa+o6+B33HsSBjOozSK09RRIjskRPKApt869EXZqVbe1LjNUjXLMiaWhbmudrzIdIqg0mNRK3aSu3BxtDmQ03XlFghldrHZbKgHvGCUHU+2oIEJBQL4gsbBEzgzJkdXBAbG3m9C67zgxUsBARgOi/Ta0p6c7ArAAmwWZW3AEJp5KmrqkS7SqPbwbQxR3Cm9Dhsci2x2vv4T/77/6F//6L//y7/9nP4vM1c1IU86jDIxavi8APs+Xti1VcRiGlMVdt3mpy1rSgCjhPPfurtfnl/V6SUxoDUxLKehN63y9vr+cfzDfpkMmiU09aMOp9Uu/YoVxOnz15vGr4fn9uX5/9W0eCN5+lj57fPji3f2X705fvh0a+vPlen56rmvNKU2FwrzXFlFTYrk7lTTMuC7zVtvTjy/XDu5gVReIPow0jrmqzb3W3pzQ9zyv1y9X6wECtDPPEBzDCRDDGCkB9BvXIUy9GxmmyHc8pkKaplEjL1sERmvSzwGrFOQDHMghzJn5xKfl1g3CiJYioK+tVQR7afPFtgfoXbyKX3zbmm1gX3v62DtUlDpcURv7lqAniMQGAB5exIt4Ys/sAqCu6BRCoEAYjBAATA3c1QMDgUUkp3SSJMP4/ruFG1AQBRDSOORpGEsabpw6BBLeR4YGRMI8iGzBzJCYch4KTQASxBiAr+xZcAgE8zAHN98tBqpsRkKhuK3mmdFMKLKg2M6YtzCTu1anBeT5Gt+/mGOYpus6rLXNP/h81lKoztN1pq4asAYeq8p1SRm9tmhVHax1Z7bWzDu2WuezPE8affW1vvzQn158WQEwwpgpE/q86tPLIR0DdFD+/Lx8+TL/eG7aIRzuEEpvuNawHDmYkRqmFswCAGAR3RWV2F2IBdkaCrMQJtvPNgZGhL3ABkRCh115uZMB7TbBA1SP8DDaIfOh9CqPI4tB4MT4RnCyKo4pnJVG7wfvb4bx8zH96uB8B3/+i7/57/7pP/1b//BHx/uH+vEFkfMwZiboKzObtpfnj4/zxUDG+xMTzPP8m1//8vnjixv1TV+eLw9f/ujzL95NpWytfpzPY+HjYWhYZYK5XTf/2ORy/OLw7t1nWwP+Tcw2f/n56XKf3//CjKN5bErn2X/47S8Hbj/62f0f/cFP7u+mTDSWPAo8z+3D9z+cX16mlE7jScjqWhNCKmyKrWPrro6bhtbl+bzFAYPFXZF8HErK7AA9sIcHQm1NQXZFJHhY7zsq9XWqAojIAEGYXBRSjuwh2ElX01l1NjByYwMyz+Zp7QEcTfGK6YKEiMQ5JZbCXBI9PAxcRQQoCiaeuML2/Nwr9DV6Y4eBKTEOHByKZhiL90sH3qCMumQMBk0eQ+geFy7kQsbYGDqGI1AoeIQZpSSJC6fQ1SxaKFBg4C4O41JSGoaktlA/G2EkAAtgBIGI3m69uoA9wWfXSCbGXbzRe9WWUjJgF2FBOh6Px+NxXfqQ86666ta1bSdJu2mXPEQk59sVLDAYaSzpCHEy8iKZmADkx0ap+f1LTd+8xKqMkJfLMM8TvI9AZh603S+XO+hIsFQ6Rs12pjHgutq8OXGtlUUClASAtG+X5SPx9tSs6vzMz/NoMU0FGVwNtNcPT9dfffO4hcAoUT779sPPntcZ8tejgI9vJ3rTwT9cNhYdLBcPXamHcwOI26yNAxGIwBjYERmQDQVQfM/IDtytue7uoeEtvDppRLApBRKSxe8l1IQDqDlijwhDUCWDu6ZfOv4c0QW3ZkytACTUr8rwJseZ2ten8v2v67/9n/7l+9/8H37+2c8ZN0DkFIjGIsMwMPM8X1tdJB8u16epDHsJVJf15en67a+/+8Uvfg35YZzyH/7RH/yDP/vf/fQP/3azGdCGMd0fizyR5oVf8PHxzY9/+gfr5vUYj9vH+8Yf9T3+2/nj9/O3D391bz9Nvfzsyzc//+r+p19+9uVnj21d5nlGQXVb6/Z8uW7zVk6CiKqmdRb0u+lzDd2qv8x1rdAizbU9rS0P7EFEchyG43Eyh6WZBgGhebhpIInknbKiqpFyEANyhAYY3wLlcOnBEGyRHdA0WlvrnNpCYXzegjvxSe5KoUNmB7Y+RecOru/V74bD4XCgTDX3oxizmxmCC8NGWNVVISfOhCMRiTym4U0eTpHvxtPDabob+DCMwzjlfGgshZyhZhIX5IRZUpFUWHaYcYLuDhRpYrZIE6VuK27dBSVzAuZAsWCNUMeq4mrWCa1AsgDRxsYZgiw4gB0wQgIzckOqYLvCHTDQFFTJQZwKoBCmVy+hCEkARqBHLgMHSDcmy5KHkh3MawWPQsnSNEEcGLVw4gwa8jPKHJwWzT9c4VpJoLTNt0tBalWJxD1wXUVQEqyr5bLRrDgGvMxRq+ZsvVF4UO9EGOty/bjUhRkBu7Z5mNWdEnGz1rVra9dvfmjm/d0PHIcBR//tb95dz3+ahuvDW7Ssgz6o48frCiglttzRK9kK3G/Nsz2c9tN8IgjJkB0ZgIEI4ubPzrgHQ5tad1dEJwhZLAEqYEc0wB2PAu5OYA1ISaIrdQe0hxo/0YQTC9G2bSIkDO7xMNED2R92/zxNn41mv3r/zb/6y5//7Z+WmCINylcIT7nc3d3d3R3dNcJE6LwtJeHDw93x8He//uyr88fl14/f3h3f/NN/9tf/6n/+mz//87+5e3P/d//sT5T7dXt59/nbw8Dl3QMdxw/vvz+dTscf/wi2NqxL+V7hud1p+9xhCLi7rqdF76aH4Y+mwvhwHDF0PW+9dw+5bNfnl8tW6y6xhF0poBEazchRmsl1jbWDYlp6+3ip9+Owdkcu7969ffvwtne7zpuGABFwmDoyBiFoRAQBKhAAGIQ5EAUxJyZMPJipduoBFQTHKWZK62Goh9WCvHk7Wpy6nAwnsp7iLV0WvjaN0bf78BNCjjW39cjIxq1W704WD6tCBwK4Mz6sns+1DPG20s/wgInfDg/3YzkmH0AGkBqyBZ6ajdt2wFN0DCUzno1PznfGL44CsaNjcoD1IOrJoSCJw0DCQNDMYiOFMPBlg7aF28AAiXttqJhxuBuksAycCktGV+IiSZkrBLkLYCYMEiHI4OKQDOZ5XpZFdxOlOdDNDuHBTIzJoXdDMthZDRZNOaXbZ2BILmism8sjIDnBFlgXn5Eyga64LdGvUR15YOBctQyplJTqHv6l4ezbFl2dyHtvEBtczNNO4jRHphDy8H6wUsOs1RXdLVxtfnp6mZf1+X2O8cDH9cP7AfULljfTATSdcRt7gFZ36C0pq/cr2UrJAHHXS8J+1nuYGXpCDGQgDmInCmJHDIsTggMqmLkZaIAzIi9dAhypIymi7Qqh/TK8MRgPaCLNc+Chw7vI4+mYECpHTkiFN+9pSsL+0Lxi+erN9LHW93/5G3h/hSFjJvQZHCGnw93hdDrNS2PAJGxbq7WejofTmzenh3df/wj/4Md/+Ed/+4+/+uK3/9V/8//6N3/x1//6f/mLP/mP/t7jl3cbRxUY0yGf0th67ha5aJo8MozHIYYTws/u35S/lxDyZ2++enh4GHP5rb6Qxzp3bcuyXA24q75/WZ6enlprp3G6aYDhVt2tVTmxoXiQY3JKm/p5qUNLvRuTPDw83p3uPyyXZW7qiEwUN2POLiHc3eqw10WvX7t/gJFy7mhN20bcEw4D9GHoAPAOEUU2byRbtue82XiAiflnfZsYfIQh80B28JWUBDocR0HYrLetsQt3HzCXNEAzua6QLjSV49LfKRcqn+HQ54XJMaHQ6FNG4enYD13YG2pE87Rq2WxYrWw2aGSUPQYHu/nWgkkADpIZaUDBiK01UBNgCuLugp4BpkyQ+LqFNwetiSOaauvaenfV2ryrN2/rpg3DfGdFCyB5YHh03SWJran22ntvaKyt17q2hIkIMRyqGQIRozm5OjKoQq1WrUmR3nUzlw3ZtZp1CJUKspvZITbLLqAUiIaFN4yNOk4ytIkj2tklSmCet0A8bR0iJ6AAd/CV9izsPegYQFXrx228O26ud/fTebnW5+/vP0oaps0QQ1YPgDiME5auqi2iZUZyxIuBmXTDnrQJJXT0hhQknAnY3ZsEAmrbSZwkkoiKuUv7uD9Pu6iEGQWNiLpfPwkVPrH83X0TDEPw6tGaYg3EgIdxOHoBCnz3hYELWNTNPszHKzTmt0g04t98//Thv/3vP/wHf/L2v/hP1n7OW0YBMG+E777+3L79Zt2+f3yXTunx/vHNcPcWZIBAl2ZuhQ7/4fDzr372f/0n//0/+Zf/5l/+s//3f/en/+BPz9fz8HeYvxin00h4B+l6re39+2vCgZb8dBWAt49vHr/66n4qQ8AWuK3L01jnxHk9L+ultYqXBtfWfjivH889SZZyHO8fDVQ9pcPjFq4267q+eVcycq3LxAi1P33//qsvvuz1b2i8Hj+HGMyvkILbhxf1E3inupZUJby6GeNalRGsdoboYeYAKRliAy2UMhpG/f67bw/D9JiPPzp9MRUaZc0EulzJWnmhseVpcTPrz34vb1JKu24BHOpax3GMc43o1pw5v//44cSSH07LsvBZJK+N1r5ufb0c2ZHnJer9DCTcV9z8yeXcgS/Lau+P/TgToHc/n6/ffvf+6fl7SXEcpAENCTN3XbYTQnZK+HiX3uXjhLgibGLcNxIonC14W2TlIxE/oqf7JJS75+l/fX+eTutpvJ7ozQZ1fVmXlzg/wfai+oRjxNZeVv0BDoeW+Rk8mwnwxOwMw3ZJW5JUaosO5cttgbpqACIqhjntLl9IJ025Y8N4ue9bmfWR5TRM8svnDJ48jEBp17xhADjJ+EmK/SlkEgDEzvB7Ku1PM+G2C8MpGHAPvN8L3XFXZrEEcnWrtf/wcv14aXr6QlqOgCQFgFR1iERErXiEhQUYM0QAubN7vkIkKkyMSIgklG7Q3YsBYcSOs4fkAOwRwfgW4AYQRHBwYAhEVMw3ClkgOr4SUiJ0/03aqYA3e5ShggIAGgUCE5AMnqPmbKjdNMnE9/c/nC9//hd/9Z/+R39cknZb3DUJTtNRHz5fFyMawY7TYRBi6wpaAYgAxzIJYLX6D7784qc//cnf+Wd/OC+XP/9X/+s33/zmr//tX/yjf/SPPv/yLQ3Al/ny/fdzfHM/PqZVy+EQLrvE0sCsd+ROwnflzqstARqwNZ0XnRXNrOS0Rz+6dqffmbf2eN1tawBwvm7rUrfWUu8ff3jfe3+4u7+7u9/JwYhkFtvaSpaUkrvN89wUKI2lFHs1xH7itOwxJW1e9y3SzOZ5phZv8nA83p2OyOFVldWmTAMF1Xk+z4WbiAzDLl3qACDgY/GuqfdelyYpDyEpcsLE5eA14FwXf2YJt5q9cWLZ7HlemNkR6mTO1MPho7bjQXUWZkapW+fn9fHcfg7jF0MZvKcsKaHmRk7Yk80wmM2wEFdh78QbASfgBI3z0BA5DxkZpXIixhPw2Em/4bP3757OGK0vbVtovtD1arz17DEEQBIpNQkTGJnTczupjHy458OdD6lz31qs8UO7gSlTSkPKUFIpJbFo+Bpts44jJKJu6/nyQ2+j/JPlaQfQ7IQqCKO9l3iw3VrxuxyKXbyhhr8X6/jpa7lufDvTAj2QYvcrT2ASWJDfZDbLTvgeDx+gz3jUpqo6TRih13WhujHz8/YDBlDAHoAou0Q9BGTYTSS77YOhExEihzNxRISGIQaJM2NEKN6SL/bgSLmpXN3p33OE3Ri/ww54xptk9oZH8kDqDkZJzJTYyc22NlVHuS5zL9ODUf5333xs/+Sf/uE//gef/8lPOEnfNAGl4e7+Ia0zzNe21XR6HDJlRIrfg+yC+TiOUspnX379H/z9P/vum98uy/J2OG7b9vLvfrF+9w0KVKt1Xcc0Du+Oj2lY7kR7MEYEt9YcPeeUJbXrpVZdN60WGripdYPAYGYmIAzf8zVhVxIK53DtvZlHX9a2Nm2Orffzy1Nifvv27TAM61rXTc3BgSychJlzr61b7RoiHoC71y8i9sMTXqlJvXeUvPM6m7Zri6cyDCWfcB4EMSmCZkljToTJk1KGG9dh23pvZtZbQ+gMj9FMrxFHnvJdSokEx5EgByJ6Dai6R8lAdwilPhAzgbOhm3pv8/mDluuH5bd7gq932FpgpweXU0g+BQhjyT2GQI4GVRakfooZrBL6wHIYBiQERkM64BEAJAxi7lBDYziHrK1e4uPLh2UItKrqHuNWZdkghRWUByCN7r4yQWFKTKn6vQ5OPHSGS0fyrEiW8KsvdlptBXeWnqXlnFloCKsrOhwow7JcXq49dCCT//LpIzEyUoSFO0UwARFamyNi9wSyAwekPVEhCvzegfzpHM6GApxQ9gUcYETIiICNLYbAhydCjzwO541fanG+XpZz9fXQRmac14WSiOR5qRiwZ3QKOIELMAAFrAzMwAER4AhGQALcb9FKpq4BRoJEEOHGt8yefT8Suv3M8Qorg98DdCFitpsS/faKbod3ZMoWzszuultIzXoJODE9tziOJaW7X8T7l7/45u//z3/5f/vTvyec6vrUqwkmGdLdvW31fXcTFMSbrP8W/9w11NJ43K5z32pJ5esvfzTlQgFPT08Ebalbs45ZRGSUnDn1rVZaA2K6E8LUN6kNiJ0p1m+/n6/bZenVsKMEp9a3ZZstMI3l5voOw3AmGnIeDswIJKKOXakbAlIPAPO7+9Pd8dC7bavO83pdmgenQSSlUCCxVAZDVbd5bXRLEsZSioh8Ws/4GrkrxJjIFT5ezxGe3+FdHlWondf3L0uBS5axN7/Qy+FwKKUsy7L/9W3biOgujwDw0rXWTsyJYKd/zr0DOkNkwiSciQkIEHIpKCgiwAi9Q0Q381rX6YThrt3BnByLhBMELmwdvDvMhgY9AKHYcaJ3TktrTdegwpwEHdzD4258g+jGTaOjMXPJVBjF9Ho+68vLZl6RONJBPW1OsPUhDYkzd9d1U3ccBh5HCshlQBhCu3oABAsT0VN5DTzxILQMkIEEgZpXi0YcgZtjNUxABkme8OcEJLA7LYwAJESANtMwJw/wkMCEe4wg7ScY/G/xnBEhMhkz8V6u3WoqRrAJKaBqWB7Q/HQ6mSq3+jTUJ/zh4+VbVg3zxYFVGdCY8RbchOiCt+xlmAGYMSUmhj0YBSMQbei+r+oe2kGpw453LzdogyFAvNIVdtYo3dKT9/bVPr2E3YKBCIKwJ5PtC14Ce+/JWFUBghJbOGmfWpzXeGBP23aFwy+/ffl//H/++Z/9H//PP/3xF8xU15cIyANMD9NYk2SLCOsO3gIDABmQSJKU3nswyVgKjvW6ba2NuZzu31zrWsrdVIY9VzlLAu0u9Z6X1lqWARGvZ+gv2/nyslyu2rT3WDedO3aQGtG0nudzonQowggYtpOxBbmklLJkzQhsCrXB1qE5ejM3m4YxpeTdgaUbvJzn2kJKicDaG9qej8Su0bQnAHf/dPbqa5qhiASSEI/DsNTawV62pYMdPv/K88lGWHOztmLTpC0czhEjbUmttbY7ExYk7bbyNZfygdSWl1VbrhMgNtOzKwEyBhMWkpy4JGakx2QSPMqYUnIRy5N5Z+b05gvtbVtflFc2H5CpozYtFRxCa/S6VbU9TfZulPZ2qhWer3aZWyxn9npINORgRZnEcnQGGQ65HJIcBVK9fqt9bd0jmHKiPBqmcOxdgLiHYjMb0Z02gZ66dkhjyimpqvVuAICODmdSCzPoAU4EgjJgCBp1UWMNt/DWE6cjc1Yu8o//6B/uNOp9nI1BzJxYKjTY87gBmSgR32j3NMH/9uvmz+Jhd0gA7p5m30vVWbowR8SQcq/tdDyiutb27jT+8OFXv/j1nz/P3839DFENkqmAnwEREIAICCAcgAAdggzctII67OTFLKWUwGyI3WLbXPecFWQAWI3wtUjGAECnAAhwvPnHfrf7QECAwy1QZ3ew8KcTG1Y1Twg7MVGQFSkwHofjtbdLa3ZdB3ID+B/+9b/9b//Zv/6/v3t3GO82ragKoJJxPGTYoRoISMKcAChcLVxNOQuRAIBwxjRw70IpIYJV4lQOh6awLIt684aKMaYwCCKodVu2a9Nt27bzfMXVW7Vls5d6C4cxBBIkuKVPqSp7I++K7Fl6D3foPdYtllWXta/dhbq2vrMiEbGUEWm7XrZ5bVZi633bGrq5Q1NzYE6FXW9pCWb9hvvf/0XkoFLK5Hye522P1EH/0IlD8nAaf3K8z0UAERgc7vVl143XWne7Ijw/b9tWpjGVMR38+fny6yeL6wWJmjuM+8XJA0CwJpcBUs75C87EcEhEwoA5iN2Ck3yWvu64LC11/MCwAtEgSK4hgg4ZvLTerTczxWGNGA53+W4oY3rSH56eV6qrMqX7cfNLoSkGrIl0wjiIM1HQkD/zXqVvSEZJMGUiEWIstbfNtg0dMydErg2WptHASjS2pm0/G3Yk7e7NVuNQA3AmCiYjP00PtdatVVQvd4NI3puv8p/+8R8TEeMeL4AQsfPlrfddGvY7nyQRIiY4/nvtq1s5mvbvqHDLa6XdTsWZIUulMIzr9XqXR27mrb9g/oxHOL/8cnkhXRSDaOzdUzoGukGo9+YN4qacGtQCgiAIgAnHnO/vj6fTaUs5IrZVzxeer7Xr7fGz0P1IJbidpwGfYiZfafqvG1BEBCRABwB027meAQoAwAFIHkwoSFSmk+xcIwocbJvPDBYODPD0fP1//lf/5Z/98Y/++A9/xhmZJFw9uIyn3jslQRbKCSVDUHS01gwwl9x7B6BGlO6maZrAQmvL9TvzzgMmQzaoW7tu73tb6gzrujLjOl9eXl4ImEXKMDy9/7Bs3nr04M1ssyaJ7x7vU6ehpIiw3lKiLDkJiYhqi0jqod1qDzUAJCcaUvaurrKnjah6NzcHIu6t996FMRDdwfaAWKBPC3g3lt8wqwB74TAM4u4GgAydoal1tWHgd+8efvLlu5JueOe2bvsz1nvfz/N9ACZR8zAO1zv6/uWbf/0X5y0C2YFFuwdEQCA4U4gAJ0X+3ksolz6EJZAhlclFUhkBHiId2oCr9sI4FLkf8ki06Yxa0drd7FwDO2wcegdTGR7fvf0aHx+Gw/fxff3ufBf6ztvD3TA+pOUQT6C9KOTNxBGJ8iSdxBJRYuZgBGESAY6t9poAiFIihAyrxkbJCMjdFUQRbtAQAMDozMEBEcSv644RBo5Ac1BImAfGxOpW1eXrz/4eEQkl3utLu9WYUS123A7slHjYi9mBz58cnr/HiEQLDOv7/YcRcs5jSSKSHXHMs0RjmMf0OBxGp9T9Q/X3vNb3U30fFJtiANQ5Gjd3AAMj6AC7dB2IMUtiprGkYchCKInHsRwO5bNyZxZXWbkZLrqZdQCHaLwCAMZOBAZws/2lEH3CR+9jzP2yK5BwB/lTYLiDY0AABA/dWnL2ULOo161TgPVLahlwTH4k+PzxcBwkiT/98M2f/+U/++qLaSJndvcAlHF65KpSsgepGYHu4ZfDNMFQfnh6KqXcPbxp7pvqBNHBL317O8ZynZfFtmqXy6W3xXQeCq5P2k1FpKnu18X5Ws/PZ63aWwSSpGLea5+BYRiHqeSSBVyDIqU0FRkSj2NRVGbeKfiIBCypDFjkdDpFhHZX1bZsdWuBhJwkpb5tBlE4M3O16t2bmuAtHXs/5H//VmVdgaWkTHSTsDbVDJAZpiIP9+XtZ8ecCRk4CbW73UO/56ep6unEZjafP+QyldMJh+kX33x/+f4cmAAwdQ0IBQgkBLLw67p6+HkcLLCsxQip4OF+gjSMcVrmLokCpKGMjIdD4ncP94fD6fJtbEibtyRrh4vyGcp4P7wr44/fvj3d558cTh/S/Tx8R+ePR+jTBHnylxy1t9mdIzLWlBJQR+ockQlxF2kmkZK5T6WkXkYjRyZ0HiSfRrguWyAgCqQCiN17095NxQAAI4jCAfZwhB0tsghvQ3ERoQwK1SCkhIz3J1U1BM6ZhG1PYUYsz8yMBt57DXJmdLetN50GVfVQRiiD5FskijY/EJFZW+rmbqnkYRhE5H5wNzTN0XhKUw+IjDLB8mH+tm/PRS536dt5W1oVz0gMLL23nMv9/bvja8wvAJQ07VwVTin2qZUX9sO6wLqul4t15/x4smHeLme1hu5EZG4IIELoO0dgB5EAU4FIbvsiBQBT6hA+QYg5AFTkllIwQVsAaSNBmMRh6O0RagETLvcnfHyUx3dy//bIh9MG6Vrtf/g3f3548+a/+M/+IW3n5fxxKgUCE0f97owl03jwYWQegQpU1BpvSaKpvv8hMWcRaAubHVXXDxWIzDfTDdbVe7Wg1RCcGcq6dLQ8lgc3i2HdcrNpJO6J1FbdXCuVVTHX/HD/jrhRzKovSDBNd7LrdYf7Dy/ztc+b8RX63Jblug5rfv66fjEcUsnRbG3XeZ4VnQ4J1vlUoM/e+iXFILvFffMZ6b4cNAKIkaH3mXcDvaS2XkoG0PU++/FQvj9XqzENp7EMuYT6JXg6vn3c2SToj5NQIbftKogOQ8Bx3Xo5/IoS51Y0jeN9wWfyQAgOIRHBZtFhwHGk4hrW+4vZ4/1UBt5oXNPdhU5+Gp4mONwfpzGJnvpL0Zdvf/X8TP0l3uFbyEQxHeQ0MOPadLvWD1IucL+dHujd3dc/v/+ZHo+/2j56a+8GdmRX+gFlM3e0kg/DQyKKtkLmoTCQK1hF3SRMGl3x87EMR5ysd6tN2FIxGuG3mbbaDTCXCVMWQ/aYkNJ6DneywABmBkJnDIDJhrFMZsZJROS6LLSuIiLYuyAQkkS4qvXeWnP32pGdVdtaFw+VLMxs1n3NexXazerSiWgfF13bDyJCBOBG4IBuYcB47ok5EaFaa62pNcQQofcf3j+/fPd8eX++PNfeETFJSVzG44GI7u7uHh4eRERVl2W5Xq/r3D4FUqnquq7MvCyLSNpRjgDwivIlNPawvZxjgpRSaLc9CXWHGoQjGu9IflAAqKyMYAgY5BAOHtSB+DRNdeuuC8N1Avj8UN7dDceRy53fn4Y3b6bjcZCxmJQKWSFdL/1Xv/743bfL1493gEttUXIOM8noTBGxQ8/QLSIslBENIvZ5tTsANFMz89Ycway33rRXiEjELLTCpq5d+9a37n2vvkhQRKjvRQZkEUNCplRyuBIFExBzLlLGLCZMSa1pd1Vs3cyM8MZG3me5ZtH99p/vaLhPuV47JEMIepj1YHF3IvgUEXLDk+ypIq8pCs0MHEhwGAQx6tbOVzuftUzEklESqelASag3WrXV5h8/XpbWvTFx1No/fKz1qcdigAYYOmIgGqKhI+5mWXDJx8ynE49HTuFmtaGWlHkch5SJQM1gPA0ZShvX2L7tULWO0CH7XaIxDTnI2bAkoFxYxiHfydHv2/l4XEtiiIRy2XptamypCLCkMg5TejiVJJQpyDXabG0FreBehkSEAOFdzAMxIRli/HjAWlEdKIFBr81bGBCmQowiu+jV3SGCEZkwrPeOqpK9FAwGEiBy+fj0npkDb4BM3UE1qpA15wzgzZQZR5qGkm+IIxZQW7fl5eN12xozD3mo/XkXNqmruwPF3jupsScKunltraraju2e148v88fffPeLp/NHADgcTsfD/ViOp4f7faiIyACUUsnZmWsp2Fr7VKHt9ClVPZ1OIjJNAyKa90+A699vs+2FPt+iwMECAIwCGYEoKDygVwUQQMrBgh7oXUy9G1p7YDhN/O40ff4wvXsc7k95GAUnK6Ucx7uUjywjpImHowzj33z38eOL/sUvfnh7/yfD6avl/CwuwUoYewIpeoQpEu9mbmBAC9W+4xvjNXU51B39drHsqm5AYEogZtY2XapWjQ4efbeoq7e+tbX22t1AkIQpE3A0gigMxFxKmqYpOnr3ptHMVXGrbuZ7GVymEQCa+qYGTFu7MYUQSc0iLAARMJAQOaJ2V2YwbwhMIiVxZ0YEJmrdXuPyeBrHtlUimA5HwL41XW2pGyU+zssk5U6SgD5nYQa7nD+2davdzvMKJCUGCLycr08vq14hQ2ZOjtTrohKADMSOtFp4BJP8wed3b788Dqf08arb86X3CfWh4ChlDDAgSIdc0lvR8zp/XLZ53a5HMKSW0I5JDpk9gackMo5UDpROJcMwPB4PXMbUthRyWc0pZEoljZTHw/H+/u3xBCKEQgjWrA7W1uibqzqH9qaGnkQhqbsjA8WXCXvCbgFIVW2OrbqiM0IWxEwc4N1M3QCBCDt3tQbYCYOFB4hABAj5n/7iXzCju++5R4dxPJ6mlNLxMQ7HNEwTEXFOh8M4jiMQZh7NfJu37Zvt/fvv/vJvfnG5zEXykG9nY9Pae3d4/fzy4NEsloDGjMwJgs2CwIJCY5mO45vTu/u7x8P0MA0HTrQsi6q6mnWNiLpt2l5Dm8xURUSOxylu3TIcx5JS8tB5tr3vsi/gW7ipA5FSOCIQEaRTb+YOAegY6j28AYBAJiUOSUQZtQgNlBLZKfHbh9OPP3/44u1xOiQqiEWoJEz3EDnxqQyP43Q/jMdyHNNQTp9//O0v//pf/vlfffHZ4x//rR9zr2tdMoMC7kDzQEJz8A4exIhB4bZH3exJdjf1GOEOymYEDNh5s+4+3rNj82gGHcnMo/e+vzut1a41zFOQECaMhMZuGbAIMvOQS865u29VzcmN1bx36xZAHK8BdK3r2sWQr9XXfstqdwgPYC5q1lu4q4ayhHAgqIdh3IBVe/ff1Rj3djRN03TpOgxwf38/jJKF3cINn8/RtHE2SrB1U1vX+fr0/rt5vvStbtvGOb3LJwS/nl/WdV23be9nBCE0OIwFg6rt+3YTysfj8fPPT199eTzeS/pw/ri0a52hKTg1QJTC4yAZIJv2URPrNXNdtvoM1+Z4HdKUh0MqFJwmHLiDL9X8Kr1l8MIkDqKQgRKGAGNQ5jSOh+Pp/t6dERA8DEAgCocVVe3zdduDmoyaYTVyYslJ3d0SAwUh9Oabaw1EdAHDUDDYudQ7ttLDyLVHOJlh28w80BgA5H/5+JdZEmJA+OkwHt6Wz/7g3du3j2/exvFwN03TrnzIQ0kpASCN2Fpb5mL36y+v+PLX3/zF+7+q2h/KvbubdzVzUHsNVR+8IXnAGmAiOAwT0xDOidJwGNKU395Pd49vDuNJOCcu1+W8rmtE5JzNbK+fl2XZa2YAaK0Nw/Dw8HA8HkVkq4sIeajdBhVCuIfF/+4Q3h2D7oAY1XK4AiILCVm4IhCRZw9BG1hPGR4m+upUvrgrd2O+++LHOcmQJAg7RssS0xTjWMrPhKdc7svhfhwOaSAmA7IjHfxb/Of/8t8gt/t3/8WXb6b1ZW3bNUIGYpZ8u35gACLzviwgbkjSPaQjIAJQIizCcecgq0drbtYrWW9gxhjIEjsk0MDMmPE4lTyJBqnvcDynbUWmwsNQShkyM3dCc1BDc4SQbt2dIEhVd49lVZs37cCXqmt3CyQiUEBASaPatq3NEQK8DMLMLBDdzDoiEgYifeoRMpGHJxb0yJLGcZQsKWVy6c236lU7FysFvtnKstjlRZ9+0Lo2rXOv80Co0/vTcSLoQzYQWC7NBGUafv7284eHN735+x+er5eq4BPlL04Ph6k83B3uH2Rr/S77swIQJUozF0mMA0VB5QZYGssWIcFzje1SN10mTkNhRAqFqFo/XueOw7ANc422kWnU3q1yEXas83WRKm8Lh5OHoGchIgkDFABnbRsAEI2GthnUFS5rzM2CKQ1oxv6ajratcD5v84aIONwzuOMNBE+BHI6hCHWxCCLq1a+xRgQQMrN89cdfCUK4udVpyI8/Onzx87sf/fjz+xHGw5RScgsD3FMOASDKlj2P9ylPX1zbT77/+PXT/Jtf//r9U+83McRNM2GGCMxm65goF+nd1x7aWikkkhNnR5JU8jQx5dp06Q38Ms/z8/Ozqr5yTHtEEPDhcBiGgYj2QpqZx3Gcpmlosq7r9TqrOgLnnJmT3Vi8sT9SzLzzAFUj9IoAhXjkVESJfMxcBpmijRnenOiz+/zFw/T5/enxdDyW8cqfdbO1QYtkeeTDSY53NAxDekjDQYYDsWykDVvoZnVZrvP3T+e//OWvfvjhu6+//vz/8p//4+nN4/bU2kpIArhHUViAUZJgAkNkYmZgD9tXLwRA0+buYdZ7czWGKJKceFtevLu3joZC7IEckildYhaRU0lGpZtv22a9oRt746AxD8fDMJUMRIEBJG2p2kEDtbsHBKLp7Z7bmqKwUlqq1x5xGxSFAzJhOG1dmREFcmYCLMLNzVyFbpmbGCQi+w7qXXd1RypDTkl77Kr7pr12A8oZR0uj4v3c9WWm8+xRPbveYby5G37+7ulnP3pzHN/0bh9etv/xL3/z7H54OPzJj774/PMv6ma/HL757tuny3lLkgoTSxZODCKQJTYM2D2lNAyGCOjdlbxHW+t8fv74Az4/x7xez23bdGIdik0MjB7tJSnCUofTEZrGtmHvVquDRB7NY6uXKgLtnlqLbaFCGCkhAkOQhEGP6L27Su+xLv1ybk/nfm0awCTym5CIIAZm7rVdLpdaKwC85bswR3MCZGZkckKHgOd1p385Qu/dIfaoTfnH/8nfb60u88vl/By9Cq+AV4JF8kEEODO6M3IpRTgHAkNKmSNiigR/8Af+j66wXovXv/7myWFvogQQ7XfglPDhzcPxcMc0zNe2LI1QxmkqpYzszSOoAJZlU22LdQ1X0+i9b9u2r8BSyul0GoaBM+yRJXuSRevby/mpa2WGdV3O57OqC+fed0Tu/587MJEhwmdkwjhmPE2exbLY/Z3c3w339w/3I7+9T493eZomSqeQQ8PxaQ7LQxzvuLwp00OeppwzCnG4DJkS9lBmlKCqts7bX/3VN//rX/z2N98uf3H51cPpv/7RF5//x//g75bpEaAhMlhEt9j9lvv4mQABOTG4hdNr58JvsG438EBwBgxAgoDm3t2qghFIJg12KTSlVAnZgCGsa8NeJSwzScaS+DiW+7tJcooIiwDC1rT1MAzV8F2ygrcZW1eL5kq27RD5PbaGw5siZHUKR8wkEpIAFVJGMwwLRNyHRqpecjaz/YXsk6HT6e54PBIRQACBFAwGp6DiKPWxfKHLeUXLtkF/voPLZ6P99D79wz/0v/UTvJvKsvhvP/LH7+i7nh7ePPz4D7747POvrpft6XI+11ohzHGFVltc5o5ml4/bMnfrYW7srbNEaIRjq72fYX3Wpx+2739zvWys2lbeLli8Dbi+K3BKCNVnIO66aE8RoT0BOVIlj+SJ6ZQHuRseDsNEwLV2QPRuDd1998DthHDtsNZ2XbbLZa2rmUZV7epLTu5KRDkls950U2hEtC47YpEQ0B1MAQgNIeGu+92VwcGE+2BIvvzscbmen2zW2ZZl1qXr9cnrqTaSRMCEuNO/eLfOTj2VUlx7WPrx3ef57/y9/vHqL8vHl3/eWjMzFEopSZZxHIdhmKYpydF6rmtl7Cmlkg85S/hzrWtobU69976thE5u6oSIh8Nhr4H3Y3aPxViWpbW2M0rWdT2fzyIiKba1Xa+zWQhns1AzRna40Uz2zD9B3JP23kYrCR4O48OD3E18dxi//OL0xRf3h/svM2vJSuQV0sUOZ39YYypfoMgB8xvkR8JCtOdWRUKTPGJJmNI4HgrL+buP/WP88H79y7/45oeP2/UZ/uv/5n/8D//0T//uT352Px3SgKgevasqBaBAQHgYvc7SgdnJbhDqPXAYg163Qmtde7XWmREAoYeqsam1QAUJmo6Hbr62/x9bf/ojyZLkCWJyqaqZ+RFX3u+s6qrq6eruOXewIAgssSCIWRAgsR/4B5Mg+GGJXQ5md6Z3evuoqlfvzCMudzczPUSEH9Qj6vWQgfch8TIzMtzdVFREfhe0pZQ1m9Yphu04Qmkx0XYapmlypFystVbVc49FRmyqzkwk3am7OzyjqZtXdTNz4r6512ZA5g5EEgKzGJEBKhEJY3MjIiFBRNUaQviTWYJDCnG/3+/3+5ZXQGOGEIQTNCSUprD48iht2ZBaVGl6Rfpugj+7xN9cwWebeRNpgThY+sXVNLbdzctX+9cX0+Xmbj0ddDnpXIIhiA10+/AYgq4J727n07EUVkGn4GurQiAAbtqWIx7v7fhI86MtlTGp8anS+7t8Laew4bgNqbUyrwvZGnFEYLcQA6ShoHPgYYw3w6a92F5eXUwxsmteSy3keq5WImKtqGqDli1nnZtnDjgIea61nFwCqAIhSeLoISgCijCsawpxkMgIqlpVnTAQbXeTuomIiFRTZibhWqt8+OmnkufleFuOH+v9+/nAt7CG093+7RevX73dX96wDBjYzCiEFOIcTys2iIzTpuRIA7/Wf/nG2l+Z3N3d5ZxjSJ0x0RGd3bjJOS/zAX2dRmNm0+PDXW54XiP/SagoEmMEhGGM4zgyY865lNNpzuM4LidHpPlUWmt9VgSAh4dPLm61gTkju69iGADIfSaXGCBLQJqqbb28G9LNkK52fkHyckgvt+P2Zi+vr+SL1+HVFQ37pbaPqx6zNg2Jp814eRmHOLIjDWnitDEnDmNMGwAY0gbJx3GIgZl9TDJhPB6P16+ujnl5eFg2m42z/L/+h7/59Vdf/Tf/9b/YbPbqayPlyEwIJIDEgOBqTb02awpq4BoIJSaH8Xh4REYRWZclt0qCzaCt0BaPdXMhIwA91oe6Pi5lbngB7lhPiTVdUK4CwDglG8a0ncK03+9e5lwfHu7VEQUW0RmbAlIK5AIA+7QbMZ0KOSfwCB6I3Vlqa5WY0IXp8fGOMGynQb0yRtfaYizAitFqdlVjUHCWQH5MERtKPsGCQNNm2G7HaWpaHAHcQJ2JSc3bjFBPxEq3NB3DlgC3FXzdrcs1pqst7bLKo4Sr5e5S5NXF5vrVm1fvrl9iiMfj8Y8/fH97v2w310kmbb4e4GE73Jb2UGFFe3GzqdtoJBNaIB28jjZHLXw6+dxe867Rxx8+fb8Ud8Sj4w8P69jGHQ4bvm2rpO2AVYdxO+7C/aectVAqUo87weH11fpK8Wrd7GPLhVdb5qyalkUAYHMhQNXd12l4PJ4y5GHCDQ5mGDMPQ3odr2rJAJYGZvRaV3AVoRk9SRDpdBCKCqDmrpvQSgMiJBkYmcCgVlub/OEPv6tlgXqyOs95fZyPp8Pj7e3ti1yWnF+3st1dDtN+QHA0IqiaSQSxQUNVG4K8fvnq17/8hcz63XffffzwqWe1dVpsKW1dV2Z2Qo4BzbpMrLbaTEXCMEx9WU3U3fVDt4zo6h8zW9dS6+H+/n6zvTZr6zqrKlJn6oYtTg/ro6MBuSGpm4MBIAImSaH6YOU1Dl9Mu9cCn23T9SZc79NWwuU0bbd7303L7qKkHfDG4sBkkWFK4B6jTGPcjXFEAZaw2e3HYecoMW3CMLrBOG4AIKUQGJA8RjKE6xePn715/eW7twHkz37xq+tterULt4f893/88NtfvXFzQEZ26KGuTVuzgGDgT5F73uUV7N4DLIkoBEkpuSu6AMCHDx+w0cAbCtyariUfl3ktK487RB+HBOQ9OsqAYuAg424zDUNiJgM1b7XW01JKKVXVWXq8AJgXbaWqjN0zG5/DFsyM3BzAwGtrzSyEwBEBsbYGTK01t0ZEEth7Vio5EKp61mrg4ziF6WLc7gDInrTiToiATghm7krlboI5xTqOUIuH0kJtnNfTsen1NsVQLSKyCOy2FzcvX47DJqvXVY/H+XRY0EZNHGVw89NpcTFtSCjCEWPylAowuruBqqpVdGU2iiTDEELIram6wxkFUFX1c7KpKXZUXBtogwwNohiKhGGzvwqXN2k7LH5cD4fDvLRS1EMIoZm6N1VFDoOEFhMyp7gFlCHrvBbgQUdGUyQHM+GoWskhBAIiYBJid+/aWABwR2dTJHUzNQJHMCOU20/vwdYUYEoSry/XGMRRkW7vP4UkGHBtdaettBx1al5Um/TYCyJzByABn2LYbDYxpHM8DGI/e6UUIA8h1FqXZXkW8aWUXuxvUkohhE6CNztHKhNgKeV0OpVSas0AEOPAjHf3H1pry3o6j9kAdCRAc2+AEIL0hOHSVFtzsDSlTfHLhn85xr/aDV9E/2yfrjdpS8eQPCbyQQ5puo0biJcer3C7RTMrisYOcRx3++liTBOHmFIaN1vhAVliGmNMqorAiBgiE4BDty6KMgxvri5++6s/+/qzr/7lv/zXb1+/Eq9X+4Cbi2oMHhCNEKm3wQjmT1GL8JT7/bQ27x+eBApMMUZvtasHOCRAJ0IDzTUvZXEAiYHJWEiSSOS15JZXA5wG2e6HzTjERE3XdT2tZZlzeTzNa24G3VJSzNzdHEh74ikxPIkTrKkrALsTNrdVqzaEwETshNUN8moObCRICgrmBk4ERlxrPeWqBsMw7a6ugqRlLW7wpOY8ZwcquFkdfQ54Uiymq64z5pUTDEAkgUnc1F1Z2rDhuuEQwn5z8XBaS9Z1qbX6fCpWV0siInk1pdbM3Kk1q7lhMwYBB/DFatO6sK3CNUSva58N1R0RkPkpINbZjcAZIQAKuDuIOQNFiikMU9hd0/WbePMCmB4P+pg/fXw8uclmupimmKbkAANFVufNNmqwCkEmoBBEgdZSTRjd2a06mjgZhqaVkM8JRAKCpG7dvL4iKJKjt1ZzbQQYCQFRtiMz75iasMZxl9JQ1lrMl+MBCE+5XDweXrxaL69vdm7ODg36fgWRVDWXdnt7++nH9x8/3X68/fR4PCByruXxcFqWpWfA9DVGrXW73XavxsvLy4uL16qac57nec1LP94i0urat1TuCgAOWmvt8DK4AYCEAGCtVoMGDpMDAgigACoBgDVCdWj5tBf6zY7/64vxn2/4pZ1ecL2QsksBJNTAD0hHJMPBaQtyJeMeAHHyiMKSpmG3HbdjGjlue6HpUcQSEzKzcFftuBpo69zSw+NxWUtd1y/evgEMX759+8XXv5imISYOEYEfHBYzBwN2QCF0QGN/4pABYjNnZVczhGU91VrBBSF6U+3OXuZXVzd5zqyO5FRsu502uwkjlbkBmiRGhlqWVldEQa0pRGLrmcNzXqupEQHhqtVRmASjiZJCC8k5CEuUQIjQWufkASMxirE11WoqYYgxIvWDSm4N3JlIuFPilYQ5RSev1RU0jNOw3aZhMsBaGzsYILq5qkE3OGZ1Z1EgQW9A2BRrgTnDnEGiSnDkUr0qVQrC4SVxCTIyGSILxl7x8qpsLb3YEAZDZyIm7e4MZEjA3OuLVq0VLDNpDFoB3DsvwAn7Eh3MG7gABuTEIQgPTIQgAGgQ0INjdEocthi22dpx9Q/3pw/3xxASj5sBtbmRYExjdNqGcQ1lPuRa4E/hYdjHQGNGxICmZiaB1bjmYt7sHGEJ7kZISGSOSpCLzSWjg6UQCeXzd59ttkOty3x8cPcQPbeH+4fDPB/uHtdxPF5erw0EOCpIVoNmRKStS67L/f39x/efvv32hz/84Q/ffvv94XCIMa5Lub+/d8dpmiTwMI7TNKWUrq6umPl4PI7jSETH4/HhoQeJLDnnjgyJhFpbL/9d6nIOMhZprT7fUUjkbki0MzI3z+otozubImAkekPwVaC/COkvRvozsXHNY26BwlFTDTSjPUa8xXSSTQt7kUujSWKapjGMU0hDkCgUBEnCRYjc1TY9zqrUYmZai6q2U6s5r+vaWlnn5Xg81ppfvbxOw2azHUUobsYQIwdpVhAFDFzByJgJHFHcWu0qTewLaW0NKjoIgxsQoyCBUIrRTGL03T4+3j+0edZawVsKLHHAwMdyb6YB0aGhrYFsHMLlbtrtNwxoTXvacG225nZYylqaBHJwIOnKrEAkIYUhMaN5a2trzciBOYoEo26EgpvNZrPZ5HLqWH0gIXWhIMRmYOAUA6d0WnMjpJi24z5t9s6ihiRJSIHBoWlTR2BGQAa07IEihzTufALfrndS6P6hUrWMYQgDSi0Kx+rA6d2wQ0YRYgZBREEmYOznAgKRMDmTx4QUBYcQNnFBADB0My2m2a0BGKEz95QdAOtbfuuURGNzdyImFCBGJgVvvQni4BQNpBkCiAEaDccCBVli9IAV7KRrRGDATYwgwBBa9mVdlqrFEQiH3biuKxjFlBh9WRYHjDGKecdgRUSYA4irIaIBgrpjIDPosW0kQCibYdxvdjnz6bTMy3w6Lbe3p9Pcrq9eTdM2DcMw7VA2zePhmO+Pa1mKmdVcAOhw//Ddd99/fP/h9vb293/446dPn1R1mrbunsbp6urqxYsXYeAY426365Pt8Xj8dH9nt59S3K/rWmslpv3VZUppmqbNZhM6PC3CQohYaz4cDsfj8fufvp/neV3ndV3BFBABxBGrNwMnoIDCwqKuquBwmesOgXI92eluk6oMth3adny4eqUptcvL9uJlvH5zef2Gbj6PF9eZPIwpbaYwDSFGZmYUQhTZAljT4m6ubV7nZT6q1rzMHe5aTnMppXsMqGqchmGYLneXV1eX0yYwI6UQUmqnkVk4qld1akDupAoemMmhB7tzcKnS9ZiXl/taK51BWG9dausQUcRgXZfH+/vDw6OEcbNjNiQr7g1NzZSsbRJfXG5vLjdp2Khq8woYkErT5bTqcWnNFJHM3RAAGR0pOQYhDiSo1dQMzAMHkcAUc6tknkh2wzSEVPMJHGIKQ4BWKgFgB5gZgbC0/Ol4MGfimDZblKBGpVmIQwgjMahXIDfQINGJkX2ec0CUlKbLTQzbuhe2NL5AkRN6BGgcmgxOEcxLaw3JQxQWBHP1Sq4AwgSlrNAGiGqmtVbW1awCKnN1a+CZwAiMHEDN2hNx1aET9TqQzYwKqj37wJtDTy03Bx0oGmArtRxP7cMtJYYQc9FCgTabtNuGzYiJOQoJAIXWGgA2M0do4FlbdXJhiclKVdeA1MzmbK21AaQ/z10b3D0fCLrvImBzAjG3FCIABGZCEAKuua5ry6ve3Z8+fnpwiK/evvurf/YXNzc34zSh8LiZQkrruh7n02Gdf/zxx+/++G3NbT3N73/88Pj4mJcl53kYhmGYxnEMIW02m5ubm820XfRUSqnaluOyruuyLMf5xMytPu73+5ubz25ubl6+fPnmzZurq6uUOmmXnzxnSq21H9rb+8e7+0+3t7fffffdp08f5nm+u/vUal049pvBOcQQgA2qmtl7hZfD9Xy5f7jef7i6KDc7/+xNu75qm2uNrJuRLy+Gaa/jTsYLSdvrcYNMEMXlrBVGJEKq2vIyHw8PucxW18Pj3Xx8dNd1Prh71w6DExEFkUEi7l9MKV7u9ttNChEoOIspNuPEwG5VfaZWGN0RkIld3AygL1DcCel8KRgBqyqY9lmjLAUAILuVimq6nPLpKBNHYqYAQ1QDFKxaCTUGHiMHxpJbybmUghSaiXoghhCNSiNhR3RkIiaiwEQhGsKTTLqnl3FkAceWCxl0S3R2wGbEGIBEqOZSahZkFEZJWcvD8XBaPY27YdrEaaPGCowEiIwsLIDu6owAKEiIZhbBteYCNdEwjrLlJJ72l2Z1WtcowAgypBikrC0sMyHqMMRpSBJAABkBUQG81DV4QDDVlsuJ8+xtobrgtCEoTt0fvLu7QS2mVs306QD3LM84DAO3SmSAzVzNimElBmZq65ILPmZ85HLExZfjdHlRcsY4DSFOu42MwpHSmBi8uVsrWlpZdGm1uK5a52oNULQuy6LNc3MzWNeqqtmq+dIDeVtrCr6R5IRNlT2gKzgycuCIpuhg2uSb333TvM3rclqXu/vHTw/Hd+++/vVv/vIXX/3m3eefXVxcKGj/pA+n4+FwmFv79Ld//+//l7+ZD0dGrsuKwExycXGx3Z6RelVPKWmzDx8+3J0+HY/HYRg6N2O73b58+fLFixf/8p//q7dv375+/TqlNAxD1yTknMlCCIyItdZSc2utlLWUshY9HA6Pjw/ffvvtx0/vHx8fv//++8Ph4dPjp9PplOdlzjOV7sUDBHjx7hc3//yv/+yf/ebrz15f7Tcwje31i/XiYmpDJddBaAoYB5JBZBhkRBVkVMaGWrW0mkvNaPZwyg8Pd7ef3pf16Fbm48O6HEIQ8hpjHNI0bccUxxRCkBhC8F0ag0wiqAZehRyhzfOyizvwqvXYVF0rEURmEYfOnewFvh9hIqZzIjYRdc6llkpOiDjiMLLoGMSalYok2KyUtfjibgGJAIcQhyT7/X47jZmGmlstqmbzaT2e5iVDLS4pxRgVBPqQyxA4dPbbfyGZRmQz11wYMbKwgzVF62xtSEEKgqo5Y5DEUdY5z/NM6WKz2252+81ulzMgxzWro5hW5TPRxgAYQN3UbRJfc8W2AqpwIDx5ua9Lef++XEw43UwhEtixFfO0iXKDBAPLOKWUYgiFEL11CYgRIwsbFiJgcYwUEzdUx4ZghP1dJTOwaj1ZmHLDs03F2V4zBJbQE/C84y8kGAKXmk2huZeV5+PJd9N4sR/jdPUyEerFfohkIfh2GrWWsqxqtuQ8r6UUq9qWkh+WnJtyGFpr5NQUCVFRnNmAi7aBiAjVVFWbmQCoKhlZUwcCQ3IwR2+mTeV/+R//Y3Nd8rxqbYASx5SmcdhN16/j9jpsthfTSAwAdnFx9fBwt6i/evkDhlDMtkO0AqPAfhy319fdDWRdVwCY5+M8zzlnFWnKn27nLz/78q/+6p9//eXXb16/m6bp8vIypTSMQYQcKoAj4mYzbhm0AXGyzZTLmZ9Zaq7LcbONV9fbt69vjsfjMs+n0+nx8fHDw6fvvvvu22+/vbu7e3x8zPMMTOM0ffb1L/73/9f//re//e1mO47TZKYiYu7rdkdEgbkDBmEYRGStVUybmglVrQ/Hw3x8zMtaTsv9wx8Op+Pd48O6ZjLapGE3Xm/TmAaeprH7sIXAIQQWdHeaCNybORGDez4d8QgM8BhOZV3K8ohtncSNCIhjECADRavNUB2RafJGVTGkwAmgtLLmos5xM9CotcUhrStkTHxzfZGiGZhRzXU91DiksLnwVsvsaRhkc2FxOhxybd6arrmqo3PMaLTfUakqBIEDEQumEAMCmremXr1WMAh9lDBtuYcgicfADU5uKkGRGgIsynFIti6k9WLcr4SLKu/24/Ru2mzHzU6RLLp5wxHNG1UFQHBOYWNm1jQiDZJO1EXnboErCbQwt+mPPx3H3dy+v3zQy2kXb/MDpvdTXK+GH1p8pVo5yX6/v79fS27NELWFLN7YNTP5uA0fy8IGKwrzDZXTVCwtRzgqF40JUUQ+tAvZPto9AJvycZnbhjQK+uwCngaclJLBkrHNUE+tHusofL3bvtju3729+vVvNi9eVUSXY19GWmshhNbavD6m3SXIg/nqqID6OD9UBUABbtqcaDSi1ZF61Dk00+UiXqXExK6WiTAlQSQDWKvzGKGSLrUPa0tZayvyj7//xtHWsq6ajXi3vymloHCMcRiGjs1OmyEEMIOUwve3dy9fvvzqq6+mNAwinrO4BaBSq54xEe8iXjObpuny9evXr1+/ffXm669++dlnX+w2++12l1JallmkE3qcKLG4CImItNociCMgS1VFBMKmtZXNbs1dXrcuSymlrnme57v58Ze/uvvpp59++OGH3/3ud998883pdAKSr37x61dv312/fDWO4zBEMxMhAKjIffvSxcad+tuarqf5tCyntpyW+e7xbj4cT4fjcnjUeptbbeohhP1uenF5fbXdTzHFMZxRMS9NGUlrH6hy65YKXUQC7j1GSITAFHUVrw28VlYhl4BOgN6vDHM9exjRmQHaobUYEVhas4rl/v6+teLQ+s4PgFp1d6xDAjq/olHiEBJVP9zd5wK15FJaKW0tnteaVzOmOEQUNkZHO+9wgM56RtOuDDkjgu5mrftCdFI0IvGZuMWuhg7jZpNYgGRe16Ye4zBMY0ipC8LMwaG7gYKkSETetNbcdaNEBOYMERjNmzZsZATCIaY0/uD7w0F+KHWUXKs+nHaX4aYulzkX4SFIZBZERmYwW0t9cTPFGIG0tqwNOQTCyD3p7lnZ0vVeiMIMCTBIdwJ3d1CAzp1ozs6B+oYCJQ0SUuFllBg24/b6Br/4fPjlLy9/+ct086IAND+qKiHmnMmh1lqytVK9OZKkJF1GNwwRB04Org2Im6EaEEFkQAVtNsSYBpFg7t0KDlXNQUfZuTGCOwWi1qwhEZPIUmqIDMxmpGZrLeu6zvN8OB6vax08VW1qxkAcYNpurq6u3r1798UXX5weD21dmajlktcC8eyyVUr59OnTw8PDmzdvfvWrX/0f/8//3bvX7y4uLjabbWBpzVIgIX/56qKLxAENUZEACczr0oo2N1gbQDOQYUhxM3A8PbpMEgHNLKSpY0vbWl8nWdf1dDp9/PjxH/7hH/7u7/7u9vbW3T/7xdcXL14Nu4uQAseI1ljE3Tec5nkuWUvWZVmeAOeqp8fbh9sf7z7++NNPP318X3NmBDL/7PV2mqbti6v9fr+bNlMaRhJ0qPkkIsToCuZU1M/wHbbzo+89Cx3Iwd21ghBGIUFhNjc0Q23ozghAFECIDA21P2jNlJHUrJk6AAuTgYHP64LoMfEQRw5iBkiaa4vTVEpp6kQSJXn1+f6xVbNxatVyaaelnLItS67FIXCggURIUAmIKFD/gT2E0BdyMUZBIpLcW/umDCiMMQSAzopwBqxFG/gUhxDj47rePp4y0rAZt7tLEXFCbabmSH4m5aojgiK0ZgAmGBCxuZIHFDJna2rd1pCiBHjcv8niR1hDy+ImI2+2r2O6CrJBYoSUVz3Oi0NkGghFVdUgUGTSQD6knVG0ipVLqLWU4qVQqWaGgoRkEV3ICN0AzMGAGlBxyxaMI0Q3BhdhwBjrE1s9hrS9utm9fDleXvJ2R2rEqWegp1hba9LacCzvH97X08pAUdIw8dX1PuyG3HQuFR0cSR3NgYmEHFpueQlIIWAaEnFQraWUpg3RwLTV1qq7IZi5qlsDV/lv/0//zlw/3r3/4afvP94/mOPD4fDDD9999dWvzay7datqKZaShMC73e7q6urq6qqUcvvxYwTIx8PyeMSUOn7bWqu1bDbbv/zLv/x3/+7f/dVf//NxHEspbhUDbac0DAkREap6dVOzTn9pTUu3hjity3E+HZe5qafNZn9xs9nstHhvByRIQKIYkzkAYAop57TZURzWZsVgd3Wrqrv9tTqspapDqV1s6Kqq1R8fH3POqrosy/F4fHx8PBwOH779u/efPv7hhz/+4Y/fPBwPX7x7+2//q//qn/3mN1ebcHl1td1v3L3kvJ6OxZQcTvm42WzGcezRDkjOzMTUXT66TOzsJo9dnAzMmJiEXEADgqNXI3IlREEirECGaI7nMQzoHPviBsxkCO4+bjcilAYxa3Y6tVwV3AnDOFUHoBBI8tLmxyMDhhCOTdWsNC8uCgbibCYSevglhRCYiIARoTVFV61+xiodEc1ar4+tNQkkEkMIRCBCZgoA7MFdWWIxuDvOp6Lx8mLYXHIakEjdDMFBiYkZnQAcHRCQJUVEFCYAQHJrEDmZBKdGgGq1KVRHiiCDhDCJkZe11nqwhx/v/1B2EkJSp3HaRh6qgkhkktparYoJtbGpMyRQrqtWyFYyrdnWFdc1WnU0QyveKjR1J2AAYjtH31lBhESY3EnVHVndS2virVVLiMMwTLttHCdjBgDH5IjIEnEAKOBVPXy8Pc4PD9MQL/e0326n/eba6fF0+nB3Pz8e3N0BCZmZArkZGEPnBakpMgJqN5cdxhg8L5QlMGGsVXNeas2tNfnf/R/+W7P28dNP3/343U8ffvx095Biur29/fTp08ePH9MQ9vsdQDDH7rw/DEOMcRzHWuv9/f3IvB4e18PJ11VEpml6+fLlZ5999otf/OLf/tt/+6//9b/GSCmlvDAijikQEYHWWk/LCcCeidCttdJTnnI7Lsfbhw/3h8emHqfd7uGw211dX92QYOKAjAIEYMDYFUbPnqb93uiQFQV5PB7j7S0RdTZIKbmUsh7mjkt1FPrTp0/ffPPNH//4x5+++dtqulqDkoHh5vJChLbbaRoSc5jncn+4X0/HRLiJQyBOMQYWwh6zBCH0iUMC/ukAo5yTxAAgxIhg5BAQGBxdu4cyVesapeAGyIiKiARKIRCAkQERAZJwANIhhcASKARa1pOdXM04yDhN2XEiQcOaS2m1djFxbZ8eH0FCRakcYeAAOoqihDQNHMSZ9ElDdvbBFjHoamoSpFKqam2tCGPg3nIYAUsMAMHdI6Vq6giP62lVSvuri5dvh82FUkBmciVApjO9CRElBdUqwtvtFrtXdSsxSKuNOSA2A0D0Vr2YO+EFeiQMTMhSjHJp6+P7x3q8nk04fvh4xxwkyToX0ELMIWLV4ivlJa8NaUAwQPczRQNAVbmpgakqg/b+y9wIuqLDwdkUmwwmg4fkhEaiBtZbQsdOjQohhTSEGGsKokLAgEJEBFgV6lKOp/Wn959u37/f70ZEHKc0jTFIaGDTuqzHg5pq1aouIh6QrKEpMvdBzLxPK5hSinEQ+YixgIswltJibrW2UrNcvXgdU3jx5vWXv/6z4/Hxhx9+uv10xyH+8btv1e32/tPbd28uLnbb3dQpcgCQcy6l9P5TxrFbWL37+uu3b99+8cUXn3/++Zdffvn27dsXL15cXl4q1GEYSgzWqmpdl7kv+ghdJPQRyN1LKWCIJsUfA0JiTgEArKzHj2t7uDu6tv1+b7odYiQibQ0AUITjlFLq36ETRZh5mqbENA2RwKzV1lptOa/ruq4AzgIx8WjRYcMCgCoB315vTuvysJweDvfNbZqmdS3v3388pWHJ33/49P7jp/dR5JdffvHLL7/YTuPlxb7vrkQkDSGlRATuvokTABier1B4cu0EBlUFM3cEJHd3bA1bsKrewLS6ByBgIjUnUNXmrqZEdEZ2EGOMqgjo1TTXWlWBKYUxjdQObdhOeV1v7x9W07DdutnhdKIhNqBj1lOFjNCQIEkY0n67M9BsrVV1N0QKCMTEQaz5OevIsLXGzCEEAIpR+h7BwZhjp+lSIUGcta7VIQ3T5fXm8gWGoWQjZiIRFfLG0F1TAZHAmEXCkABA9dSh7nEgAMjNDJSQ1JujDeN4vblWb7k14AjDGHjn1grC+48f3XHNbbudXry4hk8PTQGwVJ9tzYlGMxOMIkGRiUiGAV05ixMhYm+UtClqw2b0JDs1ogZYADCGhThTSIkpRKvVHEXiAIYxMknfDii4OlZrAQWQzQGJHGkt7TivD4fTtz9+vFo3aRAZcJNPIKFUUNUhRaotl1JbtVbEuE8siOyKZtit44QphBTDABQ4GOHAFJtiiEiCBi7vbx/GKTCDhHDz8lUcxv3FJQCdTnp/f2/WSs3DEKfN8PLlSyI4rvV3v/vd8XjcbDbv3r179+LFwHS9u/jzv/7rL7744tWrV9M0XVxcXF5eTtMUQhg2O3Otea01m9ZaFwkkIrvdVQghhgEASqkrr8JF1a922+r5et48HnenZb19XG9v12U53n36Cb0KKvmUQkRwNBdA08ruifFyO7Hf3FzsOicEAVIKItIaEGoMQ4o0DoKIpQxmF70YI2K3yJMCp3U5lNPD4+Ptwx26T0OqVWvg++Pyzfc/fff9Hy922zdv3sgwbi9vdpsxxphSiimklESodwEceiic2xOSqkxE1FQdqLvVogE5EUWIwLqYrc1KdAE0ZAYBdGhN+48nIt1ww+2cHlZKrm2d51OtVSR22xqzvmouS6kZAATVeGWadptTsVLWx6YNCQMPMYZxIAZwQsdOLEfynoSj2sz0LO5vbVlybQXQA2EKIYTgbogYCMGh1laODRMboaRhvxuGqxecJjUyUpYYIpuptuLuDI7kbshBmFjdXK25KTiYpRRKWc0KEjK7k6PAsEm4lZxtdQJhDiMnIzdB5HVp1YZp3F9d3rx59f7D7aePd/eHIysaKJFzFPLIIQCaozkiAyJAd3sUlMjiSiOHxMQABOhA5l4AskNFum/1wtpIqZFULWCYJEQCTlNMCZkAyIG8s5S1uLu1JiLuWlpuVhHdKalhaTXnxSGbc2u0FjOt5oZ9RQKq5q05uZEPAAKg4AhACEEbLq0YX5VcCQc3mucVAADbUmb5v/8//p+XV9vLq82rl1ev37yKMe73e0TebsO6rq21T58+HY+PgPbq1SsRujvMP/74fW31yy+//M0vf/nrr77apvjm5uWrzz9/+fLlNE0A0DlVZ/H9YVmW5eH2kwTabaYQJ2YiwM20izGGENyBuSJykBEAAhakut/x9c2uVP1we9qMp2VWCm0IQYjATEtZ17WWIiKr4nM0HgKkKEygrQj4UpbO5TKzEAQR2bx4A/BhSCml7hTBzNfXV4Ol5mYCVdthPmiphAi1PZzy9vJq2u1evn03DfL5L77aX15hiLvNvq+yHbSVpvUcbniacxcVKTj2LloYiQANEc3J1K05owtLDIFDtKLgpIARGfpHKhQlaW3kiERWLc+LqiGRI5RWl3VZ8tpMGUH97H23LMtpmQ2hoT+uqyPAGNdWi4ERYkosQ4iDCFEKOWckcjh7DwojOYI92eyiPeeknPvqZkSUUjofePRSyrqukElkDClshw1uL3h7pZS0GjNRiBwqZ19ZAACAAElEQVSEraGDeWEgQCNOPS/T1dRbt5TuZvwOCmgigaPwSgogieu+x7Sxs9RmtdQELsKbzXg6LYA+pPgyDpvtdn918fHDpzr7YZlDkLa6N+2i3D5DaSlUK6kGwC6sNeUQfJAgcPb97zeqIs6txZwPa77cDurWmvXQiXVdPQnWWnJNrXGngACEENw9d1/7HjAEIDG8evUmiKZxGjfTkLhU7X6pHW8fxyQhAEAgJ2+oVWuvpwHAEcQMWiu16FIuaukDsJ2OyMwsYZ5N/tf/7X8goouLy8/efv72zWfXlzfX1ze73bZqHve7EMS8BYFa8+FwT0THeR6GeDXs/uIXX2/G4XK7ub68GNNwOV6Mm+10eelIpZWiDb2u8/3jaSmlqDahMYbti5fXKSUzkzB0uhUA9Ps0Dg4A1KgWCngFsOW2fr7dv5L88PCwsopIBAte3ZVsbfl4uF9a02VdFTCmESQ0c3UgDpBzl+PROf3sTJqrWmutHSR7TuVi5mDS+2Fkukxb2Xdhum5zdqB3n3+xlhKFNqNskgSGn0pLQCOgMHeSO5q7acZzQenqdnbuQYkUAzEzIYqxkEhExGrW8BXEBVFq/qTWJiIOEVBgnhkYkAGQrAGIY3Mkl6HCMlfNTdGgxy8fDqfzxhsFScx1bY2YJaQVprlmszISD8N+3G4MLdfSNQ0MIBzTEIlgrWVdZ8wQYnAt1g5EkBIiDDGMkn3kEJ2IwQiL+VLz7UkxytXlRdrtgBiGrYmoqZKRIJEFM1NHJ+QJhHu6qbuDOzIFZKfm7mg+z0cMwyAJ0VtryDyG7ZA2U7oUrOYuIh5x5rVVa8ynXHESM5tbBoAwwcs0XV6zLqGsy8Ph+Pd/+O6TceSXWsFuISdLSBGH2lBPyy4dZFOjzDJep7Q4OEKOqhzifcB70Ig+NxucNhgvMEUuYN6OJ/OVjRFAKARK2MjWGhARzoKDmou3GgMnprqcNmF+99nbm5ubNKVpGkYEPj6CHNfHwMxmlnNtrREKEhra43wapyEKrG3NWUUEMDaoRo+nPJvyWswdUkhrKxkX+c2v/+x0Oq1z/umH7w+39/v95cuXL19cv3z95m0a4m63G6cE5K0VdXX3w5KF+HK/vbq8CEwBKRB2i63jMh9zdSF3r3WdD3f3t7eltZcvX758+eLq4nK3241pCCF0nLO1c3ALieCTqi5bqd6altJKbtndgTyN0awhuVurRd1VuwLe/HA4rOtamzkfFXDNtWpzpC2H5+yIn9u1UqQeH9ENt0R65q0NMhBRjDEMqffGaRxijA4scUi7fQJw0CDIgR3a3f09Mw8hblIcUhIiASTqmuTzQOU/A0+Fw1Ov2+PuexQTYXJ2c5oAZi4VoYCamwG7qrpVIjaxQnVuc62VVbSVGEQw1VpbrbWs67p0JhjUtpRcapUYOQY1b2gYwrBNEVjSCEyqrWhj9xBIJPY3s1ozrWwgMSKZeydJA3XLPUILNntWl8CiCPfreruejp5vputxu0u7PTlUYgUCcCIKMTKTA6ABUcfCDRDNvCOxUSTEACDaWq09LBa77f55hy/SA0fPyTcxEomk6O5MYay1Mw5KyR3UNW+tDXG/W+bjMI0NabPYGsIRZtN79BeRKDJVEQzBQ7TA6uYGOghu0RZf3EgLWw0Ua85cZC65r+gAEZmQgexPwbr/JFrI7Pl5a+61Q1buKWEIGALGKDFGICxliLGd9ODPSlKAfpM9P5Zq5loB+kUtBo7oMYkbK1RE3mzGpkyLyf/tv/+/HA6nh7v743FeT3MpjUnL8vDwmNRKCBji5TimcdxJYCJ6AYkI9pvtOEStrZW11VZKLstxKfWUswEB4fFwf/fpp/n0+O7tZxLjbrcbx1GYc87raSaipZW+N35OXernxxEcIWtb1vU0n7TWcwY3Nm323C2rKgAScWDxEIWBgxjQEGI1dYDg2Lnpz0DO2fR8CJ3Isq5rKeVsXp2zcz0uy3w7l1ZbMyTabDbb7Vama+KwubgYN1sAm6IkQa3r48MdmsfAF7v9fhqThCASRSCMTzd/j1uVvr3hp4ICYG5oeq4pRzV2RCM0MUdUZ2vkihNBM2ugrs1bpdK4NquYm2sBbao156WUhiZEdKrZ3U81KzoE5iFiiF5rNcIYYgiKYoDFtGpTb0qeZAhDsIrzYbFWImFiUaA1r/NxzjmnwIGjs2tVHnBdZ6tI406ZsteT1UwYdxdxt4/bXavtya6XhTGMDM3cVARB0NwNDZm0IvQAeKKQIoFn91qrEyJ1kFXNrUeTDJtpjKk/ACkNEoL7OSD2kkN/1ksprdVnIT5C5ITTNm2vdq/n9mH226wq+bEeSauVQ6nH1tbCNbsTSyMqBCbURKtCQVpAqzcrBbPMpa7WCrqxuwAEovpPsnWfz3Cv28+3Rff6ZWYJiGTelRPuYAROCGEYhv4z9xipWs4mM9vtltiJjSC4K3SLYWJHHcfgFgyQOWy2qRRQW+Xf/It/ua5rzrmVOs/z8fHUbZkPRYnteHosdY1jmqZp2m76RhsdtdpidZ2Xmpf+JlqdS9O51ObQvD3e3x7ubwnaZrPpqv1lWUy15fXh/j7Py7EurbXetTJz3zxdXFwAOwcKgbOgeTsux267kwJ1phcRCQdGTBIEKV5dF20A0E0zq7ZqiojbNDJzH1PPCVHMRHQOPQPoA15fX6/r2sTu7u6+//GH9++PDw+Pubb+V1YbK8D+6sXNy1fDMOy2wxB5OR3Xwx2oTWN6/aLo9dVmGMchwpPzFotICBLCc/nQp9gEO6eHd3MLa+oEhdvMJcemI9hGSJiaNjBsmvOyLsvScgHXQMTCcKbgm5mV1ogopen4cF9KyWo0TZFIHYqqAZgERHZnVSitNlPAxoG02nlV7uZaWTXKEJlOhjnn03FxrQNv0xAjavVCAmGIwEBgx9M6zytxuNhs4uWlj1NDqWjW6zASCTNDU0MECSLEzVTdjTGAKBGBCwtizx13AOihEIhYq/UMnWmattttiAwQDSGlGGMCxM4YG8ehX2DPtiHaXFVzbRyZwK4Jb4pePi53c21AH9dDtWWpt1bulnxvsEINgG6FyrzUrKAQOUwc2chaq4jFPYNWByNTAmTgQNizw/5/vnqVOV827v3RGsdxt8WugUdkP1/lIhKGzVRKsVoRgNzJkQBEJMTRoQk7M7jWdV1rVXSUCKoIziiMyCJcqhGBfP755+u8dPE9WKc6FFW9X2spZV6WdS19vzofTzUXxBZCsI2KSFnzupZlWeZ5ruXRkZuDswCjs3BMhKJu67re399rbevx9PHHH77747d3d3d38ycz68d7GIabm5u3b99+/fXXu+tLZpZAKUqMQgRWi5mBehf9IEYmZBZwMrbSck+EOIdoOj1FE1t3+EVzcAQnd3KirvrpaqwoknNmtGkIGoxg17Sgw263c4Oc6zyvy+OKgOiacz6dTj/9VPJ6erj71OaDMF9f7Ocv11br9eXVvk2+wW2w53rxFFOi7l5y7anhZt3eIDctZpYNySq1lcqcfN2y2kC7KcC6urmtUOemi6I5I5GTmhmCI1IKjAgN59xWzYu6YoAAEpMRt9ZaLtmqMoGTmauaqpo3FgwSHIHA7GkSYSQhAPPcaquGGJgIDEk9CCcKmtddikb4cFof7x5zg4sXb168/QIvX0KKq3oBAAksgRAQGMlEMCAliUTk2rpJkAuLCBIwoJq7KSKGGCUQAJCwL6bZhnHcX1xsdzskP3soxCHGiOf+voNxJMwJBzPoSyYzC63BdnJriDi2lsbhai1rbS/vy5LLo9XpBPcFR4Bglda6HrAeFlxBHBLRxIEMXKmwGLERg/QS7IjAglDPkdU/b4DhKUWgN8P9E++sBCYw5bxqLmstAIQld4eL1m+O3ou5YwghxtinjNqa+/k4mhkCpRRLMTcKIaj66XR6PDyoVtltr1LcjFMBVyLgLnVwrwCllHUt87osc865rrWoaskKDtqKae2/ezydDofD8fQJMBgxpzRtRhlGKvN8XP/uH//hhx9+iER3Hz998w+/++Pv/vHDT++X0+nHxx/WNU/TyMz7/f6Xv/zlb3/723/xL/7FZ199eXFxMQ1Da81KQVVtVUtFcyIiiQSC5ogO/URCx+eBevSRq7u6OyKDW2u1Ppk8npMcIvedbT9mPe4gxjjbambSfIppm7bTZueO87x+qTWkaXv1QpG//f6H3//+H3/84fu7jx/I2zAmQTrcHx7GDaOQgysE2VgICOBmvdU/K05zVq3mzV1rLaWuqtXdT0XBGtYKNQfNk7TjLl7UdM2hNaxNFYYQA5haK7WUXGtWywZmnhWO1R7n7NZW82HcUJDm4CRhCh5bPZ20gNkZkwgU2B1ByWwMqZWqWqwVdEUmQyh5fTyutZTIwYHaUmetm4FTYHNYlmUu9bBW4vTi5sX+7Vf7m9encUJgW1cTlxiEYzN1d5IYGSOxUHeOYbXqbmexNyGaa21mKDEwUi9nfQwupWy303a7ZWYRJxIOEmMk6eE+4ABC3l2NEMkNmmpr5j1dgqRWcgAWGUdJacw5X/tpqXE/7sfwcjtUXx+lzrqY1eZNQ79FG4A4uEvounp6jv5CB3AVcCOyp2v2+QC7O/R2BrF/3Ga2ruu6rnWBmlfmaggihAzPO87OWS6luTuRhBBCXkOaal3BCrEjmKqCkyCcTrlk1cZLbqW0w+nx8fGBBeX7n24lUBRh7jnUzsKMlBh9HHQPZlCbres6z+uSi9bSGcytmZolD62ltayhDbnqXEpbl8M6D5EPx+P773/49P0362muJc/3jx++/3F+fCBzhRYmdAVrxRocHvT7b7+xVso6l7K+efVqu912/4h1XfPhWEqhYCGEFAdXULZOYQcniezgZqatqVVrtWvK7Onc9l/2AcndnbwPvf0M9+ZnGIZxt9WmWqqv2gCUVEKawrQd6ri7nC521Wnd7w67vc6nTWBG32w2N1fX15dXQxwDdVMIXI8PGoLm0F2se601M22ltWKmgKZaa1t7lMGcCxiQIpl7K0dqq9lJsQyCDq5sHtCBHKpiLUYOTqJY14ZFsTg3jBjCOleBEGQE64IzqcCGanVpzdw8iBAzGWpVQycTy9kRz7MZoYKtWpflZNUCBKHo6KgNXRGgCD4e82FZcdxevfl8ePmZT5cH4KJA5I2IYwoxEpFVNzNwlhCDBDJvrREhdTNtIWYWPqefKZ+DAGrLzwe4wwT9AA+DMLNIRCYEMuyoDRK5mWoDd2rVam3uyMQO3mkaHIK7E9ZIyBLBmU3ZL2i3j/ureri308P6+NDsno+PuhbNntEKmJqRwpLzkIScnqzqFZtBa0T0fAPDn8Kl/3Qs+/+otT4+Pn78+JHbdtqABDRsEhDZED1EdsNuCLGuxd1FYk8sGCY1qw5VyLHD9IYFsK5ZFVuFh8O8rmVeltM8xyhiSEARkEqrrRQkn6ZhMwaz2rt1Qk5IKaVhmHIuSM0UAKCozUvJaz2cjsM0rvXycJw/3N399Ok2Hw8xhtPD3bfff//d3//9D99+V+YTA5H7Pg7bYdRSFzpcXKRf/OIXL1686CsuRNzvt8f7h9M4oUMrVVWttrrmvK4VlxiHNmhrJjwwC1MiInUCtI4iErgIIUYAWEo2M8JubY3Pw2ev5Z1J1led/U7AEKQUC15E57nc5wdCJpJSPsbxLmw+KsXDcfZaNiluw0UYxs1mvNpfbDebJIGxL2osr3OrXJh7N9XdOc26K1V1UIDeIq0O2g85QiCOiAEdDLgCZecjceBEkJSWlhE8U0hGDKdHSSGFAK1C0WA8iDKluT4qhAApjKHVejjOxzVXbWjQirZWgSOmgGDW1K3Wii1n5vMBckJDaOAiUmoFgBhjiiEFG6MhlIKgScJwMV2/HF+90Wn32PCQC0KLMRIRMqOIAxiCIaABIhMJ6DlmJ7CwuyTkriQ+M4HdanN3CaGz1kKKHGTabvaXF8yc0jlx0gBVmyv2QPBcVm1uBggCQECSYkpphLYiCzcPw2hm8zwzOLIAJXdXws2u0eZa56M/Htbtndrfwt2ncgCokBlqoFyK5rLOrY3NzAiQsCPkik937vPpfW6hO0pMdD7brbXj8Xh3d2ezbjYlJnauEpyCMXtM8rzF7EyEvqkxs9PpROTEhgxE4GYlt9Y0cmQKhtAq1GKIHCTFGCSxe1tbAwATAEKwtZxKc0JEZDYRYUFBwGCBEDF10eDouJ1iLXpxkV6/3D/k9XA4XD1ML2+mh4eHnPMjNaufUT6i2eHudjkeuDUJVuoxCO2vN7/6sz//7N1XNy9fvXv72f7qggVD4P3u5Zkg4dpvMFmXuK6dh6ha59awPTKzIBGB6J+wop/jRtpqN3pk5v470ziO4wgce9vVvK1lMdNxu9nvt6bhw8fb1R72aQuH5VSyg9w+PGTb+tGHmpMYGn758vPNlyMADHGcpmGaxsA9IAMQur51yeXsCAsAXTVlZiymfvbBbq2pWoxpM20lDIhI2F2xk3AkEgCinQGSaSmnxwYn5xlaM6oaKJdaNKuRg2dxGX07jNnVkVGsQjvOxw/398taUBgNmTxIgXJoWZlDCkl4IF1HQdXqBpswEkrNyi062LiPg+SdHy9MAPhuhg8Zv6/L5cs3u9dvfLs7SGoYCrihiQxG3NfuxYGZMQ7e2oYjgC1lcXd1haec0eYITEmCEFvTWsW4tda2Qwwh3D/cllJubm7evXvXgXqQQZ3M8Wxb69596gQ2zVvx5u7IRERAsOoKhG4NmbIuTCHtRgByd81zaM1L8dowQJ2SDSG9ut68uYDrV9N//vtv/vF3y+F4chvAL6IcEwZrcJxDNT/VQLFiXEEqVFbbqpHW7LmKWhjy2hByoKCGDXBVqBAKxe8+Htp6e10vXl5fjCS2VqtOAytRablf2jGFYYghQD/OgWUIEkJA8tCbYXBVva8nq4orphlOS1NwmSYeB8m1PGVSIaKzoaEjNIbUcSn3asZIfk7udNcz8Z2FREbqpW60dnVxmV++6q1/L363t7c//NmXj3f3x/u79z98vxwexezu06eP799fvbr++utf/vpXf/Hy1dtXr15tL/bTlDbbEb2v7Dr719y9W+rkvFprOS8551rWWqvVZtZybj8vhM9nmFHcW6fFMLGIxCGFFFmG3kgHCnEIZkpEtdb7u8ea6357sd1f5AaH0zqvOUj64f1PxDzGuJmmFOJmGMdxJMDdbs9MSM7ggGpaSyk5LwDlHLP2BGy6OzMLBx7iE68YuiZ5GAZkQkSmEOOQ0iAcO1bMeKq55Fxq1aa2rvV0uJuPJ1a7vL4YN5ucl5JXAHKrpjWNGyLKtZ4eDo+Pj61kbbWuphUSw8g4MAUWRuqrtU5yFiFAJurNQm6tXCRRzOzm7qvWVuyk0AjH/VXc7mWYPI4YxtAzqUtr5ewHDAD8hAd20vzPr6nnKSY9wUL9bUH36i7ErisAHA9zKeXly5d9Kd0VIU85OX3e4Y4zmxoRpRC894ly/sdVtbm5Pe2WHKwvf0V+jlZ2LoC7y4aBeBw3u93F3Q8/wnLkvAZGV/dBSvDFy8l99abkRs6O5CCA4kgO3NMDm4GAG7p7j0ruixgWwjgMu8328nI7RIQGZJQYBXe8V1VA71hJCN3d1tIYRYSRHLT3RmYGtW5kqujNPaUSY7GiThhiknE/ISIBEgEBAFhPoAZlAOhIFYBC35WBmVrz/qlUQAbocbtg1ELgEKZpOjOcSinX15e//OJNy7mW8nj7qcyntiy/+/u/+7u//dvhavMX/+yf//Yv/8WLm1eb/UVKIQQepkSQ+h4e8Ux/L6XksuQ8a62lrDnn0o/xmmvNSNY71R7s0gddRFxR+yMSCZMwiShjIxDhjmgIc2QprczznB+XvJIbSOT99kLS9MqoqL24ufvqy3e9yYkSokhKaYipP0mq1ZuaN2211lxrBfdaz9zDlJKI9BagN+r96XnCmMI4jikloPOCjUh6rl8tqqptresyH0+nw+Hh7vbjhw8/3t7ezsvxi9dfbN9dXlzu7HBX2sdSynL76cF09+oLIqxFHx4e5uMcQoBIWk/zcUXBNARMoSP5iASIMcWn1hTMrNZm1szaJKZkIIiN5qXOa1viRJvdF19/HcbJx3EBMUBVqa216s9AYD+ofQgUEXJ6Lql9Q3teqCKGbh1HHFiKGTqICMlYa/706VPOdbPZiMT+tj+luhOiP6P6vUKfqySfvzqB0ZqqamuqbmBg3TDBnUX6v/4MKHYaQlZLm+27L78a0vTp+urx/Y/3P/1Y15MmroFW0uytOfVbvGnhWpEEqpJ5cGQgcGTA0ty09JfM3H1UaZoGmKar6xdXNy+nIRAqCXBkDpQm6UJaImJBZj4DwlYCc38b0e3pFcWgY+aqjHmLy+LVT0Ycx0EMFOHsM36GsRjcQbyPjmfuwfMVJyK9KDx/JK3vi+S81yXw/gIYA+MWdKhrRvDPXr+yVu8+vH98fPzjd99ud5fjtJ/G/bi5nMZtHIIIi1Cg5O6A59VA57KISIxsrZUSSym1pGVZsiylyLLOiIBozAGARM5RQxb6nSAxxpTGlFIIqdsvgyM4dgeGVurx8fB4uG8Lh27Kl4bd5aU659K8WaDaEWMiisJC2LfHrmrW4cfSewQmSCmFQP1wdi3Hz56YP0kL+z3cKZwc8JzibdChhXmZc87z+/fH+XT3cPv+08dPd5/mvA7j9OLFq69+86++/vNf7rbj6e6nxw/fRcJPpdTTYVlyCJZztqaBOYQgZAVBwNEMlbqvEyOSEIkE6Gt5I0JmQSFikED28GOcBg+hWTt5rXEIV9fjixfjxUsIISOqWnNxIKTIzEnOe4SnMkQAYGgC1I/08wLi/DY6iEiU0HuBZwwmDfH+p8eH42GapjhMzQzVgVBLMYNei/sxJhSAHm6BZzf8vlVSc4TEUgFAHa070ndyNzr4M9b4/POYWUgjUBw3vNnuX799c7r9+OM3fzg+fNIPvxdTd6+1oYSBBDFoAQZnB1YlUzJFbagGrdYn+KO/G0QQE11cbkiub16/urjeB6LALollEEmC1J5evvWZrtelpTwQESMhcreCMDNXiw1Yi5GUHR+O9bgWQ2eJsiwn906MwXMyQv++7Vyu+reG7uIP4NBjQ4GIyc2U8Zw0fy4bZn7eaLCkKAzi24rgQ4huzd0pheOa86e720/3D4fjdp+HcTOQhBA49BytLmRvtTbV+lzXz9IcgP5DRpZa4zAmffo61zNmZi50rtAiMcYoHPvHJhTEncDctZa15lzWNc/LerKNq+ad1uytgJNXBW9T4Oyam4IqCaFj60Su+aiqrgZgqiqMPcltmgZmHoahh6E+LyeZQ794n58hVa1VHan7hyJqa1ZrPp0Op9Pp/tPHT3e3P338cDjOGOTtF7/65a/+7IsvvkjTze5mT1ZkU3au0Fpd1pnjUrDkZs1TSkTi7nldNeeITYgC6xhjip0Ezxw5YKi1qjoyEpG1vv1dxRwIm+NRwcbddv9iev0ZXV0ulgyhGjY4l3VB4cCBQVj6kql/RojoSN7050NNvzn7zXu+sdVclQDHmGKM6u14PI7j5t27t7vdTiR2c04iQTx3KETEFM7fFp7OJTioVj0nQnugP/2jZ2sidnfD/hifq2cXM7TWrKylLKXWVhuFuLu5MdDL+VIilfmwC8gNg/LAATk2CswGfQenZk2hqXGx2ozMrHsPIaAhmQhP0zhstjcvLq4uLrxlIZckMhAnzrkvvQCRHdS9P54+jgmAwByAvGkPKHSF4CwUUGKMxhTMsbmrgwwpttZaqU2bFagA0G92l97E9vLwRHjsO3rqxEBCQnQAB0B3AoCm2mpFxPpUWUExxgjgp3XRkk/LfFjWn24/mtnbz74oNXOQsyoYXbW2pp2lVGvNZam1IrqIqLZzh+9u2nov0H1A7enr6agwIkLqLKjO8XgCdar1WGRwbXltreWcay6t1DEIoa7L48Onn1QrycASh0jLWvPx4ccP75dlGcZx2m76IXTXrklOKV1e7MZxHGMSEUkRnoLafu5K/9S/necCVQUwInjGTnJeHx7vPnz48P79j4+Pjx9/+LAsS3O4fvXms6++/uLLr1++ebvZbDxsUMCNpuuXw9XF1f4ixnT740/vv/2+lEKkYxqE6ul00ryiNvKSSLZD2m9jStHMXJSDeFUk74wbALfaSl3XPO/j0GhYgGsaNtPlzdsvw811DqxrqG6iFszOxlGm7h4o9CxMhLP4GQDMrf7Mg+pnp5dTFCEmwGrmqjHGyOLuHz/d5tK++PLLX/ziF1c3l0+H34c4Pt/AwpGIzmzqUrH/mw4GPRIdHbF67wQQWdjJCd17JwnPTf7zhuI8UABX9ZmXVjKiD9vNOA7BLJ8Ok9dpO5EwIDeMq2LCisql5VqzWGNyEQlB0ZAIzKi7RJk3ByW2Mcl+GraTtKwIjUXBDZoyOqH3E+SOXaLkZkUraB/byarVqloNgBzVqoO7Fs25zmspaEOuMkosBgClVC2tuGprrUOUfRY9t0Z8nuVijMhn4Q4gE5ETIyIDI6KjOwHiucFGZjfpzEFtdVlO85LjkG5evbRadvvNOKZhiGkIIQmA1paX48PpdDoej+u69BVud6sJkoT6q3XT2g2ZEPuFc55q/oQJISqe+9V+K/QGTEUXrUx9R+Oqak21Nq2NuaKjtiWvj7IISw7DCEBW8nw63L7/6fFw2F1eIHm4uEhpCBJ7INs0bHa73WaYiKi1tpT8DPHLmVfJPVailFJreepTDBFDCLVpa22eT/f3tx8+/vTTTz/c3n46nU7zUjb7i89ev/vyy1989vnX11cviaQWbaStqQSa0hDjtB0nBAHe2FoPh0dEFCR0z4CMkIKo2ZhwM9FmwyKQiyo5Ei/rOcuGpcunTITGMa0LOg+y21+M24v9i83FZYlh1VyVuv91OEc7dWtTfhaLPBH+u0jj3Es/8xz6R0BE0zQCACOhuyNtx8nd725vb29vY4y//OWvXr9+2e+MziWO8bxSEY6didWhddUz480RzEz9fGwN3BiBiM9qK1ADM0P/Ex++n95zTwcUSEDCmDfzfKx5ds1gGl6+zdudlNnI7kv+5FoCLdMQykFNubWqLZgKAApxDO14Ot8cT45I7hXA2AuzojctR7fqhsZOgQmTgRkYdA+dp4E010XV0RGB0bjWZgoErJi9Mbgfj8f7w+PptFSGtGRBsJ4fLQRErA6ADZHmcnpaDq2tNYBzNqmqcwwppRgGiSGEyDGIyCDb3hx256rekDFzzWc+QwgxmQ2b6cuvv25m28Sff/7Fy9cvRLhZFSW1fFpPdx8/3N3dfbr9sCyL6pkCjogpbmJ3sWRmAhEZYwqB13V9btL+tOFA7LmHAKDqRASSiAjMJAoRuf6p2SYiITIrbtW11ra2Mhs4m4iEzTjuN5uL7ZaELq+vb26uN7vtNE3jIOM4jmkQicJRiFrtb1frz3MI4I6qrtpqVaTWuQqC4u6lFndXC/NS1nV9fHz4+PH9p9sPDw8P3X3q17/67etXb9+9++Jyex1kBCA0iRJcrFZV1SU7mqVpunjxds3Kx/sYIyKe/FDLiuiBGUMAlCFJihQEAZpjMWNG2u6mvuNVt5zzspxKyQB0zJ4w7K5e7m9eTsOugc91nevKJn3glG7/pkAACK5PR7TPL89jbR92nhlLz9u7GGMHS1DE1cZxXOb57u5unudu8R9jXNc1UDDL/UF6GoX6ACJnTrta/4UjtNZA2xNR56l9ZiIUBQd1QLBiz3Wkd3wpJVVNq1YHZ4kxpxRaGdaE6HYaMhx4fagfTw/leNjENKSIN1fp/tCAUVjBqym2in2BWRomfL7keyoQoIE3aLkudjo+uJU4CAdi4zOX3ZuZPeHBqtriOGBzd0AkU7OKoODoRaubusF8WubTuiyLRc45i6r3LF9wUQMy7fssxqJWtK4lr33cN3AACBj7QNLR2iCpz3s6ZBFJaQwhuSoTC02ENG34YT5yGnCIwDThqy+m/au3XycmrXUY90Q8nx7n47rMd4fD/d9/+7fHx9N8WgiYIYBBkjQMk/qqHgMPLERIbriWVtUDPyPADgBPKRg+hvnMmf2ne2Ck/mKt5QXWE7QlsKaIK1MVM6p2vAcJLzbbSGitKQEEHm+uIlxeXF2+evnmYtoGkWkT+qrZ9MwxLKXM87zmKiLBDBDNvR8qd2c3gWBg3qzrEOd5vr1/WMrp093tsuS7+/vbh8eqnnbXX3/22ZvPvthu9rv9XmJUNfMVxEMIlwFbTE6sDgawQKAxDK9xrR8GKbv1NswL+Wlu+aG1xfCy0cVuupquAnKua5Rd4Li2tgYVtBHUs6LWfFw/3h82+8v29u3Nm7ev3n6eNvtjro9zLhoH3pSRa63oLpwYvFJ1hCAhNHLzZj2mzMy7qs7JqbU2DINqVVVCA6tjGoJaRBpizHkJQ5g26cef/vjNt/9ITl/+9rcRwNZyMW6QaZAwTZMhnDlzSKVVYQSmklUJkKALVUzIG6k2VU2YzmMLUA+ANDdzhDjVWt1VgMQBzUVEhjiHPIgE4o2GVlOtm5x3LZedfHqMfD/w6SF8ovifl3q1eRvscrUYQn15vR9lujzG4TCsCRdqiQxbG+JgDnkt2AbTUDPHCzVrMux3+HJZT6Wu0FZcrdL6X+ohCIlCO3gf8NVzL42AYO5s7IZrq2Gk3UW8O4A7bClIKQXtOSGms8QBEZNEBkIgJuns1rPRRK7dsrCbqJp1qZRV1R4jGuP5UuqrV2+QglAKTsgQhyC43Vpt63J8uH14vL9fTwdra1keP3z8/uH+43cfvtfWCHkYtmkY0jgNaRqGIaWzTLd3yE91jmrO58HYzlD42fGgnEW/z0jG+WaIgZnBtLbc8lpKAXQSFqxChG6uteZlPR29qTs+HE7zMgvzNI3X19cXFxf7cRNEYsKugOkBi61prTXnXKs+S0O7aLHf8+MQAQCYTK2WknM+HB8Oh8O8nj59upuXZc5FYrjYvbi5uXn3+WfTdNlf7Hkv+MRUUVUgZmbTsxGHoDHzZrrQ7cF3E8+pzjIIDkzmOG4mSVFiGIcUklSnrMZmg7WyZpVgzR9OyyFXGvfj5avP//y343Y3bHeO4owcMToSh1pXdO9eub1VJsfAbIbqRgBEAvz0IIJHGUopROBOIhKi9Dk2xbMRSr+NHx7uPn78SERfvPtsmgbz5u7mIckQowxDrPbENwZ8+ig5hOCq9DQudbOh50r9DDs/4aNEROaNmd3huU3of6bvGnsGVRDpt1EpRYlDmdPl7nixzxd3cJwfHk86oo8v2I9tG3DkuIlxDE6otRKDnjM0qbWay4Jmm20a0j6EkWlQRCZDxqadNCU/X+89n2Kz+ty5PB9JAIjTUNVDbQPRNpftaT7lVsCk5QLQo2qt5xGpKah11COF8IwQ9DGjdqtu7ZBTMyNVbIrYwN3czbwFC8pdxycIIW0ndF9LIaIhBFQzh8JtWR8+/PDh4dNHK1mwHQ+3ZT2GcZiGaTNdbHb7zXY3TPth2kiMKfyTLe7zwhOei4ufNR5n4b61zhx4fhd6zzLPGREdVGtRa+jKjCmx4EBEbgwALa/L8VFLAcDD/UkJps3m5vWrV69e7Tf7KIGJmi55rTnnnPO65r5Ea826AL0/o/0rxtghJQAwbznneT71WIl5Pi55XdZiSNvdxWa/u3nx8uLiYn950ew8pxkQMzH30SSUNVPkjqCYemsNBZh5t72mdZHTbcz3uj4ej7SsjAouwFHCEOIQYIWai+ZW56J6aLXS5VVu9uH+tPL45qtff/mL34yv3xl4UVxazRVqj+Y0QHUyAAD2Di0SMQtxE7SmIkJBiEDdOtGCiTs5ARG7bVhrxawR0TAMOS8hhBjlH/7huz/+8Y/XN5d/8dtfxxibdo66cYAxjoBNpHvfqT0JvBFIRM78QxEAULfnGh0CnxlH2uOrn2Sk2udSen54zneASF8iokH/o31UzEauk3iOu93DfrseD4f7+4cNr3cMVS5C08TDICkyBgrATbFpATAJ5IDMIMG2U5ymKcVRiE3i6K5MTQnBluVJtYZ83pb3H2wkeAqIfmbyd+pRv45Ckv1+u7+6hMOJGSWwQAfRSKufDcDgmdJqKChO3tywz6LMfdjoYI8bdioJhUBETHDu2Q1NDbwRopacWy2tjuOIbHlddS1Lfvz08af/8O//p//0H/5nW/O711c3l/uL3Xjz6u1uf7m/uh6222GzT5ttSANxGIP0Qei5fJ5RAcKn89lUtWk5xxf7aj/LmH/afKhqRETTWhlNGcDQVDX0R60fQgR3rdYIehxRSpfX129evrq4uhIUrc1re1xOy7LUWt3BESQkgJ75GHLOtXNTzdw9IJGEZ+3xaT4eDofT6biuq6oP03bc7EJKaRo32/1mt0XmZtTOtpshMYtERkJmdVdwgnMQGmJngTsQhrAbxp3tLzBftOXx9HhaDwWKaeTNxebq+lrAWzkgsGurudXjaaktpm2m4MPu5ZuvfvlX/+by1bv7ZTWF7FoaFcOqoG4OFuBsptnBGyLingtKwMzAFAIDobcKgCTc1vW8mGCKLJEJjXto+8XFhbsi+jzP33zzzfH0+F/923/95s3r0+mUj4faiq/GgUWYCLsCiYgQzjsLU+9oUP96LuXP0pTzrITd/ASfyBU9I/Z8rT0v1c6J5swK6g5qgMBM4GKAFJwHlOrkEtc00DQcIbXZj+Whno7w6bbsL2/SVZo2zbIDmLl6M6/gFUGZdL+XYXCSyq0aNbAG3tRLoIBoCI5m3anirGqG/Nwd/BMVHYdaW6nejDDn1CypSVO5vLgwM6ul5G4Ur6yADoxITgra5cviZ0og0vlO6+lbZtCXsedAxGepJKhaM0cm8txKLc0NAtVWyvGkudwfPv3D3/9v//7/8z/9x3//P3utj199/pd/8ZvXr1/uL26urq4ubm7SZj+Mm7TZhHFC5Ej/f/oNRDRrTy1WL1jtSY05P8NLvdXsX31brlprWVUruLlra83beS/dqrp3+BGRYJqmYTNd7PbjOAZirZrXVUtd8pJzRiQRIZQnmgGflvlZotiV3J3U4e7gTqIskbtwmwkRx4urlJLEIBKJGSUgkbv3liOEwJKEGRx7GepL7Farn/d27t7AXVFMJh72w+ZyfzEvj+v6sNhyOppFJmG0eqamGeBpWddT+/DwUMf99Revv3zzi5svfrV/8fmpeG6EiMRCgqyOBuzuQACGCGT+p2UDQnPrGAQRIhMiIFP3put7rO6P07GDmKTb6bbWxjHlnP/xH//x46f3b9++/eqrr/pi6bkH7gAEM4OVp90kiQgStX9q5PInTOh8j9kZlQDoQH0frJ6J8dSTpZ/pJbXGGImZAVpr/QUiE6bEhaBV8zbhkIa4ift92ud1nIVPd+2HT6d5+f3tbF+Vd6/eXQWkNE1oeDweD4fDw/3t8fCQ83ycfwJcIg+ter8pm2YAQwzmHcPWDpp23Uuzn0kUf6aX2NHg1TS3Ur2cVr0/4LxAaDKlobWWtaGdB2BGcvDICRQZjIQRsXYbfmbHcwHrbIHeS/PztdxjGh3QHMAcwLC4s1vz1g73xWub7x7X4+nvf/iHf////h//9m/+8+PhOIRwamYh7l++uXz9an95fXF9k8ZNTEMctjEOyASmzwXi+fQCAFh7UjL4mexp5u5N/4QPP59hVXUFBjRrNY2uDdBcTbWuSzsf4NB6Te+PxSakOI4AsC6LmaGT9Uppbg6EAMgGrk0BtJkaEIcUmadp6ge4cxe6azSHgMLA9AwXYxqHYehHV82qeZAAAOeOgwIzA3HX3CGJuzqCupljjBHRumdTZVFJHnYyvdhc2PWxLPentsyrmS7L/Pho5urmLNn9bj59vF8XpRf765s/+8325lXYvmhNcs1E4ghg5t7NIg2BkLH1q/cJVnXsRHWDbuvcwWQAlp55DZsx9kyPc2YF+hCHFKJVW9d5v9+fTqf//Ld/Q0R//dd/ud9vY0zTtAGkTokFwlob4lkn609KX4c/wbnPwpWn1tqfb+DOsgaApvZ0iXlX/PQxHc7GN211d/e+7jZVAGA4f8/+CkkxOTLFLcet8OkC10SPrI8fP9wvevrD9+9Pjzc/7H/1+dvXr19f7q+0+Z1+PBxOh/uD+frwcKulEkZVOJPPvCH6PK8/197Yk9Kgw10d4gZ4ctMGMG2AQOjsxoACzg5iKsfjMS/raT6sp2PNxa1R53Yx11odIXoEQj3rlTyEQIjCMYTu1dIPcFCzrlZ3d+yBmdbOpAvXWuvxeKzLqmu5f//xhz9++x/+/m/+5j/8p08fbx0I0xg3u+2r1/s3bzevXw6bfdrth2EUiYTijmjYm6XnstTnQ+hPDXi/FeDp9DqYeTS3/p9DtywVJCM3IiJriMG4MYJ3k/7gz21MX32d37iKglSWdclrSmm72W/SQEkW7WqSDpKd2xMi2u/3/DSw9ob/ibsLqgqqpEFCiDayYEqpQggxqSOxNGitFhZApg7lA2HnYDKgOwJArWdA8/mzP89yQ/Sy8XgZkg17gjkvd7fldK9VAoDXxiworI2KQyWqu+u3n7355b/6NzdffukhAUZUH4McctampdWas9aKqu7NDSsbEnaeHDm4gyGAOZlxEOrGhmghBEc0bxvZAECpawjhbAHfadKR3Pl0Ov3u9//w8ePHX//6z375y18iIrjEMJmzSOv0A3d34+fnG1zNDOkM+KM7Pp1hhs7JN3eXMzKIoF2KYwAOcIYDeoMGT2a67o5IzcxLPeNVgO0p201bc3AIiCiEhOYNMFzs4x5l8rTbne7y3aeHb769/f79h3w4nY7l83fG6O5s1ayZhJB4SziakharCq5mbkRYn+gJHR8J57a/zyB/up+eP2JkcUOpmhrIrBkxf7zXZvLpw8dlWebj43I6amsAxti9L6R7BaZxIKKqzcyYebu/ZmYKEsIoIt3mhplJ2MxaK+bNzvQI6kCyquVlmY+PdVmh2eP97R9+/49//7/+3e3HWwdU4NqAhmm6uIqb3XhxkaYpbqZx2BIwGCKyIKu3M0xxPl3+VIkBABC6Vw6Y2zMpt7fz2N3En0ckYwR0QlQgAup1DhrH4Z8uvZ6SFr0CwLquc80ppSGOPG2ihMGGPjO7e4eah2EIkihI97s+o0fMffE2r0vH1fveq7XGEph5mC4csa6LN621tdZCHAS49kyGJ7pvM/AnAQ0iEqLBkxmiOzFTjBgS8ABxH0yn7cW43YyTzAeFqtaUmFu1+3l+mI/Z9bPf/NWf//Vffv3bX6/W1lzGwMwOWs5tSKnWlMCQQNW0aiOk7v7e+2PrkJGzeUToT0hvUkWwNe8Ft8OtImfnk1rzGMfdbveHb373+9//3t17EkCtdZ5XIjIFQokpOp4Vtt24y57QUj4zyslV4amFPrNTu8zwaUvyvAHqBW4cx9baupaccz/P/XPZTps+m2BfkiH1VpbMEJyCAAVSI0BoCrXQbkS3KHsKIcbWVNaS5+X0h9//cT6Vx4fj1W7b6tqqMfN2HNwG1wGNqRsbsiGiCOFo/wV/oT+gY/gnB/j513UI1rwWN8Nwao+t+XycD7Osh49lmdfDw3w6tLKAK7oB2uDbbgsCAF1gxExXV1ccwjBMYwoRGgAiIwqxcK01DWGcxlqzOSJKUy6FlGTJq4W4mQYVvv3wfs7Hj7c/3eYPw46R4vGUda2j6qvt7tXF5WW83o27KNGrK5ylgsbc7Cz8hSeGz5kJDhWcnsKx+5pRHNysd8KMaE8LenU3Hsjd3BwYwdkQAQwxBRie++3+5PW3tezqsqz19nY5zdZ83a1tB4GFQvTamlZwCilN07Z7Egj2vag7IMcITMecT8tc16WfXlUlkmm37SlTYZwAIIRYWqWzzbl5q5GEDUmB0LtjARIAoFEyAEYgN++2u8BLhaiIcbsMy51lrOQifv06LqXKicNgu6tjg/f58ZvH9YDT23/569/8q//m8uqK4kglE+el2eL5xPNSrXipoEquimoGSJxS8mYGCATCRCSA2AzVeOxLUA8sRN0WgAKm0rKIxJQcwIEAudTKnC4vLu7u7v7mP/6nb37/h7/+67/+81//5vDweHl5mb0iQuLQk87B4by+4tBUDdHcltwGlGEYRKTm+XkdJRgopq4TZjmbjXug1nRpKwCklJRN3RpBdlX1RjpwYg6EqbSlrgoAQdzwLLrQfo0BCBEym1kDC7txx3GeR/Abis13ef9usGm7LMvy8Y9/+4eP3304vH1zHUh/Oq6erhbiDdwgDxSAhxYGkQCIHqI0TL1VYEBmFjo7qA1DdOizVDMzN9KGZpDSIBu5f7gFs+X+tjrlxg9Hlcfb25zzcjqsy6Hk1dqqWsE84J2ZnU7H1loIjIjjOAIeX2y3ITDgyAwoiAzIQOJpGPqs4q5mJIEH3OpQLWkqeawlHOI6L6fDMaRBQnp8fKy5pTQySIrjy5cvx3F8diT5Ob79TOX5eWV6/mN4lol2DucZLeyw2PMf7t+Wmc6DBgL1U432zACB9qz+h+cBGBETDSKSc17X1d1rrU2L+5OJdAh9mdcvHFVlYSJiInMvpZRW13Vd8lrXpf/A3btsHMdxHEMIGOP5r58pgU+v62cF2P+p88PzT/j8nri7ajUETkOC7bocLe7C5auN4VU4qOps9PHu/uPxGKbdr96++/LPf3X56p3EYGbuSChIQKSI/HPl2VOTyU8z4Tm2geHc/hESPckk8ZkJ1wMHW+uK/FJKfyc7Ctha+8Mf/vDNN9++fPnyN7/5zYsXL3oufGetP9VltPMM+KfX/jwynGmqKbbWamnntrELu5jU27lDO2dwETPHYXgWwwzD4I4iIizwMyucf9KvIkqQZwXVz4m6WrRzYPtXbz9zzh/1WBGzlrvDzFBLUQ7DkFKa4rhJLKhakBTQkIDImDxGCiEIEjP30NbWmjbFnscBguRAHENEkApWStHmqrYupW/43F0e7z601mpetWTLWWtprZhqgdndl+WUc+7PSa2bYWx0d53r1kgNahwmihG9sgfhwdTN3M3QKVCKcUDEmpZQq4KnzZSX1d3zUt58/oX8e6nQQgg3ly9evnj99ddfX19f/2nr8/SGPt+HP6Oy/pOvnqeLPZTkaT8BAEp/mpn7Z2/WHeefwjvh2YkbAIDjn5zKzgt9NTMbN5uU0mYzzfPcrboBQAIlTk/DFvfn71ky1dxAodQ65/W0zKVPNZ2OL9KFhH3z+Rx91tdBffj+ebg2/sys9KmP+BM15U9/t6/XhHfjVc1xmU9a27i9GsYXG/p+ntdlzr6Fi+3N9bu3r7/68uXbd8YbVV3WFUiQobbmhkji1jpQ1WHCbmfh7kyE4PokCRAkYWLB/y9ff9ZkS5KkB2KqaosvZ43lLnlzqcrM2qsbvQIzAIeNQYM9IwBF+AaSMuSP5AMJkiIkFg5nhgAajR4AvaBrr1xv3FjO5puZqSofzN3jRGRhjmRduXVuhJ/j5qamqp9++qm1BhHBUG7VHL8zjhz08xvJQ+du3777+c9/3rbt7/3e77158yZGLorsM+10PJOgguT+1scT/Dznh4mqKaxzpRBgbBqZTXFuPHLOJRkbYLLCKxGpYIZ/x/IKoqGx9cIYM7IPp06MvPLMbOQsaAfItQYi2rx+g77oTvueoxFAU5eursrClmBLax1ijCkxoDpvysp3ItYpYOxTogSRrbKEEIriAqZiSkpJhBDYkCNnj8fmeDoNw/D111/vHppckrASegLwBEVhxVTClrlElX5QAPDGpioCgGiy1mrSpt2pRjIiEIvU+7JyvmBnE/eIyElDYFCqqlVVgrXWeAJDzpqlNXVd8xDaw/Hy8nK1Wh3uj512r65fv379+urqqigKRPTTazbgvIijEteZBx7/5Ow34NGMMx3WzsjeqNkLhKDgbJWNdPbA46gelfnSY6khR2gGHPl6uai7lo8S0tD1fdH3tiryg8zaiGOzmzEiEIbQD0MfQzf0IUVjjCuKTOLO+ykzZVlBWFAecyFrLc+xhgIYEgRA0ElgAhFhbJRH0FymJhEWBuvAeZeAvnx7/1f/6VcFwKcfvbd+//WlX9FuB037+jXW6831y/eq9VLRdENgkfyhkVOMMUzwyVmCki35ybvjDBciS9aTITvlb4ZyMJMLZs6Xw5C1tcq5AUgEfvaLn3/99t3l1dXHn3zii6rpWuOstZZTzvmNEoAQ5gbX3El4dgrPjx5HVjOMSMVEe8htZ7kCPDIUzuKUbMN5rg0nVdXITETOGqKsXcOoloi6Pp3zf3L1K6Vk0cxYSUppiCEJC2i1uRAi4zx3DQ49oLPCrNjGo2FX+8IUniwgJCSMHEUxMqpqDAERaywzHBeGFGOMaWDmFCVG4USg1IWh65qmPfR9f3u767uhrrYvXhTWF5C7a0nHTtx8u0O/yV9RIcujxhxLGEOAHMKAzTHfgC8L54qqqoR1GGLXDcIYup6XQ1nWxJqUfVnk31Tlvm9PzWG1WnnvF9Xi/fff/9a3vpUHo41p4US3mp8Znr3OQx1VnbtMRjOehCCU+Hwr5m2gqobyZIbHErkqIGKI/TejVgVNaXTXRASgKaUhdCGWCcfyg5l0zPJzDSGdmqbruigMhN57VxR5AKox5lHqHVEnFdLzYHh+zbpCz3KKWfvi/ENTSmTIgrm9v/+X/+J/+Gf/7F+sVot/+Mf/9d/5w98vti+XfqldT86W9cKUCyWnioCsqpxH8gFlBkuSvEr59sf5tKCEYAgU8kQFxCzq4Yyxxuau3Yy0CUKm46mqdTbGmA+sXBVPKX3xxRc/+clPmqb5+OPfuri48N6XVObbzJ0IaBWFIGOP+XHrY93ovFllbAVUQKZ8NAMiIBZVmcffCgsAGGeJCA0R0DkzMV/bGOONsZYK61Q1T1HMB8dyucwD63UKnTLHLnQDTnLfY5uUtUTUAntXSpVSljBXCEPfdoOJbVKjxqyqqigqg8xpCCH41dKPnbAkiYeoKBJjCn3Ttqeua0VUBIZe+k5SVHIY09C2JwVZLdeLGlbLC+9LazyZHI8BkgKByfTR5eZlRk1VmYhyNVxVT9IoS991fYxkWnLWusI4u91eMnPfDX3fi0BZlpHbRVqYDgVBUu284Zjaw0N33If2tFgsXr9+/dGbb//u7/7up5989+L66vLycr1e20m7aK7lzM8PntZOxrDK2TlszoWW7K54KiDBvN0RRJUgjqxRiRNpGRAx8ePkBD2joVpvAGiIIUkUUFCOKYUYlSev6AwzZ9LXMAwhcgghqRhnfVl478naKQk3c/VijgmfRYaPvs6Mdp5tCqbaIE62rBPTe8T5YkpePv/lZ//9P/vv/+n/5f8GpJ/96vPPfv3VP/oHf3d9+WJV1a4sEDF0vQPjnTOdbbpuaJrczULGAYYU43RBGlMMMEjZWMQQGRqjZWustdaT1VkBApFUM2EiRz05yc/KNcaY3W73N3/zN2/f3W23lx986yNXVkmlsC6kRCKgJAhGCbLvBZAR4HhEkufANXvXnHA8cvjn6TxTd8+85tbaLC6l+hgSj1Uc760lR0ZEgnJWHURE521OmGcTzQueiio/6L7vM//BZH5B6JMvTEp9SgmUxzIB9sHyKYj2cYnrulivlovFuipiByxqCMFZihrDEHJ5ojk2+/3Dfr8fhjj06XgYTschRi0KIxoT94tF9eLFC0QTI6sGC4YhJwBIBMZABtMtWosKNHZICaLLeycegqLJZx4zJ4EQFQ11TQ+joGZgiV1nuu6uLMvKrxWhrCsAiUN49/WXsT9V3mw2m8rV3/vke5988sn777+/vtguNoucrowM9Sn3m07cR7udbSBjvTkezhWd7D1UVTRMW1zGBEaSiJDkpDEX+DPKnUvJj8H52NmV9Zwl+15S1VEEx5Kqeu/nXnzmLKYR27ZNc0mp8EVVmgxOCOdu91z10sn54zde5/n/+VE1GzanUTEvF9Xy0lhLhaObL7/+H//l//Bv/6d/BacWvPnlT3/2Fy+vf/93flhfXBpr2JA3VrphGAYOEYmsdcY5jHF0rEiz752tl0jyPieMaIisAUOOsu81hsysdAEASkgAMoVEufRKJMbYvh++/vrt27c3V1dXP/rRj95/82Emh8eY43aDxpksoW6MjjkDnSNYc5wyp9mST2zCTOJJwhK1ZEfWVIuarMlKy/lrG80BdiZQO8nH+1NCSLbVHE0oyIxREY3Dn0UkNyHqNFgzB1AxRi8uAYaicMrBoRR2KHyIvtsnTunQcBi67sTA/nK7MliCDllhXaJpmn7/cDwcDsMwDEPMBtx1Q3MKh33XNQBA1gkz1Is85F2dNVVVIZLNs4/JIhEZIIOWiCzSoXsYlwwlD4nNpeb1agsm63BZzuRLBQAIcbDWWksK5TC0IfZDOIV4DDSICDgzDF3fdseHnQ7BW3zz5g0P8ubNm4uLi+12e3l9XSwK4633Hs80E+bnl5sZdZIeecxMgCe3iZI7u/NoFYpTApNGLjTHlJKBOf7k+QdUlazTaTZc13XjvJgY+2HIQ5tWq816vazr5Wq1qutawOT4SkXPv4+I2MKXZW6WdmStgGKUPkRrbVa4VYBR9cw8QdqMMTrB5pLSOXalEyaUXUR+80xWAitf/PKXv/z//L//+ec/+/nHn37v9/7w9z76+IM//Dt/8P4HH12/fH0MTdt1Nn9zHHSI+77LHFiyVsIw+jHCcVLvtOzz9S0RkiFr0RqLZDELnxHhmKBno0Ic6RWaJO/y3HR5c3Nze3ubUvrhD37w4x//uK5rMpAPQWNQRFSy9VJW9juj0jxPoGDqyppIRCZbZ4ajXIt1XWfn3zTNjDviJDDsvSeyKSUGzusJQFl9aryaNUTEMubA4zk+vWIYxYeyAY9YmojLcSAhOE8GoiEmUAuYLuPQC8cQhxR60kMahEAfwoknnKxv2v1+354aZu76U9u2XdenyCroXVleVIVfKPYxDtuL5Xq9yF/bWotItj0OzjktSByQBUNASJEIHRlHBkkEkBhAvbfeuoHRGONdaX1hjSOyoggA+0GKyrvSoaauPezf3exv3/bN6SA3fd+nJH0Xkuh6vTbGlsv1+9gxmJfvXS5fbBavNmZZMmK9qBWFZVRLkWwdmns6KTNrgmjgFJijjElIXllgQUSYkhMBAVHKBfg4DF3HcVDlhVnEGJIwgDDHIQ0sCRERRmnPrutOp8Nut7t/uDsej355+fr165evP7y8flX5Yr3cLBYLZvbODeSZWUCD9U3XxhCFjN+svPdorSAmQcOQpeO88aCgSccRT0TAICJoR9iNkBCR5tDduoyuqgjlnFmUhZ2zMcYYhawx6lTFgDHG3N7df/n557/7e7/1d/72H3znu9//4W//zupyG0TrSqrCVsX2eDxqm4xz4KtEzkEmfg8xsiRFJYPWo1MDwpm3qjryitFastaP3QOZGWYMGpPr89ZaAswAkht7BljM2DxU1nXXdT/7xS/u9rtPvvfd3/nD37XWgkU0Bqzxtsi4P8lTqInGvyQVopyW6lQ4UJFkAIU1hRBjAATyFPvYD33RU1WU3trCORAhzGoewGzIUIa1EJFA82C1KAnFyCh9hzQKMhplw8wxhL4fhmHIeIf3haSBDBol4pzNKBIYS4NzCZEBE6MylX5hMJ76g/HWkA9Dx2gA0iFqszsACAH/6lef7XY7RJLEiAZEu3Y4nNTalTFbpYgm+EoKZ8qyXLyIq+oSeVhWoapRNLnya7LWbhcXmVllrc0Z/3iu20REBvPUEgIANUbIFq4ga6zx1jo0DslaskT0YlsVRWELSimKJAEcQmq7GLgfhqiKxmJpy+16Y61TkUNvV+uLVy9fX15e18tNhp2JzOg/p8lguZDIzIkxP86BJaTYpxQ5zSgOx6Tj1BSYSK0KIIRKKjH0TXsIXSsiFFTzEA5jMDN9iZxz1joEo8CTYmRVVytQLOrF9fbCG0ui69VqUdWYiQGsecVYNUEAQ8454yy6Yv7yc/KWMfD5HcnQGmbe+PO69+hzzhzPuZeesO7pFJiYSZ+/e3f54sUf/fGbq4vrerkS1S++/HJ3ajYrUtXt9oKI+iHEGDMelH3IzDybLz5nm3MKM1W/Hr3x+SvHmSCPLUHnGSYA9H3/7t274/G42Wy+//3v56LLOT43fq4+xrHnWdJ5fDsHtJhHJYzBNwkCqqYsZhhC3/fej0XabK7GGE2Mj80MOpeFEcY356qvTGpH8+PL3zn/mCtdXqUMcWU94xACKRhjEhKqRhj52CkljRSCBZCIooI40o0hsgxDuL/b7/f75tRY45b1AgBODVV1UZel81gtXeldVRdF4VxNF6ulN7yqy6oqBBSNZUW7qLeIiNbk/UfG5L4isgwA40SJVAIIAQKRoFVAQYoipIwGLZAlWvgKDQISUFIy5H212jpXde39soKiKIqistZbcsfDKTRdVRSvXry+vHxZL9bWeBYiwL5Lrhh3PJ3NFooxDiwCmFRCjG2IQwxJVEAJQdNIXqWMOOcxSCwIgqiaYnPa7+5vD/uHEHpK7H1RLeqqXHhfWl8Wvi7LOs+CAABrCkJL6L0vh2FrjbdAw7FJ9dIBWWNBBHKbFaBkkDslQGOcOmsERvR4fuQTYeixz3OuT+QUZU714Zy/oTADJ3Ntc97cz3AvVWVr/WYdmuFnn/3qeGwGToEZDH3r9eWLFy8vLi6LokhRYoxEaszj1LXzr6SqCoykeVagSDZgso6cs8+i2REf8k5VZcrMz42TmauqOpxOX375ZUrpk+98+vHHH4MmOBvhN1vmCGRP9/jsrvOVc6fuVP0WhLlDGFTVkUZjlDn0Q+8sZqF553O6SwbzryNijBFwlHlz5KZOQx658zqqQxiiwntn7ZytqKq3I3uZmfOAno46QhONcTHFSU7AIAFpWZbqDBoSTQoinPWvFCRZqBfLq+02dl18iE0M0dporU2BxStLRNbSU7l0qxX6Asgul8v1orDLyld1CYhJpOkGK7ksaY16D4UHa5CQVQ3kpIgtOLVMMwCa+YmGVJARSUEAI4BK4qCJIaRMWkJflETmxbZKKTlyllyK0nddPJ7ioXn1rY/fu35vvbksy5pMkXezphQwnCMW8w6LnBiUVSJz4hCFM26sMu7CjFuqqsRRfxhFRVIM7f7h4d3bm4f7265r1gu/Wm3q5aIsy7pe+3KxqFdVtTAGY4xZfzOEfrkchmE7DH37sH/768/vy5IQl4uFJefrSlJSn0mCEFQSq0BukjC5N4gmtAQAhDkxZ1XE2ePNzorgcTbqUw/8mP7NOTAici5fKqgIwkiIVlX2LhHdHY9ffP553/erzbpc1L4oBKjphlPbE1HSxJnaHOLsY2GiKOSD8txKZ/B8Npv5X83ZS0SA9BkaNBdj27bd7XaZd2WtNWpUNWkiJUS0aAlJQcGZ+ddndF2mhcqvWbEQAEQZJw09UhBQInFk8jv53C+KAnHEnxw5R6ZwXiSXzJQQLZI8vdOZOJRrYHm0de7NzjfIKebnmA+UsizzP9lkoo3GGEnMMSpLVqKWrD05dqSJApGgJIytbjaX3ldlUVnjTqeTQQKF66vLojDGCmNHhp0XWwi54MzWkLfGZ6FZVzhNKSWwxhvM6gmlM4UDaxQBVV3IMIIzBERkJ5CWRwFeEqAssZKPTwkdg5rCEopzrq5rj9i1rZNeQ5bQDUM77O52d1/dHG5vP/joE6torUVjEqqqkCLHmFPEuQ6cly+EEOIAQEklcZJRLRdEFSWpCKTRm3BKObDhPkmKiUMa+rY5dO0JJHlr6nq5Xm0vLy8vti8W9dpXdeEX3pfOYQgh976lVOXJccfj4fazL//6L/9qfzzu9/uqqlbrratLJWxTHMURBSInVgAaa9Lz/ptDwQzCST7Yx7Y3EMh9e/IshD6Ha+a9OxfVJh81spTmAPvr2/svP/uiP5zK1eLqxXVVVQmywpvJxfmyzEOhxgbUZ75uPignneCcdo4U1KlV5lzeeXRE53Ba/tqz5yzL8ng8fvHFF86573znOy9fvtzv92aaVjEHKdnarXPPYgqZBinoRE2fPbyImJyEGANj26pYY5Ix7qwsr6rzuZk97TlVdvwgzl18oqoEmPUtEFEwzxNSjkkyAwIJALphhK8yJZbIFkVFZC1bF2N0MeNecRgkJgEVJCQLzhB6EFQOILk6GMpqkenDIrI/7HJBpKaVdZR0iMzGCRpilRgldAGidB6Bo3OmXq5i4v2xsTUKAhCJQSHkTEdXgDIvNKIxI9maDCJiCsPYTgmIaBTGEgtoVARCNgTrutjU1xrScbfvfv2Lbrc/7Y48pNOhufni7Zeff7G/31+997paLYqLy/LqCojBgAqTCj9KH9GMu4YQci+OAIIKCSMACgMzMmtKMUYOo5p06IfcHp3SKIBgjbm+uHQvrr13VVVvNheXVy/W621ZVLYoMx2SDAAmGqUqwRgaQtv1zW63++nPf/Zv/uzPPvvqy9cfvP/6w4/YIBE1rDHGJCN2mXNpNZZQU0oMCsIjeYzQGAej2ttjQjufUPOuOq8tzeXreZfnf5pGKwGrUJ5gByQiu/3xpz//pVP88fe/9/rli5TSoTkA4dDGrh2GYfDeTlEyiyRJI5FwbJN+9HV2lsg/T4lRwXzjRURZzibXigFAeew5yXzvX//61zc3Nx9//PFHH300QhvjlLORbpAJyawwW5ScUdPOw4HzrHg6FoEUOKdORMaAdw45YSZ4iAILZkqxsdagIcgqM4RqRy1ETaLn3NUcNOUjJtcjhmEY1ZQR80Slc+AgRwRFURjBmA81QEncAQwAFCMroLceKzbICZSEBRClrutciipLf/366vJqVZZlVRf7t7cAGpLvo1MUa01MGDmEw/EIXFiQOFhLy3UTIh/bzu5/9hNjrfHOlh5LbwtPhUNjBlwSkSE0xlgkJsgJm6FccEUEg9YZNAwIqoCDqLCYICnFWBSFcOyafXt796uf/OwXf/PT0+HEfWoPzeFu3/f9v/vTP21Suv7k49f1d7CqkYWSmILaMy7rjOw75/LRbkQsOUfGkAwQoujQHjhkNbkoiUUEmIl5tViosiEonCucKTxVVVmXpUJVVVVV18455y2OTQghJU0pGouiGOOQUjqdDm/ffvHZF5+/vX13c/vwr//tn37wybfF2m9//PH6YuurNTNnAi6IQA6HEY157MeQJ5J6eZ/nksmUdorg44jZJzY8kzdm6OWsTRLzNaZfARH56st3/+E//IUV2JR15XxReAfELKdh2B+P9X6BBhCVJYikEAIlH6dXrpTAXAiFnJ+PPGdENFlk2ZgsRfoknIYsbPTIvcmxpaqeTqf9fr9arT755JPlcnlsTsYY0hkqewy1NIuzT5OyFQENUW77fGrbj9ENc6YGkIJkoWlnEDF26TwUx4nd4aZ4IV9hDsXTpOQyRxZwVnifcax8Rykl58bBF6oaIw9DHElaMNozVGU5jelCQ6hgTQGWlDFFkyJCGnLPWdc1IXYCqaoKWvpVXa1WqwX1XYhNq9SXLCRkRY0BQbxLkT0hAKmiMDEzJ7Cf/bs/N9aa0puqcFXpl3VRV67wWlwRUY6fDUzHM2KGP5IAkbWusNZKbmrXhqyxZZVQWSQWRXM8ffbLX/zqX/+bv/qLv/7pf/obCbCpF0Yo9VFj+rM//f8NBn77j/7XQDrSR1Q9+TgV3GSSTSnL0jnHfZdYk4oCMJJL0RD1kOMHMKCKE28OEQFMvTQGy8LVZVk4tAa9Nc451ZW1FkhFOISANkvVBABKKYgaVc1Cv8fT7vbu3c9++Ys+DGXtd4fm//p//6enGP/R//Yf/+AHP9j6hWSSABGrCoMCI42Bygzk5jM7++FzqGgGkKx9kv1+83Xut8/D8nwAoGCeU1XX9eHh8Kuf/OR4e/vbP/rhj3/8o9fvvbQWq3KRIdMYo/ejsvd8vTn7zfXsuXx1HrWOt4OPKgUzkKtTmz4+pu0jqh9jvLm5iTF+9NFH7733Xs4qEbF0BU2zC89x73hW+cWzLl9JfI6GZEsbIUAVzc0VI5WQwEKaFj8fKHMKPc3TeMS982W9QNKUVBAgq3xlUCF0PSKWzuduIVJgFmBxZZHJXjHGpmn6vs+930JJJlbsPPANERXIEiKBMgIoQMp3b5Rj6kOvxiIoMqd2aJFY9DR03fHQNr2yejQ1kQVTIBrVZIwjQuuMcz5EASD7Z//j/+ycc4V3hadxBmflCt9vZy0Yqwhzm5tgbyyiUSTOnBtCj2i4K3xVoiEhXG3Wvq7e3r77+S9/8Yt/9We//Or2oVukZD+uPxLtZcv78PCrh4fhq4c/CcLgKvCgbJ3hplNFjqIK7lEQEwyiFqVhxqk7RMSV1PegxfqibVuDNvdVAoy6p74wGf23lrz3CpyYNamxfWCQKMyaw9scSYoNMJV8uq47Ho9vb97t9ocQwtt3t4kIDNwceiiW2+tvWX+ZrMlgIxrjEEEEQImTCLtpWl/ihLmrUVWEIEPWqsIsOWoFCBytOgZRSQCAhICQlD2QPDpmBAQDKCgKYqwdhpD5ilkBseu6fRqk9I3wn/3FX3355dcK9PrNm/dev3/kkyYGo8yM6k0i6dmlsk3twJGBjUHjbEoJ1VqyImBt4RzOI6fnEADIKBKQgWmOdYZqs0n0fU9E1WrBzIy075pffPFZVVUff/oJGhqGYbveiEhMAQyo5KmfNCZihiQNMjVXZKhldJV+NHjImCVSGkUbylGNRRVQkoxV4vlAzLaUPagx1pDjJHOygDiO4AvKWT1aRBKnPEQIEdEBgBpLtioRkVWiJvUgwDHEzMoii/WySimd2mMe9gGgIJpiRGVVJgJrnDOWDEpMwlYDcYoiktIpAmldGnScQjik077f3XaLlTZJBxZNYiGVFB1aCzCsfEOKxRLRC2IAExHBiP3LX31ujEFDgsAqPI1LTjzGftlKdWIacyGIihQVVTQJEIIlsgUuXOHJWTLGVoUvi8jcdO0+xZPFUGN3iG/TLrRNHOL9cASA427ftwOiESAkASVTFunY5id3XuSYCzPnuXEOrb23Ip5o3AuQpeWMocfUMQefY5ueQsJRfTKJCOhITG/6UyZyisgwDE3T3N7efvXVVz/92c+/vrlbXqz/7n/9x7/3t//Of/W/+vvf+973vPeD9OdR1jdB4+cOE/Tcw8y41LOC0DmK8yyWG5fCmrnsZKwFgHYY9vv98dBI0rKoQCmE8MUXX739+t17r9+/3GxTSgRYlVXhC00cTdSoGYyc0V0iyiNICB8p1vqUkoVnRKj5W82Rc3ZE+eTKo6GNMa9fvrq4uCAiQbTWdl03mgc9Ltj5mtB5g+TkbPUbvYQwgqmPFbUcTwCAPUPX4ax6/Ox25kc0/+Sce+PU3jzlMiAyao2fh07nX08fCVtJEscYUxhU1Vqb9ZmzuF9G/pQFEa0rIrMAKyBDEgFOCCzCBtF6X3kCZ7w3nsiAQM8jSM4yEFnEEeSzP9ntDZAxNEqliQgCEZj0GNrpWZN3btLM0QBAbtsEIvR6AwBKCIgMKqDGWeOcrcFbtiU5HbzbC3UM6AAcwO7u7rDfS1IAEDWACtbMG3cGDMbHYJ/U98/CPCwK75yl6dlYMsaYmNgYMzW/ISigWh2FeHKzoKTI0/+F3L3MrG3bnU7Nbnd4+/bd11/f/NVPfrpYLv/+H//JP/nv/k9/++/+3aurFygoIuE4AAACzgaMZ4Xc88aXx9RueofOGtwQaP5PVccrAc6aQfr0NVPNyBrnXODUtu3t7e3Nl2/bU1cX9XK1pSQxctv2zhWb1SKlRAreOWesYIohRJNpbTJHvIjIAjFGhMcGCT2rOU9arY8n6ZyTz0FpLrcYY06n0+3tu2Vdf/jhB5vN+ng4IEHhbOhHGtqIocMT9lV2v0Q0Dkl5Oh/82ekmIvhIw35cqEw+n1Hxcxj/3GKnGCJz4BCn4Cj/hwBZ6h3MI+sjS47E4dGvwDSmNMaY+k4zxz5xjJHjGFAYJFVFVhDN6jVMpCIxakrKjAyQGBWcIVADMfYcWRXQCFlEq5I6lpzmSNc1XRsByBgMsQVUG0a1ASIiJHAEedg5dwMAICoRGHJ5WwLApkMiQMdkkCwSWkSraNZO8gAHJGLQGCOrIPK61uSQaggrrSDGlQvgHwZzH/nrXeh3d7FrcbVkkQhMqMtVnYt4eY2M4Dj0qR/mh5RXcAyHSJ0xqoRTxGkIrSVjR1WqbMNZfZZZMzk25/GZQZ2v33OfN+XxeNzv97/4xS//9N/8+V//9V+jK//Bf/uP/4//5//uD//e37t+8UIUuqZHmbbO1Ow27xQ4KyPBmVUjPuEYP4JS5pH8cP4SBCUUUZ0c+PhfjACQhEtyaEminJrm7v4+dpFE66J+dXlZl8XrVy8vLi7W240jNRazh7RkGNGnQlTtYIe+y3T/TIPTyEQE+oRTNX/n8wLMfKczEputdza8pmn6tvv2t7/94sWLXJh1ZDI0nVRmA84fNdvmfHGZ9JzP89hz631m20jPI4UZJH98KJB1enDsU6TcLnpObnvKsRmZ3iQEqip5sDMY5SeOJPOi+77HsV/AZItVjtnsVRRVBUZ6d/54BhCwgEbRKosKGXJUWiMkCQFBJOEo7RBSCin0p45VzGHf7B5OIoKkAFKU3l5sF0iau1PJgCO0jowx5VUiIu+MteQtGVJEJJWL5IjAeHI+t0BYBMcKhveInnKbmbWImIs5vjvEQsWn1EuFzAMNovvg3sHC/fKW4i71Dxauc/OpABtjz0GsvIdCCMPQfzM0nXePqgLLCMbkhoS+17GPCgF1InUFZh2GYegzTqgxxq4bhmFIGHOP2H6/3+/3v/zlL//jf/yLu7u7/+KP/uS/+Uf/6Ld+5/etL05tl3dq6Hqwub3+McCbv+0zQ33mPZ55EiKbq3WTJxmdAT4OuXtyy2mkKasiMsupbY7HY9d1pTW1d4mlKvzFdvPy5fV2u7aWDKmZi7dkiEgrBUMx9U3fhRDm8dzZcenYffXoZmeTgLMshs4IifNP5ke/3+/zqMFXr14t6jqE4I1FRElsyWTigEoOUh4NEr/xmi87r+Gz0H0cLaCKoPMX06mFcDbgbxyd49Tr84BoVkSa3bt1LjdSZjJatmFVrSo3Dhae2vrzkV1m7VsEIhQRSZNga5b4EiUAQJIMvLMUdWEcYdC2Z4k5SsyVyMIaEcsKPVpGBOAkFDebixRlGKLzJgZQ4HpRrddLu/UdAZKRwlnvqSp9UThnzdoOzlPpbeGss2AQnAFCNNYiMVqwjqwlIMqQAiJ57/NjNgDGkIhLCb257DEFmyBWpXpgn7A4MTwcpS67i6rB/h5hsGgRUcFwTCIpm1t+YMPQ932fuawwhTqzwzoe2vyYMwFLVXPniJCZ6L65yBQySzb2oW3b4/HY96Hv+9Mp/70/9XnWSXs8HkMIh8Oh78P777/33/7j/913fvBjNfbY9RVgYR0gMnBm/9K0OeaTfo4tZ7+hE9g77yF9avbn7uXRthE09zDDONTmLH8DNIaI2r7b7XZd1xlnt8vq9fWlR/PBe6+vLjYffvvD9z94XdXe4gjmy8gfQesdGpK0OHVt1/YAj3UUay2nJ62O+XdnReXZJM4PrJlkslwuEfHm5uZwOLz/5sX11YUxGLqhKByotm2bG4kBQJ4Exo9h+bODb17MZ6eeToNBxmBnmr18/uvnZ4GqyijopaMTzLm+KuXB9WSQNPck5a6SbJxGDBryxuYykqrGNDqD+cjLjA5UCSGkFFEhpZRCVi8kIEswxfoIuR6HVmNgyeLpY6tcQAZAG4YhcRJQa4y1SKDirBHjvM1jsY0xbWpjDGXljDH2VRkdoS9MVdJqUSwXZV0Wzpv1svTeVoX1hgyyIS2ccYZiCQwMmMgoWUQ0AkYF0XprDGR0QUYVcBFS4F6pR4tKJTtkK7669O7NqVmurl+sow63EJvExrkijw7MMH1uY8jxSd/3HMN5hpkTD2ZmsbnBeui6vu9DCF3Tdl339u62aY/DMOTuomEYQhjath3avu/7rhv6vu/70LZtTgVtUQzDcH5av3jx4h/+wz/5W7//h8VidX88LpbLotLAySgYYyKH8/7ycwN+Fvjlhx1jOrfV/GPWju43M6WnHPhxm87GP3tCGUX7UGBEyxXh6urK0C+q0r642H7y8fvr9fLlq4t64YdwLIqlsZYIU+Ks7Jkbbsqy3G63wno4HLJ+cM6Ew9RleZ6X5n/Cs3ZlmJs0APKvI6Jzbr/ff/3119ba999/f7lcGkBVxbNgVXNA+yTLhRzhfzNUOQ89nuFYIlm+Mv9TPiU1r+lstOcXfNaz8c2oaH5e42kl48pbRHLkjInCzJx30el0ynedvXdVVUNzijH2fZdRF04pw4QZ2yFQUVV+1C3uh1PKQ1gwIQqikkGQNISOOYJEUCFSMGSNpwJdWabYl2UJmzw0D9br9Xa7tT/+6AUZKJ2tSltXflG5srDGmLBKhbOFM9YASTSklSPnDVaowKKkxFkOGsEBEFOWOFRLRQ6Z8vJ7tZ1KD4piaABMpGVh6jpUn1u/cQvQeNDuOESrlVhrh4SImFLqui67xL7vh2GYDThbb9/3WWVut4/DMOz3+4fbuxz93t/e7ff7XfPQdV2W3WBOOXAKgR3BXHFURQUtfFEWdc8RILrMlRUhok8++c4f//H/Zntx1Q1t2wym8EvIT/5RqetZS36O385NdIbcsozg+S6cDf7Zlp0PKTgrfp4Z8Fj9UtUY4xCCc265XH70wZvUnl5eXn/00QfLZX354vLiYm29ExYrqpPwAJ4NQ1+tVjGkpmm6oSuKYoSyUpg/cfa6Mz/pHI5+di/5+rvdbrfbvXr16sWLF0VRwIRH5tOqsC6cdW6ce+A5jD9fCngKhp//E7M8CmiOJ52eP4i8eo/KRJOi+PRQ5tPhCUJmxpFptjB2iHGcbArAzCGGYRiapjsej7vdLpOlc+OxtVbG0dVjmzQTZLRlCBEAKPN+WViSpKQsROCMIfWChUg0KhDBKJBFERDlJGKErEVnC/R+iClxIILlcpmSeG+vry9fvry2H326KYqiKJyzgJSs06rUotTBDEg9jdRCIiIwmpBLUyI6pHLKMWYcvztjtMAolQQwqCkAfF6qWkUY+KR8lEXxqvZsjtj8zXBT2uJ9TC/a5Jys+9A34XQ47W6Pd20KA6d26NO+ZZWu606nU9O2u93u9uE+hHB3e7y/v9/f3Yd+QJY0hK5pAw9ZOxmBEA2BFSGwpiyt5VpQRANLSNADRABRGLwtXFV4k4rSHruw7+BHf/cPX/7o+7HcHo4dCZVKPkVvKamEFEfGFTwK5YzZFFpAVE3MYgwpEWsKSWJQtTDWcxHHGi5AYZ031gCIJgLNORdzVLFTxQIILRmYQjhBxKr2zHp7e0Oor15dtm27LuwPvvvJ1dXV+x+9X9e193k6ZxmFmRBUFAEVNDEAOmPVumVZqcB+v88ogwHO/T0KwNmWCI014C14W5LNLsVaMoaypAkAYEJrrajauuwlffHllyLyyYffevnyuutaIuvKIk+usL4IAsYVIoISFOMEIyupzOqt5/0eAEAEiJpSSEmIyLtSBFIURCUyxuZoefTD2QJpkoA9j/DP3S9N45ryrsxF3fwE5+paLz0AIClLjN0wtw2ehlZJ1he1iDRNsz/dVVW13W5DhGpdoYU0BGuoKJdFiEPXMw8xRrTWV24YBh6YSVhZNGbKubN18hp6ERiMtYvtgmMhne+OTWzEwiIhPOx3S9Wi8KGIPTfVBb6sXn50/WK9WNurN4X33hfOICigJXVenbPOvMxgXb7bKakAgJQFJRRBkbIyGwAQvSDzPJ4EAJeFCvJJ+3jsKcregE8sob+/e/szpjtfvwKshE0f4sOp/+rm4VdfvX23PzRD13Rdd3MvCDlHbbr2eDye2lZVQ+Cu69IQPBrvnEWtHHl0QZglpAkoNUQAwokNOjSKIoaU1ChIzkout8uLzetl5ZjjwIz15vd/5/fXy4uvD4emaWpPMzICZKtKUwpPU7LfAFnNB/wMmxPRRGk7d2KiStPUwbyGhjMKrSCTkqvoY1grIn3fi0hVVd77rutyA8nr16+3262ZxkGklDIDDJ7qigFAVZYKsFwuN5tNTvm6rkPEPLBkHAoz1ZyZWdROuaWZnSIRiYqxhmNk5vv7+/1+/+LFi5cvXwKAc8V5MAI6QkLPIAAAUHqsx57HtGdvEsATOzx317O1n1/kHPE6v+D5yiMiPx0CiFOo4r2dDTsx98NjW3/+scyUZua2bRGR46MM7QjyTfK0Wc0fUXOul1MqRyQAScI4hhKRmcOUNAkCGkrMfd+HFI/HYzd0QhpgsKUpy7IqynJRO+/tq4/W1pK1lkBUnQIbJGNQeDOnD5opJgqqQC53nGn+n0w0upiKCatElrHBGwASGkSU7G8ycRYBVK3tDDojxPG+uzv10VbVhS8XHQz7A3/+ZfiPf3XzP//FLz5/e3/q+y70tm2dcwLKExUwaz5eLcrgCk4GRZUlhUAUhLiqyz5ICMoKZBOg6UJQgBaiMxZAjEVnScQYS2XpK6dX2/rl5QWgoF+8+vb3vved7yHYYeiHYVgUdd7TnDQpn1vpsw2hUzULRvhqtN6zlrQJ9BpPurPIUKYGfwVVPPtvRLtFsggUckzN8USAm9W6KsvmdFqv1xcXF2/evKmqKvPvM3uRnD034HkHi2qMsfB+sRhni7RtKyKZxmMBsjROHkaICnI2EBDH1rTHY0hE+nb48ssvQwjf/c53Li4uVDEr5sTIRAjTKCA5Q6oe41vSc1M8PwrzB83rIyIAlPVuzyGDZ2Y/H5HzeUFPu5rync2P45s2P0tG56Agk+2NMcIjjuCMXdYLzAQh0fmHDRk6y8CznWf1iBBC0zQ59i4XHlS0R1YFsmSMAKYoSMIqWUVcjYQUm67tY0j7PQOL5Y1dWUJjKKV0So1dXC4sGTI59RZVRTWISFDm40BVFWbIQQxOE3phrowDInTcGGOyMMo5Oh/yUZ0XNrsXyVIpyRqyFkGPKQUKrPo1SpX8qTmkt190P//rt3/17z//+q4TBHDwuiptpmj4siiKLNrovWcZ1BUABSrkBhdvrTHGlBUzDynmiYFDDPvD8XA43O0GpCxKBgoYghgDReEqj2loUiivr19cvPrg29//0dXlK/VlSu3QR1hn2j2JpBBDTELmCYz8TQcyuc1H7s7kgR+H0xpjyBEgSf5JzTJ7CDD2/Z5jsPOGVlXmFELw3q/Xa2uNtfbly5fr9Xq5XGZrzIsjIiCjVCwijtPxAFQ1DCGllJln1trlcpnL7/rYpQAAI7+NaBxekzW3jbGI48RlmC5+d3d3c3OzXq8z81lEiiIHzwknUyeygI89BjMBAyf953yejZSjkasztsiDkkIupsq5qePEwpjt9tEHTlm0iBg0uYSUCc+ZGiUA0SgITWLiI8KP1vQh8DgkKw0hRtGkwCz90OcQ3Xu/WCyqqpqfb0opcyM4UztCGKYhyflEyHWQ/GiMswYxCKMyEaOxSqgKApjyVFfrLFAcFMgWvqq2G7LqPK4vV3VdL6ul9YajWGu3hEIkgAkJVAypBTVom+nw4rM/FdRPgwBVRBTG9jF1+yxeNLeMGDJgbIYWOMfPoAiZvKgciA0X1qkKQSgNExyNFpQaDnE4dv3xToeudqbcrMpl+aooslcx3tV1TXacneXckwKsszbjMZKLAaqRJYkMMRxOzfF4fDOklKRpmrZt27YfhiElCAMrw8PtQ2g676urN/bi+gX5Qp3P6nbM6ywfTcYQW6IkkmYjPJOJyANWH6GUWfFuhpRzM9eMl0wsv2yWms0WAFgfR5nNDmKMiKYOhLIs6rqOKXjvN+tlLnXkbE1VMz1jzCfHK0weSTRLt6lqjpzLsszi1TEy5OkzE8JhAIFFwWTSixVLjhBdjDwMQ0E+387NzU3TNN/7+NPNZiMiNMYOqgKAmienIKIxNOeZue1pPGWegttzMjz73tzeD8CINEc8s6EiItGjzMCzI/Ucx/5mmH3utM8enJIxuWOh67pMU0kpcQpFUZB1BGjJWD8O6MjeFUSJKE0OPMaYm/5HVZlhYOayLJfLJWBCa0wKEAklz9ckxUxdyOIdNEpjGyrranVRrhe181iVLovnVGXFFVqjC4Ao0hOigpgxYjFRW8hEo6xTjVmtWkcFuFF5iiGXGZEAIyCJAk/TGRUMoM1V6jkBlizTokq6jTGCSaJJNTpDWSkUBLmX2EeOiQz6gorCOU9gHTpnnauqanOxraoqzwH03s5C8DrJR+Q2LrIGwSQdpyH1MXTdcGqPt7e3N29vd7vDw/1B5SgCiG6/j0Pf3MPBlKurj75bLldRJYRhGIII5ENBR8lVmBVP8Skz6dnO0LN2+W8a8LRpQBVEErNw0pjFvcjKWF/BzPKaQ3LMQ95EQ9eX3hbOSYqVL+q6zjtsHuOUg95ZMvJJSCnijSeitm3bts0i+3VdG2N2uwMiEuLcvsMiKSVvc8M9iYiMc1eUWdFgYm6a5ng81nX98uXLqqqsIpCmlDjJHAPn/BknDiNOI3C/+TpfPcI8W35SHRXNfYjnLx3bTmk+E5/xN/L2A9HxM1UhSzHqkw+dE/5sNiLSDf3Dfte2bT4KY4wGNE/GGSkPxiwWi6Iodod913UxBgNP8vP8M33ft+2p67oMjBNR3qmKJBkHdT63DOEo0I6sigpJVETRmO3l+r3X1w6Vw4Ckioac8d5bAisSRaNCi8SgTpVUHJQZZQXFHLrk2jv2oRlXB1hUEADRAgGmep7ek2X2GVGJcoM+zWDPxFezJjEzKiTO9SGjqmho6Hx/5NABAJWlt1QW64oKs928rJeL8bVaVVXly6KqKmvQT84ZDbk8QRvAiTHGKJIikLXWFyGltm1/+Yu/6rrOmAdrvfdlXWFKEkJsWhD1ICGqKZfry5cvkqNuiCkl7/12c1FXS04D66hp8yxmfuYnnxvMZL2IKPKEKS2gScZ5eEk4CYNaQFSadhdCbppT0Nx74ZxLKRwOB+tGp2EnKaYY4+FweHh4WK/Xm83GWpsy4XncntNTmLbpfr9v23a73RKNPJzQhRhjUhnznUxWmeZXIGKmsuHEkSKioeu++OILAPjkk09evnzpnIPIZCiGNMXDudPYZ9Brvnc66+igMyXA30TeQBEWGdVCZp85idTBnLLNBvzs6Zw/shHTydZlrUwNiYiYUh4JLhG07/v7+/v7+/vHnn5jHKH3PiuEE1FVVfnveTZlpp3PERYieu+IKLtxZq6qMovFl+VixDOMKYoCVVtXBulYxRij1gBrbs1hVRD2pXv58qVD7U97Y0xUEDK2KCypirDKwNIiRVJSNSqWweXsN4f3ExwvmjIhYQrKCJCUDEC8GPMcVdTZCQNSylsHAXCyXgBgeQAgSyRiVUHBMGtg252Kvu1SyiMLa7u6XL+4NIX/4Prji6vL7Xa7XC6LqjTGWO/rui5sQc4SEasQkXEuR9eV5LHxqITOl+Rs1/eHw6lt7j7//AtrfeG5rsFQ1XcxDIeuU2OttbBYbi6vXiw229vAbexCCJaoruuyNG2DWQ3cGMPyaKIwkiLHVvtncdpsxucGPO9RljjlUDngzKyHJ7Sk+SPGs89aAGiapijd5HzydAgJIez3+91ul8FSa61khYp8tTOALbuUrJyMU0ZLRMvlsm3b1HcpJYOPeiDCmkeNi0gIEacOByIahuGrr77yi+rjjz/ebDaEGNJQFqVIQERjnCqPNGFEFj63zzmqnVlrzzBhOMP5Z2sHJXyiwjVyuc6JYs8+Yr6IPh0W532BE/FmzjhEpOna/X5/e3t7PB5VtSzLsizrut4WRV3XhXVZ7zprYg1dn3tXRURQzj3warXKpIb889vterFYeO+Luowy0qerqjJIrixSjJwGoFwFUDMNhRDQw+kkqt5adb6qqiDplEQJLZbvcf8wxEEleEBCUiaJGvSAZ1PzeNpzmDrnHKHNBGMVNeoB/aKKqphYU9IEMGLRAhaP1hWEjhUEhDJKLQkT+QJiOhBpishhU/oXx4fQ7U0MNVOoruoPPrgsty/Wl1fbi4sXF99+8eLFer11ztX1Mk9CM2Rt6c4TmPl5ZzEJmLoOVfV4PKqaarFdb16+fJ1evfEqpu3C/f3h5u271KTj6WGx8dXF1fblS0SqDd23A0t/ebGuFjYwo5UuDGoocDTT+TmSmYFUQDNJMM/gUEl5syKQNXnUrhFQdd4VRI4AQROwV46cUERYk6AwKGv0bKbNOmnr5Kaswiih8a5eLfsQHvb7xbJG0BiHMMSuG/ouDT0zK4AAjtMDlMgak5TDMBBRURQG0Bm6+epmtVit6tXDw0NzaFarla3cwi/1BKfTSZNUVWUMxRgjJwcGlLImWe7Or+u65f7tu685DZ9++N3vfvQhoh6PB2sopmAsCStzNMbl1BcARNlZC3lQqzASWp8lBPjcfqYADnQ871hVMj+ciKxT5w2i5AYaRCycc2gsGofgrGFmMKSiIgkgfwejCKwJ1BAiwNhgyLEDRRWOSYSVWYeOh7a7uzveHQ4PTRdUrDdl4Xzp69KZZeHrkozxvjRIfTuU3pe22N/d9w8Hp0CoImoAhxhXm/WiXqaUVst+vzsw86Le1lX98PCQVBar5XZ9cTq2d7e76+3manv5k7e3feyWVW1dEWLX9r0quqLsh+FwDA+71l6tBtbQHIkodN0Qk7XLK++I3SCsoG0Szm53WSx1WlDOGiaZDTbYiYzOqmosIhSERdff5XH3ggJWgARBDYCwRAyITiRXokQlirJBH1miJIPIaFQlckwgXSAhv1xdvVkucXldLC+W2+3l9dXVxZurqxfL5dJaW/jKWps3dlEV5wY8uylnSaeuQ51GyzHzdnP1rW99cn39ql6srCmHGO/u7r7+6ubdF2+Ppwdj5ep6UxTOGHJonC1mPzNiGMxkHqup+JuKjd/M5SZywhjDytSIZ8w4KGL+2mdO6Te4cZxmAmXY2VpaLpdIYIzpui4zDcbSZUrDMPjCAdrZ+58jt8bSoekCp7V3YAitQWuObVPWRQ6nrc0K8nFy+y5NwyJmogUzP+zuj8fj1dXV69evASDjNADi7GNb3+QYM6UJvnlr8BRjf7KYk2M8Z5gbY4geNT3mmzpnqup0WXoU7nl0wvNPppi7fDW30qXEXdft98fdbtf2bYwRLDhrvbOFs4XzZR6aZKxzjhSUIYko8+HUhiQ5om7bVlIqqkW1WGScX2cB86kN9nRq68WqKldFUTVNA0Cr1ebly9fH9k4SS0jOOQJs2zZXsBpJX9+8i30T+yMKE1Ebh2GINmqdcBBTCxQiAUDRigAho4ooAwPk/uuMIqCWeehEDhWVUZKLQKCCgkQAVpCjaBBhQGFTACsoIzokJMgKFQJaMjCDQbBKNkrZB20H/eLutG/SYSiwKgu3IFOSKQq/MGZULSTMZFdCfPJIzgMwEeFptIdM8gDZaVxs3yOsiWCxWlpLQwx3d3cvX128e7Fsu+MwNIvt2vmsnkEqBPCoDZJL8Ehjjfs37sLz0PccF8kFzIwmnIvICT9vsRp3/CM7+slxkKNl7/2bN2+cM4X3fehFJKY0xBBiFFCyRlQjp8RsncN5EprkefZkkQDg5uZGRHIdWEScc3mmTE7qiqKYy9fWWueLrLCPE4lCRLquu729HYbh048/fv/993O9FBFzs8+ME09J6X9WuiDf+hnPJKMMBhH4UT5MMkg5RfWjPY/wxzcK3XBWzpyt6JvotHPZtbACp8j9MOyOp7vd/cN+HyEhqjd2UfhlWdVlWVVVVZTeTiMmVRUh3/V+v88Ic1mWmfKRs/F8qmacP1cHELGqquNdI4IXV5dN2/fdF4aK68sLi8Wvv5SHu3tmXRY1FhCTYD+ghRDD7e1tGkrDEYTRGhZth2C9KRFqwopTJTKQglEAJWiHLLOcJ77g1LcppgBVBDGIE5ENBTTFdfYPSpiJo2PKZ4lZUS2RsZgz/AgoYaistUQaGZPaEOzxGPe7+NVtt2ulZ6oMGPUWPWFhjEeixBwiA0ZF5LHZEvvQz8fwE9R3mm0z23Y2G+8W2421lnxlVSNZXa3LIdSlvRLZtN0JrKsXeeYlpTSK9Gept/MNh486qs824hMG77lxEiFOPOpnDkefMP6eZNffPBeyhyyKAlF5omTlEyofUtl/jpsbUTNWJIqI3mSMB0KSm5sbIlosFjPZoCiKU3vMB0TGWjJweu7c8vfPoo2Hw6Hrurqu37x5s1gs2qbJNuati09nNeDU/fcspcez2tj5p8w3mwO9b8Ym43VwjI/0rDSV/3UeLDy7X5mGd89rKyJRVAViil0fmqZ7OBzf3d7d7x6GODjnCutKb9dlvSyq0held4XzhsyjR00sIqe2abrWelcvFzlWB0Iypg9DHKKqVsvFC3q13+8Dpz6GsioBqDl1Vy9ebbcXn332edN019uroqis9yLCKsZZg2OrkyaMEfb7vaahMCAp5pFG7RBsZeuCQsAFY63cgyAJIsBQWMOsJkkuzSGYTAVKXkREExKhQRqXQ4IkAELwFipWKyIqRskJoICgGk2kgAQCGlEkJbWuQnJDF5o+Hlv++u39zbvh17cNQ+EWq3r9+sXrj1frzXK52G425XJljBGEIaaQONf3RcSZJ5DvIxEfH4/tc1xEoo5FfBFVAVTvab2pl6UWhRuGIYheXGyK0qXg8uMfyxIwFQD+8/29cNaEcP7p8+aDqZY2f6tZoeU8dJyvA2egy7xrnXPOoACkxLPyQR+GkGLkBISu8LlnEA0RkohkIo1FwjydHiFyOrVNURTWu7Ztu6Gvqsp6hx0OwwAA6/U6y5rnqHgYhpmOko+GEMLxeGTmzN/M+cVZ28MTbeDz2zk/3R4XKo85JAOgeWCaiOiZONY5D/RZYDJH2vCNsGi29vkiOZiarxNDyvKvp1N7t9vfHw7Hro8KQdgZ7yxV1teuqLwrnC2Kwk+jM8c8JcZhGG4f7tt+2G63m4vLGCOQUVE0Noepxpi6rjOadXd3R0R1XRdFsd/vu65bLpdlWeZUJY/siUk4SozMIAIIZJG0rCvkpIJoiDkNIUWGphssQ6UQ0WwMRnKOJIEAKqlDVjEZeEAAgMwadVrFGGMcREQNgs0UWS2LPiVVcUolSgmgwpbIJTXGWmADDARoCQlZOZJjX1Si1PWHu4fjzd3hl5/39w9hF/Hyxcv3PvzeJ9//3Y8+/v5yvcpzIwKwiISY0zAkYkTkpOifhEyzK0v8yFCHUdwAiGgYOmuJjBoChSgqRLYs6qKql8u665supux8EBVx7C5iZmtw0jocO1iemdy8U2nS5ZjT5kdM9Wxc9Rxdz/R9fcoNfHbx2RisNQggMrLwc37edV3+vzlkKIoiH1KWgAAF0eZolrI6PzRNAwC5enweGM/RZr5O3lshBJZEE0tnHHUdQtYDePnyZTE1YxKNctPGFzkROEMWn4j1fCNIGe90RpLn43h21M9wyvPy+4yWj0Ipqo9DlacNkM8XOlPJV1VjnAiEIe1Pzc39/eHY9ENMKgJijCmsK6xbFeWyrCrnCzfKuyshAjLzEELX98fTKQlXi7peLkIIZV01TWO9K6ry+LBT1QxkGmfRUPbP19eXN7fvuv5UVBeLRb2/uz0cdnVZRU7DMHRtgwrOmBBCvs3Sl5CiL7xzBtFRSApaeGO5eA2wtrQkc2mpJ2GJqEkJJ5guI1jTUhopYhxyOgRZCSETWekUuyEGBbUiphNlBhSTQEvngSD2iVhKi4SQYgqc0jHGiF/f79/eHr5+t/vq3UER3/vwe59870ff+cEfvPnwOxfX7zlvQtfG0PV8SqqGwFpDkMt9LqUEPDxLg58941lUedwcgJj7pSwhlpEDEXlfLpyr61IVo7SqmFIi8r5wmd4UQjDOGBrpzeeTyn7jeU9TJ3BuWn60z0l+Z65VTgZ8xpecLHnefE9pC4AIPPm0x8kVnAQBrbGWiqLwVQmGorAF0Tz2DSF3iDErM3/+xRfWuc12m5gTs7G5iWq0WyLK/Y9VVaWUjsdjDs6zqedsOb95/WJ7dXXlnAshN0hLnjGbmxPzLpq4K8/P2TmOnRjOT44qnfoQn7nWc6TA0NgHNuvAzGJXgI+/cpaewBwfqWrf990Afd+/u3/4/Muvvr69a/ohoSKYzaYo66ryxaoq1vViVZV27OsnBhXmyJxzWuudK7wvKiQbIhvrl6tNiAxofFERHUIIbdvmtV0ul5k/s1pWxsDt7U1IHctwanZf8fDBm/cvL66++uKrEGIHfURKKQmCqPZdIFRPkVQ1SWRkAQRrU/GCsAFTkFko9DGmGDmJOvKIKAgqwiACIiCMmoZRQGCUv5BxoJs62zRNP0REFKAYU2IlUuM7AtUIp+YYu8ETgoS+a/enrg8cE+2auDsOt4djE9qLq+uPv/vD7//odz7+zg/94gKNDQN33dB2jRYTRQay8PI4SNHiPHDgCQ5ceDu7I5zGyRLRZl2Pxvw4WECttRDEF6ZtW6IhE2O9d4vFOPkixuhQyY1uAcmcnxrn2yt/K5kUDOeBd5lCBDrK303e4zF4fhZHZMz2fE+PjXImu9DxczPanPeHtdaQQTSZF5l5VE+olJmDJCIxffHFF5vNZrPZ5LN49mBde5ongOXSZe5zIBqBwFyTm5vaLy4uVquVtZaZM0HPe59H9RHRyJt93qH1hN0No7icyV0KiFkCiFVRBHIo/s3jMoemGeo7X58n7KoJZchJ+xwczcN+u647HsKp7W9vb+8e7k9tE0SN9WqwqMq6Lhe+WJbVoqqrolCjBGiMkRyChhRCQLJ1Xa8vtnla9/F4zOOjs0wCM2eJ7Amch9xqcn9/3zZ0OO7boe3DZVmWdV1WRfHBB2+KVfX5Z58dbu/zw236jlUYtLZcWCMiYYiaeAgSIgigve/eiXOqK4ItCdsQbOptCid9B5AAo0JUGImgwmqlH+KAYFBxGGIKKSXp+55TJwKJoR+4HYRsieT6IVqK3HTNXd/s7mLcKXWDahe1abgb4u5wHJLacmGq+s0H3/3+D3/8w+//wfV7bxYXK6zssTmdjrv27tAfTsHD9mJdVqU1xhj0noxBsQbEISKMJFDNAwqRlMmoqjUGhVOMpS+cwRhjMrFw3hgDWc4uqrWurmuJ6XD/kMTUiwvjSkMOFD3QyoHEVjkV1bpvGzLOEwvzJDs6lVsx2zNnnWRm5EQhUNvzEPrAgdyWEUQSYUJTOGdFMbRp7lICAAQwhhiUszWMW3P801glUgskiZESoiAESSm0qqFIsUmRrcVF6VZ1sSisQ4OCQgMKJpGFr7uuvVjUyZm/+dkv7t/dfOfjbxfW9E3gMFhEFM7EwDRydSjvcu/9arWKaT8MoSgcAAxDt98/HI/7169ff/DmfQIUUSKjqkguJrXWEhgFIkOgWe+UmceK1CjEPU8wG1GDlCOAXEcf579IigBEkIV4MgxROHIWrB1bJmEGCBEQARmZhcCoCCgR2SFlzJ9sWUZIw9CRogWMPUunpzbeHfpf3XVfnVjUOUyFhpW1l2QKlrL0xXYllZOycmRYUschM1WVwHpHRIR6sVryAIfDwWDjnUtDqAsfEPrjYWiaoW3v7++7rtlsNtfX11Jao7Ew/aJY/fRnNxVtN6v67de6uLp69enHm/vLn//lT27oM6dYOG8SN13b9j2Yyi4r54vj8aFtOxFIEZbLlQ19rymC8+itBZWh6/Z7bk423lImdLQAAIAASURBVAImwKgaRWNKKYSUIqtNwzBI0hRl6Ps8aSz2g1o9nZq2iwNDiKhgFOyQWFLbH7W965vd/TDcJW0jCIs5NRITH7velosPvr358MOPf/jjH//wx7/95s23F9cX1XLRCO8PD2+//lrboST76uXL9XqdXSISOOeyTxDOrirzhgVgnHUF47gqBWBCpjx/AxIKA2OMIddv+n6IMTbeV0DGQlX4pAIuT3tS7733PudZNEqfMQLCb1KxGv0wArOEkPo+5KpMn4JIAu6NQVIwk3KDNYYn/uBZ2qbfrLbMuR/iPE6ERFIMPAxDCDHFkZ7lDVlrrZkY2giV96qY0SYiSgqHQ/PZF59nbmAOleVMP5CmbniYpIuIqCzL1UrC9MrUorIsX79+vVgssk+eY5zMnIGnVb05Spq933kiCpN6xrmXPgMLpub+qZVan9Itn1WPvgkfPAZH6AhQgVPSfohtP7RNvz8c2+YoKRCBtbauzLIqyJiiKKqqmsmSmUbdtQOzOOfIECcd+jBzyIZhSHEAlNWivri4uLm5+cUvfn64f1itVmVZLhbVdrvdbFYZumca+hhiZGFQgdzX3bbtdr0uigJY+hjQuYxZFsAQQUQy0X0U6wHt+84O/UmNIS48lIiQ+ma3u23ub+HuL0WS6MAyMMcQwjDElKRRH0LglGJIHMbpXZJ4sLDfHWN2p7YQsAIYkgyxDydod3E49l3fhNgIgKJpTzxE6AGuV9XrDz/+4d/6/e/88IcvP/hodXXlqiKC7Hb3v/rsl1//+vN1UX/43puLzbKuy7Icd4YhgamlcXrkDKIKnEtVmnsGc4yaIlmrSolDjAzODcMQhsTMd3d3x2NT17W3/dX1dbXdWrLkPSKyiHOuLqvEQVUtElurnDK8MU1phG9unRBj1/VN0zZN1/Yh8ACoSl1hnSmscyaDITCJ3T7u2tGAn1BBzkjWIw8fUFQ0RQkhjUOhGI03FiGXl3IZyRAiYt91wgCi3jkAFIT96firzz+7eHFZVRXAIxImk66dTjyHfPFcUiIi4bjb7fa7U4zRO3d5+eKD998ryzKvxnkoa4zJQb6cvWYDnt95Glc/RryzeePYYS6559wQPLYQ50QDAInM1O+BmYSqIKAsKqAMk0LCGMoAC8Qk3RAO7fBwaG7uHr56+/Xd7iGiOmcWvlhUq+WyWtSLxXK5Wq0Wi0WenJhUWCUPbXKFN8b0YWj7DgCKolitVsPQ9V3X933hrLW27Zq7u7vNYvn69eurqwtE9N4S0eFw6If2s7e/7oeYT0NEvL5+eX35AgSNQcx9IENPY90LKyzatodOhqAxRudtURQxJCJrj/sHIeOKkmMtzvTN6WF/f3/7Nr79aUxdTH2MXeKQosTIKcmx2471jzhS1XMW2lnT9YLGqmJUVMDE0g0xqklotCwMGV8ItyQxGvW24FNsEMzrD779w7/1Bz/63T949f4Hq/W2Wq/I4in0u93u3du3h8PDxXvl9mppUYBDCrm6yynkY5gzhRhAUFRBJrqvKIQxQsv1KxmlBoGJJbWHw7ub288+++zP//zf397evn79+oe/9d4n+t2XBZX1NtP6U1JjsKqqpk2aGAAMUkLMo7efdZzMryQcY2z7oe2Grg/dEEUULTgEY7Fwvi7K0heEyBw5RDxj8AvkitETmtcMjI3X18xL18i5oiaCAFYNqHO+LMtFXZZl6ayZiB+2j2G5XGbvFkL8/Isv3t3e/vh3fquqqiwbOPP4s+3Nhavsn/NfyrLMjQpN0zDzy5cvX7x4sdlsYIKIZqkKHKnFj9zmc7T53J7PAao51x2Ttalmq8aowgQ95rwXcjEsSzrlMiIBooKoAJksojdjXRk9M2hRkSMPIfV9OLXD3eF0u2tu7vc3d/fH9lRU3vqitGZZl4vFYr1ar1aralFba8fjRlVVvPcZz5vOqTHLAGVEbJqm79v1cqEg1tr33nvv1cXFq1evlstlP7Rt2x6a5uH+tj01p6YTgdV6u764WNar9dptLq4k6cPdfd+02TMxM0iiUR7IiIhCqupyuay996porbW74yEXq1zhUeW0u//yi1/d3Xz15S9+HUI7hDbGIR92IioMntQ5lyuKhbelLdA5AwjGerMAQwI2KThfFHVBdeoiu6ow25JUh64+PLhmd5JBajSH01DUiw8+/Phbn373xesPlhfXi/XGF06Aw2G/v7s77m4hDcYKwoAySEwxYe5MztC3iAA6yHYLMA4igtxJE4lINLGKMWRNhjeYyAAoaDzs7//83/3pP/2n/4+maX7nd37n0+9v81BCAHS2yPOsnKe6LIeuERGdR2/o864AVT2vQyaVlBKzMkuKyqoGqCjAGVuWvl5U3ltElMiiCdA8eioYBTCIci7/m2iVqNN0Ps08UQDJShfOUlX6qqoK74gIhVW1cB4EvbV9SsaYw+n4Nz/7qa/KDz74II9Q0Kk74rHWNf19hsGYuSx8VRbWkAoDwPX1dV3XhJB4Fip40n1xrp7z1NPq+QfN51fWW88ZcvbnGZSaMuOzDqQ8usi5PDcT8njR/J1F1JhxkgihAqBmxXEgUSRQAWbpkx7a/vbYfLXb3e1Px7ZTjp587c2i9FVVLMqqXNS+Ko0xSViZAcBaa5xNrFFEYiTnyDklCiH0MVpQlnh7e0NE3/row+VyWVXFixdXy7JGRJbIzKfT6euvv7y5uen7/nhqi6JcbjaLelUUVVnWhS1ijLf374aht2TIWOUYVZ0Bb/xisWAZAHG7XWwvlohIaIuisP+vf/4v8lwuYwyCNM3+/uHdbn97OmgIGiKJZElRo0LMuqRD1kwrnduUZVlt/aLy3nfHzhIqmiRs0CwvL7eXV9baUz+g1oZqVB6a7cNX1Tv79vRwCp0Upthurz784FuvX70p6wUaa32hoEMXHu7ud+/uaAib2q8rjxhBAo/VCEFEMmO9D0hGPZZpvHY+cmvriCgpsYr3FgyJCCugGgCoqoKMnJpd0zardfWd7377/TcfbTfXZbEui7UxLo8KcV5z/gOj6rcaIplKps/cy7gXCUUkCceUQpLIIgKCQIDWUuWLqiidtaTCKASYzvwSqyBCPmtzVeXceiePqimNLZucMMcBiOqsyRm7d9aQydqbqhrC4H0piVMMi7q+e3j49a9//e1PPt5ut3n4LZz10MPEEx7JMFOhVSdJmqIosuXPSuiINGe/cq4I9dR654PgWSvS/L49OyxUdWxdYh7HNzxNZXOFdgynZawYEYCOvMAMFpBmMdc8DEhUGUWEBYaQDu1w83D88t3u5uau6zvvxJBU3laFywhCjsIEM6KYnLHWWl/Y2AcAGNVLVFNKTdOklF5eXVdVZYyJMRBRWfqyLKuq8s6LppRIVfu+vb29vbn5uus6MMZX5Wq5yYVoTnrcH0MIp8ORY7LWsolDYEmxKJy1VgwqkCh4b5fLxTQYzNs//49/BYpjZdUiAEfpByCqL1wZMQUAQTTMOvQpDfL28OuFsDG9s6FBxz5GX1aWNlevFcAW3lhH1iw22/XF1nvPzIgL0ILT0J18ZQX6CIMeuhMoG8C6KhbLqiy99dZaUMa+6Q73exn6y+Xy5cvtB+9dX6wXPvdzqwAI5XwmG64xqFPXOggAkQoAODLWWiPIItZYIBxEQBAtiIgSD3Hohq5euk+/+8nf+t3ffvnig+Xiqq42Vbk2VIgIoBJl2tPooCjz8thEHomasxnD5EliTCHrAISYkgiDkjHkc9CVmfA5yJTE534p3x2dzUb4zSG0xCQQWWOa00QgS2VZZutFRNQx0UQQGmfLQFEU98fjX/7lX3ZD/+Lly5z96iSenrGrc77xTNzFMzrk+ajraXrGM61mzVk08yNwNVO45t86N+z8PqE9B6VmFG024PlF06zQ+ZgAADMp14zuPRcDIE9gzs5ZVTmGeDw29/vDu/v927v7t7cPD7u9s1qVpvBuvShWVeGNtY58WeREl4FRcOqoRkJLaEMMfRdSSpxUBRGMqoYQiLCqqgxxLhYLAsEhpZTaU9M0x7t3t+9uvn64v2fmxXa72V6sNtuiqBb1qi6qrutc6b7Y77uuE46qCiONNFf9UVWHoWtbJ7JZLAvvipSS/Qd/8ifKIFEkcZLIkJSSIoeeRFkkAYgq9l08Hru26U+HZVmWKQWOoVot/PrCrZbFYrFwpRKuNxfbywtXlca7oqyzRQLUzC6GrvIR+2N3sev3Awb86u3bvmtO+8PQdsqCoiEkVHs8Ho/3u9j2tffbxWJRFoUzC1Pn4nO22awSBgCMFnDqPheegkzAQVByuC3AwJxSCFGYgJi57ZtTexxiv1wvP/jog299/C3CAtQZKr2rFV3kKJjQSNbhGmUfiIiMnm2Ub5Y0h2HIovEhJGbNsy2dK4yJ45liUJUT5zA7KT3WsXUsMv8GacXHHDulGDXG0UKILJJaR9l65zqniIAyIALg8Xgkaxar5c9//vOf/vSnL1++/PTTT7M8Yt6UOQbO7Mjc6pS348x+sdaicMarQFhEDKIxFDjNwfY8XmgqCz0nhM8e+Bx/nm1bjOh5s9R0tfN7n3HpOTRABVE106+gwsAp1wJyY3U2fgZFxMSpbdv9fn//cHjYHw7H5ti0Q+SqKheVXy2qi/V6vV7XdZ2pjt5n2hPKJL2Qo6QkPMSQJ4Hlhd1sNoV3+/3ueDxeXFzk1QMQ5xwpxRib5nh/f//w8DAMg/feObd6cX252S6Xy+xLiSiEhAr7/f7UHEII9DjAXTWxMYUCzUOJl6uaJZ6ao/2T/+b/MNblUkgpxTikGFPKqcfj+ub6QYzxIe7HQQEKxpiJHE9lgrquN5vNdrtdLBazn4mwFpS+77KWFSf768/3R/Pu3jSHUj/bvfvXP//ZD+93l58YEqxEoxw5HLk/FZwu/erV6nLlljBoXxu0NVlRTvkYFJEU+rzbE2pUiCoxNzCDLpsEEBBRRUJo0xBy4hS6Q9cNBmEDKz5ECvLm8qpSWeNi4RfL7aIrYgB2toRgTDRF2ZeVjzGmFH1dM0dGAutcVBIgJQPGgoORHgCDwCB4YnqIEhKjphqTISmMLwvr7SgZ0cWuiwJgQSBxxl2B0BgyqIQM0SVLNsu+GERjiQBFOAZMSVKUlGKMQSQV3pZF6b23zhMaUFS0iAJoEbGXXwoabzfH/e7f/H//1Rc/+/Kf/JP//Yv66mF/Nzc/zHUj59yyXmSFVEuGAFXVkEEFsE5yYqaqSJDzCOuEgcgyqwgbMw5wyFPY8t/HAmRKwmDI6dTa+WiEiN57MiCahIEMOWeNoRhZgTWx8x5URZN3hXdWVSV3mUxBAWV5ukzSJiBnOCmKoLFR4hBjYX1JcPfu/uF0bLo0BD3u+pvP7x/e7mrXbOsPNovldvNiuX7hClctF4tFvbCVR2+RrDFRIKUUh8CROCUeeo0B1BLisixiJAnDbXP46quvhhhevHpZ1cum7RGs9Va4i0n6gd+9e/jyy5v+lBCcd9V6vby+frldXRnjUaxBqyl+/fbrU9sMLEHBGDJlTZE1mdCKcR2ntipKidQeNC7dse8Ph95uL9b5gBx1B2Vk/82s9DnOGaf4mcScda9YVXFSbSsZZ42CnD/kx/NwZCVScC6xCpZlWZe+LsomUal0Uv313/zs3/5P//rV5atPv/fdRNSkpmmakCI5b+sSvFVnjKOma41BBEgpgHCW/mJmSoYht3NK4JB76JPIQ2ScWm3TEEIIBsl7L2mIIQAAa9hulu9uTGwbiaGsFuVq4V0RyRgwRCQgGR+aY0s9I/HhSNx7xFrzEvVhaPq+G/oQUggRNTkyWk7F3zPhmMe0+QnMMw4KmbCx+f2xl/jZr8/M4fNZXjnyzL+4Xl4OiSXRr3/9+dc379brdbmoT12TCxg69RjnnPabjk5nmbHfRGmcsofninDPUoPJEzyG2c8QhPnKz1Q1iMgYICJABiGi8VuNkwaeUsTHMD4z9fCxq4RZmYfm2D80x0Pb7vanu9vd/v4htI0VXq1WF+vV5eXlxcXFZrPxnuqizBXyfEFjDDOpatYh6YYhxjinNjPxbnd375y7uLgofZFSyskPM6d+OB6P9/f3t7e3u91ORNaL5WqzXq02ufYLYETSELhpTsfTvjmeYj8wMwIaJDBjY2mMLELGWADZ7Q5d12VXbHM2aQmIHCowJ+cspwRnyc/5k0vOZIvF0d5H0N+TwTO11HmMyJo0pSAaQlLl5IyuVsur6+1we7d01R6Gmy/f/st//i+Wy6X39s2bN204dk3LHJU0CO/aU7RivenblGunkWOMg2gaJw8OJJJEk6SYeGCOIEmVu/Qoj8rMkthaW6SicGo8QeLaxI+vNvHtyg/RJcW6KhYrISMixjiDNkGASdAj7/UnOaE+UR7OS8TMfZAhSBhERJkZOWlBlibIYeplOWcC5wuf8aDH1q9R1VFnedQZPMujt7LGDVjr8viiuUZ6boeBBbFk0b/66//068+//K3f+i1XuGNzAiPwOCTdnyu5zhuXptEq89OkM63W6c9HSdfzz52s95HIkW9UGFRQBZEo/wX0kQU9H3PzNa0lY1DlURjAWDrXnXyO0k8S+awqMUYeiV+Hpm1iamLcHU+37+4fbu80dMvCXqxX24vN9fXl1cXlZrPxhlwWi7NWpw7E/GQzKACqPquj5nqbqjKHlLqmXS2Wzjlnbd91zrnS+RhT27a73e7du3d39/d939d1vdpurl+9vLy8XC1XVVWlpJK4HYbDcXd/f9scjhxTPgXJkLXGKqqqsJLxztkQwru7+65ruq5DVBuHloiEyFBuv0zCrCrOl3Qmc/F4OoIFAwBgJtw/y2YxnKtmP8oLVSh9iLbXToYYW9HoC6oXHgwBIYLpZPibn/41/D8NePyjP/qji9J7wM2i7gyzDMfDQ9fvVJWboAiqHIWZo4AoCgB49gQCKiQRNJBEBDYgkAwAEJK1NvcWlUAFCEla1ouUgp6Ob5Kc2NbHwZ2C+kJtMSQOrEU1saMQEEZuw3SEjduFx44U4HGqOQoCgyaGxCpAmPuugC3SOb9Cz3RCcq44pYuQ+3UQzEgu0wycAWQb1vzDOkU/2Xl6N9qvI6JnQo+qemx5ufBt3/7sV583XVuv10OMFriwZnbd56HBbBU0jUQ69zbnRabpFp5PYzv/9GcZ7zcRrDNv/1gwm+MdY0zWLQZEyC54ksV/YrRPmy4BQPOggySqGjl1Q39KoQfogj48NO/e3R0edhCG9Wq1WNZ1XS/rRVEUxXQMOuNzw/MwBERkjqOWA2LumsgV4EyDFZEQQlVVbk4b+8EioQVJ3JxO+91ut9uFEIqy3F5cXFxfXVxflUVtyBGRMZKSpBRD6ENsJUSTxTt1hOtIQRIbtUTkvR2G0HdhqkWTHUJDRGZUBURCBQQyMI78ntg/OA5WRVUzL7rJWh15oDE+HsN6RriBFIQDElujSZNyAk2gqdEhGI2UgHw3HP/9f/jTskbn+PfefKuoi6Ujlyhxp03f7ULfntK+m+q0ghYxj5hXdexQwaFYFEdijFoSg/iC6uxGsn6CMaZKWrAaAhdO3fEQ7x62D81VrxdQXiwuzGotvoyT5JokzlMnRPQcUDnfwfMemn1pjPHUxzakgTXXkJAZAJwxObOYCcbPClHZLLOt0hj649QJMNvwxGHiDM+SoXH4VR6sBTASGHTqXkDEotiK2l998fXnX74tl8vFatkMzUW9yXnB+R2dh+Vw1vB47pDP42d4iuGdd2XkhTk36flTzikcz4OayVvMTpuIUARQcrQ1nWusyogWnr50EqdMGfEWYGZWSVGGPrZ9aNpw/3D86uvbm7d3zWHnUUq/Wi8Xi6osK+8ICY0zHlENjQ0w/dCLjFjoiI2rEqKKZKgoxcgpcUqb9VpiCiEAS5ZpVebQ93la8mG/Z+Z6uVhfXay2m3JRT3rgAAAsKcaBZVAVVMiksazxIyKgIKBR1BlQwqRsC3vx4pW1JnGw3ueVg1xBVQVLgIhZQv68CJmXuI89To8kU25zcgbePnuo4y9qVGWEBMAiSSEZo9bScl1eXi0Pw6lPXDnbdN2v/uLf/Wmhix/87qv3Xl5dby2yl+QxxdNJd7v47j71bYrRIjhnLGEWQbfqUcUgOEJntDBkiazBgsYGLpdPJgWwVr0vsDyGJvFg3t7bd/st+vfee//lx58OF5fknHSDM8aAER57vmfKZN5VxuDsHJ7R+rLu/uHYntrQtH3oOYXeQQItCbAsy5kzPBMP5x2uU1M7GMkdOdOuzItvphAaUsqB7qOTtNY658dvMpOcpgYJcv7LL2//1b/6d1+/u//kk2+vNxsGtaUtXDEXjbL3lqnN/fzP+ZyaDfic2HwekszGeU5XnrWEzuwcZpsdIw4kIns2f2scQDkeJfkcBaBRFmbk3p2732dYfUopCYhI5JSi5LpA24bDobl5e39zc3dqOzRU1359tby82q43y/Wi9t47a70vUoqolJu0cgNW5kjnxJtTkLGGyIjqnBFxqgUKdomVJffxgkhzPD3c3d+/u314eGjbFomKuqoXi6qubVmsVmvgUSCpbdv94e5w2B9PD8hCopDTGZYEo+cPISA6MiKSFsviW9/+oK796XSy11eX4+JKEpFciUHEwI9xI51x972O2AriOKxCVVEgpOFpRJQHehIrkGQuFJJRZ6Eu/aIuXl9stO9Pt+6UhtrZEK05ntr/9JMv0KXdTXh5uaj90lJhjG+ben+I97fY9SkMDtQhWAYCJVTvqkx+RlACtEhkAACb0D56GFFmzjO73Mnu4slviv5wevjybvmtT1/94Afmwzd+sQiBE2vhPIFhFjKkj0URydjeeHVEAaFRz3TUbWaVkGIzhBA5Ru76QUL0ZebEj1LgesY0mrffeDowiHC2VSJ6ZF5BRmso84vm0dKPOeGUNJ6n1vPhGxP86tdf/Yf/+NfGFd//4Y+vXr9ESvCUFJGB3Pyt5oGaz2LpGTQ+P6Nn+zk32vxm3v0TTvY8xn5mchkvm5PtOV4996854c+fPMbVT0vl+eeiakiSfW9u9mj7oe9Dd2gOd/t3b+8e7o8quNluLq/rF++/uLjYXKxXq9UqqyA45+IQQoiscV4fY9B7n7UK8vkyV85hwhG6Q+utY5cMYghh6PrT6fTVV1/d3d31TWutrVfL7Xa7Wq3KRV3WVVVVsR9brJvmuN/vD4fd6XQwSZVFWfKcoLyk1lqymCRqjIG7ZVVdXq8vr7bH495m/2SIsug+wShNZCI9ixvz967qYiYSjsAoi0CGIyB3rCunlCY/TAyi3lvQUlMJQ+mcJaIawIZg+34ReEneWOvFXES5+exX7cPt7ZfVZlFe1cWFdT4E7QYNAw29DZFYMCblRKrOWIb7yDAd9qCqqAQA6EetGQJk5pm5TXfaFbJ9/2q/3x/b5rvvv3nvR9+TF5eCEFIcUizcOF7cWyv4GCJOkg7j5o4x4TSe6zyWRjB5/k5eojw0cLFYjMTApwIdjzGL0nSuz7bx2Np6HriKyDTVwEzzSsY+2CdZ6IwJC5yObdP3b968/93vf+/qatt2+8CpDSPhacqlx6QO8VFjeQ6e59kx37TDLEY3p06zwZ3zrr5JzPqmh89aVnk9z7H9MQ45w3vzbKT56z2LExOryNiszsxDzKSa0B1Oh93x4W53PJ7KRVUt6tVmubpcLqs6txzZHInAKJEtkHLBFhGzATMnZsYpAxrnWgEYQEWy1hpEZU4pdU0bQjjuDw93983xJCJ1XV9cXFxcXNSrZVGVZV3FyCEEgyaOr0GB57wjL8U5taaqbIhDjH1KEdD5wq7XtfNqnbt4DJPOTrwSZNJzTwpRxuHugJByz6ZMYtFjTIVZjvC5NhVQFLYaoFBg7Yf0gLHtd6fdbRMbfn35srBOY+rbDpM0gWP7Dvg03OEuxKOvjpWvSQ2k1fFoyRTGIFBS6RFbQrARsAghFEUxhIiIVVEfj0dCRPKB06E9Vdu1eNpD46pSQA/HuKzX6R388qt+8+l3f+u//Pubj394UV68laEolMj1sYEE1ttArKpiUBTIkqrmdnaDNsaeOZOl1ZDy0LNin/jYpyEgq2No98c9Qrq6qnxRrDZb43wfIjOjsRmQRWMRRVPUPAlpjGpIQFnFZZlpAkIA0YwtkhKDSxARwBVQOHJZJ4SB4dH2rLWSUkqpKApVOHYPQP0n33mzXFpCqctFjIMoWDsC41m+T0QBKEQxJgO9NndzWcLCWQYe9buYUREUDDpjMgVIWYNmxgyAYsbbMq1yREPOMDDOkTCPBOORq2/IOeMIrYgoEBmXVAYWo4JE3rk86skAWls465nHSnDG73lCyzioxIQW+r5lk/Z924Uoxr6L8u9/8vO73V5VuQ+rcv3m+oNNvd2s11VZemfLslRNfRjIQoh9biohst4bAEg8iAgZ6ENnja8XtSUCJWtMinIMR0gCCgQY+qHv+65rbt7d7A4P+6EtVovN5cX1y5fbi4u6rktfGEUvaJxPoevbfRga6YNPdg3L3hwtQektEVEeNURgUMGSL+p3NzsChKhX68tNtYEA1rtHs9Wzdk0CFZHEIcYhxqDA01Q4hKcwIFJ+156fhXOmJEZFLQIZgcGYmOR4Ot3e3u6Oh56jgA4pgogvi8xYPJ1udABKYIKqRw6pQLDIWm6sMZaMCsY8Rh4JgfqIMYK3RauSFB3jjkkBTJ9ijLtTKKBlhH1zdMUgoAFIjv3DsWkR/ovvvil+9MnwarMDSHnjGuSkKaUobMzjSI4c6owbcUracgaB037NUjV5DXOZrizGntLcqTOHlHMy+SztPHdiY88n0oRySS6/j4sPer7a8xPJ9KwZKCKAEPjUHBeLRR5fqKp936aUCl/OHnUSVxmLPYiY5wtoltWdKtLPXOiZI33Cbc6vcTTH/6IAIJ7VsZ/A0Pn9jEmd9QA/i0Symxo/7lEnEIYUQTSEeOr6w+HUdqHt4hefffHu3bvQJefsarVYLOu6LpfLZV3XZVlMfUVRRBTYWutcjjvGccG51sLMCCaD/gSQ4ohH5BQmt0kfj8fD4bDfP9ze3t7f37vCu7KoqirLpOQ/rbUGMEmMMfZ95u09Rg3PQL68GXzhdZzm57JuGXNUZVt4enSYKsIhhhBjPJ32IhLTEGPMw6yNyRi6z1ex1hpj5xjyPBc634voK02O2BgeUJr93c2Q+P54/Oyrt6pKChyTxOSdc8amlCrvA3pRMKCARRJrSCwVb9vgrTWocQhN2/ccc79ZGzEK+6rsYoqkauzudFSEZV3FGE9tqNQIwqkJbgBVXV5Vu1Nzk9L1m+tXf+8PX/zOb+tqcwTVsw03ozIzoJtz12SSqtKUc9I0WhWyxFxIMfI5cW25WG02m9VqZYyJEgOnmCIi+jw4WzCNw6V+8xyWuRx6/ua4ufERFs5f1UwzvvIXoFEADNrT8bjbv7p+8e0PP9iu1k1zPCVGUTRE1gChjL1NMzCerzDOg8U5Nsbn3/PZd34WPE8G/DiI6Nz+Z0M9L2I9C6pzD7ClR8IMPF2rkWqCj5JXqqpEisCsIUkYZAh8PA03b+9v3t62bevIbdb19dVmu67LqqhKv1qNUz5iHGKMSJpLSbl3V8fGMp4n7OaZrAAgDCEEEMz4ZZ5+dDjs9/v98XjM89CWyyUWbrPZbLbberHI7Q2F8wRjaSrGYQjdMHTD9Epj98FolNN9gQiEMKSUyKhoOp0O3mnXN3boThP5fnzl82AIx/MFtdY4X3lnq6o0Zmx8mckDiKNU1fljGA8PEzU5SEjqh25pvYtJDqf2/tjmk0wVh8TIgjqEGMgBgeGEqKYMyRBYUu8tYlf6wqEd2u7YdEkEnXFF2apRgsKIECkhGGq0BICutiIktbXLZWHdMlxmFr6DaMHWfvj+H/zB7/2X/9Xrl2+0J0iSDM6dqPM0lplzA5M8hYhkfUdFRZEJxaIMm3DCGWHO8jSbzaYoihhj0sDMwpr7/HLSZ8jm7rxv2gNN6NF5j+5jkIx0Tr36hkscD1MB2O/3KaUPP3z/5cuXY6WQyLonVz6nKCM8DjFAfNSINIgjORcwT6CexffOEu/RN+YC6ewq4SzhP/+es/USEZ5lXuc/+azki2dVrozA54EhM97D82CKmIYoMeGpkV9/9u729h5Vq9pttstXr6/ee3P96uXldrueEPhRsn/0rvT40EfVThrz0izQ4VyhyNZ6ZUmJRTQxd31/OB0Pp+PxdAyhN86u68ouqouLi+12m3lX45h45jgMQxgyPTmlFGO2vFbOWrvwKa1tVC8zIML7w11uZLT3d1/1fd+2bZ7NkaZXWZeZo5P/LMsqM7xzr2y+z4xtTMtqz+12fqgJBiEHCCpgfWHLylivhKcUKSUvYozpQTklAgSiFiHnUohAkjgNxuqiqAvbLUuqHLKlUFi0tljUvipDAgKoirJwRWV9YQthJqK4NKoKonVZokLoBxRFAAsOF7tt4f/gv/h73//+Dx255thZJV1bEclEozyBloisBUx8HsSmlMQ6IhKY+pEwi8gmTpjHQeQtOzMQQwgniYKP7N9chUdEa22acjk4h6GeOqvz9RwhRqRnx+WzfZ/fj8xdc9quV9/55NNFXfZdl+LgLFlrzdgmjuMkojnqntEv1QnhzsASnhtkXhFVxUm9dA4eRuBqvMiI4cPU3nB+vszWS0R54+pvajk8j64NPcYd51jX/ID6EEMIx7bbHZqmSXf3zVdfPfz8F1/GblgsFhfbzXZTXV8uXlyvLy7Xi7IEEOYIAEha2CK3as/Bzly0NzR+DeeLSfonp084DMPxeDwej7vd7uHhYbfbdV0HIIvFoizL5fXlerNZLlfOWJObqBBZJMR+GPp+aEPos909u/GZ3DrfrKoSoTFERrquKQpNKdh3X32RdUlz0lVaS75ERL+snSvKsizLqiiKwo8Hz1y6OAcq81E5n8rnxwahQUQGBCU05IqqWCzKxTKi6eNAKVljA0cFMIDOupYMq6oyIANEwGQsVEtcbbeb9XpV1hokxWisLxe1L4uHrkHV0hTLqt6Wy7ooPRpHbmc6AMgsKAJMIeQGjL0U8b4utttPf/yD6mLTMg/KjGCA8mk1itRk7H6CYfSMqpGsQ0QkFGURMuPZD8zCPLak5+eRJ27UJIvSiRnnyhKM+aFzzjl7noCcn31nDERhhTkHnkLoszrTWY0Az9Q88pmdUnr16tWHH71PRKfTIetvED0hTpw/sqm4/ZxQiQCoT/7Tmf85R/5n/nPedvn+/hfw5/Mv/AziPk9qZq8777p8yyFFEWHVLNAZRKJw0/ZtNxyOwxef33z+2e3tXbOpcbPaXl5uNtt6e7FcrevKOwDJRw0ZMMZZS1OpL+Zvd16xyyuTfyBGlpiGIYR+uL+/v7m5fffu7fF43O/3/TCgMWVVrXPRaLUq69qXhSXjjDXG6ERZzanWMAwxhTxGmwiSjup/RAYRYkxE5JxPE4CiyqowhLbvQTTa0/Ehf7+qdHMrgrXWlCtrrfeF96WzhbXemJECOi79pCGXVxk104CycKlOexEiD5JcCgoSmBXR2ML7orRFTQwiEoAYrICS82KtVYOaGNVZQyYRwOVV/eGHLy9fbq83V5vFkqKkIYEh6zxac9ntUogAsKnXm9VqUS1LX3hjX0KnE91iBueI6KY3fllfv/fBdz76qCQbh56sSZx5mWQMZmpbtsn8wGbSfzYJZ3JP7Dn1n4QhRcmoxqwIE2Pc7XaFRlnVVDwy2OZtMeP2z/KO8+2uOp6L069kcTaa9cDmFzPjWWvBeJTEeHmx2a43KgqiqECEhohh7HRn0KSSVM7dL4Dq07RWcORmnzlGBICYZD62ZUrbiIgTzzs+txaoKPxnrPcctjn7p5Hbe9638NjaeRbiiohO9A8BCCm2Q5+SNF389Wdff/n1nkylqS/LcrWsry/X11frxbLwBSEYAvKFnTRJ8rPLfcsZgxjHL+U58pkDnw+pJDoMw+l4fHjYv3v37nA4ZHWEXJRarRer1aqqKrtaFmVpvffWOjSgkFJKQ1BVGdWRpu4OGD3wPI9qDgSstX0/SggoKAAxR9Eokux6vZ5z2qkH0hGRq7dEZK23xhvjiAxMnD4cJwzA+Z4DSPr0NR7h5NAYNYgk1rmiKut6Wa+WUZhBc+8IWOOczdJheBRUtgCepbBYePPeuv7kxRYXV5ebq6vlhVFIgQEAiQBo6W1uba0Wq3q5rhbLsiyttWVr8qxktEZHRhMYY+So62L57Y++/en1ewuBU4jkq5DSlApiNnsYB/MITdLh+a55IiKPngUlD6rMKWQGomf1c0Ts+76xUDrypshDruY2r/xj/iwMPl/P8/AywznjxoVng6ofZ4tkGzq/moiE0K/Xa2ttCL21NmesiMhPJ+I+OwvOz5EpIlCVWf4mHzo5gmWYeBp5ePf53U0wJyDi/5+uP2uyI0nSRDFdzMzdzxI7ltyqspbsqt5meoYzFLkiJEX4u8knPl25L1d4KTN3Zmq6q6syK4FEIJazubstqsoHc/c4QFaHpKQAASDihB9TU9VPP/0+nTlt9imPai7gyM4YoC8BLC9fcyHb6+xz/3IVzljAmOoUZ8jFhiHe3z8874ZVd73p3Ha73W7X19eX24u1Q8w5o+XValObxFJSjCIy0QdSyhWFngN4MvU+7I717Y4xHo/Hp6fdw8PDw8PDOPaqWhf6r66urm8uV6uVc85WXeOD9z54z4aScokpxmha1RReKH2V9YVnAH49kzMMoXPbb96j8xSCUwX3+vUvEJHZ+yaE0LoQnHNEznhiutc6EheqPVoV216kVatIkyoQM1SaaCmzD7uxXQLE0ORc8mp10bZXN6/eXt3e3F1e/tifri+3wfFwOjFZ7o9qZbCqQmiIcLHZvn719tfffv3Lr3959fpuu93iTG+sV1SM8TQinfpSyrSHHXwtcbgNprlYZiquab1rwZwYhJyvXl+9/dWvbbs9eh6UFQbu2M+KEAscUqMoD4VkUikmopx0pOI8tAy+4XEYzAzRGapaGuMRCrJi6xtbScqnp93jqr1qIjSmyZeStWmrmgQ4R8we0KEBOtFcBIzIjExApLi2cUQAWJgdKooggnOmpIaETI4IAUjNmNDAIRbvQEr05EUEvT+MouCRHGhZhTCe9g5JCMWQHBcRUKuNhgGqKAJiMDNlouqrwuQQEMBYMEuRoiJa9+MBFQCMi6kaqIEiGIBVYhw7JK4Kz5WGAUhiIGCuTuImK3jDSkRRVTOoYzA0cMSz40cgIkL2zjNxre8AsJSMOKkoxZxrcXTshyjx/sMzyebDn3763/+3/yK71JVxA/sQ3N3V6rvffHt3uw0EJtY03nsfGq9axrHMbz1Xx6kaNpPylnNMXgqkmDTLJKZ/PPXH0/7pcff4EPsT++A9NU2z3a4vLi66dh1845xb167TDFKSOtFHyVDyKeVSTBmASpYx5lxUcaK81AdSoWUzO51OI8QxJ6bWzGI5ek/r9fpwOLnr62tEJOfriAiZKxxVYKK2MREQTXLFFc8GqEsx510NOQef4i4Tyq+KAlBVzgi8923w2826W7fMmNIowkkyAxcpNfcAAIJ0q/UXX33z97//zd/9/m9++ctv2stt13ULklTzZJXJHcfRijjn2mZ2W1dTy5X1bmSIjOQQPRlvL1bXr95c3d6xD6KAiA49vswg6CWnfTr5gElDb0oIlaqqqpVTOd2OTWABJ8WZNCqOrW18cA3B5zlzIpoSVY3Ln2/knvd+n2Qq/iu7OGdF6fQ6q5jOMs6BRaIVq8QEyiwtqqp1n8wxL3uwjJ+s7NXGa8oJtdtdbEqWEeTPRr5LRp1fACOWxTLmvI74LOF/+hN9gnWd/ysFwxeWNWbRCl+pwtPD8z//8z+/e/cOUDebFRHc3d1dXG6apnGevZ/2wyqObWe8o3P22LTk5f0iQLmckJzz8Xh8fHx8fn6OMRJRFYrruma73W42m9Wqq5VscB4WhAIRzBgpOD/KKcY4xlgxl5eyuRTnAjMzO8SCWPUoQdSkmJjapOLDTdNJIbfabKfnQg4ADEmqxBTTXBcZ6SyYbnVB5+XnXDoZUlloutMoksg5N8STlghYTDNoqq6fbfDskBwWLczka9qvaCeuGIEJXr+6/O53v/9P//n/8vd/97u3b1+7rgkhVLBtoUPEGBVsOoUAqFZKmX6rimiKUkntpmToETkjvP7yy+ubG2aOpdq9VaeSF07Fgu6cn6S5MZgNAZEBEapSF1WdPXaOwAMUZnVOQ3Cw8iGg8+rnEl2Xoui8MlxO0ss3ohdZc5v7YMKX1VwAm1VT6wkGIoK58lERUC2lhBDq2aqCXrloMctF0bGUUkqpDrw0D3XqYXD0Qp+cJkx1jfFTj1VVLYui5rxuOY99afHJqDABgBCRLVIaZ3fQeSv4WfAvoXuOugGAQu0XoKiaoajlZHGU/pTTaPf3j+9+fH84HLbb9avXN6tV+MUvv7q+vqyt7Grtt9ttG5rzjk9nbGn5dp+tcFfMCUTq1Pfp6enjx4+75+ecc9M06/V6id6ua5umqYK3HmdvVwMEMAMH6ABDCEPs665yHQOlYZCc2axW7PX7LvIY4wGa4MwYtEf0jjvvVo7RKYKBgaJqVgWd2eg8A6RVVwXnW4pmycLlaq9PNossEuFL7e69N9QUBy1RJeY4fPx4/+4vPz58eMg5OceI6FddfZO8qvfe6KpbNW3jvnh186tff/er737/za9+fXt1hYFqzbzc0zWAzzFJySXnXEsDrPt3kEUkq6iQGRnQqOX65s63XVETMVFQNRXBBukMLPkUrZku/lKKqRBRSqmlC0LNLqmoiRQVQENEI1U0mUYy1ZHOkZGoGajkIlxFjEmdSC7AuGwUfCYZdX7Ip0IUyQg+jV4EVEA0RWbGWU7dAFG1ett1Xeecs9mCMOUcU+Hg6y1hM7dsmcqcDxqW/URVXaK3ioYUUzWVmVB7Pu85a87rytHi940/F4o477Rfonf+a+dX6nllVP9fV7NyURHIucQk/SD397s/ff/uNEZyTlE3l6tvf/XN3auLi8u1D+g9rtfr1aoDhXFME/1zPt44C9Yuv1gS0qQqNYyHw6H2vYfDoV6RXde1baik9xq9zk8/oOS0pHSqb5gpmtb8DDMTrsLRVuR0OPBsiFkr+frCYiwAzrsGzLwjpiAFc1aXssxfxXKNyfpeaqEzwfua0/4qTDW90Bk9W5rvSfooUD+ehv4wHg+7x6cPP374w3/7w/d/+n4YRvKeybMLzB7IecerbrO5fHNzdblZNzfXF2+++Ob27s3V9avVxRYcALMPCao/nxkQrVKqeAYiLtog04abWik5WwQAIDTlkq2oDSZhtbaqE4xOQCSLqrH/3GQM5gxgZzyBkhURh2FYyUVAJnQCRbTW6kgOPbFDYoSqaULIQM7YMb8ArTPiVeGulwyzvJ2fHfGlPEZAQJvWNE2m6J2pF0RkstQLAAD1ap9yy5z5pytPtJ6nGnMT/3lmbn6WG1UVPo1enTkbopMmASIgUV3Untcp6o8wrQ2CEQLjp5TJn1fOP6uD9LM/mu5rBAET0ZQ1Jam6U3GU46H88V9++MP/+JfDfqi796Hhi8u2W4XVOmw26/Wm9d6pqhYtpWRJ57UAzgphtQBZSoPlbn16enp4eHj//v3z41NKqRpHbbdb3zabzWazWYcQ2E2iixUYr4l9GYDVgquUcfmjpQoDpEIOkVRBVXIuAFDJGfvdiaFrGscIYFSKppRTLC7GaISmWDewAJCYXU28i7Y4Ic9G7z9n003P15S9W25rIBSRIpKG8bA/Ptz/9O6H77//5z/99O6nf/3Dn3aPu5itbTbON6FbNW3XtKtus91uLt9+8Yurq4t167vWba/vXGgBHZAHNkAEdsA8BTAihSrsTYBIVDy7F0kKAl+iN4do7AIAlYylqDM18hnQDMk5FFDNDJ8v0yzv6LItvURXjNE5159GawMAWRWsIqy+nqskyqxUgSFUYnVBHQXW85P62fH9OadqGcCa2Zy1kIAUa36uzjICEwGucphZ569WRwaV3TPl5LMFPZ2VYirKVJkhtYzPUj4ZEc/NYY32+oCmNhhMZp7GUnktr3/+IowoAGCKMwj6koHPgYYl69rLRfGJtMDn9TaImYlBztIPMUU9Hob9cbi/P3z//f2H+x0A3N5evvnianvVAhfvcbPprq4361UDJuM4mtjM9Hz5dkuHct4bw8zDSyk9PDzc398/PDzkmEII28325ubm4uLCNX69XnddV7G9WoWYWZZU5XuBGoeMhOxpQUxtXi+dEArAzWZTox3nmXO9f50n0kk1RTTHGMdxKKU4YGJ04JCUaTIU9+RdcPODruEpulQCn5U90yOQUqHwRS2tFveDlOf94Ye/vP8v/8d/+f/+b//78/1Tvxs3q+3tzZuLi8u2W7eb7dX13fryan1xuV5tb25uthdrhwAyrjfrIrg/9ooQ2hfPy/peVko3IjLX9RYzQ55HI2TJUBAMGaHqn1d9MCXiYIJFAGrwKRq85LHzdxQRBez8k0vB0/ejZ1d3MQ0nYr0LbkUo7IsTLZrFCmBURSBfFwbqLAbJEEAU1WAGpc6P6XKSrBKJEZYArnuqNXrn20oRndkkgIyTwCopQEqpPqip2p6Hw5Pz5ZwTKmTliQkQZty1BqTNXMJFTFfqlssiXYKkSIoASIqESAY2Yc0LOW+aPyHA5+n3kxzwswy8FPNuZt0vZaCaVkymlBJjPh3H5/1xtzv8+U/vfvrpAYG32+2bN69//esvbu669bq5uNxsL9brddcELsmSZC0vSgNLYlxQADrziK0Q936/3+/3z8/Pfd8j4mazubi4uFhP/kmha7qu84FLKaUkVauuokMcRMR73wbnugYAJIGB1nmtmdUqKedcKxlUzLmogPcegQGMkAh1teqsOMKqeq6Vdylqbr3aIk8EFFEDAPJVU9KWTRQtIihQYBFzWoDH5XAXlcp5qFbxNjO8P+4O+93Tux9/+tO//uWPf/yTjHLRXX791bd4eXH3+tVqc7W5uLh59cXF1XXTrZxvnKfNaoWWU+zbhovpaRhVtS2TnviZFEY10c4Tta2OQHHa+yvlUNdyEU0AwRAsAJGAdx5RUUTUTItV/oM7O0yfoSmfYcITEp5FVZ2bM8ycQLyZA6yGPWaWtIySLUNLeS5NKzt/KqHJ/1tqjBMjav7KZAoICJ9jvTrrdbyk95qB7WyDarkXlrAZhwFm0s4iKysiLjTLIbaffahqlUd+yU5MP39oMGHOn4foOer5WQ1yVpWct9A4UbZprkeWqn4GGRUs59zH8XQajsf+++//8vDxabu9uLt79erVq7u7u80FXVw2V1eXbRvqUNQ5p86y5JwL0OdQIp6B5DZTu6s23cPDQ21JVqvV1cXl5eVlFyaphqViqn+/lDKOY98fU4mI6ENo2rbtOhFJOcv8pohIHaOUUjxiFeut1+vyAiZhkBKtABMSimopknOJpuxW24DgFbhOKEAErI4HG1UY0xjjYAKuoEVLo8T23TAM/RBFAMFL9UxSKHIqKg8fn/bHA7IfU9wdD2Z2/Hj84/vv//mPf/jX//aHcX/85Ztvfv+P//Tml9+2l3fb7fbq6qqudFWiNRGhUwBVMxe8mZ1y5qLWMAwZAABFJBMrERY5EANhGKOYTebLiFh/4gInGUSymEDKVgCa7fbi8hJCW8QAIDgYcxIwdWRmLiuaEhTnHOHEKAODSZCJSc36KFmAyI/CXU6llNAEQ0Jjb5BiDIoHYnDMITTEgjSmyKeBL/gEiIDegDI4MvWQzEqJW2lzUWasiuFZ0qTeggWMVJGI1VClVCqZ98281waERMhmIGJjya36AkjoxlhCt85Rh2TOsgOTYoAuxrFkk7GsXJDZI3y5OIzQk3OzDcUUcoTAZKYZtMjESFPTOvkwMzILRApERI13AJBzQTBTJ1U3HjxAvbxgkb8877Trr8/o+7rUIN77xpSREDDHlIsCgCKpUhlMrMQSUxxzjrnA/qT/8sen9+9/IC7bSxea+PrNmmxchcttu75bX7TBOdUS+3Ec45hNPZEHb4Dk2Dk/r9YZAUCWUjcNTDTGeNjt98+74dQDmPeubdvVZhXa0K5XTdOYmesaYxJEQYii/dDnnI1dy+J94xyrFARgIgJufJtCUbNYcl5oG2pskGB0LXnvEa1kJSYASmPJKV2s1jlnsEQgjQ+ovvEbFwviBESD5gQpYYkoZYCUpRzj6XA8DkPMQ079GE9xv3s39PHxeff0uEtZiRwAJSmn3SlJeX7eHU7HVPRwOg7j2LarIdk+Hk79bnw8ri10q4vrN2/f/PIXN9dv1uv1ZrM5TwKIiAEnMZFWCMB7H3wgZKsmZsA6s8AQUc3UWBQ0F1VRzVqkPvdUDpq1pJxTGVNEH27equ9a7y90KieRmUVFVOrXqzCkqtYXUj/zcr5fgEqCMxLfsrBiE3NTHVJFW5nZgM2qsTgQGgEVk0RETiBnBl98Oef3nneDS45aKjo6M4U4+/tTHJ53jzB5OGRDMMLJsWkSdYVlCn3+jRae7JJ5zptDVak/Nc6DJT1f4jurUz7rKmEGAl+qg0/pXwvq+fMahGhSK1/0OohIAFU1Y1SALHo8DaeYnnanf/6Xf/0f//I/+3Fgh0XLersqmrvNRbNqXn/x5uLigljNUslaSqk2G8yonxbzE1YIMHmoGRSRGGNd9amIadM0NevUQzttF8719jCcqkdhzaLr1s1jobrJ4LrOcs6lk3ry67CKirApqQ39tATGzDhveppZnVqLmOmUpXPOCNkdj1o0i1jOUoaY+5P0R0npEN/3Kd7vdu8+fnj/8f7h4Wm32/XHU/9jFJH9/vjwtBPRtlt734jIxw8nABBTF9rQNkOKRXS99rC+HCOkoUBO3rMPV9uru8s3bzbtxXq9rvbQy24TIqYiiFbl8hxNNFTnnGcPAIBawRSkCqlUkxFSZZgNaAEcYimqqiUJnE7joR8olPY6ZYPAHsFEtMwkISaaLFhURWA5OvqpuNQStABIXKv0ourPoQ7nXGgg5oIJEY0dEng0LUlKi96o9lyqmsWoGLlp82GJHPh0cGWfbhGeB8/5GoLNjkRntSjU2mwT/MLUW1ZWlmA4j+FpOv0pjWT5xfnsUD9VkF4Cfgnpc1B36Q7ql10GM58FvH26qLSocBFMgzEFQyRFqJTrU46q2qd8HFM2PA7jv/7l+3f3Hy7vbtarZr1ubt/etit//epqvW4ur6/aEHKJKUrKRYUA9LNX+IKuGU1lcMqVZTH2wzAMWoojcl23Wq0uLi5CCGZWz62ZZZVaNp9Ox77vc45LTd400xI/AjNzCC0AeZ8Q0YrAmeulqoqpI4dE7ByglVLEVMGYucyA/DQzJzQz99//x/dDTM+70+Pz4fnhcff40D89j8Np9/BhENnF+NCfHo6H59Oh709QItMXznnVdXYdBWq6lXPBzPhXHgAIuVuvtpfXt47V0HufuDsdHocPP8hf/txZhuRYfcurrlu37appuvlKnkYR1X2jOmMhciBmDsSOagBDZQrUg6JmYFYQnXNYVQMXZtA6vyqSxv7k/TO1zxRodXHVrtYUgpYipWIwtYcExy8jHGau0C68bMjZckarAgNgjhFSSiKBuOaZCUhsPPQMjIZgnlgdIlTutCfm6ns0XQdIhrSc++XiWAJ4+dZLMoQZ8q1J6TwAmF+ATSJShb7vSymbm4tlt7lO0T/Lup/Mls4+luth4Z/UuwZ+FuHnCN9SQSw94RIknzXJ59fN8tuK1Z3vutXSo9Trw9SK5aKllDGnmNNpSPtTPo7lzz++/8Mf//h4OLx6fd2t281l57yuL9uLm812tUKilCvrKaoCzJLmIoUcn6NlRKTFSikxj9W9UapYrGpVvXNEq9Vqs95URIYATTSlVNAWeY26LhqWBYO2bZoOEYsaqBmQKKhIHMfT6dT3fRzHEiOWrDGrqs0KYhWVqPSKHIsjVIHgEZh8E1arFWHr/l//7//P4Ti8e9i/v3/66f7h+eHpsN/FoYe+o27dXN2u7n61en35i22HAYggNZfMzN4RkVT1hqrP7BEAhpSzFOy6drVBx0SkJ9wMu+72LvnWffjx6fm0uz/k/YDX1+QYeXbZMQUVIiL2YAZSAJmIkH2lCGWVORXiApAgYtOsAGYD6CUrifoVipSuXber9TbdgIfV1cY1m6JWLceQoeJgpsVs2kn4bK4As1GYnm2li4hBdgwxxlLa1jfOuZKlCqOyK64uUFZgkxiMCao7beVcoiGogYpJMaUXeH9BQReoX2dNM3zxNP38FZ7VfssCBqVcDocDM1/f3rjgY05jiqnkqUKkF67ruaq7iCzQ8XKj1TnHsiP5Wbydw3vnH5/9COdVjH667nueeM/z4XQjEIjV6DWz6p9eSimp5P40DqOMUZ8ej3/54afD/lQLutWq/fKLWx/07tV2uw43N1dIJqlWnXXGzpPxKGptS8+/6cTZyCnnrEVU1RE1TVMdRolw0fde8Kq+7zNozcAxjmYWgqtqSk1TrXgbM1MBxSpKRXUeOQ5DHMacs+YMKeWYqmuCTuoRUPtBVU05CZGbtOB5tVptLy5MnHv/47v9mO938X4/foy0h3VsPHDpLr/hdtPdfXHzzbc3X71tL1t0alQOYX57CFXLmKehEWAMIbDaqe8zEq8633SGyHvxcoErdxyeT08/vf/zT796/9O3x+FiSN41wZv3zrFbqmirIxNuHLH3PD01RrOMM0F3zlQvKxVmQAY2s9XMgBC8eG1cWHdrzRkKOB4zRIuI6JDYIbNJrgLai1D4X9nmOw9gIqp2ITWhpZSadjGCEgAgU2J1TI60CjaCIQhK0czokGQKM0hFBC0Q1mo8TMzcFxbBEh7nveJ5o/vZOGYqxMyIKA3xcDhUMURErCorqlr7FJyJk/U7fhIwM9q8VBznu+Y/D9ezzPk588TOphXLJ88/szTJf72URUTEKp1YmW2GaDJZBOaYxn4cI8RePr5/vr9/bJrui7dftM5dbzdff/nG+/z21dXFutuuGlMGTGaiE0kPAI3YvGc8A5AXzDnGSWMdACoFddV2tX1gBFDNdXGpFMlZVYe+7yUvsMiyvdQ0jW9aIIfsEUDEBBAIDMmKlJTrvMYhCbMReebCAExSX4tBkpJKsQXVcx6dIlPTdZvNZujFffuLr/uMl72tj7I5lMdTPuVSxCBywWDrG717ha/f+usVNwqUO8oVKpQ6Dpyo0XkYBt8EBN5elCyGTMBkBq4VFZVNizebcr0Z/qJ9w7ZdbzabzWaz3W7PxXWZmVp0M3/d8dQFISLOc2kih2cOIjppudRxKTBMIlWl0vqLc4Uhs0geipZUCgE7BOc9cmXnOkeOnBicB8NnJ2xBSp1zqmZAqlJpEm3XnHt/qWVGCCFkFdEaFfUog6IKmieuutpV6yHRNNN2nuhMQ+dcEOuzjzll/YxrSS8BHGM8nU6bzcV6s1GzYRyLCDFTVZAGWLDDJWyIqNJm9dOP86D9bPZznl3r19GZLmKf3Tdz/f/z3Fv/Mp8ZO53HcJkpnIagojnnmFMpJQ1j7GN/1P3D4c9//OH+xw+BuHHeI7feB4a3r24u1+3lpkURNOjHKnxRjwcBAjtkxkkUE2otKRUsKKVMdiq16DB4sVyFiSqnqnXMjmfjOu89c2iaZrVq1+t10zTMfnp3kEVSyQIA51p21SaaAIEZWcFNi6gwn+T6hEPbeGqcC4jRzCp/M6fRXWzXQZ2ufdlQ3oL24qJF0f74Pg16wl7L3uslebdeOef5Dsg5J1qGcVQj5yhLGUe7WF/mnItp5xrziOwQUQEcuyFz4qH5+otmfDodP3RfvVq9vb28vtput3VVFc7G6OCEJtOWifbLDFyXayYGVjEAkXoaEEhqANdJkmCVrCIxrTdtsVJUs1gqpYhZgyhYoAAqoaFp4z0RnYa8RMV08vAlsXyaZ8CAak1ZWSvLItFZB4jOEwhq0QldoxfZMGauLGQ1qf3SImV+zt0/r1HPQ2iOmZcA/mwqg5OpZ7q8bUMI9df4qdTw4pF9XrgSYEVKlpS7jJFx1hlfXtJnE+YFqVoy7XnkfxbPy88Cn6IMZgaA5zGsMiPtBqWUMcZhGEsp/eE4nMbY29jH4/5kAne3N1eXl2+vtm/uLjvvvnj7arsKF+vVx/s9Gh+OuxTF1HvXGgEYmr088LqqATi13Ko6DIPOJXL1iFbVEhOgLX3EotyCiHUIWuUs27btuqbukJQyFcOImlOZOU5SRaxq/SwiaFY1x5ZxzHIa69Nw3jn2jpxIrJila4JzxfkL7yC40mDHeR2O2f1U4EOS1e4iHY8llsHKw/4ZgjN3c9lcn9rd5XrTFkM4SspZxITQcXZo5hQgZkli2VQRidztycRvDihP8hzlSmHzuy+//mUbbrZftZvQroMP5tFao8bQKRxbNgA1NUhgAuBNnSI1CcGRoDsMA6APzukojggjoPfHYVSisG6IwRhUikucVdSsoCW1KMVMiQGAqxydgBkg139g5JyYGRkyGqmBFTNjgCQIZlUMRS0pqhnGkocTtSqhzducV03wTBnQFMh1lGOgZGRRNJsIAoVAeQSHCpRMShGnTAxMKBSimM8lFPWMYOoAAkF1wCVyqipizjHN5gkzxxjNyIxAARFU8knEE7tukwSOxyNB3gRV1XEc66YEEVUUioi4aCDngUAMyZARAIpplkmwHuryRpllIrTypisWnWcUDRBJNdfB20T65TChEkRS1zwAkAkMpEggB2DlzF9muiJzqWKrDjiQ9+RBQJKcBDx5lZEVSAXVHPmsGsWJu3j//Pi//h//46eP+9vb67sLumtOV5fh9V37q1/96vbmi6YJH5/GsZSUT4KkBFpMUmwsdCu/al3wREhoKmKSSyyxon1FxYpJkSJZRJLGCfsgOZ1OL5AEgmtcLWraqmPD7Jxr23bVrbzzJsYUYHZDbbyvvg0Sx/vd09PuOcZIBikXiRFBxzRetJucc13/UAEEds6nlErvS+rbxnVd8kFLPu4e7mNvznNgcg2zoo9Mp+JOiQtpKa4hBzEn0Yf9Kapx8JvV2q22Jp4QVmukzsac+iGy2VqiIRTAyJpQE6gBGSGvufG08pC2V+HypvvmF2+//Prm7vb6pgsr51ZgZIagABlABISBAAKQgwYMVUAF1KAfnRIVhMPgRQxLjMdDQL4M7INIjuiYmMiBc6QqWjs4BUFTnSeQSMBsoiqGWGWHFgUzRlQyMEWFSU6l6ESxPK/3pryBFe0oY0xt25JhxQXIXrRyGLEg1h33844aAMSqokg9ByhFVdWITMEIK5r2WfcLM8K8pNnzxLsMihFxGMZxHNfr9cXFxTldfvmHRIT6SRpcBrzT1zT4WRX9ec4816z8tLyvld+0smtmVqUuKy3k08bkpfxmIEfEhIxGZmSqWqwwM5hW2lzOeRji4TTujicz2u9OP/zw448/vOv7fru6Cm0XmqZt29WqrQtYC8iUUxn63hTJXPBdaFzbtk3DzgGyAwCdx2M55xhzSimXvKgjaZ0ymprpQrqqL34hsbkmzD5V3jcNeWeEZlAJOJU5JiJaZOyH5+fn/el4imNWAQRkMiYEqPvHZlbzdk7TQlLbtgaBTT0hI7FBGoaedpLYBQ6BmMjIsiEkB5GIme/9hTWj9OM4pjyc4vO+a9tN2226V+Y8t7DqPILiEQ1ojb7pdwogBJltNCumBVARsrPCft2Qbm/s5otLb998+5vt7a3vCnsBRIEMoCM6AkZCUEJAE5BiUjAKDgWiwJD5FOUwpv1xyDGxSGNyu71YXULTupUHdtgQEQIDFqQRdaLw2xkQQsAY6r6/1W1wI0FFUWRiDmZiRcSMbIoug8832ublAitFTuOw7ptV23Wh8x6qNQmiVS4K1T3hemo/XaCbZa5QdRLqKUWrrdx5k/nzCc1n6NEUHy8BDAC42+3Gcby5ubm8vCw5g5lj1rNGgJmp6Fw1v8SkiGidnk0mpmLz7Nfwc6CL6BNpW5vpFhP4VMwWnYQ5etGwPvg6YTifaVXV8eULLlgaOmdqCgimWayIxSKHIbGunp4OP/10f3jeMfN61V5fX9/cbS4vVzc3N5dXk4pQXZgfx5STILJz5D23bdM0jXNQ/cDnEXddVyh12rRYQerEuZ6e/DnzlGaBdADgUL2B5xie4rDUYkZnlx9FLDEdnncPDw+n/aHkjKag5ojQgLzPOdc7QlUznO0nG3nPBMWpsVncHZ9Phax1rV8F1KA5mBCRmGhoN8Ul2RTTY5k31+Ow2x//8pe/hJbYXW4uVtQCijqxFtAzN9pqNfhSYZCiWAAMYSAdLHuBTds0lze/fHNx8+qtuYDBKBCyegNEZmACpwAqZgJZKCd4HuXjKd73aRfj/Qkf9qf73el5f8Cid1347dvXzduroUmrjfPkPINnABMkJEE2IkOySba4lJJKUcMwSa0RYlV5qes9yIjEbIoJCgko1yxU1frOYFKbtElqAKdo41DiKG3DLgBFQrQJ4jZkZc9mpoA8+wxOi2bzvLpG8Dxi9S1RhXMY7HMg7a9+LG3qkuVTSk9PT2Z2d3fXNM2w38GnXqFT4MGUTHRSVJtSbqUHLPqSL/cIfvJNlxe2eAjbbGI24VVgSxJGQIE6XkApOg+8pgttTsKfLAOdI+FTpaEQUxlLSYqp2LgfP3x4Pjwfg/frVdO2YbVZXd9dv3q9vb272W63qmUcx2GI4xhjTJ49MwfvQsPOETGoWJHCDkopMVZp9LKs+MmZh/P5DW5sbl4YrmJy9Qk4FxYqNbOrA0ozJKZSfxARUEO1nNJpfzi9+2inMWQr44iSO+/rzs3Dfr9arbpuHUKQYrVDVtWWPRGAKKl4szL0Kfet27oQ2halBWpNPHiCxonbZnyMlnzZYULHtuoAtE/9/ccR1wWaL5qL19g2qwY7550Xy6MGK6allALFRAiFzcBgZQoZSHHd8vbm4levNu12GyEJOzR0yqSOjUhJC5QEh5yzQJ/1sdcfDuMfn3Z/fH56OJ7e9fB8isckw5iC2lcXq3F7uQFoSyIKFw0AgmHRkggoo1QNGABDmmiGOUmWUhibpumahgmhJmgEgiq5WH0WSECqr5nOYqkzNMXVrBYRkQ0KFLUxSUxiho4ZyHgCykkJlKHMM90F56k0Vy2TWweIgVrOUrJYa86H+hVwDuBzlsV5JC+hNWW8ibEEVaO41s+qaqJEVcXS1HSeeL743Nuna96weJ3+tYQPc8id40znWfYcOzWctAQVgQHUTM1klps6Q+MQiQzFUA0VEMUUERVErIhoFdkaYz6c+ufj0I9yHPP9h90PP7zf73Zd668u2q4hH7DZdK9e3V5ebp2j0ykPw9Cfxjr+DavG+6aaETgPXHFRlZxLFWZaNNGrZE1Rmfp8OFPJZWCkhTVYA7hmY3bTLwxAVOuFKKoCRUopKZeUsKikfHreH553cui7ggHcfsgsZRtWYFJEP55N8urk2qp1CysiAhoz+urTKAooDgCA0Ng78h26K2BJxRl8Iz2EMrRWkgwFwZkUSKY/fvyIbcjMX+Trr15vr9YMoONxb40vxYoVVHEkqFZbSme0Ails7dZfdOuv3t4iuah6iN4jsAEWM0EVGEYYojyLPY/5L/vxz/v4p8Pw/eHw/nQ4jHHwIaLTzRbW7HJSjf75if78rn1tbtuhY+AcdFQpqChmmnJWA/RIfraWNVXo+1EV6jx+OmBW/TGUKs2QCBQEDNWqQtsyB2ZmIC6zgSOQgXGKOgy5FHGeESs3E5iRAdmYWZyCGBKfGaMzFrUiRUTNiklhgjOCLiO8cP0+Y2V9Ek5nvy0qNZb6vheRSmmoy8BLTjuftdJZrV6JivPBsamgnH2GzxLsS8jBpyOupagGAK0Lb2B12Ff7XptpIVWs16y2yjUVM9Um7tPieWIXq6hayZqlDDGlLElxyHL/8HT/8HEc+5uL9fXV+vKyWV+GzUVzfX3pPcc49H0/DFUUDhCp3l3ec921Y2YDIHJDPMYYxzHVdrcKA8sLxvYSvcxMDO08r68PcxHWoLkx/pwljlD3t7RIHsbxcNo9PZ92+6qFvIxgvPdVK6IOVisMXgnY3gdmNlSbaWrOUxtcFmEwx4xKHNEQzZgc0oWZs/wb4HCBEfxwkqEXcAgtg8Io9O7jeMj7Q9+IbcoNtubJN87YFQJGcsWphupTbNqZi42q0xVRk9ym5WEY0fN+B6CgaqVINByEn2I+DvKU5eMp/ct++OGYP2QbdJ3btTWCrQKwa7YKjsY+7u/f7XbNn/74O7y6265vuOl8pDKCRGIvBkWlqCEBEs9b72xWxpTq6d+YBecdoqnWax6gOGJEBqrSh2Y0MQeWAEZAlYKIwEZEahhzOfbjGGNoWuM6iK4ieiBojFRQGYyIJ0RkNj2qB7VINlGq4KQIQrtwoXQ21/gMr/qrYaymy2yjEu6X0dR5U70Es83fYjIfwJdIXvT6oOoVzHDzUkh/NuL6JIHDpF4Kc/Si4rIDWOpKJALMnlJECEzomJ2wJyQwNRVRq0tuYkY5pZhiSqWoqVHM5Xga3n/4qe+PbaDLi/byIlxdr2/vLm5eXaw3nYGcTulwOIzjWOWdQ2iZfPBN17U+EDtUFSmYYhmGoaJWMO8tT6xemgTfERFgEn9lhyE0i9QOIi5xi4vORC1Camlzhn3WmHx8eHj8+PH58WmPRS0x0hiQDU8oo0QgqwZAtX6vINkktGBiZgxWUNQMGJChxORWq1bAiopYYWTvaetoFagMaBQ+mrwzeZYcASiblQSy6gfux1zS6HigtHp1AVerzQoNnZBzjWir5tVcLibagCtepdHWGxwyg5xOJ2q7YXc0syRlKHJCegZ+zPY8xvun8SnLuwSPxpE78D4Qsak0B8hQgEBBkIG4lHI6nQ6P1N9eRF+KT1x6LSOyFyXYtlBVi80WZ6oqPDJaBADP6IjReQWVauYlqGSMNPv9vKA2+iJm8IlMhApmKZUj8Fm/RESIZYmfuiw9z1dfyCGlFBNlApGXBSD4lPNwHiHMn1TR51G0kCjqW14BTIcTPWNaWjKgqsxKEzdz3teft0918hCdAh5epuK1pIRPMflPQ/eMPo5k9Mn2clUCoDNQcGmkFxYAnq1oTD8vYBSpWNQQcx/T7jC8v//47sNPY043q6brfPDmg63WYbPtnONSZBiGumRbLUK9921ou65r24acgFopJY7S93GMaRnmz/M5QMRKrKmWSIiTUQ479G7SqbRZvvuzJvmzX+ecS85SSs65P56eH58e7j8+PTweMI9lCM5HNkJATX0emLnNxsxErmkaU8w511eVRKyIAyiSU0linarGLG7daM45mhoSeqKqi0b8imQE+3LgvW+ssQ+pP6kghfWuD65J5bTPz3/wz/ty+evx7m9ebzYtOPQt5DWmznIDKQRhNMKq/U8lcvTXD0IF0U4YD2ksui/2kPQh58diR4Fo+GcIQ06jijGSFspiBZwhJ1vpwPrYYrqEeNfp2+vt3ar77vVw3Tw6cWIJPDoPCZISt+YbdhiaTByjoGPuGjF1JyfZUrGI7JGhAUZ2ngyKmpQiRkAESNVeDLTsRUdDAu8JPCuzKxjoQ9qRD0NMwa8GKe93H1evXG5ifM5ISN50yKKZyBoHRUGisDEyq1FSEEL1jQJ4DQI5xmE8JryFrmEmVYmCgdk5JG9ECoqcERWsiNQSq851dd41w1g22+3++WH/9Hh7e/369rLvTyKybCktO33TTURFzACIuArgqaqiYiUsIkNVVJ+Y/4wSSy3vARWQKvGbiEwMAQlAJzocTcuU5LW6MVQwGowNiXyEgmxMRgQM6MgYxQEoQlYhJRG1QlJUq1kc9YfjUxaLoqVoA50dTg//cv/wMJReLgMF1zBR58Pb21dv716fRj/2p6fdqe8Hz4iQzQrzqnFNGziEVlX7PKaUxhxHHU213h31BiSG0FCt8ye0oDLG3aRxtwpeVbMoAABy9TkgIlBXrZx10k6HbGWQBKdkhqi+ZH7ajX96d//++ak0fF0sMac4NvPNte42pZSSzbvg2Ekx5onyVUrO/cmv1r5ziLlh0+Mz+8Br59q2ccFhylm0SEkT/w83rnvd4uGCR+CxxHQsCJAU2hY8CJmB5Pz48cPpiZ8f2uHLL768ZAAPwJoZBEFFsmjpdSVg2Syqjmp9Ln2RVMr7iFH0WORQ4KhwVO2VipldXiEg5mIymigVcQYtuZtEjm3Thttt+2Zlb1f85aa5Wzc3+ae7zXrbQAfUOETGikQHClEUVYGAmUkUQLBakcky8YsAvgngHMm8EGzMHgkJASbZSmYfkNGYEHPOmrLoSEIkhoVU1RKUDmVgx6umGc3MQIimplRFQY3ZqSrgnKkMqxykMOZSck6jsFrddwCVv8KgrB8LTrtQIGrsbTabqtgUQliv10voKuBkdjMpWS7l65RU1eq0rQLunxTD5x8LibrK1tUiZeEkAVVsfaqcFUHnfmFJUMvd8VmmmmzQziqdpQ0W0TGNFQJDhOCbw3P/44/vPnz4qEUut+vtdg1kTdu+ffv2+vraDPrjqe+Pp9MpxhGC8x7rFtHt7W3btoiYc570JXPOOYczldWlT2Fm52jBxmsAv8huGFHl/1HdAyEgZPB1OwAEihWbhQRTGlEoZ3l6en54eDgcdiVlAGuaZqmbFvn4GKPEVPXscox50WAVYebgnPe+de3GSRcMgLSQc57IEJgwJSsF1JiQmVwpF+x+sSYktGIY+S/QnorFNACgd+CIUtax3z2k/p3D70vfBb9x1IIFFMJcJOYcn7OmLKecTzn3ar1CEkkmf1QvpgVAkMx78KwO1UyODyqFNLYoK7LLDq8atw7wj3zbeNiu7XoNV225DuWmlU0TW7q67JqOAIUcI/lQlTuL4DAmJQ3rlrlq+suMDKmIxhjrBg5BLZZIQUEBQJiAiNRARVQcO0fcomLRUVNK2gtEViBmcQ6ATAEzWuTQrjKl2kOamacqBmNEUnIFuan2WlrnKwgCMpY8xjFETCZKrGQTY/evfeDZksDZaNrahp+enp6enu7u7i4vLxedNNNPNiLOyu/6dUSnJn923piaOlm4CtM1gbV0VwBAqvCSmQkjIbsqTGtAZjYt3Od8zpReuhF21TgdibBarE3Eb6zdeA1gUNVcShEtWZ0LWTMRNY3f7z/88P2Ph/1p0/q7m+1m45H04nrz1ddfX1zexjFOFMUYS0yFoGvb7XZ7c3OzWrcAEOPQ96eckoIRmCPUkhfUah6MTWse9TlNC1tuJp8gGykj17kCs5t0vuAFF1joI5pz/TGOu+H+/fuf3r97eniM6eSJJCwr6C864XVqUFJW1bEfqiowEYEZV5p6LgrFSCutRMTc9c1N3a50kXmsaFwpmk28Yb70RdENFyWKEwc/9TqOLIpoyMTepE/0mPYla35KXRvW3jMKkyFJ1Dym4TTIUNKQy2CWmQpiQhQD2axUi4EgqiuJazcHGo5j6/Ei4G1Lr9f8euPfXHSXXfPrYk2gTcfrAGsHLWnL1rD4btWwI5FirEoA3gyKln5/et4dwPlrv3Ldul7yXLWU0VQt5zgdKTQi8h0TkQJMT2mSXUZyjSdfAGKMu8P+sH/UnMGyQ4fki8s5RSmax5L6UxfWDslMakAwsyeXQKv5ASlUzpmqpKIiAoRFypiGPvZt5qJiCIpodd/vr31UdLSuidY0WxcSxij7/d45Vx2Jh9NJVehM6OO8c64xYmYqEzK8tNyE8FeT8JxCEdEQGCYlMKwErlo8A6jAJAR7nkvPp19T9AI6JEdcvU4dkoCJmlUJSIAqMFRUSwHnakWN45h+/PH9jz++B8BXl5dtg4AprNtXb19d3F4B4HBMVWBZcyGi4Pxms3l1c3t3dzf2KaXU9/04DHpmwZGqZORMQp79gV+oKdPYnD/hpc/0Hlqg9soNUpmGRimlnJOKlJT7fnj8+Hj/4cPz41MaRjMxB+M42kwprztJlTfWEDNSMSUDh+Td1G8nATOIMXLqo6WspkAGwXWbbc4ZY5x2oGKsF9joUSWRpY7d7cremjsA9iUdu3WMKaaCAq3znV+doj7uTrvSBR8dMYEqKpAlkFgy9CMAgWcIHlwAh6AGUtoYCYyseLSWtXHmEQjtF1erdRdebfyblXvV4autu165devXemiCW4WmJfLoHTW+UlIlgkAulAsrAiEK2JDzh8en590hdKv1VeG2OjoZO0SS2ubVBwegjAYA1Kyr6El1aq+FjWOHjqPY427/47sP7356Pw7HNviLTbdtgRlzSnEccs7D0B+P7WbzdlJIopwmCzgDUc0FAAwnifMiGmNOJYOhYsk5ipS6tS5SZTv+zRK6JooaGOcB/PHjhxjjq1ev1ut1Tc4xxrZtFUDBFGYmxvSizoTpKqnEtOZqnOafC2pdiaBWGTGAhoCEBkBVUB7qgFcMJNcsPRNdPtGmO0fCK02tak06R54YEUXNRE0UCFUtq2QVMUsxq1gpOo760/uH//mHf/np/cNmexMYxuOeL/H1l1999e1Xvm2Oh/F0SMfdvh+OqmW7WV9fX7++vdlsNoioJZcUUxpLSQCghqWUnBKA1anSsgc2FzUT/nz28qH+Q7U6GiAFI0VBABBUVFVTmX6KIpYLiI798fnx+f6nn54fHyRFdsjGDkFEF1LXsjrCzM18fdR7pHYuquqMFAkAGSmwc1XXHL0DYwRzDEyuabrc5MaHcRxjVCsJSvYkV4xfrXwxxqxp5KcsJz1Btg66LZPzLkrpLaUYc62t6oCVAQg9CCISsEPzCExBCdTRq3TwjCuHl43ftuGqdds2BI9fXl1ddOG2a64auPC6aSB4YFJufUOekbGQFChGqZAB+QIAVpREgoJ5ZjORrGOUJOphFj0FcEieyTlWFSlgMIlsVp6A60KVQEEsYpmsCvBiHOPzcfjjn3/447/+8PHxmQCuLtdMq46hCeHiogkhVKULtWxQ0HhJNYpISEJVIqOYmYKpQcwyxpSzGALaCCZtCJ0PaKDFAJXRmcm/FcM2LzbCPEiMMT4+PoYQ7u7uvPc5Z1iEb5B/vlIvIvX11Aulloo1c34m7rP8OqYyfZJAFWckfhaX1pp7y8wEfxkU49mH2SyWhOSIHbGb3JzMREwqAwJFNOecpZjW3XdkanI+/uWHH9+/v08pm2H//FhwePPVm29/8/Xd25ui8rQ/nQ7j8/NzLnGz6q6vr794/ebyam1mTw+PWjSlJLksgVifSWiahRG5PJ8an5/ePp/sVAIgEIKRYCV6UH0IFVNEMy2iKWuROIy7p+enh8fx1FtlU4oKTlhAvS+WrX0iyqBolrRELaKSi5pZztmbMTEztT50jQuUUxZCcICenSNUAwEpZAhBPbhC2BelMpoWEGVnvqNu7cpQ3ps4VBBaa2kVKAC4ttlQTkmzooEhZDPz7EJ7haWeZmYMHkKAxnlmXvlNy7wOvPG09VTDuPPUXq22IWxD6FA9FnZgJAqq2jlwDKxFJVtBLIQJbK1BgQiDMBoIEDNkBm5XGyVerTdN0yzT1EqdUY2FtVRrENUMCACnYSQixNaAmD0QmGHOMua03+/vPzx9+Ljrh0KAVlIe9nET7u7a9aYjorZrSklqpObMbDHpZWRDcgyOGE0AVDQXwUlOyxABQUrrXHBh1XYenKUC4BxyBvm3ondZPKwfwzA8Pj7mnF+9etU0Ta2uCaBpGlUVRP20GhbVIiJaECbgyYAMZ4TtZ6Jc9UBnnU3SDAGNjJhnbqmZItlEGlZEVATWTybPyxecJBloWaO3qnpRSi4pq4IylqKp5JgzIoO5avt0Og0//PDj6Tis11vHfuyfrt9sfvvdr7755ZfA9rzb7Z77/jmb6LpbffHF21989fXl5RZJxr4/nU4eSXJWE4TpkmnIe+/qD3GupDt3GbCg0ACAs/osk1Ot+AXWHS6rZhSildGORSWXMsbx2Oecd/unp4fH591jGktdegI19uBDWMxTmLkGMCKOqgCQcopSRMShU9UkhcRcO/HAglPQLLkIFTf0hQgcV/YBNB6D87AGd8KTgg37FEct/WT2ALpfYcN8eXXhQ7cpblV01babi3WIPw0nkCSOvIIlNQqhXXVbAiJqyAXvG3INU9VDHy7WjeMV44qwRV0zrgO33o8rWntuyahqiJIVtKza6YbBOcMsma0UrBwXTeARHHCLjGiFHTKYI95eXnIIXbf2IUxmJATOyAfOuR5cMzMwEhEiiDHOpjh1ao+ipeTsvTdiMUVgx5Sj3u8PH2S3214eDrjZ9uzUByQCtSZlXLVeVX0qwlD5TQutpw5CRSYTTQAkcpi1cW3XhlVoGAlETQD53yyi6+h4gkaZEbHv+/v7+/WqqaL+sw00tG1bRYwXcBXPNPFUoFrOfkaoSql+8RcH7fljoiXVQnqJc5jYGoAzjUHAQKlq4Py8kK6A1RkWPSuN1a0dQ31ZqRdkNIEqK//0uHv37l1KabW6q9n89avbX/36m8uri77vn5+Pp5OcjnG9be7ubn75y1++ffNaJJ+Oz9PjmgMVJjQeaZKG0CpAOrHCEJgQAKVUztwEL80DYWRyyIaqYGSEADTZ/c3qJZClxFTl2ktMHz/cf3z4cHjeoVHdVGeHXdew0ypatqTiGsDT/MExOGbHPgQAQO+aWJqmIWfeAbNQ3YdHc8enj977tm1CcC4wkSPygAoowW+Pg89xdOuN9T31u6tN/C40bw/WHwc99q/ubm5urpy3iw2X4TbJZUolpSQKROSa4NivyNWdl8oo8MyhWpmuxZN5T4tstyMmggshEC1ok11gMULXgAMekqRYjw+ZA3QCHaDziKil7GvbkFPe972qQdSNX7duTYXQu8Y3pciYM2VuoClo0foxJTF2LjDYbXGSU3bs2QGTKTlAYHTcrvxx1bjNmrnlUw+Po+xO4/vj95v9x806rDu/3XSMdn0arl6/tTAGRwKnJsAwxMAdOMhOdNRSLApnwWSYrYBmsBzCCjmwa7LK4bi72rbNJpgkwlZUxVQInaNaXRfJR78t5bBmbQMGKqog47h72v/7v/0n1mSinhHRlaKnISmyIytFSsk6b/mCiWkRIJoEfMnMagGmoGgGwBWOWfAnBUWkJfObmRQ1JQRIYiEElZxSxcxQSwEQDi3zZLYsJirmHDt2vmVQc4RgmkupUusxxkEpFiKiMiggbnxb+r4Mp3jyhcOp4MMOf/gfD6y0uqPH4ePquv/dP/zizc1rOQAUKv14Gp4jxl9cf/X7737x9u3tMBwrq1QEmMMYVaQmc18h5WlYVfI0K8BPJHvZEoiATdKSMLmNZWqcY05qRdQ1LbHLYsAQy6FaA5aUcsxpyIfHw+Pj48PDqT/mEFpHOAxDYXCbdfROxzGjM0RTcFD9kIuJdt0qpcRk7WqzqO0HoOK8ODY9eEjBillxoTmJd4fj0QeXSgrBheBC45omOOe6lXOegEnJFCxJGhNwBoIiw1FibNv29nLz9vV1cNB1TewHqTIkRad85Rw67hwg1oUmYMCJC04MVYqJrIIGVFlAijwJRCpSVSSo6pNWlSsQsbr+LFzZCrUvrEMzq4/bB8fBE3ub3eKdc1yKCSEWQP0ss6lqyVJ8tXR7odeoFe95e7G5OPWhIHuL2QCgxCIqz7v++UkaT2Byc3u4ur79p//wayZyrnVAOYEoiCiRUx3r6KfYtHhQf2AjWqYYdfqgWk1SBMAYEUBtYmYLGlA+bryRpDKW0DaHQ/+0269WK2au8E9F0afFQCNysDA3AermTcw5g2uWcaudcY8/F3o+s/D5ObVTRMxexDfqx8y1NgJCAwQDJGJ0zI556hmrkPWZvuxSUBjkkotIKVWQATVJGob43//P/3r/4ae7q0sdTw3C3eu3r99+SaHZH09DjPePj6r69Te/+Pu///12u62T3sUutDbgn4BR89t+3qKf/wH6UH94nSxjEAAJXzSDpjMjacxJiqmIFck5xyotezwe+1Pf909PT4fDgdEwNKoqJiklk9LUgshMRFWKloIAzHw8HuuL11mTfKLfhpUJO8lFc5YMmkV9BnUPjx+bpum6pm3bpvGtBAAwg65rODQUHHjkQOQMsCCU4xDz8DzuTiu+u2jw1bYNHpvWW+fqe5lKEal76Y6Isuxxwh4BDRjJkxFRs9pO7SLVCF+ORbJJLhCr0U79r9Zik8RpeVl3U5WF1yYyCSwz83pzAUxqFlUrljivAy1vZOUdqJmY8XJBYFubHwMkRFAtbefubi6ypNMoXTQiaht4fIwp8jjkkiCOlvIoCj9++Pgf4PeOQ/BKYIQllSIFwbgy2otAVQ1VqCMTrTaFpRRhqmKLpRRHaFCvtuqEUKapn+mGYuM458jkRNz9/f1+v3/9xdfsXX0+WaQUrdGLuIBPk059ERMFUaCz6J27vhciJJxNnsxeRk2fNbT17y4U0c/+dMF7EJF59ssmqlvTzCxmWYoVKSqKDPVAm6SScq7wDWcpUWC36//b//n/Gx4/akPQ85u3V7/8zXdXr14Z8cPD8fHp4+Fw+uqrL7777ndv377t+77v+xoGNqttEdWThBO2WG9Ge/EfXlqM+sqddwt/djk8ZgZIzN5yniwpFTTnkkuJvRYZTv1xvz8+7Z6fnh4fHw7Pu5SSgVRTKHbEyoiGBFIm3VKVai4gjupWQ1C1uuVSQ8A5NjPwQJW+5gmY0BjJoTq3P+1baRVVQLKGYiqGTVEjaNsmBN7CygfquhA8BYeSnp+cCcvG2Yp17aBpcNWQ6xozK2IikqRMxh2EMbcV9AM1Bly27aAu+wBUGXdEq35uzlV2bq57Oi9se33R2gQAwhcfqgXOqVKAFX83oKxqaohGSDCbcSGdrwSoWXUzzjlPvAVeIA2qraOt2ub25rJYbk7DKppnDE5Fx7E3T9qDDMMwDHty8WG3HwdYd60PIHEsAqpQDGRS4dBStBjJtCgLaFZU2VDADEDNagWDyAhSb5CqZD5tF6De+KxQvEcgOhyPz7td07VfffUFotQrwQwNAbSyDqBq6Czg87Lv+lmOPYNYuXI8atdczUHNJlmCJcee7TNMUow1m86NMVaR3+qpRjxxm5ybOsiqXCCqadniUzUTW2wAY1FBM0olj2N5eLw/7J6R9LR7urtdffvVq9/+/m+A+dD3p6Ef+nhzfff73//dV199dTodhmGo+PySx8yMiM0qmaeGa8UgqDryLAjW+ebm8pnl5zUzJA/zHJ6EzAxKRim1+BzH8Xg87na73W53OByOQx8aV3Igg2ofTQzOOQp+HI+E4JwTqKYr54JqvOSklwuRjJw5JOcYKBoqOiZl5xtHDsXKmKyoFDE1LGIKogZd13jPPqzbNjhG78irk2Hor66ur26/uL28XjdN69qGTSeqbVESoTKJ1GAsXWXWoAHZLMILaKFULgEZmImpFkkiUqkFKdc1zlxKroyFkq1a6Xrvm6ZrWt82qzq7XjhuzrkqT10KFIEaDMB140hVhRhVwEDqkAYn4EVMQQTNBDE65mmiQIyIziF7t153V3kDAG1QR8hWuu7L/iTHvTx8PN6XZAL9aXx63D8+7W+urpn9KH1KRetMoUzrPmJa1MQQanzwJFBcK3yc8RtHBKjV/QgAEFRBGAHAPKRi5Lru0Oef7u/R+bdfvN2sfYpZdYpeBDYyrf6fOPsMlFKhznpAwxlw9cmAxF6yMc6WLqpq+MIJ0dmd9Hxv7pznAAAMRkCMVCssh+CQHJJjVhGaXbxiSvX9zcZEoJaz5mKapBQhKQDGwzD8+JcPTK5btc/P998133z19dvr29vTMDw/PkguX3zxxXe//fV33/66c7Cf5fvMrCpj1DWSOt2pqxREQMS1NSN4ic+X+hlRDWrsTJE8d205RgCIccwpVeQpjmPOWaXkFNM49MfjoT8OcShaDE2KIGJdKDQTmCX9qwUXyAvEWIuAFNPiemGzABMiQhkRCSmplHE4WY7iOBu5uzd30/VcLIsBFS4CLDggUyGq8gPgya9DS2sLyqQKxhfb7fX19XbTMalzJGUSW/OzL1gtVDsBEbACKrPQrgGoZYu1pkwllRqsOVqRQ3+auallevVkiOj92jnXttUIbdW2q/rehLAoQkBVbooxHw6Hfkjkgm8CMamiaK7va4E8H01g5rmEVJHa6VHVcDQzqM43zqNZ45p1tzLRlMURk+kmw7iScY2tR4Yo5XA8Pj98/Pjhw4evvni7Cs7MimZEFitJslX/zyVsCJmYCUCyVq0KJiPMIrmUEDyBTf4NMAWAgQHgEJNv10r8uH/enYbbu9dvXt+VXHKufrlqinWvSUSySkqjzjbTS1t1Puxdzu40qtWarisrC8HQFKSogJw3ikuCYkeiSjzVn4hYf83Mi2bAvPkAdYeaAWXxvC9ZVIoUA6cgKY9qpVZaJWOKwBD6U3734wdyLfsA7Le3l+vrbX/c9X1//+Gnu5vr33/3q19/+wuP2u+i975egjX9LhKtC2pVpwxEVcLB0D5XtJ4D+BMS6Fz96TgWZp62HcBUpYx9HMdxHIdheH58+vjx4/Pz8zAMOcYsJaVYtxG9I+aGoNRIbdtWJac8ppQ0Z0YkYiYuZfJ4rugPTO4D6LWwcUPmwCwniclADIr76puvRCSlHMecswBUUxbKQv2YASgEFzyzA4du3a49+ZrqGt9676uxUM6RsK1gVD0aYpNTc6XE5ZRKvVtFq9Dhw/CgqlXcWnJdpy6glrSesFp0cZW3D43bbm9nvezOOcc8xW3OE6mwJhkzOxwO9/f3P314+Oqbb7765heMKFKD1kwr33VSYBIDE1AFNQOokzKtOiZmhmohgBSvas7juu3IIBYJLjnAp8cdO2vWhtYEvnAc//zDWIb84ePH0+nUuBUzOsdZRSQaSClgZsCERGRoagTGjGBSXVwWMt3ZKnmllplDMIeqhga5ILHfn+J+yBfXN69evQpMKQ455xq9tdQupcSSpegYT3DmG7yoxi+axp8heVWHbsGrlhammJ7LX+OCaeOLwfwCUyNi4ImZOKFHZI6ZEDVLrcgq57GuIgsYKIBJjNFg6r8Qq5Kr7p/6x4ejKEFov/rNt6++/Tp5/Hj/DgFuLze//+7X3375RUMQT4dhGPwq1M3bXEeAZ0ms3tovebWOrssLyeS8ldCqJ2Jo0yxw3s5AOn9mJqXkGMd+97Q/nU4fP358eHg4HA6LH029yOruqmoBw3pfe++STpYXoDph+yLTZvIZ3b2+a2vP3ruu82s/YAYwRYSGnLu5uRKp8k4lxpxSkVJZnZSSkuWKTDaG7F0Irm1D3daYZCxUzeoMbd4dN1CAUmo7p/vnv6SU4jDmGHNM1eFCiwxQ9YeLiYhkNKiU8XZ9M7s0UAhhteq2223XdU3XVV1lIgKoY0Y0s77vj8fj6XQ6HA7H43EYhg8fPvzwww9FwIXwxVdf4hkfaBadm6l8BgpSMe/zQ1xDyCGputpWMlNwjbXmijpgK8bXOsaYszBZ0154z1pktz+dTqdh7HUbyLMPnIakJgBapGKtzMCgoFZ5esBEsPiyTd3+fOAAALRSbsGQkQwUm64APe0PBfCLL77abNdxODqEoqICIqWm3ySlqhDrJKqBRIzESKw2iWCeZ5ilH56hQV0y6nSYZtdPOPP+RMRcEsyy3vXvTyJvxLNyhdUyat6dEpitLUopVXwbCEVUJMeckGr2Z2JPrMfDvt+PMRYxc7759rff3n75ZTLQcVg17d989+v/9B/+adO1p92eTT3q6XSqydY5V2mtZlbFsRcgejpFqMw8u6x+8rHMtBeg/sxhh1Trlm/MYCXFcRzzOOQSUx5jGmIaRLOBUc2qSgS4CI2JihGiFoMXx8YFPytFlmZ7rqsnmmcgDEwNY0BWhaJWuf2uI1YAIde5JjUSY+7HIaVkmBExqWiqJXBoCB2CDuBChwiqYlZGTaIx57yCLSIUGImMPY0pHw8nETvuT4+PH5+eH3JOIrlIIoKmaYJmDj54T8EBeu99s1q3bbvyV13X1Zdete0rqkxuVYvkekJzzpWz/fjwx3fvfvr48NSf4vv3Hx6fDqdT//3332+urn/7D/9gTedXfvccUdEbN359EAExZHMOihpqMTPHVHSeUSmIkCenSmMUg916vSbHIpnAdZ48skOkxvPY93FcBdQTXENr8ObD/WPJp/548F++iSlLASB2TTgdd63bYhYogpaRXGGfDER1VfqmaYBpLFbMSGwDbtNsCAyRiuS2cWC5xKENITSu79vnp/39T09v375+fb1JKRrTru8LugKl2EwvKyXmGGNEKV3XXVxctG2bc65m8IgITm0isRCRI6Lazw5lxBdVK2OzgihEXRMWNcZaJwOagXkXmJyZgWET2mVk5ZwhTrrGy6a+qmIDOeYoKVscdagTPlENo4IWigjkFVxJuWgWsvt+/1//+3+lIl3T0M0FX24LurFP4XT4d3//9//+H//RITztngEAHYp5StMosd4v9co2M6bK4qalPJ32h0hs0c5gT4iKpGaMNcBEc5GSJVedcESLIsIqZjqO4+Fw2O9P4xhdwrKP+Zg8eGOLFT/z3mNk5ir+4BAaZckp77NelCEdjKXb+DSqIpjCKY8GpVY6rkDOBiAeOTBGW5MWhDTSmFuOuCLExpkr85QBZyOCGvFlNhOz2eEKEUshVkCiuhJG6KY9UsMoSSTHdBhTn/J4OPbjmJhcf4x9f4xpBABmH0Jou9C27cpxxRiwngn2TdOEELr2KoQ6yjIOYcZgxNGEpqaUapH88ePH4/H4/t0/H0/DOMahj+9++vDwcffh48Mf/vCHb3/7XT1waV7ONlPvHEimybZ79oBH1AnYwDOXLwBQIhpAieJUzBAAofcBETMCmhKCQ0Q1As5R05iTnMZ4PB32Zdo6TcXUc1MEPaMYqpKAIQApqoGpmhY0z8iekE1LSrE/kgvKgCpm7NhjEPau0hkPhwNMTEmrYg9FRRQXp4j6oCq/l1QqLL9svdZGo0Sdx6TOOYd1E1AE2dkZcfocqV4+eb61k2I+r3HOUNzP1XzmUbPU3Lsw+KdpJ5uoGaKApZzGLAY0pvLw4T6NY4kppbjqwnazQima7He/+92bN29qjl2GYWU2T6XZI+IMLT83tXgpm2duVs3JbGZVUryq0ktJIFoRR1XNMj1eVU0pDUNV3hrGcRye9k+758PhMKZYSkk5A4BTDbOp5svr8Z6IRqCK8IMCGBGggaG96J/ZAl9NoKCQiuUkmmrSNI4FvTseT0SOHANAKnWzCREZQJbnXtv3nHOdAAVz3vtKtABiQA+oQ+xjHPaHh93+Yb9/3u+P7MLV1c3l9nq7Xc9FFIYQ2jaEEDr27F11jsmiZoZMTB6R666WgeWiAFNBm/v7uoJ/PB7v7+/fvXu32+1KKSkOIYSLy+tuJTFpP5b047uPP/20urjcbDZNE2IWQMxFLBc3L7WSAdWakhlACMjYvXAJZt4CEZEUVS2laRqPziNAFUbagHm0xlPryTtqg3ggT/jhuY/puD88OWQzzMkKAlOnpA7YM1qV2TJEMjJAFROUnNADg2MTkqRpWPygpobTN8yYUuzH/PHx2QfXrTYT9leklBKznDuA4mykwsZnVh24qMAGdNWhJ45l0EQ4bTU1jVtQn6XpDSEsKzv2qZHvEqXLvHS6FvmT87cQMkuRUjQnKVmlmBlUAQ8FK6aCUNT6lLNiEX3cnfbPh7GPYBLINp1nkTIOb7568w///t/d3t4ycyrT4vHCD6EzGcClIgWkWdx6BnynPFwrfEZEQBaRemuVEqv5GKpUfFxLqlckAIjIMAzH47FqgI7jOJyO/Tjk+iPNQIBzjmjSPBAwAiDHDtjMBikgZErTKMaqjIerpa2qglYyItWMEsg8KqmhComxgRUFzO75ee+cc8EjcNaJA3A+HoTZYnOBH4s5r1K57EigQIbeIBbNMad+GPbHw/F42Gwu2uBfv35dtXPrpUs809nVEZJaNYURKabFAAQh13Nzfm0DgFA5HA7Pz88PDw/v379/eHgQkbZt37798urqZrVaZbHr2zfry6vd/oDBI2LTtUBgOu+yVrBkTiaOSBi9m1lKVUqSzwjAhmBU1ESSTVglq6oIOeeC86bFMQaPwfvYaOtDF5rCJ7TcD/uL7rINzRBzSWqOmAzAPGABY0EFM0Kub20uhVAcoiMH5kA9qHcUgqtsk1yKYzTkmMvz83Pf91/dft113TAMaZqxaYoJALB6maqCgYqaFh+aJVuq6uJI6MNFbUOOx76ScqsQzgJuLets9ReMUHdTZwINSFFTOEu5Lx+IyPzXnUetUg6kmg/Uvhqs9vAICpZUxIxcJ0V+un/88NPj8XhsHDebEAKWdNqEV//4u7/98ssviShLqatXMCt74KxTVWvG+mJEZJJSOJMomH57dtqrAUD9GIdBRKxkrPkZtPoqxGr2mdLpdDqeTv049pX2LAUQ2bk6STczrhtjNhIRiNblFER09T49iSpg/Zl1dtkEmjEIo1nAFMnUSkBpPTVEDpz5ji3lYmzqxnH03osCYikGqlXxCJfaY7luJ7aTlSygYFhwVgswETVi9MGFpuvW3TDkWAhdZaK/jCgMpYCKqeb6euuWaV2w1HqPQ4mp1O++rAGYGXqpdp51NrDZbLz3FxcXb9/8YrvdNk0jqqv11nfdx6enX/3P37x6/RYRcxZiIiJk8sw0UyMIjQga76u+qWrd8IIawHPBY2aWyqSxWB3WM1bAEB2bCiCx94TIxOrYh9BKiGlIeYzFJ2Yf2CWMZuoQqo5c1QljrEAzFfSiJZWpDQPQCtQ7ouAcABTNpRSixgBygef9PrTtzc0NMw1xzLkkSTHFnMt5/CwFWxWUadtWRKrOGxEtasYAxOzbth3Hqo2c8jjUxFX/Yf2bNWmdF6VuZgjr7OdCnxo1VMTo5wEMQGaoCqVoznXDiWD2VTKzUpTQsQ/Pz4d37+6//+FdytJ1PpcRGe9uf/G3v/+b7377G3I8Gf6KVPdNRahqjQvSthw8RETyFY6dwOh5l8VxPWYqIjLN3uo4IJEBMYOZSRFVE0GEl+g9HuvzrIVMjjFrETDFCmHD0sggIqBadSmflO5fOKRg1e10+k+FqgYjMTlHzIhQV6VHJu8YPQRyCKqlZJPiKvNGRBC5yqqQQ2ZW+aRbeLlBwYBQdAKxaJYCKTGpofPd5uKa2TtqcszDkI7HY87Zubo8pbVzNjMiUdVcpsWY6VJEJpQKQizz92mnuSiCD361XgFhuLq8W6/X2+326vp1CK5OaDaXl93Fdkxxfzw4Dq4JWSV4rtxjqczWeWPVESlhM129iKaOkCsQAIRWn69WRp9ZJhrNwBMpgykWopyFPDgkJUbHDrFhfbv66vn+KQ2jFmHvnAdfoKCyoYkVMARlJDMwUDFT9GIKCmIgBqoTNZrRHIGAWUWMmRTg2A+n0+nq6qrrVkPMKZWs0+zgM/bFwk6b2wRY0FSaBVNzKSKFGTebTdd1fd8Pw5gEFjuls5kWdk1b9VYr/ux9U4/mOPb4QlOl8/bysxJ6GkcVKEVSzPU/RCRkZCI1A9BikA2RJNrTw/7Dj/fZYHt9HfPu4eNfvvn61e/+9rt//x/+cbtd5zxMXXQd2864G89l/zLrPq8lP+vJzcxoopTknCuPsKax2mQ5ZpOiiklKXXusu7t1BlYzSv1tH8cqKWKqWLtQJAJk7whQSUnZ8jRrQEQrGaRAneBUpSesFCM0QySexIacgaKaiQ4GaKZZqKvxIgAAgABJREFUiwOrEwckmwifIAZQqkcuT4rF8skFtoQxTYIOIjLRlM1UYUhKCAa+aTetbxma3dNes97f3+PEyMNqtea9Z/YKknNOsRRTZu+rZj7zarVSFUBGcpUS0DRN/UmaNoVmFZp+tU6I2LZt27br1RaYVDUER47Zu6+/+ebv/+EfRGy1WuHEMFQAyDmjc0iGBkR1wopmTgXyJOULs1UQMGMpYqaKDKqllGFEVW2apjEws4QuF3OGSqBqAoDk0PGFX+sWI/XBeWYUc1kTqWD2ikoEHmr/olq0iCTwqcRc5OhLcNwwI3nfrJgAQFGn9X1m7GN5f/9hGIYvv/wy5TwMQzE1QzElxyRChEy4FMmz2oMtTVDNvfVj4jliETEDQeSua0JwAm3t/2FWe1lEfGzeZKxWmks8LOSQl4azXvTzx0yPTKWUFK2iPnWnos4/EYCRRMRSQQMo9vz8/NMP73cfn5vttuno8ccfMeDf/O1vf//3v3/15m7S2gEgZlCVyXcJcF6uglmFc5mmCkwbpDCb0U6DoWoTm0spRWr3eMY5KyWBmpRcUh7GU4mpLwIAClZUxhSHcRjiWO/S+g0QgYm8c40PgV2BEZkY0ZyrYh1FFdREk1oGM0dkWHl6hhP/mRFliTlkQGNEQVZRKSkyWMqpqDChm9QbahFbGUHimD2d7euctw06bbeQ1SIQGRDMJITWTDQrkwuulTUMpzSkvjarqoDIwbdt23XdumkslZhzTqUgMnvXNM16vXZN2HSrOoKvW85mVgNYrbSt875ZrTb1LE4uj1C3ETW0HRGMiUMIFxcXpWht2LT2Qo4gZedcLLE6DxsiAykBETkzfRF7nPiDMBtPK6IVSSnhJLMCXhnYFzFziFpZK4aoCsgUVqt1Q94xAaiCjIJWzMTqwxICAiSdpvYCbcwWS/YEraNtF3zTrjcXzECIYqWi94gwDvH+40MZMyBWBCWsmok1EYKM45wb/bzYPF1/SydS6eL1T/uxR0TnWTWPYy9iE8cDX/Rl6q1XUTHJFcwrNvsGee8BoOuac+zqBbt+2U6ZMv/EthshjpXXU/d8EYAQ2aOqFlNl5Vxs9/j8cP84nEbebA5DfxhOf/Pbb/6X/9v/8s23XytCUTET5z1NpIvKAKu005kQRrS8VDzzK17+Xy+1HHtVLXVDu3quEQOApKiSRQTUTEqMcTie+r7P7BZ2V0VV68VUIV40YAOdmS3e+VyGc2hNsIqGqYEYyFKgIFFVFSJqzQSBKzsesY6+lJjIk8SSSiGVIkVUmcmxCwDAZ8RLMqOqV7EInZ2RRU0CUp7fm8oUqXRwM0P0raGZ86vr7q5Znw4HfaB6ozvnVqtVrda89zrC82F/OBzMkNABgAA6oNMYvffFIKUMAEQci1gu7FPN/+TJkadJ0RMDcz1JKY/pFMtpD8Nx6zAFz1i6hodc0IiByHeaEdCxA7UJunRgEEzEBmOsKRjIVIGYnANSb5CzJkKkJqGLhR0weddaRGQplDMA8MzFUIpDCI04w8ApRfQBkQmUAkgSRMBCxYQ4+MBjgSjhMQoUO8mgBF98ebvddq1X39ow9L7pguOq9HvYD/cfnkIIyez4/Gxm63ChqqtuIyIuhAo4LWFsZjnnlIpzTlUOh5OIrFYrZj+OCUo2AFOFIoEICEQ0D73NqgaqRaQAQAhMDNC2NWHGGIkICIc4ElGDGLo1kCuCZMSkDhRBHXLJpa6VGuhYcp9ilnIadT/0qUSxnC2RioOwJsrBjZKPBkmkj/r9Tw8//PAhuJWz8O7d97fri//n/+P//h//6e+7Fks6GJiJGgogAphHcnUvXLXQCFjBWgFzhKGiQGrRDKrw2Px/Nau2OgRkWKFSQDRFrCxmQZGJHmdaAAUpx1RdueOpz8NIRQPQWJQITWTddg2TFbnowrprckygVlKuCL+CqQoiFlUYpIMgKgDgOYhIygLkXE6GoGzJVMQcQOPNMYVS4nHvHLWrJuVoMTtHxPrCVpHZInUauBMu99Y5Z11gPLtxgZnRE5pVmtSseyzM3DUNgYbmyzoQrQ19TacAkPJQJAKoc9ytmvWmC21Tj533vBAGlsKMuJlfA9QCX8Wqgif0QylFpEgp+/3h+Wn/9Li7/vINs69Xj4CJiBQxAaMXgP18ZuiUqEqdAikCoiCSEZZSrVjUTAAqMTgBaELFpUhUAwAGBIC+ZICViDijEELT+JxzD8cSCyJ674BxyBJLEhHNiV0XHMc8pjGKBO9cdeBypER5ShQGqcBu//T09LTqmjiM3ntmbHwQLVxNFTIuubc+sZofRHPlIS1zhDreqL7bS6m8SEDpxAGq5kw42a0Ardqma9rqt1T7l+rcc+rH50MfVuvNxSWooJWG6wZVAYDa3YhOfiUL7UlEKgu6mlQgIhh516xW28PH/b/8y5/++3/7w9PTLrh2HI/e829++8vvvvvNxcVFNQEHIGSp90htg6dC3ZTRzbZw8wijwrx8TlbN0x+hsnGF0Ww2l6lvd8lliYtaO1Torqid83brdRlCGMdcny8zL60nEdVT4QDF6jotImLlPizl/XnlQkTKyGRAgKgOzTE1TNM/VFPQmi3AENXcartZqBqLlu9SaZzP6KdPvvDga78w4QGNr+BBQFNmbjy7dQdwkWJf3d8W/dv5pRcAdR67rru4WK/XKw4BEdmFZS9HVQ1V6tZILTam7T/NedqMA7Wcc46DiOQcj/vD4TQqkvetKVSP88piICIAS/oJ5fVlCgLAXJfm0ABQkahunAWiwgWBXR30AwFT3c61RRavvl+ImEtJBCLZxIfgm9YTAANny2bmEICJUNGKQ26YzEHnXTykvt/B7arrmrZtgmc1UCA0NAPnXBF72j0/Pz+rrFNKl5eXXdesVqth7KfAU1663zpEqW9oTBNwtThi1uppEhVAEsuihjhZDejLwvqUo2qxNQxDrXRqU7PdbtfrdUrp+Wn/w/c/6NP+jaD3TGitB1C5Xa/Q8fRAUokx90MchmFMWE27RAsBsAshhNCt0NrTuE8Rnh6P3//5/cPTntm1bfvx+d3N7fY//sd/9ze/+y40TkSIPIA59hWuQECrlYSZiNba09SkmBURMRUDMyCdgbQ8I3OTBSqdbWLNyGqpIy6dDQCWzcR5Sa7UzkXLZAJOs9+5c44YyLECINMqdJPINpC6LDZJVuzOeDIL3qaq5B0zVb8HhMwkgbBhdeRAVLUOZQCRUc2UnfdePxUZ+GwIfJ4GAeB46gHqFj4R1TCY1NKJmJEAgQGI0FcbGYf1ipIzE3RVLTKqJSL0Hn1g4mkKN4ypfrtFTmF+VbN5j1j1XK+SC3XankuyIjHGcezN+Ory1cX2yvtmdsGrpAIjZoLJyf48IyEiodYt6SnHIyDVCGdCIEYigmlDQ6HuoUwr3bXvmHWiwHIaUkopUnQuxWY49TWuVKuDViHQ1hGSY/RoNDpL43E8Hrz76nJ7UWuisRRVIEYkdJ7iKIfDYUjDF+vXTePX665pGoMKJYpznmbGos6LPpPyBnB9kktnu+BJ9SGYLm0hqk6mbsZVdlwWCI0ZAVQkMxMzmgkRes+Pz7t//uO/fnzav/7ix6+//vrNq+uuvWi7jjwRkahm0THlMZbTaXzeH2KUXErRTAwheD/7BSJ2Q3z6+PD80/vnh4cDUWg3DSimcvr1b777d//0t1dXm5wjASIhAJGbTmy938u8ljzvOqNkLaVYqeIJZlCmCrK+6VSNMfBF/LPaUxSZ+WqyJLYZP58K7xrDy/mpn3RIRuiInXMEiDzJVjKSqFWpK7Qqfo91zL5gCudBpyBEzNW10JSxsKWa0HTaf0RCx1CVHs1NXukI9UQtoWuT8NoLglW/x8311fSEsKIUE/8+psGUqpdLVAXUxgfvfVV7qaVdfQrjOI7jeDqdYsmEbmG3lDqFK3aegZfvK2WeVxUtpeT0oqZfSoE6unQtr0JoXNd1N2/uVt0FEeK8XmOqBi8yJcudNYGWYAxGoAamZmiCU0kpZkJgBEZootnM0FDBIVglKFZxB1U10RBczCnGOL+1cDgcbm9vu3Vg5lTU0uhQ600ChILmUSX2luPluru+vHCEOadc1JCJXB00nE6nh+cHA/nl119dbS9aH0wl9klSZObWB13cyaT6ckzq1k27WiCWJYGM4yhg9UoSq1NLtOpxNz0urNNInJaNuAtNBa42m81Uk4vUpSIRub//aXc8qGrjcbtqLzYtWCliKZWhH4cx9qdxfxx3u9MYk3NMDoG8Cw2HUDHUJDnGfNgPT8/HYchqFtN4OhxDY3/7d7/59tuvkdRUfOgcOlMym0qzWjlPUk5meawyxqCqtVKeDBY1LeMuxNojGABonXjVlrgWfaJwBrwt0VXViCoXLaWUxrHimpMJBhI7bkOoAcxUSy2MpzGlsTrHjOOoudS0V1PaNMc+S5kZxIMwNYzgLDhMzoTqT1JXiwkZ0ciBGhi45V75bHCH85xgGfHVbxPYzV2EqeX6U6U0CtRxlBZJKSUtwowhhJvLmwWKrBPww+EwDMPT01Mx9d4PQz71yTlXOWzIq4VJs7A4VNV0GevNQ2lDQNe1a7VCRF3TNk1wRM6Rc67ZBCIuGaxe2qjIWJvVvzqrrMtjhFXgXOteLKEDQuJ6ayoCgKhYNjXiFkzUMthcm6UsImm0nGUcx5zldDrtd8cPHz68ffvFv/9P/1iXNGLE1rGoDmnQkkNoAhqbtI2/u7narhs1hVwMmZCQuIiYwG73fDqdLi8vX7161bTBeTYjAHXOmUkpCX+2OrPQ2pcWrl5bU/9GCDa5KFTBFykmZZpLEhkiI2m9fJ2j6cCj+eCchyLmPDOHv/vb7y4uNrev7h6eHttAKfbDadc3xF0oWYcYD/2w2x+fnw4fn54Ph0OWtNqsg2v8rMZchRNEcpbUj9EU1tutme2fnw79w9/+w5d/87tfbbaN2thWCB18yVZlv+qeo4ikOSXGkieARk3qkve0ruHmVGRLb29mBG6yRC5FpGgRETGQJfcuATyv/tl57pU8lTNt8F3XdV3nmcyseimBGmAlTSihGVCxiZK1nL2lOa3fqGAmDAGRiJ2JNyBNING0GCiCIwAArluOAOCGYVgC+DwptaH5vPsFAIA49rMESqnX0jj2Mcbn0z6PMaYh51xSVNXG+xDcx+bj0vqWUir/O6W03x+NMPhGCgxjJiKoOzGQF/tGnHQqCIFp4gNN8+26QIOI3jcA4Nk1jW9CqM7aAIBspaimgoGICB2bgEHtjeyc9jCX0MbTLjoqmmEVAAFg8MZmQoimBTRZjqqaQZY3r6qZ5TrnLCnFfDqdjsd+vz8+Pe7+9Kc/3919v7le/epXv+q6rvHceI5Z4jigZJTEpE1wzTrc3lyFADYKgJq5urlWShHVIcW2bV69+c3N9ZVnV8XiHDF4zllLzuejrxmqEURUi5VBuUgcTk0XLWaFiFjBhUm2px74SpVlN1nUNvPsBNQkW0nZe68Gd5fNqvnl6zd3D0+74/Ho2TrPZTw9jScVGFM+HofHx+f7h+fTaSgCgDCtCjGJWRErpYhzRTKAEmOzai8vL4fTATDfvbr4z//Xf/rFL7/IZVQbPbf7w7ODVgoUiaWUYgoAMm+AApMUAGdE0+ogTMoN2FCYCmWDKgUDk/UsT9EpUsfBIqJW8sSbsmXgVK+CIcbqRRpCyDnnOM2Qtl23Wa1Xq1VFyHyYZHG4DVASlGpl4VC5hluKsb5m+tTTHAMZmtS3n8gZeQAGmVrsqZpQFTADAnRN29Za9KV4PgOla4jimaGWpjhL/tX0O5xOp2EYTuOhionlHE0UEVdtaNuW6XkRvqlfrZYNtzevgStO21HFnKvcrL9Y7B6X9tvMqrVchfBm1AkAwLvGe+/r3qlaFSvxhAVLLbFAcVLeFpFcqrjcZxAdEZniov27ZGgiquXGZDFYcopDjqOqHuOQUspjTClVUDLGWNWccs6Hw3H3fOj78XQanh+fQO2f//mfr6+v27b1TC40RPFEAI6yFgbrgl+vuvV6zQRRxCGWLAZIAlKUPTLzxdXlb37zm9vb25pFc464aCzNjN+lhO77vvpFdKsLZm7bttZs1ZKHiNB7EZEMClJRnOolX08BM3vPdObKJyJd1zFz09T6yNeH8/BwBOTry83l5ebh4THF0YEM/WG3PyE5ADr1sZ4QNey6lQur7XZDntWsFB2GAVKyIoOq87Red6tV/vjx6eH5wTT/+le/+Id/+Lur64v+9AiY0crz477htakzSEnKhJLUYorJkzesQtW4VJHTmBPRTBbdvuXd11nUZt61KKUUk7x4TMBMI6vpBGI6/+S0Ol7vuKZpmiYlExFeLEuBqiCNMzIEMSwqIlLfnc+ypqoCL1UwoUFt3BiViaEypxRVajuIQOTW3SrGJIimmnMkEMAsWlBXOUcAM8i59Gop5zgMvdew3+/74TgMp+PxENMAANUnDQA6T5t2VVGryWzGXXnvXfAAkEoRkRWTc+5ye+V9E3xDRGYIQEyemdG15+lxgU+RPQAsjdmcPKs8CjgyQKuYGpERoydwQAWtWLYyeelV7nbOmQABMaVkk2SR5awqQmTV27EqNbAmSkBW26Eh5THGMaVRRPq9pJgndlEqMSdTZOYsORc7DHrflyHiUHj15hsI4S/vn7b/8/tue3V1dTGcdikP6w31Q+qPRTC6TjaXTiweBnXAKYOJElMec8tNHOLwdPry6s23r79BKFKmCxeJrDrzSHGOtBYCUoY+9kMsRZ1zhB4MERwY55SlgHet9944HMaDFHWunc80iRh4EJCsGc0COkTHCIzQtY337JwbhhdGeggBigeAuDuqljVi613fJyjYZxVI+6E8H/o+phGMWNpQWnYlRgeOvCtpPJwkO19icrymwm3bri/Gy7t2vcUA/j//0++/+9XbfDq03O73aUi9GT+Pz23bCr0EoZ8BPABgKkRAQA4JmCbla6RSxrMpEUDFwRBKGqZQLKUUKUVyLqpmTNPsBpAMSC3HNAzDcexrvMuc51Bt263azVoQikq33pRSJBdAHvo+acoqRSVbijGmNEwtqlMVqUW9KkrSVEoWaei11iElHBsaEU5OYyg5yQS+kiN0RgZVp8lVzTEENVA0USuAKiXlIYnk6hR56nenfn887g+HXUlQ9UpUtZRcb3fvm027XdZEa28z2b35rXOOfeXlKwC44L33wTXM3nEtzAiAEJiI0r/BwQaqZkN1vbLWilL9C8hATRCqjpERoqqxIwNgAsBKJLSqS8be1eZkKTSm5FxHygCz3Ox0xVJe0EiJSWOSGLUUGYc8pphiMQQhpwzFyqhq4A/D8TT0OY6aymUTNrdXTXAo+fT8+PHHH1fBr1YbG3m3ezqN1rCLemKApmmqqEUppXpX1rXSEEJRqYTbMac2+DNk3uYWj+T/T9efNkmSJFmCGB8iooeZ+RFHRh51dFdXT0/PTmNoZhe0+IAlwv8nEIhAvUDTYrp66sjKI053t0NVDmbGB1ZVt4jsNQrK9PBwt0NVRJj58eP3xHz3qgAFTqkPQTEsA4AeK6Zp8vxZVZ0Jt2i+MD+n31U4LYIbXUoxcgpxlXRalANt1bXbjlq7emz9udb8ummrWqWhaWkVRSOChUCotUjLRZIxxS4xBlvWRkq3t7evboZ/+Id/uL29rbmEEA6HQ75M0zQt6euqbeYdko0D67WVz40SrExPRFzf9oYRfKHOuc0hXX8KW2VuvJNUSmEkNa2O9JQiIoEoxLi0aZ/X63JNai5lzq1WRNNctTbvcqQYAUDWS+SRQEQAFFBJjFEJzc1LwT5rD11vjSDSpNVaWymlzFOTudV5mo51mqfp7DHn6elhzpdac87z4LwfTl2X+r7vu3G/v0kpEXeu6uqxdyPHhjR4wx0AxLHiLsUYGcOCtS9ZMbli+yKNcfUWF3jdjeIXqXczW4RmGXCR0DMwUARUbQCEuuBvC+alBkTIkH00Um27N8uMO+FqMIUpJWLwbJ8lm4Iq5Co5t+kiOVtrWLJOs8y1GgeOLDEJx6ry+PF8Ol7M7HbsLc6HId0cEqocH+cPf/rDPz99bPP0+//4jzEOiDOgjRFOTYYY7g/7vosmrakwBVNrIq21lNKCnCPUWg06t+qWpecDZMZMteRSxVsecy6lFEPqQmzeZanFu/ExRgwsYGrYWhERIkB0BQXPw1wWh7oYY2RvJbBDQCuxZ+tKiIg6IGQmCgaqgD6Rg0illct5Op+ny5RLKUyQuTbAnhASWrXLlOs0m1LfedKOKaXUd33f39/f/82vv/6H//SPu11/sXPXxXEcH9Vaa4GJmQJ3ayCla6aggDAsOZqfxctHws98Ep+hPn0+g64ljTaYyiF9J2+XUnBdf+YVmSrFEIJ3c8j3MCIiEwKaWSIOgKYuFxE4Jh9LXEwJ8TMTVmYmNAaIrB1bIgtOkMIItX6R/Ptfw/HxYZ7LPJcyzefzMc+ny/T4dHxo+cklpkqZc85EuJRAQwoh7Hd3w7AjjCmO43hgZgq9b2DfvbAqJy0Tti5r7roWvr3JN+1CWAEgt7fsYnRU31bEmImJoOli1LCER0OETazYd6/XcgpAqNaaELPXEOtRzQY4ny6O/ptZztmxhFqrIjggz0xmtm3goLMZlmal2jzJZba5WC1qzQQDRqIQNbIY5FqK6dMlE/GL28NdRx0UaqVOD6fTaWf4+PbnP//3f/n09qc8Td/89u8UQ8eD1gfNl13fvX5xv98NjjMph1yKZzRASEDDfodhIY1u7QdYxzxbayI+MNDmks+ny3meYuwQOSzOyybNTJEpBk6qDjY/D82uUSqoaIycQnCRCPCT1YCYNjWPZwxWxIW11cypXU54a2KlwXTJT8fp8ek052KqKVIhjQGqISsWaedLa0WGhIpJYDHpjTF2w3C4vdndHIZh8OaAC1OHEIaxR1MRCSl+AUMukXOR+rZFuP2Zt/Ms1LpFM7tiGW5betsh2zefHTMQpVZvUxGsS5cJ3DgwrPrStJx3yBSBgqECRiIgjoQiUqDM+eKqxwsnbJNbaDmmuEs0sHWgrMo+LRBsEwPZGigAEN6++7HlWkoruU2XUy6n09PHj5/eXU4fpmkSEaaAiF037sebvu+Hw22Xhru7+914S5S6NA7DjjB44L0WLlwORlZzW03V5hcOYcsAYRmUN1yJbBzZVAF1MXQkQjKnvPr98l68gRqop0l+Hi6dckMCBZfYR0Sjxc9BFvnJpaeitm1gvz0CWy/Oaq0oy3lMBlWkVJuLTUXmqnMFkWCWKaUuRePQVOacc6mXPL9++eKQ4EDlPrY9p3Z6+FDnIc4Ydnjf59PHj3/+1/8+DuVyGW5fKtF8/vD08Om73/76zesX+2EEtVIrEZVS+nEAxJyzIgzD0A39sBuBVExzLeaDloSi2loj4NLkMs2llKqGyICshiLitYxH8mEYHD49Xc6LWjKis/Odr84Bh65LKYTFsArXKV8UeZ5qgmfZA3Jtd1FTk9Yk1zKXfD5Pp/Occ103BalRroIMoVmeyyXP53mKQMjBkC+XS1YWM45xGIZxHEXk53dvD/tvj8fz/O5ye3foUyDuTFtr6H4F69J3BVZzq0CERaPQxwY8NMsq1qdXCnW2bPYrZ5kVeWkr22fbYB6QIFdEMFle2i/stvhpnYj2V0e3Di2l1UoY2OecRJ10pKpf+AQBgJbCQXuOPVVqxeosJBRwK69sIUQt4gThfHx0GRAwjYkIY0khBHKFPTAKHXfdsOtubnevxnG/e/FV13WHw03XDYSh64ZhGAGgW8uArYRYx1FFVRGMiLz75uCw6SKNv0oHk9eem8XJNXtEVf2mGMqSGplTnxbikKNyDAxsDt8hLUyxDUvX1kwWfpwz4HLOeZ4Xkg1uTW/0N+z3TFs01Sotlzo3K2qCJAHi0Dl2XVquVay1REyx+/3Xtz3mcPkw1Ms9K4x2+6qHl+NTbt+++vXf/OrVx6cs0drDDw9P7+csj/OpmvyH3//ubr9jwlxqKQXM+5zSWpvKMjyQgjMZ0XnFC18MSN2VFi3PZZqyIqTYp24gohDSXHJQiTEqGDIZQpWWazmdnwCAA/dDGne9mak1Awyh77rYxcTMKTjAQWheZOLGUd8Wemnq06hNpbVWW7nkcp7z6TxPU64CHHo2AW0u5m5NpJUqcD6dmtTd7pACg7bLlI175th13bAb+2HIOf/pT3/61dcvP3369OOPf/32u69//7vfhkC1WAi0qDp/riZvTlRa9hAqKG3jR1c9oe1hZhFJn90/9Pqptu9fv0RwkoKZtWUkqx+HcbfDQBQDIyET6DL/5NyHUmtrLUY2AjBops6AMDNcVJhra22VYc6kQKLBKrTZtCqotGfvCBUhotV/HELfJzNkDABgrTZJBmWaHh8wWssiFhAhpID7jm933d0wvu66rh/2Lj0XUgIKqg0IzadA0VXvFrcEW0nzfo6pqqioqut3bSaa/s8O5P8SxDIzA/Y2D9FiRa3a1mRbVZv3b9EY1Nzxkcx4mbPBpTVa20LMrm2RaJzzAk7Scvr4GcphuQGI0aBJk9qsNq2g6mu54yZSS22lEvBN3wdmU6TyHus51YcdnPcA3UA4HgD558czh/jtm7tifLzI46U+nh91nuq5UUqHoU9M8/k011ZVggU/y6aSW2scg6rmnB+ensYu1Fa9stVWXSFWVCTXUlozJQgK5j1OIyEgkYXqrGqlNETJuYiIw0U+Vr0I0wB0MfSpSynFxc2IAoEIeJ91KzW3te7HsZg2lSotlzLN82WaXKW41mWCHxEDMRiCCZpKbSXPIdB+7HdDhyoAkPqOeGhcm0rf99PT+e3bt3/845/nOU9Tfnp6AoCui9JmRERDd1j2HpKPm7jzovlCRKTlr4af201c59IICzvSk+TrQ2HbwBuVspTSrzwiQkwcYtc57mMEm96YgpGBiMylzFKLiYEJAhN690dXmQoEdnIhM/ueTIyRjbQi5EDG7jRLz76wQKtOPZiZhdvbAygSBTOUkkuFyzmGQKZsRqZGlAINMexiGAMPMey7NIzDoe87JPOxmFor8zO1eGXVAxGUzACwjA5d5TCg6nIhzsdUBbcs24oT+LyNZCDeymZGAFYVDz62ZETCPoAAaIxm2lSIOSC4A8M2a+5Mks3JRsoyGkkUVljSFckXRxKABGYq6IChARgZIJ3y2VzHI9Kh3x36kYCltR/+5V8Hm7/b4/7AA9kuMoVwntuY8On0SCWPh9swcgDuubvt6VPL3Kdx6FT1fD4XWYSmEK1Ic5Q4xphzPl0ucylwGLfgcI2Xnk7nZho4mdk8l3meKYahH1/e321JrzczYZW82maDnysagLV3sEh5EIAI1Nqu74heGxoq2oLpL8rGDpibWRUrpUxZ5lpjjIlDCDGgMQKBImjHYb8bhj5priGmfhg07orNzlhU1dPl/K//+q+/+va7cRwdpA0hEWGttYvddrhfx2HPX5YUWhd1OPUVdjV/9jzf/iwV8jywBQC47pntXx3N6ik5cTKEYAAxJWZWgLASFjy/FDAvzeZacqtkIKZNtal4Vwm0evdnaz6rGhEddjuSGa2wah+ZyQ3foNRpmQ7wwtvIlbrDONyJKBqpug8A9sNp3N2H8SedJA7Eo2h31t1s+8a3GLmlIKC5FVkgFopdiA2yf3JmwsDAIACiEBPIXMEagrIBqESzxBEiIrARIIKamMtjsLXqVu+ufWOMbOLMJEREudJtWU9BEjBdxpEBCBQUQIk0JlStTZclO8/zfJnK4ynPC/ms5aKqoUtM5PKey/ScKiqzkik95tOUy1RLkWZsYx8hwjSd9gXmhqF7ve9vDym8YAnnd9PHH0x+Hrr4ze2LFy8Orc4/n8+xg34/tkgC7eH48Pbt+9SFEELqlLj93f1oKY1YuOmnczmep66PqAaU/ESvtSIaI/SBRevx4dMwDESh5NqaEkciFhEj1AJNW1WbSp5bDcQBcapCRAE5BIopqUoppYEFTjF0gaOqusI2gI5jv9v349j3MZn56AaCgYqEEGRpx3nmjmIgZmrVVKwWy6Xl+Xy+HC9yqnQ+zaaBuFPIxNANXRyitXzEGGqdz4+Mbd93NwlhmhJzCm3ESym5b/PH6alBg/2L70/zdP5QW9gN9u2buy6Z4YV6AW7JRgoR4NkbsapIbcH9qJEckRbbOobPINZ1Yrwxi4AQ0Utfn9kCldZUPLkorZZWFexdO3ddFwIbRCumDBioi4E5ELIytNYMSUub55w4FtHcJASyQNnkMl1KnQ0tgc6z72GYpjnPM2HAECLOgeZec8RKKi4YXA0wAiiJWm1zMwebGBH8K0VzBzdoICn1LmoxzWdEuz6kW2shEgf0P8SA5I5vsIU4W1hc7GfcopbgEWAp1hEXi8clYq//d5P0RcX3uRQxW7DltSSGq4ePHBAEoGu/efKpMST0sO+Z8zRNHta+aPchYuCopATIHMDQPdZabVXanHNpwjEgIQcyUo6BQG7GYbcf7/eHEbV9+P5y/DPp8Xe/+5vb3Xh36EGmVudhGAzh6elpFjCBFIbIjiohAASU/X5fqdsE4lprkJVM+5FFJJdZRMwW2lOtdb4cW9OUUhOVZRBBVbUWy7VJ04X+6xoJsokwLmTBpdJD3Rp+XjLEyMzd5u24XBaAxe/wS2G657tz/RCxWmXK83maG2A1FTUxFTAxEFVRI1y6d7tuGY1CADPo+65Wm/LcGqSUxmGf21lEfn58KPXym29e/v3f/SpyRNEICYi0fjYMtN1Q/bwk3qKuQ7hfvGG4asls+YU/fDTimmW8DP2tIqdfZDHsuruE1zjOItOBuOTwsgxIgGhM63tbXzdwiDHWmrtAXdcFkTJPtWUBNg6pC8wWgu8nRAj+cbzlg2jkO4RANlSNiFzcPKXkwOA4js8Uq5Veu6Re5JcMzHzOSWAdpl/EtIGWVFkaETGykSEGMCRiFVh0zaB9sUQW1Grt58HnjWzaNEOYVhTtKg83NNNSmtM8p8u0sJfXO22rFMyzcgCR0UIdbSLZZJbaEGOKzKSogBZjHHd93+13w3jXIVyeLk9/4frhqxfpV9/+DZu0cjodL1Jz7Ds1bK212Qiw5w7XoVwAUNAyDARxWwQOfpRSDCczK6UAKhGFsHzMlHoiEgMRK1UAJIRkhGqhqVRRUWtNmyibZKzhZfCafQs1Tm/uU59Scq96RCNKiDgMfVqJIlu8gl9gRdc1JAGqmojlWi5zPk/5dMnHc54LXEo9l3ppzcyiWhGVKgPHlst0yfeHMaa+SEMiFlBjaZabqSBhSly70KXQXZj+8P33KUJKPXOnbcZGOqvSlxt4SexNf7F4NlHUZxDruQ+8Cdzhc0sZ16nM7YdtnWxFRiIyUSLiEIZh6Ps+EIcQXQVPwVqpLj2d5xltaZRsqg8M2LauL5FdCTZvGCFek5cBEbVVVSHCZD5nguhcsOCRkBaCMaNFZg4cV/ZspdUIx/lVzCtzFpd9ZcslW3bC9QVFRHSBePMGOG7DT8TRRXmJ0JZfZoSlWgOzxT7o+U7YVu18jm/5dUf21jKAGalK5G79nDDP8zTN85RzziU3XdJlMGIiAvSryriosZEZKrkub1AuxsTMsUsCZk2IqevH2/FmiH0i1un8+P0fT2//+u0tfnO3iySPnz5ejh9JxR1xG3A/DnkdHINFRXS1q7Sqznpnd3Jrag1VSpMFKsHQVNTPHITYdxgYAR2oawZiLYTw6XjZYBgFJQpd14/jGHn1ATUlRI7LrUyB+y5uZ7SqcqAupRB4w6gcX8DP06sFMVofRCzmNMM8TXma6zS3ObdzlblKkVbUEN0AGQUMGkhVaa1PXdd1qgBMhliacWRvJnoVzUiH3e7h04/f//Wvr2+HpoCKJhAsQAXrYdHQANMFj3dr1c8MJbbM+XoC/LqfBLYhrAsnYds8W+l7LXQRIqG3PRHX0TeKzIGCIQCRDxgGQFTzsTxtwsGboZRiNE0ECLDoW8japvJHH5NZztOsWiJzTGNTLKK1LsL1CGjqgBchwkq6cJ8YjGgthLTx42HhtTvY1nVd56SAjZShqyaICfiHJ78+Iqs4C67Q8dYTApcyAwAw9Gu/dH1hG7hYzDWXPQqr1+F6P64oNZ7gMSISsnumbA0kESulnM8Xl89vVZuK9xgEjAE2kX4XvvW33MRYTQ0VfOApEqcYI4lwiMOY0pDu4utECHk6v3/48Q//Zk/v/mb/VZ3maT6ejw9gdRj6GCNwUDWOPAw8z3maptaW7p8rEzxZtiSe4Pl1LtVEmqh4HwjRaq1N5uUOq8QYY9cTBmCpU85SkGmqDXXJU9SECFIKY98homgTFUT0bqUH+4DkmfzCEMct2cbnhFRUZBl12IiT2wZeqPxNNw+ZXFoubapyKaJIRmBkq6A0uY65tCatRYpdNzAHB4KRg3dvDaGZtlJaLQTYRWqtjLvuu+++efX6hfeQEKDrOsEv07F1mT2L6W2F7vYdu1qTfjmfW0oIDhFtUX3bwBu+5Ws5hIAMrTVa+6AxRjRScFVZxz7Rux5SKogikTYhIlRjQLePdCX07R0uhgfMUK2UYi1zwj4lIBRtU1vaBNIcv1xdkJgjopJFRFRrBB5mo1wJkboC8ziOXddxQABVa2qIZuABEEn1WaEGr67CijmtplgUvOXjyf+6HhwYcW3XpWbARQAUYLHM+9LBdTk4dBlnXV7CpblIxUzFqtR5zsfj8XS61Fy1CSLHmBQAVZHXwIIEFEhR1GWbTFFBzWvIvu8jdyEkVY2Rx10XAt3gKNPp4f37d3/+w4e//vkuFSY9Hh+NcgzYxQ60TXOlEIWjiMS+zy1XbVOeVcAMXRXoZMzjooDtXbFaa5nnU4EQeRzHEEIzrbLQA7sYgBajCTOspeVaEBkwGiOYGhgZhEAxAAdFUz/7mTHG6GNu3tTxeSOPvYjow+3P/SERb5tvd3PbANfdhDa3ssgjS1UrDXJp01wxBlUzRWcOljOG1LRkjgYCLkzre6CpUQAjbFpzzSKKKITSxFQaWfmP//B3/9f/5b9+8+ZlnS9TviBiDJ1vRHUCh18a9+2+OuXtylt00764rnW/6PFuR8DG9LimfCy4qbscAwIQAbr2OgfE6v4p4Lh3a81JfqaKi267bT7r0ppANcUQgq2WjosMcM0BICCZmZRWCJAiANzcjG754HOrzrAKWzPqupRfLRJ8HDxuuzelhIgxOvHdkflFigWAgYOB6qYJjJ71uxSOI2TEHENQhGcFV5cqgmWe4fmkXz6z22GoEsEmqfPlBjZjZv9s7onpCTWiz1w9k9FNBAGQOaQEAGJL6uh+Ng6wLo1pQ/MPYzCExBxj6BlDCOGwG0LAOV9sejd9+vDXP/zz2z/9H1Q/vfjq/va+N5nBsE+REabLNM8ljCMRNVPBSagpS8OWXT+imSoIAF+FET+/c86nc/VguN/vETmlZW2NQ/RjBYid6e3OM6e5IBmDpcjj2N0cxpub3dgPqJxScj9kr3id5ZCQU0pmpiQhBHfYQMQizTFY3wAhBF77Rlcb+Lm/sr7hMs/zdMlzqblaFSMTUUAlEtCqQAZo0KBpIbah783wcrnEGG2ZY5kBQKQRY4hGLFJLLflul/6n//C7X3/76nx+mi/HIhmQNSCv86RfrIfr6vcap/wio96aN2H7RVzW/Dbfop/PD9BqQOEvwcwpxL7v40phCsygwkhElOvsk/YeWpOrRNW2SEoYLL6q2zMvwmaac47RYoykkcxoRdGn+bx2JaSU7DLAgCmIiAqsSNFz5e5j9yH0Xdft9/ubm5v9bh+44xA2/zv/eL6w2FNzx8gAGHzmHNYhedyauou9xepVs25dnwHidVSQvI201dmecv+7G3jN9rdgvuh6y0oX2ex/V3oYIyKoLKMOAn6w+c0OSEBIq2B+n0KMXQw9A/ddd3PYq5Tz0+Pp7R+PH9/9+Jd/uTx8/+aue/PN/u5ln2eBDKACpjFGCoypb0AAUFoRqF5uK2jTulDRkK7oaJ9Nh4pILYsir/9Aa22aMgCE1HchdD3GyzRNuYmPK6uSJqKuC7vd0HWRA7DFrlvEQNd+ATBzBIoRRRHEmNFvCwBYs20jbJHKzL7Yw1t8c+p4KeU0XS5zmYsqGFIgU8BAgTQAKXUxjV0HMZyPTwgY4yAiZZ49YDBHK5WZiQGZPcszLdLK//xf/uk//v3vXr64vZyfmpRu182lZS0j9tti+AJg21bm9TqhVUdpy669rxv7xcvWcOELbF3u7UlomSt2VUBaP/hSWoYQwAtJ78+up4APqwYk4BBjCMTAxsxgwVFFUyQilWWg1V9RQCwgEcUYIxEzVkNsatYAOIQAYAZBRGJIKaVgyEYNUBANbaOHYpM5xth3+8PufuxuOurHOHj10zF7BHadCkZmlFqfa4+V9iWtlQhBiT03jimG2JUmrTXizrMaIrdrtTUVWs6j5yOKF2geANbphe0mQQxb+oDrPiczyBmBewbrUMf+5hjKpU1EpK0GNSMQNXc+Uyf9avJXdPu1hQZKdGahkBDCoR+Daj0+oeY4XR5Ppx//8N/L27+84Pyfv/vmH3/9K6aO930Kolakzo2LmRBwa9YZTUYzxWGgACi1ifhkcmMDu0j5mE/vLgW4Ns2iNSAQcug0pNNskduQYgfSppOq1ir9Xodh1/U9pnmy42nKTNCnkFLa79LN7X4Yhi7uhn6kMpEqtcaoW2iFJhjMnEqDYKJuEqgKJOjKcGjEgZmDiwW5IBMCqbVW6lymVquJTGYXayeVx6YnwYoGDMSCErApG7Rahsg3Y9Q2NZmJl2EqtDqOAyPFSK1OMd5Jg0Co0trpzGV6MYT7Ny//2z/9/vb2lk2LUcnWal2M2thssfADXFHyuJlLrmYU1/CybXu3NS0VmqCoIRgChVXQU1VbA9VpyiLiG8kvGjMRQ/JKjzGE2KcUKRKQGJzy1PN4nqe5ZN+92mSeZ5WqKt710SYqQhS60D2dq6kaoTTQZo46zfNcqTRIwAAGKg0QVEmtBZRIzZpAa0NkTJ2qgsyLAD+h91qfk43D4TbF8e7uxatXr9z+z3X0xJ41ot0+Q1UBCOEzc/Hti1orBt0SD0QkRjaGK+xhCzt41QG+ToS2Sgx/0ZC8RinW7zg0DbaoMniB8QzP5FycQRdjRCIEAkOKYX0zi5QbMAHR2HGfhgjMxDXncjq2fPr44d1PP3z/6ePbcdf99utXblSrBk007O4Amkphma1Vac0urYGFPlHNRMpK1Ddsc26ttCbliA1Px09lPpfQz/N8Ok+55rlk5gAlikIlABMMCIQmaAi1Si0tDcmNy9RwOj5Z5BjCMAz7/TgOI2NU1W41GVz197dL/XzgbnmmE7+eWzJrEeh5oIhUaaqL1InTjOZS5znP7iaepQjUKjmXOhcQIGKpikC5tpLnWudd14tm54SllAIjUwRAZmMiM6nzTGyvXr14/fL+1atXb9688ePbm6seIVtrXRdhZQHg1bK4rl2Xpbh+tCXEXRGhr5saW6LhmNw26RFC2AoKM3UFeWYOIXnb3J9z0WPaUIxSXKFFVAxMCQ2hmuRSAKAy+xWwdbLa+4ghBA6RIzmiLmAi0GTRTwb0uagFV/JkN2wVgr9L/2ittRTHFOH+/sXtzb3L2aztH4fjCUAQ2NeANxu2ZMNvuQMGpZSAKUZdal5YLVEEvbjiFfn0X1dd5pC+2KK0BOTnkgZwwb62tpYteLWZEdJSz/q8SNd1l3nKuSEEadhM3Zk2pKVNCnFL9c2hRo4cQggd+Qa20qqKSi55ytPx5x/+x/Hx/e+/vf+7v/ub169vA6OYitqxaAocYgqRSauUKm2i2nSZN0cOoeuHIpTbJHM1y5d8/PT44TQ92Ui5lFxrrjrP2bCFapy6LkQyJYxMEFPPqtWslJKGMQZiQAQFgMg0DN3Nfn+zPwzdqFXNMMXkC46D5+vLVGZ7lgb77BFj2Gj9fv5uZabrCoiIoZphVck5T1PNueVcpylPWatyExWFUlVEGBFEma02qGqiGGOMiH0KRISwzP4ReLtRVSqh3N/uXr9+9ebr13c3t4HQZUxl1RXfSqfrcx8/XzDXexgM7Fq54UoLcsur/eG7113LtHlLQtEgMK9hafFMCSHE2G0yvdvRoKqt1DLPrrVkorNUZjaEalpay9oQMSo4F91Wr7OtkDa2ZirWQAWkAUBVbGpd3zOzKiAIAiEQoBFRcIRJFZBAm4qYiJhi6sYY425/E7sekEWXBgxzQFSRhhjWGlXMPJ9nu2o2CKAAihZSD25LK9zHRZqboJJ//zksbLH6i9rmiwj8fHbqZ3bysDpNo88TgRFRSkutknMmGsAln9H9lBcGhZGu84+wyu2HGGOKREZW2nw6nR8/TsdPT5/e/vzT9/XyELm9erV/+eqWg4lURI6GNZ8ViJk6BiQwQ0yEjR5ORynFFBmp7xIiMzCancwuT9Nf3/6wf/vX8RVeilRBUapFqjaZJPXShoEIkCyFkFIIwFJLa6tzvFStbejT4XB4cXt3e9gPfZ+YREl1uxrbJdr+oC6qBh6Bl+Tli6RmW+jbdlAwMBQwd1qoAlW0NZmLllyNmSgwR8MsYgIVFLlpaWKKHJNJ3e/H3a4ngFpr5BASE3PJZ0BNHO5v91+9fvnq1Ytx1yPK09PFN8Ymyud3Z5kq/RwTuQauPsNlr2pavdKy8rTCq1ZddWQd3NrSE1VF2jgeQODih+QQLazK49vvLk21Wq3J0hRFFAQwraDmbPMYcb5sptnXWvwF5gyUuEWtPtesCgoUQ4eITAaLb8nq9szMIgFBAJejKITU9/04ftd13c3NzW7cmdl67oQrI2U/AtWMzcyIFx/QtTGNzw/znUnsWrBgBgERkNSUkRCWuSTCbQDQQbVF3WbNEZ73sKdGZoYLAet5/S2qHSBmoAqAGmPsh67rUs65VSGiTQadiJxUKLSOtvNiq+sSUAGh5NzmPF1O83TKl6fHj+8e3v/chzq82L1+eROi1TYnil0MALzrNEWLSREBTRsAJEDhp5ME0EYYYxxT7HqOncSun8K5lPc/PD3EH74/NKyWSoNcm2arZoImILXNOZe59je7MZjESM0AmrbWyCASE9rN7vD65YuvXt/vd0MfIyioNbRn9F7EIZwlPd7M+75Y9Ho1FmtXXEKVBYRE1WqtNa3SSquzO5WJgZFiaAKlWavgA5sETAYqUCuAthhABFOKXQqqldH6PnXdAAKn81NK8XC7++abN69fvxy6KNIcWfSd5hieA6heMXoRZ+tdvyLSPhsmOkPji7LuusEp7dmZVdcRkSv0zsuwzZ3MAsj26ltxEUIgA3V70lpzzs7/QDNvmCGi+xZsAdyPoS1N8Ky7lNJFQ1AAZWZUQUUjjgBzrWBUq5hZgGCmIsZqIQZQDajsXAwz2+/3Wls/7lJK/dARkV9HI8TA0DwNuz7j3GeVN4eI652GyXgBUV3CYNlmgD57bUjmSAoAIBks/V5fQ895ka7ErA2mhSXAojuDbl6na1PACxc/aHEYht1u11p7fCgiAktZyDHGYRi6rjN+luhf7paBNlFo+XyRXFq5SMm1TGU+tXZ5PfCbr+5fvtoTCxt2IUQkAh6TYFAEa6rVQIwlDNB3vFculSlY6BQSYOob2ZhfvqRy8/bjpTyKTg8fc6Fa8HKZunQgDhBorqLQwOrNvpjFbpcM2RRrrZfzvBxPKby4v31xd39/e9cnJkQptZqZmIUVp1jAi01Ji13rHteGPCISLcwcutK7goVpyA4QVpVaW6k1z3WeyvE016a1mHs31CqXSznPcwAJoDGGQG680UQLAo/9rnd/LCtd1w3DQAC51Mjh9nD75s2bN69e912SVqQJAcYYt3EFTzVX0utn0hnXmdrW71gOfdMvdu9zaL3yD9hC7vLrYMwcYrpqcACiRSLvp0qzgBSJAcBImLm6OngpZc6eipNaP3RmxgatCbbVZGAx7nsGhhaONMDYpY6sZ+xEgUxUgzEg1aaqUqsAEKLpkilDIPKxAwBQj7PjOJJBSINzJ1WboCosHT+24HypqzjMiM49BHNOhF8CVaQakCiGtYe2bD1VI0B1AycDXPXHcPWl+gKqwlVN55cp9NXPLP/3UIxkuBRHwsxdF3e7nYi0es45GzbiECJ3PXc9x4iR+zX4LGezWlORpnW6nGQul8fj06cP54f3x6dP1urL1/tf/+qrly9uAuQUQ4/RZkvEpTVQbADZrEIQ6iT0DTkfDrW2xqlwmiwIdKJcUh3G+NX9t/F4agB5lrnkOuvleD4bCRKGEPqBU1QT0RzS5cA+AUba2vl8HsbusB9joK9evb69uUkhgCmaElHkILBEWl+xAOBtq229wi8eG7RznUnZ2ji95HmeL66vIiJzLa1pzrU0UQFVm3OdprmUNnbADB0TMyA0lMomiSnG6D1nL8tNahET0dcvXr9+/frNy9d96mvOtVVQIwK9eie0zplf5/lLnNg+5FUGsQyi6rPkxQZNby0lL0HxyiH1OiVZ+R7tOgH0CExo1142YCaltrJ4YqzClGilqWojAhUCAAXNdV7zeF1lPfy1Yow9l4jCaiiKYuYeWcyYhtXBGJDYS0BXGATvnm5kYydCG8YQ0jI0E1T0mZFDRARbw3ZNNq5u/1JVLqQOAKZFoHP9GbMFWP/lY1s08O9hzv9nC279+vkwJiJdVfCXSzOkWgczenqy0hozxshdF0MgAA1IAgtM4TWJN8iLe/zlkstc8wTadkO3H169vC9fvbrf7fs2lY4TKzaRwDRRMoRieFadrVPcC/WNwyWNM2vllKm/KFdIalTRsh75Ztj1u1KKwIlnDQY11rfvz3MTMR7u5f7FC+JQGpwv7ZzOZhZTcHe4/WG82e9kt7+7uxuGpNpqq4kpcoIEQYDW6m67WT4542yQK+j+Ocm8ZvNva7RWmWs+n8+lFHd9dLExZjZzRUWrTWsVVSAKAWrTJq1A8yH+hlRJOec8z66NzWSQczbDPg4vXrx68eLVbneQVnKuuriKVy+RrnvRusru4RWt4nqm4ZpB+VzF/UJ38josf4G8XFXLXppWM/NexpbSwxV0f139bp57DqWWaTYz1y0nBRd7anMWWCyXcJ1zcoFXtEdUFW2hNGgNBJGQjTERIrbm+QIjKmFgiiFPdf0wBBAMAqBx6gib6zEDIRDbwr+HAJ0Zqii7pX0ACoporH0phYACIwCgCJhBa6VeEiYyUqvsluoAJoJEMREYqTt2rGkxraX4Z6sKDKL/wHNe54+kDACiYACKAOxO7SDOFrIGoICG0BLD4ZBE5OZmn3NF4D72feBIwoyImdnNONTdvkXmeZ7bfIoMc8tI3KXh+PNfbZ6/+er2q7twF8NQgPim1PnjfLaeHvjBKFLcCe+z7S/YTxouYlNtp+GeMAJ2pdn5Mk/5woxp7MNRsNieQubEY9p1L/OsGp9EPv707u18OY9dpl5C6tliPeP3enkFNEgHVUyJxO72482+52CkFZwWYwBWmUBBEZDQ3PPYVBWE0AyZDcm9y1cpdwAAH8BcAxRcTcYh1ETaJzNsBmQWVNA00dRQu6dy+evDx3NpHfVdYrrM89Pc98lUmlRyMzTDIhDMlPjpcnrZH0Ss1TLG7tX94fBiFwY651OdMxqYIqh23FvgFUtbTMpWcUMEMCfRgqkCoCmiIgIzbeNr7meqAIlYAZFUbK3PN60IMwIMxGSApoacIjWrIQQKZGYVUbWFwJyiWMmigj4TmgRgbjLV9nSZ8mXSUuhc4HjpmHd3h9Pl2Nti6RIYU0rSSimFmWOdEgDEjiEwcMkTlkxgVQtQJcyIjUEACc2smbRZpanMIgbWtrmMoNZcDhIXM5GF+QgmywsTok8teDZV1LNgEVN1dVJDRGLPB8xZja6r7GQXzzoSJ+dsLLnNcmQYgoEhw6JEhoqfR9RnWdkvAq9/wW4nuWq7qKyieQj6RXghZHZ2cYyxmeI2++oQDyxwpaiqwULAbPOcZ6lz1lysCRN1MY6x2+975thaQ5G5zNM0WQqcOkovMOw43jGNAToWttJMSwTyqxIAOiaLCciCIcdkqIDqaGQMMUUkCj0nZfv4kTlx1WoCbMDcIVgpZex7Ys45T6UyR04dSHMVGaRABI6Am4mbWTLzolWwzgAsYnCezv5ihnZr6V8fo8iUUlIEMZhym0s9nS/HkzxcLu8/fXo4HquBRgyCViWtGWmtWlsLgZarHZhjQOjENDcduu7+1atXr1/HGJt3d5owEq+7yxun18XtsjwWg7KVRv/8M19qrz5XYVefZXuepToAICHb5ih9XfpoOgIquvQkEYUwbPm5w0MbQq6qdc7e/nUNYADwT21mItVWPY1SSnD2CLL4wkYU0yptcOgGzD1g0NAPs2k+XyUX7D44tVKouaw5ZwgBGRcLnEDdNhlb/DKpGkA/eAWy9H0/TzxEF/RYPfrmPF1ORzNLKUXGdXIQYgwoAqCKxIC2dnfVL9bnFI5V7Gu9AdslNgMAl0rxp3UHrmUDw8LxVAQUQ6YAgYgMLISQkklb8DPV5iw07xMAuP6Jv5RhU2iipbV5bvOE0hJhRIthkGbVWnA4IDD2A4+j9t9aN1o8gA0AEZSYC3ON5ayiihIxYAyuG4+msvjsiUg1acAUQ78bMIWoaKGL5/PxPB1xxhDvuv4GzKrb6iCVy3R8Ol9K2elYivsPAgMSYzA0s1pFpNHq1qHmDpUNAPo0bMizXT0UN2F9ImAF0wXmIULkBAGxlVZau0zl6ZIfj+3D6Xg8zVoBia1IE4SGIZJ3+EA1XyZLYegiqKaUqkhga6poMqYw3hyG+5td103T1NoyU2VkCujXaNm3axN4rQV0XRu64plsZu5Kt+12uxpggHUk47ri3TrGLhm5bNrtCPBeNSLh0kN3OhMRBU4AUKu40bkv/1KKtkZETZqUyrz0mVtrJc+IGMOioadkYgjsTlyGgWM3pERQlJkDxQBIIoAoiiINRBgJg08oJDfoDIQLRWndFwqoaraJIboOOKyUFGbuO1o28DIJ6OgmNCuO3CItAlhOyncpfdsffHc0AwRjwlUU1uHNZbyYwFtrzrYDv8hf1LdmnxVs0AoCE6EtDGbyit5NzATM+UMLXv+MbRiz3862zGbI0h4A1G33EhEYkBiKSm1aawDtA6aIZlZKIWhhSBT7EgId7ni3b4evkVLFrjYWJQSKgaQj+nSpItbA16IxNlORhiqoDgqYSSMMhBoICrb9zcDp/uNHKz+fc5nMBmZ5efsKkbuYaq1TLu8/fvr53XuOnAhDQFYyBjY/FgEwmJkpIcMKMgtiuE5hvqz94Dlt+eyfEf18VODcyvE8fzqXp3P5NMnUMHC/H3oFlKqmzVk3rkfhPZJaMwcUkaGUWudxAA59DMQhpKHn1VAW1XvO4jp4ItJ13Rd9/rVQB3ClpcX/GRctF31Gm64b4MhkAj45vFjqmhlAU20itHaq/MSH9ZAwRPeAdnFqVwpk5sAJEZ3yNM/5fD7XqTjhxHvIIFprZeLaqpsHSKvkfq7eqeKITKbYtKiqAYUUQ4owNSQmDARk1MBUwKrVtS/mNu4RAFQAEcPN7QERRLTVhabi0jOSCxHFlLquAyYAcN3q5wNsS3EBVMGpJCtkryBoIE2KrS7vywSGiRqCF2YeOUHVXdY9cq5Yw5qlrPDXc0vzs3tJgTzBVoOm3sozM6i6qC5UN55Y2XNEAcDLEhejQQMFtFobABBvXLzF4R6amSiaggmC9l3cj+Gw65GattagmZhANOw0HiDe0X4HGEgDVUAFBg0iSYQimbiHdCVkQvcSE0JDgkiJCAKSYWCKIjpLTsQp7cZEN7twOR0BbX56P37zm92wT6k/n8+n0+nD42P44/e1tW++eh2jdjGQUCATZkBVVXJJI6HVrMDdPFGulCuu6fuyjGavTRdP4NzBhogMRcvxUt49nN99eHr76XS6aJVmGKJP50k1NUYCUC/2/CXmeTaQaZo4xn6IfRym84X2w36/v7297YZ+fniSUkMIFIMUF09FABJYF9kVtImIYGwepwEWQf9ltz5jKNtyhc/7F9d46nIF/K/rTI0ieM5sCGJaVYi8LammGGJi5ta01uq0JBHJOc+XaTpf5nlGM/esjsQcwO2vu64DAGnFU24L2AAaWhYtpYDViNCsvUAzc02VhtKISD0fkfWOCJlKrVZKI6KQGACAgbS2Usv5fPn06dPDw4O2ZRR2GMeUEjB1XafDAJqIKEZcJWgcJwFkRAxedyEaspTKAJBS6LuYYkRc0m5GWxcJ+Bj0OgyNsLjFLBsYwSFIn71y/e7P2kUAAFq9j4VGRqANyczrSSeyM9jWU27mkJkisBNRiAGADRZN8zWfXGRrRWpyxf0QKKCShURpREqgNlXJoFIyVgJJ+xjvMb1G6oBSYE5s2LRYRTI0DX0CQpi1KYoqgAIpAWozACPGjgMTAQbC2KpS2M3zxdRe3bz43W/eTOfTTz/85e3bt3/8H//25s3Xb776br+/KaVMP13++vPb43SJIYzjuBv6GGMk5uDpK2grnlrjMvGLzIwEwOE56l51R4VWJZ0vIrMiIgrgVPXh6fz23ccf3336+HDKlUwU0SKSiWqpCIDITlQSbcSQQswA5+PpghiIv3rzMuIun8+Hob+/u7u/uyPkauCjeX7P3e/XmBw/v65jN1wZwIcxbXWC/Qx5hs97jQ7PrOO89NxuIv9l9HzPj2pHTIBQ0by7i8wOmC0TdUClzC7WycxM0UQXTqWoqATi3W7Xjx1UccKmJ8+zLuNll+mcFJWiy0SToZhosa5LEQlabU1RLQTmSISQJ3OsyggVSGrTSkAUXKsh5/r4+PDhw6e3b9/+5S9/+fHHn87HiztKvXz58ub2drfbHe5ub25uAvcppXHXD0PX95HDooYlBt5ONmNEQ1uYEmm32+12Xeel9dVUAzAALaJVthyha4a80DYWKquBGSDIF8jEemMagFtBAiqh80N8UAuMjEIIuNwboNbISBVUF6tG82MVWoibp6mf3AvDzoJaIEyBmIGBIoeEFLDZJWELBIHNOPbDXRzfwPiq2R4hgnE0Q2oBYgTqEpV9g8yGDapJbeB4BjAAVlVcpf82jutAwSop4C6G+8NOhwD5KJenv/z08+Uy5VnevPmm68eXL19/eHj39v3Hf/sff3pxd//y5cv9YexTF4EjubYBrX9s8bEgBMRNtO169wJAW31xrxsw3hYFlanU49Ppw8entx8fH09zrmaJrCqIimhE4kimatZEYKMKOlsm5+lyuVBTarXnxsluf/ub+9u7LqZa2zAMMUZDqCpIhDHUWgmMxb48SszMrFRBRCYAIjZTMwJ0jbNf7nZY2410VUhvzd5NCsO2D+tkqFVT0fc5xxBCcAFml1Tz1tF0yZt5krsxoHvEMHEMOdetGr/WD2gqqKJAauady0QGKtYUAiEwWPCkAggVFCEhroYFGAmJqBBy8OMhl+nTp09/+cuf/u3f/vgv//Ivf/zjH6fjzDHc3d19/fXXL1+9uru7u3v54v7+/ubwuu/7m5vd7d0OYNcPkdnrkGctDi93nX01xn45WRfUy8x/EhYjboCtO+RgFq86W+hE0BV0bIgIdtUidl0gJgRSbxYtjlPSqrbIy8S5mZm5j7ssqvamaiJqpgZi1gwaLZnks96y3+NcS21NTBWVAnLg2IfUpwDaIe047fqh8iGPhzDc1nDDMKA7JwiQEXNMITQW4KMQieYGDdWnD4gZu9DnPAkIkln1j0eGWmsmU0aUVsrlQii3Qw9fv76gPnw6/vDDD0jh/v7+5u4Og015+t//9//vV1+9+vV3v3r58uV+N/R9HyMHpKGPS6vzmfwgiBj52Tdk+7wAUFrdIBzvdvoOZ0ityTzPT6fzp8en42USA04p7Qct1XKNZh0TGtQ85ZzN2PGeUktKcRiG45FLKR8ez8dPH6Qdf/Pbb17c3d/tDwFJATGElFKVBipd10Xs/J1gexaykiubooULuamZLuUYAcgvs+Ur6IvWvoNtHWCPotdMzOcjY2FHwMKXDMF0sc72X7yc58fHx+Px+PDwMJ/OvM5pETOC1UudLhcPWtJKa83Jta21YbcjThUAmoEBBYohmNbjw+OQhgikIgBaKoCW3EqCPaIj4wy2/DHAcG748Nje/vT0/fcf//KXD3/56aFi9/V3v5vK2d23sRsmwVgxZaKjKfEozB0PkgwSLiJY1V0AERCJzahVZYov7r9KkVNKBgGB1jPP/KIvx795/ouooKYAfiL6kalmzYyJAZW30EtEuLC2jDH52QqAapAF5iLNALVw4KYmTUJIwdiQ+55nqWrN2DgEVai1qgVEFrg0Ne9O+KxzVRVEZYFoWgG7oSfq6pEn49B1A0IYHnF8gvv+9tdx/6tCXWC+sJiZ0cIQX7INDL3tYycddh1dnqxhk1KKFL1AZo6J3Whj6SBwgpDGGe1yueRzPuc5ELQmjYYhhZ/l+PHp4/mtvpTj3379zavdDR5e/etl+vhwmssfH4+nN69evnn1msYxl8vjmW5uboglEKqJNen71CQHGkSMOSB5kYYuviWgvlgRURdeDSLxXKfUD5bjX354/5fv3xN149BVgaRV0DAQGTAgqAaKFDBzyWUqNnNETLCL4zf8Zrcbzn96//H44f/1//x/7272dy9epq6fL4WZUxykKUEYo/dmNWFUc2ebZQ/HECQE50sAmEhTAQaEEJZeBJMIEQVKobVm0nQbz0AjdrOGZtICAAJUlyJbzbg3v9UYQqlZtKkqoSUm/2cTqcCIiYgWmyBogEoMgIqJapVKrUDR2lixlrnpHDm6cJXb4Po5ErtYG06XWicAYEQCsEAI4dBMOSCYljkHSBF7gqRmhEGARQiBc4NZjBnCJcPD0+XnDw8fPz3OVcf9oRtGZ62nlPp+TLGPsev7YRz2Xdd1/WHoY9/3rsOysI6Rr2cA/S26m9bmK7vVJNc/Zp/TIa+S5M8O0e1HPvvLZ4Qtz95hRaqYGFedLVwBLGutXVNBrvMrpuRjZ4hMQUkDQhCqvH8lIrGrMs50edSnudq5KkhVDoE5KUXBRRlJVv7ZLx/LAe/j5utEgbWqKz32ue0hBgCtCADF2IEGQCOElEKM/TBb6ML08Hj+MV8uc4exf/PrF6+/+48v73744YeP797/+fsfSxaDcHejRETJzucJQLs+Bpc0VFABMamtNPFuUwYAR4llDXTXmad/cTqdPnz4+PTwOM1nThDTkDhZqYH8/DUGoEAWAiQCw0AcAqUQxr7rYuxT7Lru8uH08cencz7ub3aHwyHnLLV1ocOYVnRqaXksWa7Ua0MmLyC7rpvPJ1ynUK8pnwu1A9Yq+XMFrOfMAhc8WXShvn/B4trY4NtchD+/l1oA4LTnaZrO5/PxeLwuRnAhI6Iyi7GvQ+YIQLqKLpqZiE8vtk2lXUTub3bQKmprzQFzoBiiQT6fzVoVNgXkUGsukjlg+P7Hx6enU26Yxps7jMPuxlFvN83Z7XbDsOvS0Pd9349d15FBTDj0IaWAiGagCLTODmy33I3aYoyEn23R7bpc7z24bg7pOu0Gy4wSrhzpa/Bwk/9dMCemBpBrm+dc1FIMANhqMwVEH56mELHVlba+vtq2OmtRETFw+gqaoTRsDZqEXE0qEUYLXLVgnabUbilaJeNoPFK3g37XImdrANvs6GcPf924VuO+VjZ7SYBnPZfVb8MYU+iitwbUjAljCIcX9lV5XQI+HE8Pj6c///mnaMM3L96kYf/mza/77nA6HR9P5fxvf7493Lx48WLcxZwqMfQtdTFxQJW5tbYbQBet2tZkMetSVaDwywMOAAC1Nmit9UO6vzkIRqCARM01/BMzIIEbxSuotYLC3EMa+37oEgG4LtfNr79Kn/4aJf7297+7v79tpUqpLTcddOE8iBBRx8l7eJHido98FMmPwk0Wb4PctmTY6ReI6NwzRcDA4XkgATcRGGcyPs8tuc8jkZl1fdomn3w32tVc1PbD3ii9XC5SSq211WqqqxckIKhTJQhDYEakXGcP8mBYSqt1ndIEMpNamyVUAhQFRGCqptqqmGlrRF6H0kLeVCUKoQoBdanbNUHgLna71oqZHfYvXPLHteddWDbGOCQLCDERMgqYKBKBAoG157sOi8Qkrjq9XyzlLSla782a5zyb9PhIwxaHAYCX51s23/PYgy4GICDNso+2oXQSal2sDFtTv6VNSlGrtba6cErX16V5qgtXhogIHBcopUwTTtOkWnc9jlgbtIBVGSN3uYCEOA634fAKh8OkXKT17L2IjW+y5hTrjt4EBuZ55lqioTRDNSI3Y0dTRbWAgZmNDEFUwExFEYRjb199/Srtx3efnt69/fjh01HKn54ep5u78dWrV9/9+m/Pp6e//OUvf/jjv+Wc7+7ufv+3v7q/v7+92ZemIZQ++QBpLXVaN4NfTnGtugDBxTFx0Uhebw0pAIx99/XrV2p4POW5NDUZ+gCwNt+9AsHAgBpjLUW1AZGY1iaqSoH71/ff/P5v7sb0+7//+5TS5XxCxHmethyt1oyITaqbuWyTML5qt/7iNqbn34QriOv668XcDNERtQ3KMvlM8go3v/I1mF+NT7gMyLMb8/OTr8OAW2q5BO2Feu1sXhQRZSFg03XyAWAcdq3xbpfGXSKioaeOTTs+fvirtNKTBSRArrWd5mPJjUrr0gAUVam2Nk25QRFJgTl2HaiCiJpBCCmFO2Y+HO582m61h3WlKOw6QkQmR+xA1cSQEWDDLX+xY69TxM/zZLiKvRsA9rylnX7DDAhA7DfYO0m4qUwjBjJUXCJ3a+0812muXe5yWdaoY1eImPOUBVprJVdVDSGllJgZ8YoW66C65Fa15JazTjkTCO+GlFIc+q6eYx/UUtOI3SHdfsXj3QW4KAg+f8DPs4zne+/rz80uFCznWlG2ZskWJWIgMzUxByl9/L42FWwx0H43EgXG8LN9fDo/zvN8+9BPl8tXX70a97uvvn79/uO7P/7vf/rn/88/5/l/+e6777777ps+hRBotx/71BFBnk7bkDozr61QMH0GsbalqaoUzDtQ+12333XznE3AkPreZ7zqEh4DxxgDMffhcrnM07m1pk3RgBgTx1qP+7vDb7978/rVC5XWcvGp+tN0qSq+gQEgS9mm7T0Gbkvfp/n4yj7CXxrX8gSc+r0JUF6RQ59DyDbktM3EXs08bWvG5xZFxDtwiOjFhYdfr8Y3zQNmbogef3w4X1qZJnUcHvrlijo/6unx9Ph0qRo59qp6Puqux75jqNhyM9DEoLX5rHUVDRWl1qbi+iW1QFGTVkPOORAPXc8EQ9cDWBcjMxtSjK6auTRIly5iQERjQkBz2R5n/ywbGPBqW3ry8NmheJ0GX6P5HrmJKCIsJFDv6MDi763rE3pnxGslVWxNxEABq9Fc2lza0+PxPF2W5lsMfd/3Q0opIVoIQZYhQwKAlPphGLytN3R1rWFEROasTYIo90oh9iHQ7T4NCPOZqBloKxBwOOxevOlv38w4XHITpK6LYOLp2VXdDgDAyKrqPhohhL7vASB26XKaJsylFK8m1AABmFlVqoqKIQLHQBBEpKpEJBDtiYbDft8NQww//Pjz8XiSLG9//n6eHr791Xdv3rz+b//zP+326V//x79+fDwCv1WD1MUuhpvb/X4/7oexDwRGTlfz2X5fhQj1Ks98xgjIzA0ox93w8vZGq065ttbM3ekxpPhcNciaaICJqoIJmafXQERj33/z+qu7/YEVtNUirYJYWYBlkYqISIvk+lYMbxvY91WksM0VfhEYVVVACQA+Y/I9x9stYl+nxA5u06KmHNRkjfyuf4AbqwxX/Vfn0jiVsk7Tddxe52dpizetqSvlb9OUC3/BSzzSEIaUOMT906Xl6dysSS0iSqHvwmCg85yP54kw9uMAlqRKqxLGrvdnTISaUgoxpbAqaHKIwLzOfvjmJGBEZGBgIn2OuZ/DS9vCvQ5BX/zAurEXeQ1XbCIEVRBdmjqI6PIm3juA1SnCpyFENOesgA2WfiFzrLU+PDz5sdf3KYTQdYfdbnBw+1IMAFTcnGoRJSuldTGoqmhtDUsRqshMMVIgYe5TSl1UO+Y6XSxnS13tunS47W9fW7efKzThGGOE4EfwL5G2L4qIEMIwDLFLjIEw+JHvovK+gETzCgkQ+OQXAxizEWqNZhRCIrQXe8D86YHg8ZLPp3eXT9Pl4/H49Vdfv/6Hf/ybX//2q//+//vw+Pj4489vES3F0L9LwzC8fHH37Yt7RzGIKEZQhdrKkv5+/lgwHql+p3d9Ry/vEfF8no6nyzQDICAjMhGRrOrlzZSIQopSGwIyoEptrfUU0nj47Tff3g4DG8QQcpkbgk/G6wopwQpNXTd4NvEKAIi0SGH41d4Uqt1pxVMpRhYWXAhC7ToN9I/Gfo+JNs2AzfeLYNHxa60thxHAPM945dzt1a/rdV0ul5SSy7i7NTZAhECtMoAu7CIptsrFLSivz7PEOHRd33dmBUrQi9VJmrQy19Y0JuqGkOeaZy0ZmYgDmUHJqAph7BK5/lvXIVoXCACaSIy8MBjVIXhgRiJsLixMwACE5KLLfFX6wiKFs6zbbXf/Yt9uB+eiUOe/7zo4fuF8kBoAEM3V6D2DMjO/cyLS1JxuGSgMQ9oLdMNI+GiIKaUYu5S63W63348OrcEsWwT2dH2eaymlS+Tk+dZqKXOtubWi1rqIfZ9SitDyOU95noNqpKixC/1AfS+ATZCJA7GJOOv4lziQytUkKi2rB5lgwFZ19c7zUSFkZmADYhBSA2UwJ2aDUQXP//L8ONeCbK9fHm7vhvz2EQCQSFEZK0K9vdkf9l2Xvvvnf/7nH374XmpGNDBl5sevXuWHx/1+P47juBt2u52qlqyISP3ynrcAtfX2VbXUliJ1MezH3sxKKYEG149ZT59IfUoA8zxXgJbbPE1gMqTOC6I6TS9uDm/uX3YUpJYQAimTQUrdusEcjlr46Ntg43VJ4nvA97avhG1dwTqfhIiEjk6JE3SvK15ZjwleTPw+G+JHROcbe2MphOA9bVXVJUdeYcirutrxs82+UETAhLn346jp7IqOMXII/Pg0tSZG0Zn3zFFVz6fTcMrzOUuWaCizTg3mOc+TIkXmbr/bMXUcQ84ZoYQQwpgawMJDNkJzFCIRwzPO5B/W/zAp2rot/UIpKAFIhYWkB6hopj7tBfQ8AvJZSgbs2ojaGlPQpmLIiaqpT0VvF8ihwjzN7lXPHBRQjBCRUgDo5jkzGpr0MbzeDflmD2/uHk7Hw2G/2+3u7+/34y4yE8E01VraCk4wAouItILQ2uzk51xr1ZYD6s2uI+qB+z6RyHS8PBaZqesR05mHuHuVXv6t9C8ulTSkhETWQCoCwxX85geUF4ewBhGQTQmROJgNESRkFGHrY6y1tnZG6gKAoZRaW8kKRoFTCDOZiGgtAeyQojBCCtynV/e/8cTM/dYvl4u9PfYpRf7pt78OQzp8eA/v3z0+PlyIUj7jNJf97tzFdBjG1y9e3oz7QB0jzVBi5NZKk5mZkIQI+r5n6WqdUgoIrZbMiGMccE/nszDB2WRuBQFSjBHZRJ5ay5cnq4+vbmLf7x6O5TgBd3vEB2ULdwR7CrKDh2NnkCg3CzG6iqDntE1ra62hAoGhKqrSYk6sZo0CgTRDI4SFQhdiIDYpzsT2u8DMJty0+SY0M2uy1cx+ULkrOSPuhsEV8EWkTRkACGRMHRNKLgDQB57bZrh1ni+TiUZENfOckJENUEoVyAYFrLkduZnFyByCO8CiUR9YDSezcylmto+spKWUm3QZb4Ggy9PcGiSCcbgFpRM9YVDEgqHENGjMDEVVl0ICaJ3me2axXKHKROieyU5exA1jdTklUoVAhMhOVd5I4UvSTbThIs9BSQ0MWys558V7BRkgXfKTi5KsqiMLQoBGBiJN8zSFwGEgDoEIJhQkXUa80QAgJhzHVG3nzeqtCy0CpRTV54rIn98Pi8vp5N9DxL7vt8xNkBjMLAdOyNGIm6lCuH35etjtLCRoACqCiiB8hZRcxwQA2GCqL66GVwReErua4ba30cngRCjcdBFh7GPipE2BDTgydymMPffpFnZPT0/ny0Xm2lq7XC7zfDGz/ZsXu358ea9kIXG8v60qQMS11g8fP5acg+G7ly+/evnqZn8Y+4E67bpEDIDRUEUQRA1LZDCT1iCEkFKKgUMQogA2Y7UKhDESEVid8kVKhXzZd/ziq+++fvOKOP7xL2+nHx5KFQRIKXiXhYyIIyDXKoKLOCtTWqtQAABttg4b+RfmjcXFYcs+u+B+eWFh4C7Dk57sSLtaz1fVnN+Xjdq13TgHq5BWn5AlJSGf2Zjn2SMKbqtISghj4NC0iioCEgcAy22qrSJ44A3eBFLxKrpWNKJoZqIVgGPkXRhDQgR160YtmGKSaixRCpipsrQ8u8+m4ynrJVgnE1YEeKOGu9rr6riBz8pV6yp0IZr0vGWX0fJ/ZylfAVdNRHK5XC5zKaU1XRJjvTit1PdtWJDiBMYpRENmAhMFVROp1ZCEWAjQpKmJGCC1YQwY73wfOouzNW2tzfMsXqutk6KuBugC3B4QvV3pxl8AEGPXWjHLaejH3R7yFKSFYT/cveJ+JxwCsChqEwCjSHq1mK57wXqlPwxXmIqDNNdXZpVrYiMkAApEDXOD1lqrDaSBaupiH1NInTE2sDyXn3J+fHx8enpyEMhRUDPLP32IMQ4h8d3ti5tDjJ1nhn/4+YOU2qRcLtPPH97O82W32w2pG3f94XDY7YYYg4G0VgA0daFPCLjIJo/jPnAPgCmlkuYe0TAUWyyIGSV0eL87vLi7/fVvvvnq669PUz3O+Pah1akNKb58cX972Hk16x9WFAQWEkVgjtGYA7Kpqq0KBF8ACgsrgxdXHU+rEW2ZeXSK6DrWFkKQ1lY9LVxTFUZEuZLauT4IFhQaCJaJpme9y1rrdL6cz+dFun2V1MEemVmwmfmoD4KZ2klVAESU2SIiE3rFWVqbLMSY4pLeo/ZD2ne7sXbEWOaMzGVqIGGeG59TqxkAEEOrUidFY0QMgcHFfj07efbqpV9Kw66qkJuYvbMaDQBAzEfOfLB+TSENZIl4C9Fys2M9nz+paqtapYipgiuFoJRLzpMDA7CCmSmlwIeu66IXPF6eIZs1oEasaCStSm1TLblcAGG3G4ZhAABmbK34WmmtGHcbTOJHqbtA7fo+hBjiqrsHC4Gs72JBFU17uk2EhBhq3R/2GRIooRozJyYxNZUvFA5+Wfb/u0FgUxjd6gUzy239RQVjjIrmQhEGFJhiiLFTxPOUH07H83S5XOY1c1nyw5RC13UyawqUutB3XUqh7ztErC3bbodq5/P58eHheDzO03R696iqweLhZnd3d+ewn5mGSF3XHcZmJrXNMXLNLcYhxeFwuG2VY+q44uPllNuMYDc3u8Nu9+1hf3N3uH35wih8+PT+w8fHDx8+fTpeXt3gq/sX+/1eVeepVVEgxhC0LJsuLCwIh6LwukC93sN+oUQqc/RiefmnrdPraueIeKWGF2MEUkQ0eeZdaWti1lQZ0d1JFvk/5oWZ4tbMaAoGZlIX/kaZ51qrNrdxVA/Xa8zvkGorEgKagQqISLFiGhCZKSJwjAk44NLDU0TsuvTy69FMAkGe5m7oL8c5XxROU8nSijDHFFPWHFZVybAQtsVVpRyY8nls/AI9XlAE23LsxfvAT7qlKCUIBEBAKyFS5bmWtpWmJyLTJa8SgYs5i0NKtUrO9enpNE1TznnrBO72X9/e3u73+xBTEwCKvbm3oKgINMnz3Ko8TefH05G7/nB3u21UN+bw7r/g4kDvNBqP9rXWGAOnCBRUmykQWBdTSolWn94QyY8Py5nH3YRRBKk2z+QVl1rX/r2t+3nq8ZkixDV3z9MNP7kKZPQxLEIyDowpMqqNY1/V5iaXXJ5O56fT+eHpNE1ZbHX31maLAlvo+/7+5o7I1wmGwN4FTDb8anjp59dhv3v89PD4+Pjp06enp6fH49OHhw/Du3d39zeHw8F93qfcQJpqa5JDoGnKqjD0o4gMHSmyGBIIou6G/vWLu/u7u9sQiOLHT8ePp/Mff3j38eHxfD5/fPchNGSCFBnEiRAGTAbUmnruwEghzAB98Hjhu0IVcNUDwpWsB+vnXQZpDBFEfMWSmaE7mKxL9zNUfc3C4lrRfHHXNmFG1baMtyiogK2D4lJrrVXqclz6D7dWVZWICYOq1tqQMMYIIZhRq03FENUYzTDFXoHbctdM1Tjgyzf3iEa4bODzKZ8eZxoSVmZGEW9SCpIQBUQIuHa6faQe18lpBN6m9LZcUNXcg9zMNg9OBxtELITQpWCRIizu6Qha5HkF65X4PcfUpDap23iJGZRSPrz/+P79+++///7nn39+eHiY59kb369f//q7737967/57cuXL28OkJXTVAGgQnUb5XmaapGH8/E0TeMNdLu5kxgwIKDTzVMXYuJmycevvQfgw9ZuBLceMS6Pt9bAWn0K0igSQOj2AtFCD2kvxE2UZFqaGWCAujkhfrEm6Mqkc6t+Vxz+eQNvTRFEQ8LgCf+qb4+IiWhubarl4fj084cPT8cpT0WaBVJEjCGkYez7fr/fHw67cRx7HlZ/ahWtpTZfbVCKtdYhvry9udvvLi/vP3w4vH379mP49PHjx4+fTrlccs77/d6xnyOQQSXS1LHjzykODx8eXr+6pcAWKHJ4eX9/2O3vb24Pu73M8niaHy7z+6fz0ykDxZQSm15ORwDF1RMICA1bFcs5L1WGzcvpFhNRAKu/pFht8WChUdLzDoU1YPhEHADoSre0teexPY9d6VE+p5rLmMJSHIqBmTYDVcmtQrVWSnPzJPdPNgA1ZjQTNVrUKwyay2VHcB0wZwsu5u3aSI05WrNaJQQUKbXZ3X7PuxgJzUxIBzCMCTlA5IHScIyn0+l8nqxW1WYoABAAjMDc4N4jsKfJDg9sngkb3UJ0ESESMFBzN2q/+l3X2W4EiKrGCGYCqKUsJO+NLO7QPKpN0+xrK88153y5zKfT6Q9//MOHDx/++te//vjjj+/fvz8ejw4nfPPtD7/7/YdT0d/8Ru7uZX/O3dCHkKSWWkqd83SeReQ4TXMtFPewAv2bEP5i/aq2UVhLKVvrL6Xksub+nRACGJXckqlPCAsYUArdiBgxJosDMkotWqtLBAO6Nsi/XwPz1dfXrANcCU8+AGSLAE1VhC4E94fwvpFf9svxWFQul8vT8fjp4WGaKkIMzLsQu67b7XaHm91u5wAeIeIpL14hzhxykCyEEMQAseu6vh+A8G6/O+zHm8Puw/1t/9f49u3bnOcffvqeOS7Mp1kQtes5dexQX0r9u3fv/vB/2HCz//Y3v/7bv/vdzf0dqrXq1n7xw7l+PM4Pl/rxNB9PF22lC/ir77776tULIrrMl1xBJQCRrFMoAFC8l4bGI6aUCE1VzMRMry4XIS4kUAC1BV5Y0A185vwsEXej4i2F6To/aGZFWlNRF7hkQl4so6UqYlpPCadeaSktiHniJrUhYqC1Vxyei2RrUkppTcxQGxmBqTGTu3E3aq1V04jMItnvgrYCAHd3NxQQA4E2Fuh2Xei6ELvY9XQod/Pw4UP88EG5U88cW7PgNyMSuRLCKt25Gf3ClgN69a8KS75opqI5t+mU53l2GbmUagy0sjN8A7ctbd4eqnp+vLiAUGt6PB4/fXp89+7d27dvH06nWmtteHv3Oqbd+Ph48u8oXab68fEp/Pz+4+ky9OPhcOjHocdUcs6XKU/FzM55FkBpvMU3X68OUdRaqyw7ZMO3tw6eONcHjWNIfUfMXlJiiIvmD4bQ9cwxchQfrSayKx8AP+N+GX5/+ddtG281ni84P9FqrRCACGMMMQSoS6ICqjVPWW3Ol8t0mnJRo/047Mf966Hb710dugOAeZ5PD0/zPP/l4SN5g8DQzJhiSh0Qd1o4hiEGAK25UuDb/W5I8auvX97eHW5u9z/+8PNf//rX8/lT34/DMOysA7R5nk/nXGtOKSHy5TxNx9Prr9/cvXi52+33u8PDx4+PT6chdZkOn47zqbTccJpbznXsh/2vvv3Hf/z2u+++izFO02W+ANGYXK0SGMm11y3nTERdiESU4meX67kNeT2X7wuUv+Q54wpe42qAgriYaWkQ/+t5umzmDNek6FrbtslhE69sjQw34NOHIjyjprASNgmaLQJVAIQQWxWzGoJ0XZc6IiZA0MawjDfFYRjmy4VZb29vUy8h0HIkdUiW+k76PrfpOGoPEZRbf+hPp9PDg+hcg7sN2ypUwOA0Y/AAjcBmgArSwARUURuYATIwoxqrgCBgIhMFBgGbczbw1nlTk4pWSpnOl3nODMgctUnO+ePx4/l8eXq8PD6c3v788NNP7y7nAkC7m3Rz/5I4vvv44cPlp9LdjruXMaUuMI23P386n8pPt7f3NzdyvGjf567rY+xKixUIyWq0fuBujH03umaOCjRTRFQzpogt13yROqeAkTofVIrETRffnb5PXRc5IBFEZGxJVQmwA1ZVNOMUU0rVmlUQVcCYlc364NMwWr7Yq9cg6rZXt+kzjw8rt+45ox5h11MKGtqlGDRkQIO5zXPVH96+++Hdp6dp6iHevLh9/eputx+/efFtSqnWejqdHh8f3759+/j4aGazNi/++26MITBSROyYu7EzMyUJjNCk1dpRtxvSpPTb3/7q1cu7r1+9uN/3f/3++9Pjkx4vlSIiTsdjvVyg1ZfffiOtffr++/5F9/ff/uP/+n/5n97cvfzp3afj03lIaRz37z4eP3x4O53ny+Xy+O4dI/32t3/77bff/uYN36RBM6Q4FD4RTVraLowSW85Z1ZgJDeucL0iETEjrcJrDyy59Q62Fa7InEgV1dYqqpuS5IxCiAqGZVJnNh9XR1KwRNsIqRoAmigaRAwHOl0lVU4hEdDofXZQGAM6XqdYKSGVu81TPp7kWVcVaays69HsgVaNTmdBAQMQqBRLBruSAaytWBSqCWSDO3E6niWM/jLt5fmrl082L2KV3Mu2aGSzgKAMKdhIJrN+ZGVLjTmutHz6Q8NRXCjE+OyRsPlAAIKKIvKhk6DO3GdYxI2IIjFEwWWAxs+RslXNpWguguqD0LA5WWSllPl/O5+n4+HQ+n4/z6fHx8eOHp6fH8/lURWA33t7e3r/59i7EqArAlGvBx2Ps0s3NzeuXXw3D4Ed1DB3YYu2zHcwunJ86HHfpcLPzyu2LfNVWWZONRrGVP4zkPO/IIRATIIED7bhF8uupZrsyOhWRCtWIVJVQrvG/65eGL9CUK6XFjUDvsSWltN8NSwWOEoPbjVttnFvJdYaAL168Oty/ePHixW7sUeXpeBSRh4eHt2/fOnYQQtjv9/txNFvsRUMIrsZYa20BRcTAWTkeFkjUTJUQD+OOv/tu6Prbm5sfv//rx48fH99/IsCqAoFqlZ8+vJvOF5H6n/7hv/zf/u//27e//tWnp+NlPu8Ph3HoSpn/+v2fPnz4kHMJSLe3u9cvv/ruu292u1F18hLGp+qYgzSrtVwPqPkIgUc8Ed5uol4JxH5RgPyf4YVfVCvb0elJ03Vzfjtel9nxTcB8mSdfXchy9gGG7c0seTuvmoxmqMvL8bpgOEU3o26taW25VdXk9bNqY8DUpy5GEclzXRIHQ1RBRJfS5BiJaLw5YAwiQikYYynFmeKbEtWVDZQyAKi3f5xg6uQ2j8zERGSgIVA0IgmEMQQCtdZazRlQNXLkYGKttNPp9NOPb9/+9NOH95+Ox2PO+TifSim1GkLYHfaH/d1XX3396tVXVS6ttdwkpOigTiDe7/cv7l8Nw7i0dvoxpRRDF2MEbMxMGAAgJiZK+0N/c3Ozcd+2G78tghXoZ1xmd2HppwEQQdd1Wz2DaBvH+3r3ikjRtrZwN9jDn0uvI8P2uv+uBw8AiC4UfyTyBYtE/TCkIaiqVncrN3RBri7sbvqbekvDLgy3+8N9l/o859Pj04/v/jJN06dPn87ns5t0pKGjjm8PO5+CTmmpZpdeF7KBiQItLqXYxMzUTJCImW8PN4dxd3M4jF3fdR2FOJ8vcrYAERMdz6fH89NXX73+D//0T//4X/7JKP3xx/9+mcuvfjV0uy7XKYZ6f9MTjeO4vzncvXz5OqXk1dD13LyItGat6WcHq8+Zq9ZaA2+m0+B7nJZxlgWLxnVsFdZs+d/FGjYcUVdzRm/dPbeXrgaSRMQNqDbDzYXfbTZNk6MnfkO3w5d4MfnT9Y2SG+cGJnfuXossVbUmIhpCEEaTSixDl/oYrYgl9TFOXuMKMLjDcAhhCJh2AxLF3cBdmmsJpmtoNZcU2kyOyAxMQXU9UfysYgG3FKTodEqfbeaQENlt2lpgMvaKOlKsWvMlP358/OGnt+/fv8+5AgB3cYxD1/Vd2oWQYuj7cQDE3c2htcalNpW7uzvCcHd396tf/aof731yCIG7rgshLc290Ijc+JhDJCLre589wi92EfyiVbA2thERfdwkhBCTp7Kr/tgif730JDfie5WFB7MFW6+XED7jAzyvJyP/KVgMZbcI/CzW5wvIt59IxoUYDK404HFDEPphoBQahMeHp+n89nw8Xk7nh/ln14gIiYdh8GyltFxzVFXmAMZgFTEsk3GhI3TuNDSf8jFS1Rc3+yW3Rwx970PgN/d38d/+7YcffniaTooAXZhP0hJ/87vf/uf/9t92t7d/+uHn43QhCiHFu5f3+/0ALKoaQ5dSj0hifDwej8fH8aYjCogMQK25oirjFcZnC5UFfNvUCltH5zrGbhzprRi+hhKu7/X2TQ+nW8z0jVodsIRnIWt/VGnbPd1QQG+8zd7+/XymnQC9EUsGuvGZzHyeWM1qax4nmahLqU3UdV1jrlIUcgrccYBq81SYOXEwMloo20SA1gUARAocYghhBCxqXSlhMZp5loPEtUhzeXRVVTIgIjfipdA8ADOjrr5vPjFv2NDHZygAqJhKVVCU6r1JM0P1hI2IY8fMIfWx72Ls+m437IZ+14/7TkTwdHl8fFwEExCltbu7u5SSqqqAi6osY0mheY3kBzexxRiJ8IvsyGPgdr+XgxAWzwFEjMyehDMxmoKgqSE9ZyXXK6y1BmuvnJC2/4JbHD8fEM+hG35B+vMfcNRawEQlt9pMQwihS9M8oxPjCM2gCtTaam3nS5mb5laPp+nHH95+ePexzBep7dTej+M4DAMiTtOl1uJK3TUGIqJACKbSTCVwjCGaVAIIRACKJkQUA5mh1WZmrdaqy+rp+/6rr74Son4cOYUyXZ4eP4XD+De//vZ//X/8b7/53e/Oubz7+AmAkJkI7g57vt3f7eN5yrW2JjjN5fJ0vlwuG8K/tSRyzoSRV8NaVXUfYx9p8D38xRVbQ3QDeIYM/MwF+BJuuN69fiO2//o72f66hcftMN02uW9dB6vyVQptC6GIFsaXGrukKGIzA3HUS8mAxXwlk4FvzsmnkRhbntAqWWRAVrKmZthMGM2tRBeQNaCZCRjZYiQYUjSE4OfCQsZY35aZEXaeoxMhozFjYCQCpOhj0Ga+R00FTT0uoVozaQaqreac5/kil3I+T+8+fPj06XGesilwTDHGw82tX8MYu74bdrvdfn8zjmO2aoS6NtMP+/39ze3t/uAGpn7FF3EfDCEEhUkFbD01OEDqwgY7X8dAvOKlrCjlc/CMkYkW04bl3oOiok86rgvi+Q+H5Ti/apKriKT479RjiEjEV1kArmOiz/HEF4etFIKu69zNGTEiQi3ldJyOx/Off3g/5zY3ezpNn95/mi9TxzQOiWB3c3Pz8uVLz1NcqKDWmk+PuBi7Nt8bIRBx8k3bBfL/+moWEajmyuzIy+HCIYwhvALY7Xbjbvj48f2//WsWa3//H//hP/3Tf2aK7z9+upynZf4kZymZA419V+Y8l1Kb1dzmeS65EYW+HwOnWqbWlCiAoSpIa/zMJF1aPss0C4KZrGRGRCTXKnXGwjWBea1v/53hTbjCI76Y7L8O0V7rAkBbXb99R3h678fN0uRbzUpxEWAykEWCi4nMjAzUtLWmVJkZQ4yLhiaYKJj5LSFQJgvAHVOEwLD4FpmAEqCBIoABmYFYleYfQNnvEStqKFm3FP96bCglH24GZnT3FVfgMAVxNwKQKlarqRBYEEAUMQNAArW51A/v33/48OH49tPxePz46eFpOs+lQeBhHMdxP+zGGLq+78dxHIax67qUembWBj694dhv4ND3/dgP/ZCGoQshMMW+75mDiAC0wEFc8oUQgJjN1fbgCu/9Yg9vN4yQtg2TQvTvgBcMTpsDbxJ9Nm7mD9k8O827UAs5YWUCfYZR2Ubru8rqr5eR87RLKRtDKKXRLEsDVatFjk/T+3dPDw8Plws8nfP5Mh/P03m6RLJx1+37Lu3Hw+Hw5s2bFy9ejOOYUprn+ePHj+fEtdbWZAs7fZ+6lG53PQCklLwKYObW2vl8fpzmeZ6LtBgjBRawJoKIt4fDi7u71MXXr18yo2j9r//1v3793bf5kmtufUopRBAlA8mFKLWSQRQUQECqtLa44S3KFQsggLo4j9PCY7sqWj3TQbCtav0sTpKaLYOHDlCvt9s2tOL6Cl/DYL4qfJduhsMbPLFVwrZqffiNXsA/p2FdaQ9vT3h1xkDzm94Eom3lgZlZk7XLlXLOFjQQ7Po4dl3iEJCmOdP6TpyqHJCEKAZQVTd8JmfRAxrgs9zBNTq3PjAwMgMBqDbRqqpgwQW1TLGq1SKiCkZmBoQMxCF4F+zT48NPP/3047/++TxNl2kSgtSP4zDc3N7vDnuOXd/3h8PhcLgZhsFjpjTrIqoqEPqMTsCwG7zlm7rOK1vjgDFStEBETYo7ufm99KGL66pyS2W3G7ndLU93nz8tIixkWA+SBqCrbAJuKZP/1YFTVWUMz3j2ytHdxmifF6TCxiW4ChduMgViWlqt0hInINTl6GCOqbZynuZPD8dPD8enp/NxwtM5ny455wwAfZ/u7vd3+7FIudkfXr14+erVKy9ca62Rg97dXC6Xy+Vi6qXHMAxD13W3Y3IIZyvjT6fT5dSYqJYyTZMMfT8OrgtnCMfjMcZY57wfxl9/991+P/7+978nouPxWEqJHBIHhYpqLc9pNz7lggaReJKccy2lqRpT3LixIYSFk0ccY3Amw5aVwDrQL/IZcoGr6kX4siLZcubP9A+vT+3riYVt0M3HDNfBlfi8MxE2yHPbz9dw9HVKv8Ilz2cPwIJpMTMSGYKImCqKghot+VpTkWGkruu6Pnof67l4BiSmsDI/pTaH1nx23gjRAA1CPi1UNQbmQD6Iw0whLNpI2rSqj8I4WpXNUJqKmDRc3EuASLXr+tRFAiw4R5pA0nRpj9IgxRS7GOPt7f3Lly/3+z1z4B4Ph9uuG1IcxnEPFvJcFIGmE2gblLAW0JqGPgwdxj5iYIMUIzOjqdXCzAycJQdiUERpgBoCc7TGLQVcCLRAi1q6GZg1NFlzMt9mkWMK0SeqVWDdtJ7Fo9UqhoYRKSKHZlJMZwCgZEhiWKWSSkyNiIxspAjXjOhthp8XmHIbS2JGVxN2EEFVY4zD0IfAqsKzphigS09Zfj7nP787fvyQ2xzffvh4Ph9TgLGPKYaXd7uXr+4i4026u7+/3+9vxr4PIWirbPri5kDh9vj05CoIfUwxxj51S0/DofvQxy7luZZ2bsqn01SVKXRIsamtDnZQ2+VykRi792/fHw53f/fbv70f72WqedZWkcO43+PlcmpqilREQhyKTABiApEwEp5L6ft+dxiLZKfQqipz1KK5zsTPyjheyPj5gq7xXcWi9rc3MfIqvrFpVj1rd4QQAARxrXqMwAFfBQskTVXU94ZT3FR1Muj7XkSm81lbgybz6WwiQJhSqqXO8+wbvlwmq2024S4F05bnYBjAEigxuR5bH5OIKBgi5lpCip0GDARIExYDiAFDM5N2nC5dz5GBrLnvSzHTpjGAD1eBgYgqMgMT2HTMxMDMXcdOdOn7DlXDgoLSJsDnaLzVKqa4TswuB5aqew95rwxdCy6GxMzIEGOMidFANXgk77ru7u6OiJhi13WHw+3d3Z13gxq2GKOffzFGBJamTvRz/QQiGsfxsD/c7PbDMITAX1Qvz4giEBkq6nPLx65P388q1S+SWFw5OtsiWFxn1zObQkAMaqwGTSSX6Tydc8si4kR/F5rYTvpmysvY9OJA8cuXvq6Q/RxF82PGffMWv0kK3Gp1Vsb7dx+Px4tVtFZNKoYw9v04hP3Nbr/fR8ZhdxjH0dFav2eeT+WcY4wvXrwgIpAF5qi1IrEu4ls6TdPT4+ndu3cfPnx4/DhVKUREvB/GPafoYxKiTJhFLAS+u7u9u7tDxNPpstSNxH4fn+MS0wbRfaHo8EWDzU0jRZu/+RVl3Dp/fgyqY+xmDADIBKsi9HWJ9EWX4TqRvo6c63t49lXZAM4tURd7DrN6JaADspj1MZHSMzJpS1zwM1sAlAiYEddGVyA2JAYjNEAcewodxQRd0iGlvhtSMlZVnQHAFFXbFS+DKBIJadAYI8DzUFAI/TOwvnwwRAXIk6qqD108++UANfCCEIgoRO5S1/UxhFBNGcknRGqt0zw712y/u3EV1a4bxnEcx53f5mEcum4IIbhoLRiFWEXRBXilFTNLIXpPKCBsNpO44nL+hj0OE6C3B8N6KvuugFWvB1aAcnuG690bYxQt6xX4rGOsCIHIBEQs1/Lp8eHTw8fWioDd3Nzc3t52XbzO3KSJEQVYTgF/4St93Gdqx/I28JlasN0FW8RkdJryp0/HD+8fTpeziAJSLbPUghFTCj4y2fd918UXL156IbCNwi7PL+DCwIgopc7zrE1ExJDOF2ezSq5luuSn0/F8PtcyVzfFaxF0SNwB96qamyByzvlwOLx69erm5mae5/N5Ygv+5ruuc11ehzCeFRFMizTxvOOqB75VbX6pm5Qrv3V7/j4gIalqaco5qzIyRYxIG/hqvDD58Uqf+DOjs+2ebtk1rhOv27K/XleqGsNyHm0OTw5f2arRZ8vTgoCgmVoTrcRgoKLVQDlgiMRAQIAEnu+AemWsu90QE1J0RXNQVWtQao0dmi6HC5EXbqiqZCitSYPIBRFVGwGaWVhtxxYAsLUFecvzNjmkIgJGa6E4rONpFBPGyByIGKBBkaZNtLbT+XS5XJpISPHr27thGIZhl1IKHDdV+8GVpkIiIjI1s0CgbCGmKfgJDkQ09P0wdMMwpBS22vVa6CxhcJk9MEM0CshXi2Crepaa9zN7u7XxG2MIQVfkzJeW910BoJpVK3mWXGSa8tu37z9+emcmIYRIvOuHFEhV3ZHF9w8ANIIApGvD11bZ3e1Qt9WVx2PLNRd3/QEtOT88Pn34+HQ6XZqbhJiBVkZNkbsUfcWHFHcHT1ICIi6ab0y+EMPa5yyl1DmLCK38/sfHx3fv3l0uU1OJoeMYxnEMCKqARKmLgFpbhkrNtDREghDC/uVwe3cws+kyqyATbPBYjFGk+YgIB9dJWQB2EYFftGevv3awd0uJ/dZtQKPCYp8tq2kegl5dq89rUfiyDN6utpE99wJWKuvGh1/H8U1E0spQ3ErfhXwizQFMbQ1EFRWBBO0LDU3f+X7pl5gL4BrfRbS0FqMAMAHUXJ5yDtLRmFDF25M+wYqIAOsQGy7iEy6Y5+88xhiaNVOT5k1zKdlBNkMIjp36GcBMFCI1VCXTAABS3ElEQVRzIk4hcAjgsI3IItrQ0KS2UnPOeT6fci3DMBC/vL175f1JprCcqU1rrUTAtKwt144AACKYW5ZSpS5kcSLsYhqHjiJf797n+wREwIEZ1IAM3FbTVl1tERVfYbCMMF8FYe8kh+DN8LU5vNQUy3bKWqfL/PDpeDrN0+n88eP7y+WUurjb8dZpQMSN1GlmjICGgka60iQ/X7vXq1alaW2O3wYkMgBREAWm83n69Onx4dPxMtVWpZQyzzO33AUc+pgShUhEGGPc7/feG1fVMhcA4BQBYJomZIxhUb30cm7o+pRSuUy+YYZhAMIuDbFLqpr7RESALGCicJ7WYVHoECUmur9/tdsNpZTLZQYLIk1EaBW+sLYcRrJKRAhYlSZOR7/Kbra8mghVr0cFPewsKbTiwrfxISEF3zGtR3Y2yFqmk2PRqzDzlwjWF3CXR2B8bvKtjIkVoMZKnrT73M8z+0rcdrZKqWqNiDCYz+iKVHX+orYVsARRWfUBgqo2sSxaDer5qJai4uX82KajHvru5YuO6SyzZ6UAxBwB/PQCYiZQUDNRANYmNTdQDJfzJCKtaS1Sq9TapJmqcvQeV0AmAg5LtZowIBEYQpE2z3Nt2UsCsdZamy7n8/mc88SA/TjsbsZxf9v3fZf6tc9mioXAGAwXa2ao4k0ZKaVIbX7SaG3UJcZlx24ShF8wb8wsYCBgUDMTA7EmBSTw86364v5tGzjG6AZOvoD8seRUq7pCbvLu44d3P384Pk2X05TL1Efq+/5mf9iPuy6mQLxlgSZKgRds2YkFuggUMT43tK6LYU/P4Iphsi4vnef5+HSe50IYkbXpNOcpzudh6BJTDBQCRZdait0GpG/LcaEcm4zD0HVday0z6yp93HWdz+uHEMUUjAyhlEKRVCGXdpnznIsoKBIASS6iedzxOPYphfly9mZKk9LUsDW/krbWJmoLRfQZueDnZHXbVERka+PdI5hjEP7f626Ngnk/J1Rg5oiwDWBu/VszY3526tmYHn6dneS4XSKfEnXY5bP3ebXtZfVD3FpH2Bq0BqKi1Vf+6jEgItVssdHF1UG+aQOFgISMaOxccw2cFAhRm1zO58cP7/QydAZDDN0OUnKWNYsUW8tg/v9392a9sizLeVhMmVXV3WvY+0z3krzUpSZLFiWatgBdyLAGyJahF8N/wQ9+8v/Ti2FDtmyYskRLAijJpqgr6g5n2tNaq4eqysyI8ENUVffelzKgVzcODjbW0Ku6KjMj4osvvk+iY5JiF8RmqbXK+/dPZtaqtRYjhIkwMRFzE8mrKJwQUZJORIyKu9eqp9PpeDzXWpN0OefmY631+fn56cOHWueHw91ut9vt+/3dfUDQsNBZreuGWiu2huS8uIF5rfVyOb28vGCh56f3z88fpulyP+R+yH2XRAgJbjG2JbIRmwEDs7Ojq1pTLTop6LDLy85fpuQ/NY/cmhnoi9z+FhAQUa3O8zzP83eX48+//ubd2yerVueWEz8+vn54uPv8s8eQZSVeZPgjCWShxR91MX2BhRlLvkHQG1JiZtYULHoGzEQYQoGAcx1Pl/PpMlYFpEwYS1nZW5f3Qy+HYXd3d7c77LquiyuPxmaYacTHYQ6/y+WYWJKu0BVxzznvdruU8svpeDlPzbSUcjGrtZ7O4+U8NweWDGHNN02ACsBdnx2WqsrUTdXXifEAUBZ+VSeISCIsgkzMAM63aMuv5s+4OGNcN/CGUWkQJ8BBzcCxUkbOCWNS11QJ1QUBIKWoYj59/zVfu57gH/17/cKSR7gj0/YOGw3LzEgNzcGVAA0NAFdFxcWnhImRgBiJ0FyDTk9EjKRBzCBClruMjlbqPI7j8ekFpksyE4DXP9gNwxBpBdOml8ZtrjlnckBDBmTAptCsyLv3T2amDdyRqUsJu04IJfUcASpy8Vh1zGDurbVSL6fTy8vL0Qx2A6bUURI2c/dpnlud9XAI95CcujgFACAGBkK7QxZCopkt4kan0+nd+zdP3x7fvX/z7t33jhZ9OTNrteauv426t1gUI5MRqLW4NivVap8ZkYRp0e832Bp0269H0LIGqsqyJVTg7qWUl5eX8/n8/cuHb7/7bjzPQ95Hwvnw8HB/f3h4eAgAySEqN1tqv5DzWC8VABQXpSxfi65PCrb1s3y0mMpUgnZbSqnV5rlO0zTO0xeHw+P94eHh4fHx/vHzV8Nul6PF5h7qIkOXcs6uDRFzzh137n46nS6XCwPmnIWltfb8/FxVD4eDu4/j+P79h7mWUsqI1Fqbq6kBpwFE5tLGcZZSU17wsE27K85BWPGF2GmRdu66Q5yGS8nDwM7ryP1HFtvXrPVm6ivKvPgWrmImMWQTx71yvm3SbnaKiAnxI6LbLeIAbluttDnm3T4OXJuLU5lvt248C1UVJ3dnQCOC60TaIm15+0DjT0sSMkrICMThROnujMJU1VZdp5rATqeT12pyORzuI6rn1EUxTESh+hhncQhRIqIbytOlAACRMBN1Ql3HfcciXTowY0IUAmJnakSABOAdqiRsmUMUnu7vd3d3O9kdXp6en5/VfbI2nY/vT/t8OAh56SUTgRkQAjgReNcN7jgMpDrPZUxpnsv49Tc/+7d//NPvf/Gz0+n0/XfvmSVxfv34xSADfg51GoM2FNg6MytH06JGKrWQn830XE8vL3q2zz9/vbsfytxUq+QkwmaWWJpUSbnLQ7Vqk4lkzIxugfRcpvPu7pCG/vTmu/fH5/HtKSmadCSSmPu+77v06u7u0A85CYM3U6ulaQV0SSiQO+6WaW+SUgozITEANnN3SIDq4Oqq1lor89h1HQmbqYGJCDCZ2bsC7+Z6VmuqVuv88nR586YDPWf+Yr/vDn1/6HIHABeEBG1q3hNg13VZ2EsZxxHch5y7rlPVl8uljSXvdoy8tG2SnKd5l7MMh+M333/7cgTAZnoZdZpmFrl7fGXuz+extdbUR8h2fvn14at+182X8zRd3GWcWrPS9xnnSV2HPhsLKLhSEsA+zx+OvSRuyI2FxSuazkKhF5RM6zxVRKxWKEd+x1PTlEhCKaHrYJ5Vo6pDMEfK6FgNJ2xIxZESCwCYqjN3XddKnKeuYfaFAAkBnEsYmxgSURIRieidOjBwbmq7XWnN55mTzJcLAU7TdDmd62WyufpcWX3IfauVSciMSkWHNIik7EIFJuqw3+dSylQvO+qjj60qxOIurcCkFciRzeHi2kGpfpnpYlywGT1XK2O91O7hwVuzWkq/q31HuSNxNk91PKrW3b4vZk0NQNRJVhxOkvRdHrqu77peRBzBkYzJCRwNkIEsQp7IVcqYmXe7Xd/3JN73fd/tmHkM92pV5rRVKa0ZorphjKcGdXlhmaifz+c3b9784ue/fH77Zp7r+Xwm4u+++y7n/nQ6v//y6fOv7lNa6BaLZCQyAAQBIOqTyB7P5/PLy0v58N3Ly9MPf+2rx9ev+yH7MhqCWhexywXMDEes1gD8dDo9H1+Ox+f9/d3hsItqfKqTulHifjd0KfdDIuaiRbW2BsGwiXM02ic5LzZcW3t5IeWvM6JLHoHXsHN9BZXPXVUvl+l8GkOryN1rned5NjRJdylxnGUppTDTVNWhz8HRs9WBaT2tJXo8VyTW3d33/TDPc53LS305nU7TNBMnZq6tKRIRT3OdaxmnsqgdOgDYbrdLLKOCGcy1lDpZ+NGvlkLFNFD3SFcDFCQioiAtf1Rq+s2UZbiTupq6ESCTYExjh265rtDUGjPnVrmwiGCHjBRmWq21aEPeEqK3j/xJeNxSpC0d20QFW2tlmm8h6C3a11qbmpbqqxjT2jlbDJBUPRC1SFCYEzOzs7EzMKEnZAD35gErllI8lC4NzNvb90/TNJU6zdP+7r7f7fPdYRiG5G5hnmWmtXqtDSGpuZgiAhEmkY45M6dl1AvQ3EDBgFjQABiJETMBILDQsOtTFhHZ7XZ9nxV0v98/Pj4+3t2XcQqh2iVv9KbNS2kAGKRL5tT3vFH53b1VC6mw2swBuqFHpHG+/PKbXxzPp6fn5599FxlvQkQmWXuGvNVOUdQFWjNN03E8f/3NL46n3/wLf+k//sH+KwNvrSCQIAGLsMjqg9hqnafpw3j69ttv37x5cz4fX79+/aMf/6jruv2wk3yCcWqmRYsIEffcieQEaAYaEkTVdJ7Keby01u4OHL2TTfB5Ob+Cdgu4TRsa+LaBI2gsG9i0lPLyfDoej/MUza1WSmmtdF367LNXn3/++tXrx8Nht9/vRTCMufuur3OJv0WbDrpZXEnf91uyuoI9nIinaRpru4xjqUrAQ+5AEAzV6DLOY5nDbcjdy3lkrkxkBtNUgt5j7uFeB4iUBLcZvWXabvPIBhYMvWHa8uGbDRyPEhHdtTUPEcKF0x7sDl/UDnytQUqpAFNsxb7LAKxmXqs7hWfNbcduazj/Kop2mzmnlCznuP4yzRuCFeDCVpNba66KCCSMiEXbVEsWdqNWvVV3I3BGIFhHUMEJ2MGIlsHz1TlHFdCHYUA1cO04X0o5XeZYQqW0cUy1+P0d7u86FibIktnd0cJ+FqXv7kWoi1fuZI2ZQGDgRRsZYHNhTInZmHhBU0OuOaWUc2IGM+46fv34ePriq+gmgUKZ5pw6VTE31bqI9RiaGScxYERvqg7YDbsvv/r1UnX64ZettfEyBfFrHOcPLx+qqr8/AoAv047XIoow+kALhLPF1cs0AsDbt98burvdPRyWoYWcbycKzWye6ul0+ub7b372s5999913TYuqfvnl559//jmavztdLqW2cXWRTBKsFORFriPcuqcyh0J93x3sRj8AVxHjCPsReKuqEJmZumW+FpAbmb6UMo5TKbFuqJQyThdEf3y8//z1w+evXz0c9l1KaM4gfcouKiLWNLIAREop2aLntNSNwQpYW2wamhjVvJSKSCjJgRSERebTaGYh/4aI0RkyG3uhISdXL6WGWo0kQkqcrgPrsbHHcTS7j48VhwVqdajhEbuoMd/MDGx4shmaN/eYDaQNbiQn5piLvrKaa9ULTjcEGHYEih0e4/tr7FXVFUq8VuC3wXlrK25I/rKNw7Z7NRZ3d07CgIrIbohYVZs2dSPshXtTcmPCDCDXSXAgR1LQkJVGpwSAoGhurQnScDi0MutcUkp7SrXOU2l8mlu1y5nD00y97HZDyrjxsgEMkeTx8ZVIiKdLSCDGPJ0tNp9uIVodGu4Y88JGBDdTD4AIgsAMXR4Ou/3hcA/23Fo7Hc+7/WGlmK1Ajqs3n6ZLWozhzMyGfvcbv/6jx4dX7mNozkVm8vz8fLlcmFL14zrYtfYGLECUFId6JLGw2lXd5y66Vm/evL27++WX7cuHhweRjA5C0UkmNXW1eZqOLy/vPrz/8Px0PB6R/HK5XM5n+uKLoe93Q3cYegTilHf7ftfnJIQQzk+maKpaWh3H+XSZIvgfDodAzjbICgCcUMEXUQm9QqPXO7gmeIHimkFEBdXp5eXl+fm5E3/1+uH168fXn90/vroXoXBuZmZEcfs0G1xZLNckENcA2Fo7Hp/VAVCYU8q9pGlq6rWeXqan9x+IMXQtMyOCcsLPDq/uDv1nr1+LCDm5gYEbmgSphsnAq1nUSOM8q6pwIhLEykJY3UyJbevobPpBscNjsyoYARM4A6I5oNvKWo/9vNpWekyA1Kojz8vGY2L4mKhzy3u7aR9uYRh/hWPrq3jdZv8bDaToWcQXwZzcm+pcSvNmjEDInFLqwByRiRB8fe5qhqZoVbWYogOBI0Ip8zxPcYx2mQhxqjOYYspWvdamqnkiESmzl9mBd+a4g06yESEgR6tShqFn5pwlZU6JA6lyd+SwBcAYBxEiWUDE6xhAGIJGoyRoZdZUWzT2yAx0dfohQmIw9bC9QPTLrNlNRJo2Q5Kuf3j92eHhEXzcGh5B5Z3n2V0v82jrGo08nEh4EY60Vfr4Km4kuDC3pBNteDnXodcue7Fy5buq1lrP5/OHDx/ePX04jZdm2qekqqfTqUzzMAxDyp2kSoqOrE4GpI7NrAdzgFaq6jSV8zjHrgsoeJtZ38ILhrYDuCAZuLWmZrBx924kaBfSryFTQtRSyvPz8/H43L063N3tP3t9/3B3uNvvUpbljABGwKJtizDx8iWSlHC4DVPlQHdrnWspDkRZEFHBDaipFtP3795ezqf7w469dZR2OVvCnGV33332+LAfelCAkNSvdS4FgIkXp8iwUFySiLlG85+IRIgYzTSUbreoGDdnZVxFQkvuutLRzdRiiouDVbzaHbk7IoN/tIeJCBKIf9r2v6176YbLuRxnm2XQDRy9gc8RfrezLy6YANkBTWqt5ERdSl1GdWY0N0RnRsDFOnxhQTo09GbAboxhsBTcZCB0AiQCAmyt5f1gxvOs7j5Xbc1McS4qGcDZPXx/YpeKthbSFhjK/UiGBIiOZGkJHQjO7kQOi38v4YbFIEZr183MFRCxlKatmQERdZL6bsdyVQ+7TZxQWLXGF1PqiMIzhUyPEZdSDpb5ImusnkJ1KhpRqhp93O2Q/YRiadWY2V2rKaJ3Q59kh5Dcqrpra2VuQbL58O792+/fPL08b3tPVV+enqfz5eFwd9/3U+7LWEwdqibznmRIYqTgboCqWpZp6oVbNgzDbreLo2dTP6NFrh1BiABLK3Yt/xCWxsbVsSmmsyOdXuExORx2d/cHSazW2GhDUMwMkPBGd8JWyb/AwzfNp4jwpRR3VVNrNBU/n8e5Vid2x4T2uOteP94lwf2u/+zxoZZJtXHHrx7vGdGaMid1qKpzmQhziBCpmaOTMINXjUzkHhFjhgbRkSBl2ZLYuDObVs7Sld16yqYO5BaG55tH17Xfo+DkAIbNtJR2oZCD71q0dmLC5GbTbuz3bfcu9NoQZF100WRLoeFm/mHrTqvq6XLG4PuBqap6YzQnTKBIBthwscdalF4WohYRNHZsCChICVEBwDw0KlgwU4+HpqVCR4CC5K2aK5h7KaVW/cXPx8tlOp2GUh7u7oecs2ettcl+nzGsQxkQAUkXiR+riCK4BdnAACMIwnK63GB0ZdRF0gGAmTtJwzDs93tmJkaz25lMBcAs3dYX7bocJteIWFWYMaUUfdHFDNdsnrKZIfJ6ZxfbJETdSpdlQDc4/fPil6OLgleQah1Xe/Xjy/l8PpdSPnz48PT0VEoxWJx7W2vH4/F8Ppvqrh/2w1jmVlSHnIe+3w/doR8uMrlhmFfEMc/MofF7OBx2uyGaUjdA69W9OjqQAS8ty+XGL+42i9v4hjnLbtfv9/tXr7bxCWe+UWx0p1V7YFl2ca9VKdRbiBYbN9XWGjnMrZnBZdLT+VyrUpeI+PPHB3d//eoeXR8f9r/+g6+OL09PT++lyw/3h5wzGoXcR5wdwVF3WpU6icA9aLn2iW4jqsi1D7yOcCy1BnBEXY3yey2PNUbWPwmn0S4EWjgz0eMo2rgxRRag5KvqxbKH/VOf6ts4TDeOZ7dc3Q3lWnBHs5SSq5FBtLQZCEWYWcu8XNXy7iFrGlZFscGQiNCAiBLRqbWmZcPzUkre9xXw2CY3B1BAR0J08mbN6+XswEcn73Z9HvrUMUkm58WcEAFQFVHZIGyaMglCECA++rSlTrgAioyI3uByGo/Hs/py8EgvD5/dqQ65E+iVOKyMWFLnUA0w+O9obKpOwJQcqJkTOAkz5SScU2ZmSbymfHUnnSpE4hFlY5ywyOauiJASA1JMIzA73ZEZiYA7lLLEulprhm6aplpd/fJ8evP88uF0OhV/qcXdCCGfRusEMbWvn98+lNeexZI3mrMwZzCoJjQBAfRNKyKP83g6TeNUVXV/GA6H+4xpYJA8pN5O07m1ClmmyxhZCaObqumMBIlZEjadzT1nAYINO2lFGVhIrLkW3fd3X3z2g1cPr60g7zIRCSQytjCVcyy1GWokzuThjutEmDsZhh7A5rkiojvOczUD0zT0u6fL5cPzk9rM5NhOmfOM8w9/+IPf+OEPnp6emDAP+TF/dri/2++7H3711e6Qj+fxZX56GV+AFQWVuTq0uWURYRIidQegczudy2H3sJs/FIcqBMNu6Ei6XmqbpnmUhES5tUZs7hiqNYjcdxmWo9iYhVkkRqlUQ6K/mbbWdoga89UNCxkgG9Vi+NCJWkuKIhRavOzQSzLiFYuSmDlxUCQERxIOc3dmlpxT14nI1HSsTd2mWqzVLmWtjcm9NknxDqCq0JiUYIbCnTc1dHRICEyckBE9p4okVZWK0mwOraoqatbpePrQzu+8FcCd20CK3mTHU0MnQgMb1auZYTSG4M3LqKRffvWKwa027zilXqKMD6AyvEO3/fnJiQUA7pDTsGZoaOatLSSheZ4Dzc4pJSYH67p0a7QrHPMZi6k5+KLZ6YQhgEFEQoSURVLEVEKImSTEzoohOUsAhgvlFQCQyCwUPGMCgQPyIIcWhlgA5OzmCCCYOAshB9gOTjHJOI0F8FxrMfM+D8A0z/PxeHw5HT//7MuUUhhy9EnWoR+PdKPWBeoopRBJ13UhiOkOzDQMg5FfprGoqjrDx+UfUkz5bSf9ptG1FfPbFBvaktqEnkb8QHx3KbQYwQLg1YB/QqOp669R+toIMSOieHC2Cqlm5r7P+/TweL/f7QfzmiU9vrpHiz65lVLs6M0WDpbb1Q7mk64MALh+pOoaTZooi25jGq62YIxoFsEkOq5LKBNJtwXqLVLgHn8EwbFCJaICUGnLTWiFaRYvu/i7t0ny7XviDSPar+Kvi+Y+ERXVUgqu6ogBqt2UbM3MrDmhA0nkp+igjuim4EAITG6LuA1rRXIiUHD1pmRGhAwgGVUVrbo2hwZgDrRSQ1VDyIkAyJGWtmjMuq16skgh7BYP6aPd6wCQkMzAjc3MHVrTUuo0zdN8jD6UiNBCnKQFHeSFSqktidRaQz3HiAQAqqm5gkMYhaODouNiqErRTDUDSe2aDqFtORhzIoKlQaUhrO2qRI6lxG6HVe9CmAEcs3QpdV03dN1ut9szJnc6+7tWn8ZxUq0Obdb5+SU9P394dXjcd/3D4c4NgvwcgGfU8hEt13IOd7tdQNBBO+s6cd6pW51HNFt4u4vxvEsXNfz13uLNiUm0MDFKKbXNAovBQsjlbGl2cPHNjDj5IsLWyAEJNmpmbDYAcMe1t6m12GUax3FcoGCtjpSEPnu8G3ZM3LpMXSedMBJ0INM4n45nyRIqokTk3nARYXMz84+HAaJ+DHdBRMzCfZ/7PjOgmpGbIDVoa64Znx7WauBqXrH0eBA9YBJyMkNflE6WwX91haX5XHmrk4N9TsRXgqTfeLLYjRLAdpRsNYjVVkpppaI5r62+KEw2FG0rrT3m4NXAF/Vg5sSr3qiHOymRZEYlV0BQ85kZul7USgUlaMjJMo/NVWGqVhSqgwIBoBGwC3tjySIppQ45uUEFlw2OQmBE523Kiq6ancsGDt2wElP7C8S64nVlnkdEby07JFyktjCU3MJhnUhADCDFgmugAK7maOpuiOxWijl5FxPM7o507RAO3XUtrs15M7M+pwVOc1CtqmreAIBgCBrT1jiJgTsnFRHpJLHc7+/DSqbrBt7vd/3w3Xdv6jSXcS7z+UOCb77+xV3aPb569fnrz9y974ckBGBEaZynUkowHdwAkVNKu+Gw3+8ZQRXAISCKvu8buukEAK1UU2BY8BImikLd3T9JdqIeiX1qZsiYs/RDvg0RqyrNigu0Raw4LC0lgo+Hou1Cq2htyRq0gboBkIh04NpyZh4SH+66lITQUqYsWNsEQAR4Po9Fy+H+MMhBRIST+xyH0jIru0nDIQFALVrmNmQLwUAQ2A99n1McO3FCEZG7ki/1qoP6QicOaDh6FmqmYbLigAnJgRzYzG1B/qI/56vYCBNRa8rcwriGNFQH4bayhV8ZU9sOuw2AuCVggbkg9SmPoSxlFkbwC7LiTsDmDqZIvHTyiBF9BnDjFs0wIWLGBs5sZEOHbce1YW2tWUWgRoDcGVZVN3LVZRrG1UO9XtVrs7lWbDYXNVhGYeO+wyJuD+AGyuGWee0uxoCY1ZWvB2qmtZZap1rnMl+YvJbOWo8c00spSdoijFlDZBYgymaW2FprXgqgk7t61WpmxhSjlbTsQ6K4pjZ1n+QC8f9ZXuLgDNg/RosREewqnx9VdIwicMJhGFLNROCEjPRwuNt1/eH1/ZevP/vi/vHdu3fn48v5IgR2fPf+dP98vz/sdjsg2aTqEN3Myrw4DIf5cN/t+r4PZJ4p2iBgaBE5rXpk2omRgwETREu+Qgx+Q/dz0C2vY8aUKefc9/2G1d2O1Lq7ao3gQBx9YBLijd8SLh+tLazPEg7dgOLe6tSj5LvDkLvHw77vKCXe7fpETCQEHFj6y8uLE94/PuAqqk4kzNdD3FZ59BilLmWqU629JpZhGAg8Z2FGbWqqCJZYwCoYAQZp2VaQedOFFjNzNVdzdkRkJJLFtaA0RzNwV4fY+l4dACai7Z6sppRxqH3kwPJJcNq+FbBfa42JhDkRG9TWGjq4WUppmj7SVNn2PJmzQzM0MFh0UhGJE1KtS0seQdGroBEpZ1AW8r7VcjpPrVVHBJTZVA0MwoB2mUaFRZtTS9Hz+Xg8CSBz6kmSRMMKaZXDW22QiH0b5qJbOU9DB1XTWkvTaRzPczk3G+PxEN1YDfgiJRcuB1FfhNoMA6PGNbVWp3EqMeoBLIRTSkkkCHdruQVGuvukCloTxDkoaafT6Xw+1VqZkZldrwppMSDGzKp1t++IQLU6KMacDGHe9Ye74QcPr3/0+VfH55dpvoznl8vlxbw+7HeZ0NUQmkXzEb2UgsAx1H46ns/nkSXv9/uc+1JqAuLMzNCa27IcKZTTWimqhr6aA+uCvm4LyNcpWUSMCUpJoUGxqKDcaj5sa2jpc+DCkWRCAAgVUYQUyZ6Zq5YytzI3VWVyjx9rDYmGPt/vdvtddq8ppX0/dN1gzcdxGi+lzPM8V0pL46rMzVZFiGKLVco14w2pL8dxHHf9kLu0H3p3TSkxgcKyqCSRWQyTLg5Vq05GBGd2UNDYoYrAADFhCyiEyFa4BXxtZm7gGFLOo1sMnZtZcAURkxmY1k0uZ1s8G5PkVo5/Lc2uiLTWGuOivGQNV7WtaxhXRwMGREcz0+ZMQASJe6uNtFhr7sV9JiiZ275LqkietHRa6rE2BSRmVa2tltJqW5hUiAYOSAnNi8JxfNlfiEg60F7uJPJbM1pUnWzF9xm3DczLIwE1F3RTrXWa5kup4zyPTUekuu96EclCDBhKgMAOCtDhWmDEEOF6aLUyzePldHp6eX779v37pw+IuN/d7Q4PXZ9DRTHOghBzJBuvdcjN+Rf6dZfL6c2bN09PH9w95pDRPLodkFKWQZIwU5bFS6TVqqAJEhLFDeik6w6HV8PBPv8qMTYdx/HU6mjYE1FptZg30w1Vqsan0+l8voRWw/2w3+/vYn2HJp+HoBE6MQsJmnUpaa1mbdl767DbdizpxwZf2wJCvErj0U1rJL4b832SBRZKIAiSu7aqrbVu8UNaMsPISgCgtBr6GKFD2ndp6PKu7xShlx6RW7PpXI7Hy3ieS6lrP2wxlFJdlK6JCGy1oVm2ICAiI9e5zfO867N0nWoNYwAhrlAQiZmMFZyZXAnUNocQRSTiwESMHXkrkWMhATp5zhlrDVIQhlC+L0l1ZBkRcmlVVrEtGHykawccGe/Sv/gI7dvURZgZ1LQ1BdtKmE/CCTsSMRBvHGlDMKAOpLkxMICyo7j3gkPmB+CJDD3r0F0u0wmaq5LA4TDMM7uf3Vw1piIAEdIuI3rPbdhx14uCo5gkk/WiG1gYooXHPLbQpHEjJAAnRHM3BDM1C+gqdu+EZCJxp2KGXc0aALs3NzRUcCIikTjYFrXG6Xw+nU4vx+d37979/Oc/+/b7NyLy2Wef/UaXiX2z2lxl1j1QPQTckpwFVIOdmR2Pp6enp+fnl5Rkt9vl1GeBvu+j1ByGIfDenDOxI4GpgSlzZgR1UzXSTNWImBPvB2JOdn8H2IzTVOx0OY9zeToda2tU6zRNl9mOx3PsB3fvui7yWxHx0lpriKSqIMhMQIStRS4QlUKYud8e57d1ASJGHrGuOdtq/m2RrfwkDAloCZYTIjMKkmq1j4Q+wN1btZVXxOYOMTA85K5LHdPQd7t+QO6GYUDkMpXT6XI+XlpTbQ4M2happzinWmvmREywdBBX2HkVEgqMDQL4dQsxhpswuIC+SzBstiXnt3vjlju1vQiQVmqKS7SYFteGrbGsLUgKi/4+oH1yh5e8MlwI8epcF3+uzaWUoq3FMwW0Ms+11m7IsIps3RZ0y+NgCvyIQ0qGGQwIkAGFRFATyqHDXQedXsCwEWbhxEQO6MaAxGhMXRLGxkhd7mMZt37Xie9z+/Ufvv7s9X4qDUn64SBuV9M0s2siJGO49WFP3C3Gg6gKJch53rQZAAnvOGfBPsviPzDXSgIACoYiiuoigoCtKpqKdHUu4/n8Mj6HqNrX33775s2bqcyPj49d9iQlmu7CQkQIKW7oNkFuhrVG1uAAQFABzXwErMNOdrvd46vDF1+8ylm2mcFbgiFmYOZEaYkk5gBhIQmVlAEM7DRJ1zEzAiQlyD09yh0+H0dk1zqfx6nOx+Plcjm9XCY12t+/2u/3u4w9ayvKzAZ+aYUAM2aKXERxl3fseFnYdsxMTYvdoNA5iaqiNjLNqJkU0BTcEzs74Mw0FRtFslpzYBQEICeU3KMrIwoY1FZjhghFukwEtYZPmjuUpqNDQXKiobWWCLqUuiw5yzBk7mmX7nPOpZSn5+cPHz4UbcEGa+iHYRAGqvWOpTPPQONc+z5m/rChFmwGLIgOTi6IfrlM754+7PcDC3hV8yYOkhNzOh0v5tz1Q6uWs0B5bq0JABKH5goC9pwUUMFBdaNJ2ULcpZx7IkGcSq3sbkCq6oui7oI2a/NaNOeM1MAJUniPgWoFYHeXIY/jOLY25M7I1ZUTF2tjmadpKmXuu+xogK3ruLbm1CEx2RJTgJyJYrQoJUmJAaBpsWZo6nVunZFkqWDVGFT8jP5OUJU+VG+l1DobY7kfoAFLMr/PO+VHyyJy2O0Ph8MwDJ0kwQrgu30+HIb9fm9m89yGfi/n83jbirwW996ijFZCVSZY4GkRck8555YraSTDiIh9DvVAIiI1U61EgohCFrgcunnTqZ7Pp/H08vLh5d033337y1/+8nQ6GcDj/cPr16/v7u4Cjnc1IAdwJFi0XrchEneKvsIK1QJY9IFFKGfputR1Kfo9N0Fs+XEhZoqvs7svpqC/gka6g4ZPc6uJsxCklLqua+DzXOZ5nucFJCOWvs/9sEi3foIlb+8dU2RmqbMuvN4WlcMbLtftlWzUbhFJKfPSBNoixEd/JtJF95AvKa01daIUw6jLT27s/OBmEVHKzMwpSc6573Pfd13XCck4jk/Pz8/Pz9M06arPGoDQlilsWJr78q34RMJExERUpjmYM6eTtlb6oYvFHd2NSBwiFzNvta76WCvt7/ZWbHUp3DSEwwMwnjsLmkXkv+YpwSGFtWHOuFLiFtFwArgxfDUvpcQIobszUdylYAFP4wW0MS5iVMELqFXVFJHNrE4zaBGVbCEJGB5+Dsxdl2qB4g2wESm7IxOQWe4RWsJ+l9B3sFOhtOv6g3WLvmeXc865T7nrOhHphc1UEohg7sQUpql2eZBarknLoicW9ZjOUeqgqYNBTpKiG7Y4piJ4a81dtUqt1V0dHLZ1CY7oEUvdmjpYtVrrPJbn5+eXD0/fv/v+/fv3p9MppXT38PDw8LDb7TZl8Lh9nzTZP8KuAhg3u5HhXCbX+1iJXbclmdsK8HXeMBQF3F3x+sgDmFkTLQjFjMkn7CFxHrpu7jt1O06XebzM81zbbOa5o92u3+12LOSuoVy6kHd9c0UCZAAAyanDvrZZzUyNCNyuZdXtMt2Qv5S6nHtsps3mqUFzEmTfcm9jcEBoYBQLemklGAEGIn3Dx8x930cWbVpFqEvSdXno+v1u6LqOCLTp88vLu3fvxnFs0ZIlJKaUc4yX3O6r1po7iUiWBGhamydBxERcF1U3mMaiWpEgpUNKyVtVNaJQYKUtv+WA4+N5gW23AsBWhToOSuJywK3c6BCfCP2Nm2NlE4j3LVMH0CgBAMMYiUVonguoMwsiiiSRZM2mcY7+nBmHCg8smlL5UmrXdYIUg9LbOiRWYHRqwBv9gZlZhEuZml0IPA+0466jYcheJaNBctlDfgWdYZb+0HXDeTz2fT90vYhESzmxiMi+35lVh1prCV6miCK5bLDQJyWHL8M68+yWsrSh3+37nDMSisgw9MKkWs2szhMzjvOkbREHZCQJV1QrbGKtTNN0OV3GcbxcppeXkICY+r6/v7/f3x12ux2trODr/N1NOrABWpHsR9SNwBvy7UjAQgyUskhiSWyutAC50ZrfyLe04kPi7gi2WdGtHZe0/d046tGBEShh3/dTKwzYWkM3Aif0JLQbhj4ndLNWFJent0H7cS7oIk+NKSXzVmt1NxGKCf9bcA5uxlYRWDgn6VTnedbzaa5V+57wpqJzMGLE6siUiMPkOjwOeNWpiJPr4eEhLuByubyczp3scpdWbkgCgFr1dLx8+PB8Ol1QOEkqLYrYFGIJRGSLNcFie22NGSnnrK0sh05wb3nxyzXwqj7NpR9stz/Mc9Xm4JESozvlnIioaojRwnb8ERHC4lG0Qb5xZ1QVJYyYCYAd3d0WLX+0kAJVq2SA5k2RFILogohEBgDmC7MN2nJQMlLf963UN2Zbd1BVmTClhEwE2Db1CHARAVtK+r7vAYKEDyLEAjHwFnerlGlu510n+4f7V7u8490u+YkqoVDqgZJR556cE5Hcly4kx91da9hrGKOO4wXRHeo4neImTFNFrKKrgeIGuC0TquC11nEc2zyxUJ0Hhzt3z70stDgh1aRaCZYccZ7nMo3uLkKJqLVW6gTI0zS9vLy8vJymaSpNg5f3xevPUkrdbsg5+9b/SOtdXvUn0ZcjOLh1C/7sQPGs3JEcEWLLwEJgUrMWHhxbEL5SCNe3JVic3ePJmy1T5kShS7isFfPGTIhAAFkk5yxCLOiuMQSSknRdSllCz7i0JiKY0maZtZABMNI5CLhPg+rTvMuCt4SeG5F0xAUBEsk68Tzp8XiZLvN+OCDGTDK6G5guSWXsHzACs0Ulb5HHjtubcw4Vu5SSWt3vht1uiAzN1aZpnuf69t3T8/PzVMsgQ1QvQCQ5h9wMM7dFM+B6yBJREiH01hxXn1pfRPYspaTNT8dJ5DIM++hIx1UF5hwTDo4S5j2IC/uAiJhQQVflFt9GfBDJHJovbtNAbNZIF5Bsy9R8g/7M2mqIGKNRZhCLIqeu1ermii6URDIoWLVxHGutZk3BTSuaEqC5htAigBEJEm5cy7lWRwMSsOrKBsrA6OYqtVZA7Ybu4fXu9aHr2YdEAg05IYtjMidzVgdz7LtFq9TcZHGfaLXVaQ4esc3zzIwiuZQZAGUul+2OR5JATJKw1aUSq7XW5kLYzzmlxAmZmQXRhRlVEcwBDV1C8MitCRGB1VLKNMa+PZ0ul2lUs5S6Ydcz88P+MXZXDLIgU5jrlNYAAFf9wlt49jZT2OrAyBfDhwYWikWrde77nhlT4pQEYClob0vHLcsKUHSzI1sneGLzQ4eZIZJhIIIsqcs5sbg1IsgiKXPOSTB+3WIKR4g29VYwJ6IQjtzCCC4q2dFcoVuSEC9W44tpoEjuuqGNp1rsdJwul+nhoQWFO0wL3AnQCNDdWqmu1cyABBkIUE1ptZmPBR2EbRZPKeXcI6KpXy6XcZzneX56OY1zNfPaDNCBJH6MKJzT6Sa5XT/LqsYaQxRam6sBQ/MGAInJ1KdpotPU7+b7zETcWgWg6PFGy3fpx94UShEVceXMrn0sXFy5ydAc0YkQiNSIFd0pDBvcfcvkomvhK6U5KD0AhsraXLktFgKAAKClHo/H0+nk7jlnM6plrrWCtiwp5aRItVZwCE5A2IYxYFV3BEJgFidyBEdGIlCJA/Bw19897IfdLrlnTgYtrNubugMmZAlxouqu5k3XLvNCv1GNRW9BiArSISLJy/G9ryTvjjpiSRlzJoS0HJAIDpbzojaMIU2LobhCiIi9IbkbMXMTqeVirdVImk/HD999X9VUFQGGvu+HodvtU0oZs23NtBB/JXT3FIw8CDCEwxfb3Wn1wgEAh0AAzcGCQUYMLMs/HBY25Z+YkwcTD82JgBzWUS/SlQm4JodxbQJi7mC26IAHrSLmGTpJitylnIQATUsNMbfILWOiYuv3wpoNhnxUHvpitU411Mw/yRI35/jIePtuqGkXYlTjedRqiZ1WBXS3Bu6IybSBKtj22f1XYxEABNgm8mBmpt6qznO9nKd5nltbpiMgmtiEAaUwM0DbhBBukYgQhXR3QQQiN1VQd3ektU5evcsNCHn44nXXhx8PhuE4EdRaAa8mvb6yqQKWoWhumtYWTxxEJLqVUSgwoQilzMSwuu9ea+B4HAC61fCRZCEuni9h9GMIbS5PTy9v374/vZxxiSHgpioSTMxI9TfAIsj+ZtZqQ2HJOXe9rM7vLEhE0Jg5ce6Hw9DtBul6LN6cQ2jHzFBdAMLE1sxZOkVti1GBm6lQcgTbBItac1czMTMRlvfv30ZesWAYmgA6RF+tA7nlpNaycJjxIV7Tp9jPCDF7wdBBSwxeT9P5dDw+Pz0dX57OL0cn5JS7vh/2Qz/s89CnlEglwgcAwEYWXwNkKPjEa81seeuCwq9YdeM61LIV8HHQbvjNdTPDR1yureD85Iub2BqQuTkBp3XQKVqXzMzCRjmlxd5O64xuKHtYwVB1MLMIsbZMSiMALgRprQEifIKBR2KyfTqR3HXdKALu2mxjYiyX6quXFyojOgOTEJEzA6J6Q6SNkLOFUFVNiefZSp3LXKepTdMcves4ygkhCqVoQhq425W6cJtKxG0HNZBFUtPMEXGex3X22Gqt42WaaG7Nvrzfx2UQIQA7MBEutfymkvHv8ebeIg2vHm63Ny1yloKV1v2/7TRE1AbbbwW7IzrVKSVfyc+X4+nDhw/n42nR5QN0VzfLOYOSNZ3nuS0rc1lOgR3MtREKU2JKTLIMVIXPERChUBRfKSGJuqKLzhdmJiQKZSUEA/PWeEjgZOBVa3gCBytIBGur5m1tlTsx5JzExyyJe+4HGnros+24JcTFPIqCcslh5c6mAJcZ2G1J85CZ3AlA7sVUdQYoRl6pNjbc5V3af5Gj+uq6oet6ZgYnb25iS+EWxlUGwf+u2jBkHARFKFjHgKZ6Zf9uT5eIBKnWSg59yu7eSUrEoFZKI5LWTMSvP4uupa6ck6sbKQCXUqMoKnXGhkTQlEqlh+FOUgKF81wVQd0ypod+N+0fWbJzSl3WOj+fLm06C2Huas55bkxkDbmaHg4HIxLwZcpRTd1F5PHh1eHubrxc5nm2YiKL1kmU6HdD/y5xP1Bxl3OChEXn758/PB+fn48vuU+SwJHUzLz1fUZVc3PgSkIkhATI4N5MIzEhIg4LHy+g7TwthLKmqAZR6DKlIY21ViAcOuk7SeKILXK5TDyN89y0KnZdl/C5Z0XXRFmSszRy58QeU8pkRDCObbxcVN2sues4XX4+0I9//JuPd/eX8WytpsyuzdVRlqcRRcdygCIBgDArUDUAhMSJHOtU/KYxQYDhcdNawx1Gw8zs6iSOiE0REVqrRLSwrJ2ZBVtFszJeLvP0/Zvv/93XP/swvoxeGAJEkHmq03RhQUKfSwmZ9UQppMsQGwDknCtMTYu5ANJi7AR2GceG5DT/1hdf/PDV550LmVeoRk36LvyEcD2kCDFLulwuW7BpePWmQLiQGyom7NGYMSURUJAYqsg5dV3OnUQiataYo7834CKCtURCb75Jz6zOYLhWdLoJCKWUgv90d+hwIb5ziP1GksnLnKAtHvCuoZcXwoW+Tl3ewrO/Gqng49dttqxaW6PWktlGUkJ3iClw1dCI8rXEWq3uIHQkLLICRFBVWuMhAghx13V3+wP2PUtW5OhhlPkyz/OlFpY2DEMct11HmcXda5sRExGBe61VQSNJjtna6EOaLRxpWl3X+r7vWktVcydd19ncViH/qZQSuoeI6OaqKtso4k2c9E8sEW+ghI3QtnnHegxkLgMJtNFgAMABQnMbbvrJm15UvBWgL1KSTu4eFg21hNNVc1ci8FXq5DDsgp61gRG6Dvd9koDcVha+zEuau9M2O7F+K9ZAhPclLwDYQESkvIHYG9KxlmY+TdOHpw9v3rx5enoq8wzuwcZvWjdwF1c5Lnc3a6qmrSE6EZEvmdAa+RFjvo+5ltIL77u+y5KA2KJt4oteB6HrUspEkTOFYMaqsgSEBAQAtV4HExCu8kmSMuWOU2ZJAGClTKVcAKAfcvRUw6/TbPEc8zbFmF58N5CnnPOWBUW83e/3ISY+9Glhm6+veAbmMVN2nXQDMHdKyxijuZr5dWLTroTb5f+xf7e8busPLZVPbUZstXlTSiCr9lJdQZFtzy9ZFgCh6+L+ZoCLsmDVggqO2Fp1hJRSl+XusMOqJFmB5lZntdAlV7Pz8aQ1nL6YEFlynebWmkkHACRsoRgWKZ+TaQtTP9WKHtArpZRATZgYAb2J0H4/FGgGfL6Mp/P5MO6BBs4ZCMGwqQtfpZ42lM5Xb2RfnadvO1VbHcTMYTC/7Zml0ZCSpGB3e2IKmDAw3ZVnEjuhqkaj1QDArZrBNJbj8TyNdZ51HEcR6nox06enp6enp7vdvh86ETFfjMhr0w0Po1VzB3ThV8a60tXVGgDkRgVtE9Zyd8TFWdtujFfMYrQAt1lgCA6PYSMspTw9PX37y6+//ubr5w9PrVQCLKq1VrVmWokhJWZMajW4SgjoHuo/y9LzKx/8eugwc4/46nB42A8dE7q5gTgaeHOLXW/gvo52m+qlTQDAgAshhggYYZlYFcLghKIjOBoyiQiJgEh0V0ICOFgGRbW5NxEJLehSyjyPVso4jma23+/dTTUDeEoSdUU0GxAxrC7dPcz7IsbeKmXXeVo3HtOVTvvpkIffDMp+8q1t025n9lYILdFkfd7bAIpvrrwfS1gGGISLfGnIS10BraqK21yeAyN2ki7VKAwDmlptjLTr+kY4T0et86U1d2ekw/0doQhxjAcQeBBv3bHWarAMPKtD1MNmRojMnJPsupxSBbSUcdjvvDYHnKbpdDqfT2PQziQFpcyuBotbxQ+4ReDlZq6H7FZJMhsTpUS1NgBo1bYYuDg/CMXETzATiAP1o5QXZ+nmrbkE5QMR3ZsZtWan8/xyvMxzrUXneR523U56dAsZ0NPpJIm7tPib3OZWa7c29nBgyLoB1LF4ENHXEPRJEy7Sw5v9jLLEatpSk/g7EdDOpY3j+P79+7dv3758eGpzIQcCnMxCNeB6VewpJTcUWaTwiCJLp8xSZtpcxdeGJQDA/dB9+XB3GHp2a6WEMAECXsq8XGHM1qtuOay7V4BE7Ks5gLszZUREXgSrNxxEWJwYiD1GCFISAAG0WitgUyPQhhbzHg0JVqIVbAjBMj+5Lo5YkRtggJCWgxlUtULBqtUg0HAkEiJAZGBwCwKOrhsVrmIDK6R6u3u3Q87MIsGLDbyQn8ERDFxNq4U0JSICsCAgQogCgvpyLoQi3NKOWq8hwjFiCIaAoTuYAiKZJeZQTFwMQWozVW8qxNZ0ruM8jtGE2+12+/0eEUspXiB3wpiaN0TkJISGiN6UiCzEaxxF5P5wVx1fivLLiQQ4JSBRh7nqZZ7O05jnnIeKicJLaa04bkzMAYnoJvXxDRvCxQ8dmZlQAMgdwpxtS0q3cbq49wuvZPl9W38GW9NQowAgM7UgqVSttc1znaflyAZIKTNinxzNbBzHfuiy7PHKdWEMwMMs7NLiQW+LNZDCbbf/Kpa5ZhweaiSwmpttxxks0lEf/fzlMh2Pxw8vz6FhiABkXmuVxDHO2aqWUue5mYpqS9Ij4kbBXVJoWvS3to8ToisAsH8Y7u92u8yodYHNGR2xWV1mWjzqNnMwQEOOdosrOJlVd1wd3ggJAB0ckB2ruruapETMANgc0JxhHVUNk0p3bboMqQEYEXRdinZSzsGzNdU6z0DtIw2kbW8n6RA5JrcAAKCYWW3zenZGygRmYK7mhupwc1TGasKVjrOBzLfJ3u3G3kbwCK4WntHoi8+1Nfq3i4z3lOUc4UAWzBqGWfQ6Cw266UBrq/V5nB2Icu+EplqmaT6fyzwCLB+mtmk8nxkRTPf7PS2JKiAscPrmh7gFCnUopTT3nDMBCAKjOVRAQ3IkiRmvWnTlY2cRYQEAMqvbYUd0I8OwEmDwxvsPHHyb4AUPxcxFrfIGwr0tMmPUzKzVVmqtpUxNa2sNCMxd3WBVaJlLK6WZs4M0bbWZBwYikjs6yJBzjmK+9R2tNs5Lbzz257VushDK2RoQ1+e11edrizsi2Mc4yCKZamY5kmq70siihn8+XaIsD8k7NK+l1mlWiqE6uBZlQfXxZq159VqLqRORWVPAlJKDbj/cWkNyIuoS5Y6AHNyRQZubaWmKjACgUSqaLXvYfZv3drVqiltipbA0veNe0cIykNzJStlpDo2cHMJfnB1Mra0l03JHMi/A1QYGLLnl6pu1bY+11lVEZEZAbapFa7FStKUrFhWrZGEjg340lokrOczcttboVvRugMHG+N3qIlcL7k6gWURAlAOIjV5OMNA2xhVFirK0/tuK+iiiBFXNWrOmrdbL5TKezl+fzoC8f3i1v7+7rc0CiBqIRrPTy/P7t+9I+Hg8/uDX/sx+v+93vbuX4JArlap9T5vEeTjiOdh6/RgTGimhKacud9wDHFfDy5LHMWchzrf5J6yrHD4WCYh6eLljN6Nw5gbwkdjd7W5xX+557LRY95s8rcMibBZze2ZN1UvRWrU1Aqe4MymziKTM+/3ukHYpMRNHKpg2Zamtz7e+Ymkt4nUaBD64GZCGDVLZznRcCdjbJ9oKqOYl9nP8brAMx3F893K5nM+Xy0VVQa2VWufiqqVNwedhggBBmRZ+sbtba60pAriLmSnU1GVzvJ2fWUqVjMgwt0JWAaGBGlIlZ2vukeIZgFswQN0AFgpAc9eqqipIzBzVDaAtvl4UXI7FvI5o4QNtpRGW0laT1fA+DSGOZsgbOXGrTNydBbeT8vYDTFOJvBRp0axaNjYagWy7dHvFkXEDEkarTQwdIYi+tMUEIjJdTZKINpiOiMCcERc5P1Uww5A+/Dj1sht9BqKPWF8Q8ZfcVFsrWmur9XI6P7//8Pz8fFR0JJJut9sxoBBT7iAJILv7XMvp9O7f/fznP/3pH79///6Lr778r/7r//Y3f/M3f/BrP2Sm5tZ1SUTUl9oH3ZllG/Enov1+b8J3ZTocT04ObrWDPu3cjwZeWyutzrWUVsUkND0XIHnLLD4WN76m1kgIi+JEawZ+3eR0Y194haY/jpABYl0fPRGgxWZWrWawAB01x7mnaj0vXorD0GfKOQv5Ejk3xTn9pH5fQ+uKQlkwTLbdG1SZW/xyXT+LFncEWF/Z79quLZLYwJfL5XQ6PT0d52mapml5ErVhcLaMWmtmHsaLgG5qtc4p9dvNiXNtu4awU6GPh3AkM6LXVkAbkqsbEjJKnafNcnED0omohA/6eoTFISIihqRaAQwYCQkBFLyaCnBMHDNSIDmgbm5k4NquGDphjOgKKphqzNDImjBE0ulhxQIeXPq5lFKaWdtAEUQkSx0dSDrEcSkeAtUhNKtW5lYrru4BoTWlQQaSDh1crXklIsrs6NUMoQ+8DgB93ddM7OlaD2/pAMC1rg4HrOghqfp5unRdx8zNrTk4khlYsx5GN7tcLqfTdDyNH94/T1Ppun1OSW1+fvq+zB/6oTufz8eXE5Ew+HS+vP3+zU//6F//8b/56S/+3R+/ffOmk/T++/Pf/Nt/6yc/+cmrLz5PXZ7nVqrlnM25TXPOab7U1trlNP3RH/3r/+Sv/Pbh4f6hP6S33z3kBLWNder3/WVujTos3k3zvmeuAlM1HrjbFb2EAhEDA6EjqE7u7iDXEiMKEHBVTYiVMDG1ZnOp7iBZ1KyaBraJwtHfYOYs3KVdTv18OTeFYl60VWhzK+TAeRcaw4jJXNWBk9TR5lYNPWUirH3C+yFlbIAzMe66npmJozlHZua4YDmx9BftrlJUfRzHTdsMoSXpUkoVmrqBqSMQOKwytAtTZXGWQozmhS6aVQRYWpumqa7uR6HsBGo6lXKZ3J1TaqagLNyZWdOYGHcASF2HVNCAKEkKJWslaSTiGQizEl9K7XLHrfnl/OVn+8/v7hLAZRoD1CzFeJwBSEK5mdDQ1K1oqbFKGwM6AZhBznnInWmtZWp1SebbXK1qSom57zgvzjTbWbslUXGK8OKBRNu5gmtmEtvs9kS0SCZsId/oYjAZKTQv7MI1C1JtywaGqMrWCWytcfTG8wOA1jqzftgFV++a+wXM3qpu0WNrKkRGfVvrbqdyDN1t0eb2DTeE3G50IcZLOZ/P3797//z0UqqbQUq5G/apk7fvzt9++/Pz+YUY5qmeThczJ8D3b958+8033/7y6/F0rNPc9/kw7P7wX/zTl3ffvH/z9X/5d//uj//snzPAunBwCZNQEiZytbffvf39f/SPv//513/vv/l7d48PD4e7y2yG9flUy0UJXJEbYHOo6iE34VZQF4r/lj3eRCT4/3hteBUiOIKKhZf2Feu66ev4zWzATet4ye7MTERMoVVTVfSMiATmYCI5DtOuG2Kqdqu/Io+K4Zktf0DYCu+PCvKtNENEkKt0tt8QJ7cr95tE2t3JFmbBLWFhWwYW8K8qrjVVmDZFZhElZFyGWsFgWSIGy52Z5RY7pBXXYCIRUGvYal3ahKUYGQMQkyIiMgGDIwBQeO45C67lABJtrb+cu/i8Ub/4Su0WMPcYR9i4cvTxzHiU77jYgthCtV1IAVfTo5gjb15N57nO84xEXTdsAyK3qwEAEBetphtBlgU2iBpvc81eBPWXxuTifmoaut0QpiHbEXP7D7jVGV+rF+fNRRIAlmkSD9Ga2rakGtYu1Hi+vLyc3r87Pr+cRdJ+d3d4eLy/v8/c3n7z777/xc+/+/6X0WEdx3meqoM8fXh3Pp/d9XDY0WFX67wfdvPbd//mX/3y+Pzt+eXtT/7G3/pzf/EvPbz+rNUCuUMHHadeZMjD+HL5p//on/1T//0//xf/o9/+K3/58f7hPNfm42HIrRVBOmtS5FlhajbV1tfiNQMiJNkeWnyi2MLm12bSLS7lN91gZg8hGBWrtbo5oqM5qCE5OfDGo9+YH9vGINqaH744V2kpZZos+B45+X53vx86IhJaBDk3NdZrDhkYWyCufj1kt37JlkdEMpUoBW9LVQ0xpYREi3He5kVoHmwnUyVfGB164xsaJL9oNwBajEPGvq2l+Kovj+hh8eegMVQMi4g3MRD5YjVkIZOEZKZNNQGISK21Kczz7NoQ2ZsZoBk0LxCMwMUqc3ksTNxadVVGIsAosswsyfU426B4RBRXC1mIQDAd4LqBP4Z8DZGIMihRkBTwFtJYJM6bO2G4TiTmlNLK9ApC/FWtm3Bj25C7g+sKosByQwPzrHNA3/N0ccsIQWQHRzRV9oQU28eWA4jBY0Rh3ZaI6GrWtGIBAE+cc14NFhbWtN1oTflqL3a5XKZpms5aazWnvtt3XXf3+Orh/tVutyunb14+vP3w5tv5fEyJmTmhG1nRut8Prx/v0W2apuen96VcpjL+xhd78cuH73/2v/5Pf//r73751/763/jL/9lf/fKrHxLeo0MbZ+iGbr+35u++e/v9t9/9b//gf/nBF1/+4Ee//iE9P8P50KdmXqpPF3GgojBVuBTtS+nLRKjM+837b80giIhAY/fedNHhupM3VHOLe9sRts2Z3oK92/F/W69uCc4t/DGNZb5M03Tpu939w+5w2Aux+9K8JSS98btDRFj7VVvY/AiZu3ktITddvd222tjMvDoiQhxAEX40xtRxi8CLXH7EBjUwR0QhDgNRazqXucwTXNG7cB5vqhreIABADoDoBIAEoTRvBuZOHiRVIkcmAHIzAgRO5NAIycXdQi8uVOiUFg4MAHAntVZ0ZyEiMlXXYElfBUZyztvhK9t0TpzdiAi+yg1SjDFfSXkIIY+4tNdLKeM4BrNP1cIUMw99SuEW3nVdt/oz8NbGWJJzGtxdtaIrkXvIC6I76O1/5q02mEsYWIabYc/MpmAMLlTKuAUTWV/B2tmQsG2hmBn1/eFwAKD9XogY0RcAHBYxqTiMLpfL+XyepqlNGIrttCfO3d3dXTdkR3v68P67b75+fnrPAjllAOiyJJbzVIRgN0T5NKcu9YcupZRw/uGvff65o1P/5puf/8//499/9/7NX//P/4vDD37j4XBHiGrl+KLPz8+ny+Xl5fl//wf/8K/+7l/90Y9+dL/fv39+GXpuLiebe2Ekb+an0rpJ+qxZKgB00oKvuqHNWzS+boOlEoatXPRrZFuCKhNF+RRZIiGGQnJ897Yru/JnCMARGcBbMyJiTilhJ3bxF9Mq7Iddt9/1zEx+VajbeFcLIAQ32inrg8ObWcLb5GJrDcJqnr4VyQu2tGhALJGKHLZlvP16bDNVbVqt1dhHTOjBy0454vPSQwESJKW6Zrge2z4RZ0kiQsTkGD09jeOQSQlCLi+ljsFba8GcrFWNw488glekgQruSAnMwsSQGUOMGhFbtKbW/pmvTTKJh0RbWrWhjohMxDc+FHHdtU62WMiPYYm0lBMoZsaUYKVJBys1SuVbZ5oogdCXdgWYBzUtUA2dA1431Ra9SdXmbl0qzDxPU5cHkbxpOW0EptsyGFf3yq31v3V68v1dKSXOlBCvjcMqbkd8ommaxnEMxmjOu7ALpSQiMux7Zprn+fn5+fn52FrrhyHiAGFm5pyoeFNtqpUZX716eHjci8jzu+/uH3ap2xnK08v5/fff/PN/8nttuvyZ3/7d3/qt3/rhVz9w8u/fPb17eQsCAO3f/N9/9Af/7J//9u/89uPD4dXdvmprrV183OfBDM29VD0X62ZPyQENUwmO1G22aWabZcltQPPrsB5+8vVAKzbccduovsauW6g/7vMnAEq8+r4Pd7HccUosQn0amGQ7SmhdXdaiuxNA7gJl3dKzPgn1ywOttS22gw4A1tpS+ZgBLl4Ny5HtYOsavq3tlz5TbaWUeZpsLKZKRF3OAKAt8kp1UEARkSTkvmyejebJzF3KIgIMzCA5rxZqhEzmPo4zoqMrCIEhADEnIZi9NHBqAGhhjbxynmugse4ODowUNPRL3TyZliuPZyGCtDoh3g6uhizJkpfaKincWpvn5/ChjyXuqwR2joibh9R3KeUN/g2v8Q1pyKtMMYEsJYYB4oJexIWFXI5Zi/9aa/M8noHNnEhy6nPe5dT1/a7rhq7j23799rpFPm4BmEqSpLvspi4PptcIUN3CI8WRDBCIu2HHzId8nzvJfc/MnHkYhtLmcpnePz9f5kIpS9e3VubmOQEid1nAlZlCLYQEvUFpc75/AMkVoLUqwq8eD+Xy/Pu/9w+/e/P9+6//4l/6K7/z1VdfzaXevb77tT/969+/vHl5d/w//4/f+53f/Z2f/M2fvHo8nMdLKVM5DDJ6aTA2a4aXZrl5bm5kqRSRRfZ9ZU1F2X81N1tAopvZPcTNoWs1RlADcwBfBGocwBx9EaO72b3LvY3nu70bEbtDrW262DzPwrQfOqbFJSdJ71i2h7JMdDgEDRhWcfftRNiOg23hbtuv1kUnaMurt6wyatcl/K4x+ZZRe9utba1pqXUuViuqcUoeTFw1b7qgAAAEho5mjoIAIEhGy52JEydlIaREXL0WbYBg4KWUc62hzo+eYgS/S5mA5zK5WjVDc0IX4sRERE/zlISVYWoaXxcCZI6Zuq03HseEbLNE1wLpRqdri7qxY6MmbO0lkudg3jGzSM+MXTiF7e5Q2OyqbtFa3fR6aB1GNTMhjoYhWHMA8Na0bFO4V9AbF/LnPJbWmhkm6bpu33fDbncYhj2vDhJX+KHW1mKcgDZ1iw3Z2jKojTQbK6CBwcoDhRV+zzkPMgBR+CVKYhGYq14up/fvnua5MCcmqR4sKHZ3rw0RU2J1aa3ECmuuu/svyjwz0rATdCCA8Xx5+/btH/xf/+T49MFN8Xd/97PPv/zxn/5Tf/Yv/Ll/+/XPnt79/F/+wb/6V//iX/6nf+13d12fswxDD0xejq4+galyMywKs4IYb6zvDX8Oum/0pdc9DLcp9Lrr1n3iRERRRGwpSbxhay313e1v3UKDpZQttYtfLKW8f385Ho9395CzEEWNhgToK1y8AeBGSkTNP4XLcavjb02Pt/neBV4K/SO/3ZxmFuEXLKgRsBkyX99xXWPmbYkZaEH7UfVpnkijl74I38fSNWs+r6wYWyp/U21EknfOuOV6IYM8lvmQYP1dMzMwwIzMwpTMl+QRwSMJZqQ6F4QEakUVXLOkoQttJlojYp2mqbUWWkj83/33/0OUno4e1W2t8zxPYJO2uZbLZXx5eXn//PL+dHqa5vM86zw3c8x52B/u7+4fHx8/e3z12d2rh343pD7lLqXMuZOUSASgTfN0mi5H05oYhQDd3Fp0t2q9BCOvVq01JD56AFEDa9iaaVM3R0AkRfSmdR7P0+XY6oRWwGswfBGghc2aNjVtqqwkkrrdrjscut2u3+8P+8Pd4a4/3Oe8GKyZNwdzaOaNABhR1d2cRVLq+n443N1Ll1OXuq4jxH23E2dq8N3Pv/mDP/xn3739ZipF3Q18ruU8H1Gglmmap9paUxVJKFJqAyAwQgMyx5ANMVUrkph9Pj5/KK1OpXXdsB/2vdAv//jfPr28fzq+H8fxxz/6Uz/+8W9Z8/P5bG4NvQEk6QETOXZECNYJsdnQH0IiRzgTsjsk6YjFzK05IjIJkQRfGFA5LV44LMzMatFM0fjwkkTN1JSFc9eRQG1tmkurpZV2OV/qVBOJAyBAba205sSKOLY6Vr2Mk9n82cP+N37w1cNu36U89Ifcd5RMrbkpESZJAFBLm+cC4LgeoLU1c3fwqs2at6ZmGpvNwRy0aV3PHYzZmyUciYBBqy2ASQdEEiSJwWliQWIzN/VW2zyVWurL6eX0fJrHIpiZMxCoV8WCCCgIiYyhgrk7IyYSdOKUMKWCNJrOjiCZ83C/P7hLbaq1tVLZ9GHfffHqjukCbnUqba7kSQ3nppgkZydCAmdEJiZEV6+15rsDGM6lIrhw0qZ1bkSySzstrahy6of9XU67WvT8dJEA8dAX6Xpv2lpR1dlLBN7zeJmmqVylzHgYhvv7+8PhENhyzBUaXWlut22G27bVyl+99jDIqdZaa7ltym2l7O0/tgZvw1ZrG8fR1aapPL5apELiZbD0CTpIkpOsBrwBcSWWtN8H4WyrJbYchIhyZgBAJlUHgNXhJdg8nFKqc3l5efn222/fvXsXfggiguR935/O5Xg89kS4SE+uStQizGwua0xwVbPa5nme55mZx5fzz372s6dzOZ2n3/md3/38889/8pOf3A/73//H/+QP//APf+/3fu+3/vyf/fwHPzShn3/7tUgjMm9ea9Vm3uZ5Aq8T7/MwDEu2hogoSyLt8B/02kipemPssKmdBLqh6iJSSvNbTlK0nZce0rShUBuHZ2nhstNKd4zQDQBd1811+hOv51exq8gsticIK88snjsjb44Q2/rxteEf/2bm4AjhOtJ0bXSvo0GMycxg/cjYrI7TeZySdN4QhJ1CxCZGzeKva7OFFYvQVPVyudz3K6tMm1tRR8OqAA4XDykMEQJ01VZqrRW7TT1zbd3VhojzWB2AskhK0SJLKfGAS/qhtbXIi8dpmi611vH8tLTLtBFR1/chEr/b3fV9fzgc9vt93MQQHK2uf+IGbtO4yrXimj/HTQIza1q2DRwlWM79n/gg+76f57mUZmbzPKtOs0wpTQ5pGIb9fp+6LqXEaTFkWDbw0FFOC48vd4ml/XsW7pIBhqhPyPusriVLrhgDldMUFLztYGqNiZfetar2fQ//Ia9Qe5Xd/u3bt6ff//2c+7/9t/7G3/k7f+fHv/4jdPij/+eP3rx589Of/tSITWi321Wg5oIERVvxug5+28ZCcQjeBSyDMpL+w3bw/39fW1EGf5Jj+CeveZ4dAJjC6EhEICU0Hy8zJkZwTMTEERWE2H5lKPI634/g7qZqWkszBaxmkioACBESMAuLRPe7/nuuZ/E7bYVqI2YwZOZ+l/9fWdQU8kLhulwAAAAASUVORK5CYII=", - "text/plain": [ - "427×320 Array{RGB{N0f8},2} with eltype RGB{Normed{UInt8,8}}:\n", - " RGB{N0f8}(0.514,0.412,0.408) … RGB{N0f8}(0.325,0.322,0.251)\n", - " RGB{N0f8}(0.647,0.612,0.631) RGB{N0f8}(0.239,0.208,0.157)\n", - " RGB{N0f8}(0.569,0.604,0.639) RGB{N0f8}(0.188,0.137,0.102)\n", - " RGB{N0f8}(0.529,0.588,0.616) RGB{N0f8}(0.114,0.098,0.063)\n", - " RGB{N0f8}(0.408,0.439,0.447) RGB{N0f8}(0.067,0.078,0.051)\n", - " RGB{N0f8}(0.235,0.231,0.224) … RGB{N0f8}(0.071,0.09,0.075) \n", - " RGB{N0f8}(0.118,0.094,0.11) RGB{N0f8}(0.094,0.071,0.078)\n", - " RGB{N0f8}(0.043,0.02,0.067) RGB{N0f8}(0.129,0.051,0.086)\n", - " RGB{N0f8}(0.004,0.012,0.0) RGB{N0f8}(0.094,0.035,0.008)\n", - " RGB{N0f8}(0.024,0.031,0.027) RGB{N0f8}(0.114,0.055,0.027)\n", - " RGB{N0f8}(0.043,0.047,0.067) … RGB{N0f8}(0.129,0.071,0.043)\n", - " RGB{N0f8}(0.047,0.059,0.094) RGB{N0f8}(0.133,0.067,0.039)\n", - " RGB{N0f8}(0.008,0.02,0.047) RGB{N0f8}(0.11,0.039,0.024) \n", - " ⋮ ⋱ \n", - " RGB{N0f8}(0.753,0.784,0.827) … RGB{N0f8}(0.467,0.427,0.29) \n", - " RGB{N0f8}(0.753,0.796,0.82) RGB{N0f8}(0.494,0.439,0.337)\n", - " RGB{N0f8}(0.745,0.788,0.812) RGB{N0f8}(0.486,0.431,0.329)\n", - " RGB{N0f8}(0.745,0.78,0.808) RGB{N0f8}(0.482,0.427,0.325)\n", - " RGB{N0f8}(0.741,0.769,0.8) RGB{N0f8}(0.482,0.427,0.325)\n", - " RGB{N0f8}(0.749,0.765,0.8) … RGB{N0f8}(0.471,0.416,0.314)\n", - " RGB{N0f8}(0.757,0.769,0.804) RGB{N0f8}(0.455,0.4,0.298) \n", - " RGB{N0f8}(0.773,0.773,0.812) RGB{N0f8}(0.455,0.4,0.298) \n", - " RGB{N0f8}(0.776,0.776,0.816) RGB{N0f8}(0.471,0.416,0.314)\n", - " RGB{N0f8}(0.769,0.784,0.827) RGB{N0f8}(0.404,0.329,0.263)\n", - " RGB{N0f8}(0.749,0.765,0.808) … RGB{N0f8}(0.439,0.365,0.298)\n", - " RGB{N0f8}(0.745,0.761,0.804) RGB{N0f8}(0.478,0.404,0.337)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s = load(strang)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAH0CAIAAABZ9Z7bAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42nz97a4kSZIsiImomrlHnMys6p6emb33B/lSfAo+AV9zQXBJAhcgcYEllncXO3e6MvNEuJupCn+oeZyT1QNGF6pPnY/4cDdTUxUVEeX/6f/8f5EEwN1ba63v2/2tb7fWd7gDGDOJdHcAmvOM06yRRE5FQqE55pxjjPf3958//ojzdMbv9/6vf/n2T3/99p9+09aY5/eff/9v5/f/jfPdcjAHMro73VvbjF1ogCuZfAMgBZFAkqQBgHkza63vbrvYMhGJTMFJGuGASVRSkpMkkZKivjY4AEk7CQAASYdI0kQSSBlJwGhmMtWvzSbWswEkKQAwQJLBBZBMGs36bd/3HQ1mRjJzzjjneaama0KTcTJG0+zUbe9/+frly5f7l7/u29vd77uacbt72x8HfvyY//W//rf/8f/6//y//T/+X//tf/vj73+ckf0c/PHj+eOI9/f3x/G01trW6cxMIgE0c5PNGQi2diNMEvtJ0p3Wbb/17da3rXtv29asbb33tm29d2sb6RHxDOaYMaci4hzjPOMcUGSmIjNTzNcFqYe7u1PSnHPGCQCQu5uZpMzMzIg4z3OM8bCbpIjITABm1ntvrbm7u/feb7fb29vb/X7f97211rGFMnKMOZ/jeBzP4/l+ns/n+4/z/Ymce++9d6fWAkZ390YD4GZmZmn1HmSkm3uHGd1gBCBe73xOkvUXksYYmVnfj4iIkCTJrLXWtq3Ve64VUxcBQKNte9u21ls9T57nECAxxBBi6pgzImgtM3NGRMw5YxzneeYMoRnVDM3MHHTY1tt+C9BtgzWzTmvu3fvets621+cnZIytyTUVzzh+3np+u/m3t37vtju37lv3v/nPlFJTUkgwkkyC1kISXeJxzufzsLbdbreOLSLOI45jZJj7+tSaQYMT7qSJQsTMzJ6AhBQilZMpZjCVMUgZANTOyrqeAAICEoA5zGpdZXcSaYAhm9ZmpgBOEVItRkjKhJJJCzKhlIRUTEjMyA7CJc55nnEKpzlaa5vRyfvef//t7Z//9V/+9T//H/75f/g/fvvtr/r2TxHt57v+5//27//3//Jf/8f/6b/8T//l//0//6///jh5BI5xjjyoMKPTHZ6MFRlIJyvISMoQZWaNdDODTEJmRj63bSM1xphxAoJJCm8kYZRZtu69e61/bmit9b313r0Z3euFmneDa3I8Y54ymbOTNIOZAVabLmK9PWPbtu12u91ut33fb7fbvt9779t++/Lly++/ffv25f5229/ebre9dfe9N2/svXfzdcfpJME0s9fiJ1k3sf79ESdfMfN2I2kkUogJqdHc6AQyFTM1ERkx5pw5IxARMcYxxjjmOI7jPM85MqHagyFUMDnPmZkjJTGkBEnCnN5obc4MQVJdfzNzOABkXN8wuL2CWGbWojoiR8xjjhFzJvbWI+I56gXHHCsUmNlaf5IJFUNyxpGzNgKMQEp1/V3iHDEzpvLI44z30DMt/O1wB3ie8/vz+fN5Po4xj5FzADBLd+1tNs5tw+3mX976bb9tb7f7vu/dWFGT3vp+s3Zr/dbbHdyIDhCwbf++VkJOCrU8mqF3jzFzjpwhBNdxhxlPJZlOETCH3GpxG9ESfcoTCmUgpJjMzJw5IsbII+Jwj63rP//t299+3/6Hv7790xd93Z737fH1nm83/uv9J22CTxnhd7aeHhPHyOfjef7x/vz+eP488f29/dsf7fsP+2//y9f/5f/z/X/9//J8/lXz997evnz5st/8/tb6lvsN5pGIiFoAPQPubd/3fb9v+929Ex7Atm297XSbMyMioUpazvM5xphzSnUuRUQIWYe4gfXF6/qEZGYkJM1zzDnrIAPTwdcW0PVgzNol63muc7O9spDXt14bifVvkuDr+w4HaYJIkBJeAfT1qrXgZPWcqtMXWDkNRUlGJmD1Iyao+tPXU33+DPjTgwlzCuR660aTCFBM4rWd8vUXrw+V0scnhT4nELp+tC5ZBQ5B0KeP9vHeJPzpzyXVtfrTi74u5nWx9LpoteEppeQAydZ8a3Tjtm1v+23f3r2NHKLV/aMZ3a3C4Lp31y2vpFEJKWjEdeVkawHZ9SArmK4ff7zPvE6O/Ljslc7qlwtQ11dcH+ZjGUi/3MrPywOAgSkZCHAdpSlF0pyCgfWd1z/JeT1FUqoU08GckZnI9ahs6U836PXRUFkYSTPVMXD9TmS+zozXLvi8nl9nybrCZnXY1Kquo66CO0lnJe/1vlaArpeQIF0binT31wKox2vNpDKBBARBMqNsJE0VMpHGepLPyxXSpKVEIaUwX3nnKl2YEgBb+U4yrt2RxK/HJ+tN1gcUP278LwcqSULXuvjTxf/HxcJrmf7jqjAh+ekPrw9V0Q31b6hiX23huqSZKbE2fj2/0YDMJM2Us+LPRyhgrrwsp9hUn/61hZkA3J1sZvG6Ta213vsx01TptYOg1r4zMwCGrHcNrLtsJCggV+FYuwiydXk/1pIZxQSnAeZwb81XNdJag8vde1uJ1yvdMbqhA7C9bc0am8FIX8UqvcqGSrwAGFvv/VXkvOJAa611f1U+9spJ3N1pZmwOM5BWSbr9aQ18rI1f7/UvP1r3/pe0DLC6bPz4llFRC8Ne19/dU1RErcnXk9elyFqfEj8SL6/bUuvrlXgRDsD8l9Pxl0X76d2amckMiIipfO19M702S23eCiaWqtLLZkUFCvn5KJGYKw78clxmgEza6yevSrV2P6CwNJNA+3zN7doOf7r+dZrUbuHaIx+v+IrtmR8BTRBy/ebnLWwKkZlaq1QVDST88msff6XXra3a4+OnZubOlcBTsPpwATUANCm0Yl7dCq7X+rycaHit288nLK9DkKS7vZbxK2LgHxYn/iHC/+lxfZJrnei61ERmfP7gr2WJT/nAR02yQpvVsnjdqfaPZ1Xde78+lXEdqyblJ9Sn8v2VTc8z5swYksBreWFtlbhuKkmaM6lfX0uWVJqtoA+kmVUMxbXIX/E6rrO0zjysRFIrtJKvTaEr6tabQTIzZfYK7iD+8eP/6fH5tr3yKn3K3v6c4eLjl1fGmbVS18EbSkKZmdfVyzFnd7LV027ueW9fv37953/6yz//yz89Rpzhj4dw5L73wJxhiSajudenoJkkN3e4hIh1C2iUrYDh7l4x15u767WWC3LIuqW5Ss6I2p1r37Lefh2nVju6gAelfrmVn3b4f7yUf81vXjlHa+1Vo48xKqpGxFZHiHLGOcfQOTFHRqwKVemZFmGAWctcqQDW7V3J5eedJ6nyRYIfJQHwSkxf8WhFH1unXV3S1toK4x+LcF3dSrzMKCkiMyMz3VthMyHmFSI+owVrDVyXOnJQoKAcAMRETI9MmrXZQ63JxTozpXDAkFo3Q1ASSeTW29Zx3/u+WXc5wogq6a5Vba/KRDDSCBGE3F1GqU4LSkBCoONK30mG9MrrX7nX5wj1pwqKZob8nHV9/ALTPq2ZQqmRENLW86KyUHBVq3FdLqxsA0CSDsKqQIEoS1Y+lEpI4usMCslWmFwJEGCCm6mCTM7zPM/zHOOIiIyYMyIpRWWBEBAxIfOo117v/wp+Zg0gQWhAUadhVZqcIVNEgIX4NjN4u5HZurVm29a2vffem1GbWmvbtm17a71XkmR0ZyPdslF0bt06RYkFsQAW16OiSgYqg6zca9u2bbv13vfbvdDlfd/7vvWtFYDatt6clfxdO9bJ1R94lXCfz5L/cLPHa79fidf1MGiKQK51+Dk4VE7onpnZWgM/VlTlAe7V4qgLTivECyYjvYFOrqbFqygiCZmvfayAlAl8JBGSkh9vvo73gjQkwehwwhICEBHrs9XfmmzddxYYtl5lQfspMUMzFQh+WvyZycwCdCvfiqmYipByMl0Ii0YItT9JaFU8leH9ct1TySQnEpADgYXlrE2UqcyZSApSsDYGpCsKCcFkhJBgapVXZIsuZkKCBy2hqQlkMDNnKGOdFjBS4nnOMew82twRBaabrDW6YKlKCXOaNyjXlWBWWkZetXstLbfeW84G1rrdejf37N56Ez0E0Eg0eDP26pz03ps3ukPmWBm8Na96lREwhcVrbfxj6Yi6bVx57OuAV+U0r2taFbiET4jXxzF3BflrGeiXxOtz3veRQ0TodQ7pHx51ncccY4wVpEbEjAgpMg1AVelA1OlSx5u5KxugagtkJhRu7aqSq72oqrFWRqArHmaSE6BgAHMFg/UJ16c2vYDBXz5U1hXLF+ARBP/j0nylT9d2xes/VRhYoSYUYflKSiqp0gd48HGplEQiExFSkIqwamPNYaefvZkB1ga66H7r9s9/++v743wOybbW/+2//3F8/3nSTT8eQieVoGgJkTS2iHB3X0jSiJli8komvKrmtvW2tebNm6qIvdCsihRzZsTCWxVZqNKKO0nlld4CAgs8qG1T8FhmXiDixzp+lQX2KkMoIaGAUkLMlNmgzEw5oah/Moa7Bz0zQ7NacrXa5jwVF2CTGVELhFRlU5Kz0WTRropkJcVBWAK1LK9N9Uu4t88r4fXFK6fsfXtBTR/X1ttqZ9DMQK7FlpmZ45V4qXri1z7/U32ZmTHnTFGZkLFCpORmM0Sz1reObVMvuKU5Jr0lqmmKNMghN1C2db7d/Mtb/3LzztQ8nWGvgLLKsDpKTaA1RwA0wVzu29qsSmZGZVZmRjdjW5sUH8fWn273tZcXMoSrIvxThAEgxFUpJgKCaBKkRnzUK/m5nlkFQb6iWMC4CjCjiCqfkXQDiAqbhZUawIxcwbRWpqrk+PgImWOMx+Px/v7+eDyez+dxHOOcIYtMYQKCAjIpMgcv7KqS/Tr/3VemskpRVAzJXBELrSqhrW9b791v982dfbN977fbtu97b25madMbvfdt2/Zb3/d927bmW2vN1AxOtGa9sSExZ1ZqWFjwK6Gv1KDwrRfQtW231lrb+tvb29vb7Xbb9r3v+7711p3btlXiVfhBZS3kynIX6HIdWp+Prs8HzxXNV0RNoyXqVkaElMjUChrOamJy5XkJuJSGNKRmve0Q6tfM2gUAMCSTRIMocxgFM+OfEq+V7glTq/eWv6LdsXL8j61tr47EC54kamWbWXKVfwVAVMXzOeZHRB2IAIAWMxMMRChECWIyM5kgMua1rCtczMwEJ4QwhdlVUsJex+8rjDiAFKlApOaF8yZhOQIX9nYduJOKE0e1/g0AU7HwUdYhFtBCnbCoPjxhnmhX4lVAYKZn1NNCc56pkS6lHg2Pruedx86jzbcYmZY5ZSdtVs4thRQFuKPQLIc388Arra8sats6ckfs+9Zvt23bvW/aOrZd7pIFZLTu3sXm7r3vrTVjA6xSha1vbdvNLCzG4pNEC8a1NhZ5ITMVAMYYJO2FzVwF1Qsd0Oo51l0JkqGPfOujLPmH0rpuR3uFm9fmkaScyik6XqV/LQfFykFqqcXIGHMcx3Gc5zHGWAm+QnrhotXSg4hrzbqZIUO0yiC5gId5Rc9KbATCYImwtLq1yCRTSDISAn45Ji9smWIhsVnR3gojW/Gv8AH4igt44We4DpNVMX86d/+h2Yn89Nr6BN5I9nlLXDCAmFl5saTIGJPHHH04DwGQsUHWejsPbp3sv/329p//07/MRMLbtt3++2P773+412WJqRgzRBIVDvzqKtHBAiMrEymQ15q3trWte2+tOdyIdV5HrX9FJuacY2TMOedUJCLniFQWVLAgL64ycVV1uUq6da3sHy/VxYBxlxRzdbMgzQgVoGhW1WKt0BHBOXWeZja74doRiw41xyuJB3oCkZA0lYrpZpkwy6C5e7ZmoIh1UwhmWnOt6vjCYj6lhrqw8dUz+DVPqt/9h5wSdaR1c6somIiAmY0xJWZGXH3ZqyllL5abOWLg2vWRUqpgnRlKNDeQ3pwWFhFhEcUOMxuKTE4mqIFGgo2goTluzW57v+/NdEamMpSz4lzdFaNVS4xGyGRUIKGEuZvyaiVeIFYlmUZfMOcL2Vpr4x/ayp/rn9e3q4mMqzjJvNpCkoTqflNIGBaBjh9X/KPbch3wMnORNCRVv0pIIBxIS6a0WhjGizYAKWLmjLCcc57jPJ/neY5xtkqWx3g+n4/H4zzPOc85z8zaT0FUxbdqsIhRtfSrTVeZyubbqgLFmLX3rfbrCjtmrdm+b/v91ru/fbm5c9+3+9v+dtv3W3c3AMFReVLfvO970R+3bStsh+mUNTbAc8YYkVXl/nKKJ4B9v3+url+HU2vtfr/fbrd+69tqb7bmdHf7U+JFv9b/n8v6VwHzp6LlH7+ThUYLlXWhGIGE1lokUgDiUzn0uTJ+ra61T40elexQxAK9CNKuvBpmfp1DC+1GNeMjRsbn4w+ACOVqSEsyfXwKK/BhBX85jf4pzboC1OtgDn18TUCJSCWYzAULU1CdTYs0MbMyZjFNoiZiCIowpZCEFrfCIxSWAA1Uu3pBEZAxZz0/6YRB49qA9X4mcmZmjJOUkwYYWfEEkamZASSLc1KJF0klrsSLgUpSIyBt66aEMnNGns2Vrgfj0XUcHMPnHGeMCEu1mU9jgpGhhCGzTucqW+nuTQxd7UKa2bZt+75RHdlvt/vt7b51az33jdtOb1FUrNZ2tw62KmjghpVYmsBt23rfRY4xpIG8cE3QQCgyYkZVvlfipY+k6IV41Q2dc673XNkRAkB1uCsCvBbVC8uvxfCKkE0w4he6NDMyPTNB+kWICQmKOngXQFJ7fEacYx7HOI7r0ByZcwzMeV6c5jr9fRoFZ4ZgQtpqBBJEoCqAaZ4ApVh4DPNz6zSZVtBSwfiIIjHa1YqoI/JVZK9WgiBZ5qJWfM6l1nNV4ZsyI4TMfJHr1+G6wvnK7Co65GLTrgYor733cX7nL2y5j/BBVEPtGO7PCiS1t5uxu9xM7rdvX9/+9Z//cs6w5re3n727GRKaOh8nRU/Q6YAZm669DKcD4iyCTnVeWEu4WP80pycCKs7vSqqvtEZjjBhTkmZUU8+ufs9FusELJNCnLL7W2dWkK6K0Xo0m0khLzXW8JsTKMIDMSo6ETCqQE4mcZhZjZfnFQogIxUxdMLjbVYtY1BW3rITpABqt936BWNUjCWvukLPVWvnMefzHU+QznqxPnDxcXcjXba1IUS1ErOZdW5dnnQyr3oxaEtZelfTrtE7SzFKBuFq3q1hBa83bYvT7Kk9SijmeppaWxmTC2NzQiM50y2ZqCGFCAzlpMF8np5nJaFwIgaQIhZSBLGTOV7UTYohZ94/NzJKGxbm5FsV1UEnVxRA+LXhWKrUw65XF1/cvYs1aWMqV3Zqwsi5+5G1WIobi0RqSK3pwsUu0UIGLrgCEESBTMipJh736VsrMcc45j+N4Pp/H832Mked5DtR3zvMs+mA3766ZQFpxDyt1rX51M27Nt237pZfXVuKVmXNkJqq3KfdXb33be9/3233btvb2dmvd973f7/e3t1vfSgyUYta6alsvUnwlXqQ7G0QkmS4hxuw9Q7MSr1eUr0clXi9smxd96vWGP2+ED8odFr8VvLhlV+L1+cioffGP5RaAonbgOsdRLNsKppVlKJkAU6CA+Upcfn3MOc95IUywRAqiEJ9h1PX/JhbZkQCiMvtP3I+IKGbMzNcTfrzn2gsJpVL5geQhC9n6uKQfzdzMwuILNFoVVGZJWPh6exJUxLZazA5m4QxZGpFIJQAjzSvUhEKKVHgmEVSEnAqPqHzIigW/eJBSNRlFgAX3xlUnq0RCM8dMzXE8qcBV2EhR9a1yAqZcPAMaircaKdKDI8GohkVmIKsSKWJwRGSexoymvW3niTnbCEWOyDmkEfM5311oloJfQfUzha6CIV7nxYXObsgNWaBs33ozn72zd/atVYXQ+q35DbRKvEjOrCzACev75t4rDq+6HaRAk66O3BznixZ5HMdHRqQLZbh6x/X1BRKxsq60eukLsq26Pakk4Vd1OlfiVYfEL1vl45G8+CiVLxML5o9aYXPkOMZ5nMfjPI7q8s7zyHx29ff3+/v7j7nvW7fee/adc8eYM5EJwhJpVTwSREq2cpjVLsoXnwBMWqtPqav1J2ZxSM0slaSL1Xn7XKbwSrwo/wDdFkotevEyoZyiKVX5fW3aIJkfWemVsS2RwVWEc1X7uWBBJ1/o1ysLXIhacTaRSiqUc+aCNO00s2kn+VA6O9G0+f7bt7d/mcN7f/v607uxMZQzns/nExxio+2CAR4RMaYgmnk1XOasLZGfuJAhLnyRL8iaZH7EkZEx5pyTdatX4x985Z0rvKFgtVzxPS7oyF74oPRBB3kRHiv2EaakknGFjAJTlZkFdVNQlFKgEiqWWC0VGZGRNLiZNVGWoEAZBPGXDks7twq7i1bl5uFt672ac0C7gvLn7OpP58f//wPmI+5LRUApTtrV+3SzdPeECOrqRoD26szW9em9GREzFQxEIisttL63fe/bzfrWW++9Ui+AotI0IJnkTDffTLdujdzIzdN1Kh1xIIcxG0nbVnJp1S6v1pHNjMIjZykdmxupxFCsnB5eQjCiSuX5Qrwq/zIVJaCOvrVOSLpIrjb0BwZ8XVFfNcHijApwwMlWe6vyKtmliISbsyQCsNUbWjj6ld8i1sGjdFowANGEhBNp9cPs9R+V1StyrIo/IgqYBtCavb29/fbbbyNa+zlm4Iwz8sw0KjIg0Xjf9lY0qSKg7Pvee79vu1kDMEeUkKrWa5pXZO/7tu9927btvm3b9vZ282bb1u73gru8Os/e7XM+V18Ub8CtGTwTq2xtPRMzR0TMsdb/64LXqVPfzMzPS1qLK8kIzElSuWQEL0pfkd8q+n3Us7+u/D/vCK4t9gv8j4s6A2WGFDNzVpNkcRzj/JRpjXrMOZ/n1U4xx4WBEx6qG7rSYSkFy2rrVsS2tWfXaomcyoiYGWPOzAwsWeJ1atjao4SSTJX+EpHzI7TkC816fX2J4yryR50+MEtcxCwoRZgclnBZkoA1cmAxxKAlljdnqxxasZZ+WgVkpGVEfTvS/AO0QyIvgJCVzQj01X0ORESOmHPqhW/FyAxItt62rMpRWeE9ngaTmRXgUih3BemVe426oUXmHhHTmMw4Dp0nztkjcsQYcRwjt+GHP3qhmOpUSFGd0nX914lfy+sSANJa95hkrr3QGr311tC79c7W2du27/fe7vBSinQAL72z0bdtM2uVas855Z5m6X6Owj9zXostIoCcc6Ay2PzoFdZn/Lzs6+19LmM+l/EA4gWVLW4NKy9YZXcF28/PqIuDCgBF2FSALLJhFpt+jhjneT7H+ZzjjFp/88jz+dB4f78/Hm/nb771zd3b1uP0nJ6pGXKTsdivfFW0dQavrhCifmiXbEy0ksBciLJ9+vwCAjAxATNQxdglFvicNDPlAmDErBAvroQ/Vy+BIGXkqkqS9b9LP1m7FIC1JshIJbPQjMpxpEza0pwYVQ3RV0/Lir1TbzyUc8ps9nCNKfP0mTwoGmi73272+7c3761t/TmeM44fP378fO/7dw45rJNdaJKdxwwqM9xpNColS0W1XBdtqhQS1eEqf5DKw8i67BFRpRoiPwnHCp/4oG194PYfv7NC+WcQ6IUbrY8uI3KzmYWKmdUTLcwjLhruaxFmyuzMAYkppEw2lZnKgsisWlEF6JF1slfBGhgjJE3LV+KFUl/3VplokUh6769t/+otvr7z63b4DxKy12OxmFUQ/IBitXrVJVWj1WiQVXkxYzGFV9Vb/BvSmNXHKtUhzbz3vt3MvZn3YpNRhrQMEA3ZMBvZqM1ib35raLRmczP5CteDSDftvcsIXs0XVl4EgaW+TASUcK/mdZGDElOoMFhC5SusfLokr8r+M8qLP8lXPqEFnxRQMoPzoiQz2xI/JWnGS49wkbxY5DxAeBH6lUK1kZebhMKxIrctdZccCFOFDYm994zhjVbt8XVQsXsHfdvm/X7/+vXrX/5yHpPe3r0/IvI4zxlH5KHS1Ab2Lfd9v9/LoGE9tm17u9/rw1VxFTNtoYw9IhLY932/9b5t+60XY9idvvW327ZtjeQY56Bt91vvfSsimDu9opohQZp5A6AMkrX3MKvSW4kXL3oi6bqYwvrUyPuURmAqWQxFQ0SQzYtgYmmC0VJJ0Gh2kTEkLaWo8R/2yMfLvXbQ9W/kkizMnDNiVAslNQsUHXFxOmecVeNXqQ8WTpOBTMEi0pbQJyvxYiqLxJIgSjzvBnwCLZSF5Ac0kQuFiNfe/9AtZu1grbMZmZoRla590i5IygjN0AzZL3o3Lh0ASE5T9ajF1jDTDFbAlAewoBEZQWM3ycEZg+mF1peANzMz/OKtrJZWreEl7FQCaXCj3DBBwKUydpEu/UejTSwMBZGzVCNStwW1gk5dLgYCm2eVX0J6NT3h5MhY5gQFlmcpYHKMMWc1GTPiGPE8Ivq0PU8EaE6YsQwNSl3xwbe7tApE/kIRhmC+tI3ucIe7bW69FQ/stvXdS7drXUTEwo7MrG07yTFitjF9hEdrlmm2zsSoLDJjLCjhWi2rcT8WljnjfFG7akUV/bD3nkvk/ksqxcsx4CXBrzXTXr/9+Vitg4SkdD5jmFnJLjQHUjHGPMecZ4zjfPycz0eOcx7PY46ZoYgYp2b8cevf7tsf9+z+2/512/Oex36ez5JQFfjuFTikxVW68nchrqaDvT4nCLoliFdxizDfCmNdqwowq63zQYFHsuqxT+xpY3WBAmCRH4WEmWYWRwQsaRUDbmaEmKkiZrt7Zro74WU4UfKDOadM9SJ1Urk3qzwxRMCImFGf7ZyZOBoaBWVqxNa6RWgOGTe/mWknv771bWt932cOYf7bv//xx4/9y5cbbI7sggNbJhM2S8DLco/JLCqNaaqcrGZm+5w2RYgMAJmjOPWZeT7GRTZKIRfdIT9SKFwOCC/ota7nkqnM2dmt8ZerLVOuFKuAp0yYwb1CSaXa1dEnUCjbzHR3P8a5js8siZ0mkKDtZvCiz0miteZGXz3WtKRbRswMxSTZisoKhXKM8TiOOinHGEu3X+4SEa9t85lH+Rm9+7xNXgmoO+ecMzI1SRlXbgFFiQEBqxpaCxPSa2NX5qoPfwpjay7PNgUInjMq43LCad0slYq5NW+YJjT429a+3vvX3e+77eaW7oiczwSJ3Kxw5TmjeSv81elWKq0MjfIesmYFaYkRTGmOBKw1Lw+0TIhpV952RUbxYrwz8wUG16FVUFZGQIlcelJevhu9tY/DozVDXbn0RbxDe2XjlRtZA6Lgd1wkDLvWMVNGkF51ZUYmy9AJZmb0gLhuBzZv3T+0q62VCsqbtW3b3t7efv/992dw2s33x7Y9n2M8n8/jeH8eP2KcCbr3ZuPt7e1+u+17//Lly9vbW+Fe9/1WhU21GiOiVm82rzC9bRubu/u29bb13r33vt/6tjUzy4zeW0RYb7fb7X5/a63pxeNZyJOT3qj0T5ASFnvslehUbN+2W4l5KsFdnlgR7l4pjlsTLSImJPeiTAQalJ6rcJLQtqXwrZ2y2AsXhPbp7FwHT9/6n4CxjKEZTpsxz2Oc5zPGKNwrM1Pna1NUFFjAUnW4MvSp3mZ6RIhQteZpxXEAERHi6lSnUhcnZIxRuOwKlURVmM2tCs5XDYkSHl20rZX5Xf2anEGgmRd/XpEUurepk4aiGawqv0qR5pYakIhubL4FNDWUSIVUSb+PETk1R8TJOFUcPpMZ3EFjq65Jt/6SWn9KZ0Ulzc1qjdMMTRZZ6Kwg69621pyKGHOM44EDSp2lvTADc/V8ysKquy+oG5BZQFBSNhsxc4zRzGcuTaNSkKYizset78dxHIefw96Pp/gdFqKZ/ZB1eeukewIxIr0hcuTV/6+2tOkiXaeYMojurQ6ITJebtW3b991at9ba3vrWe7/f3d2tS4V4LPXr4qfifDrduTXP6WeqdeOhZjBknCPnZBGpwVgY4Ywlg8uIcpGLz3By7bgqt3D1xMoVEsCF1C8R2Os0aR/HcIJMXElYs6opISljIJaN5DzHGGOW7dh4zufj+fh5nsfjeI5znjEzQ/MZ1M8/2n/f/Lctblv7cve999hu8/kzwBm6WjwsnrqKxwtNjQXSfggMl50MC90Ac1E7PtssmV5Nh/qckKlAMKGaUDDYha8UEM1SslbGbbTacxf/83W+Ls7KIpBX0FHpTNYxYv9gbWKVpBX2XXglK4+pI0GaCYYej8geyra75Xlw23xDczNMyI3WmWj2Bnx989+/7f/yt99//Pzj+/fvU8CBKAryJJCVPUgRShapTklNoDIim3N6I62TRDkrwhOXjLlCzJyvqLe2dGT+Qzx9PV4OjdVtvFCuxksf8Zk78kI9sJxd/BWpPxMP8UkwBSBqS1+w4yIPRSaLKJCUl0oIpFkD8lNWV06hqZgALAOfbCP0CfF6lR8f9e4nwuynZMtfKiGS5bzn3gtgMxVavk4HoEwrQKLA+Vd3tVz/Iscrhb2uMM2di6JvkSlvVnkh0sBONFvQz+7cPJrz1ttv9/7t6/7t3u8bOmMcpyG6gTkNgQxrdGigHO9M1ZowZjCqbF0ApJEuYLUQ65po6dqWSPByNgJXFVQMhhdaaXi5VxVViwBhhhd0eiFMC/pSwTgwNDJR78aKHImrvc0kVoP2YkysAkkyryBbHZGk6sDLy8snAKSyMMmCO3E1ji9p6odpCGGttdvt7evXfGaj3Wb8fT9zb+3ZsW84zxOie3cfX758ud222+327cvX+9utEq/b7WZabOhqNdYT27ZX4tW2dXZaa31zd+972/e9dwdQcE9E3G73bdtu227WMjMQSwah5W4qlULwahQUxMWr+XfdmiRkhBuNCJBQEmYzs117eSptySk0YppZZVe0llqtxYy1Bcs5S0X5DRRk/hnpWbffq1uizIwxc8wYEzkBxBzn8yj5Qs7VcxyfdsTCG66KbkasnmEx5zLJXBwvXdQ0WdWAEZFIGLN26yXBnRGVdSVUtjSVeAWy4LLXSSlJSS7mUyqyHIoIuAB7UZSochRbH79JatcpcOVDyLCINCIJeIoaDIbMW0rIMenO1piBBJooWHOTwxv3bpt7d7Nm3lpvrZVPdDOz1VFVA4qQtcTH5auSdHcKblAZ0FRhlRZGJ7bmGZukZSde+hWBJgfNmlXLUZLRVMeaLEsmnBHIghBfFWRMSmOMx4H35/PHTxrfU+/uQbPuT3qkLFzG3a0Dy1Ts06liKIZ04rNYyxzmaObeSmpdVMXe2zIH3rabb1vRWqDlVUm6knmxjbt7d885nOhuJ81Qgtg0iJRBpJWrc9X1K22a55y1lT+q8es9+KuYqV9+SVIy8lWc50X4xUvVWH9W+qZPSfR6osjUHPXC5+M5xnk8n8fx0DjH+Twfj3M8j+N4nnOUgCeOhuxMaHzr8+vb9tff3vZ7a9uttc3YYF7U6kXjQNkSSJgX7ezKnxYSuNqCWblOGeSZl9ydLPcdK9ArsdiGUS5IFWJRxmCr8W+LJmbiCs2v3gvMyvZwUUe4qOJI4nLPW161LH/bYiIVyYxKgAjFalELVEKBQDX5lYiQIYCUHJEUXBpu83HM1qw59g3zhBP0Rpl3GH/7uh/n7W9/+/b9x7fv37+L9tPzDJ8hSd2LJ+Rjnoww1xlAAKNylzGmeC6XtVoohcfoIpzOOTORY35OBT5HwM+J1+tHcbUIK/K+1lJ1uz8BlsvdKsb4ExT/uVZ+pXGvIxDmSITSanWSXmm6tUscuTpKtJXsFXqB5cxafmkCMiTmR0v0lUN/Jhd/Pn3z0+MT4l21ykfuRdKsfKatm3urbthKYxZ5UBFanoCxiMBWBlErx30loBnlOkNThIOEu5vDqlplb7x1B9Pd9w2/3Zs33vf+29f++9fb280aJqXWjTDTNKQiqGASbgt35ZJZlBo/w8ofQqDRBbuKTxHODxOhX3qyr11qMmnixe769HAsPYuV9ZlfC+fXhVTtT1siI5BuXKzb2u/VLodKxR5lKQRKzMsarUOFRYjJS/FSjP0rSjKghJVZTZ2nKJLoaw2YWdES3N16s771Htumr29fTg8v7yzH1pz05n3fVUDX7Xb7+u3L237r3esYAKxouTX7oJp2KuSyt5XxE2ZmvW1bK+58axYRY55uJmm/vfXee98Ij5fhJCmhW1ttLPfXcrWK5Mz4lVz/uX6wi/D+qi6uFe6E0ZsZ3Tqt0dqLVl9OElXKf0aF/8R2er3ESrtz/XYlXnGOnJGamhFjnuOY5xjjeNHSqxRZb+kyXovE6xfE9WErz498eT344molEpwjkhDLxmWxDys5qzMioFGMHyXKmyZFwF8M4MwMYK4IWWpcXk13+oV1SQ66+Szkb502FSKaLopWzAJhK/5mFJ2ACM9IgVtkm9abZTo83MyymUSDd2vN9u5b89773nvf931r7o1+uR9TYIG9bmb1JcrbCoDMBTdBiuKGEi2a773FtqUmcwVezDq1woSLrGukXxizWpUr1/ZEZgkaL55KpIDU8RyPLf74EVtP5WPGwzzk1rczGZH8svm+qVmCvDxQsjrImcqoZyaF4qIhIzXmnKl5GSXRzHzr29Zvt9t2v239VuY+7q5lXdUL8RpnzDkNaGbN7LiidzM0w8tWw17NCqRRThMtMGsjF5Oq8K9r16xY8fmbpbOp3Csu+dqv1TVagLySx2A1xtiIX8C0mIV0ac45nudxHI/H83jP84jzHOdzjGOM8zyLrTipGIifPxMaP37rP388zvPU7e7evO9935ma48hLlFKiwiLIe8enk1gSIyJADYNBDFw2/mUHOsfr5GYWhXc56wV1NelJB2UofgeWW7eZBBiXNUSCtmJ2+YethMw+XTIHUOYzEE2+whf91atdEV4IZuXtJR/GJU14IV5DCmU5WSsUz/NxSc1hFtq6gn2jYKbN25ebnd9uX+7+l6/3v/31q5Ju8X7g/RnjjL5Z803S48QYIwSbOPhy9FmxlSlEvpQXKxiFMiIXlq4P5OmT2CJ/Zc++oKkL4roS5WuFfdgHv7RdRdl4GaIIIQQ4qyavyu8ClkCj+ZIyGy4Weq9SpkHWHNZq46/82F6iVRRju/5jKiOje18mUOUnWRjgJwfkerd5WYG86GufEy8AwLzywrg+vpuNy6APxQuXBAagOXQxTqyEmB8e56/CWnllI8kaP+DLZc3M0Lzv3cz2vW2t3btvvXJEu+39692a8777b/f+ZbdbWw0VlCnxkqEoMpTMoFVH1k0wFr9XZeq4KMkqjFjIVESYFUetMHOWpYI+DSfQxZjmhxQYFxSgF43eLs9ZqkKtohwlkqhmzCf3FkM1nZe1ZukM6p3mImNiOSFdIgnmfDH2JS15hmqczEf5IIYSYkuJqUpOyMspFC59ODW9qogKpsoZc8Rs6NvW3Pu29f3LjSvxuu9vb2+321ZW8Lfb7XoznHNqrvkFg+0FsBXYDKPT9tar/+heNlfu/hGmY4osvGcB/Cy2KDwJ+4APP/bj5zUsaYyPIV0rD4tFnRkRm1otznpvza0uyMUWsBBUx4TSaK8LDeHFhX/Rnl5vBoA1VhSQFKOuQyIV44wx54yxiF5zuREhriJwVST1WeacI1YUEu2V5BVHxd3NJCOuZRyRSYQyahjHlXVVsjuVKZWFS1xlj+dyI1kxeYYSOebn+vPD2GQ5uixDnKKfVxW2VvvCfG1VJu4ZikpYLJLwwGnpFpk7YkRum490wZGteVY6V6PNqjnWu2996Sy2fd/crql6lUwi2lJKNppMCaGvsWbV/QzIM4vuC2cTmc2YXaVOBDRNCuTMvEaGFHKMNCCYQFbPCbj4qS5P5KvjDwAYIx7v48ePsTW5Hd7iObiHH0Ef6WS3zItUnYSCSouQZlWLpjRFOs2YjmXCkTnnPIHW+27N3bu7e01Ds17Eerssr927WwcQq/65WLwmKJSzxDZUIkOKOhzLWlAX2d8c3T19hhPJMYAscUJUwmlmmf2FflXQWPGkefP9c01CLnu/puLRfVShazcKH9BXlmTjOMYY43yO8zjOn+P5zPOc4zHO55xznDPnGCMAUGGKE+HKH9/ff/z48Xgcf/l2K/OY4Vv2QJxIW/X/8sT6cPf5SAuuUB5FYq+VLS30wk1cMydeVn2Sip5cli0q/pFV/Y1LRrBg+as8qfopizsIACptS/RrVAkvo5eVkMFySaOXt5BgSsGYmauHyQUd4JO19yq9lZaKQHdGxJRGFr0l0wW3DXcgGwLWStO5dXy9t798uz/++vX9/X0OzXgvyGmcaM29eflskZqRgGUyyqqjNGvKAQEZsQS3K1taQuPyd6mj7uMWFM0rrzzjOtg+Mq2Py55ZTcPKYOyjm/wJPSr4HUqhLmAu57NLllb+q/CUKSm38nqlDO51HJqseasjoUzG1ltFciUbC4dbBW7V5crqh64SWRkR7l16EVc/0oaXV8ayj70GKI3x/KWTApglyW27kQuxQyQyytwlJpfulV4JOlfWW81xe8W2Evj2blbFGmRGmPV9a9tGcuttd/aGrdFNreG+8+bRWnvb7b7h1rG7lCnXiGlKYxpUy3GdiLeaJdQgqxwzWR1nrvfDJceYiUhsvhInfibUq9yHVPSLJWoqU5eru/f5wasTz3yNALpo78A1R0cf3MwrFFS9Uu2vvHK5Pw2cWPEhIkpW+et2QyQisYz2JcgSxSIxQbYW8GtgDpYhDX7x5jJrzdIxW9t7N5c7b29fbvv9bceXL1/u9/u29/v9vveyEWrbthUJKzMjWhlrSQr2gtVX9p9BLvpveYcWwEDSqswLTKVsEOXtU5ir2Vr/Vy6iiIgRM8aMiDFifrI2yMzznLr66bjgHJKtdZJz9tYiszosq492nRYWmg6PmQB680Xf+MDScozLDXp8ml5XmtaOurIAKvGqu55z5qWkw+prKzPHpWe8xuctHUx9nHltwzWK4NMIr0o5KvGqHTXLuS6xXA2NJENZvK5cNs25Mv/ihAgBOYmUZmSuwu5T3fUR916n6S9GgJCWdc+qGes0QbocZfAjxoTIpEUqBzPVwtv0rk4mE03azDrTa8pwOVwVGfBlwNa82mFr1FU5AjZjIV61TT5mTEECI4JSIh2mOk5FKcr1jkKaIa1c/yJCs/RuV+JaDrUJBz29C4kMWRVCAcqM4Umf43x6fP8+NtfW523njDazn9E8ZFN7GfR3GpFhEjQtp8UMpVl2BBlZ+koDe++kt/qUfhG1Sbfe2tba9ir1r63srXUzy0DO8vhb97xGg1RDRDkvTv0o++5Cwl/cgGp04yIk/NKlicyItLxsOj+NfSPg5kk1iDVXGldTTYuLg4U5fbCnJfnF5WTGnPM8z+PxOM9T5/vxfB6P9+PxjHHE+TjPM8d4jjFjOekD6UhLHRn//u///vu3+/eff/vb8fa2O91qVxMuKDC53LMWE/eyV1hgySq5zGgmLjviygXFGUq321rZWOJGXvV0yZ8oS5FJGWLNd5TDUmlkrtzLwcDKuuzV11iDPlhFqel1rT7aYS9Wk72yxoIwuPzXHKtedyCrowIjwwMzM0by5Kw+s5cOrju6yxQMYm99o9Phe0Pe2r/+7S+KcR7HcYznc0YMgu4ONbFFqVHo5+mZ0w1oBkrXrKh8TXBbuvDFVPgE9c8PRPQCq0IfrAtd/mT/kHjxFYYyc4yx0pLL+KfOr6vRqOD6R96WxhZ62SuAFilArRz+zEHmNR/TPnX96uVeJX4l52s9vIy13c4P21W8+omh9Ovxuen5Gd7jRVy7kD+Qv/wUgFlbaU36GCM1FbOk0Upf2Kk18yqiZDUe62KVZQGwrOFiKSgiLivnuhjqvW0NzdBMm0Vvvm3t7ebfvmx799vWb52uEXMyz4yTOUgYsob/FAVOkV62LFjUrCwExMo/3PKCBaJYj0vJiNf/FSbGlzf/R6KzdCxVftfLlUmbKy+LrmTqokp+uLRYFUKf0LJUKlY9Xe5klazXpU7ES+i4QM5SW0OpV0RMLoZQ/OJAdw0hNb42cS2Q0gw6brftlD8/DD8vNBRmtnmzve807/3t7et+v327ty9fvmzbtm/9druV2Ufrtrf+2heXFZUknbkO6Vy+mVWae4kWTcY1RM9fq7GmqpEyk3tvXoywFZ8v4OXykRqlB8wXBDWXCm9VNf4iJOV1/Y1zzjHoBjN08wIda3hLIgzGaxm8CC6vrG6+hPjV9Rjj8/bZbt5aKwlFzkBkPblfx41bU5MpLZpZnscoZ7V6nrhqqpkxxoLT8pO5fIn550zZXNFsOZ1y1qFaMr7LFmPOWQN6JiUgXhX1DBbotSZWCZHS8sb5vDg/qufSKleM88X5auvYuqRFVRbKYhIgZDDKysUoGDFyIppaS225TaA5CN/TNotm6jWLCGDzrfe9ZnhWyGptsewA9G0zM7q7FU5ZlC23NSlBtespJdNjjQgtOKLYWuuTplc5MKflmBOzQipQxoyElT2LwcLM8jyXmGYsgCTMkC5wDj2f88fPue24veHr0Z8nt8NNQs6OfN/DLayXFW3PyAwq3dKhZqJBx/M5j6nceiO9vz7764QqYslls/I592qtGWC5pFqfjbgmFkGt5DLHeZ45g6UTWj4HL5825YyYUzFflqqvYyIictGj0Vp7NfTZ1vzTDLyKrs9JWyuxjF+qhtfTbe7z6mtmvMYCnfP5/nw+n++P8/k+z2OOYyFhY0xYKGt2QzLNQfHv38f//u9v//a///tfv91MtzVJTEZasqylg6qiFwCqAbTOfjgsZW5r6OzSPpZ9fi7fEfFikrygF142gC/+lvhCawqspoMJGRC8KF+v6vmzUj1z2cLb8ne5kO01JC4zzRp/rcK1BPOlB21pKiOJ1FormTVyR5U6NcgNowyHHpaGoG5IM5mZqwGzWdt7++vve0ScRz6f+TxEP8/T3k6cU2PmCG2tteagIqfUqHXCXVDn+mQXNytRTMbXCZoL+qtTNrUme9CKUs2XKcAvkMbLlvbFpVhck/iEXxqpmauNlUKCMgeNpryYiSgj+5cMvsZsLd2AFAkY3Mo0pHziC1XXh8RyvaU1H7e5B6qAxrIOXU53hUy8VI2v7fTRKLmguxdQfP3mh0nbq0cJlMHQjByKaV5un2WWbfBpy2G93FLWFf70bitORzFOzFrvbs3N6dDm1ty6sbm23vbN7vft69f772/eum3NmyljYB4ZJ/JsjvJyF4SXRb5dBlsrSzbVe7OFRV1z0y7/lgvieo3mKnL1Z8ADryHVl6D9tXsutFfLtymDqVyg4xoq7NVag9lyXk3L0qQkkPCLKkkafOEFtKwedeFlvCY4aNkg16tmLKlVlo+iLe5CRQC78u1Xgefu6A1mmeM8z/fn8/F4HscxYkpsrXP37iY4Lb332+1tu+1f762UjK35/X7v3Vtre/cPw/camzhqlhp9LBKDkiPDMullEbkv6auSSYeXk7O15XKMNVenwLnu3q4iShHLJ72+c/XG9QrmsWjpv+xT4jq9Lk/siJjTT55rUBsUxcGGuUcx+l0r63qBW8tn6/n8nDC9onHbuG3bbd+L4l2DxmvctyRrlFSDqyXB6McZUAbGGcc81iehvV6xBrMUfcfdj5XHf8KPq9nnbSrPjJkL7jIzus3C74nAmlYDo+EyowlRVTCtlOlj+tyl5vjg6xjrTyurq9TUWQfEZSuw3LatDnTC6VazicEOTk0H3OUdPXkjIqzZuCXdcjcZ0zIFmLe2bbfe7MUfWmOnDaS2rQtGfw0y8TosqVfiRQjqzCJHUDWQiXKweOXFfm6ZM6a5IwxmFlHcTYpJQllUZTU0ZWxbj0gOkmR5hydyZtob82fM8Tz1eM7HO38+Zt+4baSgVEc+H7O32EBHE0xpmEIAaqbW6KbIPCS5l0HxjX27xsdf5nZbb72bO93otjqtH1AoIscY4zieETHneRyPMkaOiPM8j8f7+XzEODODZPcmVmntkGLOmOc4Pwj1n4/413Yr64piTksqFUtBDjO9/nZ1ny/NeCtlmeMXZsDyUBE0F9URy9xinudznscYx5znmMcc5zjPtSWAMq9LZXMkIbPzHO/v73//+9//+OPrbmiYkLXWcp4k89fGwecPVhhwFVmZSXMsmoiVG3vB9cq1U37Je35JCD6bhK0Zq3WiWw1mX9ZwBma1ri6s6yJQf+h0LijICqvABxby8dp2zam93gAXZWmlQGYKh00mAeal3AkhwsZAHJgONGND3zz68OyQYGnO7vbltv/+29d/+uvx832Az8dp26nHMY9j+MwkrC2JOABd5PeVGaRep+Y67xeB6sMuQVIrQ5lP2J7RYItWKX3kWK9ejK6hrZ/y+ssulSR9+U1cJikvwnpRVgz2ekuXCUVISbhb99UQmVIWx2+VyxeDoYYBwC3O8SmVYY3arQP++hPrnx7tsoP/XM6+/vxaM1kfUJcK8lVCXS/hS1kmRcSMiQzAS3UhogAl0OtNGlsiP2theQF9zTfNMHDf2r7v1rzIT95WbNnca47y223/cttpw4myr1bOyGEKUo0OBZiViPAqDceVfNS8lte+qRycckHJ1VhU+a38KcOm4xNxyl7+y6/067WXr8Sr2BlMVT8QKM1pDSC32gaFwdUElUKdSSdBc5jWqBojNHMleL6MYPhRhvICxtZ9jJpRz5f7MS6HC7biWpm7wxdPCO7x/vzx4/j+/fv379/f39+P45BkbPvtrk4qaYOW5Za4bbfe9Zqz02qMde/bL4kXcvqkLae31rWcytOLI9K8laRmvW2++m6Z2dg+1zivbOn1C6/lWpF8rmX/QX6/mIsfu/7a+GtJrB4rUB6bYbTg8/msH5FrLkDSJO22+JrHsRjxFfwfj8cL8bowQjMzttj3fd7v+74385cUrwxaK5uxS9RGct93SWwe0LJAiygy3BjjGPMqfXtr0VrTNYC8MDxceNh+u4+MM68GtJs1t7CpXNxpIgi6VULRzGvw++UCvM6lVxmWEvLFQKgybBFJVdyM5X5QyVrdhleoXHaDoNkaQe8Od/kMd7MuT/iGBlhnF7qwWXbLhiySgPW2997dPhTfawE3qzJmbcRL+sNlabQ2h3/4KFEyKACjgiijs2XxTvSqsoGgVB6ymVDmGoKJYJapQADYWp+WRMrSqFGHeslxYkpn5pgDx9B55PPMt2nNosGm5ZiaI3tzwiW/agVRTvbKZPd9v98y8u2+f/H+RX4rbve2tzK3e+mi1s0yCWXKug6aaoLXRh5jFL5V3yxR4Hme1YF9pWuTUSdCLebIsfhcWcZjv9g9lqFJhOr3F/zpi/Zt7WNi+jVKyAC17TpipZcvAyPkDuTMGZgDlfTWYRMYI87zHOczj5/5/Inj4ZlzpG1vai5aRqSCmRYUMp7n4+fx/d/fv263r7dG3+Dhe2pwJpAz7ZpvIDWYWRO9TFUoutnWN9XkqXVENdpGWsKIElRXXdxLs6VrJIsgFrkysqpJsXvFESSzdO+FuVcfitUTrGnnktAKfSF1OQfWqsxFGlCVoXi53U8ZjaJYZliN7OwxUrAMpiyBRCvyM6nnjOCcxiNmj7YF+sn5Drm1bbJPttlbGHwjXbtMx3Y+vn3Df7Jv98e///39x8/j3eLdLdmS9vM4yZ5h38/z5hmIyDJFLI4vSOaMfd/NzEFvVjWrNE8dkty8eSNpyUANfYIlRIPbFfErSYI0opI8pLJILSKROUbM12quZTriWTtkMbKXWYs356ioasuC0I1b761viy8B262LImGOja45cpxvfW+tnZFD0zJjm5m5+i0xEnBHa33O08yrpum0Ttvpm7VuvrUOtzmnCPfNG+aceMnESskEmVFEK1PJ8LJ+rh015szL+QCo3hgVDNnlIIdG7+buzWiGpKGwgdIk1rQDAO2cwWJ1dvi2b9vWvZm2ztI/3/b+dutfb/7lbhuOL42ZJ4a8oVMTIQ0ioTSzCI2IRBMlmGy7mvhe/p+BokJ6IkWvwTrdzK5ZCFHOEZi992bG5Mw5RuRIQb7yxSyX6MxUTi7yRJpgoJVEkW0lCDXkAHQ4kzbOV44raFJrjmjfV6+LSCOMuVjvjQKYjkJKcmoKo1YNFVWwFn4blMlFLXVxivLy6wAgDNit9dvef7P2JXPDwJnnjx8//u3f//i3P37+8Tif00Db7tu2V3LWyVut52Ykud0aW0Nz2zZ0t3233kVDawtwlYVExFKKbiPmGuaMyZnhjbYxYsommBExlSmDd3MffvrmxmZwa816M+/VUU0gVHYHMPfWioOCaj/kLCfDdmW1ufzT7IKXOGk+lVAOiTRzN+sn2gw4OFLGceXfF2PMWfnZInVVG6S4KMdxHEfEeKWJZrz39vb25nJHY1+tgSqbiyogCdllPc10ntuh6XSbraeF5Xw8x+M5npE5sszaUjOanxtdmdJWCFZh2QBEC+h9lHGcshD3xpatEOigAkpn+Tg7G0UzUY6UCYygwAwDzlyVRw20llSksSrpGUa6cSsPYMByPy6QNphY4joaeoM5RBlh3nmjQLHhOdFP7AZM9s4ZhjSx1dSiRHpru8ObdVdrLd2tIB4RhaWRDrl/WPAYNE2NLPV3+dHXnJyrzy5V85qkMWhLpbjPCCIM3noQ6SPnKHbdSMaA0oHmiFvDrek5N0Le0zPGGJw2p0XaeAbb1nhnc3icY35/39r29qW94dsXeOuaGbKzZl7+dWTj0BZjBuZ4y2PnHDed3fpfft9Sd7K1Ju/mrcu43/u2Wd+c5pLNQUi9G5mVlhk9Is5zHMfjOM/UfDyfP37+eH8+q3f38/H+PMZ5PoEJTGk2W72sm7UxBlrPLcq34sA5zwhpjOM8zzEjcoJZs4lzhrdygYk5snkODpdjQszylzEzhoAsqlF7CbtyATcL5olxRo4cc4xznOdxPM7ncZ6PeZxjHDGOOc4Yo/zlFrcrZlp7NfVWmKWFMMY4Z8wI2d7YqF05aUGeaS8nxErIK6W3lFjZOKyKnOLSLfy2pExklE0XRLp9Zqrp5cmjZdmua9ZQfXvNslj+XLYmuF2+UylcDKHP9f6VbFWJsxrCvIZt1y876qhOW4ZDSP3HDM3P8N6cF+sGCOUGVSOsxhLDWqsslNr29uXL/a8BmRtbaXv3vu3nCLMAWjNEKbfH+TwmGYzQuiKsSXetFRH4QpiyiMWIXEIxprmD8maA4YJ8Lkx0cQmduITFcJQ1OIg8nu/6BGK9LmMuy1xbmoWyBqnYiJZKxyVmJK08rcyL5AW3l7uCKwPOjKnkZVGMTyxXuFm26jxVi1DlIG9OLyPSZtYWj0nL09MckFWALh8jgK8G3CJmkdWly4UQqxLZNeEuEkov4CUyzYWiszu9Fbwho5ZnLBoWNOIEkO2mRpp33/r9fn/bt33rndkczeDOrdu++X7r261vzcnTJBb1XGnI+KQpwxJKF93R8EEz+ORUJ6zDaaGPBSTrQvuKWPpyXCuYypXzZS392Vfrl+bp2hyfIb2SS3+4eUUs3fsL/gzIy3OYVwenqJmrfr/wNS4s2mSJVekgCkReymX8Yj63qCrGUuTo1W605uZeqfNxHO/Px/uz+hEwd/reWrvdbnZNvvqE6krU8hey0sOVJy1j8dqQKgu3MnQroymYaLaZ0yJkcl+eOQudvCZ/Gpu6GwuU8ta2re3Gy3LWLDVTTQp6XcNl23s17aWMy3n15cZ+Dda0WjiLDbui0DgyxjI04aVRmONDLc8liixqVyVbVULUeVbOeSUQcXfszcxut1uPrbUm0r1b69Z6M690uRgCEd1N3rK16H23cVZzsGyHIzRjJhQROaNPEzNnrBGgtbLNa8EkYfIotXAdIvKELMPMJsvVh6udgfQSd9RA2EgoLESkfZoFWdrIeTkWlQGl0UnIBlg4TTKKRa2SghTRy+lV7+IyD86ryWDWHGnZDMNg7o6UmwtOueCiQ+ZwN3euus3N3OBc1ENvtga4LhFl7RxxuSHVdrJSnAE0MGGGdDZzkeZY1npmUZRK0sx6MEIO5Cy+wAUnL0Ebs2/epJm0qNibTmZ6kwjLjAZknHHmeOp46rwPz0h1WTkKKy9t8pLmkGDAA57wufVvwma8AXf65n0z72tD2AfiWKGoTA3WlAFGZIyYI+aY83kBXRFjznOM4zgex/GoidK4nCOrJRQhkuaoI1gX56oGAKzRNReZLL3ykMViqq1hZmwuY+t+Te2TkcWWROlOF8xbrKPavGTUVM055jjGccxxzPM5no/zeJzP5/F4jvPQPDCGxYQWRyuVFE1rBohZA/Oc8fP9+f7zccwAzdsGgOOgB91RULERUKnol5+QKJpj7T2Ys5SDKyijUt2yBSYdUvKzV+fl6pI1wgvQGsxdMpZEIsokKMtNssrBj2nHhQx9sktYFGJb6E2N7y6DMa6youhmoOr1Vz+cS1jziwvDp6+juo0Z0ybnnD6Gmc3zHMe5bftso50Bypqk0Y2/fbmZFZnLNaZlPI9oHWkO9r13VzJPy/tP5pw8ps05JxJCJEirIScfTb1kWZis61BfgKvdcDkGYZG3dM65yBwxK/MteL7YK6Z0SJprTsKVfiUT/EqyYWnSF328rBrFRBrNzF/5U70rQxZHwxtba82oGGXMwMr6Kyla/gOgwYNhy6BHUmutoqzRPiUfeMnZFluwdMjJ8sI2M9jHjHBhDbRyMF72B6m4RE4VyVtF1yybZ5BEa9Z623rbbvUSc040ANhKAk3WAVDzlKz17bbf9/1+2/fNeuOt0QzN1JttnX2zvqE32KwZ1oGaqJthfB29F4WrZoLBZf0yCCCZAMtkuOiOtgxfL073ZUFSSr9S7aImWBvcLUIgU8rKLyrxSv6pvlg1+Eeqd8lQEBAV/tpcKAPImqtkza50WERyTcSWr8VG6pd9qTWL4rKbAGukSvqL1QYAaKAq5bYGa5v1Zn3VnyEdc5zHHCNSbK3dt5u1rbXur45GESQkSE6Zedk6CFb/JNessqHV8FOd2qU0U9kK05q3EpUzwRQ7E5oyki6z5t7cukw1e65G/zbfXl3vMUZky5wSqt9U6mCALzmjN2bWsKCozSgtxVZVRY00tuZ0A5FzJlMD2S83Zl3G3Ut/cyVe1WQsbnKc45ffyVk7q/cO3ttW862LWNfp3drWfGt9WShbBGzMlKXarq7cY94yZmpEej9sOimklzl0hICZCM0A5rxmIq0cmi7YnDNreDOLxaqcWab+kTkpZd0CuxrWdQJmzmCsATumDHmlMnXNy2igAF6R5CStsbXaWfDg8HIkcRCUC2XcrTQK7sbiFKOZTXfDhlRjygK5li3gyAY1eFMa04mqF+ntNfqW7uxurXnNUK1aFYCEizki+9gj5R9cp3Qh3Sr3M7PLfxKgRbkASowA6WX5ihmLKHZ5QFSzevdeTfPJALohzcoGAsgWUSJ2xuA4eD7b+3H68Ds62FIjxMhm2SKbMnNZ7hFIWphr227GzewNvEs3efPW2BxLJ3c1+6Ta7RbdTNUinDXV+Pl8Ps/39/eXCuQ8z8fj8fPnzx8/fszjuYCYT7Z2F2AjMJt5FBZM4jJncYhgrtwLZvaZ0ZEsu7gPLfzHcXZJI9uHBhK58v46LCZilrD3iHGM56OMJMZxxnHUNy0Gi+oPdrc0kpg1+W1hQwQwxvjx/vPvP77//PH78e3efKMbvCGHeVn7B1+zyGuiNFTIIr0Vh6bshRadp7xXcVnZL4eIwlDq10oPhaqma0qNkqIK2UtqHRVZLWEAaTWlbFEoVmW7dkMZcC+iNJZXK8sBOMtkctlRwMs5CVzS7Mysbok+5V7XyV+5SFnLTFPOTFe6NMY8jzGPMbazWR92uvVmnuOg9272tluMfu7tcW9xdsvp5midbdtvvpma49b7H3s7juP5PM5zHj6jO+lu7evvf6nxUnGOOU9Nu2+9G/unet7d+20v1K33/SVEP8c4z0WkjeP5kp0v0g+bmYU0VbMkat77uqA2Hy8h4SKBtFKptBd70T4wcyQnWZ42bI29e02106S6Y46SWCauFkAagFQzmzxJzvICqlLyajtYb62318RpM/daRea9ytXgrMQrPXlZrwEYNbLIjZ/GpOiCkq69x+Ze/NzJQk3Me/O+996trXHdLRqA7qyh15VmiNFaa9ve9+22bfve981uHVu3buwNzdEsu4GY0CAGMavJh5yS/MM03oAs6bdA0Kjt5RAosOxclglteaO8TDlmTblZz1aXJGvf5ORihOga8cal778G2wEG6YOxCxi43MBeg89rL9Skal5IDUlr1oxV+hhh5syyXF5vFJXY1NeVBZE0pL3eBCRYnRSOGpULtwKqHeZsvZuLbrRmbFWGFrbH1s1932+59fTdfLOKk4pQ5mUlVthJaxvMRZCetKSV5FK2XewDI9ZcUZKcAUuoPEp7Nf4S4bI5qwX8UkIUflM0xM3dm2/lwFeHjflKgq/mKV/9is913ZVqQ5p1SBV0VSMJoDFbq9lBJWCvo2UsdDI1P2y6MnMu1nl1OKamNMsscGnAJc35Mf9qXkZol7b3Yj0b6b15A2CMDLiFW267BbkDk0pDQkMJaz5H2gPjQNi6xQn9ElRjIcvmdDvnLKLRypUX5ScwFNBEMdHBCFp5dyljGetgjjJJwQfziFfWFWJ11vEK47JQ0f7YyHFNYveAlqgwadaMYCPhMBFouW0tpxpMGZkIIOnIhJzGBhnUZICccqM5m3uYWSPc0JaJKMzRfLWD1lAyFI7FzFOvIkyRUcWhpGCVszRVw2e1ZZa0jKQ7lDBHZJqBkhkr5REXvwaljRTS2L1QaFcxlPOclMOdJ3kqqXkfxxbjL5lfFYE4Yir9LeZd2RWJbIpEbpA7e3Pf2+52o92k7QwiSxZW/NmFvGbNYs5oSnMmNGLGzGp/Px6P8zkK7qrE6/l8/vz58/v37z++f1e8v5IhIeZYYpHXGQguOcgwS7Pee5EmJfXQ4T49gQWFQnZZrW37vvfS2lyWeJcWtbHMHousdNloLQh0lhXMWYqAxziP43jO41QMxUCEKyE1u0TnskEV7QMXaVcJa4yI5/P5/fv3v3//4/dvdyebF8uwy4fkKIfGWv5FrV2+s919p7U12xEIkaJSBfFS1rzXC4Ev16gFmOFqDMlUXtgSk6msGe6enJ+GA9lLIX+RqY00LbtImllCzLzi6fXQwlBWvzQJpoFavaNlfyXDq0xYajYjkgtLX/bfWlbcwHEcNOu9u3elpxzyu6h0Aw3Ngc3x1u23W+PozfIYUu/Wb2dga943f9u3L7f+eBw/fvz48XjezinR29b7/te//BPJ5/P5Ez9PCNvi1kzGi2nr7rfb7Xa7tdb2/bZ5K6jmPM/n8/l4PB6Px9GsVsrF8y0PhF6XcfbFvX3xbbWj9/by9n0x3JfV1msMFi90bdYkjLa1tm2912hhcyhMxdeeETkjzjlGxo27klMZ0c42tujl+xiXLx5kNXlj69vWN7e+REDGVyitel2fBMC6ThWyTnCw+Wp6B5D5GnJlZPO2jGZSlee+cs2iUZNulrIJoFVrvQZZ0rZyKt9v27ZtzbfOe+etszdunXs3Z1ITeeYc50zXWGfqjMy0NcDEqn2aMNAJq9Yqfbsy2lUdADBkylKCIkUDyzq1oNG+RFGgIkZClXpMJ6/ydNmALFS3irwsP4/qf0ZNYV8Dg4oEfzUEF862eAZmJYcvVZhZ2bAk3aBi5xSvn7BQmsqBHlngYiZq0vAqNK2oDpc/GMSklbzC2tacgDV4gxHWFuTZtta3frvflNAe2ARPwoOZxFUcFPzUyimoNWsd1oyN1mokl/l2DTlYQGF9xt6u2Sp2ubY6pZjTjE087JrCWDuo0WwZBKxHkVihNd7NvZPyZplTcmlo0RMvfJ1pjmIHf3aaIJmZ4xpOvLQ4c7yAW126rc8DoevX1qbI1Z2iezNjBMwQZ0BzzqRN4YUxnOcZt6jW0usZWmu1aTIVkRJkYyvAgEizBEXr+/Z4PKIi7JwSdU6Y6ER8nJG8JgwuX3OARFqJ+Nac1nLwSoBoTARiWToBmBkROaciEblW0WKsMDMDSgnXLKrlswsWKMaK/pU3RxmS0plVeLfGshggXEyTpWfLTdkhNC4UymTpQoJuUKtxN5JB7ms0R6txOMvbiOW6cu3Suq6pJSmjaR51TAWWzkYxwTTVxCUGadX0KfoXxho8RGSq+CeV3zf5dGvLIqymrjIRSEJpLCWUV1cTAHNr1oFn9ySfBFO3CI/4S4x7zGOOR2AGb/Q7tVOwnE0y9KZts1QfmTf3HegzHKmavssIs022VIC8TIgknc0ZAaxzajyP4nSNOWLM8zyfx/v748ePn3/8/PHHjx/fweNl5qLSOR5HceRLhdVa6050j1uv3ndek3/GnNvYzrkSr8wk3Hrrfeu9930Ntq8jrjZvSVmq+F9WXrXPoBoPksWVuLj8HwLlzKmM6qi6wau5BpxKgyr/lbHJSCTRGaRFRGkb//7l1hy3ffGx3B0ypTnCuHwoah6UrzO8ThFCC8MvPSJkErUs6yjjBVGKS1S8tp7pOjhsYcUUZSzaBQii+avL8oHWXlXjlWJJQqwZvGXt9cInr97HywjNgXLLu4421BxDvBIvujFIUg0Ig7kyEVkzRASMmT5ijDjPSR6AubXNN6fTRKhLG/C2tfxy6+a9t8cY4R2+eUq2pJe9ta3/NNCsjT4Ba9tt3++//fYtUpn5eDxWX6DdW2u6rZwjptzs7e3t7e2ttXbf9m27kZznqDLi+/fvvfnD23GMx+NRuZfZS+O16ZKdL6GTw93bjrZt9/u9NCnbttV40Uq5KkbP/BhkNMakYGZ72ysL3PfuzVZCgaztdM54P49jnKJLmBlzpDvbLItylKq/fPkNbmbdfKmQzZs1lg/0WugwuiBaTVcr3/cExOYWdEOWlDFiRviHxUb5HS++DwzNRGu9te5ta9ZLhmQ2E7AOrJloUhpJw973fd/326337sbNdGu2N9w33zbszYk5x8wcilOKwGFmkDJGRJZcENnMO5YdFMROM1oD2zL9RXlo/yIGLthAcIWWpQXZKwFF2SlGzkBOKWCWOcuOrZCyz0BL/acVfl6V9NWIXvktlret2WVpbCSczVkqebOyALjYZ0KZ1dOAuJxSmYGUIrLUDMgivDYWAW+NGwot4/2ltqe1GoxjXlrEzXujG4wpZvnGmSEdtFgcDIrlSuCkbdu271vvvUMLvqVbczNvvpFu7WbmC5uQAcvK3O1q4uakW2vmzQKhkwFZNqlOuzX0xy/ZnODl9UIjyrnDjdbaBlJOm1jS81fS+fnOjsvktMqkOaeZZ3koHkN4nmM0X/44TFXjsphdH+N6pIjls1iuFq2595exRdh0m05rPJ+1lcbxeDrf3/tt68+tb9u29y28IdIu95hSqLfmUhvKRnTlyNgUMyOhtvWZ8vOwMdx9msl40a/s88fU5RNX5IOi8YsmYrwGeBCim0mREjPE5SsYOWPOiRrLKDNAWwqqUmRqaYKSoJtWi9MyaZqUwcIJlWFMyMxqRuZC06tFyFa4bMuEU9qQSqU4SaUiNZEkm6slDG4pQy6LAvoyCSPzamlV9zNqeH351Nkqcz6YLYvxr6iDvSqfLKCQ5iHzK0NTbVWv8ethNGMzCNZpkpsYiJrtDWKp/FwOF2l0kV4DPGYn7m6ZOuiAba6vmF9ybPP4Ocmpx6DBzPuOEKNTcN03bmqwmAoTe0TtTENKGak5p4lwt2Hm1XxoltA5W1UU81zp/jFGLL3t8Xi+//jx4/v37z9+/Hh///l8PmijQCxcHnX1OI6jtSHdXzfu1jfHYDEfAQlzzuOcW0TC1jQFlFFRr5lgve1b9w91MODmbk6ywVvdnGX9nEJMlDR9fn6s/yo/ACqucZLX0OJy3ze4m7VuUDMzyC27m4FzzvcfP//444/7rbvdtlYwqcE9MU1lO6TKs5GZnFfrAhkya9d0xZXNsFjYF53XUP2UatdTkonLeKIu1DU54sW6FWhedUIZdQLLZMhe3ja8bAg+HF0qJy1bCy3hNmsEN6DXMK/yQGJwAbNYsJ4IOVHG7k0coCGYIMUaze6gQjazBKSQhay3W+9zB03GbpAadGvO+717c+d2zCcY3jEl+kq8fNkl9H0bZ5Lettu23bb9VkYm1XAE0Hu/3W72jb13yHJOd//69uXt7W1vfd/ve9/MbIzxfH+8v7+/3e7fb9+fX8+fPx8/fvx4Pp+S3HtlVK++5BhjniOvuaFfvu77vn/58uV2u237vu97JWHunorneTwej9L3FjL8fD4BNPN9u93v99vttu3dDL1Zo0ExnsfjPJ7HuJ/H8zymvPzyjhHbKFUeIZq1OkJyKjOpZSrRfK8TxFubWufHFbTX6ivojWRCnZ2drzAf8+qkfLItfnmnefXczazZZraZN2NrDWYMykSrDiyoWO5izr7d9v3euxuxeWydt87b3rYmN2QIOXOOjJPKkY+yFotIRSaLc10KKl/IrzlgosGadHw6pT6a3gYuKOL6qZGtNVKGXG35GYqROaVKRBc0YlDBZ1bpSWVIlRulXOvqBWVYvkK1TaomL7UwbDUG6YAxa3CSGem0xckkBAzCEhMqd3Vk5OpzZuWTXPia5AuwWNS/xU25Zh4YrW1732/9du99N2uSjhnnjDnzHDkyBhdSrdUm81JgtJpy3Vq3Gme52rcJS5ovhtbu3hv7mkQEAOY2zSjmjFMKNqJSA5ugp5gKyheLxpCYUeyGLGDGTAZZVNPLSDX314iJQTrwUTpeydN8SehrF8y55jm23mcc5xyvQMELA1sI2Wt24ioquDRGzf2yrARQ7hI2Z8tsc9rRxjgyM+d7jDmO8/l8Ho/nuT2O5k4Npw9v7maW5ecMuJUENuHG5VHuZeCybVvvW9kyt9bmjMoluNx+bLWJr7KZKZR1Gwr9RWbMUMwyimUV4hFRhAhG5TyrvqDMkADDh6RitWYqrgE6MBbfy9LcZnpGQ2utZ5qxdZNq6K/pcvBqbEXDqCaurKdlaw1rMogTvYSVyHS00v6GKDnkkDuu/uKL7bxEZktIXoR6yaaScKJmtmRZBiyeMUEiJNPMSK/pbQ6DNdIRiTJdztWcXZYTl2OtfF7eyJkZdrEMtPJReh1wdcB3b2yEcphn63uzN+o2zzyNp8VgGJV8dDZNj0AOV80ThsHcS2Na5d5qVWUmxvGMWLPIvTeSTU1Svvgwpbc9x/KZe7yPMSrr+v79j58/fzyfzzGG9TB5Qk6ZswqAmkFioFFuqADbnFt3Hx+WUnPGPtb8UJIzFVpUZKvxr77tbi96gAo0EiAtgcyr0TPnRExJcxw5xnGx6Z/Px/P5HMfDFRV5L2vFNXNtdZvdbXNzb8v+GJajmICZ+TyP9+N5nmPm3i6voNX7eBkEE1AIsNQFjUYG2m1bDm7VPeGqhqu9xaoqsKppYyuL5GXRn9A6OrL6KwFd7Swst4JWK43VLEmpiBmX/cn6iKXn0GVxtX4g+4QdLG5zLiNvT2SBGqSv4QxMrtnpAn0RwmjJD+3lyAnYezuNLSa2QPPD/TBnwQSgQ3Jad1Nv5J1+tOS0bg3e1dq2+ba1ozKh2/2cM0Po7d623cxi5oh5ztH3zcwqB7r/3mvayZyzmX/9+vXLl2976/u27fvutPM8H+/H4+fPt9vty31/zPzx48f+3/vjsZzuakr8tm01CGYuGv6sMPqv//S3+/1e4+2223673d7ebvu+H3NUS/rnz59lxljo14/3P0g26/u+f7nd97d7725m3dmcmlFNz/fzeJzHMeaRLO+W5znPERGFM7r3fYyYxzlG5AwJ7r61rgi6b1u35l18/oN5PT8/sHy9X+yuYMbFNqjvr0Mql/qvcRKOSxB3dYtWPUBTIc9gmmHztrnt+76/3ffmRGyu+4Z7597gFkv/Os85pyroRWjpEGcmLL2c7da+LooRKZjRa/BPbZmXlq3afSpensoUcvVYuzlwCjXovYwRp3ICiCw7n7UZsJj8BsyLXV9zhSNVDq7pNDlfJuKSyCx/KFhJVk3GRDEDDPSiwdedEDOVzsClRy4gXFl+Q1lAhalAyiJ0Xn4ynx6Gy8mP7tZ6u/W2W+t1yJ0jx8xz5hl55kwu9UeNLa8oJ1O5MSUru60rIWa2TCUTMm5mrdvm1itAaZnb6JLSYuhYw2+gGttWXqfoaFb6IQslFJEiMpl90vu2JgkhL49oe6mxkEEVRhd52cq/aO9Xw3HVCZKGLjKf+7b37o0kPg0tDn2mM7H55/2gVzWva1ywpBZRw1IjQvksa6XysTzPc57naVasl+Y0ay+OgQproV68l+pQm/G29a23s86wTLRYQGYzi5UpvhxxUeycutFWHC+W7mHx8+ioCUGSIiOSMxHlFh5YgZhJznlmIiLGzIhMaC7CPuv6AGhs0ZiBNlJ7Gac50wOMy1NzXT3D8j2hwuRmCXMy0ho8ICEZCb/U+zQTaoVX5V5HDW2p0ICkGcAsxyN62ZPihUEUNZ7JNU5iVZORhY7OJMzSRTNLqxlHJdAOEzJGXjuLRImKDLC0iERkTQtLMKPqrShrdGW69WbmrffmqdmI7XYjIbQZx5hzzDn68KTygdEUnuEzWmQPLS1IwjNxDVsp6TGkPM/JiJIxNNU1n1IfxkKR5rHsRecYL7uT5/Px/v7z8XgcxxE5hPioPs2ptN76ZfrYvde0+5pWtHz1xsf4h5k5xkgR1jJzRM58pRTLo7trCbZqhjhKcMUiAa+W0DGPVRVljBxjjiPmmeM8x/Hz58/j8RPAPB6Zs8iayCyZX2ESzxl5Hntv23Y3s+IibuvAhjSOkT/fzx/P45u+me8ZoKVTbsgh5QgkMkxWON4cP6zl1u+t707D6h970IQGmoGrvCMgWMk7zEiGReaMy/q1ErXetnLCXVh0YI2kJ0sC2pYf/YdDWorN3MyEhWyU3s+9WXXcaQvHwsK1wHLCYGIJNGEIzIvdQsrNoBDRRj6NMG+EkAILJQq3lsKc8XweY+Q4pfQ507/+U0g1FbJS3ubW2t5mJGRT0dqd+2PEZjHb9vXt7Tzm48vj5/MYZ5RxNL2btcfxBGXE4/Eg+eXLl69fv377y77veyVe27b/5bffv379WmnZ1rpZm3O+v7//8ccfb2+3v/7197//fD4ev/3TX/9yHEeG3H3f99v+IZmMc7y/v5/nWZr8v/329X6/f/vtt2/fvt3v9/3tXq3GOiHe399//PijjCur1/79+QWR7v717dtvv/12u92AjIjuhFKRYxzPc7w/Hj/P5xkz7X4cx+N4nuc4Z0bCWt/67t7HiMf78Xg8xjEzs9VQ6zm9NzMLaMyZYs48zoPL4d7CLEKxmuzpzcqDqA4bp9I8M+NFabcVa8s5wm1zd8JhpHvbdrpL3LY+4nTD7XbrvVFRBki+uW/eu+/7dtv9rXN3dYytKeMY55HzTE1SNBBoaYgE3eEzx3meG/2235KXSJkMpblbK7sNi7gUiBXIl5qEpEfknJNZrBiOMVIHtcxszQxpQWrGHKeZVXOq9gkAUlvNzZihiDGHIjvR3XvfvNp0n8w/M1OWTFgTAWtWLhKZKA/HnEkO0Zb+BbAiYpYeJWLGmTGV0yhWxLv8W7PcU2kZNaPTWJbbUyTZPTMNxdXatu3W2vY8Y4S+vz9+/Hw8Tz5iyHO/mTfutz1zFoM0pTFGKtx9pPZ9d2/Nt7bfwT4zN99WQbiAz0pNqBm2bQDqwFNq5ixPq2M8Z0YRZlMaUXN+powNKvuUJag1UqjOA2IKldxqjCPneDGI5znmzHGez8fjeYxiFMSaM31NbAyEYs4Z50iF/aBdnF1eIi9JhFsrHkzTKqT3ign7vpEeEVWtxXX568TKzHysKDpHzozMHBE6juYbdCqX72v+w0wVRSoSNXkgVS9xj3geRyXZAmGKiSQVaY6S6ZCMTDY6UJYAaL7sIgMkZwRswnooFWUZnBmnogYpV3ZjNZJqXLMvj1F1qy3poTFyxBSAbp4z0jezA/DWGqBmOM8EsLXum63zRlE20+bZlIkJzKoepoScqpFKRVyv/ekuN2VxKLMIwcxySw0BmrkqcUA5a9ZnY6sMbUxgzVAv5wCkhAg3RiaUUWLgUGuN7taYqDmVOmNmRAEx7l0wqXl6SBHnnDFnHMhyjyOttWbsIzKOkTF8Z79/ud1u3c39zRyN5hgRGcGZfpx5eLg3haF5hmfoOfNxzjOODDPhefY5cwwGt0o5lx+BITWPoYSsNW/svWcx6siImMdYcpA5z/N8f3//8fP797//8f7+PucpRR1VtsGvmevdW7s19JTU+9a9LYK8exWKAFrKzMrHeCk2YGV/GMIZM6ZC+SpUNtpV5vGz931jda7n0Dhr3HWcVU/POY4cZ8wRxzPGY56HEBpDilVX1bS0ZhADdId5a1aMRpcLcvYblk83k+058+cxfz7DezRz+sakMpJGuMOVUzmVGZG03WKmR0agwyBrJrrBxFZtlHKMLXp+lv980SmseGLlx02Q5Q+Ja3RGLBfrKsdrpIiCsksm+WrBRNly1bNdyNZMOJlI12J18eqdgjW+pPzKa/6jKKXKO20ZeKzB9SVLEihmmVaXLq8Gek4FEpmGOc+RLX76+5Z7U1rzklCXviGZuzuZ6Dt9u288W0TiCIz7PN/u44xjRoqrIyS+d9vJu/vzy5s7v3379vXr17/+5cu2bZVgta3/9ttvX758MbN9u5Xqvtp/X7++/fz998fj8dfnYyVJZ1TUaK3tvb+9vVVwH8dZiZe773v/l7++3e/3L1+/vr293W637bZvW+u9V8b/fPYfP/z5uB3Ho6Dg98dXpJr57fb27e3Lvu8ylXwPqgl1/TnO57E95n3MeajPeT/GeZxzzhTde2++BXge8/F4no/9PCeyory7Jowzcc5xTLQjuKDTRY+HUjmN6SYjeu91n3mN4Ss1Ul6WE7zmU8mt/kkzM4cb+2bbXr5KrTUNGNTNb31zS2A3ZG+63bcve7/d/W1r94Zuswnl88w8oeGKqEWVweLF4zI6hUnMABrKv4Br5nRZzUXGssIiveagQBaVzC6XebsUhroagksVRRBmVEtHTl+iAXp13stONuZZHUktokyUp1154isuEXjtOZiygilhyzkckJhTWWAO5SvAlZ+Th6CafR1FTWCCS5JpQLAGJSFMoVQWwqcSfF+AuZa5qzW37rbRNrGlMGKeI5/neZyccrNWxkCrlxgZWh6nNgsG63K41FOwyO67lfbf6HWCZ81SWa3pWcKCjIw5Z2hKCVOhS1MzlYRQJvI5Ga2SSC21ILcx193JKpLnikjH8zyOc+rT5MRZWvrzPGNkXl7eC62q9BfUjDHPeQ5VKyOVmu2ydCkrmd730sOWgmAzbs321m99M7PMPsZw8LTlLB9mbpBk21/rO9u2ed/SbKYQOGq2djm2fILUzhyfx7OsPrHUvWXL2EKSpdgytOaachmfsc5IGE2pyUmZEc3UGGlFlQvFzISyiKSWCAE55hxU1jRoJxKhNJOeYywIuzCB6vUwpjJyzAgCw2xvI3KYVX++7dmovXd3szmnZsBmGeNUaQ6KmMRQjiwH4CvxtCXrz8vb5TK4RFV6ywqVRXMuKVpmd+oa9YKl/40aR1xNLlvt/yjyHiDGjJzlniUyp1rTc46iaQNcvO6EhIgIWCgDFqlMXEhzuQCa1phsZgqrrIXbGkZkSF8d+S5wpObchr2dkzzd8Gax5+A8NYc/p5+BmELO58yZFuVHQAVjQqdGRAbEcItRpOJdM7E1N5CKqAIkZywp2PP9MpxbXieLlkqZX6GsN6ehgdLtdu/eilxfswHrMnYrh71ecE81qJI2R4Zym3nGLNh6Lenri3IsfDVSGuaJzDyPOB5xPMd5nucz5kTMGSPGmXOez8d4Psb50IyMIYVhuslRhr0NABM01dwMFg2g3qL3JJHZTWn+OPHHj+P+9mDrbzdrbYdZxBlpNTbQU5kZo6r1mUzFGMK2bWIvIgmLXg4aeWAW+bZmaMs8WNqmNbwNdFnWCi4GjJZyngIykQgnnQsFxkWZL6y3bOFKT5NmLH3cmsNdGK5ZfXoaCJVa2NwqnkYqS4xZndRSakF0SNIwuCWZqQCmFMthmEaE5VRClKZiWgw/H24T2g2m5q388QyMZtgc7r1tzbY9ktEp8VzzNDATETkukt7398db8zfjt25TX3rvv/3227dv3/76+7feO8wiwpp//fr19naHtW3bvDcZx5zHcXz59vVxPM/z5DWsLTMzxFxI7G2/7CfGfD4fYwx337ft7W3u+3673fb7rffemnlv5h6TCj8HvnzF+exj3MfzGGPkUcGX3bdt27o5TUAvlvecnNOOaedop7ZQPtMJO+d4HmMKzTfvW4LnOc9jPp/beb4h8jWuRMTIeB7jeR7PcR6H3Xd7PGzOmYkRMadMMCqcZZi0ZlUVl6lG3ktohsuVxMpnzk2tJSBYOFvrdrv1+9u2bTUGyPD/o+tfmyNJdqRNUHExj2Dm6d6Z/f//bldkZWbfy+mqJCPcDYDuB5g5WS2ylJTuPFVZyaBfzGCA6qMvVAzzX8d4HO4mqnrY+Xg8nh/+cYyPhx+aEqU5Y74xX/J+W1xCusiixbEbfwUoRFsnNKsGVsZOd4dKStH8oQ6wchXJIqV585gzCgJqJ8kspz43K2vNJdXF6YIyIawV1k1grUxUJWtemYnOIkXe9hYA6PikzWBs15dK3TmrTUmlgmAhNlU5m8lLZmkTfkhmSaVkSpauYBNjlVBFaxGBkIJElpSySWC1jmVCNxljGRnG4+n2gAwKImNe+b7iCkzBqCzOiJrxrsiZkZmRy/hsZvp8YJYmLj1T7EmFmGXO5bYjYGgLEZnIoi/zJ5Oto+JE1XueV5xXXIsmipVb73L4zHawKzH9vNwb68TI63pHXq0pzOpel7VxMeec7+v9fp/n7LA58p4b3iI/VlY0uuZ65zUrJzPIPJZf0/14jKEfQ1u4cLg1VfLjeP46xvMYqh4s6/TnuT0mKhgOQHy3CkTFR8ImhcD7muf8jrXoEbyIFM+2ZLT8cZjRjOQwy7TDnJb0TAvJIotOgwK1Y5sEgFFTIR0FOzRFjZNIYSaYSJSyrdaAFpDBpg+5aNNHipVZke9XbM2ckFqMLpFnXpNz5iTTRGOMw11Vmccwz3yQ+cGHm9WMHJMKBqkJa0ZBF17v4ptSQDZASxX9QqjoJoV3Ml0DgEUZyxFcVCGyeq5OeH/OhelFRRIUW06OOcnN9E6yeFVmFgObw2RmFZkSImJ2LARJCohKmZkJL2RQq1mN7CjrRvdVAZJCC6WayHA7TF1gktryn96D1QuSiXM+Tvn1Vi8ZrGfxMWfWGZEa1CuR1xXzvEwJJwza0yBM5hUxM6qQYOOFj+OYdTwZvx4dmh4xz+s855yvr/NaCpav63q3JsTMdIuOdOV+DrPRamlbh3LzfR22ypFjDNNhZmJL0t2K8zkyMiNKQiK+E+Tw7dWTWsZ6knTON6s4T853Xa+6rrquzJkzcp45r8jrOl81Z/VZliRrnYdNIQaxxoV5I3QFJrTWbLiLeFVAjKYUfc38+3U9/rxtDLHfj4cO9YRnSTt+XNaOWBUig2gcn855KgOAyUHVamhiibj1xkDRLull9ZOQEMh33nMXn7bwNagqqGbzYLjpJxsDpqJbuKVcROr2yEJ6xl9FKHjzszVFTbRIExMTAigvRp/ZqqP5THkDJJDgCu5iCUKZylmglGDoAFq/IsgS8cyKSI1Qj8yACYuSEmhvp7hCIYepq6ZoUgD81mNpgKBViOQVGcVD6uX6y+T6OEg+Hqu59ftf/znGaAWDmB4fz8fzKabqh7qVLAWmH+PIZ0Q8FTuXt/ZHlbYjL4sz8xbXjzEgf3e+qbuv9HEQDNaEwFU+nv50qRjzOeacj0QzdXoJMunzfVEDWSH9i3FoQCl4l7l75PP9fifpx1NtVOHvz6/5wPx4IB/akm2iqk7IdV1/vt5fbz3Dr/n4er/e7+P9fsfM67reUyIkS/udSfX23yWYmdicgqXDEFHTpWJyU7c4m0FKEWCYH+P5fB7mlVMYnHyYPdz+dRyPYe72cWCMcRzjGPKwtIqa53z/bTnresv1tkxXmhiZJXZWVKJjoFYSTy8TKzquffXd8S3AWM33EcKAYlUQGTWzcXRs+lVLyqkdDpgLVNbSUSglh/0m2tvUpOXIuZAWDZ8FykWh6aKm/cLcbpk7dRvDnB27YkZVKMrQPtTF8VrO+Bbws9gFVBUzke1BbBxNUayFMLDGxieE2f+gtHPJUGZihmH+OI6Px6+Pj9+P47faI8WjciZndaq0iAukKues6+tzRRNmQ5yoNhxAZSO/SyHge/EVVSEVPg4fwzXMhrWnusgHAEhtxGlmZTBe59eM64yzj86deJWZB3410QuACd0kTEeHHMe85jtiAmVmTciPaB7eJmmtAgaNoruhd7dRPeLMzMqJCkFa511RVNJNHoc/n+Pj4/Hx66OzwBXindb8OB7HOHyIiFOkKE4l7jN95wRPdeHd0NISDYhSXp0PRvTnu21finaxtBJGVLVFX5tWgx0woa0R6fSn3bSg2FIxmwkEYihFsqpWMXp7DpBZ6DiwIsNt2fNBrWRm5ZVzzpimdzwiiLKq6vlscGZcyUhDyay2k1WGGpEqHKLloyIrspQMwNn5wFIAL+BtGm0Jabp3kSVUmLnepNImXdZqAAeINbjpuA6kUhDZ4YnkHTHSAeRXVT/R2erl1R/tEMwEgKbvlxndL15iw13dD+0obVqhIpE9KxVmW4dF2bQ9riD6flFVYQJXMaWprM7c/UurqJXisFMeb7GA5zxmeVySF7ucuhjzPON6n0qIqRzQgFpRroyoPOck0ekTw45idOrRgPdQ77reV79P5+v9fs15bs1ve0TYEqkiOjavVyRVNXMz6zT3Hbko7MYqFiycN0Z9FRsljQjSckHt101AtFmUYCG5Xm2SPq9XVcW8oqeKMSsj53W935ue2gqAkL1o2o9AkoRUM/9lwfE6l1e0Gg8RPShDWYmUVNbn6xp/XuM4jmP8/niqmIiJDSmCCxLTfvym1hEJzEg1OVTPaihQn3whZr6VwrqqJy6j8lrn27W+A61XAdsCunYXQ2uDB/sgK93BKph327f7G7omkKQAk1MpVejOV1WZoBSysIQt/RKokSGl3F0uoEsisowsSQWBSpRICSlVKEgopZ9yodo/3A8a4ZlI7abYrHQSnQWt7OGlUm3lcxwiAjERTUqDAhI83M55Xdc1KwGOMbq5dfz61S6MLIiIHcOOAVW4wzocr9Pk+eCoqiHLhYu9ohma/pf9cQDw49Hi+raHLIH56oKsSB5u4bLJASGdh0V4fOSL7M2Wq1PV700KlCkIQZqWSamI+ZXi7gW8nlIFHw+qRfJpFREZB6At2utL+qaf5/nraV8vv2JeUa/zeL/O9/v5ntf5nu/rjKgCowqQS0Z3gZJ1Rvh5XioryrdIoRjgRoUa1FGp1aJKMnNmTpHn8XCjDSZNPw59DnmYPFwfQ//jw810DB4qjmTNiJfNN5ieszKlYts3KElpc8YCJnobXAgVsXbRL7eRygZpGkWSAJEpUaxkLsQ+VV1MTVQBpjXzSGAQCqx1VE0QUtWa7a08223feFHr9otSxaRSsDwFm4O/ppnd5sD2//ZfDN27iwg3jKjfNy7MMrKc25zV71mvgosItrsErSFWEXpUmWqZoXcm0xqu7tY0E7eDojMxq15nvM73631dM6HeWZGZE4zznczZ6ZYsgdqoB4rEV43RT7VBDBJqbb5DBpgsc/c+/1VFnC0UqwSrYua84jVrvq/PK6/1SkZlMmZm0hitIhpmj2E01WFaVpyVM+Y14wSqWjzXmulalCU368AGU74TJ9e4MXO2u1FE5jx7rWx5lMMFZWAxDx+Pw5+P49fz8eu50HJjR8zbGMfxOI5xQxZ7u+UmdfXz9gfeBU0vi4SyZILFlSwE1K2YBGBI7O5XLyxVldHJHo1KaGy2LDmfbb+qkiKsbNoWFaotTyei5WIhzI6OR++DvFmjSBBSQmhjSna1Ah1QaSRbVTXKBIXK3kOzJLhYjSUiyAodLXqe5unLIivjYewuFzpSWuqCTLVERaE6A2I1I6Xaotni5eZs9dhG6vbn1orPohEt9lsu7C5S1xngOG/+LXc8LoA5Z2YxkpRJ5UqsHyVlLsdhxVrxLUSVJKUgSS21EiUCYmKNzyVrVYJShQEz81W/lBtVaxUGgmIkJQit+WZalUaWVSDnnHVdSZTUTMZ8Rby/iiIGiTafZRsdas3yzFzlWRqZuK63si6oLJzEmVdEzIircna+yV2+F6vrfsK2OQ+rzdFq3OHNBBCRBMV7MdQucr4NJcLV2mFKq9XNBikqnWYV2yD8cwevKj9fr/Zenq/X6/1ucUDOJjNd83rnDEa0CeJuU/fUuauWDgrqkqQyQcBoqk3yX3pUZjS/lMX3ZX//fbgcQ349XD98qNlxMHr0DDEdIlmaK6alVv4SI2labRMjkH2+v3vn7dgiW7/IfcBeG9OPP7kWhewaFT29qD21LYFooRVzpkqCKuTKmtG9RnSvq8+NQqmmcI4W1HClfouIKoQCB6Ow0XbLhu+LHSsmOrYXv0CJqFr+l5X8KpUapTM4sqp015HqJh0/R1E3HS6Hd7yXistwNGK4wZ1UiCbpv56dS5A5S+Duj8d4PB7+/CVmEPEWg6jCFCrwRYLpvt+9VrrKPk4J96B2dLRfkWw0SGW6LCju4x/DDukoAHYt1kdmUZFimaENM61KElunBylUCrX3bzNV11KFm5g+7dE5Bx8fzyiqOqFB/Pp4VIL34XuFeeekzvj41/vxOt9thHxf53XF+Z7XNb/O97xyZnVPL1mvQOulZtQ5r5f5W9+XScxdfrqKaq6igvY4WrKiyJznvL6YT5fHf/76fRlrXg/Hr8M/Bh6HHIc/H7Pn9caSLHIKA0zU7MzfJUNufQ5T9i7V9FFRg6luRswa/Gz5oZlBRwuWMyujInKh/0xVXXp6KKo7CxWZAES9sZHNMQUlr5wzrvPd4QEm0Hb3krpQwgui0vd6LXlJodY2Iy/Xlayo+krplzAJbRw89gOCIg1oXxUaj9TONQhF3QT640BPOPqHsJSVA7bjLLuzZu00kIRckXyfXyn//vP667/+fH5+vd/v6UPBQqoJM3Kemdm9LlILGp7hBybrWFh5mrMMTKlkoAQRs1OdmUtCHtfJDfKalTPnO1+zztf1Oef5Ot/v65xXnrOBopInwHK1f/16/ufHB54PxZCUVoBWTlRCqkpldzqqsjqJXPXwBxgpBAKJmJU1M+d1nb3XJmCC+6YPgRtdVMDmyzyfz4+Pj+fHr7Z3NQ/yOA73w8YYnWVOqtkNVenHtJfZkkG2WLt6i75iyhp47ekr2clVAI5WyNvqW0SH7bVgJ3Je27nRa6ZoIe7GQ2begVWiQrn5jkuhjxVdtZn3vGEqGvPVk409WG+6mFeDs753lrV9XteVnMksEMpkSYaIpHBoSsnQ8bSMUTWrLI1opnunIhIBCfBkBUFWZmWVFBXynQaKlZPV74n+CGfr5xC72MJcsTnr4dq/pzBqE3AbBg5AqJnVE2kkMreFQqc8dRSKTuSAdjouFOaDdIEvTgS0az/oZAf0Lj0YpERc3H0MO46jTegrZBkAJ6hVuCI+55sWajYtaSMi6rqqKqBZyHhXnK9OpNOLpRtB1hIIU3HIPcOrOudV9cpS1Y7H/snBKkbkFblG+eQtybXt4e4Z8IpGbdetemcE/PjztgzpS/xW7Hu0xACqboux2439vFay+w1IWoXX5+dnF15fX18d3N3/bp5nxHW9z8gLRQNaImC11RI9imDbp7vtliwYiDFKdPYhz7oCzTPTTMAIISsUHFofDuXHfzzt4U74lVdVqbuoSWkLyxPlykIKtfpsjVhjcGhEdFDjitVdptk90Wj77I+dvleEbtl9O2hkl5NbiKiElVBgW+NJsnMbCCRq6FhDzK1ZRbFhSd2RMVksdJgLKewhClidPLESNpbdX6DO2dL61KyaUaYFuEY0JbYohQ5R8mHD/RjjaAS8aotfIOb2OMQddEBEPVw7iVXEYX0mh5Y8TDVDmxQvRREfQw+DKNoQQ0N14nI1kKCvT6e1KxfZEuaqIj5W6PW6Dp0elS2/1K7hFl90e+p64rvTY2R57ffUVwqSKplqKGinQ21MQa+ZhJVU9azeDT5g6v5o/Kbho3OEKOrUZIksN0pXHlXtnMok//X71zmvc8bMOJtbe8Y543xfV8wqzGTre15fVw+Jrzlf5/X38fkax35ramYUQJPJiiY7C5MS3SqJi3O68OM4/vNfH3FQ8jgUD4Mbnoc/D3/+eri7KWo2b+l1zXfEyXlmZmTNdrcV10hQxfr4oS7WI/Eh42hgeveLSBEXVTd3qSPR6bE554ylnxUfLrKAF6YGwLW3RemdSNFRXcEePFT2bJHV50Rd8ZZrktjI0er01iJaosRvlmN3hg10FkSNpSyFtlOLbatbSmRs6gIAiSVDrhIqxESBSoOQKZRcf0yBglLsBBOqYoUCs1YA/J4fVdW8cur1Gfzz9Xq9ztfr9fX1dZnjPNXMHGAig9UnTCsq6GVVHlZh8qEYoiKcQkdEZQg4ARRTwy65pAv9WcHMnBkxc1ae83zF15Xvr/OvK66v9+frdb7OiIkkWfL+OjPz6eP//D/+M/6P/6PyXznHVAFzpQ2hboEUBK5ASnsY3B1sOc7i1DNzifrb663sxsThNlyH8HDt3LCmwz731+P58Xg83B1YLS9xW2IXsWRJz1L7ULMShVtHOyJiLh9Tl54za1ZVn9hmnAuwrKKqH48PVW0yU0XGeZ3njGu+r/OMec0+3zBnSDaYN2WN0VFS0g4LU7TtgixKRFRmGzFUUokqtiOkXyJRmtkNJgFEFe5ezGwMcAWzWjh0xZU1a0au0ITqvL1mmRYYOoT6GM9MsKS7KRFVkRUUJRDUzHnOeQVmsmbmXJIE1xaJkrlOuf2GKqpQkswuDVdqZFVVs0NiVfaMXSUUgHivYM1uMeKOe8pcH2nJ5DubHW4oUJROczHzYQIRcVrAgx7wQAsdrCqUviOhVj/C3Y7Hqrqez+M4VrroanmEVzUqaubMF99iGgcCV2ZyzsycJUEwpjKuDECLxpLsGZ/qggqglNBkMSUjzVD5NS8RqcSOxG4o9woVPc+zC6/bPGfWtKHWv7TGY4X+/Oxs1T5ALhMuGBGs7xYaf2T/oApVmVFVEUvj1YXXDXbx9/u9Cq/3+/V6NWZlzrNDUM/znTNUaJ2Bkl16F6VkxeJhefG6k1zsVlG6G2YVKI+WGERzhgRkskIYz8HfT38OfPjzw6xdstVTQ7cqbRIEdulTVcgJEcAUJqjSqlkiVHUsav7GcvRzsHnxuF1qO2Lvu3v3ff5e5i+sTMayFQrZeS47KIMULqgaiWQyiwKBKeWq2d7JLbBpMa92GuVOrfluvQGAiomjaFZVoxgKJc8sWWXfBi6V4ON4PMbxcTz8+NBj9LGzw1W0UGo6nKpVYFFYE2VqqnBTmBKkaJmOXx9HptQCMQIwEzVjLTQylhK6yWU93K6fUUl7grCmhFBt82aHxfSz0PUBbwQlhDLZPHPmj6lQr6ECNNJM2hqqqmUfzI5I7hNEJa9kmY1OWUbXZW7iBrWASkGgOnxnuRFmqGVcEelHeK9Ary+oPciPenQobw963u/rnHld14ysQlSeMyMif832EL6v+fV+/et4/j0+r+t6vc455xUzWQFelRNV4Bm5IKJA65EO19+P4+N50EoZrhxKBx+HPTBApA8AAIAASURBVJ+Px8eiyFTlrPm+znm95vWu6+zyPvaW5mpNMmlNTCelQFTc1OxOB1906d3lFazIi2RlK3KoFPQw5Q6l0RWVgrVK7ZcA0KqoWp2FFqHYfrOqu7RIEEvuk11zY/ef+1TSx6A+wRvQqixdt72/jXSiRr+t1QSiBLVFMBUl1uvOOkftAQLaFrhIe+3lFNHqGgWL6cVWb8iaGqOi5lXXGbMyIs6Y72sGIB1NjDhWUoUJBrjcESJqTKlQuvVxlJk543Ja0Uj7lj1kRc7oMd91xRXznPN9vb7m68qv9/y68v359fXn9T7f1zV7G9bPz8+I+BhH5fkwGSKcI0xZMdysgz5dzIb6AjdUXarqZIqykApp49JW/6ylx2Bm9HEMfww/hj2GPUyOYcP0eYzDR/tgns/n8Xg+Hg8zK0H3vURkkWMFWrrshHctO2d006v2GLHrh8jIa84Z57uqZvRu+CbZ6vjX50s3FYKJTn2JaxZ4xrzmGj5WpHR8u85eXoCq5qC0gYMC0RJkoWfiFVlVnVm4gY91p4SO4+gYhDVv7CasIbKD4rIPKnPOTl1acxRRWah6VAXJWUWNskdfZoWquInnjOk0R0kJsyRmXDnPQgQqKqMImrbwXqWwjEq9gLGf/SKjACSyagc6Ldl3tuq0g7wKrUnCvHDXwbvLSBQbUl313Zs2XZvmOhKrmA0b43BV9YJ62cRhVIdkVZQW06Q1hd9dbT/88Rjm4sfwY4zHoR2SukbJbEB45FWp0SFkGl9RqOCcMfMqiYIwjZHLAhwsS1DVZIgardN1uYIWclEDtbBwEuc5I4KFDj2c59WPWvelvpGK0KWj78qrJVBjdL3YT/XuE/TxVm/sXNdwvQz2slybVzznXCq6GKt6iWxCSkWyyr/Or4i4Xu/3+/1+va7rHXNW1fvrq3UVhmIxazUcdHn6hAXm7O9qoqyMlFJNtwqNM4/D3D3OV99ZrMoIHd4ylP/113n434f5YU6o6SHH4EQAmjTIGDrgAmU53QkLqICmhJZqiWRSWCRT1QUpMN5o31VgeVUxO0m4RLs3vNNVTZuE2uvjNwyWIlSWhMStSQoSmRQzbxhP37MfLWjSXIsVUaT5oEGqipW3K6Ua4bU6vkYeVTlR5q6mZj7fV1yXjAeqEpbi0YXEcdivXy9Xex74ePqvpy2xxRommgrEWu1EVAqAUphoUKsUIg41otH7FxRm+s/MDUAiso+OIh1k1FGqMGY01JHd5lv4jmtVYz0Qru6/UlVVEspmCgirMhlZMtd/vQ8KIuJ9XOiYGuja4lmsUmZ7GNa0mcHKFuRSmdoyjRJQq4TBxwdbc3S+ATT+Q8q6OPWc/TBU1SLYDrLSgYdZzyZSs6o+mTUkhnQQ5Uzhc5C8fmdUnpHvGOf1/Hp+/MfjeL/f78frvK6oeTG/4npVXBlf89TUlGKTuEU+wIPpjKfR/DCYYgrSlW5FvB41UQCzrrddn7j+xHxnTqJDgTKijSVOspvirTyAqMgQHzAnDSKRbM/TGMP0KXDUCsWLyuiJzRIumqo2p41ZLcFgMXOijExJshu2klTA5PxzOuQhA63krGyJik2CIrV3fHFtq7l63Yt668WUNMlxUkxUaEY9CtqJWyiFpoiKFNAzo1SgxPssYEwXlErOi+SV0wRshASzPTCoUpkAWAo9SCWNGJCjxMs9x5E+oAJW1syaX5Ov4BU5MwLCKcdxDPtIabwCDaKmKjUwkVPrl6QOqqfa9XKpg4U8QzShYp5gtqeYBcj5VVEz8n3F++v883V+nXEW8vPz85zv9/vVELt5rWHdv7++lFrP3//69R+fX1Ptz9e0w3kMeUCfGA99PuTxGL/ULDMxtFJxVEbNmTQxL8wgJiR0qIVUYTyOMUxEjocfx/Hr+XgMf5i7ynA9TJ/PZ7O4juM5no9jPBcfXP2Gpq4BVi2smu4BAloPlJWZrOSc3hjYmKhA1vX6el1n7/3XdX1+fmZmd+6Ph5l2RelVdZ3RLIzruoSsWuFFs+ZmL/UcWVaBruXu6tWTqCq5Ms4ZgQqVUi2gRCqBTPfDfSGwmmvSo3EVhdm0ygTkTGIWMyWpU+yqc8YJS1YQYe6qmj3EIfQ9HyYPzUOm6Ql9h9olbscRlpeYMmpG4LrqupDv94uaIXNiZlHlY8h/HKrEqJ3s3QM2ZDKxePFbtrXBbH3siahcUNdtJf76Wn94y8NXNGA3zjOTJap6HMfDh7ubPuzxy46nHB/68R81Rvg4jierFPqAHl3WZVaNqjofV/89uhnRPet09+Px8PEQ6wQVXRKr8S/EOewk6p3MUEjy9Tf70ydZyOrGOkMENfruRmsY6KAjtYSHyZqhRTVGRzCI6rl0l5V3Tuj7OiNit62rN1u3MQ71YTbMjyb6uYxmLuqC2u02zQqTEINIiFB63arIjEzIkRln1Jyck5EyU7L8Ky4RaR4ypSC17MJzzrzmHXt8na+IyAyuRm7J7luuqvZu11RjarvbgcoVR1j4nu1VFWTsklr2YasEfF1Tpb6+9PPz+a+PcQzTQ1WkM+ZUqKz1/9uRRe65qrZNUiSEXIiym7yFra79LiZq1wXr6Amsfsei8/WnMiVbo8L9N8n9n/RU+effu+VeWzcqa8oLhLQksdNIdaX3Stvk74SjHW2CfRRU7bXL1E3TyaCuLmXJKo9ERN1a13U3J1qMsJRYYi0ppcAEiW6kq5qbOZqZDi1RsUWI4T+uFlq/1eNWYOcz9Zu8h7HWaWUr7vtbsLmzmuo7IwzZmoqWJCSaIrh6MLLHSfc17yblvlmyjCRbTIrewVWrSnRjnjYCtC9nrFa87LYcACkpE+viTtC92obe9A8JSCNp1zhUgOfwKqSml2XUXt+QlJlxzXxGnlcOU1N8DH8Pv+b7qjwz/Hp7XK+cIjLJCBGq6XD3f338/tfH8/kYrnDtR549EO8s68wUVEXkPOc855w5o6KR8fVtGZOCuYiouGibtY26U8R+jNd7wCqyEV8/3GEdhKhiege2rqW+Gud7y+H7vhdrCYp/6iS48N8EsU+BUuw0r/1wrTelNY7SMMeOIRQTdZiKOtRMO7J6Ne9EGiipwpSuNaU1Z9pgjMY4EWipNavD2nuV7O7LAucVVMSgEPWOnx/+eDwe/jjUPWHZpIB7IsAsqPkwM3VbJtElsFhNPhUx0pZjKyqRb771ErGkqDpEC3JFtV8yWRk+5znjdc5XF15f51cy3tdrzus8z6/z67oiZmYKS/76/DSYZH3++v3168OMVZomMVFucpRQhx0R4RuCc39RZUun1uukK/+EIjIerqq/fj8PH8/ncbgdaibowusOUT36AO1u7utxkvtSrNWP9yJJgtJP6tYRo7IH2rmkuhVLVXyec87zPLur14WXvaRdOGJOMmZd19URq7LI/j2NWmHeZbLNZ0pd+egKk1pSrmgCyI6brNbztmR7XxYTh8TCC60u+cqKzaxMViETERVxVWO0epJrPRVFx00n8jikc5X7I4mQyCqNCBURDSMLEYiomDPnTGim9TcRIgUlklEny5jV3mGUsJO6IvcHW1VXrQzNTi+bVUm5ZRmQS/uPxrJArjvVyPWe/7gfDoGKuqkPMYcPsQE1dRdTuBlsaWNKKaXqugwT2u00XWkEazYlIndw3A9BlbC+P/Ma4VVV8tZizewTevszXGXZFqrWeiKE6LJSktEBV7csrm/yvuOcK6WxuXZ5f9R7Gexe1/21GuENRxGsVCosjYQsfoT8eKEa0CdzzthYaFIaYlg7dBhVzd/htpf59XrPOV+v1+v1er+/rvOsiEVvQ36L0rt8Kea9E3MPDHRfV7IqZat2ALDEhgGg2B5XFDp1OAIhQ+sY+nzY4zDXDxk67JAVR0sptoQw7xAS3F7Z9b6rQb4zTqQr0W7V2r46q3faHLNaVJQ98G6XlnQoMje4aE34gO5MJks7ZEOsCwXtZvverjYgkbmpc41FRhGSsi7QnoGwaX7a6Q5dWUaVK6Bi2ohNYYWKFBZ4DGqqbn6YH1CHOtQoS7a1K7A92oSEUDuMUiAmdEg3Vrs/bvgR9/KPSlW7Fm3e8WoNJvbspudGhjXVpdZKW65OaGlYJZfJlkQHsbIgBSnWDi3Herh64zbRQu45wF1AoCFM99bRvcpuXSuw6Yt6V9a98rb8WlaXAovS3XVcU9PW44OlxGv65pIHJiCHKZVpOgrpe9EBxDyKV8QVec389XH8fhzzfZ7X+7quq/Ks+PN+f87z6zr/vM/zzxWRJN2Px/Hx++PjP349HiZGDsFwcfEeS7JSgMBZlRnX9fq63l/zOuc8K671bFWvP9+5LT2XFOuAHYNolSx8F0RVKEvc2u9jVC7W6g6+MHVV79XgZ+3FlcTyfd7oJW3OWRm3HlKy2CF2xe4l9uvQae4LB9CvdNNQFdiBKA2jobYA0cWGmItqSRume+hZy1sCgqliZDH31rKAwCrS/uKdiXZXBjuvvN8Sgfnj8MfTj8f49ev4+Nfj+avsmFOuyNf7Os/zdZ3ndYVQj4cN82MMG2yZJkplxa6qQgFjaKmmEsnQs/GvCXGHGMWSeEddM8+YlSDG+3q9z88zXle+v86v1/kVcc2MWXFdrbJtRXlV4fU6TWSIvl6ff399iFaE+JCnS4wDpMKOIyLTfKg7Us0GGaA4BKzM1Yows7YRtn798Ryi+vHrcfg4Dj/cHdiFl398PI/jOI7nGMOO4ea6Umu/R7TrqWhVQRXa8iG4875W4VXfY2/uDLHzPF+v13nO1+v1999/5pw95x6urfEyHRR0sH1m9lCpIjLnlVFVhQTQ4ae2oodFFTNDw8wMphRcUetyZmUmdEGPRVWKBunkzk62r2I0iSNnZs2ILoiYlZmdPVMMNALDzQ6zoSQlpyoO8cPl4eP58HGIGyFBZhYjylQjOlirCrWl34Q1TpiQBqCnsHgzejJIMoiJKsT5RbInh2vMEqyqWavzlIzvl1igl90V2vcSL4gIAJ3zlBJGHiKlWqqhOlRLtVRSVNQoMD+WPUIWw2PZEnLbUZcgHfcH65StXSFt0yWXnTwyZzIjmBk5a8ac+b5mJhvaouqqdOsNcxlxTGEQJVwUZL8kJMygqhC7zvM7vCHqZ+HVU9mfjRJVdbX+NXrktCu4jFJVaMlOgVtVjS2X4q4lm9qf65nsemvXP/1dmNkaDBHxdXqhny2iv94RV7WmqtsgXX/z++Xqqq9W6brpuLL3359vYweolVCZQREpufucvd1nRUrmH+XjsH89H7+enax8wA+iVNgwl94gpcRUUlTtpspvsZsohaIKbrmxsB3CN3Vj0VB0WaCAhftqhDDkR6z1ttp9LxSiVWUpqpkUIMwMYnqLyXarhgse5ou8TZQUi3a3dbBeL6IJHFs0w0RmF4MiUqIwF0JaNmqNiGiTosG8m1u5y5NF218YlUSTvrGAPdTqdpFK9qhzNS6XdKarlu93UsHSHd9R0kh2/Lcu4i5NGyHOHRrDBvOsna+lXiF9TJAACkjd4Uo9dt5pWYwMJbLTBVW74JP6rrpFsLOrG0Gd9d3oqm/9irL95tbV1/2Akl31L7VRFrDwV11e6BLBSLFYJYAsQRFNpLTLZVHXrBo+HmnXqOfQ38PmfET8mnNG5ZnxeV5/rvfXnJ9fX6/fV5+0zMbzeD6fz4/jOLSQb9Fm209UzHijIlmpX5mZ13mdr+t8z3lmTVasY/huFtZ3ibHw4qrahReaadFlpZraMBsCY2kJO6jibjG2hUfVpAMhvsHCtYVhjWeuKrI1JRmVuY4pWUhUkplSzTddrVjbq1hX8FVV0EKRPUzu1hcMJjCqmRrM1Qa12cfYL7IQDbHMeyx+nyPvZX2nmLcDlrKTOqgGIUzE1QBVPR4fj+dvf34cj6cfT/gjUj/P678+v/73359//f35fl+ZyWFj2PP5fDweqt6N1E4wFpaJKNIA5aXJuhIi/Q4vE6s9IJZiM3lGva75mpFB6vH19dfn+Wfmm4hZ84ozKq+cEdecZ0TMbM5ERdSMKOhl7/f7/fX1RzHPC8MRT8/xMMLFjzPmETZylH8v90OHUoWAZvE4HKiDThWy3P3xHKrauRGPYa7WPIhjmLs/Hh8r7X646VBfrrQu1u/xRasoV0tLsgXm93ynd/eqdUDiD29Xg/Vfr9fn5+fff/5c19V/vy9Xo7UJu58cFHJtyFsnvje2NETRvcGf3zMBO3rIipnRCqq9faL5VaQM805Gdt3HQKWCuR+wYjS+sUQoLERJEKWGHjscx7Ch1YgjN3V5gIf5x3E8H8MHYVU8ZznmRXHCpUqkJq4r5jnPc05miWfZ6rNJZcS7cjCkNVsVyagKyWBeX+sHWbOo+6pkZkbNXt1ybZyUPH52mPhjIadARBVw8ioehEEmxCEJCWKK9EuoEO7RQq87nRnJvSiKiDZ4VLVXho7gg9wghbUIqPjPBmQGIzt7Nq7ruq6ZyVpMB1K6qnaqVKLWQGdpQttWUJmVTbNJveI6Pzvi6dZa9dixs96/21TtIrLvE+y9qvTBKrdnBUCikxYL2Fiu3etvLky0/nxB/Ns/PiiKzA/zzu8Sge3+H1BeFXc4vHQiCJWWXPrEPYnbTzp+3Lsfv9knb+ygCVOK1uprULbloYOmmodZlIh6n9fn1/vP1/v5fKq4q++RYYo2XaXbX9/t07XJs9A4eqqgKLcF3qxzlNBOUF3NDRSpFOu4GCxbPn70ddYscxcVq6XXC3r1NEMlC07pvUUbTrpakiJFs8GOzqlYoFYR3YRkQXZ9iN0eEgq5Qk/W5E3Rii8aDTSFmqmYqZsPNeuTNEVz+wwVMFuzQFG2JmY1RJUQVEOdtLV5fQCNbsH9/FI2C7TWpkcyE4BC2t72PYGtXZzuaHGS2gDb3Qnt2IotZS0ipFcwWRzafeWLbSZaFRZbUYisYicOb21+Gzha1dXIyjsj43vSsW2Yq0e3O1W1tnKS2pvPkqNNlgDa1kmuSSm/7z4VaKpOS4oooEPVOESm2XOgyhh5xtHglj/X9Z8z3jM+X6+v93mdMyJMfO1kqgpUnNl0BSnUVfMd+WYW66+qinnlPDvFRVkUWZWK1ooJWUabrrxURMSHqhW6ZrVkQs10qB9q3fPvsOI2rKj0Q6IKc+1jf33P2YUGpJl1GgOJSlQvFitIuC2qac1XK8rGbXVfhGob/6glSK5wkRJi4dia5t3dKEtRE8uGdwpJFUmIAgHppn2zSVvZOqsCW+VaVRmhqiLoleg+C7VgoYOCYCJmehz2ePrjlx4fNIusz/P8+8/rf//77//5v//r8/N1xYTp4zmevz4evx/DH32gQAFaUilCURqobZybjDwXrYAarAzO+EzxgJ6B98zP83pfFZUp9vn51+f7r+BUKyhzyaLnzGvG2ZvEvHie15w5Uwxyir3en5+fXjw/QschikdlKHDYcR7XMS+fDyilKqq4m8EdgJbFj4+PXqKpIOlDWz58HO7ud+E1TMcYR+cD+7BjqGzQsVjhO+FnUw7QY/jgNwrxbndFhIsWqxvGc54xe3+9dmjxu9XF7/e73++lfXYzM6jJGhRjIa97C18zalXRlsDUMiGliEiYmhzyaFBFVNuA1yoRXXVVdWy5ibj4MFFTVHbOkAGzKl0yq+Yekq9TYjZ00bfYw0ShHIc0Fvqhebg/zB9Od6oFgazIQnFGiBpgkrxe8T47nc8KHrSCWAsUGUBERjf8er5aNVFRcb0WNxFQ2I8hY48gZzTGrWEHTN0mx+Q6TrcGmqSodWOwz+sJliBEUnX935U1jECj6dv6Ihuv0Ov2OsV1lxxLnsIEdSmFZf/b9j72Z12m/kahzMx5zTmjjU0tCYC2TuxpZlDv8wwAoWIyt0atqpKorOu6iu8thL2bXstF2GWA/OPLVJ17prystZmh9i29t7bQ8V5nRFO/JUBowfqM7CdQ1aEUc63SLcAnicr2irX5GjDfbXNRFVejRpsiTI2dRLI6A3fm0N6le+Aqt+isD9AmIv3CrLu798V+fhPUagBj57wpy95Xfr3m1zvU091NtZXrtlJEiAVdVpJSAUI511PUsaA0Vd278HpEBEZAFFq6US8CKJWSVdKdnTXcyoj1U+2tevduCIr2JsOSNNUoAdKVUI2f9qiWOOnWpiAvivVwq/0cq5apfnl73LlLjoXHVyWXNAklIh1trMPVh/oh7jpGS/+oUtDFtTTt/7p0cWDWRNyUKqYipq3B6oqajJJbi9VdSqzgL94dL/ZsucS2VrpnxsvmjNUDXay2fvEW4nRXcUCfGdiOqxa6fX9fEsz2qfYKusoy7gKrQnaB1dDc7sD8QF3ranTVIsb1qWY3BNF3WVR7IdYeJpJgSTHyBNsJpWjhW6Kdt9/tT4qU9EtYl61hrpiomAHDAKvQYwoFSTuOcWWeWV8fz3///dd8zusKERn+cLOqirii3sk8iyYp6LiXr4hZ8zNzMrNisgIVxE1WXEyuNVuTvkV0MZiLdrCg1m4uCwzmbkO747VYKgpkxzjqPvwRImjcgmxpXXPBzNoZt7ICOxww+15LUtumQFUYkRALonN/pNhIYGx3DpdiVCGkoJPFAmYUgAbtgKGu9LaRtmu5b3VB5rwnFcgqZjOWq8ugRXNZsowColLYB3GhqJjbOPR46HHIOEr8THy95l9f77++Xp9f5xkpsONpj4/n8XGM43AfNYVGQpgh68wQ6LUls9B+jNVDjWQm3zODdpV8nfV1zj/v+ZoRWal4vb4+z78h0wbUtaSBpyhG5sw9tF22qUQCjTKIvDIRtAHrwKxzzujwIh1dQM+a3M14M21TsY9Yhddi71Jctm+rLV1moibQJXUZwx/q7jYaXKQtD63iXh5/sKIYm8fdAu+FZ01WnyuyAszM88fXa6tbOuj1POcCkkaL+lR2ZSNi2qDIfchXFXUzbt0POWtBqkTEvZRW12zITtvNqEvmWHFVoRLWcW8QV3OVMQ7hTDOXTKNpiSRVrp709Qm/W+2Sa1Sw2yemJerj4HHIhw1XOVwP1WGlmCUBcRGZJQmVEiQLvIJn00eZlBKQmihHZsVEIAPdYI7InBUXGVWbXMOOuaRst0FXBtn1VreXEnlPGO/pWGuYIsJ9+HF0sE+ZlAld74RZtmh4/1qddXxv6/uQ1YechoeturmnEIXviaQste4K39uVj2tqwUDN7hgVRIxivpVXnXFiNjI45xpEVtb1Pn+iHJJyxYykoLr0v7/aQLBnfP1JdG9ZvOuq/pPSGGqRMQbMjRCRLOy6q0riJ+8XyBkxZ64pm6BbpGIuVlWF6xymMoaKDDURAg7AmSUoUwxXlhIuIh1IXqUodpzTLYhe13onCOPHlf2RYdRtIL0ngnLv1h1r0G0ZM3dr0cz7yvOKY/J6qLMP570I17IHdxh254Ks9kcCQJdQ2g1tb9gE1oGPi9tk2kQv3Wd6ikhKSUku/fA/Oj9L58UtRkInbUtJIE3Ukt8g4L1LfZcwUCgUCCpyZRabGDpeK1d/p4rMpudBKE3DWkKKXitAU6xMDB/qrm6tdR1+mDl6QGRr/4QKFjFAuq0me/KzxjuiXKCLnhD+/JG7zQVIB+31HBBgLqlbJFVdnKo/qm9AUr8br7qL121i0NQl9WZrvFDL0sif17x//lVbsftgqGKVSu1RMUQFbJe13reI322WWvNvQH5AQ7hU8YmmG2yLgLTrKifJVl4Lui30w3Kx1hiFdNh538L1bGNZFUVVcaiJJKVERWxwPLIe5uSc089zZqaqNCYCcaKumdesS6TcCOacV1zvvP5UVeUkmwcTrS+RlZggVFFxtSGqooaO3OmqS70r+SgQquIqQ32YDmwNLFUA11uisfxg68DK+we/NxWxQmU/AdUxIykAs6RQRa+W0d+0lbtz30S92nLUxaGBgu0nhebNw1ArgUgtdTRKO2tPcmEtJMjqEIti9im3JARJLSn6aKIXWIvXQhDf1hARdTFTP/R4+Hja+BA7CnplvWa8r4jEJEx9PKgPGx8ffgxxo6wXSlRIQ1J7UZC+AmE7iHhZb2e2/u9KeQf/es2/X/Ov1/U+Y1ZOzDnPxOWDcCMIFrUABKOTBNmGKm0tTdefq6TJUlJLWMgZNXUmC2o6DrdD3TVTdVXUTTMoTAsbhxOrpiGz4+1a/W1dX0P09m3tsn7bI7RJPfdGdX+VINHac3Y5vN12uQ/bLGZlnj9YSt3u6t/0VGhuCXzMZS9sPIqq9ivmokDtLpMZJHnrW3q4ViTb/28QxgpZX50e35klhcy8RRRCVZGh7iJrjHRAQ0TaAI96AwhNqMJMilJ7G+bSNqkfpsZx8DHqOdxNXHn00tdELqbKIDUi24OcyDNwRbUjqUh6iCmatZtRgQx+k5+uiIsVrHONcRuTpKrrJxLJ3dzq+IdWdmefw2Tha4GWyFqCatChcjiGwIDOOrPWTH7/ohSlej8tdlAk5V699SaFlPAe5P3ANlWRK9jUzDKWFsHdPZ15pKdZmiVpQCTbXTH6lzSF0qxLOeaMrIrI8+oGfEtKZ/KKec0U1D1+Xby6+jadLFnXD1mUyWJSRMTqHWWZWUI6Nhpi3/NcUMTuDl9XH60kW+FmIqbeM8X17SoUh1vzwgTLcyq+uGqAKh5uBqZKmV7Xu1NavilSWEDS7wrj27W06uhOshdpjKHiH9Var+YG3vQLVRsULVoUZyJKMg0OYRlYcJMsLaEJk6Lfl3DNI6UY0oQfA9kk1bo5ufsDSpO9CVm8R2lH+xbtr/H3VuDvT1ub/9WQXqwwxwbWFe/d6UdLr4qqULFa1d2yL4oIYD3l2TLpWs8xxLBWS3MHRI0RIRAzVQWkZGFy3Pxwd13YKtiO9KRAFmer1cRLo94T2oU/rYSoFgq0/1ZrctXRLe9EYwm5OGaCfaYxEipwbL+h9pBpjf2rYeJU2W4nkCkAhbWMRj1cTP645sZ2cnS99Y1tK4aoCu8c5ZasbCZuz6u5xpXY404B0PkaXNOL7pVUVXt1DUJsvUgtarNIG506o2HLwtYUQ8GQMhEpdoi0lnY/R0UVVHcvkkWBDhMpihir/p//j39d1/V+Xdd1ZQuSshJZeeV1Rp4qSYcIKt5LR1+VGZ0iV9vCtPbRfjZVIGKt9lvq17ZZaFUn0xGwgg51weiOekNUVLyL1B9vkfVHbfHsZmIBd85jvwvd2I913ljk/O2mEKGIA/AfWRIlPdMEsTaDzk4V6fIUKwdYpaS0gfCrpu9/vytpCbBEElKsaPA3GT3IFilKupl0qEufS1fTr1RdFXvZH+ZH1146DpinWKZkSdEKKnrYoFP1cB0uWJJSbG8QSFCzo95E+/HL7pTukiQqz5jnOc/AnzP/fM3/+nz99XV9XTOS7/pDpjmeaopDSBiBurLjTdqshxUJ1y/I3hiu63IX9VQ7ICUBobyvVo5nVEmmDS9wFV49TWNj6ZeiRRVAs7lVVccY5qtmVUJNutGQhEI6FQ3aawKSNJXq6WGfnzfEsZfEW2zE5cUGUEnOXBCsK+bsiWNU7LevZ9SVrOTrnHu95rcWR7XGMAhJQ7WYQKFVVF/izqqGUsPgCo2kqhRWG14Saw1pUlfjB5tfhRW39K08WSEbaS4+tGAaaibuTuRSUS+hJIfxGGJOG6k+zaEu3gooQkqKQuqMlNKMxgppCq6M8ypRJiJtSqaoiqAuMkbNK0Na8xftyLuqgnXmdV3nefWa0FiZzBxj5FpyaxE1SZJ23JIgSk/HDFD6If5wf/h4mA2TTn6QNUtt/+lC30Hutbaa/r1v7T3X6s/Q3WyztdNlppCZAaDbV73YWCjUEuY26JWZl4aNB6W4gKYLrOV2bMG1tpt4ZQjkUozljGSlyEye8zqvAL8N172wm+t9wjQb+y3QGzss32bPfrIgYsvcsEos7obi6oOsvZ595Gj3Qs9ZDErl90R+jGGqmSlFVJZIVUnBpbInhmZeoqqI6CAxz044LkBgsnQeSxDuGGOlOpiYr/yuR19cih2qTdHoRVBE3Ns8VRHBnMc4bAjU1awg1+TXGeO8jgd/jeHDYJOYXb5Y+/GB28fd5fsaPIuqCJFi6eqi2iK5XU9giW1hoqtHIn3N0K0gbQTr5poQgLj58LHwXcuoJWKtnutV/Ht6Teq2Wfecbs7ZaFVRcXMTl1bg7YlybVVY7vfB/Pj4+BhjtNd6jKEQcz1MmyxvNkT1MdrifYhbsiHmMsYQBYjl80+BSofUMnM5CxbGtCgQyr50/SNssB7ACrmLz3XfCfJYO+q2l+75T79XtnpQ0rJ9+SGqWIaMVk41FmPlKcAgXMcyLiIw4ztnc2mwVviJdjduDxywpR3MNRDfb1AtE10XeVXV4qKMW46d/U96vVZUEXW13nZHe6+/a9tp94oGJKFs57pp70AlWbjmu0jAKGk6RBQJmD0OC/dD5E/l1/uV15XnyTyREfN9zbcwplFRnSl2na8VtSS0HQgBIDOhEFVrXo4ZTAUmblGQAkUBzcjZPCAzU+/p/OoGkACi0jZIdvUOACau6JOxsYKy0tZUTRMz0dCZzLW3arEi0TG5UBKFzibdM+rFSe56T1QX7rlBy+yGjg0b7jbEzdypLAYyKKImSIrSlG39FkY2MZwvtDlailXrTsjohbhp9Y277GbvbegT8+Px/PUf//qP//w/f/3+D7Hj8fs/M8e//3z+9fV+RxRNx6FVrgYTgXUHWmANUoRqSZZCKivmdV1nxojZZY12Q5naRdLX+/35nn99Xn+94++v8++v88/7mlGhb7X6+P0Y43kcBzUiZqwXMKtizgREy7sGnXO6muoDQEScJyASefpLfj9/P8ejB09dB0BdpcYYgPS+VVXAmZnv93sM69XYzMawHuKsNa7b9mwtCSPCzK7rumL2BexrKSLbvbW+IuK8Yxv6q/LHC4T3dc05X6/319fX+zqvM5oefkuul98cWjW769DrC5OZaVbd7chM1bX4V+Otq0Rkwx2kWxk+hpr3nyQg5MZPrmFbVWWWNPoOK3dENlife6kf1l1DR0y8rjlXNdB0pBBbixmhhnHgeJh7QgoeasvGBSAFBQU8iQjJsEqZFTMiKktACVofTbIkWCFZmsiQmjXnvOb7OuM85zyzrqrZ8IVox+j3xlqEUk1JacdTN0yew1bGjoqK2obc+nGM4cdzHIe7mRiSccVp8KtOoxr1PY2Koaj313EclZnBDdiQw/04jlt4TbKVbFW6OnBzRsy+NXPOMYaZScujYaIueDQAx2x8fX1t8NsGBchO2YoQmOs4DlUKEkYZ5lMnyev1/jrfX9ecGVmLL6O69r8u4PYiMO7xVNNSVrlCRsT27LfjoLhOnVvid/sGV5dqW/xWf86vmN0JrMAY38QDYfpxKJHzioAvtX76GLZrQ1RJKgRIYZWuLD5+t3PYaHrA7D4/qZkNP8YY7qZqfRZRVXY0dOCuL82EVHcn+rRrqgZbtJuZfE8ek37ggJlWMrjE4n0m2eyAPgeuRLgl4L837HvmtV4lSit672Zj/7OW4jdtXWu9xk34aMTT2pn7VC4rzczuEUxTlPTHvOb77++oyP04FkXQAJN7OqlbkubjiUoFW+U6xkgWoaxWBdlhWlItgz2Ow/z+dhBIIl387jEoZCXU9jS9tXmyOCSb20WU7GFcJyl3A7mHoGvtg64A0B474p6rVt1JFj0LQ6OvbkZAAyFqaa4WBuW7v7YZ4jega3XAUzp1a5c63fBYWvwiviFV2FYJwXLZ9rm77R0F7jtLtvR3Oy47XeO7qUZkWwKWikoESKN1o+5H7djPTP8RWyP23Mj/9UNpgaBTWtDmzJIW20dwXoiTcdacNa+aV80z48p5KapFUJlR6xas2W3K4m9UJVT2XW8EgzbKj1CKJEuSIhVE919UvU8pZI/Tl7hV1bt4E7knNSqK42gwfFXoXf4ug/TuFC6RnypY3u3nkgR2xd0zRemZ9mo1CoWIKgrWLTRAbPEvxHI7GgQS3P6S4lIOk8UoTmISkwwuB26ShZUPxBJdTANm7bM+kCSl0eHqZgN9TcSoo9Qi8bqur/f1esf7zHNWlhRUYFR25WrmJoekijqFUcyQCmZEzWLOnHOV+ECfcl+v8/Pr/V+fr6/X/PfX+/M9/7zi6z2v8wqixoT2ODurohWFSszajZQKcKNtfgxL73U/KVaEe5/g1U3MxBfPSsguO36sSGunqTuv0LAzjFXxvXx14SUQiEZWV9AswKjakwRRXbv+3KiIW798ZcQNLtpJBvP8mnO+3+/3+Z5XvufV7a4fEpTeDLbcsOch32pdw///L/a9b4VyL8p+jHHYWGw/kpnGLb1nywzbtaNbLi2iqmMoRJJpK9fBOs3sOEZVRQ4iM7XK4pppTjaEUzqcVHWKBmSq+dKY9IkaLHFQSiQoV1SGRvLMimIB4gpmC04g3UIpq4hLIuo839f1Ps8ZZ8yrclbjG5pxscbfW2qtspga2cE/AAA7qg34hWW465JiDLfFwW3LuZFJasT7ukq1WvgU+TQzUE2Eq0jVqkLJaTaua9g+70ZWRRclrkoyYkZEP2DuXpFjDIXeuZcAVG2MQ9VIxKxYeAjpIKzV3tj6VHI9ycM9MxrzdM3QuerqzA4z0E4fvRldq9u95kcwszHGcTx6F94d0919EBHJ2Myd3teWrkvF/R80Cq5GLxcoAbBlX1m9slvapRi2uoPpUH8+xvfAvipTVJGpBslMVwn7Dprg9lveKZI/uoIruMZWcx69gcWWQ3ZiyzqY6qpl1M10iCuhM/N1nnZe4+EPcogrosid+rNMZzcbc9UNshqogO8NiyLfyBCKLtwnuGBFrR8yXfFX1YrruyDoxC4pCqvrPlVV2z9v15C7kbakA3dh2juHKCUAZdc9xVgAsT1fsw14PEyrcgiOw8bj6ELYLDPNRIebu4pQ3Z6/Pp4fxxYbNpn4HvZWRxqB2ZNRdnY9Ez3HEm72bRMvdwWGFt1tSAkpLGlbfkkTXSkJ9MioR63SrKYuaConqLKGm9LVALY7cxWa33VXYTmFv6soUWqRGwO2quT+pF2zSmv+/5n1VGS1RXSfmvvsu2qyzhheNdZaM3LXvrJdFWSu77oXZyB7PrwNO+ubVX9kMdctGyskdnu/fzaCTjWVAjOJjOKMjMjrneeZ5xnvd5znNa95vvKadZ3JFIVUZnWY0pq9JCFIaRs8yzAK22CmJuJ7nq4UZoEzKJYFEYOarlVGc6NrVuE1xt5ot88GIDB0iLEiSzRTUcHKquIs7pEQANM258pqObXZjEvhRe2OdEkJieztpN2n0nQuE5VmpfactGQ703syjBRwsVGJqhREMVhdfgW/h9SFPQpeI+Nts6+q7G8MGepmQ8fQBQk7aEeJK/w9+fdX/PX5+vtzfl08r4oUQtHiPXFVVzlU3FyF3kPoiLjOM97veb0yLm+XWUUHvGTm5/v19Xp/fr2/3vHnfb1nvWa+r4okIWUtWm2DwIWsqCCyWm6YMzOloGL96Lr7YbfEuCtm9KB5+GHjsVBbnRXfcICNUtukHTWT43DcSbXS80Rf0tBtm9f9JvT1lGUPFgmRzagGvYeevUf2et7i+tXLT3TPbNVn12dEbbjEGt/U8pcZZd6L589Os0hR+vD3XRfef7LP3l1uwGR3Nm2M4ePwcYzjNjwten6P66NWxH1lpWYGAQhMfYyHQdRZVRVLdAfS5Ndob7yZ5YwqxAjGrCpIutCEJlx7Qk9y2wfM5NJEBSEyftVVV+acdQUjeWUUKKWwAknNxuloiaVeV8as9/k+z/N6n3NmnpUpvlXhLfhcnQ/X1QpxM7NDOre4r/EL24L3jx6BabvXekvPmpGA1Hw11TXs/fKWtcAAZNBW27ONfmKi7v4xVrTXzYxwVTPL7ICs7IftGOPxGJWH+4HlfilyoQTHGCo+bUbULf/o51b72F+SyCVlPUx71GZW4DXD56U6uwGlpv+NidoJV3cF1tXenb4QEU2F/kbs7iu8x3uQpVQYInIc67FXVR0uYusDrzrHS6uqrGfzq4tMV4NLiqCS1AJ9jFV4SZGoTJ2CVDFBRKiJmd1j+24AqklPFn9iMEQWC1y1FRGWmSLsocLy3W4NFdU7kLENNOZWwnNm4dJxPR7jdx0FFTVh9uYL8bXFCfYkfvd99tcWYvS5rVF1d+kPEbtpF10fVWPDtans9x+Tvvj7shhRov/djPqj+Fsn0a4RW4uHnWHcYdGrkOip+SZ0iIiwwxbEHKvz774+AGkiw3XpM4b++vXr+XyO4T4MvaqWNPNo11+FW6b23eLqEdliWN0jp29Ho5QUt2ALbDX9got8e9ywfXXdu5fu9VchUpbcvcng3NiP+6IubMc/0sr3t/+BiuPuCJZugGpj/1sTRP3vmQTtdq2uq1aTU0XInihEY+u6gsNuJ6xvUfv+JiBcaJEmRUn9wNMtdMNqyQGoFfia93FlXVntCrAkTQxgMonCOb8y83qd5/tzvs6Y1zzfc855XhHnivJgr/YBNIWtGSDL2lcULtuxQUzUKdZg3JUeTqZIZrIp3LYbPLsqwd2+RYo9oAYT7vgBW37W/eKYGlDMrqsrIpcfm62E10bl6WLkth+vtqCwR8O4J8zcb6Ysfbqoi5uaixpMS1Q7r4vs4PUSClI72wuJxnW3e5HfCMRVJUOkfsyt+vy4Dl+tvTvMh9uD4pAhdkAH7Ji0uOLz6/x65deVrxPvqCuxq3sxKMsyd9O4olEIr/f79fV1fb2v92fGJedXW6IaRtSy8dc1rzPOqmtGpEQJk4CoenBFmlXVnAlU1tUxRy2hq0gQqqU0kzqej4ePX89fHx+/H49hTh86Dnk+fh0fvzrYx33J5Cnr+LPe15vy1jPl1p7fflUzF11uCAiA3Jl+93FinSeBhVMWYdm3Rb9Z2FWsFRB0cw3u4uy83u0yi1m9Lu6l225cYv1wSDY9oiESolwGku5nLZ+/d0VW0Fu8277ORta5H6a6dlYlsxbs/jqFSLXqFhh3cMLSy3pT8Kr6h1ljk+GP1bpQSw8Ga0TlyIzMCZnCQsu6lBBRNyGEQaKQDcOkDDOhayKuqpl1BqIqQbESTWGisnghTShemqyOM5/znBkZDV5BIkWsrUgqdrirHzf8zN1tuAixvair1lwr5j83L6yNJrORIDXnpGJe12nnFkF5y8lb12XqtrWDbjb8cY7v+Bbspozd0NEqVXVX1kMVZja6Iry3GCz07WIzcSasJO6ndK1d+WPzUAG63TOGH4/H45kxCTENr7s5cl+QVkB1uWK2nGjrHWmQWCz8xPKFbJdGnyi4xUV9kWOe7R3tQr/TSzOzwz/Mqd3nYak2wClR2oQzWTwBSpUP2/sKuRL2RHJZY77vU1WRqapqY4zxeDyOx2iL5o6GqGKqKrSP2kRVaSn7UPUjxKAvewsv1K37N2RkZU0b7+d1nDMfB9VXI5x3VbDSlGGyr69YZO2jdA89lqNnI/77iTPpXJSNnP1H5bSbh/2OQeVeC2JhJr7di2zDpX6XXFjTkdsJ1+dFuLTI3oTMCqiyhL1vMSsSQHK6mww3F3c7jm5IKElX9U6sNvgYe401sxUtKUphxyUQPwrMXd1ga5MJSkOU+s437kzvRtedwd2DGywrVUfrSi0c0NJFrbDWlcGOyC71KdahfD3qohS+3/BNVeX3N+t8N0NtMyK/z9xbWHb3frG6e99+ydVoxHJwtsofKyq1IxtKMosNsEVF3Ev8vuldkgWXM6d05Xvf5WXTv3LFDUAARE7cl+J+cQRK7fgLUbAmS3O2Pf6MiOt6zes94x1XZE7mnHFuMkJmBWP2DYWJQqjdyVuQQ4DSEQVQbn9LbjUVxFDorJN1yrGVXtzZtCvqWtcmtVqlXff2nJOSld2mwo8dt1U8Gw+9mrVr+fhxE7sig0KEtkNdCcmeagOdlfiz6oJpmako1XJNt6Am38lUokTWYq2uYSRVuvz9NiyjZ3aI2O3JdtisNoibP3SYqImZ2AF/iD8Kds46Y/71dX6ecU6cs2YgarGvSJsJztBsZ+lE4rqu9+v1er2+vt7vr6/zdUZEvF6MnHOe1/v1en2d7xa2NiU7CwVNshLVQgZbmw6ZjDXw6ogdLn5ECZTSQxN7Ho/jeH58/P7169dxHOa0IWPYx+9fvz5+f3z8HsdD3fYS/e3zX82trrY7QqC3LVVVHWp3sp5szFImz5j3GfteRX7+z7bHth6jN+AVWh0xc+1e9SNM8H3O7Q/ps4pEMYrxLcS/6+aqKmVtx/AqqVpBd5iauYmugS51rceia5q8v7Zn7nBXNwOq0jPzMh1qijLMy7IjvPaf7//IVMV6002qlpllWsMDlZJqtOwkn8yI7Aj4VLRXy0QNat1fBxMqVa1OZ6PsUpBggEkGi4BomSY1SyIriTRC4SVVSEp19HhZOWyNLX+489wWbcFGGyZc/B4xC1Q4j7VmbrTP3hC3BGQpe9nRHqJkVFrINxygmw7dgl0neRFz9+M4rt192ady6QLn3lXNbKiskADR4bc6Km+0GAB3J6UKIn1eLt9C6kqUrrckC0x2pUHA3R+PRwl8PM6YWdjM3p2fYaOrruM4dsP42w3QsUJ9SGicRG4wSkT0FL0f9bvwMhv9oK7Cy11VSVGdOlyENCFXf0cFUn0aFqyWgLb2aDXf7q+qRjNol0qqcFcTdBiEmR2PXx1Z34UXyXYFv68L641dk77V21yh9X2nC8tB1tEgt2vFixlRrHp3jNn5fhyHKdwUIEtSRQqN6+1Bny6d1Pp77zJIt5hSRBSKzoHW3mw6GE9kQ2Z/lhe9V7UOoKvPkiVXv29nl9JVdRzH/ai14WPvVe1LSlege6WS0rYFpgytUIIV2SRwMHXbK3vBeDweO8sFrgIpVfXDH8+Pfnpg3SNgS1NV/nuOJO5r0Z5+gN2N2QuoAiq60dPreKw9R/we1C4WKVWWB+6e5HanIzofprmwjdUrNDVj0eF+OmC3EkhkdUK4ILraquvuPG2+yu5dlO7M856cf3c7Fq1zI5taGtJeKxa7KKxCpwgCGfF9qv4edbbqf082yRY6bWXcrkLQsr02Lqy/42cFTylylUdSCYLBmhlXTJ69K5/X13meM2NWRROblg0/MzMy+nF1KkUUK3iuudF9yOi1MgpGMLha/mzFrDBZ7YJ1MzWK7FS6WLOFXiAXTLXuWmr1/DKXQXA/M/21kM2thtlT2e/f9AG0tHSPorBbI1h7fo8RRVTE6CruNG3yC4GE3wRsmooWoKhEr0JsZhjuOT1any99zpKqAj07jacPIyrdFDFtAsvhNprGMo7n8fiAjqvkz+v6eue//7z+vOZ56WvyjGKZaPZTgOZXyDSEEAzOOc95zTln1BX1jsorr4tz5nnO13W9Xtf7fcV+0nK1tnNmA4pgZjVam9VjYhqkD06ZlKIS2ZHT7auDjjEe43g+nx+Pj/EYqvCHjOG/Pv71fH48jo9bILym6T8OJ6vrwPuQ1kckDJXuo4vcZyIudXzM/vygdibPj5euzxjjPnIA2W2Su+TqDayllEt9z6a4YF2NXW/1rtF/PvK72hPpqKlv+WyXRsdxqHpLVGp7NEpwj3j+268xxuHDhwqLPJhzqF3a78c1rik2juNpwyFaZIEm4u6iZEkVPZiZM90shaqUkpkaqI5GsjkRKbQpfVqlCKzrFy7sTR8BUSyJWT3BNiBZkmUUmHhiAKNAMoJKwIpXS7zNxF37YWYKy1xbprlLRbMW+azB8Vj/qsU8AELHfYjVH+i1rZZZ/lkQWQmoi9bq8s9VFbHR/A0MY9MQRaQ9XjmO7wkmoao53Dfb8jA34xqHmg330X0ZA6mdIknpae+y3mRme2zNxd1ZorJEBJnsR07IRgDZ8A/9GM9HFoJVlPM8a4NVF4P1OHpX1QYEbKd4nxYqV+fobnftk8B3xCc6EGmsRIXvd8ptNUI6+7WGQcq93W1tY+j9C/dsZ4+bvO/rfcYl1VWqaphPW99jHnOM0WXp4/n78Xg8Ho8xhrmSPI7j9XqJy3VdMe/VfHNZl4WpBdA9Xlo+R6pwsVpW8F9VzYjzPL9e9jjo5g2zbk0JF+e9WCqrbrvP9OtQXFKCumvJLv0pusX32IhFLhXJyoFmtXR0KwyAjGJXoLd/h1sxd9fpqw0m3/+TXU61epxalQp2OSuwNghQmLTFWQB1M99yhjwxxng+n8NcDQoqigp3bwWY6I5yEjTjYlGt7iLn/s3uAOx+Eu9/txuZBJa4XYWbh6uC76UW+DE8FMoiPnSCfEoWVGzFmBeWtK3pt1r5XRDu9uBPcup33Oi6noJOvu6tvcEfq/fVHaBvYP6uFHfhc5dBskjBhWoI5VLWV/5wbq54xmVlAvIH6R+KZZoCFq18NeGyRV57atzhdPfgsrfWLhBRMfN8XTnnJ88559fX6/P1+T7nzFqvN6PDe4INP0wRce0SvQfISqVq6YIWymLmNEfI1KpEV26xqhdo6D7GUPX81pgDQJvhzaw2ePZHG6PtILYxrcvas+b13wPVVXZ3BdZaV4GqgF35AaVyxwx0o7WfKIikALZO4dAlOVxl2kLLtY1l4e6a5paNF+6dHOsi3OP0W/nTos3Nvxg99dbhww9VVxs2Dn88nr/+4/nxL9h4B/98XX//Of/3vz//+oyq40yZAXQ2kIgM9BNNEgJbkTWdx7siyTtO8oK/Yn6dOScTo4zt7CpW7uF5JUTgZsdx8PAOnx4Odv4M0bqnBb9uHArEzQTutloLj8djPA4z9UPGoesQP/xO2Pxew2WdIn4+AOt1282tXmxvVUOnrFzXtTpetQR0uzL/UX7pd8jxPVKcGefKyIvMRfHemsImBu+ImI1RbX5q/1cRQVS3PH2Me3wo2z/uqmMMFVHxVvdlAaABs9HHCxj7Le55PD6GqburUCqzWgKz5WB6wBa7n2RUSlAWiVjURUspNDPHIywVZtAUqxmoRKWoz2lXaNAEyWIlBJb65rKodU7IeleKUXAbNtKDYaspLBinHhTv7JmSKnCKuLqSOqgiw50oQzophtVG6iGgamOcvgVebcC9p1VVj/terMzGTLZngbqHzLrPuekUZpXwHrpx19DVSZZ7aPAYIx6PfDyWdxirSmaNWqIZbW6t3V7srYduc9/8Vkh3MT073bikfqxOXVgbG+ez9l/tJ8DdS/BoWLoKobEnG609uGeOPWS8H8U+JwCYWVfkOaMztHd39rtx27ZZKyu6qprm/fevEeHoF/QYxwGgq8qf08IF+u90o/0fuv/TAkMyRauqJUf980dEF15jjOPx627cmXeaigLFFYd5QqoY7UBUValv8WbtQM17jVhbqSn7vA1k5hXNiEM+pF2V97hhqwrv+yErLvTHMrN/o9/bxw+PYX8SNNZrdzvk9sHf9dO+ICrfe09PYHvBusPFpJ0l91VWXa3SFXhXZLKmNk1kBRQWM3Sn55DMnHNizpk1+/jyfDy78BJmCd19HAfMwOsfZdV/1/V/1zUtYxIpfivY+K3ZkjuLetkU1kRP7vThHjt16uKezXXOEdHHOXaZIbKOTag+hgKJ1n217F9kS/tBMdY3sfZ7b9hgsK6obooD7vFW35ZaP1ct7+n+WVfuOW0rffBN76rNGqrd8xMRXdyQb/Atvo2x6/+2TqajEbYorefk7ML6Bxhat4yJRaJm5DzPc77rfcX8en9+9TZDFHGrB+6vYKmogGOZF02UUlzdrlZj7Ji0PlT3mPWekisJqJjfz0N/q/vtXqvP4l2J/HN129OBhf8XsdZU/9y8cdfE6/ortsGk5Z8rW+AbR7Lbkt+Hgq6NbGFoKX3revhmtBW22sOPftQa/bjkfOxErf5L+nktNKREubrpJk2oVzdr9LS6jeN4PJ9PfxyTGnmd5/n5Ov98vr6+MpGZI2DuHT7RbO5erG6hgzShX/cWIuoqBfNZPCOLqu4OKQojWEFkqwdVYTaeHx/P5zMf/Hg8H49DLTMzNl8G32/m3je3aNzdh60Wjrr6kONws6ErXe0fpynuPvZPO+RSjywOlsQ++gIrQuouvK6MRjzmrsLXW7TjoIx2dwK6ZnpfZ0S83++Wef00c2QmYhdec4FVG6Oa1zzf1/wx2ezCyDtT69b8L+24mpmuk8AP1cOPBUREOlfNG1IyRhdegmoub9fNK22Yye2ZS5YmJMpTq4caQGtWAYzxMEkmkIxCQoSG6uktVHkFQi5200ya7Y+lclzaX0neaifPA15UJkA1i0GxUuvAjUyBaKETphuoolpJ1EAqaVK5O6arg62qAm140M64XLwDqAw873tBCUQ2Xz47LmL3YzY4GhXZ62BEXD+KmKzoE9fdd2BGRfTS4TtmhzTdaJJyJ1PluDepLvRvFVP7IgCoeszKDd3c1R6RtQFSS6u4H/eR17l2aDcxVXGYrjbxfm5/YIbWtKZ38BYD9AfuGquTQ1v7ERGVcx9IdrcF0ka55p4ma17R9JMxxhyN2ql72C0i3s+A+JKlZtT2DVSFQ2LvRG6mEHeMfiE9FmV/xtmQvcfjoW5jDDUXMYGLGNxxuMpH5jjj75KAAryEiczAhxRW33gFZwtIRoq7mSTrfZ2JokKeg4bUekeccVw5/BJBPszM6M1aDKIgdMVw+lUn1CQRRZcS94Kc76ljiLpiOafQEXCixdTV5iK6D91hjmxYvrQcrMkCSQSG6ailkunpWCBSt6ZKN2S6zx5Z52qjQGJmqSqijfdkUcq1Vxe5FHkB5DARCKgUyZLMFDf7eGyzb1qlqRKUTOiGv2tfEGZdVVA3llIUpcvTChWgdEEQCJRsmZT0DLfTXFZYdr/HxSm9BtIz2NY1VyFy6adLek6qomKq1xdMIQOwLuxUpbX30gxu0VSjWEK4GtqA0Np1ZqJmQuQ1RQATpLISBaUbUZiN7Vt9lLvqEvgYolozqsogKrLIEVWMrMym1WsRa2/fceC06uBb0urRJkhI9dhRxYwjIlRdZHFcSSpMRMoH26xT1M6Ub/EBljD4khDVSQR4Ia5Xnud8f8b767xiAmi74NzJPq14uaulzAFYiAtg1ir2kIwhvlzu6gmrhIooDP47KRUqPb+HbSfDHc60WuVNb/rKC1tE3/LzLrKvGaZiMEGxWOesmDkn0S7xcnF0xnYEOulajIra4rMEUTJGHxOppgJtQhXAYb0E9KKYqO5c5WXtp9Pmza35lpRKt16VlEigVMUVYigpikJTRIgyq1GwoZbrbKGuw82GqZDmYqbPx/EcDwnFFJS+PuOvv6//+b/+/vdfr1lWYjMmJbNwPvQQfcrhXVZWFGhMzmClUoda2OEjy3Iq3+dXcYh/MGJWXbQJhyJbo4dywzD/9Rz/+vX4+HjyP59qEJFSE/8wGnKiRp4vmQ3bLxFXH4+Px/F8/hr/OcZofrKYuuvjGIfZYa4UqcGyOWW6HEPnG4n5c+5jBra0zHTOCaBEb28jSQlypQ+9GwO5TlWFqm9tH7AUAXO87uKpR8Dn+3q/35l5XTHnXJroWtbIK1rCvLa3OK/zPHPGNd/zffVHMhmqnpmqGGJu3pGmreg3g1lbXpUwlrJDfwpkufxCKvJAHhVWIfoYz/FU6BiP4YqMrLReGEggi0UTmqs9JskAtdQkrggr0weGA0JzUiTTTZ4fLkJBukGLQ4Aoqr1FX8ITXqZBeSeHRDIuzOZmiZVGFFV1pFhR0oGnuT/6JHo4qVUSHBN2mom8H8yPuhwSOkqPylBO6KBbRow+4VXV0hLIMBN1iKsOk73xi4h1FkSLLrSgx5QJCcxQ84oMcqiREm0DESnonMmcFezY0BZDmGgxq6KYRZaJgYeavd/uXg3KUmW59+oPUsGymlFqOEqTmIkDmXldcD+GLONCRWGG5iLINHAZhesKSlQVhK2p0rEgbTUsWQ0TMRviS7zlj2cXuGMME62GrGY20rF7Oq0Pm1GefAyer7cQJnrNer+/qmqRR3qHapNqBYKsrGHrYKaA8MpI1GjTa2rMc15rhO9mKuKCZNUim+S393P1ddRXYuYmYIlI7uYHZCjEzJ7Pp3ThpZ6LAAUSVjAROwmrxcOorEhUEtELjaqteWJj3E27/u2ysYRmK26wz2fzyjlnQMeOaIWqQYTZE8JKTqb70fZNQEsg1bZBMFN4J9H8dF9qn65+nOO/D7jc+ZTtJACQFCKlLSrZE49qqrjc0eDblQtQOwtvNRwUC4JQc05X6AoOgHRmgui8qg0xJJvtvBKjuo1hQBnXcAY/0rspRXSaELVavbl1T9jHLaALJ70l03dz5x8Np6WaEgBq1pLp/ouqSmTFH8pqPBaxoum0T3f9OxDQ1b/gOqhwXy4sCZeQKXfrhisbHD9P5z/aXT/Gf7KU5nuItc0bKxeee0b53Z/cX7LOnWtU1ht+H5/YrlXNlSnYkdhr7HNfm6X5oJZAZEZVVU7Ut9QJgIt27dZtM62szLhm1YyY1zwbR9nPP7deUEREvXWvjQTW6Itd21PSPoV9jts8E0rLdJBLo8XWTazGsOT9dP9sirR/G+ycg2UTWX0dse/0gi2i+NH/u8ntBJQMc2v1WUGJRXwhWFAKKIuCtvmYbXBfsQKNaOt/1aZVUvrd3awRY/M01gRpQMRkmEI7i1B2FjtKVM1k9kQTpoY+/a8O3K2yH4eYntf86+vrf/zP//3XX3///efrdZ6JAZFIg5ognSo/SGpVoVWJWonfu4neiSTXdaUq3bUOASsJmg2KDHEjaYCbHKbPx+P3r49fv36N//zgSmLJWfPK6ifi1+MZkqgOsfHHOB6Px/PxfBzDdPQJTBtBZHo8FhOkuOcmI5p66mNPHu8+UDtiW9NZFfiHagJt8cnZqcMUI5U9OvvpsS9UkhQ9OCPe7/d1RYcdd+EF6D2+kW1qA/D1/qqdedC1V14z4sqIWfn9MaTUoHBrgo638H9NOAp9+AKwTkJ7lpSU6eJ9jLrd6nePxxSdpM7Mhsn0KVQECmOvYEUk5pwqyGwzvkGy+n2hicDt0IdaacqllV4QqwpJ1GTOilxa8ZqVRIhSQXEFIGpCiSqiqGqmATHdKndHipYKmw7tkF5K3Dqhp+n6pRBaE7G6Iaq5XsZWF6wmKUX7l7ReQZTZjeFOTDF080YX2rCxnD8swV/vN0lGDyWxMH7krFgDsyW/vQ0ZN7D059eOkd6+ih5Jq2qyvQ/HQvz97Fn+nJByjeSi1lTBrAp46IphoMC4R9KbDQHgeAwzG+NxeItZ0ZFrVcxMn9dedbVXBiau69oMi527gLxbhjcBlIqWlJDfcwBbZ8l//KSqZ3ds++m9W261M7NJei2kre4yeZkc10R25S2Iqx3H8Xw+/fEcY8C0qtrIbWcSQhN7FRCtcMqsmBezHDadJM16ZvQNJAUQSUUAaDq0qpq6UKtwXXG+4+CwBwQuqqZmIqB1jdNv0/F0NWuccdx+csCqtOPP12zC1yl/DYzIWmpookgVE0ZuUd7yy6maFpeYL2vn3DfrgSaKoriz42PVkd330WajAyW6CoZi8rvuqY5Io4pT3V2qY9rbHxpkitAUovbd4up9sUW0u7qS6iClVtWtkOtdod37LqmAdNNsSXh07W3YhdeeDYlB9pBtVZBF0k2zy7h+gFq3DqAgZtrR59x+Nu36Y5MGdA0tlcxbY0j8zNWTTXDAlmYDBS5PRG6QCADWdkfmItc33nOXBfKtSFh93VVBYrt4+gncZWj3Gslammh0CjQWK5jsv6jHDIY861aa4xu0K2ayYlQ6pLAYs64za854nefn+/y65qx1tNAECVNVFkDrSq8ovZCJKsSMvX5n92ILe5opi4ynbsWshmiIgEmRJU7ransp9ZVifea1DtJeyOGVtLStvT3N6zil1vzXHiL36nKLw9R0LEvjtiEa1sCxRXlrZLCHsNlOEZVqY9FWBGSUrRJSqnMLDWb9pJiQyxelZoou37pX3xPdQoeXcyV9bpAmTdkTclFxVxtiAzquwF9fr3//9fV//Y///V+f1+c7xSimneidFEmNCAsBjUxWINNY6uP7OvQn73U2Sai4KY4GlrmOw7wYruLuw22YHD7+9fH89evX47dTkOiuwntcnIoINcGUMGJKqB7PcTwfj+fjePTRrj1YKaPaM1VDvQe5EXHp+7wWicbxreGz0nXw5gJAJ5Ywi7lylHXLLLtDJqLZ/YadU7TcXslKZqZMdOF1nsu8eV1XR5Feuaq03ja75v2zSfctkut6dYErqtrXXHsF6IJZvg3mgFQLkyoVyO6FdA3TtOGsU9m9nyGshXlDdhQxa9luC96pE0UjUntRyybks7NBmYKS5kUL12m1VTdDB8wPsTDFTK10SE4FGJVz1kQymVVXBKTUarQCRUGTPWxXMVHXUUQ1MKPYGhyEoEQKpSuzmtZZ6f3hRBXiYqJ6eIN7bDmGex4LFRU3W+J6W0jZZZptdgSk3Zkm4JzdywKw7LSMJJkzVkG2OmrLGsOKvTq0v4od0tmRLXqj1HU/fiWtW0/NnXblFHzog6RISoOmtwakQR7fr5gg2bd+ucNF5KjVAfBjbFe7qaq43rBV+/Hl7grBwD1n9LOx59/xWXVVPPsJn7iD0RjP57NX2fWNiI2HBP8pn+1eDjOY2u/LfdatCvi438e78ALg/cNGVEKkqJq+FIgtM0BVGVXExniM8fj18es4Dh8dOJgxz098Zc6q02yqBphZndldrALWGWjVAICZcWXsLbg1pEQWYknknmdVzQrL8pG0gWO9lF7oR4RJ0jcXp4naWWzUkPzEYbTGSPekCUv8ti2Nm9J2C7ywJBf8hkdvelCjxJn9u+8C39XAdlD2jandQpKF23KiMsOk1nS+Ma7WxbeYNBek2QdXVXQ5iE4XqkR1qmb1CGMpszo7TSQpP6gHcpOy+idTrvWM2nVG62++q5xvUQ7ulyv3OK4a2rXfCSR3yBopOlSU4lRbYnOhkWR2G3BtlatnS8I7dFClWqLcoKrW3csOwFzOICZXDmT/w+2Q7z7ibK/mOh0BQDFVbl3CPpusD57LOS1llFsyFZNIdCzpygRa+/jd87s7X/ghK9YNTOrLkKtJROFmb6Dxqa853zPec75mZLI95w5AWapt+NKidTnFKt6ipWZKlLVfo61XWKjqNo2QlSrVLSKhkCG6tbOylBdmw6xV2Fq01Vjspub6xapu6icjGRHzypkVtR5varU1uE8Ce+EhFXdLCxTRdqgSHZxX67hoBrEURacBYZs0dkxNd6IJECnSPsdFBtRO/+BSUhYLlRQj2j1X1bXdYrA3YFqpQhNr2Y8NmqdoFf+8r3//15//9def//Xv//pzVYTJcEeAKKFR9AQrwHRXEUFPXJi6ei1r6WyfXWQGWvPkOerxqET24jlMxhiP4cPNIGr4eDw/Ph7PQyCVyEJcOebHiHiyQorzjGs85gyVYzw/fn38Po5ju0GoCKWhAqUVTGsujAYvET317KPs4E+qwj5OA8d4VhA4lQhK9nObfYNYnWG/k3Wyap5xzus8X3POW5OdUXXynNfr9bquK7LF9fGe13VdlagfXz3xOeWHrLtnl7nOLURb1ZdwsJf3ZIEhpaqL07ePmSSVNVnW4RRV3SxsgIxWnNOok5EeYe4ekUIwMqKDArRS25PX3cxeGYm6YpqONO1cMa3eSyngUHGBO4RmLC8nSukOhFrQRprTPXn1xlwiYgCi6xwoUaVkYylVhVDSilLZEaXJWRVgAQUzMRVVqpFFaPdAYYOiVDN5LkpAX7gSWyWW/7zjXXi5aPBUSKG5x92uXiFySkYFY+M8IkmaDS6YThaKtY67x3GwtM1tJRC1cTzH4/F8PG5Pw7gfOsiybqTldmP0aOs4HFgi98B/5/Ls1WMJTauSKh0etVZ0AVQOcLkU909tpu5Dv7kisir4vSaYWWY1f/T9OM/zbKMlEqLsbLA+Y7zPrzkLInss1FsPFs9iQVFWeXBXivtoEShHJTMqJMGr7hDn79VDCO/nA5mSISLuKsexW2DaOxzxLSl9mD/H8XgM0WK95zkxSZsp1yHzKczVHhKj8odQbjEJIKvQqQVkNEBgUmRkEqajE5AArZIM6ZAVN9FaYknqcuMUa840QyvZeoJHMVOHaMPSqJt+vvDuDRIVCqUB7iJdV1CgBlEh7buV3XO9jjvRJYhRSL+3jMxE1TW6TQiF6ioXUFws92FabhbzjEokPmyYWYLCMHNXAfR5jF+/no/nUEPExZyoFmwBFaioCmSVbt+1roINXXuBS2VMLvrm8qtsjKssPfI9wFv7He/A5FV07Uqm40LXW5B7j11dLUFRIFIyRJ3qAuv+j6AEvbAH2QLJLkbYO1Y3t3bgc65/s+ypJbe2uMEne+W9pxLr9VRBVjV5flsatRUcP2YR5JbMd5xn3/yOEktycdpKwc5gxpKC6e3SWK3F7dGLVXE2WwKrbmQherhWIupkSJYUDPF6R74jrmJm5szokyu02zmVYEaJqHf2i0wRqy5wkqkLf8tcqmKwwFBQS6pyEy5rY4W9heBtbVBpibmrOkQJydy2hnXV2T5O5IKpN1eAs/3UqUv5BhGDlGiKuRRjRUWR2vCtpSy5ROtWZJck0Blx1a/WmksWFhtc1MQ75nszPlSrMzaE7fPinUZQtY5bLNaKg2ppXQ9XlNqQVzRWCWY2Dh8PtSNLviL+x//89//r//N//7//r//vf/25rtISuLajuZ/DnO9ADqnEGGrbMFl58VzQqUSxxhi/f/8+Ho9/TV0RheulardnPYYfx/Hx6/FofbfIw+35fI6R/cgEoiqSVzGZkXNe1zXPiJmq7nb48VDV5WbX4Y/2xQuYOeusdD/oItbL5ZY9+LPN88dxuB2dHS7F630y4aJTzoruazA014Sb0Wr6osyr3jNer9d5Xe067FZoRGXUlfN1vl+v15wRmRH1nlfzUW+mT+8uZjZYNVBc0uyWtxeLDLU+eQm341hJgXaILjO9ATH7QZV/yAeWcQYAJFiZUy5hSkLK362uAarSPDNqRn+XiBDRIpKJJJDSvkPkiVq9WbEj2ep1APZR5mWWkkUN6KlWXp3CUGY0pxUNoqBRKE8yoYGVllglWQRcqH2gy6pgztIgq3RWJTUSUQIpyYXu04QnJwDggBnEqSLiUFdpLEWHlgpgi7XBbtoBukb+thuEzJIsiZKAJA61JEQZqFviXVXq3vta33RWtVLkcRxIaTi6mLqP49fv5/N5tLj0h7BMfzi9tmBBd5sF1xWqXYTdQUDEj/RDESlBiW7BS0GsIRaRtN1SOp5PbIjGkiM01P0YqtpifxPv6t83izVqUbte57tpDMOO5/P5+/fvR7e4DH//LZ9fX5m5pM/7R+sRbeZ1f2AsRCWwZT8/w8U7Nzxn3i9Ff61Eipn7+WaJ8sDilpWoq4p6VbUVye1wcS0aawiGC2hXcnqF5yXz6XgOyySSRCa8k6RuH2l2BlOHyC8YqdNaGyL9uvqMFB1gJTJ4SpnwtHJPEaOUYTFIoS5NqezzuP5DhNGpEiqr77RnacvX9m2Ia+u1rLnZwrKvdletp45dOrQN0U0oxMTEAv6mkpMqMDJMJZOZYas06rzhPqGszYNIER2HqR2OaabD/dfj+P2vj2FqpmBFTHfT6u7BrJzCItphz35F4ZBaOhZBh0TqRikBy0mo+403bGIwgQZfNaJrO0FawHWXLEuK87P9u4Q1tkXZJO1RqqJD1PrkKiAQ6LzSNX2rdQP64q/QzfqBz++iq2R5WwW6CPLN7+otbT3x1D4gZkRVrr9tVftSovf7vFpWcn8LWc1ILDY3ycxLlCXZixYAXY5+WeFK3awTBYUlsfxKheUSkeghNFtlIqYyKzObx5ndFIi8Fj57CkSUoWbofiBXk0vZcRzJElJm0kWF7Y7QZckyalWbB1c0GXIdZ2jQWtEIkAZjQqnqUGMX58uW2oVsbRpZYCE8s2ZkTKyYoBb796y1vSfLsUHNmrvs7IPl7nvdMZxFaV+iaO9oEFmFLzpUaPXCqFoiotYjTKi2WKdVRZmY1kiJiqqYPQmqYodiyu5Vm5ag6dDZchfrmaOrP8RGwV/n1//66/P//p///h///vt1sXSYa2k4TIQiadbHilJpqZeuIQI5r2utm+1edP99DFIktBHtTfUgcmYW4/EYz3F8/Ho+HsMUIjJMj+PwI8leN67grDr6dHe+v57+nGNWsklUIgJqjgtUs3Ecw4YD1al4FYIqgwUNplEjc1YNEfHDPj4+Pj4+3A4T74XMxE1kug9zIXRKzkvoOrSqDSrcj8Bs4kNT+CMvUDM5Z845X+f5Os9W0xclIq6oqIoMoDP9pLoUbtUjV7DAVrfk5u8JW4bB9RiKIFmdZ5c1uWC/i8VfG2VS2TqbboenKmAqQgkCNRXXHHbKMA8JcnHJtSen2Sm6zGTNINNUoVkVWQT+f2T96XYjyZKsiYqoqrkDZGTu7vv+b9fddXbtmjIjgwTcTYf7Q81B5jmxYtXKHRUDCTjMdBD5ZFCnmkE4qu2/VeoLM8zszFAggylZWQFOSoqUaCoYlVZ7lic0a3oWqUVxevcblRmYnjPq9DrBKpyOmIiogrQVzLIWHb7QlKxBbNdgeLsmCuismZ6gZP9jV/ulQhoEsB6uFdckIIkrnI0FuehxIkpVZIkNIKPd9xVRePFRl77QbDPTMW5vb7f9Tb65Z19aUuCVA9sH/fL4Z+bhU1Ut0USuumACEVFrUWjL3qYp4OFHUmRs0BSB2MaWDWBhzLqieoFSdYyGhgANIpWh2kwGkoNMG9u2tfTeRIdu+74/n09VRs4s7xHQ4/F4zW5f/wq+deNftRcJpIkqsRLHrhlYVeVFAF2ceV9aJvt8+nLBI0x6oSwr0X0MVSoV7P2xEpIeFVkZFSkIlRrGbWBo3oe93/csy5hzFhQmkmt4poG1f0+Q5RBemJCFdahgFdxTxYNw1zmDwIFpZudsFHYnQFLVGkDVH8LIiOrxzwpP0Xabk6B/R918/5Hf0ocgDZ9fD0ogkz3ITqCHOdk5Lb3ykEIwBNrzTwFWhgbYhh4Qmmxdv6oIuW1bMFEzMz1jU933YeC2bdvQt9t2u21yJWplzEpDWkemtHyBhXjFa0gbmwkqakEEemSAS7Qo17PSH6O1Q1yKVb50zwsQwPYBSL1k4y/4/VICrWhzVFJBCKpHLEbZsLCf0QRRVFZeEGeALC44anRm5srwxkIwLUwmgIKq9Izpy+y8yr2lye6srpaqtHOnQxd7wNmDrvw7cWPRlbINEl+FF1aQQ79AASAYbZbBwjhd++pEoloxCCC4VqGBjIrD54JSensP4ozp5VXh0XiU8zjydFBKZaj0J4FN2kfAZ6ICUmmhvmzA/eETVsB7POCVAiIjGxqGaK05FC8YHjiSUl03SJdFsrCT39ajvfRp8FTMsyJ8zjzP9ED6oqC5pzfePpFFSEpKaTPkAkFIe5WxdvHSyr5V3bbRFZIUFoPZS3JCKQqy8fW952oURmMOK/st6rzHbCVKRsz2gXPhHTIbdM5iFrUn7FxJ3IKhY9s5Ns/6dTz++8+f//rvP/77jz//+nges2Bpm446w6oP8WoTQamwBAGz1pjXpZzNWBnAjQknaZRdV89N1csPlWY6Nt33cbvdVClYK0DYXIuXEE+NmD21lYKrb2qtSnsdWXPpeGzbNopkubtnBb/A1+3ykbFvt7f97e3t/f39/cePt9v7CtrrBbKNIepx+jmEpU+eBEkz8zizNNPzUqKseyIisn3yc57xfJ7HMT/Psy2NPfuI66GSsVWVijSKrS5GzFozZSZiuUU6QxJIrNDuEgq+pIQtpWel5moJpRDBa3DWmouOkCoyrSwbXMNEuPs5p0zfwIyw9ge8VD7rOpwzjpNoql1FOVKC4DA9pohwJxUK8Zzra1hj19mqsEAAGVyVS1WHSKCZyI4oT2aJIbUSFZIFpHjUOevMPJNOFpjealIlq9m/mqUCa04PVUV2xSZrQTgoolTWaj0athIRCgYpoEj76cTUbOy914vLjtHhkXNOKdSK85PmQ1UVxXg5vU4Pz1zyqcohdR/2tjXu32wbpkNNvllf/8Y2qkur17/imekuKarllweqn0DtRL6VOqbowGdNQhGhtkIq2lqgtokOjxKFQVYIVVfzIhWZ0sasFfcBrKrr2oOW5rJAisgYh5l0IHL2h9TMzP7444/Dz9bdf6EpAKW0xEi/yZk6Demr1qzIQNv3K9dgz939nK+EUzuOuTBb9GhepJwv/PSt3QprKMJAJSIqPYOZIl7iaqVDZIhtGCEjHCeo0UWyXZr9rARqxap82azW67+g41WZnilfBgFWiHpkeIZWWEeUN/tNtFCkR0VG5+y1pTEjq0oUJdR20i1rzzUA4YqEaQQVL0/WtRj9Fl23zvJrHSfVj4aYqUjH7FUtYWp/uKsdFIKOCmwjo5mpbCnlMyMmmcM21d0k99u4beO2j2GamYIyefUlSyqTtcDTX69YoRorX1KFK5agz4Bec/YuibgU2QgsChORTbrgZZJs4WqVygDgFVWJSwefWaKCJhg0ZjI7qYcJI0fCDFpLst3T5pTyQlzbz6vKjbhsjJdS+9sKAf3uAguzmSEv0BazcwkBsFksHpmxkO6VLGRnor+Gel9Fm0TMqmqlSZtA+19T096GAY5r+r1AX+zoU7SatY13F/+263NW9b6zImaLk7Lj6mOmT6RXMVcqhc8Zc5LDJJkBdnoGBOjDN8JLWwRcSZKD2ir1RqNd0NE+sbrpF/SKk+hMd7pwgJEJYQS6remgqKyiDenhYFVkrXg9Zs05K8LPI6enTyzwbCAqo9qK0r6bxulDrBCsr9yLujzL/aOv5Oz4DOH6f/Xv6Qp57Re009BBQVG0R9DIjMxitn9RrmGxXgsmrh5sZcswKtnE0ybBoBIitP3+LjaO0//rjz/+17//5//657/+47/+5+fjCG6WKA6IZsGsiKRmJIGMmU4goxC9cgVklYKkrskrijChjm2Msd32FmjS2nlVHU297UOVVaWtUWuKY9BC3CVCMrOQQ3TO6XYtFm1l5EVaZomI6VbCCAgzgmI69PKiqzZ1+X6///bbb+/v7z9+/Hi7vauO/ohm5jyHUXzqVMmYmdGqEFynbkR4pHteFO/pcfYWNSIex/z8fD4f5zHn8/k8TldVGYaSRCVljJEXUg5AtzdY/plY0tgXMLLQ8vhOJnuJIEoqai0WSSZTU8jyIpMZldH7hOiHsxCYBWDbtq7lKcWMiPl4fLgPEenc5XWwB5KKinkccTwFOVSo4uUIGHceLENK1/FmopYUqFAhTGWKFoOZLOZavUu1pLISZX5+RoTXDDiidEgqIPCm2DMD03EWvOiURC87lxqYxGAp0lAqRSz6qAm37om5QhuEXznxqCpJAYtCJVXERHcbZgaziDAJ97OJ8M0g7o9pRPTU6N6euU4DIlHlPaFZqYgmqN3wvu/3TRWMiGwrtPC7Zny9vcTLm/86HLriPc8LOAKpFR7aBKeWZVlxgMKOZGaIjvYKUF5ZSUqqe3aI9Ku7bmgGr1DRtbbqWRJqG/vra+vpnYJD9JXh2Ai0fd/Htm3blsTz+fz8/GwU/uuaGpeD83ojFprwtSrtx+wV5psXlLVXnDGvwquztMhSK1PGmqos8b/TFh7NVCiZCOKsKQmSm6IoNVR23d5uHznFU3cbLpbl7qJKh7Xvb0736RkdWrk+Btpu1uq5fml0JvesXPbF0Kpq7jaN2vKP5avKAHgxijLhWYgoFKlRWRGBpp6aqJo1QSCvguuaEGGBVRMi8FYFVvL7dXJRJcnqzLsVfDcUuHQJfdZ4JlBjDFP29C1ybhimImPILuGscGGYWe+DVHm73bahF3yJ57XXuMV2G5sIhdJ+7FggZEDZuGdKL/7arrLQ6nIVtar6Ig6iKtCb5VSz+lbI84o16ETkjGi0VR+KSqnsD1KrtlvmJoQOuy9bTSjbEpxa0Zv6sVK5v+IOo3Pluh1YAiyi6yZZQXnEVSp8XeqIXrTWylkqd6/rBW+BZWZ6uMfXd9SG3vDKnInK6vCtxexevyGv/JzmnGEt1OCXXy8qULp2pbKpREQxsp2rmTGnhyPyiKN1FhHLT45s+FobHOdxBHUTMXffdFt2/QYmXfVK1w7Q6MA4R4FpHUnSJXKm2drdu7vwpClpEbMkFSM1KkC114gblB6IZVZG613atOjhM6f3d7Eus4oGrgDIpEfbyNkL8kJLRjJiXduNr2tbcbIg7K6uWkkJtNhgpZJjDYdajauqrM6Hud4xSsdRXdYK6c0lVwL8YrVeR7yRi+jKixRspitHWWS73yAK6nM+//O//uf/+f/+7d/+7Z//9d9/PLNkK61KGVQprUgvG8BgCVBBnOdzIl/iX1J7DvoFNd1MVXdsqmq7dd0zholpezVEoCo99zIz93POmSERocnySNOssYTDI1+WKNNNRJaTP/u+0Q5ZyrKIMTN6/6A2trHv+/3t7e3Hjx+///77jx8/fvvtt99/+/223VeAaVRmNnE1fMw50AW3nwDmK0Xx5ZG8slP663me5/P5/PXr8/Pz6TNnxHGerZVXgj37G1tWXYRe6f6zK7a8AmGNryXMevv6FqhL292ju95stlSIC/xNAEbLqCqtK+OFlXKt1q5aDQJGzjpCFHk4r9F4Z+4BSIyIiPNMP5XwTbUjbFXLHQezMSlj11IzdVBLHbrwUhoxtc3APtMDRWskRUbMMzPC5zx9JrwcGuRgGUvgiJlnYBY8ZZJBqWKHNjKIYNgZmh3Q3pavYMnQbdOtRym8WClDRWyEus+Z04ES0SFqqkP1vm+3277ZSERZZabXiIjbZVN9Pp9c2PBqkVOH4MV5kdkXS/vScaTfTN43vZlKVWbN7mJRx3EEGSUR0dEUEWGinuHuBkxKRJJniwteAw9V3Ta1YZRtjNH+zGp5SauJKGI0SgcM9hMCrhS4x3FGVCPf5gz3PI5jbGwtpGClK/YzEBHLydg6kqGUXU3kNFXdtm2/38RWqvb7+ztNPz8/f/78+fHx8eJNZKZdUIFrzwixV4yjNqLoPM/6ury01x39NXQ+TWbacZw9I9GsUF5ztSRXKbpDRAzNlyw846yAlChMQAhLBaa6byNEvaw4SiwyZxWg+RVJ1EXAGtvky/TW7rMuFOSoIzNzTTsKMFWdGWe4hmlGYyM7MoAFe7HHBBpX0AtQiWSyGFqZrhcj48qXSJYAuSx3C0iWF+Cqd16shC6WQXFRd4HIJJs2yw6JrxIpluQLm47s4ZdOTilh3va3zWwbW6amH2gJXgXQXLozMKzhzJkd/FsRyKw9ts2E3epVxEX4TUgxk1FkaeeYUC/NOq7d4mo6tPHTrw6pL3F+fbP49iOVlW11ggCFEsIgZKPU0QkvBhopwtHHQWvxu/hCBuCVcsUCXVDujFfhu6KP6qu67dDDxYS4nOHfJpHrnF7d0yugk4yOxq4XBewqU4pX6kz/kevT++rDHOgUxgVSuTTSTVurXtSqt1EQAslaUjYgvujzma3+bIxrtkDjMlbyUiQIdQzRFHX3En3dO23i0vax9D90xfX02q6+l6G1/GiQKinJKq6kxU6kYqd/fpsmUpZZ4vpyO5TMK2ZlIDJiNtOIKyGK10pae2LSrgI2hjIKaNlib6DZs4uqYnWkzhJYACViJdrz4Pqa+bepSIWXDECKWHlY0bnpqc3eT1KpRCbZeSxs5k8hO/cOiHS0QnhsZmZi++02trvo/jjnv/7rj//1z3/9+z//9T9//vHxfJSYWSLC/ZxTu++arZKlVSmYluC1C1uzOShVO7dj3/cuvIbsauz42tv9tt12s0szyRThGLrfhirdx3E8j8ekCMM6ASlThdEAj76NLqmytdchICJdp26qCmR7ikWEug27j+1+u/14e//9x48f72+/vb+/32/vt9ttsw2Qiiz2NQpEM2t8LZ0g0exAn+fpM+Y5F2rr9Pl8nB+Pozv+53k8judxnpkorOZeRoMIjaZmFr3HEH47XtZzfHl64jpd+gHMwnI4RnyNLnJ5tyF1DTlAkpOBYJX3MZvpvbMYMr4PG6qyJQF+HI0Yycw5vWHlWRW4ITN9Vvqmog2AEbZBpkqkJAQpTKWzDVc9zEcjoaOVUR7njEx41HP6cfh55pzlxznDwz3Y3WYniCW6xWM/ZJUISpZU72W90jEFoLt6SS5lvoiYcFfZTElKiadoD4h6kaElWZGQISYcugYl22b7sDEs8XpHRly4qUzP/PGSpb/dbm9vdzMDkN6z5aV4vkbXwYhNa1duQla25i8iPs+TSHdm5uw9m6CCUXHFLyfji1aPFXA0VFVFRc10mA4uAxBRLdxsd0Dqt6R0vOBjQM4Ta4O5UnqlAxM33m632+3WHK917FdGzKpo6WQTQ9Hor/5gq3TDINcHXIZ9fHz8+eeff/31V3t4+/tF4+vSXxfQNYTj1Ta/roPVOr4Kr8UQds9Mez7OvmUsRDSnrH5iPf3Q3BqfKCJWkVGHiGw+shpeLmKqaVayuY0bdsJf0HOfpZJAryu6gusTs4VFa++z3FUgiY6tF1YOYUmlGmds7tPdIjR65NX7jjXi077Ik02x45JrSpfmS1AJoL7i7VowdKV5d0x6reV0V+VtyqvW0fRo+SJFCRlYZ5AIpJN12w+8ti9rueOzDnilvO9S47Zt22YjY5vzEX5GQFCdX4ZKYhvKylqwXTbb7Q7cNhtViEjvoHaKkKFLEc6mqlNBgWlHtaxdmuAaO2mVA5eNAB25c83/Vte4mKhRF/W0r8Tsv91wrS1FBBwoaz2KiFW2ir+3c45ac7jedba0fRWzaAfmmrFd/0p1FCSXBfZyVq4p13Xr1yvxKoBeLvOqH9cKtc/2pVe7vAJejaT6LnKqRLU+fWHDVj21viQu3gGzkhRHdoOdRKCionNEAp7lM2dmyuKuZ5JZPiMz+tVrfTSooxG15zlrtTkvgkZ24YyvrxCZTlTj3MG6kj1ymUiKVxfYcuZrZAjNBqflcjPUYqUGi5XJioqJ9PSomNmKLJBSor1QRS4jdFWVR/Wr3mr8TnfJgvS+GwuE0VA0UlfVJcLFRBGuGn7Nb3o/1qInLr9pJMnERe1Y0KDV2oBUKEfgXLgRKtixAbEedFLETMe+7WPs9/3NbJtVf/78+Ld//vv/+7/++e//+V9//vUxPanajnbwfDlg1muuLERN5qVKJKRdUyo6xtj3/X6/3277GEMEY+yi2r94f7vdbrdtM1VmeXsMbMi4DRHBeXiFnHqZdgVpdUmMPUI4hd6QW5LpEdoXipht+3bftk2NrW0SU5Ux9vfb/tt++3G/v/347R/v7+9v9x/3+33fNtNRxWw8ShSh5VrQVAWZXetFnec5px/zdPfpfqz4lPNxHo/H49dni+nn83G6d8qz0ZbGx8YQMaiIqYRep966eNZn9trLCKyuJfcLMNFCshemtX8D17IGAEQ74dNIZxIQoa3jou8kHW3cvaxnkZUonjNIRlV2jPdcoS5RS1klYAjKqKbBZR5BTk9ZxiIiiSNmM/NY6HLxTPf083zOo8GPeHyexzGPGefp4WePE7O5O8HyJscUrdDh9T3Jbvcu4b3NRiXAiPRApEQTUbCp3Mz2YUMUyNNFQRVp4EOKplZcuT1mS3C+mY5NzYSXWPAllVl6N9aQnu+M+32/3269H1gQiVxq2qXKQMCnVmi5VArSZ845z1BVboLTxd0bLBdZeSkV0mdQ6J6vf18bcEoR6zcQapCt05erT2wKIWJAqrIakXHtPRzZQJaqqjxzci7XCyAit5u9nWdm4nYXEVfrneClkQ/V0ffXUCsp76bXdNTYtq2uBdr9x/vj8Xh7+/Hjx18fHx+Ln+Kex+wPiF9z1GUB4eL9Aq8ZblZVXgLfV+HVPYBFCzi0O7QQ6fWEquqTJyDnDN/Ss3raafhiOOHSu2UNz9g23E5ksm6W7ojjSE9B6wYiGqln5MJva18XeKVotS5n8UvrghFbG7a3MXJmbVWd59ae294yrJ50XVZ9YBZbByMlHVnX855aa6borQdSes2V+aU1vwjI8sVEuJZ01/WCKxN0+R1WX7nsXFTrsU9l+jwzs/786eSPt0113MY+hmK6uHvNZJWfU4GNCo6WZ84ZmQk6SsxMdSBJaCSqpCAUSUgt6IwUJChKbcQ/FlOi0I1Xfq3qVtXVt9xyo+V6yQlmVQZRXPKsWJ8/JRIN5yBhtKQRgxikAkaRpeOqBBSlfXplpiDBqEXhyrWAB5YiqK7VVk++UVlRufg8WP67XDOcpohcCpLXcr2HM2uy1VALVC/afU3E5cK3Mb/xgTKdxEUXfOnx+1XqkiUXyGVtAuFMRzkq2O9VOSoqszyDrwF+ZDU+NSIJHQNqUtSCuKfHufjluJQx2XhhshZEnoviGoE26nWhrBU9wRCVSmYJteqif12v5Qo7uObN3VqgWMHKDG/YDJZcuWspYoUb1itwr65rcjYtudVvQlCYL6OrLOp2V7wlIrYIIoSqAdLP5KKatKoDupyYKyGUlwz0SmW+zoQWi7CkWAxlm1476atd8ygVAyk2aIO679u7jVsWf348//0///jXf/zXH3/+ejzP1u+VMCIysiBiKqaE9GutGi3dDkJz7XW4+preMN62fb/dbmOoiGzb/Qqx3vaxbab7aMyhtV2jw4tJJMUEZtYj26Uwv3qANtiTs14w9yVSVuFmC199M+vw2BhjV9tu+4/b22/77ce+v93f3m63tzGGfc0Rk4vi0w1Drv5kNePpuQS7EQ1ejF41HjN67nWe5/OYx3Gc7lXUsiRMTYeNMUw3Wh84LK1K9hz1+8TrZaC7CrK2bfjXoMvXJL+LtZWKEasHVpdSiHhHYAg31VgjEBMzlWEylhW2maSt2vcrhisqCwF6wQsozK7YVKlDYeQQEy5mMiKQzggipLmhJ4Q5q8VjGfOY5zyP5/NxHEdTRY/H8Xwcizmc3pdOoQGgEWeFVInLTh0M1rLWqwBMr4XELhCQKMlCpGSY6CZ2t+2mY7dNRRQ11ASU6rQ3d6mgUGAqqrIkLqoqbdStMUZ1MMB1W/WnLTNVuW/b/X6/3bbb2PoXy1+uhb4IZVXDETWf5ZBMMMNCpcR9jG0YzpOnU1AzckZFugWWdmENz66J14uaCQCSkMolEyK4zPZonJlRIZebcHlbmoPV+PHOUlxz63mRKe7d3XX5WB77frerxCQpEq/AnnUXXAhLUe2xX1V5oeUTqnob23H/0cXW+Tyez+fj8TiOVYp1yZF/B55cW5lKr+ifsf6j8wBsHV65wmp7OQLgPB04Z9SQc+5ehbqx3YmZvQ1DdHQgoCo6OJz73kdwA4EOIg7QcyFwWiQ3esDZT8aFnKqmXlTzstyRI0VQRJrJmMc9b68H6AvTVnLxDK2u1opNB1uBRut0fh33bUloileter6DZ5Jfs58lQCQbfNxGZmS5FKqCgK6YbW2J0YJQVaksUp4aYyLSzzh11s/zoRX7oGq83XYbMvQW5iGJPmY8Qjs+qZgdqRlFqM7ziGGpamiW/WrIzMSgSjGqdPZdf8vEyyRUDfArIfJrncgVrLFw6IsasZZTzgrWFUZZWk1zLlmrmEuyyJWXIKCBiotgvl7zKmQt9hgmEJ1ZAuYFyb0uhCU7E5BErhzNjFcYzcW6WKvJno9KA8kWn+0CnDYf9aoYAKzGKPPC966/i1wmS7ZGlldAOBesuSutJsKzetMuYE1UVHYSX/TP8kwPRKyg6xaHY3o8z3meZybMjLJFVRSnrwSVq7IgRSDZ7zt7W7pCMgFGwVGlqFJRHQ3Aq6iqLGhrvCsJkUVeo4J6xUVTOpfp4vqu5IHynnihv5VLT8dCJpsp0pfosrn0/JFIiooQlEbWxcJQNtW1uu3DkpRRSBWIdMIW1ksqhKKsigkygypNR+nqsdkYyMpmg6DnZY2WBdVYQDuGico+SVWHJGG2mW6qu44bZBzH/K8/fv7bv/71z//875+/Ps8ZBYpoke4eZImq++lZDAWUXJh0pPX7SBVsLSBbdmrVbdvu9/u+D1Md263P9DHGNnQbOkxUaGNvE/1ChSNDOVSiL8JGhkLl6oUOn1QTOZcUKRPJiNjGbYx939/u9/f3270Lr2QO223b77cft7ffb/u7bfu+3ce2bbarjDVdWCcsC+w3qlOOc/UJqERL+D2qxfXT85jzPM/Px/E85nGec84zcmYQHZ5DNV0ymk5lEX4FzUUhJVttUK/QvvUzvx6ozOmdd/Qiv7zOjJXt3r+m7BckIqWseAXU9MJIOx928YTb79K/Iqv1phV1GY8YEZrVQyGq6FAdgkGIqBTCk0hEpnvlrATKw3M+M50l5TnP8zif57Mv30d5Vebz85jP2YLOagEKF6E4vLIiES6uKRFVdG+KM6REM2YVlSZ0IhXsLDIFN9H7sPftdttv29iVIsgb9hbAxXQvSiKMhWjR5LYsh3gpxrfdltiAHSHe+/1u9nDf9vv9dn/bh66Co+ZEWjdPZC9a+509c7JcmEFkZp57HD49ajM9T30cKqjTwzwBO+AioJREp3msPYmZLfc3GVhUrYIYSE6IFptZpiKmpG49m57VtvRKspSlY1REAXPVW72Yj+NYzrzzPG+P/bzd7/fztt33fSfZtde1FuzS5UJFUEbWBbXX5/NJG7y/bbqd+9traPrr51/P59O2YY+hz2eD7rBgGQs50NcZm0iFzD4YWVSTaNRgmYkuEnr3GL2Uh0wPYEbkQbYXFUKVQS3aYZvSIiUHJmUWS4y221ZbkmALcU5bSB5mguckZXS0FFSlRXZfipxlY/ZUVVSEFDLAHIfu55Zccr81LaNchXtejVVvsUR6ngsKtQjUVTS3361XcEvMX7VmWIJcNsfCK+xErgb9Gs1c1gyiU016JOu11tJtGFmGPDaRvyWy8DPi8xM//4BU8B/vP95uaqq6ZV/b7hl5HAfabLjMyYKsiDpPH2Puu6huulkliFJVsV106DCIQVjCYP/h1a9w7a0IZ9deEGKl4y3aDr69AVUlOVGB8q6Neg5WBSSr0wMzs1BQNiyAgm5MenXZHXVynaORlc4K0KtjNCENza+r7lqPgPScDKhsIgOqkGux8lqes4P+LtXtVbK3enQZNusalTeqvksGfpNJXWvYVQeWCNgK9AXIZVNXszlUDdFEr2W9XRvusSitse6WSGbVNSvNzDnjOOacQXLbbhBOr+fpVYF0oNqn2fSFCqRXSoVEXc8omcXQikBSoKUN2Li+eDIrwG+sFKKkktT13n6PHbzca0txH9PDF76pP0C52sTW5KPx6gBKqLo6GXmVyw3d75VHL2a5mHjryFY2gxsqtcRLvWtQExVqr52LnSW25mHXfMtSUgBERzfyb2U9sdjaQGdukaljKHJsdxs3tUHZPPjrr8c//+N//t9//sc///Xff/76eHRm0zBAopb4sP03q3QUerkUmNGG3OYjrOBR4Jrx277vb2+3fbMuvMzMhnTguxpUIZK95WjzXcQEXRS3260rCgmuZPduN+epOky3TmSvyKk2RGm6bbf77e39/f39fh/DelOmY5jdbvdVeKk1X8m2bayqSDp9oUSkKO5nh2l5ZWf7LEdrpWfNOZ/Tzzmfz/Pz8/Pj8/z566/jOA4PXz3NwnP2eG/bBs1EqGLXnFiWVFFzjeILYH+OC5FLIRCZ7XZZSUTxBQu8+FK1tKhfk/FerlwK3DZWy1fwizb+rS39WOF5X9cfAbGIU93dpSjD2AemEtorr6bvZh9wM+P0abFBPDLgiCj2rO6cj8OPwx/H8fh8xHTMej4e8fQhNtTSRLW/MGRKwRFg2wAZnQ40OakryquEgKKCotIDzhLJ2nS7bdtvt/39/bf77cdu927/hNsa55iferpaX9/btuk2tq2To4qkCUVks20l3bWpZTR0dCVG2JBtqImoXFDt0o4hfkHw1wFiCh3MqliF1xi55zhmqGAYVEnBOP30aGtIaKYhBNXkZOnCS0W0E5fLnQjQs84EqCpSYroueuu76+vQYVchrJYCQZv/kyWl1uHu1Qi64/l8PB63bT9vz/M8/W1W/UbSLgFmVSxBEde9wivGEEBE152qOvY9Y7p79lBt27bn87l/3J7P5+PzeDwezbR7Pp9ETAaqLqlS/92fbSJR1V539pLR9n1v0WHJAh9eWAupCwL2BOT5yEyVcQ6ZyBCcJXvm7Ra2TbIoA0bdVFI1Zeyx542SGNKOzXl4FRRrfKLX+CG+aQI844y0CFS4QAQ2pWMy1zV5xV2/xNrX63h5/dbKrGf1RRouvlW/M1y8q0UGqU51+LKkLs2TlKw4bx2tpNPMhHYCUs/nACjocj0PF0krk020QQbJoSJqSLr7X3/9VekCV9bttq9BHNRr+nEePk+zzTY1k/ZzkKRkwD33XcbYHWN9EkR0mI5NbFDlZUiunhiseC+iJl6c2I78lJep8/pxYRaqCumFkG/ez0LPS9q603ORyopiCqu25ilrY2fBlY/da2BUILLgoC8gwloBUMAA9IVTBSgJLuxQRrQsf0Uo4qKZrlVpfG3CaoVeeF3406uSXPGW9VpbfRVeuPyqi5jdkgZZAsHWf61arfKqykUKXrMZ9GuzHAGPcm8QvpJKRC9MZs7njEgR2YeKDR7T3Xt82l4EUPICnGWUz9AVst3HTQmjKgjnSiJrsX+ne/UGjktLt5IFpMd+5MVgjCWYWbKD51d23pV/UVLIhIDVq+GGlIiqlm4ildFei7VuZUWuUB+87sj1P/mSrCp0GFT6w1jyZQlUVb0iBYWi0kJqScSipBAqzJopSVauR7ETMFaA7LqZRUwVAjEDOfa72siy84yPX49/+1//8f/989//+a//+O8/f57hhRUHWCqDQjHbhuqGTnVdKmsmQnrsqNVlVq/VRJdJqs/obYxtG7rp2KTXjqwCkQiCHWisyl7kRXnBKTlkryrJxkStZMDXTAIksJFERZxzjq1Et7G/vf348ePH29vbPvrgTBmmOvbb29v9bez3nt6o6hjXF3ldpBdHu7IqYp7n8ziOz+P5OI/HecQ8+382MvXjefz89fHx6/H5+XmGt5hsrGgBMd1kqG7NB++Qq5W2fs2UlwCjn/CqUhAFz+8/cMWfrthq+Rbmhkvtcc1He74DM1vyQVOaUPs/dNzUxtg22/d9jJVVCLwacrRoOqJ0zlPVQDHtHJVUyhAdBiWQDXkvxJzHeZqdo7hrSeQFpvPwWceMc+bnY358nvE84XF+PGP6fdxkkxqmPRJUVtXw5uBNcQnMM4+oALNEqlipKKI80bGpUtF0Q910v2+3395//P7bP97ffh96Y3EJBnqFOn1uM6c3L2i77brpvu8r6gpX5nTP13u6Y2y6u1GyvCKV0lHyLVjvDeyLQc7V2CaqJLOn3MvQghSFtZZ4aJW+7sQiIrHvCSHUIlEUVHeZkvCu0ZdJDU7xJuZIK9RQKpzhy4cX83VWNx9KuHZqPejqnM0FHEad54wId3H3eVx2QvcMtCTrPM8xRs8HSZ5S7n11fDmRrgGhrfijHS8Z4v3t7fl8/nh/PJ/P5/P569evj4+P5zzlY3N3m0sqcH0oMgdf4fFfh3CV7fs9YmZmoiNTylTG0Ba2AWiuS5d1AN5vt5AsQ4qFRGreJGil1G4gWkpb3dqOQV0k2VNn9frswhR8fZffaq+IIKUqtJCpr4/i94/ldcc0d2o5iJh1Hchtuq9WfYnoSzBRSY6153r1sOvLuMjmeOliviREY3WlmT3/IOneXKirldfLWZMAMLQVsk3b2MZGP4/04/l8Er4PbpsJISKDiazyOI5jPg9TzVtu47bfb9pAydVuDLXrAQAAgABJREFUi9B0DCurNkuILV/YqrFQaPILs7cC/TNl2QKuvpIX235B+l8xlFWVyZ4Ovax/KySxvfr89nQW1sSruWaEEAVQgfl6c6uq7ezSkajI9D442HS7aGADvgzkbVtErMClqxxc0qveP6JWbDZqUbOaKU7yxf2qF8ms/QXfooeuJWOXO21mEVRWsJplUZKZaxOecn0BKUAhWrrRXsPMqMgOKmooD0np1eNcySwiamPo2DzqdcdcN4og0Nd130M5YyWDd/vAACYrTdCn27ePAl6X0/U/r8/CVXc2KQaRiaX49HOutf51BKwUreX2XY9ywwhJDoO1LbRB9S0w8Ex35he1unpkxNUrs1c5alQtplc2p7Gted0sdYXZAdjo/JMF+bpuX6HA0Wi2tWNeJF/kRYASpRgUC2dqQ2XMWZ/n+ccfP//1r//8j//87//54+dxHDo2GyNFKRIiYkN0cDPTUURCtL/yNgQAUujvowuvfbtx4bW+qnYAyYwS7UCRahgeENhvdx1iJszMo8ezolKMlcPGBUrg92qjayZTBRAUVXXIsEYL3fZ9v22djR0yNhXbxm3bdhtDZV8R0y/jyPqQ9pHbm2mfsbTzx/WjPM7zPA9vOtfj8/l4PD4en12Ti4gOA5DR1oWNki+X/vVVt3fMX/KMLyUIOpgWgNcl12DnTF0/rge4/8I0rpkVrwcSQAnHGJVdZptdU6Ve+46h222/7dsYw8aaUb6uulVVd/Y8OQCopGiwvDNnhqmK+ykiiejffPo0dzHTTlQohmc5PJDBTBxnHE/358SMecw63WoMrU6n6dUzgIgZFVXByZn0OTW0Vrjoeg272ylkoWkFYImZ7eN2u93f728/3n4buktJVZzzaHxUaUy13JIkFNbjrn17FV5gkTw/Hr1jBbMns7uZqlZKSGhPoYgG3ypFUYCy8mW4QlalF0rb5dKBJJ0tvkCPK9juhdoi/Xa7QSYkI5HN/icAPOezoiCt2Gu0SibK3VkllV45CEjnoTEq18NEtryxZRZYVde6o20F0dlSVgUyc+asKqMQYKPOqxpbv23bGFNV3dTdhQup+jpYO55iqKn2+xitRD/D29R8HMfz+ZRhtDGOA7iiw+JSEmdmJstahv/6xf54mt4HU5fGtjcaFBHst1FVEbOKmXnOiISIbPaRz0PlFG4EGaI59vtWGEVNhON0JNTVBGUKMR2qFLHzedbUK7snr/iSJYbukbWUdyaz0CBDdBfdQavFKSsAXtkALACKbA+zKgFGMsIjqDoSxfKKddOjDICtG3xpWgRrLVeRWMmIKxW7wQwiEbEcOzs1hFEoBIQVccRZXiJifiF6Baraoe0iGIbNxkYdGydlekXE5/M5/vorIsaw37Yt02d4Ip/5jCNn5Q+1QTERG4OkFwIsHdh/xPEUVVuQbwsYSrGGIIVCagk9mUQR7CyKHupIidZgJdqXgMw8a12KhXB193mIiKhBDdkxRUld5V4mSo09bGl2WGu/+ha9JOqJohQ4C0/gU2qWl0JV9sznmlW9qg8RRWb0NFLRpdplL5cM4iVCqyx4p2SYufv08Fwqo6VQbGZkLT9OdG20KvxVrlUtLQhJDu/as3IJwtAy71yGyq75Xhz8zP7LJQmHBxGKCQa1yfezoopn5Cxw7DcTQqGS0SnT6/hSchubSH9cg0y2A6bVckUpIROSPaBsazTO2bMaUWOZcvRT2gOwyiqvQopqlgtBFaTXMn8gE+31eGlrAKQISSMgRkKD5MokUR1Fbn3/ZTWHBlkhNSuVAqPEmqq0frYokIVDXJ9MGWPhiymdXiu1hqlVSvR2XEwb31wIJDwvbEQnutSaYeTpAl4JbD3pK9ObcBtDmShxu+mffzz+nz///NeR//nzr8eMo7jTdLuLsMC2PrYnOukqsilUXVEW2xgDWqwyYalBOIaNjSLYBodRiMyaXhTcxRSjPw6kUNIgqgt0jkurUFGsFrg61Uo0vGbwGvulqo2CpAJgshAiY9tsJ7dtf7ttb7eGE1FUxQahY9zGfhfbRKxPx6pS0d7yU1oWzUw8jufzeH48jucxnx6PeX6ex8fxfMwT53ke03uW8/SPj+Pz43kc0zNVh5pJV7TbBY0cw8YQ1d7UBlHliZ439zym8iLUo1jhrDJRKgSMbu+F5dAhYmzWcN+ysmk81/Yw+4VYdbwkqUO75FPDUBmbqqmZjDHMxHbbdhvbGtWIf5m1I6oQNpKCGSVSqrWpJgo5ddbGLUQ9cfbnNyBnyHmq6j4kUBFlWc2XQQCTt9CZw33OmGeWZ0qeb3rfqDcdd7uNzmxuZkjFbe4fj5/pxYJREJNHqJXIIGUCs2xAYw7MGjINx2/3/9+Pt3/cbu/7bdx0qFNrPDj6pA0JkpETSLK2jWPDGFiiNtWuODXf2kyXGUJVVZqaGor7NowyVAZhq81OqrVcJC8FxYV4CedJzKzTw+fs3g3PmQAc5VkzKjo8zTRP7waiokDJqgb5Rt2rCgmhq1AVUYk4RDalQTaRnJHxnN2hlZyvMbkIIZ1e4S3qKjgMqoNgzeqJW7fHXP47Tj8ejzLrWq9WYX16z71O1GupurYY1dlFUFUbu5kJ2QOziBiipJrttk0dT8gATT8/s3AchxxH7xP7uI6IOU/Zyr4pyAEwy97v99Z+VLQEp669WTWApe0DddmLZgYijxk6p6iI0hzqYjaSgEJMxSpC2nu3AlywdvBrVgj0Od7dWDPZrw3rGsCMMcbYxYbqEFURbXi0Zxig8to5Lq3YC1L1aqRWAcuoFFJQAUjmJeUqIeIKLPoKrMALuFAru7ByZfzVJdxEFUs6rLkqEXnRyqCivT4XEZVUNiRvtY/btgEZc35+fiJr2zYcx6tXGGOEn5+fn+fpEfXjt99u97vtm0V1+AZmLPXGVXg1R4cil+PvSzPXre8rNei1b1t77WXdaFBlshIR2VTMbBGVo1jR3s+lW7oQFFIiqCCsXuvbFm8xiyuYa1HiszJTOsz4JRzuAkj+1qMDEsiOf3qNx7mWnrqeWGQDoyIuvNU3btfLzY5ucb6RnSPytcz41qwzX40bVphSJya9SBbIv/21nQkTGT3u7Lq9dyvotBMPn3meXlVmWt7RKFhiP0DRv38V+CQX8Xzpw5r7UJkhV+K5kukBVAlLAqIr5qnqev6//u8aLXDZCrBoN52XUh8fH9+nuX1GiMimo2dSCAKveOj0SmZFeHr0zNzdc/kXvHGjuD6MZPPPXj/WJ6sA/RaCK+urBZlRyEppgwvqwrB1msJ6VrOBKOu9FIhoe5RWjdrRQ6o6oFkV8/TH4/H5+fh4PKoKJdKxbKq9TpSxYYXHi7ZRU/RKT7lO+XaQtZBIdYxdZYyxjzH0UiL3bLZTBc269kJnzTVejFK9E2Fv4VFFUUqVQAmVV67cPB4owYWw6Z4BwLb2htqj9SWNhO77Lra1nEtlUL/Nh77tEPqaaXp7C5mfz+fn5/PXr1+/fv16PB48/fN4fn5+fj6Ox+PxEguTS/n07TxBVmkKq22ljEpZwaUwW6GQc86MeZ6Hn+HuWl8P23piqcxUVVwK3U6IWOcnC0t8XaT1ylaaMC7DzEQ7NFD74lz7oBZqkURPvDCGXluUbuGa1tQrqTWT6+rQzMa2neG10q+yLu9nVB0+18co0CrX/uP72M7tCDdhMWqDvN9ub/f77Xbb93vvplW1xWclsWMXY1Qm4gjPAAl2NBfCM6tb/xVfiPv6sb/CfDKLxXUdo5SkjYIU8yLq9J0lennMesDT32xUaG+Jt02VHeKpItrWggXhe02W11C86bvI0oZjFsJzLggrM3DOCaBZqV9eHE8zy4BHVuX0TlSviPDrbWqBbVRKBhICK7ShsrERioUljNcWq2funbIV/sTlkQcU0O/b6jWsu+Swmfl8PvsCCF/6rR7cYmv+hq2pGtmPSN/XlJJ1LhRFNWk1+nu0GM1uhXDbNl7K/WYgvz6J9/v9ek+/OP4A7LbtLNQFq2zNb1+cDWjrLyJXuZqFzjjPc5ZoQKEbucm9djAhJkYdkinlGuV5tvxaVBW7mJJZl2w85pyvj2VqVvEZa3S023673/b9rmNTHSJWgFeal1iGiLI6SRlotMRSbGNpi7F04IBAVxQWXyouaasX+iJH9At1ASlQiA7qkWJmJFYr913yiV57JPOy2lWVodIyaVklkknJQMxS67enMj38fH4+0uO2bYeUoNTY4owxxnGcn8+H2qa2vb/ndrcONiS1MnVsIkIxikANIlCBKCuV9MpWzXVy0reSpGMyk5XCzrHu1U5HffVwMMoje6cesm6pZlcVQK2MdilBZK0GmClNXYHk0ng1pc0bzhmzXrUXfC3xYok9+9Filq+SsQD8H4VXX9jXFrl1S2TMiGjaH+uSwAPst6og7W54XZAzXgs+Amj6W48irr/5i7PKSxfW47H68qqgIVPXFrWWOXM9C1VZ0/2cp0cCNLNZjsyM7MsPFarch57h2sHmJvha2WHNKLgCdpgJI4C+DpvDnJakZ2oTXJksuewDmYKIWpvfdqpnIrzO8MyMsyPCxExV1NQuj5iIqEBKXlS07AJuZnhzBS4YUn+pUTRkUYi8+DBkv/YNoP6GKu+ymNdgm0s/wqyU1EDFV6e0ziAW0amhq8MBAPaYY9tt20Q6Mk9EjaYyjKzT8/P5+PPXx8+/Pj4eD09AzcZu29CxdV64mnUWSpt9rnqLqjpka1TEEB2bCTjEtnH78f67iI2x9aLBxkDHpiOq5b4ivXJvcV4nMtdcI3Q1WS9bSVIUJqZCG336LzLkLNG1Ba6TUCCF1qGvSVnaRJDkGJvYbm3M4xc2eWVhfZG6ojFCn5/Pz8/PX79+/fz58+fPn3/++dfPn389n8+a53mej+N5POfH8/E8jqhEt7m9FH4prNs8VGxObT8kLXRUUFSbe9sA3IqMmOUuMvpM9teTEHHVYZd1BgsfKMVmlPdYQUTUqDJ6pdgg2X6zhnZSucDU7OXhG0s5rsvD6O5VqKAS0sFN1s4QWRggQocNs0Bd2cGVnVR4nlQVGwAy1wdDRDY1WJ1qm42pVpEcg9T32/2329vbj39s223bNlmJz0IjWZ5zeg57Mj99wislPExokWyQbASbHQySnfJ5v99v226ictWmw3qUwiTVWh6q1VxtF9KNhC3bQUrnGZLKgSEiY6iZadNDq2QdiciV4uud1hU5W2KUnsisqqFa8Iqnx7OH9D4zE1HogCDPr+smMxtJm5kdUdhs3ojkPhSrzaGCEn10F7xQWcy45FC1VDSUUtUCO40u60SF+0EppZAm6/wRVU3KokzW6z7vfiDIqTIyHt2grrbztnG1bf1+DbNQHVVRRXKjlBi75M3MlouoqpSpKgRUaeDq5+cnTR+PR1MKEIF22PSHu7/E60qy7SWLRgPkY7XRvSVoxjHX3Ex646psIbRHapZnedRsX7oUTWSIpkQI0dtHUU1saqkYYJBABipiqMYYS3GWrCqrloCImd1ut21soqNoWWwddH3hIXCdBl+SiwYdUS5E95pDBKlSo0nka7iB67Dqm6C9e9dBUFUvWfel+1l8HZLIpkSqXtGDL8XMeRxxiqoMpSm3MEmt0rdtG9pkRTmRFTPmfGYSkekiuN/2t7e37X7TbcsTSXmcx//8/NMr72/v3UV1Kvv69hd7DRfltJd8eT1tcXWQWENEJCqq1kXW5tVcHGAiE4HKrOlAhRCppKCM0vF3GekNNhetrgxUDLLqlBTIylLMZDslFnqEmdIrPyAjwyNi9nqz2U0rs+QV1t2LsFzWxXaUXp/q7AV1RAQu1lovdvBlEv6+rffqwnm9fZ2xnSj5Dky6wBO9GMhsUXD/Vd/GXS1E7RzH1qQ0AP7K3vYrfL6HFID0hdPO+cgAapiAKW4kk6XIBepfMztmyyhQQS9pWpr2vDXTmcaYVSiGgwirLLHOyUxQeh4npkAUlrK4h8uZeb+/ibyMV3+bDbNQiKyOiM/wcnevnHOej+d5HA2tERFQNhvURi8XKOh4O+G6p4Hvo/Wq8gxenoa8gjvWqypci4jL73rh/rHQ8cVCdm7Q0AEz6qAOSCmEKmK3YdsYloiY+fk8/vz56+fH5+fTs0jTjTfbdtv2JEA1M6roknqM1deqquou2/2+79s2ht62YTQR2e3+48fvwjHUxr61rqjlRC36qu7tkaLsaYka3RfMnVy498xsgFmSWqo61IaZETlGNMdLaEuk3B0ANSmV2vifXAHCUtd0s6pJQGsV+LppAPjMOf04j+fz+ddff/31169fv379+eefP3/+/PXrV1Pp0VGU1XYs1CJXrqAn2mW2X10HpPXosjKgQGYLDTKaU0GkiBilRMO+xhDfH7a1THgZei6XYkvvlgDvq5QyVd10F5GeTOiK9xZV5WYvnMcYTTFjX8khYaKT4kx37+tQkCV8ydT6QKt1DMeVUDjd16jv/m5LbUjREjWRUVI4t+2+7zGnFhKio357e//97f39t/9r27Zt27vgkka7IB/nY7Nt6EYqXCKqBoXCErauoNjtbPs5AIhiiJpdgnfDgFU3VOyxOCorcnpES+lbFL3SGkWYuZpMGhY6oa1gvR3IeI1YqhCemajI9PTzFW5TASBNmHWGHxFHl2StdO06oQfqvYTwzEg85sOjjjmf87WXrASMFNNhejU8LU+IzLNCgHlRzdbzoMNIRsCGmol0eitdrSPskghyiEJLxyiMIeCV5rlc7YHoQeEFmfPX9J159nSpyy/bxjb2FsORjJhmAiwvpKr2V1ZVPWzrU7u7vm3bxHT7uL82A02C7x+Kb3NWwFReM2pircWWwmD9pV90eBViilG6r0FkhafPdI/pQTrHWEgKRc+EaxRZQaoKS5DC6FSwKLNt216vTgYiQmWsqDXavm1dhYLq2WHYTUF4DXIa05hf2nHwctIDiyG6NNKAt6QEWBSBS+sTrObpLOZMP2trebXWTF9ZeeuPow0enTZRS/EdOec5ASVcODaV2lwGWczh7i2yHU1Dy4zpiX57Aqyxb9ttv+3vdeecMU//48+fHim63e7vFFu+snaxLfm8rPJLiPVVL08ilqZ+KZN7JLTmXv3SENJRO9fwgZ7pkZkUQFOoZKVQVDI9Ix28SJhCtbzMqe1NWIOQXl729CgKUQpEZkURcUauJ1KkimbXyqauRdKat/MC/S09WFXl4sytkuwadPH17r/Ui80LaA5zb4p5jeOJldX4VYp9lQhLXdt/M6jIAqJRvdfashtfAMzy9Do93H21fVFF6NjEymf2rxebguWsUgFUyFFamfCIWqCPtRORplGs2VuIVkIcYdf91y8X0VHrBd9L1tClsopOaK3hCOpSvwJQllB+vL1dn+jOsvUXSKldwb74StVnx+OY7j6fh88OdaWZ9fB9KXhrhRDkVZWuWaYsCgSv13zJ1AARCVz40NXxrDciM3vRellYXzLQ/puNJlCtlUAKCnWMbdv3211EzvkIr8/P58+/Pn59PJ7HLFLHpgPb7S7DmiBDlX3ft9vtfr/3mqAPKxF5G/f7bRtDt21rXoTKdhu3YbdrwTXGUBtt36xtX22B52SVFNd2aaVvhtS6XlYtCiW1UrITkinNvAaVAjVSCv3YdBJ6gNAiE81wGUKjWlepmcjo+Ib1yuca32Zmnj7PeT6ez8fz+fl4fHx+/vr4+PXx+PXxeDzXBFPYFFlYDfUwi6gQghRVlS8d/fphxZc3og/ALxRQWxYjWbEiEHA5dr9Kt6umfFnVrn1313mjCy8ztW+ZnjLaljEWh71Y6EUehwzjGDo22zYbQxt2D5SqZOoQdfUpehnTqBSDDRmtnPGIVoA3Qp6RFZHus3AW6/5OWR/5QQoEY3jJj7dbX6FznDl9CP/v3//xj9//8fbjt32/7fu+6tfmo1Vy5wx/3B+fz9/O8+k4yRQRJkRU0Kkj2kXe1RP1JJuiFIAFXR1adlxNU266ipWuka/b8/V28MqUv0Y6vTKk9wa8Vt4O8qLano+8kKRtF2cJWoGaZ+RR7ldxX5noQVeLciMxIz3rDH8cZyTmmc3lz0SRKi0hp5ioXKSrLLIy1qa3jz68tBAxRERNmohgpBqJ2PY1c72mLb0NGNwYlNbCZ8tav8OqrlSelXYDSA1gvsJ/xhhz9zHG/X6veokxejEgJMc6UUsqRaSatuNbc5hFx21/HvM8T1+k+zhasrLqyGtBYpt2hE4t3SB5DRIQlRkLmQhIFlOzXVALplmM4JwhBzlOAYVLvL4W6abMCg2Foqg1FNrZLjm9c0DWBeCtRXC10Xm0awtLpVB1y5AMZkhGwb4+xuTAt43GSqe44P36PQu7vp8AehEqqy4CWN/qLaaW6ma7SYMNnfwK5qtMtsR7kYXWjU4sUwUAFs0RY7qTrMfjAaUqbciQnofkkjyodhPnERmFQRUDzSPnnBfGMNwTmGpvHagAEiILu0YA0TtyhOeLaIlLSNSJMgqiGvqHdtBn00ChleWRXuW1hr1aNKFAmm3j6RlBI6iyUTbYXjKEws4Y7BFStYfoi8DZCGdGdhfifhGrZT1EXxORa0/fr2uf7/n1kneG8yq4Vcf1pPWOfL3PuRhd+f1PLeX3S/5y7SCvqqCLBi2WlAWDvNbYklwhzMsJSzSZSSp7JVru+S2fBCIqtMwEzq9H5hrpi7y21TjOWenoI7SWp/jbDLdBjhXUkCt5BUlkLR9ZVbULAQ2GWpmQlJZnkWwYFdkWRS2pJXJZCEHPrIh+R5amrXMmsH6xzpVN9oX2Ea54Fl7fSb6Gx+1xkLZW8NUgNRGvZP1cir1VB/fX2aWw45Umea1610e6aaCk2iYiEG0anYqY2XYbt9stMx8HPo/nXx+ff/318evzcZ6VgjGGmG7bDpWlN7Wx7/vtfn9/f7/dbiZfirf3/b1tgvuwt7e3zcamY9gdpSKbLmkRxiZqJUIziYjIuULhlkqmmTJfwOfXa46lDS1mCIcn6FXIWDZeERKChF+xV9X7gUVWK5SoyNYRZa0pYL0KU36V0b3lOc+2X7Xlqp2M53m+tsYyFFVSIjrMXGyzmolajulhL5jTOjiDlfTZUHLPzJnx5dWI3lDNhd2tAi/QTlXTB9v6XGx8gzQlrlOGScrN+oJ6LX82NREz3TrrlNc6fvUP4lDSpClIastF2cOmonSyOetEBouB8V3jtRDwmT070oW25ekOONTP57HGH8uDIqWEFfa9qjJdCQzb1N7f39/e3n57f7/dbrf9bjIyc8Y5/TzdB9Urzx/nMY/n/Jx5OJ6Z0AQFRitGqze4QqqQq2GLS6nLJDzOzOxPZ12TkctHudk+xDQL5+F9Au9d95tez+H6TEYiM1ba7KpIzsw8Pn65exdeEdFeRGVHcczwoypeVWEmvFHOCa+sfEWUMBKeiy/dKeAgKAQS3ZlwCRBbQ8xS5KIox0sUJaIZJNUZoQWrUhQopZ1r3LP1S6bb5XhLxjtKphbpni0xp1R6/6NJamZWXjuuZWCqQocyW8SqxjrJbTHAemTTYw5ZuBmIbJUUER3bbT9Pf57ncRxzTj/k622ivD5Nyx19QTvYrsbsOUqGkCUqYqDGujuTApEUmSzpD517ygxhqDiISgVa5WiJA4vLZkPNsLGIQDTy7AolCCl3h0qfyxkgdYwNJSaq0rk00vdcalEJ7dyeHn6sQdjLhJyePQeqjpOjVJ9s14O3BBNXVjevMf0COV5jlFUp56zXLRrriOmauvP9CsmVb1jaT6WsvOQ5Z8TMElXRTbMUah0fTFKs9+5SCK+c4RvKdFCwFykngM/Pp45Pse3dtmuW8b3UTLAyPTMyHYhFiCKkkIuzL9TKkoZwIX12NER6f9msjOk5PROZshLTUGyrGSROj0JYGYwyYDtkh5ritmqZHn9ndXGciXB4UHpBkt7Xec1L2b9+y0IYVODKilnfnyfkYqP/bSoGJgrNAyvp2MRvojH9VqV1V3btjr9r816L41fYgYhcE5bvKs0WeC6lI9FHs0ecvZNY98tFZBBJdNGSZ4RXvhwPJEVLIJEl7Fl1xPQuCoEUNJI+e6RwUWMzqzJ1zlxO0qFIEXuFbLJL3sYAS0mLHK4zCddYtl2ckmvWVFWV9SWJ7RdwTWFf69pMVTNq0Qr5qrDWTVyN6ZdV2UlTRYqtpmSuQ7tfbfsS4Bf5MrMQSxSICpKJ/31T3GKw/jSJSAmhvStt0zHF1Myq0n0+Ho+Pj4+Pj4/P5zFnZDUIW/d9t30Xkc5yFtPbbXu/77//eLvdbq296MLrtt233TaVbR9vt33TjZRhI2axIKCgREWVrzBsLpRaIquAyIq/6XzXk9lnrnBWMYMXDF9Co6qOOS9vBK6CPiBVAYlKOM1pQdfwTCshUpjFjsvs4Tbl9eqtPrZv0PM8z/k8zsf0Y/oROXHFUwolK6MCgOowW+nIX1OortGvTgbgnBeRpCO53FtQ3Dd4fgu9rlpZBl17qYoYrTQwLEZ/SHvMoFeFlwYRvKrVa0xjr/UZspoV1GQ/rdVYvv5IH3GvC7hDSkJEdSyZIVDFvlY7s6g/DZ2QqKCBngWPmvN8PLFtxhaYqcnCCEshc1t1w4zb2Pbbbdz2+77d9u1+vxm1qs7QOdX86E1uph/+fJ4fHo/DqyQppTKAgKYAmguD5xnnnM/zKQOd3c7sg/t46fYiAipN1xjS5dcGYTPcm38pSVUdJLQoYEkTertNytZzzRamnhHx8euj//7el/WOjKQqw0/3JwATLn9J0suz8bCZRS0ioqZ7m+pDMoFiZoGNyVNAqrSYPWiIXi+wshngmekrjUZeM3I1ZkjlyN3C1jKtB+9t4u2uPry0MzMIar/XUlXKLkw7e/6sCJRmH97+Wn9DTPuSj4gqjjGuNoZVtTWarvcwWGaplGRSVca2qRktZJpYtAJxznn0SZevzeHqR22ZGVmVJbo0zj1aNWiSUFMdBQW8ktCgQITCKjjASqmUdJYWIim9xevColglSJSqcIgOVUlNSbvwWglmZujie7YcAs06pFFURc02oaCkS9iIK6GbywbbGZpcd6jgSgxegwqunceLV45Lu4NctEyTF64Jr/6O1VOBlqAtFE1diuaeq7cohSVZIRfXUUkT9DER0x1RsDGEUiUSiCoxJUUwuN2Gmcx5VJVXQky3UYlNjKZzxsfzQR3v77+paiGqt4iibSfAi/COyUY+sOQ1W6krDwclglcV4vOQQqZX09IKrW9A04hKEmBSpLX4jBYxiRa0OEQGZBS1aqzCt7puYZZ4wZPR+q6AVDc+HhGjRi22FteouyPO12sumRkL9rqYOq+bOPGaAbDLow7Tfs1ISIKaywf39evXlvBrKFqyjmAmkmhddEJKEhCBVHoSUm2r6Rd9UcEiy2fTjH1mRzk2XnfpePose909WdXJnSSXpbn1DuGRZ0FIEVQKhIzCGrcluXY5vZmPRv+IJjRZpbxYa70s0Euq1WXQBVqsBbxZB0B2gBCQWTNzzmiuoLE14awO6OnOTEuLKzp89cYXTLUKiGrmRZN+BVTW19J/FclNCXl9Pf2Lec2JO1fkCkn4+59dP+RKOKFSYpWwaEsiJduNNOd8HM/H4+P5fPad1Nd2dpLykl1LC/uudMX9tu33/dYLmK4zhtimtpluNjbd+vlvthxXF9bRwUVClH62HrFr5JdLKb9/v1VFdGSHFGYGamV4GcUs2Uc9GaQWqgN15gwwMyAiBRftn2pbaqSOBcjNWMrUPpRE12a55zE9jWtW1yugF4AoWkd1lVNo7qM2gPxS94pqU1pWuXPJQqZ7o6Hq0qGb6fcZM0kVVMGX4elCfpEkBxCl1+h67RP7EJ+S658WCCBCFVVqv8BtMO5NqrTCTK4riwoISgtZJVK9iurPnwIm3QRcgKXv+7KuU9MrM5vCgKxkdNvcrxLZWVxqIskQkSSaHVgjdxu32+12u+1D9zE2NRFFVq82+uAVESDPeD7OX0d86gSZTznFsmBEj3ZURDn48Ofj+HwctxW9qyVFRc2M6fNxPD8/P+ecIrLt+77fx57RYV0iKElEJ9XMefaWv9UdWBVDkdIU7DN8hs9jnud09+dxuvtrU/Y6UoaKx3SPqugHp8OmDp+92chAwyxnxnSnWXu4UrISqaWKkqK1I59gY6a9qihWzU1MiTWEql5mVzlWhsjac0VQBMrKwTEWfQ8dJzKTuoa+XPHN3RDzmtF3XRcdwezuJdtXVx/SFeRwX0X5lVnZf7AHi+sK4VVLGRMFSkSsiVVJR0BSZega4culwui6wsLPxnd10XPRfIA2EFELkiWoUhgHqf2bowpZ1jfgebrsg57BEwwila1WkNWjXJN8VRXqMKtkRCTKqFFVHkVk0iqruPSUsqmO27ZvWyNsGidSB6agkNu224KTf5102VPEvwnnRda0toiMRfS+KtkesUS04XMZs7rAyvSLwV49uu/KunPW2lbH6rRTKBmAiUa0TICmQyBARWZMF2iohkZLEGq5HDhs7yT5qlLbEiVqUNGBnv93e+rumev9gwgqkFlo02UA8HlmTKWIEhWd8xnVBPslwlcRz/Jz+nGmR+SUaqEf6ZnRxCcSJSVV9BkSSk3leMwz0nknoJmCFNJmjqrKWHvBPHOeGVMyZJ6MswxWiJgIL4FUx0+pvKaJ6BFPCYVtPznmBGBmIiomPYe8+pIuO+uyWPceP1duSRUWteu14gOECu2JDtC7urXGYiPSW0osPTdKACWlYkvcdwHeuU7tiojnPJ/Pp6dns7JI21fKbFR6+nTPWKT+1sVBJDsRFylA5Iyc6WeRhPUKjMPMBJQA1AgacnpmhfeQ9HWX93/MnCrveA0QpacOieiSeyEArrtQST4vt3NEB8fUin8QUbOd0p3Gl88yU5q+UoXM05PujqiIQn9eup0oClepv8LqyH6pgYBraV2jtvUik61Z6clVCyCQTCZXMmOL9ptuvwYhVDFBeqThNnS/30TkeT4y8Pn5+PxsMMKzQX8RUdqZAjTdzKzdQdtmb7e7NhJdhqll5pDOXBkLmtrkzAQoHegkTEhVpnsPKSWDfTrPOc/zCUCV/T+FXFhfQFVNt5BslZp7lMu23XohOItV2fnqsnp0etbzPNwdWT2qUbUxhvsIL5/pmrDqwCkRI7UpwWpLdB8x3X16LxaP5/Pz+fw8jsd5PvsmFhFPB6wTzU6f/cY2wnVNsDxen7ueZgHq7nMe31uLntgtW5hollehQScRLkK9fIdfd4/urx64LzBoU5SvNIVORRMlqyr2sXXI0dpxZ0Z5nxIdRVaJSkmiAhHJSDNTirCE3jE6UY2Glqp0D1z72ZmY4VQRtaUQR2VkHE99u58VVjEkq2fJJmOYTLdtmNmhguRoSdwlQlVKc7wyM8L33JN5z7BNZ85fj5+P44MSiVBTp4tWJ9iJjY17iQTx8/FX/lm/5wn+/n6HcvNwj/n5/Pzrr19//fXX8/kkdb/f7vfnRD7meZ8+9q2YM+I1mWZrsCqlNc29aDFjSKIYRqnSmHU+zpnFc9bzWCV6tIpGsiDnGdMdWW6iWSzPzMMj1vjfo3IV78b5+dnHkVfOxudGSEnOVsfjQoy30kmzqqggpDgXiahEyIpe9oVXRsyz+igws20HQspoQlIjojwD8ZJAdGHTnbeIXEDHInu5Wpnp88iWXFSRjG10d2ljRHRdGJme6ff7fd85Z6oqpEOui6SXR5QOC5RUmhn4BVQHv8a38o2WbI3kR641EQqVr7VmLXlsO/NJFMUE6AkZm7HbkwefPTJACfr46GJTXyo5cqEtvzXlQHU2zwJxrQC+VaVtYxtjv43b2MwIwgVRdXqUz5iWMhOVTZADU/sNXWHO6Fszq+d82TvAqn4Y+L3wYvYjQ4AXIilaJxStJbyYky0IkJICmewsmUoQGVlZKQ027pVzHxOCsfSvrZ5TruQLFcFEdkKK2t7Nn24jCYKb2TYWIMpkjDEaWg0IKqpHz9WdeBQifKZPUV1J1u3vLSzkxFJjtqHSz+fRobXSbzjYHaisIrb5jykrprjKi8GioBs9b4RZJZbVVEqQkSmejGRGj7s0cgICp6a1MifZyrHOC1mUlqoQapc+mW3060/IVxWV66kFqc0XyKw+chdY/SXnu6ypeY3SeCGw/7exynI5ruiqBTvIvGIQ1rwTmbF0gB7nPE8/Pd0rFxf0opG9gqXzen6+ZIWSTVMsRLGSXuVkQkiGoCBURhRBKLSIFvUi14Tvb1LGr7oo2f2cyAsrsARe1/cSS6yaItapiSCoohy4ln6bDTMbeqUMLdVO5Hmgx4fL2xKsFNCbdQdr6A+JqglSOOrrtb3CA/oWR+9belRBgMEVNNlvbjeqCRLSs/mKAJZ0vOEG1ae2yGhT2wrmq/Ocx/H4PJ7HPC/9LEUQvZukbbqNffQsx7Zhtg0dSmshyJU7gRXRSxNqk1oIBcVMhCaKdZQRVQiv6fPVklWzOqtyhYEsTlUGUk8TIbSyw52kOXetfuivNgPFKK4Ar/Y3ACjKDPcIj/SMGakZUdAlorjS9MDet/Z7N+ecfrSyq4dSvTy6rpNrfuntwIr0XIFgpC06z1W1d6ZcRGXO82gM0FpPNye1CS69Q+8UpMvDZW/bl6bqknv1u5DEl2DotYj5Cr2IwjVVBWbOiqgFKkFgYoVnszxamCgiMtnwFl35ob05ymh3+nUrLX5MVV4p7NQROR0SlVNkSmVVMl2aoyulUsLUUhAC41izwEjJ0lLtEcN6PKU9GP1h9HSqPPzplW+3229vvz3PT9APfxwDxuz0BSCZQ0p7bnSk63nYU8y6Q5hI+vPx+Xx8Ph/P83ieRyaeMR/n8Zi+v93fH5/bbadICXWIqt5pPZstSk+7+8VGswmsJBKREIVoo30hBhlQpVRDUCg1Kx0a2EgElCV9TjgYQGTOkkwUkxUIeswrcTxnBK750KZZRyB8H7dNbezWUMDOh2ysDLMWShKpHZVbtZ5ORJNUuTGAswIppTF6QnopGEjKRSAAACmPU2tcO7F+DgOLQwGtmhVVyEAEyTqPT4hmxQIaVmTF9HPf3mSYanShs6QqzG4VsFRVkpKqzCRh/1vh1f+6xZw9/CcLUd1WlkDVIBRuFEJDqEAppQNO+o7pi18qUYjp3bGUhUgmoKm94u/Mj2jmeOqQFPI1cugPQmAJrdurqar72G73+77ft7GP5g3lrHhmFMpnls1W3rQ1tEO/O16zN1myzq8+3cREOkI46mWOC6xgpqyuNJPL9dj7xEbh5DX+6l+UlRpbVVwwTySIzKxEZvNg+xSMFDS2ZPTKVMxEh25jqDUtl42vVjPZbmPY3msRlNi2jbFfPojOccKFCQezgZNZVZ4zM9PPTM+yUrkAmsWsNO1qr6rKozUZz+fJil6tausK+8m4EqYzkxWg9vYtI6oESTjDC8ZEUvJQZkJKG6uIpAczas6KIEIQLcvokbk2cPlahWTWcucWgdQueHuVfOmBXlfUpZSSC8pdzGIulNdrtxXXJfTd77jWi1y/1HLAS8famqSq7EF0RfMspA/nyFjVS6tB/Zynu8+M4uoreoAXLdryM2JWLKXU33wfEkm/vu+ghGj79pFLAt+lfBVX5DgWMKOkvvZW+JY16e7SoxQIpfcsfTP1gdZV4ELDVFFQl7qwoRKj/9q9MXKiAMJnVWcjIctfNvu1oFmD9iXer3UgsLVdXzXumkC+xOZrFB3IKyqHAEuarav9+NSivV4mTVCQvctcK8Y6lGbKlUut2lDHw+fjnM/n8ziOCAfQciJU07f22+22v91fyC4RabZkRDBpZkzJADRLDBCWdUpKv4ebGvTrz6LQa5elJvfzejxmlyM9MajqWWoMVaeRzFn7fh9DcflqeS2/InonLu5+zHnMeZ4uCkVJ2MyYGdtCoWbnnIgmMyO6+c6q8pg9yjzPo+PkHo/H4/F4Ph/H8ez90YUXifDyM3z6Cx+lpNrWaLEvqsU1NO2asnmsGVG9Zi8S6Ay97pzbEdnIhnyX1wfw9X/7mJYlOUCHHa3+vAPSFthq5bQESiqCUQkFOyestQS3WU642zkFLKWsF7NFSGpYp0d23Bi9yztZa49FNRRV+kTmGQkXuGBGavGsUIQLgnAGoSKpHGrC5IiQfdeCRmlKVa2hzxj7fr9te68XPUNVxrkncfjxD3/MPEpcP0l9TJZKlhZpLNMUluQZnvOYlMdikm1yq6L/ejwez4/n43Eex3R3x/OkPvbP57jt++029k2G7Pt+e7vv+9jf/wE1qFEtW/iropRObu6F2ukTrZXcRvrQAQvA0ME7nSVYmUI1ia7L+6GlTIlKCBaYeLmqPJtTFFXwuhiNXJlxMxyRQu42VJVM944RRkb1JjDdAUlmWFdP0rMSkpuVqiqSSCWC1BKMpr8hUX/zEbRrOzO8aK8ttlRVzyNFkB0HV+mVDVYB00MrkHlWRZ/q7ue2bfMOm2ZmFFNVqCwnYvchC/ddwlJBqXaTee3Z5fUpsEtql6s1l3UWTHURE4VoWTEWvoDuDmaVe3jMmemUhGIsFk5xpXtE1kCSwapSKDIQkpiQIrAUAyvlN69o4DJBQs1su+23223fb8M2M9uGsSxD07X8EERSPNf+pxUpAeqLfF2O5SYtFCu9B3ARfo1Vuplb5E1ULPJai1Jeu6q1wKoVLx1LJZj5t8HJV2XQqe/XyCm8RKDQMfZeYTR0ZrclOuGeapYojxi5datk21AZ+9gu3cnoIVm9lOfS1PSsFv7HRFX6ZBXRu/xGKRSjCAplCRwqOyuoPK6cUZSqAdQ+OuOqFhpys8wWfYVQLCmZqwDPqpDGfPY4UQoMsLWrlcJSlEUKgiAZUBnoL+5yr1QVVa7Y8hYXt7jSGq13xekuEsHXa/5NxfV/ToKKzcdfTbaq5tIRXfPm1WcPkklEtRq17SJRa/xcr6clImdE1vQMr+xepz9kbGb98jmu2+Ja714DCeaVpJlV0VmoY2grzPQa5kFZxWiRtjdabUWWXjXca1G+kBMJeLl28mPnOLUH4MpnzOLXtfdVv7bbS/qhFVFmXpby8zyOufJlH4jMiM6eAtC510CylMg14EDi6x28mLRdeLH9efItDhK4gCZcAsRsVi66Z77e0AVorArQADB7pdkDlNYtpBRLEozKs2JmRCVFxlCKamHs2/1+f3t7u/9475Ki5UT72FQ1Ihyd01eVcZ5nH8pt4UfjrNgyNkiDapnZtUvOxFwhuMz0OI5HL/LO88SVoCAiU0zESRbTbNt3UdGvQWnEOc9cDxsex4LIR4TK31ILk4ieVEWEVCbaE7Fai4pCzOkRfhzz+Ti76vr8/DzP2Sqv1mWfh3cDFrNllKIrOnDBrqskGuHSDNtrKGWmL5J4h1+RX8RHaUHd9UNE3P7mllj/hHwDel2wgy7U5Da6oHf383z6uXT6PXEuxDq3w7sulHQwbFJPCKoWHeo1c21s4VekhywgRaxYZRVIOYo5g5geSEg6VVEZrHPOsW1R6RlnQ4zRfIetmA2rGdTuPHqCkKTK2Pf9tt/GGCvGgyWmiZhxHvH5nJ9nfGZ6ikvVZPTmAKUtFRdKID39mIccrKpHzUzU53kcx/M8PKo3O+6zJhMyo47z1GFj6Hx/k05TMKWpmXFxo0TE1DqCMAHMcJ3LSGFmuW8JJkxy6dwjHUimg0pJlrTWVBBau2a6u5xnWDTM6/CjYrZUPjMVFIm+3fti6qPSZ06dSFRgzqC2TzzO0+d5zsjvUAm0Da4JALsQml4cItQhNsbYbKgqwBneqVorxFm0JyavR/RqHi+IbkQ1T3J9sCqTEeyJy6VftAZM7PvueUUmmJltMozs/v9KG2p/XqUUpHJepiWltAuyz1vro+1FEM66vtsaIilwgyRd2xAo6YeD5TXTD3ePnGRBqwxDqyw71ULKCm1G3ZnMimq0IyBFx1JW9vw5Kitde/sh7Wccy+qi2oQMmgrFUtIkXVYhRWS3+4zAVfB2Skl6FxoGFDJQFVgzw3hhTsBlRcJCpqSkQr4ldwMgg5JE6jL2rtI91zmSVbmYkVKy2rcujaKBdCwGilS2R1OXFHPbxhguAo9zzvM4DlUd+83M7rc31eZIwYaojAWU1A4Mu2Ye6X1DVxUje4jcmUVdGKFKF2mBYL5yW7o5i1hpRSkiXSmhSX7IUlJZwhqCraQgJbJVjUpNaEGqm7zCazzzetU8SyAlg+GFNTnwyk0IrKDZWCJKKGHGdbxeRpKrZljF0JfVDsgqWy6ql9nqNVbKVwzjKmUgAPSSLl5BQ68Tf3Q6wWXR9kyP8O95Ryuu1JdUOTIL1M5iM22hXs4Zntec66JcoUP6Kst7PrqwoEQJZWwqoQtR0aK6okhUuq+5ArPIQs9NC2uL3o7H7L1tApXMqFQtMWNruK9hMsn1oVpJOHZNfVTkSzrNXIlAOX2ex/F4dqpEzA9pteZLHFqd9vDlUiRXUPprkVSrya1Cvjq+9pxJSxd6RicUtmZBKFzwl77UmRdbJNDjRC0JMSkFG29OsdUtaEI0e2EOFAVaZio6onC7397f397e3u5vNzNbmfFVrZOtMzLTyzVJciIlJCKmeBVKlYSqggF2LHiUN+oj3T1lzjkRS6vb2mSlfIU0I5Qi4qqjy7v7/QoRWjLHec7n8zi6MHD3psy7O6WMgywaGqS4hrDX3v16R6QW9gTXuiS7rjrPL6RQ0yXO04/nfD6f7jnnzEbHXHXSK6G8hIKFdycXE7mqtAKiVOiQK1XietJ0Xd5iehkMEThwzZ2/PzDtX6u/ex3MbLzfq6qQc85D7ZBjHt4zh5ZGLMOAL5dAfyI6HJSFfb/LIphjOT5WFvBi58iLz8gFq6CKlksyUIFizc4yWkKF9Y96RKRoZiY9KC6OwIyoyglu7XYUbR8PB22M7bZvNoBsh9Wu453vz3g8z7fHeX+eu8fm2Co8o4JFMisq0921NKpDTyBkzqhkOuOz38pckJvVieU1ZmZFllljDjYb23a7regXQVfQBRZ64lVFk9NEh1pqAFhiMIQmPap0liMZMTMqMgjAChQKjUi1rTuKjtB1P1syFJX9hQNStUC6lavhBRiRz+ecS7NCFYtKj4oz3NPn9Hid0hfQpGRs2l8tAKPsY+z7vo9tsR5yjQeaFEuyg+5qFQntvnT3vIYqy+C1cC29xooC4vl8+jeN5hjjPM/b7fYD+5xzjGFjjFFa2R9q1DXZvYqoQoJrn4Osl7Cchayy6EyOqkSLmbpblUEREM5Eslx1Wea95kI1uc95ZkUHZrRFelNlpkg78E0hgVubm5O0BbL03oagKjuwLTPCkxBaKkzVNm0GcYN/oIK+4FAWFewM5AJAE0EVNOEsUBZJuUsiJaqieoMW3b21xR+RscZd1axtR0kxW+aElkVnSQO9K4FMOtAaBlljdmmkdjVgCchVeMk1PZQqQRDTE5oD1UrQEo7b/v72PrZU5XF+fH4iEafPzT2rOoVtScpE2HHUV8kFAGt2VZ0gjKxFIqgmyC+DpkRBqj0uq+fDAooszHoXKsK4PECvB6gpC6BCDEZCS0gOh2opaAWTjEqusOK6JkY+LxZtziotoY5iBX17ETpehue6CCCZGVXe6KkXhjta//OyOBST/cJ++/Gt7rqaaeJKMPwatHxBJK67IFAstmxlhmPNNqsXjhHBRDVZ1tM9ZmSXLWbWVVc3cHOePRXCwk8uxG4go6IJHVUkBoXIkyKGthM09SMXUrISK6UBmS1LoWJxBwWXVyvQpqGyjiIFM4CZwPKVXMZGEelmU3U0K/1r4tVTw8jyyKrz8Xw+n+HTzzmfR+QUMMJtwRZEVHnFXFT1qKqtZC+aHNeQpO/i1y0OiFLajdh6fJYIlVAmV1rLkuAUZqQjg0gihKHEpY/o5FoZY9jYzAyqa3ELLgil6BL29d0gebtv7z/utx/bfhtibB06LlVDQebMyOM5p4hQ9ymAo6omp4nGUBvixQ6MzVqshxlVRc9j+T0r3P04MzPlwv71szgRqjqGmBFcZFqlhsicZ6vgPc5Ktlq5sVuFUGguKsfl9Fi7Pvctt8uNGD0Z7ACJjDljTm9WV1N8I2rOOM+vMdjRwdjuMVNEOvf65ZYv4VAVVckpEa1KXiI2uFhvJigidmkE+0aVHrOIfPk8am0wrwL9JXPR5YUdtm1bWwI74rABvs5zhz1rfPqn+5nuMauOK3gyFukgKM6amk/OSiNCOFQUNYoDF22gKghFeY/7+1C13bbtJgpP02yXfe3QTUwTWunuEqVRjGQEtNv2YDmqkyIiUA2NAsWVWgFZT+m22T4GWM06LhVaOX7z+jzqx9PfZjwOt0g5ASxqoGRFIionwAwdRLgbNbzcsz5X6KyISQEQVarYELNt7Ps+dtv3/e39/uP+9na77baLqEB7saMFJhlp4OJyZBloIiFSwfMiwizWL0VpABUQMxgr25pazcdNn2S1bSIqq3RfUqorgqkzDV5nfswWkHhIPmePCRV6SlQxMmekX1T2nsVeZswkibIYI0uH7DZk27Z9bGMMEyUVAtSm0kJMafFVZttQpKrO86ya/fi8zK3NwzpPz8wSRpSaTVnXUx8Uc0Ym3DPxcyUkjLFtc9z2hWUx5TJYKrKQISgQYp1xXGSJQi8TmDmjQTBxfR2AtBmFTJE8s6TPyy5QIvst8zgbe00pah1xbqIwMxQ6jFRI8oyYMzBzMm7YbcGzUpffoKpqmZNXutVGY7dNq6ESEdWxb61KrZXUAqlm6DU+07tW72DalnYyqxCRce0KW7TbipPopI3OpGnfwHWGvPRRzU/tvZhnRpdieUXIoeHcLFQAyVZPQ9prZCvntfrvd5YJg3Jm5KRMv2eE4Ha73e975tt22z4/P1sVexzHDO+TKPzsvBlWkFvlKwlrbZsqMz3QmgeJ0mtI28rYmFxAS8W1QgUwxkhfY04IWycY2ZjWtmI0o6lTQJS6tT3AoVa9GTTQyo8qogxQVOQ83U+fs6o8yz3ynCa1mVANpPtZVTN8Rsct5wpNy0S9jGALI0QyENWJMrIg5pXZE87/s/C6Ji4r/ha49n0Xob7FRkvOiR6VTJIz5nmentPW56d9iIhoED++/n4qRcfYOjTTM3zOOX2e19e+MJgmKwAtKyvDXxgxUkW2zIRCkECVR5VkZnoVo2MKVYRmLChLCe3CYj2hVXJ5A7WKwQ5sWHsrz1wRe1jcVb4mENdvy4iKqvSac+YZ8zyPz8fxfHQdNs8nIpf/NBLCniWJ9FSqRyMdF9TEmO5CkIEW73xT0vEal7XxphbQal3FfknEmSmoTPeMySzApVIIVZrWMKhiqG029n3f7jcd4qh0P6c/53mGB8oz+8GqMhHe7vuPH7e33263W2PPoyeYZlbXBKDKz3lW0URruIed5/kBYXawvW1DxqY60Hltz+nz7M5LISuGJQIeeXFJIrnSrNqQq9AmUW373p13SKhqP8Y9gzz9PA8/PLK8iccdh0DOmXPmbP340QBGG0OGaaTOJT9F9NUy5xERz+fz8Xg+n+d5+NouHkdXXc/neRxnr3sqs0v6tgabmQxTVeskt/KZy//an9aJE4DSRGS8oPZZPc1dk7zlWa4iNez7pGutobP6kO+S636/32432zdVHVOjI9nVpo1hpNQDOOehp8QBDTKhuYwO0F1FK82nCqFSwyR1mG7CzXQQmpJOd3hhVhx58cP27fb+9lakxykTCG9Fxc1cMsRz1jEz4FHHrOFU63CLmemuqrqcJh2inZmpoyeUyjFs28a+b0BGYAyFlKWmeun/XXoe8Wv658+/fgkL1R2bUoSqSMmqyEifnqWcRs2Ae3JKY0IBFFUVTSrZ9/3t7e399x9v77exbdtu276rqp8zJaDZvlJTaWVVTk8PPw4/zpxOT8yoNRh1T0RJFz0lMPB2u/XWorVDlW0giQpf4UuZjEAP29L4wot8g705PU6iEFEVyciK9tvNqIV/iqzMnP37PZtL2k+OKJq8b8R+G/u+7WOM0dlRoy2BQy8mX58y1auuZV5BybQ4D89sQuxSuc3Tj3O6ewLaSzaRphddPE5UHe75OHJ01FjzaG5vvW3c972njGvoUmsWQ7Ev2Um9DOhpRSzuERb96BUVTSqZjFZdL5x9852qMtKrwdpSZeU+sbkdSSGg2jsEqRl5+qwZBlAkkVkZ4FCrVxXs7hd353637rrkSjXpX9+2rfVJiSoMBlVgbKMeMyKLWpVrxwczLXj5wpz2t9NAo0IWelTbE7cmBld7HK4tXnCtS2KxScszHRci5NKxCKpWuDgSqFyLLXZorsjalaiZmELEK32ePPTteNtPv+uP2+1mJjIAoFcMfUr+9v7DbkNPHP5oYzmpDO3tajXwJ5egbkFHSjJQSgGil1GZWKYtdN3cnwczm73zxgqq6zPx9BeYOAuh2FjlBRPteiDJFj8LJCmMEymAJ5JZGZHT3b2VCsecMc99wISwQdE8n6/u53viclV14ZWZ7MC2b3KuryP7ZVf8IvH8LZS+lzuksrpasb8tv9Z4uYuvNcKnYMaccyZCVdSIEjOLPiAqKVJF1QDEmGam49Z5aulxHPM4jrws0OvhrcUsRROOS6tiFSvNQY3FN2odVGUjlStqdkRw/0CWIAW1hj4kao2zOwY207vJkTYdkMjqh1tE+JJzXi9Ny5ariPTmCPhx+jmfH4/n43MepxQqM86ja+JtuyXhme1mzb7tOr6z7ZS5doeLoM7CYrp98exfK8iv/2YqhYRURkWBtWw7REb5rAppkyFFBaYcHa2r2gffvu80jZiRx+FznjHbBpA5O2QdJcK3t9vb+/1+v41NI7OD7Qqhdl/iIaTnPM5HZqqMinGKSFljShQcm26b3t/GGKbGmXE8fZ5VFBUb+2+bWFsgSNVtNMlhvQXN2epGUIfadrvdROwrkGHt2kRcMvM8z05zb/JFf0x4kSnc/VXoqJrqUDml1eQeVZXlj8fD3SPmcTzaanCe5zyjf16bx9nZhcuf02KlIiDUsW2dwbRn5qw5eoLdwcgRwRsvBrdyufaQabrNC6cOghBIdpje12HeXUO391kkt217e/vx9vbWe0YRMefEwUotU7Iwz7IZoimW9CSiFEopo5pJjB/LDgnJkHAN1xoqvKnsptvl1gqRSc5z9gWXNO2yj+R5IufplE2UKplM21JOSvqcmBHTY3paFNUvTfAYA6JFzEpEeqGqftvvyRRBK6usUQfWzpNCwHlPnc7f/vh8++vXkL++PDTCovQI2ebZE84Ij4CXbJWMKEOPnjviUwUwHWa27/v7+/s//vGPH7+9qRmYfdo/Px+qWmbc96G2j9HSxsfjI6a3lNPn9Dlj+jzOWceMdG9RC9g0SuHYN1KVipLymvNoi8MqATvHjBd3ptUU64dFZcPPgRxjj4gKjyhMpC+jB4ptke3F8PTo9Xh4D9tB0tAvJscY+773UkhVpXeLOkREt727PJW1kcLicWZqdmdits0ZVR7hAL0pHafPOaNZzbry6NbqXMQZ83TVM/lY//q+3243d7f91nWnmfWZKZf56xpULxrlIsZ34TXTGxeXaMHwKNTaLNBeU768ErZDkeERM8uRAUhNxdkI6mn7vG1NgvoxaxwHEHNda4GTZbSNY6ee51MSrKhqbUyA6ix51jY4z6B8bvfcLLnp9nanhYgxb3k+EZlAuh+ZWmfPnTTb3FkreCAKMa1CmFBEyixEYi/JwkQ5oqoiJ+krw6SQfUJyrXwyQsSrN4nZlNREJDLmeYqYXNrtvCQrqglEEs5UKtXU2l1sYtb2wMx0y2PG4fPj8Xl7uw/bN/3xfhOprapMxQifRx5WlWfMmaeZYWRzMZp9JWoKMYySm8fM6ZnOKoZTKXQwJ4oRA+jYVXqqZ0QpJQqeheLzDAjFbL5Q0EAiUSyESnNc3LNTLIhEeomWUQ9oSNesAUbymTJlIKJCkqNhGtNEDemP6UArwPqnFC9HDF+6q8qIQE+wNZjN3nnF33VtFdEh1vxaLPZK5v/P1p8uR44kS9ug2uJAkJnd5xX5ZO7/+mbeOUtVkhEA3Jb5YeYI1pFhl6RUZ3EJBgB3czPVR3uykZk5MymaDrMsVPGjBotIkto5fIhGjxhRDYBIzpY/EwAdqsliliwJm2bT/DzP2yy2SHVaXaEEUbovZe+K/WyNBXPfCZE+zcsEx6wcn4RKoFwyveIZizCYUjqui5AMEngkw5UL5zlBXmu48uAmoTIRCVc/gGZlLsxJdfef1/F9zNfx+n7O88ppSswQDmawJuOyajnXOyrV/EJ51JNqwgwPL2YXA0etXBULQiTKUvG21QBubkxFpiOuPLOgGqyRozG9REwyJAflYFKCJil4sKI4kuKXvRgjA+Th5zXt9ef4+u/r+Xf6izhUNtCg6XZmXAKDk9mcc1a++XVd9wHgOF/P16s0bdv2qaxMikwBDWGQRronjyE8NJPOM6cz0xBVDromOnzEI/2sW4s4qkkpCgHv4/Hx8dj3/XN8LKJVIi+CMnGAh2z7lp6JWdr3pmRV4G2t3VV41fpkE/OYz/iql5pZ2RVhYZddx3Ecx/N4Hs/X8+vr+zjO1+ucp83TztdR/7lKOqaPMSCbMqvwGGPf9o9t20hpMDZ6mF9mc9vUbHjMh/F1ndd12bxCRXWIbABHJrPcPdniPmRApf1oCweAhK8EdLLDTE0/ddAmThSEJcdBMHuO2B58pe6xzxOpPJI3Iirok4gEbTWQUtHtsT/2j8/98dg+amPeNgUXMDLSLMmC6et4fWz7v//9f7ZtCwsixBV+OQcJODPKt5EU13WcrwOeGyv4EfAIL5AJhJyxiSizneZBgATGhJ4Tr9PMnIjLU0WUCb/s2AHaEZFPkY+hY+y/Pze3YdevyAeMwAroFdPJwKBBuomEpoGSVEV5r625Qj8ZNGTbxvbx2IcKh8e8Ck0QGe7+jENEPmknjE3IhJAuc0bYNY/n6+s8zwhLQrKTJr2Ig0tS4FSjPmFlr0NfesYkwtghQu5iJq24iQhbJPqi7M5Z4+70MPNKvZtJTEwyKOK8DrMr/T6oIa2t92kmPuEOMnKhYJYhoZw66LFtn0w6xlZp22NsyjuTqo5dqoKv0047Tu5zvrpv2zbGeRzvk4+Z+TVzWqV5Uyl3VQz1mDXcqsSU+6aZ3ipvn/M6tm0bY+S8boPIz9SH8AmgORbw9Cb13ZFB7ZHOViU3tfKu1+7CKzzcp8d0nyVbyRACWKZOu67UWbuMsXi426y2oWeEpDtGUiR4Y2pmTboVP5CTCdWTHGbieuva6owrkIwg16lemps5T4/JBCZXRBVMpfR2dypGb4GvmthBbrdkr01e9ebXL944+zfyuzqDdZqnJjN1rNAPe/+Po3zbFuh2zWVtxz8Czx2AmV3zOI7xMXefFluUnzFijwhdmeZExKxjDHgwcd3frXVZYixGkc6XxqJqZib+aYaKkp4AyyrSnc/M8Ciha4npiqxT08Y6OfxoV/A937sbTqueL+xXN7HuP92rzStL+5k//5MvoxzdGq/lN7lfdjmgWj32I8snM+knJP3/X3OlW914f2ZdzFu/nyvTcYES1qd14ubthFo0vGQRsUTtgtUGMLPpCRKi90+P1uZXuzS64Cp80YqLrnfjzrmrvVMwcMuQUZ7Sxr32vff/F+f1bie11qrfwzWrv79fLY5e9stpx/N1fH+fz7OqrvRgUV6pEj8PbblsDUueXMR9Tu7Ur3o2blfBLRJYh7wEgirOkwCKjtbOqL/KiKS8wa0VJyvCUkCttZzxmoXROhPOdnvPWdaGXDcPwTNEpHap+9Eon2S97WZ2HMfz+3i9XpWEc10xZJSXRYlDBeFsZk5mwqYZMi0tRFgyeMrMLI2lR1jCgETk2KS7kGXlV65Fub3Mb6lTW71YRJR4/i+WVVZBXzebtCcJzkGQ5vA1Pqo1K5fN66p54vP1+n49n9/f32VsfB7fr/NZPbCqO4mowpXBpGM8auz3+TmGkLYtzEPmFHcxMzMVoea8t9Ox7q677XH3pzsRBNi7K5/RGo+gf4z7b/XXYlejXS+UKWOMzbcIn74TpWyyBk9UmQjHLNKyjjH2x+Pz4/Pz8/PxeHz8/l1TKADTjXnhV9KWpGzbxsZEpWDr34U4mQO+bl75uZr9r+Z6Pb98LzuFw3W7P5OkoS0FiAsoSAObyjbGGLqXt114lLUpAensCmp+b7WcUH0nIZKR7XAv5ZYS3/vjtm331A9Nt/HzsjHGHPpzL0B4Rzg3yriTPfvD0zyTuFSWhBQQV8jEaj8po7KJtBI2a9Ezr5CqMiFl1A5cJr+2gDRLwM3ndQPJAfjsvDh3r8RP94nMmQ44iWhSsW/q0rS1cJU4tU6o6r7336O34LIAz+sKgGS8v7BEw2X1PZtmZ0WUphByjszbvc79/pOb1qeZWbkd55yqahbvTPd7saoSmWTVV3Rr8LvwqjuswuRrT4qIxMoYjj6cA+gF2y/3mY2RkswUNRLfjuQtKTDSZViYzImG9nlahIQFZkBjFV71MEQSK+7C67ouVhlmde5UplFKoKWHYMSc5/F8cU5m2jghYCkheTosw5DOMbkM7dCaWyYclGhgahKjIZvVKy3E1y1HCBAQywZ5g9LveO/bzfej6EGnBq+/qcswxljT4vImeHkYt4d+fn5u2yZK+76LkE+rn9m1F8uuG21LyeSBRISh1sUWWrKASKQe9lvq1IEMmUEU5uCkaNX9fdwv5XpEkDcPMIVrVEeia1XlhmbVBVevZB+S/lbnvJosURfbLrPLrmlmUlkZNaaOKM2kLZZj5l1PlOu6I0QK1RURpT/3mN7vfhXI3aDsfZqJ4q5VWjjf63sTN1vYFDcf9f6T/3cdUzfD7Rqra0hUQnI4CGb3OvU2MRJVsk1mT4B7/b0FYtwHsIraiIoJqJqM8w7Fo7w3M+Lipi7dff3StA4G7/qG/vErtL+ii/L/XQvOK2txrD+P5/P59X19n2GOCCFObnEGdSjTP+qAHzyOyKwY4v7ENXx/v7BOf19bVD1dVXgxUcUtgALltl1RAQwCswgGQ4WVSRkqvZzpGH17EKbZOe11Hs/zeB7XOWcvlKwqLDSo5IEBC5fQNipkhKNMrMdx/vnz9f39fZ5n3ZCq16ZjjE1IB0uODeEscRw2NlHVJDWXjGS9XBhg37LAXhEGREV3aD7q7CJCylVv9Xmsb7N148W7sn2fauoGC2RFq1WBPumsEtaodrhHl3G5SLnu0+26rufz6ziO1+v7+/n19fV1vo7v7z9Vfr3O53Gdl80aRm8jWWn/2H79+vX5r9+fv389Ho+qb6pYMRcRNuOWXZq7mwz9oYB534G3PKD24uoUA97j9PBw1O9SKVtVfvUhhEKysvmSaoqtSZDInQjTL6Ik7xl8AaM4+zw9xv54PB6fH79//fvXr1/7vj9+/S7tXWZeNuciJljax8fHx8f+eDw20YxGzq4Xn7GUOPdTcx8X7+PH+4EqGnQ9dJYOv67ztMvCPFc914VXliHJU+4dYdu2IZuqKnNYQxMYIGJVrrWDCybThaBupAALqYjWLbpt22PbPz8/tm3I0Ptx87d8vOtFz7jmJA+36/h++rzcZvlaLpvnedZz5O4e/C68XMRJIlTBUrwsVlFWzxw5BLehJ/K6rmO9e3eosP84xbm7T5vX6dd0u9Z+lAU9vglzKKtxZoGaKaKt31wpiP0x5P6XobJt2/7x+Kj/T2ufcJ9m/bUAzGx7DH1q/adrfcxVe0VmGpGwR1zexKUuon44cGvQeX88Hldd0/9Ve6kUQFhFZAEPhBo4RZSZIhIoJlMQdTjlz11q3XkR5ek1uzseFOlhJHa8wFsIBDTBHgWeLgUxPCPTIiOCLMEUXiNYR63iubHWinNdFwu2bbv2a87TzHxOgOCB7lmYXfM4nxxWg24e3ASqNKSTT87paZxFHsqkEW2eglQkHYBg50Bb4VaeyQ2DjkQarQNlm6VKxSVNC8w+HlVoLotkMSfeYJsfH0CHdVRq9HEcf/5QAUJ+//rYxqZMF8h9Aohpfk0etYfp6jgakjsWNBuww2ufoyoUIxBwm3NazIpYrD2HblFdw4fWqh8BeA28iBLJySzVzUZyzQkiwwOhAU/PkAhaqNWKWRUCR+EYvIPh3Gv5Y+bw895CbMlBCofm9Xy6Y6XzsshqmFUPu9eRAr8xc6FZeo7XMYjvt4KIImt2WXrZ6nVxrkv5Xu4Da3Gs7JvqfFEFTq+yrtpdlJmVA1h6ly55x16JF/Us1IHuXqbp3b9hKQ18ZqQrJLyoE8zMKRleJgMWvPWk8LK4d6erufyNqnz3xe5KaxnIuq9WRyhiTuuXdL2o3Bt2XXbN63XM12HzSktKaJEnEAFHLQWVQfMTi5ppaRRU/e6MzKLyQzsrGq3iL2VGAmEW1ROlKrzKzFQdF4DRDilEOREleBNW6cJLqGp3JqLmdwAlTvt6HX++v/58f32fr+c8zRMkMpQBCYXRdc7jdb5eZ5mMq4EdmWaXmT2fzz9//nx/f9cFNbN9B7asCLD1vCRATaiXTA53QYJ9uMwqo0WoMgmKnZgVWl+xHHXAozI0mJlBWKQSgzUzO8vaztd5nud5zeusXqpbZrJSvbCLrnQ3DhFTHsxsYtVEr+NHA+v9Os/z9XpVbOX38+v7+/s4nt/P7/M8z3lNN+/ylFnk8fnx+P3r49evz399/vrX58dHi9zXKbE0+1qN7SA6kVjnyR9F+f1A+X0fos/wBVsNM7fV5nYPIhMRH3HL15g5G8SclUlAmYSMUCAfj0dZz9dRsLnTD5XSOH98fHz+/vWv3/9RhReP1sm4u06+tFfjKw6hfDwe3RzqCMqsvE5kRnojai+vNka1uv/XOYeIKMLh3dbkDCDcT5vlHCo8bZDfR0HQu2FGYGVW3UZFgCdXiUfl4PUOtl+s7jaeM7OKAiwiQ8aQMcb+se37Ph4fHzpElYHwH9Xh/rErCxFN9+N4XiCbM+Y1X0dJlonhGec5v17P4zhe52UeHkgWkIQQh1DQBibyIAFLO2NEOQGWbAI5kUA1ZZh4sDpHMAt5rE4EE3FYXtd1HqdfF4fT+iVreTfraUiNCwB04ZUpXE3WrLygu9sqIpuObRtDHx/7vu+bqo5VeGWmebLAQ90JFJvrdm4yOCmmX3NeVrIRa7KduVcQnNXjmkFUodGDiE7uhvGPwmtj5uNo3NfdUatDUbUzq1xkFVVlUiJS5jVe/TEyy6yASfrnX2bUXltoR48Vm8qRifQ5/bpSTyiTDkTdlyRESVx1V6RHeFGBmL2iTcnRCXx3TVC6uG0/Htdmc87rYDRdihD99QiKtGuCYWkOWUkXgZjpM+LisADICRxOlsQJqWGEYBEfg0NqSFLJEl1lhiMjqBp76FgM6SCoprpRJSz/AAACdh/+7n7jPdJkpkbjcHdHztdxPF/n5/HYx77vzCPNC4halVl6iAjfMbOyvc9bngivwkWXfLXMcZHVODzTnIi2MYIiifMmbV/dEifWeiVlqYUzmEQoR1k+tUITMtLKNxVABjt8UTZqRubXTIJQdwfLIY8I7lZf0wXpx0yQmu1E94GI/mnBq1ZrpfbUblGi9cx30y7WyTKxZO0ttpV7luF3CtKbNFYujawVjpd75W45yMIxNBMgyNJL/tydwirYRBqL2vfM3eiK/kWQxBlRhR2IKNKbedFN7K7GuPyGIWtZzyg6eEREKPFiwvQqTN0ZoHsy7h0kyz+7YPc7Wdc9J/t5Xs/jfL6u67Jruhk86hkVauIz9UGZmEYA+qOpZhmc7EUz8Ss5kyqgJBsv0C9qFYV5j3GbmMEo2yVnedMhxApmJg5CVcGq2JhVsgYtxKCKI+NKivXL5vdx/Hk+//r++uv7+ec4jmuebhMBFlGRkPB8nZeMU78OT4wxwLBId3u9zmNe38/X9/Gqdldd1jEsYvyz/VmeD7gjM5KkyGOBQBYhuU4/xfAL7sBXulFkhWf0QMIPHJpKNHrjR17XdZzncT7POc95Vck1vZS/MOvS3d0nqfAQUeWhqs6zKKAl2nWf7n7ZWaPG1/GsptdxPJ/n8TyP2kWCgEHMow7o+6/Hx6/Hx6/H9mvfPh66b6paRC6sGRwK2By05AFNwaJOTUxfDuUIW31irY6Hr0ileoTvFIrsZuQyV5nV7rQJ4SZFOxCpygH+/HxAQJfcA02VTURYto+Pj9+//30XXp+fn0VoWwd061rfgxAzP1y0Z4jIG9QkRB6CILMwCzuv8hIM3VWWVW3dElgyHNxVaaalp6eqlQ5nRpGWbUBoeXzvb0EJJlUWQdVKcMsZLsHEnt3g6RZy/UTq7CvhhKru275t+z62fd8fY9v2uqOKVvneteutmG75fB4Cigxztwvm7rNgsNP9+/n8+n6d5/mal3tEEkShowQnC/PfHBCUCBPtHloH94peg4joNjQ8IqbZ/2qZ1x0054xrChE3q4/crSDVfY/1VLeXVSJmmr724r7HCmiiWmr3fd8/tg8RUpVqgtQqBlIgt23MCXdWVVES7VVxutV0fo3a5jWnI6tBOK1dSqGqRdlgSsuY4ZevGmsys53vwuuuvSrVcZUHW4V7lvhBmTneEoGO0KlTePh77b7Pu2FXuIfVEboes9JFhTh8wiZoy2b6Zkamo8ZraXbNGew0ksGbBISbzhiFg3aP80SLe2LbtnPf99fzGhum16UVEGV4TADMMHeLVFAh1KvBVgN3QrWpHExZp1Ew04aKRgI4OWsAVAnNN+jJigNgEZG2uJ1Vnlf+bysG4u5DViUuQpU+170uwT/Phd6oQn1X65kx53y9Xo9NH2MrUUL9RLv8zAORZfm5G5P1/pTeayUVACoiQihz3HT3a57HccC9dBlK7PCfTtJeQ4EKZPB0M0+rliyDIcqF5qyupkcGc65G0Hv8hKA6J6YR54KKeUQooXJdOohvYTbvylXwLhB4vW9BoPWrnTbzjlxkukd7UdR+b2PnEtdnNdiEB1FkUlCh1fP9kgk3xqv3x/dHl1DVE47u56FUWnZn5vxQPrWBbnX+LDqS4ZYUISKiJRBFQumR0MoY7h7W+kjq61s4x644I7wrwXq/+P2SWe8Z689RSHGcf9SgfZ7DFD+v+Xoe39/nORu9mxjS+WsRUZ0evAWLFMvEEIgiy1sYCmnByazCTKwiJIJleqOKOaMf0WkN9l2AOCIVgET6NNxETpCUPKavaQ2e3hIK5Zlxmb2u8/s8ntf1mtdrXofNMypykJgFwZbTLI7jInlZxtg2UTJ38/nn+3mcz9frVYSe+mdhzWvD6/NDbQ1MaNk/4JnExM5rU6yqWlmyANrELlLE0yoUc8U00Iye8YlIHUWv63od31/PZ5VcluFu7rf+poqD6e4XbLCrjhB3H5OZ123Mq5n9Op/14B/HUeGVr+s152UxA0EC3sYIAbBtj33ft8c+Pjf92Me+yWAZ3LsWI7mj5aVzRnPJs9460dXtjvMsrZvVHIBZiRjJ69zUXwXinwPK2onnCtgmIhrSrJIgFESmwmZFqoaw8JxB4CG6bfu2f/z+/ftf//qPj4+Pj1+fvz7/9fHxcddVc5YQWSJCB3vIY2xGXGokj64YOj+HLOCI8Glzupmlg6Wvsv3MyahLU089LEPCYk5zz6G4/DrtPOcx52n2YUNGIfOAxrtUXK9Us0QomDLDKsE7BMiKs0W997UsraGaMhFtqvvH9tge27ZvOnQMcOUqtIehjjoRMc/znpPW3KNgUBLwmIhk5jmvv7/+/P39ddVxPDPAMpJBQsrty85uZFY4RjSqpmrC6tEEEkFMqkLCzhQVquue7mkz5uVmFuY9RMpc62idbTIi7+K+RBolCshwYq2Wat04cpdcCwL3sW37vmW6Kuuoo7tkVqJGnUnDrHjI1bMFqEPeLpt21dhxXnPOaKhY7SxCHOpeYj2mu89SL0AXrrbYC/e0sf6edVuff8ncfnw+sRe+0Ss9qBbxBvZEVDQhMiskC+7Ft/Mwr2TLSktsKrzBDeIc3hmIgVmkBif3dLNJhoRwJwkJmAsnjhkZnnQCcJ+eJiLMqHyhTQeR6JJ8h13n+SqpkHAYOAcoWWgICTJdQEBwpkd6OiHBDqRU0kVRkYKSk5haKEzF26kQ82iXHEdEnW+BJPKaOrl7HWcLniHSbZh3F1TuwfBbZ0NUqAR975tAmL2+v4ua8vHxEeEICrci1orEYxBXKmB2/LYQOyXg+JG8U1Wjd6qex4yYUYgC6uDbgTUFw3u0CjiiqbEwC67YGUEGXJLrUAsLUMVuBiG5uUF1ZAQQ6WHGnOyWCPfJiVLm1Iy1+6ZrWA6mMkEVn+su7rvsBn7yJjritqTxZSxdKI27fKlHgrMAbelIoKJuS/8l9X7eAg5aYXlrr+0ZGZjofTrlQJRarqZOLRTwNbH1LsjuU119AjNXPv2dTVTvtrmFu9k15+XuzXFe7wAz36t7V9WrfVr1YhTs/Yc0m/osTp55Jy4gifmeTLZiwM3mdcVXXscxn8f1Ouy6wlGmgAQhI5xjWhK5uxDfCq270CyTShLcjQTQKOQbS4iQKJYEXmrzXGJHlKW0OtsVSnnvvnIzblcuO3dsIyhbdK1a44Qxtk2GeBi4UePOiNq8VMkCbMmZwQGOpAw6p+fzmG5jHCRsdp02z/N4Pp/XPIjKBd0Pb9/LLcLzyrlApKowJ0mhEpSLABZvNpsIRDFG6iBmJe7GfL/7FV0AeEj1bgNZXYHX+TyO4/l81nzK0ZTUspJkZwZMgAkyeGzb5mNTNoDr2enBtIeZnfa6rus4nud5njbNrvKMkwonQ0VWPOJj/9z3fdv2j4+Px+e+PXbdhgwVbfhkTat/Pph37VXrfzWk5/R5+XnOmrPfHS9mqXmV4b3m1OEGa7Bwo3MAdG+GrFwoiCyRtcUyeBYqNGKyu+cY28fHx+9f//73v//973//n+2x79tHkSmoodwOoJ7c8mr0Ipxw95jWzSeiTnjM8Bnz8vO4zuOKGW51uiaz2CzdMxwimYwwawx7enj45de0iHidvh/783g9X6/n+fycDxmcKaLvmWy1NoiIWZSHsnIKAx5ZHX1hkto/khhCQRSquu1j38dG4Co29v0xZKy5cI8y74lNHbL/+/VdKxUQumQunDFYrutKnwCu6/qfv/9+Pp/TZyA9wazqISMHEpxgJrJN3NWFwhPePOOlUl1LVh+DuxhDRMzw+ypf1+WzhMV1UAyvY/3yOQW8vvBd5VKW/7m8hCKiQ4Zot7i65to/923otm0K4k7R7stdUMaNBRHBfNZBqN4zZkqmoE6QtPDmh62Q5lyRejUyr13mXqtLpVeF1BhDRBpq/6PwkmG31Fs3u/9eaeWQpEcWB6/P3/ixct9ZJatAjeT6TORSidbjROmE4MzF6qRYASCemEGGBGfOW6aC0uwXAQJh5fwiAIdwIdjD5mM8eOFoq40wr+M8T0QgPRa7jwXCFaomkU7F3kdSTu+UGwOQVXVBUL8GEzIAEkKW1IA5mKtJRUQZnBGg8KjVjhZOHcSZJByuaZy0a4np3nK8QsYnVQL82+pFRAmnpNKaZOYYsuZO7923xucFBHu3POpYCfKbFNIh5X0kfQPca4GbbmzMvFI8lwspqZwndapHcoQhufITAsTgOn3MSDAVDvxHB9TzXcYlwnI9imuT1rdcaUHMb8n2W7EUuIuJandldsRHszprtgikd9M+InsBrR/HzTZPknqWSsvfY0WCCN/N/rgH6z+Ce7FezD2RBPAWZaABYMxciD93vyzu89m7dmRVvn8dtJh8gZuq/V5yl8xszhahQSbM5h4ZXu9s9VPKppscYKnLBAZJktSYu3pdP15kcvYBG4RyS91D/PP7tPOy48xpaU6RYCWmMAfAeVlZIyNziV6wAr76jqLuwwuSiUVZOtmrm74iJcvquCMwsfAKJaNK6uO2CXXYFCeqLC5oGaOOfZlM0onerKrbrroNUmEnarxG6SuHbik+jRyZ7D2fRD0g7kUklsFAnDav68iMYubtj0FEjuZF4h9XfEEAwzKTWdmYNTkylSqOnLNzMuokLVJ5LQEiCi9jRFs8KoMyLa6+E8YYnnae56toW24zrO78omYT0TxnPz5BBFHVj/kxxnw8HpWmzok6ztzz/ZKvzZjVgQUiKFQ5scD0JKr68fHr8Xhs+2Pf9/3zQ3etvKk+KcXPM8ldvVfwevi0EjtW4WUzbjwHWokcREyQTbYM6n20jbYAZXi6BaVNnud53kvEucKpEISli3B32WQjJdEMmjrNYt8fnx+/f/369fv3v3/96/e2bdt4fHx89JwxohLtnNl+/CI+ZwebrzBNZk6Wyiifcxbf/7oum54WkRFiRNQjgogMJaQ1n42CwiMrBiAzn3Ht5/g+vp/n83Uex3WNoURKwQHPCOtctF42lZRZGcwpFVBRBpfKtG3ofBCFjrGNsekYRDRUZBPV5oQmdQT1KvP7/nH37+8/93BDRIp5Sxm7aCkNMv04jr/+/P16vSLCOTPAOjRyQ+F4HnWAnKyqxjmS60RLDHKPbiBkVArcOi1yJlnArXtdc3pNb99n0aWwiwjwO92Amf1uiFFFuLZ0R4eMMbZdt023rXl+j7Gpqg6WHuvJ+zkmImbiBKno1Vwv4eSsFMt2XTPd86ufxWsTiCKq+0NEK24ombkW/yq5IqL+jB+efWZI4J5uabhqF2r6se82nSJXanJ0dzxSSXiU+N9nWrojYuE15Z4/cO3lKoQMzwwW3pk0PMEBCpaUTNEkjsyZCYvQkq6W+JcKa4OMmDPmPFU15pU25/k6X9/ff398fnyUR6BkcxHhdkUEuQuB97gMZupOysTMY9/8shmQoBnlWg2w1AySKAnVzEEy4KWUF2KOgAoI2mMXGZlJOZ0yKnQyMwBmusH9qkqUpXWMCJE2h95+uMb29GG6tPnCAoA35uu6juMwM1Ueop+/HmOM8wz3SZFT9DzPWoUBSOAWGteVLq20svz5c0RE9Tw9vRiBBszzOM8zpuWvVJZyjtSX+3FNjy2ZZQvKIBYeYLLM9Mjpwk4pBvdI0BBCFrydkZRml9SsGhE253U5YidjpNtlc6rgMbZto9fXV1zHNoRkXJed0zkr5JiiXKMezCwsBDILq4oqCFy4rcrI4EDOOe2amWlmKAk5EQURi46RcTMaemesode7e4R3e6lGx60Ulv5v97ktWrHORSSpQEuPnyaX5TtB28bXptWt4wTdEpYyYaxEdk6qELJuX9XNMc1Wi6izyQLVyKofV2BrLmEukSRRRPPBIqlT2GXrTknFYgZiXufr9f33n6+vL/vvaWbneRY5rFC7dZahomz5FJEaus05K+R7jb2WgYERYRAZwqqsyqyFvyFRyvRWBwkT0bTLZ3Q6dQ1biIG4cSdM5DEBFmWP8KhnuA5FwtK+YNnG2Hd97NPtnNdlVjMRUhn7vqvadRgumHl6enJ29EUkMsNnPI/r8srAxvfrWSGMFapYMIe7j9jXN9Ijykc8pxc6gx0sLDkITmTXlUBCwTXPJ44wD2MGwtydkrlAsACS5hWtBdlVppjZ8zjO83wer6IaWvhl05eN/KFbm60cAA9R/8xfq7Fa5ZGI6AJ9HedzznnaFRFJIUKyjU2IiErRKSI69iKXPh6P7fHxeDw+Pz93Hapb2cSEqCIR662Y0cmPr9frz+uP2XWep9m8O1424/V6dSiNSDIHglmEcc2zWnfMrCw1OXX3scnpbovX8Hq9qlVw7VyvgZJrtJKZxBkzWEVZZAzddiZ5PD4/9sf/8//8vz5+ff769UtEsMLHxhiNKgAAKMNBMa/r9YyI8zyO5/M6Z6sCRIYoq7xez6+vr6/nnz/P7+M4phsRQTgsvfwhvuRWCQl4BpHqYCBecz7PMzN3wdfX1//s//Pfn78/HzszRc7fv38Tb3Ne13kcx/O8zuu6ihsnMgYP6XKCZdsyyBNbNxokIuAs2Pb9sW2PX9tn1RbKWmIaGaJj+LwyqTpGgXT3qoxfr9dd55HRWYwLpIt2msF5Xtd1nlfpC0OAJPHwpE6zDh9jqEw75zzj4xGPfSfNMK4W1LvRtYQfEXFcl2fe5r5Ckra14po2rwgTarwOEVldLGERcCpHtN/lupaEfdMhj8fj9+/Pf//7379//97GuFXUlRPAXLtBooRpzIAAZe+YQLBqckbYGOPx2ERIhuo29DIbOpKYhHSImQfegIlEJHESuGCQVarAfijYauf9OayY82RmXJOIhIeqylTVs0CvSgm69cWgBDGI2yLXBiJKBFVGQ54t20Cr5pcUIzOTRCqvLZrczcRZ+YYKDpKNdGdLxxkOz5R7pXvviFUC53VleMx56TyvcztyVpvuPJYyoHrIu+qmLJoPU8vIW7jzQ7ojxMlFr8+EV5MvKGs8AxMigIS4GhRZAFllSdHQSA/jLKlOtVAIKAxQpFEQEMxoc5Ix0bjX7ps9VBdJpDdaUKhuIsIRNZ2swvnnu3Ge8zXNLFQ31S0TZjYUyyDZBUTNm+2qTPeyxCsAi/TEcRzXdWXZYil7mLIoTMlS0y/yEBYmTYkCdk7PiNwCJByBJGHhJKp2kSNHhQdmZN7xAB7plhNxuU8qAKtPs9KP1jExK6a+jBrtbPzJo79RF5V1VaVGHX0IZWYEk52zDh8CiDARJ3EEVAVAOFDImBqtUpuW7oN1LU9MVLD0d1NtfThuetb78ATiiLmqkCZbkmgf9KuQJEoa8P60co++C6+qXFUG9rslWQTjurdumRG147EnuyLSjkXmN2cuEe5tUeaF3yv3axQ7PUvKWh6O4/m6vg93t7l0aVzqrqos6U27Wj+kp72lH+8XgFvrUEuz+6yg1fqbao4lExklcSslawSPTEYmM6gcqpXVWNeWMwKWUXPvaoLVPSJYAcyeUaFUhdz2DJCwBnVkOALw1uGER9S0D4Cn3bsRuPqmNclchCeEeB2i3jMppZY0FkW/26jwjLOy28CaGSme1YaE6EDC3Cdl6+eIRLK9ocdxqurwMXww83Q/juOyeVddb5xSNgvGps85wxKA6UaLUtrRiCzMFExBpaat5TmyIgVUFLmA4MFgqbLvsY993x6P3//+1+Px+Hx8qG5lpy0b0x0l3o3Sdkq+Xq/XdV3n+SrtPwXcws2UuYokd68JBIRJnMCLK5CZCS/Fc16noU4ybg3W2bYxBk0Zso0xhJgWPLIcLklgDgFEZN8ev379+vz8/fn71+fn5+fn509RcnNeKO5H/pbDnq9XKeDmZbgBB2SBfL1eX19fX8/nebymO0CF0l4eGEbNyaNAl4wISLmu39/frisiPp/ff55/vr5+f+yPsUlSgD5jzuN8ntfruo6fuK+SryU9ytZgAfYcS51NjggW0m1sY4xtU65zFygzCGRpZDm2ESVUrPP9qpVJmH8AS7wZzt7rUoUYuFeMSywNmiN5SVHr6hVss1NwIvkBHptIh8H3O/xTdJtZm9q+73ctWMtRRYbV7JcWgVyEAp2yF4saBECGiqqOsbeYq8MZqzpnZunMmK4gZKl4ashY7awSRjsy8qYqdhzOtll0kTcIAvZBnGDOJFbQBBnyTnPBTxkKkdwP4/tN8A4L78ObBhGJuPtgL/XU2YGmzF2ZqmJlnUolEtxr0MqirV+Cmy1JTORlQE8HksMjpqSRe7syWCr9E6IYG6UJLN0Kn1RtQWmy0Y/bIxwzzCY5k13npRu86g8FuGJl6+2b+9gGE7Z9sFW+Rb4z7XrKSZEZnN3sJaKstJ8K2UIWSGglhBNl5x7V+cY7P1qiDfSL5+meaBhmbT9mXEjDukyRXrKiCFT5VXVPwqtnf3dFG15F5BnzcpduFB/XmZmqWt82M03o5r/9rL2e1mjEup+YuVo/12nT2io/7dqkKSMEzrYZ2+m5p4wNzJo0WGRmTAujiZEauCJJEmBhCaSFs7umkwqsSqvLSxPhV/jEfPo1mQIU13Uhm9J+uVOd5pEAZvi9ttZJocbqhTCre4+FGVKIV/MSvbp7XOZVhN2KsW4+Lf5Zzei92jRJ9xSp1hHCe7gJVKzT+g7lCl1T3c75RJX0+DlYFBGw1H1uZn226+ig1TkDJdXSR4SsnBwiykHZAs7s7HjmBvOSMBUjA0iGcDfnIUChM7gsH/BM0BgiuoLJSpKMlmpFwK7ZO8rff76+vq6v8+6oC6vccjF+T5GxZHaZeaW9u4NkrENAKayLjOo+M5nQFxFuWLx9IkqCNWug6BsQkSHklcHLnXbKHTDPnA7EHfSYgWocjzHGvo39URHJx3H8+X59v47jmldJTm/S2aqqKcLCylRZr6joQNOvtNz3rZfSst5gMdZk3IN4FBSj9lmvjF5k5TVJ4TTgTiyY04mFhYg1MomjMklbf5cxs50tNuUGcpaW7rquyy+LyNXumvOcsQjgs+QnFjW9DKiqTr3GYOaNtI7iP+YqoFIEgIOgSBLi0DlnkfRVdTz2x/75URXL718f++Oxf6oswaVX7uBV0pzrur6P1/P7+/v7+/l8vo7XeZ7X6xnpdcNXb5ohkXCbJWVjGpmMZKUoaSbAZJ6EmqWbWXAXRhRBRDU28k22woHqrlTNfSYV+MUxEswyto33/ePXr3/9/v27ch5L19W5ktbspXsLPM/z9fquqvHr6+v1epVb/E7nRdA0ex3f39/fz9fLfAYwNhEZxBEE5bJJVPp3C28QNS1jn+9qOexA5PP5/P7+/vP8fjw23WqND5vXdTyv65gxr3lU6ROeSbJtD5LSKAjcijq0nPIMsNCmMlSFh44xmDUtw0lEGWQZjMxyj667qxrbvDjDpf1BZDVw7DpKFJgdiwYIUxAzWQaWAq/25YgY4umZ3rcHIukDQJ85sRQmdwFaK/PYNxKWhfZg5qq+bJ61AdccMACVEVRh3AW0skhikOhjsIwxPj8/f/3++Pj4eHw0yaG61G/RS4kZQpK7uixxb70ZMxYtoptYzsy6jbGrx/Z4PAjisxLv4uE5Le7P77lwF65xLw7diZcyFcndECmLSRtTqN9/ZyfXey1tgX01ypBcJQKzlq2F6C0lq4/H42EWRDznVTd21P5HUsuQWVxnjNNZY6Nkbd11ZpCkDsTGmDlEBsaQIaSN1vTqMVx1g5SW3FfEynWeYWkamTnnvKqBpDTn+dg3JewPvWy7fOwRwfSmnr71UhbEAkFDyTMyiApIimSLTKT2URIqlGCklIZGIoKyuMAgsPsk0mwazj98OksPHnSWaiRU9ffv350tAD9Pv7uUj227v7aoqqVpLVr34/GIiP/58/ef5/fHtm/bJoyunEqLfA/1zc55HefBzBZe3ZgCYXmSu18+z/PUIQV/+3h8VlvDIi87PXhPGQNMI4kzMdPTwQajKHraxkmDGRyeZqaeWTyPQnZVROM88jriernPfSiAWTtQaQ7mkeXm82Y5ZIJZlKVzjZd76B4CVtvVkZ5Rapg+zjrK3lydBiapJp/NoxYCx9397PAscJ+w8M8PoiXsWs28+5YBSrD+hq2srV0aIoC3fO1egNy97I0RoftG7sxcT+N9yRCF5UAxSCm5aqDyAlfqJgKZgmQCxzQgkqvlWEPIKkybDNnqda84bnZ3SpjFcRyv7+fz6/vr6+v7+ztOvyVTNZR/d4bfMdt+98xD9F4EaFlimEhVq2/UN7yDyDJotScLi1hhW/U5RJSiJFQNL26+EUkny1N1oAI5M3FzKar7XiZtZiYlP/A65/f395/v7+9pp8WRGcTLi5GZDpJivbhdVfAlkwjJYIWWoIIoFxoXd+u913EPEEWiXgQ3cLkukrKojDF0Exm0MQ8WbY1NlGohTUSyhlFBkfBpZpHm4SIiFiHWq/Pll1eqaRYB9ZrhUXUW0esoV1pyQmRgkIjIUBKWFrQSM5NChCESNPpNDOPqEmVyxmmzRttcjZPHXrpklY1ldHOlafiWmdfVgujjOJ7P77+/v75fz9fx7Zfbec05y1lVultQulu/9m5JJwXx4JA2xGXk5SutIdcckGKp4LPWurh4jPHY3DYvsLtqEsHC2QuwPMaeycSqMnZqFI4R0Y3frGNqNWzO8yxa299///39/Pr6+ruMB5mpOgCkIyLO6zqO43W85nVFJgsJpJ2qRCo6ZBNSbpQ8eVpVJwjEtHD3a142fZ6I/P7+/vr6+vPnz+e+7Y8hmubnnOd1vuY8Azn9Oisfcc1hObmhg9FVIxENFpbCpYrKUFYgarO3DGZsqkRSRxH3GdNWidAHv6IAJBX3JyKjft9oAkDx2FlAEQiQ5VXCeOeopRAIylCWnmtMO3E2fGvK2Pef/Z5s2W/wkjLfGt+lggJl2DwtnChEy3DPPJpvnEwRyWakItYJ3I8xKpTg8WiNFHE74ntkkIl0ZF6XE1GuZmehWQvJXuPdyhIuKf19fh7bxqSxUzYvC8dxzMjCTJhZRFlEYsb834WXak2C7192WfhbtPBuu67cVQBaMtYqHzg76oY744Wpg7kJ5fwT3nhLdo6EO+DFvsxMlhLIklv6dDPbc8tMEaxkmiuTICSDU5OFBcS0TOeBjPA0SA8cwWjCJWtEKQac1eosFhEkrKnOELUZ7lGE1iqq6B7GcyIKj1voGCqBVltf61QaVLKnYgGQgCFlhc0lwiZRYmghIQhpRtXNLmXrzasNZGka3BNWpZhr+CN2T91K+e9il0+3vKArUDOJ6oiZzedlZh7Mc87jdbmfc/ePj9wUdTv2F7WxNO8jV18O5o4fCDOz87rCLML0akrC4+MTTKhtNWi6iVkyK5MkR9H9Qac7w69IHiTAIAZxEDww5+REznld17TTfbrPmNOvI69DGVsD/VBT2rz7hHVG9ijRItWEiJC9NkTlE8iNQiVk5JzzuOw4rvodN9H7MFAkivo0ixV5tCQ7t8KAf+6sNV58T5rWrPMGUJWdd1lE7vysfknVyATdk8i3utks3epX7kdJJEUyt0YN+8xM64ZKLbj3ri/Fd4hABkfpspMBqnKKgiBlZuEqa1blJLVY959Z8AOa53W+ju/v7+P5nOdp11Upn31IYFpOhVhvmlWaRa5b/926Z2K6lxolqcF7MeuDAYMFB1xoZdvX1e3WV/q6IFnjOyIQJyNp+R8ZlrBEMAwktPr691HS3JPUI47rfB6vr+fz9JgBi5xE17zMZ4QnkzClgLkBjI5KXWFVqRZYUCjd988Nclto18ioUKM11WWWpR1QGbqNbexDZORWZKDydYK58pPASrmswkvzYTbD5uRF+LubcLY49RbTzK5iSRAR0fE6I6LAioN4y+oWR18RZghDKjanaHABYUfkrM4hLJyCmDkJKs3dfvTHxxi76iYyWKRBrD9w7bVjHcfx/f1d7PtidkVEuR8QnWEV02IWIbVMiaBkSqbBa8qIyAZkRlr0wtp9YSIyc3efHa/FlH3yrzOpleKK5LJ4/GB69zhsSSfvo1S//vM6nq/vr7+//vz5+vP39/f399fXcRzXVcIPIyK3jIiSZFyXlROiMToWpFI0B06mSDjAARA7pUckLKrl6hFR1zc9vkX/+uuvj/0xhpQI7Nq38FkZdxFm4RaWjbOgBOfbnt6hTEqcmlSGFRatBnHn0dUKj2Qq09BlM2yaGUXSGrautet/HRqBImiU69P8XiQ5OY3yH6G4rb4ws00FEvUlFy5KN9WPf35mHR4y81bOVIGybVv9UIYoE6U/CQRnqUxXoIJrwNnBHnkH+CBTVfqcoFpegrvOW0uzF7UnYq2aLRQJMzvmVbfxdV02Y7pdVwe+1SZeTp+SCSZxBkFU3XVsZT9vqG6Y+FgbQUNh6lkuhdlqvqzRJNFyc3fe2n05NFpD0o8JktFxz1xfU1l5cF7Guq7jRAQkKYPSUBnpSZa24uqrGqshToAs4ZEgUmawcoZHhtGULFy+R9SrcoqIdMzmUTERk/p0llGulgoGUdUZ+esxAkSszJxUJnZe/eN3S4M47xoRcIJke6my/wWRThkIR42ZiQyRSC1VByfQPKxOAqm/r1q1rM6482furMaqY4mq6ysixbUqIV6EH8dxt8pOouRJRKpa52G0jw+ZWc2w2GV1+P190wAFAeo0w+ktdClC9zyva855UroJswiLVBlPRKzCjiR1gBwOhCcJ6/4wsDl5mCcPgQc8gTIhRth0So55TDvvHol7CYpj0wb7ClVvMaoVHMSWHhalBakeT1nKsra7HuZSEicxkUSlps6WW3Zze2NlvbPJglBZaYsI8MPoR/i5jnTLfREc1kLWFd5dq0VBKfsJzxv8SESet0vxp4Wz064KCEBESSKc5vUQCktmcpARDWRlkb/9q5Rv0R7AyVGZ04mebXUmbj2YzMRvBOvt34xAhGW0Ei4dddw/ns/X6zXPK8yFxt2cq/YexVsKk5wKFO6kj6rr2IqCyqswCYjcEuSguv8zsxBC7GT1yVXYEbNAILnoKsQCEWZBNZ9BgaRIp74yhgxKSTfw8j+wVHzkdV2T8zzneczznHNOz9LO45pz2vT8yRYBmJiL9JuVRwAEVU5ZZjD01mKuCoz8R8hlCVCyNiruDCRhUREtJwH4UWCeZAmSZI4CJXXSQjEIZl6XXcc0C5tvKYKvh7TeQc+YPhtbv+Zlc7YbVIgBPlU/3O/DOgn3mEPXNCdEU1T1JiMCsIhaoIYWh+CzYATbtu2PxxhjGxuzIjLNnSPI7kzJZd951YSOgfQqSVFVfgbasFkT/Gze25wz++ZaN1taREz3ItGg58mtcyrDcxLC0znMnNlmKX6cPSus3e9HptTN7lKPHhEJ92bPzPM6ztfx9fX3X3/99dfff/358+fPnz/P5/Pr66sKLCISUZT4NLMsrn1wJTAncEUE8RCR4EJ/xZyTEhUZT0Fu08OLVNYHMEhaHsfx58+fx7YXU8rhvz93oOil06LnD5dZ9WgBECSK0k40qCNuaDHxbvkvCQVKHB0ZmHNemWl++6YLJnRnst1ldHeA2vBHRFST8uqP/pzU14hAij4GABkR1/lC0GANMiL49MNZRK41urmPZ7Qyi3/ww1uIvO/7Y/vYNt2Uv793mwdVnAQhKteiyhTizDq9hnu6TxUuJ2O3vX+Yj+8iu05pdJO3l8JhznnMSi89z/N8nddxHHUzzzlnBcAAYKn1lKGhvLOoBw9T39q7W7W1X/ePrjn4yot897dA71ZfN/y7Odq3SWbW49rehAKjlX+q1FTvwVl0H+WarRpTVc7M5U5iUvfk1IwZjjKAVJRQXQYIOJoQRpw+3TAZQpCWBTAoOWMhPKo5YmZZCp8EXWAp1QurBEGQyVtVPIHGFM5wzWYyRMumvbfJNIYCCApaQYuEQKnCqh0YgWSRpGbJNhuTMptkt4gQkZYpdfqktw6GmBl0z2e7JVliDhEBNTO6lOVzznvO6O4eEhG7j9si0c15s2prpZe6pu3NtEDtvk6iSC7pUN0c7iV+tTpojuTrupj5+Xx60rRAFfokiWoZggMVI8bg5+XTkQRNssg5p2UII9IzJiKpDg0IFuIi8FByAdgouQ0gFivZsMUH15nFL6iq2Fc7eo35Ag1LnuHufs1ZsujMJGHKliH+8NR04sJK/sA6Z3Mu1nYfJtfw+e5ULbgY54+AZxH2DAogOdOWapLuQ+QqyMoLUjbbtm3f7ROmTlpEJXP36LvYHcI/aGF3Lqo0xLjPD917qy2WuA8Y3Jq2Ap3+ON0SImMxXcPyOI6quq7jbFlkZTf/jM2m+gFLg5xYeoNqeNPdQYwMeCV4CJAgI66Ob99rmdToWBVmTpSiLZi1BDJDiJmYSl+b1NBXj/BkS7QULNg4WVY8yBhDxwBRuB92vq62YpmFZTrIb7DI3VtB/0niAACAAElEQVRJby6YlPcU7+mDMGdpaLgY0oVUrDdEeSU20BqIJoozKdTicxVaFdhK6NVkJtLgUueBrfc/n9Ov0+fhdciOGffwpQovWumVmW7h06qFbAtDVf1Ixhhdl1elOHgMqa2oFEi5vtvPtahYSrEKL1kO/B8Zw1pUzDv5QURy5XC8b5JVW2S5j2UQr3yFCnwTuWGa7h6WnpYOu7z243rwmuBMP4Uy7WRat5lkklsaWXVRmDk5k4JFRMbau/hud1XVxczCebMk/vz999fX1//9v//3P//zP/98/fV8Pv/8+buyw+vOycwOlAwiouM4zMr7hjqO1oNpFgCLIxxhHpZOzqDKkM0Cw4R3Zk6d2dzO8/z68z1EmSFK7te0X4OJBT6rCL/OeZx9UnOg8IH9oHWJJTd3iJCekIggZjPLJCR7pM+rukLw6HW+46be37oPHUTJJLfBKBpUee8yaNsLFwpLVIkowsrpfc2J5E0GJTuCOjQZ9o27rtJtjH9mV9cxeIxxdyht98dj+3xsr+fHcTzNr4KeWIQnLCOyw0JEIjNt5pypwhWSuO0rlqf8uX3bRETUEaXuotr1IsLdrus65vX9/f18vs7zfB3170c1wNbz1SHWzBtBkmUQW8aIsPBsnr7BI9L+V+HVe8fqclUf90fhlbVrVFN0NShSWQWRSXX6zMwuvES1Oo4UkQBrChLuEhIJ1qAMjgoA7IM5Le5ZBFU/o35e6QeYOSUBOPV0o1sbS4vT0wSrEgiJ4HaQoOqMRCQ5WJlkhFba+doLs57q0t4aQeJ+xu+PGo3c4vrs9geVmbPnAv0LAIQ7NKbuy0J69d6sqtFtw1iHpD6a8J0r9EM81EttTHdeTNGCNCYBRX43Mw+OCBv26/FxV07VFKWEiKTPn4UXKOq73a2Xn/7/eiTM6W7FWeack5m/jxeS68dlT5ZRA9xMSibddwRjviKchCPJ3Y+L2II1RiKVEam1rIPiVgsxy41fd2cuXOG0OdPf43Z46QC01uVbvrhaxLk6drYEyFbKhPd4TUVYIjDdAecVzfYPhjt1UC6WDRA/SGPU6qX1Q39cX+rC/D5e1/kpPenH37xtiSVrzX8mqiagQjcUpjlA2ZP+aFXVDdZftN5cCMI2HFOx3YAb/1ZNhebJ3ctNHV56gZvTKxataxRb5hju9tXKEiVaBUVdsvCfJP3bolv98Iw0Myp8EDtxMCOikr8ti9T7A9tW+d/cUQ0/4HYAI9AM0vSYCANR/tCu0g911xiDpFQ7rSlsW1amg2YTw/7x0f28ju7pNA4RSckIrX8fNbAmvZ9YZaUO025qSnpf6DsrrM5dlb0W1I4BkmQh5oz0Tv6ICFQS13Wd1kaAaf2sIYtNU8gT3QYQnvGONHQPQlrdUXS/G3dG77bvj21X1Rbc9Cn1llu834eIEGm55I8BPQEoqAGDwA3UqLoKOO/uL90gosEVNCDFJFi9FqoKex1KEFRxD5FWdztzQ9uX6fWOv8LqI7aDvj4iwowAo8LvUESmbkM2u5vr9XEfXIlI5c1e/vvvv//666//+q//+s///M8KlPr+/nq9XrWaLhoTynMKqqQgM/OO072bEW+R8B1s1iLk7u2Z5w+gsbnbnBnGnkwgSh2cacS5q+hgs+s8j9d1Hn4WTczMbuJGdTdr6HFfo95+womARWoU3iNyzllnTr+mu9ucVkqmdQis9Jv8YfLnFRdLPwov5Dp/JhMWA6L6ektzVlNmSi5ZHFEK8RVJKzqapDmiqppMENbViL3XTBPfNt2HPHZ9Psfr+FO/Plcf1wkrPkfa3IYIq6i9GxY/bpCE4F64qvy6WxWLsWjneb6us8whr+M4z/n9/V39cjPzKnJqBSQRGVT2GmJFemCk1VUuepSszWLtdViNYbv3jmriLulCU8qjEoe9fXWa7TRu7Uj97Bp21klLapOPMyySAN2BE5HUQuDN0wBjQWSQD8ROTuZ0GlNM4BeQQSc0Ek7C4pyDcmpe1SKWMZSHIsnTt+2z9g3zE+Cx8NAezCQgAQuL8BiVfPTgT3HymXZdealsm1rtZ5RQF77cIyw9xWkkHZwMYVIiAWtxeasStBqZq1JzdetNOyOCE0hOT4OniAx2K05l5Z/wKJAkNBievcYvTG0vJgCmO7trTS7KddZ+pgxkGTzSwnxWE67OOpEF0fZzxrY9uIfZ7d9h8R8eeMr0gmdSEZKuo+5HB82EMBNLJOw4I+BB08s1z6wqMvYIFiVouBLzNn4F+UScYebENGMGXbRv8+PDN95OBCuRM7mzpA4kGNYrltmVYWFHgZ5vyUtpESrVi1V+FLgeYZ4FgI0IFn5UIjvMEcaADBIZpOOceeTMiOYJI4ngoWhGa9PQSz1IIoxckFWqujsImcbEUkJHcB/aAWbKkAwv/3gJPJLT5up1ZXWOC3GaqmrrkSMRWng9Ssrk5oo5FufZmYigpTYs7kFG2VqvTK+GtbIENJI9JeHZSM+J1qhxAIVCCUd6iBBEEZkXOPU6X9fzjNMxEw4JFuIcUpDTEo+UuhyZM5xBYETN4m9vY/RULK93j3D1tDDGqNRqEuL2OYKoAjQoKJiFOUYJwYlVZPSzB0kg3cU8JnEQp6y+dEYIy6Dx2OXxse+fD94VTKBNv7/OP3+9ns9IchJ3C4CdKLCRaooDRj79Crsk/UAkcZCXkhOaQM15XZRUU4g4g0KRzEnDuOoTKmwyQAjWyXFwkqZxPhCUAfNIPjf7RSzEUjLFRCTNSLeYVklw7tfM1/TXGdcVfF4Jj/KwUgBMMkikSu0ZadXBkJ6oOLnI2Mb+sX18fPz69fkfHx+/9+3358d/DNFtbCIURQfwNM/zvCIiXJDwsAwQICwRJgIlbbG1pc+4wseoRiGg5FTawAm6wDY2HrvKIdu2f37+C47vZ5JmZm46Bsuc09nGCu1oTdhpF65+OtIoC3zAhUES1DLHBGLVVdK1RpaIwNray2Q4W3slAsJOkAuv6d/ntR3fY1eWcP0lUk4XWFx0+Xme13X813//f//rP//z//N//9//8z//c7y+67DXjmh3t2lzycxICNJrKYhIs3CTnCwsg4nSS3U0UzhUITqIo2aOopyOxLalABJ4gYcnrrTnfOkpj+9Bkkn49etjbHIcz+f5zIyEzzlhK2oTXHODUZkXIXAB9sRGPEork35eNFW2AJ3zdV12HtPMqR5SRKRPO8/j5dOEWFUD3oVFxbAmRaXKeB/YmDSJIqZPm3NOugSUInvaGOMhZCFmliHsadeVI0uGVUZitktEIPtgTnFoYKTsvD90G6KDBY22hkcEQnRORpj7PmCpmPN0d/F5TctzFvHZE1UKBywQQ1U2Gfs29n0MFSEm3zh3YWUiZCyCGBGZXRFh8zrmMec8rvP7+/vrz/PreX5/v15HiexnhYs6MaE5hKrEe44NKuoxJEZG2UA999l9kE6+umuvOvRGFc3VSenSnCgBSfs5sq+kRZSQlt6CpPf3EtEqvGoJ1jE9OJzNz/XJy0C+jFp3JdjHrLQMoZzoT0ZxO5wW0SUlMp1Se8gKzoKIJRMTDxFCyl14EQlIk4hVynOsqmCp2jHAjiUL5Cqb3nHwq5XKkq3bRCaFo+CThRTKzMgaE66tvCTggTob1TKcyW+tNeiHVCfgzDfE657RVNMF97vkYZUGDKDKjvyRumBmwcSzer5Vs71hxOJeh8iq7i2DA2GmPw8WjnWCD7gXjNSy78tbLBmBaTmdEikqyoMFLArhlZzNyVk98IXioftM6Z3GSKUTLwkMVCMkI+rcB0GZTYhaPH+34viWaldq+NrWV0jM6tuHrfmc5xJBs4i7lwGwegHENXx7oz7vYq6+rywTw7sTsBRdP3sDfVFXOsrPw836zH805JZ6iO8pT3Xp3n278HcLh1m79ThqZFPDIG5EARFRqiBWkCgJJ0fb89ZcLqPx+nXbd1QqaImkAulIu65rTjO7wQRU49/1njPXCaYLr/VM4x5Sox0DmSvA4+fbVXKUy02QItyCf2bVe9aAdbVaHH9LM7KGkh0R4DXkKiZhZtQI61bx70PGkE00CGVsK6lNRNJ6WdkNfS5LWMKSjsQF9nKPrguZiyBC1KDFVrxSGqUmkaUhiMHMStFxXyt/MlhcyIkClKBI5IyZHsTBnJFZQsVss0uE1Vk5bYZPC/Morw85QCTvIg8rQl5EqDmNALDTrqrb9njsH78en4Wt2h6biLAKOO/+7t3YL4X7zS6vjxKFlETYppuGzog0Txvc8bJSWLuePPdQU8fY9/3z8zPCHY6wiNh0VHvsporUC2DSjMPMCEIUQoRSJHKxiXq6HkiuSFZa1N+FrVri4neGKgBK8ch0v42Wx7Y/Ho+hyvTI7GF3ZoZdx3Ecx/Ovv/768+fP9/f3cRzndb01Tyvr4n6u6+xchrv7Dr/lB8W4FLxH89yxVw29U+KSd5QbQHkko1oj9fmFdXg+v1jCQ5/ncRxHVRcWU3h3iqAA1cARTl4oegAIC2bPQv97pOVUC7BHeF5XnOc088zkBAFhbvMqSkVQABHa8dXewQNcCup6K6b3feOZFmElf6mIaJZyioCilVjplJ7O4KR2x2ERqd4y8599qTGGoLs+a15EIjSGJDbi2ITPIZH+Og9iCQJZmBOmWziYKu9OhurYZRsishJ736HGNTiNiBnOiXm5xzztKhXX6zye38dfX1/P7+Pr63mc3S4vBg3JEN5VU3n/0QIsVJDWy86kZtsVYqE6pauZUssIM4PC/5GuhszUGHXn9NPB/yi8fu4+FSoJrsWmQWSLXkjOkynetRqYKMqWuKAszFRhLp5mKbWScggHJBAEsFcmW0S6I0xEOLUHE+hQMlUpuENloUdKpCQxWEjKzV2XQaHI4jCCI0umm8zgBMcS2YLqGRpEhNYeIYtzUcsDIcCRXvtcdUCwpkQJbp4mZA0pf+Q7I+i9ka87kAMQBJGKUEQ1eMPMeNKPHn4Pktx9RrhbHV+yk3RJmDPdw6dbRChd1Q+u5kdEuIM7FoMbGhqd50BEwuZeAVkegSSn4IIKmcW8YjqBQkkZSUQ8VMYGYWJOUFp34wphU9vxapr6vBySbhZmNXBklgmKhE0DI2cIpXASEYO88Vot6r+bxrU8lcyzRm/MzQudGQb3LABskIzSD83ZLG8IbyoiUhaxEqK/64O7Ylj1xLsa60+ru78BytUW7i+B/JTbr1LL88fTVYvZPdihpdWLiFqZ3RPrQMo8uB8cmBmj036cs/5HRJkbpKmfROJRYn4CPAMejashWbSXPsa0/a5uWE8rjbYvfVsNpJjZVUV1WzoMZelI7LuSDELUEDOJcAvAa9W+i0WkR9RSUES8XnzvqDJmJCdJhzSoKmVJLyOKA91nkbgz14uvAxki3TDedOz7/rnt21DPCENMm8d5XVdYhbejc7gjg29IiSWOpDPJOIejea71SKxBADGxwzkTXiFTCbCHcQqnilEFlAkzcw6FcIoEi5E48Syzo/kJEUoR5wrnycwadISFWT0cHpbucA9Y+tKxqIqQdAEdUea2irrQ5b3dt48x9se2f3z8+nj8/v3x6/PjY9/30qChR5bpEWXrrntv+rQfIKK54ILzNKGLaTBPwowBGhbqlCykqpywiPZvkjCrbNv2+etXUpIkCc7vr4gQFiHOusur8mDOIOEZEfO0C0ssxYtvVO9jqbtW0ZNrhHRrg5BSujoG3VOqar7GhcRF+uIieFReNHbmJlu7+3WVqPH7v/7rv/7+66+vr6/jOJoe0FbNJhsz83oVkkEiQ6QbYGj8/SayFT9CZNzNwjo61+okbcwAORERA8KbU4gMkRQenDCz1+s7MUH2eDyOeRzHy9OKLSc7O8w5Ohy4935Q+V74ski4ExWl2swHsxOJW1yXXVclCISAO+Jqhk2nIAYjEWSZGbejuFVApYlEww4jpmf94xGVcixkXBl9mQ1RERZuYVMSiyhIShSua/Z3/9k+FK6w5RoqVSmZEMp9sJAqm+kWm4eR8DmMVM7LyDwBBIdbMqnqx+PXr1+/Pj8/94+HqiaBuGymyRXyGFF7XJof85rzvOb5er2O6/V8Pv/68/1f//Xfz+/jz/fzPAr+0RZS3YfKvm+/a0xFQinshE0ZCSJNMurBXx9FqvC6W07lCqBqHywiz5KmhJjcO9FgK0IngDfkvuQdTM03iIgCNmauiqqOAtwuyuw2RgIclGmLoE0ctVjPdHfKA6mgZPHeoCiqZUcZCCS5unuaQAiUcGGpZbHrQgjxyKSEeoJEWTcZWnLRALMkBkLYKCfCyZOVmBEsIiFCqvCowI/e+UCRRVms5pzD2Yt2XVP/1IpHjbDMzOSgBcGuVlapwFYGdimWscLIlnQmHItEXgd9j7kuWxk0PIOJqVp0vt55oleECGmq0q3bCXc/8lhqvrvGynu96IaNdyAjEQ0OK3V+eCzGQVV1ZnGaT6txUIArfWUDK6s4UWR6ocQjuTXZS4eRbDOQhe+6wiaF8ZJw1EslzwmHkDDxQt7PFSktUjkKb3jB/XF3mILY8/ImY0WVtplZps0S2SoRy2ChDPKcRSe4zy73TR//LLzyTglk+bm434VXBiUn/9Cd/Ojv/uMFY0Usr+eta29q2WKfZIo8QixtQahmple3CcHRpNaKf6BciTqclXlIHNlenVU3EIkw061siIiMLDxQuco5ocSi486Wmfs+pM1Bo4mvNQWImsIgK36uDVY/v3nHm0IqKiR/YMB6zVW5pbWkxJQkKB1GJ3GjZlCJdJQdsiiH3AT8zLzXblIpGdamvDFdFryQPDEDQUIlgU4wEc26VA6ArADbSJfB/OOuusWOzFwC44wM7wMhJwPGUA4X0EhhZSCSXSVVQhQsnjyTJBFIBM+oTOtSrS25VRuyLN0yvXA5lCHu1uRAUcUt4YOFEyUxIDS4hm5MRNtYGYSPj8e+bZvKKF8p6sCLhGdYhmVMz6TwrPBpK3lf1d+6bVWEA0QYyruSMyTJKUhASiyoLBzKFWEgImPfHvGBgkxRwKZPq05PT1YX5q36Trc4qTYS5VJlQpiSQSTdjb4loTeGsgsvrWlFRyesg1GZruaceL1EZJPnGDuzIrd6yqqLf56v59fX6/X99fWsHLbqjtx36d1uX3upos88TcJrPB5zvdEZhOpMQhBUOZUuolLVoQilEgeRpAvAGEIBkHBuMojIbAIOMlVOTrN52RkRnbIZ05EBXz5RUGR6czoqPbl6sBHmPivCHoB7XpWcZVV4ScXrwpEBTkognCznWr5KoFI6zv6XjGYuoZJgOcS1wnEqgr165IQYyiJDZbAOJmUeZfSZ4LWYS+sm0j1s2kUMbhIftR6VQRwMGqhCH+YQF3dPAl8TTBDDeVoETwJDSB6Px69//+vf/+c/fv/rX79+/RqPXUnee8QPsIiZuWcRu47j+H49X6/Xnz9//vvvv/7nf/7n+3n8+fN9nG9rfDJtcxtqNsmDAU1OEQJROLezialsNMJKKwEF6COz93YUonQXA1nQ0GrZnGt/8XBt6hAitao/c5uzdsQMkCILKls3QyCL44UVbBex/K7JROl9WqO6fZMQcbmHz9S4EvWfkhkZtMxSADwTqNBQXzkkmcSprJUn34JQ2ZI4QzzBsldXpr6RE4kC6kmYCfMwT8/gEnwKj7F7ENzLpp+t8WQkZaQlKr3IszOAltPOa370vxqBVB6KUhfLu8bixhr/+JI7cyMNqberLdLzegdtZhtJ6GcNlYC7R3Lm9NboeaUmm/ka9L5hwQBnGoCmEgRxeS5IrrTMnjvUwNGRkqG6lSik4Yx1vNUNOog1WIC8AhY+zS1j35SIbzQLcoGh40qb4cbkhKZB0FuIWoFA3BEu/Wz4XcpUlndvXfXR9B6gL4AX/qf2tEByUKAUuwUArDYMByI7V/GHBrZ97EnrFEKrl/BzgPijOdxwiqykrG6D/fD+AOjk6/XlmXg7v26DcT9v69ReMTaeNWl6g1JjAVvp9lkGkSyCVPT2kxXrntTdgiqjSESq9V0yRIe72TVjBgECUhaW5divhJmPvW1BIkwqtUxYw5BqBYwVfMHMFna/P/XcpqLikfo63QbJwkplY1WRPS6qw9uqWSuA05CZnBxZ+UEZiLDwmQCwMVfHvU6QHf5g17yO87rOhDNoMIMEQwMZIKQkYWYEDJnBHuycKY3Lyq5iVyFePaYs/3UQpdRpnLgGPdLX3CvfOomC2Gp4WgOYjAAomSN1Zt9/2UTQdA+z0qlEYQYLsuMQT0uQVPw42nddhKhyBPdTxv+YNugmOqTCCzLdk9JrvX0/WXNOBAoHWL6tsy3z/vGRJpYWcJIcmzxUjFlyvE9KFaC2QjXafN1nb/LI3X1n+5dds3LBTbXAJa3arNlyVVMtfuE+iAotIO6KgFgfnBCQQOqf5CUTKY3DOt73jgWUVua6rtfrJSKlliRqkcbqeD07Gwr0kzUdES3ZRlkNpNpdVVQS0Wr00vtwa5WT3I6ltGBKJhceaygplBUDAuYkV0Iw5+BGvZTI1CzmPHGWO8Wi+EwCdy0YZpl8GYAnuVBQZoAo4EB1pc29BtmeSWZR3cxaHM0vBCHAyZwjCZk1GLa78KISyzuazVnOkzbWrHiMKpqFxsabFqm3/OkQHtv2UB3gjSC3CaCLY2mUYNk1+o7awlUHCzPTO1mBWDiTJIgFOScRbbkHyMI9cLm1nJshpB8fH7/Xx8fHxzZUkbdB5BbC3CbxXEaTOe08z+/j+P5+fn2/vr9ff//5Po7DvWeCzLzvNpSuTc2GhfwmZcYGmpRESYqK6AMrycasMt5o1szUKpPTi3cojZSKCF0453UgRxKxe7mYU2sjrKlnREFoKIOY2psDvLEcESE86rEEODIZzgx2DjIOodzCM/OKoEbYRsAj1yZZwwoWUBlwpT3/gfRMCgiB283aV5RVhUcSW/TpSbehm/YkiJklWThyTstz+jVdJaVONawhOUYiGOTkZKSd+xUIynCzyIiYHqWgzBrX9tiLBqLzhVa+dTYCiv9p/qK72k144obQtuCjJ0QZ7emEFV/e8HbE4Eerpq7WTGLytU4RSDwN+S4p1p5d165zhCg4eq7inB4RM9L6WN6PBJHYSqvh0skxgclAQLB7MFmlpkdkaV1XnZ/ZYkYiopgUKzx25RuWQoKio/AK9mN2leSoAsV6PrLy3a4lwKj3saILw70a4NnPid4jP5GikPDdlbnPPT8Lqe5ULUZoH5LQT93PDaB2AW8q6rKa3/O39XFfJuZswnCT4AAw4CKiOu7kgEwp9UuVZRG1XQPg2xlZ+1P9OGKtaFQBAkyd6ZMKdk6mIKMgkBQXS9m9uY4lP+xKoipgKAu0vkGL4vXXZxdeLL1sWZpYvVpMivAKrqnCK+qeAd+L8iqKpet/qoEpwtPJjZwNCWbizGIVUw+XECAXJOBJ0RPsKLlq92WZmeCde0PRMb1mRHSe53FcM1x4fHx8cEAh+8bOCMdpbhmaQTbZNMFgCZsyLCIkIqMaSkVzLqxOulevQWohQTIrC4QhAikXS2ZHvEUagTMtk5046xQPZIpCnLquK9O4mdvk67I5c7YdvYfsYCEKLHYXR5AKE9dYVlnpPt4UtJq11UQ9Ti5WpFUAMBG5ZwmJjuNAXOc5v7+f31+vikL3ZbYV0Wb/YYi8VIaATPap1ylXWAUKZL02ZlbdujWYlbrmEaaWl3BNA6eQzzpH1YNwyze5aDh1biBaINwaIhS6bVl5M//hTCemEnHUTUatCCAGiSS4M51m5HXZ63XOq3i8t3T1Oo/jPE8z89VZ72XZQZSFNsikGs4QSeXy3YVX3HCBLvJAJBGRvVv3TlWpD0mMOx+4fnFisEQKUbZXoXEyNKcHXYFw94AHByeTO5odmaWo0ZBMSgO6651IT87wEhFbVfBmYWG+5JfzugqHxZBBzEjLgCPEULMZKZkdsXR7LzOrsidIaJiKDeVIZgxhVVbJ0tyVlU9EhqrqxqQAexJA8uAsjDJRxVFfV6XnaYRRRsSgMZSUywZKQYQKGqkxp9TR/IfJmplVpIzDQrpt26+P/ePj47Hv+75vzBSuQoNllD8jgtdKPilvS2Zt1m5pM8qIcBzn8/s0M197dwRPeW2uyAEeOqaoERdTjJUoGBWOAhbiwXy7aO/2ysj0pGjXthARlTi8DnjdUBDAwQ6zjCBdVNa448CInOBmAXjFetz6rVoKOFQkq8uXWSMVBDO5wBWZMKtbmZPSOYIkKCAAlDiEWZOV0ilTOCv4gpGcCR4qMkqi2xUJqwzNvo2ZR4ce1t7oJdVYtcx50WtMZVEWYSgTs0ISmhSJCLrPmLQCnvqRnaXbovbeFfSEUXF/cEA6Gy+1pFQF34jouEYnisgxpDnoZaJuFlp7Te/R1X16C5ZYd56qiuiqGFZceAbfoxzmQkblD8d4tRPKd9vy70gAEsHMzm+N7VwBl8LMYu4FZ9WKtHSkBQ6bxYxC8qzHmqUP/9Vw64N19lHSTZCt+4vMCM/sbVpqHGLuabDCSHTbB+CIYU604F5zRoRXlksRFm6rQUSA6mFkFiJ2pPDCv2WPqHrwukJs7pFlvp+S1p7fZevPwiuIGwjehlD+MYV/K5eJc4HbiDv4oCdGK4d7PfNRNBG795FqBCAFBOqfxVSNgk6rJBAhsggthS5WUiRCiZ2IyOiiTEAyKZKWvq4MjtXwY2KNcLDQIG72Zu+I+NjGGGPso2T1kc6WROJONpMpCJZxucFDVW9g8jIzDpHBqhWJ3V6IbO0IAORkRiRr1qnfkGVmI6IUiqxDV5WH4d6yqPobZ2YhJZpU3P5wi3mZGeg4/fk6M3g8Pn45icOTICOZrulq0xKXG5nyJJJkSw8ROSPCrSfIEQhP5ixsOEWWm3Vw9z+GMrNybpJDQttxlnnZdPJRZx9YgCMtCcmQoZHaibxcLS+45Sq2ls29ZdwhRMTK4pnhHoBoMA9lhoiKqHCFcnImUStYBY4UUGY4GEHMkUaQ1em5KovQzgbNv15HdTHrXr2uyezpPaIdopsOApQLfNX5JzqwbUOEWGiICkFZ0E3KjfB5eOgQikSkMF0EmhRxjSGV2MPMOtinVnf/HkbfO1UvVl2J3eSXrn46MP0+MrXviihImDFaRIglWp/kxHlDH9ybFu3vxEBZ05+gUFWqMLlSzddMbWGFFncGmdRt+CpE3NWdMiLDIilThkwRIZECpoMC5MwpwiB2J+77m0QZK2suppdNLxlcbKO4vCIzaiREmWCB+nKDMPqo3o3J9Ai4pUdBCtb00DM8kKlMwQbS8BL8eS1NmaloZscKk8ibMAJQxHB3rTFrgY6pSOBl3687ZBBxEgN1DhATQqaufkEd7+sUV/PiWiLXfAzI2gqJhBnMoeUarzMGkilRYe1DFZlK8rGPx7Y/hj6G7tvYmMixy9iGbNooJeeO+ROLGJuZqW5DNpHqEiuFZHJMMovrCotoBCbbUCE+dd+2PMx1htIs90ckKYQl3gLfeFfzpSyqyQZHWtffqOBarrY4bcHumHOVVk5IODQDdf4rYgdzhiNK/MtCFNlshSaM1+odEcQs1RKoFOJkggAKL1cyOBme6QrXFCYU74TByQIaKBQKJZEgiYLAyUqqpMK7sALI5lSpRWCpLlmJOZIFjT9NSkTCr3CCTbkkN0kIiUqufndygJ2Js8SLcEEkLDMQHjED2ShDD7AS1tAqA8kgrylqdZzJJKXNSYVBWXVVi+mIs7qv5SDlH92C6kCstgyFe3hCCkjcvRAiWXmjyQhVql5tpKzay1fNQFjZNWuCsqhUQZxeB2uPNwUx6g1NeHK1QIt27hlhTpICJkQkeeflScXLu0eBtUvuJiLhM5mVkhOtl6vmF1NmYQYR4Rk23aYXVCKrGzvDEZz2lqDd88Gggi8gnMIJKUQsPLgtkHm7FBPtPM1SnMh72nuPcf+h0l3NsPpLuyfDeNdhtR7d8ibP8Ki2W3a1kbfcfgG0mBVCwplw91K83hX2ukzJlV3a34lKrvE+n5X5VfAGgoAyWVC94i6AS5JUB1yLnJHpKUJMnCyhGcEWGaqUTaikm+i7Da1Bowjnah9GTwzvSVz3JQNaCr1Sy6qo6tCdtNjzP+atIEpBua+l12uicta0rFYoUggR2Xh3rw0xIxIT6UTBUKYQCiYnjoBPxBXJjiPycHLSoY/Hh+QMC8g2kon1SHOJIEdYpqRxsiIdRELBxP2gExLpFEwUXG93kjAJqbAI6S41NRlADc8zEMJyem1pNS6jheCq00EgXNoIUyzc1QEuzw1nCFKQCO6hQxAhMTOKFUZKG4koq7IytBa2zEQIu1AIhXC05DoTLFo7Gqofa5ed1/U6ns/Xec7n8zyOsxiKqiJEc85kngkiGeO45n6eL2Zew8SmmO77ECJhZYiQi2xM001zDIJzmPz6UC22Sl5CzHzxBUq3AKxl9MtelPRuM9cN332ueuffyirO5Tq/n9w7b6L4cfRDiX/7893d4auhVaWJNSy61ZZVYfTEptsHHGWmuQ9dVeD1zlDa0bqyWV5w9jTP0pk5JhPRZaGAFPoY1U4NRIjWgaDS6QIOcmFR4YGM8EhilCygPI98RWaSBwWTJumQzQku2fF97EKtCEi28PrF4Z4RlEGRyKBAv7cBT1bAgswrCqBezMKp8z1jiQSSOVXrXeJ0Zso78hkdZgEg7uywpdIAl3mIAwstHlELSmSER0yGOqthUt7AhXtKyM7leK8bAJWHFu3VGWBnAUchTT6G7irb0IfKxhSACu2sm4oQB5EzCcGJQKmDx0WbdNeMWZVEZGeaRJqhGUGBBEWmmTGz0wSdyUgOz7zCyIl4Qwx2maVHz0jsRfStd5XfJ2oNi7LTFeCdli1VdMW+tjy4iylF61pQ5+YM4uVPvx37xewuIwCTetr6eeUJ5x76QBjCQ5OJ4GHP47i2Ix9jfGyfunPFJWXG9rFzsm/iL8oLkUFCj+0xxv7JKSLE0ihf1urNEpEqBwEc045I0e3R0myHzcvCMo2MyD3nYDw+diKCUrqFILmribmorZV5YsweCCmseNQ8i5i4bOGhD3c3c2Qtz4OEEVEnkaLYo/QolACmnaAys3QsKDi5BuV33VXgLndEOgKdCCHztHnaEpkRQEKq2m911NQ/hTrlnaP7mbeqKXp6VJ2MIo7iuo+Pt3/QzJg1QUmDWCJiem7ulwfIOGXbUlmiOP7gMpDWRLpSh0E05zyOQ3BFBMOHYheS0pPNyREehnRKL8Glha/ow0xgmpWyDU3TReVFMGuSIOBuhQcEWFlYhYg7Bypj2kVEt7/yrl3mdUnjDapWUFqw2fop1HDCtpXYbEH3tpVKF0y6ghzgWRSP/NH9urti1dCuiZv0ztHh3Lj9ELcQHy2ob1JAhq1dIe8KD0AiWCrPrEY0zKBIsUgGdDDLHg4HtUQvESyV2kJACJvTjOkUPJiZSTW0NULMLHuOMR7jUQfQmLVdXSIiY6janDMySbjOqVBm1TH2MQYtexpAHtmc5YU4r1+hJFWVnGYWFE77GCIqjCC3K9iFMxmUNiOi0k78VM7HLmMk0ZVxRM7B0F152y9gnvPripPUQ2T8eihGhCMNZnnRrmxx2Uxzv9xoUp6gE2KZmjXPfSsOKTzNCi7B8Kpj6KE7M3/wqCuVIU6h+xDRy/y8MEGcGMoFI014uDEV24coKBtBLklckikAEPDgQUwSbozCRxFAzgxVkdER7xSUlu7hsFIlROTv//ilvClvDIFxBNyTJM64sOQsc87zdVzn6zyer6fNOd1SeJTgObMjF3UU2zkizOd1Hs8Mc4+Pj+nuImOIEuXYZFPWoSyb+0zPjYllkE/osHFpsF+TiX796/evX/l6vY7jer1e/u3Ve+YGzNZ+Tr3gRVFuuvIKlLG1/AeXzfAtt21j+BjjoXvxOko+kJH3HKoaikEIwBCi764YVkj2woBTLF96Ed1rH1kaIAdQKUNAzUYDyALfLrQ9xi4kYX7ktU7UQxWjPqGg8ZE1LgiPu+ZbyioIUtxBExHhbDwwdoFwwqb7lc+AJxdWb6Cyykr8VKxMTCdjZHBkRhBfbudl7iSpTMVUIuZBkREV3W0Rmew0knyjCu5aGQwlKBQWVR2iotw6URAU+o7AZWlzgJ2zdGlVPFGk7/u+f2zMHK1y6Tf8BjWrakRcryOmlc1527ZNh1GiS97KYomygITjPC+bl18e08N9E/3Y9n89Pv/Pv//9sW+SCZs5L94f//r1uTEP0cF1ml1hUxnIECqFeGRd9OluRTqkDGEMYapAhxmT1ZJ1bLE9pu7pdB7XC/aRcNVfLB9MA376wab7tj2St33fRYRJG5BV2AjZl9r4TqKrXTx0JEtIBTFfF/wiVi1hyhLulHArm9TcvMkWSN69X5KgVG41jxMRevthIiGQkgY255MgcMpQCkG0JoYFBJItgdKmJEUxHYkZrDsxC0uXlUiASmlZOT+RkeQeBkdCqPQT09JcMkR5Aidh7ttgkZoAMDXLh4GcQJuBkC7pgDMlSyAzKKpvSNXfCpq8BVBWtB4kR5EfXSoHlhbIkpZf/W4b9CZds94+8LXiIco5UsFUnVbji02CeL/j/YXVpqsoaLSuCynoLn3JONK74VY4xkj6ibCu3n5r8909UV45V08OvzzIjKUUXK0Vr2+LH7T3e0LX3yfqKJAReSE5ps8ZcyKdw5DOcISb23RvpX4H4nQuLBYUqvvt2SnjFukJRPu+CFI3elOgOhkmPayUZVVy8pu4k7ei9qfkqzJS7plvcbZ+mKq4htsxZzUmmDnTqwG2dAP/fLRuB2U2H3adoytD/R/+ynV98+dLukcqmQn2TEryW0RYRpeyS9Sp8UcgAkACopSWtCdRqIAgWDw5VRpCqpXhvGsOHbKJoJQrSxJH3V0ocU8mYUBEhLY2f2TWlFWI79GjsHJnlFJ1k4g64IFB9bcNwIuMrAGJE1UvtXauXIiN4tRCAGEwBzgLteDAlXQlnyGQB3NqBHFtvlHeSIETGecknelX8Mv5tDSOjyQCZyoDFQWZ4emWHJkWlUC3677rrqqP1Drml2JXhMEeTE7qIElBKGh01ZDpnqgmBqdAINUUL24cMRNzsjLBCUkEKZUD1dwZIizETNpLyQpvpz5fsZJyMhnACAnq6FOE2aq6zjoCzfOya4YhCyYft82KiWSMIcoiwgRkmF/TGIiEAsgg1Rm6i9A2dTKP0XYYeFAkIwSpyEI6BZW/NbJ5V1goPyZZjtRiAvgykeTq+QqvFY0zMMv9kwhiB33IyExPU3D0QJ8FUsi67sXSW0jwc729H8lcw/EIiZg1jW10UzgtFQGtKIibqVxqtpoblmTtuoyZPYeErKZdt6gTVR1FEDwj0g2WOSOjumZBnEnpCOK4Mogq5S6TmDIRRAlxUJAQKUEzGQ5IuLuUlKeUm9x+a0xLM48MYGTFpxKDubVrNiNneNw27riGgGqKzSxKBSEQFd5Ftk22MfS2iBHRRryOlAnOpOOaAbnMI9pFVILgkATnllxnYVUhIiXc0XAZMd0izCebSNj0MSqLqRQF9+KMZIRRJpwomEEbjWpSfgz9GNtDddexsyrLIAiTECujRBSRIUQdC9iZNGAIwIKSSCqnEAbTJmwhBHimMxPEWIKH8XbQIAgmXuR2zKHuICN+RNbMxEEm4/+4ezhIGiZQLZIscxE1zeC+FUGOSqQt5k3/Q3cgILVCBnB3ZhceHWi4eCr1DLh7poqsMUsQly0uglkEghRiZChIiRwp6ewG0lb4Sgv7CAlKSmLpoXFZA6uTXDlpnhRBjDRCEjf+oTTJEWYqNN3d4woERYa4XEzKdF0mCjWwslKdMAAPh1NSoM0ICS9S6mBKSQdFGBa3gMBIFxDXYJtruQ0AaU4gL8fL0H6bmOtN7/uJOSg40aPGLC9lj5DuUm0tHMT96PMi33bfq/uL1YJrsCvQOt8q6hhrMOroh3stLrgXptJS1H3p7glJegvH6xSoIzJoiqdZBVTWobFrtaWpF1lgmFUoRkS4wU4/z3kdksZIQjAcMd0KWjfdnRPMXMmshfOokyhaUYsa4yyPI7jNUuWMiptrGn3EnJkJiMjOfee3x9CRFdTYzadVMMhtHAPCi9kzhu4iFbKOdZ+3l6rH/QV0Ne8SthvDjjsOEN0hRgSty1eM/OraY+XhVDv+rsKwRrSZCRhA5QOtYw+IuhJnMFMmZyvZfqDkq48BAHnnrHXhNUrr37/yYNMxZCglaBIA665eRNV5wp1ESyQy7qzGKHlakelbb8fMwn0wq8lFMYapXjSvCiwj0inC4R45g4NrPUKQaCYYqIgeJdYeJ3XsvRFl8ExcQTOTRJFJFJJOxKDS3JRaJ5hB7BAHwzksXIusU0Ndr/54yX0yPCmIIarbx/bx++P3GGO4us9is05xYjZKSg1WJKdTggmQJEpEm1KtanceQmWqIAC21szkBEsNH0JT6iRJBBa0xPvui0bv/4RoRWNyzpwwRKoqCVyQ0haZ6zorcm7aeR6Hzxkxav6wupMCCoC2oSuyCZluNq+LIsJX8RGxE1HEVi/kui6Ep0+zGWnlR7jXlMyMNKduMiS96573cL9k+V5Sp7TuXZMAxMqF43yHqNyAb3H3FKmhBLNwQqj30oS8nyCC/i9zzDu0jMvoHyvPscir9e9965IWuOteTBIeGdEG8O7cXNdFwjpVdasJW4fkEmVqZoLT0jxjFiq3Eo0Kn8dDKJ2SiKye4QQzXDI5SJkoCMLE4KQBrujPZLgQFx7CEY6KvYhIbxNYyzG6vpQKQM50kERkSBSjBoiIrmC0MjFLXZrYVPZNP/ft8bEN0aE9w0XDX8STI3BND4j7mUFZM0FhoWStpCci9FJ507ApYVnkunB3w6ynw8zGGGPfeuy7dGacEFqJez14BtVqwLJpGbC59F9SyPjIZC/YU+1l023Oa9qM5JuUmz3sZ1omFdUxxgZmZk+eI1M2GvvYHzp20uHFsQtnso9k5UuZMaAQqgiTicnMKnVcr/hUWZbut+u/jSYgSCXAUY9q0Fk3ujbdQnGWytuZPdQifuB6V7Br7UOAZEVQEwFaxQYFKw1K9kSwAhLMLZGqvlK/MkYqsvEuALNVJ9RA4pYQNI+5GkwcrSbJWDnWddpjduaMtPLTNYil+5jh7uKgjVhkcDhoAkiwo7A6haNnwAggFSKK8v7W3km87AQJ5uSytr8NOPDaW5giBFKbVsOEKnomExCHFyepfhhllrH/zha+U+ZqVSvR1T97JO0cqa7D+vHV96rX3E2f7vH82ODx1uC/CQurnutmOBERJMFlPmQCzJBc238NLqMm92uu5xyyVOS9uWbWVmDn4TY9phCYnDIQ03zanOaz7h8BEZIDlecdXalIjb9iVV1mVrGPzPdvQWUwQrse26p5CzhUO5C1GLMWV2lp1+Hhf8fVVR60irJ2NF/VfPjnx01GKO9bPUMrkvl+e+9QSBT2vjQ4XU6vTyt/3LoQ95cvF0zhvqj6JYqSSgEAS+ec5t3zy7wjCgiZEpEogXYZVkikDUK300cENRhEksOnW7lNf6BWN4MRLZ9XVY9Flrlb3z9+FyJQFhcPlMXwfr9vpaTPwoFkhluEJYwZxCGgpOB3B62k5aqyiQziDSTIflKIGGBPW+BLThiDuB695MV/YYKQSLoEOZElgVORnFKhME2ULXjX4MfH4/P373//6/OX6ibG13xFGCjYNQnhZbuXBCIIxMYoYQ/CzVMg1Q+v0XY4Im1laAAl94xkQjCoTiws662tHA3OLG9bhxqXToSI53kYkV+nqe77nmMf6nUwMLPX6/l6va7r7IBkd8ZWyM+6Y7iZsTKGElW/qjaGisZDzlNEZAoRqS+vlbsfE+EeM22CPGHeY7+qK8KDImZmmrlbegUqkCQikzxQM7erULJ1gxEEOhbbKSIsvIhxTFThbbeLJbgAtikQJM0MZkoGqEnOUeXzj/UtF0GtWlz1FlXOwTvc06yqhPznnSwiif4V78ILwOs86m5R7VmB2WZmIrxtW6Z04QWf7jV3gyM8KbnKemZBBieB0sIzrGjg41FDni3TM4MNUhh4Uql5UAaIg6J0+NxseweBhClQfGNKRuY0AyJhQDCBmVgEIMUvZqoYdaEOeWHCYHns4/Pj8fmx79sYYzzGpsq0ad0w4XSav44L+cqk7+ezidXcl2+lpKOQIktKj+4Du/uci6MGESnzqohU6Y2SuiGTWTmVNd0mi8PqsFrfEGUcXL5gt3T2om13gHq6u582r+s6ryt43JFAP3M7qgelqttjZ5PLZ3VN9MMfn9v+2B4fKeO63NLdYmqERTCVVchVtdTGtE8RMb2AbbW7gKTFCX67KftUTQGu6WpERxQEKNR9LkZoAUQL1MYRI9gqMq/enmXQixLKoQSIWTwegiQZSYlAMyM1U4jYgHS4pyYzqSp5EkrfSFr0thLAIuBpnpFR9m4ipFdVUb2X7nZZurcCJ5WZICwEYhYISXF13z0ElBBHBFHJQhKIQs2ViItQFRAXfT6ZOu8dxMSEIFZiSZYE/f8Ye7clN5IkWVDVzDwCyCRZXT0ze0T2//9r3/dhV2a6yATC7bIP5hEAq8/DprC72WQyAUSEu5up6aVyRZlGzresoEpEUnU9imvetPjXTc7P6vOzNSqsQlaXX2uAS1xV4+9fr1fBpWFchdel0St07Ewtnw5pwA4vJKzOso7v3y492Dhl84tCwnKvJGl1+jXgjAm6VPGdkrsAPEolEbm2tunZ6hWGICN8RXZk5Fn5ZeasWNaHmShp5zqps0Ve3ocOaJbGyQZz94ikxGUi/97taqcJ9U3pStGrqsa+XQE2fNtzbRtXp3JhY5cw59rHu7bNSkLP5/66E9dNi+tmYQVWrTv0OhsQlwTrHDAuxXkhalVzeVqTBAWrdeJbrA/qyvaw09BXqW0haqrNyeursXrTy+lU14X20+W8X/2K6W0BVAT64hV1mTO1c520ciYq184YpLY1JpclZGsoEY3A12La1lGVWQdrAlUSqkyhYixGkGLTYWrDPoZ9qu3CQdpLrUKaaPBohzCBCAcYksLSDg2pUzZBE8kO1ZhSgszOeC1JNUqyEgJRsfv+8ccff/z555/fP76rDn9MPsTjASSzPEIqz+l868YoLWCtKGYnaI7l9DOEWlwn9GrllYgaQjCL0tkMQkGrtJPZ50JCVrvVE6ZiVFXGcoDnUMuI3CNtbw7inO2SOuec/TwwpeF50f4hr5n0OXxHVpEVlejugsd0treIqj7dxkMzQ7QTUCLLhQm0LWNb97UZbCYAx3Sf4U0GaAF+dWpgIqKaWTXjLLwqo0o1iq9t7co/blPyt8XSyuA8B+6kSBuf9nZ0RMqJWq3FewY2HDP8kjfG2mTqJAl089M2JbVCxHUtz/XALi+AynVuVC0fgaqqjC/TzMw0SAUi0Ixab2YeWv8iYClAUwyMwPQ6JiafU6fcMfbbENmjDtRMlEhSaCImmtFV18qqCWS2eZ+R7Q4cTVk8PE6tQPae46WUVdbb5/2jM8hNZE2gK5U0W4XX/bbtY9tv2+12u43NbnujleH19Pj566my0fTxfD4eD8/JrIBz5nyKmWXU5VfCnn0/n52MOd8KLzu5Y3tbJ1QhvUAUZe0Yogs/L2mV44mBnVvxKucieAgVbAhgzZHDn+7H9ELOOZ/zmHPOdixAi8VJKTExGTIU3t5wMr7j43PcP0y3oISUkUVYJaPiqKOqttDQSEO6qhzrvICSU5Zz5zW2vmx/39GUrDa3XVpCkKdz/Ypkl7yOpDZ7Oo/4V0z6QjgUJJUMwEoFRBYIupLKypGa0A5ebKCiEiqbKrRl0lWgLloHTaZmgacdQFRKiVcsvycJzqaGrGiIqtbSRVFAo4jWyR1gBhjlWRKpVQZSYBBLunboHYDIluT2cCTTq9bftPEKgapo2zlRFKV57+2JJqd5bhGB5c/Jzq964/SQJKw4r5FhO9O0A1Bmm8KmlAGxHA06lEgIMrEcZt6bs9cGcZLzTpbOeejzlESvcdVrY7pK8YrM0nwr63r4qNLiUy99De4utKybyPXBtapKM02WtXRE5PRwrwhjZdXy/Vu7oTeata6L14qzyLzq+yZvejP0e4SBrKSIRyy+erhHOCW4grH1NOaTfr2ImKdhbKwa/bwX52O8iF9CPdXmV7nWn/E1fj17plpdxm8/IZY16GXodQkd5Lz7AdRpOtuZxejGsRHKqsUGE5HM6HN9+eG3sopVldI8RaGcgsE2pDgJGSSLKSTNVFTGMJ6u4O0d31sCTcnGS462lyNJU/U8g18bcjnrmI79MWn47dwcMtO7Z5JCYjkYFcmZnYSMBCFCeBbCPQ52t4eipBECqshm983EFLtpyy3Hdh/bp+lH2Y3QSmalJLVKK0VECo22FqtqJLxKv7p1Y4JTtI1tIiLGqpqliTtqqqXtao+Qjfv3zx///Od//vM//+tj/yT5pb+CzpkAJIJzujuASu9nr5gqliJgoPVy1p7eJtZILpk62tozIcv1NiuTVc9afv0QxKopRYqgND/4PNxz5qwozCJVKaHb6gE2bGbZHift4FEL9xRhVrY98OruqolGaEebyvYP6ylVZebewNIZdeLuj+M5Y5quJQk6maBHzunz8PAMr+xzJKvldZWQEi0mRIl2vcFqlhco0HYDWe5x9SoqaqpDdVMZ0jlIy0zj6mHwO0+132f4wlPP/Wst2HlcWFf/vpdxS/J7ea6Vu7C25Zl8nqC5WqBznxxjNGB9Em+AjFKvioh75o0Kr0xEoeFAycwuvBJIRWa6ZJYn0ut45rPk2ErUahlSQJeNb2erNG2TyOWUEcFZUslMZBu4rGhK96aTV1FobYp56d7aL2PbhpltZiJggVKLHaVy28fH7b5ttm92u90+Pz9v2z72m6i2ddlzho1H0xWq6r//9T+/fv11HEf4jHm03QxE0RHA5JHpx3x+PbrwuvDF7hbTIkfGdGQJyFhgQ/fwEdEGyz0/be6IiCQkqjyr7ZCOcByoajIoyY7ai6g85vTwTDyOY8759G71cRpUowXjQzUBMavON/vEfmPTTBY9RFR1qI4MVmTwmFBga6fLHlW7D5GDpLTHDxUZSYg26JFdPGDRBl5fioXzWCEpOGVcBsglUeou6vIgWJCstPal5aYtfhJBLnu05uOnCEQLlI4ukGZhGg2iPawRskxwaJ3/sP3CKytRDSC20XKVp/RBm8UsRLegsgIoVmaPiBlIRBKFcMd0cdcIrbbKo4E6mF7t/puVwZXRW+lFaJcqQmTkInO/ETbZ7OOGtbIx/FX0eC68LH+j1Z/GXVSppYJcpsynncRa84yiAUmeDObLTBXReuCuHaoCbKwuXjvF6br+Pvi6ajKcpq/vnO56+zpxNWQmo73TUyrSVrANl1XEwpCw+OBZVfDJoRS2xKG7HLiroYDIqBPuQkZnLJxvkXjj6+tJJUyifueeF3JGJKTZch4e4U3oaUSdZJswRaF6qJBxXYhFupergzpN1AgmI9eY8urbetd+AWZvU0IsHcDb1Tszs9/V6Sf69ar2rla7KYvBtT6rpBCZFGnRu+WSIa8Qaa5Kb/2ojrEkU4nlH9QzwLYD69QnPVFvRR9jp9YG5yO0Uvzm9MjoGZnedE2D2+TVzsdPl4EchCtht06bjGzvdS4lvgBEeLTblAh05cNkxMwKlVJlJ7jZEDM052If26aymfTMYxu3bf+Q7VvZVhzRRqcO+GQEOyj9HHZkUalSUKVoaoTBVQ+Vp/JBeYrbaZxvxBDr9zVowrJN9h/f//j+jz++f/++jVtmeYbmFog2Zw/vVh7lEX54OBkqKarKBBy60bjqhsuOhBRadaqBpFbpgghPP5El/q+2p6iO66kA0VKDzDUgU2+u1gDQAmUpsG7LtPhlfbKgU0GhzxhqIkilVAlWjDm5TPZaRwnRxawVsjLD3R+Pr3N37SjxEC3Q53xMfz6+jo6WYhapzTry9oP2te0EzvlEXcbxYEkfJL2PmFkJzWSMsW3bGMOs1Qans1Ql8BIXQ/TcgGYD7QCiXvLhbgZ6C1pAtR9XBzVP9KvndS1ybH7nxRB4gwbzatJSpENgs4PdszMzxOfECdclIrA84cHRXC+JUkYbJ6t61oAgMAsRFT471SCYCgXVzFKHNROHcBGClTGLM3nMik6wZhpKlhpAui0/Qy4u4tcS1Vhvqcq24RCliMJEzcSEt23f79ttbGPo/ePj27fvHx8fonvfgqi6R9yO57Zt+/3X7baNof8P818Zz8eXu5eHme0fH3VGsMT0FVHVefCdi4L1t30AhU9UGpCai24rIiKz/DiFGlSceR6VmXPG8/m86r9hMpTa4WtV3vFctfLoGfXr8Xg+5/M5n/PoyNoZXsxsFocKRQVQlf2+6X3aKNGqE4bpfjXTY1YmJCRTpTC4U+uc+nimnSPp3l1LWS92Vs+VkALJ5mQ1v1FbZpenO7xSU9sxVaRdp5tH0qssrk6XG5l60e3b5kk7KjU6CZoX9QcATrd3QAgRtaImONTKZVUggVRACinFbPvgqIp0z1nlwalWXXiBK6z3HVUSUxGVardsT9TMGi4RlstbUkUMYsVDWFKp1bbYHSVUmYn2Ouq00Q4vwuXtQEp7lfH8UrQfTcXS6/QPUX1fw+s25PIAugqvFaf4WyUUVz7rO8S1jnwu3HGVUNd86qpcTj0/1xvnpe+4Hvq3H4gXf+f3l6uTagqmvBtinT//HDu2cTbcXYhQth1XNiQWAVNksap9/Moja2FUufy6oq13Fj6kGqikXBy6Vd4xF6EwPSGXhfyZPN1FlUIsAUDmfDzd8zfjNL4sfM6Pk5lJEBr1fKV0n5exQY6uut435avwet3ial+bygxcotT3bzjNS98WRSKlHb+qKpu8shyMEqmoAJZhzlvpv2Sx7ecQ3RWuluMcI676ssu4OIMWuqA8hZNARbTlps9OUyDJbd8m2E7LmQlFH5nZgZUtds0zTKkdfJd1e9VyrWEfg8w2uWlSA6oy3DvAyqwbfdrgGGomOvYxbKgNk2HD1HTcht1pI3QkBFmRkY70yJilusoNMjufiIkqU6pCNISumILJfBCHppTk6ligSqiJwPb9jtRN9o+Pj9vtZtsmlAiXYRChCgp8JT5Vlke6+xTJLMks0axMDIppE+lKlqn0uvX9+3aByf5NS2h6kLzS+hZHDWAk2EuBiKw5I5+sbUmpa7EeXV3Eu2g4Eyjb50laSMeTwSmw5RJJLBPMs/ASkcZKMz3TIiaqLUxxHChetgKghGgBfszHMX89Hsu7k1CTQuAisLdnbGY78PUUNdeYW9crMbM7Gd20i4Nt27Zta+8JnAOmftTbCPq9vYlYMpBmOBglckVdNVPZ3f1YhVfM50UVuAqvrt/coy0Mmll4NmN9Za4L2PPl9hdcYG2zuUUkl0eaZWZ1ljwBIJi1JmKZSdg6NzNDjFDUkt+dKB1SCVOomZmoklh7QhspVg8oy4/MyByxL8orscR2Akl2UM/l0SVqakNV2y+GLGUHwnCzVrjK2MY2brqpbdu+3/fb7Xa/79u3hslbL/Wcx77vHx/3/bZ5zMfz6/F49GXph3y7xKSF1lJeAqzzmDx3pX5UIwGmXKRbXpexqfki0iBVv8ShUDcchFBNEK6CIaq2tGhLGMT16kg8n8/nc65553HME3hD1yAKVSbEhm6byTZFqy2dY2kiSJGvXw9/SkSIYp8DtyStirdh+RaUUqc7+ppClFaLCytOXtl27t6L518kpUyVyzhdOzpsbdyERvg5flkQjohEPlRvIkOA1qcaV2BA7OqS3UaXb8w/JD9l/LeKkTdgyzIpDFsGbBAp0qtmRgbCmVk+nYzejCJiHkciKOnuMkDtM9sVQ/vBa19Cj5AWVtBkE0JkUI1yK1qCySCzpDA+waNCGpKnS8SMKLOtN4s6vcyA7jB8OVIXrbNHVSjSOnj0PHhFZJuUMklQVwQy5vN5imj01UcWSqXxHjFW0Zd54JWP2Tt+R1qu4xOMqtUttExLKpYV63JoO1vdLu8SrHKyCi1HWIVCtd8fSSVWQMpKgS2J2ec+ILWxbLTdbfYcO8vRRU8UmghVx2yH+/mcz5/H4wvpquU+yULF9JnRflbMCKq4ZyBIPwd/rPLNhEjmIbSs1hYXiVGC5QCQ0SaulVWhUTcqnDpakI9gRvrz6d3mtjGViDYpxGS0Nd0J2yxue8qSxuAVkn0lYEIWpHnBh0j42+SdAFdwAM7KqcnUZ0EbZ7bmitwsSMnlou7u571ef0JJrkyFhY8LZOn3MQtBlElRRUsyCAkVmNkpyMiea6kIUazJppyfVXb5Po86nvCJLApljMatUxM1p+MpJttttNWZR8ZMn8c6zFBRjJMAqKUDMnpYViRomHSayTBVhHiK4H7fKJ1WLzSavYSWHyom0s6hqeS+j9sdNkT3LM1CBA73x5Ffx/RM5eGBZ6GbuJIZ8cX8Kf4Y6aPoBVaNqg+hopxfwixTqUEKQhRjCG86DDeTTdV85tfXcTOpYsxn48ae02t+8esLXz/95/98PQIBsqQe8+Gp22b7+LYRd9s+xm6U6il4LY/UFQub5VGe1SYAWZNiIgNtkSCZCDKypm4pnTb7cAIq/NxHYlPVIQOlTJPccqojtB3pEhma3lTCAxVJaQNMVZFB1eV1V1Wn6W5LMkABSxBbFI58UqeIUDbVIVTvXUuLEhU+/ZjzGZGPx+MsjzBXG0PACp6IGX7MGeWlwGB6cVlNNtQcT5+tvNexbdu27Xs70V8ky7EZING8gcWXaBy63P1owubVmMmb2KiqKq9e7jiOZpyWrxTLBmMumL1dKkmKeA98zu5omV6102XMzg990S3WK21ba022207TamEWYO2/n6xALDICU4GdnVkEFcFgsZ6tGvtv2bZdPu/jY4tBFtQhHvCkC5JJTWE456Pm8fOp5FDZhDfUzhxL6w6pKqlSViG1QksUCR4ZMQ9XuY3tto9924aq7mPs+3a73fax7bfx8e3b/dv3/b5/7oMNphVFxsdt34ZsQ1Uwfz1+/fdfX+NxbJOJzFCQM+73++12I3kch2xloI/xeDyG6iV+GpRNdFBUNhYqClK3XffdqtKfv7TK6FKO9IqsQoIZieOoqly5XnMerQ2K32CLaiDTwToCc8bX1/Pr1/F8zucR06ulxTLa4cxFattpH4rtiNFNyvT5mHhCWFl5/DV/MR/bfCKVx608FfKlqvFU2RQVGQdH+/mViBYqWD3OXYT41mNVUEqW9G957kTEFVBzfeXSBpafaoDXuO2cEdg4jRPPwut8LlNJYYaqRCJTMVb+j+oQoXIJbVSsgpUsjZBFQeFFcCaQ5TE7TxRWVS6E4BLlnQhEkxjf3qGYKHGxNdWs81eNlmVNRTz5cT3MQWri7K5OtoQt6wVTObnn4HqxqmqovE/bvLCj3xMAX+hRGwIBlWfKCjoH42/oyL8BXSD+/3ytJNmrQcS66VhzLtRK0cZpRNA2hqef0GVP1e+2gZZTM8hFpMiXIdbrf1rvEMh0b2JF+aws5RpqtaHLq8PjC81q3XK/+zyDfin4jQZ7fqiMPvVX+MrLD+KcsjjrZMK/w1TvGU2LafX+DUW9rvZ7H4PLte6N3dj79SUk7OvyG757Yh3Xv1I9k68u0AsnvTcvit7raXl/Ei5LEaFw2Xe3vQVLoaVCJFfd1pexTrP+cw4FrNrwPMCq3Ywus4P1WhGR5U01U5Fho4mrx3SPY85jztkClJ6pS9n659myy1wXq2eaTCYoUl2sFEypSjX2iqRqK7hWUo2Jmem4vjYxi2SDBx6RFW2DPjtaKkGWB6CeeGQ54JQUTWFZ1WBNpjJ06JEV9cwKVg2oGTbTzdQgCiEz65jzwWzfpkfEbKWR+3Ecj+fz6/l8tuRtDSRAjNo2U1UaOibo4gguROS0lI9TkHX+7Vs2VN8dEWGpDGEwOwpM2dEPJTe7kZSSDGZWlnsKXINBIAPuWDkt8KyAYmkqhog19XFZkLPDL7GyETOzEOJOMgJcMsoQib4tXS4VZqb7bK708Xj8WkiGqnZsFASxPubCul59CC6n4iLINQ+gyLB9G/u+38YY7/YuwtUfrqVyikPnPJpD/cLdmQ2oXGsz09PjckvOi6d5SqTd/ULUu83ur3eEhr+55MFntojyEiCvBubNNmxNfqAkVTQLIuWSr2HJ5RpYHXpBgfQ0OY8pohUrdpjSMac6RLJkzsrMeYqKjuNA3dCPIgI1K1meVRIzGwKk6VshKkv8dEat92BXVfdt6wnvVfh2QgzfXB36jvQxuu/7/X7//Pz89vl1HEfHc6jq5+dn30E53RrM7PF4XJDVOz6Umf0KqhznTLltHp7Pp+I1FmjcL9AMtkVdj4iH9oCxyPavWYollHfhNZPu+Xgcj685fbmF55nzY6ZRRQ2wSZJ6mhhhiZUKUYkq9/AD80AqB9OH9Y8K6zr+ufZM82tsqECcVJYeO7Hda36f4fTDYJeAKzsydiEQy6qu3kTyq6wR2HkLzWxsOuR67pGbRKRXuk8PyXTZp6ra2IeJmZplY7lNo34xfrho9TOB6EDWzJjus5hSVZI9/DyXimeOyNlWhTxjVq86ZGVWNLNhGYcq1bq/KVXWFoU0wKHso0iWYPytLEhVFL0xIg3SliiwcUGVi2YvK+DzdcSeu1tGhIlWFUS0d921LXWy7G9unDzp8FfV9VtxzGWV1A1ZbwEnAYzJ4m/f+3onlay2I2hDgjbb/n04dlVXiwTtVHewG8u8tjNtR7KqQjArxXE0gX7OOXMeIc24z0yvcMFF7ch55n7283fVqZnpEXVWozzTbUUWiaNh0ZKOGaaZKVGFqzoswvNVtbxXQiTdHdIGlr+VO3xzBnr/ev8hbzv7GlFeb/vaUk/UaiULnT//JVrvy1Vviverwnu7v9k8rtft63FrvxlpKQjO69NOULHyOl53vNao5JWWsEQpVXXEKhH6pnb1iKpWN5McJqo6xkqX4xNd02dmVZSwRKuFVhAB1aCLQFYJdFSpsK2pAuw0oo62aL8eFU0VKqkCEbTL+RhD+1TYxhiD2wjHkRk4Lpoppfx5nKhn0koqoEfhKRrCULhVarrWof4kHjpuWV5ZCaqEIbdRN82haUhFCabHz+fMjNEprpQULY85/evr6+fPr381pzhfD1VOlrtHzl1vJOPUmZ4XfLnfuftx9Oxr6VupxlNztth1ltZKSyQzwsnOrAerYttGVWUUwIpCeJZkRuQEUMkIenimZx1AJMM4bIwxKKMJAiqCiOU4015VQLUJZAWk5arR3o+hilpOMSXIwnQ/Omk1ImY8SCpNVc2ibTAB5HxJnns/4rLXkWssRfJs1+12u+332+220kde9i7pqKrI6IxnX5VW06XjzZavEF1qXMu5Ks4ki5hzZvcYZ+H1t8bmQqHX8a96FUmU13e2Rv5tM3kPGuI5jm32XpcRuqYKZwl+sdZIUEy0rBVoVcdxlMwho0O7TUy1Spkss9ZJjJ52AfCFggeLBUexs+7KrYoxQ8So0hqzft1hZutOmaqOUzw6dPU4m43rKDez29jGGB3HflGGbrnVFnPO+/3+7du3x+OICBVEhKp8bDeSAlHqGKPG/kW1okTNmi30jgwlNGHFbdvGUDPbTM1knGBnh6mc77w1yjHDj5pmWytkzeaZ+uLr+MwCshCZszCrcgYi6njGcXR7JpE5M4oQkTGGAslMVlZck4DsUfLytGxpYbn7nFVBMUYEIt0Pj3EcRzel/UHYnrwiVZrMhpHqxGIWwaDPlCU1pohYzOWA3K9UBSLIQ8TO9XN1BhAQ+ToXt22778NsPYKZCKd7zIw5Dw+6H3L7LiJqQweHQiRFs/f0XAaY7Q9VEXV4pLPfTAcgVEazSeWFy1QSlaHuAEy3qhJItL9ZiEp2ZEekhqc7Dwlpr9SE2IbyGlVVmoqqZDZjAcyGcYD2y5d2k14Z1CwhRaVVgxFRFMNrXa0xdsZF4u6rXBdSQmaz96SuZgj83xCD3iuhf9P0tG1pYVVdHa30b/XZ7//qPDjB3jhKIrJdrK+yA5c68tRWOEPd5fR9etvgChUU6cI5PTLncm2ZHn50gi4qOqDelvNnZWLGvDpm8sWHa6HRGdPOqwmuM1E5qinJzRhhCbMoteA0cLlNNzXlrJzkAh0zkzgPvLfijG9kwUtw+e8XHP+GSF2l9lWBVV30tde9S/hVxvU7OY+BvzuH1PLv75fTatkP2z+2G/TqyPZ2KG3fgDOaoBOD3oRC6zqemFetEytORoSIsFJOCk36zEoisDDppqzlGIrUzLGsq6rTWlou12wSoaQ2dw1Fyaog5P0qCKyiQoQhKZmiQlvCyVMaoCpjDNvGGLtuQ20PpISLCDiTeXIWTzcNTCKJUDotqqkxycjMCg83PIc84DBLbqSKFC3T4JSD8pSWDGQlIj2nGMDb/tF0/qzn4/Hz19d/fz1+fj2/juNg03BEGguecz6e/Py8Xyv9VWFXI0BNkPc5IxNEa0678BpYIQGy7aoWKBc2P3vjkttFxCROUyP4ye2JEqbPtZknM3PGo+CUaHWQaNgmp8y3LSsc0I6KyMUiLikpQgRSrZJqDHUKLSJXcnkebY4/j2dEJJpdHkOtqn1EBMAMj3YoaZRKhaUagjgFZVgBPdu+b9u23fZ932+3m4icKVvLJLg6DMrdnz3z8EgA8FhknUTlsk1GvGK2F220i7/n89mzKFxHXbsK400rU9fOLWebJ6sVOXdFbW7O3wVJ8V5RtX4H5xHQ/qC9j5KnI7AJWGx242ZQuB+RwSTLtMYmY+imWiVHUAlfyJDJodqro5qbXlVIenWvWlmVi8fS78coZttt38cYt7mr6ja2fWxX1XVanS4OvulmZruNbdv2fesCaKnHTotB/flzM/t2/5jfZk5nxsxQFXqnEFaLhYQ00aGmFO+iqH+xWDDR29hut+12u6lJ0xxl+QuqiKiMdqjIxFEe02fM7hMzIVOQtbxtz2DfqkJ45JF1VMVzRqb4DA8CjatbdHuOFCNAFLLtETUhghXzcz6mJac0a13qqpRTnebuHsfzqA0x5252rD06LTNZi1sMuWhFrzOoZ8/9k60QJ+PEVyOxntTevpeqrWqdMWab/f3rEgKAPWRpVCJgZrorSaqplDBFQplUdJJgZubpxpR9+JZ4RvhlISbStCmuYiLZkz0NBEu1zZPYaFmw4CJkzYwR4SmHp5BWSZZ1ey+UNLPVnwapEW0pSHgUuKI/yNP7sk+Py/MwichAIq5Y199Kpd+0bEu55pfODtfTRrLbmV65J6XzKpwK/1YELHCrz59l5x9Ax7qvTWLtKgCaB/s+WVsT4d9SdFbtmSmqJ75yDdDr/RPhHLkC6Hjtqsj0dA8/ThvetqpKVFSFYJmHrB0r4qoKLgr8yaK4hO5S7PSt5STtGdGRTh20wvaczIXLIlsa9v6GgdfIct2OOCcdb57AeY4U32usa0mvGvStiBWR02VZ3guv96r0BRye+ob3wivzVXW99D7AVYaeD4C+zGDWaZELviLZTs6UeMmOC+j2pKpy5UJ2bEg7Qy7X1s7+rIXGZVV6VlWdVvIdRV9ZFeEOiBo3iNmtqooyl8tRWNEEQgfRYpiqinYxSg6tyhJhEg5RlQKEGpzC4TByEJqFhFKCRj1HIWa7mKnUqBo5LIKRVX6JVYUVFUynpJqrlW7UMsZkkqUVxIA6/HAgmxOi9RSqYQoPlaMTVKGpZaIiTECynpGPY/78evzr6/Hfz+On+wP0dnnpXNpE6e8JmxeCe1W3EQsDOp+E8ykUbX9XEVPlttm269gq42jZRJs/IH3O53F0UHyyIqU63jBQWUzOhq6yxMs9nllPSmz3bWy57RTLwlzGCl6QgTX0qQ7OabsGSiZKPESk6CJRkXISwLPc/RFdeM1ZsdwIRaQMmQgdTd1fOsIFpzWBoUQy40wtNDVVG+N2u223/X6/2751RDdfPOXMth13n4f7sWC2VhIc4dHbQFXE7Mp+xvtW1grYeN+yerpw1VVymqbUaZP0hkhd9+ht65OXrPhv++FFTWN/TxdcHQykSmpHdJhtjekCCattmG2ybJIyd73tut102/S26UbJkhCqKJIprIwwWyMmIFWsipVSouIqHEm0htjOJLTeuEy3fd8+t8+GSG6328ftdrvdetQ4tJGwc86IdX227VV4nRXDyPR9393z+XGcVhHHcRwURMX1onPO/u9881xsTUNEjDEioipUdb9tQ61d4laBe47RPBMlbaWZmVGdyrnE5a1c7YEylilSw70z4lmIgqEkkxnNImBzKafPZBUdmqUpkjKgSkh2FCBTSMF5XJymUtlxeBERPtNGn3cRcMeczzFURCqhWlnsUv4svBqA0avfzunXUNuW52HPJyjJAtuAZxXvq4AQDtHdxn7ft23bt32MHkf0zOuaQ609xsxEkWmlXMIukHBCiBBA0PLOzmekDJohbAW0QVigrtRkiFTEJINs85ZV3VMqT1vzRCFysnQqKlTlqbSJ1o+NoighxDz3bllGRzUjy3M6JagmEYlOqgLAqEwIVXhWA401vZFn15axLigl8+W0vjZlWJxPWAAsWpZokcxliHaa73Rt9SJCvU58nGPG6kknULlMOK/ZJckStPtXpaO7+d84T302rDnmtb2iBalVomhu2DKQuAqXlydvx93IheWVhx/P8CZFxvqGxFvj2E023rZIOb3XK88/uSrLbjHDsxIzHdG2uQAgK8AnY3UuuchbwtZLrsSuamlqvAH+46LBnTvvqzg7S6W/X6hrp70gDWnH3jcm37XL9O197yXOAmiVU30dO9czTzP969++PTBSFdc1KQRhXA4UOIGsQRggdcTyA+vandXRpNfI+Px06/HD5QOyTDCz0punxarFhYaDHfbiHtlOvyuQHqIZEcEUqVREhXscFUd3blptsMy0pd3IRIXs+yDpU1EGzsFRGuDmCSsDdlHY0DGGjTH2LUU1SlVpzouk3qcsVthXwQVBKbXadpEUhKKMVEmT3Dafjy+y/OuYGZ4FoYkcxl3kEBiFkiVCUSeqij9/PX/9+uvr8evnz3/9fP6Px9Fp1mMMFM9DPW3IGGPf9+txunqJ7i78LIexwumFEKgElgXoedLotpkNcFdlh1RSkBlPPDLo7VUAr6qYVekzY1YWEFGRJVXwyiO/sg4lPm9j3HLcQ6TmfHo8PXImNpXGlOfMOTsBK4WWllc4Qqu4i0qqyqjOYokGs5c1g5meNyNRUQmlATnnNUBH5ssVb+1jtu7svu/7/bbv+3a/9ZF/7TDNzTqez4iImT5nzNlMLKCO4zhiHb91epwSKH9nDiRPBue2bZ3ehnhRkMkODngp7i/o+gSrVtbe23T7Sn+9jmRchVcfIm0fgnNPoDaRyURkLFOo/ocJ5dioQ8ASkSHjduPH/nHbPnfbh25qmVIlsFHJcOcp92vvdzMdVay0DIVa2ijXSk0vowrOySnFzDbbP+1+MbQ+Pj7u93tDX33ZVbUZWkBX+CghrZ3AcV7Sjcg/fnwTMDqC5OnH46sis8L2vbvHLs2vqe75M5elNoAxRjtNVGS/PUAil4+P2bZtdWsCNufMMpl6DoAz8cyIiJzHnDPS/ZivfTu9aoJRFWMXWV6+UpAerCUi0r28xAUJhmipQg3R6Q6AqlaOLrUhikIzUPssCj9i7m5+6wekYaB0j0OhXJlyijYSb+Y49D2gb84ZZ0y7iNjaHdpF6YyY4PJfWPnk/dRuY9u27X6/jzG2sW9qaj0wWv3cCxZgEqIcwoqF7cqakiwgoM4HHWVqRWzwyRGMbdncIWv5XfFli3AiCEg0BYAikW2xH1FRXhUm+2BmZG1V4a5phU1qcBOicw9QKlAqq6P2kMgiigExrgOv6wCunFZKEu18mOsNdn+PXrWr8F9kpmbGBE50itSmt/fj4gLpac9rwPc6709oXt7NUxcAR+C0aythJopKnN5agtY3nkBUFM9DvYc1J7n+yvPOzIooCeTSol8uBrXM2VlC5Wk0mrPNxYpGFCLjRLyygm3ahsosaZk70E9bZfZix9tXLda3XMgQSUIqEQh3v7iJF+SYxWBJZTuPXdt7ojyz09z+Vvi+Cwj62ADQ0X0hv6mi3v/Ve+H1aoZF3v2Er5rpZJJ6v5fzJKjG8LBATZ6/f/208y3l210GoAtp7QefUaizZVdSF/5SUCPjrO0uC7426cQS379Z/KfHW2pkxinycu1M+rbUE3SkDyQnEypAw9VWLESxsvXSGUflkfHMeFa0q2SSZaIdZ9Cvq5AakZOVqNTCENxDqUqPcBev+yptRaAqYtDB8m4sEpeZ+MtSnLVCspXJdRMTyHZP382ktn1zzaJnHTUDUhyVJqUSwiwcFZWnMXqERMRZeP38enzFfGYu53hFtf8vgM10DNv3se3WnHT8/lXnDaXKgFYxsfz/s+XEOlpMoJvqZsMwxk6JDsUBvaI8DyvVhCSX7x+yM5cjohAOBzqLIEsO4IAWVcSGmkOBmkwXYqhkHh48jvp6PJ/P7ia301y38eLepqRWql0T02fETHf3GfFyeF9ESSKiY53ldMx6ecQ3D14A6Gkbse89X9z3nefBfMHCWeURz+dscm/7MLf2sFr5fvLhT83vWpbvHUtP6rurkVVk5XuDxCXyb07iaxleVDOSzR7rn2MiF3rxXnu9FWpKKnXROXsEudkYYzezIWcGItZFliGqBDL2PdO3nbftdtP7Jtsuow2joELL5CRrzGmXLxcZAZR2r4lSNpczpUSNYmKb2W3bb7f7fb/f9vsuw8z2sb1+7Sv5oMujnpW2Af117yjWVGylhoCyC5iznl/HY3/c99u+78dxeFQbUOdpenBVsW0rf13q6zprm+hLF17JIDkzUNaTK4VIJYdHA2DTJ5KZmQGP6R4LE81VdvWmLaYqQpqYCYdwi2QEMxA5PWdpec6MKQjVVBZFkt7mZgJWaTM8Q0k1M46xGSMqkksnYRQVDBMdQlbWjBByMyFYOHO610ldDSk3EhGR0/3IZfCpFhGdzvO6OmwoaJBUtYV44ZQciW6ybQuo7Dk3Lse5qnnVDQ2GEUN64lGKPFCGavXz9RynKMWoSjexMapKS3sqjFiHZI/S17QRicQMkikioCOQiTqCqEiWi/vsMixdahOmMDSEpgKkgn1US6JeIHmnD/cLM7oksPW8JKQSjkR0Ti4q3uZTr1N5LXI2aHSWRH38d6w125K+QSW2xBTLe4v/toUv5OP0PG/mzG/KG6zYwxMnBTIvCqqcFiYXOQwohHCc1cNLd7FaHJEVBP6ao/bpckHwmZ12SVZG+oyYFd6qiK5Js1zaxGYlTUXrU2TZqbzpUt8UATztq+oSwrTuhPq+sBcJDSWQdRgTURmZl2XXJa1Yccuv+ePvnsD2Nld4FUlcESKLtvXaasnXTaq3eVMXXqtSfTFw18/92x7U76d3qGy0ib/xhPp1llfW+ULr1c/4xGoHWJKSUgJACIg0dRqArGSDV9VFMj0KTfpJLrljdCNUHZuepUIVpklBNqxI7i6hkahwZITPwmRM5JH5rJols3mZQpREC5EE0RLrFcOVkilAqtICEawJM4ucUR4nL/uiM1+PQdRvw/HzEjUJkwrEdC+PqkSIiVEgJhiHxDY0t22HMjdJYyZqCr2ikzICUiUezjmnR3g83WfEcQqBW5wrsaRROobt2zDr3GGBcK2+E69dzSpFVSBSRYUuy60QqlJVzMa22M46uG0KNj0uAKsKGSZhiASz1QsiopiJaI+AEi9QZCs6KoHkwORPFw1VGyKYxtQhKPvX/xwz+JzxeB6Pr8gUYagOYfTeK9rsJOPyEz5pAw1ANUO0cBwvYxoRJylYqNV71VW50EEbIg3v9RB5G2MMGbbWy7W319IivIsRPbzm+9b0mtdej0GDNyegVfzNXWJ5I118LJIZ862Xfcnhr8KrX+ZiRNz2G+Ta4Pm/fV20RufUFDeMtJ9OGZvaCZCnKKUD4dt2oErgu+wmZtyUagJRwlg8gqUMAUV0NGtP3P2ozPbH59ty2G0Ms922zcZt2z/vHx+328f9LnPx+q/V9JsrJ5vCnSRX+mjfwR4ogyIUGgvpcZHhmrY/ujbH5bFeYu0Ml5r5nMeZTK2KIjn2bbvt99t+2/bNhskrLpPIIhKygZH0ARU3M4tRR0P1XPs9UKJykTqk97yyATWo8nimqgk3tpF6ZYVHhJpUlefUcOapfmBBRpsBUlv9y6KAY9+HcCBqph81bchm0gEAqjRh2/awojDPcc26IUVKEUwQq/x6Ozj7hLJ2t+8QOhVRNbPt9L82LJ05RKSvtdAubaqeWpCq6BNXVftoWJFV3RsXIe0bWJlhKTRGtB9Mf1Ra6dgtMiu2EhKe7iyImUDACMxkJma3fl4JP/rx6YwwJBFFVBCTGK5dYTxQvwT+sevnh952fz63bRvb6K7dT3qQjb1lSrHsa4UqAoWOQIV7gsVRQGZkVpNkIRRTlTVcz0yhnAzrtQv0uOc8+9csh+dzX5QzSoUitqqj306XRQLrTPY803drfYNWOaRzrKvvM+rMWl6GNBegspg9J7ESfTNrzRqyEDmP1KRsIgpq95qMkFZlAm0xT4H7kd4Y7NPnM92Rzlz++GaGrEBWH+3oKLEXq0mypK6Ibpwk8ZVMftnHe5SIqJxkfBUh2BzL8PSUE8uNyoK4+ymPyg5/uHbMBRqc9PbVl89LkFiXcfbbVk4zu2q13nTaNvcq3fB2eJzr+XVIXFXXhY11P9M2Ew0evGrQ3mOgVRVRp/0qMuPa6PMMS11Kxy5GueqVi9FOXkr86ydnZsY8n66KQLYES8DwY4guV1KGCk1pqoFgtIlGUSyBQusnPI5n+BP1yJyVR5/9e7c0lRFpImJExgxHmapimGRlrYS1qq9KGWNELEJUJCimY4/2ox9pY5pNVSsu70qU9CzMBmhHW/cmqwiTIQoYgpP1RPhGyjDb3UXgo1zLiQifD2QoBmpE5BEPnxURf/2MOZ/zePicVaWkE0IDcjOjjk1tbLrvWwvyrxP9VWVXJUqHZSDAtsdLSlPtWlq171sP2poyYaZQqqrJ6KjjSEATUgyPMJlPetVzRhXoEEeEWGYg8hkZaUfWExVJBGUWKqWkZGOG5lGiMacfM93zOGZmc9q80rfNbGPjEGmpmU5fRpLIiFOt7FVVVLl2Np7ur2z1fKx+5mzde/dhp56brV+A+EwRvQyKVZshFMfhedmxzoxYXIJeFf2cv6/N3tIuOKpVjb1Uxxg49dGNOfU/3Iae6w7vBN1L1diFwPX9t9vtFcp1jpIvcmovulh910vprMO2zfZ9aTbPPkfMdNtsDC3E8hWjIImAQDbuqj1ep1cJGQyz7bbd+zI8pptugfKoDsYtLwE3GSJyG/t9v922fd/v3+4f9/1j6HaXfZ3dKsbzl4yqkrEKqSS84jGPWwYgV++qY0AAT1Xet3Hs477tv7ZtbNcMkJFxPslLpR4Rz+dTT+EkgCZu/vnnn3/++ef3799Py+LRmqE5p2fsYr8ez6iHmdm+jcfRU+Ft2zIREV5kQmWQFLX2GyepAjOOjWOYaGaIe82jnkf5bFZ9VfHxeCSnsLJ8utMxylhWSaGamtKchaCYcd/sVmJbTreKmwwz27YbSTAjZ7P3yFIlWM/j5+i/7SJblESER6ycG+A8YRew6GfZXp1UI1fYsNnWIEd7MVz7y3V0re0+pd1GC7LIv1pSEtlNT0GsM+ry7ElCin7OleT0tS9Vgw2kW6KYnV1XvKZQSFIbz0ppvVhVcaYTyQKTFaV9cLHmfGbF081Qm4DhVpUe+2aSGH2at4lrCDIrHFKQXE4JnUzXRK7qaL3TcpqCpQWS996rKRJ1jsxkGTY1bnTF7BShnaHNk2Z11gR1YR5copL38uv8H2pXKafrh5OGihcS8xuxNLPO4e6bsVNVktnPQSGA0XarrwCiU2h7tTh4g4uFsZ4iBLu4Cq/lHBnn7XoxzdeLL9bt+nsWUCLVqXJY9j3n97+Yy1z74xoXchlwdCx3VeMxkY3d8CVHqKom5VyHYje4i+f4Hqj8wpl+A8aviy/yQqp4ksP6N3x/uesfvoST9duGfv68t2dGzsfgJYbE0kj101JLbPt7cXZO1s7nTv5uLOT/BhF1ah7ZsaopqOqFUyiGoijRgY5seR2ATC3v6XVRUc38cqTHfHrMiCPTiZkxkUGpZNdyBNntxOnFlKe48hXyUhCx8iaJBzzhVREMh2wGIaRF8jasx1MpOTODNcVm23OXHaJ+1EFYMIXMisImuWn6TfeZDjXxZRXf0HbMByoSjpiR4rPc4TMztM5nQ2kgVTAUIdFWY2a2D9v3fd+329j79Gpa0IJt2pqnkFh+9cDSDHf/CSlIUYQKqnQTZGbr8GJWCSoDrgiGpX9VMbNSsyxEUqPKHYCm+qyJI3EUDki4uAsnK6GoAixKCjYTM715mG0eVFRWoNOuc3FOJM9kFQgKCwHxSA/3rKo88rUVQFuerac3WC2vuCmdCSqyjQ0qJCuym6KWfPsCxvLKImu4a00Xs0c1C8PvFv1sLerFLzg1X+fCrI45XIVRA9716ouAlch0wVTX76912odrnZiKyBnBc4LW3UpdG8ji2WjlesI7trfrP7+0gUO0D+E66eeRUVWmaqImY8AGxxCaJsw2GTOfKLpmjHT3aR4johyBVpWzUJfbVgNRum267WrDbHAYXgFif+sN+vezYzd7f7hiNS+XnIp2uuwp+bZt+22MMRrgb+LIUNvGJiKXfVpM92PGdAE/bnfeP8zsfr//+eef//jHP759frSaVceqhme4ux8eG+BRMyhHUhsDMi0RKRFTzbJ1YElh27YFAK3IihQtII9nzplEVVYOD4fQAZRHMpJHyUG6ONzLogSDbdtZVPRCNti2fZgeGiMij9mmt3ras9SpsK7MCsnKjOlPkqxsWpicNisRryOgJ7z95Fh1lGrlRd1FiahdWItQIRQKsexxKyrcF92IA+sYbSZpEi03YyY8q9Dj5DbjKlZAixIKLUExraRShFqhmVlpquoyMUuXHvVYYlUWs0GVlrhVVDDWpE7KkFgmC5LMOHxWxVERpFbuYkwmClSzJpmZsLOKPKsgVVonx/TM8ZDlkUoKqcXFuzKzzlhjY3mnF9d78fR2Wupidje603FDbB1/trT+LUzz5eT0dpR22ZcqivbGrTjzdntA47XwPlQ6uhTlSo+85HXrkGe+vbt8P83B7J+DRfJbX3WqsruBK0aVl0dPFSMiYzK8Vstbv5mQrTCHBGCCKpQoqU17qT5reke7GPcRiyAniwR61X91YuZnkPsq85bBxvpg0kb513sgpLhSS9+EV62H54kS4bWDvxVe7+XLq5L83d72/P5OeH09A6qXQet6CZzmYb1uWlpxiXZbuXntfWQV5vU89Itm+zp0Na+KvAapK+wyl7dCVlVWZxnX6qC6aygUKC1xkZCCCJTQpWzIwor+UCYyiku+jSzkrPQM7xFzlldF8/okmJI8rcGq9L1cX1J3spPfI6H9nFR3WAZIpXZOSjMPI5rMaKoYpaKQeERMNJrZJJ5KgJtoSCor5Uhm5lNil4ghRkbyIGJWRRKZ8HlOcTMzfdY8eBxtz/nJLIUahguELUBH5DTbxhjbZts27vv+sW/btnVEY2ZmvMZkXhVRUfDVIgmh55JbDQ+YvZ5aS4Q2CRGuQE4MyanDklElITlxuDxDZ4pDp4zoK4lnKZw8SLdB3mbaIxQQyeqMCXO3x8w56SkRb+0QaFBtWuTJ7xWenVNVRYbPLrvCPQMznGQD5otRSvqyQVFch7o4jKJykaznnFdatuoavPZKX7PF6W23/DdZopzuMMmr8MI53Sq+NT/93a9tqg0j67et+CLXkyR+a4pe+/ZJC6uqyz7pBZy/tYU9rqLIiSC8zGs83WIZ15EorBlKk8EzFxVy03Ebt9t2v23323bbd9U9aRFyaGoVdwu32C3niIiYB7u5ZckKQV7XCAI2mrVKLhEhN1u2ruTqbvtt95Z+XeqL/HDt8ysYqluihcXY7XZrEMtjGdVqD/tIIaPK5zyez+fjQWDftm+fn03q//j4+OOPP378+HG77WtU2dIK4jnnccyfX7+yeDgsUszNxhgjvELaZOcyEy0wFVxjXBs2hMzCjDwyfWjNI4WxLOKd7h5pE8zMQACu6ZVod35FqYhSKENFglYYgrHxTmOlzzCvI1FKUyqI9m1rBCvTqxgZfrR/VwGbUCDeeEFGAGVmIoRJJKMLr/7mWtKS1qgvjUOfIFgBESZigFQg2gdSl2FgoxlA+1R4VN8sjZBKRFXGUiVRFzEcxTMsm12tZQy2UI63mmVmdDCy3ZgjoWSgmAlMFCpnMVEZ5aQ2KVgp2mlHAigBeAayKsPAX3Kw2jOGYlbsK1RsziwlRXFqhwsANYnsD9gbopjaaJyi+fanm+nv1lCkLib1SR5fKE3WecBfU6E15+Vr3Z4naKKE8p7e2CYf6zsrEyCr+euvg3/BQieji9LfeR75vSuuZ6fZykFtknVkStdbl6WIqpoO0xF5JfxUdERutYOAN+mnshPcioX3bQjAOR2VqmBJoRQ0ii576gZi24eqEB3ctKwlTIYt0bNxKbOK6RGBCETI9UOkAVRp5KwRlQsb6kV+vquXmgn6MgIA6iq8XmVpc3rP8bHI0q00QPnePl7bd2uBT/DrmjOeLXKyOgARHXabpJ4yCwDZ0/z+XsqqeHjSgU+ByQVh6rLVoDRgmYEqVnakfJ2ft88S3fRVOaLahASsNGk+Rxd2nTvrkSFgsfPiM1GM1MpkKiukmFz5Z6z2+UuEsYsJvejGQJltTbgpCtVAJbU4ICqyCYdIO35uKI1SJiOZIZUKGISmo5dVNUUtNLKKzlIStu2QznLtMMWb5NRqi1EXR8VBDzrSIyYqBeVoX2BneKbXsoqDCEpkGymAUUGgNjHbxm77NrbNbpsN3UxUh533twuVhXsd7l5oS7Bix4ULANWWPGrEITKq7MR7sqokhYISFBBgND6HcoaLTzydR9ZMHGL9LEluIvBhRYFpjnvZHdg8s6IiUz1kpj29nsGILdFQlCgV4CamqiZQKZpcq6wSxfJmCJxWD8hFGIA2bIfCCoGtBkqpV2ODLAFb0fa+pqqqoy07RijOI/xCvK6qqwvrqxHKrrpQp+3SuV28FuDLLL5fiq8A0wX5vKsa3wuv9yX/TrSNN0bBVaLJeuezAQtRpQpOGgCY2RlRNTrZm5SIaEo0KtrnWdlDZ7vdbt8/Pj8/v3/7uO0fSvPg4YlEGl25DXGXw2QoNuTRTnqZ6DSHRuqb7MPqCkyNJtABOz9g9gZ/ct69QfErKVykMpbaoLn8mRVzFgLh1362/O1VAZnhj8fjNrbeFSPiOI6+lSSb4vb5+fnjx49v3759fHx8fn5+fHzs+4Yzr0JtBMoeD+rXLMygHlN0mIWaje2WRcZyZLzUeNq0TqWdxrBAZDw9GCFKEFGZiOY4lPsxa2hqelOr+3lIQWl7oIuoDpVbwUqtZJDDMJQsqCZnMhBMKpSjRCG6TBV6xcdqg0fLfdbz2Q3Um3XU5fRWVWZdSXSBRTsPIVYiq0R42S5c9Bf3IoPeoxBRXVMqz2eWeyOWNar2Ss1zhNIGNiImkiKuCjWhAcxKrTTQQBRuOaIOwyx4FCMZbXFKBDKWj2QIK0tYsyGW0wa9NROMSu+6jOERyUgtpkfxLmI6vA9dEyCzokRYEFApBQhkkWWzqmcDEFVTGdaGAo0nSbW2hCxZFUBFjx6ahSPnko4qYOXYd1W1irAXjlIn7vLbwf+3r8Y8TvJ7vZ/37HTDdcTmNYp6a/hy0SLWkDOznGlMR7pUtBMJWh90ujD8Tc7TTrtgCXy5Ppx9PtE07fePIKs76Bq+pKcDAi7lM7gYe9WZJoC2rUFXRCJjqKrptjKbT/P2mI4IZpJilBJ24CRfVVED5WsmLW0+eZWwl+u0/L3wuv759RWRfX7I8kaU82b9dqfOmYi8+bRdQNeSr/dUv8fEL6B0zbAB9JJWoTX6CAaplJXMSjbYKZdm0s/cofOskcVDZ6O/2sKh/m5UbYs0RlQ0QRRZ7SEojH6IuQSPcZpCVLfsnhBhKZFWmt1uCZgplSJIFhTeJ9HJPSPB9aFESClRoYkYZOthlHCo7sPu2/hm40a9EUbsxARTJEXEelOhoGoCGZXlBc0SHTpgGMJMaCHJTMQBP1jIKE4yIF6+qq5MzwwAisp0yVnlp1V3iQAJYWaFgKYlkLpvKkvJODaVcZJbFayVwllRKSJtMDszPNr0ojcnSvt3IsjppVosSJZ37AKAKoWCWZQspGd4ZCAdRQVHa35m+GPWl7HTBoUcsut+o1Apc7ub7iXS+SYRmdP1edivZz7n5oGqGwUCNTGAymHSTjtlwpdbslQmWesg6co6SAXO+hyd6pq54op7uFyZSGZWUqJDcptvvkYHlZnw9j1f4fSH+0W7zGw/x7UxCqTZG2cbQwGCde5fS3p1Ei7zN+3waaxwHV487STOzfT1f97rQhB/W9cXinZtpCJLe3Tl0q9luBDNHjfOAKXPteXdoJ0Vi6xWen7c9+/fvv/48ePH9x+3z9vYJes5k0EXDCk3DKWJbFLKXFtoz7CZrIR0oGx7kRaWKpgyxEysp67vny4zW9DtlT5zUexVZvjhcwGEXHnv6R4xGWj71qgSkfa/BfCYR/tTXieRme232/1jzRN//Pjxxx9/fPv27XZaiF0jwi6+Z0ainpFmqTbNNhthHvt+7yHdjAUJLWcBXVDTsFVTtkibUNBEk4k0huW2SaVlyJwz8oi0LI1qGjts1d8QtNJ0qIziVrJBTLGXYwytauurHolToTVaCooTbT+1JMtB+uq9T8qWbG8c4kXd6Qu1vZf/IkZe4QlXmMPi2pMS4U2lP3fzp4hUs8bqiJyBEm4CBaPNmgsQMRXCSqTFEWaWNkADpaoRrxpCJvacnhXZpixRaK7XxTpqy5QSqEgi6gBOhvDrAyutMgPLT6rc83FMBfUwM7/NcE2B4DQBj57A9P3ovaVKgUA2ni2XQb22HlCFpV1AdJ+ci8XRW8R1Fp/z8ut0rEQxT+rzK2ZkbQTvc66qbiK5QI5ArWTMxGmAVcmeWHWK9tWzsZCIl/T69woMzMpOZXbmQEXlJIo0IHWZpb06xUbmu6FMZKQDVRkVUeGVjshTbfkbArT20OrUpgb7FuLUuFvnCGaLYZXLHIAX8cVWlyXysgbK05O6WowlJYt119jnmrK9+t53Ewd9+/3ChN4v+NWyXyjXi8/xmw1YvRb+C++Uq/DqhX39cKHlYvsuRLmDRlBClpzQJoTCHro1QQpUQ0RjORBixfyxxSp1qn6rCgucOZ88FVTpIl9qy18GgaxSZBZyeSmAxUqweIKVyipW95cCUWWAmhqSQqaWCMTJ0GgDwzTJEpbWVMEQ1bZLYUIoVKLxaCmq6q6ymQ2KDbsPu+/bx3b7/Lh/v92/b9un2L192lQLUqoRhZQ+2D3DY85KVkv7XLKKm5V0aDkRE75J3VFSnggpR3mWV83MA+Gtqq6MSK8IZpbJIGTOpVWqkHShKKgk9kHbdN9t25aaUbG6FOnZz6rR4wXeVHV8PEAV7e5WmaedFhAQR1OMA6UJelIKkqB7hMdaYMGkUZDUgjhjzpoOz8JmH2r7WDuR6O5qLXqbk9MLz5zuOifdESmC26qGRQBqLcrhCUqDXJ55vXUIUrofcOJUbFzKXmb70p9Hey6Hb4AeRyGKo9dvQymq2g1q+kK23D3da8Fpa11jaSiRV4dJueibfFu/eLN9ISsrr+F+f72kYMsb/a3Seiu8riXfUPD156cO6doJl4QpLx++dfSvbYSrp41Mz5TMpa1uZZqqVqZSxGrbts/7/cePb9+/f/vj+4/Pb99utxutZiLmYbWX1ORUmpYhGTOPw2NmOnwiZ0bIQiS7FWt0NNeujyxmz2p4Ud1t5Spau4j3Pt80uzY7fT6f+74rreJlw8GsWLW8RyVVWpoK4OfPn6cRl3Va9ufnZ1dd9/v9+/fvDXe1kUhreLugEBGocMY4fAy34bbtYz/2yOz2bNg8wt0X1rYkS9lkinUHc4XyVbcHohyoFFih2rQDc9+99mcM8Qbz1ARkCoDItqwSqMkAR2EjNuqQIVpC+DJRrOrCa9rzDVLNzO7ri1zQdX+JBGlgG+eub+1HsZ8TO58pezEw0JY+r4OKl+HTeSzlSTHpr4iIPBITTKioDDApRNcrSwhJWFGHSAhmE4d0WwOUpCENxZGjPWrK29b1bXDeKbE8A5baxNQUaMN8NouTJ3/7IkGDmhnhFVrP5xzjuB1uJmqbQtv4rsLbepJtl0pGEYDWrDVFWR/pOnEpSoEWl8kO1pq9YCjpSuI8nxMdyRzN0GkYT04k+3+DeP/Wii2S1km0fjHC+C6D7Ne98ghfdISTqbDGlFDNKonmKcvo4RyRFEeK1AXJLgVf85Z6C0Mols78dFWJqExhZa0ZPDrZ6Rxp4d++ZLn1CzOqHbmakNH7FCmd36fWJVp/T3N/0qM7AwVU2DBD3wD5zXa69Umv2rEPm6tyysw8B7W5BrK8Cq+ropLT6bT3rwvxukxfcRmIdCHD90KtqSSgLsy8a6+IOG3Ozod0wdHkkiWfuNrlEkIAyiV95frhYlf5fv5w8WbaVdUp7IIQ0KoyeAkyG4tFLgl1M60DUkolKxkiSVKzEydUwSw10UCkwszMp3rH+HrFbKIW80vaMKHXbl89gZiqjg7KVtvGfh/7TURu+8fHx/dvn//48f2fP378c//4Q2/fYTYL6ZEyvQwISkWiij5DJUxJqUzLIyu/MtIPhSWrEpoxKgdyI5DuCJTPcMlZxxHHY845VQ2QDJlHzoMdoKU6WiLiE/NARi6jRZUxzIZu2+jCS0+8dmFdGXPO5eo9j+lxuEfiiIwSKSSX1d9b97CW5+ZO0+EpMklCCgzQvR5zfqXMrGfgGXVkRdJhTsnyCW17gqQ5FGKlShkFK1QUvc4k7qXDkZIGfptZ1uV7CYq9Bq8JHrtbi6joeMS4qFTyOnUgp6JQwGxZKdD9aoPW6VFiRPUSX6KdpfQ6bXsgKiasQKBiaCUTREcg892heqW2vddFr06px3x6jj4aVQaQ52J8Q+1XQXYVXiRbQ83f3Pv+rVl9M52ukxqVOLMv1za95CMXhhe13F7qJLQBOcb4/vn5/fv3P/74/Pbtx+fn57ZtZkar8qHYNq1CGEeDjDnj+ZyPX8/nc87p8SyfTFfJBJUmzj2OOOQpSayqiz78tksLolVHk7tX12fajWmiulUgOca4jQQQ95ST3gxWRh7HMQ9/Pp/9DgJt96bOCpaobJ/3P/75z//4j//48ePH7XbrSut+v++dELVt7dS6tUa0T1iURMkwG/sYvm1x2+9FsT23bbvtH+5ezdOtk7CBqPBCtE4kmSSyQtA5H5lbqzDQuRTheM7D4/E8bKoWVK3aEO1tXnSCNbSislSoY9u1QEgyJ6oqCFMo4GuQ0h6AuTqP1n13hmSfzapNTH9ZFIm+FLV2HS2nD28bM56+OzjP3X70oVyPdJ0BDyvqcfoTEqJLfnKtChWDqNDMUIrigVW7NEDbCEoPeURVVLUkmogabwO46Hkh2qu51bkstp9K21Wcm8BqPRdRU5qNHBGQw5NzHofPOd0tIkq10eJGoAjt2VNRe/swbp7ZyTI4p0tROXpy0NkAdZYzOCV9bRyQy0YAAIAASURBVCjXPrYnfbv/Q1yH7DI6uwIE1xPW/i6nJdh5q07h4wnN/I2A/2r7/j4p+7u6ra4Grf/4+t2r9noT6HVhXcnfCi+LnOum5BKzrE63ICsOeBVeeHm2oqrkrWH9e335Kh1IcqhuZnl9Z65Yzf4yVS0QdQ3Qs6p+nx3UKVR8A9tf6p73GuvtIi+I6+KZvn+tj/9mb3a93OmOw98vapru18J7+/5lnLsegZNxf+azs2r5kzWaut7te3j2CbAp9G8fzbN01ZHnQyd6pQiw2D52SRZbBUwUWFlLArY4CiJCgVQlxSgpIsXONkMgh8hUmkpGplZYRQoSc4qICgXOFgoUSZptqiq2Uc3Gtm3b2DaVcbt93PaP+/3j4+Pb/fP77eO77h+lYxc1Dz0Ojt2GP+eyfj0SlcPlIazwTRUO0RHhkxQiS1hFpKAMnW0QzJByzqPm049j+vNwzirO4PGs41mVqrabbcQ9EzmRk55ilbpSh81UzKxDxBWnULy7C4/jOJ7P5zHn9OmRDQ54VlTbfImAYioJMjJbTh6ZFjrEZUqICKmQAr1keny5H+0TkfUV8lV4FGcgik4rM0qZCApZBBW6UZQNrlGpWmkQgyrVoKplqlCmEtoOP9KVPpWM5pD2Q+9v479eWpc7w+sgoaiqib7tPy/k+OXptY6KSEv2xBxsjnYzqC4nApLZj26jNVlX130eBKcM/CREXqZfEQEkRK9X7xbsVR0ul5kXUP3vG9F6q297Zt+8ahHUGwBxNlo4/wQl15biZBPT7frm9sggUBUExhgfHx/fv3//+Ljd7/dt2/oyKiREReT0nyZL0stnPp/Pr6/n4zh8Zhzls9JVcqQoUqyemsICPGs6HeW12TgGbBu3283d9/1uY/ZjptvooWdUNtD1eByZuI1UCpKbjX3omeRX85g+10P+fD6beqGqHx8fbd7x559//q//9b/+67/+68ePH/u+i0hjbA00NhdeRPrchNBrOSOtycbYhoft2000Ikw3G0dESJ682KrImR6ZnuVzTuTpqwxlOehA+lEoZIBQFOfwlYnUSA/UDKoBES6y0AqROvfzVY73d6Oyswt6B+7wZq2uTLJ4Fl5kG1WyWxwsO4g6J2BrVCZSp6zBIoWipqZj60MlMyPyNBjvfZ/nknIwVWEmKqYQYgAS0pP9I3AgA+pqHGrCm/OuolQEnhWRBAUhtGZHgUJrWIsSNhiPXyBL2x0ZkeHpCfc6smbAu3sqlmSOgtZQVVJQkIpV0fsk+mcsn4wU/Socnv/h+nwcX3bsY4uxpTGFADxOThy7iGuXVD5LM5HBTFRQKtV6bNbmgSJqQwZLK6yq8sg5p7srKbYNNSYzsh3OsO6JkBlMqZpZZ6hMFmYPWNYd53LWlLYAABWk9o5GKYoCRPQNglRnmMcRfEZNr8rQw4UsbRuwqEJqV38RVU8mim3YOLU2cHiESkqBiSx1pQ0RNNwqsBFjZFgG0ifr2fnjORP9QYgoVucU8SKiRSEUQkUs49DCkl5EVFQhkEpCSgTVIKuIo9bwsBMtPDKiIpEFJUyL6YuLDC0A8dUeQ51FCCY6c742G928vYs7AejKfa86qbuZXgtb6kkfTER1XJXxa8yxNNirUO5z6lUDre05z02/Qz9WG2MmF1fvPHWCpNSWCMKJaI8CQJK3zAQXEv0+U69jHUGqgCC8lBnkcveldadOSO8B4/lVVVETmYjK6lTN9Eo75e6oNF085NJd6xqpsCTAKmVlKnHzbWuJmXorHLf6XhVAhzR4VcNkW2EDrWBDbvftm+l94/22f9jH9uPP//z445/j49v4/DY+/1D9oIyEqebQvFnMLZ6Hfx2Hz/zrLmozPjzr8Njw5OOpHl/CwYAgyz1LfXJOukvxCGfO8lk+65j1PHIeuThGweev4/lIYpiVY9b4PyqZSS9GVJGSaWIIN952GYOGRCI6WVpnVEZNz+nzeXw9H0+fUWhPBFJMAJGLCnNUqWqiZkyZMsameght39dhT4UoM/2Yx5zPlC/Pn5F/Bf8K+VX2sBttz2FaVb15qYhsqK3c8A97ZGEG5EZVDVCmmI/tVhJbckBu4Eced6n7Jh+l/5fwttXN8pNVno9ZX80lKEcFWMgKVmiKUZ+n+N1MzsnRCSDFosZf+XSVqbWMmhmRx1RKmRmlABtjPzWPJ1Ump3v4dHf4rEh4J8VUVgWZSnQgNEWQVRpKpjclpP1K4lTViAgVU6UyKkdbvTu+1imoyiXHAUkE2wKivTYIdMuqe1dyzMQLb7hEAFJq7aKXUkKliKFW/mNrOaGL0vT0Of2p5H3YkLgZPnf9+Pi227iZ3vfdhiSiJp2W5TmzXJiI6c/nPJ7x9ZiPr59V8InnV/jE4A0bWXTR4yCy4nk8xB4/f318fLttO7ZsNeLnx/ePD9+2vT/Ovt1FVqKOexzHQXhOfJOMZ7jn9+/fqR/72AeGP4/j+XXM+Pn1+Pl8PHN+ff2cz+Nj7H7fPz8/v398/vjx4z//8z///OMfrXw8DWmbRL91y0pS7GyeS4uVoeAQSRUz3W+Dg5WZrrnpERF6OgBkZsSc/jyOR4bsY3gcEe24OfL0RcMQpu87TIB5bDjujAlukMmddZxGSIqgTzoeR6nVQXxKbpqfA5taIZ9Fr/QqKrYQJD0YAnP3jo0vQsxEpAMVMrr/nnHMHAf2uW1b2couUNUEqJruM2I5CKtqRov1eoYjc8612ZZcA5GFpRKDsngCy+gLto027YN0eEtUTRUr8YVUD5gZbachtar8nMIsOHnOiDgKFpnuFSu0O1ffFVVCUFdSIkB0InafaotcTVKQAkN5p1v2ud+NTlX5TFNG1PSaUSOKrJNhnW9g1Emx7OlhVp3j4GqlKlGFhGRlSAl0VXBnF5VAVrT6uuHHEjb3sjo8Aqh2G28EhKAs+k73YuegqbQobNoQ2xPh6s96NJFZXdLlxRhTkSgYBsfqWvr7O+VQcNJcCWmCce99kzrab/j8pW2HKKySVB2qQ9VKR4mV2MxfHdXS+g7KAiMXlfZ0LV0TDwHiDb0nzxnZ8oled1PXBJxL3NcyqzUTI7WkNWKJEpDZ8wT89lXCU+LUYdgLS7xeffXQiyN1Dkab5c73EUN/c5DKQpQvzBItvXzNHTr9+sTSTtALzM5p+Psg4zf1Q2PAVcicPbzI1pFUBeKC6PB374n+Vx3y05QBZKYW5eyc8nSpaKPZWX2rJaISREkVQTVB6WkPV9VrFkzWDgKiUtLlbDb5rMjoWMHeE72olTPlCxQpKTQVH1Shmo5NhqmqqJYKVDBUtrHdb/vn5+3z2/3z2/3j236/i94aaWIWLGkuFmVSJu4BzeN4HMfhkfQRsWdOkZr+hUUFt8ogbipZol7IfLjj+azH07++/Nev6UdGkFB3PH/ZPErlNsYuYuEHwMpRKaSabdu2t0+qrmRra4iwH/KImJGPBaK3Oi8943h6tHuobtQQQkrYyDG4kCARFkuTzIwlEm9/wELM4znnc/JX5NPj4XwGjlKXR40Nn9+GqaluTT1lhTJF0tsexoCiUreCFlKKmbEd+ag6Ih+/4mnim3DkPIwiNGFD1Z6LqBZ9KkdFswG5jGtXhoSNVXhd+ChkBQq9F14+L14IzmkkihjbZvsKDVy4WiwKS/NlS7PaKSgLiPbHP+d6QAWimcD5tgAXsb1NFk4g7eU8nJmiCvA9K5bUKrRmn+e8IiOqpCqP4wBALqoX29eHTK7ciD4jqFDVbZxxIL2V97rOysyvr68KV2IfW+1j7Nt237b7pgO0KvHi0at7aE2DB0WR5emRM/PIckoo0iqkIhgCz4R6QTSfmWUzTQLB8of58xnbuJXOfd+/fUvCVK0HO5l5HEd7TbGTEJ/PzPQ6/l+bXmnbGPu273tqlvtxHDNfcNdxHInqGJuPPz4+Pz+/fX7++PHjP//88/PzPsZQHenRPH9VYae/s36LH6+1A8uybTezFPHkqxetKrWWrrEqJIROMauYQGbs7l4VxZwZjI6RK2d6zRn5lc8n0pVlUmOwtqqbDMV2iCYtOa7RRGSmVltzJVswB1KWUrr9IrMyci6dky7e0eK9cVGXhdI1VePHKn6GYLbUsWxI0ux4hhmJELosj6j18J3nQZ3soNXii6xsJqJSlpvCGKNVF1mRUe5e9JIjxICkc4iOfds2g3ElN+drWBPRzIhI2Tw8PKdnS8EjYs4odMmlpCbijCGy5rKbaHPRmoGarAq55tnZscXdIpZlqDftsU8dECiqyjkO6mMMQDIls0lZmW3wLuclqlbYhwyRAIxUhVarTsHwmhG+tgBrLk1bHlRvQ9r2Oc1mWP9ZZn3swKKT2EgaObp0O43R0d45mVipBIguHGthm2XQAGUgIxCd28fF/kFVZHs5hadmxCQnRM024VDZzTazobJTthVuBCsOoaqOpKE0Ex7PLD/tthOZZ+rFMkTIzDYsabUjlR3J1QZdvHI2wAuU1rGLtLGHnBm4ktnxjxSWqLWVrzS1NOWa7lGXEIFssv6L45W4ooleXLpYdK5MLi7Ua+rbHyCy05paPOTh/z6euHb2pWG8PMxQEV1XLUDr2nGuN0AS6HXXmvm5hh2t4z9/PBceW+yB1Is3JzwdDs/mQYFmfq15fWZGWyRlPqCt8oyqKgNXKFsNzerupK/42v7GaTGTBBemWVWl1CjJwBrj+wEaY1bMQgYgfbwha4w04b5uK2yDDYxN9237+Pz2/cfn9z++/fGPjx9/3D+/j/tncSuqB7USkTDF8JwKU3WHBjSTWU/1Va4racS2vDWZnYmnFIg/H2M+7esrf/46/vpr/vrr+PVrfx5ZVRmYT5+HVdq2fUTuIhaYlURBdd+3MWzb9/s2xIYMGyrDGgFG9cDB8/Gc83E8H9OnZ8yMY/oMf3p7IOpIrZVBLpnRgQ59ugOlnmqEzpPfLQpVAdLjcD++4mfk4fH0moEIFDaMDVp6u237fR8UwIWhEkNxZKtXVERFKULTwlb7CDwzHzOPr/gq/8U6Cqly/J9SKvUk4ISHZ0U0zBQ9cKjWyy+9d4sEbRkpdVbvQmD1fFbPaId+ktEAtkqpVBtXqNi+bbe93Tgv701mCun9HDvITIpSGkrOzBmzn+RrFpnILD+z6aevMzSb1Fyvdmw9zw1dn8dZ7/+LRCEiRREx98NPZNrnZAmZMLsCjEmKexMbklkVItohiTzTRYE2L1jnekRGuoDN6Nnu2/Z5226bbCXqFCajMCgUnbaFPoOVmOFP9y+PJzCVbhbfIiJnMlOTlRohByGepRlyfIHMVSJvarrZ/Z6obdgc5pXLwxPMpTZQJSvyefiMx+P/9q9nuu5ju+37vpPM5/x6fM05fz6+fj2+vp6POaeqfPv2ue/7P//8+Pz8/Pbx+fn5+f3bbd+MBOlcUY8pVF2nJlARJUtHgdNTmBRVs03EReSMODvzuTa9PN29UmLYPDJ3AV9GJDnnPEokKY96PrK+fD6Px3M+D59H+cHCvlODmbWpDOFA2cRW1/g4M6NmZbACKBUkU9CRtNXh8omc/lhdb+tXI2Z4RHQwncooRlXGdCRYUNuALCmNPLV5sonZ4T1RD2qUHJprYN+Gy2zbbklKV1isjmtDSX9PtqZukZxNNs+ZlRnVru89kU1AYl/9B7WCURUBd6/mk6Ujj8wIHJ4+PaeDMa7qWMRAreU+JcsrFWgTiLUBn6wLKWYtgmFGa/1EoUOGcBfZiI0wYghNRXR9QFe8KtOqElDLW13fnkCsLt9TKG02UZWRJlJEdHt52hWkz0wEe4LWrT8GWmov0jMrLc/MKql0CkWaQCpIZLQTT/cKJlSSsWAfaUtzVPV/t7fGqsWW0A8JWOpqE5deZ43Kor0jOiIyq1YknAPSDikqu8quslGUpbEirggYalVd4W1mEwXvsbDAi0oOlc4SRM/Bl/uGQuvUc4icM1YtoVYt2fc2trGJaZ/o3f90Cgs7H2SRcltE2fF2i1gFVFvUvAojkbq4+Q3h4oxyepOOZ+YlgWzKdJ+OBdSZ+MRKADMfjSi+F15X+XX+yXrtfuckL7bY9c3vYeGUvN5zJSntgdpVcl1ALKiXU+P1ilJ6SeoWFaYAhNDaJ2mNM7Pr+Gr9S3TdzhARUCiAWoMRrelfYluprBaRiOLMvuwSFiqllV14TaoUkU7mluVL1QADkmYwqw6mUBUb3Ifd9v3z28cf3z//+Ofnjz8/vv2x3z9sv0GtwHZkQAkE1BQXRSlZqqOYJZHMUoaWdJuqph/eSymjoEjNZJXPrGPOx1O/vvTrwV9P/fXU59NyRkTMicqhskns4CYhp28vVVR1H+NuuqvKNtRMRExoZlIV7pURnpiRc8Y8luV6evkR5cX2q1MZqTy12IdmN8ot64uZJdFOmI0zkaXWDM/IzOlH5OERWXUUo0itGPhVrI8aDr3TdopRK1Ax2wTYpLqHI1AplUbKBrmXHOn3qHvGAUyYS830I475rATLkV5RmemJyIzq6RuKMihgdqTj5dEgL++s87GMV8UjqiWkGE1tG7aZ7dvYN5h2ZuVyZRBhd2iJZkwkksgSiTYlntHg1qJzZbWgMtOzZaR+NNZVy1fypct+eSEtyXAvdOYJXetyIWXJ6o7cs8flAu1nWUlV3ccKiQqba4EgMpOEbmMbarQOjcilpmoIU9REglUBgw6xfdimGKQ4RUoJZklLcw5iEgf8mMdjfj394ThgbqPuUcHMzLl1zEMyAkA+w0PKNEkiGtLgl8i23cKhsg27qT7cG4xwSrs5cgxT4+HHnDNT//U8OHT77/t2u+kY6TGfx9dfP+ec/3r8ejwemQmV/eN+3/bP+8cfn/b5+Xm7bfdtbJJSXpEgjQaqMrWdreuMM9VTZ9BCqYzMa+eUqAqsX1AIDWNNQgrSOQkg2d1shEike7nl5ER6MRAH4KhgTRyu4ZJhBPdqqrx9YZMaKVuWZXuTVBUiOszayzXzqSWM1iFExBHufkSF5xOnZryq3I8ZngmRVFWYiFi6+6ko47AN267L5S7XUZXNppeufnzmOi3Xk0lK9R2S9ZGhy0v0PCfOgIvKEj3TbduTQpSqknBHvYTWVZ1IXZiYLJhpITKDTNGMfHj49Jgu9GTKmSHfo6PyWjQvLPNxYBk6JKioKLxUnblcRilqZpvpEDEueGxlILaaU8hCgmemRPG0yAQrhV28tJlFD1RLkCwiixIVWkJhZvr5rlA9ZaKSiEqkQKFFpZUuBBUZTYw6cW7gnOz2MDorCvRKVspSVjefafkHsopZnba+6DwNB8q79hFA21yqCHo80BOjQlY6kFJ92JNUWe50G22ZSAkXLQuLH4+V/YJqn4JWUAPR3rOkKNAgYc9trdm40vStfqL6WUwtrSo5Vd+qrd3rHDfJ7DjshQ+dNUoWgn0JMplVq1x42/SxcKIiM0uuegtYgCm65OshYAKLFMa3eA2SbdC8zD6WmNf/Nos8wad3aWqcC2QpKjph4bzJi5wrwlMw1Y/y+YciyDfNBtd1I3gpB9AS2VyWWrmmsUu39vI0ymRB2H+x3kCSWmc4waX/6NDoWix/oEV2hCjEtD0Du+osASTbYi9QUokJ1cRgCVDCaLnvEDUz9KuNodu23z/2j8+PH398/vGP7z/+8fn9H/ePb7bfSphVWRnt0sBMJJgQQBOeSdehVrbn1kWtxzHnjU1CDan0zv/zxHR498I+n62o8fQoj/JZj8fh7pkty6mZET6JJvOJioptYht1QKwI2liusKIJJtKLMyJSwjmjVtBNaqUiXSGEWqmVaittikQ7zjEzNRmRaAPQ8go0SSXLVTl0pZNMHukz+uYmoxQGmfhC5tfEUfg27j9kV9BRDL0pVMysoWFJQlK1NuhtrLNGJzgLz0ov8W1+4ddf+ddfGQfojpNsxsWJXxcqCQrH2OQtHvGacUcET3J65IKdqgo6VERMdGxj37Z93/bdtkFVyOJUCJUl2twHiZI0StCKE6cypqrA078O5yIGlml3zIqe8pcIhSorfxZXDFqgtKqKybNBX7MLBinZS/KlCF+I7xgAlDSzfWzbtu02RCFy67xkkjPd3TtWpNdospLIQuu+KBj7LjkzaZtyU90Vg71xJwEJKtu/LfLpcczn43h+zV+P+XX4M3CIxDYQMx/hxSnsJM+InF3BP1y1jU6YLzT962t+fT3nrIhy989vdzMlqxA9lFajGOecmT7GSPn4+fW1/c//6LCqenx8pMfj19fj8egEUxHZ911Vv398fnx8/Ne3cbtt2xiqHENFhEkR8T62S6uCiaiBCAABa3l6izdmuEdF5BHup4RiGdAsGLUxFSE0KqsrEi5glcKSjjQoSkFFEfuWLLRnxPE4RKIo8fQBZoBSRW//djI6kDozs6bUDD8QGVmiBTpZgXXpDn9EzDWsayl95uGzp3/t7ygMJCMC7eFHezy/0K1U+1MGuxYyXa5UjbZdVhmdYNHmOVUlpzcdFkUONHZSYXtPaNvZI5kQEbYHOJAJPXsI//r6ihTKEXxmHZ4zsswoupSibIQs3cPns/IIidGBYVjqm2Xzcp7BHW8k53GStWJVrxTkvo0ibE3StgZPPAETXsUipawQOBfkv9sgLNvPxcFvgiff8Y+oFIBIQksJWFdEVGs/om7yEmCxV/rFzq4isaqDRk0us5y1ncX0UjCkUf9E25hIBiBXu3nBMOdH6OS85VggWDKzvmTe7LVMevRw7+Ja2XKXtpVsosoQqjQg9+5JeL7cqXXCadDV7jLVU9mTv3XKQ7F807v+aD6q0pTQ9jlroHNN0Kp5FWgvYJwNdsdqgllSzGRHNp5iI5yoaFcwV0wSzx7rLN+JDn/87erVa/+tqtPl8tJ2vf1bvHuD/Q39eg+u//da7fyTlt5e9Taufj2qdGUntBtci+llpQFVZczL/OIcZZLUbAY0lb0azx9JyRJZNWrhnDUsQ7OexnLtfhRKowFyohvUXoasQiVT0WdlAwc6R/AD6UCIQjs+6PwyGzbG7fbx8f3bt88fP378+Pbj+/fvf3x+ft/3O2SsxVvow6vfYlMAARSSWZG+puSyPM9auHBKx8odnu7hz+dz+vHz+J+fv/76+fNfv3799Xh8PZ/Px+PxfDyez2dEVNGMbPfURRg1Fdu2W/9qMaaqqAwzqI4mz1Vq+BHR6S+FYAbLWQWWEu1/qyitlBJFaUmHYyw4zZu/lJlRyJxHzGMez2fEJHnIMqh68FHpydmRBFEFlTI8I2sLRkq0b3IUSxK2C6FKFdra2ogh3EU/VD8oe8lO3UrVCa/jqc+f9S8jifgrD4h3O8YIplZ6ZLiHF1hhgmHdpEml1GL2t08BXw984FQpUgZNxxhj33S/bbfdts22rVr0Hd3nCYXt+5C18ha6pzurwDqXWzcqbXLdoWCxsnr7ODipBScG7BHKOE6ekB7XiX7Ky/v1mOthy5hzzs4iPOeKNJFOet73fR+qqvswERlDZXQs9NdxHLFqi3ZRJrIStTj5iJWprJ2vURAm05eA+pLdxJxzPp6/fv369evX8XgcX494eMxEkF41yx/HfM4syUTM8rmMMNTpi4V2OWjo8wtjjGPOKE9ElN8/bqrM9EJEOFlCRkwAt1tw3/T5/NfPvyBMj58fHwL407++vrxczMa+DbJd6e/3+/fP/XbfVBVIVbbUQlUxo4cxsSyeW7GAVFSz1t2nu7vPcE+0E0tUQignW6YDvBcaSRImkkLNphExBNSCRIip5tgAnYHhg+lWwjSKYGbIdAGsmFMOkUFRofQh3BCg14E4EFpHZKYaSoOstts4x5o+kad+lks80Z8XIELauCd6Myo/ZhhUbBvpmn1wVVV0YAV6ihlBliwj/Gy4SwRVqrpMgEQh3Nkxvuvw1lpYRBYtMaUkKYBmZpbPWHCXRz7nl36VjRB7Fh7iHpnbpj3lWBhyLJeK59Pn16Q3QAMzkQQVAY9yIE1BU6OJqsniFzREUG1mWw3wCEuEWqIlK5y903J7lyg5HR+qQ/RyqSF7NtO19buRcdsyUbnMbZa/V1Qy5XRi4iaWJiiBSEJKtKipiuafh+fpdF9V7QLTPTGQPWps1L0pXcwoL9dQXQyi1+aC4nJmr1VTdJhPsJ0ycc5hswORm1VEyYZj+uSMWekso0Ck5wA9CxdQKlKkKpUHlzBAuurtolPOOV5vU0sHdIb+9XxqgVyBYL8NqGSQ0sxdbUGASBGdTdNi48XG0Mar14i1mGsEvtgU0oVqSSGu4qbTmquaP08t5vqT0/Sr7cb6rct7VcTMa+tf47/Leth+L7nOsWZ32kum/pIr4jdCGK8/u7ptnAjW2+lCvrzZrovQOZVXGHOdK/eEFt7QLDQyV1qdvPmmgwQSp7YDgGJVz9Fs+r7G5+6pIpD2/ZNF6DkTlkhmVnhVtFGyqo4wYN4jZy/PawjVhVfb+dzv9x8fP779+PH9+/dvH5+32/02NlFtyA5MUIziDQQUogdX4enhMafPeficJ5e9CiVCSyyfmuxAs5ge8zge8zmPxzGPw4+ImTHTj5h9KqRUVXhVegRUhtkWUaY0s/YfGmOMsY2NLeAbY2tpamVUCsri+YgD4SynO2JKpFRaIglNaMGid6H2dahaz4l0NnxVekz44TVRbcFR8MrI6e4Hn6C3k1n3imWBQBYjMCsezR9DfoLjY9MvyJCWwTCFVT34v1Huph+Gu/BD5a42ghV4Pvi8iQlEpGTEF/KR6rCnB1WQyOlHMUJJZWRENb7VyScN0tI23c7qP1rkIQpVFW46bBs33cbYN9l2HUZVUlqwuIZMqk2FwiktjAhGVGTEzASlmKSpJSoy61iPfRZZZqv/X+R6rJ20jx44Ce1B+VHHNXxcbRLWBFN7SJ/Tj5npAHi2JcNs27Z2X9/HMOEYQwRmNjarivVU1PpALZRphmsHA9Y5OMrMuT7f9NxwFDOfGTVyEFnz6/l8PJ6/mk71dRyHH8cxZ/jRBWE7xnlT+VrK0VwIP3tKvkWc+dTpVggb2DYzE7B6Vg4gY7b+LPK0mdCnHmpfj9U8u6tYRR7Hkczbtu1jo8q22f227ZtRRXSoEqBqm2mBOiToUYfH8cxjthhdADieOImnh88mSHlmR2U3Htlg1EoimQV9JbsVVRALiaAAM5OiUC0boEhgMLcQN9kZhxYYEq4eIp4VQT6bAUlBUpJAOWsyj/InD8ahkdBAaVTzr1vrGp55FV4gGTmfPgEMQnN4OUtSphQBqchgwNnGs1zqnFVTWvnsPZsVCaO2+CQLoBSVF2KCQiXLskSYxb7IRPvmmFpUIDVZUmwgpSqPI1dRlTNzisa4lW1OOQwhUsveAAj37kH7ss45j2fWpNJUFe2uWQxEIkRBmipNrM2FUcWMpV7sKZ6orJGOtNtAJVWbyA0qoZcRq5xufasyqSIT1+ymqn3QL262kJIoWyWbLEMC1uiDtj2fqBCr5d5tQckm69XKjc5MlaxahgjEmjxWd5ONKvAyf490qCmQgHbh2NCQNFjIPC0MCz06j07zaByFS26Xp8v/heZEdM5vv5MuVFehtMhrhWKPfhLtcNgDxCR1zV1LFNkWwyvH7SxYWXIlEWXNhvwznRxoRWa9zxCXy0EbNyQDXW2xC6YXW7Yt0qq3m1y9y4U+1tqAY8VhoRYA11HZOKOAM6+i5K30EjLYrMi3aIEe972JMl/uDtV0DpEmfLwBV/LbN780le/l12+ujG1qVwukRIs6RfpRzExcdpR9rZqOJpRinbZMXfiyyOTLR5hkQK8CsBPCi5cVfg+flx0rtQPJYnnQ0E7QiyQFkkw5RZeECVvva5YKuGiN0z24j7oxhm3bbdtvt9vHfvvYb/u+W1P9ClUOSIpSq8GMbO/Y1TVHeixeVMMwy4sSVNFSP8W+gp4l9aA+Bvf/j6237ZLkOLL0rr24R2RWVXcDIECCnNmZ4Q5nV1pJ///3SEc6R1qJJNBdlRnu9qIP5pFVoJQHBwTA7q7MyAh3c7N7n9t5dr52iWB25s41FZuZ5p4ISaIgSCNmKUzAipJT1UrrVREhFRVuwuLugNeY1x1pFaZY0BkKp4SCMsFBGqwsWo0fkpYx6nQn0EB6GqJOWUJBSl3AibQYdoQPn9Wa5xTF0iLHwwNNZBIHT/gQ3jt31Xwd2YWDJJgoObiDFNEpu3jv6Oyb6t60hZBBhZSZvWWIpRizI2VCkoLBIaniIoNDSTqz2VzPC051NCtz1Eiuqv+IEIYu0+MmIm3rre/cVJqSNBL2SHiYR0TUXQjzHBYVfReBBWJc3nYiYk5hSicHOIrZ7kAwEcu798vdIkK1fYij5Ujj5Ewxs9WfoPVorpPMHJW35tPMRubiRNQUiVV7772Xx1WlehGAKKsqwO5+qJrxsHysEIG0aj8kgVnbooBW+6SIuwlFGHmEyaTMsPvw44g5Yo4YHjZ9WJhZHTcKbOHuIC2AW5xLUIRX93RNe7w6iBxhzHG7ydtb75tU4SUiTOk+z/czyxS9bVvkCs30Oeec0HUKZFS2VyPKTdumsqksnypJTYwfy6chLTHMb9Put3nMLEzH9LWWBnJ1vFYybNR0cn0753qXkUI15ygKdD7g74BLnSJpCaIA2vZ2UHcLm0F5Be7pamG3EQooVROEi2nH4KyyM919wO5wcQszj5RwS/KkCiIug54/fLWk4rlwiQ97u6WJaDEAkmuxrnsy2fO0cSiY1OZRDN8MCpslAxSp0Swh2Kcxs2v0TVtrMY1VuYkU75JSWCHsaauJFFmDefM0cwqdc97n3WNGHqApI7RZ21xnRApR9k0AzDnnnAMR7szMQkV1cYgGJSlRkqD4y1RKV+Jt287zd/hSNQKAexKJKMGJk0S0aRNVRyqRqmpv2hs3JqEongMJSSBWgHGsDHnOtDxpeY/WwnqAiZZ75aSZB5hJylJL0mpWliTS1AOWYZ4zPMzgM9yPDE4QJxcxJ1PEmm6rq7XWBacECZgZUfbATEZQBHlp0CJDGgvzMcJ8RIZAmSnMK3cTa4BaAhY2m2dJABHxTDMTfZ+yV42RNdBh8jEik1SkcQRLa9HafbWKpLUG5ZwHkzMTMsM9V7VeQS7V1k1u8hiS1XJUcPmKsCxx0YL6EPGa6HmWibsU9SdmA6eRAdDVtI0QljzJrngftz3GcJ4lDKPTHProLNF5piICMGcQ6hv+2KaCiOLD65xo+DLG2xrtElYLlt67UGs8+l5+fZhln4UUPUinIHlklzCz+5rDVJ7k4ze6H48WVEUrZWYEVFtJtk8l2ULFIPfzPcfZzE0khCS4kOE1Ds7yJZReVFjAHMmVxb0ewESyA8owe3zIjBQi4lYqCs4y+6iqNt73/XJ52nrftm2/9C7cuhTbmGQnympoJoKZKdMqKAhMtbR52iMUOSiDmLmJBjELymdnNsy5tWidr9f9fh9dN0bjVIqvPnNrls7KFi3GnGbhHkwcjgnf+1aZrK1tTXvTXsjv3rX+/POnsxvGkXBxIwoR6mnuRkSNKSODWUU6sRIaREEaSUq9pOtIplREhlnMIJcwn8PgQUTphCk2BrFkWfoELCCmVMDqLCYZPEdgQjhvgvS4XCib8wBfpDVVhjDtLJeGy5ZdjkbWdDTRpto3EVEO4muGq2MzaBDagUN43pNckV1AUzq8TtpMmWFmkaF1qF2JNKtvVMQmRO/9+fm5QUUaq0pTYoVU549bW0+3mdUE2eZ0Mx/zEdroPmvhEhFknN+9l6zTY6Z7htGSMNRwUxE6F824jrNRhUPlOIlskZ5QYlCpVGuhQP1YK+NOQZQDYN7eu7a6anERUV5J4+vRa0XWkCQzdwqwSgbN6Z4mvUXE/T6I0l2v236/jXGfWwvA04OEwT6BOY77uB82b7cZzuE0Iy3yfhy3cYyYX78dEQTSORxIZhHmOVfjKiI5iaBKp6JNllvWfL7dXrXyB5kJSzpdBGwiulwudeRQYkqvAi697KMwn601SiB82/fepCrvApiXUIYgohQRt2Oaxe0+X9/G62283eb9NodHOGp1AOBV3iEfVVf17fR0y66tFmoWHEBjUZyhNVTvWVVaalCycncfbjmHRklrpbZiSJLwvvecg2ZmeLI5HFmy6yDA4wiDTc57+mg2M490mlFmi5L+ubvPqJ1ROIebWZncJyYn6qxWH0rO06ZuW0Tc7/fM3C776goHdNzfHlxXMFUKbmV6ETMyahYUZk5EQdIEKfA1HsqMhDFLE4VnQAIQEiQhw6et2U4mqlmXw8ZhzY5prWekEm2JTpQlg/VzlkLsLMGSlAbCmPeltSAVWfTr1pq0ZRsuKUxwuVWEGFxqihrvi7DKCqKUItASMRMrSTlvlDMyLCiQKOZnpHExNineoeqZiFBZqdi1My4RZclNRZMlhQsuxqyoZE4kp7LXl+5hCEry9IicxgubhBCph2LB005OzIrYCQc4eWXTVy4xkOGWKZSVpBmoJNQVcwvGipzM6nOssAs/wV4JOQnCy6nEECZIEoEESGIhURYFaxExVmJW/WLmDCeGEqSI/WF4qMyWalVWtFbVfydNvrIHZaEcqM708Y5Dq44QquF4Vrcltq8cvESNYEBYcb2lKdNHAVERtgTPrPhzz3eR+6lnpHywvh4VNk7tFJWikd9VXBEf5CfncJ5+S/fOheP//8wl//9e55jyfGOgkrGXdkaIo9LDKc/MIgIg/b3TQCKFKdJYI+CzvbUAUUSEbPXOeI3mzy0qvQYheCD1V+us5MKaxAFiqjYZ1z0PIqYMgRCqv6KakUbkLFSzm1qA9n1X1ctlu1wu+94fgzxZwJwqthAEOvvQyLLQ0bk+qUjwiriQsjtpsItGOHCp/Awzcz/MtzFvZuOy37s2SkZkaU7Lgl5hQsxMZ3+3pk8FNstczw2R1BQVKXU6LRNlhoRz+PmLkzIYKUAShChW/FpyppSgYeWxr1BSWrncQTAOs7CAJzmHZynZwjKdY1J4RS8ldPmbUjEtuBMaiSZ5mlJsqDZDKKUH3LFlsihzSFa3uansHZdNOpE4KKPJnTrzRSgjiC2agUSSwyWVae+b7ruPI2Imgt5sVCWaRHVIr9oLkSsBbGUeZIHLr7LXHDpJwIX4SxCtM3JEnGWWmY0xcs7ydy5aUg1eCOGeZ/ZQpltaZkltwMq6jgZcHFcOBhAOzzpTe4SBOF20MuMdSQheoHkGZhGhMlcERi6XzeJcEEUYEWnjbdtUK2+b6owKgCNXImRKxjJEW4aFW2bMycwRDgpGjDHGcby+3gSUmcpyabprY8ac8+3teDvu9zGO+xwzzSmDHChkexnnQQJGBkfRCwJmhkgGSKTrtkwAzEaHuxemp7obtxso4TGrK1dCgn3ft6aXbdtUKo2gAhHsPFJlVjDWiKGrlmbqWoK59RxlphvmtGOO17fx9nb75de3r6/3t5vfx1zwF7S1J2daVkXocwHonfhB5V3/oNmjstqQmuvQS/yYQqhGepZ73RTkficlciIv/1x53Tw5k5MkmNIFJMt8lnDLpAA70hAzxzFtYtrhmODCEJ5xCGlVK8hJqgsHcTh81nYWxCxJzCqP7m/Eh/b8uRHouN8/7rgiEiIsUNXqyNWbSwpEhvkG8UhrqBGmEIcGZygvuQni5DyUIy8D6WXyQLrbiBzTB47hWxLvdROz0Gqlag3JXQStM8IRyaAMp1PVXbnuvV1aa0yS8BKp1LcSxERRvBahyuplFWFVYaKKCAVnwrKUVFQTMmTtI160tPVg4zxLrZFQIGqLV1roLQBOJMu+zXrSIgSy+of15Wn58AXpGcnm5JEJuPscBzwIUQagelQW/6bsb6vlJhkWVBGfsfQ68Edbm2LUklQB2edhLzKClozs7L1QdWVsqb9ZVbXpdqrmhUiSBWCwZAREWVrwFGnBmqdgmmWNVs/nL1lKSb6o6Av5xknIUkq9tw9LdUcl4+ZzGkZY9E8ukUlpzxeYv6oNINPPUeZjqCdEhPRa+Utlxaf/yn1GTYTL0Xhi+kqfVs9MUsR5ibA0sUvSS1KOxIfE6l1ZVZXZ9GOJ1PjxM9fY9DeTyvMVZ1QR6lD+qL5KsvwovuiEghXDjVfJhFwTVdJe7/PhnGeWR/WAPMO8V8cwOd75RpmONZmNCEb6edB8VzSW1L00+lQyNmYwApx0EkCJJCg0M0MrZ4tTVvBUuRp7v+ytyfV6vT4/PT1/2p+ubdt069IUTEmBun2kJtzJhEwWyhLtsmqrFDkKEVHWaPBT3B7hQuQWZpXWM6a93car+bjdviF5zgJb2/023lRLDJ6ETr3ERUS8vNjEdfViwVO47qtT61nHLrjXxCfNwy08kYQAE4RJiNa6gCDyhEDBstioSKSWg444KZimgC0mlYYj4ZZmAU8B20QYR4IIOTO5zEKAJjWghTfAs2mOvpKSkqNNmIXftamzNlFK0pQgBis0WZLg4YHADaytNbqkp9yn3IyQ8MlN+76JB5vjdriPCEu6vT2QVwQmFRX5hzl9HWlroW7a6vi0nAQos8e7YLmAnCXZMzMatXaZuyOdqFwJy0FJgFQDvXGmQoIhiyh2CgojQswA2Lof6v42hoKytv+ERJ5o60zPlWtOOB39lTjPWZl4kdaVr/vlcZBQ1XOFyPWISZO2acl63D3PCUwESG7HPd1BQdGO7Xj9dmv8y7jdQUNZLq1f26aqZna7HW/HfVoloIQnLZG/qIi3Xb0GV+SLMulnCh8gIpftWij56+W5tTZwG2OU8bmWrHkMs6KyGhH23tt137s+PV2en/feey9zYjF8E0OKSoPUUMZgaoqtqxC2QtuJqmjpYs3sfr+/3o9ffv329dvtr7/8+uvXt9fbNAdBRBpxp0rIXgarnOFV3vlasY9aPNegny9JaK11RIv26O7TsrtSsjAn57IsEJegJE9h1gnyzEq0cyCII+GoTSomMuFkbmk5h89D58Db21uykxAvk9l5HhZ/zDprjAwHQcwMxE4pJBBl1l53kk83iwgzZYZqJbOwPgRVFZMpus6XEXH+gHeNS2bynBGRjmp0EBEri4i7+epJFAMpM52Ich4UIQRiAUsSW009IyahH257qHu+k5YMIFFoi9yIU8KdEpIsTbVVtFErnHq1HJei3JcQvpjZ5x6+OjhLBsYgIs+c4WP6/Zh14M7qZ1PNuorGkKvJEFGOwfL5oya1Z8bfcoSt2iOX8IgFoqIqoiRMzEkVG52OlWOYQPUiKVcPPHwUkywlIoLkcYHXx6hKi8npYfsKz0qiL2w8gJxIy7D0oJAlxz3PLFSIVqAo5ISoC5PaSZtoscUbS2PShbcHe1bXSJK5glFZNFVZm4hMrLOlUFCpCpHg1KBJVS9UYM15C5FkEQrkLBRIUOF+TNUAY0aiMKELeLjedRJjdS7MypJg1dWqJ1FECtKFrDD5ej6JiNL5rCceIZLAWXd4HRdWmtCDPv+Yx0EgGZScSH8UXo9tBoC7MyeSKdtjLf6Hhtbj9fhdZ/33vm8tDOXjS6NKS6zijJfs79S2ASDRRwn4YduTVTc8ZHbreeD3yWNGRbVWNzfCzljufBSUCS98c1kIUTYUWfLXTM6VAYbkIGhxK+qIqauVRUug3nvrfb887dfn7XrZ971tu/YmQrG0cwk5UbIFu2CQE6tIUuvILKADIiJaFsypllfKCE/XBVScIkQ1duGBu0CRQlDhrfd9357dKOMmimz1TNMJlswimD+EOCvn2MEsZ+cj3Kf7KhQeIpWzwF72d6Cs45HwLAFDggAlzlIzCJgyQ2IKPOZk1gS0gF7vXUw0IucUZKQjfAVRIlgC5qROwZQH5aAQOhBJPmfowaP7xhoNobxDesYGO8imqDDDHUHTR1rCR+QETaampE3ouvdCcxjEjEV8aqSHdiGSJMqstbdQPGtuWO88M+VhCqHI5MiYMSMJbO7K6sf0+zje3l5vt/vtdjuOw8aMCF2hWwWLCRHJxspFdULxEiWgwlAWkGqNsZWoTN5hZoWsJ5pVM1XvLHPW18dcKr/fdKarzlsl1GMWD1ayCEvng+S43HxcrA/m3lorMW5ZuQIkoq11yXvZ1ZfkRUp+RmbT3ZCuhGOOt7c3itT2Sjyb6Ojb0C4iEZhzTs/p5e2PTDBpa5fLTsJNW5rFnG490mLO8lExQUTkuu0vT5++vHz69OnL9XrdWn/z+xjDbLj7GPcMj2XEZYGI8uWyvbw8ff788vyyX592bXVqTESY+xiG1cXlrYkid5WYLc0QTmeoZZUg7n4/jtfX29e3119++fb129vf//b1169vtzE9SLSrdmmQXD2toJXjW8KpeuLeV2YRVW46wdRau7jp1lfhBdHT91Cd4unkRm4EK1+NxTF9mB3DDpvH8DHdDrcJNngkWcYMmsuKhyg64LQ4pvngOSeR03Ih9PL755ndzhXojMdE2xdUh6nc0Rph4WwGInOLiEZ0RkI4RegjtGHFbDFr40fhFWFn6NIqAapKWCLeOii6iIiFU2sQzoQHMksgVdC0FAILAeLGTkJBcziAMWYbop2aVORiTnYWToY2QiN2LmAcs7KwqqrU2Odcc9fx/T2CnlkJ5DUSKaAUU5EEKcOC0gMjmSGKtriIzQPCsg6kjAwjAjNndaWwOg8PJAEDQtRKM/s+GASkVUNOW2PVql2yxMNFWV5bdo2zGXBdjo21V6xcIaI8t1hiLrpSRlZIXKJMjFb0jYciDRg1bUR4WOAMdFoConiHqhMRQ1QzIdAGbayNpX3s1kQiqlJ8UHO4MGTCIar6mPPW1IoiwQEwRTCzwhFZtyNzRUDnhxJhTRZxOmT/4dBMlDjhuFgZUZyZxZKqePlTs08PQx/LA7r77hAUkPtK580IJspzopc0cY5fYyW+gZJAFOnh8NOeVGBlbbykVrTEE2smx3qOLKv5kaex8RF1QB87SWdhxY/e29kKO1f+j0CyhCOBR5PP3/O2PbgcCvUu64/gZBaAV5m/tPTVFawdnagCQzjLsFxYE0p8dPADnGQLEMIgxqqU61Tg5elIUHBwRTUzhEiFgxmgEJBo09a19d433fq2bW3btG2sQqxJQiWHf8e3lFh0Uc0oSZQUnFkP2rJgC2mEpTkjI4rQyFF0uiz8DsLgJjYljSX33vL5iQl9265ff32NiMrHyWBfzpEoZHY1z+accx5zVknfIgNlhIzhcay/zknZxwxpelB5IwBosRkzuA6lFBVDhsqwUFJnZsoy6XABFXxlhqhIwXrq2UkuPmgEuS1/hg6yIeNOj9SwPIKbK6Ozj+aHMJvlp+REE/iFfNml/IgOp3IaDIskqGprTCRhY1hwFsSQOT0ktm0Dl58uD5sRSSw1oI9zbpiZVJHP5xkeXuEq7hlJBqb7sNvt9vr6+vZ2q1e1PXQBvpc2qyknWgJBMEpQMnOSCEE6C3FXriRmRLpbuBdk0t2LFIizOx4EAgNea0Wdm2rzzqIZpq1HIJchDKHOs3ROsx12jDkPxGU5N4o5t6pkFmmq0LDMdPHaoT8qEyKCkiwxDrvp3d0FFLhfth2X9B5KNZmCZw5zm2HmacnJXTds3KR3d5sxxEzDphPu4ZLemPLSt5eX5+++fPrh8w/Pz8/bdlEWmtJac9/TbcxmNs2GKNmRLG3f++fPL5+/vLw8PV8ue1clLgkHu0+zGGYVuCIilP2ydUQFuViYTTseJ4R6Xm7H/evX119fv72+3r99e/v29vr17e12H5EsMrjp9SqCDFp+6lz5szgft7lCMLHMGXcOIpLehts2N+aVHS4iXXpVb4HMgHtUarDPMkm6T7M5bZiP8jLYDMsWiEz3EDvtlZYnUDeIPdOdGMt9TESIDIqintQa/oEndw64P/yXRzMrIji1GupCShA4YkZ9unaOTc44+lzMOlUGemaWb7YkvaeJtxrpAGWN0hRdMln7SiE8X8VRPOlbxBBKgksajHNOr0vdKFQ5uYUjMqAaEmgMy4x3OQ5xnl6VSFjkkrFkJkXyynAolJYTREBnIZFchpKc7OQxQSaK3rU3CU1kSwKxMDiSnShj+Bl1QOd47FxYC2zUSBfgqLo1RKnSV49UWiU9JZKX1NpXWsJZeNWck5kby+TKvasNm1hKM1FNm6p7hBYns5aGkio4cvGlI4wxQYbVkCtj4TIFPDhRZ4NFiJNTK9YElXjwAfH8qCWrUffYuatOesCyHieeOoevOvhDHo5SjXcfd8XpqKvFSHLN+gjItAxJB+myBVEECiZXd3xVHvahtcOgkNVmKPF7BTu+J7jVffqQlAGIFWBYhyfDEsCVQnQpxirw4KPSq2qpjbeFlS+y9jIlorX2DyPFhyjw8feTu3F6nh5NLYCYT7QEr/+67AOPN52BE35RP3JVU++VbGahzbN8JfmYm9L7byH6KMtYRR4o3B/u3QC8DPk4yf+/eSkLi4igtFkeeXLkMllZF291MfdJK/htv7Tet21v26bSSXSp0MqHHKvvT+ZQJhRkmgqSmARlhBDAnkrpIAI7HIaIsOV29DiPlJUG4VlSQwdn29ou0q7b9Wl/uY3by/V+H8fb2+12H2ahQTXDvc/XzPSo7MXhrh5aeVvksig5MSNm5BF5RD19dW5eNfSCGjh5VHTDwinXMWbmSVfPrFAkj8pB8nQueWY4hcMr1SZ4oU+QUV8LcQLkYLJAyjBREz0YlOlW9E4WEKERptDUyGPkhJBcdh2uKpJh4T5z98iMClKTRG9tB6mPORlEk52QlBymoOCUGvfwFAMwyyXAnL4C47Fu4lWrK3EQkl2cZrpP9zBH3u7j27dvv75+u9/vxzHG7V6Fl2SKkKpyQdizhLhsHs6AMGcWhVZZm7AoS9PGEosAE8wsmh6n32NlMaxHnFmSizluCah2IV76gTTUTC0zM5rIiGjCmamMmLJaKWfjs57Kc+VYWBMVjmB2qpM0Z8wwC39Mu9z5Pgfd8pjCoHncxsXJOC6pvKKWPKnIEeGZSVJCOpLQOEaMHAgRcuXC+5OQzslPl+vnz5+///777z5/vuxPCwoTosrKlI1Y4K5mooxb+Lb3z59ffvj+y6dPn3ovHt4JVk9DYM55jOGJIpZFU14qZ7j7nMcYSmjl8B02xxj3+/F2P+6HHcOO6ccx7se8j2mRxNa8kR4twzPOvCl6nE/yweKrgYMHOC0sCIo12hORmpUIkcnQgpgwVc/MzGLCPS3eNyYLH25z+JxmGSSgTEdkGGmUmDuBADnMUqKEOXk+0J5e4ShEgeXUzkxe0UaPM/OKrQtKzpwxySgiNAnMralwY0gEzCIzV8erluA5R0RkIBDuE4t96iKScFCAtFwJ9TmzTvzMrEI2iYW1a9+2bWOVsHSLRWjg0smIqkZ0ZrrwE8SFA6fWuzUhZUTzAU9GE/YkY0o2M6KUZSihJBDXHrx6FYVViPA6smawkAJMWJB9Rp405RlEPifgssyRhQAgpLIKStabAWgmCJ5pZbUqwX5VXQtpneSBBKS8PSKdW5HAo749OlttSzJS/bTy6GREijknhDmIHQjzJeCqoKEashW1H3Gy0SskOpDgjIzFDkV4pLN4UVEzktByRSz/pplUR73AghUuWisLRMtpLLrmSpXtXaRNrLTF1YzxCHfHKS6uL4IglcqDqs6TiUggDF414ztqCud8mR91Q5WMBfl+6J6wErDrV37wGC7GZmHeHwk8FYdDdX+W0Rflcs1c/23tfI6FAFvANsoKcwwAUUOT00TDrKvizHwc5T+++QcWCB/wqjjZqh9fyx6Ad8b96nDVEDA5HhBWFAntVJItNwF/qKJWiUePspKoiB711dR+E/Dze0/iRijiEfGiqFBF8J1e1EiUDeMBpSxRN5f/VKja/LqumzAVYDkl4QSptEFhEGXJ6uvVe7/se297DRrWMNeJmVIYmTEtKxVJCF79yYVpYUAZFDBSEs60zARzqRgTbm5hETbDLN0YJoQmtDfNrdOz+2Urmdz9OMYY325vt9vt27e3r9/ejruNYWO6e8JO7HpYRKlADcQeTrGoppEzcSRGYlR4++MbWQlchKRlB1tRErpaWVQyhUo3Wmoxd/KQ6rRMI/fyj9Z7IHE+iRL83t/NzBU9zEqslD1TPCLmTFAyuZNUm1Aai4hHX2gICNH9idkbQu8pfjgGscMcHpzUmBoEWfTryhVT48gk2LrLUmqynwhiYnZPIXI+jTsRY4z7/d5suWHCIs192nTzwP12f319ffv6bYxh5nNOn0brqMm5Gs3nNLygIUxQVBnCyMbUtfWt1UzGx2GcoAIsrMPdqm4jivkWEczyeHsAejcmjZXqGw8tLScsgCQbg4icMGm8vX3b975vGxNdr9dFeLIIJMA1yliV/rLXr3dSbyAziHL6wD3cZyuNuVP4zUbc9+O67aoMwNbBmZhVSUVaEldaZcZAMOVMpYhQ2rpuHpMT1+v+/Xffff/995+enlV6FTGqDDSkA0IEs6SUELler0/P1x++++6H73+4Pu3A6tBE+lpmAxFmZoFMEnYUeyIiygVxHEpKHms+No55n2MMe7sft/t4vR3f3t6+vd2/vd3uYyZBGpJJbZZycukxhOtMu3Qm65tySoR6RDg4M4ewmT2U6EqamVqRGGcjoEin6TEjPcOx8sxmuIW/zeN+zEnOWsdqhzilrcwPuKVYwIKn5zTAUhkIWlHAtbuJlCY00tIp3R8xJywIL/z7qhKMgxOa3LhturW2MSslUzIIqlo9rfUym+UveFg53Kvq0nMYVAlWS6tfjxk57A4Qk7TL07O2rZ12ULgV+oiZWTTaRpQO2ViDJ+lsDQtnp6yNM7sD7oQGsqBWThhihjQVbcwcNbVZdPP2qG3dPR3hhAjVflofiE6CFSEe0p2B4AMiJCC3psTowVtXPiOhU85uApdeDUmxQolPHH85h7miIJiIlDmB9ChnAViIFZLvAcpYHRkzN7Nmo5TvDJgHIvysjaLiDJTWOSNASLSkZHrPK8Q5hwtEJsqLgPfGyAex0WMcuhZHRBqVH4LykXRb+DqqTe3RFGHmFIavdJ1Ir3X0Xbd08uQZGScS4kHoqvIJHtRPHMPZyH38iHXe+tBkqsJo5VMnv/NPUaf/1bbhNWnkhyrrYSQJy4+vZQD5UJBJ8+pFZjotAzOVHaGW+zW8ltU4dV8X6kHDq1fZm+vSfiy88r1+XHjD8476OB/ncyhc6IRMUKatG2ZVXrXX0sc/L08dWwWH5YphJyJajKoPhdeqCDmY2TNE1sj2vB8kMqJ0Lg/lPkhQZiSmpatfcVsCcYpVAWTQygP2OSeRkFKdkVpr1+vz9XptTUrppapydk0AVPg8Kq20bhwJkYzEShI9byEGBYdwR7owUaQ9lq1kM8vKIHE7fRUQoU8v195423udMj3zOI7bcW+/8n5pveu2tW+vx+vrW347vBJwM8+k3tVvZqYyrCQkUcmkZWEpufsHn0RR8s7lGBXsUm4HzkQ2oUqDXJMqeNX7ojTXzh9ZHLwaFFCdH0GSLO+9R8okNEohNG1dWmdlFmR8SyiSpe7l7Ig9wQgat+NXvmcOpH65cVMV4lcfmAEjCc8ImzGnIRUVbICVQG7ESZYRI41dK3HvHPEzL0kzakcEUDklzEw8SJiEPckfDUnPOY85xjgOMwtfCt1zkXq0ipdFhIh6b8kJZTALJYO6cNe2X3dlyswZXhjx+voeJ0wAJT+acxZXQUTc/TiO2umFW212tbKUZqEeq4iwMYkyRTJTGN9a660BKIyRB9zdIgG3QETYHAW/XTqEU/LvbqXXTKv130xZibtcj7uNt9fZhz/b09NVRAjETARuhTVpG5IWaX4KBZenF8lT5mwz4b33y2X78unzp5fPl8uFE3N65mzKhBLIRoRErOX96enp0/Pzp0+fXl5e+qZzzkJ6hRSphenhHcACNc/w0k/NSSQ4joMb325fmdkyjuOY04fN29vxdj/+/vXrL19f//7L16+vb4c7SdvBrO38glY5Lg/3ekR9R/f7fc6ZHuX5I91rBqR6lP6scXW83h2Byy5MJbTFrMjUTEfFC5q5j+l3n5Nm9yB3Zw9yDmvgc3PwiAreTjOCJbji6hEFwVz1j5wDJXidbs/TeLl0MxMgiSXAZxbV1lrv0ljec4pVe03BWJq0rVnxcWOmV41SkxS2GZROyYnjsehn1JF6zcsTkG7KfDSi3JPAZCbH2qIiM2Lr2ZQjOEhJRbSpooHVuWdvEOq3FBhZcQkTyRxhCVaXTJ5JTKGE3qgLb5a/ZgiTAp0jLAfShJNziLRLvxBhzgkhbXwcQXIthRgBbjjutqkx69sxSEWQFol0pgy2ZKcjMt3JIpMZXZVJKS3naWpjShHRCzNL667VnyGLMCZkEpwiErQWl1V81a0Rr1NgE24ZE0Btlp7GMS+NNVsLYTBCIBkZLZTIaiOOSE+3wru5McWSiYZz/aAcIgxIkniyR+nFOkSHG4RJGoHcKYdsW1NsU59Jn0ivve2kSkQNgApxupMTRyCdwsmCJ3EN5jEHKImdSFM0CW6+cqOomAVUZNoeVqwKrrA098g6zjKQIAkQ3DMFrERcE3GwgJlYM3NapLtIQ6RHULXFYbUZSFLB/5YY8b2SW09FZFTHh87INgZBy/a/+l4Alh8YRHQWWCACeT1+RaU4Y3YTjwpsmQSJsFb/+mPOuqdGr4/Vp8qvx4wy4DiT6SLfM+PqhqltRD4o4QKeLIlERIEP6uDo7lUsMAoAK+8V4RkRVu2quggCqgaNlPHgvVDLcofUSkdEVUaIkMMhSLISRolIIiPQGIATEwlr71vfWmv1aEhr0nbRC0sDK4STOaNySkuPCZCnD88QaWXbTmYEZkS5u6gdIMtwkAtTJnlwToaJTXerWW0wpPHWZWehrV8vY5iVFDI4G3nPTRrPPPTNnWxQcoaN45ZHZpoJJc/Kr4W3KFZCrqCv02cgoJY8eCOxTINGpoWjMISRMZlSGZoqE5KNmSOPkjMY230Oz2kSEYaOjAmb0j05nN0rCsamLshGY9ZWSgZCUN3lAlJsG/eNxDPtNSEqpTElYnbhVJBw00jyQffX+QuTjeg9QXN6uPXwJ45PlCJxEwxBi+AkCeVMCg6mJmjuuVVtO9wzQELKlDAkBAkwteWcpxbJ314P74O5qLsS4Dn97e349vp6u92PcaTViDa1ESkDECVV1lbn/BQR7p2akkrrp2IMUU3TmcljUOu8eDEQYhF2pILubsZklOxpc/oMInLczCm8PDp8P7xklZlOiLLVdmFSypxzZoQQ8ZZtoz5N3m63/Xbre78dt611Joqc7m6gmRg2M2XMYrVHLt2kSbqkuXmWh8u9uPikavI6xvCJm7RpcOjnT8/btjFzFxXZVJr0jSDuPsaYzx0qYrbOPAM9VVX3pk/X68vLy9O+i3BBaCPmh0CwCLLhHhHb1rbWL5fLtm2VuFddHxLWojCReHpwg9YxFdKEIMf029udkph18oTBtcwlOOZ4fbuPYW9jfHu7//r19ddvr3//5du32908VUOpbxs9ShZm3mRjZhsTEeR5cgPSffW9MlPpVpXKlDWKuTNnZhUVhSypm6FO1Yx7ZsKcprODDGQQ5ka4NOVQ94MO4x2SBE8zi3AGFDRtumW4zok5Q5Uba2mU2CAcQmxxZ+YMjDFmeLEvgPCaFWS6W3pQphKDgH4QiyjK4avl+U/X3vtS2wQX3iZLHk8PJOPS/5bzg1jXUTURJ4eltsOqOse4y10W3L9mTxBJzkXHTK7AQ0nhZAnmGv8IwHxC6qFwRSjQKrElElzo1GVjpuLdh2p3o/RlFkIgLS2de+cy1TvSwSJ773vfCtlaISRC1FsTYiFuLEpKyYv1nUmB8IpkKslNZMIidD2oa7LAFUVxNmnWYGu5F5c4iJkeJqzKli49ShmeYZY2c7rNaba2W+ITYfXeLEEJ2IkyeeFmfkOTWh6RZes7bQdVs7/v1vVrmTUpi7/vleNNXEqvpRZkWoCGyijI1YGP8yQUJxw5lxjqtMI9Rl4nJOu97MCJSIC8i5+qDogo+R4vsU1yJDP8HEFmRK0f72S/zBUx/OGAa+eR9+H1e/zY0nbw+7ym+igPrUY+WhcMPEyLD1rbed34XYf1gfiVmZTCa8xRz8sD3OKn2a1gWtU58/NXPgaGQaBKGM7fvs7e2Hsv7TGXfHQwceJnP7QiKjfrN4ZKp3XopI9Hz1y3dH74srA6nlUSceGUHsHbi7FMUoi2snbX76q8D4IwKUiY9PGvxLrK7kecEFUowUNPV+yrusOoukR5Csvfby06ISDLOR600BsV0VxhySJMWVHVwaj8RLCsWM50X/L5Me4rni/C/O4RkjaNhzdzOYxguomgWG4ULMEMkVRlVw5L5ijZnGgQiJndH8zetDT2+u4kEXXmYFBjyupeE8W6W1JEktCWpsRFdpBXoJ4Sq+xaXArJ8JyOdJXOpJ5pEXfhXYWb9t56pdI39K0SSEARFCbHARadRplskT5hMylDUA5IahzrjuRFUmOCS3BQCFNUJRwJZKW7vD8O5413dgWOw8uPkUnTcwx7fX19fbtX6PKcc0XE4PF3LCCWSF2N1loh70WYVRBZFofzAefHk149EgSY2dIfhptHTz0LzwUmYmGORyQsgHDiqqwL8rWUqRFZFOV3QMwK7RklwCieSa6MIPaAJTzFa+IMTtLghG6RR7hHrPvbKDTh08yKElDwqt7a1ntXKmhFV2nSO5MWnBYNvfcxRmaGu4pQBXirXC6X6ijX48EC9pW+5RFm8ziOOWdminDf3kuWugOLUlsgJUpDRsYIm4gg5mRKn+nqxj7EG7skI97mGG5ucR/H129vb8e43cfX17evr2+/fn392y9f395uHui9V1Tl9eml3rAIMSUhSrEHjyIGMSgz6gqbWUl4zlEMiwifH7k6lzUefXy/QrMSk+JEZ9Ua3lqLSA+FCN7DMYt87o/F5PyiP0xdVsLc46jMEXTK0oo1I8W1XloDAqFEaMKncvqUfauIJCKCtHi1xcIxszmJiMTWeZ2ZWR60xYwI4gSckiPSw92WV2WMQSIdDk5HmM2+b61JpyYPE3sFyax4HGYh5gRGqeLcI3P5+5hFGloFyWaAwwJMVcxxVsdhKSs03dxQoYXl+skZliZNyo6xXfrLy/OXT9fW5XbMiIhpc9zNrNp/CmrSqwKjCqtJLxRPfRPxSDCulgmwIhDlYY5bKvZS4dT3FYEkUASSlxckHtTAdM9wmFmY53Sfw+f06SBhCWJeABJmz+TafCnA642txD6PDA93hAeCTlnTuswErz5pAlmGQ6k1Qlh85QdFEgcxhFlFtLMqRJgUwkyaVZMVuDUfVRfg8XgtGs7ayJdeG6uUyTMIMZkRJEkszEs1BS4Gal1hTgp2IUE4lCvwuka3YIqcETC3MJ++IsnSI+GPvtapgzmfondh+bso6iNqi1flYYjHL8hzFHS+gt4fu1UkPT5pPbGF6/KVJL/qpIWlOIfdS1yyDNGFLPkwolr/E/bYtz6UXB8q8DWA+yCM+4fqtlDLNaJlPJiW9Xln6uNZxvkPjtQlrMmVdnnOmZlCTgD9x0snlQF/rkC0UorKFpF8ujREpBAkj399j1evHfqRr1IuaIRkEsQThIx/MMJiGY1XZcke6wul1lqkeXDEirxmpsZiGJVnBF079IOPc376R+0ezPCc5Q1JzMjDo3uQhya1KIJZVksvWCBa5O6sCY5IBJTPGuJxZbJYkRlcq1msOpyZNThgmcVNtyQUXEVZqXFmSmwV1CgEIVXtjYXYK5x28wyoiEhP8PCMXT+1Ltu+b9sm1MhbQ2ssNA6mHWjm93FUG5RrfjRns0MpWZk6Z2++MaminFgEipQsKz2v/LJwmGdQoV0piOM32OEESnEbkaMmy+F5n3a/jdfX2+24j8OmW0SghkUnOqc1ar0XXHfJS3prTRf+migC53mvFhw5DYzUWsvKFHI/gUfrkKCq7u5WiEsqdUha8d5zPTSRyUgL4yIY6KbN4eVS37btQVSviViNwyLSEsFUw4ph4ZbmaYkkzuRkoYwUSWNfBjkqCemI2SIQydTpA6Vy01bZJ5Wv0vtO0jLTzHpwkWaP+3355piV0Frbtq0sPjifXxFRRb3hFQ8/DlVWbqW6rG70uhWFAXafFBkJ8gmbsAOBEGaBZCNUb8PDphuQPomHzTn97Xb79vr129v97XZ8fbt9/fb669fXX379ens7Anm5XPum2y5z3LeuTE3OAr2C7jghIFESJQaF2e319X6/n9glKdVHXSAR0SYVqGo+mz26+NlklrSyhJpYWAps20ahlDRopGyh6ixl3sGK5C2XSNVJmPME/eRDV1zmyR4FKPCKdNHFVaY6GBehSeu7K9Rw+fCURfVMeiV/L7zczd1FiAU2qNQxteA+ji+PBT5QQ67KT7PqDVJmIC3ssOFp0njbpVWwVRbtEJGIoDLHkzMJhdt0Twrd0btkBOVp4yxyoxJBhCILJYokFkQEBaf58DE8ZnCqkFIkJZA0b6OntIt8//m7H3/64aeffnz5dGHG7T7GGLe3b1+/fr2/vrm7thPBJ62o04BwuYo5GBRBgJdLPbMGrhkZTCygoGQutP0CiT2MfWVSZtIoe/ziKq3xY4aceq919cPdwou8757ucA2rlDFnpAdVnY0MgCI9EStZPJHIsoBmRgidfQswUgMclaxBguSIclYjkJGU5zYCbdI21sZ01l4sNXzKPOXu9T38Ftu+5PnLb/Xuq183LQUgC++/eiay9GBEDImztKrIW4qEgLJwolrFbnFxPCKq0p8WUfPDJVVefSZulfXOzDi9ytVJ+fgqCQ298+IF5OfbXrcfnx7e+PBp6WS/fizN4hwQrqKHVhMu4R88uX5qwspXWI+VfTyRrx5V+tr6P1RmVN3DOsDU6PA9EnK5mx8X9r0JAWDBu9+J/L8pKSOqMxdUFsp621EZS4uRtv4qZBdzyX/eT4f0+Djuri4ARElaU20iKqLMwiysv2l3PSrOXHNZyxRwBoqR/yDiMlEswQ+dWcnEIcFQyozU5cqEVuRhBqFwMOQZnnWqro9W+jxC69K9b9v29HxNBITqNDT9KPNU26Q14QZRsESmZbBXbehe8WyUWMwCOkfGHMt1JeJpxSxeWvvz+kcmJ2q6Uc6XCsuzcC8tKRcWi0HJRkTCAiVWbiIiizZ8VsbFMWienJHpsrWtXy/Pve+EniYN28Y99FWwcyrw5phpiOEWMXyzKTY2yi4kjbKpNT567yIh6iyt/MbVmLGEeY50W2fRSP6QEfvRBby8hKV9VPcwG+bDS+V0Gj6I8X4QEu5deu/bvvfetTGpaLnymCsmXCiDKHwWMNvdQZ7JjYVFosxQVilAsnpghZ0lmsPNo1gYPs2me6zoDRUpW1aCEBBuT/vT9XqFoLV23fat9SoQVbVgAVV4lb0gOGbCCr5lC85UN3M5z4s4svShoOAIcwQaMTE1bVvf+77v+2Xf923rrbUmXVrvbdu2SwVUuPttZGYex3wTOY5jAVAiT4egWwQ+BLQWlDUijuO43W42D7ls/ADES31TFQpcYisOCoSVfq28SAQmNGZuor3trSmXYd9zcsV927B5zDls3sZxH7djHvd5H+M+fGQQ870qv9u3r114U1mgqYqZIqYMZnTh7M37vDMQZuM+/V2AXs371pr2JqMwGStS8tHdTJ44xxSZyaSq6BBIl5icULLUML4bDk+34ZSSHpVu01rL1non91BiFBtYluGHuK5HjfnQ2mrCPcokgmRCmVWVtULGeg1J6nFg1mrDq0qvk66quHvlTYrInAciHyfdaokRkZUYzR5xWuXersXbbNgI7LyDttbpctme+7YW5YGRc4a7uVkotnSQU1Am3HyapTlXCk7tPCRMQaUu9xn5yETOKj7cEqWoDY+CeCASYWWLu+zbj999+fOf/+2//OUvf/zTT62z2bh53O/3v//97//Pf/+///a3v95u9yqKuXdWQXlAwqmA6gTYKGd0VbUELP3xOfk4WwmPdHoOQiQsVixmkjPXZO2Uy2YxRYPAJQ+KE6+6GAYMeDRTU0Il9lYXoEJjVp2HjEh3LCeqlxM6MvhML0fCs3AbdLIvpaoOgKtOiXKrspI21Ilal9ufSECCZTY8D5mnupsfjlEGso6RD7F2ECEWRjAi6tfQmnElFxAxiZAMQkVMV741g4hSHoPIld2XCV+ZLxHp5h5YDbtYEKqMQCrLR+j8WbasKBpgMRDqXdVXv4rlpdP66MjAQyP12DVxjjVrLBeoDujaBnn9P0kVM5WUWL7dXGHkVLFCtXx/nBuuNmH5Nt7xXh+BFHz+88k8S56njvuRxl0fYE2C3otFO+0/+qiVf/PT8SE7CPXd8cMIQiR5for35rdU7MA5mwbImQ0AlEVYWBpLI1aWMyeEGEke5dsFEWl1R8gBrah1JAWzop3A1hKARZWbD3MDleCMegAQjDE2NJA7N58ZhnRPBMG4ojSQEAK4N4nYvJw//gKmtm3t9VcSSGPWxdjc9/163bettSaq5x2xOr4V44NMSlgV0OWqXs8KFlizrvAaS7AyfTiRJCghi1BcKEWzap2BTjocWGtBZuEqP9aolHJZa1lVlVpv1ChBg6V3uezS+gbXlE2xbdp065y3dMmQxEh4acAPY5vqtiEbJ+45le9KY/ed6WDdRDaCRLG+PUZKYWPdPQgA+1wpe+t8/u7JIVGSrKEh7Kxaes9VMJaO54zhqk2s917tpW3bZBM6JZVBNS2wKPr2KTbw9CjKOa2z0DiZtrVJg7kpes92tEOnmZrZLcqgBwKEoSLMj5kSWtteri/fffnh06dP+3PfW9/3XYjrSzrFl+4OM8uEgwxigAfCh7uFjeKTBDzdPSwziKMTF3KsnAyZSfuTiOz79fr88vz86fn69Hx5vlw2Yaj03vfWt2276NZXlSm1WS8MepHPY5r5LHjcimU6hyJzxjzGcbvf327322v5HItTmgs3dTAo0uu2D4KDPFGZVZkJEuaCOKjoxq1BWzB7IDPvNa93myPMYnp6wIOsDibEyPKQzre3N+G2b7/2Jr0J08rtQwYTlJFAb0JoYdvYt1tvo2vcR/ic8W6VcJ/Nm4iEbeVbdX03PxGN+vjMLJAmKHsaRXA2JTUhVzgPS7Okg45BRGyRnI1k29gbB+HcL6I830wkYOKKY6lZBIt0ZdEkItEEmJyISLn1rn1T7dpEhapSd8pBCe5SkoQz3ZyImTp6kaWYUelUIgKq44tkZka6wxdlIRyLXU1lMoQLy773l5enL18+ff78+WXvZW6/v91e4W4jfMyjEoglIsCJxRs0dyL30kUFZRKDy3EabmtbkGIYl4cvHRQiTBkxprmXkm7T9vL50z/98Y9/+fN//Nf/4T/+63/85Xc/fhc5juP2Leh+v3/+66fLZe97//XXrzX2bq1pa8yUYXUeLxAEfNbzuBRq6fngWa5GZOD0ZBT6tO5WCw6U7Jo5s65+WJ7auDIXM63RznKzeQblYmm705xHssAlG3MmOL1ijytKGZnhZxcxMjzhCy51DorIuULfAWFqWXt2UgZBKFlIwNJYlVqX1kkbiaAmkqBz941ChlEUnwYPf9VK+UQN3stafoIzFrpw9SkTBDiIE1YdolIqF8hJSOIMF6wKVao28HXGiJIuZrhbRIZPnOPmkqMAS7D12O2IU0p4lFCVE8HwodDBIm08tooPZVB1dqsQ/FAD/Xbwh7MsW7+Li/7BhSRZA/azB3DWRViFDuVjZFnfJnK1zirlj84O+HmGIwLlww1aIaJ4KMlQNR0/4GqwMm/GGRYMgPiRZ/3gjeU7kisSIKTTKWqsiEjKatxUb4dzDTzf7wHmyldnqc74mifq+VfNrCUzLZwtIblKRCFKyoqlp7N8zIfNk5G0bNELpZZFjF69A7gmJ9Rs+JlOAcqH7SS54EzEQly5uUQsK0kNzH1v+9O+7U0ab3vr+1byu957v/TetXcRTVUpslREJQYinMtddHr1yksV4ZGE8z9GEkQgEI6QTJW2DOWUyo2FUsIpJotxFGGIT+EXM5MaMzfJmtk2FiqAKdMjVvXMhhWQolnrXVuKZiYns7I23a6qFBpBZoQ4ZkwJc5Gc4SQGzWR4wMeBN8FhcGblYeBJJDjrDcu9Ohzv93ymZ5Qki85npYa/IiJpROLIRknEIk1UzTa5j6XjOaO9VLVtvV+23nu/7Nu+S2MwOUqOPaaZWQGPImaZwVGSbFVFC2G2McewMMtMEdm2vUUkOAK9996POftxHJmUFswGLHtyhHECzF3bp0+ffvzxx59//uOXL1+ev1wufeu9I9Jt3I/jGPcxhs/h7tXfmkEzMR2OlBgzpoUnRUrlqxrChZwILKzC6RHIxX4Wbtq3frlenq/X+ut63bfqSPW+N+19v4iIZZhZDynVedkqAYRNSzervzFlAiErSiC//jput9u3b1/f3t6O44iw1uQ4juM45txt6OrIr7Oqe8A9vOS7QcTKJK011pYkCbbgNKBycJDDwgqP6RQpSCFuJE3EtF32LZEyDouIeY833L5tv/Qmm4oSGlcdCqJkRgNxEmujS/q8HOOa8Aib09PiMbKvFOBUJeCgjDDV/tAwTJpEpCycwGJPCAtLslIaaTSKBucx0yxqOoKYBiIJjdw1OwepbCUgrvszKQt3DASxU7qWx1uo+n/1OXiFeGovH2MTFSWi9HS3mSyS3YkJWqfwqhZFBFBBS07SLaKWJ6LSAnsVxZnk8JNJT5Wlncocacny9HT53e++//nn3//0+x+fn59fVADYPL41yYhxHxRpZkwONiUOpeDkSHefEzQnEWWQZTokIAYvHVuWlBIoRGONFCp9UYjMc9oEouvlet3/87/9y3/8+1/+p//xf/7zn//1Dz//tHcxG369XJLHGNdtr/Hivv/t9fV1WJwfP9JrrS/OKQcKclgs6dIh+WJb0ZowRgTCzIkjZs6KE45AQhPMLEzqGG41RMpMhMM9p1fjCjXHKzpaRHCAW7qnWcEo+T1ZlAInfKGQGudJLQpwiw9lxDmpqbAkYeJqOSQyy+LALEqkF+6btq6tEStIomIJzhnJu5brbPJhTTh6NNWpIGcOJmNZKXuL0H12Vs4ZLBGcQTWtLHZU5RSfIeR4/A7LoKAIeLjFrArFs/a5dH/PAKopT4XqlFkfCRT+4xTRV7+WFv3rg9U88jH7e5/3PUaovwVzAOgp1fGu4RFTTUIzz0yp3w4HQcSPxtLHwo5OrsnHf81/qOoe7bqo3nlNWhZoFec0+eMUEgsgUueENXOkD+/n8Q8f85SIS6QMpjqIcxF6P9SL68VnpVtns3chF5d4IcuAzVxGjVV1raEhEIEsQ9bZFhGqAMNqnmlpcnKpJEtJiaogLINA5T54fDVxMkgzw2NWTnbMw2yirEIxqzGTQczEIjv1YhdKU1bdfG97U2USbNvWt9dS7IqIbjUsXSkXXLqqNWpId48Z4TifjMyEW7pnIYW8VKtEyFPJRuflQD2TCBIJUJF1iYFRW/Ial8sKJ9HKiRAVFGEPrTVGeW6sZlkEB4doqqQoCWmwkmydn/Z+6cqVwK2AORNpiLkxt4OdwQjPSEMGIZJzuMHO02d19yuYraAGZ+H1GPEAKGKIMFfE2bZtrUnt/2Y2yVWbZ7TZpwcJH3cJAszq3LtfL/u+789b7/1yuez7Lo2DYGERYUeGzRlZGJ6YFj6JqBijSmxtCHPZbjhBJKpSeL8y4DdRZTl01JGgaS87nvusJQWMrfWXl5effvzpT//8n/7p5z9++fJlf26XvnVtETHH/Xa7vd5eb7fXt2+vx3GMYWY2Z94tRqSDNG/ubhkpyU1S6wl6Ly5VJClo2/ZtU+nb/rT3y/Pzp+8/ff/dd5+/fPn8+eV533rvqizaN5UmrQNIm+7OyDGHjYEIygibY4wx7ulRJYS7h81HLfXL3477/Xa/34/jcHcgi85VGU2za5XLWMQl9njE2NT6UPVfb7qxNEscxwSmwws9A7CFe4aZR2SWn5lVtPee7kEQwn3cZzU43r7y1nRrqsK9KVNN4lJ4AePAaMr73p8vOzyKS4I8cp3cMzwCo9oMApqZblZBw9AEG4MgKUrMlXInFEoijFSVbORtOl853tgnrtWdmEnJ0TN3jY08XRZRnkqqiEiykxwJkUXzFxHVdnYfymknIlIixdaapFa84SKBLUtcqoVXl1ggxFmwNIawSCzULwFIWknvnO/5vvXsBdMysyRU+eXl6fsfvvz40+9++OG76/V6AWXmHBqWt35v3ICDgswcR4A5QaEMp7Q0S8xZ79K9nDNhIEuKM3CFSZIqEZWJEOcMOCUcg1i2bXu+vvz8889//vO//+Uvf/n559/ve/dZuLydpPm2d20MQiSDm271CEFAkQZkJIcHJsCWFgvdnogqbpClkw1kMiWh3HWOoBjBROWNlcwAtUwkUbhHTftz6UNK07G0vUFREPqMcE+KVIm0CHEEQzKQjoqMX1bA8olm8Ll/5zq6FLgfZ4qk1FCM6sC1/A1lqypYDFiaSmdppA2kAUblDzw4CEEoHuRD8VN6TGIr1U4+cCqJEhr6aj7lOW+rKlXDEKAUCsEa3eKMzuGiID1mYQDsDBeL1cXJk2ASSXmmND5SZ84qaB27zwMVkcfkk8q0ypG6YE6VEsmJmtDnaaI8mf8fVcNnHFcVIbwIsPRIGj35Q6DTCrtaoxVg9ZuaOCKqLDs7B9WdegjK3/OdKvDubJhFJUxW0+m9HYeKKF39wipuquUqH/tb8ZhXrlCHM6QgAhL1DxFnWRd0RljiFJUJAKRItQrw6Lsskhm/R2fm+kE1PJUSOhBxndtqXY/A6Uup2pHPkKXMIEJB67i0DPnbF05Ek7tVRT7nMecRNtyMw5nZfBCq2clJQQlWyqB97zQ5V0epyI2jcnZPzTKRVtVFLHmaIWqqGO4zppnZagV67e6clXEXSzv3fuXo7A6TCBXSHcKMqCOsmEUkRWDCyqtTiBWCcMnqeVNqXNFCgBATIeGUkzAIwRRMScwsUT4hps689X7Z9MppTJ3RDCrUMyFIJVV1lw93ERNImdMDxT30XMz3Gq86qtSYVZuuFxbqr7WmbcGkt6313lUqP1gSE6AGTA2eJVCB+srma1u/XC7X63W79t77fr3se+emEVHhJhLOLphU57kZjgADY1pEGMgs6nEU5i5KRNJaE/2A92sR4bmC1HrbLIvyiqpImGXbtpeXlx9++OHHH3/83e9/+vz5s2hU4eU+x6EinJRAVNR0PcVmPqcPDwfNnOVWIZBKEgQL3p3MDFGW0g5te+/btn16+W7vl+enT99/+vzd5y/fvTx/et73rQOhLNK6sJKou5MbEO7zOG73+z1XIvXb7fZqZsKIJLjV3O88KdvbW1QMucesAW+NPCprdImLTpEEgAzLSIQjjRGNUpia8NZVhSi8LBFl2wcwF/8opvkxZ2WlunttpMwkSiyItErmvt/o/rbd99ux7XNOFSJIUqr0RFQYPDOrSG9t63rdeswRc0F+qNS+6emcZD6rB84UKZVQtpIw6CHkEFASqTRQklKqkjSQCjWDthZmjYI8SFVTO7ctmjPSmWOCLSuiMT9AMddmygpRqd1zkSQr3ru0rV2k1fCRSYVESJdGJaCOiEwlJY51NoUTScIZSqeBq8CY6Y4EJXHR7IjD0U6TbVcVoe++//zHP/78p5//8MPvvouw5kqUGVdCO+5+e4326zjmzd7u1KYcQt11N4lMjhme8U1VWVoQBzhZGKJE4zCc50AVFahzhuVMCLdGUNJOoqAff/jpP/3xT//1v/6P/+2//bd/+7d/AyN8JLO0CxFdGlNvncWPcVxf/LMJ5Nvb3TbzDJ82ZsIo8shkAbnKPEZROqiQjcTVZCZVrtASZ2IHOwk7d7MIMIkktI7rc7wxsw03K9Rtc8s5LSLm/AayxDC3Y8wxBgONeYzRFidPkAG30jtVPgsv2dIaADFRZqhQQoru0VjkLMsjAGKVztzD0zMyA6IF4t2puW79ct22C0hYO5EkpCodYW5Jxp7McYrBq+NFRKRrykYiwrT8IeQJIhLPGSdtPSNXU7+GA+XQrLlWUFJGJrfOzOFhPsFJFGCymWY23DwCLPnIFfUSLleK1BlAVE3a8wlh5hX6XjFWS4n0Tj19l2T+pmzCUsjFWe/hXbZS+38VVx+dXPX7yiYGMqRX4QVd89DFZjhbkg9ZOhF/SEf8UHdGngo6IqZ859mfnQY+i7zfttnW+8z3j/L4iQAqvQolL/hQ273/0FjlLJaYLCLCZ8i7ioJaa+vPJDojVmperAU+OL3370HjeGfqBmQNKTNiegoYFEwZlsRR421OrgIU647Nh0gw3ltMbuGzzvzjbjY8Koo4mUFJ7hORHhaZRE2Tg02gXRTnxR3KJIjcI55FpHXcxxFeQtogypRwn33jiJjT3Ocxxu02bJhbTofNdCf3uiBKoIi5LMkJEMwdMbe2K7e9dZ+GCFHZuIHBqUzmRe0g8TSzMW0QQrklqZJu0oWEQcUIIyIlZqHI4TmQ9+JZEFKlX5rsmzIILALdhBnByPDp8wgfEcN8ZAwml0whRnisuYISdc9sLJEtoJX+i1g5lYkwd3MHQEuRVvGObdt65ROUE690SMxqZqLTPQB4oJmZWRJ5pvvsvWtv27Zdr9d93y9fLr1rkRFqebkfx30egTSzqTPMyzmIyDEnxkFEQWTmBdMXEs8qTKvarSD0ENRYG9uG6/U6zOa0upMBuNvlcvn03aff/e773//8hz/96Y9/+MMfLpdL4n7d9vRQucw5VaX33gqUlXm8Hbk8g2MmscgMlAy3qXJv2ltyCqLmgqq6933TtvX+dHl+enr68vLpy6fvvrx82fv+fL1+eX66bC1jnjlnHJ7jZAyVObHe8O12e3t7e3t7u91ebc7qOApo2pjHeIS4z0NsHshootxKbl+N27zdbqQ4v6YqT13SMgIORApDpKkyIboCdtzGgcKTESp7/EgCUwAW7mFzjjGPzAib5nPM+5gjzIgi03zGGPrt27eihFwvmwoVJsPFc2EaorqYOK9Ya21BGSMcsYQulIiowEFmrS61mom6iEAbJ9LRGvrWe2szkhsTi9GiUSRaSreIfb9aDodktsyLuQh43Iv8BzBxREDcyTEfSg8m1d6bbsIbETMpM2v9nVtvnUngIBJm0fMw6Z5NUpoqanQFB7R2h3qW/OESr9STmgaExAStjN5BHA+3lKIxQxvXgPyn3//u5eXpfr/Pr0OkSZeXF9xux9df7xUdPexIZzIqk4HCHOhOkYdvqQ0QTSBhFhlR+g+cwTwqEEqasKenF6EMmwQ8f/r0w+cv//4v//k///nP/+W//OXHH39AQxm1gVLYSphR5UAtaZG2tm0bEQ3OygTZHLBwACdY+qFZOnES4RlulkBKKIt4bQwhk8IDyZIRY94zhEjckBW/NerSHeGY1ZKOo7SM044xpk2jRAqRxrBsLoygiqPJCIuyiCIyK22plOnVHTj3XXlXxghJKXrLnYEkRoBTIgkkxI25sW5Nu7SttYraLKnQ8srV/hqIs6f20FFFNVnqVZcoCMgF3iUSonAEPBwplCBRKZrig70RRc9kpvVBMjNrE/YkHmPYjBlxBnzzOfReaYnwEorVE5vk75R2FuiU8vuc3YYPmIOz9no0nM4iht4B8FV3nAUEAM9V/p9C+tMysMBakbTkh5X3E8M/1EXxaC2oKj3qvA+6dXwYWNaFyHNYedZeBcBWisnM+bGOPFtqOE0Da1z4odMGAA8sVgEezxSEx2fM5alEZjVg1icVSWY2M53We+dy5xGyumJFv8uTtJ+rnF4FpTlOHlIJa88rVktSuQFOWgki07ncpsvAcPZdUIKvJZQMs/CZYUwpQr03ISI3txHTMHmloZeljJNq7i5ozGU1kQqozohwFuqO7Wglo5kFwacYHBXpYR9ec7hZeOqcbjPNMzMsMUfMGcRp5YQmEJVv0cwsTMslgmRmlRokRhBJ0c5u4+Zp6YmoTAaVUIQsnF65IGr+kAAlZ5bopHq+QrNrXnphcJ19cg5mIAfiFnl43D3uiCNyJCKMM1OW0AKMjJyIbkEJ9eQgyvQCFVHAUbJayTwBbCiyfN+2bbny9n3beu+diCyW/aq2Rne/T8MYVwIAaVpirN779bpfLpfL02Xf9yq8StikrbWhZqYsnAKHz/DhEeHm7I9Q0WrbIBbjdtmDiEhAKWeXd9kDs41x4xFRLFba9/355frdd9/99NNPP/74w5fvPz89XXvvHr7tHZHVYty2DYh93wvEcN4Sw6uuJIIwE7Gy9r5tvW0KWbd1a+16fXq6XPe2X/fLp09fPj2//P6H3316en56emnSttauexdG2JG+rtiEk4fl4j7OY8w5x/0Y9+P+dnv79vrt9dfjOFS1d23Ca0pUIWacPpaPZ8WzlltOuEZYc/jp/Ch2YUjOjKgRRzViIoKJxhhlIUeswEDP8MwpWsdRCy/OxTzGXIC8u43DhpnP9ImwiHh9fa3Vst5widUWTNThvjpqc1qezMU6K4PI1wa3sqBAdWZPi5BsdbRDzC5aQlQokxnx5NQghSM4EFaJfMLSSbNirxooWtrmrCQCSmkKwLMwRpScoJ7p0y2ZHoZZWYQ5qcxvJSWipq211lUJolHA0bW/8EnH0LVpUiEH6+7USIPr46FC6YXBQZH1jUqwNLWKtKxNIoiyb/ry8vLDD9/98MMP29Yi3PTQht6F6HL9tredIZHiM47pkTMlslO565DBkZNCmBqQJacCLaUEE0qy1IQF6oHkvLTmPuG57e2n737487/86//y3/6n//j3v/zzn35+ed5AIzC4MZFE5aWFe2CEDfej8HBM1BQRnBGAUJTzz3LjcE6GKMMJgXACaLlqPD3SI1pIttogPN1L1AqOdBvTw5k1g+/3MYbNYYBmkHu4ZQSIZmAm3WfYPIaNqUlQIKGNIiKV89z4KSJZFmjgTH6snUqIl/56Wf0FUCImCHOiEu6IiDmJAQ4WEhHtpDvatfVr71vTi61kvAWbqj+NueYsQfC19tO7OAm8VOClrhKioFrnJOEAFzyEuIuUBGQVNAv2kMJcBHeL5IiYS8HOjjzGMIvpdc7pxQh2D6StTIizm1L9qZjzUVExs/Gs0qqkvqrZ2rJe/7bdxe6ei7ixLMRZgSVL3D9XcqobMysn147Oj7QT4qzRDx7IN2R6VfAfiVwUlAiXVSQDclJDAaSeJ6rVqvqosqpZJCjhPpk1IkJWum19olzVVT3Jp7wMQqCFz/tQ1Z0Du8cRK1YX76x/QYtaV+tyFbinBOT0F4cLaw2wywhadRuvy1DRh+I+q/qt+Wb+tr5MD2QQe6akWzJAq+asufJ5CCZCFmo5QDA3N7hRTqFkleRGvcHNptpxn1xRiEvlXpebJYm8sRAnkRgX+69nuiofJl03M7NwndN9enpmxozi2I8R4/Dj7pV2g6Q5Y0734Ay41wTSM9Ns5gpcytbabDabOc8ScaUgM0lZU0gyAI+MSJ8282AnUKY7fJRxl1Wraeont7YHRJOYCq4dFXUYKSBlpqSRFnEYSDBhM/1mfgw7PA73w8ISbqbpdeTmtdMkRYJQ3iAUoosoUTjBIAjLCYoRovb+2nrfV/l1uehZmlSXeqzK0/J+X9o9or63x4zy8vz0/Pzcr/1yuVThVVW+gAi4tPudbxywYfM+juMoUJNmCIrLFbW1WUXe99U+ISJZQ15Wli6UQcNmnasLDOFu294+f/78ww/f/fTT73744bvn52vrROyduXet9CQiKmaYu7+9vX379o3epZlVJqcQSLg12TbZdt0umyqXQPl6vX5++fT8/Om6X56enn/48sPnz59///3vni7P23ahJCEQZficcGp0HEc5RtfUsCISkyLgnmaLMjoOO47DzOCK3nkdM+uJ7jFGBD/qsNrKRVf62f1+f++U8xrmFR+RwSII9hBRcJhnRRKU1A+VNRxTl7vI3McxxzGPMedwG2aHzfu0OW2eUvyk6XbMIW9vrbV930Vagom1xv1zzjEWytijUJnvGDYAbgmO86icD2GEu3MIM1ML17XkbpUgTJNTqRElwSMly9AuxKTqqkQs3j01vE/bMME9Rt4yQ4JR81nmJAcCMeg04WpjbdAWqixMBYxm5ia0t+K8Es8y+wDLp1V7jOrpn88l3S32dIWsfgACnS8mAbMoEmmFhy6LxpxeNqXqIqpyExaibVdmIgVnZnOjYXQPPlJGhAWlVP5zIiwmce+dstchr4aLWflZiUQ5/gySxKE1Oc3ZJC7X9vnTp3/5pz/853//53/9l5//6U8/PD0ry4E8IFnWDFQUMundj1/ub399/fq319dfv70e0yxKf4kUIu7SiBWWNtM099VtIU4DZzBSSDwso/ZiZIIDTsjM25iZyRJJpduQiDr2pZVawSITw8KsqKFHpgUdHsec0800YAJssu1IUZYWWVGAEKKMxRylOBVSpSZaMG8qFmZG2RKZuKJOlgAkqDrhnCSsG/cL6c7tom0X3pgV4N8EWQOEACXDKCuf7iRmEcDkZ5fmjDRmCAmK1uYlSmRSVlHtLC2WdmiJkQnLx+cehIw0C09kEBIcscA0EZLBxIiEO8wc6cAR4Y84xpL++5in1W7Jv3OVEibip2CrRn4hskAegCGp9DNSgHKWdU6RlAj4QqrM8KV51qprMgv/U9RBokS86/dpdZ7yoaPP5YctRZQgAH6kPAJIr57jmojWfzuDAKo/VZ0ljhV/vj7go+lVAky30qiVdSoyGWdc+2+FUmdSwjkGXRkJ9cviA+qsloklo7Nwj/L+igqonuLMcEZECvI8ztVV9KXPiJBwiApW7bX+UDhSkM7pSRQZnJAzViAj6ZGDtlq35HBHICfDpS5cOjEpg7QF06RQoTkX6cdLtsUOyOk4CKZkckEqoSkjhWgXNGMbbpxmbB4zglQ4/H6zGHc67jmOHAfcM3PVfrFGrsShgrwf9zmH2QQFM3LbTJprj661+mamRbJFcuWlkpB2lqk6wJaUGZgx8zVcwnu4rgNDEmFDEnVlqLQO8nTOBDHHPVzZRUAURj4j83CYZGRUnAnPSSPIorqGOAd37gmERzpFkAoyiAmcgkBWpBZniJkBweWXbO3St227bNu2td619bb3tot2EQWgmwIgsxiIcBJiZXYmn62zthbn8Pr6tD+/XLfrfr1crtdrE40aB8h0kl3aRkJBOWLc57zPeqYKU8OcRDUL9UxSx42O3pWSuSEbc4kHAGTOtDozg7KLPu0XESbOp6fLy/Vpv/SmnGFmg5m3HqLJEAo2M+Y1/KqWhqqqSu/qDAOBwBKqfNn1eu2Xp+1y2XRrtSfu+/7p6fnp6fnp6eXzy5fvv//+5eXl5fpp2y5Nt1yZHNPdhxmA23GMMWvNefRZ3WNOO45xHMM9mbX3vabUy9wgy+VTZ+ZtX3YoEaHfoPzLJHHauQquVyFydRuDBOzBHlw1+FL6Lj5ROoWz2Mw6i1Xwis+MyekBo6w+rMEtvELhy3ntOabd7sfr7a3KayLa9z1WFknYsk9lBESktS0CIEOa6oKzlA41T7ZTICm8jgSB5ER6woNIRJMolTgIlW+z2OXsa3aRgi6BPWNXdEuEBhCszCoWWV1zRwZcq8hmMIM5IAOSol01VKRxMqmy8crKm0RPJzWCheVh4dK0ScyAEIPrWLxM+4tXxMwEKekvZTwSY4gE8JPfmBGpKifGbSHd9r2zWGaqUlbUHrvjnnK43DONiaQ3UUaaWSphy6tm42xZSe9l8KEECWryHJZzQCCpwkwxL9v2fL3+/Psf//Vf/ulf/9PPv/vx8/WJtTkwS+0GUGJGkIMM8Xbc//r16//z9Ze/v317m3erXZIl01MJQQoBKYzJVWcPnzVBAQeHE2whHGsMNSKDoCVUomOO6clqrFukJBiw+4gMGh73YWYFrMeYHhFj3J2OoBEYbsOntcCNk6hfvYN7knoYPFikSYFMgbLXJx40+TIALmBqVD+KCeJckyY4r7sxV9yuQhu1TdoFsjP3hFpQlMVsKSSqmeUohXtapGXYkuc/RldAcjUti11OpI2jdrsksDRVadKUWS2MThxrZiotticD4VY/K5drFIuamqBEZEtHRKm+HJiRAzEXogNcxH6zinOpPi7yzIgMT6J1WKyaoIRmtUrlylbKVsMoVgaXeo6RKcmi6ZMzG1V6ax0G4vQQeJjTyY85Tyy5yCcnMD0jsGhbwafT8aRIPrRZRYzgNaQq+RotEQYzMvhUZi1gx2NAl5n1TQTV0LCsFFWnUzUkHfP8vDgpvwlCdeaoJoUZp7eBloOT5DEPjZVZMQU1rYYQd2GCJKfBqpYVWcOzstTWNJPS3VGdOVlocUeW1MEpGTDKLNJJVG7NMh2UH5gyIMRAcASHKSIymcLtWCq7ldOB1rRizadZArQWtEzMBGc4rT6kZUTCGSGUyQ3CQo3JCK4RFjOcQmRkzON2v83bmx33mDPc4D6rCYFEWYark5pxuPscI9NFSEGxW9gArmu7FgGTF++4ksmZu27R3NsM8zHvYe7xli4IQyhUCeKQDDA1hmRjQgcczpkMNJ7w+34HsXAG11QhfWytZSJDzLeRcTims6VweYQyLM0DOAmuWFS5JIoCfjxUfAx2yiay9f3pctn63nWrgdHl8rTvl23b+7bwjWjlsc2cWQASbezBw6kCr4oiLYLWeNv086fny7Y/X56Z2cYkCyNxkp17g4pljoijNBtIj0krELb+no6I6eRhZrYhkrEX/KzSBNwtPcMsfSJSmHvvoixCl76xIN3ND5/37CLSW9PeG4N9xoOttxSNIq3Ltm2BjEEUmYRLk21vz8/Xp6fL0/N+ve77vrcmT09PhYfY9/3zy/P333/58vnz9XrN1MYrpjKZiw7FKpUVXcHec845vCJ07t/ut9vt9u02j4mUutpVFZeeFYiwWaIoUO77zh+SduiUw9bsuxBcdSas2zI3Xtb1hBCb05gpESf0pfLBBITCJx7jqD/Hp62YzoRAOJmSEZVEVZyVWn+cIuE2xri93Zu+JchjpZmARKS5Z5B5kidBlFtlti9uIpXirU6VmVTlSi1mFlCC2c3DzFOdqDW9tBqbcqkawt3JRmJCSvrOJE30gn6R2NuVC7Rifgw3c1ggAtPNYlLOpeAQS45gSzLo1G1TFuVkGMGBavM75xXA0huL1kA/ItTmISJMjbLXsSAzNTBP07ZR0ZmJWYnSbZ6ZNEUu5qUME3nkKtTe0rU9X5++vg13ZyZV4cZB5ogQBxs4iMEimXAz8iBIw6ZoHGxkFHD2czfL4thLADlhBIaQKPN133/3/Zc//uH3//ynn3/68Yfna2cK4EgYkCCNHFSzNs9fb69/+/XXv//6y9v98CTZ9pJZ3I4jg9In8aIKlXVSpDH1IA/nDKx2hoFIKJEeFh7zYA1iTWJtSpQkyiwGieQ5Yg5/fX273+x2O2ymRdqEmXsWqWuGGPGMdMyY4Q2+Kb09+X1OZlZPBCej/IYrCmbtu/RgaANZI+Ha2QNlMsyEgJgBJ7IEsZRTi6WJ7qw7ZAP3gGTIo9quGnqNinJEzgiLKMhrEGeexmE2RlAAcApKT1IwuNLHNNPLOUloSRxMiARx2WK8xqhrV44KCycCCSNTiulv4pYRFtncfJi7RWIih8e9BA2ElmBAKpoJmUwsUvEtetJSSFiFlUkeQcekUnVKEnO5CogIbAtgWZuQgwBtVTByYbTL74VgRCAqCJykBlhL1h41gHikINICQfAq+BgPFdAqY/nRJXqUR//4z1wD2hrgrsRSZMGBCkoqFahM7QAAgABJREFUJ8eNiSQftNWyd/n40F97zy1aUOB619XoXBQyX+BWltIXFUwBXpMoMKgRGguzUuJO5dVNpmQpMk/W91xQbK3cpFjINkoEnIIzLZUiiauQJS+6RGaWnKOS1qn+N93dcw7YpBjwmXPUTJCIXER4sXrzHKOscTg5ZXgRHJZYJBJGCCGCSjiU2BgM4fSEUHo424w54jjmcfhxn2OUdQxmnktPuZ5NymCIihhVxg0QEebzuB8q8zhEWHWTVngziYiaSIrIpo36hqtT+rf0Mbxc0+lWPU6iCI/wbKohyCi9eItMpBK6xIXmntQmV4g8hlmYOXrZIKbjMD4mjZAIdLIAOXlSBgXXYSM1ojIPAul1LJBsgsYcTgy0rtvlcrlu173vrbWifS5xfd+bnsBPspP2BhYkk7AotIWsmIRSSnToRrrRZduv+75vjZOHxQC1JEvaWDdqCiEDZuZYLpeZUdQAYiciR/CEME9kxeNSJiOF6qklZaF0p9VpWE+KZUVBpnvY8HGYDaa9N+ob73tnyMA4jvfUrMqreXp6sghWgQqbJeGy8eWyvbxcX56vT0+X69P+fNm3bfv0+aWEo73vL0+Xl+vl+XrZtj7mcqgwc1BWDrS6MnMgp9scftzG/X6/3e7327jfx5xOJPt+rQ1XhFChZ7VOhB3Hcbu9zjmB6BcVEVZ5f+Q9V96223QrBCtOGXtSB86svHQGyANM6VlhpQ3Lr1AFXBWIY4zKdH9oGMK8oBMZllnOdM9MQ6o7Mx/mtzHlfiRLhR7q1lU1CUlSlG1WSUdbHO8axbCzl+qmEjlQzPXTzJ5cUO3FcmXuvQ3hDj0ACfGAp0w3SxjlAAkBBAEp0QbZJCnZExdyYDJZwHlaIBLponumExsLQAeRQUNaaIeQEhzRKCsgfZEo6bevukSKcBZWptZ02/rpbkhKTLdxWJglkUgTAbNM1DGovh1mrlZB7Pu+b733VrOVD0IQMvPpMee8j3kM8wxi1i5JWCldQDhYQFB4E+8CIpSu00oCwkxb6wqWZLKEh2QIy9N2+e7T5z/89Pt//qd/+tPPf/zdd9/vWy91HsikFZ8mQTbG7evX+b//X//HX//617/97W/3acKNtbEoWHEcj71NQBBporNJ3LVE6Xn+dS6vmRnuOYeZZ7Bp7ySttQskSVqC52Fvx+24++vt+O///a+3t+N2GzbhgQianrV9pph040bESVZymNDbffsm29YQdFGWcrQ71X1CtWkknzzPE4uPUuYXWZApNJSqc1NBTUEChog6sVJhGRu3zqJEApZzOEXrjEiZboWHdZ+RhrSP0FFVjaawRl5T+XT35FRiZpa2pU/PjOHRrfGWolQ6+lMA5FmDyYic04fZWDkk4Rb+ZnBj8y0ClGzBc85pB+UI3MPviUkkTChlXKZUanO1f5hUtOuSFkHP18MIT1srA1pkVSqaJAsTmwvoVjypRe5kAtPCi7zHU6LgGkxcSJyHfgoPF+f6DzWGW9Ux4l0SdrYO5QxYzwctYvlFiRafDIia8WLxoTIzMojirOGYpb1nnK9U+wQwskAVcr69D4yGwlhUgNC7SF/rWLU+21kXPoRoSixcHVSueNj09+TvUjFUFicAkfcp9lL1kiPJw5MzvaSSAcChQcbMK1R+XRImwH36NDdLm+7DxjCbNkeE+alIY15e0elcuPP6YDW3XY2umhVXUi+lKAkkDSHEFi5OY1V4c87jfr+XTtOsJDeehRT7kFOexVympZwnbiyBRLrZeHtDRqjgU4Y07cKqQkJpBKaw4EgiUpHLtmd6xUcqLqVqq/CHCLi7G6nQWczL42IzaZetcSeSNB92n26zFDMYmXDPMf02x/ThqEsbgfQkX6cdMAlLI0dSAEacTCzUlXbJznpcLrr3rfe9S1ftW+vbtgu31rbWWu+7qhJJ7QBmU1Ur6yw5ebmcgznrvFLhB9vW9327XPatta31TRsig2UTNdGUzdWVRaEEpKP0BacIJJn9lMIQURZt6JThToQTUSGjhIlJKZlZ3dIiMGeUVmiaz3kcx3G/H/e3+721phcIC4SowgGXDLzGc0BJ5vvbq962zWcCvdHzdf/8+dPLp6eny3592l+ul33fn5+uJRVi0q31FVdK1FiKThxhgfRSo2Q4crjdbre31/u3b2/3t9sYY85J2HvTfb9eLpeXl5d935mRmWPcq4IPs9vt9u11G2MAsW/KKnU1qvVu0+ecFo6BCMzp5a9nttYcqQCWEpcZtnxGc04GK6iTVBuk7px5vsJn1hJZksqIYxw2j5gzwouxl5nJzTxBgeOQ19fSdc05D5uXy2XfriISSLBIY860tMyU3kSEh5jUfeXnuTFnuMT098IrSiyJRQY9juPG1GaCt5bqJoengSfEVwwJZE1gHBlE0KLkRHICpcSuylCYmu4RxjKlWQJJ3jdsO+uGxZwMz2hKwixCUnqg5Y/+cJDWx/a5975vm4gEEJEicr/fw9LMSspAp9Ktvr+IZKYISIWzaUWxcWYWn+1+v49xd+Qx55x+zPH169fb7VbksN47kQNgEWQAEN66bhSgZKEGNkEU3ao86iJ00Y09vWI5AEI8PT1//+X7P/z085/+8Kff//7nL59fMkb4WK1ycMLnzOnHr7++/l//5y//2//xv/7tb3/75es3ItouT32/CCtYVvZOhFY/HJqtbdYPHszstXWVBgYCeKbRus/tGJYkkdwavb6+goQ0zPG3X16/fru9vo23+/zrX/9+v9n9NqcHUi2qPQzLgIRcsl9UmShdSubH/dvtfn1768qdLxAhQoSJ6EqXWSt+NVGSIAlbGYgFC8lqeAQtHZ9UHyOJi0EcJb1XfbAuaVVd7+CAR2s6o5TXeQ47PxRerhETXriawsJV6GdrgCeO44gYSiwSsu2UjEjAI5OcSzucYVWcm4/aeiNsuB1OZhyWkQyIZ5vTwmZiZk6PSTmZM1bGLoj11DGUVautXNX3lHiuwktVmZn6vrj4K2mTC+BZZDAkAv7QPAXASRYp1Z87c6yLa/UgdT0KmshQln+Aoj4OPbT4+OtUVBx6iFT7/DHDpYVrWULDs/CqH2Gi21lUJdyWHBKPuFMh0MoJOPleq/4od1JZG3FWXas6XIZLIiJhZRbhujuZPqRlv+/4xesvg83yN9ZfdT5Z7kxaiC85Pa2eTlKsd2QIsWZmwpAMmDDH0noHlns6KRHmNg8fM9J82jyOYUeWzcongNqH10gleywHRs2XSyVeGjsJrEYYU1bg/eXaw2Etax2DExmBYoxhPiIMCF4AfALqJFSE2EpHeRxKT4RHkke6zXB3G5EHONumOGOha4mzOXl5G1JE9r4tOsYCvJU79d0b+Kik65rmo1FNNVPCxBzz7Zh3X2Nl8cQc+TbGMccIBxOp5PAkJjmzypkCzMmiUmkTlUWh3DbamXZSv1wun54+bduFIhHU+7bv+2W78goGFuEGXjv9cRyPzlbEwk1XLrBn6SxFRFuTfe/73i9b37Zt7xsyOSinYQ9JOY6js0h91POrjYhKFa2pdKbXqdQLc+iMDIQJobXWlFtrAgIoRTrYKMm8+j1jDKIcY8xxv91ee5emwpSXZ3WfFXUgQn3TYiarqhb/UgQqaNI9QKQNz9enT999+vz8fH3any77y9Ol+oBb70waIOEm0ojK/ii1NRdI5mFeqT3029vbt1+//fLL1+N2r233olcRuVwunz9//vLly7av8GyzUaKL8Lltr6o65h1A6yHSMnOFC0UwGYBjjhIFPfy2SWIBojuviQczM7yAhJhzKshADpEzHioiZsYC2pWLyLzGjmCyUv5HedArNykjS9fvY5B7jjEW3NXSLZGsvfH/y9afbslxJMm6qOhg5h6RCXCo6mnv93+pu866Z+ju0129ayAJZIS7mQ7nh5oHwNqN4uIiiiCQGRHuriYq8glrFTMQEVOrDfEKqIrUTpPKK4/UCAu1WCk/j0Gc4Y70KnxbUGUPDacdVWhE9fR9VZjUzb2qiyMIoaoeTCutRKrCSgAMxDDioX0iZ1JrLXRTVU6PsHR3pEBSVYU0gxepswxYlwCm+3bbtu3T+6fPnz/3vr9OotatSxdpve3P5/M4jjDfto2JBSoKZYlpllYHtfkccTbm3Q/98jXevk6iR2vy8Zhj4OPj+Pj4sDOVO6cK7QLRLkRFdorMI2Ge/axGWA10d0zzAeFGWydt3AMyMy0GE92VdtX7/f2P//hPf/ynf3n/4eft7Z4a4zCQMDXBds4z05Hx61/+/O//+uW3X+Z//r//9euvXx6PB4lut6ny4KbS1N17123vTYRBDN7ae8POMUln0GkHExTBSSaQ5A6imDYiT4+kGCPI2G0f5ueMjw/7y68fX76cz9PH8I+vT/c0s0QC9u1hzAZQTIk0JRLGRpmcY8zzQ579uGs3lWAyIiVGhMrrYYfaUiSxA1nLkViuHFK4ekSuEF5WrV4L0kgSVW2NurIId0lKi7NTI27FcoIys4aNmEaebukGB7Eo4BEGztZ0Jqu02TzSqTnGAQ9RAcACRZ+UTm5wICbsHiOTEAmQUKD6xgEQPGJ6nDM9Vs+suw/iCJozwkf6w4Ld3WImDDSYHAQKlwAxEbNlCDdmEOmregwJYhFt3HtwDoDCWpISbZxa0k1VOVUMnwMsnghzuC9LGpMwmmyUTqU1JkdyJHmQpRetODNLgxHihdJeRnVKBECz6LvXYgCorZtH+S5jMBFoRa5Wd9bKrBJnIJfgCCKwzOmFxAKyAgHMTCpEmVT+02tNWZJ6lS9kgTzAkCT+fuq6HudXB1EM5xfyK1coSjbm1haTSMBsElG2tMCllMIiQCrgTBKIkxIEwWHBscirx2QiqTnRLMKdVZgpiTyZIJTIkBLvAQwf53nOaaU3jzmnG0hIWDKJpLy59UTJS5C6BDzKREDq3AiiTDJPQIg6E2VCtu7uZBHbFoFjjjlJiHtXi17Z2GJUdIKyetXiKousBJ9FjDESIzGInRBh43k+IkKVDZ+oBe3HT/oTyc/CnzhBcbg/p0vOBogIiLFvnLinzwibOdzPc56j6uAb0Ae6cd9YO6EBEG6l4FJTMOcgGMdQEBNJGA+b53naCB8Rs4gDcWyDk5maSCsWkYiIFn1eRWqsd23od2xbxnjbb7d237Vv9ap23ViFd1WttFwmhrvPtJmDRdxhYee0Ob3wC9N9ukc4g4SoU7/p7d7un/r77fbWe2eRmEaUrYmpiEKURFMbRAsBNusUOG2szh+PrAuFGZQ+HMKEVMZ5nsfzQzjhW/RVSgYWBnJGuudqLfSvX56Nm/KNcGY83dut2Ttb+5zquat2FUN+2u9fHh93baZ7thPqt9bDhdCb+n7b3vv90/Z22+637dbbrtI23VSFFMgApSsm1xH4JNXJfkSM6R52nqd9eTx++3L8+vj6y6+/fvnt6/Mxj8lomzbZ9X6/f/r89vZ+395135u755gUFCERZkad5SZdJ2XmxhoRbgYBV3abKTib9CZTVcHqOWfC08bwDVq4eoIIK4OFIjLNMim5CSk5bIwjkSKsvqzoczEkprsHIiyGT4s5yzzKIRnTLDHdq5+7T3tGmAdmcvLhpNTsxu22UZ2NiVK55LqpFIMry+kFwc9MFFkTIqvROzg5yUBIJQoF74E2g6XzzDNGeJ6JTE2JYHgLIQ7osPwlzChTbZcAghKMrGlTiFiXbTdBAT4hH8kPUdeboJH0fh7HmSOImqhqmFQx1K8ektGUmFlDiIRb37Wwde/v7/f7/dJRsaTFWmbTM336pKLmsHZwMMDELkKINE//xsM3s+M4jo9HE2ybmF0mvrmQbrgwHktlWRAfL8ImVkNF1U6IkiYLg7nmjAj3CMdSM9q23avOfRMRdx8nhhkleu8plIZznB9fjz/96Zd///e//fLX86+//vXxOI7jSOLH4wESbtq23loDbvvWF84bWec2sy192twyJjjJvR555pmsIqLSRWJWV8Ocz2N+PI8vH8evX85ffnseR0ynOQPLnUpceZHrYWArfLcew245yIE04TnnOX262XTvEalYSsHVh3z1Hn8PHbh80xcXipYn6O+3ErzMT1XAftn11p4RL9TW322j1sc9X5WFIpLpr9+TRPhFOk+O+C6iQRJLqcyCPb2qbL4vFlpciGvwmukRZNPckQFzKSzyJWzxFbFcgqyqMi016yUXvV6cAsCXqFN/nLvLqmGu3Wp5+ySqBXElLj0zwwOR2vqlEF19xyREwbxAMi/RKP/3H9+BJuhiIH3/IpcEdv2ilZe+WPrf9pHfUyFeKtrLKIarMCBx4bgWeA+1hsurUq96oQAk4VVH8RIn1vrx+mhlJi5ohUjdGZd753UupMoErN/+Gw89M4P4xbbN5Mi1w71+83p7OK+ZlFZNfYl79cFYKtRlOrbK2EcEo+Bpfz81/t5gsf50zvTr1S4llwojxwyQKDEpUZapWbPQoFs7mtq8jI+vl4iaaGa23lX1u08Unc/Hdb/yiEVLIq6dlpmPaafZiGZMWoEyTsa1T2Am6W0nQXSzA56Z1UBu11ud39blICBUVruLqgao0EJSjUQgW2pKYdbnnBOFOEwTlCdOIUlZ61ISFZVW7OG6W7emqtpaL8LWy+1EIqpaN39Pp3h98h0I9wDRtHXzX4myNRaXA3JZpqrDba3s8a2sfi2OsV7buACTzFRv/aI6RaIaQHAtk/ObojPGUBVOSF4YF6p9lFVY5NK98Hw+v3z5EhHhSeB7297e3ra9VR158cGCEGGUcxzP0TfrTq4ZytS7+Lb1bdte3059WqYZyfIMQBb+ZroJcWZOhmWGxzjOr19/e/7ty/H14+tvX46Px3mePrxiQMy8db3tett670qUiSCGKo+BcgioUKi+wLDkq/qn9G8mUkVmNlsEENUpTTk88hshiF/7gbaeDq2rENe6INLG6BEmxDG8LsNXXu+6b1xtvsWWJ37JtEuyJS93miM102PWX4ke1Kq9kVmSZd1l10VUl7nWPZmTL5ZyVgK+7BiVtpDvNjYxZ+lgJOFV94JMpCA4CfBMDjLOGeiZ4FXsSwwBMcm6exFbYQeTkjhFmZVE2NI93eHgCnqF+3QkjMNB1K6bawQh0/XTp0+1LX5/f5dvlz27933vNdMAKOUz0xlWXBBwNKUk9gxbOTrK9DnneB7Px9maMpqHl/nuul1GUVuakuq+DF5wZoq01oSZkVyjlUpH18zUFIFQUBRWjsCqfb/vt/vb2zfoy5wTkea2sMUk7v7rr1/+809//tf/+8//+q9/+8tfj+f8WlERXEZ51t433W+31hm4i5BwOVcgaJT3ctEzhR+cdhITmaYjc7J2aZNdMedpc4zxYfj1l9/+8uvXX3/Lrx/wuilmBRRq59XqY71te9u63tSRETbGOM+nn0d6GOI4pxBuz/N47mePuWVjFuLIFJBgkTNXZAjVH+RVLlmozfp4gUCoGCNRfZxJiIRJaylw1RV8e5avfSWk/GwB9vjGIPi7WUFVa79TUw8DlLMGoeJqrfVWhaOS6gDEwbQoXr8zd78eXXW7LPJiOJlrGEdSNSolQq6QLiAEqiFeRLg1JlVVbvqipFal6Kv0hxY0mMvdUgz3mlsaE1ggRc9D7dMGwr3SM9/PnVnWe2YONKroRSRFFnduVXv/d42Hr9niGqPo717V1yxSM9o1Yv43vwm/fpCAeX3caj3HlDCCXJA1/rs/l7mYbX9PWP0e1rUefrn+w2tdqyXvaeOlkZTRiyip6l/j6gRiqlbO17ySmZc/pgayco5Fgr8heytMveZJoBQsKzPvcRzn+cyiWphnOq9zGV7utBekTVp7fWevm/6Ld1f/z5W9KLKuQliTiMQtkqV8HmBqW/ck9+Rk4eFaH/AGYOtde7+WgAVEjISXrdgzKpzQe29NuDNVJyYmECwBEp3ll9NMYoZoJkkmpfmYjYcQkWeoZ3ImS2utb63tW2sKCg1trW1t3++3AnkPMVX1ghwkjwJZztcR2AEwp69cbhMmYSVeFsnetpcbkhjS0Lu2rnvf1/OU85LHSp7MiMnO10edPCOQxbhfjwCfxeFbIPIqGKCr844LQbmW5AKKqras1XZV0/hM8zrv1T1jPUGukol1yVxA4npH5pznSczk7s3qXW7EtqDWMWv8mnMi/IM4k57Pc04H+LZvPz2fNt9XR5ZSsoATuTF5zBHHyBEdyNCk1tS2bbvf+rZtvclyvkdkaU5UHoMLZxVesd4TaYhz+vOX5y9/+cvXP/86H8fj68fH81lECSHZu+7bfrvr7d5v9751UoEQSKDSwmcyR0TQehlXz8eqSEqQEHm9ZUnY826R+7SyKGcmRSU8yvQr2962bUm8IIp0ZVFlEfGYYwz3ySDskR5zzvOUK0ueZnBH8YzKB+sZ7mBBRLmGAfcqP40Is1ETwjVYx8KTSg1eGZdfhrkO+V6zxGuYu2CK390+LsNFndbCIyU9PcnAk5o1d3KPpGAkwQnBBgnKwVlfKBGVUauR1A1sFec5AeTMUIUqSYeNM3OCZrFuIqcH5TzjTMEmrCmBlbsKh+vb+33f9/vbbb9t9bDMzGKLu/u+zd4E6Rn2ePCCd7tFJmddk+QQprRa59T3OWPOsvLR6yb+ujBUVVhYdNtu5cGMsKZkMUWEYHTF+1vbWD0zyYUhMAKBVZT1vt/f3z+97/e3t7e2L7nrGKcrBEQqZjHG+cuvv/4///pv/9f/+W//8f/+8r/+1/PrF7c4AinSWmvE3FhqMGYCX88/ZWpNOokoCb2VvQppo6q+ktC8Rw8HyaiAQBJPi+P0r6d9fYznI8+JJIiAhd1q/hZVVWmt9f1++/nnn3/84edPP38abh/Pxy+//PVvf/3zV4+iQqYn03g8+5fncdu32753DSUpQoJLFQXVPml92Y7kzILWv9QjqL6e0UQCCLMGS2n3dZEmrbxwZC5X/Yv4Ar6EnHKUI5ep7HdjWJmUVEmIUI/W6zlX/674UnXy41U3SOWowrehpPyHdS15hoUbMqguAwTCMwvQWnfefGEYVFW0CavqxszcFmtHVVmUrrA0qzITIKuVvipGqp7n6quuRrWs+5bAhcRounNwRJQ9rV7OBCGVFViux6IEOmPNdv/bjHVpfAtJer0xL6FxobrooqLh8lVhZeYXYKKWo5QsTMRXPVRS3eI4ElTzNwlRrdIuWfOq2P4mXgJ5fT0vlajMmkTEFC86K1+9sK10j1adyGAmqTJaoqQkqdNtXVaSTFcKl3PRT1BldhRZBCbwJXx+G0Yvt2JB2KJq4Pw8z/N8nue5brcR5d5XUgC1f39xOzNTt+2aw9ZMb2a4eimqOh0AIS78mxREHmCbDmFiDgIJJ3Aec9yGj0ynAcsIop2ISmcqo83IdJ8VAM30Ul9E0bvebtv75/vb535/475R6ywKotCGvolgk9xV9takdbGAWaT5GDc5GquAiEUcxIzbbbvd9n3ftybVP9ratm3bvt8BjNO4uYp5p3B2II4jHG5pnqu1ojITpMzc9NbbrR51TbnAB6vlt2l1hLcmItR7f038JCDmBDwtPAEU1LSU+Jd67eljzmFnAcBeWLWM1a5IROtcSFW3zrVKV+YgZspVER8R7gBESVWxPMv0mrquW1JUOjjSI9KdzGgayxiZaQYRUQ3RckeF+4wIRIJgGccxInCek9D27R2kSYo1j9Y2IAnZm3C02La475h0UrhxpGij3rXOJEvxWjKQRXAa+frsn16ekIiZcbqPsOM5nr9+fPnzr+cvX+1YPdYCItUuer/f3273rWXXULYmqp22ja9Pe68iOx9zRJrFec5SBF+DaSBBDAaDWkOhbqd7EkTaXLwVlqbb9aM+2CSUmU24eP0FCXZ3hDPg7jbm2sIXttpszknGRMQRnkFmgcyJ9HRfFO7MKG6XGa3wVtjanyhx4yYC6XWGZYaDyhcOcEQ4HI4IK9FahJkQYfUdCgpSjEyPDENaWHnn4IfQh+mhPJapAS2ZUp3h5aTPMwEWUhJKUVZJTiAcVqj3QEhP6ZAOYkuewRPsCQROC3FzN8SBptj6tmqYyJLY07SqTF8vWd2GarGaKq5CVFR63LatqsIL/kEUKiKkJOnOgz3AqkIoClqEhVtmWPpC3pZlr7XGpNv+tu93gMc43L05l3Diq+m33CS0JD4CRz3YmVj2fvvh/vnHtx/e9tunT59akwg7xkmP6E26sHvG4/Hx8eU//vPf/n//x//xf/7///Uvfz3GoW5qcTAzb8Tbdrvt0hqrMPP+du9dhZKRItK1bU2EeONbE6bwGCPOMyc7k6SiluO1aRJNyUgZkcfThjkY2wZuAKkHmRuYIjKSwKS9ff7047/88//8l3/5n5//8Yfn8/nXX/4G4OPjA/htjkgDCc6Bj+exP/rjNt/2uWmrJ3NDgqkTmKnaR4oidAkk33ZDpZ+GsmQpWPzaNqp0kVbg4IiIKK7xSyDmIJT15ncCS8EsKkRZRaSXmYZLCychbxHmYY6FmK3/rrZFgWQIc4BECB557bsQC7n19+2BlJBClK6NKAmqDT7BUiUYKr23TaRVe3Olq1pr2mp3zG3rdYq6NByUfZREMxI2p6dQEJEClMHC1QetLKoq7pqamXFaFt4VJbYhSMDsZh7VTAOqKm2W4sx/txlcgxdfDS3XvMn5v0li1x4T5XSiwqrhglBcg5esfT0ReClyEUEgypol1m/zDSrx/ddzefuvn8e3yiDUsw1Zly1EWHgpXhVX0FZ5GlxWXCKIcFBUyKa8hrJKukmIuMzsFc8ogptCaaVSGcTI9dfriypgdhRPK/wb8XX1m337yL7w6/Tdy/v94FU7ESKSkMmVZOUMi9+nSdYoGdS6JhOYLMPCX0+jfZ/pyVjqLRH1Zf0idnDFJBd7phJ8IObttt3ebp9+/PTDT/32htbatlFtApW5v9+V7pu83/ZPt9uNlM7Tn49Bkcc82rH157Zt2/N8VNiod91vbduaqCijtdbbvrVNVT2JNEVE+5ak05Oi2poFLEy9qRKnrBUhiUjv+77fa1CoHu9tv6lq30r0ImZiCZEFGaFrOwtOT8soTldNwmssW4JTICKqTXO6E2dMG8PcF8G/fnGpqI2FibQUfa6TPFcPEKIaC1iVN23Ro/qQfX6rXqiVy/XPLxH3d3yWq9rH647kHrV5Jlq7bCRnTJt56+c8XbWrdOGGa5RkgCWUk5u+3bqfNxiU4xxpM6UxSxBFLRKoMYhB8IRnZGD6yMzpxsfIxJxzhh1mz3kej+f55Tm/Tjot5kx3IRYmEqjq1rhvxGyRp4ckuGu7bUJEw+PGm5nNYz7GrPPJ4/Ews32/83XRfdeKVnloYe3bFkksMiyCiNxDeytQxXV0VS61QFvvWnPeSil6pM8avF45TREpuxGXjcbdYnnhAaQkOcdygqJqQJl90ZsrsU/rw8mNa++f6YBGBPsrVV2FJeV5JGZWbsQ6z8icxYol4gy1mZnu6TPsyGPwM+Oj8bH10dlEUXWMoOTWwSbsBLVzdX6sXnsVSGTBYUCU7MjW0TeIWlBAJumEz5wxnWBpU2wSjEl6K+QFeZIGWYJUVct2EGHKTVWu8y6lRyKa6H2/CfFt2+ecm/CwOcawDK3CucxwUY3pYAFzFY2Y2RyTkj3TlQGV0aVvum1Ntb+/ve+3ewQeD8x5apK7RJjNBNuViqoyYGIiCijprb3dbvf3988/vP3ww/a+t/7+/qaqw02OZ/iYTZ6JUhf//Of/+rd//3/+7V//87/+9JePZyh/UmmsvbV2u93u9/f7/d62Xgml7d73vW9Nm3DT6nzYlEnpvbWWYfM8zufDxuDCsYuWN5KlcWNNJjkTEkksve/aoCPgwecxgq7mUZhqQzKptP12e3+77W8Z1PRBxBGwKi/k8MAwHDOepz1Pf07v0wETyQSTBAfzNdCgaERx9bW8MM3g8tYk8aJQkyQpqElrop1JksoumAJKEqlaWZGlvlzxQCzYib9uYRERjqiNQg1J1wM9maKwlEmB2n3BqNARxJxaSaxcpvAMYG3khSBE9lp71QYv60bscbnF6kFbtDBmZtEmrat0iJYk0/o6rrE0IhIWCIOFZbGy6pbuCUTSeh0z3dwLGIoVb6xCYiZJToJZWZSs2oIWXz2jwg1JYCBKdPpWavm7VSNdi83v58vryB4LQv/NbPftGYLLdnD9K8F6OZKIL1wCXpMWfvfUiYsS/7vZDlcx0fdf6mtbV/s5ZjQlbSy0HPGL6n9ZbZYaV0Xk10KzhFgmBpWrjIvoGiumd5nZqAKhKqwQQCRZ4tunOty9zB9lJq0vrDeh5cQSRvLasVYtEq4uNSYi1erzXhuogt0QEVgiotBSjqvkHd9kSiFW1Xr1RjP/6sjkEoO0mwY6uWWs3vtqJ0lGMjlRauMWkiG2LkHetna7be+f9h9+vO03oFYGcGa6be2+f2r8trUf3vZP+74nyfGcvY3M3Od5G/vtvH88fzvOjxkTCOKoLRAzS2v7tm/bLiJJSlFNdNo7wCBzm6F9U4OKZVslwaVnkbBI27Zt326qSowinGvjuo7KRUYczEKU9da/5tTLxBYRUdUxEREELk3CPZwj4rRzFl0o05f0mJRITYE06a1te+u99zJ4KXMmWBHqWiqmQFm2rd9vtwIlvP70jKg5EkQRTFjgSWVqKqosjV8NrZlLPC7GfS46UhJRWWyRDki6z5lm4QaLtEzN8gVV6SezuyrQ+barTY30pLKJU1BODE1xrP7IqDVAesw45+nudCpAEXiOp4Wfc55zHI+nPwaN7BBKCIGVIVxkoMDplt40Ah4cKaBObABTmjIlsmBP66qZ5ha55dVaD7jkde5JCwirats6CbfWvBh41+B1daxJNRJW1LT3Xj6u6831tGlmp5wXypuqFj2SiNWTkkpgLqMIpUR1nV3nemLBK29edbrrIFWf7aWarfuYIy1jxhxuS6qsgxYLs3B5c0kJdgXMI5HuPn0OnyPHSWfgsH5izGwuSEqGGjGETuYDpJLkbuScyWvDyYDUgO9MIekiJDvajYnN4xTNSKcVER12qk/NaI12SJAkS2HlPSg5oRGG9DnQRLu2hTgqtTAi0iiziuabyBhjZxpjHGNYTFziMjwkiGcGUZOUKprkMoRClfvGrW8J/3rbzKzp/va+3fZ7kVMSUq0SEZRhYAHbOl5UFk8gLHvbP7+///DTH37+4adPb5/vsjdSgUb4GCdnZogNnnOez+fHx8ef/vQff/qvf//tty/Dg4hak61v2972fa8kgRRQQDiZhLjrNemLdC1WjXZuTdVtHB+P1rbBR3KV1p1gYRXpbWs9WPk5wQdIVQhCScxO08OTm8EsEm7h0/2Y4+vXx9/++uttfzt9PJ/Pv/z1L3/75bePj8ccDhYV8jEjMSzOaee0c8TZnSAKSk4NGFLKgL1Carni35efPsAr27bGFgJWUSORNN1UO2kLSGlNYC0NjFRqU1CYwXp9iBcUqvp9AazlY01nSQBb1U+Gl+S5BLKa65FOGQRUByLlatXGtV4Kqt/2GrmuXSe/dmMV+idiYZWkTBKiTGaIgJWkkYpoF5G2HEhbZThyGf6p9LV6aiSIQOOcTNkTJVQDCPPMM7PjwnOA5IJVQBtHBMUqAvJcU1aSsAo5IQM+PIOiTtKcV0sPvoEmvmlL5UKOb8uA6g242iSXK2DtQC/YfaFYCcS1baHloMIKb5Aw60Lio9i631Y/C4haFog1w+G7V/478xmRiIpQU1KhwtusO6B7LNTYki3KnLGYYVyalhRFrN5YsNS2sTgcQJ0UGMlCAlZh4uKnJlmCw9dy8DujQsLrKVuhp6ysTe2mv1t+CxHJS/fKdaFEXmNlOcgkyWvwqnH++t6zVoSVjfVMZQ7zzGRQ3SXCkomCA10B1NJgCDEisrlr+E2VWqc5eRgBsd/67b7t+3a/3/a7W0xhCMvW+g/vb5/un7u8b/1H4Z1JMwnZVN4y02wOv9/Ox3brj0c/5pmYkZO4tplJRNyUmxJresWXRbUHlCSZgji2091oTmdeNJ96uJKwStu27XZ7a02SwQIRKuecKL1MVpUMKDtglH4YdnkBS+VyKoIgvrna43J9XQckWtpglkO0Xx7vtagS4ibSRAuOmepPESUW4r7p23473u7DRmYCR5qYVWXWegvKuMLMWhFu4a7cmpRsU7NXHeYBlNmfKEU5kypCAzCCguCWNuPxOMbTYiAEhKQqzHVjgQCigARJcDOEZcwZzonwluZhoRJMChaLoEnT7TxP9yRY+XAe86xPODKrT5vSGSQCIUkmcFq6x5jjIFLZ7glibonTXMYkIjIPt3SHu2W6EDfR3rtIMmkB0yMiZN1lLIMzNKNtnVUK0vhi70lbEY16uVrT+n9u216L5m/xp2npFdRgs1AxFXdJgtQgJ+ZeSxlK5hSBhYmkVBSJqAzfvfW2de1r/Pi9/PytUbcU63IpjjEirNZoYCFIBjmKSWGJqZwAh9MYMaafPgdiwowjkyiw2P1UiCXPzMYMqBuxFSS1IUmWASYiI8giT6JBLUhy27ntCYo4LUvnNrccjzPskPAm2Jr8wA3awApSJ0mWSgeUzRLofSA3plQhEaXIgMEjwpi1iUIzPbbbfWu99zF8uM9qJ3BkA4wdCJasO44qmgQ18shEkfLbfW9zamutd+kbl/uh6HeiBAczJf8O7bgu2uTWZH/bf/jh0w8///j59r5h48jz65hziogyhPdEPJ/n11+//sd//vuf/vQfv/zy1zGK/iCqKpq32/b2dr/f32sV7WYUTAIwKWPvvWurubu1dt83IQawbbcrpaKli/qgAFJUOhNoQFgbqA3/8ADKo10UXklp6rk6sUt4/+233/6r/VcS3h/34zj+9usvf/7zn3/99dd4PsGASiHDixA+PaaneU6pExq0+jy4JpZMJNX6C4vCFGCpckaQgIOYwQGm5cSnBU3lTsnFSUNRMIUJAqJSUIgCSZfhRoKdkxLIlV0qf4zQlUwsWnRemZF6vEeGh7mgMidcPYwoHTOR9UfUd7YIZCXXraBrMkiSGE5BwsqkbO6BQlRxgsECEpCqdhZhaSwbs4J7ueeLkFpDqUcyl+yEc1rjIvCrkFeVYbgDA2AiTxIirw4M4NvkEWEBUEoJTcwKBFNLG0mcPhczkr/r88HvBq+XqJOO6wFGkSmVcLvgWxRUg9cCqi6yfBLXQy4uiUtqOGMWsDIX9ACrGPNKL5Rl+DIVMF9eZlxpplcOq75CEWEuskB+v7VxnxFX5eaa+z2TgpeZD6i4baUSCSK17A5wDWjllfMAC4MUxAVhxaotylpDXBOp52LAL3ZaHQWs1tmXuOgRoAAFSylfWh/jb5bHhaJLJgoiLSElqQ7ftSbLF5uNkSB2JsIPP3za5623MsS+Hccxj+nubiMzSxs7z1MbsaRQELueISNUiScS3vZNt8olqHbATRgqedv75x/e7tu29XvnW7hUsaRqF9mQaTHV2oJ6p0PIg8w9kF5NSgQSYdb6WKDiacIKZqaEx7CLHNyI6mnae99aaxVZrLJF3ZQIoskM83EB24iZQba8cOvtzUpN2VznhQp1MjFdEYlALkcs8DJZauMuelbVVGbdVNc1lZkRQlQ2LxEKpAkJgymVuInuW7tt7dm32Ya5qImeACGZSptjRgRdgxeaaIXOVmcQUyUTiTMiVp9BJpJUqdyn1ZNSIfRMOo85hrmXur1ucQnrKlUZ5jkmnS5uOtznOEYip6vbSE81F2kZBDBB5pxjHO5JUIDDyssKShbmxmoNNg7yqSIooAEl3DwOt3DmSCHuLM5sbuc4k0TTc5zhnm5ApDBtrRfj1JhZVVQ5092rNE0jsjwRxCVYal7SkUgpXi+NsBSKbdsKR5ZXttRmmE4bT4DndJFBomAh0Uo7ETlBEiXGF1RyBb+IOZk4U7ip9Lb1OkqxyrXNwHId4Fva+vu8+5wnqCpzqhdu/VubM2JQTueofMw5YpjPSKMMDly24CCOJAsHUbitQ2OoO/OE+J7RKAGGZFoapQds4ikUTFOaS/fWOdIxDXDKBMzjnGbHEI4IJtlIFNQACZYgniSKTO0qdYuf53E25URMa83cs7WmLMdxmMUrXyru001na0PGoIGkDEYa5U36TLif0z5YPt3f233rZz6JtXUCQrR7fNKGx2HEbnYS47Yrk0+fHMqcbsSqRuG5Tk4UwU33tr+/v//hxx/+8Mef/ukf//Hz7XOefnx5tnvzmOnz42P8cv46z3F8PL58+fLXv/yv5+ORSSJyv717cmv9tu+f395771oEBtT2gbQ3Zvi0dFehxlL6dLVtZiYn6obA2sjdbX3IVDU409Ga9O1G8ltv+5HDk5Qbs5Bk5GyGCFhyrgA8AP7L3/768Xx8+nx7nufH8/Hx+FJe+NJyRZgQxUUa5h/Px961931GcORpHhHR0FojIndbdTMJy5CUpsKsHuEU2ve+7QkdBs/orfX9HaREjSAJyihir5CKcNPeiGjOWci7CmMfx1isfASRWEZEMvP0XONIklAItvAzE+FpbmM6zDlBouX4rxIZX5dKspeMJmNOIWntdvnDN1E08IxnRFp4ppQqBcA8IUpZz55kAwskgpM8OFkoOKdPJ2lo2lUlQMg0zzQDxXKkV3PWFboh1ERkl8Fcly1sMVwomZpIMhljzqKNRSLBROB0uA83p/CyjJfl6KXMVzMMEHIJV2u+cbwOGAu1cR05MtPN3BKUzNxEv6UYiVDQSNK1GWQulGl1xSRFjbBR8kRkZrbW6WKF+MVuxYqJfVs4vmxSV/Fl/WlrxxQRyXKlioqBWU40eJln606bWHg1XXk9T/I1OQk3YWaVXZuwNtLS0+pzYbTusBMeHvOl6zQzogzDa/eK9DLNLvlHuL6dIoFM+7YcL5ehuwfSZkC4+LoA7LpxV7vlGm0pzSYo7/e7tD6n79v905ud5zmPcRzHHENK/IsA8BzP/kWa4n7v/QvPuA87z/M852EZ29Zut9vb+2279U8/bO7qTnu/f35/45ZtJ2WoZApnpiVYtOs9IjJ38yGDSdCa6PHLcX4xz3MekSYiqo2IfCWf0iK8opqQRPmNmJm3216OciJSkbVOUq3NvG69fkYaRM5xsVEIWE9Jz8wxxyrkXUUwsz4w7q8+g7ye2awqmOuscomRPDF9xsjZtX+6v316+/zp/ul+f9/6Tbg1Wa0SjAgHJxrLttWmou97v9/vZkaUIoTwOexVRBGEvrgeke6tFfBcOIOFCrfh6Uq6NHZKEVq0GgMR7dvG1AAS0a7sYz4+Pv7257/88Om+9R81GXARar0xR5glpmzUksdxRk7D6R6eZjgTGxI9vWEXaXO6zZjTCNxUkTxOL2WcAjXuSoZS9xYg6kwRvoqZYZlmOd3Do5nzNKFhZueYQqThCINNRLCi3fq26V5w/6H6Cjqsw9+Cls3zPJ/jLBjp6/InIlb5vt6jbixvb29Src1AURpNzdW+uAtD2Jha/UUIAqlsU6Ea6kgI3JGmKgEws2WELeMpCddH8WUsq/FreRCZFhLB5rA53TxjugVyjhHpwiqU4W6TzMIej8gRMUDOoEi2YIs8pxnDNbOK5svfUsYQQmT6PGdGA+2uO98sXCMoOd0zwBnJzpJdiCVYUzpYzMMiD9aZmW4zsZ5nqtxo6+2+9VZGWFUiJZYEGTPp+31z9+MYx2OEzaM/Wmt73263NxIqn3Kdv4motUbTxZ1ktRiD0pAs4ICVAVrBktpi77TfRFLnTKu+EMW0McaRmdNPlH+IgyUlUYgTVa6uoHKkgkWIhdt923/44Yc//vGP//KP//SHP/zh1m72HA08eZ4nxvPx/Dh+++3r8+N5fDyej4/zfI4xwpxZSbVz63u/3VodiIlTiCBFNy+LSAFsnCKJg6pwYAzgnHO61XjRioyW2ShCVDUiHVA4RWtd+858EFGlooIAEmYvcEOKTXeYO+I5xvM4Wmt//YsXgTfKwSNSzaLhQQlXsvAx5zltWFi4No2k8LRIIitXM4ginCi5IsvVi0aSVK+wMmtCQUFoaw+VnCTJjGQIiJhURUqQF4uwyPT09GE+PYIg4GUlyoyAmc3h7k4EZqU0SslqC7j45vW4jisOeVWq176JuTpDkilTeCN2gIg7S5AHS+cq1yUUWCuRSPKrdaRmmwAA8ZSAesrjNBrOPEVEtUuP1lLE2tZzeUsil2E8RKztG2cAWZc06hCaWd7HumcRgrGCr8vZnUsfSvHMBSC9nFiXMJ7EKAbY8sFUYLMw499L6L/ncn1vBE5kODJqoVf180XvKZmHmHjxI1ZyHEkUAc50sKyoK11o+7JDEX/3J31DXn1vIKNv30t893W+mr25atFLFSgll6iK0mvGA4UEEvBgsCuFBzjWOUZEmKWVAVxVRLWY/EFUa+pXGCyQJa9iCfOdmZ1nVgNkLlaqj7P6kjjTicwsF9BEXiNsXjCwvGqA1w4BQLV9VAJrLXmXtaiBmKm12zDftq2ShmZhY5qZHc/15lKc5+3ttj0e+2nz/dPNbJw2n+fjeR7DR/lp+rZt2/b2JsQNKU1v2yZCFDkDZ2Joa0QsjRlNRTI0M9nYy6nSrHmL7D5OCQG1Sjd4cWWoXvN676hkvXrd2tbZs7V62tBLgmr9trxcvalyKcsXhW51vkUwGHUgEKVKmpasKEnpaw+uQirf0sQlUXTZyldXsACzSI9B1LXtvVewbt/3vW+ttV7INNGujEgJRLPe+83s/f5WDv3SI1W5lmGViy+ZJCKWFXppadyLT+QGSuWCOzRmLtJH7UvdLdJZGkAMVelEsmm73+/3t50izWyeIyK2trVb05YsMzENQSFQpsaZBDjY4YnwoDQ5x7LvD6ENzDOnhwn1CgbpTMPESeUZ04UciN46lBCTE5LhlPAEkmHEcRy/iEwmm6OJ6KoSdkojpCjdtO9725kakTDk2XlNyf6N2DNrTzjH+5w1eL2GM7P1Yn5DeamuMYBel/w1jyep7KEs7EwnoWVIhoSnG4VzhgBaR7Z1c5JILIqPSJOmql219773vquuFWeZ8QPpc7VJ+u9+zAiLWnOmUZobjTPdIGEVlmSKFBCIEcyiqkkJyWCAihXszBQY9E3gH5zDY7gPQnOkAFnSGBshQKEtWRIarBM0EwVQP8NRCULR3Lq27Mq3vd1vvZBuIkqiKPckEen91ubkcT6P8Rjnk5l7249tuyatmoUduMy2AQEUatkUDkoil+DMnAnYhEIbtNG2y+2uOZC4PNlE207aiDninAYQKv2UImXgyP3WwNkyZgtSSmFpbdv29/dPP33+4eeff/78+fNt25VVG/gGc02bZ+ZxPD6+fD0+njZmeF7J8PJrKwkJJcPp9RdDqlJYSJREVJBh4xzPcOWEMEwEdlT+ORyE+qXKse7OK40ASoT23qtpYjYvrMhy6qhwlmGcSUII7gDD5wRgB+oQoXI96TIyIkCEiOpfmocexziPsb91ySTPiEwyErG6ry2NgbOuGmJNLs1FmYWlBZTdE0LSWFsZblZkjolZVTpLE9G4HrSWAbMrtKhMi0o2QWY2ThtjwFNqtAte7MRSIljAcT0JyvhdK0rwmr1Wp2FtSlXKghYBCSi4ByIgkWJID/agyHQUXer6BomowgGWfrjqqJ7v0jxai7ZFayEim1X5T2Yuk1BrCJJeBwgPVCtSRRNA01OuwUtejvWCkRJAQZRCnOWvA4PSX/DQ/DZUvZxVUfGHGrwSL6kp83c/reXQ2rTW3EEZmSovB9I3P1Z+V0Dk7tfMRkn1kaiejbimK7yiXi9l6/V7RsT3U9cLgcbkeonzC9uk2hbtckUZaw2agUw3sHtkUvU+FSdXYnpWzTPV82C11IhCmFhADK7XJZYvcKl0qE2Wr8wIlK+wQWQFHjOTa5K+PPVVmvNCDHxTFl+k1u86LjOzGkOrdKiKH17mkoziWdDVMQXVoGJ1xkaRx6NHRM0oc863+/Y4bmbj43izmOecz/P4eH59jjMJLx0BgHRR7btuqpoeRBM0SE01eu9mGs6UCdL6CPDVf6XazaXMMRyosIKZJZi5svALBYzkuD6TqsocFzlrfdJESJVFylhTODsPn07mORMZGQTS4OXErI3x1T0nxCSanK/Xp7ftds1SwgpARYjILc+zWhDHkFOIU7W1trfbfdtv275t236FRptoE0oPTpjZvrXENnwf43bMe51eSvolyiQpmFMgV2RVJCJWJq8JU2ZqZdVVeWs9IsyHKtfETnRmEqFKR3vTvul2u91++unzTz/9+PMffvz86W3btq1VBEFSRiLK5mHh2qdiKjOxFA4cluFzkmXOGYeiSXYhnTE9vdOeQpw9aXiM8EZJEkIJZNm5ocrTDMggZwp4BDvCQD5pzIjTA7xHaqITBmcDNYZ05b3r3jaRztmIWN5X//KaWJDu1tyBZXJ6TWMX9WlJAECulFJrrFLvf35b/mPO6Rbu6Z6jfPa2/m4W9f9E1qwWueLwyazL40toW3+pXL33Mte/7k71tc15vkb2YvC+sKBjjvM8IwKuNmkOCs9dDHDmgAaRMBNLIwg1kkxTeDNqwi1UqKmLJKTgFoZIxMgYHidhFwpPJwTglAZ2cJAYZLJM4kk8wCcwQRMovjRUeds28N753tvbre1Nt6bKtKB3IsTM2pUQoZyUZtNmxDye89yV2e+zvFDuGTHrScDhnmHXTS2uhEvd8CFIyTrwSOe+8WEoLyYohFOEWSJhRJ5+WlJl4iLrsRStKWsm3ZqGabpk79vb7f2Hzz/98OnH+/7GoDEGKDVpb310UlVhCLMSq2qT/naLMZ7TdM5pE9MDUUwzZLb6EMiqXSEWFo6tt0DYOE+U3JFDSFnSh7s/q5rEorb1AbKMoLrVFfBar6BQO3liUcwSKNKSL2upIjNT9YpjgGtrnpm2eoQcIZQZZaau7uh5DBlndZtuXvm6hSKkl1uo0QrRYHWwcJaJpwj1EBJmqiYszZBMDlBQobqVVURa0uoCJxKkRSZBmnbLEOLiP2SmWwy3ArAwC0GY0+tc/F1w7rqG1+YGTMwKUiYpbxlQPteqMs9wqhnLVwIkhnMEpuf0LBk/UmZm2wQJCCU5EXiaSDJ7uciJSLX3nXpAhhNlP0d524lSldvO0qAkc05GRECx8upEkoT0WAV59chPRzKQF8ULTBQUQqi83sI0BAtzvKJxl0fhNTB971d4SU1X7eYVY/xe+qrtHpN8dwwl+qYmXhOeZ9K1W6QgL4ES8Avi9Ts17vuv5zX5fa94vc4tKiKUzMSUzNC6FWtr2lRFqtOSiCBOFBlmUaeOQJnMCESe4YmkosQhuXo6OInMkyiDXJODIQUErmJyxwv7XlXqzDzMLmvmmrqUkPptAwtZ1mn/3dT1anSg7773hfvy5R3JwqpU+WEUyyMpkgLkGRnySkWUUxKE+61/9+jqrfO+92FnP3ul1fbz0ffWno8K1RPB43w+h8Lv93fo3npBsEMpRa3tKcw8aBxh87x4/fXgCasz2fIapsPTc9iMpAZT1QuIRcWjJQYzWMnHWF858xVWKd3YEUkR6erwtOlkEYMucRdBKdRSatHcWt27kq5naGbx2LS3vm3bfb+9v7/f729lxCYLR44xLnd0bq1HnyO5cRmJlFmVy+B/670ri1DWwN6bWO+ZefZz3/f3cfdrrRxh6QbwWLXlGDZz0b8nffsBZuqq+963batsvvmImKBw9+M5jmPOUWTK1tp2326fP3/+p3/6xz/89PM//fM/3O/3P/z4w6dPn277TZuXP5MpUlLEqvlEeSgPZmIjEBzT4Z6QEAMLWlUrENg5HJQ0nRx8MieHgDgjzSNjss7gGXyCnNiTPOUEneED5LIFNUpBKkg66hADlWQBbzXBSGNoucqKvJWZEIYTRVyXF4Sp9vJZ23x4ZDbRV+E0czE0PILcnZIKyOXuERin2ZzP53OM8Xg8Po5nzdZjjO+1KTPz8PkqbyABFsd13/fLxY+ABy6+cXmwIpg58yJpW8w5zzHOMY5xjnHM8RxjRIDC3DRCKTg5ZeEGqbUm3Ihb0magATIO65n9Qc37ht69tWqxHUnhMM4ElRrqEY4EoerpppZwkA+BgSbxIB7ExjQlgym51ImmPCWzda5k8KUaUtdvew5oU9j08Oc4P86zdmp0trPWwInY+u4gt3XBK8ORHmYxLTzS6mafTJUKB6c2ZkGFblpnkFZ2OwK9Ue+tdTLjOcyml0noOpuGe7KqKEM5JYKy0bZtt8/vP93v7103BPkMJ++yNeHgWJz6CqDWToZ52zbhIKKst5xZJVVCNFRcuciNZUJNpoicmQQVISy3DDLSM2JUe/McZX/O5XQRIluLm2SJSmhvrTVRylF3e18QI1BrnWEGyioXWg5uK2RR5iVXFGj1op6U5u/1obAws+kmQRB+6Rx1ABERYH1LWWxPEgIKplCWwsoMsShIHGkRGqhK3MLZ19/rObWeXp4WzoBqB1kt9l7EwtdW6nsFBcnlp7pc1/lawxEhSVY4cTmdatPGER6R5hiG6WROs+5eIdNzWs4Ji7DksrAM5zXGcW2oJnMy1xMaItKbOLnnrLDVc0yiyuVx3xSVoPY0PwXUSkfhayFK1RiUnsTFy07mqL3N61uubRvIg2sEjyjv6BqJfu8M/X5hl/m76ef7fy7m4eunXHVSwnSBM64/vkqmFtMYuBqCIgBEZRXKzsBZDun66fcDX5QgVcLW73GvL6O9SNbgRagpk154Ea9IB0AE5/LV+ApYVRpzPT5TMpkliRcgUxqubQKBI5OSZ7pUk1S6u1EWSdiuzUIAYM4Yp5mFT1prSy87NliqRSB5YWTr0qiG4NfgReCq2FgvxfUrrxKbgurHteyItRknxmpvoIi4KqlBRP3qZomISOsbj61N329zG2ZPG/1oJBzEx3lahlBExHM8N8l930SzdTCIkwguEqImPMMzEZZkM8Orom7aXEU7AKt2s4Cz+/BAxiRhSqblkubXCYjKz5G29qxB16dIgLT5JOZMpSREAGaYgUnr4q0boTipMIuSNknHSnQCtBpFSbl1bXvfbtt+3+9vt3vvnRPh5hbsOWkqcVe9bRsc8McKpnqhKKjptu+7iBBX3Tq9FBd37733re1bH6OfW69HeriDW59zvqaxVVS78GNlFmOm275//vz+9vbWRMcY5gcziVJEnMc8z3F8TCJl6ptu9/v9D3/46X/+j3/+4x//+OOPn2+324+fP7+93VsTFidW0DQbGhCEiDGF8hCckk3aIA94RJ6WwUkCamiZwUzcGzGMglydAI1itCAywxzpODlPppn0DJ4sSZQW58yn8wEKlxk0E5PgkHtSBKXWSRA9lUmFRTgbshEJKXNBip2YycIvpGL5ebhsnmkvoTSQcVWNpUd6zJxc58NMuGXJWmMMG/58fowxjuNxHI/neI5xzDlm1HnJPKYVbXV9LL/dbbS3bdtUuXDREWE2po+Kxr7uVCJ0CV1+jBJNj/M8xzhsDjOriGJmYfS4dohSbkhllcbSwZuSMDApW8vslC2VIZh79wA4Em6TExSUM3LCR0RzGKdJDOREpmRmngwnOYkNPImNcgongVwSUimJBjSJptyYlEm7dOFWD8ASTHTfdA6Ej3F+nMcwT4DVZuSK2t7v7yS67lzJoZmZ022MMcbpPgmRzJQQrghKLJE+ItJVmUiJ3B1mIUKtSe99nMdEmI0MBNbwQUSRlmyNGzVtbWOhbbvd+luXJtQoCI5MD8CMCHqe53E+xnGmTUoQCRMxpfbmCuaJOOvGKEIs6ApViLquEoBERiTN5yki1Ei0q1TspazlPsYYw6zyD0TCjSQuKkzmGrxyu5JCJRW4B1JSig9AygIpoCjK02HXGTuX9vXaA2Vm8IvbhLU7c/dZKpNQXxUsv6MurRM/87d1A9d+RCtUIqpUwAiStaSvFOG3bhYws19EqNKTbU4hbyolJrmnzdqECjP3trGUsrIGhdo2kgswAbZ0Tqpzomci4iqFByKrV6KOEuE5DRZhnp6woOk4jd3jNExPc57uHmwBzAEW5gDrhVZ35lXX05LBTubMokrMNM9JixlzwbLxjGlQV+IKDto33EP23oWY0igpHVxkeKKkV4sJZRbzfpUI0RWgQ1aJgOG7PWNdDksH/J3u8rsf7gU34Ne/Z2YSwWWbu04pgStg9hoEcVWlxFJ3FloJGSJSNiyGvpStfLU2XdUr/60495oXy749mRGZ2cxs8PoKmS7RKMkyMokpqfoVIGCR1km0xFeSxirlJiQRXFj5GUHVWGCTkXMOG/PCZM9lqrOnu4d5VXdwIpmbaGutsHpJEhEZoGU2L9gEAeWjXKtMJo2iqMdVrFHqF6geSIURAkX56OYYSVxuMwIqGqfCsoAftfITJTB3NtIuzUyGJjDMj2mzUjUZ7k5hiSB2ogAKXaFIS5weR2aa6zSak8/DI2DTxzCz6ct39W2L7VUPQWCz7wZrBlX6YZWpKJN/6ymI6qlKIOJAUiQjAPEgT8wkj7Sa74moQVk68cbiyj2JRTIi4ChaLoJU2tb71vretk3bxqpQUKFDExHplh6UEGJlKWrP4qzaKqfq0kk4YzVfqEhCy8qVGXwZKxtLF7Gtu1vU9TgngDnnK8Sqqq1Ja00YqrLdbm9vb58+fVKWOWfk1pr2TTPTZpj5eDpzq2fk7b79wx/++D/+xz///Ief7ve+7/fb7bZpI6LEJGZhQQBMg9E4NsaEdxojp6lp49PD3QDzutgxiJOgROYcDMvQZMoWoTOjBYzQAgg+nE/iw+lIPok9OYPmpCNiQtzpCD5BJhwJWDqHS8amShRGbkipLQxxY41c/BhmToI4IoIEC8OX63503bo9MwsGkumU5I6i4DKzkGaSe7jlGHYcY57VWD/H9eOYY8xR19N0e21jLu2RiJNI6w2qtfd1S/wOr5P18K3HDV1/hK22sJeolgW/1evGVVNXiFRpfeplU0tWIqkJJVq4psvJpJU7AaVCnCUxIjNswmfEzDgSDD81JmLWyUTYWILFWZzFQIMoiSGUUGLn8KZNE12yK7d64jIpQTIy0xweYfp2azZka9I3yVT1mAZQhNlxPviLmgVJ3awrDOWBHL5wGhTe9PWYr+H65WuxzJRlBMkxD48sKaL31tqc00WECEyS666OhLs7O9/a7fbDj9zbdrt9ev+h950gZn6egxIO9TSy+Pj69Ze//e3r198q3a3EWrBZLcCgAEwYjqGcDFvdD7WKv+QYOKaZyAogDDrH0VprnDjNzew4arhOCAukMAeZsvLSCbne49Wx8Ipc4aX8I/MFqkpVBpQj4Fk7uMJdc6IompQM8lIUdAlRVBtuFTJOYSJCuRFL42G9QihEYCVZpsiqwWbWxg26iyogl25RuhETa72/sUjmi1O6VCtafhdfgDirQ6qq7kylvcPLNSIgCngQKBqR1cPPE+ZpDPBkjqie8GAEFdQHkWY+zM8R5uYeY/qYfgx3zzFjlDfVebpHEmsLRBnN67G6AO607H16zm3Yvvu+771JGcBruezuPuYgzkxGRsJRExaE8mqtIWYKpxQSKrxrpQK2xlL9LUSR6wOQgYj0DK/WBqyTyn9TlU3l2brgnH8367xm6JftnVZiEcx8VQatCm0QPCavWZBBBE7E9y1MZcdZuC9mflXhAnjhu16xgL9fQVbxPV/zaERmDiB4dfWUrCUiTFIkpODy2iP5Gv9F1vBbU7AKk9b5KLDGo0AgDFXGaR4+4TFt2jjNa7s4lv7nh5nV4EUIAbXWEClKnIysxtJvL931z9VZtPaqgTS30rpeg1deyjOtOr56E4QkCJg2E7JWb+nJQhCCUkrpBJcmx6UwsUoALWOLbTffbUamhvt8FMagmKsgAxkxfHVlcURkbOeBj688DpnHLZNs5pxuaZGz7DTDR90NahdByDodctQNh69QAl1XxxrKa4cYETZmMAfNdQ5iJFuQJ1vmrJbqMpYRmiqCibgTpciytJeNDwEIb71v2rbWujYhBjjNM7N0qbr1KTEIJtJVKZNJpKTTIn6VuokMm+mhzHyRBV7GcKwTpPTeiUhA3Ow8ZYyG4zLjrgTJ+mW9iarcbrf7/X6/35uouxP7tvVtbwDCkQm4qG4qvYls2/bzT5//4R/+8MMPP2x36dpVupJGWqymjeyNCXNzGNKRG9nG+8TwMUecPEGRlpNyIgDiphoxZzDSwUZoE+QZxBwpyF2wJ5FheH54PJKfgZPSKTPInM5QJ0rSmWQkNFiTFe5wkwjLbtRBd+YRMQRFSyN31787SvHrqHZ1v8FXvwJphHlmEdrqEVZTWGYKKUHcMU47z/kokWscc87n8/l4fDyfj/M8xhgF3KrDjuh3MC5eu5pKQ9ffSRiQtWVa56NyVmKlL48x5zynPR6P8yiD11lfW3kZubDbXHKfq7JqqmbZR7nwg9oF4qLew1u6nuAhFKjyOuYmEsTIiAz3M+KM0MwEnRSTY3okiBnnYpKpFz6SAGdoqCdFKKUGtqRNojMpQ5EcgXBzd48ROdJcqw7z7e324/h87j6nHccwz3CY2fP54e5gpbXO0+lPgC2jjqGNhaUpQPKaMFY+ou59vbd6UwuqWdbRfY/nY6hGawkwmNdbVc+SDCLattsPP/zQbrfW9/f9/e3+qfc9k8YwRHqaBZPhy5cvv/322+PrbzbDJzialOjiwQJV7R0Z5CCWKcrLDeNUus4iSgIgdp/P58d5nojsuu37rsTD4+XsWzbq/04VeM31F5Ym6fI+10C8PEwRmQGEmZmPiFC0yKims7W+Aa0awLUtuF7Y2piEuYs7kCTCl212RegXEYcvjw6ras8yLZVjWpWlXQD4uvy+eYBe7OlSMUSEVCRaUyAX0vbVvFkTQe/iYXPO0pGZFGxECML3Co17GOX0SBblTLBTSgiCMpkSXtn0OWuu8zAzP20Oc5sxZphhTBoR5ghQ41aOK3fzdeqvPuYgIr0INLfb7f197nvft42IXyXKtSzLpOWoDvcEU4bU6EjnnMqULIhMJk5iBjyotcBiBRWWtEqxX9LW68iGC43zd3PV3wPo8bvy67Lp1A0lFxFVr3dz1YlmosoGUMJqndu+6Vjrrcj1W//3UlZ9XZf2/7tV4/ee9O8Dly8TLoKYV0Jz7WelCEGZ0O9t+y8h1iNW+xeVKk0BUOa0KdX2k45IXuMdXQToWQuFWiSRsB+P6iopzmRjYZAwzjMLhszMAfaMwq629lL4uDYalf4Y064l4+8Gr2Qqz1tNlmBLY6otMjKTSp5JmsgW4Sz9+ixd2rMQOQmLawZyQ1rkzCAV95wnnXkENeZJnJVyUuXzOZAI55k5x/PxNWvwKpulG8zCMkAzcnjYYceMaVa+1QTS3YOixSoFj0qy4DswLOXCeWe6z6Uz6ayzVlAR0WeSgVyqWpYlEcIZKZmN+AoVMQl0+EinJFTpqaqW571oE4F0r6EGytJaI0hrEJED4u682mbX87WEE2nqc4Y5VIWUrnrNau4qF/buXs2YrTX1OI7jPGftH1TVM+acdWPc9rb3rfd2v34oi7uL5r5v296ICutMXW6935puyty7fv70/vnz5/t9bzsJqbAKkaBRNpADYYOSIdJaTpPesTVs6l0bqylzwVwiwpLqf7AwOCKtTIQecU5XapFShYIJmjlmfMz4wn0ETnCsZqPi5TJUrOykDR0h7jOGi+MM2pQ9dsYb2ux8W0vW132GiQNJwStUfB2qPaRA+SIAxig4rpvN14XsGXOaFG3Yc4z5fJxfvz6eH8cxPtzsOI7n83mcx5jD3CJizHEhe0hEVs8vAJH6DS8YTd0MvnOKf6/mrm7W2jn5GGNO85gRy0ZLRCLKqSKdaWPqnC4SIiGCCo4tSUg6k7KytvRmU3tqY4n6ozW4mCspi/VXypEjKY1zSnhEElcGNhNBjNq8E7ILcTYDBxqyeWi4LPdDaTxmPtLMzE9US9AmfrLdN8x3vbtmbse5H8/5OGwazvM8zQlaAn0QW1rlygJggTS7BVx4F+kgTd2oayBHjjFGnrfYy9dhGJzcVW99iw1+d8oGP91TuJHSFDMzYUwLkduPb//jn3/+H7f3Gytt2yYpZnHaaBwKuEet//78pz//+uvfHh+/biJ734VDMho1AmUKg7sK9jCPpBM4kyLQnBTQwnSh8viRzBrntACSjObxcRBRB0+LinImCkHbEZPF0ka4RbKHeEgSiSp4WRPWQtQtktKHu5nPc56ZySsbwpk0UZtQvbr/gnjlDIggtbwVAqeznTiC9xGJGbvK6vPgaAJhJCyy9X4j6UmcEBY1KsBOE2HtG7ctZYtUSE/W5B6QcFFprDeHeMYkYkCqdKRt5klp4elzztPqYG1pRNG6YiN20nSzCTApIjIsOkskHR42w6KK65CJ4RwpTNwgkUqBsqQh8zSb0Ybb12PMGdMxBj/nOCw/jE6jTElkJGaQeqO2R+A8vo7zSbWnjhjcmYHwznTfrR/n8/n88fOnudunt9utv5EwIR1i4AjoWVOOzDQklEWTCNSYKZMBJ6Z0n0Hkyqz5G1QJG0sDl7OYguGAAZZhiAinCM7khKGcQ5mLBpdETEwRFxa/SmtXHaMoS67WTBKWZaqvhGrSUuPKFZEc7sINTEteWwavWqY5oUSnrFY9UAKpvGDuIFYi8CWR1kDEryl/0USjB9d4lkICIRTFvpU1K5hCmBoFKxErnAuIy8QdskFlUPg4pHUKIxeFVghxESgQ0zM9hFDQAne405hwp+F5jmnjETkZLpazngcrvo9M+DyHTVUtP8t1CmJWURaIUX3xtLqpsnjDEfVYhCeBOGi13Zh7hCHpKnQAEWlDclqGZUYsLp0liUQ/ixQmTVtrGUoRKKhW7dVS+q3fJXmTMf32Ns/5eXqwPhsz8rSJcE1E4rT4bTzp40t++ZXOr5sNzfiIpHAGaVID4JkeNE2nH5ZBGpE5p0cShM2W3mNZFpnG5PWRWe4PRG0fgywy/CGeFjSCjNRDLWQGTFiY0KgpGse2OyR3TUp5sm4N6p7N65MpnLLF1nPbY9ui4eQxjYSZ9da5gPJCfKrVEp/krFARoopJ9i43imYnhmc4A5hOzBE2jUIaz+OIPBhD2bYN+94y9Tgpj9H6vZ8naXLj53E8n+dlmmTl9n673+773tutt71ptkbTlOWmt44WvpIK2963e7/duqpu2/bj5/dPb7e9dccmIly0VAohRnFUla0axGhy5gb5ZERn07jD/hx0Jj8//Aw+SGIg5gRLEPsZdqAzd280EXZ8zuB0RbQMBJnLM+iRNJidyM1nkEVP7pQaN+rCLQW/0TOnxZCYPac3yC2OI4/Dv7zt/X1vt2ya2XBwcufeVWurypKd12xhZm4OTu5rm8HIDBv+8bQjIgRXG1bg6c/T5uHzPObxeDx/+zgez8fxLNBjPRrmOcq3EGlMAlaWlkxypYYmHEBXjqDIVOpd985bo32T+629iXJSGNIQExER53g8nx8RYW7P42mWzAKEsjCByCSFkxjMpClOpSSkg0koNkntEsm8vdO2DRkHRfLhuYeB6cbwhFGVWyUzK5pkIqezE0vtZU8S081zO9Ahe247WhNB7TczZrBEAJ6ieWP6jHznbMRvdnK4RJBPHuccM6dDj+Oo80HvHckZDJpIOefTI+Ex53QbthQFOVYtJYNZlBqYLXUW3VqVOjFnkE2MM87DZxvghsspycw2MQdYJ7MxK4FUW6w2QVIh6bK/vX/69Ont/r6/7SxorZEhZ7obzD3Nxjwfx/G0v/zlL4/Hb26j7XuEM7H76sTIYn9/67YjIkIkyNM5uHJLvDxRYCFCshnCF0MknEbVMBBAvCpWMsOTF7VSKn++3KoMaZ2kJdjTPAkZEZj+nVAUfqG9E0jR0k3KgOK5wkbJvBrHiAhJDBFpqltEKDFXlQcJM7eqZUcQURMSRuUFRbA1hchqs85MJmb2y9OzDujEWN7qdafOtLU0UW2tkTsnHBak3+slRc1kzpe/G0DSBbiKjG/I+6vRZh1oUJ4uyuCkjKBEWMxpNmNYmNmYbuZjzmFzGI0TMxiZlByRCB7H9DNt+jieMc4CuEdS0hmUFD6FRmaeRHNqpoKmivfeSFiropI5Hdc3vnZpUdbhJFDVLWaQkVMEwULEJT2QYEkQURUQGy2IZC33iIg44cs6l7mUBsJrAf0qeK6XZqVTrl+WRPKi6SQRKIQUlyUiEsyECGb2fHFSvwuQZtbitbTP37nyc10UeRn76FpnXj+rusjv1MEynRVWYf2rIvUTqsdeNInL8F+ZkbXijEDUNx2Rzs6EqJezyPYJBKOsPzVQrpKgsGupHe5pUei2DEpe2VTUIFsIkAkP8wq7fPt8+oK5l5mDKIJWteiiVFyA0FdUlYjGtFlV3AajiGrVlFlHinCkQ0FhPvlU5t0bAFahYPdEVkMKE9U1Sx2ULE6cxCI2/RnUyZWUIQlYEIEsC4Hp45jxOPzrBz2+qk/l/GMWgIiCa70a5nGajxGeMEJE5kzPoAyJaasVB0j+hiBxD6yImRXhe+HHXAIWmMEOn4ignqThbklSZ4+kFpSB6aSclOmoWwGXrJOvntBqd6h9rrBoa9sGVa3Wjj49CWO6av94PtddBHRbzljRRdSsuoOIIIvlbfimyYt0ptKlRbvT0xOquo4QzHGhX18FJH1tHLuIJDdpUo06pX65z0wwozXZb1vv/dbbtrXetTUKm2Cj4upGBYcYYECRgWzITUlBrgxlMB+qukV3ak5t4HQKj9NzUAahTBpNsrvLmB5G4ZSmcA2nYLc8kp9EkyXqejEyQjJRUpp48AycCIlQc865Yc4OcVMfm7cWdqO8MzzRMJPZAUtLd490BhEJMi8sobstgp275zJr2RgzwgXMEMo0i+M8H8fxGOcY43icx9eP43F+Pf5W1vdafIctHCsxCUObiK6dSm1uYpwlxlOASJpG36h37lsxjpwYCc80pDPqYSmABiaSiZQQTAKKwosykaRSqqAxOrWta4U8nSlEFKIg6a1DlVSTw1hJNmuTVCh/y7qvAMzCnKQawZTCkKiO3oWBSREOmkLB7NX0y1ynsxpfGGQMo6IWk1eTkjvcPJxtxpw5R0SknuMZaaq8U2fqmSBRpJwziSNyWmUJCmRFdES1g4m0ppBUUadzToI02jZlsGbkOP35sL7H2zaulHfbehV5WKDdzjyeKQyIqnYzW+3Airf3T59//sMPP/3h8+fP+/uWFEI8c7q5mY3xzDnO4/j65Tg+jq9ff5vzFM7Xc+IF8Qtad9jVQEAgFlnbGq+mKKVCkKqqEjGcJrtZeVYz0qdlVP/O+g+5SGlZ7AbES8lvIl209TvLF5B6mFsGVSjJKhOLIrFWiUsG4Tu7az1w6z7PBKQyKzclpWQkCXqXrYGb6KatN+0V3YEQJRNXib2qgtiRKtSaOHQgKsFYl0SCEd8euMQMYhEpzZer1SuQWUVaG8wQkSnJVBIxEYk0BTWFiONVF/idaWlGbWYhIklABkVK0gVrCgRTeqZQJoLGnOf0c4wqphzmc9rz9Me00/CcMGOApbr/QGPaae6Ve6RWU0oC4VY29rQYz8MoY0g588fxHOex79o33ba+bU2rLUiE+BsdlGm5HjLjDISDYHAXhrG1LkEGU4UvZQivLsak8CpUupbma7wGqro0AeLLnVCvfS0Ovs03Qlc2gpgJL6woclXwoDqXyouW10R30eUBuUrQagJ+DXB181upy0q8MieD6fuKzHgRXNdzjoiZtfqJAHoFLwicYFawgkWulKJ4ffeEl8GtHsnmIQKyOvGsBSjladWgGQwSKoa0XY1s4xynzenuCEcGEBtfnLhiIcSMIESOtemT11e+VvDJBIHUw3INXh7LNuSel6lxzWGnTfdp4Y5YpTcAWEQaJ2cQAb4wdABgtqlqXwWGBtbya9o0X8AaYUZjcalhpYE65wY5WabTsHRNTB9m85jzy3H+9mG/fo3HVw3f2DdCS2KRDaQBRM7IETkiLTlgEYSK/uCyXb3chB4ZGgDGGGnT3c2n+3T3qKxoMiiSPMggRhSipLUw5WDhlHA6jXRmO4MbtYLYMSNl6avk5DHd1cyMVDWYhUlFmnS03juRSjMLANNi7NZaE9b6XCq3vW/FtwfFas8j8iub4tVzPFc93XpzpTFb6QzlrFVV5q+1o55zMrMqS2/btm19672rdLQmRHvf9q0rs4214xDlvsnt1ratb022zk2SNSXH2uNngATUkVxgtTCOIfBG0pizBXVwl9/2vpPc2T/BHg97nvGc8WHxBMzJMpNSkX26zAz4kc7uzadkSrgbHS6nkDdPUQS5pQGhxMRCbESUyWE8T8Shce4YzxbRwnvGxvF5p+OU8a73HZt/qGqTQS8WNHP5YQBEwCzOc76AXufxfDzP5+N8jANuDGEIBZn518fjy8fX53nM4eM8H1+f5+P52/jbnNOnVdJoHciFer+pas28dGWNk9ChS+YHEaS17Xbb9r7f77fet/IrZzIn+/oNG7OyqIBCvCmYssw8LKECIuFUyTvljWlj3VrR5ciYksvYTi9v2fT0ohUQMZOYBROSkpOFWJSTWnLPttnQkhRYQ3prDaqRqqrRJFWtaTBNyhRK8ySS1WXGIEqWpMg5OJ3dyC19ZswqGIASQVV9T3YmkgVSMry/SxvBegB8jHpzJkE8PV937LIjUQAwX0EDCWRGHNG/2rbZeLPWsto2VYm1SzPQNgY/n/k8PEOIpEg/nujabvf3H3/4+fPnz/f7ve+SWdJzEnskztOeHx8fX74+vjzOwwkhjCbCtetQ3fq2bbfe1UEr04Q2TcBKHLo0mLX5VeXWVLn13gmSmXL6GDbHSnZ4RnB95plJWCURWanAKpOKFDAIXXXrKmIijZeRImrwiogykBNRwikjyqdTCe51gF+PDFVRSbi1xWzkMsUoceN231vvuvetN2lNmDQIDGJREZK2SVNPoihvbE5wZtZrSxCIUmpZMIr5RMLKqtpUukiZrqiKh6lGYaasx9UqFKSqPOvMTbIpp/vLyxXlMsdqqChRUIhqf1A90bXxiASlcGYVEQ7zc45z2DnnYTZnjBnn8GP46TknzzIAXRJdlcKC2v7+6fP9XkF0gM6PX4/jeB4fYZZkHnaMsHyec3z5+Lr/9stt77dN3t739/f7vne93VSvFCFTBNyodGxKp4xJ9fydQikie+7mlDEjytr5jdLJC/gdngtKtlY8vzN4IepVFQZRkgho2fguM9/3QtWK4K2IQ1TV5lINA1SYj8vD8b2fLK+a7ZeFi8qeyIurW/jZ15bx9VWWdih1x2UwY6mriYxLiACdx2BWlRRcSHshAoGFAQ+AxZMoUMeIuJIsmUmxcmtAzCBEUqSgyhmzKiPO83QbNs5pE26FmcjMTS7EbSIyUb0q/rJqrgwQCZdVtG6IqFcxEFXJELTgEd+VJtXXNjHc3cMsIhZEX5iDotqIqsb0GwFfBgFQ1YiYw5OjzAEWDqYUzUqZEQnEMqqOBuhJjcgyw2NS0jmec87jPI/z+Djm48RhGmY0TyJjaiyU7CvwhQEySJEB0sMq2QFwL2BNhLsXRzpZgJhzFqXdY1JhgCKK2sAElgB70gSFkDBx1vkMvIZNRFKAvcYt4mwiLJRBERTJPm3EiSBssW23Lpqr4Bya2Vh7py51JMutWwVR65qlSGHuyqBY6q9gJW5Wcq0M+DHcAAg3lmrO5WCpFQcRJZHZ7I8HC3I60uutKdFLpIFFtW1N327329aFciqaccBbo61RV1YOSoqwyAlHW6VirwNHVh/aHDnOHKd7EBoTO4Ib+q4b09sO29JlnjInzjEsR06nI2AJT4hjM1KjDDo82UMsJZyN0mgkTjLvjVtywD0nByRFIYYzg8LIjhxP+FPsedCcMpOni82N5m/Nv77Hx8Pf3z59Ps5tb0qLO8NUec92u92IyN3HGMdxmFl9f+f5PMfzOB/jeLj7wgcHheP58fz4+HqM093nOc7xcY7nOHPOjKDy+ZWU2KqBoLWqvl4zNDIz33TDVXoBktb6tr9tfdtvn5RFpNWkTWmSTgjq3mNLCjODzMJM1mynnKIppMhGsSFuhC58UwJLEHQlJQkWnjE9n+40yc58Tj6oD2rGcHCCwBCRTiqcG7adY7Mp05A5oUaiqqkaJLqJNWHlEDaCM4EBATyZU3LJb1Idp0oSYIYkmMHAZPRMV2gwU+cWiytCHpzB4BBNVkVqsSvr3tRJCsmuHdqINUHumOF82ENPqcZ6cJAEd/78SfYNW28pKSLbdusbMY9z0MfTP552HMOiNAAlkr7t9/v9/dP98/v9fttVw8MpSXe1TBznw+fH19++/PrlfAx3arRG+IXRkq3KB7atWVb/PEUYqIGNmLTuG+uBRNUwwUIkRbMWBWoKhFt4ogmnSFNtjcCiCqTHsCN99ScAkULUmXblxtE5N6GDycnqmqUMQSaxKyEkE3U3WU7rpVOsMBoz1+q4qWxNujZl6tWiJrQ13fq27a2Jiipr/WpQE1YW7awNXhh28uCKTlUCC6SEVlHzsgj2FRJ61cJrAAKOQg0snBhZonqyZtS9rDVkI1cC+Hw97CPTwxF2ARawgq7BwqzgTGIgIt0DDs70pAxC5jQb0w/zMXPMPGeOEc8ZY7iFhJfZ/OrzBnlA2367f/7555//4Q9/fH9/Z2YP/O2v//Xrb3+LX38Z53POM2xk2sg4Lb7Ohz6gkvfOnz+9/TQ+f3q73YHFtyNaXSpY5dAIr9kLMTOMKUV4Du+9+55bN1n9Tsh0WZ5jSveqq10cGr4wXSnXZjHom6FKVqYsea0eWS4ZUkrD8eqNAIpHSrXuxqrAfm3Sv0HVqtnjmsNqlY5E1LNDXrPW60cmakz/RtlhRmMSpjRzplV87k7hoCirrNaTkoqOVYl1LsJGLhlrBVbBBC7FmAHysq+XuhWUHgjjTMmg8DR3n36eHhY2MWekZ07KBNLSr6/6W0F34LsRKq2arYrodp7jGlzJa+KPVfEerwakb8vwDHFbUtDa+1M4ES/4CgWlVGNBpH2fHs3MhIUzRZAEqy4WPxOCBMSUipwugBAa8U6ZGROWhhgHufEcmAPjjPO0MYAQ2MmkrEkWC7sDA5loMIxgmY6w+q4yCaqVSZvT3QuA8ro8rbpWQJlwcFVbBimLsjBAlAKm4ERGsguTEzcBKUsTVW6cjACjKkwomREApUeYH2nO4ULcWrN5mLM0IWLamUEiwkTKHKxvfVdVaZ0S7k5RYWROzroAKNeWca6dc0z3DBKRtvVibzoSj3O6ASNTM/uYvffWREYZGZFCUFUWJXBGHbbXSqTCDS0FiL5p7525QnxI9/R0ChEGKCMQyGRPuFtMPp9WZZ2eTpmpKZhdnOV9DzXhLSDqvSkAm6fZzDTLkZQGt5gTHsyu4Y4hYqZG7JlOFmkUZiYK1NqGGTrhSGKEp0/MA+OR45HxDJqG8xmDefpG8VXjy/P88ny8vb3/z5/a/b6LSLqvDBZRa839vUSv83ye5/O1zPU4PY7IM3J6jPQo1XEOf8zniKeRhXrE9Paw9jVdKUEBZe69WPT18oo03jbhxswcmasZtoI1SREIUGusG8kmvBGv6HESIClENMO7ZqJVZxaGMwvAqtw3FUETYlZCh3fEDSmdPwGRcMQ0G+7zjJERwuw+ZsI5jJ6TTnITT6NQJVEVTlWoqvDOuSGaTZl1oqkOlgYREeUm1CSFsJLnAQTDFXaD3clu8I1i4xRGE26NqU5ekRB0oagK8aj25wzJoNAGErAmOXEmUThbICKkqbs7z4gAEzdQT9C0GDFPSoYbWTTp7hkxEm/E8dMPt/s7vetdiEi49R1JgXZ/j0/P+duXxzksMtvWttvGzG+f9k+f3t7f7+/329vOCXOkEDXdzoR9ADbn83l+fJhBSZlEhLa+3fb3+/626a1pFxbP6hsmJDGrcmdJvvZifOkBzJVIcndkiaBCpAIPCKWnqCKVmpIos4JBqUwNqciRSRmJCCaXTGHsZG8tn5vEoJwx3CJTEI4QBkGWqWkNRFTA1MzF6X4tvHpvTXhrunXZW7vteru3+y4sIZqqLNWw0JqosFaEQ0k3aRtJxPAksRBIVyEoa78TNQ/y6mNLyYAnCRpYiHtSSxIqNyFr1swB9suGae5IlqadoMGcAzHdvQYyX36BROTSgRaWQbh2+oQkrDI/c7fg9Eyuliv3PM2Pcx5zHubD/Zz+GBZOmcIsBK0FViZFAqL7px9//Id//sd//pd//ud//vz5s7t/PI6vQsRKqRjPHAf8TLew6XZgnjgPpH884jHmmP7xft4fzyqMa120NW0rwV4VBpxBdSv2WSo9nKzoPLl1caaUjJIwq4BQyxvohqQ62xEYFPzdwPPdqpGXTMOr72bhoqt+YM3mAH6XPQ0q7Y9WxvCVZ5SanxQIBi9rxWt1+D3k9nI9Xiifte8sJIVUBRI8Mv08mXwNjBEUTryAHYmq+ywHRlWtYhZWs6pC6k9PyiRlBbUk9lzd3oWkj4D7zDnJjcMpDR5hM90pXdITlj6Q3xJ5v9eoKKrmlgCi2qMW36O6F885lqOrLAJ4bTnXUnIxUIAocTKjBsIFfymgxDqhB6dc7B8IFEBh1y/GdyacipQGR0pQwgs24mRVX1eaUWfsHEJmkZ6ZOQg2aGqeGgN+wo6a2I5kdZuElivJlcQmBOEAmfsIH8g6xqR5W+u8apgVFmmVQqx1LXGCyoaCzIQ6CUST+RVDBZB735mVIFQH+1GfQDC32j1REoIpmamQOIxMTkubYYdNiRhBQLvVb1qYCSmKs/TeOy/SEF1+O8e1JVfiiDRPq/jblRnOTGlaPTPa9wZkkMxJRMRJgoj7+fgYczMfvWvrcsXM18ViZtHU02aAI6tKSET3bVfpCIlMJkrRcE2oe63k0iOW1jXnPON4jjGPMY4kFwoitOZ758CbJQfxmaLcut4y1AfZBAWbw2hExnSbIZEIJXMMwRC3JEtUzQvXaxlJvCrLDNVP2DMpp9hB9oA92M6OudkhGEExXZ4WNP0c+XGbb+/tZ9IfW5OMkEJCelgKnrOINsPG8MN8ruk8zqATNFIm4KDpNjz96Y8DY8gRkkkZcmZ+9f+Prn9dkuNKknVBVTNbyz0iEyBZt96XuYjM+z/Y6d27ehdJICPcl13mh3kk0GdkUiAUFskCMiM83G2Zqn6KD5FKd4mUMWxO2zazoWZU5VBum26zDRQDLSkkgAA8okprzNqOnEeMk50wu7QHlQsaRiM2EZxt1CgyzWTOtKFjqNkwGGqgFDVvpm1bW34cB/IInL7yOJ5rORyESsjheEhktus5ZbClcW7DTAdh4QUEmFGRDb81EY1ppXZB11lRASYztjrvOO+53ur8yvVeuBEGqookoLzwrkO0OJJplFAdQi1olYYT0ACjk5Rpc9b9fi9iHmdEnPjT3RMFRWokfDVih6w6Gb7bvTxXOr67aPzx7bff/krTmzVXwmYlRTH37Xa/327b9+9/gvX2tr+9vZmZTX17v933cb/pbejyUK5pm7HwLMbKdcCPIWUmZiqcqjQbqkN1o05yVHGdXlf/VKH3R8ZpnhWNHRK5oroAirUyrNxUBKqjLMfKkiqYAW0DkiqAmpUFoRrU6MFy73GjinG+q6+t8iZYEg/UcmQ3oCVeuCk0fQ8qItlstyThQAhDRc0wp0zh3PS2z7fbuN/m1/f9dhs6KCZUgbTEI0mDGFWTI3Wn3bWYWF6IsmGb6hDbbeyQGSnZzx4KOMBRIDEAqUIERKgySGSK+5kd6232KSimQ+YUlUCdKxPuF1626eAXRr8b4tD+s2hGtoAK0fREIb0CnlrVcHy4+/M4HudxnOt5nofH81zPIxpAKzIh2rJKZK7y7e2XX/7+93/7f/y//v7f/8df//GP+/vbn98+Iv55bl/O7Yz3Yr7PPJmRcfrz4c/vdTzw/I71XLH+/IjMbx+Ptf2Ofd/f3u+32227zW3b+jbt3u5OKqrSvUtfFfWMbR/pVRE5dQAJlypmyVCxTYSSKd2kI/IjXsCLd3BxHi7TN1+Ohx+jWBHNznr9Wy2pF5KbPTGA0sHiiOePvVdvfORSfgUk8PpDrp7p1eRc8nrAfCYert4h6SBFJLhAMmsJU1+mdUUpTbUxwqY6KDMLKwAUxQN2ea0oxe6JrwJFTNBN50RDz1oQy0pffj5rPSVTcjG8abQk7YoiVnXdrprXVfrbj8Os7O1qvvLqPWlGRm9K1vFj8Kqq7i2VS2/lj8FL0RTXVwNn5qvUXIoDwiSEQArsWt7oywZnRYmenZvu1uJtYl0rr0opF6YiN5VwyRrETWtHXgZQ9YEIiafknwzAFc5KKTkKThilb2Si2veeGJopvWVeYBXlKoRJeP/sWSbWwaGqSomL2KRUkw7YOlzoJYCKCfWScXizHWWZBVeBSnYDlWz7sBoK67ZSgRSZ2uuvK73PdH9+iGmRz036xC1Q1QR6Ry/T2tJVBESYlyneeZ0oVYOojOURG8m1jnluEG7bNrabjs3Mqup23/QkmJStV7DP4235wQqVcd/2dn/J1VdYfh6niirDhSxT6dr1qp6Bg1llMoQuUnp9WDPghcxYsZ6P8zyO5/O51iNrqWXSBzF22zfLesvk4lAXsaFyr22PXfOUP3zzlMxvFY+I9PRihsylWIqTPJlVmpAqUVRlWUKaL0/pDtRaA6UVVofhQRwDT0vfaqGiFTiWrSdW+MPX9vsH55u9jTuVOhSRnidgWGVlZHn4qtPLIyLTC376ubCKC+rOc9XhOM/xfXGlLmckwv0MPGmn6Hdxz0y1IdtGG2WWqjSKWc6ZY5T1kZIk0xeanF2oRI6Z21vO/dAtZUiNLk8W1SoiUx7veOWRsxwXujyhTmtdM01VqISh5D4sMyNoCzrBWTwOenx/nC/djlnLYzFXQWyYqErBpExSVUwEVWc+osESCIpTs3FgqkvFhS7oel/ADb6Xv+f6gvM91zvWXbGlQCmjnwAplRxlGQtDo2i0UDMzQWkGE1VeQNpUrxChDJuF4n2MGREffriL18rOfOZyLEQqlZUhkiUAItc643nI8Yxwms1hMwmhhiQusd3GNqgU1u1t++W3L3POiJhzmMkwqHhysXyISiLjuc6PWA9BbaYi03REjS4aej5P1iOHhpFkxAKvoxIq1RoGSKPRtIf9eqGfAaQX2kzVGx+UZmkhKJWfPcOQqkZNXyxaXsywRgQx4q7hA75xDXloHvC24mYswJpZKpRmVUuXdYAUSaEWRXUMmZOqpZo2MHfe7/Z+t/vbuO2WCNU26iA6B2nQIHSAWpwlm4ixXKIAiO02tjFv1C3LPFGQEoXOEiWlRIsSBUlIJot5aUaX+7jTLp+PKBMZZkA66NVQj3C/2oReTUf9nI7Pv79GCkBYL/NGVFYkItKjTo/Dj9PXM3rjlYfH0+NOg/RR2ZgV8GZuvb+9vf/62y9///vXv/3t/ttvY99r+RM8ZDtty/1tKMkSBHydj2/x2PP5kduNx/d8Pur8OM+q9K5hAcQD5/LnWG3DlAJYShEU0j2OCie59LEfMyIqltsYkoawrGmSOfuopgUBTHo80s9Fws/pwpcBTj5fn2sQ17oIXheRq2323XkgFxGoUV7XRuZl+QLwo3qImV1BXlpQaUQGAJxRn3/65+oI7AIFuQ69LQZnAhhTyd4UiQlVzaxh0Kr6shoU/FVHY6N7r63YAO0uFGfBskhYXyKZCO8O5spY6WeuM+IcmZUu2T0TKmQxsxIZYqav28tLZKxEc9TqFYxsaQaBOONcvtLjs4eRYoDohUYtXuVgaArj54Xbs2HDeZGXBqyqLdVSSgWmNDOqZMZFIGI0warfXrU2j6A+++spLrJclkiksKaCCUR4nifCmClpWqXlCigKYlUL136pSdwYQ22UsGwwyQ6lNYU+WCVWCMAdZxUSBCMFEVEZQKrBBsYwNYjI08+XQzFNxjQxUYH6IxWJVJaY2NC583bXtyF3pdgLyty+2ObXm9L46mP2KKiaHR6q4e4uamBCWNUQ6/aBigguK2NHUhLSA4SCF03N5ySZifM8R++nx2i8c6N5VHVUiIwtfJ/zdtszQ0TbaKSqCmnNbK3sSJKvAnLaIGmU8/R0tEhfhiVQlEhaj/gob9xu+PP4eH48Pj4+shZ4DqC4xIQYZoKSTGMwWRumyFuIfsh6DvfK01cAqxLprKyKZbIEJ+uUWkQ2kxkQ0aoIRENvJdtOV/IUQhGzTstz6DkqBtwikhCVYZtKq816HDy+n798zS8DNkRhmpLRuJPIEBeRwFo4Vy1Pj/DIY/k6cwU8xRfW0nPh6XOlXpFYx7nkDK40hxc61W2sIWVIzSLFZmqGVNH7rt/RMTCKklVeSLKkXM1UFrOwTDbjgE5RBYrJOgkyix682jesVCPCs7JotNKRKv1nQJCsggEmnFpzkx3mkRo8SyILFcFV0YZkK70q81BGkX636bGeHsi88H+svBjVclADdOBqK0qftXb4W64vub7kujNuXchShE1JRQaGkokwAURSTAZKIrlEAZoWbRIc+QwL2GbFFNMx5+ERERrPtdaxzpWr8tDQgonCRCXRXdRzDEqfnlhVTQeYG1VFTDMgqknQdOzj/Zf3McY//vGP377+IiKHLwVtgMzKNKkatY4PhDw+PtbzWRk2VMkhu+pYOchiVXp+PJ7puu8cQ2k4T39F8HTfdW5FnHNKCXvo6WeP58rMbdcOL+nY1dPzeC0SUnXySmilF8AcY+SchcjljgMo94AvwrWWInfjvunbfYsCHu7P1Q+0IuecaqOKvjKjWaWth4rQ1DA3zknBav9ZQ0/3fbvdx20bIre6eqABSKIiCoKhJjqhEzTQbA4JkBzbLtQoIqrj2yKb6ggKbUojfcewOayrrbZbg//aVdl9qNdWwGwYB5N59GH/imoCquOymAB1db90hUG1i1lEVAiRaZoeQrAysgmo6RHPC1uynufxXH6u8Kgxt0pRmwnx5cgCamxz27/8+te//Nt//x//9j/+5y9//evtfj/O8+N5fJzH9+8PFM2mKk3JWiW6Dcttk/PuH9/qseX8nsfM81npQmZpg/8+Du2NV2Z2vgbhfZg613M9H2CtKcc8zvM8H+M27TblppzSTRVlSuHENWddaLeXqP1DW/y0ZOFlnb8qXHhZt0T1gq03zzarRFCJ6HH2BRus3mp9GpV+DHZXzrpp8rl+SJw2OkJbKJRenn3wsot3PCky4gqlDrvTaHoVYZlQREvUzNq1miUQpQ4VgTBLik0pFxOjaSI7Q/SJbVxrrXVErEJEeDY93r2Ow/OUKkVliL+ORvmKzf5MVqwqvCAu1Qu0KjArq+tKuky7OS6VHGOMsZlZA9HxKibvF1mRIpJArQt7a9Kyuxr7gMTeO16hsHHdQMSavtF8FhAFoeqPGHQAmV1TKVPGU0p1uEe11S/KCkWetQSVxKb5vld92Z8WEQXzLg2Lq98ziUJhbCoaShRGVpxxghwyjv72h8jqjzuryl8v+H7fbm/3MdQGVZnlMm+oYsEEA2KUFqSizfQU49jm7bbdb/P9/fb+dnuXCyJHoZkoIFHOQiH0pWtHeIMKCzjDP46nUaZoIVOzovVhKBnl6VWEmgy1NNN+dlB026QJcudy91//8pc+AXaN7PU5ylTVfZ9ZGpmUvD235be2jqEi/BTUftvYrQBIEz0eT49zzllVfFBVCSkpRSZGxZmOtaWZ3cz6GXGG93V1nqfnqgr3M/I4zjW3AnXt9JX7LhGM4kgtjUy/Wf31S83d4p+Pb+fvQ54mT+MRFY3WPFd5MlAL9HBBkjhXDglDERUN1i4goGCtiuWMaTUcJmWgpqiI6JBsPW0DhMFVk//5/V9nrff3d9caqtjEI8YYC5GxPFYgnGthnXGe8bF8HcfhfgYWNIues0rZegwSkkYJ0kRcxl3t1jDeLEtOKcksdwMFOTS6VYsdKqooka7rlYIURpZFDtOZZZBddJvjJmJICitE4qqEkH6/wKyKse+UV1iHFMHVUZkHqVpSUQNDd860tZbuuh/r4/F8Pp+rTlUUioy285oJeTZbEUCmi2CIXSdiAWWSwUowBFUVazkKklZpviQPrXMgduQNtSVkoKhRmcNMZQ+XgyvLCgEv81zaa3QaNaXESiCcRegoSR0Ir9MLp7uzfCcUVEljmeVIxGUVXpDkJta7sT4dUwJ0SvSeCcLIDERVULHd5pd8v237b7/99uXLFxGZ60xfOkcxI6LyDH/myvOox/E44qDIvu8kp2yqI2srhB/ngVVeyUiuJHydEauPDmo6hm07lOxd12u/IAAy7TVqSG/mQtId4VBdT4+26VRdDqXrydlPEXlF5sMzvWIFqq1WN9/vK730xDmTZ4LB7KVCskmOLAEb4CtAmukcYgaytmHTagzbTMfQMXSoqSpL8yJpNgVBCWF3Jnx+mXb1CSkQTWqXlhcJMTGFWYIXmF4ppjqs61xSmdkw+faNXdYkVa0QvApnepw1nX61Qb/8xdkVJT+xy8GWSBqGoKSyjFhtoM0WGyNiZblnXo/iuI7D29hkzExmgAwT3W+37f2Xv/31H7/99tevX37ZtzvJdZ7f/vjzz//zr+P7n+5eiEujylXhwjSUqszbDq00uCKGlK+p0cCLFbmO5a+FkIgohVJDOEzDywtaeB4rKqOqEJWGFA5JEeUUh2ZpJVQpItrFrJ9ZRX6iSnH906uFM68tFevHW/hfFmN9CM4fcPkfOHm5gKg/I/KlKzHbjdT8CPwE+/jxxQaZXjl+XKnMCwLy8/dcV6sug9omsMhSueRy0Bpsy0QKLitJsa7uhTb2/+hiy+yelUBl6xs9Hnk4wyVTWMbPi6rfDr58/H2BSS8E6+X+vUa0VzV7v26qSkVV4Vo3Xt7qH9huQAQXVyjjc2XbKphc4WdU72vrUhFfD/6qFxay36vrjW3YBC/hUQqpIg4lsjK7BcGsE4UlLycZq6qEFbFFpMi831GpgT6zoUfJiNVuXneXqiYRjjHQCrVQ/XIQisgnX6+qMiFi+7y93d7nrqYkEbkK2sKwFhglBQJSEnY5NIbuc+zbto2pVO1ro6vBlHaR0kIzPR2r30d3z67R5HEc4a4pm8xNMgcqAOLjz29QgRDaw6xCRM2yeh6JlGwlUsSodb/fm27fmvJnMALR+3MVkLEa3LVt21rLl1yfIURViIqQgkvr6IBFS/6EtPFfIK/GO1/ryPQ8s6o844yzWwv721h+rrU8zt7r29RwDZeEQSgKFiyRXIrc5HzWn3N8uY0vEY9nPTSfyDOzPNM9VuAMaZ0zASOy3Au9p05kJBhEFlcDc1gZkZEpWV6Nt2tHZbfYCESYzG/nx2JgEEtcc7aRuS5OSsbqSq6ItWKdcX4/f19nPJ9Pj7MkBUUDEKkFgn2dUUTS+sOg6JUnqqlaRjSLWMIVlwJ4UXAKkDRQGkxcqEpJp1/Jo24Q1hKpbKmxunf1ZdHpizlAbWBcu1muK8EKUmoQqQSkpIoJaogGOUpGOYdjWTErq0ApwtnZH/YmW8Q672VVmtDmrQBRTEqgNDN8dWIpJTVP+tJyQYyMwZzIDcJWpGwYMSuMuMT05BAJO9ZhNYoCoXBSKQgRDiiDoqpeEZQVtNIFrrvYUnfLpRlRDilTNVFG8oyhOm3rFMPctsIqrKqlVja1iIrKzCLM7H6/jzHu9/svv/zy9vaFpKzHeT4hdPfMM/OI9VyHPz788f14Lk/lvN82myaD1GH3iHWoVNUqz1zuBOKMx5VNa7js4L7vZ2dDAACAAElEQVQPitpP1KLGi7Xtb4WzIaW6eWaGMOSUkXJUp+qa+vgqWVHVl8aALK/yirMiiwK1semdddYIHovPgKbY8jwdpKJS6rpxlzQ0K0RkDm6bbRNDc991WOxzbtu2bbcxtu66lkb4iYpOqglNxlC9emZ6NdUazdXDqKMo1UXUvXQw5bDqqOYcOkfvvMRE1QrtIur67M9XSaPY55XAhWV/ZRatJAoC/Bj+Pj3cJEXRfMKeFwKd5RAT/uQKy6u2BRFVXT+XVBXRuYltHlmrCmVzfnn/5evf/va3v/3jt99+e3t7mzbcz+ef3//85z//9b/+1+Pbd5JqKGe0lh+nIwewGXcV3UeIm215IkJ3BQCPSD/X8ufpn4/tbehQq81EX6RdkeXBKM86Ii185HBQiSBcxFHoCadlaxXkD0kLUj/6W4CSC3P6Oe68BrKmmcqPB3xJlsur/Of1zGBVUH4Ijv2SX7Na9ooekPzEiv5YlX2+O3Itomj9eHaJSEkBr8crOlLZkxyaD3ENhyo0E5lRZKHtVnJVX17Ai7aWR104hurvJLLCUVnplayCJyIrwS5oY9V6jaN9176KRhoi3WBbVvlFfYxyAF3zWJ997T32S/SY9TLdSf9cbZjBVa+EejV69dE8q4iEaBviOu+Zhbq6vDJa6o28AGavpVyD/UjSm3HQvcAQMoAEnIaOGqN4wYeFzBqWFPcuxtne7hUugHhedWrHeT6fz+f5WP6oDF+nVsmgtASL8rZXqgAyWD628OqSUStL+ti39/evv/zyy75vIu0uO4eEUZRSkbFWLG8STVkfLucY27BtbEOHiHGFA5zNTlZVaqKEiJVRcSw/z3OdHpWwMfz48zxY+Bgf6+MZb19iv6+5zTGY1ef3Ijkow2ZOHXFmdOpomk0bKjK2KSI1J48DohGrCHkVNKVkVErKq8qlBKXEUEEW0D+X51gmaqpDRkcMOMacY+uA5DbGMIFIgZ2jqK7V42ff8xnn1QiRkZUrzhV+nl7wJGyN5fSQVUqMki4vLSaM99I1823b37b4uvycODSeqDPjjMg800/ESg+EQwRFZjeqKPyqnACj0jFXuiMdFQ2eZ9db9v2DFLJEruOykL8f/9qwhS7X9Yb7GKOfgAPWYYMeHyOuefKP9a9z+XE+IxYVdtmbQWhdp32yYuQEqGJyc+DiuXRI+4KE+/U+vtZV177flJCGB/bwlRUeOAIAgpJeYIbK1t6VdEUmE4orNvSppJTwR7CZCbiogkXFEM0qsLK6QawryWpzjxgRq0qzS5L1oCQFIqUG1bJhKNvmXmlR2g0XVd7je+V7nKu/NbKkRhzTD6MbllUMrQ01CQIhNOEgRqpJiRCqQ9u9eobn1amcKgFp70gIZKhAVRwrAInsc6ZuXEISKXAPDKqY2dvcDYXIKRxjZNXhAbLK3Y9IJ2sMLYIHEyUKGTL2YWb7vtsclwrzyrk8ziU8Ih7r+FjP9fjwxzOO5SI6tznHptDwUqWI1W2L9KpyX4/D61jSAohuVZWF4hARtUK0gnOdv7VSzFR11CApupGqjpqSDlRttUVUFCIvfPGV/yeSSHRVWlVFa8PVupzJIPaQBVuwkFH6WKfL8gwgEBfkGTaln6Misk3bptw2GZb3fQzDfc77frvN29ANST+7DPjCdoma6NA51SYV8tNXvTYZTgGkH2koKBVmOjaAYkPHsLmNsVFbPdEl6H0JXgz6XhQUUNESj8OXlCORmUMGGMnzp75B9KGKP33JtXEpBY02xBdDsAqR6ZlxlfJ+fkSpFB22cWzQgfIQkahh29vXX/7yl7+9v7/ft/tQReR6PJ9//Pn4/Y/nH3/68YeZsTQ91vlxPh8VJ5FG+Jw1x1AiVuSqxgdpT0INSfYV3mm7NviOQRFRsQAUUCMnhtrYdJu27bbtc26ymeowmtTQ6FVoH53zGlKqE50/9TP+3/TufM1eP71iryGJVT8NVj0VdsYLQNdr4pVYrGTrmD95lnrr9nne+FxGXmN6b4DGC7xUsTKzu9tEZK3VF3e73VuUoegYm+i82hVeJBQAESHFJJhIlqQEMiJEQUbROgXUwfGL/to0OTHKSE32Hsv9+qGydYqsoiQMXapdVeWVnsvdI1O0ucZVvLgdAArw9mAm+q5SFVV22cN+GlWr4lqbEYjM8usaRteOM/yoYrauUaLQTCZz5CUla33uSqNSKrUXAG3kRyYiWSUgoAJLpgiLQZaw2rHko0N7eZ4I77Dz8Ex3fxxPM5Mnj5PuZyQpoUIaVMXLc60oF0iiRGwzSSJbsJYa9v7+/v7Xr7/99vbLtg+g61B9txpqJvRzHY/HmUfJRSgFRXWojkYCJMpr+ffHHF6jQsYQqGaCVeWR7nEufx7+vCavgBwf6umhhe/b/fH+9eP9y9fb2zbntXfUzp2DRptjjBHsPh6973vdbvvcTIeKPT6+X8ezFwK4F5LdO1VVK87jPJ7Pjyvr0xdkeKzzfHwMoVGGbkQKaoyhU+73+77Pfd+3OTYbrPbz9IOWXaAbxcjqJvW6NsQlkiLZs3QiIvX0OCJngEe7CzTBQGSrzbpx7GN+2ePXtdaIp50nyzOyzooTseCrUyRgww57Fw6QyKKXIVAr41RfCIcEK5kLGUTl9QGv3jcL64KxPfxfzmdZ5MMXjj2mqgqowaoKP9c6mp+y1uHu3/x397Uq2t+XoBQYojQJYxqWMGTERLGqmZVX5Lm8kOXpVwdIhReaDGBTTYeZDUqnj7N3R2j8TPg6ignJ9keILFJR5Jp9Ln9NWP05dc/VzlG9vkQGKVoMSCfpK8qrMvP0qsijKtU4p2VOSEQKkGOKaommaKpSjGYm3Lb5tdIyNLw/biviLMRZX8qfXiDUKFUjfZTvXDfEZEzUJHZh78oy8qIrZCATrx+jLEuy6dutGLFKHJUwZZkZZAgcxcYVl5xGViByIRJZaRxDxrR9NxuECcfUyNRzLXe1K8ebmZ/RBjB7e29mpTXG4EXNFlUV096KLT/cn+fz8Xis5yOOoyJjqKkNm6McZD6OhylFYXPa6ed5Ph6P83zarnMaFAMDrMytJ+9Ktm2877Not/jo5IuCWqWL6Qtm7q5DeREjkKiOkhXYUb+8NqZXcJ7g1ZkhrIvmuuENLJMizuE8zjhXRMk1aVC2q4yvv705uE25bfN+G9P0y+32dttu2zQhA1neewBpTgHVpMkSI+W6AC9rMwRsj7NUEtCEiSj61KejKDqGjh7aTEyLWtRUZF40lfppOxhNCLj6QC7FKBqX2qn+q4mlB4jmf+XlC842cXeOhdIZNwn2Ej2zHdCfk4eqRiZ1qo6iUrRQlShRGXPf7m/vX+/3d52jkpF+Pp/reMR6IE/EoSOtZJ3H+vhzPf6EL6S7Sk3LMVVY6REhrfVwklVEREXCoyKKKHTbrw7Rka/XQWXMbQ6T+zbfNnu/2fs+b7sNlaHs+hyYlUoXB1/7mhfcFCWURh78EPI+aQ7/RQPs1ZS8NEiUygQvA3s2OqkCEM/Pmedaj6GKVIqC/NyD/tAuf7QLXM6kz6/rA0KJiCy/AM+vlQyhIijKBct/tSJ6XgiRlsryKoO6RsbM9IqIkOhvIE0AZOHqou0+K+albwonBEhdxaZudfUjCquLPKxpEbjMzis8PTNrVXWFiFxAoB+b1FdQIHS59zhrrWA2YvGnvXWFX5BS8urLKU2pbCLgpUFDr2LyXtldQuQPzVdV0yliqmFXFXT3gpV1fRDMWMIqoVEWL3u5FUNgLJVcJzNBu0emq/euzoYchy1/RkzQiwllMSvqgo8nkVQaNaGSr7TL29vb169ff/n6y9t+G1OR5X7WqPsmQ80EiycWoGwe6bbtvTIntAruWXVUJHBBhgdC1a97DiQiVuQZuTLC61z+WMvdv8t5Po881z9p/+f9l7++//Lbl6+3220OVTOdAyYlJapj38YYYooLSIvGUw9Rkh+P57mOtdo9AqhISVX0saIfMed5dqNyLjdKIbzK/XwevHoGkCVe5H7f3t7f7u9v27bNOfqe2IzYJuFEBKmvSnVUd0h1Nz1RFbZJgNItCJLtiXmskye0Us2KQ9SqOq4+KJuN9xm/zlrDHqKHyKoqxJMBRCBRBSkoVQW80IVgCWCMWYvpGafFiXCTlAqrUIQQKqrsoGp1083VjLJ4FpKBOmLhPHxcg5dSgAhf6/A4M6+uiEd9a9suBElEZa2oM5RDY7fYdE06WdAyiorsF63DI6U8XXNVea2IlhfFMCfkNve3qdNKe2HhlRkuL0xIJrtuUYT5ohACUHp/jDsoF+kRK8ozXRQj5+ucWjaQRTXaEFX0lqrTqEhHOEkz5Y2iRYu1qoC5bWPCrH+xGW+m231/q5zh6h5r2VpPsjJF891TGSK4FVlpWBNxj7XTd8ZEzoIxWOJIhKMJnSvhdZ0NC7CEZPN4yGZJJ1ESAAFXGFrnrNLCFC4ihVaISLK0i2VkKLiNuQ1VYkzNKqjI4mYELl08oiXSjKs3yimlIjZErcQokMSo9ET4iufz4zj+PJ+Px+M4nvAlGV0X8OM59Xg85pzjoh7D3T+Oj4+P79OlwXGhsdVwv1UVqSnRZuWsbKwOlTpsbpuIAAxnBmx0r4KTJS2kgfFS3K8vBLoloXlIzL69SmVWCUql5pCSDaKZeQyVIXGqe4YnAVUdwzoMVclCTNV9k32zL2+32zbv+/a27abUftBWv0c/vDhFQIwqw4bYoE7KhAxCClYUQkoEMKGpbGqbjpuNnSBtmu5Uo1pxXCJ5kwU+O3UzkZc7XkSoWlSUou0ImeXpnrk8IrLb37KJctcgJV01kxVN1sxex9AofLlPqugr3NvS3U8urYvzzsouFlMBRNvvNud2Ex2BCvfT11pH5AJzSg2mVkUcWA+sA+tAOOeI8ON54iJJXo2Cz9q6GqB9M95obG0r8FBt2AcapzEgZjqn7ft+v837PrfdtqlmuOAC/XgUEzFpt8xL4Wo7FKmUtgIp9VW+eNUKVfJaRUEU8rMsmKp2mehQ2RsvdDQhfl40voq38RqzpH/p63cT/hjs5DU8vZ40V1S2XmrvDxdUCaUroy+/v7t3/9OLNHpJzPzcqhUboFLV4/j1fS5AWVVRubL8eVbFSneWN9CS1GRqtss1r+dlD/yJUCPomRF5+jp9RUSgz3UwMxEr/WHDr88+p36iIjIv1nn/KzRS7/N1WJ7pVU3oY8eGGfqpBnfOTnD9rP0dVgleJjaVrp+kxkK2g6mrG/snyUsEIigKVGiZjBVnV1CACSUb/helGJm5TGxwG7Jveq7hvkWuqDPSE7Fy4cywldDy9qtAbPQ2tDMIv/3y6y9fv76/v4+hIpJIVZB8m6aqBODYdate5FEnN88qr8yu73ChYUCsmKVWC+5eqqma5FWx/GrY9Od5fv/4/vF4/l/f/vfxeJ7fDwO/7ve/fPnlL7/8+uX+9vb2NvZtu82xTZjaNucxtm1r5XvOmR65/HhOVVWwIZ+RHcQDMsiCUCvcvdPrnQT6YabserpArPNEDRVT0VFjjNu+/fLr1/12u8DRELv4LN2wkCQSnkWbowKCUyGJRaIQlKxY4FmygAjwyGXnARXIx8zcqDrm6MN8N2LG+5hf93o+a9n5GPowfQpdEGShoo/wJAYxqckyFItVgpQKZYg4cikCWBJBBBmGMkKUQ0NUKQEy87UFj1mZjpORufJ8ntNE++gAFK6IwGrNca3jwPdKdrK9Kir8rDMzFaYZm+fI0pjWC3FA5E2gBklB0FGLSMCjTgAIEENzCu5ab4M7U1mREZVnurfDrC0RBYUMXLfKPnha2rObRd2zPCLXiog8q4qK4a/DVTlZQN7GDWhUbIPksyRToCbsOEC2ouwqEcC2bWYwyzHMZo0x5tznuG/brXKGSnfMA0GuiIyahbw+pyGxxM9Bv+fauAbdkCKgVwiyckEtUSiEh6/wvBw1FkGS0Qd9Xmv8LFwthEJUB5VSNFQQ4QwnEwww2FxRZZe670ZBDtMy0jjCmitzPM/H45jbQbGP5/FxPI/jASYJ1UnDZYFEZ8Mjlj8/vv3x++/H8ftax3n6OiVcCXHV5SdR9Oo3oZsNwusMP1u0dk+WTd0jOgl0nufy1MWL3+nucfZzaqQlRjEh2oV4kH74FaR1ntZx+HlzzfS2klweJukYcBRiogohUGplkqIMFFFy31bs5zpW5PKGSquOrUutC1UlgA2ZU+bE++2+b/O+z2nDUECqTFWuK9H4emxfz/ph204ZplNso8wqBS1bz+pzlEwd+xz3MW9j3s8s0SE6VTfhAOxTQu2GcLweWZkpkT0qlZDUKM28DNc/kv2fcvslNfaAeHVs9AMwMzMFWVcgoDlSWVX1arO8Nh8gK7Ug2SppCaF9IoFIgke4rBV6dMb24efpvtLZJjRWngd8SURWosC1UOIvte6aKYHkAvqdZ6SjoCbD5hz7nNsYQ6VLNAfhKjbn2LZxv9/f3/b3fd43tctDX6/qa7twOtTLoX29Tdb7JF4WMNaLCIre6gj1k2sq1ire57WXaEw86+rOuVaMr4GpV1Y/tN1r1fayijcPRfE5lqEpCUBWyWd7TA8Wka8Zul2SDcF9bW56s6IJCERZLLkaw1v9aZ1FqqAN5UBSe2N0JTRxETqeEb6WVwTSTYum1MvS/omH+NxI9T84PQFEeb/vh5+ZvamAdt1RCYrIikrPEBHVi/h6tUczgW54p7s3GvMaiqqqrf6VQBJ61TU24KBe1rpEEvBikzaAVKmrw6CSVNWXQMnufu4kOrtvG2R1shKgSBcecnqlZ2hKhwmnMVGKe0R4rghbaSvGcnOfyx8rh/u54lQvICibhY7Sz6CxiGQgUAq+77cv97fbtrfqUFK9I58TQiIrdJjNaVfnPUulS2ZXuCeiaIwQn8FSL7BK4IEqWQA6JOTHuZ7Hcfr5fHz//v3PP//857/+eT7X+nhK1nN8O78/1vP4/v7+y/nL3Lb9fpNhxYTKmNPmGEO37Xbfb2/3+zHHnHOYDVHy6nj+HKlXnFVVuRC51nEcR19jl04KCBkin2JLb3Xf7nNs87e/fPnLX34d2+zPJ0AJ9t49GSjJisrKDBrY3R1I0LPaSbjOcx2+PLxrTsoTTwZK8Htsiyq3OcaYY0yJTPd9f7/jt5PnXuc8/hz2xfS7ypP8/lrufDoDSln6cgwii0GGcJmsks5ARGXPbCFSJmKaQ1kSZCQqi1GIqnJLkpkuke6pmibaVWeUkqrL3+9nLxRX9RjU1l4G14nlfiJkFLI0YwxkiX72g116emWJQAfSL5wNOmg555z73E2n0MAmZoevzC4O9ZWJiuyGJOcQLGKIKFXsPH2lew9ccdWM1hlVorTTz9PtOPvdP88z9Ni2bY+NpF/O4SByqPiFo640jhSKVkFtqOWwGhPbhm2bt/1tm++mW/pgCUYngc4qgiUpQ0YAFekL55PxVIb6qRKEp4UXUe5pp0ksHWRURjhWnB5H5lkIO5dnVfdFfj4JqgolkLZoXApH8bOCzwurOpdEkhCRqwTeiDzVROaQYbPy+8cjs45jPT568FqPx6PVQEqOMarbJsIBCHh4+XkcR/cx/n4e37KWrwqXjClUdz+Oo1aUp58huvfT4rOI+tOn3M+2zPR0X7nWUslgZGa3qPbgNdfo/yPJXsh5Vcvzn4osryy3/Oibu3Sb63yfr8e5ogwZwio17ZSKeuW77sfMOedY3sN7P6EnunYwAJrpHDomTHKYXkwdVmWpcDMdY+glBQrVVJQXtt5UTGyKTsqkTJS8GK2jCGJQhtoUm6Zz2OZrdZpRaNKcp9appBdT+Jy6rp/39ZIKu+S4cf/xwnMqSe2VRYM5uyWzCqwe5H+azF63mZ/ikJ//gUKgBkoCSaaXDAFSpBnhCkhmfnw8cnsMqPv5XOexzjPOFS7LhWiEZEUQaSBQuSLyJ89ZslcyXV7t1zTQY9+Yc9+225xzjmECVKwKpdjctmn3bbvdbm+329t9u01REhrNBX+9RCaU7rRuw8fLvtYtQF3/RvmculhEifyYxtCg1MvjFVUtRUlVJbJBONkdOMXPvdmnfMkflrDr5SW1ywPw03R2bWB6XrzSgq0X92Orfh4Z5ZXejriWAWIqCm2g5+UlYqmRymTWhSgrLsHIFdnHvcxKjzxznR5nlyIKHCWmkBIK2bso5CUFAtKOsKrTA4BHnOt4HIfH6k5GnV2fmhLRr1vntnpwrELTmz5NhMPM3X/edX2eqqp7JICSa4PCKopmxUVy6QPia04FIClIfb3UXZtb16vqUqrW059IwvsKKRiBeiF2RagRkcVKE8hQmhIqtUXESnrELDlD3OEhjyMseGrBI6mDCqlReubwq9fLWizLuBKdZjLstemMLHZFa6NoUyFKNbMOJ2SiPHMhV+XpVZRAFc9cUmMgFVwt51QFQlUrVhf/Pdd5HOfx/Pj4+GZmNSBbMXLY6OiPmfVu7DiOOJ5PXytOAGJ6v9/v9/uvX38Jd7/f71G1JW005KVQnlkZa63TD3f39QRQvrpYPfqk3f48kV6eI9LM9mn3fX795X3M+csvX377+gVjhPf7hTozoB5e0QmSVvO7vPz0WKc/slbhqhg/jmNFrchohXBlt69O+ZbE2OaWd1GIidO0bJN9y9uWb8N3s03VVDbV+XPWuE3Ufd4HKZ33CGGWBBjIEq3KyiyRLGYnbRXV/Jl+FBFIMCsjEOGNO6GgUjGEoaWCiFD2zS+REZHr9PNcCQeEybREIZhe4YVYjlpSIZUNeE01gVC8q4ILYLpoogKsAWhX+c0xho1BHUkJIrO84iicXUyUdWZEnFGqKVOukNboZuTl6Kmrq6N6+M50IEtKlw13OWUtjXL3PVX2fffbTVU/Z/Qu7yZ4gcCRohgyKJIBkRQp1TLVMbY557bdKoU6OuvT0ShVFqiMkJJkUjMqjjqPkkSsq+y0MsCCeOaRup6nE7PKe/CKPCMfAOzP7zrnTOwp3afYNbKnWXOIngBk2qjK4zw/Dtzn+vZ4lq9L6TjbmbSchX3bvrBmVQ0bN7OVC2Zrre/P7/Pc+ISIPJ7fHt//tdai0XNQMbYZCLRglev7tz//9ft/fvv9jz//fD4/FgCz8WoEwflcdGDqZnNuqMxKX4HneTzP51mnDt50B6CcFaBkWX7k7//n9Ldx33Um8rnO8zybB0G1oq6oOTezGQmPrmv0RATOrPTMcFayyQzTRjyfbGIRkijJQlFLHkAIoqCGm46t9PuxMuWIupnuNr7cEBG+jswUxIDmqM5EqZbZ1T+1qWiv2DhrsGScc4YZ1qIIh8EGbY7tNrfb2HbqljpKtoSh65yogOy3m4gmBBy0TbY3jNspys1KZYkkSxj1eszbgSIO1mImXUWmTqU8nitUPCAeEpAQ5r4ZvvlDVefYgfSq6+BTmQWiYHVUFEXA8sgViKdQVGmaaikCKjR1zulB1yxoehXJMXp/4HmiUk3UJuebc/v2DFkL3771Iejx5x/r+zc+PvT77/Bv5/clcJTberRVIhAr87XP05AuutnQaOpsc2ihuhttTx9R5iUnEiwVGtWU2zb2bb+/f9lvO7eN2wxjoYaOjCUv+jzJi5tKQu0Kzolc3Yu9C+zQFZkdmyP7AdxLps/lU1VJIy37m88sRJZfe1lw6nyJhi/n/mvKu5xkIuCl+qEK+cKpXHyJQJsxXqu57Hu+XNFVJXsFVJ3UpG4qKkoOs83mXcatOAD2wTfHC4Vf3QQV3bdsSo9ccfr5dD8zwv0sD/Ho6BeHUgVD22EI0cq6kF6FuJZzFefl7HI/Ec4qRmVGOc0EU7BpeQpCsRJuOuewjt8C0qTVqnMtfh4q2vT5cnq1fP+jNrv3JT2iXd4vAYTRu3MAkUxa6hRtloRERURTkkMEmrQq08wcYyBVuEtqQ5nIM5mVIZBJYIjaGGODzAw+w6viCgORagYZzExsVaanRlSK2NjDPCI0omQKTXWAIyLOc621hm7rCGdsYw6zaVNEWJheAJavWtip+5bueZxnpXeYTgjdBkoKeGbx+XGcZ5hBOo3RAQQVEYoBc5l8PPKP53PVvL3/lfXUX2RABuVm8+v97ZcvX97u97ltiTp8fTy/+3F+//79WGdm6i5vt/vH49eP71+/3r+83+6/fv1Fv3w58ZTuPYyVHu5+Po/n8+nVHJ9Y61xr+TpinVnOrKGybdtQLSmT3CbvN/vll/e//ePv719/C4LJ29u9ko/vz25xDkSUr1jneT7OY60w8bXWeR5neFQEI4HMWtm1SyfrPPPwcMM2ZBbtrhDbx1giS6qWREyNtIwZ5xT9su9/2T4ehmNDbPjmpQNVuqDt5yrzgBeTlaa1MTesLZaVqz5v5aVLmDt73E+QpSsMYqIKSR6FrDxQoVMv020JlWLohdaLblw9oSJN0+jubiSniQQrVnpZyoAhVWPbMGaptTeHb5tssoJ+FXXp5RsJRRutVG32CbY9AAAiTGrddFk9vx3/iuPBZXEcTIBWNEAzMjNUcgyszoCcy92Xn8s9taiIXCaisdxZhufB73HOdf6y5O0ttv2pyjGt2RCkRBTKUJo9VNdAGZLbFGgkIzKM432+fdl+Hfr+4RJFoU91Ha6kcED0eLzlCj/TF49HPR+Zp0nea81wreVSGUrrssOsE8+qR98S+2nVd2l7PlbGVaCF9tQI2SFhkHK15wI65wDwfJZOiHohVmUGuOrQ2qe4P72m0tR0TtNhTHxbj0Rmxlrr+XwW83l8LD8+Hh86xsaMGFWR5SxG+PP5/dv3P/781+/f/vjz8Xis4ySZnnNOorqcR1NCQ+ZtqHmcvnrVfK7l7h69Bv+0yAhJBLjOOOyEXFaw3nhVleplrvd0JCs1L65Q9P4sP2047Vgp/BzZ+3lhgyoK5PLWS5HSFnuiFrJ9+FeVb7SNRBKNL/+MmE0TVbGrvGN0RC55Nf0CpHasbtcx59hsbmazqFClamqD6Top1qQAnbKBQ20zm6qd6mf9FxfR9VNkseGnfVg0Mw2jJ8UyVwbSXTKqYybEsE3oEkfxSvNdXYEsZj+0vLNI2UVpcRElP0UBE1+SPaeoapZov0giCiREhGCSOsYQudL153liHrLs8nZ4pK+I8MdHppvUkLzaMElULeTrxwym9A4TzIj8lAMvwSk9QtxPjzKX7G9yjNuw2+2279u+7/u+b1svxMhKk3Jef9znSqlrEJsz0EQDknlFGy+VuD9lqFc/9euKuoyl+iOxSBX8tMr9sbq7jrr8L/9KJJOo5njl67PwX97u/39fl/LyA98VyR/znJnNOcxszjt06tigWlQRNZ1m9qzjc+r63MDhojZc9xM2jKeFnSrKT1SLDtm0atmaY/TBv2kJ6ceZmRHLMzLj5VVtoTCqNNO1zWfdWqE/X97XKAWg05qfDYCf178QVcyXINvX5AuLlZ+f95fZN8/wLngWG9mUSwDR3q+mCAuQkNLIT5tdMSAEIWzaiLAuKiVV1NTMsgFiDRf75LO83iMzq2JmzjmBK/gjIsQghdSitnstJUsSl1P7GsvNmn0Kbc39dT/rHqlhVlfPPUmVTL+crSWFXmtFxIrKhJiajtv7mygBRCyS27iIu7/ef51jvM39Pre3uX+53b+8vd32Pas+no8/vn/TIbbNMed//uv//PHHHxnh54q1nt8+vt++/fL+xc91nufYTOcwu5yO8QKGnb2ROs/zPHrw8vOICEGayW2t27aZ2Zzbtu33+9vtduuGbBUFx+eS8nW1Zz8ajuM4zsM9Vx3ua/mxciXCyxOZdfpaggA9kMVMicAikHV4PT0ez/UNJ8QmFUmHvjDUKkITGimgEpsimIOXt6xX200jJ0qQyjCUMgdLpIZWFVQwKJZFSLvcSQqLmRHFAKoMBI/rLGgiEnblT0BAFUUpwFDZ0fKs8oyXCxSAMHp3q5JyifgUVvPh+6Mnn0WvV+98oSrHmMO2bdvmfjMzeTELaYPBAiNdoP2hJMT9ZMJZxq7iyQDDM0F3j360e3h4tgCF9ExWB7SqUqN5pIFMHKeoctvGmK0FjQw0qr73+kqVTrXlgoi2tKnDZDSdzgjIBbihMrqAOM9u4I5o0mdFINwZqxYRWlHalnhm1ll5Oi+x+4eW2J/f82AfL0F377pIlwHrDpwGgkiJ1LQxNoMdkbIO+BnnuYLJXM91bkd+HLo9ZJ83s11MaBAHWSIoxHE8Vh5R+Xg8vn//fvixcZtQsH+SMyPP8/z4889vv//+x79+//7nt/N0RJIsq00nunAHyldDJVCVdPeP5/PxeDzPs/vn+6Vsx3Jr1Zn5PI8odzNVXb5OPzNzxaLSNrXQOlEFVERwrc7Znhf4OvsKUQD16RSuH6G/z4eWAp0Mv8YrwMxKBcYsicwqhp/EQAZpWri4c63YGTcbZqoiZtJ6QbuHQGW76Ld97vu43cSG6hAZSaMNtVk2KTNA9mU1TMYYtqntbb1Xm9RBajZr+zV7FaIraCqZzA7xq9kYg746G9+XThQ06gW2MjNToWQVSrToiDwqIWL94KcOQvAqYWWWV0ZeIP3L/oILVTBa4JHsegEBAEWbCcSGWvsV4jyOj0fKQElVreMZa6V7+FrHAxU0FS1WyNUN/RpZroRcY6ZehWEvNluXBX2+m68HM8EcZtu23W63/b7d7vu87ds2x2YmVemULkb+BFb27yNJ4CWzXt0fr6lLxBpH1FHHn+etiz3RWJBPdPt/GYx+nr3+i6oIgFAUI5xkZopYny6ukun/8pv8kH0/I/o/X9J9oRNt8pJexcy5zzlt7qITNikjYRQdOlRVvbWn/Pku87rXQ6p9WFSwrtU9xbrMWAF4Rgdd49W6XhX9LGwvgR/ntaO6eBF9UBTrNWFGrlwJbeyP2esH4VVHWa0lcq3jJ5ERn/FGfqYduq9ZoUYV+9QiX+7AK2DjFYoLUl9VTRmra1v5cm4QiItrWuUqzXwIZGX5xUorgNfxy3oGveKrVwYFLYx3UpUK6RqHsWeS9AxNusg2Rq/sQM1ESBnV1aZ2/NnmGLd528Y0m1KQdsYgBo2EhxMqpkJ1GSJLzjhPRy4/z5Z7XkGpKKqZbXKXIa3xgaxIkvu+m9mcc//tftv3X9++fL2/vc39bdv2uW1znmv98e1P2+bj2J/rtDGOdR7HceQzIh7fP3B6HCc9h5oI9rzJcdD0etOr1moIwvJjfTy+H8fh5+lxruNc61CWqq7N4y3e73eSc9/2+22McQnEooVYq8KrA619nOsexhZMIyr9e4N5vc5EBNLrqIp2+gmSEmCIJfSEVtmTOkofXt/OVaY3laGaUQUrNZqZmemYZlN1GjatUqSWVCMShRJt8OyIxURtklthoES4G6VMmBPZ/uA+JLOxVhnMSmKQVJl3NLdOlVZVjJLsuwZFgEDFinAkdI2xMHNVlXifzQertLSEkqbV360JByAoVoJlLcT1TSThqI7h9C3zvs+7vewWAHzxyIeHs6iyTVvp7TxnRTAjKaQiKwD3hLDXXRHL3T09EkxUOllJwpBSFRnKFGVkJfUBssZs9vjWhcWVveAw02FjTJuqSkkdIjO2G95328c+dQCcmzIq3aHIQLEOX7VOwquLUJvrEXTPPFeeySypjVKkVHnkkbEW2HyTn8PjJE3lLrRKO588LXkuMYj6/mZFhfQHXggVo4rchFnmblmRXPh+Mcc/zpofMgWopVaRVmGebgPJKvryx1p5ruP5fD4ej7FtoiVSIlW5/Mx1nOt4fHz/83x8+DrTvZZnYMhQMSmZY+5zMxlGVUquPDwCfhzn83Eez5WVqtqFaVXRHeIQgZRH+NOfZ8XNxhiRceTp7pYqQ+Y57Tw9M1AKCecFJvZzrY6yaiVQEihEFuMVR4dCQYUq+jTWPMaUqIrMwAKHqu5qK1JEIqJEhkqHZ2c/0kS7sVvRiy5t1I1qA6XZiy7I2LebzjFvd5kbdRSYYoRO2zkmdYLGYlE5NhtDbZcxxtypU3RQZ0HyZWDnhZAl2XxxXhMJIS+0fYkGqqhUo5nGUCt+PoeWEaqDBAjP9OWHn65Ehndd5NWwJWWWEYHLh0d95Y94ifCSAk0RlPZEQb34GfkjD14e4X48H9ALQe7nM9aZvhDJSjaerZrf1Abc0l4w43V/gBQaCWpXDuDaUtFMO9PaAEx+llSazWGvddc2hqlK9xIDRVOp7q277IBdCpRZDVvXRjgBHYBsh3Nj/19j0Gdp449FSy+oq7zb7a7B7MIkoksW+SJx95KmXsjQlzHvQhj2gNUvuF6/w4+h7SKo/9eVGD+bHsT6FRg2ZRhN2ccAVegUWit+4S+IfDRW+2UQbLodazUNtpImKrMstCBDzITKTF/rjHV2aINtBnNvTMBxHB5nrSvEQHmxyIrU3gBdlkQjVG2MTZV+rs+VBvAq3M5Lxo0XH4jXpVimcs2NyOpyUZJScW3c6gUDu1TIYUpy2DBVASvyNWR/+haBfL1NhJY14f/Cfcap+ioyV/DCfiIzK1mvyCpJXky4CtVWcbNSSFPt7z9EJF05+YK3ZTG0ho7sXp1t27dtH/s+t33sZsYCxNyTdJH56VYdokYzRiUDz8w8n8fj8Vine4a3LU9MB/d9v7+97fu+IkVQoIhsw3TM+/1+u932X29v++3r+5ev+/025lQdaqYK8u3tLZn2UDw+lvuvv/46xvjz+Ud6MNIoQ1SVF1nL48xzrXW+NP2WSv04n8/n83Ge6+hH8zrPtZwZqsrCGGNt9cl29oyP5xH8ZnMvSlzoLAn34zg+Pj4ej8f5eH4cT3cHJP0EMzvwKKhKggB1aEUHwgLqJSeUJR78M01LN+e1UyBvIgSCnXDVIbaZbiI30+fUe5icHoBUhTBG1RAVFFMLRkxiJ3ZwlnDYvUDA2KT7vK5e02up5OXALMqYm5l82e/Xhg/aykADbEZXIfn5PD7i+ZFLypWBm936zCMCaAr0qjfDENqo3bgZTcpeSYBBaAfz4VUQMAtslB0xyEGaivXjbDH9XKcfCB06atzjrEceLEn3CEBpXWGf1djmqyLMKyI8YiH6+A2mEf29KBgrReO5ouIUAei9qh7j3Hef4646ho2x32777Xa7bds2xpjTdFJHji1vG26bDbUCTYb4WiQyi56xyIP1LHhhZVYGMlVKKiWifC0pmrDQT7ZiZlUuz0aciMic89NGYtv4RRRXdZ5HgfAFO2kV8KTOizGeg1Abipob93fNMnKI1vNxpJ8ecbg+ltqQ4ePwqexTUZQkBQH3WGsdhz/OeA5qlaFWxrEWsrCOx/k8jue3yGOq5Jh0icyhYxvbPu5f3t7e39+nWhXSK88rgdUr9/qBUr+CKmynolYRKyPOBSE0JqrP1p4RlSPPFeexnp6amSIjvJ6nX7vr5lgXigYWXy26/WzoFX37vlkDep1OPdEkbyZIKCpYFNCTldJ9oW1rJ69u9R9nlx8JLFHLjvMXVU10yH6XsXFMjonGTkJFTMYOG7StqCwRGTa2MXeYie1iQ3RCrFuNCyVddCtXNLLljGYfAFfYWPpsSWSRKlrDxiYi4gZVHnQckpO5PAuREVyeyzOyLuRKf2KqMhyXoiGKDKIrQmbJ5rEiV6ZJRoFy1cUQVxYvIjKKLIHG8ozIdaYeMWZ0o6J7pQtKr/cqX+9QVpYUElACRBY6cEnyCuKB3bOcr7u5DRlDRWDshJFsNua0bZ/btt1vPXUNtR9JlEQ/sC85C+1370OexPXUF35CIoirgOM17P007shrABLphhZUUfWF+bikKbxmBfcrktdyVOuEFP1RJdSMn/4lcs3bqOte2X8mQGjz5quuhqJLFxMRHWMMGbMVGtMh1AYIV1Yxip/NnNc4EpGr2WzopeNrmfQyxrKyoboKClHotsbzWE9fR0QoRUqQ1amZ1QmKtTbtwu+qan9npoikZCPaVcVoA2a9o8UFVWWwoYpN5LumrvqM43xqncIXK4bXb3/9CZco2W+OAq/a+GEkTa1N3J6RHkp21PpSS7ujglCCyEoXKiAFh1R7YiBGhJYkK0IkEeHL2wYYDcaVTq8y69UbVmCqooRcgQLG5LjQgsUVpURKVdUYY7OxjX3oZb9hdcn0pRz1r4pr+1kXFiYrmrJ5+rk8XEyNSow559hv27xtc4wx5uj+NMYYJLdte39/v91u29fbvu9fb2/3bdvUmpJvqh4xpk6fpy89dc759evX+/2uvzPWSo8peh/b/XbrkboHo++Pj+N89hRroiLyPL9f0qf7azkajfuyTFVdfnFxE+KJ57lWpGfZCohWtwaKrMO/f//++++/f//+/fF4PJ/PKqqqiYsQlrxKHHrTKiLwTI911LHyY+EhQU1I3C2w1cAVVC+vyNRkRiy/UiNCDNWpsm/jnokVnU5wQShqXuYDLVdiEpM2yQ0Ui5EkQrN6LvdCicBs65oWLYlysWmbzW3M8TbnvM2bqlZkRPaBQkTC18fHR2WEBwJamvBMrSY9ZUk2S6nqyreoYTOZ7J66ZBUVahgKRSFZIq88O1Wg6fDTEcJREIrqVNvHjsgTjLUQJwIKdffsFjGgWHa90CogEMyKzIjy/oDh2jovhQbLhZFW8AUw11lmokwbJRIINUAr5z6/3H/59etv7+/vb29vr6WsiZEj1XwfMRREnlmrMrgcp+ej/PuKb+7f3D8K0QwskqoDOspEnLDos7BIUlAXiNuv6IJ7+8NfIHHYvn0BE9KBZE9IojL8cfhEiW1jQzXsT6qkSlMHxq5baJUlIiHnc0lRNEoiLhx5SAmkWdolRk4IwSh1qtXyh3qdi3oAuQz0dfg6Y30Iahi4TU1LwZz7/X7/9devv3z58uXLu9lIrzjDV1bg+/Nfmfk8jishxYY3pjXZSxOSgVpxrggpefiZWgqeuRIp4Mo40s0Xw91T1XPh+TwP72cHQYVQRQgDEH0pRkeSWCJUZRkrWNfghQyszK4H7TtbphQdiYYACUxlqiKLLO0WQ77EO9VslgVVqMWWO4bplHGXsXFOGVtzdlWGiMkclAEbRTNSdDPbdGyqJnNy7KTxOlxD4hJkqX2blQ6s9pbGINex6DqxC9SIEGJKMURUAgl3uIuYw8PTu94+CZmiVYXIWBGrEalr4Twlq/dLShE16ICaF0D1VecKiVJQFIaGpkYFKipWAKmJsHE+nyRLVIZ1ZZcfT/hipaLOzKoMhoB9i+k540oK/rTO0ZYGLzMLqkpZQ7mZbkNZSUCUc87bPr/cb1/ebm9vt711Nr1qlj+ZB/3bXJIRCWmgKk3sZ33wyiq+VML8/Ic/PEafbFVtlU918PUfNNex/9pTjkgC8jn0fK7KVMbnsuS15G6K+sGfQgDXdAU0yL2qXgjc1zdWlKtsqvUK6wlSqJ7wPPOsxHlpkaRHfEaMO77boxyl/HyudaSvTBf2oJgFFjJQnkfEOv0I98xsAqxcY3H3OCUJM33ZcfxMf5ECTEibOs32faoSrFhrZb4g5qLa6a5P1zyrGlD+Y3EIIOIyqIGp1D5tE71V6tGtXrPX1a75Q4V3P88zPXDVDVwrRivrRWW2ua2IOroF4FpWZlWFVMGQroAEM4LrjJSK/LTeishlwDRRz1IKRNRSUiAlIrttlfCCryQzvIoFcI5pZnoxQViRHYmPlRmFalOaqI5eKPZIerEYkJdjJrUjLyKyzX3bNhnTdKrJtt0qEWjj5tz2/X6/zzl12jQzFXutWhtWnTCv66pW49ysON3ldt7CjFG7jS/7/bbv+5gqmst9neErlp/neZ5nv2WZ3t9k0xOiq16jAARSV6wV/mIjL89jnVYzzsPqMtc2zef7nx//+ud//sd//LO9xcexekXx9X1XpQzKqGQUs8fdVVgey8+jzoOPM7+DLoVhb6v0qP1q+BVzgSc88rkez/PxXOtcFUmUEcPMRo57biukxmK65LJOa4WgDBDCFCYYRaE39j1ZvRlxSorq2FKHUAeEWYPGbdvmPi1vc86+bQlU6jI/5PLjOLCwxpFWQ8Z1GlkPh2eECFT6+R0gwwtlyqEcLIUQyY6VUIQlRUhFlagSYqoqopm5zkg92bfipGBM27ghI9YzPv48lqeUuT/SKxMC8BN6WHB0Op5e6A2Lr/Ryto/zCqV4Oo/l8nje73evwshEpTtJhA/Jtzne5vtfv/71b3/9x9evX++3W7v9VCkm0KSeQ5ZwRfgI/3Z8PxEZp68/z/Nfj+cf5/F9rbNShDaG5pwDt8BtUEIw1ZGN5C9BeHUjS/7UOYLPpA4Ae7t/zYooBz0ZAZ7hkWesE1KjLsKKqqhRzUqsChppS81tVkZ6XRTAxqj3iOZiJiraYcBBm1ZSXqIOHFXlEedaapKMMynpUe4iLkwT6hiTKjX2ebvdbn//y1+/fv3y9etXVfVjPZ/nOiu9aB6Ix/HxPAQRVUykCmkEqiRCsDLOXIWiarC6dDGV1XAdEUg91xMQY6hEej4PPw+vYqZIgZAi2uLN5CvDtYoGWopRHCodAK7Kft6bSpEC8YKCjpQmcRMQTpUxVFHNSxMqtacoEdFMUIfoRjPh6AW1DrPti81p+023q6tR1UiKzVKDmslQa1bqUB1m1maCBtNBVUso9TKUt9RfWoVeCDgovCpXg9lrBAxJ0s/oR15lwrLgBaSijDptdE5BZBGuq54lEcXslocoRKHQt/mflD0MUVcbw8Zp4VHgUMlClEQFsxCOzKpIiq/Dn/Zju+IB4Hh+W48Pfz7Cz6apIV7kVb6oRZBqOGI3jHd3JS4aG6TG0Gk6N51D5pBMF5FpdtvG/b6/v93fbre3+77ZmCoqLRcFKisS5I8SaAj7zkGFyhD9SfX7wTXtXaO+rA9XbgOdN+oo4mv4JdSsf3NKRgTlhyX8BfB84Zeony51fm7dPv/c/x9E/jV11VWu8aKbXVNXi57ZxI1IMABQtMq9S/BKvbqX4PWDFNuN0U/HdklmhrByneEncnX2ouU8K64411ptXs7yCI+ILg1QCqsivDFjouj35Xo1+uxe/dYGSwWXoBsR5+lrHbyKxrWH2le7trivzzn1czx9bTCr+RUAkGwUVu/PP8e23pnK682tYkQdK87TO8/4Y77XVv7BhAiL6NoboUDKmt9RXu25rJSIiCDNX4NXX1SqAyR6CZypItmR2A6QaGduZNctCxZxElzhEp0dUTVVbRw00MSQzEhEXJCzMJJzzvZpXFeUXD1LtOsqSkqTd8bYWnfuTiFVTSaTZjZv275vcwwVqch6BZWsWNZX3AX1QOMP44cj0MwEUOOX7fb17e2+7e3eezyfRjHR9sSttc7nkZk2P1ktBiAoSALifmbi8Hicq389lz+X8+AGbiqF1ZfrOuM8z//83//5H//xz//4v/7jzz//PJ8rIuacb29vqqpaI0S8SqM0q3tXkd65d1YgHO7xxBm38089jU9bFRuDqeIeyeP0b4/n4/F4HM/jONaK8KtX2mSkhrQzKgmkVtLzIryUSh/9e9utFKkCPEstU0MEY9C21MGxGaiBElXb5ty2ze9jjG1s29yGDAERWYGFBZdT/GZ3TF7vkJ+BEngilGqikEhkFRaDHEYTal7GCFoRATAvwFBctw6lDLWXXOikvA4wByPdz+XH+Xiu5/Jjubuf7mdEJC+8z+fhXCpSwfV5gKR1mSqvAlWK9d0g4EQxl2aVewClViIyULLr2/71169/+be//vd//P2/vb+/7/v+drtt2+h3sxiFQ+qZ+VzroTiePJRkrXU+jscfx/OPdX5keNYU5dxMcw/eSt7CLEf5jIyIc6VHeahWGQsczlCBKUkTKtHft91uN3dfeVRJykI1ppkZ5YWCiI4xdzVC+5DmWaJGWugIDdGpGiZZcilnvVEpKMxk2mS4DOMQE9HFxMo6TadoFlYEEukikoWKoVn0q7B+jqn323bb5u3X9y+/fPn6y69fVfX5cQi/P2otxLbbPMcwiiboIESHTCkJ0KGaklme9CRFqlQgkgBMtb0vQyFyNvQEqVqIaj8fIOEJ5GsEH8gsBDKb13+VM3Y0n0x259sPVUIJR2f5k028BUvSyGE2TOawamySWA9SzVuiqugmbdLSCdt0bDY22b7oNm3fbZvokp/On4yNTVGyobarmuogVOZOVXSWvqVJEkREoGOXL2ePVhUYLICDVz4AYqUJkXJJVKQXLHNFwrM8UJFCtXGzacS+1jie4viuMShWotlEXqGaWrGOhatWrNoI1GfrYWYCSknCiIQi6qp67lbMIjPKI9bxOXchPFB+PJ+Pb+dx+Hl8dhf2eChXU1Ef9pqV+emn7ri8kKVqm+m+jTFsTB0qQZpymmzTbtvcpmyDU2UQhmIiYzG7HhbKRMdlP9NAl2dHVMcPDY649g+9MpFeOyuvasvGb17o5nztwOy1sfrcyvAVk+wn6GvXdemDHYb93FqxYar1ykRe6uVFT+DrtbgCvC2y/TR10bQ/mnj9ByGp2oRGC1QKqzRz9WWv2giD53F9PcJ777kEKYBaDW2x0KsqEr6O5/N55llXG0JeLAazSWXT+Sv64+PruDyqVcIC0WdWU5oAmcsPBiM83K8ewSoylHolmkpYkR6kCrtQ/uds7wLY6IZrOM9GbOC1zb42pCKS1weIzbnPRAYyXv0APanUhZgAFVSVUQKPysoqzaxCeMUFG0lhO6UZ4ThX584EYkkfPb5/bjfzdUm9dgRDRjufAIzKKum6875aOh78mZ947e5AFR2mlQodY6jAM6gSseQgkNC0sGuZOmYHHTr0LFQqpbWViKKA2vYsqUQUtM9mgYwStt0t09c6qrpHnBGx1pEVlxpQpaQNnXPu29bGg9rqswDqpPDVW2YyVLXdM1W1Vld0rCew1grPdfrzWEf/dZ1yUm1qFHP1huzj4/nx/fnv//G//uPf//f/+l//+/HtsdYS8n6/q+p5LBu8GkM6mm6d/exJXlXMdDv5aKn2z8e3El2FefhbVpnY2D0YJcd6Ps7jWMeF+O6zUwmhqkMKrA5UdNgIPydd2BE3UAYzKyWFSUnLkqFjIyRlK9mqVKR7PqbV0JveVXXqmBwmUzoVghjQoA6qydwkPf3MM1wVe8HJMBGjgVG9yOJV8ncde5iNiu57gkbjb6KKEOnw8o9sDUvlKnZah398fDyfH8dxxHIh0/P5fF5o5c+Y2tV5rNGEWxWFFqCqVl3IQyAbVi2CF0MR63GkighEcw6TAZOxjf0vX3/92y9//ftf/v6P3/729vZ2JaVuW1VcJVjxyIVw0NOR1uXgLNbKeIY/UAfhLJhOGn2o1Ea5lVgIFs9w98pA9SFKrkNddZ4DwGc+uoVyMnNcHahiNKb6GY7MM5+nP71mgaIqStGEJQgJHVMWIF5MMEGFIpmJgEAVolUSa50yzKamFLL6PxZj5spkIwILLX+HFlA+WCLYxrhv7xP7GLe3t7e/fH3/7dcvX77cox+3PlhwqRKZhjFho+p5Nlk6ElAdgxy+MlZ4mShnakGlTMYYnWYfajaHI7PSPRBrjELIGX4JOlCyva5Otq/5Ovx+8jjbUdGbIP7IPYkqlYMQpjzPUDAYhVDQVEyoQmZVT8EKURVqkgIhBlTBAZu2vem8z30Xm7J9sbHZfsNQUHhJPJYdhRuzfV2kms1hW8tWpBJawt6jCEEakJT/WyYuBV0VVJ3cIVkqCJSo6axRKxKxYKbjZgHhmxEmJfDwJ1UATLNH/mtEHOFYWUwbc4iJO8dw9xWZkQnxKiKH0s1ut1vUea5YxUg0hr7xp11NUxm+DlSIPJcffHwXm1RJj/P5HeFD7blKKBAUs1B+rdalmoqghqrKy4lFkkhV3UyHcUzZp04jat02G8p9G1/e9vuc+7BhSkQlzsOVQmm/f14Hrgo2IL40kWxdT7X/VOmGZveqFDGqXqWlJYVqgUbE9Mfb0WrjlYFMABSoKKsny8+Nl7+I8729uiaDvnclXv/jBwVeXhLYtSr7aZh4HRjoEVXRznopUMJsqE3tyl4kqcsdRphW1RHrxa4s4Hnl/M/z+fw4H8/H88PPA8xhvM1B0ejOzkoA8Tzdz4yF9ERevVtI0ioyCBZaalRWVkaVu3/eyC7iiapQkBGBfHpVtsDdP6aIjDF5reW0H5n7LsdxADCb11DCWmu11RJkm754zUEXKuU16Wb78kkMGZUVDT0PUqcwX9MsmimT0ChJaEJLlEopVvGMVXGCC0jtPwQFZCxWkTCqeZx9j0zgyCQLdLBaYusjX11XsiDrtZrSH+EJAcHLpkaRVmmrBCqisklV0USnMQu946aKwF2goHHGyBfdf2xb7zLDS66jNlHwxrVkVKSv8xSOMbquPtzPx1M9dd+wiSAjKpZXNVnmCqwdx7HWigoz28fc5zZNjDAlgDfdVDmmzqcpyKypVlVj31oz6q5GETGbngEh5Vh+HMu/ffs+xrzdbjZHAVk8fQGI5cdxfPv28fH9+e///u//55//+te//vV8nkzMOVuc8AyEMiDar2dW0itsdPG8QRRiZtuB41hPxDNKnl5z96PqCN/2d+o4PR9HPNd6Hs/jPCIPSpM5pSk5FaxkcBWkkugYshGERnfKdfnpim5jNe5XqCWch83hdraFtGyaKrbBYXaKXd2P3UbKWB7nqsA6HI6NO01yPSRTqxaOdhMrxcx0SNsQz/DRD3JKEYFAQ6jNSFZeUeTejl9nJ9q0oUZVUXb3fLmviKNvD83siAgWe2Gh17ZVqhiBDgb1jWXYNjcZYw1fUZWZtB9nyCnX31uXVuVphgRF7G3e//Hb3/7tL//4//w//9//87//z9vtftv2+/2+bVszrT1XVThjxUzJ4jryGDqk0GnKQoBOnMqSWcMoqZvcXG7pG2SWIcd0P9eQ83mUZ3q4qq8UVidg+n71ea825Uq7BBIAnt2uy/M4HalPuz2PuW+w0UIY5RSlDliIjxRTiBTgFZ5rxdJ4bjFWzX7O9zK5d5BAUlJMzFiZYEYci5GVmmAiQZMYpgXdRW8mU+y+b1/ebl/3+TZtV4tcS5lD6Fyw0PGxUS0oi+IBPxuraLauqrx0VsJKXCg0o0jfEFufhilUKiJai3KX0qguTk8FG92FolBYXebQtZJSRUSPZdfmQV40S0IgVrjQRW0PMYoIhKWEaKtKpRC8jDi97iBEbKrttt/n9jb293F7m9ubjhmy2xy232C9UnqBxVvOMpMxoAYqdEA/Favey+rrWI9riES9zr7Ml9UJLcbWyzDdr6JoAZpZYyqqlEFRVXNFhVZWLiA9nWoZDpm0JTYEqUaG6+mVAA52Z9YF30AywVI/G9a/vJ9j7KvTM4mQuiAsXpFuJOv5LDXRoapVsc7neTzXOqp3irxUvyy8VHZ2hpqEsABqn970gnqrUSVN0lRExJj7tPd9vm3bbdM5bCiVJRksUCHxotw1MrYKBaW27tYvMhKil2erLhYXL4RH96H+7G7vt+YT+tCVP6+R6ZIAgXoFTl8D0wtU9Rqh8MrufU5w/5XgdbzOlD9Opf0293khM7r6jk2jKIjatRi5HuQK4dhm0Rzike6x3DOiqj4L+9Y6OoOW6VE+Otc05JVTi4wEU2pdTepykVpen6bTW/CuqsiKddlp1wm8ImoUETCLEhWRyUjHZ+nCZzigc86fRC9cNNTPsOpPL0KnBMCX9efab2VL74xmEkYCpFQ7rnrOEWRnHoAs/qBD8dWYGQUWljtppHVdUtaiLDUkymgkk11OTgqluhesOqDL6zdPoj4dJEJtdg5BgXiXfAc6dXTBiUTab16ViQiINkmWSfbNhwJFViYLkd33RBliEFgPo0gAaltL2e7xGmRZRXqC6eGxcCCrInPPzClaZUkkGUtD1pleVY/n43kc3z6+f//+7fH8eHx8PI/D3VV1bDqHDhUBr1SSiJhShqo2U0ZEtm2rqjm3bdvM7Aw3G71M0oh1eiaikOnPY/3x53eb//TMw9e+7/uwyHWe5/k8vn///ngcf/zxx8fzkQlVM5M5Z4cBr5ugXPRRqHTNqV5VcFKQLJ5eZ+UKRJxnyCqZiZV8+tqOB8U8xQNrxVqx1hF+hD8rnxdfoCKrHyjXbSEZVUUdUhXlhBKVCCqcl5uzunYWXsyki/jqEL8glCXa3nK+WKkNwfcVvhaiLlhSeb0yIxQBtYuJzWwMs3GRItR96hxqXdQMZEmU1EoF0BXfmbhaUzNLUzUdVNV5NTgBZKWjQlimNGWIJuOFcIlMuHcCuhOtzMgWoOe2jzGiss9dKyJRXh2Tz4qMXOV5rlUVrDK1+7h9fX//x29/+29//fv/+G///d/+/t/+9utf+23d911VTUQ0VqAgJmExE1nDzzyfh/FlqxSBaUUBUmIcSi0LaJvwCoMmGTGE2rUWEjCG19KISFU9z7N+ut8CMHApE71+SS0nHSRXuKx6Ps8/v31wWF0Ow4IYVW1cjfR6HhCWcJ3rWKfg0QneLTaDCLqzru9mlRIl1RXASVQtjyw/GKWFCRhlG2U6ho5Nx666m325z1+/vH3Z523YZC7mbuQULT0lPnIBB+ukuI0UIaQS4XDpKCrgYCFZTGpyQIgOX1QTwQAyuu43MxLI5Y6KIls66jwZEqGvVobeDPOVe6rMXqQYVZWqiGJC4uWYeeX/9bV6vRBWr1vz5ZKhKGUWVW2Tuc/tNvZ32++2v439zcYWelObuk+OSemj+LX+TaBMRBWi6GWn2nX8rQ55NpYbRHUx7stb3egXZlWlM6v7FLOJoEKUlgShUFHMIqhsULKEpK9aZ1SkjKJE0SMveUVUTFlUAp5VfrH2pI/92lIaWGpLs++1rUWkwCA0RPdosJBtAcozwZUBqtqAGlnpy/1ElZhelvHiJS31TFNCbTvt1USmoqpDlZTS9u6VV4JVSplj3OZ8u+1vt7HNMbSEIVUZJSJoXhxV2G0d7HUCyHrVZf+Ye1r8EW1GIhqWJsWrI+QlCMrlR2tcEy4d6JImXxauK9z26YtvV/wPNTNe0crrwf+z3+sCc8in4ww/FLHLec4eBj+1UZG1tEAx0SYXXl9m5pAKxAXYueKBkSv7DiwUoQ1hTdE0kTltTtXqI9qqdCBHBKqUvQ3vwHhkZvdlR1ZFIr3CXxNooFe1IpUenijNaFUAeJV898pK5JVVuEbhz/gzUOzSZKEWCqyX2Np7wDa9y7VurGhCH+r1Wa8Gz8v1QRMGoptmruvhpy1jgZFgVCGLGNR2CD3Pw+NhIwe7Q4MQuRTn5texulEOACL9AqslWN0l+3meTRTOFRpi2u9cXnpo24gs10omq7IPOiwhWAxchKF2BTPRXKveyJoMHVKl3SYFgBgiIMs9AeJVDOWSmekO97NR8hVRMT1gZvn/ZexPmyNJkiVBUFhEVM3cgYjIynd0v5me+f+/bIl2dqnnVUUA7qYqx34QNYNHvpqmdapKiguAu13KysJH66ktxnE8FEme/vF8fDw+f378+nw+P58fPz8/juPIzG8/vovs923fb12J0gPsBbhEpLVorX7Xj+OICNFWqejNTKFPDMYE2+2WxEjCYWPG/Pn5CNBz2MfxvN1uW2/px3Ec83gexzyO+XgMt5SmqhBuXVX7xsyWxqhppmgHySKk3GeV0c30Z9pn2i+3kdGZCDQkgqbH57B4HEdCIihJM8g9xxxzPjxGkpHMKkxgJqZqAstgTy9mdSRzqQ+CuOQITu5RWfFh5JmzKGLOTciFojb2CQ7k5GegJYTBIE4Kj+k5q2P+yCMyjNzFskWpUpGkkNa1ayuhZW38lFtXFVIUsCYn5K/yvZitFFY/85aJRMQ06kro2kpMeYzPaYVCFmN98dbkkTYjzB2zpnXMBbNUddvadrsXARaEMlGsauZjmM+09BkS5cPWt9v2t28//v3f//V//O//+//xP/7H//Ef/9t//9d/+/OPP2reV/AdFXiHJEJ489aNPKMP26r1te5KBrFAM4GUTl1ZUi2FBocIc2NouAejUtScA8luaOLurizKEi+vzNTMg0CijRXhwRlABkJECD7NPp9DPp+inaUlcW8KTm7MQZBGrGW5+3qyM6SJdGmbiiKjqnPJORAJpGN6Gigjyeb0yPLEM6RailR6F26cDdElbo3fNlVyjpmRTLFpZsDNJ8+MGXkkDZHZepBygiwy2CKtUplnUMRWhjEzHSIkNRBIZEbwDIpMJ7ewDKPgsGL7wZU8Xq3ZEBAXLRRLM5qr226JZtYmGxBKZLxGjYtw2dayqthqzkUkgfrsSAhQifVd93vrt37/rttdtve232W7S+usb6yNe+PeqbiuZVmTkooRI+iMfj8rmRdVUjlPi8ErUo7OdYZOBXgwCEEghMAoPYmBMAKcWcODWJBK4hBFSOYcFj7dI6bF9LDpRVsEZRKDM5yp9JWZCTqjHAiUBUmFQOEZHmGcKeBSxisnU0KZUc+7RYmwZyoyHFhAg5mhTLKDM2glFJSVH1/kB5WIhFlUVIR774yohGZGMpmwdMFt17dbe9t1E1FKrjAqArllwIAmSqDaidecB1wZCJLnjAlEQUnx1T9TyCErIfayOpbekmR5ARbl9eKF/D03tSib9aGwlOYRkfE1VbxQ11+C+3KsGItFn51MWI3VqpGROc0s6nMt0dgVK79Sdt0LdMFf8mmTnLnuAkYmb8pCKRzOoNwamMh9PJ+f43ggvOTkRMWAVSvIkr9wkgRnWHpQBDJ0ZdmfmLG8h5FhDpD2dgXYRtkl8OVpoNMTuhygcWbVvgwuPfz8l+d+5GxtyoTquonqTrnSukuYjroKqze73uVL/SglhUeQc2SyOBklzTmnZ1BSRmV0caYs3pmIqHL+KCo+O6JaT2sTGLVBrFsYUbifsliSypWuDs+yf8KzMqUiAXjUkII4EAg/4/Ur8q5CzNcUDFzBhFqR0ct2ACEocyx2MDkDrMimYT7Dw3z6M93CJoSaqLdhIocIgLK7fj4//v7x6+PxOcPHnJ+fn885ANxuN05S5S6KcKIEtJYu5oQjJU1124rqTkZbnL2kShdJ9+Sk2+2NGMnC43nMw32O6Z+PY2a8H3PrQm7TymNLRNRaY/TeKBMUKTh7SzOJqyJn150glBmWtoCXxeFxeB6ZRprYtd+17aIVD6XE7JmUdowAPBNuMecwn5QTZMSR4YBTepAhZ9IIOpydpNqtCZRIi/KeIx3uHEQUIE9LtkB1Ow3JUAqmUERkDG+fqZKtkQqxQknSm82wMY9Jc+T0KBWzUycmUYEQ1pxRlStgH+AoDbIKKSMzORJB0SLd3eraWInza9dXOygKc5+DpUZqYc+IYKrYKV2yjwxCzAkT8Plks5jklYGjsu37/bbvW3m6LdIzhtsq0Cu5TySl9K2if+Tt7f6v//bHf/y3f/8//+N//x//7T9+fPt+27syr8R6AlGu4rZMMAkyy9lUYrsg9wynM+rPiRycVeyoGYkwTqJghrI4UdoyOAs3poKrXFKHszE2L5WIejyYuYZbVfhCCEKIiHNm0px+HHOYd0/2FF1iUk9EqUrrNHVR3bftvm33+/3+9vZ2v99YMT4+CZRsBComNcI9RsXRURLcMhIRwRW30da0K5zZhUM4Ge42bIJlg0IEokGY5o/IZ6aBXRUtGUKOdJvMaeQeY1KY4zAjSnav9oJVABwl1zOOlccYiOpOB0kN6bIyO5TLOMDBWV0hM71ydM0Ry+ZEVGCrhFJ51m7wepYmC4i4jEi5zn3psRlnmhJL66Lbdrv37dv+9q3fvsv2Jttdt7v2zWkDM3onFZaWS6xHoiqMou4qTHNtiRf9U85gWqIhiqJ911gr67+RCWWSXAt8sBCv2mAmcJR/IdL93PbDLIZFVcabuUXOUrCDEkKQZI9M/lpPytRY/s+IutAJROEx55wUJqoMNc/pIeSlYAlIMDnYiOAkGxFjpUlVGaQIKVJO6j6QgkDU2EhFgAQS6+MQKECQ8uMrbaLK1hT3W3+/7ffb7X6/3XpnJOVkYgUxiKpmFXCkVJLhwjiSLGAl4awUG+Yie68pXw2E/QSCS4MvX0WNNYcmuoLkv+AXy9dI8UIStHi9Qs5I1KpRLQL6irquN3FZAv/y3bCkoJxEIiQiTuCFK1Tbpqo1s6tuAxvDAU8hYlEENDjEJXyAqig3KENBXmEsSCDT5/F8Pj4+5/EQkChLkpNXqN6wY9o85qxRBooh8kCGgFJEBcztvIgCqzu8XBajBMgE4QqfCyKKDZtAtBzvlcT4NVfhIurqU2Ym51kMXhz0BUWCVH3d4CeAXuddlnQ9YpUI0YVxl7EjI4KyWn1YkqZnhIUnVQ+wLLicIC//BKIAOFWR6No2YA3/KZIwxsyEIFgTlLbKHMlt1pafOcFUykKvG3YZYJFZI9zygDslsb/MqbHivZkZQqdQuoCXl3SVmUQqioLiSr4RtK5Uqna3OT0itKFWsCgfj9sY4znH5/Px8+PjOR8OiogxjzBL4Pn8fB77HO9zObHRVFrX1tQjknw6CbKLNs5MJLROkCRag9cInXWNNYRFlYccNqogNsEWocH1WBOR1jQT2TlqDmrhs7JV2N21AvOktdZVkYiZg5xFmscECSrjFG9dttDc+9a2vm0bN5XGqlr7qaSRKW5hWZv1NexOmoJ0CspZ5fFGc+aRiIWGVzQJB7FTeJrVlJmLYPWoPm8wkUkSB0lALQcFB//nkVqLM2tjYZLIDNjMMXI+87B0EEhYWUTRpANQFkVp5CmYip2qjIuSQGYZn17AxJWWHPWA5bVvMTOKnEs6HIIBSGtdoNeU/9yzcW1vyk5RdXm9b1BpW7/d37dtS8ii1zM0vFmY2TxG8BHdNPHtbX97v93v+9v7/uef3//bf/+3/+2///d//fPPb/e3xoKyQoOSPKNWJa9uJkpiCk9f3VhWqOsMW6ZSejnSmYLIiWI14yGZKaaf4wcwCaDIoEwfM8zSigD2mObF4c35FBHtXI+vyHHmMq8tjmdEnmQMxDMQ6TPNcljG8j3uQbm1+9bvt9vbdrvv+701LW9jkkekU5ofZsPjKDmtsgCkgHDyCrbMSLi7k0+xnV2EWKJmDmYghzCTULLPOJ7Hx+Pj1zg+MiZLdGYIBYNmO+KIOWYeFjEcx+RIaGD2UWLcGmuV8TvIwcRSzkQn4oqRyjo5fMk1Ms45jJulFfr4apihFdhoNc+JXG19/vWgRj1CazBSXiMCavBYJTwsKm0jFmm9bXu733V70/2+7e+t75Y9GSSawiSr2Rrn9C4ZFBUCcVrua6iKyEWOECJB4BocZE1SK28ESWiiOEcLKchqigwCVDOCIcFhcCKffYglMbOyaqYxCaK1toV5EgVFo+bu4VY+G1VVqK/hbLpH1T/k12AuVbXJFiyYtfOmIERygqNwIZN7lXSxA7GUN4AQICm6eAoQWZQUvUQZZasBgdKTqGQTx/FsuiJS96ZN6fv77dvb+7e3W+99700FghBOBVVvWT1igJrFrtFVCQdZJHjVdEL4alG8+GBPyIv6alkjTtS12K8LDL30F8lpY1x2tos/W97EF0H3yfNf3/MaHGZm+60n5wXGUa0E6yoNkCSYuW+biIr2a6Jd8+rwqKEXFWrhIKjD+dQDIZw8knwJBdPMzY/j8flrlNxeGKlOMWwedgy3GW7hJdNJq/B14vICS1GeEj6p4hlTEoECVUg3D87F4ZbRhDjPgUWNbisxdcnEk1W1CnBE0XtfvCCQ6czlc1hDFiKq0o9qTL1qoGiVE4S7T69O0qzKOq60csqKJqUTg3nQtGkTAFrn1jqYkqyCG+b0pQllVMjYihIukjOQVDG3XuAwk3xG1B4wrWATpLWWrMIqCSCCOL8K47RclhVgZnV5WJFXZ4awgHtvAETrtgKttBQH4K422hhjwOZ0MopIFujKigAoxzrpHpYuwRQzCZElgX+MY8xnbe8FcEnidJc6zs/Px69f/2iZvG1b3xujMVprZeudc4rI2SiPDB4eQIhIaxu32Voz9+lWtSWiyo11VtjY1rdt69oqrLSJoBpRhVLMMUfYWAXnXVRFZOvaukjLlUViGUwZzCq8tRabIEItu7TgLrdNW2t9U1bVTbhBBAlq6jZ9DCOqwIsUpPv0ktuBjMo0QxY2yYgz0tNXNn4EF663mFaoPZFMQU5cnH4niOfkGBxtJsgdJO3Tq5dTwU26gqlG94fZWAim2t9YRZpqVwG4di8UQcudBIDClkOdAIpTjVn5LzN8RqnKT18LM2cqWGhlt7q7C4+KTIJIkl+XXAn1IvSUVbGi1ulg7dtt3/ZNtx30BbwkqdeA8zmyj068tf7n9/fvP97f3m63e//xx9u//uuf//Yv//rH9x/f3t9761zZ1mc4ct1aX0Wo63FeB3y93N1iRnimJSzJIgeTV/pmLFr560VZ8y7OSHesdi13d59zVn0QEenj8x/SOnFKNAs/xmOM5xhHnsKYa9lYsvCEZ5rHmD6HRzDLpl1bb/d2e9vevt2/v79/22936Yiwbe/TxzHHMcfz+fl4fDweH8/nZ4ZBWtu6qGhmW7kIPj3EDTGQTHuFwpGngbpn5DwMzMTTx3N8/Dp+fnz8PMYjwliiE0glBCTx/PiMnMst6TCTSCOyOWfZoKgGBCBPk2wiAoUou1kRWMVIXSmHnoFzlFMmtd96QWr6SDNdIsIqrBpC0MjwSJGW50J4tYyu8mdWZq40DtbW2iZ9a21rvff9tm833m663bb9rn1v1BycoOBK6z5jAjiZy/deBcPMa83IRAVRnlJuLAlKjfqKWUEl/ARSIAEJAPCaolVYOiUITURjulIw3B3hNp8qEIE10ckg59gSac9I9kmDjxFeOxjRjhZh7mnmYTWwJRZaHVq677t6JtRIovBg7fFJI5mI3VIF5pyJWqNmEkoMXrOhyh3lTCdmXuEIJzHClJFeBF6ml4sCQG/ydtu2jk3o7bZXVmp1myBcgNr/5eo5rvON8wrwpDO3/uyTJoDOavOX2V99l98ok1rOv0DSJb9acQ+//fYvgGn9yJfxIq+yoJeSnKX9WlMz4fh6RqyvKn/4+sdA1eHxbx2Xl/nj/G3Ftsaa1TNoBWKREVFG0oyItLDi623aSJ9zPOwYPq36HyjSYhzH8+P5mGaGiAJoZmmkBCYokzIz4WTsr311iXBxSu2rZzWymkalA5AyPpWoLnxOm3O613FoNQ0xM+ArfaMxZUpZLq5NfGa4T6Im/KWpWAi1UNecYw73syILyJrHnDuK64zM8OkZHiu9kwFZlcNmFmGVg6pKlBaRDQ0vyb8R4W4RRitPL4nYvIBXEIVo53SrTaIZnZ1pV0B/4aoy26YnSw17vyas5we8fB+yhp5ERErwxbEvytYNKx8vhYxlYlU1ZK5uyiaiLJxEQsKUJEnKvPfbnqAg98yS7GTtWZnGGKMdd23CiydGePXdM7Mgz/SmDFLxmYBwg7BqG2pB+TieUJHG3bctbhGmve37tt1uKkWvfyK9VVNyCqV46Fwh3KwiCgKRN+69N22ARCZIRWpRSFXdaL9LPuJQfw4JdN47WmtS1Zgd0kUalyRuTj+ec2vH0R7z6M/nx7TDeSSFmyXSU5Eo14NlkFNEhgfcwtndnTJ8uKdlxeusttd1va0xtGN6wigp0+7PrKc4FyEP4aS09EHkRZSJQhnKzEICTmLwGlJ7XVTnBoPmDPZSSdOqpSfzmGHDbJib+QrejQhVZSZuIkKs4k5pxNJE2rZt0jpmmkRtaYh282E2rvm9aldVJpPW+n6Trbe20VLymIJaCYiBGCZG37bbj/v7376/ff/x7XZr2vD2dvvjb+9/+/HH+/1t7xuLXg/TLwWmF7mdpycnF0a0MHOzMwvah+fIMGZ3OGhmGDhZCF4j1kiv7T6vkaBn7euuGJQqX69IZ308HuoGIc0+3aqpdIwhm5Tc49pzB2UlShd5bhYR5JkMlaY/bj/u/fZtf3+/v3//9u3+tkFyxPOmRkcec8x5PMbxeH58Ph/H80NZgpkoRKAkEqGUSLj7sEiaAr1yNjOdOC0NzjQIycVXP5+fhABIBJKSkZEeQe6+Yjt9BqFcH7VMmg9z8ZAq6w20zIy0IifWSpgMICNROYdUsdQDVRr6ZY/6yqU8h7eO5On1mAMLVnFV0nnFlKI+i4ctm3e98mUwpKq3+/1+f9/v9/1+47bLtunWW+8eHZRGBKn2vtX1XEFhxKVwOZ+dQG2nslDXKfMCVXAUpEAC16QRebZFg2v8t2TXJ59Xi4WKICh9dvIg/cgUEYjTQdZ8g49MzykRKtLOkMkVVtmkEWCZgP92GDlbkz33aeHJcLhEaDBaEjyFUoLAyKh8lwgRSRIkwSzOEzpreJtZc4TStIEk0viKqE9f8fgU+3677/r+/v7t221TUvHb7Xa7baUGBcVZupgU5OGtnZqSF/iSlUdeH/MUIeNcKV8x1hk/lDgT6ut4v/yS/unrv3JUdKYxvf76XPN+Q2kR4b44j95WyMLLFxIR4fdRZl3OADIi8BudVq8mggi34kvj+lZFZ9ajysb0JZQwm0f6jDkrfvMqSqp/fBzHsJHCCSrgxecYV166MptwPXJiVS4uWVYmSb0fyjOIbEF5dy9Yee043SMDra16xwtynfgSWY1zADjBFTe2OM6LQSQiKcdBxNXh7SuWYj0TcGpeiVZNFQE1TghcFymtQmtyqyY6ilUqTB6RqroC54ASra6ky+Oo78Ks1ZVWZp31cz08onqKSAhAkctKPSICVyBcVEYGJ14jlJJyzsmM8sxWxwN/NYeWV4REUFiuHKBhyQhgvoJ1QZeKJyDU1mWf85jj8/lEVwid6tAow1rmAgp1+a3pvPucs3Y358n6raIqMgqildM4KC08l0UvnJw4932/3XZpjYkyRkwVeFd5BV42M4KEVEU4gzI/qXxlvLa0nCwbOHuvGA5kwzOGzseDJjXZWrTWuLEoSyPZ+At4DVcZTVprbYgCyQ8Ynq5BzM7BrPBGJJkc6RGlxqip01f1qWV4Rk2JEkTESVyrdSbWcpPp4ZmU3mv2lx5CPAkciJlpySRNtqYiUIFyMifX/WJsqGmbz7wQuBMZwUrawSgSlOutVU6uuZv5Gt+DSZtsW79tuzBHBHloC5G2b3fWbc6cw4sEdfcxZQycoqhyH7bbdpPWtG/cG7NmJsgzSZqStr5vqgrHRvzn+/d//fG3902/f//WN3ay3vXt7e12u23bjYjSaxz/db8vtqpW0MivEM6ze2NcFRxuniNhItNoIo3C6rGQYRm4vnANWwPuaXNh0NPovV6Zqf8X/dz5fiNozMh4+jjStfUqlNl0u99u937f594/ZNtF37YkVyd/HvMRu4MbpOl+a29v//L92//5dvv3tt2iedDPI/6OppKNnw8fH/Pz/2PjP9P+HvEzWNFu2t4D7eGURuGcTm/9jdNEt6O3gc//7/i/vt3mv/Z8e48mShk+pn1MO+bfH//4tPGYQ3pndj/84RZONmkGP619THkOjbCIeSNt9KDjAdKcHfZju7833cVDn8YiHLZTqCQwH/NIj3277/edeOYkmxPeKYmD2UcbttsR4znmmOS+kftmg3O2v1tkNUoLcm2IDZSULilKirJWJzELc8v4EdShf/Tbv8S2BctoQm3L2x/5/ge//2vc37PfcmvRxXrEsNc1uFxoYIkIMmJCr9KF11FU5hlT8PWqpcsu3uTMQSHG4U6RKNY1XIs0bqehPDkjLHno7ps8/yZuR4xHzsZtY90IYvi7xTHpiCOaaaM7NUn+HDEwzciMAkqNmT3dZ7qxHTtla2RC5n7AOaxljArxXflFQpEIySAyKz+VZnYhi3D3CHqDZ3V7cTmlw3NSJNKBLG2QMvfe9z22rYmO+45vt+c39VvjrcvWnz1D7JMJ0lREEjAWJ4HwHAPC2jfSPlWSu1dl0xkSQclSdF1aWOQLuQVUDi8zC3OKpCqdxUV1DgAovcaiXoKwNYIEAcFn1FpmBXb/BqHwNSC75BeRkRSE/OCV/EgUF0YAgMIwERSDiJS4Lom6CGDmBHAjVpaNIYA6OcElg2y6WXUpcvxkojub8/MRv47Pn2mugu5hh63UxFrFnRL5+cg5lelNsh+PsRTnlGDnjd/f2r61TSrIP4hCiCLdwjwqO7AxOgUnyTFmBlH1NfQNTQdZzooop6D0cIc7PDlJ3H2IiLwxiU8eqkqSg9syeGaG+bQZFCwIns6LnQW8htfJB3ADm2h0EKrsmoDIsIr5kw4tHFiP4MihcGJz9+fBHq3f9t7vGUEw9xpMSERD21R1kghLO6MX3XKO4zhsBmVa0ee9976ptMbMCK6VgtwpiYJjRmZK8XmNO2SXJizu7mZwSwZIIBxgJxpAZrJ2VVViB9SX3IeIMtu6oBwZoiAS4qSISA2j1KDW6M5L+7jREEHvKn1RjM8j58T7XcKJVSLo+Xwu2b+616OLQX37LHFna2/7zTyi0g8SELKYw6a7DzdHgCVkKGuAgiMzm2AnQQqSlLlra9yIqG97ZhLdcPujkl4KuwRxJIlsYD1srnixOfcYFZSK1lgVKm1rrYtueuYd0C3wZ5dwLmu7OFSkcxNhivRjBsLiMJpTHp/y8zF/ffBPwR+NP4/543l8zvEgfyjuXW8zd5+/0p+Ri8e0zJlnhwG/pyRFdSWrZhfaYF2GkjNCJJiJNZeE/C7vmUom6ZwWYxyP4+EzJFW5tX7jfdeuCs2JeUCGB1FiebOESxqLCFMGNXI+oYNqa61ReviggXioT/gU94ho0m4qby3vPZsaQ/ut994Jcdvu+/bWeY/IOfLzeB7Djhj/eHz8euhz2HR/OG2qb+0+961/uwfH8LGJa+JG9N6UKNCetz2+v79/2/bvfP+X/Y8f+3fcgtnBkL7f399ub29dbzSMEuCS+i5dlyByflJb6ftJYYHn5I8Pf/7jF/36n/vzP98+PsZHmLXEG0sGP3x+klvKQ+Xvev+fbH8eH+/jeBufb8fnBv/BaBkZaZSPzMNIPMkzD/PHPD6PT7NBRBpmYcO9n1FQyWeLmFSN7fXiL2UDnR4xItHGfd/2fb/dbvu+b9vWexe1EazMtrin6/lf+xhtIkxSuxmf6cPdEJbxJNW+bSmyqRxE6J+Px/7QxiEOSh/Tp9ucYWlW60IQMSAKHeElGmUSkDJ0dcmy1JRnwYkI9xQOZLo4ALPgZYMqXqoxq0gjtBQi5yQBdWZWytaASGiwGRdVVKPYKp9Nv/Zq8aICy0SU8ISSgiJdMonhQZTBlMqtbU33tr/tvW+ttVr4acVal3n7r1OnUmDgzEI5f/Ei6n6RCv2vX0D5BL4IgBLExNkj8/XdlsWMlQVg4zXpXMFIqi5SQYijRVKSmwWYKpLu2rwtWUkkqeqLBplOBpCA0t+v/cnCN5KqO5/ksDur+3SJCCHCSoGVdPWY6ZLpTKtmGICCeuX/9C6N9033favnajWUXwr0FcK5OIGstI+TTwzgC/Rc1NciiniNHf8ymbomenFWL2MlXKxp1Mt4q8TUX7DtLxTXX5iw6xRfUO8iwL74ttNEdNZK5jl1XU0yvip3vloo83yf5I5kSinJJuErSdx92ilfUCpnnfmVMeETJGF+biAnUOLGxGpC/wKImc5Eoto7Vx35trUGSg+8XDMn+XRyPCeHF5UcepH0lyDgokbOXenF3NDJ5Zy3lZ+sT/zlwH4piD2ADK1a1c7MvXd3LzkH1jf8rSSKFl1cPVWZJ9/5GmYdESyIuFSbq9wniWKNfn4bE1+ntWynXZWY2blmuGdtEV9fVSgtPWxMh50c/UyuqByUITeXpZOvg+a0IuvqTa4Lw6Ouz3oXtT+hkpACJOuRuBFERLdeMRDmLqqHuc7pUWNEsEjE8sHNypMDiWr9yXEcnKQsi7nNDKrYRDjBIt2rzTvPIAMmQu+ti7aa+ElXESmSDAwmKe94dT1HeIJZzYm1MVTdInKajTHMlahKLFVO4CVdtr2JKnONiZlSUbJGODNpmfo7E2egO00LsZxjUumEaria6VbiNDZim+GCLmiNu7tn9dmVp0nSs+waDQCoVYdjhiCF68FZfikioCCiqghmhU9SBJLKuA36jW8upJ1IzoR5Dfsq6+Eruaa1xpQXc3PdOEUIXw+oExiw6rkXJar0bVXtvd/u231/u+3vnfdMskm343kM+xhPdGURHfM5hs2ojUSRndAKSjxnzUQiyp32/bbv+97v93Z/u93ebjvfkCAQc9PWKl0ZdGokuFLOapIOLLlEIlGNGXmp6VcLRaw61/V8JBYSTiajhDtN92Nas9HNhhngfJYqmNnwGKWBG2MU11VHLzN1PA8Bdz2SKQOIZIbS6ZCvZ2JapLlrRNA8ipDLc37We7/dbu/v7/f7/X7b995aU2JyO8cBvgSzVX/LQGutt67amZUCEdNmzCPM3BO9ZwYLD9DDzCm5ar+2pgLEmim7WYRlhlB1nKVSKgVlEIWDmlI3KtX4FIhAqhaHAuEe5k5B4ms+F+MiLRgVTCp0JmUCIChDS6XARGTB2lhapNeFV4LBrlQdPnXsa8QLoAVS/OxIFlISUgKk9UxNCITb1re39/1t3+9bu+/b7a33jrZlUxJZfXOnyPovgKl0OZVRd91X9DXy+u11Gbv+6QDr+p55tgFey/bVJHMawaDkSA1D1VDXYthEnQWipJqtRUYkF6oL92sBu1a16gZf6QCUkSlCqkRIC8sytdOaOiWhQUSk6Bh3d2czsFkE5EzGOqljWclkDGESEWUSka313rXCtfsm9y6tZePUcyGspcrdZ6X/coCCmbXyjpnwIvchCjp3EUyUnMsuQiTKdOIfKv9MJpFn8jl0oxM3y9IuLWwUFbxxYbITS8m19F5/9V/O79e/v2BKnUd/+cJaQ3P1VfLLgLImeAwgPTItpYJ+LQF4AmW5iBN7zTmOAl6BkekU7nacMvnSSrgd4zgOswBQOkssqt+RHmdYl6q2Lu9v27bpfetdGRSes8TF4HLdMVVHfaGBXNHZ5dIApOZNnlGPuQsWX2DCzM7jubZbBblOpA0BIh0r9x+Rlo6T7AkA6RROffO6ipi5VB11ymRF6J1rEk7DZAW3Yp2UFbt/WsCYaya38vXBpeKimt1crg5mLnFi7XxEpOlCNpen/UJIhT1rhFR/fhzH17WRHkGUQYzkIHDl2rBZfdgLARb2cvdVl57ryaAsKdCTE+O2gGyJyXRFcbbWOzO3hHRTszFLc6ZJ1Lc9zjHxMcJKml1tMNAMmBkrqHZmFRbLFVny2r4AIS4zr4jc7+973+77vrXetTUWynT3Y0xmrmhQVSWK6emeYDGLiqHvHh4x54QKHUxEKHdkU2m6bV26tK3XeScikCK5MK6nMTMrtS7cmJWcPEg91LM/J4DKKjbznTxt7CkUFc7AlJkb3h3ZAElzckGaZGmGg4iyAxBpAFNqONyTHO5BCwWLCJq2bZOmar8I1UVfOb4rzTfrAWc+MNZkTaBEnDSY+Ux5JNHKGSVVziXeIrc8HxpVOQtVbd6rObdAm54vhopIa+12u93vbz9+fL/fbvfbt13vRHBDMV4/n5/989a32/b58evz8XiO8p6ZjXmwhLCAhJhEJBXYtrbt7fZ+e397+7bfv2/3H/dvP25v2Lj2WiTaem9dmClr1F7MyrovMqJsh5mZQeEex9PHEXO4GYWTe7ihLKRJoCAGEEgKT4sciIP8mEcbs43JPiM8hHqSZ7r50+wZOacdx1gFamOMMY7M1BgztZF5DgNA6Uornb0gdAVaFnjKUhJHxjSzkZnMUO3btt1u933fe++bNmExqvPp4W5jrv9NTydh1ca3bb9v+9Y7EpP86Uf6cCNmoeQImnMyhs9kko9t21pH31rFrC2mUBTNUCNVieB05KRFo6Qo9y6YISBpTE2YVmhJhqVP5wyqrbxiEGlbOzAElysrnAmIiXDOoLLrU8ITwhW2j0hYRJZYvupFiIjIzMNGTa+Z2ThUeydpTUW0cVPpIiLbHSkpu2x73++397f7t/dtb/1+a7db227UW7AkC3P5Dv85d1XYi89s+jNI6J8Ar/+6VP8Fga0d+guDkpm/Bd+jOsJTxJl0OAvBy7LlUbh8zbCSKiMok4RAIEc5ZPOU02QGcjVDAiABhZJCk1gkLMqVBav9Biuk3ErIRLrVriojQ5KQuj5dQgCSKlnJzK2piGwVw3huv+rJoIKuqZJKUclnX+v0tXwRRHBu506cvVbSOnSlrKRIQ6yUtjX7qz6Ci/dcOCAWlv2irF5pxSWZXSK+U9FyKt8JkGKvXuk0eqG7vk7cb1cInQHuDlwiI2Smr/Wr9Ef17+trTaQlJaWtklMEwJFrx1xyiMJYZoNoEgUyynsRETZn+PS5erPdssoGMpVXsWBdBElEwmiqe9fb7bY1bk2FKfxCeFXVEijeEiUwooIm0x1CfF7d9SUVy5n5ZW/8DYb6LBpVROpP1jFBJjOSwCuE5RrdvrKFv0vlTvn/+aOu/c/iZcPDqbwdCzyeZFX5EiJiGRRekPqFFK879wq/oJNkX0ucNNEyIXxppApeZ2b1IxFRhJW/9S9mjtcPghcSbv10j+ImSzRdLTcUpRPlrysMSGGAhBaZ1wgVSAJtFYnSnFkaixEDJAHSbXN3t3T3ZGuZzFxk/4Usq2+bll0Okgl3FncCuweotbbt923bpDdVfb/dt21/u91vfevahJk8zOxxTJZF5xS8sMpYixzDghTCUj3FLC3yGJZrH0LnWIOldZFWvlGGAmAggyLApU8XgiZrWfKTAQ7lpMxmqk2achMokyhvglCYZyKZAENsROAWZJ4+yZXIKpwAQTVDZEXt9FYUpQe8SkwacxNqLbSnSkJq4SKSSE9wMlOuIF3zlHOD2gIJCKGY4CJo5bxfgHXXMVdudFTuYF2Bm0hbV2x4XR7FKTbprbXe+7btb2/v7+/vP378uN/f3u/ftv4mxBH0HHYMux+Pt8+P/X7bfv5D+y/9eIxhRGS0gEfrmswpYJCIbm3ft+37/cf397fv+/79dv/2dnvf92iRCcuIBCuXI78CXZbGqwzBeYb2gUoMOeesKN0xYg5zhxvc0mYxAVTjkroWwoPCETNiho30EVOqvcNzEoIozB/mj8jhcYzxKM7LrGIKTXeRDjQiocwIPf3hJJwgyKoJoPAxnmYcw8krt7DiOkRVm269965Ny0ycTmlhbvMwm3OMeZhPD3cEhLU1vt3u9/12328C9T2f29jk+ZCDplTkuM1gzOqWsjF9zBAFGkgIYI5NN9ewoDFGjPQjxjOGeVAmJ5Mq7ckNoklHE2xKQRNFuDrSklAr3PLSEydlwjmrctJhVpUX5OULBwmIIriMvEEzc0ZOD5ALJYhUrgljLCbf04JEEpyeJCmMRm3jvotq6i7Z0N+2/ba93+/fvt/eb23rfd/bfpPeQhoxp/IVcn4+5uIvyyqSK1R//Ql9Aa+/ECSvD9nXydRv363+JPlsX5aXLwFw4obgNdSIrIjUMAsr19WSKKYZrZ8irF0qkg7BmeHLubeWtKgSHmosUPGMzdkzzc95qqzlyt2JI5FsUU2V5RHmSICQhGpCr4NG2PfWpQqwVQStCjFUWSHVNQlnKjdPhpeStno089rG8YsBg4XAdI1gFvY6E/NrZPqK4c554tVpXa1k8hscqyU/k4jBNTsJysWHf7GYZx7s68jpL0D5K1bnBAd5IhsiImgdbqIMjzPr/gKFL3n6SCJPYkqkU8AqtT/O97NOWzHJAGWVfjPW+oZJPsZzjuFjmll5ebkyGZIBAkW1ApfFbGu6975pawIB8ozGjzWhrvefRcgFUVJ6ZslYK0mPMz0pPY/pV1lHcUtFUZyjRq/VJ9iDPcGRxMJRwcdJVCqFjBLF1zGvWbUsFxiYEObTg4gEDG3rOmcut2CGV2J++b0slm8LKjX3aLxSYU/bJnF+1br9Zbx4Ya/6ICSV33q6ciBVlvp6yxdLcb2KM6bL6yNCKw6NSRhcIRQiZ//xqnOuySxODqyQaxIze4ZmeoVbnHcHmGtsrxWzojX4qvYZ5Qhpes5bOTLds4YDYkRErFIE3gKa4DR/hblOiXBxT1F3J8a+79vtfrvdKphg27be91vfemtdVMCZqdNki7LjLRoSUNJKboZXdBXXUaudh+ey5ISHuoUDIewuqp4QVDEekmIFqKAqHjMIQlmJ8rW4ZES1jqJqn4zhAme4pglcESSJrfg+7gZ3ciGzdM4weOJ8Dl+W+siKuGEO4VTmJtE1RYN5koTqPZg8AoyUhAU4yrFbj6Pls1pxIVl5W8x6pikQrUpE1E20bbuIRnhddX3Tema21rbtyMz++7lroq31ivb89u3Hjx8/brf7t7fvW39rrBE0LIbNb8N+Pj+3223bb1vft+3j49djzjk8Zni4U2iWskillomt7ff97e3+4+3W3259v6luSU09A8aemfAIBPmoJkSiZL+emYtphkQSZcyZx4w5wi3CObwwALmnOwWRMBMk6WwOdkfRMxSAJ45ICfeEZiSRezyDHkkjYpbc6toIA9C/vX3btm3fdggX38si3LRtPSrrpjeoRMSY02IeeZAHkqpNqTYOy7dSJWw0hSTSfY6YZmPYMXzMNIcDSU361tve9r3f7vu3TbfcMdQ6f259PH5OqxZlCtIzQzIy3FFCfmhhgWjwjaabSyJHOqfBRgQ5mLlxQ1clh7rorrRpGHAMSwInsSevqNDS/6wE9cj4inpPYW5kFElWzZ0gSrLIkitbLAEbcjUANkaFlglTU4nezCNIRRpLA3cHA+LUJ5S4Mzpvt3Z/375/v71/29/ft7db712acmvQ9iXwIlBFUNCK8/kNQpWSvhiRRJ7xJOc85f9xqviXv1qCnpeQSQqlVwIMZ8QIM2cSQVEGdTAhTvanKoWxHg1EFcEK9pXhSwkPL3r+y/dX/BEArpbY1G1Ti+BIq/Z6AZQrieX8hBzJKqItIihG8UZrKC8rXD57Z5VsDVpIS0kkmaM6z1lSCYySUVT0MiEZnFTkhFQTlCYC0OSvhIVVEJDIM8CpPHHrQCwDa7yei5fP+1eF1kmx+QpWy78mdl6CpL+sxK/f4XWd/iufscpzsqDEhcw8E3EpzPzFdLl0XyWQpGqmyvQoJErnU6xaqbhHA2fGJCKWun483OYc6R7h53HL6o8GgchAoQIRFZHeexNVYa45sj1tzJh2odUqe7hS4ev/NVikSI6Y7uRuVAENcV2t12woojg5hIcn+Tn+JiIVVJoihddZXZuKzPI3VFdBuQgvZFMEkqqqdiKK1eiSC3ud6jJ395zMzNDz8mEAQrAMIEUgpLQC1dbZ/ALcuequL5IMAJ/Y67yu8kx/XRcJM18a0OtSKSsiEbEQZfUPSgEvCBfwipU3mysmg4iSa+QT/uXk+JreFABJVD4gSEDCTbEGAcqqKwd2BWYLiKsMaIaPo2xD5bCEVvvyaSAtWLYQKEgy4cbu2TQzIbLv9/v7W01digFsuokqswRzydtIqSm5uzuZT1oxeOtGJZaKNfUwi7RIT0pIWS6NbA7TjGQYrXxPsIuW6SiijBHpWelbM0XPzKJTqjHn9GP6DJ8eFmFhA35kDsQAsjEJR6iTcGcyJwcZYCADqsD2K+Ikw5IS5MJEGsqs7F25iamwcDJz6zc3Rpn6I0k5gyMjaixLJ+cKPYn7K5OZXpeFtZ1oenmBATCh9UU0tGa32w3Imk1iDdNFVbu2t7dv7+/f39/fb7f77fa29du2bV0aETfPLXyzKXsn5lWUIU24PR4PNf98HJkEh4dNQ8t0Ek6ottvt/f329n7b9p1kA4mTsiQl0iw8wm0cM8dhEM2XHhdmbrqpKmQlQ1XKmlm4l5mXKTiN0yi88siL06gtaO2Rq5UuQEHkQCRFxCAigjsNz6fnSDaqery1ZxIi6H/87W/l3PSM8sqIqm69bT2IpKn2lozH8zndxjie89OnAdj7bd93WlHIlUMzPA4idYjFw4/nHIfNaWP6tKK8haRx2/TWeFfeFF24A8x7J9fGk+bz+XyGH1VVomBEui16HCSM6kJEdo6Zvs3MnM1v04eMURMbECdUlKVNUQrdW6qYofQnK9MKSZqQpPITKFQgKa7eEtSkxAHNJJ2j0hoyi6+lMokFmJgppBKmOSErTJs2FqGtteYWhDYT4A7ZWHpKD23cbtQ2bO/b7W3//uf7j7/dv3/f7+/b3qVpgFK0JC31yKtlGKCk+Mr7pTX4IFQgU3wt2HymSNBv2Ot1GvVfEdiCP/8lwOm1e+4EAQyqAltuLKSa2dgaabPWPCWlqfZslpRJ4lled65iWYQUbVZvqZz/BQPKiFnHszWWEPZkTzsnqiAKWXIeFkqSiPRsmZmLcTQ6J7+NhZlL4NUUzMlMghBEmSWl2rgW1DsxNyoBNcuNfyKbKHP9F+/FjBU9UFH9JdnkFXK/Gmq+WLH6ugvjclXuJb8c2EUN1p1Fv8eX/1dy63U1fQXZ1+svwPoFiq0lM4Je2LEL+VnVHDZZylNUZ3GhaMoMDySzSiX0KghK4ZpMEbPasqelTw+b80B6IoRJhJty67KSGbyIh1Tla2rWBGk1ejrcxpyTXvLlTwYuIyI5iJaqI6goTydPuDvldFsOoEqjaKtnBhnJfJk8IqI8NcIsJ/BmMCjqRl8mh8gIJwaEhFa36qW7eoXFpRJbPIdfpzWA5HO/qr8VMVVGMCk4Ja9S88zzMk8qeomIABVmXHynnmf/lAPm8h8nncE3mYXG5EKf9c4XKqUKqdcCXgSpSM0L9pV6tX7cYtpeuPPMtHB5ueSWUYODEsOKVaJgEImAWap1KlvvzNpa27d7RMw5g5JyzXzrCBTyA6Ctf52vqsx0IbNGqHe1395u+71tfcm6uRFLEhtV+1hNexMrR7eyGrIYZSIaHhYJcIQP86O00O5gDQqzEeZkBJujSncSffrwUGVwEIXHcHeLIyIyJiGYSQTV3Vow3czGMe15+GF+DD/GPKYdPp8RYz1TJbdMRBilIyalJk1iJfJEVoR6UjoT4FyieQqVAFIlREogCxFpLDpWgYYRIyv7GJ5MopJdoNUHQURuiDilqy9zcJUu6xqr67zr2R4NAOTmw8xKtlEJZ5lJZ1VO023btv12u9/v99t7jYNLIddEmUUTFtlzk3Zck/SC4x9NHk+LGcc0ygyLmT6hisjMLv2+3e/72+3WenPmmTwBXbF9YWPaMezjMR7P4QTVLtpqKircrKW6qmyRnjTHMY/nfB5zDh9u5U/PpAyQUwIZwiHVXAxSSl6bsojIWcl2SVa0MMEjZ+QRaUQhwiK11WelBib929s3VSVmC1Miy6hScm2tgBf3FplWOs9px+NpZgwItLXmp3zeLDRs8FMTgEQeNg4fk8zJHB4IcHINbWrCTckZlE4CTVBrEq77phniBlE0bsySEXNOqjlCjZ0JYFawCO+9n7lBbdjm83GYV7U1cyXtCEVsDY1zBhuLRVCiIBeImMBBLBCwlOyQhQhba1trBawq7Ll0sxlpK1GagxEsySbJRAmu0VFWB0MT6kEWSNLH9OSdoCkb2oa2U79L7/3t+/b+7f2PP/bvP7b7e7tt3DsJR1YTN/sZ5ooVlfnXRRQvf1AGL6KvhfwVVP2v/+QLadFvMZ7ndi3WCAzVabIqSpTEWURaqmYmN0vbEBviID1aa/DdkyIsSgRds6nkhOeKN1qPzlqHV0NDURlIRXNEFP8YhYgqkyxBxgyhxaeVAD9QO3VBJDjL7VU0nizI5dVWSAhaozQBaqsvVWcdeWaYCVC794Jcvx8oWsW1L2QdnQGqX9T9bwhpje/KYHv+ZqXEnmjsxFVMxEmRyfmFuL5etQ8pFPgKvOrH1UdeVuWvcFSsj1atb3kl1xARIpa159rlngQWNA4AAIAASURBVJKnEqjxK0Csbw5KgISJksBIZp7k5D6HHc85nnMeZsN8MBHDoVAlbaSSzElAhnOGIJi5NVFppdsKc4/pc4z5NDPOrCsEfLZHREDANSU9B7xxVvcUbRsR7QV41UISNs/E0KzOKlpqOWIGUxAyKsWSlk4x0lWanb5LIhJioFCRMSDchFkr3Kjqp/OsMlxnGMmM2jqeJIMwgZOWb9fpy8JKK8M2smAKzs5vImLOTGFmP/PBv7RrhBXatC6DkgBlLkXXFwDFGWyGKHiPL8MXp5wmrnoJnaGoQGutHvh/wV4z7Jw5Z9GkARLKmQFAMzuQ7K3CDetdq4ho6/t22wGMYQBs+uuGwf20CYOWg5YqlTFkMlVzOVFrrW279k1EE1yyHorkpZBcQqbKzvVqUKpBXSSRR8IsVqRF0jHnMDeP6REiGRyJ6RFpaZhJ3dNTNos9o5IKiWLldduINHcjCuEQrYgRzGoysBhjjOfDxlG65xzhI3JGWFZDA6p9Zc28BZlcxBlTID0GAbWtdkFkIDxyVtsgCFidQdQaRNAf5ARLUCRJhmRqItHQQE0rCofKvR45Q1iA8hJoO1/avpKTS3TRzopS88Nztba3trW2iFKLISQMre/T+9763rZ+u73tfdv3fWt7YxHRAIVTgtq2sQqdmI+RTTnz41PYJjjJPSqezJ1q5ta4b20vQzpkOjmTR4ZnTB9j+udx/Pr8+PU5zKL1fd9vrTWRJuJJ7iHOVMCr9O9jzGHHZdssPiuDESBnYhbRJI5kTy1rykpXhlRbZD0wKkM6acbZDSUCwAFhJhboW+vMTIwjwoLcpggXJhLmpICtVY/MxuNR8vzCjK11XYoxfz6frKrqhGpjPNxGzFHi+vE8jsfzOJ5A3vrWpG3brtAwrEDiqCpk9K7u5B5NeNtuEeYWMW2M8Xw+mcR41p7Z08Epkq1jTx0ufVBvTICTi4JFWguChHvv2bl3CXeaKNvCHE6igZ7SO4gzjJiY6nyDwm3MrulhkQ40yoqNjV5XobD0DeHkM5NFqAk67NSPMbFoImdMS0AiAem636W/9e1te3u/39/7+7/u9/ft24/97Zve7tx7CGcmSwsWZrBI0pmL/vVQvv4b5+hvpalmUk2M+cyXPgNUVxp1rp0xvTreaZFMVLv/V4amAFZ6IZJFR52v5Rym1hCbRyQEJAxliGoXOYwOWhUI7NXMSYilCmLmUufmGKP33ho+n8d4PCNIpXFTc5Jgkij6yq+elhoLZqiyagO0HsvmxkzKQpRn1StqNkQUvN40KbNw1SkBZzld7fzSa6AjQWthqxjGawGjNWuL1/7Ei4VaC9hyghH5F2iqv6pt5CWXpkL/l1T/K4sL101LWO1D1yp7/dhy3b9GEiwRumptSOhUg9VL0OiSivvKXgDC3TMofGm8IDV+0oooW5FFhWyIlh7fDeSqxRNmhIdPPx5jDBufbtPG8/H54TZuvYV7fRMsJ1SeCQnOEg1SdghGUnp4Rvi0w2ycLNyiW7TRjBp+MWf6ArjVEk2VrigUfgquJQvStZpAMZ2BGhEqAlo8k4K7qLDU3HN1SxBYIFCr752ZRbqwoxFFkghlDcWq+gsAIt3chFsd20w6qSbNzOHPumVq078uJ1A555OcofrS/1jYfyG1swcsM81s6x2yQHZNHs2siVyCveKuKx6yn3a/SlhYJByLhb1u5NzNwt2yYrfWxXO1uIjwlSjmK8ysMBydboaIaLK2OjVarfdv7nX9iCiAfd/n9EwI23Ec0nppXUp7c7kN6mKusw9pUjPlAmDaIgLTWReq9uIFk05mjgPMogyOCMuYHpVLblUzSWv3SMTm5sluswTSh80xhrlZuJkdYz7n4T6JU4ZA2m2Y9tY+mwikQxtF2JzDi/GiGlAZS3XisYhwUoHdOec4jnk85/H0MWNMn0aWxOlJ049hD9k4yD0tyQlBZFSxbOLMzMosbJnmXDM1swMsqsyK3qW1FHUREiVmUGTqklNyCFqDi6KJNIFmps3zgVwdcMqt933ft2IQZcX95BnfpaoVz+Exa2PDzJHJrIA/Hg9mtgxe9PnaPNRp1b5cwNKbEBSMTY5hGyj227UjDTMmMnsbz7m1fYx5uCFpzrk1ZcHlJm6irEnMKp1E5hHHmMP883j+49ev//zHz8/HnNO3fVr4tu0iQ1U9dlWNJhE2x+fn5+dzjHnYmE/3+Xg8Ho/HGMM9kQxSIePUpfZO5qrI8HSzTH4+P90lKcEiTGYeYaLMM7M2/CJ1DCPAAr1Jy2pQMMOcnMnhSimgzAgHyIgSFhSJSE4WEpzJQ+FkM+Zw7OfIpiqXMySDMyIzps3nMZ6HTRdNr9ajEKpyG6+WRFEGK03x+01aa0LJguMxKzvk169fIEKy97632ilmwAjOkizetugz2wwnY3IW4o6+rQWjV92Rp9YqQRmZAc+Y4Wy2OGEiZMQ4ZjhpbxvTmJ9jzGkZYYlWeszIAKUwwKq9JTU4MQXAqgQA7kFcqnz3nEEsPUnRNm63fnu/vf/x7cef799/yP3Pbb/1+1u1IkjbcFqNUpRYrpDd8+H4V47q2h1yrh96aaVrBf9/joz4C9f1Bedeh1knLMNZ9V00jYawIiiTQ1U7uZHNECn9OwmnCbgEYKvjvtQkFEnEyaU0qm9JrRUgIBH03szcw4/DqzOQCCICSkqOrBARVOa+ohT0FSZL0trL5oxVzqikk7KqdIcvBFMq59dsCAGfPQdZFZcrSixfCYZ6t+SUcJxN1WuCk+U8rk3/FzhbFAsh0y4Ad1U5XbzU+aiqbyi8yhy/RNMvVKUD7XUKeWGs6xu+iutLv/XbaKyGG5mGasZUz6jZ0xUxxafea8X+R3hmyX+MU0HgQI1jps3jw8ZzjKfbYeOZbnUjJ3M7cxOIKOkMgCAvMqh8gjZG7RxWtUMkSgNfzwqVKtepqqIkrPgoYRLm6lapVZlBUAHXydUVubTaaTKiRrhVpiVMwqtyXVnKt40sdhcixMzTnav0YDUOWbIQkbIgKcwtEo1aa8zCilObdSrnzzPLba8VqGmTQpp1VsKZUGkIrWmFdEcEVw6W9qV29zQzj8p0APNK19CiH373zZxXdbzY0762EF9jVlRXY0BbEgQMRZh7PQN8bT+asghHfm0S6uqkF1lh0acGRyy7qYXXfz0ziDyz6sYjISI9kXR4kkyr5jSB4kXzICLMWoXQvr69V+9r3VdtWxo+knNDAgFzBfd4BNWGwn1On9PDLMLMhruXw7QYtjktEhFkBY8sqmXvMd1szGJeY0ZEpWb8/PhUVWksAm0snTNr6DbLD0JpoFAOAbEAkcoCwMzmrFiBMebzeNo4DhsjnUQEQqAJNnMPmoGKmXBwspRA3gFjoUAiJ9GgHGBjOHOQKpSTzfHk1Ay+cxBKkE4BLr2SkpI2QSVcrZbO2hFxkghaa9tK5eynCH3JBC8fLoB0UlX3VtpNkbKq45pHByo2oNK/fAxzL5/GawpPZFClbXXSpI0okNPGln6MYx9vt9n8KYK08BBQExYRFQgTn6kLRATwNDuO8fE4Pj+fPz8+/+d//v3v//j1+TxA4hEBGm71cOv92XvfxvCYx/H5+Pw8nieN5J9jfpqPiDOuPJDOSfwlM0xkxDIyRohqVgtgMhGpMpEiqDXimlVFtq5luKukN42IQUbFzaYjW4mfioULS4AY2Vgqki5bLV1CECJOcEQlJEkXbgQKCoRU0IqZm40x5nHMcYTCNpvTbQYxS1KA6mYub25rvu+3zKAYx/FYfHiJ2dIj4r7fYreNNk4K8sM/p5nRg3CwHtqn0owwbiE9daNSibYShViKpkeCPV8UtUEuSprJRDN9zA+bsdGuguE5htkE0JJjBXGttaHMW03bBiSlURIJ19QCQUEUlEScEQEJaeAm0rjd9f7t9uPP+/c/+rd/096kt1omHCU/BauApcQeXnRUEBMZCFGrTuKEY5nOpaA6cw1pxcp+Lfv//8CvF27sN2B3VitQuSSZKlKFE2CP1MbpGhuF5ZwmmiKAQIo4UWIjSLIQczkaiAKea69fYnpe4V7M3HuHeDynzSkMIFmUBQn1DHdxnyVKViaVFJZVBRF5DUmW67qUQ+WC5ivv8StQQ6QBKXTO9OqIA6gwq5qL5rXnLyCidIIkdweEyGoShOWzi6C6pl/1YWsWVjE+BTRRYPRlsJtf+p5TDY1qpz7h739JiPgL6qIzrqn+6sI69ZrzuECYcjh7yLKq1SLFflp+qjQpFniJss6UFmfFSIwIY2QTIgqvfNTjl41jzCP9yDjAzgATmEj1i8i5slcL7TGQTjYPt2rorFG4l8cqMyuEprXmMQmSOT2SKUiSz820uwNBYT4FACuRyJK8KwtOSsYtMxpLIoWpxmeNRcpdQXH+j5hEWIihda4BJIGCV0KCbq2RVOGjX5O4wkNz+oV8Xk/BJivSvfD+Qi3rJNZkfKvG7no4LZqqNRGpkJ1Ij0BjkTOjEidFBMBs4lRovSCkyJAXLF7pqV8TvchgIiCkaYVNjyP5BGeXRLKmmb9zrv/ERQtcuJMSHDXDJqMxgmiLAEnGoaqZMIvjmKpaUWT7/qXd/mq3F7aITLawpCReUjlm1uqvy6smj68bIYIyY87lD1g5c6tKcJoN9/KZuns8n8+gqqJCrAA/c/fn8AibbnMO9zlXXBxl/qwdZnJK9ZRQmLvbkyIiZsYAhXIKR9U+bq1p44gqDC11fTwf044xh2UiiRkImcDwHMGW8Fzqv0xJ4iR9JJFTJizIkieaIUzEmQChFAqEVZ68048KnW6CKjcNZUohcDaQIIUuNypBZDlqV7701rdtWyPFmLWFqDQzKZZCUrjcJEFnjAoR9b67z4gg4hkuZscxH49Ha+3t23e3L0PVujNKnAx0YeydmUAxjk+3w/PdzOaMpk/KOUYgSVs92FngETZnZhjYtcUx8/mcvz6Pj4/P//zHz7//49fff/46joO1BygEw46CjzXxnG2mzWN8fD5+jbEuj8j5+fz1HJ8VcrtUH0kR1UZDtfWMyHQn1xqyU1QSa9kOKqskBcgaUsK5Bj+ZoNT1KKmJqYBClEmQV82dU9Ri0Jvs+/5EimgStdZUu7att33bbr3tvfetqSaHhTuBQtdmyCnTpx3PJ3H23t9u74cc0Ui3Hk4pZS8BIL1tIgCHT4zxJJaIeIw1c40Is6fFPeiuTRJ5zF/Dx2GPIz5m/Aw8g5/JjqaQA9JJmYPAG5yhFT6SAXeEu2VIkCm11mks/YszB9gjj+ns5h6eiSQnAtDKtJaZ9pVnC4jy6mniLCFNlVkxgVOULRjcpO3c3rDdpL9Ru1N74/3OytJb1p6eEYSkZJaCylHapipDTqqAzd81XMFJ/1XalSD8F7x1/fb6xTWO/Mta/orHXr6qjPZXwtCyLxEra2PvLAqpYpmWrsQKUYiClSDLQM5MmWCtEXoSIcnCkZdHDwq4ZlvCsiUWZin1GUBClMokoCY1jFsw1OZaAnmFU0tjWWEQX3MuEJHUp6hBLRWJU7mbTJQQAS1ke8EaEankocJKp2a3SKwKDyxvvAcCIpkM9uuoXtNe+p3ZyhcJPK9COibK/MoGWRf/BbxelT3/9PW6Lr7+CXNNozMigmNNuDKJ2DNgGYgEn9lJvOK5K2olV+mYmblPm4f7VEYqIUsOMGJ8elj6AfJrB4x0IqgAIPeg9Op3O6PIkijd5xjTRwJQFgIyo8yszKqV/bFyQ9fdEPhCNBc/R0SRZpZMwqFGUSqvBQ7CiUjB2ioGRYXQuvQmWqlOYxIRiBpLayIiQRyUwFDmaEv+v2373rqqzvATf6NKmcBEUeikUkgWcfZ1/LG2GiCcYeskJ8DqvTfdan5XI2MRUW0Xl1mLVqU14CQli0G4HK9XPsV1AUgrcdxLi1RNjlgW+8DKyhAhVCEJsjqlKgsYZ2TMij3ji0aNyMs6UP9d9kwBMXAG7V5XrJe4yi2C3FPEmblpz14hYZ2Ln7uaRoXJZaRbhIVbOCUqiH4p4dZ1fsYHRhBxIfsZC9ybRQEvREZUeYYVQWVmM+Lz41mQKzODvkb2MxBpddm7m2Wp+93dK+KyxA9x1bP4QRHuI2NwmHBhL1LJ1nRrQqiOP4+0CJvTwzyIwKjGxsR0HMQGLnVWJGdwBHuAgGdmJkemEyIQSQ4J4ZoSJlFYRppV3JCHVYtQEwmibIxUSkEsfXP5f+ApxEXk8LK9fGVcswqbLz/g6QjBKTPtvVd80rWO6Bk6vzYDGcOWWOjj49FFK1hNazd9iXYzCMSUotQ6b3vbDvmObzbmnC5A2EPQ3Km1JgogI9zmk5IPOHjq5GPa4zH+8evx69fnP34+fn58fjyOOadEEqMa6DOTmWzfpz97a5k+5uOwh82xip7j+Hz857AP8+cCSFRdOBmVZ+dU2DY9aiMgJVzMCkooPZdbsEsiJN0EVJeBpYOgbpYIEDWBtUaxdja9Na8t/XT3WZUOrbVb0tQJgPvWe9/32+12v+13VW2iXRRBRI5wKmOt+4plAgrpP/vtcXtsfWf0bKimggiqJ9W23YhWbZmI7PtO4c/j87DpPsd4Psc24wiMGzZVdZnTP5/x87Bfz/h10CPYMyNVUnKWlIc0OYA7hBJOXLd8WHimkHPA1JCHgydYdSMSZMSYH5RGYBZJMtAgIrByVtBn+YbjTMVpSnG2J0rJlCORAoIiW7u97+9/tm9/bu9/bO9/6O1btnuKoHU0RVEyVOKGxcUGVdzRUrkw/caOfMm9zkU9V8bEP0Fav8Ov1z/9Z1jrv4Iv5jKzZcKpAD4W7QcEuAwPJCWYUbBCtML9nY1ECQUly/anq9CljmPxSwxQkpVPJEVk482OYbWnBYlRrWOlWmJKFWZGjRqLnRH+0jwtb4xwLWMMLrk9TpMRAGJFeuTIs1gdhMSpqmOqQdtJdtV2nDITJTZfFuUCYKcUewmlvnL/AQjriwgeF7qi36eH9fjKjHDKjLCqZrhMY18JTBcifD2R+H3Y9Dq1qT9sstbvNZJbkI5UgQwGuXv5rks1sMRDmSfkGmOMOY/xPNJn5AxGKjHlPJ7jONw+S1asiq4qLOnTbI0v60TUxxBmYYYQSNwROcYYPrxJz8bMHJFuSQztum2bNPXCuHXtizIzreQqMK0BR6z8h/RpAc/UQnJQAiWALgrO0iFpMV6iqlqUWEwrTVhVn3Hl0UcImLSKcUSkso8rcys4ozL8uARGHhmhRUUJX8q2XCt0pUJU1BwJEQORKfum2lYAtUgEWW2011inbIm8qaCeeyWxYoBXtMYJ7L6aLVbYxmm2IF6OinjpolBhysVMQ5iILZfSmpAqYD4Txcwj84p8vSDgNRNc5BllKdjKDHG4IZkrbkPWGLFA0kjjrIK4jSGV/aE6paowz9DgoCTISA8iR2YsQvc8Aur0xbfNOQlS/2D4WXDsq0SkIi4zM8IizGPWRKVmi6slpugGX9XdEPlqOHaPiNqHRtaUyS0oIiy8iBwhd/eww+2gGJQmNBixdxalptQat6UJc/dZJ6gpEzNLhJrTYXiSWMgS9wBB7MlBoOBHVFLmhZt42bcrh5qKT7CvCBOSYCEErwzLSEohR+W2VRMGMTkoE+FF3U06vp4bgi/6HMAy22QSVUHYShY6ZQgJoPdelefMLNwAWMQx569fv1ZGXTgjka3oaDBx1JVnnKEce2e7dVWex22MgZxuG0vMiSXXhJk/jyPMQZRBKYLHOD4/j3/8PP7xj8fff3784+P5+Xi6u+YKWmOmCGPmEUe3rpRAeow5H2axqs78+Tx+WnxEzjM+l8vn6GYRaZPdPMKRqSyMtm836luGEjGjE5GZH3rIOIaYwhQmgCBMgoh0zlnOrFqoqrg+M5hBYHhExHEch3ndZk23zp2Y27brfrvd3m63t23bavMFTnaYG6WXPJ+ZVLV33VvvvR9Huvs4pll0cfesjQQTqYhI9l0zPZOYtbVt4Uzyj4+fRwRRPq0ZPVNm8FvvahhGx4yPI39O+jA6LC0Rym3yTFAkUzYkyGkYjXgeNkcU0UyeQ0jCBSMsNbBv28YskLSYZiHkwhtLxsqth4LBIk2KsK/BFScrIBQ1R/M0I5iTRSYauCn37fb+9uNv249/6fe/7d/+7G8/ZLsRWrBE7QZZrpWSlm+fyntDFcmJlWhOtKT0APhSX/0FWuWVe/5PXq/5QCev85U9sW4zotP/9cXZ1GAkKxYmwiv/snKviAtvQRuZkgmx0LJvIZm9IrMWM4uk1Q15RcIzc4Rl3bECJQ0bcIRHpbdgqdnoytbnspDWOrYitMDL9CqV4gmAYqDGpPUouIxgFSeyPE6lOOMa1b7Cl1pczoPwG+5Zkuc4QxxWuESF9hOdZszEpbqr59SXoutcwASgNYxcofDEFZFwSgte3kb8lqb7O55+HW/lP4Pe+dcXEYNDiaN6oKl2Y0A9wM3CzMZhz+N5PJ5jjOfxSW6gDEkyBrmNp8855lMFqiKKvoky+4wSMOvKv6agTCQziEi2Tk5FQsw5fTqSRaSL+pXjKqLSAZhZ+RaryY+lchqFiCJdTq9DZNbbLhPEmr4znX6BlUG4FjuwMpi/4hWYuWvb+9Z7J6JB06LYowS0Zs0AamB3gfI6Ke4zAhFUzsH6m5NCWJ5oKpzIVGFH9U0q9rP3rfCKmUWUyYYIwcRMBGSK7Myp7TGOC1RRFaC89uqeZsMaOL8oGq9R7+IzeOWdKjMnxJPSvHRs1ziPCiZqcqK3Sj/iS1B/3raRmSKSoMovrdMxjy9XSm0mC/lUlC4iWwlXIOcN9WBaafjrrSYSFAIHJSFOQWR5fS/gdU2uPdYxOYFXac/XqwJ1I43CF5XlXoKBTPhKVwk7jQIJRMQcPmfNGY2o5D0xV2s3PHLOivBCC4u0MHM7wh85nxkH5Xx/a02pdbrd9U6dRcCJ9IihYBYhIeIIPIIH8dNlEjtpgpOElRMciRz0+FKYvDyalmEpyNdpz9W/ls7MDezJ6RX5TBRVrcuVzLOe/5zpWVFUKyhgXSgmVgVfcp3ri7wPP9Z9h0SuFNxL9l6XRDkl63uOw57PZxdmhAqEEkycWsw32BEBThHe90Z058/nZ29EGd5sbsyYc3ZtIpwUYz4ypromwT2TMcwez/n5eXx8Hr8+j4/S1VNwsLnDDmYiJCzyaWZPCgNH5nQbhbBjmvkx/DP8aT7CZ6QhJ3ywxBgjgtw4XImyiTTpvd26fhe+MzZQYxYkPx/jkz8ZvwbGM0cDK6WSTc4kV49K/YZfyWzhFPw4nmCe4c9xfH5+Dg8wi7Std1Fte2vbrtu977et31TbuQShKjiY0VrbU+d+s3ns+/7+/p5kH8/HZWa2GUOGz6Q0QeuNe4eWkPAcIYiI9iZPiYiKsZ3BiZE8h332TSOPx/j1tH9M+4f509KcPCmeccCne3BSRjcjOvzxM5/P43jO59PmiGlFrNRAwSxaIoJcRDIxbc5hIN87sYCCwoOJiRuLUsTKbmAgweAKNQ1ip/QUC/KMJCVW5t7272/f//b+x99u3/9F7n/0tx/99o1raRJFNUJkFAY+fay/Aae1wi+ahLGGa3hJUs0VTFONqetPAv+M0XpZyF/HUusHZX4lB+QKCfvtb7/+64gqsy+XIQMq7HLmYAEAocID6Moj+FoeuN7wUjLTmd9doJKJszXABgVBWCpZC06rybi6BmjVp9SkCUVoMZ9gDgxA9QtIrfgBrM+yQs/AXCHNoARZRmkmSiFU3vcaNVYJ8OuhOxMOqvPkfA6e1Yo4Re71zQGc2tILGHFEBdB9AWtA+BSlvR60ZZr83d74AqB+++3rErvwnM1Xxsu9tKFBXCdvrd5xJkkcx1HC5DHGOOw4jufzOee0cVA4l/BQSJDpwcjeRJW7ahcocxMKq8sJ1+7O3cOidgtjHuT5fNpxHGM80yBQ8giJMlhdxQbh5OFjOhFBRURa72Vey8yRKZeGKZMjXKpCVbSJ6Nk8U08ngqykR0GV6tLSMVSmzF9donNSNSJwfQQw9PWAn0A5zKxWptbOgFP+jfSSOgv4OoP12F2tPyUbyjMxPzLNCeVEKlFg3UEr9+7yxq6rSxin+J2wcoAX7iHICqTgC2LSVQFAAuHC+ZJCRGhtDTEzy7RTwQi3/bYQFc3rAYJTU1j6p5qZ1nE4nVxntfZiq2viAwYVTZXVEcc8ZzKducJrcWJipPLy9eEUJJzNEBExo0aBywNZP/GcM5KvwKMC936N+Wqgc94jiDPWzs8bJDOHWZHZduZ0ZHqiOpAPtwxgWowjDqvfHESrJhR+pM/0AznSjr7R200FqmXMb2Bk5MhyimVmzsQkGdxGypEcJaJOpQABkUghW32vyYTamTOQbpFOubiuKq0BVb9ltZMxLwZfNZ0XUWfTZqTX2EYo2R3XdSVmHnNal/MhKNKucXYBL8YoYhhM5FHs4boNT0Kd8sJqJPwUEYS7HRkW82a+31ZiCK/L1b0SlbeuzycTBSNFsG0NwJOpSc/MOY/HgydLaxtBh5FHThufz+evj+Pn5+Pz83kc0yKqM4bMwMmyJuNuYzjgk8iSzPzp09ao0Q+PI6s0Yx7mj8QAD8F0TyIOD2Rj1a3tb7e32/5t73/09t70ztgUGkEfvx5desCVG5MMFmFiuApFiF6PaU93n05RBZqfn5+kEkTH8TiOw5Kq5bRkCPv9vt12brv2re4xfGUiQ5mitcgO3o1wjEfv/X6/g6P37pQi4paTJnAgLZyVe+5l8nlqY1VaZnjUJiYgnEYekWbPIwhz2kO6mn8O/zT/mfJYLH/NGWYwRnqAOC3cdD7y88PH8HHY8znmSDfKLNOQljik+HISLtVnZMCpqSq3iPRIgmV6hZq9UgkVGuQRQVzGjWKla9yGtt+///j27Y9v3/9o7995f2/3t7bf0VrfULKPstgQgwFK+O88BYDL/nauwfQ6aryAV0Xq58JnZ8LEX77Vb3bFf5KnihNnvUKEr78lpiXgLZX/b1/4QrcsbxEth56cS9xfXkylkDj3sq21LJV6Il1qi0kQllaUW2aGW+V34Zyn1DqxsV7voZBY8U9U8aqlxKpZYXIGuZcFwglxuQtREzAi1jItL+DFUKpAe1SG0HXkX6HVygFPOv1Wr8zWmrXGq+D6AkZ1Un9j186l7TpNS1Oseq6LvyHp69entMWuKUy9jsfn1y1fDEFFSDCuIE1mzvNdlc3nOOYYY0wfxzHGmHMia/AcXjwwEwMqKnoTgUoldYEoy/5PDIK8HhCPyMzH8yDPccRxPM0MUTOsrIZTYUlEJixcnDzX8izCfEZSFZIws+tQMFEwt3I7cgne16um0oXlLuRfx7fGT1cEPEVklRWNOeeskl1mR4E+VmYG0THGderjjHqnr5suri7Iv57ukwlbEXkvWJliweK6zC9zIjMvDiizsV6L2dVFwue9eO0Krosiz9QJQOL14RXnngdSw2UlMPO23+qqMzPLkUnM3Fhqla33qRFV1XARbDUZvIL1iahGTle4f/kWL+6WsypZ3C3mnE3UeI2KIwJRtFuDsE+yk8ukRQ9DCGOMmipejFcx1s/ncwnhszrUo94GEUeRUlGEzqJ1xiqbQyb85Vw8zuykcuucF/BpsPRwojn9+ZzP4RFkHz8ZYM7GAXKk12Tu8/OTgpUbeCSxB2+7ikCaJa3I86QZOVNcNLhRSBKXfqECojwyU2NV/JxbrSQm9zEsLb2ijAKcZfiukoaXeoyXfgubs2iIMMsAs4KUaAFlAJaW5GbGJ5K+gNd1lW19XVdMoHWQTVXraEtdKrymwxER3iLChhxPneNp4zbmW2UJcVMRicwLFp/bmXCfmb4CaZnBaT7GEKU0kQgi+DHJPH99/nw8Hj9//vz18fnx+RxjBoIVGEMkPaANSwhKnhmSljRr1OjuFGfGOryuE/M55/Q8CAfTqGoKygagsd769n6/3/dvb/fve/+x9W/CnbmHZZdfTDx8PPFkggpUUjjHQERoKhPxNBtODiERV5rpbnmMxzQbZodNr+kf++2tvd3u27Zr37b9nrwL9s73ve8wP+bcciJn80kJie2Zj+/7Dv8bJwv61kdpJCEcLI85fU6QNk6CSFPmyaRepTfbZjZGjuj78flxgAeIIoYdz/HUgAz8Z/6/xihxAItG5kdgEIySwxxJIsK542h5tOD9P+n/PWADbunplA5MUW7P9NblLeedbxqgsAgjRPM/4ojpD5AqVborszHFls5pdbFP4nBQKvzIRDNO0y1Jkvt++/72/V/uP/7t+5//8fbHv7f733i/Z2ukaB1RAX9JGVxy7XO6FzhzIXmpQzhqk3gaiQhZbXIgIpb6ito7rPzcTED4VIjTivsiIrpun7or3Vcv0QnIro6RyvtCBjFVPF9p3cMpk7Pt6mPzCKChMRM4I8hlG0HiiqfQbGxhbgd7Txwr6C0LGAYxcbJqCytRBboQneMD2Vp0da+erhIQkEoGUGEVqMofakpKUKwVbZnZriVB+CVbm8iTalRiK2F5Y9mIvConwaQAASLKEEYHN3AjADkFTKyAxCpI4aCliAcq6jGFuRXxkEylpF4Fs0xQEKIO+EnIFaKC8DVAeMXETPw61dJrVFrBhRf6j/iCU3apx2glo1bGui2RfKycQ69CWWJJEBgSUSr4es7noJju82nj4fOwmIkAZ7oTeW0Wo1I3BAtycTIow2zkiGHzyJgJSZskUUJ9cioqgT3n9OPzOQ9jokifPjbZU4s2FTBzV4iOiDltdcaBlWSDdNZMTKeNu6dbqZM4VYjIM2PXt6a8d91aba4KJLm7+5j3+9vtditwubWuLJysqo01nYZNj0CgSRdOEpa2CqkvIX+ClyjOKDMIxmjMDArhyp+W1nhNxTMTK9G7RnsXK7lCwpmJMtzSDRlMWekIAlZKZGR6FRdZjIY0FJFTMVcMznQQfaWtLsnbSwUFAGK5opUyV9Fka0KQOWcVG19wf1BaSEQ01d77+9sbgMfjEUTammcA2LZW0KqwDlEKRWuit/0wn0zH4e7BxIIVua8sGas8ajwtEwyO9OP4RfEl/2dmViFRMK8h9dnVbO5PsxlpZjZmRJQ+i3xd2G5Vc+czY40jM8JnHZlSIBGRzRhLwZWVrSvStDcRaaypcz1LpKkqCQMEzjmP6bc53CznwCf8k+bzOXIrUVQKhXKAps2f47DOtzjmE1NYReMxLYS6iuD/3lSkg8UMT/SJW9AOFw9GcIk9OKnGgDTTpYhPRxp8OhlTsLrMZ9BMzU4kCGVum26NvvnsCWKkiIp2oTw+ZwcN+zw+H+Ppx3M+n0cmVNVWqXkXERrx6/OnajVttqa31vYK9CFy0dSGjG/uvu+7ksx5DH8CiKx5rrulxSGrXFQ9NGb6/Dh6329t2GFkR0Yfz9vtJlJxq5ycETZ9mFvEL9Xh9uw9iUKENm3PMZL8mMdMAcBjI2w25Xj6x3F8fHz8/PnzcTzHOKYPcCrYZmipMKdXhE2mJ4XqZ6UAzllRtsNsmFHT3Yx9yhyYR7gFozXetVGTDtImb9/f/u3P+79/v/3b97c/v739a9+/3fZvohsgY/ryEPT5+fn58YHx5PGkxyOnZGZqEix9hlu4cwhpZCblDJs2x5x2BtODvxobau3OhECbVCptp/H0aU97IGZFkCfQuxK1Ptu+94SJ0wxnh1e2vlMEUTonFxvc/wuFT0RyRQgaiinO6RbJRs/IOSmCZqPuSauZSxOV80+eATcahx+S08bMaTRtBeDGDKI0RFB2V2biJlsTSufSSHESVy28Z5rHAE3QDKcM9vR1PBJOHo7IWmUJDJENeuv7fbvd39+/397e+36X3tE0mPM3WTQBQFbj3cnHLJ1WvnrbKlr9/HVFEoLOTNSLfUEuXipfgr6ur6d/RoNdX3v9g6+vOimwK5X9a+t05k1xrTZRNUGbtp7pMqb2zWOqK1RTNVyILwFKIoWw/mCN+bEUX0SnxaAYAmR5+moOBoBBoDxrwcoCGLXkXOsifjvIl2ruLx9/RXyd/DlWPD7/5kerA1L93uvcACB4DXyrY465/PZcYldmeu3VrnWG18DomuvhxF78xXB9harh/HevAAsrsxtn6XZeRMs1KTjPTmGvRcaUh8DDI8LcalsXlBQtiCDuriFCFDUDM6daXFXVySXDPQVhFOAquGRl4upaqhx4kHtkzLAZfpiNcFMNRFYQacloEEmBamapVRDnR635CCDEr5/7QqJShEdNdK4I/voOEUmrxifLfyzVGihg5kjjSgA759qtNUCIRnowa0H5Eh/GlWRBRBASvrI6r+lh+aTqxrqMFDg7uS+MdYkBvoSBXIOV16u0Yo3O1Nz6yGfFEKoR7C9M+3VkloU5L3C1fiKfsSks11Di9bFDrKhOG1WCVMqJSKNz0irAAEq4c9UN9d6r9IB9mTRba5kpUTXaSzAgIg0r2YHZvxDnssiug+EtM5NFwpMFTuEeHqWCT/JEOFiLv8RXoULWDu6q2ixZpacnleTLzIe5G4VTutXVMonIzMcYVxPlHP4cR2kChdu2VVSvqLZv3+8irbXW29Za46bMVTzhK3LCMI58fI5fP8fzedjxi4gonDKUnGKO43Yc27TPyAM8y3goVKMhaGusxI1JnMAuCHx5Xc/L3pdynYicAkQRGRwW5EQBTo4AEkLMxEK9vrdAr2eE0Hq6n+qFvC7aOedxHD6cmX3R+1P71zY6s0VkhkQAJAW8NDOJG48zzK5ddG+cEXHrOY+Q04fx9DED08Y0jTAWyozWWqbzqeuobA73OXzMeSQ5KzJTgiLcyJOmmUUQvIyWCYppPEbMYxzjeYznOJ7HfJo7C1mikSYlMxHOMs30zOTjAYACHiNiRk4zt0nH89MtfT7mfNh4hh/KoNaYO6kydUCEW99u9/v7/fZ+u936vm19gyilJPH9vjsleGytd5WjPx5NBDyEI0KNySyf4eaWWJWEFj6nPY6nmSeotgJgi4gZuSjZYIQKcePWtW/SLD+P42nHL6ZZUjwoOiRI2kSfmuhsmTM92bI4XjJPJHGyhU+z6QbjBNVtc8bc+ckxSqZ4ujlTOJCGrfy4bEF1CClJYhwjxBd/FCOO9M/wIQ/3sIyJcMR5mTiS7EhYN2kmYBVC1OMvox6IQUFhhCn5DNZMi9RYUd5JsQyHGeSgIGbput/b/v3t/cfb9z/ffvx5e/u23d9SO0mrYOwoDH6u9iuQfjHe9cKpdr/AFp130GoVXCFnK+SpdFRYXAtRktNLM8//wuSIpUl6+XPypKTkTBPRC3sRX3O5pfEmKdeUEKfQDhrp92RSczHXtMidYqPcIlqu2T9QaRJIzlLpVoNLLTF5jiwDWbikog4LvJC7r3iIgqqMyi04JVBXNnpZmitGAV8f84z7QibA4Ip2FXxVkiUxmBVAQs68tPpKztWnwwEGhIhBxF8OgQrCrJSLr8X4BF6XjrgA1ZczPzNLDUUvOHgFva9L9cpJmov0EjqfcRec/WoPfDmPpWsJUG30M2JWEHs1qTiMiNPOiPwCmpmevJ5TnCJQZXK2jAxigq6mSyC9gk+MarRjcx7j+WHzQAaYNpXUVE0Qu4d7umXEWUxb7JeoEBORkzullGOjoNgF/0VYVVoj5oioxO0SSHIxs5luRrDq260hMpfNA4Rgo9OilYTVr5DhFAhhVuXyNtaUdk11VViVajgoi3Q8z2pzMJJm0qnNB0Cqv3FjqOEQpX9B6+Wi55fM2yr5oXOmDAAq9SO/rhCipMBVwAqgsgHqQ32J//JVl8l6mnNf3DNExCK9f2lFVHohwrp4zGwgq/taRFrTJqhxIctWfoiIECbVSsyXXEa3ZSwgtBRKIVn7kQW8PFe9Rl23tVOIsDzd+qVTdco08wxpwRDhXjdSZq4ma6tETgflKhqrsJLKiZhjWAnfo8gF9pXpdRzH8NUCZWZzeBWg33ZtTe73+7dv37Zt+9u//KmqvW31auWnE7rKttwxR3x8jo+Px/Nx+POZ5aidlnPYfDw+/z6e3399/N/Dfs78VJnKQwQiKcLaRZWkZbmxSTg1AUriXKJPPyOx16whgyKI1kimumcVTpJKUEGX7OCmrMqdQ7niqlcrRN0pZNfe3iPdfcznc0RENCHiske03rWtE8QaHqyRoKro9bLhTzdPJ2RZBWsOGFhU63WlOQVTBmWVD1kEuW1mC/PZCD8AiEAbWhNeR9iP+UwEK1OmeQQsaSaZx9OS0jID4Anap4vNfDwf83iM8TnGc9r0NCIW4oQjFvCKsPKTJrn48zLkIr1E+u55PHNOO44xj+ecT+TYmmbK1jfBm7IKb8J9397f3r7db/e3t7feb6xasexNKW+dhW7bn/e+3Zo+tv3R2856HD0idKQfYY85phtTlc/TDH/Occw5zJjVIz0DERY0vbbIVU3WmJomSxRFHm7D5gGaCVGVFAYxVy+AAkH1tsyGZWRK+FprK3wiyY/pJObViGgWWQlmISKswqGanMhABHlkjf3c3IzmtCBHTdGGi1HOiAhyyxgjjvTZvGqYK3+fQUKQYILBAUwyT8uUUmEkwSkZxLX3CmOaJEY5GC3hFYVQsc9WMYGkVZfcZG/799v73/bvf9u//227f2u3N2634LqxQEUpfIGirzKfWHkSC3Itxuekss7t6kJa9S+p5JYXREumMrDwC5L6Z6DrFX4V23S2CcVpU6/9FueyGr1mgCGXdEfW2MxBFOBby0nCPahHEIXDEA/OEfZIeNW4QS4Gr+5SJbaLvqmPJoSoSNmqS88kEkFlel1EHQFOJZDirP9V9+AFPqptfJGCX9xenFtzCLiGMIufuJqwofSSa1/iemJOVOIRA7LyFyBgBjOYKqWpaMyvhZb4t6y1xAuiKjfxImN+43kiieFeooRz+HghvCtnlQknu3Di1695ZS45c3blpRsmRFaAhkWgBo4RKw2OCUmOyLn8HQFe9hvw/4+tf92O5EiyNNEtF1UzByJIZmZXn573f7iZqequrmQA7maqcjk/RM0AZk8sLi4yGAQcdlEVFdn72ylcQBWSIrGFwW2mU2ZOy0yPOV7P4/Ux7VSmvTfZd8BKc2gWNmOM4b78ku5OUGYNwG85DpNkNVhZSFil9Ah92/q2EVU7xK8buki8gQw39wkmbh5NMhhpBCUGIYoChzVhd3cvqwSztt5V2eZ0T4cnMYv2vrdNpbW85Op3yUxXCsrXTby07U1YmKrZxsuBnLgtyfW6rU9R0/vrZt39m0vntyKy8+t/XNUXE11zt6jTPGc5iMGUf5Gy4bsM91Z+fW/OAWit7fuuqn7BCCiRakjJ5UIiwFZgDfc5J4XP64RDRMxUusT7tEMRXKDaYq1dmxyCwU5E1dIjWnnYUSZgIiwzcsy6RyKMMikTkHTBw4TLg1TlGyUyPAiROT2GxznnHG7T7ZzT3ekLjGLpyIiS64qSsO7728+fv//973//b//473/729/e3t5+++MPVV1A0cfW2iUIpi9grFuOYccx5pzz4zCLcZzH53E8X6/nx+evx+v5Z2/tOLfhH6kv7k/Rs8kUAokke0pAQjRCSvmGoEAKyLl4BpWzVg2AACZyIq2egtbQCCrSmFVpFzShXViVtGcXbqiWdJ0NHBlUFZiUSQgMcDkPiqtBKu7+yExoBLkTuRtDNZiEhZqW/RNzDuKMNM++NVVV4nUUor+A5biObb1v9dQ3ZW5Kxaszf70+M10YrWnfuLWVSDQiCA5yj2lxehyWM8ggK6TCnJAaaeESwdOeM87ESJ6kLonkhLiHRwY8gHT3otIDeAAEVlVlTyBzKgQBY59wN3udOF9OiNzBIpRvTX80aZws/Oi6P/q2bdu+td4VBJvuEQRWCeokaGQd9miEjagR5tEyUz/GMcZ4jsN8cohAQORpp43DZrFSonJ9kJ5WgGAiabQ12hQNITD3I3NY2sz0JA/AUVtZof4KdVuyUZvh7lHOYic0UhIkhcEZGVmA1yg+qZAk907pjBQ1ZMAdaTEDSTmJHcTTctiISI+wDKbtDDlnGX3hBpqegUp3Fogya3IiKJIpKGYy5hJp5tpFs3IvCRWmnBfEn4JbGgKeQDo4k93THFnriWjre3v7bfv5x9vPv+3vf8jjnbc3Vk3S0uXUmAxZCWOUX4XXXXkkVqR8fkuM+V421blWMrN0YiBZ454aC/41/Of6h+WZ/37w/RosrgX7G8uibHdpgFxlWS3ovDpkQkxClEyczExBHEgn4S1yRgIwmmyP6RO9GxuW3zJrcRcCETn5jSHMzHoxmKUYNAv0tXo5LPIVDr9qi0rdXhEgl88LS3lViZarnfjtaiw8wBpQfhU0gaWXw40aXy2KWqr06rMJgYsptfZvWRtzXTqiu5AlLMYXUDyyS2+elzECoEpt/hoyLg/Fhau9Br9fLdFcjYR7+/wO6Lqvw91TEbKlhl8ThzUUMPcAueXFufDakI5ZvYcgdgFV8w2RRIQwj4mY6WfYrAFf4ogIszHO4/X6DJ+P3pyFktJLUO9z+nnO8xxmNrwywVxWut9q6Vk4BRMzqkPIJKTURHrrW2u9U6ZPy8Lc5BLVZRKHJ3HkEvDDB5zTOlxrXi2EqI5wwsyO4xBuERDhFSfACXImBaH3tu37vu8Q9rwQA+FRprJVTZMQk2jylw5PLgLtXf5er3UAdDUllxLtKouJIi+jQALOzIR2a/Pzws3fsoG7Mca0QkUJX4cEEKg+G9Gd//RV4a0HTNYAMdFae9sfXdS1OO8JghMgK2ichJFe8ZTC4jFZIFnpTwv8QXfrnpAZFMQJuTzJXKHDicIdJDtVgmAkwrGUj8RamQIVwZkRBQoEXzTnyGCCSh0FGbIUnGFGwZYxhVrQJAgHuyEm5aT0sARBlXvfa+WMagKxNN3e3t7++OPvf/+3//7/++//1z/+8Y/39/d9e9dWWZ+tb9paqya4iFxr47q77paZr3+edtrHx/PXPz8//vz8/K8//4v1k7WxHKO9pqa0VEkh0uSFsHTPAZ7gCc4gclBGCwoEZSLhGUBU6c6V3RdeSUK9sTbeN33r1JUeGl3QlTbmxqSddmVhVoDScNWZdYZk5hXGWnZX97XpM2tdluYVRkWswjRENhFRZWsS0MiiioSImPV8PHZa5rx6i+XKObhb/pDSIIKFAAwzs+nubiPCCNEab7v0riy0EEKcETbma8xj2GlzBjIwLeY0t0CGJqySDg0vat52hBDFWqssw31GiVYz3H3aWf3sTYXQVDZtKLatuJvWe2vzFIKZTwSdsulsyE3waLpzQqTXBRTmrYnWoUa8RQQ5RRB5UWc6J6lwU/Q+qsfw6/icc77GaWZkrCHJ1dtyR2bJN8Aiytom1UkI4ZzBTI3R0mEWr/OMOa6xbphFUHKa7B1140ksw/wSikWAavDLyZmMYDdMJQQFcw1xmEmFmLoGS0hHmwIE0twpzSNAUCTbmfNlo4cf4TMtkjVyOrVBp9MEE7qWbiQzPZkhp0e6I53MOQPIPtUsQqNa80LCUIEItTJxCZGC+ldY3/QEpdZOiCBjUYjqJv19e/99f/9be/9dHz+kv4vuKUrggpMRhBnhS4UVEUWlvzQr+b3QuhfK5ZyjazTJlHnZHRNU/eO4fPX09f/+y9//Bdn1l9oLBa/+Pna88BSrzlt7NhGCibPYqIKanKBlGrYdRD1oDwDBeYz5sPmSS/AuEQm/12kBiNIhmV5t/PVJEqAQlDJsjXKYF00j02uviryADjWtg9y9PE6mi1Dytf1dP1rjdpmt+DqZCQnTuuDFWKAy+hERqHTHUnSBBDFrQu5AQy2GF5Z857qBhDrSoBj7K92Ds+BGS3mGBK1or2tbJS7Vmsi38RDzzSdbE6IFIxBcPI7vMovvC18lpV33/QZgAuCyi12OrQy3iHidM8IjjWBKzNUArKdvzrAj7Aw70o1Xe+7pFzFpjkHhoW2NioMszT3n9HGMYxVeY21+EkTmnp5RbdosLUCmZ7RkrmzU3lS7SKs6Lrlao1ixP4wQFvKplOlcSBMA6W4DKQSpg1QVI5l+nmdT3FngFmBGayi66ra1fX/bts2RqKi+UiyhOuukvCIj8krpWZVQ1V4MoSQsUEhkFLrkMiTWalkG3hQKB8LxxV/IXHmUWSeaFUZ1wZcIlMoczOBVgV3WUcGl5qn6r9yI/4fGi4gWc4syWmtbkybijAxGkjOasDLhIsFOMyKoSmbyiep7VM3BzHz1mONuCXpKxmq56dKNWSWsV5syPN2QQNVoWREeoIIYc6qsIypTZtiN6eJMvT7J6tFmuooQz8kspEOEqAn3prvZsOnuw7yafNv2qAvrXhERtG37+9vPv/3tH//4x7/927/9t3/8/d9+/PixtUehKHVb+WN3GjoAUADJC2+bxBiPPI/58Xh7b/s/ue0QTmzCvcnnwW1ysIaKUyQF6ZxMyeEYERMwgD1kZpYxEWRZj7hjZftkslMGaQJonfeHvG+87/r+kPeN3yiaZBfqkkokwF6vPpJTkJGgEKFUbo1GD5mhW7QRcgyajmEICtThaRRcCZzqnciZ/Qp71oS5qLbVbo8womR+U/mmU1S5zUP3VnI9h/C0McLdw6aN6TEjRm+yz9a7smREcIcImY0xX+7TfJhbZs6wYWOYAZzUkAF2kDJFB2lXMZpmw2OMkdM9fdp098q1GGMUUMaoB4no1nol8kQ4m/PWelMn+pm5Z/Q5PkVEeBNsjfZNHkLcpFOkz5E2w0dyErRRsrgHLM3robMDPilMODszKWVCn+OMCM/q34SNJEFwqGprQlUAsYq0IivGtHnMIedg39SpZSJn+hgvihGLpOBpxm6sIiXfc5tzjjHGeZYs4GviQwHOgNsKAz2YOzEnLMJZCERJLUobx9LAIcQRbGZpjd5JeOQQe252zDwvXHGKW7NXj+ExIoxqXkoMBwLshJnzHDFOZk8bEGZWsDKpiChpE+WUJtpYKjBRaq5aTarwMIfT2sBWw0O57dz29vi5vf2xv/+xPX5r2w9qO7QT882J+NISAUWiKDYpVXz01Vi6V0lBEYtrWkHXdOILbZprFacrz2YlwX1veNz/8H0O9dce2sorvhyOd6ZQ6W2QlLTUY0tpViOOq/aDF5l+25kr8wKZTnb48adol6ZJEBcTcPIyKQEZTjW+82sVW7pQFBQ/kWmUN0iJBelf2xMKj0TVP78vyDr38xVGTFf00lcRs+ZGWIs9JbhSmwFkwYKKll/lCUmJvpHsFYZJJMx0sShXUVhe1UvdfN2jVQYACF+hnJfRNG9lzLoRK0vjBkGt+qlKru8Ggvvrf9fU04U4uglG9dKZrXYjJ5hVJBUCikYhl+x9kVwikyaQoKJGhKUXR40SHO522HjN8cwwzlyfKd2uZbRqVSEWbrFyMNws5rBRRrI5h9lVyMILEkxUN5i57JFZtUi9GatsjQRBRKqETsSmrYmKEjXtG9sYHhNAiKnKt4vjSK5qpLVWTkEC7jB1TUphJqGGghF23URa2qBkSq7uNHGx4rhm03eB++2+ROHW6q59vXTVROa/MGyLiFHP4u2W4JsVHMl0j7buh7q8bQQhJUHJp/TLrnjX6CXb2vedryztr2YqEFloElCiiVDC3SlDmaJMCcQQUlXI12iyt/Y1HI/wWaHvGbhXm/UQCtV4tlAlKABNhlXbUQgJTEoghUDCVVdFRNYGm8mJyiSg5dn1iOCbXgRaz5hIza2EeApv2bat7V1P28wv95j7iASg0qrcLJgFwEy6bfuPHz9+//1vf/vjjz9++/23n+9vb49d31lKWMiiVE3N+kbV0SEGYIQgdqKUx0OZySOmhTllIr0pWJKb82lO4eJOI9iJm7cPj+HpFCcCgZhJI3SxdaoPWiGSUYmyVt8KKY23h7y9689d3jd6PNqPnd85GrkSNiXJIGt97U3JySRwJ4pAYzBNpDI11a7SmbX3z9I4ZpJ24aZLqy3Yto7LCMISK0iKS3bxVVfdK9gVdaWNpXgpl9sE1zMYc7olIj3Nn6+n+4y0MWHRqsES4SRna1okQRZExPCZmcPmGMMiRJRZiZyYhVNoAS82i9eYfA6L6cOGneeY5X71aT5nnUZORQ9O6SUzYKEMzuiUb/aQ98f5/vbH++Pn8/WLkXvXH7tu/f2xvQmhcZvneD6fTUh/Ze/71vpqgkf4mOP1en2c53maWQUnEnut5WqlzxauQX5tsEgIN+3CKpkE1tY6Mbunv+bk88TroNfWfxBCiFjYzAvZ4UbTIhAUKStPMmeFsb+O8zxtzozkslnkGjBfi7JRfDB6ogfNCOPCXyBniBWVsowPmSJT0c+prPxgJ31ongmzcDM7p2+IGdPiNJyRZ/oZYeEtPeAMgw9XGa6Tw3Meu3Lftt631pqKagVpRMqS/2QQUTAlcTKi5GeRXnUIiAQElo2kSX+0/ta3t9Yf0h7cH5V4XWntNeZI8oyvNkwVXpRAOfQqXXuFPteKnXTLZXGpt76e+KrlqgasieFfluoLrY6vhftbBXLjumRBjPAvhjJaY8svO+MtHistOH2blgaBpElCW7YePk5vG8tGsoEVDPAk0fTEwlkjvwlW+MJmEjGv4UNKUnB1vMDMXCUUONJBiRUmg+V6Wvr0uIuXpKjp6/9HrUl0qdmQUQogJuKon0uW3L4uCEOvn5wWwPb/QKCt2Q9FJhK6lpnrO93N0vV7uaRd1RSpAJAVK3MJ0YBFr6kImlLbXKodjYuyjW8dzeuJKiHEvAsv3ChLJoFoUk2DUjJD4gIUCfGkJMumM4IVHJGEoKjGTdocPo9xvsZ4ZbgyUlVZFUiPSKPIum/MSiQUlBHuadOvsJUymqFib+iSkGNFTQtWtF/wPVWFUCQ8koLKECsSGRlQZVVurQkyUq03t5HpXgXhsilWonkEpepeRjybXrFxTVdzH0BTRUU6FrSrHrVcf9X8TtcwsaKvrsCJNa2umudryPLteFDvV2IZTte9qj+wsq4R/K1yWp8fFJmUyLhCCzK5HqhVddXMSP/yKF4z6Me+3924q4IiIjrd1+mPAMCvziXVcCsLZ03MEJZkqtbgyiyqOirC3YuhXVOxr3b1WrYurQ8Q159HxdheEQ6gLA+BFM7XY7qHOQASVhYrCvuS8xszd1EWWdy9r/diNX0Dqaaq2tyKGFe6tRlZ8I7eOxGbWYFXet+37fHj/efP9x8/3va3ve9d99abcOnNZFl2rpWWln1maUEilkuOnNhZsinvXWxv87FFPqY9LbeZ3dBYGlNL3onnS1qCvVRqEQ54wDyTJKj+A6OGsc4Ap09K4hTNbePHg98f+uON3zX7G/3c+I1DCcpoCEWg5MoEJhYKciUhZEhItUX5jsRure1735rMmFXzkcpaAIXf3h73bWXGjVXR9nXYaK311mpeX3Xt3nplQri7KLUmpc6hSIuooxEiI+y0l/lwnzMppDfigLtPis9t2ypjQHsHpZkFsiaUmWCF1KlJRJWTWaWDaU6HsMcKdJ3T55xjzIyw4WaulITQDgODlGSXJl0Zqem7yg/s2/sb3h8/H+3x+eu/IkyF3h7jsb1vfaup/jlX4RURj234trfWmBUe8zzO1+fHx0eh5lZDGsEMYVbinhEVR+juaUmNd9137ZUdxswklXmZw0YAdpxPE8ld5UE/W2vdwzKhyUySkDnytBNCbVPuDsDs9HGex2s8X5mpugHqs0CUrTRfmXnyeDQxP2WKdknhkjwksQUVxIUtaswJgNIpyM8REqy5sVpQQkl2IhoezNEkQTPy5XFQzjhXaRBnDJpBE+qSIQyO0Ru13rf3fZ0XIpsE8ghTkBJRAeUMEWteXuR0tqRIan17gd/297cfv+1vP7S/tf4muieobXuVJgW9j7UOlOfO11GB6vWrkitW1UVLCxLl6JVVGcOi+vkixIw5/CsuzYuATwAxabEDMty/duVat7/MjGsgJRzL9+uVRAiO66Ca95JDDFyoRl4oBZSf3305lIiIW5dIPidEiRtrI5HklhROamFx6S+FeIyxemg1NLmwqKpaIuSsP1onqkVWR0X25iWS4krmy4Q7MVdPomJSLvgDEV1ipOrXIRYGiZhJIVEhJEtZBS4sPl3zhWJMFFxHieOqWGN9uchEEC76Oc3rD8h19ergWMWQO25cRW3P8zIHXftt7WPGzMp6IQS/DOHTB5Uoc5xzTrqqlsocG+OsKLqvcrNWVUiVCK0RRD2SPW1hyRDmhGA0JTCXEbUhPd1ims0zwkacNp9zfEacItS0MRdoJEQpnZ2yYPFE5GPi0avAyAWEjup4OSWA1rbWGjETqypLb6SyYFRZGE9nNlUex8kR5NG7tiaItELQM6uqCCkT0FvTiFbr9Q3oXw82szA3lkwvUkDTtu8FwfemW5Vc1+QuhFIohYGEUbIAARXqwiIcF4r9anqlMLHKLbO7q+E6CtO3f62eVt2dW5+HJUSM0nRXzt2q/Li4yhlV0leCmTKLLuslc3wr+PSbkXDT4sm3awO4H4e5aiDA5xxzKqNrq7WiUiPvcTapzOn7vrfWzvPsbWs6PHIdDGqZcmfisv5EBAoYkOQBYnJghtuMKrOD2KMSOJlVACjhOI7zPCvTOjMLk0sqY4xzjOqfEUVyqiY1FhYwJS11YxJIOOas8CLSNaRf+dbLk7Ra9AvIzq33fd/3nz9///23P37//W+///77jx+/7ft+fs566bQaK+vSMRdFGSDY1zpNdB7nnJHpfWOKBxDhJ/Fuvhm2MzQmSFV4D3YntLaDps3n9BcJnMSCx8yLj1MM6+BggClJoo9hAD3e3t/bbz0fPbaN94f+1nJr1hQbs1I0BoPY6MhMRgoX4p6FWaSFs7Xooh/5FKL3x/7z7fHnn+1t14hw1DELUbYD1W1vdcxw93Bb8gaWtmlmMmsTba2XHXLbNgA/Hm/7vhNhzrlqLERrfc6ZcOJEWMKTcsYgnZmn5RmA+5POSt8ypfG0qqpbeIA1mMziecyCrhEYIqK6td5a69tbsaBP9emfIhPAec5jzOdrnMfkxfqgJCJDDyY04U1l35tmJkKa7oxt237qu8b7+x9vj+fHb8f58jl+9Ke2RqLMBIaBzrA/n58fx+vt8fjxeHvb39/2R6X6Fmv63mSrx1YLgqY0ohRODUqOhHfR3vRte2vCukyuypCgMO7WzYNBhdwfx/m0cCDSJsVgOymQaIRmNiKG2JOZ3c+cJ8eUDIAZJKLm7MFIqsgmAAx2P5lDsNXM3JAzMrKieZZTiCmQjpwcrnwmRbKDyUsRYkA2zkZGmcKpxME4NQ+mmfyxOj0SWw9QQgPpTIEYXYIapXBKWE6wCw4vNRtvpFtN+BxlulFR8UCgISRYWXTb9/54ezzetv3Rt136xtpUewbFVa94QUSWlQ9XMFBNBhOBjCVdv+ACq0eBTImbERBUgieAgc7ChFiJRbgngRGUQcVLW75IUBDGGN/xCkvrKyLMxIkroZbwTYP/DTZBjIUlZ1BCgqGIQJKnS8badYSbtm3bHvL+A/YbxTT7E9yGM7eMpAyz8IxYiYcAcwLOyat557TCjZfHgVjALIxMBKWs0zpTdUbkcm99KVpWm4mI6G7gF+H6X6a0K8+Ha3QoWJVE1cN1I9IisFRfy/d4RUrjsnRlEGFp/Plbkfd9sMv3xnzNaK8PI3wVZKVMu3U5YSZzysJINb1JUbTcZFmxu2O81g9bUiEy4sirK9a/XHg3nyLdM4I87tGtcwY4hKWJ+jhn2BxHmsUYNobbiPlKe1Geyt60tc4iBJBOzmrNMTNItauqiM5Z0W/IpLyG1+tSS1lBr26NVHL0QvcpkEnMhEifozMrS1OuORlRLsDBAohUkFZFymjdjLg6h9/1cL33L9RWb9pkqYVs8UfKeJyRiQxyuGWGSjIxBMoFMonLpJJcluIrw+Aubu5OpCMz867U6x0u7xdwN4HkLsXqA9fsdQ2XywuSlJRr5l6PgfbiqhNR114VVpUUWEvMYr4hchVx14P3tl+djPAwijWLxjXuT75iDGa4OFQagd3CpnsGa+ug1goOUjUUfwszjWS9hL9c2dzBDY3c0wI8zQOWYOJIiYjjPI7zfJ3HnJMimdnrMDqj/IkASrLtRZcmTuICS9zYVQCkjSIiI919WVWEmZjvf15irWrTFP2IQcK0dX1se1ehDGawkipLq+UAgfRwQLlEsUhERlV06URtgWwoDcP8GP4a8zPImKM1SmmT1EAWGZkWGcnhYsHu4eJGTOhmAYTHRE5GMEQSIBa05qzUWmw9t57bHtuGR0fr0bpsLTdGZ24EFSJvs3hpQhqRLIFMQaqCE7QxvM+uZWVtSo+3PstImjFjBTao6r5vfVNVjrT0cu9qHSNX4dVaa733vunWpb+9vT0e27ZtyJjzNOPMyrOjlGqrOzCQE5SsM+Ll8fR4nXZGeOYkBjglTNCUulDj2RgyZ4zTbGREKjqpavRd9rf+tu+96SOJg8CwQ/wlprwxtQzx4GmIKyZBiNowle3cbc7IEM5NGEwsrD8fv6k8lDicN3q8tQx7IJLbs2YI02e6U2AinqabSoqyuMXrHCHENsyTRVpFV2UsZp9wYyIl3kv52MDI5ERj6cI/+nuT2m1AKRKE5OB49mPMnA4f83x9JoH7QUSwmXNIRKMgkAUdp00/3t9exeSgnI2QSkTadPNoGWkTiSRWhQSBksxf0GQUZA+WsGQLI1EVllYuMsCrarbMfyYFMTKJg8OgplYkUmucnWIXEdBgnAxXAa4dJjnQQFq9pxEQ4UkSzjnYGBNk53gShNAavzelRPNIRgoJWKCMIKRacpAEa9/3x+PxePvx9vbbvr/1tpO0qn+r0InMqLNXBWyjEVD+muWl9i/7Eqff51cs9/+1cVaKMwMiEIgABcA5PWp8wFxJRHeYxnUsEwA+rvUIyxBU0ljulSRXZwJkLJt+FvelTtl0tdwXISwLvMUMSXZyBt2HfNUW/U3SyA5JP8avoM9mZE6a6jYi54xB1IiiLJnXLC+EKGBI5DWhJaGas1GlYnt4RR1HeACAVrILVaxMbQDka++pDMVMsFwwrSSOWFPIMrjy5W+8iqqscO6a0Exftt7VmZNlZlxnaAokebgD5EZxRSPfNM6rkL3qrb8onQEwtW/i969YxoioB6FGXL333rsql3I9MxMzckwbtS58l1GXWaHcQ11bDZzDM2Ja5LAwp0Vzt0U4y/AqLNl9wOY443zZOWyeNkb6mOPIPAQmkq1pbylCCSb7Sids0q/wADrOs352C49ifjGJCHetIYWqkrbVTCCqjKYaW1SLwsMogG1ryk3UfTq8iRDjKjAywjIrbbG0JhTzC+HGzKrcr19XVlgFZhNlZKb5SUTJipQaBoYjwZHOAIREVVDOkpKlfam4rqnh5foslcoF7M24AlVX3SnXAapuCPM3gdeazhBHida/yfYhVL0oKpqr9tXrIty9w33ft22rx6ZansgvUeDdfCUi6j0i0t1sPXKW4XaKSCIhXMp/R0qSB6SzJ2zO1znmdCT3toPpOEaYpWXZMCG1H6eBA+EZlBRJSAQkCTOGJQAnooSCJUHT43kez9fzeD6Lla9c8aw45pgW5TeHcBIzS7BY1YWLl1qhQCDCvu/BKwIoI+miZlxt66958Lbt27ZdWJMZESLcuhCn20hKFEEGFKBAWrgFmKXYsZxJwpQSpRfwrCJ1jOM4Xs/n5/P16/P4dZ7PyMlCyurJCI5AJDw4UtI1psy0qZkNIMw5Mx1pkpEApQczIcm7mCj3Zk1l27Cp7FtuzXujvcemvCltDGVWhZ76AQWShcivm0FwJmKFECvtEdH77ol9k8P24QXyH8cY063CNx+P7fHW9n1jyjB3dzgi0lwzU6Ttbdu2rfe93uXffvzcttZai3QiZ0akZYI8kjOQM87058wTHB7T4nP687CPY76GvyynNrQmmdR06/RQ2hVO2eYMmxHGEsrSNfaGx0Zv7/q2a2fZMmGgyKk5JASuGQJoOI3hp00/vRpRrcVv27Qz8gQ7N9l2ZYE03f/48S7UC8PwaI98E6YUaRPH5+vj4+Pj83ie0z1mnk5Eb/vDoJEqNCRfDSrEWAL2MM/KDE0AG6k0JSgLd22bKEMk0Jk20be2CQjpBZgmIgYDMImcc7oNexnlhLFtIpLmad4iQkgoxrTXeZznp9BLhIgz3JiiqQhrU51TJpLTA8zgJFRs1qTTOVJSyDPUiQwSSVp9UgpGRhzIwQjhwHyuUHUmmMhktZ4QD6UQAWcKRasQGk7bpbsb2wxzLlO+EwXZGQ5PdZaQZuCT9WRO4wNBSo9AS32rs2GGdymkfc8kRwW4MrMIN9Gufde+i3ZmyZJqEd29rcz0jBopoByIWesvFVgSmeM0XHSsdTRLZKbyIlsusTAla8GCKACbc8w1Ua6N2oGbc5jriLa8RQX9CvpSZNdWwUs5Ikt1hUSCObGMe+sUXeu0h2cxxpaLuELWIhdvggJK3Ig7SWfZpb2Jg86UBoKClXA6wKSUM4kIM5OQDsgVlvvlx6RvzCpGphAnktgY1VyS6gWIXJHApT5LLNarXHPHtfFUvyoCV2zxUu8zUxZNlRdZa8X+6OJRskiN/UrTVTy62jQ9I8LWTOIvKup7vokVZke4yV5XB9TvHxlABDJX2mwEgYnCmdnMxjhEhCWqeoiVhgt3i7A5vS4afRUlkcgSHCx3nmcVXiWWmO71aBHVi+/E6ecxztc8Psfz5fMMM/aInJQnw5lTlDYl4Uzyql1Wh4a0tabSImKam0Wme8Ddh1tmSlNWaVsHc2ubtsasVAEAhPvCElGtWOFh7rQV7TPNBqWjNVkZbIX0YgAcBDRpdD3DfAUmcu993/dta3fJxReifanivE4ga3xU/HRKxoWKqPMG33HvfD+ZVIq0O8Y1wLd46255Vr2VhKJFrD7yKq5ARDUEKScvky4W3U0MuaJIa4imhVNXqW5uff3Veei9zK1EZDNWt+87ke4yNlPp3SMCfhfr042ZiZUFFXe4zuBJ7nae53nMMX3pGcBIRnKS1Aclqi57WNQ5kwLwqkw8InImL316GceZPeIYs6KBjzmUGAXL0JbMfo64LpUw03r7JKnW3pjhw2b165g553X2oJIb8BpZ/lV1d1+KCHN3xGnzLPF1Eb8CiOQgmSGkdU8RoEzLWG5pAUCSK4dqnOd4Pl+fv359/np+fPz5fH4cx/M4X14i43QPNzeUT6rm2L4htyxLgcegY5gzESOJWCgZUozuHIIgkU7eaQqkCTW4qmySApLixQFAwCk5g69KO8sqUTjNDICUiRsyVZs0IL1jI5mTNXNGoyBDFV6y0b5vP37uKmRjzuO0kTZDuCG5tfZ4vD0e71vrrW2q2ntTbcpkNhlAWNiIdEYWgizjnPZ52CvynH4c9nqOj+f5cdprxglyDlJnls3JwtCTQkiIWbWnOqTl1vWxtffGj04P8UYmCzCbaaPahQuIGk5z+uuc5znLfafERDJPs9d5vsY8g522fd/79tje9oVIZihn02orNG5PqmNDGuUR9jzPMc7MLLzYdGpgCW7Eu3QRseHuMSwiQqRVmR0JVekqsrW+t70RS1Jn2YR79RRCMwusGGsYwGLsiHQbI3zE1NlIGyw5kSxM6vDhYREhdM4hQcJwn7XfqKiqAq25JySgJDzNIuyc46SXxDj8pKGkjbRBlVgpkjwyTsRMeyKtaWxN4VabRGGhaQonmkhwxRQzwJyOONM/Is+YI23kNIRVq5+CyDPG9PR0N7F5TqKhGkzOjGwMD64JZyEbkmeCSFeQUKCIvqyNtUnrrW2tddVOrNfRcrWIqsPsgcwIArldZB1KL/Vx5FJ/Ia+EXeYVCeJepoRFwAIh4REcFFahyG7xl4gZSnNcERx1tgbAy4addOmT7r2hVGtAEuSWAzPxorWvP4aCX3hxZlBTmVXPZaauhhhnhidFSqR4cnBL3qhN8ajuTZAYM+ykQCAiqlaJmoPVLlXkn4vgeuNPlx8+MzUimSyDKK4eBC/42QJ4LZRXlZ58HXyTKZMqbFpEpakoreEXKmhRayhWDk8VXjLwejFF63NgaemzfIFrWkTRLlJXfsM61Bjt+zX/AqvSVeZde0PVBKvbwauPElHiHLBYZbmshhkvC5i7m1ewxsK21T70+Xqt3ptXsjvclrqrag8uzIHNDMtMsmOer/M8zQbcEckIouwiiWBJYspceFfLaNCrgFVVZarMeI+AeZhZ5RmTsCqrNt5aa02ls7ai/l4V6nLMFUgRGYQo3kJRGDxmmmfG4mUJwS92fF7HFebAmtWpSGtLgNJ7b22psJkoHH4ZPwmR4AjAkXWuyERSk15RLfXY1JS5pD3rJpbgMpccc1hkrjTA/Bq9XUmrkWC5PblX6SZMTEpElB41Eo0og3mT1rW1xlJPY+9dpLXe29ZVNS8hpnve1SRdMHqkVevxWhGu70i0sKU1DVna6eJOByexZk1GZNlJYe5mcQ4bNiOCWad7Wgw3cwcg3KS6qhGBnG43AMcDEWG2GvCOVFaS9cFqjl25mZmZQtyUW2fmigfxOgCCo5C0wUkEM2YuXJMXIJMiE3POO621pp83EOd+E+tpKbiAjZmBFHKf53g9Xx+97euEUoZiAalAm4gSa8AyCBQVzJAxzM6wES87jvPjz8+Pf/75+fFxfD6P42k+vwHzzHyaTUsDOQtlVu25KaVhzjmeFiW6aKIkzEkcXCFePhuDwVuGkjdAQQ3ekjiS64DmObGi1cTYReqYt04O9TIRUV6wX782gBqcfu/BU51fmzKTKG3l/IuEOMiTEtSYuWnf+7b3bd/fWmubNlrug3LY1HjW3GdSeX3mtNccr/P887DnOT9f8/N1fp7zcDZqIKR7uofuSmYZpwu60N7b3pS1U2uKt13eHvq2b3tvjUjhOWdY+Mwc00vdCkdYnOd5vMbx+TyOFRWVLAx6fvz5p+je9ve2/b7v79u+P9r7/hCqsM6KEOXqQBHJDNp6vL9HMn3Oc/z555+vl7u/zKaFWey6beCeOsUbyzVnR1A9tBgzLV1VpIl20a6ts2iSimwq7EkIZkDh09IKiMZN+uRUnokR5nbOGYIKMkVjyQmIRFLIJoyNsxdDhCmVQCS97b09zkkbCRSRZJSBOcZ5+uvTPsGEk0lYWpfW2raz9vDpJxLudoSdnKNvMlUesMSkIm/O9ElO09kmn2c8T989PzlZYlB8Cs60mRFIo3DJYjdIJsEGp2WY8xg0QCfIsoUSl0kvQZ65wpCFMwjEyUhaIzyuZX1/25bAa2ttY2mxhFhXoygzAu5uGUmhcUcBwiPdwtyq6VUH6kynK3kx0y2v1KBMJAKGiATXw2TukZZL7lZlELt7RKWwUImbM1Oyed4YJ4nr/HfF1dRQDJdb8avkqs5MZtzy+qSof4vlzateBZg1wOTJ1JIb0ZbcoRu1kG1PIOcouSBL2umw4OSkAtQ7IxIILHoY/uLXqw5ctY+KB8QRqaC8hgmlt6WV2Fe6n2tKy5eZgfXS6NRvSBlkiFGzmzrQ5yKHURJUe+183wM0825AXvrxa4e7oBLXZKdMYXQRz4G7lPz6UmuoxHzXWBHRWiNZU8V7qpKZShVwfsMLqh2Qy7J32e/pIm2+Pl9X942qHo2Ag6pNVx0yCncbaTPhnMWyjnJXkJQggYk04fUUujsCmdMTG3cRKWtozWEiwiymmbsfc8w5PaNBtO/aG7dWbwrAldddg9wCp5fYj6mO/YAkCQeWPC4o3R0UQLtficxE8Prf6xIXSr73vrWt9d57TUNy0UUI8KtWvnykUXXXCgpHQNtKGKuZPxGEKYk4PXIpZ+9WShByFoed8spSJRKildGwJoz1BCXXQLPkR+UHSc4Sonm6auva6mPfM7Jte4hq771tvQjgeXnDa8+sL08o3DzuQj8zV/uKqDzACcQ3iMXKNMSlhuBU0WrFRUQFa845LaO+YwTM5hjT3EWK708VobgGr9/eEfcVR83MQqRMjAwPd5/nOcZRn7+L9tb31pXFV9hErolzIiM5ws2YwxuYWUC3oOKeENTrw0t15xYZ5iXhrwtyl19V7dUpLiLO8/X52UYbROR3rhBFKmvbdOtSst3MsrWbDZuvOUcVXuc5Pn99vD5er+fTzmEWcAixAfBiGbiHeRokiCHEydsGjyR2hA8fSLn2i9CAwDMC8JQQ5oZs6dskbhCHzMxGlJEOh2eEUdh6B9UaCNSKjFcLfCVQ5DoSSCK9Dv8sFWexxuFgoppRa0Z84SSKoyKgFIeUVIBZOTnNSTrAFTTDnCliUsrbovwfxzzMjzFer+PX6/g8x8fn+etzPM/58jRu3KVRBWykkcE9g8zAqaOJc+dNt7Ztgr3R3mXb9r3tXQWRPt1rYFxtrRmLKng8P17Pj+P1aafV1MqZLePXODjQoBvrj/3x1vexPSKwbaqqj960gfCIMJ8RgT4+ovfKl2i6WfjrOE+bY1paUhLtYFbKhHkSowkRiXRmYlYwgxVgZRSw4D4GXb0S4ULMMopnN2L1DK5UL2InQyAX4Yoi3LL6rlFCxiTh3ImS4U4lBmduKr01YktzihEZZmecZzxHvA6bVBwkJrEh3i1c9Yy2UYbHDDvdDsIcRkME6kxeLvNx2uvACDHeP6B/Tv44eMbGyRre+dV4Pqp/i+SYBbFDCoeeMzwDNM2m+nA/w731ZDQCGlGlR4p5K1Y1V2OEmIIZStS2bd/748f729uPt7cf2/aQ1om5UFeVzGgRnmFRHcEZQOZZEsWIcA8bXgtTWam1HBteLQQAcDhfzEuKtCySerqvpAy/uNG122nqN4FR8d3vqQquULZZwB0jItIqs8rNlFlwiIjCg/HdbKr/6qCGgCPJ4+7c0OW5W6WGAtGjbzr27O1GWxkCaVABpAoHp8JBrIy+Qp0EXZFBuPRMq+lFfBOJ1jQDpceqwSuXLItpbRtLVIy1ld/Wwa+qSJgLBEsQMKqjwVGyMyK6Bkwrf4gEcf3IiweBipmsyTKRLiPjF0YVVxTMVbflXyAX1yS3aIk3M4L1ygrMFWNAzJKZqlTWv7uzVbvJBeamzLQ0M5vDMvN4nd8bnzVa9EQEqpjjDGSkn5lOgOcMnz6X0VOrdEgnYkAMkW5JSNTBn0LQmJnk2gj9nOMco0acZjbdIoIEtXGJUo3G3NPWQLyIpxXrBRVRFqJMo4lkXa0dVuYiixJr+5YiX8AL8yRO9lrDymzVt6ZtGeEBIPLrCJMo/05t8VE4yFxoBDAXeDPprlhQTenCPGamcNm+xBa1SD1XC3e9NkQJyBoKX49Efg9qTFq8XCJal6UGPTU6bK3VAKTSrEVEe+Omqv1uvN3sXIDXS3OxSO9zy93y4QtkTxcuLpOSNGZ6lEEXjmSASRxpkVU6H+M0MyZlZoscNo/zjIAqRJrFqB4nM4tcl/FCypU7+3qMwz2P46jSJ8wE0gXceN/3bXsQUZgjjEkFZiBERlF24QC1GbchtIQ7W+/MrbqG7tepeE11w7DOSHc/bEUFeIE955zzWQozFoDT4e7D5jBLIVat08K270SUiLA55jGP17ThPu1zzGnjOOcx52lhY/Vn02dRLN3cPRKJhIf0ZFZtJJ7hGIiutuVpmZSS2Wo2g+CaJRMlBCY8LSUhHiwOdvjkdMqAUaz8CSZwf1hArxfWkeyR5gGbDlJhZvbAwkkmEgKQJ5mTe5oHJRMCZHPaHE4NacHJypLKkiqiTYQiz/M0i9q83t8fNyup3rVwdxvH8+N1fL7Ga8zP1/kx5uc5X6+qudPBzKkIoZAkFjTMckMsPm1jeWz74/Hg2OAdTkEBJlaCcNgMpCGGz9c8X/P1en1+vD4+Pz8+Pn6N4wmbKmBQ5alLWoLMx3m+ns/n5+fn5+fn2743fTXdhZEs0rQJIsK03CeH2zii4OVrQXb3mZjNrv5WRhpIVYRaExFRFWlJa0jCzIqIIAsX5ymZDhGGk64NlFHIwDAKBJhuYlAxa8CZAmLurfnARexAUoApKMIIWdCOSDcRYXcJg3QSBnuEzzynH6cdI86lv0wgYRlpsxQnC4BpZl6Fl0UihFocQmiSyJjDz2N+DhrU/gz+3wf+6xPn6Jy0MR469ha5dWEwOblVX5KjI8VNMjPY1KyFhb9yWVWIGYmZtLGV6cSZ0bSgM2CuZZW7lrzw0bdN+uUqujpFeSW4rgXIveJ95zwEBHA43H0u+/9i2LCgl7Sj6thEl40Ls561x6RcGSDJNeBGAa6HneecezYkxzrsUA3xSl0QEbc0uERK7BwSACI4g/Ji1ACVjHrF+K1xWBDx+mql61qs+QSVsSszaoACkhbaW9uydzBneoaFic8Fn13nq5rIcJZNsVRiq7TKS5b8bdp49RiIKLiq6EUVI6rpTxUrNSq5gEFZqX7y5Wz6NgOs3Iev4vLqe13Gw8hkygyCLODa0mYRUXJyFuaTOSu2+ZokXuMzqkN5fs13/6L9WrfoCij4yy+uiUnWPHF1KDiv21rtGyaKZTj6wnodc1YIjI3pq42zqmTOgBXleE4zgxuhYkmTOF/2ggfSGdTLUceLoVrlm+clT2Miunb9K5DHPefwRY5AzRz/8gvXGNTdy1+J++G8mn9NRUAGqpFrUhR2gsA1i2ytZXgFmMcVm1gdLEij0vf0y8nIUiK5JW3jjIgsTyGoEMVJq9UavhKmotyskFyl53VS9XkVXqmqpJGJiGi6FYx0VbffnJV0o33zL7FddNEfikVSxVZ5OL4bApi5uhClp+KFvVidNl7maPzLL7uMxvT1bDMRw+/R/DpOVyxknBWYG+QJXbyM6nUVk9HdVQricMFJPYNAc0rciBZSlSjrbFi41ci44pprcG42xvkap2UJKUSEWVUf+97bVs2mYBbmYOWMFch4pcWnzyqq6oYWjF6Ii0ldy5CyEFWNSfOiiN3VWESUGaLui8jJzGn+AiKi02ZmR4VtZ5AwibCKrGTxjIh5fo55mo30mM8RUWFW6TOwSJY+5nmO1znPmbNUWEwUSGFoayydHOeYLVrvWzZ9jTNDMBEmaUgDIym52IE6c8DFndlILdkQU4LhHoG0JRchYprB5IV/Lm2JW1a7HMneeYV0VGhbDeqTYgVnl+4NEZGw85znOTk8LNOLzqYELUHnhWezMEekKkeKCMIXK7kem+M4Pj8/n88/D3vN+bI8po/qNVToFUEz2K3wzhJmSxai0qTv/fF4PN7f3+1IT7IZM2346KnIsAwjt4jpds5xnufrfD6fH5/PX+M4bQwmbNp6ta+jgnqztRIy5nQ7z/N5HL09H483AGrakoUE3JgkGY1llSFmdHHy2OaFdlp7CoOaaO+dt+1fCi/WxsyaxukI98jQXR59a0wC0jIog9OzwjmNisHopVHRbcscRhNi2oIQJOSQM3gOqAdxgjBjRpjHNDszrLUGtbTT4jg8njGPeT7n+RnHyccpc5BHGohaV+YoDmOQTqv5ETIt5OQYmk4JJ+7auzafJjxUT7GDJrUD7SP108csoxXte2+0N5m9USMPf/k5cyCtIaVTN0onEFbAG9gI8A3szUg4z5xgy7e2vbUf3NQjUyR2SLDqj8fbf+v9b/v7v+n2N22/c/vhpCBKXjhnr0jwSEqQG83paTgxzOaceeEBa7Rzniczd9FQrcmIiDBR4VBkYQNLM1mKeP6aytXGYxNmv+Zr9XVW6frFrL9ckZdhCoqcQGzbVnmq5KTcau6DyItaTu5epM3MpCUfBu50FrBnJjRdmHkTeMQIgBs/fld6xnlkcDaQAy4ZlMFGloEIWzUMR4bXoUCuaMtIW5VKJd+oJHPQitXFhTEr5VqJqRdzmtWuqJzMvON9giA1alzpj7paW+0KaSko8pcEmdCZ1lwpCSxlb1vDHSQFiiuz+MCwWF18ICOzXtfvk477U139r0vk71WHLb1OZpAl1pQtwCt97y6AKh54zLmmisxKwr0xGqWGkU8ExqbNUX34GvqU3TXq8E5hZYF0n/WA7IsUHHzlFmR6hEcOxIwwwLNaggJVaXp5PBNhfh7j9TqP83R3bioingFORw4fDW1EyhyFae9iWuM/ImEoTKBNet8bCXMoXFuQEi/NI1gJmWk2mNnspOIrt425kXTmRmxl8Ss4RTWKItdHjst3suLLCZggRlIpdBOMAl6ocGZ6GsVqIEXhmFuz6REICbOZOVh133eAhVYgnbtjtSDYYvbehTabMacVd4uYkqlecTCcibrGtkXvjdBa2x/v+9ujtUaQalWXv9eJ6oG4zxDpQJmGACesoSGRX7Vs1RzCXDuqCJmbhTkQouGYIZHqMcv+m1BzATCGjRGflsNyBIE0SOEY04fFTBo2JYk0AMxpIrJzY+qZZhZziju+P+qAjpGvlz2fNudkZpEaGSOTXyPLhGEW5umWDGng4GUTMZtmJsSr6RtCAEHC8Xqd1Yqo3copI0mTVEUhYelw8AJ51Etnc+69CcHP1+c4zqKYEz31WbNyMzMrNzqBSbq4z0xnIQqfdo7jFe5ulJYRyRCBuPs4Xud4jnEkPGBJYqHTtyAifuP9QSJoEH7s/AY9aJzdrdEc85zHTCe2lk5kkkGt/d2feXCn7U23Hywd3KGbs1BQWEFc6UoK5Tl6hs7JC/4MlNh8nJMZ5xhEU0S0bbVrzDjNZpqHudk8fCKnsiDy43kI1HvrLFSgOw4hvWxVmNMjJoNaa8dxjBlECD/HfB7n5+fnr+N4/vPX5+t4fT5/Tf8T/Cvp5TgY3kUJLTIwZzgRK2kj7mkM7cQ75Zv67w//x3v8t4c9Djtinvl6jUl0BqzJ2+8pv7/Gxzle45XHcR7P+PU/f338x3/Gn3/K85/bOH+I/Pbjx+PxcHd4iLS9/da2vv/4+eP3d9nURYbnn8eZH8+3YDSwNgpNCkeG4kXbkdsZ54hwbMo/RYeIZmbI+6THpMfWd2mbto1U+bFt+75tGxGFfx299Muo9nXwqjbB97EOCFKL/vodKpWDJEWZbd2s6JVMTJQW7uPwOIheZsNtZEbrtBbK8BkVrWozfJhNO1/jHGM4RyyhSQoRwuugXNUegzID7rkSGemxrUpTGImWFMHEBsvZZ7YZCqJMERIOYteG1qULwGxZKHSEEwtJcgihCbpLo77N3jKZKcRBGUGZgbSAzbCWBBZuQKZI023bHvv2vvVH016DISR/DeaEuCqSb0EuMybOKMxa/c55njYW8VJAYxEeWy+/PRHFoCt8lIX40iAz156tzFxogPL43JxoLP3vF7wqFhji6sFcrYKIEvRRELk7MzIzPKjcf0SBjK8F9BrYrJC4Wy3yl6EkCYu0zNR9X21/8xhnDd0SXIJlAJ7J+JJ18E1quHxYece/lOdSvmaFdMnP7z7Keoyvj3F/nkp/+Ws3qfRe9P174SLHfn31b7JlAscKUro0YSUJIkn4Gj5ed/zbtgdcqKdrAvI1/Yl0QKuWqu9fP8KlQVk5lZyl7y5p3dLq3QTdu2dGEJXeG+KxxivBUWriamDU3xeaBFGj25VBsMDoS+wvHGUSDbs0bVdza/0BYsGVGJj4l6iim4agyMDqI16TbiznaJFzgwBsWkM0bk1UtfBmgmSKNRQDMj2vb1TP3hrAqQors5SlbbXNrtPLfYnuVe8uR6ogvslV60zSajS5XrQbPl8f/rbRVdNlunfA3et+fm/sFc5iORhpYc+uqHKQCmsdjJWWyUPrHZfWiyGiqkzqSI5g1nqSLBzfRISkX7PL9aMlZUQdi5Y/lhAXyCSKtGtu4WsHTWTRqrHc03UTV9vyuqEZVIjz+uEqeCeJPLPiU+s3/Rph36pEXOQ8LDeA3w//Wpci5vQwJ5prtYyaJ9af+UogZS7N3N2+4hsscp7n3Sboovf9LZFkke6/v31ZnphpfukslwihtXv8zSx16rGY9hyWlumlibS50FJIRmLZc8Bhsy7gGCPhSZ7sWNkbjQQMI1ICEZygSKWc5IKwsnUrKzdlbgGGww3h5JEucKUAB9iCKFDo7ZV6cSUk1qNYGA6GV0+6ZE8oSiGvjNJawQJeDpgxbYxx2oCwBTNoCA8djZg4aG0NLDzL9XgfEWtxG2OALMLdjnN8Hufn6/X5en1e+TmZ6RlR+hARoRSkZJ1OPThkhjtb10ZoFxxOMmgOYxpuUW6xiJxzvp6nzz+NObz6as/j+fr8+Hg+n+dx2DhEZO+99/7j7bHvO5Kqqfxz/2+69/3Hz/3t7W17E5G6WR8fH5nURZUY3kQpaKlGVbVv2whn0rxS3W44+TqEirRt31rv7/u+7/v+Rl8nHwagrbWSH3OihiMiTZm4dD2X7IuZJTTrwH1dLBZmiiQnIocTXyb9TLN5nuc5niKvOU+zIUwiNRevxgZF6UHJ6tQ053nO0zkzkwTOJkFUueIR1dWrt4F8CGzClHNvKqAmpMSspCkdGhytUevRNHumJ4SyCatEa9FabA3SEMLoisEZnWSLZGOgMbqjn31rbU9q6k7wltxYGsdGpGCeEb1AOtoym7Qf++O3x/tv+9t73x+kjSDVevne9adLGW1jFp0ZI8YY9Tja+Grjy7UT9d6rsV5bbxoJiK9oOcpFaap7VAt0krj7vAqv22RXBVCd5C61uBFRgSuvCqReKCaE46qlyja/nF5rzc57Zb+w2kRcD94SEX1TjdfbDSi3B7Mi023McfB5sDRWM2vQ6cawMjtHFPhofa8kTibxlc8RSavwqoFJwbRoBfv85ZcH6DsyQyrZ+i9xLneVlkmOpCKJf9sMLrkjsywA2PUdcQ89E3XetwsMsaqiWLk9fu/lRF+7xb/UeVTKOUikY4WsSG3wN/6gdhcODsoqdO+q6zvN6NaH9d6JSLi5++CjpDCFub/UfsaMyv5iIq8cvcXuTSRo9eGulCYgHV7WWs4bULsqXchVan6Vm9VwYhVyDngQqqJqa1ZGTESFEEgAaCKsq0ElIlXVtySm27LHFFmpDO4OhKqy0MoLZ2VW5MpS/J4nc9clN2Hr68DJLEy3GOouZ1UbAItg/KVnQ0TuFalwST3m5d1WMHPSX6rquoYiTUoty1kPWRDKPKHVM2xNmlZeSNdCU7bWGmsXEc68JmPkGSU+rwu/6K74ygIr5ejdW6VrKh0rhwI2ZwXpern0aOFvSqxoGeFkke5+nmskFI7wopZELM5zWiAXIYzu+z7nvG5QNY28SDeFGi6763UB78FfumdZX28xXCRt27Zisu6zHJGwZvi1tuBq5q1CsJq6QETrq8OmmnEmINSISIQAyawWQLh7etxV3brCr1c9A0231jVZ4J6lKChyfS5y61IbeJS0vEnjBELL9fKtrSHMVR0ZOAhKaAXO0QxJ42iU0OyZIhSiTWlnb0lwp3k05mTqTDuyIRuhIwuEViz4dbomYRaJRHhiXnMxZvew6e5ZNhfhcu0MCLfWAvOY4zzP4zie53HO4QRt3EQV1KlxVJdvveyFWFftqlm7S933MTwxzc9xfp7n8xyv4/g4z/OcZ+QAQogDlCARTdFwiWQEKOowK0KNeWu6JzihSA3nOWOMAJyZlHoKi2SAX+M8zvl0p/A55xzn8fz156+Pz8/POc9aT7TJY9sfW++tE9HW+tvb21v70d72/cd73x8qvZZQTwNPlvNtG6MPJURSciZTOIi1tU191lScWEkauVvgNN+mWwO3vj0eP9/fHz9/7Pv+eDwq220dYxz68/1H8dAYhMuKItQijK6WQzUuiYidDSQpvVxnkgK1zIA3IaRcc64iuNSBJ6dnBoirxE1capmVmJkqLqScmvDMmIHMpIIMudu008zqjxejWzIa2cZQJs7Ddg/3XQWAxfSckUliQi4NSuCEUvaWW4PIbOq9UctUVdkbxZbRM7snT6IQcrVs1LprD9m6G9w0o1PuknvHhmgeEUokm0oHdWk/WvvR9p9925tuTBqLRAkQIss4FbU0z3OMMY7n6ziOKrxKf7OMzeciLYlIb42J5pJUU2ZirqPe6vFdxrfvhRcROVa0sOUsd8e9PRf15y6/wCzihYACoG3LsAwKKoj2XJWTrDZI3IBTohUedFnBiApW+aVYqi2AlmFQiDJCSND63vrQ9tLWYQ0UGYOzO5/JGmEFPAuCfhOeV+MrIjwr0TmSSeKiK/FXbOLaaaiY0lf4ySoQviCKdLPsF5WRIhZobW0FFRKfywn5l9baN/ZpriiSKgkjI+CJ9MLX1hHzr4XXTfj8i46rupW0Yla/639uNdvqA7onYBxry68vqapE7L6oTKtPfFWW27ZlZpyRSa1F715lORNFCBBSClakexIK38fhXoF9FOBS64kI5cnTnSKCHBe0gRmUHsT8vTS5XQyrcZUGtORsrT3e3rbHo3p4GUEolqnUg0VKLGABcVZoEye11XdzwjIfrK9MC6NQxGCRqCT1e1fOTHPnb8J2KlvfX2yty4D8Xf++NFut1eJWRa1nXBUz7uEArn8wC8CKr1udmLsMuvbeRsXFADdRCG9bq2wOVW3b1radrih0VZXWqg4DV85IJqFcUnR7ocq+eHV3QXeTxtZpmyjAkesRrxyLaXGan+d0r+sJZgoCqYRFZkw3AO5pkVaqV6ZkMsM0dx/XykwBeKaFMzNIzN1e5+qRXz3+783FKlVr7bp/x8zsqtqL6Fvve92C1lqpTQms0kgpw78Y/bhSXAFVXS+d+RlfCRDhXnuQb85cOdlLoWblf77oLSzCRMc4V2+MKsMtpLLT67DKmRlzyJFhlJywNGZRaqoiEAa57/VMmY/yN5KYk0SMIGekQCWRSZIm7pKpxkQbk6eg8a7UWbqDgrllI2KtjCN9dN023ZRFhdKnr7l5BlOKpkgTcstYkkUBC0XJIjAtzIwkmNkySh4308Y8zzFKI3X4BFEkpYQkNCmnbVwB2F0EzhMAsxW5V1nA5TU29znm6zw+x3hNe805zWeGZQQtsFQnSVBEkk3yECZxSWJturftvbVd0R3w4MxG0ebIcXojSO/gJOUIDKMx/dd5flSoRoSPc5zH+TrCvLG0beOt99Yej21vvYr2fe/vj22T3ra+967agEUTTZraorR9r+OkSFVOzpSMclq4hQMsrF1VybiCfD4iOfihO7G+/fj5+x9/23+slpdIuwsA99C///E3O8dxHOM8bcwzIQmod9F6R1ipieS1MXToYplTOiYAQXJSikTSdM+yL9QwqpxwzA4O5Aw/bXJwQwczgZSoEbcQcd6iQ6HBnovfbh6GON2mBVGkIQMEKLAzQtG1lq+XgGJrjckriAkOOEtqw8YAoxM9Gu2dth6tkUp0Rk/uJJKKaOekGcJJkyGiKSEqTdOJIZTJSRXmqwhJJzdaoz3p4E10k7Zre1PZk1okZ+G5UQzNiFxjnVIa25zjPJ/PZz7nV8fLrMaOuXJntTZLRE7mNVLxa+2mGqKts9rXZK0QCVdD544wq3ni5b3iKr/uJqLz6nRlWJCsNPXLXpf8NeZbh+vVAAmS5dS7LNxEFNdwkG8AOwpTxAg0aRIR2jbtu247YkIofZgbq/gkIgIJkFiFUI1H1vaV16jOkXJNze+hbtKapCzBWZStL5JrrCrAsqOsOetfyylmunsdzEwqShKriv1GnP8qucqjAL8InGmRYfBYrLP8QkJ8Vc/rB/rXuopoBcBVU+OKQw5A1qD5295vBiLqXf/6eb4mOLfFBt86Uovfrn3fg5n3rZlZZvh8uU8vzJYNG0emM7PHmZlAqFBCV1VEpKrh0yZ5eahIkjOzOnPrkzCrSJaDML9A/0Vdp23b3n68994z02e5HY0pVYhFdM1KyttRWNcUKSNZIINXRNuyKEYYC9VpOzyZtSmYuTWuU2xcMT58uUSZOfmrJFpNlDvwtFogVOgp+87eLF/w6p9+0+rVnylYTERIU0UFPMk9x8+LPQGQ17usSztfhiS5sle0d5EGhIhI6yRcXd4Sn2VkXVIR/qq0qk98tX5r6aH1E9E1pa/nUFbWZxT6msw8mTiDseAjYArLgm/VCoLqjpN4AOTmaVZp5YpC99YJuVEShtsYA7n4KZURlIkkpK8XwQMLgogrrgOlrFQuuGKcY4zpZma998xlK7kPTuUwuF+re1Vcj32kR7h/Tfabqnmha+O+9WMMH7MmaBdqhqvb6veUPOE2vBqu5ZxmlqaEEA6C2UlA9t4ZQiQCyQAztEmiE+U0CTgpk4TlmMbuM2kZGiSJ3TWzOyVUk4QiiBptTBuiswixpu6q2nXb9a1s9F16BVjZGOd4+XxFODNYVBoLFOIlE2LqBCGuizQAtgITozqRARKjOYad006bFmHuJEypRbo8cmCmS+u9Z3ImHKP6o3N6EfKEONMTHmFjjhvMtspiRmQUbbxvGyuvHj1YqUOlq27b4+3tj/e3v+3bO6N54LA4T/eRGZpTsjdGS6SkeNqc83nMP1/Hn69jpZWHxZh18ty3jUN+/tgffXvsXVaevTwej33f3x+/c2+y7SQyfZ0QAjTD2fz5OinyVGUGCcCpTc7zfJ3ny0Y4VFX6JmN6jGlzDGPIz7efwbK//fj9j79vP96KHSis1/Ej5pz6x28/xnEKg8PLfvSKNJm0P+giUBezJq4FK8lJQOGUCI9CmovqOXO4T68R8shMJo0kT0wL5EyoCGlfUWfBlJKc0I337CmhrhGW4Bl+nCPnCCS1zmQlM7JIOCxRYKxSaKnwMaHC1JlUJVjJ2FL3uRMkQWAF7SK9pTI3yabUOTfKlkmBRFKOdLek6chAsHVPiUqbEdbmIcQqLBTCs5xdJVIR1q7b3rad+0aykUi1uyIiQRFehVemz3mOcczzNV7H8fl8/fqYr2Mc53me87J+lNqXQSJi+55uNk4imnP6WA/x13BngcGMmZPlqr1YRLhpLdy4QleSwHyW0qX5VroZVSUCMyEUUblapKpNCgXptU+UEZJYRCR0sZAr3D4zr2CbIjesZKFM0D11i9JmQ1pPD5aQtvV9j/Egn5np0u74Ha8Sq/Tr37o+nl+VRE00V6hhBK5h4po01FYKicuyU6tD0pWJ+KX5IHwNFoRWCBLlikkpA9vCft2apPV5UFVxXl3ejGozeuISEmOZBYRoTTyvffrL2w9c9ohL9FDjqSq8ADBDqNXcz69u1tpaaqNt8GmrwWaOKAW8L4vsZeMiIpgWOLG1jUEmFOEIe8GQ0zPmPH2+5jzcDAiG1cUOFUSkqhI7nC5GSV7It7wgUou3VKMipmXaJ1StX6W7Nt33/f3xaNuWHgeOmObhZqYF9WCUmsdj1gNZlPDM9JhAMDcRUtXSNbpPUJZK0t0jLHPZHu6WcF1YEVFZhex3lQ8ulB1fYTL3I+fuozQxV/fl1k2uR77gukREsuigGbnkX8uVXH1I+oLZ1oOxsBGtdyLiRqzatn3bNu27qpYfmVc0ukSdImob+9bZwl9Bd0TE+PaLJcqbGutEgAtSbyBbyWxIB2fUExUplmWsIk/UX7Hw0WXOxVyaKEiUERURMf1Q70R0nvP1OpD8fchb96Lm5vTNWXL/pypev78XVvsyiNlrPo5vjt1r9viV7RERkTbGgAdfaVT1q7X22Hf3WQhDG9N5znXWtaCUJK84DGdKZfDWFhHX3bPEPCoMriYQS6oot65IV11PUYCCItinFRyHGa014oxM6aIbR4znKdOGYVAyR3qA0znQICCvjxFECGV0xCayqWxNf2z9se9vj/7Y+mPvu6oKIcJsvo7zeZ7Paa/MYEEShTewEowil6QQhczhcnCPK0M1kDhP13X8svC5jiuIiCQNCps+gxiqjnBOlhXvCkeSsDN5kLvPSMs089N9lkKJGCvdlohAqtoas1QbUlRZ6E3bY9/fHu8/b4t78wAAgABJREFUfv74x/uPv+3bj40fp8fzmJ/P8fo8Y0aG+qRogkibfrzmx/OsquvP8yCPzGAYpQG8tUacSv1vP348trZvvR77rr1vW2tt73uKQjWIWsJEKmlhTE+cmTnP0SiFwUokaK29xvk6j2E2Ynqiqh+ALYwyLRLE0lp/PPYfPx6//ei9t7ZVZz0i3LKZqTKhK2LjSKUjpvEF4rtz7CMCxWiPlIpIYEoPn+BIIYhI640oLHxMj7BAOe1h5uc5z3GCLCm31BkOt0rxSCJSEshGHY16xpwzidTDgRGJRBcS92EWFoB7WCZORwTOkehgqooLUGkonYr2nSZ4pylJnuAZkSMsUyZChaAqSiJJOd1zuMfp45z08pwcGN48mjO/PbQkJkwhmZXjkMF+QZ2YW0EgH299e4huEAVpRM370mDuRjkjbI7zfB3H8/X6fH78+euf//zP88/P81yF1yITmtX2IETHs52vR3kiVmV2zCKgEpHSpfe5dpQyjjEzS1snNmRVWvexXlpXVdOVMO/eb1d/ZlCYgEI11/E97k0ohbU0YqoqffXM1sJ3F15AXBiqEghV36fW1oxwCgtPAKzS27anHR5e5JJKv8vl0sub+w2gzBir0yD8tVt6xVneoLIgIiZNRlm+rhUc4LiTXu5fC7QfQDiv6YwSYYaTZf1fBCFhuSYaVNGwqATxqHZCLsclX5k/lZn8pSYWEVyauavm+7p3d+31VamGr9nqMq7aatetdKn1048x7k/FzBFwj4tbgbIa1UNVtdqu72t3DnOf5jPm9DhtnmOcYxyIUY6FoEw3i8FF4aQsPc+0GRGEqPl1JQhzDWTN8zrYDbNiCjBreUe5MCKZlSUswq21H29vmdlVPpDH81UCK4qwitR1eGimJ3otR9V8YV6M/taaSBMRMxLl2tHDs11mlHqbvsuA6sLdNVZmGlfpHldTavEsqsYqiNAYY7Ubo07oq75Jmq21vrpuIPIaCNZTsEqrAkMsr7EJNxJhIlFW7fWe9t6kaWFopKlwk5XhvVqVyeUnAIFXs2blXS+i8V3or58iAM6rDl5y+IiwXFJxulIcEhI5PTKXOSQA5IjrmEEJjgzzdI/pRwntX8d5HmPOCTCRLchckLuX93rOeRwHYlnur9u3ft1ojLsmuxu6pQkbY44x3YNE+tVWrP9ah70Ck6h8jafrrDvnnHamOTO/vb0RkQh9GcMZIt0zzOz5+gTgPgUpvRMRRfo0x9KHZWYJ4MKcmfv+UN2qwAuzjMyQbNaEhLiEgEBkUgZHwImByFSWiAgyAGh7a1vzmEHAAbcF+qtOqSYSuqL6SJJrvqXMj73/9ni8/Xj/+2N/3/dHa1vTrUln5oQjhtne9+0c2xjbtLOiw8KIwcJSTePFNmFR1d626UFeNEsCMNyCMCxmOb/cpntllYlogHLlTilRA7hiSkp2eZ9hLMPcsvzOV5MAtMTOIkLciEnUVKKyxrSl6r71H4+3nz/ef3v78cf72x+P/bem73DJc04d+7bB95GnW7yec44Mm/M8Pz9ev17nf43zzzE+fMTpQqmCztlF+uPRsXWJt33fN91aV2JV3fe9tQ7APBITBIgKa4GmwuPz85NVmmgj7oAKtIs0DYo55znHa47pdtgsTTZr40hOaN9k69o79032fX+8q/Zbyytg0RB3jXQhtKZ4bEKIGeUqCg+RxpBKibLwUiAyIUG8/kpBCnFj7b0FhkwShWVSLAmFJU6z4zVYYtvaCrZb+4oUVlAVnZmaJvDr6cQaM8CaNJOrrgPnyWkwJIVlhGEGJKEBilSkMFg4RUgzAdYmLQXukTHLfuwn+UZQ8dwai7AwBa3iiCKAw+Jlfrq5mkZ240bSOksXEAmMcgCTfJbGOjlZwCq67a1vunWSjZljQeMowj3dbCBGho9xjuN5vj6P58fx8ev158f//o//WaPGdVC+VNi1Hgnxa3tW3m2tBc/n59VUpyVYLn1uhDTtvRcmhPUrALjGFtXtz0x1z9bchVndXd0LkyaMzEYmtuqtYObLMNWZWYhFubXWWy+dLxFdGPFVdRFVeh3BC4BaO8IiWWTQMAs3twJfi7CKdvIZeW8SeRde/zJEq7f6qu++OkYRUbGSmYmQoCSat3weAJEkfbOY1uZe/1oW8QBgwjWLDKBEVAmeVGgDkRIlzJh1RZa1lwhJQV8flajm8pkMCgnU9/lKwaPK464e2qVLK+dwTUi/K5CupgZFBFHeNghZmy7mPL8ZBb7lnX/ztVUfqBaIbKuUizCzYeOYdoTNxJzj5fMkRFNWakIepsd5MpNIiVaEg6zqsSgWEGTJCktkHcocEbaabSlSYygOJC9YVzlmV8TA++ORmZ0lzHP6bSsxH1X0i88VE6RKVz1Y/IRrK+XV2GjSeyeViGhtk96IeJwlh6h2FN0b/G3LvTthgYwMKd4HX0OHCCLGCiln8Cpn746jZ965NBGzbB9MXC9X3e/W2uPxqI7m+Rr14kiRT/teGnzWplvb912aMulK/SKBLkxX9X8pCREut6ePMjPSb2IcURkSEbGQwRfwnRzpF0mOSKr0yuTIKr/YCtxvmYTzPFWVVUWkjkPTY057navwOlfdNe9L2tu+zoe+uoPTI2cwe0S2hlXmmpuZaisRXrlj7he5erT19ccYNcAtKuz9nF+dAzOzZEZr3OiqxuaYx3gdxZvd932B+4tLC8w5W2uFwz7GWauciGy9c0a4ZyBmhrmzIfLz9asW531727Zta0rCljHH9BlGESYhqkwAGMRKXzYdYqKNOMXI3csQ3batd50uxzyYlVDjgciYHMLRGlCgthrVhIunqLw99t/e337+4+//4/F4bP0h0iiJWSPM3VA5AErcmBvjQIxMc0pZs+ZwFJAaDiZuUFBzGzbZImshyvQVNQvLcM/pdxT4cneDVbiBpWyUVI4c1RJmEC0GWOYSOZe8oZS2kVlRYSwu6iQjEVxfjvd9//23n3///bc/Hu+/79tPlTfh/eP5Oo8YI8NFmIQx/ThPO57/DPN5vp7P49d5frr/SntFxDSmfDRpm7be9tZ2xqa5q+xN9taZeev98VYGxshBQVzkYhDHwtPYn5+fKdoK18HUlHpX7WIZnnGMcYzzsHmGTbfhLk01gpn79uj7Q/pGKiAibcmUJHE7NkSZWOf5We0vIf3jb79v2s9jvj6P18fr4+Pjl8fj8fjx40dvzZ0tbY4nmECREbt2fXShmDHZfWvt529MB+dHmI2y8jbderc0Jw6AbYaZsdYAp6YqkfA6rpiFiIwZ7sncCbO2RE8fw6b5OeY8IwzqUEISImRGn6anKU9OqRkyTYsgcGOyGVaKfjATt5Qm3IQbZNHJOcFklJHOMRMD8KDjHBjWQCqT9dW398euzkfy/kN/l6Ctta1vop21txKOJUXF5xA84e6njWmvyMFwn+N8fb6ev14fz+evXx+//vz15z9//fOftWL6nKX0qoc1arQhkhk+R4lXzOy0ky6xkS7F+joTs/F5notW1JqI1m5XwcBLInpLfSMzba7p56iWW+9dW8tMFYnHo/e+jjLpUeZhLJEN+Syj6TIVL4YX1miObl5kxTznnY1zF0PpSP/6nd47Zq/Dsbt4cIRnLphFhdaUnOi27N2uw3pG+E47Zrp7dVUUVjL4Ol4nJS9se1WWayd2ZFhFBkG4emNF1bqzepbIOvMqEAlEpaYncDkM69WNrFD0e6BZSqy71a4sZbxyIOUyr/xLN444K9Lg4uJzxOqrfR8qEa28lKsWafg/NPtXPyxer3PO03yWCS/sTLhKZkyhbJsSCSNsRAbPtNtKtizohohMD/PJjG3b+96qsVTuubv3xsyeqb0z6+frqaoRJiL73muSaGbjOJ4fv0TEzTJMlHr5B31cW6wDsiAdxUVzr6zrixzRazsXaRkRnKpaPvNpZ9mU6r4nEzFLroUVX07bpXrLC4uCq7NS7S4s8T7lakys6W0ZyFV7dStK3V8h7HVniqZ2Qee3uk3a620gaaptYxVmJaW2b6JKrGAlEaWKKft6QYra55RYyaKw0sr8ldvylQPG9cQiwr3YewXuY61gb/dwN1ArZuaKjappauYws4B4EllVQmUAqh7qeYUNXzJ4bI/9ebyuWXNeb/262nk5e26x6X0wWBPPC816i+32fe+9Wyzirl7uzuqlLS1sZr9WNuLMqtvGFBFVVmUR0quvVt+Ikcx0nuPz89NsQHhvfXvfhUigpNq11eMhwqqymQrBzFQ5w8b5YpUEKLziMX2aZKYoCzKSSUWoaa/sEBZoWwPTcw631Uw1s7SEo9KnRJSI09nzhIeAmZREpDBd2YT3/fFj62/K0qQ36US8hB8pYGLWaZEOL9CYNglPgsSemQxi1cwMt1IY2gxQheXK8IkKkgLMLJmkN41NvUgz6Z7ndBLNJsQawBiLdMSK6Vb1cUSMDAC6dcoZ4ZFOwQCFXbEMcju6RZuANOeMSJadZCPpSY2oZUoEZUBlZ6GmwoLDToCn5/E8j3PYmOfrPI5zTDvDjDyA83wxETl33lwBbZUhUhW/s2/b9ng8WmvMogqQJtgZTowykFeiZsS0c0QOpp1Yhdz7hi692Vw/ryE9QFIj4py82uQQbvv2eH/b39/qNFJP+n3SY2n6efxS4t73t337+fO3xltvJ0NeH6/6rOc5VM+y04so0D2NEl20b7JvopyWdtgUpUyZGS9jnQxXeCj1zjOaRcwMmJmdIAJ3MINYmFAUSiUODnGhNARlIJxhXO3xcVb7N90rdq9aJZJESDHXYxAYnuAWSZErFtTXLltTGk7dIBtxB3WCIN1d0hjGORgDOCJeAc/w8CTkP5+qBuZt87e3eIiZKLe3bf+9RlqqqtpZOlNP0koWSSLz2quGmaWfAQ8b8zxez49f//XP//2f//k//9//93/9r//1/PVxL0912qOLh0tEweyTz0vr4O5jHHc18SWrWoYsrV5Xa5u0VhtttcHmHBX01lqnb3KWml4xD+stwubs2/YAIlqrY9ItDVbV1Sy+hFeMYFwJP7eBPa7YqUWbuOBvuFhWEbnUnMuDnR4ZK41n1XkiCMkwgCxuzVPNSvJimtTjzFUDfU2IkigWc6V+wBrGhjkUBL75HsWb8muhL+ZTNdWkWgX0HRtBBIkV0Mj4kp4tkmrAVl+9FLqUBBCvaOFrmynb+GJwXPPH/H4f6Ytm8DU8qpFnVhcx6ZZI3z87LvgQcGfUXOsbc2089ceOZ5k7hvtMn+6DySGprcRuqQykC6cQBeOi9ad7klNVXYsR9t2XAKkRakEvPXyJAoVBdHUsICJbbyJCBEaGzfM4Wmuc1ZTiC7nGxWVARZhUEJBHxjq/l9uvAP01zKivvy7jskVjhtEF2lmDQqySeQldr57u/UDdDbC6O0nfJErEl6VxTUyvRu8qfK5cQl7hohcVrMzG9WdqICXcdNtb7yq9zJ7ahJuWVIBknQwAYhICoTgbhKL8JPimXhBWoCpdMSbV0L2SwUrzRF/nH7oyNDIzaYw5zGdBIhbNwa1QiWFVxhXZqAqvvxZhsSCznPd/vZ/MVWnles/JmOML6tYJuU7ONdKy6Va4V64mCjNnwoqUlveoMKLEcr4iLynqr+rkwaPsCKWc23q/Xqiqk8HgS/UY9VwlPD22fSMgPQxxnWwTHkJg0V4mpIyYA9BqPRQ1KSJgSt01VUCIrGY0gZSJVIyXQSTQmBJLhFq2fu1NW2vakFG7HhsAsEoT2VgaUwsoc9u393177K3vrW/7XkKFanCSaeQgoiBUekcykUoFLa7ZOjOF5xV2DpJMj9UDw2JrUWBTvv0E2jgyS/FAQiRJXFGOAsk1Va3HrQKKamIZREksxAFnlFOWmZNTeKmz60/WAZ0ZlIkN1EEN1BLVglWixStMQgV6Vo/geR7rADnH8DncLebp8xXm4+QEdx4N1siVUwjJwirKpJqJc0zzWNG92IPYPT2mBc2Rz+N8HeN1HMM8Mx+i3Lfq99dbXEh6p+TBNM+ZgeBhRlQAO8vMy8Ij+VcLV53VASjIubW39+23nz9/+/FTeRu9q3azeH08X59PsziOEZYVuNGlWTKSSPN962+PJpyeRsfH7AxOk3hZn8cZgzNSSUwakwbMpx85zVkntZ27i2SDCgkxIMw9Wgqc4QRNaJq5m2fMjDM9QE4Cbtp3bZ27EuO0OZMtY/oc1nbRTlB7vGmqU+WbCCAQAgPcgBbUIsWNkYmD6IC/CC/wM+wZ8ZpzYiZnMsYZzAcRWhvnYaObq0p/+6kWAjBxhYxzI1YiiQCVFz+XjHTOM/xkmjnHOD+Pj3/+8z///T/+73//9//n//nP//zP1+tFV/JxLet1g0vX9aXIu1a0UmLcQTeItf6KtDq+CDfrplMLOpLw3vvWH621wrxGeITXE/+te+98dbPq3FPZua21VBWpORe7TzHy2sPKcSa1kflFQLh8jBXRG18o1HU2npZmPi3nCJtpnh4ZVj+UsoRqhCIsQ2rUs1pnuKA+S+CSzAUuqFGjlDYlvjXVmHUx/kuuaxka3xtLddmJpOinK8bj9rfTX/pGa3O9jGkA14/rXzPPb1t4ZVzzilm6LlHt8gHADbQKhQsiyszMQcEXeRXXRQNK40WcskRKZdgo/0J14zyTqATFAFQVAYqsgiZYwMGJwWsMFNOmHRmT2DPRVIEg1A4cHpPSKZyIOOmSmFe7q6xytXZyOMDwDC/m6xhLMleMwssCa2YFvHg8HqqCSFAg085DM0m1CUNbxJdhsO6gLmG5VGRsKZ+aaJOyy8l97ZNJkpiYJN2zsBq9t7vh8VWgfzOo8sVqWb+TX61EVaX1XegSLmZetpK7pKtZYf6l6qL8sk/2Zb0UjgiwVJ9s2x/b9lDVb7pMESUW+RYwlTXfLGU9MSGzFoV6RNbnKmZpPf9Vd30BfbKIDHZN/Itk755m4e7Poxp44R6e4ZbjBmiB4Z4LyzTGPG7i7lINrnch6tx4M+Tq9NhaY+73ClZtpK9R74U7qTl4nTlv4V2V5pkQYUAilkjr+3p43bW4xF2ZZvWaaOO+6WPv29YBjDGKOgaAUogy4cKM5dgoW2iEh5v5mHNOAjIkQ4RYunxTRs9EcFNZnUAzHxAV3hvfz5hFFOEJQkyBADIbmEKzuo+rzyqdVXpvvUlEEBqFGmdlBLI01UZonmBqrUnr2jftXR+bJEtV557BnKfP4uashxMVvMQ3YSfL7JeOCCAgiBo4CBHR9LFmF5uuJUxYpUcjrhNUHbgDS4ZfLFZaMsZVwDFAxEkkxIwMJzA5BUkyZVASJ1W4h3omnJIRCadU7SQbWCECVggTlwMgkpOZgHCfZmPYOez8HM9CBHhlfNqYc5zz9PMgSso2Gs8m3iTQkgmiLMLSncQtMSaJE5GwgGRmzOlz+nnY65ynefj0QkkKtSaP97f3t0fftzoQSdMg8PPTD8ANThaeGaPwpfPwSqvAv/zie/NR1uwP2d62/mgkSASJvL3t7X/8j+Pz9c//+vXrzz+P5+s1zwjsO3cRZmws0qKrNmJGMHFXJuFUHFEq5Jpbh80w87C06R4DNOQM6dlO2YZu8dBHk+xNVShNQKgcmDCmjaZTD083aikCDm3MIrx1apREyTY9Cm3MUxT6ov5g3dE2kEqyQVjEuUETipYyU8LETgpLN7dj0ufkT6NPl4+MZ8YgONiJgDSACskU1ugQk217zTzP5+vE+dgDIGYh7kAJ3hbh6doOPGraOF82j89f//z1X//1n//zP/7nf/zf//nv//7nn38+j+N+MXCNP0Qk3W7F4m3LIlqq3HUuD/Pwen8iQkJCW0gEPHNFQAyvpKxZvXqb2/0Fq3VPotccyiK4JEyVkRsR+75/Xy5FaBJRhqr6UrnWLFJuU9VV2mcmKmKWMjKjBK05h5n5mGGW09xmusODErUIdlFTRWj4zOQy7dWzetVYfzFDrZEfrqP2xcEqKbfUwI6xyKoJxEqDuWvBMkbR/akvwz/xgs0V8+wq+9ZOU0XeimL7QpfVPzgz08WRvmYuVI2Sq34L0bvF8lUOWobgahhevsViL9GFG19HWKyk3fpyHg4g0u9Am2pT3TCR+tat/f/p+t8mSY4kyRtT++MRmVUNzMwtb8k78oRCfv8v9bzhw7vdmQHQ3ZUZ4WamfGEeWYXdY8rISAOorsqKjHA3N1P96SAq66xgC/JUIMKqECQQmZF11jzjnBFhDWZEh+w1NlIXxEqF0KhkclZ2oIpaFycKEfMLGueGmiIiSlfbxybMiGj3pQLdBFMgplRVCWRsfXHcfNgwH+7Nj3X3K3XRhog0bjdyCqQHfJ3+sxpfX151IT/QsoZrhiUvDO5FTudlVXEbLVCrqFelZTaWP19V3a4wLpKycntwBV+pL8vLNhp7cXqImNu27/u43dyGemsA1okLpiRXcxkQG43k+YxkkM82p1SbUokrSCBXzgSXcT1XU4a6mhKkJGueV67AzH4wIyKyx8/Zl7FL+1eLa86MSNFPNi6rchV+6za7MEX5wjGYe0Tz01fxbmZVMudJVsSC6dQCq/ZHvCyzrzb25aKQq3eVfYzpB1OkMzo7a646dn1fVtGRmQBfVGFUAAOm+74XUkRM1BVxzorMc57n2Xz/FhW839sH13VtFVQIZKiboASlkD7bKARSNSnFCW0Ac79hCNTg4lyEHLhajyDg27b52Lyq+vvFBNDVjmlPkgkITDhUVEqlIDVMky+tTiFXY6+tCVVdOEox2J4kqU4BKjZMVTJnoVRV7MqiMG37Q+Y634pfIGmCoglGlUlBtZDVt+Z6p9eYXhXaIQjScZ/JykJ3JgkCyiKFMwrCKFaKu0ZVVLXILFnCUNEzj8QRnMGYecx4zHgccVAqkSeP7HI7zpiPmEecD1WdwpwjwmaN5AYZKUYbsE06b5o0qpurDZgOsgoRpQofuqmmiRZF5Nfb29/+8pe//frL/X43187aEZHJMoV1m7Sicp7n+fz4+Cny8fHxfH7MebRQ9WtT/PXyI5837mKlhmBjokyH/3K77dvNbRNqzno8HnnOMj+QNtTdtrG5ghmCMqvdBhxTa52ulwGL8zznEcdx5oysWTxFw46MKVlDrRcyDlFRT5ODNSUHsEOn7VSIVOVBGTDATG0IBmbNI87j4FGYiQyTVBPZcEvfSvY7XdF6xm53bdw2GfRZhkmQKZUz5GfgI+zHlI+pT+g0KR1o0ZKkFZXIKGGTJWecR8jj8fFj14/5NqsaCKugs/rQg8ublsiMPGIej59/nI+P3/7x97//+//37//r//z7//yfv//733/+/HnyCq+Va/bknqVE2hW41SMH1c5MuqDzVVFrx60qwshhZNXnmKkKWVMaRZHZB9ausRq7crvd+vkXRYSbNSwIMzttg2biriKMoAjDTEwtKwAjQSOdquyDI/utEuiwZGmh5iq8MmcGzqMi8jwqTuRZkRWTmVJUQkGoDjO2dDiFf0bMA5o5X+0l8pWiuJZpLGBX9ea1BEBsjPj1TapHnwKwZdQC+w/+exHrgPRW6khPvKAtlm80roiJrJTMzkFrVZCUogmfwKx4VXgkavW9MjONYl1HNjmpTHPR1Ay9kIPML31EuWZcrd35EyXhFRuMy9v12g77SHgFVL+kBlSDipqKa4HRKU45Z84jziNrImvs7wSqo7HNWyQDUyjVCuAsZnauO6rKRKvK1F82fhFxjwglWZFVpU3X7qlZzjn1JVVcwnOz3vZeR5Hdx77v7g5zW3j6YV1TI0lkA2cSqr2Fu5mpC7S1WZ9Wg9f09sVG75KIFytuVRKgfcG2rXJt4SFeM0R9EUZe42O5Dksryaw7We6rhz0AwGyM7Ta2TdVWQ8sE2hdWRV4DoU52xn9+XW+MF9e4i3HWTJJRLV3IOeeMyqTZoLQIEpG8YsoIUa7SKs7Gb0J5lZJVNWOd3DKiMvF60FZbpFto+h8u76sXOHy8ytlef/ozbWgOyRbRvwbi/bm/mmci7M/6pdTpH2S+TqHDxHsMW72VqJndbvu2jTGGebudsxh9QpolJG+3m20u0vdYofFvkRXtZF5FcN/AnapUVeq2mVIgWKmIZjZUtm3bNx8qVQwEEuSEFZY2NOuTWKMmRnKMsaS26IQrSebwW222KVkrQqPFGEIxhau4kczIZ0wFBsz7WhUj62hZyzxzxsxMBEie5/NaGPuWn6wSYZUs/VyLQYwAWniamTMqMhp33iBfFAGJZGiaiAmEKbziEIRYtJ2iCFQIdk0ehVgp6lwOFfQGWcxYopMEdZZOO4/xfIpqgW6lMmc9zzjOeRznfB4/fj6/P87HER8hmDJPxjyfc87necQ8GFOQAiriRbiM6hm2UAbGgCgRlIK7btu23dSsBLblGEdsGVkH+cdxJMR9fLu9/e0vf/nl/c3dq2rOx/l8nhkFHvPMjqKOc84j5nGcD1f9+Pj58/nRqIL3payE/nmD8e/ff1fF27dvv0i5m5opd9fNZXNxKYkz5xE1a87548fHZjFu411vcmsvE8zam6KpAc7esFWhJomqRMzKM2ckqwhCMvIgRJ3zOMe2aVIhpmOIFKZTBq1E3vymrmqgHd6LoruYg/48zvmcj59Pz8FZkpVCSsrJZCVs7OfN4LYGU2ZqOkwG3CgaWMeCM/koebB+Vh2yTQWHQQZMO2vRJoUQlANmHEJHSlXGZ2+car1VX0AjVKMTqrpzfRyPmMfz48f33//xz3/8+z///u+//+PvP398P45jviDwsow5JCWkZrye/MYoCwgUxtIPcS23JVXWOmxkJgRUnV1nrDUHs1ghaMhQzwV6g/hKMwpRW4reHl7Z5s7MisjLKEcmM0pEJFRR1U/XSrJra+FieDErdfnxQVzoap2RcVacnFEZjIkqZuDqQzXnUZSNfWkdzyoU1lRoWyNCyCupsLJV/FfiTHfprolvZr3k69cPWVStz0PzUqD7q87TPhaoii7xArnYFiICKtBDqLI1E6aIlBRRWkbt0LrP1hrZjBgCveuvD2LZIy/9u4i4aOs0gBICy7O5HtpKfBXT6JVXc3V0LmRr8jUV+hTUTZBZcWamEGq97PSmnR0UMY9H5ZQ1xe64JLAA0Ss3renBlTKjZ07VN0c1Dn8M3dx833zfRGTnAoz1iLO2Wmd5VJzdsGHL5E3FbbRo7HN3N9t838dt2zbdhyzAuopYVnHRm5hVkOq+iKqru4oTQTIq+9R+3cYMFmMJvV9ab1WNvmFAS0RE9xgLnLM5EctB2V/cUvqrvSXdm9HFR5Au6cTtVVK0LRSAmG9j19ZxYiHylkqmW+bLJCfd1rz6m3oNOqVbbiLyuuOFC+dbPQKImHPVXlnIXCkPVXUeccxYvEDziDiP4+M455xFmg3xhXh4Be+8cCS8HunXWciWRLU5JtU9vx7tXvHxnwenL21mfXXIIqLNDdctze5pNZ7wtUAVozs32zDT/SrsxL2FqqIraNze7vt+Gz5eHn66oEPnmT2VTLNtVUUlV4QlRWGmLjrG2Lbd3V3rYHaAh4kNU6gEK+dUQFXGuN32fds2JeKc+cnh46uHKihVA8gSu06SXgYg+tydQMJgt2GlQkpEIYKVAsBlmLWCDJwzCs/y2pvvOjMy8+P58ziOx+NxHEfN6Cqnl/qq6g4qs/+c0m301TCjKF/ZXGc1oicjIotUA6UJt5FUxMmCc1QmPJFj7GD5isbKKKq15mtV7R0ZHJlVUVXaA3GQkcEkJsmiSaZFHPP8OB5UzErTdBnB4zEbSHU8j5/H+ePMI+o4mGfGGY8zHsfzecxzZpDlDTYwMTBZM+N5hmD6vm1E0VKNplDa2Gxs5pt4H/vCRdMjiY0ME5i7b++3++22u3vmPM/z548/fv78ecwzwGDT2itz1ozM2cPQ43g8n89zHpHzdTMkU6TdbgrAf/vjnzNPs7Ft+/jbvt/eNr0N2+sQBrdt+/XXXxXmqv/85z8/Pj7i4zGmQdOHDLFh5l1mDbMF/khe9OTrIcpmtbdbs5iJNLec0eepPMO8VKvN6ZsaTHSY1bZxDIpGTDkJ0FXUKxXOA4ZCnVITkmhqU84qUIQ/Bzl0N6Y15MzMhmFA9pJ2xyETR+BInsUQTTP6gLtAG7rOglh1UNEmePNxh9/Ub8O6FeRucsXAiYhdKclrEVlF96yY5/n8+fPH7//87bd//P2P3/7x8fP7eTwyoron15sJhcXgp1ba/hzuC0D30QiJdYKcyzFEmlSVhMTqNqkZL0tRL5olmHOFpN7vd898JQK1NvY8Txs39069k9cQoap8214jBlSYMIsQIxdHoIUpV5FUre5KkoUmG64OTU72Hpyzqy5UCSlFMnsh/HpufgkXLmXVn8Jz+j9ULY6RXDSs1xf0fKEuJdxqH3Kd6V/Kns+pkKrJn5OwX4IvQC9c6npDsvL+Vj302pcyM4tV+qli/iIEe9kPiMxgR8Jfv5RAIR3QUF14tYxaVV/ar7oCv15SZUBfn05Tpnp2NM946aDX1eO2kn0qVaqXhawEk5lxzjjOOCcqVjzBpVuDoGDNvSCRlWRNzmPOzNncWi7SRLm3k2O0MdYgmRkyO5FmuLsgUBVWrMo8jwPk8P0leDL9JMWbeTtzxxh+365aZ13Jzw7QVYGRggbOqb3CHFXVr5is665Yo8bXfl9VkvFqNlRVaF55i02Tls+YeWuB/9Id9nf2sUaKDf54yctERMVMXTbvWtmX77iPLKsj2zLmLrUWZqQV8UvC/KkaWQq/LCYlq6lWeqmkG9lQs2uvWdk4Ok1IBhc3MKOqRDsVOJ7nMeck4E4vL7mA9deo+j80217/3x+Hm/1ZEWF9HTInuaqxKsmLaeDeNwzaad2u7sxJ5ms57afPzJaku90DkIai9fd0ldWwvEBxZna73fZ9N7OqaGBEr6IkhRo99f5zvFi3ohUCs1ZPb9swM9Ypsqolv+AacgVhdCPz/e1t91FVUxp30lpEd3dxgVTRuWi0gKmxgboGQGa9jkaAuncfSwSxensmV1anu2lVxnOeetr5GGMP1nGei+4Rz+M54zi7IUCSJW2ZINfNpQ0pWie9TQyYTBn3PkJoF0IUCbbBgtmrYWV2hBTLUaxhjiSXwSUzw2vhipaasGacxzyPs9vnffYLXqTrYJHR/baShI7ko6Sq5jGfwzbVIRjBx/P5PI84n/Px4+PxOI4zzsqzIsDULMnkrJqNmrVlzBCAlXEchxCMhpKa+LgNUVVzs233fXdVcYOKmdCUY+vm/C8KbJvbtntX8J/z9IiY85yVz5jBCsGRMaPvXl6hgI/zfM45L7P/tQFdfS//8eP7cRykDN/v2/vud/U3VT0yIoKU+/19H7ehoxIV/P7z94RhyH7zfbtBjQW5slAy8wXg6bVMqbXi0FMttQMhKyrARETkjDmnnlPEoHQbw5wmimElDkNVxrnDUlEqEKvSOmXfZ57x/GBVNxeYZAam0Wcej/D3YSHLarQSjS3ZOG5JQQQicRbOIrqAdFNYUQqVxWQMVTEZZjex27bfdb/rfvf7gPvQz47UwhtYb9GCz9ZLN10eHx8/vv/+22//+O23375///7x8XGeh5Rg06/L2atff8752iT6OLKKuUMb7d1FFbLk07QlJQDVhkeE+fbap19FcNjSI48xYs7TTHUpVRfZ+Z37vkt3ZdeQJddhxjqBw1rB29Ko3la+3ltr0ICXr37tH/1OlESlXP2tL3j3L0XKp0r0c3jxahr9Z9XO1xkEvn6fawYnzLxaHQshUZ/Dxz8VWAvo8jndWWv068N8VTD9j2BduUB5ZZlXJCNZJUUdf0a2Ul/yoFePSvDZiTFtPH0uSsZVeBl6DV1djWtuWJW40JRrp4yITqVY+K5jzjVCgojcGxghSiqYfbplTkEgPxG+whSx5Qjt35WqQFL6oBwZVGbmOc+qUK6ZeEQWmCyoqC0hC8ltbu3ougKfRScnYfrZFMQVRtZm4bZR69VkWpvPGJ/twxUotfTsWDgIe32Ur1to1Q36p/8UrCv4YaFTRYQRHfy8Ci9kS7jMBlSF8kKlt3XUrMdVn7aY7iKPsbdY7VV4rdvMbGnDemzKliqjpIlH8qWsLCyTynX26Cep8XOziJSiRFVlJ/tEY3HZodTXa/ZpqcV/cszswisikgXRqpozz3leCQcmItRP2OmXAw+h9qUvxVebquvXVwfxJZOoWGeDZbJuPKFZl0Ek2/HKL9SJfd/7s16VnH6ts3H5ntdB1D8zT5t96KZNG1lBSXIFrvQ3Ge7HKeu9VVy/VyNyPmf3Xx5Ytgz/06IBWndWVd1937Z9329jq0ghYiagXXiNMXRoA+tb0diVZutNi0LSQoOzIqtgqiau6qT6zX1aeoxh+62fGBeRj3nMmJHsMMpgPY5nH66OmOfRR3EBlCVNky4RFYroS4Pa5x8AmkJk6Rhj9Nm3Z396zK/H3SpkEBEklDGlEAk4paw2rT71XZGgQInUnDPOYy1AR4dukow6RKSgRHayX6dB/5g/xhhzHsfp+zAVF3HleJy/H8eMyJx1/HjOI7Lk6IVS1FxqLHYpGrTSkPDmR2SKyAEloT8/RNRtqNgY2vTmbdu2sZkJVISFLMk6o7QK28C2mdmQMcxNlghk38bct0LFcY04wZM5L8MHyWXQmDPi/LoKiQhkWc79x/e5D6n5O87/D+c4/iv/9ivfb7/GWUr3zUdTUgzPfEx5bvVfZqYE+EB61q04QCCyMqbMaXNKPCqecTz7uscsoQsKFOIAKBpZM8PqYGg9Y8o5t19+fXv7NuPbm9SQRJmITMmH6H2Xo46QDBBikSIQGN5ub+fGZ33M+oAEYRMHj0ph7TgeU2/YDdsuOqxcp6rdKiQOxAROxRP4STmAAzWtTgPgWRrzpASt/hoFDLWtyTA2vHeNzW4+dqgQIZKmHGoqyM6UnxjwM5DP00GpGefPef7x48e///GP//n9t3/k49ww9u12yFpSmWBlXct6RoiwQ1IqEy/ht3gsi1a+qNywFqVqVkWUut3rPkZUFWtJU/upkOLBjBhmsoyvIi2LHmPbtkwi8678FrbNM3/Ux3B9v93Pj8cbuHTEOgpehX3sWQekyK03BIWJElmFytb+IhillV55FwVLhao0YwHFSklopUR7YUpQUiJUE0JYF0OrKyiUiogK84KZiRZLVq/xMgEsP12XUCRRkTbWVWJ9ugiHm+nQMdR2gRb0LKDChvlaHo2V7OhNYF5FYQkazZzRfaarUZfFwtJmAHaJsr7AF7pAWWdxdDT1i4ImuSod1srqadU82PLqVmp0VaaCYDXyrWdzZJEJMHNWexJNjHq5366wSKnhCipqVh6KmfHMOHI+WYfKFBXRrKL5XiuJQgkvSVALOGaaS5Wf6XOmZrlDBM+iiFjxLKYiQBNs+/7z53ffbBtj32/Dt81d4azDmUccWeVjGzqkTAL0YpWPse3biwPsbqpSMzp2PmdlZgmEMFGqAcgUSYnJtmRu2xA1V6sOLO9x6SoQo7f8I2ZJh0kvsVQx3H1sG4AjZpwJ6u1tJxXFvOD73Y2OeW7btnlHXLvAxm3/9u3X105PcvfhokPEgaOgCvigGYaK+iprc7LvBrIyO9xdRPrHYSVdaZ9jV4J5auWsnFWBCmZW1XMeAGbkecY8swgkshAzZ87+9M9zZcKe51naSQF1zLNDcYi1x7TQXmpZXkQI2MkOOsQL+PyqzLrv9aqrpH2JUj3+qypEQUpVWwTsPja6KCG9aYEEpaKmlZrTRye+E6CZXqP1oqJk9tVC3roRWQxW7ft+u20vWUGrVHEbr2pbi2NYZtZ5tCCsqlJAkyqWlCpS0LIpiO9D1NXXukIglYSUMTbbbvu2uRkr48xMrjK9pOUpKioOURWjlCrFZVa2D6abeRHPZge6jbHdx9gF3oTebb8DpSbuOrbWbqbrOeuRMStslkfkz8fxfJ7PY6oa1MXHancpRXybNxg6dqLDOokUwkyIEkCGGGaBaxPZPtQsiFIdhRKlgCVHMbJmzcwsaGFTl4Exs7abE3JGujgp51FmesyKxHHmcUTMiDj7/qz8AFy4wVh6UprPAh8yM2bp49hGm2FxCuaPZyx9QrCqw78HxcTuIrLtb367b+/3PD7qPBhh9BKYDR+b2qB6iBUNZTUhEyJ+f//Lt1/ev729b9t2ux0maoQmURJJnDMzn88n3JYYoBIZv5j+9du377ehZvl7fMyc9fHbxz9mhG47RRVpUpn5fJz//Mfv/+sf//y//N8e35+/fdt/cW5xUsxkX14lFz2f8/j5/OPHz98/Pn788dtv/4//9v/813/577++/4upyFWqC/Uvv/463E/bf//+xx8/vz8fP4f5gEnJDITzzGPOc85z5UD3FPGIzKxkJhkFgZhBR1ackzwicGyltOFnqJ+ynzAdu8GsH66El+2MdumcMyWmMLiZj9uW2+F0+A5Y0TmZOChkolY2KBTWrhMXKDuaxoylJZpqpZLMR52VUWeWFFB5CtIUZuLsaKuG9bcLvrRbl9AV/EJpyJMNEQED2eEVc86sY4aIxazzjCMunTsLxbJRAkpLFNe4DMAYBkDZKiaSTFYl3Nlk2rpKbFU1WlwyrMzANXGoqs331fZB8xHXZvDx44+I8xJbENSKrEozTbfDPsxFDZXO8s1NtOa0pvGqSfv80qrlIFevS3mx6tmd68vEt+KzlWoGFEuri6zuQ1CgrmIwlVi1k6gJoboqlx6mtA79NSUkmWhkw+co5NWpUlVcg6HLB7c1UOZVeJm2nq+NuLpsfp8MiMZ864s0ZvblN70aYCSr4rLr1yXZ6tHhyhSqS2Xf1RkXBaoJTZ+GR5L9rfvSiFDE2/a4ROJ9qzS1qPg50EfgoqmpcBtWaq7pKul2kdb7lyQbU1cn82SFIOoaJ6kaLocpRHIp58nqhLrRZ7cZR5YmF5WAlwjveE5VdY+uhwDUjHNOJUy1kb89NmmHqTKySqtePYxgSbD/cdu2jm0gWeDMMBjJOeOYL6AACpegpnMcYCR73gp/6Q7/lLP5Vdr16goDcHcCr5QtYzVy6dUSk5V7s9ozvg3T4dsAtB34b9++/eUvf1EzEq1sMzP1AVU2FtUMolRRWH2yT03J9lOQrARYfZ+hOR3XxFuxqmhcGqyuvfoEMCOAFQreLJfPAXTRzOqiBj7P4zgO3wbJDtjtwqs9AWvO2DzMNUj9bEK/ppBLe/Dn9vAiml6zyE+H0JfACblYOa//1F82fDcXU33ZQa4c9Obsdx+wx7GfzX6RlnqvQrD7bXWdkV4dOBHJOSs4z8gZqtrzRLWxiYWe1tGTCmqfMCpq9WgbiXKekRlVHNvNxxBVApGJSwyXlzBgrd4kM5eRuioLS1khpiIEtm0TqNkQseG7261Tv9ykV9quHdXQRAw3u93ezOZxzMfH4+P5PI8IglnVcx3VDs0GtMAO1aVKpweTzSKhamMlsjTSgoA4aOI6xs6tolSipNB9QMwMrUqkCdRUXaEKpTrECE8QbE2vBGnF48znEc9zfsx5ZEQGhYSABVZWBjVKW+MFDTHPKB0Dp0CIwqN4nEkhhICpmXTKJNTXr9qkxPtd5pAMZhwfUehx8U1tAMK2D6mZdtaOmOg+tg7Jvt92FbFCZdYMnKlVUjF6/ihQ0EzddFN1NahFPn5+CCuOx8fjx88zwyJ97BkZ5xTJx/Pnx+OPnx/ff358f5yPzbbr2ZdilsCgjv15Pp+Px/P3P/D7H//+j3/+28fjR87w/25v45fdbn0AcvFfbt/etzea3e67/QPP4/s8nj9ZcagOyj6SM/uHH2c8Zh6BSYUO23MwAmcEAS2D7yo6GVp51Nxh5UO2R7mO8WPYvo+bleCUqbJBSjSgkXIUeSanMMXohNxumypmKqQyTyiFTDk66k2oVuoyhvqmMqSYQihZKJVT+TA8RCbwDE1FCFkgFRym7uXQYTbgO8YONZpQharoj9NVvHlNaNC5d9+ighWsEhUYqGfUj4/jx/efz+fzjJlM5ooOXSsJsRx2awMYFxydxWv2wWJpXSa+teRRr7pP269CiThnSmQm9p4C9K7cEmNP4eMRZGpT8hMigtqEeVgKgnWyTta8jQ237TCK3Ny1S9eRVlJSmplmXtmqT8GFlCh0+MhlBLsSfAHYcEppDckeLrvoBFx9MA+IQbTQHm1TFbM/HakvsCReu6aI1RU+ja6PpWHza9zfYnD3TS+a5ZeZxQpivJpY2qdaEWGhpFlQKyO7jYZ6Gb7kcrq99pLXJtc/cb36DTMFDkxSWgXVNUk7GqEEtGeVXTyJUBp2eQl02cGXS2P2pYBoozuvN0UKCsIxTIxVmq71pQ1+Hn3unFlH5ck8wBBOMOSCXvKTFIUjZvapCWUQKJsYtVwaS0VALQBlJiwQ1QmQeWZ5VGYcJxNkqUMhTY7QxoJy4eNXX3MJnKBX1vsYAyqZ2UypBLNyZs48WyzV91gV0QxccRFJghkFDvXljrjAWnKpJ1ehSUixZD136t4jpJfRwcxUvGGPtSAdeWnp0gT7/a1hXeab79u3b7++f/vm3gVNg+JkH0O7JWguHbyoo9QE1iOeppl0K4sJyZWumMsG21SVNsx0V3U5tjIzMuY8IiIzZqaIVKLBWFHIrMicGVGLUUCpZKc6HV3Nz8wmcEGalrzxSuOWho5cZRXkUyD/yjf7WnhdktfPdMX1HPw5jfFVM71q3GuWvHf76jyz47C2bdu220LX9r1YTTV2UbzeD8lLK+uXMAOxHJ02xr6yO5tQg1nMdd41UxH2VMFKFXY1pyEqirHdmqpTfBJRJER0bDCjWrBdBZjRkeElImIoq6rSWPGFi6bWtL0OgCKkRKWGqau6bWPcTD2ImAtH2PIsVQgoatK9K5CJk7MyKxJMpbgWRVTKvca4kByJ54hLOghIPyhUFEyZRUFJwShUGyquFroJ3lRsz8iKlCPaFOXWJ0aQ3kYQpmCMgp1UTRQUyZyYLCYy6pjx8Zg/ziOYyY4RMrTJuiTUJ7Qn5XR3B1MrxVRa7DuLZ0BE6GZDoWaiVC1KERNKlzJxp3mZcRfiY0ySYu5+Q0cswyEGYPN9mPdZXFV3H/dtV4WJugqlsvTUZx/xVbvUT6GolJmqwVVmneAR8fH4+duPP/75+PGDqqaDiIoGrMTx/Pnj5+9/fP/7H9///sfP/zLMZajRZoUUsjJE/MA/Q7PGcUZ+/Pjjx48/cp6YRMm//vW//+vf/vXub2J746hmzXHb/qv97f5mf/yx//j+b+f5B2bKFEPSaggcwjPqmELs47aN90x+/HwSPyLlCA1coRyZQoYhvOo863yky23w/fbLcPVCpYiWaKiUIk10N1fnLGDWeUal+LZRKMFiQLlpSZUrzMpVlGI0ozrFUU7kZfJgah1WH1YPwdQRG0uYOjiAMpUBH5J3cMDfdX+zcXN7s7Hp5hxD3XVz3UVGq6YKXIszkdJhgOZjM7+P5/3j5/Hbbz/++fsfj8eROUUoo4NDS0Sg/f8i16iROXmtZQBE4CqlugxorP7fWu8gLBIOLGlVLaFfsuIKqV3KEpUyZWZk2PH8CaCylU9vglKbqFmxMe/CydtN5W3fNANZyrQq/9JXWsokkCwBCqryqfiGaHe9UchiFMPkal+LVqOFzFdbSA1qJQpxSlEGJIbvxTBRhSwKonyaqqrQ8m9CV9ejBdRmeh27RQTU6oJEXqWgFBTQ5dgRMIqaAkN3vrr2Qssk2Bylkq+2+dduwzajsfqHUDropn+YQIkG6JNe0qMmtnLuChFaUtgXX1XY+3C+Pv1c2JFmxi96Jy/lbF0Yp1XCkyZKIaSghRZgZ4KMeWbNiDNjMiY4FSkI05WOI9Qu8YuBrBmrs2bm0MWQmnmpBpfsDIuOWXUbm4gYLB7Hx4+fRnTiFDrJiVCgLQ+XqW1p/0UEpqbWHl6/huNnrAFZ780B0rRMmMKSAvLyM6iqm0urGKsCUoQ1qNJ6xNvnfrSIUIm4NFVKdr5TVtmlHZyVVSv90FVbRcdLY9vZIqq6nee+3823t7e3cbtv+w4ITE1ct673RBs5RkIHTVUHRQEvEaVKE44qF/O2tKfw2u0S8iKEV+V86a5WCQYWZRJH28eiAcg1z25VCChBzGSh05uRrMZgUjDn0Y+PqlRJstNBCCwysIjUwu67qnTm5avv9VV5+VJ3vWSvcl1JvmR2X3pmPZTctq0HA8tIZN7auqpS9X3fb7e32+32+PnMqgpGpKbqPlR9jMHgsmeq7mPf970FXh8fH92CejXA2otKikFGEeaqGNvWVVrL74TolVIuuO6Qsm2jWmZOotRkiKoWKZRIiiy9VEfPVc5XIxyrxUiS63Pr2tYMSrBPCEFSYNBUSVNTUZeVP51ZWbMKPszNhtkzmHnkmUjct93d55zHOSOCApEcC6HUcfIx+eg26aVvZLe6xIpW0BpuQrnQ85SHiLirImkkzorHOVm6jcjMQLEUkoJUqDHteXAWYVIJEpESkZWoE8fBjzOeZ2Y15wFaqfOcM0ukBkoHCUQB3eebmpVigZWmKyVQASREyQ7vMqeUqgvSNV1rgw+4laFk0ztJVTdzwYgCYI2TNbP7tt98KAuRnVElke4Uc1Wjp6aJKVCRp1KVEBOBEpolIfLzx+8fP//x8eOfP37/x8cfv5+Px7jdXdXUqNIUtsz5fP74+fHP3//4t9++/8vmbm/iGKCAlUgR8z8e/y6UVKHWM84/fvw+n3M+AxPn//U5aNvftm/3Nx961LOOEOHbfey3v+6jXJ9//P6Ic1bU/HnWrrqlkVY5RG2/+e1e6kns20mMLM9jzHokH101qSRTkKxz8nmkQO+yY6NuDWuEFSSEU0FXbGLighRKlkSSIdUgflJV3EaZEKblh/ZgMcizIBNIauU8qxP10jW2LfdsKrvYJjptAQVM5+45Ru2eY4y7b2+731w23YYMy92wDd1NNxVvssBCqwsLVVIwpYrYUJAyHs/44/uPH98/jrOHFCWiYEAM0rhtgUgt04fyc51SU1JlUcp7mWMJqyl7ihJCYdUNLVFcZ2J0KJhZVbrrGGNtLyhBVR5nnVWVQVWtjIydHBVbzlF5NKxv36xyj5SYHu6Wo/UDoKIECcpFqG9TIYRY/PRcNosC2bHKPT8I1goMgYLSdZioq5jaIPuCdl8TpJaEmWX69Q0K6wxNAKYORc8HRf21B6wdQnBhC9HKqQsRoYBUi5urSq0j95SOlUIjC1AOYXUus7Sii7g6SFjScNWOSQ4APdKV7peoVrdzIFTRctUCWGVEZFJa4atraKh6xeawJ0+ysGNfDARCSEklKok6/4RIvXbkDibprTm/EAGOI7oDwpzMEAUkTV6DrO4H95yOVewOioo3lKiwEBWktPHtSwVqqmPbh6u1oSuOOO3YfCgoEIeYCLMioi4s5+Pxs6uuEujwffdt31cXRCUqNXP1S9zMNFuppaJujQ7OqgYX6XCBqxiB7E6zqNkwc71cuu0PpIRqNzrlBfbsLmZ3L9ZwG1xCArQtvy0gejEOWuJtkTzOc2wbzNvFeWZouTjMN/EhUDQjoBI2KFaN2+l2nUCpZJEimaAoqR1cLUIJXJ9+RmbbJrpqFzEXitIUKRM4K5SWVTOWZqsNlACgwqyZgcRxHEfMMyNYHU4gy7ilMTNiisTrjPG1eDIzN+/RzxoAVXMuWCx1UWs9RnebTURmok2+lUSJiQMwNaH2P+5Da6fiEBGFdepzVYG6jfF2e9vHLlQVB7MSGQJvOu++jRE8Y2ZWbm5j37Z9V7OiZKG9re623faxb2PcABBBaCQJVcXYdjODVId2uKgPNTNZRg1hzRRZxBQ1vSLX2tjR6lLtkh2kSperLx/xC8/bx0LtOrvQm7kAWbl0ICJTFeiSQt0MSyeh67nu0UjvVn2FXTfdTjURHsheyASnMEH0Ax42+0al93EUhj74lRjMzfrgixaHMqZolasJTbKCKVmSqeYtvxRQhWHlRjM5+YzgyXQtbZEOms4b54znPM+cEcx0poAeiQxmQq20mnUv2hrUyVkTzC6zYKdo6DYgITW9OIhNbNObmvmuCg7l5npT3+BWGwp6u3f8paoLe4kwWXGs2xjjbRu7ObLm85Ci7yrYSiCmoq4e6j7G+Hj+pGGpiRAoCWFGzvP3mH/M80fMnxWHVjrFKDcbLhTA8hyO4vl4/Pj+4x//+O1/DnOnDdvcHcpEAvCfz59DDbSEQGJO/n7+XaZ5buePlFPqv8V/+6//97/9+rfbvrNK6qOqYh6m+OX9behffnznz8ePx8cP0INAzk31fTe//7KNX56sLDWLWRa6ycf+4/j+OOU8zxJXE6NhiiNoIWP7hmwKL7VE1N12H+W1BWueR2Y+o05UUGFmOGK+jn+l5a7iJmqhukx4Z5YyVQqVmtdOsQ3sIjfdbiYjw0vGrMpSiJjCNHfPzeEerrb72F2GcugwDoOZbaab6a46RPTKbiuq9Gr35aiXz+cZkY/H8XyeHc+BDBUNUlbFoCIqdm26SDSzqqlgRXnZcJe2t9BaIkij2M1ESKGxwZud4EJCiv2XREtYYp0LY666kqqzIgpQFOpk6LmNbdtqvpnCtG67zRhyttTA1DfPFC3JTE3RNmmvxsEVk/3ZEup2fkm3tdnp7hS0Ia3AjiIktKAwVx8t5DAyKV2XqLpIvuYUL2nOAs6rvLxsC0Nw8f35eiOqEOPqK14+UF1RjNXTlL52X8RASxPfncwEiyFFZlw4rrp6V+SS1BdWk6IrpLwkLLKg2z0eVVWyLh8CIK+f3ZNqvuIW0VY/EynGmi2TUZUzIwJ5vNC4rNWeqiq7iLDMilhKambO7O9TzIBwUC5H7ppoLdRHRmTUQqAp2mggGbNmRv+G2YgNMbelotv33Yft+37fdhGaqlAZmaSBWZhyPkVYiZWLfBzH0aZFVbXho7+Je1wCZJgSiEgJikhwViEqsooQgjN5RlVxKKrx/mLCjqtziKl6tyjAqG4plihRa/Koxd781qvNqSS71FbxgpznWQUVd5dmRowx3BUytm0DNC77nnXAFlY3F02UFovKKNV9dKqKiF12UQAXeaSgrZ3vG6Hgat3MrSqpSi7n6cxmXw1xIZht6y5cEVWVkKgSQSFBbXwxQ4LxcTyfz2cH9QxjUb2kR/BznhEpMF5pDa/aq7ysbL+ytxdkuMdY6DGf9f+u1HDo+uJ6YcC6E/YaL/a/ud1uIleQTtdtquK+b1sXsjFL1oDIrGEMsrm4yyZjNc8W64FynueqEcVlk26qvZSCNjRYVCmBqMHcNndRVS2GsAOrtQ9XIlKl13qj5iZ68QhbzNvxFUnpAHWKXmvOUh1kySrTX7NXJZlsMrTBxqUEyMqzRyUiMsZuOrbNM71zcfrspOa7b3bXB/RxPnMGmC6aikShD7PdSkeahd9a4qZX2OBSQMzjAcDF2UmI4BmFKt80iigIhWlOtUjZAmU2XTdHiW6m28CwcrBm1inz7MGUa1XV83g2xGZOzsqiVxWzhYMLrSligkSRAqV16lVMZka3oNUmLVglciqmW+0lsE0pA23qUogN9334rsNyYwqmLyFJn5azehCym7rp7tvmw3WIWOaC882aDFJPCK9TfbmJCBx0pAqIalxDxoMIkxqm77fdbd/fvt3vb9v+dlaa2SxXp5me8+PHj9/+/vu/b7aN1Lftfb8NG9Y7uZ8nsKVDRXSMMbZz/ozff/vt/3j+H/N7zZ/nj3/+ePyPx//7f/y//vbr325jVI3n89Fc7Pvbftv/qtINr4/MmccUjZvL5m9ub8PuQ7ULr8Cg32Tf53d58mSMkiA0yxr8OUoErjWkRocnmA1X19QKyROocz7n48f5fERMIU3FIqIPoiI0U3WqsSxd0nrOlcmEZMJ7ggMTARQcMnbVm8mWbpQhETNak5oKmoipWKmKat+LCxMhoDs2lU11qHS4VbVhpLlWYiq1UDyZ2Wvc8ZxzRhu/kZmttNMOAjWh6orpAynW7KvW2q8s8M80njV/kgv2UyCikepKlhrJyuZooCoAzRQVplR0v5P2BQVRVXUeHxl2fOQ2bse+VaS5bm7ztsd5U9WMkXFmTfS29BnPjD74XcPHgiAzW8UNtEtRVs7vwoReCihyZnBOtl5l0SQNmCVKRrUd7SphX/b2a3JBERNRlYU6Ux+vdpc0nfKLsJpLnayrmVSAX1UXQC0Vf8VUC1RUAE22D7hA6V5kFx5kJotXDPAaDWReM6lusch1ezTiMrsVdbWm8hrUVqf46hUQqRdqr1laIiLsvOTCF1p6zPkKa2mBfMWsKmvKaOuRM+I8o9dCdVSyCkIXqLW3XMlsL/krxW+Z+V3VNjODrvg/oNRQMFtqFSMpYo3aMpPbfb+NTSGmGGpg5tmSGp1zqqAt3w3aFpExxn6/3d/e7vf7vu82HCIm1l2ExkOd59kN1KnZqvlKrrS4/nAbPQp0JA6gJrYADZA1iY1rT2IpQHbKu/T7+UpduXwGTQRqTu9qQZrZNvb9NhazQLfGSo0xhn7Km/Ti11ME1ZkqLgNNUhLpoKHPyPYegK4E8uILEP/SShls9m3aQvh2z5BSEtIUTSbRJ4LkCi5OFqdUxTGj0xKTi/G2RPfCS9QS58zjOCIS2k+TXcebNRduBsTrX8qVNMALGNHl1OvM+fI/vjIzroLVt21bskSRHgJ2wQTAXAbGS1YvMNVoBvLu+1DTDregRIToZU8em4hcQPx8e3t7ERAveARWDFFBP6VopuqF6nNXkcgsWTVTv5nryItr7apPRf91rvv0bfQEQ/UV2d6Xy92u0pARJd1IVsC8VYBY2OpcywZKrcxM4VUVgcyMmQZpoF1VnfPoroMK3dXYx8MEgqRpKeU2fOkUx4X56EPBvvfl71jVRVsExMVW6pipQLNkiJVbhm1jk5tL7dvYhrT64sycMYuHYoKnm5B5PB/zzCrNjkdShVpCQVHoaq3jZFZwkiQcaokqVlbnFgrbdA0KUo2ilVCWFKUSk0lb4Na1LUIJUbfm+EAuLFH7r4qoHtjretayUvI8BajEB5lQqC0l9Bjdpw9UM6wja4UvKTjGeHt7q9JMG/dv++0dunmlh4ds6rRdq+pxPP/45z/uettz8B5a3+x9a3K0nydcUN0lM3O3M/Pj42N+/182XVPzWUb75f62j9GpF+sYrrptm0LOeb89b/u5H3gKU5nbcDMHXIC3b2+RKMlb6oRO5ffjZ6nZuBVLNUBjqaAc+65vUjfJjTGEQ2VzGWpbmj4RrBFnPR7Hx895zKxUVbPhENM2BlqpJfQQPmyDWKoQ0hJyqMGkVT0GDtJavgPNRp3OjMdxRp6oHMq56W34zehqMkarG8W6VdQtFhX08tR7YwtuFN0K1ia5rdSIiIh5LC1qsb+wz6bNIeskPhEtUsCsXOl4YlSquiwISx+nF4BARC+NFVndg/Flj1wVUPQ+X9BSIXuLxfM5fahpB3Q0s42AajH32jKH2nm7nfvRIDjfti9Rg92T6Vuo48Tw9cUG9dbF1BaB9tDDNBSoUhXTV8pkZeaczb66gF2SmdFnpUJEthMwi53k1cOIblP3KKdnN2LWZ21tpK1Y4QsHqNBTreW+BJSm2ufEFBolaxkeVmYL9ZJgkSKddtd7M6qYbba8MuvqckD07wFoMq+UInbqiS5sEzrmRlDFYjZ6vbo2dVHYEDO0pLWlVWCBSoWWrp1O8/O3W92FVTMxTXqeJt0MY0VnMBGwqxZVSDNjo6KqOis5OLsrSZXNdxveUvSOq5Pm4ZiR0q34vnO2bdu2zV1333p5N7UxjGmw6nrSTDvOsONmFCYiY9/u93ubjHwbr8Fi/zqLh3Oe7XuogVzDSpoJ1Nckpb70KflC4unqFVGzsqJY0QEnJsTiibfdtlu1xOUXLsFGk0bDR5kZ608ypo6ycdvut7uZqdu2+WYXV+rFpkjAxLrxZuAX0PynFbdWrnZP5C9jY1YVdPSjU6u9wmIwco1He3gmnFd6QMz8ej9kMmJm8nE8OyfxVc0vgBbOzCJDxI4zjuOoolgB24v9yC9M+a+6+NcfXq2sV7mJi2iqV7x011h96fpWudYcvCCFEUGsnMcuvF5lU57hojIG6SLscj+iRONLu+sTBtYh1GPsV/G3wGaF9W5Fdh8vymsmsq9qayP7DSvxbX8rqevBLgBi6qZxfkLJP7WkQHLKpXUwczFrzk0PB4d5YYkurlbi+sP1l7oA6jlHSkm8rh7UzD6d7GZjjAKyJILQAbAYWphfrAa2ohR1nTW51r19bB3kikL1/KTQdMNah/Zip2dc782GbjaG6X13c0FlVVZaFqJvoco0gHyexQCrhG5moEsZTLXTpXq6IB2VcbLTu2dRCipX4GBHwkCoJk0QUBcTGchRUEU3IzbBgCphBbCw37xDwJVKRbUEifp5G2dr31KgPSOuqjPPqKmKfd/G5qrGSNZkaTEUTGQv7M2737btfr9XepbY2N02GZsV1I1S4kJn4wKej8fzx89DPyY2bjfNISIKuHe/nhXHyVNN9HaTOZGZ33/8rmn5LEnsY4xh/+O//w9VUXNVBVWUczKKvt3++te/PuqHHMmcGGLe4R+3uW1WEqxxpOd2l/fb417/5Exu+100lLnJ2Ey9bpb7Db/quWdZmdvYXfaQNIXKFB6sUSkzc86MDAA33mxQVCnMPKDTPMyTGubYdt2G7zu3XcYo1wKHwrNGUElEzWfMOeXMehzxcTwzs/XnVjZLFHWtDhuGE1rw+/2Xsb8Nv5t99leYVZisNh6TrDEspzznyZzn8ey1EFenVaGFWOOlyDTiRfyH5AwsZXfnwGeTspsB89nCYfZZfKVeQLVaqm8kwcpOtc5+wvuZdzWQHDW2ja8jdK8FnlZJUOIWLwbBnNMvvPJVwXTEcq/E9Uri0dYkIRv1Xm3dYTX8pkmEVU5k10CvWiEzK0JYQs455zxinud5Wj5fh+yWNUfURfdJqpkU6NIJYd1IAJLF6jnR4pxlprD9g2tC9tqB8CIFGAAalK0lZwNpiYvRWhVCq/YoMS97eLWS6usuVawV3Z2zVUTdp5ReZ1FV1eK8JpR1tdR8aFWFjRXaGGbbbk1Xl24Z9qp8KZrFohuOIoRWzSRA6pqpCtixjAut1KPhdsmZ4oqVah3Vak70kLH3yLE3hsOSRcze0mBqOgDdtptAm7RsZhFlJhEBcJiPMfZ9oJgmVdEp5XIVkaLqqrd9vcwsq6wZm6avhtNnHkDVnFPvfplGW1B4MXXZOo5tjGGJ5hmCc3PvKUZGzfPMOBV0dyhUr75pA89UAZxXNUByzimw7aa3260KvNgPczYyw0Vk27Yxxrdv3273zdz7lCV9TGLPY/sGi67NuvCqKrIErS4iUZVBJlDmIn3qQM6cnNVDcxQjKuLMzGAcx/RtFJmRURkdgxk9BVzS7Jj1fD6PGZl5nmebQ7sXs9myyJzzBPB8Pp/Psyhmw91iTdf4Wtx0xVev0oovVdyX8utzgv/ncq37B90oeknvuwirryjg689jdFzHbmYizEzm+kHbZqvAyhkRqlpxvrpuEdnsuv4pelGmeb26sNncY4wZZ31Gms7q9RbrJNXveTN/tQb/1Na6Jg+vquvzaLcOVUTVjKiq3UezbEQkV/piE9pY2fhQbWPlVd+4qkbk80jgNBtjbGPsh53nea5E85wQ2hjGqNlvtc0oOePQ6mc8q2pG9NlOXTv3uM3CeWYfKwslhZ6lxcxAZQsmqJVE1ktW5kN3u43hplArKTnPMhvQEQcqMGwkszJZrqI2hokpN7imWhBHzXmebcAjsjCTZyWyIlMSTTd3c7XNxESoN7GqkkhTRwpPDQPbR7O51D5PfRbL0zhQejJd3cdwOBJpjKMqWFHHcVQC0BlJfvi23243fdLMZs0zjr61RTcFj+NghZCuDO1OCQHMhI3b27e/HFNnfI8J3/b9dk/RIbbrPRDBU13MxvE430Y8v/889IP2Lm9pyc2MFN8cmyigpkgVGWYb9IYzOOfx2/mPPKYk32+3X7+9u+svb9YlKgRVKFBt3N7ebrrdOOzJMTGFSfQ64mMIdSff3nhCQuH7Ztsuxw9AlGYyHOLUUTePuz52jCFjE9sAr3a9Uk1389s29n2/z5TikfPMTBE0NDJrUk7hITwEYY5tw37TfdN9KKxDXGA2AOvpbVWdmcecx+QRdQSDk8IJKvSMISJqvWPWMXOYU8Xb72K7+DAbq7G1YtNESqUzJYjlt5NmWpZyHRbbwdWDr9WuElEs5Ka85DbVIM1mbHrDeLvh0s++Qrpjskg/vdMrlMrPZOXqWkNUC6fQCtVdGIpSU0SQJUxZpQ0o+CrX7k5Lm/de60tXIVXWf0GsTYJt0usxJL8WXk2v6TKOzG5F8MtrDbYaVPAFEcR4zWI6XkUSkpBOxDNVUUcfkrS9gGv8VCtAAD2dU/tqxoSIXWPaVcgS17EICaKV9SyKGLrIIykKcqFSS0gheqRYC/xwtTNRvEjq2ac7ssCspX9Pu25cdKOrStblTpCVJWKZqBolSMardyj9F3NWRV1V+KoR8YnbSHa4o1BbbVWtK9OVB6p9+3UZAKLt7q++/dXauSBMKlLXXKlZXL4Drc3yjNE/vj84BdddixTZbAhk8EiIsHEToKmtyJeW+4hk9YSn9AK4y2f4A17jLWYfNtj+sG4uZbdhIC2jZVGuSe7CEAqrPW4Z3tAWM1nuhcuyICIi7ttqSFx3Zv+nbRtcb5C9nT+fz6py2/Z9N5feXAlQTVSrlwNIXU+OEER+pnazu9xsQw5Rilq4JzKZFIpJsli5chgjgz1L6sNCADIzo5omm1GJdFzBw31KmXNm5jxDVcvr8huaS6n5jBU+FhEQcxcxG9b54J89qs9Q8E9p+eeUB///X6+S5dW7whdH5KvGfT3yqrhiRj7T31mJJSb70/1QFaLy9d+/arvXoe56k2r2hSU2ZxRXsUVWrmq7R8mL2QsBcBzH69e0L0bpS5HZ9o4ZMb+EpZZCStWZIKeq5mdLDNClp1jLzlrF1fz1uIlIR2AAouo23H1Tcxv+PB5VFcW8Ooh9/297F5op02TOFzXwye8okkHx4kpHgPDyTYsuzxaFej3BjGQUszSy2h+sbQ9WNRdcjqJEdpcQOoDVRhKqyRhursNFpZwiWYRFGnVIDyygVIGUPisymKXZgiyVanWdQCAmJYDDNUXCCAFN3KV25JinIiQtcoRbuOA4zzBuEJi6ubI7Yzgjsmo+H8cMgRZkjHG73W734e4llTmhbFWiKXJ25luFsSPCs/Un3AAzl23P2xvnSR+3sd02H6Laa/VJF6vNh7nlcYbOYxynfRxjv7lrFAB/20RVlJoOIwSuo3RT2jwexzyOOtIob7fb2/uNqH/52/u2DR/w0Sd32Nh8G/c3n/K2H9ie+oz5PO0MFZXZ5/JhY98sQiO64l7MKkBFHNuAew5M5UOl3DCEkkIbZJlguNdtr7f3SnHdPmT8xEPmnKyW1czSSZz0qQhRDIMPbEPGpuoqYKRU8rYL6USr+ZB5znkcs44zj8SZQVJZqRoyz9NriMk8zCJ2KbltbtAIdd/cNl+5hqaqSkGxAqrr1ANpDHuBKUwIW1arqtAUCAFGighVssWR2q6Ra6dZGi+hokVSgOJaI2ol5xUTcomdJVdqAlcaSfb5K7vxlME0rLAcqkLV6xPJI5ICbVqLsO2SPW5rrfpFzemIZURYGQ0KaauoKtbwsy46QhderPaw93nviw99sbhUnTJlPeItHnKR+UXh61SqylBp4sAy6quLm9tYa5arAXVt220uaLanrGTrz62ipDkIRdJWIaQkpafFYhSqXjI7EMz8Unpixbk0n+L6d6yeha6fUilAB5z3ZDIzhaVqhd5QKZXFlVSNpbnpFGStqmBpGj6vgwiqvXyvD24t+nUNYTsCB62pYJdNeuV4v5hqBV6lRLExxxdDCysAR8WUsiLlSfJSx/SMxt133znYjKvzPOuYEcUsU5A7VTp2MRuw3uAGoMeQ7rr5uFKl1zbZIOJL9fK5p65YzBUvkxkUIX1pbV6VgYlSonWLQDCjKaA5z4osFqW9Y0OvKJ6SntmLiLhqpiQouZjG7X0xM7QflUSrwUrmnNFO/l7lzCDWMj0AVKWIq5R2TlmhFlVzce76QLOsJgUUhJWrr6wKEZ3zUqZnT66DQCEpSBaD55xnzCoEKzPlKndabtii7PM8KztRwDh4SaxNFSoGTEDRjuIx1AeAOdcIrOMI2/0A1JyfpN9X1+c64/2nKvkaTb4+nZfqqy6Z59eeN6/wzddXXhhVtON2mUxXrVxVHL6+sgsbEf2aR3RN9FpdvgyG/YNeP7FPUXYd5D4LxKyqOufzNSTVlR3ZP+5Pnb/MnMcZEQmCVFVvXZIQXIGn3VFvVI36StRtZ4KKu3eM+hW/1h1piLlv2zbG3m9g8kRCZjKzx7JtW73dbj4UwHaeH8fHy82g82eHiy/dorSaDR0a+B8+Nlk97zrnPIPd8MpOEkK6iA7VoYzsNS5ZVaK2bYNRynmCZarDbNs2VzMIiogKEjPb0Rez0PT7BWusPipISxCoSlUsjeFNFDBVDFWDGW3IPnTb7M11E0pNHhOs3PeAIc7oMDZu0tHiDiuRKuSzg2ufkUVKa1J/qbd9H2aWSCnOYwpgLesMpnBAAAYls+ObCTiUY3+/T3Wn+za2m+83USth1NzyhJQ4XN0hDnqQM+qY9Tx7HfPNVVWFppVVyshoV6qmaLn77ebm+Pj449/+7f/c3H5+f//2y9u3b2/v3zbIUIXp8KHjNlxBf6ef+nwUkaUi8ohoi1m/qGRTM1VjBpAU04SJWKmc1E18mNEUJg27k4V7uSW/JW0b2223McTwOJ7P374nY8qEhkoa+kODGQyA9OHYRKHlZM2jqQ26NO6sYGbGETGDM5eywogpGKa1iYubWN5gGALsLgUX28x3NbeVBaJkT42KbIfO5U66yoxXLyGa0tkULiZb5U2BNPwgV2FFLvymdMJTq9Ov3OKv6YFdzpCryya2YsNJMvqbAVUiNLC0xaVLFI6o+jyAtlfgOu0qTGEdbGJdimUwIigBKYpSzYEkodaA734rS2++HvXudAgoGZXV8vNeX0zFqbFtW0hKWimQm4mWzSWCB0TXVAMXt0n1sxw09SuxWBdycPkl299gEGFJXkzX7m311YtY/cgARGHN4FzVwsDVmMGlsK2LonktVSrUNY4k2yLASFZcIXCrslsOfLBr1O4HCquleypkW8Mu/P3qK9MAokyuMMd1z2QxMjNjPhcHq80HsdT6CyXBsiV4Wmfu2aO0uiBwxWJ0zhqzLesL1C4ikKUpqTW5E1iTUzAxAQwdMug+RKThlqFNVc8qa8l/wqWLvy7zpJV41kM6/9REfVW6XMnx17+hinbR3C3Yq3sqbNoKu2ZS1S6yddVM6G25f1lROsXMxkqhFCH46j6oQNZPcWxyRWpimRhKXbZtoS6ud1wURMTj4/Cxi7pttshcUBGjWh+YwC7BBQxwtbrlU0WVjAmWVF7iePb9nHmSNedkrmo6a1ZVMpA6M8/zPCOrWjDJyugPKCtXlzUzY/kGZoZSy+vVT2qd7Lal2uhBbUfvNg+sC44xbNu6h9Rm7RWY2MCRK0YVItZs0S5l1nhd7D+0u7oYItn/En9m2b8+9q66juPoQXZfWciiKvSnXBV6BZ8vI8S1JL7i1Jay8Hp1oTznzGukaGYi3r+giPSp95rsi9jo8xM+hVw9LmDOl0dhwVHnnAkRwr0peq9jqrpLVXY0lbqJWPQ6xiVJbembqGbNjNj3HYCqb9s+hi3lu+I1qP1KrFCz9gL3eZUlTzwFUVWuyJRcc/meixRFW9VXlYvoI6IGo2CiqmLOeXa4yhIML1aRqoh0pFKf0nzsgkEfHLecpxaFcFVXa1sEMyipGeVaaazTve37WiKEujs4sk5VFTP33f1927Zxg4/cB9b4sVMvXIbv23bbt3ezDdQ5M+IULKPwnNk7RC+VN7urqg276a1wRMTM4KeEd50QlpVVoCpKgcB0wBtx2TtzC1hwzhRp+oH7uIlj+D7Gvt3unRYVNC9URYNV3sa4b/u++c3GBrUqiWAfGLuZAjPMmkwWQajUbTPf91/vt7d9N6/j+fO33//tnD8/zrcj3kv/atu3/TZUrZNIVGzocDVX08V1TNESpol3MKeZbpvf7/vHY3zEM2aUGzlWlz3SZm033NyGmzrMSO2wSM1CJKmSgi0OO1QmJ2Yz8mVgU4jCXDYX1w717QAuKd9UfWhrhLUKUXLMs43ZM2POOBJtOpREEWbYlFWs1nJWJ7Bubvex3aUjBNTFXESgko17yyIQeYq2KX0dql6d4WxBmLCuuPpFfF/i+atcue6LtSWRQhcsF9Rr1SYpWaxqpDQYhFISlyPp4lzm2logrOpklWtGSXxVzSvFIGY2XNxUXHSh+QkNclRVApoQIkLdMhcXWVaUYh8MqtkwsnJO2MKjKlRKZEWnD4qqD0UJTFjUadpSJ8UwdYPrZWBsGdY1qpDr8Ci9z1ovk1ykb8pLb7EMFMVa9cjXY/rVp1r9hhDxzilsOIe5trb5UnIUXteqV+ES2vp9K1HFyA5u6zfcbR6ThZxHsTPcKktZxOWuvDYbo1UVtPqUf+mBgKpeqZvQxowuvDKevfFdJ34RiJr27tjnaUiLwMwMj+NowH6XDVxTyzKTzsJU1R6/snu1PKtWApWKdZVIcp7pqlPHtm1mZWoCqaFbjP7mrkLmnJNc5/JGx3Y1s5nvPlZC7fX6OtXqQ//XXfnqfglAKQWWMMt11ZZf2mMd0meqatcEuCG9Kmr2KUUSeUGI/9Sq+fyCSwJYjN19ybluN1sSiAWmP2M+n4eN7b5tuG7FbimzyzsplggC2sa6HnNDFocgK6P1AWCiuDjj6w5Y/pduZ8+ImeesBDKKjRqIK+17xgq67qqrnQeqKaZ1hbhnXngydBKL3e/voqrqJI45M0tflenlAHj1IF/FaG//rxHbf3h9lgWXPkxexoUvk8qXhkwuWEzfYC3Aej6fEaWqpqOWHuNVovFrIHrf/F/lYpc23/vM0u/n8Xj07ltVrRIZw6+7DiIy5zyez4izb8h9uf9WK/hqJYPk4zjO57MryGaHFOXyqPm2bUNNWH75D1ZHTtVswHSFihMicHdv7zDQavp9u48xtu1mZpk1zxlxts2mzzk9AyVp2s/R6ET5NntmZjffFUagagJgZSj15fZDqx96hYBB6hqw1pWLQAgFSennp+/F5Tw3I9osUzKGCaxDIIKIRKWrCIsKJqhlZiZTZZrvhGRpD8iV4r7dYTZs3/d9+za2b9u27Tf3kW6zyc5jc3e1oWOMYdu+fTO9sew843n+JE7zECkxZVYknjwFpptudlPD8O1Wi8pbBTPbt9sY4/522/dexPp557WpSIRmTVWoJNO6n9IK2j59iPmAbdvNxtLwFUpZVlZVrTdShasM123oPnRTETBRHlFi6qoGCSazVNV2GzAMHbjddr+5De/4kB/Po8zTB7fdbjf30U5+z+j6nkJ1cdVQIpojAxLZpj9V7Pt4/+Xb4/x+nD9jRqXlfBa9DCcjtxu4bcptKAw2VMwBscnIsjCjWopau0JpW00kCThgTUNaSg9dYyCImGG4vhnsxMG0mXLMeM75OI9zPufkGchqVxNUsSluA7dtu4+haobb7fZ223+57b/cb7/c77+oDIihuyzWDFUvSPd1I0L0TzoGVYea2nCf5UA0F6DW8EubQrpWuCUZZsOGunQpQfTZv1fntQ6Sy5Miwr7SSIGixVtNOsVKaJQSgtIxXYVMr4hOf9SVpAhTs8233bfNt22z4VCBmGC5OCmaoBRwhecApVcUxTXLusZu11T0qlOkKEVpoXlXeapemsIObUw210+IxcuOayigvEw21B6htUVBXhHCIsIlHr+GmOuS2opI7LCXK2UHgL86SW3Z0ybMKphQmpUZr6whLamXq/EqvNoqVEigwERFRkTNs7ho7ryYXrKusQBARn6aQUtEbMUzlogoG46w0jHa5jkrM5f3s2IysqpZLNm/iECgdJoIhT1xbZkduZx+mszXqBHXxRHpGbCATZpdej8jSvPqZ/TWvLWxJuMs9/Vcr9MvRbiZNjp4jGFmVVHlIuINmmt189her6+F12tw330RXhLmiGBkt6au2bR8dRd2c8JMRNnu135q3FVwCRW7xyxsY29Xqo1f+NrC7Gzh/1CKVZWP8WpL3O/3MRxXq2exOFWhRjG1zhdafa9eFqUokuDyhdTilXQcbmq7JSpfRyBmRSTJeUbbSbr1ODNnnEfEzBDYLM7KswMbMyPzPKe8dnf2+NCd1R6IV+u9lgmUJishyXwDcMxumFVP6/qcs8hVLaG4XvUapv/vXv/bESS/wO6/VtuvweKrGut2eCfdvnpj8rJmrM+3C5ous+LFDHvdIZdBhK83XFXPY15iMmvdUntIuu3UN9vzOM7j6I97v72RxfY9A6SUiBJVs6pmZjtSX+POviXv++3ttrtaLZTXes8GWzxbrO3dmo+/4iAXgEYhrRq83TZAM5+RZ9bsqaWL8ksu0xhj2zYVNVFB95I78DEjYs0+qFXR05RZWYXXcKALL/ZO8qcaOq9OPQiae/bZUheZtlvY2sYR6PCxj+GUnBVz1jwdZM1k3+/r+rimSha2pUIuqpqL3/b3/Tbe39/vt19u+1/27b7tMjYGn10teTO4NnVXszH8TXGvtOOY/tzO/KPws3i632g95mHWnLkNpxgI+mbveOebDB1j7L1A9Xh382Heg+/r3N532Aq9k0Yk5uIWr+O+DRUZ6sN9E7E+5msPpVQbn2QC1RpGNxmuPqBDNenzrJUCXetpfNtv2/vb4M5TZZrRh8oYurmQIcJizufj8VO/76qq3765YJ/zKZVRKUVXuw0/N9Uc5cql44Uaxmb399tf+O15vH3/Qw7GGXXw1HSpOUwP3+LbRrypqQ73TdRVdFOrGfWcZ+bIMe/7fr/fk0G58ZkSBzb0LV2r2WJAdTamqqturFG05PPMOs58zHqcxxlzBqP5XmrmIppGboqbj9s+3vd3gSv3+3jbxs3tZrqrDFm8CFdxiEG8qCwn25Y/sfLspKDFpVEdY3C4TU8/GM0GWwJ0mNhFrlcoc3V5pRUjPf1G29O72d1nYaIKVR1HR1zKcvrlqu9NtzpoV6lSJJAzVM+w1pyLKK2DosfY9+32dru9v93u9+22blDxxS5vdcgXGVYXQx0l2Eei/81yLGLaT6kPpUBiEVOvkelF6KpufYqogmLevs/u5DcVWtyUrtbxe+2ulV7bgJX0RxLUpYG7KsGZFZEv9UO/sTTrgSyRqOzIaoMKBnT5sq3FHI0C+AJBffXMpFaKXFUxs2bMOHLO107QL222lqotVTuwnnAa5JqlrnbIOsOjp7Y1o4IVkYzJKmah9w9kH8GbyP/10pNkVtYSDus65uYq8CAw1ZUO6VmTJETBC2YkrETZ7IFR1xy27dr6v8y19F/lLFAV0UvStnt73XvcM8YQpZcDcLXbtm3bvvk2bGw3x9eGv3sbReecdV3eBQJYwudBEkOUst7S6OE4X2iDqiJTzMX0GnmlvPK1rjbVa9D3tWcj4vWluyMLFPenb45LxI3FwlUx8223Mbimqj1BakLvC2VCiGRTUTp7W6rVzcWS6lH1pyngPM+ZwbMrquobd2Y+z/OMzMwe6CdrZhzHPM9zznnMU6Qp3Td3b3Wau1eyqaEtMdFrOgfpxNhulqzPqyFbaOGDrH5ndwrNxqsj8nqOXtXYOp+0EuCLDD8zv9yYn+mNL6rCq4vGjmSw/luNArZt3MYYIlpVEROAy8tXuMSN/ZWv7/afhVxth+w30B9fV3JRJVVmVhfHrhleWZFVHx8frwLRTIbbdcQb25avB3yFkvdXruu/m0rNaB5pkTCYXlrG6/Tz2hfMPyFh7r6PrbnEmZ05EZlxLfwpRRftyCDfbi90nIgMERlAMc4ZOp3OlUbqwVoqhQ62A5LLo1FksCJqBSlev0uLPfrE1I9hP0eX00KKFDEIoWY6hporhm1lu3LGqcvszz4123AFBVkuuvlwN5Uhut/v7/f7/uuvv76//e22/WUft7GJDz7yx4wSkXHb7/dt29W8o5xuqPs8FTyqqs7jzJ9VuW8KqDhAbRt7ExFRtW0+7rdt7Pftvu93E8WKlMiudE36SFa1BpcyJ3pfiLyGD33z9rx3ZR2vwwmZioSUSLpSlWrVR9OqzDoinhkKyazyCFiTGdfRzfex/3r/5ebvOC3PyoNWct/Mh9qKfGJmPh4P/+nD955Gz5lSM5GAuPsOfys/c8PmhE3aidpzpEkaqfnPf/6bqhZjBp9ToCp5huixved8Y50imxrNYK5qBsjYrG3JlNusmHWaS8jPkFnnCaMZKL0oaERuLgJzd9MhcEbN1JCKqDNwnBGdBCEt8oNrJ9WXcTo43Ia5uytcalmBAO3CTnBhEltYD7taIK8ksvqymouqq49+zKLlAqqll0XpGgs2WQSN1sZKIQLY0b9Yc8mLKEG8YpOxvnolDv2pJQa+/qKs47lEpJi6zxRR7ZA8MXW/jX0ft9t2u72Cz4a2hPUKBX8tsp9d/ms91auQWjOUz5TchQA1HWV1rbNo6Gu1Q4ArcIMXhGbVHpdoYw3j1Not2z0W6cxHXgtxNa1g7XdXk1+jFihozrmW4rV2C9nhOxMXU8dg7kv5UFXobUNwtUh6s1l/vQrS5JuXPLzqpf942TOxagtpTLa7voi4hq40u2+XqwnaG8PLPnQlIjPJStSapb5KARFhLfOjoghkRkVGzktKIl87Rl2sfF7kbleiZMV1r3lKK9Mblurum/e+i4h4aXR60ekKzCFqC+xOMi4sBZHNhm3MRHeqzGwbg1/8cd2G6U/qBZLoWnnV/dYR9QBW/0kbMo2irlulGFU065bM+h25BmedH6CZuSL2voi7AZhpXhdWVU389d66BGyA+LZt1yOgvm37frfhBeWyxrb4Qr4+p6sQQXwmgV9pUFhA188hXcubjuOQbKNjZTEzI9Y2HIRQWsIVEed5Pp/P8zzPmKqaOboN3PImqGbGay26ygjTBfT/hETgYmJdYGpy6ccTaDvFnxEwVxn6ZeS3bBxfRoeflRm+xNvzkt6/emP9nIBlaZ9dolZqu4toxOVDXEr1T3l7XdyvV8D5K1cb+NQRqvrKdFWhSmWSAsw2wzYUpr9JZlbx4+PZv9EYTX2Eastm1OXN3c9+Rcc5gFlldanpFQCvdyKfxWWtc7BIv9tXHf+qCPsGq5wZlTlfFaTpRkpTM7a+8cySn+CPV7fPh+qpLXXuaysZtSQaLXtckb1RLDCyu6d/qqeXKxwQYTEyS1JExMamYFQOdFC5LKO62BgmjpCDpaiMqSLWaxpJbxcpIco3v8FEbVPZ7/f3+/vbX375y7f3v9z2vwzbxhDzkokzEtTtdnt/3/ebqiUAx71iB2UcPG242Uy7bhh1HSwBaWJQFRMV23x7u93f7r98u3+77bvAlj80kxluYmZdq1eVmBaKzMYva7zc4sSy3arASOkRJElhFlJ1igasxb9oBfl5Ph8yNlVIdnaCu0oFI8PEXNx8bNu27bpt2N40Dvz84zGP8CH3+1123e4foh6yM4rftShV9Xw+7/teorBvMt506Lfb7fauZ/D7/l8+ns+McH3uzDhnomLHt5v8cscTh+a83/zm6jJdkcKjeYV32e/3Zfghfz6OKm67yLYZJe7HTwdt3lUOplOVmJEUnK4gIkx517zj4Qo33VkaUUJ15c3Pef74cTyeE3bD+y/jzJn1NMO+Dyl5/oykTKtnHkPVyyPf5vHLiV+O8ctj6l83Sc0zfuop6puYElKITKuqoRKZLgUpiWMTvm3217f9+9v2Mz942wTv59PBKYAgRaY2imrxBABDN7hFAGoGRcMFslGvk/fi7Eu3fEDYSza+uhvAQAtzsgAzURW1drCLgfE4xGvbbyquvu37TW9v33799dtf/vL2/uvb+1/2+zfxXW2TsWFYj6nJZKmqDWQSwjBQRYCJWqGwnUN9eZkElTMyI3x+oIIIc8jSVxrVzhIryxIS4saKo8lhj7OqCNtfmRemVFEd3UnlpXrtneaYJy/UvYhUrYLlmOfV65JXkwPAsbpcrApUiKDZhOdRbjtkW5eMZjTBIhK1y+z16uIo8jjPR+RJTNESBCt4lGTpFXfNyegT+Stl6RqZtcSEOaVFafOcjfwUQMy0Cf6VnA0eKQUKVSqqrJozFligQprDidVjE5HEwv67bCIdl9DOO6LHtdLKBYmK/hD6zEffGVlJPeu0cA/bxlCl7i6qVYhpsCqZ1b6fsg5rV902/7rhdam1+JBaGBj3oeMtIrIaOynJOs5H1xxU0T50iOz7bcmK1Uh2UMG2bdb4IlB1tCGr9zQFJCuPJyEmXR+pyQ4UsyJnPKMpqW3d7JZqa+goKtbuCssSSYokY/rw9+Fv226iLIkyFdvcxLzZ370fA0AlpMebaDSdAJQkOaQzABi9Hxdr9TvJ1ZCNdUKI4/l80q6C78w5mwxVhFTWPI8ExXxs28/jfMT5OB48qarcxKVhL3Ge5/E8z4zb7bbd9q7bHnHUudAS+76r6cwEcLvvS5mOkN6dyVbGmas1D0/k4jXkl5bSyNSqVVV3/UByTnZduG3b29ubu/c/vlhoXXm8ysHens/5zMxK7Nt91bjAPI85Z1NMa1LMzEabjwBU5XEc7+/v+75X1e12+xwpqj6fz3UESn97e7vdblE1zwOAu8lKtKy1E2MZP6vqOU8lVE3kdtvcdbgYiDHGI35K+X3bmD9+PH8ex7PBBEQ94zh/LDGALC+CpoAqJmz68XAXX+NCAFkQYYK+325jUDWXyu2cz6Oq+sKWamZAaqiKiBtum7l7KzIzWUkBXMZ9/Kr3fdfZ0SmPxyOCncRawfM8C+1e7xBJ06pReIfVsGlj5vnz+PiYj2TRBVLmmec5zyLF5tFGy83fTX33MWwzcaGyANTmd9YsbkJ/lpzn86znkR+npVrp8CEOKGhuN7f9tv962973/W/77dvY1DzaFlVUc5rIfa+bwEMkB0TVN6xxFrQRPaPKATkiRTC3bXfZDWJGNWy7u4+//Mtf//Vf/tV1nMcUUsQSpXTOERFRGYUQqWI+PxqoOzNmnhXY9T6GQ88eNwOS1f7OMhFmKKh6SIbaYSz1Mq19iIZ+T39G/uDHu/gtbuBwqLAqtaQUEDfIEHEdjSCr3DZnlrROC+W+ESaQzPw4Psisisfz5xhj22y72/buO27bdrv5nbIVtn3cjozt+RGsmeccekvfNnu/7x/fbpa47+OuaqAJRFmMiDPytPA2dS12t0LNHEqyh+L72A43dVNvyPun168Fj5kUBgCxhilQhpkrqWOcY+wDR5e677eRFWSqopIQJDPyJPYZjHkWPrzum31jpbTPucc/VR1a/ArX63ZlZnt+6nVo65mdq5c7Rykk3HUWGQCXi4paYDZZ4D825xdSYOnYqcJ6xT28SBP/ec63FC5AW5AgAK9GDgmIecpgy0Hu397v7+/32/t2u/u+7ft+u7+PW5uZFzj3dS6fmfLl/Po6bwEQBS7HddUXAlKrCj4lII2GN/dRlUwFlWVELI2YNoKMTSPu4GDIIiyvDmMrdzqVsmle9YXiyGzD0bwYsJmcseDRYCq6GC0i21dgVvt2p6BZZT2YAkpVq2QlAl1upkvL21kliyDVuekiooqOFsJ1lVzXZ/G6jN2qXGs9EyJAJSsKyaLYSuVpyoxqj2O7TsjjWD2eaJD07L5mo1b9SpzpkxkpzUqtqm4gvfocL/3NEp6Zds5x8Ox3+eJWKNdob42cALtSUgBxwVfg+GtfaT+/u6sIgDFeOnqoIhOvZuESD/UoWax9pu6jHx+s9G99/RSs+IfPGwwrPKBUdfPB5V7hNYUmyVmZ1c9pqtjnLbmcjhfN8gsHoZ37r4FaM00Wwd42Xv2zjqB4hdxzda2zJc1msrq6WT1YNLBEIicr6mqUzuoyK/o8HbOuuxfdu812/rNQnLEOYQAiOsNxidOTeD6fj+NchIUv/uVXn+nLR//JBX21PF9f8/oDrlHjV6lWi8BejfAvYvnPMe7Xn/IfmuVfu32vzpw53FZZNq9XJ7q8GjyvD/UVttnCHXdvoMZqpCWO5zzPc4z7cRx1Nd6un9idYL4e5m4Ss4E+nxosRTMVL97Ktdapmol6gRUlEiyoai8FIqJS9/sdkCK0IKqmLuam9qo7e17Zi+vn4PUL8Kwv17ZtVe6ezGtncTcdmYk1RF55Zf3hqN1WJFHxFP36lEXvHRBt6UhVJjeRrMkUSnm6lVWyg+37qNkDhJetwR1j2DBXkDWLsk732uG2ywBrZjrcahApgJqpGKhC63TqHgrJ1Z9jSRmQdHT2seirdcf+uKKgwShBInkluT/nuRYcDlN0pihUx7btY81wTFyK/fUt9mybVlXNbrXnbNHrSzJIWQKuEu2jHcmInLOt4MIsRaqe0AAyJBhZVpGZug+7RwpwFPywh2DzFECUhWKaOtx8MxvqmyLLXbfdGFYZNadskQ0E0gUWmoxzPiBJ7uLb4I2UDJknjELR275hl7vCzB7HcZ7PSJ+Kt/v+y6+3ON+l/G46GMiQymCc8fj5/MN/WDLEb8QAT+gNqujAdvYU/Hbupxyu2/CcXBFlsM3E9X5/c71S/MRdB0RcWXZzV5MoQVJ8PmilpiJQ5axiZBW1A6HN6lTOjMdjQl2eb9vZXsV5nKecsUfMklbWXtMSdqxHVtZkVZ8p79slllqN67H5INmFV5WxRTaJlLYDXgkVV8O3Q2d7qRPYFRq9ZmrdB72ileuzBkrIlxqOZFPKq1gRpICwwhCzMfb7+36777eb31tdP8xdh/s23DZz74Cunud2AqNhGa96ERWjw1IouqKy11JbeWm40A8NW9/SyUumRoOblCmtmCVGmRSIteiIa2s3haqoJKPaTAhpuumS2Iv+h3X81ZnKzDnnGXPOeR4rJcnNXKWzGET6vv7cEl4Diy6MgIqQq+P1lQOZWbNrr6pCn1OgSoU1NLVez3DCGoffPgwQGWosbeg2q0G1CWZhodEEHcUNQMSElb09xFlxXHOfqEg0qhcg06w5LkOkca2tG028QCsqn1vv9b82mq7wY9UKVGYlyOnTM3dvTJE7IrNS2LY19IloH+PqeXSZsppAY2wdV7eUKO5j7N2vWjtrzk/IuIqZCVbRM9RfGX9dtVxM9WtAVmza/mcl0F3IIs37aHT5bPqeWBO65iyI9aPUAgBrFb+7+7aNsW+Xk/0VxejXH/o1bBN3kHkNTddQmmwKSVubG6BKUyQYmed5ZkmxFKb9YfeYI6vY9CQRiRlz5nGeX5q11bXX2SkOPGfUeZ5yqby7EFTVKM45z2P2XDgzG15fTWFi9a/ZDeC++HXFVr4u5dfiLDNVNDMbufoJkGt4SzcIY80T12jmklj1X3+tS69q47VEvGoCfql63fw1zs5cj5isPi6vQki+Fm+ywh9Xr5clKsSI1zt5HEeS3UhbT2brE+rzrqiqUigWyejtdtu27RM4BwjZrN2WQGzb1tLenu0WiFZrvXyX+pLVKUzlim4cY+tL0S30LLpLe9IhIIOLbNdcjxYyNyFIRaRbiyrrjMfs0I5OKxd3DfulqjY/XMd5nv15ZabaOGJGzx5NAdWIYByc7Z7u+s8gZ1Yxn/NkIVmFhaJtbpFJKaYARamkwUTH2FxYKorSMIibDR/bBmXkkhhCTKmgqVpvtezhL7REFahsLFAzly8tXVUJmBRRYkYx6ixkIIsRNec5RaQGxFybTKXojtc+xtbWSFEpi6iKK26knVGs8zyPeSJyiOFzpFHBluUJYYWsZGbMmfMIkgZhhUm6FTyggQpKaInzDB7Coyj1wAyamWD3SWWVVAqxq0r7Qw0wMAsoc4oWz3lOvYU95z5chsKGiYgaEnnmOX/OkzsMehs324bf1d5ZI0rNXbeh4udCp80ZH7+83+P4RfjB+RiYSOQRTFbE83z8849/TMz7+bHt7+Z3yj4Gkl60F9XazIa5b77dnTqwlJq04a4OdcLAobYN2/ziyx8YOsytxn2/vX874/GI5xnPIw6hSEkfHVW07+YMzZNxQiQ6P0EJKc45wyuiKgqOxeV4iabXul8CDLXbdtXaHSKbFNF929x9pGY9M63yjAgGQ6mMiCkiS4R7FV4AFLbkUiIKe0mGLwhFl1z9V9qwXmzG/XLlrEeGjVYVWUldKmO/7e/v2/1tf3u/3d/3+5tvu45N1JdUbvgnu/ml6uCrISfSaJImvcunrHiJnfuaUBoUxOUTgqhroTQFJrBedKVaf9QTseWKrIv3DzIjqqOByBcEH4DYIFe7YRUTF7Oq+8athunYcpbc9j3dd7huama+bfu2Dd9VvW1TrT29IjJ1ViKr2oe9dv1IcG0Jr9+3IEViRa/VEm32IZRfFVf8kr6CRVnMdaEEIpJV2smPUl9vrYpzztn1V83ITFaQNEF185NsyIs2W0RAgdrnfrocdlV1HbJfPZ6rWYiIYKIC5KJZ9se9mUcxM4hsVUx7sro8uk7w2TXntZfra9NtqEObByAsLFUTSXFz9W28pISmqm5+aY/m6xTx2rCrKiMKn9SoL/8Vcl23Euq1mjZabj3q1cIdweqjwGwbY+y3t23bVuElOsbu7kN7PvQibfZpRFHQymo9vVz85A7wIPXyxDCrMmPGnDPmrOpxPEwUfUaIRcFVqokcHeUQkQUR1IquqmNmzwUi4pyN7aBBdNuG72aWRMyzq67u8maSyc9MCKIuOR2vaJ1Xp+pPLfNLBU9yuL66n51dc+X8jPVBSDCWOnmdE16B7hGvjvjrHnspil4yu9d6oqpqaPWxfgbDZ1XziUWt26v9rT7DPc183XK9I5jt+32MPSK+/3y8buNOqSqyKMnKysv3uUzlUN2Hvb29vb+/b+79K/ez5u7WPZI5W152v9/PHN6em/aUmPdh2yAk28Z7hZAil2xdREwMWqh2Ply/O4BuqdaKMNrGGCkKOCq5Ioakx+4qUomU1NJkQUl3EfHtDcXWVJ7nWVUZzMz9PJ/n8XE8swCVWdmo74/HR7unk9VEsTznmfHz8QEViplvtg04TNxEYx6sSIkOQ1ZTc1GFUEu5COnqMrbBwlTkuj6dYS0UmOrwJhw1lDWDNIhQgzVnIpgI0+mqOliZFBVmxQyecZzxjJpnnpHzOCa4tIAK6Gay7TZUhGpUIyQgUIOBlZWMLDIZFcecjzjncVSkbTc2mLDirH6EAlkhyJQ4Z3OJ5xHCVBBSwxpZHcYsRpDCVAbrIB+awMznMVVdOTxLqqwyrWC7lApMKYiamacEq1iYk6clznSdu4io24KBZM11l+hEybDt/Zv57e39r2bvGQotG8P2bWx7meg2aHnOn8ftHr/8YjjmObQ+KrQGKxxTCvU4Ps7f5/547LePbf9F/a4jiQEZ8CEis1JEfNs3+h27bUCdM46qUhGW/Hw8ldvNHLsZXGCmY9tcmgrmGDcdu0/M377/9vv33zz+f2T925rjOJI1iNoJICX3iMys6v5n5tv7ar//k+2Z7srMcJdIwMzWXBgo9+o/ui464yCXRBIwrKN5NJwfDk9HZAJOiPv5jmCBNG0mVnoRIir+vkz4a9cHqBoTePUYVkiC6grJvd3e9n3/NDsv6W7v/cY9UtwxJ6sqhFRS0UQ4IjijQrhq4K7a+DrGEZa7+9Jz/btzu6KYQFIyMU5eATTrz80sluBbkji0pWR4AACAAElEQVSJwaLN7m8/3n/88f7bz/vtbb+/9barqrbOapVbtkC7yy0lTFq751c4wnX8/LfMrNXkyKyUhbgLc4iYgkhAQZCrXpCVVcqFlFGjWFR3OCElCUxVJ5eLHbgk+SDo16EZJGt7cJ9znHOMMUo/NMZYgeMQbFBlg6o2s25977YtNPFq4Fl7D+eYScv4Uumw14E+ysPoqBJ7jxU++L/9yqBgan3dRwUMRh3rrmjNTAp6deY4f+UAJYMyPedSec9xrL3T57r5+Sv4+7WHXd8Pai+qcTWuMFhc+QykUoWD7rPGMiTHV8hcmWZX7W5BBGvMZ2JZ0rBvVNTXRvvamwsRK9+ZqiI9kAlfvgdCFyaiElO/oMdY5QuXP+6as+nfaS8WEv23D/6qHQJi6YS//ekCuVaXRn1pr2rCZYXprTe1pla1kq21+iOtpFkIJa96iNfLLl8LUYKQXFnKBbt5ZIE37jV4BbMy1cyeHrWRx7KYuY/pY/rMJIhoEjwxPMcYSRwRc8QcIyMooaykRkQz3M9R6G5cyUwegSqW/haQ9kKtVgzvhUVVMwF9IxkXZHWFbEX69JKVLzDppdBa2Qp1n6xwKQB4zSgvqDIvbf7X61+3OjO/BjUAxlIBB9fixiCpQbEyVEsOD+A4DoButxuS3esn9m2z1jazPoPGGBXKrapJyxvuMz3mDK93xLxMIff7/Xa7vb29icg8zznnmIMSlScSEed4llHDrBt1VJpMXl3yF/pLRPu+7/uemc/n85xDfLbWPKIGMlJVbXWV6xOpcu9rVyEiMWPVxpqcFdumDDPr3UxaHfJfXymVbZmF1UhJVVXa3mp+wMwYY/DzkUnD0zPiHPM4R1k33N2HI+c8x/E8j+fp83g8SEVbl02gadWXp42nx8zANDZpL840hNhROaucoqImrZtoQjMmFc8eVa3BJAikxzjPk5m9eTErRPDjExRiBEltpFoNdojzzKTzyI/jOMbHMT/OOIY/5uEA51AGCUhZbnsnCpYUrbTwKUKkzBlJ5zk93WN6BI4YY84ZzkWtTh8+Ro4zhl9ikjN1iRTHcZ6nj8kIFTJBatAG5SIvvJo5zzgBpTQiJ3ZiJyKmzRIbMrLIEW5SZUDMp58+T8xqHg8SBM0RT/Wtip1Ulq9Hm3HV5YrO4OExgxIsoiRNG1il7vPbfk/Jc/z2+Pgr4insTWIeEq7kG247AD+vJdjn9JyOPll6EmdSg3Ztm5gSZTBYadsasFtDJGhM9wz36RGnIODahEBJm7KxquxtN2YS4773+48tlWoPOIYdx9MlUwlzDg+fSSmeKTCz1vveezdp35VMC2ElyFUWQ6tsTCCazJzLunK/33/+/Pn77/84Px/jOc7nMT2bIzVXRY0YqySDjQwwk+GD54xIJCUcq8vPkLjiF74sRS/xxIrFvPzKIFTiQhAKihIiYutt98DIJNtUWoHZou32/uP+/uPH++/bbd/6TcRe1nNdUaUsFwdk6z9JKBEchUgBIPjVKfwyXdZuTRoCK55U2Jii2i9TTUJEJE05iUKzrOlizI5YSr/Ey6ZZuwKvcSKzehM95+ubycxiYWpvGOd5nket/nRJNBawJqZWyd1ba1tlGinpd5kFEWGyh1NkRFSlHkUmovCsdRyPy5K+PrjUlPJicNa2l0wQKUXRlXBdM6NfEQh5pWLmssovUHNtl46IKrQFEUG0yjUKPpELlFwbZyYV2Tqe9JXiIXnx0LGaZ7UcYblSFlccF2Uqk1l/7dksK4BeL3q9Pq/7ALT+RxdRVVvUyw8Y0V7bc/U6zDkjp1/AJBHV1PU/YC13p6iwYP0fM+WLEeM1/DF/L0WpD/PtMFAGDKGFXImsFq2qfxKxrBCSpEpneH9733u/3W5b37S1pXe83mEllnyJlpauMRJOWTxjXfcMyQikr3V8iZCozLiIWa7bCGQEZsRxHHPGmJOIWDPA5xzH8OHBzBnkuVjCVbZjWtPVeZ5zuCOZtZY4FqsbVUSIVyuzXwDYSya/kgKuZ/b7Xl738DdNUowx5jxryO69vxbGQqvrxn7Nx6/PW+Dl6z/rh76u4Pcp7SUdW0esyuBZV/XlWV6js6rWyar0XkgukVy50etHtNZen6WOKCXZrIh890gq2E+tfGb7pm2xseUtrPVEDgYyIqafRLRtW99LcVja4pCay1mFrcwJzTaVljE9cB6TmX1mFagQifZGywdbbX4Xq9Nazev1ENUqUumALJfIrOy6dJVMZFkswSyqbX1wadmyPqy7P/WMiqahMwcQSE9OurdtkkzC8zzPMcfj+Xx8jjnDJ4lxcnLjluowiBF3uy3pJ6lyF4jPdEoVCh8zfCYCFGwpCSLmLmKkmT6JA0FZsop5zIxzzs+jdzUpjB4U/hnkrfOd37LFJnsyATGewyc+j/n4fB7zMf1j+F/TP2ISRaaaMrrwNI25hx+ZW2abeT7GR5Om0jLj8OfH4zieTz89gCQec8YMDTxmyPRjjjPHCB+LgfVjUGFd43yOMcKHIE2pK3pLZQrlKrFMOJEDMaekG3NAmHgCYAoT3lNd4Axi7dp2bQaV8zwyRsxBQczMXVgz2ad/JGZEsHTTtm1b123f7mKNSDzy8zn++vjU/fONbio2MCUlIiOJCZvtP+5vv/34Xdg3hdJ4co6Tw4xpIyLZXdz5ccwx4BkQpBDUkx0UEZxnBUJFzMgZJX80JrBlIROZSYEWCUJ8ntMnu86ujaW/33ZmhmbrZtbF+H778f425wjCYGiTW4qN+cgRBAqaBfM06cqduVyiRR8za+EWCQShfiAokwUlGs8r9mnf9/f39z/++OP4+PXx19+fvz4iEDOpd5AjT+IoIt9Miaqqqja5SasGIJnpVQJYiPhLL7FOqJxEChTzRQDZtSQBNeShCjy4TuzEuu3t7W17e7+/v93eftxvb7fbW9+3ZptqI9aakF5q1tWykmC5gKWXJDZ4ZpYIzDOrcUiWk99EKs7LUiBiBDCmkBKnsnLvDmdMJy/5//qJ1sQpOHiBeiu0HhXUX+EOiSWpIVks3PWr7Dzn8Mws33eWfvw68grpK91A1Fi0yl7KnCFrFiphRA19hCUEGeVDdi/ZH0Sr8BaI5IQwG0tg9YEQXVHVK/K7ysmWTpiA6snOgEBenMsaSiJEVuAALw9PREaChZVFxBiAkr0GL0YVccprKvo2oMQr1WsFY9BFCAKUVHE+VGGMW6MEI6oIRXhtQliHcq0C2UgwGMLhZGaA0be8UyJaOM6lJXvt4sRLPz7zi2+tsqO1vV5C8Bpr1tAsja5b//UjXlPyK8nlBTLW6JlUOcOLJotVMX6lUUAigi9tGZXBIUsI1d7f36sZpLXGtp4LYqaSXUaRyKzgZbvwiaX1XNFHxax7OSg90iPmcF8RMEJJuQyA7l5olmeO55gZHgHmEtk8z3lOd3e1/l0rf418HJFjjDn89EkkIlm50jVQZ67iMSJllsjxggxfs1EtF6858hqFmYjmGOUTIqJMj5g1IWEFtq2jxeufJLyu0dqevzy8X1rMF/lY1/d12CjnY1mZjaUGi4sbj9J4ZXrmyrYVkSpLeH2KSsB5WT0WIasKIIC8EmoicI2PebHbr1AJHMc4n2PNXscolcIV2V9QHydAzH2jru1102XFylDlFOCa7ZYs7MrgUIBnIMcyHTlyBq68FRYxETjlnKOa5uqLNZbKlYhJX3VSUQP963kR1dZEiSilvlhEhIgmsW/wIBEjyNYikzrQdU6bj5PT4xHpY/o5ps+IYCWQpkRaoAUNZ5g0ZZFGvSbtF3E8KBAFJXkggxEsyQLZRJIJ2lrMmecMgGL4HOUfWixziTI5Iw9gtpv9hnfY2PguIpQ4Ho858fE4Pz6fz/GMfIT/iviUUAAwSzMfZ7RzjONsj+NUFthD5jyVzaxFxMfHx3/9eXz+/Xg8HmJNmhGEIlvwHIE5fc4jx6Cc5HUePkaOeZznOc8xxpExTQhgzmSOLZiTKENlUk4hT5J0GefGotKsIlmBNFGrJjwBqVUlUiOBF9wNr6y2po2VSYJ4lrAXaQUM9P1GRO/vPz1w5nicB//9F+l+zrZtzu+WBL1i+/bWft5/zp9PyVNo+Hj4ec55EhKkXMy0uEKSGgTKu9it6Q+kBBgQz8SYQe4xPGfAPQKSxMkGRnAkKZLhiYAS1MmH6L1vEbG1nbnaHQp1MLO+7zdtnQ8tMxUjcsJPYmR2J05ZaeaCVOQqzWUV0oSANLHyu5dthBYJUWmJa1Xatv3t/uN2f2dtMzKmzxmSYEziUwVNrZB5EeFL+CIS1+ZDJcVeg9e/d51UmlrBXZkusmItmy2su3SkWP035oFk6tJtu+33+/729v7+8+fPn/v9bdvvve2tbXJpn81Mvmk1roacku1cYq7MQHJqVELe8iPya/lmFmMqQczXsXhlorCZcTaEIhWVxH8tx6EmYEQyvzq2vvxrlK8UUxCFVJtbek4fx/H5fDwej+M4znPOOf3SdtRRUojY5ArEXqFcHkycZp0gWETV+lmVglgl3xEx54h5znlWGsLKi+HylxbWRd9W2JULUKPDMcdLUPWFlFReTiazrcNprvFrwTSXXrtIrOr6WLSOQIgr5VJWIjmt/1q5UWCmpgaW9VoopvqKswILuApVIkPrkN4bIavI+TXoLOiuGheqG558AZCXtvo7NPICrtYnVeFQCU8m5QC4FrX1LTFVPNXrgFHXuqo8atPCRRF+3QnXdXoNype2zImIsYz9LF/gWa4y+a+o7iTpZrVTywqKWkkY27ZvzXrrZgZRkLAImEUUQBFUuow1FTzmjBJMO2UQpTATpZOWjOV1OChj3pijbo/zPN0z6Qpvc49VdcXJV8TlzBl5KfepWOp6s8cYdSI/z+qtEhFhyV331zeZlxz1CxD99u3xVezzPRrqde2O47iIyC8t/LcZ95svMtben1eG6kveTv/bT3/95wsSrr/PSylfSb3XdbpYbCJiQWR1JGytVaTIABpdcVwrnlS5wKrv9xURyZX9Vjjj5aEpaZqK2HmeERFzpRBHhJ8+px/no4yEIgIY0VgkgNX6QOlJlAiKwIXG+evLrCwGM7Nt46tGc6ncpozh9/sdAHP/VqAUmakSrymzHAa4Wh5qrr7OHusBaUJfireiI5OFaTOeHbdAdTvmzIrUP+KXEWfMISpYHh8uVxRlkOs5oTNtQBtSIa1cNLRazdbVfDkhYnXHsROSmKQxsSoUSSQIyjE9Y4yZSe7L6kuUjAAw+UkU+xTuQ2/8JqGqhBhjjDGfx/l5Po/zTHrCj/CzocrOK7TSI8f055j2eaxIP5WjDtvu+fHx8eff488//zweD9a27XdV1ZQA8zG5aiIQk9xllcV5jPponjPIK/3JmJMncUUUk3EoDaMBzAlxTx/G2pr060ljg5JnqGk3td7YlI0zMyk8q3w3E9DWzSTmDOI5BnIKN54zPcxs67fhZ9/vc8bjPOLX5zH/7/cH/+MPVtbb/qbdSjJDHh38+/0HxyD45+ODpKVs7pGSwvzMKdSgCmtKvLW32/ab9R+aqknwETmD5wwc4/w8Ph1/t8as7vEgOa3xpmKmc2/PT4nJygIHfMZ0mkFhuhkJHEEwsY0jEqq2tW1/nsd4Pt29NWNkziTK8zwymOd20x/ZV9j4y1MVNNiLTVYmRaRW9gagqhEryg/g9/f3f/zjH7/++uvt7Yfpfx0fv+YxcJ5NYQ3NSEjMCl4ikbaSqZ2YIxZxt2pVcIlS6wBX/eqtNWsV7jyuvSQ32eQrWrc2Tg5HxNn63vbb/v7zxx//fP/9j9//+Y/395/vP35osySe4ZJkW1ezxWBdGm1KTCQmuYesBa6JCDKDIkOocsWCXloKuVrAQIOZzURYr5bo1ahzeeUsKFQ1tRXlxYkQcOkpL8RIQfM1/IHkgsOQmR7zHI/nY4yR02PM8VwT2BjeWtv3vfeuItL7tTqLqCbYAypQ5THTpOINzdkZs6JLmYTIIzBnzDmzaPGcQKpyUbBNTUSRMebM1WajL/V6AW+lQK/Ek9oM6grCzwEmCmaYKgARr/W9tPvhqxVnISUsqlLooxCu4a+EhlxFrWWzW1IbsVeg7osXKuCnQMH606WAybzdbiW2z4g5z0xfm1dChVWKiF7bPzxBzKKiZE2quLfu1VLLlYUKV0YoEaV+JQ7U1HVpn7++tDUhahXs4KVgc/dXBuz1OFzqteuXctCqbA0qD1wGIjiDM0v/5LHiwruJmN5ut7btvff9ftv3/b7f7m9vrxG54GViLa1xlAL6SuyMqDDwnHNSesREBudyTRHRsgdl+ph+nIXBMDNFeowVejJzZngFi5ESEYinz5mYnsf0c1ZtnxPRizrnAswirorDlQdbz0X9te+jcNF5Hl7jyHfM6eX2eAVnvLAodz+OI2LWj67BiJm3bauRZc6qBVxT0r61ym6tMZEvTzddTo663NWt+Rq/1sQZcaHFVApLXp3WPGfWdxU5b7dbmQoTPmfZLVH/yprc9tu+32TVjWOMdeCpBaOMt3POkoiVIDszSRc/W+RvgVXMrMQrrvY5avbatsoJYkeSipRB0pdyLj0yc7MGDy3j3nUDa6/VQtehehEWTAFHzFFIITMjwBmXKyTOyvzLQteTiY0oC6bt3VQgEhk1AKGgncwUNmEjqTRHe47z7f5D2DL/ym1rrT0ej1+/fhnZGAdNNLX7/f57BCn9+vwYjxVIpiLpMY6zs7a7ZZt9383U3RPzBZr6tVYnITOmr7s0nbkbixJHIzHWKSPGZI15no/HY86ZHh4j0wV06LMpvU3TLWyTpNl7V5bjeDwf59+fz8+q844nxRAEIXrb1Yw4y9UC5DmP1trj1JnZtas0PCqgJP56PI7x/Die7r+2cd7v7wYdI2yEeKaHI12z9MdS5iRPhycnG6uqKanR1mXT2RqZTI6D+WQeyjOgjSWVSLKZtE2IxCcbBNJEldVMNiXjgRA/4+pvMIawqEk3CVY/RwT59MyBlN5H2/a+3/rtbluv5/PX55Me8fmQOfX3+E1/9EZdRBCVt0ocItS0iiPtDXSMHOd5OIK3huGYpNGa3Vp/1/ausrd+62wN8fTH5/ic5MECppQY5JQnSbAmFPWFWDMmnWd1HFuJmHz48cxOsK7JiAk/5gyo7awNVwkMC0yZhFwoM9I5x9kw68yx1DlCqD5prubCEil7ae0zv3mtwRX1Imyt9bf7+x9//OPXn3+74zgOJBzTY7oiPYiEIAYj/XdbtRnSZQmxVjTz61ivJU/qvTXNTFa6xBPZpdcOWoh6wTClzml9v739+O3333/7xz/ef//j52//+PnzJ1uDsFcNEWPBGkjZpJrdiBaCElfhYj1ruGoZi4JpWrOSEHMNRqupRqR2di60ap1vMMO5+nGFwSs2k1mZnZiVhSQFysyEALHH4CWuuoKCIjPzjFzSk3PUwb8COcfzmMfpc1YP3Us7LJdn4DrfK4gj0ZjBhPJzf/XyciCISFlUOZ19ZV0OqQJyQAGpnmRQZFahzXdUQESk2aXLWRKcV15UmtpV9wusSa6cTRekkCuy6Gr+kZqrLryh4FK+avUW4yOV7AU1K7kMV3ZRWduYwiOvkvbXdruE5MUHM1eQCoEXYcHKLBcWESXbL4efmWzbGnDpKvvLq6/tNVFlVombUKVr5OJ6lv4mRVj1W31yTZIv1dELKHwNXitiDfECUV7Y/kVpJb5rieo9XFU5jrypauv3+32/3+739957N+29F4h70UjEhZ4JTNvr1eQav0qlSunuAxlyUY24Yt5mhA+PMX2M+lw+5usfekYEZiAzoQBLZp7DD4+ZKCErk54U9fvwKLOqZzyfo4A0Ihar9srLUZGpqmxq+Jp9v8LMLgn8N8a2SoXlO3uYX6kQ+X1cW9dxhWZ93e1jDHwLCn5d9/pXuto8C7NZppDvbON185CoAdV4wXWgXcFm8MJBe+9lNXB3sy/Oqy7WlUmx5sUxBgm/SM+V1P8l/VQk+8xwiFrmLKCxq5FILS+Px2PMg66uSWaLgLtPTL44AER6Obcjt20r5u91JFhJuXU8ULXezIxVq7iPVUr2IMKtEUXWTa56tc+9si3SiaTZihkjIpStC8zMYx1jhDlqpqw1nUlZqEAT014HeGb+fGTud+vtjrfttt/u99vz/cfj88+//65jRSbBI8WzRXogJ1KRIM6asiLHWVhXVscARcTwddDSbZdgVeksaozL4W5OYk6sRBNMEXGex5wj+3QFk+0fvG2W7L13E40xDz8HpnO4JpKEiYkrPWDb92aNtRbwJPdzjAQTUTg4RwSq3nT4cARRJpO7j3GQNArCnJar0s3YUHGCIkMc0iCY7pHOIDVsyt28K4udomBxwiA6idIMm6WA2Nq2b21XJIWxtb0B2Frbe9vUxCyB6TPDI4PrjK+kympEJC6ZlDPm+Uw/p0orJdlw+j3Ttr3I7DHn85PCDRN5Erv2bmAKcsc54OOMDFO7WbtbO/P0Y87zdByDiTS1syV3kpvarfV3sbuKGFOjfcv7Nva+9/7ZT/04Z3qgtuwkUoYaE6jfRdum3sVaU+bk59/Hv9qf93m///Zm3SLjeBxnjMg0NiVdMkxIvAiI5PRMT6fpY8Z0xET6nFOaewzJZuxBTjJ5qb9xea2vlM6VvKWq7f7j53/+r//z+ZjjzPD/9ucHKJhGSFKinnkz0yaRXlvsJXcVqUiw26124jp74SqRLVVAREReEyTr1jYRiUCAPEdElIrf+v729vbbH3/88c9//vGf/3n78fP2/uN2u01aB3cPiFgSWIW4STgRuZAtzXJ121NVPkeErEGrIlqUVa5p5WIrrs8CZo0qPZQI8kxBhLsxhE2lkXgVVAOsnMECSRZwIku7xglSrkB2ELJkV47Iyrs/juVePI7jOI4Kwl5QWclqL6RkcXNrV7BXB/aYU5iduLAEfnXA+XxpEC4OsuQiqNJ7vOpyiZOg/6Y9ouSqf7JLq8LXNk4JVKjnpcjizKx8v9fovEa3KnMteXwFHzOvLFxeGi+g5saaV+pGpsv4VG7NL7OiYHVXFZ9dTvW6qSKCSFmJRVQrMsALLGFC012IRaWSTAAoS+9927bycFXrX0TQt27gS3aoJEvbv3YalB0FhHr+jJSYSNnkQmK21ulbUQxRvIA7oAzg8Rq8lDiseOSX1wHXPF2FefUNSwUINRIIm9l229/e3vb7mxXpXwiWaqhSiiULN15UV51Qcc15FPllc74ufV3har+OGTGnj3POsdQziOuh8wXYBGhl1IsC6Z7Pcx7jHFG+B2ZGpaqOMYiotcaMyPScgWoDs9Y6EY3TxzjHgIhJk4021Y1WJMsYvqwn+m0moH8PSn19w/UHL6wdwDpSvpR2X7UQa9L638Gz12iFb9Kx1ygW11fxUullZoTMnADUUqTXzOaexzHGOFTP3vuPHyJsF4G4CtaKui1lwesmOY6jIK7tttd7q6iFF4+JyKAVbtI3iwglZtFrClwBHEwqSq9PFGM+RcSwKhaYixyoObUDQbAXqcpL5D7Pg5l7324q27apWB1+Kn6PSJi4WdedW4vMNNtq9hKRssuEg4Br/iu7TjLXuZhmxRogmDVzVnHUyzjZO70Q5e3cum21VZfsYp+37Xm/PX69Pd9ut9sxxnEMP32OYCo94tGmok1qokypX8FsHuGep0+PdE/Pcu+IabUnQa5Yv3KeILUn7TMBBJ65OhOW6sBnnE/7+Px7kpfdB5EzfBJlYwaryha9p9zu923btm1TESZNCvdBRI/nR/dMB/OZg2rMruOEmfXbRmMC6e6iIqyJFLCoqKk2XeWMzK5ZlouL1IYp9kZdvdHRJQzCq0Y5wVMBUxFu2vftvrWtAchJ9uP+g4i23ltx6UKYc4X5laxdiCQgkezBzpsxiAbPGI/nQXGG63nQcVIk//zHHyRsIiPjnOfff/4LRzyf5/kc9/ebNoFg0pw4H36McHCz/rZt3o8QinT4nHvv+7Z3bgCfQR3SbWNR4aZNt+3+W+PUf348f30+//6Vz1+Pv399YMzwmDGgSSpOmMymjZpJJQvhjMfjYyg53m2Dbe+U8OM8xsPhOZIhjbpTmzHHGfNAJiRFeGu2bbYpc/rwec55Pp+fkK31u6gLN2GSRJKDvk69cYExlRQfSJBs/fb77/94/uf49evzcY7H8wOVj8yShHF6+IOZ+94Sy/37WqcA1OBVaobSH9TJ6TrCYs55njOxqvTAlRaRmTk8M8kI2vS+33789vtvf/zx2x//eH9/b/suSlFHQpoRyCDWZSwvXSpRqm6hIZArCqwUCHzl4ny588U0/63pGVgJbFeVN2vSTEImRSQFwYSVBY1yBWkaKysKtyYiSnci0CRCa21GWH0u8plx0Qw5xjiOx/P5OI5xjLOYFDXeaEumivbYtu2Ks/1SoeVC7JaknS8XoXHl6apVRiEmUQoV2VcsVTvmCaKF+tRhXYSJ/FuoemUa1Sy67W11Py9aptQQ6T6xeLtXLD5WQG8loFUkG8vibqjK0pYgjRlFNS6Y/9tQUsLqnFci+RIkASxA2oWE4aW1AjLz8/no1rZuxRS/3n/OsYa0hbGpWGNmZapDp1lf20/y5Qj5Rl1duSSITAIxGWtrLQnu47XZq0pr3cwIvBQwwiCK67uhq1C8OM1LN7g2gFmY0SViK21YBS0XNrYSM1ZyxyTh/BJCUWaeEYwIcQagxswbCwmrKJdkPRbFSERsWjwaEDk5maXoseLYieoewyqEm77QJkTkq7G7ntZqOsDlCpwZM3wMn5EkyqJz+ohi/UKVzWyFtVyUaO97az0izmMuBE6lZft6h8vleuWqEOk38SXJEgJ+RXWsSy8FMr827NpktM4nggT50g8KizG+3A/MrNKuASteUq1XrHSNSt9/4mvIdg8gzFZXbCbm9Ofz+fn5KSLv7+/3+zuzVlJJ733bdlUdpx/Pv93zSgmx8/z8+Pg4z7Ow2Nasnne6CmGLHHzFyXaT2sir7CimI9Kk/fzxo4ZF68rM9dj6OY6kTrSLSIVC6+rMDgLcM1PbigIGEMg5Zn3ANStbV1ViFZGyQ5QXvLVe5bSmWwX4MjM8IsJ1IF5F4yxS/pulAU4kwGBaTugyzRBVfqyy9fIrXWvgzN9sPL3yq8KtcmpBb31vapv0YT5amUK+LpaASKV1ZUFANDmAmfPxfB5juGcStbb13isbDBBGKDcrgVOi3JclAI2P0Jy7EvP9Gb+UpmokYowjBaebXCmF0Zv03tRayHvmDWy3VutP7bkCUI6cFAKnZ3XMnDU7sppZ6+/SeWvt0OMYs/AWEkC43CLam/ZW5U5KKO1+ZkbMOXvCu/Fm6OpGzBkaB4VkgKsXgAIAi1pr1jbrWmuL/bz/QURdzcwIQRETmSkJTSI2YiYygrkrecwUCkNqomwUAx9xnuMjYgf9GWn3Hzu33oVPH+fjr3E+H+Pvx/nX228/3n7cdbeQmDTOOIOTTK1tvd9vfX7aefA0aEMz2tQaIifoGSFz3O/33rfttttm2gTq7/e3Gf/8V/z688//VrK/PiwGYTyCiIRE4DRXgG8joa4EpM/48zzncVDfM4nieMbzmUiEt2k73RzBM+JRRlHWdt/tft9ub/bWjJEjxjHH846KeBKBvdoMKo4Krw6zjMwV8ulABtV8fXv78fsf5z//8R/nMfj5cY6PmA64zwycRcd5ztpZM6i6vLGCqz19BiEi0ut/M6AhOhJEdI7nGIOZW1Nq7aQzSrQ7fc4gotrK3v/47f33395+/Njvt7b1cqHPeTL1BKd7BDhbmPuYDBJau5YWgUhUyu5ycaww9EqQUuUV2EVXp8/KOstKhFiKDyRxoHqny5QnTMyk4IYCoWlGUmWvcqXtkTArk0IgYJYgFhBnYHjM6Zl5jPNxPD8en8dxjOHLdcXMxpv1QmK2batc/teE4SBdJBQHIxEVykUZzoUkiRJDiAVNibtlqrtNX7qNJTYiVlSIjJCswF0QJ5IAKcG9iLUG0oREBjFnBVEEErYkH5kRq70GiXL4C0QkAeWrJ8EwlavtpAJ/KlWbGMsE8NryASKw6qI+q/0aFcOML0jvAm4YUUMhM0gYYKnqKRFhgfW9Ne1qV9IsVIRVmppZM+uLjE/OrGM2MQmSQRwsylVgyEla037rsu8bCcbQ83yutyHSmpo1wtUSs3biV/zBercXJCOvwWs9MnGFqTG0NAG52nqyMlqCApNZyUxBHjF8HnPocYBEiJUhxp4vMu4rHb9yVBDpYwbSwlprDBjL4NXzrhAUild17GJgSiEnDoITOyEIyuKck2hkRGJGBhJglgB4es45z+mZxEqSpTTyMao5z5JQ9mAWMBZN3Joxs1SDq7As+dR0H0RWGqmXwOs1tGG1uet3n+OLihJ+5T6s2atWp7I0FhYWEUxanVRyvU5lY16lHGARH8NjqmpvS6NS40u9k69VNIKI/BxE1HsXEaCf5xynz+mVAzynz+kR+cJZm20A5nie5wQ+y9v4ivE7jmeEq8q+b/VJlzBuVMV4lHyNiHysUrhqu6qB6aIgQlVb00uY+C21ru44LVmniikxewZlNKa+b23rAGhyhWUji+catHQP6+RTOHo1J1irxXUJrYjSxTnBbJC4EurqROKVgFrsc8FmdUYTIZEVmr9uYhW6EEwW3N7eSOQ4H/M5/TnPj2N8PsbzQVRZKGhMpCbL6IMLow0REKdIiiaLRx4eh+enxxyZBCn4STJAIqwjZkM22tSY9k7TOa1FvxFYSbscx8N9SjaKJMmAn4458nILQMyki+3SVN5Sf0T+JKG9V9gegGoZARJxMiFmNWvJOH3OVGlA3+4/TJTVamsdSIcriIWhiqbUjbZmrTVRYX6rnYzSXacwkpuiN+rKnJPDEpIhAamAXAYDItqgDdohAorMtN/sP2oaUGWPEXTO8HCJvEoZGpFRtCD2ocPn4SFnYCZARpB5Wgz4+Tge//X5MX/+8+3nH+99u3WRSfnhfz8+5Vdst7i/xc/9x66bpgJSNFWoZTPamr3ZFrY9fj2fxzkeY7vtfd9McYbLOG9vud32H++/qfHpZ85suu/91vX/t9E/JH5wvOt4P/NvhovkJI+E45kYosP4ZsLaSUBm8MDj42DWGKETDMlB4dp8b4Ee0ngnBqlubbu12836zXpTYZrAgTibimnvtpvtwk2oLZcP8Wu1imp28a9To2rLRhvJjx8///Ef/zkjexx//9KPv32cc86JpJJ00wQoiMtq9wXLP5/Pl/Air6yB0lLU4jXmUQ0hRJRJc3xWAXtkEolY07a1+/7j58+3nz/2+01bW2plYRYBFWtVCZBJPuNkzNGFSRiRpKj2C11S3FnbnVxZ3pXez4XifWukKTlXSn0WgDjAS6QkSqxR0HwWXcsBDug4AhGZUWIxTiQrc/WjsRBriiZZQCOT+Pj8tZRdY5zn+RxnOF6QMitJ9VdsvYoE+CJKMpOpjJMOMCsJUWSA3MM9lzpHmuy9t9Y2U+I+/eSTPdNeNnKiJEZt/0TEUh2LFQpGzMRKop4VWkvV+kxMLKqMVcniHggmoVTOAKUyg5xEISRIloWfMa76bb9E6HV+leUmW+2dtfYm93Y18kaMqKSZJfdZDnZTsa8uvF7HWMDDkSWCZmW77a033bTp6h3iC1FSZqXklUxVoCGqhZsz4RkcxBxLq86WSGY0CIuKQoRYwEz1xuu9FQVcUaPfNpjl0oW8wjZL+BKvwYuqDqz6GdY/RAQCHElRGY/JzJAkg9ame55nte9Vu0QFKFR9zZpNF9eclKD09DFmTB7eGjMnXEU4ha1TOiJyMXQ80idiZIyMZ8xZZyrCMae7jznmiBnuBU8SLAFgDD/9eoiTmMMj3T2DwEDyvECzJGIBqbCxNFPh7XZLouM4XmNBLRrTx5jjBceKSIVm1W1TYoYX+/kayl8vUia48vbWmOKeZsFUjhCIGHP0vlDlJSmLyJSIqAmmfmJdrMrR2CqxWVVEns/nOL0iYBBROIeIuGelPwjb232PCJXmk8bpt11725sVl5pX0C89n09mDs9uervtdIG7ItKtZebH+BVzKUNqJBWRbobI5+djnn673d7f399u2zR7Pp9jjDpuM6sKSS9vI5V8YIZLMBGZSDBThqqu+5kqMaCIN3vbW31wZnJ3GoNIWmumnZlJ6tkkpSgQTdgIFEFIzImY1WgeZsYESpTtNSm/5bksUYJqpRKrmQHMCfDk1Vq/dCBd95yZ7pNPCYinzTTnGQPhGQCBwaZMRb9VVEie4QSOgB/+OP35ef49cpKG7tGq1jgfc2hvf7SamtA8OeogrRTDPeck193u25t0mjke5zObCFNN7VWrxSEmsnWVRn3f+5024beJP8J+I223vbUmzQAMLbuKj8zj+ZhBYBHuxEZiurW2K6PkDFychoCQmAgVmUKsLCZmKs3ETFnuovAZOSO5GRBk4p0rXRNE7KRJklCgcRJ3A3XSLfUW0lkok5LF7vI7M7dmIjR5HPE5MJA2xmQktQwhV1LFJB94TMd0HkOek9N7RqdTMgSf49ff47//9dfPf23/+D9+/8//9cf97YexnvqnR/z1BIf0Y98ft+3tZrd2v99VFWDHMM33W+ef98YUvxwzxxiB9AzdfBdmtec4tvN529+Em0GDAA9KavjnD/3h2222HbZr3JFP6On+K/nhPFQ1ZIz5FJKmvKNtO5oCcborT2nZkzpc4kwcYv52kxvvHM2I2BqMIJmIFHUTEU5CJAJBtBLQpLr3gAjm7+WA18Llc04iVrOS0PT9/vPnT5+5+cMaU54PjvM8PSORAcoZxLlSLv0K8QLKWobLd43rDD6vOlh3L2gpQMkeXGqzYGut67b17e1+e/vR3976vompZ5w+uxqLtfKnEYswSFjNWCmRGfMcQtxZQUJNBSzKwiL1iZhNrCTqdK2k+JKFoFJtKFFqU34RYSpETZlr96V0sECExZZph80RiNIsXM5zAaFytep4vImRdQZPPD8gzPWouInPFCcWAtXbqxAjUbVq8ygtLVePBxYyzKQMYIICNJGeEasqxI0yyq3JTGbWe88rYusSpgiSU5hRvS/MwpIURf6TSFZyqRATYzUNsRpTGZS5bGAqYElJTZpcdFx18nJwKS9ZCL52NSpSEpfOfgmaSijEWENJCZ+/1ZR/JUHRpYC2q4yQmdkag5Ae7hkuQiK9vnQza9ZMNPE/uaEMuAez4NJxV+ZQJnlWoeQSZbcGEbamVMNTrBym4qmDQtxXCC2riLWmGfG6tV7iobq7lq4b8WKQs7htYgLlV/t4JFYSXYIcIWzV75SZjpxz2pzuo2z72qz33tTMrGCMkvAHUiYVAxVzZKaPUq7DzKrVIBGIcA+fZ0T8QkTEOebzPB/HMcaq14nphXkMD19RYAxAY0UJXHFZXHFoRbbWlzAzcmQVHMQsBTrNWROPWtMd+yuqFECkJ74i1r50Oe6XQmvVDMR1OepyvyT2r9vjNTOJGDAySKTegLw6iF6a+tc/L5bKr4KeuIJJI0LZ6kRUf3OM8Xw+K3SjtaYaqqMGR4DN+rbdMssu00WK4G6ZOUa9+ALqwnO9E61SCno8Kg+CSoZ4u91e30ABgQyEWZk5VGOz1kR72/MqI5cUJy+d6LrzuTDUjAhOqGq3Zmaa2QsyVAVzeYerdbsaNs2MxeplgdPd943NTFlLROieZWIlNCKq9gqPdAelAJFS20HdFcmMsuu4LkF9Cd1EVuxxBJJTKldWRZlZYNg9kN2Rnj7ftn22jfqugQM4k1QiKjVBVExFG5pbI6LwGIE5/PkcH4/jMeOZ5GypABTBY4QjOYZk7yotgJk4HcGiaec8ZjhK/sVqre33W1KcbfJkSbCM1JjkSpKQpp1N+oZ9ozfh38z+A/YHmd62ekgdOYUO8o/ISJ/Hr8fhI7lv99v9Z2/WNum7LRU1ZTfJbWNLnwlHgKRKJ0Rgwt209S7aiSafPigkNUtSSwbYS6wqStwgPQkQDRGmPWRzNiaNlYEZduMfrNSti/H0Z0YoN4GexyQZUDJAmZUzMQ4CETlweoxBmIKJPOEzWt+O44jP58eRIz5Y/D8IvXfsj4nxGOc43R9oj+3+831/u/+T/1nLGKeI2v3WurzvZvEpz/PxOR6T4piDwyGqbft8PoiUWX++/7bve9c+xjHGmM8GEsmfHB/wvzHPwHR/BsHZoakbE48ZD0zK5Lu9W2/71uETmJGNggVmZOyCAZ682Vu3LbIjlfQDc8T5OR1QFibmYKbzeYieYwyxIEoRr/Esv0H0r2VlRro7FRPHCoGqbv12vw96fx/zeT7fCJOZjzyri4goq90aFe5bvcoAy4qDigzhL7P9S6aAVWZYkVEgo/rRyBRR2/q2bdttb62xiCNzTh5KalY4FsAiVun01lYGDODnENAUVRGGaFsoCjdZqqBly5N8rebfhLpX7D4SzJRFU6KqUiWZ1XhnzAwwhaJlY82MsGYbQTxLHR+ZRZjReB5ZzmvAPTwWmVEky7ZttZ14BDEvK2Fr2oxVWPAaHcw6EZXh7ppIUkAxJsORkxCLCcSI9Bxe65qZUbKq3G63tm0fH48lFUomliiQmUDBpCIsuHKIyj1YPnZSBgUVIQgl4TmOOd2HC/El5gghRpxUfBGlssqqOsSqExGh6vZZu9ur/bdMe8mszMksz+NJK34WrzZcAFtrS05vXExE7ZdBXHrqGrzM1o+LCGRbmxkkJWrdqQ7EWLORvDrRF/4aHg6gEJRS9mjVOjOXL2TMOWdGlR8vhW2QiJk2VW7typP799mrEI64np3Xfj8iK8kCHHVYzysrPCkJEuTlNaSr9QpAfMvgrZxMM1PRUj3W6JOUYKIz17DiMcPX7kjk5yjgrcTBPmZB0Q/lIMzpj3F+jmMMp6u40BEjMVHdoqWRFqymxa8xqxCGdeFpgYKxCNCMuaqvy2THrMXzfZvFUeNIPRErF+0CCPMqH3yJnC777fqqHbksd6bMzCFJ8EATikyWGpilZNHIiMjXvfSCUZm5FO41YcZV0c2MOedXwioqHGelnV2m0fW+uJIsSJrZftvK0rFtN9VWrpqVRqGtenrrL3x8/hIRZa7pbVyu0t9++01VC+t6PB4+RoFeQrxZ297eSphF33ydNddHRF5RgkC6kM9ZmRqbtdcB4xhj3/dNFcAxTp6jGLG5RrdW30tV1WWmqdcFkitGJ0KInFCtSoEVkFIahIYsTP7K4xWxVqkZ5u7hULVazGmdV+uuq2QWZaEKnsE5W2uEG0WO/Tn2B8ZgT6Y00U6ZohAOlqyowC6qQuxw9zimP8/xOM6/wQFyUKLkJDIpnZUe44N473Zz8EwWfyYphY4xiNha9S6MpLy97W8/9j/zQVNpEMCTh4inkkqAg9TY0De9afst2u+8/YdYmolIMkXqacjQTnTCN7ODRvp01cwBbKBwjE1VmZjETDZWTnLNOWM8xyrtFiYzqdwAsR0iCSIXntV2xMyW2ZuClMSIjFonrvi9OCoTjtRJCLwWxBSTfVNV3ZoITU3JLaUdjpEcw4n5bd/h+TiehGCi+LjPTz+e8zHoeM58fFjuKlvb24Hjr/NXHPTXp378/fnfrd3v93ATsY8jf30+zxzP+ff9/fF//Z//Hw28v28/b2/dts323XpuPPq8z+fz8+Pz8ddfn3/+P59/Hhpx5okHfYZt4/C8m9iP3vcehPl4fMSY/vkYf8P+1u3AeLoPZ5wB1nsj5lMoU+ZheShBt9262mbUhTWGxhzn9BhJh0RuTNsmgAhuKkDKjMfjPM8jmJuZdu22pRhBOSjHnPp0H9pMrbMouIK8T4/TY0RE+JFxaiH8ZamVppqkZtbt/W2P8wf+UzaVv/5UVR8xRsV5z6pcpLUnMFOLC5khljpbg+j0yUy5Kvc0r62OWZBBwqRi1ntv+77f3u63281aq0CoJghHnKGIDLbejaUsPKps3ZjZlz9cPDA9iU8SsDELqd74SusDy/xK8Fuyt6rBwDLTI8OZ2ZhFlZWRoFACCYSChBLcmYUmkaQZMoZxgjvm6R4zMt3j+Oo5qR0XTjkzRozBQFflbeuiW+v3oh1rKTez3vbN9qYbo/yve8A5EzSIRwQpiQOE6iIEJUkmCJSs4Bl+RJzn2ft+e3+7vb0n4TwnWJ7n6WMwg8DT3ZlNlTDJ/w2buSaEWZfViMG1P8+YcTw/3Sd5gBjUOY2vaKpMOKUJkUGERCHCir3+WDdDzAVRlLejvEkkBAlKhpAkxnjFMAAlvmBWFSExLpfW187HTJwZc021qJgD1xCzPSJWAvAiOImIkpHhM1IjKzqSxJi51D/8NQBQhZMxbcJGaVWWF+EQFu0RsyTaEYFkkQAb6ato+YtGyUwRi0BR0Z4RmdXdYiyq4zoAvaCdShytrhgyNm1iZlvrW+u77pvY3frWemOuXvjMTOHJiHQqn7LwKmPREpKbCvmJ136/ZuzM69jl7sPdnTDDj3M+5hjHHOElCxViT8yo6nURkkRNs1YZYEhfIZ9VAZQBRMLnmMTMpivJIerpG63NkoRXoDldkaEqFVsnZesiFhUrGyktzwz8HGcEFolMrbXqExRVcWciROTlVjbt+w4RKTtFtTeLmagCcGLl1XC+NavB/ZzHOY8yD72C7zMok9tNSMrIVmnwYtyIAcIc/onPqvOz3m+3G4na1piZVfu+7/e7Z/798eHu//rzzxpA932/t3vbu5olo/d+zgnm+/0eEcdx/Pr1qyqut20zEURU+/X5PAq5pJ3uwtIkKHL4OB3Jve0RSSAOGfN4Pj+B6Fs7L6XXQtoiHsezvsOs0BzmwhSP4zCzvtWixKINTIvKV6t3vu87EcWKahNAIo/qBc9kFgFaJi+XyCQAataaAcHEKq2zNBG0degjiJCu6Y0IarZKu/NCOsmUT2Ug3vEbddP7Gz8+6fFp82wxWImsQS1Zwaoy3IfDI/B4fjwej9OfcwzHkQqWFfRXpoo5fOfpgUeYstqDuhKbPuOAsFJlv3BAAGra995+b/zxzKNhBHKGIDeoJt1y56l0Mt94a9u9/9jlTWWrgTUJx/CcJ5gmzRHjGIhsCI6hfsqtm+XWYiMeHibcW98NInM85rH4h7bZvt/37d7tprpxa9I5TlW2ruNUEkWtEJpBB0v9X8lgGmKPdGJjvZtN4r9iHh5MBGI360ubcmXLr+T0nBGeaJwBKAMcs0oCY2a445w0g5Azs3XOs1wz912NEvzxeNhmETFPYsHn8fnr+JzuR8zp2dt/97512+TNtrbf2/1m9zQ0mvKjb63f99625op/jQ/3OPwx/bQ33vfb5+cnd9vGlulq7GPU+cbdS4FbCmOTluwrZjLJ2Hrbb5q9W++9bStCxN1Xk20ycZIwI7IYIHGkisC69r0xiJQdUWUfHqf74XHwVIVBgihZDWxVTgUKSlDGFTB9nYoWAOSVHdJa69v29vamnMJoauc59TnOcyYFLd3rIgAzU/WrxKMSWeqIk1/1hVjWwfprC9vp27bdbvfb7VbS8m3bSNXUvhutXyBJaajoq2mY6vj1+qVq5Wbiqy/yRS9+o64EnAJ5HamLP2HmvM7ry/VYpW6XJmhp6JkhFftpIkHyJZr+3zDFOcZ4Pj9L11X7XGYiyURl27fWLz9da631tjU1ExXSvIrPcOW4BhygSjhHJkcmEulFly4vPRHAbd+Kdumdh3uvJsz4luhNl/fzGw33Ine+Pu/SEWfpi8OdIoklPVxIqnKgEARkUsrqMKCv8upvP2K9oJfIihOXjRSgIL0qnIm+FOkrfe31m8yXNJxXI3h861cHisF0xwmqa8RMuUL7619/75zJpdevSVy++vWYpcaFGc5YJkVhYWLVV38lJ+M7XvJ6Ay+GlDlem0el7eESg694t2vqIirokV68qqqSqJmVGapXJ+v1q+72crQxs7ykZ6IRoxAREVP9irnKK/w9r4iseJUURVz+xHGOshtmCQqULfH9nlnv94qE/bptVnDd1e9Z6SOctZPS9yAGZs68+t1fObTgl0ThNZAtb5p+3RGvm+H1UvV1vWCwTBT5WP44ImqVXIMVkVprgl6/Wmu9NzN5ybxwlQW9MtheC0XgJYrV1poILVH8mapqvb+pZiaznOdZSuqa4V66jufzWQBVEbh8tUzWWLzvOzNXLOrj8RCRElq5ezVhi4j1JsSe8dKojTEQcZ7jSo7tZvoNsQtRFpXvD/U3kPKLXl+kqmpEqHVmTl3sOhExp8i64esbrkHwOrnRSxdfDvp1lovK2hNVURWidqWXvSIeAFSizEpbrZUpL4RMrrYJYAkZVVWskZj2tm39PJ9jHsSszaAWLGCOlDlZJk254o4jI8LTkeAmRApeycPWlMnSrK0iAd+UmrRmptvWRDduEfF5HklRfU+q2tqWPOEtaBcy09WFahCAhbTKCTbpXbYgUlVCsqZmU60ChsWSO1Kx2r2uYzCVGO77+vkaneuVawVYqC2kWp5e2ow6BBKraoJMtYHaGjtotcoWGErQCBA7UZr1HhFB5RQioJoP66Upg9JBwhQSQX4SBdxjBDmoehJJKYVPBHfb+w9Xh+AY8/NxgCjBJPx5HufwGX6McZzObCbbW/tJv8l22252v7c3UjnjbO/I7W2+vfdbd8n4hf/++Pvz86AJC2naZsa/Pv7qe+ubqOrj8ffj/Hwcv04/MlOkqw7KzZoEzUDZtUGsrVvvoqpVziYspCECKCgymMDJtgllBgInIECIpnXbaUckCeacD3lY+7ztZ+JMnCAFNUYkksMjWmamT4SjJjAAyMgZ6QFHNYHEiJgVOKSqfbspJ2EKiPlYNMZc9TjXekQBuoxVeC2I+DcUgYjktRkLGzczs23f7/e39/f3H++/3e/vt9tb751UTbtYK435i7bIhDAqM5urQJrSbIUzVUR1baUAf1EV1Z6ReNnNUE3Y1/29eC9dOzcIzAQSsAiWxLg4MP4+AegFiF8kxcuQX9qaOecYx3Ecz+PzPM8zFsJBDFXtfVfVS5Zrqmr6eopWk0bdxUV+rs0+EhXJ4IF0ziridFRzeyZIiMYcHhG9deu0BZhVpIp0g+dqpMkr4RN8ccDfaJ3vfPSV5HRSJAHE4g4SJSK+mnBKXFgNQcyysrOuHZriaxOtfasajpZHEkRXQRMzJ4FBVTVKslq1X18yLSARr1f7vvdHRKYOR9IcTN1MmooWCagLsalZnGTdK5XQTcJferK1vicB7ixZ+rf6KaotCeVYlUitqyaNqFCuysimzAAYmHwlntcEy7zk9leuxvqa1gpLlz7RSlFktZ0XSV2c1G3b+95v2761XoOXMOdiapBU1Bh321Sro+KVwhXXV1QpykvJvkAvKvvtyqiPAEUSiZeF+doE6nl/6bi+BikqpX59kfS60JzrCX7N95c8i74ePSImSQWuUurMlzPRM1NS1OR/7ECvi17/f33SOb0+deu9mfTey+VARBR4TbQlDvuyyl6jW/1E/t4vlEnXCa3SVCNQZKKSZraanz4fH6p6e3urK0XEFeBiZtUBQN+6hviK8qpjeW2f9WbKOlDX4PPzs36nfsQ8z+fzSUS10I0xrLe6nYoencesW0tEX4NXfUvnnIIlNakh7/Xxy/BUKf8vapWI3OUa078Gr6+TW9mlVe36Dkt0uKZ8lP1zNXSlsFLlt63aSqJ67pcrnCovmV4pj+vRp6unPJlaBay02Vrr+9a3W9tut+P+8fH34/l5PH+BSJuR2lzGlGQkEOpaJGYEcnqUWJZSjVlJVJSY2USEm5oJHZmRxNh67/fbdr936Y3M3eXxtwgho0L2N2vEneUmCpFUgo9TSCiZIjmhbE27ihkZOFYtnaQwMauIkjCzZrWMS4JXnRSbRoKYSj6cqKNROVVMVTfb1nlMNxUVrsHrZaBWvuQVKsbCKhJSxkGBK3hIBLECEfBEOhJwobR22zBOd/eMyAhUuLl23Ti2ooZCCSkLf4moJJC2EUPRO2dnbmDmTbULdQsJ6UamUOOmAQdJguYSKHvGR5M///H+cfzzjEZgFjGBgUU2CTlNmeW3CQ+KOef560mJcZ5///XnX49fqeAG22xvLSRPP0ccmZ6UQtL1Rqa2UUrMGOM4M09BEChDzkwxZ5oCilVeTyzKHGKiQBATBUIDnskkUFVuLdndY/iZocqft+3R7ZFxcMW5ZwQSrxO2O2JWjldmUK4V2X2kw92Hj8gJmnkN19Rb325zRDh7MIvxKTQAoAhDlDux0I4VGn+txmveul4KX/9/u++99/12v9/v9/t7IeqtNRElXqnNpn3llOgimAAkpSUTkZopiTTT3tq+We8lblhn08w6Byi9IGv4N7H2mucubyPFEv9mxZhmUEmi3ZGODMkUyhXDkYygJJCoSsuWVjgUeJwzPI/jeD6fz+fn8/k8zsecM65E0qZqppu13nuts5dyvKkqXwkgsWQ9Qcvoi+IXUbnhEUinpVx3VCIupPrL55zPc5Cotm2dTXWlc02eFAFAlgvv5TNfA1cNNB4D/hq6qtkjiUmo9PAlHpEEPCcQjJRcpg7mIFBkXuNcUKQvK0UdtUWZkwXgwDr5fmWXVU59YV3CIuVS0tfmt76fWOcyWgV2YFDd44jMcGUhok2VjUlFILU9s6pYtamoiK3pJws8+GoCABMhSvyOWm49QbHqSZiL1VcWrUGNXsMWByqjI2qDp4vy5m+QQ+ILdagtp5C2KoN6wbeqq/3BlM2sl/qvtXaddN2dmIW1hoQZszjQYf5CRM7zrDp2vRi0yFmxZO5zScKFI6O4bCKpYO1Sg3E5JqQmXq6A1woBoVfGrCswIyrcGhXyR0QV/swMM/4aOleeCAEo1EdYvx3Y1hHuNTKqaplv/8fUFVekfo3nrw7m1trWb9ck8W/BToU2yWUZruOZqzDjKx/1CgdeiYPr3khEBlXAOrXWWBmI4zgAHMdR8szCtlWjwPiamV5zXvF0fLWjVk3QC9GsN1CX43tSxhjj4+Pj+flZ8aoVS3G73ep1arB7fVdllppz1Cu0fcvUOUcNeYWrVTvZ9Qis7+G74m2NofnS2NVBFwA8xhjL/VM3bfv3hNtaU2ocAxDhLBCUDaKJcEQVJsY6cQCEygTiFHy/vut+KLZrxQyrmrXerbv0zba+LM9MCRdVsHD4WJdJ+EqZFqx2cCJUJz2lMxsJK3GFnIuKConQZvp+u//z9z9+++c/re9KqiCf2fdt+9yO8xOrGou7GtvWUqwRh5/EmYGavZIpCIFITARMiCUAgoKDoAQjWK7KS6rFh7UyURXluWYkIzJH1AEp20uaYm2zOlYKl1uY5/rewKgKehhx+cZFhIyVpAU9KZVwrguEZ6REzIQTweTWVeAnMlbilIiZ9rf97aDJfMLJqysGSoiqTLFOzJZ9i9kpOqgFJJRhTMbbbdvv2/62b33LTuRETWlKTmTSHBHj8dk+//Vff/7Xjz+3uOnP3vP21rddW3I/k5OgTPQjpZEoWcjxeCD5OB7zGSeNYCcjEep7C0oSsJKImci+v+3bj9aJBHOeDz4mPTgm5RxjemZkznMIV0CAAsLWRAWRlMoinBpQJAconZk5nDHEp8eZroPzedueTZ+327P3DiESKZ8d68zM6dXyVOb1WcffslxV4HzpB0nImng0YpeZ2T32BDhZ8DgcqYQ6uICDA8SyVMBc3SxfFbYXj1M65eXbM7P9fu+9b1U6t++97yatFjgTWiCQWWtNWlsgdjVGE14oEbNWHA2TMAmVIBzJCb+MS9fJmP1b9V6NXHwd4omo/kwBCAuoxCsUHuEcXvASE2rE8XCEo9DX0go0s0KcKp7U/fl8fnx8HI+P8zwjpm67VFLNqmBcv0zWirwGr6sC2SOIJFlAZQUtMyY8HVGA6ayFLbHaGlsz643V3P3j42MGbjeodVFpAlFjmVJS8QjneRF+dGlZIuEeDo/wBYq8SMzWvhACBgHJUlysUFQoK678WkZSiY1XQUkmHEhGcnEFpQT0BXRlYoXcgskuwrdcEWws/17qsgggXtT19a6WuAoRGUmZ8hWaa6RMUCJi1Wt6MbNOwmMMgmRG5qKklVREdPEjWthcJKYjMjrUTFqz10QlLESMBEEIwqSVTI3LUKmqolq1fVQDJwWEeSV5XIiXGIv03mvTf90hrx1RWZSlqVoVwwPhjqLihECSFOGrcqToKnd/FebUT5nzvAYvj7Is+hq8ErR8NiIEmTEQgSQRYSNKJcLKKM3L6s9EoiIXN4ecM3D1J76IEmZR/QIm6dJ1XaBopZl+MY8AAlSWyRX+502Uq6CG5esTXYOXvgipEn69zI+F2YwxxozCdZZrjys3LuecykRkL4iobrAveCzKlD0oUc1pdWOICMClVysGun7QcRzMcqE7uJ7ukpNpnbXq6pzn+eLO6h+WpZG/5c3WfHOe56/PTwa2bbvf7/u+i8jrEq+nQ4WcIuLxeBRAub/tb2/3TP/8xDnHF3V7tS3Ve6vpjYjqe7uwyfjGRZaZV1UrwLk4nAXRxVqf8/WEUkHfoszIbCAhIpUvn2/V+9DVLlaEv6yoHCS9WFFKImMt1LoQZxZzJFks+V7fzayZRp61bOpUmeMxhav5DGIVi6yqlUcPysgsVJ6jGvmcuDehUBX78f7+H7/98//6z//jn//rf3HvOZk83P32fnt7v/31138/f/399IeEsFb/bTcjxDTi83wmc6MmUEqKQBIHASJCEgUYOWdIrV4A1cL4lUXOBCK2YiIkKby663N6Zpf94sc301Z2fS1Eow45pE5TwUhxIgIxmpBDN4IwGyaDhKnyWIOqXiWKBAvjphRKoaxSw6uZ3fYd/sPEM1g5KGZK1WtWey0JsbSN8jbdwi2hAg0khGy3/cft/f2+7U1VwxLad7plMSgAk6ZjnuPvf/35f+//957bhn3n20ZvW2/Wb8iME0z+1u/S2Yg32L/+9a/Pz+ffj0+ki+aEn8/njCmfBIG11vdt227b7f5+f//xtpuRSrr7Q4+jHenD52OOZ2am2yRiSsoKm1GgEQsoAkJorE2lezQAc2YExpNygF3CJZmU4jzi3OYYY4yjcdKKP+DIE+X2rkNdUHolFha+kKBIOAq2kKTX8CQCVjG1tm1JY7plB73MaVRF0ELfHXl2+bm+egBrsHgtQ/f3n8WntL733q1tqsuZX89n0xKyLHAil5WSI181ZFWRu97J6ja+6Lw6ll+HJ/4un65dWl7U1bcD1tIcJFAhpeEZQRkUwRmERLiHhzsyKFFgTzV9FmRauiKqUW5RPDMiuogqNxOT8v0DkUmhrSmziVQ8vixBkiwZUMl3q8qPQYxAXcJgLLHXlYAqYmrWSGTOOOdjeLrn2zubtTLYrYEvIBE4kJnBXmKpiMiYAHJ6pmd9RgQlhACCqTTRmjaW65BARMZC1oEUjiZVyLQwxHVcTmDVsLFdkF4SAaTExWGtTy18cT9cH6cGrxcKlUBULGamWkVRfG1RzFBin2V0Mm3KalWLrix1Qn3NtWAp/X4G1XWar0w7aaq6bbqyP0Qy0xOZM5wmJQFaetVqnefyaZRKSUVgtrr8cCnqVn8LvOKNA2CxJTSrLO/L9E1q8i1Jv56Rbdu21peko+pVc9VLE1gM66NV4XdSJs3pJT8qnO/f2dhqUihkZbp7ZjgRCSeJEyFLKhcxZj28DKq2p6wGTaz/rh/3mqXqYaQrCI35fwcw9EoWoGuXWZ+Ur4qeesHhM9zdv8yM1lSJe+9S6Fm5ZEkIX3qvenYyr0iwGed55rJAsqrW4KKqhZxGfNUnfxPHLLVfHfzC4e4+LwxP9DV1caC1dnt/+y3WF1VDEqtmfs1527Z9Pza8dHXf33bNYY/HIzN77yQsyCZfEh8Aprrv+/1+37YtroKQ0BdVygB6ZkS6ewEnvfcILoirWMuC69rVj/GdA32pNQrlymXVnOsOBV9xdF/KsBpwzSy9LuJiIYmUGUIwa0RG1Rr8KmIFLkUlLwE0i4gSL2lurWyXYPQiTOr2IDZSkpbSxLq2JoxmghiZfvrU59NEMxMUjHDve9/G3IZvHttjDq2+nyQqqxQtejPcGHLX9tuPH//rH//8zz/+8dtv/9DWfUQcHhF3fttvnSnEPR4f6SOJN+u2sQjCVTdOjxQ2aQot/N85g8gzSSkinu5jxukRThkcUel94KQZqN4nFSOT8m1nRWjECET5fgoFb1LjNl/Uzdp/WYVChk8TKIOCwaToArBYYianIxMDiaAZGZHjKudMO3x6RhKcqtalCm43xXvTmZMoz0gQQGJmSBTbIVknqBCKKuQVQNi037f3n7fbfROhpEwKMezcRG+iMNOtDT8Tnh+ff/8///X/v7X9rb932xvfWFSpQHiOmWOeTHmT9vPtvRqO9SBlJlPPjBzneMx5Qti6veFHIcn32/v7fW8iopQTG7tvHjGP8/N5/MJIEzYBctQWiNAAeXI4ezKLsmzKN1YDck4/5jye00caRLIJq08+jvNsz8/9F3N036xt0jqTYel8V05zBkV6xkQ6XStyabwSTpyo0WCZ/girFlrMLJlIJcJzRia0LebumsR739qSwK995wu0ELZazvbb2zoGttbaZq31tllvzZpa73ZJBy9KhYWFDUyJVRa09nWWV6jP91EP/E2OLcGXiOg1e/0PTO61PRQOVEgPV/lqJjJltbCuAatWiERmeIw5zuM4jnmeiCjwX41b0957lZTJKjJjIVA6olYhhmTAmMFItlcJNyvxVe6QGV5Gi6qNJg6hyKo35qw+aVEFKCIIHEif6XlEErHUQZZIsCaDldCYF/tcU1dmUviCvtIpgxkkZCRE1AVmVNJyOAIBJiaVEt9U4KwQZVStDAMRWX1DRCQ1GyxFZ5kRkBfXUEaMGqSynNAqunp3v2LrI79UJtdyvKYTqR5tImSqaW+9N22tkb4OAForfiADJCXfrt0X6RX5W5G2xgBs63pxUpFEEKYmXKn3Gl41c1wH/YKjUL2RCqJOJMAMzG/zfhKuoR+AXh2RCMBRvAhJDS5NpGT1W+vlO9n7tm3b3rduTVnqzhseEWG9LdxptT9FETQQpnI+xtdsURe9eMbMNX4BiKx+TY4kz/CFjlxtpyDiMnxwYZ0XRQx8nTr+TanNl9zzxS+/vDWvAxKS2pWTzOtG+IqZpUsSUJOTiJhJa0376hfKwEtlXMriWgoejweL1JuP1ZwtZloj7Cql0SoIEneXr2pyUlWYEdGr2bDWrFjVT2LaW+siEgF3avv28+fPfd+oWq59/g8xw3Wcy9ewVZNNvfiL7CtisbK7Kj6+7vNAikhxi2VyLM1+ZaW+kLn6BmrOy4T7rBev9ERV3ff9BUN+lTYCrxd5DYXX4JXMevGYmURlMqi7KdbzvKBNEdmu9MF6IhaNyKxCIgvRSXZORnhEMorFX6w+L31BzYJ5DalZTyCrrBi6elkVYwWjUlSE0BtTzvR5nmcTPZprs37Y01QUkc/IY+LweEQeTjQTQmX+XKcmYTCCEF3l9/cff/z+822/bWpgExZXUhZhSWy3vo1texxKCeJs2lQ4MauEq9sGYbNNSWPmmfPg1khPTGb2jGOO4fMMP54+hs+B8EWDFr47xhDW6qpDahCN4aefEZ7EScGIqlzMrIPcCnQuiZhUd1ZEOVtIKia69jwwW52ewh/JnojII3JUpzsR2WM+MwIIzzlzyspeY7t1k5vPTOcxgyDrQRWAEZwCSiE2wJOQLNRYW2v7W7/drW8UmeljzlOE1LgT5SYEZhIhOOWcx+fnXx/Pv38df++PW7ONmm7ZOGZmPI/j8XiARsDVsy2RLoQADqLF2Y15eqZF670Lce/9tm297W3Vr4tlhimYWvtQfYNNUwhF+DHnGT5nVjOxzpgOkUzromqcXTPj4Mg4JuVgViMC2JLwfD5V/+SWHp/b6NvtvvU7a2tdAKzwcnCCq7n3Cif00ku4z6ogZI4qgmFVsxYabkHu2ltzZpWYOnkK0kjICOG1VZQE4SVWvZ4VLpei8b8B7ypNtZW0vLXW+m5mautApqrC9UyuBLiV06VNVbMkGmrfNaEAWGrVu2LfmSUFUlsCRdD/PnL9D/kIXbgvfRPiBNVJfyVhlnur5rPTz/M8n8/HPEe5S4FQ5W3bGBldMzPgIpDKNgITO2cIWwaXr4RgSP+iGKwTwBmA05qUnTOFkhhOdPV/EEHo0rGec6pSIoNAAYxRZ+haroi+/Fkrvj5XmlMNW5x1Eg1CEkOQZUBgZkUaQZkScHJBllLsy3CwVO/ICKQrr6GuUn2M5VLNUk08te/mdWKrKxCE1+Ve4Nf1C0TyTZ0jZe4glmXqIYCZMplNWu/dWqsoXQK/srWyqiNXH4CSJAlzCoAMciSXJpWpLjEJ0wLJhKQJV1WwXJlbwYLy80rpSShYTYkvQufLzpnIKhKqKTJfIph6E4maxF/66zrC7Nu+DL9tDQ1LB40FbJxzdGKS2bsya3JWUZKwNut0zSKvXX8dsa6cp0KwMkEsSMqFf1zdnpylpFMXsNdtWN9FrhJu/s7jRwRfJOnK8L/8j/Ja/C8VVzkLXqTqGjqvr6voSTNTba/vpDKfyoaSmalZiKCtwWsJp+acFftZr1/jlFxI/DXl2CuLd219wIsZrOnkWhm4Rp96iJptrXVmds9Shr29vb293UXk8/n4+PiICGapurMkDJ+1t7+wrrX6tQXckbBnmOi2bVeZjxRQt96S6bZtJfDS1mpa+vz8LI18TTc1lV7fsFStcrmqrwCtpZStg8q391NOo/pXpZSmzBSi0qFnYatE1SFY2R6wVVBRy+CiHYkCUGasZVOJIpUMSoQKyltygKSt8kGpgvyTGewgWXxEQfmFGYsIh0z62lCqolaMLJg7NWW4KgV8Hv2hqvtwPU2VTQjk59jPsd1GP1rbvAkRZwQx1jlXQWTS0oSAbvZ22963W5dGifRJyQIupTQlhNh41XpWRAAnIeBjIsmscxHZyT7ioPlJhzKdCGYe4cc4Z/iMOMc8D/cZazGpdiafc07TdiaAQbAAzTlHnIFgtIjpl1enyDEicZaOrN6UdbMlJSWlKpTBFd0EpmTLUtOHEkdgTpyJUen2zGx/f/xVWBtyJrufD86pRps2b7f59HGexB3pEZTZmrDHyBmB6UUt9U2IiLx3M+V947e3ZiaPx+nzE3Fqt731NJ7jHMdf4wzlNuZh0lNm0PEx/s6/6PM87p9//uPn//fWrAtt22b8fpwfY8CkMei27e/3/c/P8fH562N+Tn8SlmCKOBnUTIop2NtO4eM54LpvP1q/n+mR6mmmo3URDj8+Hs+PMx5SxWTjUFVA1YxFhs8xk0gCmcR938iYIwQlG4zn+Ql44jl832bfx/72/vv99oZU9zxGhItwZ+6UHhGoYIiKx6ZEus9zzrm1OphHzS7gJTMSUxOWWvPaZtqP4/AxIMpqYq3EwCb6jdpYjpXCMyBKakhOoqK2Ve22bbfbbdtu221nqkBIvSankCDhUt+QaANJjNNBkaRACBkpS53hri4XWdB0LWTKejkuF6blFORrqRIRvLTgAMIRKxKwbIWiRClcMVplTckLYimN8Dw/Pz+fj48YMz0qBIwZasIpLDwjikvhouKVVADySAgxQQie4hLr9N+Zrrwlj4iEMxELuBSvqFiomlFEX+m4JJlTtLWmlVT5eHziCj1aQxTIhCODomjQ6fN0d2Wo6BgnAYLczJot1Z27dzNhohL4IyJ9hCe471udSYk4M2POmJMQkHWApoTohYdf1gef5fynhW6JBC3yWERWJAHVrR1FMtalfGUoLHIMC1+RpTwTovlSB5IwUcoCFfS18VfNo2cgSEQ8M0lIxS5HoYiAZYwRDrO+bmx60dl0RCBmZohQ7731JEXpxoAAUaa+8tbxiidYdACLSLWwMZGZMHN5O9ZbTWKW1tp9v91utx8/fry/v+99KzhZRCqVYJ7jnCNAnmnEWeNikmdG0vBZKJRHzshAkQpLzbnk2xRE1dZIkZksyMRiCcMD43SBzBGpVNpB1EEGZet4Of64PqyZZe3xTQW4BGQTQGuvqgBkZvgSsC+PbVKmf7fT9t5jekE1AEqatlKI971+sy7HBRqth71qeWZ4TV2ttVIvBPB4POac7+/vt9uN2eqJyMxznNXLWVfqWrIu6752VdXVgGv7dr/d7kT08fE4jscleN/6vr37j33fPz4+5vTXlfr4+JAl3eMSdZnZ29vb29ubu//999/VGrRt2x9//KGqpdzKzPIq3u/3l+exhsi/fv2ac55zFgBW0fYfj09KFpHb7VZeQ3c/TxozPCMzxljPxQv0eo2h53nWp3iNhgC21qw34HJfXkls280jykK+OEd0FOG4GuFUI6ismUR0u21OwaAM8ig4cFUIvM65JTmgV6I1SaK8AsG67JlbW2V0kYQZnKzWW5NFXYZnBDPv251JTz2Dac6zW9tbN1FjU5ZGsm+bOAiNc7KKNBO9ysSsM/Wft7ff33/etv1S0JJJa5sB7XM+/TF9zBXBz1JFCz79GMc8D2S21ra+b9tOIp75mKOTmMjTR2aOOc85ZiKBEV48Y65+cHLPx+NhZiSSTabD5/P05bcosfM5jzEO95nwTEauMxLrOt2xsTYjPyOTkiSVIcINLOU0cLIJTWpAXA6yIsqbCNuvxy9jUSHJBAZrMk3mhIQZyd1YbnKixr+VxyhqVqabdATRYC1DAxMFB2l0E20yb0bOEHLMQDrjMJmTZuZUjcw45t9/P//bPtuMMTEPnIH2ftt/v9/vm5rdmHye5zzHtm3Occa+x3FmH3GeoMxsVi3rJURCNSExJFOVG3ETdIQigFSm3rs0FRWXHj7PqCNduIiIJnl6DJFOVSSZmQxW1q6iysGYIyJOD4/T4+lkI+022/Q76WD5Hdzd00eGC3gT3sKZMsrN43PO84xxUrggjWnO4dVTC9Dq7zIAZhp1HJlJmLGM9/Q6uX6dhIiwjCRr1bgUGBkRzl4LX2kg9r1O9ndtVrN5/eXFvAmpivKSvS/rBrI6Vl+6xJfWh64neTUTMojrKEYg+XbsDlSi39qOpaifJE4IsqpcQJXpR1Upk0TEssCzTB/zeD5rCT6XQWHOiGnCIqQGJWWG9UUfEILWUTKEl8gpUhDrSy5TZ7xy0ZB1sqlcR0qsavDyySUT05V8U0EJoEyUvyYRwPP5iPB928rKFBkxVjikMJaZI2aAIFFJECsbE1ASQhpT+qzOw8gMn+lBGUkck2FN6stDvHLaXvmTQlwwFq6CpgV3veaRF8JRyEdlpH2li6GOhLjytxZiQYsheDF9dZ0nQlXNurZXk8xLxUFUU9dSBXFcTYUXpFFF4cJcTVBSQJWArrB7LmFYBXpgDdMj09IQAVV/ifNERLXV2FFgP126NyKCF4e/ZIWUq1A8CVUrWs9FabcvTIiKHnlNJxFxRgYL5IgkZkmH+0qbisAYYywF9mqqKRAqVqz5kuMVCAGGM3JF6X+525RJtbFKBlVbBcDJFGCKqDNVBMqJt217a01M5xzX+KL1Q2pIYuYMMPmLMqZXPUO9xfqKHHTJv8r/W+BOzQq1qdcoVmlcc4SwtSvUIFeArdRY/5LTleslM0Wq3mAlUfGyQFY9wVez04J/ql5CtbVt67dt2+sjZ3qhR9attTbG6L1bb8Xv44pwq5d6AWnbOmRu+OYzqNehS5D3kvfVSaMQL0TWGFRhrREx3NsYUoUNYC0pSEKEI+IY53E8QaEqNVE9n08AvfdS6NcrE1HBhN8R8fToketYJeJjAI+FARNd8vxVGV6c5nWZFvRI6QCq0QEUMae7E+e1U/BLuwYgPDM9KzaK1ZcQcK0QFcF13R4MAl19X6oKSNTaDSFaUUH3ffe4E8Lj3Gwz1Sa2tR3TdeNta0FxHfA4M7t16ht4QeUmoipNTdiMjJdk0yMmYmaEVBdmio8ZVI9Z/b65u7qTKDuJ82eeJDQjM/MYfp5zhgdhLnwrZpTQYEnuhruew4MicgZmrJrjQdp43k3GOI7z8XhQb0qXpt7LaF6OYa5+XzCRZwo3Y4U2Ikph4k0UxFaVAqJrXYqYmWrP40NVNxWjEErwMCMmuI+ubNpFUpT4yeEgzjkiopZU8owZSQYT3tsunBwTI/MUomZwVgRnIHI6UeycsTOD54ihpwd9ntk+VJqmAF2IpMXfcT4Cj9H6jZSjwNsm5Nqs37Y79uB7sk8aYDopKlwBw+fzOD8eZ388yTbbJDvBclJ6ejqCjKXbZiZCQjo227KNdI/grpLQoAhK5rQmYM6RzLBGpqbJGBKEEWdGItKEhvNwOacGfkhLtQQawD55OlNuwntSYzJheKFc4wgfhBBOEqTPkj6LCDfu2IsvWKUuM1yzZA11o6uZfpdk1QMjXOKDOmDV0XY9GPd7733f9+12e4k6iaipgYkgSSACV/gIRIWEQQROJDlhoT8rljyDU8rCzaLEGWtzLYvdMty9iB58F5oAILImNYARY1UVcu0XzunpThn1L0AvaXB4jPOspK5nwplBnEke4Yw6+otUaHCrta+WmExkBgmjArUE5ESqLXL5b/KoYEy79uvI1dmEQvKLZ6PKS0OZHhdNQOLh/Fr0fc5xnpijCTdhzHkez5L3C6UyQJHuGSFCe+tZ6sgkToYGE2RRYIBXn09QApRMvIxgBGHT6tMRIOlKcv/GtVVrYSwnC6uV6IyUKzixii4WgPGasQjp/hLBvF7qFRP3oomVRYWV96pgUusstTovKvba4wWA5+rorRvSzIj1mupWi3Z1Lmeg5r6Ks6Evfg2eKdeg6e5toQi0fpSKwYDAtcdcb4ATHFe8U21dnBARSvR7ezlUanasLE0fs5j6GiyOOY7jOKcfPiVyJOx0kdK6CYM8MGacw89xzvkVXhrh13ADUKwg1cwkJmGIJlZgioiJXHODirCJVDmFAAniSjCoryujtFxcwVS4aiyKGP1Cp8RUNWUdlV5Y+Gvqqt2USMYYKss/eLvdKvROrwnpJS1SbcWhf3cKZ6aMM/NV8WmqGt/Uga+C7cyvwatENh8fHyqybRtf8SV1hCstxO122/pN1QDsO4lQYW8V45KZ1tu2baZX+vGXGFErLqfArdYaXaXXAOr3r6rHOhFWCgKXuK2gu5mVAOJjjJp1SpXbpIDDFfFg1lRlhv/69evz85co3W47s4wxHo9HJbv+/vvvL59TLnHMKNyrPvgxnrfbzfoqL657uvdesNaU+TrL1Dojm7bWb7e7mZbwf07i9DF8JehmhFcNUaHU62sncJ0KZqkswcQcxNUk/hrOrjg0AYGYlnaeK7Kq+l6rPpKbEhqHy63f4HGez27bZtvebyDfb401WSkoh5/nOZ/jDERjFemsexcN9/N5cBq0tZuVl3fOcZ7PeR5jHH4eRGlNxNnjnPPwnK85290xJmuwS3pqEhFbb5PIiUdiRBKRJ4bncU6nJGZSIRZPzOngpwsc8IBnzHnOOREkdEQnhgjRed62pmbaWjfraQtQcESWNgWJJEpWApuKGgDKFDW1xnaHn0tpwZUeTJlhIsmSCZpIwTSaUAhXWFIywayXeXKGiPP58YxAxXgXvEJMSlAmhdOMdHUl9cYCEwimpjscDLHgmzXFcErMB2fGecavY9537Klv0DHsOQLPz1+faD91u5HWwWiGB1yEbnsnfgMnBGb94zkUBAQ55nM+fz0/27PRpvcuzpTsMSOny4RM1QSIMkFOBNFUJuEEOZOrkYESIeqtA8wzvFmSKEHYM9gTzj4jJws7khMjINFOp+HtHELJRBKpPhR5iqTpTYiVoSUY5iQt2IAdARMASsWYiRCzwNPKjGeaYzgit9ZzC2Vo2yoHWrt+F7+31oS4PPy87EJqLD9++620rq21anNFxJxnOXqo+kouOBoIhnAyyMEKJiZWUa2tWqgCLYmZmCrUh5PjEpNUJKyqrvu7IrIy6QriLsVD6TRL40WUlIFwLAnUpHCmwnYdkRHTY0S4x/AKP0OIcmvGnM2IiExIlVSl+rULqiSKKzSFeDXZrR0l0+sML8QkS/qm2gjCdTxZGxoT4TLo1Wf5qgTA5YevPiVmhkdkDsUcXYVizHk8iYMKPs0VOJPpAqJmwuAkcCSIY7k/+UKpEkkJZiiRMAeiJuSXuCgvbRYtzexV+VhGbqotXr7gzPrsBLl2qZVhKkLCr3SxFzGx9un46vkLEbKm2iq1obe+kBViMOTKJl1/uUanJfUrAqnynZW+RUxRhUQQ56qZTykormKA4xKifYue8ri46QKAWdBYKK7N4wqRB5i45u+1N5dPU5MvK+5rv3lFOrk7IomovKVBGOmHhxMjQiNUTLUpW1cTMU96/S8K0CpKxrMuYlF75WpceEkzVg6+Jsvk0qcDYDGximdaftXIuOaG2j5LnsMREchKYw5QV605bOVyy8oKv5AVqgGohqFvEi+c59mvZNGSlqsqpVcBwIUS9fqKPEOlFTEoIkQh1dhxXZqXcfL16zoHZp3X6Rse1lsrvKo2UYKoKlO+QKkXF1mDC4BAuHuBta01FcyxWMX60bfbraaWuug1A/3111+Px+NV4XocK6YhCUU41hC5zVnfz4yVflyM5BraPnWzQu9aay0iTJs1rSHy16+/W1dmut3uNb4Ug1lfabuSevibTL5+Z86oVqsiuNfgtW9jrMQvVqkQiEBKXIoOVbNGxGY1QWr6qKGZlsaUTLtKSz9EWGqp+7ofVqKqV4UDt3a5MarUiL+1Wiw8NUAUNaELr646yWS4Set9v2/vb/uP+XaaSeKdLEgyeB7j+fl4fOYngh3eWLe2tf1977cY8fn3r7mjg7YykYw8z+ev56/Pz8/n8znG4ZjlvKYQLxaYs7rj4VOIWIwhjHZyKkFbk1SOjMGZnESR7ExnBJjYBMTJVPVNPnJKZFIknDFjjjgwQTk1moRIxhx7td3s+7215rbMtpk+85x5JoiTuVZbU22WmVySME1r+0iNmcQplOGYMyPJbndjRPjwMSjOpGCCNrHNOCcCJGa6MW1jyjghTE5nhrNqN+0qwSzMkmDPPI5IGjHoMO2srZEcLNQFYE+CasomvQllUxvPE6Bx+sfhb4d/WtoYUJKWjbBbJqHl9KefE0ghVjGyLftb7J4BEqR1EoRvoi0FM/KM2WLQFGo8yyl9pjlvYR1jRCqEk3AQhsoQdRN/4oGymUsTGcQniZAcvQvgFCMZINd+GoVIpEOIWJIbRAl0ePw6J5DErOnNwxC7VaW0MBGzpDUmWCiEFTmCkiWVkVKjijKzKDQZMADuuUzmIDX+f+n61yZHjiRJAFR7uAeAzGJ3z+7e3v3/P3ciJzPTZGUCEe72uA/mEQnOyZVQKGRVZSYQiHBXV9NHzB5gltWetumZvAXoqhxm1V4i6JoElQb/TMFZ8eQAzAaRlMiUKMBU6ddhMzg4Oes3WYmShVXLLkiynOVxDgeJF1eUYQZmjyrbXokGeUKJNe3yiMzg5Artq42S4pSeGNIQQenpEWlj7nA3s7AZYeVOyDASurVOqZEeYULJHMzsMaNaBdMS9d9xKdMZTMQgj4ycE6DwXbVH25oGieZJjPkKfsoam2bCk5IyI9/fVFFjyCTmgBPcBo7XN2y62zj2PDl5RFKGEohpTR5zwSdErICYs6U50ophYwKSoiqjMiiSJDmpnC2BYFZEbfABn36+03NiKBCWal1cy+hKA/FMLVPYGcS14OPC0H4tu9eYLJg1KVkZtLXOZ4FMrMkhiMjiB82EJ+BEAo6V60u1jrMj6khd/6LiGCvP5rLxnWCdf9qrmCiZmZjfiz6uaep5lyGypqZWv1MoLpZpQEpIfm3wWK3hEe6/f/8uwVzZUyDsoIkwkIvAglmFvYu6biIRqMRbYW2UIHi41xixQsuqMMhW7uZIR887byVbWRzeNJvDABA7M3vGgo/JZsecs7q0VfqV3kdn3Lm7x9v0sJiVi7A8mcWoqdniluJMETtdFBfZUwsFPCK+UBVY1+AywjOGx4Wu3P3CKPW/AGpwe8XE324fETHGHhHpS4deAQ1xKia9yqodzJxR5dBblCa2aFtEay0JqNqPS3NG0CaXvqJ26Orn9ozp9txf+77/9fV7jEHCgVSiNe/jH7NhATUzo1JYj3E5Eyv3a4whSrXk9n5bdR0KUF5l6qAYYzC1OTwcJa61GeOwXUaRbUwq3Eq0l0GZdW3FZowxruwJZn48bqpdWxNpuWhgisx9HBWWZas9fXWfNNmKCM7M6ggGIZBmUUOOii5dBgHWOpmIp52HUmIwsQcvP9DSaJawAZ6hBGVh3lDKMM853CwIqtS37f7PX/9koU9/EBvYZh77eCq6HWkS2TQktqb3P/75+PjHnR4cdByHp0zC9zzCMoeNuX+P59fzr2N/zjFcJhCqDGJJIpAHBdLnAZeYE6xduojchJzpFZaZe/oRPsMTmG6HzYlgqkBpBDKQIxzhIWHlQCZ4WsCDkpOCzGLsU0HuoZEjKSy2MFy2iRnDUbHtmmVcqEdDRZOkdfLg1uPg6YF0yjFn2qTM1PuNreKE/Blz9zRS5pTbrzu5QkiCBY0QWye7ybY1ogHsEKARNYmi9T25ltppFh57SJN2b9SsdeFWe7MJUgFwqKAphiPymPY8xu/DPvqUZFdqmTcyJzPPRkEGq7lEna6aSNdta+5J4a1B4UOZ2CX3nM958GQzZVDEPMaYT5eXmGEYhwuHijOZkDOP3obFoTaQME6Cp3ISSKT3dHgm24zMYLhIth6xYexGCWX0Bu6TxC3imCODCS2jh22IJG0cmkkEZUJvIgyfSbBwyqDwFVRFENCSdTOXh5RFyHlpXVlAPY/TwFznvFrgiKiJ5mpGayLSuOyLjXUFwanqKkDMk7XmrPDCGgzW3lwpzyTMrEnCWo8eQYOrp5tOviBBRG5nu+JiDrgGWC5+TUJxqouWhCsyA0nZWMBgEBNn0SKGiESEuXlFfh9HREw73L32Uo/pc5yB4y0cZl62haSalwXIWJBBq5c58swjgNSwHStmIQLw1aslgbNkUGquVVM7AJ4oo/7CWSc6ucCB+0QkZYbN1/e36WvRJ7mAl4AElI2XfBgBrrHTogH4VLpUANz6vhXfEMRMiExyMxAXTLCI+KkQcI9p+aPAE+ayT/BKwqQfJsoi4F4Tkyva6ocVO6mOWqEvwql+yUmzZWY6GYyEBRwQPW8DFOuWa3xGiUox9VWu/JOr5BELF2VhqXfEUCj9b9SUnifO0iFezNyFMDIzzmykiOjtVgiPmKBBRFvZGG+3bWsfHx81f2fmiCThigOo6tPzbYKI0k8Gy90D7mkWyo1kiZEzQOAMD19gK6JczOXbWIgnqsQ64OEzkhMWP3FTLFKa+ohEcmZMt+k2zYpevlBXDYzWVFW1nkBmrlSR5dQ55XoXno6IouKuq3q/3/Ucufa+yHIm2vr9FACtxAcA4fnODhZavmZ8hZ/AXCKk2+0mItt2m3POeVRavNlYTn5eVTmlMa/xFzMzZVksZ3OuviySZa8huC8/mp+awSY/wOui+nA1LiyGL6452n271eIbdrUfLtxZFWRXKhvloufzbDGqp5hoZua2bU1x/dDeOyjmnHP8fmeO65rUjXTRipcuk86mS5vz9Tzog7RSZ5fWrUbq8n6iqG/4ErFwrjoDkaVUU1ZVIMylwOWcJoFAZoGJ9BPDBVB1YQFoHZkE1UH2g7goQYgKNKEzVoYSdUOPYa8xx+EsiACn9v74iKnG3IJ4DtspaKp/9A9OubfIzNum7fHZ759b3mRffQ+vdPtO98xpZnbYfsyXu52Nh7UW1VBhzuHHsVfkcDCztuik3GeGZIRPIhqII32WwzF9N48krGhkJFXAYYF+m24eCEmHR1WZcLrPGccgppRIsdDdpqo+elfV1kUg1UADQBgBDTgoSLmxJLh5uPu0Xu65yAgPG2GTAFZmCAexgzzCMucMZp/uXVm21iUbQ3Uycmv6AP9zjHHMfeZICucAkTBaEl5jJHk8w445j8Huo8kHUbYGIYFyhlTfWAjH1tjCD4PHMW2f83XYTR7KTHPudszx/RremnRu+cpj8pFijVCD/E/mvt1uGnPsPnfyiIAd9v3X7vM7f8nWHg0UZj7HMb78+B30YjbmbJK3hq1DlJlH09HbcHcyC7Sw4d6Ib9IbcGQIgISxhIhwUjr6TRAgeJNQSVUnQVJGNuRKdGRqTNWvN5ghpKqSCpNGHAzvyrFbRsVLIWJVvljM2lbNMI459unTKJ0I/tZ3O1Ub2hLGtkrNkd57l16YrPcO7te5loTP412euTs4tViZngm4zSAiFxIHK6VSBIUngkXVNVcyzTonDfspUgSQ5LnWTwoiyA+pcDLtJRwpiXsqiFZEQT3xUbfnHPtxHHMesOFRC/ckgipnCJMsBxInRfKZ1hkRXOsHKRGYiW2U0ll5mTCu3ZpobfP1hWYjKJk7SM59iirjBvDAOcb6W8N1qWeKtVqadqTDLZyq3Jql4puB6qBgSQJfOvfiG2MV3xS4qySqGoxeMjdaTYyRNlOEED4tbFDy+xXOZVAtgmmhLmbOczxwxZGv7YHpDIH4ye5aSQHlyRKFLOc/r/j4BdyRkckgYqaoUPTgXEG05/UBcUTtygCCGHmiB3DNq2vctrAiK7Aw/QUOiu4r/gN//xVR97LnmV6RgUDW8M5mMNm1v6o0Va6+0T/++GPb2uepfS6nY0TcbiUMWLBg2BzTJT3NeLUCowZ8cBgF07KDXVa1JQmaZ5REeCwxszAnBJV5ZhbTjcBZSfZvH5+HV9bre51nEnEGn41+hT8y83a79TORodTfV8oXM2dSZdkXcnL3mlLKmfGwbZuczhu5jCag1tqKDs68jvhg0rOVshaQdmY410dcqqM66ZWnp2Z5K2jjxEDXCPI6vcQq+84zaP5pLc6SiSh3DpjcFzAaY3gmQEJLq3cReIu7up5hoqvyXFWXdtasJoyXIKxEfmOOQnV8OgK2+21dT0FrTelaQuM6VRbKnHbMOcsFfA1J6+3QmYy/QqojVk9Aa721+vv7vrcubdtEpLB4rgrVn9FteTHqopXKVlYH2o9tghnC1e+xemjeyVHzOX2h/ILbTD9T6XM7ABEhkekFvaqnKxRBxMhwRMCRSKYAM1sSwE364E0wCYgQBDPpY3s0bp8fJyPLMVnrEFv7xvR4vZ57BjxyhvucWLn/0tokdpsevg56FSpkc1bElbIya0ZkznBJs0wRMaQTgomIgsWRM1yDhSlJnEBIW8Hbx7BpniEJDSIImKgNN+IhxoBE8mHgg0Fij66q21gJc2lORKq9eXN3iyAibY2l1T2wz6Zt094zmiMNI5PBrIUoqzdvNafBM/mYu/SHqG68wTVIhO++5e2hc45j7vt8DhsjJwua6I3Ev5974OV5fM/DfDgi5tZAnMxNmZoIVEbkzLjf79w8eOY+PXPO4xgvObYthJmFNeHHDH8dDYpGBx8hk3tyE23t0Vq/3WbiuKUdLzt2P/Z9t3343Cdyv/VHQ4REaY/MX4f/deRvkdkkpyA3JmobScJAM/JlcxzTRrJBZ4joo20PoSDmVJJ0AlRTScLo1ltYIEloqiQLVFKbi2tJSEAQAQuYkBEMqozKOpUxXOjmPgeM4CPDjSy8DjQWR9HdZjj2UcCr7KrzlAjUrdnP83++GdauM5CIgOXnj865ZLidFMFPlPzF4nCFwntmgCMoFJ7uXuqG63BZXzgd7wsf0QqvX14nt+QV2HitsxVj3VicivCKs1xvLcGlkHi9vucxmoaZ+Zxlrdq2TRjhwkwCirTrzB0R5mNrq9qsTkhMzax65SQzeeGmNbaqi1FjqIgARaavdCbQqjePMm+W8ZLPkOerlSXqaJiUHPAszZxzamYinUivC7virpJ5xV3mCb1+vJ/Ccoa/n5xFgBCZK4gVVKxG+LR0Y/x0nlDUrHCNDum8GZg5lrEoCVVklj/AazEE8/1Ive97bQy3273cUSJCAJ+xbWZGwsSlOjpBQ0ae+9HPnPb8tgCS3+eGhbUq/LqiXFcgcBFOKLNGBBFjWayWh+76iW/7Df8PWFYKqtqD9bR4qfZL8lh5XXVEqdDdui2a6NY6M5vZPo7XPqgKVkEOmIVR+AyLIK8peVx+RveVZzsrcCtWVFcSIEzZBCHS8qRkeBmGicCgWMO1oAinE2heBNX7FJiZVzjzucGXhK2W+/VOmCsct/BZZpoF0VHP+LsY64p9Nxs/X05Xlubi/5SJ0AqaXERXYbIaNY4x4kwKzczeeyZHRHUaXl9SGqnTahrv+/2lQMcVWYmMsMwkYXerSeWc0zOJ+L718gxe6vXjOL6+vn79+nXdIZV3WIC7Xnz9iAJMV5lPnTfeVWVEJKnrcinV34wZl+3gPOeQiJjTYbNRv27Oinabc5YiLd/Sy65Lcbvd6rodx9F2qSbc17E/Hg9ZLuGCyMWu/UgSy2J83e1zTg80F9Wf9T8zeZWsn70RZ2tw0asictKKP5HXS8J6Ee5Yz5GU8peuaoGmGryRiMAqcIuO2acJABtHAEJy2x7321pkIgI5v8bYLTihqgqJOeIID4eHhyECHBCUZJeWYd+pinnOu7G6Uyl7aQ+SyTNmbWxUPWK13K3uEnPnpnEGfAchPMacNsewOd2CiSJFmFiTnOmHLQ4KBCw8wwSmqtatUvsjQkkz07etJMV1qMik1toxvU4gW9wzH0aobsYk0gp66uDUbfQM2z38abndtt3bDR9y+5fkbe7ZVG/tsdcHNHOMPeyI3CP28BHTA/942X/w+Pf4+n/HEPLvsMAmt/bxS+5NhBksfMCFDid+dNokNhqvmYCSgQz4t3tz42MGWTMPx0wagXBl6MF535i06/3Gmpm2/TV4O6i/cI/5Mv+N+R2+xybeJOU+2ePeeNzltW1z+JhORJLT4VRxSbCZOCR3tlfudgwc1BR3lxjMfyQ8aYCfwtmbdrmn3iKbO4OcxVWLkWbjJPovss5xbyGS1uCUE8mNklGKGyJBSDcxGyn68VT/5vn18swIiSRzMzusVofjeB3Hy905mSHm6/waXWLs8/Vd+8fj8VDt975RJiczaxWPDHuVsCuSGzVmJgSHixZx6+Z5jlpiuuWIPLWr2htB5nEMN+0tKux723rvcjZCZniAHQKpGiIRNADVkFfKmhUcYG5m8EkR8DmBGBQioiRI+IQbbMT89vlye8XY53iO1wAVYPKEE2PbNub7PMacM4wye6a4u/B23z4dr6LN21aQ+xhj+JwlHSrJchEqqy9IV1q0eSZcWZgD1NzDwe7L2yFMEeF2TF3LLbmTB8IQnkCtRxIOoGJniYiFIkYFRiiynxVyZnbMfds20UXjV/q0u1vJ0c9jaK1VsAifktCCi6slnQMqwasMCNU6da6YoiIVrKMgQkT57MDrL+eKOc3iAEh0HvvVGxMRKqIiwcX8TMCEOEXQkEy938ASTEi4pUuaJDE3vLkpiQgSxBaVGbEqjkAQFm2NVWISMAMhHL2ltBXr49OIg9ILcBGtalXqGokZzhHlmUgEiGZGIqvLkpwkIEAKW4bwKhynSB9zEG+6cTKRBNgCTGi9EZHZDBvf+7OwSCk25KO32fphCppezvHhJ20Qiy51swpQraj6sIpWp1gzbjl1htoBhKWAbtSYNZJIFdkt3APldEnkbiMi5kikViaZKrNcxF72TQAhkfqJcxKw0HNrTaRVITQRMevj8Vk4gIjm8MwswqSLVoYWQa4ce4hWYhBgEXMMO465OhBFAFJtIkpnP2aBVGFlDUSY+eu1R3Ib5SZZYzUWySCRaG1TXbHJEaGq9+1WJy4BwZHmkEjzyOXSABJXCnGYw4tWK47/HENrNbcW0L8G4rUXFh045zyOY9/3+gtjjIuuw1nyXYm6qtqyP59PInp8flx02vf+JSLf+3e/9/H9+vr6KizlM9h5LlpLVdlsmMUYRiSPR9ZZetvuREuJq9qbbpHjGPu+7xYs7a6tzel//vV1BgCFtK21Xle6qB+creqsQmZmWW+EBaUzYa52QrGQ1aiQHMER6kAQs6LmXLyUAxlhRJRkSC5SnpMpEeHIlMRhnqwibIhQ7a3xrftOzNwz5zzmPLR9bP1xjL840oNWlwKzcCun8y3uj/n7GU/DNPKj2YjD88XFh7onU8Ij58RIxJF+YE57qUAaCSm7pc9QALT1dr/fb9uttWYp38cQDoYY4lCfGWn0srkHDEKRDdxvG3eZPicbbfl9PKvwXsBi4k6kkKbOr+2u7detN2GEjenHa9r+13Qx3vzW9AaHz2htu/OD9uSNHv6ZPERvjOZbC59haf0+5z/3g2Zsxt+Tj8ihFZBJwq01IAw2hkfG8ziQYh6RpNJu9ya0qdw+to9SPIRZxh55jONrHt/fv59jDKFKCed5hEe2zhTCaEy9ibSm0kURoj1FnfiRuW3+tdthhMj53IVvGcPJwrkm0u4WY/pxtC73bNXVgACLKnOTT4anu00iDICnJ2c8Xy+5Hbfe+qbEtym7RB/oZh0IoqDImGQUEekzrf4xmGXFCbNTeFUHAOGcYKSswQrzWeonkixOCSZiImUnDUlqwZosCQqOq7qOa8IiTNJ0ExGrO41MNF/HoU+kzXCfbO8mlJhmAQRdLPeyvJz1QX/88c9b63b/MPPRx77vBbWhcnFgl6D45BMsYxnUS9JrZmE/uX/XGM7d7WlJYFURDQ2OIGZk1oSqCLRymoOC8702+xSUAHQe9H115iCExUmpVPd+Dlh/fsXYi/shIuIUOit1rbLBiizSCCMCixAZL2EoJSoaCk4rAb7mqWc3ZnFi4OTkpIIkoiJbYtmwK5ThfVTqa9QUEQ6vMk7nxISvTmNK90R1lfCi2N5HgdeopRQHiax0cpyZsxchBKDGXlmUD62IkCsaIDPlyk8isgiqgDEAwis97PRg1n2mwhdjVErtMgrUkPsKAriiFtJXS1hpj5L54i9BKUwQYaZYto01iyxQWwWQUdE/dfKm872fddSsUjI15hIa4/3t40dTTz8866JpF/DCGkVeMhgwMxJn9MAyE1xkRg3aLp6mhs71nccYz++v5/NZYQ33x+PXr1/tfgdkzCMhFly36XX9V8n5+asYo8yfq06LN+KraqmGpzXRO2+0Hw3WMlfmorJ+EuGZW2sFxd2T+UxtOH3NVeB4TQavfzOzahTvdV3Dn1lzRKUYiEht23IWjV8E2yq0iRCRaETvIr/82+19jR2pUmbdr7LZggJ8zuZwGmCLB6Kz7qy62i9XJq+WPFn26MyivTVv17L2fulKd3+98pU8fo7SCmktidg5Gi44VSbEiB/hF52xOzvR9UcXWVWgdv9+fn9/12dUt83t9qAzjr/aYysY4kr2qnCJaxasqhZe0fzHeO37vecaL/iqiczePTff7j9FipmrJLe+p54j5oggzmskmpkSK90t4VUuL6QrIqrKwX6esrP8FUAmZ7H3726bAtDKHAwueWq/92I3t21zP2z2rWM/ZJjO4+v5+mvOA0FCrNKZhSffWifBEcdzvqZNR4I5yGOV7pSQ1y3NMyKMKbsqS4hmsoqJhPZERJASKXNj6poBdhrpFXP1Og6bgYCVKyvtJquPGOdTUHpHy4iqUstgYsn0jEpi771vfWMEI9PZjCMOQCYmJ1cxIBHNqSdbbL7sJslcb1lFWjXH0FRAgZkhWiN5UWmdmAEyq5Yxd0scHruFCLfto+mHcL/Jr8bSRIWpiXvsf/3+z99//dfr3yOH+QEbGHt8/T48/ONTKBpHa+hKrav23m9ETSeEU2Qmbz1uzZ6HT6cEsyeyKqZYVUeXAcUAAIAASURBVBMZ5jHj8JlHKrFZxIzoDLDIxpGJNBycTikZ4p7TLb+/qfUUvn/emiQ3ptYZm3MCweSiaMwKmpgEpkBGhnvMcCIiDddwXXtHEPMPsUuUpBXC4yJObJKhmUro7IpsRC2JQyk0XdLFDLxyXhkgYohWKkD2Fl3pufl2bN+EDOMEe86pme6uEX1GjmER0ZVLNZwe5nAin9PGSPe93wuslCRzkZwfnz+0uUhFBTKz+chlES8Y16LyHs3rQTr9bu5haf4aBwDtTcsXA2IlMHQlHXuCUpyoFuastO4IRFq1EZdpse4sM8swJxLh5hQMpmT8OOkuPtytdLi1OjNkseKqnfnHwFWTMiKSWkQ4yzLpLCri6lnB9FwtAkFYM9oCCZmkngFhUjBHrjWONAuxAVU+aHPMzCzTJbkjvWK63Gelm3JiIFQEqaR64QPKSDdQKcUqDibPQSeu2VDBJi4XA6jKjevF8DWhwxqbCqiRXj3rihp8IGtayRwEL7c/0rkobr2A2soKzZJj2/vcR5iWhB1FY0pVFlx7eVEmxAwGhIQEzGAqvhMry61cVERXTc3Kr+Dr+5SzorQp1zwi4qfYuEAcr+jY1ehbewGVNIzxA3MqSC6z3N1XeXSeDgYhZvxosaufwD1peIRNm+eY+0XMxxiOvJl58O/XK0kTHM7lUszTWfH3geAJsHKNO8FLSlgIDEkAuZuXtCvW9CNWnHhc/l4WqOp23uSXD3HOmblS/Rz5FvR6au/OlojLIqeKC1JcW2y97AFIJptFhEhjydpvrnKwyy9Z11Ikaj3BGadyWUzoLby0gtaI0szz7VfEyixkZuG/pbkufIk1E16vkxcAN1vbMBHdbjecVUV65mzhjCe9HJfX/Le4rho623qncgkk6gVcdU98Atl32UblX+BsdLjdbr1rAaMKpygdm4j0HrXMEtGcxyUme73WmxVpF+K/jiJEFGFj5Ov1qufe3SPNXa+VUFgFNCDr0eD8CSTrlegWc87EQpOLTUwtBWXFszHrWcCd7jNOU+S1GJ5NIRTJZ+/n+bhVsDZKoVS3/UKoQgJOqKSKUCrnccSeEdPIiRPKvWkXEQqVTo03mbzbzBwAWCXnSIpAnTrmsHnY7u6B79ZZlFDZegrLmOkpPC2oMVSwMXWBw33uzwmPfT+er91nSGpYzpgicrvfP389+u0WcDCGW8RRT02NAupIMsGUdi+fWmkfKYly2oFJOdzSMyx9Iis9KniCKI/jdYzvMX6NuTdephwmZVKRxqREgpRwWXo5cFIlLIqo9N6rKVohOoK+Xo4MkiZ0Y97iaNS33u8ft9vtRuk7Gfxp8P8ar/315ce3fX/Nr78mCFuXnA3ekZtkF2hDJwaRpmgQlFSQnfHomM4Z4k3BRSIpQDajtBo3gCw8yT3dyG0loeXQdIcrfIXcZIjHPGTy8aQXi3qTxqAmrdHnRFeCaDal1okIYgdy+HYb9v0NYewMEuqNt8abMiOCKZFOSWFpMBIDC0kQO2kop2T2jMah7J3RmVoKh+QQT8qUdWglJaKMml6pNmnpXbkpeqeuQymY/K766tucvr3a99b243l8H/s+5mGI8a6Dzkx3MlsKyqV0EQa4rFvBVItFnjrTirqpM9ywsjeyagcX+1fL0yiQRKJLqmIjwAAOeqGeyw0CYuVMpIdjShDC0xFBZ9C2F4aTOoF5rCSFs9WmSh0zMght8R0nChFIyAr3o1wFp6gIypTWJflnQ41ekV0NXGsEUQqlsIb2dIu0MJ9zxjwpQ+IqOaliKLeYkWVxqHTyPM++ZsNz+R4qkDM9KB0RSKfwoAgzaFUBZoalcapSCuuP5uPd7nQp3tY0JJMqgRRX5U5ef3OpZ1cixrq2VKr+k/HK0gSdxwPP8ErIylWWDfy0uKrq0kZkhv+ttzEr/v2MHblvm4h0rcoPEJGyMMPdk1bPQRKVs+RKLyUiZOnhVjfZwjosl+zsJHTflSURnmun8TOtA5X1VU4rOlFX4pShIAi1hS8IkgiqKcmPmIaWwEtVH4+Pz8fHH5+/+m3rvQtLRcwDJKT3xyMy9VTkvF778zVe0yIZosR9MbUnXGBu1yXF0hquM0YuAwedDONqvooI8xhjANxaIz4lbUCUtPLU0PS2ra7SM+ljKfetvjkFfiwIF3bnN/8Enba7d4lVBa/8Dyp3wTLOa053obSaTcu5FdWHRaeTsfb7+otXl/YV1VEU1HpV4dO9jDU1H3x/CsrQkJWrw0yieNOMD7OiyVmlIgmL4nH48/ms97Lve0V54QxNrbSIejGxSpNCRD4+Pgp4UflD57wcEtdZ7i0R41a/X9/t8cc/Pj4+mHnaURDz9XpVTP/tdrs4vArEx+mmvEJSVPvPiYJ5jL0QITN7xJyz+WDmgAuE9Se2fsyjWMVFhOv6DqdWDySsqe5kZ4M4AKvPnSEinZWrg5rZbGaSWSmg4jSdr9shs1zGF3ud1/gFHklnLcpMixeBeRm3EZk+I0bOPWDUskkjqfg+aZRcdqtMOiC8FidKTsuYGVW75DGPuR/jmGHMe+s36UpMJMGsLV29pbixgTklg+EcHjQQh81q+nrtR1hqStk5RWW7tcfjoZuaeyCZ2SvCZrHRBb7C0zw04cFrskTsYkRS/Zlll6EkK5gUiWHESsf4er5+P1+fvd+oqTvCRlUaEwtLJ+6JI6GJ1HLEoFKTkMy89XtvtwgW6tPSjt3GK+IgysemjX/1dt+kC5qCWNtjO46b/br/9UU2jj+/fs+vL3vt2TeQfjB9CD2EPpmEg5GKZElfPbnEG6uQNuJpPD0miKSn8CQekWhO996F7/f7fO1xeGUEIIoNJUZvFE7out23EfYBYJh49c76BEV9aMx3wbb1EKHWWSVFKMLcnuzawjlIEi1FhEW3e79v/Wb5OitGNCM8VuUaaCa5kIEd7JzJnEIhSsLURHsqJkckGUWkSCWrIzM8KlQlOaO1PhnMqsIi0iQ3lfkx9tfYx/F63e/7/bV/P2/791/fLz1y1oSojpt0PjOro/d57HFKm7dty3SWEofSJV84xu12u7mtE5JlqvTeTUSSOGNkJhmZD/OhbTuRAQgeFjNBkRlOSEIqtapcjCADUdZwhK9Tda6CXinWhzIYyWcNdrX7OpIRKavFMjOUEapAcLQlDI+zjI8CKK23nEk/dW6WdXNENf1kUgozJ4MlU52dSIwtzX/2qoo3IQkyQgahdNNYEfxZp77wpfk1c0RSengggzMCk7J2QOdKqQgr1ZdR3FRLIkzp6bkSFkiWc/LMsoyTgQhKXrvpYt1l1e9c8EgK0VQi2FnZVI1GZxAXXdFqGcvx8MMn8VuAUyDpJ/+yJsIr3bG11mW1qWytN9Hqay7vxBLmR1CtV+cE9+LMVvYXBwcL5/t45W+kS15a+5UXugZGZ0wGAKRncp0gC4TVGARvrBgRcWRGuns6KBLgyuvgM3ilrG2/fn388ccf//znP7dta1vnlYW4Nt0uWm16ZvY89mPMfezP3bT1rFzxs9u0clZtIWkmJq6Dvw0CCEpnM9452kB9bvXcHcMyM5LqwtjbBHNtdsJgihOpX8D91JAZeMVrnXCqbqx2OftK1v1zfU4KR/UaHi267mdsB79cge+qhusv0JmGevrpZMxZ70hVN2qXTj9Pgy3gzNxYLGsaOAq+kwjWKu1EV+u3CLe3ikOKM25jYceyz7qPMccYMa1kWKrqHkxS82e3mMPGMQEgickzwMweVrVphSBLjH8cx/P5vE6J14C1tfb5+Hg8HhHx/f399fUVEX98/qofN+aeTLfbrb6kVFaeOd2PQqIqnFpTBR9HRLRw0uZIZraMIOhrGSh169UVUPETbVuRsOU6vIxHNVplFW0LOJ4vVVWVWlvdkWOcwbZx0doVNVWBTvFjpF05iicJd1JcEStXkkEgpCeobKnMXAxIJnz6OSxn4oT7HOFGcObsqsElsqRqvgYMbnH4cYxp5tW4ZZ5R6bhhkWY+hq/JGyRCkgTUuNw8HKHTRq5EfUdWjf0ceRzHPscY82VVnulBKpAKAgpOKIlqMrHNJU8gEqI4q8TXU0ZmaRZz+m6hwpQlGpVgQYkNHOjcWat1nMz4NV6/n78f94+Px6+t3c/dOS/6WUSZhaklQwWa8CiPFUO4iwozj8PD1Qa52Xy90r86/+r80R8fvd2Em7sdewon4dbar89f//d+20H/eRgfMyylSyf5UP3U9qn8Qcwl+iUwIcYxPcNLASIC15jpI6YbNc5Np2Sqtt76RhSJfQrIcggtX3SYk9C99yx1kUAJTbR3fc7juT8ZwpCNe9cbQocTEo9bUyFVZkmEzThyRowcr91fgtEpuJMo3ze6ddoyMmKyZXik+UyTMCHONMokicg5Y9ZonIScmISbiIPFS5+SQrlUD0XOwwDnSApi6k2YuAmrNO1db7ce7vtrvI79+Xzejtt+3H/3byJhfsJ4uak9LauPb229nlzxQrSaZ0hV9djdDcCY+5xTlcd83G63cwHNzJzaE2slipx1VpbZIrzZ5PJFsi6SzcuzNcktp22fvfSeTEQ+y4YClOIcAAjIkChDUMScu7t7FEnuawZX5l8GIdwNYcxowgzhbLUbWfJ5E4twY2YmIeJ1cwvDKd0oJMiykpuqK5vBSZngJFFKsOcZZx5JnmX685SAVxiBRSCCiPw09FfIpbulZ2U6Iatmca1gRQN4LsnwWz3aT/VhbZmFPVprlyf/2v/qQ1lfsMY7K3yhfH01R8Mp/4pMwtlaXPkDZwBYoZIK7cmKzl9uw/Nf/DOMy9Mhj4y6bW6tX5VwujQ3APHKpCBekYxU6fqEOkeBfqCkY0YNMhqzATeqAzy1C58BICx76RntsZJ7Ir2IJVD16iz9EGu7CKKkcgzHmTVW0CRL/8e58KWqam+3+/1xu99ut0Jdf/zxx+1x//z87L27z9c4KvjAyHWMGjjynJlGEJLI6obHm+WrImdx0Xw4Z/RKlMBcorMVCVJsbUZYqVfq4DTD0wVYBXl1tqj4cveY08Y43inSerPMEnA5ke413atXcamdrh6h67WVt0Nk3YpF213bA50hf+c9b2YWf7+BSx8FoEyCqutHLHE3cym78aPmdLiRCLqcpF0A4d0zs4BXnc2kaRNl1gJep5ax3kucn/KyT06P6lJ8fX2XdJXPnscxRoHOWicviL8c2XweOSIioiDX9/f3n3/+SWfDY5zm0Ij49fG5bZu7V0H1cRz7OJ7Pp4h8f3+PMbZb+9fHx+PxqP+9LtTlNa6Pr5LMMrO1cYkHiKhLSfd41URmHvsEhbY/kHya8H7ozL72u/JjnhZj9yu0tlaYS9J3HCPPxDXzZCvDBBet/65mO8fVOFcuSg6uMEDiTNAyz3rV01EFSbWoQzUnIxIM7RsQohR22GzpB340kTHmOMZx2Bhmc7qZj/Axpme6x5zTY844IiwpWDObOGFyVp5NgJwYqnk4AYBwSFpO8zHmeI1jzDFsWpR/pFIaiBGNnLPin1vSYcJcxTsAICCUajTh6Yw5fR62P+eTZ95IMw2crBxEmTl9UDJ3VunJcHjEIB/Djn0eY+7TD4IEVTG2sxDLuQBnZpAis8pqqjuHpeLMtWuawwM58piD5tddvm/tc+h+u91IBJHDTIjmpPC2bX88Hv/x8evPP/6xf32/JqV0gnbSO+kHtXulAAECEJOHhzmNSBbS1pRvKeAGhLljTASYt01vTVk43JLg0UjVkdV0QW3TRqqiYBFQV8Fta4/t9j321hoYvfVb//hof2SmbB9Ker+TEFhAaY4Z1DYWk23Q9yb9c7s9CHTXdm/SRFgYYSkTyJg2c8yBGeqjP1rASAJkgBNgHEem8meQEDOgnZgAJTBTQ5JHpGdGUBA5EBxIm6AuXPV+pZenjGj91o9Nt77N2xiP7faQ1vv2PZ6/5Th4L/MUfJWX48qJKVBlNpkZ1zw/zMa0eYRDGEhnxhpvJ/V0l1W64pgrFUmcpkd2IspYpnSAmKdP8Tl8DhtH4l6TbBEJxBXauCpKKmtACHbGHcWxtpiV/G6RFmHVlcSZCS8JlDZ2VtLbGpp46VuXHKE481LMRKSAiBnBVVxKmVlDSaBmYeEVQqVSVd5mPteiz9UtA4qkkTbNzaw2TXc/jn2M4e7mI3LVnhA8KZFRtrXkBK3KG66hTJW7/l0VbhlIFiFBcOY8dSdEFGfTSxSpV0xWJAADmiAqVwcn9DknblHa5IgkygjCKa7PZC6VGDHxFRtBtJbbcjRev3Bta0RK3FprXaTulXQyRAmy1sy861mzDabKlspIZoprKBa1a1e5b2NmzrdEohOWSkG4tfrTO8hIRJS2HwsQANBTRLUmqrVROMpYV1DBp523oSivZiFVZRVw1hl72NFciVKVuW2OBKCqz3GEj3HYfswxnVh1azfuBgIJwJ6IjDwld/EGqddunZGZXgmU6WcKxqXmDgCWK33uGgsmrST+C2Cdav15nl/ehUFry7wAUw22mDnib9M9WgENs1oLcyWtvI0RCQBdGnD3qJH9+bRe1ZMrKa0AVn23NeEiIqJrwiginHB3O8YYwy3MjHnSuhmJmSsgfu33uQZtwo1Fm9R4DhU+/GO1Cbve8jhmdWhendP1V2rSt+97jWLftXG0eGbZbr2wy3H+er1ex3G8Eedx3YQVe3GpEq/DUnFsJera+r31TtI8Cbxfl6L21/ra1hpRFgGJqzaUiIhK+9XaVmjJA6Xxe70OnO7U+vnXKS7OwItta3Em0CZgHqAgRts6qyzXbcLdYVYQdpTQkTIzpdaGosX8bxkZKzQ4GZB6yVUK7j7dk6pBIkmEUpiFhcQ9gQCx8CZChM3max48h5iNtDHN3H3YsPDqx0xqmTOm2fA57Nj3fX9ZHo4ZZEQJgQu9fM6RnYRJPP2YPg2RwpXilg3GHmZ72B72qrTiNYtdk4TIxvGy/WV7Q2emmrcwiDMoK2CQ4eGJ5LS0MZ4vdd4t+MOyN+LIyZR1U9qMTBftseJoiZaDP2eMr9cXEQlv6TniZRiWw3IOH4eNfe5mplgXoQInGWBOluTGelAlLXsOO8bXcfuaj1/f7ffHx136TXNzq8ow9VCWx/bxz3/+r/+X12zh0Y75lE2De9AW1KO8PJCaEGuTGTPdIhv3+/3+T9YNqce3veL4HUeKk6hwS8oRRsraGxHTyNjHPmcj2pqYlj+DmiQ3bSzlI7jfPmY4K320X/f+D7A8hFq7RfzJzARDOOUk3dBvTEP5436z3WYqZBMopUQS1H0kkZpPNrNjvGJac/TtJhzkEYyAzwRxNnCzltwlN4FwagMLs0a0CORRhTMgJDnIEznWyCDo1CozcwDb1oJwY2jozTftG0i0bfPXY3+Nfd/LgmZmbpmn6KS19nl/EP+sj5Vw6AhmaJ1fkAwvBFj5oFHcI9ccu6RLCRJEpmVkRiBFahHLZIJEkKVRzLCjliRuWg1uhcPybQwEkTwTeoJXy+lJnltMizQShocjGCFajk04A9SLj4ElauzCBCIu11plpJXnEZEcxQc5yiuTWFFh1Whc511hYgt2Gk6JUoUTWbhlmsd0mzaLpTCzfd/H3EtylJlUFukaNzOoToIrYD6RGQwVFtEKLw0CgVEq+sgzKpTc86QnK76+yO5lxqPVGBNExIBndYmDkL4KbFemxJro0ZIC1e8tgJVnS1IS1fcmeu+c+Yk5LWtbpiMFS+vDFVvNEZGGoCQmatJUuByP4NIYFdUHCrncoGtsGmWTLP6DE+Dl1bVzxpFI56ysjyv6yxPLQnUSTBFBQEWYnXUIb0xhnhY2M7somQK0XRspJeeMGUd87/kar33uf/zxx+P1OGx+fHzUOcHCieivr+/fv38/n8/S/Yj2JppMMS1Res3IpLhmuBnuPocXOn+XVb33TrlH/TOGLXhdgIB15XqU/z+TaAXIlfXuDPNdV6NQVznza0hCZzJWzbxqX1wc0hmaOudPk/r77IOZ3eONzZoR4TELquab7C9zaRVOu3S7aJKycRXjcpUSXsDRPccYRHlpqoSYmC7gVS8VZ59oPQtXKbifEbTmVqiuVIBzL4ZyFTteNdg4o+qrfrtez5U60Xu/3TcRKflXfcr19+/3+1uUa9ZX1W9ev1PQtiB+XfCrGnJFi7nfHvfSDrp7DL+0cSTgIQBEtYhjjyD34wCRJAtBmDQ5MoWIvr9fzHy/l52l1QxhYrZmVzxs1avXNay0fT4LuWuPCV/XJ88iB4CRRkQxR6o2ZWLKrAnS4hWvO41RyYNOmVvbZvhxZISFeQpl1MHDmDkRmWFlCyOQNCkrDDwIXpUDkWOaI1ySpalBxkAKgjma7695xNjH8FeypTopVHgmwl2OMOmS4Z7H4TGTQjiloWsqG7snD5cjYiSihhwUsra4ZP+yF+98229y086yj9eY+7QDCAmQMwUBLWMmGYBpe86JOWgM8H3jTpXzmBTBFpkBcyTU0dcImBnM5v7cvyNi042IPKb5y2OY79NeYz6PsZuZlgOCSUWViRnKYIAZwj4bs/TtNY7Xc3z/+V/fW/9vKEuq4PPxKSLhYOqtf45Jv/74X0i53e79cf/45+fr+Hb4r86tK2hjYRJKMLO2JrnvTAeTqd5u2x8fj39utz9UO/7R/uvrT7Fn5+PFMwmOOaeLZ2PuXQi+j8PjGCbDj9fI0m2GJcBMunGHCpndbtpv20f/6Pxx+/hk7uSc3EtgFD6qj7ketmMOi7A4tftpFodnfKf/FX/uz69a0Yny1ul+p0dL7YGWk/LluTtGjpj2y/8vSGitR8d2kDjfVZsPKYCe6eTJ4Vxzh5HMTC5Sj5ATpzCFR+9dmlrMw44A/wG+3R5f+3GfVaNevGyMo0yCgaStr/U3beUvKxkzMrUJzXkQ5dZLa+9zzgwX1q7UlYSTyCcC6SWDJkLkLPGlzVDtpJrgso4NwzxIVwTldvrUFOfhMjO5iAladEJrTVZJUvXiGGUyBVFyOBCg2leDk6ojciYT4vLBLT0NERMiDcnMNawPQjQBhKwMZ/AkzswRy8dUYy/tTcw9djJQOlSXYJJgyBE+3Czc3WLamLuNGRFcMchMlWpTPRyZkURKSOYIQxTOqzwzZWICZRDeZPJgqUjUYdMzQBKZPpZ8TZWdV0RGjRpViJmFyJFRrqvTO1aRiCVRPRVVK/6+MHddNFK5SJSqW/wZggbMl+3LzJio917HGJ82EiLCHSpKK6txZX4QJQsxiYgi2ZHwjExziCypEnH2bSmsE0QVJiyXBbPUJz8BB1WtY2EeZ1n1uQtGXjkaP80NI6/M/tUcEBFVJHkxCsxsRa7CA25LQz2njfKpHXN8PD9qdFLfaxxGEIKETwscNokzWQg6I83cLtsgUSbmKLQ338MICsmVYgkE81GhehGIJLcAUJKzkr1n5nCbp9rpYjVwxkmsyZ1Vs14SrSfi0lZf/w2srNQr0zgi9n3PJbVcJFndHu5eXZCXeAhARIKTzvyFzBzDrq7ouv5FGlUwVUQwUdPlEyxaqIio3vvrVR2RMLPe2n27DeI5D34LpKgE0UvMHhFBOefKuz+vg1byrblX6dCcMwLMqyPS3SvZ4QQlayp3ocwyG3XViDhee5inx9gPWqc4jnQmpsQ4DhG5bzdKlM2ibsiSrxERC1v4O31VL6mg/2XSvODpddGuz/RyADhynyNJtk0yMedpw7QoLMesKs3MCCykl4OqIo4L7wJ4Pp+XOo1O9/FivlvrrV3zY3fPMIBtznCuagDz1WLk8Fp8AFAqUYokkRzHK8ppm+IxKYK4uU/LwwsIxlKiiYgQglxVNnmAVyM1uVEGOOYer3289vH92scRMRBHjpf5MJ/T3YKG+0BgBn2PyU36pnHMOq+Ow+KIrncllhB2EhJYsKGR3vVxzP0Iy0ybfvhMztYEoFccv19frYkS2zHcZ8wxjsNnYBInCbQJu7aEAeGwr2N3HASH3HGAjL9fI5O1fTDrdn+ANlDbto1UdHu0/iBtgXgd38fxEhA3mfO1H1/P5/fr9RxjN9/ndA1HHbPreWRSYWGISMOmnG7uQuCcc7y+//xPClVEZ3KzW9uYOlhEt48PESgFt7bdH49//se/vl5/mU/MLxFunXqT7Sa9ayVgH8JEIBaSu7bH7f6PP/74j9v9l/ht+/zXdvz5X+Ov+frP19w9zN35tD8lgYRJ2NJex1MolYVBHMlBQTnN5pisTdA6bY0fXR69P4Q7wNpVCYSIHJLJXLTFWugtfMYctj/n6/X6Pub+embuPl77/v20sL71jw/6uOXHHcqRyq+MIygRI2kG4dtyDucx45lBEdkTEczUG0OEQRSkwTFyTgJHpZcH0ks2VKKt1WiXKxGkdblFFxG+Peo5L4AwjzGGxbSIpERrrWsjRto6fG86ax0fh87ZiKvtjgBMO+YUIHqX3qjMMREEECKFIByZFFyNzmA4JSgk0q6ZUIwsVVa6Oq9UVYL4GVDOV2pUtMjoWxJnxU0lVSUlZRb9AoCEIQRmVDRDQCKqh7smS3lt20sCtVoja+TnyEg4yFaOKFcmfSLrtBeUGUlJgjqai2SmZ3qGhU+3Maf5rEIeGzNsZCaIQYEF+LJGjUTgzKAK2KKURb7WqTEoBZTXAI2kZu2LcII4IWCRUZESFc15Zi0hCZSIpNrpp1dBuAsoMqUW2YwsDrn2gLc+6WuiVIENIBQMnVyBJmf40+JKF4Qp1Vh9FhRJpXlAlbfJqakglByVajzGmQDFKhrJcc1EcI6yTv7pxxtxyqJQkVSoodM59Fxw7fq15q9BQTVGvvY2Xk7PlYhbmRRrbEfEqq0LKSWTZUR6IqvD6ZgHGPzkzOz3W2tNpTOz9u6Z0pq4+1H1L+nuAVjCPE+DPaKiPYlIWKCBxIpURbn+ct0JEUmRlGBiIl1RXhW05kjLmOFzzmkz/KeAS7WLJKWfNwSHusSP3OfKRCjoGREsJPJTH/Q+O/u7zrddVNZFfeXV3oOUs2SmiKur1vr60XRWYl+KIiJCxhzDzfxs1wDQROvccdv6tm3XaHLO45xg/hQjFWKIiGJImZlIyh9aEfOqevFwRMRMInzdD9crrG8SZxDapakqkdYVJoI3Sq9yvOitr/a0Yvy6aKQLyC68j7RwOF1dAvXlFwQXOcPuI8YY1+dV37l+ug1Hcs0uIslmhdolwEgKT5su5GXdLcR8TajPiDUlIm79LH0oSUNpQ6sv6oztMHfJUr7aOAAKRK0ndWgDgLQVMUe0WLlI0OqEpXVzF8PPlrXeBogALqFzWCQnEClMnCSqt3snBFOKPv96fo3X19f3X1/71/drDKsbzA9Lcwnu3Iw8E3Mcc8ZsqIR4DSGicNiInAQboCYskcSUDOraGMJ6ex5dbd9jzAjPDPdgUoabf4+9PbWT5LSYo0ZF7MnJmr0GNUzucOIAwjIO2/fRCNChEtLbQ6QRcdN73x5E4knSVFX7dmvbo2+bCJNFeni4Ld53RprHvKSHGss6TklCoipdtQuxkkoXSRsxrEn2Bvgxvvvx19dvNBaY2+2PbXuwbMws7RbdZt9A0Zrc7tvn/jhskj0TDvjW6PGxFR8z3MA35oceO+vtfvvj4+Mf//zX//n1+U+KrR+fut/tT/pz/I7j6W6cxEkizJVxpoot0+3r9QWwsmzcOyslZyA8MyQmCOSN00BBInLbttY6a2OGUFIGU3TlJsorChyOHHY8j+fX95//Jv7+xn+axJGv3/vX74O2/Px4/OOxfdxno50pPGMEs2e4TM8dkN33OUDfYSEESb8LOTVWVUETJpVgcqqhOquXOGiGSRKlW4bVpsHIqlBuAm5Nib3njXpEuEWYzeFzjGOfxRIzyjghQMCXvmFTJ6JIO163OQ9QlDcp4XP2OWemS9PW1pQw5/RTFiMilBkuuSI0S+qZl36iEiJjsa5ONGrOWBkQFd+V52ArKlocDUgQmAuS1ESGV7TpWWXd6jVWZkwE2QQQQSm+FM7VfxcZFLXoUyVhZhAlqo/7LPdLhHtN50oYxiwqCtBq3nb34XbYPI7jGPs8htlIdxsHIhi5qmhBQcGUq5qwoGJQ0NovdYWFplerNtNZQ3kGR60do6zEFlGVRPgRYDMRqKpcc5E3iJhrkmVuRJLR+PTWUZZNkc6Y0eUNUxX8wK9LzuPIJApCJnC55GoOscrSy3qHoAAgeV7Es3o7SYJgGfwz9gOREJiILBAneFJVFkLWBl870w/FdY05MysC1c9kX7xD9lhSPWRQ0jIPXMDrbOymC3ESkVQJLgFMvGJs4ekrvJQJguEGYx4HRILglpUyOoPNrEzmRHJlUrhlrORYPl8+RfiP6JB5zjJqnb7Ot7d4vcJGnPixCl5C+FImRYTKUkotPOSTiAKc5OKoG+miu1qrBFH3MnM67tvt+tFxlhAUA5dnVtZtW/GqEaFXBUXNmxYHKRcXNadfKvUCDZeIuwDHJevOzDGOOa1QS/UFXuzL/X673W4VWlQr0KUoKnbwMhUWQ9bael7cqQi8q95x8UksyfLY+pXXVQtKXbs5Zz16vJwgGe42p7s9Ho+V7XOGgBQgK3lGgTARud1ut9vt8/OTzmakIobz1Mnl2XtrZmDW3gFEeE39Wmu3W6fTBDrGKLfKT4tuaQRtAVAi8YiSAJ43P0fAhlMF5bR2Ktb4wr4X0KzksHPC6+6L8tRVjFYyi8yU+FsSLH5+MZ0hzevXhcivzxoEJk1QRESOCELO87lbS1wpmQuTV7tB71RFRqr639//OT1+f7/+/edfv3+/xjHd7DiOsCNiBB/UAxKePnzMmBYt2GjSmESQJIILOyfVNIUqeqwgae9yS1JVOiQGPY/pHhPBNIOJgefzKYGt8KitRH4wU4hSE27gDDGThITTno5p8ZyvzOx+67T1+x+Px+f9/tH6vel9WAyzmiBv/d63j9t2Y/LIOe0IdzvMY8IBAwzwgIG8or2YhZtqE2msXUSEtIaClVzQuyrx2tfcjv35G/+Z08Zj3m9H6w9mvfVb7TQMYsreO9EfW0zKG2DEqUqfj9v9viXLnLP3z3579X0k0Xb/6Nt9u91vj7tPvUl0OrZX79oaMSBLPtWUA+loG4PbeH6/jt3j1cA38c63jUGESLKEmQeCjzjUmw7dxrY1UmGGCClXZQyatiZcMakVyLlPZmT63Pf9eI2Wm2bPwfPITtpw32jrSXF8JVsSMiRN0igSGSkBSi6pNiqhGu5pKUEULEEskFLViXm01YnrmYeD0meJW5kVKKrCCyNKPScUECRTaGtKJtGkaniCzzg7Cr4e0VtbPqAmOmcDIEoMcrfWWgEvVZamq3VGfwIbrxFVnaSKVDh3k5UDpGfENCiJQAtrFdqACF1SeFVpTYiT89qvkRQA19Gq0s2JfjbpJVUBudQfVQpJ6X68YAQvMRnAucRfvMo96E0GdPmlL4X+MoF5hLvZGGPMvQIRn2M/wkZ6pE9KkNT+HgQIKnSMAkmJJCS8pO4iXVgQmfAIo0Qo6QIEp451pSXJ+xE5fvZp4mSmn4P4qoE+NUyRIeDMtAxa+GkdGmrzvzbsJteY7+dkT0SyJGnFgiDPVKqK+szTOxkoCxGFIwjBEAaRFFuViaiAihXOXpEXNSX+G3ISXvaOkymRt5UeNYArAydxLDoEFZDLqwcxogR2AIjU44g3n3YuTWHd9kUB5nSzCrngzOzrQ08ipqbtft967wD/cBiOEWOMkUnT+bLj5bJwMJFMO+oHFePKGRG2sl1/jhY/6mR6c4qdiKcUTmfyFuOifDLzEhuVHfjiSwxBVBxx1rVau+Sb4tvT/IjTMMsXHbK+4dv9U1u1zXg8HvW1FW+xQADyQhWL0zmfdzr7HCuIoYBXUUQXIVTw5Th21av5cQmS6kvekVPp1q/B8XWHgAmJCou5csKyCNjMeXaQM/O2bdz6Hx8PP5sD3kPqL1KQ3sJUW2tyNr7X/14M1pVTWu/rkpddzNmFda6fXu6Pq92yoM/r9bwyWi9zw9916/m393u+fXO/WlarzLvAaJlteUXA6LsP+kKB9Y6usebVwK2qLNdA/u9Zta0jHNVxHZ44L9pp1/g5sPFS9K/frBihkjmG63q6wRwrQzBjRl1JjyQRUmKR1m8Jpvvt8dxerd9Ud5EBTJsx92Pa7n4EH+KJbkGOJE7G9OR0JxjABm4KIRKVrtxFBLli50rCl+BkGoiXH+fhITIJQhw5YAOTxTNJEpQQUQQlCYGYhZXRVDZGiykZ8+WWx5gwJXJV6GN73H/985//+377xdKf+3juh7mzQNuttZtqZ0o3BDxqGpScIWVGbm273bg1VxEpS9o6tyEAyfQ5zWeMccw5IpY0BEHj2Oc4xmvfn6/v2/N+/3W7fzbder+h5CpxVCVqIoVUBH37aE1Es3ft2waAeCZpsKbsniTak2AZlhEcIQCCmR69jd4HgqCNRYXSI6VX9doYNuP19ddvdmqhDSoVDsuUYJK+3SLQWK21qfuz9Ug+HvetEs0IwbDFwZD1diNic5IpzKq0NeqN9Sb3W3s8tj8++yGaHTd28ZEcyCLXDOGMoCoiBgV5nCIMVhJiKqSVXIuOFWphQQNH2TVj1twkfCJmJgV5krBUoZ7H9Cy5yrmsaAJpSbOJM1xAvBz17oVMqAIDyjYBVlLaqnKHKMcYKG1vuoho4xo16qrWyR9JzeXe/x8LR551H7VL1BEKP0t/+XUrw5qZe5PWfvK9FrY4S9mJLJOr2IaWFhwgyIoFaAAocbXrXNAqkuU8phOluFS25oKgy+JXPM4VHi3XAp3TfBzjtY99P/bXOF7zGD4Pn0ZZk83kJMpAUHKWIC3DZGXzZ+nLOZNRNUoVdJXETkmZVJZHrnzRggi42lpREq4ad17re/1+yVNX0MP5Rwtene3ajp8yVzl7fn6qVLwcdgssEhbZVhPXGpUVXxXpUuFgtIyPtIJtljiJvEwNXANJ+clqT8CJBBRARdXXp/+TsFU/Yt1FF3TOFTJU7EzZq+qnV8bm1QF0SdRxau2vLksRURFZqSIRZsNtuhmSlcAtYpHZtT89HvfH41HiGyWGSG1gJ8KgUXtkUGZl81PwCQhPPo4YFNcMPS9w/7f3WwnjiYx1M1YnElRqC0zEhboqV2Xdn7mSx1UXQUUkJ9DMzERy/DCDfL2wi6O6nsrrSSwwsSQK7ofOzPz8/Ny2bdtuhUvcffq8eDKqzoorNl2kspc/Pj6u3NGCem/iy7+tEiU53/f9ihK9HsB3aH6FlD4ej+KiCh0wpWS7RnWraSNs2rIN1cDufr/H2au9AkHKT32Gk8WZSl/f6tevChBZFBSdarzrBqO3Me7/GNe+v/7rOFfop4hAIjoOvhaoi9Es21N9FvVS6/tfgIyo7pDqd9Leu2eoMiUKRV1XuB8tT0b5itLNTM0uZ3vS+6+i8WqpXe+lViyiM/HR4zzygpNI3pny846P6xx7XqJVycrnCfxCfszMWPehzbPoqTGSmfTX45cPdxPlrbf7d3/+xX8hzJ/DygaSTohUVmkizf1IBDI8gSAScBOV3tutQ5kIszhm5moiF944Nm9yCACszirAKaMyIZY6JBIREIgnMtMoibOKGqUxtxQwQNMHDwqDM0G68Hbvv37d/3H/+AMs4GEO5CBmoS6kwr0RuVIKwmpLnuGUIUy9t6SHAdCr3FiJtWQlNgFMmzZ934/xOnwGHIBSIiZnkuDrS756/+u2fd4ev+73j1u7ba13ZYtZVQkAg6k/btvttm1KnCJErOW4rnryJJkxj+NlvzlamxmtPyzm9ANkt66P2yYcAtpazyQbk1MpQRJjWOvHX7//O46w/cWDwsLCLSKEtN0/P/7xv/8jw5mIuEXbjHTb1J06M3MJMNZESk+RzHrKiIRZkdp7/7x//j/+9X+2rYXE/QbOwS5Ne8Rw8zTHZJopyZLhvHtINIUEiFiFRUklhYMzKFeIaJKSgyOY0lPBnoaKNagnPalKeRju1UE+IyOJTyc5gtMFBnKmVFURB3ico+0McaLhnYgyKWovF2FuBJTSjiAojFilMMzKFhG07MRpZNeGdxLOSz9zrT4nM8pEBK6imGvhg+qJxZRYiU5JNBGdxrSKbaxpYxKhzlhnXmhNDAzEJKCKFUhKBFFkWjkMyxcGzpa5ktNWSNhpI82SLoXDcZIhEeFzzGMcr/14PY/jiDHTZwXTU4IZSivISojKlYHMop0YXjqyQNR4cwEsQgoISRkrlryCtwCEZ65KsiKVK5A917ytdEBF4dRyxgDSg0nBfyuSK66r5n1XNsD/2DPKUF5DVpyhU2sOdW7618dBxFofFJPy+iYEEQhSEMDykb7VNa7NCJkmxKBVJ1IvPgK5JEossmyMtf5n0sqMrsbTUomdQr/zReL/dyO5JqqEH/S86K6TnyiCRKRzU9XqXNtEpDe53e7btjWuHhi3MS2NyaUGfMyhVNlTyymcZkWl5YpRLqQrOAF1cnnsL4xy4dHrxaxjBoQgxOzpgSwFus1pNjJThDLl59GoYy6tWVldTKJgWnm8ZQMses/dLgh7HMfCo2eyVxVCF/BauARyGT/LlOdZ8oXFjZWk/Z1JkvNXwaw8C4Ku/70QQN2eEW7m+76HO0SYiEkvrGBmxS7VCxCRx+Px+fl5v98tfkaQFX+ba7DYav0hIm1CaO9KqQsoFHdYQGfd52f/2OVCoDdxWy4K/Bq9rYqFKx0jT7/nm1W2uMwf9HO9hvdvW4TfKcPKbduu+NnjOOrvlycUWdGPYCJAWmvam6RXlL/HjAjxVrd64TA+y6PiTMq9+116e3daqHRhsXmcCgJcT1RUjWZYplfOXISvNnfKYNa8hgPrbqtn2ZNOHyVlpTKfQSfEVVWLZPAp4qxxjlGeedT8sT38A4TtsT3u98fvj9/3x/Z17//5X/F8+ddrWlrOcrwBnGBGIqsBt7YvVpUuJAShyGkR05PTerg7JIMzJJOi0gDDl9y3omRDMwXJQhnh0FDAQUjJlAyFNGJtjYWhScTR3CMmsilza3zrcut669KTpUsIaeZM8wwQmvLWhd14wjki/fCJOcwtGbK1rckGQDWJiZtoccGcS4aJ8LDpMT1sDJu7uyeDkerTSleawaTtdv/1uH/8+vx8bLetN/YMC5G29btIBwtIiBvBQQJSUAQCbAEfHl/P5+vY89///e/v3x+ff3x8fHKT3V/H8U2EW9fOj9771m5z+iFj6uQE5krmmzP35777nHPu05776/ARIM/fv77Gsefr6/Wvr8/n627x+Ydvvm+323a/9SbEjCZK0ZW3nYipjeljDJvLexsBYTwet//b//e/8h8Ww/yJ+FN4J6gnj/Q0wIydxbkDpDVdjAqUSiYIQyp1t7Q4qPG9F86jar4JITUQGYIi4TUPREZmkBtHSCaDPAYv7VCu7iR3zmRqwp2Igt3YhNf6HFBaRSsA8WqMAljApJGW6SQgLqMDVaDIYlN8XuvReeb7YWWuwxAzibaTWj+3xeRrA7j4GBGiaHhrKFv1R2BiLwRGWcwM1XCBE4nKompRNdAlMmNOC2JkGIiWE5eIOZnRkuLsHqa3Q3Zx+pRMlG7Txowx/Rjz9Rqv3X2EOSIZcerTpPECXgsLVO8ikKuqxpPApxJIiudTgRNTAUVwghMERzmdERTlTfZVko2f0QNdwvNkQiCqhvxvEQDXTKFeyv+/f/Jtn8hz+FXY4BJ3rXNrJV2JnPUJXMBLiKNERas/hOUH7sj5GXHFXkSVf8jKd6neiHNCkcwKZDjASZWes0ivCn2NupGQWc1Qp/brjeg693UpndY5sC6uq6KJabWPawr6bWu37b7dy/Mvp7qIk9wjE2OM45jhpc+JCsODXgHW6RkeXKqBSHFPC7cMZiSVfoVqpz+Oec595PzyH9n4dUTBmY81xhijYpC9KuavRM0C39dnXXhdROpqnLaB4ooEwBjDfdZxKCL2saKkavhybfC1SWdmZYRe4fJlDzxGeRuXo9bPIqD1ClfIRXiG+4ywmgLL2SBUWKre5gX4rh9XCKmpCvGM+T5hvCBOvZ6ImHOYhZllQKQpy7l6qJmxL5KsHhM74V6c5eJ4yxZ5f2rKEVlArQTO1wvG2yCezy6jskBWh0HJv8pecI3qro/1+o+LTb/wXEW8Fh9WbxCAW9Y9sy5RuRNy9TpcvhNVFWJQmFVxpEdaJNuYypLaVpfaOa3WCmSvODTS64+uBWB5v+v4ECuqNPOsvj5dXDUnMI6S35xjiXWCSq5uKAFQIZEOrGzmhZWqIIyYa92QzKi8lGLTG98+OgTSWufWbrfbx8fj+4+P7UN+f91uf+lz/xr+OnzYnJ6R92JG4AASrHXkYCZFss1phxWQBRiOYzPPeB3P1zhWiadjGbAAOLheSy0VRIAxKTXw1qSr9iZdWCUTEuhxBxQx3CNFCK1JE9KsWEnGnF73BoDeJzyJhKlZegyM3V+vYz9eYx7EwSy321bZlsrMjaWL9pMxjqCMcCEgBFlDDTOz4cxic9qYc865H68x3dD67fH4JKJb3+6td5at3//1j3/98z/+14Mpc6txCQuqnjaJiU37jcMz87m//uvPf4/pt99f989/Px6Px+cHaTomEMoit/bx8dF02/eJFOHGgIvdHQgCcGyvF49DJ9NzZthEZKThZYZ///n6fv3+q38/H57/HPbxud0f921+3LcmKnRrPX029jmdqZnna0y3MHO3GOZA9Kbbxz/QyOz4fv73nINp3/cqMUU4yJM9JKGI3lSE6JyzVOkMVtIUEXMj8DocBMIYTUBKCCYQoXIVqjqYOJCUjoxiKokY5oyEI9LCZp7uZZvOVEGyphzJJGtWSERVQwMC5QrSJFWOcARlMnEWaLmqEq9BBsCZhrdf1wq1SBeug6+o9vWb5wGLmdtZMwJAVUSVTJJ+vk+SRARXOlUpvXiFVxVU4PQy61kdpq4JV1KFQi2egCq6ioQ0KRIB1tKsE0SQRTPUHl0pSysT1dynua1/Mr06zFOcwe3kjwS0moIvighcCael9BJQWRqZeQFLoLDzpRnPTKRV5WVEhb8mgTlL5oUfnu/KEn1TwLxf+Wu5X6iu8uNPGcl1un1nUOiUviKysnPzXCsBiLQS5HVVeQNeHnLKP37ClqpL5ELeWJUjKUnUO5+91+vB5x9yNM8y6/JV/I/xdQQu68Z77WNiZVOdXGBNSS7UlYi83CRch5zGet+2bbv3j/t969pqfCmga/uc021MD4igvJlMSjd2P9NOa5wOWfVNCPfVUM/KnFqZtVeMEzMXv5vxY/p7J4yJKHwxKFfyU8nizllSsZ5Xe45cmp7Fo5xPVp1k4iSoaqwfEWOsQdvtdpPV4kcXLimG6fF41J9GxHPfa/h1zg1/rHknNeV0mhzrlWM9m3RCwx+lGv00ZDMRlJnkBF6tES19whXs/rMOnEzVsFnAq85Sckro1uSaz/vfT4XTT1RKvqOo4vkK9Hx8fGzbdrvdeu9lMKx0+/evui74hVlLC19/rSBUfV714t8/2fP2JTtNqXW5xthLp1+s3hoFxk/TrrsjPfEzPQQikyNMtbPgmrZf7+siVpUYqtc1XO8dco1N66VuSu/LyHknhIWHe4ThPNsRpUAkr5X5lJGszycBj3VgDuZTVxlEnDVMqB8hIox3Yr7GlAlwkoNZRFvLGxZ2v922x0e/P+Sv3/fHR//r69/fr6/f+1fu3zGHm4dkIAIITnY4ikFvmJmOOefYj8xMh1l873uAjjn2/TnnUWZ/IigB5VzKn9MjBEmAJqnobWtbRyNRrYwSSaFUifAQj0RQnTxzNVaNBM1jzOM4XnsSbltz90puTM85bX8d31+vMQ+Lo3X0vrW2FfWrgDA3kS7Sm5z6wYgu5C3TKGKqmxq4kyrPkXLAvsf+fD6fr323OSJmPG53ny+h+Pj4+Mcf//rr//zfA/a//w+hJamjfTRqCclQEPGmcBuv8fvIv17+12t8f/+2f/9/mPnX//rjcd8e9+3Rto/79vn4uG0POKvKTaAfGjPHsGlHNshHhzX2PfyFNvnxef/HP8YYYT7GrHxXkI2MY8TvPxP+9A85brfxepz+5NZFldvWblW/4+7D5jH34ziUp4iQer9nu5OZaLZXKBIRDk8NbAQ0Ju2dyBkCvoneWr+p3OCas0sIO9MAwMLKnSgp050qMHdT3nKdw43iYJmZQREUDmdygk0u/aMLMvJwH4jJ6QpHmMfOGQBre3R5oG2O5pnufr+ZeR4eSZzcnSeyUUpjqf2xyoWByIC7KzaQAxE5zYeTpwgJBzjMqrJXGNoahAksiut0vh62Sm1fIzMhIrmSqZnfy3SAJIScdrQKqSJaq/ZSB+vVUpOcShFlL78CCSreGkEAEVOwpHTgx9lVWjMqi7xPnyMoVNXHmPt+xPy9/z7mUzSUMiyZOFgREumCEEqOKsImTnLbz1le/XROQiaUWEANTCzg9RDNiJv2t/fLV0VawYmoQPtMXqdGK6fgz9JZ/PXWl9f1hDuVbJjEzkEi5d1zoJJwcUZmM07a79w7K5YMHln9rLGCwTihqk0bi4iyFpPhHggRIVGRRqLEWqhs61tNjTzPYy7gyFtOcLv2kTW3JMkgECcvPA0KJgHIEJFO4UmZa+4IIUSidNaoGz9QOforFPTcReisTYwIJUa5hPqt329VxXgWHxFzZ8Ddxn5cQVOsTVSScp+vGAQgbKsNrNSixFoxT/AUeMuERSbcMqM24LxaBwC4W7nwznNX0s/YpZBuVlqZm80xahcXVg+4wz2IRJqodqJmFheFxkxbv1/fqsTpSGvSKWFm5kGUZzn32qGLO7nft+/v74jYtu3Xr1/3+9Y3JfBxHOk+j+PY98x8fH48Hg8Axe4UJ3Ry1VKpV5dpQ89dP09BepFb9QHVcK33ztQqPtRiRsT0aTYizD1bFyKec8Yw4kVqIPWUZDXZ0Dd9Rzk+/TjGCu4Km3MSVlNQZlbgSiWkR+Yov0Lm/fHQ1vq2iUi4/+d//lehzIg4g4eznEYVmooVGS+VLvZ8Pr++vvZ9v4BaCafmXCVCrfXMjDRhMGsNBI/jte97pDUp+SPOjLFhM99uCfZw5qk6y+bSWmvt0bURV+uDqGrTTUUzKE5lBZg23Qr1HjZLQOwxQZKAh9fxagy/RpwXPo4IBsXSDEj5PlEFhFJ2GQS7ZLKAQBmVThK5+swifmSGpx0+TpdGAyuJrtMDkV5CNyQ5NlAG0mKMMcKME3e96f0fd+432R79899f/1VGt4iwSCEeiPCZmRxUWd2c3IQGBk+0lD3GX8dfGd8BtZjDx7QjqgEpAGgkOI1BW9etzpiQiMxfoZGUC3PL1gHktHhOCbpxf06TbK1tLeWWIrR1ujW6CWSfY/9+vr6fNsa+741gn/+IX+ZhNl4+nnP/7a+X+x4SYGLJrYUIEVjfjRV5apDXLrjO1kZEj8ej1v2pHq0zczrSKGKfY3f3//73f/rc0+3PP//733/++b0PcCeW3v+fzXsPc2eLcU6J83t/vV6vfRzHsb9er6/nt/lgxtO/71t/3O9/PO7264/SHYn23I8AEVhVAS4z2qy5rTA37bmI4l8JIfbpdeB2n4SxtfBpr6c3qlp7q7NI7TPK0qRfDTwW7mmZGYTeBJKUZseYc2YM5UTSrTfOcrICoUS9MYdy18/Gt97unTaNOn+sE7aHjxygXAJlJJF0US8CIIUJQDgS3GZMIlDphygFFDXgquuOIIQgiZCcBJKKX4oRqZlCTMJCBKQCriRGAm5MnaFI8SRODlAkU3q1JQKSFLQE7146pAJbsQK741qLdevCypLvwIvO8HpEFuoq+opJT2naz9gF7/kBP1V3Jepcc6Vqlb40wlGasLRLOSvSgHkRQrT0FloCp/ybZijPFPCfsuExBiKEuIlAONirQjvSkAFKSsnS68zIpKYVC/QzwktEnlJ3ouK9GIJryoNTAnK9vKKQcRZNvL32xYiXnPViEfAjuj//5ltkwzXPff9B71zCxQRcFznfrkkClXx6zU3o5GdLtVrV4+/H7uvbXkPS648iAKyJ1YnEK1n3mlFew+jzq96VZ+tNV27qjwq72Fg+B6xx3jDrRXJmpoCSf6DABV5FpFJkcSYq1WiASMArWbc6AABUGwyTSuuqKiVeFK1lEOszxfVQl3a4rmq92AvmEhFBTh75FL/HCtgTVhEr7jbOUImSxp6qIymNEV0RIfyDdS7+7w3zORD1UOBUaNUX9t7/9a9/1UTm0hj1dqsPouRQOIMhcDrmVoLK24vHm6Spvn99h0tBRWeMPs6hqs28pquZPxNPOmdh9Q3PvFkOXxxbzR/rtV1zz/qVp/WHmW3+RM6OMV6v1yVQkyUI0nfGcd/3IsPq91Xl0iEUF3i/369o+AVrjuP7+7sCwC5YWR9WLnEbtm1bAdGy9tOix7RJkW1+9rS+P8WttX0fEZG5E5HKWrJU9fPzs0wydZGLh6vrcBzHG61IInI7Q5LfOb/6gDpT0cv/YzFcBOpaphAR4KL07QJn4J/K3U3kPF4VLXeVRiwmdX3z5PeZ7yW8u+7SKPH3mxckwt3GCquRlbWxbds275Yxhvs5Ps5AthRa/oMOFs8cdjD8iN3GYSNJPMNyZE03y4JdcpT4uQgVHcjMsYzRle2CmJ6ZaX5drTxDg1nXTFxEmFKEJMTdX6/X7++/AOx734/XcbwgnG5VvwEKVWUNVVSEipCTstoMpDPP63wckXHWR5wsNLZta9Ii4n5rlPl4PG79futft9uz6dfz+dyfGRI2M9LH3Pfjex+vfZaOwQBYWY7yFUmO/Hr+/v38/fX11+v12vfna/+e88gMf82t98/tbr9+adJ9u23txqQWRqKqwqRAGGs4xmH9dk+oB44YHJGJTbjrxh9cCugwy3gRjsZTKFeJxpgjjIgOIiEWUgIjwi0Pm5lOwm1rvfemUsElx3i5DUlnyYyULkKdeKi2lredbiaKRuHSVLpK49ay30i7qDKfLW1u8MZll0ZRQpVuGZTkhUsYsFy7SwhFIwJHVfJ6GsMyh5KnZCIEAUpQBIzCs2wDnAxl5RwQEgiBNFHlpjUTk6uSPSoVIVHRo1khfDVVX4EF8AqZqW2varPBIlLDgJXNI4vlKhZX6Cc+QM4tG0LlUjvl09fEqgIJftw0WX/XLjCRzOwX5SNvk6YfDRPVrk9UraCVYflTLJOZ4YsxKUrAx6yVbuvMqSE2edLIGZW8kBGGouYdSGivN8rMHEBWnOobKKnVsFWuSOZ7NUoJwq+pYWYUoPgbTsKPyCYzKZcP8r328QJYALSv2Kfrp7wfpa6/n6feqFxLTpSnLq1gTm3YlVsNALhqSX6qhWrOBZaTP3sLMl2nW/awuNxhFVUj8qP+P0t/q7b7bxB8LXBxsZgLzlaI2FlFfoZ8rmBMPc2bACiypKdmhlkf0ArVLC4f+TPmK86ShGM5A+lstxIABIoIt0xYRMJz9SUwF6qpEC8AFdhWu2DlD/x8mivi4/1km1XcVOgkYtHMtbuXkP287CpiP2j+PNhc2vAVdpClvyzgNYvT4jP4oKx8FUnV+61KCS89VgHiVaRTYfe9XZr0eoWXZP49luI6UVxoKbPyg+hSUzHz6pqcIyLGKHZwqdQzi+6i90//+nd9/9a00EZ9n4LLJbe6yHUAc6yGg6oi+Ouvv4q+Khh0XavqVfx5VRWZplp5ha21qkKqcWSec7r6EYXnjuOot3Yhhvomc86K8qLVUMQXK1aX5X6/b9v2er3oTHb92wlqFU16Zva2kFkxjq1XOu4KqSKiOeeY8zrL5amoK4cETmuYqF6Tvv9fQHY9dMwMwpWpZrCMKO/126nvDEaB/w/xw6l2uJRktfSFR5j9LZv3ZxhCHOwixr7UxpkLbKTPOUdMO9+dIJmThbUCjNPCItzWatNEN20drElH1/zm76/dXk8njTDnqPKTJlSKgfAsuoMi0yN5rSjhK+bZk2JOn8Mz2LOVYIXiDEyu76abamvammpXSxfOafvr+Q0iFXx9fbw+77z1iEERwtSq+K7z0j3mjAQl6+v1EpGIG2EJst09fY3zx9h/hMmUJNRbl8oIEWlt226P+8djfx5ff/47fPrcw5xE7p93Yj/G92u87n53BMGHzWPUSSG+nr+/Xl/P53elejKnxzCzyD3syHlw2l3bfbtt3CNArNqSWYu2pTMYers9QNMrLGuMCHMIyIQqgUKps6QwNZUpnH1LZiY+0XoUrWGIKGWGzWlp0lT6lkhKFkZiCI/kyW2GWE4LTiYoc2+to22ppprKr51a402oMbXkTiwE4vTpiEA0YQiEmRoJhPMsWKFIUOU+uhCcoqppBBnkjeKUI3sihXPtMpygDHaGOzyB5EnEgUzSol5QBX1EkTMQa3gDOR30AXggmIISTqMIsHK8Z0Uop6LU8toFdHUyEhHVJK8acojr6EBntBedLd1YncFvrcDXVnQ+zNfJ/tyrJBPMl+eo8sCDis1fLa04iYd3CfO7547PsCgSIoufCJzLeN9Em2RvQpnBdTm96gkjsp4+APwmvKqXpISKmizpw4o2KG/CW8rD22q1qPwf5impihff4NFiCC5RzsJjb1cJAAlXIlfNRK79+F228n55fw79wX5CuvLuZhHdmelV7VxRHaV8olNudA1Ai8uRavi84N218rrjdHfTmZnEtc1f1+068l4XM89QifKiLraSsF7nqgtHnFvLxXjhtMdGUU9FQaZH8SI2SyvNzFumMhfTVExSLjs9ZZlxmYnoo/UM8tN3eVLV2dpG63IsYfXqmI88R88J2A90+NEmX5sfXZBubZDnDKjOt+X1uxRC7wp0EUFWsdhPXqu726VsOzOrTtTSr/yC849w5vYtmFKcVmGUAmrnBVkxFoVdLmH+BYmuFyBvofDLSffGxNAbUZ1XsNPqreKLlz2BxXr5uNovzjjQ6rFeJlBbjTrryxkXuppzPp/Pag0qLLJtG4DX61XDjXWnnfRbXV4RPq9Ye4NBdvEc7+eK/KGE198sRLhtfP3m+xNX37a4pQtbE1HTrV7PlXxx3RIXot33vdwb17e6/vs4jos8Wye0VXV9SrjOH62q5D994XIFB0ZMmyj5Sc1fzjVH3vKxz08wgVVqXg2M78Dr7YZpF9MWEXHEdSAvi219qqrdzISbyliW2HAiOi67yQy3dAufMQ5LIa9uBysLjbsnxco3Ue13aePWqfMzXyPmMB8ZkY4gFtLU7ubxozB92y+cgkYMZVbpyWYZIz0iNOt1lg2LVLsEChqB7HHTj88tkmbw43H7vPffv3HM4xj52r+O8bXpB3KyhLboLa1aP9hZqIjg9F2PY4osgjpRARxnzp7ZDK+aUZHrIlZ+IKvqti0r0O3WP391iiAEVWQQN+16zOdfX3/2W9vut9Y2CzP4zGkVFD6PMffEFEVTJkqzffo3JfshbKZQBcPy/tj77bHd7xFoek8WEb1tjwzZzeOMjxIRdmnCvUkjaoIu2UhEUriLapMUNQAJt7QK07m2KQAoyienxTGngQ/S7CLUjHlXdcJBdkQe5JNbaJOe2lNaipGQ8Ef/FO5KN0JjJzZ3O2Y4ZedUR1Z/Z5IEsZDUTBPBSXzyQEEZFJ4ZFEYZjdIFEQmCblLV1umBqjULzzQiD3gyID0pZk7LgSDRJGInSWgGZWilNQSto20xLEgPgLN0AE5nrFSV+K4NnkiIG9eK3FlVpF0PVtFdV35xPbcCrZ3woraueeL/AF4RQaTXAet67FVr9hEnucIV9Bqn5olZawU4Se+f73oxawAEYvkzQbuomtvWGgeT60oJB4RSSY1mENIjwQkGtBGTpltiOQDoXMjWHqun5TBP2BC4ZhMnEjIiibPLskion3poYE5/l0KvlA8hM6MTddUeJSwXF/IO8t6TnN5hX/3HgnRwBjETSDJdwGXE/QHNNdpilqbXz6qPCctF9T/ze85LzWVXP7EyoWLDeAHOa+7xwwOdUVjlfcBy/i49XJ7y+TyFffXFtT+tGejZs1LMWiVrzznh9oM8MtB7U308Prdtez73QscnlBYtRqS6FpKxPnYK8JVSdd29F2+R5zz051f+JOkvYJdYjlWApV0SdbwxkXnOZS4t9vVH6zONv42S37+wOK3W1stU1W271zd5wys/ox+cyV7vQIqoyjT8orXqub6Ssa4orwv8nSl9fN2rxdAsLvmqDKdwW5CrONT38VPFm11wDWculLsfxw5QsVzXG7nOHpnpFoWhC6m8Xq+aruKHg1wc2zkHlMIXV7dmocCIeDwedT2rO6h+s/4tIvf7nU6Z1PVMjTHqL6u2GnTWu6s3fuHguoDMfNFsTbfrCtDKofgB0PWDvr+/WU6mmXnyan6rT6TwaDsbGC3jfr/zmRMWc15cZs4f6yWfdFde4atOxW1X3ahXbON5mqqxad3IxzFEJM/PLlFSmfLL16MdtDK0S202ODTP1f8EplyFEvWALFcsPELm24lCpDErsxDpse8j4ooyvFxBdSveWLENs4032WM45++v7xhuY4SQQJORypKV4nMm/mStVmHuFuGU4QNNZsYRRkTCWuF5Dm8smyoiYX4ce6bf79vHx/117Or4+Oz//Nevr/23/3tPDPPdfEcIIYW9K33cdXcf5CTJkkKMqIIK0XNS3EQkg5g9M6mdp1iVvnVdbhWl5Ih0n0kBTmnUodzQ9bMpd2Eh9oxj5rS0yOfx/dd3k6bbdg9wJjx9+DQ/zIdFmZM9crgd0/YRT05OVk3q1DSJncZhf/yzUrI5OnPrTI20qeZ4/jXGGPVwjiPnkGCnvLW2Ed2Vb01USZlFU6RSjWCZkhKUQYhIOgMMlZM4OOCIyMPmeMqYpc2jkTDKmfEF7NIXueIlRnSqDFOWjbkrdWSDtSRJAk/gZyie7klUjS2InHWfF9fggUiPjEijjEQU0aJU/UFJKuEyLQMRNiMtY2bsovA0UGNRJ0yLXHKhIBIiZRIHA5TUIYIYsUjUSiVwBoECMyk8IoRKX6xBklAiUmlbb5s2VSVRZiXhU0jR107zo3pf0VD8kx3z9mc/8zX++//+sDsXqshM9wr0iusvRFTohRD5uQXyOTergNA8qS8m4h+X4AVEMpmotT4pCYa0nE7pK2iNsjKfsxrjQUIiwmPkpYNknK+WKn0wOImzbvK15ghxUWJvRJQRCaleCxZidSABiDMwex1zeekw3vfptVgTrljq93M2veur+Cd5fGlowiMNUQ3YDBSDjJWw+uNKgwgxk6rWfDCZkQgkCiXoezjquRG6Fx4AaFF3dnVrLlnu3ynAgl1/C+xi5iqWOcmhnz+Kt+Hp+gP34lbXB12gBHw1GeWldgIxc1fdto3oVit4VS9eUmFH+jkNrk94ZaBlulsuTPm3AIJ3ttUWMXRhsvV8vVNf725NOnXrEVFh+kVUtLadQuzLoPqTp19b5oJTaRc1RbQV39Ba6/1WQ0M/ccbVNXRZEd/BX+UmWPj7/XOpo+qzu91uHx8fHx8f/4PxyrMlms4RZL7Nyt8OFXXdkohZcN7huF7P+RnP1d62pEJLLXdxQvHW7Vhy+My84h4ugFVvsDRhONMfRCRPSFR4aM6V4Pp4PIqUqmls+UkLujHztm2FyQqDXqxk/dD6wlzDtVUldNE/BchqmFu//05Ln8BrXfYLWNf3vB6uOSpSOLf7Td56JxdL4nYxu+4+336KYmHi6zB6onmK8AByFsmyQnTT5xu+XycHIMYcqsrt6sO4Vul8U0+sFf9KeruWLPcsRzVNLkep2/LAMnVGpDszIsyRE7HNo+m9qeP1lZ4XbjyfdGqtPe7bh27YtrBBgt/j6xX7sGMmkyVlCkNEhcjgQZnDGcF1QgBHRI7w8Mx0dk5xQlKusDoWJ6t5SO89LIe/3D1jEkdXmgZRbDd5fPTHh752AQI5EEdiEwTDmOa2kc+cYYlIkuCsKEr9+PgoHH2Stwt0zzlrFLWeqBsHxQynCEQON/eZcAiUlRsLaLv1+9YFZBbcnM0lUrg5/Pfz9/f+AgkRDY8xxnP/3vfnnK8xX/vxte+vMZ9uI8gq+SojxnHs9P3FW5V2hydIPLgHsUo4rFKuZuz7/vzr9/H9V8zDmFO1fX7c7rdt+/jsum2deIIcFFjDL0TliSW5zzWmADyNmmiQEwUcyBmvsc+cpuyJiRxKQ3SKIEpjlVnJT0xtFeSBlFm4EfdkjUFg9hEEuIf7NISarRWHxjX18KwE89pUapAYRCTKV5hKIo080txGzFeMw+eIPEIRadDGEUG9Mpo4xTlJFCKZAohwq5bEigS6dmuGMoJIWS1TEEokLEp8y/8vW3+6JTmONImCogtAmrlHZNbSffvOnfd/sDmzfF1fVWXG4mYkAFWdH0rC6FHXTp7ISE9zMy4gIBAVFSH1kAhS1bUuVZSZwUIkE3hl8RExDaAvk0hMh5eIifNodn69FqPXSoOLV2Ec+2m/vK5LF7ESg51yrQdlCnZ+mxOEKYTJbJ/s11HSC0txu2RLSbhhZI+n2yCCIKVknkrMJHyURVgkHUL4hDsHd5jL8EgrtJxXD9zhcaCWYyZ1fCq2Rlbyj4kMDkpGbSZmHywLzlXwFGy9mDP+rKn/hU2ZL8qGielekd0T5OI8cUCy2q/5F+ngQPPi4XXL+Nzjwv3azRAINgpIiDBR+n/Ofw6GLF1GM0n8Mxy5QvRPWHmSeQfOS/6PP/GsaVjHzDhLMGdSoRPRDWDmWms3I0dyxyPDiklQc6EqIAc8NQzu6J9FwS/SNNhGGMxPE3MceV8vNg0n75VbND8TDCcS6r2nAjS3+zkbu7sbQJ58/qnspoQ0R9MinasX81mlPVymZgvbf2x16PQ1eAHH/LThNsF6oq4prmfm9/f3r1+/JvczUWOcKvJpFjrlhufAewkxfwGsEWH2kiudQ/0FUOcnJAqcDh3z4ifPRGeSj6pmwOIk3rIqd0Wxc5AnNEycOhONcHElnTf6+udM6ZkjAacA/+QFZ0XSmbm1iFNAebBTYySiurLLES9eaiJpnK0M2QyWR27hM7IpZULLsihqEmBZX56BTmOMt2XVl1GUO15usfnJnrz+eWrDcvxD6KSr8zIYQuI6S+PUrZ4V/4iwM1IijuFNctr/ngW+xm0fYzTzo4UCSspHRlZEOLERmtn93ixw60+MzTq7d4/hjhhmZqPvwBctzEzOXq0sS6lVa2VpIUJMUpfCrL1Zj+40xgCDlLiWUlhGGybDz8oyVw3h5MlIWErh4VUPomGgk4AFrW+P5/fntoKpLjwiWKxUXlb2MQJ7eAvf3SxiD+/uG3wPb2YRaHy6Dmld1wT4dCTxjYzptc0AdGvP57ONTqdak5wiyIf1PtxAksEbLMTLra7rjYLRWoiXlcFCWILQRxv7NsLDae/tUJLa1kfrfe/b1raHtZ6+ihlKyBYW+x66lY8i6kFm7sS3EOZS5Ai/UxHysNbG89meD+rPwdyLDB0ho7jetayKwOjWRthaOcKcAQoXuMcABiN5hoQJJHHwfhE90Mew/UE8EJ3QavEb06Di2WlhbIYIUhYNrUiv+iIoxGosxgRmZGu8mY/oYQIWZWYW7UfCz2FMQBbullPeNcKCCB6BfW9hZqNZf9r+6G339nTbomB4D1Exc9YRNNgZWkQdI0jAJZBx8WAhhB6BuJESnMOcqSQ6cWIqIgvzGlQ8OFiqaJEZD8IgzsarY60mAZDG8OTRe0dwhq7+4gQ2l4cr8Jpzmbsfh5Q7P4oIEAqRCxxhQWnLyUButpyZQw53KAo5nbPsFESDIsbR0Th31qeKPAuUAMIoLKKHmftIq6gMKGR4GMKGEx0JNVkjOe3Zzzlocnw2z8vhgQOfpzlmvtwHToPQ82q8bnf2O0wsNVGsmeFUcuQVmy1p8wDwyfD2jGI4/3K+JwggylhGwGfIzBH1M1ed40OOOvFVPHfiJwaIwjEPjIiYNDitPI5jx6X/8fJKuPCyHJtXYIzhFzlUFhxTInERnJ2avosxt6egL2+RSoDD6QhRzn6CdP5cFkm06+5u++ijW0SgG6uomKoGHw5C5ti2dh26ry8POff0U5Yn6RmGo3ik80ZEvGpKiVpyvU8bxji1MqfcSehcJk/5VJlQ6RgnNE0KYq7rmRk90duJkF7r5fEIx6FAkjPQ8Doaj3L2mULDzLfb7X6/p7p8Qqjrl+bPc/m/fOYnMd/sYxYRs+7+KqdOwDV1Y/OIAMqcn9eNPuFgQj2cLvypZE+sk+Zkc26ZyrkJoZJkSOwVEfnnRJPzNCe/eM1z5LNONJF9PpJj4Kz/5g06CmqznTNRWnKcOXleN0d5ZY4UbToA6xhjezYAtdbh9v7+PrV3R9m3aBJ7idiUKFWDvfdbqRMpAtnArSwJYaeOzZKnjphwUEiYRA6n7rNWOJUkeVt/nQrOGZYPha/k7vVFezql1uGIAkfW29hP4jP1aiHcI97b8ODNG+06Nozm3ufwHo/to7X3WCsxiJ3IiI04RLkIFxViWZbCpAySwG6WbTTClAsZBUZjd+9jNzMOjapEIq4RiwihliJFRUWkj50ZUnjvjx8/vt3eb/f3eynCPUBDJLRgeBAs0MI3eLjtYZuND4vhMfrobs6BhY/UUmF2MDsh61fH9CE8/CCf933/7zOJIgwECbN0Fg4fqnq73d7WG0H2vYcTs97eqpQKpqJvrbUfP348Ph773ocdTq/DjTgbGnp2ZCgLHQYOtZKSh7XexvYBHt3vfWy97wNm6q61A5w9eqGERbgrRvS+P3cfLLH7bWDrZTR6yL3qossiCxOlG3uGJwaZcCNWxx4jiNowUKjqelscsfd9pXfsZPtoffQ2zPd1RZAYCK5jWAwicJGlYFWvq1YK5UEUIcyFqgncIUU6wrt7sh0UbiHuUSIObb2bWTMnCLMaQksVEXIjDsmAcnNE2BjWurd9355j+3BrjPZsGxcWqn2LBjGR0FSoCEgRBTSqLlxVK7RQ68OPMMesqZxlSCmS5pYmLAvrCizuNByFpRy+3hTZCUnZfgyAmCVIiJAOClyU/eRgVFI5gLQLA5ISS3n3ufQnx0OY/fdpiAqeIMmSOQvGwS7NZZcTgRFReOSSFJ4yIBvDYlg6M1Eg/JPotXIdnUf7SBLXrA3rLBijExNDGJ4uYudmbqKTnM6OLqbDERdyztc4J6m47N0DQQlfDhFJHM4IcxOfzAfSqeuyzNi5bNCldZGZDzcKZhD5mbKrIskGRcS4BPSei1wClGEmoqzCFOw+ssCXm+Z8JA86jYKPLxHgYPnSt0nqocs2H9l57mBhIRGQjHDrlrY+eZgn7ZW8Js5TuBjMHilv6VN9AehHACIOq4JzieKzdZ/TqCINNpODVWVN7QQTR9gRfhxmIrL3nrHq7tlKlQkK4W4VqXk/Dg9M1mwu21mWPAttSfX5tEXI8C0+IwhTcXzFCqSRwqCzYKciAfC5NuNINgzOTjo6WyBvt3uyTVlBy7Vf9FiuciLNcpi7i5TkfvhshHTH8/lMcHAor6VO7J5cUbez4fGUyc/7MmOwJ6KafkNZFdm2bcKU6ShxqZamiz2nL2iSvtdfT/Kj1pqWGXEUSSfElHnkc4Mx5VD5n9f07lkWnPqqSQTirLGu65rYJc8xGwOnfCqrQPNBm9XVONMw5/9dliUP73yoz8nKUEoRpVmIxMlE7t7z+uTuegLc6+bTzOpyXPM8hd778/m88f0KpPh0EkkW7QzGlsksOgGS9YDrzodP4cHxULzad/xwBjkEZ8yCAPT0z/MYlClnfKbGXfn18+5kF7CDKDw5WgAgROG1lDoirYsd5ulIbGMAqHV1sBE38/d3J9FefPtnL2WpcADD2refP9ZbfT6XHx/fF8IiDB8f+8/W9ogBGixeq2pZ1mUtpYzFP/AgGzz8vixv6+22rOu6+jAG/fDex9ZGtN4Do5YbFw6O4XavtbCCqLupKt3q3rd9X/74/uft/c4KUglyXVQUqhQWHm20Zz/ikU3JttHa2D769ogW5LVIlFpDX61G+RqIkYNj3xMyZ4DOVDWGgUnDMu1h0VJyxt/aEIRCMqFauC7LTVQjZLizKhG1sT/Sv2t/lFJA4aP3sVsf8FAuQqz1zkQahBEEZ4SNvj+fDlpGgApxDYhZFA1mLkyusqoM5RBidvLG1rEP3wY287o7L8EVVCDM4bh6OCDA2csmzYOdzSODGrPdvEVUzwYWC4yAPbb9uX2AOsEFooHCfl+gkLIohzAVPmrrlFbuaQ/MCGYXkTPskMDR47BVDIJlkjqTEgRMufMTUfYTSZiZxTAbfYzmo4cPik5kRSK9bNzCAsaCbHUQYhfCIrJQ7bqGriiVvA2i9MwXZmWIAExeoiSPQa7hYdEiwkmJM7le0qTYQJZuRJBEOwAJQ5jZ2R1m2TeZky/H6atOv4itLhum61RyJbRTrz1llU5wQgSftNbrY1K4nXssD0Q2iQYBbJZbWE6wwpEmHCYs4eScLQfJhJlnuzEl3y4cFkf29fVZoSxdJdN2MlkxVWtIO3riT0wPAac12sHgO+xSzrisVTG5DVzMwf1S6ZtX78p1XUsJ113+ySZmJG5OtuYOoU/hQr+QOpYDM7nReJXP8n/xhRjLAT1pHiKKkyiLiMy6nEd3XBNyDo4U74EuyyqSuPp1kJxtGVcfgte1Cs8oM5YjAJgRCS+IyOlo6Gv7YBnRBhGRcIAnIM6wSYKkoS0TgYU8I4/yXF9Fk1z/+NOmn6+NDtNL5dMNklep9MotnVZYp+YpON0NAMpy0jTZmmRnAmk+3YZzxt62LSJSczk7XkUkmwlyNc2OvzQ0nkp5d4+zCsxnT1ychlVTKv4qfp38U+6cpx5/UmgvbvWsRmWH1gm8JmFmrxsYjgTnR0aFuU+XuNc+ZD4pV8+whB1TZDZv0CSlEpja6aZxPK4RSQ611rKaGac+ckLPPE6+tAT6xRJiDj/6XINLn4UkwOY2Cdl5MCLOXG3VehnLr93R9fizHpKnNuOYzrY+FRGciO1oaDgVePMDc1PxIq9wEuyneU32pwAgDvLp4ulE5IcpoZyug2eFIHCG2U+yH4eUINK9UnJDnbeLmYl9Hnmg73303hEeYT7CRriBSFRqrWsprXRjZq3rAm/R99Fg7h6979v+fDx//GBvRO722D+e+8/WH+6dKEqR5VbXZVFVZYtFowkVWWpd67Ku6329ubt5v7dl33V4jyNH+9TgHP36nIm6EZEu1vtoj8fjx8f3cq8LV/dB5KIBGohBQeGNsBIc1qw361vr22P/+GnNEUtRrO61qsXI0N4A/JRJpifKx/bceuuj24j8IYBFb0AbbbhBtbHKsizdfK23m66hUlgDiihunImaRJw7azds2/bj4+fz+VFKOa64e7gLlaUuIryuKzzgA+Y0ji36GM0eZE4hNai4U++2rla0shubFYp7YVpYOhOhhFfaFwf1wLMH1Lz6UkJ01UICCqU0smEqIg6quqg5oWMYcVW5p50m91aUivbGAzQ84rltz23bdi+MIrYK7qVytwoEhExFK6GyV8RhP6VBTp5SZXBaSQHk4WHhY0oWEEEhzGCCCJdSSlVhJbBgtD0iCosTC4gCQsGCIBKGcjHq5tZGDycjIjCCXD1I2XfCjWTRSsuNSmWXDlKwMVemUAohFbAEYwBOCO4t+raHd5IFICMRlqNYBwqIhxHYXcKtxCIQZoApe/7yJDnOnkRKu4zXPumcBQRAZiG+dlpnD9Hk583M8wJNkVMGJf764iOD+fznxDuc9sREQeGAp2KAQGDKhTaSU8uOYlZmyag4ODkszC/qfj8/9vhOPmE2kOGuOEEHABoXp9iAwykYs+RxGBPktaBMGQKQ0d8z++/lmgHAz4SO/8Svc0m4brJfMO4IChpC5CRCOUiJhTggBApnYktNIXwiG3NnpiA7z4IIL8sDvDQruZALQRx+GMVl0NnnMuVU8mVvAuWfB2x9uTpdT+2aYHL8eRlLAXhuri3IJSI4XLicS6lGWN4YN4zoRAQjYnU62qIBeP6n+0HF5VgnUtXUVx1Vy3PRzZ7/c1W+qnY+WQ9cylKfMv7mZsPM0jWCmZmUheeXztqTnAlCL9x2lL0O2u/5fD6fTwDLgnVdJxIiom1rU7a1ruuyLEwHZ3NFgbOCdqW4rrKt6RqaF2FW2XKpnlrh+YGztkoUibry75MPzlU7ztc5NvwkfvwEgvVaIpx8m4hcr2RcHLboMNY6OgAOlf15qFO+NpscJ12XnmTZFZiU2Gz8nA8UTj44TpsMOmy6bD53ubTPW5wgqfc++ktbJvKiBudEd9JRL5+ONF3L38rZL808a63MPM5BlYzdqy05zfnOMZMpjeeNVuaBS5H6UN9yOCcL5WYH+qTT+xnwWbOOmJveE4a+RrufRxTu6ZXFqpWIPEbRspY1eHTb+4DZQIT1ni4KjlPergphYV2WxSSesUl/wsXR99Ee28fzWSrZHhE+Ptpj2z/28RzWgn0p631dlqUyq6Fb0aZMKrdabrfb+/3t/f09YKL08G7eLYaPPghGNsI8whBBIFZ4gIxJVFSptr4/9+3PH9/r2wJ9s3TVIZ9GhG6dwpS4+fC27/v+3J8fz+f3vhl8rSUdg3RSWdlkvrX9sT3TE+XxfG77Pin3o5Su4hbDorXhvTNz7aMb/fYusi63uqzLm0pF6L65b/tRSTEmyNxe9G49ZYcRQlRV17XeljX7ceADYzCM4DFs6611dxz7wm3bQOoG66PWlceIvnH0VVHvddASbVSPd8HXGnfq2luAzTR6CVGpixSlUhRadCGprCW4gOs+nKVzd2NlXjzCB8OKWxCqyk3YNu/di/Hd4gMQ8tKjdNfOHLuGFHilKIVXhAICVzgYrEFBAWV4mISZmZvDDZnFO07ldeoMOW3aynJbihQVDm+EgNF6QzQb6kMZEqyMEApEZyDClMLiSC6GYQwnUi5G7urmkCB2CdIIMhJjZqZgFqFgOA3zlEwGB/VhzaKUA+xJtkfA4RzuhNAIseiwQunxzZUgoCPBN32qDrsHWDDEZU6y1z1iyoAAHE0nx4Md7sNPX+9TpftJKuRgx0sjEkGp8cpMxvR4Ig4RJWSmChjhPiI9U44mQg+YE4L96DUWYkbW4WCChFo+8JmLIqI0PVfVZOAzBegVa5gGBIGXJ3SuLsZ+zG52NnAdbNzVouDs0Ga6rOKvNcYnYPtEWV3f9svPI8bZ/2nuyWWCMueIX+9U4kN6CENIbqMjPM/LT0+ISXu8EDPSvDGDHbPw+pKpJVsXp6sOzj335bBprtZX7HUFXi/UNef67EqcPj15+yPYRbhcAPI0tSIc5vhkZmABBZ3J3+dFNWJhNuECsC41aOi56M4LOymuiANM0Ku5z6eunM4WXUOfYT5zxXX3Ka6fAsdEXX7aViV0sNPa2sx4Bhf6y/JtlsZmpEH+JFfo/GEu2OFH1XI+j474ZbWew3VimrPp9rhGJ1/yqaXDLtXtiecOe+5L4fX64f/5Or9unNj9Ze7PZ1PhRH6pbc9jzutzQbrH9T8AU/xKXF+PMzGunVFLk865TC8xG0txspUplrreizg7OeiUqSXReJpB2BS/X0fIRJZ5xebJ0unl4e5S9FpnTGBU+KXptCO780xsHJEVAk5pzecxyczEArw0uJMjN7FinLdyMFfVQx3wCguSFGEm0sp1YYYUM3N4hsd4Aq+DBCaCkIoutJitAWvN3YaBDqcawAipy+y9O4JVKtfSixT1aORk3s327m24hHWzsffnPp5jbCMapftuzSahSLMkZSKRorrW5X6/v7+/s0CVf45n7/s29r7bbgf9McK7uSH88PskEZZkz+BtjMf2/Hg+eBEwet8jAuQBCw/3ATdRlgi30fe27/u2bfvwAZh1BQtI99EjwuDBYMbz+Xw+Hq21x+PxeGz7fjQJB4JEiaiPYebNRncjVgITq5QKEZZFy73Im+oSqakYrbsR5aPIZtHa2PeecYo5IbIWLfVWv3x9e1+WpfCKMIom7EI+bNu3/uyjG0hX0gVBvXfEM9xH7xIuNmr0tbJI5XqnTsX0Hv2N+126WouIcPWhwdL9FkPZF+iNXapWqQW6cLlXZy6uzVvQAD37aH03075390VU1NjRtXJ9++v71+AAGdRiCa36JvTGvlJfhG+KlblikBPMfbiLclBAiCQo3KlHd4tuwd16d4swZk1RYzCVUrQuudOtKgxD2BiDi4zOTUg1JeWEgBL6MIYJeWF4yiTYg8JdKcyt04g+gjpRc+MRoiADhYOZFtCIoOAwHxZBYCUEGYsBJKWIkEqwRErHo7l5mANRAfIYRNkJxSySuqZ0bYmIdMRwJ8APN/LDlOA1EdOn2iLmvDzc3D2DVs7Jha72pMeEmBMNEbPmzjwLdMwMlEQFPngwh8Hd8pPO6a/nt+THsuBIaz4iv7M0aekTFdlpluYLmIIlZFa3Yxw7wpjLTGK1jDd7GZwyIS7SqzgdyA6V2DTTOprtj6ilWYC44r9fwNaL+T8/JGtGuRpZ317X+YjpZE0dcLJ+x/71kwFHuuzOSuOLmcqmgddXpWpQLod0LFrhBJ5NALk0HXjcwyMb9C63/joSJsDiz4DyisDy1+YoygUyCGMYAZm4wAEqh36linY3G4nSZk1KxtlF5BEAiZSiQXqoxa/DbpIK8YoM+tU7baKQE3zwiDHjFOdSNy2vrkAzO4VnK1/vc+9xyIlK0ZQQTeOoZLmIKO0k8tgSJWQZLvFBci02DuLKL7reuXhft0bXk7ou27kTngzZfMMUTvElBCyB1/nrfoXXE9nEpbYeeD3yRK/TjP9wI0uH1bSWmN+YBOGkHmd1EpfnaN6a61YwGb5j8jn9Wn/ZwPzy9CXwios9obsfzxFeo3Gay1/v+wmtXnGH834loDz2NsHXuvAVB9dadanzHN09zf3zPdky9erAMByRkIfLMYtIHDVWxtlrjWMOjfTqERGfxmMvoT0hJGCTer4OYBEJSuuctIo8HaQ1W45CRJb7jZR04763A0m7mdkI23o73EBspLvYmYcRA2YxjBw0iCwY8GFo5nuPlsOM+Rh78G6jjdHgNhvqRWStlQsi7u/3t+fzue4fTy8czZIbQt96K0U4lIhAriSqYJADw+3xfH7/+RNKpeoIP90g0p0n3YwyTSaNTvrefaR3omFrnYi09+buY2T/Szy3j2S8tt720ZsNZhZKY6Q0/MgLL1q01rWu69vb2+9fv97ql5u8CS+O4pbDyMmLipr10UfbR9u9tdGb+YjejQIihUst+navX9/Wr0tdq96UXdiEW/jeh9ba6kAPClmAZTiZxej7Fta7VEaBFbaidC+1VOce1VCG3Z0Wb+SbuQcpoZqI7UamziM6xVJebh+6CBQivKA7bx7jYxcmDgOIONZKwbe766Cxvt3X283NuAXaqD3uoTdZKlXBTWw5So1OBIT3lPVAWIRJKLwrpHtz8+7e3cx6JDdDml7rkGPZ/7S9Bg33sBE2GIPIXII9iELTXo1CmYJCGM4BxtCAJJFlZgO9x2il70XvoBKwYCM4YngUMUFwBChoEESl3jMai47+J4I7oo3uLRwpOIqI8OHBwBBdRIHg5KEjPtUCI7LFcJYhXv9/zvI53+Fodb5YIRCCQMcy/wlefFoLRXDKKdI5QcWDKTL6O8aZABA+zEffe498tiPAFBwkkCNViQ7eijmYQwQRfhLskSWyuVOEJVdxuBfBKWSqeiPlZv6a9MFIyMKfbSCuJ5PWtMcbLr6vkz6Zv3sFK342pR9bzNPB9Rf2CJG81WwUmGE+eVTHRY6jeHoEGhKCiMHnFUaAz7bbtGQ9swEQ8RJ14eUie/rLHr6pbuZhcCc+ap6vCl0KBHEpgZ1tenFZHg4AecZSiUiAg7NuR9lO4XA67twLuZqbe0SKHFU5rbeDPNvr/ehZdbCCMtvHr/13n+mu8y5cSceYNgETT4xIHxlJC6uTREmhR+TicwVDJ0SIaR+amd8ioioBSyVuhJdSRA8rgdTYTdbK3VP1FXHUcZZlGexTsHUMVKaJjWbBaw62KQWbKyudjl9JFOWHT7n3XOTkcAFmz5qcjxNgfUIzJ482shA5EcxZuzwGfx582lalMCZfl4tzVGb5NMSaj0yuSrMHc4LIBCvzjCY9Fp8rwldYRtNPeHpvA3kFJlYmIjlZyelMC7xaWOyMddIMWzwVV3GUWZGn5u7CZXrxz8kzOaFSitRycm+eOrb5yOBsDZ7iMBvhYXG5LB7iCPIAmOlloDoHwBUZf9oOEQWywXz++Rr/JJCQQw7gNPua3QcQENRaVbmqbvpgZmFFkMceV0Jx0DBr1syHw4Zb730ozLrFMLjSMFjEcBoRxqKR5Qs3MOCIMDqUgpGRPHnuAmZGKaVcuvXdvfXBoyOeMphDiygJAkZE3Wz0fYxhjPJ4stLt/U5EUsuyLBi9mlNiLw8+OoWs9z4GXEDMHt6HM7pObjPxYBo9JAyfmgDhMpF4tnrpXUpZ3t++fvny5ffff//tt99/e/sbd4ldrFGMNFoYNjDctq39/Pnjz+/fv337/vHzOXpPUpGRoTZapVRdVW5FlkXXWnitQdJsfLSOstQVxOXuXM30sfXHY9v3fdseQjSYKw2tCCZZYgEX0Wq6jHIbXZqBzMI9OMgGkDEAbsOthTf4ID+kEsRSdIHWilLAwc/gRcZb1X2EU8Xiu9x+6xiy1Le3txhB3XTEYlgGtIMNpYNc3SVmam8IwsMCFKQkQqzFydQ5Qlo3cPJOICVSIpVpzjTG6AgKx7kRt96OyhSFKKkLQQTszGNIxAAiwCoMdRLsq4dglEDxIHJqFgOxK5mTBFWOFbEHFkbxYPiNwQRGgLXe6sqyMPO6VhFRITfsm5Cw7KMN1FAbDjBLsDg4iIBcLs9d/Vx/I0DBcz71I2P8tYOcW+or/09nASUf9Jyl+eIezqyZ1pL7/gsKCQAMAcRGM/TX/H7aUZ6SBU8xGmfLYgE5n178FADkZV9+3f6eZ3hFP7mlQ9I9ciFmftkrp8vIbC86GZSz3+WzTvncyX1yCZ+Fs7nV/oUNmq/X9vrXImQIaH7IxBMp9HY/LDWvtESyT8wMeNBrYc6fJGM3Ob8jXSoF7Mcv587NCZmPcGyH6fzwg+H7zGbNZeA406n/SzDkyYIIEYsIsWZMIglXqSLCQmdXV8yFMIMORaWWwqq4gI+88BExPKPozMbFMAJydf6cF/w476sp/wV4xWHdPM7x/GpEYH55s4X3c0VvADKq6PoglFJqTXopWuvbtpn1WrWUQozG2d6I6TjPF9NUnPWpUgrBp8z8eL7kMFadpTS8+jePNXi2u/KnNoID32dL5jzZHMDpyAtgWPNO8/nLTgK5ePRHzN7hX3yYaVo5zFaDBFvZUjC/MU6R1gQil4ZTZub8pmsIEk4z0ivwmg/URCHzUsxwoesR8uV1Ti3Z/kfTcCfOyPa8Snw2Fb7Eav+x2zyWgN6ZDqmZFL1erpTuQDiR6AGtToZVRMZwiteZHpDOzS+3fv6viOBCfOpoReSVTSJlDuh53hyHzTSRHtjraEF6QTdVzixIJj58+07lKLGk8IsZCX2CYIyxe7W63G8u9ODnz+dH9mgDMBs9p3JrY3TzHt7Nm8cAnMTdhg0QNaa9lJqbMRaIZkCtnUFPG1F5RV+cFn3dI1pzcHgspRb0qIdNpO+NkF2dwRH7vn9sVNa6rFJr9duN3aQdmQfn7ORE4hZuCIVq5fCIYR56Af6OM+3BDyfl05SFy1FwdR+PnVWqLm/33/72t7/99e9/+9vf/v63v/z9f/71f40H9u/j4/u+P/bn87mPbhbfvv/4+fPnt+9//PHt39++/fHz50+zwcw2MjAwdwWVWYWUSMhVWEohZgzqoKGIEL1/+euAtkbgZ++2bZv1PsL3sEFRg4YoqhBDhQrRTevaB8XTDexuZAZRsMHJDW7kAfMJgZk8FKSiUllXgTrVIC0j6tKH9+AwHuJfmrcOV72DiTVugZtzac6b+W5iDU5uQR5BBw6gCINlVhaLBIWGai0O4wDHEBFSOlxYRFX0WCkxuoMyT6CPc953oQCLcGE4uzNZeOVjyTMEICQqpBy1mxg0XMAK8CBOh3x2SGBEDEf16OxCkBJLPl3mYFVV0crhVKtq4SKa20rWUqq3Edx5DHcLEQVP20Nnqkx8KHiE+FVKOKRc4QFOR4oAkZsfRvvn69Pm6ZwKcXLdvyhLXisAUrrLuYGkbLTDoa/K8sXUqRyTdQZVBx144tqnQxRMHBTgg956OZBd9utnt9cx9/3fgbPj4Bx+LtLEcVLUr1pGRvEQybQyfp3ZZZafs/lEZvhcBrruTa8z+CqHL0McR/rpK64o57gdyFDHi0P9TOnEIUr/NH0T0pwJANNxYjhsPgSUbmbnfeez0Pw6tSPW8D/31tdh4BdLRjMLcxERkECYWVRz90LChUspRYvw4Tx0LM/HgsecydBgTuPi/MVslXBHnK0P6U6CxNJMwsJMU6B9vdRzycwTmccZp53KrKAx6xxox7mMIMr2/sO54MuXl018nn6tdVnKhB37vhOFyFJrJYbbGfp2eopOm72JHq61vyukY311cuDiFHAdfnaGZP9y4vmepJrmw8Vnd2S2VgSOchsA99mbeWEuI1TLL/sufC418llum7Bjclrzzb/U42aYdzYvzIREZp78a8LNBFUnx/ZrvZvPlKR5v34BXhPB2JEWkCEKlCvpcfyfo5Ymh83MSdz+8r355BKi954B3vn515DKDJ3gi/x/grne7TonTNB29sa+doPDLSLKuXecs2l+1JQrxGWSQYAgOOIo6FQWILW5zDqnbSJJeYilnRMixSfHSCxLVkK6jWZj+Khut7ixys/4kJ+F7YxJyJJLPizhw7uk68iZgrDtYwy4P5kqEYuW8+7QYIsIvIJKaYzhdtnzA+5oGOFdQzpsiKkGBbkhYnhY0ZflWAZxkbBCl2WJ3jjDiD1Anl1z52HbYTRDLEYMU2eHwnoaCBH4VtfVDbUUePM+StQKDYlh3cLqDSC/3da//+Wv/+f/+D/+n3//X//X//g///rb/1jf3z/ex7/fH/7O+/fe/+nbz/bxfPzXx7///ce///Wv/34+Hr3vFsO8kdkYTyEiXqqNPbADT9tbK1LfEZVkLcoEVbpzLXq/l7KoiSPW4rpsZdd9p/HRn/TNiZ5Dvtu6oGiNKh6gB+Qp97jVqL+r94Vs8U7Wdt0DgnAaEq3a80kkcEKFwkRMOKRyLHq/l/f77cPMYnEWI969DbNH+/nx8WOMrqQiulCpwZUZ0ly7lrd930eztLDvjggiUUlyg4RBzlGLgpRp8bV9fHDf9kBRubNUYowYUN/8uQdtwqtoIQZ3r92f3423ncNiKbSoRCC6DxMbsQ15kLVVnIpQoVDEbWnRDHv47uZwhVe2VeOuVNiFXMnL6AyTogsZSlHWgmDACU8JEVnFltvydS2L+2je6hrOOnrQ/fF87h/PPWIXsFCQSoBs0EBhWiEFoU7kHkQ89gYCBMFwP2LK3f1ENXEmJjkOu0sGKKA4DC3MYoDMOLNSjcwjd1AsRNoyJJ20pEZ4jGbDfXQbBncJH+HRxtgQvXBs5ZsMJ3MMRathp/ZfIotOYcMDxJHqhLUg2ZzI0LEQgBFMQu7h4WnxTkTsRBFS9FhmKIKcxUtYcKhqZm3GcBUO4tM5U5DWHMzCGiEIZOB5IIIslfAiwkWIWUXNjIhLOYNQrEU4Mx0ashExIjrEmFAMba6jIkVKMREHMjiMiYoIi2Y3ZcYmpEcDEEfgBoKJlCkiWwGEQ9iqI2tMLZt2pbCIhCAExIlqQ4iJIhBJintYiKW0PSKaR2rcuawxxtnS5sycIQPDR+Xi4cNtjGHeLQwMEg5CVKbCIQANBQrAEYV7YQiDhC1r40wkYpsFE7F0liFKVLLNmbJdxZFDUiULP9H7lsRcRHAuM1AEhx/G8TbGtm/ZOncyHEcqkeecfgj/h9k1KicN1Vprj9yWEBFsZLMbCzx2lbqumTOYZcFj3dm2bXs2Jl1ua6k30UpE620NPIc9PBBQ0TV/HhGtdwBaige1bpE6Yu9EBGJH0IUuOnzaRIgovelzrR3Dsi6WSKi1rffublpYhLVANMijVMoxqct68JwRLEupNCxafwCSMTKl8DQ1ICKzEHGGKXzRUALQYcNG27ctzNf1VlhimPeBloKfEWMwc2ERTj/tXm9KJIGAIUaQkpIKSRBsPG2EWazvVVU/Pj6mbPRQHDBnNkAi4LMK7ycgYWaYWWLE9IJREWI29350TUUQm7v38HARSqN2kVqX23K7l1qPyiOTFGVlhzvZ8J6gqltb77+JSB9ObAAHseNoHZgBQZEuaL0rvare+XguolXUNZg5zNq2EVGaGZq5iLS2HcVoh5lZH8zs/bSzJmHODiMKQoeDACFiIbBM7SY6cNKf501k5hxSgDPRhT30Rc1yDh48gACJVBZmvglqMa6GYTEMsFhR/y1//vX2Wxm4DV5oVOntxqPtS1/iB5wLiT6afVh52vvPtj/ahxAV6IIgAgUkUEkG7KYK2OPj21rLwjqWFUDbulmYO7HfF1BD9OARN7kv+H2lLysr+RjRe0iQFDQSdaLmoeF9GILX5bawcnCLn81iM6lcPQLYYc8a9Z28G6j3ZSm1Fg/WoguTM9lpoCPugEfvRkiWkIcHASK1FL5BROT9y/3vf/vr//zL3//y21/f376mWZ/ZWMxYH8PHx/7xY/vxY/vx8fHxfH6cQafdeh99o7BwCyYee+/a2tba3mqpwMfzZ6Fq6m+LLkSlaFnXut4iCAa41SK/fflatTy47PQ9PjZvbbT+7PajFblLWUkWUYCYAkxMIQIaARHXVXsEMatZtNZGbGLES7z/vrpDgKSy9f39zmUfYx2DRHW9Qctu47F9/PnjT1X9+PghEIZUKhWyVBVbsRq+jQAzdzjBHDAEgjnDdgOco7qKitZau4qp3ESfew+CGkiJlbW1h55barPuw71vo3UK74EBMoBATJLxR6SFnKUK8xB2KYKFQ2Ea7Bxmw7tbwDlcIlVhVKoUjsJedvNhDMeyLKoVJH7EFh37JNG0J3ciqqoc0fhQaajyWrVbIGyMxlQJHMEBC5hEiVOi8R9kDE//mOufx9wWDKSdamYqULy0FIdtEjJePF71qbRpOKN6fqXEcqvXe7rHdfjAcu5oI82C2MMzqukosQVI4qVgICIQPI+KPu9OgXQsw1l/pKnxSrTmfP7kYNNwUPGnjeIRAJB1yuO3UmN4XBaZwAunv9ep8H0VZA8KwXNfnsW4l1z6SmDM3d7sseeLcj+yH/Pzpj9//ezEzNEdhNTlUCTReFiEMM0qJBFxRq3566Kd3RX4dB1/iVE/3S8jcl8+zXgRTOS/kBxpSsQgOa8PZWuo0whP4JWFyPQQeQ0PEJg47U7Oi0OQ7EybpSJcisVJgE0Wwc/sHZzFuF9sCPKGTkrXLymEdIQNHGW7Savg4kRw9pn+qnCf7g8AkmhJCdE1bDttq38hVKbRQPZKXCWDyVRNgJXOsRGfdE7Teyjp2+vgmQzTZHRPUspVVbXaaFNMlrRNuPPhRE9FVM4w05yIBJnrh2R68qufbZ+M0bzI84m4DuP59721pAkjwn25UIlElIHcnc7K6X/KKK/3Ov9znEPioJTwmujmgMySYq11XdcMAJAzC3IGDCQz19qrBjoJTmZOUrj3niqLOHs55zt//PiRZVC5JI5fyVQcrZ1HhTGlgTkA/NKre6XxzIkytoooxxURSebA0ZGXNq8JUW4NY5Khc2qJS6329azhODDmlyNxKbWWtZdeeh8i7v7b/St3nyY9VwAAgABJREFUE/fKYBpafB+19QeAffTntmnh3fzYXdpwIDyY3S5qEyKyMWyYjxCXR/lZuPQ+iOjx/L63j/DOiFqIOUJV/W2NddVlrUtVzSqVkBnCxg6yGAEOKdMFRooW692fDd4O+ZYfTf1zTj6ArwgFdK33k/lGGrpn34z3J4t6hFu4uTAvZVnXdZVlWcvX37/+/a9/+R9//dtf3n+7rauImA+ikAou0X1/tI/vz2/fH98ej5/p1Ow+MqDX3eE9nf6zCje8m+9jVKIYrUnsnQfFosu61ttSS11L34abhY+iXOv9Xsti/qN1ed52cG87mu19373sqIXYOCOEHQxwcTGwRVilHNlsIWMb3p60Oy0estSVVhLS+wIsRXi9rSBuO5da71+4Ltvo5aN279v+SCNTOEUgWHLfwhrRQ5d1jOHd+t6idQsnYUQ4iIMsSCEiut4KM/fCb7dt+fH4+dxaa0RBTCThu5OwKsDW+m6jYTS4eVinCJYIdxEnYSbIAiKpQ8UkvDJRJRQKwdDdxoMiKNORh4QrYml7KITLssgqWjnCiUTK7f1dpCBkDD+iXsPh1rYtDGFdVYVYhVzIZYBchUMF6BYDQfAGKeYdUYM7kdKBvMzdlcpJ7/uMHL6sB1nRi8la5yPKwUYUQWZHJEtS3AAxFBRB2S8dnkYH8IhL2ppnbWq4pz19H6ObtRg9NBXUjgj+5JMeFCDKbK3DLi2B4FEbPTr1UvMvbhF0KscJ/Em7llJtD3ppjADktlCERZANXsdeERyAO8wsyEUKM8xBHHzYsudeE3PDDcAsJVZZC3O/tGvNmXSuKOdEgLjo7c760Uvwcf76p1okny5rx/9N3H+4QjDkU/GFpxgo9x4+78iZZTSdZa+aOUwp18w58JdsKvGSMDvDFQDIT3/2vNQkxHHJ0okxSNji8AoBQos6neb4x2m+9CtHmYXJ6dAR1rKa9zibBCdaEhGPM5EmhscY1qcfwYQvIE9MZ4brfZlX9dT2HjKp9NX0MxrowDpn9NP1ns7NTH5pGpGnc8GyHLHZY4xt23Kdnr/OR8skM8u1XjwVUbi4qI8x0mNsNtblD9MBC4A5JhpLnHrYdljQYdVx6AKz6Baej6dPv3iEMzPxXqsSQ1kBJ3jrx9VmZhXVeuQwTuNWXDRn84CvmOA6mNsJvJIenmW+WkvCi23bsrKWn5nc0i+Qy18PnU0t/FlUe/WCzG/3MxRyYiO5hGDm6YwxRrdZBk3K049GmeIvadq43W75wO77PsvGrbXsb7ii7fy0eeQAsrOB+bIhvBiC8CXx093HOM5LmLNcKyLBcvYMJlB7XWHCmUR+mI46vcZ5nim5O5iEy+nj/NqHZzEuq9W9l27V3X+/v+vwErSWUgt99LK1j2db+r574NkaOzfYjrH72G0cLU7H0xFnMAtzoJuN3Z72VP3JpJke0dojrKmMVahQiSC3IqMuvrzp7bbc72slHt33HubuHbu7d3NHl6emvJCplkIqhVnMySIMwZ93ufMxFxEN0qXcj0kEktSCjQAwNIIwss9GsZT69vbldrv9prWu5euX99/fvr7V9yIV2XzRty60edvHvrXnz+f3n4/v37c/U60fp1gvDMThBOVQ5VKYCoh9eOvj6dG8g8CNd6X3BXErSm5srgxnEhEm0boMFVoW1Pr+/nXTbWe1sYm77d5K7JwMTYblKnyosBy24slHUISYRevmvUeH2Z/Lm3djp6Xevq5mDChLrZWlKAtAAhbRUm5LvfXeO/Wxj+HWfexMxFRFyl0BLA7vY39u29bQuyPsKJ2QMlORqrfb/bauq9c6PO5fnt+///zx8b1tG7y5t1JKWXWpPMb+0R/t+VPY16IdY5A5E6gQcXAhFiYhIg4oSMmLEARUeEgs8vBRFtHRFbS5EKGwl/7MvY+wlMo3LYDWqku9f1GtBB0drW252ITb9vjeZbey3G6327KqiFRS8DaMYASTLCQphJmE2h5uBhqwni5UaR/1y6J+vgh46ZSngiQiOEPN/QgAoMMLKjl/TSsrkHMaXQXnttM9G3fMbYzRbDSPPkbrvY3R3MfhUE9u+4C5DKduYYFsfeM4YqqPcKn0V3MiclA2zZETKFfqC8/E4FNIfvyTii/y8KSvXsvt6crACeHCkWLzzP45etSJ82kNGILMjCL86MsjIkpRuhMMAZvGnpLNrXku/vLOJlwsEU4T1tdSMaVF58b0pWHK/8yqXWq7TuDFmB2I4e7zo16y7uMmO8LNfZiPGDbdpyLiaFblF+lCdBhnn9eWySNwRLWkTs6YkHjM4XaQYjD32YJADIJTyFzk6PDLdULMXn/3iE5cyMOzswRZY6JU0CWSGPayAEgENsHKPGwR+aVjLmLmYCZ9ElcqaDJbJ5alU3mtuahPphbAGEeu8xUHRETyN3SKeKYGfNpJzKjBOQ/PGObrYVxIR+RCexI2cQHSLzg7V2h3h/kk+RLz5X3vvUeoaMgR/lhEehG1I6OQ3PO5bAC0pCL2k0cag+wQNR+lz2lmlldGzowmEbHXI4AZNfYLy/sLoDyvp17uEdEleHsC+teTe+4M8PnFzNPICp/zvKcwKGu4V4B49AHYJwPb+euttcMH8RhIp1jtxOVz4J1n/ZK1RQRrBaZzjc1hWWtNd5QjDtynSd5ZHECEwX0QkV+e6EEqYsycxc00tZiGZHTsNyLbKcinIjacc/4MKVUKCcuxsw4+Atfcc3PK+RDoSIlJ1EGrC0PIStePIiKykZr3ADcfu9sOaz7S5BpERw85OZERPCKEWEDd3froe2vrpiUjs3vRuHFR5L4+bOcIElBRvi3lvt5YfHjpvTcbrOsYY4x9GI1mbev7ZksZZGw93WVfpPIx6wIE5xABZUEcxKohgZRgEJNGiLFbxK2yd+9hQVFK+fL29e3tbVmW30V1qfd1rXrjYPfYe6cxGo1HjH89H//7v//3P/7xX//645/ffvz58/Gj9zAzSoIUA+TETm6gQyfj3p7tQx7Rx5MgRIout1ir4M40anVb3foilVcWXYSLFLVu9etYzGOtz+fz53d8PIa3rffx3IKlVLAAooEwJhvkIwIEg+YSQkBkdmV0CLb9+83IuUp927bttjddLJTXUoNFuThXVb1V/vo2zKx3c/vo0bs7BVGQEItWLWm0JjGciro+fGPvvfe9pXpRSEBali/vf3n/7SsvN7Ds3b7//PHHH398//avjx//3rfBknkSAuoetrUnx2Csre0WHrBTZnQ4jpZSlLQSFWZlBIezK/teeNXqZfFRGM3YRZghKrTQTbCIFwILapF6W77o7a2WW9E3G9763veP1h5j+HNv1sZuo1CEMlMBM4qN4SNaeCdQLVpqIVaHNPHd4COcTNjTWgWET9vPOMy+8SpnHVPLaxUJCs9WSMquYCLKjCecvqkgIfKz227KmUe4mXW3Pmw366NtrW997MO6eXcfZtZtsId14+GcPigUQJASUSqfIrdqh8Vr8NGueXpaZaggCYcTDmkQnW6RlJZAZjLjtE9HAwmQx8it0UXBjVNDmnRSRFjEpZUJIA5VzXwmlZJYyj0ltq98EndP4xlB2FyNLlDg2IAC9NnjOyGFcBHN5ruMuT5UJMd9AqW5Ks52h0AS2IcXGhHN9vKI6AlHrJt1dz+taE//1UDuqYQlHVTGGOfw8BO4ICJwQOzX2ulnAJ/4sWzzkdxNzIe57sHzCxMzCbvQOBpqyYmOEKc0qqDEdUL51nJMoyLC42WedLWAmivxhB15DWdP31VGjYu8fc7OM2QQOCilHA/p0nTCl8iomfx5Gg1ktajbmM1xmc94rfpdeMRPF20CgslOHc/kCfWum3XgRXdNWiuPPD8tDykiSim32y2/LhsK6bRyyD+VxT53hEyIGX4VxffMIchOflW1SI89T57sFzowB/AY/+mn9cm4dYKw+b35OdM+4xoTlONwohmcZd98/4v0vYQ3XCv1hGPgHg8FSWTN37MHwsewcAjbhHEneRkZYXTiv5iD8JoAcYWnedhxevHM7WvVmm9yH1fuT5UjNIFgIidCVgyzs3veemFGjqeICKcRh2acOAdDzl0Y49gSlNNd7Lg75+4mLCKCCYVYpZBm/fRlUOIjfR6CiVR1WW6q2husWCyH3YwMoR0WHhH7YHd38zbG7n3QaVCN8BjhDS5HUcWDwuABD4eN0aw3M2F2EV6lKGKEG9wGumMMhzXEEEZddFE2l01IO4XViKCeQxdt7/uzNZVQGsOJqIhKHIaIEZYsIHmEGKCpiiGEyuntp1qLLkRiHmHcFxvdex8A35b1y5ffbrebiNwJqqK1DIvHvg1rzBRhpvTH4+f/+7//+//1X/+///rHP7//8X17Pn0YwHJ2pzPERcLTCdGDhvnYejPf+ngmii/6pmuFjN4lcBeKyrQIF+GFdVlUtZIUGN5Ifq/r/vzz58/CYubbR//Zx9a66D6UKxM8XGAgc3cXDgmnwsxCGqDw4W4Bgos5xh62R3u29mz73rWbQBwewqwhEGGtVVbzt2X8qD9aawi2Mfb0cwOTDDB58gICUFFamMxotM165kmHOwiq9e329fff6v0vpOJBXx/PL++//fv9/s//lu/fou0/I2euoACNMaztvTeyjJQGBZzCkRl3sqgWKbdSFxFGOKyzGXthgS43L+HK/hxkICLGfb3dy1pEyBWuEYAUhq56W+vXdfkCoLXtWWjfYvTd+z72Ed0bR2NHKeeDDeveyTi0MNUiLOqhowoczdiD4QxIgnt3y5bkCIozzI8o84YDgBCLvHaZ5BlNyADJpHSyZdEJxJRO5cfq6ixMwyPMw9xH+DBvZt36s/Xnvn+0/Wl9cxvWu/kIh7mzhbszODKBicHCRHGYqVGKidIj4sRbx2yeqzwf8iYclBufhFcuw0RBpHZshk7L70zePAMNkd+eNTvK0kn4JR7uWDIjiCMicl8hrEx8SOgCr3n5kluSK8xR9SSfFE4WH/L5r3XJZSMdDIEg9Uj9/NGJOFeUoy38pLEygJwjGbaLH9hc7CdF4dZTCiXI3PGjjY7wf7NunfKdJAWPfsf0hvHufbhZWJxtGYRjZSISYuFCzm4Y7OwAGZxYOOkughA5wKAsbSeblpdw0mzToew07IBOJHQSVJPIeSGGhCYJBdZ1TWIpK1xZKsr3z3LYJDkia7WTg7v4GqRjQrpo5uL68+dP9xN/hAOpzjx8CibUw6nWutoxXO8OfzabmNBkKuvT63gSS6de6+XznseQIcwJX/LA5LSWlcvrlGNidpPF6YR/CrQR8Bg24Hax+F/XdWRi2IHnBhDMtCxLHlgCL4BmyRVnZe0XkDe3JRNBThwzeamJOy9tmE6XSv2Em1dqc17VX+qb+cO0CLhmbuZVvb7ztLTF8/mUM7xIhK+YOJ+mWbKky051Kt4mfATAAgG763wY/dDvvpqde+8EmJnWAoRe/IHTDURFLBtipnxehUndxxWwunuGn06WPTNPIg6r3iDQGJ07g4jVYAE2MwaZH6FwCFIuIdnpOUqpSwxwQMBOztGs7ftODjM3Dx/hHswhueMKMJzT3AsBS11vG2ZmDrh5H7aPTsQOdeFQFgO7SyeXgSbe0RkD7MxRKhViFh2K/SEDJCAO9mF9H9u2LYVorQBUVRDFXAJOjugcQMpSjxJLpNuSLqTMXJZ6W99ut7dSliBF8BhuFm3vZqGqt9tbDpcSA8Ld/bHt/qOFN/PR+97D//39x//nv//xj3//sbUOp7d6X6luhWsprRV3C9vLHr1FoMA3YncfNto+2oieuXjmWNVBy1LkVvS21vtteb/fqi4r1RtX1cJaIyiW1e77j01uX5ZSiXhn2vePRnB4b3snJxI2DIK7kamTMGqBEVhy2i1aiiqXylp1vS3LyqxmsAYfzkpj95DsMwWkMJdF/Xb78vv7Bou+dbNttO4jEDuYTEf1MUgZcMYo7gvCgRtH425G5C1G9zE8HFRr5VJBLLXW23p/W9dF/riVf//7v7bt58djG30bHYjSx972vpDnPioAQy/ZigUhuDIVkaWoEPU46nKiGjGcoBQLMWMchuxWwRohETJSKcVCKMK3KvdF37JSI9SU99GMrDyp983IduvosVdRUdLy5ibhMswQg2Iwqoi+rSJB5OReERqBkapoHq/5KKbbABEOGfcxm0AQFjAc2OPgwAUUJETmHuQEojnDURAiDTm7j93G7qP3sY32HH1v/dn3bfTdR39pk8EgYjCxZwVNmUgzLIiYgpmEgihASbsdEzKQInpOib2A3eAezkk14zIbTh0JIth9xGmH0Q+D9CBICrlSjE5gMJFK+JEtYNY9Pol7jmXVYtA4OjA8G7JKBiVd4ctBz1yA10WGTxmlOkUtBLGxT1Lk6htwXUqOCkUeDyW7TxEx08LnQcYZtJzb00yCwiXTMI5So6Ss/sCL9pJ1HWQMKAI9RdnDzjJNmetuVUnDqCwh5AoKzsWAgl3c2QUA2M0tECR05Et5uPmIoJgA6AjIUy3pHOGnPdJrjUlrlUsBLi/U5LquAYt2JN6066ovZ7bP9bZmzfGqjs/boQcZdtTIXmOMwMzLstxut1nGSjV0Lt7JS00l38Vj4pM72i+cnGTmJh0Ktl+8S+atyW/U05Ysz3ff95lFeDpKMIPspAzHGOZZGvqETob1MWTISPOns/jOqhoWSRo7vwDxdMzPwzOzMWLCtSuumnIrOhMe/WyGeDlWipgdJFBcqrdXTmv+BRct/4RQ/lnXPxFY3ujb7ZaU5FUJd5XTuXs2e6Yjfx5trTXDYACIHAMpb+svwGvCx/kCObOmDdDEi2O0X06NiPgFtjTjzOnSt6Gqwic3eQgDC4uwM/OY5z5xrVxKroaIszmJid2itQFzYo3D5YTSNTBHPsDhSMeIQPblKKkoFXNo25k0DK2N3ruTC+QmxdhLdAMoogqqhLIxItiI3agHAUc3Zg90D7JhqEzEyuAgy4QRCWFDDdFBvAdv0FsRsIgZ3mIBvI3GFrDI27RXVSFyl3DmNK8Pih4YiGziRBjgAx5hzgRdWVX1Vt7e7l+/fPltvd1FSpCYhQe11h/b5j5DqWDkEbFb//j4+Xj8bNvPfXtu2+Pj+fjz58e/vv3Y9r6u97f7l6IK848e217GXiN82FZ36p0CzUzgvY/nvpObAQMMYoa4KJZS1qXeluWtLl+W9W1dvr7/tqAsVESrlIJgq93rTtVuS6lMGkNH/x7N+lMCtrfhRAJGGEV3ZQhCqShwSHeEQUXKcqu39e3LX6gUlgVaC69MRakq1RB2KCARQtCFVdcqUoQE4N4snLfYBvqANzfABly9U4ADoWTqpsY3BoCOgdF8PPv+3J/Pfbt5iDmYhcvbvdZaiEKEh7XW++PPP/fW3BBYEPswV84iCCjdQrJOzjG8j9AggCVAIEaIkwm5IbITjqAMIIiJnx8bVwllMCkLuDCtwqvGjVEZhYmDO1QBHSSFVmV6olNQES9KtaAUDfaobJZzcffRhQdLXWr1Id5p2BLBowPWwz2UTsbrZKnSrFX4CMCGMCkAZk0GIqtds2DEDoK4t2PKCIQHBTwsIsxTZPkcfQvr1vfRH71tY+zWNx/dfWQ4YRSG5TQXBAfpgbSKZAg5UQiD2Dkc4FT2Mw7KCZTCTUZkosBIHvcwhaX8BNg4oiqyaDKXmXP5tAgIk0jiITm12EfoMixGtiXExXOLzyXB6bLGuDNOYygG7HwvLH0xTkxzhQizYHFs90lDMoQ40uX4XNcmpRiIl3f8CbwMIUCcNj5J6VnEy3/8UwZB6lRY5/oHTBc0PteeQ7yVbFYAqczPZko7o5eTdEmIs5SqqhmulObRnh3aAOWJnxsoA/fhOFpFNdV03eDuFHJi1NSaqNkRb59wbxJRk6/6z1LdrHzlOn0VwVw4klcAVF6HiEjjU3cnkpcw/7xN+UWzyibTrByRmq11XWcFLamapExSdIXT4WnyQ3R5XYcEzhbaq6Ir12B7RTi//FdVlVjmHfEztSZJuIMqO7vYDktIM/+PSMdkmGKYaZdT6E1HsKafjsysqvDXYL4SVJPUubCSNk19rypyurgKq2rEtDkFEV3DH39hs66V5clv/aeX2MReB2jOZs5a8w5m7XgCrwvkVeBwfzztpg7OaR7z5JPKWXaQ00x/IrxJWM6Rc3n2bV4uOk0Bjw4LZq1HxCdNfeqcJU4NQwZ6HGhPwKJ8BjeeNeijZ2ViUMDTLpHBjthHj8EiDlbm164DDvKgI5zGxhiDLP1HHWGgw2vZEBHWve9DCtdSScnZhrFTEEwEi6KqF8IIN3ESUAE5OMAK4gFikDOqEDEiwglDwiTAgbK8aTGSBt6DGSpFoMHvcQdia9s+xGKEmXfrvVsjxKCMIfeRRyl05D2Sg7KD3weFIki1+8LyJuVrWe+6LFxqvUldhsXehrIsy7K1sW1bt5Hqk9b7Y3t+bM+fz49vf/7r3//857fv//r58zEsWnfW9f1e/vLlt9vt5mPUbXz/EQ83d5NSluW9D35u3zwcHmpVC5n1qXy4rcvtVurCt6V+vd/elnrT+tvtfqvlxssqC0SJFSDmglLLSj+/f5Pu/GXH41FHez6ot6dKsdFbHyISynCGa+hag93DIlSFRWvR+9uX+5evt7f39faFygJdlvevy+1dZVVdc18NLIIisgaE0Va922p//T3nx399//798fgZ7hajU+x9p4iUIbu7hQ11D3YjBzFTj/Hc9+8/fmqpZfnL7e1eVyFRgGpZvnz5jeDW9+fz+f3798fj8fjYYwyRG6EUAQRaRJUlnN2M0NyEYOFtdBFVLiOoB1wU2DkYTuHMKIWyLYWDue2BZlF0wJkGw4v6/Q4XCmGpKlqVF6CQUwiUaanMpPd1va+3ZSkiMiDP59OjB2zY8GiBJR/OpVS6Vetl7zR6i0ERSInlCQ5OedCh5gGzEmgGKSa/cG6DrrbsEC6E5E9MKDxSo9tb/xhtb20b+z767mMbfYcNb3v2DCtLun6RBxREQYFMl1FCcCQZms7tFB1OTofsHYhyrpFJiRAoDO5dODuv03o2EMeq7j6VBxaXfe2sZyVunmthrQVAgN0DYM2J0oKP8CgBH8AFJ8Pvl4yg/HxlsYSkER7jSMBJbwh56Xzzt7Iuk+xLRtC0NmbZ5ao+SXHosQyDxllyiuGOIVxUFedCyFfr8HF4hRMidbOLlvQyPWpMhwdYmB0xf2n8GIFc3SKbYN2ZeYxxqCNYRKSWWkqpi6pqEeX0Qc0GiUCj/Zj/U7UXPDyS2xrdHM4SRGXvlrpsuEXQGMMdwomxDkeubA0/Ss+ca2TK1PjsMXU++gPkLB06EbLWGmGqrHpPeDH9S19FW/dxXqhSlmS8JkkzId3UsCeoMjMper/fSylZn5o9lbk6ZmXqNMy8xISfzYCzfDmb4LIrbS7MSZjNo53JdFeZmuhrCZ8MEIDZYehME0yc5vgvgq2mhn0M5dLaFmG1yKHgVmbWFBqYxbCIcFFiKblPmwjpLMYhG9byMCbcmTB3nk6ar2Yd1r34matjZwDl7FicF39+y7yS/azhTtZqYsFfrm18LnrSWcjORoRt21prpbzoz3lSOSSutNzkNSf4nkc71Yc5QrbemNnYcneQAO5FmePQQpiZZpCR8ixwAy/7mImwAdCrcRCzJTanxAUHsDvYx97N+qdoXYcN7zYC7ODCZOE4rHAik16JchvGp5AjN3Mc4HAyi9b6x/eP9tyCIKiFgiXAYqRLWhmQiZjCiUDipKZ3jAAFqpIqD9q7G0FhMGItpDD3HmMoRG83kVJV6xIsFtgDQloLcxul1vp2vxvGz+3jiJm3ZYxRhZiZyQqI+hi9+ejkdqgZAAXB3PcupWhprjBZrDSvI0qlCi4kXQClMUbr3X2IiIXvrW3jmYDg27dv377968e3f/3x5z8/Pn48Hg8iYSprWZZlud9vb29v8Ojx8fiQrOgQM0hA0gd7MIHZVCSSLzkltMEcjFD2pci9llvRW6n3WitrZSEWFyYIU0gw2Uq187Jjvffbmy136n0bw7yl5CQc5hJeKFbGQkYCZlKEBrPIolKL1vv9fb29g4tL+q28c12gixIsyCER4kYkICpMtMgtqrV1tHvPKkrrj/DYvbt7jA4wBThr+YYggpKAI9gJ3caz7R/b819//PkXLroIeTJZdb1/IYre9+8f379///7jx48+IgZ0WW7LbS0iheuiKmDv0VvY4S813LcxEIMACxrMrtR9ZGKSkLKq1FLrKlIe8uEjYA6nMcLNw3a3p/JPjLqW0LVIie5LGxxOp+kL1lv9/bevX758WWph5h/PR0D3zm14t+HOZrtZY17nzi8rR8ldxDVjFWCabdV6EmDXqo2fDY+fRLIANBUkaa8a2dbcYzTrP1vb+/5o+9NHDxvwgXBCIxiny9TBCqVfFICzVY9IUmrFwUzAQCgw0joxyAAht9SVp+YfMDknDScyMuJ0yR+zVcenscWF7jrOQuXQUyux5CMQROKIZAgOT32G0CEumW73uDgMzYszIxdTxiQgFwnxCKP4tHG/7t2PQlh3wMeYZFKZwvBZfZpC7RlJmZvV7PoE+RnseMY7nkDzKG4GRES1ikzPrSx6zs3xp+yjHBp5GbKBMYVxMHfKbczxfhtBCIrEl54hEcQkpBHhYDCBxM6A9uEWAIkQic2tORifvzwv5Tnw4vCUPamsvIdzuPKlLvsLqJowCGc6CPACUr/cx7mSJbk1C4t+yRnM/8zqldZyrZ3hVF9NnmPbNlyER1daaNaqJnkTgcn0XLVieRPN7DTLDL/o4gWvZsa5tXA/qFb34wNba9nffWitD1knncHp6YAgKhLBR5iVCLOYvzw+cI4VABksfT0v94ToL4SUVNdZyTrKo2Zm3idhfHWuz3vkl1TQCVuvRNHkiScNObmoWcOdlNKhBzil8pPjub7nAotlijMTpieUvKLheRPnoMpDvcr1ckS4U4RE/MrbzUGbg1MuuZxXqqyUl0tcdjnNDimkgOxCrTEzuc0jJ2aO184NgJ0JDUEGNmYj1ogQIkCYHVBnV9LBznzaT6W6YPgYPtqwnhtXTo9Cs2CPtQpxqQEihmTxwsEOBErAgAUcCA6TTmBDNxCPHSxuRBjiHkhjSH+7qSppgXCnYxrHYA07fQSDKdjNx/DefKhzUBFHKlMOnRkUUQhVEQThbCyQwqTvrIXoDroFVviNZBFR1eZBgZ04cll23/fnj5+PH88/f/78+ccf3/7444/v3//94+cfH48/9/Yws6LrstRMtMh/PAb/QAo0I4woiAM0QMYcFAgEKIXMxzAm+PEGoUXlVsu9lkXpVkulIsQg8qPzlVGjdK4qsda437bbut/WGE/yum0jKA0yYE6pPA5ZQA4RZL4IyOYu6RysMSzMswMCZkwLmONss5fDGKSsmsYBFIdVp398ROvbwDAbw0bY0c6Q40a5BJOWQiQYGGM8Hg9mbfu/wFXLuqx3VarKjHK7vf/1r/Z4fHz79u3btz+/f/vD0Wtdv7zd1sLruqxvpRYma7Y/+t7MzAIx0FpzJ0CcJbQGaHAYMq+l1lrevrzf376s9Ya/oe/7/myPx+Pj2/Pnvn/0Z9tduDKldciiVZhU+EayqbiVFozb/f3+25f3L19zq1RpGNlq9Tk2H25jh1WyJt4sNKKOcDMf1s3HtaJBdBQgUmHNnF2BpxMUDu8FgwVeSdvHjadM22YzZKJg9OZt7/ujt59j2/v20fenj86ICCNAyYmc0/qUiUhSIhYZZxSn1IwjXbQinMCzBJZFpIjwDD5Lv4NMMjza4wIUfvSwOCKyiWj4q4MsXh8VEUE6rQ6n2dUBN+lsi4wgEbiD5QCmcab04Fye/2Phf6k3ch4PGRQ5lU/DzNf6cZSHDD161vKISLWexbLDoIvOJKajcHdtRQXS13HycBe175jLcN7uw92KxaxPhuBsbkVgTLyVdm6fcE+wDUfuJADHIRiaS4W7h7uAQomECouIR2Sm+uHBmzSLOSCsUkRKOIhGek2p1LSPNws5YsqViMz7FRhNHIOzg4Ev3hl+6bvM96SqOpeo5/P5fD4jPBFArspz2cZpAJbfkjWviEhDqQReOKlKZr7dbmWp2VTop7cTneXFlFtli9yEHfkt0y4hceHpqvDpsK/1u/98TYVTfmPWOq8lvNYa04tji4gjY9j6eTAhB4FGR87CaESlKHNoRuypKIS9p6abwKc97+leZg73T3k4CR+vJcXEme5u7hN49XEYwUeEqvTeU4CVlzHvWpyitKvKbTKFpaTnZkzgdYZe66sn46wmJ3clFyO9CRbjEq80HUaez2e6uY4h+/4kihwVeS0BH6OdtNqLesyw2Wypy46aKb06y/qv5oC5A3yVzkkOl+hzqKtWVV6WJakEP0O6jqeB/T/8Wlns5cg6axXXk33NGgi5PFMcDGR1tWo4gGF7OkFknrKPgBNBlAozw2HmIK8FylQWXT2YAeGOMQCL4XAXoBBZ+jAj1QoEJgx2o6EEEDpFSI4tinUhoVANoRHmNtgwELI3zJQqd1h428e2tcIhhb0QUeQaYh4UIcRFeC1AmmQUrSpVVL+wFeY1+uJ76VX6gzuzUFXtaIKG6G3ffm7PP7/9+Pbj+7++/e+Pn88///z+48e3x/PnY//e+of7CARLlCJr1UWLiBBHOAlFEV5UPCyTARkuZB7dvI2xjTii1JmUKYjCIIFOGMyhTMJQyoyZgewVjUFUEYxwQw8egBEbS6iyqupSi+8UdITzuYdTBCFUaxqEi5u7efTRWtu2jX7+HBbg4qRDlJfHUlRYUEtuBhKLuTuDgkJJFyZUirfDH9ysm3cKImEyckJuz8cYMcI0ii5StXB18hhobTx/fmxtNfqHOf3lr399e3vzEBUIU6nr25f33377y/39y+32tlPkvPZW+PZ++/rb/b4W9j7a/fn8aG18PJ4d3rvtYydS0HKkPmg1a+mzJKWuy/uXL7+/39+qLmNvz4/t4/uPQj+Yfu67ZYKeed/357YrWMBgWmr52nZiLSFBZUUWfLUwCY2HeNV1ka3S3oZZxGBre+ywYrb3oXsfbTR3J4ojGPHUYDOd7h45YMGZshpxSqWCDzNTdk704uzMHB4eCEP2e7ZH2x9jewx7um1uW/iO6BFOYRGhpMxhkSykUHAQRSZe4lX1C/LgACF6qrsB9zCLgIUBMLcDe/sZeU/GAXdLn9RIyzIHHd6CcyWIGXr4n9zGVF0YnVMzc6rxRAhgj1NBdTryn7PXYY52GPcnjeQvO9CMqgJzVkKvm+aJuoSPBSYfxMl1zfmXzpZGO7+PSF4SEJ7KXOTTlYh6zrZ5vyNCiDU/HDQGpUnsidPya9TDgRD5JPQGEN7zOOyIGTjqNWZOZOlAdmiPTvGfu8vBlNHZfRFH9yiRSCllAatYNkURERWuYyRx+xLkncxHKoRimm5nNdwuGcxZYZnABZcCzbzg27Zd19oEuJk1lGeUKC0X4B8/fqRVRC72ucDzaew5ibRrTWqW+fJXDisKe4n8cBqQZnOcu2fjFM7I9okMPu+UzmLRGTJtnz3607V1wsfEfEzxCkDES1qUV1KOg8eh5gPc40xQPuzviU8PXwZF1tyDSfNBOiqZsPjcfeJnGyad+OygD/1o87wWTydom5cobwdfFPQToEyiK58RjYiIqQnDqVX/RTg/ebXJMNGZrDAjyflzjGOCv3kl3T0F9TlCJif3UtF9lhu+oE/EjGCedOnVfvacis/gJqcz63o6hJXM+jyVIRGRTnuU+4frmIkgi4vlrME9f+2YhyEsxEEioiJCSHtvsGT0mgAY6gWFiBR3QUTYPrrAhOtS395u78/th4VT7wFGdPcemWLMxEpgGW42rIX3XCgYVMBAJNPlAJw8hALWEGkyE8TgYAJsf1KRIFjUCLIBG+JG+4h99H30LAFZRO+273tlaKiRuHi6AOV+XhhLkRsVEERLEV2SQCztO4cS95Dh1IdvsKeNG69vbXu2x25te/z89o9//vc//v3H4/H4x5//9Xzuj4/nvu9731t7mO+gYR4RSzYTzaHJzEspb/eVuLeOve19GJFroWFhPsz3bj2ZapAjWKRCDOxEzhiEwdnaZj2YKcxBThpwdUYHsUWMHvsYe7fWowc5mFgrRU+snf1IYR7DwDdwcl3DzYKw7zsxG6L1TrJAiqnyWmktt7UAQeKqGAgnY2KAs4WMmQsvq4739Wsfz9Y2G62bUiAkv9Aj3GykiVE+FUUloAajYa218Mfj+XzumzNJLSyVAOXMVa11WZbltt7e4EYsDl7X9e3t7evXL/e1MJm3dVnK8/kcOQaaISzjd3khXclVmazZCKQ/Edda1/VOw0mV15uChHQp6751s6j3WgqDRrfGQ1nIaQXz7e0mJUlefOw9ZF8WqpWpVPLgdehasVXvu7n5aGM8wiiMRpPnsOYjwpg4Ca0DbIEn9poKejq9oAhyxDUeZl0gxNGNn37HYTFstD76br15e46+w9NUzBUGyt6YEe5lYSdwhKc+PtLD4AiWoaOK54FstM5mQ4+wbLa8FDLiLGEcs1W+If1OcyUWYhKKCEPE+HXdmgv5nPenpm1uB1+WWeTMBJD1s1tqHsxJEl82kRyO4SOlhKe76DEHIn38WD9vZzO6dbbsHYP06HJPy4UTkx7TKb1cWE8Y6Jy3VoiPZUAcgfBTlcvJOnHSXudHvc7916IeEguCXkKZmLpjD+dk9gB/xcNFXgo/TvZY/yB0OL1FgFzIwURQYdEiXIIpAtkNSRCc92KMEQcFaNOWLEuNs/yUt/vCNb5cqa4ESXyu7l1LPJPcutovneb1OmHrbH6c2vb5pb13Ek6qJqHYdDqYXEv+cC6NSZtNG7ALWSJz8Z645Ep9HeSoW276r95X61rnicwymZk5xskSUcYriZxY4RgblAkKxy07bG5fpbpJM19fAaML/E1blhfKP0z5zy3K5fqnFeC8ntcdyOV5fEGxSRRNjmo+Pocg7OwkwGex/7XCiLMUOCuGia4mKpqs4TzBeeOO/diFsuLTR/76WxP+Xls6IkLqYV0Rp9Qs8VY/X3NLoCKqOqOB0ldlYui8ublHdc8gXSTvnpboMZ+9owflSLOdCSKH2p6zWM9gJRE6+h4w3CSS1mciFxH3EhKFbg7v3vfeGvuiLjeAxoidVcpuw8LsQTTcNm+7aU1xwnAMj+FhgR4YAWeEnDS9YCQxjHCPHl4cKgcNALefH3/WYksdpSwe1PZoO40ej+4jvIf3CLNu4WbZLcGu6XCUVk9GEYoQwlLqTYSEWKQWraJMUNr/BRPgbrIN3inu7g8aN3/+8e25/bm179v2x7fv//jH//e//vmv57792L7te+99eADUiEeQEUVhLlWKshKnSEZIiel2L+bVo7g/Nu9uu6MxozAFMDJZF1niH+7kICUNHsEjC5RwEzKC0+H7DUIQCtzhUA6Ck9s5pqIHLJhEw5wA5hAREAM8wu3w/TE3eBADw8e2P/fRtD7BKvW2hTW4F+hNuN5ECOIEIjixsVOArA8pC7MWXpbS3pYv2+2j9fX5FIj7IA+k6oXhQgAcno6ix02ABCGa9ce2D7f3r1/f3+/Kb7wIUPrBT+iy3N7fvzAF2Rg9uNZyu+my6loVZkKOcOJyuIq5d2diWZjuRAtRyBFJfdjVupn56BysxFKcvOBtUZF9aWO4lyiVuJw7lODAAlQpxL6H/2y2+9ad2KkEkSl34h7cIAPUA+Y2Inm+4ePptmSHHMhnWx5d4NeBGE4JNAAEIyL78pDE6SXx6gRAZmP0sVvfre+jP916eLPRfHSyxodlvBEZkTM8u+44ECRgnL1ls3EJAQ+EwyKcOeAQUKQGhTOFkWDwwyP+FCknEeoRcZirsgo5GYLHa+Gk03P1OqefM9S1aOdECRPiyEF0ijiC/AA4TgLmmHA/Nxieyz+BPIz8VLvEacp/KYG9qK9Duc+nAOtAXcFZXTyCKWcFLSEnH34Nh+rsqJJkE/tZGgjivFB+urAeENN/NbfE0WOBuV4CINL0156IkyGesC+fr1d/xonkwsMcDudQZoMxKwtI4AC5HvUYomQrxnBzEB29tDgjRmb5b4wB8xMNAAfYs5QtEs2468M7KgHHf6LtCcuIqNbKjFzMJmXFF8srOp3T88LOHskrI5VHOIuPCdTWdc3DwKWGle/M383FO/1Xp9sWXlDnZUwwidhED3OAzerVGAN4OZbJxZJqKtkjtVnIwv0xvJm5Hv6ZxwV0d2a4R2ZMzchnnFFfoEOl5HHQZn4qEI6jhU2Uf0VIOF27Lvjy9ZowaLYFzIuJsyR3hZ4Tfs2L2Y5GgdfXXVHRBEZTp39tjJ0nOPm5V/VWSJSXtc7nlDKXKwsvYXEIEvInFHAQE4MO1atnPJZSybnNzBNt532fHNhrnJyywnkNs82Jeo+Ix+NxjMy0y4mz2K2HYsfMfIzLhgTnDHtsIs+hYccSHoGIDBRPcT0zZQkw5pudLC+VCmkRcRGIiKH/BX8lZnm23kbfI2JjC4veRNjgQA8fThbs8ENBSEIKCAkEwZnz6hbdDG6NvAYWhFGIe3s+bBDMrJfhaDttG3qjj96c4CxZUPUI9wHT89SYkJVvI7hQKNMqBVyEEJzm6kREivEnRyHu0G7YfawxbtjXh9O3bf/Xx/PP7fmvHx8/fv758fOf3358dN37GIeekrpRRxgxvry9vZW3W10XXQqXwrrKykWIzHx/bpytPe5GHMTOTBJQYz9pfA+4wXloYfcM1Gs+evhAGGgQFBQcEuGHn6W7jR69RR/h2W8vxPUw7+FgZ4iIMkFQFhY1BEV6bh7ziJllLFU8GCy6rty279ujk5Xb8uX+GyABmA+LQXRjQlrQIpjSY4bLUuqt3rblVrtShEnj7oIAE1dVRQQRR+87BgprocoqcDRyVQT6t+9/1v8urX/9+n4fvZjvNkK1fP3yuxJ+rrePb3+Mvm/O66DmzEZVmKVGNXjo7a0QD4iPIBJaClWOBRJVexR2hwdHs/F4fJDFb1++eBbRrFGYkBUBBUYBqbm33Sj6KqjEQqQfz/3xGI+9gdqyIkSjuIm1vT2f248fHz9+Ph97b+YpLuwWbsOtwD2YuHD6yjP0lykMmIUGAgI+FcqTpaegoOA4DCN6WB9789Hatu/bo7enjea9hY3RttzOk3WCC5lwmse0LGGBwCQISpBkHonuAJinGbsdbkFxAM+sThlAcGIdY4SHSZRzSYOze3d3C5pROmeF4sAuzEwXt6TLNvpF1PvRvzntBrq7hGeb57kcTifocyvsZxMTc3oVniEr59fECXHmpjx/cS6ogReHd+z7LTIW8rxXHGduCb1k18kzvfTmInIqz45CXBxqtPykJDki1fHhL2HvSabF5/GQSIvTSGKuSYf+kugof+Qx0wsQhHmIVGY/1g4nFjgFUS7WBEEimz7a8CCoVsmn2YKOkGmd4HiMAXgpwqwBn9CKMz3wrA0lD3SlEnHWwmbZKy1Ya61HQfYSSyxydFpkfTA9V+nUgdFFyecXT5BcDifFcqW+ZskptVx5nLn6Xk9hKvHprFdO6DA/n5n78Uunf+Yx9sYsdU1WZu4rzvHwIgjH6FPUf4oO09j9jNU7w0zPKSJHcXhEetoFgehARdPh9ujHvKqFLgTSBFgAJoSdSHMiWjpl7ADWdc3fnXl3v7BiExw/n8/H4zGFhrMuOY12PxF1l7rttSZ48s3ce/cwItJQZk6VHl0073Sx6Zo/SbRHn80m5pRycucR8AyjzAGAz4mcfpKHU4UWlPKFcPdt245xeNpEFNeIYBw7ijGGDzvJ4DGB11mUPLdPfvQY5b+RAl/I9fokVXqiw9HDiESllgKLYOdq1Zd73TfZ3RjMSs4wD7dnH+QOjm7WEUFkIe6p/CImFl7SDSq9ePbHczi8B1P6RkJhbKkrecAHM4+O545tw+jUgATF0NxWI2ABIw4iCAWQ4hbncIMXEVkyGxEDoUcpIhT2iFDjMfbRo1nT2G5el6fzj719//nx758fH61Z38z25/ata+/dwplZR4wxdo+mlDl/pZa1aqla13p7u72XIusNbX/+0D9yv6iFicXA47jx4EhZJcbAGBgUpezNRvfeLJP1LNKxmI6GKWKObEry6M9tbLv1AQM5MYlIZSUzA0UIKQOswQqtJDVdtrMeRzRZBzOkvQkrPMzRW3m//WX7+3u4xfDhbYRDCMKycBizIhsxIFkcKKVU0VKKeRdQhxORFtbCCO77IIJ5Dw/mVVWECwTKrHrzwPP58c9/xhjN+ttzqbVQjKGqX377+n5fl6re2o/eP/a97K1uw5miUmUBV1LT9aZAcXh3CEPFq0C5UiVBSHQf2Sz58cFjb4VIAtbbaM36cIcbAs6i7mPru3iYYyGpZSFZlqXuzcbzR+t7c9usl8cmXNZ3fHx8/Pjx4+Pj47n3bMKHUBAc4RFEYBFiRiYr2SeG44S/L4X4p4nqNVVF2lyeij1vrfnY9n1r+z76Zr77kX49RttH28KssIswKSuhtZFc55njgQADbNEx8x/pmBUQw+EIpzgRTASFOUFO99pj2RVGsOGQvFjk1grhdFARpyRrAq+4QgzwYXJ0caSckDRTlxN4sRS6tLJfya1ZB2FmIU6qzMaszvjVieP65mOOJg3OlJUXTRLnGb7Kf/RiHGe1ZTr4HyconPb1J+0RgWOBYZEEXke85mf91uyTOnU2fh0AHOxHO6NN69RJQsziaZw2UXFpFvPPjZxZzMJReIo2+t5TXaIhI4i8DRFhVhHMwMTeexZScaFdT2HTUbFqrfW+J4eUaV/MSGIIgAilv9K+x4lUzuXqQsZMeqm19vHx8Xw+v379OoutfsGjk44qpYhqDr9cGnOQnBE6R13pfr/n907u7Vz+k1A7ist5SPu+L8tyBfQAOg57sJSAn25hPdVmV+H2lWxjHGkzhybGesI1OYHdBW1PGhfpVHeqvM8OBlCa2c0HKiWF8/rQazAmHRhxKT7y2QFwlVjR5YWLnCtP6kp3zbGaVym1VinDz6bR5C+nlOoXqd8vnPR8ZGbjKnCQVX66ZM0WS5yu9/n3iXSv/bATK/sr7f543nPmOVB+2KFpvqQyzHItM9vFO+P4BEDO6CQAjEPdmpVij4PP63249XmmaRfC5zN+3C6AGObezN3cgVywD2NKAMFx2PUdEexwNwRYpCibwyOBKbNQgDxgmaVO4ICjjU7OTnCEIYJzT0dEknb7qlrrIlzdvXdrH83cu5OcGloHxCABs9HD3aL3eG6x7zw6oVYPn2sAgHSE5mPvGsdPstiVvjOqKGpElPv+iAjX9fmDVeDio3TRpsvOS9M6pH7b2s+fT+sNI8y2iF0U8TGA2MM23lmJF6uib3W9reWvf/n9bf1bLb/d//KX5S/v9KXyomuLL799fW4/+3hEPJ+bmXemwqIEsYEYbgM2eN/RmsvANuLBz+19i9+GWMhw37u/5bLCCGZiiAQI7latPexpvcfghRaXKBZPYqyjFRv7MEeEE0Sk3m71fkeYj2dvu40HU6iwiEQWLkkQ1LdBHuOj/fzXj/r7n1//8jsthcgZBLGIcAikeigoqNTVLYYsg9aBW5bIUFjvZkYsRDSGi7qN4YYI6jEiwkqo6howoqgl1B/j58d/ffv27/r1vnz98vb+/v7bb1/f3tbH8yex9bbbaLb//PavfWzPv/7+F/p6c6XsuA3YutZa67OPNvoIFzImb0wWFkRu4WOM3br0RaR9PBkODx82CwpSqrTWGW37d/NY1i+/4+93gdBoFt2bNes/oyMey3D1hof/4zuAkftkN0JasHto9rEOiiHBcM1onSM89Zzr+NRqHzO2h3k/SkawQHRh8s62sXlEmHu3ZrYP/7D9u+0/zLY+ttH20Z7w4f17jEHRBa4BcZIeFFCLgCIiSBGdDimZI0a6FvFB5Dd6OZ2au9upXzgKYWyJ2ZTDo5uJxwCZYYwYRAwuzcbeRgS01jF6+p5nrcQMo7M7epNS5HAYyjyNADEiaAxnPoI4CoFEHJr6+mSRAAoSYSUiG6HZ9kM8RubCps6AmNkiGV42mCPIA1AiFlYmDSc3ODmRJH0FpiMCSAiMbl2oHu40OHgLMEXSvaxJVwAupAxJs9b0LiViUg6QR3gYDVKhKU6OoyNlSLiIsLAfjZNXN/ARERQ++vAxUsY7NEhYQULp2DWaNQrW0ExmYoiolCKszIXI12BxzqOVIA7IMCYVj3CLMQwwijaSBQw1MuZkUMzdKazI2fExRpYnEMQkTJLW7q3t276ZDw8Lcxba23YY3Eeqv50yoZvR2pbL5HR8mEgxgs5+wCMRLy5KbQT7xfryoDrcyHmK8flMUJ7kUzJh178knZPgIC1OEyyZjd7HlQpNWXeurB7GgmWpRJTEifuotR4WEnasW2bW99ZO1/WiqsRFi/vYbbTWe2seo5klToqw8EPqb9bX8p7twj6sowEw8z7cQlgqaSHQUWQ7jPGMKESIWVw8msfoHoeYi7kUYSHubt597KPXHeSqqoVvtxufHaDZZJDdMZRRJ0TMdFuWdCd/7m2Ukt5pfgYD4PS1AYXoQZ5lalO2kU7J1IvickeEMNfU+Ku6+54UVFAmPEi6OADLaZ1aSsk9lSPtSc19iJBqCaZwuq/rrGkiiBEe3q1LCZJikXykq3JdxJxbS/V5z0bjpRbVdBCEn72xqkoKWDiZuw8x1cnXirt/bM9Dd5BsH8Fe3Z1diMGc/o5iJ/YNZEuyCIE165AeHiQkTMxwAkyJB5GH7zFEmChuUta7ho39ObBLe0Y02p/tsX10++njIYSid+HMYzWL3r1392CQECsJl9vtS13WtAcz896em3vfjRozpO0ei9fihXBfGZ1Gp0cvj832vWO4MkdYUYEG5LBLBJkhDV+pW12JggoBxFGqDHEnDxsEK0eskbqTcv9BzhQ1TIklaB+snZcPp+ew3nq3GAGz5jBw6KJKxMCqTBXMt1rk6/3tf/31//HX3/+v99v/FHn77evf//L7729vd1XeGff77fa23h7L3oq5BlUWGmZi5lGytdjgR1idIayP0fKfZm0f+2LdrBOFkiIVfpGqrdwJhYhIrYstgEOYUJp0ohZh5g0EZi1lWZd7UeVgw/CuEeytmUdwpDJFiEOJRxAZaDA6nDhYqIQgqDAVciEiTsxA2SeRFlCkLOwLu8sRdt9zt0ExGNFzDHsEzEPNg7ze1lt4GBA+Rhv7tm3f46eK/R//Q4rW+62st+JWln19e/vy+9++P1qziMcW/Ofwvq5MZCCzEeCskxCTErqF+6AdLSIsLNLgwMyid8KP/m94iq+OVIp1XWutVOFCm/k2Ym8Wrs+NRO+13PZm3Wg3N2vm6OyN3PtPd+99NxtBqHXBUpiyEpQZ14lZUq4eJweOl0w8Dll9eDpy0SnkYwLgAxkODEup00lC7NZb61vfnmO0fX9ab/Ae5gjL3sTM+Tmk8pFe/0JhQRRhRKBD2HDszyNeVEr+O3kgem3KjY5A7qNolSd3EF3JSWR45FEWTMJAmDlDzSOOzN2cig9iBuo8+OIsf90Zn1L8rOkdjACOngARmVKtI34V02Y6IoI9Vymn7F75Zdk+eMd4QcuTaKBZtZm7/OuWPS4q40lTpgVHli5fV/K1NYx0jp8Mx4sLVJEcAPP4ic7SyanAP2kheJz749eFShcMJspWqXTBMLNDuZVAhA4L+wC8u/kZKQM+mmjjYAjiIoCLz+TcLPAdmS36ybvryvfMSiXOeiV9buOfzp/XSz3B05X+PJg8p/m7U0IkRZMOmbXFuFi3p0A73zwVZgkyEl3Vqlc7gF8oq0kuzrt/rdllTt8kigIvnf709T2Pjd01DS96733sCWtERDgdDFMylWHV8CB3yXvfm/URJAuJIbLI+NoI/TKY53/ySYzFi9kKOqxrj0JwukXEYWbGhzb8In8kogSpmf99XAR+lexxlmKH9YOLqjqvfPJ8+e3Lshy38iS2f5Hr5XXzM4T9drudb5ODQ2WJiOH2S+y6kqAoifC8TUEASp5zvOqPn0A8Ts372Z5zjsnJqh53c/Jq1zrp5MnSbHlSrXaGjmfnMoBwBNxna7AfD7ghvPcgMAvSN+CY4F7WsqFq3TNilc6OqF14qvH2fX8+n92eFK2q1UJxRpeRU/pGOMAca6ms61qXWm8AuyGiNUj21gy3CCF2Dvr/s/VvW44jS7IgKKpqZgDp7pFZVXPO6e6HXvMbs+Zf5jfmg+epu+tUZUY4ScBML/OgBhCR1b5yxc4dSSdBXMxERUVFgpiOOF0doXsf3ceY1lxSRapQFU1TMzMNcpjDQZ4z5AJIZLJfYXQHuythRqCloqUU/ZuCKWowG1WOEsaD6mvEDh4Bg4xMmabgQvd2Z6lRGEXqUmort7X8cf/xv/y3/+1ff/yv9/W/Cd/X2x9fX19tqcwg6n0s9/u63pf2qupC3EqVIAwNKQryiD3MVMACOMIzH3WMsXed/2y6Nw5xIslNe45ROFMIU82OeoRwSAF186AySCgl7gQiVFAp0gojCoWrje5u1uHkvMzJjmBycRcj7iSdPeAgKoUIVAjFj7sPM8tC504PbtJqfGggQORDg4SCmKRQCBWiQek7QMDwcHPbxmIO58KlSjjMX6/nw4wouJZ2v7V1ISncbrfPP8Gl/8fr8Xj82p6vsT+3x8d9WRZphZxy82HzKVMabu7+msU6W6bIm/ah7DZez9CMGh6FeF1X/fxY1xVmzrKbP7oDy/aK9aYin59ff26jv3rf1Iapue1iI7wO9D6e28t8lFKYFrTpMxOU7gxO4U6IIIqZi3xuVUEp/UwtOZ9xyTiaDggnDnIQkbObuYa57ea72jbGNnTrfdPeXXeEAUYeROl5nH43jikVSgcJJ3enEW5ACjpz/jfhlWHKEXw6FOCtNQYEMcjlmKu+apOmy4Ae9qiUkIrbXLacNLJvaJc9I1cciJO75g6dEyH4rZfHDpr5kIkDYvZczi2Tcx6cWBAgZ5E0EyWRcGPGIUp+q3r/gboiMxODid+jXgieTrCBE//kgeW7E0dOpB6Le3JZ4ZihWRPDTp0WMyjTfI58buTGku0JzHZV5BkOzCxluliuhznNVJIIz05IStaIj9DJ/HUzj3Kx2QYsUiTms5fswXSo0+ZxvqU/h8VuYq9Aps75dOBMsgf0RidX8HRiL7tkNgMwnYMYh3Rs7rsZ6XN2ZBLpnfzWbAbpeyIhd99aa2lnGOK0mDp13LiIxM+4zBNzTDeEwqXUE+ed98YV851tMiIqZbb2zMbZITaz6XSJlNRKa23CgpIfUU5b/DwSZj4FbUcGQDBcZ36zeGRtbl37GF6IyYXZ6PBjS3E2XYD15cgzBP1A/IxIy+1C6bNFR4rlVXfvHqrT3OFEQq3ViNj3PobmjUgHF3i8oOUwYKLMpa2XYmBe4hOyJ/DNPlveUolQ7YDRQz3M+sw+n0j3tL4DIGZSJ/A6UY5MoeRlJDOFLgAcZ0v3xMS1LtvW3+3FcPasbEP1HDZKEWwAdjZz/1F6Jfo5+bxzdKC1VorQnDpyDz/18m5Gwgh4uFk4QgQsDLc4soMEAaHC5PMxJJaMpIKN6XI359VVt20b2oVHFQLCQZn3FkHhRIgCCKSVpbR2a+va7gB3dVdI7AQxZByCAmAwSREykhqRdUKMATNkLpKspawVpXocEenkTqahTkIcLGASuDELyCjJIcyMq8MMkkqlJ4M5SoTApSuxSVjxEUESVJ1LQBDUhH1Zv25f7bZKbdzqstTa5GNZPm73f/nxLz9+/HlbPphudVmrMGXOLU67GpHGRZmltJXbUtSkVEekFWyPcEaEQxhCgJthDOu79917GVuQC6IggsyNU9JjDBeKJkCjMHIjz/+OkIJSWAgApDoXSz+zKgxxNa09LNxNEDHgBWdJR5W5AhKM4Ai4MdegdMbObdOn5iiGhxEgUmtZb/XTe5oIeASLRwqe88nPv3Ri04iwEd77T4BrWStzqWIlOrz37f/49/8jCsDx488/SilUpN7vSvTh/2ZUnn3/+/Hr58M+7+2Pr6/7RxMRhxnU4Ro+VLsOM9tLTsnxYdHAEkTKrTUnDFdT7zFiqD9HH5XNQsoe8ephXsfwrihl7G7uPka3FCEUESGHV9AY5oo+srQBwA52kBPmnkypuA8wuelBhEwDKvqnrOvYw9KplplsZrK4z5H+gBM5sYJ6oAcUPJgMCLdI000hrgQOn8QaOc+7H4GgOMIoSKaNRQQi+PRHZcHbTj0O23dXFeYASr6tZcDySbjHcZoFNDPWSiTeitNJNc1veDqdcpn29CQncMH0NEvIBQIdrF1cCSSiDIpM1IWEQdP+C/klXcOYGUbGkfnbl2GrN6EVRzL0JOJOKbFPwHFwHpQ5sxHHwGMQyAF2BxFc/TgtU86OI1ky/7SZoWg0tVwEQU60xTySQypEM/Mx6eTcgUY2iN0p0Wm2Paen1zTEFeKM2cXsElvSFIkINXneoHyMD7vLGjMKSVLfPb/+Ea+ZStN0DgFwjo+dZMDZSzpFNlfe6xyXM31bFZyuE3GEbScJFDFdxU4PiLxzdLyzHU/8VFuTS5TNiZbyAE490Dn8eOKAgw8TuTiPnxKx9+BFvNHeCdyZkdAq31NV00QAwLIspUkCvnSQoYvN/fUgDxAgRFFKqSwqZbhVoYOwfOfZu6u7wRUoJHxwR474J6lzBWGgQ6B5+Lgi/KpSP1jVOB1fDxyWzMVbA5e2HdcmbCKt5Bv3fSdwLe1dseDttMkXcScOl/wEPbUUHKedmSONiHFl2U/fGIZHImbwHLect5A75BLAkGfbNeCV5WRAT+HjqRibN6eF4nS3/s2gHwCRELHItHqOIHckrk329EoQ5vsn8IKf97lkeofl7LiZ51QjQ3KxmRMVszGCi7laRHB4BLFkxoiU9CFNMJpk7ftbIwxxuC4LM5NzFSm1MJeQNI4nVIY7+y6tMBPEXS0gRCCRUoVbYTECRWczOIRQK5ZlKUupSwkhdzYyIEiCioMUaFlGMsBciBTERNW9e4RHjpo7XAJcmuisqUgKpGQCr4sbnKrDwUZlXanR0m4Lf/zxr7f1oy6L1LIsrRYuTLe2lLKKCISdwmJ76UAYEN1smAYhXRmllrQ5XVfxIJ6jLRwuAhvF2ZWL3JZaKgeTkg94D6uuNEiINQBidfgwH/bU/tJskMOIvEh4oWjt/mH0MpjbcA/iFtKorFTv3LjxCg9XDfcxdndTUwGpRSWWQlEalwYRKUFsgAEnVeMkFFAEB2t4Ioq6tA8yMgsOF8KGgAagFB5BZm7hTunYyU42NNwNtM28YOzhFPoa26/X47ubm6u5/i82/vVf/3VZFi2FmO8ff6r6r8fPX99/76/Hvr+G2Y/4ut0WhxnM4UqhZiNHFlWJqFARYhFu3KQ0CYc2094ba5OhrwjfbNv8yWwuZKBdySKhKDeYPnYHRwSFkRBLoSqMiPEy966j9+GBttu2Koki2JURHnwIZgME6JgNs2wCEGFOviXdgEgflOwLEEdxDxBZWo67hVuoRQcpqAsr0xBWkLtAItznAGIhEgRBEjIRZ3MwXRlyM8ZkjQ7/MPAsZ4mzVTEd6UEnNMlX5wGnbjtnuYmlEIflrzAJwKVKXmuDwbICS9QVhz+ZBTjzU9+GGjw/l97bYTrpz5UlYk51QXD0yFyCIbN9Q9ljzQHLTMDMKpLdnZjBAp7jhyf19U7gPskwB2W+XvzGeQAMp6BzZAnhuQJ5OALF3T0owp0i1fl8YK+0dU3xVhp5GKyERXAuyck44rgo6T5ADKHpqpCJqDgwo3AJGIgALixECGgE0iKOROKYTrc3qxk23UOy21VLqXyQWyWtfN4eFgk7gpmdIMcmmqjodISnQyd00lSJSOL3YYgre3TCmgNYvKNmTqwTR6TPuZue2+d/5aWugOYf2IKIXq/X+SbXCudERbjMUhyNv9nWvzogpGHbCf7OzfuIFHu7xc7IZpqjnadtGHEcdF1ppbZWmJncVIq7Dzd3pXA1m/qExBxHUpAjOMIz+pzIp2saIpLaznLCzh5xjmQdnU0W/m1E9JzHTJOFnGHkYy6SmbsOMJVWq7WT1zmhTOLaZVnyTjh/8YQ1dsllOq/O+Z9EJA4AmgcDipSFHZq/iQjPd2gyw7zHgctVNYJKa3k5z8c4wboInWL/kzM+Gdbz9jshforYTvh4Trxelf7uTiREUkprja8urHlsc6RXZriQiCR56e4gH26mxsyl1lKyITBJ9vdzYbMsIbiZA0QeJLDwPGNtKbfb7fPjY+8vokGuEao6DBk6GMTRhCkhRy0cTm6uhmE51Yi2WLNnXXbZO7GFM6X/81KESINcxJlhjeGMZa3rbaGlSBMjhg0EOJzFOWVkcswIg5twiAcDPMKGG9IQMuZEthSGIXKIfw6gsQUVwvDAjFdcuKzt7rIaUfn8c1luUhozt9KKBCPMaJhvai5bUJArRrgNDtdBfey991RilVJAQWREVKTcYrHb3bqRS6OhihLkEuu61taI2QkjfLgNM4LQ0KIezB4EC3P/uT23fYsOBjEx1bbUIsuKUp1p974/u5ozUKIEmsitFKklyH30rY7dbJj3CHOHWRF3khXSQM2iegx3lQhkN488pEbmzkWE5Rh0KamnlKVU1CrL2rZteW2/uo1hmzn2/tqdUuFN4kqh4sYOaKVqeO2922b7c9P+MN106OuBx991+/iIz09e1iJSSwm01pbb+nG73bS/uvaf349h+vXnD3BQcWcYu1OokBNpD4pw1ia1VmmltjQdGB2639aqelO7dd2G7ma2+cMC6chFVDyVSaaKxUPCicEFTQqTc4A3D3UzhznCo5vr8MGBcMrCRiI5kQg61RnMqedlBIPTV58CnmF9PMeaUkWR8/vDVIeaalfrZj2QbsUDZAxzGGHmmTsROyQjV5GJih6BIOf577OWPOBLzCUrn3oERZq/XKi42aA/wnNCAXZyDk6GhpljFmU5L4kZiWQlyIDphYHZTgqCBAkSDB0Rlgn55haRetVLo/NoeB1TXVO/kn1GOexyEulgMkhwJjr12EIwLucGDyLMruJvoR+H5mm2DnHRY50gIKNAMoftcH/IDkJEwMMjKDjjJk/Elt9gDi7QlAAckX8xU8UOyDXBN476dbJ0lCoDnXZc6fWRbB+FUBKiSiTpBpUzYsHERB5zlJkhSik6nIax752Y3tmRcfmhIuX38JxznjQ34Gw+njTVFWwBOHVUJ+N7St1zVzs32mPEbG4854bn7syXhIOjzZRXMA5/5vNtT4CVrz/jn68X+orY/gHazoM/rdWPS4DTs5cvWUAn4vz9Xp3A7jTKP801khTJHVpEOI6zkYaMfVO18Onkx8x02CzHHOcUJyL/vVH+u3DqJOpYEIFSOSCUUe6XmOr8pqe1/fkVEkdmc/aU3p94bhJORwj3uq4nWciXacHz7F2v8pVixEUtkMDL3ZdlyRdHhNlvph7nzVPxHuZV7XQgKjku3/VGzclWHBORwMxfxxGke16XI5VIztvmDDLi34ey81Sfhr3J3crv90/Q7N2/jye7ipED72mMR+4RZBEMIkq/ghP9B3mEdw0ODFe3od2PlNIfP36oqnCMrh6baQQsxJxQhVqtpYkUIhaA3C32bvHiRq3dWCqW29Zuo+47D3dP59WUZOzbiGFhqMReIoRbpiAujYTDzF09dCqVoYhyJFsQUxEhliUKizspZSl67CMgpqzXEkZ4EaqgUrkY14UruKGwNF5WXu7Ka4Co3Ys0dwrLvGE2Vw0ldOD16mG0B8jDbHSG+x6qvY/Htj2HdTPz2COsttpKiMhS221ZfVAJNo0Wi0pIq6U0sBigbt1DzNyHq8vM9yuIXMstJ42ZitSyFKlN3L1+r0TUdaiFu4KqhbgzIEABLFG/9qJKGTwVSF9EcGVBDWfv9Hz10vrSrPDqIoHiR2uMKJwjDCSFCKXUUpfl5nVd7v1j3/fH8/P5ej1e34qf0c1cN/OAEZFzmKTLnAnDzffN9aE6tEh8fdwXtdaaEHR7vX59Z8T1Wld3b3X98fUF7EvlX79+bdvzr1/fuysvXO9FFg5iJziDWKBCAFPGzuWtWGqQalAlqkVo9Vi77/v+GmPHsB4DUMALRZVe5VEEhs2cTcnRiO/ihbSl1QKRUKlQQxQ30hHOHm5wCNjDCieyIExxOl08ymea8ntHP4ra3BeYwsgj3f/Sb9lGmMbobnv4YKhDCc7hiODA3Hzp8MEHABawwz2X6pyJmGPqg4BgOUBTRhGlSaBcSOxDPJGtQJJ0JDEEmCIEOJwmDg6PJJebbPKO/OLM2XRNNJBtC8ognACl0YwI8zxL8xjT3OvAWGn3z5LGvqcj0TtjLcKnFOy69TLz6Y91/g1BjgPjidsO7m0yVBdN3hV4ESUih8MOXicSc6YmLCIoa7fJK+blyJOYoQITjXmYWi5IGYFMiXJZiA3BIA8nNzMGWQwzRWh62s+tiyjTHohAZNlXD3KQpDv2BCgpHKhEnsOTgMx8pPNLkZ9Gvu/+mhPV6UFw7FX+ljedJf65mZ2A43zb02sgNV64SNbOX883zG7XYf9+ElFprvYbHXXubfkp01v8EOYnjMiMmqRM+LAb+AeRdnUbOZ/B+L3dc7aTDlup+TeHUhuBOQuZn54zdEkZnrSNh4L8GP2rPAdwgjzSVgAApAh2HwpoeHaMKGOziSXmBAYIKJIo5MgtuDS8zvZuflPOsPD8qsHn+cwX/+ObyiVwM9FVNuZOwdb1nLhZiKR92uXkyAliTr1d4rO8Q+LybPLFFSKBzrquGfPFRXDpGl8R22Rnj7TyiPBQJk5u73y387PiSA1KG7k0ST4BumIGbua44hXk5ctKaaeZ3HEe6IgXk0PdNYBMN49LG9RwWBzn8Yc7JWt6uPknjmcWEqQch4WYai6Q1MOHufvQEWHqY2g36621u/v4GNYHRd/4Ncam1oUD4QW0ityW1hoTkSHMbKj58D6cRixRmhRi/mP93JftVXdVhUcM0+6DiHblAaTzKQWW0talrQW1afhmXXWkw43Cx857RBcZe1duIUzBQgWMQpwpdTxVLh4BuJWWuhx2F2HyXbgSGvONxdGAamWl5Ya6FJRhECZGdNXpruU1rb4ftmu8uEEBz7HYsQMRo5vvZl3Hd+/bPjb3V1dd1nthZgELVaFWgMZCscQqDGZKxaW7q8VwkzECjtyQhMlDIBRUS7FqHlSl1lpvy7osFUBOM6kFcZGyay+NF4mqw43ViQQsIksrY1TXzYnMEK7smfcDUsSI18OlOjViqcHVg9STschlxaYKmyun/Jm/7mVdzcbYa7tx+XsEqg3sL3dRCzOlEuCIAiIUbwIOD9PeR4ehlcZ1/Sq1MNdaTfv3r7+J5OPrx22997G3stxvn5VprY2pdPX98XMbP9tHu5elypIGZhECDqmNApTEbq21tgIWRDcrgDBXZpKoFlysILz8udne42Vswl4RVQbLEyYKsmCKVaJMpyUnhBCKRJEoCPYOLd5jCFNSTcxOoURBIVlD0ZHSAxhRWrIFT7Xs0XmZpAOnN7MepdvZLDIbgFEMhBKcM8fAfQY2RIRjpvkEwZOESpM80LSJSvm2AxAiAWOOVDoFe0YuAmeRnQrM4DJbolOjloZwmAA0gQPPTldCNKI5C8mgoHTvZAgfFhoUYHC2B9/9JiL40fn0SR68N5dDhCV81KZMZ1NydvQyoSMueyqurBbSEuL9N0xvW6AsSXNnOPHHuVFdsFcOfWYc1fGeFMizQdc3p4Pz81TeJLCe4r3pcX8Ux3nm/L2vRIQNpUDA4Wo2WMp5NgAQg0GcRCUxaEoMiyRjxATJvqsEhTDMnUClnk4NxzcaV5w5vwnoVKlnHPiJYNLT6ARPJwd22mL5YW160htxGZOkI2svRfFj2KGCv4h7jhE5kX+OfPrhBHZ+UCIAPpKb85VjjFPsdXbT6Gz+XgbWThB2nnZcukjMbDlifCF6j0twU+tx9OlO2k/tNZkzHzhG5CYzktytT5PG6TPCBHORLsrgmfdAMUWfgRwi57OuSIYrQcL1Fs0LYe6nhVXijDF+G1qk3wcIrrj2QLpvxBNvGdl8PtwdEUUErdnhbGbMcRj0nKGQJ3uU1+U859c3ZyIEpzbU3Tn9I+badWjUzutEEJb38U+TVDtTFHNtQVItHqcgT0RE4sToeSOR0kl3XVvV15flXUqX3vTlNUjZb6s1Be9Jg+VEwmnFDCIKEcGJxVV1ImtJvovAXJhJgrmJk0eoj94jHeCGdXN1t1LL2oou635brK8UC1HDKGvJREi6c/kqstQa4d10Hxbd1dU7hTJ4Ke0G91urq9TGtBFZeGhYH51YBtjBYC5owmhSm0gTqmLDPczVLIaZUbBy39w2LltduzQt4uAc8Sppsx7OgaD0NAgOlv/v/yv7IhAKEDuLc3EWZ3Epdf24f/1Z1w+nqihcF65VTccYrnNcbnR9Prc+7Pvx+vvX4/XcXq99e23P5/b63rb9L9Ux9Nn1pWNz72p9jK3V0mox19fjmbYAo3cQdCsQZqEq8iFt5VprLetSSsvUAzf31OUxFxYOEypEXMuyLMttWdf1tn58rLe7tEZSSlvW9aPwDVEr35aVi0hlYnL3YX1EeJGSMttWGrM4cWKS8DD5o5SllBvLQlL3EVvfQUCOv5MX4XLcVUcfqBAVkcoszuEwMIyGkym68QhxiBtZwCQqeaAbusFcqJS61GVta1vvt7U1BPL2Lcva1lscUampLTYPS1vnKX4yCAVTOJilyJJy3Vbruqw1S5yhPoYNZQch4Bau4c7wwryjSC2lCRUQtBAKowq4IJ+BnKiO3JGIIqC7aVc4hErhytnlM6LIs1CYmUOYpTBTLSxchKdHIg7lCHg+yEj/F84JM0BNe9/3MUbXMbTr2Ck0+i/vz+i7q+ZZyEQisVxAUUspXFJTJFL4iIYDvXUtqspc6FD/eDjCGUQRPkMbA2ZJJ8/97MAHMtcmzqZbrj3n2j29+NzhMvdoT9FY4hh2J2YppUqRZKDT5Cot/pjZgbT5TtnA3AWZRUqtbWlrKY1ZSq3CfI7/RwQhiGCmyOHCcHcfquEWAaq3czE9BLNHj4neBt8RkRaQJ6F2qaSTt4/U+UyOMMAszIK83DS9AAiopbSaGU2enWLymflARIQ5QB/ws0mSU1+p84B5RPCh6OeJsuhIJZ/Ez5ItEiZCuhowSeNaw2miz9mZlQAD5AYqlZmZymlL4e6m44BdiAinbKhdBSjzn7wLTqh6ZYnOjpVfDF0x/SP8HOzPSogv1gA4vqb7tN2SIzV5jLFvPQm2c0ePCLrwNyfeyhDr86hwjDeeH3QSG2cRlBuw6ttFHRdD0ZPwOOX/aRFKl6fJLVIbTtNRc5hZ6uBPDHcOVNY6xyNnJ/o0OsGsrGekAqKISBGPMHfCHDqttdSa1vAnLuR0EslvfW2WnVSN+XBPM3pPuHt+zbOdOptr0gBKifrHx0drbd/3fd/ncKtNiujEItfRgRRFCTMi+r6nse3tdjuHKE/kfSZezxxxorT4TFe2QyhmLHK73bKb6RFq6hHJn83bUjgyY+MCiTh9LwVD+9AeFogwVc+2DuhCVhkLi3AgRterJcQRaYBpdngpIY4+ZtqDlWVZJJPtj1iCvA/N7AjnmECfmUUKcM78BmVkGVGZAdJFOE8HEYmnfwyFmfW+9bFFuFvXMXSMMHfrYzzddylOY28ityr3Wu61LsIFLCA3ZZB1357b6MbBhUtl2XtXd1PNtgJTsJMEQo1AUqQuS1tbuVVeRBpbQF1NddfedSZzm1m4C9FS6lKkEgtQiaowie3Wdx1I079UXhCV7CQkwc8UDbgRKYnxAlq0fXi9bXLbScjEuYILwpyjD9dtvDD2fbxer9c+FKQRmQ2bhBMFyrLXWkp1kBvgzqrouz+fKiKFMUbsm+279d2ZojiNYRbRebe1E4xgZKrjxUYREGLhWlxYQkpQ1HBFSHI63GpZl7qulYRvd7mtn9v2euh//J/fP/998xEsCwhGTADLV7lR46bag59uI8IC5Bah2vcnM+z5sy2ltUZFFoKn5MgtOjNQWdKb9mBkQCEAiI0KCsrq9W4lyrKpDNArBfC5zAQCVKkUiVrJqngfaiPnSwTNMWzOjAij7v5qdvOUl3HlemvN75+kwXVp//6f/9dz+7U9RxDWoFIrsRQu1ILCuVBwGKZ1NKu3VsLDKUe/2CLUXcOUucO6DY29kHOlpUordbdQ1zpi2B6awkBjWbBR9X4TEmEdHqMHCnGxUDAbhTOEOQhETCLHjDP4UNbn7uChSBspvtbfgDmcEpTJ2eSFU0BmwgOlFeNUFF0ooVkog8HELB4ZZMGYBi8z94yIcOZBZkCNQ2afj+Ok5wAAlX/bwNzT0ZRpaoPSZ+HAcqA4ZFLHYWX+D+ctgEPCnwyiI30h09XsGH/DlIAxl3x6jwKUmCVm4oq4K0WySjkV5JRCLwu1ZBUKyOExVVPBfAww0u8/59FiqjRyKT+oSp/I42iC5Fo6oeexIif1mKY6FiEZUBuzNsnw7XjHH8UU61/H0867gDHnPnPNSqNqCgaIIh0XSUcUDgiIiCFO4gFSYpHcyh102H+kja7QZeDupPFMlTmjFjh4BnHOSYz/YrMehw8+85yUJaJwhGNkhIulGC5Fg27qp7HTCWvoUIm5nyQj1/ruQl517nFoj04Qw0WSOUgq63xDPwKbT3XXyVbiUDgd5M2F4jsal/+QiJ20Rxrxv3ttPsUe+777O7P5AkTiLbj2t1P/VLzw4eZ33k5SmIAQarUgPLNMGXOMjoVz3oGChYxkWpKHzCnp4YdhFXJ8ROlqkAEx65dTEad88AQrs1d7KN9qbReWjk5Ul+J0pDbhOIF5jc4ve57A/M34TbEQJ/yiS08QR/4ECw+bDh1pXHI1CqEzHYgmbZ18/ET8HpxVq7xV8yzIGsbMWDlEg7OImpGUc+g1MoO10mWSAIC7ArNpkpzWvu+qSmQit2ykIhOWDu3jP2SLkxJOPxFXsLQ1/VTdLA5Ja1gYNNK7OAf/s1kTUadprYdjRBhUoUbmZB6u7mphjWg62nvAnIyBgDoZmXrv/bUbG5W21eXuzEgzuVqkUO6CFjQchTiIuBSuTE2kiiyFF4GFWYCcGSBXjaGo7Bpawd9L+2ztQ8paWHNMk5AdvcPPcEpWy6vM8i7vQAAVvKCQ3IrctN5H+SC571Q6c1AzqSHEZBHbaxtj2Ou5P1/PMcZQ3V0dIVyTlamlRCdCEAlLEJaAuzbVsW+81BpiY2+vx/P7Z3+9Xq5xb8UlaqU7+egftj+11e1BPF4luFFFrSweRcIZGp5SNuEiK7dCi1gTacL11uj244+vT3d92fLxV2l/v351XhYgjAJUURfwjeiLbJfyItvDutnuMLXQ12s3LfT/M/05xt9f+1/t64dxNSJuZVmWKoXLUuvKJNnbIVBWgUxBHKXGjRnS2mhda8iisZSOAfeIEYgIcStgogCbxdi0q2+kha2ttKw1GREOd9qw8f7j/t+YhNvaqHjUFaWbO+G+P/exjX2PzmWpjVvV2lgCCiYmMMzCLNTcwuwmCwkk+2LEZqzM3bBj77Hv0SFGHCjMklP6vhSiFZ1MxyuGk73AjceyILgQm7320XukLVm2eczCAoJSZCFZuZTwWfMFR6FJPOaMIREfgty5OwQwdQLBcknxzVyJjCXytLUiz15dMHjqudOBdboeqPsxoQZETh/RtROXL40AgzyB4iHmjQzajADQluWsjyPjoY/lEnibC1x+OGcYM+TDHO5QB/nFUSLC6e02lYTHWbu6BcFzfINkumB4KEcBwEjeMq1O8tcUU2bh4apqKYNMRJLyamY+44r/obY+Gxkks6ETc3MCQBzwQ20W5prSbGbhwjKJumOf89mCiMNjeAK4nEebG40dW9GxpGb/LFP/QD6znOCRtrSSICc7g6AISZNYH+4yE7mDxKl4VHcpQmn6R9MBgo/NZU6PnlKq+cVd3TH8PDOzo6rDTjV90ioZDAyf7Zs4ZtxOsEKHgv7clc/hsvM++Yea2+zcjCcjlbLuxFWnH0RuwEmiOOJ851PHHafRgMx0hLOl9Y9rnTv+CU1w5hNcIBcOcfeBF2dX7XyHNLiPKbEv5QgmIiJD2qNiEt6HKW4OMXACd4858mIerPloilAT1iBDBCkxlWBQPjruAeZai5jPCDAiMg3v3ZHmBEJE5Nev+Vv4D78BGU6zCT6sFtw9Yorlj9xoKqWMsSNd1zFD4m04gMICiTCPmIYm/yV+9KiHjrvoFKRP4OUzTpzit/6jCJWLJUTMDAkfbjJFcFkkHO1v86CZq4rDkLqwBDkFsuGb36sBUiFCb7GXaj4bx9WPU9SYvJ27HhxiyVvuChmvzenzJEdE8q/zATmekRxdjwg2PwxcjuRKSn5z+oWAqdRKdDMfQxt8qNoYO9TYnd3ZjTzC1SNdyEhB5hgWxRGB7mFUuveH+vfu0Xflh7b1RtFaY5GylLrXfd/DYvgAu5dFhElAxCLMtUir0iT2nkbBpZRibe+7GdLA4Dn27+31vSxfa7tz6xgWGD5e0B1QMJGAI9iIqPwCiMA5YOYGVGdUMHNBNMPaaTW+72jG0rluGcLqNso+5BWvLXTAmhQOC1dTDxGvK+6r1FI5VhZicoSEc3iYq6vtL9mYaWk+TPuyb49fP3V/2a/y72Xhj8/6o3L/9fMZwV3317OstyYtaqP1zuRKwdaJqpYVVFiWaOSVusBhI5zhta5UpAotn8z1syx/br/6968tI8YsMqJx7XXR2NHuiB32DH+F7mqv0buNjfpf39+3X99//Pj1r+uPP9FWSEOp988fa719rD9kdaqQshDVuVmTBhTRiXvhvqwujf4cC8ktMNqrbhpDYygMQP+fQTysb+P1GL+e+z6MwLxg9drgi5QSgei/Xj8fbfsP1bIs97V+kdy5FnRzah7UltttuQvx/Xb/al+lFHIqWtT23E8c7IiRoSBuz21MHp6YK0dt5jEMr/3X8NFlCFkRHvB9DIMKpEltazEJ3X1sL/cdSlH+jMjwS9ujh7oFdpJaP9hqRI5xFuImZRFZ+0hJihEHJOTwhqRUQ88J8ItNn5/ZwMRColSOZhN5EmbsrnDKVS/n6Ahu4TxDfsLnjfkWrLCIcI0IizkaNjcVcETI4fh1Ai9MR0GIMBDMNCHHfyGKDgblvZcfm7AQsTlUfeLMw0TDjsj2K/TJ/+uRhBhnMEsQTHMhI+MoxaqUA6W6+5EQ556UmarrGKpKnsn0TLDgADHKb4cHwDPw7J/mEUHEx/lJG1zKvsOZZJdhpenieLbtMl6DOYNj04fJaUqjA46078sRp7NNloMRE4r5dOw/LOA83CnqAZQTUREZE5FzOMHUQRycsefiITrsOP/I+c4g5gOB4eLJPl+WBFJPQRKdI12nlCrhL3MJVXf0kYk6AaTcLmccojU5+Cc9zueZXMdnhwsXRwMzU/V/dBhLKel0kH+eZNW5O5pqOjXkjXcK/I+ISY6IM5vobJieN9sZ0Pk7FHt7Pl131vwbMzspwou8rOSDPMZARCml1lVEzLcD3fZkrEsRopKPuFD4fHKZwgPR9w2AIMgtnU/C1CKYJMiYipm7ebgwWa1imxJmm9t9ngTGFC/ONq66HRt5reJOh93s+yuXMnuUJ/BK4WGGI6X4UoR6D3eXQgjL1FcjZyozxkAEiHVdk6DKqMEwc7eIVBtQuHn+y/QjvEbRTxPUROdJdG391Xt/Pp+Js8GFxE/vulMyOGGxhyEjmMxtWOe61lzn88UMMjONjh0AlkR4LelzMEPVk7U31zFm5/oq+TrAYixL2pu9iOiMh3/fLQlYRECkZn2MoSoi9/sns7QmHjlGaiBIPdMzaXYLQMaIQDg7MSyIaK0t1hvFGF2tewZRS+4Bc02I9JKhoIEoweLkFCO4w3fgCTwCw33rr/58rOH/VtiESqtSuTINgByaKzkzCROHAAUMEgSHeWaBp8MG7109SMhGdI/X0M3G5rpjJ1CJePr2hG9M3adbWaEGQXkCHBBGCaIIBsiCEAxfQR4sLgrRtkq9q5Tv5YOKdNMoTxMxgniX0BhevXJxDWWm2kIa1QKMJU0vkfA8yHVo72N3ChCEcC/VWvPC+tCf+2ZNrRb0+vhpdtt2/upVPxcdRmKl9tdzvd1uH5/U7lJqLx5cpQQDFMrkrdbGqKX6UkGkEU1o+fr4l1j9y+jff+37vm0v7WOYjtAtfCBHIRqzp8VBdNt737an+X+Q8P3Xj+359/r8c7l/JfbaXr9u9WPcX3bv95su61dtTEWkpaujUYzwV6AXMWH+8fXBDAJX3r4f/bsP7wGHj9DoQ7fn9niO12bDLOBifQySDi5NUmhby8dtuVn/uq0/Pm5o9cudPIqUVtpyww30ZeN2K7elrkTEAQa8m8OcfAgrbB99H6YefTiEW2vLutZaiMm4GNDd9ujDBqGTUYVUAjvVpQmImaKQu6tzRjt4pT4sfBQyoSGE8DH6s8hipKmr0HAOqIMkECViHF6ZqYP3YyQH02PiElgRh9UCAEYIhcKJokydnaSlR9gsvxgJYyLHbpkZ5IEIcrp4ZRFPHfZcJWYE9MwwTex3KuvfNesh70hoNbmC3AVjrk2BCFgaXBO7OU8hLGcPgSLSOgFn9khSXAfndS5BwpyWC3L8k+PlXVXNIkoQUZFjU8ye1lT+HyaK5kM92ZqsP5vMHhN5OhO+v90x7nB0GM8DoZMROWOCzmaZHcxMmfLzo/8YMbuTzOBwM6dpmoqTZ4qI0AGAyjshZ1KAQwGm6RTO5JFkIY5mHDHlKZ/mHRFuDoTDUFgBY3KSGRTkoDDmEjNCxk6Im/abIM+ZUn4n9thFDDc9SM3SE6cyczidvrInP3lW+SdPcMLT3B2Bd6v6SoydbNb5N3wxa8hm4tlkRHqW+tto4DxvOvbM1THtOjpzBq5EeJmNNfgcLklPMqKIS7vxd3LoLCTOvz/5uTzY83cPDqkCKDJ1SyKST8ukRi7AEzNo2RmkqefLWLO+McOZhSHTO10QGu7EFFC4hhl5E/JyyNuQvj7HwWTvJq75AZrmcZE2LUWkTDVYRFByVEEOUGGRaT88C8DreT6ik6fnCDNFFIKUUvKiFaY0gwAQZvNcHWYC8xLHnJrJXuGJaPNwTiox+3eTv1Q1M8g03ZgYmuno9Hq6dGcwc4DIw007sN7aZJgKexWzmo1F0z4EJ53JUmLqSO3dJYSbq/ep9+p9y7yINOsXkVJIePHUSJnxZSA0ptxtMYvU1bkjwscYqX877na5VhFpB52jutnXHRY+QnWED0nfFhYLUEDC3cFm7EZhFBanPWNALdR9WATRCHp2faj3wCjYDebmY9uF130hgbOUUlqtxZmCjViWhWoJYUNo3ucGD/hwGw4NlOxwl3BVE3fdLTa119CXjc2LEBvFIPJS1KkPCi8SZCxCKGTp90hExM5EKcsxgolYmIbbjYmXer/fY7nd1k9jvEYP2NDX6CzCQrNjVaRUCIAiwsERZH1jZq5cWxMh5r5t+uIBHaNDh6xNPu7MwWMfz+cO7ABCrT9ez+f+3MeHUBEygjlp8FZLv92h1r4IK2AlJPrw2IfX0tSkrFio1tbah8FH34dFA5YqFOXrz6hbgcSD3bexD9tCRwzXXskquxxS0zAfw/ropqF7AKxOaiE3NZTtuW1tt5fa5vYR/oNZamk1PZRSmYvIsUcQ0X1ZBSRUS7x8//UcIzZztSpLt60PHxojYASQRETvfdeBXVEC8MLL112b8Mt+ukF7KcWZGwstt3tb1b24foy9Rw+KIund4NFtsguDxoix9b6pqZFFkCyEkAIxIXC6uZQofYgNt6FEsXK918qllShhZB5hHoYmpa5LK3WjnJOPUWlZ4BHdkm0ZcDHfVXfhZ08xBEbhO09OKwJJ/lhuxESC4GOsqh48/ZEpFhYwd41w9oBPnMEBPnolAXdKu49pFAye7ZNS05p8Xhd3p+CIiKM/iMix1JRmEzP54ZtFh3gZgO6ZfelTkZMaIJ8eoZeWDRhEKAYDCORziaG52dF0j4Wds29gcIAZTMR0LE6ciEiHE5sfY+FEUkqpTU7xck7QZ3eAGWacpy6bD+7h4Ry41SLHZAAAcvPTISJ31kkFHJhgfqkTnCUsmN+0MJ09mnOfvgCI4MwlCEsLeABCM9JvtrSyeRdvtm9ebAvAGMyQQNqAEJw8PJvNDCLiIEmvDSJQvmEoqDh5UL44MzDDQFAjylMkREfLjzxg4acTVYhwre0fXbnWVmY1M+JSJJtQnm5hPlNucnIi/4l939O56qJ34VIEOJJGzrHQYx8V+d3ag2jukcePHwGLuFjhL8uSW922be6ebhTZIPPDVeEkUeiQgeNoj/52cS8tyBP84fcfupi//KNLe84KSCos+Q3g8rALvXusB7d9Xm5TG2YWpsxcJc2/i5ToFOHiruYRDnNzt8ySIvgJiPPADtxc3L2QmORToPMkQwBLTeJ7s+eoUc9EoxOr5Z/rupaS9qGzGz7GAHxd11lxcIYdgRBNCmgOLhz125vJZszkxRN+Jbl76B8uxoHucE8RlcPSqn72rIVzPJxLSdVXHupQowBxZFAXDunomVmUFBoRbZ3GYFUN86G7h9ayTCgcSKGmyJRGHId0XCPVMXa+zHOcdQLNyeWzCMkZiHlvn9MeEdR7ByBCpb49eHNZZEqn3BPWGzFbxDCzvkt4+Agz01EQHjA3mqubRnjACAHnCHciG2pBhtjdn49td8+uhzNGgM3Z9Ll3acIEEVnXtRUmkkGCtUatgJMqZf3fzcl9N4wMcYc5QgUWXQMOCh41hqKrDYshXnLun5LAhQ44OBheuLQBEQhQiIAwd7gSDUEP7+Fd7NV8lfqDPiru7f7x0d1+PW0M2jfRwp1JhUyJiCPKlBt3CQ819P3FQgJhaSItByVaazZbIcrrelvrbanuum3b4/Ht0SNdM92Mu7/6KE8zQzAF12UtJLZ0X/ZAkdJYoYRBNnbSvYeLDir1XpePJhUSHFp9mi22hT2oDdqGG3WNp2HX2CN2JpcYHCN7Y5WlBJl/6ti706sY0W7YZfAIuFOrY1v68z62r97Ng/lOLrXQtCPK/m1xN8SQUm6LEFoMef3qK33voQBVLMMtvFgI8yqlqo9wC4vuQ/lFEoBX8ZWWKN2XvWML2wq3tpSPpd2/SltvzFt4H8/+/PWyPQSkffTtWV06nD0onZKcJBigShUoCy03LKsvRFDnoTBbzUlH9224Di1uLXwhIzZ2mwIFYSlcFm6reCnV1qV6mEEjHOqBkj6WHi/3ok5QZYzAIsKgINJEcOF2VNKC+eALokTMJmPEr4jIQBLzEa5wDVfyzIHM+VMwm4hQIMiYyJ1gBCIRJiIcXohAZLTMMZF+AgXmg+vCUYNmj+8csJ9YwQcAjomz8th98nO5HiGCko1hRhWyg6SR9IFzFr8m5LxZEyBFRdMWnGbGLTIdGQ710x+cW6vLsoipYaZR4CLd9cMPEOCLs8Obvzmrzvf4Wwqu3TLVOz1dGG9QS2l6gTkKl8ObV8XScZaOrPFjbiDtAwkUkymIcexxcrS0ylXqrpkNi7QY5OD0kYiIMM834oyfJ1iecHcPBWkQh6uFW7qk2wA4psMaM5ck8Y4hpjfaO8b+p2idDv1yXtmD0CqHWJuZQyRSa3yyhueGnajrGtV3bdaccOQ9z3/BW7jo7k9jz/P08mHCma9pvJzZKSc1dSXP4tB7XVHFWSHQITa6/tY/gNeV00IQU6FMrXTNWYHTuDXn7FKllHDP8R7ie/f+3GnaP2QU6hQYmRknimXhmNP2ApsqxbQNtHSpn1pyoRg23IA2/fPkHMI9IkTNhGjajKVNcq1SyrvdDKh0OdVXV6DZ2szBNBuRpNnbCTmWUqnSGJYZ7VI4BVWFxQ59/vkZeWwZgHIWcj5nqxlpIZYLBTOAvIW4UIbknGCOp6H8kml4qurmpkpwUgCQw5tDQK/Ho5SZMpTYCwDQ804Ye1eZzejDmiMO767TMZXcPTfkxEz5jKftcGJfPjxEDltUFqk4/Mby3sjHJO2EJ/14ueUyGC0lDZnP6u4WodfULB3hw90ZVKUYq1JWY5b0JOdIhUMQcA0Pra7u3TJ9ysM8AjAMU/CLiJ5SF66NqZSy3uROrcg6CL2INTEzfT5pGEa4mbv313D1MBi5BxesihFhxFUYTNWCLKBums+pUwmuVCWStJWCUohKGSiIQsQMh7lnYrGgDrLuPmAdoSImNUqj28eyja7G9ydvjUahUYsL/9w651RQuFmAMIhEoN6hDmW1cvMbQXJddneNvg84tXX9KHUN6PZ6btsWNiiCIQJnNx0jvp/RVKQuZYFHmiDYUEUXLGDmCgSN0fc+dOD1VJaPUj/LH23hwiIAoxipMwZDGR2xU+wRm8cWGFJCkIylM3tjWqR0Kcafu5N59I1ILLiTYjd/7baU7Vmfj/u2vUZ3Cpbhev/4IUK1BBd2cIYFhSPlpWuTsfi61FbL2opZhC2IES5Am9Uy3NQCCE9ZvEdwqOmuvWwUzyqF6uDqpdSPj49//bd2+xzAk0L35/iu37o5OT0ff4/9kQsQQQRRKEJKPuJAYapNlg9ZV1lZogcNxm5rOAx3CgtzGzF0dOVCMhiGCKZK4lyN6gjyECYujRZEt9G1V0KgOBziQg4aiD1HTDjcY50Op5HT3c4BgIUkk14iCqJEUPoERfycJbsPOwwoZzhIkl7p48wSIoycR6RkHJmCSs5C0iEDPcVVRHMP+M1y8PxzVsOBs7a7VnhJj2WfxfzMbvsnBAG4lOw+hrCUUgIlTZrH0HPLn3v2tI097Comb09m4b8bWuJtbFgoHJ5DPTM95dhekclEOCw7zrc9sdcsxMMzpoeJHNNNJ+ZwO9MbTgVwtFaJ1HKFfc8uzb7JsS0dmGa6ckxm5XJu6WLbPf+MOc8023PTE38C5ZTNncs1UcgcDSUAbp6mbecVTJSsY0TScjzjEEtpxHx6XF3RZyKqE0JdYmGo9x4R0ysZzNPwk1wNwVkWusENQJg5QTgJvzlhm1O87x5iUkRnfM25p14vNB0O9f/Ypc4ddIxRD9iXd4Uw5BKzeGLZK6q7vs90K/td5nX+8JGBQ4f5Vpq45isTFOb/rbUmQZKI+cpfnmA0g44n/picauByVDFrIcDcZVr+npyQX0ZOrs+Ou49hAJPUeFs0E5NwRMj0L0irudoqDncMP6JR+bD7NzO+JMSfGvyIBPIz8XAe0uG5EEFm0xee4nCHN/zjbB+4E9er+ZbbzwY6yyHJyhXn/KYRwUQWnqcuQTsuGDo8SR/Ph7eyONFzf06HhlLq0s4EhVNWiPCsNCRBgCXjW682GfNpCvX+xujLQiJyho5nsRFAEiultBPQn+bAeXpLKYm9TM1sn1aul2uazn7q5u69jzM+NpdwEaHWLBQqhVhS70vEAiEpIwjBboTwCDWoh6qVIiWIg8ndFcMQMRh7X25Fi1U0Kmulj3qv5dYZBNLKY+zO7D4MCIWZWbdU8HqGUEtxVOgQoVqo1nTYYXe4IRiVOEpZvFihhlK4rksthYoXNjAHsTEDzaDu5rtH+k60Upri27c79892XzuU2AqCw0WjeFToymRr7a/+/exjDJvZ2GDBts0b3dbqL19vt0q4CVlo3/cOpR+f9/v9vhbX8ccfX4/nfz6VKAYTPgM3It++Oy029jutnwt/Nr+12lpjExv+2P6j3e4NXxXtpqVCHFC8xq+/9uX2gyqWGwKI3tvjG0+L0cf2om2jvpGbUGmLiPTXt4WTg5lHOByllM/PO8evRm2YR8CGPR5PfT0HbLf+Emlt3eOhtEcDF9r3vf/Ld6trKaUVbkv1WLT3gOdEdLbDq/Dnx2K6PZ87Fiytfqw/eG+v12v3bUgpS+vjCXFhE+mFHCFi9vje7v2vvY6x4k64RRW+L+12++NHp1Vtb7z926jMvW/PKHjdwK+5yjOk0PLJNVhAhVCX5ba0VWZOhdYiFu32Rdv2/OSbLZ/b9h/b4z+e1LkWG6PWGyOgCu7EJQscKvd2k4Wo7KYQ9QrCrhQeTAIRd+4jSIeKD92pRCmFRcJC+xbuVEqVJgQLM8++oUsgtJvq0C3UXAPdWbfav2lsoVuweynuFQaywYzCkjI/AEFB1d80jghCOQjsl2Roj4hWGECGOluEB2GqEa8rHiEVscCYE+ig9JVw11ALMFG4mc9ka57pHRzsFIFgMAch3JxyvZaRZIZqAFKOMj2DuiCUT6/bqSpLNMOlMHMrS+rFQsqwPnwGQOZ6mt8YQDbD6DD/JCKR+U+mCZEEwO4W09NbpnRDRIg5m4WYA+o8+6ceEBHyNH+dphhpWobcON1dp8FmbicTIp+2T+KarhQ5RlZKIYoxxj6ty6adabYaAZDDwYigwkwMmd8kCCm6h4BQiRqLUG1chMkpsHtqRRxkxIUlmJ2IaimmMdQAQmRQrgf5GDlP4GeXzcwisn8nRG7DEftsqkbMKX2YR7w2fW2PcxcnpmWtJyE0N57j9id6C9gPEBCHFGp+7uFCOSJiXdfkgPMiqWpqwF+Pp1offRcG0dwyz2myNFLKoUj6HeKcGIIpZF7XORfyWwUSTEgtSREWgrfWUuxfy8JUPPTaaxbiwOHQn+xlZh9xRY4mYw78eQ4kE5fSrBpUzNV9FBYTlGAz03BVqIaquQ4Wb/Bu6gN9FKclXsAYtvWxP++3j7UtbhYURapGN4uwDu9wtVnJLenBkXO7BLiRiLTC6VEih5mehYOpyiR+TONQ8RVmr61QgVE3U1P10DAZI5blRpLTx36CrXKdaQgwKA7RmGRvDGRm4YPXtS1rFdl31VA3X2QppbTawORDhaLWWsj99QCziNxKGe4aPAZ1GzbmmK2WYOat99j3NMQ3Qpn+FKuIDVNWIaIiLcuGCEqTehFhnuOHZqZjDsxmgZbV4Lb1LAyYx1k/JEmfa6xcAsX9AKnumTlcTWl3U7VscZba8lGendKoWbrcuJhvHUAlJiFHDBIEG6hw3OoKWWL8UUYzbOPnsIerqkGd5/AHzJmGj2AWRAk0wBRApXo3sxLtHvfGvC4it1qX5aPe/kXFjJ72/Rf7g/o+uiiVYJE6wmrlZb0b8atb8fixforQ2srXbfm6Lz9aWUSEQBEsy4IakcZBcrvd1qWweOE0gw+AwNNgBw43Gxg7jX30p8pi/Rn7i7fn9vy1q459CzWCF5G1Nlrd+yAnHanb067dbATMxmoRtVbz5bgY3nvftq1vG4Xs++6qWYQsy9LaqgxK13xwgReREAFqzlYheLbG4WH+2p5jhN74ditrXZxr1KqtFRa4jr5VdQAoToVuS/1+DQsf1nfdVbu7ayiF0hzHT422kWsyc8uyghRdh5N1V+sdvnlX8loF4CK97fvj8RT+2fd49p+trq2UZakfH7fWQEy1lmx/+Og+VIjW2saywrzDVwqqwqWK1CrNylAb6tW8zkE86+EpIFUbHaguu2p3NT8kULOwFokiJJxi7rNjlbRnaUttrdYbSWMqta6HtaCaDbUadVjQfVnDPz1evd+2z7vb3qTYQK21SkmtlQVtozPVtR71Isoyxr7TUB8ReWPl7u+2m7OI1CYD7CFkJU2e4cEIJxZuuSpFEAVy/XdLWa2HTbuX2XA0TdJrGuhfi/jjab90CA9uH/83P3ny4viNOeT1z5I6dWGHpnUSGW9zICKbFSkfYYrHUFXNWeTVAACAAElEQVTagzlOOe213j2m+fD7VnfhCbJl9l/bTHIJD7kSGLlrxvvHzre96r4jjIgjUrLzNqG+/Fz5j5jNxuMUBgzBp/PHSdqdtMTxHT2dwzMX+R9kylnxH79OV83Q/KYk/A6nP9yneDouvkHK1V19qVyr1EoQxDkV69e+28wDsGyFvGVVOF6TRE6eGf49juZELdeTn/DIj1jGnC7Ma3SyjFmsq3bMFszV9h0TA/G5e/2WqD2tPg97/bO5M2ct380vOjs7V4B1YveTOsIlwvncF+eYwm/801SpXp4xB72HMZNWpMN/n4iY2OP0yPjNbuB4Xo4HZ04O//Zfk/o9+3lxUF4Z4IgcRQ8HSd33CKq0JMRMvwORmv9kBtW76318boSlHub9/DL4qDkAFhEuxWwyLv8YnhAR5kZpQ8DpiBs+NAJTrZ8q2N8zBt432OVefRPtc8m4uqN5hEXYaTcTEeTIUgvAzKM/LlaKva43Jx25SWcbV1V5+mJkunA5Uz7f5i6XKILzsI+F6pwun0rBPDPZJz1jvPngkpNk/cdKe97hR+NeSnlbxGXBCpIcwp9MuSCOTAKWwjxnjKQ55+Uo5KKte9ut7tBC27a9Hs+uGurDEYSQiHR6fqdjTX1wOdQXlcuy1NttWdd1aXdSGT3MxrLVIdUtpLI41yISQCly+zBI6ZYDN621tfHXbf1Yy2eRhaO4sRuRgKQw3WoptX1+ft4/llpQKhemLLJTsExw44DqCFHvL6UyqFq9x+tnCD/B3fy1D9s7ezQSbreGUowX2TiJerVNfd/6GKOP7u61VvhHZemlAL7v++vxeD4f+yYft/XPHx9EoX24e5VSXAhVCIWoMbUm3FpIbXopPjSC3SxC7dWfpiS83stSS+G20H1dlrayQIe7aThqxEKoUB9j9L2/9v3VVS2MCCQEcXJ3cjeNUPIRbohjbXCanqHmHWPEMDYuC6X1MdMY/fV66YjaJyffSv36cfv6XG73UllEBKZjuA2FRy28tOJWXTtJISrSotWbta63Ea4eex+/Ro8w0kE63DwICjfTnfuubVeb2MtcIiXHxGDyLF5zCXNCMAdIpJXltn7e7h+13lpdmdMZ2XvfRqcCcqpMrXyyFGdsqn9s/Y++PWzo6F7rstTGgn3sr9fLFD5bJyRVGqG1KMVZvFhErmfiBNtde1dmBuooQ62ksUIYmIvH4ew1SyUKlzB3JTcxs5Syn4W7jRGmYuo2yH0GbR7mpWm0CCAgCEvl9cQEhOsr55YZDiI4+4z9IacDJB3/ExFu0xI17QxO9BDT4ApTd45/LrXEHJ57wMRw10YSM0VQ4N1uO8HBuQTbJZtF3j90BVjnL15X2ysGOo/Kfbi/jRPn6xFp10ZExKefpoMof/VcPJHYlChgqdIBOSDXz7oCr1kHH+0G5itYPF2d4nrMADL3kpmFRKjkEWY6E9PbW2t2aI4JiNkiaU1as1JyUIOQ0T167uvmNld2T8QzPa4igg73BNXUe8XZ+zuR7j+A5nnm8+Y8QBWflNJZ/2CSZ28T1BMKn6/E71DjhKHZIcLxpJybX+/9vGRXIP6Gocd+n/wZHzYW+SZJY+QHzXbo5X2uV/LaNXP3gLGgtSzb5ID1x51PZ5TkkY8UF3tSOrzxjkrkhIw0KScG/8bM5Rnrvet4pZ7SCdlsraVE5rhahBpR1MIsHAYJMyLOTFQicnJAiCn8EPeziDAIwjab+1RK4VLMssMPPyw8suNWqzCLFK61qvbeu+7dLJglm1i/P92ckIgPi5Ar3hKajd7j3L7R6rlKAOlyZucdKJiTcAmXcagOTme184H6RxU3xsARnSTCIlKFUymYFch52/yzkmFm8ovCbDYWz5kPXAIJzkfDzM5QcGa+rA84hATv2/4CggsxC6CMlPFN6G4Iz+SuBF6TXW+trXFr9/LqZd1ofUp/8TeL72NsfSjC4ZJpwCCOEizkhagKhUgROkXnrdTl1pZ1XW+3e/0QLGMbofaqv3pZPKiGlBA0X1nkdiu3TwW31z48KtfW2m0tn7f1c6kLm5ii98BwIhJq3ELqcrv/+OPzx+dHbaUwNwonCoqgaYKSBXpEDNfdpNpYfDz259+761N9eOw9bICcGkutC7guXMZ6X+tSqMLJNaNpTHvmGmsr0te19Qa4D+2976+t7/HXX/V/fqyBYbpvW4chNEzNOJWNbf1Y1/vqXHkDa7jDVX2oFTPjVhZ97ftrq+XJVFvQWutSyueytCLZDYLuXa2bKfvWX4/+/H49nttjH0FEJTsqaX8+nJJpgXl0M/WgSGNcCwtOv400x2VxkSgLS8lAg52I7GlEoqpCrNuH9zv7R+Pl86MCLAEyjzFs36GdXQnGYBEhbkVAzcmDfJi9ts77s++7OtkO7QpzFdst4Lx7f5nuY+zPbYuH4iMoBumI0b3v275tfc8hXrMUnZBpMLhKW+q6tDvAYejWY1DsER5MvC7327KstyrUHV9mX6/t1+v1CoOU1lojjuf2CPy9vZRIIFMDMUcTQyOMyLkwFy7CkZM1vkVQmBl3OAc4ggkivDLXnFJGEILDKRxQuJEZpk25UxhCh5uZDdgI67BBqhSGZMn9MEefiMVjekWdVuOEVJn8RoaxT392YhInZPGgmRQ0mZ44Cj46NhSw4yQtTtnJAVqmlnuCMfApyNXIszSJqGPE6brqza3xn4qWuYTh1L3ikKBet/8TjR2+UNnowXtTp7eCOD+QcvpPkvqSXBvTofSEGUTpScuThphD8HNU099lelzeOfBmUOLYFY5PfG/MV0sLmi7/x7Bk4SJUfkNyEzZ7BNlBvBHlfOF0tWARh2RRe8zu5Rme6Uzuc67iiifybBwHFm8oEOGekOU4vb8H1eUVSdR1/v3Vg/TKkGWX8Kj4z4DIt08HDsH1qc2vx0/4nFU8MLQn0yAXKu5U+l9V/HRMR14FeSdHcsrIhGZC7nlPzpswjCCZBH+izAsD9L5V/sFw4M3uXMoGmnc40TEbTJSNrVIKJFioMLEI4SJ1d3Ozvu+WY1wkfdlLKYrurghLqrwVESFwSGpw2JnpMEQNAHTEBFkGrUUGNsfJeKVXQtdMI/aUeOdDQdM8lGsrzHA/BXkHQPTEXkohlIN7hZP6qUIsOLzwUqXoARM6XVqEjyrufOrpnB4NTQGwSLsav9FRoyT2Enpf37NgiEOwiKMwmE+ZnIRrnBfrH7874TLJBc/JuUBdBYjntGYcYZRnjfg+N1MaNxe3FOZHhDlKYQBZ/QHMFBJp4MDhZBahmeY28ZmzSQ0GiVBd5Wa8bnFb+FUhINu7mwnvahEMVPLCIeIajGBQLUXqcl/Wpa6tzPkJ4sIztKisshQve3mt0oZUA1fiRjWqcan146Oun8MRLqLGJIVL43Wp69JqhcM3I00vwiosK0uR5c7rZ22fZa2tBBpRenobIhWqdA51ecaradf+6s+ffXs9Hrs6DxfwgnIr3Gpdy4K4hZnd1w+RKkgTFqn0HNtPpHe26th7Lztx6BjZ3dExXo/HX3/9xWTEse+7mWk36/uoxSvKst4/PsvnZ3fyUPc9W85jjOqDHANqw41033curwDX9cYWZIoxgIqARKjuj317+r4P+34+fr2ev7anDheRpbZWmCQYQcFEQerTyRFKxBAFabhn0AWLFdaB7uFKtXutXjldHEOTVxndyINMEb1AOVayG5Opqu+jPx/787vvL7PhklZ8YGnLui5SarhAt9dfL+5P/VV9GTHYDe7DnXxnsOluOnTfHq8H/x3fXvgFYuNd6fvlj4du23Psu3kCLx0B91rClODCUcIAcx2uXfVl+6YR3jLZUm4fdRUZ4BpY13Zb2yOciFhqAQMkW3dDDyeR6ggf2hXnVlEqc6FlWeqyhpUUkJgNQg9XA4UzqBa5MXnKI3N9yxG83IDDAA+GpBuWHBs43MnNhrKam3EmUWWwjp/Tz7lfZqBNAoL3fGKQzG38nP6jCI9gQibVXsKMAYBLztHBYx/AdOKZxk/M00sCgPvM5XAEwuGYkX/uCWeSgUvIwQcu4UMRdaxchJm0E+eWnBbwdGEOcke8bvbnmnn1IBhjRMyegoi4mAelyiRm7DBNT7LIRky+s5JPq2XKIYM57Ynw2Zk9uw95Fi+q50QGl0bDb0AEVyxy9iNOkuDCf7y7Hk6HFj4coJypizAwnR5pZ+ms7gbToEltXbZ/AB7pf4tLPM6hLj/gSClJUUxcchztNBu9AuUjSMfOm/9k43j6U9DpzGRmGTmXHqQno3B+itm07Oq9n46pRDSD8C6AJo4W4fndD5WYnRvh9QjPE37+nK3GM03yJDyuZNdbX8jqx7hiAvrTl/VyJwTeN/wRxvoeFpFSSgKvqeggomAIxCW9r0CcfsaMCcssThrJQtV0Z+a+83g9Y1mkgRFwNfNwTewVxIDHCKFIB4444E4esIanmSCFJ3F7guDECgWoWrx41gwUZC7ZoD9CHiFCVchFmImRPbQAOXEQBzMX51LYbNqTViYIm8VBaM0zMMGra4J4ZnbX4JDDPA9vAgxFqAgxk2lYmDsd98CbWz3vt+vKkKMBWYyVYrVWqVPFlcdzsqE4WuF0hFYRX2kwof+7mY/zX651HR8+YX4YmuQvnmMKmCkjxsxOKIbDcgREJGA/8rwtg+JIAAW4tGqDqlApTCgLsC62Nv5FysE+XET2fR821N0YEFZh2wbtShGFuZW61NakJFq1OKwfWERqYSHyhcutttFucK3SKktUIyntfq/rfVfv3XOglXOsEpIT0GZu3U2DiwlUuEQd1CTKFizKKIZbTJvvgQzSRATDQQ6y8GE6dH/t27PHw/wn/dIowbe2/rHeW13rUpa1LankuC+9UOGoOYH4WB6E8uvXr25dqISZ9p6WluTBgHvs+/7987sI1UZjKEMQAYcbHBxSuLS6rKNbcARYzWkMbJsTipXH9lILbouU1tY7UwiCTPfH03ZtVVtZggHDUNt17Ob7sH30bd/3fZSSoQJSyAPG0RFGGCAjdhJ314B6jpAGFRZuXJdiuqEMtV97B7l5tVii+SpYmJlh7ra//G/bxvbr19/lzx8fS2OWGNtrf/zcnj/3/aXa9ybGK6Is8tna/aOtlVx8I316LyaFpbZWBea+UZgPdVIirRIg7WP7+W3WHY8QCTGj741em48xTB2xdVO1MQZBmHRpY2mDycZrN3MbOsbYns/X60lEXuPrxuStxCooADx8kTsvEvnICTtMPT4sgjcd8DDVcPc+rGvuBEVqXZbl4+vr4+MPN3q99tf99Xz+2vvL7OkGR2VykkJkKYvAkWgYkUDAUkpSSAJBxIopQvE0dAoLN7hGgE8jIgcJXRcIwAIyW1XnGoH3jtLVAENQsMCdKDCnopjIczgvDuOJICJ9q6bSWYEm38KTR5i9zcA0YWRz09kwxEkC0XTDmmmycoAy8qCZO8fptH7l/yMCbvBC7+iv9MOcM5YTR6RTt5qrpaE/IMSSrpXnsnjinvTRzq7cEUacxWWchqkRHLDkuo6JK4IrkRyxP7nE2z8+Aoeh64mujlHLia6YJQ5AKZCYXdtzRNQOQZjPiz9Fs5osKQkji2Riz8xt90FukPTTO5mkKxlznq00dpobG3kyTNk6YZ7V+bkT0KG+OtHGSSydUCM3uTRWuHBmfuCtmRzMjLM3dL4mrSb3fe99pI0TjnzrK1rKTz9JrCu3dGEH326l2Wm6XvHrh56/ntjowly+eYrzo0X4H7Ds2F8jHUaII/RsX+b2Kbj24Gn6eIQEZVsWoFYzNc/QsxQIV/MYbqqqYzc72GsPdxvx6vtioxehDrcx+r7rfk/sJUxjWEARJkQ51jofKkEAZOQ5TZFPL8gZCTaEZiKQVvZg4naM9ZmgBocUJgoBV5FojYhc00UsH+okwiFCtXBtYs5SSArVJiLSFblgRiDCWMCCUpixiNAhSD8GG+c1tZyhPOj8K4b2BNsMYRw46b+g55OjSlhfiqtqsZp36alEwKVTmdduUkEHEZPzoacqK2/vw4flLXX4bb26uiUfleRRX70nyjM654R3BWRCEcHUBBE+yC2sA0xUibNhOhIiUSi5KX0gNPpnVkEiso9tH/s+xoBDWIE+QgJkweSVUAB2JidXD4qhVT3SlARhDG9MaynaqoOrNBGJaiy1tlaaRE74gELdeT4g2sls6D6sq48B0jCYKjPZ9qKqxFq1lUE3hFHqJ+DZeAFggLEM4hHcPbrqL7W/tvG3bRbM9cfdGvFnlUCrzPW2rCLcqgYxoSzL+nH7eDwe9/vHX3/99evxAAUJppa/1tvt5u59cGFW1d5VuDCES2vSdu7MJYg1sGtYtz685wQEIUx9H5tpbPH9fHhQWW8o7f75Z12OPFEdY9dBXZcbLysEwpVLEFSKSlkcpevetTuBUInh2mlspFsJk1AqXpnMjdhAgxHphF4bYuVAVbGgsY+/fahrUADLWAtE1irVXcij76/X4/VT4tdn+7jVda2Ise2P7fHX4/lz31+PWl3uvPIXfd5vTmC42XAbHt1FiUhQWuEIttLJiZ1LLGv7vN0/bq3xCO376DpEWHzg9YrXxu5pQmmgYbSPiNDAzrIRvUanUqoPd7UxxvZ4PZ8vYdhi22MvVAuVVsOiq+8er6BorUEEwRoBqqXdy46h+76bupmZWuhwCyLhWuuPHz/+5d/+7evrX2Jg2/rr9fjrb/rPv/bnUzMJIlMgT4u+gCE8/S0PwwfQ0XdyMIM4gGlSjPSWJhCTH1E2GWxNiDSEmQR+Dqm5p2IpzuVqrkQJiILIKVLBgEkYxJF7TaB8AQS1HjoGTgblHfl3blPmljUQE+OYTfMZBOtESa+e+zK5I2vUiIjgdNCf+9OxKl73XRHlDI6OU95uZ+V6HINe91RmFqFS0vNselWcGqCEOpdWkZ/qHBx/EGWmumeedTJGrgFoGmqc6+m5es7/Sx7xtpi67r8nMZO/IVKC2HOHOTYPP7Jp3vU0J0PvFh5BlTmy43n41xuxs0+10FzN3zhDhyWD45b4w3FE34D83LrOs35W7VPR/7u4nufy1dO5NJUuB257y7ZOheIYM9Pw1GldNyezSOCV9qunTvl8zenggItsy33SZgnCTubjnEo7T/v7nvu9MX2SUkSTLb4g1NltO34RQIgwEVIqBKR0TxIjMkUeeeTggtMZhX5QYmcDmjMpgXmqxLwUQ4mwMHULMooITZ1Hmj6IIOdsNKwPMncdrkOta+9DN9fNtBqJq5pNj9kkmyDHnQDQVCXMM0Hg5LNPtIpDO0VuOYYbUZk5YHM5OOZFGGQcmA5185niGX4QVco4/ia1RDLGM+LMSiciIU65VdJd5pqAkN/jQBHJjUTR0YUJXI5BY0ok6rAMXptv8vs4xRWUn9g9xfW11pNavsK11CccKPzdWD+7h+cDfkoGzwf8vOfzX/J+yJ/jpL/lbnOVOIqEE8+VGaFRTYIwyHvfUnJPQZLWzCKFGDHURozh2h1giVqktcW4EFVhHcXNCQXYujcpgywyUyzSzxQ5OJw716uOlXujINNCXjlaYQO4gDPbB+4+3GsE4GbadaRfd1RCNM447hgdEa7DdoUPfXQu+H79+P78sdR72eiOMIaBlDBoml/DGMFsBA0xkhHYVLd9PD0sqrhSizKwKA8js0LcShESua93+0Qp7dZuH+vHut6LtNb+GmMMVxGSWgCvUmop+74A3ioVLkUyWbwLF+EKYg1+mnLv5fUyZzePiMIRAR1dN9OXvfpuDnIr6/1fvEspZWmlFDcPtc3UHY0LySKFFrRg6wstbRN5eLzyGdbiIzxUbewYr4WiCapASmkUALL7GU7hRBbuWD+WHfs+ttG7hoaFkAjFgLTKbbkXamH+iq772Mdu/de4tftHK+Jqz9G/t+ffj+ffP6l4+Wwftaz/Mj6H1QHttr3G62l796FMKK0URBSX2p2XKCsvn+2P++3rk5eFYOpu2oPTo1zdexraugFtJd9hYerd6dW9vHp4+bgVtbRgx/CkCUhK/Pr5ChemMhZS3fbx7fGi4uu6Sl1IeECHmimGxuu5d53AwoKGwYOEWUTW+/3PHz/++PGnjliWvi5F9fv7m4QseDbumENS+pD7K+UumF56DjhxpKAuCEJBcIZ7ICe/nQIzUwZCZAQiPjt0kdKtHMya1qZxYou030pLxrkN0Gn4ebRO3rEyuQOn9WJNuEaXwu7c3k4W/dzVMu7VspuVjUw4gYmdJYFVnFAQQARHcFICx8p05DRfsN3xW6ctGQ6y6lJcXsYVT/Urc/D7B1IIgIQkI3eVUOdWmk5aOeNNiKMHeoTBI+XqeG/MnFmIwTKL5oh/KpnOmviK1c71GJeslbx6EQp4mkM7MoJzhgeA2RHpWQ6mVI5YeAqWiAqO+ccrADIL5mKalykwaTIH/TaKdZ7nA6Gmyd67owcgUVcCJRwxL9Mx7OpwdpAN+74zc848nkqdy2s8d6nTN5XoNxh0MHCJ1/2EYicJccr2zw3ybOtcURcuTaXzQhwExvgv7ODZlk8l7HRRr7WWS9ZT3maE911aCtP75B92wZf54mDiACGNQ9jdWShMg2nAScqpsvd0vy0lTAD4mIGkeebDFOQIczftmwWZQ83dNCdXUHI1RMBykpcADheeYyrMnPnciaXAKBnCxYwIYy6Vs4SIMOJgFsALE0qy8Ch0hsSn93DKyY60L87hjwJE6UQMUBCDEcwQkVKlFGFmaKh2kUxcwIGdUgU7VX0oyMeB+Ldp4vwi561y5TIpBYwHQ/kPZvS6lB1/fyHM6DdHt1O3cD5T11uUDlMbPixUTtRlZil7uM4ZEGSKBRKv/l4eEIpRi9GGNOXh2jNbN41VTQhOQ1PtvO/bMPVTQkm1VSFUYTc1E8hStZWmMpylELOjRMlM2OGGbZNW2+u1Btblzj7CN9AAjSDTIJ+6fi4WoTw01HYdr9Gtvzq8C5lpZVjoYDcOdFMa2sf2Gj8ddn8+vl7P2/Ih/5//9/8TZeHlJm1xku6uTgpyli0o2tp+/DnK8tdmTwWv97187EYvpaA7aHVn4lakZEwpgSOIRUqpcJiaB8IDRKVKqa0ty/12W2/32+2+Luvttt6W9XZff3z9uN/vhcTNQKilLAxxayJ1WZzKAIK4liq1qPs+ugWTlBDaTJ97V3ity+3j/vHxdb9/ONCHIsBUIcz3j3L7NK5qACSChuK17fu+BwVLmHbtr/DeKi+NCeba1TRZTQpSdQBGbmQuJisvS7ndVqLYntvre6OIUsptubVF7kuTwkxRSrTKpZBIqO7Px9+vx1/b9uv1+vV4/Mfj8fe39sdzM5QfP/7lzz/+tYJ97LAO7UJaxUWMxVicKpdahGqQcPuotx91udfbrSzNmUtrHuFuRQCKve97Vw8wt+X+wXUZI8Zwdyepbbmtt5uIlFqLFC4kpYBJ3frWH6/n9/P5/evX4/lz2Lb151//+Z+/nk931GWR0voYf/389fPn92sbz30EybDYu25qv75fZv7jjz/+x//4H//2//jvt/VjDA2Lof31+ob15M8AbqXV5SbcwsmdTEHUmBtRoRRFUIS7uLup6ha+k3e33W0LH0IkR2rQ3LRyfDWS+JlrTq7tzHLAhrfcZzI+pR7bpAiXJNJn4UjMlKNeNDt47g5xnIqu337ODWyOeh6l87nCXNgFylQTcwXO/sJsQBy7ZklOKA7LDE5TLsAOWau7j6G5uqWdgQhnkuAEVgQ6GhDza9Isi2utrVVJwYqUFHbm18x9upZaSilVmNOXIZULcyUmQuAwgKBI+U4pybNI4rxkfXIe7R+r8/nvV1+M/FsiKqdfxptFnN9XuHiopiUEg0VKq7W2khLZUtLVm2sjKU6EqfY72qHzk8nMc54xIpiptdZaSwrnXPYvFCAx8xg6xojAaRtL9L52EdFa+/z8/Pj4SOx11vonNEkge7vdaq1jTJIMh5rezMbQfd977wCt6/rx8XHoq1L9I2a2H4RYMgo8FUbzeM5G5NlkTDbuevudfBgzn0dYLz/L0motSURdsb67mw1mam05RVHTyHe+v71361myvFVoAMLpkLFPL9688eCY1whnwFW6jAdLqa26DtMebgwy13CU1opUgwMhXEoty7JKOv5O9Z7Bc3bDEGBCEVlaS9aSRZjFzM00Ipi41nq73UqVCE/FupmNsSd+Cg/z7GHx/eP29fWx1Da0b9segSY1jYo/7uvnx/3z405C2/ba+8ZMUliE13UpJQl4EGLmQwm3pd0/7suyiFCE541xhk2VUlqry9JKkQSQyAySyPwNKiJSi+kUdPa+m+lhMkxu02/IzHBcrDxBQ5WZ7/d7q8t7JhfTHqjWt9sqMIk0ESmlXmarJT80j5anpf7sYCbkwjGTm680e/ciIyKcjpDbQ4hmOgFDKSISiL4/t+1hOggBx2QJEG667317vnrvqr3vz31/fT/+/vV4PPtuiABGKBilVgPW9VbKkjM4Y1cbfl+X+/0Pivmka4TDl1pXKQtcfBAZxKO4Ymz9+/H8ufk+dDhHkI8xHo/v7+9f+/PV+/54fD8fP81UKMPQ1Ww8fdt0/7U9/n7++uv758/v5+O5Px+97Lwo0QhnDzN2LwEUQjgZhRlBoVxkKbVIcImtary2Hrs/N/352ngoj2Fj2NfHbVkakbS6troKFZHqLGOYu3etHgrmtlQiCvLWmvbVQ0ulz9taCu/9FREWrhYI7zGew+quhF7qwmAwNSYQA2QGd97cX67DjPr29+P7758/P378otqkNKIA8fDho0KDSKqURcgLL3XUstRyY36Z6r77iI3GjGs0h1BwEaKQQuxiTaWhu8fR87A+Mj5u7FvfHzZo6KLjofYw56BW601agS2jhHbbXjsMDg9Y2O62e+ygrmM3VxvP0R9j/+lhrM5uglNfk6gogjiMrICIwAFkgQ6INNQIVlUnMoYRlKFEQlykhDSqLKsS11qWdru3dVlutyopV4DHp/XxfD5fr9fP//n3tu/P14vJpOptNS77Np5lFHPsalTLNrbH6/naejc3kogY4RpQoz7Ug/ehWdWKyLLcGAKyH/tH+FNjwcZ7P7ziYhcSQjkzFxGg38YOw12z+5CjkxzuAcKcTEvKyk8e5SL6TrsAAASy8DjEWsCEYQFO6f35YScTc3IkMV05MI3p6awFnTzsMAh7927y3eefdMT1IgVbJw5jnkopkKefhDAjInPSsomQBF04BZ1TTtNWNAOpiDOqPEU0nLmTTg5iB4EYLDnHKbPGjmt16z53PcNpBHV6lE/OJuA4W0XTAYAmFjw6cZEfTlOnfEVX/yypDxnHdNgCjH6fY09Hg4z8TjrqOF95znmGv0dETHN9nlYYmQEU10+ZQlczGwfqoAP4SjrO+xE+c9b0F3LoDRCv36XU31i0K8N0/u61F5P/CYeLYcKja1Pm2gM6EOokyeLwAtj3nSlHJd6dyhNgn+YC/LZqm72e01ic3kqyNxV6CshOmf/lKyddq+mSkLdcvj6fxKuT2vldzrIm8a75SGEQJUfNYWb82/NF2SjPk0vkRCUCLoVUQRI0AiBhqUWiKQWPYbbvW3/I4ybTreBsfKl2MqMiaXXFkQluzhTptEOEwgxmfWckshw306X/5UWoXxYiioxtd0YIE4Qm6vXkTZk5n9DIZSpTUwEwo1VpVWoT0lADC4ipVC6E6f3lmrdc6sPyYXdX9yTdkCOPc9QyZVXMOYXK2UG365ihznmXS8B5vNv9k8E9Rw7fQxLHXG0GXOZqIPyuHq/k6HnnXCPeE9udOVcn3E+fTve3dQgR+fGEHriNpjiSwrSbwg1n2ZYI2lJiEuFBOmzsXftL+/fYvvv26Doez/G9b4pupIZRmyzrervf7/cf682ICvPTFXtXBnQbaQjl5FGZqcxWQCN2kAXDGRGuJmPItncnkhJbG5spfz+er9dTd9duAJiWMXof4kZuA+a/eKj3l/VnH/twJu3WX/tWXrIIgXzEUBgCUtJ8KTSIPCSMef34Wu5CrUN+PWjHY/N9aHnu5vESbkLSpInUVtf1vizLUmsxs23b6u2+LLe2Lq/XY9c978Kskp1DFi6FP27L59dNhLZtc0MENkWYqdke9FQjMokQ9qglieIRZBGO6ICB9nDs+9+/fv77f/7HcvsM4mW9U1AYRg8q+63Upa1cl8KlibfS1rq0Ugny2r5fr73yqGQQU8EIA4UUKUJSXEjca+lSws2dKkkr3NjZ3fUcFCTsQZvwENIiWBZptZDH2GOUCB/Cznsd2gMIGDOqcNHhpPDn2P9ze/x7075M1xFnQE+RbKvmgBvYQ8NUaYyiusBbYcgC7Z0KQGbWY+SwRYArF5TCkGVlL7GU2pZbaWsQylI+1qXVIiJh/vfff//1119923/a9+Px3PeXyP7xQcstzDcu8urjr8cjpIAjwAZiKUxiNrqHg3az720vPH49vr+/n99fr1rumX3XWrvdbkPv6p9UdjzG1qP3DYTCXEs9dD6ew3XTPx7w6B49bDcfbiPcABBncl+6Ir09A0EU6RLE01j8WN8zGwQ5bnidt8vdGnZu/5FGNccM0CkXZeIgkki5tgcCdnBrEUGlzr3ngCR02r7nqBcCKfx6Z5J4RFD83nSbBeAMqkOMHN8LwtXP871vIVk/vvbImN8RMfLOQr5861MGeyDUPC+Uahcubwsokoij1RE2CaQIgEExWb2zLUCe0+aJG679RCJK/8/zyA/w95t9a+qd/TzgUzY+s4sEyGnQTBcgLnJY2B/QDWwI9/xSrmpn0tTcRIhFikg1jZNwmr9LJ92YX/9tupZSPQBFKNX3uWGkaP2MKTyH6s+Tf9KNNG2+cfQl37zpeSpOeizZpnMfzQalcD0H9bNZOd92JkMOM1vX9Xyr3Mxyw3s+n1c0dn7HTKXEQT2+b4yL9P7Ear/DsjgoLovUI5/U7AE9xxhhvZSalOGJL4f6THT+3fOTmSyt7Zg5mIrAmJQAlLZUIIqUXXpX3/aug/dO21ZKAVHGLbi76ss01nV14hn+hyJkgiIIDggjkMIQkhw4mc+g1Kk5dQjzPNtxPtZ5wL+326iyxJFYKiTnaQQgoBOLt9aWZVmXdaN9jJFPa95IAoK5iyYeqk0CRTWvvqk5CypkSiXcUoR33F1zEsLSNOhyu44xzKLwNUErFaIi8g4lMzOCnreuHnUIMNMtmaedxHXlud4/5wD15KQv9s5ZJ2SpsCxLrTXmNO5RszmSbOu9i8iy1FJKmsWodlVVdev70N2sq2kCMKKcebLsfe3P1749933b+76/Xt/b6/v5fOlj9y3YPj6WH6DPP/78/PhRvupSP5byXVAfjxe4wDKqTSEkxOXQS4gQswd7pu+aaqe+++vRhztoL0WervL63rZX9xE2XLiWwmajm5iR23C1X7HvNrYxNiNHEy6x12EoG1dyC4epk6FSNURlUgWRQCq3j4+vf/2Xf/3vunxsDn+Vz78fn38/t06Epcn6dbt/rfePr8+vHz9+/PHH59f9drstS6WwMcbt6+vz68f9f378+v771/NXns2tv1wNQUTSpK7r/eP+VYQL19dtcyWMMPNCAiGlRi59WCnCwiTMwSNsOLnHprqbDVNVp7//KqWxtH3ojz/+qHWBx+uxO9oX1R/LvX2VSkyl7rXdlvW+rH9Xtodt23NtwdWjwIM8IhjBxEWiOAsV4/bRUGQlpkXaxyorD+jenxJghVt83ZfPu9zW2iqXiqXJWhsi2J1cYl1MsHOUbn2M8OKlorVPQkdBM7bHeP3HbkZcG01rK48IqEyLtRjDX9qfLx1ei3243Nv9Y7l/rKWYeQG5Wh+j6+jmbhQUS2RsK7gQU4DYA2OMWEtr5evH57LUWtjdQaq2je2z63g8Ht267Q+LuINZlML2sQ91Z663db3f2u1eSgGJvl4x3Nz2rs9td/e6/Pw//6//2eq94L7Wu5AIt6WtS7vdbh8OGWPvOrqb6e7SPPbCLcoIGhRFMr+E3BFhw0zH6GN005FxCBxvnmDiK5qiWfrd7PF8TRZ7DgI8ZffJJyXzlPRi5g7NXO3k5pGas2laIMLOTD6jXSKJG42IYDfIe/osURcfFPqBRZLT4ZnvTJPWym03V1K3E0Dg3KjmjZBkyaVPR3NAjIiCUpR/KL5L4Yi5FV1bP7mDnrtvOmt5EoVzcrtcBO8cHjHHqSicJtDM2YYJqmY+0ZUsPA78TaGddNeVSpwxGe+tV/yQ1M8vCKeYgQYXQDM/F2fxLYxj28+nxsk1R8R/V7qICNOUkSTPd/7XoyF2ik3kRBLumUtoESFcrwSPz0gqaa0d2PFteMuH7W12HvPFqfQq5Q168DtBWEphLlfEk5tTCCU5kVgq24IA+phmqmdzhw7r8Oz2ttb2fY9LFnUezzkBdwXBV+bsH/NoSdAGLGZDf7J3dJEN4a3TD1WFO5GVI7QqGaZJb1Ahflv+Tsx2XAyBmBXmQVI5onKwCFQUVNteW7cgcEmy6CBg3Gz00VVTQFlEJKRwONwIKQKj04GkMFtaxwXP/CJOmSMXKc7WhedIxVubGETBkqiampS9sDsK00kSnxeUmZdSU522LEtrLSPVzzKjlFIqE4eHwiCFpAh5OfHu5a7w6Tzn8FlFENDmqZvVzm+28gAslP03Vd9xQSmLlnnbcJyqAPWzWexv1jbeGaPzdw9L2IMBPdWTb2dgPsIVTiYsDyN75RlZ+1YTIMIHD/Sxlcqz0ulj9G6uY+x2qMSISHguRO4wjd18N+8aw/DY9bnZ967ffXvtv5xjhFJtf2zd/oivjw/htchapP7dfvWuXRcWJxEvoLYsy1JKCSIjlbTnjnCxQdajb7G9fJhFDCZ0V/SX2TC2tF8upRQukqWsOcxt01AnjVV4ba3WuhSphUp5BhPCjFSDA4tgQdHAcG0otd7b/cePf/3vP/63/x33PzrK/5+uP+1uI8myRNEzmbk7QFJSRA63u+96//9PvQ/3rqquqqxISSQBH8zO8D4cdwcU2Y8rV2SERIKAT7Ztnz0Mvd7u6+e9N0UAKTRMZZxE3q4vr5fr29vbdBlqrfnbVfX65evb29fr2+uPH9/f33/M631ZFl5k27Y8K9ndgUFMIjxM44v3iK7dgTqjYAR1Q3e0TNmgoMDu2Mw9wKlgcbIAd1W93+8/f/4EAPU+jiMG3T9nVdoAYxi/kJTLKAyXKpepXq71ch9uhWOxZA2YMSgCM00j1AEdjBCFx8s0XqUM0/BymV6uXHnry/328U4/Rh7d/Xq9vry8vI6XUmoRTDE4uDNBYYFhCKEivAnIagjNYwN0KNiBouBAG/R3izC6uExcSkQEmKoCGiJsrS/z9rHcPj9x06hrdZwuL6+vr6+lDIrMjqA7SFGzACYAdQjHHK2kVGaeZ+trFXi5jhEdEJOUDlRkpwq1ljoOPPO26m1eDbAMEYjrZnPTYLkQ8jQNUniYLBCaOWqPWLrPa1dV4c8/vr+Pw5fL+Du+XAZB5iIyljKUPhbBWogzzccBQAHVqHNsHoUBPUQcI3qEmje1tevW+uy6JQdFp1E5OxJzOEUAR8oCAiOCh++c9K5tp0w/f056RERCz9x/IU5HNyLCL4H4gJTSVxYiTx/lDhoY0d2AiBK+0WnL3FVWCHsk/5kKdnJeOUF81EfmXx9L0VPw2AnzANAhKyVTanaOOPnXauTTl34un/uzWD0SNQVmFgMiOAJxQoRDwEHlifPAxF4AlKn+gL+M2OCJbIv4P73nHHX9Eo19TsTOb0bfM7SzjcgTeBEgYNAxgM40B0dAcED07NsD8INPyy2xhztiRlwew1NiLnliIlBVc4t+forsCT5cCLlr3+cgRLu1UFUbNl73euBcCU5a6/x0ceSB4ZPW6pThHyouOZ2POzn0dO5SAnj+yfOU59Tvn9RCQEnN9ZkknvjseV0kehhLn8wZcKLwbDiGY1z4C9jKyw4Bn+Q4Sfjmx38OjgJ42Gbhict8RK8cXCAx5zk1o8OW6ycbfZyXIuIKDhoo4MZOzGUYJg+kIoPUnSreTRW+J1moNuZACjKIcMAa1gBLAABnV4sjMhNnkEGi6sevZgRPJLWPaBjDDuEUIjIEYGqhijsIyXHesovLAF0KAUq+RCksKezIItPIqPxdOxVhGIhYKHN6GdGRjhKg7Pgl4ogAfzopprGfVkcSRCTeKfOIQCY0PDcGz9hrF2AcySCE+2Xs7oGPg09PYSjJuYqIHxbmPMXPrdsnvw7HgDsO4f8JNAmjd4oI1Y5c9rlekYH3PVLvfduWQcpuPkC36JG2EzVPBy8R7DGNEZFSC+lEDbEFNygdqQOvgaqBTXlZft7ub6/r2wUuw8ggHCIoy7ItjREDxKEK1qGMY5ZBdVXgFqEG1jGMQsk7hkJ072ZAbq6gtgtYGLmUUseh1spSwhygeyCgEJeBScbrdLkOw5BVHLJxwUAlMaSMFDcHdLceVkhkHF6+vn7929ff/gd/+V1RLjGuzVYND0GqDCUTXS/DeBnGccz6vxz4OIRdEIbpOl4u1+t1vEyfn++fn+/MzDSDh+q8bY2ILqn1RpnqVav74ArkzAzdwLt6D0ePiA7GBUzVzMkw4W+VCtANAbX12+d7RFjoNE1hvnzOW4PPpTuUAPr6129cBEErRy04FKoFpaAISiEUAjIPcnB13Gd9ARhCRa6XL29fv71++/by9hoE83z7KN8HvN7KB0BcLuP1ep34FREZybR1850OISpUkLhKGQQX9oBmviI4RC9YoDLRhnoLCxcwBwzIZsKmvXtDj3Wzed7eb5+3G7YOg17Hy6KthbkYsBOp+2bpWVc3cglkzOBTZgxSa7r1pa0b+lBwGHCooTqIkLu3bYZQAAeBWmUYhmXjrgbNenggzM1ad6pgDk4FpGApruhUDEWtdw0H8Yh5be8f88t1/v1bvwwhQBBmQW6IMCBguAdoHJJGcMNoABWhOYZESQdPJOrqW2tza6v31b1hWOAemQqHqW8HBHBW0yI8610QCCXCIBhwj2WKlOFmVlbSHQmWEq4RVCRH0N0zJ3vQMx/x0mAAxAjuGIzpAA86yimS1wIG2p+SBp6JqURET9GgT+DD0DE035MC0Zns+Ah32FeGiBydAsSZVBmQM7o46rR34JVAFHaLwC9upaM5JfUpxCUXkkRdR5YA7Mg1zqJrTK3XQ+rxNMbM2K3zKU8EvySpHhFr/0Lz0PP72nEyeNa7JOdwADUziHBDJoQ9pmvHCo+3QQ57CP6psqJDEJNbes1q451A2q0AmbTEzOlDeMok29FG790tdQJ0Olifp34nrXUCMjxUw+u6Lssyz7eMic7l/Hl9wmPcXEphLr73GVdE3FMqKKN4ysmunfD3QAB+vquTY0hzw/kr8MinOKnHE1P6U/pXklsenhiCjkq7PJI7hgPLoJCT7HzGVfuANfC0sOWpwQcllokoBogpzkuD6kFip/aKBQYiUgBrahAOQcLDdMG0wrDtsB75nHbRXnxp7oSo5qmedAzAQkJEAWEO6EIliMORKIvOc6T4+CwnqtgvyAACoAB339O5SgHPb0BmAXxckOfhSkL0xN9hjrGzU0JPzUH4qC54DgF5cJ9JE0UgHF2l2n1v4zioU3yorxAxg/7xkF6dFGYSVDuyh0j6MyK4yDFtL88A+sycO420ifKfA73wqUro/Ph8ROfvt8Yug8seNkt2cRCOEFV16zvXRakgQCzsgYfE3yNCzSKMsoHDg4qUmBRNfNlsMxRHNpDgEkVM26pW13af14+Pz9fx9W36IsSXaQr3WsqwSLAhAxTyWrgOgujRl23u1IFtC+vgSuiMIWDkiqABBJ49ppQKBeFaxnEcax2TTXcgdRAqgEXGl+n16+vL12G8EAaYi0wvEBbI6j06GgW4m1oECjCVy3j9dnn9bXr5Wl6+Og8jjerRnQIr8cDIFMQOhUrlSiIZ7wNhyAhIBPzygmWQYarjZbzdvt7vn5+f7z9//vz5YwT47/vn+zqv92GpLIhBWAoPPmhBCGaAFtoteu/dgxTYggRRWFCQiLE3ZqlesSobMpKZres8bBUgwnVZlmW2+2pYp+FyvbzWiiMRMkMRHsYyTUPrg5CRZFTUnkJg4daDqIATA9cy1unr69e///77X1++fCWi+fOjxCQxjfUVMS4v0+UylmBV1Q7W+tZWs2CkQYbCRYQKo3lhifDNbcNw9AWEQ9DJvN+bO1A4Oxcz7E23ZVsCVmBYN73Ny7xt24ZqYxk8N0BoHmbe1TfrW9v61rT1buyF2fMmKmUIAjJU2HrvoO2dPPpi2+3ty/UyDUTQWjPPaqUOAFyk1urBZk2jLW3rhgoiXIaA5t7cwdxcAhipABnyME2vWpQR1MkUwimgRnA4uJE7bY3aFsum22q9eVNgdkdndsMUdLBHC4/wnroutT0GxlXdldFPCVc+q479ssXhVD8ePZijAdz1NHhMC54SqiwniU7IiEixG/hOqbUA2O6SwsfEgYAAETgowjkC1Q2BE3gF5JxREHddfBItgA890/k64EdwvLkHmh2Yg0iAWSSIMmf15JPOyPUd6RwkBxGd+9Ed0oE/hy5GRLI+9KT8AAAAhodQa68E2YvJc4X2wENFdUKclKQQPeUNAbgbYiDKSZycYqbntfkZRyLyLpY/QBztZcCISKmGxiM4Q/XRdPv4pQiY6pxMvc10AqDwh5Xh3L4nsDuz49PdmcClVH6W1Z8LTAS24wvBAiyhzymZT2B0OufztyShdbJK67rO8/zx8YFHe52qntPGg3UDRKy1itSUy9ARzfWs+94NX8cxPGktRFyWJQ6dVn7bs3TseY08IdS5XvpT6oeH/gkRnqMlOvtqfh1TPg/aTix4mtZOqHdMrE6Q/Yty0Q0QwnfPzKE8E3TXcLbOhFIqSkGHNFM0xDgP1OEEPJrB3AwiQv2YuA2lnIgfPVAQiQKQKPwguc8LlY60vScVoMdjYo7MXEuJ2ANUM2Miix1OfLlzkwcIzivqT6wSIp5W2bSO9r7Bvv3ACNoLqSLIYL9/gXcURYGI3vsenPGkDvQjODcvqpIqLlU8moX2R6TH6ZD90x7pGXc+I+8Tap/I8mRV4+gt/eVBdHLA+08hM2t4BDE9LnI3BPBnX7h3xycPx17F4UroYG4W6oFEUgv04g0NuXk0BwUMFoimAEtvt2X54/s/Kw7xBcY6EvB1uox1WAaKsCA3QUXsANu2rTZTzJWVJFb0NbS7ZdQDJFuafTN7EDRQ4q6hDsOUFaIRAcQAREFShuv05e3tr1++/u1yuTBimImME4EDuOolH+SOzXsPYAOmUofpMkwXqROXictAVAtgDQ4qBAOBYOqGDHIYDB4WABgMCEDdOpFcx9eUV7e+tbbO8/yPf/znf//jHwCgW9vWeV3XZe/ZqggsXLECFEIXta6wOhdkqQXHIiNlDJSAlEstGEYAHEDqqM4sIIyMLBidiBDA+7a2bbG2ATgRcOWxyzjWy2W8bheP13V+R4RDj30UX5hFTBjkSFKqyDAOr9P45TJ9wVo5St/celQaQfz6Ml6uV7J1Xdtqbba2rmvftLLgiMO1Vq51IEBBaL1PW6vmA1qJwsGkZk3VWjiQMlOJYNtsW9fVYwGGrdm6NnMzp9xOCDEnjWHuXfvW2rb1tnVvagFhlt5gKlUKIGBxIko/7r/9279NI37/fv3tt7cvby+pkey9m8q2bdu2nuMDVdXYPj4/LEpwGaisbRvaJsvWA0Te0qBLYrWM4yVCDQGGYSzDWOtlqJOIEKwSlbD07ttq66Lr0rdmtovVbV+kMCDUAMndvZttmVFurpkqG+G5G3/GWIgI7oDoYBSPh8L+T0J0ypYYyO31r9lIAIYof+JgGJ8043mQHcMz0Op0x+0tITsjhZQupgReCEhEZ2I9ErinBC2Q4mTmznjJ2FMPckE9p42H4uXkdZ4L7J7eMD6U0Qdjsa+Iz7grntJBE+fsdJpn+cgxkXQHVzMzODrAD+Szf3AAwKfn7/kQTzQDsKvs47lg55zS/PLOH1VxD2TmR1ESpjX5Mai1HaI91oZfIR0TBcaejU/0iGLLA3xsvuEEAYkPjiSMMy4/UdeuWI/AdV3Xddu2jamkqzGJrgRYp38+7YfPmAkf3WvaWlvX9YgLj2d6JvmGTBh4Bl54iMb+BIOGYXhIXviRxZp02jPjkqvguUaeE8CTkDsl/CfPFE/qtycUkjCC8oJ5XEJPwOt5zd6VbfaLgv7823homH75dM+c7Pk6gOiloFXnFiWLSkk9LCD7ZwGc8byQjrkq5pxLczdi1g/rg5/4KWPnAhDRno8wHA7i58/4dM+ZO58W2IOC+tOGAp6BFx2n8pzz0sGsPVsGn649JfgloTTJXdczc3hvOUUHJ+wn8GJCoFPM9+xsZZHjWfHL2DfgETVyouEcBZwXYX6QUgqzPBt4z38/b6izef1pX7cTq1kuiZi5/GDazwOVHDBTOYDXrtQ4VGkaYRbRTLd17W3tbUEPAEIWqcU81EzVPbBbdFP1AGRATjX/PM+iOOL3igVeYKxT2h1ExEI1egc1D+u6tFXbTXDV0lGwMzT0rprBgcgZ0QYEDA7IAEJkdAboFKkGwRapJU1AOdbx9fL16+vXl5c3JogwuVz+EmAoE/FAbRFfY7kvqsu6OnMH7s4ZjkBSnak7IeRMrgowApB7hAOBhkVIIAEwxRROCGB8T7ZaaHp9Gcy7u8Lv/vu3v7xe/9/QsNZ//Pcf7b5+2ny9XjspGXBzJubpi7J5W79NcP+88ViH6zhWKREDwculXq/XqQx1nADRtJF2soYKzIMZdw9rW7/Mt9fb56oyxUYLOgqSu10v5a9eYyW+jtik8KuTtr623kYit7w+pgIjMFEZ8HrtpbZgC4HGAFi5fru+km13cqR4HS4v49WphH40buE23+59NRgv7L2TT8KDXAKayutQtqF4a1WIIe4QH47rp/XPuZj/LpXYVSo1b7NHC9q0bX3t7Og0DANiHYfLML56XO8ftPCy9TmgeWxrX9ewrXUGhOvQ1t7EJpYCBYGx6nCxddXtx335/rn+1PXHy/v1mvdPrXVdV4SRTSp0GJwlPuatzUtX720D8XFs5LYtDcGLyvByN4hG1Jnry+t0eRUHcLwMl+v45Tq9fJmughRcu9tNP9Y5Pj7Xnz8/P+d7M0cSqT4wo21jrdOFwHFbGmMEWwtzm7uvLbq5hju6g5uRu3YAIExkQ+wEhuQISK5u4MycW1NCBwokJ95V6hbmoZHEfT5kU0ofCihJHSMoAgFTPuI8vIe5O7T0b5Ps21QMCgtHBAt1swBC3uPWdsbG02CXOYsQ5t3sMO/k8ygiwjIeVO0gtxBAASBrA4mPyOkddmQqEoD3yKgeYGIRQncN3UVIZsfgLwJSZeVVROhsodmxY4CzNejuUfe09Mz0Lz2F82k7YETMt11KArjw3GntpsvEoNmE+MTTAB+r8i+BBYioDkKEmAm0jgFhbu77jzNS1smBg7m7mvWMnWNmJAEWyUx+EQdwSqEmUzA5uu1spbubhnt/Bjf74oF8gpJwRNAAO5mJrtqattaWZdPuEVALT9P09vZWqyRhhohJifVmpuEGZgEBxlkeyhBnEVCDQ73OXBD5uU44ItzbHhIglPp6QjmHO/njeZ+aWZZ/zMttm/veon3kApxqbjy0/ACQenzYKyMPx8NBthyQOgD9Yd4HIKJSTjlaSht3ji1tH4BZdA3mPcBKKUAIjsRlGC+xdVU1tUBPdUsKunOFzlnVfgxdVbuL5dQccB+oCRIiOgMU1k5gW5AxBHuP1ldrFJRnPxwciDFUE0oCc6KkCNPUKE7Na/lKNC6NmyELV/JAFe4aHihEnBnDbj10c2IHdwQD03AHAirdiIO6IQCBcLizlADW7uAzBBBkdTrXyswMTEjQtZkrMZJQdtRYGEbwvifZQf/W1/v9jhgagQ6CBIDgnrw/owTss0suBQI1HAyQxM2aWmgCQOy65/Eyczdbtq1GIOIwDERyxDcwIqIwIqpZa41gyPOO2JhlHEeEdDUCYtJ2j9aEvCbz2ku8lVBmXddzy3ESafsPHjGBw1DKWPbRpK7ZRiWljHUQIYisitJmQDJMSLguvX26Lst6m+d5XWdVLZIa3xhfXmV4owYwmrgxWCxgqgEl0LeIm92X+Q7Sh5EQtExfB6pTHZR0VbhZLGr3+fbz/tFsZXQm1cG5oElvZD3aEjYTfHpLP3cFJGdmJCPxcinXicYRBwJ27w19AZtRu72OfC31MnC50PCtTKVWQxOa5qBgaY6KxUXRg8SHax3qcDXndYm2YlgFvIKnNBWy3MLBeM/ODSIOoOSKEAMJcJcOY1b5ntMZZiSEr19LRLiqddV1++e6LcuCHnR5ga7kyEXG8RI1oo5s/jq9ojANPFQZEKfCby+Xl5fLX15fh/FCRSJMXKE1W9WCtgam0Pqqfd227X3dOk1FrltfRxjrOBSpi65RBhOBWsnAAqwBAFoAQHBAdxcuwgPWCflieOkxNh03LSNPEIUQBJXAwdYwDttrkxkJAs1i27ZQ7DWEa611mDSVQiK11GHyyfyf6i18A+hEgAHaNtXlKkOY7y0WAei5DdqESq2j1ItUnrcZvv9xu92Y2cGMei3jtV5Al0AIQ9u0eV9lHWmUUcZxHIVW8VL0fntZ5t7W++fnfV3XfetfJWgi3yLDDAMtxKA4VmJ38ghftcu2xbDCsEQMsKI5rM1688Ll5TINVENtqJfr5cs4XKWMuCtCEYJVdV3X2/2+rBuQ1FGY93lEMmeAWEgcullY112xRADMOdQ7xxNPe+jwR1RNHKRLJm3tYjBOjRdghAIQgGRFI3OGYjEGUOwxYGcYGJo7soNHRMZk7WGqeRtA5njlZjEnkWfVkWdyVgZEPmYY4MkgPLfMJsgohMbgFCcXYhZkSE75y5/bG0/gpfkezjLK46Co5nz2F3oMEYdDzL+/zgG8Tr7hnD2FmSOQ92Q7HIEBiOGJygJH3DfeAA8Z2d4fEs8n6Pz4ZyPNzi7QDoX+dE532mbPu4DYgZfBQx13kG2HMWrvHzg+KRHBrtv5xUuRXyJ7VlmCwl/4Bt/rfdJWtW19Xdd1beG7UCb3yrXKOWRJuZiHnqc119Kc9eQ/j/VmOGmSTPc+3xUz1zommDvFYeM45vJ2cG97yP4zafTEKPST0aSndPJfaK3jIO90yH40dol0gs7jXPySqHdQdztSfJ7B/QvviEBxRLs9ZutmBr2fs8Vn1955BM475VfNAJRSwJ1ZWNJkFWBubEeuMCVlqKoQv2SkHaSX9x5E4JWtd/VmJnjMgt2duQBYoCCUvUrdMQIZKSByeAyu4B6GYYghFIgUKdfKSxv2IUk4SfJExzWGrffzfOEhuoTjT4jATJfFA31ZluyVighCdCQhJgCHvSkBAACqu5Ml5eKIj7bTczfFBH5AqxO7P1sRn5R25O6QjenWwvc7tLC1AAows1KG86I65s54eCMe7Qv5u3J+Ekeo/fnGzvsiQb9BpkHng+QxuyxFwjmjfVn2OA/ifVaQXRi7aBIsIgziYlAv1whUCRdSgg6+mqkpYdQC2iEM2tKW+9Lg0qAp926sYFvrc1vu23pbbsu6qK5IPl0YLZxdzbvbFtbN21F3x4BBGBk1EShM3fMbOgGuqkvbliUzzFftw7bO2za7ru7NLRRMfGoAAGLCjJvUvjdXqSHJmBz7tvW9uDagspi7eU7jPRWYEcgsCAjAluMdSO/ErjtBt3A0dAxA2AO1v3z5av/j//58v/33f/7XO/2w5saBauGOjgw0DFO51FDjrkNhgwDGUrkyvZTy5e315cvbb1MdpguWCuACHm3r8+qGTck9dBtNm7teN/1s0COW239dXuny9S80FlqLExogSFHfAiAwPNSOhCMBijJQuZTxrYxvyG8dp83r0oexXMGVEQk62tx762RazXvTZr3bOm/zvC73pUnU5sMw1alf1bEQIBFzKUVtYG7QNlcDD0ZHQNfN4tNaLaUIQzGylCKFMSHLpdQXqaODv3/88f3HD+ZSZXh5e51eppfxguJ1G0fc1sVi9a1vBdbOGwyXWmsZSi0+VQJf5/ny+f7HvHyoK4GHm25NPcwwFBEZORTcoxI7FxLvm2s3vbfZWrU+g0rb2AC37l1Bpmm6vl2HMTSEyjhdpQzAghZqXTuY4X1Z7/fl8/O+tj5eXrJIAzGtpAEejPmJmfbH3b6Qk0gAe2AonMS7gVHQ0S/sEaA9V5dgxqAjxR4h3UIRFAfGiv1BsGcnCyAhCyAePda7uhjs8A9yQbRj7AjxPCL0fEbiHil9Jql6UkSwZ4kFwa5dcvcs+DlJB5QgIt16RFgoKEQwMLJzZF4ZxA479tgIAArQfMPPSV0EsMsssm7heWlXdzkXYIQcc8AR/RpZQoyPIANze55PnSSW6qNYJvAB3H51aJ7k1jMIeyR8AgAxMWe8GT2Z4x6pUQfwCoeAyAJGJtpLX09QpappZ8gt9p4xgnSWOgPYIXczeHLYATg8/h3M+gl0/EguXdd1nlfhukvwa01lWB7So95HVdW8J5lK/HAsqmpv5gYIO7uzc4qqCXqOyWA5SajHVJFBYOcnnhC55Uc272dXlbueYucT6DzLtJ+vhOezc86MdnxmTW17+qtfBm1P9UQ5V/+loe98/QepSfu8fB8Y7eFilIVUCfbc9cim2q8QDM+iUjx9ysc+gZkJhQioPxdTVi4FwwHA1SNCZE+w8j3kvOc+VgeBbXGioKnUswsc9qsFhYgzMdnVIOdIZugGruAB6QDX3O8AAe5WxXCPALN8/hBpSGEkIcb0YbT+pwOeuKRZp8IU5hGtqVpbt621trdMYhTikIGIMAIIvVtEWKwRUYpzEeGKzJE5DgywJwOm8Ciw7KzSabA4Swseo8bDhlJKUTePXR9hAIp6Dq8zsy3Z2VJKjiWz1j1NtXEEEQ/DcDZfwa8hF0fehKTFKA+FGau2cxzpLghAJESdMQuvANGYUYSoknQBptzDq2oz/Zzb5W0LpFagMajgBrCo9a5FkAiCBcFMqbfQwV1DVQ10iTav222+vc/32zrPbbFoxFGHMTjQooOvYGv42n2z2E1hAYXYAjZtpMJcN7PNfO1B1ue+3eb1vra1dwZdGOY6LNdp3V6tX4QtQGVzQQqAAZmkFEJjL4J1nRcWIFSzz7b+w7b/FE3zxl8BHWhP6KGgiPAgIkaoHpSGRgWnMAMn4h1opTTQFQDII8KL1Gl6ebm+XqeXYZgMsIiwO3nuHoSw1DIRBZIOAI4OBZmIHUzRTQAHlgGoWux9wYgoBYDBbUUG4dl8BXIMB+9Ltz6vetfoAPUNYzVf5u3W+r1tNxavrMAm3bEbBlB4GfskdBmHOk5jnYRHD2rd1IMCwpmBwKOtK5ghrBrWu673Ns/rtrZNTV3DaVm3S+ubOQoGMbAQCSHLOABOyoZtY+yEnQkZKBwZr0XIVFvv5FaxRClIlYQ9bFl/fsx9XTpCEal/9/8pw9++vHwdx+FS1oXWu7elrageaq4RBhQgpRR+8YGGifr27f3ny/vHH327E0dAN+vvn731ra0959kO4GCBzFxEdslrDi9Q5gDwxshDc7fgcbBgxFKZAoycUcO7Kprn0rUubZn7spkpWiAgiVTmQijgaOZmgRgY+UTnQqXlyh5wNucktxRnmQkAnvKkcE9KLBcDPw1c5o5nECjEUZiYiDbJKuSS7WpASbyjg8ep8sUDf+QSAkE7G7MTYIjBsdeBZNtMtkqjn+AMbFfCRgQ+quscgXhP2N5jr/ftI0FKvnzP38rceQKmPVQiEAgRCCKyrDBfGIlCAZAze+F83EPOtnbRG+XNuyc4HAtsDh4TBB8i+sj/OT737O1RrwGMEUkKJgV2EhbP6/FTtrWfQn4A2EUigBHdjjCJvU+Sgfd0jjiEZ+cPPkeC5QpAu9wxEB2SZYcAqQOcvYQOJ8tyOBKOGSh6jtu0x/PXiRlVNYFXRjnAwyQfOXLpvZt1d0UMSk+WIDEE7J0qe4BWETx8sU+slezWAoD8XQcOo7wMiHd+YoelB4Gh1p7tZgfXuH9PkmQ5AzoKnR6ZF/t09Sn9AQ+ZPwS59ycsxacq6ATHB9unx+X6iB74V7HXiTXhidQ8QTw81WLSjrQou6vznxHh5t3yTiNmlkLO6AilTUSZiMsY7O4YJcKE+Bc3rZuFQui2FXOiUqBUt65tw8oE6OoA4OS70zLRrXnejuhBDtmZguAIGt7CGYhpv5Nhj/07zqgfeibwcLUwzy0KQwhCQKCb99bIiRxxCATXvrVlW9feWlKkghQiCJB4nQCIQDW0a8b/FhiYCmE6joMDneDcTBAR19p7196znyr5VP81DTXvpoRTZJpc+4H7HwrF/GTPhNl5j0dYKUNeuqfkEY++BNo7QJMDS29Q3js5kJWIaI3Nuru3pmZWWIhoHC/z+nFs+eTUmZXax6neZ7LNmrd5XXS7fWw3FmnfokUzBEPqBpoTplIAhDgCqwc5sCE2DzLdoq99nddlnu9LW9wMOCKiu7FhcHSINWL1jOMiR7YwAlEgs5hbx1Wd+FKotI23lUiWdbvN27K2Zoq+MPO63db7/X77eRuHgCswSFt33UZRwnBBq0UIG5tJwSCl/nP7+H8+/yCq32mafAggEqqIhMgYAs4ODHtxnhCgAUC4QabvZDhl8pIRSXuGFxFCmsbXL1++ffv224///uPWNJqLBKWmRs0dmIbCVLhjVxLkysjQt9aa3ZfGS3sfauVAxggQVPYNYpFohEvFMHzv+gG+gRuCXTnmwLJscQ+Nb+0+b/f/vv383/flRmyXStcJCMN96fMK5sXrZZquIa/4UtCEY0ITUIx1mV3QKkStXkvcbHlffn7e/eX6OzNXruN4uVw2c+rd5r7JOpdlHObqOBQJKcMwXYFB8S9DvRSaNG6NfhbcxmpSQoZeeYsAgahsxuSGpgiXYmbNbvfNlnX7XBZdzZRaW8dx/Nvf/jZN08LLBttLbDOumwEF6br0YcGX6zAMhYuHfJFrb2/jOAxDWdsnowZsvbdSPn++f/7Yvm9t2Zp1Y6JRhhEQBYKIgimcomnDu5lpZ67NuAb4puvS1lqLACNiiz73ua5E6vf77f3z533+bGos5fLyUtymy8s0XWuZEEpgwSDrTqTe1TXQ45SdemheEwFGGIRwWMcijXfox42dwCqHTlmslPvZx0PfAB4BCLgnFRMCZLI9ZO+s7/kUZxMQ7+XPezTXbu9OBbzv7T4AEYR7xJQHALqFmYUa+i7t3p8jBzSJnUDb/7NUcfTokUHp7t56RwYDQ0QKpwByhCBzyPewN6PsgbO+fzqSoO4IBmFuEUgBjlqi8OOBC46AgCcQ4QM67VRcAAnyqe56StcEPvK7E4LsE1ja34Ad7YH7FCkhNR5P4UjLJ+7GMQAkskOnjLib7SkSeMVuNUB8Gn1FBCJH5nc5pseZCIHoWeDMeTCQkBg5/EHGOAUTBkHw3ngUAHGCqhMK5PschuFyuVyv12ma0irYWkphIvsTe9/M+oG6sv/JWlt7t/m+zvPce8+r6ejNhGfwcZouEyrl9PWMAOi9+0EW5YlorZn3Y6yZzeW7dfeZ0DpP9DlMRERCgV3IyAjAyASUM3AmKiJu5pslzGAkThdsEMLJMJ3tDnEszAnUHu8wnk7DY9j0lD17/vnzcQ6QRPBEvMNTCABIEiYI0RiZCTk4SHwcJ9hfEwOdSEggYjccYLgDKkLPZcds3eYBqZYJo7e2OsQE0zRUgNzoBOS+xdx6V1VyIA8wJQhBBwACIzdv4MERDMQEZK7kGB6CoJEpHMnF5CRa3bYkziMCshXPXTuYs4eadxFxVzSN3mxbrXcA0OxmZRYkwFxYIcIwAHl/+qk13y2P+cjK0ovdYFJrdXc8atdbayLCvIcAJ/sFsCviASBhGbOfwR8JLM9hdqoo3NSNk/V+4tozdcIz3BeemhLgsF2fhlazIIRdZklII7lXs26t995d7dCqXzxUnQidWJlb5u6z7Ht2CUKFbbl/tg9gAiopInQz9GyKEoQBQpAgaOhQNoQlAqw1imZ9de3WmnZVjdySMqi6E7pGJ+8R6tGNwARxInJAARqDO1Dt0NE6Ued1ASAEXrbtvsxba+4+SCA4AKx9ff/8EKmqjce6B5kyBkaoRQBwQGUZLiOieXS3ub3/48d/mMf7+PYSX6PWQepFeEAYISrAhahAV4B66GUAiQAGIDfbIPkx4j1LEh3As2+RWd6ub1/fvk3D+KHW1m2akDzUeu+k3QOk1DrFaH5jAmYOQvU+z73ZrWFpAZeXkEGQvMCC/Sf398HvY6yCK9m72B/RbqAbhV6IL+Xvut3xXdf1+/3ntvz4j+XH/+59/frt+kWGLxUZum3bGp/WG5tcNpkWkFLYWKDU8VqhCeq6vheCOsgw+uuLfHzG+n5ft9sgr+PLl/o6AouUKj/e//jx835bYL5BgRD7YpfXl3GcylivxerneyDNIp9s34fqQ12YFxnaNA3A97UjE78MX4Sr3rUtW5lc1ZuqQ3Bt1JZF5/mjR+Df//4/2enL+HLB2lnhEu1Nf9zvn5/3vm5tXCBsHIc6CHiZLrW3CzMSw7oMgSvGZt5eplXIvc3ef8635fYRiNdxeuMqUrkOlYgD2A28m/tiVF1dvSHXteP7XBBtLCMGyUI/PrAvN7aY5/nj4/uyfBIPlwsQF0capvEyvYgM4RjOEXu+jqu5amgKvI7SEuthHdx2+9AejJrwJ3a6yx3IUpySciSkCNd9BPhEY6RliRGBhtRbHBjO7WgVPDBN7ggp09v3ZeNXnxMi+uGHPQi18Ex71yTYNdfyjOomwEw+TOqCAp0CgSNimCoyEMHWyd0tFHoYmIgguTkSRRp13SGFWLEbM5/XM87ZXOasqoW7MXMAROJWJmCCJ1vi6UKSnfOIw/hNxFknDR7mARhIQcIFkSAVnogQ6LAXCef6cqKE443hucruAz5AAD5sU3GmGeWzHin2YP+TGkwS4lFPhLiTn6HhI9dEBJ4rUBAAIZTUJOUqwsy4h98CADDTgf/2PlB3GMZfmqHzb5n59XV8eXl5fX2dpokIVfVoGFR3V1MPy8hHZmImJFBtqr6ubZ7ntmnG6aU+ZhzHTMaPIyoiF6rjlz4moTm12RfvUKGaCKb1NXEPPXVKJiH69O+P8d++Cmo8e0hzNHlCNKJMsUYXOFg3eZ5MAUQRFuHCgohG6pjYC8M8AMCDADm14hC8m0oScWXzZjK14KoBAigpYTql5aApZ4Ss/mYMN/BwQmHB4mDUAcIiPDAAhvGSBeopzEwKL8fne+A6eGE0QrAId2ubSmXriL1vfds2ghgHKaWYhVkA7rsIVXU1AArTcEPQkpc5RJhty+rKYUWkBLIbu2XyiUNYuPe+6VY6Hbm7e9VsZmuZacugV3Mx3aIPKf4DVTRDM8odDmBuuB0olVtgnrBSShFhBFRVNJM6ElIAMITB4Qh+Mh6e9O3p0kgz7ziO+QjV1lKelVIYIko1ZzYXIdbzPO71YWaI6NGeZYVp7FXVYRgAGLH2fmayJPAqpybsbLVKHk4KQa1K67qCae/dIlB4MldHJFJEiYzARddQYKSCDDgALOG63Htr8KPmEcatk4JEERgIxlrqUFiKdMIlgr01jzHcvTVUZTQwd0UmQSDi1jcmCiI1MMBw4UALAh7LgIXryENIVLq224oNSLG7fd5vEbFt27b2fA4Ow1DqyMxN7f3znhi3jkX6tkQYpgLCXCAKUiGv7AgeqMAeerv/UPXP+nnF9jmNr+P0JvIWcCF4GfmLFAQQAKWoGT4JkatZipoRYW9mgHxIUxCieQcDkTqOYz0wOEYPILfeGtStvZgFsSCTDB7dNYBc1e/L1pb1fdNP8ov5cBkQmsSd+/fBf7zCrfm7x1z6T9neRT+ofYp3Eaokn/1H43ajl48f7fbzR7t9pwI1qHqvhiN2Lm0ta9tmNChzISTXslXEPsDwhS/XTD0E7713rrXWOpaJsLjJsiyXy2UYxvFSUN5ccImtY9/68r7YFtttu/ymL7/hl+tUgSvCXxg3wolLmYa+Du9ruyOsCKvwQFAqX4Mqt6lv3YWJxawjOEtMRRBHVTVFYLp9zv/8549rma5DfXt5ESq996AI3T5s8za39a7tZbq81ulVCmYrETFsS1H9dLt51A7YXqEt7urrfftUaGoYVL0IDwWlEIUU44LMTigXXntvvbmuFgrorW1THRFgXi732/urTCXIus7r3HorZUAWkAGJpmm6Xl+IRDu0zdyI9iS1vSA66ZR0Je2YKcxB0XOeuP/ZLypdagBJtDIShTtSoGfY+y4/39dt2IsU9zJqD4vAeMhrAvZEiXxLOwXCh+M6X+v4H4Q7HA7BXLgDI6K3X2ZXYJ4719zzHX7vjCG1bMpOk14QqqrtTvggypmnEQliD0htMp4l34cGKHmUp5qgyLz+XxiI533qMx49iYfTHHd+nUdg/0GGPQgC9yTN4wT9EnXx9JpxJqk+TfE0joBNgwzR8DM8CDKxbEddhzfeOXlzOEQ/7o4Ylg3Mibnzl+5WyrNJ6JHZAbC3DQE5HhOTPZuK5ASjJ1cUgcMwXS6XcRylpGyr7aQgPRwSZ0FyNupEoLtFWIKtE3jtKfl72+Mu/TkP+N7O9JRDcardRaQUJgbzDk/RbukMy9XrPJ+nbOs8v6YRdGRm/mq5OP/zVE8zlTRX8iFWg53OTdliBISHedjO6R7UV36dEPP4g52Nc8hGweytysC2bKfGgxRhdwNgIszA2BTLnzgAO0YWJSMylwRpAB0QKTyyOyrTwCIYIxCJgIksS/dcVRvpSk6bejgPhXSrVEfvpt1cnHlkDHADdPQAVwyjcEODzLVJU1gnt1KGkbCEsxsjMnhz76qKaNsKEANSnsQH8IoIjObRPdwtDFwJmECQwIzDR+GeZu2coRIzQZxBY5jQPOUBFEdMC2LshyjCdg0qhsc57T1/e17qdAThnrDpwYkeGapHuIwjwt5y9sRomhmEU4pmM0b26UFxhK+2BF6nD+P88XxCnpRYkrLMRUQhIsLNDKmEUwRBCO3mFiERJBAhEQrCUcYLbhvMtrludwB0A+hGBgQ80Xgpl6le6kAIvql9bquijTC+kBeEKEiVuBBugeGEXBh7j7MdigMrAiAUjIY8lHGaputwGUjg92i3ud/X9fPe5q3dl7ZuvXcIr8y11nEcSykO0VUDFl4FiKqKbE3cAcPMHcPZe2UUUXAlakPxOoCTNf38/ADqEvrHdPkyXv/C/A3iTejtMvo00OXrFUCBOmKByBpsjwgpJU0Tp8UMICDbGiiCjEkEaferV9n96e6b29za3PpFwwTrMLbNsjHGLLrZfdNQuP1Bl20rn+yxkX8W+/nKt60sb/CJsIy+XF0JjKKH3Qkc1z9cqRHeY/n8sHn+dGvjMIR228wcEXoF4xIiFmrQP33hrVcTIX6zbw3NCZiHUTdXdcOAKMLXob71hvPyPm3FWQ0DBx7f5NLHxv3nj75B29a2+urkWEUhCjHyxTVJch/KXMv33m7a544+lnEaXzxeWgzu5VILATZWRWBQAKRaigwQaTx4va/bf/zb/x6D/tdf//rlL4MImPax+GUgbRTYl/nn7T5cXsdxfFnWewSxDNeXryLY1ljWBhoRyFTGabhch2EoRB08MMwNIFgoamEoElJDKBhsGjf9bH024FPFuZQpzO4y3Hj8lOnChWDvoyAWCiAMYq51GIYJgtCtuUIE7GF0rKRAAERm5qHoQeBp8oxTd5WBPHCM/HJF2fdk+62dhRvPACNdcHv/CRxzuAAKyOCIZETMDJAzyv5IcQ8KgH1S94uhDOAQdwBlIWQuxOZwppse+a37MC7rt/N5lJRFogRPSwEFAbEIpLUw88AS/4EhcG6U3I0o3ZYYe6Oh51rqmf6OjAzoe6oYMqVqzZ+0OPH0749snnPIS4eTKB6M2oGx9vV7b+kB9Aj+U1HM8Zw9///8jcefR/7yZ/AHDyjwSwFRHCFPnicHAnZyC1QdQJEpkI/58P40PwCBnuFG8aSFgqMgMMA9dF31IIF2UV02Jx4xmLvO6VxIhB+ZT2fsUNpmEbmUkh0/ve0d20nV/f+DvACQgOxc8JZlyTd8ho3hXrZ9RrV5fq7D2admSV7yM87OQ3e6z2jPdt9p1/No4D6aOEO/fqmOyZP+rO7faRuzp2qBHdjtH6c8GI4kop61aPHrl7vv5OouLDu/9hk4kbBEOAE4ECGLNUcEpEBwQvLIgK5w73Qgf9pBydFgY916M0bt4UGtDdo3DOjdttaHIXAohEYMxambpucKwhDcvJl31db75kFIAyIye7gEFIww0zANU0ewjkZB2Qqa6BmdmQEBKTgX9sg7zDEdyO4FoRZJeydKERFmISINjzBiMTMLRSNEFQGRgVkiNzYUeTtwgKWv1h5yuj/Tn2bZTo34iKPTI/KtlEL8MCc+3cV47C5yP/A4TUSE5fiOiNOuAYdJOSmxHe1BTsD2a2bb+u7bwEjEmUFrKZ00s6yRSE9xtcIrSS1cRLswQ4VatbRga1sE5gOOAQhLlTKVkYEk2FxbX0zX1kV1BXj58voCTFw5I/uzo4wAC1CaLQAjZ8ScYgQsU728ji9v15eX6VKR+31ZPm8f8v1O7+/r0sEQrDIOgwzTwIKAqq4BawBZqHoPdVH7Zr5ZX5Zt7qaOSsWibgMv49CFwsWBW0BruOlqDp/b9mVcV+S5tR/gX16v7eubA5bL619gLBAebpTRINq0u0glQgAMDQhDIhbUvgnvd+J5WwZA752Bkckt1q3ft/YVsIwX6V1Elu22tA25jpe32W73rd9+/Pj8/KRCAQ3jPtHSx4ZDs+hO9oZENBChhJIboKErAmpff9627z+1KQ7T9OXLl2kk8LVvHZgK8ziUqqKrNm5mn61hVBn6b6q3bVuUIAC2tUdvA2+FPHKZpGixvN/+iaPX67T1bfW7S/PSacLb7b7MvXDdzHvAX52+ffnCucFzJhyJ34S/hf5cl7t3uNTLl+tvpX6d2wAKeC3XgT5g88IesiUXw1S/ytvr9PnpbcN//PH9QvJa6ctV6FK4GMN2vcDW4uPz/UdfgP36dvn9L18R0T1UvW3au6mhGW7Nmg7zAvNKZgVkQO7IFIRlkFpFCnGhMhYcag9frS+3e5gz4No37Za9Yb1Z39oPtRcevgwvV67TcCnD6ICVqwY4ZO03uPsgVcbBFFQBDNKPXYhb9HWdY09g9gytQvD8Oc25ODytYejIcPxhSqyCjnpl9wCP9HUAAAR6hg5LwO4vjHA/NUTE4tbD09blQViIUcSf9SgH9XW+B/PUdOfcEDBADrPPCdSOrwO3OXQwIGIiEQF3yBuA8ISM+Y5SkZrRElmbHke7zvnsiyNu4Bm9HPZvzifXvlYTpT4tjuDEPewxYwfPxPM9hXn/2xNxmhkeo9gEkQFBRHAGxv7alXukdScs/kXWc6ZsazjsHxnk0IikxTLnI6oaQOM4AiE5IAtGqCoTg3tXADSuBAjuEGBBzE+w5gx3OBaheIYUJ4GUYCKJsUPPxMzlbH05gdfpiIRDbJ6/orUWgbWOtQz54wjWu7q7yIOIUtXWtnSBJUuUbzX/M52ViRjyyMORwpBe+iPOFM430ztkyQHugSZBxGeQhPAvPtBcd0tl93oC7lRWuVczPzmnnMnnRNhcc/k8qyqTaVNV8KcF+Gmd5kfnOthB0J4n3Y8znl+qmiK5DCw4zkuc0RXMBTkVCBYRaBWxq2ZxhREysIeHdQhMx30u+cK8R4kGQNctFcfh1Lb77UbX8aoBhOTWlvkTEQls0w0C3XrXrfXFbDNX0zXDnA1pA3PXIhPTSMiAIIwQRHn/AgQYIDCk0jk0ovd2kF55DysHuPUWxnuoOxFSLWwOEO7u5OYAWbhr5v0A2bVKSr0wy8IyL+BAtIIIALq3af3S6Hqi5Lyz0vywL75PUaiFBQMy+T6nh9lj+K8U6fmfSeWejFrC99SZHVbNMzGOzO28DEQkU02KCICHFbXm7upt3e7ggRQevffNY7fp7JQ/EER2AVdkKhV7s4BgpoKVuU4yFpZLGcBV197bZmv3jQZ85eu1tXUaLlWYMCoholTkQtwACggxB2AAMFIPVDeHUkOu9fLt9dtvb6/XYezL8v7H9wvyP3rbhgLKhbyU8vp6vVwuOF5u67b0GcsYimtnKciBEjiZc1fzvnozhwXatm3317E5dzIP1VKgTO6xqS5mY9tMDTXasl5Mbx+f7cfn8rnOf/nL/Nvf/gdPEzEDKAAhNQj22DKeCAFFGDEIkQsDqG0tdakRwYIEwsXYBcUJqAfc137b+jbCZboSOggb3ondcWgg2PuHvoOHbuqhACFFukNzUMEWw+wrhVGsNayEs3dAB2DVtrRo3SLKNF1fX9+mWmP7gPWm2h2sQEwVjTKIzTEAcYj4DfwHxNeIuilqVETSMIKgEYfXMoLo3BWXBiMCzv3+x+f37x+f93m7rbqpNvCtbe0dzFjqtYxfvlQjJOw1mgNcmL4hf6JbW5tuL2ivA7+FUBN3x+ACNpCPAL0GhAgQk1yCruNgH+/39eP2n//1byVu4J9/+du3Oo2IC5EhzNv2c27WfRsuZboUltHV1nVZ5/s6f/T20drcdbEmm07LVm8zrisZCogg0dmqLEKlMgh5BEX0tXft2jdTRQJVxVgR+3JbbWsbCVw6Xb4Ow0TISNgy1s/NHVTVDYLxWLROQY+mlHgPRlLL/ppzshd7aHOmqiTn4QexJId+6BymJKlAmey1p0YDZMa9qoLvWObB5QA4dN9BhSA6Zszh8fMP7JUPux2dCJ0hokeS9RMz8WeGA7Lki34tD8m6E8jZWarXkSjFxSmbTXnXbmBHjgPq5QsCPU2RgPJVDgkr/nkOeAKg8ymZHMfjUOy69jg5pOcXebza7k04Jrn/Qnf9yr7Y8WbRHc/H9/P32EEEHl8PO8TzR3C3DJkQOoIBjkEvBDkYHWn1R+jDDkmP3HY4BN/4K0A8yL/9oD0SIE+UljritMSfeDTX1GQRiFS45EKaFfVPb9tP8IFH6Pz5VydSh0eLSxYx7SU/x1XkTyHyj2KBc0ElIsSnhY3SJ/gL32ZmiD1CIsLMz2gxZj6bW44eAgc4vb2Pt/pYgJ8Mko/1GD0dvvst45laB+55Oe0Q6thg7H2msJOIj8N+nqCnS4EiDIpAh+AIyMGVH3LMzF8JAGAqUPI1lSjDoAL3PZkHaFhrnWC36yvtJ0Xdm3VXW82au4ZbeHNXd+3aPBDAhTnAkIAZCdkOw+D+tpOIxiTwggMD6Nyq7YfxSXV3xuVbeARmXqDDHhN4XqzHnXsE3zwXCfza25H6K39qqoYj7+8MQfXjHeTJ3vnIOArmcc9IO+aPf7qpUx4QzxH2pkaPUHthtizUyht5n+kDI5OI5F15PoiYGZGyac2wRzJequliyYD63jczg0h3SEF0iN3z0chJcJDCUCkKhYxVBhL0wAiOELdwi+i+Dj7PMn4tCIBckRsSIxbmkQcYQIYCIgyAAT0TxzwKkwCWiAGhEo8itY5xvdg8v0xju14GBgoYpyFdOCsEMYCpu6r3ZsvSQpDEIiwFzW7eN/A5/LbBp7+og3rEZHqVOl6HQkWgI24GsCouTef5srY73xb5+PHH+z/+dv/jf+r7l29/mS4vwzARFSYAaG5qGo4kXJgLAAcoQqhu8/3j4/P7siyAXmqFYqVWVDDwjXELfL+v0+f8dXj5enmRSsFcHcVjuFB9/TqrDstk1pt21UZyuY52vcY09JE37Iu1eYs2UBXrjjOHk3cM723e1ratzvL2ehl/e/s6SpnVTTfti7Jd2YdqXDE8unbus+H7gD8Y3jFmhDcpr7UO4QZ2B5krDddaY6z6Y2y937ZbF1+03dv8/fP943P++NgCpdCEjst9bj2ojlzG8feXglJErBWDgcqXIr8Fbtv6uS6lNXmBIgQClqJHtWIknRx6aGOqw1jfhpdvb19pHH787+X/+8d//vv8/f9Z7v/5f6//68vvXwfmrtrax+ftj/fP+fP+kyQQ4bff/moay7LcP3+s6wfoCtQIUTubDarjunFTFClElTNT0PYAhZRikQFjRF9N1VpzN2IKVnNwh2W9bfd5DazmL3UkgjqUQFrU3EE7NO3CbaidMRcFYnCDcPfuFqq9b7136xpqYU67v8k9bMdc+wMM/7Rm772lgAQPqVNEgOOxhAcAGgbkMwL2xsdsp8l9lLulfZDAIHK0t/uIHjiAdnMiIppBdmy775YASk8Y+znZ2b8OPRQCMe8L/D7JYkYCd3L3HYMSc8KysPyd+TS0fY13+Jev87mMR8Xe+dB8ftzvD+BzJMR8utWAaG+zjAg/t7P/sgo+gJH/6Qz8ie46AQQ+YanzpZ7Q1QM17qNScHe3HbLQwadwhtMmm+EGjh0wrVonOAsNR9WTMbVDivRUfnIyQHG+5eOC2ZEZMEFgBKbY/BmdHwDsocTKAR1Ab00RDZGL1FKAGSPwKIPaQVtEqLZkjJ7HbWY9As95XJ6+Y2BtJ+o42yThCDU9llXfE8WOD3sCuH1ZfjrsSTfmGYcjCTP/NsX+R3kLHGs65rT1ZD0fxAYyHJkXzy2Q8XRNnvj+GfE/o8CI3Nz9UiF/Qq4dOhw4eT8OIRgA2ZXgFBCGgUFEAmHhQFREUKASbkxKnFhMggAj0yKaWok1JUqiaIhBAGrNtLWuva/m3a2ZdfNu1s3VXZNcNDMxj8zaA2aUwJ1dj8NLna6CHJ4CZB9yzubBKdzdyCnICQGI9lCK8MPHk1gyt3K037g7ssz7RZ/oUvwVeOXo1s9E4v3PH5kjqrqbM9L7kvdakIk9qkgREHEY0gGwP3fzan1OIclTf5JYz1jqDKGw7F3uHVGFxpNyPn8kIohwfzNAREIk6nZGwZyT7rwaOQOzKZhxqIQ6QUWhodAQLtCAUQgjTBGNPD1TFuq2tbZu4lACGXlA7lgAoFId6zjxFAMZI7qHKzoaKIWRdmho26bbpuvqTIR4qaUNtb9cvL32sVQp1+tEROu63ua7tq17OCMHECIjKaFsbTXrFoYYKIwd3V1dl2XB6GDmZsgtRHEiIebBuvfeNqebibmZum3b/Ll+v7efP+7/9fXb33/79tdv335/e/1tHEfExcEDAUEgCoQ4UAL0bbm/f/zz58/v920OxHT61ArRAcV6h7vZbVl/fN6+ja+/X7vIhFSljIw0Xq5fWRrEb/5blteaN64wTfE62WtptX1Q+/DbB/cZ8RZ0CwPQnlakvvW2LLqF8HgZ8HUoHKIhc0NvANWYtIpWaoaT9ujkRjbW7UrbiD0QhumFhyuYr2sANC4y1NH4svTr7fs/3//5o8wLjQPLGMDvt/XHx52wDgMUGsFA17l+/JAqF/Fvb9+qTCBgfaBypfGV6y22vmzx+XmrtQJT75tuQWLUrgWkRl3U1rlz5ctYL8MVp0kK9ds/lv/uP77/u9s/t/jxl+Xv/+Ovf2mbft7el/nnum0a+sc//8PRzbsbbts2f97aNjPrZeRSh+B1nF4u05flvkyjEza3PZst3NuiwgvzwA4RAAYEwaHhDdyBCKGmwpjAVZurtmEEVCnElQFFGnd10615p1gIKzgKW2iYPez0ptpNz80QJQl1PqBTnxt8xqD/6YvSgb4/33d6LG/w5PjPp0+AZceiMGe3W+IzILYIRgak1BK5qzvFsW/LZ+JjhUjXbubeZ4p6SsRk53JSg2wZ7/CkacWHlJXPhV/dtO82yMNTxucRcHTGc1ijO3TAFNPuk0kETFiY8Va/RCYeLs6n1foXHf2+ZQeGcDxinP6k9cnpRjw4wj9nB5zff6LA5znXg/nDSESb72vf4vsRinGcu+NlhVhImPceIdqHxBZkxkWCkEgCkDldltD7Y5wBT+WMR9XPQ3KU8CL14Hk8SinAFA4J2p55O0Q8RrXJh51BuHmI0MyZ9XxxZnbxOIL4U7PyL9PnnYfIGUq+Wo5pzkkNUbb9YK76aXhMxihPcYKhXNgAPKPwU0KX4+WTMtzPSM5b93g5f47pgiPg9IBfjE/BTufIFdMu9aQRfGJW/uznwOOVnz/7LzQw7Zq5Z/RwQtO8HBAh6xV3BMacqciIEFxRcTfbmgYYEx/ZacKsmcrlCI5AkVjWta8ayFy4iEBNWYOqupvp5tbDW4R5qLuCG3qUPe1ih7kIGzARhUhNEzS4OZ68IzLzWYaZe7Mck7nlvwVCMACgazYe7nkQadmAI1Ev2VO22FOLU03v7lkwFUD4eLDkmJieOdRzoHw+fI79gyfj5cAAAGWXw6fYS/CRGxzop1LwBPTnM2HfzPjRbn4oIp42gT1vtIhwV8Rynui8nglAhLJCwcOFh2kEAmltUzMIAcjBotSaSlwzBQpgsQI0+BWRC1fCwbZo1vc3AMCIIBRewgJQAcAdxIGdMKBwLdQiolCpMkzX0QnX6OYtS4IpAINCt266Mn0yYWv9Po5S0BzcCstlHJRgGIbry9Ra67ftdrvdt3V28uJFgJm7iQTL/bZGGGEUqrVMA3aBxn1xX7ZlxWiAFhBzg+HrML5OLkUzbI6QRxqqdAXTrit8v93e53/88c9///rbX//2+//1++9/fbm+DdPIXIQKISsWBCEuRNXMluX+eft5u31u24JMwzSWUsaBXYMHsGaf63qb13lZ3+/3j3kppUhBpFqqvFzf6nVyoVb+2vvW2xoYZaBh8qG2EWdqP2G+tY8fsHzUXsjfbQGNthkpwtrbpos5SGwC7s2ta1vRVAIGDENcEDygYUwFUQSo4FjxyjAwuYgLyTB49GagCoGEOBJdAKuq/Ph493t7+fq1jG+vrzG9633l+b7cl49Cd2EepNxX+jnT5318e/taLiNhmNeAOvTLuL1221q//fPnd49lGOuytW3DgFrgr1SmAgM0bbcF2N/elABLwS9vQ/vby+0fo971dvvHP/5hxv0yQG92v32Yr0NFLLHMH//4z+yOKOjctQcYoTALS6llLIUJkICHOrW+btvWNm3Ntcd827SDdijTJUpxQEYED1ALswgGMiDGQFcLy3pDjQg/2Bo3NIPW+n1dO2s4gcNYRsw6MKB8JOVdDCS4izgzAnd/2odl62GOJjHC4Xww7eRI/p8/mefzhbMAGPc5RabZ76DBITebe4JjFmDlvAItNEJAW2A5tpoItO/P4VG1lptWcgcGIpTgLLhFPCQwQIj+GDwd4AsyAbW33k1779pz9d2jpx4oLeDYKrMDdtMIyAkOAKA/hn05JjujFPdR2q85T8/Y6xk2PQ+tdk4OiYkBwE7v5tPyeb4CnuTKv7zsuRj/stBC+FGTfMSiHgLtnZjZ7QL5KC+1Zm/gflT3QuzzM8p+NIMCwQ2tt/8j6jqX/z+tIiJCtEPVDK+xX5t2EhZky28CR8Qs3DsypUmES/cO8ViQiOLgvXZe6pkBOmHx6bdAROZ66uryTW7bLghLTVWu+WeHTx6E1Cue1cgAzlwBID/oLv+KR+Y7EmRmRObhnlHjcYxN6Yl2yj7n8+LZWQoH+Bfu6mQvDlvqkRv89HUSb3+6SE6Y5aHnmY0w8P1lOcLxnGPCSatQJpwygRsjmfcwzejnlLslCe7gEQoQAErhFn3bNPlSIjAMUM9DEWDuDVARgXGvy8giPCLKTBswD+wKBaCR71LC/C5/cgGXUvYnVuxPIgg6HLug6hE9IkAkswGJJJL4eeL/iCiQKfF7HANfyOvKAQj2SjF+njsn0M8A1XQO5nV+HvBz1BjHTQVPlHnKtS+Xi4gAYdK0T9D8YQre7SYiCPQYO+4BE3swWPZ0J/XlAO6KuGepALiZtQizbGrK7cQwTZWxItzVs59Xdk0kNogIMAvpgUxYKKqMiMw0ZOdfRICDu/FQmJFlIHY3MutIAkioQA4QJCgi1dUJRLAO5WJgpkDWowdEoAcHkIdrX253srj//DlKGUqthALY1jXCSJDYHazbtrZ5nm/3ti3AHqYQRbkJB7B8LJ9IXimAYyQkFpYqOKAVC+rN2xxbA7/DZNurh3VxrEoIJHUcnKyEafcg25b7skXr72v/fv/4j3/+8+vL5Xr58vs0jOP4IlwRhWmo5VrraAqfn/fl/n5fbj2dFHUstQ4ToWGpZOrXWmZAC1jW9b5u47hesKYuhhhqlXq5rtzDxGwExjJQmYJ5G2BkG32ca7n68i6zePvuODSju9NM+Nl17taRBKE5fNw2a6VtEvCGUnisUNTwFoDNVggkLIzG5EJK2JldeUOeGU1KD3BEJKgMV4gX4pWgbWtvW72+/fb3/+s3rL9dXv/x7//2H//xn//+uX5WweulTh2alXn77LYAKw3ACsgyxGW0l6br+rnO60+H90tjB24bmPFE7vba46Kb69qxhLXF28xAUv3tC//9bxdYLj9+zMv68/NWvv8oEGxupWLlIUi6tmXt//Wf/+8wvVzqS/pExlqGWkSo1LGMk/BYZHq5vq7b57zc5vt6+9zuH9v9vqxLa63Vly7jxGlfNwgD10xrNpIAQFUHR6bCXCDINLZmFrCutszbPK/3ZWkpKKcSFUUqBGZU9751ZhaRjmeElIFpqJqqu+MupD+mYAEZmrAboIAA0990ttAcqwImVb5L7JPRRwozOiPjNZyCfO9c9AgEC3fw3Psfz3rYFVwBAEgJ5iLLGQkpn4wAsG+td/mV8M7oP3b853N1F9M+RMd0wE+GTKk/U70BEBwDCI84+V2q70nusUja9M/53A6k4gkkPT3Q/4STzhGhmRVipqdkcw/bvaWeobAn9gEA/hei63G4njmMw3KWLQQHoNnlWQ+8kkiVCEBS8lXKkP3cZhaRuU1Ax6D2IQNKSPbgCfKhv3+dq8K5ZvyCHZ/Wf7NMibITatAj75QBIEmYfVF0UFOIvYc47ZBP0GEXlSc9ev72UorsHy5SsX7QV3DqaZ4XtoM+CdVHNsQvDNNRWnUAO0xf+QMHxON0p0JfRBAebso/Ya/9LsPIkLBfAPQeX0LP4jM/qiR/ue+enIzPR/v5OsEjPsTdzTtYdkPllXAIA8OS28r0X3+6iTijXp0xjJHMJFwRkVLdT05Ye2sAhoEQLTkzMzUDDHAiD8rgGgBKREmQIkTQ7A+w7GFBT8kpcm4HhYEBGSlxMNEuhUgIuvdo/br32E9ljs/UMNgh/GCD9mpt4H2rdnDOkVHkOXQNtIN2d/fMcTolAYiYFRew7zv9qZH90Y2IiETH4JKIM5DicTnl8aM9AAX+hcJ8Cj3Jq/fEdmmWTOfrWVzBjIiViHoGdSV/SelAgtxVA3BKCfIJJCIxSFfinjNLLFESImqPwl2lShQxURKICnvYCegRc8h75xwyijCqkikzI4BEgBsAEFNl0iAPoHACReZSwDmYDMkNA9hBiLeu27Jq69o6uE9FxlqmUhC8MrGghS1tXvvcYwHWILMwB4LYNi/V0ANF+b8xZS2BFaOSFnYMwRjAJtdYli1QnUEDWg+/zly7DwEjkRQqlHcC184aEoim8/x5//z37/8cLpfL8PK3oU7T9DLwwDSWMk3j2zi8OPC66OfP233+3PrqCLVIrVUESBgFL46vhWcIXbqGfc73WjBgGphNuPeOHoXDKMJDGFG4iBBD+pFJCuEF4xLySsj2+c8mvzndbx6fju8tPg02FKG6Otuitgn0ocpI4xtMHy5uNrs3ZXUNdidqGmvXGe1O8IE8ABugcZ3d1jD3jt5qwAXxSryxK8aL0Mvb25fXL//rcvkNgltfP37+s9ute186zp0+V/5xq9MUBQWwcwWxOrbrNt17r6q+tZnIRQSIwSmctK9dX8KGsZAMPEoANKYWuA5Vf/ttpO2b6sf3+/3z4+d/ob+8vEm5DoMAiZMggzn0vhDRBhg+IFQXNgAJCq7kPEwX4evl8rJs34fbz3HaIG7r/Nlt6doNQ4kqYHF0qRy1oAoSQEEv4AWQLvVVrmUkenv5NgyXcOkN1aNt2pq2zbe1O/lWexu0kIdrEAsaA3sgIAEQIFcp4RxEGHv8VUSgBxE4QEa+I2KceMIBUQACghAy2eEUQh1N0vDw3gG5Y6BTR0uJvYcZhOWGElNWTA7BYacdbw+1/1VlHhFgcAKG8BwlmB947qTKzpX4TwOX5zFQPrkyollE3C2XHzhj5X1/ZvyJSXrmsQ785MkMAYAAAwDCLxjrCUwcvEXqqAEo9hTGU1aVIVWY/RJmkbqU40eTFYN/GTPBqSuinarc3zkCHH18+7L9HPlDGa0ZzIxMEUHMhLLv7AGJKAiTxzqjFjwAAc3R/SHbP4Ump9rsGROc2QoJjPZRprvtb8f3wfSvp+zxJw7h0HtvTSOi1rGUyGHlcXhD9la/h2gp/1nKXuCYQ6szGCIPQI7zkq44CDl6LNvMRI+wgLQc0pHgdRgIME+muz5ALTzHhh3yfH+QNE8XVQrh94zg8zxmxsKfrrRnpc7z4Y3DQwfHeBeflG3PWH+fi4WGPuV9pOFDHLO5J3P6ngb9e4MdBCEDGUbgTovKOdxkhpDAYAuL2MAhCJMUyeU5i8Ug2MySgs5UOKS8RNntTx4RzGgk8MdNB7RfupkBfAyO3cyR9/skhVr7jqKTmSl4ZvWBBx4j71zGHrByb85gZg5HzW4YC6JAhNhNCY/HS0ahIe3c7am+UlXEnhfGeak8vBH7lgDdo3eNAA7fpfFPSSgGmY8TeMjLktkiInjQmo8R54MBfeohRfIM/8Knof/Od4PhHou45SADEWqVwYtGZcta0sLQCQfGjbESVoKmEQQMIA7Q1FrPdgcvlelI0SMYHJCZKw+BbIAQCCwkFcMgxB36pmWQgmVgGTArbi29Q6leCPPldm/bMpZ6GeqX18s4FLoORLxpM23btrVodcKCIQ6NPVgNWwfyCMHxR56PFqQhCuCoQRgmhS7hqI0BO5RoM60dfes8dr4uGMIkhTmgq4GDk1ANMrR13Zb7Iki9X+xzq7XWeqk0CI9DfblMX4b6WuvUW9xv67LMvXdGYWYuAtCJSJBL0CR8MV0cocM830ZBJsBhUGHrzbwjIoemp40QCJDh2IoCgVQeKsAAukX9CvKK8rq0ZQn4VJwdO9XOtYG0BtGFYaylwhA0EPLsNqFPWO64qfdQbJsvrPfQT9R3gQF9BXT3u/tqa2yrt9UgSm/UNvQo4RJeilzHsa6t3++f63afRv68Udt+dp2XlT/Zf7zLWOBaL1XKkBKWOiCXWsZeJMw9GhJUoo5WoqttQEWKvPA4XMbLdRgrEJtCI7bX60hfX//456g/vy8fP9G7SH0brwWLBSAEFpl45FIRJNzXde29h3mAeamXMSKYqZZhECEUDXTi7fYRUhuAqK2oSrqRDiDGWJmpVuikAcxcmCoiv71MfdguIl9ev0zjq/AIwW75gMw1bB+smGYQX5bASrapwnGj1lIgCphYEBL0fKZEUiX79v4ocM8nVJoCD2FvZLZ5/jPNSgZPORQnt7GzReB2rMURkaW8+2KJ+8IZT1u9x4sEaaYrpDg0OLfF9ivqgoPJR+C8i0/mA9I2dgqQI3C31Sfwyl+5vxofUxY+N/2x8+EQARB7KgTsGfG4N6/ACUIpHh8fnwr1ACCpwj9tap8xCj4ekDtaPL/tpMqesdfjWGGce+bjOPwfYNCRehZ/eg+ZRZ5n1o+Dmavyiajc3TwcMJyy3PFEOScl9vjtxxecrgXT55hvj19mqeefP4HcA3hl53FrKcx6TqBNAJm/N+V/J9IF8KO2JWmD/icxmVnv3YyrNe8AAIAASURBVPbmPpF85XMNy+nr/qEw3ONIoWREZDmRtOe6e66DcChyyJ7rBPbJ8jNVuQfNe4DFA5rHrxf/E6V3Hp8EAU8qQPj1b/8PXwdF6UcphZ+QbhePkwOcxQbZS/o4g4/jFoToxJnB8ZiWIiIqMlh4DuWPz+Ht6YQqRF5akKGhETnDi/PlKQABT/kEwN5tChTn/Rv7Bmkno1WVqDx/zAMiY0SQ5lYKf/3b/ZK2eLKsIhKKUZCBWe5g8qSc13JOJImRiQgOvH46HswMUc+C9rxCT+CVm9iTT1U3NhWRaRoZ/tWj7UGPs7m3XT2cszsWPJ8b7k50PPb3N7/j7yPDxc/nR/4IcI9g945kpfIApZkAZLEt5cQWQQgHhIIgjgWIGDnALXzTHmrhJowEhUoRSrUfiNAg9TijhEQkhSwAyA16NylUqow8LNQETcHIQdV6U+1dVW+3+3xvY1ntMoyVhQOwIkb3tm3z2le1tRQpjmxAbEAGpEEdgaTWV2+be0PrW5spAjmIQJgCCI2CEAW5WFDD8HkBVmBzgaVDu9u7MisUbSQ2sg7YuITzZXBCYyWf58+PmxPzJDwRjkP9MY0v0/SKUDLKDiGEAFDV1oGGrtCInMoF/K/T9Km69nlT/fgw1FVeL02uFti2evvhfarDWKcLIjnEQh3I0AQsXESgbtEXgQYA3UvXy2eJf86fq21qbtQ7y49esb9EK6+MtAfHSbnoKLP63Pvo+HOFeTXdWtF5eF11aP+Nva9t3DbqvbstffP7d//4Ae+f/9G69/e+KFzHy8B/sX7duhG+fv32dxT7698v7+/y/ft2u/3jx8d/mf4+09JJ/9fX//vb9E076ooU+Po2BsTqAC4sSBIV7VVoacwNymLX8DKOr1+v0zfGa5MBtG1AJeSri44vNyqff/zjwxzq5fb6+7frlea1bW0Z5OX6+na9fN1WX2Zbtrbc5/l2f91e397e6OVSObCsbq1t87pq6yWApcylQqmuRgxV4ovA2wDXhiZULlUKwardMIS9jgOF/Pb65XUar5fxMl4rFTBiJLlIROilM1Ig1Do4xGJWgrx7W5oQDywMpBCV0AuFCRAhSEQhHIARSkYqRJgdSnlEqBERpPnsyad0goR8MmIkIAsgPJRFgJ0AwCmI0SkQ+cREFIzIhIRIeKxhhoSHvQ6BCYmCk39hYEf3PXQU1E1VwSItZvCLpqeUUlprarvdPVdTM3MoOZPkiqfVkfl0+5GbeXgPcOIAJIw4gpp0V1VjKaWZDsKZDH4+zd29h1GGNTGdSAWOoNE42rJ7aydLkVnR50zHwNV0KBP6blzgwJ2BSiT4LxqyxyjKAQIJGY74LiIgYWKOwG3b2rohprnSCzEJ7ksfBDEQoDN52kUjuqkTSq1UBpCCMp4779aWiCilqO945VSc5IPezJJUSKrsKUqwEyMLQaCZU3hExpQpUEeWIMoklFwc13XeF3TV2+22rus4DRcaSqnHCgoH4DMzy2jaQkxEbqYaoEEZWNU9NMA8wLjCwCKA7ta3pW8LepRSCjEBBkDbGgLUWmutANC0m2m+jYRopZShjjmEcvcM0SZq8zy3tiEisasFWS1lUNU4z+CRFsZMAa7aiGAYKyKqtgyyB3YZqHSOZsCOjIGBTHIIuYgxTRIk0Nwi1VqAqSXnfJ/ZuExC0QWxCEU4IHqH7DaycHCmMhADBVNAJzDb4Mz+AE0n9H6txmH6d9/zzzCVXcT71B0gyyyczMTMGqzelySTmYrwAB5qORpzxMi9IgAGVAjP1gkLZy65rwJmwIIMBpvpJnLFPVBrn/emZhwA0Nzj4WJOrWHrkQU+3U3DoRuRFMl+a2ZmNQtN2zB6ZLqE5lCRiBAwMiSVCODM/AE+1HhlGJA5vQJ5a+TFv65rAq9hGA529YRvEeG9W+9wqhWs629/+X0cR3AEoAxDL6UCIJG4R+9brXUYBrW+zOs0TcNgwzCIADNm9TUAbEuqdHeNY5C6HbmAHhFhOakI3svHabovrXCMY9l61LhcJpjjdp3AWxPogl0JgTBIlERTFEHsTggDRA83Vbp9wrr26wVfr7UIkRgKbNjJhbwDOpGyqKlCeDiGBugApQgHl66mm9uGrhwNbembNdvMu4LgvvMfpjpeBqe2bctn+1z7amGbDDi9Xi0Gg0BmFAswACGesRjEhm5u1sLnFgAxIVoIhUAUMSKSCAtQVg2Nbt50s5VslM4EqOHiHmJGJgSCSIXZGbuu5q49uhpCh1ha7c20NRUemQsgIoGBt7aqKnQDqlHAMdRV+2I6e2xqbIRmrNa19W3ttTSEOl6KuEaztPiyoAxFiFGYAdRAO2iPtdGnlqbl+9q/3/vPJWYFLcxRyYvwVcpoRJ3KhrWLadm8vrp9MdUWrbtZ525gy9bfb4I6eBiNqtK2ZV1/trnf33H9pPs6r1u/3eZmcL/fPz4+XpC8IIBP0yTlt2uLoazgN7B5nqOv23abb8PHO77XmHAoRtQ8OoCx0DgSaGErBANREaJyrbUQj227Ig+11lpGrnXprTVtawcLplLLpZZJysf91u739X5ba5lEBmKu43WaruoGRCQI7Ftft22b1/tt+fhiby/TOFR228IUAAAlQofhMg7XaXwxBaBMZynMpVChiDB0dMFAhMp14ul6fb1OL2+X6TINYxkrX9CKdtw6DMNUSrnfx957ZGfCum6+RWBBGsoogLS3fgr0LHLejXW+j5/Afe9EhN3KF4FPkejJCZ1tQvYkqAp6tGif4lDagxUcHQAcqEpFRCJJmBVZv71v1vdp47Gv24cescchZFUfJ9QyiN1ClfowxCB0gGXb4tHly3E4Iump4jCeUj0PxgVzb70ryYgBd2LgZAVO+gp+4fNOvQk+g6EzdQmPJTN+NWzjEcr6tEdnfBJK87lzf2Id/jRC+jMh8VBD75nxZqbqvXd1k90FRiTCjPAQrgHtc8zMy94rU37V8hMds5UIYJac9eGB8wCAOR4Myr+IwUX2D3LWIJ3v2bM68wiMJSKAwlwyovOEbkxC+PCQnvJ53ENT/fmXnhHweRR/Vc07Ipoeme/00Gvv5Jz3UGTmWuvA6C57bMbxZrKK8TytEb94ac+393zKsvGU9iZsZpYIU2299xybmjoIIJIQl7Inm/fe3TOPb79CGMgjV9hAYMIzH4T2PUR47n0MwjHL3CkiIuP+jqjeVHOe4zBEjQjVppr6rijPdB0Axa7UxAcd9bwNQOEaFAFmxtn7VGukGmknfYmJPIkoCCQUd1drveeizIRBIhGBwIgOxLuN8XhQHJwtpXbqsEfsQbjHHSeInK9BRQSBLCKCjlDDZ7Y4r+zzLs4xccIkQIwzQ+95dBuP2/+EemcMb2r18ghnIzs9xc3QEQVy3PL7pbuua5YiID+iYWqtaQQ+S7jzpl7XVVV770mqZeWoqvouxdglEOfdRUTZD/KnYUK4prUqqzsJGUGCeKfMmFhqYRQa2QeGBrmVQwmEPtQ6DB0bBYRr776unuU4BArOhaE5MhThgi7EjAThgchhYNq4YaAXhAsXjyCitW0pg1PV3hUAysiX6+twmVBKjhjv8zpvq4U6gtTi7kEYHMhCwgBk7jLUZqgYBt41/WKGZq5EJbCEMI6IRuESHqCTkHrftt5UewOt4RWcHKGpteKlYhGpLAMCYLD57GAWYLq5LeG1u1mEDTaVPtRXIiHkcG8W3pu2LkUJPUK6bdo/Te/hGlHM0aPk2d22XqQjtNcV0UCjb31V6yIyXgaYKg3cwNZ53T5Wfe/zjO9rWdbhHy3+cfM/5vgAgBjNisF4kReHKwDdsUxYL6SjWJTfnG6L3e46LG2xTowxQ6v4iX3m+Y5yDZe23Zf5+zovfRbbRoDRVMENA5bb7fsf/7m2pVzql7+8kmM4QlfXGGR4mb4I0PLzI1rb5mWu8za1YYQo3IxXwyY1pisCECqhEVERERyqX1imVa4OI3NBZARxbb1570GKSGOp1zq81PJ++1zff6zX68zlerm+DMMwDhcp5fO2ERYSdIrV1vf7O97i/SaL/v7l5ToOEq5ENI6XcG5NkcZhfJ0uqylZeKFSSAqLuqMBZme2BhBiZcb69fr1y+vXL28vo8jAtcoVvWjHtcFlWC7D5Xa9Lct9XddlW3szVcUg5FolEJiIg4EN0teUjc6BjCyQUtjjhsV9MpXP8b0gCBHPJIIc9x0P3wNxHc2B+Uzbn2DEvM/iiGsRfKCu7kksxbOx60GJZzh1PigpiBmQ0PeujHNisi/GwADQWju1F/ncP7aA9jz8Oh379UhyN7f0NWYJeCYhRDxmHPCUR/rLHPPQ3Z8PdDq+/gTOnox1/Ky8OX+LiPQHIKC9Te4pdvUUQj1PMJ8XhufHq7tb19Y1R95Anl68PDaZ42VmFACyd3nuHxYhIK159Kwpzr9M9i4JoVzCD4WvJIA7YceJyeAxbQmzPX7wPFwa7ntDThzrdCY4RGaN4aHfP2Vk9GtQyHmIcpKWauRQA4Ba67kwn/kXuHsIjjAOV7e8UoMFdQs3MxEkGKTaUdm4B7KYEen5iY43EEnvwSF6S9F0XsjnOTozwErlCOt9a1tHxFpFVSNYCqdpX8ncvbfm5FAKkTCLUNKroarkegqMdj4V8VzXz9913k1UhIhERtV2JOOziCRHSAQR1nvP+HJEoFLPqTQi7taMU4CFmdWFzpF36AE0hckhyAt4IHHxjPREDADhOOzV4QBmrW3emgUEkUipue4i7FsqBIHgQAoAdEjBXz4omPnIqO/MLFLPyfKxeyHhwiSnwTb3D0+3mzDnEyyxIAWk13Q3lEeERRD4Xs0XEek2f5rA5onea63dM4skngRY50WS18lDX3FgaURc16V3LqVUHh7n60klltxecucZ1tVaG8dxHC+llPMGzEcOALjrXndxPEjx6OH45UliZg4oApBbVw3HJRFIeAghSKGx+CRgBQECCZIYZwFZlyW0tx7atHdrDRGYMQixN1uqSyBSARHoGGAITkFIGKamABgCMAhbFMyM3QAyDHMA4ALT5Xp5fanThIJr19ty/1znpSkQkCCgAREylSDgpPYjPOR6vVrXxn0zVO29m4Z3C1Wt4CNCZRKAghRoBIBcAhgUtaEadGXtFEzmSt4FNmUaYGIIdHOk8Mi6dETO/gSC7rARTcQhJdW4DI7a3RVW7QTOYMHQo2m/h6/omvyuWXblhndzVWu23X6SoIGtbW19dYB6E6lYinRv832dP2/t9mP+ebvdfLnDf3f44w4/myylAEzdxLWCTIyTBhesI5QaRr4WHdTqvMA8w30B0GDsxVYKgY728Y40oFfr994/o3fQATyIWChertIMzW/v3/tt/TG+TPel1omElQlexwv01/nn9/lz9aXD4BzsjmuPYoDMjWsrU/erYQsLsNW8BwYED4WZ6jBM5lNv3A1wM1otqlBUQkXKJNBJypdxWLbl+7rZH//9M5D/+neRerGAtbXWGsneA03CJNha763xB/e+jlUYqdbaFSFEm1Mw4DSNX9xEVVlK5anQsFlzC9BAJbISQBKlQCGXgcaRppGKII88Io0OGKFCUmQYhmGbLp/zvdzv67b13jGoch2HoUplpKSafRNiIZJgAWNTMMCwDL4ODEhfSBzO7D0T1N0BYufD6CEsOpIiMvZhB27pQkrZa5YUZiZPDifPtHyEPFa7diEwzY50lHIcwC437uAQzy11z9qIX/9lp0bcH5TGv37nnx+Ue5kR6pNv/Bd1fERSESdueIYafwKOcCS259cZ4XPyIs8qjXydnFmc44nzt+Tn9afQzuefPY/Gn96q2Q6O/4WM2dN90i2FEDvpmR3Je8QiHUXX+ERdhRsYBlT409fx4rvk5fHQ//X95C/dF2NCzOn0vrM/i8k7kZz6dJHKHLss+hd7QbJcGfTQTxrNVEPVEEHhqG2xjBJOGZu75og8y/FyQCMizAQJf3tPmEWHiOwZOh+o+uFIFSH3EvFMa8mec0H7tBEPVf6xGAsiZ0m5Krlq1m+drKe7QyCwMRcKYEAICrAwT1/fCUPPhf8EWycWPye/z+t9frNq043LNO0cJ4WHqnbcyzFzTnZK/mPP9kMEoF06CgC7SRkx9tffJXJWRJA53MD3WIUAJEDHI2A9wrpBN0JEJk46060hRXZ8A1Gg0NPFe27z9s3UQXHtf7v7YY/fhnjm3Kpb8vT0VN0DgLDbKBFS2B7ATIC4B+scQM3cyYMhHIJyJPhrkMpxWVLCoD9thIgykCIrmh78JR5CBXzqD3BXAFcteGhRz7spqbVkvIiIuTxzeEREkqJGiF/tQXS0XwCcVtp85mAaqNzYNFRja7r11k0DKDgdp1V4IIgIJODK9XoRv/R1WdZ1buttmSG8EYekfVxdmba+DbqxVDfa21kjAGComcDYM8tQMINo0ZtHD9cAxyq1VplerjIOWMQwerTNvDk0AAggj21ZcwJLLLnpjwBxlN//8v+xZvfP20e8m34ad9dV3TTMIbA4kim7ETK7h67dmtqibXPfULRzZ3FGcyVwoW4FDaIEAA4BIpCiGgSMVKogKJiCd8QolcahMg1msK2dNl28d2urbUQI3CkaxWoRHmjWe99ar6raXVW103a/z1I5KFpv93XZ2uK6uq0AvrZ1npd13to6b+vnev8xz+9/WPvnvb13CBb0Gi7sVJzQxYArlDmE1HR1br21tt37fenL3EOJYS1ypy2wRNNuyrEFQGNYmKDgRODd34kL16Ewrlu7zx1nKffRya8v48trvUwy1gGvr+/1ip2XW38ZwZTcZG1Bi9IwKFSTF9XWewPVpRlvfUJcBb68cGGBGBBKgLhi2wCWABSCqTA5bQYBMA7D25c3D/f7PP/48e4Iw3QZpitJQc1EgKyUxTIOk73iOmd5XOvLXeQyjIPGsgYEIxQChih1eIEo6Sipw8Sl9kCOAAYIE3YUnspl5Ak6RgtUQiYKwaACAlysWkSMMdhl7P1yvV7vl8+lba0pBDEkc0Ko3tWJHIXp/8fXv3ZHjixJgqC+zAC4k4zIzHurqmd7Z/fsl/3/P6lnenvq1s3MiCDpDpiZPvaDAnCPrNrlyZMnIuh0wvEwExUVFXEm5uBiJAGUenUAhIAIJ+A4huLgsX0SpCXXMUd2ri+7HiwIEQ//+QjaY3VI9v1m7yya79HcQEwMhEQCkCGF+5rl8VSlIYQxk6WcVv1hknksyZwmQNM0maUluz2zLAZogH6Y9wB4quDNHR8IzAwe0SrHOHgAIp224LFry07uKrkNYjl5ppN4eEYJz1L0s/A9/3+SMb3vYboYj7hlPIygjrqWjv6aPruYnm+IT+1UIqpYzmr7WNzDzIaZH61PEc3tgahAir2IUmvm7tlD2nOKzSJCupxn/uhU71/wNNp5noczh/EwLCXkQkAR5g7mZmkafYz4pWYrxf1pDofIOaH2l6iAUztvZjmym85aCbrzaLsOM2PcmUsfes7kntcLEXMK8qAZduFOSvUz4TGbjHA4d5zwFxFFyJ3SePUcN8sOo2lEQIreTqYw3zm9+933WFNyQ0Q1TRwJEESFj5HbADsG/R6PxnkzJJI+cdh5ck7eJXbBADOXwhbufWx1EmYmDmZiBndAyrtOz0sZGZya/nzH1fVkmM+iwveWPkKKugizp8w7U4h7Nz7zK8DBzcmDwxkoLASC3ZFkSaizV07EyIgYzJIjwDuwBErvJ2JGEnMACwY7mubogEyMzMzggDiOWyVYggKIiQABKXnKcHzYESNx7LaECE8WxiecygXsPP+njhOA7Kkl/ShWHovAg0HnI+saD0FkRGSXlojWdXX39JY770nCnXc/H6UEXkS051jujfgIehYhBGVmQ96WBOhwBHKDGXrQGDaSGt/LOQt0dwYHBqa81IFEZZ4vr9fXiryt9/X24/MmbRPvdyYXAh8eNkytt9EbM2K4hDmBMYWwLdMUMDSOYaUgBRwBAoyOoRaB0zS9vLxclhcu1YkD1QGN2VnceJiZwr2tr69UlwsXOWswQZL/9m//bx3j/fqd6R/gpcHHakMpIHyQFgKjMSgEAsLc+62pejRzDVYgHdWwGJF5EAWKaSrTfOSALyBBIAYzMCMHFnAcvTXaprIw4+VymabFFO+y3nHrDqGKpoAq4ITuhMDhw1V1hc68TVXmMTfNnGgTDBRUDAfrfft8/6Pdf/R2u9/vt9u6br337rH18bFt77/bx0frGzhMXFzAqXs0cwoDxC3sQ23Y7d4/CT57u20frW223t10UKyCNymGQj5631TXQdGrjMLOXAVno1FKmeFFWVq737bNVvQPNog6l+sy//r17Zevr0J0kZfXy2+3P+9j8H2LeQOZELozRkjpQzedWp+tddwUNl09JmYIrAUIXTWG4u5bYyUGAwqiBJFFc6pl/nIFVru33r99fMT3uL6+LNcrSZGCzBMxB7IwTnUJR0Jpuo31x+iDes9R5QCFKIxeqAiwyGWZKwaScCkTEjVzwgCCWsgJkanWuVJlINdwdS7EzLQX2PWlMoADumOYtza262XeWlt7c4fQiBRvxwjKnPpCKCgFTZAYWEIxgiAMjrSyJN8dcolJm/tjQz2HH/dn++Rmku5CzynEXTDBCGWvaN0y+yeOwe/EZEfD7nj7Y6naQcyBMxyOsv7IVwlVj3QAJ0QotYCyqqavGOHOnyV6oj0U78FNRQS65Vxl9r+CKAgw8LRReEZIcQzZnf2d7GShFH/6et75jo1Znp0XIv4L8j9Ji2dg8V9iuLNQfh4pf8bB53fhaEpm9uUDse317j689hNOYhKSHCSLx7FFeA6gMcBe2T/kVij4s6op0wnPQ3LPqO2H4SQQFUTEktyl6p6okLQKERFWFiEip5QfhVnkaHYqyncARAAYSAewi8hEgTi4jYQ1Q4eZFZa807r19JRNh7M81GxKHjxE9O7autlIjmqMlmDoFPAhIuDOfZ6nIgMH4WmoorWh4wFM08Gk93Fe2cRzhfh4n8i6AhGIhDP8myIgm+Enu+nmg4iIQZJoGcN83zh3Wisywp4hCEzSXoSJCnEwJ2o3S8tTJwIpmYXqAEcSxeGEHgfL9BfsBQhZ9DwYKRYmBooUV5lZoEmwgUXkRUFmHNp3voo9MgoSdzVeavsAnNgPbhGQCZkQ5QnHUDbtI9Le5oRIuQQxAuWdGXzQwwD89BwJs2dqIprF7mCXlsIOxGAAZHtcO50QKi+cm50X/YHFkXvvJx8fe2Qnxil0230xHi50YwySfU1II1Pc5zZGPrwZKHQyoPvTQTu1ltFSz48eAACTPOIm0wsT3Mj3gKwAiPxYHh7hOkxtz8IqIoWlM2fhAO5oCjrMJCxKjalMv3z59fWybOvn57tcLuC2hN5dVx99NNjuva9rDNYVuyvhxMCT4CLlspR54by1UtgSBoZgSJXrxLVwjcB5mq/X12mqCKSqQabh5uggGrSptQENoUw2q4vsCxEzEpH8/V//91C7XP8sVETkoxZhW8ls+whCJVWEAY4e3Yarhpp7oOU8NxMUjguBMFYSEWQeG7hp70yEEM6VSJhEeOY6E05q3DXDrICRauG5Tl72e86C3R28AxpEc3MGLwh3B7fopm30ZjpidO0OHlJEXYgAoZRSqxShjtH7tq239Xa/3XsbHbApbPe+rq2pm5cJXRyKoDjgZkNIAWN1g+af+p39D4b33le/c9t43cQGojljr4XnyggwmtswCe2+GXUiYpp47qro7dOLBEVdYhisfXz/8YFc7vNF+x3Np1LHhhTz2y//myp++9YAbliGsZEOJ1x735q3FWFU6pdoQNYLYpgXGYybOyBR5XkBQagEFRACh3loVMUKUqUuXCeU6kH3dfz5/X15fZeyXK51LqXIhCSIwz1tm7iMskHfXbmJFBCBLHzYcAQUZGTmKki1ziICiHOYOtYg5IJFkLMrI4zkatq71VrI1QeJCYHsA0aA5IG5Z2Hu9dnE0W4a4KREhMLQAFiQhKSwzKQdxci79qB0yordUIvj4aZ4VtunfcPTV7oYHE0NRE+1V3AERaBb9jD5MCI/+CogSG37rik5RfU7gNiXlQDVTD+K9AVPaJHkFjwagkQEWSY+txVYGNAoQ374NBfNuqtEBOs4QRIiwhP/f1L9Z0Mnh8afhd705JXwvPmdYrK/+F09w6PnH3y84eHv8AzRTlRHj/TDnywnzjc/35koREomxtBuIvaTUIxFhOWnDggzBDkcPuCACATsAqKgQiJEucyda31EBqXv3dUEE8/o03zAaQjpLj/1iO10iUzIkjg1qcQxsPs+upWXPzENEUnhiKO1ihGQkD7f2T2CDDOlNMzA3dHMNMIJgOQEiwBu7mF9qMh+HSz7sJ2dXfbg7YhgRhE69VsRoTZSsJgn8+z31SrZ5+q996aIeM5jpsrN3SM8lbW9d5xmIgoKBHTXCMu0LWZG2RVCvhO9am6AppqJVYjIqnE02ZL7hOdzDxDPO/TTVh2qHUAAHcmIgHln6RAop2oexQOlnCuyYDoff0R0ACJ0BEiCG0U473xHVARR4KAeau6OBIw0AQDs6U7n03SQwRxhgQ6oOf3MnPPP56AJ7zQO7LFNeDhDE1Fkf5DYES0tl1kw3H2cfjcRe3Kl8J6UsCe9wvkAJmnPoD89YvmMHr3Tn4aLk6A98dC5YJ7934coEAzgMTRzXAs/0f8YI11PkxvOf1RVUy+lxJH/Nnaed1cWxv687xA2r+++OCE6+enXGBhgkLFJEeax429BSDFllapuGE7DojffmsMIRydkxNfL/NuXL32WAn0pWssrwta3j37/aHd6j+1H1xhdG6LpJAtPy2VaXi/T68tSq1gUNtExcPhhgdbBsJb5ywsMt2ma5mmigL4NQHMYHXrX1nSoozmoQyD05vdbA4tpllolnwR5uX7BcGZ2HQGDyRA6kr77zdENWCGag3uQhitMUdAMFNCRgwALQQ2oXBeCQiAQ4KN5BIYSkReEjMuq01JfSWZVoKZTmQsL7pEgTswiVGupCkTAWNC7hWsfQtIFh/popO4jogN0REllgJbMvKqFpFaKi48retPR+mYizgyoGswIhALQnbkIT4EzRPGo6mHapjpFEAXoaLb+IPvkUFPHLqOXPhYfAZZ1nVhwYRQBAZQApI4QRCpCRp/uHtakLNMyLfPVkd8/N+S4fW7fvv/5+X67/1h/++Vvy3T59Zd/Q/zxx5/vnx83h88yr0aTcRvhPbS1rh3QKxuCI2rlCGghYoQbQpRKl/ki4JW41he16NEseg8ZQEfTqgJPjqVr/7xtP95vl+vK03VBklJEZgQZlrCAmAuSTe75RBFXLgUG9G0M9LLXUAB8uhDBy/IyPAK41JnnGrtUmXSY9dG3ZnUyYA8Aa7T7tgMKMbFDCO5ArEjOzphTIHoyTBLRAQMAmcEEpKJMHBpGYxuHCU/sPNA+WrjnM8JubnjMtz850ADg2YLYqZGgAAhDCACG2AkJQODD4z5PUXY1A/yhbTrtvYQ4ctwSAjMkmyLd1c125uA4GDk7gHsbyBEBmCiIkn4XTDcgiwjwdBWCiDAisHGqULNIjcPZ/Cfy5vjrueCeq+czKfXgAA508lybPhNd8eQwnizgw6LzeE9mTlxy9sWe2a/nY3gGf8eQoJ8pcgnAzAyO3/KQ8NNjfC6AwHB3KkMMJg7G3evImLnIKUnpTyq6x/DmSd3trV7fdUhxmJnlZnPKw7PZdoI/kVJKRYQxxt6tA0NEs1FKyR8U2+9tAP/LWc1W4/O9AYfJeGG2BJ0AjMiIPcJD1YYMBig7Wuo9mR4+Bm/xGIB4ts2MI1/gRL1PPSYDQHcf2nKI7yAz/GhF2Sl6G8UYvUB5vnkedxFjeNoIh7mb+27Ld2zVz74qD5rzaZZNrRcqRPVkl/NbZoYUKa5H8sSvHpZdrUCM8GSUADAI8ZynQX/OOgSAlAkwIjJl6qOHEpcA44iIopyJPAQQVOYg1PBumgfDsgd9wp4nFpGWUgRBgMB+pK0DAAIxAIpnDEaKR3e5T+YYAuVydZwBSoXckXq2e/7hkdKobhnIeC58RIJ8hFsTJoPuWYVGPBed5zk/ZhzleeLhvCX+wknHz6LMfP00TQfDak/zwntTMiJqrUeTOlT97OBfLpe88ZnxHEc+r3LiL8OHdAH2Xm5EuMEIMGIXER5H4QcYNsDV+6btA6SEI1gIjpn9MlMBGbNMtFwuVGi+32JjbWS+cb/Z2CJGz6iHCuUyweuF3y5TKcUCuDcNbmND6zG699b7EJLX6ytQthqg9bW1zWEYqEbbfCimHz+zmLuYwv3ewR1xLkzOiIgSHdSsyvS3X/6lMC3LNC31jz84BMb9fbSbhAiSa4dgYbI1I+wMnUzddJCETMLAFkONwjkgeXKLaFhlqpJpNNO0LPOrAS7DEco0TcTg7l2bSHX0bWxE+Hq9TpXd7qMPn+auo3Uytw8EbWSMCjQMlETq0sZoatNQWLBKkMUkBS9vEEQ4EV3KtF3abcDnfRttUK2iA92AoBLO5mhDARtwbzGQS0Hb2urrVtHDa1GPqB7qAcwzAquBGgpineY6TwwlwgIBcCDGfC3A5IGGQ+Y6XSmQsV4dQlXv96319cePHxjy9Q3m6XK9fvmPf3z/+Lghv8v8+5/rpwvxMjVzEDYNbVqDJC4QG4xBANiNUEvRWojtLrbCuIhCUA3wZjiCR9Ct6fvHx30zxcLTdWzwsXb6/TvXC9eX69VfZJ7qBWLMxjpg9GCSef7VzERMRJDp4367t1tAuHoRKkLMgEzMOM+11nlz9cBAKXWWWgxi621blQPQ1Nvo61YChSlgKPQAISIIC6dANVNwJ0BmgQhghsLgqGruPoaR8FBSBwcOyqnGEu5cJ9ABppm0o5Z+Ih5kdNigZy5NriFJbOz2qoddTUpgKMgJPQMcnSwQMjiRkFnO9cj3GmwvNM+VKBmv3OHMHQKZmYB0byQ9uVgdddy5SAGA6QMkpVBcRAQpItR6RAgxCe4/Bi5CZpSjcLn4uru5ByEKm3sfPZtWQci1ICIVoSIobLBHePzFLSL/f4KzvTCNSAh17tzHiskiAuZJ9pBwRNixOp+s24kt6GlS/dz84GlS8txfSylcdh8B5GO6wj2I+BgYBBIWYdojrs1dz7xh90jVPErZfdcwrB8wFJ4L9xOLnG3TQ5JyKo6DCMvB/502EKcaiRlTNsvMT+kIEJmEQKSqRJA7ULrSJ8EmmUAWkKYRCfj4qSlzbkfHNrkzVSmv4acwbDPbHevyF4Sfrzw7xWfHuUx1WZa8RklInHRIBgcREROX/RL8pH9Pbu+4oAX35GbiwvuYHmaSQkSApdLOIiL66GeGzPNeni4Y2cN6NrZ1NQ1gJKaFiQoLBhCH2dA+AD3CwY0gzCPMQyx9ONPZPSxt4vf+2hmhk6AEifKJzjt9n1gVZCroDs3NAhkwCN2CgFmQwUEmK2Zzyz4ak2fjkpmQzCEyVUKYBBH49N0wM4dAZBIWFDNzBCBxzFMRyIKA59CrOwQQSQHgQ2qwD23n2GP4Y/Awn6wiZVjOtkpiq2ciGdJ9/2cnl/w6W4r09HXi4LydiEgYTq0nSeayW5nqiezXtd1ut1wi8rTn++efD0HYo97Yti1vNsd0EvIElOcnIgDiQ4MbwViCoKuajwgD0AhjoSBkngCtt/tt+7jdf/R+Z1QKDcCKMlEX7KAbeqsEyDYLz0VK1AWWDVv7wDt7gOt2877yfI1KFefXWb5cZgDyIALWsd6jcTdoG20rRiks1+t1Wa5m9vHxI0awU7as3VGIDCLUPemMA5tSuAgWAaRCBLJ+vyFFnctUr29fUeYJ55nmGcq0vv+pn9+or7bdbJioIhF69dC9GLIwp1AO9KBqOJzRgT3YHNwwAqtGlCCiOi8vLy/X1zeiqgZb14zVs9Dh6gZqaqEA7D4ArRZnpnBiJSzSBnQnAwQpRqVDLTELzIDBGIBMARwWRIUr1FDVaY7rKzPXVqmrgXOXEEUxLlgCxA1DI9CA+n39ThwAVNRGH9DBQQSvhW4EUy3hiOwVYV+IZeK5yFKYoZlFOEEZIlQuN/dopugklerMKAvvzme6rtvde/ftvn0wo+ooUARC0O/rR/+nWWG6TPJ6kctV6BoTDZN1G9EGqzPQFEoIBdTBwiOUYq2dZEBZrr8CyQi4D93UPtb1n398u23fAQJqDRu39d79u0yXOr9err9drrBcLhchFguvbh+qSjlqW1Fq6baZba07gHOMiQmo1FImlnmu01RqZQFxJwdmqSjiaKECEn0EBoAq6AifmJwDOCDJG3D0wy8vNMACY+/cEQKzMBXhahLWCYkBc1pb9rsrCEkAHGEPhyYidwYGBA8E9Nj7h7iPGj6zNecOjIgQvHP5xBDiuzA9mCgdO2H3ssfwCEChPUTnaS17ODOl0p4CnFCY2XGYPqupTuS3F3nAR5dv3yqEId2+wJx2o/dI/TwcuwhjGO4IIEeTnoHRuVPmcpmy+lyX3X2M9ry709PE2fOHOt/8REgnH5bvn/49ic6fNNo/+byf/z8ppWf28S8tyHOS7pmZOLRhAIQEdIYM4m6F+az6otQCMnNymXFY8z/Te+dnTOjpj1+Qp31v1z71XGJnm9JPyNXd9/RAIuZMF92vQp7qMYZ5Nl8AMVprGSGoqr1v7rDnxjzzXk8D/HFouYAZAHJY7IRHcHaCIjx3TUc7bEfcPenSv5xnP9KRz7N3bpABeXNaynSEaymF+THh/3xBIyJy1gSZ8FCtB4VjOgz7EeQDxJHzDurDBgEJCRERUP6ZiQkII/tImH/O9uBJRp78CjO4d3N1syerLEumGxHygD2lc55H7oiU6q78LwVeBoaY4zhBYWkFDxQIEAwgSIDokBEQDiBHpIpUdqiu9pyAejQ0OXKIB3gXJOzBqpj919j9YoQAkCTbjicESgE+HPk5AIQURASBboAAxNldTEkqIAX4MYIAnlOTyenFcdWAHv4vz4XQXx7DRFpytLOfn9Pz9Xn1a635PAI4PxVXKXc7u9VJeLfWn31VzlLnWYcaD4Lt4b0Sj67E0R6Ngmi7aj5pzlxOgT1waNz7uK3ttq1t+7S4/fb6QkDXBa8F2bv3j3G/9ds37TelOQInNCQ16DP3azVfTV3RowZONC0yZraKijAFCLJoxSbWeGxYHMhKuSzLl5cvy7KYGQdUKmZ96+sUbfOtWXdvIwwDOajrPquxr6hurIgY8vHHv8tUMa7zy3W5vMhlxuVSLq9YL5/f/nn/9gqf3zz+6LdhakaIw81tWDdXMwjv5sNjDbk4B0IEsXm1SIUdZpQbiyzLcn27fv3yVcoSAZ/3bW09AHItc9A+htkA96FYrcgU88QBQgbYpUcZjM4cMDvJgGoxK1zLFESFeSCbQ2AW6yBlqhd1DKhMo+nWyIat1AmMEAsxIAOQupmO4K33rVbqqmMYjoHDJaQsr/PEQgi12aZgEl5EuBQulaYFr0tB9N6rqWCBUrAuy1AbLboGgNdwAgOm+VovfVrXCSBs6LDPz3trY1r0SjGmCvfx+e3PP1ZyelmqfbnK3y4TMC8NxtpW+7yJ+6VOr2ilBBd39ha9N+ufWJpdGnyFgqUO1c3GiBjqt/v2Y/uYplKrkLOu1jf9uH3++Ph8/fF5vfYvX8qyfGG2tpX1zqYta+w6SV2m2L638fvnfSWweSpBUSaZprqUaZpKnUWEFlrUwoOCGAkNOITREMjdLEa3waBTUEFyzIFnBgAKC/OcT3XIfNkIAmCKoDIJeHUAsv7BVlQKhrqxo6SRCnMJVnT0w/0UmBBwn2kioMC0k8jOAh2irvQ4ffRcghEJSJBrOHnsTZbTLD4AwtNWggBAhJ8zywB2F8BnfVWuNcCMzLlaHbvpT86oCJzT0s+uE7zns0C4H96rz9GKLmkQiJjq77QYSKuLXJnyDyk0OQvTXOnMrW39ub/wzHg9CP+j5P3PMcz/BU46vhWPEOjHvn4u6GcX4/zrKez96Q0Pw8/dRzRtruM4KgQhQeAHjZFUBhAgAh/im6ATP+FPorTHbDzuIoe9k+ieevyfruPxqT0iMALsp+GvZ/LsNODId1DLk7wDr0gPdE9d8OHTiRhPZwmPrW7nI90zbTAHAPNl2eHaGzoReXFT6Zynd7j5zszhkSSzfytHRp734KRYxhiE+zmfpimt8P9zo/kJye0TtEREIIm4824FCNzttYhIGK17JMnn7skOnrv1o8n+c5pQtnxVlajjPhyHzGRGrQ+zIYWIKDSO+9Z2G4S9S7vbiB/WfQ/oEISOe0QVAFhohBDuLUCAIEF21ICw2KOnHFA4udiIIOoZbLPnXBEBBrmE2z7JgZljldhJEDloH+kwi0CHyIkH9qMpbLvTKkUgMQUYAdBRfe0tvHh4ouxX4djMIQyZmNn3CPGHIV9AcoE/GQX/5X3yET6DQU/gtT8F8SCwp2nqOvKpJN0Th/JbCbB67zs+OyaCkxF/rsGOEsIR5ciuMAtkZqGd9IJHpRQAIFgd3Kij5xSGR+bWA6j5NnRt7b6t63pT3SAGbEMqLkASatvHptu23rf7j9FvBaREmWsUboXaLP26WNzXAeEOEj9oAPTifYYuUomkikyAYg7dvPdOHgD1ulzfLtfL5cXdK5XrfHXXbawWuur9x/YO63szpTDb59QdIAMRSBUAFRHk+4//j5SyjZeLvdaXFyhV6nJ9KwoivFS+wPym/LpqHT++oynHLXxwGAIwgqIGfDgM1EFS0AswYUyUkQ1AzJ1QmItwKWUqZZqmCZAcSNVHSgIpPDzlLKa9NWNRqSJMQJyjTst10UANcpsCqwIPLBNVvLwU9sKDooGDDwscHsFMIrgUkoDhEaYFNoENbJBjAU/hmRZq0bvRglyYdazamgwAV2a6zvPb5WsViNFa3EdTRy+F6oQyKc8OkwEMhB7Ug5pSgIkHOBUHHU01blgMkCKYCJeXihR93Ubbmt67QrvNxGWquMXQflutR195697FRymM3fU2Vu1biSDBXqIUloWQNcKG39pKuLp7DWS5LCM6Vy4xT5frsrzc/PdADcJlqURfCGC5Xszh8/P+/n778rYV/momARPRlUgy8tWjIFTwagq9K5IuszDzNJdpmapUEUZ2ZC+UyoykGJwRhAAFTGjocDftpHUtXIMsvAeUfQVAT49E96TY9+dq55dyZj5A6xwROYcfsDkQcCF0HM2RkTQdTzPHggDDkznwiECnSDvriCAKpECgw+s8w08QJIgQSgADMe2OzxYQ+wBSUEIfokjfgJ/3CQ/ijAtO+VEgBRYkDuA4hFAH6/9otZiG44Cf+SQzoweOOd0U4XwZYtghhnCAYT+5reafT/Lpuag9WYScxIbHUNLDzfwvUo+/gIwTsvx1Oukn0+z4y7Rj/NyCfF7949ClxZPKJOvanVtJmVE47qlHvDdjd9aQThFLJJw+NcJnZ/HwATo1KDl597zlixDzw2T1/Pc85kPnlCcoKIACwgN8F9qbD3Pb/bfgYfmdb7OfcPBjKj7cg+EnjiHprjGGHo5l7s4HIG6pLniyZj0vcf61xOT74Ebg2Mc4zhObn1q4wCEdS1BrFtkBQfKIqD6JVJFyZiudEr3YJy6NiOZ51hEEDB4Bns3SHTfaPi6HiCLEgHp0OfOWe3l5eVygCN6HTvwsA/Z70gYAuKEr8+GQ/nxbpinU4YX74F3wcMLbb8skw/9Ti+3khBDAXfenlvZCKQo5BJkHh+XMpu4CeRGKKPnMJZDd4TNyABmEBeYMNe7mZ4nzGAAsADnICBhT4EWpIjsepxTJZwYXMRAhZBf9MGEmolR6QQZH0l7kBIVgpZLuORQR/kQJRhzJaE8PIzzRwM/PMu5Ob7sdV/hjJXleIiJiDLvf79lRPaMr8lbPfwSA1topoDyMlrNJagAPeGd7Sm8EB2cH9rT+iQOjA1MIAkfmLx5hJO5uNlSHjQ7mHMGErCCMbOHbun186wTam7YP9NHufkfmCxUcFPdC7VLH9BJqYAMQgf19rNI+pxVL4RlwFsG5Ti8B3cPcSylsXEqdkMWAyjy/zRnTGuhGdh+333/8EX9QN+29qwKEIwIS5HpmZgEKAPLHj/+BXMptnj5fly+/TC9f6+W1TMvryy9sstACy682/brR603+Mda72P8YGntdsHvbkIKOsToZIgRUDJYQRiFgBYaY3IqbxODIBFImhoKO4M5ElcWBbBgTDbCmAxuUhdARARUEqMq0VK2TwejkLgHkEIZgTFFKsEQAqgMEhIIPQRcZWJWCw4AVkSkQGIidgHDhMk/FhO7d0FaZZoDh42NdP0fHyQlLnab6cv17ZbC2Yieyu8eoFWvVaQmQrYEj9ODuoO7b0O7rlUsJnBDLGLp1Bd6QBIhsKBGVwj5Ih5oOAAiPIoEs6CbVCsAgVbuPflu3ZRBZw4gICiREIcMewlipFjYAdB7DVNfWP8c3n/StvM1v87Xcod3e1q+/Nfrner+Dx+uX1//t3/6l1grObfPW1u/f/1zmN+3CXMdI40cePnrvYyh1NHNEZJEjS4NTlMnMQBSU7UKF3PYQkCjN5hhZGxi76TCF3lm4MgkzB3RwDtOEU67DIz2XQdVtqJm5QYQThhSapmkvgUcnrEgNuTCDqSKyAxFaDmnjTsQzgqe1c5BB6uVzCAjOmEU+VA2CLLmHmAcEePasgMKGw5EsTYhIggRECOQQ8Ii+Tku8yHHONDgwwJEmaZ6BHkQ/b/Ynt/EMCHJKa491O/qhzOkDhOb7rMCOUQEDCVkQHjQVoAdYmoueYM7j4fz5l8Gl50M6llF83nRzd8RDNvTcOsy/7kv78fVcUv+FXDmBFDypu/7ylQh8P3I43xPpJ5P9NDIkPF/7s/Fpgto4ptnxkXIdx5hqgomdiRHZvR/72NQUI6P/wj0wwHYApKVMxzCBuqOnfVZrXbYTQml2zZ9yAvxIT9jbxwBg4ORhDvJsKE+9d30amTzPZAb5/dSysdDwvIDMnHejiETPNuUOf3MXFBHhgjMlpIsIAOpdT7sv3A1pmbnsw4mHPvpE5713AJ+maZrrwB4RHhbH2GxEELKTMRcGIyLAkj078LChNtRZwjz/c00nsx2O21AACOJEJBaW8yg7ogKEk4ABYDkUbFyNd/j0RD9TVlwAgKcTHnIAZjsvkhzNSWfKqPUAMEQPCBLgDIzRXStlZpttzMyCwMTuOXEaYbSPrAIAO0m2bcIZGABSZ8CCGI7qGR7DQHtzGEjgeMqYKhEJpaWqUezAywx2R3qgHNogegCgfWrRzA/7HDyIOzrmf9J31/zBK/8FP/3lCT1vMCKKQwpySgl770CYq0TXsa6ttcbMr69fstVoR6pYNtzPGyyXWTga5ao9IjT2sadcQM6KK4Fjsr90WlnDzswljGZEByxMhaggCkRJdo6oslSSmYhDvd3usTEagGGMUil8G2sMZBJDH4I+1VK/AHq4gw7XgdZbW2+r3C6XztQYKss0hVwvs9mrMGMDVR23W3S/vsrL21uZJmSSRYDiPu7lMjfva7vf7/emLat22i+HB6R3I8i3+weJ4Hrj22263a6vt7dffvvyy99F6uVyqQggE5S6cJmmZf1413LDrUHfzAcMG2N4V7MYAWO44whHEWYgAoYgH7OC9E/sF+y32MRxcRGwbpEuzU4CwqWAhTZtXc1DDYYiWQHPvtLVYRap80QAPrpb6LBt+LR1RzOQ9LsthYlqEEQYlckIiEgUBowP5aXh7ACAlWmqIkupUAshMgNVaNZsfPb1u20OPPHbrzL7cpFJWFm9CXoEONfgYga96S2GMiIBQoAamaPevVbkUtRjNLz3EWhIKIIAHB5u6g7u2TcBWtA5I3i1FF4oRLAHQFe/bR0lhoBjFZmZ5qWGKjCRINciXICqjnm0CWGs23eY4WW+8CTE1u9v+tvo8c8/hhPEL69f/9t/+9eX6/L5cf+Pf3xzGx/v3xiltTZPb7XMUmupEoPMofVma9v0FmB1kiKMnIwIe6B6IHoEOoDhCAcgyXGczG5hRqrBw91VQ4di67myF1cCQjXc0ZRpdogtwAzVNBmvLA/cfR/A4SqljjJYJVwIXI9oUgLJkJl8hHE3nobD9w7BdFddICCmSQQHURA7gjCFR65O2abIIRoDotA4s4koR+rEd7sBSAdaCgjcNS8kTCQOFA6gmn6b+MRFnStgNhnjmObLDT13O91JrJxg4LQydACLcCAEdEcCjKCggkIMg55SfZ51PCejcPYNs4d1Lq/PDdP/P/+Ih2kCHvN3+CS1fiaKnrmrv7QYntVUJ7bApy9Ib3b7yd9rx09PWSvJJURmFUCGsexwGo7fZa5u+0LPxyjfKcXLzMBs1BIBUWrDHcax+oOb296PNo8UBMkuMD9VKSe+qbWKPIiogJ2liNi9kZDSNy4igpHPk4ZPI6gnAeCnL8mTRBoA1J08Ave9MDX7gamSng3MIFKo/tz9JGSpj3RwVd8jdx6/EY6ptB3BnOo3IgL05+8yszOZGWRny4drjwwilYqEQJxlCIYARIB6jPz/0G0o5V8DzBwA2cPNe0SwZ/qTkNGzCULkU2wRYMxp8rIPf4jUo2+Fh3tXQopdGbYrrnZy9LxVIAepj9opxzb3adoAIiMiQqZAt1AbWykFsDAziKMFsbsHQEYcIjCxsephQUJMELInEkoIkCLiAEQKQtzptQcSor3DzogREmAMgRTuiiSZTOHuGkpEzEfnLvb56qOTboh8OFD8lMhpew/y8Tw+VqGfJxnjsPiHyCXnEVmmagBD0qldxCJ9el1k73c/x2SdXs35dCCiCPxlXYJT7MUPudtjDXniJlGcsg2RTVEUyKYC86h0rdgLoYCyCJTKLKgMEGptW7WrFJymUgtfJg6rjObqQ80HVL7IxFQUESFYe6z3bspri8BtWm7VZMKJK1Xh61RDjTBa2z6bbvd7cBeeXt9+mS9XLnL9ekXBuX9uvn77/PP7+/cfP37cAAQQImjXNyM4IoVDiMsViFxjvbf7Zh/v2/3WRtOvX7+KSOFQMa+x/HqdrzLW1+03Wtd1vd3GNnRrdl/j9qmjb6Nt4d0C0QtGlbCs81YZDRvA+qH3WQsOGCITmDkOYiRwJICZC1Ts0oGbuXXHpoydApHLXPgNrJKUUsLchm6mrQ+mzoyUE+UD7VqYFiG6sHhTDZhRhHECdZXbHV4//br15sGClbAwIAvLNL3QNDy+31YiB9Sm62WSy9d6/Tq/fvFaKNYgtcauNgyGw9Cx9mjuzlArL0IzwZVQQ9ADrZMa9I59g2EGGLUiMwrPTMTkhAbUmQivBYAwaC4XnIqENnBGsnsbfXVgtIpB6E7MleWyvM0LcXEWr1WkXiIWbWU0GroFdMDGIstlot9+m3lyf49B4OPL8uXr9cuXt5dFZtv0+/eP0T7ef7jHuCwf15e3F3kjEYtw7MPufe237eN+/zDTWqgUOSUsLRdrCHESvnukn6EgpkkORSCRowRaAPiwRsaiMxexEbo/ZubuGm4aDmgOFhBIgIQI4W4+xmjgBEBcpPo8Rm9NAkE14NRpIUKAA+VoaXag8gEHYABzYvQ4IBcisiNQpFJ7l3MiMBCllRfscnwMZIB0AcBdGMa0i/Yxx4XSqRwJYPeLIoZI+6k9Ug3sqU49W2/I/pTJc4IeZg6gIEwP+kwmMwQA6B4I7AgYgJ6Rk4Kl1EOondwDPolkTzVrHOorVQXzZw37cyvzzFz7C0ykJyvOc0c855h8L7B/YmXgZyX7Mx/23FpNZe4z1DiJlvMPiCQifJgjAEDC4x17HS6ZRITMOx/mftp4P8blPA1OFXDHEDldVUoJ2A29zg3APVVZD6W/DYUj/JEoO318tE7y+MNdns+8u55dp+MFzsQn9KSj/XdiuNOD/rTgOsfyn/e2B8j7ORBzR0vHp4DAfCtEPFo/j87RobTr7iU9MlSVaGQMQoa9IJ09633KFUEhFDNly9OHzCAEAiknDcIzLSush46UwEdYa2smTzOnGNFO+7n0m4soiCyFNINRzRANwA+DERSRjNPJDyhH0/8kb9IyHkBNg3bzT8ZH5xfdYcdKdN6WsU9LxJEWf9gcHLT0QASRzOVEFCADYg8wAA8uIhiAALsJHHv1Y74PmdMmCVLjFQBEqXA4wnLg8aQQpWv7fqzIiJ5h0hGhpll1ZDS4uwMF4R4B5GpSJTI4crfFwue15S+0VnYA+cgpgp+Lw2cmLFEXoiaizatQPd25RkRkKvbzXbe/ptb0aD3nJPZi4xgf2VusxwdExBw6gcP2djdJRE0LSTI+Ry8JXRBNWKcKyzTpYtAFoJLFpMyENABW9+GOAJPwLDJN0yzEMTZtDjZXqVw9JCgwnEf3IOv3MZTtPuKPHy9X+IJlEZkKEwhOpYRtE4Ja37oGxs5ZFi4idUKOEqXIVMs8z/MyzXMpvSsgoEHYbuGHiIQodfmViEbrfXy0u6p+b2t3VSa/XC5C0fQTrNWJ5+sFtPi/vd5u6+f3z+2+tdsd3z/0xw9r9/HjW7dxDw3EmSIIHYM9SmdH7OztHuunFhpgXDWYeU9ssSCDbDhWlvQgMQs1HEpBiFIRlwAmrCzAugGE2ei0sbLTpLD3PWWptQgxB/BQCEOC6gjGfcC8+vSp07oFEdFEDgJAIjJfX8r89r7dt/E518JViKHO/Prl8vLlev0lZnEv4MMJbdtUx33o8JLyQwmcAF6FlyJMBHPdRrc2NAFFONhQizC1ea5VJi4FDGyYGjGgiiOyUKnEs0MZ7TYaOvy4DZAB0MIyKw68BiK+fX1bGCbuwqOUMs0LwEVJhKGrEblqJ+NSlssvl9d6bffvulrrt6lcCKRQeb1c9ddf7x+33re2uQgBqJQok6tzH6Lmatvt/vHj88fn7d2iCU9f316SZ3YH1+GAEaZRyAeEAFKQoWd6WWAWwSkuAjfow0SjW+jQhs+qJggzVwsPDMqsFMIAB3dX1+4m58azT8g7utk+A8n7PI+D49Gp2heave9AAOBoskMuAgTcpfZHxkja67jA7smaY0GET2l7aTEBAMIlIvAcGtoHdPbcoceoGmY/HXzY7jeR5kk5Xp6SDpEdXmSsFiASG+6dNTyXs4iMTwVwoHQP2n0YCanW3VghJwsgIt2l3J0i28EAbo5gEMMN9bAxPBbivTI+RsEPfmjHH88dxud9btu2HU7lXP1ORz1Mwv7LRf/889nKhEPPfr7/X3qgD+S348WfFOK7DWkyHES8WwOGouYI5ClxA/Axhu2m27AsC9G+eW8t2+sDn/QxyX6du9cYmoiZRIggz8x5ctKBTGTXKf9EITzSWnYh4MlEpr7Yxh4ttadDHp3cXdB9nBPmR7jyg7p7ysSEfbLhMT2ATy1aEQEg93Ge+Xy3ra0Hq6HMSqQIj1QfYjjeALLnKKB7scHMQKzoljYSySkimKmbOw1tQxtgBvbq0NZHYmhEovTlwl3gqx7koYBSWUB17KRgKrgRjzHScDyYPDmlhAeUf/RtHf0ZdQHQc8jEQYztXqAGKSL08xed9chORoIBeoYYEgMxcrp87/Zap1G+RTxgNxGlp5wII1GEWhyaKk5eDgBgWMhZAiEioEXQU9VxEJPPHVWPIyYof6/7yWadzNZPLmvnc3fAIJqm6RBdxVGp4knFPVVB+AyYcqii1nqO3azrepZn57OfN/BZ9Z2/18xEKCJ870syPXlH58f/K/DKdtKTSgwQkNACKsVc0CfhPkUsE/DEPv2rBAzzbWs+WgtQCDBDppd5nqtMYyXdRriVwstU8G0ODXeqHUX0juv91kfXb3++h8s0vyzX10JYmDEKR/z6Nk9SCMt9+DwvpZRSCpaSwb7q4BCIKMSllCoFW+aXADqAZ1uYMEAmWMJMCpU3XtfPdbu1+Pj9+9b8j5eXy9uX13meZeKNKKZS69WGzW9v8PYF/rzRZ+Orav12+/Yf4Lzdf7+1e/jWh25qC78uZQFiYQ6eCKfqy2LLRaey0rxMVC6G7kg1Ksek4EWu19kaj23EquLlLUIQ3qbrv1LR1gab1ZkR41tvpFsN8WB1N7ceQ++b8jRPbGoKkuyDwVD2FeljTD/a/AO+ChGQOn0yl6vU62zziwoPH9Du9oFrzOP6Fsvb9PLLa32RwtCh4waMPk+OG2wtLARpcZkISyl1qrWKAIDFVyg9uhquMD4JN0a00YUZDMIggB0KlZdC8xiDqAEgiRBWA5jklRyoK9joW6gP9b6NbTD/8vrf3l6vl8vfSkEgH95LKaW8FmKL7a73lwVIiD66+OVyLa3d3fpU8XKttehlmieSGB4elUkodLtvrXddX/xXWYiGsPMNvLn+0M/3/vnj8+P2x8fs8tLmUl+X+Zda3zR6j41iDHXqcWOoTKWUIswgGEzIiNzG1nTr0cEDHRGjK8R671QQmUiSQYIQ2OWTOf5Drt57b9sYvauGQycCllALRCF6YSFE6f3PCER3g+DgzKpltwGNkBiJATMl1wHCOWoNYkIBYCM04oYMiOyAiIzEHAU8w9eyJgNKybZExKM6J8zR890v+4iJ9MMqPwIQSACzxMuy8mzDJacFAIcZOcATLQQRVxTbu1B7M3R4qIGXyY9AkORq9i5VIVdTUw9EqZw6IgUioUiJLqIBqbNFCTa4p9aNSZiE9sEWDwIEYxIugoCmqc6G0VVEmMAtm6SCObZP5GEBYLuNdubUEu62/o+Im+dK+plj2/+FgA/Hf7dApz3cNSpCIDgQA81ORYHVAdkJhUggmHLOMavOUhDYTsxEATACMWQaqmaKAIaqYYhY04sE2d1NdTQNy8FIZJpKqYoaEYVL5gprBsMKExohEQNPLALMVlmYAEMhFMOERpXQAtothZE18zxAwhHCR9NSSp1EkNxdw9L+StXAItFVrRPVGkRmlo5OIkK0S/XdFZEBAQoBkamHo8hSGAubWmeWItWUtk2XhZgnVQUQAI1AVVd1ACplEonKdRd3DgNoDMgEaM5mjuEGTpEhAeEIigaaBVhooDkMi67MWKuwd3Aw7QwYRKgqPsI5IjCCh5MMQYgwDDVVDyaiSuZo1m6DfOLokaWRuwby/gEByK0AMLqEdQ8DBuZARHM80ClnyHeRSdJ/AbO6AHUnIkERESqXoAw76pFFP4BBcGAEZoiGV1SDImYl1nVVg9YtgIkogLEgsXsfnOPCHoJ0mZYxJMwLiGApWASkAGX6kzqEE5oBBBEUKRHYY5gZFQyJkHAAB3BDBEkmEb1Axoxrc1VDSPiFyIiBAQjOgOFgvjkFESfzZg45Viqc4oQ9YTQf20AHBBsxL5UIPj/v7n5KPD2BDyIJwy5QQgvvOqZ91oGK1HkKt2it6YgtBkSb53maqimM7pl9cphy76rB3Usin3YNGExRUDnCkEEYqSAyaGgf3SKt8sStCyAq8AAZ4OEGht7JGkRHUZ61qALwC72+zZfljUfcV/vjXd4/ZKgPIxzAA7TO1yu/reNqUpt+9NiEy+IyLQvL1JSmN5i+evz5/v2f37T1W9umz29FPPSLcMWQRVi+/vp60dfX7a7Bl+v85VcsS4v4aN7u69rvW1cCvxb4Mlmnvg7YAmiBUgqTFKgVOCLkyNuKUkutX6fLtG4fvbfv37/3vpnZl9eXZVnSnybMlzqzEAOzSePWuPfe7+PlNm6TTfdR2tjMNwsEEQxhmplLqXVa5uk6lUutyzTV8vJy4UJG3lxD2CCAiadadVIDAM1ZTC5TLfM8LfNEl8ueuNnWjQSZaJ5nJg5D5gDFbazx0ftgBHPr5IahZqP1vvXextZVgwIJ8BiEJyJBYoxlmuc67UHCKExFpBaZKMOVuLDMRS4cEMGAfRgQT8QTl7mWyzRNhQQAtpGktAKgjuyItUT34aHqFIQeDGg7LUyQqYT4MHlC5Ig+xlibDdNhNl+mLPIsgo/X2amIrNPsrh4a2HRQ71z7fVu3bX+oEBdEzFPqbjo8a8d729bhbYQBmaJMVZnXNlprqt57v9+2gGKXRy+GiNDRLMIUXCPCmKy6V5kEmQkJDNwdTENVIUiYLFCHh6vXPfHw2H53Yt9z+w/vXbe1t9b2dozwSRvshZRIUDEr7hkDSnkisyZKqwWInER0ooQDP8mJkqRCDEgnnqMOhnjwLkT0bFnwzMeknP6Zd/nr6NRPzM3PmdDw6MSdzM9zFy98dwd6WPIAYA60U6LJYGY5uKKI9twd+IkNigfVdB7ik0r96WycNOEZ8fY08Aj/P772KvlnZVg8ff0sfH5QNedf48nJ4rgO+Xkf7//8zs9nMt0x00AfeafoTnOgXNPgSBiM2AVVD/nwoazSQ3W+l9S4d13jsCp95upyNPW5Nbyn7B1l/Vm+H3lBXGvdjY5SwU1ABMxcpewHcJAHRBQQzw1oAIhHxPXzud0ZCIjnE4L7CNiTEe4+enl4Yp1ThOepwMyFRDjUTs6nyUX+U+xlA2fIy+FE/2QqHEdcxOM5Or8OEuUnRxI4gg3iSWBkZr2nT3WqAg7loh/de3j8xlzHAABQjjPwCOM6zmr20fCRfLCvPIF7iHcyRw5BQRkUhueVLaWYWTJDcPTW81eIiJwd0HiQsh5nxupP9O3TFTkfgd3VPaWcRLRbVAAAOMY5gOKP+9khIggfN3A8jR1kmYR7D/pxQ8IRg53nDp7o56MtSJlwlf1HpEdH+/lxPsJ/Bh+W888dxvzuaRaYAsrn2+y8yvmypK7zGAGCiY9YBRQnI8oYTHd3p0zCcoN9SjTIPXRvmmMpBZcrolyozHWeCjA52lXh2mzTZqoGaAhMKFKneebRunkH9ByWKVMt0zJhUeM2eQQz8P3HBxO0MX58fG7Npum6zC9TjvQv8yVeNw+aL3x53QD66K2tra9bX20MRprrNJW5chEanKrSXWOa3DAIsoyxDm0z1C9fr69f3z5v048ff37e3rfbZmOst8+Xy/V6vS7LUkUEiOd5WZaZp1b7rWxNW/N+t/vAtlk3s95Hty5RO/UJJyaHiXkpdCnlOtXrsizT229fZZIAuPVtUwsWIZ5LmdX6CF+HNSXxOpfr9fr6+ppSCUT8/Pz8+PgopTDRNJVAxgAB8aGt63pba8dShNzcGrh59Ftrt/V+39aubU8s5TQfz2fBwG2qpQoxpHESEEnhIlKIMICBJqQLFYMQtrWAsoOUuU5XqfM8Xecy5zpCqzM2oYEuY44IZCgUlLOv3nQIAKBQEUBQaxpqwwyQwFw8Yjh7oFp09a11dw9CIgEgNxjDkMLYMIwGdtMqE1eqADy8tbGuzeDuSN9/vH9+/MDozExUI6D3XgpDuJnVeSqlhn5+to+P23Zf+/2+LddXmufuZpFhPuzuXXtr7X7b1rVd1s4FIrtWqqDa2+iMQ7pOk89RK7DkNF6qdyAiRCpxdeBUbua6Y6aeZBSHcJLroWrbtn183FI6IFIZGZPkJ2IqpWh4DfMxGF0ihCIwCDCIIjznrgEQwTNqA1IKgsfqlk+4Ezlmzttjdz9QCGJydPiABT9hmwQA+zb/QDnH9gwREIdtWNIvWUTmqnzuSPgzEnKgiPChCdfsUCodjSFB4UKcTcg0OjezsW5/xVu78Rig47OkPWc6iRj5sKvc3b92n7AMG7F9o3MPR0TBn0DV3sI9ehPMvFt4/4y9/GHY8/Bofd53/wIW4/CaOF4f51YKBzQ82rL7STsGVB/AC55QVwKvnBbM7zA9Oo/0nEvde4rN0189iSg8RutPru4EPnt2Hh6pKyjxNPx1TA6eUdaS5lhEtMM7hlTAzHU3tWqtne3X5zOZe7nBCTVO2LGD72ck/bzNP+O2gyTb9+9zavJUQDMgAPR0xvCzgQ5IEA6eW3eaUzAD0s4i/ewIlSO9WfgA8IkP8HASQQQ49NoPyKv6jGtVddu2AJznWUTyN5m7WzCklg726PrdVT8AgBieLysdTmN4pIdlUz4/LCKqeYb1pNV+dtMQwy2HBPCAzbXWTIi6nlcWD1OP3EDytJwI4z/f4Zm/+fPa8jhpzEREaT5HzAhMiHYID/yA48+TK+7Oh7b16VcDIKoqHo9qpkDuEs+ffxx2rZUi1vxrKQXRU19IRHUqzx8kwc15I+UZLrWeWNNsF27mlEk+L8/A65z22Ms5s71B/9C87k7FEHRi5ayLwQOA1CMsywJ0JAfYPVMCAkiklpmIpsmBSbStThYYDFy5qMzhTDhBFABBqlxkml+CFJHLBFJJhGqVUhfCOl5ompaX5eXb9Ke23tv6ed8+7/0yjXgj5nK98Hy9Up16YJTJSsU2Prb7uK/r9r6Nu6rOZcbr27q8fs7XWm9dNQgIkODB+kuZp9u2fnze122bL9Pb17c6/SpCU+Ftu99vH+/ff3wTfnt7+/XrL9frtW/9y+vb6+uXImW60HC7tEuD8cVXrOgcRHTDm7Xd1a5ZJ8HmveFQCqtB11pfZ3mtdZ6AKXTmriPIPMBiqkbYdcBmijzevpTr9WV5ed2j6wiD4npd5qWEuaPVWQjKXFBbfNzt83aTgfMyoRvoUOtm/dZvP+6fH+tn806MXIgKIYNHV9tGL0QEpqP13taxNe2GgQgFobijIZoVhylCHRlRiAYz1zLN83WeLvP0ksmyZmE+ICR8Y4JCkwugMxi0vrkOVUUnKVRYgtjVupL20dQBzYOdasBsRmbhDohMRUSk1snd7/dt4rs6szjEMJZJpsp1KtWQHKkN+2x9AlHD3//84/u3Py6VXl5elvni0f0Y7bGIl5fX+6193tqt6bqufUQbfr3e68trnWeZl6mULy+v/a3b59ra+Py8f//2XgrPSyE0dsIoEQA2TL1tak29uV1injgzauaZqVRPl2EPQ+JS+Sx3MoY4Tf9DmSYANIvedNs2VZ+m6agsKcARgtmZi4g5DKaCXNSHu/E+icNOwCiUvEfe64TMhEfFTSgAKeE/Hu9n1AW47+mnTuvomj2tpwlssljL73qabJ5i7wh+/Ahy8k14wIQHMQDgQLsrBJEkRRGk4ahpeByIqXlDZpY9CUaySXlSFyfztEuF3cM8IihyhXqMpAHA7pN06O6fy/FnBuIvBet/RTgdihDaE9PyNeeO+xdo9fP2E4erWU4MAjy2qDj3VDx44CcK7SdmBc/spl2UBs8F/bn/PVfn56fIfWuM7GjriXVS7QuHdVZSQTuOfLwzErEgFWJCOt8quaXTmCqbhtM0Zb/y2ER30DNNEyIeRkdhx4b0TJacJiNmlhXzefLP3tCp1DlJBT8cQOiIIYonkc353aTiBMnMrJvqw0mciOJADOdnRwAip6km2s79OA9eZGejiR5EJrtLoTEen+nc/nNyGQ5RGu1VRLg3lnLAJnMHdQOAVJqpdrWeuGFH4Qgeel7c457cA0yzTUdEfHgIH/dhIGIAhfM+h5qt6cgiDWHXSdYTrTZvBg9fBiJKN4ScVjlvHqAHOZo/KCJ7bfPEeKWziRAGcBBm9BAA2nljP9cn2f3Dn5HuszUuBVEKqnI14Hzek+YUyIzOJ6fA0woOAiFTfWzbtrRqY6knaj+ZeDwk8Ls11+ER+DiZB0B8vPkT9YtPoeyPyhMcUdJIGBHdA8yyU2oHlCViDAlwA4MgIAIly5EtBNsjRkQKkzP0YcP7503jvsX75p+OuMiFZGFamKcxsDcDZ6r1Zf5K0licoRlE7w2Zlnkq0yw8LcsVmdu9fX583N4/2rq5rULvBDhdfiGYJp6Y0AiUQEJJe7S7bz3GmIRleb1WGev9/n778Tlsa42dGBCDMIiBkGXt497657ZJwfvadFipZZ4vYcpI1vr6ebu/b9vnvd+3t7e3aZq1DwC4Xl+JhedSX5cXckOfXqYyyVTmH+Wj3VsYCsgwRaXbWD/7/eb3C8xaHa5FC1IJqVKhsJM6tW4wdF5QPlvAZ+8NxQC4lkstM/NuTD7P0/XL5eX9uq03g85lqoXmufSi8D2at/uwZr2ImI3RNvN+67dvt4/PsTlDFeZZpApSqG29EWH0vjnxx/uP9fPW1s0NKNKnkSHYDNUmg4sCmIsBIwUGEE0EC9MFeeayIBCgzdINXSEEfZKFQirXyvXTI0jVDAML8lRLhIX5IN02bW1TG+YcFCQEUC0wR42RS52kyASArbVbuWkUKUHgSk64EsmwsD7urd1av6+bevls7T/++PP792+/vV2+fv368vbqOhijTrNpF54J68vb+LKOYUB437reP2+m8Uplmi4TVUCmy6v8i9zrp9631trHj3dhvL7ML3NZihRARyKOMcYYbYwGw8GRoTDgxGWa50o4TFW1bRpIUqd5rgm8BiuEKvq5VVs62e89zd3CQKQguofGMdKiiEEsUocLkWRWR1CEOQIxF8pSyYMJiAiFiShFA+ln6BA79npIOZOmehgu4t5SjKMCix0uJC45mIG975M7euywLO27coQl9rZmjgKkBSJ5erNmtQrkgQi0r6g5NkVCkNwTEHL6jh17G/Exk3UukdmTgGNKztXc02TxEeuWO3H37SR7cn3c2+tPKW8nQHkmM/btIIdId/+G3RB8X6CP8/a0ttKTWvlZoU/H+fzpK3YPdEfccwKeK+N4apTE7p+2wyF4XKYTSu9Ss6PHdGC6hCDuJ0t1QsznLRMeivWn9PGf+8sHtbljmiSTTr7tmJrcwbKffqTHKcoNKc/8XygreD6TfoyjAmQTMn+wlAmfBsHMLEGJqvKRNURHVuMJNM/tkI88R8HMJj8OgFLJtxMVDGbjmG91g+xDERA+VNgpwD/xxHnzBOcL4gQNER5BJ3yJ2AdNIoK55NnLIZjIwEVTjcP2FkM1IyAtn79cDzz+Who92EpPU4zHYONxWRkhWR8+EYMBnvljib2OmYQ9H9O9PDFG/lCdP9UnBEgHZ2kQkCp7Odi4jJV48m1BRDtpqjB3Rw8/Yjb2aQzI+dNj9sUfBcDzE+F7P5dOtEQeEYblRJwWYKkwwd2qDenoz/qeE1ryTsOf2qNwPOt/GZRJ99SHC+tZj6XD7fnXPI9HEFZ60TkGEecmu7d93dxsJJ+JiCJMKMgCI4giyOmxVgcGoafWHwSQBWgEQ0DEdm8f6/cOn7LI5cvbsnzhcmG6hMvagglqWZbrtU4G1Pr2R1vXz/vH3C+IeFmo1JmkfIlfbtM2IrbWY9ta2z4B0aNOV+EQDiozAMRw6CuPzmYVQGop83yZOeASrbXP7f1+Vxhu97TAyWUECeUff/x5u310Hci1qX3e19JRxza6MpfX11cIe/8OY9u+//Hn9nl7+/I1J9IBYJovWHi6zliIJ7msl2lapnK51O+3272t3TSU1Mw2a7d+/9je61bmtpQuPnnttaCXushcCxacgntYn6+bXm/t1r9vva9bV7dAECwBFqDIUCapi/QB6n3ENsks86QBUGCA3tv9/Q6XeXb33je17XO9fbt93HvDItN1WuZpuhZgN9Ot3cboRKwBn5/rtt5sDKTCnPG/RYHQwaI6XJw5eELvhPsyZFH6SC13svDs4IGFyEqZAGieI0zHGBCGEL2TFJimepkkItCj9U5APlwV1IHEkAMZr9dX4rGNjsB1kmkuuUEOVWQ3AAxnRDBw9UnKGOO2tY/P7f3WebMx9N//8Y91u70tpczL1y+/IgVBVKFtW91h27aX65v9BlKX68v9+/vnunUMkOCZp8LVA+o8XWWZqW58994isK1bQejmMoUQcWDhUgK7e7eIYbq1jUQcpJS5LDJVNu6duztRqZflMqdmgqx6LT6GhRMim6LqvnvlfpSUfiklgYzvlldEXCiaiITX0Jb3cs63OzghYBhApEUi8+FAtmOF9CPw2M3XDuB1dgwf1tYB9OBaTj5mxyU/AYeHnDwCwtHBw9M1G+OIiwuiQIYdEkQ6HUZAEpsH0xZhEJAzVrRvB5DU3akD2wVy7o7nSPp+0LY3ZzL8cZeX5R65kxNw0F1wmBocG9uD7noGATufRBh/nZOiv5JLuRgfg1FHF+mnJKX9Bw/K/fkNjkGz412P4awnTAYAjx85Pst+0mnX9Z/HhyclkxwhPIUUue0nCuAEDQcNZv6MaJPAyp+DvWf84DMAgI+86oODwdyKElEl6nvesVLUkjEPsVv2BvEDgR0/xSca9sNxnqgclk98qnwSPewViz9MMU7ftaeNNk7IdSrJsoX3fLkPZE/u+xSWqiY4yy4wPEHYbImfrUw4tFCZ5/uAkvuY4bPgj5MsOSoHp2Mm8fjIbha2Q8B4kuUZPIFXtXg+vad0jJlTj5aA+byxpZxBmZLevHFa8jm5YeZwJ5LJ4ySyh/NCHGGaeHau4wGdKYjL3qF+ejbzo+e6h8eJ38GYQ85eWzqqWWAAEqW+LpEcBALI+XB4dtqemphwlo9Pl/K4334qnALMPeH4QCyB+WZ6LiBmYw9/fHqiE3idAOuZgT5vVNpN7ceZyvCXNuu+yJATwHDHAAsXzPiv7BkEOKajPwEzMAUhMJIDEhNpLoYBgmRhAEAQgjQJl0CZmDnMRSBczcLrQrNcXq9fpulL+ARRCCdCoUoys8xmHt7h3tfb52drKwCYhtRX5Eud56ZBUwkmhVAdaOraEDFiI7Dp8opl7k5236LfazhWKdO8vCzzUtw7DrXW79utW9tuKwASRga3OZh83D7v93WMHoT3bf3+jWpBBBPAqZSlvBVisvhw6KOtQ5E4IoApMC5h0zJ7ISa51NdaJ0Jm4KVc7vf7urbe+3rb1nUlgGbb9/uHsjXY3tv35TLXMs3Xl8vydrl+vSxfpF7KUq5fl1+Jt8D3pn98+/H+eV/bGG6VdcBQb9u4Nd00tuHNfMA2ZHpbUJyNKvCEdk/NeIPAob3bdtvu39d7M70sy/L6six1nkRAw3rvg2KLwGZxv/fRGriRTEyFSCJwGCLw8KI4OUvwhGDMIWCEEOBtuFrjEYQ1EEh1DHdgqVORSkQBrr0hWRHetk+kmCuXwhHmPlXbhGuts1QBKlKvdfnCdQ4s6zbWPtydCMpU5nkqhQNMVS3nNR236LfbXYjN7HbfPm7jdh+Bcvtc//Ef/x7h//rLF0C6vL5d50lECOP++c5c+fNzubxeli9ffum3+/333//8/c9vZlZlmqRcpxmJiQQ6kkINsbZNpU6F2aPfO7cOwhPJPOHEVOdJlZt21dHut64DC8pSnCObXsgEmMAjvSEqVppnMEUdEYHrPUNTPKtVEREpqbYMVHBhdpEQyZSJElJdxXiCGBgQ7BHIaEkp5S2+mzSkZyJFfgty04O9Oj/nzGNXo5+RL362rh7alwO5HWTMscwlT0PonjG/j0XQ99cAY1qzUnZuck2LCAOIAApPd670cjXA1NXCwaqdh4Fw7DS697YCcnbzVLLvdrIGwLvH1sPw6qxuT1am1gpPTM8TgPhJgP+XZT27hLn67qjov/KDyKH94z3P8f5dqJ7n+ent47Gm//XXAsBfDyYeFylTXCDoMFw4pOg7R8jkh2dj7Ahs37+f2D53d92NVek502bXHSPjoSZ7uIzi49Sddg8JjE4q8WDZbId1R3bnSUeJSExBRKnmK0WyD0hEpDsQOSmiPI1m5haIzry7uO03Q1gEEEEpDAC9q5kfB5yGsbumKA2VTmnXT5Dx4GcTNieBIixF5C+n9+nLcv7X3c0HAVGA7zGK/iRlpHyZuR0XM09anHqvQwFmZuFIB6p7hM3Tk+sB/yzvOwH9ztgxR4A9hTHs+BIFMQnsDLoIjADgCEhD5EOfjsd9y4h63j/unoIE5n0UISsKpB2IGOyOOAfLmMmchMicQYz7c3roHZzQw9xT5JRqAXcnDEQRxDj0TwHmYWmLSsGwf3zfBV6PJ2Svss6S4Bkt7ffS0yNHP6dnumuO/Z7Y6/kPcUgFTrCesnozW9f1lNPBk3fXuaQojLThcHNVDcy5RyEucEQ3HQcMZs5hFECIFIAejOiZI5hWU0GFWIhrwQpUGZAvAa8DPlcNZmEUgVp45nr1mEpZIDBAh6n30XRb2+2z3bd2U235vNSll1llehvghgCFUTBgbK2PzXWsvb9rX69vv2CZu9Fd3RUKlXmerq+vL28vpbD5oDG86do/13FffR3oxMiYEXsuHtjH2NYGYR+lEODLXKbK8+VSBRgA1dt06VPDCHfbtg0RuRaZSxQ2RqkFSKpUcJjnC4woNC3L9batrbVa7yTcWhugn+3j7reP8fFt/QYAtc6X68vry29fv/z9l6/9l6//er3KfPnyhuXWbf79+/j92+d233pTt827eW/jfl9vt+393j+38WlmButyIfUpyKAAzwUr9TXadkekYWNYX8e4D+1Al1LmyzLNUy0IDuDDbZiZaWzdtWvYiAjeTTzJ3Q0IIEaQYQ2MYCN0ZCgVQYeOtfce4dgMsUfgwnjY9RapyMwYPjgCXgKUyAGNGaWiWZDSNE3zPAcSl6VMl/nyNr98LXW5d2vd19Zyjwz0UonYhw0IRDN3tRwtd0je9XPdPj63j/sIl/f399//+KNO5b42VSeW+fJ6mad8nHLEA5HHdbRh67oBsI7ovRNKwXKtS50WANpiHaXg4lhkFi5CMbqt980MhLlOQSyVS61WCJvf+xhjc+/xDlioWAsmIFYdDrr228I5lOkiFZGjsEqYhQ4gyvHPVDvWUzDrR7fqJAPC2VlUCg0JdGBENyKMQAQFACSgfUdPgBWYHuZpMwZ4qDd3V8D/xHg9CK0TdcEegHs2y3K1dcR8JwgHQM9AnyDaMRcc8A7O1JhdPG57kC/t2nfCPYwM4WiHQfjOBMQpfQYHAIY45Dsah/wot7rjK48JUn6W5ewztZOEzdl+OtdlPAQr5xr9XLY+3h0B4uE4mr8wUeLz649uzHkeji0KEeAnSuA/IS8lkIg9yg1/fuXPAA4yYAiIAOn54/wFtf28Qz+2jRPXPkPSk8U5W4cnBQBHaBS4G47zDNCji/TwaD2pxJ1oPH7Xs7ckHTancPjVZY/yfM//RCyCmZn6CVyyR/MMms898hxpPA/yp6M6jgmz90P79InQ0SkMi2D0fcZzD+rYh4gPvV08LHBTk0SnNRQDeFJZz0clee8fxU8iEEKE52sRkQyNmhkReDy6YM9E6Ykk/GkON9I8Kf/8pH/f78+gBErMlr8UzJ+ACAZA7OZYfKwJ9HzH+pkAEXlHAYDnJIhnVfJ0lRH/AvvAD4rqsKnao4rPuscsPTdpX2EymCyf/73XCSLESLlcHHjrr5VJtp7xiV3ObvL5hKai6lnU9fQY6vnYxpM86yBu/1qenY37Mw39mYPM17ulh7BHgKo6Qtkfw93DK45KJgzCw1z3+eXIxoELUlBW0xgOjMHhHC4AlWh6+yLFkLfv9+g+bLNWB6C+vU1FrrW+RMS9fWyjh/Z1W7d+v482XAPsvsIYo6rPRhVkWAQDTVQmGWL9fm+9md1Mb2rry/qdymJYDGrIzPMyU32d6+s8UyFV1uWlvaz/8svf/vj2558f3zbou5eCk0NIENY6jzG2Nr5//0EYs3y9TnVZFoHo25qp45fLS2Hetq2ZdtPbeoMfrIwvGNUXpoIVPd0U63Tl6XKxqS9r2wCAJu69m43m5m276f3H9oOIRrdpulwvf/z6y4+//7b9y6r/j//9//XlwvPL68vQy9tLWS7D7b6tZuYFu7bP24/f//zHP//jf/357Z/benPXUqT7ChIvLxeepSyV56I/tIW5KRINom/3272bzJfl8rVeXq/X+VLQtg/VbqaAiOTzUgOx9lEqM5OZtdbGGJ0gZwnDqXAF9HADQcj0LqHCMoapemut93Enl1T7ISBxBjej4LRM3arD5NYDhrqrj269m9ZaudRpub5+/fX68ltZrlKW1u3e+u1+v22r2ZBCEX7fbmrDh2IBZnawtXVXEBRV3bo2M3N4f//x+++/39dNbbzf7u8ft2/f319e3khKYcbg0e0LT72NIsZluOPXt1+0xe9//lFlAgsCXKZZVTsgY6hl1DwvRZCwW7d1ePd1KGpMc42lMiOCE1qYaaCuH/EjprhSLR4wDEuZhvb7/U60zfNlWVB4MlUzdMM+trSQYOZaS+pjUpVsZqrDY3f+PFYNFq5QhgZEt6BkiBAQCA+16k4CeeoifmZK9sSWiKxoIX/CH/P2p4QrDiCy61Uzdu1Y/TFnrOiZOds7YmAQ6R9xGFke9p7hgAhG7unNzQGgqSWKSFok8k0AIp02zz0Vwt276wHEjJFSWeKhiMhIeEwwYObJWqjqSJdOzbvVIDOOhANB3eiQt0tqvcMJgotwESJifGjF9gV9b7/FblG7J8zsCpJn8574OQM7z/a5uJvBLo95xF9GpA0sMTMHcV4XAIuIpJzcHcGJSFjc3eJscu37cVIdecZUVXXftR4MU9jzHnV886cDRkT0UM28W02ZfN6TJyzDYzfKtjgRjTHMWrJXp8oqfy8zW/QAU+tj7GnWibryu3BKf8zG6CnrTN7uOF25PSMAjF24nsDLmPF6Xe73eBbp5zBayiVP14xzR1TVUNPwpIiSt4gIJGLOGgILFiJC3wdE4vAdKJXZMSKEOGJ3QicGximH2hBxmiaDGKOfDdATBJ+iHyIi5HBwGxGRpBod4UyOgIhjtPwIaWaWP05PwTvPX/kYqmo2cJ/B+onSMKPFkISLo5sZ7pEuqR3c5xjT4wYAiITI3PmsXoR37Vchdvfe1cwQCdAxwPwR7WDDAczdk8XEfQjGciRlr7I0wl0YgdmHjr71sWGkqq8A7okL5KR6jH3kHRiKwSegZGaRQkTmkAwoFz5Pft5FeVMTVXeN4CP4AQ7qccdPR3ZCHAzfPgicj4A75J/zc53R2nhMNZ7CxBPv7m4UEg4egWN0d5in/amptUQ+K+FhHkgarqqZrCdIAyDUbAwIEyQPN3PXoQEukmM4KQSYS329voDY1tu9+e1jY4oxw9eXt2X5om4h9P39/v75Yb5137qpWnf1YLVA4NXog5aXAW5gFh1YSw0TtXEfDbTf1u398+PP5fqVpwV4CbmwLrUW8iZgBKg6YvSC9Dot//a3v/do7+0jndvyQsjf//73zx/fTfvHj/U2+izULosv8+22FgQCv15fa623z/cPMyAdo422BSFPVbYNqhRwkTKGFRehwrUQwDAb4Gw6Xy9UhKdqNtZ2/7i37X73uyGiGzDf/R/flv/r9//2bzcF+dvf/+3rlxpuQDhfXr7+8ouq3tv28flZ61uEbX39/uPPP77/8/PzW982te6jz9d5nqVM/yqV61ywCBUJVYDso5S6vvHHOzMTL5fL12kqhQNNow4GDBumEcQOPHWTdewaCAoNX7cNkd2RWUhqRJAbcjh7wQmBQdjWbdi2jr61bfNWmEVkKmKXeaEqBEFhYEGBBQIhHR3HaM26qjqYTNPr6+vXr18uL1fiObcURw+sUmI4B1hr3aON0UBwFimFOrjfrA0dMAiFi0whBk73NizGcAC/3dbfv33/449vv/zy28v1jYhZ6rK83O/3NAITxOuM8IUghEjafYOIvm6jbChchbpQp4AYEICAhYFrGaa+ba76/fZZCk+XabnOZZ7mKkARZp/rx4DOeqvzwtMMxIjY+7YRIGLvfdt6kYpQzFCHtWZj9FzLpqmI1FQUWAqWk9eBE8Ps606kPoAYDYDSNJgBMdknCMqMhoiMD3ruj+BOlcDOgZ1bwrEz+dPAM54EyrZ2IiJhIsJdvrNT+nB0KDwbmnt74Yzl3lW3jlCAIzDJqlMd7B5me2ykPzRj+xcfR5VQCiIQTgscPGkqZn4yAQp3cDN3s0MkfuJIeGocxCG3/4vQ+9zG/LDIsHA+TvSx0fmRsxRgAfzTeT7bl0c7oxwkxF7YIvBBLz4SBk+Aldf71H7lCwh9jw56OkF42Afs8PcQ9R+5kH4YgAAiErPZoSg/mYCTzPuZAsxfmrP07p6dvoi9b4iup2rqpAvy/xAGQUQcgIwUSMQovA8k5nsjZoTOjsjtGDk8YKubultyicmGRhyT+Xm5z5OcWCR3wSNk4hFwflI+z3vhQf/4aZdxfu5d0oS7pYijIyR1iUiRYdVZbzhG+tgTA8U++4d74xJQ2J0B/uo5cgxLpnvWHk0Re1cuza3YHfRwLDMfJ3J6Bljn/XxevnyizeyYz/hJzL6jdiRESaIplX6IDoAR7uFm4bb7whAKoBM5kWRUFD5Gbc4jeYzEHqZcYI++MxIgMkNQmENSwyc/GjmhcoymeGi6fvQB4BHCQgipPEs3KEMif/iBQUJvf/qAkVqGCIjIUOr91CE8ssOfnvHjfsjJbEN6hCbtDN1T35CZWerZfEjjjYTRJ7Wmquu65kX3w8Rkd9QDEPE0Vs3OOlGWgMVJI9LoigBIMIxYnSCsq6ruJXGoaXS3ETZMOwOo6wAswRXFxgCIKvKKL0zFbPQOn+/3Ojvzcrl++di27ePH56prjwBaXfsYOrSEEWARQwERClB3V28Gw7Bh0WkBRhq3Vd1suwc09Ubt4jg5lOuvf1/a4uPNxowwgXb2qEiXuvzt9aujv/ePe1vbenN3piL/+rffJuHe2u3jvd3u74iXqVZC8uuguMzTfFlqrWMMWu9cZGyqmw3VEHKh5jrrdb5cDG2RC2dwhocg1qge4YzcO2kbYyg76eYdulnOcY/u9/fOdLlv8fLy6//tv/8/f/utB2D3kFq+fPlyu93zmu31p9rt4/3bH79/fH7X0ay3oWu91VK5TDItF5nqdKmylBrmVKZ5cYTpfqdyDXCAeZm/cgGAQTQX1iiIVIxM6lwm2zSmdaBUqXukWlNnBkYmAi6EQWBIEoEOBYoUthpCI+y+rRbethUxhLnW4qiIS6mE4COaURi64mg2+th639a2ao/MFSPBaZoul5l4UsetD2GbKk7zFFC2cVdTxGaxsSPgwlLEiSuzOjqXUpGEKwWqyA0Os5N1a//8/Y//+fbvv/zy25cvvzAXxlLqxd7XrXtft6yfvrx8ESwM9Lv+sbbt9uMTHJdlCTC3McY2TBmmRZYiBWYSx7W7al/X23013vilX69fX6bLIsJVQILURrv1rm2B12l+CRjmbW2OSG5rxIdIrWXJnCxLjd3Qeb4cE/gUEa6WBH6kT7qZu3oaP+3GqQyg2SdITxgECOD9JUEB9rw++q7oODDIPsmYC/ajhnZ/iKuyJ3BSDu5OaXQJ52bmvpeVdHYhCQmAkOS5Lk9SHTPmOdfNh6Dh2Gmf+Ll92T66numvCMm8H+LxvREQEIwMRPBQv6rqwUjp2djCn5pi+CA/DsvQ546DuyECEZ9SdD2K/geG3TctfF76z3P1tILvb+4GAKcjACLsOYbPjBci7j2RYyuNp+6SiGBKhWBPeYsHfs1bYx9QzUS5hMEn8yhHB+dEos/A63lTd/dQ86HdvBTP4+KHe+3jkJ7dVk+SYLdRZeBAQHJ3kZppfXGK9hBFkEhOp9M8BlVtrZ/GYHB0js4xtFqrSD0tpk63sFLKqblJPH0e5ANsPZR5j07QA26aOkr+IgFyAkAHzwvpREXSRyMxAxEiFmLO7OYd0HuaXYXEiRHP8Y587I7MzZ9cS4BYUqWB6A5omuYRKVzjJDgPJ5S9cjqu7AEgDtomsmsseAw6IKJ5Ai8XQUDMlj4iEErAcH9YsuUKIVKITu2jp23VfqSPab4d+QmVg270Ygm89g61EMNhZ5XeY4RBGBaACIUpklIKMx+qfQdM4UYInM1gP2ZOAMPDPfK2J4cgCjiHgeCwVoEjwnW/M3dfnbTgN4CMsdrXl4gw6zvmZc4+8vF0PyZDTw/6pHhFJI1REvoz8xijtZZGjOcjlvd2Dl2krEtEwvlciJ5hNAAIAuQD5Rgdwg7JjalrN11tdB2bjXUbZggBKFhEqq2NWJGgskSBjaJZ9G2AI/Mk9YrDNcowHkbq0REztt3NC4Xvo+XY2tqHD72br0idS8ACgsiObbiqDvPoA/WuUQwKTjBf5na/tsqDZQyz1tG0Iv725evydrnb/fP++fnxQ/tAZPny9sZE1ptt25/hrvr+/ommE9M8Tw6oqh4WxFwmVp+WxWEbZrfbbR2dP6eXX95+gV+/vvwShLl/qDkzT/OFpxqbAJE18Ig6Tde3V1lKhP3xxx9re996a24S+v3j/f/6x7//n//zf75c/vX68ppXLghLKVOdL5cLM1co8zRNtYb77eNztBuEIflq+s9//gcx//Lb36TOpZRpqp/r3cEUPTOFA2tlmeob4IKBgK2Iw4xgxUcnG/Ny5bCyDpFbdmq6au8bSUXMKsfBLcAcnAGRwQmMgJknmj2i6eiqfXN37zYsBktQgQnSDXts/db62nRtY+19W7fbx3rzDed5Yeufn+/TfJmvl5kLRqz3j21bPaJehAQNgdiC+tB7HzbiPnwhnIljmgpCqXVCKKTYB3KRUkqtWKsE4bqu//z9j3/88/e//+1fpjIBS2/DPHof9/uKiJfLZVnqVOpUKgCM1u9jjNH65UKE9/Xz9vndbYhfrxWghJAHh9SAiOVSxoitr9/e17t+XN9el9cXmefXt7nZ+BxNrY1RKFWoXsyAuXj4tvaIrciGUMaI3mzbOgSL1NwMcv8qpZiFGydWb81aa2rbgbsYUQ0owi3yZzDAT933oXqQXaue++XOn0MguGsGguXCDk9fT6tYnN2xc2785xdYHHY+CawCiZACHvqhxyYNFA9LUWTEw1oCI0LtIeR/rkfpcBokYgyPQA/NhTiHsODc87Ir5Uf7Dxx+/jq3qBO0PR/eiYfgZ23sSUo9MUwPNJRbXh5h/PyFjw+KAOD2EKns4SdHluIeDPw0ZngSUnE4l9a0xpomCLakJgAQIaMP8ZgeiONXHJv0Q/mU848JAvDp5D+fmfOz59tE4CSlEKfClwgQCVkY9lTS5z3j5O3OU3GC3eNX7Cbs6Z/yPP13dtJtz8zuqZV6Dp5KWohImMu5s+aeBwA7z4RhNnrfWltTcX+5XBKWqY4IQkxj/ezGH6f6kJkf3HJkIxUpUCmNrMAc+Kc4PwYkJA9F3zkeSRCyy71jH/j7SSH0cD3FQ/N3UsOyBzqiuzuSGeeA0W7I9/PFylwgeGIo4TF5utcyfHieMXMasKbY8ryHiYgYzPZrl673eS/n4TGzB0dwDhuez1reSzkyzFTkKX6eiDjtIQ59/S4fE6TDHT7vLdgHHSECdifRCCQAdVVDDBQEONNWznjQzGA9Rxodg42OcnT3yTuZ+IiInOx+jAr9vCzsuk8a50BuOB4lmaWrIj5pIrNif6Jvd9ryeQDidJ09a5Whm7sLASAj7Rma7q6aE9AH8nfL+5GoBAMRCYIBmGmMzcYKfbV2H/0O3i0yBrNSncN7qQHcA9TNyWPiEnVB5M/bCtNnUx9ACnS32NrACQzYkDG8m7c+eOsDbsDaPcwbi1OF3XbcDR1QUBUtLGBzV8cSOOv4HP19az/kkxxkDBtdzQwQlqksy/RVrlu7rteXvrUIlGWqBFf829/RtBLe3t/Dxufn/eP9JsIRsfVhNpBpWi4O8bp8pdtt/by3bdzeP5zjra8O8Xp9RQxkRAMAKlPlIo6uqQLOGDZhmaqDI4Wq9+ZM8+tL8cG99//xP//Py/Im9OW///f/+wi4ra21Xpiv1+vbyxcBZKpv15e///rbP15ef/93WMcohAhmgD9+/FDzrvb117+ZmYXe26aAMIY6fv9cPbjWt+vyN/DFyQGIhYQLW1Pe+thYJtIBQQGEhOo+xug6iCuEqqmr8T6fH8rMzKmPKIwiXJc6t6n3bbvJGMPVupm6mOlgBFezft9u77f3oZvZ6Npu6/398z0aEwuLfN5v8v7ter3axXvXjx/f7m1DBsOlLuzRHJraer9969pR+Nqv0/QKLuApT5wC9+GUUso0lbB5nqdlvgLJ7bb+45+//+u/frtc3uZKn/fOPCEUUzQfQqNwVfUxrK3bdl9776p99MaMra3rdovReomwGoHm5rEFDqpYo1ANX/u9fa4/3je9fcG/XcuXOs3OUAM37b29mw8Iq4WnckksNcbY1j66hvMYdr81VRCutdZtmyMizU6FGClgmOrYtm3bem/q0ZkCIk2HGGBHKxCpyfAcaTxsUhkx3PFYNGmfXQr3CFUHcAJyQIKfht7Pya2fl/UTliHkTHTiuXAKzlUTj2lHAEzF1slv7TDO0eBJCr3nOgM+WLbH79o5L8pADxASRAow96z+ux8K9mewcmCPB4wjgghK94HnreukZ57hzmP7d3KEcgCv5+7k45VPAPEvIA+fvuDwazj6iXi49wNiinkeyAOPctl3G4e9Sp7neapTKSV8b6X5IezKM7kX+mnPeyigmansujeAtBP5Wc7/+DNhhrxrOKiexf31ej1UL3DsOnWXw0WAeZxUiLkPhbRcMqe9KwrhkYqx3ZvA0i7czvFGkXp65Z9kobCccDlP2jNoTtdWIiqFETH7oadXeNqRJ7a7Xq/5Dr33fMFuMKZK/9km7XBAwKfGa2rwDjSTn1opIGFg/gsjEQTww+3inKo7HFJ2GH3kiz/G5fKKnMawzx8TKQuePJMPa18iAfw5nuF4K2YOi5z15AMTQF6VyHSyXSp3nLHc73WMZjYAMlSQcn2IiHA8bBwswJAl7y6PANhNUM/T9dTrN1IKpEy+4T2U55xLHUCMkOKw0wwFCEFE8kFR7QiMFITsLueisd/5asE7hMK9IbnHwOYxP3Ocx0DJ2E9snFXhLlgcYwDxieMjQkfeY87M0zSfVsCJqJ7Hfo+e/g7Iaq07e3Kc/Hy9HvFEiAQH145MBiGpekMEc3MPH6Yh1RlQBKOQb66uYINttH7zdtP+EdbVRxgUrtwmCWQg4mE+zB2dqghPtbX2z3/+870bTtNnW9+3+/u2Du2FA0IQi6EP9Vu0Ye/0MerlJZiIY6qEVJCoqdsYAR3EiRwc1FRjBDmJcFGSEd5a/zTF1rqqh2Ots0xcitAkr9Nky0vfmg8XIcAq8HKJ8ZsA/Ml8+/gx+vbx8TEvtdZKBMQwTRMWcUIN8wgd0bbP3rTHoPlW5x9/fPsDX6FcyyKT1DJNUwgN3QUQGYNooXVI9wEAX758QWDGAlHef2z/8b++ff/jz/9j+j/m+jf3KMvL+7fv29be3r5WrozEQIG0TJdfv/72t1///vvL/4rRiWDrPyJto825VAtUt3VdEUFt3Lft87N/fN9gUJHLVN8gqqs7IggyMQLGsIDRNbam923bus4cqtrGdvFX1wEOoYE4OJyZSZgRgdg9dHRVqEIQWZNhnQugexAhBAEyIKJhNG23bf24ffSxaai7frb7x3qPjaROXMskxd1vt9v9vt3W7X6/qxtWDhwWDORjrNv22cc6RiNHnbhIhUALJAv3JVntpBBKKfLy8uXt9ddffrvMVzN7//H5z/8vXX/aI0mSZYlidxNRVVvcY8msrMrq6u7Xb+ZhOARI8P//CA7ABSBIzszrqa6urIwIX8xMF5G78IOoqllkDf1DwtPDzF1NVFTkyLnnnvO3r0/Hp4/PnwCIkETyygzPFWEuyzJeb01HbFaxBEIAWalzLRNYMc8e1Qzda9VRrUSY2gzonIMcbCnzYnwjTzrQKRKzhICZmxavhNan4OcAaoLisuhcyjSWsvgyKwBhx2bWjukiwpQcwbwsyzJN0zjelqXthQFh2ILMHsIWo3lzBcHqpPUdebMZbfodPe1RJOHfuUD9zzDE/WDYYoXWvqx7XB2AAyG5AzgQNznHdrJ0iOa8sx7ZbaVoHqDG5tO6V6BWGZq5o29cDrirrISbQ3ht6Mosds2Wr/DG12jOe1GPKOihavAIKDe+5DvXn++qkyu79h0xtoPQfc39TZvkPs7rT3xvX1hN57cXd2xqSgAAgABJREFUr3ft/te/N7DgVUqSd/TzyACZ79m+dyZml6TsdcA7zfB3X98N+wY6DcwsiKjv+9PptHcp7vWj/+lv2Oku+J638/2+tH81r7WWUszWfyIiobx/tFX+wrL/ZtrkbrA1DTTg1ozj2893dmH3fd3vBW76m/32EVEwU/uLuJcgLYCaHIciAv0xGycgzMxKBb5Xn5EizCNaX9+9A8NVqy5ud8JvnxJN8Ldf234GeOgeXVXwRNTmBgC5380v9ru/87KPczKl1CxOmztg6zB4bIc0M3xAaQQK4BvRuCCicNOZrQ06u1hetQbY7qbLsDJYLY4a8X6vGxpERCIhNSIC9tZh05aSNpwAfL9Ta101GJrRjEUwhUWgeUUPqACbwODhSdyMmxEozDi2I9x9lBrQXOlzavPNWpajN7W/mapy0naWaK8UoQbczQwgVk1hrCtDa7zb7fH2n7SYyy0mNeThzMMk7l7NmqtxO7iQmch6QHI3p3URC3BTJyQCEzAOk6juS9hCZYxy8+USVsitqs7ASGmgTiBBNkDjQCEBNASbl+tSIrnT4fR6e/1yeZvqTBxhlDFROjAQqobTMteAWCxyn7ueOUVKEI6WQsWclACQgVrgp4eDI1cSR1KkiqSACKFuqtUyE6F0zJKEOckwWNZSVKTZYBz5kLvTMBy7/tdf+O39pdZ6vV4BIvXpcOg7JkHuBq++IHAYqnqvNRRKKS8vL6WU+XcL/UB4+HDuMwmv/Rq1tg0nc3IQaEV019Ph3MnQp14rclzG1/K6XG7X65///Odlqbk/jNPijmFQ/rAsSxnkQMCJeMjd56cPP/34E0NYXSKmqSxuBu7jOBZ1Cy9uKXEBLzper7dpsef+49P5h/Ppw2FIrgs5EVZCBHCIGULGcXqfbu+X2zzP3A3VWg8z+XbOYyIIgwBwQKcIcXTHtpQGqru7iByPx3Z+AvCmVSL2UFLVaqWUMi5z0cW8TstUNKLa2+WdmQ+Hkwhdb+/jbR7HuZiySA4JSoaJE1Sd5+UWXpCcORG3SD0lksQsiYhTAJrNbfY/PT//wx9//vzp94h4fb9ExOvr+5dfvx2H0/l0KtPcdV3fH1rOtdZaSqnVaE3gIkZwV6t1Wsbr9T0LzLNMc+5o4HDVpehiWnSZWhd/ygAsQKg2Xa5eouTjQDkxY6BrXeYlZEQvA3MSzohN81uXZRlvxSxyGiRRayk1W8ws51Bz8zIv0zTfbrdbKRWAmNHJaPWv2tbotoY6bAxEeKzr4G48uh7+WuULsBlvAkCz1360CIX/P1/b25uIPpqB5LoTIOLKgWE4QtN3P0AQjL0gtpqXwsZn7DWOfRVrIouH6wkw9SA18HXVffDR3qHPtiY2n6dH0qtdfJK0/8VH5fvjZrYjhu1s2hqWkQN2FuRxD4vv8moAflsoXAd/H1ZE3kLZ7m83Mw/bsFcwZUQkJGIhEpbWTZV38NRiQH8LfeKBR/yuthWPHw1xc159eO/+YXfOKSLCo1HITUHVbLZgKwU2XNuuDB8M0nZJ06ppexxn2NRsalvEUOwjsHt84GYgbPHgGUay/5723t0fHDeRTRvnHSrtzFY7yexPwT4atNmWxr0ojABQSlkt6an19js0HSEAmCvqo5EpIwY/iAIjANFXEFMjgindn9P11twzB+Oh73W7KbtgEHectNMru3zeLHS7ZY8OtG0oNmlk1a09AhEDV924mREiczOdCozGsGqty7IsAJBaw8R6FPntTNtnddNEiUg4mircH7o78XyHm80/k3x1pSdqulOzlRRXVbViVn+T3d5iH0spzAboiP32lAUCwZaVBHcJxM7S+Y6PG2P9ePFtIWqPUptO1CrcZYa1hbwVT/1xcdifLHsIcGyYbOdct3AzAoBa674mMPMaSRCYhPe19rGtB5rLBhEBhs0RoKV4mclmCfUwswV9IZ1JZ/MlXEOt1oBA5CGcUwZKgN2QJUV4tVocr67g7tP4bXx5vb1XGIlr77o1hqSVMHd2x9vtVq16MDggF4pKBJIYe1KLiEAmQRbDuYJ5LXU0nwEtCTCSK1tVDa3L1FvHBJkwCXeUkaGIStd1LfCVCT88PQ1dCtMAu72/zfOsYQfrU2K13DSP5+6sWTmklqjF6uTjMl6m28vLCzme6JBcMvfZO0cws7qUWtRDqYXQEjFRAKVgyZxS77VkSafTaRqLVX19fR3HGTmZo0ju8zDPsy6FjicCNiAC7Pv+88dPXubL9U3haOHFnIBrsdv05hDSdyDr2bqYEvHpeP78+YcfPv9+6KAuN1BOsDQbFNfO3ef5bUU8aoN7Ww1X18QIDyAgwWYn4gHuoYCATObqauSOCCmL0BERISzCUkrNKNmjNmLGINTKUqaqWrW6gwNcr4vI5YcffkdE4zi9vr7Ncymm/aEDGYAM2DJzWxSa6VyT0pWYMSin6LpuGAagZB611nme3f18Pv/hD3/49PGnWit4hMZclvf391rs+LszBbmGVwWPWivTelbuum5ZFnBFBAdXK/N0u90ulnkUGId0SNgRtZb4pUwQCuYYzoxD7oyghledynUZqHZ0AmGIqFpLKW628IDIXR6OxzNRYsYIq3WJYOpo1wWrlrZ6hpmaNsFmM+xAZBEKdkbHlse2PqRAEIgOpg+A51HAvm+99/PiDrwogNbc5Vaa/J/wIgCQc7ZAgBboE6Zhvops1q0L0MBw8zqih/axdv6NB+3FjqzuaGlnjOC+ERIRhq8xKuagvoVHN+ubO4LYl9T4/uv+8R/giD+MibaqHKz+EC1/JCLwoVjZ3tcW999ouR6FSvs3v3nBbsz294gnAhsb1FweiIBk9cVGESKRlGTbCLd33W+fP9COjzvNY8ELHyV6RE0l/fe76eP/mhk45JzzPRU4NXDTSJRlWVqWS9d1tBpJrG4Udz3ZAwkXYUgBEN48DFZS6p60s8JxgOalIiLV/BER4t+plfdWslbQabv1nhq5Kt9TUtWc89+P/MNR47vDRm2n0y1/sLkoPY7M3h9HG+5x/y7y5Tujsg247BPA74HosI/YDhb3Yn27ql1Qv9cZYQ0VUN38OHaw2x4IolbjhQjwWndcS5IQadOArtoMaA2bGPudbVOWmYdhaGe6CKDtxsK9W3n1RRPOjm3b2BVU383/76aB2hpu2oai/UxrBO43rtZqVpv4jIg81M3358j5LoogWgvxzQU21gNJuPsj8ILNNW1/NHEb2J0Yax+/lCIiEZhzFvlOfbhB+Xsp2Tfr4Abu29BtrsXcqK/2a9f+A1l9edoi/IiV29fD84uIZOZWNebZyghuBMGh6oXM0BVMMRTdwIpWDQuawiw4R+65TywyVMAAW5Z5UppnnQHfl8uoV8Nr1fH5UCInYBBrsZvUnG+XafaoABQGmD2DAjoySE5eSjPBIWEknHVZ1Gy+LstkVomASTR7WQAA5nk+qFIriBEJo1DiYJGox8OxqeS6TMQ/cmbM8CXzbbyMWnR2nDidOsk9gj8PP8XBc//uQiYGF8qXPM9zLcvrL3/7fy+Xtx8//8n/+Q/8p4HPuEC1uegCjhIY4bFYou7Yn9rTW4sF5w+nnNP546cfp8V8zpf3a7XRNIbhuNzer5e3AFWYBZwQTv3xp48/kmkmvlyel+nz5Xz58va1eAHhywS32YwYnTncJ/XbeDx8/vl3f/j5pz/98PmPfX4pCy6Ta3E3B8wqXSnFuXu/fXl7L1N1Tvr0wSV3mORIiQJAgsAFgCWAQ6k4hlNgk1xakAMihxCg9udhFlcth176LgF45CHq0XSe56mUuVQrYdUACIjT9Va7sZZFzSKllA8y2ZVIa9SsNTTDkpYadrlmNRIAAEYiD4Ig1I6p77qceuS+ltGjFL9B9u7D6fzTD394/ni73UCX6/vN1RatSy1IlI9dHnLq6fA8TLfx7e2Ngw9PB/IKrkuCoFjKuMyLlxvWpRSfyafz4Va6hQPClaC4Xe09XBPTc3c6HAZgrqaz1rEsy3W0qpI6TrkjKU7Xy/iuf2Gk4/EcMQvnUpS5ns8JQfqeUnaPORwtAByWGmZuZouqKai7ukYsGi7BfccIbrYQOQqEmQcE1gALcGmtZBoBhgprKZEIkFuHW265jb4RNu3k2A6RHojoBu7NsQK0deZLRqZ21t4lYBAUCG6bqBaAIgiVyBHQg8PdYo+VtUbWNFvusALQR7DZSrGgLeHgCNBExoBgrrbw5mWPFEQQgtAsfstaSWxGEnb3YlitAYAQKJqAOaLZejSHMAzApo/aleBE1Jy9qikDiwgHhLq5ogiI7Gv3xrVAk8utpv9EGraXkBCxJQ3XYpAIAZBxs9dqgTxOnEzLY1GMARmYgCkSYhJI2PzyOLVSn4O7YbNdWtdoFDVtAfAQREi4fromnEMCwjYQ3sIPm/upRgQxI0Apcyml1pqo6/Mhwq7X93kZc84siQisahMNRtNLa3Vbwmf3XIt7hzlnVV+WalYb1b0e+FE91LwAGlLsuhiHADQPbZyXY0dBHWeipuNB93APtVq1qBq1GPWgFiueOVevBpUxwtR1SX0SkQlIVc3U3AKcWl4WQcoyzaNaZSEPU6uSOMAzJwx3RnCgCIgaTt7io80qegCISBJp9fsNAEVEyGqU5aFQfG7zQajRUQ2DrlghvLZD7NonAZyZM0tKyWC3BnZgxzg0vwZHQHIEYAgkNsN73EISRKimVWfTlf1q1rM7vGtZjQBAZPgQnZRJPOpG5ISrO0hKydzCofXqRSzLMlddcs7MkHMW6YgSK0NQBIKRBwhJSpmYYWUi0QN9zVfEFoJEBERoUEsgA1sQuQkiA7d51F5K7mQR4ezO7gSKZIAABChIiaDAMk3jOKaUGanPQ1tKACDM1wAiJCBycAYKoCB08NGXFaoiMyTHCAJgql6T3zFQzhkCSykA0dS0YRDmnloZtITPWpGZcxqICDlRy4J1CHONinE/6jRpVwMVOw3cXCdYsO9zSe5GFQPAiJJzIBNiEABjtDO/V1WzVNiWalVda3hxu6le3W5VX72+UvkmXokoCK2D2VDKOwSGBwNXMj4qpicADOgh0m3yNy2T1YJWzIs6hXstRtF5EJ+G/Bzhc/la7T3UqLBAt1SBcA5IgWN4MAV5IUD0knAxmE2Rl+zvh/o1ez73H4ZAL+DFJr2EJpuSg0F/oD4xOREKFyNRBuoSDf2hl3TsesZgxF+/wfv720pCVkeAnLq+PwQFJWmdNUO+XtN1HMdlGTXm63WMCAixhZ6OPyTqajWrgA4WkTgNiYlZEjNTRGhntYQeySCp0VL05cvUdd1S6jQtEFxrmeepFBUQARBCOUTUOaxmluXjp8v727SMp6fzZbpOWiyutY5E3B0OPl3D1VwRnBlylqFPx8OTDYMOeRlTLdcyOsIIKKVGUVADUzBDU6zKpohdhxTMmJBS660gQI4gUgyPioEA2PqcAAChM6xIiRAIM1MmBiKMM1qgegQKy5uknpdZzZxoGV9qidv7dBuWvu9zOgx91Lo4KUJCTOoR5uZAmKVl8BiFrsIfZw4VcCFgNGKnBCIcvaSMgiIiXZePOhABh9OylGma+77v+pQo1TLf0kVQpmlC4GTubqOgowtFmbOggMeyzKPQ7XbLWfpMHKGm1a2Yei0KkUX6vss5CedeeC6Lllpr5Vz64Zw7EYIgvFl15LksMk3MrWnamflwOCbpVyLaovm578d6qxoRjK0PBlejQiLw1s3nDs02aTvKYiAQAgQHOm5eE20X3mqFsNlIbFKPewgr7oqXjRvYYcFDBtl+nCXgnaAi/I7kaBp3cA90C1orAo0AAwMjrwUgu3tzfIDNmGd1EWvys4hmkw7o6Lh1g+FeYWyvhO3kumcZEZFvmpudF9m/Xz/I3bX/u+LddpxFaswEUWw+rhFhvsUj4n6pEKsvmrWmuQcCrP3m/cD9Pd2IjOibzvo7Pgwa2bKKXcgd3MUBAL7TuLQuuXj4IHvA+feE08pqwAp+VnqJftsc4O5qq3xuPX/vRdt9kN1gje978CiP7wt29w+xD8VW1IsNbTyOPD28sQFxNd2E9mwQtFG2iJaaHfLW3tGIi99+3gf28Tf39z6+1NzWm4ctejgBNusz3LwGsGUV+B2jR6yHIgCngEbMiPDjB79fCd6DFx6pL+YW1bcyf4TY7jO0qAlEhDW3YqcPmwJ7N37fsd3D+G+drfHQFPzbUuZmo9pyoto6s7KtxIzE9+pbw3M75WNemwpqV+Y9jvPfk764luf3+HlDYG7iUPPYSS+wtna1TgLY3P83wq+ZYSkAl6K11rVFI5r7Mq1PfQQAba0jezpty+pgAOB94FZRXTvwOACwUMpSNnawQt25sTa2tVakAoCZBhHeCr53gR0RWXxXOKYtemunLVNORNSyYZB4Z8FxM0TEaLLWLW+++Qe5glt4Aa2uNeqCVtALeaVQBkRibgyUtfOMLYpgyDUZdBWWUDZL5qFaHBRwzZ5cqq5HbafMlqwmpAQpY4cxhYaGzuABRWAhqA4WGB7gEQ6uRhZgCHVe5Doehuuxm/r03OU8DAMGVSvF/Hob1bEGeXCXMgGLX6cIIsfcHfq+fzqc/OlD3/dNvlBKqVabwzICd3lI3ZETDVFzzkMersP1Mlxvt0up08vly8vl68v7WzEfJ/38NJ6GJzAigEw5w9BxlnaKURcgZo4MlZE4c3eogUvR47BM86IKl/fbNJU+53bLl7JQTgiEhujSUf/x/DlO9sPTp2Ll0/vXX1+/fH17LwvU4pDz0HdjvXktprPZYr6Ez4DKJDkLdTJnGt+jllGBDcVC3EVd1KJWnEtMo4632jEyEUlKIgMnJnAwBrPAsGIFfDGqpgGCBEzoDAahBMbhgpESJcnc5YPkY8rHlJ+6/uX9eunmuZp6Nl1gvt6+fb10cvz8Y993Z6TuOl3NCxBaIKprM4oiDqWIMKemtzCACl7Zq0Qw2IJegIOIqENOAPOkc1FH6vLBLJbFvn19Pw1f//jzz+fjcOrPpmVIQ6Z+6q4Y1Lu5myRysIlhmcerJAIqC4w0Xt67lBgOvTCEmYKbe9EaCkQ3yfksm9c5s5VSa7WqmXpK0LGw0JwYABxsnMewUAXCnKTvui6nPkDmudS6Kh5qaaUZcIMIJwZ2DtgXC0davwlwi4Ib296ssigwgCJ06zTcFts7NkJvB0u6F038IfF338B8jcnbOpy+007dHUdb1xKsDd6AiGHN+K/lqKybqyM0ObJZAYD1nG4O1ryeA5E3+9eG2yCa4AMcKJi5Lc73PRVb1vZv9zwiYt73oabPWLefbdtbZXK+mW3COvabKoXlcVPZ6wt7iQGbcB5WGdNvrGg3hdNeCWxjs6HaoHjIzG4aakcwCI4A9N20zNdqG6hCIMJK4SEiOqyGs78BFjuHt1/Pfu2xlT/Wf9qkyu0jtoyaVWvMvNVKdz0hINBqMmeAFO6uVlnp0YVrt8nYDfTX69lKdSsVtPme7DcIMVYnT4cmQzYPh6DVAGWFdkTCjI65lNnBNYAD3e/mUr9BA78ppO4T2x40148Zo8BbutbeWREAgdWNETJQRKibb90bKXGX0l6EaklrsRk3PEDY3a94dcRAhIgaa7C9KFRwAAaKZh/VZiwKUosJJiIkcvAWwrWPW8MlRJSSrF2WW57go4JtM76nVks3d1c3b6HU1jIucydqUmtRrZP7Xkpuv5aV3WU9MrZ1gL6bdfujd5cNEEYERDOvQUc0WIlDM3OIreS33owdjsCGex4aVHFZlnmeW4MhRJvkbRIHItna+sq+P1bfo0+GzdaE2lPrEa3HyPeZY2YRK/Bqt6/WahZVV5Y654yrGHfFu6sYFHZVvuDmsL/rESMid9yaQNdaHTMKByGAB6KBNRQeam5qqqzVrYIubkvUxXWCMkKdoE6oM3vhsNw4bgYHCFRADTA3q8WcyDxXzGailVTDTEMcBYUEu6HOc2gNdwwUMGFD4ZSGo5wCKXw2tYAKoIaKqMYeCMboEepRPWqQA1S1t9tE/NKlp9PwcTgOh8OBiW71WN1fr7dcfXCoCn22lJJM316SWnLE40kCU0qUk4V//vz59f399XqhWrhLkBKkJMMAqXXO0sGDTzBQPqZuPAyLL7knEL3c3q/zbSl/eb/Oz8cPZ3w+Hc7H8/mYhj51raG6qmaUnJOIOAqmLP1hcbzNMyIfzwfmVBa7XZdSjBiWZYpAAWIgsIjqZDwgSBpkeAr0TpKqL7Md802PwF3GnFLLzzOty3h5f3l9+/V8PPX5fOoOh9PpeEzCbr4ULYFAuaM8kHRYoRrPk12v09vrSN4lkVMfQ8/cUQ/U5NHzolGrTaPNBUohAEMg4UbH17GYaQpUTBlTEkl9l2XoZEjcM3XCQ5fHWiv04Ev89VbeXi6Ju2E4fUgf+y7PU7Foslt0CDVVs3AIDTNzDFNCkAgNK2CzxyLil8vler3aMkvXgS5lvHxbwjTcQUTIYZnrt2+vifPpcH4+nXOfIHGomiqCz/OMpTssvYdGGEHUw/jeH0Qyxc0KTNMyzUWEcifNXtiZDcnAL0uBy1sx7/teRITYiQMMLcgUzYSCmPKQiQiRy1LH67QsNfNwOHi10vWDEFsVhTkcqtq8zK3bZbVUxiC0auahQhBAAQ6ojgGh0fzVoa31uDpkxWosARGrWmVjvLb+7ftyydsm3Y6SELQFZrQ91wCgFN9clG2rX/B+fE8se2vhwwbn0cqIzIAI3HygyKBqhFsNAgCCsBaDAwCbQMXdwdXc3atCNP0QRDIBCUFEbJUj2Hb3FV0Bxq7/YPxuD1iNr9aFOBwc7yqudW9ejfM9dsuOe2fopjp/cAwHANi67R49OB4IgLvYZRuVNtTRXCQReJXVr82d9/c6+po/sNYsAklwdXpDAFp7Wx8QZwPRe5vjI7kTDugPBu1NNwfwQFS1Al+x7/Q6u1EnEwmAE3KLkQFamyZqre773Ls7gT16hMZGSsFDn+NKhNBDdx7cHd63W7N6BrQAwYgAIk5ZKNy1lFnN2CQgknxnEL8LaB5vyv6nzQyitrMLIgILhRMSQwDwmt+ywVUM2P/XIGTLAd12X0VEztKiI3BjmwDAXQGoWbJvZi6wMVLrUwaBtL5paoseEjHQXUnG2Lr/GgwEbGphR9T9CtuViKw6gcDdn1Z2ltpdiQigdTi6u4K5arspwRIpc7ZUq5hpczMUkWEYduj2oNujcHTbT073rzbmvKnZIiLQ6eFItn9V0/3K9wdt06pbI4fM1O8h6NSaYbeHyMyCGDNaS81p9HrgTifTZmLHiOt47rxX8yiOaOI8WFVl33elwKY+dDDCQKR+uMeC1aLx4Kp6D5zY/Urcd/mjmeWl2fsnICQGYEIKInQEhhXkmVXzqlq9qmkBW8IK6Bw6eRldJ9QJdc6+AFhiEw7EdgonkwLgAeroaGS6mI8FpIBUDTU0MGfiPqdeAs2pQFmsFjOpNc0L5IQ9pGF4doAaoF7AwcErOHJoABI4kEJocAGoQIZsQqU6vt+Ow+XT8+3YnzKJpNT3/eV2m+apBoSIWsyl9inLeLlmlr7vQ6tbdWXuhDP3h0N/OnRPxygppcT9gLlzFqAwMDTzMGHMh2FI6XzsZ5tSb9EV/BZfX14vl7d5Lrfb5aes4hD9USByIAImosyZHZMGYwQ340sXgMSQMwFQ7np6ys/PfnmfkkgLSwcAB9dFl7HqUoIQkg6HIzJ2dJBIGfOpOxJ36dAvUZOwECBELePr29++fvnLcTgkHgE/9P3HlCJ1xD1TZtLUHYauH/JwKAoBWKpdL3OSd6zYJ8H+cDiDG2HKwg4Qc110vM2XN52nqAUDRCQlIQcz03kys1I8GWRHR07S59R1x0SOoCghHXXzPDtAeV7ev75/efv165eXw3BKOQ+nw+OO1To8CBEwqltVh3AWgVBzqrqUepkrMafr5e319dttvlGCuU7vl5dgbUZjWRJnqqXM8/jy8vLy+vXj87nvUidMDCLQ9Xw4Zl/61HVS5wgkyIf+eOiPQx7GfG17bq1a1JCb7RV4AHByW2YFfZ9vsx4Ph0PX97lLIJIAglAhFvUwQMaMSQQAp6lep9syzl02Ipmm2zAc+/6AQRFQi7m7EANYrEGM1sInai3qC5K0TcoxCA0oAt3BZV1TvCnmG8e/FeVgdWre1pV2JlwZIMR1V3MMXxMYtxalVaQFAK07Xd22fRtRVq5rb+Rx93goHrU4kofdH3DzriBoruCB6AyBCE68gUJq+5mZgruHhXmruAE6UqAxEaHfjRX20y2szvZtEccNVLW2Kdtpm6aqeHwvPFi5risvgkM4BISHx+PfQmxp0WsrwLrlrJritdq4IwxcXX9aQZK2Bvj29n2xZoQ7aRQbbwQAAS2IkVolihkJ+cEcDdzdAAEDgYn3/MeHwuXm9e+4p6fjVjKzvbeOCDYH+VhvKDAEPTS4rSr7JDkcPIyRMCDMw3ytVnu4GQJoRDuoIazdFvG9n+2DnHz3N9oiW5gAEE1X6zVgJILVmQm23RQBOZBUjUgBIG1BjRuC/84zc8emsaYaBKEREfLqBMrE3HQSAO4YbbKvPij3qzWr29kAto3Zaq1JZdu5aacYIwJgB+vhHuGo6rVW4dxwFyK12qIQVvdwN/uuEQQb4HoYPAJMLJoact57XX1jrPeUVOR7Swe5120daESsqSs2GwsMImxtDTnnWhfVO55TN2YGQuKU0tYZsK0ljuvvjM3Hi9an2AM8vpvkyNDaZSCI6rxsbNC6hiAigO9BUq04bmYYRlvcgq0y0/YktidC2iQzi2qGuMZzEXCgP7Z67EO6DiM3dc3qo5G7Yws3g5Zavi0p7h5rQuLaiMuAJOIbJfwIHB9R/o7k2n1ZlsIi7VQc0Qqs26FinSfmYWEWVtzUbQkvbovpHHWOOrMtZlWiEBhzJAlGCwwL9EARbb4DjgGkFlp00ZiXuC5uxbgiOyP1iQ6ECQ9hvow0Va4UKlplMZCwQ98FDoxuicyquTqwOVVyCgJCB3GUAHEyJwiU6npb9P02vl2uh+507gZGTCIY4a6uZZnGWuuM05iStAKqu6qVeR4rxqnPklPqcnc8DMdjJEZm6rtIXDESmFtEXbwsKTCnLHmIyGMV7MyTQUIgTHLzJQAdzWqZyzSW7tAFJeIsIl1W1TBXL8DeFlhnEo6+6zwwpySpH3pqbQUsWMo8A7D55XK5XS66LAyBGPWmqZPbeKujRo3EeSAmSbVUqIYBXWIm8jK/vX790g9hvdkPRPOhz4tOFupgDobCmFuLQU/IbWFalmX2m7PwooPFQaPrB0kQ5DpO0/v727evy+0KWhPLMPRwGMQh1GApLY2ihC8OOVAxD8dDzh0OFIpozC43v41Rzqfn0+n09dcv1+v466+/dkOmxLkT0i5AkYwIQQjQl2UOBF95HCKiMJyXpRSaJiOi6+3ydnkHVBJwrLdyFRTmFCmYSEAAtBR7v9jXr+fn0zEJnA5drYvaTBxdL6XvSDBa1x5ySrnrhi4PQ3coukBQVZ+XqmiJICLUKTABh3sZC4xFi95q7z5Ex9RRAgBUqHM1JyRRJAgLx1LmZlTYjsetabHLyiJdlxFXhU3Rtd5ft69SZvUqCcyYpfW2NWetCApwbKhrfZLDAmFvBg9YXftwLVfFPWfQsZn/7qXG77424NXEFq1AgIgITIDNFDGx7DHDm58mbku87yTMvuoRoKwwywMAKZiQiRuFpq2BcfVOCvBNqhyKju4oRAGuulpLP57FV6+gFVbGuk9tB8rHjfmx/nJHPH/nyPCooYFNvLyDqkckEdvr96bGbbfmO7vjd9an4Y3tSmJz9PhOMgMPBFXDYgAUSEEc93GG+y/BzRMUHPbb30hBj8cPCJuUKiKIWKSJjFrvmKREfe5av+pWhTHf/dlbLI/rdpG+gzkPDcXWVMiMj6Btcz4hXrmcTXt3L6CvfqGNIAGgCHV3WsN5aCtLgW2dmRGhuj1KeTcXpV3svN/fHXWtAjLVlpeXsiAzgAMy0Zr5swaP7sakWzeru0YgUogIMbjhToo0I5td5P5bmnPHmua1MlNCmCklBOZGFRN6MFavphi+6wPioQN3L961Ue261j4J2yeNtZcT+D6HV2SwPfiP1wYO2Cq5ja10ACcCEWqtoJ4AmVo3THvj2rJH1oLjd2Foc3yobgyIFLS7DbtbOEUAQzA9TGt3Xz3GmtUFc7/b1KyPHsaWYlTXgwHjdp0A6G7tdlsDkbCS5I0Db0grEJCaCvnhgaKNI28/eDx77Ii5tQEREQY1BEu4lnFrrSkl3kqK2xO0mko8VAPuBB5sRXZCaSxya1Dy0AgOJMcgbyUeA1cIC1f3GlpNF9fF6gRWwouAIQIyCGJDl22hBKQMAAiB0ayGLNSjmC9VuToUE2UJQGGGnFBwGI5KLFATYVbBYrXoqKXPyKmkDiX3npIaLhXcwkMhCCIDCVPSYHS3qgraut3npbxe3zvp4GRD11O4MCYmDyt1tmUGIEaS1CVO7GHTNI5lSWXOQ+ahOwzd02EYhqGaOiEzB1F1L0u4VZ0nn5eOJWPqBiZKIYA9c5cP59NPP/5hGZfpWpZxyZdBAtWKllIpAzZZQIqIUlXDUcJrGFcnRmED0nAtkXIA0vv7qxZ7eXrqhWbJvtS3L7++ff2iyxJaTQtHGp4Oi01fLy+zFVOrVqPWb+9f31/ebCmHfui7oxBe37/91bzMQ50vVq/npxOAz/NY3TRgKWoaQUnYRfosA5EwJK9eVSeLm9O7I6unJEZ+G8eXb2+//PLr9P4uDsehg0+U84COboHWesFwrgtURGfhjjkPqc98OHRRByhL1AJzxcNATx9+PB5fvn17uVxul8vt6ePzx0/PqnPVWbWIQDd0mfMylZwWt+IGneQkhxI0K9Rqi45EdL3daq3dIP3hmLthK3t4XWZfauIcClrNSv3ll1/6lE3L84cTulWdRNi8VvDFdayLqwkBcepy3/eHoT9DQWCMwKVqBdCMBADSkTkFWoBrUQVYzGwGA08JMyQWh0CDsAB3r6VUrdXKtCTG7njo+yEnqbq8v7+aek4HRDb1pm7e1DZeqzZVqVm4maqbrT6BgBDIQIrR1lkINw2XaNQSBUJgK0QGAAW02tSKSNwdIhzsXgNq4SGbp3O0nDS6+xGs9Y5NLUZ0Z0TWqoc7Phje4EOwCaxO67hXoFp9jhCBkFPaFjIyxADDsK353ZqsPUjC3MkIqHp9zLfeNl0XyQ1tIECDgfdq4934m+J7C6XHwhxuQmYM2FRPti+j7ee4Fe32RXxXtd9reS3ZmvABeO2bH1JLxgVbrZsaDmdeMwSJCTGAWuk2AJDQ0RHB29Fzu1THZp77GOirHra/YEWWq6H/SuTEBigBoOu6lDqvBaKGI1Pqu67rut2sMqCRKwUAWs+aiOAakHIvEnmor7k0rf3jbgX+yAHw9uW+3g5BEtwMwDaDCXe1WtyBkQg7FtK6UjvN8QHBI6JZJbUmMtjiLNvNbVWeBxyL+02JCEHynJpWUpAcIlACgQE1wk1bCwJTM4NHTlJrmFkgESKRgESoWViY6VIZkAKYGR3RcYt74g1CNRAfAKU0wy2InDsWYZJAkBBVDYcaJq0ncL3glQnBCAMWWqMkiZOtRsF+39qJZB3tO92yda4w4j0oc8WUBBbGcY9pbxx20/7T5vjfIBcippQgpVWAGbr6q4EpqLm255uRHulGQ3N3CUKRIGwF/r1239SEDbPu9l2NYw5z1xrmGMBITMgIFGthDjBaH9AO6GDz8wuy2PQVgNE6e3GjqNciJgKhOOrmLc8bhvbNrAQ3qw4RyYSZqHlcL8zcdWnNSn/48s0e7H7C3Pw+Gk69L5XgHhpBFs7fe71GGLihW1hVm81mr5PX2XQGNwRnJg5uyzq184wQIxO4Q1ighRmakjuYQ3GUgBbxhYTBAezCQYlSTsSmXZAYolrotWj9+nI7HvWU0in1nKiqACIUBG/plh1TjpST81QLIFiEE1Dg4vp2uXBwmH84nYfukHKfAhf36tEqOYgo3ZA5UYTN46RuqS4fzufEdJbuJN2J8xRY1dmCLCCsBJjqMhafa6QYxLpEKCJ8OPDQ9cdPH3/fWnkvL7e3b2+Xf7vUuXIwBJmDqZpWZhvHcSqLB1LOTjiZ1QCSlPpnQMydcE4e8be//W2aJg4f398yi43zt1//9v7tm05LWaY6L6fD+fnjUwhMOgeDgk1lqWh/++sv316+LmM5HA9Pp7MVmK+X+f36/gKvHz68v718+PCcuhwR07LMpSyzLxXcEKFj6pL0HR+EO1Ayt8XiBtqjCijnCI7rEq+3+uV1ur1NKaKadEc+RE4OEexADmoaoGARkEImoI7kkIEEmSgBsjVr9dzR+VgOhy9vr2NZoiyOLsfDU639Ml0Wp0RyykeG4cClxwUgOcKBzplPwu5uUdyKAyEsRCa9nA/dhy4/CR8PcgSARWutTuIEHI6m8fLlrU+HCCxFicJ86fuMFLe63OpyW+YwG1LHhJK7nLvc9xZq5IFsYWFBSsAokgwqQmAACICVpYKrduQc3lZf5kTEAOSIDFhKXeZZqyXuhuHY5QNhLkWv1+uy1KFfkgwRWJZaSlEPM9c1XCW81b2CQ8EtgglaUA+2zQKxrSZATY4M0TJ8cDdPbz2LFr6R/+2kuoax7HxVQLivJs4tDBEdEYKS7JRY28WYgB7wys7xwOro0P70igB87T0KgO+omrZCMVAiRkQNR7Q7WwZNaQ7tUBtuEQROgeFVveX97buUcEQw32keAAJ38IDAFmzc3BWaJPHvmYl4UDw91uPaYtpUvfs/wfoZYdNUwcbT3H/zIwEGsCHP1iWKDGEI4a1+6rvSu0luYSsNb2XFtWDkiN/1P25/ePVeb9UBs7pv+a3E443235T1OwrbTIakqrVbxkhJuiTdtnc2LK2NGgVoHhW4Be1tujQKsM0DDGCPKXyoz+KOvYS4bvAXtuaMRMzETSXoZq6mquAOLAwhTRaFEWFeHaip4D3MHS02W/y9vrOzejvs2yf5ijAISQGYACXII8gRIjiEwM3d3SoRAbAgEyJJt9IbiEStedud2bxGhFVVZpF752N8182Km4ZQ0VG1EBEaAmQiZIEAVGdAMajmREbGbXzMA72VKcMZ1/4MEmZIzTBi52waeBK+68obIb6yicjr6SvurmBEqKqGd2a3vbLp+WBzCo1obroZcQ0lhKp79fNecfO1y5iZGRAiLNTdMSWn1BipVVhpBg2LhjHw3gOIEE0cEdt0dXcCb9IADEeINSTSAwgSIUMLSwnCwPBAICBGeJA/tm+4lfXWDIY1NbZhIRGJqs1FbDUzyzk3zVwz5WLKjYErpaTEzJiF91n9uAbalhG5P1nrPPdoLsS+dflYKEXaLxIBcNWwOGC0fkYwNa9uNVwBLBCYJYyjSSw9gASEiVNRd8BqXpowCayQGiqjMXoy79A4cHDM2vJnkFFYpFUN0UpVmr3epnfocEChlHKfSZMphjFXhRAkpugQeicgckcNbGQxe8Q4TxyUiJm5P36iTpiyL6WUUjBaR9gqSXF3qEu4x4iXX7+R+lIXKTYYHgyV5SzDkQfJaakxL1cr7EoFeJpBKHJGFEmH7njoui6JZFDryptMXRzTFBNoqPM4KQbPU32/vi1zrdU03AOK46y1RmsvesmdUCKgWHS+3N6ZoE7jL0/P5KDz8vb16+XbaxknrYuZPZ3O5+fTh0/P3ItREPOi9fX29vr127dvX/PQn4/nLmUgmi7j++t7hL98fX1/vXz+8VNKSd0cqB9Ot2u5XooWztJn7gUGhg49AYlqmeelzFYLXqbKifCQXufl15v+27fby68v526gjIdCPOFUtO977g7IaqpLKeMUN18K1crmPXZDpyQmHCmwo2M69Lnr5ZlwOHQf/v2v/2MafZkdLf/w8eMbdHX+iiZeuw67U+cHLAAjEx/4mODQM/YDzOAz6svbpbxWD6Zjf+APPz7/4w8//HDMg5Zyeb9N42garuHa/ED6WmC8GcItd0yJpjrXutzm19fr7W28etVZ5hykFufnj2VRDdNlNIsud5SABDkRMR9Ox3kepVaWdI2rljrOQTApFwAgYTIXN8bsgV7qMs7zOCIIn4YsjbGm2zRP480Uc74k6ZgTU0opmbkb+LbatKXQrdZqy2yIKEytAQxRgNwWbf4A7gYA1KpYzf4b9173QMf2AtsiPtZ6wVZj3E9s7k4oaSOiHkmLnUJ3Vzeo7qZK60F53XFh1QHzuuW4t9OkiJjtPp+ALQAYQa1Q6+MKA9ewqlZd1xDuxEREwIQA5hUcPJQYAkKtgEFOfUJiYkFSVV2LetRYw4jwFntFQiQA5LAizn2htC2dcCvFrI7zQkQiEdH8OjGCEBG41Uv2QoNpkzOTMFFQczcSonC1AujBLEK0U4AABhAeqq6tysOJmUVyZk5E4psQu5FESNQuePUyfUiM2YFX0xsFNAiyygZUlcJls3FOKcFGFLXgbREppYQGOCbOfd/3fY+baWTbAgE2y/XVQiP2fJ5G0MImq6q1tnxhf3CORWztineT+iypUQgiIqnNqHWXqrW2nEFsUCAMwlpLJxM4NosvJaIwI4hVXKc1GiXJqwrbVBNhakc0rQ2dMIAII0oDy6XOVbFLkrueEALcqmJEJ8zQacMJ5pRSuAnz+hSpVUQA6HJmIrOqqss0E6AchADNG+oy05jGxTRS6nJOfd9HRC02TRcDy50ASrTjUAgnyEFRVM1does45b7E6KbW2OSWlgUhkCCAmXPOdbV6R3evxSCW1GWRxMwWgQib++69cQ8RmaQRmYhcylxr9apmYeaIOAzDnVJ1b/0TzJJzTtKparFFtRInXvPjnZmDgqGlmtV5U8htQGd1sFBVb/fuwXu5kXpIayLQOI6lzAyIHowreXvoMyISKEMkkcV8XmbXCmFiHUpCQJZAZKJm1bdlT2F4tFTQhoaxOZ91XWcWy1zcWiAeAGEULbUupQQAp6dhGICw1MpMOXVCiZGaK3+pcztvNCR6vV7dvcW3rCvqWsrHFd4BUhPDbytk+6m5tmxTiEgpCQSozjYzulkBNKYI8mYDEeqrnQ2zuSAGMBMmp+QHKrrM1dXDJIxBGQHRlgIWPoJ5ZqeUu6MMbLhURXUCzpj7IQWCGWKQpHTRK92gO/V5OAz9gSJrxSHRUosvEJSDSK2GQkopqTNDXfQ6jZFBKE1VB7Nf3ieHKB7GGQ+9TtM4jhEht6VUC7NILATIVpa3y2Wx6gbzxDeNa6Esx4/5Q3finK5gzj5hVQ+tNM9A6EvVnDMSg/SAKSrZFOXVl1dDyMJg7vPirqbV3y/T16/fbtNSa9SiFqAWRd2ZWISw91CLggIoNusI4JfX139DYkCby/Xtfby8Y4QQC4FDNVyggwEPJAiG7+Pt28uX9/d3r57O0knqKKsaVLNluY0TES7j8v5+7boOiSV33aBL0Tq5YJ+kF+6YOgAJI0Moi9+u8+tSr3KTRIEYPS8Uv7y8//vr7fI+14H7o9L7suCUinadp7WMIBa41OpVC81VFu3LwTtDWExMjnxgXKYPHz70P/7Dpw8/DvmgFtN8ubyVsgDj4XySZYxpmm4aue86+XjkkWQQpHM+pzRA4sIwib/F7eqLz+ABrLmn86fTT3/86R+f+kFV349vr6+vyzhP05JI0bnvDoy9FrxFHWcNapK25evtf8zzvJRqVZdpFsAOOXcD54QjeSAYxJrhwinx4dR3fUopzfO4Qg1iIJ1KgGinJWlObBFgbg5eFrW5hAEzCjYqHiI0Ihatt+sScWHqcu4Ph8PQH5McEIMDjYNamS7UnSCaUzOGb2r10Jbas64rQBDgGBTuEZK67VTatBVbpl56PJqDw24VYXcuB73ZhoU3Xmbd4Ana99BCGgCMmpDugWUh4gfn/IZhFIGjtcNDy3LjjdAKq2qErXi0htKohRsx8cYaULsuRERMKO0cGY/yIKIGNVoZC4JaNx9EMCdhEW6OmCsIBaCtynCHm9FKuZsFf9szdr2IVQVO1GpTsHV/whpuDWsk4m6acKe4mjVH+0MAEKAN02BYUNswCGU9g/tKYAQCExKhIJE7UHsZcGMEHWFzlHgY6HWvxbXJwVesuB7BmZtWb++KaJsrRJPtQ3NbDfQdaiO1YCndRYNI3OA7hIMHxpZeHE7N0qxNEsAmBEREbXPzwXSD2mYCj9xnuyPIzEKQGA3abLYwAFvBhdfiEEBrzywFUMBetNo5mL3y+Jt21JWE8BZSBLDq9h099jxTZkRkCWrfEziKNF5vpYXWT9P6OQjXUMX9FlBTT6nWRsWJCHNum7S7AWJErXUqBUUyEAYx+NoXAcAB5EEeSCIMCcDd1mimVn/MSXbC+DHIsnGjO+WGuJJwCAmxmZ9RM1Bw10AourQMbNtkke2X9H2/ttdAK4CFNSkCtwWAI6q76ypVDGYEQAoIc3OvtbYjEw+8dp24MrbAS22WZf5d/29rvsFouWdq2uKS1MCDWtJZW9rCwhHCMJTaShKGTo3lB/RAQXBABQgAQSRukbF3PISEgth8UhprTzm3Y4ACUK1zC7rOOcNq3xLrckUrvbfXEC3MvO7BCfvJbc8zW2/Kg4cfUjTpGSO5u4ODe7vzvtmxtg4uCGvKtsBVk8fEDoyR14mLFMgBVBlL2OJcyINBORRVsVSvqksos/lg9WRwKIFkVhQ9MAwITJzE+EhZknq/LNOCfqk1L8YDJzmcBirLV49UXG0ms1Bswgnquq6oLXMtqgxLlm6qOldd2EMoWEASkmAIhQCA3KYykZZih9R1OZP5VKdyLcBkHlA85iDAHHJKp9x1nACd62xWQquOs9Y6EmBK6bR4KMOBMqPNoBPUKW7XBR1cfZ6W220ab/PXl9df//bNHFSjHebDyQg4dZITRZSyLDoG1uBafSKKqc/nwzERh5p5lcx9150PQ9d1iDX1CQUkY+47R+ByNavLPC7zmMZ0TbdFFjA3LZkJT8f2UNV5sXYi4xqXKYBNseuGLvVZRJgJ0MyEsNZ6ubxdXt/IIsJKWE1Ex/w23b5dr/OyUFB+eTWHyzilsubyppQOhwMRLcuyaD3clkupN7XhdANhh/BAR0qcJR8Oh8FV+8MTSbfU99f38f26fPyMSQ65O729T2UpR0tEKdORum4Yhk8fPp4PJ6bBlJbFfvn1Wy1xuY4V/DA89f3pdPz0w+efPx5yRJz7YyJ5hRdwFDKm/Pz8kVAs/DrOpU5zmS6319t4/Xr939tGgh6knoGe+v7UDRHogGYeQuFIkrq+77r0/PGUWNpGO88lgNxdHdwBFcZSKdeeOSVl5RqgU6lqYAFM62E+qjkV1VrrOE9lqUTSdUOrHPQdYzQxEIM051omFPdww1BCacJxQkzhDmG48ijNOyeat9dDXazt5Xus3t3iKB6Q2SZ4csSm516NKiIMNvBFvDo5ojtAaGxGguJNHNVCpVbhUysSOgAykK8WBZsZVQQFGAC4eWi4WzVVra7a1ixpCy5tZoPciljR1NabTQELcSt91mqupu4IrYFoLbuknFvVYItmUifAzQeypShi2D3dku59oPfaDZE7bJ4OD8GOGpJbNYda/smGx2gtw2EzDXrwSPMarRoDFtBs5zffRQA3Vw03YA5kIUltXGPXtHyHV1YE7+4BToi0kQcMWCU2tTs3K4L2kXfgBbai1z31r6FEJGAmlnbDWg2oQW9abbAeWLcVGW9/N7as63tPmX8nO9tkQO2fwq06kTdWE7DdTSHGAAy3WsC5+XuZVlvjz7lpeholpnp3s1wLrMyNE9p9yxrLknNmZm8hP1abD1zDBs2Blxhaw3PsteQApgTRuo9WH7JV3AZ76y4103Nal8FO1ZsdAWJpc6+lSgOImTmih1UtzYTaQwAQgREToDugOoRZYkkADKGGGy/liBYS8VDU3mnme+FvdanYCr7tGOEMaAC8+c5sHFrLsWi++QGISEnCLLSlgEezcHOkbVYzAFlzVIg7RqeGmlTrUtocaKAW3CJQW+KbKgGC4I5KHkvn9xp9g5C75ezmsetWFdzdsTUEQABaeHhAaDjh6stFAa01uZUUAZvcEyycoZ1nYHOGQ0RmRGCR2ljwFuewFgS2QPE9uctMH9nxvdr7ONP2TNV9BbZo9xiRkJiFGJEhrOV1oNu+KhK1ereBaVt4oUWYAToCIwcnJAx0JDRkCG4VHYMcCAXMHSq1hTDMCQ0lUFxFC5QZMCULq+ruBSp0SQTyAHI8lFp9LtV0VO1KIbQeE+Nh6CJnnXSZbSm6oIgIalRisSiBULSCEeE89Muxej6l3HXc9ZhyIFa8LephLi/vN2aek9YujgpKIuyCxjmZQzgTJnAqS5RiLND33SwJgU1jnBatVUsNtbDoUz4eDqfD+dD1oPX92+vby8vLfBty1+cuzOd5fLu8324XB+36LjuvuZ4kkrvUDbnvYk7Fy1wu4/L+Pr6EViRKjDnh0OeeE8GTEJ+Ph/PT6dD1aqOZcU6H02E4HoCIKKZp/Ovf/rosM75vzUTmXmqXObM0e3RkRgx1qGUep6U/PEnOzUODgggDsHoYgofPtUzz+KalRkSJWhKSdgU9d4SHBKbX6yuGm9Vj6kSpzbxpGpi5lLJovY6X63x5vb5I7p0xEFgSJflwGMLrbehvl9ev375dx9ttnCz8l7996YfheDhMc5nmMo5z8UDEGsi5Pz09f/7pp0/Pn3I+mNI8KXbD6218mW+B8PGHz83xj5l/+PSRmc/HXhhyovPxEAFJhpS6aj5NS6njsizvl/cv3359fX19L1/dFQOycIfckfiyzDIu01xrtQgKAiAEyWk4nU5PT6cIG8cRgZlSls4FlSfhMI+5OpUaLCEuGOphEWZe1BVqTIsGIWUDvI7zvCzq7gjm5sticZnKkmTupMu5z5wTM6Yutebu0M0THhiaFBlis1BC4ADFtZQVuK0Fd3ILHSnIMXRty4ZdENVWjNZPHbRVAwkR11zGpnFZ244awdZ8vkKh6Wrh4QW7f7Tt3BCstgtrbWxzIGg72dZHqYbNEBwxApiYMBCBaC2ZejPpoWiOFdyWRUnrxtMa+M23zq49Uq+xsYmIN1Yv1pyTTYi2eZgRBLl78yV4hAuwGXnvW8XaREa4u5rFg9YN0RFlrQai715Ga8jv44azrdcWCiAbckagvdm+JYq0w/p3np97B6pZ9TAiQORECRGD+UG7s0msttBogOba2JZ02OVQa+kQadtdmrouNlC+9yI0fvTOXDRk077ZN6pHVRysuu/1wxLBbg5+H2rg9YblVUOyU1YRgU3KA4iIQmB079bcK56bPBwazn5Eybu0f7eOg9WpHIN4N35tZNFaMd96QhERWsXfFXZNHjJgIFrzH7FGjpJ0XW+b7bo7tOonIja3P2q5WqtpLTfT1ju4j4YSAG1tVEZJqY2hw+OW/ygD2Pf4/ZFH3qIpaE04biQfBrRjy+bG54iKQKtrKALi6su6e2oQrzfF1/Athq18HBFAdwPhJgtTbSo+abB1L1ubmVUNIt9h4t4j3NaHgMbLrpDRZGfCELGV93lTT7ZWFwoPQjczVw/yUEJhXMEorYODEGYB4dA+nwABcTtKbZOHGi4vJXuTjTeZICVEpK1LNyJcbSy1za5tYnsE7P0Bj6m42xC1tEYICt6d65sSj9qBlBFhl06usZVaaTXWQ0AMYq8UQES8ZfSCAQRQO00HsKO0ni7VqI3eI0iZPAjQSl0QE5N3wgVsLtVUa43+IN1R0sDQHyKD1cVDbkuN5TpDL8HHw0egSDr79LrUsJbnGAhAJJlzhrFMVQnrodrscOq64/nUDUfKnbq7QZlq8SJfXkYhPnZaO5+l5pSOuc85dyHFvCqSHCziciv55WbGNpe3t8vLy+uv375dLpfpeptuo84L1AhzAh66buh6cru+X26XN8j5+fn804+/ezqdh0MeJ/z46fjzn37s+wNTx5SImEiky9IPKSWb01yncXr/9va3v/4N3i+BGH2Xhz49Hw8fn56Ph+E49Ofz8Th0IjLN7+M4GsTxfHx6fmbmgPp+O/Qdt3NiFjazcRrrMh36gajrc4qiHhWRUk699A6GZEOfPnw8fnz+6FWXeVKd3aIaQ8wpWdfToUvMbHL0zNphMFk9Le/j7eVNxxm5Pz/nf/rxZxHRNam6Wd6Zg6qWy9v4dv1VzWa16kbCIvJ8fvr49Pzp6cxEb9e3Wuttnt7GSzDNWj9++IAe397e32/XbuoAkb0bhi66LIeDnE8pH1GDpOJ7joHlkFOX+3OHEkWnZbkhfu57YTmYPgvZ8nxklJwO19us6iIcaAZadcopMSEjRRCYB4aTVy1mNnq4WrXKnJglgAAo5/50fB6Og5XK/J5SdzwiAJdSxttcy1yXubhxMaLgjOgYjupQFMZ5sShp0W6oJBkw3aZ5dZgi9Oq1zOM4AlDKw6E/Ph2f6PjU9pG2a5qGG5iZEzO2JrBmqSDRSC9kgM1cEcJW/x6g1RXMMQKo1ejcdwfSVibby2sIFCstQYCOq7/Xpn9apfIYEAiALe52bRdri6kQQABha6M08BbCssrx4+GrtW/iigFacTMYGdAwgGjN8KY1qAdp5ZmsSX1X9RJK4/NW0xEPYIAgpPVEq+HouDun12pNBrQtjtr8RXeprK8O9Xel9lYouLeGxcb13Hmdh6+dB4K1hrRH9uLDmEdAOAYAqDubQa2IEEBAQNHO2etGi+24u5lP/IYkUDc1dTcmAPDMmb6P5W4Yom2BOed2rC+lbljZqclTAu9OCu1DNTe5zZ6e1o8Mm6HS3WkWNtOB2PoZ6SGu+wH/8SM3swVkrQiy/YY9/tnVwmHzZ8XWwOgQIuRO7NDcuz1sx7u7xH6HHTv82m8uIgcaECIIElK7WsAwhYAI1NVStR0f7qlTkVJEaCisZgNERE6CAE35117JxCnlnBW3bsqmq8MWwIBCq2cYmBkQBhkisWDChNREbYi4Nr0SMUAkT8EBQc2YYJtOq/8xrhmsa8XTDShBuws7cFkfOQ9s7n8ORIKoO426s907alyJqz3fph2CiFrUEmLrrWNGAQDXqlZVq6rmlHbc3TyJHVdXZNiyYttasfKmcZ9OW7Ut7KFjeoeV7QS5ikQpglqN2DVamwUC1WwZAIl8va3N+TDCPRBdQxG50ehE0RrGEYA59X1ffY0lqLU+PkTrIHmY2VKKmbXm321svfU8tuV6H/b1QzH4dvhsi2orwYt05LbGWkRL4SBEdkA1qNU43Bqf14KFEAEEsFW73WDtP9JqFgGATGLI6KZVq7k6M0rXZY8OEYsVDkWWnHpQKDFP8+LLYs4gQ3RCXerk6Jp90Xn2Ok0D+EEO/Yk5cRYSm0HnaststYSllFJOwwGWBYrepqqzWvEIdwJOqctdZwF2dC+1kEiZ3BjJ3Moyk3aSyhCHHhbDUutUrWrUgPI+OryPS8z19vXl5S+//O3Xb18vt+s8TstttHGp07yqtlm6rhMCLUup89OH56HrCfB8PJyPfWbqDt0f/vCH4/kppU5E1q1NRHICpij92/Xl9e3r15d0fsbXt2GeZy31+Xj8cH764dOnTx+ePz6fj6dehNz15dsSUB3o+fn8ww+fgGKaL4chHU/D8N7lvhuGrtY6jVbrNHo95A+5Z6CkqkSc++50fpKU3m+3lPD8NPzw43Ot9eXropdiYAacO/jwsT/0H3pJh8NBhgxDXhgq+DzPt6+vv5K+Q/n4Yfinf/79//k//G/H4zEirpf3cRyv1+vlcpmWcZyn6zi+Xy/X2/U2jWNdTCMIhbtD3388PT2fnyBCw83hehvn//HnpZbPnz/3fb5er+M45iEDQIrzYtpfb4frJXJ/OIADz6pXK5PVSiYSgTEtt9fXv/36t9Mv5/Thw4c+p9zx84ej2YGAmXLO2R1PSx0O3XDocicAlpL0V9dSa11MS9RayuLzDOaMFAiUqJUIPRBJUu4hBBGEu0MPQxdDPlfz+TRfr++363uZRg9SRzd0RbW4LWWal3FeqhoXzeqcOiJBSkjISbxqDSta61LMLGXdK0QAILhKc5rBFXqAB/Hq1U7N9M8ZwWJ1NVxFM/f9JpoNqXmY20q47P6fuBoTtHPzd07TG/m/lc+ckHlvwIZYl+HVmcpq4NpA9Cjg2Hbc9Sce6t7OzOamvnH1gXuAj1kgRFDzWcDNxwpp9SvzIAomImKU5iUdq1vGukQBEdKqB8di0fADgLlrrbUUdbVdZIYeTcmx1s5WKmXtInxcQzd+CfY9vi2ta1g1rKHgGz+0jmH7BevhG2AjA9ABt2sACw9VoCDMsIZFwk4Y+c5r4t72uEKZXUGyIteg1Xdn6xnc61BN3bUiRY9GaYgIbdDGIzZ5PgEANEPd3VMDebU1BX9goe7OZ2vXG0Aj6nZCbgde7S/vP98x2T1zMKCZfycWJS5QtDbS5cG1JEBEdp0QMzf/lZblt5eAH6s/+w76QN01VZ01igwb40Wrc32zm/UG9wE8XFiaaH2d3BtgbV1d7exkDuRATM3RfpPQ7fjel2VhSiKB0grTBgAekDoHQkFGJnbSWD8co0Nzw2pECoo7uAbyhvC22u7OOa2DScB4t5Jqj89a7KaNMd0K/VugF64BSQiPD+/OWYZjM1tfa+armQgCoAi7+zrLbUdV33f4UjQdPQRFrD3C91fGtmrt/CJuKPnhV23lPwRvylQlImiaMfTw1o0JrkyAwa0ziQIpPFZjlbBANKsovD5Zrh6AuMZmD+G1LhHRZF669YU4N2XCvQ+ptejtVmetOhmruu6+9K3Tj6h98jv3jC0AiwMqQoBHoBARMoHkQKpBZmAGm3crIYkGAoaHA2LzpfCI4oYYrQeXIdQqNCtWD2JK0gX1EQJBAcCSiYiSMCUA0FIDCnamkg/pgJKI2K06VQdlj4yxuCZAEKLc4cxVwQKAhKXjnJy6bvGyhCsakAK4kWt4NWdgkkF6y4cULAkHCNcKUL2Gzljmsd66BZkscKplXMriSjm/vN5S103l9uXb61/+9tcvry+lFKsaVWOp0/u1l9zngftkBkSUj8eDnD9/+PzDp48fPnw6H8/EcRi68/PpT3/608ePH5vIoFpYODJhEmDywsOb90ftD7Ub7Pk1XS6X69t7L7nvOCfMgjmBsIXXUqYW4wboTMDcMhOs1sIQp8Pw9PnDp8+f3T0n/Pc63S4XGPNPP/10OBwapU+S++EwzgsRBhiAp8QBFcAD19Jq13Uf/MlrOaTu+XzMh4GO/Yj1VuZxHMdjhzphLJ9+PP/pH3/6z//H//j09MTMt+v77Xa73a6Xy2Uuy5dvv/7t65d//ytgUu6MRpuW2czmRa/vry9fv/z44YePHz/2w/H5oznx2+X9l68vt2X5+PEDIoaQYszLwjNN81w8Lsty/vJyOp1ZDrXoly/f/vrty9vlEuHMWJYbmlpZ2Jc//Pz7Hz5+6LJ0h46BrbobDocOQQ4DHQ6H8/n89HR6Ph1f3l+/vZ5ut8vl+jZdL/P1OlUriG7uBIEQFlAZebXRMouqIZyOx+ehM0SsVSFoqWU8f3x9+Xp5fTUtzOxGy+zLXC/zuJRaSrXAYANVCkb03DEik7AEKDvRagY4LSM080ZzLbWTztWqLkIcYO4U27ZKQIZBSBG6Lp2tZgBtad6WM2wKgQaCfD1xbsAr1pX9O45kQ1rhD96qbSFdXRta5kxrfUe0Lfl4p38aNUJErRrayCpDNI8A9aDWWqVafK0NArfYu5VNsd0Vdvtz9kjjQ9PFQCs9hoNbAwGMRKsdNj5EMGs4BTRLyQ2OYiubNj3MHV1BtNN9QED7b2NCYrPEoJUjaDUm3JzPNvZrTStaq2Ntm9+dDrAZ0zZB0oqc1ppLOCJ5aAQGhTlug7DbgnwXeLwNcrNwZIBAMua7jwMxENNWoLyX5PbyXFvTc0KkZk9232oBvbXL3XcXQiKBaK5de0UV9yjlHeTt3/gWWrdDNGZ+7AZYe2k9MFo9mZi5hecggUe18AiQbTNDFnJvwKv9Bk5ioX9vhrlf4W+Gq22Fjh6EAMJMQAIArRhsK5+wwlmDoIBF69oTyry3AAcio+w6wh1h7IO/JTpsaB7RNIBbXwJQU/0FBhh5ZQDkllSIEbwF1K89ueCAQZsVPhLdH7R9yq6X0T51GDr//VQBsH0uxRpGvjeC+E7g3peF78042l/fG0eIWm+DWXhsCtG1mLu/xd3BPBwMdrewe2304dq+O6ptyw59/2+N3AVDZqi1OkJCJuQgJKLVOrjR8c1xmKQF9UB4SwPZXhAAgNROAFpXtMfAlHN+MEFbMVatVUhaSmabzLvRxv6p93Jqs6R+lDmC8OPJs6Gu1ihDYEGEIe3dIllUoz9hugKKAmtADQRDiuilgyjhEFHcQsPUwiEKGDMLZRIBBA1BiLDKIODCKIRiKNYM0NyLYyC1rAIzcpvL5E4KQmnomJFTl3qxUmzyaakx3sRS6sQhFEMtjDCljJyQMmGR1OUh0Cj3h5R7phxOZXGLmhMzpD4fBbIQUBhUM3VHc3cfaWLmqoqSxrK8Xa+TFumH3HVB7FB//fby73/75dv7m5kJswSS+rE/PR2fPjw9H49nEZJEw7E7HA6n3H/8+Pzp6ZxzEoo+yfl0HPrueBiksei1VgcQosxBqOi5i8MxqXVLze4DRgWtFCQM4FXrNC8UIGrzNN108evt3QNTn7suB8Lb+8vb28s43foh//73v//5H/6IiE/n4XZ5ffn2AvPcdd2PP/54OJwioloE8OU2It7MbFmmuUymqloBXVI6fTifDgchBq2D5NPxmA8dHbrOC823lGQgnt7fl9vtcDqcnk5/+Pl3z8/PzDxNp1pKKWVZpqL1v/33/94dkkOlDP2Yh6m7jrdSitzkau9uDuiHw+FwOHX9gVO3VJ3LXF7fpcvPz09dSkCh01hrGRe/zsuX17fc//twOOV0VPXrZfy3f/v38XYxVwRniDqNyzxqXW7jdf6Hnz8+n8/HQ2Kus5dZkwySWEQOwn3fn8/H5+fz7263L9/6by9ffvmF3wk7og55jJhj2vcMQwiOTrVVqQbsu65LwAhATotWRLbwaZrasrWMY1igk6qO4zwus4Y7BImQZGQBQo8YxzGljjntrjLt6a223AknA8sVkd1UMgKsgYb7foyIDdk0767H8tIjkGpkUxNBN82Hx74I4t31fn3jxqA8BOY0WfG+2UeEu3GrauGKPe5lQYBmH0qASLGqb+8n19UIwFf9GCAGkQgxEQS2/q+t+3q/MEQAbwTbvhPsn46IUjAIOQbRWmRZNUO0re/esJEQOfJdZXJ30tqKgL8Zw0ecuvJVOxkFdxXLPp64eUju+T+A3kS/CBjmwNRKHYAe6L7age36fmgu7R4aYLHGRN+5DUeAXeK9+o4yoLUY6X0D25f+cIy9DrUBpn2rgNQ6JdsNil2admf43Nugf0f7PeQB3BWB9x562vetx7/4yATsJIeFEa1bGmzd+Dvm2+HUDl5X54AIIBJJZvU3UrbYMqQfp8euObPVU9QBIBp9i01w2EARMBEhA2Lj42utIpIQ2n4JW8Kit6lIAhsVghAGseWfNmrM9rm6gdFWoEfkZjxBLc2CcOXOGEIBdhMOcMXVHI+3ObvDqS2R/bvp990XIgZoC5Zu93enK237grWsGa2wWYvtIOkRuj1OiccDUCmlCdMa3Az3R1C4Zt4/TB76Ddjair7e8HpQKzzSQ5c0Ea85RL6OBRqFIqEgb43SiE0K2ZSaCBu5ixxsEY7hcE/0WKPoA3yruUvqOxEh2oK9txmoqsoqtDctWq3a/FCIqPXu7JHYO9xfTxqUYOUd7x957XRpESTRQB8FJ+ciIpAPJH2wuFENUgdw5wDKgu4BEU7qqh5qoeHOCEgsxM1BmhwhQViSBJjAqWVWhqOrlVIwhACYU85drVKMrLrP1WQcCPq+70Qy52WO8XIrqnMsqeSsWUHnUkopJsQDNnNBCwiglHshORwOeTgAkBpGUTQkTJ10fcfOJq+36mpaSpkXL9V19X9zhLkst3mca3HGfOj6w8A5Xeq4TPN0vdXrCAAqSDkfzsfPHz//8fOPv3v+dMgdIwFhGvrD6Th0IELEvtRlcu1yM7lZlnIBTCJiUYoWUEjGyJSRzqlAsug4nk4d46nPP3581rrUpZi+36Zb0NDN3BIqLuNtnmcAGG/4Knq53f71f/9vf/3lzwHLz3/40z/+8Xf/4V/+l6E/ff3h5+TD9O7jeLVb+cN/+ulP//jP3WGo4b/8+quDIdo8z1relukAAGYX05kpJ749n4eUMMux7/vc567rajjWIIdRY8w+DJFSDbvq/PLly7+ez/90Pp6fDof3lzKD/+7Dx1+//frhOb2+YtdFP0Tq+080XKfh9fU1ySVRp6Un+VT0cJTj+VMHPY42vr6/uTslOX/48Hx+mqaqc37z17fLbX6fm+MkYUqpY+Db5bqME4S9vVcrl8RxG/k6/m1avo7zl2Kv//SP/6j2IRxul3G8zH137NLhdHx6eno+n885nz2eVfXr5fjnP/9rx/QL41f3LuXD+fT+8vb29lbrsiwTlgUFatFaFIIHODzlZ+gjEJZlWq5XljxIJ3A4/PThuf/py5cvb9e3qYzX+faudbaeiDgxMplHmYwoUFhVDVDCiYQ67rGrVqyYCAXUUkeIGlZKHTILIyOo0MBdJ5ghyIMROMCwbQEttq95QIC465537Q8YJSI0Cq4yB97OahgRjJuWeRXBAxFJYo+OwDEal75KOhuksKrgwUm4UVoKioZpZUTC13DaCHMwJETeJDFruZMCQkkTsSNYKDgxRsfkwQQI6LTuhoGBhEREvv7EwAE0gIQAc2IlIjPl1rrCiOgQZsoywJ35AwgKZ13tKta4j2YQr4Dm0TdeZ42FaWzgiiSISHgPq2udcFBd21ip+hZIfHc3XSVhjszrXsCpxf9gECCSBUSY12DGxnE0DJqoh5BakASJNqsQIACQQFUQJMMAMCBMKCmYWroWxlYMZUBGJ0IEhlrMQyOiWTA0s1xEDO9a0VgEAB3RWqejA6p5VQMHERYhAK86rVKbBwdUItppLdz8S9tW5O61FmZGBHdYVUJE7iucsnBa7eMb0wgA3pQtrWTZgB8RznNp8LeUQkSciBkdv/u7j/O8TUIi2uU4GxfV9FuNmCG3WDQIwiyImAkiwNWJkYhS4ogDs5iFhlZTA/QV8jY5D0QEkws4EURUYm4+/rUuK/4GMC2r2VgCYYTwZvArkCmOgkmSgEA1LVoxHIAQAIzChJkDwrwAwdoeYaQViJApEYY12gmaJM8tCliIowcygkhxAzNs3XwrgolQ1Von31J3kmSRZkBz2ZOgNvJGGnpS1WIVGJg5JTb1eTEEjs20mYTZpfn5qrXMTqYWqqMlApkEwxAR2uFtTdFBC8BmCWu1RTlVs8UKEeXA1jhCpGsmj9GsS44O3QMypyQMzZKGIBAd2BzMXQPzWm4kAw0i8cAIdGNMQihEwGTzsiBazpL6DMCqyd1zzohUippNjJxzBsRGw22edLAZkgEippS2jEtvVJjkXrqMSRAx1FBRUmIXqIjCTWvQ/MqquZsHCKSjT9c8ZKmH2UclLC37iFLlBILqXBHNCbSwN0eVnCX12DNLBScEQmcJDwZkxkQoSBwI4UudSngGCIHoezjw87zwpd6uU3GhG07nSD8czgyJM2uv18sYN5OlDlqkY2Sh3DtEuIy3SkTLUpdJEXIanuj4yfsPcXz2QJn9SHgWzinxueMuy5//7X9YVV1qmZeGvVQVzCmxus21FCsydGf/EOhsiTtKmQ+Hvh2tkOl8Pn/++PFf/vin33/64fP5OSOvhEDiru8ZF3cvZem6dD4dDsduGDoAX5YFwM20mpouDhAhRIQtzxxw6Puu63789DkiPHS83q6Xt/eX12UavWoNb3e3qSZFpM+dmV0u15eXl5cvX7vj6ccff/wP//K//od/+Q+n09P4x9LJMF3H/+f/6//RdsGffvrp5z/9gxN9/Mu/EfOyLJfLpe+GPcq+BSOM41hr7bqu7/vj8Zi6lHPmhvuZmwHd4XDouu56vf7X//pff/70mSV+/+PvPj5/cNfr9X1eruN402WuugBYyiLNBY4gwkVEWG/vCKBqxaN2mU7QPZ0PpcxLLSLc99356dR15u7OVrSWUkrV6hpebrdb8260eYFwJmdUE278yLfXr8zYdQnCXp8/UtD1/Xq9FC/R5+PHD59///vf//TTTx8/fjyehpwFspZpvL6/fv3CKaXjcHB3t6hmdvVlmdoK3rqTStG+H/q+d4hqBZER2SymOgt3nNPx6KVoMV/MgJecO5AesTUDoblHKYtWW2bJSRCQBBFNbdHFIJi5pZj5Krk2tcLQ3p7//kQLq8jjoXtxK3l4+GP5YzMq+u35ddux7uWS74kz6HJvZq0NDQAwINpquS70tFNHzRe91iX2MOc1F3ItDP39vrgfbffSW8vSBScmaP7iuzi9lWL2bJl7RWNDSETE6+a+cm6tt2ktbz0Eeojkpr/ZD6k7lbV/cGs2ChFuKnsp7S5p3gb8IRFy/3Q7NNmJwP3cz5ud2Pe8GpoZBK3nyO2Lud2RO5h7ZNra7tzqnhDYcgt81Z2sKqLmO9/qI00HxpsnfsMrd0aK7kPa7vVq/Ab/k8+FDwKyR2pwp6yaQPuxLfGx9vebjoTHeg09+Nrvv38tJuLW8vn96D2SjvtQ78XN9nUHXrT2zbVpvyYqbdqclRcjWJtNkFK6s4O7U0C7pP31AO1UAPuz8x3hFxFhwzC0x9DdiVovaXN634YuovmRNlV4nWsAxsbhNYf3fWQeP/s+q3fVVzzkLiBZA17N3f0haye2D6XQxGnf+c/Zvibsc2x728pbP95ueKAn4X/2sD9eauPp7/NiK2o/0tiPcwPxcXVCXqMONl/WlXrEJn2ALZDjcWY2kISr0H2/JNzWqJW0hPtahG1OMjAA1FpbQcOqt9hs3wIwWGR1Nl5li/cHYZ1y68O1ZpVSQMCqe4vwcAszN3OzFppKklM/dPVgfnRbwgrUIKjV1+mjBuawNkUGJgGRDMwAFKt/LyJyki4ws8gqF/UoVc1jriUlkS6nlFgEUGco6DpNCwNkWYqUzNjOO0Go6uGBNTKyNWcSs3Ecndjdp2mZF80JDkcQyX3f55wHTn2GtDpLS+66fBjkX//1X93d1XxpEXrVqoZVFCZmRw/GdMj9IIdjj8ww0GHIp2Nf66dSiqqez+ffff7h97//3e8//fDhcAKtrqZuCgFkzJCCuj49P58/ffxwPA4iRAzR0uYM2rkTIlQVEdkJHXPO/WHo+z53HQsS4Hi7vH799kv+y+u3r7XWLTI23A9D7s7n58P5dL3c6rxoqe7wfP7wL//0L//pP/6n3//0x0N/oh9lkH66TRH+8v728vKqas/PH87pKaVumeu3b99yziJyOp3M7NJ11+u1JTeru4j0h2EYek4iIgaRUorpWspcSukknU6n928vf/3rX/9v//f/a9iyXK+3H34I0/fXt0CYyvTt5dfr9a3qxGiGAOhdwjglkae6XOex6jRNt9dyom445I4+Ph/H8aq2EEZOeD4PcCZmpG7VII/jOBdX9Wmc67yAN+8qUDczw0zE6BDLMr1evqa/otr84elbonS7Lbf36fXru3D38fmHl9ev75fX3/3udz/99OPnj5/Q12r9NE2llGEYOuIGLsd5au51pRpMy/U6TtMEQSwdgam5BVpQnet4nbJ04WAW6mgeZTFTZOlPXQ+0Tv7qhtNUx1tRw01gUc1KqWVZVBWYyICZEicmRtqBgux7lTcXoXVZ+S0Wu+9z96KQAjSZyLrnbQucNX3VtlVsTUZr0PUmhpBomqT17bCCrW15tQje/qruvUuryULreNrW6G3rjbv6B6ztXYTByM0nDKkFAjd447u0a62g8X79294YYACEgcwUCMTMHBs+e9D92F7PauuqhflDICOAILI2Z068L6De+EO96zkQ0cFx9fp5FHXdN4nHLeQRfEQENOO03UrJW72obW6wXe3d+uuxTnFX3YUHIND6nnUjc7fQh8zMld6IrfW0FT1ha0IEAN/jBDag00rA9/op3Nvp99lCmz0YbG3zj593v787PeZrR5vH1iv3+LVrg/y7kug62rsUybcR3hEVMD3+8n2SPGKRdlzcX8abYcFKsewvXuu/TASEzegJATGnrkV37qhhv6uIGIRbRmHQ6hhl36GHh8im9hdZmYSZWYICmAMgzANBGRFovRXo7MEeWwwAAJRaHwHu4+kF6Hug00yzWoMnmxuZeXgwSXu2AEJElqUhWsNV4N38X/acx/1Bc2wWfQhr5bpNp23YG8b07x6uB7eLh6DM785L+8+h9Qve0yfbRH2cIfuLiUgkmkLDQ60GmAIxJ8mZRcjtLm/f8M16onvU9Lt70yRsM6EtgCCyonRmzqlPzO3I3SrOBIi8tli2kU85A0DLF18ftIcn3d0xDGDNoNhPF+5OQAHoBmrm1t7mEcApJTgNEEFhpmGLgluwN9/aYA8DZOIVQksiSYmJWxtBOBFmIULKQBkxAbagIY8Ic3XfWrbb+VQERaiKWTG1aS43mlAg1IlTHg7JggWYHDkYIWFaTOepKIY7zEs1cxF0IGLm1OXh8OFw7g31NhEgUxr64+F4kuv0TtH61IPIMQECGFGEdn1O/YGzPH3++ONPnw/HYzGFAbOk43AQkbos1+uViM7HnJKLGFIFMmIXhjB3CIx6PJ0+f/70w4+fns9PXZeIgcIBgxI1Wr5o3dUPEpy6zIlzztJlTiKERJQJodY6fRCAWmvAmuv+sRvOp+ff/f4nZv7zn//ty5dvT8enj+fxn//0z//LP/2vP/3whyydewyUf/rhd//5P/4fxnn6L//lv3z99dv/+N///Ic//unw87nruq7rzufnCMxZPn/+7O7LNI7jqKp1be5vxnqA7hprC1IpZR7HMlcR+fD0vNzG128v//2//n9Ph2Gexn//t38V5mYncR1vb7fr2/vXMo/F6qLVIUhWn9WURWiuoGZg2mGwIHeZhVoBffKokjDn7D4YmXsV4Wk+LUsd53LJ+TXedCrAwAgiKJ0Mx/50PIgQQY3w99srkmstXe510XnRX7/96gW+fPny7duXv/zlzz/++OM//MPPP//hD5Lp/f31+n6Zpmme55RSkuxbwrVHAEKtVsrYdbfrdXy/3k5Pz6nLzM6cw+fxdvvy9bXM1TTAUd0ut9v7da6mIpJy7rpuGAZObGaX8YZvgszTNM2lqIO7l1J1KWsDC6OIpMTCQigsQpmSJBHeFZqPi9ff7+774ttWxFWOE3viXoDvfdrRENJ+9tx+4d7kSKWUbQ2N1cinoQEzXwkY23FbbMeJls4BtOYMNksKd48tCc5U3WpEUEIEb5fBrcSCBOzN5xUBHzo016ZFiOZ6EVuSTaNC1oPlatIDuFMFbcTMqDkY7Xtw8w5owKs14hERrFElm6JoNV6n6o7bZrb38QOuzeHxkJsLD4Tcvg/tt0xVV0tsikDQcHeNaCDjO5dR3P4HN/Hcvv2YmYMD0m5uuoEx3yR/O48Ce9EtmpvmCmg23L/yIrEqT7baU9ueiVCYG8u+Dhq0TkNkIeJm1eS2uaTez/pb9tzes7bP1fap9k+6Y7jYEo3aiwn3w0ZsRfCVG0spSWLmNd1yIxts31NXKdK2re4s2m/UYACgtLYxIgsyMG33llo8BHISM6PNGJbXJQ6q1/aZDJuDf3MNWGWYd/6JyGztanyEg6s7hvvQJ1BjBGAPavcFBElEwCPWzlNGIF9rxJshzEMS9i7TXKcHrEVVAHJrjRTu5piazRsBWvLEQlDa3NjXENttPhA9Iq1oiaJ51hFDAEW0HNnvBtzMcOXtIJqL1N8dObY5cLf7X++dqqk2SqJhkMenYP9cqtqizERIWz3XqwdSkkx3oVvz12itALjJYX9DgLUb0XVdbUl+25/YYW5z9upSAoAyl9Y2myVJlv10sR8wcs5bDd33Rpb2nKITsxMlYcks+1oBD0kDZmZu6BDhREky9YQWWsq4lMlVwWZXCxALCxQWYgAhZKTEICLAbBEODpEIQTh5IAZDEDg4Rju9AwB13FbmorW6azN0R5TUGVCterlNJtFR5q47HoaORYQ9SinTYhNrRMyllAqt4pySNEkAmHlztH96ejoE3xx0KUSUU8o5yw8/fCKilnIS7lHU1sNZOT0dh9MxH/L544fnHz4Q83UaaeCc84en01Njhi5vZV7Qg1A9FlNkxJSZRHKwQwjC+an/8PH0/Hx8Ovdd1zGTELQZ49g22jLPzZ/TSSWllPqOZO3IRRBhAg8KypIOh0M7rY/j1aoeD+eff/75H/7hT+6uNb59ff/rX/+W8+sPn374dP547M/MSas5wbE7/umP//j17f3f//LrX/7yl//+3/710+cfRXINv92mWo2Zz+fnz59+CPDpNr6/v7ddM5Ca9d84jkQkXTKz2+1WpqLVAaBL+Xw+X15eX+3r9Xr987/+j8vb67Efhr5vlsXjfDOIsswRrqrzMqpZ13WpywCcCPtBGHHouuMxHTom4etNEQK82rI0jfxh6I7HVDT500ES1WJL1fE2Mb+plnctiMQEkihl7LrcH7qhy0UvZjbP14gaYafDGUECoeo0TuXt7e3l5eUvf/nz09PTv//15z/84Q+fPjyrlde3b7XWeZ6XUnLuzOI2jVPVFnLhbqWUnG5vr5fXt8vHTyV3Q+qOB5B5sneatMLL63W6zctcLHzRuiwLEKSeofjxNDx//uF0OgXY69sbCQPxUrWazeVmZmGujSsyH1ICXIP6krAwiUj7HxSG71l0dycM2Na732x+jwT+XjBqvpBN4dt4r4i9b843yPXQTO77QfauUG7/uqHzJn73FqDh1nbHO/JoiODxROurdXjTa1krKSLFVvLyIIKwiKZdgXt4UAQBOTZLstV6LJAwoGw1h8eL3y/4sd+tHbJXmBlo8F1lhB4aHXYKcA1hQTILAPWm+G0uR3j3cLp7MTxAje/4j3XvR2wc1b3ksvlBYOzbM9418gwtec7uw7jhquaVsXaWbdQd3KHbw1BsxOP9ZY1CIL7/uYfLfsAojMSNV/vt2O6WEL9BmbvO3R5ojIc/sY5Y6z/dL6adLdvlJYHdlHVFGHR3ghVhaOaVD4Cj4ZIdaO51xv1SG1KKgJbQvG6BAs3Dok2+DR6uPEmspOnqmalu1HKVjWJLgzJsmj+PiHZsZkYAIUTV0jpF1jgs10bwpZTaag8hzMJmmDNLEKemu2YkYA4iXl3vIa1HKd/PSO6+hSLgbunpvp4m3GUb7XbU2erpFOh3VvuBTFK32A1U2z7dKqGNVd3wChBQ3J2VH8vW1ihWRORNFhkPX5ti7/vjYoMvmwfpIzLeias2MXZJOxFh6AZZACGI2T25OwQB3lc/bOcEahnhSLTLLleiN6WUfXWq22dOA177185qY6xGp40W2yftI4n7iPLbwDYb5HVCPhSOzTxI0AyIwEijRsBqLIKeup7yQLnHpVPX6ot7NPEGtbAOaoVjB0qI5G6u7CbhANGiwPLqPuKOxKnFYXXNcdoX9ZYKb81cDAE8arFJCwpFpsOhz31/Pp66zB7len2zq41lWWNwIZBz7joIMcdpLnPRAGJOXTcMmGq3hCORhCMYyP/p//KfGSkxJ6A1s6Kqm9W6DMchD30a0nA+dadezW7jZYxFmIcjHY5MIOfDp2VZyrxIBPikbixJUieZEJFSOg6Hvu8lhUcFtK6XLnW4YvyWASYhqOxaA0wxxI1sibKog4kID5QlCQoBA1BYqJqq1uJao1ZtVERK6ePzp9PpiTAJJC1RS2BwB0NKBkCC6ePTxz/9/Kd//se/fvny7b/+f/77NJW/fXkZjodfv3359W9fONHz80fmFGHMknPf94fj+XA8nHPfWeA0LmoFiMxsnMfb7fb/4+vPliRJsixB7C7MLCKqaosv4RGRWdXVUz3zgn4YEEAAgQj4/w9omgd0d2UtmRkZi7vbopuIMN8FD1dETD2qBk5BER7m5qaqsvHhc88yz7OpAqVd33/69D0avHz+6ae//u30sv+7P/yxpI6ROKXd7nAerzkVcc+mWbvSUddlZj6fDcn7koecDsPu8TAcdsXdC1OfOAO1eTq9vB6fn4aSKafEkAvtodgA7nTd9WoyXc/XM7jaUojsOuvYN1rzg6qImAsnZMau21NK+7u9G55kPJ9Pr68vzy9Pp/Px8+df3z3eM7PI9PT69PnLl1prGYah31/mWqWZgoKpaq3tdDp//fr09evTu48f+/1+t9tx6kRJGkkjMTZ9Pp3m8zjO81ylOWGZRbt0eLCU+sP9Q0qJcpnqfB2n3X5/vV6neZbIgFkDrQbOzJxL6rvS5b5LXeZSOGXOidO6ri9u/zAwo4drW6PG9faBePtrXfwAwlsN2xTP3DAEL/F8XULfiZlW6gmM3grIYuVGWoqKwKIUMOALOiw7TjWL2Ce8eezG415XVBAR8hhrPwEQAQM7qEmAhJiTcqAPQKDoPAJ3JFz4L19lZCscoQWyIJFQgnDur2RJMBZza4sAPjg/YkMQt13q17W8bfndiLgUSAfV5mt3YWCyVVCPN0qjzeW0rUwr+4K4wZcQtC3uNo2Qs5wp3TBky+bYUDXGO2sDMYDCauU3g+U7Pbb3t9ToLQkXTQEAEZ5uqooERMsuP9CwrybKf38JwZrgv0FM+zapa0NRtzAr4B0iBnMGADG4u12ugu6Kprz4Tliuqbfp6qZ1w1V0VTUw0GLyv33prSdq8/avp1Vuqa/b77xhaKLFhQDcHJcqIQAzJXFjQvDSd65mpkSUGIkiq8XIDdZxfLDOSx6piamICKC4JyKI9Xq6jsjEJWeV1BUskKgjQje95UrjwCZio7eh7YIQ3dx8ndUKQNb2BqcQ3aLMpxoAlVIZWKRGx/aG5BBrfH9oWVfKcwubiPt6bQhAMCDRt50JEjmRxYF9Y3RcVQ3etHfreXyD7+sl1FSbL0ZgcliCDLezHyKfN07r5gYx00hIjpSHkvo3NCmOCSJbJnGJwBYRFXMRQ2wJIOfsCJs08HbTEj8nLo+AfRvMiu/HNWg+pbQG/+I3uSzfljstWyNMzBRY1sDRCBUdw+HsqkpLlYUjElByYnOqsqSahZwiRtyAjpQA2QBNvTWfJ6miYpBzSVQo8azRXS+OAOitzQurZwoAlJi5Y0WbroaAyKowmzo0TE2J3z2m1HclDURgoLPWNKac8zhPaB7FWbWKzNfrdapVaq1TrV0mZOKcHKG1dj1f0v/j//l/DeBFgGRu0rQ201ZrRQYnwMx5KFxy03qd8pfzF0TsiyPOJeUyFN+l8QJtrgC1iSTqHFC9MTFxN+wGZmgyXq6WE5SSmJGJtS2SGqZEzuSZXNmZqQMHETMgTomRybMZ5tSX0mfqVU+XyxxBDSJqBm48jZWZW9Pz6XI+TV3e6ewyg1aAxAAI6kCeKL1//PgPf/ef//RP//qv//KXv/3865//8tP+8V7d5zbtDrv97u7+/ihSn1+O0zQD4DDs+/1h6O8IfZ7n8dpUdW61tTbPVURBtKJ3/e679x8O3fAv8/TXv/7V5fzpozLmw/6u7/umTQwcSB3EIJdhOAy5K621y+mJgHPyjtLdob8/9Lu+N7O7ob8b+q+JLuP1t19+7buMYIf7/TTO18tJRLp+tzvc7XZ9rdPp9PryStqMAXJiBBnHC4GqVU7qHnHGMEutOhfvKZXHD49d6SmdjniaztM4TV+/fr5ez8+fu27XuevL6eXp+bmZ7g93gOyIjhwCMjdpZn6dvn59/pd/+0s37JHSp0+fdrvDfndXftwd7h4/fPj0y8+/pf4vf/vp57k+iwkYzOClyeU6vx7P/bC/ezj03e5wuL9cLnFz1hqMr9lN3NHiG+py33dd7gOCM201OCtzEVS31yV3ydRNwWzbjK6owhao5mjmQNsfLbBhpQEWAiwCBdbNGwO6maN+E0bwRm/EoyoC2pPFOO82KhzWgr8YstvqAYxplztxlIzTgjaitA+A1NlcQBfZftr0Vc4eVFjkKLq7oS4DwcX4545bcj33u60CxZcw/MU7B1ER8/acRXesKtsmWyTkX562owawjrdAwNncUbd1/XfmPv82t30ZqCH5sqrBtqAu2NRsOU9rENT2sF7EaOrumFIhAjEFlw1qR4cSMTZ9m9atAWphulwrpBb/xMIkbREUkS6rqkR4G/h+u5U3swAomypruyq+/ThvO/5FycpcSgl8E9rkoBY2zBoL2DzPIU5CRCVddVG+0E4riRXrca11aguAcPftL26ayNuf/7ZaB8cIenOPIHMqpTMz1TAErKkiyO4G/vZJ304DYhQPOChAIoqyBPK6jBRxvetcLabqtp6pOFnxj2gFhdbmeZ67Nnjv1kHOIfv7RvcWMRop+UYxricFxLTWmnMOJoZXe0Yck7DDz1M1s5x5aXWb502WFL9RzWbWWt0GvttlfLNz01UlBtBgG88xkW+od31ELFvJNyvrMhEOtHsDvLZkuDXB2JcEGiRwA9EWZ3mjweJo4DokXnbbtapaXn0UN/tPJEwrGU5hwN4QZ1SVE1FrzRe2krdeV0YEgOj9nOdZm0CD1bLzxqvd3OBIK7m7Mna2PgqaakIAjhAvWh4+MX4zr4G6qk0ortraPEfVetwaZoBuhMDxXE6h7wQHdkJzbiLjLONV59pUHe9K16eSO8fWrJlZBBJqU1uvZ04pla5PBCYNUIKxaNZ0HmetAr3o3bBzNNr3/W64h3vROk3TXGUcR7dIxEMzG6fx5fj6/Pryfn98Th0Me2gC4E1Vrxcex/Rf/te/B4Bw6HqTOk1tmlVqrbVpnWV2FABXaw7GyTKHe6W5mkKjvKMEgpI7NBF0c3RF0HDWFxinc/CTorODAJiqltInLqDOnJgGJrKS3ZKglbQzMwND5lw4Z44pROJUcs35hJBatfFaVc2R9ruHYdgjcq16Ol5/+eXL8/Pr0B/67q6UHUISdWsK7lSYnNDp3f377z9+P3S7p5df/m36S/6l474gw8P08O7dy+FwqLU+Pb1czqOZNXE3RM45JVNI3Ls1cBmvsxl1eQckoIaemFMp8Pjw4ddfvkjT82m6HOb37z+WspvOrzntajOExgTd0L97/4Eznc/nzOfMyhm7lA5D2e+6/dA3lcOwG7pSkL9ebR6PXf65z6m1h3EeX05HEX14fDzc7frdcNj3Q5/6jgWciEohIjBp49gQhLMzM5K7k2qr2sQaYxn2PQI3cxWP/bG5X6fRTQzNQC/X69Qq55T7Lg89iiGTGDQVcnCDSRVez3/+61/2d4fSd6X0ifuuG/b7/v7u3Q/fw939e0Wem1Q1O3Ns9N14us5PX19Tyimlbii74XA43Mc27nq9tlpFJHAAM6k2VRaXjbNBwIiJD+/a8khH82DJTMGcwFwtbOrbSryRFAAhnrXbx+iKNpbxYoxgblfQdT1usey7L2QGIwGAgRMtA0wiQvLsKIy8KCqcACLQPYJIEVHdIjSLw68ezcPoCSktg0yP2FVEdBMyMkQA35RAAbzMDAyiGxwUNfThmJd8yEUpxcCERN1+N8+zXRdixhTUoGn0hRMi+ZJltkijp9mCaVt0QkiICVOKpY7pzcVpZnpjx9uA1+2UZMNA2whyGzUiLfGs2wH3G7ZmRRi0GlWX9NdQBKdEoGhqcNPIGyPBEKysyDJYou29vLGev2NTljRJEVXJOQe0ClMLUfyzjEhCBBZfBPA1VW7B8Wu9ukefo2rb8FCgyVBciNxsMwBi0ro11WxvdZPiuXvOGZk2Bit2REGEfOPBXKk1e3PsvrEsbxjR6eZoLLwXAJgtUaXbxfu2h1jfYbzcxmMhomYuljmhu1PQTTcnhRjIqC3S+Gjewe0ft3AgGtRqTaIAyaVPqSCBE/uqvIymqpRSAKONm4mvj+Po7l2XN5Sz4TPVCI9oiBzYutZJ1zyR+FHxnW/KpBUxbFwX0hJ2jwTMvOkTFjrz5pq/ZTFt9d5ugGk55htGh+V1l85xXGh4RCCOU6bRGW0avmaMEPhF8QmMqIDoDlH+eTvWpJtnncYUcvlfXi+/hIgpFUR2RwVdB9lJVcFVMMoUUs451K5ryNlqnr1xLi+b0Jtb/neHQkSiYMrdgXgNUl5uw8iUcK3kJjrP49TmalKtSa1TiEIZnJESEzMyIzlGh4iBq7o0qLNOs6h47uKIETMSoS07BHfTeNarQUpUCqfS7RGQ8ljny3m8yDiOIwCKmpp/TU+iO8KHw66UnEvKmTkhUIRZADKnRGpSL6fzy9Pz8fCyS4lVilNiRjVr5u6pH7K7U2SqkYITmldwlGZ11jaNMsmopesM7TqN43QiIpdM/dAlQmvoNgzc5lrrHNketcYwm19fx9czDcOw398dht04jtfL+Px6/Pj+O4SU07DvCcGYcsJh3w/eOWIPoeWkqDIzdzMXcD3sH+uDvR6vai/XsXVd/vjhw6fvf+iH3eHu/rffvvz6+cvT15fzaXz37sdPn364v3uHmN2ROUttMldE3PdDyfm7Dx//8P0PX5+f/vbb52ud7x4Oue/6fvf09BJD6Mt5fD1eVfXdu3q+TI+P1HfDYX9XSv/Lb7+25iktcQaoxo7k0JqqeN8dPn744bdffvnl58+7/nB//67OOrd2nerclLD0XZdzIswl93eH8v5hQnu+yJnQwRu4AlrmFJkmTEAA8wSX0/n1+GwuVefr9QJOdejrNGZOBAamaLrblb7rSsoiTaqB6zRdsXkpZbfvQ1LmAM0URe6GQ8oDcTEFd5/nOe6PvhQgZE5OSImH/b7fDcN+p+pN5Xq96rWhOTKhWTM9XU8//fJzGXrmjMDv339EpNwNQ+nfffjwh7+7HM+ncarDYd/3PXPWrPM8vj4fc0oppf1+F61tpZT7w520aqqMYJ2ZmYfmhsDdZ2nDIq1FrepUEBbBDcASocmMIUC3UPmYohnFXjCC0OMZpLAqTGNdfNN2rE+iUM5Go2OMCMN3K75CQKIlk0uWZHyaW3N3jxK6xETU932bgpMPdXNOiTLnbeOeUgpME2OFcAykxCklYgADMzWGTCy6MOFhqX+DjOsT08F0FewqoLsheSJOuUupABMCOy6ddAo4i7Y2WxMRQeBhdzAXbbLJhgBAzed5esMxnDlhVBlWtQIkpAE9yGGLsFqUUgulZ5EKfUsQbkxMJAUgEwDUWpsKMJWSum4AAGC6LYVExJwzELfWRNQ9aLCFCWNmUCBKCcFESy5dzlIbM6/i6Lepn6q8DXpukhrcl77hJbJ11cgDGkWeOmJOOagUVQVA1bdVJATI25Au/h3kRGst1vgNj4acPFapUDjdzLk4UF3XdZtc7I0ycQxKrO9K13XIvE246N95Lbe3uijM1lSFbeGPgK6VCeOUFgvFNsnaBqDMTLTk5i99Re7u2tq8CrbMVInAvSCYKKo2lkYUEn3juIAiSEyElhEmoblHSBpSW4+biktr8YZrnvthf3f3IA7jdCXkaD1JCcXeQlnXK1A2+grRh2EYhmGapkClgdRzKpK0tfl6Xeq6wyQRp2mzAmxbiA1/bMdt4buib1omlSkCSuKHSK2uhgCllLjAUkqLz4Z5uxfMrA9absUiq4UpdiwQagrVRb8FAK4yTZOZ9X2fcwYnEUnR0YQpZ2LI6m6AId0cx7Hvd4h2y125u4gyZVg/YEpLbQ4RbaaNdZDpZpZTF9dVa83EFqJu/QpReCw8QtE35BoRtXDDoy9wFjxcjfEwaSopHN9bWM5K2hWrs8wq8zxdx8tpniZ3TcQEwORMXjImchOViJ62hAhi2NRbk7mJihOxuydmM2utEUFKWBUQgJnHeXIgLtkInTn3HQHnNHTXGRrWS72KzdJUXMQSQ86YjzhfoC9cOBVCkJbA63gdup5IO6b90EubT6fXr18/v7+/myY2SqTUWkslZ07pfH5BgABrZE4gKRFj0kYzGaAgmLV6aVOVdh6v13oGgL509Ph4KCWRFUqJyHK+JlJVZHZ3cdHWREQsusqjnIWmae7S8XKujw/vh87BM0JfsjMWWhxRHQCEtSYeeWACjpwyQNnt2m64y2kgPg+7+/cfv3v88HF/f98Ne0rHpj41IUr394/vPnza7+8Sl4SMhM5GYIh+f7f/7v27P/7hD3/4wx/+7a9/+ctPP51eTk3l/t3j6+trSul6veacz+fjOI455+u1jmNzw2G4y5mnqTKlnEokDzCiq3mV1hqqI3Ipfc6dG57P02+/funK8Pj4SAkdyI1EVFAdyZQS9zkNH95NYJ7ATRuiW6syZ4XYnUPK0BcwAxEZzxMjegJXc4A2zZfzWcQu5+M8j8R42O/fvXvX5Sx1ul5O03R1UWEDptiqIzPlRAmBEAuhpdJ3/W6YmwBTrE9VpaTExEDo5JS4dN1ut0POiFjrBGDSmrujC3MWkdfX57/9rUNgN7xep2F/GIb9x0/fAXnpu7uHu+9//ITI9/f3+/3dpNfz+fz09MVNv37+cnxJpc/jdA3pwH6/D++lu5vIPM+tzVWajyMADbnvurnLfSkF0ZHWPd/Suxr1OuprVpCvmV6wtGOE682XXXFsz2Axxbv7UtAH8Hb7o60KrUXS4RDbXwKI1O4bdge+ISeIgBF0idM0d2S2VWgMgLCERXikYkrsjRd6EhSAY9ZgZhGouBJDhEjAi3+aLGBWTBMsEhnCRIfqllABCQGBjACATqdTDFaCtHNiTJZwuT05ldhqvyVNLOsuBJvnhhb7ouWT4rplf2uD2RbCjerY9v23DCKsCUa337/9LqXkhpuff/tRa5P0W6xGYAx3uX2tDfpsO2xfHJSh3/pmZrR9Gy0VPm+C95V1eIsv2Qi8Tddy++m2n3kr4rk9FLfv6hYq/W6UuZGab0TRytzEeb+to/k/+7Vh3O03t+dlBazpZgy0uEa+PWWbxNsRCRdCFwF84SzQzEW0qaqJLkwt6gLsVnQbDAgnRMqZyPt+IcysqTWrEq3wFhXXqlLVABGYOTGwdyZS41IHciSgOA74FhoXT7jNxwCLlQ8M3pq+3Gi10YCqTtOEiKXLt8efluIp3073Nibbfs4qPRdAJHLwb/R2i7QLEWErs3+LHNuuCoqcLSAkdPclWWmZMC5RGkS4bvz89mJYr6BoulzePFNBcAD09Zmz2atvzYzwrdIRb96Y++JkwtUtBLcUcfxFeqOmwsAbs/INMN3aIW9/vd3iga3BY2+L7goKCDeXIpiZSpvq1GRWmds0t7laa+BK4ImRnQp7WjLL3NEAUV3dQAWaLgZFAI7NqRsGtI07nTAiEiMGW51ySgQllWFXuIBABxM0a12b5+aOhIhq0UUzMzpZG22ertfjEaQNzJzToSuYspONc5vm1sarg6jWZglQEybIDmwKLT0/PxNiYepT7nLpuy4NO0YopZRzukx5bvU4no7n4+V0Pp1PStJas17e3d33uRz6w6EfhtK5+/FynOosZk3FJAaxdrnW2lQtZK54OV0RZlFW4cMeEHr2CkPXZ+ZcABE4w9pLBWhmYs5uDsxA3vWHftinUpjzcNh//PTDp+9/ZGKEtLHu+7vDH/7whz/+8Y/3d49xeRECMaA5MwH4YT/83R8+/a//5X/5y9/+8m8//fXr89FVVNv1emXmuVYiuo5nVT0cDpfreD5dpqmpY09dSqWUXeoEOLkrAzpZrdqamGjhVLrhcLjf7++e5y+/fflIrBgsAACAAElEQVTqjlOd7x7uS9+LwdxkqhWr5GEY9vu+79+9+2Bm6K3OEwEqeLOYEUDK1Pfdft81naX65XJJmfq7XUpFzaZpbp+fkF+Or9fjy4kA7+/vf/z+h/3Qj+Pl+Npdjq/TNM0ozMycaVWEOKFT9HNT3pVdu3OgS0rTOM7zrFUd0dEVNHKmKafcd10Z3H2arlLb9XJqDKCIDF3fNW3Pz18Jk8zy66+f+93+/v6+qZSuU1AgKkNXSvfh03c//vgjuT29Pv85l98+//L16xfVurvfmcn+0CFAl4sfDu6emUXqNE3n8znMlaEIdPe7vQ99j5hjwV0HVLZNG8EdXNe7e1EirUWHtCS/4zKqQOAVUQEAB9Xv7rQUckQ+gyKkxRm+ZBo5hwgdbsXO6AjksRLYkgYVoDA04EiJcJU9AEEs9eAUritDBOLtCaWES39iNUFkX/PDviXt0SGYOYtIITc0BwHbOlUsdKQGAPZyOq3q3aUGEpEhscwjuseloqpVq1ojoq7rNnzgbrBIwYjWfFHwMBXA9hz3G0nTLc64XRHf1vWbUYhFmpdRONItgjJuxGGq2pZotE1N981Kti2W60JFhIkQCF1VFRTMb9cDX5esddBDywf0hYva8pNWhORrXfc3eGsjjX4HMe3GXXgLQ7ebkRaf4DcF2wGt4tu2WDVeVH8Ya+Ub+/JtQOXvoOQtwrs9KdvPZ8q3L/073BYJEtuuYznoDEQMsGkYVLXVOmlb+uzBk1le4pHcCReWlgCRFm1f3/dqTSrNs88yiwpFKHkuuHoForkyEFLEgmFiAGSOzx4nanHvbviAvs1UizgJswWERUx9XDDzPAevTnxHa82z3SgO3T06tYgiVvStWQhhu2KBfHldB1pKtM3QAYmYmFa8u/1M+9b3ysyYSFVVlssYyREoEScmXAX1C6uH0boYd1NID9HUIzUGKHEk+4GYtS17eE0/ofUcAmGKqf3iKTZUCOE/ZeKSO04kN06R2wuemWMPGRsneyuu/SbKLj7u72636OskJAMM7BXC1GRp2/wsx1BFm8g0tTpJm9p8kTqpVDcj9EKYgJggB0VN7ggGYG7BnUaaQ0BoIkpIag0MHQ14m6dRbU3JmjqBcWHq+25/eOgOxaiWuWB2cXGLO5GQTOo4jslbBfE2XS+ncbyy+/vDftjv87BTTKn69TJfxqnOF/OqNiskV3TKlFjQtUk6Ho+JeShd2eeSurv9YdeVkvP7x3fn83mcr7PJ0+vTr7/9pmIiagyjXjJ2Qzk83L3/+PDu4XB3d9i5++F4fL2er3Vuqz56nufqL9L0cp2Jp8ylCSBoFb2Mc1dU1GfRVLVLAMiA6Lre4BStGcnd3SiCMk0dkQkTJu667nB/l6lXqFWnKs3AOaXD4fDdd999/PgxwpHNjBnJDdEAsbUxkb9/d/8P/+mP/+s//uc///XfztcT94VTXsQ6Zqo6Xmd3HwY1g3lur8fj8/ML3BtT3u/3VWT0S2vW3MnRESSkgIB9So+Pj/J3gogvz1+fXp5zV3LpS79DZBW/TrNNc8pdybt2gEPmGLSZKzoQ51x6R3PC/jAc7vfXKsfrfL1Cvk53d3d9ty/Zpjqfr9fpeJ2rnM/X12M77Dmnbr+/Owx9IkaHTDyO49XGALEGKKZiSqqAKqaUMfdl7+gIhlC1arXcsTGaWxNpKjXapOrMORFD7rvS59oy1wpsRLA7DARMicfp8tNPtVbJXf/4/p2if/z0wzRNL8fnp+eXyAEB+PHh/h4Ajvcv5+PLM+BYK5xsllm0i0JDMy2lHPZDSveq+vr6+vz8+vz8PNfqx7OpL/0h2bhA8mwgGMArsgRAF35rfa7BsttbMqhw6dkDXMVha+fjW9IjLnpVX1U7i75nc5atKZEYOVG32+XwtoOZ8ZJyFOa4zf4Wrv9VkhxsB7lHxCmgm6spOmIKtsk3qxSyudHavxYyEwMHp9XI7+DkBGBBSyTg5EAKCOZR3T3P8wplYnhhaeFO2MkNIW27dgUEvB2vqOoWUcGcgH5PXMENd3XLr/wOLP77Nf4GeKGuo9ktxzTWntaaO/oin+HVbPoWcbnu19cOcnFw3+LLETHygdax1O8hICL6isvfvva2itsG3yNpLK5VACNaTlR8jvhrsKRAtdYWf1wUQf8Odf0OGK0H5y2t/q17eO0SCOD1VkUcuB/e1mZ3/w8P8jdH6W0F3RZLWKeHAfsNI0MWyXEJqTdXAgfLGCoIjLBPM20qVVRUlY0aOro5MxGoowIEixN23YRo8XmdjCj0Z9t8KuXAzZ4I1L1Ns6rTNE+1TnUe9nfDMHAmogiH1ya2MV4xRY3p9gZGa60RWrTi+2WTU2sdx7G2GdD7vmdmkSVbf7m1zVqbmTuiFNe8GbgLYiOiIKp9ZcyJCJgBTXDV/sO62UC8xbsbegv0vKD2lWDb0nqJkHg5y0uqUdxKyBE/gWuxbGyICImwUErESRzUZgFwgxUoekrLnYjA0ZGmagupjMuqB4oAGOPCnAredGvebp8Ccy9MIKzbyHUau7k9fgfolzOypCPGu47wHUVgDXfstkNDcBPXtkgta5PapDZTYRACJ0RGyLhkgkYOkLq5moi1BqqRTDas+2sSVReIaISw3gCoiAl4BSOwhKiJqO93h7s76qGXPnUAZEAppXEcRcS1tnmetCZvMp3Opxdw3e/3n94/HO4enNO1CqF3jOwi83W6HsfpNPThTmiMydStSmqzQEbMxJRL6ftuF+GoXUm74U6tKcL7dx/3h8fd/uHx5eUyXV75lRM+7B4e94/v7t5/eHz37v7BCbvuJZ1e8/UytxrKVmmN8+H19fV0Op2OYynamhGm8TrfHYhSYU7gFGp6QAdia6s0FYJH9URggG6qUqdpEhFOGIqlyPwTqbXW8/l4PL6M02Wb6wdroqbghGQICmhM6tl3qXz6+Ph3f/z0d3/84cvrk5pjKcN+1+92nFLIBmP4Ejuhy2X8+vVrJn58fDjcP16n6TqNtTVprXBKXPrd3uZGiIWo7/vdbpeQpLbr9dqqunsquUs0qF1rqyrTVF+OpyoqJV3GaZam7plSKl0edjlnSMf7d4/X1i6T0tfTODVie5wVqZTMzUl1vFzr+Xq5nG0coRSf53YdZ0TUJog8DPucu6SdaG2tqWlrDakCkjnPLcBfX3DoDWZpZe5yqxwWSJXZpKrNbTpdTvm5tNbQwV1T5lKydmUGJ2IzC5m8mR1fnr9+fcbEH07fPbx7BKIq7cvX3375+TfmnFJ+fHzE1s7Xc5trSun+sCP2pnUeL9N8XoLoEQ93u92+v7879H0fnwIRj69nEZ2m6ZqviRjNGakQRilu5K4EPwERsUQAhnCz0VwAfTSYbar8dYAIQAC6ETa3C1aYFBEZ0AHfLNywJlBtT6WFQjddXttVJHaNmlIKaBVPf5H6tt9FJEaAeGBVADBRxchcXBKD4jkVOxJHiu07QnTjuCOZW0ARhijZzpAycXZid1CTCKfdFpVNfM0p9V23WcQdPcJZlgeogpsjrg0TALxumtGWwSPAskmNxuvbzf1/OF/boK1ZUGg3+RoOIkAkiMgUMbkL7AvFQjfsmBmQI7EBbuiuDUURUoTwB3G0rV7uLk11cRKU372rcPZF7dACj9LG073p0Deu4ndmum22eItytsHo9pG33NHfia+3/w2izm6skctKvE4Aw9WBawukhOIef88v3v6Kp+St3QzX2Ih1daQw2IZ83NWMbBG1QZBFGkumLgpoCKcUwrrVQYjqPiJkhLDuAiz6swVPgNFq1028ZJ6lRCn1G9qOj5CJPCURq1rnsZkjTuNUZyfsdx0ROZpqm+dZzJmZmCIkIgTUkWWwBqHJmvOG4Bj7DdU2TdM0TXOdQice+vFbhnXNSui2c7eeeiKitF60seUgIoRkZgDtZv36hvtcvBEIt7zaBu8BFpvtsseD7TkTO0BbRr2bHdhXZb1tBUHMVIiyx3xo3WJuu5rl8OLy9ranoplJMzMLMj+vBO3vMdM6RKCbK3Z7YP7uMt7A9O9+SFCOW0atwjaRiGeLh4YEwRiQ0HHJIWkgYtqsjUSKLohEHJapeC65oatJE62ztWYgmSl3XQiCUEFFRCmEFwiEgNH24g108obKZDKZNTek9HB44M6GVACWGwDUrk2atjopgCRvOp3les2MZbc79N3j3eDIOSvQ1CVn1/H08vXpl7tDlwswMxCSZXdHteTODDlxX9LQ8ZCwuLEJeuKSBs53qfB+91D6u91w9/z8/Pz6NJSdqu6Hhz4fdv39oX/Y7d+BexUcDasz5tbnMvQdOnB/oPTrOMt4nZsCAGXyKurBYAE0rSRptzxoDNDjSEVIUaxqvJwujFi5Usp+P5RC0TfsoNN8/fL1t19//fnl5aXv9ogOJiGddoupSwNwUEFwQiPGrqeHx8N3nz68//nhOtduvz883JduULfrFbqx2+LpzGyaptPpdL8/vH//brfbDcNwupyJyAGcsOuG/a7XJq7aOQ6ls7s7VT2dTvD5CyVWQHDq+845OadJmiO0qmeY2ujzeGmi7m4MnaEDOzOVYXd3/1D1PNr++fL1+es0wuvxcneZ+r53YKSMlMFZ3YCgVXs9nj9//nrpBwIj8JIocSms2NDMVLSpoMzAbEBTraXXErRIpm4oQxuAAURVGzbinIBAVcdxPJ1O0zR1uZivafKFzTIA1FoRmYTRrdZaa0XjeZ7O59OXr5/nWp+evpzOr323u14vnz9/nk+X6/Xy9fmLaN3tdmXoxvl8ub5+ffmqKu6aUlJrpZSHh4f9fn93eLi/vz/s7z9//vzy8lqneZ7nkwMTdSWZJYkpoMdUTm/nDvFQXJ8gtKAuoGiTW255JHdDYECFZe3Q9fHn29Mv9nmIbIAEN1yOokVdzbL1XEohARzUdI123Das5grrYOJt/IS+Ld66VtmEqH8hQoh8cSHF0hCDD5BlzBFWR4alOZsZEFN2zMbsgOYoBqJu5pQTAET4aci3Hx4e7u72RHQ5n4/H4zRNRMTDUpg9jdPGkRADMxMnX4LRAcAIMBEpRu8HMib/VrR0y8TATUfTBrw2UREsXjlHbO6eE8aIHG/micycc+cAASTwZliJyOAGvsi1VTQxw41AakN72yq41izdZKXeKNMDeMQa8eYKhLe4/211uSXebiT8uvEcbxiL3oDX7+iEbaG67UB8W7TWq3qLGYuPEImsIXjDG9HYxklsEC3e20ZhrioxjhzR5Ysb+DNFZDNBRPCIxBOIKEpWc9/Yu5Q45+xqcV+UtExdGYEJcUutEzUXchAERCw53AlWSikpGYdnQnSZtVFKqSQFy6atqbqpgXe7oda7UmZmFm1NZl8jcpeT68rYBfVSaxVRkRYnwAxErNYlHrzWxZIZ1FcpZRWMp1tMvJKAb4PIBfgSh/N6fUR8U36KzJE4a4ve9KYmCJcTt536m2fUm5l3uUTZ1ky+FS6vtWOq6rbExPiSJsZEiSiRA6ERKVHe8NwtrsVFKrqOUFvkxCryhlYbETl9M+UM4BZtP7fk6O1tfntzLZjs20cBIS37JUInpHWs4Dc/BB0SUmLMxEZM6OxmYGTiKm6CIEgYrdfu6uC2dE/EGmStAgIV6hMXRAYwV2+qIJ66HKJgBRD16q25TdKc2GUu03i6Xq/9xA88YJf2PEu71vkyXU7Ho0urMlWXyWoPQl5BGmICbT5P2Grq+l3Hc+OhL7shX19OLy9Pv3YlZ+6GHnMq1rs7AyZTR0jMpeQh554wm6GJkTcgKjknLsPQfcCMyIQFMLuk6/XqlqfRxrNMRftSgVAEEDJTl1Pqd/v7w11ipm6PkMdrq/Ovtaq7KiPCdDyfdrtDV64Jk2TddX3f9whMTk4WuZVw+/C5qTMtJe+g7/rsoFWm0+n0888//+lPf/rpr3++nk85dbVN0zQCNASIQmdwQRDXpqDIRJgBLGfe7br9vhO3vu/u7+92+0NsoaKlEdBCgHk+nxFsGIbHD+/2+/3+7vAocyo8Xq6EuB/6LmVvKrUm8VJKQpKml+M5ohHnqV6v4y6nYdhRKQe3udXrPKlaNa8CEkFMIsQV81xEDRumvLu//yg8jng5t+fn4/FcP395eXx8zDkTd32vU7U0vap6VTgeL4yfD/t9Yc6Jui73uUBeEibZWd0VPLkB4SzT3KbSendSF0q8vzsM+x07mMk0jZf5WkWQSNyCC0FEQiCC3JXlEW82SxORNjdQVtWu6zAxEb2+vp6ncZ7n4+U8HPZ//+Pf//3f/f3d3QHmNk3T6XhUl2Hf5y6rZiKa57nWWd1KIQMl5sPd3f394eOHH3a7w+5wfzgcfv31t9fnl3kOFZwsaMrXShZ3M8Eb4U48CXxpxKPNPg2x34nUrlh+F4iGi6QabXGtowPwOhBEAEcDh5i8qLu7wLKTXErYzNFgaRk0D6PNAqeWPX1awcRt6vq6hhGn5P8u3xwRbQvkghhrEW5PPAR0QgQm9pQSJaMEyIoEgAqg6g4EoE7obf0sTH3q7+/vf/zxx++++85dn75+FZFxHAGg63pVFblO07TJRLquo/4tBsLNI6Ec3TlSX9ZF5XbUtT2R/WYE9vYVh5tU+VghDKAhIq8u1M14+G2toa9i8HXdW5cuIhJHVY3z6ktW6tu4J6UU+Wrx0rdQCbdFlzz0XRvg+x1E+93Cs32o35EEb6TZMgtf2Ca4WV99Ndu/aeluOZLbpsh1G7AdVQ0WE77R4/9umnmLeoPL3LjPjaUwM+bkN7Wk7h7dDQ5BdUUYL8CS3w6Enpn70iEYgnFC8jVeXwWiiZkCGZk6gNkqHLXIzEoE9Hvl2QIOEjEPQ87GqZHUuYq6TtM0zVdOmFJCX0qftlzf5ciDrudrO+aICGt8l5ovMbOwqugul8vmJtlOFjMDJFMzXzwusPCdxMxIzR1hce8s+X/bxU/MoU4L4GVrZJeZ3YZybHfELWkUaE5VmcBsNVHC4hpmfPNEG4TeK5svA8TYWIJ7fD0xIdnvrrTtGmJmQIiPFcCLIOJ8NWJ7MfF2eS9HLITzeAtDv7Gw3I6z/4PNA8CmEFjuJlwTVskNzNGiegLRCyctSYXKktaFhoDLTFDJgDkxLB2vcTViFHapmgUByIlznBq0pupAmiBHjaOgVpXmJmCzikqFOh8v55fueEr3l92YuCPAPpdhGPq+L0zuPk5XaA1lMpZ9YiYkMJ2n8/ElF94f7qnrmfzd3Q5zYc5nkOPp+em1H2Rf9oMmc3dGSoHCExJzTlxSKuSA4K1qKQxA6EzkpXRd2ZVyTZSZsxmMp/GVXrMzG+msZT9MrTVxM0KEnLu+33W5UOlU/evTy9enl/Plpc0CMI5l6vvdfjiU1CXIUvT+cBDZ55QAMho5AYDgUvKgMVahpTHVmTkXZmZ3O5/Pnz9//ud//tM//dP//PXXX2ubVOrlcpmmSSMpQVVMwSt6E6mYIWEBNnAF12hfATDRSkTDMIhpa0MpJbjooHwAwE36vj8ej31f+r5/fHwsfXfJRaWWXPpcnLUhIkhKqUv5/v7+w4cPp9PpeDyO4/h6PnHX77p+GDpk4nGsYlWrgwExGpmAiABOSNfUMSbnTKX0dw/l03f0/HS+XuZa59Pp0nUDUmLKuRtKacTJoYHBdZpSSu445JQSm0VMlNjbVpi252wYp+dWwbBKI4RuKES0KztAm6bxeDlerqdWFRENocu5lMKEzgQAWqSUYqp+vYzjfD1frWHhwszhb//y5cus0ky7rvvxxx//63/9r//LP/wjEZ2/PDXV3z7TOFYgz97meR7HUVVbC12PjeOIiK/H58v47r7WYdg/Pj6Sg5mnlK7nMZJB1nvXVieamhl/G9G0PfWcljndjbvnWybc/v8bxHwVG8G2NLq7a8hHAnOomQF5sMqAoGbM7C5mb08lTAvZsGRdrrFPCy3D2UKAumr2VxWtxgQMAYPU2T7oGxFC5MxIiTg5kAOqw9uwlRCdVOdNoZ9Kubu7+/jx4w8//BAMwG+//bYtHogYqpetnGSbTOFaSblhnYVHvGGG/j3w+t0hXZgEwN8BMoBvvnl7sm9m+G+f47ep9L/vj/JVnL4Br21lXcOZ3jDitlVf179vCox/9yrbu7o5Av9Buv2GbDakBfYmTfv3XOCGKW8PWsCy7Sh98x23A9b/E+C1vb3tnWzicQAwfPu6rcQtmN58BgN1XDswg29DREAnoHgUOyx0EQPmnAFMGwBAyhSVlwCGDqAxmA4Z9Fsc2u1AdvvFiZhS11EqlVvB63Rts6rO8xx7gIi3UFsmgMyL7C8mvLefEVZUXWutVWGJ8XMiYuAYaNwi+9sTJ83Ml6of+/ZXQJzb07hlyRIuWTOrw/qN9LoFHhtigxvi8wbB4O3dtNwClGLPpuJAS+guvoU3gy8jeEVgooVw+t2VtgKvTcjQ3th3J1uzUW7S92D1OhgiAqe3g7Dqsn53V/7uRvjdHbGhLkR0hNhF4s0dhIhEkIgLU2VOTJxImYBC4s0EwuAM6Iu9nQQNMcwQsafaLvXFfRwfb7nsYTkdtnaxNVWSlup8Ga/XYTydTqWzXelin9alnFJiIqlN24i1coZdgkxMoK46Xs/lWBCxQ0Lzw+FweNcTpz8/PZnZPM+cM3V5EdwR8//n//2/e/Vdf//h8ePD3fuuu0vcO2SknXnJ+bDrH5l6a0xaunQYJ64j1ksbL3U6NZJCMhxf2nwBaVh4x5zBskNO5SH174aUiMrlcn16ej1dLufxMtUZ2Hf7/vHdQ05puo7sWHhXuHTdQdtM6hQCr9Z0uqrMRIAdiI3Xdj5O59N0MsBcOk7dafr8P/703//b//F//I//+adfPn9R8McP7+/e3d+/v8t9wcyzVIGm0K7tKD7aNEnUH46n4/nl+Pry5cuv//Lnf57bNOz7j5/e390fms3n8XydL2O9FhpSZlGZ6mQMmJhL2d/dDf0+p9TmNo8zAebEyIhErD4MQ8STOMJU55fL6TxeOSdPmEoChgY6a63WBJSxYyYgMrfqXtWrY3OcRc15GO53w72Yv5zPr+PlqjNBcYC+y7v9Hh1fj+fjcWrNzOFut7vf73uANk0yztpqnaeqc2uzulLi0g9lv0tdR1yQc0qdqE3jNNfZ0Yb98O7Dw/3Dh4f3D4D15fj89PQ6nWufD4/3j+/e3e/uey48qkxNUi5Dn3PBbF04bA3NUJQaoCqZuD4dT+Nc94fDf/nH/+3/9X/7v//v//X/8sdP371/+NTnXqu8vhxfvjyPl+v1Ml5Pl/F8rc3mGdyBmNWgKtTmu4x9Vx4OD0Ma0DJoAkw5cc7cFe4SJTR3MW1uDoxZyUVdjUICZav6lTn0RKHwwqh5RE8Aau5mlCBaINSarc24bsjMyOQARkCJANkgwlWDZlNETwSujREyh/2ekBkpITIZJkqJ2JFExNRLKYfD4XA4EJGrShMXI8culT51XZ+6UjInd9QoJceIrQBEoODI3diBEALCUWzuiYCYKAMzMouhAIgt5SPi6hBjH+j6br/f9X1fSul3w/7usOu7eZ6+fPny/Pwc6984Xs7nU5umyzSbGyAm4lJKyR1zQseMUVok6A1BM9GyJJfEKVFi3soBMQKb3BdhPhi6uYmrujbViDp1d1EF95xy6btSCnNCJDPXpu6eKZeUdkPHYUkVVYtxIzgjAIOTKrRJ2qyAgOwK6kqtSa3zKmdeYqhSYkBj5r7kiNRqEVOtSgmJMdZ4EQEkJi6pkCHGMBeJkR2iBPmNzMA1XjLmyBGXAACBWVcxH4k2M42BoZoAei4JAaOLVFSneZzn6u4cnV/x8x0IKUcNb5RlhYkPkQlosRCCGUQIfI7AscLhPBNtgF5K7vuhlAJAwQWXnBMxx+K9QlaxRmErJ4hwJA1yzZ1TcgAHQwdOTIQq2prQwowBgKvaXOem1c1cmpuEXTfHvtkdQvBsYYNxgujjIkICAhVx1ZS4dDmXzIlSZmbqcgFEEUVAosyUmIurTeN0HUczC6OaWsxVfZ7nKpZy6brBzI+n8+vrMTpO1GQcr0E/tVanadLawD1R8PWOoODNTVq7ms7IVkoOOzIzd12fOZtqa9XBcmJKNNX5dDlDnRkhp5QQVUVloYUS8zzP0lokEUoTB885D31AU1qCCIFsljaN6B54St1qm0UboTF7zrtozGym5sgpEut6xAyU3dEUQIE8ERAaYAEkBk5ABEicSi4l9H2xX3SHVuc6V3BPKe33d0yJQoDhzoiMSICuJrVKayEoMw2jG6WSU1rCOIiWYIutnCqy6yPEhxAIoaOcUxq6PmcGagaNyJZ6dyNUBKMIoxKtBlLgGbwBCLiBtg6xALFSR32fS5egsPRFMXlFF3QRa03MgSkDMqeSSgEmQ519NnJjnWSqOpuLu55sbjI3FQMETLnsutylJn65lGaH3PdpJ+LXejnOX1+mL+PLpLV5UzYYEj7uhwFpPM2kc1dS5hK9qvu74f3Hh3ePB1Qa23iWSXasGRC9Y1Kp6cuXp/vD3Yf3FYBKKV3Xuai0JjIDmFpC6jmnDlANRK3vrfTKSUQv81zBRbT2ZbjW/eF+f0gHLARuoNzmqXLa3d0zGeOOsAMvaihqIkI5mUvVq4E3z1WOVTqXYpaAPLmDa0g+zLX63KVuozHNsYlMc7tcp58///zf/8c//+mf/vXzr1/Gcb7fH7zK+Ho6f325HJ6yAqgxA2LFaRadHRlVFalOrc6ypd5dLpfX1+PxeOSu77vdMAxEaZZrxJZiwpxzGbqXl5fD4bDf79/dPzRK7tha01YJLBGZWXFzt6jZ7fvu7u4wlO5yPJ2PJ0BkzoMBEF6m8TJeRWS336UudYUJXHVs6rSu6aimrXLmTDR0ZejyOOVgqswMV9N7QPjd0OXC6KpLh5VOU50mIHVm5K7kLmX3QpRTn3NuLWRM0UOsIi5S3b3rupTxbYcHkHPu+9379x+4UJXWmruMiVMicALa4dRqazJNU1MJNQiiTdNcp8qpIBU1OF5Hcfj+hx/efXDI8OX427/89KfzeKxSiUHN+r5XdzNhB521zWryDM33TCqccLfv7g6Hh1p1qq2Ok7upgJARYUJ2TmIN1DVuoUX36+bmETONi1dtEZc6OIaRGRlQEYOwNok4MDQFAEYiMyAg5oQcxL1F4I4uuzdGiI6NjcVBMEzASOwACCIeea5qUZtICIScEzV2pqUjNzEyYSbOCQAEGrK7qIPb5r8Myx4BAYORRkUxUVSpAHKkYiMQQFJXVWti8YBGJuLMzIddiGpYVaW1Wuvz87OITJfz09PTNM9RBnK9jpHTGCoQRMelVVB1HYrRunUmJCBfCpe2WdVbJgICvKkGDMHU1L9pggMAoDfR9+8IsOX/cGmpQ2RzEDE1gKWqD6IdavEULsIsJsA1NGPd6eK3iqtVth+BUu7uLm7RO/5N2ZG78w1xparROvDGAP1HkyP6tpMRAOzbPIu3rT8j3sxDvyEnYqMAoG7qxo5EyDnhyokaLGXWuLogQzifcw7zJv5H/jJctV/tW7IHABA7Avvd+wQmeCvhfotaWSz7qtsfhdvQl/CONYkUHBAMo2MKzZ2i2HibHr9py/D2pRMzMAMysbiIurfW6jwjYkqxKcAggWqtRKS2DKzdfb1O34qlzSE6FUWktdndI4FMazMTREfyDEzoSxJF+GnMQQUpmYs7m4kamauDocXczUIPZ4vAYaVOyVXEDbe9XFQZLgo8wMVz5yiiGk3jSxxf3CCKTIjMHEwpRaYMY0oqAkunlq8NkkRs5qaqrmpvo8BvGS9C4LU4KESxnFISc0SKtxc3t3uUhW+M8G0Q8SIfjADezXHy7+nt7S7bSERcawB+R4BFK4m7YEpm2bUgmraBkqcibppbUidkdHQjUUJDTQzImXMpjg21K00agSth9Fw0W3J1nDEBGUTKRyIFNRUUIE+ZHLEADmTZGk1qx/F6tPNjX/ep70t/2D3sy32HQ+HiNBsJsANn5UyZUOazeacOrZVaSyr73L9//GAOT0f5fH59vRztfOacDt1gZq219OXzkylMU0XgrhuGYWjTPE6Xy+UEYJxsf0h96Sk1oEn9MrUvKk8KL01fxmmc6ll8vDu8m+xs6YEHLVac0B2Er815pMd5JLee6UA4IBSzWpseT0/Xx93D47C/H/alz9kULg064u/j8UTWTJtbcxd3ma+teQtnvpnNTebT+TLXf/m3v/3Pf/rzL79+nWYlS4lygWTXub6c2uMZU5855ULMDu4gOrsCUHMbx3Eep9YaAOXcPR2ffvvtt93+LveH3WH/+Pj++Xg6j9fn11d1d7RSStf3ufucUhqG3f3+Lqdyvz+08dqmcbqO03Wc5rHT+nh333WdO5rK0JfDfnc65q9fny7nsU76/oNxX6ZpblXcHYp1XZ9yZgMwNCfiDEy1TdqkXSdnb7VSFD6ItIZSl64uN0N3JigldV3OvLQJF2I0CrNn9colJ9OmmUQHdcTsQCkVZGRCJFSFWqdpSjHaB4Bm3pqKGHPuu91hf//4+B4YruN4La1VYIREhJzc+a55a+qOONaqFRzdSZtYBXOfp/b0fPzv//zP7959uHt4d7grw7ty+LDvDx0kR4f7x7vvh0/hRXh6erpOVUTGcbpeq1yeUOXy2q4n+fTh+67s3TJhj5BaaxUsmVDOzDlu+ijLcUTi5K6mLuBAwIyKmwUx6JV4WBhqQDFCN12KaN5y1cEJHBByTj2XvGgFTEUMADInJg6daknJzJoIiHsCAGRKRGTM1pq5qJm4MbiAh5xzklZNK4S1TyeX8LWoelNtog4cuUecqNZK4cMPdSqitKbNOC+slyMBkAGHN8iNNILvlYCIKXelS6VLhcPzBXOd53o9nU7nc2L2qI0yQEpqY20tsvKXmkI0RhI3ag0AckpOaARMBBbZghhZpyFDTkhO30CcDcPZsiwsqIWYIMpxEVNahPm39oVFPY9g4OoWwCtmOJEto6qGoLLV2kRuFAKERkyWdDcAYkCgGEMAhhnMmyma1zYtUqEYdCLCaofkdRNCOeWc0WGq8zLeSsz8zdRvmw77TcXkVhoIAAEsvhm9LBJ43oZZsLZJxsQH3nRQEbGRKHG6qUx2WMKBESAoPWaMLkhOuESKr52SGzAN4YGquQtz6ktmX95kGFwI1shQf5uG+xoKEOKcaCrMOfsaFmWmEeilqhZqQ8ToV3DwOPyGFDFXOaUQNdlycOKQLNjUzDh6WjnlgqlUGOepNhGZpqsDlFIIkRiSJ1VtbSZKaqbqrUlKKZV+Gz6uBOSiT5pbncexSQ39ZSZ2aJwwsRNmYDITVXFV0wjgSU5mYgZsTRwQDMgB0NQaCLoZE3pUgYkgvoVYqImJqjaR5q5Eu+CEMMJBILljqyoimRGAzMDEVZuZp5wpqCNwAFdrSImIU0qqs1pDYWenVFJCJhIx1QVMxu5GIerNvwkihsXfE4rYCI8AAIi4mVwYloRCZWZOGMq51mZbaumXVrPfuby3vdi/2zn8Pmc45n6b95MooRMCAmQ3TVw8ZwAXGiAJpA7z6BnczEUVGyJock9AzLkbcncwL1bB9cWUEysBu2FCNZ9FFFyJyLGge2LGjE2nWS1DYuZM+0Y9dIeU7lGLKFbwy7Uez+fUDank++H+oX+8Tw+ndBJozauYXQ0yQCaecnGwM9FUZ3yFbjbe3b9vHpHgXdfpUcfzpZR+SnMe2B0TcELIDmSAQCnlLkLwRKpanWaf5sJZVOdpfrmMz8fXn67zi8gJcG5+ndqcW+lpL5SBzLTWWQAIEipkgfLL+essbbo6eEHqEDrzcW715fh8nh5S+eHDp4chD9AAWRVrLoNLM63aZtOK3piMCKpMjkqAKaWUi87TdRzb+fTXX5++vFyac+l2ig2RE3EHRLXRNOWmHVEJaU8qxU2qiJuLt6bzXEUspF05l+t1+vz56927j92w67thN+y7cjqfxmsbzUzBW2vH11OitNvt3989PNzfPzw8otrr89Pry9PldDqfTza9TPNl3+8AgIBVdSh51/W/zHW6NjQeyv6ehh4GB1L1Ngt0nhINued9opQcualcVMBdapu1XV5O4/Xa5rFOCgjuSkSZk7AQQYTpJYKUqOSUITLnAVCauKqRuBKKG7QqhgZJ1O/vk7vmXIiSu13r5Tydy6XcXU8p8zRN89xMnbn0/bDf7RBCOxKazcKAzIDAipZz3vd7b4hywUbmjp4JkMDnaq+n699++2xAxEUIP31XLpfL0+nzBCMPtLu/+0//6T/94fsfVP31+eXnn3/9+uX5crkc+XQ6XXTWr19Odfz5etHXj9O7x48553kWM5KGAtAM2RQIGEkVwDkYI3QwR3GLFGhnMgQATEiL0ssdDRWBPaBYpA0hQiI05hRKrAg7TlyGYcc5m1l1nOdq5mDuBIgpU/A0pKqmIGCuAIoUTc24yCwMF91vlXZtc3Wd6nTVKiCI4IBuooJVtWq0wS6dQl3KiTKguIM7KBBiUrDmpG6RwwqciVJkWHvsaIkYPDkBARKV0ufIjMCmHhW1Mrd6Gcdaq6sNQ788FZkwZS5dCu864JZkJqa2BuUTQUIABEzBCYQjAdHEnXQt0Wai2HQjIgA5LXpwMwMmJPRE5hD6ZWRCMHJwd4rWbzAAYyJfS/vQGEA34BWSliUwgCLfZ+Oc3sCQL0bRpbySkFa1R7AfdbOPROwnrcJ7imYoNVXFgplT5LO31pi5wFJjt4U1rOuZresTL9I0QrcAMEsJQbRh0o0tf0NdzOwJFdzWgANYkBcgvr1Q/PwlFjP+OngiJoJ4UeJNVS0p0aoK3/RkDkBtBUkBg7G1+NTmaJEYYmauG1fhoconIgRmQnTm1GV3XWxu2pZcioUkccXN2LayzpEAylGbh26qQVDFSSGI1zEXNZag7ggBCNXRAOfWzEzaTCu0TWlFpgv0+yY8fWu9RMRmMUUR1Ta3uc6zmTAjgamStirK2Ygpwg0FVU1FXBsjM6s6ggknJnBforRcw2hjROSU3LVKQwfyCGEJY00LXGlmbpK454VCXvLltaqK5i7HcDcqx8WXGhsiBzc316VkHRBBwUVUbEpedjkzY0oEAK25g5qL+5JSuEknVw4MVdbNSSQjppwMzazKnDK5R4ytmiuSM7C7motoXXdQyAxEucocmH4DXiE7u9k4vbVObayYmYE6MS2EnYGjIxAhA7mnTNZAEqIg945V8VLRK0qjGWhynI0dETJjyR2Ukvu7PT1YTm0S7ZhTI0QTFRFty+wRkdDA1RNwSoDUukqWkjmJl4oD8IFpX6igaTcMinCdrt31NPB9z919d//Qv3vpXtvYap2MdAIi8cRYE6fUXTi5uFxOdB6duq4/lJxPp2ut4o5uUGudpmlXui736dN3PxwOh67r3SDMvEQpcaGUZZ7D0Gc+NZleX59fX5/O56fL+Xi9nuc6VWlTrWU3KwH3uRv6lJI3AfE2zzJTm+h5ns3schlbFZXFrgVoBnYZj6fx2OzdfXcHmdmygqsBEpMnYI6hG5IhemZE5Oy5G/pOdklau44v58uX19PLOF1rCzbYAZg5Z2Z0VAGtaARqwJRLwUQ91Wbq0ABgbeZKu+Fwfz9fa7tery8vL3f3D2stb+ZMb884hNba8fX89bevv90/ZS4P+8PQ76Z87VLucpHSNy8i8nJ61dpSypmLuIhURIyWq31/992HT8RlHOfz9ZJYutxlRgbociEuVUxrS8SArqrTdTqfz3W8migBNIWc0v3h7uPHj5fL5fnpBf25VfXEhJASMSiZgxsBcFhBnNDJFFvT5tXxqm4A5rDveix5l4sj6Ty30yk9Dc9DyZfrdW7NHdOaTt2aEgAA5dSVomSO4GCAGEqFvSugADYUMXNiw4RpNhnH+fV0ofz1//svf5rBPj6qiPz2y6+//PZzs/bu8PDp06d/+Id/KKWvU/uHv3/+/NuX5+fnz798/umnn15ejsc2Xi+N/egtjVcp/c5MapsKYYhDgh9SiL7klNOi5FUlS2EzBOJ1nhX1OR5VErr6nT2eF+zJ2RG32rLk6IjWdUO/O/R9ry5XxcpthqquEfMWj5WSsoipetNlAVV1coPk68iDY8wxS4N5ypYnreLqhMTsiIJuJs08av0W4NV0ITmwGAgYigciAUeCVJwKcMaUibMB0dIRS5QwOXCKIqtINkxhp3PXWWSqNTr2zMzcbBnluag5QJA0sMQQoJmAuIiaNTMjz8uON/A4mAKSqZmjo7tgaOMggS8qpaBhACgOj4IzQER0qxsGTImAKI9pNZKbgazaEY9RR2J0BHTQNR/bENwwpYTMCOxr1Z27LYZXXCuHYeFDHczN1849bapNFd1wCa1cwyGZgws0VFwS7ZdEdW2yjU5C4BVyri2c6Y3MSoz8Js1WM7iJO7qdqPoy5UZKidFzSK7W0CU0QHxjniI6BDJTsoURNAPBoIvWu9YXAmphzpYRGyQgjNBzvzVIwio6hjULQNxc1d7aowmXhyGlNTbW3YEoqsTRoXqcGA2iNJolAqBE5r+zkWOY0GBDx8sPWhTWZmZNmgMiairJzRyIqJTkCGHfQUQzEbGUCqx0WeSH3U5XW2uRHIGIOec6zeKm65RWXcAVMcfri9ZaKSckTEsftguquKPr7J7dAYxhcZYseN9iNBgKbiIV01bNjMAj5cBdYWlLtEDSiLgFq5oF9go7HhMwM7vgVqAVr7IcFWhg5IQKDhCiB4xs/UDbbhrZoLEdUgcAQ0ywzUAV1M1bI3K3IL0QYQHBZA0gonQpyqODRY5rP/B1rVHTXrbQvptsFNhM0N8q5Vd3Laibq0IoakPzZ2ZmLdBZYgbPzkVTMTPKBTkZoYBUr2LNoAFKUJHszEjoxtRxeUheMH3BFMGMVaGqi2HYHcmNI1UxFWRITtx3iYnVuWkiJQHkqEMzp4Ri7aLnrvWpFU6pL939br/r99dyTa23JJpwIiZCpTK5LlzvLK4z8udUukT80/Pr59enSeuuvx9Kt+t2OXWllPTx03dd7rjkucn5MnZlIAAxNIVxatdrq3XKBUSn4/H59fj8269Px+PxejpX8XnWa7Uy6azOpc9dP5RBdG6udZrnKpDmmgc1q3VSVdMWexTkFOKSX3/99eO79x8eP+37e60+zdLmcdenrjDkAq2CgJmqCTCr2tzqXKsYqNl5Hr+8Ph+n6TJPz9cTSNvnkobc7bvhMKSO1GuVOTkm7qHLQAlkzuakpAZxT0aN7mG/v7bq11HNT6fT6+vr4XDIudvtduM8pJQQqe97M6tVwOanry9/7f6264dDt8+5G4Zhug4x8OqH3TRN1/NlmqaSul3Xn6+Xl9PxcrlMsz48+uFw+OMf//7+4bE1PR7PTc6cHHyqbRSRJj5ra60tcUZtCZyJ3SoRaAUiutsdPjy+SykNfUcYemshMI4GBhNmLl0kNjFxUqQqOleXcRzndhnP09yr3afsDtJExea5qV+gPH+ehiFsoWZGBKJtHC+HQ4/EBJ4Ll8bWxFXdhQhTopJRE7dEOSWQVtVwXTHE9DJe6Uz2819fjs/3/eTux5fXp6ennBJz3u12Dw/vPn36tB8O6HR8Pf36669/+h9/+m//7b/967/+a3tFcJqn+iRPx+M5d0MpKWV6f39YZlUOYLoljCeyeGQsrpYcGUXrljvGigCIbgRoSBQuJ2cAYETOCEwLYx9VtRTi6L4vlAadpGt1qjPWFgJnJ4ztu7unREnJBGJyh4hoHjnyzBybzWiRwUTLE3cxkEMoMpaurbb8oTN0HSQkASNgW8IrAJEo5USEuYTkB1JOyArohu7AjoTkUbHJaVk41bGQNJ1qu4zXcRxbawBAKZVSbtBDgrJa1scpljeRqrVFOwgRJZHECRZtl4OrOJobGSzRjuboELnr5k5ECkhO7u7E4OgYSWZBkVr01aFbsCyI6NgYssE2rzFU9ZU/cXcRdQRgIkw5Z2QGJ73p53Fww0VtE3wmroEFsUIvawE6BoERABnpNuM0BirWBMxDJ3QbRuqOqjGXX0o8V7KMg8Nj5pDLmEU6vN2mp8Iax+W00H5L0w5unYAMUeyZFMxSSkyJKQEvsQdBdG1xUrHH20Z1ZsvR0FWDFf9OjFtogq8lmBHL6Uv7YdRfYswHtlSCqPeg1Ua3nF1btqawRMbHVpnNTGHhv7aiCHaECBEVldXbuI10XRZU5Lj6HJkAUcGBGZFzzsAkLSRcUQS8gJk4lqquKjl3sW2Y53me23phZ7VRQm/lb2ElxEBEpm2aLIKH0LuUGMEYXcw8bDpsvBRMGMIa47WQSdFMsOA5MXBV89iIrECQPSGhRcunmC3mYnLQbQyn5qAJA93hrQPSFhEh2xIJFo4bjjjQDeUQUSZWYqIwdAtAzHPXXhZrItkUIh4+7gQzYMacOyBFit0FEm8ZZGECjW1GuFBd1bqClJbEuHhXrWnEdkTVmH2bY7ccLvc1sHq5/j3aHrEhEVjEeCKnUsC0lNzlrNwaeAKp6mZqmtjddQYsrqYVVBmLU+dpJ9gqjCoqrbo7c6HCWknV50kFhYvTpNzpri9pV5riZUIbxbWCVEdtVr+8nAc00V0qxD110CNpzkyJgSkKuhXRVF3A0aY2VwAwJ0MX+fz8pAYI8OV4fR7P2qXHT58+ffrh48O7RAyGKWjwWuvr+bR7fiUsOaU6tssop+M8Tq/pGYhFdL5ej5fr6euXl+kyqWLf7VLKAqMaNYGUSgm/TBVxbVXPl9mg2k6IiNH6rgzDULUnFQOp9Xg81c+ff/3l8d2hu5d7Ak3TKB1dEg1d1wPhEowcd5P4ZZyezseX6/Vcp9N0fT2fnl6+nk6vTevcJqt1P5TuULpDGe4HYLvUS3d5wfSQ94W7DC5ztXmeY9IiUuOm7fuCOUHJ5Xx5eT1dLpenpyciypnv7+/VG0cUMrLW1qx5gdfXU5c/f3j//n64K4mQOXUFicR0Fp0mOU9tPE+ql8R8OY/Pp/Pz+diq3texgeQuff/j98NwGMfxOr66TXU+X67H8/l8ulymiqX0szRER2Ti3Pe7u4OerpfLeJ2quug4jpfTZR5HND/s9ocdPN7dH/ZDIZP5YgglIXhOSCDJALVpm2Qc59kUa00zmE8payo617OpX8dpnmSuoxnsh/3peLlcxlprwdzaPF3PdRoUEjC5VUAxr+jqJgjkJqJzk9G04SKpcUAA05xZCcbpZNDG6fzrb3rHwkjX63Ucx/v94fx6efr68vnh62F//92HTz98/wd3//z5S0rp68vX1/PrCM6UE3JrOs/tej1HtIos1R+ETDlxIiZA9yUn1NwBjYEzu8HiLvaYwzmQATgkQEdPiZoprO5BjCdlsDhqqpq74q7xLGWErs9dzd2cAS160qJhXl0cDRmYmcFt9Z6jf6tvQGfmknJXOt+6cldEEEsFaKyXYKKkCtpveY4rPwGhH8o5U+kcIEgt5MRAou5igOQURrG0SrPd3VWrSJ3n8Xq9jtMI5iEGAiIOH3syeutXiZAfC/SvVcyMAFNqVnK8D6KFOYJVLx+UnNESLaEr2ghOzaLbe9lYOoIvvocom4wYJzOMEgLXaEdwd3OJGkciCt9N0xi7EK31yEsss5m5AtgW1WEEtERtmvsS9RQ1CYC+himIYzREBewIcgpxPdrrVq0uQ0kkWguOtsxJWpuzFwaI6YYMWA7p7eRFwc0NzQm2i4Q2NLYSYrRU7hAhJ2CyUFiGL8Zti8bYmviiCAtvVPMBvMwMQIkIki3QcO0aD+C1UPtmMQ1dSD5wWN8Pr+xdQC4AAzUzU4kmbGJmtERggqiqqDfJIKAQLJK7q6logPBFA7fiQjOLMDdbMo9RDSgndMfkRKlgIrKY7ANE9/mWRqaizRZ9vbpBAC9V3YIdpFkTlWYSNJWbqiYkEdXWpM3oLZETFmZWM3MBBdWMSyHGOi9eIC8gurmpCiLKTS6GLyUWDr48VBISJiYM34wyc2ZGcnRIjCpuJuiyiCFCA0WRvrHsCpqbafzY2GJ5xAuqLxaTrVFquQkWBxUFBWYmosoq0pzImUp0NUReTNd1lLS2qbWG6BkZ1zahbQtqJtLETMwcnIbU4xKMF/tK/Z1BZJOUbc+TLeAmLeJQcHB0UPXZ54qI4ATipu6YEqQMqSC3lBJV5GouzUSMoWVUl2ZuV3vo7DQpTIAzoXB2bAoZzYEKaQEFmedxlmYTJAKCHmF/yIe7XJuLyflSZRadmjt5m79cnw8dXx/u1aW6Hob9OF3FKxemhJTIE4vVOldtriRiWkUzp33Xg/PY2vP5RVWrJnPMuXt4ePjx+x/ePzy2WeZxSmOdM8k15/PpeuzOXR66XOo0NYGp+vUiDg2hqc21tnFSt5RTvxu6d4/fGSX8epzNVCCnLucMxA6g6OLWTA2xXq+l63NX9vv9/XxQm65zqzJBSmZyPB7//Oc/2wzfvT/td+/JmQ+TeQIngArW1NUZgbKqzaqX63Q6n0dttU5zm8Z5PB2PKo3QHDUloAzAzgUmHeHawBsm7e774tKkHa+XejkhYnMQrWaK5H1fOi4P7z/sX15E9fn1eHx9GYbhcDiUkh4fHoioz6XO7WU8SlWCjDZPU319OX3un7pCiQCQy24/zNPnz1f1lPJOcX45niLM/TKPVWV2u9b5OJ5O9aIEu4d9uRsOtTMZp6l0J0LyptLEMBcFdQSuClg4DZDKabqezudpPLbWXp5eE+Vap1rrw93+/v7+06dPHZHUy/lV6mhEaAZeHRTUbJ5kGmWetAEQASZoTeZ6vV6htrMbjpPW2RC5Va+1Xk/T5XKttQp3JlXqPI6X5JkSNhGT2XSGyEBp2pq2+Vrna2vVTBwWAZS7pcyUcG5tBnVPIsIGKaV5atNVoV1+zp/7/C/ztU1TZc539493d3fDftg/HHb3+/4w3Nf7+/3hcLg39dfX19P1QkRdV1SbkIogcEqpSxSDurYRHshBFMQ+G4goQDw6YATAAMKSfWzNJbyJ0fRjIJGzpdrYqFmrtaZ5cipcEpdEmVHJ3Y3B0R29gUJ4pnlZr0TV3Nh4S+6JNb5wikQJImJwEVnLbgER0WpzAPMqYk1mkHmaaq3oQASAhASyKidSSqE8c6BVS8HmCuTMUbzM0awBABxslC0BNstEACkeuCZyK30NMPEmRq6iEmuKqVoE5K3NlQuZ4Td5x7aG1S68k7s4kBkGgRH6omh5Q3CAIPPAHR0jUW3hZtZJVCya4ove3NaJBiKSL/ENMfKMd+6gAIslDdCDZYkxXHQfxTgSKZZsijEobP2+5rZVtRCTr37GeNEFcVJkCIOai0aEvN0kb23n/VZqtvyecGl9XqFGAKDIZLpdqAjTRjncfn1TL9VWN6/ZMj1FW2Mql1YAIjTT+D2uNQmcEJyCwcF1UQzJlEfV4E3pTRwvNAPePIMxPlt1YLr0CXLcbL4IfdaMPfcQHK35xowEoBL9B8QAEREi4atYXHJOiOgVDTzTQAhIyGyETA7uBGBkJCJuEIqxNZJqmeKFBbK1FmLNiJlQNWnR5mQqjuAuDilIOEkCNaM28S4HYF1ghwhGl80qxYv5Ykxsty/GZn6dj0cOs8GaVxf2503Pt4aPoHtIdcFVzBq4LkTsynkBIjFakFGqS2eohuAS8+o5TGxrjhiixzZDARfyKrYi5mIm5sHEJ0RaOz8gJQLKtVbVpupptbb8+2qs1gScCVtnBTYpjlnQ+oi/d5xsly4iMvrKY27aPyBmMahiJgKmSEZQAZ1JiY2ZUiZmRgdv2Jq3OiJOqpDAql67tuvlcfZKWSoTcGbcp5ZMzJXNE7Cr2yxaW6PJOQN3jJSJAElNx1ov4xma5Fqx1Wm6vp6HrNocqJlPhwcTHW3qDqVcS1EWBHXSplVE0MUgJaWCuRTqsE4jJELxYsOQ03B///Dw8PDwcDjcj3g1s/T161ciqrN2ZX93eLxcJxgSpz5xl8tAqWuziqqomjphJkq7w2G/3z8+fODcczqcpylzElFT4D5Rl+fT5Vyn4zTPCjntmErO2HF/f3gHqHxq53kkzSUlMHl9eSKFl+fj/f7ju3cfGL7LSbruri9gCOou7oBozJAyd72PV9UKTEQ4z6O3hmpaZ3BAsq7jh/eH0ifTdp2vBK1cqT8WTDqrnZ6/Hl+eSr+jxACWMjBTJuj3B8y57IdR6mW81jodT68ONgzD3W5IxMwZDFTq+TwmTI/fPfb9MM/168vzri+7vuv6tHt4ENPT6TJN0+zaFK61TtdrrfUyTdW8GpzG69++/Pb4539L/TCZ3N/f92y5z+qZLtD35f3797u9zGr37x7Pl8v1OudS++qp7Ka5jeM8TXOd2tcvz+N5FKlG+uHDu3/8z//w/fff3++G4/Nvv/xs5+NTm2udvbV5mqCpE2dmI1ICkQpcoOuZCGobp6aqLs2lIVEC7+T1dD3P43Wus2myNtcLHnOhve8oU3DJotXmZi7JQKqIzojOCSQ2h261zUas4gbEhCBNvDEzYjLzkgoO2Fr78vmrzO233z7/+utvr6/H4/H0ww8/uPuXL1/O57OZ3e2GT58+/eEPf3i4e6zSfvvy5eX1yd3bfBnPZ9HK3DEjmKs21VbH6q5OyIacEzHHIMBEYWO3HQGAAZEZXTghQomlStk1NsK+qIss+nTn0ZOLS2vtWkcBxUyJmYHV3VwzsbiqijMwsTsSuok1sAh/WppAVDHx/jA83B8ATLUhoivE7h8Ru1wK44QTKECyKDcZx7Hv+5I6SlxnQVvIFVgeW8xEnBIBqjsRdV0ywKUCJfG6DKCpuPo8z9M0tdZcLQ/dMAxd1zFi0DZBSITvXUR0EldnygruFkbGxEBECQDB0GlNe3QgYpd4RpNjpDMV0HUTDMDIsZMHZI4gX4hSmjXgYMViwQwZApiJCDKFG1PdTSTk+jlni1UegQhVtVWV1swWTMCAAp6JA1Otc41g/qKJYQmDdfdIUsp5QR666tzBfC0nWQpV3D2tGrjb/Pc19wLe4lJvQsNjcaKcFBxW+32wBaUU1W2JClRoUSEcuHYl0t6sAzEjFluKgIhIzKS1xBq8IGKAukCocvtW46WXGAjIASgj7CA4raUCaNGBGYCFCxWWImpHsFBb0xrg4aawygQtmqA8MvMWn4WHrSEmvgC1VjPzAMnmpRRm7nIxs67rjNnMIDKN1aQ2R85YEpEhUoLCuaHWukjv1U3VADTn3NSu04TIzIKcUyqt6TTXcZ5qra3pfr9npsv52Kq2JqYVPSeKewjRRWad55pzBl3OWvScNhUmDmepLaosB1BHWNIrCCLSIhExcTSpirSYsQBQbIHMzM1TslUdwbCM8yu6g2idR1ehCHhdqdDYwJRSWmsiGriUABHQcKmGbSpgaBqbz8jid5F4XCQ3N1B3rW0CT45OWEourbUQt6kOtdVtNt0qcMKUiIhFJPAVghPZaslcU2FX7NV1i2RwI8k2SLqp7ra/xZ6YKJQ8Kqja5rlFGIlpRdKUkO3ibkgeT5jF/Ktg7q3WebyYq1qhaej1gQdEu+6GrqQsbTJAZkLLzDS3NsnomMS9ihTFWjWlexUB8/FyHE/ndvW5ZhH6+vX5fDl/9/Hu4XA31vZyOs9VciIBKR0+PO6rj6/jK6rnvnMjkxkUqsCwL0pQuo4STtdxf7dnvB8ILVFCsiZtnkJ9mc7nMyIipPvLZaqzIXRDH/lmhgag45XPF6nX81wnRAcndQ9ZcUqpL2WcxKudXs/H+2tOVFWubqPqqG0S7EVzspSBiPvcWbdT3bnvOCdOYl4ZcJrHWm261ut4nk6d6Q99b+BFtZkKEDoQlY5F866/83tuWc+mLuN4mcdJ6uwGzFBK6nZdN+SySyQu5zZO8+lsXU+YrTY5vTy9nI47raUbRBoR5C6BQ9fn/f3DJPr4fN91+Xg8n4+vibCU1CcuKSGQ1jpfx3m8XCgP3enDuw+OEMHwgr7r+sOu567MY/3y5cvXp5en59eX10vYQJoDpIzQxP3z88v//Jd/HlWfTufHx8cPd2U/JIbW6iUleuiGd1ww9ZPo8+vL1y8vx+O1ie8ODwAkYpfL5fXpOF3qfG1qc+nQ39+XUn789P3j/f5+n7rUnp/S8/PL599ej6/HseWmlvs9Yeq6nsEqXPseSkm5YMrROxFss6nWWWc0mUZVRROQWeo0dwzeRGojw2ZVVbTNqgIWEXyKbkjGjBR9NhC7fxVVAPYwUhmCgaccfEHOHVESkePr+XIep7Gq+PUy/fGPfyyl/Pzzzz///MvxeOrKcDjs/u6PP/74wx9Tyc/H18+ff71cLr/98rdjSjaOIjKZonkEGS+xPRHUaQbgS5BTjBBjIGYLFQIADPGml/5aMHRc+IOUIvJmqfeZptpUzGyqc1MJ2YqjL5xHgqgMC+8hGAITQgxAXdxE2qxCDA4aYv6cc1eKK1SpLhHvyaUMRJRzx3BW9Xluc5U6S2LTBAjEOTsiYTJiBUyG6EuIJhEhMTkaYFMDZI9mBmIMd6Fhk9qkijY3RYIlcdoMmFd7X4s1ePGC2VIPycwIgMA5dSmVJTxsaRbnDUYg8SZtjpUbEX3ZcK/fg+mtOMVjLTaCtMXdGkImcmRCfOMLV+8eRtdmyKSYcs7EiYhi8VtQDkVhM/GCGGzJZEeLkcuNE97JEZCckb5JO3/TyIO/heJvoptFLwzLhzUzvimd3Lb4b9MWxK2PKD7Ftg7d1jODu31jQNsC59zX//x+drP4L9bsshuaytdw1yW+dU2330Rmy/lf0NhWmgecorfU3FPQITH3C5DsSwGWRN5dRH1S5MH7Uqe9XgO8zVh/R4HQMq1fc9GWo5oYXJkcLRJJwvyi2kiZmNEMnQAtIVEuTgwAog7Q4gKI999aY04UrKphkDTTNC/VOhDiPG2tIYQS0FZqiWN1jxQvcReDJfxpQaK4MmoxTESHsLUKrkJSWIuDwpewPBDBovMZwisBgOibCD0hNUQTMa3+djRo22IRsCOsI7/IzA+H0OKRdY6GaYxyeMfIzhdwUmV3cycSFp3JDMGJkrtGxzmAOaguyvoYXkNKCZzcUcSIUhDZi80MiTDivuA2nGwJCAzh3QqwNoJ2/VBLzp6H+ZIX9VgguaZqImpCpu4gYA4mBkBIiVPOXHLWOjar0lobVaWBMI9NxmxTX0wzWCHArO6uTJrQEnWl7ITrDJodzdEdoYn6hE2l1moyuSjWYo10HtsMTLnfHboy1FrbXIdd7vsy5M5xX32qUF2QkoOkOoG02Q1q0ypQ8rLvMHAmRwIzu16vr6+vWhsAXMc5jdPERFe+vp5Pj6fT+G5ywsP93fsPj92Qu55ennCsr9d5PF9eiZZonAuP+XLdQ9YmOtdLFSYauh4IVfU4y+vcjlOdqs7aDBTId/t+6LquPJYiu86dplwMKcC1z5Odr6fz9TIeUy7++G6XyoOp1KpNRMGBp1GqAuZdX6ryiGZStV7maZTaHHKCMpTd3W53tyv7gpNOl/l0Pc12BmpNLnPz5+fXl8s4t6kb9lOTZo0IMnFKtNv1BfDDx3cPP9+fTqfr+UgMpZQhFyIKL2itdZ5nxvMrpy9f9jnnUoqZ5i51w+7h4Q7R7/NQSvf8/GwGoYyxsGqW0pcecn55Pb1e/umvv3z+l3/76/v37//xx3ePD/2hT4l03+/u797v7h4Pd+8EsJQOoZQ8Mudcyod370opp9eX6aLHp1OrVc37HYzny3S5SptLeffxw7su14eH7uH+UHJf5/bbV3s5nc+n69i0gWOmtMPdrt/vh90eODUHBsdpVpGxNZimqzWaL+gNyElErRkYuro3a+pNZzM1FRNFcwM3ectJIgJa2QUHcAE3BQ5sR8woq/2nSzlz7z5fLpc22TjOl9P05bevP/744263Ox6Pv/766+VyGfbVVB8eHv7xv/znT99/X1V+++23p6cvP/3lL59/+eX4+fN8OrXL2GSKPXfKBEAU2hNwV7WlUQ3cHDzaGRGcohk7UkkBeal1NN3WjFSIjJ0QGauqT+Kjt5BXu6UUNQSgEZGjwoBB6cfKA0jEqAQqrbU2S21tzpB1nfTF4zxQnUi434kolVJSAhHD6yzmWttpHDFnSGmXM3HmCEhBNGdf+gTBDTHlqAIxBzExNHQPM4EBmllTPR6Pm3MicS65C4VNPD3jIt+aT7Z9KmJh9kj+zzkzJ3A0JQ2/oNoyU9IQqCcAYOKVYuEYrWwYKjiqBccs04cUWHWZvQEoOG2pp6sk18wQBZ2RmYkxhUgmZkyxbEYCRZzBt9ypBXUtv1tCDcLeirYtk0BEBL4wiaG6ZiYkjsX0Rr98o3m27YsBajZJ/oafgu2L749DvQGvjTbAFaBE3pLKwhPEiHwBBSv5sQGvQDrxc3KMPhUA14KUmAGqqsoWThsBF0vUglN8sjAEBPYAADCnxc0dCMkYcbk1AGOMHjQJqAB6mEsiBwRWogXAKMR863FbJnQLWLStxnSL3wSAwuxB0N7AVlVLvJ3K5YuciIGBCiKmZYjZVJb6oKBZ6Y1owUgGxtTbCiOtmYgRuBd0R1dw3ibIKDE+RlQ1jgRXSh5yySCoNvB1A7wI3ghFAkdmE7ZFUwhClhEN1mEbU+StLEfAvNaq8+TaMvPbnPEW9JMlROfIFPRFdhaxzGDOjubM6PHIJVBtEdiGyhEe2lomdGYwhOwaI2PEKDWeHWi9Ztf2SSEn58LgSzpdzsXdcRHBL/iViLquS6m01rbTHSAsCODNLMzM0T6/vcx2+8TOqqq4ivmECAQVqKmZI+fSd7vOfMAk1YtCEUgWQQgZvSAUhGSezBObkTcWZXImyM7OZUhlR9PRqEEiStDUvdk4j/M8qlUm8mRtFnbNDMOue7i72+366+vpfDk69N3wuB/6XEisnedLHcXIHbQqCEATwFl5nJkSIzZFadBlqqbTPP36y9/I7eO7j/f39ymnBLiA2XG8PL0+77/uHx/vP358vL97zB3m4oDtNH7dHQfxGdFFUESu44x0FAEV0mb1Or/osR/2UIoRvlyn13E6T7XO5iA0YpArXb8b8pDzQykmeul23PVcSnGg4+v151+/fP36fD39rQzp4f1dGTIzn6f5eD7VJpd5UgLIZORTuzy/vpyuFxGpYEIACaBD7lPqM/eJMonoDPU0vVwmrzK+np9NaZracdIqNU3j3OR0Os51pNKZqWil1A/D8Hh///z8/PzyMp4vl/J6t9+HStHNEnHm1Fp7PR3tbz8BkrkPu17d3n14//5Tv98Pe8pzrT//8svwt5+Q0/lyqbVK0/3dYdgdumHfmh6fX3/7/PW3L18eHh6Onx/ev7v7cN/tuvxwuHv3OL2v3gSQc2uaudwfyuHu4XA47He7eZ5/+ukvT19P55dR2mwO8wRPT08//fWvjw93Q+aHh+6wG3b9h4e7w7v3371/9/1//5fnv/z1l98+P5/Giwog2a4rj4/3Dw99vzNKLYzfZZLW2jxLrbVNKCO5MUIOqXGmTB51NSai7gIeRZDsIksRdWQd2eqs4dhthYKHGDlzTonVpelyZ5YSFaGdp0nEXl5ep2l+/vq62+3M9HK5jOM41/Hr16/H4xEAHh4eOPNu13/33YdPHz/+8tNPv/35p6+//Pz866/HF5c6qSp1Sz+dGTYVMQRYwq2dYp/5NqEDQBdDWGZSFnHvABgZB8iYGAkdEcBalSr1PF5VlRIPNGQERTRDi7IBJiZ0B2smK3ZRV3UTizBvI9Cq9Tpfy7VMU63jVJuoRrwCITIokBMh5lT6fjfPbW61is5NIAubdYmZc1QfAYATISYEdCR1J6Ro1MNIbQd0g+ZmqrXW8TqfT5dpmlSNo22k67bYCGlWm6p62Bwj/G4xIcGCDOJYqqOIATrWkPnGxYCr6BuC5TIkQFKQEITFehmLCSEuyQWOSICEDMlBHcLjBeBk6AiIZoRvCIY5griQmTnnlBLEWqgrXE7JDJEiYN9XQT2GtAi3/C53co/+om1Vi9yOWAC2USMjMayV2ze8XSxLS7XUCtbz2pNERIFUzExvYFafy2xzkyUm5BsMt4KMUIKjQ/Ru+ppR6d92ad+qmOMtZSLgsrIpGLf2Bj1vgNfKeK3czA3CRgKEtxZmSATK7G5LIKiGmqg1mVub0Rwj2iKaiUwWvtcBKVyj4aaM8uNFpr2s6Kul5BsttviGNRadlpm4IROuTpRNQBSJYiklspiomjGk5JbBrIGTqkcGqpmZgoqb1VrrmgcRFQuwcpBr7gzxkmhKITQkDHEWE95MGIPXoQiZE3WwJfluFTgicoBgBIqRKyIBEyOaYkQw4pKELG5iZm2a52kkE+wzkifLCyF6g71WqpVADVEj7ddMI7omNj5kIXcnDGmXq7qZQUpJRIK8ZiIHMxMAQ3JAa60i5Ui+WHWTYX2Nqx1sta8up+ib2Lz/H1l/1iRJkl1pgndhZll0scXdY8lMAF1F1NU9RU3zNv//BwxNzzzVw0yjgEJmRoSHm9uiqrIw813mgUXVLLKMQIQAIsxMTRfhK+ee85334gS9ugvs2pvZPph0rRHbch3tlsPega4cNpxwFskli1SimVgJHSlw3w+8o+ic0YNCElok1q5C4nFM+y6MROyGpaqqSK4VKpP0aKzFq5MAGQWixCFw5wJQ1/Lydnq7vFXT1A2RqK4aGO4OdDzujnfDLnV1OqvkvIpKz7QLDqkLwzAs2i7OoIBqWKqbC3gO2PWBa7UVaoq1mi7LMs+zF/EqgfF4dxdCCF2KIXKt+fvzV3NJXRx3A5L1Q4pd5Ejd0D98/pTGICKR+DxP8zwXFc458tCFWFlyLm+nCcYzRD5Py1yqqLsCdC5Q1zKHTH3FFLsUgsVkwTngkIb9cdf1426f1+LPL+fX0zP8YuN+2B93j/efqujpfJmW/DafslRtXUtleXr99u370+lytgjYMQJQJCAw0Kp1KYuUdZH1XC6yLuf5nLgjj4ihYFpK9tPpkvP5Mhfzfo+hLzlnqGq1pJR2w3A6nUpe5svUNAA3dIB+7KvK5TIv57URFJdlCV389Poa+3i4v+v7fn+8e/zxx5/+6c+/Pv3+9Pr6cp6WspgZ5bq7S7v9sZQy53KZp/Xp6e10Wl5//fHz3U9fjo93++Uyvb1efn96Hfa/9uPBnA1CisN+dx85Df3usNvf3z/udneBXxFXBAWHZdKnp6fff/t6vx/BdocD73f98Xi8v8P97pH6uR8O4+737tu30zpzR4eH4f7+/v6hi11xWFUrM4dgy5LzKgtjcTdrxgF3gBa5CsRoaGpazV251cQ5bkq+glUxUVMncCaIjNWdvG39mDlSiIRUrd7oCaqKjiEEHgap6mbzZVrnpe/7setVtSyZE3z79u3f//2//+Uvf9odxt3h4AjDbiQAzdXmLPOaz1NeVjRHz7fDDMgZ3GBrrr+uABCgNcW1cjoGb9dJB2RDQSRw9Q0UCYihXeraws3Mc4soQzOpeiBvc1UkJvd281parRM4EVVQ1WomhtfrrMg8z+6+LFlyga1kMQKRW7PvgoEFDOM4qgFcLtW0OpCYqPccQuxaUw0AxVad1irviJHYid2MYghIDghMKrVkmdb1crm00yLG2HVD13Up9YgsqrppUASb+bV1cbs1smybQNrixhHAygYtdQuI1AxeTUUCb/yOhoQw9EaSw/cF2XaGNGiAe/NKXzHprXfI23QFAH9QObwtKoBoE6gQ0dHc8OoODgTozg6V0G6cqrYu/Ri1YvyggbWZBpBu+Md3YckASMHb4LWdEdcNi7vndS1SW9bydkN/yy36++N+3xxtXjrz211K4zjAB0OY2ftOE64ks487xNtc8h5k3OZOBriarXzD1sMfR8bt5/iHgN71V7Spy91FBMCozU8fHsA2w1xPVjAlIETA1ojVpkAzR2sjB/p7QnYzqr+T426PirYOIjC12ogeTSlTVVEVt2VZogEgJsIQgjWnXQgAypvFMYSgLS6AwK0qqpZSspTyDsYrOS/zpWUCiChyaG53aAYEQ4rhD84kJoBmaeKr0Wojc7b6CqKWuagATiFwuF5k1Brap9VptlaGlkQGAEVtuzMzUSmlrfhrqTVLWcElBvDQ7hnMbSPhAQAZhMBAwcC3zwk4XDFgSkYMjBQjuXsAYLmC5d7hF+buCtYIfN4YxYxmoFbdDBFTis0s37KuRKENbldDIV4hKX6b5m/vdiKKMbbrzE30aqHg988IYmtnfH8/X7/RenOQUrHWOs9nxwsHSFFDsC6GGEYIgsmzzb0NgCVKEog4dCGZY3HLtdRqXtcii2phtBJsX2coa12LOQSk5MzAuJY8L9PX78/PbzUE6A8hcATOwDAe+rv73eEwdMgxGMhSgaSuBOaukem42y+q51xdLEAkMNOSBcByz9m6KEXdkC4XJ3ety7K8me27dBj6ECgcD0OKPQDVWubn+eXlZZ7ndZ3/63/933/48slM2znH4fNuHUVLH4fxfHp+eTpfLtVqCn3Xx5zrKvW8zvXtBVJY8qpmMcYErlTVZa0l5HnNnBIEcqJQy6pzRcSuHw7H7tOwn5b1+fR2mfN5ufz96y9ffvxx6HfIRBSqTqXIeTpPdSpW57q8vL18f3k7LysFTwMzxxQQSWtZL5dTz2Zlnddpyes8X1AuVoGw3/UjD0f1JZdymqYpC6eOu6FdCquWZVnQNYTASLlKyXnJtcu5XU93u12tcj5PpRQz+Pr16/fv35HD58/Pfd9//vx53O08RUrdw5effvzzP3/9/vr78xtMszkspQJy6rswdEfXInI+ny/LRGox+TjgkJgA314va/nqFPvdkeMwDIfD/rFkExGxSkSBuxT7EHrTs7vGAbqOQgiXy+Xp6Ql9Ahh342NKYej2Ie4xxq7fj8eHdNh/f32pULs9pC7sdjuOvOZSagU0ZuqHOKxcxl5LraCqCqKJ0M3AnZHQwcW1qLtCQNqUb2KwgKQAWsWqokJAMsJGGcJWJW2Gqu24IkRijhwQGMC2+2xkFSlWmmrd913oYpJYa35+fvq3f/u3x8cHR7//9Lg/HO7v70HUwdqNFDMnThZkQwwCEAEjQQhEJI5m7Wxu64sruwnQwZkDEBgaAjKzo4NtGTpHJGyXzk3PcMJGKncCcY2ucjWvKDiYom4YmzZ4IaLRdvKlQIgMRGa2rmvOeV2LFk2pG4YhciAKhmCqUmq7PY0x9n0/51WWYmatqg+JUt+FENvtJgMik5mJOhFTDA6kCIECBgAiA6gqxcqa52VZ1iqI1PfDfrfv+77hjmouIoYhxqi3ThV1EHs3hgNxCIRAqOaOYgq69USHbQYiBKzm4bblcgyEt7thuF6awdWB3d0ba6DJI2h2bTWBNis36xD+g/HKEAMRWcMwb0mJmzu/3XOjg2Fz4DcG7gfPk7sTABI1KgfRBu3chLqrgvQuw7T5S5Wap42IrjqN2FakbeAbP+LDtPQPgyZ++GqibPNFXeeS99/mfttMYgt5tJTix+1hW/HcnPXtK4Q2T/oHvaE2r16M8TYEXn+Rt1HgfUY0uT1w1YrmhoZbxnQj4PvGm2vw8fa5AkWVzSS2yV1XMKqTbfwwN9suBB/sawDQ9i1tylFV8i2G2U5mIid3cljXtaoruIKnlJAphOjuLZXKgWiD/rS3v6uCKZSrZxEAQkgxymVZl2UJBA3ymVK6gcQ+jqHq5iruzhDeRwonaRxfIxUXaXSrRieRsJWmxjbPiL/T+Iko8qCqgUMIoUEXWmpBdBUpVUqppdZFLZtVNDUT9Nhuf9XUANvPcWNwQiQ0gxYu3voqNqeaoSFHDhgsuWPE9ixxy/Je337QbBGIt+EJEUFdVDTGGGMiolbncEtr3jbC7ze3AHh1FNzede2F+Dh1tYXyTRXe7Afb+fGPg5e7m+lSUEyWvIqemTEm6zslNGBACsiBOCJHDj2RMBIEN88qJymru5qqVZHiVgJqLQr5AmW1ac4hRAoMBAaWi5zn8nqZpwpjBAvBLCgiBMBE/dh1u8RFwcVVDBFMnIwIUxdH7/qZoaqsVdR67grWKi4rrEkIuIohWKAlhADmspRJfZ2XdZ69HkPXxRAwl1qkLss6XeZpmkpZ+z7lsox9n0W7bkgpjeOIiIEwdGwoxaQu2bFdj8zQL8t0oeIRVX2gbpdiDGFRRGJHKCrLvAZCpqqSz5eTeklLcoDUd7u7Y+y5HxJ3IS/59+9P//G3vx4O9/d3j7vDYZU6rVPq4mxcyvz95fm3b19f3l5zFUBNEYhTYg/gsq6X1zeumVwvl8s8z+u6uoKsjiAAPCSptV6m5XQ+L9W60ftSUq3LsuSq67KYQWxMIHdVXdd17fsYmRP3YRxy7rro7lJhnudSiiOJyP39/Y8//pi64TD0nOLu7v6nv/zT788v//HLr/X3b0u2w6HjFEPfhRCI2dEUyuVyEYBcdck1l8LM6ySvb/OclUMXu91uf388nN9Ol+fXl5hwms6lFERiimagApHxeDw+Pj4Ow4CIOS/nszDXZVnujtT3h88/fKaYjo+f7j59+u3b76f1NeslpVZKXUopl8slBE5xYMZx162XkKIuKEWExbDjEKgLHImtCR5qBkaKiKFly4kohiDMBFDVwAARYojRHdXaFb6qVNOAjCgIzJGYYuKAkdGBEVVsniZVaXoGoBFz7OO8Luu6PD19+9d//VcDffzy+f7x4f7uMRHP58syTTexoZ0P7XPOjCGEyMHQQE0BgTY0eGOXw/a/CRGtfe5v0xU0UiVhYNv+XEBGhU1BeV/wtNM+UMAgpbqDqUrV5u1rAwEHAGrW94DbFvSaGczSLNXkTBTa0WlVzBuvnBIH66zv+2b/BMLbdS2EBgpvMAQyM0UFIGQERDJ2wIDIsWtF2u03VskInGLajYfd4RhjbGFGQAbkwMk7RBYtAl4FFIEMwMDxqkUBgDqaqxSxYGYQwQGaY4SBEMEUvZFUt9kCNlOXXymiZoYMDuag5GFb4XmbJLbdjrubApBdV2zs4o5q0ZoFvn081e16BtycT+3HtvQc4tU19j4AWWNP3gDi7/FD39jp712/7m4I2FbJV5PWNhKZib2HAY3fpR3balW2cRM/rPNu+6nbxhBEhew2D93eWbd56N0Y1/7ZHNQE3oNjrZcgxhBjbG22YNT6CZtvb2Nw2IehTZzIrpJea0F3+zAvXp3ydhMcVauqwgf97PoUyfaoNoiFE2BL8dIVe3VTEPmGjb3+XYgMxDc97B8EPHIiEvRWV2WlFGBqWQGNZmYUWvVQwIbmBlcjJWFma9vzUtt68zoxgORSQVUFwVIKgajdWW06IgICmas6uGojsb1Pq2Z2BcwiOpqBmZu4qyMBBEREB3MTMasFYatvioHbIySOZnJ7n6i2/qJca1GrhEAM7mJezQOAOJC2fsL23oPBA7BTM9a2G0hzCBwcyR0NkFuJFDspBwxXSItdAwTv6usVmALtnhPbbN04HUTNj3hbHd6eQ0QnguahNH+fum4CGFxZ9rehTW6Un/cHgMxXlpy5gSM5ESET8qawipR5uTBjqM3Ba30Sc5EqCujA7htazby6TIKlXrLq9l+jo1uQYiZwPtm6eFnz4S6FmDg4sWmGpdhSXAGMqDjXaksVIwoxcuQW7iSiLiYD1WrrOnNMKYXOu6Hr9/2wLpXQKESNOusqZiom5uYogEzYdd3Io1dpgY7lfHlJz6HVwuWSRcxA1WSazq+vr//P//P/9e3pL/f3d4Gx71MKQIR9349jpyBTXvrpZCJNs3VQ1bpqKQ6amAHjAERjDBjCsa3Qwa2Ucj4LWKl1WpazQo4lIkMYkqBdLufz9DbndZnneV7/+vdff/7xzw/3n/b7fa5lWifuAg0xf8uXy+Xrt9/fTicRSV1lphRCRCMAqXmdJ9YayZdpXtdVxQnYQBmw2UHa8ZxrKUUopgZ6sWnOao02HmOMxOREDrmWqhIjt7balNIwDDF2Jcs8rzm7qMzz/PT0/W9/+1tK6X/93/7LfT8e7x5C7KZ5/evffvn1t99Lfen6PnVdjLHrY0wsWtqA67UWqfO6TGsKzHI90k/TJYk7BBValvz29hYilLIuSwagptw2EMswDIfD4aeffnq82xNO63r55ZeXwE9/+hk/f44Y8dOnTz/8/Kcf/vSnr0/ffv3+99+e/lr9jRmleinrNM2RCXdIEFKIbYOzvWQIMYSh6/u+36zfsGFXts8OcIOSYwiJQ8GWVQF0DykEhUhW3cAd1ABQ0NCdSBQDRUgpdbEPIUQK0zTldcGtfk7XnA3U3JqgJTV/f/4WEp/n6en5+26367lz0SCupTSJq52Fpo0D+Z6tYwsKNYTQCAEOxkaErUsR3d3ctI0T7SLmbmax74hI1MHUXNFuHmFzVwcw2ypimqmirNnUtiigVvOt9pcBGYiQgCgwNXXKpHH//ZZb2u4CEVvRU2AGotD1nKKYIsP379+RW5gfNvd3MxSTO7k5tG69BmPdYkoUiIgRDK9FN6qttPVwOOx2O3cspZQsy7JsFqWYEAmRDCG2Vpbt1HIDVzN3VJHGDG2rpTbTIkZFc2/2+Jb8Am+IsxaabXy0a6UeXRld7XD/sJRrXuGPnionYkRh0jZjNrfYBvZyur0K7mCmbtZqhLaZx//gRsftRqDlAf2KcL0+DoAUA6Lje4rx+o1X9/77vg/hxotC/MO41nCUHxWU23fdBq+bZmBmYKDwB03uaq27eXoAnDet7p1Kv3m52tHe1lgxspnVWlHatEQfl55m1oDmhDctb1vpftxjNnMYYnNVbTtBU/XtL7WPfyw0Tat1RRAx3tqg2h/w/vzTlS7bEgOtMrsZgNpIZx8oG+9fwOgEw1DEHMBFha7RA4BIyT6EKIHbHhhqrTnXdV3XdW0WqVq11po4FFtrraoFwZmpIWERb5P3+4ve+KgflEhtsxeSxxDIQVyaaRC9Lem3SKO7uzSH6XZjwBxv8mQb45qAHdoPbvqpKaIzoyqoVbPOXF2rtjGwNQcQotMmIForRAP3WwkVubWmXgJHQCQkg62k/ONb8SY+vYtYWz283d5a10fbusIc/ifVlgOC0sePwO1bbu8lM72tbs0MgQE+vLFvitf1M/rxc2dmtWZRV0NHb1vdhmZT8Vq1VkVTR1UghSC+rkttI3UIlKjXFu2sMk3LMptWORz7GLsQnWNFCvNaVgEjEKN5FV3qNJeqFvvBkYpUqrV1Xa8li9jb+bQ7Hvq462M8jLsfPkPsxstSL9O6xiLV3PP7H0BMBIf9/u7+fjcOdV4R8enp6eXtmf/v/48fRCawglAJLDIi6OXyJnV5fv1+nl/nfHk+fXubXuMQ7j4fhkPEREXLtKwi1d1UpXjNWqZSneOada0aQ5eGfn937FLXD5EYENTBS82X+bysS65Z3Ym564cuDbXa8/fXl6dTrbOUDGAE7hgPd58Pj18shcJegxeCy5z//svvv/7ya54ujEoGoBhj3PVDjOym5laxLuWS62Rl8VJchGKMxwPuB2X2yKvpnFdRCCH2MaWU3GyZZtGKzApeTavrooJaEvFh2O9SB2bq1QiEmLrdkkEc97tdHNNSs0bq7453++Onz5+Pd3cOmLrudD7/27//u5r/+PNPP/7086fHh6Ef+6EDsMvpdHo7sZQuYD8kjrG6q+GS9e1tUYvuIXAHGC7T8voyv72Vtxedzn/N82Wez6WsxcTRHh72P/3w6S9/+nkcB2Y1vMz121onop3UfpXBzGPsjw8Ph+OeY+g66kf+4adPosuyTqUsuQg4BI4MVE/H+ZSteJ0VDe7uHo8Pn/d3n5z7LHa+LOtaEFHVxIQjHvvdru/7GKKTlDqfswik3YghLrXOq7hyDDtCNK3NI+MA7lJFCbHv+qHrAnEtZSP8uYODaK1F3CEkMjdRERcgc5I1Ty8vT9+fv5W6ALiauKpokZwlZ0aPIcYQCZlDTF1PXcIUFbG4FVdkCinFEENgRKAaGxcmDmm8P3BK1UzMIQQjEpDs4gTYBQSsIrOIObR7zRhT1/cAvJY6rXnKea3SSqlNDdS59WdTIA7Qdg4Ymqt7rZVjin3HMUJgCEiRMDACUorUJYqJYuJu4Dh4iGvVS65OcX9/3w975kghIWDHQx8HcpJi5pRCBxSKuCN3wxD6rpq+Xd6+v72clnOxejzcffnhx91+3waPnPP5PKu5qAMxEBMSNOqCabM2O4B5kzrczUVNVHJZxYr5CqjETIE5dIE6AlLVUqqJMYeYNii5bcU4hEhN0oNtRYSAYOCiKtryf4TITLFFHl29+fCa4wQouDswUwgN/7DdmptnLbnU6hXRkVsxugbkbcMl1URacZmpMlEDiZmIVAGHVj8YYkJkbtKNiYoyQAqJKCHGEGJKXYwJwEVWLWupioghxb7vU+rdof0VRBw4qNoyr6rSdV2IUVXP8+QIFNozFpBJzXItH1AIV0FgO7rabBRahjqGYG4i1Tb5AZkbjKwNux4C3az9jRGK+M4VQ+RtaDdHgMAcYs8hIpCqmSk5EHpA2KY7VZFSSy4lb9qeqeRSy2q1oBlqGxjktiu1zdAuZkambtm0JXi8GQCuj5eAcPvjiPAqJKMibXRaJmIKDBSAOXBEZkcWc1V3YKDgbf/NjFeQh7fPpsO65lpkyXOpRUVESq2raWWODSerVpA8pRhiDMxELf3TcnFbYsYcULGLQ58GQjZ1czREM+QuIgdHL6LmnmKMMQJQJAYxLVWrmFR2JGZCoECAiIGIkZiYGNxLLl2I3tpnl4uWgo1CgO6IjkatyFVVS7WiaOgxAbG4t9VCa6LvUjf0Y2jMQhdrQUUGClgstw9bCKGLHRO7uTt0KTEGQiJoH0NWsZKzWss+UoxdjLFptOu6tnu5Jqym1KfUhZCYohOom5gxUUoppbYuQjAwVTdvZlR3u/rwmEKIKRGhqAmY+ebEFRXZ6pw0r0teshsUep2nc5nf0JZSTms5VZiQMlGObEA61/WcZ5c12hTKi+kb6qvLG7t13EUcNYdlkvPb2+n0ve9pd4jIcjj2sefz5fS380nBj8dxGA/Zu6fJvl0KEn85HO9T3GNCD0BhGBnxcn75t3XmjtNh2Pdx7NNuiPvEQ8QRPfRpP3a7MQ4RmNWP3XjX734+DF8Od5/3+/sxsdfl/LqcX6fXt5BlQWTCgBSBARibw+V0uSxlyWV5fU3E0PfBvIbIY/8n2ADHUGr1rC6tMjNGMQ2B3KvUVsS9dmvcdSEEBMhSwa199tEpYuREw9j1wy6lhK3tnnno+8DsximkdZp//fVXTt2wHz59+hTmaA7jOD48PBwOh8vp+5qXYehCRBGsFQpqIco5pwChj4Eipx1AdCXDQBxT6rs0tLufFHuV3Iw726UuMCmYQwhhGIa+X1R9zbn128QYNy30KqcfjrvDft8FLpZzKdPp/PvXry8//Hw6ne7u7na73e6wf3x8/Jd/+ZdPnz7tD7vPnz8/PtwTg5S6zlNKKUTCDCYKAiDqKNW15LXki+lSOIAXsamVCIOTGYYgBsYBQ2iFx1CrrGs5ny8A0HVhv7vvepjn9bKsb29/0/AtDf3nLz9//uEnYEqdfv7p4ef+bhhp3Me+G3fD59PbmwqAUq41BOpiLNFikiattSs+IuZiDahRxBxKCJT6uDvsD/tdJLy8XVRtnoRKDTHK9eRARA5IlDiYeWmZQTBQq+u6XvgkpSBsFXuN49zAHe4gIobMTIjezXGapr7vG049hciAUIzUdcm6ZAPnFNm8CQD9OOz3+9B3Req0LtM8b54YDETk2sp/zc2cgGMc9+Px4WhgzPx2uZRSasnVjQKGLjFzMYkxhsrVzcRaOp2ZAWjjhmxqPCJiIPbGmmqlPUCAeisL9I0zzzGmlFKMiSlSk90DUYgxdkghxo5i4qSUkgOG1xcze3l+Y+C748Nu6DiEdusMSJwiI3PqHCA6qDe8g+VS8lpr3bznKXXMoTELWln4JnD+UUppKbCrMQ4IrtydDzvWtg1UNREJHJWUvPl1wN21Mb7VN5bEVlL+vuZoFg+H90qZ2xsG3i1W2/awNeORO9XaBBLSRjDC6w26b36pTSYDM+PNWOS35Y5fDUbWulwA2lbilvUjQDdX0KZovjcJMjVe1bY3a4gp3sqhY0oppU3R+RA92/4QUBGhD0CHm+L1UeJqighuNYjXJkQguF2hWp37h+fnGm90VUNURBR5L+rGDTD2R/Xuw+twe/bwD0LDR+FtS242u4+7E7hVqZJNKrqBXdFo74/qpji2VGq9/TpmxmuRETJhw2rAppFsLTdXQlsTnOhaEiBu77LcFUN6BRkEIkUkvHaihgDDMLjhUnKtKrLctl3cceLkbg7Vm52XEVv3zjut4wozu74Kt1+9OePAGyh1e8koMG9AjfaLpFRv+lZosKtN6mPmQAwtJPzHLil0cFe/VjC1nKW90/ZbP5JYrcxMToDUUtp4taj/z/KquzcLXRMOoVUitrVxrQih0Vuvy/B3zfUf/urrqfeHFfz267YCdLi9T+gKittM91d96yYGs6qq0geky7ZyVdKt782Zueuj2rDAQfpcXVRKlWp56gT65PuxC5E7x5R1ntdaJQIEopFFwZWQyciKymKFVQgRx3Hshx1SVAjnrJPnlykD0DAM9/fHrh9Pk72c1YFMDZxErJQaYxPsW+sa1rzM07Tsl33sh34E0qIkHjF2jxwcIefldHqbl9O2yGYkaug4MoMrH9FCrYWZKRIzXmG76KCllPWyzOsUYzAvXReBIPVxGJmY53VaS845e7UUUhd6SK5dX4igVsxrE9VzzoeDUyQFVDTXSmjITM5xSH0f9ofdfr9PqS8q4B6Yd/3Q3z8Qplqt1vr3v/89xO4//Zf//OXT53HsVfVymX/8/OXvx7vffsGcBdF7jKooxq0+JoQUQhpSTzEiRaMi1YshcBe73X63d/dSNPaXtZgjQSvbQ2Z2NSTE1ugyL+uyLKdpZuZhGIaxS13XmEHMzMTH48NuGNH17e316eX5crn89ttvf//8y/549/Dpc9/37pj67s9//nPOOabw8w9fHh4eEGxZppqn43487nYlVwAqRUoRMHfxdV7KOhcxR1KbxXaA3IqxDDCFqOpAzpGIUKtfzuvL6+VwOKn4/hhj3/X7R+fl7dl+//3rW33lkJ5Ov/w5//O4O3igu8e7n//8Y4h293D3cPf54f7bt9++n1+nt9fLOp0AllsxnBM098Ot7i3nvOYMKOJ1GCMy3z0+/OXnn/e74eX3ZxWbVwlzxpimok2NJo7DMHRdNO+qLIbFDZv9Qi1PEyw+bd0tiCEEjoFMoZCIEblnIdo45qm/xBh3uiMiS6qrnOyERUgsNsEoRS/VwIGwH4aHx8d+N07L7GfKUrEKijFzi8tbEfTW4kPNM90NPadQTatZLqVUKVp77ngzIygQtzLpDLlW8QWax0jF5Wq4IQxMLQxHAcn4epC0+0sKAKCAzMwhxth1XR9Dx8ytOChCTF2XYk8UKKYQU8fUDZ76ASg8PT29vLyhYZd2u6EhJExFgTCmHkMkZkeKxKAKzLXIPC+n6bKuKwB1XTcMO+boDqruau7IHJnfYZs390nbFwSKCCDbBES35Zpv3cCmClK1UiVKwHot+26Lv41qba4fuQnXweL9VGvLmlZh3v5BVQ38nVzl2wODUoCJPwxeNyuJX/mobRYhMHWlqwn9GsR7r9AWkfZjY4zMGCMTEaCpil6JJ9cpsVEqtp7BNsZdl7NMRKnvuq5z91r9Hwcv37xWHMItC3IL5H84yd6fm5t89XG5eTtNW9bDNiZWm7re4QhOFvE2LHJzqNxeMncFiL6Z365jxHW48U2D8ub5ev+NzS8m0uZdVVUp6NqgJbdRcvtbRKsrmhGiETBsLM32t8dAFFppwcYza/Wa7dE6taLCbc2nqgxAgQmbtTwwmiO32dEU3Ay8NscRAKYYrq9IQCQDGqWqeilFbBZrYGQIMTGDQ1Wt7aV3uYHR3ycYdnRkuHZbbUtZd3cQr7Jq4yMExoAcmoQFXorUWrUKEQ19n1ILgriqxhgDcZsvG+Hsuoyza42Vo5mauAqgmaFqDRZUoQ1ejsQ1a+KGykN8b3l11yvTGAhua75r9qLlUcxrrabm7uu6grewOUSibU5Gd0PHd9otXgvjmbltWlWVqCF5/zDntQV3KaVdytrdr25tV+9vpDZ5tGsjR0LCxk+pVdvg1a4bHMMwjhRI4h27LYzr+rrMuepcqmvX+hIBgJ3YFNCso3DoYy1VEcRcrZrMsiJKCtB9frznsOc0eCCIupY6zevzuSDiYX/89Pmn1A+KM3GmMKOZAZZsy5LBQxOGANkd53mO8bw/3B3uPvd97+Td6p0QBtzfP+yPh1LW377+7fevv+RlIoKUQuCESG7sxu7cqBzBsBI5snME5kD11lkWxKqoObpIXsvy+9O3ftchKseQc/7+8v2yXHoeUtcNw6E3TKorUJLSzV3NpXkhsxROQb0sZdFSYyBmBE7Dfrcb0243xK4DAMlFSw1IGOKnh8dxPOZVXl/X8zQ9P7/8Za0dpXT3KGLrtD7fPY7jvvUpZNHoESkEjuO4fzjef74/Hvbjvo8BTad5pWmZc14FnJEihWhmjuyOBpsDTr0JDZ2RtA0RIJ/PZwAopZzxsptOd+UQu0CMHDAop9h/+fz5/vhQ82Kmp+lURZfT5eu3p3H/t/vHh7vD8ffff5/ntflpdkN/f39/POzQNaLlw/7zw0NZppPDus5rztMSvOvNoLorkoGb+yqqy2oIKgbETLGIAIBZxVYJXeB8Wp6/v+12ewTOErPA3WPoul3qBcNUsufzeal1rTLu9/1h1+1jP6R+jOM43h2P98fHh93T778/Bfxas8iiIYTIFqjdB26GyjarVBW5OnUo8LAbHz9/+su//POXTw9fd7+cTufzeUG6GPEiF0SITGkc7+7vD4dBfZ2XN7EFAFxB1TV7WUueaynqCiFQ13Vd1zX/OEAFaLWAUKvknEsrunEPIVi103KaL5Pm0lM49ONh6DElsdaQ4jtTDMwxYG2e9itVvMGhFMyAACkGCli9XpY5XM7DOLab7pBicNUK4pCLMIM5IDKnCLXAx1K2RrjHBpGk0LDSAcm2f0tEhoDubdoyAHbgEENIMcYYupR6joGbQRhSTD2HAM4ObI6EMSbqkMZxIT5fLm8nXj7lImLMqIhujg4cKCCqg7dYO5MDrCVfLpfLZSqlpq4b+nE3HgJHrebWSqA5hITXTjpEQ2yyBGN7QIgiG+W1NSHevgDdGVC9krVLLHCj1m5DgzgE1ZtHqs1aSNepwsDQ32cme3fYbIMCbuVu6ki0ocK8Vk5RzfjqFvIr97xZuMAdWoEgGNwEt+0nynUEMTM2F9fNtHQbhtRqyyHgVT9BdEBrU4ptiQH3TbPQFnSNMTb3uqrau+Fma+Nug1dMqf3AsKkgcIsHtknx3TtDG/apyTAfv67umfcwgUEboq+alWwGsraGxMD04bcgIvO750ZVgZxahTkhAZkZ+Wb6cd9O3ECsxAZ6q8g0M0YgohQih3fxTLUquKhtzYCODtdTvEHh6EYfYCIq0roS24zLEdi4DRkqKoDoCMHQCZECgrMxMjSERnspzLxWISoAhKCNXNO0ZL26wteceZ5Vlai11CNRSBJUIcbYCLUAN1gIQCOaAAPqVZK6cuDa2sys4a9a01EgDgCm7Z2jTR3suQsxpj5BY7tribS1qSIYtffptmDdGn7QW1tONRcEB6fr72pk57ZZdHJv7y9rAqTDDUt2c8W1YdEMWl4xhA2SLOruVdVVKlONnYX25P9j4QFexXvg6wtsBmZV1ZlNzUPjPxsSEQOaW+PXx9gxa+TGG4xXwxhsFxlxRCEiDxERGcnQPnjCtpuotnTq+hDHhz7iufPzaV0KaqnLmrUYWW2WvlorMQwx3g/xfhwz1yp5zXXRsmaDAhH40Ifd/vPh/kfg4VJytnwpr+dpnWftkvfd/nh44G78/ubqxNTFALnAPC9TSExdSqlNXWpQ8jLPcV3X9o6WKnnVvCqE1HXj4/1n1ZrX9fzyIrkgWMCEHrRA8/iDMnoAK8GtmoGDIjkzIrApqDmQNJWSIiNwLuX764uTz/MJmERkWXKE0N3t+t242x0wdl21qdbk2nX59PZiuc5l7teTk9Raz+sl59yFOPRpSF0chjSMHEjVVpHLZV6mWaukDg+73cP9fREkmtbyOk3T09PT/af7T/ePP376aZ7Xv/3tb9eyd+bEh/Gw2w3jkO6Oj58fP315uL877IYUEmHtzwufXmCaymmtlquqQxVdc51LzVUckzk6IofEHMisVnVCuGZknExE5mVZlqXvO3dlpphgtxvu7o5398d1jm+XU9+POk3ruj5/f43hlxT7/X7//PR9nueHh09DF7sYh7HrE2u1GPg4Dj98vkct6Fq+ljnPIUdOfYrdsB9i57kKUEBEdctSq4uaqweE4q6KFVABHRRy1mlaLpfLbn8UsCnXrPHzl7s09uN+HAxzfn07zUv9ddwPD58fvvz4aZ7n3eFzn7rj8Xh/vL8/3D/c34+xi4xscZ0Ey6XOVr3iNb2lWotkBSECDASKKYV+iHcPdz/89OVPP3wh099+/fXp6blUzc3T6xBD2O/HL48PD1/uFZaXV8qlLR0iQZDVTq/Td33OWU2gVFNd3L315YUQAExM2geynV4uGon7mOa6Xi6X56cXzeU4DJE4JgZxcKsqVvwyT2/nUzZZ1nVe83VXAuLGRgrYvLDEDAFV67Iu8t3SdGm2XKAwDnuMZS1LziV1zBScHbUgkDo0BQbFOkbmRrZBQgxAZA4uG5qJI26Bqe2mv63WgqYtjcWBOMSQYuyICC2FGInYDNRAi5EJMiFxTH2MyQFLkemyLGMehgE6UlEwcmr6vSEzEiKFWso8r6fLnNcKyH0/7na7YTgAgGtBFAQgxMCEiG7VoHWiorEaUQgJzAGKu6uym7WN07ZXdW2gLAMwNrO2l7yeUy2ubWYG7ajyLcrXLsHvWy3dQOdw23bdNh3+fr5CE7LAwU3727oNFK9LusaCet+AQBvCoB385tJesW30boz7DR96nVQAHFSkiIi2przrFva6DTGTTddscxEiwx9Xpe3soltp93WsvOXqb8PVPyx0bh72q8y2gew/Mio3szq8/wT8Y6CMaOsEaF00zMzGyurXuog2NrUTS9uThw2aYAGvGBGV1p/UHkkgtlbE7o6IVQXcwYkJIocYY0x83XiaNL2qPdUIN4w7XNedjSdxVVf+gHZr+UFUaLQFB2h6qWHbRyAiQ0AGoq2HoNkB0Qxyrm7sQADUdRxiDCHuroVLRWouSzvggbx1h3OKJMghEDpeWTPtWSbHDU4M7OhmDaYQkZtv/Q9v1IDEhC615tVESjX7wMuFaw0TAhNRCyY3mFm7F5SmEGt7f2oLsYApcgsiipnAhqljRCRu/YkBAJsKfCun/4eF43Vp2Aj4TBQa5NhdzLTt4m9Lw48Lyj8sQK/ZjutFjAxc/ZZPZGYDAODt52xzuaghASEDE4VbCqQZAdr9GxsCcCuj5EDurtT8GIxkMaRWnDn4HAOGUA3OlzlOq9ZlzlrKPAFA7GPq4n4c7hI+9N2eYdzfzcuk9bxIllVUQ+Jj7PrHu8OPP/0cx+NlzW/r21+/TrIudZ5cizsCB8JYBdbFqmBlWlZ5AwnEHFPoEqMUUTUUKSKl1lxKgSWfz+vb2+U0Sb9PtbjUZl+gVmHh7qpei4FLzlYLqpAKqUDQkt1dKBv3yC37itEwBFFw2BrLXd1yqU/PL6fL27b/5vh4eEhdP+4O++Mddx2uNV8uRCnGKLkmWNMAAEpESURBVDUvchEpl/msLqo653Vd15Wy4T7ETpEUIFd3rV7L6fV0OU1qtY+JDAIzUxxHH8eSS/3119/u7g7D0O27Qxd7rWZVU+hsGB4fHz99ehi61Ed6ONw/HB/vD/fHXT90ceBQuE/WqXcvcz3XXNWqwyo+lbKsWcwjMTI7h9D1HJK4Ga5y3Uo0Q6iBLmU9T+fUB04cEztijHG7LKM3F9Q8LVL06eV1KfX5+XUYBnR7eHj483/68+fH+wCgspZ1WfIKUhPi3W60u8Pb29t3olLqEmQcMAzD/v4u9fsQUtf37j7ndcnrZZrP52kpGVRN3UAUFBtzHailtRARqXfkJeu0SD8ARFdYKy5zOc9yEtoPNZ4vL7/88jdm3u+O98fdoT90nx529Blyr2u8POlrPE84N6pxqetluZymk7sWLxQwMGFrWSMBEESNCcddurvbPTzc3d/tp2my2RmVQJh57Lu7+/2PP30yXEOU0yUzx67r+7iz6t+7VxGx+rqYmoBWyJTNbsAYDqGh59Xda60555yXGOO6rtM0nc9nUOsCFy1iUZyI2EgAfFqXr0/fwlusKiK2lqIOgKjq2TQAhJAYUNEDE1NA1bXU87LmnEUs9V3f9zH14tZcZYCMDJrhiqThbc5A2KDMgAxI6rg1Nba0F4O3XYUyBKYYEAGIRZkiUSBk4AAcgAJyqyVpGanGdndUBffYpZS63W53ucxa5eV07rqBY4jdAMgOLgaM1niOpABk87q8nk7n6aJuaeh3x8Px4aFLY62V0AO7uRqaU+s80a1/jQGiWzs/6N2ZUa5fImYmgIbbIURuKOqbDLYNB27gbihuoNcRa7tT39Lj22oFNknsest9o0y9D2itk3nTF93bEd2UEm0INgDY8Ao3azoRUINN3UjujGTkiOyg7f903qYuB1VzM6u1NC0TEfndt1QBQMWkXnH2cPVRkd+Ws9cDzN1VpNykuKalmVmVvIUDPnxdz7aNidoKCm8+J1HCLSIKH34Fvq/2rDXoASFowPhhsKMPXzeE7W3g20bDWlU1QkBiVZWaXRTJW/MjXrECTc9DRFQRdHJuhlcOePXyN+0wuDcMA2BreGzZYWpAXKymWgtUYGZwcoSWziOi0EgEhISAbm5qDmBWRcjAvPX7BQRARkRu2u6WwlNwy9qc/aqp835HqYtAeyA0EwXlE6/r2j7F4B4CtwUrAjC31a03SbOt7wgC4OZ0FLFaG1oitBrQTYoEAwA0ryJSSs2rGDNzirERU0tVIjAETpFCaKOJiGADjpgZWttrkwMhmCuaEnjDdJmK1KxGZg7ITv5hsQsAbhs/9X3qancpeNtiK4BvKGSAACCtRNYBDN77D270k39wel21z6vF7X/KfobmEeXttqFtkFv4Gmj7DN02knZrI71On+3DFAHd1JxMEcA4UEzU9RQiiD5YlXXpQggUA1PMZnVZX84XAxj245cvDw+Px8/7/oEgSc2xL8XYF7ACaigW2AfmHx4e/vTl8XD/46L163N6e/kPrqsvJwsBHbxCNp3PeT5N6yIcYWFg00CY+i6kwEFFHUIMiZC8QbCrdvNUp6VOc62w0NMJnDnYNE3NpUdgVSAohpg4cNfrMLooAUzBxNHV0TwqJSKOlIjJVRGrqlZgD4E65FqzmCznpb0Gfd/0d1IkAdCqy7K8vr6GLoUYAczRxOq0ToYGTgpaVCQLIHb9eFkzYQjgLtlKvpzn+TwhgrKX83lOg1FSgZRSqfL8/PzXv/6VIj0+fn7+9vT927OJf3n8ZHj/p59++vTpU2BHlYfj4W7/eBx3x2GMhJHQsDInpoQcyYy7Dimq5VItqykgBqbUcUjc9YQBVdRgXctlntaS1RtGCGqtl8up78M+7GNMyIzoS5n1zfKyrjkDIsdAjsuyrNP8H9O/M/OPX3748vnzP//5L//8T3+OiM/fv3779W/zq5R5qnkl0QAeHVkdCxh7XurQ+zAMX758fvz8+e7+QARryVnq6XT6j7/+9bfffp+WIa+TYlUoiEAMG0E0JYph3B/6ITivS52L5+KlwhvHNfSrIaS+T71eppd//df89O314fjjn374p4e7L2PcgRySfYp+woq6ap5zXud1NYR1mufTfAoBlYQHJA8EUqqZ57W8PX//+vL87YeHAwfbH7rjXf/yEkQKkYNXdA/s4xDv7w8ce4cZ4htjGPrDYXdHHpjjPK+Sq8hZ0FVBxBsENQQiopQSortVRJWSp+kcI5dS5nm9zFOuJTiKt7wRQiQ2arVlVeT787M0oAvHkCITI7CogipjJI5E5FIVHIgDxWyS13yZFxGjIqNYtxs4DsBVFIpUUBdpgIVtI+/ermjN7EHkANfLKAIjmMN1BYbEiIyETAEBgZGJ2zKIyIHE3MAIgRwCYsNhtrV4cxl1/Xi8e6hVn5+fX19fEbHvx7uh2xapWwkaG4ID5JLP03Q6nZZlAab97nh3/3i8u2fpBAAJYkQl9a2gBhEEwYmAAcyi4WIKeL2FFZEquVZRVTN1aCFHBCB1IAMRKVIBIDbMlW+TEAk5K32gUl1NRY3z781d27AO2wUawG7oret54i1DcD3wgN6PB7n+h23ICpsghICBwNoQj60Jh7BVMwM0appvCA+Gq9ijUkrz9oZ3LKQisruo2K2YCLbKKWfevG72ASrxbm4za85FIjIXF0TealU+jlBEtOHkbgXS11i++aYTfCw0hKuoZuCm0FoCMXC4Zjy3wYsBZRtnQwiN1d7iAjcXv16VucZ/UFUTQdqKCJi239XOewCglFofwVXCfF+QNlXGXcEDIjTViCHe/tLGKihlNQNosvc7W8FbfoFjcAR248YFsUYIEVEnCsjOHFswk5o91xpYoYUnoCmyMedq2vd9CGEcB0PnFLounM/nUk1NVDVhslZvbxuH2XWThBCRN2mWN720WuHKIWC4vQHw1oRg7lplI7UipJjGcWyDVyOoUWw9hhER2l39hqJDxA3kL81VR26KTu5tKehlDQ5qJArE6B7BCZwAEByb6epGidtIwrqVYBqYo6mie/s4tDcSEbE31wS3jSS2iMO7ZPth9rr+P7jpxB/Hu6v+svUw4hUn0VyNBi3kxLefabCRiltqQMRFCytQSDFGcAZEb/h92r43RnTt3GLJUDK4URc7Szuq+rpe5hXmdY6hexh2kIgYsWiRKouYYHBKhMyh49AxdYRk2jHG1M0dDcH3kXIf0uG4H0ZTXZb58naezjMaOwdDKqCz6bmUmJfO3AMN+10AR4zidpmmZH0RVqFabCnLmr9Py9wPbDojQoy8vbdSGo/3KfV3InfTdD6/zfMloDo6YABSJuCOklNk8pLBLS/qKoIhxMSAVErpe27XjMC9Oa/VzpfFPFT176fTb79/7cbheNznvJS65rwE7pvj3RiVbJUaqqxa56VGKhHBRSFLzZJzZqTC9XI+U+gtdNUiEVHgaZq+Pn0LXZim5Ze///352xOYf3780g3hxy8/fXq8dzdZl+N+vBvvdv0wpt5NqKk0i1YxR6IY4tAjR6NYW+kcMcZIIVBMgNw6YTaq1jSt61qtogM4iMic1zmvg48hcIDgasuyTJelUcjdPaWeMOQqS1menp5MdN+PQ+o+f/r0Tz/8KQCRlNO3r1pLmScppZZV84oCpIiGWnVdytIv7p6GcP+4+/Tp0PVRpAL529tQ8vP5YosEKGjbvRlsTn/mruuYYt+Ndw93Ym+v50u1VaHERLvQcVJDuLvfjWNXyvr6cv7v/79fPj385e1P5c8/yePxU4A0nep8FlmhzKUuuRRTBXWpIGLm4MgeO3IwaMEPr7VM337/9fu3L6cf7oJjl2A3hH6gtSCRXFuyhQOMfQg979Y+y4iIQ58Ox5E95aXs9+M0Dm+vZyJod/Za259miJ5SADQwVMvmktflfKGmvLSmZ+fg2B4TcgxQbdN4a57mqY0dqRvu4h1FBkPPIuoxNHYDKYs16hAHVBTAYm7mZVrUAEPodyM6T2XKy9pwiSrgRm4EAKboCm5ITgiEpmBbewo6EjJYq6xptWetoIQawJOuCGZAVkdVB9XAykBMQIGJ2NoFkcndY4zH41FEpml6ez0j4v39/fHzI3NoxykzUwgKW5P3uq7zuhSVLo79OIz73bAb/URb6AEIQQ2kXXl9YxIEQkeUlsFxE/Pr/1wXdo3hYNdSG4DN311rBQAGouZINgAy3urebDu2r4uz5qC3d37P+0W/WUvMrvFEpA9VP3ibvQxA2qyz9ZqTNEWMERCdgJ3AA2yVyC1hh7Sh6Br0o+2HDa8+MBGRqm0l1PBk/n62upmbK0EDdG05L4SPTuQ/+OUBtnrrW6GKmRHyx/3OH/7wP8oMbbwT9fcD/jrbfVwJmTev3nthy+2nvU9pDvHa+XjTwLbO8uvv/4f84/Xb8cO3AKhjZIAoro3P9OFF8ysCIyA4oqGju0aKbbEIG5bJzayKuXsIgIFbcxFjw7+9W7mZgl5ZxWYtnwHBwR0DEPGWYVCQm1XOQF2l1BprFTdEH8IYIu1oSB0RGzGcL2vOLe6HZqZW/V1BbDvBLdNARACG2IbedselbLE5H6/h3VbKsbVYgkKI1Mc0Dh1RyKW05StzbFX05toqSgk3DdLd27YawVs+kQAd0VxQEStWqOYsCgHZ3RVAAdjQABUQnICpsYu39x5C4684giO0uiFt/QOI7m3tiISBKDQrmBs4Njzy5gZoH89/0GXbr/iHr5u2ug1esLVp2ZVJu41rRHT7aLR6b0MxjWaERhRiF7xdTt1h83GYO4GSZM3zuq4FDVPqeTwUgHk35TqXBS5v01s/XIzGwF3JOXjNi5caHUcOFWKi0HF4e3nmsEdKcehLXghhvx+Bjt2nu8N+JIcyLevpIvPa9fuUekyxImTE1XXRShFjDCGOQwylugOsVSCoeXAIYmHKJYuL6V5iN1jsOw7VlBBTGg/7+093xwfmtK7r6XSa5zl01DPFgClQjBAjRaOEzClZrhWBYugVrJQcYr8/PIDX5ig0VaK4rPXp+fTythj40/Pr0+sTBp6mYwgkUhw3nK8TAjnHEDtXgsuaA68A0CGzVjJjjoHiskwr+HK6IIXsoXjs9o993601Xy6Xv//977/99vvLy5sbfn743O3C8X735eFzCGG+nLtEYxwPu+MPnz6hVit5nqa66nRZn1/exPz4+DDud113xDkDBQophHg8Hu/uHlLXIaIDiqqK5Sq5qrgB0H6/X5Zcqi55fZtPYxni2INzrXWaX0oRFUdEjmGInRsCMToMXf86vZR11Sp5zg6WIB33+8N+H5G0imtFFTcpdU1914+7t8s0V8jE+OuvOEYeA/ewgzEmdlcFTbvO0dRgLaUpDeIQMLTLrlYjJ3QkDKkbRh2NcM222+04hlqXOc/thctreXk5/f7r6ftv8/xqdcLpU+lCOr2+Sa5WLVIcui7QpTI4eZG6SO47TB12faxFNUtMGNhLnV6ef/vrfxwejt3D3T2SpJF3+7SWdRxTP4Ct4F6lzNP8tk/dfj+upX97O+9GIAIXjZGRXLV2KYDXdjvezCLtn5k5xUTsIuggYvVyuZzt4o6liJoxt17YgIxmG3wbAQ0hS53WhZmRyBAMIDDHLrWym1a/w7ErkhXUCYDwcLzjEF9e3vJ8Rq4hF+5TEXl5e6tr3e12zDEEDcG2ecVRREupAdnR2OG6IzBDiCGqWWBGj+rS2gDVvZRy00IQUaHVQxs4EiMDYIghdSn1mwsbPJeSUgpdWkoexjH1nQPMy1LWnPax67p2dUNmcGuK0bTM07oQx3Ech92YUgImVW99tc1XLubgaluKS13FAERUZYsj3VSZGCMiXEuOlTk1c7o7Kji2oDjzUjIzR6b2OhapgZgDbruV67rMXdrwUtUiMyf+OL5sV2kEa0u7lmMgJqKWlV6WhWPCxqXfQAxopu3wYE7MYEW01k3juoI6vSUfARgbgJvwas93UVC7JeE/3N8T2JY9a66rj+dRK6M0b1wDuh4YKKJEAIQxxk1OqwYAYqURKG6q2O0Ag2u4rw2C26Hl2znadIXbUq/hDGLba2pFJN58U++rTzRkwEis4WMT9rU1r4XgnBrCQEAIMYRgYCYaU4TrTNBu8CKxsEuVpggy0wYM0Yr4sYkP2iKLoBllpamDTf5pAi6qN0IEim94lzYlIGwI65A2ugpya+bRqmZWizqBVAihtSgKxSvwGajh4qrIPM+DipmpyzAMreJ6GDrEuxC7aZrmy1SrkgMwE9BWtEQmtVSt7BhSYiQzDBycFcBD2HLHcLUr3d4hLfLpCBRD1/cxxoBECEJk11rPItoHbt7AKmKEzB0G1lxNFa/mijb8o6tVMQQHYo5IgeiaruXkxqqu7lLNACIGIGSOYiatDdM9buQ2BRjM3Iw2aQyY2y0nUPM5uEFT8QGgRXeJiCk2R+D1dmJ7z7frVYuSXN/D2ztzo40wtEyOXdsOEBPccBQAiBtyfZOrDVCcgnGIiAJgREAcANubxWSdl/lcakavHDyFxN2wsurn+yL5+aTnc/ndf+mmM4/DXeDJs0gN5CGkIY0hfjI4zGuhkP/61/9xnvPx8eF5eprmeb/fHx/6/af93d1DEfj+2xuUekgp9d0PP3we9nFe3rLPGTS7RsPUhX0/asm41FyoqGJ1dYqpGwcquizrigzDPoQQD8cxhLv58rJm3N3dHx8+H46PKQ6IfDet5/M5jP2dmbmzFKtJOSjy1rwaODFbhVbuNnIk5vD48DmlBAB5WWutKjh7RpCisixLztWWxUzaVTHGKG6lFMCq7hwpQXSnUmtVXXNRhwgeXYvUXGRZ8oCey5pKBSJkl5KBtetirrqUeZnz+bQg4v394+FhuL8/HMeDqi7TbC6Bu77f7/qdS82GqGsptq6SVy0g7M4hbMTdEPt+GIbh7vhwOBxC7JhjreJNeGjEo27ox7xMs4GLi4qFvE55SaVnAjXOa82rUuC+7zl27mBKUmoItBvGPKw5599///3b199Of/k5HMHMGCmldNzt84qg0qduuNvFnGFZC2KppZwnizHsB+rTKnXc9fv9PqW0rmXOoDjW+n2e13leawU30Jb4m+vpdRn6S98djvfS9/Fwd3TuU068GDLkLNVJdD1f3vIC61rmqVBntUBebZnFmU1Divs///xnNyG2LAu8zs5oaI4WUpcG9EYx3ujtrpZzXr4/f/3bbzvzDIYcDYMa1H7gcddlyfNyeX5+vnvZU7oj1q7rEC+6RQKtlNVqATQO0GNqV7Naa1NWiGHTZxiQWDcbjBQ1cDYgMytZijQlAEutJLbZd9yZOcZ4tQq1DlwDBgqMTkZoCIRtvYfq7RJC3CaesBiAqK5FWo+4d40O4DGlNhy0bAs5oSFtt/3QasgYIQWOIW4mIlA0DEhX08O2bEJkDJEwUIhIDEABuxgjh8jc7DrcrlJtKRkQdrvd8eF+WfK6rkteT6dz3w87jsxsCEBYq+ZaztM0z3OttevHYTcOw4AcpZo6NVx424E6qnqjbWEIScxzXmoRRAwhitS2F2uzAjfsvklL4JkFBW9EBnVnM5HSxQEAtAG+23KQwJ29bQudyLwpBNc76ZaKJyLQawQStj1VO4oMGsdVWrd5KDGXlBIgEAVqQOvNv+9uIqJB20nFzM1E3BaR2+TB3NzZ7TADAPPaiPbXA4IRyWyLuTXbOzO7S8sh2cbQajrWVfjaJp4G8LRNfgK+cd5bwi723U0dvM1bzRHyUSp7/9s3aQ0bl5IIW0flzeN1fSMhIhKAixqJAbbHeZubm0nL1dABzNGp0cQYeLNUupo3yyhxJHdHeHetEZEFJoSAhogiDqZXcsdG6m/SV5sPGNFdb8EDB92eKAJmNgZx8/b0EiA3j7yJSAyJia/cjcicS5EqltAIAwCJQYtXkzERVRNmpsBEtMlHV3RIzhnOLiJ932PAlJK7l2zWqVYxy6pbPJA2J991qQptNebqJtWIIcYGzo3NjWfXOwQzK15BBAD6bkyRW0SmTeGI1HUdBcbALfxp6lVVTBHIzJx5i2xcv0zczEF9LdIyHNwiDtevdulQ9Ua8gut4elNb31sR23cqE2HgGDhCsx2ZtOhCsG0Qx02PhKuIt92c4PsbzK9K5GaxUFVgckLyAB+rHRCJW3PZtjcXKWDhnV3HTsQYMMbGWUADd9UqqxmFyMzs0MAXAmJSTuZLDNr1ZI4IGoEY4jzTuItrVQdQhXk5v9liSEakrrHvhiH1u/s4fKqyB/LT5bJWmsWep7fLerosl3To7h7vP30+9uPu7XVBlQB+3A/j/jAMQ78fVl9rESHGFEIfQ2KMHJCgoLm4QUJobhFkHYYhpHi4G3/44f7hcby/T8R6vuynWYDjnGUP3O+ObpwrhQTBiUVBiogs6rEYxGSOUVWdHBnQMIQw7sdu6Jn58eGhSwkR26Kt1b67W85FzMC8lFK0cPBh6GPk2vAv3jhMQwgsxavJeZkKxwQY3Tvyuq6XZZ7mqUPoljEMa7dLKYQlLwLY73cdx2WZLpdLLmXYHR4/3X/6dHd82CfnaZoQ2Y0b8Bq5A3NTrMXq6lJRqld3FlBAUzIFBB7H8f7+/sunh7u7I3JXstQqJo0zmWInXdf1ZSzrgoiKrl4DhMXqASygXi7n6VRFbLc/xsgxchFX0cAIzsPYjXOaL+f/8W//9q//+q9//tNPd7vd0PXjOI7jWPZ7cMnrHGN8eLgvVZeqp7nmyzJNk6qkiCniOp36Pt3f3+92h1z1dF5yrrXmdV1zdjNwBC2Wq8/nMo/50i37YbVSx37E7m61uUgddubojsZZLpfl7XTKK60z1yqQAkJSi2VFDMi43+2HnifzrLCcl9fLMk+L2DJPU9eNmPoI4M1GjciBiZiA4entOfwPEFvuDvcFSoWSfVEWCm4I83x5evp9dxy6gXZ3vapL1WXOecwMUUQcjBn7PrUACTiu6zota/NM5JwBNCEZNNqNFrVSNITBzaoauou0fRaIiGehpg0wdCFK16mLodVagTgxEpE3B7CDuCIgMimiqjlhYGrmAiLKtdji1aojhBT3+87dabuaMKKrVi2tk5tUnJvzA7zx32PqYogABISuJYBRTCEEdwMmogDESBQ4hdTF0BNHRGROgWIIgTkRBvDN8cscW2lkSN3x/qFk+/79+7yWl9fXw/F4t93GOjCBYCmytZQadl233x/7cY+IOWf2/sovpSvaavMntfv4nHPNGd2uCyi6la+psmpV84Z2dENEbU+JmVZTcEht7bsl842u9hFgQ90IorD17WxZtquEcMV6bQ4qlHaCijW+gOnm3s0hhBDAgGPAwNDsSdA0s+38bgl/Yjb9uJ5DRGBiwoYj4s3frFs2hZkjh021sq0x5sM2rUEECLG044qIb+SL69Fl6u+TkzcC6gZxNRHpvAM1A2m/Lmw7anNyNFdVdCcAbhxXEYNNTGoOd0ZUACDTjTyprvpx+XizNjuoiTa2BhHHGFVVrnXU7/sj21aZ6s6AZkaASKhSPwQ2/7AbNVBVdRUzAdc2JF3TAO+JuC0BilvgAhp56zoTeL1a+64RDXOvIiEmR2oncHTnkJAyloJIjQGERYuoiCAYMGHwRqgIIZgjIJuZIbQUc66lAWiGYWDAEELqAuJoBlosk7VBEc0VqzkQM7Ug7nXZWlW6EGMXuy7GyIAm7d5DhYi0Ga1MI2E3DOPYM2Itm/yZhjF1HTO3JaqriYiJmKgFaItOkWJVNqpmlarSUNKqjR8LAM272VjLKeA2qau1p9feM7m+BVy23R+9r4nb0Obuwczg/RVhxEjs9I5caWzX93Wzv7/0zBRCbPcwjW3r7g72Idd7u7eBK6/VxA20OHCABNRIFxBjDCnQFlBrO18lTClFADKTKixF1KTUGcD6ISHviGY0iKQWQ1mrVAM6lVJQyirwLDIb9F1wtF2kQ3c8PP447H5YSy+cX+bXpc4vv5/KbzblE3f2T8cvn+7vfvryBYHmt0VKQZX90N8/HPf3h+5ut/paT8WQkGJIXewCRTQQxVLMGVRBY/CYqEssbqGLd/fHH3/88U9//vLp855YL9Pp6eXy+npaRY1iGg4AnAUHSOFlamB0d6hTrWGZu34MqTOFolLFDIEDEMFu6Pf7/X63a6SlwAmclmWpVcyMOKakfT+I1VrzKqUBV8HdQMUthICJOHYQkAyXMnvoxZFNV61lOk95WmSdC3Z54eVCw9Aj1LIsVVNHcUgLuGgpKgMhhxS6fhh30bFIBaRiNpd6ntfjvJJKXrUUc4uJd11agxAaeUWPaAaBaNcPn473j/cPh8OdO150rViYKIWuqea11rXWlDvIWYorQ0Vbfb2Uc/U6L6tWIwiBPXBrValVhNHNhMGJ4HQ+/fu///f/9t9++vzpYUzp08MhhND3/bDfOVipKxDuBcvuIEcvZ/FFz/Pquvr5zV4jRkk04gwGmcBZz9Ent6pWAYADeEE3N/F1kvUkF17XQyGH+7tDPOx/f5F5lZi84bpV7TJNb6/rupLrKJrETUyylKqFiPqEfR+pGys+LPrycrl7Pb+e51znej69pt4p9Ii+zLVk7SIqsgMWsMvpdZJzxfrly1KKnOu0WllrWaWqgQJM0/Lrr18p2mf5dFlOy7RK8bGbU+rdPUYOjBZ56Pph2CHyUPpwury8vEyTqE618mCxH+N+t8eASy5wWU1BFEQsEhMyALkxAkpdmxbBzJSSguYKYnaZz70pDJAajU1BRN0gEVEkxlBBmr+jbS0osOS5zrlo6Pv+x59++PnnnwnwPL2+vbyeTjUk6rWbTVsdSjsdIwf0jg0ScQhbjsndGQFAY+owJnYLakiFqNEkYwx9Sj2HhEiBe0YiCkSMvjk13I27YGamhSkeDw8IQd2/f//+Ns3nZX2sCiECICEbYK51XrMYhBTHcd93I3NU9VJkvCbm7Lo824waYKoqpttd71ZbgrcylrZxcFdtkkOtjYW2KUMIqK7ktRYiCsSOiG6AXpXMJIQA1FpYQnN2E2IjBWy4VDMzB9qiBC08WcrG7fTNOexeRELRWIVCC2c5tx/jzSfEcCUtbQtQv0YkbyzWW0gLEYncdDMdE/OHzaCqO16t6KCq5uquTffS5kOEK2q12fY/DCi3s/CjR/kmU90ErQZ3YOaU6HbYt/+4CWMKQkQBAwEHAiJsoylfTWPNa3Tz9LuSker2w2v7pYzthoHIDQHJqTG5zLZ1Elypm+AuKgguIn4lfbi/Y3VFi5ZStZgoqABacAaAWquZMFFrldIqIhXM3Mqt+NoNDfxWjmRmarYNFlfyxI3QyxSZKEbcSuo5mpkaIAUX9UyN+hE4qIFoI6u10qQEHHLOiM5mCwAim1mbPLrQRTKrtsZFa4OxkUsFiM3v5Nsi3BDRCUOgdJ26kFxVTESv/eDtTcVEIXBIkVpUuE02eAs6sLpqqYagJbfMrLurVRAGtRuCoaq36kt3ZA743jnLG2o5dRDbOru6GraoLlgzpYMZtnrUdhOg7OCMhoSA5qCAQAzMDLoVNV2HpFYMcPMj+lVtBdzSqKhakZvsfSP8ESK62gfZlW5vdyL80ADZYjHW7rCQtzug669vxDBwUFVorVaMVMxyrvPsawaTLtHdGE2kc1tVY4o0DtHx3t1QSywrL5c8T6UmJEca74a7dPe5P36xBULFbhcxL/Pp9eXtdVkuu7uEZb9j6pzmnKfLZZ4vpa4UeRz7+/t7HvvLuuRldZPGiagJA4Sq1ZCAmxBQwEuMNOwgdJFj+vLD3Z/+9PM//cufP3+5J/Z5vox3b+GXX6fLgiG2wrTYd8AhPE9T13Xtfugyn+rlLaU+dR0RlyLqHkLIJYrl1NHhOPQxBWJEjIyReN1qhrHrurboNdMZrOaa13KOSxrUEMykavEAUSXGrus7Zw4cIMu8zLJcyuW8lhnIs9t5mY0IY+8QpWQXQ1UUkZrP57fvr/O05qxCHe4fDhyCESrCIuX57dTH1AXuOWpRUSbsYhj7WEciSiNz6mPfha6LfQrwcHd8PB53u50psJFVvYS1BEEmR+zSOsSy9B3MKOwVgUkuZYaThUoj7vsuJO46RhAxNDBgNDVd81Qlt9Dp09PTf/tv/43QJef/2//+X45jN+wO7grgb5c3neckfuAE430di4SZfGWBO1sfIP/LMTx+6mNPmBSYdhFlsl++LoHAE6hTha2l2JTnswRfy+ecCH/4fHf4Yci2hq9PbndS67pCXpb5wq+vNa+AYCZdDC8v5992+4h82fmg3O+73W7sfxgfnL8UO815ulz+fjqD5JKXnBMZ6OWy1Cy1Q3cQpRKmUnKnEE/PNYIKvOZ5cZk1r+rFgIlKtq+/fV/LPE0TJVc1s3q5zGMPaN7MQ4f9OAy7vhtDSACw3+85kMO3afZSxNE+//Dwn/7X/+Vwd3z69vzXv//27dtL0aIGQ+pD6E3RxFOKjpsdgjFg2LhB4uu6rk246vo+cHJxg+puRBRSZETj1G4Eq1UF58SwgpiAWOp3f/7zj//H//Ffd8P4b3/7v/6v/285Ta/cQU+ci2spVULfdTGlLg0MzA6BIiMholg1M2lejZiIg5oCM3BwIPDQEkYIze3O6AwQwAktbEADdnRnYgeNgZwwxtiPR3XO1Z++v7xcLg/Lct/3zVCz5Hqe5vM0mUHfj0O/CyGCOkCrVWRHdLOqLaK4SS/m0PZfXdcxelkzOsfI7sEUEFRcAKQxjZoYqYJmbgrmAmbEFoRUtQsRUgqM2DD2LZdm5kzmAaBRK6nhxq1ZcdviBCFQwObJK6WBsGutDNgWr22fi2omStYsut7c9k7KyJiYKRABqIkrqJjqdeZB2DxJ7mBtheruN7Ju22M2Qe4qAbbkCnKgMuUGNm4UTEATKVcn1nsLkLsTQlskmate5SXCECMxi9m73b6pUzd268doJFx58c05x4Ae/0DSd1cAQ1cHdXA3dOOmRKOhe9MIDdGR2YiqbxtSdAJzB1NDhSLS1sqBmBAR1E205f7aCqx9gt6VUVIRcVVwBULeNFFUrWZo7ZFZdXd0VxMXcXe7UsHsmlfAzZ2mANKAdm1MEQN0N1CDGkJqn5uOqBQRdQXkwEPqQpR5XbzWdjGpVQDAPjw/TBultmY5lXNZ6zB0McbYJSLqUhq60ZWaNayau1f1m+rTDFBERGEf+rRNXSZVtaqpu8YQDJtnirsQuxicoapIe5hMHANsL7GaWa65yYCuxkQM6A13BbclHRExYXBGQOOYDI0otPDBTbUyNHMDMwIFoI2NYY1egreJHwBM1Mwg1IDNLmnAhEghUqsJwitXb3M9AgICILeIhbmABaJtIa/XZwcAUheYIgC4A15Vc2zL5VsGdsvPMkG4ruava10ABdd2xwRECMTYgDU5z2AYYwSwmmW+zN+e59Prgla6SKKDqNWCeap57Vzu90PY78ehC57Pl2+/v+nX12Vhghj3Ptzj4RPtjg5F04wDxt4Mprq+1HX21Psy+XQ5Ib9N0+v352VZ1rpGTrELd3d3lcLYHdc46/I2n9fY3HKA7BASD9ARBKLieKEQR46AHXfpeEjjLgxjKwhhprTWNB2llqfzaarlb4jkjuAUFqixG+J+R6qTvU6XaZIp1Z6Icq7N3hFCmvOF2DlAxDbGUq11XUsppUUYYugQse97dwNqZHIx9WpKAR2tiNRJoqzjsI9d2h2HCKGAy0WmspQym0sImF11nbOqOq6LmGJInddVQNbp8v37019/e0r9/pQX7sPh04P0YdFa0avpaa7d2+kw9IduYEFVVGOVgJC6dAhpTLxjZMaQOAwp3e0On+7ud7udG3W0qMAyV1NYtZpZoMjMyNCOQoigASpZ8WJKY5CxHyIHV6nLBWNqZRVrndd1XmsBAI60lPK3X/6+rNPlcn55/f6//Zf/vOsixWBEojqXimoRaBfCsRumYaB8DqxfxviXx91//unu85cHD1bRJVLq49uF+xG7HgBAi4EDRGYLETsooU6qq5LqYex++Hz3dLo77I95iZKnssh0oXnGNUMuAF7dgPLL91Pkroofd8Nw9BHTw/H4p91heKRjsS+Xy+X7729aLuCsqyy8VNX5IlWsCpmbANe+ciLe9xLpJFmrL6AayEIQKuqAzoRBSjm9LSmd9vddjNGKz9Pi6lbMRM2EuQ+BQqTA1HXdOI5mUkq5XF5VoVYbx/Ff/uU/PX5+oPAf317Oaq8q7k5MgTCouikSxBACIQZiIiCkGGPQQkauRVVr28tERET2ACBIyIzGIQRDt5xzlWIm7ooEWmtjWqeOD8fx8+fPp/r7336LnAQMkUNMlHMuZdVhtxkmKKATMiOwmSmbIQIRJOauw0hei9NGh1cA8GZTCggRnEwDECFEYG7QRSZ0hKWsSEwxhBBSSkPPedXT2/z19fR8nvcvr93+0HMouTyfzk/Pr+fzZI67NAzDGDmBEyKnFNDdTLf8ntb3K7VtfFduXRzmLsrMZlWhCU7mhqoq1UqtJq4KKg0vqWqZ0Ji9t86SITphcmyVxYrNteUMYMwYAjVfFyKiobqriLpR4OYPV7citRWDghoyR8aALReJZMAGDJiICTZFjgBbKzpzRDdUNVE3vWlI72qKqJlR30J8hq0+lm7tQ/JRIfuwQHHa2puZmcFNHc0FPLR0ZOtqdIPWPlhKAYUmjVwzX0hEtazg3sY0NxMRhI2tyUiM1JDvt0Kl5ntTrWbRXRtZop1w27JStV5no+vkYHDlgBBuP6qKXLW0DYOiKm30YSRHAibkd2N+u4UWEdV6m7rUDVCa647Rm1WuxfSa8GNmLc2ABEaMbt6GUQAnBgA0hLY/uzrqmmELRa4jL2yNQaAGtekrXeimNedaHamPIXXJmaObI5YiDmCbbuRX6zfFK0lrXedSslQFR9rFEKx1i/d9D0AuXmtF3FxWYvo+IiC25S5FQnIzNVczAWspBAIAb2vAxK01ddUsYkRbd6OB1200tFKyu4MrEcTAhHDjAWLTfTcrXiRiAFdwQnMgd2zUO9hsgtW2olVkigROWx+1AhBCsxUCbB0DhlTRvOUOGBk5bvTJFvD1rT/WQR2UMDTDgaEDUEO1tXukqxJmN8vgTdC9WTOvwVugWxaACAnNyK5UOQzo0GyKaIAAhNwKqqAUqHkVMZGOEeZ5Pr1dvn07fX961mUZOgZQtbXUZZ5WkIqOx+MYw6dx12vYXU51wdPFa8C4oyGHcUZmxIxWg4WewkgUzKEQiEueXl6ffvltOJa3ZTmdLlmqgHcBu3HY7fdLhbHbz7yb6mWaV6trtbqqPowQEg9Dh030sAy0WeJiF0MobtWqSLXAfd/FXUf7/vLir6+vL99rwySFGFOALoRd39+N7p6hZiu1VsNiToa1hZXR1A2W+fT8HWXK12sRmV8TrUQt3IfAIcQYY4wdGoUQgIGZDU1F13VBiQbAqRu63tg5UhzToL3pUhcR10vNqamol/M6lYBpdzieCaGjt9fn19fX0+nUKeBz6n79e9x3PzwcHLCCcZcAZZHyepnyUjpjWzQvssxViuHA5NEELvNpPl/Kmscu9SkdduOn+0fmMPY5pSGG4TDP52X+/voyLUsICSJyF4NFJTOy4rUHiBxFa+xplzoRUcTYReIuV2m85VJWE0spMZKTP7+8/J//n//388vTr7/8xz//5WdmfHt9ev7+NM8XzpIXK9lXza0Uso962O2P+93Q9zGyRQYCZ6AupnH48cdDydPLc13OAAYcucc+WARjLb7Oy+X8lpcT8d24Gx4eHl7dp3Ve1/Vymdd1dUekxjZwNTvNr/Akaz4PffhS7jDo2O/uYsfJd8fx4fF4d9jPZ1HBCOTZS60lgyiqgaIrWh90N/a8HzTGAg6R+uN+PETgWXVal1fNGGO32x1ighiTO5phLdUdtVpd85rn5oTt+z4SxkBdjECNfEPDEESl64ITz8vC53Q6XxrsQx3QW/MooHKbACIG4rbAosZt2GpPPDi5Wq1WkyVEdHIK7KZi4NDQAZpzXsvi4EgQIy/ZSs3TfPr67be//vV/qNY5vyFr7AOIO2HqY1xL8+U7AlCrf2TiDolIIcagqgAeu9QNHTBUB6xCITJFpsgcA8cYu8AJAN27Fg5ACNCqPwyA3I1aCYcDqGHXxd3hcLx7HN+ep3n++v15d3d/BJym6fXt/Ha6lKoxpr4fdrvDMAzNmOzuXjYwl169QYgN7NBairnBjGKMQC0YxS1Rb1vP2mZHEWlGF9wGL1VCUAbigoiVmmEeyN/3t2ZiFj7CFDaHcuvsu4KCxFSKlFJyLSJCDjEEusYXm2zCDgGpjdfbMEHExExMSAhuAG2esK3990ocEL8525r/nbffG5rP7Ppvb9B5dUA1R3Sk9gq3Okl0aajxzbgWQiBkQ/vHesWNwwp/nGns2n+38b7hQ3fQe6TxmgW7fTsAmKqpInpzOpuRir+ffNIyqugtA4MIfIUntQwj+cbBgi0N0iQjdw0b0dMZELAV7H4ATCAg4OYr/+D9Uq2u2DpM8YqUIKLGmDe89ki2cmgFMEXE5vrlrdbTb1h/xYqI5GTg7BZDooiBIyACYWueIFMxbaNHSn3722ut7kXFi21J8xAoxtCWb4jYVu1I5o4qFkIaEq+aTYuq16ptCUiBA29aZ0NomLuIIkEbm6jBzdAIg6E3H3ibSFQVAgOSMwm6maJBm4pxm3SVW+0fgG8CrDRvvZmZgm7QfDQ1R0D0DWZmUGt1Q8PiDm6IITJzaKXu7qDuhOB+jaUQmIGhqjATgOO2mGy9lNKiCK2iwK/Lecfa4F4BG/qmJQSgXRAoYAgBA7Y9aYuj0rXV4GYyax8H0lt9JwA4XiPqzf619WIB+7Zeb+40UdWcVynVDN6eX5+/P//6+6+///Lr9HaKAGpVvJpLWSYGZPS7u2kt+e7Trg+Q3a1LqEcLPil8O0/0/Dobumh1qayO1UgBlRkIcJ3mt6dX1TjVktdSajXyOPbDboyxM6Q+1UTdXDHP1UpR0KzaAY1jP/Shi7FlMhAEKBAjRUxRq0zLepnnPXMXU9d3e6ZO1ZdlXdaLu3ddHIZdcAYIyF0goqEOa11p2VwXHUUzYwxd1+2GIQRa17lMVVXdgIgoRMIAlCgE8KVFn9RqkyW3yzohBkRFRxMRUwkhdOs8xbTr9jHQuB8TAYKcJC/LYlIQcUBU1ct6CZgAqNbsiU5vb/NyMTMnXPL669dvRq7//PMwDAYexxFjBbFpyVmWaBQryyqlVKluiUXUFplfXl6fX5Z52nWJAPuUDvt9l/qh16HfD7u7y7K+Xs4cw3me5nlNNaUhRUurLWtx0UKhgPdDSCnwbjeYgQF042gQaClb0Y2IqBHRcDwwkpYqUv/t3/4tL+evX39Gl5fn3+d5ctAfHz/Pcy6LT5c1SyFCCAEpiPllWigSjp11QZAr9Tgcf/hRz6dpnt8a8juEEDBAwZKrgczn+fT6fDq/SvkxpXB3d3c+fTVflvI2Ly9ZVmIPiKLszgCQV32r0zKtXQoq2HfH4/CS+r1aDRHGsR93w34oUqEbu+qVioGbqRWxoqCuKwJ2Zawd12wQxnG/v7vbxcN+1Eiv84Ven3OK/d3xLnUQIqovIpLXFcxNdJ3mWgoCjLv+4eHhy+PnrhtSSu5YSnl7O64rAFrqg6r+9ttv356///b197fTZc0VLRKyqm+1iYZWDRmx0aHQwIBwq29gJwUQ1SI1SGWgFm2Wqi5upEYupqWspRQCTCk4plg4z7Ysy++///bv+7HUdYKXKmvqSMDcoetiHbqSNUSOMXIIBIEohJgSJ3fQIKpqaF2fUp8coaqFKhwrxdiqzWLsUkqBOwAAGAAAWz+5oYo7gql23RASI3OuRcWpD7vx8PDwcDzdnafL2/n8dj4j0zzPLczYABDDsBvHceh3ANd2Yytm+g/uLtsCE5u1qK23ALDWm9oBqq5XPL2qllJd0Iy8Ge29VbuAmatWVRZtEAOna5Xv7Qz3zczdtKhAV4VpI1eJ5LxVPJkZbUc5QEvPEfutdhCJELwJBoAEyFcMEm+9MIxXx8u1Ee96FBgAOaj5P7TUqdoVCdGEJTVHVOLtcRsIOl6VJ/frM/lxQrpNtLQV+8DNXH8bvNqH95Z2bMDM9kx+MMoQB0QEbHfVV+p3E5aaSUdVeXMdKWJo/5auYNLbo9riAe5NertlKbamalETlw2XCsS0pTJ9M24DITo1fcvN0D0QgKnrJr954zO1ss+rgAN2jUogtsEL3Anc/V04aU7t9uQgolxbtwFAHRwlMalZSkkdipi751JqlSzV3SOl7YAHkmriRURKKQAQOHUdD8PAzFaFHLRUQVR1cGampsbJ9eu2BeZATbYDQtF6rdMDwgaJYydUM2S9VpmBWdpQCylt3Vbu5kb+ga9mCOro7dLTwFlYRGqtbXffunTaqyYiyG0/vr2pRETFHdemdDAhQGw0NndDpA05uW3PvdVB3j7m2xSFgNsELwABAJD82s6s1xO7xQ95C0wAuHtM3HicQNQ+R4G3LTMzmr1XYLV/28yLRLRVjBMiOTG0P4luIUds3ds2TVMtpdScczZZS5GX5+fv379/e/7t169/e/v23UotJVergGa1BERG3+/718unH6eHT5/3XYDDwyFTqZbXKk+vr8p0rzqkTkCWPK+ylrLqNe1OxKpe1qrbZ9MMoev72HeOkFKXODEwGJt4dYelVPRdUiQbh8QhpEDo7EBEWFQJai7z2+t3wG5Z7bBfu2FESE9Pz7/9+vv352+5bEGBWmtAIcsui4aApJgwckddiIiITrVWER26/u7uIcZYa1X0stZpWq06c9dy6e0Gaz+O4zgSIZWcFBQN1oyBEg996KlzK1aryFQv62nnQ92l1A8x9nFkRgRDMFqMl3Uhm45DiQEY56Kz5M5KWC6XaPnTDv7/dV3JlhzJcfQlInKrql7QA2pmSM17ehIPOlD6/3/RQdRwBksvtWZmLO6uQ2RlF0AyD3gAul51LhEZFubmZl1XKBSdj2+/ToNcHj98eHi877qe+0FFUixRUtFsooVVNjrGKZYD7nOf+RTTp/3vKNLF9Ha6+/TaZRsfH56IfGjdx9Bv56b1DrKOh/H49RRg05Z4B4pzGpMyAzBAaFz3WPw99g+d4y7Q3XZHRsfjOV7G0ZF59E3YbbZD2xlo17QvLy/n8/nt86e3z79VY3UiakPzkg5idknznGfRoikV8J9OQq965PExYTvEtm+p96MIQFP8o7tL6cuYvcAGio3ZVJvmNB66of2C8/8c8Kf//W3700dklPHtcHk7X/YikoupEXqX51ighEYNpZhJgZgwiqO3BBydS1N62vaDpDaqs2A5TNw5CLzrNjz4/PwCU7EMkmAqQBE61IlVzsl7obvu3ofHxw93vZaoz1/fphi5s81daFof02Uu8zRNtQUuiMtSxjgL5qZzP/7x6c///h+bze5vf/s9J9nuuu2uGeeccmb2mtP+9Rhn+fL55fw2QSEzFcwZIObLlJtBOLjWVI2AuUae6NJxFcUUi4qaEE2mNHS7NrQmEClBiSxmuYzT+XIazdA3gyMffFEL2V7Hkp6P4/CyNyCDbDn07r5AUQ9a5mkGBp0VdmHT7x7BnKpx6Lhrq+JFRNiRc+QcEYMCjXOqb/gQQtP4tg1tG7wPCJxzNe4CFSg1scQMAAmA0KkUzw7YFKTddh/o6cPp8+dPfzsfj4e3NzQ7nI6v+7dUsnfuhx+ePn58GoaubXxOFtNciszTvGi6rfokAhgSUQgupSSSARQYYk655FwSakpzmuc5pTnG2lGbq/5HZbHOIiIibyalKBuVwlHMRNSTZzQ2YigpM3NAJCHIoGChWtwTpgJFkRiKAqQSc5piOp0uWHOEPNckGRUDgAwFySmrYFEC9p6W3EYkIkMULKiGRA4DqCFmVUWwJecaAJGr9swjAcKVfKrtkLk6yl6hGNdaG6Ax104xMMWYc8lpCTAwWMouCsYgBCKrnpgYDQkBoGhZPGNvchXByLRIWZv2lzbJincrdPHgKsSshuB0XfYqrwRgRA5YcDEPU3CliJARXVd/EkLAOOelOqnsvTlyzExIIrVbuJgIKtIiu6sR1wKgxBXaroZejaqAiZmgITBXGRgS0MqfAuoi3nHAXAtXywk7QEEkIBNiIoWcs+aSVLLAnARBnXPsF4WViBm4AErctE1gL0U05yxS8yKXmhYApJRSWRqQq3N6zLPPLjQOGeZ5kiTMBDMwURdaIiI0wIycgAt6bVwDao6YHZWSiiRi1mJFUag4c41zyCyqec5mqFq7yrBpfODgnQfU6tWHhKAoOc2pqGp1t1ErYIZikNTRYlmfUw3vM1Vlxz6EkjXGaIqGysyh8T44K3lMycwKmPdN2wZHAdHrFcYxk4oVEASyWs3zjh0j82JVDw6M0jV4oxR1TkUyYF/TWksRIpJcqCEO3jeh7oJAavADN77lppXqD2XgGBnImFxLyDnGCLKEp+Wca/YmeL8wvoiGbOhVGuecY0+4KBxUUBUZujGW+aLjJaaU5sv4+vq637/G5ywjzGM+nQ5xuiwduwZgQABpRsJ5Pn9RsP/8yy/gNvDl5XCQ02WWwyjii/i+70l1vMjL16OqPtwNfdd5z0X1ZCXanBX353i+COMWoc1zhnhG2bu09/gZ/UviQ8oTnoFG8DRAaFvj4DtsPABMMcVpViHTxHBpxtPl9PLabtrQee8LNG/7l/P519PpyzRdmLlor3pwIjLP8+l0IqIUpxpxEEIIIYDiPM8AyTnXNM0wDIh4OU8gkJLEvAi8cqlh9VRSyjk33itI1iyYQYAmQETXhLVlXVWz5tPpBECeuO+6tu/7xgWAhun5+XMhQyxmVtOrvfe+ad+OF9XStqFzTbfdFoPLlGOcn19ekKgfurvd/XZ7hwbTabycjinGKc55zkUtS57ynOfz8ZLnIufzySOcTodPn35DtJfd8+Pj0+PDDwgNGMcE45yrxwEz5pjq+65pGiVhVIIlS4SIuqa932122+7h7h4E2nD4/cvLdrPxzm374enxw24zmGgI4Ycffnh+fv7117++vrwAwMPu7uHuvuu6aYogBUtRw1xkHiVNIvo6y3x/6l4P/bDttvfD8HiXCMY0m6H3fhiGYZjHAjLDnCIXqZMkpTTP49tx/9un3wHk999/3+9fx/FcSqrcNlwb/QEUCZnIOQRFE7lczkT4m+d5nu8392g4jmO5dl1tNpu+34S2B6TzeTycjvMkRDDsoG2bylKwI4fu7i6mlGrNIQTfD23XNk1bs2Qs55Rz0qJEgCqiBcm8d00Tfv75p//6779shi0ifvnyHIJv22YYBp+zGZZS9vv9+TTv98dpStdC2DflG1UFXskGNDMkIgN0vsSYcoKCiOhdgA4cByPLSYvEkpOWEuesWjeTru82ZoaOlXDOk3N+HKdne3XNso1j1wZmMJ8y2HkGIGD2Tdc2AwA5V7OuCamSScZM7BBAU87Oh9C0oel80zrfuNCwC8QeAEno2gJmRAjXBrzq6ElIyKy40EXMvN1ud7tdiqUaIl+mMaXkvX+4u7+/vx+Gobbp5Vyq3AT+yXEroL61mdCcV0pgYUfMal3ymvGz+AjoEsOsiELZANWM1JNXZFtATyHHUqVjnFEc0lrENACTdwaiAh+6cjOIqDeb6fW4yqcA1lTpNU57KWN8sxFfdU7fsFw3R4WSK1m1FCUXB/PKQ4JqLQguZNZ6TxYzdaoytbJWVFcC7L1sd3WsqPr6a2GRbk91VUn/w8NunBu+u4rrlyy0mcC7BAevuS71vtWpfb2lCgClJtWAVjqs1tTg2glbCSEzNi1mVHX6lbZQrZEwAFj9uZSuxUhYTMzxaqdPAFotqRzQEvUSc4WbTItujJmJwAgpZwDwobUqd1p9E5a79O5V5q9lr1p5RLR5ng38qpenazZ5JdjsOtSrlJkMq8/ZMgi1GGrjG0Ss8QZ2DTuv6sP6SxsO7ysmKrK3Wo5PkueYs5hZbUdTE1AjQAJDW4DXyowiuaXHQmCpQdN7C4IpZFERMaaah7gO5spOKSARUq1C1klhlWp6ZzdvR8g6ca66+H+QtH07gNcBo7qMzOuZMyKCKjPXteX2p1Watn7HQijeuBOvyrD6RGKM4zimlNI8r9uP2ymjNY0WgBlKgtPpQgwp+z+kuxBCt21jzHMq5yllKVOKYYoKBqXs929vh73OadeF+4eHtgvTNClQSmVK+XK5pJS4C0Q0z/PLy8vQhOrlW3sacsFSspnsD+pD2G63fd8CoYicTqfT8TLPBcQR+uA6x41DR+QIHTifS5ymU5FLkUtMUmSK6eyqsV61gozzWIEXiAIALdY4V+0ks3NOWiuxNE0GwVKglFINgTy79YYiLH6+WTKaCZhXUTRGFCIrmjXv9/tS1IqoiN9shtC43Y4JYhxnNkuzWCaFxnHThrZrLzHhPKIZmKiUmuxF4GKMx+Nx2PebYbvb3Q99H1zTBo9qcc5TPBdVQyuqU5rTdCkiMV3Q8em8/+tfy9evX9qmebh/enz4GELH1Bo45wcODZIiaYpRc2GHbdOwA7AsWQnQRMnAOdf3/W633W63aUqI6JiHtrvbbP/lDx//9ec/7jbbOM2IOE3Tw/0OQU01sPvll19++pcfm6Z5O13GedofDvv98fD6Jvk5Xopc0qWk03R4Prhh0+w+7Lanswa+pHk2P8XY9N3j06OjcXyZSzIxRc+GWrTEPO/3r7/++n/F4qdPn97Oz9MYRTOxsgMjYwZkYFdtC8EhIUCJlvJ4vsjnL5BSitvY+GacJjNjvs4W5pb9/T36piXHeZP7bvPwsR02rUGc5mOt0728vGgR78Pzy/F8PqsuEJZYEaGUJJJraQWtmKhzGFyz3XUPj9vHxx2zF00xXgBL1/u7cqdmiJyL7E/ncRxjTNUPoBLp9VW4tGSrLgTBcjhEYpYaZ6lRcy5A3LVrZxnFUkRwHrOUOYsyudAMfb/ruoGIfNtxG8Y4quZ5KvH8FoZQLW09u7btQgsirpRTnEUAfdvfPXxgbsyMsOp+oHYcEde0NE2hhDDlbCG03rXet0yeyCPWFDaw90UV1ryWilyuK5/mnLl4Itrtdh8+fBgv8/l8HsdxTrHrurvrMQwDEVXJVM5Z9f1N+t279RbNrKBrRTnrP9d1gpmVcNUH2xISBJqlFAGspgLohMwxK17NwERIalkTwCmqw+X7DUzyItaprzy8SR5cl1sAoCsQXD5WwYRb7BWQ4Dvg9X4575dAq7L7uirDuiTDNXtu/Z9qOIXfyu3rKdWaye1Csmrc60fWVyJe4cv7KiJQL7YC2UWvbVa39ZU8oG+NUr8DXutz+Q5c2lqwtKo//AbP/b167B1iVueIRb+vtRSFREuRaDl5teqiYgJag8gVridoULHLsoEwK3hzC3RxSKlUFSM5ZoeIWWwpt2EGWCxVEZfZjYjOv2+xlqdfi+NudVvlpmmuejU7nU7MOE1T1zdEVLt3va8epMvmX0rdjSyCejKsjmzLwxFBhtAFWAxglxsYY6zZCdXiobISbdt67wFVDKsOcp5jmuZSlJnJLTge6vDA6uasqyCnmrYuo06xrsJGN2gvSyxSNWQVeN2qBagaBZtRLbnTkklQx986feosW1HRCryWQf53Y+y7bcOKvfDqzHJ9HREqCGvdXBHxLbBbKq1XbLD2/9I1C3UdfpUDGscxxigp18nedV3XdU3TtD6I94hVsqZwtectpaRk4zgeDocoeJrmZBK61vlu2G77blNKOU2n59fXt8O+AfzweP/w9GEYhpe31/P5fDwej5fp9XWfs+yehvv7+xBCSolUKuHStm2b2iIxTTFnO55SaM/9/uy877Nkzfv98e3tMF9mMHbUMAVUJ9VICYAa6od2GJq+JyAaxznmORfn1iSN9crNLI7TNE1t6OoWtjrKVH7LzIzQOYctmbFB3f8pI3nmxgfnWEE06lzGUoolsVp9rsnAgIKgqqmk6XwBUSviAdq7bR3B3dCaxKLJstWGIO99CC4ERwYpzSVFBUPXIDvn2UxTSufz+Xg578axbdumaz1jKeVymQwPuRTjmkeBgFhkVi2qEOP0lqbXNyPg17vX39rfunYXfM+uu3/8+PjDHwAUSTQXK1IZjOr5g6WQQd0tVYRaB1BK6XK5SEqEsOv7H58+/vGnn4euPxwOMUYf2ECenp7iOHnvf/7xpz/96U9t236Isr+chrfX/vXQNJ0KHeDZJGexS7QZ8pjzDHJWFcZTjAWMXds0PX9oyRqZXsscTcw7D1CAgRhTiYfzayzxNJ6m6VKkICo7YGeGFhpYJnmt6yMwefSkZEQrbTbjsq4wOSZHi912dRLx3Pe99/7p6enf/vyn3W5I+Xy6vB6P+9P+zdTO58s4fn17vewPZy2+77ZFEgMYZCQhri9uElFC9MH1bej71kz2h9eS9eXl82U8qmVmbJrGeR9Cm4sI4Ok4eZ8MDJjF9HbNuK4cbFW9VWOcCcmovpTHHNNNm5sRgpopS4EUVYrWEIKu3/XdQOCZuGnchpG9j+kSpzHOknAKbecbMvY+9Mx+HJWOMY9TUQJyTbf1PpSiABB8i5aRWE0QDdHUCrEn9kgO0AGyAamRKNiivkBVFTMpJoB0fcepCohUJ2sRSTmTd0QUQtjtdpvN4XK5VOBVK191o0ZEtU+7Tt5bo52bneg3fMmN8Pyb9X7FW1WZZGYINajx/eUMUFPioJRFqwSoiBbAYaVbVcUW86r6p169GxHM5KplEcHVF6C+oBRWNLMuwCvpBbcu27YArwUv0c1FvRMMSyrRzcKzLBIrLFsdH4hIdIkSQrJKJFQ4hNf4lIWrWLYB72BoCbC6Aq/vsJesHk5LnhKsKrf1htuNTmt9Ute/6D97WDfgDOzadbiuvlXDV396u2m5fdYii5n+0tAgti6cqmK17dekNi2gGhNVrshAQW1l1g3ro3QVeOiiQEIRQzSqnte+8V5SSsxs+j7YbuFszrkUzVIqd5vzArwchgqbVqxcr2We59ork3Lw3hPVirCFEK5+dKXkvLpqqdQeljqqvx/t+i1DWY1X6tMPIVQ/JmZWMynLBxYcqfBuNaJ4mzf1XpddGK+ryQgt4FivlLJdBYKllJrTtE7V72ZoJcjhWsiuOOgbZvc6lK4CrDUE7J+ys7dj6f1X3DBhlVdjZrgRO17HOV2bVN6tLm6/f93e4NWXbtHbXbd0zfWYrzlFzjERqGRGYWDvvZGN4/j161c65HMqJUvTdHcP9/ePH0JoD4eDHHQqaUrZBe+Cb4a+GXo6HbPpOI6XyzjPGYm32+3j4+Nms9EiEmcA9d63bdvlLqaRIlUOapzz4XRm75MogE7TNM/zOM+IzpN6UjOWpCJiBg3isHX9sPGBwqxI6XxOOc//D9UwTs+mj8J9AAAAAElFTkSuQmCC", - "text/plain": [ - "500×808 Array{RGB{N0f8},2} with eltype RGB{Normed{UInt8,8}}:\n", - " RGB{N0f8}(0.325,0.412,0.467) … RGB{N0f8}(0.443,0.451,0.439)\n", - " RGB{N0f8}(0.325,0.412,0.467) RGB{N0f8}(0.435,0.443,0.431)\n", - " RGB{N0f8}(0.325,0.412,0.467) RGB{N0f8}(0.412,0.42,0.408) \n", - " RGB{N0f8}(0.325,0.412,0.467) RGB{N0f8}(0.384,0.392,0.38) \n", - " RGB{N0f8}(0.322,0.408,0.463) RGB{N0f8}(0.369,0.376,0.373)\n", - " RGB{N0f8}(0.318,0.408,0.471) … RGB{N0f8}(0.365,0.373,0.369)\n", - " RGB{N0f8}(0.318,0.408,0.471) RGB{N0f8}(0.345,0.361,0.365)\n", - " RGB{N0f8}(0.314,0.404,0.467) RGB{N0f8}(0.333,0.349,0.353)\n", - " RGB{N0f8}(0.306,0.396,0.459) RGB{N0f8}(0.322,0.337,0.349)\n", - " RGB{N0f8}(0.31,0.4,0.463) RGB{N0f8}(0.314,0.333,0.349)\n", - " RGB{N0f8}(0.306,0.396,0.459) … RGB{N0f8}(0.298,0.329,0.341)\n", - " RGB{N0f8}(0.294,0.396,0.463) RGB{N0f8}(0.294,0.322,0.345)\n", - " RGB{N0f8}(0.29,0.392,0.459) RGB{N0f8}(0.286,0.322,0.341)\n", - " ⋮ ⋱ \n", - " RGB{N0f8}(0.341,0.361,0.149) RGB{N0f8}(0.592,0.643,0.525)\n", - " RGB{N0f8}(0.38,0.392,0.208) RGB{N0f8}(0.608,0.667,0.576)\n", - " RGB{N0f8}(0.376,0.4,0.22) … RGB{N0f8}(0.643,0.718,0.639)\n", - " RGB{N0f8}(0.31,0.357,0.176) RGB{N0f8}(0.678,0.765,0.682)\n", - " RGB{N0f8}(0.239,0.314,0.133) RGB{N0f8}(0.624,0.71,0.62) \n", - " RGB{N0f8}(0.204,0.314,0.114) RGB{N0f8}(0.553,0.631,0.525)\n", - " RGB{N0f8}(0.204,0.341,0.129) RGB{N0f8}(0.525,0.608,0.486)\n", - " RGB{N0f8}(0.2,0.353,0.129) … RGB{N0f8}(0.471,0.553,0.424)\n", - " RGB{N0f8}(0.204,0.337,0.137) RGB{N0f8}(0.416,0.502,0.31) \n", - " RGB{N0f8}(0.192,0.325,0.125) RGB{N0f8}(0.349,0.443,0.216)\n", - " RGB{N0f8}(0.208,0.341,0.141) RGB{N0f8}(0.31,0.396,0.141) \n", - " RGB{N0f8}(0.22,0.353,0.153) RGB{N0f8}(0.29,0.384,0.094) " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "img = load(cb)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "channels = Float64.(channelview(img));" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABL0AAAD7CAIAAAAAbXGUAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42oz9SZMty5acial3u4nmNLd5XSKBAsEiISSFFKEIZ/zLnFMowhEHNSA5YkmhCllIAInX3uZ00ezGG+PAr+r7zPd5qAw5cm+cODvc3czW0qVL1zLz5nvpO6mTemmQGmmRGqlIRZJUpFk6S7P0KH0rHaRRKlIjtVKLzzeSpEbq/MPFP8y/rp9v/E2rX77ysfy18fet1PvZZv9TJ91J99Le9/oo/U/SH6ST9Cqd6psW/2Ij9dJOGqROGqRWmqXJ11+k5eYxct/1M1dpkoqfrZf20kEaJElX6SJdpNH/us5w6ycRRrdgzvMY8m9llgap95TmY/l+llp8PkvT+Trriuyke+kgHaUOq5zrrLeYMFebBeI3wrpnUVos5eL/LjcWtXgV3kjfSffSJP1e+h+8gjPuThPi94uv2Xope6xpC3tuaoMcpL3/3EmP0tEm0dcT2GC9YksbI5/952rDWAc4Yplyd7oAbWCUrv5wrCuTPNU/maURbjhJZ+kqFa/4XjpKe1vdOi15+MVeID8S17H1LRYMbZHupe+k99KD9Cjt8Gwn6Vn6In2QfpROUi8dpL3Uepk6aedJ633xdRSxkBYrFVPZmFzW4ve/0+9/5/Xe2aAbD2nxtJ6lUTpIb6VOevVEN54UfsWLsuo03Nvn+Ftwlq/VylsPOEPaSY/SvbSTGumT9A/Sn6Sz//BqC2xuMNAMhrDF9jF6qTbgtWAskx+jACAO0gHOf5XO0sUf2Hg1/fyfCV494GbBnzxzAyRt/X28cQXozg/Z13DQ+FK9TYqRQ7jdjNVU7dhElsx5vKJgDhe42Rvp19JbSdKfpX+QfsCIvroE6/ctfrKOd1ev6WqBI/ArzzDYtfYOgQfPFcFrY9sNLstBxcNH487iW8+AV9Xfb4yTgTNQVepb5GuGt/fGzRHX6aS9Pbr3hGzAq/OHBaO6Xce42+r+D47TPaboIp2lV+mj9BfpWeqNnp2vE/Bq7SazrXcBSG1C41QvAUH29/9S/+XvPdS9L0qzW69+ki7SIB2lSfogPTs+93CYGNPg6CcblgComxhOByB9K7ChlRUGqlezGDxBq9WepH+SPgA+eJ0Gzp8ovUJ2b4NYjWBGSG8AWASvrOtXmdfotbwARzoPh+AVuyEszp5YghfdRrDsLH+edvDodh7daigXacF1phtjXRxOl5p0bDjUjLtvgGzz+eB7fCBMYfIkPEi/k76TdtIn6T9Jn2zWqk0ioSLBdarxsbshuR1gIljTArwO0p1054nqavb6vwheYayJfNcagwivnYfQYrES2mfPzwLU4yrPN6ZyNla+SmcMbScdAccDIutSW8sm1WBq0uJfV2Rspb3NO/7VSaOTjNaudCc92BcYqA6G0XhcfHmGv+drAfoLV/sFvPrvpP+dafTRaNzCWtek8bM0Sr+V/q30VnrFYnb+rQK4Cp9Z4BkbfkVDKwgKtxlp67lf56xxCvSt9Gvp0dj2e+n/If130p+kn6Sf7CLyuslGtM7uQdoZs1emNNn6MpfFRhdusyLcq3Pp1k7wRnorHaUinaQn6bP0alNaUXZAJIrlzp7z2YawOu4O1jc4ipFtM7CMxq04yq6G9tVw3knfS/fSW2lfh90VcQdpkS7A2nhwFpdoF8TaZG6l5g90zfX6s5PGfyn9W+nX0rP030n/N2mSPkpX2ADjXuyk9X/joPde0DvMdmM2JT+SpL30IN1Lj9J30q+lb5A9dog5TJv5hxF1slJwkl6wImf7/QxyGwBm3jtb7Lj6UlcQksWpBDPSsy2wkc7SJ+nJs3ovvfOI9g5iQz17jflFAUpxxScwhfVhvpH+t9J/K/2d9Dvp3j51kT5If5J+L/0H6d9JH6U787TBD7mT7mweO4fTV496cmil6HCbTyZOSlp+p9//X6ShRsswxdlL8kk6Se+lfykN0s/Si8G2u1ngMPiYdanzjQKE2hhKhwHkmjs/22S7X9P9R+k30vfSG2kv/UH6f0r/H+kH6YP02dCzXmSE0PIgvZHuDCsDrOEVgY+C2VKD1xW2uOL+oxGhSBfpxfbU25GixMTlouT9L4JXODfTxWIYPUHwGADKEQVbw/fRcsUAaG5Nh65S76loa+ye8CdLyTgYoBH+NXEz/lAcuxdb3d9L/wfpX0uL9P+V/u+SpBcswcbPw1VaSCkBryMi0+amBK8dwGvVfd/aHnY1W97Ydm9vzJJNtoc1/p28HJOXcnb4DOa2tXmHXF3B30aQt9kaalAmq7ASrav0xSiw/nwvPRrEY+Ty3Skohu3nUZkUCMa2RprfSt9K721XK1d/lj5KP0n/KP330g/SXnpv9FQNXisHWxndyUgygcGUm5iXdGyBJSx/r//yf5UG6UF6Z98L1ky++ifpi3QnfSOdpH+UfpBepcby76HmX0fp3h7SAUGoW2xES+aNVEdbD7szKJyckt1J76U3/vMk/b+l/9EY9ATf6wBksmMfnTbsDQQXWB51rzXWCeA12+E7M69H6Z10MPNa1csv9q6DM5Me/L6zcdyCV+PPU8UhXsQbX6UXcJwWDvwoPUoHX/lFKqDslC2DX0c/0gDImOEz+RObXuqYtNTZbBLgCNFynFgJ9W+l/7P0v5fupf9Z+n9J/8lAEPIrZIapsAi5pZCWDM4DkzbvoEJPNtoH6UF6K30rfWPdK7/S/o3AvAGvybByBvO6ILOiNNX7OTuMSwCvS20DgarZtxhNsVf2+iQ9S6/SzzbRdUrfSd9Kb01F12E+utZ2BqBT641ddQ63qSOsHtdJjyZ6Z+mLXelV+myV/ii10vfSb52FrBMeHzk6J5CZ1zPYQOIfM7+5Bq+/0vme+J+4wNB5BaQvtd4quLgA5mFu+WGpgSr1gK/qYBt6tlGog3+jl3Tw9Hwv/Z+kV1cgJ/trgyjZ2Jz3NqIZ0BVSx4pFxhJZLzJoWNA6S63T2iuCYHLdYlSgL6rO9+TrJ8HeVFMozhbY4GjKt9R4P/gWq2W9k97WZFIIGj3WhYLPptzCDJ/1ZNW/wsWi6DTiVwoIxsofXhAciqsInee8x+qsE3U0iXojPfhjdyYe0WOJuwHUlZasBbSj4/AONJLiRRhgHn7GtFBwS1o4GAKTM/fwiIgUQuTJuPagQxGmRlAyEuDRQ1uVqAME8cGwvakczJDgApPCeGdfNk6xk56cmyw365vC5lEaHTzJ/FM96kwXi11jdr4j3H2yMQsG0EIVvCamFJcp2npSLo4mE2RK1TmMPAttDTcNlqrcgMKGdwlmsfl5Siib6m14584a2P9Rukr/wX54xl1WvAsR2oNdjFAaJiwk/aSpwasDchFE9tAkVkuaMOSIlZRw/jngNWD4QS7V4BWGfXHUG+z869fOfIOmTCk5z9YCJrKaBY/NH2aNOhgAbSDce3MpMrpwiRdzjAKHT/IcT5MfcsWpVQh4dJa+qnoHPNsIbyR43UnvjHR3Zl9t/WeTETRA/6WerslPOzmE9LVsU2rwGmFgC8w+XtqgLLHUArcguYXpnbwQQ416U+2nhD/VOEWFKd/HtL5I79A4dLtAvcPJnYPKETa88+j2dpwLRjHX+DACvBr4TuatAq8J+jlV3GfpBGhc/AR9fdfYVoCTChaJ8iYg3+KX6h8u0DzDhtKQMLhr4p30byVJf5Z+8np0WIAFweEIxXKq23QIDYxvBO4CKElqvuqlxWZ0xcNfgTUFPs8Q/VXwarHqNNyuhokrFPKrsX6HfJ7J6rmWNzoAJTW5AqDZgJew0KVGeQaquc670hzC9DJzeJG+2NjieOtzDmC7jX/SoGC4s5+sd7mzqLk3gkTXmdA2t7e4fe+L5PMbJe+fA14rIux8owhCQgWPdWN2udAkhEx7hEEmpZQRJ64+wzU2DWFMSgW6NyKtHWsYzfyw3hge0CPpSeRrQI5W9fHBEbTA4/Yoh5JYTbDepgavBtdPZvBLuaqPAwXxetjXBKFpMYY1aDtgGslFTra7Ebj4uxurp1onrECwMPcKQztLLxD9d9K/kUaj/aUmD9TcWNaYDdIUWAW7YI7HGnxrRJFX+BUotUl+kscGqCLlt3ik5A+ktazKRofhv3ZOTiZ/Jmwn7nVwKNzdFHAWuPVirtjVoJV1bGFfIRIC+LVY5Q1gRy/OBC5A+os7cu7BMIXM8N5kMsawN+l6MNcqVr1WMEtRhE1YjaNZ53SxvylpdognS23tmx8mnF59l2g4y83HFsze1Q5VYCeZ6hm06lLH1QJH64D0raFoAh8rsJYWYHb9GodvEcFSOeD1n1yTeEHoi4n2ntLZJP/ehHbvfszFxvlkcpFoP4EFTDCwxGFhov7qqk2tjm20nC+m8q+Ghh4mW4A4xKkFYSvx+raplcTmb9Ew5opEt6vhoLN//jdScfvELH3yJ6e6f4ey6WQcPNnsmAdG6uu9ug3ai0eo+euks3t4vqF2BWXVvS/1zwSvTOBmHjbgFZOKvjlC6tuh3NQBCmc7MwnqfON7JM/zzSK2WOsGiL9JQgqMZ3YEOju+9w7ZsyfwgLyuN09Yr5AelUckijsnLUf44QiC8bfAK8gVmrQpf1EECT2YsOIjfL7UrsEgvWBpJkwaY20AaKwVjY2/RPFZgFyD+396l/3j2qE62QSy1M61iWoRjNdHeu+HuQLxo250tQz5gNRxb9sr9r4X98OkqWHCjQherevJsb1fMmFizYQy2uyLvriYsFYX3yH9iLHGzrI8SRuaGtobuOhG6aWAz94v1ai6Aa+TrW0ts/xOaqRHqfMz7+2TnU0q4BUSEdFrRDiiDQmmHOO+Ar+Sx3b461RD5HqdrPEAiaWp/eQWvKJLdfCcBv8aDMoTNm5lLB51EHZNIbhzaKlBuTX6b1q9hVVb4JCblJIQQIMrdTArfsJn0+SztwGM8KXBIspKGyMfNk4XH+wwg2si0V12HnjkogUEsHdu2cM4O0zLBrwyWLrQVAPNCEgqAILMYQuwo5bcYJILaNdooCF4pXTCtHaou1tn/HWyvBRSkj5qtkmEdXbArOIYI5vNRXqWnm3AAvPqXfi4d1GxtTB58JXXCX+B4nWGMlXgPl8Fr78KGT0njHiT7pJX/xmlnfRR+kY6SK9IAIj/Xc0iBD9rsJhM2+Y6juQrjpVkpql9fWWDA/aGvJH+W6l1CTl1iVNNx1mCFcLlVPvogkyDd+dOxdjOUgd3Brv0HF0hkvRWbIabgL4Bg9nrLP9wcA0tCuTey1FQk+jd4PqIvhumvtQLhFULNdoEn1usSoLaAg7565u6TgGwdVCx1rT/rfQvpYt7Cddo8EZ6L72V3rgpL8YQR1mxbR3LvTlYi6rMYDIZmxzh2aNbcwcgLoGKwxdgJggUpFkd8Yx8MvJd+ColrGs9+UsNXRN8WqAMrfnCCPALmAlWRL0uMU2enCtsssOCMsWNmv8svbh36s4sq6ntgUWmHv3A2ccXir465uBHGus8mTv1Vimhgc/+kjcypmRyZyzDk/RkTahI37tJ6rVO9gqmmPXiph7YRpEXUE81u2iwVMXJTwEcrPN7di/o6g8P0r+WdtJF+gRd+LWWnulRiwnA+WYLLOko7aNzlGeafkVgjRw5APgCXp3zn8lCzj8HvJiZD5i35ITys6VfKe63Mw9pINYzwpIkBKOTX3G6YicFn6RvN/i5gH3JM4ufOZQyvvRO+pdSkT5aQWxdjHnncuIVyuudqde9wUtuUg39K5bKrrA0ghdpczYJCOOiMhSImcxnTr7yBJp0/dpqyiNt6iDKz+RhriB16alob5apre05hJ+Sm7BYbV31GdGpr9rIOTnxghcrXvdGqA0pLTDIwRXdB++KbGz/Yd3rjdKFO5oWXjEtBC9R9Nok3OkjGc0OP7nDfm3mTiWnq2002g/l4k2+QQi4jWwN4IluQNMPuvVehrOd+eAs4tdOqX+UipWPc91JvMkM59pcNmg+GZEb3F0W0oR2zcmEKOayg4tO6F9fV/efCV4LNA9BAyvIhHeY2wPErauXf3CgTgMQd/MEalO1SbF+I97wIUOaNlFKAD46PO0hDHrBXK3M686Gty5uGtQeXc2boa8crQkffPEVvFITaTwDI+5Vaqly9DP3dT5BK1U9A7Pd78VoFbn+gt4+CrctPJCCPB2kQE6n9p42hrS+tO6XYhlzrtP1jYsJwaZxJMj2sk3NhdXL8MrWun2yvgNCQpY+IDC4ReedxXK6T7ZYXUAdRjjjLfOiRrv0dLs4ylL3s6/sa53Cf5J+LX1reCTACHOw+aLtk8gu9V+Fq20+Oddzn8jyYpH33nO/hu+fpD9YUWkskU1I4XswY87Wf0WYjsPFBdclYoNFg8kkDAfsL1BCzyiBdIi8lJUXd6j1iAlzHRPj/Ts7395ca9Wyf+3tz8zriN+CGpNuIPZtbTL/ROcWiH575ShXJDPMOeXg0/uYid9IZ+lO+ixdvNPkW+e9A1rCO49o78i+FnvvDUKCf6zPT0mzu5nGGdDIHGG6oZpLLUlcoKqFOM21/RTciCWxK+yBht0gsARZS32paFl7L71wIA2rEVGlVHcvjzjEIMsqm0S6FNehvUofpL9gd9u3MJvla9dhL94OpnX+2p6GRJXR+4cn6yDrA+SUneTkv/wvPdyTt/w++6CeLxa9Xt0B+ICp5NeCQNzAmheEgAABgxpDfELzXKPViIhA8Ir2ui75vfRb6V9Lf/ZAzjbcmO/FPQNZm8gPX02Q+Mz0wM5NiTNCG9PgAu9tbO4x8Yt35fwt8EpRq8Vk8sozgvIO+mmEh703dr31iBbMeeb2q9/nXlRQGMF1E3go6N8y7aVGtPxWdlG/kX4rzdJBevIyvZe+cSt8h00LO3ebHK3njTV4ReYJHrFtqgGvmG/GuIlGE9axs12N9Z6gGcHmipFyqukyeRJOC4Uu4myDRqf4QvAuMnNnyBjcB7eRJBv8YvGBMkuNkrIpCqRrnbpP0s84KuARRRSmwbGEDrvVsut9cYcmBfLcenGbw+UGvA7Ayl8eeEGVP9Fg3Xf0WfoofTIQrgD5v3Lj/yvsm6Hpq/hF4Zc/XDBfdJgGfiLAgfCZcKXO+cNgmeR76VunQCu7vXhyR1cp2adK5kXwCmWn7Tb1T2j9aUXgPLSgKpdaHflb4EXuPuOvjf9Vtq3MfI4s7OrnbLzxZUHZfXOsB7v/ByQn5LmMNG0tgEfmLV/7k4cvsG/dgNcgvZV+Ix2kz9LOW+bWcsM7HFOwctuc5LT30q+g9mgxJks81wU04b/FCcwGmoW/cpIbSwNn065ntNnEwCbcpa0NPvac5DPhp9QETXCiAaSjwcUn6WQcbx3D7lzL4Jlascad/5vtoBNMOkuZrXIhp2dP4JP06nk7Avhu0b93K94bHFEg91q0cEDWMs5gXqrBK25SpNIv1vhiqum8+CI9O69/9h3+IP0b6TtHuhmYn2WZPMF9bQhZkIgqbR2vGZGLja7HX5c6jq/LcnDVUTj95e+l/7V0kv5k9311C8Xo8mNOmkk/XkCRiW5KHDt8f63zjdhUW1tBi0GFNI+Ibq3dN0WY6QYqepPsBvMgTFr0kNaGuYqTR5+P8mvpAd6wqakuWCAugfAM/ElbL5lucD2uyefkAwc8Zpsnp+jObLPxaavvrbUOcCZ5LDv3x7RYr5Q085BRtGO3s909eVqDiksHd7g4v2pRLymOQieXfMirYxUtFveKeBh1q2D2NoSND8Z8LM1Mg+PnZBfo3Kl7ZxbaYnthCxsoxp4Gy5FF6bCsUVB/sl09OGjc4RdLPd7GWf3RBjxYOrl8TVsJ2LPXZ0KnSNpl1oVbEg3z+yN41yeXR1+NcXvp76Q30qFuEd6wqRmzVqDexm3i1Rv32Mhjm8Adnw9PXY34k1G9sQTyW+lfSa/Sj5Kko83rZGsTcujszOb1Kbyp7pqYUA/JV6kXr8XwBeEhATqg/88Brz12dUdva/HJML1sx1gj7xr13rl/KplSj5wqcz5jURhDORtcPuL7BuDIOoRPJk0iMuboh3RpP/guj1C8jjg7dEEt5GAvbXB39oQIeLEBr8aFihbgO2PdN+CVUvMVO2VON22f7F//W8AkTO/ie11r85vBDLLEgcUYzIy0uSATuQMG9TC2xkZI7jQhP+Q0xhjWJpZ7bwrNabSRjdnXURB3727A61xnFnNtGFGpz84X1jE++ECduE+lK87uXP8ifZA+SZ/dLJH1+Eb6TnrAafGkswWzH+QWFomiseCBRAqmmmGFy82fyRf5gkbztcD4VvreqFSkO/tb6qgLWHV2S8jYtFHgCphXA9BMbE+M7QBblEZjdhdYcAEGbcArgBh1p4PVxhYXgEjkjQMUhQFiWKxkxGGbDTB3gZOUG8DagFd8L6uW57kVkBjVaKyt402mawXfNYi+scj6zs2oUTcaJL1rK1t8m+6a4EHwShxa/LGCJWvqQW3Aq/EwUz2+oLsrxwiyap2Ny9TS4inhp+0NlgngpXrrfGL/7AOiGmtRO+/bvHcNlqEl5ejRtco9drBdakfefM31Pp7R3EWQ5dhlIfQMHyBSTvbKSOzcqxCafHWmugN45dymVlJPpb/xCr9YrH/2dqaTJ/Un6Y/S39c6TIpsrDSu4+vxQ2rxsY6NzqvapRjfI01yOi/O+oOCK87/nfRvpS/SIh0t/oabJnlLByktekMP4gFJV5IDsILU2hzCkXrclNWY2eRnQL5XalTbSENptcvMROZuYaGR6R/s97+S3tu6VRMh3UxvVnOTGbIfgpoG+YBq0BUMmVY5A+Fyr802+d72nmLjoy2XR00lad/hvL3E5b1zjJMB5lr3YYXspWCTHSsxs6SFL96v0Psx0qGSMPKKsnz6p/o6FCScFrRKNDADus+MQNGDLcdTBkBsg0u13j3A8/k74Dq1g2Ts7BliFTF+Oksv0k8WIQ9elK5G2caq+FCfQdUj68vYzzjHegH5ZOg41bD6V3pGuiwvWMT6z+6sHY0dP0p/cjtVVC7qfUKknuuUvWDWhE9uJPss2G3Vq4EjhVwmTc2+54P0a+nfSF+cV0zo0swcRdhIpZvhL/72VfCii3Zg2Et9VCmTPQbNCb1j/xzwKvU7kTps7Gb46W2ye0PYe0vYIwh2wbRvSmGbBH6T422oL28d7OvqWsVGBos4m8p+KqVRhHtb/yravTd45TD2VKIWry/5+WRkyUmTI1I7glcxeF3d8N3V5bsrzl46GS/ubDZJw9Ln/OwomNPVNsZfMG9chbm2uiC+6v1KPWy4cy7Xwjv2/uaILdE9+mRUJ5/0r4wiUNjhA41PtfxZ+kZ6RqTc1QfAFpwikbJnD/BKP9fsdqypfoZ03s3G+osXq4VXVgqbvGBP0kfpZ+PXK2pxs/Rntzv3rr0U/5f7xOKBQ+3tG/+JfrgAAbt6abM8AYtNpeLqz08mX2+lfyFdpM+43YjehoshTxCxaEmlBq/kPC0eo6AQlJkcEC33AC9BtJ/8yQ5JBeWQBXg3+alG3OII7GDRPCeAyR/bmQucMbQGLhHrbO0tjT1nqRdigRnMWBqyKvkiTB3nGrwW0Aq2eYR5rR3zEe0e8KoM1acxFPtPqc/yGZx/Uk5PW2Z8OP33oTaC994yr9auGOQd/A6YVY8YnfMs6H4jyrN6TOygVpIAJtAlwS+SQ16cJeaFCb0n8OA23Q5n+YYnJgoO/usED2qQ1U/+6+DJ3GzPyElCO6/IAeCVzWo9io3RCF/MjQpyxSss6oy0Ix3avxhk33mIC3AoPSwv/u0wk1fpL9JP0rfueaGuF8WmB4bdxvQZBsJskDjfwfDJp7PyueMJ9d3GOs9b6V9Jn00X177gBJQJUT4t8OTot+RHCPoN9EQhjAqpQoNwM5vdCXxsjw5xwaE5/Bn3DeQQGxZE5Nbi9cH1xu+lb1ymS8RP11JTkzHVHVKtbWqTNDILStYkrDIXsffcktNySgPek1/9d/ZZEgHpe5xzMxi9sh91xnrR0joPNiMagcGlNsjJzPYCASJl+1fvH1+t671VuGRlkUhGH2VwdgGwryPhhBA0eWYCmapDwQxPjYBM6aSFI/R16Mhrg/a1xBA03UxUCu9X2/aIzsHWzi6/leezdDTwxGhXDe2dlzVdLHlauQH+2UdZP0N8GxxtouMUSDOtxxgUbNr6WNHk5a++wRe3FiTr/bP0o9nXiKghJAMN5oh6T9zg9ofMZDIXDXAhX0x44tjPIKl7p47/WmqlD94s1wCgw6NI4tnCIVhPwCuSwATz6hFPOwhdHRx4xuREsdghPuYzBR8Ln+axCDJXCTdLyDta7chJoQ+mvuHizPdYrqSa1d1ox4FXUikuqFDii6bQ4l+TGhX8MCnNKH2QPkhXdzZ2EHwf3Im6Tks2Ci0O/QTlHv33Yw1ezGNpbAuOfWpuwOsF4LXGxbfmtFErJh9X8OTUdIZpUdcW5KsEnqWen1hCYKVD4hfWVEB+ih9vdmjcoWDTwSWDWdS9ClB1hLkezaDSyL2e2f3ZXnZyOEmHyZv6gImcy7g+/BVTmokV9DDVi7sBrxn9Yn91tmIkuhgdv0gfpY9miq0ZxA/S90aKC7BfCMgNEssYcfKrAj8UTD+P1H4N1PKv/DN68EEfgtfqCWsb4d4pdTK9tC/GGzeiXUofAq+dETZZbY9NHOpWkN4hYcYaFFPqgBeDbZhswlpkOcbJ6ExxgKMV1N6JxM4Wc0IRrHfE4p8W4YclcgGwyA5IylheDpz1KG+W2jkzyZ1nYPFO2hnter356QNE4KZu4yxYzRhbb2QZ6wfbVCLyVSAlZDgLTt97dn2/8zFidwCI1kE0Fa4caUslJRSVykhyIVa5qZKS2248ay0THPze8YPzxh0E8/7GE1lkmeCVnSX0EUjRujhJeVh4tUzrzYet1/HeheI0eLGR9ApW9OyW1+RAM1Sxyd/HN9MN9Qt49Ul7C9TGvAzshCAVzF8F/W9r1SvfL/WHmZKFiaXeSPLz1QxkxuInSjJ1kdHrau6+90C/k/433qTwxb2sjS3x4n9qTcwKZAHBnOnEZ08II2MHkpaGwASIvgbssIIBxw+z1DkjAOmG4y3IjRtHovRk3qGx4N7nHIcTUorMMJP6ZrEE52BcYgLTYCECaT3WaIG/JmRRYo1DrwO5mCGHLUSVIvXNvdIPUSB5DEDu6I0rfg+1dDkBpxcD1ei/pmX+XANSY4O593LkLlfr1HJr9wj9MMEhWyjiLCnwTHXQSEdOV58bskkdMyEd1qs3/R7wEhcWUcIUWOgq4IRXiAJBwSjD6zGlbywbMY064hZsi+s888/eL71K61/Q1t6YbF+9g6fDBogJgtsvA4n0XPAa3pXYPdnPx9rW1z6Kt26NKyBLSz1BVCEb8LcZwSW8iwGiYLqZTy7178ox6+KLZEPqTnrj41V7BJTVRFZ62ftUoldUbHewuQvoimplPypqUpGsVofdNyPGrhq8WoTFxqs7wQoZepJpL7V7z5i0ztsxDvWuv/i8sByJ/ow0bGGjJrSAxwuZRko1pAQdgnsLoBf8JyuenXJnnyVxQCk118wpGMm1knFF0WidWO5QAwjIpvAb8Mp8JixdYU6p6zy72Li2et35vw8oabbWifM6uisq4XmAPD/jTUFSM4H1sUBNqXoA7i/oA49+nB4rUq/kFDHXrEiPcJJ1P9tIkib02Ey00pd3JmOhTHJ/S4vTXuTq+uI20mf/+QTwKnbVQ/1Ckb4Grx5T0cYQF5OXF0DjFzevHBG71kX6XrpH12Vwmm0l3Da+kVVCWwuiNOMDU7imDpL5eeoho6nT3oR1PY3j76Re+hlAcMIVBoPXDHYz+EioyOwJLCPAixGgrX8YVBLeWEi9OgRhQJdSh4occSE9MQGazqx99ZkceNM4v0pb4w657mZ78YAZFvLnUAOCHUUIRjvVcBZSlnw7ul0IbFOHpZw2dvXb2bN8sYQcD7Wz61I4lJe1cdwanD9HYYo5RR9ic8IC8BIOGUwq+OpyYvFlH1BJC4JMzlpeYJCJxANmNflka9WgwRbwBtbSAIWpnHUwgyNKpqHziSLdDS0oiIWZzBXydjBy1tVDX4qnaAdh8sGGsWLcdz49dY+UuMN8Blg+Sp88UUll9vVGlND52cXV2EbTC3M8IYIwcx9qs/0i/SD9Fm+oiXUM8OZNqF3wV2qUMyJ1Sn8tsKoB/gkTL6xzzrzJCaWreP0bG92TdPXxdT/BUXbSq3n2OsY7CxpXHMeY1HdE4XYHds5Q3uKltikqXFAzTjg+QskJTkw12DS1yZcavRa0XBzcm/rG28/iGTOml9hPRV5ei2jBSQI3ZIzVlAWxhcBGuUz1J3OF4Ya03+Gmk6GLuehyg5S9E7xQvgHZeH7lgufs0Go0wy/jmhfU7y/m7RERouy3IMAHn12V41WTYoQWZh5msNyCyaf2mF/v0XJEjpCVDekK8jU19eJ2+zwDpWYqnwWnM0a8Lca2iAUpS1xxkcHi5AhMutRa1pNzui/Sj9LPXpGLL9X7DZAtNgTMduq0Me44qMWC3QuktAsqaTHZZ+ln6Vc4ULFFuE9MX4A4QnaRSdfNpv1NTG8ws1lm+lvseHbLxGfH35WBvJW+M3Y0HvnP0mdp8kQ/I4i3Ls0PnujPFrsbp53B9D1ON0j9Lct8b1CbUC3s4TMCnegMJX29V6LD94H4ncGxrUX8u/q1LWx/TTaoeimbOhazJrlgwjc9jcJiUVlmdrcptJBg5xs2UjbOewWfpJoQ0iiUcBNZUwduYNzMvuTn6dCbOjulaTHGnL6xIPCkrb9xx1zrJEdOn6KDtNJnXyooPMApMtVpJCBibrTezG3gJjpW+Mlcr2MBu2Z7F9WHGFiLBc2zsdKQcfUg0idP1AXl9xYnFIbZcnPI1edsBbx+8uKeDZqJzY3XcV2LfV0G2Ek9A+PkAyW+GCBf6/iwms6z9EF65xCXXQ6Na1yMqB2+LzDoMEWK/ORWG7kr3HqGF7EosI58TabvwEQe67abTvooPUvFut0zNKEOp26PJrg0Vvag9GggTtKfuHfnCD/a6FMgzWDjZrGbhNzsapjx+YjYR0vx8djFDJ7nvqV9fPQDJ1+N28SdhHvxiKrYLsFOdviQhR66TmyXO9pT6iz4fo9XmA8+taAHvvd4TcHe++mTSASJOmx6zJEwizdXkDy2/nBEqRRoFsj1WeX8NRJA7CG6Q4smh3W8nyQBH5NbLnj4Up92c8V8slMl5xglNxuA2kdzveipO4hqpB0RIKOhhN0XuBV59KaKvjesXN3RVexHrbG49yIK4BUgG027nqRP0l+kH2yBFxyWMzhpmL2OQhdjRM2uT6idHSzOiAI9Gu3SlTNJP0k/eqOQoHEnnS+A67bGmxb2S8xPRU4303mr3Rf8NRLBWh3ao15+9EN+kE4uvT9KH6Qi3bv5I1uwWjTyrKeA/CB98NvqDoine2dojz614cWzVyCd936p6hMOWosQ3+OE+XT8RujvzAB5fkdnYn1XlwqO0lsnxu/NYUaH0RlBVoghqqdRSITSIiv8q/zwPUI265kN/E/A4wLwCBh3MKoFvpJQmVNhW3gnlfrFED7BMGgSjXH6gp+nd36y07zU+y0i/UVBWo+0O3kD3TPOnGrtTAdv75j9r1eQMXpB9kF39e6YBmJpSnlrBDuaKUWbTaE77inMfFRZalzCT4qfREC7Br4z+zEE1EwRpUELfNLLlR29AiAjEBS37776xWQ/uIH8YNnz5LCfNtLM5GwmdrRi0kpdgymI5nhCoGlRMIlg8KP0vfQdoC3UZZNeR/ESFIv8a4NIKuTulFL41eC/1PRHG+Uz2j5XTv/GNFce+Z1Fxkf/4mBUl/To49PON+CVUvjstoQ3BqnJL73Jv771k2SDyYztD1Od1g91R/U683sfszeB/CRtyLkYSZbeWGm79wtAT77shBVs6znPzCezFWoVSTaYDGwkgGR3u1pAosCTE1Oa2kP26EdrTTACqUcLq6na7+peiwILbIDmsas0wV3wSASv3jX2DlQh0vnOU3rGr6w5z2O9JeeAmCQcDD1jtqkzXYG/E05mav3rBca/w+wFwXuwowluWFCp462/+md2eGNy1OHiSfL3WJrOOuILiOtkVOU8dI4uxROYSuOPBq+jg/TZ4fwe6czFI+qheP3yDK0/Nxm8Tjjkg0X2IP0o/WTewRaQRKFNrWOTN5I3NzUjKJjrBdNEBSVOnluwVnbya+WSjRyl9956e3Aw/yL10jt02ySkvzUKXEwwP7kD6eAYPjvJCXhdAV7FTeEJOC+OtGlzzXrcI/Oc/c0IfWgAeMUhcwT4gtV58BOuA0/Ty2zmFQlkD5gIeCXYRKaekNXT3Nk1EZbUI6UJOhcX8YhNVGWyK6A1bu6wvvs6abx3JaIza5js6gveWc5iWmcZJgdezV6mi6dl8vm6yW3iewSvnbX6LwavOzte7zfQXfFIc43yzFqLVdjWlHC6OeqEKyvjexqz0i0TXYC12bAkRqbgZsLJFTAdehjiNtSjWK/5KH0jTW4e/uK3Px88VymQ5jCAINoFmvon6S/SX3Ac38XM69691ok060AGKwK7uH8fKe1i9HpxkS38p/Fo0mS07jB/j52qgZYEYnZFsFpYapTKqrZwBUFs/ar+K8gXBazg2S7Se4fvnasLLygKfXJ4evbFv7WO9K3zxrP0g/dDPUm9AWmtPr2TfiN9Z4p1kn62VDiZla3I/Sp9cKPss9W5Fe0KtsC9QNyMRieoE4utuIfxyt689ys33uLluzNQkBPLQmLjRLEgyMTRQ5WjrQkhRb5CA6FZ9TcTrrOBlohUPcpQk39SnJywl2WHTQmqe7FHZLyTgXyuHyPxLSdwrVXlFiRtAc1brWj2cx6MMSebU1KsTEXS3QliSjhCmNUI1jQB0RccrxA+s+o4wYb4Y+Pgxn7vjSgjSDAs7SYWTUajDjgXVkJxbMJO8D32VstROrWNxJN1pHtnHGvQeJJ+kj7g1cgt4sDqhg8o/85A6J2xcJGaxp84WZVZzSjt9QGXvUF1PWP8k/TesWAEgqhuw8skJoEMqN2KJYw1LN9xJaK1MHeP6PkKX3304723XnW06PXFrObFT/K9NwS/x2mxf5Z+kH4yVXuw/nGV3vjNPO/94Q8upEymZKsHvnjP28V6QO+el8iEjde+A0YM/u+IkYY7hSvunRO+ccab82AmeG9rc29xF6q0CcERWKfaE0q917mB5W2yFF5zwmM09QVluW7nxPtkspQKpHDZiD353RlQm9oDi6uBy8l849Wx+QqtQQ4VG/Da+bzQ9QnvLECc/Vb2dG8KnrLzedb5eYSf1GmTVo2gDsHrhLF1jXbWJgq0+9ZXKKCygu8kJZkBrwu49OIZGIDdzA7S0ZEINxhl9gaNpABn1DZmW+B6l4Mf6eQG/Z8NXlnKO9t2CulCKXUGMUqM+WsR8+QXua4dAi91i6b8xCm5fAE6JABe3cPGvLytt90wCDQ3Fs9uoQbxJLbYwlsGp+xJSK7epX0EB3x03vjgzVcvdptX3/edZ+2bmnmtzSjPJs0Br0fpe+l7n4r7Kv1sZX72m1IbU6ovXtd1tfZWpFIDbOrNWDNscUZklgeeDjNa86NbwGeHuLTjkOwk2WZRtwF4pcEjpw3FTuKQHQxayN6pekbzz2fy16zv3uWpVPZaK0nk3Z1B4ehC7mq+p1qKZzOA8HjB4quZV2T50RS4rSNEiybMBb2vL2YZr6b5O89JDHhwr9KCeU6htUei0PkZ8uGALHXi0cu9Q0IYP0o3RYOFYPBYYFHkv0l06YZXjzfV8kS7hP9IAJ+dhHf1hoHJ6cU6nJ1l15MPpljbJF5h1UeP4s5TlBCbcm5bq3Hll7zxgjc5vSKHSbd4W2fTo/Sz9K30neXmW9KZMiabxQr+ykDJL5LdDUlT7YibKD8bIVo/1eCuK0nvHONSk7hIn6Tvpb30W1Ovt+7SOptNvbif5eiXcq/U61tvIOy8Js+27nsDyeIGlBcnGzIfe7VtXh0xnrDZXPBgoRK7YcKLj+tb65/vzQ+v1nYb6FQsHi61gUcVyfQOCBQbsX6jQS83PWULrpxNZIJfZkF3NtuLJ7DFjvLF/b1HU7LkVzPaQS4QaWc/+RVy7oJi1xPO3ipA+sXOkdTozh2/s/nVPVjN1TQ7beCsEt8bFVIT6v2BGaxvAZOM348OIBFRz9gEsEfY6ep8JMnOJm/MF2kqI0lvDbbBqk01bVbdm90Z+D87oTh5q11Gl6JIzgpZldiP0kfv0Qv07n39bGjs8DwXtAfnyZfiZXj2Aj9boZnsQgSv9Ao+SS/e/z9iMQrU4fClWPwEW5cz6QahPP8t9bwTrUgIS+02OV5yfcij8UvOld9Kv7KoMEmf3e3wG+mN1Nn/1zT9781CV8p0MKhdrF0GLE7SZ+eNowtlchXlBFtcR/dikhb/iWB2BQGQ+5hYEel87FXvZOaIvHGwJbEKX+ppDCAmTqRHacYiLpjwAoKdlsvla8uR36LztFCk+DCDs8STN+McLLKvj713zs9GTcbFCVwxHKNxChr9PWdzbdKKxQs0es733hc6WJie/fBH6Y3UGEZPnqh1Pic84QGdBtkcWPzXK4w2/w2ujZiodRF3eMlH7z1BXR2/WUZuEFcoytMe+ABhZRsRbsIB/q1hLq1ksw9qWVAF2RztufL/gP6rG0UDXsmhdigMxP7DV0ak1uGTZTY1eDLn+uJOzouNJsQxOmFUxKMfcUQSvK/fGSJkq6pbKynntgj1qi2V0X7EBbMHIh0wi1nkZ8PNDiIqM7F18Z7c0/hrB4f3LtxdpN+ZNF1tsgGvFT7emXmdpG8M+nIVcbIO9w6V352JRpjXZCmFraHRqCbIYC2EgTcOGzkmZO0DmY0C5xtw2RQ+IopEMWqBYgN+cfb6jpav89Xiskv9evJN6M5n0nqxN1LcQ/KNCjg6/IT6pbg/w4hzEEp2ooQdtzhANceiPhvZgxenOtU4OpVNP/DimVkXXY5M657MEJZU3TvnjVm7zt5esNFicq6VHQKsPaUuuriEfgStPvn6KWUHswowi2S59ZROoHjp0Mif6SYC5ZqNR7fzk9+5ut4bE2ZbTmuMfrHS3BthPkgfvNY8NrGpd9XvANDR0oQh+P2NV7wJ5Qx1P/G3Rxv1+vmfpT9YtWASMmOfUoJsZnEBKew9zZmwDsSpqSN1FiH5L/XcBcY4GQ9Ss8oJRA0e4+pAfJLupW9tktlSukpbMSXVm25Slk7R7xGZQGS62Z6UprvG+JoV/uxTtz85q8nRBqM/maK1rLEePPNrBvvGMNBiS4WcSGfULQJxQXgtGIvQFLpgyQRoyfNEWVjgQ4LQlBwyrtnYPA4OFDNOBe5czJi8dlcTgNx6Z6C61slCvCcd2bMjDw9uCB5PML/WzvRW+gZnCx19xxHjatEwzu65BeSnB8wns8h1qKRHMhrRAjYbcWdo+p1tUljKdDlQnhKeRADF9BWlF4HrmC3/YXohUS0OC0u32pN3u59NXkJiR0Pv3ss3IG8/wxJS0gjXmMFpFwyqBfRepHGsNzS+Wp5JJGK/XyCpeHtSDjKKM2w63yjBl1ojJklN+Ka0kwtGZWauKESZEd0undPr7PHrcGBEA1g5SW+9aft7n9SUNGyWvkGsX/DMC+pR6cS5k76pw3rxWU/vsN6dI2Yqga9OOD+bNcWdZpCokPvZyuadD5J5g51NV8sPSU5mgCn/K6zX4mVKnOg82PDq6D3CqqUqcysWs7wmO1Iu0nnS1u0k6QKdnVFPXo70vvWmPR1oamhVivWNRZQehjFDQS41LRyxZK0PQ3sw1Tl6AicMX5aK07HFAkYu1ULX6WD/IdjZL5Y07ISGmSuAIN+vfWdHZHqBTnLpkKWC8BMqPnrpcwpj6kBCQiTjfgFNyhJP1txf0SaRE6oKDi+cbWAvzvLOMLnOtr03PZoNdhlOLJasez77aJ0nS19P2ADRIG+UH0Xur/uCI5iuxpGL9YYe2MFyfAOwn/A0DCPsl8ifDivUmp72+EkKFBNei9b4MzsnfumRukgPPuv9O9OWdE5P0qORMaGgqTXMnYPDzi8ay7xlrtO422G73Rk1rjVvv7eOuDnQ8gRnCPHpzAteUV9eB3u2+B+5IlGnqVGMw2nBDlos3Ii3gyVKC57cI66ktr4g8HBZ85PkV/du8Hjx1HGDWrb+B7sXC4cyO35x42h0vohMjUEtClCeZ0EmfAHRaF3iefRWlTtsVAhYy6I9fVU3zGsA3xE+GRi9ejILMs9ISml+7v1UxeDVYPgXLE0D3yZllh8vbWQL2ndb3+LupmqzYMkGyI0ykkYCnNGttIeRHJzy9dAdX5HN7Jyihw0sQB5hyZZ6+ab+7FP1Q72umPKkbYNLByPide/YdPCDhA6RdG4SlWBpB444o6BLiEruQbE4nGEBqIxemd7Yk7u0fjxqmkefIjMaANiYFifYVKZjBSSHgvK4ACGSDB8RmlkLL45fn3FYyDOy91UieELP+4x4/a1rcW9dJm3QHjH7Fmymy4z1VuEu+EmHtFxOzDLYph41AyIFlsxhprpFDCU9HmxXH6QfpY9uGW1ggTu8IfBqLG8dVc7eQf/ZmyHWvOs30m89IQUr21uPekYFrzcDPJp3vfXxHDn06IhM+GSacYKpZ0NxtLWznYVwHlNvjffMNmN76e3I2TNnl2emGqjyVKWedsHA0qY7Yw9EJJ7ZgWLlwNwdn27z9cp7F9Jbyx/P9s0rXtLEBp0UWp8sDp+gUspL3CNvbIG4rIKwNLhOyHjC+7FfnDSyGpNmhivy7PXnf/bu550rD3EYdrhlHgvWkkw3pfz8Ia6lPS8kSogs1KPThcTO4zTNHpFDRmYdTYfu611269336CthfXmuraSA2ySxXACg6djecICkPS8uuD25KHw1j/1kHsWa7Wy5663B8Y17I1/wui/WbbJ5h1N0gQOnvCn4z8n4VYDjC7goF45Ylq+2xsQBqeZgIvpF+tmn001el8UMf/TqnP2ELdhgNp58ceo4S99K39SVq6D23r94tkmn5tl72+o7g9fBac8djG3CFVLn7K2qpnR/wiqnrNfir4wKAYgOcHBBp/4F7YoU8GYYZAvidAuXC54//V+hbXs3C+1wGEcBRCbPv4Ny9uJ9PbHYK/CuBaGZwIRPN+DV1aIXE+wJVtR67H8Frw8ArzjPAk8L9ETYWO3+R6k373+Fz18g77dfu06pwSs4PSO96bD2FHtZugnf2aOgn7hRAFU9jo3ncWbfWAC/d+QMO2utkzGtXRDHprr03HrVO4y09TwcAI6saIdtn9ErE/NK/xN3Ccqm/L1F6cH06mIETOdT4xlgi2OYfT7T418LglZKXksdewoyzL5e6AK/CpWewdSodCa7W+n/guF37osepUdvL1ysM8WIn1x8f4Z29V56j2aJFhRs7cBL/G/cyZxs/J303lr9nU3riBEVg9crSna97Sey8bWOVSGhBK8FZpC40ppfX2pGsziJDWKeXN9Z0IVZ0CdTEEdDvnhsxYiFeMA5HntPfltn1Gnzmu3pr9jMNOFtJY3NvkOTViLNq8FrQAPZXQ1eAnipnslfqGh/ctR7whmqDYh+CFyUikzzj1YtfgXIWfD5+HGH1Us44OoVwHULsGzhCqkiNHAUxvfsp0q6fYdDX+lDnYdwh7pHwZUJFZvgyLkk8SMylRrzGsCGIBOt13wrfWcMS73k4q0MPzmhSmy5Wsv+RnprNe/RW7derf+kYtxhgKzkpAKd+nfSRToBlYcCcBL+y5wwwZrlrwUOKuB34yVb0etnlMnDgSOUX906kH75J2u2n6SPxn75v4+17B73beuAc++ax4Pb5e7rYyxaV9UuFiYm50Kvbu7bm3olKQpxSmG8RWmOBdsODpLqYvAvEv+mR2SxzZzc4djUEWZBoXtEDsY+sqt51x02gIcRsFTQulB0RKQ6+3TPZIxJuxpIWFc89gmtwoOF6APOSm3grRGVIk6eEP10Bni9emZZ61vtLHtDBljeZM95CyF4ATblGyrvIbIECNkNZnjLpmWCexka/HrjHX3hx6057oM7vMIBWjTc9sAs4g5dK/VSDoQ1nI0qlpLgais7x2XyE9Y81z/vUGs+10v1s/TRb3cIL1/v9eANu70zK1beJvSL9Tj97lZA7xC1iVAj2O8M58mSsdglTBoRfMHKcsnCoguOS3kBCcyfvUNXUGnBZomk3J9swEX6eytVOSOz2Ft2GGPntoqj+xMfcZT27iaEBwsWbzJ+dY/HzirDq3lFcuAOOUJKoOG3A9La3m2AwYJEHe5eiNwgHFEdl1wQwtOdl9xyNpcueJLsGh3wws8FNE/2qZhcKNwJW1YmQGdvxM8O78nIHvDq0VJ3B+KXNOfiqwUfz4hDOkk/OXy9Au8XoE9jSO7sCSGdjTnOvm55mTF9ER4aeDtNOfZB4Zf1w0wlq8OyA0TbuMC7UjU6olU1vxX1i8yrgX1Q/wzQkE+Fygd2mQ8XbISPOp1eAuLmjGPsrtjhOlpW+SR9cnpwQcpRHLUYn0+WAHLoS28ICzWI8jQBYTk5gZ5kd0utmhC8Ghy009aJCg0pLFtwyM4lmMDQ642ZyRTs2XXd1rZ38rscPvqNDpMj3L/CycJ3rpiMWGjaydHPv5cefDBSEiS5XUle8RFT/WI/TK0szCtIl7nqsYMxZtPWeckMvTOdDIsVL5ZsZpPxVV17sGwRV5qRLqbdRWBhma4M/87AzZ7OK54/k7k4aU/T7Fw7b+zhChC8GPRfEEv+6+AV25vw5L98019cq3mu95IsIM0NHm2HHGmW/uwugQdJtpelHkdsVkCIiPsFgVt1lO9uLjjekIfGCkkgbcJn2EuxwI5IFb4qNDe1j26+0tTTfO0DpHCb2mNBFhfj7c0uVuU9G4fXIPWdha9PziHXE6Z+5YNwQoanGv+WOvUKEWoASIIqWIBPCbsdVp8sizJgeNQtsKW+QuqVORzs8S+GgStwNJJaOrhDNl4h039Cl8/J56+98Tvw3tvnBpeURqRArVsi0tj1xkpXZ130CtJyQciasNvlFXlmcOJq7rRDDBHYdUpK2fzBYtrF7tYZY+4BoicUe9Lgliyr1PRhqg+2nLEia4h74ysLLh9on9Cq1tcGMNnezpYr+5ojxGcX6LrZGZAENc3hiZYh7Zz5K3LAnTScLRg8oVZALtTA3IWj/tb1+wveVxP0oa8KV6AivMB/Nqlj/oRws1TS4sqtl7bFef2NiVbS6F2NYiknRGwgeG28cTMWwQI2sEvhJyG1rdd7BnwT4nOvwbJscbnvUXpnd321i/Y+TOwICvfq1Ivg1aDnrgA9w4UyFdGEKPIudSdn8CsaXm/34wxvhEwaRsx6cJP9EenuiAYfpkxnZC/BhRPyxldU+Vrz7XsgVAfwSsdvZ63rYIwLkBG84lFpWljccbH6zslpUo8O9YivmZ89BLMJJQ2GzwlYw+rfjAb3GcX/k6clqT4lKCaQqYplr80CyTNy/AHnoSXgdTV4JbokET3XbJ/otph/ELzSp5r+2F0d5hu4BpuKAxo7qT9LH32EwrVOSwTwkxXLtl7Ln7058M4pYrhGusE6uEoDy06ZkS1W1JMG7D6hLy0w7uQYmfHMyAH17gjXG3mGzGiqo4oQzbiWk2n9VCPaLS5ndKkybVgPixS9v99h8tdO2gc33z+bcK9u3zpnPtuZP7pnYPTzd6bmkcF32F2dxDu7tWjiKfVELm5r2229BHvXZoOAAejxa0rBSq/uvZNwQXPb4H9Nfn52TZIHmyw+i+gDTjO8Woi988wfzSx2ftorSmF3eFdd6+0Kjz6aZQB4JVm9QEB+dr56QuMac6SrHT4z35lbxcU6WGBB7S5VxFT80pyXlt0Ttv639ab2CQnbVO/42SxQ7zB/D6kl83+wT7WGmzhO6PkryhOxrhb3Wk36FQJBOnLDvLJnQOBMKfklzEf/G6S+H3HzBEd6cIFgNQEA1oLVJ6eOpGSqn+K2nyWjV/1PVEjidm2dvRSMSTWL6HFBdtz3+PxmaLxO/qmtf0K5RhjXprTIi2+Sq1JPRb6aOj4EiderrWnMN/bstR/qJx8mFStrsecoFWPGrxYBJFRwglUOmN7k3teb2EIkpsSR2WaxK1F788mg4N7EeJJ+kv5sAnMHIE8cz+kPozHj1RvnR2zNffVJgT97H/2CvY4tNlzP1tAi2R8dKJLmtXVf8YgzKYhef5GeILhv8L7D1Xo0qa2gkgMsigFGRvrZgDQYRR7dcbbSrd57O0fP9isErqzgDA5GATlmvzfepy2DqnKLE/oWuFsKAyFUF/Q9RFWZQIgu0PdTjk4da7LhlVr6D1dMrE6P2C/gdUZueps3Ul+e4Mzrx35wuT87CKhcC+CV32prf97o9fJNmxvdawZpyZ/MVDqtCHykWOztpvikmwdQnfwsNULlA+GKQYoZ/xSU3xQnSc8KTCoKdcLxqiZ+i3fdfJJezFvSDReV//kmDjVooQx4CYQ+KUGWZuNgsfsWpkYinVS8rde9gOgXEIxUg9ckrZE+Sz/5/K5Hw3FwP4dupfvsxf8dUR5IDtlJH4zvb+rT0feGwnV+csbh4Ee6N160WLjRHvVqLWq06vZR+sHgNYDTpk064NUbqjInEw50XkB0YxI9srjBmXDrLrMoo40vm3QxNecFLHquw0mM81DLHHSW2HwSKBm2mKNmc07vFLTAxuKwZ4DXDH9sfLUIK2nwjoQRNtN4+Qapv1otGOsRltqN2bIzoaQ2Sj+7StPD5jZYQNdtAF4F8FHw9K2nTIDnxqw616H03YHjsmF3w3SIR3RyjpoloM1sFHBxBod8YFOWDKuiAxN/w24aTFf4UUz2gpcMnFzUnmw0z/7zBaQ8wTM7lTvPErvPN3la+uZTLkvA6GqGFbYY6k90JniRwcVkj9J7VxyefDRwb/goKJR9kZ68TIm9k5vD0vqYUsVe+tH62arAv/cYd+4IzM6Nfd1hf48j1dn5M2K2o8O9+GjQJ09mOjEmeGByrR2aqOc6HoSkyAB9dSU/1HhNfc9uvxEaMxabR3zk6r6RaIQjIuuM5TtAYGawJ43Y9FwuELQmHPKUwj7l+tmTdoa0GcWLGVIU+2jhZCdpdsoM+P2NA2gVs8fg8A5RtfgOvdnqR8fQJKqsFQiQvin0bVhHQsMM4I2mycLjUsPDgFNq0miXJym4dRKYpR5sW+NTB+Sjs6rGTiaQ8u02wprwnGR6MpIt4DPkfq3794qbA76Tvpc+e1YvKFRH1pjxwA0uFWAe7Cuq2VSU9AWvamtqu5ZXZ8L8c1bJLemmDX69ga8X6Yv0F+mzOxsOuCCTtzQH/Cj9YBmw4FCGiNSNq5eD9EX6DlFiHfuDFyJNJHsIpP3NKDat7nmSJ/emfML7GDu4+/rNBcyh9czPFugG9x+wSTBhs/VTPbjNSjjC+WK9IJGQm83PqP1Q7y4w+zwSF4s2vC4x6/xca0pbjaPBvQ0y5cF0fnBPaZAyekdqyyQpE7bgkq210m5BCBYGtqE3A5IZppSNT0Z4wMfISVoUvhrwgbYe+YIrsyQSdruBxXCnqYZxQUGOetGh5tYD8OlLmxSRpO6rc9LcYE25gR4CH6sgzBsnMLFNhbZ1fngH4fWdj42R+zMbVybZG5lAkuHHGaICN5iKCWGg1EoJL8iw0dRGvGmlWOAw8sMUO09vkWnnV5g8SztvMU+5vzGShu1cDBlXm/ve3sXC2qvPFnmR3mHhAl4dSOnOSHpElxMVAUrwEamf8JL5zzi/kw19aamTRaNk4AvaUHewrsntHLH8PV4Gno6CpIVXXyEK/tk1vVfM5Fxbcqo1e3gHu6lbfDgs6zZgt5io1JCPxqMXBNScnZAyRoshp9S8q/PGTEjS8iuk4j5CbqLchnwJGhLTsITlFVDfmsuyDsuV6KCpFOPI9DWwjwDALJxwk+J+gCadKMVsO4bY1FiZ6Z4xTLK/ub5j/I3eO+HupQa+qZ66jTDW4pMLrJlZipDjtSj9r10Tz5ZYGhvoqjp8cnsqcb+1Se2NX3tL4mNNEwomvNhXk1f38H8qf1FH2nomk7dc6t0wMZt0hK6NRE9+r/mdJaiEsRH5z2jecTKKXYDdVxj6k+et9Ugp5KSw3EMBzfaXJI2JPRP2yszWnL74z5quj1i4WNoAS8vERs6ZjJtpopgg6mQRU7/o3RKTkHNF9TIye87XyoG9Myw24CXTukPtIDRdVl64xA2eLfwgHUoPfoycrUF5f6x/McyLGxVS7IgNCD0nWZe+F4rKOSUlj9/B/HMx1QrGbMkloaG5MWcmFXGsggsSDqngz1iWBXFcWOHIXDO6AXL2o+qQwaBGzU24i/5GRkQtS/jYhmQLg70lVIyABdRL9ef5tJHgOsPYZ+s8J//ipc43hHkr0B/Y8xWjy02zoGO9q63DnGcS5nqMuoH8ZIwDRtpgvVbC8Fk6Oeb0CC9hgIurCF+kH6Q/Sn+SnqRGeivJwvGIObz6RVG906cMJI0ILer06fcPNYp4xd2Gi9WbLzjBdcRObaF3acAUyVW4zAnFwNTzD0bKHdSTo5XAvRfrCjC41ItywV6Z9K9umvta+FrKDCzPpLyfAk+oWtLvzhWFGZlwD067OHt88XEBAqjnwITOkt0mHRPEwNFsrTdGribXJRTGn+NLGfYOL5nNjBcPo3EoTO1+I1ULo2puZHqSLnJuCg/MV8nQQp92Xvhk3gczFnaZb24a5kZU2mTFVAgIZ3k21iQosGUZbj/DOBhOr/q/DUynBXlY3f6LveXF18zertmNPz0CXFs34oVodShaBu8SKEeoHU29CuHqPYiKgIxLfZcFuUfvuuKDO+zTEniwJ7MoF91lzdA+SB+kq7STvkFkZ73u6sJGY0xJCj16ogheDe7LUueMrvfseMoOvRzDM+JVv2lYHWBpZH0FyzTA0nYe5hVL2bhN4oB6/gROu7gIsaCR6tm0fMTdhZQntnRvrrvJk/OozKeSHaSFaY9KwwJLiMdxA2R8vP8aeI0m/JRgG1Cv1GzTudrlafZ4YsEWG4uKA+y+N6akhCKof3HgBdNHE6d8FYPbgBfZVqQy5p+Bg3DDUO2A1wCvIwgu9X2XGwSRH5iCMxPOBamj6lJM5k1w49BMgtcM+9twwKZuEpLp5KPU4UyDT+bLn3DmfWJgqPbg6d2jcYL4GOtkbE++R75WgF8ddOarrzPVTfPBlAlxO6coHo2qOWFgsJKfXvbZXr3pp5+wcfHsGwVfeoN4QlqHVs89RK8OY1zq3OK26XTB2QjpLA+bE0SWHktJk6ZwwDDQ+aaTHTtKZLEDjygEtOg+vyIWvpiGXxDGmhsjDwkavOJXvycmqLGRKllES7B5kIqXrAeupUnjBKGedG/Ai2vTzjH6jpmxYMgOid066rbvvUP56ie6Im9J+TOb6JKBRjeQ36R9X/fkEpk23GOj3d9mOz2IQT4pfFMQR7JpdELqnV1qc/27m7yeCV7jXLvUd0kCzhFtnkf1ZTdjz12W2ngLkOw2Nd3IDsHUMIo0fcfX4x8tYC9VbXnlFw8qHtPZa8k9VKvMzHZIgxdcUMCAMNuQqAlC087C3Y/Sl7oxqrcsfoblXKSf/D7gj0agsCN2J6RmdYVFEaL2nu096jqNPTjZywgFKWeNXazXv+LkAWFOaO2RObIBp6mjVvoAujpiy6lE799lg97sHaFJVvMYJz8bc7nmBk1jIVGZXm0bz7Cc1serBpjXUHDEAeRHs5ggQ0GZtHX7zuilP9RlkvAoJinJpQPngqHuPEt92ueSX6XU0Nbg1dXgJYNw57D4BikT13KuJa5Sf4Z+0qCVlODVOBYw9ysY5L3Bi2yYWB3Q/Gov20aZa1DT4L4+WupG1trI90TkPDYTxakGJupeRNICLYfE72rbfQHLD/qwah+leEFIjRBPategp3zTjNYYklTDAYu3BFmm9KrH3hu5jrb4j35vXNhRZ3d6RmfQ1UdIfHa2/Bbq2ohaRSqoVzPVzq7bG7PWtdvX/YBpvOwss139kyvAiwc6/FfAK/MwoBDHSR7tR9mi1cMYduATec74y+gtUY1P35pxIOWTpb6Q8B3ggMR+j8ztWSpGseDIHoEtSfgRItHRTpf8vBh8V+s6ozi8+xp4zY7BcStWAkgCO493DW9dg8izWYAGZ4HuQVUbgNfOB05e3R69EcY3dkxpN0JOegaSXu7qrOlvgRfhde9na03EklIzDBZAACMkWwIa4P0IkkI/3EDPAhQLFmy0tBk+zEJrMWekMtc5KiRJ26GX+tU9Rk/Y2j8Cl1scOiLDWZyk2D1iEAskrqmeq1KbRwF4xSWofFzQdR2MDtfoXVd84zeav9jDd+hymY1cX2zZV8NWurQjLOXEoDQ2x6iCsIP1kdmhWzdVdO6a6rBJegR4veJ1KfQ3ek2pf965gz+dAOkJn5HfJDcr9qwLbCwqaeNDNjmrEcAunrH8Ipsgha7jFtNydRH74iPnA3DsTmvQPXtnX7v3Zqz0hDR1/SX9wz1AfAfonJ11N/WDhUSnbNcaT1fw6vud306Sk4mSoubkgsUpbShZnnF1iDUsPnoLAwVcilQNECLL2yLlWJCns0Oi1BdUrftn01qDsP4AohzqwijJoKm60tDgA0v9i8JnVF+wqe9C5T2jmPFNARMr9X1591K7xRWHRp/Qnkq8bOqpW6D8lBqnOZwGlEC264KOpBYO1NbewCvMGJQwxuSW8aRVrPtR+uR3AyWMnM2yzkbrJ7xVN3svxxoMOr/o9NEt849uVE/kIWwTfZOBxzBy2RF9sBGgr3XgElLTJDLykHdoJRMOhkgc2NdQmkaiCQJ3Kgrh3s/oppSLZyckzDtfeQetZ64NIMx2PRyVgk5n/UWgr0MNTlF5su09dL3DiXVnX4Tb4Qt2SF4B0r0jTHKr/ub7ReoGi16Z8eFr4BW6JSSjjTnPLD35pdNxQgGb6PaErQ7/Glqiek92ECQcYBPyBltqBMEHv7q9hV9RoSEgUqlPZW+B2xc8DMG0wZOHXlLS48ULSv+5rABht1BIX2qgjL+4PfIFTfbJbAumN2sxeWYahMgOM9OhRYt7Zyc8/2aW6GyEM7JQ2UBD5yJDrPX0JxcbJuiziw/8++BhJofMcVgDgDiPLVc1Hr019NGH4rSY2BwzkeefAYjCpKVskFPlT2gZL4hDQmM9a7AhMNmMXizmjfjXo+NEiF9GyuJN5J8GKW6Pp72ahQo7Kg91hswg3aBN9LXucZNVsR4uULxw6bLosMmIhhTHHM3ZbsFLiAcjJnMAeO3qJWOhqO19MAl7+cIODwCvTeWksSGuWzpeffrIpnTewslb/GIP+Ghuhr353RmYFWKdrx5EtnH4zQEFxJpSA01IzVJzigas4dbVN9kgs0f+lbmEbF4jwGupB0IwberPFHc7dKb4n8xEsq9vxISwHh0s3tUdzAnmG4xLLwELTRs5p8E2XJr7Au42YRKCXK07VO+cb5ycckRKKHanLz515hlv5glt7DwbEaVmW8Jbb5s8SO+cDXDtMvBIuTMIrDzhzMoCXq94UY1upiijoGwz2CCPTlxPfphIgCGte2Qz2QEmV/VXD98b+6KfXXzBM3r+Wux8yoG3o09mEAoTYfSfoCK1ns+uBq9eekQuukP7u8A35axyrGH3DtU0+XnONZPNnPR4LwgZzy99BH3v97bNxueD32f2YFb2hH5IJo1ZqMWV+7f41zj9BIvobtw0CNTWhaMZB1Elpue0iN7+nW6GOxxqsgfubr42sh7hc4OmhD2ii4CpAj/koGjOpGEFDJMaN3PpfHKu4a2193zxLuwLQi2jVaAomUmBFhToEq6fPHzTesbcj7WczFgaorv6mYt/PiOpS7Fx782Hf/DRDDMoROvc+MntXV9QtoqinZODsyhBr/c4oisJMANLh9QuW61nPHk0pSs2Qc8A+Cuixwx21CM/nPFPO6sbPTrKE7Rb6H6DQa5ADspTTYgGTFuyCgfkV+moCpougL3YakSzpbbP3uc1dlDb9xDfCd5x+YIC0iB967ekZkPJwXh2xvSm+TZ6pjyovWPdHoymyKOVwWIwEg4WsRZ3taQUEMONORZXaR/NgNnPFqWH+ZvqFKvFJI54ng6Pu9QmUiAFyuDVm3od8bubyPtVVKJElJAa4t7W7f63OBhzX+phNjCIjVarrxE51d+EaaxDuLjG+AXK9YjNJsLd6TkFUkFBqYe8UZ72Cc8scGBmsD0Uo6TrJLFhjFnWDsWVta/mJP3F55Gui5v2yxecH/sZb0+aAF7ckZttrgfvpbrzofQ7zCrBK8nk5G2Bc70cSaTPvvsMRLu4YyHniKYGu79pUo2336Nixub+HuDVe4CT+fZSW2mE54jgCSo7vKuX5YqdVzzjYh9ZaB5Re9Ua7vF+xfQddOA/M9AzrCIRay99L30HcnsLXiez2RGiQELO4IayHnn+L36azgm27Z+lvc8UmdHgXwA3G/DKsRwtPhCBnZWESH+qM8wF2xQIXgG7Cd+nHDf6FkdvEC/YtbWR5TeO2gBnKdI0cInZANT+M8ArS6iv3TddhTOeIeVBwW2amsJkfmYzr0/QOXOK3ADI6DCWOElaUiNWL7W7UhPekEcmw0Gr2DHzwwUA0TgzaWyRa4x5Jz3atC51mePiWMjNN8/uDSCesjU8xbqjD7Df+eidPRaLYaMFeF0NoKVekbk+I4t9DgQvtsIOJv6xfCLXqtEcjHE7h5agWOPmqrM/dkLumvjXoUSZPtVowHsIk7s6w5+cgs6YydCuU62t9F8Dr/va8ec6vIXRz46p3/lwjxFg1Bm8RofkHN+R/rb1OjsHpIzor+DVt8Dk2XA1Wq8fHNFmHJQSIX4jgq80+gDvyZhmuEK+Nnldh+SEqSblcgb6bFeTZbpHd9P0sB1iGL/J8xc4JSXvZD6bIgSXl61tREQGI96I5GSpH6OpLxLvaeBVay38g8/A4qmBLTq8KAw2nltq1oNNmBDFh2zrf138GMKVY6RLPTMLELTDvKWqtjcD+Sj9QfrR0vMB/iSv4MXMP47bWos/OAdrgGd3Jt73TjZook0NtJGJCU7JHlMKezaELICuk9FrtCyzA4B1QHH52Q6uH4QkL67F7UAf0qnbukJDCXGxVfR4bVDAOx1CLVy1h78Uh/0LbHgG3bpiEtYHeLBw13o+Weof6iJzGoYy89S62Vbw6n/NNqJNm85izDkY9gbPzC/5M4XLg49gGd2PE/ASsuQ8AbM+eaWH2k/o7RHMAl6buB84m3ELOmS8vfWuhGKTanwuuiDqEE2ojqgeiG6AuGA9mrpDoL25GuuTGyoVI06CN8Lhybg2fyJes7h6dh71CbL4AqBskWYs+N0OZCw219TzWTADBbSzB65xyMy0mW/fbjfPLQa0erXSz9KffUbZYFdMMZYKfgH+dn7x7hu3GWaYOx8LdnSvco+lDI404B4FzfQzWJyQT764KzUjPUOTu/rWO0BPg6ul0Joj2gS4KdZ7BsBfMSikGSYbTZNN3aOLNcu9NzZRKx2ArU1N5CikzWhqi3R+9b6t/Y38RiU1MnAM+4DPpHpEd1jPZHu5Aa+C1VnLAEcPuYPJTdLUgPpnY/vVy7/3GD7WryvMFxWsk+NqvLcH6MTBuhq/gi8dDD2EuAHzWgCF65KwnN04Gs+gLZnlXKTUSBSfvG1vYPOG/sYvBnaZ+TCf5PDnm+NJmhoCAqBB9hlWPvlw0U/SB+hn0Xt2sC2m7gm8KftEv21wU4IXJ6oHOrf1JGQtNtPSOOyRtEaOPhp3nqQPKBUlh2G7T/qW71Bzv8MLPBZsitu5nBUI298Em+SKU304KnvviguzAa9L/YGzVd4wrx002p1nO9F3MGQffZ3k0o2xJns75WmfsOXgYik7UNgjreFeqNQjIsINdYFjh842IW+81M1t690vzsAONQFffKlE+jyMQEW5jj3oQsDrjJO1r3XglKnxPRoiKvDqZQOnnzXoT1uv9Bmbpgp63oo7DNcpecELpeLBA2JQVyeB4QkFinzB5vnkv0EXVjJTNVpsREPNCgQnE8AmANPAHCiCRWVqAat5htADgbQksi/wFWaGSz1YPgyBcAHzFKhd/ObZEX/GZXN2VY/fav27LW6Rf2UeK+M9mxgTBITnWerfzT66gsWlsCn8sEOPwmfpn6Q/2Iq5cJ3/u2BXb2sx+uiKYlKOndnLo98M1xgs5RxvwN37ul0rXjLVJ5GFdL34pK0FR1NFlLttLCg4im/2cAQsL7bhNJ1enTY33mcwuR1k8ZGHQpVCjleLVeIGFhiPFjCsrxeFJGeCgZFhCgXALHf6G4Qdm42/idvew3N7z8/By7qeLdT6+2fAc4rACx7y6te0NNive01oaBFZZHmxwZEbL9hfGw8peG3VbEu6d7yYbUbM7hrkgWEsM5CC9ZAEslDGAvc4wMFGW3Y+lnRiBmA1iFDUmdr6MfL9DKhl4lpqkBKAgMQ6qL2AnYdNfbVmkAVbIAMIJZon72ZusGrZ/NrU6EPKmuu0QIoZj8GdjbMdTPUYky2QBie1C8Sn0NpY2033+RqI106Jv+DsiRkZCyc5/T4HX+1B+sZrPWI3xYNfvCHfqwC82EIQyTBOm5B5QfdTyp48oDES/wU9vT3alxbYcIMRCXMb459cIeOuy7fW8wafGHJyitgB69NuQRugeS9exOEmoWUpOI0KY40amV565cXMs8C1k2lPxqAHPF62vuw9PxcfG5ldV2evdcArvhBZP8puYPSvZUBhIe/B1K++zRWqScz34mldULVnY25aJSf/fKOBb8Cr8eMuNQungBx9MuEiwmmBthRu1XkVS+3bTPwaDF+IQqRyGy62oTPBSmFRk75yT+MCEMnDt/VdKJkUL3k6vWYAcfAiJDecNGMs+JUeLEkA3AnAKjQAEKqE3y03zKJ1vA0SNeDIvddoL52lH6QPXsTG2xpZVJTrbwXN3GtUfyu1Zv29B/5o8Cpgf6OPoUj1Z7gBrwnGfEHx7WTsY1d9zpo414es55SGdBrMQBDV8TLTklVODrb3KCYnilfkmczS4w6T0TOp/g6dfwMqAgW/e62zxKx+ChPRwzpM1NUlhqz4AkebjHcBr2StR/RfrudLrpZzxm5yFoHl57maPLW2t/VGlz4BN0exrgD4Tnojde7fSw4ZZ+rM4YQsMf3ODcSrHvDQYBlDc8vfWOHi6++AdoPtYsEWzvBRcqQN8BBmOtyCHyjAm6U2GRJF5mObOiEhWYhKxUbNvLEALFU/OXE0HGZ2pvSC5rvgzUYjZiE0mJ2MYkMRw8UDvcI3keAWT/uEUfSIBlEpA/+zfSjLvbZ0/ZP0D9IP/tcJkxylfu9++REB/c66WYs23TWXy1ksu3q6nqROesQLuhaMOjNwwrt7L26OfbW0lWA4IhA1mGpupyIPT2vYBae2snJzMYvbodchJa51H2NyIiqQPSxKWKNUXymCdZB7GkTRCQYT145892jVa/CaptwqIxytNPAmNM1ym2UOGXjwjvX1yuv2kQVWPde2R3HvFxIY3WJA0OykNwavZ2PpAvZcQNXi4bP7Uw6wngVhmlEjVIoJ4aagsXFFGSizvSgJw8GIJmshycESxDcsaxMHmxpomMhtqNdSAxaTSSZLCdNUEaYb2FoQDzYDn7928dGZTM5NoNqeX1fd4iuY+4BgU2rvyiE0DTqJSFPzT5wTOvACvhezHsB5dqZYf5L+k/S5XtARQ1hp/Bt0nPc4NOTBFGt0gnfxP0V9GP2cvTe27P0wgY8Jk3DCUR1X90KcsYm0mOONAPpMwu3yzchZLk5SQqWSic04E7RDC3E215xRxogcXxBplvpw0AGrEKVZNcoEa1J4TLZJt3pANSJMjOC1wAYE/OpQpEmDftLXxeCVfH6d8HxNNVhHbEtatDrCXwlOOg8H6a07CT/g/W+T5zQjXLCEwgIfIGu3N460ICvYkBpOLtE3qdoKhckq179mw35qrNmyPEAGCH4xm+VTzYDLxQuf/akh2W39SJTfN3SJF5y/FidD2QPQC56n4LFb70r5JH2RhMNRmU4INp1byB8LfHAbaoyYb3ToIUep7tnibk8qgg3ifLLKYEea7Fc94kfpD24kinawA7+bDV7rXp/ZavbeXHvVYt8YX2acIxGU7/x6ota1pET+uQYRuavs5El7ttx1hi91diSGpeIspEPUSa6VsJFnW0DWCgY+QeDo7ZIDPK7BBRcD96XeZdFhI3hTz38PSI1HJFXqIJI1rgw/1sfDLp63M9jJBsHjI4PDyd6KV2xvAfNaTevks3kIXonZV0N/4sEkXfqrX2lwZ8k7xfWjKeNJeos3KjFVZ7lvdk/0EYgarrKRyIUn3ejgdMcJKFjscwOEozWbfuetmAuuM+NXVGPMRsEPllBiIg0TfD1XoAkUMMx8pmBnQAEYF8TcjcJT4MpXfyx0+YrmyVPdRJLUq61ReZM5s8vhq+WE2zkMdM2mRi2Gxl57zuRYQ3uAefXOn6X/UfqPSJZmAHDSgXtXykPdH0y69tApRgu+gdg1mo3ue1pn5lF676R373aNqNUX10JOroZ9Qut3DKNBGG9gunHcGNsEK7r6NUnJiFLla7E0D18TVBP8kzhNgN4ZgXqGMbRf48CBsRYo22Dtzs6zjgb7A6g1rfpkA4hSEHbXYhJYXRvMx44e7J27stYg/F/8PibmZTSt2Q3DvxzzMVnIv8O2t1S3D44LBwudPRhkA+7eugb9Wnd25F83wZoo0MBqk/NsxMoQgNbncBb0bb9xE81kZF6MrcSFgnkRUFVYS2FFA9ZsVwgiMCVbahxkPkauxRyPUXuThrV1RJvgG4vF4qvjdSL74uGzYsliY6lrywXgyCPCJsBNpJfN4+WfuP+owehC21q4R4z4i/SP0h8k+SfJomVu07huNOIi99inKzz/K3hLY90or6ZZBbM30ltLbmGPV0jwK3ilsf7L14jxXLu9YAYsESX2ROR7xenVExKw1jRm8Hi7mscOkDNzlE6MKiEqwbWHupnHSLIz1FYqd6GsJnHxNGaj0/EGvGQjnPGQ6UKZse5x5MGr3Pr71h0NexyT83tv00+9qqvdKiF2TcJfZ+dgO686m33DLFvjVDK92Ww1YswOAacB85ogkpfanYR5jH8WeAVTtdWyd7a5BVr9Ov6rG2JSSgpTC0Vq68hQ4O0ElBjEgM0GZ5hdj4ff9FQ0MOLrDYkrWImsRxgNHT5zMvq30jb56hkOcetgXg2AbAR8NxC9YoXUYGnoPahZCxRoahVzEwwynAke2MKUD96W/V+kv+CteSsG7TEnnY8UXLD6BxxDPOJ1q+sxWSm4rVnli5Wb7MH41mnYHtJOzrx5hmL/Ij3ZitJ1U+wOI7w0BJOt7Wkhpv0PCIFpCI+4kP2NraudE5rDeze0xd1OftnZaFSKRHKsNWy6WLaqU/6IMnLFcu+cezU1UgcTNkoBjwco2BU5gP20pnUr8zr6xKB17CvzYgAmKC94t/Lq6a/92Uf5ZI4jf19x1vLatvzq2b36JmxcCu86OO3sgaLCQMmI6HCUyFvs4Aq6FCxUqNcb7zxf3O9X4L4tLlgwu0sNNqqhpa1xiIyRFyEmbWJxLLpFOKYSNeIZpvrXE3FGJ0XRVWbP84i9/ZQNO8TuBZkMpTbVFhEywBJC0L2BhzHvTdLIZDW2T47K2V4J/L+X/p30Z6vwe3xYCFOD0Y57hO8c4kf8uXjsoe4zsoY30nfSr6V3Zub3tpN0/F7QjPLJxUbBxVtDDlP9pZ60FtA+3YD9CbiV1DrVNtp8j51BkU7OCOOjH7v4ky0wcg9HS/zZY9/M2j5ycpR4QAvC4p88In1g78KMJ2lxoF6ozd5GONt0wxHSuRq1dmcpcmV6f/B70YX5TItBksa1T+V1LQpnQ0c4T6x87wh4BkOgQBLiQVn2gDyYBbdAFfnArR7WwGKSSyTS9T64PuB1b98+1f1fyZsJXnRLOjb1x+ywKMhGNjh1q6W1iBqUy4VbU/EquEupP0YGNX4NvBbAIoG1r5+TjSvkCbLdX8y7sgF6xBAKoOd20iJIMO1fgGIdFjphd5L+o/QP0gf3mm7i02weNfjPA8rud9BZr9iOWwBeKcPufMzXCl5vnB3tkY+NKAmecIzYCWS1RSJQ6gWS7XNEwAv/7ECBXgFeUW4GO87BjRzCymbmo5IfkfvRjxaMvYc1Jtts7ZiLA8PJse3+hmTsDHOl7l7W18DrHnRkgPa04FD91saZswZbpJTZkvpHg1dIXVdnYcVFlHNErwUy0s5YdoU/HN311SCsLZiyZPBtfX5jOMgEH9tgVguPEjykR7IaflEsD7z42e7Qb31CUSWF+wFpXmCItCLOvNEwuTaLbzHXI0rgZUVuA15EroKwHPtrahCkAjzjEIALNKoBDj/D6Hm1BZlG44jH9HV01nS2RVJnZim4YBQJAx32JTb1bh4hsy3O4Xu/NuE/S/8oPbshZzaaXDGZraPUHqJuY9376t70s3GnQQvaDv2LK/P6Xvq19K3zhr2/mY3aObzryWeInW08A4DgiqhT6iVgYG7BiYI+X8BzZTJFcbEB/hZI+i1qbrnai6W+qJ4kpy04XQhg9h5dTIFXG34AX4n5ZTfSiEeSDTK9OkekqYnESVy4r2a2+TVOGnpsHF/x648+eKDD2COnnTBvZ+nUX9xuk5Mb11udfOEGZxIlxQ7wxInj973baXtfaoddyeuaDIgOG9IVR2kMTg3CR+No+96bkqj+X4wKe0sTcYIWPreBiuANwTWL0IJdbJz4q1Im6cpYy9AzZoxBfCO1BWxiwqNHGthrAdIz5PIFZK+pvSpTSuExha+4Y7hBcKgDwDPmJNCFgoZjdzfT0uBEiX+S/n/SP7lZu8Hwo3Hv3Ix68OGCjzb5FXiezaCWm9S6c7At7rT8ztB17/nvbFEpV6y49VH6YLG+QOMoNag3mKtQqZTXOszSHhlE9h/lwIgO70VbGebZqDDiwZ5xjL+w0JND0GQ/7X3SdgvMWEy6HrCHLvNwL72pI14x9RrdJXsydp49Yy1aEriZg2r5aEKxEul30jvpgJcOsJi5RrbvpL/4RUhXiNsFBxedUnI/O2/MVvMHyy2ZkQfsWD3BjlULOekiuTMhbsEgw9EXLxUdXphTFsdTeAz4r0Xnb+tW7xWlX906tEPysyA2qb4R81WWE4Vys9CRLzxeVitQu9zMRvI91VA1Y0RzPZ/CbOTDAa+l7jkKw0zj+FzDMelui8/k4iNMpKl9cr7B4gLnbAFeDaCT3JVaZucTHwbpT9L/IP0eU51FHP2oK9I9+pu3Phm1seD77Pia0lG4cTKFFekewbuO/kDjXsrRCsrJL5b7JH1G8+O+boMhu061M+BVwJTizAlIZ0h0kTkHY+6IdUlt4NXFzxfzrhHHGjVoOb7gmY/103YmsUfgRXFBb+3nEqSZPHx2dOQ0xLSmtA4wd2hMi2Fkfl5r8HqDcvcOvL0zdn9v8Ho1YhZf/GL7/yt4rWUWmRandHCtsTxdi5cbnx898oSgPbbJh7/GnQrKEYKztQjCCXEdGG1xEWkxQqX7efW9dbT3IN/MP9nNv+mQzlouuGkoeE5mXGzozDbzNeMiAa8FrQW8UYYZhr0R/7L8V2wX3iQJixlHj9HNoHhpfWwAnYwEKTOyZJCMRXV5NiR0MDztcW4ts312U0wIaY/SUfpJ+vfSH9E8mXgm28bgz4d5RZhZTfmzoWEPxb61eHHvp1r94XfSb6Tv/JL63lGw/xp4fbSN5foDIkepw0Bcmk17UX9ngNeI921fgOzp69gDtlLHCVM7W2CXSU34+wx7bq0LslA122AOdswwr9ZNXUye4sjZFX0B+RjdMpoW/DvA0K5G9pPBa3Czys5Gu4MW0Bq8fmXw2mwfbTDYc/Crzx6BCXj71ig9mUE+SO+kyai4OPdrYexpUHhA4iFbOmMKBR8q6fSeNCX0MKV1nT+a7IZ9rSniFUWFOPEM7tFg6crX0EL4a3OT3BJZVRsIL0uuEoxnkWPCHdkcK+CZ0ITJgs9a8r1zdT+xicQpE56xdzfomIeMzxVYKI+XXoBePS7S4s9GqW9vJqo31H2W/p30n60XpxwqWHRrYfMbR48H07DkQhMGNfrck9l06319iM4bm/SApS8mTie8IOCT9BnnOKSpYsbLd1hKGWGri+0/fsyuIyECM8lMeZaN5J37Zp+BWwXJWINSWQL1Wid87+wp+lgxbh1w3HEOp3jr1wAzfAkT++RX7gmkkS2fIzw0O+Jnm8HF5pRGwjfW2QZ0sb7xnL811fwkfUKdI76TQ6OXGR1MxT7z6Nx0MXFPYad4q2gLi2fLb48NHS2mVZAv2fhXQEsa/DWrG2bcm1+tT/Ur6QjVdcD2y7dwnmB7al8LBrsgklJ8WgBb5H6brq58FTCupKC5SH5CvNhsIWHyrBplctPJLnSHsk8DsMjcxsMbDJz4W+B+CxYrjEJ17TSK5marfQNqR00ozLZB3D9Kz9I/SL+3o15wkp/85DsH4vcArwc7XrZrNSC6JzSU7g1Vq47yzi9FS1vZgoecQGyefGzHpRajI9YXLOWIPGqCg0UBihhNLkobSAFwB09Jg8F61NVnq3EhXRdXklLbj8I0O2m8ww8XP0mU8Q7gNXiuEkgaiPIrLz16t1QB0clBFbMpXIfaWJKOZCstNnk+1OCVRLf3qfUran/08BeA14igvkRYTthfPPVdfZBJIvPF07SRai847vKhfl1RV8cZgW60+KZFSIy0MwBlFmfhi/ROenDqeHauuzr5I/Zo9UiGY68znC0AkXCR1DENKD1C/YxQI/jwJmkkzG3AsQDUbmlgRH6mJalQjVZZ2xp3Gn9gY4UpPXTwq/C4MzaF5nlCYYYbjTrWFkjqACIF67igR2W1lkfpvXSW/qP0J8Pu2a7boPNpZ6X9nfXnO4sXUbZYOJ1deVvHdZC+8WXfSb+WvvOlehBJxt001j+ZzwZtc9zKWNvMDC/KdkcBGnb1VvhURhbw5bTKRSK9eg7XJPYZGyyTGI2IhWQAixnrg81+9MLtLJWlgtB7ER99Mu3k9Rq9K330KJ4hmCfJH2rba3CO/gUOfnbbydnTFea1Q9GyGMXe+bUrAa8ZBsYkpvTkNpPf6jL5tR0RENYMNxJwqiKhUlfP8R4SRLKXOEE8PjSA+RVZRB45kxrp/Cr9KO2kXztqpGml2NcH35H1ImaAwS2KNl39r7df4YSl/vXm5mP5mmBuGZRuxr7hRQvKp7lpTtd7lD7h7guQMnng5pq8ywz+cNsClu6kzXTF5IujdltfmWWMXDOt1mt5/n+W/nvpZ8D/bPW8cdaXmJl8b4c/i0+RSD/kaAVhHdGdBa7WeePBF+nBLSOevPrtJj+a5DTYWdzWKUPWccJhB6W28Py1rxsCMjM77OILek0WBa4W5T55j+Xi3u+cwXmxdBbpeJ2xb6Tf4g32ExSqkK7iDw9GrySTGw8dPc+RVSf00DTW9AWakDEyPq8c+2ef1vG9rxDb7jwnb6VH1yo+SR+ln90znOAgr86l1XNuOeFA6dE0LnXMCfnei7/JokZe3CGZoQxDZ+ACL0C3SD6hXlPdKx8m+oPUSd9LO7+MKtnLxRZM7s5KyIRFUg2UAnTKk9X6n+LwXGDBUFJ3WjCiCWBR6n8KKhEZySgoqLRe1MHcOhcc8b7rzPziNH6DXzN+5VoD62LLSNSZYIthFO3NTokkkEzXCwjGwdz4P0n/3oI7nzNYlp2xO4PXvXEnEHDFrkg5ViWXu3NfRO/DC+8AXi1ITtrcnqRP0s/Sq58hLekdPK3zclzRJbfU2odArQew911NUa4e6dE0cnaVfvLBFp+ln6xfH9ygO5kzN4Bv2ZAeXFaVx5j8+QAPaoBldwDWJFMHP0YOWsjREtlj2VqUb/0re4Cj4PVrL9ZP0pP0Vvq2ntIC8HqU7hykP6F35dXz3HsCj9K103O2xhZog3eG3pVGHa2jyMXTvmZeIzLyKx466VPyt7ZGMYJI67ukCtA4U0pgn6A0vPcG5RP6utaHvEczyga8SFKKvTQj5UbkEIfen5w8s0zYKIxFUQv8kT3dUq1MlOqi1lznJItn5mIC8gp9awGxntwQuGlwz/AXdEuyai+4XETmBYw1ZdgWfIq1gFRlg9oNlOEHSdIfpX/0zkNW1WOBESx2fvV1lKfGJj7V1arZmxhHJw3f2VffSL8GfeuBdzkH8GJ9+APAa2fSkWo5VYDohZdaK2U8az1FPQ4ui3Y44ectNojHgNc89mcvdA4jXa30FRQhizJI76TfuHOrwbs9M4eJxEnXD9hvlwrU4ucMv6biE9OKOxTsnNw49Tqci48depJ+BfAK/VwbN99Jb1xGCXg9Gbwa8811j82137l5r/WARr8zKELk0Xcb3C74UrfMRRPobupsIWALQlKB62+iVSYvIaagXyznMY7STy7Bhgq+RYNiD1xpahNjH4DwtLFNPjDX4ZbDkO0sNzlYzHyq52quI7Xw+YK/siJerMAWBNy2bnGagRbJ6qklpuq11FuM01oZCWJGCwXdMajGjTOZ4QWcbQbg9VZN/yT9O+mPXspE8Dxw7z6JO0xs2EVTn7pHPr+AAt2bsPXWOwZ44WyH+yJ9dCXtk/ST9NkUIgDWYdFpnw3wPgAvmFwPiTxtH1nZi7uRErGvDstpW519ytSrMeZoT1xL7tQqJ2eG30q/dutWLtKjMBBh7c6GdIB6GettYaVZgr1bkdjgllxpQCUvOU5+MrnxIl52trdG4021ZrXPN9I76V76QfpstE5xsUinvX58RN65gtcX06fOZHRwn1tE1XOda+VBGYM2KUSpsayt3TU8pAUWpPDVeRl2Li3+ZPF69jGyb2yyjZVWnqTQ4PFI8QvAl5JbvIXGWupRC/8U1ZVCfISuhO/lhoMFwTf/GnGleIYvrrUu0rOhKmBUwIvaerAFpEjm2CdYZ3AkXcFX345TsasPwskvxo3beghx4zVL+bP0j9KPXqCct9lCUdv7xJQe8BfU2HmxsudNEDX3Bq93Pj6Hh+qF5o0+oePJfz45q0nSMaDZdcb80GxUo1iLgYS83bmx54ggeqkZ5uC1PuHklCDsF2lEq0NjeexaFzDXktJb0840EU1uNT94xlaZ6mhWyUJagbkKxfBENdVCQzHyJkZeQdFncOnZTSnxjjNkxYDXgMz5rfReeiP96H1DDbK8Fbx+eERzc3E719mptlA53LkzLTujWASYQOVvhZDFz5evBn5LzTzuNwFTmG2u+0p/lIo3+36R5B6X9Na2Dn39jcHl7oHIC1LwAg4V7pbq8xnTx2gslHSJF7f9TMvXfr3U/zSDeXGS5fr42YBSTFH5DCwztnj+FP1zDqeQz4f4RBWbMflMFFlu6use8ZQrG7tx5JCP0j9JH0BMIpPIy7SDGk/aFfVBIONszDh4qtdC5dFy9FtXGjkDaUV48nE4Hx0PsjnwAGXkNlfYBJ4OdhKpNYrXPdrmikEko+u9uCf7WkEIWUWKe0t3i/Qq/ezEVfC1XvoGe9AXvETngOrDBfy94LEFySYliaQpHa6QVQ6ZimgaOpy7y3iUZE4GrzsgxmJr2dv430vfST9KP2LbQ/TdIp37g/S+rpYkD3ypywgh8QMy5ckWt84WSzQTMn1CVBS9ou0Xhfuwr0jP2YaQ82B+tvTZOAv6tftcNoAX2GiBHMLi8MF0Q1Ty4bn+a4HwstTdubPpdeQ70jy2wi2Id6UG+2x0mp1sdBjIDrdefJfOKCskAxm+/AAXzGqPNCx6zhWA0WLUwsQ2uOam2CC81mu9xUn6k/QjNvYyXTw4uUpX6p2v3wDDJixT64svNc2INL+HQZL2PEkfpZ+kPxu0ProEkhvRzKhlLP6n4oHMQNOwqSSNB3zfGjsXYHNTz3z26ewMV5PlrHdo3GnMLwQ3WdtE0qg0W/9MgBqMJQVHKGwqNCmwXb0D4woRoTHKjrD8EJmpvtFk6hV/lOuCHZTzFGnYvLYD9Vhzvec6i2mlPx2kdxCgBc85+RjwxJFd3Uw041g1mXMfoF8z7gdyCWS6gbYkVISA5AwpTeyse7146tdd5kcUUthrEx8rtaszJROKS4tVyAbRpGCBVYNFAVEk/G30rQi+VPwLMHqpUSb0qRhNdmiz7oHyca1s3lPNjWf/dUTi0cF6cpHsmpnrMBBPI+3JuDYoWQxJUTKu0s/SZ3vOwUaZU+vSFPGI14dmErJNP+AV4jfb2Wbwww4HDXdYkYtJ1wfpB9fiP7v7ekC+2ntuE0evmPkMkwpLxpI/R5z70tXg1WH+Y4QXe1aD/HzlkI+eNEkfpJ/94d5mmYQ5ZL6FDXeWMzuHlt2N118RL68GqanWRy/IUzoY6oQJTHPvRgYrBq/W4JWdDCnp7V2ASavd+pMneNM6oj/uvfVnruFjsSgy+MC4ggkN6KQRTtjVvgdOdTVgxcHkJWTpjw/Xo3enga9GqR6ln32u3JpffUZZnDYU4xtrfBS6ES7wk8ahLwAkO/YFXj3BjpOChqEUjEiY8VIvQLmBVJpCiGEy2wFI1AFSN3zwgtbcBoExVz5ZROzR7twgIF1wd1YaW/wWpU1ysdnQv3fSsp5/90F6RuPRDs6589btvV9gdfwaTU4qW4B9ozXR0dafPoRHAyiTRrZ2/YyDcIrRJ1Slc5hp0A4UaXByBki5Me6XvtAD2jzSERGJMfrQBS8aas0c966wvfH7dlungtm7HHvuXKroQJZTwAyQDa6YJKMKfbsgIUzfVDoCw7xGB6fJ+kUxI0vpZ3bzwoBQV9wH0llc3yGApUmmcRp35wk8OLpMWJE/9mtNWrVPJ2O5+IjUAe4SoinIylGTD0aFeO2CQMnqDWUoMjGyr0xt5OPWbtG4NNp404Gkj25saW64AXX2AuwsiMuRZVM+DcWKEiWoB6mv3mriEes3H5hAwTckrQDP8tgTYh9xaHD/3QhU3uSTlFaow46uoHf1ok+W8s+1K3MtqL+FAs147HLjzWvK9IP0R5P5iGzZ/H50j+K9j2+5c+RtUPmc62XtLHYt+GGBv7JusQ7wWfog/UX6o/SD3/CXBv+uliduDZgpazh5X0fLAxC0R6mwNwCfPZAcjbE+3qsLpB1eNLLulvoX0jtD4Np3/xPKd6EVYTKbfpc8f8JRsuLFzzMiMi816Tob9V+8WVvYtz7jLuzL5e32yL+igFH1PZj7HPAujKzFXvpkQM01Dx262gTPXIwOF++Y2LmOsbgulLFNgJU7UEZ+teAVRBPVvk0MFX4+ezvJYniS8/7GLyQp0mfXFVpEzw5TTPFJgKSzRaBkYjxYsSBwTOCE0VuTm3E4lOD587keIElaqT8fTEk5tzP9SFdDA06VcSXZSzN3oG2x3RwRhAqi/yt4SGzrVvqnzssycow4csPa+fBJ+sFC7d7e/mg9fe0Fu7erH9wyEWV5qUlOSHLAq0XevtxELwG8Pko/WIF7QmAIDVD960sNAXIwaPA8aUnde3Sd6VPAq3OAlGkbD62IBd6hPJaFWM/12Xm5r+5oyhVYKihYZaok8pU3tw5ynREI004TILvgHTCpDRLp5B8eUOdrDReJ/QSv0PgjwGtwMrwzct15o/YVi3sYvNM31DC1y2J3veJCTBvIL9bHOqCGEK/gVxws9Z8GU0yqEg9swAQ7kHJh0/2d93Q9eYtUkoquFv+FGuOMm14t/i+1/zeIRZOnYvTMtPi86mywYBSciiBaPkkII7CS0Ad5Y7tC+p1MMiuYhRvcyksuucLNPUS+4HJOWij1mxX4ldtt+jH4xe0NDy42rlWyexQbH6zKHrCP8a3bU7Nf7oorxx/SwDMZ09NpHOWcbbRRXFbw+otFuGwT3YFsRmZb4OGlfoBE5WS/eaQkqz1Sx1TVrugNECxw3aNy7yHcuZFxJ/1O+t5HOa984ifpGRS+8ZATgKfanEIbIwpSbT2bdEdWeAWh5hNewVRaw26237AjP80C0Z4mgFcE3SiUa/KU7C0NOSsx/4Ijy39hXn3veU38LTDzYr64x0KFKMdyQ106RAeudpx4qT17A2+MBUSRYsdqoWnuEctGR+Gz9Bkll9xio2hRaiSeFfv6FeJDrpBKbSyuxQpTrCfzpG422zpUB8SvfhUERLK7xNnGXeGs+0WUoAC11O08KQoxaCYEp32bv8K8kXC7sRxB02+MJUdLXj95d8/edvqt9BY9WW/c79LVudZG/0x6P9Wt0Zmci9sSw8rCLZ+t0X/BMZyBuoTlzYRk4SIlsU9qh2Qs2WMsrQeQx4NSImKhONjA7TbrUfwr9dqbG8/SZz9/On7l1ezRFFIMHi3etRRlISLnqw/AXmDVKctN3sp4BvSuS5DAMsG0jtYwozt0kJE7p3W05wOOR6DEvR4q2Vn4evVnOunQ1q2YXOnW4u8JesDgqkKBssWWkKEGL2oDm9SRsLLU/rlRjJaaPCSvi3tEwF33qr0xjLcATVLnDjwqot3oKZaNZkDSElxIL8Ho8RKON9o95fsMTaBVeUhGyfxKbkSOmjhbAIUF1CvunZaiAq4rAFMYV8HRR9EVQlraGsqFoW3GKPj2AC3+7O0eo2uJq+r2nfQGeeMDDhfO+asL3IyomkQ6zn/FMrEIlMz56sO7PvscgoKWwIIVL75IxJH0lGdyOkPS7kZ6TpsQeydYPsnsZcPkhNdyHD0hk9Ow76XvXJ9YI+gztL0AJdWBC9SpgNeG8qU8s26bPjmdC6YEX4JiaaEZagwqRobBZrkDB0qnWICP/Kb1UbezZaD0aB1tTg8+7Csx7NhC25g93V2dTWWXVItkdA9jnXE6dfp7CgydAnU4CPuHAlLpd4nIIXtp8rS0KEV1WOn4gxvUxtqvEj8LHmwBNEwgLAMK4nd471wQcLGpzX4e6oUsITZwmzzJgkHNgIYGcxUIECJEj+BfvBZnVCZjEJ0NaILxLXgq1ac0zJ7hTDsxgv9VvazU8BmW0rLTuvH17HOW5xq8vjV4ReV68LTvkeVecfGAIwNe506eBbPRw+qKB7t2SoR5NX7UqQYv1eFqrpv2GrSCtPZStnntMVfpeQhtbKCYjkg1Vuvd1eRolXi/l35t5rVCzEcfVzP4YwJxnvw24YKzvEZ7ygBguuJMoJON7Qy5lBJSmmNbLM0IR0j+nBpfiH/AqzU7puNk005EgcaqYWN99NVvrFuvfOwLgnUCeoTFxs5aaoveoxMnotBiepf9/3Nddij4JK2+gd9HoZ5sQUw7W5dlCtA0zWXZjPDiIqoQf1lvEUrvTc0Jk92RHQXLL/hhxMrM0oLl4t03WR9Trw02CE9ywYmpgtAp3CUJKilicJoVs6ZG1pTGc8KU7IsHm+oM+xKeOUGAzz/DSHp48xoNPlliLsaz1jXG9zhI78HWGixP8GFqmj6GSEkF/hqdd2/PztNefSrcM/oecjhxrHQCLUn0yL8KMs7iYRZ839erHyzMDKcTKO0IWeKz9Z8AwN6Ivv53cv/aizc6paK29g+tJzLKWwckvTUAXD23AyLPxf0izMomBMwz+FUyWxpqgcF0mL2dAxGDeTSFVAVysEO0mwWvEG9dhJC/l33/uKD0kd68oGWLQt+A7KUHSS1+CIFDF5tRD0MMDC03f4hlYUpMACiwPfuvey9tZ2fISROlviaDZtz47Cw/QLYAswpgbka6mD8FDsxqGPlJAb5salbMylqMMUXLa32GBVuCOyhVE2KPAF50oQ1i5g/ToRYK6QxaH4PbNJ+onk9hOOzdX1fkC14qOtg0176I5I05v3Sz4mHFC4bfOTPJAFMvHXyLI4Jren3PLvpnJxlyi1sAAIAASURBVN6mFzzRjuCV9KGrZ6PUjXJh0VQKuKwdVnxBorsAvEbsdGvr4Ry8NHucETjg8b6YwV59LH8jvXe/StyNh/RM7n37YurVwJiTLiay6saPQt2ZOl3Qe1zq4acWMsLMrnCi4iq0zL5aMNs48t0CgCAJXupnukLQkkNli0lff57WsuiBPaCwYOQFAY2kI3VbNlUSCyaD+gECqaDxFkBSGhsuN7crLrAEMVV/IJtrQyTznBNYdcae5YnjbboU9LUeknh7olnuMtqYIsZeayhMhZ2ly4xlw/IIZLdltMhaxfbBdHSTIjY1wSy1NXe1ma7ltU/SR0/azqXOO+8/THn9iFJLpiKyU8ae3cxNnU6nV+lYiw5B6otzjy/oUF+83ASvBXaYroMsWW/dZIFfhJT1NWCxxJDG/QbmvWFeVxQ/W0/O0SXZgyu0X/yntYfP0gefJ7R4zlu/LrDBRO38W53T6Re/l2kdZjaQEbxY2JJ/mFgboTrSXWcnHRHYBMchNQnzWiwu7Dx7O0TEAZnnfb9gcZIWsn17wl7svm756QHFrfEjzTvpuu0h9c4orC43wZRRb4HJtHW4jx6d4mdOfdybg8XbEgsGXG298tmozOaPCGthwGlESILfAI2iI10sKRQMitSLSRcRRUDQzPnst0DJjxSGTRyKM+UiG6LF0tCM6BZJNFYmnCC2QcRSRxjV5YGmxoksTYp46wlNz56TwS/VSL9xdJKutsAJRJf5/A6rlqLL5Bnbu/JM8j/7A6u88+L1iqjVg2ks9Tb8Br7OLrN8dbDnggmcrTVdoMWonjdqsK9mHZOLUh06LXrT1MnHyz9LPxpy1p9/8B3lc8rWnXRvjH+PJsNNfVzQ5uFHP3/KjJnk0W4lXG0Gx2ktzR0hKhLCBbJQPPbFid5600foQRFB0vXwS+V28snOaebn5oUF/Wm3dsx9gyvWHN28E3RoUM/kJxdgddYy6dlthXq+gbkg5g4N2YMLr6FDCaMxl2imz9DPNqJ2qTexR/G61I0tMwJB5NHQBgpRgqW2cPgNq2Gt9YwNrKGR1AjDBDaNDcsNxnUwOBapOn8/OPxdQfBINoQhZBE3OmJG1NU5z8Xn+Wb5HuyTQ40OMbCwzZRV4jzCrqKIF5OD5dmvHk5/dZBlA15X8KsUaXKpK/bg5LF79KA2iKk94scMc51NbNKgtLtJ3aM0x7/YdxE3LGiaK3gb7Auy6EV6kT7YZz8avFaG9mjl7B6P3dV9QRvVg0IXGez66yc7XYLi6FLEq2F3ctE4EJ8Ug7eIlJu/Xs2BWoBXQGC13t0IstjBmNKtl+ycGk9T40hY271J6ojXzYUaBkfDngXbFUxn9GLTA2ewngbme3AqsjelTpfPRmnfgNcqfhTktMQXFsQL/hreF5fIBTfg1QJKMtgNeEXxCuGawCPOvmNqv0nnRlCSFpyFo1AdUbMTpYFUc6jB64RNbiyXBFAWzCRlnramJw1QbC02vnjpDz5dPhsgI48l32igi5yQvwUC9j5Jc0GQuzgaXbETi0njc90pMSMp7eottaOJOZeph5+zb2TTCz15FUa70qU2ieSr0cwmjDexJ9uMUoIL87r3boE83lpn+WR9VNIHH1y4Dvne248O0O17bHNl02zi0FSrU+wFmC3OCb6wIFHYO93pMWNRowr8ffIzp7XxnVPHhLQW9Zf1akO/YIkSRDpg6WwP7vGvciUk5ty7X+EBr2tZkE0xWQq0JINO+8lS41lckN7TmUQ+oBFusOrFLkHKpuQqkVNyuOxGHUqMSO/cXNcn2dG2aV2Z/cNIH6FzpQ7ZBUuanG2p3zjb2Q+mmzks6HQp6BhssOYhUR0emNp6GOnoM4Y3c5Uvkq5MY1P/a8bbQreZjUBRur51UjEAiQfIYqsF5lyWEQp1a7d762U6myl98czTeoNha2Hts/TFTUMvzogGzANxlzWVwfxqxswUI0eOWnutuWKH7GBfh7IGZ9KOdvE0J2WLQ+Jb5/2fs7S3fBenl8nnRzvdCXu+Tj4159HjSu0up4+tF8kOdCZNHVpYY9jpgy12pVcIvAfP6s6qRAuS2SB/EULl2fnwq4E2p6E1IJklNpf2kA4RkMufRpIGfGaqGyoiZjw6ml8R6OOryUaopy81A1lq/8lix89bP+eDGVdj9nWozY6jiPiRTOzqlzMNeLwZtGqs090JzxwSnMgSeSxSk2rwylJFdUuSQMLJ5LmrW3gCgrnUrqbgEyY8z1ww/5nAVBHlUZ/dmxEFgs8cuFwAviGoWZp8hRsPcObBJzV/63cN9EjL8zzx2zOykfNNk+Q7L8HFH1gL0YmpI4jEV8Hr2UWRtHTPNSOizrqDSrTBlKMrqBcD4uKnCkjdebGoF/Qozsec4mJDzTd6a1fFec3Zz0xR9osL6U84ruIqPUvfux2ls8vIFdqj52HC1oXWAfIKw0gYTtvwYqw8w9RXr7z3GDNj1IAFf8kWmmd3zD5id35BXInwUSYcCtyBUzYYeWNXH8E1r7DsxUD+4FtOLjQxgaEYQIWzAV4kByDFSFor5x57yI/FFn+Pnb4Bymw5DQsQtNmLfzdm2oJmbshaqblngTtlVdJa2d0I9ULy0GIsHV4IkcTjAvBqoPdsGGVXZ1kzonoc+IL4uYAItxjj7LahVzT2Ubf76kBy3yD1ghnu0HI92SR6HFjc2FuSlTHLHQ1MJzRnJg8YXfGefcbP6PeXDcjDY3WjB/jFp+C8QtbaYVEWm0cLRpaxCM6TUHR0wD65TfoCHymWVPa1VhJbCm+iMH6t2+8kDX5Xw9os8eTDJZIQkHkVcMD1gs9mXgffd2/w2vmEhrD+AVZ9lfY4CKHFrBIELlAxWqiDB6BKBxNdYD9JOHP+9dmv3DzUNt8AQNXPeON0g7yeFtT4EWKeOzCNGXQ/G712WKXU8Xo4d/HFVSMqAbnUoNIhiZpt9e+lzibTOqA3NWpS5mNmGIBJdtHW6X++ig1qBNo1KCrn80v9pwE1Uh2yKX9vOs5i+HskAMkhr4CotOYGRPND1YEykTRj7LB8r3h58O2+ZkIX16JDJpAgFtw6et8Huz3vpG+kdyDzV7dHLm4qvLOBnbFAV5DYnZ04YuCLS4hB8auPsej8ACd3Y76g1/7qprOd4x63lfQA5hVC2GMeTvXGbWVnN1jlaYsfL8XwBu67ah9pj+hcYV4MZvlaf/fO76Vfm06fLCdGSlpn8hlbJTr3T7yx2Mg0OElTVwe0HdynxXUoIy8oiacTZYTZ9O7m29dqiwzwF39z8uyt67uu5j34SOSvHn1nv/hykrfIwQJMXGxqPX5ISXrGsYeD99TukD3nK4E+ISYLKYj7/HyDmW1rp9pbPnl1ZH+Aj4XdXpAITTa+giDSA2tiRpF6g+PpQ4nKNSKUTLhpAVNablCYolcEg8XfjwbK1hwy+7MTuSK77/FgzEnkZ6ayTMY1wBtfwUaSyvY13IeA9TV4EdqSCbd+NvYDhoF8J30DuS6nPBZbWjqzLxBIInqFKaUJa/TDh66Ueg/qcgNeT9In729O/XOHKHW1n0cJ64E7DUxlbbXdm/XNZrDZTBhNf1P8XJw+JLRnra816Y3CvorKi3cpjE4UC5SONZvITsXOv/heeoOCZ1jFAsscvHD5pwn2MMOnrtj1ETM+A9zfmpQewWlaAPrZn78aAc/+3ReLXg+uCgxexw7eVGYcU50gM8GsL0DftcgTDwnXmI1WCV8RMBcINqwwNDVebPLGK/4ptCKlvNCoFbxaH9Pf4fEKgDiKS2JaYmmAMnWb3nE4Z2COJggTIv8FWk7xcyZ73AxTsI/NKkZzDo8Ia9uZeQW5WoSZnaEkNTfOJ+NKQsgA8Mru0MlKwysU1xDwgJTqgeQbijSXuud57xfyCNh9xJmfYV5PtuMTWr6C0dFlJ/xwh4rixYZ6hsGkrTeUOQfqZZPQs6XyBxTHLnanwLQQNa8Q+VqrFWFer9IgfXRGOnmBRrOnO+vBF1fkHuqDyE9+8kSaxPXWzUhrYPu131HxM0z9ZH0rgDv4cIaVfIV5RalNLZ019mR0VxjtDhbFPjlKDzPi5aPlwAMmM/D3GYLCxY62zurZWz0f8A6oDonaL3PSB70WeGrSgAnIvEMIS2Gk8wj2FhNbo9ctrVLdzpPJE5hDgTtuCnSpTK4GtRKG99K3PjNj8ponfwh1XnAjoRNcMPZ1bnb4YYPwF+G4oMv7UmeAFMoWBETSyPYGbyaw/AbFuuIY+nKDXozIC7TUNAT2NRcSCgnxyKuh8cV9WIKzctrJ6FqwMobvTGyO7z0Y5l/dXTXb13tY/dmt4gcbzx0SznQnzjCGnfEmJlHAP9ewPtjhrsakF+8Qf3Kj/bP5T2M/a8AKAioNrFFY7tVa3vsUuQnhbqqVtPC0A9ZxdO/VyakgywwrGESS2KPm0ZiafpL+IP2M2nhq1I2pxDpX30nvpR4Hnw22rjMIf1wg/Uyjl2BEli6rhWfEqxmHWeRkozu8OXwPknK2wHWxBQZ5Omf1d66v3tUvS6N//ZWohP/FzyNF9N6qMDtJo9w2GyTlvHFwHGR1eFNRLPDwUv9ko903tQS8cz1gpZtvDV6jnfYM7Tjp31QXlDa9B5sWuLaG0QDEjDxzAlMqJksCZk24PvNG4nUuHkrWIuw2AK+2BgsB/WN2HdCTsn5mftN0c/URfZ9tvh2OdWHbzIL6QVdPHa0l0Llzsehq0W42/XhjVw+GfrHlFFPfO8NQTqxpkTDs0JAjpFgNiEFi/cXO+WJF6gsavmaD1527QCcj1xX5yHJjJ1EcHqW3kBUjlERZDN/o6hN6F7vlyWsU9S7ViN754eIpuvc/DdLJBxOm7EFDDXO+l76RvnMsKeaKk/nnFcp3OqOShe6wnWfCw4T0Rlu5QMB7C941QMGXqywBr5PP+On9wGu0W8HrwWeRBLyWmN8Cf24s+kVVOwOeWnO40WPrnb+u4PXW18kWr8YWkKg4ocZawDgWhKOxzsfiHsLWk96P15h5PXkJC7pSBeYVaSo0pK1vTZBlznABoU/fxfVmIVl2K7gjH55KG1F1hFxUwI9aKF7ZbB0e3+NeEauKPSeAkv6zTUXmajP6gje0dNg10t4wrDxVA/Cd0XwSNTTyQYhM6rEHEy75mycH6owrbdn36BMKuB987lN0nQU2c7Xy39uxZ+fGK3K94s2zQdsHM6+L395wMl6QuW+Ehp0LEJ35/lS3DaSP6uBWotZDXixKF4e9s9WyC9qwGngoN8O9s+Lb45yqswWCAYdx30vfukqy4uNbZw9f3N3BBq+jJYaLr7a3hBGNqgDlMzMBr2zUO/rEI7Y9zP7F1GZfkTZ1nocvnrGAF1ugF2n5xSUa8J9wnnROxhhlJhaOOIA/nH2e3MGz/mradqiTVmbZoQ0zsOq24Ysp+d4C4jrE9y4r9eY/8d2whYinpe7fX9yUQI1lrvu5RqTnI9oXwqHlWSLTY5kxVTsSwhn6uwBpLcDgZGrOQuuCPgbWDFJWp87O+io1t8kKyRPSJxZC8ytCM81GAUtBNZB5wEtzQmO++GXsDRY0VcGV+C028HtjTzEvSs7WYxP3EeW7TSY8WNpYTFFK/drGn/zCxmcD5INr863BL8SgQ1ThYzMmpKS089FyTT1FD8aPowPRiruPiFcLuBNLaK1h6eTR9S5+PBjdJ0RLNiusBPiNgTmy6qND4qsd+YQkcA0dBxzMLLCspEU5W3WBg0wwlQPW6x6nj6+B6+hS8Csq6hNC6L30av52h/dzxKkL1z5q2uQLpZVpZ/k1eLsg/q6G++rnOxqq1pwnWR/VkXjUUrMsBnQW0MIpdw4NoQ3fmPqHT/fgdQ14oDyEAno9oQjTgldkQwo3103+AHfo9OhkWIBHCdDESv4Tv4/gTjE9+2IbP3nKBg38M3dpbtCH8nqDyJGQ91H6YC8tuBSLh0t904LHEFC7BTHO8UhnvHYm8WP5GnjtHZkuPuR6sbfLMxw1ZQ+JsUVEKRAUJkSmq6nXT36PfMBrlTy+cd44GimekX8yb0xsK5j8kMODz/LNsraWnb7x22J6//zRmJLVCS25wxEVQv/Mzln3bK/uIXb3HnhozM7gJT95vODsMQa8BM2is1S0Lla62OILZ1QmshOVRaO9wStCZmqqDfpY0nPXYaF7g9eXG/BKSWmWBynUDSYzqTNaBQoO1Wkt5UXaGfD5dCe+mhFGFU9rVNhBmgrin0F3TkQyoiTQKX+/81nXAa8kEkmuNtSS3GH2wsdXiSbFIHV22apBp0TkyiSEwsMLINJhJlkLKPhkAdDHjs/AuBmoEZ+cblCvYD7LDZwFvFb0/yx9QR9vdDJ+Jd6EeaUFdAOmKWySeT17M0O8sdTgtYpe93gHTg/1NDxXeJnVAecttpiN4pQv6xga+0X6WfrB4PXFh5euhbhvvWnpZCcpxvShhm/Vi0j3GSzVsPa7kx6l76VvLealN/UR7toBf1ntimif5r9iDf/onGrG3AZDj8hXD7hs+N0K0GfD0FgrKUOd7J0tvsaVuAWUBed0aBwNXneuPbbGweLZvgC8Yr2dZ/LFL6YIeEXz7qWl59zPMKvJQl6mpPem9AU7hdmf/mKVY4L/veCwwyvoAZMfQReOdZOO974R91iu1/8sfZZ+i5cZJugLvhWB7lK7/uiVnBx3ErJn21R2EuW0An4mCHHwZ0aEQrL5RBZBA5yBKJGPiud/sh0lgIRiNXDcBr414TPkY/mtBh0STxAcBEAtiB5kjy3sJECbZLWvX763msQP0g/Sk8PaJD05VqzY+aP5ecohadEMt4lSJ6BvOt1efJLxxVd4sne+2saSN/7slwetPrR2ErzH2xFb4Fb2ZyXGFjSRxQyu9VsTiUCdk8bvTcmuts9r3SmaIgHT/hngcapfCdw6DWGjYhLpHFH76CYJIV36UtOKT9LP6JVJS1raSuU5Z+36xR7N3pTZmWdrFrMmro9+1NmzerLA9eKV4layXnrBueA8O6Z3lLs0iLPJ6+Y6L2qkL84JU52/AGtWevpq+S9ddpOPcjqCpxVgVr4JFw/1KhBdhr8NXp+kT9JvfYbkGew5zF5Aq5z8GxMs6FgJMCULjfjEo1ZaEFTy0ihky42fk9SFz1BMiv8v8JAIAHPdRaWb1gVWDphvb1RDIbNKzY1Hh5FuTf4mxCDO2aDm0XiGY/dp1zrjGOjOLTRP9oqVDv1gI3nAm4vPyKMKVANh6RdI5C+gAa2jyACgjGT/wW/wntwT+430K+kbbJmZgSwb8IpsPQG8uJkruWKEq0fpO+l7S1xXG3P2o6cylLO/CF6q7YEUt8PLMBKihMrWAbSngYT2bD58NZZ9stvukLllt0kUpYufZ3JptIDopGd1hyscILv3pl5yW9/VtccTcpbe5ZajaXbU/4xrL13aerJYATs7Os2G2Ctc6ILV6lzHOCA+zLbOCUrdCaJ6IraQQY0gzUHV3lfoPCkBx8/SG+nX0r3BpceLfUag5AzwEqhNULsDZaDwlh23Z28cEZrDcpeDLTJ8KteJnbXAtQX3DUwny50AXrua6IWx5spszJpgo01NwQheM5rOwzJCwYS1uGK9mNsXOKoQqBs08Z98OssZu21esSN5ZV7PdRl2RaWDi3gCgU3OHy19ctNperPOzoQvlrWKf/iz9JOZ18V3eSu9l95i/+GMwzSDUMVWFN2rAfPqzDUO7oOfHXffSd9Jv/E7kS++zuA5D/NK1EyEmz29Z/ScBLl2bgFdYFepHRzQp77HZ4prra++4Gfpk7WDnelzkDFKREBKZl4vXq/0ik32BdXg9cYVlgl5b+PA81qD12DwujN4hXnt/YR76dK3uGSLrJaFdvmp9/5MfGtByrGCxB160q542FyWOUmcL0lU+g/ix6F26fYSKrIF7zwrxvOjF58J4WRpMuB3BcW/INanpSO+En4cikX5u6kRkfsPZ7DNwTOwEdYFTb9BQjvDKEK62NgR7SU11Yw3GV2LaQ/8JKf6gtC/wHXCJ4tdYagl8kAjmzbCipPnp4/s1Y96lX72bL9In6y3xAXPoDGBtB5HXIVuZc5/9n7e9CefHK8DqGfvBszDrLXNRyvae1PctCOFV5+sOIX1hVHPvlfYqVwrW3ngo/Qr6VvpvTutXqy2y0jQos4ZB2EOvyZsT+bJXb00rK8QRO+8oWFvs5mNgqo7UX8yy+jh40G7PEbMLLsEJhgeO2xHP8ZK/N75YMLOZjZCdk+n9Ml+l+1jzwatDfVaYewUmT66sODP2Tp+djNuUsfUwVr3LXQoNvaOFxcQwVKHrRYr14CtTXCkeAiZaIPQvPi4tQcXf1scBs1uwwnnTwr4KxDiaP0tThOa0YhcPLSEvyjjWVfOZBa4g/Pzq6mnIknjiLmaautMPEjIIRtk0hhr3uj4a4/EB1caBRG5NZAJmW3voNziM8JdWsAlKcGz90xPTnFffE5e59z1FeA112fwpgGmw+s0AxnFcfeT88AQ6ZMdOI968XmEz2ZKj1IvvZG+t5P3topIVosLYlcMPPWY9JwcrEcLGn3aEn7lHveddyrN2MydJPPsf+qx9Hn44uRqxEF26asZkdiv2scebx/a1dd8QphcLe2DSdTe4Bv9KI4pHM5yQXdYNPIZiD+B/j26Z3UH8JpQF7nizSi5USc9o9s54LXzyh6kcyTcpjbKZPOs42dRR+N0nuDk6TtgBnNewR64cMX5Oh2MfsH8sqzR4DClFolNQsQXp9SLiVX0yRHglQJLlJsrRPKoGm1dD0y8Ss48gMVkxjbgRf18sljdAPrbG+aVX0mfxlxPSKkjf6CKitoI6CSmbIqNV9Ouj1D7QtkEeXL2TfuaoDXAzbYGtcY14Q7FxhnI++SLPJt50UmiukeBa+rO5wVdoI197wkq+uI3Z98h8zmZdn1yJ8ade8Hf4fC7CfC9wISudqqmrrOEeSUPWFzbWn3qnfQbi2o7bK852K4i6SWChilnH8h6uzCvbI1KD2WIWG9x8YDO2B2Y19XVkzCmlQs/e04KpjoGudhI0l8YfYShND8JgTr6GY5g07PjR2OBM3vrZzCv9mvMK3njUXrte+uGApZQL2rgyongBUyaaFesMKS2MHprVqTnJJwNrp+iWXT2aEqtGV1fnxacLRgv0o/+2OySY6jR1X8KUtMWOwDT9lFsgLPxRjVxT1NC9HFC7IzFLPVfg2TsWiB0NQh2mecCiO1A9IleAhBGrGeNaEPzwkw+We8K5ZvAf6KCZs6HmpU1Nd2SjaFxj88R2W8Lz56NnRMyPU7CBaRrgA2EvQehs5HnowneBTn5ug08mwzPVsbW51klyntLXveIwzJLTxU/+Ux30zZ4cp/a6DbXyRxmJZ+r3vXof23cFpBWmPWyr9In6aXuQ4xHrJXAH6UffBxBwdEVO7z0sjfnebS797jOxSWuBZrbq7eTF5yx3YJIC5iUCJPTQBasUfx68Nw+oNehrwG+gRCQrwLzW8waDr5jtIN1yK8tognpxKbZKgQgUkpQIMaRkTyZsk/WMNgEz7yR6lHALgNIPWAw8oeDdfj+WfrRRjD6Yw384erpGG2XpXanJGzBjh6/zkQurCDI20EbYGvEDEDvsM0kclHB2PMwGzFswjFvfY1xUw1eRKgO65K0VlBXn61cZ9v3DLYWW2xsLgNUe4a0FsiVJ28tFicsHQC1QpAl2UhTxwX1rh0scwBJngyCow8pOGNCFmtaj/CNizMTuZ2mc2/9e2+Rbbx87FDjWVUd1r214rwu/R1aIGT47qVvpd+i0Sn62WixR6htPPkBrvX+25WdfpB+8h7rxXMYoE+mvVrLHV4TmD0nV++Sj75/sfR49W8JsTB8knpqSl9TnZf1/sUOJ248eLcqwavYc7MZowXssLRwC17Z/XRYwauFy6XET4sXnGfG0w8AuzMqeE/YbHGq64QNjC8A1OADERvCR+Vxsk2iBWyv4PU9COAOFlYMXiEm0UuEWzRYthm+lJLj2TjS1SeUCnNNnlUg4HXAQYHoN5hzkrLA0AzwGmBVzOoDH1zETVcJ0WHyq2ae7DyD6UCHmU8izQrFUltFgznMcAaciFMsJcxA2JzmxH2ADJmxb5ZkO+TSnWPJyrw+GV+umL177+JrTZGeXNTqLOY/St+4vf5g4CbzevX3ya539eqczbwO6FtYLDjtpV9Jv5PeeFO1kNmc0KbyUr/7NbyhGNAn6UfpL9Ib6V3d8r3H6/+yCeHRm4d6RNZsCIvZXJG9d4jQHda9gLs08LIZWFNQA++8D5PINSCU9viGZSA+Z/M18NrVjcqvfWclMcpGWEqUd5bUCPWsUGV8F+8Vaq0hvPW5a9lmSz5A3Wbn9c/5czNyP5azQsAO8GYZmYL/ITDPoIgnvFyuQJNZfCpTktU84QhUCz2jqBrRpkEnx8Vi9FBPUQJNU4PoplM3oNUhqmRyyC25NC0meTFHJxifpQ/Sj/VByFni0VGYhcQQpwI4GWpoJB3dORd6qgu5GeMIAiCgI2FsqgfVoo2z8Vrs3KbDTS6TuVDjQmIHQT/nDu68wfkbHFQxOxX84AaCEO8AT2x+tGLzSXrrdtDO0ePBvOs7HGKfJXiSPjlvLL7jFWsdHWSx0Q7SH6R3Nrkn55PraR0hSz1ORm9gS5HaJxunbE6X+pCUCXH44Ge+Wlm493XO9Qp2vtHONcZHT36HcWVxZ4PcHRLgE7hGvvLwI2hOv1KvlKQ6BN98H9OcTMez1ZxCf6j8iwuAqQTcQwrsEFCW2mobvKKNtYsOKv9Qg1dSi4DXa+1d8go9wwFeLbPK1DkPcAWRFfwkG3bjgcn4ozPlvtFmLu5FpA6uryWNAucJeBXLr+n3GbEvSaj/MPa1ENOLDS6FstU5f5D+hMb3pEMCvKY3uCDUEnMHDCHW1trid27hmevUJbLo2dOVsJtnoPLR4ajLsVbSWzOu0P6rZ37CEWFsJ+iwy+4gvZe+l97j3buzm8I++KygBVduceZFyp5r++u9KwRJUh6kbwxeA8Y+udD6s9F2cflkNrZuFNCzG7D/7HNKF3cXLN4R3qJg2FnxymIlg7hAi52wOWh11aD/arpvcKLaCl4rXx0dLYTIJzRyv3MhZFeHnxYIvrhP+MFAdkCCk9wk9nCxMfd57ULaPmWHL2DqPfwtbZYLspeoI+mjepY+o59YRt8dDDTcNKxhh7uHYkyIeHvgd7pq2hq8Oh9nHI13A16Nv38FDbwajjk6qlCjJZAX3ytV3YI/SdZbdGuNQIcCphauFE602IBIx+LzSYCZMQ6wBsFEmKUTUxLBfpJ+sLy0g764oLEhJxhMZgSUYRoYZVhVwskKXk+o/ne1T149mQ2uRkUt1LWzvNzBx5IKpv3gij7V2XPV4jCoTFoQ+U761m1Yd/7MbGT54I40gXgyS4iYurZ/3Jnl5fHupV9Jfyd95wphwOvVVIvM62fbMOEgTG2tkf7RSUyy5eJW29Zy49pfdY9DazfMi+B1wQtOFoPXDPPOER8Brwd3er0idDHJHLxl9AE7CGn2KU6umdO9RzH6ypS+WG64msGsPPSlb2xxwYYZEX/BOPL4gY2CqkXxek7oYRn9sfdIqAUjXeD6DSAnwXeGsSR5u4O5JYN9sY18xs6odebOphkdAt9BeuN/vWB34tXVqs5em1aJ4v7DeEMSxdQhBl/zC1oNorwV4A1XdcGfGaDe4QjeqW6ESfwKE1hsGslg5SyuMXCuAvdP0mcr8u3NMzQgbyFjU52j9tAUNmlwMva1DvzRBCmji5IZdSWUhrgYGWfwY4RAXnFK8YTDEVIJ6Oot1b2dY/EoGrdxvrU6VMzJP0k/uPpXcPcJ9f7Q0WTma4h742ytw8k0wYPZGwt+kP4ifYRA/8XFrajSCfVXg30j/VF6D6t+tkDUI+oe6nnroDUk6i6wk3IDEo3L+I2P21iM36zkr4JzFKXFVKJ3CZc16hH++4QtXbLrPWA7y4iWlJ3nhAXFXzY3RGOdwYYHL2eBS6w3uzfEHCF2R62J0vPq313Z1FvU4gusSnW20MDsWk9uB3O5WM+4NxKlu+PVhrIyqzvA/tkyZRq+1u6zt/7JgmPHLp6Q4n86u8vx5N3nC6ZYN9yj9fvlQ6WauvlEdba8oXD5o7pBIpnbHkCwkc1aBNakqTv7wOLWgh+lTxZ+Mv9BrkhZHVBvgfVkmD2Gk7DUGhNP0s8+KpKl0dTiG1+nBRynXprteTvQnuRdaWcNS7967FcHVwFMN0n1It3X6U009BXcP9lm+lpx2cMhk+f3llHvcGhTjoQheK0bPv8i/dmJorxx/IwWucZTMWGv0yT9SXqHItkJDcCxmYNBc2+fSr/HFVFtrhtREiAvNR7d41+Fx2ud7rLsdL0Br2Aiy5UvbgIdTY/lw9BytlgizQ7Jv0wm1w9cGxwWnhb+HuBFnWY2z5rQsZC9HXH1TMHkvPZg3Yt4rxq8mBamnyb5VZjX6KY1QcErFttllEn9ZwF49Xgf4A7gdTa6q6YtK/q8mqy9mIhFaAmJCHitQ8hGkBZ8NnuVNgMvAHTBClNDWRA2WxeRZq8CI2e+b+qJbQ0fM5hFgySKtIuCvCyNLLiyzDGZEmfPR2uwOLt7e4aSEcKiuq8jk9/WpsUq94yLzC6RRe46oxzQu5STaTw4T44UnE6JNw7eF4PXDwav2Uh08d3j6hECZ8swZ5O41Vwfa/BKOeAjwGuxcvHk4QwowgdiLk6z/yQ92gEjZPT1q4F2KM73yDYCXkkjI98MnroZR3s9O7tmI3fAq8OiJAiN5hPv3B9FuSR48gKGJRyQvYBBhyTuMCFRdn8JV70QZCPdRtFPsWsB/AqaFcvbMasrIt0dem8XgJYAigXeL3hPW89NvPzqNurGKk1QvfX0nPGa9WJxc734yel/sp3Z9cwW7R0p4l6QA/NQnBNsZ0HRcsZr7pN1fJViCSyUUhsT7A10pczIvwbtglj5eQPXWf3gI/xS9bKSXAn+2uBfu/pPYmtuOnjSntwBkJ1iMR7ZQrr6kMwWZCnbQ3ZA8ZT4Tr7abHN+wZnTB1vOgNa/HVL9g49Jz87GxY90MZZs5lboXFlu+qhnC0HF940vPNubLtKP0j9Jf5J+RGPX6MphKlIJTQsqgc/S730u2FEa0f8hsI+k9Lk4AZ47MxqYYtJ1+eCFwddvsc86+6NXVe0TlNhUs4r0YOWlxTOkjvXZZ3x8wjmAjRf9is836GKj3ri6fNPA/ZInbIp+whPESYLqFKwn43wKL/e1H1LgprNNEHCjhUSfCA2Qp+CKbrKQ7Bly1NmDki1ytq2fnANHwFsMQwPUzNHJycXEt6klkIt7vnbgLTKuXSD/TPVg8xXcT4fD8rfBi4J+UiwSJ85qWE3AK4D7s98+lUfKLLXYt9XARSen09znQCcZ66Jxa6d9MsSnKy1tFb1JPgue+W/vfrEH7NBL0vhkRSqKP4tps+NWi3eK9vCf1l2sjwav/ga8Xv3AM8Le6F8X1iiloExmb/SkhrSC1w834FUAXqlLjQiZ2YzzRfq9X9V1QP4cQpDMhcCULU7ZHink/HNtML3BSx7UCxqVCV5rhvwBW2sK8q9H9+WGlqdz8+rT1T76gA9Bv3jw045fA6/U7X/RmMPRgxFB0Anb3gS/ItCEfc4ohV1wrMjRE7FBrix8saCd2S9GhJ1x4avMa+8I3/oZjiCvJ0ew4tSxeD3WQxWy1SA1mQGl6kz06HiV5u9SR7MgVEJ0aiMdjqMUwIv5YYJeyEjAq0E6d637vFsvQYerhXM1QP8Q98Ue/sHHCOxQhIz1k4MvMIYRmBWsCW5m187eVnS18ncGfYjNRHlqcYIhy8g9lJsBAmREoCsCQIOAsdgSyLxW4Nt7TVt3I73xztjBGgTBi+EkIVBoKJqwfGGFUZ5S9nx25nM2eP0epzS2NtcZ1GlxAhYxb5GepN/7eIoee56EnKqBE62xPDpO+iJmj6JB4GmNFMXy2+DifO+/bpjXKga91iX6yVLZHsQ8nWTrk3zxRiWCV3aQX/F52mSofeSnpifk9jaH1DK5l29BhtbiJx18KFQ1XcmRj2bEvgUkIXO/1A6doNYgfe0Q2XdmSheQ18ELcgKP6pCnCftuPkkNXmfT2cSSeR7QO5NQdQWNWW74UoqWDaBOENYXEPTb9VEdIphyN8CzJOFEkXKDZwwUjctWLzDY5ISLn5l/glURpvo6sGROgs07dzyd6kPvWhD1NHCkZ7CFxhW9nn8GW+bV7TgnWGZXu0jnnPPObjRCRVls6jsItoLc2vs4/SSEiwWFExoDqUxGX02Od3C2/Oqyk6RP0n+Q/rPfAhLZJ9W8YrFuRkgpkFJ/cHXuvVfzbJe8JcMLKv8puU11DZ+pU4uNAtyvsPbcBsCSfdxLD66UvuJJhLOod6iKTT7D62fpBx8MefLDZ3/AhJSEYhZL66sDHsgcOpvIAnyjSDpaoEwTYyYuZCBQxa7UCaEtvtfWTkvhuCD+qk5UBvOrxdFhREE/6H0G9eoAi6GLVx+2OUMf2pti5VTFHSxDSAauzog2hdkR2cVts1WoUVuDSw8o5zzM+L7FByZgJfP28JYg9QwnP/l4grMtNR2kXPdifE/MjcSVqWAmz1A0OCi/+kaZSdU8c/B/O0wLizQd+FhEivRJPUH2y96M2NXeqsyDY1jqBAt06rgB+V4PdbP1UoalXBF7AvHpgrzCnC44p2sd8kfpP0j/ybrjCUe3BLz2/uuEVFm+4E8Wk96b6fGQwhasIrD46tV8tg4SZZG8ZMHSXBHsV+N8g5eZ9R7pUbrH6x+v4KJHN9n1jprhXa/e4/HJB4LImXYP4GZRh4JLA/s8NDbftJImDxzRR6G6Gh6pZkJHRLqdFhf0EqvZ+cZyJT22GPgWWHnicIc43Fiy6gEWk5n3BKUh1pyHT5Gk+NSgtna8BdNdTOWy5JG7UnI81sle68QmhHHxeKPQbNSmCEWb0t+mIJK6JWdp04jY4lIJCVGkrnjZfVsznQKHWdCbmlWIZCWsXcH85wOrjPSKs2oSQsfaLtuaW7GDbcLws1kiudmLI0f4QsG9eu8OX2WtAUfmZEQDOijyPJFYUuMSmNfFvtchZjSA8gZEprEZJG0u0gfpH6R/dA9JjsXLL8odDgvsdjGCn6QfHZIf8ZqjKAg95vBiGBo9b8/1iyk2EiyljdFCfWvV5tFvB98DUldi9REYGi87eDNDehtmX/bFcv1n1EujcXbQ/5ebiJ6v1Q33fVMvXev7pA9wBpyMVj9aX2yqpy0lrHUc6TeZMLKwNSZCdOiEKnmmA8LBsOInjAT0aiUnnQEDTI8UaESYmAyEbwBjC6JPi/rnbMEh+BHIT2o3217WdTujkzZ0KO7CZJtFyKhDC7KyCc6huoaRkJJeFtZaZqDXGXgwgGNQ6wtf7d2ZvINCGOcmmQy+Ht2r+QSAEWpoqh2IAoQ8rnDCAuCXFy71xhnRbHHL9gqf76Xv3MMliAsXaJVX1yHuUPwcvC+xgSgg4yK1WaG0uAeARQP84IaJ0bz3L9J/kX7Cm8NS5ulRBgs6btjguqZr9+/k5y8wRSGvmf3Yr/UQMqUx/ghNyeRZrE746iF5NViXHRB9rWMfcYgrO7NO3tX5R+lP0ifT8j2qMnH2Fv5CoBA0xj2LpDu7X7LEvmZNI+L76DGEOfTobJabvI43Nya6lVqKyE8ScVpYeV8Hl4jIkdeXent/JA3mwymoCnu9cvxRi9+ivNE6gp+hZRevaIMRzbh7C5KTAPDV2LfU4NXV3CMsN5MWdbXAzXKp4FcHI1gso6c/7gByyIx9BF7neZJNDahzUIoTzvA8+Hj5EWjIYJB8oMOKbxY6Zb10t4fMvBoZEx0FTWE9zutbn8YXqfJqL53cifaK3ox88yh979sVA/3o0LXU5ZAOdQXO/4v0yQ+QDv4/S//Fr+u5wA4LOGGL0CWsYPz5VfrJhjEirm9KaAu689cbvaIjKCAbUnTB5CcFaIFcO2eDHTLVNUXMac6rdR0cwPJUV3Dmz9KfpT9Drz+4+30HuNzQl+BGIvo14MXOwPxblielG+rtudaMolDrldj5NMUjDnThM5EOTvjJjDynxc8pqEZgYGkl4FXMm4K8ZF6R7oozgQS3wfEt/5pVFDqNJuTlPdwj4BXlo60LH/lAYlq+CviRkL0vuDtFqXRoNMCFgjjE5Dxfo5lX79UZEG+ibqbMMeC/YV5dnWrO+BWhPevZHaoF1vKK1CWQuqnXd9gXGiLfoMA7ourY3LRodtKj9K30nYlPAGUErM9p1PZg01O4gldKLemx+VwXweJXQ304VXSTz9LPFopm6Vn6k/Sf/ca3s8Gxg1Se5DmAFcHvYN73Iv3gVO1UF2US7U7IHi4Ixksd6uJ6M5LwRPoRFbcWlZoeQeid1DtQXVxu3fuNkeGnkzngF+mjX6H5bJB5dNTZuWCRUlTsXwiuiUb7PhjOJpFARWoLquNgBxiMvLMHsAfwWgTNxc9YgFUL8lxyGIJWwIwK9ckQRfO8eHazesEVAYwvyPFGv7y2wZPsfc1XgE2Kcq0/tkN/SVS7q2lP5qetTUz1AMl8Nl+sHIaoMO3kr1DcDGz3MOqVJx9cs4qIMQMVUoNq6occ6ugRt85yJwAeHARGY15MuLWdZFyLnbJBT2nvWnuBexX0SQSKhJJ46NMbd3m3dZhaO+ifHYXaeh9NeNQbXzlGsngTEHuphMdONhVUu3qrUe+2rGe87kJApgaz3QPIE3+GOrou3lUYt01mLsxnuOKp7iJe0Oo0wUQ7xKjWC5HadWT6aw2oHV6XulgleSf9SnqD0c04+3BNnv/gk8h7n79GApUNjcLjNTe9WUPBeBbkTizuCaJXLCacJz42OEts/ZkD0ugkBiF4ZLqRvqLWhBB2XzOaGXsZBLIxAU0SOoMaBes3Y403W9GyWinypstu9JJMrokPuFoDuKQUtCl4Urhn2kbUDniV/yp4BUEETGHindm4mjn0qMilUsc+ePLkhI2+Bq9NmJlrPUw46CEm2ILIqZa7ws3kz+zQiTbhnI4cZzhakMvYczrJo3ctRnNPB2LAK01bndvWG0/LOz/Jcy1h7up5YJa7Q469ALzuDNaT9CT9cANeqbioBqDidqDNKnRmcXHmAcuRomVU2BwGOyEyNbUXRGxjMaOHatUZntIE1aK96mDMSmXuvfRrnAcZx1lPP/tR+r30R++wHXzsfw+A3kPuV63HXyC9D2F1xbBCGB5QyOrw2pAFeVQ637K1dOcIfPAgW5tvD0kwGU68ZQBl6Oo1a2oknmvmlVFcURVsalfPY4xYZtnEN+AV42ALy+y0J/lzmutm2ETMPVGrRcqxAa/Wk5B1YqmwICy3MAX2sRDaGsiWAa8FzLQguN15vUbYRPIQst10YsWXZiRgKWnGZor7inr4CQWwBo9akJB36NVLu8sIFNt0iTSA0QHU6a3Z5QyvO6M7f7I+dwRy9T7d72rSTQH8dCNNZWaye7iBrz5JH9zlP1ns+YI8uQU/6FDtjMInX1+A0dkIOHsjR6Yi+JVEcapftt3bRwia4bwFXCHm0SLEXvxsrZ/2HgHpyXrq3wKvdZPwj9IfpL94KgbbyZ2nZUAIXAAIghL8y5aYfsaBZ3GgRElZPhZMWyifR0ELg0zbV8rYnaXDBystAkVJ8wGNmpW3BjPdYolaFINT2T3DuK61cCQEr7OxZ8F8nKGeFeRa6fOiLnexMnOp+/rSOrQBp0x8sgIBJgviLzO3/CuRKeiVFLqtx7gpbxZgUg8QCmAHuk4gydQRErJVP3yYxmIglFFqPTftnXRvrbbzA0RxCKftkR0J6Ju6SGc2ckIIjRWlxYGKv8Au1ozli1/i3eC8uYPxbGe5P9HgbFO5QOGcsCiUABqEl0TmV6eOi5viI8wW9IuxEhOatPYr5Ow57sCMrrUAujr4CHPsK2hqh8wiGWkr3RtI9uCW8dOQySd/f4AJFetj0QjeS99atT8Aw06+zoslwas9SNjPfIQZB2XTspMyaSO1yYwp8Hdo5JuhokbvzvCiqSRy5ZYDXso5u2d9MI2e4NVpgG7hxuWGAAhIXqB4CuCVskmpG4hZyqMeJphdugVagBf9M+A146yBEft3FswGyyYTyFKk/AaWR7pFfvLPAS8h6Df4cwW5Zf6zxrh76Y1d4tXekn03PYTPBtWtTQ6fIRfwhxkn1j5CSlyXZg/wilE1YIlC8EhxZfaI0iku1DwDXhQahN999Z6UgNe5Rr3Z4Muu473h8uy7DJjtmGipUYPJwqv0s+3/5POvhxvdn/z5ajayYLqokM2AttYOH4PPWsx1TyJ3VLXge53vcgeC3YABJqVMv/GDeVqPR4osd/SBHQ8mNOxmKT7j55P0kyvGV8N0DxQLKU0VMD0RF3PObsZBhelaZIKXHy7oRotf5atBuryzHdzVaUPjnwci808Lqv/BlA6OHRUnAVmm8gSvNEwmtduAIH0mFtkhpm2qMQs2mMlYcMEP2VUft6STF6RYG/AK84pys9GBWoBRC6McfYUZw2e1JSlrh14FoSHpgEaos4lnZKoewSla2uhBzYCzIGNobCS0I9rFRu8YfEbSHo6ZckC4W9r4OjCvcOS5tp8BVsdeyuQKr3h549UEpzU1eAH43kGa3sHzQw/ZeRbL3yiygbB1N2lrACV4FXAc5n6Zz4vln86D3WHqLqDzBbJQjGdCa3uqSzHmBuGnd1upMIShbjRtcAT+jHdE5LTVC/SIN2bcHdj0gohyMfmavFhH7+jqjSEDnicyYYF8K6npoxe1dbVQNpngR4OhD8674lV7NLw0cMrWk/0FCmbWPzSa6DLDCkhIslALonxQjXyJAuJGWb6iJ2Dy9Fx9KFjjAV7qpo30cwl0a3J5ePZN2ejNUjFja6Jk6pahOi0ebIbvbh4+M5z5EaCL7GsEUcmvR1W4Q3dIksOIlgH1TKZQZtisEeuQZzOWe9vMCa3FQkjJk2dHSYPJz6ZB1r0ZPAMYm0oA6eLi8xE+eFdk47i3877p9a9vvBEm1v7iqsyTZZYdRh27moy1+7oNKoyrsQtEHMnXDBaQuH0FuqQM0NSNLynSJo4tcLqUYcYbq0v83NWpI/PtdLTSI5jNTo4VDRpuWzdtfevXNj76LXTriHLiTHBoQm3/4nfNBnCylDSVFmP5K3loYA0TfrnFai2mj4Mj19WK2x4F1g51xc6NDXIbTgM0Fmh6vsI6ZiwMMShgNyGFYC0uGQVF7dgHJy59WIHvwDR3ebXgezOaDK9wqhSUl78BXgLLYi/YJmzMteiVgmqB7h8VlfiVVQ+ax4FzqTtjwUq9erzeIE6SEyzDDRqEv3gC69exqs4Cz+xOq9Zk9eT25tnUPzEpTeoxiQt0eTalLHa8gmjOsFdAPIqV0S8+IvWEa/bSk1H11eDVe3/55NCyr8GLooYAXtFZ1q+hBq8UyrhMDaaO5pp8r/XHaOGTo2a6FFhFmCEUXZGJ0DsKMI6PHfDKWu9AR2b0Dh1gsSNymd67FPa2ogPgZlenV6OTo3uYTWuG2SKiU//ewcibsJVQlYhDURFk3f6EjHnBDXr39wyYl4KQvtE2GvCLq/91QGFB/kwH7O9g0NSfGoDOhpgkQmbZJqh3McQgeJK90UlUNLkJtnX2Ra5+jAWCXIdGpRmIU2CpGdEMt+/qRkohIemQCcvTsoAPCnjXAiULrhOdNvrEDsgbGXmPvSBM27LjsavT12y3ihC4uvq3HkhOHhDSGxbudxZEB6xjZGc27SxYfdl096gWDXWX2OK+hY/Y4Lc4AH+0xd7jRRqjDxMLbj7bnfJ4/G8guMOCJiie/JwnjDcBgCR0xvqmJtlg8mcv0AA7P5vXHB0qRoy98ewlzCywqA14ddiVxdpHEtqr98Qf0JhAijC4ijug7SELNyDDz7Eek98esC7lt44c9/Xr5AR7Hg1zfR8e0gIMhMjO6lNcYXDG2hlU90C1eNUFbZCDRYYO/DuqWtoFmR2xbC8QpPBsNg0lXrQwKHKPFjBGUtTiOTsvb4r3FJHD8sf6/dssFY51HKRYxDRgqVve9nhs4Qnbm1vEbIXJ4URtynojMtuE18FCR+emkwiSXY1/kcIFzGgwt4Jq0Ju1Plm0aZ1aXyFSEXiK+xseYYEvzkzippGGKF7nCSOnJDSHvk5+sevZC9r6gsXvwYl0dueBs21ob9xNMWCEf884LXIHh2Y7i+oVHPGqyeS9gqA3WkTKEkdlbdHD2OFe3Y3lZPdj6NNcB6jBNOkRlbbil3inbp/DSiOPr9H7aHrJZP7oM7YP3m8xwHk3MXbn+dmZbgVxC1Yh/Rms2/1i/+FwLUw8OEwCsPPUzzaae1tAW2/YbSBytCZXF3tCFNUFI+Ffw76SUzUe0lSn/gU2xOIh08U0S2zQoaBJ7bb/hZr4YgNKhfoKULgC4GZIZeG0Ewinap09MWUPkMqvE7w4ooLnDHipVu1Zr+ucynZWJvbGL3mYnclYC7rVASmEEZEZxlr44RWhDuieY0xPC2Um+YgjFRrAQQe+0cKmjzX5zzLJ3CNbt0eD1zPEJIJXqjgDstzY//p1QQUsK55ELpses7tnAb6nAhTGOAG8Gsh1mduCdugGoJ+p4H4VOfHpkSCM+L63rMP+kwhddz6EbefxXlzYiLcGvM5+8j1eVpl6++qt93UMSKIxwxmzjsV6/b0kBImCkgYTk8TO2djyixOSNEWTp4iy8zFEeVkYSxbpakvMOZt0TE4kWptd0CFVkbgE97kSjwSQLRgGNQOWfZgTzsCXEWMkZKd0FtyM7HFxuezVas0Zm/qpKE7gx8XrekHO1qDQEGbRmvJsApRqykaCrjp7WUCskhWkx7j3rxxs8Xt/08HnV09IVsnuqwZ2H3DPsegzZjvLESB4QT3zFTvMCoz4jfO0FEXnendaD1BosO5s+i+gPwvc+Lk+MV3A0C9QeVvULzi9icrdzUk565JdEYoaMIVNpKFSe4ajMh0a7Tgsfl0tg6V7MgQkISoBe4b0sKqJR0DP1WARneWAw7JTnf6CMzQGIPUF4JUzu2b4Vw6CbDEVqXkmHvfW9jsv07MPyixmgotHmjiaKQ0I9H3oQYMzb4L5DSAhgSNPSk2MJcGCCJsYOlkHv8eYJoi/SfkHpO0THiA5uwDFLFHnK48RjyeDTxwMWidZ5YYjCqyTJZ2kRslgM4SUAYY6DqYwUIyRBf0BMfwCGBA8gL0FAlgSNpiiyNeMLDagstQBk9LDPsLvmahH/g6INljZgsvucDJqHqw1DkVYD8J1mJZ30u+ko2f1BEOO39+566KrS+kZZkY9emvPuljrnsYz2hRaUMQrONXagx+roPw4IUpcEZajrfT1qDPeUPEZoSwHM7d+4Ehnwc7B4y2wtwXBoSDUtxAzC3jOX6Vt/7U38GRHwlvpG5wEcZU+APw2oXJyINrX3IEq1s42MEFjfMVrzxJm7zyHb/x2zQkVjgZUtgPRZUxoOGsjcKrBb7bAjsaGRS1kxjQxKFxrMrY+3xEXYXnwWovO8Zyo20vdeBBD2ShAXwWvryZdwQvGrwZidLBsxItrFpSDWgTiUsvfCUkzcGrC2d3hYx3wmtkgORXBa6mHpnpcSR2TfLJXiBuge0sps4U3+fOhBGxOCAE7+wE6GO5QvxcgGVpmO8NskMeu6sNvpMHJXgqSGXWErmjQM9BTteQZH7sDeIW35FK9gSOnrq07ARIJZiD7gvlMGMtW6USUBc7SwocbXOqC7Cv1OtafIt0lZw6FHmHDebBHe3WHCwqUosAMdpiB9ZsH6a304NctTtInafa7iWNmrReFZwjfIffLWscRQhcXjDrHW6znD63l3Pc+CvRqRpqtFyHYXW1OvzDwBBk59U/c7hHcOtv3BbElxJ1XLIhX9KWQqahwG92LsStKRlKLkLUWkTbIRSe5VQi/+keISMnxOpOFEbPROP95sf29Yh5C2RKvOjztCL4g9OuSqaeqE/BSXUBneS3PH2aXqCAUXJjpdQCa5ISC/DuhasB1F9yP83bFkQUdOmdYI4qR9FgyEtXisX8j/Z3f6JDem4jwSZZ24OaLfxgDS06besraCvIqfazfaleARBefqds7qZ6cX82InUmcGvvYVINXQZTKJyOnqQavi/PGxmZDawnp4Kb/QFX0yOB7j4R/QLycEP6F9PvBxzgs1nEefXD2au3PkqTPEO0Wm9AGvPLVYsg9Fu7qIeQUnzRvDHit7Q79M69+2gj+6Wggqf8lbPcJi/LK5CtTxSyi4P7hVMKEMZlpkCCl4Bo7ygTz+i28rcHCZnrinUFKAphqg1rwhCFIgYH8cEF6FiC5wOlnHEe1oF83GLkHkgmRtK1HEQ09Ysv68GcY+ARH3GhNBaGggKC2N2Nnm0UaXwZkj7I9zmhiIn9IAE0DewHgNbjyvYXaAEADDCvOkTrEugV6y++kv5Ma6ROqRFfM3g5jGbCykacaT0K6rq6+RaI/6zGMDGEyT2gHWcy0w3mWGswWtLnsvfobpSsUvfjBLtgNm+UmDEQ2nPzfxTA23dQb119/qCvDE8JaWhniIK274A8G7DdOHd/7Rm8cjn70uWzpw8qctDWus8GzuIn+i3WoyYD97IaVGXWayF+zPasYaNNvyEJ3eEcntQGvUvuw0CRS0NyUMHoAn37BVjSB4yaIpKiYYg5JWtyywCsKfrjRPYlTDdidapJQ4JCb/Iqwm4E3taqbPfmNxZh0pZ5r4yjuwmcWyoZmZpWpXghVuzNY0FzD7m2622CuwiWo7XFCOkSuPcArDUTFpbaN7i8InBHtOO3hjQe88j7V803+34DeXBy+1xn4Xvo7qXjz4YuNuAN45TTEMNimdnsZdJ6lxtrMDo2EtBAm1YuX5gXyXsEu8OxSiNnIzyAPKsW3jfJ6QWnnjGIPwWupRxExovGT51ipyUF0hAntob9HhWpQ8x9hFemT2SHwPErvpfdmku+kvfR76SfpM9b05OP3F0TrkNIWTn31MfuRjSaz3BNywhV2H31I/oiFW2CuPUrNDVyyk1r68FS/Ga8DrMaxO9tTBDd2nMzYzD5DzQsijBAMQ08CSQX41cDCZmSnLXy4wN8oZqqWnQqsivkqQWGqMxYWQhekEykWjeA7cYlUuhvAH3uXkzln+LfglX6XBgjL4Lxx2gXTUtCbQcUoLKmvoTPMa48lyANnGwozLtXd2wenHI9uMowsl76ojWQtw+W6MehfSP+N1Eg/WfNYg2XoYW+DCdzEPkN/FoPFk4W02a+Xzuebm2+SYl3RxTr5DZ8xgIxFMJu0TOxrtS/eNZuwLFbXIvxklV/wMAWBJ7nWaELEWL7+9dWqVV//Ik9vyxIX++/Ru3ZWuFmz/RW81mzwi7SX/kn60Qcq9H6eZw+nQXNRMrNkRaMVxAsk5KuJWwr+ewDT2U6Rd5NcXNhkV9+yAa9eoOOhgzHMpI6JhikG7/CwV39gweYOoe++AwjTpVq4IxlFZoIww1pCD+ueMT6i14aR02ZZFw1O5KyKaEqCiH9Fskc5Ig+WnGfCNO4tSlxw7EXAg+nrXMMtn3zB84c/dFB42xqkE3n3ALMW8VHm92eH0cjoceipLjYURLko9Xv36dw5D5ys7VCd6FCTDDHrzdbeOjPP9J6NXq2ziw5mSwihzpnpkr0t+WRjyGTrSaZ0MiXoIXC8OHkT+jNTDEyt8g4v324RM7PzIFpN8sYckLHgeF6hTaxggeRzx6iDsHVuxOvBY8nn+owV+bETu5LtP0pv/NqStdvunbeorxuoZ+NA3J+6boPOhpRAvvj7HHUze0o/Ss+orxzwxugZ7fPFOXCshRJM68do5dB2C15JOeLhaRNtgN6lVmvYkDIY43qQgVDYW+0hghYfNJCUVIH+T2wieG1MnIh2C14FuUFUmQkOcwZjjpKxgOMOMLuwtYJWqStezBYvLYCeIBczQI5ikxj0+HyS+QVzGFMLL23h5wSvI/htAYwWzDDXpfWmHmaMdzbEa/0e0iApGX6LjrN3Rr3dTdtw57t0Nd9eEOs3SWA48CsoR4hHBwOOnYz1Cf+rF7xiK3n278mPNLvkeO9jaZNaF89tBKcZVOpsEhLwEsCrq016fdR7dBON/szeJ8Sc6zJJYufl/8/ZfzXblmVJepgvtdWRV4XMrMws2d3VKDRBI83IF4DEQ/934gUGA0UTze5CVWVmqKuO2mIpPqxwr2/uHVlo8tq1sBPnbrHWnHP48OHD51zlEpoQ0XLplAfFvZVeu+F8b+L64KNbrkqdgsm+MeSxn/HkVnZCaVlICxq+gMpu/aiSZUKXzVyN0TAySo1kE/ryswmWUNKXzIv7TQfstsxutBZjvXzTHol3jbBhDLQ+uSjglbUYll9jNdS4bgFPp/Jj84KzsOcLCJcqV/+EpZPkOTgS9uV2PvpyMpRpXqQ2yNgmq4S9pn16+iXwEoD1UvGqcYOBBlK2M/WrKW8ziSrOjdk+FgF5I4imgmUtt4bitZHupDuc2MajD3p/1x6bctbufd0bDsJ60o7Ldjh2LM9WUS54RE3SuyE8WzROm5cj0HhqntxCrIxcjw5OoWKQxZjWTG2HY2k7LL8TEuSIm9obvLJCmjJVU/Jcvn1XonYwcfLFN1bdRt/4oxnTDuQrCy//tPbzed9Ib+0/v3e9/Sh9MrOrfe+UloPgE5LHcuBgB96aIErlmaZoKNECteG/sh5xwgGO2S4W9a5uVS75YEnjhuXGml0k2nSvI0RE5ppQSlGOCN1qEHyM4xG5hmHKLmyQnG0HlT8HSvkhAm7rookXFpcuTYMXREY44I7msnNYw7kT8+dYnmjbI0BlZpJriLxWYUAEV0oFrMqNjOWd5k+Gd41y4ixvDqiTU1Z1Tp3Rqbl5JBRu7TyWx2KtvSFowr6EE+5o5RePXqobn68r98hnnzb/iLpxBzlxhmY942ZD7DvM0QgVa3Q2T5WSkDr5e2tUbmHa2YhwgoWq8tiufZROKM2ECA5tqDAsRyvaSd01/p7pnANQs3HCSSprrA6tsRurKUkd0w7jd2XcurbP68qfsJZGH99YedCW/362MNVg6neuCWtrcUsofS6DcbBb9ejAGbGqk99evOqucLZaYiSrNwhTFFojBqvzuFSeqmxib6EQRE49IZtEmE4l06B70DhU1rj0kIQKYJdGE2vFGoj2L/9JETX/ElJEgxZuPNtAKPe/2C4kw1DApUZXJ9kzWDzDah/v2Axuw2CbLuC1AeIQjs8aD4Tp3HWqWfag8vnxQDdo7ywbAh/MfFgoUm2iqz6odO0WYs6uC9sRmMkMD0Y6QC/lEn9By2eHhFGVDoTa95iOSGs0PAElc9rtGg9nHlFfjShTYwzIgxJq8PAa2XRlwrkrufTgVJcVNUO1PxkZc6JvkKu5AK8kuYTGgH+q3V/dOLXEe0yDe2yANWSLzqQx4HVtdXYBr7fSTx6BTeno5O7KjV8f5A14ffJKC2M8+JCOuTyRNYQzgtlyeQcnSAFDhEZXPeML2P2rUBtEy4kGuPFnNWCBo8XPNHlYz7TYmT2Ve8mSotleb5EMGyS3EVS7wSJm6IbinwWtkCHnMj6jf45I12lGxaSaPmRoS4tuRYR07qKMejT6XgRkjGR11mYcy3qe8Jo2RzDuEq/HXxqZkJezwJicPFYWJw5YA5FtRq4bT2jn/vuVnYfpK+Yk+IDRCQb9nRHtJH1ysfcifcD+utnEP9c8lTiSzQkC82L5NwO/cjZp5MbRX3o0Fs82bCwmp5UTwJkDpDEZuXUuD+6EZA24sAmKfSwT0y8lpLMOeWy9SYTJx8tt7j3yNR58cnINJhQTGyyDxqTp2rpXjHqLH/id0afBMafLV8cfu3HqGnD9e6+9By/XwflmhAG4Nt1pMLx7H6mxNk3LFkrWmVE3q3ZC1J419Fa+v9YpL7uSY4CIYnPEIQvRZPrysT5JdiecwcSqIBMYITvmRhaZLNsoCp0ZCy7/zGUEjwDLXDC/pfI95qTkrN+TK8OVB6f2z2EdFVjZhLubgZp1edmEorOOxYh5E4zBlFNn4F9dHojCTwtYNrjZbMToQMkujcpMpvICj/Y1YH3FGrLGYsjKDW1L7y49rmdouBMmLl275IHW2b8uLTs9cC6L8NrwnNJ99AtYtvXOwBUg7QTkHh3T14iOGZVhj3gVho66f8AgdS/zasIhvqL8N5LNyq/vcDbHCNPPhPzWWqy+8eGLt+6ybExKc9TIUXojfeObzVrdmJEuCHBvc0waMHtHyrFc+eS6Ven3PCuOkuoXphpn4gCCGoyfIuqM+KwGyeXK6HfCo1dy2OYJ13cowyliZXJ3yqfa6L1GvI1lOyj3xhOWEmmhwuRXv0hCODq6GCOatgOy0epSDx9sL86fHhVUkkiEe94LxRJiUI0BvwSv+QK8phJSL8GLNzuZOAnvqnENo2+Q67uxmJ6BErhf6hz6OpKFd35GdLYmDp4++igOqAAbcKHlyhczZCKkB1gL4JWys7X0TPI8oMc1YLfXunzMBm3D2dk7mYxlw3pnHCQFas27btGkHcAzaZiZcG1UlFWKwSyKzsCrQTjEqUJSyp1fay/LAWywRuW8lm6sOG5K8XL2XbySviyJehqq2WJxh73KK/Q/uYuASyWiUvpMTckq08TqzR5X2MwTd24+aqIrZTBMtGZeW4telVu02V/LCxqxIAaEWZIeC3om5MRVLMsNZk4leNXl9wq/POs0BizOZGpmtrFEtADrAESrXPnsrbIOGMoJ59v2zoE15qABzgYFRoACO4f6petPnTkBLNLVPAOvdJYmwArNQxkizlEYCtXdFeBywuHXXMcRkzdwDlUAhQPMlvIXRTtc2o9bH7W8kg7Se+kHG+XrP0Fe6HTlsZyh/zMSRiydSSepW6KSnOynPbpsjscyD4mLTJDMtMVJ7VHyDqXluMcgB1hnjHCqnKbMbckcAa+zwAxnzxFbIbxdaYTukebJvK4vmFe8LlfSa+lLrOQKxqfRvadbk4/a59COWCojIOzFC6wxGM1YyUL8juCwzyi5ThCSlK9o5U8VjF2tOfEW54q16D2yb0qdXeDfNVJSrjHC4hZEMFB0NnsRtYUZqAAJyUc1JvxM5JnLD490wxbvWPK6CkNbwekzg9znXVOJCj1YzQDsmQBUDd54Jl7lgs/8DWcNyQYzyYKZLCvNgBNuihw4FzCXBqjO9VVvOjohdidMfeO+eMzmxO/Zyybn5Sxk5qOFgw4LaS999C6haLgdpniCupEj55Z+f/Zt9FZ7EjqRKuJ3Pflfn53N0wSOFHMCwmUz4QDk2+I4BlntOVheS3FL/Wr5s8KwJz+3pVrBaiKPu0iTf+NxS7/q3qfHV/72bPhiI2qhx/f21N97XmLy6FwBzpbXc5xKzteYsJlubVNYJV3DXN97DE9YZjUWRu/m3wZJfvIqGhF6ow0T+ZDWyuQg9WcNq0TF7gK8OmAcC57WGZCWrnx9CoCQqxpq05kFPyBFoSU6wZm8PiMlZTXMWIi5BgFJ/xR4dUBA4u+EDWnDRY5oACgzcCGfTOqVkaFHWfg0ghfvi+rFfwl4EdYTfrxC/qWESvCKsjiAAq0wTQKF6JzEe9RRuZINctsepLFGAB/9fFgiZgvWPeKXaZptTCFaf8gztIwJo9o5whONLwAvCipHF7c16hzu3lqK1VtzD4EqvOCc2AnrIRGxQv5jBIUkT6X5a1XyrhtINhuvhEjny8UcDQEDWGXlsnnpMSzgtQIc1Dii4t5PvHw2Ve6xSGLz6KwULOA1+vTN0futsjOe3bijF3l22+bgmCynEIUR+jEz6M++ywlBXoGkXrn9HbtSDTvchH2MZ0jRGCAYLSeQ5hVCd8H+0P0aIE1kCRMJDIXH60IoyvXU+KjKi+x0Qe5G0ARyvcH3sree12NFzvhvg6s9XUDJhI+tMTIzvpSN9cR8A/AaUbnVFwOV907432DQjOuZygpwKMubVFxLGJxc6T1j+SbYknjXrqM25iADqojMbJJc7OZ7n8IySY/SRxeNiZNL8Er511nX4DGIT4Y/dohmn9a1caHVOKTT1BCEDJ6fEH2BLKYxeF0DvE5+1gib0kO5WgQmlR3VNawII9ZtwIudlE25G3vhQXfSjQe5sVY0WQlbA9qupHv8zbG6lVlPbTVrOZ/x2dYrMi+C15WH8caSQWtwyU7O3otq49fEqTvBOco9f1HLFu9X/BitoXaJx1ObSoAnpsQ+TKN9JBdmjdojlHxXAzyzlaayatR7Od/jw0ktzkCrAzxkITBSycfkWdUFPEQm5odUiP66vE1SmoR70C73fia1kWGGIlZOQB38HzO4BLFNQK8zeX0qbzCvH8s7FYYlnHnGAI4lhtFn1Dh3zwjKsxUiKOzpYp1RKd5CypuV17iw+24Cb3mEu7K2A4P9g6jYc1msbkshqAbxGMu/s/W6F+kzGi08wqAvTxU5c2BVELgjefQwcFGNZKoJ8gmFd4AzdWMNesbFXMEW2/qyl3+6crTKWuIOnKf2yN/j6FQW+RWodevf3PqMthxaV7vzsTEK3ph6xcr74P7HhOQTXBw8RDHfxQYYYrJFA4DZO0MxMnamEtYCXhvcIUdwArhkaLbOwkcAwYy2NZXfg3RTVqTsmWayx1JunrH+VMJcVX4Cfz6bftYzZ+B1xt9IeLKVloL4XOJjwCsZMHo9U3Z7AV4pDi/BSxfgxTvK64c/cTGX2EohhEYkBlWiboCaf2Z0yuEjnfehTcaps8QWeY9jsis/ebZQ/uiCLbF6hSeUJM4zSmkp7VDz1PCpHbCc4ouuXdU8wOKSaEndOOEuBLmhgskzJRn7EyekVaaQlD1nMofKurEGh8gSDZrfQChKl7V1xZV90mvgUYUIvfNuTB61J2SyxnQh+zaPvpLG8srW4HVl8MogLDoZO0ZJbzV8oDELTEae5edFkxvxUCPqJuy6/czDk/ZX2FDCnR+t02Pt5TsB/2hXGBCrWfoz5qnxo4Q2KLgnWNFqwDAl5YSxSjibypWdyaYoyspqRMCcidhnjEwA3OzYDP8aSohkXZrkSQPeCFRlhmczjb3HFPAqiQMHhFER4iPMSy6PovdYFjOkJMG+3GYI0QtaJAngmCK25kH0UfGrJwhjO0zxwSGx7Kd58CH0cgtrh/P1A7LpQcXo35k+TC5RBpz4Ovv6a2yjGdAJr33xA7T3rIQWF1ABVaOhyGn77ACKxDzNsWdELEsidWONpJ4XxGh6ZyCIQDMYSaPhb5weEhcrP2PuNZ4M26Fjwvy6fOyVCRrBawB43VluHKwdyggex1HnYK+weI4mqov6uMb5Eivzu5VjZPAFjGCacwSgdgbgrw0kHYKepGgoiQeJRO/PjtB25hJsXf++eFzvAf7UnfkzewMsjeTAzQ9V+VdY8pcMbf6lDw9rEmCPclMSAQuzGqFPWaYGzo24jNA/loLC5TFQpvKfKlxYBfQipOXPWILxjLkjN4jwkkgacddHh102gmWs0juinC2IvxOAKpeRDY1xD4xY9ZX3d68RItm4QGvODIW2LdWNYHONw4omF6sTTtfq0QqqERkHr+cG2UYGueSl5IrUQsk8NYC8wbTWaPHVF/9d/tDrMJULnjmwMdHa+oSbysrbvjS4tJDpspc86zkm4VxDZ94VpW60dn8nfSG9k75xx2KUHi0troxDs9fM2lCUWv3o2Z9LwpwxOfmaEwJHT2Xj+Pp55U/AyUzM2Z5plVp8lk6NV8a3ybfM7opOXhaDj1V87UNpWc7VJWeoyzqBgFVhsVZl0OZ/w8HGEq3mMnS56Dus5srrsofDMPqc8FEBi8GTEcoxlDk3DDAfRbg8u7yzm61/CbxmYNMZHI8ehwbweiYEzog3YVhmM+djWVTwrqcSgIJcMWEOWCG8/ZXNO/FD7Uu8WOjWzrJKByWJt9nhL/dsRG5YWYLP0Xr51+zWUTk788Wh6zVuuTHzSbGksn0VMSVuzGTNNKj1Szvm2cM/A69LVYWO6IiRMQMvTOZQruq0N6IEZTDTIs7Utya9M8Bl4bG30jvpnfS1FbjZzwvINvHWzZsGBfng9swRT+MYUDrKvrmhDIq0wVZ+S/51EloTW8uh0fWniyDn5yarxF/ag2ucsLITGwf3Le9slAlaDUh0NcCRahAVrPCOCf/EVMYOXg2+M+KXFLcGL80s2R77okashrNmQZbCmYVjQtTxu0YA+qVcd0aXVC7xxFJk9lxYjQSTkSGyn1HRqcSdGWi7fM6LH6y3xy1kGUygQsw0a2/MiOZx9Op8AYeq/L973+MIJ3dnN9UO3zXhTgWYyPNFRuBp9hCO8DCssbYpKXOCDg5UlW4cweyYlK9yqbPmHy+uNhJXmpw1kmWmuynBi/N1Vs1OGKjY7ns0+uQP3EKED3gl7qJCyXx5B+YV8JrMvN4avDZOD5+lsSxZr8yja3glk4FO7mTWNmWt8Sj3LLAJ1vEtMuLPwdXW5fwINXg2kNZYp2d9qpXfUqE336NDOBj8lxk7GOrT4FpdYAlDs0XI1qDg4TCUPoVFfckuZtwjIYfibEr1RMwMvEl2nn1tXblO5aZ7B5ikaSshyFRQ4TfU6Ct8ndALigDICCaOhiGPGNJEwOTJqhBtrbNwjef1dKXym1FqQYmFnJOBWlvhnMrZH+BrjW0lvlBypwZO6coa+tFWDCLEBDfQiFL2BDjZYCPlIta/4BtXOPuHvngZqEiiJihmLVJc+hbstQxlqkzIcEMj09QZE+afycC/woBXPlDwC2nnYcxZVsx+DWTtMzV1gCgdpaP1Gn4Gdb+WbqWvpLc2W7RukLzAPZNEygA5geAccBZjgyNm4mIZLhZVzEOhDIMwB1W5FmevmMAKkWv2Ms1xqUt07b1FIlSErarKGlwqhEwhayfhtqsSccLI82dGSiIwUc0ic2PplWWREi7gVWFqe+gZBMTgDvNjDlxIWRXtZ0Y2TGWbVHEJXirBi+av8eJ2SLHYUzkLjLyrQ3bLe7OLL0UgeW/j/20RPBXWWbj6knAp9HdYDz32MY8mtwNuc8GaazSNwm3Su28wcczpuZ70D1vr1NdmVjljgCS/MRKNMPeegddcbqwdHGwxlJ/V9txsWWMSz0zdKlfjGXilTxvaT0J4Jb2yCiPHDqnDAAGFE5oMF6Zd48ZbT9keOLDIkF8avDbuc3zwpoXrEqkb8IBjWZEdkbNbREGLOGoDUpLgac9bqrrE8iSHCn6XGQdKUMNo3MDpoHOkP5BVJZfCExYHY6ABZFS+gE2JtUKonNHoTDzDmFQukhv/d/YF99i/W6F/NbiDlA44MfEMTQJhZ8zrTDtJokvLKLgW8JqQvriyz2z3XIsJjApnz1Bx4WVnBYyAOVldYHKiTD2W874CZ8lh9ivX3i2eJjZ4RaYkONgKn+NB5EjIIu4s3sTJPIGgrb0+O8gkQkURm+VkxWVEj6vFg2SypMNHYnA9GzSBRzcI+B5Ptq6QikYvsKBq7W9vMS+sEqYL+hYWM3lBLp+f7ZE76a30pdRaOV+G96nsckfVTvt0BDGPz37CA7I6C1r1nwCvtUn6RzPoGyxsUsgXc5rlGx9LpF7bf7YzH0onZYIwuUIoLctSbeMWQVOGVJhD3A8q00dsv5WJew16xg9MxCTXP1rdy+lgwjROuIz2whHWAipYQbFPQL1rLpfhXGJexI0kdKoQA/SWs86BcI8spLnl4SyNTqA0XLn5V9Z4nKi5BKGqvDsB5icM4IzLEIYiqnEoVtCUmnIMQQfooi3STmul4lq6l27dLFojJ5DDZNDSDzh5eQ6Abdmpc4VD5Saj8gucGRn/wWM+Yj9XUmUHd05OCTl5KOLvTmcya0/l9IVCdE7aIWNnbaS8cUIuagGx69IScca36xLSOKGDd7I3/pwvpG+k11IjPfmT6d6okUgHZGku7xfpwYd5j0b6yWJXL91KX3tj5GtbNRfC8ig9uZ8psy+KMhEzlz+x2JNHrUGoKNsKmNeg37uAWdPgHP/ql8DrLHeEDmaPdYN0k5RNHjyjOk1ea51Y1wACJrgO8z1dhJl8Y4xMgteZ5E3k4uWNJSPiqlUZhLp4b0JxxNCtAV5pogbjzoT+/5/Ai5ngbFkHcCfc6YQRYETl7iYIAbkd7lSu8TgE3kiLjcJxLd56Ca6RHmKVWW6kRxfk2RGS5t7Ja3qF87IqT9MJT1CT11LOqoiWky2I8pVvrfesrDufQP4r/M34UxNlVlicljnpawRV48jnCmvkj9qrpSkfOkTwojZ2tnopmmYeN279vcHDKgMQexxMGNSmfSXiwrP0gHbfaFGqMwjeGbzuAV7LmC+06tp86aZcnDSujJ6yY+nIklPUBhgnkGEhRWXKVlLTue/HFJS5pxen8VN1s4s/M82zKGlerbHuW6SXA8CrRUTxZkJhSKbOdGluxZhLkGJxWCNcR1REkYtPbvUGQxuPQMyHU4lcVJsCXm1pbTmr7jJc+YpfBC+u2twso6LGOFCxT0XdlJpcPkqlOpXEm+FKioukXCMqEp+tYWuRcJfu05fSjdsxI46zyPa22cm5tkHiCBDZQDLocPRu2uIR4aO37bESehc5sXDtpQeDVzTeo8fn2lu6yeuD5uS55BHRLNeOK8rynCyVy2PErDXuaFR/YjGHBfPn2ZHPAF5L7yyhz46sbLlM53+C2nRCOIweloV57dxP6a0TtQCvb/40ePUuCzubNCrUbSf0V5fv/YTtGbI348abnGoD7ggyXrtbES18JTWtSgOL0HMQVt/g0GRZJeiJLXoFQykC0D0wWa94lK7ccK2RdHjVyf7hvpW/lPSDLCsgJ0AFtd2wUqbUCuG+fE6OWBvLxDqWiHimQTUl76pK8hAtqyoBlXCbD2lwF8GVfFGLt1Ajplp1phbmFgSOHojNx2Zaw343UN4jHGS377X0Rnoj3XvcOitOrTkAsX90VfNsU8KLyVL82muXjq37li92COYpDgHgnM1LoTIn6ERX7JBG0uDi+pxBoiqs6jXGNpR4Qg+jtVDTl2lhxtRHesjFNBjSCWs+YKZy8xdFudEodSt9Ib2SbkwpG9sXHrwTarnBR8fykw/tyiHWPUx577y96MnYv1Tvv5J+a3adRxhU2GV6Jcm7E1U6SCZks9lHub1Al4720cHyMrlKn8uFnabRz+VVEl9KiAGYf/LaXWG2Av7RTlZlmzhlOnkCm/h7j+MKkc+YZDCzd0d3GKMxKe8S0YT/ZalZYS2O6EZU2HGejH9Ggc6yc8Y0roAYd1W+tyqBbyw/NsUMq+izavxsoC7RXKB2lExGwN9cnjgSVTcld+3Q7bEKhXDd2bL3zvafle1UOZIgZ8yczAdOBqNHHxf/5MEfLSk1eB515V7Wk+WxDEvS5AFJtAcqZRfMGubv7EmZ/OL8GWHhyPLuUPMnC2YvWL6lw6OTaC8JM4yyEMwKLT8Dr8oRx51fZ/B6dB/1nVt/YSwL9Hy2TW/25yzDfi3dSK98hk0NK3UlvTXdyuwsZoxfSb+RbvDAovjFWm/XFjZznxm8024ZLo7D4fjTgZPpiHI02grSpcdQuWXUIuZHsKTJPLIzhK1L+t4ggagEmrmk5iOCsPcjBFL7RnASxKQaOwPita2xOKaLuGXNPQNimP9n3N2qVAWXFy/g9VCeocr/5rsm2CG4UW3EmqvwYlJXOiKmMuoasDaKIrpQdPkbfimFzPDowGKYwtmA1MhDnUEqh/z2Fid23i/3SvpG+lb6xic7HbwPbCM9Sq3PqlGOM/EF7DEFlAk6awqVEfDZz2VjYTz40yLsL7Xie+mDn1eTtcHeb7Tf9LSbC7LAbFRfJLzRebR1l3WF47xGJIAKbYtQvxyXEYH5rPc74lsyxbnl0fLVnfTWmx5HPF8iT0qUh/fBCHJlfpQSdMAXvfX1PPuZlgtNW8DrFo22QM/KJthlF2X2l+ZonOWqckRJdqWesPJbWBJWno4slQqRK89aK9XtCOYtZF6hryhMmoxh2SwZphF/YE62qjy9sZ8ICsbByTSz2pSthhhtaDWYwfFUwkBYRGcUIUkLc5iRXjN+rDFYDExYVungnv2p0HePUkl81cUvSRQnQNeMBJ0qgus6q55lc75oArekgaBF0Oc1RxSE1YVkzCor9LsCBC5DdOei8RoOnbUX+LPLmAkDfpA+A2CO0OIaV4wblAMHP7Z277QZdb63UpyZfcGuiKW7H5loGYGdz4mJq3b51zjx485rfBdktgMQpYX1e8AW/t4tzRmTMiJwhpJ4pBCacGBMhxZoi2cAjVD/ruyvXxlIZshNKTKffYMfpa10L/XSNVJZtnryPMJHqZF+hZZmV1ZevKm1k8PaTPUEBIoa+eIbbBAXNM1MoD8x5k/+zAlB2kj1aK4fcUjI1CylAg0DHv8yY/LYkxX+tQVVECY4hyC1wA7Kl4nVCjMnB0kDTDyj4Ozv5V01sJh9ttq1+1krNSkgq5zgFQEjP28QhCMwl9iaKprq/1AWFYlDsjuC19kLWL5OF981eQpm5I9Q64g3TTnOjNUBVlL5TnMgzWvpa0svta1eO+lJWklPtlukEOq9o+SDS8EXVMK1dw93OLry4Adi7U0wMstHF43yLcRb30l3bjJluYbNLrz6EZu/hrJCbgwZHUJjQl1a2fuq8khCIerO/jtjsx9bBU3pDQxAk0akpTH6Om99Ln2sF4NFxGfjxQucwLXR9pXUSzfIW71fsJKurJktsuW30hfSV9IrL+8VyqXJ6W3lpldS+AnjmfNpZ6vtkzNcU2bcCst4QLZoygNQlwhtyDsGRF1eRDd2OlS1tIV7M08aHiARtY6NqBe/WOlV/nxqPKlaK688lRmvQciFCrHazMSfgeDyUSeE7gqt4bVxPNtMRyQBYRCCNZGdVq5pk+RXwJ35T4DXfDEUYSgnLJEJ4zYhTQl5bEYNEPGAsNj6G5NdapDodEk6XEZtP8OjE7h84tPSbPxS+pX0tfTWW3V7PEShxqOpc/zcUpasDRyZlBGP4tri0WNHnJZQlf2oEz55QY1P0gfpo7SXaqNPyrmIHUfpvfRo3W4LgB5RytLVkLqhwVq6cvCfvMmE+u6AwIlyvAL8ZUkk9+QpI9FiZvTUKoDRNfr86QaPYI5hc0fniUcfrlOh11f5cemTny90tH+rsRNjAa/UyTlmJKJXNi1sfNk7PAxuabg8mpB20i1SbxTEyaM0o+0ymawkBGqnoqodgLrBeSbftA2DbYMr9xEKXY9trYTZtLbYz2wQ+vUvbWJM6AicsvYyybRTPqq8fgNmFWBYKAjZnJCvv8FqzdsFwG4Bwyq3yWQOW0NdVRLOGUzsEsKp1U4XgCfgnAAzwq0Ja4FhwV5NRmAujeENQDFlTLhQlP3APzdGXElvpbd++mlU7JW7lANocDqND9JH6YNPSRGMEYnIyLIHU5r4n2lezaahbG464eTeHtYEVmjXVn7lVPbRLrDeeXiLowqpGsdBwmMaGg9LstweTY4R469yTqOPtBjqUCAynA5pJyt/XRY1s6+/wsPDTj40LcLsgyTpNTSFwWC/Mm37YBHsS+kLi/UV8CGDT4yp8C1hiQFysoAG+DADdGvsrB/R7FlhO0UUxX+2caV93JScVU7HWd85/2PwAyJ7VxdH8DxGFN00E2L4LB6qUrvMjWW2cpOR0/KWBp8f/GXVF4J+pu+P5vGNp5xsLeJphQeGVqVAX1tlbrG75ExwnzGYZ3g0A+4DMWd/5vJnvpiKfJCoBngR7BpcT+4iToO8sUHE9jD3pUJeJPs30jfSV94wUpWYLld9NVw0Cw345L8HkPParfkNJuKEHYkvvs1EfnxqR4PXhBn/bGxdOQCC7DfueC+dzwc87Lo3SesAXqFPsWdfmSVWkBiSAEZYsk84z/8swTAEJhxU29iJlpHs8E+tq9abC1nuWfpsbYnMhxb/R2mW3gBolmqzs1f+0bt4FjngjaU1oXNQe230CPNoLpU7Gb19yI2vPEdI5OgwVvs1eNeMZbnMAk/3aqRqBoFiOy4CzGxI7oFcqbNPgK0jcv4GxhdGYwo/HjY9I/zSFwqARrJLB0a++RaKXw0g64ARSQtJGjTQRB4UVuSMzWCj42dEfTWVuzFrHJp01pgawN1S5lV4mQDoAtpOGBYiVxAw+acugZ5tybEcW8qKFc6AC8OdsAQD96MlGXkF5wi8N9KvpV9Lr0FwZr8ljfUrOxiXcXiAYDn6Zcs15LzjtVc/j5wZS5Ke5F+hp/DsLn/QIbfWYnOMsN1xh/gZICKk2ZT6LeO2QWehAk9MYo5kzR4WCQHbQxWCNrx+W4rYLRo6mfo8NWi2Mr/44Vo75pekRejs3APk5pneIbOV7uy1mN3MvLUXYsSwszxWmTIbR8TO3Chd0Mms9rUjsTdq76HbHS3XydOxAY+pA3NtVQqRMUDUAPkZ+LFc+xOOBtkg/T35gxtMdVtiDxN0YpGEpCqvoQIlrcpWG0OcmJGmzVnBlumiCpcQby+eUJWyUGUVWgPdmQ2phhGoMnoqZbpLPjZhlC7T9FmrMzdO3a/Bi1OFhotGLcw+sTjCSLxXGPke3Ltx3thI9y4q7tEoFhaMgI6TRe1HWyhf/JDXxnrLNY7NS6o9od7gVOZOT1772R3Tg71/8g3usI/kSnojvXKP9JP0j9hmeSgV5MrIJBOeDhtEKHBUmOJQmrQ084LBQxqu2BtCRi/Cazwwo0G7IlSEsxN/2TK22RbUl/CQ9f/Zb9yCsFx7fB6M4gu7/sL7jxoj0BNUxKNdETEbN8CQ9Hhan2/U+feRq6LjpaSKmDn4ylcY1T2o1yy/YgZsNmWIsliaDV6jYXzrxXqyKlfhXWytUuzuSohMEE4I6QpRPfvmhao6/dZkvXTJBGyaLj6HkT9ilEMFj5iGICDhtQGs1EC9Gv9EsYRG07OFzhIi6sgZbNVAhBqhdQZeTfnLCRq0cFUVMCs5lApl5JzRYnRr4SSMf+k0fuVDvSlDn0Fh5eVxAHg9G7xqS+SpxNaWc06lqWbyR7Hsz27Jk2czE5TtQrmvznXBtW9/L/0o/ZP0AaLL0dcwYTqWO9oYZ6MDVWWOp7o2lYuH4MXMETkm/PDKDyBcIPIFx4XIpUEaoal1P0ufpM9wJhzQF8mSePClbsADAl53HsmdTap30Oh7F6VCe+ZkpW2NoG5cXg54pGyKqYBAxKC9ISU0ePKLW4zhs0vlSZprg3TGPcm5xRJPGyot49EJQdY2nv31ZDSXvpAOs3KmLQvTQ94xldewAvZxHYeO9eCXZ1ViUmVkuQGVao60qf+EsSFDVAExg8UC3EfebM19hvI6z+gJBSoyrLPS7kwsOQOv8L7gZoYueaLGywguQckGKpScJ6+xLWNRRxbFa+lHdUghU2nQWaFKydaTF2fXBVkOlkNujF8rBL8wyB3itjJh4bNSXnCY2Gypn1eSxk16NCmoIltM4E0tDO6VN+Nd42HVlTs1c4lfdNoISaJ3alxD6Zh8/W1p4Vqu6hmcYC6T8eCfF//cZ+9WV8lAWT8tzOMri0GDzfRLy+nev1n2r77yAUIV4P6A3UUErw60aMJgLtpB3A7Le/focD1h/KPUDI5l+lD3cI5ObWrYqeRaNSBUnpwR/ZzKesXy5+SuRQ+baOcyICiSiKnBbfhnLqErhCR6X4UrOXj2Gji8Ai1CPFWYRoZ4FHleGAXu9GQoOwRL+JpoazMQt8JNBe0CLQLjJYRU5chQlFf5yxkfxX+ayr+sJ5Pxaww1Qb2LlQa14toZv7Gg8Vp6K92iKKowFNla1WAfQ+/tJNvy4MbBXxopaQ2BhRgQeAj6VgCMbKck6X32d7WWOW6kO5/yUtuxudChR6NpXdLO2qn4Ciq5cDRoBPqwtQYJvMbsjw7iqdRRJ794qUtvUOsKktHBQxr7bmWx7pO7hS8O0lMphCaaPngSKzTbe4+VTP9uzKYal/FPdpn0np0cRNTCs5B4WSZlC+ox4uBSAVtmqAPJftHAawv3k/0xW6kavd8+VcEAUT4hHRRIPdoanGdopksPp/XNrOH8z6TGYtqVkhixhiJ1QqsBtidChjI7zyAbLWI+efCsLs1IzUjuEy4yRCU6O7XXsTSdjSXuMJ7nkkiovMcALgU2gldW3tkvSeQCi2cjOWNwQhWYJ/In9CzgxVbtBEnsyqcMXPufeJv0fMbyNtllugLrFrrkjb31OYMr+keyNoluNII8ODHHMbbltpTa8HTlG9wZg05Oro300XM6+cJqA3fayzl0fWOjbO+ISndBMM2mFAzzScxP8LhlEbaGlXChzhAwOsJlVvniKq6VTt7TuEfFeEL8Zz0s4LX2UQ4Br0X3WZbQyrfZIRCW6u6jdw8JuWcGck1l9A3l8sgcZdmPqPxrz3tkoOSDMLqDyf/Pc98jf9ZILOztVNYYRo/OwSA1G9Ge0RsR3JsxMyV1J/mz30LAEpiUHHKxX9f+UqL1pd8yPgH2FamTk91SB6aglQ3vKtFnRPmelgS7AwKgzH5LsHjEy1pcuTAyZ7j8izI+Wd4Z6nEd8G+L4A8K11giq5J0p9m4fEuY12urRyNiI0M9eDGsPcghPk94iHJgvfOG72xuPNv8UKHX10ADy8Sdyof5zE6cZ2puBaFIdpitvJCOaK3XYF6dadrO4NXixdnHT69hVsiZ1ygO5Pi30pVY4YjaFSI2u+5yqOwRJzXXxqwjaqMRaEUrwehPXnuyltblwftRhXYxq/R0AnusruypWl3gRroSnaHwyvPVI2qOJrwVnL0hpzk7MmyjD5trezcounLLYmUGVZWWk5SlC8vcee0cfKWhQ9nI2ZRF41mzUUAvKqR1GaAhAA1owOgslmx7VoWy6qf4UOOLwtOod1dY6a0XWl3qTiM+in8oxE34Devh6eJlBLmMdihrrocjxtdffrtAipqS4kasZ+0q3NoMOMzpDBV6Rzd4iB3xNfPbwWAVG/OL9+yk3qhhPBa+IollwAw2WAZtOQ6Z6+ggQs22caSmU7eCUevWcopcTbwAFbhcNza1EQyORuKhXB4ZvUTWgHKLkzVhcbZQirYe1TDJ3s7epXr8IFVW4Za68QkMsAIkyMfedkaOJz+TbDnXMK6rF8RFh4c9LvsS/ij9QXrGqutRN8bpvcVkrdwbGC7COYT85Jq/L6NyxlilzN5nbS+7OSiGpnafEVdUw3Mi4rNXXucExNbiCi6euIeXr4+JJsqpym2vbA+yaMwGqhp8/QAfacq8hH0DSkCGMGPd17iYxv+bmjZSddDkDDhqwA1rYGaC4EWYsTCRZzdLND9zHVQl/uZDWAwHuc4wRbjxCt84p/WMDMGva4xEjQ1Bt9Jrb66p8ZYK+LWy2fIKO32eLZ+82Bt4wu3k2yMOnUolqcIQhVf0juqDcaQ25Yu+XBs6o7pl7d1IX3pGlpLy2TsVW8xv4/01XVmSvBiXj3g2Tghh1rlK3x9zG3WpxuRqba1cDqUjGOMydD85pNeu+p4xXC0kw8kpZ+XE/2jD6kZ6C5Lx4vtKaNcGr0/S99IPfk0MQgMQtvMYdhgB+RPqMvekYDl4D9GEKO48OLM5/JIpXxLXB+kBsRrJmtJ3h1DpXTd+NgBfORXE5jdDfd0Z++NwaNAxoLDUY9zZHhHexdPQaCPuPUxNmaVjFQhbjHTPDh5l6tYV/AoVP7ekTBh3BtVZtclyrgY6pIn3i38q3C97klHOVYIXP/NM2E/tPeEGiUc1Uh8NFTEVNBjJtNQqh8Eb7ww+E/OiHcZ2f+W8ukOGz8aMASPfYoojy9dQgxtESCoQQjZlv7P/poRLlZ7dLTfS1j+vUe8lIlJO38ISIFO2bL88QhlNqyjkJen56LXXOqZ6jH/j0m7nQFj7vKweItMsfbwAr8BiZc47lcyrMbg/QIZ844scnF0WfLxGLumlB+mD9AnHMwiySwMP3Na31hhxBgRCDSYRNtp7ZFJPRrZIdl/K7GfH79TOTost6tzk8R7UKDVY4z7rwdCd4+g3jtoWfoipRJTQ6GXnVfZxJebi/Kqg/dWIqhl5qjOADWg5ytysRmqYMSQEiRaAqtLIn1rrDIEoGbGVF+yMvJD+QcwZZ/2JCstcgJMWjVAhZ2VkzoCqwmdOCOIaA9KWl10DAlnHBh3r8gaDIlfSrXSHDEvwaO3+C43PVpFFidi47FzYe3TLGdXXAL2+R7bheCazHzG8LEjiejliN9BCG66l1+jHN9LONeHeZo4kqxprmJtLls3g780ZUpFmj8zKVVNtGrm3pymgwjQYvXSP86KiSh09Qb013u+lB+lauvO7FqvEzjB8cKzvpG+lr6TGFdPJpPS1dzA2TjK1j5+YPeZLP+AP0j9Iv8dTsjvjXA64WmHvTwPleQSXjjZIDIvZlXpNFmdvlp7Gby+NkxNHi8PGInPX1rHC4UI2orduvcF+4YtRHtfIceyGNWXb9FiyAk5hQCTUi2fPpNibbIQZQJOEoU+5OABQkuYap/u2BNAVEC1hTLdDBfijSJbUn3ogvYoZt1bhOkek7BngSIMHa0XiBZHr7M+ZfJ9+7NnnBLyI2qE3QZYw/qXZ+AbN9BrzsnIjqzNhGHA0S29p/pWX7IDa4IRSJ1rIgEuN4yLTxBZ0yOqAOBkNssvev7VVrhD4JedtbWc7+diUGUtldJ6OxWkJvweDV5zeHWrFztRLsKQd/KURvinNzsb3Hrfc+CHVcc8vv/xO+uQaZ8JTSbaeiBcbu9bSV9IX3qt1BHi9AngdDF430hXMYifpQfpB+r30vQ36V7CVErxWLlBrFMy5/RxV2KLZltJxNq+juYyl6dEr+SD1E47cSQwnjHujRodVHr5wQqd1wHDPF++aoaNkldPN3GJuKAKFeZEYBgWW9bG3RMH2FPno4KnqkcBrL7XW7SOaM7MxtwHEUHgXyEha/zSxRfybAW0zMKtC5UaJMd0qrulALevSoGQ0mLNiiVJZXdb/LdjKCHyfAUYE7sa6a+OT/t74FM0KF1zDFrZCC67HCYPP0isfux5hPNpyD8viAeDVAtBJDxvM2ox8RgSPdaHHcWGVy9emPDlE2NmTaRpdv7WmAAv0fJY++sDYGeEgr6sdjmLqYeoYEJ8JTvnnTnrl8zpGdyBHnKm9fPsPtj1c+ffLqN66IjmZ6G1sKm7tet27RFxY8FKjHrzP8Nq24Rg5HqSfpB+k95KkG+kGO1Ki3Wy8h2ENp0eNPmG0yR6ol1keDR1RN+MIqD2AlXPM0DYGtCRBugSFhHvmgYg/d3HQ0MYZ22E4hkBXGl/IkyFzBS2CmnKUsej18Tun9q+NncQVlXpRvBrBvDPi1CCaWcUlKNnpCh3lN04ICMLbGSUbSxQ8u2bhNzPoBGu8qvxGSvy6MHMK/xSGlsiuMWsBsOBBhCbS1M6L+tZyvPCZud+1L+/k+cr1LCj4hbefvJc+4umkKSrSTB5QPJPNTvibfzr7oiTJk9dz5WhuzQ/D9yov4wZ86eRqbSpzy2hWs+DHIiLHHZn80LmrOfpdlftMYXQpTyrA8Au2KcaHGHlioV5Lt7CTru09Hwx193iQzNpm+d9Kd650Bj/L7U76tXSFMHm2fWTCcWCLw+tH/z1hE1Pl0nEPnf3Z0ZqDOU7QqJ+9+TqjSu16hG6SOArZqWxAm6SxNXgd/LaAV/L+wb+kfFIDRAI9W18ENSTWP5F/Bh+kuSlFr7OwD3JRReMizgdGuq3LHM2GO5c+OUx3UbsyoUc+YQl31h5U+bNwvwIvyoTxZs9ig/f+XwheNa6BwC28ZYJmlndlPOMxSK7qrPmeGV3WVryucFTk6GUgp5Oc1j4gMPI5b7xD8qP0CeYEqtIURYRhF2422YuO4jMfxWJmfPB6a1wRrSzt7F2NxPkzoafdl73NmEUX/vCjLQqTRyz0L+2HNShQDfCqTMCI/pNX45NN4BHeagzpgp4/Of3fYMdC7c2KDSqLO+nPpGvU6nt3IH7tG0/3vvXjKg52Xyz7j977MQFhA1vc0eJhWJlRr0B6hEcJnqxvbcGH5pKOZBaSZWcQsDx0ZGxdB/f+u0IxkG1LyzlONfLA2tsUYogZEaIN5ibMi22ubBvNNNcI70BkbHIsGhO0QTfBR0IcSTyEp7aIgQYqBU8bVOl/mAAKTI9nUHVm6qJS1XhWAp0NIGwq8SuIQ9dfU35gvlT4igqQPWFZXEpcZ72GGRA/lSNflW4/ecXfWfEKvg9ld2ONPhXdjIs2/qWfIP/RJxUcHFHx8Yy2jJOuhiEOFzDHDTrCyHR4FBKbgWvfYGuqtfHXjcagCYiTb69Q8/zkfTlUIi5zQAxeM/zStRGfRGFyRDxZhOPOjck8ZfmEnxzMR9TVnQ0hAamdwesOpzQujOFK+gZOrMntj8704smU50H6JH30VgSZeRC8KieDA56tEh97fJkHlIv0pQWdKxzFpJJ5NSjF57ZzAZCNQid8xgSqcIvHQ8aBIhwgR98DdRhOO49Jmnzif+eGwYw4JnOrAeCM9aE8ijyJuMZgUKMndSHq1AhxXvYA4kHMqwDGKlFnxl1M5b9OIIEc2ApIRpxQ+cikCnchIB8xabqY81wkKSsz2hlti1B2xv1mr9alaLzGgzfztwaUtpaS0tNbMtWdj98++sGDnfQDTkzVhSmvwuBU+F+53mAFktJ35bhJIp0dEyfpg/T37j32GNXGhPMIf3dY68Eq0+il++A1yWtL8blyzcKz9GaclDFA8VuqrEVzf5Le24BK4zyL5IO1+KWV+oVFtrXBeMkAN1IrvZG+wNruDZxfSW99vxOY9snb/UYfJfNJ+l76R+l74+umbIzH+FkDt1YQoSKgxdoq3M4JT/aunepjcEkxucGhlf/86OwTPjrgNXpiWu8HyRrN+UuNJYQG/I0cKZwvdDyGgT2OXaImW2PNCTJrIDrZ9ojwYNGVkJuQTAkxFWjDjDZROtRM9DMivC5j9QytzgKMLxjhLTqT48/oUIjWuiROZIBn4EUsnks0rMtBm/DLs7fzAhrAtAwKWzuG0mkM1pAWVuYMvWft6Lm79jpZTOFXRocXnPFx2RcJe6+BxZnlNPdiLksOC5OZjEFL2P9kelOjpIngvgKJTRW6RPgH69Qv1utz3BbFwo1X9drW0CzpybgzYx+5/N788r2FpTPuWiGaeo/eg/QOnafabcPBuv9r6a0jThZ3rqUvDV4nrNIwqEdf27P0KP0k/UF6b0gKI5nsETt6HFLLpGmfDl+0zB5zNJp+ZymmrxvHxYR+5s+FUmeh8gA+moo8a6iTXttwuPxZ22MtFF0DpmH5k2WdrYCkJ3ufrtmUEXWWMHcw4s+esBlcJuA1gXmd4X1yXYOlltW/gRODETsBqqJMJK4q4OOlziRQ4bPabMQnZ5DTUIjkRhZZlfJPBTjOb0Z84Fn8pyw/ayjU5beHrLWO0sphUFn+vfPBMNmSFUEiZTz7nCOOwLk2HRukT9K19L0fKCQ4qOL0igifaG8cz2wj97BYyJm/NuBusPN2bYITdSP6VoPMf6b8B4s/+q6X3YCfDLszsLWDPTGn8mZVDKaZsyuMChklxqQwr1ChHgVHrFor+/vflKfXHn2Py7C/kt5KtbX02U/y+EJ6i41Hgezex0MvV7WwsI/S99IndxTJlAdfRlPKPSsn4B6lYwr+ARGRRd5icY6OgtHTN9sHu5LqdvFl9DjtpoYxLNayxEqaKnTKV3CQTggFNsHSUdl6n0WPFaTS6zR51U8AvAHUOSrHoeR769IylqFKPIWfhMmMYIlJ6KFeKXiCBxXGmPRSwLwZROKsPrwkOZeYlz98e40LIAMRKnzWWsTXwBtbESNSLT+2RQ82gSVoOOxwqJx0AmGNv5UXydqtry36vAAAgABJREFU7lbaY0vt4Ek8gZTmYlrcGlNihSFKUydKV5STldPazvE0+eDQCV2sVMKJglMJ+aP02cH02aA7ebhyKMYaZu8RXq3a8c356pHVqZidzAxHtwcO8I4G3U/wTt7gLpZ97ovwtZbubQdb4ckct0hBMyhA7v3kovGD9L30nc9uvLZjpsFEyzbgkOGV9be03JeJWyT09Aincg1n1fW2fTHftvaOrKR25Qfe7svdWYODn7aUGU96XKI3ncll/o4uEpLQBb0yvPwOO3QJWKQNM7xjZ9wjyHXCQxqOYAt0R6SHThWKqvrkdbNCvhY0gKGELYY6S1MBr2sD34BQFG6Q0sgZ++Jrzt7CyzgDr/lPgJfwFtKhs65s8LRGTmoxPiPQp0M9kIucgIMzYIt/Wmfkk2lJU2ohAw6GqACXpKkztJBERYMdegLqzY7k1kdCBFM++cUHr/AWO1ozfazbRz8YbPSjkF58JS0e3rYzvcmwxECSVJ3MkaBjy7Tx4Qchgawba5OxI1TJ2k8xWfp419KNaWHnjZ3hIgsTvjF4CfJkHBo5ZLR3s/FH6Y/SJ7/xthTZZ2+wTPG88mgk95+s0WxLEM/6zxrO+GxKPtSydFxBwNhD64qkNnpqZ5+A1DrR7fwM8cozGgRlng/N6dEMaU0l6zKWklgCLivE4YS5D7gc4UEl40s53pcY3yA4s9BzHAvNmdNFOAVr6hLmBg8LucBQfm/uLg1VmihUolgFIBCAZjY/4tuFKZ/KQeCnVUiVa8/piLfP5YVlGBNyOc9qC5cL11xTXm0AvfKaaT31Jz8QIp2XwTl5hteUxE14ccrgJJiAyMY3WDlU5OPhr4xxD3gc5TIULw6V7C44lM3GZTk9+paffXhpICnHWG+87NOubHynh7KRVBm8Ji/1TFCYV9B2LhPP5DiNtHbr08BWHqUXr8wb+x8af2nv7aat4TXQ1lqC6vzLBz8Y8wfp0ZTtDnlLJrP7snTcWg6P0FV5G8YK2KcyOYVnDNhQUSG5/mw9aBfnzmDPxAQgmXwTR6+axQK38e9T3R3xhKRgeFUml+X776R/J/2VVEkfpT9Kz04WDOWzSJ3RI58gZ2UCeWp/W7KayxbcWW8wymyLlXVGh/gnxKZB+iDeBPJPuM5wrXCzGsxBQAtqWRyH+QKr6vIiCT9nDYMzWZ/rZcL31sC50IAzf3J3MbwV+FuLIIsxJWalFHjLfeW84aN18y3eRdHpMiOxqkzBkx1DKxwE2rmADC3J3uFnn+onPAeq8Qfu3YUjN6g9szkiPmXqtTW9GtDFcwMqb7CST6/oIfDW0r0dvFtH1pNX+MF8icbdZW1cGUvuXS6ubAd9xOHQJ89j720Br8oskTutPYwL33t0c+Kj9Fl6lEbpoze4hvde4+lrlW0cO+wB7AxdN5YNc1/C7niV/qcQ7Mb5oUkLJOC1ch6psbhTWC8LeueS7whK2iNJdYZKFng5anKUXkl/J/211EifpD9IT3bNnonOEe6pJCWbjyA2Ax741pdxNeOQMcZ5gHKZzq7cIhShP2oHy0UyGcp1rKAGaxU9wIuNxKqMyXzmXEbLmWamPw1exNngI1W0X+RyUwnlfEEqt8oKQuWikYqXAGFn1XVtRAiAZhNg6zG/9ibp0dbtFdKngKdnRJE3EkmixecnVaycqa/gd18+4cXSdihBis9sblI5JlE0+hKmt/CQtBBcyfYrO5VUPiQj/a0b6UtsDhx9dI28yM+G5WQp50a6cwvtyttK91ahEgjLe4/SZ2mQ7tBOqP2aEYXJ6CF6lB6kBz9Se5Te+xzHyHVbg/JgrNla3OrA3jvvPAoJfzEZu0LjZMaRkJHVtzCXSarXFr0aaAYTUlxf4sKVfXdRQXqgW+d7PvuEoNK19HfS7yRJn6Tf+6kga/gfMut9uWtnvECNGvPaX8RPzCLpR4XKtRjQGuXQCrlIJeQJVyLo7WeFk1xgjzidYCjBi1dYI9UECi9531R+y1h6TlQiflXSOmIlMZHJdiz3QAf1GueV5QLikGHFOJZjUiNiZ5OgZK8ButTK+7xzqB9pFBsB5J6p0issgB69uxgegiypnV6bHC16+xFNqAXFrvysriAUMSuhMaJnGCUmPdhInrHoMAJ3LlOPeGbucqmvfDjg2vf16Dsa0H2VZ//kSbmV7qV7H/qRzZCProdnuCQXEetg40ruIpk+XdPJ9PMRTyhawOsnnJozO0mkDxKidOUxSbqNaDp4U/vCfHMIEOWYCoy19Tb0GPiaVv5mufLN2B+x1mZpK30t/Zm0kj5K3wEwsmuSPqbUVLWXzzfSfyv999K3ttv8Rz86r0NsEQZqZ7FoXFnINHAFKg5QPMYSe+YyKBkWUcByAWc41/5SsBIeyFvYCZ7KC2BXmEUdoYXYRo5xhisCFPHuqvLvdNFcJVGkJersu2a8oPJ6abFgT1hWHFve4BkLyrdne6HMwTbetLJzQqczKF6n3iO/dv5pShWjdY7mmZcrM6s1OkZ9uS/pWXou96AdkTBXKEeFvv6DRZNb7zxQecLq0mPceFFtXWE+2ScUtvNW+jfS76R7qSqfFfeEijEd1CVaV34W3dfSWzwQ98mj1+OxSpW0lz5In/1zjgnUxeM0DialOfddlvWW4L3FeRwbvOVj2eiaYA3LTsMcZ/Xss5FWOOQhUNf4GxuQ5zr6UQUe0kLHojOhMTZ+I31jE92z5bnKGkA2XMQAMCNdztKX0v9Z+r9Iv7LTZwGvExx61J0TzKMPj0hEXaLD4PwiL74GwBcF5UwWqhE8Ld47+vWZyxa4TNX+rJzLNw4XJeuZBh04O+vLnRWTl7/kP51BXn2BgPzLWjE42CBcZ4z8DBpTg9tkftnZYw15xtzWYEojEsMW0si1dxhvYN/vEbFpnKSWyIBEhJsgg60g78bHd+1JzGkuJxOSk9Fqf9HpqVFTrKy8x6LwKPV2I7zyI5UGMKvR2Lfcy9ZurCer/4Nfs4DXn/uErkfXaS/oOdWOlOgsy76Fr6QvpVfYyreHanNwLM/SXnoP8DpgNcabtPL4x0R59ELdeBvXD67CroEsr7z3oDd2D3ZrZL9l5mtth2napzPORk7m23g9VG7kKogRuFkWfWq8ERBYmV6/k76WKtvz0o05/RKtoPq9QM/X0v9J+u+kL3zG2X+U/sn1YY6+CIJkTLl7oCtZUlCgB+tpEK6UryrgUZTAlXXOtYciL07bJHA2oR6goY7thrPqlz2CqQSvCHuE+wbYMZdUqCpRTyXEq7yeutTYKqASoa0pW0Z5weg4j9OyxuaMujRn1gCOiJeCaCGjw8l11NrfvkI+597agCnNvZcqbmAo5KL2ZafdzTR+62dpdN4/uYxSVKiNr5wo3yL2ZsPxypwop20sWvSx3MVX4diHrYu6ZxR1y1i9lf5W+q23snz2zsls3Tug8ItqsJxD/yvpG/cbFzRZIm6D416DRJ+kT64JD+WMz+CtwsabGXX+Eo8/wJURievWe4lOkNB6o4/MvFY+BnChhJ8l2RA2IGDTgtn42yN6/cxA29FT0QAYKvSAgxm/lf5WeuPJ/Ci9x9PkZjRcBwd3Y9KymE3+99K/l/7aS+PO//QextuU9q3jKW6pHuE1YErTFE2CWwFNSVpqeMBDe2IEVmnGSeJOK3LCBURmDWZkyA9wLc2gQyMirzEzkQdZF5YO8q7cDiFKJSyddQ4IUflTl3iW+R1B9PNdNIxPwEIB4OdyhAmQE1jTCQ8kyzhc+4faRwbOuKMeADBibVSG1TWe4zXZR9+hPmwvDDErK5yV2WPKZuEIwwkyUYLm2sRpcOuv9QuufLD/lTSUj9edTYTI8AeAwUKxrqS/kP5O+tan1CzSzNGH02Rve7LEonG/lb6RvpW+xdH3B+eKWDrSh8jJf6339cylyrTxTuNH6Ml7A1JlW9Vn6cfy+eG1ASxbH4TDzmZDxMYJqsP6PxmFcrboiCy0gRyQxPXPq63F4Q4VTHGtX7CSfif9rXTnBfSDLbwLHX+ECbABxxgs2N1K/4307+2UqGwVqaWPXt8Tgoer/wByKJM9NoXC8jtkpRGbiSjxC3fawHtd4fNTN3b2CvFfA0Yj5j52rQTACQQyyELa0JRyETuNhCfhE1TiUaCK5WKwrCnxK4Ui3RFNWdHJ60a4yBosMVpab7Co8YGhmiRLAyYo7Zy1fUYb05gX58W6BK8TEhsTQFVeG5uZLS4+3CnuttYlBkejQoIcIaN2eHzX1qdUnFwOLYF3I72TXks30uxtyoMLtnTwwiJyvkPUr530l9K/k751U3QBr4MxaJmaLUr3hca8lr6QvpDe+cNVPkz1s43vJ+vjT76v3k+jSH9vxnlID0hFPJK7dXH4vbcjrQB819gPMOCstm15bFKHR6EwWBrgQIVUlB4A5eeZxfQGtDiQmWj/tfSvfJBu43ERjAGR+7JcOhToO+l/J/176c89Iq9MfD5ZV0wzZwDHSZJMyVeDhmSH0MkXdha0M8IyCnz2Ya9t7Ythg965tkzgQykaJT+EjKSlNiK8g0pCcPIvy87c9ZmqLzPN+QLUkoTyFVXZq6nwLQE4OqhSngkV+4z4T0MsF5/6ObViXSJpPjNFVI4mGp0Od6XD4Qm0eoCNYcZNBdm5oJd7iSdz7VW+MKMn6NILYu4gEfce20Bw1l4q543FpK0rwN5Ggsq7nF+5Ip2kRwQtD39aeZkNvvKjwWsr/bn0X0tfW6f4YLX/wR8yekHGnrGV3knfSl9Lb0Dqjwamz9JHI1ROPT0YJnoXrhUmtPEVfsZqPJaYshzNsfEM5uTKZU55vmTluEjOXvv1O+8EWD5zoeExtMn4vnORv7LMFldo1c6IVNZaCZ3OxfXvpL/yHYzSP/hosc4pae0KZDZsds7X4V1/aSYWKNrBpngoNegRUJEKJPSXCf3gXfRb27TTZEsQz2XIRpbZoAU7G/9Icipgg8DK6Ehijb93BETBu+RyOS+kBmAEOEcv8KhhwlLKlYQ4BW7P7FfBeNq+5hIXh1IQy3aq7Db4RYidMKrTL311RnIwBjTGpBlDkUq+xVPEjj5Q9MmKTeT1wRkg8JySQeYYTYn66Q2GYKedeMKCT3nD1kWaCrdmVrmLF4/MaMPaK2ln2/ujhftUaEnjnSP4aFyR9JX019Kv7TWdDV0/oXfXOpRr6Vp6J30l/Ub61qcvT4D8gw9i/Ci9GONnS3Ahac++4Ao3O+BU+aMZ1AueMLcg9w/GlRs3A1IPj8jbR2etLQhV5R8WjbHDJuoK67DFU6XW/rrk0lr+qSmjPa/oAV5/id3g/2AvSexzt+WjSOPS6qRX0t9K/1fprz3Kcpm38xjFqpFKIAxwAFkcvCzSPZ+t6WffXZAiyFJjLUZkqpwNr2AJOKvKagdhCE9ir4KHSwagsfTUpI6KnZoucCrm8Uml4qoAqeQzLBHj+iBCMXSFqcx91cCgQGF+k4YEuwLEOzoucqm6QAGhwm99QEtMoVX5bMPOIJXk9GKP+MHgFdGrtlW9wY7qT9apg7ajhfvJ2NEgr/Dcigp8vkIky2L0jR+2G9fVAZuJlrrxrUldbS/Vk91YDSydLehNtil9Lf2NTw3cwGXxoxd56swb64WvLdZ/4ezbOxAGdwU/Se+lF0P8BMhowVcpbWyMTSMG52TbxrNn8CT9CPCK1ptbi1AdzrFBnss2wwoI0HslZKHGm9qizZO1Vyfts+vN+ipL+TfS75CZf5C+81PgBvQ3Ul10Np3M0r30d9J/L/1ZWWgtzVaZc/UlleihlJxgMxJMZkefyJazaOkbTkQ1KOhpDtnCndxehF9wqi4xPToz4zYd2sFvoQKcpg3HdoXuYoo0ls01CBe3ek9IM3WJHTVYp8q6jgk2qWUs7zfCG/26KmnXcEFwIm6djd7gSqDy2qUTpvEKWUrWcPAXl5r78vUTOMjkNbaDmvVYEtiobidoaYud5sl/B+xO5lH0M0Z4YV6vfLpfHAidkfFaegPmVUkPIHdE/8x+54phGbF30l+aQ+VUir30kyln1NllW/O19NbM6xsnhpxSMIB5vffTpeV5aUzfKpwnEzFyCyV/9Lo6ejfVs/1hs/Sjy+AbD+wA8JodpwNATaYLtcd8oTtrf2+FUyNnhMkKB3f8M/NqszZrYJpQMUZ2v7Eff8TxsUdgKYXgGp6RG+lfS/+d9LdoRR/9GPGPLupJS2Z08EaDfw+kfPIonkDAjtK1F2yLIE5uDSCxB9xCr//FQpEVyITsMPiXDS71VErME/hMZXHzzCyaLBOhmcXYhG+PnEVD1mULUeUt1L90U1MJV/mlwABHX1gu+6wka8HigpdE/bDNyoG+wsMJI40uldIaTyB88LOdj/AcjXjEX49rbqQrPFn66G8fjJpnYNY7YT5j0yBrbEFkv8XfK6SsCSn02geTrqUH05LeGbUr01HrhufksNpIX0j3GI3BmtIGDcAb6a2fLnQnvZN+LX1lv8IJZfbeDwk6Gdrja13bTrFc+QFG/tThqecn2D5yjE2G60n6EYXf0SO/QkqMCHxEyzQd7MnMdm2bQAt1dIJQtoXeVYPFmIQha9cwAzT+3Bt3Qge7UhNmBxTWlG5jRfhL6b+V/q2nX5YLP1tOXfu9se31qDpysE/lr3s0eKW1cAKRi+tHZZVFkiln1exyZ/BPSJf5mz5VztcYy9fLV5IgmUC9Mq/NBXhVmJvZS6RyoqdSX4MvCcnxTNyKBDVdOMsocbFJENxpSjbVgHelep/KlDCVFzbgi5LTw/4PAK/G+XfyP50cMw+e5SStox0RI0p9eZl1FmaGUmjYuRB9trgyQU8nmxUIdir5K58Bc+PW+owTa5aFdAPR/LOz/pMJWO0gGhAUlb9ioY5vXZS25m9HHLSzhDG7mrfSGxeNV2YDuam9q+6j13Yqhc53UVmpekQLhMQ13In4xbPFnqX3OJS0d828LXsek6lanHorL934B6+wgbZHdm+9z2iF5B3G8PNEMnQj0rZOGoPv+dqLqXXBtgcf2YAUZB0vGuBfSP9H6TcO7CXzPPks3crV7cn+lQmNxLTCazwE7YAe6xN6Stl4Tg6S1n8aMrWTzI07RTF7jdgddYYLy9IPlw0vS5wL5Ds17ckvSxeDSZj63xopPVJEEhq1mbQA0oj/Zw0TFxZuSCWPZpLpl/4KADoAqTmzI9JgRixsdCyXfraebEFUqbW0JiAnP8TmhFElSr44cq5tCo0av/MxEQd3zjce1fBH+QUnjFLkCWEEGs/XjQ9teGWOk7LqZO1tqeLeSSufDdOWDw6SiVhdLuPaKPzGFtDJGW5tXFv72jbSnQngnfSF9FvpWx8Q8QJt/GAKNvhMragtEVMju/QAr4RAGrBR+AYsvMlz8dHQufILGjzvYiwxa1nta19Dcsy1TXIHiz6zC9rR7HXGCl/ljtoZeb9C06DGYm9day9/XwzyM2qM3IEgICy38lvp/yD9lc9pW6LzB+n/I/3g5ZkMFbysQLTY03uSfnItH1mpcpP41jJiIDocI0UX+2wtxPoQzuhOifUJnsaI0cK4pm5ML5SSFz+/Lrf8VaBAMYuxu8CUMiMz8gVn+CSMmHxH7FUIlGMEldIFra9cyYzeF3OWmlmZj+U/jYCEHnQo+YRQsQFyjxBY0hKMzjaZMFzjQ5ZNOpMNSpEbkpRax8TBH/hS+jOY5SJMXdkDceWTFLIyGy+zRXS+l96ate6dvlI41Th7rsLnZxd2g8NRty5tFhvqiy/srfS19E56Y6vB126Bynl+oUOffAr9l3g248mD0/lL936UyIRaMYMQI9uLZ6HHHS2R/tHVwZ0XWIcnybGMmm3gSIkRKK0cDi3WcKqAtjz8MqBUyVavOG56oy4jpIXKtsGxaiuMO2ukkIolg/xa+m+kv4Afd5A+SP8gffSKPJltryxpZFW9mCa1BvwP0k8GL5pTViZRoQoCeDV+cUK9wwFyKjuHI+CmxREAzYWxIU3h0WviCPAKBKQOyUakyAxnehudCcIOySDdmbIl/DxdYBk1dH7sjFUSEDkDyiBvdic2+KfL2jVDnerxWAZtSGyDN6aUmmGAyQ6aI+Yx6PbkZ3ikhdj6VBVmVjlQJ0PeARp69PSphPX0Nm5ctOxwRIIQUWu88t7o+Yzq4BkcpnZ+naR7OLZWvsGDuceV+cQCXovyXktvvAP7tZvk78x8wpr2fp7vAknvTIRGnxAx4ykje8PcBB/CiGUmD2mK0gM05qWtulz/nZf0Gjc7lIlkdCynUxVdPFgZ0SswssbuoRlzVEnz4A1arUdwcMSm01jh8Nbswola3tpltQOnbL3OOulr6e+kX0uj9ORpe5b+V+kjtMEWXYW9f9+bfK9xSuSTj9+I5NY7PLKVs77I81XJd9LAuYHft0aLrHfGDuqnm9DBMyQ3jo6GsKzLPU4eyOek57nCNrwain1Ac8ZudTm66hK/znORzv+E66fV2SIrBrkmxDBBnMjCje8pHWcA01huPY3U9OT3kvzmKKPRs8/bH1Bw1tj3L4PX2oJlZZC6wVvyxrXXw7WV8EPJEwWM7jwO2cN5XSr2a3iPucZWLi9r75BcweU2ofpaLuzO4xw7nTxQVw6xrgSvWbqV3pXn37xG57Byav/k7cet9K23Uw7WmAeUF8tGn7QWc/zFwau9NvM6uqrInpalRHyQfrShIPuWWi/++FKyjJ8NuyuD9eCa/8aDFlvRyU3OGf2vOPUrSW3jPeGdD1r8jK5ngmblf+18ItIJn0ShfwBVq6U76a+kv3FiWpbtd9L/U/pPBs7a2mWD/CtMyAIkR+mD9J33xp+Q/Ts7yH4y0Y/aELmmuojvGfEanJsR2TK/j/jW+RZi/Jthscl495DsKghElWMxG/DOTuAbEUzC71No8ZdzmYwoxFe4wQl3V5evjzzI5gFbOmdmi6BXCNjZxaSozgaZhOwIck4UnP0tneXdqeSKEcqS0B5QL+xg6711QXLC8xRqJIeDO5ZHe+Hz+Szm17Z3XbtBt7W/ISQk5hV6KWSciGf7hFFtDPBrGy82/syloFgUrTd+RFecpUuF/Eb6SnrjA2lYSB8Nfh+k30tP0kp6I33ph6gtLODalCZ7Lysv3Rr2nXT4R8PJ0aXEHltJJhDsk3TvVb3xR53siDpBiDnZ4DYCI7MOa1MkumrXDrrGI/yzEFPjqT6DT02Mr2pCw2pxpa6kR4DXDjpQhYWeBsu19BfS30iv0Bj8o/QfpL+XRmN1xu7KKJDq5cWddHlL6AfvKpoNrBvf53svuzMSMgO/IloERxpc9lQqXh16KZWBLJg7Iy/kDLT4Nyg3k/KtMcEbtB9rz03QJ1pUKrcZv5ww8iE2NYBSQCuZE1JXiEZQgXq1qGw7bKKd8a7cONW1Br9PnXYodzZOuJ5Qvlg3ZyAdcblx6l/G/NFC1wbH79WQ1EcsoZCcxuAVAeYEqtkAvFbGrCsXchuDV+hibmdthrYUrlsoF2dSX2Usa32pa1/qk08o3flwnVuYTD5KlfTa4HVvMO0Qp730KL2Xfi89SK30zqezBrw+A0FyDFrvQmNt00JaShPW9gF1Y8qBzyC6d56R1CankqjH9vXiNbOCt04IkxWKow3wt0V6qwJe9zjh8AmlYwU1fvK3vrhs23h8T67r0ndaGx1vpL+R/rV0j07Cg/RP0n9246j1tS465APOcxD2ZdUuGp8gJwSV0tBbQzMkpWYrlbpFDMeNEztxZ/nAF9v51rBttZ7dAcaa0WmgxWlrk0GqQW3cwu48w3wzIhHNwAUyLyKyEBv8X957uCc1PwHKE2AzgpnIpRL1gndCTgqVmw1eL3BTRcBnkyIFefAxOWACb20w0ZP0EcL7rYd9Ee1r0IQBZefGbqQXCDA5+YEsOLB45ZMTbi3XT7i83j8EvK7dS9+ghogjTV7MI3B27Yh4lj4avF5B+lpGdalIF7PEK6txLbT33h/yQfqD9GxJ7B3cv89GAXl85IMLD17VK5Qd2ZBwwi75/JDEE00r4DU5aqjz97BMxIecevIEKj05TPZ+MljjINo5JSyt47rdSV9Ib0xzr3xQTdj86CpuYaVXxo/ZBayc5iaggnyaz730zo8+X9DoD9L/JP0H6YMRaCt94SW2RmSkBF58K99L/+RHCMiTH055cl3/bNtX9OWk+0jzEXbai+ikFyEy/YTysnbXIaE/wtf8YuoYWbP2V7eAKHl1t+XvRzw7IDCTOoqMa8a9zCWQCBSLSj2HIkjWlO8liw7Khj1GkW9KipghrVA0PsJ0Itx4i0GbXEq1nspeurN+kRKghVI8gkscoFAk1ezx3rWJ0M4B0fjy9ja5xzjamdJkU/AKhf0JUfjiUJ6NNDtrgyvYJLM8gruNkz/7foP0JH0nSVq5o7jyB/YucG5t5K+9BuJQefI5VT9ID5KknU1hPI5hBK2dvRl4BSVwbd9pa91ptjsk81j7nxZW+eIRuMYWgeXt+1IFyCKM1SnWh7EkyYGd2TTsZJzpvdJmaT4Dr0Waf48+nnyhD9J76cbu58nagByEqVYTYGvplfQFtmxN0h+l/1H6f0ufPYXX3qO1gkNkj0p3b+j8zmQm4HVlW83R++HvfRcUulgjCQSsg92RSDQiINvSsl95HRDyBlDE5H1hGzyZTICDF5Pq6Ix65cVph5xVX6RhoVhnjJSujNypzPryCSMGrUV92+GN+TOiUk2boYbT/el/C7ySJzrs5BykW0vPe0dC54GVwTEoH04bgf7g8mFtq2ftY1p7R3tsnA3OB2u8CDeuFVd4HlGudsB+8dGF4saLpMOoZqlEFVYJXpULs1H6g0voV8adnUO9Ncm8dnaXhyLE5kfpf8WuvZ30Fo/8Cr2I/rQyeG2gMa+M443DKvbgmJZjY07OXmwtt7B/1A7bEyh60n9y8xZqRYOKJhHRmk71pVvt59fspC8NXpN0ZR9VOuNRWRff8woPjbpycthfwEEN8PoSm5cq6XvpH/wUS/lwibeerdEPh5Kndm9TzhMyQI01N5vyjB7HDWrREKXEPK8zW9rqkqkFpBpX8BF4IhsSOOLx6h3ALcQzIaVQX2F+rlFsjKBdTRntwamz6nEqMYskMf/LHJhMmEjLXcgQs8GzqGVCkfI7lxElv8IKO1gSPwCLhc8ZcbUdmuajj+V8hPG6c5uRavwnPBcoxoNb6QGkPl34azw6eoZlXFgGKzgat64A19BaotXv0dtsjQKdP60CwZnKZDO6TTeadEQi/dEM8Z1F6NZ7fa7MCu+MXwsQ9H7B4j76o/S99Nl3fe1qOTXhDo7cGrV9SPS6PKo/h13NFw+Dy56qzl2qawu6CZP4gcP75H7BaPE/DoItzqZsHQXcxtx6UdWmh2rDL2NaWVuxOXqp9r7evZ3mo3NEgD2Ld+eAW44cWnjXi2Hgg/R/k/7v0kdJMGHU2LywzP8LELSXPko/+lm+s7/oV9LvpKP0n9xm+SC9t26Q4E7DTShvErsqFXNBb0mAphuWee6hNQfwxjIoKUGuURjHJpwuYuVJk3n8iAsWzjkSAKm5sE0kv+fDeY+U/irkRMLPjOJ/A+qV9Z43ZktIA6Ir5/e9U82Mm81/k38Fkt8AQffu4vf+/Cfc5kZ6bccTPaWNeVccfLcO4munU7YKW9/plXnatWdqjQxzhOMsFpAez05eocxL6u6syI+A+RTVlQE75egi1nwFBhKYX9tVsHbdG0Ih18mfTStad602vvHkUnKwVC73rtPWOCd7a61pubbPUuun4daG52y2yqaQzrVY8vDxQnMRNuCvzICEB8Bmw/4JvboZNdHWjYFp5/Zr5Qy18lo5QTBtrCqtLsBrwC6YBVMmC/p30ld+htuycD9K/4P0P9vkdYXTSjs/kyRMaTZcPvvJ4y+IwCvpW+kvpVn6T9LfYxZvfM1kRwzgCsm6vnBNnLGaGeQnve8R4SqMb5TiGVxrhZOLAwcdwn4GG0zeGQE9ZyyuKn84U+qbX2JuE3C/KlGP8ljAa236scY1zECfETLn2Tikh9EjntnDFCjHBPDKvfR+xEVE22dc7VZ6I7310t9A3Vm+95OPm7szMC0K+NEjOTj3dBfgtfF80f138vgP5cFZWboNqo/ZN7WGcJvhJXi1AIifpFH6EhbN5fpfe7SvDNYT8FcWpb6TvjfEp9mw9s6jFxydl1Bd0Opk2F27/EkV3XsKAl4v7nxU8Fr2rkTWeLzKhC2+bDhNLrl7dEpaA7QgNMqOhqieJ5ylVkvz0my89nK/8lp8MkjHSncy0p+M5a+8qzJdtbVdBK2fEPCldYhlSn6Q/gfpnzyI156M2aDberzS1V1hs+kAteZa+rX0F1Iv/S/2jS2vvEUkh0+FHzVeGetSkY5AdSnwdD79MjyY3lF5VnrrKPzMFkcJ70C+Gr+ggo+UYkMkzQrclqrVWbdQ+N+gWPyfkxdHV4JXVYJXVvYKVVOLb7nkjFU51CPsqSfUwC043XzheGRvczI01K70IgeGMd160U4uF++9eD5LG5dPCcVbC1c12owbL9RbnHm3wtCRec2+uyOwQKYwZzts0ueMRzBj1VshX7k1vaDbZ6mRvsFgtt77dzQ0dCVqjLY2Pfux1ks3dWMyFQyd8VC2ChF6g/bdxtX1CtuDTgavhdA0rt+SvWLpm/2ZWVExxiXbLb9feiWfffGD13yWR+OvSNtuj1J55cse2tozsPUWhld+PMqz2Vdv+j47Ye2MEDscXhL1rZNupa+lb6S3npkFV/6j9D9JH/HglZUt0lu3LDZuys5Y9b0bxi8WZCd/0QuS6aOnsQXLYt1INbyFGB0lhzAworrPekmuIVUQwKCF5KKSel1hX0m+Qr7ISEB12Y5jHauLi6TBoi5RTcDjs9/nQ1TCWG3cCp1ocCNsgWRkws1GV3o98HguR6YtZyR1SArsKz8W4dacJ7rl1hteWp9ptXENeeeNfHvLx59sDlrZwX1yITeAbm0cxKEBocSVdSGKjT36MbOpQvSxyn3OnXSHxlrjudggcQl5O23MA+qO1uchnKz4HTHjB9OYF7gj1yhcIwqQLceUkF0I9zgeYmP33I0L1N6ImLo3rYu6LBnOeHX2yiUi4izb+2CHlV+cy8sFR5RZeZnt3b3YZOiio2RnzZKklqZiluPkzDW6OAx4PRm80utceiNfeMO87GF4kv6j9D9L7/Gw8g0Op7ly1og6H6Fogap7C3zpZ97BZDR62+4z3FvpLPNPZLbY5FqQzIR3un8q+5bpm9UAnar88IiPcR1scINtyTRS06dgSK1SXXjuz9jXBBypL/CrBnbU5d1dIleSMrlEW8JWVY7PjFDPXQz+fY2LF6CBvZNUXLVl5b1LmgMeMDjg4YSd9IX0jXnCrTnt5Ph/7ZZ4mFVn+JNrhDTMN66yOhctLXJPdv/P/l/+poJClhmvLZocvX7W8JStQfJTC/Ro3PV+VwcQ3+MbBb9V6thPqJXYvKmBO72BOy2ojQuoCqOxw1O1D67Yp9IkKMdLg0HrgEdpPuUaRmfrg6/8yjPSAV5aQOEWx/QFE3ZZkwm/lZnXrVsijzDU5ubD1HdeN4uOty93MN9J30rfSK+kSfpkQPwP0v/D+wmuDV4r/zebhB7sRF25NH3E4QNHg/RWeuVup7zEDyaXKeoY8DUAYmMVocaWxbqMxukiYifAWVN+LAGOeuGVGfk1NoA1mNfZaLVMG6VE3sL0S+A1wz1Cuau+QKsKN6XyQ/JzOEJXLtb8zK5pQDwdsHgYIuHWuGYaD+RqcIJs1mI93JpZsAyOInKPLc6vcKbWKD1J99IPJj6d0W0y23opfWA7r/ncXSJ/Qr9UQGf2U9awvDcu7RZAPEAhZl2SznbkokhE+eSw19i/R9TeJ8N6XGvPfm9ja0CAcgZdmjwFjKBlB9LGRGGH7QpLB6SFtpdkk4Zaix8iMUwwZnUu1/PLF1vi44HZIWRS9MxmJAfvi3gjvUmboM2K23qoZndvDjYunKycrrGx6uiOwei7ycbVtfSF9NfSV47LD9JR+k76Bx+6dC+9dtlGZ2AGskWzPL2IlaF7ocv/6In9zoVcXDxbR1vn1BMMjkrewm+ZcGRv++znEZV+jwV+xm1qEOXIlKFJE1ZrjU5jTBLxgjXl4WITcmgqmaosLJN2G7gcLtU/uskEeMggJxXGZRKiFRaaccsnjFBpczFDeWs0EMyG6qBybbCZrJoekaZTVc7SnQWOK+kL6c7ftcM+nUf0zCevtI10sk4RsnFdHo8UxI03vIP/Zmsq1UDy6Fy8HL1t5a1RvMF76Z5rvQaouC61wxce1bSa4u6/sgQ9+Pc9To6pHK0ni04PxoxWeuNEN/lfGx/hEw65skhbmfLJANaVhFywjG2Q7uL1i1tiQkIbjCoj/PWzqXWD7FEbfWNSPWJx1lI1m7PyjIMbMHimjxR4rQeoKwWe2eD1pTdkv9jq8Cz9QfpH6cWmlVflQSPZlzF6LE52UNBsXfuC99I/eQj+CFq40OgdtuqQQwtsJJORGjJxVQNropbNiLrcbz6cTgAheoWcnv+dAH+VbyqCRIucO4NSj4DUQM8AMIoOlwZA6skGYUnXGzGX4FUjWVNESS0asTAXHIE1v48GNmFdsuNXwxyUELpx1fQKiuYnL4ZnqYFZYuMfJvvRexPdveWMBHa6BTcQeLauG6PiBOh7y+U0GEfImN33XoNTde4QvDbNqMtltkKhlcSfZbO01t/6w1vn9RG2hBr89gDVILxxdOV29ApZfB13Jrp5zQot9LX/RlwcbFl5xJEoNSJx9uVtoeaO2BW5LIbRdFf+3ihhoVgD7m6GiLD2JE4WkrZpek2WCtkBu0WWe8a3ystr53300W96kOC19Fb6S+krg+4H6SD9Xvp77xy6kV7j0HompSO8vyt7dD6Cf8u63++dQL6D53swkZwQeAK+dP67c92YwjXWea4n0hY5jGtgAT+TJVyD/HyWcisQtxkMpcMLovynPz4BxYiqQaLWJUHuekQ5EUROs5Roftm0jA7HYaku4CBi9QhBe0YePiFKz3JANN4Zgu2V9KWbQXt/bGMEXFw+t16BS9V3Z/qzw97lH90i63xHsSVPcOHvyl3d6c3mdsKO5VtusW5vnGuzOWZlB9UBb+fQtf5NDhgIHCyO9hsEdqzaoxnDygOYNmznwJEPUXjxBx4wy68cswGLlWudCn2lrcXF0aniCKUqi2F0hbyz+thgGRxNfRpsuhiAbsL6HNG5m3zLR0h6RxOs18j9U7uE1GfpIN15KiYcbFQ7p7Q+hvbg/Yo/GlFWnoHBov9vpD+3avlJ+qP0wTLa2nXpyssq2siICU8ErwHsWR3LrL73PqMBkvGyBePWHytHeWhJKG9drp0K5xZVztEnLzo292b/kGTNXl+SSOZZfnFaOml4ps0bNriBKhI6N5VoNAB+2E3NtQVpZrAmWtjysflTgbBVwLbR/+3xXZOvtgUYT9hY3WKswg1igmPpKN9RJLhr788YnBVP0ieftPfJ7P3Wpz+sjWqxPo0A0Qrd8qSvW8fxGkt9xCVVWBvC6TjL4BzcErjyo9GuXWv13lmydz55BjXaetDWfvHRK2HtvSaTSWaF/UETNPrWiBUdZIXUlN7dkzFp+eob6Q2Eu9i4+lIFiJVnRAoSrIJndH1jrtEaOw/4+wwpoUZQ54fGZCSywgymSsl0Y5k90NEsE7/Udbd4imU4QG0ldOVzI09WDn70Ml1BYVqG6dfSb6Wtzz79g/SDn7qxMiNs8fmhTJUjmXN8xKmnnUvKk/STH9+diAqTvDNuU5FqgMUZyrD5BjwhsmmQdCxr4wrQILi0cixFqMVsjXLZx7TD4bTZk9IDDip0PsP6BsDQCBpclY7ZqYQYFrdn1WYFbsnfnKluYSkzvjRQvoYdLN8eY32MTj3Aay7ZV13ewvL3yk38I46H/Cw92Cpzch69h1zeoiIViBx7nq35/B0ktw0eGk9hT2DgnZtjtW1TD16Wd+7EbG0Bv5Pe2Yxaez9d7a+LKCAv0bD3V26vtTBdXvmSDhir3h9+clcj8tWMIw0qB9dslOkczuTJk5NHY4yImJoUOCAZcA1sUcLIpewRT7OLCKdygXXQ+mOwidy1wpVksd3ghP+V1Cxz9qP0KN37cAthS+7kpDQayHsPRLqCQgGwOIMX8LrzUWvf+SSuU3leQQTSAepIb9g6oGGywxmIo2nRD97Jxo78sj3lxrNYQ/HqnP3Cj1egy21JHFLLhdNnwmpAYXAz9vp0kGa8a7RnaEaV1eIs895Aw+5lBUwR2E0PJAp6ZpEJOY29phlo2KIQIvPKn6QWErcGrpgGNUODIic5vMXpppOH93AB+hQal2vbWvTuEQb3tkB8spti7V7ujFOLtnh86pODPCknnOXG3751Jh9hj6lKYliZCu1870e7prd+jstVCV5vrXXX8OI3KCA7+9JkZnAlvfJO4EXaOYAz9ni6xlIbbV2CdChHemwuHXxA68bH5FzjqMTo6mfglYENI47tr3FlINClHdz/wnUe7eiaTQv2zhytC85IlXvpwcV/djKd/Pu9qcNN+cgctQuIfbBFdwL/HgGDtW9r4wjb2gybnX5rj0HM9a03+CwfuGSTl7L5HSX35DT0BKNAg70qNYjQqoyVaL6TdYODtPUA1y7VQkjCQAK9DSh1YxQ8erwrfMV88Y2yIkG34REdxWf/sDVVaOxCDDNO8UnNqgbM8y+7oGRT+Tkal8paV4DG/Cbo1UGZ7VCZTNjFGpoXUT7G7QniZwW/5RoscSivf/Ynh9fNYKExYQyGrgfpvQWL5aO2aPf1eP72bAA+mHjU5ewHLCNwD76vtWO08exf+Qz51lLI7N4SN0ZW5oRvHE2Vd6n3XodrlzCzk94ii99Iv5X+Wvoz6Q0eJJYNsZPd/RFEkjwDumG2o5+PGyay9b0IaWHtaziBrAbbDm4hPOCxKL2XaFs6nAaXyif7Oh+99XvyXKxg3jwZ/ITlMSG7psnUYolemX00ciA92sj7hTNIkk48ezuASF2CV6r2hVa9kd564LZopm3dDqapoPHEHFxpxNyfRk2+N7wieyWydyaBevLO8g06LSsoOi2SYCh7iEp2NBzhEg4/ySCmIAmIjP5vjDmZg6NjZoNHLq8u9mEm4wdAE2wNbpBcqCqvKim+KREqCml6CRWQawIfYDEf8ErZwE+IMpGSckApMnuhT6U17ITrz3pN67XGHTXW05dvf2UD/Wfpk4e68hbZGifisHbNdKzLiUv6DF+l/S11XZSY5QyDV1bVPxko18aFG6/enU/f2ntYnnES4cYs684D25smXUl/Jv219GufUS+jc8ZkRI2d1Svfb5ZxiwWQ9bCFRhVH3lT+nPQ5Wb5aEsYTHrEWP1oMCMlhBxyv9+x3nTy/abQ2xpN4LcOBphJ50kHNgT0djBk/y4Y/SZP04GeIsytVl1vmOfc9TmJMilhJX0pfmd7tcHDzzst3QrFeIf8sH74vLXlL1b6zxaczy68umJc8kXtv/Zyte7XA/pVxtnOUbpCUKOMlyTQXSbsFho7WUTPW8Qx0MNbWdkumoriC+YksqS/5lPDVJF/0WlTlXzKvCQuuKUtK4avZOhE2KFce1TQ2ByBdA8xNl3xw5u9dp1UAL4Js3jXh4hOEnRtigzt4y0a+j14w6V8lDg++nuAvZSEOcuUpjpcxxyBQFl3eeG3m1Xi/XzqWG/uQ164kFwP2s9fAHsls5f1DN77s3mTqVvoz6a+kb7whu7XA9mxQfkZGvzE9XIjn3mBxwIlEJ3vCb3xh8VCejOkpGiaQwQo8ILQrbrPJg7nGCYm9dwIcXbQ/+viyDbJjmpkHL+w9sPJgwvHs43a4+ekKzKvSUjeusdZmbG0efJRDrADy2FeWF57RpQmre21e2LgOHL3YN8b2+M0qB2vvEXrCQZct7CRpUbegzunpsWqK174rc3oCNPpV0k2iuce6nnCR9B8QNZdPPpkYhC7v0QVNot/BVZTi/eSxarwesyuMsETcSoZq/PlEsoQdQW6GENAga58NXQhbCGQqtwGSa2jzjM5q1uDgu5AXbOuhI1mdMVMxcLC8jCs/DqmNRywLL9z15AenHQEYQdO0l5OTBflUoDQ5+CNepMZPEbr24LSuUNKzbbC9JQXVvZfQZ8slW5egXzj6K0tbS934W58jmBnP1v5nPJqnM8aEVA+IxLQQa+/qrEy9Wv83PV45p0XEn3xVjy4aPxsRT9BOZ4RhWm5jeU5Pj89fmeBU5VM6ahD1NMYqHB+1TMTaULCspYN0yuEcoW53COyDNcGVmXSCeQGvJxSZs/PjndSaYOztkWj8IZU/p8Oyk4+QkOvGGjXM2gEQ60KLHDojpc4IiR2iOqXLCt4rymA1FkHAazZks5Aj/YjIm6bKEeZeXVQpO/uSG5z2HyRtTNXiriQAnXXqZoBabr/2h7S41BmfQ15++fcMvOqLlmBgaw2vy+xSrUf2TA+jwo6+AZeUO0qZVwOJRkNDh5vaerPH7KNWQ8Wp/O4BiPF4jJjfENp4KrgRqXM12PimKpwNneXawQ8ljFV03GWX0xJvD87HC/FYhBUZpE7+it+40ZW1MbkWGD22Wc+1UWwoBzDDGKPyXMoQNbL1iO7RCW2z2ZaxT8avJzxnO9JDhwUTO8eLSde+NP2lN5bOWfJE2gaxgsxIWqF2Sc8/17rL7T3jNJrX6HtmJ1g8wZVbjsu3HtAvanw8yTt7nZf67cEtxNY0MZ6VHjvQwzJeDBYJwpgK4nBqARwqJZzK5WKHuYwEvcaGJG53CIKMCFdhvbbI3hMgu8Lk5Rrohh9wrN6MXlPjaaCW3kIAX5UlGXsEIyofgTZWQD0y06YEvmxYqbCsA14TEukAplYBRzYovGff495qB/3fl+BVY5SCcZQ6RlxMTqm5gg1utuVr9tg+Sx+kZ3/XEZiVHgG9a8lAR+sRR2uTaxyKNaEZeI3nQNQQqydctnzBnc3YMh/cW/VcdgW8Qd6avUvp19KvvOl38PAOFvM+OR5rC0Ub61gb6cWWpxzb06KReAeWWiFHCuCSPrY8yJEYP9gMSsVLJYfoHTV7P2H1xYHfgKOt3eDdollzdFXc4YHFe9j00xmOxHOUTu1ie/kCJy6/OPJ61/W3Jp2jp3fy8y/3cO830lfSWz/tLEXgH+Efzx6NBkGZFPxgHtiXCSJs/kxBnpDEE8HpLh9ximkHDiqQ0bCvLPAWb5+xlTUdnsHVEefk4B0Jy2w/o4FzhBtgaa6/dXE+uLw5olBJo6xCtA0AsOjdlMXoLyWBmQEYf4prnXUgZ7Re83ai9Yg1O3myZABLwh0NXRG+Jn+jnBNO8PSSlWVmCcad+czJTulwv4P00QCWwv6IkxpegMHhXTH9hpt1bv9nnQ84RGdyGN36qkJdTibVEYV2qBo6W4W25l2v3HBu7I68kb7yps0w5979gBdIQGn/Vv7fGaf1hEqs4VxZRLPXOLashkckIfzsTzj5ZMePPmXmxUC4AneYjWGdL+boIvOl3PKWZmP8T9lgnqR9ZmMOW6vBUxrLyHtpv9he3np0IjglQ21QmA6ej9EK4DO0hFZ6J/3KRuGFcX2Q/gnyXFoTDa4yndY43Udwg9kx0AFlEs8q41nIIycw+M5jt4ILLqpS6EcH9DxachhBV9Iii349OjmGeLyUKeMANpWdb7de6HHSZndPOtH0fybSZnx17ldlZzmi/ARkz8gQ8iqwU9JXIaprdERj3hAWSaDq6BGgPbVGXhawNYpUD+QKjMa1skb7tDWLqAyRqVsWheYHn3KXRXUqb0pIQiM2H0ffzwaitBxTvgqk6wrXGd2/AsVtne+3fhTsg32OC+96ZYALeF1LXxi86nJsk/tPmFCugRgkGjiXOqfV7EO+QoIP1M7wnaUDt9zRe+m9i8BncJe6XC0N0HZha094fRTW7I9bu9OYw1yYUKMlp5c2Ap1HPIztubKzdPm3z66RkldrD3Fj8Mrm/WtQp4Ug/lr6yo/RezZm/6NTZQfPwwndZLnDsCnZB+9kbXOwUKhw0c9lE7lHgZ7uf4B8VdbclOJWqGZnS8QHFHsTlhQtFnEJ9mh5VZDua+nBLp8r5IPkmci/k0dpBfAaMNqEpJRzLRJdqBaZV/6EqNalfUL42BHon4XVgr9Eye/LFf+IZ+xElVkBNYTg7MG8oh5l6iNSBmGjJLV4PGaFMz+vrCT15eEGB19wa9AZcYp8XH2tGVPsRDEYdKADV47DLIn4PXIjKz9Mennvg5nXK/suGpfBK7cD3vktNWTmWE8/S4N3Jk2oond+7tuHC3NCqNm19MZqdPT2puw6HWwrlTHis/TBR2S9OPxbpLp48joYED5dgNcG6JZJPEJlSC454jGC2RYfs8Q1ZMIX6dQuw/DGDyL/6CvtPZlXcOu92Pm+sYP+0XHWSrfSr6V3TqxLCbpA9zUeVRsTzQwDWw2iP2GVJV+vsExOSK8zmEANpSucqgNK1SgXWUUk1hvbHQ9OZMm/wvUEsGeXsk9+6viDF5FQFjZGODbOQ3tC4Tok0BVY1nBBoipceYU11eA3wluiqtWAB+FDmP4aQH6D8eyR01hvTNjb9mJ/Zhb4wcszSFl7cAL2E/bajbiSEw65qT1xGx/CtfdKWzLhT9J3JvmC3jhCZM+809UR11hrHpK8XQOnZ2ezjR/pem0T+gbaxwnmoS2eZVJLHw1Ut4acG3/ja0PaFos5s7aocAu+fsLTaGb/Mp2JJP8VpK3lEz5L30hv3LqXc29vMvMkffadfvK5xB/cchMahoL1b+cD8Bvf+1iiWurG9QVZCHlJfZQvSnt55STZeEwO2Xy01HtvpGvD7AN0mrWXS2c82uPkj2UbdEqp19I3Pov7xc2fP/ro5xQAXSlzpyw5uVCeypcJpDNScjrgKj0PTflDi+FboTCIXlWXIdp6/0VqxQam2fQ2ZxCwEWr1E7zIM642ncnaY0hjZAtMHEuP2Aq/P4OhGbij0sAQ8Ep1QZjO5iABqhpARrYOcXBI2EZn4ZANuSGWXp8QzwdMSrqUQ8mfs0lKwPos62S+2n7FNcwwo48v+YOZCXukaULUuLsjWN9sxhX5QMD6Crc82GC1lU4GrzQ8wx8mg9fO7qS1mcHKJeLOJGBpCSyV5D1sElWZJypXAb1Rg7mNm/srI0XtimYhBI92kKX/HPA6+ZVP/sAFBz5K782OJoPXFqKPwIgyzqPjsUNftEYAdjiHIuLoyl7fGif0rMEVK7C7/dKciLtrdrPiAYsvX3Nl/Dq5cVw7NuJPeCX9ufTW/pKlaPzJRz9HxRk9ZAevm6zmZ4fTGuw2otcaT3c9ekAnrDahgjpzilcoq0Ll2jI51I6NQE9jhY/cpC75FxuA2TDWgCcOSJIvZq9vpCuz/+TYFI29B2TyBKe8DJmiapVbPoMh4ZVnL27KvzVelouvMGsEzZCms8s+oVOUnvvok+/q8jo5biO2NMww5OQCtiV4ya6e3tXjwZzrtSFAMGqOIH1xLx/hBssBC62VziAOB6dyY/DKXYAJ24kqtE+XWuTO+LUwr09gXlcG5cE+2Du4L0ZThMHF3sK5vpN+MrWfjekbG6ceYbda7vezDzfrvI2J1g4yr4Mfv73cyKMNXj9ZSwqXDB7NrlSusIEv3ZbahLT11sDG97XyJG4tCtaOtaCBsEKS+FsUZLOkdrbD9+Rl2EP3rJFSl4+8M9IuWvYn09bFXP+1qfCL9L1P5G2td12V2lRrFNnYvPzsAYhRIJLXDoR1KoEtKmROOti4HborYWwuPzbMJ0p9MnXvpbqCxjUBbmPjrDxiD27hp5BfUuRX0mvp4OdPPkgH6QNO+98hShIrS6/9ykuscWQEh85KPnKkM7gKj8pvzorGlItUzEY8OifFeYi+jKY99mv3JW61xuBQoKTaCSxF+Lo06xrUISk1Z3/sGst19DbkD9JPVurS26zKhkGPZDuU13nWd5WX6GigyiLZuV38CvaRDH5Kg+hRHZZ3AyZ5Y9bQAOHSa4mMEqNsMsnJ4xx3YbYIJO13LrEO/opb6Qfp19JbX+3O24/31tMePZ4fbe/67APCdnC4pxaYDOdrTM0Orft16UmaMdERFFpbKGpne4Z8ulaCzPjzoq2AHbN1+SihazBLST9Zbt7Y9vLZt7GSvpa+9oE0B/D4sP+ri+ZYAyP1wYeW1V4oJ6zXDWwMEY3yp/JHsadxhYeT8owNeiqEJmSIhwz12RIwQ4rNaPbQG17Khu0I0flXPp3uR5v9fpQebLZ+55OIgykRLa5htRX6jcIwNoAeKu/C7yvMd43kxd8zegWIiRuEVYFKo8uA3l16VkIaGAx/cS+HdE3IsxzhEPvw2LHcsBuBczQB++zMIVxzi4/Vn7Ckk+lxUWWEexcFraFk6ajflDpiDbPlyYRqAuI822uxMWPY+b52VjSYGF4cEakUrnyn8bFUgBJhTJYbfLRqtWwqfiV9Kb3ydC9f+oSD4h8d7J/NaZ9NXLYmb1skv9nWkY0Xw8pHDiQMm3I9jFB/O8NfYzp6RIG6Kh2Cifp/XjwjuNrKbY0XnMonL8rlInYmNa9d+Sz64Vr6xg+lWsrLj9L3Jrgr56vKFxfu04LgnOBQFbgmRa8RuT15mz23aH07dI3ijmjxshQSG3TJW/DUnSm1EGlhhTHNjjh7qgc1l7SW/sxbdf9os9+ihXYexi1AJ+2v7qItPoCqXAr1KQiDBWl2NGWMsYRrgNrMBAGvtmwAJrbzAtbMLy7hKMwEc8NN8hXsQcTXSrVixmXPZc7rvLt37yO2HjBHSwwc0EisSsfesdyZ1HvhVSUlrNF+aty4X3sl35e+ugpgPdjINTt2Dk7kGy/LW28bEM7RilumwRpbaNrXtuK8d22UZmxno0KALPiydrws8fUlHrG4BXgtO84/+fofvNfto+27WzhFsxgaP7VwC2H1CoJx7cZE628Z3ZM8wke0NeqtPRopgOOZ2RoQA1ZNWxk202YZrYClv/TkCX+UrvzoqSUl3UuPLia/lN6Cuf6TE1CApHbm2pYSzYyEe8kBZi+Ed3AhTlDqo1Bt7EV4jTN6KVUPLt5brPQk3M4J6+RFGlftiKzdeBSz/I/O+599zFnk7K+kfyXdS//oRymN1vc/SB9tWbzByT2189HRu31ZMMwYH5Y6qTeqsiqesJb5+vye0n8MNSyHKoBoavXOMXHCZiiV4zmW6CX4dALwFUhLZC72TtkwYBdhhfs6Ijp79G9SsNVQHSsYslKTr9DUaUs5tDOcTOge36MmrADPKVaXb7/y7yt/e4vn2i+Qn0MT0n2Va8JHM8m1n29/5ZGPcp3Ds7LPbmXHz+Qv7S3l5GU55GUFFDn6vy94KOts7rDB4NRoLyWT1/CEzh7AHcqfyhD+VDoaWiO6sDl2bWw+W3gRojdSW2PTnbCMjr6CfGLjQ7a/hfPljfRi+P1CukdX4dmot8bBdamG2wtKsPFghULUSPG0tMwXoTIYvBZH8iung015lsToZNShYmH8D3BBbEolJogZgeeI+SbJng3TnfQb6b+SXkl/lDbOmHsPziKSvXIWrtBB6vwM8BbCzFgGMBsJzQX0V8jmM7Ag4HIp60/uDVZGqK6knXIkV6jhQzuHkjxEvc1X9HilMPUtYK4C7elKwqZyKWehHs1Jnu3bZmciLZPRLKh1smxwAWkk5CJb4ODswq9CmbcDD5ezY25qjcc91AaFxj38jFXruN3DezWaT75YEruCkebofcWBjOwpPTrK9hbxP1qt6ABGaV2uIa2xT1vjzIg1iG7ASJ6CtXSNDnZ2w21ccCUrz3hG5d5rbBnhGx9i1sBn2/oDY/4az9pOQdbGLY7GPf2jK+8Xt4aX9fRrP/9n4xblUky+cR+mccvi0aBzK92Zdq8s82SRRTgdDXahjw00ldx/5ixQGBG+M8ENZm3xuAXh+dyUx9KTDdmc3ZKI/SizG0veyTaawcb6k5fjyij519J/Lb2W/ijdeAvLo2naQs1vwJjj9qyhNY4AkRpppirpyVlnLBATOsDfE7xSwvXYpjwjqivEZIVfclvj0aztCLxIQ392/MflEnAJ84rjKpcU5Brxm7TXN35w6t5E7Mn1z8r544Tjc4TtdnGYjWBh2b9Ca01jYe/F3EFmymFesbuFHjauDOVPuJMeIPGO2BSeTZvJLpNH9QE60Dde3ssLfsSBJGn5jkDSNe7oRfqj9Cx9Lf3K4NUa+A42GjwjrR69UAN8R2+qDBeW1f4n8HQqiK3VsgX4nl2RLkV+JCc6XUekyWXB30lfSl/iGcFLcLVtwlHmJ4sQmSb03uVBZ0Pm6FDrjEyL7nzryjTr69ahcHLjcQGhDXboTFjLR8j08Sgsc7KVvvAlHU0M2JpdG7fupHfSnV/Qe3qjq9L0yAhOv2jGHrMXY1IUtlQajS/mGSeIDEhD19JvpV8hhs4cMUfpJyfZDTjVaOp1dE2eQJ9xI1X5V4j7XO1U/v4StPKaEVkvshjJW433Tl4VMUxFUgvURWlNy/HobJAaowJE1bhN4TUNXilfVaSe0Ux1yUsxPdXlqWS5jNr3u4PQvMbJU9mdfYUaqfZaGvx00Ozup37LNniWqByXe+gRcs8w3zKCXR8NXXuj6S3kppOx7RFi4wkQmBUY/WX579JIu/ejU9P0O2D/ZBw/g1E/CB07Hrsslcd8h4gOCapdGHdGjNbzmCI2Df+4hdkCUbnvsTP0TlIb2tqAYKwcltHAkkyfXHEmubyW3hq81p6npee284Lo8WlZN8lrk1Xa0YNSgdmPvsmF4D3BI5bwa73+dn7u5x32Q4bHTyb9pBAtYiO9qZUPzngCnp4V33MpP7zAmi+3d/619DfSKP3g/udkB+/SGvnJ37IFKeqNfc+OwJ2jq/klosVaUZCp5ou/dGxmqDO/I2K+xcFFU/m9oUM5QuIJNcnga5hKxB/94iPYfgVQJm8JMWBPIqVd5xgWdjJUaAVFHelKwA2gV56OCpxnxmlAGeEWEH80jUmrY8I1r1wOyC9YIdsNBq+Vr//FxskGQxcrwh7PrQnenUwvsi90Lm8wCYPl1gnTevI56bnfEcV/NOkGO9Q63124aI1kmTmKxBirWuOksgaDPZqAvUBBqDzs7CTXTvBnO4bW4boT7r91zCzj9Rm3lBX87GbxMtZXOOL/Cqrmg8d9C1DoIRimVRLmtTZHS/NtWQ0vzthC2SC0BlpowsmcG7CAtX2Atb28VzjcJXbEFYqclZuNbJ2FtjSgHpFDXrxKYk95Lf0b6d/YOrMUOSfvIvrJHLr3wxUSDy9m1Ve+i61f0KHkpsRVl5AUYT8JI/zrrKRkCzsWkbY82yqFUOhSjCtLhHzC1q4BrpvA/QjD/QCOloUrNBU7wEEN5CVbzIKZfIBb46dEz7B2zdCTR6/JyiBSYz9qi2C78RmkBNbZIu4GJ+uF5IY23no9R9oYrXc8oRqfHZPZGVO7SphxQNmDy7Y3JgdXklyj/GjUpu0+U7+232bloueDo++V1JjBHXGqzHP862ULfTIFyXEQYXZp2F6jc96g/Sekga27gQnqCccjhyXES7xM01I3voPW8zPAtWl6tCYGCZHOqT9ugzRxO4/TTvqV9LW/cEDWWIa8ddI5eNKWGdgBw1PCzYaECBGMv430xqVjwmIwzl+Zm10jq9IfUCNjjkjosXpNiAy27HJtAbC8a2/APjrHpda68aOUbqT/LL13X2Fyf6LGiTJLu1KufqvyemoIkipLKTKoGrE++ffpbWR1j7g1eRBm8I1Kv/xnLjnMDOkmvZZwZqGoO9tKL7T4zj4zvdwJN5i/NV7Qwk9Qm3RtHG17906ErDhA1NhKX8JdWWMMN3hC4MYwHHfFhCfaCvcb4rT2jfRA3MmgmKoh+1c5cXH5HnwXz6aUN/B7v5LupY/2ze6RE9jLmVBKZDCfpd+jXpVv7dFu+mS2BsWL4KoTkmfqyREhWV1MLpsonb93sEQcmbECrRI8KwNWV5j/sJjs5XBKRtu6Cjr5bbGftCZFywDdSJ30lSdjtCrwZGLT+MySbDsKeNVYNzUAgrvOWqfs2Qci9Z5mlfa8nf9eoRFUA7Y6V/Ctl/sKT37PHaWeHMANmPTl4G/gDBoQHq07HL+RfiddS38vfed6Y1lM13bZLIj25LROWrzc3Y2Zt1Dl0lhyVjoK1xmopUoRnsBG5QTh6kzcJ/zJwy6UzSc7qgJq7HFHR55KR0TWdw20baAmkEwKmSM5Kei8LLN35jCpTmfnvAgiMfRdSV8YvCrXwAG7dHRqg1dklMl3fWum1FmOOkKSyfoJbVvM6HtnL2rDmYLs3e9RMh38QLgIsbdWKHocYDtgokdT4iMMiZEJH8ua6GgOtlQBcXTLmBuFeETxlvU2OmfLqyj5QAjPNSqLpUH13u6Rxuth7d3Fs8fzZFXvABU89VfTmxNFXuvQ0dpDjOk8dj2Mi1vpW+kbm0uOtnGEeW2dSZ6hRe9K/A4Z6XBynMz+JmeklWu/J+eZCDYNqo6toz38cXXxt0Urcg1HL7vnNTJGhRR01hfqvbJPdmgtjcor6XfSX0g30t9Lf7ReGDnwjdTgyOwXVC9pZg7YOTBDiGqRiGqEeuQoWkHOHBRnNVjK4BHgVSNXdQCyUMLRlPPkq00vW+gAzwB3lpFh96wqybwIxGEoZ8x3DaF7GZbXDo+De49CNy+9rBnjfyxryw6PYF57FQ3GiAmnOsRUUHmCjmZG8oZDGWJ6KBED9LkJa2nExv2j65VnH2HRoE/+JP2jn7m6x6NN2KmZwYbyp7ZfuocXYilfP0kfUdNUNlRVuF8KiuT+1J7k2688pEInufO+EVnnz5JoUI0v6fATxJ1rG4cabH1p2h7ungbP10ya612MbTxd8UPMVsmv3Uh+sqrz6B0Ncu3/6IZb47JBznQrdHwH1L8TSKTsNX5r+DyW4bIoFa+k114aDeTODjRv9Ke1palkxGpKs6VyScDQqVytt0g3lJtn6Vb61hrIgw2HEQ2uPSzk7pVNADV2Nm1Aawkh/IHC8ZnaMwGuavAo1gYrLFKB9UU2zSxUZSv4rLeZvlBbHvPUA18j5SeqUvyP5QtqTMfk36dh1eFq1zb03pkDLx2RPWYt4sIy5l9IX/qStj7WJMlKPtlodP58sUS5gOIfpd9Ib8zYW6/hO9u7EtDyvB89R8saWEGMvQYTy+EDGdveDoath3HlkMzyi3VuNkHK7E9A9yVb/uDSYIW19+THSEZJbnAizIwt+XJ1U6HhXPl/a09l2GAHQ1IAe20zgrwCNwbUI/rSMwK2wfL7ea2m15yyirxlb4SK4XXjNbTMxJU7y1EA995mtjF6L5LcZxO5sLvZ0LZB9s/GrSTcCq+8szbzgAd6NoaDW294bVBPb8pWSXjUCo8szxYh5sHsH1EZ/wGvRBrBK/a0ex8te5R+8EPmBrvwQ6NTwR/dBFt73ew8trsL9bzGIqugGjfIgBM2BgTd5GDOJ8SMernxqkF5NgEQ5zKlpvhhv2ssh7EClfpF8Ep2bn/JM5m6JW2eubz+uWzEPdsmLpdwB4/qgq1f+vS52YT/CUFbmUlGgTuYF40urt75Uc9rL6EWW1KT5wQQn02zV3Yt3Uv3ZmsJ+NCz2mvj5OuPanvjtXRCL64G3sVSn33LAhQ2OHn0CIE+c5HLaE0+uanqBo6jk7kfjb5h2p1z8M7ax8lReQfz0spjKBz5sUf34miYiqlNUjV6visUCbM/qHNxGCmiwbm3ZF6tXZcfPGob9GQHd07SDFwhJ6Rsi/tRWNlBtBVQ/Bl2x2hanY+rS3MhZ00E3Vdgn1fOIbEEJaqnMupCZ4Sl2UGimD2AO5978Eb6Mz+8/nvpD1b1P7qKkJurYWSyViwwr60vvsNFVgCvxHawpindHZeY1YCCdbiYMztBZkQeiqr0S0VTjYqTuavRHO+RhxKlEwBxBn3IbxqYukasz9ZfunaeqF0Kzh6BR59Qd3Sv72SkW275nfQWLHJv8Fo5xvYAbobQyYXc1z77NP2sgFeDVDc7IPe+r2cftbryGTlb4M5oGkgjXTpWy4C8lr6VfpIepe9d7IXlJRa4biswrz9Ie1uGRnf/PuOk1sqy8Q5N3ZgFGjCvIF32PyeH9Xh0aoY91WzjY5nTj1u5pzp6e+LBufweTHNmhv6539iBpnemTIOBaudNxCMkUXlprPB5jzaPn7z9Pru8F85951p0AvzcWCUgQUrNHvVmieZ707kXJEfhERd30BzD6buLIF6VO1Am8NEarYKUNBOQI9JN5iqaiTyMKzwY88XTns7ME+q9eC92uM6Nn8f0GpXkmc4urFlddOcGZNIaty8ASbh49MMAQPB7LlFtAs7N2E3TgZgFw/Z4HkO2EeSjUhWkZKrAE8JsSeRGlI5rYGQPN9/geuzFhKH2Srs2zn3jpyx33ndW464DrtFtFoPSe+kfpZ+kjfSP0rd2FDZ4ssOt24AzhmvvK5TVQkl3Ps0g/TcW52nb9H4+zT3OArsBS8+SWJfcewTqt2BKe5fWnUf14GmqvJjXkP5Wxu9YGTY+jyxa4gBiPEIObbBlsUFUsqm+9ejdmPRmrQ6ejgoJdnIOGS/tIUkcs1Fmbaa4DOvJiemEjJCm/2cXdVsvbq7j2XX/la9j7WLyCD9AeBeZj6ROuvNaefGCYLTfw4YR/Z1+rrQfssM/nUZKOA1I45nczEK8AqCnimPngAEc7WRAURRqNMMBN/t23viJHWcyPUvHgBHrxhqXfWY8qPGX4CWkxQoY1JSzkOb4bJ4Qq7Tw+wkto8nIohIHZyDmCOsIzSq5MP1S2ZzbGVHJDD795ODVHyV64zz3pXcMpqd98iy8oPWSBXPwQ3V+lD5Kk/TOz/zZ4enZdzicKrd5gMaxcu6/8lbh7Mw+IpkF4pfbX7Zh1MbKo/WIFUaywqwdcEZRNhz2nlxZxKFmcfA66VHBJscL+7CFMY86RVYf7/7ouB7R8JdxpjKV2sLmlOV3cMH8jGPHIkUvq25MxyArskFkyi2CG2S5wa2VE7beLRP/WfrB43LlPLa8cSFli5555Q37GaCtxzHfHiE3ATMZFBoPyuTFJ5eCNzh0KO7TrX0UEcCucKzlFXL4JXhN+EvBZsZrRmtskXyjqQqP71uOA3mPKD2TebZm8yfvAr31NKfAa0zxKIHE8ZKtIWckgmjFZlHoRo3GRIu57kvI4LxMEEsG6LEjarmDl12NsiGVWNIDyxL2G5sSlJONgtGthyW6YyTDlTfUvZT8vcbpKKnunoCGo+8rIo3MTT5L30kfpFr6CqXjytzh3oTuCESOE6uxnePZZ2F9iYdAUmeNI3RvcWuJnSWZvZF+JX3wdtlwkyTODcxwqWlnf+ZYblY72PV+8pUP0q30yqrQBmRH7oxce8/nC1zojYH4BM7b+++1P3/0RR6R8G58IMzJVrx7C1235XEclZfW0B5tMqr93xnTGFa2teN77+eVSPpoHtm7q/adnc5kCLMd6EnWj0avk81fKiu06LkVOuKNvReTb33EXriN28mdI2DG6o5XOqp6vPAV2BS3b1WgJUEF4tmZIFa7YJjMwZ7dF33GHqs4r8NDelxqzBBXtiPeoI5iWOd65gt2JADJVNKt0Cf+nH0xMSUwsbS4x6nMfek1bdFAjs5zcuBSXKhLSqMyPwiByCHqUKKPQHFicOPcfTSfzybAxhbWBpshdzhXf/ZEHGCKn3C84uwDknu/d2257L30IEl6I30rfWlPT+qxGLJGqxg7iKIxx0T+PvldJ+hssxlLi+vfgJbHbi0YSlpgfGSLk9dGMtIJR6IEC3s8fmI2R2pdUzSwjOTgqMrNgDjjGk/BsxWQVMUVCNja/Y8Ba/JkgEyYDFicvXQ62V3VOn13rmhTetaerZUXxyeplT66cTfamvEHnLDKZv3BazHmuqPfVbtJOiNIIhCzoqtR420dPMKuvJ0F7hgA0guK7tVh+jcIKjpiBMVFJQ2I+jIA5QNenX/O1u3P2EDUI/FRYxXAK1vyrm38uCpFoKYkXbzgGgSDOEKZvr743gFclz2JCe2mfGMkqCzQo2WkyHUzVtgBB/MGvDbYoRvwStLK7h5e1YAL477HGXml9Wbr3lamo9lLjMcNbqpF97Lx0X17A1bvfZiTv+jFHsO176j1s3cWneaNT/e+8VuOTtt7616120hvpN9I75zecu8noFXOKFtAcAdlZ5ReSr25Au89IrUMzqaxmI4unbJOjtBlz5pkaZA0vuUrHNA3Ij9lHR7NGOXtoHsPwhZpUg7Szhrbxog5wV73UO4cZgF4CsGJoacpIWY2OerMLE7SB6mR3hs4lvl+L/1Reu8xSiBVvnoZ+57AL+fy8W6BcGFEJnDAxuMYmaRCqtniARuNCeONFc6tBbBrm3LWyFcz0KpCqDde/eNFHUsgaBGTK3cdP3sCHr33IBaWODfSPbt20bt0Y17hMKEJl9ECTUgSG+SAGQoB9b8zuSjCWz5HJc+qAfE1FF2eRTCUncmMD/v4K+j54TvpNE4XpDvflZI4Idr+EnduDCgb4HVkyLp0h3Z+ZesgnP2aVG4LKnEbQGTtrYGyxbnJkl5JX0tvYfZ6MbS9wFDa2pj4jfTONrUE/MEnRUS1OkoPJj43rjDeGih/sP85qZR99R3k3jgLIkWnkZhNjNG5B0d9GgpxNVw7V4UwHgFkDaBjyUNPXvzX5daXyaiyDPhr6d7/m1hO82v2AyR755ujdGoPJksdVsTaPTE2KK4tFOy9W++jFaQlx30nfScdjRCJ0Wef7x9F+9E3ccDZb8Ju6KTauoyq3NPKt0I828I1JndLskgndEtaiHVRsVKiDNAAM3ipe3uEWg2ml22ZiZJnT2YPhbAr7WzBngS9pCu3H65wvkOuVsCeCsu2Ak3NJzflK0d8FBWzwHZ478rfXvkCuHWrwhpPcIxGo5zeFYyfIQxGVUsBkxQqT+gIIYht3gp4Rvt/6u0DQGLj62yMapnH1hppC1tMiMfeOWeA0LpUjH8u3UtfSO+knfTJD5v53vtLjtJX9pTFYhrReeuHNL7G0U2zzVmfcbTpyYthdIwsBdgGy3Lt//YYEPa3ZNbUgu10F3R6dkDVfmPIbSjustqvvStwtnwQshMSGMmLisbB9s8NMGxjTrQIvJ0dbYNZ7gHtypXR9+DV0i/gpdLPuTLRfMCpoYu63dt0Okuf3Io8edPn4iJZm6gsN/9s/262RUVpO5h6pZMZOZg0QF6OVRkq2cPWeBbXICdbk9GN2XaLB45voAoIHa0VjsedDeXpI8caEWKTOZ4RqK2TzidLro92vpyBS+4uMlXt031eWbJXCXOkhaReqbGFVm36sTW+hTVnLruGvBHw2mKhpzeYPlVvDanBRaYNdSqhtgYUpgSdUB/yLka8IHE4YaYmXFWLLJLebwc0b+CL5ppJQ1jol47oLo6ulFYuj99aibyTNj6w9HvpJ7/lK+krb4I7GbyeXEBG3XltXi0P7IJNh7KdO/8ST85Sp2I3Y0Z6pI2UlEekhxn/GhVgRvJLMhthwWuhK0/QUFJYBdG4HfFo0HhB9MlztEKEduZ7oy24L+UZ1ll1P4NX7py9oNqZNjv0tzZ7VXaNj36Y5tq55R+l793DbRzbncFrghPgyUvw4C18tdMme68M70Rgi/WdEW/KfYydddFbHzSxMzXb+fzSa48X2UeFZzaNTg477I3I+j6V5VyceDHBLpTzI87k/VQaGARaRMNZY/B67RbNAHypATRnFWBdMq+p7M7VJdWiYD5DGAt4bZxmr92bYiE6IqvxjQGvA45OjYeB0Zgq8bJHU+H3MTEGcFuvpRXwtMZujSSVNej2iOJ/9sxeuS8/WqxeVNiTW3wzDPE1On73bsd99mPXvrdT6Fswr6N1/kcD0+L2WXoxt3CTZmNAqvGD/z6bS76y3jGbNNxJd65aJ0/EtTdmJGdTDY0AlNVygt4Wa83WI7x1Jl64yK10Z9nvAF0z9WcNvSCSxAHPUFq7V7Lyvs3JPpAd1KsZ63y0yzdft6yToa0MdJWLwK1/OLmof5E+4YADWcA5eEfZs1sKgwHgtdvAo28lqvds8WfjCAgVfsZgpMgJO2q8uLYepBYSSosrnKCAnTXowraF7BM4CVFpQFQynD2qo3Sm1+Cr+X1lcE0jnAqeQJnSMOxQVl15dW8uLBECTpB6BdpncNcwogmrlbp/A7TgellD7JoxHafy+lce+cl1UeWTRE64tq4c1RHZMjUbfR4zBq3ysAxAR5UXXAP7c+Ohmux5jL6wAHPmsfE6PFjoHy0cRUl76wMvv7CpcuMbqS3cjz6Q62Cq8IiDWvZYoo8A4Pd2zQu8VOi85e0V8k9nDJ59/cxmlZdr40hcAzwi9H3CwGYltAbsTE3K9RaG0IP/9eR/mnFudI8V1ZvXbLwV+a3PuVtbnV5u+axCqTDjIx7GtKiFP5eYB5xVs4Ym/sHLcYMHMD6bB6/89o8+u/YEX2u+7wjFuUED/WgxbvlYInb+1tAGBl/3iGfXxIu0wZHKW5znm1NA2vKpyLVrHrYWWxC5qF+tudYI7Ijo1RqkUoLO1nzXpuxJTAFKxmoNFF5ccncuMIhc7IuydEzFRfCqwTSyDkJvzkT/fH6N6pql9QRFewbmbgxeT9iA8QhlokZ1xOJnugCvGYhzBl4VmFvKmxTz2T81Ik8EzmJ0kjmb3Jreen3Kb1nu5dl8bFUuqjfSW+kt6vkrsO6FAnF35VyC18GUo3EQzY78D5bN2MupkSpSA2fqWxhs2NOqvCxj82jR2dsZzQd/9ZPPyxgRTTP0sLN2TtJJ9MjBwF35M49mdBV6Ti9G24U0vnU7fefNA1zhE9ZAHPwjGn4radigQB8MqB06SC/W5Wp3nHsb5A7Yh/HJj3qTH5AQ5nXCUX1pPx6sq53w1I2jy9TspaisWHAcswGoA9wEvKIB3uEh3zeuAG+8hztevhp4FAa0tu8kloBnL4WspAEi2YhVJS/ipVwcywfQJ7pmIFHQZLYYc2t7PfMhlfmgT/0nwGtCMyc4QoA+wz5h3W/L44WqEmvCmwJMg90gk7XSA4YrZ8DQy3rZFJ0QbxPYR+fRJh+v3RLq/RU052Qqezw3ItvgKiu4115mHezdR2PNhNNxGp8p90p6I91bqd0g1J8AB5+9kk94kOseDaPKQbikvQ9+NvEI1Srtg+WVd06ojVF4oTDp8smdzDucHp401iEWAm0nGwQq3/LOsusOtqLUjVkYy6rY4mE8gnp/Kve1Dh4KQT5853Oz0g2unPY+m7wHmo8m9XufILWShnbjR6Blr8fag7r1ZsnsQY4VTV4sR3cxF3y6kxrpnfRraYMnHn32Yhf2+WdD15PFkxdY8hiRLcaAtokO7cQWHKzCcTgNavwWv1QZuELcBC973OlsHYOuk7jpXxxMI4xCLxBwwijOEpm86GI7vHWUZJ9v0C5J+SwVzsgMqYTDuamAUWRrALd9KcTV5pDprwud5wmLoS59iSmEBGNkbQyIxpKddcn4o29nBMpWvtrBdL0Cj+K2rBqM92yVCienZKsOj2mRS+XBwxJZOegVYNg59a1AvK+kN9LB2NbgcTkjuMQAJ8Sj189i8P7P0h+kXrqHFrTMS9qYG0D+A/b3XkM6qRACk6dvhQNHr12SNP7q2Ttm4j0KGa6xGFKk9Ii4DHiGTuXjNMMYe1PZUbqXvpX+2qfIR9F4MEF9cSvoCuxgRiH6c6WwxsawFwiUjXTnpfaEN3QehYNH58lsqjYdfyv9ygdAPKG72CGNZnnJorbw0IvWM1d5YWV9p+lUoaVLG9QK25qu/KWRpkLPGnQLWVPVkK/SFRBmrsfJJYu8foAbe0CKyeE3+7LmPCvVKpdqIY2vkNwpMjWA3bpcWxT0G49P+MwvgldeH6pToQPReGmm1dMbvKIFBNCZ23qc4pVu1Qr5YC5LwRGDP8PoR/AaPYaCMJnGKa8/Fp2geeqr2Sm2xvHfA/hh4HhjwMom2MqhcQvPdlbgtdvmGz9Ve2+lPtQ3/uTIV4/OGZ+k/+iHNd+5KD2zoe1hWz3CT9uWT4vI0pqRLDcOhJXJ0tZY8Mnn7034rmQ+CqhBqyNSyNEl2AnV6eyJHqE4nGwQ29qm+xfSO8NTbd306IMYB3fdJoj+EVx+Jtg30lsvxL3RsYZqd0Tj8Yg3n7AHvPZMXPm8o2/sg3+2fzcO2BlenMGl6WQnx4g8WcMFQS1HZUDSnr4xgN66P7OBhJNqYQvnBplXxLNrD3r6Mxvf8uDrrLDxYgDeTdZjYzt7Rkir/MagWKyYO7fjsxSCnu2fYE+58uSD0cMygU52eBkLUYGd0S1Teabi9HoxeXnGjvMsj7jYjyZQIddtuScs7u2AzoxLnXGPgeCkhyykE0Ju8nzVHih2H0K3Rwf8GtpEjfMTe/SNa0ukO6/DO7e0olB2ztmvfObTncHrs8Er9yicc3M0L1sKyL/3Mae3Fkozts92YmxgDnk0XuxwIEPvW9sg3/flAUu3votlrX5y6O1R6k8OOpYyjZGhh0FIGH+VBQ1lyyNox5LJfi39a+mtRatnF9vvpe+l30t7mwLukOcG0NhJmtu1DVyTpfMZvHAF4UVYyAN4eaTzrQWlr6XfSI30QVpJD17UKT8GLJzaNXKNI1IboH3kyMj3o6dx7ao5DCSrdYX8VXvMYtA+k3oqpImMfaB+5dbo3kVjhQwlX0bvd9XOSkJPYsJUC5hUufC4Nr6+LovGTDvV0mRJ4Z9UthPrMrgrvJ7Zefa6OLNcVbij1IpPpscd1KQ4xFkYz0CCDpRsLD0cFbxsc3kXAd10C/L7zl80okYNVZhL20fjmFaZJWYga/a8tNbEamxVVZlUw6Lz3wWSt3YXyzGytzRUWSt5cYze+TqfpT9I/4v03mS7Koth4XSMZ+lemk2ZehPFyJvBbAFc8zctq2hNa0t/cn5rMEezPyrGIDmxnGwxyPKgILw2jGROJ1cxt9K30r+V/sIGrCTA3sM+OCdssOnpiGMNlnlpV262DjigaeNPuQIfa/1PS2CkWDri45bE8ZX0Zwav1ufwTc6/GccOh2G+mPv1QBAKOQS7iLbp2ybbrs2vrixRNJDHVr6RkK4aXZ20iTdefLUrw7UJ5BGnLYye1M4QP4MGPJsKV7Zrz8C7IEjtBJqu8S1E1fjLKn9pB9yk7H6p3TegXjOG8RK/4sMKjp8wAvK/9t7ucfSVVHDfRMQf8ZkVYPQAiasGS+R2IYGoBLxGuMaoHVbmMDXK9ahcZ5pWHOcthmJZSBtM6Nr8JKJsjE5ZeyfoDrOvYfIBx8GCkwWXHXBk70bOa2PZk/R76f8l/Wiy3YCdBshepPfgpY/OIhUm4nKNtc6+O9iE2nJ1RQNuzK+y3mJuSTc+9HgvfbLF4ABYSUKqvH4CdicriG+lv5R+5/0GlRnmyXVZdvzPvqQXH3XAhdGsrRDmJI/OteZs3SxqU8x+M1iGnFhG6Vp6I30j/VpqvON+ZWRM213moNng9HxxMn1itS2XLJXYFu3BjSW+V7YR3kP0WrmFskUpGFwgFWp9MufJ832H1x/N10fwmhajFBvqo8mspI+O5DS7hW+vyzrkCjIGVYfK5XGN22/K1BrwYtcxXIaS/gDwImEJ08lFsg3xaOcfic8Lsk4LosT5GszO0qVMmy6pYgYKNwBoAVjDLNIo7r3B8mSQ6tAFTXNnhbRHWlqhPk89kfFPHE7A8TixZ9/pwcB37ac3TBZNhLqu83bHBx/StXTPvpP+k/QBz/CkWNCYav2Tl+VSB3zG2Qahz3Q7ZAEsw771tpMrQ8bJhzLXnpSgVQCuQcspdf6IlkQ89BPWc9gPSfTJo/Gt9LfSX7nY7m33PTpwli79jY3Ble27WcM/g1ebq85e9B2qgsx5ds20ZdhNhr2c9fNa+pX0JTBvbWPEgAY5mc+AXB+Eb4B2I+JAEH/Io2qvtZ1vgcE9g/Il89YYjNSlAQa5ChWWBoXvKMILZXr2/65g1ZtdGJNXCKuMjYSlaHyDojElNIX7lD1zORfkVIJxKX9nvJiENmt8QNR2hpCju6k532WAAp5P6C9Yk5B5uAklAVqXvYEJnaEZ2BNFIEjcO4ccfTFBoEAam7RCxd55pZ3t8BqNWy2cBLnBeK0nNHVO0o/ST9JP0ix9YYfBBjsPR+/Tf/Yt7KV/kEY/8+hJem9Hf6AiJowBouLJYlqF54VWpv09NMbZ7416dvJCPRmAZ39gEL1xeSKn09kr+YTWZTYrDHhj79807vbdw/MVOfFO+nPp30n/lfTWWWKyNPeIsnnr+4p5de/DyNb+uqb2xB/NYh+tvMePmyRbAVNauKsn9F6usLv+5Mlbwdg/+0NWQJMe+Zp1zoyAb7C40y2swdBaa6b3VlojzUfuInhR+gr9yIsTiicnhb1/LxzfkqbCAZc92t3zCb5cksbAX+eva9HRSmzQHSGgnoBc+SVvJ/hL0GRyDMzNyKcjBiE7fZO3emz82Xh+Y+UdQEfzc2OaF0W48d1RkZoBLuwcCvDd4B5nr+ksMA4s26RJSNmklyori6pFnDQ4qvCEM/OyV26ETaj3GZMfJfnpVRU2H658eYPLniUOfy9V0mfbFd67SAkzWOH44gkWndHiWVSiynB8puTlc7I82ImZYNyX4XhtfZcyRDL3YPASJEwupxE4eGNSEt5z9Mh8I/0r6a+kt7AQ114kM+K69QWk43L0zz+rp2HnURcObnYtC+LJw/dcPjxkRudX1s9j/99ZDYpNZ4+A4Sar5PAeCBX/bl1KFw0gbAaxal0Z3kvvpC+8s3lnzGqw+zGMTLikEfHWoeUoV6TLVtGtaVRSd0TpvhTABz8NorEAltoybKLDzr3JSXvnERhxg1V5sxNYSY3AZvs0GHfWOj+rKwhhEZY6IGw8hydsvWshUp6A79HM0tlLZspVJX8kA00Xd8Qs1SDBcFVELFGZ0gQsPtOcBdV98MU0Dp4Z0n0FKlpZwZrcmhlNfD5IP0ofpNkPRMvy7pzqNq6u11aL/2jwGvywtgcMu/w5I6Bh8bs2Pm+x8ubJ2N2Eij2GPEFJWsAxoDPZUxXmEXSTwzMiSG9yt4busL/QAjOeAa8B4CXpSvqN9G+lfyO9M1CeDBGfDawD5OcrVFFz6YhuWmHnzpIXPmJPBKOBFWbW+8k/rP1V934UQetAlBvAJwD+iGMCg+QTDCMVknjSNHt0Fd5eucYj46KEUpUNmdSNyeYTQFGwIFQl/U01Inxv6//tgBAD2vlTaeBkB3qDbeOvL8wv6f2etePkBUjQ4t+zO50xibFKcWbpHclKIYkKPGxNYI7e8zIb2KJNpTcTRKwxsCkUZ498hbsbHGcssFNDTgipBi2NM9ij4ldhCQkvqDDLGaKcC5ZaNxatPQ6WWmLx0Y+AfZJW0pdeDFs33CJdHnEBi8z9nc1Gy0VeoxpvDKJHE4ejx0QGkhNU4ros3YWCMzm5wn72yTh6gkGe3fgaj99I35X/ffHtrLzNKiuq8cbRxsXe3gLyvfSN9HfS33qdp+3RmAukb9niqJ7cYOdE9M9cPYpzZYS/wbmjVM93mNqoC+m57fzftdf3xoR4Ay7HPpIAB8nXWd899kpUro8jgKXbFsHxymL9nS9jg5LyFxWj4EL+96ySzNaedORaLPoZV5sQ6pzyeLBClN+zsEmNsbYNJ0LjdGHEjexXAUCbMs3wv/wTv0SLzw/GhSTziyYsJjl+ts4uNPGl60gxqUKVxdZCBUSosANBwPcGA9VgEQshNLvNRS9ljcumpeQEoZEdIGqHDTYfzthhvEx9Dmh5cZZ69lagF2+Li/IaBW4EUjfm4Ytalg2QM4oawVw+wA+8xpAGQDkswg2erYegc5rAGe3RH34Fi3KmOyXJaI7du+08OcYDXtFcrvxsxt72wEfH5gJef+2DOQh5FTJTypmjl+sJamXr65mOeETU7Or81uXvAFU8TZ4JwzcZg1bWHhp/WWWQfsEGp4NbH+wltiGC8NMItGVGPFRAEHKfpXPyhfS19M6b1jcoUKsy1MlHWFYF5kawXmF9dzgYKn8SP7naEc6KwaksDKICzUz6zfb3+C64rbxF7GV5BccbLAWVP2TVchLHEs2DVk3Z482VxMO98v0+eH/JgLNGJ0BG40HIrLEAOPnbT+WVpHpP+7f1bwJeMeKHmDdllKZ0n/2yrJMBiMkGQdrgHZAxXHt0YbNsRPksjdKTN/o++6FPaQqEUMjkJbxmKRc/4Dk5km4hyHXWLJYNdrVz/7UfibEHtp6wnzCHHBwBBLSCj673qHNnT0iLUqbz0Zkxcp0wJi02M2z8c/LHjVv0KWKX2n4xI/wb6W9sk8jKZ1TGjxrqvXJrtMbJM4M0tSef+5CFkFwzmlPupDsfojZ4qPYu5FcmRdndM7s5c8Lp38tKecEjwcKtQweJKGmCUUqiNhX9JFpQDqLaQnOfEe5zGShMUoSEbIDtkTEbj+LBQRw7uewIazzza/DGE9xPrJ2Eovq19Er6yk+l6UoKoZJ06SLbNhf3JYzbhH+KdyEMJCQhbb0NLiBsU6UWHLia/Vjpg6F6VXbt2O7LgKfl1bi9ltp7QDskEHW0BigMy4SGcExPZ1ozC6qmVAKpNVfInCnUl0Juj6RxhFzS+ySI+GxfTBXWlkWiAbaw9i86fiwLqQZP2C8Si1but7IZsLPe+OSJCEodcMvZT5TZP/i/e4D0gJKyK7niBOVq8HpOH3LGntXKg9Dh6B35Mb1LXfal9I30Rvqd9G3pCxHm62RKKcDhjCRzggDb9574lGcRFSYvo2tp5RON0oA6uGonm+9QNTXm1gOsHwd/94wdgG2ZOiMCpnCnoCyEQQKyQd34xs9Sb0pbLPUqobGpEvxrk6LWK7KDaz+V7Qo5LjE/Of11yPITLpWtiNxL6z1B73w8MZmnICO1gJiMVVuOxoy3T7jBvLHCEqcUFHUgO49nD/XKWS31GK1GIQBR7TsgSExbgezKL46OtQE9HixlUQbLhkmW9EcX3pXXSYc8NCGJD76qFQqnFdIV+8zxbywg8oLMcfA6Hxw/k8u8pZDeGbhr19ij4yL8YQnsayvBleNlYfgbfEJn3iW7tHZ2vb4AGVM0kXMOIJyUeKJlqHzEU5SdkNXwn748zbz2h2TvXu3DzeKpvMFqX0bgTvpKeif9TvrSCJgVOEGjObk4DHiNSFdH48+zdFpccyucGD2VVGWR2u6kL6VX2Or+4CZJ69VPirm0hhcXy5MX8YydftkzTdwVQje1Chv60bpb3F7rbH8jvZa+lL7wc9Up6ZM4nP2hGlQZUCpX0WvrZ8smyRfHc6hZ1MvaEdWWqb6CrJiiKBaF1n3R13iEwwzBrP0l8Ao0tPg9CcsZOkeNr0rvV4SlBjJGmPKIcmuCL2LxgSw95CdsHa6cgVt/e1hbgwwxor084eDICI11CV4n/K9wJbU7vUdH+IiyPFan0VfVAUxV1o2N/5XJ+AizpfDkq8EbFAeDVCU9ArzSjonkufEzIZfzlhZP2MEX1ni6O++/HTCYt2Y3K1Q2T7gY+ZIqg2wq0jR91l6fnz1Bk4cr1g6h7RLGcMBTOpOze99LFIGA1waPD0/c3fko2l9LXztzTGV0j76jvQE9MzijLZxzqvp22fvZ2RW+gj0qGv+NIWFnp8mz2yYrY+yzV+jOR1lM3kQQZXbAYxImn7gkT1GPhDh6NVXOGrFTTAY5Ug6yr5hUqQWrtD7VZR5X+U9JnXKUrBCLHcA4337tYamxoaZ3eRzSskLLsXIifuPMcI/zWgYMWsKLUoBw42e14lwCWF4pL88BmkyoYIV3sdRMfAdL0l+prMk+m0pd4fl+bFSmQzjicTkVAjcV3eC1l5s6M6zWWPJRinpbGSr85sULqcGozvi0CuM54GpjuWrdXx28RFtYF3egJYPFl0BphmtwfbtQlLdOEQ2KgoxVj0W4KDJvpS9BdTKGn6WPPjJswHLtIf1wqbNoDyosYlrrhTEDtLiZMGX/xsf8rtxX2PuRDS8ubncuphajw0J8fmVB541tCOwqTXj2Qdb8qdzaMhmS9zn08eTTFPfOES1gcFlhr3x4663/6dmHh+2MsUuwbUEM9k7KFew8JySLVZn3K+eXfPuIPmy0kCwvtlM2oF6vvc1yLgfo7E8DZhJ6UCGYo+RRlhusgqwRV5XX4hFBtSmpPHEkP68sKL7yKT7ZpjFfYIr8acJCPNtjQHpZlT8TvOgZziWdEbYUtwOA+GTy/OL82OMJOeEYLcCrQjZamTYMeJxgfCOUN856J5zKBuEU9nhy/Smn3shybblhIM5MNhtrkD2OW+QAmnPi7HtBZTUinyX31F7q4SQ7YGI2cqjkHi32XWSvU+OOzhJia4/bA3oeA1q+abQKK1CY0Mi3W9dNGfkKzK1GJp58Cys7C1qP85O18xsbRWc35658EM6tdC194X/Nkg54vbj/McB3VJdO6SjuT9Lp2VvaIz9uy02MC239jfQbqZU++MnZf5Q+uQqXJ+/ay3q59I/Y+hB/xjIon6XKe6siI0/WMwO0B4hG00X0Vj6t5K10J71zYX1n/TwxnHU5ldxE5b/OyMyL/t9jCvf29KT7FyNUuB5ZG203CbPQlgkHQ239sekKBkCZOVV6xSh0XaJVVS7Hs6U8IHSDBUIp1boYSO/m4OdJnAxYSUgx36/gN8i3ZC01VvhH7G5h9kqYUR6bkcOCMhP2Fndoi8yAvIN1mg7lVjoUK18hM1kFitei7o0DROZxawdYekkNpjiXcfLyaAzrNwav2vm4hdIW33wLQM9FklR+kH6QNtJHb+Q4wUSdL11B8qiQS7KhfAvKIl/8CR20I4I6vf3GWyUHPLutszIXs+vKW47fuah+jeP/53KTxrNT4+SDXn9wI7c1GxhMIB6kQ3uQHlxld2C0mcat9Mp6vXzTJ6gxabzs4G+4k+byuV/cf7UpR2tELK5RD6zxrhCDkzM1Q7bzcRI5+Wi8yKSsrKoLMJtxPWcwECbQmCylA5M1tcOyPXrokjePxuCgbyb2yk+luUbNHCOFyuqXopZw5Sr7mTMY//xLbwliZZbPRnjAMj/hmQqpOU+m9ZEsZu9xvSlTajSCQNeAcZjwqOSEfnrX6d8KZ2k2COiICGlET/jSBPGVyVKwsMIi4aX2nj6i/gpnoKxsLR6lG6+EbP9rvQUhPaejm5AdnmC18ddlikfTjyfnwJXtiplK9if2xr9w+43196RfateV11tKhiM8XJXT5grKxYsTLBHrxiv2jc/kOprLfO+3DIiUG+lr6bfSV87qLBpnhEx8G0L+kU12B9/4ycdzPEiH3oRvhiVyMAAuZfEr85nWXCid8WxxPDkZffZzz084ukOwOowerD0oSo0hjkOH1dGA0BLyYwWEfY3j61vffII2/+W6nDBYFSAsyXfnN/b2lMcCM6K8XOHtIz5z9osHM9tQixZP9r6CvFvBGdQCZNm35NwL4JvOXo2bvQSvMxCcysHpvWgaSKhHmI96q1wtpIjBz5zbwNNbA/IouZJCt8grIai0nqaDPYKXyjGWdsgZeEU7Cds5lhLwEa70Bt60U7kehAp24wjfejQS/ymb55LW5qaiyIbn1OVuigo9zLUXxhaz31pZEE7WPngYs/slIyaknyjKAfoDHkm08iCsy6NcA141WNzKJz689pGlj9IHm9fYt9+gLLo3Mm7LeFx+SNGYIyRCBXofWJiS4WiSdjpaqw/D3pRC98onT//GBa5wuFNnG2q63j9YBhz8lWlSdz5iTJaOYiqqsIwiRMcpsUJwRiteeS/FrfSVH6j01k8FPZOaq3JFntXcpDApFCvcSI+DNDfGfooxDUTp6sLTK7ig5NTaWEKIgHHCdrUVioczoxWloLiU+KdBcuO9q7x3lfceQO8t9dUO8kXj3HuZnnB6J//k0E56RDNxnQWMEeA1OFoGROmEfXczUtGEmpyd3lhxGqA2Oci2rBJH1E7pcicTp3dQARdqx4KghGV73ICFWqEIn+G4WluJ2OK08Wi9WfDP7vJsUdHF6tOh2fh9uQ1uWR7xhDfwbzXoyW9N3xK2wYgZPe3BPbgWayb7VZY20zur4I/e5NlDtV0GbXnlFz7EbAOZKR3sAXh68HScpAfpj576ewMlz5A4trn7FSSIXnp0Etn6eO2Ns9XBq3uxVnV+yNNSQDbe70D9J+L7xqjAbkxqg+Sp0eA/evI7twGOHs4tLPk7a4JbEBhGagU8DwzMJU5X5e/lJTCCJ1AfZxkzGZvDnQTJovEd1V4FW/zd4GzSEdmzAQ6RIdQIkTAceiPYLeQPLCOzbHN3MyKJAmAMkLUrwL0ZeASuyqeJ3pQcoDbSnDzpe3tlIvLUWA+ZoxSuufEZkJzyNTDPl/UoOOfyKD72DAKHwuRO5Zn5NKm0XsDxZ9KPT4Wtw9VOhs9rn218a9vXhAs+eoQPWGwNjnsbsADSEssBPCs/unWF/cMMsbS1VsgbKVbnUntMIRb9It63tTfifit95ef0fPbJ69/hERqVm6tfmVyMIL0MycmM64TeQA06HeUlKsbi3hjTTKhg7z7Z5DDghM+Vs9WLEXIpf4W6/8lQMl/kuJwN0yAMDo6fDrCVxjGV+mXp5HgVOeaX+buXvpLemHe1mAMi1Bnx+EXwImGL05Widl6c8izt/rUZVC444NXjS2tc/MZAT62uRTqugbnzxW9ST5JM/peAV15ME6CQbCqsfjaye58CPMIRJh/Il8Q6YiMBtxmccB4pFWryw8jxVdkFCbSlJowcv0K26Etf26WDPAXkBECMQe+EgrOBmLL2paY82fqCab1ukUsmqzBX7rbdWPUJeFUw4sZK1qBFmV53jQitra5xZmO9mDBW8kR01hcn0+Ya2n3AawPoHwFek0dya/D6EpL9e+kP0g+gTwvSvTLvuoXQk4MqkkSfrEQcLWPVqBJPkOiCX0dpTPNU5amhPAnjztu1X9ypXL7g3huZcg7Hi/TJtqe0ZU5eIp0NbKNDZYQi0noEs2hod1wm4OSCs3Nz484l9dc+RzxOtXCQM+mef36ReQWbOqSd6HDJGBRgAnZtSZ3YOKhghV1B+60QRdFsBJI1gwvUyFc0k5zdAlnhn2JeTQnKyRY9RlvOMUf4Mz/DWtOUwvgGlQBJ4ujIOQC80n9pSzydwKSoQTYYokj6sVwKSTFm5gZPAU/m78FHKox2A/CaUHGlWRMJdu37Sl9jiaAVst1s5kLwunN09GgcBHpOpkK1r3yHTckTEtjanH3nZ07Pzu5JFRmuGOvP+lMTDEhp5wYE1qXVZATFeyP9SvpaemUO+JP0e+m9CdTGfPML6Ss/+UNw1J2ZMU5lds8KP3pv9+R9xZ9d552ksb2TvvYMpFZZXtW7Tu+wLo7IMjc+/O9W+uhSM5r1yiVEzv9onJ1XnvCUYQ1mZnIuE2hhUGTyuouquzOO5nhGBvRcegWoBjLW84evrD170dlJrHOnKXQ7uzSO5eev0U+L/rAG6e9Kq1FQKuMzA4FywRWYwxkYV0C+JLgRi7fClZ8JaNGRR1xP3AyzGzZp59fQA2fXXQ3SQmZzBC9dQ+ufkBCo5mdDSusPD1eMPMiiLjxwgsWUxwtUqNY45qxIc7Tk7G8ZEOIZwA6oNmErbIrtrPBZurb9MKmV2mD0keSHvclG2gBxU7aIkRFSXtqq6bqF9tcewJWljRq14tnai8q3RmBeY5x30ls/O/ZOqt0tX1v0/uQLlnRbbnw7mWWlrlnu7tkFZwwLdAfM5f2GR9Q7f7RwlsxJ+uDi9Rp8+oRHMi563DX2Zz94KA8G6rUF7sEHWISFxwqcOp6VT6TQr1pWAACAAElEQVRV9tAqU/YZu12vvK35nfszifwJUR0mVl0E8CV4BeAaxKeQpgWWdQZetbll4iG2xiTEFrC19oIjzmaUuP2H5WJV/uXF//8BXgPI8IR3kfN0aPkeLixpuZ0oCGe+p9hLYrNZYw/OgOZhrqH2sMTanoSRurRBjb3C18klUIVC618ALxKMCQg4G7KFaI8YtvGFpTFT435TZlc+8Wjj6ZZdRiMmiwX8AcJBEsDk8/AbWwj2dpzHMXuW0mZ0NVfgnyNOtGpwj1UJK9FTrzHOW4DXlZsl96aCP9o6O7md/trEQt7Hv0dttRT8T1bNB/exG8A6s+yEGKl3hk/hMTvxOazdn50wTHuXAdfektfjiKc4UTdgWOkO3+JBiFUZrlmCKwShymCL2W9jNe619JX0jUvwXblNUaXcVWFSz8Ar677FCqDmUQHXKgdzZj0LPa0H4lEDaEi6DioJq60uv6gGdAoL9LISnsrP+d8ELyaMKFJ12SgZgEHRcuKUSCM00khnCeSEi5zQVooe23qTTRSKETcyQV6qAF55AZUOFjw1Zrax5z7t/lzP4PhsUHzGacxKlXJgviWKVOXmy4ygSvYdrRnXFuq3OBJthK00ay+Z4wBHzYTSnZXqAXR+7YfWH6wbZcDTFKuNfWuskBVqGgG5Iuwt438DXLuSvpC+lN65YTf47q6k76RPHsbFYvoFVlHOgF35SjauDwcs2qhIM+R6SSe/fUH/pn0l/QperZgAX4znseXX5rVZ1/Hj71B352XLuljsP894jEeFJxOkLEkod16YQxlqSVhrU8wGx0nc40HTZ6o0Eevyf4UQr/C/EyZzjd+PZhcTlnkHbafD+pLvTvC4sYEdlt8BsImRlxSL0VmXL07onClyDSoNXYRLSvGxRMrJv2kd1pFKKxx4LN/I8vMLTuDPh08wQ1QwQ06Iia6cncHiVcqeBikiuJ5NNHmlLpTrGgQmXxdilnqPUptKh8oJIu3Sbt1ZjwoBm3DlE3hmbWmjBXZmv26qu96ulD08SQ8ubWo0EgLqL1ahw+pz76symgbwnA3W2BqYPbjS3gGYV4bS2tmmhdQWDWjnbwxlevH631l4mow930kf/a6NK6kHu6/6i37DWJLSGdmj3flxH7M/q5MW5/1BunWsHlyzZsiSeWUaNjg2jljBi2x28Ces/fsDxPrOS0plEz/14VD29HoviFvpLWTBFVbw5Z/LVtsZeAlAQAreQaBam5rmxZFbIgXVpUW2scDDvkh4XQVoTsuoKiGJdaP+RfDKTSViqz8BXirBJer/mapLUDih1bzCHqLgS2+1pgIh4YQOXgNr9GCT88iHhxJuzmhk6vMthivkkOBVI4lzxlc4R11AluSbgFcFubzDtaWjs3NrTv7X1LdJ81cO74x8wEsemd4Ky4Cu/otl1CAdAeKzj6Lelws7a6PG9qU1GiqTf1n5BvvSe1hhfnOKXe+EcWXvx5WHeosKpXcOm7BVoPH6+Un65A8J9fpsPs+TMiqkVXKLJMt2qUqP3mSwLMpl+9CLdO85ePHTAl7MoRpg5+LhfPTyigybxsjaIR2+Rm69ghSZcivgFcG8drlY45Eb30h/Jn3jTVAdGIdKLj4h1IV1rPJ/zzSk1Kg77BNr/a8p8xp0wFiyRnWoysWXRTyCJbPqO7ukX2RegRVObXCtQeRfglc+LavkUi07a0m8WG5Nm1vlnoERh2dme24D5CJ41TgqJCGUWyaRv+xKROJal72eSHQBI7Y8JsxIg8eeUg/LpBO8erx3wLescMBCZm1EPgh4XVurj1OIVXQoRo4UfPaZ0QcP7ItNcukNvkgPfllgusOlxi91QJIYkQbWJk158dZYnEEe8Gi/o8ftxgaqK7947VtLobZc1c6bhJcu6LP0wYh8Y+gYjcJHkP0OPODgpZKzl342crQLNRpNvYQucmR+uhlm90NWZYLeYZgfrGNugTobey863OjR2+RoBw34Cakzbr0B2fPeB/pvyjU+429+Sek/L/tFtGBPL68fSsBIKg+A0SWwKfFb2Ay5wgg0IBI1+hOBkAlxLIRjflZ5U3N5hYKuzXoyjKt1Wg8cxnyQbVAx0BxMVEJ4RuDTqcTjGgcuhJNUrvxTaEX17oDKMZsLel1XdhGiMVaueaJ6rNATagDe8wXIRUJMTI+ORWaSAQsye4cHM+oRWnwIcOXv2uDDZ19VVn5+PvqHFx84vCyYSCrccdI5XvbYJi9YxljIcNmPpklh5i245cqEKi2NFRS/1h81wHSQWlGAi1n66P10K6DOJ+k76R+lBxfeax+4+uAtQvtSLE2DMRe8Rr+haYxvYQsDCs0JW1rDL58NT/TLZKv8s/RZaqU7L4LOp4FNyFMzbGkBr8G/H7HU1sieaTisvO/zV9JrawNR2JPO8ocaVf6cgdflf+lWy/4IEh5WdFR3ks4qyDmtaVhKnQboXCGWCF4DAIuz+IvgpfLFQas/BV5sRaSTlr52byyevbYO7tbkGka35mM5Hh3JIcyNF8/oIrwxNkX2qxB1qXbCoHozpRnjmYZ+FNBEXePrj744YU7DlEioUmrq4nSiAfcy4wjTlYcxlXDq/NHolowiwH0O4zhBu6esePDAdkYrus/PiO4T5OTMY2qQDoi8jE/cqonE3m+5dWtxdm12Bl6ytZXglUAYXcS9d3ug8/AuytbiCHuSrr1JYDnq4ME9v4MX1clwnEN6a7QTFk7YdC4U03SiI27Gz+mDL/VDGHnjgurKBednf/q2fFRAkkky6qFkRvIHrnzbrQ/JHBGTrR9x+1vpz6UvvScp0nc+MPxLZfV1WTqeARnbdMutPeCBP6RO1GyijqYwrhEkgaqIhXU5jBVijHhdgb8Qm3gLZ5JAatc/BV4RaRuoLwmVChxhSXQP0gf3wVPes92/hx2H1X7K1B7RmHyZZBCa3KHInBzw3EvZOttVKMhr+BDiTskNhmQFqVmER43LIjxTH0ZcjBARG3/mFmw07ZsBgFv7MkK+9q5ggkpyfO1dnL9HK+dgMX/0XfTYzTy52oyAn8Mu9ujtTzjYIR2/eH46l4I1mFeP1ZueOc8eqc2gX0lH6QFu0hTJy1cvXvxlF9GNTypeqsqP0t5nL1NbSTujAjLM0SDaCr9bIQ1dQ2XamuTlkJuD2yNb7ynY2NWVnctH6bVUgdpShKk8k0fkpoiJc4kilIky0tkcuC7JRl5zCUgEM7KvvEDlK4MNl8IU3yjn9ERe5q2DACpUTZTseWuEHIFtxoVEQT94n0udcAvCi6nsczAZ33F+1m7Pvxg2Kuzf23l9UUvNrrawTVbXHBkBqHIIMWEg7ZwIwTlUogI8BMtler81bHSG5KPvNyU0Jy7X1pbzmCnO3pzkkEj2syP4gP5bzgQIA2mQK6KJhF+lzbhHJz8viNFhAJZfKslp0GWpkHQQjAfP5k2ZeFVS06TKVARrD2A424v00We4hDwvG1z3/sbPntYXF1Pvpd9Lf5AO0pX0aG+tPAJPeDJkcEvIS5MluOU22xn3wEW89YLIHrxAw+DS/AZxuPbJsHsrFifpDaTq7NdcuzisEeprX/ERZW76SBWmpLY945UP57hHMycU5Qyh8sN08ft/AbwCnWuc7JTZanBVzAHpDUR/zFekkR3FK4HE1UOUJHgFBMkTKqDeWN7LvwBekSiiirF50OdRB0bhGFQ2qBVHL5uFALRlqc+vTrs85daMoi79ugXZT6Uin4Nq6hK8kgVbIOCEjz1dmEaEpRU1KMrNiJcJ54DMnspsP0gZvNR4WwgiKj88WXmEynUAPB0hcAewEgXUfqLgtACvASgZ3YTuI6a6EwTC2dMxezYvR7XGWAW8Zj8N7honXzQ+Beed1/8ne1Nf/EUfffbXcpt75MI9HkU1+b56dCM2wOLszaiTi9hdrXxA3rWpZDZ0jf7ixbl66/lejuT7JD1JTya199Ig/Sh9b9d+6yueIFf2vpTJR2ts3SOeDQojGNnKxvpvpW982ljm7xeRa774PcHrX/jTlAeKrNGVjSTDRc+dA5n7BExbWitr3PVcpr4WuDYy25SlIzkmIV7AqV8ErwmlYwz0UewH2JKXsu2zi5kWyytdib0pzwAdnkLAZDviBDtoBwY6WI/pzCYak/rYnitwQ2HMs+mqMjimHr4Er4w8a/JopUwbyfY0UVR+14ATigfzxMxgWFKCP+v8BNHrgL3Bwbjen0xjw+kivGX0TM35jEMzIqRla8fBlEdOgQyZjElWSHy8W/hOl+9azFS3TiStV/jGzqvJTPzkh3z2Fr3e+9oezNd6Nxvf2+OaFT54QpMbUm/Xklrutpj97wf4A+7wZIvWHdZr08GlelzZ9PH/pe1PmizJsiRNjGV8g042uXl4TJlZmd1dRFgARFg0VvjxWPUCK4BA3U3IyikifLRRhzfI2AsJ5vjkqblnZFW1kpGRmerT90TuPZcPHz58ryxE8Cz95LHc+gjhtGyXxf2EEwrSWI15IsFC6+Dgir71GaQ36zoqBJ0q0IVGH+qVtX5hU5iRqth4LNYfNOP1Qgbf4G0LJMR4/8IkK2ga0RMK5E3KdCNuYV7D1UWZHTSlljoDxmaAXETO0jLj6IrxHudHVMatvS1dFe5xWJuQS79+guy7WVvpqb1mE2PrRNytj9uoPfvhwOV6kAu71ymPVL4M9k7Ik2fgq7B3iSR5AMDLd8Ejgjuv7N5xm0bXiPHpsHuuQ4NxxF65kKt8Z3SFeVzbthd56qV0jdQ0IibL9X9DFGcIARXISCKhs1hXezBZLWetLVD0kxfmlecipeNgMFtI2gJ476TvpA8e+QUdH5zze/TwZsT8lXcYLWntR5CI70a4V2RSeJI2PlL/pTNpmt1ba/FH2xFj4Fr2Q559cJ38yh6hNq8vNPC094/SnKkRATNk0730K+m3dkq0ayGE3INF1HMpa36WbYVfnNb41azrxnK9AAr4CrK/g2wnNCMJPSxiXkvbIeK8zgi1E9I6wYtkLMvvF8Brwi7nec0SA14PmI7s0yntuk4d2yPhBTtIpSbc4wysrHCngw3rMhAEvCoExgbcVR6EysFN/zAbA5MH5AK84sdIjzqpJeBVgjBnn3QBphS+VAFSmQ5HgFFkLYLXABy5kLhSZ3ZAt8q7825BR5v1GYQXIT0g92/wJIwOF5AX7JBlI1V0a/D6DLC+9mdtvKOmc5l99kMreumD9IP0CSXeQmICCEH2zoA7+Ty0pQN8lt6BFrQBryzXoxnTnY+svsLEVHaXPfnOz9jVvjQQnqSf/PizUvpR+t5nqy4r/JVUWhAuHfrLeVBP0o0/aI/hSw+6ll5Iv5P+Xvo9Tk+llp4FnHYHwWtev5LKk9YgmGVfwWHfPLPUUhYWKnXWh9s1TQ/bLbFDUg7EFrccTLnoO+RS2aIUdujREPsLzGvEoi3XCsS9gXgwC4uzij6NwS2vCuCbBn303gl/AtwZkMlajmxyaFGQTDbVbL+0L7Ran5hKw8MFeGVaUwHKGWXGG07oyMe0UFj16bGG044bLVYzaybfhKB1JjhnUDD6zC6ALOPf+xjVe1O/mCjSzXuEkeOM66xA3M7rxDYbKXKdPQ7FTXDOHv/CM/4gvZMG6aWfvZvtBFtXUY2NCQv1+Sx9spud7rezy7h7H9t7wj3uvJ3ySpqkd37uyCTVNenvEx6JfOWzeHJ8bOmzVQ/eqlTanZET2jKTB19F4WNlqYBLevSTRyZXvj1WIcWKAjlogfQb6a0PGmuAHAX+ztfF0vk5SsYvFmzElQDPc91fay4RvTUOicqLgEn/woBGaw9VL6pYFYB2xqWGZQXIqbClMBixOEZMfSJ6gJs+515G66vWTtTJVc3RI1N7WUff3+KJnbMD/MqD2eCAcG7AoXk1LKVyGqH5I2iU6QjSV1AU0yNJEJbrYWw8EYu+fAUXUQmZbkIWTXlzwNPvtA6SmMRHPBSgM+yxmJxxSQ2ae8tbnTBH7KPuoKQntCiHThiErKnaOtijHTDyCx7dV6s89Vfuf9ROdL0vbOFLL7GNJgGzuN/vPTIP0o/Sj34U+YASfTaoR1EfcGzf19KvpJfuCC5NxM/Sg/QvQjY8ucs0WlV6sXaW1n7eYI4GXAzBy8TvAD2Dy9kWqCRLigcrXo/OREIoRE/k8s5FbqQ3PhHtDme2CbM1P4Ow2HMCTxfdxedfKYHSa4pSX+P7M5Ri4Ryn2ZX2jDKpwfrPVVFSp65TIT0l8ihusTagvJe3SnwQvAhblN2DOwdvUTmDLW+gTqWrOfj1B68ZevQrY1OHO62NaCUKyAFDnf5qas4OFChNBaYTilgjQK0EtwyPnR1dNJmUeM2iZSylxNEXkwZpJKXoxAMMloPvKHMRS3roE2dhwAvkN4w4mp7w2QYkofe7XO2Vw3L7bBelIKple1HhO2qsWH8yySiM1xfgtff+oAHNydGwe5Ze2taSbLrx3p9HGx6erNefLAB3a/DqYYMfHJAb9zBvpY3dYSmCdjOIwAnH27yUXkkvpZd4inftkxy+kR6k2tbqyeRLntTOZ+V33tEUO0vS1xOMGTwtOk389KaTXRcL2u+k/0H6W+kNukwsq7KGhfUfFlOs0e0C6eY1RkSyiuNth7ou3YEZfbMCjcTCwEePPqWmBGso2AbPb60AbfmbFVdIRDqc+nnmRYW2w4oSjoYYnFSe4DEWqFbvui6M+OjnQY2+toBX625VAadaC72k8KCleAsNbKHN9M4KgnBYPAOvAZ/FBTw/a1RGUct/c48LFb32KQVhXjM+N3AvGES1tsfIWN/BC5GEkd7jACtb6uQWp3bQKVF6cfWe/REpJLuI0ogp1lCe/kjlODyYrCTeHnCOa4r5KJ2zWVhaiE9+SIaMwp3Hqnfnbid10jtDQYGeZGfY4R6pgxXTa+lX0t9IvzVn2kEo3dQjzodfWphH9Bw2lsxmf+yihp1t8Ek5vwNtldfHCbs7K+TByZxt8OQvS6TFlqoJfIl7NJbjHF/DFXlRB17oVxPYi/Cy/INtGeZiAThLU/kTlPcCUDetgWTAoqnwK40Xd4CWvxiyVzy7SOr+ec8AFUU/yvT5oGHN99glO69lOhZaQcHCC+V+zS1TC8U/QR9Zi4skqdi5PTOazEefWYrGvZdyjTEUVOkK34+pKtgfoCXXKoDuFZCM/cnSFdpks07tXQVBpgLdV60VqhwHJVxbTkaNvPMEn9fRivwoXfmcrCsch7P89JP0GWnnwWSJARa9a0KySkpswYQLDOCy/D9akdmC29RopF0cqTb63pf5OuBc8wOoY+9m4yw9+lCJzkROyFSTidzRcHFn+95X0m988uDR/OWD9En6XwvIGHGgTN7mlD7G2fsmF6NC75Ucq0OH7dohIU9GqGy4Wu72yRPQQ1sMonJtD3Bmy9D5ax+Es8FqCRY8x6Z5jVMXXwSvfLEMq0wVBugW/TPpPG9SofhhxUIXRD53WhOnCngk/H3RtCQrK9crk9cTDeYCvLJjK+pL7jcRmZUfMOrBMTZWvE4WNTNW6ZSGhtEKUuC0qMnEu8OTDwuclxVGFKG5AXgF3WbkD7LieQ3opKZkRxXY7Gyh6wqW3QpIUbq6DnglV/XOwT0aBif4ts5wnId19P7OAl4vfd7Mzu98kj56u3PnQ156h1Bj3WuLQ09mEJuoxQFfKg699Ch9sMK+s8Oh9bAQvMLeo+eNrrRTah5d8w94JOMsPfm8+BEiwoi5G01oHk19F1X7hZ9rWLqXsJfeLY2BAldzRg9wNum/ke5cHPeW0V46pAaH0Qnm6QtWesRshf7Wa4tdnDGtkTgdp8E/amyT+Hvpb6TXBvsL5iV8c8KSTuzOwDvhH/n3BXwsisKNd3Cd/azxqAilg0nrgqTG51Yo5EZEGLO01qJXcKqG7F+s11u5Rr0LFM5HBLwKFI1h+cKuS5aUI/7M7uk82rmVDtXpGYsMSLGZMq43xeX1exCW0d+pIfwwnSQBJEcW609vMMjURMJ/A15khWz9LOG6h0mAzCuNyno9yGFegjI3w+cwmgGcYOc6GVkK6VZ6a//ilY/q672q7501P0rfSu8sxMRmcAQuMK3mxnc+jSb8cTD7u/eK27liP3vnw8ZaTwryHE4zmL48Qc19Aps5Sp+9bAfpAyiejOYncIIRNeS19EJ6JX0jfSN9Je0wvMsa+bf6bFQvLVX15rgjOvcjHrnUYFfsCM6XDFXjfO90S9Jayb9nUN7aB3IElgUpI2rGtR+5kcMwhfgdn5GrGX+etxn5Mj37XSHhZhn13utaeQ5nT8WIBVTiLgio6ROXoCIJ9gIkgb9YAr0ukDV3RAuoEGvZMzIjaiq/sveqotG7x/gXazxbWNatv/+EQwpnE5LSAbAFrqefkUwioE7t1s5oIyF7EkHE1DPMAIQQkopMegWMjzDdYnK3NlrPeIx8uN/TGrfm9QPVgsRp6A323LIHM2ODT49iMv6yG+nX0j9I30g3PgUsqv3ZnOSD9JP0o/TRnDAOBtIQDksI1QZnnxbInIX1q9EbNUNxdw6JK09KgTEszVCO7nxuAeQd4HnCec8FsKq35zZ4MtiVnxMDr/0Usyz2OqxqAoMaXfELlG5G1mhdiW5NnAboUnn3jcFWWNv9+q3Yg5rAuUskjqDh4BC/9rMs76CpCNSTUMUVQix4/hXwKtYvo+CepuuIGxf+MYI+Jcp5MbmeEoBbgVFQfL9oQpaoOcsvgdeAQiihWf88eOWDRqPGhKEWwHdAeCy57dqvf8LjgAswqMoJt8SqjtdlwghPa/A6O16J/i3+0az7aZncaDxswQsiYiptfQm8stEuQBx17QD9jJhe4UYmVAfRhMp1Mst1Rp0Z8Yt76TcGr1scVSovmQfpo/Sj9K30gw9u2GJJthgQOhniuaM0OCNcZfCSq7UTwKsw997h9VkUBRT2rV8/ga6HdobhF9YCR6fJHQ4lHVxbboyhOz/0csGTG9hprgcc7nx2szF72HJuw8kGs1AAPUOubKmq3a5JKn5yEMvaSfSM2bx5i735UQjSUFqC4I30t9LvpNfoNGpdB7JwKgFJgbPpGaJN+NGIiJcvcjF/R654xEasBOsA8CIsznhbYWmR2VdrXsA6M39fXFK5pgMXXdYRuEDWJvd4w1V7R0PCLlQ3af/sJfdZOtqXKGzPqz2zjWdq4z4VO6udW9Ob9Ti0AK+N9+BN63kUzkPL2E6469yvkMMEmsmCNoASj+ved5S0XWFjU4lpTS6ZkPbyKzTcUzNP6fi0fsribM/Db6X/Sfq1dOuDXCIZ5rCcD9K30gvpD+ZfscEITFmI+dZnn15L11Zb2KctHdKzD4uosUlrwZ09DigrELRLmf2IXf4TvAYnn8GwtWh/9jKhC3djmrnoxB/QmHvhJ142/sVlC+Xyyuv6SXrvD6FwMUKVPoL4xs1whtq7gE2LKMuJJtV6Jof1iYMy/G5gZ26M7TmJNDXJzs8hqtaQM61jWcAGrXPxvA7tC7X9QrhPm7m0LHDlJKK1Hk3kS36pjRYjFKcCVeiMorFeQ3WBfF2iQri4nQsspFZWYrfI8yu50KC1tj6kg0IFv7fVerZo9miBtTIqRFtrsf4qJ+6z7yt4sLxtvPMpbLJPpHbLpHq2eWrE+GcuSvx3dgeSRWOFnMwWwh5FF9NIXGz5UTwoKTKzmhlLg3NybrP1vVxZKtx67m6l30n/IH1tCb5Zd5In6V76XvqTjb6HZ8aL83ohlOYRL9zfahBCg8uza2txJ8/RhHks/I8kUm6Rm2xz7QxCqQw7F1khrjdSJX32Tv/OleqNfcs3puuPtjnkGIfR8Da5lX0jbTqci1ZiLc14kNIj+pCpJDsYGJL44s+ib1AwFmttQUy/OIpR6ZnOAssVN36i0h1iosRrRiRBVmXypHKpX4CX1iuZIBI1+Rqq5RG3v1z5Cepw6hPm3wg5FykyujwrHDbH2GAUbmFaX+FFWqz+PfDKpw8Arxi+hY7icl9Ls6u0Ne/shxiH4PEyNmhSlSZXyZE9lmVn8Crc4NrhsMPcRcCLvHHCIExAmQKG7xbQH0LVrsGLMm06lstSf/LSyIjN2JDAQIoTI5R1xmzG5Nyix56t/DfS76W/l966BuEVLuH3QfqDR/Ij1OVEdbeuCXsvycY2uosyu/WTo494cNoJK/eL4JW5aECozlaLwuWy31qOmUUReMRTN3p/c2kkXDtmHlwMb0x3Nig4z642mxPsO+EFGdPaDdC0TRoP5dlsqPIHbCFNNS7/Tt51dO+18QhsKozQjNQGulFnKldJV9I30u+92alCkolefSGSa91jvGBexAJ5dKJ+13iTyhtPZxuefjR+yVSic7Kt8NGTEyP15BrglTVZ4xNLRzmrR97IBcOiUk1Bq/4Z8JIjWOsEkJNa0ox49MQNeOZxxNUnnDWZDDGb3WwNeUGQ0qviBKrS+eClxsLJxushAFfhj9ZmphCf5LCMvNarrkR4p3YKrdtglaYmT54uMaf5uBGJjWp2AcZaGIYaZKMWes9yDS+kv5P+R+kbuJSTvHsLcu/WHuYZR7BmkGdkkY30UvpKeuNydLd+eInWVdwAF0Bv7EiAUcJIj+DBTcLSqtUAxDj5m7Uz08E5r3Pe2lnmXPLHS+kn1423DrNYrUL2a6muBzCfjeu90j3aBxzV1LsOzJ6I1Dadq2Z2CEt3nHLhJwtwbMAPrvo3zok1Mg61i637HvX6RzPWTXRJIVcmeWXVjohuoYKq8PoSIRkKsTHxoCkxHCZMScAMXh6vipg64acBpxLvz/VEoS+7kIQb1/rImdAA4cSo/MrGEzciUU4oI3v4hwsA4clBmqUZiJ2Q/UKoGqj/ky9yazmgQagUsAfmMJtyPSzFs7FNnNTrKbtoh9ReMekZxnbE0qNEMkn8kNwyD5R2/4Rudc7tW7DHwtLDYF5UuyV4J/3WhswaXQoWIDvpJbbSlMaJeCZSpCUH3ni7TNSWAVRl7yC59vHMyxhu1uplRmwPU0B079FnkSTyYxg6mjVlU9ijC9TPiMkJO0u+lr6WPlmsa6QH6Ts/jnH21sIleOosj9Fdl8bdoU+ovHvXxEv1+IjHvBSG6xFOOYKzvNW8R+zG3/FoqXeHQ92og4++1msbYXZrXBBKCGq47A6RZY3rAiPxN63tVKwTJkTeyQomrUxUz/OLFLcoZVHTIkazhizxK8UaW4ULG/Bx5fqjsyNxXoNXh3RVYVttagZBRHmy0FVCF55B0s5gAhtQo7TCG5cN8XPOXj8t1gbFzhJ3EfBiY0OYlCgC87PxnIxcmzUL3UJmC/AN+NAWH50BZ8Kr1m2Y0g2qo8HohL2OPChkOW5qAvFeIP5O+o30K59Tl5EUgopHZglmiQkN4YzMtE4ArFMKXHPtoubG5/ylhyFE0cbL8worJcvz7CTXoVQuXHZtcdT/cvE/+QiJoP/WUPNSeil9kApXcE/ST9LZoP9ZegCj/kvbd+dqe3mjhaJlrGcoew9miqXB6zOql3Cu0QaRO5grTj4+UYbt5d/ZBc6u0YgBfSm99U7NmCovVFaG78XcU7Gf8CtCQ+ziq1j/d8kGZ5+58WBQGBDQF4iT3BJsSn2eEouNEioxsdSXX8K+0AEShxKrosX6pCU43sgRCpBcNQ0m+ssrP/hoE2EnZOrhDksoaz7zMnrxFA7fHfKc4JivIa3XuMFqfYxg4u1iKjndF68JfSCf2tmGyglKfyqruvV/C7QAZojVIya9NprP/vfgm+JBW413LcfNskhfr6TfSm+l27VbpoRFrPJjSx+lj9In6dYPt5jWqSvA90J661Vzg35+jeZF6xbAk3+9xebGxi/b+bFlpf02UbYONorN2KVcWEVL4dVia0fsrK2f4dGamvzWVGv59IP0vY9unqX39kSUUlkLcXdjXlhi12RWVenFWjq/tM+sHA3akqGepCWjvx875Qy4nmFrTA84SeTWO8zZDyB1pNMqIUz5Iog44FdmXznrVSJEehKZ8GuAVt6BhoZpLRMXDvALaXuG/DWvP3RGHy/v2eMT5zVCM3JLo9fGFch5LcVGrJuQmhK2JxgpZ8dX5Re0a0dFgRivIbxMoDrRkbbO1LNbfDEryTEjDGaGi03dKJMXVXcCacLu5ohaFOKEolouKM5rvSDOktaRn1Iim6A7RN3JnbflbU9eI5V/vV+Hwd6TFXpz5ycoJwuN6zQ1gmW1lukmY0Z06QqM69qrJgXLgKeLFYalSXpjOtSZH9YIjCu/1Z1vdoYNNceRhMxT8FyMpnd+q/i5Hh1Cv7Jb9cY1Wmeu9CT96D3gdz4Oo7egV5SocXcOU3lxfgaWDe44VXjIbQ+7ZsSAYr1K5SU3IXOlE1gaVnbmaT3aI0lzO/d8swtcCOusSRJ9OXwXPhA7Zb9m2FqDV5TxAMe8Bq/lZLNHiBwXtzytP7fEerhwRIQTTmvcCX+ocRnFs7umABa8Hvwmg3VElv2pKOLkovYd5fpk18TZXGXCwhgw2hXKv2a9dShyWjjPxlcyQylocWxhDdROqcw7nZ91+RgDmf3MZuuapHZ4z/70JNHZK79Aok1ybR3/EQI4/gm5zopOa1zLp8xeclEHSQgiT966pqhQeuTrosrYAuBG2DaSzifvmaRykXU3I7pqP88m7tnFklTifIqdhbFboPYA7J6946IGc3tyk691wRl6/+QDFEfpjSTHag7CmV2OPgIfZ+xB30hV4w0fAnhVvu7PnryFq/WeoSd7xhpP89EQUyGF9ji2ojTvbL3x6eCh7/3rnY+TurPLcecQvJbeSG+wnyAm3eDgxXxT6WWtOAG8ZuTbck1hLkBQLgNupTfSWyPXAc8Rf66xa92mj5rF5mEukj/N7+ab0zOwI+26EMkq6+ENLjLIlRZo1nxSy5IqTrYafva05mI2a+GwNEDUhqF4AVvguDybzZp55ZChTErnq2J6K9bglYkuMSAzGEo2sbU42njnGxFeEG35gIlLKhLOyBdIMc2LKRofvC0wVWiI5MnZneDFadraWC98kPDfFOo56DN7mDbwSMQl29rS+cL12J1dKGcM7DJxL3wM8sltxp0Hs7KD4Mbu/9G7oGP1e5Te+/Rd4fjmybP8wvL7glkV2pvLEC2F62srMjc4XjUV5rBuk26kpi6txG39DFeBnzx6r3jjbUGjp/3KDYQl1g4+tWJ2Ic9cU/pKY4dpEZKphU/r9lcPTrWYr/c4kCZOWpmwDQ5MdtZLLFkZvSNxJIMnyxO6LlTO4E3SZQsawwpWWAG1hyWgfvHRE9JigY8jjM3YwJ7LoH6dr9SEZ6fCxnN0QuaSxzB7F4UPCrWOQUlQeA9mZbJW2fpDK1uzZcYSwWoyD1xec2VNlr27CgNe4gaDiOy1kNiXGJMSjevWLCV4OYOdEpBigis9iSc82DVKbE6tmrCnZPTDZipDXYhc535vt4bMFjCZuztjoxyha/YunnfSO9sFJhC/GVtktoDYCJJhsIWvoYQRTMbCBxvO3+DR0ZUPhl9QoocQd7aG/tFn6rI52fhkriupQezlPItlVBc7zq0/NBX7e+ko/WiTxEt0rf8MC6WFh+SFdKJ67zmvTQ8CXpPlP24kEUahXFPYeV1iybMVA/3sM7QrMNE4a2VsvUYLNBV/Iql75plMu3yC2zBtzwsUIC4ErSZk9sly59YSZ4/mWBY/K155OY0gVwm4Ei5tCrsVIo9l/ICPIHjlowNelQltjUbICTXzCPYfUMgGqHvrrUk/M/LQwW9VWk1JDZZElaWb8ZlNzC7Aq8TpIQX0wgqTorXFhQv7It8UBq/QrRwSESf98KzzkXgrkR2POJ1+9vezTTfYUTt5HwxG01pDH9fgVX4JvNLg7f0pNYZu9NFbP1qzDssSmF5sbilom2cpMG2VcNTKbOPofuBWeiO1rrNqy2Z7k5IO9eqjUX70feWdN2DjI06Qy3bNZRh/kt5Ir7xpOVXGg5+e+MknzgfXltucFpl/hwFNOfHkDewNAOIzCN8W+koOGdjYb9bhlB6Z021NrBvjVMhajwjYOmNvjap7M+AtZiJNNgr41ToiS49dtwavhH4E0nJdqxCJCkDSInq99qW2sBQWcHdwMSeaG0RkCrwCaHXhMo3vbXR8X2gYfDfWV2FekWq69ba6rL1Md4Trzw6XA05AIQs7OVUU9t7t4GeK9WKGf1J+h7zsygk53cvKsVGuaVexFk21/maGUUZtdvl2dn4XdoFftEIKTPQA90hhUTOQSpwVLqZyZf7kKaa4W4B51V5iF77Z0lrg0aMa1b2A2HyPxZzEU/i5FwcINKWbAnvXK5s1XpeI5+066nrvv6ltn9h56e3dABwdXR+lH6T30nvpwbBwZ7vp3ivl1sJKZu3kTdilzyi7hqTdWq2YpE+mWidIqn8OjLry3e+dQ2eIs6ONiNmbKWxWbwyeD356R2mwPTlGrvHUu4P0wbLmfl1SdutSagAszc7UN06js+P95GAfkbbCYWrca5yBUTnD3JKbRmclIagnmBtqvLgwfvdrCZtEaAY+jUAaMocQjGZN7rl85zXJLAB4z3W2aN8ptOKTapz+Boz5BC46Q5AtMYCdexWFGd1SOm5cGMwoxWuwl9kRHdaahXWN/fWp2XoUbwXi9IKAkUtkJFMotrY919hrw3K0wDiTfaWVV4FUzCAkIV3ZVFGbF3W+r9qRFmmj9vqrcPHZLjf7fZ78RMQOylWJrSpPOO64Q5G5iFSPHrooutnwfkTIldgKzV35GV4hhNo1jgYTZvdXl0T30cgdOavwszAaPHrxyX/uDXWlK8MfpG/cG1ikv6M9+AcfylqZ/iQJ/HnZbNDlmAxDpRGyAceonC/i/TtbG1uam3tEeeGP6T2CPbZ0B0c6KLY75LWEWmvN8Wrd1usQJZFhGmBQRLXo0eMzmaoAYaB2xeZeKpbktaWLMK1D/wL45mf84UJaK9fgFTRPcVUABShWXYhk4QCpQmvoZPMavDpY5AMcA/4+exnEdHoGg+pAEnbeNSFD4Yi0kfUQiEzJdGUFRQDZCq9nMzbDnrfif+WV1pg4bdwZYt0Y8OJOgAJLt3KiakBcOy/UYS1Epe1RY0fMRU9i9K0Fzqr1pog0DBaoWowBKU23MPcefCboB/ffsu80omawbPY81ni0URLDzmeTRsRhfDL7xv3SAP2TVA7Q6x8t9OdQ3N4bfGLmmkzmD4a8gwP7e+lOeml2tzdnGi20P0iT93a3KAHKMK8W0ZM++JM9/ulpUIXeeyIPqDD3PjcliSvyyYP0Xto7jfQQos4wi2yBNa3FklvppXsKGfphrZkNuELChKAJz+uecvrjITLUzINlkaCX99zb8R/o7EwDiX3zum4snn1KECrVFOWues2tLnT+eo0Rubx5vSpSw9TerpbU3eFOs8Ot8/aJXG2Oq9mCiB0t7W4cVUnalGpG5IwR4LU3OSrWICtLCWnDjsYIolXulPcec+kGfYTYu/mL47rmDK7NkNx6lM1nL8J84gC5Psyocj3RQZc9mvgHvEpQngqI/yB979eMhuDSHOcJ25p7MK/Zdd1oI1O2U26xqAcffzUh7bFnS80i1D4JgKKmfG7ge+kn6XvpJ3cRSzP3k9uYd5ZFB3PABbw+WtSYpO+k19Ib18BpaXY+KPwe4xkhrZWqukCyTu6OxaNGEPFcgNGhN7oef3QG6YxJSaalsfqj9L30yU+UvEXsDDgjrPfOgls4DO+s8ArQdcYDTXiEULs+wENQdXKqDcuwmGlJt0IDZrQZSlfLW+jdeX1W0gXrmLE4uBBTmwXSLtJf8Qyxci9Bx3m9NEOZCkgrswXcxfvzGU8I6n0jpHaVLzKoH3HmCc9f6YEBFSarQi8rsnXtb27Nu7KsM9qDbypRQa5VYY4K9M4LGM22PmolPtVoaDNyF20csX1EtBzdt1hg5glK6fIr+e8Ep0W8KTKq9fbKTa64IrjJJtjZ0PjZATxAEJGpL8/DOkHALGyQPJmxJDZOeDxhHPQbZ4MZO3pKnARxdL1dI6lGShgdAx/c+YxLLhEruMrPJiajdC99sj5WS1/jRKLFVfoBW15LpD52R5KOCqmdwDIT9+GUQbQRB86la19awB2xGk+Q4GfTtgT9J3fwl8ybA2YKD+UtMnVMsxu3a7mDLuCV3fUnv7hFBkmsF/DvFlioRJAR0DNDKZ6AEZXr2AnyA5UzKlWJ1CS4BmyqxLCXQDFeABuYwjrXGrwo5ISWpEMQKrUzgz/ioXQjpLuLcmLyf1vP6ZNjMaU+eVfhWZt9sxnG0MKdhX72fqN+EfdngFdlcsWNiCN+usFWuhskpLTUcl8TwpXMbQKY5ogNuW5MPiDPHw1eM56Wm3yffViTl1JvBJmtS81efR+9xXnwy+IkOVqR71wx5vyuCnv6hJdNHqsNlOxkpsq5fEY2HfCc39bBkCq6dyD13qP0wYv3ZEAX+NvCe58stRfmkEvLtPdZOLXBdyGWW9PXEcstob7xwYrLNW+SiKLBzJ6eAnK61g6EAbaK5U4erfMfzPOO62djRTasQCJOnnW5qVL4PnMuXindeY/WFdZwwGtEzZMYis1az+g+RVrB7HIhDmvNpwqAy5X00jG9XGoDR1SxXnUl1LuksqAM6/ASKMbyNYJZ1obW/+CCj4o2w05HWCndw6HcmEZ2KqJ47AIoJRZSDg+5wJ3Zdcu4vuDOgxOdgswriWTErZXw9EQ3DnhpzcLqNXjdony6aIXIi1AIjxJFbOloPHldBIMuME7uNC6xureMl5d1OFemepYJeNe1n20YWMka6Xz2zOgfPbpZV6POqGzprJylduhWxIYVubtAudOsSxPKGa2r6Ad/59FWh++k76QPOC2p8Z+9zQ9Lv2PRHRed7EefKbWDSDn6wWLXWOOViVi8+3s7phZ2sq1TbDS413otuE+esQF7qAqPShoII7Z1Z6pr13scztK6beMoGP259Ze2wO19sAepSHqYIRK92/A0+yckS2euAd8RhirKTGo8yiwlCEyN86FPz2hDiVwmoJdACL+o4+dlMzCMsluBicgH0TAxrN8z+B09urRW2eCxySGcwYnM74g4CvxPMNwVnqkoJFsPJp0QwvkRW9h/ZkisBbjEiOZw5Ls9cksUUTY8Wjff9uCf0ZqJ8SPe/AwfdxrXsZynhyETlX49aOlw5PsziFb4Q8JvmYsNYmM0PDxhELR+zOYAHeeIwvICueUQHREqZ/96a2NTZUIVc4a8H+cBW4damJNnK29Hn4n6uD50L3V1tQ7jznB1kN5JH6VSeuMHbt949+MgvfO0buHXrTy2vQ8puzM32xUIa1K00fko3xQqjRIt4BFPRaqB3ln5G5PIePxKvHlkgLQRQvFlcL7yQzmz+Ef3MB89oE9uk/J8ndoXX2Fn6oB4KvwRtdtxARHSttQbhW/z2oH7BOl8Bs8hFtT4LKqlIVq0YZTraSvwhrNX+3Pwii1EAK/UqGwb7EApz6jbZ7CafBzxVzhxuEFJlmkqsSUnOvtgxSEHAe4sbMR0RsGihhSU/DEYvNJJruDVqUG6Nj4jNHSafaaA10UKjHKZmjAHcATURrzgi+CVQlGe0Av6fbbEEM1467g6o8lfeOoPfofTuksfb0amO3J5FnKPYM7NNsagXHl2wlReRGc88Sl9o+X9n3wI5b10bwZemIKMCJ7J75ORnN1QXQ652fuB29fSK+mltdjWsxkqk1KllG79iMtl6q+Y8RoEUL++rIVtnbDnrfJlPZh5TUinccDI7UemuHhcw48bu1u50mTy9bX0ax+eETFm8HAfjeudmcXuWbwGbZNFU6RVMNxOqEaIXGFGhXH2pePjybpotYbsqEflGigrAEoFlKG2XOKVpAxCRhXwTr6jEZmqBKrSCXDjzPFkDTJdjzPU+xHOlnj9e4BXIH5ClNfIw5XJYIcKocWZWl9kXgGvGWGwvMk1oLxCMNSOqL3bAbd4BtkMLhDwCoT16Ic3X+JiM8ja6CmI2Hah/B18wQ3iJxPd28+zN3il7RUzSekrKdGTf4L3K724ygRzckGz9QbLjPMNjpsKS43uE5hervbg1ZRGfbMO/oVqfZTeSe/NGw5gCZVX37WnuLfbQX56zXvLYHfSTnolvZVeS7P0gJN15Wy09yW10muD12Jkva6vXZzG6FR7SHo3JUYQ0JOz6hbrLGFy9MzLdoremDkbJ67dLL/yVuvZKmSBArxxrtnisXIpJ3rvIP5k/8jBlsgBRxQHvSo0l/r1gmv8yt4SR6CrBGJRMwkB2Pmy05oLQxNEzxrvkwqwwPsHz3LBrCFJQqY1e6yRqcPNSryYbqAOl7RHRTfANycMHT1KWfeF72j2gQiNS8c0S+ovgfGEXv6A4S3BjqKqs5dYGuRO6KBmFkovlI1ZX4sUwcHJsIfOya1FHntzAmwfsVu88ItDBen2HM3iTnZUBc7Dq9mBrDH12SHVruF2g2U1AgUH+ALSyN2YmkaCb7yleuuwz2AGhg+IpScbB5JLrzxfG+xsfIKtMgeXLJd07TPLqC/00k/SOxtQ5IP59t4/Hi/ek09SXUSZI6zj937k869tf+2lq0UFi8MhSY3BOoMWxx2XwrK3nXf29HRIOmcz/srSl2AgrPxAttHF2JWX02wisfXOdl7VYM/Ie5+MvdSNSyfwgIQei0IEsMGSTIPv1w7TMxZVyjwynGDi7OcK0Moc3X9CjquxjNOmp0AfVwkrPTYeI2DEIXkBXuxGFuvfqtElCzHeY8N6h2ibPEH0S7SQiEpsWtsYvAbX3jQ8Z6zSCipdXg6ocCbYu8Y1mgsgHik0YBRCu/PSvQLBS0Gr9dyRwYbAdxjDDuVfyFLC5vAMvEZkr87u3z0qrmR3asYVri0f1yKfpb960RqdnaQDfwIbTFzV6zKkd6mZa46Un4V88iKK1Jedz3ENRA6M/a12WDZ2dc3WdLKj573f+bM0WgPawkewdaX24LiqLOyFhS4K2e+kVwav670Pux/W5pjYQQbg9BnEavhSV7133y8luLy7grIBK5+9AX7GJved5dmN9MIPEtiv2dNSfH905Xbw/tdbnDPLtZGM1Puz4mzMcr3wr140AHOzjc3KTz7g5wFsW2sNv1zTEAoh1bN/NIBLKp9smkTPyMJI0UV1Om6NyvJDmFdqqtEp7gTxcljjdRSyrKLGg9b45PVp3dkTiE8NvlNgl+C0HhMyr9L5PNRptI4yA7Maj9LO6fAaZ0OFl7G9XEL/T3l8dvCnuuv9QScTlpQmJ7RJgyzhiT3AqwG7L0zqCV5pteT8DYJXfj01Qe0ssiT4rXcbzi7UlwW7M2bt7RRt7PoqYF+pEBKlmdeTnV4y55i9frdGtw9+jOdoiXG22PlGeo21FiH5kztrC3jdWfjcYmlPrqWCsJ0Lr9om2zvpb6VXjufb+lr6Snow8GwNITlEZJnzg7XdETseC79y8WedbYAcjcxnD2ryyB41RvyKZ6e/6N2MuLSEhXMQzkaO760eZjgPjrsRST/t9kRNud76HiIe6GoQZVkxggAqZ3x5YdG4kHaZni2jlIh8w+TQEng5IS1Qa87gCHCYf4RjxFgUEnXyipSvX3DWp4CZcWFCsuoBrvLTTEs/mViGwDCNnU86mWDqD3RtnLXCJGe8Q5hhg25nb37FOd0BtJr10NXAYHY+RiThs81K+VEshEcvevnujpA3E10sUlJEsVgt/Yk1GhslELT0aEdtbzFHLYZX4DydBaXKtdbgzHxjVrNzBfSEKaBscXaCejJIyEuyQTKUIb9HEmsAqy+NQwfbcZZi5IP0J+mdsfNWupVeY3NP4fA4uKTauoXw2bBwNr1f+o3L+O8WU8ZH38PGi6qGGaT1HE94o84awyKk3phTzuifCKcGbnFuWDL11kLnwb2snavewp3ljXWymGUm64DvpT+afZ18qbd2nA3Ai9oN/Vg3ayibqeh6IMvmmXJD8alw0r/2dRZreEq0Dc++GSwr16wgqFHhvxeki4swv5t3TlFKHGkReSc0ryan8hLVb/Au7pFQ5dHlfRjF0iySuziCQC/zmZ1vpIPGM3kNZ89kLnsyREanySKZHMHpR1XOiDldINtukyQCXhNGbFrfWjaFy7eZPVNHv8PJsZpyt19345MwpjV4BfjO6GrsQH7SGAj3mwxGo5fYhDcPHZrM9Abw/OVXXng/cDyiB2yoEOSGkwfkDOMA3Z1k8vn10uu3sun0lSHp5HpksX9+9H8nSy0b48AOJxhN1qofHBg0sS9DdCN9Lb3w+F8v5PKzY2vjZNLYPyYD8NHXnSIzNc+VgzL26x6kIwX9jMIs71yaEcyOhtC00uaHF37grBBSnw3qn8x3R2y3O0HGm5+BVwFCt8OiatAJ3D7TLQQJsPFn3VnkLNdrI02qAeyPqZhgl9pvwifm4hM347oyvMDEac3LJvSyCySVjIy8X2T0AD45gJq10TldwRFVgezXLaTPvs2oHSEIe4jVWjOvgFcynIxZJXC/sog1ooaZXb62bt/tvFapugW8RoxMiXGbAYsXppTJt1NCVz+DeQ3rwAhzHHFmaXBthAU0Udf7fkO7CrROon5dw5sxQFE7euTzo9Lb6b6SvrK8NEn39sHO65x3wuMpTvB+DZjxjFiH7nTpDWfLj15Kv5J+L72Glib4EQ7mpDeW6zf2nW7hWl807NJs8dErYomEW+kb6aXB7qZecGVJoDnGqPL6zr7sEie0dRAHCrdIEyypGeKg2ayr47NXQwH0Wo7M6RySW7+4AsIHunrD+zvpjz6GNk3Oz1Jh2+pFAc7dphV0vMnQtceZOm2O31gL6PErdOt2orAahnUqv+h3JeuNQPT018svPQEr64BQd7EKiWcTrva0rkw658QJdG4yg89miHQ1A0WzZzxVR+WFOOENA/8VynKtBegA1fysAxa7SeTyCpMo67zL67eOrh0CNXVjMJvDMnkZTaCU3ZqTHF0OPPgasqAjcM/WxMMSSU3T4JUn62zBaovM/GCdqvHQLXi5ONfG9caRGnn4jFU5wWQuD9GyK2XjMFsm92md0ss1p+1RTqdzlmHP1CQDNM72lfRC+pV0axhZdv/94BpyOYmsdqdxwdQ7q0id68YHP1/w2k8gfnTdXmH/aoOoUC29dP49GQLSr9+g3XR2VIVbN+a1rRGkhtzVo3SpDXMluhxbv3jEKZ03OCSfJwVECBn85KfvpH+RPgK8KumDJINXen0NRJEdNj40/vTeSbzGnwBTIIyFXA/wIk3KTEcWL6BmFfh7wm814MdbYFkwK18X78MXhHRRrJq+BF452ivYXWNXW9C58EKdfHlhfelOb+BfvdhX0KL83gKRgy/CXQwgSDOCp15z0a3Ba8aDTa8t3KemJa0K9EdEJKGdgT4lqqyjNx8XSEi90YHgRUBsoIx3xqbKusYej70pvGc60mO48cZdrs4ZPV652gPeeNjDo0pT2Vb6SnrtonEyuD9Bw5tMCzoIBDPWdYSSah3blY0ALZ5adyd9Ld0aJRbe/sHO0GyPvPbq3tkulaQ7e7NhZTk86mPltXltE9ny1SzRdufh61AmlTBPTzitMbOeVkyLFUv1ODShWm8xiTuiROs5+ydmd0gm38mNtxPNeETET9K30j9Ln9YHUS6CWWyrjdFzg+c0t577Bnbq1gsg5GuDJSpEyYx53eDUUyECRoDXAM28xHuyJVsB47jddsIiLzGkWl8S/80aiWJVGM0jumeP4NS5yAqncGxAYXrPo0AhN47OATbXSNNbcKsGPSCta+AJ4DUBUNJxyAhsfQxMaa1rA1dAg7gSwEsOUSEyZ6DwCFbSm3k9Yef96D8XzKuGUJKSuwV4LRNxMHi1KGsfrTQXHsDee//ibykxmBmHiP/ndQ5obf78rfSNsfUM7b1zJIxOkydUiZnoEvIwOyCZ9xqHD9XSr6XfS9/4/PvWsPXgUxRPvtNbz+kVznZf4vZB+gSS1fsXQ/CvfSzpcmFtvQTIV1LrU10PeDb18iG9V3kuoXMF3TrRtNYHZjyroDIL+uiDfrLO0vfrre59smhWSlfSG2ftFgHSuXw+Sj9K/yz9MzToZdE/okEXGK6hscT4Olo66LyjYfJqmPEnzfLASQSo4EQCdlhDe4WkFuApEdRfrAYv1N7nWj9/qwAiBlnJwUZs2JGBuTOvGNfeqBQPE+aXqbn2CrixrpoUPOD6I2pVGCIWqKGvJZI7pYQJNsV5nU5z7tse3lRumcmwXAA8HSGze2IntCvkKuC4bm9EJamhj288MkePcIrkdt14nLxwruGNCvdusDQW82Phj5i9fCnANn6TE5orBYhf62Zj6x5bpKrkvRERfjZi1bBKEM6Tq7WWfxnYFEcmK0EP3hX5aC9narrJtHayD+PJXPQGWWiACJU18udrWMb3jVRJ30s/2hK23MPOhWlhUa93gf4AHs/mWAfrQm3w+mTncWP3x8ad9B4lU28z297IvMOznXu4Ch+kP0n/m/TPLhGT9QoQgOSO1I2Fb+rasVVb+mrB7Nt1azEciVa1OPpSlPdYdYNj/cI+RmLAZk61Bi+GwgXAzevvlAjKApc942J6fG5pdHjwNCVQ4vI7e0ijmqR525jTLuvwCEAc8LlRGQleo8GrxBjm4meszwmHu1BnLx05y3SEem2xaykW0AloLtC5Ac74EzSOwb91MHKdHEj9s2wkd85Hv6xaP6X3ArxGg1e1FsQv5q7ygjpji83WMdk6K5wNxM360RcxJl1bOhLWQuN8MwNESuNjhf5zAK5GzMSBVeGbaYAlwCpj7r0PUzxDkNojXXXo5caqsTWhXe734FeOiKg/B/8yc2+lvfTRTx3K/oYrHys2eE/6Un0+riXxwn+nxTlhqxsl2YuCZ0LED6j7lwLya3hWIxs++TzGf5P+1zXzamCDpIaRAma7Bq9c/9Fdsmv3ZxqseSooBdbngLConfzPeIHg9ZVnOkbBfHNGQcKAuOARpGbTOukleQRY87Io7bTvV64eH3yGbWp+oeAJKk0Ar8qs4drmxhn9N6JqC79oYjrMa/4SeJUY8JhFC6B2bclkefEtqpcGyJU3vMCv3OmMOEmvIfIkmde0Bq/GryfzInj1Zl4dDNs9rCPxSCQGQhJTlMp1TOes33o6to6iySrygghP/u8Wz1rcYWBZeU5rS/AZEsAMcJkwdMLYVmt9sfFntZi+pRd6jwp88lWFkg++MBZVO3cUawRPhx2ef9lcVU/us7Vevt9LBwfFoqwNVv0SyCej5bUvvDIvWrDn+lmK38I11/j1i3b8Tnpnx8bouG7902I95L0PFfo36R+lb9FpbJ8pJGlF1w7wSXqEkrYxpJVYspmokIHITRe8awBKbYAW1RoPBme6Csg0ranwhNqgwLIjROUCog6V/qxyjWFUzGbYvtJNCaVMU7SDsX3GsGercoGHr5RQZrQ+56ZdG0cLTAFLjthiIy1OyP5RFDMaJWZ55//usKOSZFUGb2HEBtsvs6sz/OqAUvns//aIxpDzLboLhV8/Y5+1YCIt1rsNr5wzT64+9r7arM6NU0HGKt3LHilla69lZXpfoxRM3qgRgey0TSCfQhWdaYplr0T2ngHkoy97MiPILu+zN/s8evve0T/NMXzy8tmiGL5yT/JrN056f/rBjs4eQavCR2YV0m+lnfQn6dFywhYZLQPUYT90L71yHJdYk5WTVLYG3LgH0qyrwQFjURi0s8ds7zXJRXgv/Sj9F+n/J32LCm2D5FIhx81ozszSk7SVju5dbP3R57W0k+qfCyMd87SkcjBB625E4GD+EnjJaz60rUSQsebRmvKVDusZpKIEpbkArBkkIb3iCSaWAn/33rzKmK4gJc9mBcnOWaINqosZZ8hzikccVEMdZfSyLzzsG0yB1uWuXP9f+drSvmOBmmQjOFsmB88RFCvmptgYZ3CAHr8e8Iq89xy8Sn8z3excTMDrCtuINjZ8TR78iFuJ9qjkk5X39KXS3myBPvIUNF6DeZ8UzJHxhAZbRPxQ9BH1YVI4E+oMO2tSUYwJRy+Hs1dKhePFou8EYSsDzp30xpXz7NF7sihOR14Rb9tW+rV0I/3gzQFbMI7Oa3jyOB6sb9+tn42ehsnG9UkIdPZ6hRad0OEU+s730lb6hHM+4vQ6Su+lb6X/Tfr/St95zi6YV/SbzsnwbDdsYxp4A9NjAUoyIeZac4EUb2kKpUwf1oYQAUSIJuU6lQWv43+ieKB1+qUuEnxJS3MCL0vEX1zDycEXQWtGNj5bL53WAxi8lsOr9aWGVfWYPpnIb81qK39KBV1KCPQN7iI7J0evotr3VTnot07R9dojwSY5GxYhSiP2LtaoRjpMYsArHCGr8ey8y6ww40zgAluaSszpDK66w9lC4XHUSjbAjglBMnoxC+2PHPI4+PSpSFDCRXIXwez7yhlIwo/Y3R0cAxe6IzXXEKDJjHJyj/GjVYmFgj35sneOkNpj1XqRLvfyUnpjEjM7Sh99aHPybiGpXrZbvnY1ulTc30kPOI2m9RNkmbAi3u3sQuiklw6fwe3PJ3/aE7TO1v343vs9H+HnjatFgA0hez5K30v/LH3nh3tX/tHJubiCgTC/OwGolvC8wY9a6wZUdel2CXgPXgcDoKJcp6e019iWjB8iLyvXv1thvWot+IzIyAPeVhD3mBxmxOxoIO/WW0nlj+txaEjuIlQtotyVa7YR2ssJD6wp3Uff+6pihZlc52Q0hnXlHPUsXbgGRUuL8dk6PBqEx/MmrUAVwgeeHBJnr4bOpwFXsBfFQ1tAjmNiiZQfyShbNEoHQPoWy/dvnAnTXdxgZlOSpHLpfezwHk/dKJFIK8hxNyDYy+A/mfw8+vFDQXHqERWe8tN78M9euTOWcxqD2S04eNyWt3qUCvskPuGs0JPvKKrNDmaxZKRFM3whbW1AePCvn/xklA5c4M+ny7xea1d/9PbKnUNEHrjBFePsmmGPM9Jbl+PLiz9as5u9MWwLY3Th0BnsmqG4X2LNUChfQu2P0j9Kf/Cx+bVZaQ1HskC9JvCQHgXD7Vp9KXCUGu3IWV1h3ic8yiKrsXwGXpHjJ2S0VMITGHnpSKrXqzGKdrrnWTkTVBDq++Fdz8ErhD7Yt7x55wPn4v9Onj0hiG+9KyQFw+J1SQgWBq9r1AZZMBfgRdlvXle8JapBGbwqEOwdJKISsHLRYMxwJbc9mWVlN3DnOqIxWHOFPAev4t8Dr3QXro1fM7zjIyrDbO+csGctdcpkOX6zVrwEOTbpeY9OwNZ0YTCHuff8coNBgWQz4ZFv0SkjFoQEduAuSRJx2J2sy3zweQ8jSp7SxpKN9ebWcvsOBwBe2Sn2wZT46EzzAHgtJD1IP2Ir1IIg30r37jemizh6CZ19Dzl8LZHKeI0FdITyVHjOav/68ifHB7HU6WygSQYerN39q/S/S/9isK/cNiR4hY4JCCKzj7NP2giR2TgZVoA/0hNm3Yhe2VybPJZJvRCoQjfYg638W+zkhHnFEzZiQU6QXgessUB8SMfomZ784g5nvSSCR0usR09N6cnqcAJt7f2+Aa/KCsIOQkttdSdCQ9TgLQT/iD0ZNDZRK8dDxrPFzoet93Lt/Cm0mlx8hSx3nvTZ1o6jh/GAfHPGnOY6BWJbIMjPtiuxkyzP7B6tua291h0mq/EgjGZAtd+wwptsQZZLfFwSfADrbLYx2F454/SmIPiIoC3xcNiUBRmc2VM2mq8coZv2RpN7mC4e/LCzowXvpa5qsf/pxuv02le7d3v/VmqlT9I7t04OvoVPIH2FpPpB+kcHy51US19LpfQHT/UNIp0lUwDmiKNnt9b6s0NnsnliKREbUKyTBa7P1hl6z3PstK0DtgSqnaQfpG8NXSFFyQ5pFV4k0B1i8IwasvBp+Vs3RiIIXLgWxnXa4o9mLBeSsWnd2ZsAYAXSFt+BTcV09BOnhCj2s0v4JASQi3QQutgDHmb4u4tncz3YzDXBgVk4a+2R1qp1pzHuvHlNngu8nn0t+Zsnp8GgUW01Zm8mUONEFq3VRVaPFAvOvv0zHnV47+R+wKKfwOJYxNYoU2tYq2JRrKGgpuuT39p4G3BtUpAoCiyRh4fV3KDzkV3zHTA7xrrJmtLG3qbJJ7ifkcpC1CPNNZ7rk6H35MAu7UuXC6hHNLfiujj6jAKaDrLFTGinn6SPptB3Bo3ChHNwCM1Op+8wXx+kg/QyvPpB+iepkP6T7/wbqZD+ye5YcpjRRLlzfCyUtHYq3HrP0mwZqYRC89HHb27WxzTN2C09exlsURNThF1A8HvpD9InKF7pfpy9GGp/bpBivwavyW2Nwo/CbtwY2aBQmdeoMQHCaGmY14s/wcECT/Auh3RRTSk8MQNWYI+cEVqVnz6XUPNB4WYErwM2noRCnKAIkzFOMBM23mCVltdFO7G2AhoLygBAGaH3ENF6sFOtD+YROMbWrG9rbtxizyR7vBdD3XnoerPl1DOP0K8LK1LpTxAQa8B9ckOLpdE7/gVaFSGzdI0kn7iVlJPsGOTagEs3JmypWTYetMkqT1wWkydiY3Jw9Ilt3Rq80h+ePKSzp3J2yAW1GUhHbI5NwFd4IM3gGFtI4NZncA1rj+HWNtI7HLt1xrVtTcA+I3o/SSfpxqtbD9J/wfNAW+kbqZT+ix+blm2mJ0jZIc2S7qWN9Mruruw0Te1x8Bo4e56IR4JmMHhKtjjwp8KLZ5O1f/O27FgI4rho0ZsaAV4VRqcwnBfepH/0w0miLtYOqcavpGA+YCgITwHZAvrzBdyQeWUdchHO6z/jMyTK1wxGJhANrWsDOT6y66WBZyMHKcQPEwiLeTjTtDGm7Dy/PVLO3swrZ1JpLTKXmOXoXiytO4NgxrN2+XTtC6jXz/MI2cm9U5rq8OeMOBms2I8OjBxCoLUOR/AKoQ4KdF5aaWFkjuJYEA5or41if6l/8A+B3xWQhUJeGgTVxjV/68Q8OvKXuvGTeSUNsTEUzv47HfVUCQm2GrraaOZ1gFM/vfcP7jIcIePVVuwG7KVZ6sk7g0ZyWPZhl57ZR+k9DA4fpSfptS9bdS99K32UPkr/N+mt96VvpfdOT5mizplxdInyGRG6cfCWbm3u3YVIh3hEpTTgyMpH2Bo262dqloiXSM/LzHRIkTMWx9mXxBJlNmxsQM3DD0ewkewPSHKZ8fqkJJIxyuuh1AGk4lngBL+j6QlyULHGrYvGJruvWl9YCZSd1sg6W1epcBZOOpa52mwdmL3iT+hb5KcBjxJmwtlW54D0CcRVcBTH4DaAb9NkMIBn7i0lvAQDyaLPmHwxh/TAraheJ79/MJtnphQwDEawLdd1Y5BgA69MBU47YDoK33WErKUTtqzyjff4RK+7cs4PXp58GfV6Wktzswo+1dKyZO/Hex1NBbMiEq4DLHW3ktDVGBBIvQnIo4vtBGfm/QmprMZCi3ltXKvHlc/I2ZoExR+zSBKfDYrLwl9cBj9Ir7K/YZJ+lD5I76T/bN3rtSSfySPnwSc3Lmewxgev2Jh0ZhfHJ0ceiUqk3hL2kIOJkLDXJn8iM8yoBD6aREYeKLFCkn9pvQs6bLzkZneZKshFs2OxWaOMcHdCvdej8KtQF81ryhFoq9a3RmM913lK0FSMI3At9R5JQr7ysmn9p4QWRToXNhhiKWfJ7OJJfuwd8dkFKig3W9P62VmEQ9GDkHORD2joDfA9BrwWK/Urf9B2HSEz2ELgOAgYAaYHhEWpPxmms/AKtHz/XfDaAu8q3EiMrGkPBrxq7xl+MnjRn0hoC3hlazK7NaMjau8PTRooDXD3xhpeYTJxsY63yjTpAByssDuvx1lBIfwlWjtZIIXbFaX0AhboOF4Kd4BeexE94jKWRboYxN75qh6kH6QPPjC5kKaT9M/SO+mD9P+Qfis10leSpD+6V1AYuQ7rtVr69PrWh/63Rv17X+sLA8GDA4VmztxJ9GEZBxv4TpNmR0PeR2/F3KzTryDFVwDEuI5qmyJKB/fGXaAo5AmLElEYUtCvXxDhNMsvhWKBPyVgq0FbrwZQkkAFL2IynLByQpfkCxvxfQG5khsnD36WSswDkcFkAYxAljAdME3Z7C7fhcC8ssz69dKdXE5ovcj1DLzIL/Y+wO6NL2xn/3BOHbloT9BIcLIGk8Zy77s7mJX0XtipEvWL4BV+F3v2xsLEc0ZZYAQGwNOT7UZbZM3CzCvgpfVTBZPkglNbPDZb69z56LqHBUeF+AlYlG5aTgaaaCWd/9t7a/HZv9vjxMatHRezU9TOCt+VyUFkhdpi041v5wm1a2nR9L30HajZn6TvpFehRHVnw8RP0ln6n6W/dbK7k975tNLRs/rSpO2DXVfRQN+uUSelbs6ekCM0WmfE38nVyLWT7DWyEsOzdL/xEQUb/w4TSI2XXJzSd+OkebC4l6/KunO7ZjUUKC5sEORX4WDciBVNtgYQlljleZNhHfL0jkRKLtZwfnH77EbOGLfJv55S5AiqkKIxjvjUq9ESty4Fo5n0jvQCxw6FBPYgb5WV2RJnlrHinfGPAjjUuQeV/noyj9aIzneLjD675DjgamkcOXmgOjiSJmyuSaehwUkNIZM1uqDx/dSOtBSTbMCWRprUBZWTdoBk9Biy4yLcIJtAJWT6GdPReUGxPgxzjqixMaxu/YYprwZ3yDrHzOKESBlZOHuc177IDTLMFbZxVo78nb85WrMocTuzGeCDjRTLSvko/VF67ZZjNxuJfpQepP+L9Cvv7l50r88+3XVJXre+3EcU4otH4rWn6ogEURknZxx7le7l2ds3WStn53mJuyodMctmnx98/k9uOAWkQFrCGUqnM5msb01GZc6dkmnjwR1BPMKggoZJZNVazSpAVELQo/CW63kiBnFhVABHptRyfRkjXqA1gge5KGAEMnpIKXnPOHcaw2VGYAnxo88vbj1WZ5jCNyhraW7p0QIJvsuYSAknXdagbW/2defEXaHwYL09gFwFvAJMB8MTS68IGTMqn9LZd8LQJelq3USt3IBtPcIb27V6HHSyAfCFek1GvcofEYlkxNGPI4qO/IOZbEZOCnhl1eSzkjirNdXfoSrZ2VvfoYecOAziH9Hn3GIAkwgbUKyAZrhcgWen57caX0/sAI92R4RGfJK+tyl1kPp7X+h30kn6f0r/4N0GyzX9CU8NKqRXeKj67P0WD2bwN1h+pYc1txdSOAEmcodpObbmwbv1U8uXaF4au+8NeUJZGEQoHCgZr8hss6MwnfHCZwctRfbbNSIHNcJxZgBTiTow29Ui8EwQGMr12VnEO+EKL5R/Urx4CEvwL1aGxRrpgkcdwCsh2Nn1dfY7t+jIlKBdk3nBBidRxm90RvxtcA1kjtEaCqf6Ahc8rq8tatOMu1t8eDs8FzFJLupp4C+AG10z5swOF9Z7y0G00mwOaX+GebVe5wmzCObxKiwG3SdDfOuQztETcXoVPnqUITpDshKCdgRT01rjDBELfRYUwRyFcfYnTsiaM+y12Yo0250pbEXo7Yg4QITu/XFZI9FfQsOv3DJt0Cu+gh2gsQMsPqKlYfGdT7nZG86+lf7RjcpCeqoPvrrvpP/F2POf3ZleruJ7b7V66/7hcuHfezDk40kL7MkdEJilMSyNqSjjt9LGlt6tn3Z2A7dEuf6VBTI/wm5WrO0UZCBUzNiSisYyuhYafC87nLbNzjSZEnXwEbm49AXUUFcKeD7ID/M3LQVZzQXwI5rDtL6MC1gtn/00QNUjWU8wSjN990ayCoE5O/FdeRNZxLEnd8xqeP2iCgpH/Z1hYSEr4yJgHZICLLu802wQqsqwl2BhgbprADmPZJ9OYwc1rLBcE0LVW3UJy82OgeSlDTZkpDVd+/kZFVBW8KDsAWkVNE+hkItNYfDgsP+cVh6ZeX7UwiC/w26gbPnJFoqgYJS9Bh2s5NLOAF/i7Nl0Ryq8fzJPAT9gYQ6SlTg5nLa2esSKkcIkYtqVJG9pXz7iWz80aC+N0QZ+8obw/6v0d8aaV1Jlr77cjVz22P9oI0mHsrjCuU9P5pczEqXw3J5l3MnFQzcjANQYkaDD0ZsFBnA8ij0l/i0AVmiM8IuDC/pH6xPXXpZb8+kC6HAh2uYNg4YlmtozSNdFr4JvxUtlMh3Xfw/PPpQQWYCVhbecsHQnr/xI2DOW5YBqIXWvPBdX2M2xfP/RPZtm/ayUcBXSp5hOK8DfBJqawqP1R2TDRosuZaxAxXpPYyA+dOXsU/oa1Iq9Xxn8Sh/vCJ6cto0wqnJ6XkYpxG8Hwb1yzOROI2gFvLJAWq9MutWSaGPDGBEbo988zvVIwgN69UezjRC/VFIt6p3A32QQHzwRy3LeWyxYvg7YVJXN4r3hfsYFhHpVfpMeQFn4ArKrtjSoDaBwS4Z44Q524QrxWnqznId8sNr2JP2/PBD/2ZL1rfQo/cnnQtxJLySZm6T8Cy5OvoHoWJny2Ojj+qpttN1ibiYH3M6NptbjmzR49qaHs5sCwZcCqBQpZfbHUQ5hNEu698am0rN7u+68F8BHyuxJaJu1vDRjG0eDcxKIMhWIg3CDWZAkXxGEQiEF2hI4pqg22OB34c88IH9G8R6RQrQ+hbB2Eyfpuncj+uSC6mqdh0qk/REr+aJir8Fl8nGTKXDkgxrgldzWAKnDWGU6cPZ5AAVmJHiaojFC1wmdxn79CJYCSVTA1i0uI5xi795Thk6OYeH8lqydrS+YlXYB2Eo+Dtmp1iX6DETILscwrwHt5XE9F/HPhOzL7xOTVvbl9GjxbMAGRl/q6MXVefpKI+AWRzSX7uK1lr2jUyaJ9n56RyO9kF44Z5ykf7H7Yiud6/xeKX0v/b+tz/69JCP8chLGlav1jXcGfe8hpH8n4v6D9NkDXyB4w0My8CMeFdA4v8/Y2VggtQkvFkZdgBn2oNgVJCqUjrIZe05b1FSBh3wQG49k+SfPf7dWWpKPQohDPEKcSmAzP05rk9cIdAnUhYgH9fNZeZPRb9IZmQqs8lC13nFUG11iai2ssW5NhwJOS4BfW8RYPvdsSBjBhYgiuZ0GI0MZuvbfG2/dusXTvCZ/Lscq45BiJuk70TWiwxzlSu46dkh9qaij39aekYTixtVR4QZj6+gtsFdo8Bh2ALwRczHjpIYCp3oFhp9/NV76vdNy5jE5gV1HeX/34HlJIZDwSOwVxuDWrvmDieiA/mQWV7dmLiX02CTeDE7qzHiYe1/2Di6Z0ej72jlz9Js8SO+lN8tDpulmXs7yepAK6W8NXrcGPfmWkr8OnobRJUrSYucHIBVAqxYldSqoLJ50JKJ61+vVHhZ+wgMSZoAv/80uZeq3RLmcL1LKPljleomz8ZOvU58EEwMT5HIDKrTERLoRtKSSSRJ8c4XzuuPH3hd1fH6f6UFAw8EcLGbU2IxZPPeoK2avrlzhBu6qbLSY3Y6/gqzVWQnTM/AKa+2dPzIpM5Z0Y/RsbfK6Azim+0e4T4IZAYVLTdGhNBhgis7In2D5qP57gNfkgSrcrvgF8BJklBn+/hLgRflN2M3Uo35OU6qAftHCxMc+E5feiOyeyvzWg3x2FTqbMbSOlgLVgVwzRxTI/A7ra06EHB14se9pXezspTc+Mq707XyWvvOCGpP2l9bi/+Lc9VtJ3v19b9Vu5zBaaqR3TmgbP8t77zl7cLlSm0mdcMLKhPUg84Kzxz0At8fz8SYgd7pkE9Z58CWGqoxCYK4Erk84XXfJunuD1wE9OhafufgZMDQCsEask7gsYn0LpyiAHanZxnUXMbjZ482TKiYgVz6xhAP2OXid1uaBrFXhfUZz+tmSQwuJOHvlz+gNNn6aQcqnNO6yQkg55VV3wmsKJB5hp8jGG4NusH8ouBbieaFpVb7H2L57dGVP2NGxvMMRHHn+EngFK38ZvNLiG3Fqdow6HcqnCbVlAVbIArVCsMmTFSU4C0fPtgTUBtDwhq037mZeCv90XqfDTNnOOwF6BM9ghGoMr6Pl8AkzErhnbV8iMoUdoaM/pcUqW+7rWvpKKqQ7g2Dlgu9mOXO1blDDHqQfpf+PdCcVDhlJb6SdhftlTaf1VMKTlrWYHUqR8kdj3g6us9z9Z7vye0RxCyJBSZTNJYGEsK9Y4lcS4ASGLOsZ9uoSOJEFkTWXt8qKpEwRChQ/Ia8kcn/kqQov69FOyNvOaNgGoWf8gx3OCSgVnCjWLDyEOS5TjkNGICAUy3G6iJ0jN2y2cj8wCSQFw7Reu7Ul2gEVdeULKNFmnFE7xdF/vZaYCyQrYcRmV4kjHoh7Bpfu8JDAVKePeD5r4TuKkiPMIKvWGnyvN42vUcOX/j49Vomf2iuyR2xXiMlUlQOEkhZgST22xdk2OxO8g3+0tY5/wsaCIGKKyezcL52mIiolm23dpynW/Y9MNF0RtVFldnfxyrXokw8Cu12b0WZEQmVjVmuMF8q0SZqzupY7/FHqjC/Xno+3JjwkwY/rI0OPdr1XjulrHBIuC1pXsGEUTpFPcD+nlkvybZ4RSioW0ayzjBMcXMDBu3QR0hOrQEV6vH4CGGWUAmHFM/AaQWAEQl+v9XrWIXk3VqTUqwZ8RNY22eMMsJDpQZJgt+ZpwbsojhcdiLicRhyTHsmhM/uqsZlru7byFbhCSj61xzlnF43rJz4VwKaNr3+w2/MaDxQiW5sxgAmPHITJjBJ39BOO8CrdCutAhP47gteAUHkOXqmgmOcIXhGB4iiukG4L/HeDadqaN5wMQ5UJ83nd+6kRAPEtZxtATlTJZdTups7wM0zQU2vEZO84ecCzUlIVP7lffWev3OC/U3kudV9sS7Mn67PJU5fqpXLpuFRQ/3cXqY30K+NaYwCSS4XlavY+JnhjFeTOR4/FYXNwodwYMpbeyCMqH5oPSzjcQnZDjp/n+YR1ie48Q3xE3dj5KJStGUFhNYJLOlUZRfsR8KQ1FRpwMRXIYyxr0RXK9VK/EGZnqEr5DhuPUWsnfHN20yGmqG59R8y3Qfa8SZhX7eW3xZnxvTfjMQ02zsbzGrwGXHYD8Br9iye/G4UleWCZsQY3BVrIAQHi2RhHhDqvG19J1LLodfTSzY7KDu2J3PK0Bq989BfBa8C7jTCBjKiyKk93bQJyhsejAN4RvLgdYvKVj2tltzUy9p61J99mCyJ2BHZrXb4MQPxxradsnULiVBlw5cmpqWYrw981gKlDapzdN2m88WuG3yu6zJ2H93a9A3nhzlfSUDd+EHEkoFH6V2krfSP9Srqxd1R+sHYK2NZqWA2uWXmH0TIYP5qmpwgRIKczZ3vy+oiKd4vFpDXBCIVgOzlLkwCgNQCQ1UT8FXAivx7NN+svCajw6IZgtAjYBHWOeYvmM+P6L2T3ArVECAbl2hlM7Dn3IJDHLDNjYc3roSv8Ixai8j2ekByyPTWl1wDw25pIl2CnwhiyC5qXXQxLauka17b1OaLphdZgaJQMCtyFrNHnOAmaRSZg/4RyfQMiNPtU2Kj//XqyAnuTt3qGmBXWQSIoBV1KE9Ez8kO8ig0s0xctnPQbTiDM9NELWnmBplrjzn+DrYYlvErjurFZuLUYl4wcBnsQHOpdldf4BntidkaGLU6/nsECbrwXNP5bCt0hAmcXEbUlqt4VQXaK/cXIlyAbpX+TNtKvpW+8M7yx+WEyTm19kk/pjHZlONh592TlB6oVEFQSBDOOjYrXNjr+FrY3OdRCJLLIJ78bgSzLO5NNdUSO4AbZkMJDCWac8eXKCZRMhvIZa4khmCqRHUuKNBmN3jdVA4yyREdoRSxW86HB1gn41eOpEnw3NqBG/LR03TWZRSTbHkD2YvzY4fiTDF3wndakCmuYo12i3RJsnaQr6cZDscT9fj0ymdOUqUlpHUrH3qE1POvfjgCvxh/03wW85KDNj56D12itJOAV5x3TAMGrgl2xwLEaFdqYe/cDczJo7dXOrXaRcpIj5aI691g6DK7wuMhoTi2YUuNPuca5yulPZAfpycrZsiHncd0+LTBiKa+2RsZIVNly2UkDZfDZMPT/lyR9Jb2Stj4JLi0+eeAaRKfgB1g2ai8R+R22omfs0sWasddzGcqT77xx3ZjDJQYEX8RqlnBCWmAzfQLeTfhvTFEDUKbB2W0pLycA5QTckcE6Zg9ZDJAJWg2UvFCbZ6yoEsSdqnvl13TImWw/BnomcIrg3QlGtHzF4sNaN02Ek6OEEB8S10PF2eHpwIGncY3OwgoXQI3tVooXpXPYLbp8gzMoDSpJVD36w4J40xkjMjXUDgd/eqywsUlls6IgRwsN5OfgFeA+eDUmGi/AK7JidpZugNHll8Br8OkcqY3SWw54CSQoVdziIt77+59Nr9iBTw44Q8zPRLTu94Yc9DacTOjFLIbSa0DMRrrzk8LPBpYCvvRYRC4M25FF6sXO5b9Ppp9/2VpZRy+uvSFoicdPUGxap6QNjkW5kl76wLOzmf3OlHEpCBcH0BNWbWJcPmbjycur8omsseW2aM1NiEeBJc6AroulEAgpwJpIwGYHQoW12CJULxjLjBkTkmDpSUgvaADdEq4kaNphk0UBcK1QKs9rAB7WOBS7Bgc2BvMzVjPXkCAvpPefYQyfTIJLRd3gDMLGk3WNujGSMdMLbSIzZpPJJw0D6u+1dOsDwioMUbFGfWGQw+Szd/HgpfaEM0UrO5h6X0YKY+rXKWOez2BmZMRohBCeYTAPxQ2uZ+dknGjBpIPPdW4QctRRt37EvZADazszJq/KycbMFg/GyiEXBwtuYV/cyTEiE2Z4K+Pf5NeXOOZztpf4tWGG1V3hM11HX8Dy0xfS2/WDdjKDA6hyDQdJ6c/9SwOMGtlLZNLPEGS3Bpca1rhr6bVPzVny0RuDTsqqg687E8yvDk8RS6Nyh89t18bOARSucWaJYJOwpiJyUWKxwz77GlLTLktx+0waTsFQAIXzcQSdwstgXHvriUEFgDhrIwgbN28J3BxRXY+4lwK/GNo9gXh0CP0CDGrC+8zAjgHDW+Fl0eRaM+fKueoK+31nI/KALJWzTwV4nT0ObAhzEi/Aq15zEl68sPB6PCnoDO3+0eu58V10KNSXoiuE+b8LeFUO6fnfA6/aVdMBT8Isnn1K4YqLCmWIYuslHPCaUUfkPWN/G5C9xjWECXmlxOQW2KtAAaz1wR+v3FmRa8hFfnvw9YQ0bKTX0ltXWASv3vR19C3L6zE5Mpiw4iNX5tDLkX9LLfcrD26LkkB+PMh39kjUPmwnksB5fcREsm7tdD05Qw64hp0PJXzpXZTZ7nnCk382cNlRZtczOJvwHXr/SkB76Ur9ygOabB+/V3rlwlCGvofER1SLK7Vag10BATMX3HlkwjsqkBS5zHhYmzHYgxBoSA+5Kz6Q9DiidfXrpkbhT5kx5mkBFOjI55avfGhA6dvvMGKVwSs1ldbQM2J9BoJTeAS8aoxwCrALf0hq2g7IdUaMnRy0pWXkuM/3zsrpqnT/VeA1QxCqHKgzKN64rmB7mDnlRzrw1MUZyJ4OXlo8QfON12ZlL8CT02frNdVYYL+H5e7iXmg7S8smzKi2gviwPuN7WTWvpF9Ld36TrbXDa+kgfetHDCU2bv3TFtrn7OIwy3yLDbEXK3qQpjqJZie9wTGMlX30DQTWlza6HqQX0hvpe4f80S3Vxh+7INATHud5tjF59GgdfUAgtxG1a2U/yETN7QonWGpNb4RFP63fhGV+OP0yRXvvA92jOVYAVvO2gUDhQ7kix3VynNfXP+OEvFDzGUAoA20masQexQ7hXCMJBiE6uAcCSxS49ez6CwCJnBy3RpHZb7XFIx8alys7DPURxqWk7OxLjMc/7ZZ0mDNolVlEpKTYLJlp8xVDY9SYRxCwk0fs3q7Ia1cvHIQk1QLKfon4KXBTAxYIE6MgEm58d8Ha0b2NCepx5d+qAdsH+4S2HsOjW2Uz5jQlQBh+mpxHXP8OTa/a4VFC+GKRlq3FBfYrtLCeLhjztIauRej5SvrKe187p7XK739A0qu8l+VrOJwvWuVpQZWGl9zpsl3gp4WhTQa6rfTafYBs/P7gD1g++AU6TqP0WvqD24kHK4bLkRN71CQl+mDTOkGfPK9yuZwt/emABXcoySwnpkT1u1ACLqiX1tCWWmt00bv1poNXtkRmt95F2i1wSVSbLpLyc12KfdHe63xEpstaTY03A7k6s6nT2padCM7VjgA7OnFYA89rBE9+DzvKLkeytZ2RPWEUyX75OqFMrQxzG5RPHJkZsvsAUKOIXBkfN+s0Rs1yxiI82HWTgRqsX3yWCoPXuJ7HyrccAvDfAl5xPE2/CF6jP3fER8hFb9SgxTF+BHglZpJ3M/sNZiHeiQZF+9ZFQQ5EHYEducF0/BroTAmzmN2DmzvprfTGwTC52VYhdKk4bny2TdqnCVoSyyzSfp3YztJnqVxq4MnM6yufp7bMxJP0k2FyskVj6cw8+UibCc+9vsaz5mq/4Er6iBHfYutUZIlEUuElcW0fLHNsaq3aXdQNWA8hJvg9rX80I8XN6PsvrflXPi12uwYvSsoXyb/8EkELLlD3CjRMpgY91t6yjOOHjkYyO2TPa9PSvB60C2ISUY3egB4wNK2xOOCSYamgN4xYfjtIUI0TbyqcbBQswaO3aBfPGK4Zst9oEEkXOtLXFlte9Gw6Ase9+ezB+BLBL/tRKtxRCrPQwBo9CzmJjgikVJI/B17Li6OTJxMsFcYekJ0CosCvy4ppD/q/0IJP/qzETOX3b1EoBLxSEm9QiFZ+IH0PEwhTWmlECBNvXf5tXbw92jc/mUxdSy+lb6Rv0HiPt2wLtbUACL6SvjG7Tx0Wf0u1npQz8r2ke+nHxXNbzyb0jS8z4u/sh1QfpRv/STv2IL2U3pomlj5deETFeuX7YKttdAhv8XiR9J16U+ezV22/7sBU0NaL9TtfGJZJvUKWtNaLUhFdW2fb4zCm4Fy5ZkR0fuaDIrxM2AOSlyVSOnTA2ATjVGd9j6BeubXIRDOCooIclJu9sORH4Q0xmDApUQJ7t5haCCAVdnlEJo4OdsZRGg0qvZjryZEyO2cI5fLrU5QmUzfriRam+Iz0la5Gjv3MuV2diURksWh0EawKQFFwkSpAJIPeF5aICoEpcFjJAN1pMkWZ0RDmTwVPWQW8KeDnzGm30SRrx2pk9B5+9gnzNUKk2EsP6MoKBDtSTu/3rJE6WoRH0mYF3adwNMbVEWRKH6v03p/XkuBoOeLFE8TMbn0ZpfQkfSt9Xo7dWsZu68cRzQ7BxV7xo59z+8bnSsheuFvptSegcvj2Lu1unI5Pfp5TUk8BuCyRqqKxnv30jjPyyOQFvLXodY3jN1mWJLgvRC9+TV4/hbu9b3x4I9dt8KtYY0rgoMImwAFoEimCS252fDx5ZCbsEt56GPNbqXx6UKMBwTojownLLI24DtuUZ1Q1A16Wf9ReLee1rJi2GMEr2W7ARsoCtoqAERvxM0jU2eN/0WtNaRrRpQSgkELnsJIevracc5OiJQL92d/fIAllGJnqgun/UfDaGGh+DrxG33iLYlUQJtm7Dnsf0eurfZEBssm/Fb/Y1tQrvsUUbx1O9JxQqzfGJsox2e0pz+nJJ8tkUURYr3xV5bqXFtl177B5Jb1BYB+96pMC40Y8rbNC5LGlg/WXO8/+9JQcS6/g0ee7v/HGnQ/ujezcb3yUfvSDd/aO752Hb/DN71GV7RGLwzMBQ2uT4Qhek7MsbqW97zwSSFZ+IE9rHJnBWc6GnoVFvnKba7NOHZmGXG28MhWW3AkLmG2oaY1HR/vbzhA8KiucA652hEN18HfSsyrxcUSirIcRnbcO/katbyrDFVqX445m9E4bL5WgTDxGwcfCzKtxjq2RAzJignCQ1lkB1hZDzwayWdhriGeEw7OFriNuNqAZX9eAp6CGREQGSwOIzIuVdr0ekOfgVa4HpEI5WiLgqQMllSZ6a1SDwq7lDtMt5InsRmoBXjsXfg225ZXmbg/YQTWbAU042D1l5NbkrvKgxf0SQnTlmixt7WIdwBn22qzl1vtwMi9nNJsKs4EU/53nd/IsvJM+14MZ2wvcYvZTNdbiB0DR1gD+aJq+fH2SRhsm5HHaWb/KO+9gxrvxo72fvD1h8AjJ9zSuLfO1t1zWFiULKNrJxcJYThjO/GjGYi2lG9eNIcHxQ9DkGQpRImCFYjjXOQGVJyy+zqXjZ+/8vPJevi0yzohfpIGw8HfCA/NfroDIZScYJnJTWS78lXi7oj9kr2YGZMKyi3AUb06seTWK0tDUSOQhaSPwrHS03Fg+3cL1pmfTF5IwcM+IF0pnAeJot+qSTA7wowarTqipCsydYDxnDkwtF71AfqsGQTJ4oJq1qCH34k7+7wBqtByct/GtFWjIz875jdu8vekZhdbGRGWylBokyDtc2Un+CbuL0559MDutDZysO2QQGDAjMe9HZ5lg8XnChqBkp/Qzljm690ccnYIOOBkwp3BFxvwofUoWbrGl7eQhq20PKaRXfs3W+eUg/V76bGBcitEbPKS3tg3kZII3rOWTV1YAw2KXVkG2b57tnUnlUHrLem1LxoAtbcnF/AonCWYJdGjyPoiv/FTeHMVXYs0wm4wIcVq6qnVSnpCUg2ipcO7dd96vn7Sb1R7BfVzbCNmfFHCN9W14V6jIvDbNCviYuJ/AoJLj5p8BrxIkKlvXaCYM8kbHJ6ynMBOU3J39fXvQD/acw4IKB/Fg/0OHxDCY/4SMVRbET5j3ZRhPz9Zn0KoD2LFH8svgle66jL/PwauG4DcCx3dWZwKpvXnDaFdtFvNoGlkgHrIlZgL7zdbN1p9ydhCevN5PfmpiwnJjBC/Xi3qPTxc2TGVCK6fhs9//6AFvUWQW4MxPkI17E5cnc6MNhJKzD6N/IKOR8f7RhtXGoXBrI9S1OcJZ+kH6RpotAH6QJumN9NrMqHZ3cXImr9222tg69uBH3B4gKSUX9WuUCUu6NnhtfTbFAB5cgBewcmO3kBXm4vr92leey/siX0vGpk+1hj6RxTZgreZ9eie9hXkV2BG1s+g1wwofxT79uhRgDa6HPc+ws7O5RgrUJOoRIFVAqIgGPsNjHPAaAWcl6qgDwCvOsxCc3sMVkxx5X3qejQ9Y2tnqFJvRRR2SMu/goRggmZx8nR00vxT22VYRp+sXwWs2rh2AZemD/Rx4tWgMdiiGS7i1C+nG3PD5TRG8Eglp91Vu+O/AbUuknwK7gggWAdMbG8WXkbnH0Qg5svABryxcmWX6ll+fce5K6fGvkCnzgs/Sg/TJw5VTlAbLkGeDZgxU0Syf8Nii6FlpxX+qZzjlOnCkI7wLtRHihWfvVvqN8eYj3vujn/0RiaY00hz9Z3n/F/aFdV5DnePuGvt0hGwbK9C19LX0R+md11YDF9wBuT4JkYJsA549umGytB9eQMIKlSqx4EZk4ZRbaVUlw8YcENlk9GJ6Mo0+oiSmQTe/S7tWWilpErCXEB0zNWfhNR2JrDaoyLETEUnPSv0G2TzFYWcALtcb5AaziBatY/k7XGQlZkHAyNLYsAzFnfTKxVXaccU6FQQhEj8nnDg4+Jl2kR5Ks7IezeQQ1Lhw0k5If/IJzdi4lxddaLfu00awbXCbg0d+scs2LrpapNYTCO3WhOTJhqzJrRHmnwo4LUfRye8QCzR3eNBdsXfOkYdu65s9mHplO1WEwQxsOgezrQcn74hebuqNH8J1L73Hc84aPxrjIH2UKumd9BN0CkmPfsMHD/7WdHF2abZ8yjFFajji6Og8mLM2RuYZiu1bL78U6Cdf5daEVW6M7gx/y3teeT/RjVRI30kfPAppuF9UC4K2u4DXP/tIxvT3RhfQOZZqBL4ICZRsc+uDfN5KL9GmL7DeBr9hgTRXIZkGZRqg7bjuRgxwSjwZx3P9GwcuE03a1qR8BK+QaTamo2jHuFwAi7U2DRWerMJjUuFOI6h8EbwCKD1Y34RXNgCvEN1xPT6pz1OW3HmrbdznBXhgdIHoNLJ2MmDtRc2NehS3d3ws6eM9B6/iZ8Cr+CvAi7TzArxq40vSp9bgtcPqO/rCdusWX7SoM8T62afg7NDgYSEw+SMWl0vvkmyyPan0MaKPHoc4N2cUdbM/JeR2kD54G8OM7VGL5PTJpfvs5XZjriXpk/QTOisnHCR5sPxW+2CRysO1rIJTWMbGc7/oUp9s4LzCoxrT0L+Vfi29l+49uJ3VudJpocXeo7PHOvT3zlyjw2Qf/elJ/lqv28Lehl9Jd9KPHqzWi/8JzaURcS+slgRo63G5kl5Lv/aZ/S2YV8BrRqoszS57CHjJVCNoES9+cMV4AHjVcMVdrWXzbNXr0MtIu2kCJLEXF3GF7ZoC24kCXj3oVSq9CFclkDHLJgVz5610uVT2R+LDlhWREKsMSAhmPq7xlbyQXuKpaoH4AWgu1xiJ9VgDo7Gf0ZNMbpthsMnVPgevpRF9Nn27QRe3+kXw6qBchrrWBq8WzdikxuyZ3lhPGtBrGHBAgmCzowsqXG9hVWcUH0n/o2v7dnlyq5naJ9PMBayXMq92tzkLYQIGtS6Pes/CD9JHc8ZOeiXdecA/ST9IH3yzi6752e/8YBdupuyAc3TuoaVNRvkEwLG+YKLLeFxZSV8+8FYqvF/7lcWZl9Lvfe0Pjta01Qe3C55gMqodDhu3DQt3dpPus0xTaUxrkrC81VfSS+lP0smJaY/TDc5YPSVoeo88lSLkRvpGemPwqFCujCAVVLcrZOFyXeJWz+xCs/+9DOlH56nCdqoG4R9lfIIFpsfAJlp7hxKZUtqMAbNcXrbZlr5O4dp6X/OVn4swu20TNliiWhh8QlLiTv6OMDIXbcwZI6O1ih3yubUPefNMQO8xCzO2As1OCwH71Of5rcEOFa2jK9aQCYdNLLMfFk0eW4INFh6cCspP4nmG0Wzrf9y6MBkwQT2aCoP03iPziGNsQgpYw8dJF3X0xiRzQONkwPKJky5WjCS3xWqevlH09/C66Omd28sNtPWzL7uVjn4A0EfpJwzLaKmtspz4XvpWGmGSP8EbcfJop5UquLv/IjpvfDOz9b5HT9sLqZE+SJX0NcSwr5zpZDw6+DMmbMiWOVtcvDKDjIj/CTJPAX2ThcfsyKvdG/w3b1lvTZmEfe8EL/oSa7xhLb2Rfi29takjynuUcVatMaDKgDJZJx1gAgpVGxEHZ9PoD04Me39o7jFUZ1rn3wqsIODVr6mLvFZ7YEpewL8n0KQAa+H+Qets0WPLsoDU0fBOwOjCKzBfhUeJ4HXRzQt4Bbl2PsJ357kQdPB+PbYHazAd3OEDLq9YD+YJHf/qF8Fr/BJ4Uan/BfDaglPFFrus+Zs1eOlnwKuHGSkbpgnEHeSS2VRwlG68ilMUpBDI9LGLm2TwaE5VeeqP5mD79UfnyrP5KCLuYHKVVPrR5/4NZrxLXgl4fZC+g/wUMWX2bz2XS2MRKWpHycbMbDF1LfLAk/SV9EbaSJ+kb605VdKN9Bs/vCyKzuC2ZIXsl5irXMs2dpmWPp7ss8+VTh8sroPeteUE8PqV9Eb61vYymcUwL6UoitmlR921/HQrfS391oXoZu3qHp6l2QrkqPZKbuAPa5AJJ/xjMkX9ZF2hhCUg7Dw7V0YvznsvuQrEs0YEhylkVafOTMOiwi2kLVkB4rNKrwC+HWzlESPTrjxjeQe8AnPCCgmRnNZjkgKgcPrZGbxu1gcUBf1PgLzZeBRbyIDRzvhEKuuMEclqBUb7OXgFpsm8JmSsgFe5Bq8IRcsnLrbqwaJUzp0IAQynW975owf8wbm5x0cc0Txs8JSUyasgLoXCoDnhlkvMeOx6ScNbf3NyPtjDGdUjZbaW/RfO9Qm2h0n6WnprJ8IS8082KTy6hlzW+2I3WK58Rg3fr3sWnX+3R8ky14WLrhkIuazvgzuptfRKOkofpa+l3/gw6tYU+WCetvPBaVuv4yds+QvNqHw3NXzW8kRln+SMrC1E/SJ8fSN9K32PnLjBKq/t0hh8g5O1uAYN9WvpN4auwV7ZytfZgb0IjCulWmCjAPxkyabZ2Hvsl8m89wPkdvisgGuJAZlNISrfXYnUH37PIpYNUtaNNerboFd41+hOdgTl7AmMar8xqAzmGwV6oQNOLE6Fme1gkdoDaSlHe6P+lfQGJ74Jg5D377AWe5wKF6dS7/o81qGzu/IxeR1tQagNewXu5cIGkfzQYahTd+XuMoOp7hoXVLUfiLpB5dxbGb9CT5XHYYxevlt/YrZHliDbJ5dkrAi29kk0Hq7WHG92NTQaBgprLpWn+8onuAdWZxwgerayNxs+J4/qo9G6tUj+6OHdYkPfItY/WF3qcNxG4xeHIAjWzsI5f6m2tstGxJ2X9OTcMVqyOphXHB0Tv3FtHe5IAWYH/D+iS5u1fXIX9epL+/wnw1kOTUlDfwRnvZZ+Lf1B+oN0cl2+BYhUPltysO9xRgo7O1JfSn8n/Y33GBw902myjV6o1ZrAlNDYRnxuzNAkXZFhPvvPg8ukGmQ99oMC+bE3eDXY/5quTiTj1IEBLyqFWgNuibU3g2RurSmnYcDRIHhN2PzCsaoAkdWXwCvgq7W3ZCfdSm+t1MvglR5DuFMMdLRGnNG1k2Xf0eEUS1HpWR7c2Tthj+XPgVdtYjkBl38ZvJZFtIBXY9l4g1/pjWvXMNsc16chP+Gp9xX20Ao+u2VA0t4Qao14b2Y8jqmAcla6Jtw5urZ+zPQj9ovGE3uGny6bhq5MzDpTo51Lx8rKQongmVwxloCtM3onWRGNbRItBLzSju691JZeRSWmv3T4LkXL3iP1L1IB5rVzlRiMu5W+kt5KrXSQfpDeo2O2wW6rk3TrRd6ilpvWpx4n39YOjskNz99LP0h/MJBX2CZeuiMwmUuGuDdmBMuvvJH+k/R3PvvnCGUr4tOI/dNsE9WmiiN2DsRfGoadW1h6L5+8LWNrdbQGWU9oZnl3lgkb2KkTvuygFri8CaBfIj0Ikk+QS/7cgFePxzq1cMhduVoIGoZKkEMFJVPjpWUkqHFBrtlHtrx1SsuV53YGKFvpNx6MRNwcVsC8NeH4497L++CFUTnYvgheHcY5tCVtvYz5ZE0k4JUyYrJuFIkkX70VYjKvDiJL/BIb2GnGtbN3ttCzdyKsbBNIezk96thUUgk3Pns+prpF/P7RGtjZh+sLdtbeaypt6icj3SfbTXtXbEkhG19Vb8X3CUmof9bMT3E+WIB/dPvvRR6vVl9JX3tcT6ab8iXEqfFbaY/a87UF+gEHIjSelsJWw19JH6Rv3XOosPP0sz0T3Bq3RNwefYy0umd/Jx2St9LfQhcakV/kunE0zg9G0NpkZumjfiP9WrrG7c/gOSWS1MVGuxmkJX4lEo/RUXN2efNZ+uAnubRWpemhzW7ldNNzDT3YXRTYxtMbnXr01ZL/NAAbohqBJAjXu4me79T+O3LAjCwh93hanMhSgHPmzSN5VaAf8U2nCZwuYuqE3FQJ8J7ADXovl7MZ2oND4sly8GRq0bm8KZyvTms35tnDNYFVylNf+ZsF2tFCNzUC75V08uF5Wz8jepY+SdfSWfoIVf2Epu7eGWOHAU9NXjhUtmAvlZ95s1zDFbpzPXwhWguDKddb33KgaOPVPbicq9wC/WyUGM0Rdn5lKqNHuN+3MB6nBI1U3tiJ0sOP1foulvi5clANDoOFfdU76bXBIjpgFs+j9N5h8dJc9kH62jMhn7V2MDAVvqC9OfoH6b0d+TuXoJ9dqZ+hQh5xzlKHcKRVKiadt9LfGRFO/vUSaLIzeE1eJ2mlLjF3J/1W+o10J81+paDLB1ZCkCpHM9sgg+GSppsIVL0Fg3u3X3prAHvAhICq+d0oGSOYVeBms8ashFqBpS5ktGjfM2gYu8yCWucAAIAASURBVKkFdtAEKSoPSMBLhvgM0da/W+KUoxkrR1D20xodQW6vzXNGHHglEODcTi67d3rr4eld7vHJ031yjRBe0cHPmFKNvYF0yPNxYYwFGFfhayBtCyKXBq9PLuTurLx+fAZekwnkgDUye4m2ZmWs9gd0bnqvuMaFyRVatWeHBG1IAa+NR2b5+156st3siE0a2WB1NGXa+Xo26yhalMWDj2JeyrHZmnfpm+0N/VsYPAoztJ2pVwc6lbVf5Tkfi/QdS17akYXL06Px/oU0SP8kPUhvDNK19BrRsHc9+tJdwRuP9SPCd5J+kCbppcvlrQ9jrKzZPiEE05tKzVBLv5b+R+nBifSzpzzgtXUcT9jZUINM3Um/s4Y3uQGScqUC86rAkgtwn3hEK0jZMxBEULzupffeC5q+Bn1aZzOFEhaFsLxUNfnE3foT6Y7IBcQWkkJ0Bj5e/DfgRaksTZYrPJZOxpfSwT1aVUqWnsFiiJsFoJPtmNCZgFc8RhPAlHJgNJjYF0vnoWUEji5yZsdnVGK5ejj/DHiVwKMSf+QgmbCdIMwr/aOdWd4CZNfO95/tMv+Ac4NOYA9bPD9jg2VcrUlr5TKic52x8UzduFKdHPalQyWuL7kWLQ2gC949GQc76LWNR+bejvy9KW3r+xphULv3FTY2YNeuTnv/tHbrbY9Tc2rXwKO0h2d1sp9qaZMuv1XXi0uzdCts9h132KRwkD5JX0tfSUfpR+vyG6fa1ybrB6eMl9bybty/+oQtVbEgnpACdt71eW3aRnoTHSlb2q6k30pH6Y/eV9lhlfTeATC64OzNswd/yp10Bx08cNV5wrMBnkxsRvLif9kWC+oIUHS0d3e00riHEbTAWx0RvC2OiEurbV7/HRFpgsQcbSQd/QBGECVNvxqGjxHomE0iNToB0aBiHYpPUCD3MXCksRkEjawUK8wC8DsYR5Ileg/IjCr65Ge5P7nuOsDxdHQd0oFqlq4LdlBvOkjz8hqNsa5yEduAezfwfHTQO5bXfHBRN2BFzlalFoh9sOjU+1MED1QvvfbymbBrNAe+EMCSK07ghJUBO5XtBNya/YI4oivr2EcT1JgcsyKOZhNJyLOV2+XrCuHRmZLcSi+l30m/9tsuVu33bpOGZz75jjaWqWN72jhCsttrYZVj42I0Norlgo6AgKU2+1vpV1It/ckWsBsH7rXVup1BfmOynqoy9tGFbywr7R6a0GDyGjKdsEsRwvLgRvqddC9J+uB4ja7TeevBaBLcuy2xLJ5bP/lkAz4zu/tcwbBarLc1TygSQloohHQgEiXC94xTHrbmvluAVwX/wAzw6pEus8yo21KbKcGaQurC4qLYhjeOXnjs6nQmKjtoZrnOEcyntvxd4qcRq+hNndd3EbSNM/lkMp/OanDqDPCdwbXYsDr54wYrYeFR6UPWpg09SpdubXmLOls6YAJeNVrKyZG1Kcfy0884cTTgNeGUqdFHwdfokM3maQtdfG1eLVPf3DW3iAhP+T7pL18FdOJ8BGOsgcg3WVgavZ+wcyXVYHdKbyhp0BiMgFLb4PngOOzxbK7JnGr2rsWjTxJpLArOrpj2BpZstkq5RIGmlMpX0n+SZumd9NHzF2K9rNvP0j9Kr6SvpM/SP/sRi1tP8K0jL07CrYny1g/k+KMvOiabzhs6l6LrrfTKsdtY8aoh1kWa7t1y/Bvps3SUvvfnsk33yfNXYgGkoffCR/i0SPKzX1Y72qJ7E7wiPgtZLu3pcMbGwNHBNnc0gm8NXiEpQldnhg+sBQmNDFZgM9a8PkuTboSIYRPWf4m9I5Fks9M1WXprKjT7p8Hri1ZFDXAMm8gQCUNHJYml7GSrUIV22YizbaI5C8YJ+lRzrsCErcAxPZJ5Zb9ODxLxHLwKM6+zteXsziV4RWddhuiTWwAjQr3yWhhgKGTfm+B1ll67xJ2wnTUm2CSJGTbBI6TKEk/UTf+oh4u4ecayr0EJI0y0vsjj+oyIwScYXXmbq6Qbr80OUuKNL2Znp9rR24aupDsfO7PBHLWuMI+I2NqUsHLTu5Wqeiu99Ko9A9s78/Jl9f8ofSv9vT1sC+osDs+lfruSfvT9JWu3tintrE2lEii9MlIyhYN2UEKSW2eMTe8UsDRLl/uOs27y3B7XjTVh3WQTXeFo3cG7IBT7FSSgUMEZKBghIqhQOd4HbNiJ1Dhah2k9IZFTRyzowbG/RMeTV+EE6kUyE0dYji2o8ECRAfGb/ofWXtYWx9j2676iPCYykRhAlWuzzQGBvwOIZvVUEMSiIAtoQXsHbWKdSVQEzMUa/dFKxPM46UERewdeh/uaoaFFU411I1mrQL6avEBaVzLc/5H+Hl2X2T0g6V7qXIzU7h90fpLC6McS3plrzb613jcejX5vQWcLfl7b2DRZCpvWiSIEWzCFhN4k05Yw9M32fNzbrFB41RRe4xmrpUEat9OSe++kX0u/k0qLJh8dq1dmgHsHuVzYX0H+bZGTzwbyXurrtWFvsCSQDT6PtlosnOEraZbeS99Jv5feSo30Vpqk7x1SpRXzDU68lNdJZbHvCvRgWS2vYWOrLBQdIQ0Pa/BaFLtlHD9C0Jrhkr0Ar97VbBSvNIhSGwzmtTvjV416KWu+gIki3r/aukWPNmBqs2uvrg3MhOWaBYVhduDQBwRTAfIjYF88gVG8stepRO8oiXsEHWrwuLIAt9btwW5tGiJ4BR3SDtmuC92UWDEh0LkauZGFAV1aIUipJHvn1+MaoUYYpkKQRmTNBogv/6PzL85r8CqBI7OHusJdd5A/G7/VCW26jbXDwt2aMOpserx2P2xZLDdrefWErWpZBXtYJmI0qvzmI0ZDHtgCFqp8pa0dS8bRDcMSBfxJusfJWAnX1OqFwegayk7hhJ19cL1B5sl6U2nwKu3pDeGXVzo7JbNrgV6aFrd6xLHOjcu0hhY/w3d+mtC1EW0j/V762ptsbqV30nvpSXqPY+8bV2j38OUcvHpDEOQzvpYElRTaoZDrcXCtvEPy14atz+vLntbMSwjl0pw14NXjeJsadUhl/t08A68sPDryBxwWQqtq6fV861duDO47aCFhfCf/HfA6finmEjSxPYXFDNgYkJZBiFvq8KBwZRpI85Bg5i7c+GDPs7B6N2EZ9747AWrp4Ryx4LNyanDbELTz2t4tX8PRQ/ToS4pLJKXyBMaX4R2tt+faSgT8F5lXub6RgFeFgUoCKLA+J+e/HVroPZ6B+XPgdQvSmjeczGW2ZhiTC9TWzGtwyZ00EKbce6hrBEmJ26wNlEf37+Q76qQP0k/ST8b3uHpCtAtzgrdSKb2zuixp4zPWS4hnB1sY5F+MjXyzPmihdYfrxve4ibRcJ6AKx+BoB83BAlzrns8/SXdu9J79aLRvfFb0G+mP0j/Zw1K4D/oRNst4/rfrkiOaTNZlIvQMi92A8ByNwy+c+O5dRQgRGtIVlrz1uVE30KlSsTRgFMLuj8FZpsT3U3gk1irfVI/9qg8G70p66Tja4gCVtCVYlx5tKLk2sKXqi+Ms7C46Q/pLDehThUEbgVgzGqo1TKHhwwcPcgESEjdJgTb8jPwYBWlCIjq5OiUlaNwdv/am7KWEOGG+auSiwUvn6P2iJ3zWDGjswWNjyxr8bjMOMovkOHhaK5OZAueCC+7lrQ1G4cPpQi3o8lEqpdcIns9rVb3xaNx7Zg8YurP/tP4Re0VxXI8gJ5URNKQgoszghFkbbCbMV+1oScN5Y3fA5Bg4wJuSXFeieba1iF3bfZI4aa3uylXS7KweCTf41+Ih1tn5XKLN22Mq+2yvLNGQnV0onj3fS8y992c8+sUbm9SXLLywrx8cfHfeETDgOmKE2XlNntcHELKj1eFghQHLL1XHRnrj+/9krynNRMybs8W2l37aGfsBFTy6G/R55OWXu5CDIB2/3F3jgEt3Mcusc6sg4NXiIgcQttHZQt7PUKy39gVA8ytnnDQxoUtz4TEYkDFnxH1yMdd/XFEtuHvoCu0WZ3xHa2NqeoDdmrhqXa9eub7aOiqEyxMe09L5Zk9rJTXvHPCKAFbh9gNeNcZqxIoieAlnNAr1z947j0fQj8F9xc6nh7zxx43OXhnAxvce8HpC8u4dP63hI0Aze4UGvG5gj0mDhy3TwYylXo9SeNdsV0ZrT/wnI9rkVLEIjRWKydKd2BeG8oMrqQ5RHdNBcErQHQp8s8CjWRlmDZJrjwXbtz6vIm03lsUj9iJM0gcvy4+Og8X+tYDUJ+lfpT9IP/madtJR+sFkNCdrVTgRKCXy3vpnidX76IcUbaxjZUdIYuWNs/ojHsxA2jUDdBbUeCW9lm7xbMAUnEk+zRoEe7SbZ1gOSoxy7eg5e/2cvKPg3mLvGyfePWwuA3hKv0bta1DU5PnUxgGvNFQbgBr9XhG96ZFIFy7K0wR+N5rQ1aiOWHIUCH3BRZC3CqyM0JB7zMgGJr+rNXix1Jktg/deRWc8eUZrChxtTAYv3he3a5J5zdgSUBmMCqhKJR6HuIMNPU2H3o2n3ifgvYEt7AHMq/gS8yJ4pW+/sfwcL8EF89o4QkrfVAsInjEpScYzlkbsHxuH2c4a0OBu9r3XIIOh9KRsfdp7mBetrcugvYBKd0Z3usFlD+Y0e4s1NZr5WXHLovgsSTrWtaFe2HKSNNSu5R0h991Lf5R+K/0WuuTy+n+VPksf/Yu9YebGXo/avvsGjbsClpyFeW994r1QCYwoHs5OiDdQxtlVI2GojZo33lSezcjJSjO8S+3aPJHqgvUkYbKA3pLq8WQbysn1xrUXwWYNJAMgORprZwPdFcrRCa/pgWqxLE5YoAVW84Vhogb7Shikhk/PdsYzOdOiGJC7M2VCSzuvyStLxFUSxcbGkSs/VzApLog1OWdOa1UweDagUg2pmCCdR0ZLESvf5uB3C4WOsp/GaQa5wZ7SdEFyMsiivy2Gpu+t/s1OHYVbwYup6AoJanLvdI+yWc7Vpc86ONjWsDEkNw7F3oNzsLJXAp9K41y17uskdEuTlw2Y8MmA1IOWh9dURvHfSL+zMPujnQgtOsbh4QmV9HXy096ul613M1JvnNBLK4zfndRvvRGz8NE4sfYVNmLM6y0tk6HnXy3JvLTZdbnoP0gfLOtHd4mb8RGGl9Kzm5iYfJWfpNoPsu4wScN60UYK74CVPTAx4FU5Fu+kl36KUYvWX2Hw2rjlIDSOZn8c2/rzWhSOAl7brXaUfpI+OGdlbmqAl7z40ysb/FlLOO4NeVmN+dwOvbgSnf0ZSJou3IhFXoD9N9jXPgGXe6/Y7DGoneXT6kw2n1x7bDzsI8ArExFinHfbWv/brrkowSudvUiJKbM7bOEZAb789QolYt48cmbaMwSvJKE9Pr2B0FAAvGpj5WSO8aPP4/rrweuDGYAsiB9dU+wcS8/BK+2Q2RXmuN7fVJuGtbbxsGsdJKos5exNg0/g3lQxBcWkkt5KvzcR/WDwWrrNORYrGieb0jNaCGG/rWNgwuXJeliu4S+iV+26bu+dRaW5WN6rgUy34MjBfom/8U6XK4f1H6T3fpyjjDJXJpdpcMfYlHFM9u6ciz45ehqHYwcl/GiN9KUTbOmQDUuKDNMAvF5LL41QO+wok0F2j4P5MmeDY6JAVUbwYvHZ+CJ/wsEarcGrAbKnj0/nZO9S5GBXcGfJlOB1xjfZYR9AQAL6AbgZ4JVSsMBdhHmNqBNKEMZpzbyiKW7Q54w+EfF2AliXa+QKeIV5FaCZoaVnL+MeSDQiqYRLCo6rEiViv2Zeo6fpAryCelewqjfWYwYXlgGvkPQrG4cGh1D5Hwevs7t/IeyPPw9eaSd2AK+0wRvIB4U9WIXXnbxM0kK6sWb+6GV+gONtgNI+eQ/zfzIB+kH6zrpMZ9MnkW7EoVNpLId5yTAS0Sv1Qf59L8nF9qFO+25phUVELi1NZmnu4KC79tT9m/RWupVemQL9nVR5z+G9a/k76TfS1+4Zn9YLcQJTOlrKaAxLm7WwPiCnj1BsNt5VwaQTz0gQ5colyt48YWcrdBiazMLDqqmeCSmA8jctCIS0Ht60bLdp1i3N9LvYVloo6AccQpFmVKwPAyB/65UXQBKuR+tC8UKsizt3dJqLPTUgx3tPuG2dFrq1CFv4dweQlhmYKsfYxs3GFI1HQ+aIeAiB7PxZA1SMcIMZkMb+8Aw1VVg0vVNE5SQ84xbSe48LdItsEwK5QWG5LOs3pi4nV92RAUMeDkjLsyudrRuPLWBpg9o7JVnCqV+7KeOWajG5lHZLgFmPRVTinK9sLV8A4SjdWXyjzPha+gfp11a0NtIfpNFHlWU73slY+Ogm0OBIzrERR3Qy2GfqsJwDVn/OxpUf+lFLd15Ls2+ggWzwQnqFk/2Xef1n26nvnJjeSr09qw+ul15K30iv3O474hGxKcBqgNejE9+tu88xNEX4yYXV3kl1dgY8ellmh0vA69q0OJQyM522LMErgf7cCTBjKOMsTcmR8u9s/laBftBvwEEYwbMXTfaD1PvAzMKhkLI5o1HhhJIK10m4p26RQro1FSzW4JXc2qwtYwXMD4W5U4UHobZ/Yft/Aa8auFDgBhtn22tPViw/Aa8DwKvHIId1ZHdMDCfjOiMy8fQO74BXZ/DaOgEQvE6on0PIpzV4tb6qxrf5lZfu2bdPgZPg1eLyrv0YvwIPNUivq/x58BrBjmrfSCzWFbanjsDBAqPUeqwaJ/WTz0NZ0snVmnAs7/bSG69Hg9ci8e8dJ5W71sssZA9974Q3Qj6Ur1aw8fROcin+/5KZQqkXiHmSPmP9bOGRvcJT7K48r/8qfS299FndN9JvpEn6zm2KB6mQXkq/9tlZR+89inZauFFzbTxeoucgfXRmTo978CCe8Jzvjfn9bK9J6VkM72ys7d+YHG/Qa8ihAREMehArgX+lWJogHnZrUsD8cHIBQ6c+G5V5twFbi+Sc/MlUN6LFYf1xZwNT3r9Am4uVUo1lGcYaeCoMsgU2rFfYyHvheu3gv60BymFq9HVVUDKKtTS4NXjt8ZyZFh2TAySuM54LH2vHyUiXaQqBFaC8AsnNYu7tkysBXiXeKjOycYtYWGzxvQS8lqF46wrt5Oj9Oeb1RfASdsuVZgwX4NVCIHxy00Ee0q0TUuUFMuLTmYrSRa8twm/dCH0wfbn2egl+Lbh8I/2t9DfukdY2NV6bMwrDPmEX17wWLDt716t1VVmi/9W6l37vuvFcH23Fmnw04skLtwPJXnqiC6ld7O29N1p+a1i+9hpd3IafpR4P77wBwi08svYcUgEb8WDxR+k7qfcuztCtcJsepqEUusmqG5u5Jg9Ga10lxsgNqEXyYw9cETrobNEUyKR5WewLJ+kTmOcNrjOSjta7ubX+UKHf/8mtmAJLKvbLZNgNHNlsI0/+jtCb0tqtlsAv0MsXjqwmxGb5lsCDXHPvgKn9p1srnMwAhR/9+8qHSR18wMRu3VmlS2ZE3TiAJEeGCHNuoGiH5VYQwWbMe2PTYu0ceMZRI5XDcgctIMaRxeSx830tpdRHf8STifTO5xEO0q3vS87bhfdHl3BIDTgepjWcDAbdwk37hF8Loaexq6l2rJLbhEMWaEuWeHLQjWe/lz772PXOsVr5fIMGNW1CKO6HyRm484nO2e/26Cg92XjRoU6RPy4DMq6Lr7+8WthK12GZxRb/0rVZ7TPVFhh85xN4crpBi+t4NHPYmx29kK48ECdvO04/NF2jxVbxozRLr7wzsEfl0GPPS4hW4dx0NsjG71F5SaQdfOMsU2LoZy+/LLP5GZYJ0x/PFP+cfXrqUpBfw6iQ1T7B8jeYNwbIBHbx2W6TcP0zfJsB1tLhW6zlkMj385qgC+yL4BXsm0xNK9x+CrYJCJ5PD3htTLcGlKPFulSerXG/cuM6fY6NTyLQ2vkQtW9EIRRsGgHWERrl78tXS/ASwKu1WlPbrxc1vwZ4ZVN1wIuetdngNbuKkVnWaCPVMnd3znOF9zRWXi+VR+YW+wS+CF4yQOfuWtj962fglQCL+th7xktD+ZWLuihnvfWqEpfXSLfe1ldZ8CuRwmdfbefIOfnczeWmnrAV6OwCskNjLNkxR5mlgy3huUWD3eep5SL2zvDmPWId9n4Sxo1RNqkpOxs+WcG78eaYjXdMdeamHZokDLUnm8ZeWZBLR7G3uMWqqXV9dXAJfuNyZcYLdu6r3LlWCXhRachXyiEh4hMr8WZFURi9L+qTXSh7zx+V5/NabSKn0NqQsIDXbl0pHbFuw4xCiJp1pmLBljqh9JCSeQkC5IhtTHl9FsCMQWhwjFB2n9Z4dESaGnnnkM0rt39vbNfJJuACsHh2ZHdgWPRpkNsK4DUjyYV51biX2ut/40iOjtW5HmvW4HUyYwrzCp1fBvkb1/xhXo3BK4n/7hnzqrC+Sp89ExF3+wy8sjuKNpgNgLJyeisgHxTrVdY7j+ZGQrpjG35wSyUDUtvLdItiL7pUypedsTvy5BklxZNX6zKzN6C6wa/JNVPt8flo+BvqJ5uqot7WfnCcvD4irW4QNRvXqt+ZsL31IdC1ZfHP640qglR9ZXf/aD9L+nuNg+7eheVbhOQMqEjwljjhrPaPWrRms24ikd2YamrtGBiQniqwKa29VAJmkC8tmPHkx8Wl210ga6T6HXAKYNa3QJNkNB1ct/f+uB7EKXpXBPpirREHMAaEbQFA6sHEQmVrHKUesb73zWb/9QmlSHpfI3YG5tOzwiYE5t7rLAH+6M5E4e88wd518XdGPnm5W6tbs/GvgDo3AVYL7x3e4N7TAung9T7AYD7arBPku7Z0UiDtH41ee+sadFZWZqqt66gD7CkLIh59XMuSqF/59OWDXZl7kIXCN5hmI4OtAM88AQVpARU8CkmAC3q9kW7cG5ysIadrnVq9wm76yurSaLZy8umnjb0dZxvKdvYSpQ8UdhA/nTzpszSlj1kadWvToSykNNOZ2moP/ScD7A3K32vXsiWUiR4rZ+cZ6qwMRUOMyW2x7fK3ujV1YSetdbc97anw7BLgVVt7vcYF59bktTd56LMqgrwjkuOMMcm/R58P9ATqVcIpk+Zki40qwzNlKER/KcZunfRHtPuCOJMXbb+OJ45eQiEvSJOqRw+qQo7ZejqKdcouPOmlRztJpTfobMDZohQGkSdfyR7Hu004gjxAf7Ykzd7piFAkeOWWo+WMa/Aa1+A1eoKiOJQOldaDX/nfPwdeg1n9FcBrdhjPNhtfgFfrkKhdIDz6POjKL9j4GRPVz4DXbILUoa4LeDWA8gE2mBmOhcnzknKj9G1ufYUPeKJGSs348mYDTVpoR5jjwrV6+14OQPZcTDa4VVi2Ja6QNcKfOcSj9M75bTJ1ztBPzquV6d3R/rqDP/KfDPBfQaTdO4/VCJTKXqsGMJEGXbJl7Y/7IN1LG+krn0PdwERygEszHZUNbMQbAHaJLZ5pcN04XrMGZtDiBmM3QveK4l1gEbI66t1Q/exz1iuz+R7uxFjMU9uwFSlo+8sv3jgPd+7CzWsxc0DdOKEHPawpT8p+ujUCXvlRbY1w50+psCwrL/jYpypYHSIdJ+YmqPQZKIF5BVYOeG563vwMxSsQVvkdcs3pr85AqwEX0KzL3dzLlRd8Ab9RWj+Vu38HJJsL5tX62QghLAvK/wJ4/Rzzquwa2ro6uUfmfg5eV9gGmXTb+m3P2G3G9kSP/Fd4lNLfa13KLArurXQtvfL6WqSBazxxojA2DVaXDl6DPZ5C+IR9toWfEJcOVGeX7wYS0jKMjZPoFRlZLTSDWxeqs09SLbCOe+eCCTRm0XZuPE4HW1gX70XvYS7MQ7aOwQrjlFa6PGaTqdrReNMiEkuQqMj9FU6VnDz8aZfV/qC926phxgKvmPDmtH1N+OgIX7NfPIDLDtiAlzZU7QHscfvpTKZOnnFJLI+ToGecqyVjQ76ypvM+UbEJGCmVZ7wDLZ3yotziac8lVjwxKTSmWA9O70SfYZzBmiIlVFaHf0IBc3BFnS15SVPs2VR+t8FvJfPeeAt6i3IkjYFAOQivnBU7zGOJm5KZxsbD1aNnvlzbzrd2bShKyd3AZrGIMrcuebiRv3dart2Z3PvJn1c4u6HxXYye0BsUiiH5whxVuJFI9r2HLp6JFBE1bEZ76ZV0lt741Ix30mhvx73B7EH65JZeYuDeokblqTka5CqLh2fsnmmcqK+94ye7uWO4HRMJbBm1vu7ZJodUERHZw+du3NvNfo1HBGhrlln4it/7s+NemQETjYEydDPhfrLltfCSSL2Udopc9w7YidDCm14Bmm/dho74nkHQM3qaH3UwoWQNp5TqUa6cHYiVk1flhTQgXCqPcGPsHkC9WN4Es7b+x4RXRkBKnTlh7WUYg2gbUCw6GCMOTU5maTcR3EPDuBiimc3rxS9kJpYcE2qYhX78hE7J5JRZr7Hmwg/cIHMElAfsgikhmQiC9c+B17xOQhfgtX92XvYj6E1vY8Ds3vgB0B/wGr1T/8bqPPdtpqj5aMV872Pk9wavcm1PnSyd50iugLgMZxPmK2HAeGsxsxNoRH5640NkZjfSl5ZDBUPIIqafvYoXOvcIE2Uoa/rDg0Fj8pbOyWc0XqFxGjfBbOnkz37PEed3LfnqTmqk9x6CyjNxQjsuJrQn6VvpVtpJT2Z1k/3xZ7RQHqRXUmMdOxpGFOmTi+xlZI949NzJR0Jf+eFQWQMjFmRgK93LncErafzabcYK8tUED0BE/hELMh3RkIukr9Exd0LwPbqoSJdSnqF0/5JJtohsec3MwKPJy2m7PvtYvuYYFQJSPfS8AlQxbEggPvoSeMXxU/mqQr7SJgj0Z6nkK8VkiVQ8A5R5Ab30I/BudONx59/NVQ0gKS3SyWyQjYWgcnqYsI9URrTIXQGvPcQ/ebrzW/JoELyenIY7Y/3y4qtnzKv+GfAa1+DV2z5UgXk9Sh/csj5gf3z0kR7gRS9KYdSI6pG2pLyKZ1StyZpZU7PbgF9Jf+NNQu+9dfm11EqfHBuf8YzpRO+jp3WD9ZLQ7f2YwsxpLT06lzSGhQZtrytP6yCNdWtEGa1lN9YH5RFKdn506Rh62lnkyRav9D430itTr2WwP0HKlxNZjfyeJlVvi5ZM0qLupQ1fAWZSJ5TwfQt70lqcX5A6bXSQFmjTlaAZPYKXDoOsmNjT5HSQgw/kujFQV4DvlSA8AdEZnbSs1wjuF2dIxbaqtX5dAMwKIN+0ZpW5fbYKR2wwy/uEjUcLrVCXCpeURSNc24w8k8to/DTpF+4sCStPKL9rCHrZahjWESYmpPVE1+B3yMRx5EentWwlyTVHvks+WfLwjTf+dUit2VMfXaNyxNKyWxqizr6Skyul6F3pp8Uxk03Wj/7+AQ+6HI3uJx84nekbvR2xxXkfZ4RT6smMvNbIlwsupGvprTuNjcWu2k/d+OSq74jAiEd9A9HnyS9LruuMW8unPxox7n1Hg9PCQl8PXq1naWjRtcz2rQJusQUF7v102htX2I0fiTPh45/cNyjRS12m55Olz7Mrw9QGwali/TzxK3dySqsRo4MjfugZ5DLKbNr09fooh9RCDSKYls7ktajwRIR6vcDyoVn8Rxx8MPsuJnCDBu6OEm3Gca0qsfqKahU6J4/qDJ4w4xfl+ifkbfC6anDi04ToD3iVz+5xBIEc17BbgnexqVggDUzAr8hyjftXL7y2CcTL58b1k3YO/clp7vdrC82AABu9yYVd5V8Arxk5b8TuuxKbJS7Aq8BGrejvlTuNA/aplca4zjd7xrnJj3jcN63Fmy+B1yOet1FbW7m1VpLYjot160nvcMI8xbBynYoysxnMnfTKTEwepZ1NFyfg8uxBHo1lOwDFjFVcusKKGDQ58XRuclAqCv4+5ol3yyV+trN566hafPAnT/nBvisu1yXaHqR3VhSf8EiAxudCPDoWl30SyzlXD14tJx81ecAerXENH++lsx9k2UKuP8M9WCB7bPzfMK9swr7C1q8BgHK2e2HEQqKeH1tV5jh9vNnS4qP04GfcRfwTmIIAXrm73tV8gZ8Kqz3V6QM4XcQYDldY3oxfn9eUJ0766UvMK9GcPDzirolTIyA4L54xYulPClErJ60W4FVhSQSIs9Vpwu0Euca1PySTNTh9Vv53g+u/AK8SgdFAba0hFhRe9s0z8BrsUBxwpmHa1CcP3eZLzKv4EniFecV+nB3tj56vZbf6zujceM3feGBjqT0YvGKQOBlfMlNxsxQIm9Scs6fgTvpGupY+Q8/e+1EV37lcf0TI9S65Ju+pCtkfAY79+uy1exeTW/OY0djXusJPnKgOo1gG5toXdSP92sAod4Q+SKPdBpMv4RNcXZ0fYVtINz4ufjFtHtyfmTyKtU+OkFnmhBoyq5kCSyanMU9bwOzBxw8d7IKb1yss7cd2neUn5Ds5zE9mTSmQaggsAYxMVOFgf3AMzlZRWDRuYL3JYgpyVFijM/Lv/CwnjsbvETiX4i33FfU5tWKiNVcVAjNYdbleP5skDLDC1QbDWkcO33YGDD/vdgqk9NrbgkIwapRMJxxkdsLO9xl3GiJKs8hFEV6YMMgLonFdN7sa2UE368E2C4fE2dHb4W030M0ibTS+/SUbb125PbmcqXwaC+vGo0WTEnJcD4U5538dLBk0FiZGHwS4rKO9x5PV7IA2WKyXwzNoZytyGdstwO/Ra/CtHQS9K44TUsrJAbmM1XJa1b1/dHLxubVy+IhabPbQPZkKFU5ltY/53PlDZ6H31ZuobHwGXlyRW/cMexynt6DAwZ2QvXnU5LruxlD42Xf+aq0HXLvFfPI7b0Guoso0a4rFhFK77XmyH+MB5HiJ9RuYvFow+8nrP+HYosO5RW2WOZ5AQnqshNGWnEd/6B59fPmOmvXjNGYsM4FuzQDfvFgQtxoLmqwb6fkKE6N7PiYmAVYGB32aZhV41LSmcwXYVAH2X/l6yL5yYTOwLOyrtuFuA2kwhpDBdeOIfXFp7oct9AD04BfhvoeC+xy84gnZYpR69FoKU6mzt/mkV0kZujSsFF5vhYN889eB1wnsYsLU5ICE88+A1yJMfDa7G3CYckyLcdIL+m5uk0V1uiOxDO0sWRW2aixSZdSiympRaGqYcOa6QhqOEtH4vnKcVzh5mvYVsmzjI4V3MWOHJi73cyd95TJ99DaXhVP8UfrWXrLWI9Wasj16Zc7Au9fSC4PoyYfcLBsFvnPVVxpxljm4AU3fwVs8G8V7CPsDSr7OHponFN/ZC1cBvFJkZgoLA8FgvtusxZgGe4+S4rIHovenf5A+e5nlCkfgV2OjaWhI5M0aJVwkoig6dGKNRnOC14iOQA/iluooaeDCqzmYNga8tqgYJ1SGeuZ7DiGtUOAVeH9Ws4ndyYF47UbZxiu2RiE94E9aIT3STLlOOULbJR/UexnLVL026JzAvPbrtm1glOD1aIAeDV454Cv6TYOK4cmnJfz14LVZ++cGA0QBbn7EqV+lc/8j5IDC70/m1aH3O2JdxHqRhETltcF5ReljR/o9O/AO0CNjH5gMMSVGO+ys8pWQeTWe7oUntUbhOz96a+cjbl5Kn6Snepntvf0QRx9Cs7Mc0Uk/Sj9KP0lP9o/dWgR45ac9Fb72wfuOW+mFj9ZYysJHOx6uoKskyrLdtYJ0PkKIzK6nLJfdM/fg2WtxMKw+2CB8cqPmogMT9CqtEi6U9ApbewrYrrMKezwibgZbyOWVa0duaaKf/S8Rr1K/hTMk52odVg3SotaieeCtBiniQpwRm1mXBXpr6culc1vhAqLtpnJj3Rh1NaJ/7nGGPj5h6OLalXR0U+cWJWLaiUdoI0RQwYoY6NqjuyirPSNY/Qi/a/C7sUWjMwtqcftx854AkNs1tFdIJgMkmgglk/leumIzVnyo7AmH8TxJ9+ZdN06bi83ixqRoYRmlVYkOD9/OrfW4i2TvyhiWlgwL/sJAW2K78j2ExBvpg/QepPfoBVhBW17Q8dE7G5dXXvuQrWw6mV30Lfr5g00Hy1QekFpTrk+DewIT+OUVjnU6S99L99IgffJNtm6YFqgbMytPIJ1b94I72+3uPMFp6J8MnXuUo40hqV43Q8LaK2snGyRTuYTrPKkf/WjiO++R3a0N3CckcZnsld5LH+aaCZ48LOc1C4rPK6JUAyU3/bec65aepMBwUjdmYY8Y2ArCwEWbiEEZKWgGHkW9K9fwmj7Y4P9OSC0VgIzUS+vebESvvCw9Scp7AevOmaN3DBylz1IlvYSXLYNwwml2JTCCbf3IXTvQ480vgtcZpWZr8Op/BrzKtQlW4KgzBAW21OJ8/CvBq/FIZhPZwWT+58CrMS1scaDjLQj57Dgs4H8uEUvx67LCz66VsP2dTQcngGAWTjw5g9XQ0hN0ZZw6Wh6b3eMN3angULg1ZD/BKnyE7yJNkXk0Ies897c+I2IRAz9If5B+kO6l772qr1GKRDc6gwsWBrjaCeroh2rszNQLaPJxzAwO5QlHs0d7zxKtTZQaf/Tk0TnbuLa81XvpRnpt5nXtnLAxr6QMfuWVXBi8anx6ick+eUALY9nRBfAZazuldbSoHWy6ISklGhOzmT29ARf6QS4mKXTGjUzgeuFoKcwIN+nREbwusCYULDaVTMHGM06Jq0DjgKJX4Hs2pvd+TecjlBbwyu2k/IgmPOGumVRoCLny4PQ4lHVy0mZpzT5wwCvieZJidPvRP5VXDXt3RNVouv8h8KoBXmFen51Nd+azS3jf+Zon1431WhecYNPtkFrCP+Ki09onQ2K+MR3e+qePHpnFu/kJJpAnbHHc+KaWDzrBeT66c3vENssUFlH4R6PVKL2wU731iVadVNbJsFvr+h9MCl/44KFO+qOvNLrBziXQHppdjwQ0GMM3lvgPttDurSlxC1NtKpUVnKXQ2nS8xUjLU5rNFLcGyI/2g3SOmsl3f2fgzPWPpraFlcEOOX2Pap095iyvtOMmyMF5WQPAC1lKKylvReSeXX/GGCGs+xJbLVg+hXeVMHfPIHUCiM5QSEcI342PndoCSqs18MgrLOpHqkTaemcAqtCDT7DdWhRtEbZn6Scs8SBxCQ4cttN5++voT89akXkdjUuCFj9ZDqJCHcyu4HOMdLZ3AVZY86mxHabGb/XYYdBZ1Vk+9xHa0cb57dGytRyWn+ysPnlVLiHamB3kUIm0N4/GpMF6cu3vy+z0BClv96zezvCmCggFSOLKyg3bnLyEz+5AXjkCN2ujz2fzmo0PKO1B+Xr0/AfP4EK3FuJzv9aMJM1J0zvfRmB850PIPnprwEcv5gLqSwMvfojmEedUJ9wXcL4xK4uNM0OQgRtt029d40YUPuCs+8pEbmeA+yxdSe+lzwD25PfGp7kGvAYYsuTBYj/wCpaDpOk0uHpshCPrmB2vV2sNtDDr6xBJQvVSwk/YgWyknMthRz3gieVZ4YEKlpVY8ASg2tjaAbw22FdVAMSz+Av8bgXQDJN5Dlgp1SJTtT6i8s6lXeMtfO+88oXbr5Awkh17e+jT4SjhSj8blPXz4NUD38k5CV6zr+fKrbDlq8MGHMF0LVgdFwXr3u8pn/XcO/ifg9f258GrcMMt3s49QveIQu6EUEyC6f1usxdLicOlCuBRCf2iW0dXZbV48Msmj2eIwi2cQh02qT5ix9CNdGMHxYwwLp3MniwDNdbAHjEpNSL5z+fNTL6snfRaei1tvBHzvUNzIW03eOpIKopUEQKt2HkKt1Bl99LXUI8epMp2i61RZvLAZbN/OqrJ+S0qgdr73LfSB3dK6Wk8+Ujra6S4wSlCpjwbCOAyWGdkshg6/2FXjbxgcojMKMwm32AcySnkBJaU7d35E3DfYtWVmPssjxJnAgRDBc9Dyp7a83UGsG4teZYAr/wRoqddK2oErwIJSf70CN21j196BebVGrzeSzOmNfGZrng4XXpDAng1AK/Bv17iMmoEzOiZohmO4FUZjCojRcArhGv5TgvS15tblQ7vzM4jqPq/C14vrCWf3Sdv0d8rrcuEeW386SfP0YSoGM3CArUlPLEh+BXwixloYwNos+7szF6qRzcPo9IHFkcfgZPN5XtvoRFickAimSyEL9XyT9LXvsE2T7uvI/vujTofpMJPO5O7Dbu1alwCn6MzHC3t7R1KvWF2CcDlna/MHxY17Mks9iV6gDkdpAHGNqg2M7pxFi+7GD5Lr6QfpHcOivCoKAChYXu/yRWEuw3S9ITFmk100RNimZG/uXHIDFBgJ2v6E1ZP0nfv2etcewe6wuMLSBazwyH3QuElXIvS0MUf8jFK/I0nuoX8ovX7907cW6BLiFaK0hGsLBcctL7xHvk76Y10ZcFQsEdMSOsXNtd8ULomgckRu6hGzGD2mI8ghw00Inkq42hdpMtbU/HGZUI8nxfvv8Fes5h1lnb3KF15uo+Qy1sLVp/RXdi4Kjn7KQ93Pr0iOWfAsW4FOOGMNkPh6qlyIq0BV2lvZnZGZLAYP4P6y/Du1rsKYh4+WZHv3CCZkWBlwfkJw9utS4PZ/OITnOpJAieP0saaTmSpv6yExsPdSb/12YQy3BTOL9kgN+LAwsGf9ELaSZ+QGRdgKr1nvvFqb92uHNyCyOh0jsK0BFjkDMgIgpXihZ/A9IN7pCdklhGaaQe2WTiFTRZ5C49v531DtYciCJ5W/oT3b5xQxjV4RSOOl6CEWSbxEfX2DDViRj9HWGkX4HXReCToTEgArANLFMPzeiN7DVLNdwjNKDAmrBL7NXjlagffbBSvF9IL6Y0fqrOwhc/eUhxSREE8ZDIrsPdHh2qeAF4ZgZ8Dr+5L4BXdUX6Oy2CsSfg16MFMBq/wrs5AnKb/FVS60iXJF8ErksrJ4PUC8ndp61FnHlWAEx4BXmE4lRtFDXBnxClEQnnyRfCKoLt3GdWtdz6cjFwT/ALRGntbuI9YPuXafRSB/ORyMc2n1uTzcb2Db5SmdJNuHKxLp/JvpFu/6DfSD7YcLAG3d9wPplqzA3pZwE++7hImwM/mcVFlBp9K0Vj8l884e3KcpQTN3rys3t6TvRSQL6V76aV9aZ89oIIwfjCERY1f+kKlS+30Vc7eNtY6WAusou7ZM7k6i1K58UR8IECG/srBlODoDF4nd00H8LvJK39ytGVegyAT1jmL2GkNfyWYV/kMvDY4LqNcE6jRF5w0E2KlNZoXAK/ZP+38KVv3xO+k19K1G8WV99nKl538FKgV6E/alQJ4nQFeAnjVoBiFF8+wBq/snE7quvXLMpW9/xvmleZki3GYXOA92Pgux0wJK8IvgFfa5i+tNRQmEB3OZ5BnLQpImFeD1muO/BqQR4UYIKbHl98iKS68RPZLhPbO9pDcrw8PKFFhnvHInAkLhG2m0cp6+GwHc9Gj9NHC/F806Tqok4bJgl4fpNfWhVrpV9J/NoBX+MyFHb2SCpvWBttqCrsTFofEV+4WvsaT0GfXv69wrM47dwsbo9pnNHZeus2S9ZSuZuXFsbjd7vHUkspYFV01hIE6Vd6QRhiykYtlNOPvGo65FJP0SWVhhdZ35iqda/we/fgwvfQMsk0pnCSlWom3jfmjXL9ViekTMEmQ4IV1EM5JSTfgUaOWK7CUM5i5JAFs5HX8wd9/KRXeXHbwdWYMowGybuxA5AjAA7Sa0blC2MtcO4/HWzRb4yaBPLljFAodz3aPMzU7w3l2AB4M0hvLWZ3vd3J9Ubp5Lu8py4JOjMXksXNBVCKl1NZrChsp4oZdaG0BnMj+yQZttpjdUjfFAxxnZY8ZTElZm98ejWGdo/fg93kyXx0cV/16FQzST76vcd2E/2DGO/hHWTILMhQ4OO+cfmMwdmlY7806Flr8O+ngMwU30OwWceuV/VmxB9xYc4oecOcMuMfTWkazphcgIT36pBGrRiw2UqCEV4Ls1g++u3ctfjYpmrG2BXNQ0nRmPQ3Sk338zTpTRPMbQTayjaj3FeZXZpAf4TLCTHqT7wMaAMLUVnDohVnFqhOVuTSnzVIvcHfpdpTPwKvEK1PgNSAwecNxDaCE1Ak/ytcMDhlH671/sYOp4OB7CRmY1qe5yFjfwSTMbkRcl5PvV3gmH8GreAZemaYL8KodsWcAVm0MFcT6g7PRFuA1/Tx4PVgVE3bxFKhRt+4xVijXawNx6d57a4TawqQa8JpdlqcTE5EiLcqAV9oeRJzR+Sw7jRO3RxshekfLEeViljPNP4VlzjO2OlT25Tbujk4QL5bR/iTJJetR6tOgbLCB4yfpe+mFVfQ30v9kt9hoGbP2eN1Iv3ateLBqOtvekV3UL23be2uoOkOcP5nOLiLBO8dxBm6HXcU98vlkWbL1jSxU7oU3JcTPsDOWp8bowF/jQDg7Y9c+E2PnZZzYKh2RbCTO7geGmqW/H8EpxKSFEbkw4zt5NHqvQxKZCttkQ7tCMVKnJTrTd6DcVSO1Vvh+hf/27otuIaJcsLy0s0pso6fZqwIUBrzCc8m8XsGHxO1zefEA5lUgBiJE918Crxn+sChMdG6VqPROUNQm7FAleJW+ws4RcsbOySU4T7iw0YecfBG8lkrys5mXwIOeg1fOVQjxzy30xtkIqxto4AVEI7aIB4xVgRgO06HWGDE13vIBWrX83wcbkwSxdgfNJc6TxX9VG78mf8pR+s7l2uhbjhB7lL73oC1/TnWMCGn3LkD9zhrUsnZ/JbXSWxPQa7vAFvnyV9JL6Z30v0vfOUyWCfno0ZXHb++znBp/bmHv8Hvpj9KPlpveSI1Np7G0NQbCwkExYqSXuXrlveFntJZbcI/sQoyMM8GWMgEDzh7yep0IovsFHqJjhCGE8FSQnkbklNKjdDTx6Ncd/QsCFiwMqRuBCnmNsBE4nxVNkqxvRNiy7yQIREFr0r+L6ynWxohUmDNwMR6OyVXfJwfbDnyJGwu4hmJTyMpgvXSEa0fYfpUyoXYQnsGdwu05XEc8yqczkE9Op+FylVn92TmwgsM9kRAzhzAO8dzKwX8yJL9AOyEWxdnQ2GK/z8anE3cet9IAllvuoYB0EFZGkGFhsrRGtXGdNAbf2t5nEXzr5Rlj0xHsIIbSVnotlV7awlKafL/J4Z+8JF9Z6ynRlhiouU3uEtTuZrTSo/SjVEtv3TD8Wmqk3zhJXfthQbOh7YXR5x4SZ+8bS7tvuZ87WHVjGe+kz94C/iS98EakVA7ZQtmChIxABKHTuvNQPprIxvlS4DjazrEok9d8TWAUaaum073DGk5o1qA9M9CHU0W2k9Q/+FJPWEgJmtQ/wn+TBCcgmkAehH5R9PcGv1uCw8hrvgYTI3KlRCzX4DVhh1vGjeshekRlipK6/cEsYoemwoCENK/Rf8b7590m07ZyPaQjwCvmhF8ArwrVxM+BV9SBvwa8cnRF2i2lP5cMR3BTd5ZXstNjMmoXPwNe0U1HOBCTp3tfcAGKXqHrOJqJZbKmNXhxp4csHi+/8k76Tvpkh0LpFmvq/AExv3TFUldns0GcjNEv7/1Zr/xZlTfYDGhX/KVu3OL5u8sq+leplv7GxtTfW7f/7BBfttc8SDfSP0jfSA/SP0l/8pyNtm7ssR9laVq+haaXdPok/ST9i/Sv1ipH9H9G+5UbuFVLz263TrZ3fgzo2Tid0Jz9WYNRbIK0w1U3OqUfjZX1Oo1HWWHrpgEnEvrp4zrRNV5Lncutg8nXGYLiiNVLCS00sFvTE1Y+BRJguWZeRKWoI8KWS9aWDWw3wUF5xEjf8unCfwt8etLDImp+Nn2+ghRHgY3gNYAFRFutkdvSj0jaiJqQglmO/sLy7bxmXiMeNPZz4NV6UZU4baw0TslBePwrwCs5I+D1Yn1y5QTKefL0RcS9RgU4QnoUhP3cOMFrxKk2FwQ8wkq5togn6V65m/C9D0a+t6b15DRQIYokNXaOfjRv+AxFU0bbE042vJZ+K73wLb8wHTn7+KuD1NeJhYhxtbuz33k492Zyb2CI3mGDxpV0Iw3eYTjjnKaf3OYsbNjb2au7dxbbOhHL5XDlRmWWQiCKFE7+oDMiPQLrzhLc4DmRcSibjDqHmLC9cH6W99N4iQeCBtp0mul+GkEhQr0uOElaRo9+mNy0llYj/jSgQASzhLYASL1TaohKDZ1NwIMR6BWRis3MYo0rCckSrxHEwIhyF3JcNJlsJd2b8SZgO1SwM24/veVUpKWN0xMex1uhER2imJb1jFI8APYC1rxkm5ir9xCOenfzBiNHsL/HlEVem+3ZztEEGajZZvMbL7TPHoQSVCe26vDhLDc2e1Ptx0T55GbGxje+NxQV1sQEm8sMTA2yknIH0uIU2drS3BjJjoilaB/pVy9b82bpA7T4R9cvNZLk2U6pK+kb6aVLp52b+Z3X6U5qy2cZufJD0v4kPUp3hp6t9NJLfe9nMi1zcyu9Mpw94nS0QfoIflW4SLh1H7KCFrm48j4gy0+GnhgYShQ26Ut00EhKz0qLHeQdlmXjLk3Eodlgx+RFFpGReQ5e3H3DdS6wrAsEzNuG2Z8MXg+QgxlYM5wbUcsqhzjbicUz8NIavIRwlANuBGqPTmAU3CMBE7wEkKowOELJndEbgbPLK68sAefMiIQ1meQFeE2QSZYLOJp6VTg8T0arBgb05+B1Z/AiPf53wav4EnglMbTIuFu7hv5bwGvAVsl4Vy7Aa0IH4tF+oQlO9xpH7wioJF9VZNESQmkyWbWOjZ3PhmjsaDt6qAvwvQb/vXPvoTPbHJGlajxebjHHvZDeSq9cnO+8xzB7GDZSW3mdb2AbqKQH6V+ko/Qr6daWia/8ZPPaD0J9MKtbeOGPJlMRZu7dw21gzjz7QxuYtJY6+B02Wz9AiZWvO70R9v0Ec9WA0a9QTgQFZCVwdoO0hmwQ5h3mlSCYQdOiDE1oH0fdERrQLJ9m0Ac5NE9uN9+j28kisHBcjiDlUS9StVLHGkFhIsO0eHHlN7wwNiSay/V/UzHW658GVoTUMqGSIXhNvpEKzCu7Kwl2rFXqtYI4Q8Ea1+AVWX7wtG7s+SR49S69XvrM7tDP8RfBa4etiSXssmyFbEC6d77H5+BV/BXglT5tY/pWQUzKrI0g7IWZVwvmdeU0Pzj+02OaMU3hX6G3I8Zc6DZf+9zSz24zPrpumGwH2JkIT3bM1j6OLMVT6Ehj7Hu0breX/k76leHixjvJel/ntXSoqzV0neC1+yh95w0+N45ZnpuyzPNnmOJr6RV60p2fMXS20PQaHYkCs5SA3Ui/MdNtfCUBMK2ZRoNHfs4etoRJaTRKrZgaPyS7BFoIkvGwRiNaBOMsSa01Ak3zJ57JJIQNIC0l5eBtrT3YQvT6gAQ5D2EpsnV+1PuOqLmHhMwQ0yYgfe14r4FwQuQWOOOHSTlIzK8sjgIgFE1yZ6/TxlJJCzDg3oLa8HYG70rg987LQngkTSXGeos8E/agBQnSiwslO2HLT3wPkbZ7t5oH4821xZloELOXxs5j3qytOYk39m+3NsWfEDyTi0B5hXbrfliawI2v+ezLDnKP7jEwX4V1h+hyRQi8SMiBAbYr6Xc+aOpba/exFg+go2cDJPeLBBfZ0VkyQIToa2/Yf5JkMB6sm72QrgqAdm/wOnhu/mRvw95XcIVuoXxG93dgBTdGkFCv99InN/1eoDV0CxMFU8Bb71eS1PsII3lnCpuNFwXMsO7Fs4asrYFGQ4yKI7iHvwheFOvjt+JMT4iAGbNeACsFS5RA55atX5/cismap1WgwLsx4WbW5zX1mmHRiqBVowDTGrwKhE79jIwFGS/AKwiYd/g58JpwVVvXANlSnB2kFwqyvNQJXiMibQJ4pR9LZTGl9YQ1/By85P5YwGv78+B1dmYdn4FXj8JsGaXIQv+nglfpq92CZ7bI2ZPfmXEVv4Sgyw5rWZTt4gIcuLTLoPZW++8dwCkZar/+gPUyeRnW6KJVPiN+4xvsrc9tUGolky0C0620r3AqY+9nD40+3/JP0gvpK+9jrvzgl9rN4qW5+UesyRvfwNktgs8Gr1L6xvzuhW2rLcB+MWb8xifcnB0Hgj+wRmE2oVkfq25EssIpVzgKIJ1DHjQSBWh2eUNTZaqC9NwDZwXIfbQWNgnj46/85uMaahfw+mzCO6H00lr6KgAWieyAV4nUKtA3Qk+Dy5vxDuxGpndTgVfOVnpGDFfAnTIhwSvVZmrLymLvxuA12gOTCZqgFcsTncZXKED0wtOayAfFIuT06Ons3KQ9QkzWl5hX+zPg1bkE6vzNgNdgYKrcwPwF8Kr+CvBK8iN4xbMa8KqR1NMdaNYFxxXiKlbSYX2oV4kAEwKD2SjgdSv93lQmSYiOoNoU5+hF1GPNUmgIfi2jsYDdlUvTJ7djFnPng2ndqz/XjVt0JErT6NGHcB1cnt1Jv/MlR247SX/0QYB3ftnOA3PyvX7ye36S/ov591d4zG1h4Cykr6Wv7HsaXTIHnCssx6ybZaJOwIbK8RgJcoefjtCCIkklMclo0fiDWtSNNVJJZnXCUi7XLIgTlaAI4J3QZiwtvJZ4nxSHDQCDfK/A2iURqtcUaMaPZpzgmnJui924eYcLOIyeFkbHG5yQrEmBRjcYN96XvQz7k1PTGdLzjKQ0o4leAr2iXD2td2OlL9KC3vTWsnqUDIVB9OzDLDbmeIMX/YySRC4T5C4ZF/3o5BMTTOxXHab7ZD3nVir9pNWo7XvpWprxIL0Uva2nY0GmFy65Q2MYnyM+cYPU0RixIp0N61MbucVBiIQEYXyUy4xf2VV7I72U/iT9yUxvMICVRtkPXuBJp/XaTtH4V2Jfrywr3Nuisey6WoSGW2lXgIeMSHb5yCdD4pX0e+lv16txlH6UHtFy3PlBZa0vPSzibKfYkkFe2362zPfJz3j8Sqqt15/Xq/FCsE5dN6/hQxCOE9wNyGuB3MdKb8bynr1iWwiy6e2WgBKyjgmiVwQYrmehwT15RlMx5pIi3eWLytxFU0HP5Dda2y5EsspxkEMx0rbJJpQSXC4CUmRfhgqvhzIGEXMweF1Lt6buo9Noge0NM+5x8JUTvCaAV49zolKGlQaaGE5isOl+BryWHeFbgNf48+C1x/EwI3LewXex8wqajS+Z7uX9lzT/HwWv+hl49QCvARl9RFm7QQpp0Ftmc5UtpRLLKo2ZL4JXZaZSmXz+IL23IjV4I0rcSkdH+4DMl8W184tjcCuNCYuqsvg3T6ZTy+7rbeniskBaO+E3B/OdG+nvpX/wEVgL4nySfpT+UfpH+7eyd6t3U3hvM1sv3Uv/JL2TXpp27UysOh8O+0K6kr6VfgQuEK1YR+UrJdzZA9TBA5094um6NC5jenxKv4aD1mi1AXTWyHVZ2Fly1KIivAVhKxwlsRS0B/dqUo+VYJTBgjDsArlUGA1hYef1ZF7TGrzS6J9wRw1q4xYekgmbli7GXABiXnONq4pcuvdhvMtbRXAe0AGJIzwLMk7j3OzkiX6CYl+BONS4vDCvAVs7CkfdF5lXA+noOXjt/M0BXaeDf/EK7HhwY/OL4PXw74HX6EnfeEKXT7mDPjSiA5lDcb4IXjXURDKvAVmHokB2DgTCkv6XkuLGM7t0Yf5V+qP00TNeOn46e4E6HKNRoO6Zff5BUnJph8JCtT7ZgtL7nGQtvKeece1hkNdGnQUtfzIAHA02swXT994psOhdv5X+VhK2Sm6tmF2jU1v6iXNPXjTp+VQuOxM7s5WHCCYFSuysqhquc3lmYu/MykhbMhAV2pDV+ZyQRAgK+yrABNLTm2GuyUdcVFMjomOCojrhDLIBOkB8FS1AgtfPnl7qwBIY1oArlutbJnkLzFS4/gknMkTVqfEaVnqsIbUuUwuMmyz3HczqB2NM2qrV2rxfrYc6C6hcux8yTQmqAaFVuDS6cyhmv0jhvyM99ECmAs76k2XoqG2DlajJg5PNGaV//ewtBRmZfKeymLz3FX7y5imZsey8GDu4zAicExpas4f0yT0SThPzniCFTeA81Zp1M8ZSgyQ5LB936wcePeDpWlsbNb6XPuLRl+nA1wi/nJFRmMFuPZgfpZ1vU2yhJfJKBMedJK+oZefOwZt67vz8oc7HbX2UfpK+87PTfufL2nms7wzUwhh9kAY/GKRyckyTYTbN3SKVp/QXYr1cb4meQIQGxPeIvRIXLw4cCDgu5JRmXTcWWNiMg4BXaMlzqyqBo0MTf4trTiuSx8slCdKYIfx0BnjVa/BqvwReMyjTRfVb4k5nmBZGNG85FAQv9l2zEuRvFvj3YhGpsVc46bj868Br8j+eg9dFfyJ58QK86NvaAbymXwSv9Dlnz0go0BItORz5OXhFC/yPglfrD9pBZCV4bWxBmV1JHqxl1pid5M4EbZhhUmOF8Z8R8DMM7WzGlFbyjtjytrF/4+znj0VsHhAMyYJxm4+geaV0kD7Yps8TdLLM/xITyzvuPamj9F56Lz24tLuB02XplX2U/mT3/K+kv3GveWOUKV2zlobYTnovPbkeyytTFyUySjQ5r+DiPblwTalQ+kfpAue4naNluSu0enLXE86hOQPRCsz9BfmqkEJHY0SaHSW6K8S4ODQG3O/RAqF84xmHCh+UOnAEQM9rtE2blMhS/Qx4JVLJ41J2hq+laEyYbtdQHhwcoIQRvGqEaRhrgYcV7HB20ca/HlU5WfqiRA/zksGrto5duWE4m33HbBTwavyLDfaTEbwGiJcEr869hvCIAWeOLUsjzKtYd5X1JfAq/zrwytbkzZp5jf6gnU/Bn71yA14V5jruCIFJjeiEJ3tRQOVc1x7hk2Optub9YAVkABEZvE1wQGoX1qwAoAn1re/0SXrnvsDBMsGfA6DufEZ0BSlm49bQxs8Vi43l3lbZo3RvD2rnx+rKbb0rLPfsVL1x0ymWyAlPRV6y55VXxtaYsfXmycp7LiZsUC1BRWrrm6UliBFUJ7yIrcUZhIFg0HrmN2uywfHWl6TwGWwhHYUIC5k3Ib9fQXUNbIdCyHASC9jztt4MDA7gCfbUEhfAirdELMSAkxVGM+GMrR9sos9rInTRvbhwXRzQoytBCUIAWHmWyAAxRRfr8W+c7juXBtm5GuViMpK1/kcW99l+yNnrcguj7xZZK4VogYd/1J6pGsN+8i77AQe3LarvCz+j8tHHVM0o9kZk73CkReG5WXOSyTXhxu/fWxPbob54MG5t4SZoMTthpGRZgboSs1m7Nx68pwJ8hFw8oRXUSK+lV8b7o9dst863y0d0BtoIE7dSYevogzfr7DFK09kHB5bY97WBq3/ngnUZ6CdD/dmU7uxTQB/cF3rrs1gr56yDYaUFolVrmafHuZQCs7ryOszqjfUmCJi6PMkiJYrWZVu5roKo/rM71xorN9CyC8xogWQkgJeQoUqAF5VuOTqXdbL1u8VcnssIq+beDa0RM+jcwx4sf3SDZH0BXqw/B8QiwYu/klZH8Qy/uPAogAXsJie8iByBZq19cxnP5+BVALyiYn4RvGbE0i+A18knPOUy/hrw6s21GoBX+Qy8Rgf58CXwav6bwasBeC0a8MHtNILXDNJYYe/4BC0wpJ3gVazBq1iDV5ZSRJ8IxmdHcu1NWBvpO5+K1viz0hctsDFqglZyax/s94CdLbb4T70FrQKniW58ZNDiJ/zswrqUPkpv/OJHnMH1wTO3gM4Lk6+dMXuEoBUnXg5gDJlaAiu5q7JceWVmrPV5mMV6c2064+kFd+sMs/Gp0GmFZ0tKXhb4zk7LBmk2lc+MBZxCTigUQ/GGNeMokKNkCJ5dkxAyMpFs97GpyA8dnjGv+heZF92JsXbk12fcSKhTs+ah+RrhGZpxkTVgl+C1RxnJMrXEeFbYhRMXaAZw8gweYQENf2diy4rdALwmM6/W4PUfYl5xvEXayFwQvFpH3QJed18Cr+1fAV4DflobvDZwDvd+w5zfPYJ5Ebw28KnSzp0SPYAi/DStrrTuKyR1apZMYI0P5pJr6dmvTwSGr6XpFnklks1ZemclPoNz/vO5OPwzgXhMNklcGdIXsPnJSsW9d1P29uC994bDlwiKk+0X19KNH2qbRcOZGXy+fxLrxihVYiNPAft8MkU8ZS321Z9Me2Z0n0qs5hkxKHREN1hh+VytRyk0IF/JjMMagVijCrxlQnkzoyFR4apKfCeVXsqtAMZFBKUzQ2U/0CWgS/rrDVj7vIbb53I8u5RE6wm4KEMay9HR23MWEfJsDpBKeIZ0G6oZg2WJV5aOkLD6BipclMzaOXPpXqR2rf3RucHC0VtLr12DRYpkv27C1VYIieQf/olaVbu62eJEmRIPz+KknDyAhXecTL5gwWgd8lwakiv3QhqTjsnnKwtydId3y16hmGzpi2ZdE+SofG173/4RurRMdu7sSvtg6tWiv9IY1QQBZQtZv7W9RoCmOo/cKtfXJ0925ULupTciFk5wnzyUj97U1PsKRo/LWzuJ5SfRHV1/36CTNoEQV57+XEkcAjMW1cmsffS4ax1YUbd7zwpbKELlI6zJab34I8s16+Pc5RcTEfLv5+CV1tmEpcj0mnRfgJXVeM+Ltl7I3rhWvH4ZvIpn4JXOUjCR4JVKr/oSeBVr8KJSFRhNiTWCnyTKSxdsvVfLBJLWr0ds/j8fvJKZ/qvBK8rNvIatnwOv+r8ZvKafB6/ZcRuDwbXDMnatzgk+f7TenJmqvkAam8Eblr/3vp5l2/pnU6xl3m+NAyePYYvorUwvGnCOBg64nfRCukMTpaFWXSErJoEkfEsXbI05Tif95OtbLGRL3fjJURXvWYkJe/IBZIVZbO+ibsAcjz6b8WgJLQ2ZrZ+B2yCaS5RkCZoE1oRDSuVytPXRT9tn7txAyWYt17c4ZStNHsozAg62AK/CYcSCisXnaCr/tLbgFGvGRJgIeP2l9Idizxf/MnglvOKnDWtvAV7ETarxwriReSWNE7yqNfM6Oa5uHNADYFpACk7NCF58AV6TWzmJbAJH7YOdlhf/HHj99cyLMzUhDf8C8zqDMhC8Tl4RvwBepRfFBXgJvgU9Y17/LnixXul85fGQZHyS44Wg7YEme6Pz2cc7HREA13648AebO2scF1Na7a9cqKeyjWF445L4wTJ5Z4rT1Q3soLO1rBNgtrQ3tUb5/F0eoWb2Vbnd98m0bTRczUapnbuem7Xyc0YQLdL/2dm5dNxdY84HH+HYoae0AEbaIDGj5fRBSiLluutcQXXJJzYGGx58IOAK0SuowCUo5Cz2G4UXlxBPiTcR0IV1XAIs+VYBtsRaUnOzvs4s62BA5c+l1h/QKhzOk/WQwWNe4q4vIC1vEnhL46HyLBdmRL1b7LXfOVvDBE1GmLtgWGSFYPlS0uzRwq2sqcrOweWWsxW9Ru7aedDuQFGOdui3SI8VLB3zGvJLL4EgXNqAB5DD6OY7k8az52hELV3CFsvmbbd+5xIq7sFy+eABaQAzG/D5vM9FFapnmWrCp4fWzoaFaX2ieWdx72R4aZxhap/fd2Ng++StpwUGeVG6vkZtkhE72bw1tO6lZlAe16Vw5V3R6TD00jufJt3Z9jK7I/ETFs/eyLVg8s5+3ApIMbrAk1faydB65fSdHUml7y2Q1wJnC2T5zvvfHqE1V76RDaCwWM9WFnMkbMb39GxqCyx1Yc13/m+inMs74BXRLnBTAshYGfKD+G4hPwSvCeAlYw1ZQTS/C/CiLB5FMPw24DXhNfP6Yp6DV6Cz9u8erCwWaBJufQ0EL/0MeOlL4DU/A6/yF8GLiuYE8Gr/CvCq1+CV2iTgFe3gi+A1/deCV+nX8JiyeQ1eT5bLk+YbnxzbYwt+iffJm1fQLEn1WSGHMM/ubEXEWe760chwhmK99VqYffjQzpAXH066Qb299Ytf6+jZ/D+I+9MuyXIkORQU4C5m5rvHnmutfM1+nDdz+HX+/xe+mcM302ST3eyurqpcYvfd3bZ7LzAfkCItMIuIjMouDuPEyePpYXYXQCEqKqpQDOz60AJTb/VS2ZpoiQ13LLBoqR9MwEtKWQ884zWzHu89TbDUxQaeavQO6IAnwBMTsX29RRKc0pLnnvYULMybG5vbcKQmW4cunJStnJfc863aj2OGBw52DcPuY2v02tA59xZUyyKnWi8RHqW9l3La5So6TOpbW/jkXGkHuZzEJf53JzH4OeAlPyZFypW2YOClONkpz362Qo+U6zHRwzfGZ1dMACrXH3lSX0NBIdn7jrxdY2x04ufn1L0Cs2oHVl/RsJR0Y1WvA6dV/W8+E7w01I2heSZxkOy6A14HHwGv/BngBYJXMjNTgvfA4saW4FVO7Dj/OHgpR6oILdkv3f3oFYIZp28J7rivOhsRuWRDrHu6FnCmenYUKXUEZaMO2E+rYHGJ514DLzjaW7ZuVmjaANsWHPVCuu6toXrgtIDs8MCY/Ss7x6jjDBRbu2SgeE6LOOENBTbRPj9naxzBcsHFNyR+TyyREOx0qESTlBeYE4w9W9WYOql4bE4Q1apqTEVt94xRH1Byd0cFamyhT3vr2IOoTHRvaL+59uAegno2xcUrcaex5oTJlntvNihqrQ25Pj7yiZ4MkPCVzbS10GH+J9tfWDiqRxprLgcSbNiYpBqxNhwlmPjpozEQoWecIGHkIV8ENNcbIAGPmbwaCHLK5UxGwzz3sLVtXIHz4tY78EaBwyt2BMLSgq8M8gdlRLZMd8G2gChE7yyzl3nHtZWSdCZGjVY4Jgl6zvglcYpHy3xI04FJJ571gSV1ZEKB2C9oT6yvKrth7riN4B03KG4th18u+Ag4B0B9WwgaSHHfkitFs9WBHSEOynjKFFZspnptxrSw2VpQ9HzP4jHQbx6ZEH9Bczy3lQ/qbgvGDArkOtrHAW9afM0ll9bxXhausRoDWX9rpS6jpQRAK2wtFXNKXPZZGa3xYbBCi2gl+/vYpEcS3qUa1xy8XDWRiazM1mFhUrAF45YEe3eJWJlYkA0sYAgY6nY4Qi4BU6gBKO8B3L62J8PaAa9Yv7KnK+T/tnX2MhsaCrzaj4BXJBtx8MIeeOWfAy8P3f8i8Opr8Or/QvCafil45Q+Bl6w32nbfHfCa9mpQpWDtgFdrzy/bkz2Lvs5sHhOL5h4IZ0XBvwQ6NkCa2+7ChonElh03gpGGMtEXwAkXY+aUlalUu9N/fYclVaLBTGRh6dcTbvcp4HXHwp0eeGoxwHuSb6FAZn/Dgl8HVm0f+HNmPe7Ijy3NHy6sbtC5jyRowWtrlb4r4qAKjEpy74TrvCOX1c7vsa7dkUOYGZsIVqThyxV7a9gXm0IvEQS5wZEUsuUw+p9Yo0ZjnEIpI9nW54OX56xc+Uv2g/5J4l+oX9bzhKmGth3wgmU1E/1KNBbgF8wUPnt7axlMZOYoWxipJkZ9DV6JtpeBJ3SEUnNVJv5B8JqsFbXAS74TXDia9NF4618dvBId29rYYm9YORG8ZKX74OXz2/CfxMuiDYJ8oZhdNGlZ1QQPNLZDdm44Zd7tCngFtMB74J4Up+N7nQOnQLBdkZl8dsaKUmn1a26KuqMS1ANTO7L0oczwleUfRtt0dGh7E7bsClEsYgE8Zj1/QxScgBtgYqj5hO/3yHYuR9YlRBaJqNdIy7tH3jeYQKEZWNMzThY0ntDKttYaZ7CUhYy6pRn2tZai1L6oV2OWlWsuuxMpDWYOjmQwx60YeDTGnMk02r3SsGjXcUqTrdZEuBgNerUEsyHKPlb1psXtiGw72iDsi/oh24f1kF6TBXtUh6JQL/ctN1kHGokuJal6tMdTQk9h29xOQVeDIj2VJINgJZFiVtFoCYyd+u6Vrdmnv7t+nsgQBhpPshRUYNwhsQB2izlhQORzsIsr67Nl2Japoai4dGPJvcjrqAvjxsa5s5pteR5Vk3lPE5E0hZ3SEmeMlXaqQ1oSqjULle64lXRuEHUCPAMicEXGtCLAl0raK0t1gDO4YTubFbCSYFrCxVs2n8isN/CCi5Ers2zZuqbpn1lhw9b6Po9sc31CS41GIgtWi25tzD21NrUTG4+rMgvmklSJ2rGM64AG0ZsAoJEViolNNWYrG6Y3VVCWmAwRP5zM0D8IXqNV/KPGi2z0IPCOWnvRtj5PfH2pRK77C7wmex0Y0rlRfhC8XN9qzdZh6BBr8NoJWffBK9szBPvZx0pX3uEnjamSDYsV98FrskpmaeIawNlfDl6bvQPSfjF44f8v4DUYeGEPvNQay8FLVfUNUawzq5DTkpbc21zLU8ohafxnpqJls8mZtXtVb5eJPFCa2RHwjPVolxzewJUeiTCzWmxb8tSyDbAeOXn3wFXdoFbs9gB4QvldMcA9eyf2LKkH4XYi8woUyTr2v38g51uwUvGUDTYzbXTNuS8yRk8l8JgHFWj1biw3NeOILPhuXe3hnaxpe8Tc7LUhQx2t+q0hAjbG0cW5dxKJ4CPpdgILsbbOACXZh5NdVmgrUHOVQvakxZzMWIP98AnwUpY/1FW4cqShjhO6Om7UFAiSPNzdAa9sSapoTwKLFlobh64GL9kGjHmhLqUCF+oBf6PbubzXGsdsmazfGMx9Jnh5ksKZ10iy//nglT8DvGScsreOr7yldjvQ5iXECLx6A69g5S7ZvILmfWa7fIINLwzfW9KoQ8Y3bg+dRWm3ANhTXntEM3ddPwUCwWg0N1x0uxsq7on/Gq0SdABCq8LUB9adyolk4Ah4CnxFcW3LtOU1exhH4BQ4Bx7Rna0JACte8AQ4537tU4votaVKf6851VqLHUPBeQ1FktSX9XHTggrpqrC11Rn7UoVHJtWJjGBnjLuVtM62jGAO3bX7yUzAOUasnbUnLSft1KoDP9iaCLVfa+t1j/pGEtO0QKPBYaRrS/a/0YZLVSwOMztJdBfuJWo1NvjCicR/hfWkaGxNyD90JlQOVmLqz5YNBZUH3sm2bY0AB7qdUnh+SjiRrj0jliRefzTjyba4BRWT0eaNhcG6rPBv4mK9p9QyZ0vhgT5hw0faGlApnGvNxcFwrqXi0JJidPywl0EdGzMXzx/5yZZuH/yNw5UT6VD/dblkZEFvT14APttEBqHgKFvaOdjUz5k4eQBuuGdC28HeA+cU7mT2a15/O7K2a8kDIbTUFZi+oHlt2fr7ipJ6ZpL01I6PS2RQd7S/BTfVayd3meMDegcVEyZO/AF9yprDIVcLU8u8brDdKxSWvq9dCVLOtnQToYaGE2uldmsHO7e8VLT7unlN5n3CHqYk/jeYuU90OooEGsNTD//ciAV8zu6UE+5pQ58GLzdNhYXOrMTfGhtG2AVFe6Y9c4/1O6Y92pNMJFMaRobeGvdrbcREVpXycvCSGOPgBVacfxC85nXe+C8Cr+2HwCt/Nni1vxS8uk+C15qC/okNy5yfHG2iRy6otnaEsNvtqKQuuIJh1zln4YZX9lxaMrfnAQX4T6pu2nI5HBhXuASeEDp0zQ2JyzAyFXBvmUYtthPgOfAN8ITa/wNp2tJK4b8AHgMNsARuiUoArjmRDRsTXbHebM2aqlOeRjJnZmYBPAGeWuFyS4TWnhJpjwI1F5aV7c22WmRVa4bjK+CYiLygtrewsicFdTNDimwLW9PszEuLHIZc0YA1Uqt35uVg4ZqKI5dHfTsGJ9r1+eCli0dDMRE954CKLrJVAot2jfZs+UPgJXrV1sxLQ+TtVUT8xbwaG+dUMy8RcKlNrYn5vSmmp3yS0WqSD2wH4OczL98KIpMYjHlNHwcvEZPWCkR/Frw0YgPHZLRU1IwfllX3NfOam29QLftk4DXywy467OgUijl2kPTcZiEar98aHVvxBbc29RN1JWHrgx18MRIujglw4m7/6ifazOVb3uzQyjVb4Gvgfwd+A0zAK+AV8B74E/AKuLF9GaCnm1l+4z2r1O6sYDXSrHamugzDIbseblm83/D4b5V7wJA5mWrRcpwCZQeJgyAuBm6gmGrznLisI3NWZfIXJoM633DQynVtKmyhf1D4SrRZ8elgRY+R2ON1bdmKeyWJSMNtTet35gbbGBUN7bKtfpfvszlZpz0eLUR7jGAULn9kiJL5w5aKytzKEYKBU8fqgW3teWCrwbMUUuGyySYtd/EHyw8dAYHzHmjhHtILOXTHsc7Q9KwW7+1Em8k+DGM1xaTnXK+DjWe0Va5AazJJSoPfmQnJFWyIi409STBw0lBo++6aK04j7HY7mCdUiO6Oy6mXXI2YczJBewWcAg9s9L7hw0TCaiIIlCssuZNIdiVfpwZ/S6rinbmXllJeAyv/aU3x3JJT/TvgW2ACXgM/AG+AHwlerk4FZjYOqSVcAG940saZ1egLCybG6D3l+zP2fQ623X1izdvKRtl1yTKyMwK464wdJzjyK0d10RbM4wfaxIL435OIuxquOZ74FjIFX3KCGLGUztah5N1sa17Foiq3ccqxL0IoDRDIasSRJN12NXiJvSSOXlMvYyGmc0XUZSSNzaDLe6EGhWSSt3Zaqbm6/qjtUGCmbluDdajBS+jffwi8OioOgQHFyGT4vaVPYbyutcXzCfCakef0ZpY74AXTdFXetbUhBelT95eAl3KzW3vxnpFIpOUnC2i3dG9rMpxsiURNzWDeV6Mhdo0avLRGpD8F0jyHkbJDJjKO7Y2iy8UWrf3GYsutEWaQRpQRPiauqazoJ8lAiaBs5aOZQt/XwN8Cv6ec/hq4Bf4MfA/csvJT8VJhxj03c98B79gFv+d7HvDzJeZcsbzjxM73Kw96y4xAWVFb0xWxF05Eblm8o3dasiTjjA+z4WKQereynUCZkW3kqSFyBVtGm8pqaj1LuveIUVuQfX82zBoULWzsXJRZzbzk6Bp7a7+U5xEiJ66rBaqOT+tpN2deQkwZrkuGgkhdU0iHumwOlkzJBl4enDQEU/WjzObzPJ5MppM1DJM8uzjaSojEEYHXIe0tciNl6Zq35HN2BsTxI+ClYj5Jkj0Zzcw4SyaZClbeuWWHqx3waox59VyZ7UfAS3U+MBjVx1qLpkQbFTNnE5LXpv9pdQtNHLxiPeao9eBsLi3bRM+suHrLyoe5dbeTY1MtWrENCVXS/1W6I21sw5IENzPln4e25boHL1/e8glwAvwe+PfAE+AWeA1cAi+BH4Er8sLESvYSOz9hfmCiE7zgiR1FCt8yGdLzda/Zp/CMXy+Lu3C8LQ92ksgoKy6iXJHCbm38JJtsrNGVxPqNNaEBo8TJ+kOJOs+t36PvxGtsdD3B6II1jM55ojLY4ttYzqqhrTl1gUUmMgH5RLEORUFh7woy1cb8jBQ2kaXRwEbP6eqWfq+1vhNtKqp0RS7Yt/QujY2bZkrscaoLhkURB0Z97d4VfIm3Jv15JXtT5wbW1oZ8sqEIBOCRHx6Jf3K/na2wLe9SnnNOyrciNdrSchp7Tr31il4XzJxHe1oRJIlRk0l8R5bTytZmpeHKWrNAIJE+LKw4a2tAO1oQEbm+RuP/wrauruDRLLRUq1bAY5P4VgTvO5IxmWLpHKGs/hEX4Cn5y8CHHLgNUh6so2LZtwTwnuk+BZCnwG+o1ye2/r4E3rFHWnnDLSG3ITAdAUvghIN4B6zZHrrhHqdAM3rPxVNym4Gq6DVbh2VuOb2n0K9A5QA4Y5mHqK3SVnJ2gT5CRdhyPb1lb7QTNBHOFqYoiGjtMBNfP/4BD1GyMTQVNA1W1uy14y6dJzNi2O1gilRjwCFC6FTKwWsyY21qNHS1zK0zmck2FogmwyPBR7Jn1mVj/U9ajW0dtWbDX30StPUl14lQex+8OiN4A1+24SLsSURVkOiDg0+Cl9op9Rb/q6f91oqkEjN+KhxK5jkCXyrbwfIfA69s3jGY0r3mHug5TXHD3c8Crw3XpoOXaI964Qi8YDRS3jTaOHuyR0aiyq85d0sfAY/pKjaMgDzkC3zgC+Oic2Zi1Sg0sbNOqXJfA7dGCMr1244t55t6a3JhQ78Gfge8AEb2mCm6/bUd6zFjVHrIatIid5+Qlz1Q/+9Ys7U1Qe+SMPEYODMp8j3wHYlmxw9vub+hUIBSiPbATU4Dm10UxEx2zrdYWAZugBsC9BH1wCPuBNCS6znKiVcukcMxVzVseetbnlF0rw5+TNi6ZrWcAonJcMqle1lzMItxXNgBgsb+VdlIXwniazvg5fKVQ3AyoGyM0CWzyFDb+g5nhBXQqx5LK0SdPWAa5Gj4OBp4eeJD1CBZMrNhrcvEr8wYSnXkI2vDAmkTIjgDebpAU/lb1et6MdOGAKcQN9q242R1bwJ6RXQqflja8KIGLwG6eFPPHp0w83YVcPMh5uXgJflmawacDby6OrHsKadgvwQrBQpSPwK+5D/dkkPoj0ylsJaOEBG4Bh8Bh3Z6r0SvgdxN+1E7ILW9rdoNZcQT4AnwGHjBLjyFcb0ELuyIPJBo3lBV74BHnMZz7h6/YR2Zmiv31r9pxTY9hbadGEV5YIudLVlT2Zp0z5a65RYb4A0fbEbEjhZDqgwiWLNH5cEWTFItCCpbFqnNuXQCbXlVl954uNgY+MnRKPcYuZi0dWJjMmVTw1U069D1YWjk3E9Q6hlOTyKBACmCEe0HGWaynekuu2dbOvt1JJJx2zpdEW1BTMZXYbFc2oO6aLHZPS1NcpAK5z3T0BosuYsYOLwj09EdYWxrHf5E2ISaUsk1jKqRV+uTnodC+8YczYgUMJUT9jZBmRipOm3B9mRuIdgDBFPSncDoZWWKg3E8udZohie2MxrETjSPHQ7mW7cCCVK0mdKTZ9KBzJdaAO/YquaBqWC3ulJZ1VuX5sRzehIF/Y0VovsS+OnuDUOpbMFA4SFnLHJYkiO94yEccrXFpzzY5rQj+j41vCkgfEs4aA3GB6r2I3AAPGc+sCPQDGThx8TkW5LRBJwCTwEA79hgf0YYTUYVOhaBaPOCb0LryNAOCV5ln/oxF9KWGkay4wGzGbqDV7I1qcBSi1nRvJBLy8wF8WiwlfZwJ1sgJxiSlBIsuyjtaqqhyiHGwStbOCqU1GuqKkPooMos53uwF1fyQMI3au3VF6GD17AHXqGuSfg0eI0GXpOxpl8MXpHg5bUTHe1zY++rjLG0pU+AVzBetw9egv5s1NoFxWR3cfCaPg5e7cfBS7Qzm8MOpjTPzQ6DxckjB3Nh31W7hU39SCDlG9mVcE7OsWTVZ6ZLKBt1Di33LlNvgThjtOZZnVMWWDwFZuxOXYol3nHiJ75/6fH1wG2QC2M0PTH70ho3t7y3MkLvmCMIlCJLTdgD8I6lLUWE27K4v6DPc26Rek9WOAE3wBurBpwzJaJo+4gqfdH9TtjyogTr92z1ccrUw2ijJgvQwnZnK/eLWk0R0o2ckgeGu2vrRAFj6q4hewinq2kudwI8PaqyN8EWsOrCXWQKxoO0jyfW6ydYuJ75IkoWeTDpNqoreM7KYdpTBmJ2PWsbNpZhE5GZ2Sso8yZBy4NzMa+/FLx2dMcNR1XMq2xcW2mXcC0ZwpiXwMuFumC3U8DsemEyByDwUsjkjD5b+WPmjOyIGg5e3tUg2ryL6CkDORHpvIzBq1zmNkrBSr6UYX7NsnZVvwx8hQG4MzRUcXUJpzbG+Dbc1SzYEniNbcf+DkpTZPKcnri1Af4M/HfgmiKj0E7VNGWzwJe8/zEzAffAG+B7rtrA8ZC9g35nzWgQLIt+zA2eZboOTVBackqfAzPgBfAD8ANrXO8tngHzGMccQlU/tNQHi4B2zte5I5nsqZ+MFPSzLdnJLB1GcrL9qytCyYLGJXHLQ6Z2D288ea9cqP9msN/LGFUBO9mWqN5wTkYdaDtzfquxdeNZQZgFeZFHNG451hg8GFnq7aTKyQYNtlY0CC1nTXYqlWzGWGBtZEyMeqJZli8uGedLHZBDmywEUCWzXicZiqtSabD9OF1dJaPod+B3Ix9DBjbaa8JUeElknY1YZnJvYwn2aMDmO52V9VlykEXSYi0nSkZJZnuq720N4+V8PGs91Q4tW0GiJmLGAz8mSjyjFVU0Nt25riteUalbWGnAHf38zAzYWe6/Vscou3LMm62AH4EReA/8EbgAYFm4kepb4U6PgEc0lBMqhoUy/ZE4mGkuM4tVErdNLi1ncgic8eknil6qEiqXOgC+BA6BL4EfgO8IOg/1lOsFow0frIisJcBFbhK9AR64LFuyZFGvbH9hIVMw49uJiIK5vxV512C8K9abaAR82abKYz/FDJP9k3jRZPYXbFOvUA81eEnjbmoDTTaM0dbbxmJRgZdfWcsjMOp2euZ3Rw30LYHj3wJeycArc0n8tcCrqbfVjLZrAqSvLadA4DXV4JU+G7zGD4FXVwPoDni1Pwde8UPg1fHvzKCqMWfsqoR0VqmqmcO14JivGMXIhbvvlFw354NtqJx1zJQU/DrkY0+WxUnFIA5ZMhU5lKeWVv4RWANvgT8BV0Bg0KUGM5fAAzclltTlnEWniZy+ANyWazizdCEwi41avl7w5VdsN9Ea6ql59gHwDesl/gD8d+Ata2i8ueEh68wmlo4tbKRKnvcR8BUQgdds/zhxr6MY9oJz3JqxesbPU+EiRAqZtuzqcQ1ckSQqkBDl8SRerNlN4PhMZrIwe5UlyTEqhyatdadeAkxnTFx4MDubOEcNp0ngtaOjNmam/oSR4NXyCpOxg2B+WyFWYxXkHwOvgcUMsC3amY8xUjT9BeAFZggFXqOBV8PRdvCa6gSpS+v9/xzw8oZ1kiRWHB+ZYqzj0mxwszXwGq0UsrNpUjZY2JcNvLZ1vVekIR0RGe/t3JFMzp640ktYpsZ60inBkoSeS2bGx1Z1yk8LpJ0BT+yk6yXRskj+76mGvwMS8BQ4Ay4Y462pfmiizthH55zzViroe+A1TSCwQq9jrekpy02lPwTgkFUaidGjivoHwucNd3Se8+t/z8Zkoe6S6sFPa32LBpOAOtq4Co1P+PMdYTswhTIYp4qGBMFWsDR3WM+SjQUDnSX4u1rFRh3CTWbXybzhQFfg2yOUU9F3nQ3uiMKhxh7X8ZSq19tlU5MaO1wJtjqjcZVAznxQ51Fdm3KhGZxHWMGKqunnhovC0WxMTxEdbE6j7ambCIEwCxSPjbUFNlw0c1Oc5ryddgVrQW9sMEFS0RlIbMxCMmvBNvbYoxEkGYNGxotmeupCHWGvJducU8cG7Ur+R1suWjsjtiWX6w1HvZjGEy2S1ALtuTFD2hEaJr7duWn6rTU1nEzRkJZY3u7ECibW1iE22IoLYMh3bpV15QnW3KP4jqTrMXDACnuvc5FbPGS6c0EV7ZhZmu+sW/vcagMOgSfAKROVga9UUHXLAgmlNTqSOvD1ToDHtOy/537cyfYlw7iNVy8k1tfMCA0zW/CZLbAbqmjixCuu0lwPqIu2rlwn07qWdqKVAK4lpEbDRDeCXF8tG6IlZndbAxdNsOiZVlSyxfAx8BLi7yQ2M+mrNuk5eCmLpf8NllMK9VtMBhmjoXNvO9x+MXgJuDuumX8jeHUfAS/tUC2Z6pnlP0DU+yB4JasF+4vAK1mhwi8Gr6YGL5DrCryC+YDe7EFsXFK+Z0qm2thUvq6uXL0xNFmC1suCQeOCtUkD9/DMbJqUwU6lvOGFdb5RZ60l8Ab4AXgN3LBv6iPuXyqjcMeUQhnZ0pPhnLuxIzf3rBgyKXGhdPMh8IyFZQdEvQXPSyiGeEecCja7AytgO3aVTZY+cEVaqCfR+IgwpIzTgtsU7gh/yqJMBOszyoETRReZSDSipHjJaySWwDVwA9wBt3YkbrMHGV5EFQ01koGRon/ZimOf1O9gUAWDlYGLR8DUmlk4QZOQMzPb3Vq0Eyy2dKFOSLHgGSpOu4SDyoZNZHMLhuWBPl97kmZEkMnGKtsg90SB+EuZV0+4cT1P3TA9SeHMKzBs60xByHY10RDYOLRcbq11Tvhl4KVy0KXx3B3wisZfOq4gmYG2wja1Nh4YoEqs0vYVsf7Ip0KtXE5UlOcMUz1oTLbra7SmXkuy9UO6+TXnSFW1P1GZdsaGqGdAy83ea+CSecKXwCUQgC+Bp1yIsKRKx/8tm8xL2cEpx+mQnihxp/ZoRDCSIx7XlKxM8jHwJTAx7fpQ84EM3ADfA4E9db5m2QSAM+CEWzcTqU6y3RyPrMDkjlWyx0x9lCKS58bxtiZbizZIugnmgMSdGgqJyQqHE1ekREwv7woGVMHQSwt0tIy4hBpVqacaRaJZbjCg8kRow5TJaCbspRJ6HfHARCzpCWPOCYVMk7E7IUfLK+hFUGtBsOUbDVClTWXuJFQ/JPk0kaLOVvkBBRPwMHbfBDvVGC+hMhkJj+wVPBleinc1BupzIyqgT1jzTQe+iEp5AtFLxQSwHc0NJVbf8hbMiTkGN7zahl3qlHyOZmzJ9nFnUyC1+VOtrWSHrZm9JA+pfHKeuU4LKakYCEXCMzH5jZluz0Sd0gmRwtOKVChQwCz5/2Yy+nhAPCo9td4CPwAvGTQWejbyxCbtDJxxntRR5siOIy+P+IQ69WjZMBDYj4FTpgTl2gqqP7Ws5sa+u6Dk9xLogcfAIfAtcAH8CATgEWnSptZb55zvU54BUDR00Gf19M4nLIK9MHmmoZ91dAgfWuoea21Yg3FnsqyShF5dJXTwP7q+bCKZF+5IOVpb/B+T+wWIDl7TR8Ar11cDl9ZEK+/qRkQCL6eFsJFpPkRQd+JJmMz2i8FLhYQ9ceevBV5qQrWuDxEY7ZychsPSGm/fAa+duPHzwav5t4FXtpIYgVekCQm8RHGjJXsUl+kBXI5pzN68zi6QUSvhvLBctOAMbJ0V6h4MJWoLNi+tv1Eg6zmiEW+AK+AN8GfgX4C3QAf8hpWcJdE/p1QzI/qCitQhFfiWEvcz4D0vLhW3o22dk6wdMcZoWTpWjPV7nv04GdiXePK1taT4PfAO+AFYsMEFWFYxmCYRua1xQT1wYOOcQ4bdyj4k4MJU+kjP4ORecaOnCmG/XDL3cUOjH2gowpTMheeyVrKlPhooJFv8rT2D89ZQg5ciAX3GmZe6RfWGes7jhMsj7zvjDgRxK7++qyMC8YYI2/IrAi9X2rK9mu6r5ItEvo3xl7EGL5fNDj4PvKTx/Cx4BWadHLxEKObmtluLlKYPgVdgTebRXwO8IuspZ6wsUj5TyKX4HBa+KmAOpCCuI2gGt9aRQwGQqkd6u4gbTCRpmOqNGYqHWut6lesNpbGuDBfr/2ma2gXLyTsDm++BPwOvuOBGxmClmvGIkUZjZUrZUnZzRvHBWNmcRQ+eqRu5k1oS0AFhv2DD6d62mgL+R2wR9xpYA7+jaPaMR1qeAV8BZ+zAcc2t+0r1PAaeAhNwBbwHQJ8VmWxQUmFG7rdlKcbKEEJpNKcQgorJnO9oRt2YvhFtAWliRfNg6zsY9dKNounjwRACZrOota+GsyaJY6JSoXSZriARQ3knLaxgJqyVFO2l5IUlDfUG1cIkEABUQSYmJkuIdYMwcDzVtrSjO1JRcU+0aIkfWuLZUi9KzMAeJtDwgknMqkjoLaushSVumWwQxhqVxWEGjuHGGPWG4UxgCDDnWpu4jjob1Z6eWcV05ToPRIWuTkcrGBM1Wu6RGal8cnpun8nMLxgKZiMyo1UBaP9UYQQrWwieN+ot3h5Y9XnHmXpgS4SyNosmdQB02UT9lntwXgIvgdfABZHlgGR9pJK0rVFGBeJd7bhl+nNT7lSEknjHwOTkoTlZAHMGq+9tgkeO7xZ4Tft4BBwCz4EzIAFnwBc8xfcKuATWdpZlx6rassX9LaO7DRMviShcjOneWNPG/KCU+mzIFcyDT+z8/2C7gWAWr3Uuwi37cN7lOUZPP7qq25CuwL7r4OVpgJ8Fr2xXcFEk7YGXclbigdmylyPpGXg7B+XO+CFsr92/Ebz6Gry6/2ngFa3yORuWOQ2GUREHr5bc9dPglf964KXxHGrwaswIBV6yZK84SmaNjeGaorBsqvaJdUXWep/IUbYcma0hxpbvq7KiANxbwXAkv5kDzcCjtLX5uOhG35N5vQVW1LfdoUl7X5tNyG2OZnyJ4Do35JoRI4rAVgbojH17J1Z+POakLq0pRAZOybze0G+cAifAlwS7Yz7zLXDFrze2heIFFbUrHgG+ZMLzOV2HWmLeUbhaGJUQWHs5qHMipaFugEueQbIxp60IzcFFIKXQRTCXbPeP30XxTFdDQ7CfPaYNtvBk1p2JjqEGr0jrzAZe2keix9CizVyB2TbNwuppA59WdV2NCaLCAiH4x8ALdsiEg9ecYfDng5c4oIZuYJqmN/Ba8xkUPaho2dVBVz3THvPamLdYc5n8MvBKNXiNLBD1/IgKIUZDz33wgj2zmJe/hYBY4OVEuyO5KcmpIxY7rW03qRLpupQmvQQ3V5YD0mJfWupNasscWLUNr1rKU18B3wP/BHzHY7QHallzRvRLlrF3NKhU9zaL9nSgdxjN22q6yky+53StgG+s0RqYBnwE3PEW0QyhCAivmUc/ZOVE4AUPeHclDJVcl/QP0vfIlwpEtQTMWSy8NPCQ6OlSuP+RhrMhV5ZGKWKj5LeYW7KVnU1slTjjYlo2wAsmbky2XPRHWSA3Q+mH0TIH0kYnixlUiuFV7bqgS17BENcZlJS6yYSRhrPj7+Uqx2izvLVbR2pfUsY6oxZdHY4qHSXBquGILWkD0WahIx+QT5jbLMBesKMttaYg7DgiH43Ghihw+XS848SlkYy/dUZit5Rkk5FtiXjlKzOOsMuVPk3ZYrMHaxQMqzEOHHnxJdXieUGMUh25HsCWxyI+ZdMs2NmHW8Jzx+keOEEtadhDvd5d8iiFAD9JbQNwT/dxCyyBt8Afgbd8t2wqXslUntnJJMlGxGFZwzHVwZKEAXBYt4xOj8igDo2/BR4+u7QKTBlEQ/Z1wKxDqUebKIOeMIORmHJdUG9I9M4nnL/O2uYFHvZ7YAtvZOzn5QT+J9vSAnnXAytWfLsH9jzajjIuY2oMvJp6V4CcUaVjmgAt3dFT2C6twd5Xm4OCIWk0xaLhVz4GXqiNWGOSjHInI6sCL7n4xrbbBbPy/7XgtajBC3UWIdcVf06b/bI74BU/G7zuPhu8AsOZxh4S9jBK82y5nWZrH0hWWz8Ywo7WR3Myo5KVygIdvGTMNzaSgovOIri13ahsv3lgjrFhxsKD1WNx+GvgT8A9j0orhfV/BH60Lg2hPrvqoM6MDXyrFePULas6JoPbwFr2RDceyInfAjdkOkfAAXlQS6B9DLwD7m2Rq8RuDfwIzIGvCcxfECNOmPbUamw4arKwlliZmGgtfXSu2ex0Zhaw5kE0guCmtsjGai/F+G6BWxb0bizmDEa+slWfwu7ozGsneZgNpDx4c9vSFVTjMe35m6Yuc/U4QVJcY+jg0UKq7Vg3muw6qGU8pWYa20MssU2ooeCz4Q5DCb8OXsHAq63By1nSz4JXU4MXrMYGNfPKNvLK/kf7q5jZs3zZPIEYdGe6wy8Gr2gWlan2NXtjLqBJfK+HD4FXNPCKjJmTgZcsSi7QYwJwDZY19QWQgCv2FmzswyrPmBhVZurrSsKL+nn3MHA3TgOs28iU7S0rp15zta3J206A56xlXTA43TCQ2BKfHmx7EYw+lUR1b1ubWpuxZPWKW+CUYKtNpj1wxLb+ibasnEH5zFtgwx5k3wItcAm8pzgYWf820TxLOUgmz07kWmvu83wA7oFLADxHJJEYwFabSKD+Kzo0sMTuwXayKzzT2hpNXg/msGQOwZaRsruN5RhbW1IewnncKCyZDC99FQa7b7TPRHKMuLdqUa/gnXypcvmwRa9yLS3rrZ3lFC0xKBGmUL7ShmNGm5kZkCuES1R7DlD9ifSc8uPB2i9FlvVsDTbAiyczY7k7Fcc5mCmaGnmpYKOnIBx1BZZ2fiTi8WBMQz4z24BP9moS/Uf2lTg0gd5LwDKfYbLnXNsUTxbSr5mzVXVAqlWhxlaTO9uJcHhIdTEy7k2WFUukQmDpVcOJS9bKfYfRge5L24viwI+WfOMDcA3csiC+rI0T4CnB65An/yjjqW3Hc6socOVmQ/+1pbmrFi4RhrYs2PuKx48Fm6He8GJBIqu9FZF1ZGfADPg1f3NF3F4Ajwj+Hef7it58w2BmwwC9ZSPHex5Pcmcv1drSijVs6efJ6kDuKBOuyCWy5Tb0mu4oNVvuzRX9y3QUWKIGI79sNkeGvYdM9UWEdA5kUsxhNuTyfahHYDJ/oH9SPfpOFk5E3YWA0b7r4DXnXfqfAy8nhM1fCbxGYzsDV3iupz5Z6+TGGOZkcrmnN3r6aQcvLzEXeGnAp/rVOo5Yce0HlkPuzLuLEDqt3XAGhc7Fs66Ys21M1R4saBTJl+eTx9ra8K5sQET1wTEvn7k2OItkQvfMJDf1VAZD5AzgDvgeuAJeW7flC+CNnUB0CjwFHgOPuIvIqYesc0mWMVoAvaVCJjY5spYVROI1VfEIfM3Th1o6pblVvbbsDJvYxLJQzx+BW+AYaIDfAAB+YGf9log+cNxnZF6D0W7VQ7/gsy1pN7fcQpRtq2Szx7wEB8LWe+ACuLBtjUoQT+ZLMwdQhpsM2gIvqOmX0qM2LcmsR/oHzPl7VJPsgQVSH2RewdoOxNr4FOHscMbJ7BXm84VN+iuJa6yzA5Jw5bqCgVc0Q29t/Av8fZB5fQ54NaZEOHg5QXadycFLUrYWea47ITR2HdibBnPMnwYvPdgnwGupc8FsfLRI5aX0zFs2DYr8fTLmNdluUlmgogSXV+XIFZFGZsqU5JQwlunDDrnz+d5aaU+UuxL19d4kFZCJK/KMbcsxWwEXbKE1spoBwAHwFfAb4Bx4Rj94wenqyTEScWht3YV057IPKHEFt2S3S4Z/ndFTf8ZAqnZI1QvmNbYcoS3wHXAJ/I6tndc8OvKcTxL4RaU+7jiikvLX7IWx4jFvKsM/4py4vhxqGPC/Ww7Fill55zBiMsGQpqlDblHnZLjYWj4wmcIjP7jD6WONYcFuGuz6jX3Mo1/Pf3p2wZ+/M1zfyTlHe2wFex5b7jjlxpitoosdbBBkqoZIFRhyp6MF1TPjbLC9xj01gt5wJdUczFeP2NScJrTi+GspD9wB2FhFhQIt58Bl+uZWVTMxPZD2aqq3LIGMjDhUdCqE2FI0njMJ0RAqSgmo9kNksoOGMVu7F6yCUfqS8zLUJZwu2AabiJY/NBS7bincCOFmLOrcUAouM3UETOyANScwJ4Nzz8T89EoPlg0YDG7mpD3PgC+BM+AZVfIrvtKasL+xxNqWe7I1c4dW/DWwo0RDyMt18gFWz+0adLZxgVU8BYLXW+D3wCnwnFnaDVU0Kb8Dl80D8I45wAVwQg94x2M0b8lfi98/tkNUJhtELXUPySR+qGv9YMvbdXnYV0SWJPK6QCXRxZNa4tCZGxTF6NxLSm7JBnbRPin0hL1Ltu8mm4tsb4paxhvtwaI9mIrs3HFPBsoS8xqDy54yQba0yueA1/A/AbzEmnrKHCurs1WCSlX+Po+NjaTSMPlD4DXngtK0Nlz8zUfASwwWBK+5OZVIEXzg3R28thxzz+Xo3cH9JI2V7rizyfRMTe3RO35gCdzYPyXyoUNLomx5kY4By4abjaO59pZ/5cPSHfCDbYjKXK4Nwb4DvgT+b8BvgBdAAi5JT0Zyk+I/14ZfvkUqEB0CPzbnSWfaedkx8lTbisb8VcOzFkGarg2v5cXugXfADPgNcAp8wS2Fa76U9pKtOOJLnikysndLoNz13Da5lkC6KGpSdBSYOT0RhEnDuwMugEtGnq7xtrUxoV6WraXmJU2JmzR0ttE6r+zU0CvP1tbg5dTPpaxgLwID4p2AU5/3Z+tqHFSBjtbJyCLGHQlN+dVs6BDMwc7IiBM/r0mPNXipXMEF9s8BegjRawAAgABJREFUr/AR8GosIBB6NkThDW2pqemMZCRlVZxc+89lyhy8RgLNyCsLvMInmVdjxSSHdthfS4sSePmtd5hXsunQt2Abo6XkKVUEM7nG3JKcWXna63qDIlh/f84iBdjcJRs0VfupG8yM/1vcIdqWSHPHEsEyqM8I46Va9oV1Gex4TO7cMEkdhZeUm2ZWQpGtAQY4JwVabwzwG1suGkgZ2oY+brBswQOTNiPwPTABv2Ff+iLoXQCPOPwr0xAU9W1YFDKQcR3SZkeS+BUFCmeDnlOC/TyZSJJstUlFTfaCMufGvIwWfa5pkoqYNub+gqkZwVgQau3LK+wETqgv4kUVnvBM9kahnh1FTdm+0nGmFFA19kkBjLaEN4Zq2cZNONfbcvGR0S4hbalV8XOmNjGzIBlEsqVtkmiIlHqwxH9aEKgmlmpLI5os/bUglPooTTaVsgHUdLEj/1kyJOmp40TmumZU/GYUwYLZP2ynguY0mpg2mdsZCWOieQPDn2jEWAUcShXID0QzhpF2G2trAa/WGwUdLArrrY3LA+ENBreqLfXEtZeVKIf50/IYrMlnAzwFTqj0nANPWWaSKUENDNBBKbMzo9zwmiOThFL0VrQMKekDP+O7QpN5/CK7P9h4qU5ECLIG3gEAfgscAc9YwnoDPLZnmwwsJqpTI+nBBNwbxysP8MDie+0415r0ZAgsa+c1Ccn8Pizogi14TbkvUf9iw9ltjR4IdJwexBqYxKl8H9MOUdkHX0WJ4POMtvAaCywVbXqFgxoiOIXzZGO2a6pPpNhatpXzy8BrSwX8rwheC8Zj0Xhyy5hla9/V32kPvJS66D4CXh130kVL1EuE3gGvkRypo+Ci68vXOnhNlhIQeE0s4/k0eDUcoqlOtHjeTn8i6cuMbmw0NquMAqx+pjG06oBjNoGY7IsjWchPYs2SEldnEzZjdcQBt0d/DZzz0Xv6gVP+5o7XLdNwz7qywDFdGFJka146kW2j9uHyUQOZ4GPax8oAaGTf+gWPWxqA37CV4Qr4HmhIDydGdO4uRuAeuOUFW+7Oaq0fgmA9W8I61NKOx12ezykVY+omEs2gRX9lWIpMXKuX3wum0Cj9Ei2IjQZ/jtF62ammM619XrcOqGhUMNQI5ldgi9OTioksu63/NRg4SsNT5NPZ6O3EwOEj4IUavFQXKOaFzwOv9uPg1VjnpJFJb5lN4hj2zGBLW26tKiYYykcbw6YGr/XPgdf858BrRzeVr03GAwYb/EBOlyxrFo0ZgOAiQJxZiKucyA6dl86nkWnMfgRqHT3BA6vwZ1x9W6ZFeqN42WJ45eSntqVpaNvyIWe4J1mEZTETe7iWZzmmKQ3mAu4ty7FiwmFB3WlJEysBw4acqqVTGwl+mpASxy6AK+sTMZoRZfqUKzaWPgTO2BLigXYnJbcjfJZRX1mRrXSbQLQfKXH0luyXv4C5HskCWxMD3T0JMFI9pTu02zXxzNkRlqgQwestwh51kYQdbbk4d4JlI12k0iLYSTx6ZtIJ0mgOx6+myAr2jvs6W2/PqayplmOh5Ue2boLxutZu4etJOqG0mp5GBVq1aGGy8RlMZNNSdjPLnFyQjM0I1ZJIBMPKPcDKHWQMIsDJpJANK4QUPPes/5B7j9aBRaqd6OtgVabgyGhbVmJhu6jKlmLQ3MowFWUs6ndJHE8Hy2T21jAZW17kKVX7RO1uYSzgEHgC3LInaJm+Ay75wVy94DaY+VWrriHYzimRKzwrs3LH/KRYfikBHUjYelrMkiRHxeVnrK95T7OYm9Cv0Hb6UAh0SD94ba3m3cSXNJ13wAnwjOdG3pGbnTCDDLLHA/rT0TZPgzJYoptIBKM1ea0gw5mJFi0sGPZyzZ0FL7TK9gH9xj+TrdowckjdlXu20LmNw1ZjH95X8KOZpv7I0HfC485wLdu3lAnYuUW0gfKMoj7T120ddpbHJ8ArfBy8BMEj65P/WuAFA685GUJZCCurKQ0GoDvgJcG1/RB4bT8OXo31htkHr45DN1iVqZQCedB98Np8HnjB7KcxP+dQIvDakEk+ZmuViQSyVE0sGYIp6k72rQXP79pwwapCu7VmHHmy/UWK48+BMx4r1vAqV8B7FiEIiQ954LQEUoVMI4lVaZxzxtL+CyYCSh78jjlAwdm2Xu0F+CILRN6zpF6zO7LMdQu8Ao6BFzxZ6BK4YKsuX9gztk4po3nL+hJwEGccQc+wjWbZucYdF7fE1JYsIxkMAqItS81HtAXjQldgHNJxtasg20X4wOtIf8p1UajUOBjq6Z88fzHZczqaKN+oBa8E/ba2YI8AYV8ZDSOC/Xdh4CVy97PMS6UjAq/JwEtj+IvBS7m+3ihAtsWfSLs6LvJSpw0raHH/1NniFw3/K4KXwtRt3doUwGD/m1gm0FIY3zJpvCB4LQy8pJz1hoOtGTCoS4nUqz6yBR6z6GhdW3JRl06BY/aIlwdt+GBKLmz4gQUXe/rXuFFNZU6ANXOJgwVRD8AFI4REvrTi46getiX2LPnenf1wYmrgg6kZBxacJOAOOABOrJig2MKcqYJS0HBlR7onktTHwIJH4c6BRwCAH4A3AKyZtur3I/93zrkdbFuXRrSlr9/YGVeNQZdTJuxRL48bBRuuckaDh1TDgGzf2VEw97cjpGjVygrEfPLexYOtWlfeRMZcl9/Rx4SgqHttRFPDhIVtTa40FJ2hrD+VK4HZPqlYujVP2xkATJYtEOvY8L6RhQhSBHxkfAblN3Kd2NjYpMzsvZyNJBuoyHs1XOKThbUeQwa76cL6SIHmKiRr6eflMVz99zztZIp5trqWkfY5JzjJyTQcQDUXDGRlYPZi5GJpKAg3tkLBtFyhJMfAE8LIjOflrLl9esFjLJbE1N7W6cBxuGPXmzM+3k9QrZlT4mVBm0hUNm+4LWiy7OrafF/PocmsuIAtngLax/aGtxzljmp+op1dAWcmL4lUiE2+o0vV3be0qkfU7ktK4JzgdUkasOBXZmZJHSsPnfuqVFoLZlm/lAdpWgPyRFur+HUpMxv66PdOcrKhjNZJtL/JcCcaeHktBOraDOeceshYX0FggTrIdELo6nMylBzs7sGcnD7Q2l08T+Cx5U7029g4yNfrBT8HvBKxYG23+8XgFbh6NcIz48wN18tgmC5m3tWw9QnwwofAq7HU+sfAK9iSzvZgcyPzCrOVu9IenOEzwCvX4NWwPHPNt1Ckmhh6JK7ZwZo7dqxxuuc5kwtu0S7PcMia8NFIr0qtqt1qnkDrGAeekKoqHTHZuYVL4JqF463hi6je2hgN+PJHZH5H9qpzbsfRHtC1tQ5UZd2c9RLnFm0uzZsVAz0DFsAN3/8Z2dNrtmSccQgWHERlmRrWnZT9Ty17B3VEt8T4U5t0mz2gCbVxbGy3OmwNwHTIZKvRJdBgyybVQCNLjfXKb+o1s1Nq42gi8NrRvaYaa3YiH4EsrN4OnK/GPjwyPpHGA3vIztKD+t+pfmulD2DMS9f38qOOE7FleNOarjEaFfo0eOU98MoGXqCb1EjOzAYiLUSdCeSbg81RaxCWGIPp4lLFOtvQ/Png1Rgs6ueZjaRuIefqGwjDHnih3qiQac+6fm9icGAZQmah/AOBuIDJLaU4gZcqUg5YK1Ls/MA+tuEMznjEUOvrqFXMdgA8YcHqO5rnkmXmXlQxM8LTMqNYUhxLSl6gZ5mR8MzIU0+BN0TmSE41svL9rQXUkTATTEB8TGCfrMvOlrV2DbdBPmJ162O2bN0yCVHmUEnRSPzTZiWlpaUwJA6IR/fZKApqhgOaZDSH6AAD+0wwyPFFk62gJtiagBXseWzpWo22mbW24CarocWemq+H96oL19+csImRJnvayYA816gZ6Nlg3xWiTPaVYLgljEcdWyoEkAOZuIC0l2+iwYDG1lLpkA34gCebI6W+BxPBO4OZuVW3yNR7gqgu1VrUtzG+rVcTje8sPyTw7m38PeYXzo32Fg3tdrJLabfKxHdR+ndNXtAw0tMHIpftihrajMYP237emvFn2wNYYGzJee9NsNW2j9KeRjvvtDEqs5BVy6Hg5XueUtGbSWS51Mj3P7Rg5oFtEZz2zXn7Qnju2WNmzhe+I8ZFUqaWVa+lauxPwA2H9Zg5igIor+lnF6xz6zk6km7Lsy1rViAZJrF1qjpBZ7YYjBya1nZ8Rk5GMpYPpo/EVVYmdajYHZywbOxlR94VMGmc9dgi9BOqP1oVo31LySJYAOC+G7ydEzN5W4GXyhTznoDnmCvVyilfrmErGp7CNNFUk5m8lzKBWedoI+ZyF/jDyH/SyleB/ifAyzPv678SeInvLWrmpshlbp1IYSs2UdpIBu6fCV6Z/jWZq4AZgyvdEr1Qg7621+rFfzF4jXvgteON5iwd2Zoco9lUdWdJb5yS06w5Dgc8ImwkSRqoyh/aFP8kVWgJLdi89JhB4JbEastX0rhEmkKy7VilkuGKchwIqwueS/2UewI8+3TCEtN74Hs6EO0kOOR0lt+fACc831rGpx4F2a58DHzNRf4KGHnN8sqrutrTl9Zkfw8tSbEmX1c+BFx++rpWcqoX9o7oPZkfThYhy+gbrh/UorGSV4IeBx2VrTe1cDhYbeFUr66mplrZ0FYW6QVqyvFO9squV+s593V4hYvRfiNgTTahUz2MwfJp0eSlxrAyEphgPQEP6Hg+Bl6wt3DwCpZQVasevezcjMcj3p6ZcO3w7kzHbiwLKgk9GHiBKzbyX1MN3Dvg5cxLFE84O1r3M3kITcqaFCFS0xWl2jKVtiamCLyCgZf2MYZ6phYM17Y113ZtZQSuqeGrqRqsJ0TkE4788KFVKxWSu2n+I/D/MIc+s6EKFsBuOSoCsA3ziiNwAbwDRkIULLxxZhk4KsckPxtrnpWY2Ly2jgwaJ+XNutqPl/G75VFBaqelLiAKvY5ZmwpuBbrmpukVCya0F0OVazOrXoEZWlOvMK31ZJoPTHNwGFPdXWPreEeF31GKJIYWQ3DhUlYjVaonvVYVv+x3oE/0d9EihoFK5MVjvQWxrXF3tPU01hUVnskEPzDZW4BzkfjDZFuPAxm+asBdZpRRRc5y4JRtWAyY6XzkqaQ4d/ZgHnU3Ni9KukxmvYK9rm6KM9rXZZYzO/BY1cWqjVCJeOKsRXvxjYnvM/ZKba2zpuBZjrShzpxo561NruykM0iOthk1Gyhqrhv7bmJg7FtVor11MsgX/G+YXQRH74HHk91zjQxmEo2dmDqYJH5s/VDvgAH48Vf48Tc24h2Z0hGDNO3vgpE2ECMSJaW3pGfJdoNLB+wtB1hSAn29ZjpO2DUPil1Zq22vD+otBawGEA98n0iLV3W1looXvyQ7mWlmXYZlzZ1ZElgcInxXJyVnzFqKWyuoWfJh9Bie/wk2/dH+NxhaKbSTDcGKiXQ1L8lw8PIoZazBS6txpxBCtwOnb26L1uVsp0CozxUdDVl2tG8XBYOBVyZdiRavbn4peJX1IOo1kT8LvPTKnwlesPqfYNuLJMJNZtKRYeHM1ifsw9keQ4tLNF6ilFJ5HXulrmvwOiRglbeY8xmk2sjgJ8KK6gI8UPSQwYtCG5trBy+ldqI5V/dGWmJL29angFzVFB0RectcmnZ1qXHfZDDtSvBr4EehXSnLeAY8AZ4wlanbrzk6KuqaeJs7tjKcrCRdZWwNKVvRz8+BxyRBHcsnZjSyV8APwAWPVdzy2VqmKZa2YMoU3rPXfyGJt9yRcGyHfOt/M0fqgWNaxn3J42XBUc72RmumJxbAaX3SkdL0yV5/a52gtxawJZvd/el3FBNpjRZuKXASY5I65aHgnMnh0UqvRoKXXJFUTCdHOzJYsko42F1Gu6zKFJUy8qBUJE75F9QeW9LgTiK34aQPdbAngpANvKYavO6JngfUCEYDr8YuFey/Dl6NbUHbYV6uxktG0YawyUiuuFVTB4RuwGJe2j0IBnKqpphZHam3EQ7ccwOb+kyXHAy8XFtpCQoOXgJoYVxjPtLjagevYNYLE24GykBL9qy656A1dvdsrGUiSijbuTaKkGmEA93PDNi2nh9r2Qi5BZ7wTNYV0T7xvQduIrgHVsAZ8ISh2j1wyzTq1nYYLXmR4iaOaQVLXqRjJHtPICzxZ4kGvwBOrZjoCPiG75d5hS2rKAKzDlsK999aAdqKPc8eCEhOjpe8deZqa+kaJBxt68WtEoRQeyjUJCrbLxWSOQOJti5D7fGz4YEUpGiPJIamRMLA3RYS90XA1O9DWXwneBLNPZpVinon8aBIT1JVNjBoDSRS/aiwqCNb/XVj5WAqPtI4jJatb2n+wR4VJk/rvnPGHmo3ptSCyLkmoq0nNPErB1ZTNhnAC40Gy2aluvvYYHPnSRdpdJNVUbS2qzYTsUSARxu9YK5JDHBjo9HwdUabMlVvHXILiJPAnp9Zch1paWRGsGAKZDQXhNrA1GF9p1J6INlZWlu0U/ZA1i4KpccTEX1L5iL2FYGskhNpiKBwX15YXQMzJz5wVRf+d8yNABtWWSTufh6BU6AjySkpgQScMp3yngMBDtMtcEmI6VnC8TULOcqfsld7A1ywlmqgY1V6pCQbSrB6RiIkUpRqGS9wYRSEPSCSLvjwGxrTyLlR4OH5Fo24UEwLQ7Yb+V8BilaO8ygHrx0+A8uA644NXbkWsMALddX7aMGJcxgPhGAQ6cWuMMUrGLtDLXhM9I9y/aPhu+OvqEvYA6/m3wBeg82I8maZsDVYf7Yd2vlp8JJ/0mQFW66x3qGhXZEiug7xjYGXZmTaA69DW3pzsxmvn5nMl2zMCbWUD2S9coQtSyzVcK8lFQ81eOnK++A1mGNrzHonazqX64hjZSsI3Nt8aOVdPQXmiQVaI21pqOnrT2xA5iV55hh4wae5rffXKUA/5hM8Zmy2BC5pImWXT+L4FtM5J69VSmFjAkkZhXvggiHiAYEMwFNbqHPgBdABb+pMV4GzkjgoIsGXwCnwK+CMr3bB2GlDGz200o5i9CLic6ommW+xJLWUnly+0tn8TbZNLtS+S+UN0aYBhk2uUQnIYGKYtMlo8arAS8n3iUtUjl0XzPW61e9Rb3TUE6r0YjJT0UoY7cF8HmERReIi0V8FtL78ZGOdwe5oYDFRApFksAOFcu+jAc2cq1Rp0m2dsP0geIn6DayxKeDlNTb61mCKdGOzr3KdtvYWMHwJRCtRKtXrT4xRgjEv3bT5CHjBvE7H99UXpe0t6K0TMzLRgrr7D4GXRLW1icSNPYzQWbXZzrilLKhyY839fCWLV7Jj6jCUCJdDXaw246Ddtk3d3q9Y3xG3dt8yI3dnjQYzJzOygOCURWGqmThgqsclyBu2kVYEJRejlMshzx5bsxFgEaO+YAEIOIqnBEhtR1WlzMSatxb4Gnhk1SWvaLktxQFVA82I9iuaamEyh4R25VfX9FOTXUoC9GTrW/boWTjJNTCLdgonkcGHKNqSkh6lRE0wwx9t5nv1/bZh1+4BrQCt3dZwNJh/R+27BRjRlrWXSmgton5+7QXuzFknutdsRCtwCiaWTAdzFIIupRzkpkdbUqMt5bbWsmAopREQpYk1kHcENuWKPZaWX/JSkmy1dQL1ZI83q6uINc4tQSia31AlV6z/CuAXBM6ew+5uR9UbG8YUrdV2qHpRZRZbUz0aPszCFJDRsLO1n724QFTlkK+5oYBcxq3ERyfAMTswLNkLJnOIjkiFFnyMIzKLo1T7wZ4vWYSfG9PU1uak5BFWwFPgWxZwFR3rgiLjBrg1qTFYnb/25MvIRKZL1jHRUq9oDccGXi3zD1ti0MYc68Tl1ACPgC+BDfAGuAIuTN6d878+SSuuhEh+eGTUK1LBzywdmuq6wS0d8cYS3+IJihsHm2MteNjPQjrJJHpxGHhtLHW5D17aavEx8Ip2ax8EoWqoy6lgMKRHUvJ9srdwgFPgFA3uleb6BHhF0pKBZclak/mzwUvC9MfAK9V3FHhFe19XvIQgQvnMm07G/ZIleGHSoBTHGQFxtlc5vK7BazBk2ZEehSOKHUR33TuO/KcSIh1YkDaZPXwQvETC98Frsu0HjsLRfGdZYhumymThI7sdaPtPx758K5NmZyyeV6VDz/aQBxqIgcm6OxN1ormmLdlHtMbQG+AE+Bq4AV6zquaCG8m3LG3PwCV1uWNGvWoes7Wa6UNC8gULyO559wMCXEOu2TLLUCbmgUpgA1wC74Az4FvgMTenXwM3XP9zw3X5SXBflgj9jPW+A3nQA5FxTric1SxmJCHeGlK401Yxzb7osvPHPbPUINjKH23tNRYoinl1HFtX5rWYg31dUpM/j9SdycgODBqiKTdp7xU81m0tttx5d4n2ua4yF3iNhADXxrxuJBpqiG0JvGCS3j546dWioZIyhDDwEq1u91BeAO2qz4oAoRpK2Gj01hNztNFQEkGDOVkVvryCcNOjqY0Va8JGUlhQ8vMHDFZ2dj9rKgd68R3wijV4aUO8SKieSot0TqxZ2wZR5TYH1lAdcevCWysE6Lnqex6sIZe8AB5awTtq5wXuyDrmeJfArxQsFxBaswbqiJh0wDs0NMYVZbS5VbiPBMsHW9ADQaVEbtc8ULPlq5fQ+JwRaQROTMU7IiKqPGdFLGxsHbSs5D2y3anlW18w4EwmKyX24b+jmSQW0Ip3KasmTXyqCzJ3qpx2bFNafzas8s9IJm7Nv7uy7BijIM0XRzCnGQwFd9DI9XrHocmMTo+xE1iONu/6pCiNOj5AySJD2Yb+M1maUS+YGTQeEI91qWhIlkxsOeAgSBhUDn7JRROpAjhjdA4WucSD8ZkdJ+AIofKRbV3cVJ7hlCFMNOxJtEwnXZJ2fW9RxzdqDDt1KbFit4rGdhVsbXAUZ7o5NXZlOaKdGs9IlrVjeC7ZwzTMzAt2PE7rho8R6U86bsE5A464+jaMrQA8MIB6yvxn+afHwD8EvvzIZbwiUQFzVkcsn7ljddkjCl1LXlcKfmfGNPIrp4y+Hkg0ndM3Vsk5o6R+afb6mtTriOBV0OGAO+QXBLiBkZs2egbrTHFPCOsov/UsqJsBZwQv7YYYeJFoB9lNlqtMNXBs6V82fJhsKyHZBLurkpDtQKbgBHVmv60/76FOsmEU5YPp77lGn521KicL+2T4EHjt1+Ur8dhy3DyNHjn+M8utgZMotuPgJUYUaMF/EXjJvX0meOmP5zMaq5l08JosHZrqNxXvklcOXDJnBDKfsmyFkJIkRgMvWNgJAy+lnaMZA8xfll9urWRFtjEQ3zvzNA5ew18CXvpfF1Bby3uVGtJr4D01oN7MOBBhHgFz4JYxS8O9LuXnY+CYljZjueg/RduoXtq2lmjt1HY6nTAWuuZwnAHHjDOPWLx/SGrjc1PQ6gVrvB5oMUs2WlSN4pYctHQ6veUZlHP2BZoTbiJ5eQGsEx4xdA+0wDsSpffAc6KPkLRhuHgOnLIf4gN7VnwBvGK/HEWSalqtGR1YiQEaRzb8moj1a/OECjwELqIVvnJ8/fiC8Yskc7ZuRiKDmQtvx9ScwYkuaVXAqIRgVMUMrns5d4BFsCrYyDViBu7cmHHN6yvByNpo7xL5LuVJ7vfAy9vGeGgk5gWC10gC8gnwckfi4KJdJS0/rKtprUbzBJku5NaOlyz3emK3S+aWokWVU828AsM8KQKxJsiNkb4yNTsS1GYPvJIpTz0dsK4sVpGZXnHwasyiYO5NtqrRa7myFL0H4DVwZ1nrYDTqBDhhUdOSr9+R8XQM6STTFAXqot2PENZsY3wHjHbh8qJLC+dKdPeDOX0wHhMgZXLlc+CEO6zvqZ5f8elEDHZip8SbJuCK0vyXdL7yXI+4aG6ZrtwQRW5sdd7ZOb0Lnou0YsucR7z+kgLXO9OUAxWwiUXcJZhZ1KwpGTB45KPhdQ6j2Clh94/AwwUWDY6XmMBi762ZjBRhkVuVcUSjPaifX/bgGpfL6LD1l+3rsLzcZCGKMjEKJKKNxn5M668JLoVknxceZ3uMTKVAVFyJeZXF+c+jQc5Yc1Hdd2S6DPVAaaGLaYg7Ke22Zs7wgI+t7Yu9wY9iS1hfzC0lpp5M3m/UG+oEUwGUdXPLEdZ2lt2RK57bW4i+9uaaVJgfSRlUZCdOuxPB6o/E1VK8cEoSuyT3vqfcMyd+F3y4Z/u88l7XQGbsFsjcfqqucEvNFOWvreqgB55SrdsCN2yyGolBc9si0fJBN9bda+Ii72hhD8DAHTS5LtXIdKMTQ9Cit73n5H0BfMG8qkqED4BTYACuST03FORugUt+fm3bunpmXTVYhblu+YIJuLD5DnbA7r3tZ5vVPlfbQzZUGsbaqqY9UMu2PFBHa4rxhCwwiiVKkA28snnzlhdp+GwCr2j7NXbA0REkGtr+LHg19jzKRwVLL3vWwbF+H7xgMfkvAK95DV7tz4FXtwdemaGpNiiiDinVCWK08nrRsweCV29upqOeqs01iePW24Efmxq8koGXhH7PPaoWzOdLnGe0edGrrYnLM05TrsErfzZ4ReJjtDfS0miAU2rkgbFJAWuVlKsdwgEwMqLpuPupZOyO2OqiPPYZ8Aw47KzJVyKZegUk0vRDNkUspOk9o68APABXQAQem489A045rxuKGXfACUHqgScWXFLZSrSzjZ3nI8pWMgWKj88Yx66IXyXka4A7DvGdSXdXvPIdpYhMyH8MdMADEIFT4CtgA7wA7jhDl+ZOEyEvcGNTqaY4N3bjy1tFLaNBktOuHd1I0qsL3Yrq/Y8ukmzJRfoemVpv3ljgpRZJ0cDCBWetTz2kO5UdxpTtLQKXdGfYKlGzt16gChsET7C3gDkDfBK8kj38PvNSPb2KND4GXuIm7sVVZDK3afW4SKm5zN4DmhRtxA1kXkrZBRNWoqGMGmep1nROqVXqnXIiEhSyDZoGJNW6MmrwygZe2VpbRBqA9pE2nwSvbKljKamZIBBtQ+ah1cxl682t7js6pOKYanR5zUKvCoYcAz03TAYGFn07ESRAYFwB74FXwJIHrJ3x+MSy4+aVzXkL3BGEYI5evayVSHzM9GPH3UoPPLftmK7EpU9Zxx0NrWhcPwB3rJq/oRB3BpxzFMtCKUHvjDvHA5F/Rbha2B7LJcvkehOXxNwe2Lz2FHgOBFZybOooSEJEqA9s0GLdISqSIKQ+C0u8hELwOVrE6MVTkaEFzBHrkRw1JdpE+6doy051044fMGHdQyNJc5GsINaQPJk9wLa9OX+bDAsXJsJoqQnPGnPu3lM9006WpMSynIn/25rF9nXbEQU/jQ3Cvg+JxifFvvSyyg2OVkKeGKpJaAocKGHGxiaiNxEffKpg32pZa68KoQ2NVqJZtKGDTX3DfEniUIxEeuXYtlx3KtJ2F+Rp8OlDTjjW3FswL6JYXvaOPb9uKWFlC7OLxK2NTuXF18SlxOzLA+Wnf11jgsQr4B0QyPkKNKiZ6lsg2HxcW4G7kidbBplqZfkM2AKXlAe2rIfKth8+mo/o2QikBJ/l5y3wR+CC6c1LUq+nPIrkwdqERDKrH4DIiHfghpE5p+EOuGelb09WJlu8ZQ8PACfACwAGXjt9GXYsZqdkwpFL/6uoUq5Zeb/JfrljOkKZhoOZLEUZa+hBnccf9ur4UIOXJzmFIw5e+SPgBcNQ1MmDYEJwsEeaLPzYB6/0S8Er1ODV/Rx4xT3winvglYxFe5VCa4nrremRpbfCuZWtZgNKj64bkr2mfuXWpsbBq7NzRx28xIWkpDqDnVllyGheUEi65WP8ReAVbdKV+x3qzcONnYujlo0PHNixPql5zmla8HSJDevO1FryrgTVc5IzeZWiMN2yH+kp91If85S0N5ybcu87C3Yjg9ctmdEN2XNiCcSBPe4DJ2lD5XywzksZuANeMvgsSaRrwnn5pwfgKfAUeETvfWCnO2ays4EcauLYbVipVhT+YzsHc06FMxLvthyBr4AeeAf8AGwYxCrbnjjrMHl8MhKkJSEj8D2BTe1sYSpRskuphj5YRVreu0sy00/2PN7oADWUaLOiV024mSr9KCcv/UbFislWjisuYw2XyQZtog9zITp/ErzWtMDMR5KYusO8OqLDx8BrsgYIzrwE305+wcfw2iZ5Vm0+TpQqNrWUpd2wsb4+LLzIVm3Z1xihlGBP8Eq2Y0G7dgaKQRrkaJUqAq+pTgJvqVT1xMRPg1eoh0IGObD4XP2Z1sBjJo3vOUSqksyWC9UINLYMt+SwawLFVdmS2G6Yjk0ExoHNaa7JRo65X1tl6bckZiWdeWBGfWVNf5YGm98QPIuyP2c4fGsS85wEV8UQLfG2Y7FrgcA7sqm3HCdxykMTQBfcpanN8OXPkkcFzWiw13yRQgIPqQHeUsTfAs/Yj6ezjWHRZlKxRGsEWnDlqvdODCkg0Vck5iT7wdEo2MrWM4j/yK1nswsp9drcqPSgQ1Sm2ap0Vl61qx/JtT7Fq6N9RuISjN4rbhntvmHvM9nWceAuEvB1Rn5+MFc+crVNtrjF54PZOczvZ3s1WIFea/leUUfRwsmQW1RZ0KsslHaKbaxcRgUiyZ6wpToHvuDMKG7HzHZn+RgpsQcW+0Rzd9IFJnvyYC5rIDuSQU6217Gn8paN5GdjfY3ZW7Y9qxtLVpWf7wwdW4ZU93Q1pXbqkdXjP/D6K4Y/Ww5I+eICeBU4N0oNtXRtI+O3Usb1lCO4YFHVMVf7jE8MolUZiHtSl0MOWbGwMwOvErnKzmZMLIBwtuRm6HOg40FDF0DghqYFcMh3TpbEAItaMz1giXXnbEDoWaYbFr6WATlhtP1gbPAU+JrGJ0htzIG21jZTvxR2OEAoOtpJM4oAeBWPK+Z5DzhklCIJoUZqDwgFXqp+VvFOrh8gGUqKFvbEi33w0sOMNc42Rik97BwsjAn1M/zVwWv6OfBqfg68UM+CI4XUnYks2rcjaVumu0+FqQoU+5qEFB4wt8t2dqCggxcYRqZam5SY/UHwApf8YDqLpgx/IXjJ0TZWBy7PNLDd8dY6hgx2gHWZpjua4pzLrTCYJXDFc7YlbL0F3gDvFsATXiiREyl6FhyoTv0EOGQJ/gmrYBfUD5WRL3/ubV914m9gJxldMah7ICnLpOBbLqQLzsoXwJy1/oWbvgIugVvgC+CQ6DljFf4BQW1jg1Xib0lf6kn9wMPXipB2yiW0NbZ9CnxDg3vN+jNFdK54YY9TaMGAtuUMKxruuPKvBSywcCLmGU6HkmzrRAGPBKemBi/lM5PhiEfCrsR62aozsmCLX6WYO8tpJ/JMNWwJvHwxfD54DSwh2gcvuedPg5ePg+Q6B6+tPXO2kdG0Buod+ivwUryUTNdxa+kM372sIhIlVTEbyROjXXBG1UruZ7Cfs9mng1didCJQE+lufg68lLV2lV4x7cwyMiPJVyYTyrzdRBBfUceaGB8OFHHuWNdwRG2/KEEHwLpdMx0Hm8xCZt6zULOxKv1S83XBmTwFWuCUIe3I1T8nCqrW4RmZcWa9fAk7LymFNYTPBZGsTNQDIbrUkYGp6LUVlK0J7CqGlEY053iXb3nZUcdDTFbAG+BHm0zV1K1IwO6Ap/SSZ8x4rJh1dM1nMljKe/ppNhvxBa2qbWdlk3kS1BnCYCmm1jQlaR1DjY4zW2FespANd5WGd7XXxQ19qzUQ1XU8e9HQNhujkXL3kgcn20/UGDAki2lbVm9JRO5ZRjNxMLdcr+B5qAXz5nSGgVKCyi9GA28lHiYjKr3lPBWor/l159g7YblE8AfghuKPpxZjbagwDr81yF9YyZG6BHSUs0fb1BLNYITEG94IJngqLt2h/fIVW4PJmd03sGAi1zW6EyOjI5P+Jk7Nmun6W+A9i8afAF8Bc+DlHuVrWI9wwcm6BZYcnwWZWKlnupA/0gpR1cl7KlJlagVeDYscAnDCKOuBZVxr2w2VCNfvgNfc9TCwsrY40ytOT0/cbqzzXKRpjgSvA1bSbyy+vadpSpsJtuU+cotn5igHWsApxbmXwBsmBjrgitruSAp+R3dT9kw9oZKxtYUdjXs4KdpPM3qoqaAu2MoR3fd/dYPLBIhg+/1Q04NcO3cXooJ9XotK4DUZJ4mGQZ5Zch3OvbyIDYj1nTG0ZIzIN0O2/0vBK+6BV7ARc/BacYgUX4CfaWzr/0izvKMsvrGMiGhwV9O8XAd7cyNvnYHXjOA11QF5Yxu1VM62A16i8bF+GAev7i8Br2yF6w1rMEXOS97ulnxpzbr3p8CMZVfaRRDIIUdWBwRGZ43N4Mhi1+s5AQgkWac85GfgDpsioz0BHvGf3nGaT8nUboHMzZcDcaqsqBXwGnjFg6vBWtbE/eZ33HWWae4+04WFnQJnwCE7SDxwOC6BALzmAzdU5ra0wo5YDgoJinUXhKEHPuE9Cd0Nd2yAX1zRdBbMwW5pWwe1qLCxjbCiJ+51kxlNaxFItFSecNATOzLT0W4HGl9D61HN9GSI43Gdg5d8ryTPVJdwwO4bzO596cJeDfZI0RSg1pZ9qtdVYw5A4NUzkPggeAU7XUPuLVDs6AhAc7rPzwcvxb29FSo4eEV+3R3JDngdWvfdYnIPtlVa090b3ZAApqlRUXS0QDSSfI0WsOkximG01ginp4dQ0yAhss++wEsa/s+Cl4SMgjKHtK4HTlNmxdQ18esSmIDHwDPgHHhfR496vAeWiC9M3xmYv7unRjC1KwaHak11BDwFngDnwB1wCLwAXgBPgDnwDfAY+I5yU2At64IURduTJ+JwYUf/BIzEnlPgEZvM/8CG05J6W35gzqYPGTiniqXkZIncTmhlazOrxK7SCwLeDavyF+TxmYnKx6RwV8AFJ3zNhGrLPUFvgRnwHPiKALZicVlviaPRDo3TQtT6FrlKZjjSMYJ1N2ssxIIBiTLrod7c6LLyZObpBQpSUZL5WV2wqy+SDH48TxhNIHJ4FmOJNeZ5DkD6obBKGsvMtu1tjdCOlIkcDqNVaXa8eMPlNbAKb049+s4c0SHd45YET4+BOj2b67GVShbt3Zt6a0JTZ3E3piOsmdzy5Geg8Ug/XJsE0LBoIFh7nkOGLRJBpDhN1K71FsIY+ZOBMClqveQK0rys+a2eK8gnbmMh3NYgc0O/urG3GNnz4RJ4Q2E5Al8Cv2HkVQb/wOBT9eHJspRg04MVU6yt8qryII+A3wABuOCLnQLPgSdsl/wc+IGhJ4AFtzWrkZF2dqkK8Qb4FyBTWB+Bb4E5twPcWS8AtVEqu2+0Te6MZEmLquSXVMt6awnowN8k4BEVfNG5htcpUeIjwvsV8J5tJt4DM+Apu+mUmtgfgKfcb3DCUtu19XLLvNHGqLO7uWi+z8EItukrWDLd11Kw6MLNcadwwiNPGGFLXDY74NXW0Z3uqJuqet7Bayf5qSXq3jwa1sAuq0WCT4JX+LeBV0vwCp8BXr4EkrmWZPUeAq9gn2ztxaW2z0kplVcIJC3adJr44Zk5m8ZO15RLm1PsDmQjC3ISB6++HuHEgDyZJWQroRkIeUtrVRprG/tZ8Bps9jc04LWttZEFCA+sDijf/QL4BuiouHszQElOS0r2A+Uk+YOfusxIbZ6Rf30F/K3tLDoBHgHPgUdAC9wDL4A/Un8rdn8OHFl5kJaWGPAN8M9A4LlmAH7LtoDFtpItwkJ5ym6kBy6VmY3sEXXCOUntSyASpEZq6RPwji3wYd5gTlPYso5txu1K14S8S2DOZmVLFleU9OY3PDdp4D+t7GAPFb5uzZKCLeadRa51LholO/YEkefrIv+p+Qh4KQ2ltKSSArO6uasssue6UurMxXnPPugZnHxhLyUB3rGpV3s2DGqM2nQsGJjofp3p7IPXlgMu8Iqs80mMNOZc+befDV4amcYIsnNYRWt6QU1xNEVqsqLWTGUosHBcwr7nehw4sg1+b/WcgaHD3OLJyWJgyfjgWyQD30RpMFub2SV5TWY4sjar+Bh4zRm3w+xttI5Qo1njaCLUltd8AhwxxOmMT4zcQjTQhTfW9GwirTkCXrcjq5nKv5+y9/u3wO84Koe2feYRcAo8Bl4Cr4GXdBZzNuWBNfOIxNWSLX7FU+MOyICP2ZfVZdAOOAG+AR4RMwCcWy8cVZ9pHiId8UjEfgu8B86ArzkwS/bKLdb3ALxhABnoCiMbjS1pho0pwpfAezuMLVlBinBiYDyZapokTPIEHWxFqujRU5HBIhMPPsXERLQ8zxnt4tK+ssUq0m21Olu+1GjhHwz5nGjBPpAsp4qaE06mYrn6t5Nbm5moJWa4tm1cM+sJ3VH6uKQKMLOMgsqGtcek5YoXz0z1pGQuPr1ptih6rKu6OutqE81jCK0V4G1YCynem2q5TIS2rUNupWcVOioqAdP+MyOBnSmi0poGQ8ShnjsVjiUa9lQXecQachZ2IMKWE5HtvQLROnHoAsmF59U3VhfwFngLfAs8p5AkrWdL8NuyVCtbj4gt+dRT4Ay4aahNS8T8Avgb7v6UxasXYKbi9ornbt8zw3Ns0YjMvWNp1R3B646HczymIqWNgpkW9gj4NfCcNR0ATqjGFh5/Zt2WyvK+tSrKZCRqzXD3gVyrrNJrS3yXPz0XRrnLCUtzVT9wDVxwGzesUlyYMtFxLE3Dk/MN9hc1qGkl9DbmikY8Fx9ttUSz15HJ99bAy6lOrh8m12umtR3MAsFQN4P4WfByfW4ny6orOHhtDLwW/0vBK9fVXu0eeEXjhwLo/ZoTyTMj6aKmbKyJt7BSYbCDl6idauv14RmvPNrXI1+8XHxrU781k4PlPDzVMTKz9QvAKxp4JXMAG4tdZxyEwHqqt8Az4DG3x5QpXhlLVBKxWPURsCDZPgS+BM6Af+p5DCWAATgGfgf8R+Ap6dqc6lTHxfkEeAp8D7wEvgdugRE4BJ6R0ajRQWvhwR3wA7c+rnkQbVefT5BIrJ4DvweeARfAn1mX37NkrgOeAJH1XiXP2QBPWPBWuvtE4AWwJnouaUDFvK64l/fcktQNQ8GiljU0nTsO7pLDsuB2pcmaGGZC8501gIs22VozPjewf1IFaWNkEHXRgmiOUFU1N43dMRsp8zSgZ6ikFXcmNuiXDl7O1Fxw3klMeNyY9rKaMPAKhIYZ4//GcHDNHSGfAK8H+2Jj2/x2wAufDV4KAhXWfgy8gkGGXypwNW657INJjNFgRaGgbwxyNyY7mVs8GanYBwv8HJjKBG3sCpr0SFQNNXglJnU7m9PpM8BLqUIVh7hT3/ArLS+iIb0BLoBvgKfWATyyJmxTM+LA/nvSy58CvwUeA/+pbc1HqI1RkYkOasVW5n8CHABfAVfA3wN/D9ySm81MSThmo+i5EeVMUWINnALnwHMOoTIhustTxqvlaiXpV/ZEnxEINVS3bF9/T30wM5BbEmDWtOgZ9zT+V+ANyx3WxsoegBPuGyolF09JXg/54StmSw5sn+SWispOqcGO/CXmk8xag2kXCrG0cHNtkqhBSHKfqgoUOvoOgGQuUluSs309W9lEMLRzjf5jIRNsQe8vx2hZdgFqz2KCjj5EWdwFU/Wt7dI6ohO7q6PiOWnPjFaRbPTmvEKpz1jXjMWDW1gCIxqjEMbPaqhWGYHUeaGRihaTEemJf32xRBvVHUKreD7z4nMT+lwIHVn71tYAqZtK5tCLwHBxtOC2r/WCQJPwMojJ1lE20VLMpdQzDXRTk23BuQT+CMyBL4HnwANwwVMPZ4xc1lY2NOOBsWtu2fkS+BL45wU5xprFrMfAKbX1UPvQ8hpnwCHB678CfwdcAQdA5LdW5Ls9rW0iNmUi1xJ4BhwDj2xjeTYmes40ZuKVb1iNdWy9TyeSxgca64bSV+Z7BRIq1QYUL1N2ETxht4slJ+yWXuaBtrUAnjP5MyP+Xlm2RGXNOwWBqOsT9p21Q4z4TDIQFxIpnz6ZL9EEjZaW6WwpSmVx1Ei8sm431rMQjezpaR28/Jeon0fLTw8cjb+JJe6AV8sgZ8XtEDvgVXIwh+TAnwav8S8BL4k3Etk/CF6Ba34wwqn6Mq0RFb0MVmMY7MXlDmc26akGU9gY9jZi6hbjTxWsSmG0CVUyFrzRxOeZfQi8wMntPg+8GmrGMN6rJbYEromVMqdAevEDEIBz4Izp5WvK8Z0Ni3SQOekfKDm9AE6PgOdABG54sNsTK42Yc761HW6ijvU18B74O+D/Au5JZwtXWtECWoLXSG8DClS37NF6TFalyuYD4DHwDfA1H2NgKewFsAXOKeDfcYwurPvbPSvZjrgkllwPsoAeWAJ/Bv4ZOKW4MnLWb4DMfPQRdxGoKP+UY7omug2MHgfbVCT8insMJRjopBpiHE3kV+VjvT5wRwlPFi+1NUx4PKnbNQZe0cgXDHQciVCn3aM9SeBrJvv8fo2+C3J6PNVjKRW+5gAuqE63pLoTY4KV5agFXpGXGmrmtf088IIhQm96h8JvlUAPtWMAGUcyAx6ICCubr2zg1Vqn1mxSgkuG2XhQ4gqaf6jnjXJVk/H61srIlJYaDLwUHst3BtvI+jng1RslbMxIEnAHXLH+EnzsQvZvgT9SXz8j87giaRitc2XDsPOIONCwR8LXwB/ahnPVEpbXFt64c8+Wnm95PkcP3AP/ZMVjUiHKvu+vgXO+2Za2ecnrn9CVLBmqL7ik1nSah5Q7AqsWMnBCl33EMPma6vzACrdiRP/C5tjHlCNKyFo2br8DXnLGRiuyHlioIRAqG8DP2FnjAXjHjIKn6hXFe7JFUbw0kB2uoixTriHB1WG3VtRaU2OxQWOYJPSCeedE+1VYmPjKigGiySmCWD2PU0fUq98Jnr+UhCNYGXtrMrF41z0J7SP6t8kKoDIjc4dJ1aN2hORbO5RKODqj6jLYkGZjWQPZoIBEKe5si3ikIU2G9MqmNsZ5/O6pBrBZXWDV12pkNkRpeTs53mQZRRXBio4K72EH1DscTjwNVWttpEK172kbYm2wyjtRzTm/G2hR6h9RWMMlU68rbo4pNViXwDU3Cq3Y47OhknzHQk7xncF6THQcimZBenNnjEJLzmvwPGvRMcJsgSvgv/GTReUa6VKPC70DIruSrk2ViwxBD/hu2bJPibUevSV8S3w8MP+w4Ngp6jsiOQ78+Y+cp57DNwPOgSdABt4AP1jOR8XWZYLvTDr/CmiZ51wRvG64X1zKhNy0h2GTgZoAawenUK9/OQwYZOwLxJ4bnJi57YwaeaHFZD2mVPdYHsnbzkmeDnsryiV4PUM0FuQiWWtFYU4tJBC0NR/bUvG6BrAHXrKBLf1r/BB4tXTuW3KV6ZPgBQOv8SPgJYhprMp0U4PXDkvprdFcNhQD7bOlzid+BVtuUjH7PfBqDbz0lQ3XfCIeDVxNs1qhDB8CL+XJQ03qPg1eyjQOFt8OnIUAbBgrHXD8b/nhW+CSVHZJmbk3cJ9smYAL/I5HD27kxVs2q2hIUmbGVgfzmUp6LFh83wM3wN8T8orMroD7kG2aE/cuDDzDbcMa9znhQFUdj4EnZHZzMrUyyiv2Eztludp74C2rqKVIbSnyD8AfGGwcWUHpKfACuAcugT9ZEY983Yay/5y29QI4oFBXJvgKuAMemWVvbKOdpsGzf9JX5AxijQj7HGfHE7rGHmxlZpvyrlbIpI5I2QoM1VxCH2wxSyh2DI01mDp4+d2xx7z84aNBamvicKJ7W9FnPCK1n2j04PLY1jJeR9GrJXbvMK9E4fcT4KVwpbcpU8pRFFiFWVKYPviOB3xU1bLLmSWyjzmXWzJYBEn6ZDtRhS9iVWP9yRV3lUyGxYHrq63nq4DXIcFLPkDda3yK42eAlwqGZY2BXKkIOgccf9lziSrPgQ64t3NppRcqo47at60pzUxAbgc7zuOAgLm2Mhkxrp0KxvL4JTJ8adV3Z1wZLnc0JIXHrMm440UemFouisScLZYDHUTHmHCyvZ/HwGNrdy9Jbc6a2+KV3gPXwCHwH4DfUtkrKPKYh36/I7C/BW4YWZWpuKeH7YkKIw9+u2F57QFdBozJuOoqNzrVAKClr1GCLTWtm1R/RSvA/1fpXC3NYJAmQpi49EFzc3I1GbLuI6iXPkwGvZETp8eOpp5l+66SATP7DGqL0kAd0honSrrgEC3ZbUFVe1pY4irl1pKenEVMNuY+/mN9Yg4445rBxF+2Fo0L/l0PFDY3fJ2uXo5b7k5sbZtPtOpuKU7Z6J8iT5UmZCrMDXXdxJxzsLIGr7mZcV9bY61NJTGBOBEsDBnpZNRaKdlYzShrqzdCIhconueGHc0eWARzyFi3/P6K4n7xDEtWzmdTOjpGm4VpX5b2CJleAJzOO+CaiB1t8cB+AC3yMfAl8AfLqxzXbnfGPmBejNMxhDvgK5VBvCcB1V7Mskhu7MTjNaF7xg0g27o9wURDj8A1cAMsgP8DeAq0vNQZzxd5CryltFrASyg82km/c6PgaxbBbim8NrWghT1RfjLrzx/6pAiY230y+wvmDXfSXFKKtxwiqVZCB81dspma6kUyfgiCPXcfDIb0MZUsSfIJhm56YFfIdFPYCGisRtaffBC8AsErfBy8uhq8JvvMPnjBytm29jyZ2OQz6OCV6lIHcTONjyicGJQSG1tKqoEbP2DKhbLTg1W3qthgsuKZiXLJwL5zieJ4NnxRVQwoMu2AF0y5dPBSzLYDXtlIWm/N2STRqZ42cPPdgo+kvjsTHe09i46CYZbHCyMPy7mlXnhJtfsnrUg7jH8A/hH4NcPCjuRCia/WWMMXwK+AP1nftKe2Mmc8nGdiJnDJJg/vgCVwDrwFLik5roAAfGklFpGII/Fmy6Zeh2xreMbJe829AYGM/Dvgn4BHwH8Efs3wstDcJ2zP9Ude8Ee2e40kWddMPB5bufMDETCzKm5uqOTqaDanLWndk4Qydy/oSeYPNZKKPB0KXaaKZhDBcn2TGa7ASyu5MX+7U3bmsDLZM4c6Fyp7DUZ5phqR/e4qHJzqgcoGXqOB18jyr9HaNawsVyYYHWnZ0mwGLvW8B16tMS/lHrXaVZjVGpS0dYZiZEAIY53gcImSDFb2N/FfVywMWFijVOWMJj720iq3RjvaVNU4A9dzwwZiiUUmqH2M/F9P5tWSoHguuljUmqOX+MPs48yrs/Z3mSJlR+goi+g1RZ+8t09gye5Waz7tRExs+bTaM3nLQ8NelXKA5ndsJHHAAtRoHBrmT0PtkTXPa+BHYMs5P+NBs4m9cwpiPfDlemvY/B74AzAAXwLP2PmmiF2nxtMugDtCWikQLSNxYIxL0m1LkN9Qdr9mZe4X3HXeA894om9BoKLvXwHvgYmnEUV6t43VQ62BC/YEOmY9mqe/tharjPw7cXJEdTSALuAoOAmGfNn+O1pBKWg10l6Smb8eWKtBcePIML6tI7pIk4Hp0dlWVbaH0YLwtd7wu6Nhueo8nNfJSwi2lfRrgMeWfdnS0TeM29eUahfM2bdGeERIYl0mDzPgYFDkGBwtR9eblJ8MBmDzJc8TDRSFx4LwaB/QUzW8+IFZy2DK5GiIkm1IpQsNdbv+iUMa7dn04hp/dy9KLQRWn0WbymhvocWrr7ts0ZOkBZrlyk6yuOW+7IGS9aGZ65pV5bFm2gt2z2pYiL5h0VL54ne/w/e/sv6lrXkrmItxR6zJK291B/zR3MRjBvEJuOG7bQkBW9vXUwLiP7KiCtaztDUEbNjZ9YgS4QOX35EFLRvbMJKMpZTtQufAC+avSsnPM+AJO8QesWT/AnhNXzOr45lA3nJPMI3cy97Stla2CXUyfWIy7x/NuLWcJkMHX+EetIuvbw3UdsALdZCvqRTiSFXqWMcXzQSVK1OI2NRmKquArczWyIlXdQvdWtsI5uw0WJ1kNqRw8BrquFHg1dAePgheK5OyPgZeDtmwYlG12OgZyUhk2skS74AXzIWgHiL9jZw1caqJ8AGq0lvzNJNxSPGJrZVEyRi2dLGNvZ0yz409g2B3B7yUQRFv3yErAi9PSik0zdaJZ+S7bGi095TaM4MmlcqMDHna+vEWbDEDdgZbsxdM4bF/eIE/PDNnPgDXwFvgiigDliU4iqsMN7Lq7I7K9jOqXJnP1LCs9o/APwH/hftySuXDPwHv+QLvWMlxDJwz1NwCPwA3ZEkjT0QCcadY+Tuyz45orfq3e+Ar4Fdsqli6IT0l8+pY5fYdT7ZNlOJbwuLAKSlU7g1wCzTAORt/tTSyJatwl4ZcSuZM9D9ysNFCxGSQ4QluMbJsxSEORg6LXh3h303GiSa62a4OPpWyCxZfhb3LOj0MtqT1DFrtgSqumru0tQvcKZOSaPeYu1LVOS2RszywdPuQ7Lg3LcPBK1joKHDRfTN/I+aVTQoKloccjKp4JD/VVwjGPYMNUaz9SmIZs4B+wQ9vLKWm/yqc3tArPHDHyAPLSBIT6YJjgVdj4KUHk5mJyMjHeOphJ8HkzMvfqDFQU55iRaWq1Au8Y26uY1cb+cWNqctyaXM2gTgFGoKXdgGVhfmy3VrqTITnGnhPxOqBp8CJkchg9gurr5lYyfWUQe4d8IqWewZ8A4zcT160rDes3Wj5UFvbD5JYxt4z8pT09ANzg0+AaCUXR1YFD/rigjfvgb/hSBR985SDEdjBemEJ+GMgE40eSMxeAc9IFFXvpkS75F0tdOdUwf67r2XpT9iDNP9hJ34byZlljMPex5xpwMiAQAtWdO/WOln4muuF6JA2mguWJKKy0li/kbz/1lBEgnimJFIkr3Ud7WysMEKeWoWgPSdisoTbjmqnYFIPXG7a08yy6XLZyh3864rKhhrMoonRO1K+52lEVgfeYkWw9CTH1piVBDdZmlg6aAYt3bgW42QjHwx9HYlF3Tsi90ANqDHyL3RvuUVrx53OrLf31nh4S4C85xa2GRuRXtugKcmkRHrZXfgNj+r5nomcIxYC9MBqsIZtMzuFYgAu6NSecA8kzHA19747oDiCQ77DCvieIVZjAcmWtrXkOZJ6gCIpZWpgI6GkqO3HwFP2xy61P8cmVKys2deac1BqSd4AJ8BvgRMWxdxTrzqhkDC3urtIwtkwnTDwNdUyoKdgtiUVlMqVzcKyIQLqfwoGQ/IHO4tcBhpsnSezZiXQOj4A6jyBcwaXYWDPFvdChWxU0APFD4KXpx+05sU9lEgQ+XHwAlcUaAM74BUMvLSz5t8IXqMZsPyQdsP5i4jlOjxlvtQOeLUch50iiqkeTxVRJhZwRStbVXZR4CURYctoSH5FCWTwCg6vwUKkYDAUa/ASSZ5xDB28wFfbBy9wrme0QOnlLbMRi/rJe+6KvObSVusQV9bBKvcG+IHbeI5Y9P5TvX5DK1GV4AB8D/wj8Bvg18CvmVgDJ6kzOx6t7dVEmntqUdNr4JqlCBfcQv6WRRuHbH+ypMB+zwrYX7GaNhN9r8jRJuA1cM+2+g2wBV6zguIxu2IvmVHsgffAS+BbPupr4AT4lm37S/6zwP+KZLDnWy/JvN4DHTcGRG6HOq15zWgyiUx2qkHHSVA2sHO7d70tGQjmjzAvfXcym0tmZC51uKgm5tXu/dLjVdfbQ30LvZEAcbCGqHp9FTaAcY6WsdPVGeuls3V7lFeYWQed1vKWvvAmCpbaOSDhdp95Zfr5nsyrs99LEt/hVokSwMjPawxdrhd6qneKZnlkLyXtJNFumw2jliWzQsdcsfJJY+02JLnD4jG5zB13JfCa9sBrzvfS3Hm2NhOh1mZXIwdBRfZbPkbDWHRGzSUCR8AJFfE1+29F+9vw66UQqwNeAf/M3lQHZF4zYNlOXJ3SQ84Yv6lg7Az4DfDUDqqU7aw5CTOGee+Br4FTYAKeAqBMMSc4SVUoCtsMeMFpP2FZR+RITPSkJfwLwBs2mHgPbID/wDr3hrLAORe0HvIL4C3w90DmI72xs6ZuyNOkBTem2D7QoDJwx7n6NSvxJ06dDGFrIZDL3IIQGBoJA+TmkhGSbDAmJqYlO9mHtW6ifTfbqpXnbSyLm+0KnYkwySKNZCFKrKsrnFXqXWKN07lu26S8qza8uBgxGf9RLg627Jbkw7Ai3tF61UhF7PhPoR4NGLMFGaDksrbmKrLAxhhLqrEfNgiKjb1AIRnEJk7Bgs82MjuqlIP6Kg2WSGssdBR/lkwkI3RFy+0nm7IABhqBw7g2bBMEzs2LBtOyFGCvzbomCxS9mMODAlVmdCyV2Fhe8YB1HtkOG5/zkK8yXMfAAbDhUYUtsE4snhrINA6onVxSrT4Dfgt8STafbTi2PBpxTpO9Y8PohhSzxFRKj4o2TMA10AOPmZqYcz+0sKB8+JwzVG53z/9m4HfsTN4ASzaYnnPQB/ZKfA38V2AAXgAJeMOlEoBL6qQr7jeQADC39qqJdz8DvuRzgvGkigqk76d6DTtsJWM1oUYxEDtaWwAumUTLCQt6WotnfLXnveqtaAKDazkOXpJJUD/8p8HL33Gyha3yxc6g8GPgpVINBy/dcWnC5PRvAy/V3Gnn0Q54NTV4wfZhCgJS/e474NVaxLu1Z45cLJFv/WCtjLYU37d297k90mQ/yMxGq+yD2ZVXd/jPwx54NcZ71cDCwav9JHglRr/JQg9R/Y68R6R0ICycAce8+4IfU0xeROUtcMUeE4nrdAVsSxH8NXAJXNjBkYFlBiXeuwJ+xexcQ/sAd0wGplyLHv4F+zYcU+6eGMtF0rp7Kk+PgReWQtwAr4E/AW/YbuueYHQJzIDXPD1yxXKfAn/fAmvgDHhMR3oKZOAYOAPeA/8v4DXwGLgF3hL7GuAdud4huXtjRrxkHUhgjuA58Fu2rRg4baMlx7y4Kn/EemAr1te/C+nRvuWoJOYl62wpG+wj1w7zEoNoPgJeMmu/zgfBSzxR1NJN2eOKwcItRVD74JUs5dVYVKw/iqOiVUEM1g7SlR5Y3JhsxERhgsFKZMSIeswFH9GUcEGSErwCtcYAFFa3IJ80MR++ZSgI4IqeEiw3fWBSMZCpzQyzxLCkHSigdUPaYe6NCfhqTKFwTojckvV0NvL7zGtTbxBvLZza1LkGCYqBXYgbgteGLQQ7ysyOy4G6z8BeNHOCV3mRVbthB8GBB2VPwBENZMWahlfAC+Bb4HHdseySWtA5GfA74B2LGJ4B3wD3QAJO2Iqr4Qys6UyPqW/MCHvKfIIC4gFr+bfE2jL5J8CJFShdM6ILwAF7Qj8HZsA/AP8Z+D2QgRsmaI+s+K3gXCYCPdjpKnLTD4wtI2vnSiAvhWS0Fb8v2e9r9DCeA1qlg0EwnJMfdMklmHg91JmrwTyg8LivxatI8qbYVbRhhyJK1s+GoPqKRJ5kSSTUUk+0fFRvpdbRCE8wDVoESZGSkmPYo69bLrtsDSkH5uJAMnNg1VjBQsTRnkE4NBFvGhsxPVtbgyvsNf3nbORN+UB1IZp46EvmQyrIFDvyHWHbPfbrDmeHB7qfUUG9ILnjYkz87px5O9WC6q1bQ81o6nzgJG5504V1GDrg+jrh82xMlCl/Z0zOnfP6ZRfFGnjNPM0hFe/vma5rgGHglpmJWwyKrZzZCnzNXqbfAI+IkwKvSx6sPbG04I4l+1/ZAdQFYm7ZyFq1KsdAb8X/JWu0IF2Waj8B33P7aSngKr8synup+boGbgjEA6W9DHwNdMB/Av4z8LcAuE0JwJEd4ungtWY+RMVZYJ3XgiOwYXHwAdeVM2aJiDtglA2/pCNLZoXVG4h6aXVlY/DBxNa2/pYgBrbRw+/lxUcCL7naYKtuR/n9BHgpMJto3L3pOpJVtpzQD4JXa4QExg+1QkZ65OGvAV6oh1eD01gRqcqXnAPvg1eo/2Yb8JaLPxJ65lZMMtbHv0qXF/0Y6lTBltYiMike5UnjHXco2V0z4uCV+ZpzRowLm0qBl64m8BrNr2hn+cKc6MI2rM4JEcHi5IGkNDP2WZFRXwEADqmHlejgFU/caYBR+68mNqsYmcF8T6R8D/wL8FuejTHnlusWeAe8ZXkqWG66BJ5aOew9m4hcAa+A7+2kxIHbBQYTe7ekzgUTE7cNXTBWHHiXMii/A06AF8A1lXyQj5ZI+isAwH8G/hH4d0DD1hAD8Iip0QPgS/ZQG1kNK/qZiKrXVO86Fl30FsloJ42QK+7RLqczCj+imXuyhHWoeZk+meqQRtY8WkifaQRe8tVa3LgDXtqp09Rudidu/CB4ORdIzOD09rSCp/Hj4KXPTPZs4hEd3wh1llKOQXQ7GXhtOCaZtP2Qt4g1TA+10NjYVHb2T6hRabLfoM4F6GOdhXAiekr3lMqfORf8AwMq5Tm3JPuovVowOjYZvPqNggGuBnni51t7TQW3c9Ic1YrBwDeYKDvaMEpf7Jh3a0iplpyXzpqbtcQypTASW5fe8/UvCV7FWs6ACLxmcVcDDG1ZgqdcASsmMue0XPXVugJ+AB4DJ3y/nmdRNAw1SxT6ng2bj6kORYvrE3N373mjC6oZct8zRo8wH1So2hPg3wP/H+ANABbmn/GEjGvgtVU/JoaUz4Al8CfgT8Apdaq3lsKasbjsEngL/Ai8rY/OA8VWlRTdc5djNsfUWFSQaugS20FNvUQeHGY8sAl2Za3g1iiEJwa97sEXFkyvj3Yj3SLUxCPbNX3Z5dqtC7FgSNyZd1a9oguALec32+4b7f3L9U0loy3qEC7b1UaW3ciNNJZW8Q8rdkqElp7fCuZtfI6UXdxJwHhCJdDtiPw4u2vsIoEvu7GtQH5fZe1ibScePEd7ndH4oXea1CS6OQlskpU9wfIHmdKWmkcklpj2JIcDFykIYBOriAN7os7JSlY8X0CqQUOxWndvzUep4UVpgxCAc67ZNTWdUg8/CNh7FkiMTLId8TyMsrv6fxC8Tq1PTAGgntuCSiX/LRurHgGPCcgF3e6AdwzAlJq7Zl+vOcdL1l/go8R4AxOGLfB3wGuWOgzcx7kC3gDvOKNgTBiBp8DXwJ+AP7PtWADe2jFaC5LmAn/fAS/ZVUzBfTb3MTFCTizrn+ogZOAzODz5n2wmhToEkteO/GFntUSrsIPZtLT+WNMAeecdB40avFpDMUelnVDTUw66frKV2fO/ms22HoqPgVeoEbyxi0//NvBCjdQq4dgBr6aeoGkPvFDj/sfAy92GXk3Z1GB5deHUxhxAY1YxGmHO/IpPovKo+phIrLN9gdo+eOkVBF69haMCr24PvKRxTlSnIqPiDRWvjdV4D0SxuTU6y9Z/SFg5sWXxyPPP5tbK/CdqcseuVh2Z0cYQrphdaTnzB+D/DXwBPOfhZafAHWvxZ+SgD8At956VmjTFpbfAC+CMp26rAfTIGO+BoLZhou+eWxbP2F/nK+AF8H8B37Ew9Zz3eszd1Q1wTCa14LAeAN8BIzvibIE/W3+dGfBr4AT4EXjPvwMxN3ERHlg+dw3c0EvMzICCFXuoXEac2zWwxGkI5uTlLXOtYSjYmwgNrvqI/Qsp/F5eSBBq098HL8/LT7ac9pmXs0jU4NWYkOPdt8InwStaGs3ft/w5tIOrPY/acFWoY+dYr95giKPEAewxmnr7ddjDbuwxrx3wgkVEO6FjIOa21lpG9GHNcoXEx9CswdBKIdxgj6T0jUi3smm9+Rv5jKYGL3VChNkniFNO6rcWCfmmInAYRzteYMa/h6wLkJaWrHP0CRGmIUUodrJmOf49ZawFJYY1y3fLOK9bkGutuLO1jOWtOX1hzBvggkHgAatlHyxFcwycM3SccaTn5hTKEJZ1/5r1BwND2jJUGy7QEvCu2NVsxVf5hvLFNfAS+Gfg98SVBw5Dw8seU0N8CvzIxvUnLH8FmzoGNpgoc6X91zPKjuAHXhD8JMIubVNzW/MQJ1dOV2TgctmpXl7u0xtbN9qCEVkfO3HRN3Sa2mUHg8PpQyCk24ldZH4329/GVjZqZy10lLLsqwQWRmrfUFcjUGPMMBt6JSNdpbXTkZ3vI1ZTrqCtNJnLqKONC0TdCCOrBESHcr0t3dFRSzwYvsLAKRKQBr5+Z2lAD7O1Ujq+yIp6XTIPFuvhzYaL2aC34YsIvWZ1rOu5RDnAGcPCIj/OzFGsjcA7VG+JrDNTZCabLPfAgdC1YedFGfDIW0Q7mhUW/c6ZrkvUZQaq+QCuiKM/rQW1pshkzxt+54Qt5RNjwqLpR9aMHXGrv+S/ltmeC1LhyQp2GytOgG0AWRI7DpkqTUxIriijv2UE3ANfkU1eA5fAS+A5L35vx5isedRbSZ48B14CL8nWwIrHWyKR7556TfF0xmXQMDp9ZA175EMFNx2hzUFnJ4qTU4YtV6cTO07TBXftzQsGXrIABy9VfnmwsRP+xfqXExdbrp8zfAi89GwNwQt1IxZVNs2JLyOHaB+8qnjAhK5E970PXh7BDlawuuZYZY4JPgJewThGMtDX4Dc1EHucDFveit+21kTD5zTYlEWyUykLG85X2vN22e7SUvoVePmurmQhgKzI6wE1KfvgJZe2NryDhQBbsoGZmZNSJgqYJZFqu5OC2Gg4WPDowBq9dkaeFTg8sMHNM7KKey7zn/zWEnhDFadlK+fBduqsuSSugR+AP7O46gnPY11Z7FQA+w5o2E1sbqJcKd7aMPJcM/wtO6RPiY93LJH9M5thqH3tHPgC+IrD9wfgvwMB+D23onc0hUDSNCO5ewr8EfiRTV8DMx43PJmjtOIoIv89GxB1lOiLAvkl8IQ5q57wseE6Qd0DxmUPmDVLSxAwpT2YQA0uMsfRPE1Xu9aWkYlScyNnJNlOPGd/4UPghT3wih8BL10nm2gU+CQdrV8xg/Ci3QMvqdC+q0lPvqnBS+AicrcleE2sY5QIfMARbm0vYqAy4vgFPoCPuSZCfyabNec1SsA2NSJ7fC7onJuAt7UxhElWjY2DxxODTXdrmcnG4tJoCWTYZVvC9Ja99byr6tqyiPojDz0ykTeayAqbvsZw9oiBcc9Twjpr4ZN5U9XAJW5MXTB0XLF8/ZS1WBfWS3oAxrbjnN+Qn6kb35pWM9myGBloFTQ64iPf8RFa8sUlC+QPmFqZMQa4Bv4I/BG4ZJ64I9ea2E/+zsp27vh3yz3aL4AO+I6h4xlbToC+XhUrJZfwQJO5B96xA8WcJ2C/Aq6ApxyYQmrXTPlPtJenPBD3gIHrMV+zYb9DRxrnJ9nQS6sTNZa0FrqkPWFKceNoYOPhRDRuILBszaCiPYmHkVo6qnsI9oMKqGF3cRhLdNk6u2UyXPE6g2TlRYNp2TuScbZyzcgPg+OjNqcKcad6wHcWX2v6uAaqrfFJJaPiDC15vlonqJ4u1gRJxQcN2dcBA0JX8BXaKQgXinumZ2Khuph24LOpGm6i81QiZDRfBPNp+m6gRTVcFxrnSLvVFJc2W72hoBzImmi3roNnZ4DOeOU0tLIU3CnIH+u7dwwdRyreBTKv2PFe1P2nf7uvzaVc9BLYADcE/Eyzu7OwVdu1H2zP/8AzNm4tYVjaWiTbnXhjC6ZlzdTATmzv6EoeuEfpGmiAt8Bjsr4/A++BVyRvXmbSEMBP+HMJ/F4C78keD/iCZcfQEz5/wwPAm9rLn/I4ypbQdsTINtspXF5+NXAKBWST0Wt5bYFIU4sHrpZ5osy/2++BVzJjlX1L2IAh6cfAS0JXsvX2CfDa0C9rz3dj19fmmunnwEvWP3wGeImYBXvxRAKjcEvKyCfAa+QiX9TktieW9RbP+H8nu2BD3JkTvBxGkwGKxDbpl7D05mjgNdUOKVpmWwVo0Qahqd99J1MaTMd18Ir1c26YDIuGoYUvCbxkh/vgBZM/A1m3NkhsKGNH1izBkueD+YzJBJ2WIVjHxlcNECeSQm05OyALH5nuU3OeOZuFzoAL4AZ4ZHnPxPqMlXHHGZd6IFvd8oIjQ9gnbEdYwsVCvm+AfwKOgXvgnqrbArgBjoDnwLdErj9zk2R5sVNgIi06YYg8Mda9AG7ZO6fsNS/c7YQ5zyK/nQMTcEypsHDDp8BXwBkL406B98RlFUBqgfXmb1GrF+63HRfa+ryTULvlaBDgma7eFOMd+VTMS/YBY3/Nx8FL6BPqpe7g5XxQrbRak0DE2mac7slqI1MNXsKCqR43ucNs9QCtwdxYo3aycXChfjCFprXXFOMrN9VKa2mxA/sWqO5Qn88mE3YGXgfMUGi3gDuMaJiuDFs0xtowSuj5tMFAoakjITEjYZAnCKJNdzbFfsEPqH+XLCrx3IueD9PaHu41aZE2fu1b+MQ9Pdfk2kdMo5Qc2QNRxb2j5i6yC00y8IrANfngAWcwtwU8rtm9ZgOcWfRyz076DaFI6yOxHOyAUoOLrVvrFJbJpgIPDbkGvgP+QG42ETMm7sQcbfUni6wm4E+2DfKMZWJ33DG64hNGhqmjTWCZt7fADPiV+dw1tx4c2TmQj8xgZ6SaRbI/JLY9JifMDFAny3m7iJTMQFxK0qvpf2WncoVO25xCwD7pFqQNRMqPKaIYDLeCXVarUK+swe/MrgMHzbVghQrRBCjxhFxzKg82RJkyIUpdakYTlPVUrpsno7Uw+T7xyaPxQF9nyh7NLa5zEVxbE6IBpBRdB/jRfIWKP7a8rEa7+5DIGYhek8E5uHa2pkT5XyfMmvfOTC7X0kNjHFXpwcAwYbI2ToLVzsJyFQn15kZgrglm5D74in4lCJd5PAa+oJTdExBWBqsNJ66hZz6lcH1rh0wX3tEc8dCyNdmqMpgb1la0NKM5p2Himx+ylHbJxOOW/7QmVKmtbWDzv9fAWx5MPVrks2VdRPnulcUkCif+hUdPlpznisVoB6zQnXgmnro/rWlhhT2+4WlFkj4TQ8cFdfAFz/VtrPtASxWtZ7nIOetyJ6PXHZU/51puu7ClK27T2vKItSv0IHPivRy8drJhgh59S5rQaBxG4DXaFXbAy9Wyj4HXTn2sS+GdAVyyxf9p8IqfB15bc04wAqn8gfxfa1HZB8FLb6qYdqzHv7PBV4zkRVgKHTc2vOqZhD3gFgSkPWY4ELy86NSpb2uuLpO/iQJ15o2U8U41yn8CvLTVoec/fQK85BpzHcmD+UxZQnnIM+AJz5wv31pRWkJdFykadgYc84IeHkagK+B1wQJR8dSGr1em7QZ4YG/SQCRaMDaLtiPrlnr+mnGghK6CTaWZajHTQtzOgDMCc8/I+D3DxVK8dQx0VgRbBu4ceGUi9iHwmFmOA+CUCYVSCHcMPGfceAk8MmF2A7wELljv2nAb55wm3rI/2mPgHDgDerKwS+4TmnEyVLWrFZWNemj5udIQLZgRHmkKkq1zRV9aBo1dUEwBptw0HwKv7jPAyynV54OXiqqzNUTRinUMcvog8Ap19cXchJMdkNqa7CTPvwNeSoUJvNTTYEbW4zF2S4nUS5dUnbJTSKDyhsAhTXaS8kjdtLV3dBql3OmBRS1bwt+RRZJSUoOBrwR/1X9mfkA8tLWR8bSRWMhg1ClYSnYkCGYDL1iLtlAXFGZzTpMZxsDbHTF2KUThHQPye+7blnqXDKx77tXRzDqZDe1T4G+A74DXLGyX8r4kJo2swJKrmtOIWh73c8VD8wqQrrnDuuMVroEL4B03Wb/l4UGwzNtbYCA7lDIWScoLt7lhB9cvOa737H4/MJ3QALfAiS2ghqZ6AlwD31Nt69iR+oFHBTQU988oKTaEtAWNt2Gl22PgEbmiar58ucMWKMx+YeDhwYAAIxjaKewZLADoSC20MtxH+5U761hTHNSBcQmtbO2nhglZWqky/GSAKmDueXe5eK2GbBGL3kXcUvHSQDYVSWCklM6ZQ1pbaDDZSdeD+f2BDzlaM+9xL2EQLKkTasgRIelM9G+svimSWmv/kd6itSXb1iq/kmH+t6XIvK2VPdTqnBgRTJeXfBBs5OVttpaXFuQLy5VESea+OgtWG3N3qlMZbe+bMFj7jES6hnoQRBEj8Ax4znBsZDHECjhkPz4YGzykYjaSCpXc/hG39rdPgb9lgZ/8crYjux4sZFIDZUkFpaRr4oGwMPa8YtVEmblL4C1514ZI0RoXvyPeXZjPWtILdMzFlwr+FnjOh7lnU+mGjXmWJEuZtTANXcAj4DvgB+AMeEb9bLReFUo5ime2llBeU5ovXzwHzoFbLoM7Khk94UxmCvvB8SvYkIqiuEqrBa+ruUOERYadGUoyy44fAi/FVJ8GL60TfBK8tDNFUS5o2Y7jwUAw1st+y5s2nDKB12wPvKLFjbk+wWmwB57TYKRO+abQHfBqDLxUICQP3RjXCqwoFHglM+Nguyu7Pc6Deup7ChPqjKzBlBlEXsrjTNillEkWFW+s80hjk5WMy30avISVAq+O76XyWj1bMKIl2q8Ic7RtjY8ZraxZf37LDg0lBGsMx0v5wLFVlo126HcPtL8G/p/A/wD+mXmzgSRi4hJtGBGJ5Pne8xMWdq6tJdGKxV6Rgdlb4M/AGzb1er+XoVoDl0SQ0suiZ/P7wUBBLvQpK0ujbSYshfKgzy/TdsA+H4+BL4D/AbwCHnNn4zGZ4wNtYs7RnHMmOjumM5KLReCUPWPLiy+52BbcTZ8/BEPRYEtig9ZkMgzyb417/nNmOKj/BcFI4VD8CPMKPwde6a8BXp3BqPywtGhnXiPFno56b+RgBlqXwhWpYp4RmGrwmtH/bYlrB1y0oCtakaf0NfMajDa2e4sz8gkFQ6q6jNxPK74cDL5d8owUkqdaIlKPnN7epTE1OtYcojUzEHuYjIXBSJ+DV6bNSzhw5gVLnRxx6Y1WywG6TCH4YLrXho8tLOuBJzy88ZiHOl4BI3DGVhCe8igutiT8N/TQij8aILQHwFesTf3RTvNqzOJkgBuKXWcsilFF+YJx+oYZxULyCjgtWBXV8coSKzac2xXHY+RiOrZz4cAl+xgIPEXoBXDIgokrs+iGRRVzFjdkmuqa4eURm4U11LW2/NiGb1QKDg9JEbech8GqIlQcsLI+czAEcmFaxu7+N9mARI6Y8xNYErW1BIaHarI70GBVe6mAxxuBBS4LFbJGm5rJbLOpEUJBhRKYiY5Fd2/NjyuS7Exq05oW3ggUFT8P1A9nda/HjkOkK8B0MC3ubJOVrLYz1KVbo2Vocx0aCWiVYBz4LtrXrMGZWGzRmjgj/+Az6FRcYCzqOKsXaKzrJDLnOltM6Ioi+MyTESqHLjnMlvQ12aT4/AYrfNPdW2JeNsAO/JbecT8FkihhPWHSawDeAj9Qmn8KvDCvBeAR+ctDfaLEPW0pHwBfsHJkxjJWEdmBKuecbKos5kfESW9gc8TFX7BDrnDFPZcLS5Vo/iY6mhVl/aWVlUqs7BmtlTjtFXDNiq3S5nBgXL5iqBDs2AaYpBiBG+AlcEqqOpKwBktVdwT/TJFvwyZgycxa2Y9spa0dBbPR0Gcn0+hAJpVZRiAE1HcVFUQDr2gG7eFEpvmmGsU82fg54OWV3Bq9D4KX2jo0VsQk/UY0DIbUHuklQ2EpKB2vPFhj667e1KNKTlU8itSp1lFD5+CluEhSmcBrtGo11Q/InvMeeKEW1bIJch+ccREnSeSaZY3YZAFkR8h2zGr2rqn/berJUtCe7O6fBq+wB17th8Ar2N3d6Ur+aBmCrYkwJ3z4spPrjpm5Z8AjZgcH9nmfsWhW1HriDsQGSCfA76y841W9vSCSATXABZ3SMXDOPcqdmcXMRCw3xzLiC/YxXHKkOi77ByYqL4HMkqnAjPaGxxIkcqWJZfdfAc8op0nSP6SBlnKLc7Lze0LhnGnPF1T1GxaKhTpi0f7RA66HNbH4gO875zLb2HG3C2vHpoDBdW8YVHnI0RhUhT3vGur2R9HC47726smKxT2LncxbSmT+NPP6HPBqreJlB7z0YRfAtsYFBl5HlxL0zIx5CYzkz0W4YODlS3EgGZeU3dE/CWoVr0YDr4F0AKaWi9wF20Yo8Bos+B/tCCDPhUrZdvqjDIIeUiS0xI3bvQRNtNgvGt7JZjqGfMHQHJYs1be2ZpAq/BAsHpiYJx1ubZ1pmtoY5Bc3NiClRuCKG6xn1Fwi1WLJT8cGZ1vgcTkem8K+ilI2LC7IbZFrntALvDVvOBqSJQPhA+rdmups+5dHGsjEOo6eE37Gkr8L9lEeKRaNHIwTO5CoZ13CxNxtqVI7Z0XYe5aMfk+TXHAwHgEj/3fD04iugZfkoH9m4ckpDaRI/FfAljH4MYlWZmbXV4nivYaP5xtJ5O+CgQpq9yejgIkb2exFtG00hcGpAkixWlNaVOM3GOOajLdEO1o8GEyKrQkp1eRvqp1sNt08GB3aqZyA6eOSlb0GTSKyVomE8sRXVkqtiAL3FI4bEmYYi8j1hsxAaxxYHp5r2qB4b2GcVsPeGMoG02R6C6o95pT0t8G//pGOn80wYO+oOK1M34xJSI0SbI40U7H+vZKTk41/NoiV/9TdA821tagPVn6h0oMNoU6R/2hAqyxXqC9VVs01cA10bICgXQunwEhiNuO2mMCaghXjzHvWArzlSRaDTrO/Z4flwmr+xDKGgRGUv08Z0CPgDHhek6tMKjWZlKyRzXz6stfmipxEyaKR6ryS4yDri5TNygWP2Rb2HU91K4Vat9x8uCXK9NwncMlbr9h4upDMJ8Az4JTeudSb/Mgy1yMeBSlMGSkKNlz5CiSk9GjXmcQDGZ8YVK7xKxrAaUnLA7rFK2s/mq2P5H6NuW+Z0druDoqIrZUUfQK8eobrXm4WPgJeXnAUa7SSU1a+YR+8Uu3iRfPUgNTBq7X2WfIlShc5eIHgNVLCzDZEAq8ZZ9/BC2a9YnqSFYTIev7BIEPyp+6lerFQe6a4twPwgDlPjVKsvxKMv+khXU5u9r6b7Xk+B7xAiNkBr3YPvLa2lUK5KIHXCNyxo9UBI6w7cpoSv9zXFW0DzakUeRXFa6CIXuyzKNNjKef6kkTjH4HvgdeWarjiO/dmu4+Ab62mJLNVV2urvRCxI0tdPuIo39D7FWXoknUO4GFuyQJRubINvz5j8vMlezv8M/A98Ax4SiPIJBellusrDvQVB/cdcA38b3ZKZImc/0BXMGP4p5W5oiZ3RM+fTB0BnVVfS82D2Zn8rfLg0nXkJz1sk3yVjHlJIQM/P9bloNEsaUPcSVRrtAdg+DnwajkF42eAV2fg1RrFg6FbsK8ozzlZwOavPNm9AssepDmLeX0avAI/vANeGv+JTEptBpKNiZ5fAzt+hHklK1Ob+KiTgZfLlgrkJvNega88s5NpgrGbrn6qtp6OYM4v7DEvxY3JnIp4bmcjAwq9enhw6Q3GvBRXK2YKexw8MA68IC+5t/NXB5bElIk7J5NoKH6fA6fAPXDMIoWBfqiEjtvmV8CXNP9DclaJLcGmFJycA+AF8JRRWUu1erLqcnnShfXcz5zzDXDBsil1jCui3gvgMc3/0BxiolEsbfvtmuN6C7xjpYWY6AnQMUgXYpew8Aw4oaUsLGef2T37CVFN3ZfkQBuu6WhlQaPJLxMdtMbQxS6Z8I5iG2qQ86L7UNMzd3NDXUyUzE7FB0S9Yv3Yoy1TGeBEF6GcYa7jxqZO923p2VpLabZWly3LUfIgmdNXNZnfQqpXY/3SR9ssNvGLkuw2tOjMbLAkZs1IYHWOKOuD7Ro+sA2K8tWw7G55iyXP6pusrEn4pOqEwSRsScqo+TZsfgMnZUvzcOBJRK/erMULwVqDDZj+me2TMJ4Gg8ZohgFLbCh/O6NJbKw6QOGitmkng091sL+1js5nLA1RLUtBu2P6/ENrXxqJAM+BL4BnQOIxYYnWdfdbPPwKAIukZgyKdsosFQIVsewZwWugfZRd0X77Mmon1vhLnHXDrMIxo8SJuwQfs/aqpYo3r6vmFMomJlLF5gsrW7K4/8g2jmeKQNfE+RN6mVktRVwCE3DGDvkzi4IkZvQWwm0NvLKFl14Q7zTARSCvPwxmYcH4Q+Dnd2IhDchk9pQN5sRthHStPfbngFdvi//T4KWtyQ5ebf20O+ClDSbyCr7jQpR1Zi/i4OUZfFhdq9BEEZEQLVhp4QfBq7E3UonOYOsN7FW5qEnjDhAEsoEd8BIjauyT0hcSzcYzATuYInIQzaf2Bl47mR7sgZej2D54KX0VbRvDjE+yrsFL1SbY0/MEIPfcfgMizpplD8GGOhqTmBm+z4EnwJfACyBwoyJoby9P8LKI0sfkbYdApETk28MFjcfA18AXLN4vOO37hw55nTPglNxqpB1sgNfAK6ADnrGY4Z7JxqdsrqVRWHGL484O/S0PgUyklSMlwQfO4lCng1fAGzLRE2YEHjPSK4NbdkqdMVHZGzlK1OrUtHHLwCzZgw1WauJJJzGvYI50ZqFmY4bV1TbX1L/R7IoXOFDKKHMdmbQ15n4MvEINXvkzwEvtfAbmBRbWsEc8SAw6mN4bONEOXhPNaW7At7Yk0cSl+zHw6rjkgoHdwlBpMvBasJ4vsSOL4vDBmFfmFo598HK1aWL5K8j+4p7TaowfyZ61r10ylQxP5Uwd50uYNbNtcJJLYUDW1nAGMyGBl5zoDniFDzEv2RXos2GCK5gU2zIkuiBQJDYWvOF2mjuLD46BM1LglrrXC4JXZv2oDH5svmLR/orlWgdkcgLnFfccatEcsYBgZDnVilp2Nmen3LYofrnge+AlsAVOmYXYsrL0N0SvMjZqN7YloArJM18atixGpo/OeYDkgtatnyfgt8CvKe4PnLoVcAPcAR2b38TaEGTL0lu29EeSXCZ+bGsG6FpKNm/b2GJ1UVXr0qsiYFjY2Ow4EsigBgOztnbWk1Wsa3Y6A7mubm+u64g2ZANsZcwU3UWj38m+K11LK0k0T5UN2eIi8Mo9xdWVKWYu7IyULXpDbi368vqFM4tibbnnaGtCgOoktGSz6XjFErRnTTr+YOYdzUcJDMSf/X81L8KYibWEsJiz4dDBdkl7RidaoiiYFXn6weOmYL400pyCQWxmFkHVWAfEzkwHAsNd2HwJd7U5tpjKASvby1eOuLgi04zaBd1ahUIBqqfAU+AMWLNOIZNTLH+Hh6+ZADxgpHREljXbE5EnZv+UgZxZu3jV3GtBKnjQVtfMA65H4JE17bkEDoBvgTMriZaJb0lpblhpIpG0MxuVCz4mvzqknT3hSUtb4FvgW1aRaP/k1jaUn9SHq+gHbZxR2b121go6E8FLGSTs5Xk8bhSiyQ7a2rIby/spOIzGlDzTKCCTMe271I117PwYeHnqL/8ceMn0B4KX7zZq7OGDDYiSqMlKvTQOQu198HI5cGKyejJtVWCqVa0Q6JBX29A1CrxUDRssB7gxNMzlzNOPgJdygAr1d8AL5nVcCHBzEnjJjbX2SP2eK2pMxfCBdSRqDbzwEfDSiGWG6/vglWrw0kVQT1lj+s5AKXrG/QOZ6FEWy5yVpBvO4AErBe6AiUdXPAUGA68Srbw6x6sFN0wfcVfNCZHr0AojO4akBzw/uyGsLuwghPKvZ3VVLjg95ecr4B0wB55ze+Q18ApogRfAEYWrO2pUDQe05diJ4mdzszAZc24p144C2wF5x7fA17ZHvCzLQuveAwDOWO8qMpVZlLbhat8ykyvwGuioB+5Nl0iQaw/c8fE6Gqi7vtbCm0zDbc3dSTURdmiQ9bO0Oq2imUl3+8xL66rlJ1U59LPg1RiOtGye1hl6thYlKqeg4rPRKnO0/oOBV7Dt/uCMR0sYfgy82hq85tyvOxhrFtqKeYErUBt9g0mzK6uTSXQDDW+HWpNrbGBjHYh09fCOLMme+F6K+RW/zawvTs+Jm1t+Idvsy591NmLOvBq7+8629Q+CV+Zo6EY7WppnoYsbWHLEinlcs51Xyw/M6/5VC+YNA1nIV8CXPFr6LXfv/ES6Wy3cO2BNIX5B6nINBOASuAIGwlvDaZ8RG3qWsd+TCB4w27AlhCbOf6lDe09YesKpuwJOyBEbygtlYBYU1jLt64D3LZZVwPKCnnFG0tWzPf4DENnCJ3CL+4bbq8oaKgh6A3zBovuBVSBSXRPnRFQqGSpLcu1r3+c6qXMwVSE4AONDCn42/It2TRfKVHO0sVIDrztTeYcns93hCjuDpRlFYPxJtEq6+vcCFffOrUGvcmuTtT4aDQL1GPOaYDhR6SxAGsmghHPORQWuAvvy88bigmz7qQWfXgSjZ9YbqQwKZF8KUjRH2lmjShdJhZpoT2Co3kqFINk8hlBHu5w6vn6wf42E1VCbqBigZEyN5Ka2tMS3mxG/Hxi/tAarYg2N+TT5eUHmOa98CgC45rCc0WUd8sjAK6KNCjx7ViaB4f0p69J/8rcNMwnfA2vgGdAD3wDfAHfAa555eGPF0KXA/ZCsKRNHtNTVyPSWhhWZRQwcdO2iPqUA2gOPga8ZLl6bwiRdbUN544DeR4ttw80IE3DMw71n/GLhu0fAl0ThY+AW+NF2DpQ+iO+Ax/RKS9vrqPz1xBhGS3SiiShlP6O5yOuNtgx2Vnjcs2nF3g4Byb7e2HW0XIVlSh64GJPM8hI5ksArfQS8yqX2OyzugBes4EQVIHpChcd6ctXWivDAln0Zz7nFuq4+epoxEby2dbjbWIYw1LAYuWKzQeqm5iot2Y6niDyBvOaWV1DjUV5Kc+SZw0Btz2FCHkvRnSBAxCwyf5Z5a2178IRtU0vnk903c641FJPpiwIvDX7mv85r8Eo1eMF4WjRVSMmJyIVwCkTghNsDVUpQeMYJNe/3wBVwwZjwEe3wiM/c2BkBP5nfAXAKPAB/Bu6Ac+LiGfA74Bp4y36F6rDcmi56yDi1iI1z1ptF4J5NrqKlgBZElkNOZKHyV7SAI66lNRv4HLNl60ByN7HFdSIkn3DOltzf8yUVwhNDnCPgGzbgPwZWwI92wNEaeMMtkYowYaIImK+/NHqleCAQJQPRtjP4mAxiQDbXGS/IxsJ2fplrf+5Jec8lBoMGybCdJcRkWJv6XjK7bN4+ExpyXfmwD17y8BLYe3PI/hhK3E3kSnMTyRt7x2BCjjOIZE5LsdyGTMTz7ApvGkvTieOMRl4CJQBPkaj8VbnNjRVsPLAIOVDdDEaIAqWKaBjU1TJ+x9hpMsRXXV2zhwLBBrwhHY4W0qseaTTwAi2/I8kIXDVSHHwfebBJV3eBFZvTdDX2uWOQC4SxV3m+x0BgYXk5geML6i8NiUiRit4zdHxEZeqEFVCSM5QSR1ve75BsZwk8YpXDKbeEXbPz/EgS1bP18oKs5oBh8glDwZ6AFFk7Wmbyga3IZkxUS2c7IDr2lu5bkCzemawpK17XzmvgM6hssiEtXNNIDw3M18B7YEkwuwNueYSQ9l623O4oz7vTOKAY2h2j04YjPVlvdifZ2aY3GclOe2ICTMXO5q/1Q7RLjaQH0ejiZGCWzOiifVfAkGq00CddC9ZvdnBFQ6GHUbSphZXsYcRPNnVo2hgvUseKkRFFTxFGEquG3WXrRGhxWBWvgG1NOLByEI+ro7kaz5G2NZxMZFwr21mjEYBBS2spHNVwaEhbYvkBNcnWcp49R0ZczuXB1iY310V/ycbcE9oO7RLuPWm8oXdVPKW63MbsVg8gkdBVtTKJZ0DPswlHSxjOyM1OSFLesJTqhP0fSmblFfnCY55a/VPFSXncIyByT+QZO4S9YPqxvO0VX+OAe38esdqz5WmtBa2eErw21ob0km+oqnfVqhwSs46YfDhmkYb+dWJVyNbCOTmvSLu54TZcZbdbYt8ta/TVeyKw2f6Wh2aXbhQN8MJ6okaiqv5MnF1hzcQt8Q1nfU74A5/QebavASHRPmrkPaqDPdyR/Ul+VdY3UpuWc5wM6+MeMMl1itgEQ6v0EfAKBl7+LtHWrS4rAG04C2sCx4yLU+mEORdwWTY94aa1ll/JwMvZmsLsnWTDDnjN+b+D/aBSI3Fm4QJsKCb7YUkPJKVQKd/GHmzio7qvmmgSc27LHpj5SAy05NIUbUrLlF6/NV8lIWCyJ98hV52FgtK0lGXtCV5rBr0OXu4OPeIV99PQHfNdylSuycfAfMApq5t+BO6BN8SWJ6TTDwy4jkgIf3JLDUPSgduyT9km9AtCXSKlWzJQPORxYAu6TQH5I+AbIAJvmWcAUSMRudaW6xdTKMr8CUWpNV3rI245XwPXQMtLRQqJiQxuZAedOb+bSSof+K0Hq0gMzIcMwBMAbAl9QuDQox5Y8J3Z03BG05nRfFcWnBzzgN3ENx1sIfk27h1JP9rP8pawdeghGYxTaLk2Vgm5sZqbHSLg+JX3mJceQ7dQwnCfeSng1EuBeBQNvEYDgmjglayBVWN9SpWoVCy0qJnXnNMULQ73ewVLVruIleg+xby29H9Sd1oDdImFwQiaelmogr/jz8IIJZO9eKu3JiGSuEt6f8NQpiWwJjsowH1DMPcskrjjn5IJZooMJ7JL5Tgmu4uYV0/CtTUGE+g5FLhGW8ujPZuo5YFxtN60d43SKXWf98A98Ao4B74Bviaa33OX9THbFJfRmNqSwjwAvmbO7Y/ACbcVFQL3JedhydqNUmw+Z3WFKMqSQW7JrtxQyLpjMURmJmBkJmHNLOxgfFrx8gHD1y210QL1xdseAZlbJSerjI3sWzYn1j5Yi9evOGklU3sFfEfMPuFqeGs7ADY03gNmLxNJozbaDCy8OCbIzUzyzlYyplKdXAdRHhLoW5MhhCxdSCZLkfQ8WIVBz+FVbCPWoaWpWrlM7uFayk5iwMlhrB9JFFQkLdrHQv1SO6raxhZlY7Mv9BrNwGZ0WWBNokfmkVqAi+DRRJ7Gmogl1jYO1ss38gOSAVtyJwVLsGmSa9qQn0zMQ2xtxvs6e+llWZNheU9nu6bNjHZTpTp0BdWCZJsO2BwJyaSUykENJrVJ71Bhh24Ua8iXAbslZOuT3dT+IZN0JZ6Rc2YNaB5xRnoutzfAOw7mlzw1JzJonLFr+0/MM7NB/VdAB1wC/wwcsTfridV5tTxlNTNj8AWToSNrFQp4PaFnuSXRvwZeklU/ADckS4Hc5p6EEiYDFOH71ErJVsAxUJ45WD3b1qTqjhdU4qtnVdea7XPmBK8T4AfgT8Ad8JTw9MCT1RqmEO8Ibcc00JmBV0MyJvASfGztdeR5G2Mv0WzapU9Hrmy/9CjIV7hqZwL1kt4QDUYVJkskqMYSVkO3r6vp2T4IXulD4CX+Jmqnvx6FDlYq5fAd7Bk+CF65Bi8flu2HwEvB6g54zfkMsFoFYVbi2Hb1PIrkZAOv1uJbJVEjf9PYjDt4aWds3Ovc3pgapxtNdS5E8TBs0Fx2Gi3RKp+nRd0YeLU1eA02ffvg5ZIebIu2p3YSpylzQ0u2XcdzNpIoT/gcWACvgB+Bd1TLjrjfqqQNvmRbin9VW4ooXZSqN8AfgCPgGfAlcMY4cORaVXpHmcCGweuKId8z6pPviRF3rP8sPSUugImR3i1RectCixnLFQbmBY6pWhX7vgGuAdBt3vC+LXXd1oqxeupPV8AAXHJDY2Rs/dIKRY65VN4xeows0ggswCjWM2e4mDiXJS4/IbuZ810yfaBYjPDLdS/FZjt0ZgcaxFBcLxV1Equa1ZVAoDlmenLl3Bp6mh3wEmxFg7NQ/9OOSowaf2Fw5oqx9LzJgEMSjsKzYNVpPwtezrxUFq/iW9/XJfDKzJ9vjHkFkp1ZPdRK5HqYrXlJ1HflPFR229bzm/fmTkjd8I1giW5lOz02awzr5YdCPc4CL4nzrYV2XjDT8ATn7kPg1XwEvHSXxi4oiuo2U2rdb4EbYAQeA0+4KnvgjrjxBDgG3gOvgHc82bmwk0I7ToHf8gCin0a+vQPestC145EVl7xk4WMvWMl/wUatbznMp9w3eAo8At6Z0tXQlE4YyJX1fQO8pkCfWUR2xZAvUfrXzG/MTI55WPcFbTkzIu4tmXrEKtkHJoIugUvgPTAD/j3wtbmJGfAj9bFCxlYsRu34yy0N/JSPNOcy2pp009s2HNUxTbXPbWwFwBRhhVVa+rAVn2tgE0f1//1YUBd4I7Xqaepdjp3Rwn1OKD/e1PQP9fVddtO3kr2aiEEJaLeW2YOF0Ar+wahyMjTqSTIdC1UK0Nul1AIncY4arobyPK6SRSsryx8BXQV42QBeSAyrgeptNWsuEslVMgfiNDvUjFG/bAyYk7FB0e9s8SFs09mOeikz08Unm1MBW7SXygSkYDn2YAM71fCm51SpLQgdYOO8E3buaxkTXQC3rO0q43PPC56RW5Vuo6Ua6YZ5tbDkNpxCbIpW/hq4BTbAr4Bj4Fdke+/Ic4rSfU1Ccsx+Y39kJrCxc6cPSI7vCaR3pD0RuOaOIa8V1BQ2FGYmwvicFYyBWYtbEjllR4+ooQdy4mvghjnPvwG+JG8OPMlDe1siVbRL26O8Zax7RNHwiE2r11a/oSqnkT93nEitZFmeL3uhQK55i1BpB7kaM68dsBOyKBvm4OWx6+pD4OVufSeR2P4ceOX6977mg/3tDfQ9V5wsX6eip0+DF4gI2cDoLwUvZ7DSkBob/x3wcl4Bm0pp9I5QmnqpbpkAJDqX6nK8ttbZpZIq89Hy90qujoZfXhaSa1+SCTeo86UfA6/0cfDSFRSIOrK7FNJwv8TawsWW+7BLNHQPnPOf3gFvaavPgMxKzEfAOXBPk8hAKuA157o9AzbAO+rPmXpYaSh2SdH+PXnHOfCMackMfGduEwTRljLVksHkDZnLQI3uxtLfsI3UwTZPzNks4oAuOjKFmFkyUlS6Q3PsBUzv2UcnA/+OZy3Nec23RLFj4IgZyHved8ZN4Q3wlEv9sG7deM9nmBEpZsyWZAsndqwfNW3xWHHnjxMNpRP9TzA91qm8woah1oc+AV4iI46wHtkK2oIlM31h7K/51q4j8Brt62JhE9cnKNSJ0zl4OZS3BCNnXuozlrmhbV6Xy7ZmqEoCB1uHsFvnmkQ7OY02+GtedjK0CoZlirelyDb8ZLZ3nAwaWsNWVw01BYk0SvK+JxSiDRRswFXLKGV0sKHQ638MvBLvq81zol07QoMqcsvFHwFfMiYsG2PeMfx6xqz+O5Ksr+n+D0nZ7tgNC0BuB1ZOzYEvGQ0WmewVAEJiUbfOeHzPHfDfgD8Cc+Ap8Hvg18AL4F9YL5aAN2yJL29+Qdp3BzwnfdyyRKUY/nqvnO/e0owzOzlVvzzlcRoRuGEf+4mRXokqb4F3wEvgGbCxjl3H7NhxwfL/B0orLY2x/HzHXUstVQ6V0j+QyPUGUZ1t9EiGOtKRdvhVqqEr2T+FPWDb+Za8p+p6RuveB7OsbAtxsG+5z3VekW0FgHYKWzfZYCybU24McYWgoX4X2PJVbaq0uMjgVom10TrfJCOTc6KXRPNsiChRuOGcJmNWW+vW0xrKtgbz0bBcm6OVWNMPeilZbzR25LWgGorGkgGeA4gGsdFQ01Uv5WwmGoP35nClNFuQORo8ay68DM29pdA0MDLS5oNk+YA5c62i+oGUeOCyXZifDDwLrODQLXHgiO50Ilac8pGeAE+BB+C3wDvge2AC3k0s6u24M/uYBVlvgAUVrzMgkX0Vgeo74IIND3/LLZFvuW1JTSy21OYOgPcMsSYqd4JOlecOHFkd+bJmS8JAJXrOeBI85+0Fc6n3VN0y0a3UxN4BF8BL4Jy6YcueqwXILlkKDCJpUfl7ao5l/2hH4rflk7TkXQ5eqlbt6IhRU5po5uXUS6GafJkYi4AsmFHKRyeLHCZDurFeKspZ6Z8UdgrgXPqCYU34OfCCuWxfzFpdAmIhdTTSMtFHD1bFOu2BF2ydCLyCNaTWAw+fAV6uicu7SIprDNMDZ1kc1V/BHclk4BVtprLFpZrEzoqZxxpxBCuC18HKxxxosrHZzmJO2I12wMvjyV8MXirO6fjiY50bB4eoCC53TKicAmA49sAvnpsYdAGsuGNozlR/B3xBDQhAmNggpGV/9y0F6tdseXosJsYqAACAAElEQVTIU2yfAJfANfAA/APwJ+AQ+Bb4vwP/AfgV6zDW3Dr4yk6SjYxFC085Z5P9O9tJKEp9zP2gG1Y4TAwGFsSOe+J6eeyvgBMi3WRx4w0JXYHjEt8+BxrgAHgKfAF8x+3m5+w2G9kNMpIZl7YcE+skFyxG7biEeotMGtYHL6yAu7H1HOuV7wYhP6w1k4wNhVrUzfbdyYBPv9nU5EsB3g7z8vhHAUk2T74j8HgaXWEVTEPWn2xsKHwEvCay9ZacsTVGFi0YUxI1MTPs4NUYy0MN03q1tVUOaME7ycr2gVjjeDCYc/1coAxWgMAoWzA0ceYVqVFP/FY2NcvVzcnSgCO/5arnRJvfmiCf9mxGrFAKqweiqiGDKW3xI+Aljt/Zwa3KGrhlloc/YDf6wku+oMx0w1pu0czMnZBlZ/U5cAb8BjgCAvANO0ZMwEN7AjzmDqJzK/UtuxDLuj8hnHQc0VsWdpV3es1NlCd0oyPwHfAd66S+tbMzA8X3IwJ+RwSFad8K9jNTrUpWgAP5wA6CL3h+0Jyg+JZXXhselOLVPwK/p5RXdmr/ihluaQINk5YlTVpKMYoe2LP+Q8mJtR0PHkxcghm+/+xSu+4I+2Uw2hBqc/BVFc14B9OUnfx4KKg042AUFySxvaGO5wD8b7JK4GgfSwaBsY4flDCY+EntRZAq5bLvxOR9a7frCUKCkDk5VWDuJLAYULwr8DMt0zkwV+ADrkFrWVTpKl9jj9oZwGtay7pQg5VkZRD+1zONrm4Lb0ZeZ7TxbOy+k91UxgBa3YZyq3tImLVoDHd012BTCYLcyKBpxnd/qDcBKbXT2gXHepPUyKVROjM8YkC4YO38jR3apdU6Yz+tNenDMZ/8DPg/gKclA3cCPAJ+AN5zI8wRI8lb4I3V8x/xBgesWb9h2cUFcM6HS6SGPwA/cHPQb1hT0XKdHLMsIdGflsleG1ttaEzveWqaNkAWe5Vc9wL4AgDF+jWrzLQvq2fuMQDfAb8HngMHbEv+DW+9Mocyt15D58yNvOMQRbami9x1MLfG08nMK5r7c8eUDCx8LWWCF6yPgPM0uX6teQcvpb+zkS5VAoysvBVT0r16M2UnXdnW4Q54aS0JhcVetPZ23isxsBd4pRq8RubHBV4dwxKFVQ1TwQKvzP/dWhD1C8CrsUCu4YhF4r6YiTsVqbOdZRo/Bl6DSWvu4QRe2XimbieyvUNv5BsaFs0Ne5i4g1Ca98bu7g8j8FLBz+eAV8thjPSOW67E8vsZZZrCBr5lFLYk+50T+Bqu4nvuTjpi1UTZuPRbdsA6LOD1HWsDFjyMdc3zbjPbuh/TYmZsKfgGGIE/sKzijCc0roF74A/APwP3wDvgN0yY9jyt6Jn1BJvIawCsKMs3Vst+BVwCIysilFW/Yz3WU7YRLEnCW54F1JMb9gwdA/Aj8DfAC9pKA/wWeMmCrZGtOxoqh6PVSKw4lA0D2gVhdEY9TCwjUA+YzI2nPYIjo/G1pKpRaUuNSSk7qfZE2qgVCAtgInEwWkSt2MbBq6kBSziLmuWpOHswfzvVHn6yV5PkAxJzDU76EHitCFiZQyfwktrcUwQCUUnQrOUXGIg2Bl56TueSrkF2dWMh165AftoYJClRKZsZTU73vxMnwvMCmSKFpr63ahClf53duF6VzSssWey9kxwJ9r/CHRmJqLGncEcun4+B12DlTJ1hn0LxDU/QkWzUs897Ah5b0fuGS28JgBUND+zxdcbNQwv2Xfgb4By4Bn5oz4DfMtJ8yyVYQqOiXL0Hfk2RZ1FbYmTTwb8HvgR+DSSWlvcsh99Qo58zdl5b9Yc29m+5yr3gK3OtHDBLqfD/GrhhPFm2Lz6y3hYd9wQd0KxmHIAWeAn8iYdpL1mMNmOOFsA9MAPOGH6sWJu24FckEVwzztkCj8xMNkxdaO2Kz0S+sqQn2SbsxYUfsNHWKh+tXVQwg5JXbc0ziEiE2hf3RpOima0Xefnns4GH7F00ZoeNlCQNrNwBdcuZpiYDwRZNawA52cqbuNqUBRnswMNg+nuwqFsZ/ZbTN+fuLTFbvakYi/5XkVtrl432JOI5nTGcxkQkn9ORTtgl8mj9gRp7QQGPuqo1dik9htT8XIeFgiXn/Jq1tl5lk3Vbz9aSR0MUzdGpIENpAOWZBfngcl7ZW0SC63ueY3/HL94y5O5tVAeCXCnqKknpb4AvgRXw3QnwaxKt18BX3LF6AtwAL4El8DvgnLHHjCLEjP1IH4B/JHhl2zuTGeAWRDiyQpvOOnopF6xezy0tuLV+wbes7yjhzcp63c8J1wPP1kv8+dBo+h0h+DXwZ57ftmQn3wa4ZGB5y92MBQeL1v+Y7SeWFuhrt/qG2RLQkypH6swq73m6D0aP2awqGfUSwElljlwGAi83IGdBOzs7PgZeU/3Yks0+Bl4euij6ivSCAizFnFo5EqMlzOhFXKVz5NJWciGmwKs1RVuR9meClzhhNriZaghL9oQfBK/WzmzNNXhlu5TDqwqEGjtLT1lfB6/Omm7LbLzaWXg9mEIGm69s86sMc6rNbP6XgJfD4mS6nZIBW0Z3xXsdcGdy+eIVlZcN7fmBV56xBYIihVKkcMGk9BPgK+Ae+Ltj4FfACrgE3gHPre3NFfAauAN+R83tyGYrAlfAG+AO+AfgvwD/OwAmN8tLXrAWP1E5KzrqGWswGprRPVnMhou/56wsuI3gjnHdwNL8K+AWOOEOqCU1+Q0TCicE0wULU1vgLfADS/wHVsH1rM5NwCWVrYG4+Z4nOiY7brWkEuRan5ovWjMd6oUHWqXJ7Ga09YDaS0u1kv7hbGUHvKY6zaX/6oLOvNInmZer8bkGMi0GfaA183XpaGYNbATKCi9VkjHW4DWa34o1g0i2G1NBrAJFhZGTvalu0XIAN2yb1NdlmYrYW4PmttarIq8m/TLac0qH0xZ518Pkt8oTHloYKZNY20R3VrYVjUd7UAKjb8FGYyDBaY3Y6k0nq/JNhiYD12OiBPWz4JXqFtgeK4grvePBGzPepbzInUF5S6pxQdBP1C8H6uLPjI0+AR6Xavt2BnwNLIDvmAFIzNpNwCvWec6Bb5n7n9O3FjXtAXgJ/J/ABbAFfk+p6mvgBz7+99THr4E33DQuueCByLQ2hx6p/gdmW1UOVsDpPXBPbD8GXrLxxgHBoxSs+k6QM7YK+oGlvh0VxpUdZlY6sm6IlGVV3XDsYRoXmO7tLEbdMKaN5hxdB/fY23/p2ousINnScRFJ35UpeTWjIgpFrbDiVZjj1joQmQnmu/cfEoasvp6CubWe0KXnDEYbokEdaswuUHTCnrfJbjGaGK1QZyKxP+A/LericRVbBIM36YSt8bRsC11BKQwbIkODyRqcSt2Sm/JihVgT1PJhHeEkvTfS92auCOUepQJIoEv8TKy9iptEMivyudO4BWNoo51tE/ibhvRvY2xqxmWidvrgBVuzcNU5DvQ590Dk6RqlxeAfWRKRyYmWLBE/tqrXhhpp5qWKBH0CdMCTHngOBNbHXwOBltcAL4E3fLJz9o+QcF92wdwC3wP/ier2b2i+L4AzQsx37OJ6z3qDA3PcpeZhW28bmTFtnVj8JSaz4aMuWaJ1ygg2sKT2gZ3qonWzPAO+AA6Al8Bzjppom9BzSdlPLVIG9iA8pkDYkH3dsH5VZcQCr2DQEAyGJnNSqV78MFvJXLFuiME8ZrYxTObKx/qmXp7j4BUMvKJ9VzVKnwCv9EnwmlNfHGt8FBi1xj2yXWG7B16JnxzsGSTfa9P8oYHX9JeAl6ogskHGSMcp9iV2sa3BS3Ve4myNlZjFOvwr4LVlAKzwL9ACBUxe1dDVW3JSvbPRY/JsH9vuEWaxLJmfqjJG22sazQY+AV7BilSnel68EO/BmrCPLD7fAt9TFAffZcmOpwuGS3pguecydGdqm9oRvP4AXAI33ED4GADwBnhLc/yau/WUOZyRoF0D/ycx8vdMKn4FPAZWwD3wPblV6Qn4jNujy5Rf2tmyA59Y4pkS4j0no1DMN+wdAeAB+I4Uc8YQWQWxCw7QKXdBlfM2TtlOcWXIteKhICPp28bm4ICmrL4pt0xCHnGgltwIKqQIZseuxgvRUNMfoUba8+GwrygycWU+mDCebBlkOi5pYM1HwCsap3C00v/6koh232DgdWBddrPxl0+AF8j7TuhXBNwOXrCXGlhdI3lsXo/PxlADHwevyVyFxnxb6966oHbbN1Zh4sxLrFDpAAljiUKdqI0qbx/4v3pBoYlP8Q7TkXo6GjAFxk8ysMSZdQc28pWlnjhzjz/HvCYbTBXBThTwCrF4D1xZr4LI44P+BWi462ZOr/Cep5sks+GBoHHPXz5lH5t/bgv1KrsN/5EK1XPgzA5we0Wr/Iaup6V2f8LwbAX8FzK0kZ3w/wY4BF4D9yxfKO/3FfCttQ8oXbRueQiL/sqnRG6GBMc4Gqgkbhy45ChKeUiMOTP7Bf4tVbUb4Cuaxi0lxbXlMI8BUAc7ZHwro3vFhh9l/nvC6sj85D1lXGdBvmTlWJNRHS33hi+i4p1oGODA1llxoJJ+sv1cI5CH5VIYptrMpzquyzV/gN0o2GWlkHTUSFEzzGyr2X8vPI5kOzNeakN33OwVSYELRYF9axUhGj0Xwbe8SDSgcmyTq1QlCqyyIRF7XBCTR5UzUXgZjAJ5jctkm34VRWfWDSwI/CpVbfj6Pmhek5FpAMqHbVkM3BuySunS3cWUQPiMe5nDxOT2yPddMdsRzHEph6GkhQo7yiuXbXQq5H5DBlE+fwa0VPAji6VkgQW6HgMLHuNRKlcXDU9iPQL+gUvuiFFiAt4A3wFr4HfAF2Qg5bEOGd2VFft3QGSNWQ88An4HzBhPvmc91xb4FfC1iRwDFXYvQok2Fom7xjNrQRvOUJHvn5EBqqHAlpPaW+LrDPgP5Fe3wAvO0DUPFymlvVdcQurWdcA6smzt03ue8AE7Y0Dg9WCLzcuydiRUmLyrRQ5D9oGf0ToUCDqKDaa2T1Q8lbMWNmVbMFLMc/0AqsTQs8kPCryiYdkOJvZEH9SXTbaEJmOGwX7YkM9IClpx8AVeQuTBvNRUh1jRfJjK4gd6R6fBwfIKvrUy0214QjJZDb0ygcHIiSZaAu3awEuQ4eAlvBN46RSZZOC1NduQpiCBbSA0Z/qklWFrrBFftQ36X3G/YDYzo2cdPgRevVV6eJ3MxPT7ZIeTj3z+M+CYwsqWkeecD7M1NtjTUEe+XcdAqVxqAfQNdxDNgf/GzjFPgceMkV6z59UA/JboE5m7O6PWtwL+v9wkpK3e/xuLE7SzuTzft8DvgFvqSdfsIZatG8PEydgSvEYGbJu6OKZk9q7Yp+yAlf0TeWIp5FrXzOse+JrGcU2Pdw/cAO8IGaWGZG3VFEse8/I98MA2QnL+DyzAuCfSuZCejd3AEMQVL/3pzKOC4IuaJiTiZuLAqgRn3MMFV00EnRKlFBCK6uqPAiqxrcQnSQZnA0FnTual2FjqmpjCzrNN/NcVwaswrwereBkt1lXwIwFpJG42NI9oQk7mFbZWVpHqF9mB4ETF2J3KxGXZc+4c5R3Nxbw2VuDRGizqMVRAtrGtGp2VWHfcvpZrAIIpZxMX5sgE/kDl2N1ktkFozU4yVRJRBzmDxIfcAS/fJ+BDJLXlgW30bqz8ZmHNDEqgeEu7nZM3NHx4LYpb4Ap4wfqKB+Do/9fZfz5ZkmXbndjPxZWhVeqsLNVd1d3oJwBCGGYAGj7Q+J+Sxn8BxAwHgmMcDPDe69e6u0RW6tD6Klf8cLA2l0dU1cMwrawtO/LGdffj56yz9tpr75M8AmUuZ/0ejOBXEn82FDquwylcwt/DlQ70WTMpqYKnMsKH8j6EA+jgKRzDt/DSCts21bdrpizltaZqo3zCUKbWzkyArSK6TjvsQEHpQ+Waar32CDvRAK/p/m9VoJjyCkd6w1cwg2M4VZ/za93DjpApTLyXmstrBq43JkC5NI/lzuOPu3UyW0Ct0ffAgGD/jVGCiH9cWYpG6MEicgOtUJkDVDzh5jKaL+XOhJ22P20D5LAZ1/ZB0bWvsCPckYYyRVnx1I2Zv1obPQeYiMMjLbkys8hIDxhxbG54GdG7UxosIsJgIFS4iNlKwUP4D9DP2/4LHdpBZbnNXqfQA6s1S1HP3AYQe5uRGvVGG5nlt5di/lkfVuN9+W4Zb3alRHomP+NQ3xahoBtQBvemQWMw32rTCFNOrXrFlYxNaXs5FS4msJzpcSrrfvpWDQQbHWPRQJW49a7w4jciPFtqLJ/62VzDH+Eaxrb1DBQoPlS59q1xsw34GHblgP1gO/u62llfwRGgVOlcYv3A2hnFWRdD0dmpBVclnMCJTpsMUbURe24sbpyoY0Url0U6KOmD5sSN0gC5OZUWsrlVssVuSJdcSetcM9XBM2O5wUQQJ5ed7mzZkcsemEqBcQAXZjrbOhvbl0OYHGpJh1sntoGYyrUtPGeGnd2n33PWV3182bv676h9B9pCa64MmNLnl2KSjRaJW08jpxfhsSc8cm3otcFE1DRGHBu/63eV2VMj9EFfmAm8AlLDThB+g9busDBFqtV6cfCKKDq3rW6gAydGAq+FoUNm4JX1U3xtH1wyJfqCpQ+EvNi3udeiVGg605yZiUW3chNl98BrqInqDsSFQrv4S2OC/q0+HPythmvdQ6bXF7s1IqinOgoxVQ+dpmRhWuc78Aso4e+UotlXDLapcx3/Bm5lJV+XPz4zr+mtnj/F7vvwM3gIh/AaDiET35nqVko7chjNmzU7nTPK9oYye02lnw/gUBB+q1M0looncyM14dmbqGHjQrj2DLbgg0CnVJ1QTPe5rLDbskYkrJ9J0kjZhJHSrdeWgA4pJUwgzkHyfrad/q41MDzyTbU25oXt26FL1QKFwJHO8gW5CR7Y5WJZxqAFeMXCzvotW2J65YaGjk0BfLHkCnvYRltrbti3EHh5Zr+xMYlRitVSma0tVnJpilQt+PYnamxjiGd0vPb8RWdyWgTzmZhXbgec+MsKmlyrkIP+lzcS9gJBgtpP+4pDJGuCtUXiIGSCxl7cQt+TaY5l996U75eFgONWg3ajCKNTSR998Cqs0XG88aVW1o2CxnPrqLxSaJpUrpUm4VLa+VIHTM81pJ0+eQhP4aGitPRoTfEl/DXsqAjoVI0NN8W7dtSK5hg+6FyNBypY3tB/E9hTHeVTyUEd7MK2VR6eqnPpPuzDGszgEg5twEo16uqETLUhWZz5MdLemmyr67L5IGfWTFFELYvZRI0ci/4ZcZEjKiTQLfUal2pzWPejkUxgdqmWjUi4qE2j9AWX9yMfX9xRzhOZw0imtbpiqMN1n0J0/bkZtkNPT/kyzWxTzg1NY4aGlcFD7vQnHEC5/TwC16AiGAIFDIT67Dal2tZ9rd4BY204ETSicYgRC1peSeGN267tSYfm3KefowskC+F+qAvFbpDZZhjV4pUN4NDGoTFUiNcRKDWw34r3VQiH0PpO/fUmupOsH4jeGYFQ5yvboLp7BzyjB6ntYT0929huE/OwkIGuNiwZSJhoBV2lRUnR3yRkyVIlLEMjV5eK5iJvkW5m0yo/V9r255KRxzrv8UoP+Lef8+tfGBwkDrcNu3Zy66YOMTq2hGSul7cOW7AG+wKv1MUwmaTWZUJINQgX0pN2YQ/WZF490WYx0JpPL+ZcTtelTksqdcWgrbdwpN7yrcbxRlRwISw7UkahETPO5VYNJpCrp87SGq0tlUiMLbuUnSM5K0bC92B0tfWq7sw56VzIJ6Iz76YPXl0fvCIuDagKeSkcAst+bx5nBX65IEUBhWiZhRiTfR94+Td7xFjaHO2MILWGj0X/Ye+D10APW+oDDl4u2zRSWLEUZbC+9CeI3A+BVwCNoyq2zsOZFZmklb3HSLvRZ5t3hMwAL1eJcvOFIY4xVxcf+ojf9OdM6BGNTc7IP0dDhwCvCLPpg5cb0yKSCjfZWh/17oBXYS8rU3XKXFHrlRrbxNgGLV9pSHckVC+sn0gImZ74nemIs0JfW8Gvn/C7T1S8N1BD/G01sB/KgZncDkdQwSbsqRpqLG0/4dEDaWDraq2wDdsiTSMJVBsms92quLFW38NSGcJGdYy3GprEv3fE2kbK/p3rELdGozNTHBipm0NZ0wplPgfw2A4yi8Y8J9oAM0v4tjb5IqV2nZoLqVpyqeuuFNajgY7F0PV3UecjWBTntKLsg9fK/AA/BF6Lvh4WLMzFNgyDnHlFuOWrEbtVV+9zu0TRL3eO73SFPzNK4uDVypoyUK5kaIuq69O9rA9eIUp5njBXBrL5UfDyiLc0IA4z58qc+tjCS78ykQDcWb8fT084J3UJPZLMK62ORsy9VAuX1mL1SLgEvGYibnOro+iUgV8amvujBQaVps5U/UFrhcvr/xB4RWa4VbB6K5bzHt7DqT5c2SGcpV7BWHx2aMSl6p/NFze5BjtKV6ZbelX8DP7KSv3Prf9hLe1+W91uSkHLltWARIxUKHJLD30k9+mtfPQreC8TSkzGW7lxV2alTznjObyCD3Ift3pLY90Aetz30ChlWuhUyxvNjisVd29pU4tVPjFmfGH2i5W+vJYWca3xHlryZGZMrLT8/UJR6+DeEonZ59OttWtVhsGNYuOx7a2NLY6Y0aUNkTO9iLddsQ22U9pCdE3WjWPYDd/hNneSioXN5dbWSlCv+BWEEI01X6yUKYmEDSb4dP1cq2cXM7ViKgVp4QZAn/GwrTaIinLjoaAu5Omm7ykJwac2I178bm6m2dbgvLwnGQWi531GFEpphN8DI4Qrg5DW6NNKRnF/3rmQZmiw5NtRaffW2tZ6JxocmRE3tz3wTv459o1gcREdDM1qVyqjdiFr50DWtomm1lhhXXTNXKmIr7CTpFMS8tdf8qe/lGQ2kqd801yaU1UTTTUEWIHMyohvqRO9k7b+Bt7pvNoLTZRjmTEqvby5odtQ2ZJ0lVt4CS91yNmtmq4VOj4xRuot1LCvGxuqxX8uU9yZzoibamktlNuJ93optnNphka019zpc5Om3a3Aq7SV4+A1tIUXqTlsErT3wCsU6pVm20gyW3gwuj6shGbT9ZlevKPaZh52P/fBq/zvAK/atOOID7G4seuDWmcULn7eWG4DrcNMRqfy+xD/Dnh15giNPnKtFeAEKPz3gJebSNEvZqbI58ZDvhe8ImsSXLS8B14hoAd4xRgGeA0MvEp9bNXn0gEZd8Cr64NXKfAq7tUc3QGvII0DA6+h5WmL7wMvF89WChoji7Yy6PTUeq2waFt+0lY61lDg1UizzKxysFAqK0WSv3vKV58aj7xS/DaS63dNYnjUbYwU3cWmFCg7lahewxv4oAPRLrQBvhNbmQtcr2VR6BQuxlAm8Holp/LCzl3YUVfotKQ/KA1Y6r0m7BhrVZzDpextEXkvtOBnJtTXqlXKbGJVylwP+hLlzMAlsCM6SS77+7CDl8djna3MwK8Ar9hwQnK7D14Y8wqps9HVlwZeIbP9CHhlllLL+2iba1UXxgQDfEvR8wCswm4ygrp43vBCBHjlmgPR/CZmfAxOZ8vewWukIKS6lx5cGojcBy9P/zbW9qESgEZYlWlzimAm11N32pUDVT1cdOQq7S1kVnIZrz7kqKEleOMltgaauTJKnfbOTmnD1nrSxtyInaMwYO1sbsSUGJmg9UPMq7QeF63m/K3a4RzrqMRQ+2vDskwdFybCjUwVjBNtGKU4SqDnUEOdnvFdWcj3hLKLF2JZaQySav8MXsBCBwPNNWw3irtDnk4C+oYstKUajS7gNVzBHrTwGziEJ0oqLnRrmXpVJPnvD3AMLzSiLlAOFVA9lU+/hB1Z7HYUFoaLP5cul0lYv1C/6gJmcKQ+BZvWPmwojpfyCrmC8VrNa5NY/0Yha2s6Rmt+4UzrPhAL20l9NYccX/RJucMAhgS5zeWqn130nF7gQaQQcuMwrZGBzpJUeR/2MKC9o5u55N0Zu3CdJyKfzm6mNTlo2ieZ9A/0ikTIwPBmqI+NNM3cKxehQW2B1h0KWmsRB1gW/Ut0QrWxPX6pyxXaWzAsrLR2BioliXso+kMUaZiol8nlGpn0TRuO/SP9Vm2AlNluEDqSv8rIKGY2nUq9qYWylJuCpSgFyrToao12ZrkZnzxY7BAJz0wAPNfSy5ToGkpvQq2+NtXVJaZ3+vUzeGfGi2uYpY3yVGnGcB7Vyu8lKfwBPINr+EqNDW/lIkDzbywUeAOlzvZAx0J20uvXYQl/C2/hiVJ/S2OxV4LxHF6qAVekws80y9dhKm/GifrQbMleHOpXKxd+eiu78k6kpFwCr4HKsm/0JYECY72qK/m8tsRnEg/cgA7eWfZmZb7klXXCdMTB1I7OUCyUiQCv0EjQ9wTh7Ay87kyd2CKjvHvYz4BFEqztzz8slisMcXLbpu8YBrCN2FdmZ7CFBVqdPXgnG2can1A9Y8m5Ob7qg1egTHCJXGpvWMCXfTGp6BdPNVqi/oI6rc9gR2W/VW8rGMqVIJ3qFayMlDZGvSoNWml0NMArSGAu4hHg1diLbmxfQZPNXZ2B7xEf5n3a7ymTmHWFCfEJizctYAsQ/17wCv4f7+vOHhwG44GFDMFg77Tsu1SefwLnVkhVKs14bK1l59DkyiW2wrzSFMiVrKrb8DMd6jiT3rPQ5TsFlqj/4Ehd8JGHrIJ3cAFbMIf/Ct/AYz1JLmktWV7PtOpS4uKp3mta26kK7sDY58oOQbrSrn6m11CrBfBz+EgbZqeGPUm4uoQLuU/2zGwQCaWbfsFrpYzADrTwWsE2ZhqMNGBpcwVb0u5c7Swu8qxgAEqIbaUhTvwJZreyoNFtG8M+e+rMvYRtlVhkEhFga9t1gBfmEwrfZmk7fCyVoJlLCzUxyB5qfscsikcoLHvu/iGnSP6XcFyU5vNzDa+2qwdHaBSQBMEJc1WpbMLSGFZjcUZhbe5Cyl1qTMb6eSMRtDQ5rTOPVC0OksBrLBVmZYmYgPWRRc5OjVfC68wgb2Xia2xUASUjC03TytoQZi1sqB28hrYQ/Ns682atBHMry3wuJcFca3aVdoJzCukeqCtSmJZbcakjK2hZQFcu4Bw2FYDnOg17osYVJzLX79gET3bT92JNtbGOCr5WtjDFrTPYgYUCs4m8VwlLI8c/FT5fwRsN3msZ828VVHTwViiYaO5HUMJ/hit4Ivq7Bo9gX8b5BLSP4S+hgDfqH9Gql+ERnAPqwoJW/I6+4VYRZtopQktBj7ZQc8SQaGtT7QM2GuPTkVqMVxRUvjM60arnQsR1sbvFXhZMr9GsCUtEpxeUWZFv5ILqPi1sLQLEgAcBSfCoiP1aaSylXmUI0/ErrmJjKzu3fTm+ITb0uAffxz1iyfqH5hT9jkpdn2jF7A3lZNh/qMi2ReqiFqsMBM2lL2/aqV2r/qsZim5Fp+rYrBp9v0vhjTHkcT/8w3A3vBFDfVt01ogYPn4S40B/58RynmEkDJJ2qYU2sN0gvCBRccY9V3OIbHHbzhI7xTsz8x6NVGdT692N1AtsH9ahFbMYKkuZKmzGQR2Dri2la6dym6mA6VTgtSVE7WRveC9nU2gM6UbT+r+UCo+qKlN3rwksdAT3B20iK20BjdpzpU0hOS4QgA/F7tJ31oJa4D/DJTyCa7iGXN6QhDXnIoFfQguv4FSz8x0s1BV/qZWfaZbvwgCO5fTFNtNbLYNa+BjF35GbWpm6c4d9NUbwgno5eGX9NLfjUW17LgaFC5uRpVG4kJJX/RTLwITpYGvYpI/tvrDF3PXJQ6tbHeqpS2NEnX1VKKNhAsl0q5Vx1AhsMI7kIah/YGAwl9k6rLVBI/09NLmhbnuswWntKTyHsbLIPHCwMfCKjHepddhpooYNbWDgFTQpwCvyb2moJwa12HvJVQB5KxdE7Hxu312aQTqzTdGdhjGS/skE0JfqohY//xHwijwEJjSgUcpsAhfGvgqtC2ThTDNwQ5vBSvFOq8guKhBTId62un6VtQwSnXAR2NSyb2TS29aJ1FfKFl7BiS2ViVnbU1nzlXaSG9iVHyv1lVkKvE6FBZnqAxLqvdUov1e756H+61QPlKbFA3gBU/gP0MIBFLCCJ7AN+7ABt/AHaOBz+OfQwhtV9gx0mNprOJRoEfb6dVnwC+H7XEPcykmSZswVvFeDjqGmb2wpsYV6+BfBQNcHr8zCuTvgFcGk67extMJSG5pHQFtr8zWzjW7Qr+poDCYCUjEzjCt2oe1XSvFHGnaoMRwYbNXGfep74NX2j77yO2mNX7g67eoU4oyIU2QakFbglRtH6Pod2WuTe4c2PuETdkdQJj/tSEBWSqoJS8BIm5Pr+a2tfLdMRPiaWYlMZDgjBC1lRQghLaS1+OOFGZ3+jtGrCOYba3AVSJrW78QGsxK+L/rSQ2F8EEu9tubryLS7uy2klY+igH0hVCXtKXlu99QxZqlwfaZkZiNx4RZG5SW8gj2ZuRa6/kSM4krVPdvQwrkqG6/NVDZQ3PpO53ZswEewr9TBJqzglRZ6ZcmQRu2pD7QsVmrrutJLO4Vt0cdEnQ/1ctbgqQwZN5pol1Len0tM+6DTxvfhADbgUkaz1PbiW21qU2WlUjx+YHFCyoteakXeKpBfiRNfwZmuWBowRHa8M67SGmB4OrGwV+0UqLUtzHN9wcsjLAmVM9PiwwSfzjbEuA1PhLd9YdeVuoi+PKqMR2v1BiNP7xnOlam3nRmOgnV4KJVZgO10JTcC0Bm6+0Kc9MM8H8NIAPogNEZIgqzmBpy5kcyBTjJemnxc6b0M+rpcZaMUObc7vMg/gMF81h/YIPOV6a6NQUKQ0lDVYrPyTEypz6BfH9o8CdAd6y0s7NcXJtN7dDqwxHUnuA3htLCSkUhoxc/HSqqNFXxF1nHbFLxU0XImMei/yW7X8M7a31eiaCkreALnMnyuK75ahyHMVByUy1uY7ASX0MAWPIYdDccuNPAOjuDMdq5as2oH9vTMSzXon2oTP5exa6b3d6l5M4UDxYrfwFiu+vT8n8EGvIcrGWh3YBcmylumasYP8Ea5U3QbI4FXUmY3lL6bS0mcKXxvrD7iUoayQb+BZ+x3zmdaEwnorx9HPVcsir4mFOpzgFdcq7TNsVOqLaT2wjbNIHIeocVVPNb1tHjG3T9B8CINmBuiVbZBF/aXYAsDe8asT706Ay93fQR4LaWileLGlUFSPNp98IqhLgy5gh6HlSxexPAeeOWm1Af+pr8s7XVj4HVHQI/hDdrZWn44trTWOosGm3WMc60hsDLeVGOIHyq842ZpHoyREHZuxWsOXrGjuN8mtImm/yoz2yFCTMl0eynPuSmUSNxlCNt2juBE/ADFjTmUc+Ul3SbX6Y6vrM1CYk+nYl6X+uFASYAb+Fae0j34RPL1Enaggm+Uo1sITZcKwB6I2d3ApRrVhK/3SP7ShZD7SLtHAq8LmMErSwckVvol7Jtfbg32VEJwKfQ8giN4Cad6H43GYQMe29Hk1+JZ4SMNjXeuTMu1mmkM7QyDsj9TXaJ3b0NnMzhgIuLDRtt+buSo0Uyq+tiUG18IL1RrBSixYa7srgLL/Nc7m6OtzdGmj6r+u5GyLmyZLY1xO3hFH4zSKEBjlMdZZ/Z90kujwe/MIbOyDeDHwSs3xpoZ+nf6nqAqyBC7EH0IkCr0dgLjWkk7zqCX9gjYFe8wxLYPoyE3BG2J8Cyz6RTgFZx6oZsP41Rp7tO6bywZiAfVhnEBXrWIZ+x5Tp+xCHbVF/9iJEvRo1qPMNeeei1xOpMstQlbKqhOCHOpx9mF9QRw5VJc6Fy93C/gDAbwUk6ohPYbCu0/hwfwWFEZusEj+BpeQQVP4BPYVd/RPVjCBuyoTdhcqbwSLmETHirmPIAD9cW5lKT+L+ELuIUTOIRvJbtX8Gs4kBvjErbEZ66VMDyVheIQ/iyVf0+zflMOoyM74BbNrzT8qe3qFRwrTp8J9SPZjDxlM2glA8Yi64xFdLaltrYrxXTGPD5YANZY3BiiRCP06mwfLGx9hCuiNVYWYfnSWEreR83cVhKCkPh7Zma0XPfga9GjyliXjZZXbvt+CAStPX4Yo1oRg0ww3NnWEawgJO+JWPSwr9E19hbo32RhfC9MFQP7hnC9BURhh10HzRjbBoK9wbDAJxSZWk77TtRHf0/wFEXEmU4mY4Y4F/IQ1HeeRihV9L+ktP7wtXGZsj/OKwFzSBKZIMqxPxopxNup9ILiJ9EqMgbnWknITo7LiYW+Y20IMZ47sLaAUxG1NcH1HN7CO3gph3qrKG4Mn8IePIQXsCUdIoNjq+jZh+fySFzBQ6gUZ25LgjrQVLhRnJlyAI/UeGJTVtIL+B/gU7iGUzhW/dGVhjjRtncC7U5x9hHUUvoSeH0FP4cHYoNLKz0/VieLmeXlk6z8ADbhCg71JqJ92sIKJS7lPNk1nbe1tZqbLu9zF5tzkZtyxT9+6LME2yhX+hIs4sp00fCgZQY6tTXR6frwmtmyj7u9A155/9vo+9Ry+0X6z9sZy3Lwyu+BV/F/BLxqLb+xgZcPwveCV4x82WcU6csndv/xpu6AV0TI0WMi+GrWX5+hoZd9Nt7YuGGv4A54Ocy1thPcgTwf6sa2LrTBlLKphGRQ6sbWzCxdW8b1PngFay0Mywo7TNs1y9qeuhJTjdxyIaloopO7kpw8UpZiKB9FhKCkzjKdQHGhPqILeAun8Apeyj5RqBPpUARqF56rR9hAjoI1pRMfwFN1x7lSvc5I/bhulfQcKk2QygWOoYY1eCGiN4OXcA2/hM/hGo51rtE782PsQqf2qht6Q401cU3G1FfwO/ipTghMS31D4/hKHSAXWiQD1XYW8BCu4b1WWhTFttJaMgW9UYTpoX/oSZ0Fe3Wfnbmw34jIlPbD2iS0zFSZRjFqLiLuf0IoCoyIcCvMeSH8RljowJrZV2E4FXnw9IHKlkpm9xm/7tFg0FUMeTOryAl52RN9AV6VZQ5bgVeaDFNzFGd9Fvm94FVaBBg6f9c3kbv2NjJpupNvoZKO25npNKLNUg8b79Rhzke4M/ByEdSDQ0wxdRGUe6mWSvMh1OVOed3SfBSFbmxqxf21ZAUHr06hRvBrL64Yai3EU4/tBPpSIXelPSbwbqXToqaa+Us7AnSktP/YKj93YVpW8m2lR5/BpWbKO3ivMPMJHCjr+AA2YAs+0ilCwVIK5eVKM0+k+O0MbuFz+BK+gf+iAx6X8HtjKVN4LpBr4ATGcAxP4a8FRa+F8OtwLMB4ABWcqHXZGRwpSlypldhCHRB/rjFLFUZP4XP4PXyl04iuhehYS9gkzR1KDJxLFsAqKVaylW0qzPaAMLu3q3a21n2GxtaZ2az0MDLwrDFU8Bx8bsiRazV3FhfVP7x0Gi36EN89tvEsmS/x1v4SCUyESUNTSAqrcAmt7P5z5YbZAxuHul8xHTL3yO6hs2EvbDAzSwnG+sstBvMXkfW/h/7NN/bsXZ8gNf2B9TAy2HiMeWxBRT+8by0Kre11eH7FFTN/EZ5MdmDL9clSN9lpO1paQVylcqFawUW0z+iUoiuE0B41hJS6tBO2Yy+KHC8a85QGWJNDdWrOqpGlXtLgTOWnI5Uupnqc6GqW7nVdIlCiLms6jjbydeuwDU/NeV8IvNZ0jlot8EqZ0Cu4gU/h5/AV/BfYh59DA3+0RbsOj4SSA/nF3sAz+GvoZKr6rwo4j9VT5zHkku624UT0LNliD2Gqzjq38AXkqht6CE/gM/gj/BEKNXedi4vuq0n+AazDB6U3Y2+qbfueK+M6MWMt/Z3U91yf91j+sOvvwm5uisnn4NX0GbwvG9cnOpvu+ffZTWP257YGYo05eAVy5RZ0eZrBb7hQy6yI4oISNHYbuQFWY1HH94JX1wevxg6Ljy0hs9urvw+88j5XufOnMMHSobDoh0Z34sNIrmJvoTPEiX/qDLxcXMwMeuKRG4GX7zGF3UN+79kd4Eqj8WGviwlWqx4wzMZz/XxpB1835iMtbUxinFM7vmvbQaOrzVCMIcakVfZuKp98IfJ2Jd7YSqBNKbSpGSLWOkWcEePOpCgmC1QGG/BU3aI31A1wqvO2w1+bMK6T1eHKjmHNJAh9BP8IvoX/Cg/gF9DCn3VDqfrhoYoqM3UJ7GAbPhd4vVHJYi6DV0JSVOW4DZfwEt7J5HAIQziBUziCn0oA3IYHcABP4e/g9zKWXVuZ7wPYV8T/AN4r8ZhrH1gYmU45hdoysVl/kcT0+t59uDUQwfbwoo8ssc1iKkXEY23/k5hLIRfIRp4tt136zh12dt3QSzzvUNrXRuIg6yvJsVq8SD2MPrEtO3FobK1WPwBeqz4QuxU2s0fO+0D/I+CV9X8lUCOsJsE93Tx8JymKPXigXm6/3lgRT4iLtSxNpYK9zIAbMfq2D16tyZB3dNC4E7fXO9YU5qNGA1hpXaf/G8nApWSnAK+pJrwnXwprvzwQ00doPhB9K0TxhrJLZkqy3Ch0m6mf1sqIc7Jpbuty27BZHsGvrfl5eu4DxTwPoIDP4ZeCgeQD3IZ95RbCY7EGH8MnsIIP6uSFHPHvoYZ/Bv8CTrXu/7Fo3isryx2rn/RcBtET+B08hUd2INOG3Fjh0X4k3vhcZrQTtfBpNdHSA85gCOcwgS/gJ/ACbuCDZtCNakg7lZPP5btPaYNC8uK1amkzbTGtdMbwLjkXwqbe/b0+0KsUvkYokt5htBzGUMSXY7hS7yhOmHCEvrCxf60tq4mhZsjijd2Ph7u5PVFm/7foP1rR/6egHMH9OkuiBirE3pgZAKw01Fl/+bo25aA+NG9HwMbQoCUzGS2zlVcZEXXrb21LH/unzASu3DiSx7GNFqWrW7Vy1/RnRWBhY0pj0PJaT9FaBB4EGIOxpZHGzGDYyXxoYukpopR+ZU6dlVHl2AbjZtLLmspHX/XPLwzZItZFLVP/FnQSnFMbr4Vh/LWU+V0FZVPYgo1j+K08YI3yks/Er/agECSl1zmyZvK5vd30JM/U++uN+jujcqm3UME/gX8uxtXBX+qI29CxEit9LOV9DmsA/Fb++Fu9iU3p6ZlspY+hhg14DmN4Kenrxg5seKWIsYBjKOGn8FN4JlL3CDJ4o4xiDesqNqlVHnolGTGTWzUYS65sWGGr14OZziZZZ/gSMITNjACX2FcCvJxZhacp6yOUxxIBAR5bRgjX9JdZZ79SGkW8A16xbu/8pDEwDcgLwMpM8Yq6odZydwENd8Arhm6l9EB9j3sECLpVtbDd4nvBC8sEeiRc2yh5hBmOgjso4Ayn7Ot/HstVNuYBXrUlA+6LkR4quyYaT9TYBhNvP2SIpTb4sg9e8TaDvg6kXa1+GLxCKnIPRvgrtu0cb8+lDwzfg77e6FTVTDFg12e/KIZMCs6WTqxYh40T+L04TqP390hi/47A6yfKD+TKPW6L9nlJxBN4BnN4LY9ZLeXtNVTwj+FfyePa6vC1kTClkny1I8jIVGb2N+otdg0XUhG3IDeD4q6A/BlM4SWcw5HgfyTRaw6nsu1uwM/gc53w/UrHiy/UuCyHPVUgVXCg5N6GTj27VfI3ksKVZWjvBI3BmGoz3LvgFNNxZEUIIaEjKeJO9tz9WHeg5I6kXFjGMjSw0kQml98aY14hwBR2z3fwzoUupw+t3Vhtk7K2dI+vt4jHsn+IeXEPvCKoDjKSCct+nHnVhuyZZTUjsgoEbBW4+qYyNmiO1EnefzpMRmq11gYCiJVOT276b4E+83K61NpoO3g1hpKZ1sjAmpxEJOmh9dLSiUN1/UMx7dAqwiM4GNwz7YxgTy2mMCqXm2xW2DkYV4qfpnKbR4FKMM1bxXbrsAf7kCXmVa7EE4YqN9pWXcxEVoZtIV566Ic6E3soXWImtT2sfamtTqIrz6GBt9DAX8BTeAzX8D/Ba/iFXFe7UMOl3lilHGqK0L6CEp5BoVMTl+qms2b1GinW2hQF35YvrFO+IqUiUjSYPG6/h5/A52rsFX2gFmpq+7He2yt1oLiAgeok0/ffaEZniugjxnfw6Gx1Bt5gMOC6eRAb393Sqo2eJSEQY96FWCh3qFdr22Vk2yrbNwf9+8GmtltSffUEvsYm5peOVRVA2xpVaA0q6v6vIIm5MXLY3Lu98IWEaWAmVIh/jYrE2qhUVPfEmARU530Yy6SwxZ/cmrXONa9QTWDR37LmfURB6Ftq6MYmyoV/uLSwvLVvcMNHa2Pouj/2RCsTmmrzH0RsmWtUR/aYQ51NeG0iWyXbUNxJpnke1DHm/5pE7Frvd6jGn7EXNbaXhjk8lextqo7vVgexdpqrQ6HTEAa1cLWVlfSBRKN1GMmCsW2NKw8EXjG95sr2TGRxSsic8nXPlDN8BF/CAWzD/xn+I7yEv4Id1ZOH0yC0gaTLr8GfoFFS8VYGCUQ6bzQQaZZvyom3o8RjJ5Naqmz8I6zpSPAAr2vxq1Y6wTGcKGauZeu/hhvlRRMCvpGreKF5MBZ3Km0Pdbp/Jx/l4IVRiFJ/91/MLL4Ku1Zmayaz78EWYdtHt0J0F8PH3MAFc2l7WY2DV2hjrlrdB6+iv2Y8oMqsPU/8Smbt6LN+Wy1srLr+swR4FXbzA5Vr/Th4eVbDE/qZnTl3x2kQ4LVmNxZepFyx0B0hysGrtc4Od8ArdqMAKTcGdvbKAsdX9t7vgFdlRjzuGVxRgNMK7qc6TiOId4BXmHNG1g0kpmIOW1q5V3rqidGj1l50bjtTLhRL/O2RwOdMgUyuiz6Q/6pcCmIyMaZdeKhLpt9f7x8nsg0fKWZL3zjX80efqDSfUiz6EQCHUMBfwTN4Drfw7+EdHKhYZ1uWrMzAK6Uj1uFPCilRS55rxeKVZPlCavkIDsRKL+G93koaxHcquUy50N/C5/AJnMK5UYkKzuFCN3ANb+FSYv4YHslq9lqbTBgXg3ndyeDdTzph6gX9RHnMQg8O0xSM5E9tJtWBra7QYzq7B8xWmovQh/LU2HzqbG//cfCKCzU/AF71vQjze5lXXL0x5lX01a8Ar/hdZ16FgVdYvTPhVPsD4BUP2BlmYeCVW3DrGFdbA9KpBnlscVe6pUU/nYGVkre6Vc9ftCrIC2SPMfwh8ELTdWmxVmbglassZMOO0mv7b3NkTbEHCrmuLQVaCZfbe+AVglmi3rs6N2ylpjRjQ/yxHTsQkUG8qRquYQMeQSE/5cLKEpLNIS3AYfkT+DeaPt5c5BJy2NYc6ZTUXINNZRdjJDIFn/H0Y029XOrQxE4VzeFn8Dv4f8HvZI0/0LBN1D7nRp6RR9DKEfZYgzTSGCdm+Eidb87hFDaUuN0UVSsUszfCyIG8Gq/h9zCG90oVzqUE/hmewMfwEFZwKWfsREWSKbH5Vv3VxvLmb1hzkYABpxzBuFy1D82ksMXtX9L2pdi6/7Gw81SmYMRMD3qQi0zSj0sDsdIyGvXFrqCRWV9ny+x/vZVGZzp4NF8s7JFzYw5YjOQ0MlAkIu3C1t9Yck2UEcw0UYNWldKsV8bPgzNU9rHYEzrddoQ3sZlE1q6TUSbXRr1U1UjU+xVGsdB3xghH4mElZJ3pVtdsE/CYOdP4RAAZElnbT1FkElZGBoFL2xNK48ONnD21jflQhqHo/RMuVldWcxMLatudWtFOXwULSVhrJl3GTj6S1JagcR+GqkxO93kGV6InK1h8Af8XhUlJB99WyFuqJWto4hNYhx2FxVFh2clvVhtZz5RX2bL4ODIPn8Mf4N/BH6GW0jZQkdFKwe4l1Eoz/h6W8EiXGOqctrEYY6Us4qGeYl2dFM9tO0sF6Llyld/CG4HXsdwalSqwv4Ln8DE8EqSeCVKfqfHsEt7KmZLWwKadQ4jBge+e2AzA2Egs2th8i/6HI6hrjRXEUsm1fTuPctoTBAwFCQtdNzDUPVONrdj74BWAG+vHwavWio17dm7moXJmMJrZFX8EvLofBq/x/xHwCv06wCvrg1Ro8aW+sxA0L+w+V6rQG/RhznO5MRSVNVytfhi8sO5wWR+8MBTL+9pneQ+8Wn1zoVZVgc6dlKN1QWEp8JrrhTp4xePTB6/C3niw5bpfvb3UgW0jvfoY8JGY6o26wGyr2utc1zpXa/hEROafwD+FTBm2TKh0BagvWCqwniotMFTiddzn/QPLhIY2OJDjIvmiNpQY/QV8Df8BvoYlrKsCaVOWslN1UGzhIczgT1DDQ73RsZhoJZEwTYVjeAeb0ufWRGFbhdSVuX5r+BN8J+h8ByttQal26lt4AZ+oX/6fVEWZ4PiJgP6tGo6VoqXrJsZGiqyxqeyrN+vP75BhPGcY0WNn2fbKmEKIW0EfBgYWrjkXmisBXoF0mZaT5w4iffBDzCvAqBLriRgpll9tUzw+716C3Da/eBAHr8Yw1MFrZYUpM83hQgw91ITvBa/WPjY2e0ZugWLXv/nadoiFPjlQ/mjLRiCYV4xhYdUFlX59YZ3sGwFizIfCtpAArzDVtAZe4c0KvK6s73ujcKuzj8WGMYYNY16ZMS83vQ0s59nq76W+DZsYkf2JPTWi6EJdI0NTyMzgtRRcbEMhKTrNtCtr81XBsnwB/1KE5FaSTmtHaW6aSBem1zR+u4oGpxbGpodIMD6DhzCCQziSepbeySZ8Cv8J/haG8CnUcKKock3MB8lH++oe/VBjswVb0u4nQtkpvIWvxdZ2dU4tCkcvtYOs1IyngRvVU52K/oXK+TVswQiewj+CsY5YG8C1TP27kt1cGPFyPk+7YUuz7YOKB1HxT439U6g3mGQR8qtfMbImpRhRY9pC/O7cFmuu6RNTO1wLnSYd/XkatxprKILDIEuR+2rMGdCYE8rpZaVoMLemrHdgsjWBaGqGuBjk3Az1Q6HaUixiIBiOR8vtHuIRItFSKRtWiKvntkt7jmQlrrIuehOZyU6j3Wm7WCjXldmdBzn3G4hHjjit6E+VrL+fxGhXtkvkQs2FdZqIX0dP59ndXKvgDgP3zSriiNDZEoLeGtpFF7ZGVvpcvREyBX0JZw6ghEPRsyFsqRN8muQ38A6eqFf97AX8j1DpJNmZdqKAxDW9/ojybzQ/tu3U6HijaWjW5KB9DGM4hEO1SE4PvAbP4D/Br2EdfqLS6qFMUgFeCbd34RCOZfRIz7+vRvSlShCH8Bb+BI/VnmdTSDrUypxIzlmHZ9Cq4c1YalZkaZfwLezBGJ7AX4jgHcMErnTM7o5OAYiVUGoFupevtsbHme2b3/vHOQm2MQxMpymMWYVUVtwDuLh6p6U7kI9sYQ6vyK0FSYjUX/XD4BWXi0tH1q6x+wwLeyBpbtt3SLcOXjGXuh8Ar+4fAq9c06n+UfCKNXwHvDJBQMScTpXDYhaXXkn62jAgGBjQLPQKwva8MGi4A16+n8Wj0b9J7vHYQNLGKglDxK+kB/nUCoI0MBYaULW6B155/yphz8gET0tJU61NyxC9rqBQZIToeqo9zOFCzQ+6vjiVdrsbeCs3wQoWj+Gv5Xa9gis7OL5WBJjJjzrX3lKrWHlD3+WonGSqdwrz1tVU+kA9nVvYhE/g/wP/TxjDZ9DI9T6BHWhkqEqD9USljM8EqeljV6qTmGi6p4YSezCDB/0TzG/Urj55XzYVhV6rNuhM6ZHEEFfwUvD6kVqBNQLZFI6n/oZz7auZMa/IRwdvXdkUjNef2RzFCNedSYwlbSKC8iCnsEWe9zm9z+yBkh2t9kmflOEVcam/62/1Dl5uWogvCfDqpCa0ZgYIKHTwyjTgrcSn0jbReKhIo6WVOTUtEysJCtIXzGv1DzGv0IqCSqBrLZTMGljSsjD4aHWJVBmzo+5YzrwymUUH6tDb6tCqtg9ekUQNdIi/3E/5doazsS8GZ8yNVbS6z8Z+C3tlA7O7OXjVffDCpP4QR0NeTUL1le2LAVJoMxiYklfrjW9pOR/Due5tYMp6DtfwBvZ0gMZtGf10NtWALTWbOJExYluG9KVALpkM3sEDeAIPDCHjNjfEcJKv4hVU6qOTnmYNfgpfwK+kWtzCQk75qXhUbuA8hXdqkZrm1JYOV4tVmITyc21555rRz1WyfWu8IoNNxXtR+5AKoJK8mBz0ySJ7BE9VvvQIHsAxfFAP6U2N8cz6qw1tjrhoHj90Ct6ZvO5WiTvsvOw3fs/7YOZflffBLwgSmmW3pg5gQnDsQrFuMN0st605N9RBbUsw2AsYiF/0YLjtq/DYYw5MHQ5uUGgTqAzSQpTvxHixRRYWn2CwpaFpbvn+SD+EpTEi27kydY01sRrpMws7g3nVD/ACJuPt19q9K826Sq1Au77H1ZGsE3HKbTfoxJQinAn1PAY/XKlhBw33esyNGPmx3iwGbFixi0+V1uA2swkzV1KxljAevSoqrdPCnhfzyR+o28MRzNQy5lrWhlrdHm701FUljWxTl7mGM53DM4ZdNRFMQ3mmKpv36qq6q4yfz4ANiWGfwC68kedrS59JdOtz+J3KBGYGXh+pvLBQjiKZYN/K3R4TYl+uhhD+SjiVCHci7HsKG3KOxI48hD3p7FF6M9U5akttDd9CAUfwHDbhuTKNp3K6pkD3oVJGySMz0mLOzdvQ9jlMzB5PBt5JPDoKlNoNW+0WoXYUtinHtAjg6IznFHq6Rf8Evzvba2YYlP8weOVatKWcdPGkEbwF+sTfQ/X2qMNDMgevgNQ74JX1wav9UfCKof7vBK/cyOHc+iyEYDnUxxaaPIiA+VPkfe7q/BNFsz8OXjEBasGQb0iZQNb1sGUfvBo9Y2VUysNONKPuWMwCvPL+TAjFK+ZV3POtGnMuLXMeFGRlslQh+SaFsqFv3cK5Wl5dwJWpV+cidf8tyl2o2nCsx57pYOxOfQs3JMGtRLvmcAI38LE65YSpKASJHZir7f0RAJ/CvoL+EXwCn8FvdSTGTGdsr6x4Mnotrqnh6lTMCBVkr3R7IcwE7zwVh3qs8PVa21cuyE6TZq4pnkrSc9l3E/NKHRVfwFQ1nAdwCO9EfzcEXrdiXlNbOY0mYlB2ly7avsQVoRqWrnTpK5h6pgepbSMN8dxjG2ymlqJv3m0p1/LAwCszyPsHwSuzRk9tHyg91ZbZODh4df1rhR4eLDXAa2ktsBy86INXwEdmG0Zm20m4eso+6A/6o12ps0EAFhr5NUWDM120NuYSfkdPHkaqYqWZuVIT0c5uOzeVNGhmyJb0USOkhM6AzNXHzFKpbZ9b+aSa2EjeYV4BXi71BfsLTK8FPefWqbOz63pGIN5gJaPBnmSgM/WXatUsdapk2YmKCEtYlrc6tesBTOAJnMOfBIl78DnswYnawl/BqYhypp4xE9tV489AvjB0bNgLK1ju4An8U/gbeCth7UbHXF+KuV3q28bwAv4M7zVDU1nQntwbhRy+CaX2ZN06hqUaV48lxLfKQY2Fl5dKJ5eyqq5Z/4I/wm/hJ/ARHMEEfgKZ+uqHFPsQCngL53CszeXOAvL9LpiJx4rxJ9fEb03W8ARjTFgnPPQvFECCJkut+HahBxxriYTTp7ObcZ064t68/6+N6EQECUHhHFBDD1xK8Mn6g5DbN8ficKSv+9wm0vCl/Tom+tHfNGLlOca4oSEzsMG+IaqEOlO9CuM2QW+SsrqtMryVvYix0DeQ6UpjXlksnWv1hTRX9pOiwWwjq+yoH+8oSBqisuHSiMnm/v2xyEJsj6W9taI/DUJTCENMzK7Ipo5EahpxkFaQX+lxWpUBdvAQngvCL9XYq4IH8AAu5VM906uZ3UpMTyjwGG7gpYZvA57BjtJ6tX55ZfHhREFa/GlF2zZhF4AlTOAj9chJz/kI/gn8Ruh6I7krgdeawCuN4wQ+gSV8kBXwBk4ESa1U+4dwCKdQC8VOYaGWigProJHW2wY8ggbONAVX8iutS+pIdrDfws/gU/WnTpztWCWRaX48hQzeyOiPwNoBJf647oVt93fAK1Za0PRaGOERY2ag5pLGHT4TVcsLcZg0tisDrxDGcpup2Q+DV9zbwMCrsMXTGMnEKpu7/lfFIolvrn8UvMp74OVJizvg1f53gFeAbGODiYKOCMVj5Wdyt9YqbW8V2IQnsfo+8ApOdf3D4LU035knlgvT9xv7SWu7nYNXpx0u4tW4Vq5HXop6DfsxeaReMqPHTsh9MoeYdys91fOxtaKbqTjq0Co9klz9SIeShXqVhJgDeAJLHZNzGddKNZQJ24bwFC7gq2SkgAP4CezogIpUfZRCz+RPWNlM9V20NC6IMa81843twi/hbwVe6ZnX5EbbkEwVxtdPoZI/YaDqzy0Rh8SM9+BMdo6pbjXFdfvi+gvNqkq6V235wIWY11QvoFKf6C/hUziENfgMWjhU/JymYKodfweXKkJyWt/a6w/MclW2sz3Nwavt6/aVhXkRHnR9MaPoK+FoGIea67U1/pv2mzVF8HAnpfYjzKvWjYW4UlsY2dikz1Uasbw3Gk6OOstMRpSSWRUfWpCFpVULm34YUrff9+Uo1h0acHT9XSGAfi4oCa0uxnmol1goSb5QLW5jBzR1Aq+VcZZrsdRgQJGJjRyBk2uHqshIDwzIShttb/wzlVnIFfvYpVaClZHtDQFedR+8fEfs7NKZcmcphJqbOtDZZNvQmurkogne9xQeQwlfwymcwC1cwD480MbwAd5rcG6Lz+CX8BB2YAKbskclwXQfXsCB3u0+7MNMwdhQLSfW+g1RkPKTwy5cwH+Gt/BLeGoDkADyO1jJzrqS8TUZUzsBSZLz9uVVi0KMSnLqSsw4qRCHkiAXdmBGuu5I66xTFqXUz0tJjXdivEaHBLRwI8PtBE6kHh6qd9gGfKLhSlH/mglBLpJmfQzr7D8XK+hP1dZYwcC+rdSzY18YAIPWWWlTLKbwAbzQuJWSEOt+Vv6OQlLa3aIlXgkwhlKTxvqVmOAhhTkyDfoGKwfdRvpGDODKSNFAvgqMnjmdizCvEz6Nre3fyPq1uKCXGQfDtJqxeFpnYlSnDaHVW2gV7UxsmXaKDloRs7lk3qXhemawGttFyH3xmdoSm0N9bd1H3KKfexjoSyJFOTZJaibmHEFphCdRaxYu6KyP3C7i16KpjUVDhYLDW1GsTKpBAzdwCjMYwXN4DJlOBroWcm8qblrAhe5tCX/6KV//hVoADlUkvakn31JGsRSW7UuvT0Vlm0o0xUhlAp1Ez/bgEv43eAP/CJ6YQl2ouKaFxzLBT/RtB3rIoZp07UAON6p9mijpP4NaOc8kqBxCJsfFhfSDRlM2N44xEVKMleuo+kIRwqwLQdKJEiNHGoQjFUZuCrw6seQotKuNQd1XvzBMzywBGLFT3FL7o+CV9SESI1FDOYpDNM8EXh8pRTHU1tlYLNr2kQvzXgZ+tRbhRC53bAPY9Tfc1mSkO+5Qd338/wde9MWzxv73R8DLYdoF5cZKhyP/6f1Cow4r/jWJoMmOFKJXJ5RZGnjdSrvv7HLYgMQmVNlQN1YaNlK5TdPn5C4EloLdxkDW+/GkjTaaXMR0re6BV5hwYvzjh7WcEjMlrmIS5ppXsQAbWQPCrJuqqzYgk+HrQkt7ouMSa5md0qP95hm/+1LMK1o07Goxp235kR71ETxWw5hGqbmRWiBmNodu4RRaHUb2v8F7+Et4YrFZ+thraHSJVR+8WjGvDUsD3ioRMBVKpsW2rl/sVBC1IWtaOBJDCagsZTQ05nWttxXyeKerXAorj9VE/0jVdO/hUA2EPoUHgGbwuC/VdIYmQYWcf8d6xtDnDvNqhQ6BTaWl9TJDgdK40lhJm8itpSn4AD6CTLUjzrwcvJwwln3wyiz6HVrjk6mpWY3tHw5e2IU8i5HZW3Bb7NJsbUOthO4e8yos1dkYtn4veA1t88j6rLCxatjIUbeKe2vdXgSrpWZLozaFK4udRgrSWjuMb2EPfkdfzG1vC40wCFGA11jjGQJbLQqc6Rmn1gem0E9i9AK8yj541Xa05tCi9BDVRjaHV+oDdimNfGlTN4otN4RluV5owqMkPyeZ6Rw+qIXLUrHXQJF2rcu9LivBYPLYDnQY0K0ErldKlw4VsN3CKzjR3M+0ml2dCEpwBn8H/1nm9Bub+wmT16HVWF4JHkrYEVzN5PRPrtdzuFAn+VYMZ6GynSF8BG/k9hqJLl/ZCo64olG/56H8romwlnrVyRB9otebjKmfwL+Gh/AreC91Mk3DV7APn8EUvlO8mtkqD7zxuLHRpGuFXtim75QsyE/kG5aKXScGmf7leX9lhK85ZmsyG8/FHmdKIE/ucUL69AB9W8n/708n8XrQ1/QxIKy1n2B4UJncPDA0whY0WkkDU1Tu+MFbsYuhXnH8SngjKk0nzKMQS7/rc4axgn9PimRGoWNkOtt7k6Mys5UaPDCzTGMtLrAmsI9pEPQ4LAXBcBrL12GQHyXwmWW5Q+7vLDMZeunAtpHaKqGWRv/uSJexXcQrjnFL8zDAfmC6TLzuQf8ZQ2o+U4+/DS3tWwV3Sd9OSf6JjjbbgdVS4DbQRByrqdgZHJnOlAm8ZvBah63tm0kk76fyB0p6/gr+C9SmPzXWQWCqFOpUSt+JWF8CryuBSAYvZF3bkk9jpvlxoejxY3gPZ/LmJrp8KWhe1547sNW+pjM8buFIHytkQDvWuR1ncAEfw7+CXfhbqYdRDPka9tQ8+lshY7zaCP+wtdEZtwl9NpZHYyQw0+SLAGBd4JUJbVf9GXZn0oQXDxGzKTyExwZec+VXxv156aQoknUuXt8Br0g2YMalzlxvRd+cUBlTKg30fwi82j7c56a1xFgVdgNlP7uIlYXk9yLhOwmG4JC1vqQzy0Fr9znWaV61fD6ZEj+5OdQWBl615uq0v4fVRkexfrMrUS+fP5H+ia3LwSvQJ2T64MC5sbjK8gQLE95KA+tQJbCKsCDzpWbOWIFubpmVTGuqVtwben1av+/VXyYZdy/FpS7gBA7gE7XGuU7vMU3ETdjU6K/boQJzMZEEgSkq7STzDOBUEdpIj+S56QGcwd/C/w7Aod7ojUAnDO4JLy5lRSvsnKIrTbgCPlb11Kas/3PZU26kNHwOF3AGC+FXpX+NlHGIRjOp/S/UCOfcWv4M1Y421SEcwxl8Cv8DPIC/g9fiXMl7kKqmPoN1eKWLxrrt+lPtjmgfMmmATghdnTGI3FBjQy09cwkqK5u+/l9ptRoRrSWIeQiPhNGV9oOomggXRIAXVoCX7qq0NRYKua+rzHxpTZ95IWpcGdXClPMfAq/Oos3cPKIhsIX+HJpNYT/MrRdKaGyuLGI5nYk+UPVvoDZ5H+3iU8WNl/rypRAkrNQr5aiDeU0FpjF6TnZao1pV///G/lEYt+1EqytN5kLz+U7qJNfEQ0aOUPVyk9ycaWK7TmCiC5aFaWydkUH0IjJD/5VKxi/hnXBgqjWbmNAFHMFDeKa4NOUKV+UlnKmRaWI+m/KIljpL4wIeiRG2GoyZ3MedFADP2Vcix2/h38NLeKTKox1xnpXisSs4hE9VwVjJZZb+mwsGNhT/HkKtzGemMvUwLiUV7oMoBFbjuRCJGiokiAA/wqQhPII1OAY0kJWdj/sEMvgMlvD3cAP7eooj+BUAj1WpVfc3rLa/QLEX6+J42iujfqcQ0hfimSvjrpE1D3QM0Sz0fUwtqcTv0yZ4Kmd0BZcWOVT3Wr+gv7f68li+uSKETijSKCQI8aoVhlW2QHNN4UBEhJeZ3Qz9OHPQt5+XdpXObn5o1HdgOnVnv9XJURmUMt5CbRaTWsbmsMtl/Y0iCNtYPZMWSqM1pssXQq+UfLuxYCTSla2BUGcYEOaPWlKO90qNkQ/qHuBU2u6R2SdjC3W3baa5l1mEEpMzNJfSGHLMkEgLrezDE1WxVIZ/mW1KkZM8FsXahw2dfFarVHAdPoJP4T2cpsV7DkfwFzKFLqzbTQGnajnxRFRnZIWec9tKattDA3UTc/tP8BL24T180EGTS2lOnZb9F7CpY7GbdDQurMGlpsJIZxx9Ba8U6WGH/a5EMxL0zMUhS0XFS7nJNixV1YizRRLygcqRKqVoV6q3bOEZlPAF1PB7HdydYvQ3uo0DlX1XNrPjj/uk4o06eA00gcI4Gmw26ctLuUFaUXzPYt8xWgQGIb4e8XPa92fy8V3q9eXaCSKT5tO0vceswi8aCyOiRBffQ+928Or6jf3RIu+Mwt0Hr9gYAuudu4bwFggbSbYo8yltOxlquLBrBaUZaAJ4zR72dkKUzyx0XGm91Ma3o0J1JvCKNpm5nqsz41gMSIxPqwCvsLYLlRAts24ssQxjCgULauzdZYb+sYWsdLfuiHbwchdhPNrYDvVqjPiNtBXV9g3o5gt5vo6ghQeqte4sSXurEzjWVRE9geYarlQ9eCm7UmgD76ToPISpVKW0Mt9D/O65qrEXcrEvNE0P4X+FN/AA3sF7af7JxnEtMewDfAlrOmB7oVauW6olXwhPN+EY3irzmemQydBvh2qptDDmFWnZlXjH1MSYYCK5yqTGcCq/Tqu/z2zefw5z+Bu4hj1NxHP4DRTwHB7aFloYoGBw5jJ4/GWgqHVupoVMaJXZMecDm98u24Rgk6bI0PrBhD1obOB1KwPNpZZ9Zswu4qKQvpo+eEVgFsyrNtR2t1kwr9bg2/kg9jj8KPNqhJKRAYtKIOSSDfDqlHYb94shI1z0lqGxhURUHA3QFgblRT8lGLwvXWWpnXKi0SjsPPXKwOsWWgk3uXkMhkK0rC/R19aEemykPmLIMLWGHJWZYyf+HqCWm6AQhWILUc6AdRc+4xfDHBty11QxcGnHw6wpaxbKX2lFj2MFVec6m+tAP1lpls7gBp7ANvwWztJLKTPbv2qt+ApO4Er4NJXbKwHSqcbpSqVc0fAQ2ysLuITfwVeqGyy0N6W9cqGWEMk2tSup7hxK+A724QvYUdHNmc3TI9hX+/qUoKjkdbiyjp3rmnpj0bCbeyVYQ3VGTeM9Umo5usrtiLwmKfYV/Ft1cJzDc/g53MC38DUcwX/R2d0rzdlItFf9jTjmXWbmhoGK05fCkqHCpMxYwUK7zcoAo5ZKE7FEZxYehExhrZybOBMJqFaaQygbrj6V+kulYKY2pAxvR9VP6me2zjzjihZ6IbZQ9KnCWN8WHyht3OJ7YhlVhiXBEOLOB7aaOz11Yz9xESm3GRsxVW3Q61nEVv/aaaZ19so601xicFotyjA0RNKr0ghEGiPyMdibDc65MtXefa2dxnYqzGtN6aqF314IUltWk769K1SJsq9KxA+HYpIrxcOFcrDrdjJqrdELG8RM8yoB2C4cyAeeSnCutZRKZcI6yHO9/uBnU2kh10qd78gOO1fTizQjb1U6OTVY6TQKKWX8lcxcuRotTkSiVtp3hnCo5mBpPxrDd7ANn8GG6gUiQ5XW7bYgPXzGC7nqb6UKTK2D6EDvb6ZB7ARqyRaSG3iFUJtEtYUknBrewH9Ul40OPoEv4BK+ga/gHczU/iuyN0iiyG3vxoqDsKUygC05+xupzDHzBrbXz82auBDAjeyi2KLNjIWOlU5cKomSazLFzJ4pGxz45S7TwrKjGPw1fV9uxCEeKnd9OKus1r80SlOpOXxkI+NZ0IWCCTS6/0rXrTWk8YWlopHMXkTcc8BQ8JOIxiNFFgju8nQwk1aR0tRknri92oCj0jJZqMfA0NSvyp40JINIDEZM3lq8t7Bto9AEKAR5pSpY5oZBDl5RZBSjUWvn+AfBq7O9YSRdKV5TKZNCIeV4aSg5FfJEzmOmlu7r2vIzcbD3WkS3Gpa8sIqBU0UOt/AVfAdHqpNet8m60FNdwQV8YvvAtR1RnOSil2qKU4oWjUT9F1LsUwuIJ7ABH5QkfQ378LmqK99pCjb6xSdwoHeT2O1Ms2GmebNmkz4WVadWqJl4/JWYV5Rlj6z9+S60yhrU8AH+E1zDMdzCU/iZ3G/fwAn8RtJahFu5njo6J3qKOZOAEQiybcp2eJHnRt9QFexK2/JcM3skKM8FK2MhmqcqBpJJLgxcRkZ55lresbfnmpdh2Oj6rQwixR9LPZDCRePI1KNdemE4G/y9NuZV23uM3L2DV+SQayOAQeViTYbVKZ4CA6/CDLexqQ/ugRf3oDa8ekGvSm14mQ0pmmOV7RBX/VzcyujbULtOI/CqxWdrezshiWXa7aLkMvB0XbfX9KGqkFbSWB8V9EYwCY0+eEXQWNgMn8qtkHbWJGlvw3PodFbN3HaFTECxLYC7kmD0UMbQ8OEdKi6d6ZClskzm9AvYhrl67C3hJXyw9m9pNzmXFSii8jcyB1zpaLTWku7n8B18gE6wPJcOHguxgMfwXqHjtn54Bl8p/k1EPD3NCo6hgwP4pe7wGk7V97Kylbop09amqRwL2SmSvTfkvoFMbQsTfJGMFortBfwNvALgFvbgI/gp3MK/g38Hc3gHhcoyMeNbd49oBUHKTatNpXHzfvBW9tdW0BsUAUbV4kTzolCIWOq6Y5s1qWhzad7dkfjwQmt9YoFKbL6hsXS2KP2fwr9aSYcszc2Aqc8RRronKDdlP7jZ8N5BzbFeMUAKx4O7kAIegvvFYo3FEVtNpZfuAepI3xnBW6T8Q9Ks7fEzhWqNYXYrzaJSRLcSnCx0IkNhIIH9YtPvzRPW/pDdIs+RGS9qbMxLQ3dnvK22uNaymqELrGkfjm4G2EwI7AweGCnKpfWwmOhho1Y9STBbsCd3QFLIO6HpWLHbuVb0SDLTFXwJT+E3G+rmkKKjIziFFbzReWCZDI1L9SnsdJdJ0/9I3cKCsTS69Zm66tfyYCwk0nVmb3gkT+w+7Bh4/VkHSqUldw5Xdp7bAfyFxjTJ5QtNytISj+N+OjFttVdwZaeX3Iha3ECuHHc4mMIynmbtNfwaXgs0/xI+gs/hGv4t/C8wV9/XTTnjQnpxw3FwsLafrCsVP9/qd0NDjwxbYbMnlt9c8ztyREXflOtyTqa+r5WGN5fWfGsnoIwtOGltUUWiHEOEyBA2Fn50dmqTC2BZ/1dC9iu0ipZ9/2SAV9EHr2A+4d72zF5hF70PXqO+wx4hNYYjnW1g2CczIWxhG09QoKH0lwCvSCTGHhMuzULOxwBBT1NHbFZbRXhEbjH+EbEHeMWH0axzKK/vgZdnNR28Rj8MXhEtx1VGqnWJbWBu9fpB/G7UUm8XOjGJSxnrhzqEOnTTNCDfahp/Bk9glOTuW5XanCty+wqODKdS3HghRS69zht4BS9gTxaxQtdbaA9/L742VuuGENhXgozHsqIdJPsZlDo78cByg2fS5M9gCA/hnxiNuhTZrbUvDc1zOzYZrNOX3MpSNtOZszO17fftK7M1k8EV/B38UXLrX8PH8AXM4N/Bv4cK3tsLyG1+h83o/uqNipZSVGgmMC2NeYVhNSSHtCZXFk6MNaEHgv6xxV0hpSxl7YqbnKj19lzTfWKcAhuQQN5Y3iEsD7RiY5+fSnFsTI1rjRcEuBQWy0WM3UiMHNihQL5Kww7R2Ze7t9sXeWuMKfQbL7gJyTb08NyS2Mt+AnZlsFiZU2poXKYxOhaSdSY4SAQ51ehu6lVGzqLQNwf5ii/M+8/lVrlA4RiQGN5am1Bla7lQyFrZnrTSrr9mcB/g1erOW/NpFGb4q8RO0mfWtb6ye5pRCjIutPAbqc5jk3Ir9csppDQ/gw9lIlTvleu70uS9gBEcKB+Vls6Fusrv2HEhfy8j60gfq3Rm5LUs6gPRiSP5D06kj03gMxjBSxjpqNqU5zyHN/BQe+5C516kwqUP8EudYXaq2XouCSjh2SsYwc9hR0mIucb1RkHgzCpkL4RPuV5mp72yNTPyKcy0On8je95HsCOb2LoaqrVGALBFFrOpsLgiZIqZjBFhGe0sbYVm3La2iM4m7FJikYtppbH8+J65tsWR/rW2pJAvDudXkZIKAMYQKILG2miDM4FQPIIyBbpje0VYwyKFEL+LgUfcYRg77selEat4lB5jGMQy7iHT5Sob7YhL/Sptn+tmpp4PtIV64VKltNDSPOZLDcitIoWIaWOI7ij+rY1Mada81vhbZly3MU4Y77FWSinAfm55y5gkQ5u0ESI6KKY3stBYxRbUyiV6pD0n3DCtzb0d5RLOVdbdwY6A81b/DRQX5Gp/sw3lSnRrrBzatULwgThVSP63OpR8S//3An4Nx7AHz8QZMtvBz6Q1b8MYLnRa0akCgyl8ChvwVq2Zcz3GGrzV8ddjNdg/kTxwBWN4DpXqlSY6Ha4SH0vT6AvYgPeiZ0tFz2PJXXO9mATZ58YhV0b0wyRwAuea33+vrfk5PICHZq+tbFUsLZHt6pc7TFwXGUspDnFzqG0313zaknAfQupctewjffnI8o0hW2cGXgMZwTOzkq/0fzGEcvyKLEhA2B0x7A5Dayy6iEkc4BXprFqhciNxFEFh2Qc+jHpl9g3YPwVhCNT+cfCKd9EIWaIxRGtrOHS1Vn7OoT1RVOSPrMNfpwepVJLq4IWW+ljvorIbwwTO3Ohrfs/pFgiV63KtjUO8nbjVUOxqOYVWpqWhc7N/CLw6G/mZUDszwXimW7qRbDS0dl4LnV6z0nq/UPvlDeHatehuymOl66YuM1sBXsfyvtdwovhwEw6kuI6UQJjruNVd0atfwRy+ULjSCrxu5aC6kceygTdysZ9qCxrCx3AiAN2CQuesXcMHNRzbENFLtzeWfeIjnWk7FHglkfwaLuE1lPBLmMBLyW8xp2txwFYnal+Jx9V2HN9CqJ0W81wuvjRcf1A56XM5VHZhQ2NYKVZcWs++mEDB/j0ESg7sYd/MHXt+o+lYwIZoWnqpYYCcSqgIW3noz5FyrJX8GerVxOpqLP6JdY4BbiMNIze0ClwL5hXYndmABwPyjEPIUeEpDfDKLLyMELqzuwomErTC0TDAq+3/YqY7idRZbna3xshXqH253Vh8T4CXM690J2PjiQF5IZeEI63SndTWb76yPaDTrLgzB+gP79K+KjfFMTd0DgpcaM9GQDPUFd3iFiFuaePp4IU+H0UIq/4Pz+EcNiWNb5vxYyacmquR1bUOud8SrbkWHywVGpbCpW0YlDfwDnbUzLCTv2ElMtPoOKIWDpVhW4dnatBTyyVQwkfaXGotoKRTJbY2VFx3rS9cCbFKeAdn8BTWFPVd6TjYJ/CpGvEfCzz+d7iCn8EzHSf0HN7DMRzAAv5epUmP4Qs4gW8lwYUyHj7lGyuyXii8rIyxhGGnMaQp4D38z/ABfqI2Of8Y/hUs4Bt4Y7WIeX8fz22mBGAMNGiXkgg6/bqvmIW181hIdp9a5D+wlEPIO7HakK2kFbDNze8atglPDISqHkpX2BQ6Q46uv+wGVtFX23d6IJfrY3eQEqOdhQ1gmC0qvRqMtUb4Sv/DnS39TkaEoFuVDVT830rUq7DxL+1ygeW1hd8RH4YPqe3buDpNs0I0O8zsK0vtdEb4g5GGVzwEseCxEcEWGrHwTGC5FvdJxPSIvQVLxgS1rqT7VFYxMLAwuxDRqmwrGCtunEOpY6qDpYe+sFDCrFbeYgVHai94qzBwpeRBkmGPkw5/C4ewA8/gkUT9E93xWM7Xc7lYk+MpxZ1T5ZES3uXwzOrnE7Ql9rKlgstreKt4Mpe1KgVah3Cibl0L2W0vYQpPFeNdqSlzB7+GFfxExy0+gk9k9jiAOfwKTnRQ7GdwAN/AhYBpqC6GhajtlbrxXQt5l4KwyAcGjx/qtb2DU3gn8LqGv4J/DSs5V89EqemnmEOeCeNlIa3rRq8ttsvMstghng6Uqqq1r9V6ilH/cBQ3PYXEcmvTPXrsVbqloCKBtuHxcZH9DkPzPESjmyytVjM3jIs/xb0qKk+lYs4HbI0198ArlMXMBrkzofF7wcszt2mFL4VBq/4lOrul1h4zs6Q0KmyJvFnXPxGos+MSajs4tFVM1RmzioAz5kDk9yIHk+5/oeuGAy4sXRHeh4Gus/LukN1rXSuzwf8R8Cpsj2lN92rFDGbWumVT7pHOImpUNjyTAf4AajiDLXhsH1hpgQwleI+gvoEP8AA+scZW7xXprUGjCLDVdE+VN48ltS3hT8rRPbTzJdNru1KL53XI4YNasFzJiDxQE/1DOJRyloLDHYWID+TH+ANc6wX/PTTqR9HCAXyunORzWMFv4LVw9rmSAm/63U1ySwEtJGPeqhxh3ncwV3q7ueV/j+E/wAl8bszrX+vgxz+L67X95RSyzR0jZQKya7lhIpEVTA1x29yY10pnn2c6xGYqShX/Dc1FkFmteYCX5+4n1pkhmFduHf2w+8n6T+QBZISs7lHzle8gGKrVHUWQe8wr+MIdZLmj0gXzCl06gtWRgVdmzziwsuBKay/Te+807GGBCPCK8LuTVjQwo6n749FoDxR8ZDYVg2l6nLbs53JXNkrBp+Z22Hym+/QEbIjwTT8fm6uUrbaIMVzyaKccWeovbC3xdoJD3SgAnijLtoRz2BeUZxLYzjQrUkSV6fjWZEldV2vBIJ4IvDJpTFXxAJ4ID5/DtmAws1j7Sj3DjhTMrMO26h4fQwsvoYZtuICXCgK/hT/BJWzBz2AfTpUzPJG961b7xamaEU6Ew1eClsfwMVTwNbyCJWwKzF5Jdq/13yY8gVt4KUUr/ST9N5HPK2UI9zWil+oSN4U9DXxn41AJNlo71SAtnTkcwis4ViX7P4OfKgZeWbfdWGeebwzijjH1c2VEYzeMZOBKJp1ccxZllztzAk8sz5P1swI3KhGYyH89s7xcrmXn3qjOyI/zok6XCCaZG9MbWa/l7F7GojNKEAs9TEyh3S9FEgYGUaXBWKzL1i5RWpp3YEdktwpoRxYaBawGZEZKNhR/j5DDBtEZksVaD66eW1FluEaXEnU77TxD+TAzvetRH2xqG1JEw0baZ1Ke4Ep7UWw44WV12hzO89w2wDvyYxiDYv6MlQRqNJMD/nPjjddwrpB4qKmLWU8W5qOqVOL3zvLbn8KWnKeJsJxJCon0w0qptQ9P+Oa5zFAfwa4qAHNTGC/0Vk4ltK3p23cklb2CBvYUGSYK9Bq+gVvYgS9hT1aHE33gTAnMUoLWUOHyhRpPtPBU4PUtvIUadmEOf4bv1NllqZm9oR5738AxNPrJY3gMU4VM6/CZijMzs93nShssNUGXGvHKpkVhzsBb+KBygmt4BP9MPuCREdehKcWdTfcIEjJtiI3UAt+RG+N+ISDN7ejbMDe3QqWx7bADW59znS81lpEnBjCIRJREYjPb49jw7uZ99uJ6T/RECZ4QgNj2qVeodIWBbCFykivY6ExErkWrcn0sQtMAr1qL7YfAK4LMCDUDnlYCr9YCzmB0bghp7HEq+fUGGvZhH7xWoiitUkGlEd1ailGw7tDNAyYagVcpN+ytrFJDYWVu4BLzCjO35P3oo/sB8Cr/IfAq7DXdas0OzOE8kH0oUz58roR/ShMeWVOPn8AULlRaUylNOOvneM+ggFd7/OGBtu6nsClhyTMbM9GBa2vIMFERzFMo4TXUsAe38A6O4Ry+hq/gUnauNXgjhnJuh3CvqfPqscjljfpaNAZeK/gW3kMD+wrMvoH3Ik3pVSXbxgxe62TYZCDbVKP/Vj6tA0sKLcxLsClSUxuCu6NyqAGJGOwIXisePoB/Cj8R0ZsJvEp7/cHsS7NoOyxeGnhFjqDSFhfMa6G1PekfuTVRfdJQ/znRWIgkJoxDMTOawQE6YQy4c7dZvzdpZnSssJDpDnh5GOOid2YxTJCLUNqDecVmnvULLPM+ahT9baAzg2sA8UDW/9ww/Y4kubCmW5F7DBiK9OkdXKt1G6UQJGzDQeRnkmBuJG0W/aLzicHKylo/u+J9B7zONGEi3iuNdA+0Gy0tDVGa7zdeRGwMuYHXqO8mCPDKNRMysZxjKceNNJdSAvlKq6yQSzbsmyu9xBeqdp5YQfnKIupEV5Oz87p4AS/UirWTgjRR7HQrUfhMqv1AkzSyGVswhbdwpLPKjuEtfA2/k5SfkGMAJ3ConOG50nEDuV5Pgb7x9linvT6Qav8VXKs52SWcaAq/hd/DO1GIc/hOTcJ31Sp8Dx6okc9Y6LXSok95jw14qBuIKCI8qyvTHPJ+A8m5JkJtloiVhMvGaHpm4kbZB4nYNBZKEoeiOhegdvr5HK61sksT2VOGZ0cpGq9LSgv6FC508u6oHwK5xaG2KBeb4NgXej4ee66BxS3xsYCKxkKXYGu5ba9xoUjNhX27tid1qtYYlIaSFomQkf5vlBR6hBl0K7wRtQXq9KE3PhmBKwbe9Av5sAu1KstaiYE0Jn8HQ8sN8GptoUPjSKWlKAficgupP5nlXSKN4TmbIJ8B6p0hbqtXX1hBaalQtpKYObl3omMrV+rMIHClD6xkB1vIZVVqCb+x/epTyUZTHdZ7Zs2fMs32REmOPuX1p3AF7wH5KdY0rWfSUZZ9Xp5Luq1hBzaVLUzBZFKz3sBX6tCVECSXpetYbSbeyy+6EBKhgqDUb+pYidGHsAa38A3M1G35Bk7ETN7AH+GD3uIFvNTv7spLsCf2tS48nQq8lmKDA53/MbeNdS4sC3rdmbJZyjhT2M6b/swUtUelaH6Ph2BwFmvP11irrWqhuVgqqXBlVLCziTKU42xsvTwKsf8LyQZ7miKRrwsCk1tFUt7HL4QasWhbA6PM2FduvCuekb7Z8o5I3RliZgraS+31QU6Ke9hR2z1gFyrt4Mo74JXbpTEzTKtPLi1uDGBt7ZN3coO5Vn5lwF3+MHhVBisBXoXxnJW9kZgVpfWtHEpFS0VGYxMgI1GR2VV8GxuauvZD4DX4YfAaWLSfyeRzrFRTJCQKbZBX4pznqvLbhplOvkkP/hkU6u2fiNSFOXsj55T46ptHfPMYruCdcCS5r/ZEiAqFszOj8iiErWAXNqXD78BU5oEk1x8qCN6CFt5JzG90inensrprneoR4HUFJ3CiLovrMIOXsIDHCnEPtaQ/yHDWiHm9V3C8ode2B5/DEwVU6+LuQSIadekoBF658aCYjrkGYaxFtdQ7W5r8mAmCr6VFFX2c8j05wjMUHFYWRgbzCl0610oodOxAGCpS0nxf514ONVNLgdeZmNeB2hc66WvtHIXqHiLckbjbPvMqLCAZGYjfSSc2fYTCdm9PEGTfx7zugFdud44BaFC8wg5abZS7Gxj5irdZW2KwsnR6Y5gV/9X30DMuGn73oOel7Stzvc1bCwg9jVlKiEVJolW/DMiZV6k97FKleLlFfXf2ktKsikMVvgafLfX3+IYYpVLxUCUa6PmgIMKn8EZiTW0nXKUo7VwLobLWJRcCr/Q9LyCDc2useW0iaIis6ddnxWN4oGaBx5K/CzhQu6tGJ/tcSqMfKji5VGBZwTud6PhE2PMd/FaOyg2VNc4ksOSKXtMbmAnAlmrFUSucT+C0Ax/BFL6FG3gO+8LzgZTxVAR0KbdqinW34Ocyf90qXHyhSLJWprbTnrgPDzS/kGWkU64impo0+tdtsZdYQJ0m1AedJRDgF4pqa6JqUKZG6k1kogqx5FujziEHr5T4H+qHIzW3W6llY+BQrpBjAYfQqPYq+v1kFqiE7FNZnjA29KzPG7GEldsmCvtk+DAKk4awDSEuEQrbQOMQUVNgQyz0wjKNft2h4K3VsIwskukM5GLJYtxsJXyqbEAchj34j3jMhUG3NLuD7Mo631Wyc98xnQ1FwwKYQxMLq1TQpHStmfA1GBpiUK0RpIjMQ2cb2RhmlhRB+0+hG5gqXZmuEuiVGVO9UaBRWaZ0brVRaT6cqUvDhv6eSch6KtBKuLFmymQuZ9VHagfz3TNOnqrLQBQHDeChkpUrmZ5Sef+WLC238nwmgvhB1tNnytonFWomFI002q3Sm5VKA0qRimuojDKGgaXTuYjr8B3M4IUsbRda4bdK910pZ3AK57ANX8K+8qgTeKyc7Aa0cKaXdwrXsKXCqNSoYiD4uDZPVsQ2A+l8EV3kIj/JQ3dupVWZVlFu66fVaJRawxE31qINlRzMUWQ00J7RSk6N/XGiebNj7WQ76apjPWn7feDljKJRxjXX1A+J3MkSFjfe4ZADC1RqM0y2ms2doVuhGdIaWwjwGt0Dr9Yk2Bj8IIeR6ui0CO+DV2bgFcjbWE+EiBs9dHTLRISFWT9dHLmZAOIAr+s+eDV9wRI91NBmSGPELJStodZdpj3e1dBlP6sRNQy5PXhhzIofBq/BD4PXSJeLlMaNAo2VxipytktlKZKH/gI2YUfspIRLyOFAr2ku8Cr0WtMkWZPccwFfb3O4ZgrTqWxee2JeleKTmSomx9YE8FZj9F4nqX2sRMEb+K26NAwVU52K2U1lUSvVALvRO1gTeGVmrtqHT2ATXsEcPoI9pU07RW5nQoojPcuFUp2b0hIfwgv4RJrBNZyI2qbNfBceQCcVYaCQfWl90OMFJzQf2z7Taegv4J3A60ZR98jy4CHgt0ZSMmHHStHCWCNTmbu6FHihzjel3F1T7be7KnIdaC7mejVH0MJD2DDbdG6cKNTyuW3dkalz8ArJJ4C769OfzJhIYEQ4T+4kKhsjGkMzCbtlrTaYK42PdDaqA41ka+BVmHkxcgQDrc+wQCyEWWGSWVnQGOAeRGygp8hNB8Kea2DOjRup67W2jXCzlEKBkOhCesysNqiz0oVYI1dWWp0ZZ0eQNNSLqG2ER9bu2cEr7HEjXaWQvyBUt4mG1Nn3JXyAI2tQs9DOfQnnWlBztf4cKNSbSF3aFxrcyJE1tdxmuu6BlPXzYl9w10lE+iAGktuR97U26C0VC6T1mq6w0u2k1/VYqcUk2Q8ESPHEIW1dK7sSIdOF8pNpE0zBzzUM4SPYgBMYw2ewL5BIL2qhYpylfGRLnb3+SNHdHF7CGUxgBz5VJ4tGA1bDPuzJMpIssj+DkdUZZNoRcttfOmlcYSfvVFF1ayrEvk71WFg4kStnmz6PZtPCYsiFgZZDwsBe71jUayTOvKEp7Dv7ibLRO1oQIUaHpNOZun3feXAHuiJDSJ+i5LZvrvrUa2XBWHcvnI7qylYC8dj40sykV1/THoKGnaXtZ3dbY3eBGZGACVV9ponUaKgD11sjOQMLI7s+qAc5b/vsa6Up0dmuUvZ1xZGkmQg7R4J8xEIHBkiNEtqhvHllU1yCvtMl4syhdirsTLXYfwI+B3pHIeWF12/Zz20s5PlK93kLaCMttK6TXJyWaoKo9zDUeRbAGZTwQJPhqc6i3oaHUKQO8Y+5eKKRvVF+7xZ2BUAzW6iZahGjlHMdtpTxmOiVPIepGqKeSykeWQydsmFDtaqe6Msbucw2NO7bKpSaKNg9FXjtqtqoE56facGHOJh8pw9hG9ZhCW/gRnVDP9FJuEslcFORwp6i4hYewU+Sr0TssbRYvBGsd5oBjeZcBrempSLPy75pDK2IxIHOe1waUkQzi2hUE3Q/RNKRHBFD8ewNmEr32tD8i1AzlyN3akcVtaJPK23N7T3w8kx9RCCFCfeduU8jqIsw2IlWY3O90ydjOWV2q51lt9C3zQy+/0Hw6vof7vqhaW6RT/Dehfwt835wW/UJdtnXYwK23BCH7RwhR91qCxzqf3ODvM7k+AgdS2konT4fwlhncWNsD0txp1x/ccNMYYF3gFeUatwBr8KYWGn8NuhfZpF2a6vpVqMxs6PsWvGxiZyrM53UegatejIjBX1f5PCpTpSYaM2ewKsJZxOBV3IvvJXJNRPz8jTrhtKDC9XTbFlBc4pKUy31OfxRNzHs71RrIohz8TKEBRfC6UZB8JqQ8QVswSmM4FPYhhs4EpFdyts5k3o30xa3p9q/lULKIWyoh+DEzkVMUtCBsGwljBvqkKZGjtDWVsJKLzUKlVplMq/llEgTZV/gtbJKlEIK3EJJy9KgJFOUFQpzpIDQ2XeJc63rDIN1Pcu23v3QOlGcwansK9j6DKdEpNeWihuHSmdjyyA4YDCvOz6Qgb3xyphLY96b0KhL4UJmInYtTXtqKYDbvmQV4x/mh8H3gVdm276r6wNbyRHz32ryrIwerqzJWzilin6GM7M40CE+rCOV+HWIUvH5AF839zpnDEgKHoTe4LX1pHGulCmyCQrcaj12ImVjzbFMfw/L9NgqsfyKYQKL/EvUbadSwhMZogqB9UoUrJTHaypr66Y06Vz9EhY6deOJDPqfwL5W35as+bfFATxSSFvp1V2qiuQEprBv58ukF3IJNazLEZYEoo9gApfwEB7Dtc6J3FBzh49gX8bXkWIYjMlU8mpt6vW+0Om2CzkYlvAEnpo9/MbeDJIOl5opy76p7xBewilM4Qt4AY/ErK50+O6WlMcCfg7/WkwyRes7Op5xA9bUCnJlgVnKg21CKV9bobW4oUTI3IT7YCYLqwdpRABCaxoZHuQWdawrJh/r7QxFRNck2YXEfCtv8L70sfBJhNzRKbJdGRcq9UmnGfG86O9B2wKTMvvm0iZ7XKtQs5OVUCE4UqywkbSX1hbBQEPnYqCzLNfZMtPWK7PnR1QZoW9jhTm5BjZyofSpSKQcSsnWnjnASN1Q37NSf5aRCcL0TZTxaLmKJ5bq/T7WmIT8uLIeh4X94lhzrDBobzVQlWwoY23dnck6rSF0TOmh3WShmy+sDVnaQku4kb69EAdJNvWFFOyfwrpyWo9hCG8lJ02VSMvEUGbwSDnGgdjTJRw+5uIj7cu1uWCTb/NU7oINCdOFbq4TZg6l7D9XV79H8Aiu4fdwIafoM/mzGpVQdzo1cdPSQUeqvU6E4YVyCwulJZf6/ok2yus+J+6MAl0rcTFW+JpsaJewCV/CR3AgX+upjq/c1i8O4efwP6oBbNp29wWpm7LOnvbBqxV45fAODm3f3xLezTXXO9u+V33D18LsZrEyY6ceiaWsq5QxqhknMqJMLeIq5JRItbB7ku8DvNwmEeAVy77o86tYnJ6F6+wvCG1D0+9MFg9psL0HXnGtwMShtYftrB36HfAKwhO8tDHilJu2HoapO6YwTO2LWN3ByyF+aLhTWJIAi0iDl2ZadQOVCGUCl4GxLDTaI2NQQ9vYRhqrkUKVTOno8BLmEiMmGrEYGYz8BHhNLNR08MLEyNqszoVB2Mi6XXTqcZVixVNlVjODpMQqduGnsCWnRDJIvNVVJnKNpcThTHxlHa50Vwu4gPdjztfVRqVVW4kLRV/nsKYGxyNJNZnOn90w8FrBc9iSifQR3MCv4UQhykeKXNOk2YEMruS1nWoU3qtLbHq7n8JU1GYo8HoID2QvvpUsHympRh9bWPPBqcb6TAWWI/gpfCx3x8wqhDbhQqeyfgH/UsVJaZ08hCe64lSmrtoWc5pz62Jeh5qUtcTJublecpv0oQOltTc38AqJJTJaI+2u2zqtaEPK4lQNdjcUkw80ZecCr4fyimQmSNT2CCulxTpxqBCEQ4wJ5hUYEfwFuUNjAbdmk4iKq8bSXAtLhbk6NVacU1rS5A54xZqMgDDr31iEnRHY+1JEP+yspNBbdrh5q9aQekK11Jcg9AzNrxNtWRNquGI/MFiJYHho8dtAUzrAi74cFXaAlQWZpYWLg/7NDLTYa83hXLnKcd+4OzLmVdoS8+RRbjvWQA94IsNqdA4Yi2qkcOovYVetsFJC7UqvKZGkIyjV1yuDF+qo3AmIbmBZtlp5U6upnMNvpcY8gA1YwboSokvLE6Yd6kSzdaKGNBNtW5/AU/ULfKaZdaxQ/VYW+KHJILdwJqdSqSV7Cv8TbMO/hL9SDfgOPIIPyjF8AVtaoK/V079VDDDXakth2xb8ET6Bh9L3Xsqteq4XWyp/8BweSS5LIv6JYvBX8CfrJx8BcIpmD/UNiZ2/Ne17pR+mi97ITJeZ+pTWythScLFNj4yVuWbSKLNyAe/FHAI+T+AKtmBXPMSjppUW/VzVd6G/DcSN70BsY0ysNX7VabQrIwMhi+X9dR9POpSK1QqQ3IERTo6YtJHuayyNFuwot/RgkIrCbqM1vleZGXJsgdzIlJ/a4sxlfwsaGmfL7Vqd8paVEipPoVPH8Xi6SC0idA9elwlNQxsMr0xsIHFXteU5PBVBf0PwJEEI/V1/Ow23x0jQvjTtq9UrG8hEn4nsLXTzJ7CAj+EA1s3981inbqXSnEIyTdKypoL5RsVEx9ZtMc2rTXgI39QWTEf+uoI/SaD/QkcGFcorttZVNYnshxr9dTiGb8y78RyewDY8k+i2UmZ2qQU8Vi+cVlvJJeybRzyB1/8MG/Av4BdwBd+pq9gbmMFz+IXOrn2v3jyRKQrJdSBj/Qn8EZ7DDnwGL7Wzz1Q0tKZ3sAkf6Zy2Ah7Az0U+B/C1DkBuLUWz0k9ShdRU6f4jOwMz1lupUvWV9sHQjSJxlxvvxQTZ0siYb/RbcK7WbmuGa2dqU7SrF+RhVegii3vgVdhg5gYNd5aHB5MRj7Uml3a6/8KYRtgnBrbZ3AGvYEcBXkUfvDDHRYBXvP2JAUphcWxUEUTSslQb4aAfZf8LA0ljKAoL5NzXnmueJ/BKDPmZEie1wW5gUEzUSKR1SoGONVZhW4ssfWDTyjCo7Ps3HCXj513/1QSpjscPeTX2sKDTicROZFyvxTYW2oM/wFKHTcSvAFvwKXQ6bRadw1HAlVKOE+lK12IhruFtJ9G9FrebmNw3h68gU9ubXSnMCxOuM7VITepcUtRTCeK32rvGojbrSu6l3fW9duNK0tFURqtGdtZdoxtDOIf/BTbhn8HP4BS+0uGV7+TQ+liB6wd4rTxCpkU4EqO5VEuYLfhCLtZb2UpvTIGvBfkPYUee2G34VBnOTfgALzVBcy2/hXjwoZTMUv/3RFDSmeMiWV4qqY/059zQ1k/wrLFGZiT0Hxqi7SoZu2nFco1sgXuyy+SSEDoxr8rAq7KFWttc9yURDgcHr3CMdCbOe6hJ39vQ2NYSibXMfLyxp8YLrfrgFXmNrH+JWJwIC+I7WwFl+pKF0b2RwdCoj3fom1eik1gYXyuIHZlFodbG3MGaOnieQSOUDOKDbWwxDTpl0dc0PsGCWyOqcemArXhSB0cUHzRGvrBNIphXpw8Pda2V5XIj81JaWXkahGMBzZky9jtmCEu86QU08CuN4VKE5kZjEvXcA3VYjXc61bEYX5exGU0F+0vzByVnUC2pJHbSNM3PFAemGOlUVPWt6hsfwa5ErWdaUgsbEuyg3VuJ74karcNQxdfppb2HE/i/wi/gLby1tHdyVP0UPlUpwAWcKk9S6rSPhSwLaSz/3/An+GuTdGolsweSiY/gO/lL1/S8W+LH27CAt1YTMZAukeTIG4mVaTlewI0ORepsqnaKyUc6PCWWbPxuMK6QgFe24bTm/u1g1wosN8RJZiJ+O+LGCLQ8eRjTJFhNvLJS06Ow+w+UxaR/DPNiA8lseXnaqhYPCbyJYMbNpSHNt3r2oo9eucVOuS3EzMYwvAKh7Hd287ltQRGiR5Rb6++NLEv+hUO7z8q+v7WzqHZ1hs1QHV+c1JWmEEYYWWuJrytwCIOVezAzIW5pUXFE9cF+Gw1FpDojPgywvJNVjkRIY+8u9pCRFstKD7vQHGvhOws3ah2v26ld1jp8DltwKLF+ptLsXVipZjCZIBIKNrANT+AFfNfy2ygXn/bbogQwvRdh6LQ+ka6TqUJhBR8UoryHFbyCPdjXkdoHshws5K68gVLesUy3mKkMck/YsdDkeAsF/Bv4HF7DnxTbdCqb3IYvYATfqU4UzbaRRnOinl0r+I+wCT/T7raS3lBrm2vgCF5KJVrTgtlSTm9d54cvteSGepwAr6Gthxu4kXulsuWXycTUigdGDF8b32gt9HJjUYiqwZ+T/eOd6iVGMt1cQA57ypSOLHbK+uDl6fWlzdqqXxOITfSQ7COeCeCIrIUj0lEAABtwSURBVFeoO7nhQtW/h84EoYCziAYDvMo+eGX2YY9/nByGzFbY4Hd92pOLTrT2tYUt6Vx+y6Vl3nJrWlApBg4zVCvf3IE01JGimNg5auOZHt1FgDrV0iulTYR5IzIujXCZey8o9MIY6lJw1vVteoGbmf09FxVwpb4RIAz1+VoOn03Nt7eC1FocdQlvdYRX0uLfQJ3Ok5U6+MDEizm8hcewr2zTo3T8T8avEo9c16ta6TWk8VoKO2vjpo2K7gZ6K2mfT67CdzCH1/AIfirH/FMdINvJJhXV3msKSm/1/GfKhn3QMQCJeR3Bv4Ev4c/wWxVGFFZ4/VQz78io0ECGjfeKkBND/V/hEP6FWcEqiV4olvgWfq8mhhFBjdSPaA+WAuugziWs4Fhn3Uaiv5Ayv6UuQWEAHuhfM4XQjTl+ckudx9QphJXB4wub3wNVh1/Dtgj9jdwp+6J+heZH0KWIlwIfO9GciMoKY15tn9d0gt1CkyTWz6hvGcV+qzLxiX6dsUNqo0GLGKYwzMrshh28arvDTKS1s5H0ZGmgW1qQlRm5RvqtVkLUwiwEwb+WCoNzu59KnQz2YAKPJFNnFgDX9/hsuEDDRTCQ3FBYo9cIICvTAiNKL2xUYwRyqQwDiw9zw/HC3k58YWPQ78xrbFFCJ/lwE7ZU9pz+dQ5jFZO8EWV7poOnWx3CsVTHJnQK80qW0yRgPYMXUMO/LR4r4VZIfukEfY/lSLhUsfPSeHlgWC0j7VCD1MIRXOvcxbQHfSLT1luVXibDy0d6oCvVZaTM2xTQGx5ZHuwh/AwG2rnm0qYvNAcruIRX8EGOqglsw2OZMAbyAh9CpR/mQs25+hdW2p46VTOd6JiBDVVUjuACzq0GL7zJlczFBexbSLAUFYylHO7ymbAkV2zWWhK66HeRKJX/GatEaGxW+kLzpRbRauFEW96BRTVLbdkz0zpym/WehqKfLQyZCJsSS0XRhcWKTR//sIx71gfyzNZBYX+vDQsjQMiM2zghjM4LjS490icxO0V4TWNNY/gRWZPQkVobh9oC46BeY4tOGzO7FiolqwzIEcjFIBRWsxpmiDQBNgQwIw34QqOxlNyz1K+PzC+fWRY3QDFAyytLfVO6s3OinwSFK3UhjzwbWS9r6zNcmYy2r1OrX8MraOEnsAGvAfWjSvWDUzumMqnBPxUVyuEBbMLvn/CHh7q5CCHWRc4GgpUTsa+BTe5GUHkpca3UvyaX2lP4RJD+BAZwBO8gUw1hDs8FXtfazpKrYRM65QxDkLuBffgCcjgUzM2URis0uNfwRi3uE5OM3MPAWvK8Uxqn1rOnz2/CpkhmJkI1V8PVFHZPpMadwall2Aup5+E4K+RMCEXEbTgRdZRmAQvwamyVdlqEQQwa+VTH1mFuYHpGgNcmZHAOH9TtOuAmKtNujWnkBj2BI3fy6ZlhQYBaa02xPDBrzTwQm3th8JQbuNC/aMRFof/V+n4sVizMTDuwcNptSo2ZOekXN8alO7tcY+AV6zbgsrHrBngF4WlMpYu0bW0AFMkJz/U1KporLYYsBV6FtVdc6LfmUuCWErvHBn+5tlUvkQ1hLGz0ne158fP4Cf1MY6YZGDeDnnGmEygGyuKurFzkARzADN4pb/eFOvUhM9VQvQrCx9LAOnwJX8IODOAxbMNvtvn1jo17I2fSYx2l2Ih0nCjr6HJiIzv+mUTdTIrcLTyBTzRFnomnpNTBnhbqC6U+b/QaZsLaTJayiRj2LezBTwD1H1wouTc3kn2rvl7pcVJa8sD8ZHPpT2P9vBVGV9oYZ2IlC93JqdrbrAkaxmr4MbBge6BNdSlGsG0Ma6UpGKp1q48tLWUfzMsz71GmWAq8xpLQpvJFjMxwlvauA1VTJYq6CY8sObkSkbm1BlaZ/dcZ47gTKIYKFXO6tS8p70FebuSusLXR9GlafPPA+F1rNxbfH0Fja0gUlCoig5iZrXG0XDmIrp8fCdiq+10FO/Oy+ieDQkadQ1wuJKhSK6US3wlTl/OdXMAx0ViF0r6uT0ZGeqag8VarZilZZE3G8lZSaCdFfSB7Q/ozUjx8J4URvuhIC5f2Opx5lbYVreAM3qs2uBOk3oqRPIdPADiE1zBXvco7KOGp3v6a7nkk1J7Cp/CZEmcfw2P4ptiAdZkzb+Uw2BRRKfpxxUx3FC7BRr87156StNQzOIM9eCx0SdaKa1GssdreJC4401JLObG5phVWe7lSD/Z11ZkvBIEJ9nbgifJ7yd4eHGATfgkHCvwO4Tt5/LfUJ3Zd2l2rW22Vcf1v9VQ6OWyuq2fiijvq1X8JDTyGPXVAmagWIeuX8Yd1JUjCTI3Z/gI+ln2kViAxsZlbSlsrBFoTO9MLfX+hYvakMb6GK9hXqBx2kOBLrU3YRsAWgpgDWNCzzBwJkflAE3xo6SnnOZnRgAhgSuN1tcFYZ2vIadLAvrkTHC707KUJQbmVe3cWK+bG8VqLvuK/8Itge2NUmjd62GBfpb2Cwmy9jUW/Udxd2jqKqLiQMdBzJxMlkAoLAmuN+UqLtNMcW5O0G6DuxLU08jkQenEvKzvSCAcxC5kxwCxsq7WgNGkrWPIzTf4LdZna0imJL+Vjv4E/6xSzSkLPwOxHI3gAfwk/g21L1P1un9/vq8R5KQKzKWaW2+lfc2mUjVAxcoNnOoViLC31Ei7hATwVeI3lk7yS+TPl6z5VP6uV9L65yG4YWQs1ZjxXW4TtviPpQgdL7OixD+HIDt6ZwF/DczV7PNKptQM54HdhQ01Z02y+0V9uAZjDqQLUpX6CzBVbCg4voYWn8EDtCQZqHdZaVUuh7bUz9/BcOdi/gk9U0hbW5JG57ccqAxsKvMa2oacZNlHLt6nI7Tu4lV7faM0stcgXJuF0Zr+qDLyCcrgbITbuTJOkMRbqGbkAI8/+tZIVC8OgMHLUBl5ZH7xKQ8AghwsxikE/VCtFdVoDozBmZMLxgK149sjaOZo3esbw0xZivMGoQyIKatfZgJdiBln/Nkp1aWssxpkIs4JyB4ur7UTX0Fw3pBk7eDnpjaEb6pt9R8lM/sD2j4EpYQPRtkhlJUg9tTOxF0puF+rL9xk8gqUOnkg+9hs52z+RM2eku8oUFT6Gfwy/gF2hfwa/mvD3EyuRulHLiCeqRYyagxt1c19awUejTvpXYklprpzrnLLH+vJkQpqJsGyp6uhTVQ/UciNdWllJp+W6UreEM51xX0nizlWsWcsKk+LGC9uiN9VK50zk7kgu2W298k7fH3eSfv1CudALof7C/E8L+TR2IFOqcB/2Ndcn1vdwIIDOzZUVIspceYdfwjN1uqiUL11T15DSmi1M5aXblPoV8v6aauWnssi8V0fZLa3nyvJji74Vc2X7Vm0+jdpSNqF+tQZeS31DhE+RxOuMIKBvCOZV2GgsdcXakDF+q+sTqKBskYULZ/z3glduqzQoSS0iPxd+LayvWuDO3IaltUqJgYTPofjXSCvf/zQWv5UaN8yCW9iED+AeS5oq9d4Xuo2ozI4iz6m830gwK7WEsR0lUq8jI2WhFOT9k5cCvHzDGGiDjIFd6gSJeOnr8Fi9INbgZzqI9TX8AWp4pJrCDfhM208kXyL3ewB/Cf8IHplE+sdyofdwrDsdKHa+kUmsU8eLCwl/N/Ke5xLpYsqnMvIP8GcRjxYu4TtrPDTR9rQvx3qpqfpBUswFDKTPZErHNfAS/m/wBj6BE3mp9tXq6xfqo/NaTe8z6dETeCbLxZmIbKZc4pfKZL7T2bdXNone25baqIn1WFF0IZV/XQz2AezI5BKLe6DJMrfeP5leRfSVSBXiT1T6tDQ3zcBUHUeFoRhLbrwlEfFjeCMHxpGAPDLDlX1JNFDA1nFoYt6EojXRNjcf/Uo0NTS9odZKaabNTGBwP9EXf3IBW6UtHu0YnUWbdzRYNIat0YzQFQOD46kDfuLvlfUl6Yy01CZeRahZGJHORZ9CSyy1lzbWHG2i8rFNyGFDPQHCIO955kgdd9bubSH6N7znOy3twRtb5UGVOzPQFjY+sRGFFlDY5hMTwFNNhb2yUE8WOnC6EY+dwHPl6ubqvF7b2/ygli67sKN+Xm9VNzPR7a1pSmzDCL6RwZNNaNXEvtZsi2YKUWC/JkmstVZ/uXKjjWqaJwpR3kCnku7EFKcCoLHm047MWWiUzxWvr5RpjD034exr+H/Aa3imU4yQILQFT1RFeQhv1M11oQKAp3Ai59qFOq9+BxV8Bh/DJbxWiuJW28pUDHgTxhL5wtZ7K/DaEHhV8AgO4IPFJF7u5Ish13Rf6ElrVVQea0J0/ZKTTtmk8BMVtv5jbg0lNpwou3timSu0X0cCamzRRWckZGXgNbFAYmCTO5MId6sF3Frsh2k8bnhAMHofvErDuJGd4700HxlmfI28aN1PTgZ41WZW8sXc6DYioRLMqjEgWBnUBj8Ji1Zli3mo+odI+TbityOlqWvY0ppsLWIPJSnusLTAr9Q8qZS1xnx5IS62CuFiYN3zHAstDFwew4dJprDan9bAK0LHgfHhTAHILXwFX0msmam11bbUok4ZuKFW39fSLB7LPvlBva+2bXps6UKbUMK30MF1o1s81CsZKMW/YctsAptmbblRp53cOn8fA7ANW/AGjrQ/pJDvUP6HqbV72oZn6n4wlNJeaHcC1i3zk1DyO/i/wz+HBwKvTH19hkqzdCY2DuVD6OCBuo01mqPfQaOGiTvwQmXsM73+tMauJYSuhIaJfJ1b26IdofNKiv2VOoOFzFDIPLe0jT233GCtdo37tj3WagA70voMNWIoGJ0quoiFPZDR+Qz2dejnWCepoIWKgVes1aXJM420mVY3kJllEWMNKwXbYyNZmdCh7GtOlV5TZqYI+nUtlXamsYFXo5q3AK/c4C+k40y41hm+1H3NrLX1XOuRF/p8ZUpVUIzM/lLoGyrrGjXSDBkamiyFayNteJm2w1uLTn1IKxsZNPEyOyMEAy93j2Viamh6LC1dsrKpGH8iboxHy82ZF3OgtCApmFqptN1C7vSvlMxPovIDubILMehOKbC0nGuYw2O11zuSNjSWjzq2n0ShTuHPiegUm/Kj1uYhWldS7kTG8FAGcqumLK3p3a1Vtc3hveUARjoC8UaFiLc6LnIbPoEDa4f8Qd1cO4XMBzqT7Ezmhg5ewtfwjWyiF9CpcqdTgvbESi6Bp/AUzuA7ZWrTJnVjfRprNeEqrR9wNJh4ohV/oIB5JYb2cx2cea0hOlHd40gp3pDUV2JNEb8ttTehQqFO6nNjjxZV2Gu2RLaF2eE8QPNurFqtSJakJMpAyYDW9tZagVNsozNrbh8avQcYAa6dkjdLCxHDhhaBSkRBjYkwbhnpDOE6RSxDa7HunoyQgGoDvGAsgV6tMY34TGNejbo/FBFwhnsg61PcWPp+n6Hjd3qcwJhSl2gkJdUa1UJexdYa4YSCF4mBSAm0GpMwrNXWfK3Wq0caZsT2QWuD4HUiJiPd29AKmye27XiiJRwqYdLP5ZE8hQ/wJ/g1/AG+gTdwDAtlxW4UmESdbcornMEH2NNBsqcK+jZ0DnRt0/ISXsK3KUp6xNvPYWI1Kckmt1Aj42tdsjUL70qh1ETb8Uz7RfqnI/1krsXWyikx18o8hg14ISNluuiJ5Mg0snuwB7tQ6XjKHajhW/gKvoYL9XFuYVsxcSFp6sQC/c/hU7iUhbXS67lRhcBU8W2nxrVpVq2JxjwWa9oXdiwUN/4CPhIpTfzqBN7Iy7pucWNuMzIY1FLNeDLLQS2MG2zpTN51GXmGQsZt/d/CnDgjpd1beK+APCVRnmjNLPTlofe0ffCaixWE0OVid2lwmWlzWhgYjYSqIRPH/t6YHSKzMQnu5KAwkLHke8Gr0Xq+A14BLqFRBcfoTB/HhD0MpgtD57jtvA/EnVG7xkYp7GMRUTt4jexIj0wvohWlwfaJ1twdQaqXNnoorgnwygQ3rpXmRjgjwYCVH8QmMbacZyEozPvgVei3RlbyegEn8E7g9Tv4Gl6rPjkJWiuh+Uz9osbyVF7Kwnqj+pwWNmFPEUEt+/4FfCfw+mbKtw/0ALHbTCWdndoZXu5rWWpZRmL3RjeXkpaH8j1e2yq60X5+A2fwFkY6A3sbtqBSWeBcFdJPVVXQiEalROXX8Gf4SifFXcqJu6bX3Gn5BRHfhAdwBt+qlU7adS/EegZqBZn1OySmmboLz/X6D/T9S5UKfKl/vRT2XeiMkKF6AoQ0HeA1Vrg1F+rlff9hbJUPNEQbSigl2WCq0QuHquesplDDW+jU8ueBDMMhTXd9pXqpm7m2LT0S95kt5oHpMZEWWZqHe6RYt+z318NISvCaWP9hcw3WORIRCJeYC8itAQd9T3zbl7gcvFpjXivD6NCQQg2KmCrIS24KU0S88c0Rbjm1aa3X+1B7fGP56sYUTZfxgjZGCm5lCYVOkyeqcIJ0Lw2PSnui8Dx03wdeIz3dVI92n3kVZsodyYV5Keb1R/gV/A6+hUM1Y5jK2ZnuM9kBVpZZTZ72B3CldnxRDJkLrBdq9fwV/B4O4V3Zaf21EvXTRl8KilYyf431NXHNc/UXTbv5lcajlaKV0phTNWW9hGPhzcwO4nsudWtNm8WWvmQMH+m8mxtI1ZgrAftT2BDRvIBfw5GaiJ2J81xra/gKtuGV9Z2NOXIOf1As1+kM10LR95YqmNYkAK4JiRON3oX/E6yre8dYHePn5n6MtFin3Gkh18K1Oew2ZJT7Rsb5DM5gBAem5xa6pZGdguRex0ITdg+m8AoWsAdP7HRHl9Rr0YO5NMzauFarpBniD2gil1KHKn0g0v8ri7o93AoQCkTJjIkF2ei0W3YW3GJJ0c50sEj3RWja2u96erM1phdZzaXhX5C3Tv83cDTyDSHZJxP1pfSRRjbLQjnbMBmUsvtMtXe1CopyDenKqE6lbPmOJl6IsQO7h0CsUDs7q1MJKoXtPLk9LBaxZ6YiDu7lPLo+hQsI77TTnsoE3upAbKQuPYMHmrQXiomew5Y1NC3skIJz9alJ5XvHgp0Q3FJYdN2qo0GtDa5V06q5Znkr225jhfortW/YU5e1U5OhWwld72AIX8IUjlWDM1NNUCZX57oiDfRqG4XFL5QteAgHqi36Gl7BI2FiwuSvYQnP1DZjDfbhnRbnO/g9vJe1I3J9HVzCn7ViCwVpE3W4mMg+OhAgbmj40nvdh3+qAzYeCJrfy+kaXCL2+kzAtw4FXEjo2oBNRdffKD7M4BjWVW4ahvKl8jlT49bYoyUIO4Dv4DtYwa7A69raSWUan8Y8XyEiRyxa6ybHyvGsdIlGILIQ7gQaehAY1KWzKLS7B16VVmNnrV9imWESTmdxlINXdu+iwWficqEbxWQOuSusAvFbdZ8oxm+VSi1ey7QTSl5p1aqlPjnX2RCtwUfQs0a2vjC7zbQ1TkUmgtwGIofQFd4oTO+Y9m84ot/23usIylqbGye2qMB633gC19IIHKs8prKaoKSqfAYH0uGudULhY3lFTvTiLrU13qibZrJCHFr/usLa2dx0cp82Rha3hX8z+SLWFUqthHG12M0+PIVGXCOUm1INMICfiyKd6DmTgHwNtxLtx5aaC7P+FnysNXwBD2AflvCVwGtL+9612sDsqMHGml52go/vYArfqZUlxsIX2i5CrdmCkUqIxuIjK73OoZS2UqaRvxDubAr3z6yEaKF9o9DMSACXyNStiNguHEjkfKv0xCbcwDZ8rBggbLRLHeI5tcrS0JYzMa+JbHaJeQ3NAhHTtxLzWnwf84qUXWsOp8ZQA+EIFqivDLWDCmW2bu8wr4gJq740GAsm9vzcVl0EYHfA6876bCwvGoGQM6/aYtdAbU9ndP2vDQGs1tvsLG4cSLsNfhrMayzAam3QUmw569tKE3ht9ZlXZdwziGTEgZ3mRqsjWH0yFP3Ry/oPFRnUYIKZSQOtbRu5HejWye9xph6LXb+aENhRFWBKhB5J5Vq3RnOlwKEVuRnrbNgzyOE1/Fc96VWS/bNNBXi1FTisS5JeaZwGosIrm7ydFvqG1ncmtD8zd8xUzu5KnrTQWEZWvJcCjO/gRKM1VIeLkQ70fghrqgc/hwMRiTMZzUoTFhptCq1Mm7uaaDfWcjikyU3FbJ0chpXmzkKPcy0sTyFWpuLrnwHwVsmDpdoIpUvvWUqwE6cdyJg/052PhHYrhR8TuXyTfJnZDKrs4PGhYKCxBRqr9oP0t5TSyS1MCmTyUsbKEmitFkRjG9/AahdjajdWSZhJRVnTa40FFPfp0Bh20+BgIQ9ijRgaW7LhlVuZ+avTBC4Nw2oDXWxkMgVpLiLdcUXcN0nE/3VMnZv/Mzd5amU0ppa6NbRioq4fwDdma2isfnWqTy6N3EYGMuhlpcGsxWHG1rqmu3f/8SV3+FthFTpe6BSvLLfK1cQeL1UGPLOEYabX91ACbIqoz3Uk40RFfx081KK7kdazDttKBUXUmilgmcHhQ04fWQIngfOa3ALLvqW41moMt3HUB85lxRorFmo0OaYK8BbyXoYyWygzOxKveCcBvRFzeCCTblKcJ6pgPxevuNVJI5WMGet6nTO12R/Dx6o5XAgvYjqmLT5pfhfCzTSnt3XniXddKZdQWy/gLfgSOgOvlW1DpfrJD4yWLEQsUTp3YO3QI1YfK6mwoeLvCIo8HTLomzM9rd/BoWSDAK+FWSA6KfWVkGtpsW5j4NXZqittq3MQzAxoRmLskW+8I195eu0OeMUCRjtcZ3ypFd26D15FH7w6CxHDNuPg5WGhKzoBXo4OsYCdhHS2qQ+MO4VCXd4Dr9KsiKv+IMdA1frODQOvuZ4lMMi1usB9T3WMTMDLbNgRTw7wGkrryu3s7oHgKVTbXFvXwMDrQn1ebs0EnkloeKoOoym4O9VBOyP94lBtGisVDNcq30PezEyYkIThGbye8n5drDrGdENRX8T64ZFb9qfsWG6ea9UPJbfklYx5uRpIbomPzIz7FNJ+kpI0hDeK65Lk+Fh9a45hBg9kaQjwmqqp16kdjD62CT3TYtiRgD/XJPBNNZjXlZ4rbdoberoUBM7lU5+Z2zCBFxK6Yi+qNXQbdogNmoXJAVZoKAaqeAxsnZiLbkeaZwRUiVSWcmL4corMXifr74mBV2FuoQCvMKh4dXKIunfSgw5ehUFS3d+rh+YSKW2faIxDYSpUZlAS7KAwmS32/9Z2vko7hIPXwMhRbT/HuFtu4FUZf+wMFzyReAfdYpNAm4FzUvpNLRy8IpIsBEkBXpHzbwRepfawO8wrULhVPNyZZzW92bFimoFhbrhT0LoYWKXBQGM1snWBRfUBXqM+eF3Ks30r9StcviVs6ZsTsBzDhYwQF3ADE/PwXAv7JhK9ZnYnKLabwe3/FwsFvlZ2WigjAAAAAElFTkSuQmCC", - "text/plain": [ - "500×2424 Array{RGB{Float64},2} with eltype RGB{Float64}:\n", - " RGB{Float64}(0.32549,0.0,0.0) … RGB{Float64}(0.0,0.0,0.439216) \n", - " RGB{Float64}(0.32549,0.0,0.0) RGB{Float64}(0.0,0.0,0.431373) \n", - " RGB{Float64}(0.32549,0.0,0.0) RGB{Float64}(0.0,0.0,0.407843) \n", - " RGB{Float64}(0.32549,0.0,0.0) RGB{Float64}(0.0,0.0,0.380392) \n", - " RGB{Float64}(0.321569,0.0,0.0) RGB{Float64}(0.0,0.0,0.372549) \n", - " RGB{Float64}(0.317647,0.0,0.0) … RGB{Float64}(0.0,0.0,0.368627) \n", - " RGB{Float64}(0.317647,0.0,0.0) RGB{Float64}(0.0,0.0,0.364706) \n", - " RGB{Float64}(0.313725,0.0,0.0) RGB{Float64}(0.0,0.0,0.352941) \n", - " RGB{Float64}(0.305882,0.0,0.0) RGB{Float64}(0.0,0.0,0.34902) \n", - " RGB{Float64}(0.309804,0.0,0.0) RGB{Float64}(0.0,0.0,0.34902) \n", - " RGB{Float64}(0.305882,0.0,0.0) … RGB{Float64}(0.0,0.0,0.341176) \n", - " RGB{Float64}(0.294118,0.0,0.0) RGB{Float64}(0.0,0.0,0.345098) \n", - " RGB{Float64}(0.290196,0.0,0.0) RGB{Float64}(0.0,0.0,0.341176) \n", - " ⋮ ⋱ \n", - " RGB{Float64}(0.341176,0.0,0.0) RGB{Float64}(0.0,0.0,0.52549) \n", - " RGB{Float64}(0.380392,0.0,0.0) RGB{Float64}(0.0,0.0,0.576471) \n", - " RGB{Float64}(0.376471,0.0,0.0) … RGB{Float64}(0.0,0.0,0.639216) \n", - " RGB{Float64}(0.309804,0.0,0.0) RGB{Float64}(0.0,0.0,0.682353) \n", - " RGB{Float64}(0.239216,0.0,0.0) RGB{Float64}(0.0,0.0,0.619608) \n", - " RGB{Float64}(0.203922,0.0,0.0) RGB{Float64}(0.0,0.0,0.52549) \n", - " RGB{Float64}(0.203922,0.0,0.0) RGB{Float64}(0.0,0.0,0.486275) \n", - " RGB{Float64}(0.2,0.0,0.0) … RGB{Float64}(0.0,0.0,0.423529) \n", - " RGB{Float64}(0.203922,0.0,0.0) RGB{Float64}(0.0,0.0,0.309804) \n", - " RGB{Float64}(0.192157,0.0,0.0) RGB{Float64}(0.0,0.0,0.215686) \n", - " RGB{Float64}(0.207843,0.0,0.0) RGB{Float64}(0.0,0.0,0.141176) \n", - " RGB{Float64}(0.219608,0.0,0.0) RGB{Float64}(0.0,0.0,0.0941176)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[ colorview(RGB, channels.*[1; 0; 0]) colorview(RGB, channels.*[0; 1; 0]) colorview(RGB, channels.*[0; 0; 1])]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "rank_approx (generic function with 1 method)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function rank_approx(M, k)\n", - " U, s, V = svd(M) \n", - " M = U[:, 1:k] * Diagonal(s[1:k]) * V[:, 1:k]' \n", - " M = min.(max.(M, 0.0), 1.) # Clip to between 0 and 1\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "
\n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/06c67466ebc6c52906ffd4101b7c74a47f9567bc-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/46b0ee2b2af2730ca29ddb46f091ac108fb8f609-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/63f4fb78e773366e830d0bd6c506aa4a3029ec24-all.js"},{"name":null,"type":"css","url":"/assetserver/2688af002d8e483e474e173968db64620d5bd6e5-style.css"},{"name":null,"type":"css","url":"/assetserver/d01c1b618f18db50d636c8fcbefd3efbb1a88b70-main.css"}],"type":"async_block"},"id":"knockout-component-d65ddd8b-5ae2-495a-9537-f829e191a6b9","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":50}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-d65ddd8b-5ae2-495a-9537-f829e191a6b9","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-d65ddd8b-5ae2-495a-9537-f829e191a6b9","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":50}}},"children":[{"props":{"attributes":{"class":"interact-flex-row"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"class":"interact-flex-row-left"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["k"]}]},{"props":{"attributes":{"class":"interact-flex-row-center"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":100,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"class":"interact-flex-row-right"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-40c2cb59-95a1-418f-bc0d-45da0735dac4","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_05","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:k=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "50), Observable{Int64} with 2 listeners. Value:\n", - "50, Scope(\"knockout-component-d65ddd8b-5ae2-495a-9537-f829e191a6b9\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"k\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-left\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-center\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-right\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/alanedelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/alanedelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/alanedelman/.julia/packages/InteractBase/3SqBl/src/../assets/all.js\", \"/Users/alanedelman/.julia/packages/InteractBase/3SqBl/src/../assets/style.css\", \"/Users/alanedelman/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d65ddd8b-5ae2-495a-9537-f829e191a6b9\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d65ddd8b-5ae2-495a-9537-f829e191a6b9\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#15{##dom#13#14{Dict{Any,Any},DOM}},typeof(scope)}(#dom#15{##dom#13#14{Dict{Any,Any},DOM}}(##dom#13#14{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "RGB{Float64}[RGB{Float64}(0.324764,0.415925,0.473902) RGB{Float64}(0.323821,0.415886,0.481073) … RGB{Float64}(0.399511,0.408479,0.370906) RGB{Float64}(0.397459,0.403587,0.362438); RGB{Float64}(0.324718,0.415596,0.474635) RGB{Float64}(0.323369,0.414742,0.480996) … RGB{Float64}(0.395126,0.405195,0.369165) RGB{Float64}(0.392757,0.400489,0.361166); … ; RGB{Float64}(0.209029,0.365625,0.176092) RGB{Float64}(0.245495,0.406784,0.199389) … RGB{Float64}(0.278383,0.353357,0.106186) RGB{Float64}(0.282926,0.357528,0.111013); RGB{Float64}(0.192811,0.34915,0.176563) RGB{Float64}(0.224535,0.386803,0.190822) … RGB{Float64}(0.30757,0.367191,0.0887044) RGB{Float64}(0.299367,0.359893,0.0823656)], nothing, getfield(Main, Symbol(\"##4#6\")){Observable{Any}}(Observable{Any} with 0 listeners. Value:\n", - "RGB{Float64}[RGB{Float64}(0.324764,0.415925,0.473902) RGB{Float64}(0.323821,0.415886,0.481073) … RGB{Float64}(0.399511,0.408479,0.370906) RGB{Float64}(0.397459,0.403587,0.362438); RGB{Float64}(0.324718,0.415596,0.474635) RGB{Float64}(0.323369,0.414742,0.480996) … RGB{Float64}(0.395126,0.405195,0.369165) RGB{Float64}(0.392757,0.400489,0.361166); … ; RGB{Float64}(0.209029,0.365625,0.176092) RGB{Float64}(0.245495,0.406784,0.199389) … RGB{Float64}(0.278383,0.353357,0.106186) RGB{Float64}(0.282926,0.357528,0.111013); RGB{Float64}(0.192811,0.34915,0.176563) RGB{Float64}(0.224535,0.386803,0.190822) … RGB{Float64}(0.30757,0.367191,0.0887044) RGB{Float64}(0.299367,0.359893,0.0823656)]))" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 100\n", - "@manipulate for k in 1:n\n", - " colorview( RGB, \n", - " rank_approx(channels[1,:,:], k),\n", - " rank_approx(channels[2,:,:], k),\n", - " rank_approx(channels[3,:,:], k)\n", - " )\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "n = 100\n", - "@manipulate for r in 1:n, g in 1:n, b in 1:n\n", - " colorview( RGB, \n", - " rank_approx(channels[1,:,:], r),\n", - " rank_approx(channels[2,:,:], g),\n", - " rank_approx(channels[3,:,:], b)\n", - " )\n", - "end" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Handwriting classification using SVD Julia 1.0.ipynb b/Handwriting classification using SVD Julia 1.0.ipynb deleted file mode 100644 index 3b47bdcf..00000000 --- a/Handwriting classification using SVD Julia 1.0.ipynb +++ /dev/null @@ -1,8091 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Classifying handwritten digits using the SVD" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data from the MNIST data set" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "#using Pkg\n", - "#Pkg.add(\"Flux\")" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "┌ Info: Precompiling Flux [587475ba-b771-5e3f-ad9e-33799f191a9c]\n", - "└ @ Base loading.jl:1186\n" - ] - } - ], - "source": [ - "using Flux\n", - "using Flux.Data.MNIST" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "labels = MNIST.labels();\n", - "images = MNIST.images(); " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "#using Pkg\n", - "#Pkg.add(\"ImageShow\")\n", - "\n", - "using ImageShow" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see what the images look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[32m\u001b[1m Resolving\u001b[22m\u001b[39m package versions...\n", - "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/.julia/environments/v1.1/Project.toml`\n", - " \u001b[90m [6218d12a]\u001b[39m\u001b[92m + ImageMagick v0.7.1\u001b[39m\n", - "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/.julia/environments/v1.1/Manifest.toml`\n", - " \u001b[90m [6218d12a]\u001b[39m\u001b[92m + ImageMagick v0.7.1\u001b[39m\n" - ] - } - ], - "source": [ - "#using Pkg\n", - "Pkg.add(\"ImageMagick\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "┌ Info: Precompiling ImageMagick [6218d12a-5da1-5696-b52f-db25d2ecc6d1]\n", - "└ @ Base loading.jl:1186\n" - ] - }, - { - "data": { - "text/html": [ - "
(a vector displayed as a row to save space)
" - ], - "text/plain": [ - "5-element Array{Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2},1}:\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "images[1:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
" - ], - "text/plain": [ - "5×5 Array{Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2},2}:\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)] … [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)] [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)] [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)] [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)] [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "reshape(images[1:25], 5, 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "┌ Info: Precompiling Interact [c601a237-2ae4-5e1e-952c-7a85b0c7eef1]\n", - "└ @ Base loading.jl:1186\n" - ] - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#using Pkg\n", - "#Pkg.add(\"Interact\")\n", - "using Interact" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAABwCAAAAADji6uXAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAAmJLR0QA/4ePzL8AAAIKSURBVGje7dpPiI1RGMfxzyAL8qfZmFISi1EiFigpSZJiMbGhbLBDVjZ2FqSwQBazUhayxYryd6FuTf5syN6fHYM0yGDxvJPr3tu9c2eKc0/nW29v5z3ve3/93qdz3uc551IoFAqFQqHQ+/R1+8BMLKhrH8EcDOIwzmEvvuIMTjY8P+NfO8xfcFanG5ZgNjZiExZid4v7XuMihvAZz/EwBYf5C7Ydh2tx19/jrhU/cQBfqvZbfMCrFBzmL9g2hv2oYVmLvhpGsQXfdY7zf3OYv2DbufQ9jmMnnoq5Ep5hmxh3K3EsZYf5C04qp5kvvnHDOIj9uNYrDvMX7JjTwKfq/LE6H8J18R1M3mH+gl3VFnNxC5uxA3d6wWH+gl3Xh8vxROQz9zGCy/iVqsP8BbuOIVEDXsG8qn0CV/EuRYf5C04phrAK57G1ag/jFN6k5jB/wSnHkFiz2SXGZB/uiZojKYf5C04rhhN8EwnuD2zHg5Qc5i84qdqiFauxB+vqfuQFHqXmMH/BrmM4iKMirxmouz4ucppONWP+rzTduXQA+8T+0tKGvhGRz9xM0WH+gh1juEisiV7Cioa+Gs7ihsmv2eT/StOJYb+oF9Zo3rd4LOqK2xhL3WH+gk0x3CD2KtZjcUPfGC7gtD97hck7zF+wKacZqo4JXoo10nHxP4vRXnOYv2ChUCgUps9vDE1MYMzifHwAAAAASUVORK5CYII=", - "text/plain": [ - "28×28 Array{Gray{N0f8},2} with eltype ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}}:\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " ⋮ ⋱ \n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)\n", - " Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0) Gray{N0f8}(0.0)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "images[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "
\n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/4f5c1634faf237ad7a9f8ea6d275f809c91000d6-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/4feec0dc2e08565ac31f1c11df3cc48f30337352-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/417fa829744823c102273c60aff4dd5577de7f2a-all.js"},{"name":null,"type":"css","url":"/assetserver/9c8fe19f738e0641d25797435b02fbf52847b7a8-style.css"},{"name":null,"type":"css","url":"/assetserver/0fb7497542ccb42e56acea24b198cb11def7d50a-main.css"}],"type":"async_block"},"id":"knockout-component-3eb8811b-75d4-4c9e-a002-445ceb208401","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":30000}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-3eb8811b-75d4-4c9e-a002-445ceb208401","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-3eb8811b-75d4-4c9e-a002-445ceb208401","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":30000}}},"children":[{"props":{"attributes":{"class":"interact-flex-row"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"class":"interact-flex-row-left"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["i"]}]},{"props":{"attributes":{"class":"interact-flex-row-center"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":60000,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"class":"interact-flex-row-right"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-130495c9-a9e0-43d1-93ef-bc5d02efb56e","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_05","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;1.0em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;label: 1&quot;]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;1.0em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;label: 1&quot;]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:i=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "30000), Observable{Int64} with 2 listeners. Value:\n", - "30000, Scope(\"knockout-component-3eb8811b-75d4-4c9e-a002-445ceb208401\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"i\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-left\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>60000,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-center\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-right\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "30000, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/all.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/style.css\", \"/Users/edelman/.julia/packages/InteractBulma/PH56C/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":30000}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-3eb8811b-75d4-4c9e-a002-445ceb208401\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-3eb8811b-75d4-4c9e-a002-445ceb208401\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##56#57{#dom#15{##dom#13#14{Dict{Any,Any},DOM}},typeof(scope)}(#dom#15{##dom#13#14{Dict{Any,Any},DOM}}(##dom#13#14{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\"), 0), Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>1.0em)), 0), \"label: 1\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 3), nothing, getfield(InteractBase, Symbol(\"##142#143\"))())" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for i in eachindex(images)\n", - " hbox(images[i], hskip(1em), string(\"label: \", labels[i]))\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## An image is just data" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "" - ], - "text/plain": [ - "28-element Array{Gray{N0f8},1} with eltype ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}}:\n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.2) \n", - " Gray{N0f8}(0.933)\n", - " Gray{N0f8}(0.992)\n", - " ⋮ \n", - " Gray{N0f8}(0.992)\n", - " Gray{N0f8}(0.894)\n", - " Gray{N0f8}(0.184)\n", - " Gray{N0f8}(0.31) \n", - " Gray{N0f8}(1.0) \n", - " Gray{N0f8}(0.659)\n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) \n", - " Gray{N0f8}(0.0) " - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = vec(images[2][10, :])" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "b = round.(Int, 256*images[2][10, i].val for i in 1:28);" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Gray{N0f8}(0.0)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "
\n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/4f5c1634faf237ad7a9f8ea6d275f809c91000d6-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/4feec0dc2e08565ac31f1c11df3cc48f30337352-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/417fa829744823c102273c60aff4dd5577de7f2a-all.js"},{"name":null,"type":"css","url":"/assetserver/9c8fe19f738e0641d25797435b02fbf52847b7a8-style.css"},{"name":null,"type":"css","url":"/assetserver/0fb7497542ccb42e56acea24b198cb11def7d50a-main.css"}],"type":"async_block"},"id":"knockout-component-3684aba8-2898-4570-b66b-b74ef0723c1a","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":14}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-3684aba8-2898-4570-b66b-b74ef0723c1a","id":"ob_07","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-3684aba8-2898-4570-b66b-b74ef0723c1a","id":"ob_06","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_07","value":0},"value":{"sync":true,"id":"ob_06","value":14}}},"children":[{"props":{"attributes":{"class":"interact-flex-row"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"class":"interact-flex-row-left"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["j"]}]},{"props":{"attributes":{"class":"interact-flex-row-center"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":28,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"class":"interact-flex-row-right"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-63b06a10-a1e7-4d4a-af90-54bdc45b0780","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_10","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#393939\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 57 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 253 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 253 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#3F3F3F\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 63 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FDFDFD\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 254 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 253 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#C3C3C3\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 196 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]}]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#393939\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 57 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 253 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 253 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#3F3F3F\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 63 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FDFDFD\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 254 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 253 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#C3C3C3\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 196 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot; 0 &quot;]}]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:j=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "14), Observable{Int64} with 2 listeners. Value:\n", - "14, Scope(\"knockout-component-3684aba8-2898-4570-b66b-b74ef0723c1a\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"j\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-left\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>28,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-center\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-right\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "14, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/all.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/style.css\", \"/Users/edelman/.julia/packages/InteractBulma/PH56C/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":14}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-3684aba8-2898-4570-b66b-b74ef0723c1a\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-3684aba8-2898-4570-b66b-b74ef0723c1a\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##56#57{#dom#15{##dom#13#14{Dict{Any,Any},DOM}},typeof(scope)}(#dom#15{##dom#13#14{Dict{Any,Any},DOM}}(##dom#13#14{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 57 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 253 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 253 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2) … Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 254 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 253 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 196 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \" 0 \"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 84), nothing, getfield(InteractBase, Symbol(\"##142#143\"))())" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for j in 1:28\n", - " a = vec(images[2][j, :])\n", - " b = round.(Int, 256*images[2][j, i].val for i in 1:28);\n", - " hbox([vbox(a[i], string(\" \", b[i], \" \" )) for i in 1:28])\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "
\n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/4f5c1634faf237ad7a9f8ea6d275f809c91000d6-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/4feec0dc2e08565ac31f1c11df3cc48f30337352-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/417fa829744823c102273c60aff4dd5577de7f2a-all.js"},{"name":null,"type":"css","url":"/assetserver/9c8fe19f738e0641d25797435b02fbf52847b7a8-style.css"},{"name":null,"type":"css","url":"/assetserver/0fb7497542ccb42e56acea24b198cb11def7d50a-main.css"}],"type":"async_block"},"id":"knockout-component-55630ee4-4138-4910-8fe7-36d753d2b255","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":14}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-55630ee4-4138-4910-8fe7-36d753d2b255","id":"ob_12","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-55630ee4-4138-4910-8fe7-36d753d2b255","id":"ob_11","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_12","value":0},"value":{"sync":true,"id":"ob_11","value":14}}},"children":[{"props":{"attributes":{"class":"interact-flex-row"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"class":"interact-flex-row-left"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["j"]}]},{"props":{"attributes":{"class":"interact-flex-row-center"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":28,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"class":"interact-flex-row-right"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-106317a7-ecee-4cb6-b737-b0821b4fca38","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_15","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#393939\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;57&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#3F3F3F\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;63&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FDFDFD\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;254&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#C3C3C3\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;196&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#393939\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;57&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#3F3F3F\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;63&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FDFDFD\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;254&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#C3C3C3\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;196&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:j=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "14), Observable{Int64} with 2 listeners. Value:\n", - "14, Scope(\"knockout-component-55630ee4-4138-4910-8fe7-36d753d2b255\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"j\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-left\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>28,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-center\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-right\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "14, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/all.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/style.css\", \"/Users/edelman/.julia/packages/InteractBulma/PH56C/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":14}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-55630ee4-4138-4910-8fe7-36d753d2b255\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-55630ee4-4138-4910-8fe7-36d753d2b255\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##56#57{#dom#15{##dom#13#14{Dict{Any,Any},DOM}},typeof(scope)}(#dom#15{##dom#13#14{Dict{Any,Any},DOM}}(##dom#13#14{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"57\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"253\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"253\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2) … Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"254\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"253\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"196\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 84), nothing, getfield(InteractBase, Symbol(\"##142#143\"))())" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for j in 1:28\n", - " a = vec(images[2][j, :])\n", - " b = round.(Int, 256*images[2][j, i].val for i in 1:28);\n", - " \n", - " hbox([vbox(a[i], string(b[i])) for i in 1:28])\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "
\n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/4f5c1634faf237ad7a9f8ea6d275f809c91000d6-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/4feec0dc2e08565ac31f1c11df3cc48f30337352-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/417fa829744823c102273c60aff4dd5577de7f2a-all.js"},{"name":null,"type":"css","url":"/assetserver/9c8fe19f738e0641d25797435b02fbf52847b7a8-style.css"},{"name":null,"type":"css","url":"/assetserver/0fb7497542ccb42e56acea24b198cb11def7d50a-main.css"}],"type":"async_block"},"id":"knockout-component-bb3940e4-e744-44bd-802e-a68c025a87fe","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":378}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-bb3940e4-e744-44bd-802e-a68c025a87fe","id":"ob_17","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-bb3940e4-e744-44bd-802e-a68c025a87fe","id":"ob_16","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_17","value":0},"value":{"sync":true,"id":"ob_16","value":378}}},"children":[{"props":{"attributes":{"class":"interact-flex-row"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"class":"interact-flex-row-left"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["start"]}]},{"props":{"attributes":{"class":"interact-flex-row-center"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":756,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"class":"interact-flex-row-right"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-4b7aa4b5-86ef-4798-9b6a-b612d478b58a","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_20","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#B2B2B2\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;179&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#E9E9E9\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;234&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#252525\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;37&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#303030\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;48&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#E3E3E3\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;228&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#BEBEBE\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;191&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#0C0C0C\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;12&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]}]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;class&quot;:&quot;interact-flex-row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#B2B2B2\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;179&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#E9E9E9\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;234&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#252525\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;37&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#303030\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;48&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#E3E3E3\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;228&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#FCFCFC\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;253&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#BEBEBE\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;191&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#0C0C0C\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;12&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;?xml version=\\\\&quot;1.0\\\\&quot; encoding=\\\\&quot;UTF-8\\\\&quot;?&gt;\\\\n&lt;!DOCTYPE svg PUBLIC \\\\&quot;-//W3C//DTD SVG 1.1//EN\\\\&quot;\\\\n \\\\&quot;http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\\\\&quot;&gt;\\\\n&lt;svg xmlns=\\\\&quot;http://www.w3.org/2000/svg\\\\&quot; version=\\\\&quot;1.1\\\\&quot;\\\\n width=\\\\&quot;25mm\\\\&quot; height=\\\\&quot;25mm\\\\&quot; viewBox=\\\\&quot;0 0 1 1\\\\&quot;&gt;\\\\n &lt;rect width=\\\\&quot;1\\\\&quot; height=\\\\&quot;1\\\\&quot;\\\\n fill=\\\\&quot;#000000\\\\&quot; stroke=\\\\&quot;none\\\\&quot;/&gt;\\\\n&lt;/svg&gt;\\\\n&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;height&quot;:&quot;0.0px&quot;,&quot;width&quot;:&quot;0.5em&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},&quot;0&quot;]}]}]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:start=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "378), Observable{Int64} with 2 listeners. Value:\n", - "378, Scope(\"knockout-component-bb3940e4-e744-44bd-802e-a68c025a87fe\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"start\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-left\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>756,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-center\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row-right\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"class\"=>\"interact-flex-row\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "378, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/edelman/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/all.js\", \"/Users/edelman/.julia/packages/InteractBase/PTCUD/src/../assets/style.css\", \"/Users/edelman/.julia/packages/InteractBulma/PH56C/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":378}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bb3940e4-e744-44bd-802e-a68c025a87fe\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bb3940e4-e744-44bd-802e-a68c025a87fe\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##56#57{#dom#15{##dom#13#14{Dict{Any,Any},DOM}},typeof(scope)}(#dom#15{##dom#13#14{Dict{Any,Any},DOM}}(##dom#13#14{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"179\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"253\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"234\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4) … Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"48\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"228\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"253\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"253\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"191\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"12\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:setInnerHtml=>\"\\n\\n\\n \\n\\n\"), 0), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[], Dict{Symbol,Any}(:style=>Dict{String,Measures.Length{U,Float64} where U}(\"height\"=>0.0px,\"width\"=>0.5em)), 0), \"0\"], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 2)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\")), 4)], Dict{Symbol,Any}(:style=>Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\")), 140), nothing, getfield(InteractBase, Symbol(\"##142#143\"))())" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for start in 1:28^2 - 28\n", - " a = vec(images[2][start:start+27])\n", - " b = round.(Int, 256*images[2][i].val for i in start:start+27);\n", - " \n", - " hbox([vbox(a[i], hbox(hskip(0.5em), string(b[i]))) for i in 1:28])\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Collect all the data into a matrix" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's collect all the data into a matrix. We take 50000 images as our training set:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "training_size = 50000\n", - "\n", - "training_images = images[1:training_size]\n", - "training_labels = labels[1:training_size];" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
(a vector displayed as a row to save space)
" - ], - "text/plain": [ - "100-element Array{Array{ColorTypes.Gray{FixedPointNumbers.Normed{UInt8,8}},2},1}:\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " ⋮ \n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]\n", - " [Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); … ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0) … Gray{N0f8}(0.0) Gray{N0f8}(0.0)]" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "images_0 = training_images[training_labels .== 0];\n", - "images_0[1:100]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4932" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "length(images_0)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "vectorize (generic function with 1 method)" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function vectorize(image) \n", - " return round.(Int, 256*image[i].val for i in eachindex(image))\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 76, 85, 85, 85, 86, 85, 85, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 57, 199, 247, 253, 253, 253, 254, 253, 253, 200, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38, 179, 253, 254, 253, 231, 224, 146, 226, 250, 253, 253, 129, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 166, 253, 253, 191, 112, 25, 0, 0, 0, 147, 253, 253, 253, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 51, 239, 254, 241, 63, 0, 0, 0, 0, 0, 0, 48, 230, 254, 254, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 164, 239, 253, 234, 71, 0, 0, 0, 0, 0, 0, 0, 29, 216, 253, 253, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 253, 254, 253, 209, 19, 0, 0, 0, 0, 0, 0, 0, 85, 253, 253, 142, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 225, 253, 254, 180, 84, 28, 0, 0, 0, 0, 0, 0, 0, 179, 253, 234, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 228, 253, 253, 191, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 226, 253, 146, 0, 0, 0, 0, 0, 0, 0, 0, 0, 51, 239, 254, 254, 254, 114, 75, 0, 0, 0, 0, 0, 0, 0, 0, 114, 254, 197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 160, 253, 253, 253, 253, 254, 121, 0, 0, 0, 0, 0, 0, 0, 48, 239, 224, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 254, 253, 240, 203, 253, 229, 21, 0, 0, 0, 0, 0, 0, 7, 166, 254, 168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 160, 253, 234, 84, 96, 47, 0, 0, 0, 0, 0, 0, 7, 132, 253, 163, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 238, 253, 253, 190, 79, 0, 0, 0, 0, 0, 0, 136, 253, 174, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 57, 254, 254, 256, 254, 254, 254, 254, 256, 254, 254, 226, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 122, 168, 169, 244, 253, 253, 253, 254, 253, 187, 71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 166, 196, 196, 197, 149, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]" - ] - } - ], - "source": [ - "show(vectorize(images[2]))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "reduce(hcat, vec.(training_images));" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "big_image_matrix = reduce(hcat, vectorize.(training_images));" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(784, 50000)" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "size(big_image_matrix)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "784×50000 Array{Int64,2}:\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ \n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "big_image_matrix" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Array{Int64,2},1}:\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]\n", - " [0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0]" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "single_digits = [ big_image_matrix[:, training_labels .== i] for i in 0:9 ]" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "Z = svd.(single_digits);" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Array{Float64,2},1}:\n", - " [1.11022e-16 5.55112e-17 … -0.233222 -0.655022; 0.0 1.66533e-16 … -0.445464 -0.144503; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [3.33067e-16 4.44089e-16 … 0.0380739 0.512677; 0.0 -1.11022e-16 … 0.18879 0.536151; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [2.22045e-16 -5.55112e-17 … 0.231308 -0.368113; 0.0 -2.77556e-17 … -0.051365 -0.2811; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [0.0 5.55112e-17 … 0.311321 0.206791; 0.0 -1.11022e-16 … -0.0529915 -0.451834; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [3.33067e-16 -5.55112e-17 … -0.370282 -0.220779; 0.0 -2.08167e-16 … -0.309858 -0.237422; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0]\n", - " [0.0 7.28584e-17 … -0.139411 0.0608648; 0.0 1.73472e-18 … 0.0828636 0.0340397; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [1.11022e-16 3.81639e-17 … -0.434975 0.0250785; 0.0 -1.249e-16 … 0.4825 0.548757; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [-2.22045e-16 5.55112e-17 … -0.0744694 -0.238641; 0.0 3.33067e-16 … 0.0592084 -0.390074; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0]\n", - " [2.22045e-16 1.11022e-16 … -0.86131 0.235693; 0.0 -2.22045e-16 … 0.0460829 -0.662753; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] \n", - " [0.0 1.11022e-16 … 0.0229923 0.00104442; 0.0 8.32667e-17 … 0.0563082 -0.33593; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0] " - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Us = first.(Z)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Array{Float64,1},1}:\n", - " [1.53412e5, 53182.6, 43389.3, 33227.4, 26282.7, 23954.3, 22724.6, 21385.5, 19505.4, 19000.8 … 1.32435e-11, 1.32435e-11, 1.32435e-11, 1.32435e-11, 1.32435e-11, 1.32435e-11, 1.32435e-11, 1.32435e-11, 7.04459e-12, 2.49672e-12]\n", - " [1.06664e5, 54157.8, 33575.9, 21277.0, 18580.6, 15995.6, 14640.0, 13384.0, 12947.8, 10979.1 … 8.3438e-12, 8.3438e-12, 8.3438e-12, 8.3438e-12, 8.3438e-12, 8.3438e-12, 8.3438e-12, 8.3438e-12, 3.85173e-12, 1.7106e-12] \n", - " [1.31347e5, 44030.7, 35462.6, 28960.6, 28889.2, 26230.1, 24075.9, 22452.5, 20703.0, 20124.7 … 9.76209e-12, 9.76209e-12, 9.76209e-12, 9.76209e-12, 9.76209e-12, 9.76209e-12, 9.66035e-12, 5.92533e-12, 3.13578e-12, 1.38419e-12]\n", - " [1.33337e5, 43260.5, 36740.9, 29920.8, 27714.7, 23127.7, 21122.8, 20459.5, 19744.1, 18667.3 … 1.11891e-11, 1.11891e-11, 1.11891e-11, 1.11891e-11, 1.11891e-11, 1.11891e-11, 1.11891e-11, 1.11891e-11, 4.3851e-12, 1.73169e-12] \n", - " [1.16251e5, 39430.8, 34972.0, 28818.6, 26966.4, 24743.8, 22357.4, 20874.3, 19456.6, 18867.9 … 9.28584e-12, 9.28584e-12, 9.28584e-12, 9.28584e-12, 9.28584e-12, 9.28584e-12, 9.28584e-12, 9.28584e-12, 3.54498e-12, 2.94411e-12]\n", - " [1.09935e5, 47245.7, 33365.0, 29996.8, 23398.4, 22533.7, 20762.5, 19659.2, 18312.0, 17421.9 … 8.05678e-12, 8.05678e-12, 8.05678e-12, 8.05678e-12, 8.05678e-12, 8.05678e-12, 8.05678e-12, 8.05678e-12, 2.87865e-12, 2.72112e-12]\n", - " [1.30523e5, 49155.5, 33968.8, 28947.7, 26356.0, 24549.5, 22622.3, 20124.0, 19172.0, 17120.8 … 1.07069e-11, 1.07069e-11, 1.07069e-11, 1.07069e-11, 1.07069e-11, 1.07069e-11, 1.07069e-11, 1.07069e-11, 4.46057e-12, 1.72071e-12]\n", - " [1.19848e5, 45344.8, 36722.0, 29270.8, 25923.4, 22670.3, 21548.4, 19619.5, 18057.8, 16275.3 … 9.86333e-12, 9.86333e-12, 9.86333e-12, 9.86333e-12, 9.86333e-12, 9.86333e-12, 9.86333e-12, 9.06467e-12, 2.57059e-12, 1.97535e-12]\n", - " [1.3593e5, 42678.0, 31637.3, 28768.3, 25071.4, 21638.8, 20911.9, 19428.7, 19143.0, 17882.3 … 1.07409e-11, 1.07409e-11, 1.07409e-11, 1.07409e-11, 1.07409e-11, 1.07409e-11, 1.07409e-11, 1.07409e-11, 8.94543e-12, 1.8975e-12] \n", - " [1.22081e5, 45226.2, 35161.2, 28038.5, 24084.4, 22370.9, 21704.8, 20706.0, 17612.6, 16788.4 … 9.76473e-12, 9.76473e-12, 9.76473e-12, 9.76473e-12, 9.76473e-12, 9.76473e-12, 9.76473e-12, 9.76473e-12, 3.75813e-12, 2.18742e-12]" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Σs = (x->x.S).(Z)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "784-element Array{Float64,1}:\n", - " 153412.34325748606 \n", - " 53182.57522622032 \n", - " 43389.29407762682 \n", - " 33227.355280849304 \n", - " 26282.747653212456 \n", - " 23954.273626346796 \n", - " 22724.608705719555 \n", - " 21385.478004500383 \n", - " 19505.379697273984 \n", - " 19000.76178667435 \n", - " 17999.110034019035 \n", - " 16639.474979844537 \n", - " 16365.94766476833 \n", - " ⋮ \n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 1.3243514938512722e-11\n", - " 7.044586863316572e-12 \n", - " 2.496718909340919e-12 " - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Σ = first(Σs)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "using Plots" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "0\n", - "\n", - "\n", - "200\n", - "\n", - "\n", - "400\n", - "\n", - "\n", - "600\n", - "\n", - "\n", - "800\n", - "\n", - "\n", - "-10\n", - "\n", - "\n", - "-5\n", - "\n", - "\n", - "0\n", - "\n", - "\n", - "5\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "y1\n", - "\n", - "\n" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(log10.(Σ), m=:o, ms=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "using Statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "ename": "DimensionMismatch", - "evalue": "DimensionMismatch(\"dimensions must match\")", - "output_type": "error", - "traceback": [ - "DimensionMismatch(\"dimensions must match\")", - "", - "Stacktrace:", - " [1] promote_shape at ./indices.jl:154 [inlined]", - " [2] promote_shape at ./indices.jl:145 [inlined]", - " [3] +(::Array{Float64,2}, ::Array{Float64,2}) at ./arraymath.jl:45", - " [4] add_sum at ./reduce.jl:21 [inlined]", - " [5] _mapreduce(::getfield(Statistics, Symbol(\"##2#3\")), ::typeof(Base.add_sum), ::IndexLinear, ::Array{Array{Int64,2},1}) at ./reduce.jl:313", - " [6] _mapreduce_dim at ./reducedim.jl:308 [inlined]", - " [7] #mapreduce#548 at ./reducedim.jl:304 [inlined]", - " [8] mapreduce at ./reducedim.jl:304 [inlined]", - " [9] _sum at ./reducedim.jl:653 [inlined]", - " [10] #sum#551 at ./reducedim.jl:649 [inlined]", - " [11] sum at ./reducedim.jl:649 [inlined]", - " [12] _reducedim_init(::getfield(Statistics, Symbol(\"##2#3\")), ::typeof(+), ::typeof(zero), ::typeof(sum), ::Array{Array{Int64,2},1}, ::Int64) at ./reducedim.jl:121", - " [13] reducedim_init at ./reducedim.jl:109 [inlined]", - " [14] _mean at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Statistics/src/Statistics.jl:134 [inlined]", - " [15] #mean#1 at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Statistics/src/Statistics.jl:132 [inlined]", - " [16] (::getfield(Statistics, Symbol(\"#kw##mean\")))(::NamedTuple{(:dims,),Tuple{Int64}}, ::typeof(mean), ::Array{Array{Int64,2},1}) at ./none:0", - " [17] top-level scope at In[56]:1" - ] - } - ], - "source": [ - "Gray.(reshape(mean(single_digital, dims=2), 28, 28))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "S" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "U[:, 1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "norm(U[:, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "show(U[:, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "image = abs.(log10.(abs.(reshape(normalize(U[:, 1]), 28, 28))))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "image[image .== Inf] .= 0.0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@manipulate for θ in 0.0:0.01:1.0 \n", - " image = abs.(U[:, 1]) .> θ\n", - " Gray.(reshape(image, 28, 28))\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "image = abs.(U[:, 1])\n", - "m = maximum(image)\n", - "image = image ./ m" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Us" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Us[1][:,1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "function normalize_image(image)\n", - " image2 = abs.(image)\n", - " m = maximum(image2)\n", - " image2 = image2 ./ m\n", - " return Gray.(reshape(image2, 28, 28))\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@manipulate for digit in 0:9, which_sing_vec in 1:10\n", - "\n", - " image = Us[digit+1][:,which_sing_vec] \n", - " \n", - " normalize_image(image)\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "normalize_image(mean(single_digits[1], dims=2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Comparing digit predictions with labels\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "image = images[training_size + 1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "M = [U[:,1:3] for U in Us] # first n sing vecs for each digit" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "first_sing_vecs = reduce(hcat, [U[:,1] for U in Us])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_softmax(v) = exp.(v) / sum(exp.(v))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "v = abs.(first_sing_vecs' * vec(Float64.(image)))\n", - "\n", - "my_softmax(v)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "M = [U[:, 1:1] for U in Us] # first n sing vecs for each digit\n", - "\n", - "my_softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "M = [U[:, 1:2] for U in Us] # first n sing vecs for each digit\n", - "\n", - "my_softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "M = [U[:, 1:3] for U in Us] # first n sing vecs for each digit\n", - "\n", - "my_softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "M = [U[:, 1:10] for U in Us] # first n sing vecs for each digit\n", - "\n", - "my_softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@manipulate for num_sing_vecs in 1:784\n", - "\n", - " M = [U[:, 1:num_sing_vecs] for U in Us] # first n sing vecs for each digit\n", - "\n", - " v = my_softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))\n", - " \n", - " hbox(v, plot(0:9, v, m=:o), findmax(v))\n", - " \n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data = []\n", - "\n", - "for num_sing_vecs in 1:15\n", - "\n", - " M = [U[:, 1:num_sing_vecs] for U in Us] # first n sing vecs for each digit\n", - "\n", - " v = my_softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))\n", - " \n", - " push!(data, v[4])\n", - "end\n", - "\n", - "plot(data, m=:o)\n", - "scatter!([argmax(data)], [maximum(data)])\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "argmax(data)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "softmax(norm.([MM' * vec(Float64.(image)) for MM in M]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "vec(images[1])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2016-10-19T19:51:59.773188", - "start_time": "2016-10-19T23:51:55.527Z" - } - }, - "outputs": [], - "source": [ - "# classify all images:\n", - "k = 1\n", - "predictions = classify_image(tst, trn, k)\n", - "\n", - "fig1 = figure(figsize=(2,2))\n", - "\n", - "set_cmap(\"gray_r\")\n", - "\n", - "#im1 = matshow(vec2mat(tst[:,1]), fignum=0)\n", - "im1 = matshow(reshape(tst[:,1], 16, 16)', fignum=0)\n", - "\n", - "axis(\"off\") \n", - "ttl = text(0,-1,\"Predicted: \",size=16)\n", - "\n", - "n, T = size(tst)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "length(predictions)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "length(incorrect) / length(predictions)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "incorrect = find(predictions .!= labels);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2016-10-19T19:52:03.112435", - "start_time": "2016-10-19T23:52:00.697Z" - } - }, - "outputs": [], - "source": [ - "@manipulate for j in 1:length(incorrect)\n", - " i = incorrect[j] #1:T\n", - " \n", - " withfig(fig1) do\n", - " \n", - " test_image = tst[:,i]\n", - " correct_label = labels[i]\n", - " which_digit = predictions[i]\n", - " \n", - " im1[:set_data](vec2mat(tst[:,i]))\n", - " ttl[:set_text](\"Labeled: $which_digit Actual: $correct_label\")\n", - " ttl[:set_color](which_digit == correct_label ? \"black\" : \"red\")\n", - " \n", - " fig1[:canvas][:draw]()\n", - " \n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interactive Eigenimages\n", - "\n", - "We know SVD can do better than mean-based classification, but why? What insight do we gain by taking the SVD over a set of images instead of just using average images?\n", - "\n", - "Run the following cell to generate an interactive figure. The top row of plots shows the first three left singular vectors for a particular digit: $U[:,1]$, $U[:,2]$, and $U[:,3]$. The bottom plot shows the linear combination $ a_1 U[:,1] + a_2 U[:,2] + a_3 U[:,3].$ Think of $U[:,1]$ as the \"base image\" and $U[:,2]$ & $U[:,3]$ as the two most common deviations from the base image. By adding and subtracting $U[:,2]$ and $U[:,3]$ through the coefficients $a_2$ and $a_3$, we are modifying the base image by adding and subtracting pixels.\n", - "\n", - "Set \"Digit\" to 0 and play with the sliders. What does this tell you about the way people write \"0\"?\n", - "\n", - "*Note: you can drag a slider or use the arrow keys to change its value.*" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2016-10-19T19:52:09.362232", - "start_time": "2016-10-19T23:52:06.461Z" - } - }, - "outputs": [], - "source": [ - "# specify interaction behavior\n", - "n,T = size(tst)\n", - "ncomps = 3\n", - "Uvecs = zeros(n,10,ncomps)\n", - "for i in 1:10\n", - " U,S,V = svd(trn[:,:,i])\n", - " Uvecs[:,i,:] = U[:,1:3]\n", - "end\n", - " \n", - "fig2 = figure(figsize=(8,8))\n", - "set_cmap(\"bwr\")\n", - "ax21 = subplot2grid((3,2), (0,0), colspan=2)\n", - "ax21[:axis](\"off\")\n", - "ax21[:text](6,-1,\"u1\",size=16)\n", - "ax21[:text](27,-1,\"u2\",size=16)\n", - "ax21[:text](49,-1,\"u3\",size=16)\n", - "\n", - "ax22 = subplot2grid((3,2), (1,0), colspan=2, rowspan=2)\n", - "ax22[:axis](\"off\")\n", - "lincomblabel = ax22[:text](2,17,\"a1*u1 + a2*u2 + a3*u3\",size=16)\n", - "\n", - "# initialize plot with digit \"0\"\n", - "v1,v2,v3 = [vec2mat(Uvecs[:,1,i]) for i in 1:3]\n", - "ws = zeros(16,5)\n", - "im21 = ax21[:matshow]([v1 ws v2 ws v3],vmin=-0.5,vmax=0.5)\n", - "\n", - "lc = vec2mat(linear_combo(1.0, 0.0, 0.0, 0, trn))\n", - "im22 = ax22[:matshow](lc,vmin=-0.5,vmax=0.5)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2016-10-19T19:52:26.377800", - "start_time": "2016-10-19T23:52:25.575Z" - } - }, - "outputs": [], - "source": [ - "@manipulate for\n", - " a1=slider(0.1:0.1:1.0, value=1.0, label=\"a1\"),\n", - " a2=slider(-0.5:0.1:0.5, value=0.0, label=\"a2\"),\n", - " a3=slider(-0.5:0.1:0.5, value=0.0, label=\"a3\"),\n", - " d=dropdown(0:9, value=0, label=\"Digit:\");\n", - " withfig(fig2) do\n", - " v1, v2, v3 = [vec2mat(Uvecs[:,d+1,i]) for i in 1:3]\n", - " im21[:set_data]([v1 ws v2 ws v3])\n", - " v = vec2mat(linear_combo(a1,a2,a3,d,trn))\n", - " im22[:set_data](v)\n", - " lincomblabel[:set_text](\"$a1*u1 + $a2*u2 + $a3*u3\")\n", - " fig2[:canvas][:draw]()\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot first three vectors for each digit\n", - "\n", - "Run the following cell to see the first three left singular vectors for all ten digits.\n", - "\n", - "Now save the figure, [print it][1], and hang it in your room. (optional)\n", - "\n", - "[1]: http://www.itcs.umich.edu/sites/printing/poster.php" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2016-10-19T19:41:24.382888", - "start_time": "2016-10-19T23:41:21.497Z" - } - }, - "outputs": [], - "source": [ - "fig3 = figure(figsize=(17,4))\n", - "set_cmap(\"bwr\")\n", - "n = 4\n", - "for i in 1:n\n", - " for j in 1:10\n", - " ax3 = fig3[:add_subplot](n,10,(i-1)*10 + j)\n", - " v = Uvecs[:,j,i]\n", - " ax3[:matshow](vec2mat(v))\n", - " ax3[:axis](\"off\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Singular value \"knee\"\n", - "\n", - "In class we plotted $P_{correct}$ versus $k$ and found that $P_{correct}$ was highest around $k=11$. Why did accuracy decrease when we moved away from this value? In general, prediction accuracy is highest when we capture the most signal and the least noise, and we can use singular value magnitudes to distinguish the two.\n", - "\n", - "Run the cell below to plot singular value magnitudes for the training set of a particular digit. Use the top slider to vary the digit. Use the bottom slider to set a cutoff value for $k$ and compute the fraction \n", - "\n", - "$$\\frac{\\text{sum}(S[1:k])}{\\text{sum}(S)}.$$\n", - "\n", - "A couple things to think about:\n", - "\n", - "* How many points \"break away\" from the smooth (lower-right) portion of the plot?\n", - "* What fraction of the typical 16x16 image of a digit is signal?\n", - "* Why is there such a dramatic separation between $S[1]$ and $S[2]$ for the digit \"1\"?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2016-10-19T19:52:37.156460", - "start_time": "2016-10-19T23:52:35.684Z" - } - }, - "outputs": [], - "source": [ - "fig4 = figure(figsize=(8,8))\n", - "ax4 = fig4[:add_subplot](1,1,1)\n", - "ax4[:set_xlabel](\"index\")\n", - "ax4[:set_ylabel](\"singular value magnitude\")\n", - "ax4[:axis]([-2,258,0,250])\n", - "\n", - "U,S,V = svd(trn[:,:,1])\n", - "line, = ax4[:plot]([10.5,10.5],[0,250])\n", - "pts, = ax4[:plot](S,lw=0,marker=\"o\",c=\"k\",markersize=4)\n", - "\n", - "ttl41 = ax4[:text](100,255,\"Digit: \",size=16)\n", - "ttl42 = ax4[:text](50,230,\"sum(S + MIT 18.06, Spring 2025
+ Linear Algebra + -This is a repository for the course [18.06: Linear Algebra](http://web.mit.edu/18.06) at MIT in Fall 2018. +Welcome to MIT 18.06: Linear Algebra! The Spring 2025 course information, materials, and links are recorded below. Course materials for previous semesters are archived in the [other branches](https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-branches-in-your-repository/viewing-branches-in-your-repository) of this repository. You can dive in right away by reading this [introduction](https://github.com/mitmath/1806/blob/master/notes/Introduction%20to%20Linear%20Algebra%206th%20edition%20and%20A%20%3D%20CR_04.pdf) to the course by Professor Strang. -See [the syllabus and lecture summaries](summaries.md) for the main course pages. +Catalog Description: *Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, singular value decomposition, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses linear algebra software. Compared with 18.700, more emphasis on matrix algorithms and many applications.* + +**Instructor**: [Prof. Nike Sun](https://math.mit.edu/~nsun/) + +**Textbook**: [Introduction to Linear Algebra: 6th Edition](http://eduapps.mit.edu/textbook/books.html?Term=2023SP&Subject=18.06). + +**Detailed lecture notes are posted on Canvas (accessible only to registered students).** + +## Lecture Material and Summaries + +### Lecture 1 (Mon Feb 3 2025) + +* Vectors in $\mathbb{R}^2$, and generalization to vectors in $\mathbb{R}^N$ (N-dimensional space). +* Vector operations: addition and scalar multiplication. Both operations together: linear combinations. +* The span of a set of vectors $\lbrace u_1,\ldots,u_k\rbrace$ is the set of all linear combinations of these vectors: we covered some examples in class. +* Definition of matrix times vector: $Ax$ where $A$ is an $M \times N$ matrix, and $x$ is in $\mathbb{R}^N$. + +**Reading:** Strang Chapter 1. + +### Lecture 2 (Wed Feb 5 2025) +* Dot product, vector length, cosine formula. +* The gaussian elimination algorithm for solving a system of linear equations Ax=b: reduce the matrix to row echelon form (REF), and do back-substitution. Worked through an example in class. +* Definition of matrix times matrix: $AB=X$ where $A$ is $M \times N$, $B$ is $N \times P$, $X$ is $M \times P$.* We explained how to view the gaussian elimination operations as matrix multiplication operations: the steps of gaussian elimination correspond to changing $Ax=b$ to $(G1)Ax=(G1)b$, $(G2)(G1)Ax=(G2)(G1)b$, etc. + +**Reading:** Strang 2.1-2.2. + +### Lecture 3 (Fri Feb 7 2025) +* Reviewed the gaussian elimination example using matrix multiplications to encode the operations. +* Gauss-Jordan elimination has a few additional steps which brings the system to reduced row echelon form (RREF) — we did this in the same example, again using matrix multiplications. +* In the example, the final RREF system was $(G5)(G4)(G3)(G2)(G1)Ax=(G5)(G4)(G3)(G2)(G1)b=c$. Moreover we found $(G5)(G4)(G3)(G2)(G1)A = I_3$, the $3 \times 3$ identity matrix. In this example it allowed us to read off $x = c$. +* We reviewed basic rules of matrix multiplication: associative $A(BC)=(AB)C$, distributive $A(B+C)=AB+AC$, but **not commutative**: $AB$ and $BA$ are generally not equal! +* Inversion: if $A$ is an $n \times n$ matrix, it is invertible if there exists a matrix $A^{-1}$, also $n \times n$, such that $AA^{-1} = A^{-1}A = I_n$, the $n \times n$ identity matrix. +* If $A$ is invertible, then Gauss-Jordan elimination converts $(A|b)$ to $(I|c)$. Moreover it converts $(A|I)$ to $(I|A^{-1})$. +* Square matrices need not be invertible, and we covered some examples. + +**Reading:** Strang 2.3. + +### Lecture 4 (Mon Feb 10 2025) +* The columns of $A$ are linearly dependent if a non-trivial linear combination of the columns is zero: can write this as $Ax=0$ for $x$ nonzero. If $A$ is a square matrix with linearly dependent columns, then $A$ cannot be invertible. We covered some examples. +* We defined the column space $C(A)$ of a matrix. An $m \times n$ matrix $A$ can be viewed as a function/map from $\mathbb{R}^n$ to $\mathbb{R}^m$, sending input $x$ in $\mathbb{R}^n$ to output $Ax$ in $\mathbb{R}^m$. The column space $C(A)$ is exactly the image of this map. The equation $Ax=b$ is solvable if and only if $b$ lies in $C(A)$. +* We defined general vector spaces and subspaces, and covered some examples. + +**Reading:** Strang 3.1. + +### Lecture 5 (Wed Feb 12 2025) +* Defined the null space $N(A)$ as the set of vectors $x$ such that $Ax=0$. +* Note that if $A$ is $m \times n$, then $C(A)$ is a subspace of $\mathbb{R}^n$, while $N(A)$ is a subspace of $\mathbb{R}^m$. +* Invertible row operations (such as in Gauss-Jordan elimination) do not affect the null space, so if $R$ is the RREF of $A$, then $N(A) = N(R)$. +* We covered several examples of calculating $N(A)$. We also noted that in all our examples, dim C(A) + dim N(A) = n. + +**Reading:** Strang 3.2. + +### Lecture 6 (Fri Feb 14 2025) +* In this class we covered the general solution for a system of linear equations Ax=b. +* The basic principle: if $b$ is not in $C(A)$, then there is no solution. If $b$ is in $C(A)$, then there must exist at least one "particular solution," call it $x_0$. Then the set of all solutions to $Ax=b$ is the set of vectors $x_0 + x'$, where $x_0$ is the particular solution, and $x'$ is any vector from the null space $N(A)$. +* General recipe for solving: + * given $(A|b)$, apply Gauss-Jordan elimination to transform to RREF system $(R|c)$. + * If the RREF system contains a row that says 0 = nonzero, then we have a contradiction, and in this case $b$ is not in $C(A)$ and there is no solution. + * Otherwise, set the free variables to zero to find a particular solution $x_0$. + * Separately, solve for the null space $N(A)$. + * Then the set of all solutions to $Ax=b$ is the set of vectors $x_0 + x'$, where $x_0$ is the particular solution, and $x'$ is any vector from $N(A)$. + +**Reading:** Strang 3.3. + +### Lecture 7 (Mon Feb 18 2025) +* Throughout this class, we let $v^1, \ldots, v^n$ be list of n vectors, each in the space $\mathbb{R}^m$. Let $A$ be the $m \times n$ matrix with columns $v^1, \ldots, v^n$. + * The vectors $\lbrace v^1, ..., v^n\rbrace$ are **linearly dependent** if a non-trivial linear combination of them equals zero: this corresponds to $N(A)$ being strictly larger than $\lbrace 0\rbrace$. Otherwise, we say they are **linearly independent**: this corresponds to $N(A) = \lbrace 0\rbrace$. + * A **basis** for a vector space $V$ is a list of vectors that span $V$, and are linearly independent. We covered the standard basis $\lbrace e^1, ..., e^n\rbrace$ for the space $\mathbb{R}^n$. + * Let $V = \text{span} \lbrace v^1, ..., v^n\rbrace$. Then $V$ is the same as $C(A)$. If $\lbrace v^1, ..., v^n\rbrace$ are linearly independent, then they form a basis for $V$. +* More generally, perform Gauss-Jordan elimination, and let $R = GA$ be the RREF of $A$. Then $C(R) = G C(A)$. + * The pivot columns of $R$ form a basis for $C(R)$, and the corresponding columns of $A$ form a basis for $C(A)$. + * Note that rank(A) = # pivots in R = dim C(R) = dim C(A). Meanwhile # free variables in R = dim N(A). + * There are n columns total, and each column must be pivot or free, so n = # pivot + # free = dim C(A) + dim N(A): this is the **rank-nullity theorem**. +* Lastly, we reviewed that if $A$ is an $m \times n$ matrix, then we view it as a map from $\mathbb{R}^n$ to $\mathbb{R}^m$, sending $x$ in $\mathbb{R}^n$ to $Ax$ in $\mathbb{R}^m$. + +**Reading:** Strang 3.4. + +**Note:** You should be able to do all of exam 1 using only the information covered in Lectures 1–6, together with the homework, recitations, and reading assigned before exam 1. However, since all the topics of the class are closely connected, material from Lecture 7 might also be helpful to know for the exam, and you are free to use that material on the exam as well. All exams in this class are closed book, closed notes. + +------------------------------------------------------ + +### Exam 1 (Wed Feb 19 2025) + +------------------------------------------------------ + +### Lecture 8 (Fri Feb 21 2025) + +* We started the lecture with the definition of the **matrix transpose** $A^t$. + * Note in general $(A^t)^t=A$, and $(AB)^t = B^t A^t$. + * If $A=A^t$, then we say that $A$ is **symmetric**. Only square matrices can be symmetric. +* We covered the **four fundamental subspaces of a matrix**, and how to calculate them. Throughout, let A be an $m \times n$ matrix, and let $R = GA$ be the RREF. Thus $G$ is an invertible $m \times m$ matrix that encodes the Gauss-Jordan row operations. + * Column space $C(A) = G^{-1} C(R)$. This is a subspace of $\mathbb{R}^m$. + * Null space $N(A) = N(R)$. This is a subspace of $\mathbb{R}^n$. + * Row space $C(A^t) = C(\mathbb{R}^t)$. This is a subspace of $\mathbb{R}^n$. + * Left null space $N(A^t) = G^t N(\mathbb{R}^t)$. This is a subspace of $\mathbb{R}^m$. + +Formal reasoning for the above claims: + +1. Column space: $C(A) = {Ax : x \in \mathbb{R}^n}$ and $C(R) = {GAx : x \in \mathbb{R}^n}$. Thus $b' \in C(R) \Leftrightarrow b' = GAx \text{ for some } x \Leftrightarrow G^{-1}b' = Ax \text{ for some } x \Leftrightarrow G^{-1}b' \in C(A)$. This proves $C(A) = G^{-1} C(R)$. +2. Null space: $N(A) = \lbrace x : Ax = 0\rbrace$ and $N(R) = \lbrace x : GAx = 0\rbrace$. Since $G$ invertible, $Ax = 0 \Leftrightarrow GAx = 0$. This proves $N(A) = N(R)$. +3. Row space: recall $\mathbb{R}^t = (GA)^t = A^t G^t$. $C(A^t) = \lbrace A^t x : x \in \mathbb{R}^m\rbrace$ and $C(\mathbb{R}^t) = \lbrace A^t G^t x : x \in \mathbb{R}^m\rbrace$. Since $G$ is invertible, $G^t$ is also invertible. As $x$ ranges over all of $\mathbb{R}^m$, $G^t x$ also ranges over all of $\mathbb{R}^m$. Therefore $C(A^t) = C(\mathbb{R}^t)$. +4. Left null space: (***There was a typo on the blackboard, so please read this one carefully.***) $N(A^t) = \lbrace x : A^t x = 0\rbrace$ and $N(\mathbb{R}^t) = \lbrace x : A^t G^t x = 0\rbrace$. Therefore $x \in N(\mathbb{R}^t) \Leftrightarrow A^t G^t x = 0 \Leftrightarrow G^t x \in N(A^t)$. This proves $N(A^t) = G^t N(\mathbb{R}^t)$. + +In class, we calculated the four fundamental subspaces on a small example. We verified that the column space and left null space are orthogonal subspaces of $\mathbb{R}^m$, while the row space and null space are orthogonal subspace of $\mathbb{R}^n$. + +**Reading:** Strang 3.5. + +### Lecture 9 (Mon Feb 24 2025) +* In this class we reviewed the four fundamental subspaces of an $m \times n$ matrix $A$. +* We went over an example of how to calculate the four subspaces of $A$, using the RREF $R = GA$. +* Dimensions: both column space and row space have dimension r = rank(A). The null space has dimension $n - r$, while the left null space has dimension $m - r$. +* We covered the fact that in $\mathbb{R}^n$, the row space and null space are orthogonal complements of one another. In $\mathbb{R}^m$, the column space and left null space are orthogonal complements of one another. + +**Reading:** Strang 4.1. + +### Lecture 10 (Wed Feb 26 2025) + +* We covered what it means for two subspaces of $\mathbb{R}^n$ to be: + * complementary + * orthogonal + * orthogonal complements. +* In particular: + * If $V$ and $W$ are complementary subspaces of $\mathbb{R}^n$, then any $x \in \mathbb{R}^n$ can be uniquely written as $x = v + w$ with $v$ from $V$, $w$ from $W$. + * If $V$ and $W$ are in additional orthogonal complements, then $v$ is the orthogonal projection of $x$ onto $V$, while $w$ is the orthogonal projection of $x$ onto $W$. Denoted $v = \text{proj}_V x$ and $w = \text{proj}_W x$. +* We discussed the geometric interpretation of orthogonal projection: + * $v = \text{proj}_V x$ is the unique vector $v$ in $V$ that lies closest to $x$. + * equivalently, $v = \text{proj}_V x$ is the unique vector $v$ in $V$ such that $(x-v)$ is perpendicular to $V$. + * We used the latter characterization to calculate $\text{proj}Y x$ where $Y$ is the span of a single nonzero vector $y$ in $\mathbb{R}^n$. + +**Reading:** Strang 4.2. + +### Lecture 11 (Fri Feb 28 2025) +* We covered the general formulas for orthogonal projection. +* Projection onto a one-dimensional subspace $Y = \text{span}\lbrace y\rbrace$, where $y$ is a unit vector in $\mathbb{R}^n$: $\text{proj}Y(x) = P_Y x$ where $P_Y = yy^t$. Note that $P_Y$ is an $n \times n$ symmetric matrix. Its column space is exactly the one-dimensional space $Y$, therefore $P_Y$ has rank one. +* Projection onto a general subspace $V$ of $\mathbb{R}^n$, where $\text{dim } V = r < n$: first express $V = C(A)$ where $A is an n \times r$ matrix whose columns form a basis of $V$. We showed in class that $v = \text{proj}V(b) = P_V b$ where $P_V = A(A^t A)^{-1} A^t$. This is an $n \times n$ symmetric matrix. Its column space is exactly $V = C(A)$, therefore $P_V$ has rank $r$. + * **Claim:** If $A$ is $n \times r$ with rank $r$, then $A^t A$ is invertible. We stated this fact in class, and used it to define $P_V$. We did not yet give a justification of this fact, and will do so in a future lecture. + * Note that $v = A x$ where $x = (A^t A)^{-1} A^t b$. This achieves the minimum distance $\Vert Ax-b \Vert$, and we call this the **least squares solution**. +* Lastly we went over some examples of the projection matrix formula: + * In the one-dimensional case $Y = \text{span}\lbrace y\rbrace$ where $y$ is a unit vector, we take $A = y$ and recover the formula $P_Y = yy^t$. + * If we have an orthonormal basis $\lbrace u^1, ..., u^r\rbrace$ for $V$, then $P_V = P_1 + ... + P_r$ where $P_j = u^j(u^j)^t$ is the orthogonal projection onto $\text{span}\lbrace u^j\rbrace$. + +**Reading:** Strang 4.3. + +### Lecture 12 (Mon March 3 2025) +* As we learned previously, the equation $Ax=b$ does not have a solution if b does not lie in column space $C(A)$. In this case, one can instead ask for the least squares (LS) solution: the choice of x that minimizes +```math +\|Ax-b\|^2 = \sum_i [(Ax)_i - b_i]^2 +``` +* This means $v=Ax$ should be precisely the projection of $x$ onto $C(A)$, so from what we previously learned, we see that $v = A(A^t A)^{-1}A^t b$, and consequently $x=(A^t A)^{-1}A^t b$. +* Application: given a data set $(a_i,b_i)$ for $1\le i \le 1000$, we covered how to find: + * The straight line with no intercept that achieves the least squares fit: $b=xa$ where $x$ is the slope; + * The straight line with intercept that achieves the least squares fit: $b = x_0 + x_1 a$ where $x_0$ is the intercept and $x_1$ is the slope; + * The cubic function that achieves the least squares fit: $b = x_0 + x_1 a + x_2 a^2 + x_3 a^3$. + +**Reading:** Strang 4.3. + +### Lecture 13 (Wed March 5 2025) +* We learned the **Gram-Schmidt procedure**: given a basis $(v_1,\ldots,v_r)$ for a subspace $V$ of $\mathbb{R}^n$, it produces an orthonormal basis $(u_1,\ldots,u_r)$ of $V$. +* The Gram-Schmidt procedure can be summarized by the **QR factorization**: $A=QR$ where: + * $A$ is the $n\times r$ matrix with columns $v_1,\ldots,v_r$; + * $Q$ is the $n\times r$ matrix with columns $u_1,\ldots,u_r$; + * $R$ is the $r\times r$ matrix of the coefficients relating the $v$'s to the $u$'s. In particular, $R$ is upper triangular with non-zero diagonal entries, and can be inverted by back-substitution. + +**Reading:** Strang 4.4. + +### Lecture 14 (Fri March 7 2025) +* Let $A$ be an $r\times n$ matrix of rank $r$, with $r0$. It follows that in fact $Ax=b$ has infinitely many solutions, since $\tilde{x}+x'$ is also a solution for any $x'$ from $N(A)$. We can therefore ask, what is the minimum norm solution $x$? Any solution $x$ can be decomposed as $x^\parallel + x^\perp$ where $x^\parallel \in N(A)$ while $x^\perp\in N(A)^\perp = C(A^\top)$ (the row space of $A$). We discussed in class that the minimum norm solution to $Ax=b$ is exactly $x^\perp$. If we have a QR factorization $A^\top=QR$, then $Ax=b$ can be rearranged to give $x^\perp = QQ^\top x = Q(R^\top)^{-1}b$. +* If $A$ is an $m\times n$ matrix, then its **matrix pseudoinverse** is the $n\times m$ matrix $A^+$ which does the following: + * Given $y\in\mathbb{R}^n$, let $b$ be the orthogonal projection of $y$ onto the column space $C(A)$. + * Let $x^\perp$ be the minimum norm solution to the equation $Ax=b$. +Then $A^+$ is the $n\times m$ matrix which acts as $A^+y=x^\perp$. +* Two examples of calculating the pseudoinverse: + * If $A$ is $r\times n$ with rank $r$, then the above calculation tells us that if we have the QR factorization $A^\top=QR$, then $A^+=Q(R^\top)^{-1} = A^\top (AA^\top)^{-1}$. + * **(Corrected; this previously had a typo!)** If $A$ is $n\times r$ with rank $r$, then the pseudoinverse should first map $y$ to its orthogonal projection onto $C(A)$, that is, $b = A(A^\top A)^{-1} A^\top y$, which lies in $C(A)$. As a result $Ax=b$ has a unique solution, given by $x=(A^\top A)^{-1} A^\top y$. It follows that $A^+ = (A^\top A)^{-1} A^\top$. + +**Reading:** Strang 4.5. + +### Lecture 15 (Mon March 10 2025) +* If $A$ is an $n\times n$ square determinant, its **determinant** is the **signed** factor by which the linear transformation $A:\mathbb{R}^n\to\mathbb{R}^n$ scales $n$-dimensional volumes. +* Some key facts: + * Product formula: $\det(AB)=(\det A)(\det B)$. + * We have $\det A\neq0$ if and only if $A$ is invertible. + * The determinant of an upper triangular matrix is the product of the diagonal entries. +* We covered several cases of $2\times 2$ matrices $A$: the unit square $S$ maps to a parallelogram $AS$, and $\det A$ is (up to sign) the 2-dimensional volume (area) of $AS$. +* Two ways to calculate $\det A$ up to sign: + * Use a (generalized) QR factorization: $A=QR$ where $Q$ is an $n\times n$ orthogonal matrix, and $R$ is upper triangular (possibly with zero entries on the diagonal). Then $\det Q=\pm1$, so $\det A = \pm(\det R)$. + * Use gaussian elimination: $GA=\tilde{A}$ where $\tilde{A}$ is in row echelon form (REF), and $G$ is a product of row swap or elimination matrices. Then $\det G = \pm1$, so $\det A = \pm(\det\tilde{A})$. + +**Reading:** Strang 5.1. + +### Lecture 16 (Wed March 12 2025) +* We covered the "big formula" for the determinant of an $n\times n$ matrix, $\det A = \sum_\sigma (\textup{sgn }\sigma)\prod_{i=1}^n a_{i,\sigma(i)}$. The sum goes over all $n!$ permutations of $\{1,\ldots,n\}$, and $\textup{sgn }\sigma$ denotes the sign of the permutation $\sigma$: it is $+1$ if $\sigma$ is a composition of an even number of swaps, and $-1$ if $\sigma$ is a composition of an odd number of swaps. We explained that this formula can be derived from the multilinearity property of the determinant. +* In most cases, the more efficient way to compute $\det A$ will be by gaussian elimination: $R = G_k \cdots G_1 A$. $R$ is in REF, so it is upper triangular and its determinant is simply the product of its diagonal entries. Each $G_i$ encodes an elementary row operation: if $G_i$ encodes a row swap, it follows from the big formula that $\det G_i=-1$. Otherwise, if $G_i$ encodes an elimination operation, then $G_i$ is a lower triangular matrix with all $1$'s along the diagonal, and in this case $\det G_i=1$. It follows that $\det A=(-1)^s\det R$, where $s$ is the number of row swaps in the gaussian elimination. + +**Reading:** Strang 5.2. + +### Lecture 17 (Fri March 14 2025) +* We covered the Laplace expansion of the determinant, which can be viewed as a way to organize the "big formula" from last time. +* We considered one example of a circulant matrix; see https://en.wikipedia.org/wiki/Circulant_matrix. Following the Wikipedia notation, our example had $c_0=1$, $c_1=z$, and all other $c_j=0$. We covered how to evaluate the determinant of this matrix using the "big formula", and also using Laplace expansion along the top row. + +**Reading:** Strang 5.3. + +### Lecture 18 (Mon March 17 2025) +* In this lecture we did some review and examples in preparation for the Wednesday exam. +* If $M=I+vv^\top$, we explained how to calculate that $M^{-1} = I-(1+\|v\|^2)^{-1}vv^\top$. +* Let $I$ be the $r\times r$ identity matrix, and $v$ a vector in $\mathbb{R}^r$. We calculated the pseudoinverse of the matrix +```math +A = \begin{pmatrix} I & v \\ 0 & 0 \end{pmatrix} +``` + +------------------------------------------------------ + +### Exam 2 (Wed March 19 2025) + +------------------------------------------------------ + +### Lecture 19 (Fri March 21 2025) +* In this lecture we reviewed the Laplace expansion (also called cofactor expansion) of the determinant. +* Given an $n\times n$ matrix $A$, the $(i,j)$ **minor** is the $(n-1)\times(n-1)$ matrix $M_{i,j}$ obtained by removing the $i$-th row and $j$-th column of $A$. +* We defined the $(i,j)$ **cofactor** as $C_{i,j}=(-1)^{i+j}\det M_{i,j}$. The **cofactor matrix** is the $n\times n$ matrix $C$ with entries $C_{i,j}$. +* The **adjugate matrix** is $X=C^\top$. We derived in class that if $A$ is invertible, then $A^{-1}=(1/\det A) X$. +* We also used this to derive **Cramer's rule** for solving a linear system $Ax=b$. + +**Reading:** finish Strang Chapter 5. + +### Lecture 20 (Mon March 31 2025) +* At the start of this class, we discussed that diagonal matrices act in a simple way. +* A (square) matrix $A$ is **diagonalizable** if it can be related to a diagonal matrix via the equation $A=EDE^{-1}$ where $E$ is $n\times n$ invertible, and $D$ is $n\times n$ diagonal. +* **Caution: not all square matrices are diagonalizable!** Nevertheless, it is an important and useful concept. +* Let $E$ have columns $v^1,\ldots,v^n$, and let $D$ have diagonal entries $d_1,\ldots,d_n$. We showed that $v^j$ is an **eigenvector** of $A$ with **eigenvalue** $d_j$. +* Since $E$ is invertible (by definition), its columns form a basis of $\mathbb{R}^n$, which is called the **eigenbasis** of $A$. The action of $A$ in the eigenbasis is diagonal. +* We explained that $E$ and $E^{-1}$ may be viewed as implementing **change of basis**: $E^{-1}$ maps from standard coordinates to eigenbasis coordinates, while $E$ maps from eigenbasis coordinates to standard basis coordinates. +* We also covered some concrete examples. In future lectures we will learn how to compute matrix eigenvalues and eigenvectors. + +**Reading:** start Strang Chapter 6. + +### Lecture 21 (Wed April 2 2025) +* Let $A$ be a square $n\times n$ matrix. An **eigenvector** of $A$ is a non-zero vector $v\in\mathbb{R}^n$ such that $Av=\lambda v$ for a scalar $\lambda$ (the **eigenvalue**). We will allow $\lambda$ to be a real or complex number, so in general $\lambda\in\mathbb{C}$. +* An eigenvector with eigenvalue $\lambda=0$ is just a null vector. +* In general, for any $\lambda$, an eigenvector with eigenvalue $\lambda$ is any non-zero vector in the null space $N(A-\lambda I)$. +* It follows that the eigenvalues of $A$ are exactly the roots of $p_A(\lambda)=\det(A-\lambda I)$, the **characteristic polynomial** of $A$. +* Let $\alpha$ denote the **trace** of $A$ (sum of its diagonal entries). It follows from the determinant formula that $p_A(\lambda)$ is a polynomial in $\lambda$ of degree $n$, of the form +```math +p_A(\lambda) = (-1)^n\lambda^n +(-1)^{n-1} \alpha \lambda^{n-1} + \ldots + \det A\,. +``` +* The **fundamental theorem of algebra** tells us that $p_A(\lambda)$ has $n$ roots $\lambda_1,\ldots,\lambda_n$, and can be factorized as +```math +p_A(\lambda) = (-1)^n \prod_{j=1}^n(\lambda-\lambda_j)\,. +``` +* The eigenvalues are exactly the roots $\lambda_j$. They may be complex-valued, and it is possible to have multiple roots. +* The **algebraic multiplicity** of an eigenvalue $\lambda$ is the number of times it appears as a root in the characteristic polynomial. +* The **geometric multiplicity** of an eigenvalue $\lambda$ is the dimension of its **eigenspace**, $N(A-\lambda I)$. +* In general, $1\le \textup{geo mult} \le \textup{alg mult}$. We will discuss this further in the next lecture. + +**Reading:** Strang 6.1-6.2. + +### Lecture 22 (Fri April 4 2025) + +* Let $A$ be a square $n\times n$ matrix. We discussed last time that the characteristic polynomial $p_A(\lambda)$ is a polynomial in $\lambda$ of degree $n$. The fundamental theorem of algebra then tells us that it has $n$ roots $\lambda_1,\ldots,\lambda_n$, and these are precisely the eigenvalues of $A$. The roots may be complex-valued, and it is possible to have multiple roots. +* The **algebraic multiplicity** of an eigenvalue $\lambda$ is the number of times it appears as a root of the characteristic polynomial. +* The **geometric multiplicity** of an eigenvalue $\lambda$ is the dimension of its **eigenspace**, $N(A-\lambda I)$. +* In general, $1 \le \textup{geo mult} \le \textup{alg mult}$. +* The algebraic multiplicities sum up to the total number $n$ of roots. Eigenspaces for distinct eigenvalues are linearly independent, so the geometric multiplicities sum up to the combined dimension of all eigenspaces. The matrix $A$ is **diagonalizable** if and only if the latter sum equals $n$, which means we must have $\textup{geo mult} = \textup{alg mult}$ for all the eigenvalues. This is not guaranteed in general. +* A special case is that all $n$ roots are distinct. In this case we must have $\textup{geo mult} = \textup{alg mult} = 1$ for all eigenvalues, so the matrix $A$ in this case is always diagonalizable. If the roots are not all distinct, then $A$ may or may not be diagonalizable. +* If $A$ is not diagonalizable, then it has a Jordan canonical form (JCF), which can be viewed as a generalization of the diagonalization. (In the special case that $A$ is diagonalizable, the JCF is the same as the diagonalization.) + +**Reading:** finish reading Strang 6.1-6.2. + +### Lecture 23 (Mon April 7 2025) + +* We discussed that eigenvalues and eigenvectors can be complex-valued, even for real matrices, and covered an example. +* In general, if $A$ is a real $n\times n$ matrix, then its characteristic polynomial has real coefficients. This implies that the non-real eigenvalues of $A$ must occur in conjugate pairs. (For example, this also implies that if $A$ is $n\times n$ with $n$ odd, then $A$ must have at least one real eiganvalue). +* We covered some basic concepts of complex numbers, including conjugate and modulus. We also covered complex vectors, the conjugate transpose operation, and the norm of a complex vector. +* Lastly, we covered the **spectral theorem**, which says that is $A$ is $n\times n$ real symmetric, then it has all real eigenvalues and eigenvectors, and an orthonormal eigenbasis. We can write this as $A=EDE^\top$ where both $D$ and $E$ are real, and $E$ is an orthogonal matrix. In class we also gave a partial proof of the spectral theorem. + +**Reading:** Strang 6.3, as well as the first three pages of Strang 6.4. + +### Lecture 24 (Wed April 9 2025) + +* A symmetric matrix is **positive-definite (PD)** if all its eigenvalues are strictly positive. +* A symmetric matrix is **positive semi-definite (PSD)** if all its eigenvalues are nonnegative. +* If $A$ is symmetric, it is PD if and only if $x^\top Ax>0$ for every vector $x$. +* If $A$ is symmetric, it is PSD if and only if $x^\top Ax\ge0$ for every vector $x$. +* For any matrix $M$ ($n\times p$), both $MM^\top$ and $M^\top M$ are PSD. +* In this lecture we introduced the **singular value decomposition (SVD)**, which applies to any matrix $M$ ($n\times p$). More precisely we covered both the long SVD and the short SVD. +* In the special case that $M$ is a square matrix of full rank, the long and short SVD are identical, and we covered in class the procedure to find this SVD. + +**Reading:** Strang 7.1. + +### Lecture 25 (Fri April 11 2025) + +* We covered how to find the short and long SVD of a general matrix $M$ ($n\times p$). +* The matrix $A=M^\top M$ is PSD, so we can find its spectral decomposition $A=EDE^\top$. Moreover we can arrange that the diagonal entries of $D$ are $d_1 \ge \ldots \ge d_r > 0 = d_{r+1} = \ldots = d_p$, where $r$ is the rank of $M$ (and also the rank of $A$). +* Let $V$ be the $p\times r$ matrix formed from the first $r$ columns of $E$. +* Let $\Sigma$ be the $r\times r$ diagonal matrix with diagonal entries $\sigma_i=(d_i)^{1/2}$ for $1\le i\le r$. +* Let $U$ be the $n\times r$ matrix defined by $U=MV\Sigma^{-1}$. +* Then $M=U\Sigma V^\top$ gives the short SVD of $M$. +* To convert from short to long SVD: expand $\Sigma$ from $r\times r$ to $n\times p$ by adding zeroes; expand $U$ from $n\times r$ to $n\times n$ so that its columns form an orthonormal basis of $\mathbb{R}^n$; expand $V$ from $p\times r$ to $p\times p$ so that its columns form an orthonormal basis of $\mathbb{R}^p$. +* We also covered some examples and practice problems. + +**Reading:** finish reading Strang 7.1. + +### Lecture 26 (Wed April 16 2025) + +* In this lecture we covered geometric interpretations of the SVD. +* Throughout, suppose $M$ is $n\times p$ with rank $r$, and that we rank its singular values in nondecreasing order $\sigma_1\ge \ldots \ge \sigma_r>0$. +* The maximum singular value $\sigma_1$ is the *operator norm* or *spectral norm* of $M$, usually denoted $\|M\|_\textup{op}$ or $\|M\|$. +* The operator norm of $M$ can be understood as the maximum value of $\|Mv\|$ attained as $v$ ranges over all unit vectors in $\mathbb{R}^p$. +* The SVD can be used to calculate the pseudoinverse: if the short SVD of $M$ is given by $M=U\Sigma V^\top$, then the pseudoinverse of $M$ is $V\Sigma^{-1}U^\top$. + +**Reading:** Strang 7.2. + +### Lecture 27 (Fri April 18 2025) + +* In this lecture we covered the application of SVD to low-rank approximation and image compression. +* Suppose $M$ is $n\times p$ with short SVD $M=U\Sigma V^\top$. As always, we rank the singular values (diagonal entries of $\Sigma$) $\sigma_1\ge \ldots \ge \sigma_r>0$. +* The rank-$k$ approximation of $M$ is given by $M_k = U_k \Sigma_k (V_k)^\top$, where $U_k$ is formed from the first $k$ columns of $U$, $V_k$ is formed from the first $k$ columns of $V$, and $\Sigma_k$ is the upper left $k\times k$ submatrix of $\Sigma$. +* We discussed three matrix norms: (1) operator norm / spectral norm; (2) Frobenius norm / Hilbert--Schmidt norm, (3) nuclear norm. +* Eckhart--Young theorem: among all matrices of rank at most $k$, the best approximation to $M$ is given by $M_k$. It is best with respect to all three of the spectral norms listed above. +* Application to image compression: if $M$ represents an $n\times p$ image, the original image consists of $np$ pixels. Storing the compressed image $M_k$ requires storing $(n+p)k+k$ values. If $n,p$ are large and $k$ is relatively small, the compressed image requires much less storage. +* See https://timbaumann.info/svd-image-compression-demo/ for examples. + +**Reading:** Strang 7.2. + +### Lecture 28 (Wed April 23 2025) + +* We covered the application of SVD to PCA (principal components analysis). +* Let $X$ be an $n\times p$ data matrix where $n$ is the number of individuals or samples, and $p$ is the number of attributes or features. +* We assume the data is normalized, so that each column (feature) has mean zero and standard deviation one. +* 2D PCA: choose the 2D projection of the data that shows the most variability. +* We learned in class that this is achieved by taking $u,v$ to be the two top right singular vectors (corresponding to the first two columns of the $V$ matrix), resulting in the 2D scatterplot of the values $(x_i\cdot u,x_i\cdot v)$ for $i=1,\ldots,n$. +* Lastly, we showed that 1D PCA and ordinary least squares (OLS, see Lecture 12) are not the same. This is the reason the textbook refers to 1D PCA as "perpendicular least squares." + +**Reading:** Strang 7.3. + +### Lecture 29 (Fri April 25 2025) + +* In this lecture we finished our discussion of SVD and PCA by going over the application covered in the paper https://doi.org/10.1038/nature07331. +* We reviewed the basics of complex numbers: real part, imaginary part, complex conjugate, modulus, polar form, Euler's formula. +* Example: the permutation matrix $A$ corresponding to the permutation $\sigma$ that maps $1\mapsto 2, 2\mapsto 3, \ldots, n-1\mapsto n, n\mapsto1$. The eigenvalues are the $n$-th roots of unity. +* Example: solving the differential equation $f''(t)=-f(t)$. +* We defined the complex dot product (also called scalar product or inner product): for $v,w\in\mathbb{C}^n$, we define $v\cdot w = \overline{v}^\top w$. + +**Reading:** start Strang 6.4. + +### Lecture 30 (Mon April 28 2025) + +* In this class we covered definitions of special classes of complex $n\times n$ matrices. +* **Unitary** matrices: extension of definition of **orthogonal** matrices. Orthogonal matrices preserve the $\mathbb{R}^n$ scalar product, and unitary matrices preserve the $\mathbb{C}^n$ scalar product. +* **Hermitian** matrices: extension of definition of **symmetric** matrices. Symmetric matrices are self-adjoint on $\mathbb{R}^n$, and hermitian matrices are self-adjoint on $\mathbb{C}^n$. +* A matrix $A\in\mathbb{C}^{n\times n}$ is **normal** if $A\bar{A}^\top=\bar{A}^\top A$. Both sets of unitary matrices and hermitian matrices sit inside the set of normal matrices. +* We covered the **spectral theorem** for three cases: symmetric matrices (covered previously), hermitian matrices, and normal matrices. +* Example: same permutation matrix as discussed last time. This matrix is normal, but not symmetric. It has an orthogonal eigenbasis, which corresponds to a special basis of $\mathbb{C}^n$ called the **Fourier basis.** + +**Reading:** continue Strang 6.4. + +### Lecture 31 (Wed April 30 2025) + +* Let $P$ be the $n\times n$ permutation matrix corresponding to the cyclic permutation $\sigma$ that sends $1\mapsto2, 2\mapsto 3, \ldots, n-1\mapsto n, n\mapsto 1$. +* We reviewed that the eigenvalues of $P$ are the $n$-th roots of unity, and the **Fourier basis** (columns of the $n\times n$ **Fourier matrix**) is an eigenbasis of $P$. +* It follows that the Fourier basis is also an eigenbasis for any (nonnegative) power of $P$. +* A **circulant** matrix is any linear combination of powers of $P$. It often arises in situations where some underlying system has a circular structure. For example we define the cycle graph $T_n$ consisting of $n$ nodes connected by $n$ edges in a circle: a natural definition of discrete derivative applied to functions on $T_n$ gives rise to a circulant matrix. +* The Fourier basis is also an eigenbasis for any circulant matrix. This fact can be used for multiplying circulant matrices, and also implies that circulant matrices commute with one another. + +**Reading:** continue Strang 6.4. + +### Lecture 32 (Fri May 2 2025) + +* In this lecture we continued our discussion of **circulant matrices.** We covered the **cyclic convolution** operation in detail. +* We introduced $T_n$ as the graph with $n$ vertices numbered $0$ up to $n-1$, with cyclic indexing mod $n$, such that there is an edge between $i$ and $i+1$ (and thus, with cyclic indexing, there is an edge between $n-1$ and $0$). A vector $f=(f_0,\ldots,f_{n-1})\in\mathbb{C}^n$ is equivalent to a function $f:T_n\to\mathbb{C}$ that sends element $j\in T_n$ to value $f(j)=f_j$. +* We discussed that for functions $f:T_n\to\mathbb{C}$, a natural notion of a discrete derivative of $f$ can be expressed as applying a circulant matrix, $f\mapsto Df$. +* We also defined a discrete second derivative $\Delta$, which we found was also a circulant matrix. Vectors in the kernel of this matrix correspond to what are called **harmonic** functions. + +**Reading:** continue Strang 6.4. + +### Lecture 33 (Mon May 5) + +* In this lecture we discussed complex vector spaces. +* We reviewed the basic notions of span, linear independence, basis, dimension in the context of complex vector spaces. +* We reviewed the orthogonal projection calculation in the context of subspaces of $\mathbb{C}^n$ equipped with the $\mathbb{C}^n$ dot product. +* In preparation for the next lecture, we reviewed the precise structure of the $6\times6$ Fourier matrix. + +**Reading:** continue Strang 6.4. + +### Lecture 34 (Wed May 7) + +* In this lecture we reviewed the Fourier basis, and covered in detail its connection to the sines-cosines basis. +* We covered the discrete Fourier transform (DFT), and explained how to regard it as a change of basis operation. +* We discussed natural applications of DFT to compression and denoising in signal processing. + +**Reading:** continue Strang 6.4. + +### Lecture 35 (Wed May 9) + +* This lecture focused on the fact that the DFT sends convolution to pointwise multiplication. This is a key property of the Fourier transform. +* We used what we learned about circulant matrices to obtain an algebraic derivation of this identity. +* We covered some of the uses of this identity: e.g., since convolution can be challenging (e.g. think about the $n$-fold convolution of a vector $x$), one can use DFT to convert convolution to pointwise multiplication --- which is easy --- then apply Fourier inversion to convert back. + +**Reading:** continue Strang 6.4. + +### Lecture 36 (Mon May 12) + +* In this lecture we gave a **probabilistic** derivation of the same fact from last time, that the DFT sends convolution to pointwise multiplication. +* We also reviewed some previous material about the SVD. + +**Reading:** finish reading Strang 6.4. diff --git a/docs/_config.yml b/docs/_config.yml deleted file mode 100644 index c7418817..00000000 --- a/docs/_config.yml +++ /dev/null @@ -1 +0,0 @@ -theme: jekyll-theme-slate \ No newline at end of file diff --git a/docs/index.html b/docs/index.html deleted file mode 100644 index 653dc484..00000000 --- a/docs/index.html +++ /dev/null @@ -1,367 +0,0 @@ - - - - - 18.06 Spring 2019 - - - - - - - - - -

- -
- -18.06 Linear Algebra, Spring 2019 - -

- -Announcement: First Lecture Wednesday February 6. If you have not been assigned a recitation, or wish to change, you may be able to do so in stellar until Add Date, unless the recitation is full. - - -
- -
- - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- - - -
- - 18.06 Spring 2019 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Professor: Alan Edelman - -(office 2-349, office hours Wednesday 3:45-4:45pm, email edelman ατ math døt mit døt edu)
Lectures:MWF 11 am, in 10-250. - - - -
Course administrator: - - - - Sam Turton (office 2-333C, email seturton ατ mit.edu) -
Textbooks: Gilbert Strang's, Introduction to Linear Algebra, 5th edition.
Stephen Boyd and Lieven Vandenberghe Introduction to Applied Linear Algebra - Vectors, Matrices and Least Squares (Freely available online)
- - - -

Recitations and Office Hours

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TimeRoomInstructorOfficeE-Mail (@mit.edu)Office hours
Lec.MWF 1110-250Alan Edelman2-349edelmanW 3:45-4:45pm (2-349)
R01T1024-307Sveta Makarova2-231AmurmunoF 3-5pm (2-231A)
R02T104-261Zack Remscrim2-347remscrimM 2-4pm (2-347)
R03T1124-307Sveta Makarova2-231AmurmunoF 3-5pm (2-231A)
R04T114-261Campbell Hewett2-239AchewettF 1-3pm (2-239A)
R05T124-261Campbell Hewett2-239AchewettF 1-3pm (2-239A)
R06T122-105Andrew Ahn2-390CajahnM 5:15-7:15pm (2-390 cluster)
R07T14-149Andrew Ahn2-390CajahnM 5:15-7:15pm (2-390 cluster)
R08T12-136Sam Turton2-333CseturtonT 3:30-5:30pm (8-205)
R09T22-136Kyeongsu Choi2-238CchoiksM 9-11am (2-361)
R10T32-136Kyeongsu Choi2-238CchoiksM 9-11am (2-361)
Course Administrator:Sam Turton2-333Cseturton
- -
-

Welcome to the 18.06 linear algebra front page!

- -

Exams: Fridays, March 1, April 5, May 3 all in Walker during the class hour (50-340). Final exam on May 21, 9am-12pm, Johnson ice rink. - -

If you know you will need to miss an exam for an athletic game, please let your TA know early. Taking two courses at the same time is not an accepted excuse.

- -For illness or other personal circumstance a note from S3 is required. -Under these circumstances, students can write a paper of 3 or more pages due within two weeks of the exam date on a topic in linear algebra such as history, an application, or a more advanced topic. Grades will then be interpolated. Please contact the course administrator. - - Students with approved -accomodations should make arrangments with Theresa Cummings (tcumming@mit.edu) in 2-110 , as soon as possible.

- - - - - -

Grading; 15% Homeworks, 3 exams 45%, final exam 40%

- -

Problem sets are due 10:55am on Wednesdays through electronic submission on Gradescope. (No late homeworks accepted (one pset dropped) .) -Collaborations allowed, but write up your own work.

- - -

The Math Learning Center is a great resource for academic help. We are hoping the level of computing won't require much help, but we are looking into a special tutor just for this purpose.

- -

Announcement: On Tuesday February 19, MIT will hold Monday classes. Lecture will be held, recitations will not.

- - - -

You are visitor number ??? since October 1, 1996. Welcome!

- - - -

   Copyright 2014 Massachusetts Institute of - -Technology

- - - - - - - - - - - diff --git a/docs/mit-blackred-header1.gif b/docs/mit-blackred-header1.gif deleted file mode 100644 index 1018ca61..00000000 Binary files a/docs/mit-blackred-header1.gif and /dev/null differ diff --git a/docs/mit-newlogo3.gif b/docs/mit-newlogo3.gif deleted file mode 100644 index 56e20347..00000000 Binary files a/docs/mit-newlogo3.gif and /dev/null differ diff --git a/docs/old.html b/docs/old.html deleted file mode 100644 index ab87e10a..00000000 --- a/docs/old.html +++ /dev/null @@ -1,466 +0,0 @@ - - - - - - - 18.06 Spring 2019 - - - - - - - - - - - - - -

- -
- -18.06 Linear Algebra, Spring 2019 -

- - - - - -
- -
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- - - -

Past Courses

- - - - - -
  • Fall 2018 Exams and Problem Sets (and other materials) - -
  • Spring 2018 Exams and Problem Sets (and other materials) - -
  • Fall 2017 Exams and Problem Sets (and other materials) - -
  • Spring 2017 Exams and Problem Sets - - - - - - - - -
  • Spring - -2016 Exams and Problem Sets - - - - - -
  • Fall - -2015 Exams and Problem Sets - - - - - -
  • Spring - -2015 Exams and Problem Sets - - - - - - - -
  • Fall - -2014 Exams and Problem Sets - - - - - -
  • Spring - -2014 Exams and Problem Sets - - - - - -
  • Fall - -2013 Exams and Problem Sets - - - - - - - - - -
  • Spring - -2013 Exams and Problem Sets - - - -
  • - - - -
  • Fall - -2012 Exams and Problem Sets - -
  • - - - - - -
  • Spring - -2012 Exams and Problem Sets - -
  • - - - - - - - -
  • Fall - -2011 Exams and Problem Sets - -
  • - - - - - - - -
  • Spring - -2011 Exams and Problem Sets - -
  • - -
  • Fall - -2010 Exams and Problem Sets - -
  • - -
  • Spring - -2010 Exams and Problem Sets - -
  • - -
  • Fall - -2009 Exams and Problem Sets - -
  • - -
  • Spring - -2009 Exams and Problem Sets - -
  • - -
  • Fall - -2008 Exams and Problem Sets - -
  • - -
  • Spring - -2008 Exams and Problem Sets - -
  • - -
  • - - Fall - -2007 Exams and Problem Sets - -
  • - -
  • Spring - -2007 Exams and Problem Sets
  • - -
  • Fall - -2006 Exams and Problem Sets
  • - -
  • Spring - -2006 Exams and Problem Sets
  • - -
  • Fall - -2005 Exams and Problem Sets
  • - -
  • Spring - -2005 Exams and Problem Sets
  • - -
  • Fall - -2004 Exams and Problem Sets
  • - -
  • Spring - -2004 Exams
  • - -
  • Fall - -2003 Exams
  • - -
  • Spring - -2003 Exams
  • - -
  • Fall - -2002 Exams
  • - -
  • Spring - -2002 Exams
  • - -
  • Fall - -2001 Exams
  • - -
  • Spring - -2001 Exams
  • - -
  • Fall - -2000 Exams
  • - -
  • Spring - -2000 Exams
  • - -
  • - - Fall - -1999 - -Exams
  • - -
  • Spring - -1999 Exams
  • - -
  • Fall 1998 - -Exams
  • - -
  • Spring - -1998 Exams
  • - -
  • Fall 1997 - -Exams
  • - -
  • Spring - -1997 Exams
  • - -
  • Fall 1996 - -Exams
  • - -
  • Spring - -1996 Exams
  • - -
  • More - -Practice Exams...
  • - -
    - - - - - diff --git a/examinventory.pdf b/examinventory.pdf deleted file mode 100644 index 38eacc62..00000000 Binary files a/examinventory.pdf and /dev/null differ diff --git a/julia/Julia-cheatsheet.doc b/julia/Julia-cheatsheet.doc deleted file mode 100644 index 5477ffd0..00000000 Binary files a/julia/Julia-cheatsheet.doc and /dev/null differ diff --git a/julia/Julia-cheatsheet.pdf b/julia/Julia-cheatsheet.pdf deleted file mode 100644 index 85a266a1..00000000 Binary files a/julia/Julia-cheatsheet.pdf and /dev/null differ diff --git a/julia/Julia-intro.pdf b/julia/Julia-intro.pdf deleted file mode 100644 index 938bc1b3..00000000 Binary files a/julia/Julia-intro.pdf and /dev/null differ diff --git a/julia/Julia-intro.pptx b/julia/Julia-intro.pptx deleted file mode 100644 index 77187cf7..00000000 Binary files a/julia/Julia-intro.pptx and /dev/null differ diff --git a/julia/tutorial.ipynb b/julia/tutorial.ipynb deleted file mode 100644 index 1e345bac..00000000 --- a/julia/tutorial.ipynb +++ /dev/null @@ -1,1483 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Julia Basics\n", - "\n", - "This is a *basic* introduction to an IJulia notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "1+1" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "36.141120008059865" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "3*x + x^3 + sin(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3 + 4im" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "z = 3 + 4im" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-117 + 44im" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "z^3" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-13.128783081462158 - 15.200784463067954im" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "exp(z)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.0 + 1.0im" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sqrt(z)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0 + 1.4142135623730951im" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sqrt(-2+0im)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "ename": "LoadError", - "evalue": "\u001b[91mKeyError: key 12 not found\u001b[39m", - "output_type": "error", - "traceback": [ - "\u001b[91mKeyError: key 12 not found\u001b[39m", - "", - "Stacktrace:", - " [1] \u001b[1mgetindex\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Dict{Int64,Any}, ::Int64\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./dict.jl:474\u001b[22m\u001b[22m", - " [2] \u001b[1minclude_string\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::String, ::String\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./loading.jl:515\u001b[22m\u001b[22m" - ] - } - ], - "source": [ - "abs(Out[12])" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5.0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "abs(3+4im)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Int64,1}:\n", - " 1\n", - " 2\n", - " 3" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = [1,2,3]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×3 Array{Int64,2}:\n", - " 1 2 3" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y = [1 2 3]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1-element Array{Int64,1}:\n", - " 14" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y * x" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 2 3\n", - " 2 4 6\n", - " 3 6 9" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x * y" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "ename": "LoadError", - "evalue": "\u001b[91mDimensionMismatch(\"dimensions must match\")\u001b[39m", - "output_type": "error", - "traceback": [ - "\u001b[91mDimensionMismatch(\"dimensions must match\")\u001b[39m", - "", - "Stacktrace:", - " [1] \u001b[1mpromote_shape\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64}}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./indices.jl:79\u001b[22m\u001b[22m", - " [2] \u001b[1mpromote_shape\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Tuple{Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./indices.jl:75\u001b[22m\u001b[22m", - " [3] \u001b[1m+\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Array{Int64,1}, ::Array{Int64,2}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./arraymath.jl:37\u001b[22m\u001b[22m", - " [4] \u001b[1minclude_string\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::String, ::String\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./loading.jl:515\u001b[22m\u001b[22m" - ] - } - ], - "source": [ - "x + y" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 2 3 4\n", - " 3 4 5\n", - " 4 5 6" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = x .+ y" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Int64,1}:\n", - " 1\n", - " 4\n", - " 9" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x .* x" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20-element Array{Float64,1}:\n", - " 0.144325\n", - " 0.539383\n", - " 0.905254\n", - " 0.181768\n", - " 0.474543\n", - " 0.634997\n", - " 0.516441\n", - " 0.803727\n", - " 0.938047\n", - " 0.307588\n", - " 0.735985\n", - " 0.137097\n", - " 0.349963\n", - " 0.97564 \n", - " 0.570409\n", - " 0.995515\n", - " 0.558727\n", - " 0.61811 \n", - " 0.828529\n", - " 0.873731" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = rand(20)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.5393826836540165" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x[2]" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " 0.539383\n", - " 0.905254\n", - " 0.181768\n", - " 0.474543" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x[2:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Float64,1}:\n", - " 0.516441\n", - " 0.938047\n", - " 0.735985\n", - " 0.349963\n", - " 0.570409\n", - " 0.558727\n", - " 0.828529" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x[7:2:end] # x[7], x[9], x[11], ... end of array" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "14-element Array{Float64,1}:\n", - " 0.539383\n", - " 0.905254\n", - " 0.634997\n", - " 0.516441\n", - " 0.803727\n", - " 0.938047\n", - " 0.735985\n", - " 0.97564 \n", - " 0.570409\n", - " 0.995515\n", - " 0.558727\n", - " 0.61811 \n", - " 0.828529\n", - " 0.873731" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x[x .> 0.5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Any function `f` can be applied elementwise to an array `x` by the syntax `f.(x)`.\n", - "\n", - "You may be thinking that Matlab and Numpy do this without dots, but it turns out that the `.` in `f.(x)` enables extensive possibilities that aren't possible in other language. See also [this blog post on the real power of this syntax](http://julialang.org/blog/2017/01/moredots).\n", - "\n", - "e.g. compute $e^{\\sin x_i}$ for each element $x_i$=`x[i]` of the array `x`:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20-element Array{Float64,1}:\n", - " 1.15468\n", - " 1.67131\n", - " 2.19588\n", - " 1.19814\n", - " 1.57922\n", - " 1.80973\n", - " 1.63851\n", - " 2.05433\n", - " 2.23984\n", - " 1.35359\n", - " 1.95681\n", - " 1.14645\n", - " 1.40898\n", - " 2.28888\n", - " 1.71597\n", - " 2.31414\n", - " 1.69911\n", - " 1.78514\n", - " 2.08953\n", - " 2.15271" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "exp.(sin.(x))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plotting" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "using PyPlot # thin wrapper around Python Matplotlib" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGgCAYAAABxDccgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XtclGXex/HvgAFagmsmIFDYlqW16ZMmSy2bFUVpdjBTs4Np2bqWh6VsNVvNXXfdDmtYsrUdPJWn9KHDZmFGuWJZbqRtaWctQYHUCvDwgA3388e1gMigM8DMfc/web9e82K45xr4cW/bfLuOLsuyLAEAADhEmN0FAAAAHI5wAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHKWN3QV4o7q6Wrt27VL79u3lcrnsLgcAAHjBsixVVFSoS5cuCgvzvj8kKMLJrl27lJSUZHcZAACgCQoLC5WYmOh1+6AIJ+3bt5dk/rjo6GibqwEAAN4oLy9XUlJS7ee4t4IinNQM5URHRxNOAAAIMr5OyWBCLAAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcJSg2IQNAAC0PLdbys+Xioul+HgpLU0KD7e7KsIJAACtUk6ONGGCVFRUdy0xUZozRxo0yL66pCYM66xbt04DBw5Uly5d5HK59NJLLx3zPWvXrtW5556ryMhInXbaaVqwYEFTagUAAC0gJ0caPLh+MJGknTvN9Zwce+qq4XM42b9/v3r27Kns7Gyv2m/fvl0DBgzQRRddpM2bN2vixIm6/fbbtXr1ap+LBQAAzeN2mx4Ty2r4Ws21iRNNO7v4PKxzxRVX6IorrvC6/ZNPPqmuXbvqb3/7mySpe/fuWr9+vR599FFlZGR4fE9lZaUqKytrvy8vL/e1TAAA4EF+fsMek8NZllRYaNr16xewsurx+2qdDRs2KD09vd61jIwMbdiwodH3zJo1SzExMbWPpKQkf5cJAECrUFzcsu38we/hpKSkRLGxsfWuxcbGqry8XAcPHvT4nilTpqisrKz2UVhY6O8yAQBoFeLjW7adPzhytU5kZKQiIyPtLgMAgJCTlmZW5TQ2tONymdfT0gJb1+H83nMSFxen0tLSetdKS0sVHR2ttm3b+vvXAwCAw4SHS3/4g+fXXC7zNSvL3v1O/B5OUlNTlZeXV+/amjVrlJqa6u9fDQAAjlBdLb3wgnkeEVH/tcREaeVK+/c58XlYZ9++ffrqq69qv9++fbs2b96sjh076uSTT9aUKVO0c+dOLVq0SJI0ZswYzZ07V/fee69GjRqlt956Sy+88IJWrVrVcn8FAADwyty5Ul6e1LatVFAglZaGwA6xH3zwgS666KLa7zMzMyVJI0aM0IIFC1RcXKwdO3bUvt61a1etWrVKv/vd7zRnzhwlJibqmWeeaXQZMQAA8I/PPpN+/3vz/JFHpO7dzcNpXJblaRsWZykvL1dMTIzKysoUHR1tdzkAAASdQ4ek88+XPvhAuuwyKTe3bo6JvzT185tTiQEAaAX+8hcTTDp0kObN838waQ7CCQAAIe6DD6Q//ck8//vfpYQEe+s5FsIJAAAh7OBB6eabzVk5Q4ZIw4bZXdGxEU4AAAhhU6aYibDx8abXxMnDOTUIJwAAhKi8PGnOHPP82WelE0+0tx5vEU4AAAhBP/4o3XqreT5mjHTFFbaW4xPCCQAAIWjCBHN+zs9/Lj38sN3V+IZwAgBAiMnJkRYtksLCzNcTTrC7It8QTgAACCElJdIdd5jnv/+92Xgt2BBOAAAIEZYljR4t7d0r9ewpPfCA3RU1DeEEAIAQMW+e9Oqr5rTh555reOpwsCCcAAAQArZvlyZONM9nzpR+8Qt762kOwgkAAEHO7ZZGjJD27ZPS0qTMTLsrah7CCQAAQe7RR6X8fLMqZ8ECKTzc7oqah3ACAEAQ+/hjaepU8/zRR6VTT7W3npZAOAEAIEhVVZlD/aqqpCuvlG67ze6KWgbhBACAIPXAA9JHH5kzc55+OjgO9fMG4QQAgCD07rvSgw+a5//4hxQXZ289LYlwAgBAkNm3T7rlFqm62gzrXHed3RW1LMIJAABBZtIk6euvpaQk6bHH7K6m5RFOAAAIIq+/Lj35pHk+f77UoYO99fgD4QQAgCCxd2/dipzx46VLLrG3Hn9pY3cBAACgcW632WCtuNisyCkuls48U/rrX+2uzH8IJwAAOFROjjRhglRUVP/6yJFS27b21BQIDOsAAOBAOTnS4MENg4kkTZ5sXg9VhBMAABzG7TY9JpbVeJuJE027UEQ4AQDAYfLzPfeY1LAsqbDQtAtFhBMAABymuLhl2wUbwgkAAA4TH9+y7YIN4QQAAIdJS5OOP77x110usztsWlrgagokwgkAAA6zcqW0f7/n12pOHs7KksLDA1dTIBFOAABwkO3bpTvuMM+vu05KTKz/emKiCS+DBgW+tkBhEzYAABzi0CFp+HCpvFxKTZWWLpXCwup2iI2PN0M5odpjUoNwAgCAQzzwgPTee1JMjLRkiXTcceZ6v352VhV4DOsAAOAAb70lzZplnj/9tJScbGs5tiKcAABgs927pZtuMpurjR4tXX+93RXZi3ACAICNLMsc5FdcLHXvblbhtHaEEwAAbPTYY9KqVVJkpLRsmdSund0V2Y9wAgCATTZtku691zz/29+kc86xtx6nIJwAAGCDffukYcOkqirp6qulsWPtrsg5CCcAANhg3Djpiy+khATp2Wfrdn4F4QQAgIBbskRasMBssLZ4sXTiiXZX5CyEEwAAAmjbNmnMGPP8/vulCy+0tx4nIpwAABAghw5JN9wgVVRIv/qV9Ic/2F2RMxFOAAAIkD/8Qdq4UerQwQzntOEQGY8IJwAABMCaNdKDD5rnzz4rnXyyvfU4GeEEAAA/++476eabzfMxY6RBg+ytx+kIJwAA+FF1tTRihFRaKp11ljR7tt0VOR/hBAAAP8rKknJzpagosz1927Z2V+R8hBMAAPykoECaPNk8f/RR6eyz7a0nWBBOAADwg4oKsz39oUNmjslvfmN3RcGDcAIAgB/ceaf01VdSUpL09NNsT+8LwgkAAC3suefMIyzMbFXfsaPdFQUXwgkAAC3oyy/rThiePt3sBAvfsDcdAADN4HZL+flScbHUqZOZALtvn/TrX0tTp9pdXXAinAAA0EQ5OdKECVJRUf3rJ5xgtqcPD7enrmDXpGGd7OxsJScnKyoqSikpKdq4ceNR2y9evFg9e/ZUu3btFB8fr1GjRmnv3r1NKhgAACfIyZEGD24YTCTTc3KMj0Ychc/hZPny5crMzNT06dP14YcfqmfPnsrIyNB3333nsf0777yjW265Rbfddpu2bNmiFStWaOPGjRo9enSziwcAwA5ut+kxsSzPr7tc0sSJph1853M4mT17tkaPHq2RI0eqR48eevLJJ9WuXTvNmzfPY/sNGzYoOTlZ48ePV9euXfWrX/1Kv/nNb47Z2wIAgFPl53vuMalhWVJhoWkH3/kUTqqqqlRQUKD09PS6HxAWpvT0dG3YsMHje1JTU1VYWKjXXntNlmWptLRUK1asUP/+/Rv9PZWVlSovL6/3AADAKYqLW7Yd6vMpnOzZs0dut1uxsbH1rsfGxqqkpMTjey644AItXrxYQ4cOVUREhOLi4tShQwdlZ2c3+ntmzZqlmJiY2kdSUpIvZQIA4Ffx8S3bDvX5fZ+TrVu3asKECZo2bZoKCgqUm5urb775RmPGjGn0PVOmTFFZWVnto7Cw0N9lAgDgtbS0owcPl8vsDJuWFriaQolPS4k7deqk8PBwlZaW1rteWlqquLg4j++ZNWuWzj//fE2aNEmSdM455+j4449XWlqaZs6cqXgP/+tGRkYqMjLSl9IAAAiYn36Sjj/e82s129RnZbGUuKl86jmJiIhQ7969lZeXV3uturpaeXl5Sk1N9fieAwcOqE2b+hko/L//a1mNTXMGAMDB7r7bnJtz/PHSkf9tnpgorVxpDvtD0/i8CVtmZqZGjBihPn36qG/fvsrKytL+/fs1cuRISWZIZufOnVq0aJEkaeDAgRo9erSeeOIJZWRkqLi4WBMnTlTfvn3VpUuXlv1rAADwsyVLpJppk8uXS5dfXrdDbHy8Gcqhx6R5fA4nQ4cO1e7duzVt2jSVlJSoV69eys3NrZ0kW1xcrB07dtS2v/XWW1VRUaG5c+fq7rvvVocOHXTxxRfrwQcfbLm/AgCAANiyRarZpuv++6UBA8zzfv1sKykkuawgGFspLy9XTEyMysrKFB0dbXc5AIBWqLxcOu886YsvpPR0KTeXHpJjaernN6cSAwBwDJYl3XabCSaJiWZoh2DiP4QTAACOISvLTHI97jhpxQrppJPsrii0EU4AADiK9eul/+6GodmzpV/+0t56WgPCCQAAjSgtlYYMMQf43XCDdOeddlfUOhBOAADw4KefpGHDzBLhHj2kp56q22AN/kU4AQDAg/vvl9aulU44Qfrf/zVfERiEEwAAjvDyy1LNdlzz5klnnmlvPa0N4QQAgMN89ZU0YoR5PnGidP319tbTGhFOAAD4rwMHpOuuk8rKpAsukB56yO6KWifCCQAAMhutjR0r/ec/UufO5tyc446zu6rWiXACAICkZ56RFi6UwsKkZcukhAS7K2q9CCcAgFavoEAaN848/8tfpIsusree1o5wAgBo1b7/Xho8WKqslK66Srr3XrsrAuEEANBqVVdLN98sffONdOqpZliHjdbsRzgBALRaf/mL9NprUlSU2WitQwe7K4JEOAEAtFJr1kjTppnnTzwh9eplbz2oQzgBALQ6hYXS8OFm+fDtt0u33mp3RTgc4QQA0KpUVZldX/fskc49V3r8cbsrwpHa2F0AAAD+5HZL+fnmdOH4eGnFCun99838kpUrzXwTOAvhBAAQsnJypAkTpKKihq89/7zUtWvga8KxEU4AACEpJ8fsX2JZnl+vrAxsPfAec04AACHH7TY9Jo0FE5fLnDjsdge2LniHcAIACDn5+Z6HcmpYllmxk58fuJrgPcIJACDkFBe3bDsEFuEEABBy4uNbth0Ci3ACAAg5aWlSbGzjr7tcUlKSaQfnIZwAAELO99+bQ/08qTnYLytLCg8PXE3wHuEEABBSqqqk666Tdu+W4uKkLl3qv56YaDZfGzTInvpwbOxzAgAIGZYl3XWXWYUTHS299ZbUrVv9HWLT0ugxcTrCCQAgZGRnS08/bYZuli6Vunc31/v1s7Us+IhhHQBASMjLMxurSdKDD0r9+9tbD5qOcAIACHpffWVOGna7pZtvlu65x+6K0ByEEwBAUCsrk666SvrhByklRXrqqboVOQhOhBMAQNByu6Ubb5Q+/VRKSJBefFGKirK7KjQX4QQAELTuu09atcoEkpdeYsfXUEE4AQAEpeeekx56yDyfN0/q08feetByCCcAgKDz/vvS6NHm+X33STfcYG89aFmEEwBAUNm5U7r2Wqmy0kyE/dOf7K4ILY1wAgAIGgcPStdcY3Z7Pess6fnnpTA+yUIO/5MCAIKCZUm33SZ98IF04onSK69I7dvbXRX8gXACAAgKf/2r2ZK+TRtzcN+pp9pdEfyFcAIAcLxXXpGmTjXPH3+cs3JCHeEEAOBon3xiNlqzLOm3v5XGjLG7Ivgb4QQA4Fh79pgVOfv2md6SOXPsrgiBQDgBADjSoUPmML/t26WuXaUVK6TjjrO7KgQC4QQA4EgTJkhr10onnGDmnHTqZHdFCBTCCQDAcZ54wjxcLmnxYunss+2uCIHUxu4CAACtm9st5eebjdXi483348eb1/78ZzPnBK0L4QQAYJucHDN8U1RUd83lMitzbrhBmjzZvtpgH8IJAMAWOTnS4MEmiByu5vuBA01QQevDnBMAQMC53abH5MhgUsPlkn7/e9MOrQ/hBAAQcPn59YdyjmRZUmGhaYfWh3ACAAi44uKWbYfQQjgBAARcfHzLtkNoIZwAAAIuLU3q3Lnx110uKSnJtEPrQzgBAATcN99I//d/nl+rWaGTlSWFhwesJDhIk8JJdna2kpOTFRUVpZSUFG3cuPGo7SsrKzV16lSdcsopioyMVHJysubNm9ekggEAwW3PHumKK6TycnNmTpcu9V9PTJRWrpQGDbKnPtjP531Oli9frszMTD355JNKSUlRVlaWMjIy9Pnnn6tzI310Q4YMUWlpqZ599lmddtppKi4uVnV1dbOLBwAEl4MHzY6vX34pnXyy9M47Znjn8B1i09LoMWntXJbV2Cpzz1JSUnTeeedp7ty5kqTq6molJSVp3LhxmuxhK7/c3FwNGzZM27ZtU8eOHZtUZHl5uWJiYlRWVqbo6Ogm/QwAgL3cbmnIELP5WocOJpj06GF3VfCnpn5++zSsU1VVpYKCAqWnp9f9gLAwpaena8OGDR7f88orr6hPnz566KGHlJCQoG7duumee+7RwYMHG/09lZWVKi8vr/cAAAS3u+82wSQiQnrpJYIJGufTsM6ePXvkdrsVGxtb73psbKw+++wzj+/Ztm2b1q9fr6ioKL344ovas2ePxo4dq71792r+/Pke3zNr1izNmDHDl9IAAA726KPSnDnm+cKF0oUX2lsPnM3vq3Wqq6vlcrm0ePFi9e3bV/3799fs2bO1cOHCRntPpkyZorKystpHYWGhv8sEAPjJypWm10SSHnxQGjbM3nrgfD71nHTq1Enh4eEqLS2td720tFRxcXEe3xMfH6+EhATFxMTUXuvevbssy1JRUZFOP/30Bu+JjIxUZGSkL6UBABxo/XrpppvMdvRjx0qTJtldEYKBTz0nERER6t27t/Ly8mqvVVdXKy8vT6mpqR7fc8EFF2jXrl3at29f7bUvvvhCYWFhSkxMbGLZAACn+/xz6eqrpcpKs0Lnscc4ZRje8XlYJzMzU08//bQWLlyoTz/9VL/97W+1f/9+jRw5UpIZkrnllltq2w8fPlwnnniiRo4cqa1bt2rdunWaNGmSRo0apbZt27bcXwIAcIzSUrOXyfffS337SkuXsjwY3vN5n5OhQ4dq9+7dmjZtmkpKStSrVy/l5ubWTpItLi7Wjh07atufcMIJWrNmjcaNG6c+ffroxBNP1JAhQzRz5syW+ysAAI6xf7905ZXS9u3Sz38u/fOfUrt2dleFYOLzPid2YJ8TAAgOP/0kXXONtGqV1KmT9O67koephWglArLPCQAAjbEs6c47TTCJijI9JgQTNAXhBADQImbNkp56ykx6XbJE+uUv7a4IwYpwAgBotuefl6ZONc/nzJGuvdbeehDcCCcAgGZ56y1p1Cjz/O67pXHj7K0HwY9wAgBoso8/Nr0khw6ZQ/0eesjuihAKCCcAgCYpKpL695fKy6W0NHNmThifKmgB/GMEAPBZebk0YIAJKGeeaU4ZjoqyuyqECp83YQMAtD5ut5SfLxUXm/1LHnxQ+s9/pNhY6fXXpY4d7a4QoYRwAgA4qpwcacIE00tyuMhIs6dJcrItZSGEMawDAGhUTo40eHDDYCKZA/2+/TbwNSH0EU4AAB653abHpLFDTlwuaeJE0w5oSYQTAIBH+fmee0xqWJZUWGjaAS2JcAIA8Ki4uGXbAd4inAAAPIqPb9l2gLcIJwAAj2JizLySxrhcUlKS2YANaEmEEwBAA198IV1xRd1k2CNDSs33WVlSeHhga0PoI5wAAOrZsUNKT5dKS6VevaRFi6SEhPptEhOllSulQYPsqRGhjU3YAAC1SkqkSy4xq3DOOENavVrq3FkaPrxuh9j4eDOUQ48J/IVwAgCQJH3/vXTZZdJXX0mnnCK9+aYJJpIJIv362VoeWhGGdQAAqqgwJwx//LEUF2eCSWKi3VWhtSKcAEArd/CgdPXV0vvvmwP81qyRTjvN7qrQmhFOAKAVO3RIuv566e23pfbtpdxc6eyz7a4KrR3hBABaKbdbuvlmc7JwVJT06qvSeefZXRVAOAGAVsmypDFjpOXLpeOOM6cP//rXdlcFGIQTAGhlLEu6+27pmWeksDBp8WKz4RrgFIQTAGhl/vhH6dFHzfNnnjFzTgAnIZwAQCvy6KPSAw+Y53PmSCNH2loO4BHhBABaiWeekTIzzfOZM6Xx4+2tB2gM4QQAWoHly6U77jDPJ02S7rvP3nqAoyGcAECIe/VV6aab6lboPPhgw1OGASchnABACHv7bWnwYOmnn6Qbb5SyswkmcD7CCQCEqPffl666SqqsNNvTz59vlg4DTsepxAAQAtxuKT9fKi6W4uOlmBizd8m+fdIll0jLlpnN1oBgQDgBgCCXkyNNmCAVFdVdCwuTqqul1FTppZfM9vRAsCCcAEAQy8kxc0osq/716mrz9be/lU44IfB1Ac3B6CMABCm32/SYHBlMarhc0tSpph0QTAgnABCk8vPrD+UcybKkwkLTDggmhBMACFLFxS3bDnAKwgkABKn4+JZtBzgF4QQAgtSpp0ptjrKsweWSkpKktLTA1QS0BMIJAAShwkLp4ovNzq9Sw11fa77PypLCwwNbG9BchBMACDLffCNdeKH09ddS167SE09ICQn12yQmSitXSoMG2VIi0CzscwIAQWTbNumii6QdO6Sf/9ycnZOUJI0eXX+H2LQ0ekwQvAgnABAkvvzSDOUUFUnduklvvVXXYxIeLvXrZ2t5QIthWAcAgsDnn5uhnKIiqXt3ae3ahkM5QKggnACAw23daoJJcbF09tlmKIflwQhlhBMAcLCPPzbDNaWlUs+eZignNtbuqgD/IpwAgENt3mwmv+7eLZ17rgkmJ51kd1WA/xFOAMCBCgrM5Ne9e6XzzpPefFPq2NHuqoDAIJwAgMNs3Chdcon0ww9Saqq0Zo30s5/ZXRUQOIQTAHCQDRukSy+VysqkX/1KWr1aiomxuyogsAgnAOAQ+fnSZZdJ5eVmEuzrr0vt29tdFRB4hBMAcIC1a6XLL5f27TNDOqtWSSecYHdVgD0IJwBgszfflPr3lw4ckDIypH/+U2rXzu6qAPsQTgDARrm50pVXSgcPSgMGSC+9JLVta3dVgL04WwcAAsDtbngw3+uvS9ddJ1VVSVdfLS1fLkVG2l0pYL8m9ZxkZ2crOTlZUVFRSklJ0caNG7163zvvvKM2bdqoV69eTfm1ABCUcnKk5GSzodrw4eZrbKx0zTUmmAwaJL3wAsEEqOFzOFm+fLkyMzM1ffp0ffjhh+rZs6cyMjL03XffHfV9P/74o2655RZdcsklTS4WAIJNTo40eLA5sO9we/ea3pTzz5eWLZMiIuypD3Ain8PJ7NmzNXr0aI0cOVI9evTQk08+qXbt2mnevHlHfd+YMWM0fPhwpaamNrlYAAgmbrc0YYJkWY232bFDCmP2H1CPT/+XqKqqUkFBgdLT0+t+QFiY0tPTtWHDhkbfN3/+fG3btk3Tp0/36vdUVlaqvLy83gMAgk1+fsMekyMVFZl2AOr4FE727Nkjt9ut2COOxIyNjVVJSYnH93z55ZeaPHmynn/+ebVp493821mzZikmJqb2kZSU5EuZAOAIxcUt2w5oLfzameh2uzV8+HDNmDFD3bp18/p9U6ZMUVlZWe2jsLDQj1UCgH/Ex7dsO6C18GkpcadOnRQeHq7S0tJ610tLSxUXF9egfUVFhT744ANt2rRJd911lySpurpalmWpTZs2euONN3TxxRc3eF9kZKQimbYOIMj98pdmM7UDBzy/7nJJiYlmWTGAOj71nERERKh3797Ky8urvVZdXa28vDyPE12jo6P18ccfa/PmzbWPMWPG6IwzztDmzZuVkpLS/L8AABxo3z6zVPhowUSSsrKk8PDA1QUEA583YcvMzNSIESPUp08f9e3bV1lZWdq/f79GjhwpyQzJ7Ny5U4sWLVJYWJjOPvvseu/v3LmzoqKiGlwHgFCxe7fZ7fXf/zY9J7/7nbRwYf3JsYmJJpgMGmRfnYBT+RxOhg4dqt27d2vatGkqKSlRr169lJubWztJtri4WDt27GjxQgEgGGzfbs7H+fJL6cQTzQF+KSnSjBkNd4ilxwTwzGVZR1uB7wzl5eWKiYlRWVmZoqOj7S4HADzavFm64gqppEQ65RRp9WrpjDPsrgqwT1M/v9n6BwBawFtvSb/+tQkm55wjvfsuwQRoKsIJADTTCy+YHpOKCunCC6V166QuXeyuCghehBMAaIbHH5eGDTMH+F13nZSbK8XE2F0VENwIJwDQBJYlTZ0qjR9vno8dKy1fLkVF2V0ZEPx8Xq0DAK3dTz9Jd9whzZ9vvp85U7rvvrq9SwA0D+EEAHxw4IA0ZIhZIhwWJj31lHTbbXZXBYQWwgkAeGnvXunKK6X33jPDNy+8IA0caHdVQOghnACAF7791myu9vnn0s9+Jr36qnT++XZXBYQmwgkAHMPHH0uXXy7t2mW2nV+9WurRw+6qgNDFah0AOIp168xW87t2SWedJW3YQDAB/I2eEwCQ5HY3PPvmlVekG26QKiulX/3KfP+zn9ldKRD6CCcAWr2cHGnChPqnBnfoIJWVmT1Mrr5aWrpUatvWvhqB1oRwAqBVy8mRBg82IeRwP/5ovl56qbRypdSGf1sCAcOcEwCtltttekyOdjb7Z5+xuRoQaIQTAK1Wfn79oRxPCgtNOwCBQzgB0GoVF7dsOwAtg3ACoNWKj2/ZdgBaBlO8ALRKliV99NHR27hcZtO1tLTA1ATAIJwAaHWqqqS77pKefrrumstVf2JszSTYrCwpPDyw9QGtHcM6AFqV3bul9HQTTFwu6eGHzVLhhIT67RITzfVBg+ypE2jN6DkB0Gr85z/SVVeZQ/yio83Gav37m9euuabhDrH0mAD2IJwAaBVeekm66SZp/37ptNPMVvTdu9e9Hh4u9etnW3kADsOwDoCQZlnSzJnStdeaYJKeLr3/fv1gAsBZ6DkBELIOHJBGjZKWLzffjxsnzZ7NVvSA0/F/UQAhqajIzCMpKDBh5O9/l0aPtrsqAN4gnAAIOe+9Z4JJaanUqZP0v/8r/frXdlcFwFvMOQEQUhYtki4xL6d2AAAY1UlEQVS80ASTX/xC+ve/CSZAsCGcAAgJbrc0aZI0YoTZZO2aa6R335WSk+2uDICvCCcAgl5Zmdm/5JFHzPf332+Gck44wd66ADQNc04ABA23u+FGadu3m2Dy6adSVJS0YIE0dKjdlQJoDsIJgKCQkyNNmGBW4dTo1Ek6eNDsX5KQIL38stS7t301AmgZhBMAjpeTIw0eXP9gPknas8d8Pf106V//Mr0pAIIfc04AOJrbbXpMjgwmhzt4UOrcOXA1AfAvwgkAR8vPrz+U40lRkWkHIDQQTgA4WnFxy7YD4HyEEwCO5u1wDfNNgNDBhFgAjrVrl/THPx69jcslJSaaZcUAQgM9JwAcafVqqWdPad06s3+JZILI4Wq+z8qSwsMDWx8A/yGcAHCUn36SpkyRLr/cLBXu2VP66COz42tCQv22iYnSypXSoEH21ArAPxjWAeAYhYXSDTdI77xjvh87Vvrb30zPSbdu0tVXN9whlh4TIPQQTgA4wquvmkP7vv9eio6WnnlGuv76+m3Cw6V+/WwpD0AAMawDwFZVVdI990gDB5pg0ru39OGHDYMJgNaDnhMAtvnmG2nYMOn9983348dLDz0kRUbaWhYAmxFOANjipZekkSOlH3+UOnSQ5s+XrrnG7qoAOAHDOgACqrLSnJVz7bUmmKSkSJs2EUwA1CGcAAiYr7+WLrhAeuwx8/3dd5t9TJKTbS0LgMMwrAMgIFaskG6/XSovlzp2lBYulK680u6qADgR4QRAi3G7G+5DcuiQlJkpPfGEaXPBBdLSpVJSkr21AnAuwgmAFpGTY+aSFBXVXYuLMytvvv3WfD9lijRjhnTccfbUCCA4EE4ANFtOjjR4sGRZ9a+XlJiv7dubYZ2MjMDXBiD4MCEWQLO43abH5Mhgcrj27aX09MDVBCC4EU4ANEt+fv2hHE927TLtAMAbhBMAzVJc3LLtAIBwAqBZysu9axcf7986AIQOwgmAJqmslO6/Xxo79ujtXC6zbDgtLTB1AQh+hBMAPisokPr0kf78Z6m6Wjr/fBNCXK767Wq+z8qSwsMDXyeA4EQ4AeC1mt6SlBTpk0+kk04yS4TfeUdauVJKSKjfPjHRXB80yJ56AQSnJoWT7OxsJScnKyoqSikpKdq4cWOjbXNycnTppZfqpJNOUnR0tFJTU7V69eomFwzAHof3lrjd0pAh0pYtZn8TyQSQb76R3n5bWrLEfN2+nWACwHc+h5Ply5crMzNT06dP14cffqiePXsqIyND3333ncf269at06WXXqrXXntNBQUFuuiiizRw4EBt2rSp2cUD8L/GekuWLzfPDxceLvXrJ91wg/nKUA6ApnBZ1tG2TmooJSVF5513nubOnStJqq6uVlJSksaNG6fJkyd79TPOOussDR06VNOmTfP4emVlpSorK2u/Ly8vV1JSksrKyhQdHe1LuQCaoaBAuvVWE0ok01syd27DUAIAnpSXlysmJsbnz2+fek6qqqpUUFCg9MO2egwLC1N6ero2bNjg1c+orq5WRUWFOnbs2GibWbNmKSYmpvaRxAlhQED50lsCAC3Np3CyZ88eud1uxcbG1rseGxurkppDNI7hkUce0b59+zRkyJBG20yZMkVlZWW1j8LCQl/KBNAMx5pbAgD+FtCD/5YsWaIZM2bo5ZdfVufOnRttFxkZqcjIyABWBqCyUpo5U5o1y4SSk06S/v53QgmAwPMpnHTq1Enh4eEqLS2td720tFRxcXFHfe+yZct0++23a8WKFfWGhQAEjtttzrgpLjY7tqalmUmrzC0B4CQ+DetERESod+/eysvLq71WXV2tvLw8paamNvq+pUuXauTIkVq6dKkGDBjQ9GoBNFlOjpScLF10kTR8uPl6yinS9dcztwSAs/g8rJOZmakRI0aoT58+6tu3r7KysrR//36NHDlSkpkvsnPnTi1atEiSGcoZMWKE5syZo5SUlNq5KW3btlVMTEwL/ikAGpOTY4Znjlybt3On2SRNorcEgHP4HE6GDh2q3bt3a9q0aSopKVGvXr2Um5tbO0m2uLhYO3bsqG3/1FNP6aefftKdd96pO++8s/b6iBEjtGDBgub/BQCOyu2WJkxoGEwOd+KJZuM09iUB4AQ+73Nih6aukwYgrV1rhnCO5e23zcZpANBSArLPCYDgU1zcsu0AwN8IJ0AIO3BAev1179rGx/u3FgDwFuEECEGWZVbdnHmm9NxzR2/rcklJSWZZMQA4AeEECDGffCJdcolZfVNYaJYLT5pkQojLVb9tzfdZWUyGBeAchBMgRPzwgzR+vNSrl5ncGhUlTZ8ubd0qPfSQWTKckFD/PYmJ5vqgQfbUDACeBHT7egAtz+2W5s+XpkyR9uwx1wYNkv72N7PpWo1Bg6Srr/a8QywAOAnhBAhi770n3XWX2X5ekrp3lx57TGrshIjwcJYLA3A+hnWAIFRSYs7CSU01wSQ6Wpo9W/roo8aDCQAEC3pOgCBSVSU9/rg0Y4ZUUWGujRxpThL+7ybNABD0CCeAwzR2cvAbb5ht6D/7zLQ77zwTVFJS7K0XAFoa4QRwkJwcE0CKiuquxcWZfUj+/W/z/UknSX/9qxnWCWNgFkAIIpwADtHYycElJeYRFmaWCk+fLnXoYE+NABAIhBPAAbw5ObhzZ+mRR1j6CyD00SkMOEB+fv2hHE9KSkw7AAh1hBPAAd5807t2nBwMoDUgnAA2Wr9euvhi6c9/9q49JwcDaA0IJ4AN3ntPysgwy4Tffls67jjp+OMbHsxXg5ODAbQmhBMggAoKpAEDzM6ub7whtWkj3XGH9NVX0qJFpg0nBwNo7QgnQAB89JF0zTVSnz7Sa6+ZkDFypPTFF9I//iGdfLI5mI+TgwGApcSAX23ZIj3wgAkXkukFufFGado06fTTG7bn5GAAIJwAfvH559If/ygtXWr2LnG5pCFDzAZq3bsf/b2cHAygtSOcAD5q7OwbSfr6a+lPf5Kee06qrjbXBg0yvSe/+IVtJQNAUCGcAD7wdPZNYqJ0//3SBx9I8+eb8CJJAwea04P/53/sqRUAghXhBPBSY2ffFBVJY8bUfX/55WZI57zzAlsfAIQKwgngBW/OvomMlNasYS8SAGgulhIDXvDm7JvKyrohHQBA0xFOgGP46Sfp5Ze9a8vZNwDQfAzrAI344QfpmWek7Gzp22+9ew9n3wBA8xFOgCNs2SI9/rhZDnzggLnWsaN06JC0b5/neScul1m1w3wTAGg+hnUAmT1J/vlP6dJLpbPPNlvKHzggnXOO9OyzZr7JggWmLWffAIB/EU7QqpWVmVDRrZt01VXSm29KYWFm47S1a6XNm6VRo6S2bTn7BgAChWEdhJyj7eBa44svzNDNggVmqEaSOnSQRo+Wxo6VkpM9/2zOvgEA/yOcIKQ0toPrnDnmVOA33pAee0x6/fW613v0kMaPl266STr++GP/Ds6+AQD/IpwgZDS2g+vOndJ110lduki7dplrLpd05ZUmlFxyScN5JAAA+xBOEBKOtoNrzbVdu6QTTpBuu0266y7ptNMCWyMAwDuEE4QEb3ZwlaTly6X+/f1fDwCg6Vitg6B36JD02mvetS0r828tAIDmo+cEQam6Wnr3XWnJEumFF6S9e717Hzu4AoDzEU4QVD7+2ASSpUvrbyl/0knSwYN1y4KPxA6uABA8CCdwvG+/NWFkyRITTmq0b2/2HRk+XLr4YumVV8xqHan+xFh2cAWA4EI4QcB5s0nanj3SihXS4sXSO+/UXY+IMBNahw83S4Hbtq17rWYHV0/7nGRlsYMrAAQLwgkC6mibpGVkSC+/bHpIVq+WfvrJvO5ymU3Phg83+5X87GeN/3x2cAWA4OeyLE87QzhLeXm5YmJiVFZWpujoaLvLQRM1tklajYgIqaqq7vv/+R/pxhuloUNNgAEABJemfn7Tc4KAONomaTWqqqSuXc028jfcIHXvHrj6AADOQTiB31mWtHChd5ukPfusdNFF/q8JAOBchBP4xXffSW++aQ7ae+MNM//DGyUl/q0LAOB8hBN45M2KmsNVVppN0WrCyIcf1n/9yPkkjWGTNAAA4QQNHG1FTc1yXMuSPv+8LoysXSvt31//5/TsKV12mXmkpkpnnmlOCPY074RN0gAANQgnqKexFTU7d5rrmZnmfJo33pB27KjfpnPnujBy6aVSXFz91+fMMT/D5WKTNABA41hKjFput5Sc7N3EVckM1aSlmTCSkSH94hdS2DGOkvTUK5OUxCZpABCKWEqMZnG7peef9y6YXHeddNtt0oUXSu3a+fZ72CQNAHAshJMg5euE1cMdOiR9+qmZtFpQYL5u3iwdOODd+6+7TrriiqbXHh5udnwFAMATwkkQ8mbCao3KSumTT0wAqQkj//mPuX6kyEjP14/EihoAgD8RToLMsSas/uUvUnR0XRD55JO6M2oOFx0tnXtu/cfPf24erKgBANip1YaT5gyL2PXzj7YFfM21KVMavtaxo9S7d/0gcuqpnievsqIGAGC3VhlOfBkWCfTPtyxp716zTPfIxyefeDdhNSXFLOWtCSInn1wXLo5l0CBp5UrP9bOiBgAQCE1aSpydna2HH35YJSUl6tmzpx5//HH17du30fZr165VZmamtmzZoqSkJN1///269dZbvf59LbmUuLFhkZoP75Urm/cBfKyfv3Sp1KeP5/Dx7bfm68GDTf/9krRkiTk4rzn83bMEAAh9AVtKvHz5cmVmZurJJ59USkqKsrKylJGRoc8//1ydO3du0H779u0aMGCAxowZo8WLFysvL0+333674uPjlZGR4euvb5ZjDYu4XNLEiWapq6cP4upqExwOHPD8qKiQfvObow+7DBvmXa1xcabH4/BHebk0bdqx39sSE1ZZUQMAsIvPPScpKSk677zzNHfuXElSdXW1kpKSNG7cOE2ePLlB+9///vdatWqVPvnkk9prw4YN048//qjc3FyPv6OyslKVhy0bKS8vV1JSUrN7Ttau9e7E27POko47rmH4+L//a/KvriciQuratWH4OOUU8zUx0aycOVLNJmnHmrC6fTu9HAAA+wWk56SqqkoFBQWactisy7CwMKWnp2vDhg0e37Nhwwalp6fXu5aRkaGJEyc2+ntmzZqlGTNm+FKaV7w9GXfLlmO3iYoyG5Ad/ti/X/ryy2O/d/58afhw72o5XHg4E1YBAKHvGJuN17dnzx653W7FxsbWux4bG6uSRs66Lykp8di+vLxcBxuZXDFlyhSVlZXVPgoLC30ps1HeDnf88Y9Sbq60bp30wQfS1q3SN99I330n7dtnejAOHjQTVwsLzQF4mzZJTz3l3c/v0qXJf0LthNWEhPrXExObP18GAAAncORqncjISEV6GtdoprQ08yF+rGGR++5rWu+Dtz+/ufuEsAU8ACCU+dRz0qlTJ4WHh6u0tLTe9dLSUsUdeQTtf8XFxXlsHx0drbZt2/pYbvPUDItIDZfWtsSwiL9//pG/q18/syqnXz+CCQAgdPgUTiIiItS7d2/l5eXVXquurlZeXp5SU1M9vic1NbVee0las2ZNo+39zd/DIgy7AADQPD6v1lm+fLlGjBihf/zjH+rbt6+ysrL0wgsv6LPPPlNsbKymTJminTt3atGiRZLMUuKzzz5bd955p0aNGqW33npL48eP16pVq7xeStyS+5zUCMYdYgEACCYB2+dk6NCh2r17t6ZNm6aSkhL16tVLubm5tZNei4uLtWPHjtr2Xbt21apVq/S73/1Oc+bMUWJiop555pmA73FyJH/v48E+IQAANE2TdogNNH/0nAAAAP9q6ue3T3NOAAAA/I1wAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHIVwAgAAHMWRpxIfqWafuPLycpsrAQAA3qr53PZ1v9egCCcVFRWSpKSkJJsrAQAAvqqoqFBMTIzX7YNi+/rq6mrt2rVL7du3l8vlarGfW15erqSkJBUWFrItvp9xrwOD+xwY3OfA4D4Hhj/vs2VZqqioUJcuXRQW5v1MkqDoOQkLC1NiYqLffn50dDT/4AcI9zowuM+BwX0ODO5zYPjrPvvSY1KDCbEAAMBRCCcAAMBRwh944IEH7C7CTuHh4erXr5/atAmKEa6gxr0ODO5zYHCfA4P7HBhOu89BMSEWAAC0HgzrAAAARyGcAAAARyGcAAAARyGcAAAARyGcAAAARwn5cJKdna3k5GRFRUUpJSVFGzduPGr7tWvX6txzz1VkZKROO+00LViwIDCFBjlf7nNOTo4uvfRSnXTSSYqOjlZqaqpWr14dwGqDm6//TNd455131KZNG/Xq1cvPFYYGX+9zZWWlpk6dqlNOOUWRkZFKTk7WvHnzAlRt8PL1Pi9evFg9e/ZUu3btFB8fr1GjRmnv3r0BqjY4rVu3TgMHDlSXLl3kcrn00ksvHfM9tn8WWiFs2bJlVkREhDVv3jxry5Yt1ujRo60OHTpYpaWlHttv27bNateunZWZmWlt3brVevzxx63w8HArNzc3wJUHF1/v84QJE6wHH3zQ2rhxo/XFF19YU6ZMsY477jjrww8/DHDlwcfXe13jhx9+sE499VTrsssus3r27BmgaoNXU+7zVVddZaWkpFhr1qyxtm/fbr377rvW+vXrA1h18PH1Pq9fv94KCwuz5syZY23bts3Kz8+3zjrrLOvaa68NcOXB5bXXXrOmTp1q5eTkWJKsF1988ajtnfBZGNLhpG/fvtadd95Z+73b7ba6dOlizZo1y2P7e++91zrrrLPqXRs6dKiVkZHh1zqDna/32ZMePXpYM2bM8Ed5IaWp93ro0KHW/fffb02fPp1w4gVf7/Prr79uxcTEWHv37g1UiSHB1/v88MMPW6eeemq9a4899piVkJDg1zpDiTfhxAmfhSE7rFNVVaWCggKlp6fXXgsLC1N6ero2bNjg8T0bNmyo116SMjIyGm2Ppt3nI1VXV6uiokIdO3b0V5khoan3ev78+dq2bZumT58eiDKDXlPu8yuvvKI+ffrooYceUkJCgrp166Z77rlHBw8eDFTZQacp9zk1NVWFhYV67bXXZFmWSktLtWLFCvXv3z9QZbcKTvgsDNlwsmfPHrndbsXGxta7Hhsbq5KSEo/vKSkp8di+vLycf8k0oin3+UiPPPKI9u3bpyFDhvijxJDRlHv95ZdfavLkyXr++ecdsy210zXlPm/btk3r16/XJ598ohdffFFZWVlauXKlxo4dG4iSg1JT7vMFF1ygxYsXa+jQoYqIiFBcXJw6dOig7OzsQJTcajjhszBkwwmCw5IlSzRjxgy98MIL6ty5s93lhBS3263hw4drxowZ6tatm93lhLTq6mq5XC4tXrxYffv2Vf/+/TV79mwtXLiQ/7BpQVu3btWECRM0bdo0FRQUKDc3V998843GjBljd2loYSH7n1KdOnVSeHi4SktL610vLS1VXFycx/fExcV5bB8dHa22bdv6rdZg1pT7XGPZsmW6/fbbtWLFigZdiGjI13tdUVGhDz74QJs2bdJdd90lyXyIWpalNm3a6I033tDFF18ckNqDSVP+mY6Pj1dCQoJiYmJqr3Xv3l2WZamoqEinn366X2sORk25z7NmzdL555+vSZMmSZLOOeccHX/88UpLS9PMmTMVHx/v97pbAyd8FoZsz0lERIR69+6tvLy82mvV1dXKy8tTamqqx/ekpqbWay9Ja9asabQ9mnafJWnp0qUaOXKkli5dqgEDBgSi1KDn672Ojo7Wxx9/rM2bN9c+xowZozPOOEObN29WSkpKIMsPGk35Z/qCCy7Qrl27tG/fvtprX3zxhcLCwpSYmOj3moNRU+7zgQMHGgxPhoeHS5IszrBtMY74LAzY1FsbLFu2zIqMjLQWLFhgbd261brjjjusDh06WCUlJZZlWdbkyZOtm2++ubZ9zfKpSZMmWZ9++qmVnZ3NUmIv+HqfFy9ebLVp08bKzs62iouLax8//vijXX9C0PD1Xh+J1Tre8fU+V1RUWImJidbgwYOtLVu2WP/617+s008/3br99tvt+hOCgq/3ef78+VabNm2sv//979bXX39trV+/3urTp4/Vt29fu/6EoFBRUWFt2rTJ2rRpkyXJmj17trVp0ybr22+/tSzLmZ+FIR1OLMuyHn/8cevkk0+2IiIirL59+1rvvfde7WsjRoywLrzwwnrt3377batXr15WRESEdeqpp1rz588PbMFBypf7fOGFF1qSGjxGjBgR+MKDkK//TB+OcOI9X+/zp59+aqWnp1tt27a1EhMTrczMTOvAgQMBrjr4+HqfH3vsMatHjx5W27Ztrfj4eOvGG2+0ioqKAlx1cHn77beP+u9cJ34WuiyLvjAAAOAcITvnBAAABCfCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcBTCCQAAcJT/B9f7jjQSiVmeAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "1-element Array{PyCall.PyObject,1}:\n", - " PyObject " - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = linspace(0,1,20)\n", - "plot(x, x.*x, \"bo-\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's plot a more complicated function, $\\sqrt{e^{x^2}} = e^{x^2/2}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl0FGXaxuG7E5JOAiQgSyDsOwhCRgQ+RAQ1EBQRdARxDeoIIqjojAqOouDCgKMiqKCMwOAy7uCGyCKiLCIgIorsiwgEjJAEEkhC8n5/lN0QkkAndKd6+V3n9Knq6urKkyc1w23VW1UOY4wRAABAiAmzuwAAAAA7EIIAAEBIIgQBAICQRAgCAAAhiRAEAABCEiEIAACEJEIQAAAISYQgAAAQkghBAAAgJBGCAASFr776Sg6HQ1999ZV72aBBg9SwYUPbaiqrnTt3yuFwaObMmWdcd8uWLerZs6fi4uLkcDg0Z84c3xdYBt27d1f37t3tLgMopILdBQBAoHr55ZcVExOjQYMG2VZDSkqKduzYoaeeekpVqlTRBRdcYFstGzZs0Lvvvhuw4ROhhxAEIGhNmzZNBQUFPtv+yy+/rOrVq9sWgo4ePaoVK1bon//8p4YPH25LDSfbsGGDxowZo+7duxcJQfPnz7enKOA0CEFAEMnOzlZMTIzdZfiNiIgIu0vwqd9//12SVKVKFZsrObPIyEi7SwCKYEwQcIpdu3bprrvuUosWLRQdHa1q1aqpf//+2rlz5xm/6xrL8e9//1svvfSSGjdurJiYGPXs2VO7d++WMUZPPPGE6tatq+joaPXt21cHDx4ssp2XX35ZrVu3ltPpVEJCgoYNG6b09PRC63Tv3l1t2rTRmjVrdPHFFysmJkYPP/yw+/PPP/9cXbt2VcWKFVW5cmX17t1bP//8s0c9SE9P13333aeGDRvK6XSqbt26uuWWW5SWluZe58CBA7r99tsVHx+vqKgotWvXTv/973+93o+GDRvqyiuv1Pz585WYmKioqCide+65+vDDD8/4exR3WqagoEAvvPCCzjvvPEVFRalGjRrq1auXVq9e7V5nxowZuvTSS1WzZk05nU6de+65mjJlSpG6fv75Zy1ZskQOh0MOh6PQmJf09HSNGDFC9erVk9PpVNOmTTV+/PgiR6bS09M1aNAgxcXFqUqVKkpJSSnyty7O448/rgYNGkiSHnjgATkcDvfvWtLpqMcff1wOh6PQMofDoeHDh2vOnDlq06aNnE6nWrdurXnz5hX5/p49e3T77bcrISFBTqdTjRo10tChQ5Wbm6uZM2eqf//+kqRLLrnE3RPXGK3ixgSVdh969dVX1aRJEzmdTnXo0EGrVq06Y5+A0+FIEHCKVatWafny5Ro4cKDq1q2rnTt3asqUKerevbs2bNjg0ZGWN998U7m5ubr77rt18OBBTZgwQQMGDNCll16qr776Sg899JC2bt2qyZMn6x//+IemT5/u/u7jjz+uMWPGKCkpSUOHDtWmTZs0ZcoUrVq1SsuWLSt0dOOPP/7Q5ZdfroEDB+qmm25SfHy8JOn1119XSkqKkpOTNX78eGVnZ2vKlCm66KKLtHbt2tOO1zhy5Ii6du2qX375RbfddpvOP/98paWl6eOPP9Zvv/2m6tWr6+jRo+revbu2bt2q4cOHq1GjRnrvvfc0aNAgpaen69577/VaPyRr8O91112nO++8UykpKZoxY4b69++vefPmqUePHp78Wd1uv/12zZw5U5dffrn+9re/6fjx4/rmm2/07bffusfTTJkyRa1bt9ZVV12lChUq6JNPPtFdd92lgoICDRs2TJI0ceJE3X333apUqZL++c9/SpK7/9nZ2erWrZv27NmjIUOGqH79+lq+fLlGjRqlffv2aeLEiZIkY4z69u2rpUuX6s4771SrVq00e/ZspaSknPH3uOaaa1SlShXdd999uv7663XFFVeoUqVKpeqFy9KlS/Xhhx/qrrvuUuXKlTVp0iT99a9/1a+//qpq1apJkvbu3auOHTsqPT1dgwcPVsuWLbVnzx69//77ys7O1sUXX6x77rlHkyZN0sMPP6xWrVpJknt6qtLuQ2+99ZYOHz6sIUOGyOFwaMKECbrmmmu0ffv2oD/iBx8yAArJzs4usmzFihVGkpk1a9Zpv7tjxw4jydSoUcOkp6e7l48aNcpIMu3atTN5eXnu5ddff72JjIw0x44dM8YYc+DAARMZGWl69uxp8vPz3eu9+OKLRpKZPn26e1m3bt2MJDN16tRCNRw+fNhUqVLF3HHHHYWWp6ammri4uCLLTzV69GgjyXz44YdFPisoKDDGGDNx4kQjybzxxhvuz3Jzc03nzp1NpUqVTGZmplf6YYwxDRo0MJLMBx984F6WkZFhateubf7yl7+4ly1evNhIMosXL3YvS0lJMQ0aNHC///LLL40kc88995T4uxlT/D6QnJxsGjduXGhZ69atTbdu3Yqs+8QTT5iKFSuazZs3F1o+cuRIEx4ebn799VdjjDFz5swxksyECRPc6xw/ftx07drVSDIzZswosu2Tufr7zDPPFFp+6u/t8thjj5lT/29fkomMjDRbt251L1u3bp2RZCZPnuxedsstt5iwsDCzatWqItt19e69994r8jdw6datW6FelXYfqlatmjl48KB73Y8++shIMp988kkxnQE8w+kw4BTR0dHu+by8PP3xxx9q2rSpqlSpou+//96jbfTv319xcXHu9506dZIk3XTTTapQoUKh5bm5udqzZ48kaeHChcrNzdWIESMUFnbif5533HGHYmNj9dlnnxX6OU6nU7feemuhZQsWLFB6erquv/56paWluV/h4eHq1KmTFi9efNraP/jgA7Vr105XX311kc9cp1Lmzp2rWrVq6frrr3d/FhERoXvuuUdHjhzRkiVLvNIPl4SEhEL1xMbG6pZbbtHatWuVmpp62t/n1N/N4XDoscceK/F3kwrvAxkZGUpLS1O3bt20fft2ZWRknPHnvPfee+ratauqVq1a6G+QlJSk/Px8ff3115KsPlaoUEFDhw51fzc8PFx33323x7+TNyQlJalJkybu923btlVsbKy2b98uyTqFOGfOHPXp06fYq89OPcXmidLuQ9ddd52qVq3qft+1a1dJctcIlAWnw4BTHD16VOPGjdOMGTO0Z88eGWPcn3nyD6Ak1a9fv9B7VwCoV69escsPHTokyRqPJEktWrQotF5kZKQaN27s/tylTp06RQacbtmyRZJ06aWXFltbbGzsaWvftm2b/vrXv552nV27dqlZs2aFgpp04tTHqXWWtR8uTZs2LfIPbfPmzSVZY0Zq1ap12npdtm3bpoSEBJ1zzjmnXW/ZsmV67LHHtGLFCmVnZxf6LCMjo1CgK86WLVv0448/qkaNGsV+fuDAAUlWn2rXrl3kNNapf39fO/XvI0lVq1Z1/x1+//13ZWZmqk2bNl77mWe7D7kC0an7ClAahCDgFHfffbdmzJihESNGqHPnzu6b0A0cONDjy63Dw8NLtfzkoFUaJx+xcHHV+PrrrxcbDk4+8lJeyqsf3rBt2zZddtllatmypZ577jnVq1dPkZGRmjt3rp5//nmP9oGCggL16NFDDz74YLGfuwKcr5R0ZCY/P7/Y5f74dzhVINSIwEMIAk7x/vvvKyUlRc8++6x72bFjxzy6Yudsua722bRpkxo3buxenpubqx07digpKemM23Cd1qhZs6ZH6xf3/Z9++umMdf74448qKCgo9F/yGzduLPR7eMvWrVtljCn0j/vmzZslqVQ35WvSpIm++OILHTx4sMSjQZ988olycnL08ccfFzr6UNxpxJLCRpMmTXTkyJEz9r9BgwZatGiRjhw5Uuho0KZNmzz5dUpUtWrVYvfXU4+ueKpGjRqKjY09435RmtNi5b0PAcVhTBBwivDw8CL/dTl58uQS/yvam5KSkhQZGalJkyYVquG1115TRkaGevfufcZtJCcnKzY2Vk8//bTy8vKKfO66t0xJ/vrXv2rdunWaPXt2kc9cNV1xxRVKTU3VO++84/7s+PHjmjx5sipVqqRu3bqdsc7S2Lt3b6F6MjMzNWvWLCUmJnp8KkyyfjdjjMaMGVPkM9fv5jricOpp0BkzZhT5TsWKFYsNGwMGDNCKFSv0xRdfFPksPT1dx48fl2T18fjx44Uuv8/Pz9fkyZM9/p2K06RJE2VkZOjHH390L9u3b1+xf1NPhIWFqV+/fvrkk08K3UrAxdWrihUrSpJH/8FQ3vsQUByOBAGnuPLKK/X6668rLi5O5557rlasWKGFCxe6LxX2pRo1amjUqFEaM2aMevXqpauuukqbNm3Syy+/rA4dOuimm2464zZiY2M1ZcoU3XzzzTr//PM1cOBA1ahRQ7/++qs+++wzdenSRS+++GKJ33/ggQf0/vvvq3///rrtttvUvn17HTx4UB9//LGmTp2qdu3aafDgwXrllVc0aNAgrVmzRg0bNtT777+vZcuWaeLEiapcubI326LmzZvr9ttv16pVqxQfH6/p06dr//79xQaT07nkkkt08803a9KkSdqyZYt69eqlgoICffPNN7rkkks0fPhw9ezZU5GRkerTp4+GDBmiI0eOaNq0aapZs6b27dtXaHvt27fXlClT9OSTT6pp06aqWbOmLr30Uj3wwAP6+OOPdeWVV2rQoEFq3769srKytH79er3//vvauXOnqlevrj59+qhLly4aOXKkdu7c6b7/kadjz0oycOBAPfTQQ7r66qt1zz33uG+R0Lx5c48H95/q6aef1vz589WtWzcNHjxYrVq10r59+/Tee+9p6dKlqlKlihITExUeHq7x48crIyNDTqfTfb+lU5X3PgQUy5Zr0gA/dujQIXPrrbea6tWrm0qVKpnk5GSzceNG06BBA5OSknLa75Z0ybLr8u333nuv0PIZM2YYSUUuO37xxRdNy5YtTUREhImPjzdDhw41hw4dKrROt27dTOvWrUusZfHixSY5OdnExcWZqKgo06RJEzNo0CCzevXqM/bgjz/+MMOHDzd16tQxkZGRpm7duiYlJcWkpaW519m/f7+7T5GRkea8884rckm3N/rRoEED07t3b/PFF1+Ytm3bGqfTaVq2bFnku55cIm+MdQn6M888Y1q2bGkiIyNNjRo1zOWXX27WrFnjXufjjz82bdu2NVFRUaZhw4Zm/PjxZvr06UaS2bFjh3u91NRU07t3b1O5cmUjqdAl4IcPHzajRo0yTZs2NZGRkaZ69ermwgsvNP/+979Nbm5uoV7ffPPNJjY21sTFxZmbb77ZrF279qwukTfGmPnz55s2bdqYyMhI06JFC/PGG2+UeIn8sGHDiny/uP19165d5pZbbjE1atQwTqfTNG7c2AwbNszk5OS415k2bZpp3LixCQ8PL/T3OPUSeWPObh9y1f7YY4+V3CDgDBzGMKoMgP9q2LCh2rRpo08//dTuUgAEGcYEAQCAkEQIAgAAIYkQBAAAQhJjggAAQEjiSBAAAAhJhCAAABCSuFniSQoKCrR3715Vrly5TE9FBgAA5c8Yo8OHDyshIaHIQ3lPhxB0kr179xZ5qjUAAAgMu3fvVt26dT1enxB0Etdt2nfv3q3Y2FivbTcvL0/z589Xz549FRER4bXtBiN6VTr0y3P0ynP0ynP0ynO+7FVmZqbq1atX6setEIJO4joFFhsb6/UQFBMTo9jYWP5Hcgb0qnTol+folefolefolefKo1elHcrCwGgAABCSCEEAACAkEYIAAEBIIgQBAICQRAgCAAAhiRAEAABCEiEIAACEJEIQAAAISYQgAAAQkghBAAAgJBGCAABASCIEAQCAkEQIAgAAvrd5s5yHDknG2F2JG0+RBwAAPhc+eLB6LV+u45GR0g032F2OJI4EAQCAcuDYtEmSZJo1s7mSEwhBAADAt9LS5PjjD2u+eXN7azkJIQgAAPjWn0eBsmvUkGJibC7mBEIQAADwrY0bJUlH6tSxuZDCCEEAAMC3/gxBh+vWtbmQwghBAADAt/48HXYkIcHmQgojBAEAAN9ynQ7jSBAAAAgZubnS9u2SCEEAACCUbNsm5efLVKqkY1Wr2l1NIYQgAADgO3+eCjMtWkgOh83FFEYIAgAAvvNnCFKLFvbWUQxCEAAA8B3X4zL86E7RLoQgAADgOyefDvMzhCAAAOAbxhCCAABACNq/X8rIsAZEN21qdzVFEIIAAIBv/DkeSI0aSVFR9tZSDEIQAADwDdeVYS1b2ltHCQhBAADAN/z48niJEAQAAHzFdTqMI0EAACCkcDoMAACEnKNHpZ07rXlOhwEAgJCxdat1n6AqVaSaNe2upliEIAAA4H0nnwrzswenuhCCAACA9/n5lWESIQgAAPiCnw+KlghBAADAF/z88niJEAQAALztpAencjoMAACEjj17pKwsKTxcatLE7mpKRAgCAADe5ToV1qSJFBlpby2nQQgCAADetWGDNfXj8UASIQgAAHjbzz9b0zZt7K3jDAhBAADAu376yZq2bm1vHWdACAIAAN5jzIkQxJGgs5efn69HH31UjRo1UnR0tJo0aaInnnhCxhj3OsYYjR49WrVr11Z0dLSSkpK0ZcsWG6sGACAE7dkjZWRYV4b58eXxUoCEoPHjx2vKlCl68cUX9csvv2j8+PGaMGGCJk+e7F5nwoQJmjRpkqZOnaqVK1eqYsWKSk5O1rFjx2ysHACAEOM6CtS8ueR02lvLGVSwuwBPLF++XH379lXv3r0lSQ0bNtT//vc/fffdd5Kso0ATJ07UI488or59+0qSZs2apfj4eM2ZM0cDBw60rXYAAEJKgJwKkwLkSNCFF16oRYsWafPmzZKkdevWaenSpbr88sslSTt27FBqaqqSkpLc34mLi1OnTp20YsUKW2oGACAkBciVYVKAHAkaOXKkMjMz1bJlS4WHhys/P19PPfWUbrzxRklSamqqJCk+Pr7Q9+Lj492fFScnJ0c5OTnu95mZmZKkvLw85eXlea1+17a8uc1gRa9Kh355jl55jl55jl4VFb5+vcIkHW/ZUuakvviyV2XdZkCEoHfffVdvvvmm3nrrLbVu3Vo//PCDRowYoYSEBKWkpJR5u+PGjdOYMWOKLJ8/f75iYmLOpuRiLViwwOvbDFb0qnTol+folefolefo1Z8KCtT7zxC0JC1NR+bOLbKKL3qVnZ1dpu85zMmXWPmpevXq6aGHHtLw4cPdy5588km98cYb2rhxo7Zv364mTZpo7dq1SkxMdK/TrVs3JSYm6oUXXih2u8UdCapXr57S0tIUGxvrtfrz8vK0YMEC9ejRQxEREV7bbjCiV6VDvzxHrzxHrzxHr06xbZsiWrWScTp1/NAhqcKJYy2+7FVmZqaqV6+ujIyMUv37HRBHgrKzs1WhQuFSw8PDVVBQIElq1KiRatWqpUWLFrlDUGZmplauXKmhQ4eWuF2n0ylnMSPXIyIifLIz+2q7wYhelQ798hy98hy98hy9+tOfzwxztGqliOjoYlfxRa/Kur2ACEF9+vTRk08+qXr16ql169Zau3atnnvuOd12222SJIfDoREjRujJJ59Us2bN1KhRIz366KNKSEhQv379bK4eAIAQEUBXhkkBEoImT56sRx99VHfddZcOHDighIQEDRkyRKNHj3av8+CDDyorK0uDBw9Wenq6LrroIs2bN09RUVE2Vg4AQAghBHlf5cqVNXHiRE2cOLHEdRwOh8aOHauxY8eWY2UAAMAtgC6PlwLkPkEAAMDP5eVJGzda84QgAAAQMrZssYJQpUpS/fp2V+MRQhAAADh7rvFArVtLDoe9tXiIEAQAAM5egA2KlghBAADAGwhBAAAgJBGCAABAyDl6VNq2zZonBAEAgJCxcaNUUCBVqybFx9tdjccIQQAA4OycfCosQK4MkwhBAADgbAXgeCCJEAQAAM7WyfcICiCEIAAAcHY4EgQAAELOoUPSr79a84QgAAAQMn74wZo2bChVrWprKaVFCAIAAGXnCkF/+Yu9dZQBIQgAAJTd2rXWNDHR3jrKgBAEAADKjiNBAAAg5Bw7Jm3YYM1zJAgAAISMn3+W8vOtx2XUrWt3NaVGCAIAAGXjOhWWmBhQj8twIQQBAICycQ2KDsDxQBIhCAAAlNXJR4ICECEIAACUXkGBtG6dNU8IAgAAIWPbNunIESkqSmrRwu5qyoQQBAAASs81Hui886QKFeytpYwIQQAAoPQC+CaJLoQgAABQegH8uAwXQhAAACg9jgQBAICQk5pqvRwOa0xQgCIEAQCA0nEdBWrRQqpY0d5azgIhCAAAlE6A3yTRhRAEAABKJwgGRUuEIAAAUFpBMChaIgQBAIDSOHJE2rLFmudIEAAACBk//igZIyUkSDVr2l3NWSEEAQAAzwXJeCCJEAQAAEpj9Wprev759tbhBYQgAADguVWrrGnHjvbW4QWEIAAA4JnDh6UNG6z5Dh3srcULCEEAAMAz339vDYquV0+qVcvuas4aIQgAAHjmu++saRAcBZIIQQAAwFNBNB5IIgQBAABPcSQIAACEnAMHpF27JIdDat/e7mq8ghAEAADOzHUqrEULKS7O3lq8hBAEAADOLMjGA0mEIAAA4IkgGw8kEYIAAMCZGHPiSBAhCAAAhIxdu6S0NCkiQmrXzu5qvIYQBAAATs91KqxtWykqyt5avIgQBAAATi8IB0VLhCAAAHAmQTgoWiIEAQCA08nPl9asseY5EgQAAELGL79IWVlSxYpSy5Z2V+NVhCAAAFAy13igCy6QwsPtrcXLCEEAAKBkQToeSCIEAQCA0wnSK8MkQhAAACjJsWPSjz9a8xwJAgAAIWPVKikvT4qPlxo0sLsaryMEAQCA4i1bZk27dJEcDntr8QFCEAAAKN7JISgIEYIAAEBRBQXS8uXWPCEIAACEjE2bpIMHrQem/uUvdlfjE4QgAABQlOtUWMeOUmSkvbX4CCEIAAAUFeTjgaQACkF79uzRTTfdpGrVqik6OlrnnXeeVq9e7f7cGKPRo0erdu3aio6OVlJSkrZs2WJjxQAABLAgHw8kBUgIOnTokLp06aKIiAh9/vnn2rBhg5599llVrVrVvc6ECRM0adIkTZ06VStXrlTFihWVnJysY8eO2Vg5AAAB6Pffpc2brfnOne2txYcq2F2AJ8aPH6969eppxowZ7mWNGjVyzxtjNHHiRD3yyCPq27evJGnWrFmKj4/XnDlzNHDgwHKvGQCAgOU6CnTuudI559hbiw8FRAj6+OOPlZycrP79+2vJkiWqU6eO7rrrLt1xxx2SpB07dig1NVVJSUnu78TFxalTp05asWJFiSEoJydHOTk57veZmZmSpLy8POXl5Xmtfte2vLnNYEWvSod+eY5eeY5eeS5YexX29dcKl1TQubPyvfS7+bJXZd2mwxhjvFyL10VFRUmS7r//fvXv31+rVq3Svffeq6lTpyolJUXLly9Xly5dtHfvXtWuXdv9vQEDBsjhcOidd94pdruPP/64xowZU2T5W2+9pZiYGN/8MgAA+LmLRo5UtY0b9f0992j3pZfaXc4ZZWdn64YbblBGRoZiY2M9/l5AhKDIyEhdcMEFWu46PCfpnnvu0apVq7RixYoyh6DijgTVq1dPaWlppWrimeTl5WnBggXq0aOHIiIivLbdYESvSod+eY5eeY5eeS4oe3XsmCpUry5Hbq7yNmyQmjb1ymZ92avMzExVr1691CEoIE6H1a5dW+eee26hZa1atdIHH3wgSapVq5Ykaf/+/YVC0P79+5WYmFjidp1Op5xOZ5HlERERPtmZfbXdYESvSod+eY5eeY5eeS6oevXdd1JurlSzpiJatvT6M8N80auybi8grg7r0qWLNm3aVGjZ5s2b1eDPJ9o2atRItWrV0qJFi9yfZ2ZmauXKleocxKPaAQDwOtf9gS68MCgfmnqygDgSdN999+nCCy/U008/rQEDBui7777Tq6++qldffVWS5HA4NGLECD355JNq1qyZGjVqpEcffVQJCQnq16+fzdUDABBAQuAmiS4BEYI6dOig2bNna9SoURo7dqwaNWqkiRMn6sYbb3Sv8+CDDyorK0uDBw9Wenq6LrroIs2bN889qBoAAJyBMSFxk0SXgAhBknTllVfqyiuvLPFzh8OhsWPHauzYseVYFQAAQWTzZiktTXI6pfPPt7sanwuIMUEAAKAcuE6FdehgBaEgRwgCAACWpUutaQicCpMIQQAAwGXxYmvarZu9dZQTQhAAAJB27rRe4eHSRRfZXU25IAQBAIATR4E6dJAqV7a3lnJCCAIAACdC0CWX2FtHOSIEAQAQ6owhBAEAgBC0bZv0229SRETIXBkmEYIAAIDrKFCnTlJMjL21lCNCEAAAoS4ET4VJhCAAAEJbiI4HkghBAACEtk2bpNRU6zEZnTvbXU25IgQBABDKXEeBOneWoqLsraWcEYIAAAhlIXoqTCIEAQAQuoyRvvrKmicEAQCAkLFhg/T771J0tNSxo93VlDtCEAAAocp1KqxLF2tgdIghBAEAEKpCeDyQRAgCACA0FRSE9HggiRAEAEBoWrdOOnhQqlRJuuACu6uxBSEIAIBQ9MUX1vSSS6wHp4YgQhAAAKFo3jxr2quXvXXYiBAEAECoOXxYWrbMmk9OtrcWGxGCAAAINV9+KR0/LjVtKjVpYnc1tiEEAQAQalzjgUL4KJBECAIAILQYw3igPxGCAAAIJVu3Sjt2WFeEde9udzW2IgQBABBKXEeBuna17hEUwghBAACEEsYDuRGCAAAIFTk5J54XFuLjgaRShKDw8HBf1gEAAHxt6VIpO1uqXVs67zy7q7GdxyHIGOPLOgAAgK+5xgP17Ck5HPbW4gc8DkEOmgUAQGBzjQfiVJgkxgQBABAa9uyR1q+3jgD16GF3NX6BEAQAQCiYP9+aduggVatmby1+4qxC0IYNG/Tvf/9be/fulSTNnj3bK0UBAAAv+/xza8ql8W5nFYLGjBmjHj16aMyYMVq3bp0WLFjgrboAAIC35OScGBR9xRX21uJHzioEValSRe3atdPUqVM1Y8YM/fjjj96qCwAAeMuSJdK1k3t5AAAgAElEQVThw1KtWlLHjnZX4zfOKgT1+HNglcPh0PPPP6++fft6pSgAAOBFH31kTfv0kcIYDuxyVp249tpr3fOTJk3SAw88cNYFAQAALzJG+vhja56DFYV4LQ6uX79eQ4YMUX5+viRr0PT111/vrc0DAICyWLtW+u03KSZGuvRSu6vxKxW8taH//Oc/ev7559WrVy/FxcVp586dGjlypLc2DwAAysJ1Kiw5WYqOtrcWP+O1ELRq1Sp98803OnTokLZv364vv/xSDRo08NbmAQBAWbhCEKfCivDa6bD77rtPd955p1avXq23335b/fr107Jly7y1eQAAUFq7dknr1lmDoXv3trsav+O1I0FLly51z3fo0EGffvqpBgwYQBACAMAurgHRXbpI1avbW4sf8tl1cnXq1NGiRYt8tXkAAHAmnAo7LZ/eLCAqKsqXmwcAACVJT7dukihJV11lby1+ymchKCMjQ4MHD1bTpk3VqlUr7du3z1c/CgAAnOrzz6Xjx6VWraRmzeyuxi/5LAQNGzZM69ev14QJE7Rr1y4dPXpUkjWA+sUXX/TVjwUAABKnwjzgsxD0+eef6+WXX9Y111yj8PBw9/Lk5GT997//9dWPBQAAubknnhrPqbAS+SwEGWNUuXLlIsubNWumLVu2+OrHAgCAxYulzEwpPl7q1MnuavyWz0LQ5ZdfrjfffLPI8qysLDkcDl/9WAAA8O671vTqq3lg6ml47T5Bpxo3bpwuuOACSdZRIYfDoWPHjumJJ57Q+eef76sfCwBAaMvNlT780Jq/7jp7a/FzPgtB9evX1/LlyzVs2DBlZ2erY8eOOnz4sGJjYzV37lxf/VgAAELbwoXW5fG1akldu9pdjV/zWQiSpKZNm+qLL77Qr7/+qnXr1ikiIkKdOnVS1apVffljAQAIXe+8Y02vvVY66cIkFOVxCDLG6KefflKbNm1K/UPq16+v+vXrl/p7AACgFHJypDlzrPkBA+ytJQB4HIL++OMPzZ07V7NmzVKFChV04YUX6rLLLlN0dLQv6wMAAJ764gvrqrCEBOt5YTgtj0NQ1apVdeONN+rGG29UQUGBli9frgkTJig7O1v169dX79691bBhQx+WCgAATst1VVj//lwV5oEyjQkKCwvTRRddpIsuukiS9Ntvv+mzzz7Ttm3bFBMTo+7du6tr166FbpIIAAB86OjRE3eJ5qowj3hlYHTdunU1ZMgQSVJOTo4WL16s0aNH6/jx4zr33HN1+eWXq2bNmt74UQAAoDjz5klHjkj16nGDRA95/eowp9OpXr16qVevXpKkX375RW+++aZ+++03xcXF6corr+Q+QQAAeJvrqrABAzgV5iGfXiKfkZGhdevWafXq1Vq4cKFatmyp2NhYQhAAAN6UnS198ok1z1VhHvN6CPrll1/06aef6pNPPtGWLVuUlJSkPn366KWXXlKVKlW8/eMAAMBnn1lBqGFDqUMHu6sJGF4NQV9//bWSk5N19913a9y4cercubPCOCQHAIBvua4KGzBA4vmcHvNqQrn44ov16quvasKECerSpYvPAtC//vUvORwOjRgxwr3MGKPRo0erdu3aio6OVlJSEk+rBwAEv0OHTpwKGzjQ3loCjNdTys033+ztTRayatUqvfLKK2rbtm2h5RMmTNCkSZM0depUrVy5UhUrVlRycrKOHTvm03oAALDVu+9ad4pu00ZKTLS7moASUOeqjhw5ohtvvFHTpk0r9PwxY4wmTpyoRx55RH379lXbtm01a9Ys7d27V3Nctw8HACAY/fe/1jQlhVNhpRRQIWjYsGHq3bu3kpKSCi3fsWOHUlNTCy2Pi4tTp06dtGLFivIuEwCA8rF5s7RihXVJ/I032l1NwPHpJfLe9Pbbb+v777/XqlWrinyWmpoqSYqPjy+0PD4+3v1ZcXJycpSTk+N+n5mZKUnKy8tTXl6eN8p2b+/kKUpGr0qHfnmOXnmOXnnO7l6FzZihcEkFPXsqv3p1yY//Zr7sVVm3GRAhaPfu3br33nu1YMECRUVFeW2748aN05gxY4osnz9/vmJiYrz2c1wWLFjg9W0GK3pVOvTLc/TKc/TKc7b0qqBAPV57TTGS1rRpo71z55Z/DWXgi15lZ2eX6XsOY4zxci1eN2fOHF199dWFnkWWn58vh8OhsLAwbdq0SU2bNtXatWuVeNKgsG7duikxMVEvvPBCsdst7khQvXr1lJaWptjYWK/Vn5eXpwULFqhHjx6KiIjw2naDEb0qHfrlOXrlOXrlOTt75Vi8WBWSk2Xi4nR8927JiwcJfMGXvcrMzFT16tWVkZFRqn+/A+JI0GWXXab169cXWnbrrbeqZcuWeuihh9S4cWPVqlVLixYtcoegzMxMrVy5UkOHDi1xu06nU06ns8jyiIgIn+zMvtpuMKJXpUO/PEevPEevPGdLr958U5LkuO46RVSuXL4/+yz4oldl3V5AhKDKlSurTZs2hZZVrFhR1apVcy8fMWKEnnzySTVr1kyNGjXSo48+qoSEBPXr18+OkgEA8J0jR6QPPrDmU1LsrSWABUQI8sSDDz6orKwsDR48WOnp6brooos0b948r44hAgDAL3zwgZSVJTVrJnXubHc1AStgQ9BXX31V6L3D4dDYsWM1duxYewoCAKC8uO4NdMst3BvoLATUfYIAAAh5u3ZJixdb8z5+SkOwIwQBABBIZsywppdcIjVoYG8tAY4QBABAoDh+XJo2zZofMsTeWoIAIQgAgEDxySfS3r1SjRrS1VfbXU3AIwQBABAopk61prffLkVG2ltLECAEAQAQCLZtk+bPt64Gu+MOu6sJCoQgAAACwauvWtPkZKlxY3trCRKEIAAA/F1OjjR9ujV/msdBoXQIQQAA+LsPPpDS0qS6daUrrrC7mqBBCAIAwN+5BkTfcYdUIWAf9uB3CEEAAPizn3+WvvlGCg+3rgqD1xCCAADwZ66jQFddJdWpY28tQYYQBACAv8rMlGbNsubvvNPeWoIQIQgAAH/12mtWEGrZUkpKsruaoEMIAgDAHx0/Lr3wgjV/331SGP9kexsdBQDAH82eLe3aJVWvLt18s93VBCVCEAAA/ui556zpXXdJ0dH21hKkCEEAAPib5culb7+VnE4rBMEnCEEAAPgb11Ggm26S4uPtrSWIEYIAAPAn27db44Eka0A0fIYQBACAP3nhBamgwHpafOvWdlcT1AhBAAD4i/R0695AkvT3v9tbSwggBAEA4C+mTpWysqQ2bbg5YjkgBAEA4A+ysqRnn7XmH3hAcjjsrScEEIIAAPAHr7wipaVJjRtLN9xgdzUhgRAEAIDdjh6VnnnGmn/4YalCBXvrCRGEIAAA7Pbaa1JqqlS/Po/IKEeEIAAA7JSTI/3rX9b8yJFSZKS99YQQQhAAAHaaOVPas0dKSJBuvdXuakIKIQgAALvk5Z04CvTQQ1JUlL31hBhCEAAAdnnjDWnnTuv5YHfcYXc1IYcQBACAHfLypKeesub/8Q8pOtreekIQIQgAADtMny5t2yZVry7deafd1YQkQhAAAOUtO1saM8aaf/RRqVIle+sJUYQgAADK2wsvSPv2SQ0bSkOG2F1NyCIEAQBQng4elMaPt+afeEJyOu2tJ4QRggAAKE/jxkkZGVLbtjwjzGaEIAAAysvu3dLkydb8uHFSGP8M24nuAwBQXh5/3HpMxsUXS5dfbnc1IY8QBABAediwwXpEhmSNCXI4bC0HhCAAAMrHAw9IBQXS1VdL//d/dlcDEYIAAPC9zz6T5s6VIiJOPCsMtiMEAQDgSzk50ogR1vx990nNm9tbD9wIQQAA+NLEidLWrVKtWtIjj9hdDU5CCAIAwFf27rVuiChZg6ErV7a3HhRCCAIAwFceekjKyrIGQt90k93V4BSEIAAAfGHZMumNN6xL4SdN4saIfoi/CAAA3pafL91zjzV/221Shw721oNiEYIAAPC2F1+Uvv9eio2Vnn7a7mpQAkIQAADetGuX9M9/WvMTJkg1a9pbD0pECAIAwFuMkYYOtQZDd+0q3XGH3RXhNAhBAAB4y//+J33+uRQZKU2bxmBoP8dfBwAAb0hLk+6915ofPVpq0cLeenBGhCAAALzh/vutIHTeedbDUuH3CEEAAJwlx/z50uuvW/cE+s9/rNNh8HuEIAAAzkLEkSMKv/NO680990gdO9pbEDxGCAIA4Cy0feUVOX77TWrWTHrqKbvLQSkQggAAKCPH//6nut98IxMebj0io2JFu0tCKRCCAAAoi19/Vfifj8YoePhhToMFIEIQAAClVVAgDRokR0aGDjZvroJRo+yuCGVACAIAoLSef15avFgmJkbfjxghVahgd0UoA/5qAACUxtq10sMPS5Lyn31WWbVr21wQyoojQQAAeCo9Xbr2Wik3V7rqKpnbbrO7IpwFQhAAAJ4wRrr1Vmn7dqlhQ2nGDOvmiAhYhCAAADzx/PPSnDnW3aDfe0865xy7K8JZCogQNG7cOHXo0EGVK1dWzZo11a9fP23atKnQOsYYjR49WrVr11Z0dLSSkpK0ZcsWmyoGAASVZcukBx+05idOlC64wN564BUBEYKWLFmiYcOG6dtvv9WCBQuUl5ennj17Kisry73OhAkTNGnSJE2dOlUrV65UxYoVlZycrGPHjtlYOQAg4B04IF13nZSfL11/veR6RAYCXkBcHTZv3rxC72fOnKmaNWtqzZo1uvjii2WM0cSJE/XII4+ob9++kqRZs2YpPj5ec+bM0cCBA+0oGwAQ6PLyrOCzZ4/UqpX06quMAwoiARGCTpWRkSFJOufP87E7duxQamqqkpKS3OvExcWpU6dOWrFiRYkhKCcnRzk5Oe73mZmZkqS8vDzl5eV5rV7Xtry5zWBFr0qHfnmOXnmOXp0QdvfdCv/yS5lKlXT8rbckp9MKRn+iV57zZa/Kuk2HMcZ4uRafKigo0FVXXaX09HQtXbpUkrR8+XJ16dJFe/fuVe2T7tcwYMAAORwOvfPOO8Vu6/HHH9eYMWOKLH/rrbcUExPjm18AABAQGs2dq7avvirjcGjlqFHaz2Mx/FZ2drZuuOEGZWRkKDY21uPvBdyRoGHDhumnn35yB6CzMWrUKN1///3u95mZmapXr5569uxZqiaeSV5enhYsWKAePXooIiLCa9sNRvSqdOiX5+iV5+iV5Fi4UOGvvSZJKnjqKbX/xz+KXY9eec6XvXKdySmtgApBw4cP16effqqvv/5adevWdS+vVauWJGn//v2FjgTt379fiYmJJW7P6XTK6XQWWR4REeGTndlX2w1G9Kp06Jfn6JXnQrZXmzdLN9xgDYS+5RaFjxyp8DOMAwrZXpWBL3pV1u0FxNVhxhgNHz5cs2fP1pdffqlGjRoV+rxRo0aqVauWFi1a5F6WmZmplStXqnPnzuVdLgAgUB08KF15pXVn6AsvZCB0kAuII0HDhg3TW2+9pY8++kiVK1dWamqqJGvwc3R0tBwOh0aMGKEnn3xSzZo1U6NGjfToo48qISFB/fr1s7l6AEBAyM6W+vSRtmyR6teXZs+2BkIjaAVECJoyZYokqXv37oWWz5gxQ4MGDZIkPfjgg8rKytLgwYOVnp6uiy66SPPmzVNUVFQ5VwsACDh5eda9gJYvl6pUkebOlWrWtLsq+FhAhCBPLmBzOBwaO3asxo4dWw4VAQCChjHS4MHSp59KUVHWtHVru6tCOQiIMUEAAPjMww9LM2dK4eHSu+9KXbrYXRHKCSEIABC6nn9e+te/rPlXX7XGBCFkEIIAAKHp5Zcl173ixo2TbrvN3npQ7ghBAIDQ88or0rBh1vyDD0oPPWRvPbAFIQgAEFqmTTvxJPi//906Hca9gEISIQgAEDqmT7euBJOkESOkZ54hAIUwQhAAIDRMmyb97W/W/D33SM89RwAKcYQgAEDwGz/eOgJkjDUWaOJEAhAIQQCAIGaMNeh55Ejr/ciR0uTJBCBICpA7RgMAUGr5+dLQodZpMEmaMEF64AF7a4JfIQQBAILPsWPSLbdI770nhYVZl8S7xgMBfyIEAQCCy++/S337SitWSBER0ltvSddea3dV8EOEIABA8PjlF6l3b2nHDutp8B9+KF1yid1VwU8RggAAweHLL6VrrpEyMqTGjaW5c6UWLeyuCn6Mq8MAAIHNGGvMT3KyFYAuvFD69lsCEM6IEAQACFzHjlkDnu+8Uzp+XBo4UFq0SKpRw+7KEAA4HQYACEy7dkl//au0Zo11BdjTT1sPQ+UeQPAQIQgAEHgWLrSO+vzxh1StmvT221JSkt1VIcBwOgwAEDiOH5cefVTq2dMKQO3bW0eCCEAoA44EAQACw86d0g03WPf/kayxQJMnS1FRtpaFwMWRIACA/3vnHSkx0QpAsbHW6a9p0whAOCscCQIA+K9Dh6QRI6RZs6z3nTtbd4Bu2NDWshAcOBIEAPBPn30mtWljBSCHQ3rkEenrrwlA8BqOBAEA/Et6unTffdLMmdb75s2t+c6d7awKQYgjQQAA/2CM9MEHUuvWVuhxOKS//1364QcCEHyCI0EAAPvt2CENH24970uSmjWTZsyQunSxty4ENY4EAQDsk5srjRtnHf2ZO1eKiLDuA7RuHQEIPseRIABA+TPGGvj8979Lmzdbyy69VHr5ZR58inLDkSAAQPlav96643OfPlYAqllTeuMN61EYBCCUI0IQAKB8pKZKQ4daNz1cuFCKjJRGjpS2bJFuvJEHn6LccToMAOBbhw5JEyZIL7wgHT1qLbv2Wmn8eKlxY3trQ0gjBAEAfCMrywo+EyZIGRnWsv/7Pyv8XHyxvbUBIgQBALwtM9Ma4Pzcc9Lvv1vL2rSRnnrKGgfEaS/4CUIQAMA7Dh2SJk2yjv4cOmQta9JEGjNGGjhQCg+3tz7gFIQgAMDZ+fVXK/hMmyYdPmwta9lS+uc/rfBTgX9q4J/YMwEAZbN6tfTss9J770n5+daytm2tB51ecw1HfuD3CEEAAM/l5kqzZ0svvSR9882J5Zdeat34sFcvKYy7ryAwEIIAAGf222/Sq69ap7xSU61lFSpYp7v+/nfr3j9AgCEEAQCKl5dnPc/rtdesqeuUV+3a0uDB0h13SHXq2FsjcBYIQQCAwjZu1LkzZ6rCkCHS/v0nlnfrJg0bJvXrZz3oFAhwhCAAgHWK6+23pTfeUMSaNWrmWl6zppSSIt16q9SqlZ0VAl5HCAKAUHXwoPTRR1b4WbhQKiiQJJnwcO3/y19U/aGHVKFvX476IGgRggAglBw8KM2ZY13WvnChdPz4ic/+7/+km27S8auv1spVq3TFFVcQgBDUCEEAEOx27LCO+Hz0kXVZu2uAsySdd57Uv790ww3W3Z0la0A0EAIIQQAQbI4fl1askD7/XPr0U2n9+sKft2tnBZ9rr5VatLCnRsAPEIIAIBjs3i0tWGAFnwULTjy1XbLu3Ny1q9S3r3TVVVLjxvbVCfgRQhAABKJDh6QlS6xxPQsXSps2Ff68WjUpOVm6/HLpiiukc86xp07AjxGCACAQ/PGH9PXXVvBZskRat04y5sTnYWFShw5W8LniCumCC3h2F3AGhCAA8DfGSFu3SsuWnXj98kvR9Vq2lJKSrFe3blKVKuVfKxDACEEAYLdDh6TvvpNWrrRe330npaUVXa9VK6l7dyvwdOsm1apV7qUCwYQQBADlKT1d+v57ac0aafVqa7ptW9H1IiOt01tdukgXXmi9atQo/3qBIEYIAgBfyM+37s/z44/W+J1166QffpB27Sp+/SZNpE6dTrwSEyWns3xrBkIMIQgAzkZBgXV5+oYN1uunn6zXzz9LR48W/51GjaT27U+8zj/fupoLQLkiBAGAJ7KypC1brEvRN22SNm+WNm60BixnZxf/nago6dxzrZsTJiZar7ZtGcAM+AlCEAC4HDokbd9uvbZts0LP1q3Wa+/ekr8XESE1b24NXG7Txnqdd551iovL1AG/RQgCEBqMUcThw9a4nL17pZ07rfE5O3darx07rEHLp1OtmvWYiebNrWmLFtaRnsaNedAoEIAIQQACnzHWzQT37pX27JF++8167dljjdfZvVsVfv1VV2RlnXlbtWtbY3YaN5aaNZOaNrVeTZowbgcIMoQgAP4rJ0fav7/wa98+KTX1xHTPHms+N/e0m3L8OTU1ashRv74VdBo0kBo2tKZNmljzMTG+/q0A+AlCEIDyYYx05Ih1xOaPP6ybAaalSb//fmJ64MCJ6YEDhR8C6onq1aWEBKlePaluXetVp45Uv77yatfWvJ9+Uq+rr1YEp64AiBAEoLSOHbPGzrhehw6dmLpeBw8WfrmCT15e6X9eRIRUs6YUH2/dIbl27cLTOnWs4FOrlnWDwZLk5algy5ay/94Agg4hCAgFx49bl3gfOSIdPlz8KzPzxNT1ysiwXifP5+ScXS1OpzW2pkYN68iN61WjhhV2Tp7Gx0tVq0oOx5m3CwClRAgC7FZQYB1dOXq06Cs7+8T01FdWlsKOHFHixo0Kf+sta72srBNhxzU9csTavjc5HNa9buLirJBSpYo1dc1Xqyadc471qlrVeu96xcQQagD4BUIQQocx1hGR3FzrtExe3on5k6envnJySp4W9zp2rOj8sWMnXkePFp6eYUDv6YRLalCqL4RLlStLlSpZ09hYa+qaP/UVF3di6pqvWtX6flhYmesGAH9ACCoP+/cr+sAB654krgGZxhRdz5gTy0+dP3nZyS/X8oKC4j8/eXlx8ydPz/TKzy86f/L01Pni3ufnW0GkhGXhubn6y65dCn/nHeu7x4+fWN81n5d3Yv7U9655V8g5+XX8uG//zt4QESFFR594xcQUnVasaE1jYpTvdGrznj1q/pe/KDw21vqsYkUrpFSqdOK9K+hERnIUBgD+FHQh6KWXXtIzzzyj1NRUtWvXTpMnT1bHjh1trSn81lvVc+FCW2sIFGGS6pfnD6xQwQoekZHW1Om05ot773o5nSeWu+ZPfUVFnXi53kdHF17mCjonf1ahdP+TLMjL0+a5c9X0iisUzhVPAFAqQRWC3nnnHd1///2aOnWqOnXqpIkTJyo5OVmbNm1SzZo17SssMlLHIyMVHh6uQv8NXtx/kbuWnW566kuyTk2cuvzUZWFhhZeFhxddHh5e8vtTl51uevLr1GUVKhSd/3Oa73Bo45YtatmmjcIjI63lJ7/Cw61wEhFR/PuTpyW9XAEnIoKjIgAQwoIqBD333HO64447dOutt0qSpk6dqs8++0zTp0/XyJEjbasrf84czZ07V1dccQX3JzmDgrw8bZ07V805sgEA8LGgGdmYm5urNWvWKCkpyb0sLCxMSUlJWrFihY2VAQAAfxQ0R4LS0tKUn5+v+Pj4Qsvj4+O1cePGYr+Tk5OjnJPueZKZmSlJysvLU15ZbupWAte2vLnNYEWvSod+eY5eeY5eeY5eec6XvSrrNoMmBJXFuHHjNGbMmCLL58+frxgfPD9owYIFXt9msKJXpUO/PEevPEevPEevPOeLXmVnZ5fpe0ETgqpXr67w8HDt37+/0PL9+/erVq1axX5n1KhRuv/++93vMzMzVa9ePfXs2VOxsbFeqy0vL08LFixQjx49GBN0BvSqdOiX5+iV5+iV5+iV53zZK9eZnNIKmhAUGRmp9u3ba9GiRerXr58kqaCgQIsWLdLw4cOL/Y7T6ZTT6SyyPCIiwic7s6+2G4zoVenQL8/RK8/RK8/RK8/5oldl3V7QhCBJuv/++5WSkqILLrhAHTt21MSJE5WVleW+WgwAAMAlqELQddddp99//12jR49WamqqEhMTNW/evCKDpQEAAIIqBEnS8OHDSzz9BQAA4BI09wkCAAAoDUIQAAAISYQgAAAQkghBAAAgJBGCAABASCIEAQCAkBR0l8ifDWOMpLLffrskeXl5ys7OVmZmJncUPQN6VTr0y3P0ynP0ynP0ynO+7JXr323Xv+OeIgSd5PDhw5KkevXq2VwJAAAorcOHDysuLs7j9R2mtLEpiBUUFGjv3r2qXLmyHA6H17brejDr7t27vfpg1mBEr0qHfnmOXnmOXnmOXnnOl70yxujw4cNKSEhQWJjnI304EnSSsLAw1a1b12fbj42N5X8kHqJXpUO/PEevPEevPEevPOerXpXmCJALA6MBAEBIIgQBAICQFP74448/bncRoSA8PFzdu3dXhQqcgTwTelU69Mtz9Mpz9Mpz9Mpz/tYrBkYDAICQxOkwAAAQkghBAAAgJBGCAABASCIEAQCAkEQI8pKXXnpJDRs2VFRUlDp16qTvvvvutOt/9dVXOv/88+V0OtW0aVPNnDmzfAr1A6Xp1VdffSWHw1HklZqaWo4V2+Prr79Wnz59lJCQIIfDoTlz5pzxO6G6X5W2V6G8X40bN04dOnRQ5cqVVbNmTfXr10+bNm064/dCcd8qS69Cdd+aMmWK2rZt674RYufOnfX555+f9jv+sE8RgrzgnXfe0f3336/HHntM33//vdq1a6fk5GQdOHCg2PV37Nih3r1765JLLtEPP/ygESNG6G9/+5u++OKLcq68/JW2Vy6bNm3Svn373K+aNWuWU8X2ycrKUrt27fTSSy95tH4o71el7ZVLKO5XS5Ys0bBhw/Ttt99qwYIFysvLU8+ePZWVlVXid0J13ypLr1xCbd+qW7eu/vWvf2nNmjVavXq1Lr30UvXt21c///xzsev7zT5lcNY6duxohg0b5n6fn59vEhISzLhx44pd/8EHHzStW7cutOy6664zycnJPq3TH5S2V4sXLzaSzKFDh8qrRL8kycyePfu064TyfnUyT3rFfnXCgQMHjCSzZMmSEtdh37J40iv2rROqVq1q/vOf/xT7mb/sUxwJOku5ublas2aNkpKS3MvCwsKUlJSkFStWFPudFStWFFpfkpKTk0tcP1iUpVcuieTItVgAAAUSSURBVImJql27tnr06KFly5b5utSAFKr71dlgv5IyMjIkSeecc06J67BvWTzplUso71v5+fl6++23lZWVpc6dOxe7jr/sU4Sgs5SWlqb8/HzFx8cXWh4fH1/iOeDU1NRi18/MzNTRo0d9VqvdytKr2rVra+rUqfrggw/0wQcfqF69eurevbu+//778ig5oITqflUW7FeWgoICjRgxQl26dFGbNm1KXI99y/NehfK+tX79elWqVElOp1N33nmnZs+erXPPPbfYdf1ln/KP+1YDJWjRooVatGjhfn/hhRdq27Ztev755/X666/bWBkCGfuVZdiwYfrpp5+0dOlSu0vxe572KpT3rRYtWuiHH35QRkaG3n//faWkpGjJkiUlBiF/wJGgs1S9enWFh4dr//79hZbv379ftWrVKvY7tWrVKnb92NhYRUdH+6xWu5WlV8Xp2LGjtm7d6u3yAl6o7lfeEmr71fDhw/Xpp59q8eLFqlu37mnXDfV9qzS9Kk6o7FuRkZFq2rSp2rdvr3Hjxqldu3Z64YUXil3XX/YpQtBZioyMVPv27bVo0SL3soKCAi1atKjEc6GdO3cutL4kLViwoMT1g0VZelWcH374QbVr1/ZFiQEtVPcrbwmV/coYo+HDh2v27Nn68ssv1ahRozN+J1T3rbL0qjihsm+dqqCgQDk5OcV+5jf7VLkOww5Sb7/9tnE6nWbmzJlmw4YNZvDgwaZKlSomNTXVGGPMyJEjzc033+xef/v27SYmJsY88MAD5pdffjEvvfSSCQ8PN/PmzbPrVyg3pe3V888/b+bMmWO2bNli1q9fb+69914TFhZmFi5caNevUG4OHz5s1q5da9auXWskmeeee86sXbvW7Nq1yxjDfnWy0vYqlPeroUOHmri4OPPVV1+Zffv2uV/Z2dnuddi3LGXpVajuWyNHjjRLliwxO3bsMD/++KMZOXKkcTgcZv78+e7P/XGfIgR5yeTJk039+vVNZGSk6dixo/n222/dn6WkpJhu3boVWn/x4sUmMTHRREZGmsaNG5sZM2aUb8E2Kk2vxo8fb5o0aWKioqLMOeecY7p3726+/PJLG6ouf65LbU99paSkGGPYr05W2l6F8n5VXJ8kFdpX2LcsZelVqO5bt912m2nQoIGJjIw0NWrUMJdddpk7ABnjv/uUwxhjyu+4EwAAgH9gTBAAAAhJhCAAABCSCEEAACAkEYIAAEBIIgQBAICQRAgCAAAhiRAEAABCEiEIAACEJEIQAAAISYQgAAAQkghBAILW//73P0VHR2vfvn3uZbfeeqvatm2rjIwMGysD4A94dhiAoGWMUWJioi6++GJNnjxZjz32mKZPn65vv/1WderUsbs8ADarYHcBAOArDodDTz31lK79/3bt0GZhMArD6DsBFjQj1IGhvhbDKqyBAYdngQaLryNBMgEbNPndv0Kb3nPkp1755OY7HrPZbHK5XPJ6vQQQkMQlCCigaZq83+88n88cDoep5wAz4U8QsGh93+fz+WQcx6zX66nnADPiEgQs1jAMads2t9st9/s9q9Uqj8dj6lnATPgTBCzS9/tN13U5n885nU7ZbrfZ7XYZhiFN00w9D5gBlyBgcX6/X/b7fdq2zfV6/X/vui7jOKbv+wnXAXMhggCAknyMBgBKEkEAQEkiCAAoSQQBACWJIACgJBEEAJQkggCAkkQQAFCSCAIAShJBAEBJIggAKEkEAQAl/QGkQaV3uS3eAgAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x = linspace(0, 3, 100)\n", - "plot(x, sqrt.(exp.(x.*x)), \"r-\")\n", - "title(\"a more complicated function\")\n", - "xlabel(L\"x\")\n", - "ylabel(L\"\\sqrt{e^{x^2}}\")\n", - "grid()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHLCAYAAADSuXIVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmYzXX/x/HnmTGLwYxlGGsGhcYyY49MRrgly51CaZOSZGmhfTHS4q77LkUT0UIrbZaUpUSG7BoRogzJGpoZ62Dm+/vj/TPdc0vGmJnvmTOvx3WdK+fMmfN9n6PrOi+f5f3xOI7jICIiIlII+bldgIiIiEhuKciIiIhIoaUgIyIiIoWWgoyIiIgUWgoyIiIiUmgpyIiIiEihpSAjIiIihZaCjIiIiBRaCjIiIiJSaCnIiMhfiouLIy4uzpVrz5kzh5iYGIKDg/F4PKSkpLhShzdw8+9BpDAo5nYBIiL/7cCBA/Tq1Yt69eqRkJBAUFAQJUqUcLssEfFSCjIi4lVWrlzJoUOHePrpp2nfvr3b5YiIl9PUkoh4lX379gFQunRplyspGJmZmRw/ftztMkQKLQUZkVzavn07AwcOpE6dOhQvXpxy5crRs2dPtm3blqPfz8zM5JVXXqFBgwYEBwdTvnx5rrrqKlatWpX1nFOnTvH0009Tq1YtgoKCiIyM5LHHHiM9PT3ba3k8HkaMGHHGNSIjI7ntttuy7k+aNAmPx8OiRYu46667KFeuHKGhodx666388ccf56w5PT2d+Ph4Lr74YoKCgqhWrRoPPfTQGfWczccff0yTJk0oXrw44eHh3HzzzezcuTPr53FxcfTp0weAZs2a4fF4stX/v0aMGIHH42HTpk306tWL0NBQypUrx7333ntGOMjJZzl06FDKlSuH4zhZjw0ZMgSPx8OYMWOyHtu7dy8ej4dx48ad92fj8XgYPHgw77//PvXq1SMoKIg5c+bk6PMDOHHiBMOHD6dJkyaEhYVRokQJYmNjWbBgQbbnNW7cmGuvvTbbYw0aNMDj8fDDDz9kPTZ16lQ8Hg8bN24E4NChQ9x3331ERkYSFBREhQoV6NChA2vWrMlxjSIFSVNLIrm0cuVKvvvuO2644QaqVq3Ktm3bGDduHHFxcWzYsIGQkJC//f077riDSZMm0alTJ/r168epU6dITExk2bJlNG3aFIB+/foxefJkevTowbBhw1i+fDmjRo1i48aNTJs2Lde1Dx48mNKlSzNixAh++uknxo0bx/bt21m4cCEej+cvfyczM5Nu3bqxePFi+vfvz6WXXsq6desYPXo0mzdvZvr06X97zUmTJtG3b1+aNWvGqFGj2Lt3L6+88gpLlizh+++/p3Tp0jz++OPUqVOHCRMmMHLkSGrUqEGtWrXO+X569epFZGQko0aNYtmyZYwZM4Y//viDd955J+s5OfksY2NjGT16ND/++CP169cHIDExET8/PxITE7nnnnuyHgO44oorcvXZfPPNN3z00UcMHjyY8PBwIiMjz/keT0tLS+ONN96gd+/e3HnnnRw6dIg333yTjh07smLFCmJiYrLey4cffpj1ewcPHuTHH3/Mei8NGzbMei/ly5fn0ksvBWDAgAF88sknDB48mKioKA4cOMDixYvZuHEjjRs3znGdIgXGEZFcOXr06BmPLV261AGcd955529/95tvvnEA55577jnjZ5mZmY7jOE5SUpIDOP369cv28wceeMABnG+++SbrMcCJj48/47WqV6/u9OnTJ+v+22+/7QBOkyZNnBMnTmQ9/sILLziAM2PGjKzH2rRp47Rp0ybr/rvvvuv4+fk5iYmJ2a4xfvx4B3CWLFly1vd74sQJp0KFCk79+vWdY8eOZT0+a9YsB3CGDx9+Ro0rV6486+udFh8f7wBOt27dsj0+cOBAB3DWrl3rOE7OP8t9+/Y5gPPaa685juM4KSkpjp+fn9OzZ08nIiIi6/fuuecep2zZsll/V+fz2QCOn5+f8+OPP57z/TnOmX8Pp06dctLT07M9548//nAiIiKc22+/Peuxjz/+2AGcDRs2OI7jODNnznSCgoKcbt26Oddff33W8xo2bOh07949635YWJgzaNCgHNUm4g00tSSSS8WLF8/688mTJzlw4AAXX3wxpUuXPucw/KefforH4yE+Pv6Mn50eEfnyyy8Bm+74b8OGDQPgiy++yHXt/fv3JyAgIOv+3XffTbFixbKu+Vc+/vhjLr30UurWrcv+/fuzbldeeSXAGVMb/23VqlXs27ePgQMHEhwcnPV4586dqVu37gW9F4BBgwZluz9kyBDgz88wp59l+fLlqVu3LosWLQJgyZIl+Pv78+CDD7J37162bNkC2ChG69ats/6uzvezadOmDVFRUbl6r/7+/gQGBgI2EnTw4EFOnTpF06ZNs/1/FxsbC5D1XhITE2nWrBkdOnTIGlFKSUlh/fr1Wc8FW5u0fPlydu3alav6RAqagoxILh07dozhw4dTrVo1goKCCA8Pp3z58qSkpJCamvq3v/vLL79QuXJlypYte9bnbN++HT8/Py6++OJsj1esWJHSpUuzffv2XNd+ySWXZLtfsmRJKlWq9Lfre7Zs2cKPP/5I+fLls91q164N/LlI92zvBaBOnTpn/Kxu3boX9F7gzPdTq1Yt/Pz8st7P+XyWsbGxWV/0iYmJNG3alKZNm1K2bFkSExNJS0tj7dq12b78z/ezqVGjxgW938mTJ9OwYUOCg4MpV64c5cuX54svvsj2/11ERASXXHJJtvcSGxvLFVdcwa5du9i6dStLliwhMzMz23t54YUXWL9+PdWqVaN58+aMGDGCrVu3XlC9IvlJa2REcmnIkCG8/fbb3HfffbRs2ZKwsDA8Hg833HADmZmZeXads61ZyYmMjIw8qyMzM5MGDRrw0ksv/eXPq1WrlmfXulBn+8xy8lm2bt2aiRMnsnXr1qwvf4/HQ+vWrUlMTKRy5cpnfPmf72fz36N55+u9997jtttu45prruHBBx+kQoUK+Pv7M2rUKH755Zcz3sv8+fM5duwYq1evZvjw4dSvX5/SpUuTmJjIxo0bKVmyJI0aNcr6nV69ehEbG8u0adOYN28e//73v3n++ef57LPP6NSpU67rFskvCjIiufTJJ5/Qp08fXnzxxazHjh8/nqMutLVq1WLu3LkcPHjwrKMy1atXJzMzky1btmQtxATbMZOSkkL16tWzHitTpswZ1z1x4gS7d+/+y9fesmULbdu2zbp/+PBhdu/ezdVXX/23Na9du5Z27dqdd7g6XetPP/2UNd1y2k8//ZTtveTGli1bso1y/Pzzz2RmZmYtoj2fz/J0QPnqq69YuXIljzzyCGALe8eNG0flypUpUaIETZo0yfqdC/lsztcnn3xCzZo1+eyzz7Jd66+mKWNjY3n77beZMmUKGRkZtGrVCj8/v6xQtnHjRlq1aoW/v3+236tUqRIDBw5k4MCB7Nu3j8aNG/Pss88qyIhX0tSSSC75+/tn26YLMHbs2ByNglx33XU4jsNTTz11xs9Ov+bpUPHyyy9n+/npf/V37tw567FatWplrYU4bcKECWetZcKECZw8eTLr/rhx4zh16tTfflH16tWLnTt3MnHixDN+duzYMY4cOXLW323atCkVKlRg/Pjx2bYjz549m40bN2Z7L7mRkJCQ7f7YsWMBst7P+XyWNWrUoEqVKowePZqTJ09y+eWXAxYKfvnlFz755BMuu+wyihX789+BF/LZnK/ToeO//99bvnw5S5cuPeO5p0PZ888/T8OGDQkLC8t6fP78+axatSrbyFJGRsYZ06IVKlSgcuXKOd5iL1LQNCIjkktdunTh3XffJSwsjKioKJYuXcrXX39NuXLlzvm7bdu25ZZbbmHMmDFs2bKFq666iszMTBITE2nbti2DBw8mOjqaPn36MGHCBFJSUmjTpg0rVqxg8uTJXHPNNdlGVPr168eAAQO47rrr6NChA2vXrmXu3LmEh4f/5fVPnDhBu3bt6NWrFz/99BOvvfYarVu3plu3bmet+ZZbbuGjjz5iwIABLFiwgMsvv5yMjAw2bdrERx99xNy5c7O2jf+vgIAAnn/+efr27UubNm3o3bt31vbryMhI7r///nN+Zn8nOTmZbt26cdVVV7F06VLee+89brzxRqKjowHO67ME+6KfMmUKDRo0oEyZMoD1ZSlRogSbN2/mxhtvzLPP5nx16dKFzz77jO7du9O5c2eSk5MZP348UVFRHD58ONtzL774YipWrMhPP/2UtQAabHTp4Ycfznqvpx06dIiqVavSo0cPoqOjKVmyJF9//TUrV67MNvIo4lXc3TQlUnj98ccfTt++fZ3w8HCnZMmSTseOHZ1NmzadseX5bE6dOuX8+9//durWresEBgY65cuXdzp16uSsXr066zknT550nnrqKadGjRpOQECAU61aNefRRx91jh8/nu21MjIynIcfftgJDw93QkJCnI4dOzo///zzWbdff/vtt07//v2dMmXKOCVLlnRuuukm58CBA9le83+3/TqObaN+/vnnnXr16jlBQUFOmTJlnCZNmjhPPfWUk5qaes73PHXqVKdRo0ZOUFCQU7ZsWeemm25yfvvtt2zPyc326w0bNjg9evRwSpUq5ZQpU8YZPHhwtm3e5/NZOo7jJCQkOIBz9913Z3u8ffv2DuDMnz//jN/J6WcDnNf25v/9e8jMzHSee+45p3r16k5QUJDTqFEjZ9asWU6fPn2c6tWrn/H7PXv2dABn6tSp2WoNCQlxAgMDs31O6enpzoMPPuhER0c7pUqVckqUKOFER0dnbUcX8UYex/mfsXER8Vmnm9KtXLkyz0YI3DRixAieeuopfv/997OOPomIb9MaGRERESm0FGRERESk0FKQERERkUJLa2RERESk0NKIjIiIiBRaCjIiIiJSaPlcQ7zMzEx27dpFqVKl8r1VuIiIiOQNx3E4dOgQlStXxs8v5+MsPhdkdu3a5VWH14mIiEjO7dixg6pVq+b4+T4XZEqVKgXYBxEaGupyNSIiIpITaWlpVKtWLet7PKd8Lsicnk4KDQ1VkBERESlkzndZiBb7ioiISKGlICMiIiKFls9NLYmIiBSEjIwMTp486XYZhUZAQAD+/v55/roKMiIiIufBcRz27NlDSkqK26UUOqVLl6ZixYp52h5FQUZEROQ8nA4xFSpUICQkRD3LcsBxHI4ePcq+ffsAqFSpUp69toKMiIhIDmVkZGSFmHLlyrldTqFSvHhxAPbt20eFChXybJpJi31FRERy6PSamJCQEJcrKZxOf255ubZIQUZEROQ8aTopd/Ljc/O6IJOSkkLTpk2JiYmhfv36TJw40e2SRERExEt53RqZUqVKsWjRIkJCQjhy5Aj169fn2muv1VykiIiInMHrRmT8/f2z5tDS09NxHAfHcVyuSkRERLxRngeZRYsW0bVrVypXrozH42H69OlnPCchIYHIyEiCg4Np0aIFK1asyPbzlJQUoqOjqVq1Kg8++CDh4eF5XWauqO+RiIhIdjt27CAuLo6oqCgaNmzIxx9/XKDXz/Mgc+TIEaKjo0lISPjLn0+dOpWhQ4cSHx/PmjVriI6OpmPHjll7y8Ea5qxdu5bk5GQ++OAD9u7de9brpaenk5aWlu2WHxYsgLp1YdmyfHl5ERGRQqlYsWK8/PLLbNiwgXnz5nHfffdx5MiRArt+ngeZTp068cwzz9C9e/e//PlLL73EnXfeSd++fYmKimL8+PGEhITw1ltvnfHciIgIoqOjSUxMPOv1Ro0aRVhYWNatWrVqefZeTnMciI+HrVshNhb+8x/IzMzzy4iIiBQ6lSpVIiYmBoCKFSsSHh7OwYMHC+z6BbpG5sSJE6xevZr27dv/WYCfH+3bt2fp0qUA7N27l0OHDgGQmprKokWLqFOnzllf89FHHyU1NTXrtmPHjjyv2+OBzz+HXr3g1Cl48EHo1g3278/zS4mIiOSbnCz/AOjbty9PPPHEeb/+6tWrycjIyJdBhbMp0CCzf/9+MjIyiIiIyPZ4REQEe/bsAWD79u3ExsYSHR1NbGwsQ4YMoUGDBmd9zaCgIEJDQ7Pd8kNYGEyZAuPGQVAQfPEFNGoEixfny+VERETy3LmWf4B1L541axbdunU7r9c+ePAgt956KxMmTLjQMs+L122/bt68OUlJSW6X8Zc8HhgwAFq2tNGZzZshLg6efhoefhj8vG4PmIiIyJ86depEp06d/vY53333HQEBATRr1gyADz/8kNtvv52tW7dmnZHUt29fVq9eTWJiImFhYaSnp3PNNdfwyCOP0KpVq3x/H/+tQL96w8PD8ff3P2Px7t69e6lYseIFvXZCQgJRUVFZH3x+io6GVavgppsgIwMeeww6dYL/Wq8sIiJFhePAkSPu3PKhPcnMmTPp2rVrVhfeG264gdq1a/Pcc88BEB8fz9dff83s2bMJCwvDcRxuu+02rrzySm655ZY8r+dcCjTIBAYG0qRJE+bPn5/1WGZmJvPnz6dly5YX9NqDBg1iw4YNrFy58kLLzJFSpeDdd+GNN6B4cZg3D2JiYOHCArm8iIh4i6NHoWRJd25Hj+b525kxY0a2aSWPx8Ozzz7LxIkTefbZZxk7dixz5syhSpUqACxZsoSpU6cyffp0YmJiiImJYd26dXle19nk+dTS4cOH+fnnn7PuJycnk5SURNmyZbnooosYOnQoffr0oWnTpjRv3pyXX36ZI0eO0Ldv37wuJd95PHDHHdCihU01bdwI7drZDqfHH4c8OthTRESkQGzcuJFdu3bRrl27bI936dKFqKgoRo4cybx586hXr17Wz1q3bk2mi1t58zzIrFq1irZt22bdHzp0KAB9+vRh0qRJXH/99fz+++8MHz6cPXv2EBMTw5w5c85YAFyY1K8PK1fC4MEwaZIFmW+/hfffhwucMRMREW8XEgKHD7t37Tw0c+ZMOnToQHBwcLbH58yZw6ZNm/5yw47b8jzIxMXFnfNIgcGDBzN48OA8vW5CQgIJCQlkZGTk6evmVIkS8Pbb0LYt3H03fPONTTW99x78125zERHxNR6PfQn4gBkzZtC/f/9sj61Zs4ZevXrx5ptvMmnSJJ588skC7977d3xmn01Br5E5m1tvtYXA9evD3r3wj3/Ak09a/xkRERE3HT58mKSkpKzdwaeXf/z666/s27ePVatW0aVLl6znb9u2jc6dO/PYY4/Ru3dvRo4cyaeffsqaNWvcegtn8Dg+diJjWloaYWFhpKam5ltPmZw4dgzuvRcmTrT7V1wBH3wA/782SkRECqHjx4+TnJxMjRo1zph+KQwWLlyYbfnHaX369CE2Npa3336bxf/fIO3gwYO0atWKuLg4xo8fn/Xczp07k5GRwZw5c877+n/3+eX2+9vr+sj4iuLFYcIE6zNz112waJFNNb37Llx1ldvViYhIUfR3yz+6deuWbbdS2bJl2bRp0xnP++KLL/Ktvtzwmamlguwjcz5uvBFWr7beM/v3W7+ZRx/VSdoiIuJdWrduTe/evd0u47xpaqmAHD8Ow4bBa6/Z/Vat7MiDAjyOQkRELlBhn1pyW35MLfnMiIy3Cw6GhAT46CMIDYXvvrOpplmz3K5MRESk8FKQKWA9e8KaNdCkCRw8CF272kjNiRNuVyYiIlL4KMi4oFYtWLLEdjUBvPSS7Wrats3VskRERAodnwky3rrY92yCguDll2HaNChdGpYvh0aNYPp0tysTEREpPHwmyHhLQ7zzdc018P33dl5TSgp0724jNenpblcmIiLi/XwmyBRmkZHWZ2bYMLs/Zgxcfjn88ourZYmIiHg9BRkvERgI//kPfP45lC1rvWcaNwYvOs5CRETE6yjIeJkuXSApyUZk0tKgVy8YOND60IiIiEh2CjJeqFo1WLDAOgADjBsHl10Gmze7W5eIiIi38ZkgU9h2LZ1LQAA89xzMmQPh4bB2rfWe+eADtysTERHxHj4TZArrrqVz6djRQkybNnD4MNx0E/TrB0ePul2ZiIiI+3wmyPiyypXh66/hySfB44E337Tt2hs3ul2ZiIgUdSkpKTRt2pSYmBjq16/PxIkTC/T6CjKFRLFiMHIkfPUVRETA+vXQtClMnux2ZSIiUpSVKlWKRYsWkZSUxPLly3nuuec4cOBAgV1fQaaQadfOdjW1a2fTS7fdZrcjR9yuTEREiiJ/f39CQkIASE9Px3EcHMcpsOsryBRCFSvC3Lk2QuPnZ6MyTZvCunVuVyYiIt5s0aJFdO3alcqVK+PxeJh+lnNx+vbtyxNPPJHj101JSSE6OpqqVavy4IMPEh4enlcln5OCTCHl729rZr75xtbQbNoEzZvDG29AAQZhEREpRI4cOUJ0dDQJCQlnfU5GRgazZs2iW7duOX7d0qVLs3btWpKTk/nggw/Yu3dvXpSbIz4TZHxt+3VOtWljU00dO1rTvDvvhJtvhkOH3K5MRES8TadOnXjmmWfo3r37WZ/z3XffERAQkPV9+uGHH1K8eHF2796d9Zy+ffvSsGFDUlNTs/1uREQE0dHRJCYm5s8b+As+E2R8dft1TpQvD19+CaNG2UjNBx9Yz5mkJLcrExHxfY5j6xTduOXHCPzMmTPp2rUrHo8HgBtuuIHatWvz3HPPARAfH8/XX3/N7NmzCQsLY+/evRz6/389p6amsmjRIurUqZP3hZ1FsQK7kuQrPz945BGIjYUbboAtW6wb8OjRMGCAbdsWEZG8d/QolCzpzrUPH4YSJfL2NWfMmMHo0aOz7ns8Hp599ll69OhBxYoVGTt2LImJiVSpUgWA7du3079//6xFvkOGDKFBgwZ5W9TfUJDxMZdfbiMxt90Gs2bZOU0LFsDEiRAW5nZ1IiLizTZu3MiuXbto165dtse7dOlCVFQUI0eOZN68edSrVy/rZ82bNyfJxSkABRkfVK4czJxpozEPP2wnaK9eDVOn2u4mERHJOyEhNjLi1rXz0syZM+nQoQPBwcHZHp8zZw6bNm0iIyODiIiIvL3oBfKZNTKSnccDQ4fC4sVQvTps3QqtWsGYMdrVJCKSlzwem95x45bXywZmzJjBP//5z2yPrVmzhl69evHmm2/Srl07nnzyyby96AXSiIyPa9ECvv8ebr8dpk+He++1qaa33oIyZdyuTkRECtLhw4f5+eefs+4nJyeTlJRE2bJlCQ4OZtWqVcycOTPr59u2baNz58489thj9O7dm5o1a9KyZUvWrFlD48aN3XgLZ/A4Bdl+rwCkpaURFhZGamoqoaGhbpfjNRwHxo6FBx6AkydtlGbqVAs6IiKSM8ePHyc5OZkaNWqcMf1SGCxcuJC2bdue8XifPn2IjY3l7bffZvHixQAcPHiQVq1aERcXx/jx47Oe27lzZzIyMpgzZ855X//vPr/cfn9rRKaI8Hjgnntseun6622qqXVr+Ne/bApKu5pERHxfXFzcWY8P6NatW7YmeGXLlmXTpk1nPO+LL77It/pyQ2tkipimTWHNGujZE06dshGabt2gAM/3EhERL9S6dWt69+7tdhnnzWeCTFHt7JsbYWE2rTRuHAQF2TbtmBhYssTtykRExC0PPfQQ1apVc7uM8+YzQaYod/bNDY/HGuUtWwaXXAK//WbHHfzrX5CZ6XZ1IiIiOeMzQUZyJybGeszceCNkZMCjj8LVV8O+fW5XJiIicm4KMkKpUvDee3ZydnAwzJ1rAefbb92uTERE5O8pyAhgU0133AErV8Kll8Lu3XDllfD00zZSIyIi4o0UZCSb+vUtzPTpY2tlhg+Hjh1hzx63KxMR8R4+1oKtwOTH56YgI2coUQImTbJbSAjMn29TTfPnu12ZiIi7AgICADh69KjLlRROpz+3059jXlBDPDmrPn2geXPo1QvWr4cOHeCJJ2yUppj+zxGRIsjf35/SpUuz7/93RISEhOBRR9FzchyHo0ePsm/fPkqXLo2/v3+evbaOKJBzOnrUzmh64w27f8UV8OGHULmyu3WJiLjBcRz27NlDSkqK26UUOqVLl6ZixYp/Gf5y+/2tICM59sEHcNdddlx9eDi8+y5cdZXbVYmIuCMjI4OTJ0+6XUahERAQ8LcjMQoy/09BJn9t3mxTTWvX2v1HHrGdTZpqEhGRC5Hb728t9pXzUru2dQMeONDu/+tfEBcHO3a4WpaIiBRRCjJy3oKDISEBPvoIQkPtjKaYGDuzSUREpCD5TJDRoZEFr2dPO0m7SRM4eBC6drXTtE+ccLsyEREpKrRGRi5Yejo89BCMGWP3W7SAKVMgMtLVskREpBDRGhlxTVAQvPIKTJsGpUvD8uXQqBFMn+52ZSIi4usUZCTPXHMNfP+9jcikpED37tZ/Jj3d7cpERMRXKchInoqMhEWLYNgwuz9mDFx+Ofzyi6tliYiIj1KQkTwXGAj/+Q98/jmULQurV0PjxvDxx25XJiIivkZBRvJNly6QlGQjMmlp1khv4EA4ftztykRExFcoyEi+qlYNFiywDsAA48bBZZdZh2AREZELpSAj+S4gAEaNgtmz7YymtWut98wHH7hdmYiIFHYKMlJgrrrKppquuMIOnrzpJrjzTjtdW0REJDcUZKRAVakC8+fDk0+CxwNvvGHbtTdudLsyEREpjBRkpMAVKwYjR8K8eRARAevXQ9OmMHmy25WJiEhhoyAjrmnf3qaa2rWz6aXbbrPbkSNuVyYiIoWFgoy4qmJFmDvXRmj8/GxUplkzG6URERE5FwUZcZ2/v62Z+eYbqFTJ1ss0a2brZ3zrSFMREclrCjLiNdq0sammjh2tad6dd8LNN8OhQ25XJiIi3kpBRrxKhQrw5ZfWd8bf33rNNG1qAUdEROR/KciI1/Hzs07ACxdC1arWBfiyy6wrsKaaRETkv3ldkNmxYwdxcXFERUXRsGFDPtZJg0VW69Y2EtO5M6Sn2zlNN9wAqaluVyYiIt7C4zje9W/c3bt3s3fvXmJiYtizZw9NmjRh8+bNlChRIke/n5aWRlhYGKmpqYSGhuZztVIQMjNh9GgbpTl1CmrWhI8+smMORETEN+T2+9vrRmQqVapETEwMABUrViQ8PJyDBw+6XJV75YZOAAAgAElEQVS4yc8Phg2DxESoXh22boVWrWDsWE01iYgUdXkeZBYtWkTXrl2pXLkyHo+H6dOnn/GchIQEIiMjCQ4OpkWLFqxYseIvX2v16tVkZGRQrVq1vC7z/J04oTkNl112GXz/PVxzjf113HMPXHcd/PGH25WJiIhb8jzIHDlyhOjoaBISEv7y51OnTmXo0KHEx8ezZs0aoqOj6dixI/v27cv2vIMHD3LrrbcyYcKEv71eeno6aWlp2W75YvJkGw4YMQJSUvLnGnJOZcrAZ5/BK6/YqdrTpkHjxrB8uduViYiIK5x8BDjTpk3L9ljz5s2dQYMGZd3PyMhwKleu7IwaNSrrsePHjzuxsbHOO++8c85rxMfHO8AZt9TU1Lx7I47jOJ07O47NZDhOWJjjDB/uOAcP5u015LysXOk4NWvaX0mxYo7z4ouOk5npdlUiIpIbqampufr+LtA1MidOnGD16tW0b98+6zE/Pz/at2/P0qVLTwcrbrvtNq688kpuueWWc77mo48+SmpqatZtx44d+VP8zJm2wrR+fZtiGjkSIiOtJa3W8LiiaVNYswZ69LBFwMOGQbducOCA25WJiEhBKdAgs3//fjIyMoiIiMj2eEREBHv27AFgyZIlTJ06lenTpxMTE0NMTAzr1q0762sGBQURGhqa7ZYv/PygZ09YuxY++QQaNIC0NHjmGQs0Tzyhb1AXhIVZvnztNQgKglmzoFEjWLLE7cpERKQgeN2updatW5OZmUlSUlLWrUGDBm6X9Sc/P1thmpQEn34K0dHWQ//ZZy3QPPYY7N/vdpVFiscDd98Ny5bBJZfAjh123MG//mVbt0VExHcVaJAJDw/H39+fvXv3Znt87969VKxY8YJeOyEhgaioKJo1a3ZBr5Njfn5w7bU2tzFtGsTEwOHD1ls/MtKanvz+e8HUIoD9FaxeDb17Q0YGPPqoNdPTX4OIiO8q0CATGBhIkyZNmD9/ftZjmZmZzJ8/n5YtW17Qaw8aNIgNGzawcuXKCy3z/Pj52X7gNWtgxgyb1zhyBJ5/HmrUgIcf1jdpASpVCt5/HyZOhOBgmDPHAs6iRW5XJiIi+SHPg8zhw4ezpoQAkpOTSUpK4tdffwVg6NChTJw4kcmTJ7Nx40buvvtujhw5Qt++ffO6lILl8dhK09WrbWFwkyYWaF54wUZoHnwQ/meLueQPjwf69YMVK6BuXdi1C9q2teVMGRluVyciInkqr7dPLViw4C+3Q/fp0yfrOWPHjnUuuugiJzAw0GnevLmzbNmyC77uq6++6lx66aVO7dq182f79fnKzHScWbMcp2nTP7dtFy/uOEOHOs7u3e7WVoQcPuw4ffr8+VfQrp3j7NnjdlUiIvK/crv92uvOWrpQXnfWkuPA7Nnw1FM2RABQvDgMGAAPPQQXuDZIcmbyZDt08uhRiIiw6ad27dyuSkRETvOZs5Z8jscDV19tW2pmz7Y++8eO2SmINWrAfffB7t1uV+nz+vSBlSuhXj3Yuxc6dID4eE01iYgUdgoyBcXjgauugu++g7lzoWVLOH7ceu3XqGEHB+3c6XaVPi0qygbF+vWzgbKRI6F9e1tDIyIihZOCTEHzeOAf/7CObfPmweWXQ3q6HeVcqxYMGQK//eZ2lT4rJMR2NL3/PpQsCQsX2q6muXPdrkxERHLDZ4JMgfeRuVAej81vJCbC119D69YWaF591QLNoEHW2U3yxY032gaz6GjbHX/VVdbL8NQptysTEZHzocW+3sJxYMECWxR8uulJYCDccYc117voInfr81HHj8PQoTBunN1v3Ro+/BCqVnW3LhGRokaLfQs7jweuvBK+/dYCTVwcnDhh37AXX2y7nLZvd7tKnxMcbOc0ffSRNdNbvNimmr74wu3KREQkJxRkvFFcnIWZhQutk9vJk/D663aQUP/+sG2bywX6np494fvvrY/hgQPQpYv1MDx50u3KRETk7yjIeLM2beCbb2yqqV07+1adONECTb9+kJzsdoU+pVYtW4M9ZIjd/89/4IorNBAmIuLNfCbIFLrFvucjNtYWBCcm2n7hU6fgzTehdm1bQ7N1q9sV+oygIBgzBj77DEqXtvY/MTF2jJaIiHgfLfYtjL77zhYFz5tn9/394ZZb4PHHbT2N5Ilt2+D66/9syHzvvXZ0VmCgq2WJiPgkLfYtSlq1ssYn331n+4YzMmDSJDsh8bbbYMsWtyv0CZGRNgg2bJjdf+UVa/ujATAREe+hIFOYtWxpxx4sWwadOlmgmTzZAs2tt8LmzW5XWOgFBtpamZkzoWxZWLUKGjWCTz5xuzIREQEFGd/QogV8+SUsXw6dO0NmJrz7Llx6Kdx8M2za5HaFhV7XrpCUZINhaWm2y2nQIOtDIyIi7lGQ8SXNm8OsWXY6YteuFmjef98OGbrpJti40e0KC7Vq1WxH/COP2P3XXrNgo5k8ERH3+EyQ8eldS+eraVObC1m1Crp1s67BH3xgRz/37g0bNrhdYaEVEACjRtmMXni49Z5p3BimTHG7MhGRokm7loqC77+3o56nT7f7Ho/NjTz5JNSv725thdjOnXZm0+kTJfr3h5dfhuLF3a1LRKQw0q4lObtGjWDaNAs0115rIzQffQQNGligWbfO7QoLpSpVYP58eOIJy4YTJthyJS1JEhEpOAoyRUlMDHz6KaxdC9ddZ4998gk0bAg9esAPP7hbXyFUrBg8/bS19ImIsEzYpAm8847blYmIFA0KMkVRw4YWYH74wUZkPB4LONHRNmKTlOR2hYVO+/b2sV15JRw9Cn36QN++cOSI25WJiPg2BZmirEEDm2Jat85a2Ho8NgXVqBFcc41NRUmOVaxoIzNPPQV+ftajsFkz+PFHtysTEfFdCjJiu5mmTIH16+GGGyzQzJhh23H++U9YvdrtCgsNf38YPtzWzlSqZDvemzWDt96ypUkiIpK3fCbIaPt1HoiKgg8/tCGEG2+0YYWZM207d9eutp1bciQuzqaa/vEPOHbMzva85RY4fNjtykREfIu2X8vZ/fSTrWT98ENrrgdw9dUQH2/N9+ScMjPtoMknnrATJGrXttm86Gi3KxMR8S7afi15r04deO89mx+55RYbofnyS9tjfPXVdiSC/C0/P+sEvHAhVK1qx1+1aAGvv66pJhGRvKAgI+dWu7btJ960ybbj+Ptba9vLLrPTt5cudbtCr9e6ta2d7twZ0tNhwABrspyW5nZlIiKFm4KM5Nwll9hWnE2bbG+xvz/MnWsHDnXsCN9953aFXi083JYc/fvf1n9m6lRbT71mjduViYgUXgoycv4uvti24WzebKtYixWzfceXXw4dOsDixW5X6LX8/OCBByAxEapXh19+gZYt4dVXNdUkIpIbCjKSezVrwhtvWKDp188CzddfQ2wstGv35yFEcobLLrOppmuugRMnYMgQa66ckuJ2ZSIihYuCjFy4GjVg4kTYssVOTgwIgG++gTZtrNXtt9+6XaFXKlMGPvsMXnnFPrLPPrNehCtWuF2ZiEjhoSAjeScy0rbjbNliq1kDAmDBAmuqEhdnf9b8STYeD9xzjy0vqlkTtm2zhcGjR+ujEhHJCQUZyXvVq8O4cbYAZOBACAy0UZkrr7RRmm++0bf0/2ja1Bb99ugBJ0/C0KE27XTwoNuViYh4N58JMurs64WqVYOEBAs0gwZZoElMtPUzV1xh62kUaLKEhVmzvIQECAqyHU4xMdrdLiLyd9TZVwrOzp3w/PMwYYI1UwHbuh0fb7udPB536/MiSUnQq5fN0vn7w3PP2W4nP5/5p4eISHbq7Cver0oVGDMGtm6Fe++F4GBbHNKxowWauXM1QvP/YmLsrM7eve1og4cfhi5dYP9+tysTEfEuCjJS8CpXhpdftkBz330WaJYtsy7BLVta12AFGkqVgvfftwGs4GD7WGJibHZORESMgoy4p1Il256TnGyrW4sXt/Obrr7aGq18+WWRDzQeD9x5p23JrlvXZufi4uDZZ/88x1NEpChTkBH3VawIL75ogeaBByAkxL65O3e2U7ZnzSrygaZBA1i5Em691QLME0/YANbevW5XJiLiLgUZ8R4REXYQUXIyPPigBZpVq6BrV2jWzLbxFOFAU7IkTJ4Mb79tg1dffWVTTQsWuF2ZiIh7FGTE+1SoAC+8YN3hHn4YSpSwla///Cc0aQIzZhTpQHPbbZbv6tWDPXugfXt46ilbFCwiUtQoyIj3Kl8e/vUvCzSPPGJDEqcPKGrcGKZNK7ILRaKibPbt9tvtIxgxwnaw797tdmUiIgVLQUa8X3g4jBplgeaxx2w7T1ISXHutHU706adFMtCEhMCbb8K779qg1YIFNtX01VduVyYiUnAUZKTwKFfOtuts22arXUuVgh9+sL7+MTHwySdFMtDcfLPNvDVsCPv2WVueJ56AU6fcrkxEJP8pyEjhU7YsPP20BZonn4TQUFi3Dnr2hOho6/NfxAJNnTrWiueuu2z50LPP2tFWv/3mdmUiIvlLQUYKr7JlYeRICzTx8XZY0fr1cP31tl95ypQitQK2eHEYP97edqlS1jgvJsba8YiI+CqfCTI6NLIIK1PGVrtu22b/LV0aNmyw/v4NGsCHHxapQHP99XaSduPGcOCAteN56CE7VVtExNfo0EjxPampdqbTSy9BSoo9VreuLRy54QY7hbEISE+3djxjx9r9li1ttOaii9ytS0Tkr+jQSJHTwsJs7cy2bbaWpkwZ2LTJVsVGRdk2nyKwEjYoyPLcp5/aR7J0qU01zZzpdmUiInlHQUZ8V1iYjcJs22arX8uWhc2brc9/VJS1yS0Cgebaa639TrNm8Mcf1lfw/vvhxAm3KxMRuXAKMuL7QkOt/8y2bdaPplw52LLFWuTWrQuTJvl8oKlRAxYvtgADdvh469Z2GoSISGGmICNFR6lS1iF42zbrGBweDr/8An372v7lt97y6RWxgYG2bGjGDJttW7nyz36CIiKFlYKMFD0lS9oZTsnJdqZT+fKwdSvccYcFmjfe8OlA062bNUZu2dLWRffoAYMHw/HjblcmInL+FGSk6CpZ0rb1JCfbqdsVKtif77wTLrkEJkzw2YUkF10E335r27IBEhKgVSv4+Wd36xIROV8KMiIlSsADD1iIefFFiIiA7dutTe4ll8Drr/tkoAkIgOefhy++sGVD339vvWemTHG7MhGRnFOQETktJASGDrVpptGjoWJF+PVXGDAALr4Yxo2z5iw+5uqrbaopNhYOHbI+gnfdBceOuV2ZiMi5KciI/K+QELjvPgs0L78MlSrBjh0wcKAFmoQEn1tQUrUqfPMNPP44eDw2q9aihbXfERHxZgoyImdTvDjce68FmjFjoHJlO4Vx8GALNK++6lOBplgxeOYZmDvXlgutWwdNm1r/QBERb6UgI3IuwcEwZIht1X71VahSBXbutMdq1bKQ40PzMB062FRT27Zw5Ij1D7z9dvuziIi3UZARyangYBg0yALNa6/ZfMyuXTZqU7OmTUP5SKCpVAm++srO4PR44O23oXlz+PFHtysTEclOQUbkfAUFwd13217lceNsL/OePdY2t2ZNWyh89KjbVV4wf3+Ij4f5823d84YNdszB22+Dbx01KyKFmYKMSG4FBdmOpi1bbIt29eoWaIYOtUDz4os+MR/Tti2sXQv/+IcNON1+u003HT7sdmUiIgoyIhcuMBD697cDKSdOhMhI2LvXetPUrGnN9gp5oKlQAWbPtrM3/fzgvfdsIfAPP7hdmYgUdQoyInklMBD69bNA8+abdlLjvn3WPrdGDTsOoRAPY/j52dmbCxfaeueffrJ1MxMmaKpJRNzjlUGme/fulClThh49erhdisj5Cwiw+ZeffrKDKGvVgt9/t/OdatSwAysPHXK7ylyLjbVdTVdfbf0B77oLbrwR0tLcrkxEiiKvDDL33nsv77zzjttliFyYgAA7WXvTJpg0yQLN/v3w6KMWaJ57rtB++4eHw+ef26xZsWJ2rEGTJrBmjduViUhR45VBJi4ujlKlSrldhkjeKFYM+vSxQDN5sp3fdOCAtdGtUcMWnhTCQOPnZ8uAFi2yjVs//2wnar/6qqaaRKTg5HmQWbRoEV27dqVy5cp4PB6mT59+xnMSEhKIjIwkODiYFi1asGLFirwuQ8T7FCtm2302bLB2ubVrw8GD8MQTtkD46achNdXtKs9by5Z24GS3bna25pAh0LMnpKS4XZmIFAV5HmSOHDlCdHQ0CQkJf/nzqVOnMnToUOLj41mzZg3R0dF07NiRffv25ep66enppKWlZbuJeLVixeDmmy3QvP8+1KkDf/wBw4dboHnqqUKXAsqWhenTrSdgQAB8+qmdpL1ypduViYivy/Mg06lTJ5555hm6d+/+lz9/6aWXuPPOO+nbty9RUVGMHz+ekJAQ3nrrrVxdb9SoUYSFhWXdqlWrdiHlixQcf39bJfvjj/DBB3DppRZgRoywQDNiRKEKNB6PNTlessRmzJKT4fLLLdxoqklE8kuBrpE5ceIEq1evpn379n8W4OdH+/btWbp0aa5e89FHHyU1NTXrtmPHjrwqV6Rg+PtD7952SuOUKRAVZVNMTz1lTfaGD7cRm0KiWTNb9HvddXDypDU8vuYam0UTEclrBRpk9u/fT0ZGBhEREdkej4iIYM+ePVn327dvT8+ePfnyyy+pWrXq34acoKAgQkNDs91ECiV/f7j+egs0H30E9erZIuCnn7YRmiefLDRpoHRp+PhjW/gbGAgzZ0JMDOTy3ysiImfllbuWvv76a37//XeOHj3Kb7/9RsuWLc/5OwkJCURFRdGsWbMCqFAkH/n52WrZH36ATz6BBg0s0DzzjAWaxx+3XU9ezuOxMzaXLYOLL4YdO6wHzQsvQGam29WJiK8o0CATHh6Ov78/e/fuzfb43r17qVix4gW99qBBg9iwYQMrtbpQfIWfn83PJCXZ6tnoaGuk99xzFmgefdT60ni5Ro1g9Wq44QbIyLC+gF26FIrSRaQQKNAgExgYSJMmTZg/f37WY5mZmcyfPz9Hoy4iRZKfH1x7rS08mTbN5mgOH7YOwZGR8Mgj1jnYi4WG2nrm11+H4GA7tykmBhIT3a5MRAq7PA8yhw8fJikpiaSkJACSk5NJSkri119/BWDo0KFMnDiRyZMns3HjRu6++26OHDlC375987oUEd/i52erZtesgRkzbKjjyBF4/nkLNA89ZGc7eSmPx87WXL7cdpzv3AlxcdYPUFNNIpJrTh5bsGCBA5xx69OnT9Zzxo4d61x00UVOYGCg07x5c2fZsmUXfN1XX33VufTSS53atWs7gJOamnrBryni1TIzHWfmTMdp0sRxbIez44SEOM6wYY6zZ4/b1f2tQ4cc55Zb/iy7QwevL1lE8llqamquvr89juNbHR7S0tIICwsjNTVVO5ikaHAc+PJL2659eo1Y8eJw993w4INwgevP8ovj2BFUgwbBsWNW5gcfQNu2blcmIm7I7fe3V+5aEpHz4PFA5842Z/Pll9C8uSWDl16yznT33w+7d7td5Rk8HjtTc9Uq22m+Zw+0b295LCPD7epEpLBQkBHxFR4PdOpk+51nz4bLLoPjx621bs2a1nZ31y63qzxDVBSsWAG3325rZUaMgA4dvDJ7iYgXUpAR8TUeD1x1FXz3HcydC61aWaAZM8YCzT332EpbLxISAm++aWdpligBCxbYrqavvnK7MhHxdj4TZNQQT+R/eDzwj3/A4sWWCC6/HNLTYexYqFXLjqn2skBz883Wc6ZhQ9uA1bGjHQ5+6pTblYmIt9JiX5GiwnHgm29sEcrpBi6BgdCvn/Wi8aIDV48dg6FDYfx4ux8bawuBq1Z1ty4RyT9a7Csif8/jgXbt4NtvLdC0aQMnTsBrr9kZAgMHwv/3e3Jb8eIwbpydoVmqlOWumBhb+iMi8t8UZESKGo/H9jgvXGiLUeLiLNCMG2eBZsAA2L7d7SoBO0NzzRrr/XfgAFx9tR1xcPKk25WJiLdQkBEpyuLiLMx8+y1ceaUlhNdfh0susTa827a5XSEXX2zrlgcNsvsvvGCDSV4yeCQiLvOZIKPFviIX4IorYP58m8Np394CzcSJFmjuvBOSk10tLzgYXn3VDgMPC4OlS22qaeZMV8sSES+gxb4icqYlS2xR8On9z8WKwa23wuOP2xZuF23daidpn25ifP/9dn5mYKCrZYnIBdJiXxHJO5dfDvPm2ZxOx462//mtt6B2bWvH+/PPrpVWs6btKL/vPrs/ejS0bu36oJGIuERBRkTOrmVLmDPH5nI6dbKzAyZNgrp14bbbYMsWV8oKDLQAM2MGlCljozONGsFnn7lSjoi4SEFGRM7tssvsHKfly23rUEYGTJ5sgebWW2HzZlfK6tYNvv/e8lZqKlx3nfX5S093pRwRcYGCjIjkXPPm8MUXdjhSly52ONK778Kll1pb3k2bCryk6tVt09VDD9n9V1+1UxlcnP0SkQLkM0FGu5ZEClCzZvD553Z0dbduFmjef99OgLzpJti4sUDLCQiA55+3jFWunPWeadwYpk4t0DJExAXatSQiF27NGnj6aZg+3e57PNbN7sknLdwUoN9+gxtv/PMUhrvusvU0xYsXaBkicp60a0lE3NO4MUybZgtWune3c52mTIH69S3QrF9fYKVUrWonMDz+uOWp11+3JT4//VRgJYhIAVKQEZG8ExNjW4eSkmzlrePARx9BgwbQqxesW1cgZRQrBs88A3PnQoUK8MMP0KQJvPdegVxeRAqQgoyI5L3oaGvDu3Yt9Ohhj338MTRsaPd/+KFAyujQwTJV27Zw5AjccgvccQccPVoglxeRAqAgIyL5p2FDCzDr1kHPnjbX8+mnFnSuu86CTj6rVMkaFI8YYZd/6y3bfLVhQ75fWkQKgIKMiOS/+vVtimndOlsz4/HYFFRMjK2p+f77fL28vz/Ex9txUhUrwo8/QtOm1ttPRAo3nwky2n4tUgjUq2eLgNevh969LdBMn26Lhf/5T1i9Ol8v37atDQJ16ADHjtlpC336wOHD+XpZEclH2n4tIu7ZtMlW5X74ofWiAWu0Fx9vQyb5JDPTDpp88kn7c926f65JFhF3aPu1iBQ+devaVqING6wzsJ8fzJplDfc6d7YOwvnAzw8eewwWLoQqVSxPNW8OEyfaRisRKTwUZETEfXXq2FEHGzfa2U1+fna2U4sWdrbT8uX5ctnYWNvVdPXVcPw49O9vzfTS0vLlciKSDxRkRMR71K5th1H+9JOdru3vD7NnW0e7q66yU7jzWHi4nbbwwgt2uSlTrOdMPq8/FpE8oiAjIt7n4ovh7bct0PTtawlj7lw7DfIf/4AlS/L0cn5+8OCDdqxBtWp24ORll8Frr2mqScTbKciIiPeqVcsav2zebJ3sihWzpjCtW9vWo8WL8/RyLVvaVFO3bnDiBAwaZA2JU1Ly9DIikocUZETE+9WsCW+8YYGmXz8LNF9/bYtc2rWDRYvy7FJly9qO8JdeslO1P/nEdoevXJlnlxCRPKQgIyKFR40atrVoyxZbmRsQYCdEtmljTWIWLsyTy3g8cP/9NuATGQnJyXD55fDyy5pqEvE2CjIiUvhERtqx1lu2wIABFmgWLrQwExcHCxbkSeJo3twW/V57LZw8aeHmmmvg4MELfmkRySM+E2TU2VekCKpeHcaNs9W5d98NgYHw7bdw5ZU2SjN//gUHmtKlbXpp7Fh7+ZkzoVGjfNlAJSK5oM6+IuI7fvvNWvZOnGirdcHmhEaMsLU0Hs8FvfyaNbb495dfbJnOc8/BsGG260lELow6+4qIVK0Kr74KW7fCkCEQFGRbtTt0sJ1O8+Zd0AhN48YWZq6/Hk6dgocegq5dYf/+PHwPInJeFGRExPdUqQJjxligueceCA6G776Djh2tF83cubkONKGhdjTU669bTvrySzvEOzExj9+DiOSIgoyI+K7KleGVVyzQ3HefBZply6xLcMuW1jU4F4HG47FNUytWWDPinTttnfFzz/159qWIFAwFGRHxfZUqwejRto966FAoXtzOb7r6ajvP6YsvchVoGjaE1avtvMuMDHj8cejUCfbty4f3ICJ/SUFGRIqOihXhxRct0DzwgAWalSuhSxfba/355+cdaEqWhHfegTfftJebNw+io20HuIjkPwUZESl6IiLg3/+GbdvskKWQEFi1ys4maNrU9lifR6DxeOD22y0TRUXBnj3Qvj089ZSN1IhI/lGQEZGiq0IFO/Z62zbbglSihG1L+uc/7Qjs6dPPK9DUq2frZvr2tbUyI0bYhqndu/PtHYgUeQoyIiLly8Pzz1ugeeQRmy/6/nvo3t26302bluNVvCVK2DmX77xjf16wwHY1ffVV/r4FkaJKQUZE5LTwcBg1ygLNY49ZoFm71s4oaNQIPv00x4HmlltstqpBA1v827EjPPGE9Z8RkbyjICMi8r/KlYNnn7VA8/jjUKoU/PAD9OhhK3k//jhHgaZuXdsc1b+/zVA9+6ydnrBzZ/6/BZGiQkFGRORsypWDZ56xQPPkk9YNb/16O6egYUOYOvWcq3mLF7fmeR9+aAM8iYmWhWbPLpi3IOLrfCbI6NBIEck3ZcvCyJEWaOLjISwMfvwRbrjBAs2UKecMNDfcYOuIY2LgwAFrYfPww3aqtojkng6NFBE5XykpdgTC6NH2Z4BLL7VRm169wN//rL96/Li1sElIsPutWtlozUUXFUDdIl5Mh0aKiBSU0qVh+HAboRk5EsqUgY0b4cYboX59eP/9s47QBAfbuZYff2wzVd99Z6M0n39esG9BxFcoyIiI5FZYmI3CbNtma2nKloVNm+zMgqgoePfds25T6tHDppqaNoU//rBefMOGwYkTBfsWRAo7BRkRkQsVGmq7m5KTbWtS2bKweTPceqsFmsmT/zLQ1KoFSzO1xVcAACAASURBVJbYeZYAL70EsbH2MiKSMwoyIiJ5JTTU+s9s22b9aMqVgy1b4LbbbC/2pElnBJrAQFtqM326zVitWGEtaz77zI03IFL4KMiIiOS1UqWsQ/C2bfCvf1mjvV9+sbML6tSx1r//s13pn/+EpCS47DJITYXrroMhQyA93Z23IFJYKMiIiOSXkiVtj3Vysp3pVL48bN0Kd9xhgeaNN7ItiqleHRYtsnMswRYFt2oFP//sUv0ihYCCjIhIfitZ0tJJcjL85z92WGVyMtx5J9SuDRMmZAWagADLPLNm2czUmjXQuDF89JHL70HESynIiIgUlBIlbGtScrKt7I2IgO3b4a674JJLrAXw/weazp1tqql1azh0CK6/Hu6+G44dc/k9iHgZBRkRkYIWEgL332/TTKNHQ8WK8OuvMGAAXHwxjBsH6elUrWqnZz/2GHg8MH68raHZvNntNyDiPRRkRETcEhJie6+3boVXXoFKlWDHDhg40ALNa69RLCOdZ5+FOXNsic0PP9hU0/vvu128iHdQkBERcVvx4nDPPRZoxo6FKlXgt99g0CBrNvPqq/zjiuOsXQtxcXDkiPXc69cPjh51u3gRdynIiIh4i+BgGDzYtim9+ipUrQo7d9o+7Fq1qPTxGL7+/Bjx8TbV9Oab0KKFnY4gUlQpyIiIeJvgYBuN+flneO01qFYNdu2Ce+/Fv3YtRpR+ma+/SKdiRVi/3o45mDzZ7aJF3KEgIyLirYKCbKvSli220veii2D3brj/fq68PZKku1+nw5UZHD1qzYP79IHDh90uWqRgKciIiHi7oCDbor1li/WcqV4d9uwhIn4Ac9ZX5ZmrFuPn5/DOO9CsGaxb53bBIgXHK4PMrFmzqFOnDpdccglvvPGG2+WIiHiHwEBrord5M0ycCJGR+O3bw+NzYlkQeg2VQw+xaRM0b24/dhy3CxbJfx7H8a7/1U+dOkVUVBQLFiwgNDSUxo0bs2zZMsqVK5ej309LSyMsLIzU1FRCQ0PzuVoRERedPAnvvmsnbm/dyu+Ec2vAFOacbAdA797WY69UKZfrFMmB3H5/e92IzIoVK6hXrx5VqlShVKlSXH311cybN8/tskREvE9AANx+O2zaBG+9RflaYXxxsgPP8xD+nOLDD6FJo0ySktwuVCT/5HmQWbRoEV27dqVy5cp4PB6mT59+xnMSEhKIjIwkODiYFi1asGLFiqyf7dq1iypVqmTdr1q1Kjt37szrMkVEfEdAgJ2svWkTfm+/xUO1PmMRV1CNX9nyix+XNTvFay8e01ST+KQ8DzJHjhwhOjqahISEv/z51KlTGTp0KPHx8axZs4bo6Gg6duzIvn378roUEZGipVgx2760aROtJg8gqeZ1dGUm6aeKMeiB4vRqsJHUHWluVymSp/I8yHTq1IlnnnmG7t27/+XPX3rpJe6880769u1LVFQU48ePJyQkhLfeeguAypUrZxuB2blzJ5UrVz7r9dLT00lLS8t2ExEp0ooVg1tvpexPS5nxThovlX+OAE7wyY+X0ijyIKvufhNSU92uUiRPFOgamRMnTrB69Wrat2//ZwF+frRv356lS5cC0Lx5c9avX8/OnTs5fPgws2fPpmPHjmd9zVGjRhEWFpZ1q1atWr6/DxGRQqFYMTy33Mz9ux9m8cgFRAb8RnJmJK3G38IrlUbhPDUSUlLcrlLkghRokNm/fz8ZGRlERERkezwiIoI9e/YAUKxYMV588UXatm1LTEwMw4YN+9sdS48++iipqalZtx07duTrexARKXT8/Wn+ZEe+312J7s12cJJA7jv2L64d0YA/qkfDiBEKNFJoed2uJYBu3bqxefNmfv75Z/r37/+3zw0KCiI0NDTbTUREzlS6nD+fLq/G2FcyCSyWwXS60yjtW5Y/Ndua7A0fDn/84XaZIuelQINMeHg4/v7+7N27N9vje/fupWLFihf02gkJCURFRdGsWbMLeh0REV/m8cDge/z4bpk/tWo5bCeS1izmxbR+ZD79jAWaJ5+EgwfdLlUkRwo0yAQGBtKkSRPmz5+f9VhmZibz58+nZcuWF/TagwYNYsOGDaxcufJCyxQR8XlNmsCaNR6uvx5OEcADvEi3Ugs4cCgAnnkGIiPh8cfhwAG3SxX5v/buPTrK8trj+G8SSLgmIpdAIIhBRQIlMUBi0EKQKHIttIBVKzmcijWi0Aa8YCuxWNQehINA8IIiaJEiVvAIiEgAQSWChHBEQJCLUCKxHBWSqCBJzh8bUpVbLjN55518P2uxumYY5t2zKJOfz/s8e5+X14NMYWGhcnNzlXuqA9O+ffuUm5urAwcOSJLS09M1e/ZszZs3Tzt27FBaWpqKioo0YsQIb5cCADiPsDBpwQKbRxkaKi0r6KG4xgf1bttUqaBAevRRCzQPPigdOeJ0ucBZeX1Ewdq1a9WzZ88znk9NTdXcuXMlSTNnztTkyZN1+PBhxcXFafr06UpMTPTK9RlRAAAVt3WrNGyYjXEKDi7VIzdv1/0f3aagrVvsBfXrS3ffLY0dKzVt6myxCEiV/fntd7OWKiszM1OZmZkqLi7Wrl27CDIAUEEFBVJamjR/vj2+4YZSvXTrW2o27UFpyw8CzV13SePGSc2aOVcsAk6NDzKnsSIDAJVXWiq98IItvnz7rdSihfTy/FIlFy6V/vxnafNme2G9ehZo7r2XQAOvCJihkQAA53g8Nody40apfXvp88+lXikeTdwyQMXZm6SlS6WuXaVvvpGeeML20IwdK53qBQZUN4IMAOAMHTtKmzbZ6KaSEikjQ7qht0eHO/eTPvhAWrZMSkiwZZupU6VLL5X+8AdLPkA1IsgAAM6qfn27zTRvnt1JWr1aiouTVmV5pL59pexs6c03pauvlr77Tpo2TYqOlsaMkfLynC4fNUTABBka4gGAbwwfLn34oa3S5OdLN9xgPfNOFnukG2+U3n9feustKSnJAs306RZoRo+WfjAEGPAFNvsCAMrl229tsWX2bHvcvbv1oYmMPPWC0lJp1SrbFPzee/ZcaKg0cqR0//1Sq1aO1A13YLMvAMCn6taVnn3Wjmc3aCCtWyfFxkorVpx6gccjXX+9tH69BZqf/1w6flyaOVNq21YaNUpisC+8jCADAKiQW26xU9hxcdbwt08fafx46eTJUy/weKRevaR33rGNNT16SCdOSLNmWaBJS5NOdXsHqoogAwCosCuukDZssFYykvT441Jy8k8WXDweqWdPae1aac0ae8H339tMhMsuk373O+mzz6q/eASUgAkybPYFgOpVp46UmSktWmRzm957z1Zpli49y4uTky3MvPOOdN11FmiefdYCzR13SPv3V3P1CBRs9gUAVNnevdJNN9npJklKT5cee0wKCTnHH3j3XdsUvGqVPa5VS0pNtQGV0dHVUjP8C5t9AQCOiY62bDJ6tD2eOtX2+p5zoeXaa6W337Y/dP31tsHm+eftntV//qe0Z091lQ6XI8gAALwiNFR68klp8WLpootszMFVV9njc7rmGmnlSutF07u3VFxsXfjatbO2wp9+Wl3lw6UIMgAArxo0yIZlJyZKX38t/fKXtlJz/Ph5/lBSkp3j3rDBmuwVF1tL4SuvtFtOu3ZVW/1wF4IMAMDr2rSxdjLjxtnjGTNs8eWCd4yuvtrGHmRn2xiE4mLpxRdtguVtt0mffOLr0uEyARNkOLUEAP6ldm1p8mQ7xdS4sfWeiY+3U04XlJhogyk/+EDq188mV/7tb1JMjPSb30g7d/q8frgDp5YAAD538KA10nv3XXuclmYbguvUKecbfPihNHGi9MYb9tjjkX79axv61L69T2pG9eLUEgDAb0VFWRuZ8ePt8VNP2V2kcm996dJF+p//sWWdX/zC5jotWCB16CDdfLO0fbvPaod/I8gAAKpFrVrSo4/ant6mTaWtW6XOnaWXX67Am8THS0uWSDk50uDBFmj+/ncbzX3TTdK2bT6rH/6JIAMAqFa9e0u5udbst7BQuvVWG5D9zTcVeJOrrpJee83e6Je/tEDzyivSz34mDR0qffSRr8qHnyHIAACqXWSkNfXNyLDtLs89Z/t7d+yo4BvFxkr/+Ict7wwZYs+9+qrUqZP0q1/Z8whoBBkAgCOCg6WHH7ZA07y53RXq0sVOW1dYp052HOqjj6RhwywdvfaaDX8aPNhWbhCQAibIcPwaANzpuussZ6Sk2O2l1FRr6ltUVIk369hRWrjQAs1NN1mgWbLEbkWd7tSHgMLxawCAXygutkGTGRnWNqZ9e9v20rFjFd50+3bpkUcs3Jz+cTdwoDRhgu00ht/g+DUAwNWCg6U//Ulavdr20OzYIXXtarMkK/2f3DExdkz744+tkU1QkB3j7tJFGjDg3+O64VoEGQCAX+nRw2413Xij9N130u2323SCgoIqvGn79tL8+bZC85vfWKBZutSSUr9+NuESrkSQAQD4naZNbULB44/bSs38+baIUuVDSO3aSS+9ZMs9w4dboFm+3I5M9e1rIxHgKgQZAIBfCgqS7r9fWrfOOgPv2mV546mnqnCr6bQrrrDp2jt32u7i4GAbVnn11bYUtGGDVz4DfI8gAwDwa9262WGjAQOk48elu+6yMUtHj3rhzS+/XJo71wLNiBEWaN56yy56ww3Se+954SLwJYIMAMDvNW4svf66NGWKjTp45RWbVuC1vbqXXSbNmWPLPr/9rV3k7bela6+1c+Gnp13C7xBkAACu4PFI6emWKS65RNq71xZOpk/3wq2m06Kjrc3wrl02N6FWLSkrS/r5z6VevaT16710IXhLwAQZGuIBQM2QmGi3mgYNkr7/XhozxsYtffWVFy9y6aXSs89Ku3dLd9wh1a5t58K7d5d69pTeeceLF0NV0BAPAOBKpaXSjBnSuHEWaC65xPreJSb64GIHDli3vueft4tJdk48I8OmX3o8PrhozUJDPABAjeLxSKNH2wGj6Gjps89sS8sTT1hnYK9q3dqOS+3ZI6WlSSEhtipz3XUWaFav9uL9LVQEQQYA4GqdO0s5OdLQodLJk9K999oUgv/7Px9cLCpKmjXLAs2oURZo1q+3/TPdu9sETAJNtSLIAABcLzzcbis99ZQUGmrN9OLifHh6ulUraeZM23F899120Xffla6/3paFVq4k0FQTggwAICB4PNKdd0rZ2dYe5p//tLs+jz/ug1tNp7VsaRt19u61+1yhodL770u9e9uRqhUrCDQ+RpABAASUuDhp82abEVlcLI0fb+OU/vUvH140MlJ68klp3z47RlWnjiWqPn2kpCTrGkyg8QmCDAAg4DRsKP3tb9Ls2ZYpVqywgOPzU9MtWkjTptkKzR/+INWta/Ob+va141TLlhFovIwgAwAISB6PTc7etMmGX+fl2SGjRx6xlRqfatFCmjrVVmjGjrVAs2mT1L+/lJAgvfEGgcZLCDIAgIDWsaNliP/4D9srM2GCbWE5fLgaLh4RYefB9++3hjf16tlchYEDbZz3668TaKqIIAMACHj160svvGADr+vVs6kDcXH2v9WiWTNp8mRbobnvPisoJ8faE8fHS0uWEGgqiSADAKgxhg+3BZGOHaX8fDstPWGC9Z+pFs2aSX/9q63QPPCA1KCBlJsrDR4sXXWVtHixD49YBSaCDACgRmnf3vbfjhxpiyCPPGL97PLyqrGIJk1s5MG+fdKDD1qg2brVhkZddZX0j38QaMqJIAMAqHHq1bOZkPPnW4ZYt06KjbXTTdWqSRNp0iSbr/CnP9lxq//9X2nIECto0SICzQUETJBh+jUAoKJuucV6zsTGSkeOWNuX8eOr8VbTaRdfbEtD+/dLDz0khYVJ27ZJw4ZJnTpZ22KfH7VyJ6ZfAwBqvO++k9LTbcSBJF1zjbRggY1WcsRXX1mDvWnTpKNH7bn27W1Dz9ChUnCwQ4X5DtOvAQCopDp1bBbkK6/YYsh779lWlWXLHCqoUSPp4Ydthebhh6WLLpJ27JBuvtl2Kr/8Mis0pxBkAAA4ZehQOxXdubNNz+7f36ZpnzjhUEEXXSRlZFigmTjRHu/cKd16q9Shg7UvruGBhiADAMAPtG1rKzJjxtjjJ56Qune3LOGY8HDbO7N/v/SXv9iKzSefSLfdJsXESC+95MDGHv9AkAEA4CdCQ217yuLFtgjywQd2q2nJEocLCw+X/vhHCzSTJtkm4V27rEFOTIx1/KthgYYgAwDAOQwaJG3ZYvMev/7a+taNGSMdP+5wYWFh1n9m/37rR9O4sbR7t81huPJKae7cGhNoCDIAAJxHmzbWZ2bsWHs8fbqdatq719GyTMOG1iF4/37rGNykibRnjzRihNSunTRnjvT9905X6VMEGQAALiAkxPbKvPGG3c3ZvNluNb36qtOVndKggc1w2rdP+q//kpo2taT1299KV1whPfdcwAYaggwAAOXUv7+NRrrmGunYMTvldNdd1ofGLzRoYMes9u2zIZXNmtlqzciRFmhmz3bwCJZvEGQAAKiAqChpzRq7oyNZE72kJNui4jfq15fGjbNAM2WKFBFhgeaOO6TLL5eeeSZgAg1BBgCACqpd2/bYvvmmbUvJzZXi460bsF+pV89aFu/da8ewmjeXDhyQ7rxTuuwy6emn/WDnctUQZAAAqKQbb7QQ0727VFhos5tGjpS+/dbpyn6iXj07brV3r40+aNFCOnhQSkuzQDNrlmsDDUEGAIAqaNlSysqyfnUej+2rTUiwBrx+p25dafRoCzQzZljx//ynNGqUdQKcOdOPNvyUD0EGAIAqqlXLJgi8/bZtR9m2zcYcvPii05WdQ5060t13S59+KmVmWqA5dEi65x4LNNOn++Gy0tkRZAAA8JJevexWU69e0jffSKmp1tKlqMjpys6hTh07drVnj91eioqS8vLsNlTbtnYbys8DDUEGAAAvat5ceustW6EJCrImu1272iqN3woNtf0yu3fbBuDWraXPP5d+/3spOlr67/+2ZOaH/DLIDB48WI0aNdKQIUOcLgUAgAoLDrY9M6tXS5GR0o4dFmaef14qLXW6uvMIDZV+9zsLNM88I11yiXT4sJ18io62o9x+trzkl0FmzJgxetFvbywCAFA+PXrYrabevW0P7e2328DqggKnK7uAkBDrObNrlzXRa9NGys+33jTR0TZt20/4ZZBJTk5Ww4YNnS4DAIAqa9pUWr7c+s4EB0vz50tdukhbtzpdWTmEhFj62rXLjmNdeqn0xRe2u9lPVDjIrFu3TgMGDFBkZKQ8Ho+WnGWmeWZmptq0aaM6deooMTFRGzdu9EqxAAC4UVCQdQJeu1Zq1cpyQWKibUfx61tNp9WubXObPvnEuv4NG+Z0RWUqHGSKiooUGxurzMzMs/7+woULlZ6eroyMDOXk5Cg2Nla9e/fWF198UfaauLg4dezY8YxfeXl5lf8kAAD4uWuvtVtN/ftb/7m0NOnXv5aOHnW6snKqXdsKDg52upIyntLSymdBj8ejxYsXa9CgQWXPJSYmqmvXrpo5c6YkqaSkRFFRUbrnnnv0wOnBFOWwdu1azZw5U69eYLTo8ePHdfwH3QiPHTumqKgoHT16VGFhYRX8RAAA+F5pqTR1qq3SnDxpJ50XLrTeMzXVsWPHFB4eXuGf317dI3PixAlt3rxZKSkp/75AUJBSUlK0YcMGb16qzGOPPabw8PCyX1FRUT65DgAA3uLxSGPHSuvX28GgPXukbt2s2a4rbjX5Ea8GmSNHjqi4uFgRERE/ej4iIkKHDx8u9/ukpKRo6NChWr58uVq1anXeEDR+/HgdPXq07NfBgwcrXT8AANXp6qulLVukQYNsGPXo0dKvfiV99ZXTlbmH/2w7/oFVq1aV+7WhoaEKDQ31YTUAAPhOo0bSa6/Zasy4cdLixRZu/v532xCM8/PqikyTJk0UHBys/Pz8Hz2fn5+v5s2be/NSZ8jMzFRMTIy6du3q0+sAAOBtHo+txrz/vrVp2b/fNgZPmcKtpgvxapAJCQlR586dlZWVVfZcSUmJsrKylJSU5M1LnWHUqFHavn27Nm3a5NPrAADgK126SDk50tChtgl43DjpF7+QvvzS6cr8V4WDTGFhoXJzc5WbmytJ2rdvn3Jzc3XgwAFJUnp6umbPnq158+Zpx44dSktLU1FRkUaMGOHdygEACEDh4XaCadYsmxjwxhtSXJyt1uBMFT5+vXbtWvXs2fOM51NTUzV37lxJ0syZMzV58mQdPnxYcXFxmj59uhKr6UZfZY9vAQDgb3Jzrffc7t3WumXSJOnee63BXqCp7M/vKvWR8SeZmZnKzMxUcXGxdu3aRZABAASEggLpzjull1+2x336SPPm2eiDQFLjg8xprMgAAAJNaalNzr7nHhs+GRlpkwK6d3e6Mu/xi4Z4AADA+zwem924caN05ZVSXp7Us6f0l79IxcVOV+csggwAAC7xs59JH34oDR8ulZRIDz0k3Xij9JOuJzVKwAQZ+sgAAGqC+vVtj8wLL0j16kmrVkmxsdLq1U5X5gz2yAAA4FLbt9uppo8/tttPDz0kTZjgV8Opy409MgAA1DAxMbZv5vbbbUPwxIlSSortoakpCDIAALhYvXrS7NnS/PlSgwbS2rXWQG/lSqcrqx4EGQAAAsAtt9hG4NhY6V//sk3Af/yjjToIZAETZNjsCwCo6dq1k7KzpbQ0u9X06KN2TPvgQacr8x02+wIAEIBeecX2zhQUSBdfLL34otSvn9NVnRubfQEAQJlhw6QtW6T4eJue3b+/zWn6/nunK/MuggwAAAGqbVubmj16tD1+4gkba/DZZ87W5U0EGQAAAlhoqPTkk9Jrr0nh4baHJi5Oev11pyvzDoIMAAA1wODBdqspIUH6+mtp0CDp97+XTpxwurKqCZggw6klAADO79JLpfXrpbFj7fGTT0rXXCPt3etsXVXBqSUAAGqgpUul1FTbCBwWJj3/vDRkiHP1cGoJAACUW//+Um6u1K2bdOyYNHSoNGqU9N13TldWMQQZAABqqKgoG2nwwAP2eNYsKSlJ2r3b0bIqhCADAEANVru29Nhj0vLlUpMmtkoTHy8tWOB0ZeVDkAEAAOrTx0JM9+5SYaHNbrrjDunbb52u7PwIMgAAQJLUsqWUlSU99JDk8dhU7cREaedOpys7N4IMAAAoU6uWNHGitHKl1KyZ9NFHUufO0ksvOV3Z2QVMkKGPDAAA3pOSIm3dKvXqJX3zjTR8uDRihFRU5HRlP0YfGQAAcE7FxdKkSdKf/yyVlEgxMTZZu0MH716HPjIAAMDrgoOlCRNs70yLFtL27f51oqmW0wUAAAD/l5xsp5qmTJEeftjpav6NIAMAAMqlWTPpr391uoof49YSAABwLYIMAABwLYIMAABwLYIMAABwrYAJMjTEAwCg5qEhHgAAcBwN8QAAQI1DkAEAAK5FkAEAAK5FkAEAAK5FkAEAAK5FkAEAAK5FkAEAAK4VcNOvT7fFOXbsmMOVAACA8jr9c7ui7e0CLsgUFBRIkqKiohyuBAAAVFRBQYHCw8PL/fqA6+xbUlKivLw8NWzYUB6P56yv6dq1qzZt2lSh9z127JiioqJ08OBBOgZXk8r8PbmBv34up+ry9XW9/f7eer+qvg/fY+7gr//eq8JXn6m0tFQFBQWKjIxUUFD5d74E3IpMUFCQWrVqdd7XBAcHV/ofcVhYGF8A1aQqf0/+zF8/l1N1+fq63n5/b71fVd+H7zF38Nd/71Xhy89UkZWY02rkZt9Ro0Y5XQLKIVD/nvz1czlVl6+v6+3399b7VfV9/PX/R/ixQPx78rfPFHC3lnyFYZQA3I7vMQSiGrkiUxmhoaHKyMhQaGio06UAQKXwPYZAxIoMAABwLVZkAACAaxFkAACAaxFkAACAaxFkAACAaxFkAACAaxFkfGTw4MFq1KiRhgwZ4nQpAHBBS5cuVbt27XT55Zfrueeec7ocoNw4fu0ja9euVUFBgebNm6dXX33V6XIA4JxOnjypmJgYrVmzRmFhYYqPj1d2drYaN27sdGnABbEi4yPJyclq2LCh02UAwAVt3LhRHTp0UMuWLdWwYUP17dtXK1eudLosoFxqZJBZt26dBgwYoMjISHk8Hi1ZsuSM12RmZqpNmzaqU6eOEhMTtXHjRgcqBYALq+p3Wl5enlq2bFn2uFWrVjp06FC11A5UVY0MMkVFRYqNjVVmZuZZf3/hwoVKT09XRkaGcnJyFBsbq969e+uLL74oe01cXJw6dux4xq+8vLzq+hgAIMk732mAW9VyugAn9OnTR3369Dnn70+dOlUjR47UiBEjJElPP/20li1bpjlz5uiBBx6QJOXm5lZLrQBwIVX9TouMjPzRCsyhQ4eUkJDg87oBb6iRKzLnc+LECW3evFkpKSllzwUFBSklJUUbNmxwsDIAqLjyfKclJCRo27ZtOnTokAoLC/Xmm2+qd+/eTpUMVEiNXJE5nyNHjqi4uFgRERE/ej4iIkI7d+4s9/ukpKRo69atKioqUqtWrbRo0SIlJSV5u1wAOK/yfKfVqlVLU6ZMUc+ePVVSUqL77ruPE0twDYKMj6xatcrpEgCg3AYOHKiBAwc6XQZQYdxa+okmTZooODhY+fn5P3o+Pz9fzZs3d6gqAKgcvtMQ6AgyPxESEqLOnTsrKyur7LmSkhJlZWVxawiA6/CdhkBXI28tFRYW6tNPPy17vG/fPuXm5uriiy9W69atlZ6ertTUVHXp0kUJCQmaNm2aioqKynb8A4A/4TsNNVppDbRmzZpSSWf8Sk1NLXvNjBkzSlu3bl0aEhJSmpCQUJqdne1cwQBwHnynoSZj1hIAAHAt9sgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgAAADXIsgA8HsLFixQ3bp171DTagAAAUhJREFU9fnnn5c9N2LECHXq1ElHjx51sDIATmP6NQC/V1paqri4OHXv3l0zZsxQRkaG5syZo+zsbLVs2dLp8gA4qJbTBQDAhXg8Hk2aNElDhgxR8+bNNWPGDK1fv54QA4AVGQDuER8fr48//lgrV65Ujx49nC4HgB9gjwwAV1ixYoV27typ4uJiRUREOF0OAD/BigwAv5eTk6Pk5GQ988wzmjt3rsLCwrRo0SKnywLgB9gjA8Cv7d+/X/369dODDz6om2++WdHR0UpKSlJOTo7i4+OdLg+Aw1iRAeC3vvzyS3Xr1k3Jycl6+umny57v16+fiouLtWLFCgerA+APCDIAAMC12OwLAABciyADAABciyADAABciyADAABciyADAABciyADAABciyADAABciyADAABciyADAABciyADAABciyADAABc6/8BD9Uyd7+qxKAAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = linspace(0.1, 3, 100)\n", - "loglog(x, x.^(-2), \"r-\")\n", - "loglog(x, x.^(-3), \"b-\")\n", - "title(\"a couple of power laws\")\n", - "xlabel(L\"x\")\n", - "legend([L\"1/x^2\", L\"1/x^3\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Linear algebra" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " 1 2 3 4\n", - " 5 6 7 8\n", - " 9 10 11 12" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 2 3 4; 5 6 7 8; 9 10 11 12]" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " 1 2 3 4\n", - " 5 6 7 8\n", - " 9 10 11 12" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 2 3 4\n", - " 5 6 7 8\n", - " 9 10 11 12]" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 0.468988 0.40314 0.42774 0.430075\n", - " 0.506144 0.243659 0.666158 0.677984\n", - " 0.122759 0.747095 0.894337 0.274605\n", - " 0.901903 0.646881 0.902446 0.444673" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = rand(4,4)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000×1000 Array{Float64,2}:\n", - " -3.92081 -0.125597 -0.271852 … -1.05752 0.0432705 -0.844987 \n", - " 0.964957 0.881508 -1.11977 -0.668474 1.26099 -0.626752 \n", - " -0.283793 -0.612464 -0.639531 0.0402086 -0.89994 0.971123 \n", - " 1.90809 -0.399926 -0.448561 -0.0892749 -0.219389 0.0568491\n", - " 0.325687 0.110893 -0.790278 0.868956 0.482209 0.143322 \n", - " 0.882951 -0.853728 0.684322 … 0.553641 0.382662 -0.833766 \n", - " 0.739445 0.514026 -0.400339 1.3078 0.455491 0.437431 \n", - " -0.176262 1.26989 -1.6845 0.916057 -0.164074 1.18765 \n", - " -1.62114 -1.10071 1.81827 0.127403 0.911214 -1.10649 \n", - " 0.334767 -0.826587 0.544696 -0.284371 0.667293 -0.339589 \n", - " 0.268401 0.393914 1.17279 … 1.12595 1.06643 0.0320605\n", - " -0.0542488 1.68916 1.10874 0.972287 0.185435 -0.827114 \n", - " -1.14838 -1.85967 -0.165392 0.0623633 0.486016 -0.662348 \n", - " ⋮ ⋱ \n", - " 0.169414 -0.0948217 -0.59109 0.385028 -1.60487 1.2692 \n", - " 0.601934 1.89478 -0.640368 -0.183489 -1.1377 -0.0314457\n", - " 1.09582 -0.423357 -0.367192 … -0.253151 -1.20003 0.359188 \n", - " -0.740662 -0.591528 0.0900804 -0.899319 -0.530705 -0.563432 \n", - " -0.605553 0.154798 -1.33175 1.47598 -0.384623 -0.192465 \n", - " 0.252608 0.0355055 -0.200141 -0.245389 -0.614924 -0.476619 \n", - " 0.104547 0.340412 -0.44581 0.35474 0.0935907 -1.73103 \n", - " -0.307589 -1.32375 2.879 … -1.00889 0.0667546 0.891903 \n", - " 1.17112 1.88918 -0.911926 -1.07599 0.209169 -0.365497 \n", - " -0.178176 0.116688 2.20219 0.0592909 -1.15561 -1.1396 \n", - " 1.63478 0.620795 -1.10512 1.15111 -1.3169 0.665555 \n", - " -0.678734 -0.749931 -0.969804 0.108355 -0.206907 0.499762 " - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = randn(1000,1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000-element Array{Float64,1}:\n", - " 2.50914 \n", - " 1.00515 \n", - " 0.655121\n", - " -0.70084 \n", - " 0.521746\n", - " 1.42532 \n", - " -1.208 \n", - " -0.503263\n", - " -1.47881 \n", - " -1.47563 \n", - " -0.166415\n", - " 1.21908 \n", - " 0.113287\n", - " ⋮ \n", - " -1.16237 \n", - " 0.465969\n", - " -0.814659\n", - " 0.902918\n", - " -0.887828\n", - " 0.349207\n", - " 0.657511\n", - " 0.526407\n", - " -0.273558\n", - " 2.11414 \n", - " -0.330335\n", - " 0.429515" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = randn(1000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's solve $Ax = b$:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000-element Array{Float64,1}:\n", - " -0.455183 \n", - " -0.791691 \n", - " -0.910741 \n", - " 1.57576 \n", - " 5.23045 \n", - " -0.482715 \n", - " 0.534908 \n", - " 2.9925 \n", - " -4.27148 \n", - " 3.81676 \n", - " -1.80634 \n", - " 2.45016 \n", - " -2.34689 \n", - " ⋮ \n", - " 7.2581 \n", - " 1.52678 \n", - " 0.687566 \n", - " 2.21427 \n", - " 0.441155 \n", - " 5.74879 \n", - " -0.925171 \n", - " -1.59141 \n", - " 0.628882 \n", - " -0.227938 \n", - " -2.51944 \n", - " 0.0368821" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = inv(A) * b" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000-element Array{Float64,1}:\n", - " -0.455183 \n", - " -0.791691 \n", - " -0.910741 \n", - " 1.57576 \n", - " 5.23045 \n", - " -0.482715 \n", - " 0.534908 \n", - " 2.9925 \n", - " -4.27148 \n", - " 3.81676 \n", - " -1.80634 \n", - " 2.45016 \n", - " -2.34689 \n", - " ⋮ \n", - " 7.2581 \n", - " 1.52678 \n", - " 0.687566 \n", - " 2.21427 \n", - " 0.441155 \n", - " 5.74879 \n", - " -0.925171 \n", - " -1.59141 \n", - " 0.628882 \n", - " -0.227938 \n", - " -2.51944 \n", - " 0.0368821" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = A \\ b" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000-element Array{Complex{Float64},1}:\n", - " -22.8148+22.7317im \n", - " -22.8148-22.7317im \n", - " -31.6454+4.76216im \n", - " -31.6454-4.76216im \n", - " -29.7089+10.7519im \n", - " -29.7089-10.7519im \n", - " -31.0894+0.0im \n", - " -24.7398+19.571im \n", - " -24.7398-19.571im \n", - " 16.4793+28.05im \n", - " 16.4793-28.05im \n", - " -26.5884+16.4096im \n", - " -26.5884-16.4096im \n", - " ⋮ \n", - " -2.17419+0.0im \n", - " 3.65671+0.0im \n", - " 0.000743924+3.4153im \n", - " 0.000743924-3.4153im \n", - " 2.57654+1.43675im \n", - " 2.57654-1.43675im \n", - " 2.04091+0.877569im\n", - " 2.04091-0.877569im\n", - " 0.262097+1.36469im \n", - " 0.262097-1.36469im \n", - " 1.29348+0.0im \n", - " 0.659693+0.0im " - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ = eigvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You may be wondering how to type `λ`. It turns out you can just type `\\lambda` (the LaTeX code for λ) and then hit *tab*. You can type much more complicated variable names this way. (This is all thanks to Julia's support for something called [Unicode](https://en.wikipedia.org/wiki/Unicode).)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x̂₂′ = 7 # x\\hat\\_2\\prime" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJztnX2QXUWZ/597R5kEyAy6CQlhIAaJqy4KrpgQsVwkFBGzC+6vhMXlZSgjASosoIxChIDuuhInELZAC8KSCpbrQmbdVSw3iqwJWAuBiZBgwIC8JdwhJEEtJgFMIDP9++PunZw5c7rP091Pn5d7v5+qKci95/Tp7nNuP9/z9NNPV5RSigAAAAAAWpBq3hUAAAAAAMgLCCEAAAAAtCwQQgAAAABoWSCEAAAAANCyQAgBAAAAoGWBEAIAAABAywIhBAAAAICWBUIIAAAAAC0LhBAAAAAAWhYIIQAAAAC0LBBCAAAAAGhZ3pF3BYrG8PAwbdu2jSZMmECVSiXv6gAAAACAgVKKdu/eTVOnTqVqle/ngRCKsW3bNjriiCPyrgYAAAAAHKjVatTV1cU+HkIoxoQJE4io3pEdHR051wYAAAAAHHbt2kVHHHHEiB3nAiEUozEd1tHRASEEAAAAlAzbsBYESwMAAACgZYEQAgAAAEDLAiEEAAAAgJYFQggAAAAALQuEEAAAAABaFgghAAAAALQsEEIAAAAAaFkghAAAAADQskAIAQAAAKBlgRACAAAAQMsCIQQAAACAlgVCCADQNAwMEK1dW/8vAABwgBACADQFK1YQTZtGdPLJ9f+uWJF3jQAAZQBCCABQegYGiBYsIBoerv97eJjooovgGQIApAMhBAAoPc8+u18ENRgaInruuXzqAwAoDxBCAIDSM2MGUTU2mrW1ER19dD71AQCUBwghAEDp6eoiWrJkvxhqayNavrz+OQAAmIAQAgCUnhUriK6+uj49Vq3WRdH8+XnXCgBQBiCEAACFwHXpe1Kg9NVXI1AaAMADQggAIIqLoPFZ+o5AaQCADxBCAAAxXASN79J3BEoDAHwojRC67bbb6MMf/jB1dHRQR0cHzZ49m372s5+NfK+Uouuuu44OO+wwGj9+PJ1yyin07LPP5lhjAFoLV0Hj69Hp6iK64466+CGSC5S29WwhqzUA5aQ0Qqirq4uWLFlCjz32GP3617+mk08+mc444wx66qmniIiot7eXbrnlFrr99tvp0UcfpYMOOojmzp1Le/bsybnmALQGroJGwqMzfz7Rli11IbJli3+gtK1nK+l4kzCCaAKgQKgS8653vUvdeeedanh4WE2ZMkUtXbp05LvXXntNtbe3q7vvvtuqzMHBQUVEanBwULq6ADQ1tZpS1apSRPv/2trqn6dx5531Yxvn3Hln+PrqsG1H0vHVqlKVyv7/j7bnzjv3Hx//DgDgjqv9Lo1HKMrQ0BDdc8899MYbb9Ds2bPpxRdfpO3bt9Mpp5wyckxnZyfNmjWL1q1bZyxr7969tGvXrlF/AAB7fKaopD06RO5eF1vPVtLxw8N1SdT4/8YUIbYCAaB4lEoIbdq0iQ4++GBqb2+niy++mH70ox/RBz/4Qdq+fTsREU2ePHnU8ZMnTx75TscNN9xAnZ2dI39HHHFEsPoDUDSkp2h8BE1XF9FJJ8kkQTRNbaW12TRVl3Ru0vFxGkLKZfoQ02gAhKVUQujP//zPaePGjfToo4/SJZdcQt3d3fTb3/7Wq8xFixbR4ODgyF+tVhOqLQDFJtRu7RxBEzIQ2eR14bRZ59m6777kc5OOr1RGl9kQUrbxUKHuEQAgQqCpukyYM2eOWrBggXr++ecVEakNGzaM+v6Tn/ykuuyyy6zKRIwQaAV84nl8sY2RsT1+zZrR7Wr89fXZx/6sXVv/L6e/osebYp648VC62KNVq7K5TwCUjZaKEWowPDxMe/fupenTp9OUKVPol7/85ch3u3btokcffZRmz56dYw0BKCZ5JSG0jZFxianReV2U0rc5yeMU9Wxx+it6vGmKUPddvA662KO/+zt4hwCQpDRCaNGiRfSrX/2KtmzZQps2baJFixbRAw88QOeccw5VKhW64oor6Jvf/Cb95Cc/oU2bNtH5559PU6dOpc9+9rN5Vx2AwiGVhNB2iksiEDlNsOmmtj7+8eQ2//rX6dNPLv1lmiKMf5c0BWaKPbIJskaMEQApBPJQifOFL3xBTZs2TR1wwAFq0qRJas6cOeoXv/jFyPfDw8Nq8eLFavLkyaq9vV3NmTNHPfPMM9bXwdQYaBVspmjWrBk7HeOyDFxiaTp3Ci86VaVrc28vv/xQS/xNbYxeM+lv7Vpz2ViqD1oJV/tdGiGUFRBCoFnQCZj4MXGxEEVnSNMEiunaOkFhElySAiTaZl08kU5gpPWXC2l1qNXs45sa5+UVBwZAHkAICQEhBJoBCU+AyZCajDfn2nFBkXZOCAGS1sas4NbBVhDaijwAyo6r/a4o1Uj7BYjqQdadnZ00ODhIHR0deVcHgEQGBurxMzNmjI1BWb+eaNas/Qn9iOrxLFu22OXoWbu2HrMSZ9kyok98guiEE0bH77S1Ea1bl/y56doDA/W4GJtzuJj6qcGKFfV4m6Gh/fFESfmPOGW5YlOH556rxyal1SFkvwJQRFztd2mCpQEAdUy5ZVasqAuR+OuNy4owXbDul79cv8Z5540NSH79dfvg5lAr2Lg5eDhJIEPn8+EmorRJOhlqM1oAmg14hGLAIwSKjOktn2jsd/FjbI1g1FORVOa6dURvvLHfQ+HihQjhuZAss+yeFRsvUlo5oTxiAEgAjxAALYDJe5L0HVHdq+PqCWh4KpYtG/vd0FBdBEU9FC5eCNtzOMvBJb1MeeVckkJi6xJkuAbNDDxCMeARAkXG1iNUrRI98gjRxz4W7rpJBtbFC8E5Z8WK/QkWq9W6gNLF0hTRI5SFV0X6GmX3iIHWAR4hAFoAk/ck6bs77uCJoDQvi63XxsULkXaOTZZpF8+Urg+kYm2y8KqEuEbZPWIApAGPUAx4hEAZMHlPbL0xXC+LS9ku6DwaulVsa9fWBVTSudz6cvrAp+1ZeFVsVwtyPUfwCIGy4Gy/hZfxlx7kEQKtRBHy6EQx5RNKq6tr7qQQfRBPDuma04eTFFOp0W3nXMNl49sQWbUBkKQlN10FAPhhM+0Res+qtKkv0xSVy+asDaSnfrj7hqXtVcad5oq3Pe0aLn3FXd4PQBmBEAKgoGSxWSbXQGcR38IRJDqD7CNmpDagJdKLDCL7lXFcsWK7WpDbV/HnT2L1GQBFBEIIgAJiKzxcRRMnENjH22JDkiCpVol27hx9rbhBHhggevVVokpl9LlcMZPUBzfcUBcMtm00iQwbr4qNsNP12yOPJF+DI/ywXB60FIGm6koLYoRA3tjGrEjtK6bby4sb38KNZzERjUWpVOp/pnZF2x493iWOpdEHS5em73uma6dUvJHLM2ATw2M6vmhxYwBwwaarQkAIgazQGVSbwNosjBbnGhJiLHo9zm7runr19bm3XyIgWyqw2LYc241pdcdjs1ZQVhAsDUCJME092MSsZJHjJW36THrqrKuLaOLE9Hbp2j5pknsci6k/ue3kTIFxpjJtA5RtY3h0x0vGTAFQBiCEAMgYn9VRcbIyWiajHEKMcdoVou2mMm3aaRIlNvE3SfFQoQPoJWOmiLKpMwBeBPJQlRZMjYHQ2MTccKY6OFMoEvE7OkJNz3HaFSK/ja5MiXb6lCE5/citKydmykTWdQatDWKEhIAQAqEJlcBPJ5qyMEYm8eAjwDhi0DY2Jn5uUv10ZfoKL5/EinkEMPtcF0HXIGsQIwRASZDauypeZtJUTFZL35OmziSWYHPiXlzz26TVL2nzId/Egq7TeXklvky7rulaPucCkCmBhFlpgUcIZAXXk+HjVclrBVDRvQGm+oX2oLl4lbj9mVZ322fJp5/y7GPQmmBqTAgIIVAkfA1GXoKk6EuwdfXjLNuXwCSCdWIlTUCF2ost6bo2wsz1XABswdQYAE0GZ1orbXohxDQch6ItwY73k65+SoVPR0Ckn84zTdelTctJLP1PIum63Kk6n3MByAoIIQAKSprB4MbgzJ9PtG4d0bJl9f+6bphpE9NhI8Di5UrHjiT1k65+H/94fgKOI1a6uvYv5Y/3j9TS/yTiws1G6PqcC0AmBPJQlRZMjQFJ0rZjMMVrmKYQbKYXTFMi3JgR1zLS4qDi5XZ386ZvuPVO66ek+oVYks+BM52YNr0Vcul/HJ9+yquPQXODGCEhIISAFCajxY3X0BkMm1xEvgGrvgGzNvtyxf9cAoKj+CxXd12S7wpHtHHETKil/7o6+6QuyLqPQXMDISQEhBCQQMqb0ygrbjCSyqhWlervH32uRFCwaxlpgkVXrkm0uPRdnoG5tqu0TGJFIgAd4gM0MwiWBqBAmGIybOM1kgJr4zEuRPUyTziBt2+ZTVCwSxmceJekcuPEY0dc+i6PYHEifQyXKQbKFBAtEVuTlnMJuX1ASxJImJUWeISABJIeIRP9/byd4X2XMNuWwfVexMvt7vZbIq4ja0+Irp4+21Uo5b4EnuOZsinbN2N4qLJAa4OpMSEghIALSYO5aZpDKl7DZ98y2zrYlGEjWOLlcgKsix5oq7svvgLYRQhxzpEKvk8q1yRykFgRSAIhJASEELAlbUWVKXGer5fC17skVYesgnOTrllEj4IuhssnxsflXnPPkQi+j+OTeRoAFyCEhIAQAjYUYTAvsock9JRUXtM53LpF70tvr9+z4hIsLS1wJMsrevZxUD4QLA1ADhQhS67vRqBJSAXNum6IyqmHTbZkiQ1gbepGtP++9PUR/fu/E33+836B2y7B0txzuEHl3PIefjj9d+ET/I2gbiBKIGFWWuARAjYUwSMkjcT+ZhKeF9fl9z7TOVJ1Mx3n4yVz8f7ZnMOpGyepY9I0IHcvMk57EFcEksDUmBAQQq2NixF3nZoqS2yLjWiQMlKcekhN59jeB5vEhiFEsouQkpyiTIuJSxJBaQk7uXVrxhcPIAeEkBAQQq2LjxG3NTQ+GZlNdfAVVj5xG5JGynX5ve2KKJd7zq1bM8bApN1jU/JNTtlpz28z9imQA0JICAih1sTWiPuIjrRrhVoizam7j5iRNFI+y++T0E1RudxzTu4m2zaUBY53zaXNEtu9AIBgaQA8sAl69g28NV3LJgC4gWTQsE8mZsldxW3q4RqQ7XrPZ80i+n//L71ueWa1jiMVXJx2j13abPP8FqlPQRMRSJiVFniEWpMs4z5MZRRhiXTj2HiSQ+4u9Zx4KW55IXMt+Xh2iJS65hpe3UKnEEjDd8rXJlFo9Dxum12e+bz7FBQTTI0JASHUunAGeBvRkZZR1zcjc/RakjlgkupqY0jTjFTWq35M7fa559Vq8Q2xj3B3TRSaZR0BiAIhJASEUGuTNsBzBm2beAepjMy+QcM6fI1UXBDmYfTSrsm555WKm9fCJY5MIui9UcaqVW7iN+v7VOSkoKA8QAgJASEE0jAN2lIGJNQSaVuD4xMAnSQI81r142toe3vH1jltk1oXr5fEasJ4GXERx3keQ94nXRsw3QV8aXoh9K1vfUsdf/zx6uCDD1aTJk1SZ5xxhnr66adHHTM8PKwWL16spkyZosaNG6fmzJmjfve731ldB0KotfGNXXGNd8gyn5CNwXEVdr5xOSHwNbTRnePT4p8k+8xmNWFSGdUqr94SbUgjbbqtaHm1QLloeiE0d+5ctXLlSvXkk0+qjRs3qs985jPqyCOPVK+//vrIMUuWLFGdnZ3qxz/+sXriiSfU6aefrqZPn67+9Kc/sa8DIdS6SMSu2BqQMhgGF2+Kb1xOUeGIKVdviuk83ziwvj57EcidbuU+o6Y2IFs0kKDphVCcnTt3KiJSDz74oFKq7g2aMmWKWrp06cgxr732mmpvb1d33303u1wIodZE8g3YZuVUWQyDrTfFNy6nzITwCOW1nYjpPtk+oyaRhmBpIEHL5REaHBwkIqJ3v/vdRET04osv0vbt2+mUU04ZOaazs5NmzZpF69at05azd+9e2rVr16g/0HpIbp7K3QRVd8116+xzCfmSlmfGNldPWr4XTnlpG64WddPNri6i884b/dm556b3nanPdPl7DjpodD+k9bttv+nuk0u+K10blMp/42LQ4gQSZkEZGhpS8+bNUyeeeOLIZw899JAiIrVt27ZRx5555pnqrLPO0pZ1/fXXKyIa8wePUGtRpNVMrit9XAnpfXL1/JjqJFnfENOPEivtOKsJu7vtlrdL9ptPKoa4t9S2vzj3rCjTyiBbWmpq7OKLL1bTpk1TtchT7iqE9uzZowYHB0f+arUahFCLIpkMkDsQSxgGDqaVOkWbljDVSXoKU2JbkjihV1ytXWsfdB5iysy1PJ1I4/z2OPdMdwzEUfPTMkJo4cKFqqurS73wwgujPn/++ecVEakNGzaM+vyTn/ykuuyyy9jlI0ao+TENiGkeDJ+B2FQfV8PAwVQf6Z3ZXYhfw1QnKZFhY8hd7mdocWnbDyHEmXTQe9pvj9OvumN6e4sVcwfC0PRCaHh4WC1cuFBNnTo1cUl8I1j6xhtvHPlscHAQwdJgFL7bDbgOxJxA2bjgkAgo5gQt5xmwbbsZqm55eH+/3XVDBx+HXhnnMp0UQpxlGfTOuWe6Y1xyKYHy0fRC6JJLLlGdnZ3qgQceUK+88srI35tvvjlyzJIlS9Qhhxyi7r33XvWb3/xGnXHGGVg+D0bwNQY+A7HpzTuk4ODUJ6vpuThpIkwnJKLfRcWQtKhVys+TEp3GMnkgXT1utmKr6GkL0vrC9UUk/m8JbxgoJk0vhJICmolIrVy5cuSYRkLFyZMnq/b2djVnzhz1zDPPWF0HQqh58Z0eCOERCi04uOXH3+yzyADNmZbTeRtcYmRcNw/1uT+hg75tPTJZenBs4PYF557Fj4kmwoRHqLlpeiGUFRBCzYuE6EjbXmPNmno8AvfNmyM4fON0XDwBNn3lWj+f+2Ej1Hw3D3X1pIQM+m6mwF+Xl4e0exY/pujeMCADhJAQEELNjcSAqAtujhrbpUt5b95pRkBq2qxWqyeuW7XKzpvBefv2yYwdQmS4HMe5nq0nJVTQd17JNn3El+ncrPafK6o3DMgBISQEhFDz4zIgmgZyiemTJDEgOW3GNZ7xdpr6SirQur9fqWXL7AOeOSIqSyObFOwu7RGSnkrlihsf8ZV2blbxaM3iQQN6IISEgBACcdIGcgljmyQ4TFsS2AzqXEOTx5YJvt6NNFFr4znyCVo2xQFxgr4l9nCTrHcUH6GiOzceQB5y6oojxCCSmgMIISEghJqHNC8Od5f5UEvmOfWPl1up2AsHbhySbRt053AzY2fhCVAq3chmkVLB5FWT3MNNst4NfMRX2nL2eMJDSU8tp515TTOCMEAICQEh1BxIrdbhGoFQb7TRcqtVt3woHKOXx5YJWU1bKaU3sr7CIss2NJB41mzqLe0Riv+FnO41tTMrIQ6yA0JICAih8iMZm2FzfIg32mi5PnuQpRlPX2OXlhm7t9cuhiYrskipwMVmisb3WbOtt4/4iot5CeFoM+WpOy4PEQvCAiEkBIRQ+ZFardMYLG2Ww+vKkIiP8TW6acYz1JYJ0TwuNjE0WSAhZCTaEHqKJql8jjjmBs6n0TjXNv+TDtv0CaEXI4BiACEkBIRQ+ZHwCLkuhzeVEV9a7jIIZ7F1g+QSY98YmiwIlVLB5ty8kmrq6q17diUCi20FmG2bdMfr2on8Qs0DhJAQEELNgc9qHQnDlFaGxNYNWQgHX8OX1/SDbb1d+1RCGLj0kc11bcvXPbs2G5dygphtBFgSUiImbyEO5IAQEgJCqHkwBciuWlVf5i29SoZbRhnc8lJbQGTdzqxWAkkmu7SN1wk5peq7calrv7g8KxAxIAqEkBAQQs0NZ5DOwiPUqEtR3fKSAqa7e3Q53d3Std2PVL05Hg3JIOmenv3lmZ6FLKZUk67BDXL26Ze8g5clvHsgX1ztd5UAaEIGBojWrq3/N/rZggVEw8P1fw8PE1100ehjiIi6uojuuIOora3+77Y2ouXL659z4ZQxfz7Rli31eq5bR3TUUWPrkhfPPru/nxoMDRE995xdOQMDRN///ujP/u3fwrVTot4rVhBNm0Z08sn1/65Y4XedpGcxfq0bb6z/u6en/kzMn59cN9f2RZ81U/lEyc/ut79NVI1Zi7Y2oqOPlqkfEdGMGbxrhIBzz0ETE0iYlRZ4hMqPzutj+8bpuvVDFI7rPsukbty3XimPh0t8iusGrmvW+K9KkliWHUU6YD7Lqcb4s8vxKvnWL77UvqcnvIemDNPUgAemxoSAECo3EivGlMpOnNjUiTNdY/retk1Sq6lC93n8vO5u93pLLMvmtl0yiWX8uqGmeLjC3ue5iU8Vhn45yHtKDsgBISQEhFC5SRvUsnirlaxvgySREDV4nP2UXNoUN3wuRjZUnzeC3pOCePv70/cgS2oHpx7Rc03CQCJg3lRP21VXvt422xi5UOkEpIUePELNA4SQEBBC5cRmaiRtkM566wdOfePHRPccq1TSV/RItIkbaG5juF3rF60L97xG3dKWgaelXrBZQu4TMC+5OkzK25ZFQL/pWQhVnyIvXAB8IISEgBAqH5ypEZu3SMnpKm79TYOwzjCk/XE2VY3vAu7TJz5GyrbPTSIoLVaHc3yScHPxHHC9YRLX0j0nfX3Jq8DSYt/y8pSYntWQKwJ9vFigGEAICQEhVC5Mg2ZjUHMx0BwDJvl2ahqE0wy/jRiItqm7m1//LPIicd/KTcKQG6tjEo2ufaDDxcC6JllMuge6Pep873lIkp6FrLyaoLxACAkBIVQuQhpoW3ES8m05vpomPhVWqej3U0raL8r27TpU4G/SddJEg64utgkyXZ6HJEG1dKldGzm4Pl9JAsIkBG3vebUq/4xzPTS+vznEAjU/EEJCQAiVi6wMdPyaN92U/dty1DDoDF58ubPu7delX0weG9+pN1t8EwRG62jjFejtdRdStrjGrSSJSdPUYNo9j4ruSkXWi5LlSkasDmt+IISEgBAqHy4G2tVwucSa5LGUmbPyxnWVls7z4jP15oLNlFO8bkmb6HLulYQxtY1Xk4pbcYmxCelFcS3btU/gEWp+IISEgBAqJ6bBUXJzRhvPgkQ8gquQ4hhsm37htsV16s0XTj+lPSPc9vkmDMwzRsX2t8B5jkI+o9Lo2h/yhQVkB4SQEBBCzYnEm7Vu4L755mRPkETwcOhVWElxGHGDILmCKYSR8xUXtu3zmbIqgkfC5reQVmfpZ5Szms0XmylkUC4ghISAEContm90Lm+ANobMVwhICSkbg60zCJIrmEIE2vpex7V9WawEKwImL4rkMxoVQ1mJkaKIUyADhJAQEELlIy3rMud4m2txxAUnRsckxLJchZVWX58VTL6emqxidsoi2vIi6TmSekaznkaNUlZxCpKBEBICQqhcJBmXaNbluAGWMEZccaETTdwMzVkaB4mtSeKktVNCrEr1U1aZhYuYwdg1Psa37xvX1eU56utz89raeobLKk7BWCCEhIAQKhecrMuhl9ObSIrB4Q68WRpNTr2yii3JKmYnqc5ZZBb2vY6NsU871tdr59r38evG82JFP7NJgurSliKKU+AGhJAQEELlwrSSK0no5P0GaCvEsjLOSskaBFM70+6BSx9Fl/UXZQVQiHrYGHuOR07it2D7jOqCpBuftbWl753HKdPWO4XtNcoPhJAQEELlIy3rcnxAzPMNUCfcfLMTSxldKYNgMkyS2cDjxj5U7iLb/g2xEsmmXzjHughOiWfMtCfa2rX6qTKT1xaxPkApCCExIITKSdSAc4ROnm+A3OzEXMNT1OW/PquNuPcwzRso4e2z7V8X74R0YDg3/4+r4PR5xjgLCYqU+BGUBwghISCEmoMiu7q5yQ6zDBYOhe4+pAmd+HRXEpz4MF+vgEv/2nonQtxr7rGugtN0Xa54N13X1mtbqynV0zN6es0nVix0Kg4QBgghISCEikuoASfrgUzyjdhnR/S8B2+TSHIVBtIeIdccQ0mb4voIlga22cC5qR5MLw3cPnDxnJmuy32ZiV+3p8f9ntu2oaje2FYFQkgICKHiEDXWoQacvAYyk5GyMb4uHotQbZYQV77CoLtbNv7LdZomaRVU0jku8TBxgWDqdwnPKKcPJD2TNs8Rt26c8mzbUHRvbCsCISQEhFAxiBrrSsV+FQmHvAcynZEK6SUI1WYpcSWR5Zlr/KWmcVzbEO0z1/uRlZDv7TVPO0kFK9u2h5P/iluebRsQoF08IISEgBDKH86Uh8SA4zOQuXo/QhlfrvGX2PrDdi+yvN7wTUhP47i0IekZtxEzWQn5eF8lrXCUqIt0kHRoD0/eL1JgLBBCQkAI5Y9tkkRXXAcyn8RtoYwvF5/BW1d/k7hy6SuTCJTwgGRhwNKErGkJOZcshLxNX/mmpXDtE911XfrHtg1IxlgsIISEgBDKn6TBt1IJM+C4eF6SksGtWuX+5pp2vRBJ+Wz70uXN22cPqSQRKCVgsprSMAnZvDwoSoWdLvIR77Zesuhvw+Z54fxWbRNEFnWFaqsBISQEhFAxSDLWoQYcm3JN3iqTUXF9O+WunnLZk8mmL132IpMWHJIb0RZhSkPCmyAh5POc/ok/u9y4Ke5vQ5dsVfr3BIoBhJAQEELFIcs3LZ+pAo6RCGWAsgqW5ca9uO6r1jjedA8kjXLIKQ3bmCiJVV2+Ql5yuoiL7tlNW0nn8lz19fEWXGA5fLmBEBICQqgcSLy1NcpYutQ+d0jDMNgYFRuDIp0Z2IWkt3Vbg8g9x+UN39cohxDaeRpSzm/CZ4rWpa90dfIJcnYRc0X4PYHwQAgJASFUfCSMjc4Fb2MY+vrcVrlwl3anlR0y1kXXxy4Gsb9fqWXL6v9NwuUNP6td4m0zDOdlSG1+E1kF+Jrq5DLV2sCln/P+PYFsaAkh9OCDD6q//uu/VocddpgiIvWjH/1o1PfDw8Nq8eLFasqUKWrcuHFqzpw56ne/+53VNSCEik2oIFPXwS+kUUkrO5ThlZ6Io5HeAAAgAElEQVSCSjPQEiuoXDAJHRexnZchdRUGIcVkWp1cplqjhPBOwiNUflpCCK1evVpdc8016r/+678ShdCSJUtUZ2en+vGPf6yeeOIJdfrpp6vp06erP/3pT+xrQAgVGwljk7Y830VYhTIqaWWHEGJZByXrhGnIqSWT0HGNbeKskgsRiFtETwanTt3do7/r7ra7hsvvzvf3hEDqYtMSQihKXAgNDw+rKVOmqKWRbF+vvfaaam9vV3fffTe7XAihYhPaI1TGXCA2020hthrQYWOgJbIsc5GMQYkLKtMWH6Hih4royZDwCOWF7veEQOri0/JC6Pnnn1dEpDZs2DDquE9+8pPqsssu05azZ88eNTg4OPJXq9UghApOiGXHvb3pYqLMb4O2g7hEH9saO5d9t1xIEzo+nqxG/iTpHEhpz57U/ZJ8vk11KqIXy0SRhRvYT8sLoYceekgRkdq2bduo484880x11llnacu5/vrrFRGN+YMQKjYS01E2ZZT5bTDrlUJRbAx0VsaGcx1OvW2MuY/hT5vGMyUV5BLSWyWxn17elE24tSoQQo5CCB6h8pKVh6aIg7ZN27PMpKxbKq0zhvHj01YLSd3veKK9nh5+vaPfc58LHzGqO09KvIT2VunIY3sK17pyg7vL6jFuFlpeCLlOjcVBjFA4pA2Z5BusqW6uQiLUwBhte6WSbMTj9Qgt5Fym3kxejrgACeGxqNXqfedTro0xdzH8phV1UveUm2Mn6Vn2vS8hFxrE8a2r6f6V2WPcTLS8EGoES994440jnw0ODiJYuiBIDhTShj2tbi7Xc21vmnhyXWHFNcIu4s22f0IfH6repnJsdqa33ccqqY6S8VRp/WDKKZW3p5T7vPp45KLlJ92/IvQDqNMSQmj37t1qw4YNasOGDYqI1LJly9SGDRvU1q1blVL15fOHHHKIuvfee9VvfvMbdcYZZ2D5fAGQNDhr1mRrBBpkEevik3OHc400I+wq3mw9ZqGP51KWuI+kZy/Ey0DS8226Tt79Z/O8htzrL+9+APtpCSG0du1alRTY3P1/CSgaCRUnT56s2tvb1Zw5c9QzzzxjdQ0IIXkkBor4dBBn3yDpunHf5l3ayzVsOo+Q7+DrY1hb3SOUBfFnLz6tJxFjk/R8m57lPPuvSM+cSz8gnigMLSGEsgBCSB6JYMz4+ZWKTKBliMHcpcy8c+74ilXb+Bedl8OU6TlEYG3IKcNQxD0VaTFiDUJMe5o8SSH7K/Tmsbbl28aKIZ4oDBBCQkAIhSEpb4/vqqe+PplAS2kj6/K27vLG2tMjs8KqVqtPN/p62VziXxrHc4xDqMDaUFOGIQg57Wo6Ny3bcrT/sugvTj8k/Qa4z5Crl4eTi6wsXsgyAiEkBIRQOBoDhe1u77ZuatflsVKiyuVtvXGurSBLqreNIdJNOUp5XTj3I7Rx4NbBdpd06TpwCDntmlZ/XwEh7SUKvYorhBcS8URhgRASAkIoLD5vtGmDUt5v7lkaHJs6VKt2sQ19fWZPFNeYFSHYlFMH0zHS8W15rJjM0vjqruWbpkBH0u9FUlhLeyHhEQoLhJAQEEJh8RmUTYOSlAjxeWMtwtueyRD51tfGoIcONuXAnT4xHRMivs23bbaeCp862P4mdNeSWtzAwXeMsZlSLksiyVYBQkgICKGwhDJ6EsG+vm+sIdrmYojiRkdXj5BixTfY1CaGTAenDpxjfAKCQ4ljW0+Fi/F1/U3Er9XTk+0LQhZxVGVKJNlKQAgJASEUjobhWLpU/o3I961XKq5B8m3PdbC1MTzc+toadJ9gU9sYMlN5vh6heN0an3OScK5ZU9+AtShTITrjm/SMS3jCGtfy+X1l5XUpggcT+AMhJASEUBjihoOz2zuH6EDpKkKk4xok3vZCCTvX+rrUxzX4O4tEgT71TKtj/Fnv7rZLFZAlOkEn7clK6uM0MSnpdUnr76w20AVhgRASAkJInlBvUEkDpYsI0QUYZxVXkUTWeX1ClWl7P6SMTPQecIUet54uSQb7++1SBaS1SYI0T02IaV6OlyitbrZwUzPAI1R+IISEgBCSR8K4xY1AaM+Ba1wDd8okrZ4S7QsRhxA6tkGi3aFXD5rqmPasZxG/wn3GTPm5GtcMFdSb1k+Sgpjb37ZJERHwXDwghISAEJLH17glGYEQ7mmbN9boOVHPg82USdrgmfVgW6TpGtd267x70m0yBVCbnoHQeYB8V/YR1YPto+2x2VDWZsWVqU39/TIrzVxi2+JbmejaFPqlANgDISQEhFAYXI2baaohtHs6rc5JyRN1g66rGMxqsM07B1Mc13bbpA8IVUfTc+PyHHCNuW8cF/e8JHHg8vzo+ilaVrQ+ujLTxIrrOCGd/6kILxnNDoSQEBBC4XAxbjojsGyZ3+ozmykq3UobTlxRtVoXbb4erJADaeiYhyyNQK3GTx8Qkv7++jPa3z/2O4ng7Gq1vi1KtE2uz9iqVfzzdHF5PvF0cQ+M7jeUBDdhZp5B+0V7yWhmIISEgBAqFjr3fWNQcVl9JjEwmTwP8TfsRj2L8GZq05asMjtLk3Xemjjc4FzXPEDRrVCi5ft4HbnTwEnH2QipNGyeRdsAZ+6Ul209TCCwOlsghISAECoeOve9y6AiNTCZytFN27l4sLIYSENdw9ZQJeWycd03juNBCYGvdyQtp05fX3ocmouXlHOeKbg6rc02Hlhu/7mKFelVZCaw1D5bIISEgBDKB44RWLbMf1CRHJh0xiNteXUWy8nT4iaSYjykA7O5dU8yTL6eJI4HRSn5abuQxplbvmt8Vdp5JnFgen5CLRJwESs250j8JuARyhYIISEghLKHO1ByBhWOoJIcmJKMh+Q1XANgdf1p+k46MFtX90bMVK3Gj7Vy9dqZvBVS03bRZy60cc7bsKYFgkv9FrjPoq1Y8V1F5gKW2mcHhJAQEELZYjtQSrx5ZjEwSV7DpixTf+ZhRON17+7mrbST8tr5TOdw25fkzQppnH2fLZ8px8a2IRLJJ6WwESu2wdh51BG4AyEkBIRQtrjmVfF98/QdmDjGRHLw45Zl6s+84hUadU+KndKttAvtUZMI8E0TnT7GmeNFcnm2XL1grufl7cFKIinmMM0TjaXv5QBCSAgIoWwpY1BikZfD5uER4hoKzkq7hocjaqwaq+5cSfKgSPRFFvFmkvhMU/n0VRGnhrgJG4v8WwdjgRASAkIoe8oUlJgmNLLMl6O7Vtr0oaRR8s1kbPKgSO1C37h2vHyJKabQ8WaSuAo3qS1y+vrSV+5l9RviBp0XzZsFzEAICQEhlA9FC0rUDcjSO9W71MU3T42UwXUN5A61Iih6rs1WD9wdyn3aUwSy9Ai5PLNZel/S2lSrKXXTTdl5mYEMEEJCQAiVG52RtzFyaSurQsa0pNXFJzGjDte3cJ+l/WlCLPQydKnzlCpGICz3HobMMxQ9NtqXUc+e7pktQiB/o03R+sf/pOqEuKMwQAgJASFUfGwHEanpm2h50QHUJZMxN9g6SXRJvqX6CgCJjTF1ZYdchi5xXlGwvYeuwo1znusza5tRWkpExNuUVP/oMyHhpULcUTgghISAECo2NjmHGkt9bYwcV9TEp1RsUwD4JM/LK0dR0nRHVAhFdy1POt6W0MvQfc8rAkUTcbq+TBPM3HZwp4U5Lxk2U98335yfwAd8IISEgBAqLi6DZdIGnKY3TdcNO3Urk5K2jfBNnuez2WwUGwFgO0Unmaww5DJ0l/Oi91V6ioNbXuM4mzQAWUzH6Pqytzf9mU0TvlxvrU8sUmihUmbRXQYghISAECouris9uMJGZ1R6enj1ixpt3WArlTwvLRhacl8n2+mOPN96XWJgarXRwe6m8+IiW7d1h2vdOeIxfpzvMnBpgeTyzEbrojsm7bfDee5cpr6lFz7AIxQOCCEhIISyxWYQ5gwiadNJprfRJG9QtWovNkz1dI194XpFbD0xnEHfdoou77feWo23VFupsf3V02P2BJlEtu/SeR9Ranq+TWWHildxjUNKK9PUR5znjvtshqh/g3gwdnxKGbgDISQEhJAsJsHgMgi7us9N2wLoDJxJNJnqnTbYhnrj9JkactlsUzdFl/dbr00cmU09dfdVQuxxp7hMW4bYelKkthnJEtNvR8ojFJqkKfii93tZgBASAkJIjlBz8WmGWyrItq8v+doSg22IN86Qnhjb6Y688uvYPFcuG3CG8AjplmtzPUKuq+kkthnJgvjLlOm3w3nupJ5N1ynFvD2mzQyEkBAQQjJIuLF9rx8iyJZb7zyEQOi3XVvxFnJ6QYftMmzb/ore12h8Tlwc+kz3Jr046Oqg84rGr68L5s/KO+IqGly8xr6xSKHqFb123l6pZgVCSAgIIRkkAhuzRDrjca1Wf+Pu65OPkzAZlDJlOg6B7XPlGlwdTZ0QNai2BtLGG6mrQ7w9Ji+s9DYjHFxFg2maO89khBJjV6v/TkMBISQEhJAMnMGiaIMB9y0xrd6hAlBtYl/yznScJ7bPlVR/SU5budQlVIyYDz7tS8tJJPnbskHKm93qv9MQuNrvilJKERhh165d1NnZSYODg9TR0ZF3dUrNihVEF11ENDRE1NZGtHw50fz5+78fGCB6+GGiSoVo9myirq786mrLwADRc88RHX306HoPDBBNm0Y0PLz/s7Y2oi1b/NoXqtzQDAwQPfss0YwZ2dazcX8OOojo9df9rs9tw9q1RCefnPz5SSfpz0v7nXBxvb4LofukcY34Mx8nj99AWX+LrYCz/Q4iy0oMPEKyuLjwy0yo2KcyBFjGp+3yvscS17cpI+QCAA5ZTTdn1SeNa0VjsoryG0hbvYZ9xPIBU2NCQAiFx2ZwLNugEsoYZWXkpIJaQ2wOa4NEf/kGU+cx3Rvi+tFnIo8+aYhE2+1yfEn7LehirprxBa8sQAgJASEUHpuVV2UcVEIZw9BGVjKo1eXtXVL0SnjQXMvIO/bDdH3bPk5KOJlnn0iIKk77XVermYRa2V7qygiEkBAQQuHhvFW6Bp7a7NMU8k0yxIqxRtlJBoXz9pr2vXRQq+3qLUnRqxNnnGzTpjLKvMzZto917c87GaDrbyBUos0GJuFc1pe6sgEhJASEUFgag1XaxqEue3JxBprQA1IeA17aNTl18vGg6AwHd3PYUIIj6j1w3Rcs76kuKVz6WPdM9PQUr0/SnnGb9vt4AnXL/ZtJUBcZCCEhIITCkRRHYrPthSmOiJvbJ3TCwawHPI47Pou+sc08HcU2CaKNN69W899KwmdapyjTIS7G3fRMSE11SfQP59kNnWizQdLvoAwLHZoFCCEhIITCEDLIkjvQhB6QJPOLpBmHxjFp2yTY1EkqqNXWqHGfDVdvW16GKIR30FU4uBr3kB4xqf7h3F/b9vu0O/47aLYp1iKTixDat2+fevLJJ9U999yjrr32WvXZz37Wp7hCACEUhpCBp2lvrj4rXmyo1fzjJzjGIXpMdMrHxyMUbYPN1iRS3o74Mun4LvA+966InjrO+UnbZPgIB1fjLuX9iZeZdSLJvBJtulwbuBFcCD3//PPqxz/+sfrmN7+pzj77bHXMMceo9vZ2Va1W1bhx49RHPvIRdf7551tXvGhACIUhtDFKGmiSDEfoN9yoKKlU7N8kXYLIK5X0TNfSbQ7l7ejpSS7X16uTtSHyqW9S30r9fkKIGhekvXTc+5tn+4vS981MUCF0zjnnqGq1qtra2tSECRNUtVpVf/M3f6P6+vrU5s2b1b59+5wqHYrvfOc7atq0aaq9vV3NnDlTPfroo+xzIYTCEdoYRQeaLOIb4tf2NVQc42Dam8rUJq5njbvqLutcSRLXzNIQudZXd57tTvFFiU3SEeIZgtAArva7ysk+/cMf/pBuueUWev3112nbtm106aWX0i9+8Qtav349TZs2jdra2viprAOzatUq+vKXv0zXX389Pf7443TsscfS3LlzaefOnXlXraUZGCA66iiidevq6fW3bEneRmBgoP79wACvzOixXV31tP1dXfX0//HU/END9W0XosdJYbqerr7xtrz6KlE19otsa6tv49FgxozkY2bPNrcprc0rVtS3DTj55Pp/V6zQ15vT1njbOPc07Z7dcUe9rUT7t6Ig4j8v0T7g1El3DOfcri6iJUv236tGfePbscTL0fVBpZL+bDSwuZdppD2z3P5J+q0m3c+036SpPl1d9f549lmi9evd7p3PcyFVPsgBjlq6+uqr1a5du0Z99utf/1odf/zxavr06epnP/uZlfoKycyZM9XChQtH/j00NKSmTp2qbrjhBtb58AjJE2Jpu+RyWQnSrmeqbzzmp/H/Oq+ZtGfNVHffaRrp7Riib/2u03O2cVjRY1yf5aVLeeWn3Yu0+257L137yaZ/TOXYeHFs0kQ0/mzunc9zIVU+8COXYOnh4WH1L//yL6qjo0N9/vOfVzt37vQpzpu9e/eqtrY29aMf/WjU5+eff746/fTTE8/Zs2ePGhwcHPmr1WoQQoJwjaaNcQ0VHOmLaQm5zZRPtZqejFFyGsA03RbKKOuwifWQnHriBGZz88GkXYMjmnV9kHbfXe6lbT/Z9o9EAkaXPrW5dz7PBWfqNo+A/VYk6NSYjkqlQpdffjlt3ryZ9u7dS+9///slnFTO/P73v6ehoSGaPHnyqM8nT55M27dvTzznhhtuoM7OzpG/I444IouqtgzcaRSb6RbusfPn16fili2r/9dlR28bdNcz1Tfpu+FhokmTzNMEktN7Bx+c/Pnvf6+vN6dvbafQiPj3zKVs7nm6Y/73f2We5bTvTX2Qdt9d7mUSts+sqX+U4l9Xh0ufcurGvSdpx/jec5Av7+Ac9OKLL9JLL71Eg4OD9L73vY/Wr19Pd955J/X399NBBx1E3/jGN+g///M/6b//+79D11ecRYsW0Ze//OWRf+/atQtiSJBGTEt0EEiKbeAeZ3PsihVECxbUj6tW6zEJIcWQ7npp9Y1/V60S7dxZjyPQGbyBgfrgOmOGvxh6/fXkzydO1Neb07c297QB9565lM09T3fMJz4h8yynfW/qg7T77nIvk7B9Zk39Mzw8Wgxx7pNtfZK+59SNe084x/iWD3KE4zZ666231F/8xV+or371q6parapKpaIOOOAAddZZZ6nbb79dfelLX1Lnnntu7qvHXKbG4iBGSJ60HDFJx6VNZaUdW8QYIV19o99xtoKQjjWwjUuxjRHi3lPu9ERjNZTr1CfnPN0x3GvGn/mkGCHbaVTOffeNMeL2k03/pE31cVe3pdU/+n207dx75/NcSJUP/AgaI/TSSy+parWqXnnlFbVlyxZ1//33j4kH+rd/+zf11a9+1eriIZg5c6a69NJLR/49NDSkDj/8cARL54wpR0z8OJuEfrpjTUvRQywt5ma3NW0pwonjMMVn+LTJJi7FNgcM956mlasL3HbNZs1JJ6Db3JNzzd5es6hNKkcixscnxojbB6bvkj5P+sxF0KfVv/F9f7/bvfN5LqTKB+4EFUL/+q//OiKEdGzbtk1NmDDB6uIhuOeee1R7e7u666671G9/+1u1YMECdcghh6jt27ezzocQCkMWHpqowNFdb+nSMCs3JNrnk0eIIzA523ZwBulQ99InGJVbfla5daSDuV3yCBXZ4IZ4hrK8v6CYBBVCX/ziF9XRRx9tPGbhwoXq4IMPVm+//bZVBUJw6623qiOPPFIdcMABaubMmeqRRx5hnwshFAafLTY4g5tu2W70zbi3N6wYiy/fzSqzdPwvfk6IZbsh3PwNr2FSuRKZpbNcuuybWdpnOtJEUcRCiMzSnPubZ/uL0vfNTFAhdPHFF6t/+Id/0H7/xz/+Ub3zne9U11xzjdXFiwiEUBhcBnKbwc3kSYhOh0kOvkn1kNhrzCZOQSeKGm2y7XebwVrS6xC915UK9hrTTSX5iE9XMRjCgEveE25Ztu2XbDdyCGVDUCH0k5/8RC1evFj7/auvvqoqlYr64x//aHXxIgIhFI4kD41uoLEZKLkCJ7RBlNx9nhunkJYfxXb3eZ/B2tVw2BgyFyGQ5+7zIbxmrjFRLs9+SAMu1T+hdp93bXf8d5CHEG9VgidU/J//+R/j92effbb6wx/+YHXxIgIhFJbGQJ4Wq2NjvGwGmpArN/Ia8NKCY6UTWurqkHQ/OeLI9l7bBvuuWuXvnXH1DBQlVsdFDKZ5WiW8JRL9w3l2Q40ncZJ+B3kJ8VYkl8zScd58803J4nIBQig8rrEwaW9wNsu0Qxmn0EtkdQbI1CZOnXwGa9294gamhxKQ8em2xv/bLrVvhikNlz7WPROc1Z9ZI5lOwyee0ScjOfCnEEKoGYAQCg93oLEVFUV5+67V6sudV62SrYuvuz5tWa/rYJ22kk1ayHJIak+1mr51SVoZZTZgLr+npPZLbJnhg8vLgFL89rved9O4hhxC2QAhJASEUHhsBpqiiBsbQngRsjDKroO1TnTYvlVL3muJ6YjQKx1DYbq+bR/Hn4menuz7JHquRBwbp/0uv4W032gZx7KyASEkBIRQNjTrG1IowZJVnIHrYJ11qoI0JO6DSxl5T6WFEuGNZyLrPomfm6U3iuNFjYu7Zh3XygKEkBAQQrKkvZ2GmELKk1CCpQzTNHHDkbdRkLi+beyZzxJ/Xy9SVs9Iln2SljMrxMsAB5O4g+cnPyCEhIAQkiPtTTDvt+c4NsbIFKcQyhjlLSxcyMsoNO6PbqsF27IktgjRIfU7yHJ1Uug+MZ2b98tAGV5KWhUIISEghGTgzJcXaTCxMUYcgRdyiT4nx1ArZ7ANnThPUgRL/g5cywr5vEh7hKpVt9V/kkjmC2vl32kIIISEgBCSIW2wKFJuDdvgbW5enjym/YrmZcsaW8Nr21/x45cuHW3MbEWwaZPVtHYmGdG0nFJJMS2hnxefFwPddiO2sTuSSIjXVv+dhgJCSAgIIRny9gjZDIY2osxm6X/WA12R+tTleAlCJs4zxazEk0hyp+N0ZZr2qUt7tpKun3ROll5ZnylSm3O5vzvfZ9NH3BXNG95MQAgJASEkR9pg4bNc2zSIuUyNJLng+/t5x7okgwwhEkJ62WwzR+f1xmtjZGz7Ky1mxdWYRX8HHE+j1PSb7Y72RcF3alLq2XQVd0XyhjcbEEJCQAjJwnFj2+Y1SXsb1mV3TRNPcWOkGyTTBFzaQBdKJISKEdGVq8scnfcbb6jEeSaPkK8x44oS01Sa7h6azimbZ8L02wmx51gIarX8k1I2KxBCQkAIFRfOIJaW5dgkPJJS4Ver+lihuIBrCApTSn3XN/q4kXOJEUmCI8psM0fn/cZbq9WFBSeLdFLCQNM5Ou+NrzGziT1LekYbhtXm5aBWCxfYH8LjKTHdbrNBc6hp3TvvHC2ETNOgwA4IISEghIqL6xsf12CZ9lZKIy4ouruTDYytSEgSKi4xIkn4Gl9dO/J863bxttVq9XtsEhPx49eurSeNlBQRXFESP47jXUgLopZMcWA7jRrFdAznt5PWh5xnM+S0bhE8Us0MhJAQEELFxSYGoDEYmgx2Uvlxo2ISB40B2zQdl+Q18lmhFl0+7DuQ2ogy28zRUp4Gmzdzn6lBnyXekiLCRsSuXWsX5yNdV129kvoy+ryYppxdpr2Tfpuue46Z4qkk+i1vb2mzAyEkBIRQsbGJ/1i71n7nZ85eSvEB23b/JW4bOAnlfAZSlxiZeObo6PlxF7+v4bV9M3c1MmU2TkXzMOj6Ms1r5fKS4yuwk55N029OwjtUtPvVbEAICQEhVHxcAqyltgSQ8tJw2hDaI6SU/zJgl6BP7hSJ1OqokB6hImB7D13jX1zvG8cra5v2QMqzFW9T2tS6xHNRxgzxZQFCSAgIoXyQCk7UlWMzeJoGKlMcUYjBLaku0gOpq2Fx8aRwvTw+21W4iIKlS/0EYd4Zgrn30DX+xea8+D2Iri709QhJomuTKSBeylOYxTRlKwIhJASEUPZIBSdKBjnqBirTgB1qcEsqN+1aJuMsKTp9l5/bxEf5xO0ktTn+vPT22t8/6WeuiBmRXb1zthvwZukp4Xh++/qwzL1sQAgJASGULVJvglm+URbdtW0yztIrYmz6wuTliYuA+BJjaYEs8bxIPnNZJKDMM4aqVuOlNMjKU2KTIb7Iv3UwGgghISCEskUqUDXrgNeiurbTPFYhxCK3L3TXjydmTFqRpsvnxKmbbhWQ7/MiuflmFiI+rxiqvLKMm+jv53t7ivpbB2Nxtd9VAiBHZswgqsaewrY2oqOP1p8zMEC0dm39v67lJJVhQ1cX0Ukn1f9rU09XuGU9+yzR8PDoz4aGiJ57zvydD2l90ag7EdEdd9TvC1H9vzfcQHTVVfvrNTxMdPXVY+s5POxWT12bKxX75y6O6Zmzufcu98Xl2erqGtv/y5ebn2Gf8xr1XLBg9P296CKZ34QrK1YQnXBCXf40MLWJ81sHJSeQMCst8Ahlj437OW3ah5uQLvQbquQ1bMrKwyNkW/foG7Zt1mpbTG2WmPbQBbPb3Hvb++L7bLl6OBrnpW1XEyULT61NbJVuVVvSvoK2ZUvVEbiDqTEhIITygTM4cwwGJ4hYUgwkDXCS13Apy2Tg05LJSQ7W3Pulmy7zFSmcFWES0x7RMlzvvU1+rDyX+ptEmORvgfsshsw1VcRFHMAMhJAQEELFpFZT6qabihPXoZR+gDPFn9iKDdf6mgx80nchBmvfgFQfkSKxIswFn+eL017uNjMh8gSledd8PbXR4znPoutqNm526rIt4gAQQmJACBWPeAZjn0El9AC3dKl+mw7dbu1Z1DePa9iUKxmQmqfxCXntxsorU/kh8wT57GLvG1CfdF7IXFNlXcTR6kAICQEhFA6XN9WkgTE6QPb22pcpERvCjW2J1tPVQIZewhtysM5j+bHtlifScNps+1uICpVKZf//xz1oIVeFhVyB18A2w7SN0OFQUjIAACAASURBVI5nkM5iCh0eoWyBEBICQigMrm+quoHx5pvdPCwNbN5QdZmqk4IudW/MPlNca9Ykb+AqRejBWtLbw7kWd+NciWvpxEx/v1LLliUH4UoEU1erY3PyuD5jNkImSeT5PD9JAsUmmJmbqNHVSyYh4pGLKDsghISAEJLHd6BMOtd2M1UX0gbQ+ABn8vq4Bj1nFWRZtMHaNc7FtAWKJK5JK12eA67A8X3GuOfpYsxsnx9dP0XLioohU6yQKR7Opk9sPEc2z2iWLwOtDISQEBBC8vhOvSQNsiGmc6IDm810AXcrARtjkYdLnTNYuwoUG3wEoM6jkFVMVdp9c3lubZ4F32cs3uehjH1am2wSHpoItUoMK8GKCYSQEBBC8kgY9fggKy0U4gObT5xJ2lskx1hIbWsgKVqyGPwl7mueMVVp9821fbYCx+cZ6+vbf81Q9zutn7LO2m0bb4S4n2ICISQEhFAYQhgnXbyCREB2tZrvYOc72EobMZ9A3CzSBSRdN5rbJ60Otp4PW49QNAmh629BenrFx7Plej2ux1Xq5WnNmvqUteQqMawEKy4QQkJACIXD1jjZlikdkN3T426wJNrmYzB94iKScBn8Xe5HaE+fVDCtzRRod/fY8osSM6Jrh6+xjz9TSX2c9nz7vDzFr7d0qdwqMXiEiguEkBAQQuEJ4XL3GZzS3oxtDFYIT4ytwbSZ1guVvM7lfjSMp0RWaW4dbKZOkrImp02Bhgrqd/V86lZAxtvh83tKEiGuvy+X5z+L6ceiLS4AdSCEhIAQCkuot6kQAdm2FOFNsVbjLx+3ra9NH9nej7jxlMgEzakD5xgfcRtiGsXVgyXp9dKhm2aW7gMTobN7uxybdC72HpMHQkgICKGw+A5SusFDKqbAx/gWIcDZZvm46wom6QzBoQSkhEfIt27SbXP1tPl4S21+E7pnSmIFGBfJPg8hWLDiLBwQQkJACIXFx23NifXI013tOwBLDJC6N3IbAbJqlczAz70feWe2Nh0jUTfJ59KlPlkG9+qeKU7Asuv1koSKRJ8XbQofpAMhJASEUDhcY0BsvQsuXp1QAc49Pf5xSrb1do11qFb3v7lLDvyc3ESucTqSdUg6Rspw+Xobfeoj5S3l9r3u+ZPqg+h1TELFd+qqiFP4wAyEkBAQQmHwiQEx5TuREi/SAc49PXaiwnaAbFxDV2/bWIe+Pv/pC1uhEj2es4Io1HRCWr3z9jRK1EdyBVaS4LAJJJdA8sUhCddpY06aBniEwgEhJASEkDwh4iyiG0/6GMYQA1Pot/Y775TfT0si2NzmfiQdH9or41Pv0IY9jbiRbdQnmp+IU4b0Cqy84l1Cp3OwfeZsyi6asG4mml4IffOb31SzZ89W48ePV52dnYnHbN26VX3mM59R48ePV5MmTVI9PT3q7bfftroOhJA80nEW0SkcX8Nou9t1qLfJeBt1A2TSAC3hYvcNqA25tD7UdEJZ3s51RjaEJzP+fJv6Ps/+C/3MKcUXLK4vPkXII9VsuNrvKpWEt956i84880y65JJLEr8fGhqiefPm0VtvvUUPP/wwfe9736O77rqLrrvuuoxrCuLMmEFUjT1pbW1ERx/NL2P+fKItW4jWriW6++76cBNlaIjouefC1W3FCqJp04hOPrn+3xUr/MuME23jli31f8d59lmi4eHk89OuMTBQL3tgYOx3XV1Ed9xRL6NR1vLl9c/TSKqT6X7YHi/x/EjUIw8GBogWLNhfz+FhoosuIlq/PvnzpHvLQfd8m/o+z/6zfV5d6sr5PbqW3dVFdNJJvN8XyIBAwiwYK1euTPQIrV69WlWrVbV9+/aRz2677TbV0dGh9u7dyy4fHqEwSLqDpd9E0+oW8m3SFp1HiBMUHWoKqEhv5zZIBkLbTE9JbDmybJmcl4wz/aULfs7bo8Z9XkPe6yL0A6jT9FNjDXRCaPHixerYY48d9dkLL7ygiEg9/vjj2vL27NmjBgcHR/5qtRqEUCAk3cHShtFUN9epmVDu7/g0YdrKtCwGatv7YTpeJxak+7MRcG5bj3g7bGJDbKeydPdOMmM15/nW9b3v79BWGPrgW1fT/UPcTzFoeSF04YUXqlNPPXXUZ2+88YYiIrV69Wpteddff70iojF/EELFplar57vp6ws/iBbxjc9GFGS1ZNcU7MwVNlkF30avU6mMFZOcetg8Fz7PkM7IShlficUMLgI1j0Br17py+ghxP/lTSiF01VVXJYqQ6N/mzZtHnSMthOARKh9SA2jUQKe9mZb5jc/V0Em8rYdcqeNK2nW49bBJ6yCxialOZEpsZBxyKlcngov2cmEC+X/KQSmF0M6dO9XmzZuNf/H4HumpsTiIESo2UgNo3CPAyflT5jc+l6mrEFmuTfdq1apsjE2aUeMavaT26ZJShjb8Uvcrq4SHZRMWZRNurUophZALacHSO3bsGPls+fLlqqOjQ+3Zs4ddPoRQsZHaz8u0BL1sAxzXE5B1YKnNvQqRG0mHlEeoUe+owDSldcgygD7vZ1iyj7NG93sqs1e4VWj65fMvvfQSbdy4kV566SUaGhqijRs30saNG+n1118nIqJTTz2VPvjBD9J5551HTzzxBN1333107bXX0sKFC6m9vT3n2gMpJJZSm5agE9kvATYtS/clrWybZf3cJbtSy6K596qxRFypscdyl/DbkLb02mZpdnSJ9b//+9g2RPuNuxzbliKmAUirU1cX0Xnnjf7+3HPt7rXL787n9xTq/oECEEiYidPd3a2IxsYQrY28Xm7ZskWddtppavz48WrixInqyiuvRELFJkRipYqUR8h2SsImjoOztUGIt2rJcjn3yhRro6ufxEqjNA+Z7VRRXl4Ol+uGXq0l4REy1dFlKjCv3xPIjpaZGgsNhFA58I1niBro6HYdXGHVWLUWKg0/Z1DOY9d2FwPa31/Pe9Pfn/y97VRUHls6cMlr+sTmulmuzNPVKe3ZNdXRVfjl+XsC2QAhJASEUOsQX3HDFVbRQZo7cNoO3tzcLiHfYON9EuItPHqcy/YiPu0N5RWxeZYk68C5btYrCE2r3XT1SKujywbFN92U/+8JhAdCSAgIoeIQH3xDu/O5dXKZVnMZvDmDclYeCJepDFvDkmbIJd/Yi+BZCpEGIo3Qm5XaoHt201YPunoQOb9VBESXGwghISCEikF88O3uDme4JAxJ2sDp8rbJHZRdpgltRaXLVIb0VIPUG3sR3vyl6uASoxZ6OxQbkryOnNWDrh5Ezm81bSoXFBcIISEghPInzesiORhLGJJqlZfh2uVt0zcWSlcPqa0eTFMZPttA6ISaxBt7lpm2dWIzVBoITv/a9KGLJ9PVa6v73ZuEjimZpK7uN98sE8cn0WYgC4SQEBBC+WPyukgariwMSdI184gfiZYpvdWDyVi69BVndY+POMzCI+SyQqlatfNC+Igpbh9mGchuu3ow7bpZeL+KMMUK9gMhJASEUP5k5RHKwpCklSG1PJgrmkJs9ZBmQGzFXxbTVrYCzUaUusR3RcUQ15jm0VfVqlJLl4api0sZaeeE9n7lPcUKRgMhJASEUDGID2Dd3fJBjHkOZJLLg4uwn5dUkKmLUHMNqucKNFtRatOG/n5zNmpdvRvtyyq4t7fXvA2N1HSjbXu4qytDZFTHcvviASEkBIRQcYgPYKHiZbJeJZI24NoMsCGDsF3aJeEl8xGB0kH1rl6KuLipVmVihZJEmanfJaZXOX3g2k+6DVnz8iDa/DbgESoeEEJCQAi1HiEElok042czwLq+lWbdZl0dfAKis5hCdfVQxYVQpaIXKtx7HcpTmCaWuH0gndSRK+Li1+3p8Rd+NjnFsNy+OEAICQEh1BwUeSUHx6D5iIEivZWaxE5aMHFfXz2njK2BlpyqcOlfFy8P516H8BRyBYmNWJNI6ugSI9fTY56+C0URXipAHQghISCEykk8bkLqbTME8VwppjpyY1iK+Fbqs5rH1UBLe4QadbENrHaZJpLMCi2dmVzyGTOtDluzxi3tQtFfCEA2QAgJASFUPqJGs1JJDz7Nc8lr0oCtix+xLVfirVRKIJoMk+TUYBZB9Y062fRvKHEq6Sl0WSWl2y7D5pnR/Qai3hxbzx4Cl4FSEEJiQAiVC45XwNXIhiDLBHW2SApEUzslg8WVGjuNVpSpilD1kPIUSvwWXJ+ZeN2Sskln6REq8lQ64AMhJASEULngxIn4GFlf4gOsrbcjK88Vd2WQVC4dk5EOFRTMqXMWxjBLo5smmnyTg/qKj7Vr9XuLNcq2ScTp0hYkRWweIISEgBAqF0mDcaUiZ2R11+SuZkkaYDkDdtaeK5e9xNLgeCR0RjrrYPGsjGERja6r50rqpUJ3D/v73fbQszknbw8xkAVCSAgIofKRZDQljKzuWtwlyT7ZliWNDDe5oK6+rsYiGhReqdgbfY5Ry3PPLlvKbHSTniOp9tRq9RVfeQT8I7aouYAQEgJCqJy4vAm6vG2Gzu/jci0dtt4HnUB0zaVTFnEhkc061HWKgOk58g0Kjy908M0BZEuZxSkYC4SQEBBCzYlEXIbOkC1blrySRkLIhI7fSIphst1LLIksjb6vMc4qJqkoRlcy1qtxjMvUWl79EW9/UdNPAHsghISAEConpsFdMphWt0ItqVyJATZk/IZNv9jE7LjmgvGB009pz0gWMUl5G13b30JIQZuHh8yU26oIKw2BHxBCQkAIlQ/T4C791hk1ZPE/nccl1ABrMuycGCWXpHWmbM/x+xAqp0+0PlzPRrxuS5cmx7xkFZNks5eW1AqzoiUqdC3btU+K4pED4YAQEgJCqFykDW4+hks34NZq9emwrN9mo/VJEn82Ln+XfnERnC4rfzjYeDZsPXkment5AlgCnym4+HMbz2Zuc885WdBdsfWQ+Xh3yxqjBfhACAkBIVQuJLMUR0kbcLN+u0zLnl2p8Fz+rlNXIQVn/Dppb/u6uug8VWm5prj3TSeoli71bxO3jS7PrUkI2t5ziSzoSdfhZKz2/c3BI9T8QAgJASFULkyeiKj3xOatkztgSsZ72E5zpf3p6us6dRVKcJrqp6uPSdhwRauLYJP2oklfyyQQuX3lWwcpkvpNoj55x2iBsEAICQEhVD7ig1t3d/JbMXeKxnaXb9+pnzRjyd1l3VRf36krjtDJKktxmrBJE62c45OEqa3Y4x4vcS2lzJuZJnl2+vv1ZbnWQQLTsyqVt0hizzRQPCCEhIAQKieNwY0zWKYNeFkaAM61ko6JZs+uVtM3mnV9m47HJXEyYrsYGdv6mYRNmmjt7TW3Qypvju/KPUlPps/2E1l7UEz9Fqo+Rcz4DeyBEBICQqjcSG0VkZUB4AqAtOzZafV1EXe6eBNbDxinz13qV6vVvR1JIjA6Nao7VyfYbPLm2E5p2q7csxWWpufA1Xvpcp6Pd4XTb5IB+Igdah4ghISAECo3pkHNZWojdG4R2ykhU33SvrcRd1LGwaYcKa9F0tQoFxvPFEfgSa/c41w35HPLETi+3pVaLdstN7CarHmAEBICQqj86IyP7YAnETPANRxZDfpcIyllHFz63Mdr4RtHYhPX4ytgXb1gWU7bxtMxhPDsRYmvjsxiyw14hJoHCCEhIISagyTjY+ud8I0Z4BqOxnL2ImW2zcMjJEFWK4ukhGL8WmmGP0ReLF294gkoOffRt355CRKsJmsOIISEgBBqbrgBv74DMqeMogdoShmH7u7R/dDdLVnL0UgKuLRpSCmj3ZgKasQ6mZ4F1+v6JqDUrdKLCxyffsl7iiqLqXAQFgghISCEmgfdG3AjyNY2AZ/NgBwy747ElB0XX+OQx1t+Vm/3Utex7aNQebEa6J7dtJWJrvVzrWfjHCx5Bw0ghISAEGoO0pYlpwWbhvYIhQqULRp5veXbCjhXgyrhRXBNnhgiL1aj7KRnNy3tgE39dP1tI6KkfgsQU80DhJAQEELlR2LlWHxATtqkM420pcxFDJSVNgqcOudtiCQMqk8bQt/XtN+DjSCREH4Sq95s+8zUzjK9WAAzEEJCQAiVH9MbsEvW6N5e98HSNKjbTiH4elfSjLWrUTBNQa5ZUxeRunbmbYgkRIhUYH3I6byk8m0Fia/Yc9njTodEmgOsFms+IISEgBAqPxIeIU5ZSce6bK7Jefv1NSKhpgN15cY/7+31W8UXCglxKRk0zfW2+D5rLnFJrmIvfq5Pf0fb4pvmIO/gbCAPhJAQEELNgekNW3qbhEaZITwb8XJtNkptwDEakpt8cgVblobI5LXyETJ5GFOJZ83WM+oT2K8TP77C0TfNQRGEOJAFQkgICKHmwfSGzX375sa4hBhQTULDJk6DY/Rc2qArd9kynpHNyhClCQefaSnfGChbz45Un9mU4yP2dOc2rh2PP5L2qKa1E/mDmgsIISEghECctMFSwiuQZASkvA2uAeKuy7JtpvB8DVGa8bSZQnENAk7zPrquXkxC0gPF7Xtpj1CSmA8ZK5bWTokAcFAMIISEgBBqfqTfPH3f0rMI5oxmBk4zejYBsjojYyNw+vvrXqT+frs2cYxnVlNXSc+HZKwap0ypeifhI1g5QiSL1ZAQO80PhJAQEELNTail0q7L7bNw3UfbXKnUA5dtz0vLdqzbSyvN+PisVPMNlrXBRTxLrV6Mk9d0jo+YMJ2bpVhFvqDmBkJICAih5kXCKJoMd2Owt1luz43f8TFARfA8SF/Ddvm0KZ9TqN3UQ3iEomU3i4fDti849yx+TN5pGkA2QAgJASHUvGSxVNplUA8pOLhtjhuOLN7SOduQ6AyebSqBJOHAMY4S054Sqxd1uARbF9Erwu0Lzj2LH8PdMBaUn6YWQi+++KL6whe+oN7znveocePGqaOOOkpdd911au/evaOO27p1q/rMZz6jxo8fryZNmqR6enrU22+/bXUtCKHmxdeoccSBi4AIOdXBaXOSccnbI8QNMo6eJ73aSymZ3d5Nq/x8g7RtvBxF94r4rgDTHSOVuwgUn6YWQj/72c/UBRdcoO677z71/PPPq3vvvVcdeuih6sorrxw5Zt++feqYY45Rp5xyitqwYYNavXq1mjhxolq0aJHVtSCEmpsslkrbCoharb4BbF/f2LIk3t7TpoZMYiR0LErSNWynlKpV+0BrG0+ZZKJJKYrieczSw+TzIsLdMBaUm6YWQkn09vaq6dOnj/x79erVqlqtqu3bt498dtttt6mOjo4xniMTEELNj+nN03WVlO0x0WM5mZl9DamuzZzpqdCxKPFrhAoyjl8z1BL/LLxptv0QYqozxDPqmwpBd4zNhrGgvLScELrmmmvURz/60ZF/L168WB177LGjjnnhhRcUEanHH39cW86ePXvU4ODgyF+tVoMQalF8V0m5HOObh8eXLIy2ZJ0k62sjcGwEYcj4quh0W54eIZ/ykgQP97fn8yLSTAHmIJmWEkLPPvus6ujoUHfcccfIZxdeeKE69dRTRx33xhtvKCJSq1ev1pZ1/fXXKyIa8wch1FrkIQh8MzNLETpGyWXqJHSQcbR+0sZRYkUYZ6d003YrOrEh1W+uYk8iHk3qRQQ0H6UUQldddVWiCIn+bd68edQ5AwMD6r3vfa+aP3/+qM9dhRA8QkAp+bd47hLfvD1C0bpIGw7fqZO0KcwiG7ru7tH3r7ubd55tcs2kQGxOigeJ2CCXWLikc1atylb4g+allEJo586davPmzca/aHzPyy+/rGbMmKHOO+88NTQ0NKos16mxOIgRak2kp1y4AkAiM3MWuCzTNvVnlkG2WeP6LJnO8w3u7u9362/TfbJ9RnVt6Osr3vQsKCelFEI2DAwMqBkzZqizzz5b7du3b8z3jWDpHTt2jHy2fPly1dHRofbs2cO+DoRQ6yKV18XlTdk1M3MWSO+JldcybgnxxSnD1bsosVN62qopm/7m5lniPqN5r1AEzU9TC6GBgQF19NFHqzlz5qiBgQH1yiuvjPw1aCyfP/XUU9XGjRvVz3/+czVp0iQsnwdWcAd2nUHMarsAmzq5Htc4VtK7kce0n1Iy4iuamC8tmD5ENm+OWEgqI/6XZ2ZxUxtc95wDoEFTC6GVK1cqXQxRlC1btqjTTjtNjR8/Xk2cOFFdeeWVSKgIxEmLwZAwILbeC5tVNzaCQHpPrDyEosQ96e21ExSuHo608zhCPVqGazLB0CvfXLJ8A5BGUwuhLIEQam3SBAjHqHKNIHd1kFTeGskAV5tYofhu9kVZncfZyqPxfTwhH0cYuE5tSkyJNspw9cBleZ/yeCZAcwIhJASEUOvCESA2QasmY2a7OkgiJsXmLT8qDlwSCvompZQkLTbF9Z5Xq+Uw1iG8U5LB7nlOJ4PmAkJICAih1iSkV8XmWi5GQbruulwvHC+FZFLKxnGhthnx6Tcipa65Rj4mKxSS3iluEHXIOLQi9CkoHhBCQkAItSY2AsTXoyGxOsi1TpwYFJ+MwZJTHNJxI/FgXNd7Xq0q9bnPhYnJKjrcqWHbNktsSwMAhJAQEEKtia0R94njkFgd5FMn03E+0xSSUxw294PjHZDMaMyNu2nG2BdOvJWPkHbdlqbMfQrkcLXfVQIAUFcX0R13ELW11f/d1ka0fHn9c93xJ520//uBAaK1a+v/9b3W/PlEW7bUy9uypf5vbhuidXI5bsYMompsVGhrIzr66PTr+5wb59lniYaHR382NET03HOjP1uxgmjaNKKTT67/d8WKsWUNDBAtWLC/vOFhoosuqv+/yz1//XVe3bhtKBNp91jX5nXr0svmPL/N2KegAAQSZqUFHqHWxsXT4+qql1gdFAKfqT+pQGjOmz/XO8DxYtjchyzjyXTXt42PkYypMW0foounqlTsV0/qjoVHCOjA1JgQEELAhmYdmH2n/iQEXpqo8t12wqd+PjFZPqLENf6Gew4nlYBN+oi0Pg8dTwRaCwghISCEgA1FWfrbrKtoTKLKRuCEMJ7cmJZVq+r7aXGX65vKCpkHSjJ9BGcj1dDxRKD1gBASAkII2JA2mGchUIq8iiZ0+20ETtbGM35fenv9PFMuolvaayZ5XFFeIkDzgGBpAHLAFPicFshrE2CtQxcIHC9Tdy2pOiSVwQlk9r3m3Ln8wHJuMLlU/eL35eqr/QJ9XYLRuedwg5C5iwo4x0kG1wPgRSBhVlrgEQIuxL0NnCXyEl4czlu17louW3nEvTsSGbLj5aZ5kYrsAWtgykbtE6vkMsXnulmrRPqItOMQ7wMkwdSYEBBCQIIQSROTSMtpo7uW7R5Utnl4uNMe8XK7u80ix7Xvso6h0tVz6VKeKNHV9c479+97ZlqJlVSmzWatWYoSxPsAKSCEhIAQAhJIiIQ0oiIieo2oAdNda9kyfh10bTEFxLouf4//ScSV5OVB0gkLk+E31TWLFYoQJaDMIEYIgAJhipGwjY1IisGJx6AQ1ctct250nIzuWp/4BL8OuviRSkVfBidGJKncOPE4FZe+48RQJZ3nGzulS4ypi1VKqys3jsdU97R2ZRlHBUBhCCTMSgs8QkAS3Ru2TR6aJA+BxN5o3DqYPBGcvctslr+neYRs6m3bT9Hy8/AgSWxfYap7iHb5TDk2a8oHkB+YGhMCQghkRdo0hMnw2U6TxDcc5dahgUl8pImdtMDnaLnd3Xxxxg3WtUlvkMX0k2tdlUq/D1LPCwcfYVWGgHdQPiCEhIAQAkUhzUPg61WyxTZ+hHvdpBV3knEqJo9YvH5557bhrvBK6h9T3aXb5ZsMsRmzsYP8cbXfFaWUynNqrmjs2rWLOjs7aXBwkDo6OvKuDmhhBgbq+XeicSFtbfV4k+hmr889tz8ux6WMvOqeJfF+0tVv3TqiE04IX++BgXrMz4wZybFCunuadp6uz4n87kf8umvX1vNDxVm7th5jJHUuADa42m8ESwNQUDgBx2nBrXnt1l20XcLj/aSr3xtv2O1I70JaokndPeWcp6s7NxEit77coHWfcwHICniEYsAjBLLC9HYfP87k9Um7BjxCY0mrn0+f+1xX4rw0j5JNu0zXve+++qq2oaH9wiq6YtHnXABcgEcIgBJhs/2Ez5JmH0+ALdGl2Vle14W0+pn63GdpvaunzOY8U91tnyXTdXXpASTOBSBL4BGKAY8QCE0Ib0madymUh6PBihX7c+BUq3WRMX++/3U5XjOuZ013blL9dGXq2mlzvdAeIUl8rlt0ryBoPpztt3jYdsnBqjEQGpsdwTl5VrJaiqyrT6hVQJx2hWi7xP5paeW7bGWR9RYYjfvN2RZEB/YSA1mC5fNCQAiB0PgmxrMtSwJTfUIsOXfdosO37VlsjdK4jkuKgKy2wIjf795e9+ti2w6QFdhiA4CSkBafYrMtRBars9LqE2IVEKddIdpuKtOmnVJbWcTLyWILjKT7vWiR+/Qmtu0ARQdCCIAcMAWL2hj4LJYip9VHOjB6YIDo1VfT26Vr+86d7nuEmfqT206bQHgTtuXYBnHrji9a6gMAghPIQ1VaMDUG8sZ2ykciDsMUj8Stj8QUSHRKplLZ//+6dkXbXq3Wz3GNF+LGxNjun+YyXefyDNjESuW9yz0AIUCMkBAQQqAI2IobHxHCDUoOHfSaZICrVaX6+sztqtXqxzREkIvxloqJ4WycygmAt4lH0vVbfF850/E2e5oBUFSwxYYQWD4PikLoJe+Na0gk6pOAu/VC0tJ2n20bJJd5pyUR5C69t6mTru2VCtG//uvYa9j0c+jnDwBJkFARgCYjiyBTqUR9EnDinXRxMz6xUpIxMbo4IiJ+ALypnKS+T2o7Ud3Xk3QNbl/F77dPIkkAigyEEAAtTJH2ffJZTWcSIGnGW7oPkgLhXcQWN/tyo+1JYijpGi7B7VIB4AAUEUyNxcDUGCgDabuQ22RaXrGCv++TTxZnLropGc6UTvRcm6koTh/4ZrAOnWV5/XqiWbPqniDONbhTX8gQDcoCklkC5AAAES9JREFUMksLgWBpUHRMwc3x73p6eAG/nGDrrDJY67BZzeSy8snUBxJtzyIAOcQ1QiTMBCAECJYWAh4hUGRMb+dEY78j0gfN2lzz4YeJPv95vlfAxXvCOYfrvfIJnk6ql2QwdRYB8JLXgEcIlAUESwPQAphiTZK+I9IHzXJoxIb83d/xY1xc4km453DjZiTjfqSDqUMHwEsHOUsnzASgaMAjFAMeIVBkXDxCDWy9IUnXitLWRrRuHdHrr+/34rh4D0J5HGxin0yU2SOyYgU/TioNLKcHRQceIQBaANPbefy7KC7eEJ2HqVHeuecSnXDCaC+Oi/ck1JYOXO8RkdlrkpVHhOO5sfHu2OxZxwF7hoFmBUIIgJJhMvCN73p69k8NuRrupOmlapWor6/uCfr+98ca2YMPtp+SCrmEn2O8OdNyNqLKBU4dbKccsWcYADwwNRYDU2OgWeBMZaQFKOuml0zByM8/b78UPW0aK9Sy/SJMe3HqUKQpRwCKCqbGAACjSPOG+HhCTF6cNO9J0nVN57gm89NNI0U/t/WahMiunFaHgYG6F87Wu4MgZwCYiC/kLznIIwRaAYkdxl1y1the17Weurw/SZurcssPlUfJ1MboNeN/3PvlsyEvAGXC1X6XxiN0+umn05FHHknjxo2jww47jM477zzatm3bqGNeeuklmjdvHh144IF06KGH0le+8hXat29fTjUGoLhIxI+4xM3YXtelnrog4fXrx36+aBHRt7+d7jWRDjyOwt2fLIqNdwdBzgCYeUfeFeDyqU99ir72ta/RYYcdRi+//DL19PTQ5z73OXr44YeJiGhoaIjmzZtHU6ZMoYcffpheeeUVOv/88+md73wnfetb38q59gAUi8bUVjx+xDZAubFaLdR1XeqpE0//+7/Jnx9/fF3ImeKpTILMJf4q/t38+URz546uw9q1ySLo5puJPvc5CBsAxAjkoQrOvffeqyqVinrrrbeUUkqtXr1aVatVtX379pFjbrvtNtXR0aH27t3LLhdTY6BVyGLLB4nr2h6vm2rq77eflluzpv5fzhRd9HibbVB07ZGYvgSglXC136UUQn/4wx/UWWedpU488cSRzxYvXqyOPfbYUce98MILiojU448/ri1rz549anBwcOSvVqtBCIGWIUT8SFQQSF3X9nideOKKqiSxYjo3fnylkixgbMVNXmIVgDLSEnuNXXXVVfSd73yH3nzzTTrhhBPopz/9Kf3Zn/0ZEREtWLCAtm7dSvfdd9/I8W+++SYddNBBtHr1ajrttNMSy/z6179O3/jGN8Z8juXzANgjmcnYF136gLS0AmnZu+PnpmXgbrB2bV362O6BhozOAPAo5fL5q6++miqVivHv6aefHjn+K1/5Cm3YsIF+8YtfUFtbG51//vnkq+MWLVpEg4ODI3+1Ws23WQC0JL4BxdJL03VBwmnBw2nxQPFzTRm4GzTimlySRyLYGYCw5BosfeWVV9IFF1xgPOaoo44a+f+JEyfSxIkT6X3vex994AMfoCOOOIIeeeQRmj17Nk2ZMoX6+/tHnbtjxw4iIpoyZYq2/Pb2dmpvb3dvBACAiNwCihsUyZMkEdDdEDvDw2NXeN1xx9jkkRA5AORHrkJo0qRJNGnSJKdzh/9v1Nm7dy8REc2ePZv++Z//mXbu3EmHHnooERHdf//91NHRQR/84AdlKgwA0OK6Ek3nSZo7104gSGWfbixn54oV3fHxVWANklaIAQDyoxQxQo8++iitX7+ePvGJT9C73vUuev7552nx4sW0Y8cOeuqpp6i9vZ2GhobouOOOo6lTp1Jvby9t376dzjvvPPriF79otXweW2wA4I7Lju+m7Tp0cTNJ15X2KNnG5iCWB4B8cbXfpRBCmzZtossvv5yeeOIJeuONN+iwww6jT3/603TttdfS4YcfPnLc1q1b6ZJLLqEHHniADjroIOru7qYlS5bQO97Bd3xBCAHgh4uA8NkTC3tqAQCImlwIZQmEEADZ4+JJaiDhUQIAlB9X+12azNIAgObFJ25GKks2AKA1Kc1eYwCA5sZ1mXh8r65qlWjJEkyLAQB4QAgBAErP/PlEN9xAVKnUPUNXXVWfbgMAgDQghAAApWdggOjqq+uZm4lkd4cHADQ3EEIAgNJjSuYIAAAmIIQAAKXHZesKAAAgghACADQB8YBpbF0BAOCC5fMAgKYAW1cAAFyAEAIANA1dXRBAAAA7MDUGAAAAgJYFQggAAAAALQuEEAAAAABaFgghAAAAALQsEEIAAAAAaFkghAAAAADQskAIAQAAAKBlgRACAAAAQMsCIQQAAACAlgVCCAAAAAAtC4QQAAAAAFoW7DUWQylFRES7du3KuSYAAAAA4NKw2w07zgVCKMbu3buJiOiII47IuSYAAAAAsGX37t3U2dnJPr6ibKVTkzM8PEzbtm2jCRMmUKVSybs6RFRXuUcccQTVajXq6OjIuzogBu5P8cE9Kj64R8Wn6PdIKUW7d++mqVOnUrXKj/yBRyhGtVqlrq6uvKuRSEdHRyEfPlAH96f44B4VH9yj4lPke2TjCWqAYGkAAAAAtCwQQgAAAABoWdq+/vWvfz3vSoB02tra6KSTTqJ3vAOzmUUE96f44B4VH9yj4tOM9wjB0gAAAABoWTA1BgAAAICWBUIIAAAAAC0LhBAAAAAAWhYIIQAAAAC0LBBCJWDv3r103HHHUaVSoY0bN4767qWXXqJ58+bRgQceSIceeih95StfoX379uVU09Ziy5YtNH/+fJo+fTqNHz+e3vve99L1119Pb7311qjjcI/y57vf/S695z3voXHjxtGsWbOov78/7yq1JDfccAN97GMfowkTJtChhx5Kn/3sZ+mZZ54ZdYxSiq677jo67LDDaPz48XTKKafQs88+m1ONwZIlS6hSqdAVV1wx8lmz3SMIoRLw1a9+laZOnTrm86GhIZo3bx699dZb9PDDD9P3vvc9uuuuu+i6667LoZatx9NPP03Dw8O0fPlyeuqpp+jmm2+m22+/nb72ta+NHIN7lD+rVq2iL3/5y3T99dfT448/TsceeyzNnTuXdu7cmXfVWo4HH3yQFi5cSI888gjdf//99Pbbb9Opp55Kb7zxxsgxvb29dMstt9Dtt99Ojz76KB100EE0d+5c2rNnT441b03Wr19Py5cvpw9/+MOjPm+6e6RAoVm9erV6//vfr5566ilFRGrDhg2jvqtWq2r79u0jn912222qo6ND7d27N4/qtjy9vb1q+vTpI//GPcqfmTNnqoULF478e2hoSE2dOlXdcMMNOdYKKKXUzp07FRGpBx98UCml1PDwsJoyZYpaunTpyDGvvfaaam9vV3fffXde1WxJdu/erWbMmKHuv/9+9Vd/9Vfq8ssvV0o15z2CR6jA7Nixgy688EL6/ve/TwceeOCY79etW0cf+tCHaPLkySOfzZ07l3bt2kVPPfVUllUF/8fg4CC9+93vHvk37lG+vPXWW/TYY4/RKaecMvJZtVqlU045hdatW5djzQBR/fdCRCO/mRdffJG2b98+6n51dnbSrFmzcL8yZuHChTRv3rxR94KoOe9R86SGbDKUUnTBBRfQxRdfTMcffzxt2bJlzDHbt28fZWCJaOTf27dvz6KaIMJzzz1Ht956K914440jn+Ee5cvvf/97GhoaSrwHTz/9dE61AkREw8PDdMUVV9CJJ55IxxxzDBHt/00k3S/8XrLjnnvuoccff5zWr18/5rtmvEfwCGXM1VdfTZVKxfj39NNP06233kq7d++mRYsW5V3lloN7j6K8/PLL9OlPf5rOPPNMuvDCC3OqOQDlYeHChfTkk0/SPffck3dVQIRarUaXX345/eAHP6Bx48blXZ1MgEcoY6688kq64IILjMccddRRtGbNGlq3bh21t7eP+u7444+nc845h773ve/RlClTxqx+2bFjBxERTZkyRbTerQT3HjXYtm0bfepTn6KPf/zjdMcdd4w6DvcoXyZOnEhtbW0jfd5gx44d6P8cufTSS+mnP/0p/epXv6Kurq6Rzxv3ZMeOHXTYYYeNfL5jxw467rjjMq9nK/LYY4/Rzp076S//8i9HPhsaGqJf/epX9J3vfGdklV9T3aO8g5RAMlu3blWbNm0a+bvvvvsUEakf/vCHqlarKaX2B+Lu2LFj5Lzly5erjo4OtWfPnryq3lIMDAyoGTNmqLPPPlvt27dvzPe4R/kzc+ZMdemll478e2hoSB1++OEIls6B4eFhtXDhQjV16lT1u9/9LvH7KVOmqBtvvHHks8HBwVIH4paNXbt2jbI9mzZtUscff7w699xz1aZNm5ryHkEIlYQXX3xxzKqxffv2qWOOOUadeuqpauPGjernP/+5mjRpklq0aFGONW0dBgYG1NFHH63mzJmjBgYG1CuvvDLy1wD3KH/uuece1d7eru666y7129/+Vi1YsEAdcsgho1bygWy45JJLVGdnp3rggQdG/V7efPPNkWOWLFmiDjnkEHXvvfeq3/zmN+qMM85Q06dPV3/6059yrHlrE101plTz3SMIoZKQJISUUmrLli3qtNNOU+PHj1cTJ05UV155pXr77bdzqmVrsXLlSkVEiX9RcI/y59Zbb1VHHnmkOuCAA9TMmTPVI488kneVWhLd72XlypUjxwwPD6vFixeryZMnq/b2djVnzhz1zDPP5FdpMEYINds9qiilVA4zcgAAAAAAuYNVYwAAAABoWSCEAAAAANCyQAgBAAAAoGWBEAIAAABAywIhBAAAAICWBUIIAAAAAC0LhBAAAAAAWhYIIQAAAAC0LBBCAICW5uqrr6b29nb6+7//+7yrAgDIAQghAEBTcdNNN9HkyZNp2rRp9B//8R80ODhIy5Yto4985CN04IEH0re//e1Rxy9atIhuuukmuvvuu+m5557LqdYAgLyAEAIANA0PPfQQbd68mbZu3UrnnnsunXPOOfTFL36RjjvuOFq3bh199KMfpR/84Aejzuns7KT58+dTtVqlTZs25VRzAEBeQAgBAJqG9evX0xVXXEHjxo2jq666it5++206++yz6eSTT6Zx48bRe97zHpo7d+6Y8/bt20cHHnggPfnkkznUGgCQJxBCAICm4WMf+xj98pe/JCKijo4Oamtro927dxMR0datW+nVV1+lb3zjG2POu/baa+n111+HEAKgBYEQAgA0DSeeeCINDw/TP/3TP4189tZbb9HKlStp9uzZ9Oabb1K1OnrYe+yxx+j222+nefPmQQgB0IJUlFIq70oAAEAI3vGOd9CsWbPoS1/6Em3evJmuu+46Wr16NZ122mlERDQ8PEwzZ86kv/qrv6JZs2bRueeeS2+88Qa9853vzLnmAICsgEcIANDUXHjhhfS5z32OrrjiCqpUKqNWht166630+9//nv7xH/+RPvShD9Hbb79NTz/9dI61BQBkDYQQAKBpePrpp+mhhx4iIqK9e/fS8PAwdXZ2EhHRhAkTaMKECbR161YiInr55Zdp8eLF9N3vfpcOOuggmjFjBrW3t2N6DIAW4x15VwAAAKQ4/PDD6ZZbbqETTzyRfvKTn1B7ezvNnDlz5PsjjzySfv7zn9PevXtp27ZtdNppp9G8efOIqD6N9oEPfABCCIAWA0IIANA0TJgwgf72b/+WTj/9dHryySdp5cqVdPjhh498f/bZZ9Obb75J73//++myyy6jzZs3jzr/Qx/6EIQQAC0GgqUBAAAA0LIgRggAAAAALQuEEAAAAABaFgghAAAAALQsEEIAAAAAaFkghAAAAADQskAIAQAAAKBlgRACAAAAQMsCIQQAAACAlgVCCAAAAAAtC4QQAAAAAFoWCCEAAAAAtCwQQgAAAABoWf4/fp8c2I7GzLcAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "A = randn(1000,1000)\n", - "λ = eigvals(A)\n", - "plot(real(λ), imag(λ), \"b.\")\n", - "axis(\"equal\")\n", - "xlabel(L\"\\Re \\lambda\")\n", - "ylabel(L\"\\Im \\lambda\")\n", - "savefig(\"foo.pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 0.772491 0.914363 0.503056 0.327185 0.935868\n", - " 0.337439 0.27736 0.740784 0.123188 0.544757\n", - " 0.749563 0.470368 0.430169 0.182185 0.797062\n", - " 0.518365 0.628527 0.290453 0.066444 0.338332\n", - " 0.962669 0.0420736 0.855852 0.425863 0.881027" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = rand(5,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(Complex{Float64}[2.81767+0.0im, 0.0326738+0.310406im, 0.0326738-0.310406im, -0.227764+0.149855im, -0.227764-0.149855im], Complex{Float64}[0.554886+0.0im 0.316024+0.103191im … -0.506872-0.181904im -0.506872+0.181904im; 0.334248+0.0im -0.0253449+0.381451im … 0.0736716-0.0991253im 0.0736716+0.0991253im; … ; 0.294731+0.0im 0.606263+0.0im … 0.039948+0.465844im 0.039948-0.465844im; 0.544214+0.0im -0.427062-0.414644im … 0.629411+0.0im 0.629411-0.0im])" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Complex{Float64},1}:\n", - " 2.81767+0.0im \n", - " 0.0326738+0.310406im\n", - " 0.0326738-0.310406im\n", - " -0.227764+0.149855im\n", - " -0.227764-0.149855im" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Complex{Float64},2}:\n", - " 0.554886+0.0im 0.316024+0.103191im … -0.506872+0.181904im \n", - " 0.334248+0.0im -0.0253449+0.381451im 0.0736716+0.0991253im\n", - " 0.444234+0.0im -0.0821847+0.121299im -0.268794-0.0878872im\n", - " 0.294731+0.0im 0.606263+0.0im 0.039948-0.465844im \n", - " 0.544214+0.0im -0.427062-0.414644im 0.629411-0.0im " - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X " - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(Complex{Float64}[2.81767+0.0im, 0.0326738+0.310406im, 0.0326738-0.310406im, -0.227764+0.149855im, -0.227764-0.149855im], Complex{Float64}[0.554886+0.0im 0.316024+0.103191im … -0.506872-0.181904im -0.506872+0.181904im; 0.334248+0.0im -0.0253449+0.381451im … 0.0736716-0.0991253im 0.0736716+0.0991253im; … ; 0.294731+0.0im 0.606263+0.0im … 0.039948+0.465844im 0.039948-0.465844im; 0.544214+0.0im -0.427062-0.414644im … 0.629411+0.0im 0.629411-0.0im])" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - " \n", - " \n", - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using Interact" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [], - "text/plain": [ - "Interact.Options{:SelectionSlider,Int64}(1: \"input\" = 505 Int64 , \"n\", 505, \"505\", Interact.OptionDict(DataStructures.OrderedDict(\"10\"=>10,\"11\"=>11,\"12\"=>12,\"13\"=>13,\"14\"=>14,\"15\"=>15,\"16\"=>16,\"17\"=>17,\"18\"=>18,\"19\"=>19…), Dict(306=>\"306\",29=>\"29\",74=>\"74\",905=>\"905\",176=>\"176\",892=>\"892\",285=>\"285\",318=>\"318\",873=>\"873\",975=>\"975\"…)), Any[], Any[], true, \"horizontal\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X+QldV9P/DPvYssiOxaC+yCi7qKTbRS7VhANDNiZFwN8UdnYrWNEdutMQ6kKqhAGrG2WlAJSbSOP8oOpjFRSVOik8FfgytOEgRj1igKVhtBFlzQad3FXwvsnu8f93vv3r3c5z7nOedzfj3P+zWzk7js3nue8zx7z+f5nM85T04IIQgAAAAgg/KuGwAAAADgCgIhAAAAyCwEQgAAAJBZCIQAAAAgsxAIAQAAQGYhEAIAAIDMQiAEAAAAmYVACAAAADILgRAAAABkFgIhAAAAyCwEQgAAAJBZI1w3wDeDg4O0e/duGjt2LOVyOdfNAQAAAAlCCNq3bx9NmjSJ8nn5PA8CoQq7d++myZMnu24GAAAAKNi5cye1tLRI/zwCoQpjx44lokJHNjQ0OG4NAAAAyOjr66PJkyeXxnFZCIQqFKfDGhoaEAgBAAAEJmlZC4qlAQAAILMQCAEAAEBmIRACAACAzEIgBAAAAJmFQAgAAAAyC4EQAAAAZBYCIQAAAMgsBEIAAACQWQiEAAAAILMQCAEAAEBmIRACAACAzEIgBADe6O4m6uws/C8AgA0IhADACx0dRMceS/TlLxf+t6PDdYsAIAsQCAGAc93dRN/8JtHgYOG/BweJrrkGmSEAMA+BEAA49/bbQ0FQ0cAA0TvvuGkPAGQHAiEAcO7EE4nyFZ9GdXVEU6a4aQ8AZAcCIQBwrqWF6KGHCsEPUeF/H3yw8H1TUJgNAEQIhADAE+3tRNu3F4KT7dsL/20KCrMBoCgnhBCuG+GTvr4+amxspN7eXmpoaHDdHABg1t1dCH7Ka5Lq6grBl8kMFACYpTp+IyMEAJmCwmwAKIdACADYhFB347owO4Q+AsgSBEIAwMJk3Q1n8OCiMLsItUkA/kGNUAXUCAEkZ7LupqNjaLPFfL4QxHAUUnd3F6bDpkyxEwShNgnALNQIAYAzOnU3tbI9OjtOx2WRWlqIZs3iD0Ki3he1SQB+QiAEANpU627ipopUgwdXU1C13td1bRIAVIdACCDjOOpvVOpuZLI9KsFD0iwSV/1R3Pu6rE0CgGgIhAAyjDNzknRDRJlsj0rwkCSLxHn8Mu9rc9NIAJCDYukKKJaGrHBdvJvk/ZMUNsu+Lvfx+9Cfb79dyKIhywRZlPpi6WXLltG0adNo7NixNGHCBLrkkkvorbfeGvYzQghaunQpTZw4kUaPHk2zZ8+mt99+21GLAfzmQ/HuggVDU1+1sj1JCptls0jcx49l+QBhCiYjdP7559Pll19O06ZNo4MHD9J3vvMd2rJlC7355ps0ZswYIiK68847admyZfSjH/2IWltb6ZZbbqHXX3+d3nzzTRo1apTU+yAjBCFLkhVwmcGoXBK/YAHRddfxvm9cFsnU8WNZPoAbyuO3CNTevXsFEYkNGzYIIYQYHBwUzc3N4u677y79zEcffSTq6+vFo48+Kv26vb29gohEb28ve5sBTFq1Soh8Xgiiwv+uWiX3O3V1hd+pq5P7HV07dw61s/hVV1f4vm0ujp/b888P78viV2en65YB2KU6fgczNVapt7eXiIiOOuooIiJ69913qaenh2bPnl36mcbGRpoxYwZt3Lgx8nX6+/upr69v2BdAaFT323FRvOvDlFxRGoqXsSwfQE+QgdDg4CBdf/31dNZZZ9Epp5xCREQ9PT1ERNTU1DTsZ5uamkr/Vs2yZcuosbGx9DV58mRzDQcwRCe4MLWxYBTfBm7bx88Ny/IB9AQZCM2bN4+2bNlCjz32mPZrLVmyhHp7e0tfO3fuZGghgF2+BRe1YODml4bMFoArI1w3IKn58+fTL3/5S3rxxReppeyTs7m5mYiI9uzZQxMnTix9f8+ePXTaaadFvl59fT3V19ebazCABcXg4pprCpkg34OL9naitja7RcVp19KSrB+x3B6gIJiMkBCC5s+fT2vXrqXnn3+eWltbh/17a2srNTc30/r160vf6+vro02bNtHMmTNtNxfAutCyAqFPSVXDtUu1aVhuDzAkmEBo3rx59Mgjj9BPf/pTGjt2LPX09FBPTw999tlnRESUy+Xo+uuvp9tvv52efPJJev311+nKK6+kSZMm0SWXXOK49QB2pDG4CAVncGEyoNJ5kC1AGgUTCN1///3U29tLs2bNookTJ5a+Hn/88dLP3HzzzfTtb3+bvvnNb9K0adPo448/pqefflp6DyEAl3QGPxuZiFCyHS5wBhemszU+rdoD8EEwGyragg0VwYXKDQYfekh+akvnd220Ly1q1dR0dhYCl0qdnYUMXZL3ML05YrX3yOeJduxAJhHClvpHbACklU42wcY0B6ZS4rM0SVbt1cqs2cjWFAvrc7mh7wlB9MwzfO8BEBIEQgCO6Qx+NgZOn6ZSXEzPyQSCslsCcAZUOtraDg2EshbcAhQhEAJwTHXw6+4m+uCD4QOa7O/aaF8U1WDG1Uon2UAwbtUeZ0Cly6fgFsA1BEIAjqkMfsWg4LLLCv9dDIZMDJyV7cvniZYtU3sP1WDG5fRckkCw1qo9roCKQ0gbcAKYhkAIwANJBr/KoECIwqC2Zk2ygTNJZqa9nWj58sL7DA4SLV6cPCOjGsx0dxeOzVUGgytLwxVQccDu3gBDEAgBeEJ28IvKLIwfLz+QJc3MdHcTLVqkl5FRmY4ptnPhwkP/zWYGgyNL41vwEdoGnACmYPl8BSyfB9/pLrFW+X2O5eFJ37faz5f/3oMPVh+8fX90RHe3uUeL+H7sACZh+TxARuhmFlQyMyo1JZVTb0nbXa2dRETf/350BiNJpsvVBpGmpr3w2AwANcgIVUBGCEKhmllQzSh1dBz6UNeo6ZRaGzDKtpsjgxT182nbINLGRowAvkNGCCBjVDMLqhkl2ZqSuKJo2XZzZJCqZbp83CBSNzuF5fAA6ka4bgAA2NfeXthUL2lGqaVFvZj7nXeSB21J2lmcvqvMilRO33G2jwNHdkr22AHgUMgIATAI8YGkpmpVuPeo4c4g+bSHDld2yrcVaQAhQSAEoAlFqsO5HJRlpu98Cho4p7SwHB5ADYqlK6BYGpJAkWo0k8vEOfjQPlw/AHxQLA3gAIpUo5neHVmXD+3zKTvFIcQpYgAEQgAafKo3AXNMDvC+TWmF9lBcAF0IhAA0pO2OHg5lY4D3ITtFFOZDcQF0oUaoAmqEQEXSehM8CsEu1f7OUg2PzrEmeQQLrn0wBTVCAA4luaPHFIJdOv2dpRownWOVnSLGtQ8+QiAEYFGSKYSsFZ6aOF7dKZss1YDpHKvMFDGmz8BXCIQALJK9687anbOp49XN6MjWgIUQtMa1UbfeLa7oO0vZNQgLaoQqoEYITJKpw8hSXQqR2ePleu1aNWA+PMA1ru4mSRtN7a+kcy5QVwQyUCMEEACZu25f75xNZT1MHi9XRieqBsyH6Z64bFrSNppawaaaccpadhTsQ0aoAjJCYEOtu24fM0Imsx42jtdURifJaikTZPrOdRsrJck4+fi3AP5CRghAEndmQ+X1at11m9ibSOeYTWc9bOzFZCqj47qYWiab5rqNlZJknHzNjkK6IBCCTOFOs5tK23PuNqzbRhuDkavdlW0VU5siE+S4bqOOuOMLoUgd/IepsQqYGksv7jR7CGl7jjaGcJyquI7t5ZeJfvUroi99iWjaNPZm1tTRUchiDQwMBTnVAkkfHjKrIur4fChSB79gagwgBndmI4S0PUcbKzMK+TzRsmVhDaZROLIlHR1EZ5xBtGBB4X85i3llMh6y2TTOImibmZhqx+dDkTqkBwIhyAzuWgnXtRcygxFXG9vbiZYvL7zW4CDR4sXpWb2jMy1nckBOMqVp81llLlZxVR5fCDchEA4EQpAZ3LUSLjMlsoMR1zF3dxMtWpTeO3DVQMLUgOxrxsOXdrm+CYF0QSAEmcJdlKuSKdGdVkg6GHEcM+7AqzM1IPva3760K+QCcPAPAiHIHO5aiSSZEo5pBZXBSPeYkw74WVnNozogx/WPqQBL97z4lIlxtdIQ0geBEICGJEEJ17SCzcGoOHASyQ/4WdsJOOmALNM/JjIeHOfFt0yMzdooSC8sn6+A5fOQRJLl15w7/MoumdZRbXlyW1vtJdhpXmrPIWn/cC15N7F1RIhL8SHdsHwewIEkd8icmRzT0wJR2Sui2nfgvtSQ+Cpp/3BlPLjPCzIxkCYIhAA0JdnHhXvVWjGTxF2Pozpw+lRD4iNX/YPzAhANgRBkiqkiXtk7ZO5Mjql6HNWB02YNSYgF2Un7h+sYfavtAfAJaoQqoEYovdK2Jb/pehydOiTTNSShn0uZ/jFxjLZre7q7C9nFE09E0AXmqY7fCIQqIBBKpzQW8XIWX0exMXAmHSzTeC4rmShu1glIVH4/9GAVwoNiaYAadIpFfZ2CsVH3YbooVmVqz3VBto3rgfMYdadPVX6fewdqX/8GIR0QCEEmqAYNPu+JE3rdh+pg6bLw19b1wHWMugGJ6u/7FMgBxEEgBJmgEjSYeq4S591tyLvrqg6WrgJAm8/Z4jpG3YDE9epBrj5HRglqQSAEmZE0aDAxBZP07lbmAzzp9JUvg4LOYOkiALQ9JcdxjLoBievVgxx9jowSxBIwTG9vryAi0dvb67op4NjOnULk80IQDX3V1RW+b+P1Vq0a+vl8vvDfuky8pm576uqG+sJ1e2rhvh5qvc/zz/O9rm4f6/z+zp1CdHba+5vh/n0Ii+r4jUCoAgIhKMc5UD///PAP5OJXZ+ehP2viA9zXQUF3sLTJdOBmKlDlCEhcnSOdPk/yNwfhUx2/sXy+ApbPQyUXz3sysTTexnL7LNC9HqKWomdhWwBVqn2OPs0WLJ8HMIRrCbmJ55IlqfcJ5TELMsekU+ekWyOlcz3UqldxvS2Az1T7PPSVlWCJkfxUwDA1BqbJTjPETQmoTKP4XpMjc0w600cua6TipiZ9nbq0gbsuqtrrhzL9CuowNcYEU2Pgk6gpAZ2Uv+3HLMiSOSbd4672uxs3En38sfnHQMhMTeo81sQV3V2rsQM1cMHUGEAKRU0J6EyjmN4tWpXMMekcd9TvnnEG73YGUWSmJkPbF0p3abrNvZkAoiAQguD5si+OTbbrfWz0scwx6Rx3td8lkh+EdQd92XoVXwPVShxBDOqiwAcIhCBovm2WZisoqzWocrfBVh/LBAo6xa+Vv1stKIoahLkyF6FlfGrhCGJCKeCHdEONUAXUCIXD1NJY1ZoHF7UOlfU+3G1wsfxYpoZJp86p+LtjxhSmxVxtZ+CCbj1P5WtxXBsh1kWBn5THbwOF20HDqrFwmNgsTXVVkQ8rfky0Ie0b0smuovPh/OoytVM5xypErOoCDlg1xgQZIX/E3b1yZyt0Xs+HjIGJNmRhQzrZ7FLImQuT59HVKkTO7BakA1aNQarI1KVwb5amU/Ngo9YhrvbHRBuysCGdbHFyyPU9JouSXRR3+1YbCGFDRqgCMkLuJb17dfEIjGpMZgxka39MtcHXvYdATpoye2k6FuCFjBCkRtK716g70qSrp3SzH6YyBklWLJlqQyhLuqG6NGX2sOQeuI1w3QCASsUpnso7viRTPKqrp9rbidra1LMfLS38g0utD/5q72WiDaDOl1oW3Wtbh2wfyPyc7ueDL+cD/IGMEHhH9+5Vd88X37IfadprxfXml6beP+p1fatl8bmeR/bndD4ffDsf4AkDK9iChuXz/lBdUhviku+4h076/rBUGS4feGry/aNeNw1L7qPIPiRVtg9U+irp50OazwcUqI7fyAiBt1TvXkPLoMjcpYa8YolIPUvHlcEx9UyrWq+b1lqWJFkV2T5Q6auknw9pPR+gD4EQpE5IhaFJBmjfpuyqiQpcVAYhzmkMU4NgrdcNLSCXkTSglO0DG32VxvMBPBAIQSqFkkFJ011qrcAl6SDEncExNQjWet2QAnJZKis6ZR80a7qv0ng+gImhqTojNmzYIL761a+KiRMnCiISa9euHfbvg4OD4pZbbhHNzc1i1KhR4txzzxX//d//neg9UCMENvlctyBbB1L82bjjSFLnZOrxKSbqrOJeN0ktS5I+T4LrdVWvV9k+sPGoDTzOI71Ux++gAqF169aJf/zHfxT/9V//VTUQWr58uWhsbBS/+MUvxO9//3tx0UUXidbWVvHZZ59JvwcCISgyNShV8rEQOmlhsWzgkmRANBEgmhoEOV7XRTG3yvVt6nq19fcG6ZWJQKhcZSA0ODgompubxd1331363kcffSTq6+vFo48+Kv26CIRACPsrnCoHUpeDguoKHu7AJUsDrsnAr9rr3nWX3vXNHVC6XlEI6ZD5VWPvvvsu9fT00OzZs0vfa2xspBkzZtDGjRsjf6+/v5/6+vqGfUG2mVphVEt5IbTrvU5UV/Bw11+YqPNy3bdRkva57Gq6qNddtEjv+uYs3Hfx9wZQLjWBUE9PDxERNTU1Dft+U1NT6d+qWbZsGTU2Npa+Jk+ebLSd4D9Tg5IMHwYF1cJiE4GLzoBbeV586NsoSfo8STBX7XXz+UJuqJzLAv00LRiAMKUmEFK1ZMkS6u3tLX3t3LnTdZPAMVODkgwfBgWd7I4vS/yrnRcf+jaKbJ8nDeaqve6dd/q1jDzUZe2ud0kHPqkJhJqbm4mIaM+ePcO+v2fPntK/VVNfX08NDQ3DviDbTA1KMnwZFELZfqCaqPNyxBF+9G0UmT5XCeYqX/fGG/1aRu7TsnbZ4MbXKVZQk5pAqLW1lZqbm2n9+vWl7/X19dGmTZto5syZDlsGlTjupEzfjZkalOL4NCj4kt0pJ3Peo87LJ5/407dR4vpcNVCufF3fAl0f2iMb3Pg8xQqKDBVvG7Fv3z7R1dUlurq6BBGJlStXiq6uLrFjxw4hRGH5/JFHHimeeOIJ8dprr4mLL74Yy+c9w7E6xJcVJib3APJhrxPfVlfJnve488LZty76yOR2C76dc061ji3J33KIzzLMikwsn+/s7BREdMjX3LlzhRBDGyo2NTWJ+vp6ce6554q33nor0XsgEDKHI3DwbQPC8kEpnxfixhvTMYj4EmwWJT3vNvZmctlHMsFc0qDGt3POKe7YkgQ3vn0GwZBMBEI2IBAyh+NOyse7sZ07CwFQWgYRHz/oVc67yayaj31ULmlQw3U8PmaUZI7Nx0Abksv8PkLgP45CYF+KiSutXOmuZoC7XsrH1VUq591kjZOPfVSkUsPCcTy+FhDLHFvS2jwfapqADwIhsIajENinYuIil4OiicHHx2DTt/PuYx8VqVyPRxxBlMsN/16S4/G5gFj2XCUNbnxcTACKDGWogoWpMfM4pix8Knh1NU1i8n19Tf37UERe5HMfJZ3mqfbzSY5HderS1jSar+cKeKFGiAkCoWzhKhDl+KBNOjBw1EvFraTxJejwle0+kr1GZK/HakFTPi/E5s3J26UafNmqqcP1nH4IhJggEMoO7oyKzgetysCg2/40rxJKI5UC6LjrkXPxgU7w5VOhOYRLdfzOCSGEy6k53/T19VFjYyP19vZil+mU6+ws1NZU+/6sWfba0d1dqO8pr+uoqyvUKcTVH3R0FGoxBgaG6mZkCjd13rPWa779dqEmA3UTvP1h4nyZeN3u7kIt0pQp0b/vy98dpI/q+I1iacgsXwpedYqtVVevcBd46xZtp+25TaE8g467CF2mgNjm313ariswA4EQeE31g0zm93xZiaQ7MKisXuEcjHRXDPm67FpVrf5QvZ6Tnq8k72N7Kbitv7u0XVdgkJGJuoChRsgfqjUsJmopTHOxqoXrPXXqTNJYLxLVH7qbbsqer1Bqv7K84SWYgRohJqgR8oNq7ULItS8y9RU+vqdOn6exXiSqPwYHC0Ny+feSXpdx58tULVFo0nhdQTzUCEGqqNZE+Fb7koTqBm06dRAcm8LpTHX4UqfFqVp/3HDD8CCISO26jDtfrjb39K0WJ43XFZiDQAi8pPpB5lPtiw2+1EGo1pn4UqdVxDWgV/bHddfZGZhdBAC+XIPlfLuuwHNGJuoChhohf6jWsPhQ+2KD7MMkfXsIZjW+1GmZrK2xVQdms97MZi2OyrXsw3UF9qBGiAlqhNyqrMdRrWFxXftiQ1wdREfHUEYrny/cIafx4ZAcNVy2zrWtOjBb72OrFicr1zLoUR2/EQhVQCDkjo8fdqobFhaZLLSuNXgTqRebmywM5379uGtG9v1QXKvGRgDJ8R661x02Cw2D8vhtIDsVNEyNueHzclfV9LqNZcxR0yAq03oy7dWZauPuj7hrJsn7+Xz9+c70VJzuFLXudRfKdgSAZ42xQSDkhu/1OElFDaybN/PX7FQL1JIO7DI/rzMgmAg0al0zKu9nekAPpV6rmri2+7onkO51hwA5LKrjN1aNgRfSttw1ahnzGWfwr66ptqQ66aqZuGXXuivoTCzrrnXNqLyfyR2WfVxZJUum7RzbMETRWQGme9252o4ALDMUmAULGSF3XOyubEq1O8nKLxt3lrJ36nF3vroZO1N31lHXjE938j61JSmf2q6SdUJGKFuQEYLg2X7mkUmVd7GVmQsiO3eWsnfqcXfdHM9DM7GvS9Q149M+MiFnFXxqu0rWSfc68Ok6AnOwaqwCVo0Bp+Iy5jFjCtNivi7FL6q17Fp3BV3c65sQ9X42VwH5vg1DLSG3vZzudefi8TeQHJbPM0EgxAdLTofjCCRcS8OA4GKbhpDPfWhtx+dOdiEQYoJAiIePewLFsfEBmoZAImQuMxw659714B7KdRvi5w7wQSDEBIGQvhDT6SF8gLoeDNMgxI0TQ7g2fRDi5w7wwtPnwRtcBZa2nmgtuzTc5RO2Q15+7ZPQtmkI4cG/vvCpsBvCgkAI2HEMNjYHfpkPUJeBCAZDfcUgliisVUAY3OWFFuSCPxAIATvdJae2B/64D1DXgYipwdBlhsumyiCWiGebBhv9h8FdHsdS96z8TcBwCITACJ09gWzfBcd9gJpsj8wHr4nBMCtTbVFBLJHeTsi2+k91cLcxoKu8h+l26XzuZOVvAqpg3tgxeNhZ2j1Xu7lG7Vxrcldk2Wd3ce667XK3XNvP2zLxDDsX/ZdkV2VbD/tN+h4+P7wUO0inAx66ygSBkB98e9wGd3tUPni5Hmzp6gG3tQZCUwGS7Ye9yrTHZCBoY0BXvXZ9DjTS9tDnrMIjNiA1uruJjj+eaONGfx63wf34D5XpNq4HW7qoO6lVZ2VySsLEIxJU+8/G1IuNaWWV93BV9C07Fcf9N4Fao8AYCsyChYyQW0nS5xx317anasrf1+UdMkeGK0nfRd1xr1ljpx+4smnFY77rrmT9Z+t8V3uffF6IzZvNvoduRijqWtL5+0w6FceV9fV5CjDtMDXGBIEQD5UPsCQfsBwfNlwfWKof1q6n/3SCg6R9F3VuH388nCmJymO++275/rM59VJ+XZUHQ5zXl8q1G/U7UdeSzt+nauCpGzC7vsHJOgRCTBAI6VP9AJMdLDg+bLg+sHSDKa5MRa3X5854qfZdtYHQ9sCh2h+67bR9nJs326kVSnrtVv5OVL/ott9VzQ9qjdxCjRB4QWfPHdl5eo56A47X4NhfiKvupxpTNSmqfVetzspEDU8Unf7QvV5sHicR0ccfm6/JUbl2K38nql9/9Su99rvafwn7PoUJgRCw0hkwZAcLjg8bjtfweddfk5tA6vRdtcGTuxC9Gt3+4LhebBxnUSgDclQ7v/QlvfbbDjxdvy9oMpShChamxvRwTVvFpdw56mt0X8PnegDTKXrX9U2yilNhHLVIJrZQMFmob+IcmWhzrdohjoJ+k1PPvr1v1qFGiAkCIX22BkmODxvd1/A1ILC1n4zPH/aV9Vu5nH5/cB2zSrG5am0T1zkyuRqq1mamPl9j4BfV8TsnhBBuc1J+6evro8bGRurt7aWGhgbXzQlWd3dhimjKlOi0cHd3YXrpxBPDTh3LHKsLHR2F6Z+BgaEUvev9mGzp7i7UAZVPXRanWgYH3fZHtbbV1RWmy6pdPx0dQ9N6+Xxh6sV2u5O2GapLy2eer1TH7xEG2wQZ1tJS+w/dhw93LnHH6kp7O1Fbm59BmmnV6rcGB4nWrCEaP95tf9SqLatsU1RtU1ub3fYnaTNUl6bPvLRBRqgCMkLm4e6yNtw16vP5GkvSts7Owiq3Sp2dhaJzW3zuzxCg/+xQHb+xagys83m1lWt4AjYPn1fvJGmbL6u/uPszpEdQcLQVn3l+Q0aoAjJC5uHuqDr0Cz9f67eI5NvmU60XR3+GNEXE1Vb8bduhOn4jEKqAQMgOnz7cfWF7GgRTcOHwOaBLIqSAgLut+MwzD8XSEBRThbxxg7vPg39xGqTyg9fENEhId+XgriCf++8lpKJr7rZmefGC71AjBM5wP14irr7G9/obW3UtHLtOh1TjAdFqnUcTfy++1DxFKe8PE201+Ugd0MC8n1HwsKFimOI2ELS1wSDHrrtxm8jpvo/urtMmN9YLleldok2odR5N/r1w7Ohuoq+r9YevG6ZCddhZmgkCoTDFDe42HjlhIzgof59cTogbb7T7JHWfHyviSoiBYdx5NP33orpjtKm+rtUf2N06HHj6PAQjblpFZdolLo1tMiVv8gGntd5HCKIVK5JPW+hMwZleBhzalJutc88t7jyansJSmSIy2ddx9UCYzko3BEJglak6nrjB3WT9ja09Qqq9D5HagKD6JHSTA6TvNVzVhLo/TNx59HEfJpN97XvtEhhmKEMVLEyNmWOjjkemvoY7zW1ruqja+5iYtogTVzehUsMR6pRbqO0WQq7+xadpIdN9jXqg8GFqDLwXd0fHcccXl8Y2kea2dfdcfJ/KO9fie9q6e62VTVLN6rjMrOhMx/mYOZFVPI9r1hD99KeFpd2VfJoWMt3XqllSCB82VKyADRXNidugLKTN1qqxtelddzfRD39I9P3v+7U5m875M3WtqemPAAAgAElEQVTu4/bB4dw5OMT9Ybj3k7KxT1eofQ3mKY/fRvJTAcPUmFlx6Wekp+X5NG0hBM+yfM5zH7fCKJRpLd3l4lG/z338NlfPhbhdAZiH5fNMEAiZ56KORxc+eOPZqPHibIvpJeIcdIOLWr/Pefw2g8pqx4S/TxACgRAbBEJQieNONysf1L5k9GQGed8zQrrts7nJqK2gslqb8/nCnlq6mais/I2mGYqlAQzg2LskxGXhqnwpOJVZDu1LoXNUsbZuAXnc7+sev+nHUVRT7ZgGBwshUfH/q+wtlKW/UajCUGAWLGSEoJzuna7vWQdfcdydy2anXE7FmnzMhezvqxy/q8dRxG0hoZKJwt9oemBqjAkCIXVpTC3rfkj6VocSwjniLLr1sd6sSOba0g0uTAQnrh9HUXlMxWkx1SDGt79RUIdAiAkCITUhPm+pXK0AQWcw8eluM4Rz5FN/mSY7AOsGF9zBiQ+BQ/kxcTzENSvXXNqpjt/YR6gC9hFKLvT9f2T2UtHZu6Sjo1C34HLPn1DOUWdnoU6j2vdnzbLeHKNCOSeVTLZbdR8i3b2FfPgbBX2q4zeKpUFbqM9bIpIvhtbZYdeHAuJQzlGWnvnkS7F2UqbarVOwrLsDtg9/o+COVkZoYGCAtm3bRlu2bCl9rV27lrN91iEjlFyod7ZE2clA6O76bHq34HJZuzsPdadkznaH/BkC/lAdv0fI/uAf/vAHev3114cFPW+//TYdOHCARo4cSSeddBJNnTpVqfEQtuIdYuXgFcIHWDEDUfkBnLYMhOo54n4Eg4z29sJzr0IMDlS0tIR5jJztrpWxDLFvdNi+8QCSWz7/9a9/XeTzeVFXVyfGjh0r8vm8uPDCC8WaNWvE1q1bxcGDBxMXNZn0b//2b+LYY48V9fX1Yvr06WLTpk3Sv4tiaXU+r9CpxZdNAG1Ico5QRAq24ForCGFBg8+Mbqj4n//5n3TPPffQxx9/TLt376b58+fTs88+Sy+//DIde+yxVFecLPbA448/TgsWLKBbb72Vfve739Gpp55KbW1ttHfvXtdNSz3defpaTwGv9m86Tw0vZ7M+IOkx6rxeNUnOkU5dUZJ2JT0GmZ9XvTZUrjPO9tu4Bnxkqu6Io28qX8NUf3Ns3gqKZKKlxYsXi76+vmHf++1vfyv+4i/+QrS2toqnnnoqUfRl0vTp08W8efNK/z0wMCAmTZokli1bJvX7yAi5UetOKGrzttDunJIeo87rcVC9S0/SrqTHIPPzqv2icp1xtt/Ha8A2zqwyR99Uvsbcueb624dtCULnZB+hwcFB8YMf/EA0NDSIv/7rvxZ79+7VeTlt/f39oq6uTqxdu3bY96+88kpx0UUXVf2dzz//XPT29pa+du7ciUDIsrgN2qo9Wyi0NHrSY4w7HltTCUmnDZO0K+kxyPy8ar9E/V6tzfo42+/zNRAirgcAx+1izdnfOJ/6nDxrLJfL0XXXXUdbt26l/v5++uIXv8iRpFL24Ycf0sDAADU1NQ37flNTE/X09FT9nWXLllFjY2Ppa/LkyTaaCmVqTcFEPVsohKXg5ZIeY9zx2FoO395OtHEj0cqVhf+NmzZM0q6kxyDz86r9EvV7lWtqy1+Ls/0+XwMh4uibaq9RibO/W1qIvvGN4d+74goUTNsgFQi9++67tGHDBnryySdp27Zt9OMf/5jOPvtsGj16NI0bN47Wrl1LP//5z+k//uM/TLeX3ZIlS6i3t7f0tXPnTtdNypxae8dU+7d8Pry9ZpIeY9zx2Npvp6OD6IwziBYsKPxv3N4uSdqV9Bhkfl61X6J+L5eLfi3O9vt8DYSIo2+qvUYlzv7u7ib68Y+Hf++RR1AjZIVM2mj//v3iT//0T8XNN98s8vm8yOVyYuTIkeKv/uqvxAMPPCBuuOEGccUVVzhfPaYyNVYJNUJu1JqCqfZv3Cu9bDyDK+kx6rweB50aIdl2JT0GmZ9X7ReV64yz/T5eA7Zx/h1y9E3la8yda66/USOkz2iN0HvvvSfy+bx4//33xfbt28Vzzz13SD3QI488Im6++eZEb27C9OnTxfz580v/PTAwII4++mgUSwegVqFktX/jKqy0WXCa9Bh1Xk+Xzgdz0mX6SY5B5udV+0XlOuNsv2/XgE0m/g45+qbyNUz1N2qE9Bl91tiqVavommuuoV27dlFzc3PVn3n//ffpC1/4AvX19bFmrJJ6/PHHae7cufTggw/S9OnT6Qc/+AGtWbOGtm3bdkjtUDXYWVpdiBuBZW1H2yTnKGt9A+7gWivI2q7q3Iw+a2zTpk10/PHHRwZBRER33HEHCSHo4MGD0m9uwmWXXUYrVqygpUuX0mmnnUavvvoqPf3001JBEKjTeU6QS1kqOE16jlw+CysNe+OAvCz9HdaCZ565IZURuvbaa+mwww6je+65p+q//9///R81NTXRzTffTLfffjt7I21CRii5kO/mQm57ErrPGrP5uAsXj/VwKcRMKhFvu7PydwhmGc0IfeUrX6Ejjzwy8t8HBgbo4MGDtHDhQuk3hvQI+W7OVtbDdYZD5xzp7hieRNZ21w01k8rdbpfZxyLXf6PgjlQgdOGFF9LZZ58d+e/jxo2jyy67jCSSS5BCoS/jlUlH63xI+jDYhXKOQg6qk5IN+nwboE0FqzrTQrp95MPfKDjEWbH96aefcr6cE1g1piZty3jL6axm8WklSAjnyKf+Mk1mVR7HSirurSF8WOZdfky6fZSlay7tnDxiI40QCKlLyzLecrofkj4MGuVCOEecAZuN/aFUxV1bHAO0TJCQtI/iHhViYz+u8mOq9RgUGb79jYI6J4/YAChns5bEFt2pGt+mpGycI91pCq6VM7LTHa6mnuLqYnSvPZkpLJUpoah2P/OM+emlasdU6zEoMnz7GwUHDAVmwUJGCMpx3ZX7PiXFxZenocueNx/aG5WlM52N1H398nbbml6KOibd983S32iaISMEYADHapas7A3CUUTLlZ2Ryab4skItKkune+3FZTp0M07l7bZV5B737EHV1WZZ+RuF6hAIgXVxg51vq2Q4PiRNTEn51k+6gyHnyh2Z6Y4QVqjpXHtxgRTnlJCt6aVqx/TQQ0Q7dugHMWmc2gdJhjJUwcLUmFlxUxE+TFWEwMd+0pkeMTG1EjfdkZXVQrUK5DmnhGxOL4VQ9A/2GX3WWJZgZ2lz4naPDX13WVs7BL/8MtEZZ/jZT6rPSursLGSCqn1/1iz19sTtis31bKdQd4cm4t053MYu5CH3NZhldGdpAA5xUxEcUxWupotsbcjW0UE0Y4b7KZ2ofladyjE1tRI33cEx7RnyZnzFoIIrcDE9vWS6r32bbgZLjOSnAoapMXNM75tiYs8UjuMy+T4upnRMTcuFuHIn5Ok1V38vqkz3tY/TzZAMNlRkgkDIrLjBTnUwlPmQNPVBZ2tDtqj3sbnjsOnBKLTaj1A343P596LKZF+HHNDCECyfhyDETUWoTlXETauZXCpta8VM1NLhl15KPqWjOsVgeqVVaCt3Qt2Mz+XfiyqTfR3CCkIwB4EQWBc32KkMhqb3TKnF1pOzo5YOT5uW7HV0BrlQB35TfHhqugqXfy9EarU4Jvu6Vn+gbigDDGWogoWpsXDVmlazkfrmmtaJm7LSfR/dKYYQa3lMC21KTwh3fy8cD0k10dfV+sO36UGoDcvnmWD5fNhqLd/lWiptUkfHULYmny/cAXO3kWObAhvLpME8238vvm+RUd4fRH63FQ6lOn4jEKqAQMgeF/uB+DyA2xwkQggKwT3uvxdT+0WZYKKt2APJLOwjBEFxtfeKz8W4Ngs2s/JspbTUd7g6Du6/l5BqzLjbGvJ+U2mHQAis83FFig9sDxI+B4UcfB94ZIMbn45DNyALqbics634zPMbAiGwDktVqwtpkPCd7wOPbHDj03FwBWQhZSO52orPPL+hRqgCaoTM871g0jWf65hC4XMtSpLr35fjwN+sHvSfHagRgmAg81Eb55RVWmpkkoqaZhwzxn1/JMkO+FJTg4yGHnzm+Q2BEBgRNwCHlB6P42uw4VNtiW3VBp4rriA64wy9/uA410mCG18GUF8CspCl6TMvddh3NAocNlTUx7FhmswzsDgeCKn7Gr5uuGZrA0lfHsgZpbj53ubN+v3Bea6Tbkqpuokg5zkyuZFmVDtDuMbAH3joKhMEQnpsPEE+yc9xvFcUnx/UaPphoL4GgFF0+8PEuTa9G7WJc2SizVHt5Gi/q0AKAZwbCISYIBDSozPgyA42HIMSx2v4/ORxk0GaqaDA5MCh22auc21rgPQ5SC8X1U7fMnhJhHaTkCZ4+jx4QaeWQLYgk6Nwk+M1OOomTNUXmawt0em7asdro5ZJtz84zrXNmi0bxc0c125UO3/1K732u9p2wKftDiABQ4FZsJAR0qdaSxBaRkgIvboJG3eOtaYyVLMTqn1X7XhtZy50pnZ0zrXt4+TIqNSieu1WXnOmMkKusrU+Z4mzAFNjTBAI8VAdcGQHG47CTa7iT5VjdT11oRuEqRT7Vjvexx8Pa+AoP9dJAkmbA2T5uS3va65AmzMQLn6/2rXkIvDUnbp0/XeddQiEmCAQcq98pU+tDyWOwk3TBatRXN45cn1YJ+m7qONds8bOwMFdm5M0kLQ1QFZ7n3y+8LfEReXajTv+qGvJZgaPK0NrcnUd1IZAiAkCIT/4WHDIOZi6vHN0EYTVOl7TAwf3taSTETE9QNo4tyrH7yrwlw2kuP8eXd1gZR0CISYIhNzzMb1sIjBTmV7iCMRc9W+t4zU1cJg4Vt2VkSb3A7J1brmmRn0JFFDbkw4IhJggEHLP5d1j1KZuJpeiywyM3IGYq/S97TtlE9eS7UE96bm3dW6Tnkufp4x8D9RADgIhJgiE+NhelaSj1mDj+m7RVH9kIX1vqu9sBhuqRb8+nlsb7VL93PE5UAM5CISYIBDiYXtVkg6ZQk6Xd4uuA7HQVbuWOKYZbQzqOPfJcOwW72MACXJUx++cEELY373IX319fdTY2Ei9vb3U0NDgujlB6u4ubBhXviFaXV3hQYNJNvTr7i5soDZlitmHTHZ2Fja5q/b9WbMK/7+jo7Ax2sDA0GZ8th6ayNWfWVZ+LT3zzNCmd/l8YaNFXx+AiXMvD30FquM3dpYGdly72ra0FAIR0x9iMrsGu3xytC9PIA9Z8VoiCmvnX5x7eTZ204Z0GuG6AZA+xcCi8s4syeMIbCoONpUZn8rBpqXF3QDU3k7U1mYnQ5ZmtQZLX/sU515OaJ874A9khIBdiHextjI+Os9nspUhSzOOZ4apCvncm3omHqcQP3fADwiEwAiXU0mqTAw25QOIzYdumhLCgFiLq8Ey5HMfUttD/NwB91AsXQHF0sClo2OoHiWXK3yv/K/Nx0LO7u7C9NGJJx7arvLjUS0yrvX6JkS9n61C/OJ7hVrEG3Lby+led7avW1CDYmlIhdAzDkXd3cOLcosLn8v5VshZ686/8nhUioxNZRairpla72dzqinkIt6Q216ke92FlBEDRQaW8gcN+wi54+PzxVRF7f9iey8irkcz6O5nY3Jjw2rXjKunj0e9Zqi7FvvUdpVzo9t+n44f4qmO38gIgRc4Mg4+qVaUm8vZrU1Jcicbd+evW2RsIrNQ65pReT9Td/4hF/H60nbVc6N73aUhIwYSDAVmwUJGyI007qAbtaMx98611e6Uk97Jyvy8zm7fth9+auL4dYW8a3Fc201k0spfW/XcICOULXjEBhMEQm74/IGj8yFvevCLmhpSCSxlAh2d4+F+bErcNZPk/dIYiNtiekpb99zoXnd4Blk48IgNJlg15o7Lx1jUapOvj2OotaKHSG21j+nVVNyvH3fNyL6frdVRaVt9ZKPfON5D97qzucoQ1CmP30bCsoAhI+RWZcZB5wn2HA/V9DVLJUT8nXJW7mS5sm6m+8vmYgCTU1XlbGXSsnItgx5khJggI+QP1WwMVxZH5mGsLsncKYdyJ+tLpsRUf9ncj8dmFtPmcamcG1+uK7ADGSEmyAj5QWf5M1cWx/eMkBB+3SmrZiHStG1CufL+sJU5cXHN+nQNlkvrdQXRsHweUkV12SrnclfbS4dVNpP05ZECqsub07ZtQlFlf7zyip1nnLlY7u3LNVgurdcVmIFACLykum+Nyu/VCkBsfcjr7GGjs0syx07eOoNOGvdpqdYfixcTLV+uH1THnS9XD5V1/VDYSmm8rsAcBELgJdVsTNLfkwlATH/Iu7p75dpAUGfQcfk0eFOi+mPaNL2gWvZa9WEDRBkmH6eTxusKDDI0VRcs1Aj5RXVFkMzv+VID5GIPG59qqXytMVFl4rpS2SAyyd+NrVVmRTbqd9J2XUE81AhBKqlmY2R+z5f0ue7dq8qdtU+1VD7WmOgwkZVJer6S/N3YfqiorQxo2q4rMAfL5ytg+Xx22Fz6G0d1M0nVpdImjj2Upfq2cPaHqWuV+3Vllqv7vi0FhEt1/EZGCDKL+85dp+ZB5e5V587aRNbCt4JZ1zj7Q+V8yVyPUZmmjRuTt1E2s4T6HfANMkIVkBHKHo47dxeP4uC4s6517NiMLp7tPpK9VmWvx2oZISKiXI7o3/9d/hpOmlly8TgdXM/phw0VmaBY2jyux1/YLO6Ma4uLomuT7+vrZnQ+nXef+yjJdVFeVKx6LakU/Jt+IHE5X88V8EKxNASBozDTdnFnHFdF16aWSvu6GZ1P593XPiJKfj22txP99KeHfj/JNawy3WVrKjXJuTK5pB/8hUAIrOEYPHwcgFzWPJhYGePLarpyvp13H/uoSOV6PPNMvWvY5/2LZM9V0kAbQVN6IBACazgGD18HoAUL3A0C3HfWPhazqpz3rG7YpxKUcAQyvi5XlzlXSQNtn7KTwMDQVF2wUCNkDkdNiy+bIBaV1x7kckLceKMf9Su6fNuMTqXuJc0b9snUSqnU4Nis27Ep7lwlqXHy7TMIhqiO38EEQrfffruYOXOmGD16tGhsbKz6Mzt27BBf+cpXxOjRo8X48ePFjTfeKA4cOJDofRAImcUxePgySJv8QPShKNi3QVH2vMedF86+ddFHKPxVU+tcJflbdrETPMhJfSC0dOlSsXLlSrFgwYKqgdDBgwfFKaecImbPni26urrEunXrxLhx48SSJUsSvQ8CIfM4Bg8bA1DcgGnqAxEDXTSZ817rvITet9yPRnEdbJdz3R6uQBvcSX0gVLR69eqqgdC6detEPp8XPT09pe/df//9oqGhQfT390u/PgIhEEJuwPThmVImuR6YVEX14ebN/vRtFFPBd+Xr+hYQ+tIe2RssX7LSMFzml89v3LiRpk6dSk1NTaXvtbW1UV9fH73xxhuRv9ff3099fX3DviDbZAsnfXimlCkhF4NGnZePP/ajb6PI9LlKkXbl665Y4dcKPJ9WBMouPPC1MBzUpCYQ6unpGRYEEVHpv3t6eiJ/b9myZdTY2Fj6mjx5stF2gv+SBCPcH4g+rEbSGZh8WVJc7bz40LdRTAXf1V530SK/AkJfgv+k8EiZ9HAaCC1evJhyuVzNr23bthltw5IlS6i3t7f0tXPnTqPvB/5LOmC6fqYUN9WByUQWSSewqjwvPvRtFFPBd7XXHRwsPEKjXNKAkDPg9TlAhWxwGggtXLiQtm7dWvPr+OOPl3qt5uZm2rNnz7DvFf+7ubk58vfq6+upoaFh2Bdkm4sBs3xgcZ12VxmYTExvmAisTPWtbmBgKviOet0771S/vrnPi88BKmSEoZolY+KKpffs2VP63oMPPigaGhrE559/Lv36KJaGIltLo30pFK1sU5JiUNkiXtkCbFNF4yYKwOPOn+x7mirAjXpd1X2GVM6LqX2PAMqlftXYjh07RFdXl7jtttvEEUccIbq6ukRXV5fYt2+fEGJo+fx5550nXn31VfH000+L8ePHY/k8eM2nVWLV2iY7MMkcR5KAz8TWBCYCzrjjTvqepoIBrtdVOS9J+sDGSsVQV0NCvNQHQnPnzhVEdMhXZ9lf4Pbt28UFF1wgRo8eLcaNGycWLlyIDRUzLIQPvDRtzlYro5E04OMOEE0FnLXOn89BriqT59HWbuC+ZV+BT+oDIVsQCKVDKB94SQaKEAK7qMyDaiaBa6rIVMBZ6/ylKcgtl+S8JJkyNR00pjEwheEyv48QQJFP+5LEkS0UDWVfn6giXpUCbM7CZlMrk2qdv7SuhkpyXmT7wMYS+lCX6YN5CITAW6orcUL7wIsbWEIK7KKorgzi2prA5MqkqPOX5tVQsudFtg9UVyom+XxIa2AKDAxlqIKFqTE/6Ext6abAfZuCStMUi+uVQS7e3/Ux+0CmD5JMual+PuDRGOmmOn7nhBDCdTDmk76+PmpsbKTe3l7sKeRId3dh+qc8q1NXV7jbTrLXyTXXFDJBxbtQmamVjo6h7Es+X7ibdb19Pkd/ABAVrqW33y5kR3y8drq7C5nbKVNq75at8/cg8x4QJtXxG1Nj4B2OqS2V+hKOKSgTj5hQeayCD4+5AL+EUGcmM+Wm+/mAR2NAJQRC4J2kc/lRA3/SDzzdD1iTA41sYGeqDQiuwpaGOrMi1PoANwRC4J0kGRDOgV/nA9bGQBMX2JlqQwiZBFtCDQhDW0BQS5qL0MENBELgJZkMCPfAr/MB68NAY6INacokRJENbkIOCE1mUVwEh66fxwfpgkAIvBWXATEx8Kt+wPqQrjfRBh8CPJNkg5vQA0JTWRSu4FAlmEKtD3BBIATBMrlJXtIPWFfp+vIBxEQbXAR4MoOiThai+Lsvvywf3KQhIOTOonAFhyFn2iAljCzmDxj2EQqLb/uC2NwzJmovFe422Oxjmf1hdPaYKv/dXE5+fybOxzP4tk+VKo79rfDYC+CEfYSYYB+h8GRxXxDbewvZ6GOZY9I57mq/W6nWa6nuTVX5Gr7tU6WK4xrs7Cxkgqp9f9YsjlZClmAfIcisLNYK2J6qsdHHMsekc9zVfpdoaOovbipRd2pJdioplJVpHFOxPtTWASAQAvBY1KCou9Tfx4FW5ph0jjvqd196ST640QkIZYK40OpldINDW7V1vl7z4AkjE3UBQ40QmCZbIxJXC6NSu6NTX2ODzDHp1Cy5rCmLq4fJcr2Mydo636954IMaISaoEQKTZGtEZOsvktTuhPLMMtnnTanWLLmsKatVZ4R6mWiqz0gL5ZoHHqrj9wiDbQJIBa4HVUbViLS1Hfq6taZRyn+2pYXnESI+DQoyx5TkuDl/l0jvemhvL5zvaoFYcequctDm2vRQ5xp2+bBWnQLzUK55cAs1QgA1cNZsJCn0NVFE6mthakj1GxzXQ1Sdka+bHrqsW9Ldq8jXax48Y2SiLmCoEYIi7pqNpK9nop7Ft32XQqrfsFXDw1kvo9tmjt/X2TOJY68i3655MEd1/EZGCDIlSfaBe4l60jt+E89T8ukZTbp3+7YzSba2LCjPGOkeo26bdX6fI5PEkdHx6ZoHTxkKzIKFjFB6Jc0+mMoAcK+QCXWnYp27fReZJNurujiO0VVGiLOvkNEBWarjNwKhCgiE0kn1g9n3D+GQppYq+TDIJmXrevApkFD5fY4prXI2H10D4cLyeSZYPp9OOkuTfX2Eh42lwaZXC6k8tsL1MnMb1wP3Meq2OenvY9k6uIDl8wA16CxN1l1ubYrppcE2notVazl5FJPLzGXYuB64j1G3zUl/v1gPVxnk+vh3BIBiacgEW1v522RyabDNQuakj61Iw7mM6x9Tx2izwBxFyhAKBEKQGSY/mJMMMFyDkcmAwPVqoTghD7Ky/cN9jC72A8riA5EhPKgRqoAaIUgqyRSSiekmEzUrqjUeqA2pzVX/4LxAFqiO38gIAWhIMoWkO91U7fU6Owv/n/uuOyrbRFQ7m2Vrr51QueofnBeAaAiEADQkGWA4ByMX009E8e+JRxrUlrR/uKZRuc9LSI9FAYiDQAhAQ5IBhmsw4s4s1VKs8SCSe880FDKrkA0MkvQPZ7DLeV5cPnsMwAQEQgAakgwwXIORi2mOJO8ZciGziqSBgUz/mAh2Oc6LzSBctj3ITIEuFEtXQLF0+nFvEtjdTfSb3xDlckQzZ8a/JsfmdkkLX3WPGcW21ZnqF9ebRkbxqV029rmCsKBYGkACd1q/+HqXXUZ0+eVEzzwT/zu6S4qTZpY4jjmrU15xTGXnfK218qVdvmWmIGzICFVARii9uO/eXWdJZDJLnG1MmvkKiWrGzOQ1kOTxI6YfhaLaLlN8ykyBP5ARAojBfffuekmyTGaJq40qma9Q6GTMTGbKZGt6ZNvPVU/jogassu2+ZKYgHZARqoCMUHqlLSMkg6ONIRynKq5je/llol/9iuhLXyKaNo29mZFk2x9yPU1U233ITIFfkBECiMF99266bobjDp6jjbYyXy5WAHEcW0cH0RlnEC1YUPhfm8vJZdofcj1NrbZnbXUimIOMUAVkhNKP+5EUJh5xwX0Hr9NGGxkhVxkL3WNznS2Tef+Q62lCbjvYh4wQgCTuB0GqvF6t7IeJO3idY7aR+TKdsYjqb91j86FOLK79vtXTJMn8+dZ2SCcEQgCWxRW3uh5cqzE5DWH6eOP6W+fYfBio49rv09YHSQvTfWo7pBemxipgagxMkpnKcD3dYpvJ4+V67VrL00Mp2pWdHjW1FF/nXJiYfob0wdQYQABksh9Zuws2ebxcxdCmMko2yUyP6m6+WWvaS+dccE9nA5RDRqgCMkJgUpK74qzdBZs43tCLoW3SPda4gvcs9SW4gYwQQACSPqQ1S3fBJo439GJom3SOVabgPWuZTggHMkIVkBECFUnrKrKW7XFNtb+zlMXQOdYky9xx7YMpyAgBOKJSV5G1bI9rqv2dpSyGzrEmWT2Hax98g4xQBWSEIIksZQyyzHQWw+ZDU2XaonKsoayeg/RSHb9HGGwTQOrVquUfG40AABMKSURBVKtwPaABn5YWc+fTt+eAqR5reztRWxumvSA8yAhVQEYIkkBGKJpPWY5qfGifiQcBuz4mAFdQIwTgQJZqSJLQ3Y9Gh8wjHFy2rxznqjRfjgkgNMgIVUBGCFRgJcwQl1kymWkmn7J4nDtf+3JMAK4gIwTgUIgrYZI8/DIJ7r13ZNsp+/BWn/YG4soo+nRMAKFBIASQQarTKDJBCeeDSJO0UzYY8OFBqeU4HtHh2zEBhASBEECgVDM6spmTSrJBSVyWgzvDUyQbDPhY16WbUfTxmABCgUAIIEA6hbEq0yhJg5KoLAdHhudnP6v+vkmCgVAelJpEGo8JwAYUS1dAsTT4zsWDRJM8QoHrfav9fFGt/XZ8L1zHEncAM1AsDRA42Skj3cJYlWkUjhqUpO2ubGe5WhkpU4XrHMXlvi1xN1UwDxASBEIAHkgyQEYFJXv3yg9oSadRWlqI7rxz6H1ValBUgqliO1euPPTfbK6K4ghgVGuzTPEtKANwRsAwvb29gohEb2+v66ZARuzcKUQ+LwTR0FddXeH7UVatKvwMUeF3c7mh/79qFX8bV60aamMuJ8Rdd6m/TrHddXXybVXpIy5c7/3888Nfo/jV2Vn9PZ9/3tzxuexPAFNUx29khAAcU5nqKmZK1qwZGsqIzGQZKjMZQhAtWaL2HqoFvS5XRSU5P7WmmmQzYjYyNdh3CGAIAiEAx1Trb1paiMaNGwqCirgHNO5BU7WGx9WqKK4ARiaYszV9hn2HAIYgEAJwTCfbYWNA82nQdLGDN2cAExfM2crUPPPM8AA6n8e+Q5BdCIQAPODzlBE26+MNYGoFczaCzmLQVplJbGvjew+AkIxw3QAAKGhpUQsu2tsLg5jJvXNsvIfvap2fYgBTuUdS0gCmGHRec00hkDIRdFYL2gYHC+c2i+cVIIiM0Pbt26m9vZ1aW1tp9OjRdMIJJ9Ctt95K+/fvH/Zz7733Hs2ZM4cOP/xwmjBhAt1000108OBBR60GsKeYZSAyty9MiA+WtYUza2a6FsqnqU4AHwSREdq2bRsNDg7Sgw8+SFOmTKEtW7bQ1VdfTZ988gmtWLGCiIgGBgZozpw51NzcTL/5zW/o/fffpyuvvJIOO+ww+td//VfHRwBgXkfHUJ1KrZ2XwQzOrJlqdlD2tU1nnQBCEuwjNu6++266//776Q9/+AMRET311FP01a9+lXbv3k1NTU1ERPTAAw/QokWL6IMPPqCRI0dKvS4esQEh0n3shgt41IRbvj+KBCCpzD1io7e3l4466qjSf2/cuJGmTp1aCoKIiNra2qivr4/eeOONyNfp7++nvr6+YV8AoQltXxjsaswv6eMyMNUJUBBkIPTOO+/QvffeS9dcc03pez09PcOCICIq/XdPT0/kay1btowaGxtLX5MnTzbTaACDQqr78O1RE2mAwBJAndNAaPHixZTL5Wp+bdu2bdjv7Nq1i84//3y69NJL6eqrr9Zuw5IlS6i3t7f0tXPnTu3XBLBNp1jX9oM3fctehf7gUQSWAHqcFksvXLiQrrrqqpo/c/zxx5f+/+7du+mcc86hM888kx566KFhP9fc3EybN28e9r09e/aU/i1KfX091dfXJ2w5gH9UinVdFFhzLTXnkIYC81qBJaa9AOIFUyy9a9cuOuecc+j000+nRx55hOqKt77/X7FY+v3336cJEyYQEdFDDz1EN910E+3du1c62EGxNGSFywLrjo7hq5ZuuIHouut43zeuGNvU8dsuAg+xUB7AhFQXS+/atYtmzZpFxxxzDK1YsYI++OAD6unpGVb7c95559HJJ59M3/jGN+j3v/89PfPMM/Td736X5s2bh4wPQBUup6iKe+XceGOhDStW8Na2yNTMmDh+F7U62PkbQE8QGaGHH36Y/vZv/7bqv5U3f8eOHXTttdfSCy+8QGPGjKG5c+fS8uXLacQI+RlAZIQgK1xnEpK8f5Isi+zrch+/D/2J5fCQZanOCF111VUkhKj6Ve7YY4+ldevW0aeffkoffPABrVixIlEQBJAlJjIJSQqPZTMySbMssq/Lffyy72uqOBvL4QHUBJERsgkZIcgarkxC0sJjmQyKSpYl6e9wHb/M+6ahOBvAV6nOCAGAORyZBJUl3DIZGZU6nqSZHq5MStz7Ypk7gJ8wbwQA2lSXcMct+Vddas/53K8kar0vlrkD+AmBEABo09kbqNYDRnUeEBr34FJTy9yj3ten/ZMAYAimxgBAm8kl3MWl9p2dhf/lqKnBMncAKEKxdAUUSwOoC2EJN5a5A6ST6viNqTEAYBM3HeUD17U6IfQRQJZgagwAMqVYq1MOtToA2YVACAC8YeNJ8KjVAYByCIQAwAs2C5hNFGADQJhQLF0BxdIA9rkuYAaA8GFnaQAIloknwQMAyEAgBADOoYAZAFxBIAQAzqGAGQBcwT5CAOAFV88HA4BsQyAEAN7AZoMAYBumxgAAACCzEAgBAABAZiEQAgAAgMxCIAQAAACZhUAIAAAAMguBEAAAAGQWAiEAAADILARCAAAAkFkIhAAAACCzEAgBAABAZiEQAgAAgMzCs8YqCCGIiKivr89xSwAAAEBWcdwujuOyEAhV2LdvHxERTZ482XFLAAAAIKl9+/ZRY2Oj9M/nRNLQKeUGBwdp9+7dNHbsWMrlckqv0dfXR5MnT6adO3dSQ0MDcwvTBX0lD30lD30lD30lD30lz0VfCSFo3759NGnSJMrn5St/kBGqkM/nqaWlheW1Ghoa8MciCX0lD30lD30lD30lD30lz3ZfJckEFaFYGgAAADILgRAAAABkVt0//dM//ZPrRqRRXV0dzZo1i0aMwOxjHPSVPPSVPPSVPPSVPPSVvFD6CsXSAAAAkFmYGgMAAIDMQiAEAAAAmYVACAAAADILgRAAAABkFgIhZhdddBEdc8wxNGrUKJo4cSJ94xvfoN27dw/7mffee4/mzJlDhx9+OE2YMIFuuukmOnjwoKMWu7F9+3Zqb2+n1tZWGj16NJ1wwgl066230v79+4f9HPqq4I477qAzzzyTDj/8cDryyCOr/gz6quC+++6j4447jkaNGkUzZsygzZs3u26Scy+++CJdeOGFNGnSJMrlcvSLX/xi2L8LIWjp0qU0ceJEGj16NM2ePZvefvttR611a9myZTRt2jQaO3YsTZgwgS655BJ66623hv0M+qvg/vvvpz/7sz8rbZo4c+ZMeuqpp0r/Hko/IRBids4559CaNWvorbfeop///Of0P//zP/S1r32t9O8DAwM0Z84c2r9/P/3mN7+hH/3oR/Twww/T0qVLHbbavm3bttHg4CA9+OCD9MYbb9D3v/99euCBB+g73/lO6WfQV0P2799Pl156KV177bVV/x19VfD444/TggUL6NZbb6Xf/e53dOqpp1JbWxvt3bvXddOc+uSTT+jUU0+l++67r+q/33XXXXTPPffQAw88QJs2baIxY8ZQW1sbff7555Zb6t6GDRto3rx59NJLL9Fzzz1HBw4coPPOO48++eST0s+gvwpaWlpo+fLl9Morr9Bvf/tb+vKXv0wXX3wxvfHGG0QUUD8JMOqJJ54QuVxO7N+/XwghxLp160Q+nxc9PT2ln7n//vtFQ0OD6O/vd9VML9x1112itbW19N/oq0OtXr1aNDY2HvJ99FXB9OnTxbx580r/PTAwICZNmiSWLVvmsFV+ISKxdu3a0n8PDg6K5uZmcffdd5e+99FHH4n6+nrx6KOPumiiV/bu3SuISGzYsEEIgf6K80d/9Edi1apVQfUTMkIG/e///i/95Cc/oTPPPJMOO+wwIiLauHEjTZ06lZqamko/19bWRn19faUoOqt6e3vpqKOOKv03+koe+qqQNXvllVdo9uzZpe/l83maPXs2bdy40WHL/Pbuu+9ST0/PsH5rbGykGTNmoN+o8LlERKXPJvRXdQMDA/TYY4/RJ598QjNnzgyqnxAIGbBo0SIaM2YM/fEf/zG999579MQTT5T+raenZ9hgRUSl/+7p6bHaTp+88847dO+999I111xT+h76Sh76iujDDz+kgYGBqv2QlT5QUewb9NuhBgcH6frrr6ezzjqLTjnlFCJCf1V6/fXX6YgjjqD6+nr61re+RWvXrqWTTz45qH5CICRh8eLFlMvlan5t27at9PM33XQTdXV10bPPPkt1dXV05ZVXksjIBt5J+4qIaNeuXXT++efTpZdeSldffbWjltun0lcAYM+8efNoy5Yt9Nhjj7luire+8IUv0KuvvkqbNm2ia6+9lubOnUtvvvmm62Yl4vcDQDyxcOFCuuqqq2r+zPHHH1/6/+PGjaNx48bRn/zJn9BJJ51EkydPppdeeolmzpxJzc3Nh6xi2bNnDxERNTc3s7fdtqR9tXv3bjrnnHPozDPPpIceemjYz6GvhvdVLWnvKxnjxo2jurq60nEX7dmzJzN9oKLYN3v27KGJEyeWvr9nzx467bTTXDXLufnz59Mvf/lLevHFF6mlpaX0ffTXcCNHjqQpU6YQEdHpp59OL7/8Mv3whz+kRYsWEVEY/YRASML48eNp/PjxSr87ODhIRET9/f1ERDRz5ky64447aO/evTRhwgQiInruueeooaGBTj75ZJ4GO5Skr3bt2kXnnHMOnX766bR69WrK54cnKNFX8tLeVzJGjhxJp59+Oq1fv54uueQSIir8/a1fv57mz5/vuHX+am1tpebmZlq/fn1pgOrr6yvd4WeNEIK+/e1v09q1a+mFF16g1tbWYf+O/qptcHCQ+vv7w+on19XaafLSSy+Je++9V3R1dYnt27eL9evXizPPPFOccMIJ4vPPPxdCCHHw4EFxyimniPPOO0+8+uqr4umnnxbjx48XS5Yscdx6u7q7u8WUKVPEueeeK7q7u8X7779f+ipCXw3ZsWOH6OrqErfddps44ogjRFdXl+jq6hL79u0TQqCvih577DFRX18vHn74YfHmm2+Kb37zm+LII48ctpoui/bt21e6ZohIrFy5UnR1dYkdO3YIIYRYvny5OPLII8UTTzwhXnvtNXHxxReL1tZW8dlnnzluuX3XXnutaGxsFC+88MKwz6VPP/209DPor4LFixeLDRs2iHfffVe89tprYvHixSKXy4lnn31WCBFOPyEQYvTaa6+Jc845Rxx11FGivr5eHHfcceJb3/qW6O7uHvZz27dvFxdccIEYPXq0GDdunFi4cKE4cOCAo1a7sXr1akFEVb/Koa8K5s6dW7WvOjs7Sz+Dviq49957xTHHHCNGjhwppk+fLl566SXXTXKus7Oz6vUzd+5cIURhSfgtt9wimpqaRH19vTj33HPFW2+95bbRjkR9Lq1evbr0M+ivgr/7u78Txx57rBg5cqQYP368OPfcc0tBkBDh9FNOiIxU8QIAAABUwKoxAAAAyCwEQgAAAJBZCIQAAAAgsxAIAQAAQGYhEAIAAIDMQiAEAAAAmYVACAAAADILgRAAAABkFgIhAMi0xYsXU319Pf3N3/yN66YAgAMIhAAgVb73ve9RU1MTHXvssfSzn/2Ment7aeXKlfTnf/7ndPjhh9Odd9457OeXLFlC3/ve9+jRRx+ld955x1GrAcAVBEIAkBq//vWvaevWrbRjxw664oor6Otf/zr9/d//PZ122mm0ceNGOv300+knP/nJsN9pbGyk9vZ2yufz9PrrrztqOQC4gkAIAFLj5Zdfpuuvv55GjRpFixYtogMHDtDll19OX/7yl2nUqFF03HHHUVtb2yG/d/DgQTr88MNpy5YtDloNAC4hEAKA1Jg2bRqtX7+eiIgaGhqorq6O9u3bR0REO3bsoA8++IBuu+22Q37vu9/9Ln388ccIhAAyCIEQAKTGWWedRYODg/Qv//Ivpe/t37+fVq9eTTNnzqRPP/2U8vnhH3uvvPIKPfDAAzRnzhwEQgAZlBNCCNeNAAAwYcSIETRjxgy64YYbaOvWrbR06VJat24dXXDBBURENDg4SNOnT6ezzz6bZsyYQVdccQV98skndNhhhzluOQDYgowQAKTa1VdfTV/72tfo+uuvp1wuN2xl2L333ksffvgh/fM//zNNnTqVDhw4QNu2bXPYWgCwDYEQAKTGtm3b6Ne//jUREfX399Pg4CA1NjYSEdHYsWNp7NixtGPHDiIi2rVrF91yyy1033330ZgxY+jEE0+k+vp6TI8BZMwI1w0AAOBy9NFH0z333ENnnXUWPfnkk1RfX0/Tp08v/fsxxxxDTz/9NPX399Pu3bvpggsuoDlz5hBRYRrtpJNOQiAEkDEIhAAgNcaOHUt/+Zd/SRdddBFt2bKFVq9eTUcffXTp3y+//HL69NNP6Ytf/CL9wz/8A23dunXY70+dOhWBEEDGoFgaAAAAMgs1QgAAAJBZCIQAAAAgsxAIAQAAQGYhEAIAAIDMQiAEAAAAmYVACAAAADILgRAAAABkFgIhAAAAyCwEQgAAAJBZCIQAAAAgsxAIAQAAQGYhEAIAAIDM+n8kcOx+AGyBLwAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "execution_count": 45, - "metadata": { - "comm_id": "cc29dfd3-50e1-458b-ae71-4fb0f91f9294", - "reactive": true - }, - "output_type": "execute_result" - } - ], - "source": [ - "f = figure()\n", - "@manipulate for n in 10:1000\n", - " withfig(f) do\n", - " A = randn(n,n)\n", - " λ = eigvals(A)\n", - " plot(real(λ), imag(λ), \"b.\")\n", - " axis(\"equal\")\n", - " xlabel(L\"\\Re \\lambda\")\n", - " ylabel(L\"\\Im \\lambda\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Calling Python\n", - "\n", - "Being a young language, Julia doesn't have as many mature libraries and packages as a language like Python. Fortunately, Julia code can *call Python libraries* directly, with the help of the [PyCall package](https://github.com/JuliaPy/PyCall.jl):" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "using PyCall" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "@pyimport scipy.special as special" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.006591139357460717, -0.011912976705951313, 14.037328963730229, 22.92221496638217)" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "special.airy(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "@pyimport scipy.optimize as opt" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "opt.newton(cos, 1.4) - pi/2" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.7390851332151607" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "opt.newton(x -> cos(x) - x, 1.4)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.0", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.0" - }, - "widgets": { - "state": { - "2249e52a-4038-4bb7-bb18-32aa5c4ed838": { - "views": [ - { - "cell_index": 51 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/lectures/Chutes-and-Ladders.ipynb b/lectures/Chutes-and-Ladders.ipynb deleted file mode 100644 index 66fa87a5..00000000 --- a/lectures/Chutes-and-Ladders.ipynb +++ /dev/null @@ -1,1145 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using PyPlot, Interact" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chutes and Ladders\n", - "\n", - "*Chutes and Ladders*, a version of an ancient Indian board game called [Snakes and Ladders](https://en.wikipedia.org/wiki/Snakes_and_Ladders), is a simple and popular children's board game.\n", - "\n", - "* There are 100 numbered spaces, plus an unmarked starting position 0.\n", - "* Players take turns generating a random number from 1 to 6 (e.g. by rolling a die or spinning a wheel), and move a marker that many spaces.\n", - "* If you land at the bottom of a ladder or the top of a chute (snake), then your marker is transported across the board up the ladder or down the chute.\n", - "* The first player whose marker reaches position 100 wins.\n", - "\n", - "Here is an image of a game board:\n", - "\n", - "\n", - "\n", - "A simple question that one might ask is: **how many moves does it typically take to finish the game**?\n", - "\n", - "It turns out that an elegant analysis of this game is possible via [Markov matrices](https://en.wikipedia.org/wiki/Stochastic_matrix). Reviews of this idea can be found in [this 2011 blog post](http://www.datagenetics.com/blog/november12011/) or [this article by Jeffrey Humpherys at BYU](https://math.byu.edu/~jeffh/mathematics/games/chutes/chutes.html).\n", - "\n", - "The key idea is to represent the board by a 101×101 matrix M, whose entry $M_{i,j}$ is the **probability of going from position j to position i**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simplified game: No chutes or ladders\n", - "\n", - "To start with, let's analyze a boring version of the game, in which there are no chutes or ladders. On each turn, you simply move forward 1 to 6 spaces until you reach the end.\n", - "\n", - "The corresponding matrix M is essentially:\n", - "\n", - "$$\n", - "M_{i,j} = \\begin{cases}\n", - " \\frac{1}{6} & j \\in \\{i-1,i-2,\\ldots,i-6\\} \\\\\n", - " 0 & \\mbox{otherwise}\n", - " \\end{cases}\n", - "$$\n", - "since there is a 1/6 chance of moving 1,2,…,6 spaces from $j$. However, the final row is modified, because you can get to space 100 from space 99 if you roll anything, from space 98 if you roll a 2 or more, etcetera. And once you get to position 100, you stay there." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "101×101 Array{Float64,2}:\n", - " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", - " 0.166667 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.166667 0.166667 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0 0.0\n", - " 0.166667 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0\n", - " 0.166667 0.166667 0.166667 0.166667 … 0.0 0.0 0.0 0.0\n", - " 0.166667 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0\n", - " 0.0 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.166667 0.166667 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.166667 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " ⋮ ⋱ ⋮ \n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.166667 0.0 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 0.166667 0.166667 0.0 0.0\n", - " 0.0 0.0 0.0 0.0 … 0.666667 0.833333 1.0 1.0" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "M = zeros(101,101)\n", - "for i = 2:100\n", - " M[i,max(1,i-6):(i-1)] = 1/6\n", - "end\n", - "# last row\n", - "for i = 1:6\n", - " M[101,101-i] = (7-i)/6 # = 6/6, 5/6, 4/6, ..., 1/6\n", - "end\n", - "M[101,101] = 1 # once we get to the last space, we stay there\n", - "M" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we start on position 0, corresponding to $j=1$. This is described by the vector\n", - "\n", - "$$\n", - "e_1 = \\begin{pmatrix} 1 \\\\ 0 \\\\ 0 \\\\ \\vdots \\\\ 0 \\end{pmatrix}\n", - "$$\n", - "\n", - "After one move, our probability of being on each spot is given by \n", - "\n", - "\n", - "$$\n", - "M e_1 = \\begin{pmatrix} 0 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 0 \\\\ \\vdots \\\\ 0 \\end{pmatrix}\n", - "$$\n", - "\n", - "(the first column of M)." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "101-element Array{Float64,1}:\n", - " 0.0 \n", - " 0.166667\n", - " 0.166667\n", - " 0.166667\n", - " 0.166667\n", - " 0.166667\n", - " 0.166667\n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " ⋮ \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 " - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "e₁ = zeros(101); e₁[1] = 1\n", - "M*e₁" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That is, there is a 1/6 chance of being in positions 1, 2, 3, 4, 5, or 6.\n", - "\n", - "After *two* moves, the probability distribution is given by $M^2 e_1$:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "101-element Array{Float64,1}:\n", - " 0.0 \n", - " 0.0 \n", - " 0.0277778\n", - " 0.0555556\n", - " 0.0833333\n", - " 0.111111 \n", - " 0.138889 \n", - " 0.166667 \n", - " 0.138889 \n", - " 0.111111 \n", - " 0.0833333\n", - " 0.0555556\n", - " 0.0277778\n", - " ⋮ \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 \n", - " 0.0 " - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "M^2 * e₁" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And so on.\n", - "\n", - "In fact, the matrix $M$ is precisely a **Markov matrix.** It has the property that the **sum of every column is 1**, as can be checked in Julia by:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×101 Array{Float64,2}:\n", - " 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(M, 1) # sum M along the first dimension, i.e. sum Mᵢⱼ over i, i.e. sum each column" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The eigenvalues of this matrix are weird looking: there is a single steady state (eigenvalue 1), and all other eigenvalues are zero!" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "101-element Array{Float64,1}:\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " ⋮ \n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(M)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What is actually happening here is that this matrix is not diagonalizable — it is [defective](https://en.wikipedia.org/wiki/Defective_matrix). The matrix $X$ of eigenvectors is singular:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(M)\n", - "det(X)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's not worry about that for now (we will cover defective matrices later), and instead focus on the **steady-state eigenvalue λ=1**. The corresponding eigenvector is just the unit vector $e_{101}$, because the steady state is the situation where we have reached the last spot on the board, at which point we stay there forever:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "101-element Array{Float64,1}:\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " ⋮ \n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X[:,1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's plot this probability distribution as it evolves over many moves, plotting it on a 2d grid that resembles the usual Chutes and Ladders board." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "plotchutes (generic function with 1 method)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Plot the probabilities on something like a chutes and ladders board. We won't show the starting position (0)\n", - "# since that is not on the board.\n", - "function plotchutes(p)\n", - " P = reshape(p[2:101], 10,10).' # reshape to a 10×10 array and transpose to row-major\n", - " # every other row should be reversed, corresponding to how players \"zig-zag\" across the board:\n", - " for i = 2:2:10\n", - " P[i,:] = reverse(P[i,:])\n", - " end\n", - " imshow(P, aspect=\"equal\", cmap=\"Reds\", norm=PyPlot.matplotlib[\"colors\"][\"LogNorm\"](vmin=1e-3, vmax=1), origin=\"lower\", interpolation=\"none\")\n", - " colorbar(label=\"probability\")\n", - " xticks(-0.5:1:10, visible=false)\n", - " yticks(-0.5:1:10, visible=false)\n", - " grid()\n", - " for i = 1:10, j = 1:10\n", - " n = (i-1)*10 + j\n", - " x = iseven(i) ? 10-j : j-1\n", - " y = i-1\n", - " text(x,y, \"$n\", horizontalalignment=\"center\", verticalalignment=\"center\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":100,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-dda319f3-24f3-4078-a4dc-195c102c76ad","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_06","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_01\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_01\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_01\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-1916091b-257d-44bd-b5ae-79163a6b78a4\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_05\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for n in slider(1:100, value=1)\n", - " withfig(fig) do\n", - " plotchutes(M^n*e₁)\n", - " title(\"distribution after $n moves\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a boring game: you move forward monotonically along the board until you reach the end. After 100 moves, the probability of having reached the end is 100%, because on each turn you move at least 1 space forward:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "101-element Array{Float64,1}:\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " ⋮ \n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "M^100*e₁" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can plot the probability $e_{101}^T M^n e_1$ of finishing the game after $≤ n$ steps (with a single player) as a function of $n$:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHFCAYAAAD7ZFORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYU9f/B/B3CIGACoIIiiK4sXXgqFb9WjeKVnHVWdGqddddtyIuLO4O92rrqKNqh9pKFa2t2mpdbd0TFEEBUX+gjHB+f6SJhgDmYkIG79fz8CT35OTeTw5J+HDOuefKhBACRERERDbIztwBEBEREZkKEx0iIiKyWUx0iIiIyGYx0SEiIiKbxUSHiIiIbBYTHSIiIrJZTHSIiIjIZjHRISIiIpvFRIeIiIhsFhMdGzNr1izIZDIkJCQUyPGaNWuGZs2aFcix8qNZs2aoXr26Ufe5detWLFu2zKj7lOL58+eYMmUK/Pz84OTkhEqVKmHYsGGS9tG/f3/4+fkZNS5D3wtHjhyBTCbDkSNHjHr81zVgwAC0bdvW3GHkSNNmu3btMto+Y2NjMWvWLJw7d85o+7QEMpkMs2bNMtr+bt++DZlMhk2bNr2yrik+V4a4evUqHBwccObMmQI/tjWwN3cAZN1WrFhh7hAK3NatW/HPP/9gzJgxZjn+xIkTsXLlSsydOxdvvfUWrly5gnXr1pklFltx9uxZfPnll/jjjz/MHUqBiY2NRVhYGPz8/BAQEGDucOg1VKlSBX369MHYsWNx9OhRc4djcZjoUL6kpqbC2dkZb7zxhrlDKXS2b9+Orl27YtKkSQCAFi1aSO7RsSWa9+LrWLBgAerXr4969eoZKSoylYyMDMhkMtjb2/6fr2fPnsHJycmguiNHjkS9evVw/PhxNGrUyMSRWRcOXdmomJgYdOnSBS4uLnB1dcX777+Phw8f6tTJyspCREQE/P394ejoCE9PT4SEhODu3bs69TTDP7/++isaNWoEZ2dnDBgwQPvYy8MVmm7eRYsWYcmSJShfvjyKFi2Khg0b4uTJk3pxrl27FlWqVIGjoyPeeOMNbN26VVL379atW9GwYUMULVoURYsWRUBAANavX69X79SpU2jSpAmcnZ1RoUIFLFiwAFlZWdrHN23aBJlMhtu3b+s8L/swS7NmzbBv3z7cuXMHMplM+6ORnp6OuXPnatu0ZMmS+OCDD/Ta/vDhw2jWrBlKlCgBJycnlCtXDl27dkVqauorX7NcLse1a9dg7OvxfvHFF3jnnXfg6emJIkWKoEaNGoiIiEBGRoZOPSEEIiIi4OvrC6VSiTp16uDAgQM57vPy5cto27YtnJ2d4eHhgaFDh+Lp06c51v3ll1/QsmVLuLi4wNnZGY0bN8ahQ4d06miGZs+cOYNu3brBzc0NFStWBADcvHkTPXv2hLe3NxwdHeHl5YWWLVu+cmgmPj4ee/bsQd++fXXKNb/7bdu2Ydq0afD29oaLiwtatWqFK1eu6O1nw4YNqFWrFpRKJdzd3dG5c2dcunQpz2Nr3Lt3D4MHD4aPjw8cHBzg7e2Nbt26IT4+XqdeRkbGK2Px8/ND//799Y7x8mf1yJEjeOuttwAAH3zwgfZ9/PKQz+nTp9GxY0e4u7tDqVSidu3a2LFjh84+U1NTMWHCBJQvX177uuvVq4dt27a98jX/888/CA4OhpubG5RKJQICAvDll1/q1NH8Dr7++muMHz8eZcqUgaOjI65fv/7K/Ws8fPgQw4cPxxtvvIGiRYvC09MTLVq0wLFjx/TqxsbGonv37ihWrBhcXV3Ro0cPxMXF5bjfTZs2oWrVqnB0dES1atXw1Vdf5VjP0O8EPz8/vPvuu9i9ezdq164NpVKJsLAwAMDOnTvRoEEDuLq6ar/DNN/BGnXr1kW1atWwatUqg9umsLD9lLiQ6ty5M7p3746hQ4fi33//xYwZM3Dx4kX88ccfUCgUAIBhw4ZhzZo1GDlyJN59913cvn0bM2bMwJEjR3DmzBl4eHho93f//n28//77mDhxIubPnw87u7xz5C+++AL+/v7auSwzZsxAu3btcOvWLbi6ugIA1qxZgyFDhqBr165YunQpHj9+jLCwMKSlpRn0GmfOnIk5c+agS5cuGD9+PFxdXfHPP//gzp07OvXi4uLQp08fjB8/HqGhodizZw+mTJkCb29vhISEGNymgHqobvDgwbhx4wb27Nmj81hWVhaCg4Nx7NgxTJw4EY0aNcKdO3cQGhqKZs2a4fTp03BycsLt27fRvn17NGnSBBs2bEDx4sVx7949/PTTT0hPT39l78TgwYMRFhaGjz/+GIsWLZIUf15u3LiB3r17o3z58nBwcMD58+cxb948XL58GRs2bNDWCwsLQ1hYGAYOHIhu3bohJiYGH374IVQqFapWraqtFx8fj6ZNm0KhUGDFihXw8vLCli1bMHLkSL1jb968GSEhIQgODsaXX34JhUKB1atXo02bNvj555/RsmVLnfpdunRBz549MXToUKSkpAAA2rVrB5VKhYiICJQrVw4JCQk4fvw4kpOT83zdBw8eREZGBpo3b57j41OnTkXjxo2xbt06PHnyBJMmTUKHDh1w6dIlyOVyAEB4eDimTp2KXr16ITw8HImJiZg1axYaNmyIU6dOoXLlyrke/969e3jrrbeQkZGBqVOnombNmkhMTMTPP/+MR48ewcvLS1IshqhTpw42btyIDz74ANOnT0f79u0BAGXLlgUAREVFoW3btmjQoAFWrVoFV1dXfPPNN+jRowdSU1O1idS4cePw9ddfY+7cuahduzZSUlLwzz//IDExMc/jX7lyBY0aNYKnpyc+/fRTlChRAps3b0b//v0RHx+PiRMn6tSfMmUKGjZsiFWrVsHOzg6enp4Gv9akpCQAQGhoKEqVKoX/+7//w549e9CsWTMcOnRIm/w9e/YMrVq1QmxsLMLDw1GlShXs27cPPXr00Nvnpk2b8MEHHyA4OBiLFy/G48ePMWvWLKSlpel8Nxr6naBx5swZXLp0CdOnT0f58uVRpEgRnDhxAj169ECPHj0wa9YsKJVK3LlzB4cPH9aLq1mzZti5cyeEEDr/gBV6gmxKaGioACDGjh2rU75lyxYBQGzevFkIIcSlS5cEADF8+HCden/88YcAIKZOnaota9q0qQAgDh06pHe8pk2biqZNm2q3b926JQCIGjVqiMzMTG35n3/+KQCIbdu2CSGEUKlUolSpUqJBgwY6+7tz545QKBTC19c3z9d58+ZNIZfLRZ8+ffKsp4n9jz/+0Cl/4403RJs2bbTbGzduFADErVu3dOpFRUUJACIqKkpb1r59+xzj27ZtmwAgvv32W53yU6dOCQBixYoVQgghdu3aJQCIc+fO5Rl7Tp48eSI6duwoqlatqvd7kqJfv355trFKpRIZGRniq6++EnK5XCQlJQkhhHj06JFQKpWic+fOOvV///13AUDnvTBp0iQhk8n0Xmfr1q112jQlJUW4u7uLDh066MVQq1YtUb9+fW2Z5v09c+ZMnboJCQkCgFi2bJmhTaA1bNgw4eTkJLKysnTKNb/7du3a6ZTv2LFDABAnTpwQQqjbxMnJSa9edHS0cHR0FL17987z+AMGDBAKhUJcvHgx1zqGxiKEEL6+vqJfv356+8j+WdW8Lzdu3KhX19/fX9SuXVtkZGTolL/77ruidOnSQqVSCSGEqF69uujUqVOery8nPXv2FI6OjiI6OlqnPCgoSDg7O4vk5GQhxIvX/c477xi8bwAiNDQ018czMzNFRkaGaNmypc77eOXKlQKA+O6773Tqf/jhhzrtpFKphLe3t6hTp47Oe+b27dt6312GficIof69yeVyceXKFZ26ixYtEgC0bZKXtWvXCgDi0qVLr6xbmHDoykb16dNHZ7t79+6wt7dHVFQUAGhvs3dx169fH9WqVdMbMnBzc0OLFi0MPn779u11/sOsWbMmAGh7W65cuYK4uDh0795d53nlypVD48aNX7n/yMhIqFQqjBgx4pV1S5Uqhfr16+uU1axZU6/n53X9+OOPKF68ODp06IDMzEztT0BAAEqVKqUd/goICICDgwMGDx6ML7/8Ejdv3jT4GL169UJsbCzOnz+PuXPnYv78+Zg5c6b28bt370Imk2Hjxo2S4z979iw6duyIEiVKQC6XQ6FQICQkBCqVClevXgUAnDhxAs+fP9d7fzVq1Ai+vr46ZVFRUXjzzTdRq1YtnfLevXvrbB8/fhxJSUno16+fTrtlZWWhbdu2OHXqlLbXRqNr16462+7u7qhYsSIWLlyIJUuW4OzZszpDk3mJjY1FyZIlc/0PuGPHjjrb2d/LJ06cwLNnz/Q+Sz4+PmjRooXeZym7AwcOoHnz5qhWrdorY31VLMZw/fp1XL58Wfs7fvl30q5dO9y/f187XFa/fn0cOHAAkydPxpEjR/Ds2TODjnH48GG0bNkSPj4+OuX9+/dHamoqTpw4oVOe/fct1apVq1CnTh0olUrY29tDoVDg0KFDOkOLUVFRKFasmF4bZ3+/XrlyBbGxsejdu7fOe8bX11dvboyh3wkaNWvWRJUqVXTKNEOM3bt3x44dO3Dv3r1cX6empyuvOoUREx0bVapUKZ1te3t7lChRQtulrLktXbq03nO9vb31up5zqpeXEiVK6Gw7OjoCgPaLULP/l7vlNXIqy04zvq3papcSiyYeQ7+UDRUfH4/k5GQ4ODhAoVDo/MTFxWlP+a9YsSJ++eUXeHp6YsSIEahYsSIqVqyI5cuX57n/U6dOYd++fZg8eTIcHR0xbdo0zJ8/H3PmzNGO5R85cgRyuRxt2rSRFHt0dDSaNGmCe/fuYfny5Th27BhOnTqFL774AoD+7y37+yunssTERIPqaeahdOvWTa/dPvnkEwghtMMPGtnfjzKZDIcOHUKbNm0QERGBOnXqoGTJkhg1alSuc4I0nj17BqVSmevjhr6XDf0sZffw4UOD3seGxGIMmt/HhAkT9H4fw4cPBwDte/nTTz/FpEmTsHfvXjRv3hzu7u7o1KkTrl27lucxEhMTc20vzeMvk/r987IlS5Zg2LBhaNCgAb799lucPHkSp06dQtu2bXXaLTExMcfvnpze1zmV51Rm6HdCXq/znXfewd69e5GZmYmQkBCULVsW1atXz3EelOZ9bOzvNmvHOTo2Ki4uDmXKlNFuZ2ZmIjExUftFqbm9f/++3pdsbGyszvwcAEYf79UcP/tkS03sr1KyZEkA6h6M7P8V5ofmCyL7/CAp6xF5eHigRIkS+Omnn3J8vFixYtr7TZo0QZMmTaBSqXD69Gl89tlnGDNmDLy8vNCzZ88cn3/jxg0AgIuLi7ZsypQpsLOzw+TJk5GVlYWtW7diwIAB2j8Yhtq7dy9SUlKwe/dunZ6Z7BN5Nb+3nH5HcXFxOpPIS5QokWu9l2nea5999hnefvvtHOPL/gcop/ejr6+vdiL61atXsWPHDsyaNQvp6el5TtD08PB4rfVHXv4sZZfTZym7kiVL6p0A8DqUSmWO89wSEhJeGQvw4vcxZcoUdOnSJcc6mrlYRYoU0c7Zio+P1/budOjQAZcvX871GCVKlMi1vV6OQeN1vn82b96MZs2aYeXKlTrl2RPgEiVK4M8//9R7fvb366s+Ay+T8p0A5P46g4ODERwcjLS0NJw8eRLh4eHo3bs3/Pz80LBhQ209zT8EhvyeCxP26NioLVu26Gzv2LEDmZmZ2ol3mmGozZs369Q7deoULl26pDf509iqVq2KUqVK6Z3FER0djePHj7/y+YGBgZDL5XpfXvml+QN94cIFnfLvv/9er25uvUHvvvsuEhMToVKpUK9ePb2flyfqasjlcjRo0EDbc5LXH1zNwofZz+6YNGkS5s2bh9mzZ+PBgwdYuHBh3i82B5ovWE0PAaA+u2rt2rU69d5++20olUq999fx48f1hk+aN2+Of//9F+fPn9cp37p1q85248aNUbx4cVy8eDHHdqtXrx4cHBwkvZ4qVapg+vTpqFGjxiuTGH9/fyQmJuLx48eSjqHRsGFDODk56X2W7t69qx2iyUtQUBCioqJyPJMrP/z8/PTex1evXtXbf269QVWrVkXlypVx/vz5XH8f2f9AA+pktH///ujVqxeuXLmS5xmELVu2xOHDh7WJjcZXX30FZ2fnXBPe/JDJZDrva0D9Oc8+PNa8eXM8ffpU7zOf/f1atWpVlC5dGtu2bdM58/HOnTt63135+U7Ii6OjI5o2bYpPPvkEgHq4+WU3b96EnZ2d5P3aOvbo2Kjdu3fD3t4erVu31p51VatWLe2cmKpVq2Lw4MH47LPPYGdnh6CgIO1ZVz4+Phg7dqxJ47Ozs0NYWBiGDBmCbt26YcCAAUhOTkZYWBhKly79yrO6/Pz8MHXqVMyZMwfPnj1Dr1694OrqiosXLyIhIUE7lGOot956C1WrVsWECROQmZkJNzc37NmzB7/99pte3Ro1amD37t1YuXIl6tatCzs7O9SrVw89e/bEli1b0K5dO4wePRr169eHQqHA3bt3ERUVheDgYHTu3BmrVq3C4cOH0b59e5QrVw7Pnz/XntXUqlWrXGOsXr06hg0bhpUrV+LJkycICQmBq6sr/v33X6xbtw5ly5bFvXv3MGPGDHz66aeSXn/r1q3h4OCAXr16YeLEiXj+/DlWrlyJR48e6dRzc3PDhAkTMHfuXAwaNAjvvfceYmJiMGvWLL1u+zFjxmDDhg1o37495s6dqz3rKvt/+kWLFsVnn32Gfv36ISkpCd26dYOnpycePnyI8+fP4+HDh69MaC9cuICRI0fivffeQ+XKleHg4IDDhw/jwoULmDx5cp7PbdasGYQQ+OOPPxAYGCih1dSKFy+OGTNmYOrUqQgJCUGvXr2QmJiIsLAwKJVKhIaG5vn82bNn48CBA3jnnXcwdepU1KhRA8nJyfjpp58wbtw4+Pv7S4qnb9++eP/99zF8+HB07doVd+7cQUREhLYXVKNixYpwcnLCli1bUK1aNRQtWhTe3t7w9vbG6tWrERQUhDZt2qB///4oU6YMkpKScOnSJZw5cwY7d+4EADRo0ADvvvsuatasCTc3N1y6dAlff/01GjZsmOfZg6Ghofjxxx/RvHlzzJw5E+7u7tiyZQv27duHiIgI7ZmZxvDuu+9izpw5CA0NRdOmTXHlyhXMnj0b5cuXR2ZmprZeSEgIli5dipCQEMybNw+VK1fG/v378fPPP+vsz87ODnPmzMGgQYPQuXNnfPjhh0hOTs7xM2Dod0JeZs6cibt376Jly5YoW7YskpOTsXz5cigUCjRt2lSn7smTJxEQEAA3N7fXbDUbY9650GRsmrNS/vrrL9GhQwdRtGhRUaxYMdGrVy8RHx+vU1elUolPPvlEVKlSRSgUCuHh4SHef/99ERMTo1OvadOm4s0338zxeLmddbVw4UK9usjhbIg1a9aISpUqCQcHB1GlShWxYcMGERwcLGrXrm3Q6/3qq6/EW2+9JZRKpShatKioXbu2zlkkucWe01lHV69eFYGBgcLFxUWULFlSfPTRR2Lfvn16Z10lJSWJbt26ieLFiwuZTCZe/hhlZGSIRYsWiVq1amlj8vf3F0OGDBHXrl0TQghx4sQJ0blzZ+Hr6yscHR1FiRIlRNOmTcX333//yteblZUl1q9fL+rXry+cnJyEUqkUtWrVEgsWLBApKSli8eLFOZ51Z8jr/+GHH7RxlylTRnz88cfiwIEDeq8/KytLhIeHCx8fH+Hg4CBq1qwpfvjhB733ghBCXLx4UbRu3VoolUrh7u4uBg4cKL777ju9fQohxNGjR0X79u2Fu7u7UCgUokyZMqJ9+/Zi586d2jqa9/fDhw91nhsfHy/69+8v/P39RZEiRUTRokVFzZo1xdKlS3XO/suJSqUSfn5+emcgas74efn4Qrx4j2c/W2ndunWiZs2awsHBQbi6uorg4GDx77//5nlsjZiYGDFgwABRqlQpoVAohLe3t+jevbv2MysllqysLBERESEqVKgglEqlqFevnjh8+HCOv59t27YJf39/oVAo9D6f58+fF927dxeenp5CoVCIUqVKiRYtWohVq1Zp60yePFnUq1dPuLm5CUdHR1GhQgUxduxYkZCQ8MrX/Pfff4sOHToIV1dX4eDgIGrVqqXXprm97rxkfx1paWliwoQJokyZMkKpVIo6deqIvXv35vgZuHv3rujatav2e7Nr167i+PHjuf6+K1eurPPdldM+DflOEEJ91lX79u31Xs+PP/4ogoKCRJkyZYSDg4Pw9PQU7dq1E8eOHdOp9/TpU+Hs7CwWL15scFsVFjIhjLzqGNFrSE5ORpUqVdCpUyesWbPG3OFQIbF48WLMmzcP9+7dM3glWiJLsn79eowePRoxMTHs0cmGiQ6ZTVxcHObNm4fmzZujRIkSuHPnDpYuXYrLly/j9OnTePPNN80dIhUSz58/R7Vq1TBixAhMmDDB3OEQSZKZmYk33ngD/fr1w7Rp08wdjsXhHB0yG0dHR9y+fRvDhw9HUlKSdhLiqlWrmORQgVIqlfj666/1JncSWYOYmBi8//77GD9+vLlDsUjs0SEiIiKbxdPLiYiIyGYx0SEiIiKbxUSHiIiIbFahm4yclZWF2NhYFCtWjJexJyIishJCCDx9+hTe3t6vXFT2ZYUu0YmNjTXKtZGIiIio4MXExBh8IVygECY6mmu0xMTE6Fwc0RgyMjJw8OBBBAYGQqFQGHXf9ALbuWCwnQsG27ngsK0Lhqna+cmTJ/Dx8cnxWmt5KXSJjma4ysXFxSSJjrOzM1xcXPghMiG2c8FgOxcMtnPBYVsXDFO3s9RpJ5yMTERERDaLiQ4RERHZLCY6REREZLOY6BAREZHNYqJDRERENouJDhEREdksJjpERERks5joEBERkc1iokNEREQ2i4kOERER2SyzJjq//vorOnToAG9vb8hkMuzdu/eVzzl69Cjq1q0LpVKJChUqYNWqVQUQKREREVkjsyY6KSkpqFWrFj7//HOD6t+6dQvt2rVDkyZNcPbsWUydOhWjRo3Ct99+a+JIiWzL3btAVJT6Nreyu3eBv//2eGUdQ/bDOmzn/NYx9r5fbmtLe622VCf7e9qshIUAIPbs2ZNnnYkTJwp/f3+dsiFDhoi3337b4OM8fvxYABCPHz/OV5x5SU9PF3v37hXp6elG3ze9wHbOW0yMEIcPq29zKlu3Tgg7OyEA9e26dUKsWaNb1qOHEHZ2Wf9tZ4mFC4WIiNCt07Wr7vYnn6h/WEdqnRftbBnxWE4d4+/7RVtb2mu1rTov2nndOuN9t+X377dMCCHMnGsBUF+NdM+ePejUqVOudd555x3Url0by5cv15bt2bMH3bt3R2pqao5XSU1LS0NaWpp2W3OZ94SEBJNcvTwyMhKtW7fmlXFNiO2cu40bZRg2TI6sLBns7AQ++USF27dlWLHCDkLIAGg+7i9f/Vdk2yYiMg65XODatUyULfv6+3ry5Ak8PDzw+PFjSX+/7V//0AUnLi4OXl5eOmVeXl7IzMxEQkICSpcurfec8PBwhIWF6ZUfPHgQzs7OJokzMjLSJPslXWxnXQkJSgwdGvhfQgNkZcnw8cfZP+I5JTRMcojINFQqGbZs+QM1aiS+9r5SU1Pz9TyrSnQAdc/PyzQdUtnLNaZMmYJx48ZptzU9OoGBgezRsVJsZ1137wKXLslw4oRMm+RIYWen/gxlZeXey8M6rGOOOuY+Puu8fh25XKBPnwZG69HJF+ONnr0eGDBHp0mTJmLUqFE6Zbt37xb29vYGz9fgHB3rx3Z+YfVqIWQy9Rh5Tj92di/G0DU/MpkQcrn6vlyunqOzbp1uWb9+QsjlWf9tZ+VRx5D9sA7bOX91jL/vF21taa/VturovqeNJb9/v60q0Zk4caKoVq2aTtnQoUM5GbmQYTur3b6de3Lzqj8eMTFCREXpT1h+uezmzXQxZ84xcfNmeq51DNkP67CdX6eOMfedva0t7bXaSp2c3tPGYJWJztOnT8XZs2fF2bNnBQCxZMkScfbsWXHnzh0hhBCTJ08Wffv21da/efOmcHZ2FmPHjhUXL14U69evFwqFQuzatcvgYzLRsX5sZyFUKiECA3NOdHbsMOyPx6uwnQsG27ngsK0LhqnaOb9/v806R+f06dNo3ry5dlszl6Zfv37YtGkT7t+/j+joaO3j5cuXx/79+zF27Fh88cUX8Pb2xqeffoquXbsWeOxE5nD3LnDlCrB+PXDwoP7jcjnQsCH0xsPLltUvIyIqDMya6DRr1kw7mTgnmzZt0itr2rQpzpw5Y8KoiCzT+vXA4MFAVpZ6WyYDBg0CNmwAVCp1krN6NRMaIqKXWd1ZV0SF0d27ukkOoE50Zs5U/1y/DlSqxCSHiCg7JjpEVuDaNd0kB1BvX78ONGvGBIeIKDe8ejmRFahcWb9MLlf34hARUe6Y6BBZgezrZHE+DhGRYTh0RWQFZs9W37ZtC0yaxPk4RESGYqJDZOH++QfYsUN9/5NPgJo1zRsPEZE14dAVkYULC1MvBditG5McIiKpmOgQWbDISGDXLvX90FDzxkJEZI2Y6BBZqPXrgcDAF9t//GG+WIiIrBUTHSILpFkg8GVDhqjLiYjIcEx0iCxQTgsEqlTqBQKJiMhwTHSILBAXCCQiMg4mOkQWSKXS3eYCgURE+cN1dIgs0IED6tt69YCFC7lAIBFRfjHRIbJAmkSnc2f1RTuJiCh/OHRFZGHS0oBDh9T3g4LMGwsRkbVjokNkYY4dA1JSgNKlgYAAc0dDRGTdmOgQWRjNsFXbtoBMZt5YiIisHRMdIguzf7/6tl0788ZBRGQLmOgQWZBbt4DLl9Wnk7dqZe5oiIisHxMdIguiGbZq3BgoXty8sRAR2QImOkQWRJPo8GwrIiLjYKJDZCGeP+dp5URExsZEh8hCfPst8OwZ4OUF1Kxp7miIiGwDEx0iC7B+PdC3r/r+gwfAhg3mjYeIyFYw0SEys7t3gcGDASHU20IAQ4aoy4mI6PUw0SEys2vXgKws3TKVCrh+3TzxEBHZEiY6RGZWuTJgl+2TKJerr1hORERj3wvtAAAgAElEQVSvh4kOkZmVLQv07v1iWy4HVq9WlxMR0ethokNkAYoWVd/26gXcvg0MHGjWcIiIbAYTHSILcOGC+rZDB/bkEBEZExMdIjPLygL+/lt9n+vnEBEZFxMdIjO7cwd4+hRwcACqVDF3NEREtoWJDpGZaYat3ngDUCjMGwsRka1hokNkZppEh8NWRETGx0SHyMzOn1ff1qpl3jiIiGyR5ETnzJkz+FszcxLAd999h06dOmHq1KlIT083anBEhQF7dIiITEdyojNkyBBcvXoVAHDz5k307NkTzs7O2LlzJyZOnGj0AIlsWUrKi0s9MNEhIjI+yYnO1atXERAQAADYuXMn3nnnHWzduhWbNm3Ct99+a/QAiWzZv/+qL+Lp5QV4epo7GiIi2yM50RFCIOu/KxD+8ssvaNeuHQDAx8cHCQkJxo2OyMZx2IqIyLQkJzr16tXD3Llz8fXXX+Po0aNo3749AODWrVvw8vIyeoBEtoyJDhGRaUlOdJYtW4YzZ85g5MiRmDZtGir9d4nlXbt2oVGjRkYPkMiWMdEhIjIte6lPqFmzps5ZVxoLFy6EXC43SlBEhYEQL04tZ6JDRGQa+VpHJzk5GevWrcOUKVOQlJQEALh48SIePHhg1OCIbNndu0ByMmBvD1SrZu5oiIhsk+QenQsXLqBly5YoXrw4bt++jQ8//BDu7u7Ys2cP7ty5g6+++soUcRLZHM2wlb8/4Oho3liIiGyV5B6dcePG4YMPPsC1a9egVCq15UFBQfj111+NGhyRLeP8HCIi05Oc6Jw6dQpDhgzRKy9Tpgzi4uKMEhRRYcBEh4jI9CQnOkqlEk+ePNErv3LlCkqWLGmUoIgKAyY6RESmJznRCQ4OxuzZs5GRkQEAkMlkiI6OxuTJk9G1a1ejB0hki54/By5fVt/38DBvLEREtkxyorNo0SI8fPgQnp6eePbsGZo2bYpKlSqhWLFimDdvniliJLI58+cD/y0wjrffBtavN288RES2SvJZVy4uLvjtt99w+PBhnDlzBllZWahTpw5atWpliviIbM7du8DcuS+2s7KAIUOANm2AsmXNFxcRkS2SnOjcvn0bfn5+aNGiBVq0aGGKmIhs2rVr6sUCX6ZSqa9izkSHiMi4JA9dVahQAf/73/+wevVq7WKBRGS4ypX1y+Ry4L+rqRARkRFJTnROnz6Nhg0bYu7cufD29kZwcDB27tyJtLQ0U8RHZHPKlgUqVnyxLZcDq1ezN4eIyBQkJzp16tTBwoULER0djQMHDsDT0xNDhgyBp6cnBgwYYIoYiWzOs2fq25Urgdu3gYEDzRoOEZHNyte1rgD1aeXNmzfH2rVr8csvv6BChQr48ssvjRkbkU1KSwNiY9X3u3ZlTw4RkSnlO9GJiYlBREQEAgIC8NZbb6FIkSL4/PPPJe9nxYoVKF++PJRKJerWrYtjx47lWX/ZsmWoWrUqnJyc4OPjg7Fjx+L58+f5fRlEBe7OHfWtszPX0CEiMjXJZ12tWbMGW7Zswe+//46qVauiT58+2Lt3L/z8/CQffPv27RgzZgxWrFiBxo0bY/Xq1QgKCsLFixdRrlw5vfpbtmzB5MmTsWHDBjRq1AhXr15F//79AQBLly6VfHwic7h9W31bvjwgk5k1FCIimyc50ZkzZw569uyJ5cuXIyAg4LUOvmTJEgwcOBCDBg0CoO6t+fnnn7Fy5UqEh4fr1T9x4gQaN26M3r17AwD8/PzQq1cv/Pnnn68VB1FB0iQ6+fjfgIiIJJKc6ERHR0NmhH9D09PT8ddff2Hy5Mk65YGBgTh+/HiOz/nf//6HzZs3488//0T9+vVx8+ZN7N+/H/369cv1OGlpaTpnhGmu05WRkaG9jIWxaPZn7P2SLmtv5+vX7QDIUa6cChkZWeYOJ1fW3s7Wgu1ccNjWBcNU7Zzf/UlOdGQyGZKTk7F+/XpcunQJMpkM1apVw8CBA+Hq6mrwfhISEqBSqeDl5aVT7uXlletV0Hv27ImHDx/if//7H4QQyMzMxLBhw/SSpZeFh4cjLCxMr/zgwYNwdnY2OF4pIiMjTbJf0mWt7XzyZF0AZfHs2SXs33/D3OG8krW2s7VhOxcctnXBMHY7p6am5ut5khOd06dPo02bNnByckL9+vUhhMDSpUsxf/58HDx4EHXq1JG0v+y9Q0KIXHuMjhw5gnnz5mHFihVo0KABrl+/jtGjR6N06dKYMWNGjs+ZMmUKxo0bp91+8uQJfHx8EBgYCBcXF0mxvkpGRgYiIyPRunVrKBQKo+6bXrD2dg4PlwMA2rb1R7t2Vc0cTe6svZ2tBdu54LCtC4ap2lkzIiOV5ERn7Nix6NixI9auXQt7e/XTMzMzMWjQIIwZMwa//vqrQfvx8PCAXC7X67158OCBXi+PxowZM9C3b1/tnJ4aNWogJSUFgwcPxrRp02Bnp38SmaOjIxwdHfXKFQqFyd7optw3vWCt7aw566pSJXtYQ/jW2s7Whu1ccNjWBcPY7ZzffeVrZeRJkyZpkxwAsLe3x8SJE3H69GmD9+Pg4IC6devqdW1FRkaiUaNGOT4nNTVVL5mRy+UQQkBkv3gQkQV69gzQ5PacjExEZHr5unp5dHQ0/P39dcpjYmJQrFgxSfsaN24c+vbti3r16qFhw4ZYs2YNoqOjMXToUABASEgIypQpoz0Dq0OHDliyZAlq166tHbqaMWMGOnbsCLlcLvWlEBU4TW9OsWKAu7t5YyEiKgwkJzo9evTAwIEDsWjRIjRq1AgymQy//fYbPv74Y/Tq1UvyvhITEzF79mzcv38f1atXx/79++Hr6wtAfYbXyz0406dPh0wmw/Tp03Hv3j2ULFkSHTp0wLx586S+DCKzePnUcq6hQ0RkepITnUWLFkEmkyEkJASZmZkA1ONmw4YNw4IFCyQHMHz4cAwfPjzHx44cOaIbrL09QkNDERoaKvk4RJaAa+gQERUsyYmOg4MDli9fjvDwcNy4cQNCCFSqVMlkp2oT2ZJbt9S35cubNw4iosJCcqKj4ezsjBo1ahgzFiKbxx4dIqKCJTnRef78OT777DNERUXhwYMHyMrSXdn1zJkzRguOyNYw0SEiKliSE50BAwYgMjIS3bp1Q/369Y1yOQiiwkIzdMVEh4ioYEhOdPbt24f9+/ejcePGpoiHyGalpAAPH6rvc44OEVHBkLxgYJkyZSSvl0NEL9bQcXUFihc3byxERIWF5ERn8eLFmDRpEu5ovrWJyCCcn0NEVPAkD13Vq1cPz58/R4UKFeDs7Kx37YmkpCSjBUdkS3hqORFRwZOc6PTq1Qv37t3D/Pnz4eXlxcnIRAZijw4RUcGTnOgcP34cJ06cQK1atUwRD5HNYqJDRFTwJM/R8ff3x7Nnz0wRC5FNY6JDRFTwJCc6CxYswPjx43HkyBEkJibiyZMnOj9ElDPO0SEiKniSh67atm0LAGjZsqVOuRACMpkMKpXKOJER2ZCnT4HERPV9X1/zxkJEVJhITnSioqJMEQeRTdOsxuDmpl5Hh4iICobkRKdp06amiIPIpnHYiojIPCTP0SEi6TgRmYjIPJjoEBUAJjpERObBRIeoAFy8qL7l/BwiooLFRIfIxNavB376SX1/1iz1NhERFQwmOkQmdPcuMHjwi20hgCFD1OVERGR6khOd+Ph49O3bF97e3rC3t4dcLtf5IaIXrl0DsrJ0y1Qq4Pp188RDRFTYSD69vH///oiOjsaMGTNQunRpXtSTKA+VKwN2drrJjlwOVKpkvpiIiAoTyYnOb7/9hmPHjiEgIMAU8RDZlLJlgYkTgQUL1NtyObB6tbqciIhMT3Ki4+PjAyGEKWIhskl166pvq1cHDhxgkkNEVJAkz9FZtmwZJk+ejNuahUGIKE+xsepbf38mOUREBU1yj06PHj2QmpqKihUrwtnZGQqFQufxpKQkowVHZAvu31ffenubNw4iosJIcqKzbNkyU8RBZLM0iU7p0uaNg4ioMJKc6PTr188UcRDZLM3QFRMdIqKCxwUDiUyMQ1dERObDRIfIxNijQ0RkPkx0iEwoLQ3QzM9njw4RUcFjokNkQpphK0dHwM3NvLEQERVGTHSITEiT6JQqBfBqKUREBU9SoiOEwLhx4xCrmXQA4ObNm/j444/x4MEDjBo1yugBElkzTkQmIjIvSYmOTCbDqVOnsHfvXm3Zt99+i3PnzuHRo0f44osvjB4gkTXjRGQiIvOSPHQVFBSEAwcOaLcPHDiAoKAgowZFZCvYo0NEZF6SE522bdsiKioK6enp+L//+z8cP36ciQ5RLtijQ0RkXpJXRq5Tpw6KFSuGqKgoPHv2DKVKlUK1atVw5coVU8RHZNV4+QciIvOSnOgA6l6dAwcO4Pnz5+zNIcoDh66IiMwrX6eXBwUFYd++fZyfQ/QKHLoiIjKvfCU6gYGBuH37NuLj49GyZUtjx0RkE9LTgYQE9X326BARmUe+hq6KFy+O+vXrw8nJCUWKFNGWCyGMFhiRtYuLU98qFECJEuaNhYiosMpXogMAP/zwA2QvLfVasWJF3Lp1yyhBEdkCropMRGR++U503N3ddXdkbw9fX9/XDojIVnAiMhGR+fFaV0QmwonIRETmx0SHyETYo0NEZH5MdIhMhD06RETmx0SHyETYo0NEZH5MdIhMhJd/ICIyP8lnXaWkpGDBggU4dOgQHjx4gKysLJ3Hb968abTgiKwZh66IiMxPcqIzaNAgHD16FH379kXp0qV11tIhIrWMDODhQ/V9Dl0REZmP5ETnwIED2LdvHxo3bmyKeIhsQnw8IARgbw94eJg7GiKiwkvyHB03Nze9xQKJSNfLqyLbcSYcEZHZSP4KnjNnDmbOnInU1FRTxENkEzg/h4jIMkgeulq8eDFu3LgBLy8v+Pn5QaFQ6Dx+5swZowVHZK14xhURkWWQnOh06tTJFHEQ2RSuoUNEZBkkJzqhoaFGDWDFihVYuHAh7t+/jzfffBPLli1DkyZNcq2fnJyMadOmYffu3Xj06BHKly+PxYsXo127dkaNi+h1cOiKiMgy5Pvq5cawfft2jBkzBitWrEDjxo2xevVqBAUF4eLFiyhXrpxe/fT0dLRu3Rqenp7YtWsXypYti5iYGBQrVswM0RPljj06RESWwaBEx93dHVevXoWHhwfc3NzyXDsnKSnJ4IMvWbIEAwcOxKBBgwAAy5Ytw88//4yVK1ciPDxcr/6GDRuQlJSE48ePa+cG+fr6Gnw8ooLCHh0iIstgUKKzdOlSba/JsmXLjHLg9PR0/PXXX5g8ebJOeWBgII4fP57jc77//ns0bNgQI0aMwHfffYeSJUuid+/emDRpEuRyeY7PSUtLQ1pamnb7yZMnAICMjAxkZGQY5bVoaPZn7P2SLmto5/v37QHIULJkBiw4zDxZQzvbArZzwWFbFwxTtXN+92dQotOvX78c77+OhIQEqFQqeHl56ZR7eXkhLi4ux+fcvHkThw8fRp8+fbB//35cu3YNI0aMQGZmJmbOnJnjc8LDwxEWFqZXfvDgQTg7O7/+C8lBZGSkSfZLuiy1nVUqGR486AAAuHjxEO7fT3vFMyybpbazrWE7Fxy2dcEwdjvnd1kbs87RAaA3DCaEyHVoLCsrC56enlizZg3kcjnq1q2L2NhYLFy4MNdEZ8qUKRg3bpx2+8mTJ/Dx8UFgYCBcXFyM90KgzjYjIyPRunVrvdPuyXgsvZ1jY4GsLBns7AR69myJXDobLZ6lt7OtYDsXHLZ1wTBVO2tGZKQyW6Lj4eEBuVyu13vz4MEDvV4ejdKlS0OhUOgMU1WrVg1xcXFIT0+Hg4OD3nMcHR3h6OioV65QKEz2RjflvukFS23nhAT1rZubDAkJCpQta954XpeltrOtYTsXHLZ1wTB2O+d3X2ZbnN7BwQF169bV69qKjIxEo0aNcnxO48aNcf36dZ0rpl+9ehWlS5fOMckhModNm9S3iYmAry+wfr1ZwyEiKtTMehWecePGYd26ddiwYQMuXbqEsWPHIjo6GkOHDgUAhISEYMqUKdr6w4YNQ2JiIkaPHo2rV69i3759mD9/PkaMGGGul0Ck4+5d4IsvXmxnZQFDhqjLiYio4Jl1jk6PHj2QmJiI2bNn4/79+6hevTr279+vPWU8Ojoadi9dEdHHxwcHDx7E2LFjUbNmTZQpUwajR4/GpEmTzPUSiHRcu6a+avnLVCrg+nVY/RAWEZE1kpzodO7cOcfJwjKZDEqlEpUqVULv3r1RtWpVg/Y3fPhwDB8+PMfHjhw5olfWsGFDnDx5UlLMRAWlcmVAJtNNduRyoFIl88VERFSYSR66cnV1xeHDh3HmzBltwnP27FkcPnwYmZmZ2L59O2rVqoXff//d6MESWbqyZYHatV9sy+XA6tXszSEiMhfJPTqlSpVC79698fnnn2uHlbKysjB69GgUK1YM33zzDYYOHYpJkybht99+M3rARJauSBH17cyZwIcfMskhIjInyT0669evx5gxY3TmztjZ2eGjjz7CmjVrIJPJMHLkSPzzzz9GDZTIWsTHq29btGCSQ0RkbpITnczMTFy+fFmv/PLly1CpVAAApVKZ5/WwiGyZJtHJZTkoIiIqQJKHrvr27YuBAwdi6tSpeOuttyCTyfDnn39i/vz5CAkJAQAcPXoUb775ptGDJbJ0z58Djx+r73t6mjcWIiLKR6KzdOlSeHl5ISIiAvH//evq5eWFsWPHak/zDgwMRNu2bY0bKZEVePhQfatQAG5u5o2FiIjykejI5XJMmzYN06ZN0153Ivs1o8qVK2ec6IisjGbYytNTfZo5ERGZ12stGGjsi2ISWbuXEx0iIjI/yZOR4+Pj0bdvX3h7e8Pe3h5yuVznh6gw40RkIiLLIrlHp3///oiOjsaMGTNQunRpnl1F9JIHD9S3THSIiCyD5ETnt99+w7FjxxAQEGCKeIisGnt0iIgsi+ShKx8fH4jsVy0kIgCco0NEZGkkJzrLli3D5MmTcfv2bROEQ2TdOHRFRGRZJA9d9ejRA6mpqahYsSKcnZ2hUCh0Hk9KSjJacETWhkNXRESWRXKis2zZMlPEQWQTOHRFRGRZJCc6/fr1M0UcRFYvMxNISFDfZ48OEZFlMCjRefLkiXZxQM1qyLnhIoJUWCUmAkKoV0T28DB3NEREBBiY6Li5ueH+/fvw9PRE8eLFc1w7RwgBmUymvYI5UWGjGbby8ADsX2vNcSIiMhaDvo4PHz4Md3d3AEBUVJRJAyKyVpyfQ0RkeQxKdJo2bZrjfSJ6gWdcERFZnnx1sCcnJ+PPP//EgwcPkJWVpfNYSEiIUQIjsjZcQ4eIyPJITnR++OEH9OnTBykpKShWrJjOfB2ZTMZEhwotDl0REVkeySsjjx8/HgMGDMDTp0+RnJyMR48eaX+4WCAVZhy6IiKyPJITnXv37mHUqFFwdnY2RTxEVotDV0RElkdyotOmTRucPn3aFLEQWTX26BARWR6D5uh8//332vvt27fHxx9/jIsXL6JGjRp617rq2LGjcSMkshKco0NEZHkMSnQ6deqkVzZ79my9Mi4YSIWVEBy6IiKyRAYlOtlPISciXcnJQEaG+j57dIiILIfkOTo5SU5ONsZuiKyWZtjKxQVQKs0bCxERvSA50fnkk0+wfft27fZ7770Hd3d3lClTBufPnzdqcETWghORiYgsk+REZ/Xq1fDx8QEAREZG4pdffsFPP/2EoKAgfPzxx0YPkMgaMNEhIrJMkldGvn//vjbR+fHHH9G9e3cEBgbCz88PDRo0MHqARNaAE5GJiCyT5B4dNzc3xMTEAAB++ukntGrVCgAghOAZV1Ro8dRyIiLLJLlHp0uXLujduzcqV66MxMREBAUFAQDOnTuHSpUqGT1AImvAoSsiIsskOdFZunQp/Pz8EBMTg4iICBQtWhSAekhr+PDhRg+QyBpw6IqIyDJJTnQUCgUmTJigVz5mzBijBERkjTh0RURkmQy+BERQUBAUCoXO5SBywktAUGHEoSsiIstk8CUg4uLi4OnpmePlIDR4CQgqrJjoEBFZJsmXgODlIIh0paQAqanq+0x0iIgsi1EuAUFUmGl6c5RK4L+5+UREZCEkT0YGgEOHDuHQoUN48OCBXg/Phg0bjBIYkbV4edhKJjNvLEREpEtyohMWFobZs2ejXr16KF26NGT8ZqdCjvNziIgsl+REZ9WqVdi0aRP69u1riniIrI5mDR2eWk5EZHkkz9FJT09Ho0aNTBELkVVijw4RkeWSnOgMGjQIW7duNUUsRFaJiQ4RkeWSPHT1/PlzrFmzBr/88gtq1qwJhUKh8/iSJUuMFhyRNeDlH4iILJfkROfChQsICAgAAPzzzz86j3FiMhVG0dHqW7ncvHEQEZE+yYlOVFSUKeIgskrr1wN//KG+P2qUei2dgQPNGxMREb3ABQOJ8unuXWDw4BfbWVnAkCHqciIisgwG9eh06dIFmzZtgouLC7p06ZJn3d27dxslMCJLd+2aOrl5mUoFXL8OlC1rnpiIiEiXQYmOq6urdv6Ni4sL5+IQAahcGbCz00125HKgUiXzxURERLoMSnQ6d+4MpVIJANi0aZMp4yGyGmXLAlOnAnPnqrflcmD1avbmEBFZEoPm6HTu3BnJyckAALlcjgea82mJCrkGDdS3lSsDt29zIjIRkaUxKNEpWbIkTp48CQAQQnDoiug/msUCK1ViTw4RkSUyaOhq6NChCA4Ohkwmg0wmQ6lSpXKtq1KpjBYckaWLi1Pf5vGRICIiMzIo0Zk1axZ69uyJ69evo2PHjti4cSOKFy9u6tiILB4v/0BEZNkMXjDQ398f/v7+CA0NxXvvvQdnZ2ejBbFixQosXLgQ9+/fx5tvvolly5ahSZMmr3zeN998g169eiE4OBh79+41WjxEhmKiQ0Rk2SQvGBgaGmrUJGf79u0YM2YMpk2bhrNnz6JJkyYICgpCtGZd/VzcuXMHEyZMMCghIjIVDl0REVk2s6+MvGTJEgwcOBCDBg1CtWrVsGzZMvj4+GDlypW5PkelUqFPnz4ICwtDhQoVCjBaIl3s0SEismxmTXTS09Px119/ITAwUKc8MDAQx48fz/V5s2fPRsmSJTGQ5/KSmWkSHfboEBFZJskX9TSmhIQEqFQqeGX7d9jLywtxmjGBbH7//XesX78e586dM+gYaWlpSEtL024/efIEAJCRkYGMjIx8Rp4zzf6MvV/SZSnt/Pw5kJysAAC4u2fA1n7tltLOto7tXHDY1gXDVO2c3/0ZlOi4u7vj6tWr8PDwwIABA7B8+XIUK1YsXwfMSfZ1eXJbq+fp06d4//33sXbtWnh4eBi07/DwcISFhemVHzx40KhzjV4WGRlpkv2SLnO388OHTgACYW+fhRMn9sNWl5cydzsXFmzngsO2LhjGbufU1NR8PU8mhBCvqlS0aFFcuHABFSpUgFwuR1xcHEqWLJmvA74sPT0dzs7O2LlzJzp37qwtHz16NM6dO4ejR4/q1D937hxq164NuVyuLcv670JDdnZ2uHLlCipWrKjznJx6dHx8fJCQkAAXF5fXfg0vy8jIQGRkJFq3bg2FQmHUfdMLltLOp07J0LixPcqWFbh5M9NscZiKpbSzrWM7Fxy2dcEwVTs/efIEHh4eePz4saS/3wb16DRs2BCdOnVC3bp1IYTAqFGj4OTklGPdDRs2GHxwBwcH1K1bF5GRkTqJTmRkJIKDg/Xq+/v74++//9Ypmz59Op4+fYrly5fDx8dH7zmOjo5wdHTUK1coFCZ7o5ty3/SCuds5MVF96+Uls+nft7nbubBgOxcctnXBMHY753dfBiU6mzdvxtKlS3Hjxg3IZDI8fvwYz58/z9cBsxs3bhz69u2LevXqoWHDhlizZg2io6MxdOhQAEBISAjKlCmD8PBwKJVKVK9eXef5moULs5cTmRonIhMRWT6DEh0vLy8sWLAAAFC+fHl8/fXXKFGihFEC6NGjBxITEzF79mzcv38f1atXx/79++Hr6wsAiI6Ohp2d2c+CJ9KjmS/PU8uJiCyX5LOubt26ZfQghg8fjuHDh+f42JEjR/J87qZNm4weD5EhuIYOEZHly1dXydGjR9GhQwdUqlQJlStXRseOHXHs2DFjx0Zk0bgqMhGR5ZOc6GzevBmtWrWCs7MzRo0ahZEjR8LJyQktW7bE1q1bTREjkUVijw4RkeWTPHQ1b948REREYOzYsdqy0aNHY8mSJZgzZw569+5t1ACJLBUTHSIiyye5R+fmzZvo0KGDXnnHjh1NMn+HyFJx6IqIyPJJTnR8fHxw6NAhvfJDhw7luI4NkS16/hz472oi7NEhIrJgkoeuxo8fj1GjRuHcuXNo1KgRZDIZfvvtN2zatAnLly83RYxEFkczbOXgAPy3lBMREVkgyYnOsGHDUKpUKSxevBg7duwAAFSrVg3bt2/PcTVjIlv08ho6tnqNKyIiW5Cvq5d37txZ55INRIUNJyITEVkHLjlMlA+ciExEZB2Y6BDlA3t0iIisAxMdonzgBT2JiKwDEx2ifOAFPYmIrIPkROdVF9kkKgw4dEVEZB0kJzpt27ZFxYoVMXfuXMTExJgiJiKLx6ErIiLrIDnRiY2NxejRo7F7926UL18ebdq0wY4dO5Cenm6K+IgsEoeuiIisg+REx93dHaNGjcKZM2dw+vRpVK1aFSNGjEDp0qUxatQonD9/3hRxElmM1FTg6VP1ffboEBFZtteajBwQEIDJkydjxIgRSElJwYYNG1C3bl00adIE//77r7FiJLIommErR0fAxcW8sRARUd7ylehkZGRg165daNeuHXx9ffHzzz/j888/R3x8PG7dugUfHx+89957xo6VyCK8PBGZl38gIrJski8B8dFHH2Hbtm0AgPfffx8RERGoXr269vEiRYpgwYIF8PPzM1qQRJaEE5GJiKyH5A1wmusAACAASURBVETn4sWL+Oyzz9C1a1c4ODjkWMfb2xtRUVGvHRyRJeJEZCIi6yF56Co0NBTvvfeeXpKTmZmJX3/9FQBgb2+Ppk2bGidCIgvDNXSIiKyH5ESnefPmSEpK0it//PgxmjdvbpSgiCwZh66IiKyH5ERHCAFZDjMwExMTUaRIEaMERWTJOHRFRGQ9DJ6j06VLFwCATCZD//794ejoqH1MpVLhwoULaNSokfEjJLIw7NEhIrIeBic6rq6uANQ9OsWKFYOTk5P2MQcHB7z99tv48MMPjR8hkYVhjw4RkfUwONHZuHEjAMDPzw8TJkzgMBUVWpyMTERkPSSfXh4aGmqKOIisQkoK8H//p77PoSsiIstnUKJTp04dHDp0CG5ubqhdu3aOk5E1zpw5Y7TgiCyNpjdHqQSKFTNvLERE9GoGJTrBwcHaycedOnUyaUBElkyT6Li6AvfuAWXLmjceIiLKm0GJzsvDVRy6osJs82b1bXw84OsLrFkDDBxo3piIiCh3r3X1cqLC5O5dYOXKF9tZWcCQIepyIiKyTAb16Li5ueU5L+dlOa2aTGQLrl0DhNAtU6mA69c5hEVEZKkMSnSWLVtm6jiILF7lyoBMppvsyOVApUrmi4mIiPJmUKLTr18/U8dBZPHKlgWqVQMuXlRvy+XA6tXszSEismQGJTpPnjyBi4uL9n5eNPWIbNmiRUCPHkxyiIgsncFzdO7fvw9PT08UL148x/k6mot9qlQqowdJZCk0E4/bt2eSQ0RkDQxKdA4fPgx3d3cAQFRUlEkDIrJUT56ofwCgTBnzxkJERIYxKNFp2rRpjveJCpN799S3rq5cFZmIyFpIvtYVADx69Ajr16/HpUuXIJPJUK1aNXzwwQfaXh8iW6QZtuKQFRGR9ZC8YODRo0fh5+eHTz/9FI8ePUJSUhI+/fRTlC9fHkePHjVFjEQWgYkOEZH1kdyjM2LECPTo0QMrV66EXC4HAKhUKgwfPhwjRozAP//8Y/QgiSxBTIz61sfHvHEQEZHhJPfo3LhxA+PHj9cmOQAgl8sxbtw43Lhxw6jBEVkS9ugQEVkfyYlOnTp1cOnSJb3yS5cuISAgwChBEVkiJjpERNbHoKGrCxcuaO+PGjUKo0ePxvXr1/H2228DAE6ePIkvvvgCCxYsME2URBaAiQ4RkfUxKNEJCAiATCaDeOkiPxMnTtSr17t3b/To0cN40RFZECY6RETWx6BE59atW6aOg8iipaQAjx6p7zPRISKyHgYlOr6+vqaOg8iiaRYLLFoU4OXciIisR74WDASAixcvIjo6Gunp6TrlHTt2fO2giCzNy8NWOVzqjYiILJTkROfmzZvo3Lkz/v77b515O5oLffKinmSLuIYOEZF1knx6+ejRo1G+fHnEx8fD2dkZ//77L3799VfUq1cPR44cMUGIRObHichERNZJco/OiRMncPjwYZQsWRJ2dnaws7PD//73P4SHh2PUqFE4e/asKeIkMismOkRE1klyj45KpULRokUBAB4eHoiNjQWgnrB85coV40ZHZCGY6BARWSfJPTrVq1fHhQsXUKFCBTRo0AARERFwcHDAmjVrUKFCBVPESGR2THSIiKyT5ERn+vTpSElJAQDMnTsX7777Lpo0aYISJUpg+/btRg+QyBIw0SEisk6SE502bdpo71eoUAEXL15EUlIS3NzctGdeEdmS58+BhAT1fSY6RETWJd/r6ABATEwMZDIZyvLbn2yYZrFAJyfAzc28sRARkTSSJyNnZmZixowZcHV1hZ+fH3x9feHq6orp06cjIyMjX0GsWLEC5cuXh1KpRN26dXHs2LFc665duxZNmjSBm5sb3Nzc0KpVK/z555/5Oi6RIV5eQ4edlkRE1kVyojNy5EisWbMGEREROHv2LM6ePYuIiAisX78eH330keQAtm/fjjFjxmDatGk4e/YsmjRpgqCgIERHR+dY/8iRI+jVqxeioqJw4sQJlCtXDoGBgbin+bebyMg4P4eIyHpJHrratm0bvvnmGwQFBWnLatasiXLlyqFnz55YtWqVpP0tWbIEAwcOxKBBgwAAy5Ytw88//4yVK1ciPDxcr/6WLVt0tteuXYtdu3bh0KFDCAkJkfpyiF6JiQ4RkfWS3KOjVCrh5+enV+7n5wcHBwdJ+0pPT8dff/2FwMBAnfLAwEAcP37coH2kpqYiIyMD7u7uko5NZCgmOkRE1ktyj86IESMwZ84cbNy4EY6OjgCAtLQ0zJs3DyNHjpS0r4SEBKhUKnh5eemUe3l5IS4uzqB9/H979x4WVZ3/Afw9DNcBRAUFBAUML7Coa5CKumk30CypNNEQ7FdPwpKI0q6X1J/mWljtptWTbhpR+zPTbcVuy6q4K5BB2gNi3hBwUcRgSVcBRbnN5/fHxMgAGoNzkeH9ep55Zs73fM85n/Nh4Hw412XLlsHLywsPP/xwh+Pr6+tRX1+vHa6pqQEANDY2dvmcoltpmZ+h50u6TJ3nsjIlACt4ejajsVFtkmXeDfh9Ng3m2XSYa9MwVp67Or9OFTpPPfWUzvD+/fvh7e2NUaNGAQCOHj2KhoYGPPTQQ10Kou1l6SLSqUvV33jjDXz66afIzMyEvb19h32Sk5PxyiuvtGvft28fVCpVl+L9JRkZGUaZL+kyVZ5PnpwEoDcqKr5Hevp/TLLMuwm/z6bBPJsOc20ahs5zXV1dl6brVKHj4uKiMzxjxgyd4YFdfKSzm5sblEplu703VVVV7fbytPXHP/4Rr732Gvbv34+RI0fest/y5cuRlJSkHa6pqcHAgQMRFhaGXr16dSnuW2lsbERGRgYeeeQR2NjYGHTedJOp8xwbq/k1iYgIxujRRl/cXYPfZ9Ngnk2HuTYNY+W55YiMvjpV6KSmpnZp5r/E1tYWwcHByMjIwJNPPqltz8jIQERExC2ne/PNN7Fu3Trs3bsXISEht12GnZ2d9hBbazY2Nkb7ohtz3nSTKfJcXw/85+edOIMH26An/lj5fTYN5tl0mGvTMHSeuzqvLt8w8KeffsLp06ehUCgwdOhQ9OvXr0vzSUpKQnR0NEJCQhAaGootW7agrKwMcXFxAICYmBh4eXlpr8B64403sGrVKmzfvh2+vr7avUFOTk7ah40SGcrPz6yFnR3g6mreWIiISH96FzrXrl1DQkIC/vKXv0Ct1pyYqVQqERMTg3fffVfv814iIyNx6dIlrF27FhUVFQgKCkJ6ejp8fHwAAGVlZbCyunlx2KZNm9DQ0ICZM2fqzGf16tVYs2aNvqtDdFutr7jizQKJiLofvQudpKQkZGVl4auvvsKECRMAAAcPHsTChQvx0ksvYfPmzXoHER8fj/j4+A7HZWZm6gyfPXtW7/kTdRUvLSci6t70LnR27dqFv/3tb5g8ebK27dFHH4WDgwNmzZrVpUKH6G7FQoeIqHvT+4aBdXV1HV4R1b9//y5f+kV0t2KhQ0TUveld6ISGhmL16tW4ceOGtu369et45ZVXEBoaatDgiMytqEjz7uho3jiIiKhr9D50tXHjRkydOlV7w0CFQoGCggLY29tj7969xoiRyCxSUoA9ezSfV68GBgwAnn/evDEREZF+9C50RowYgeLiYmzbtg2FhYUQEcyePRtRUVFwcHAwRoxEJldeDsyff3NYBIiNBcLDeRiLiKg70avQaWxsxPz587Fq1Sq88MILxoqJyOyKiwF1m8daNTcDJSUsdIiIuhO9ztGxsbHB7t27jRUL0V1jyBDAqs1vh1IJ+PubJx4iIuoavU9GfvLJJ/H5558bIxaiu4a3N9B6p6VSCbz/PvfmEBF1N3qfo+Pv748//OEPyMnJQXBwMBzbXI6ycOFCgwVHZE4DBmjep0wBtm5lkUNE1B3pXeh88MEH6N27N/Ly8pCXl6czTqFQsNAhi3HqlOb9gQdY5BARdVd6FzqlpaXGiIPorlNYqHkPCDBvHERE1HV6n6PTmohARAwVC9FdQ60GTp/WfB4+3LyxEBFR13Wp0ElJSUFQUBDs7e1hb2+PoKAgfPDBB4aOjchsysqA69cBW1vAz8/c0RARUVfpfehq1apV2LBhAxISErSPfMjNzcXixYtx9uxZrFu3zuBBEplay2GrIUMAa71/S4iI6G6h95/wzZs3Y+vWrZgzZ462bfr06Rg5ciQSEhJY6JBFaDkRmYetiIi6N70PXTU3NyMkJKRde3BwMJqamgwSFJG58URkIiLLoHehM3fuXGzevLld+5YtWxAVFWWQoIjMraXQ4R4dIqLurUtnH6SkpGDfvn0YN24cAOC7777D+fPnERMTg6SkJG2/t956yzBREplYy6Er7tEhIure9C50jh8/jnvvvRcAcObMGQBAv3790K9fPxw/flzbT6FQGChEItO6dAn46SfN56FDzRsLERHdGb0LnQMHDhgjDqK7Rsthq4EDAScn88ZCRER35o5uGEhkiXgiMhGR5WChQ9QGT0QmIrIcLHSI2uCJyEREloOFDlEb3KNDRGQ5WOgQtXLjBlBaqvnMQoeIqPtjoUPUSnGx5snlvXsD7u7mjoaIiO4UCx2iVloftuKtoIiIuj8WOkSt8ERkIiLLwkKHqBWeiExEZFlY6BC1wkKHiMiysNAh+plazbsiExFZGhY6RD87fx64fh2wtgZsbMwdDRERGQILHaKfbdyoeW9qAu65B0hJMW88RER051joEAEoLwfefvvmsFoNxMZq2omIqPtioUMEzY0CRXTbmpuBkhLzxENERIbBQocIgK9v+zalEvD3N3koRERkQCx0iKA5Ebk1pRJ4/33A29s88RARkWFYmzsAorvBvn2a9yeeABITNXtyWOQQEXV/LHSIAOzdq3l/4glg8mSzhkJERAbEQ1fU4128COTlaT6HhZk3FiIiMiwWOtTjZWRorrgaORLw9DR3NEREZEgsdKjHazk/JzzcvHEQEZHhsdChHk3kZqHDw1ZERJaHhQ71aMePAz/+CDg4ABMnmjsaIiIyNBY61KO1XG01eTJgb2/WUIiIyAhY6FCPxsNWRESWjYUO9Vh1dUB2tuYzT0QmIrJMLHSox9q1C6iv11xSPny4uaMhIiJjYKFDPVJKCjBvnuZzZSXw4YfmjYeIiIyDhQ71OOXlwPz5mkvLAc17bKymnYiILAsLHepxiosBtVq3rbkZKCkxTzxERGQ8LHSox+noMQ9KpeaJ5UREZFlY6FCPs2WL7rBSCbz/PuDtbZ54iIjIeKzNHQCRKR09Crzzjubz//2fprjx92eRQ0RkqVjoUI+hVgPx8ZrzcZ5+Gpg719wRERGRsfHQFfUYf/oTkJMDqFTAhg3mjoaIiEyBhQ71CBs2AEuWaD5fvw7s2WPeeIiIyDTuikJn06ZN8PPzg729PYKDg/HNN9/ctv+uXbsQGBgIOzs7BAYGYvfu3SaKlLqL8nLgwAHg7Flg3TogKenmON43h4io5zB7obNz504sWrQIK1aswJEjR/Cb3/wGU6dORVlZWYf9c3NzERkZiejoaBw9ehTR0dGYNWsWDh06ZOLI2ysvB44dc9NuQFs2tq03qG3b2KdrfVrnuW2/lBTAxwd48EHAzw9YtQrt8L45REQ9hJjZmDFjJC4uTqdt+PDhsmzZsg77z5o1S6ZMmaLTFh4eLrNnz+7U8qqrqwWAVFdXdy3gW9i8WcTKSi2A5n3GDBErK/l5WOT11zWv1m3so1+f5GTNq3We//d/RVasuNnvVi+FQndYqRQ5f96gXwGL09DQIJ9//rk0NDSYOxSLxjybDnNtGsbKc1e33wqRlhvhm15DQwNUKhU+++wzPPnkk9r2xMREFBQUICsrq900gwYNwuLFi7F48WJt24YNG7Bx40acO3euXf/6+nrU19drh2tqajBw4EBcvHgRvXr1Msh6lJcD/v7WUKsVBpkfGV5SUjPeftsKzc0KKJWCTZua8T//Y7avfrfQ2NiIjIwMPPLII7CxsTF3OBaLeTYd5to0jJXnmpoauLm5obq6Wq/tt1kvL7948SKam5vh7u6u0+7u7o7KysoOp6msrNSrf3JyMl555ZV27fv27YNKpepi5LqOHXODWj3BIPMiw7OyUiMwcD/efx+oqHCEp+c1uLndQHq6uSPrHjIyMswdQo/APJsOc20ahs5zXV1dl6a7K+6jo1Do7gkRkXZtXe2/fPlyJLU6E7Vlj05YWJjB9uiMHAmsXi1t9ugIgJvDVlaavQfsY9g+HbUpFAIrK7Tae6NGTMyDIP3wv1/TYJ5Nh7k2DWPu0ekKsxY6bm5uUCqV7fbGVFVVtdtr08LDw0Ov/nZ2drCzs2vXbmNjY7AfgJ+f5rECsbGi3bjOnavAtm2ak141jxjQbIhjY2+2sU9X+9zMc0fTvf++AuHhmpON/f0V8Pa+K+r5bsuQvyt0a8yz6TDXpmHoPHd1XmY9RwcAxo4di+DgYGzatEnbFhgYiIiICCQnJ7frHxkZidraWqS3Ou4wdepU9O7dG59++ukvLq+mpgYuLi56H+PrjNLSRnzyySFERY2Fn58NystbNrY3HzHQto199O/TNs8dTUd3rrGxEenp6Xj00Ue5UTAi5tl0mGvTMFaeu7r9Nvu/uklJSYiOjkZISAhCQ0OxZcsWlJWVIS4uDgAQExMDLy8vbdGTmJiI+++/H6+//joiIiLwxRdfYP/+/Th48KA5VwOAZgM7YsQl7YbW27v9RrdtG/t0rU/rPN+qHxERkdkLncjISFy6dAlr165FRUUFgoKCkJ6eDh8fHwBAWVkZrKxu3u5n/Pjx2LFjB1auXIlVq1bhnnvuwc6dOzF27FhzrQIRERHdpcxe6ABAfHw84uPjOxyXmZnZrm3mzJmYOXOmkaMiIiKi7s7sd0YmIiIiMhYWOkRERGSxWOgQERGRxWKhQ0RERBaLhQ4RERFZLBY6REREZLFY6BAREZHFYqFDREREFouFDhEREVmsu+LOyKbU8gzTrj7u/XYaGxtRV1eHmpoaPjDOiJhn02CeTYN5Nh3m2jSMleeW7ba+zyLvcYVObW0tAGDgwIFmjoSIiIj0VVtbCxcXl073V4i+pVE3p1ar8eOPP8LZ2RkKhcKg866pqcHAgQNx/vx5vR4hT/phnk2DeTYN5tl0mGvTMFaeRQS1tbUYMGCAzsO+f0mP26NjZWUFb29voy6jV69e/CUyAebZNJhn02CeTYe5Ng1j5FmfPTkteDIyERERWSwWOkRERGSxlGvWrFlj7iAsiVKpxOTJk2Ft3eOOCpoU82wazLNpMM+mw1ybxt2U5x53MjIRERH1HDx0RURERBaLhQ4RERFZLBY6REREZLFY6BAREZHFYqFjIJs2bYKfnx/s7e0RHByMb775xtwhdWvJycm477774OzsjP79++OJJ57A6dOndfrU19cjISEBbm5ucHR0xPTp01FeXm6miC1DcnIyFAoFFi1apG1jng3nwoULmDt3LlxdXaFSqfDrX/8aeXl52vEigjVr1mDAgAFwcHDA5MmTceLECTNG3P00NTVh5cqV8PPzg4ODAwYPHoy1a9dCrVZr+zDP+svOzsbjjz+OAQMGQKFQ4PPPP9cZ35mcXr58GdHR0XBxcYGLiwuio6Nx5coV4wcvdMd27NghNjY2snXrVjl58qQkJiaKo6OjnDt3ztyhdVvh4eGSmpoqx48fl4KCApk2bZoMGjRIrl69qu0TFxcnXl5ekpGRIfn5+fLAAw/IqFGjpKmpyYyRd1+HDx8WX19fGTlypCQmJmrbmWfD+O9//ys+Pj7y7LPPyqFDh6S0tFT2798vJSUl2j7r168XZ2dn2bVrlxw7dkwiIyPF09NTampqzBh597Ju3TpxdXWVr7/+WkpLS+Wzzz4TJycn2bhxo7YP86y/9PR0WbFihezatUsAyO7du3XGdyanU6ZMkaCgIMnJyZGcnBwJCgqSxx57zOixs9AxgDFjxkhcXJxO2/Dhw2XZsmVmisjyVFVVCQDJysoSEZErV66IjY2N7NixQ9vnwoULYmVlJXv27DFXmN1WbW2tDBkyRDIyMmTSpEnaQod5NpylS5fKxIkTbzlerVaLh4eHrF+/Xtt248YNcXFxkT//+c+mCNEiTJs2TZ577jmdtqeeekrmzp0rIsyzIbQtdDqT05MnTwoA+e6777R9cnNzBYAUFhYaNV4eurpDDQ0NyMvLQ1hYmE57WFgYcnJyzBSV5amurgYA9O3bFwCQl5eHxsZGnbwPGDAAQUFBzHsXvPjii5g2bRoefvhhnXbm2XC+/PJLhISE4Omnn0b//v0xevRobN26VTu+tLQUlZWVOrm2s7PDpEmTmGs9TJw4Ef/85z9RVFQEADh69CgOHjyIRx99FADzbAydyWlubi5cXFwwduxYbZ9x48bBxcXF6Hk3/y0Lu7mLFy+iubkZ7u7uOu3u7u6orKw0U1SWRUSQlJSEiRMnIigoCABQWVkJW1tb9OnTR6cv866/HTt2ID8/H99//327ccyz4fz73//G5s2bkZSUhJdffhmHDx/GwoULYWdnh5iYGG0+O/pbcu7cOXOE3C0tXboU1dXVGD58OJRKJZqbm/Hqq69izpw5AMA8G0FnclpZWYn+/fu3m7Z///5G/1vCQsdAFAqFzrCItGujrlmwYAF++OEHHDx48Bf7Mu/6OX/+PBITE7Fv3z7Y29t3ejrmWX9qtRohISF47bXXAACjR4/GiRMnsHnzZsTExGj78W/Jndm5cye2bduG7du341e/+hUKCgqwaNEiDBgwAPPmzdP2Y54N75dy2lF+TZF3Hrq6Q25ublAqle0q0qqqqnbVLekvISEBX375JQ4cOABvb29tu4eHBxoaGnD58mWd/sy7fvLy8lBVVYXg4GBYW1vD2toaWVlZeOedd2BtbQ13d3fm2UA8PT0RGBio0xYQEICysjIAmu80AP4tuUO///3vsWzZMsyePRsjRoxAdHQ0Fi9ejOTkZADMszF0JqceHh74z3/+027an376yeh5Z6Fzh2xtbREcHIyMjAyd9oyMDIwfP95MUXV/IoIFCxYgLS0N//rXv+Dn56czPjg4GDY2Njp5r6iowPHjx5l3PTz00EM4duwYCgoKtK+QkBBERUVpPzPPhjFhwoR2t0goKiqCj48PAMDPzw8eHh46uW5oaEBWVhZzrYe6ujpYWelu2pRKpfbycubZ8DqT09DQUFRXV+Pw4cPaPocOHUJ1dbXx827UU517iJbLy1NSUuTkyZOyaNEicXR0lLNnz5o7tG7rt7/9rbi4uEhmZqZUVFRoX3V1ddo+cXFx4u3tLfv375f8/Hx58MEHedmzAbS+6kqEeTaUw4cPi7W1tbz66qtSXFwsn3zyiahUKtm2bZu2z/r168XFxUXS0tLk2LFjMmfOHF72rKd58+aJl5eX9vLytLQ0cXNzkyVLlmj7MM/6q62tlSNHjsiRI0cEgLz11lty5MgR7W1UOpPTKVOmyMiRIyU3N1dyc3NlxIgRvLy8O3nvvffEx8dHbG1t5d5779VeBk1dA6DDV2pqqrbP9evXZcGCBdK3b19xcHCQxx57TMrKyswXtIVoW+gwz4bz1VdfSVBQkNjZ2cnw4cNly5YtOuPVarWsXr1aPDw8xM7OTu6//345duyYmaLtnmpqaiQxMVEGDRok9vb2MnjwYFmxYoXU19dr+zDP+jtw4ECHf5PnzZsnIp3L6aVLlyQqKkqcnZ3F2dlZoqKi5PLly0aPXSEiYtx9RkRERETmwXN0iIiIyGKx0CEiIiKLxUKHiIiILBYLHSIiIrJYLHSIiIjIYrHQISIiIovFQoeIiIgsFgsdIrpjkydPxqJFi8wdhpaIYP78+ejbty8UCgUKCgrMHRIRmQmfXk5EFmfPnj346KOPkJmZicGDB8PNzc3cIRGRmbDQIaK7UnNzMxQKRbsHNHbGmTNn4OnpyYc0EhEPXRFZismTJ2PhwoVYsmQJ+vbtCw8PD6xZs0Y7/uzZs+0O41y5cgUKhQKZmZkAgMzMTCgUCuzduxejR4+Gg4MDHnzwQVRVVeEf//gHAgIC0KtXL8yZMwd1dXU6y29qasKCBQvQu3dvuLq6YuXKlWj9hJmGhgYsWbIEXl5ecHR0xNixY7XLBYCPPvoIvXv3xtdff43AwEDY2dnh3LlzHa5rVlYWxowZAzs7O3h6emLZsmVoamoCADz77LNISEhAWVkZFAoFfH19O5xH6+UNGzYMKpUKM2fOxLVr1/Dxxx/D19cXffr0QUJCApqbm7XTXb58GTExMejTpw9UKhWmTp2K4uJiAEB1dTUcHBywZ88enWWlpaXB0dERV69eBQBcuHABkZGR6NOnD1xdXREREYGzZ89q+2dmZmLMmDFwdHRE7969MWHChFvmouXnmpaWhgceeAAqlQqjRo1Cbm5uh/2JehyjP02LiExi0qRJ0qtXL1mzZo0UFRXJxx9/LAqFQvbt2yciIqWlpQJAjhw5op3m8uXLAkAOHDggIjcf3Ddu3Dg5ePCg5Ofni7+/v0yaNEnCwsIkPz9fsrOzxdXVVdavX6+zbCcnJ0lMTJTCwkLZtm2bqFQqnYdWPvPMMzJ+/HjJzs6WkpISefPNN8XOzk6KiopERCQ1NVVsbGxk/Pjx8u2330phYaFcvXq13XqWl5eLSqWS+Ph4OXXqlOzevVvc3Nxk9erVIiJy5coVWbt2rXh7e0tFRYVUVVV1mK+W5T3yyCOSn58vWVlZ4urqKmFhYTJr1iw5ceKEfPXVV2Jrays7duzQTjd9+nQJCAiQ7OxsKSgokPDwcPH395eGhgYREZkxY4bMnTtXZ1kzZsyQOXPmiIjItWvXZMiQIfLcc8/JDz/8ICdPnpRnnnlGhg0bJvX19dLY2CguLi7yu9/9TkpKSuTkyZPy0UcfaZ8S3VbLz3X48OHy9ddfy+nTp2XmzJni4+MjjY2NHU5D1JOw0CGyEJMmTZKJEyfqmfb2BAAABR9JREFUtN13332ydOlSEdGv0Nm/f7+2T3JysgCQM2fOaNtiY2MlPDxcZ9kBAQGiVqu1bUuXLpWAgAARESkpKRGFQiEXLlzQie+hhx6S5cuXi4im8AAgBQUFt13Pl19+WYYNG6azrPfee0+cnJykublZREQ2bNggPj4+t51Py/JKSkp01kulUkltba22LTw8XGJjY0VEpKioSADIt99+qx1/8eJFcXBwkL/+9a8iIpKWliZOTk5y7do1ERGprq4We3t7+fvf/y4iIikpKe3ir6+vFwcHB9m7d69cunRJAEhmZuZt42/R8nP94IMPtG0nTpwQAHLq1KlOzYPIkvHQFZEFGTlypM6wp6cnqqqq7mg+7u7uUKlUGDx4sE5b2/mOGzcOCoVCOxwaGori4mI0NzcjPz8fIoKhQ4fCyclJ+8rKysKZM2e009ja2rZbh7ZOnTqF0NBQnWVNmDABV69eRXl5uV7rqVKpcM899+isl6+vL5ycnDpc11OnTsHa2hpjx47Vjnd1dcWwYcNw6tQpAMC0adNgbW2NL7/8EgCwa9cuODs7IywsDACQl5eHkpISODs7a/PQt29f3LhxA2fOnEHfvn3x7LPPIjw8HI8//jjefvttVFRU/OK6tM6bp6cnAHTpZ09kaXgyMpEFsbGx0RlWKBRQq9UAoD2pV1qdN9PY2PiL81EoFLedb2eo1WoolUrk5eVBqVTqjGtdVDg4OOgUMB0RkXZ9Wtbpl6Ztq6P1ut26ts7drWKytbXFzJkzsX37dsyePRvbt29HZGQkrK01f27VajWCg4PxySeftJtPv379AACpqalYuHAh9uzZg507d2LlypXIyMjAuHHjOrUuLbHo8zMislTco0PUQ7RsRFvvHTDk/WW+++67dsNDhgyBUqnE6NGj0dzcjKqqKvj7++u8PDw89FpOYGAgcnJydIqOnJwcODs7w8vLyyDrcrtlNzU14dChQ9q2S5cuoaioCAEBAdq2qKgo7NmzBydOnMCBAwcQFRWlHXfvvfeiuLgY/fv3b5cLFxcXbb/Ro0dj+fLlyMnJQVBQELZv327UdSOyVCx0iHoIBwcHjBs3DuvXr8fJkyeRnZ2NlStXGmz+58+fR1JSEk6fPo1PP/0U7777LhITEwEAQ4cORVRUFGJiYpCWlobS0lJ8//33eP3115Genq7XcuLj43H+/HkkJCSgsLAQX3zxBVavXo2kpKQuXYqujyFDhiAiIgIvvPACDh48iKNHj2Lu3Lnw8vJCRESEtt+kSZPg7u6OqKgo+Pr66uyJiYqKgpubGyIiIvDNN9+gtLQUWVlZSExMRHl5OUpLS7F8+XLk5ubi3Llz2LdvX7tCiog6j4UOUQ/y4YcforGxESEhIUhMTMS6desMNu+YmBhcv34dY8aMwYsvvoiEhATMnz9fOz41NRUxMTF46aWXMGzYMEyfPh2HDh3CwIED9VqOl5cX0tPTcfjwYYwaNQpxcXF4/vnnDVq03U5qaiqCg4Px2GOPITQ0FCKC9PT0doeO5syZg6NHj+rszQE05wVlZ2dj0KBBeOqppxAQEIDnnnsO169fR69evaBSqVBYWIgZM2Zg6NChmD9/PhYsWIDY2FiTrB+RpVHIrQ46ExEREXVz3KNDREREFouFDhEREVksFjpERERksVjoEBERkcVioUNEREQWi4UOERERWSwWOkRERGSxWOgQERGRxWKhQ0RERBaLhQ4RERFZLBY6REREZLFY6BAREZHF+n+Jrk1I4xN6wAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'boring chutes & ladders (no chutes or ladders)')" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(0:100, [(M^n * e₁)[end] for n = 0:100], \"b.-\")\n", - "xlabel(\"number of moves n\")\n", - "ylabel(\"probability of finishing in ≤ n moves\")\n", - "grid()\n", - "title(\"boring chutes & ladders (no chutes or ladders)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If $p(n) = e_{101}^T M^n e_1$ is the probability of finishing in $≤ n$ moves, then the probability of finishing in exactly $n$ moves is $p(n) - p(n-1)$. The Julia `diff` function will compute this difference for us given a vector of $p$ values:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYU+fbB/BvCGHJEFBAEME9ap2oldaiVXFVcVXUFrRqHWhdtSpa6y6uKh0/V+tqrVZba5fWSlUcr9q6bd0bEBEBkSoKITzvH2kiIQESyGB8P9fFleTk5Dl3npzE22cdiRBCgIiIiKiCsrJ0AERERESWxGSIiIiIKjQmQ0RERFShMRkiIiKiCo3JEBEREVVoTIaIiIioQmMyRERERBUakyEiIiKq0JgMERERUYXGZKgCmjNnDiQSCVJSUsxyvPbt26N9+/ZmOVZxtG/fHo0bNzZqmVu2bEF0dLRRyzTEs2fPEBkZCX9/f9jb26NOnToYM2aMQWUMHToU/v7+Ro1L33MhNjYWEokEsbGxRj1+SQ0bNgxdu3a1dBg6qers+++/N1qZiYmJmDNnDs6ePWu0MksDiUSCOXPmGK2827dvQyKRYOPGjUXua4rvlT6uXr0KGxsbnD592uzHLgusLR0AlX8rV660dAhmt2XLFvzzzz+YOHGiRY4/depUrFq1CgsWLECrVq1w5coVfPnllxaJpbw4c+YMNm3ahD///NPSoZhNYmIi5s6dC39/fzRr1szS4VAJ1KtXD2+++SYmTZqEgwcPWjqcUofJEJlMZmYmHBwc0KhRI0uHUuFs27YN/fr1w7Rp0wAAr732msEtQ+WJ6lwsiUWLFqF169YICAgwUlRkKnK5HBKJBNbW5f+fuKdPn8Le3l6vfceNG4eAgAAcPXoUgYGBJo6sbGE3WQUWHx+Pvn37wtnZGS4uLnjrrbfw4MEDjX1yc3OxZMkSNGjQALa2tvDw8EB4eDgSEhI09lN1NR06dAiBgYFwcHDAsGHD1M/l7RpRNSkvW7YMy5cvR82aNeHo6Ii2bdvi+PHjWnF+8cUXqFevHmxtbdGoUSNs2bLFoKbmLVu2oG3btnB0dISjoyOaNWuGdevWae134sQJtGvXDg4ODqhVqxYWLVqE3Nxc9fMbN26ERCLB7du3NV6Xv0unffv22LVrF+7cuQOJRKL+U8nOzsaCBQvUdVq1alW8/fbbWnW/f/9+tG/fHu7u7rC3t0eNGjXQr18/ZGZmFvmepVIprl27BmNfh/l///sfXn31VXh4eKBSpUp48cUXsWTJEsjlco39hBBYsmQJ/Pz8YGdnhxYtWuC3337TWebly5fRtWtXODg4oEqVKhg9ejT+/fdfnfv+8ccf6NixI5ydneHg4ICXX34Z+/bt09hH1Q18+vRp9O/fH66urqhduzYA4ObNmxg4cCC8vb1ha2sLT09PdOzYschuoPv372Pnzp0ICwvT2K767Ldu3YqZM2fC29sbzs7O6NSpE65cuaJVzvr169G0aVPY2dnBzc0Nffr0waVLlwo9tsrdu3cxcuRI+Pr6wsbGBt7e3ujfvz/u37+vsZ9cLi8yFn9/fwwdOlTrGHm/q7GxsWjVqhUA4O2331afx3m7l06ePIlevXrBzc0NdnZ2aN68ObZv365RZmZmJqZMmYKaNWuq33dAQAC2bt1a5Hv+559/EBISAldXV9jZ2aFZs2bYtGmTxj6qz+Drr7/Ge++9Bx8fH9ja2uL69etFlq/y4MEDREREoFGjRnB0dISHhwdee+01HD58WGvfxMREDBgwAE5OTnBxcUFoaCiSkpJ0lrtx40bUr18ftra2aNiwIb766iud++n7m+Dv74/XX38dP/zwA5o3bw47OzvMnTsXAPDdd9+hTZs2cHFxUf+GqX6DVVq2bImGDRti9erVetdNRVH+02YqUJ8+fTBgwACMHj0aFy5cwKxZs3Dx4kX8+eefkMlkAIAxY8Zg7dq1GDduHF5//XXcvn0bs2bNQmxsLE6fPo0qVaqoy7t37x7eeustTJ06FR999BGsrArPtf/3v/+hQYMG6rE1s2bNQvfu3XHr1i24uLgAANauXYtRo0ahX79+WLFiBR49eoS5c+ciKytLr/f44YcfYv78+ejbty/ee+89uLi44J9//sGdO3c09ktKSsKbb76J9957D7Nnz8bOnTsRGRkJb29vhIeH612ngLJbcOTIkbhx4wZ27typ8Vxubi5CQkJw+PBhTJ06FYGBgbhz5w5mz56N9u3b4+TJk7C3t8ft27fRo0cPtGvXDuvXr0flypVx9+5d7NmzB9nZ2UW2cowcORJz587F+++/j2XLlhkUf2Fu3LiBwYMHo2bNmrCxscG5c+ewcOFCXL58GevXr1fvN3fuXMydOxfDhw9H//79ER8fj3feeQcKhQL169dX73f//n0EBQVBJpNh5cqV8PT0xDfffINx48ZpHXvz5s0IDw9HSEgINm3aBJlMhjVr1qBLly74/fff0bFjR439+/bti4EDB2L06NF48uQJAKB79+5QKBRYsmQJatSogZSUFBw9ehTp6emFvu+9e/dCLpejQ4cOOp+fMWMGXn75ZXz55ZfIyMjAtGnT0LNnT1y6dAlSqRQAEBUVhRkzZmDQoEGIiopCamoq5syZg7Zt2+LEiROoW7dugce/e/cuWrVqBblcjhkzZqBJkyZITU3F77//jocPH8LT09OgWPTRokULbNiwAW+//TY++OAD9OjRAwBQvXp1AMCBAwfQtWtXtGnTBqtXr4aLiwu+/fZbhIaGIjMzU51sTZ48GV9//TUWLFiA5s2b48mTJ/jnn3+Qmppa6PGvXLmCwMBAeHh44NNPP4W7uzs2b96MoUOH4v79+5g6darG/pGRkWjbti1Wr14NKysreHh46P1e09LSAACzZ8+Gl5cXHj9+jJ07d6J9+/bYt2+fOkF8+vQpOnXqhMTERERFRaFevXrYtWsXQkNDtcrcuHEj3n77bYSEhODjjz/Go0ePMGfOHGRlZWn8Nur7m6By+vRpXLp0CR988AFq1qyJSpUq4dixYwgNDUVoaCjmzJkDOzs73LlzB/v379eKq3379vjuu+8ghND4T1qFJ6jCmT17tgAgJk2apLH9m2++EQDE5s2bhRBCXLp0SQAQERERGvv9+eefAoCYMWOGeltQUJAAIPbt26d1vKCgIBEUFKR+fOvWLQFAvPjiiyInJ0e9/a+//hIAxNatW4UQQigUCuHl5SXatGmjUd6dO3eETCYTfn5+hb7PmzdvCqlUKt58881C91PF/ueff2psb9SokejSpYv68YYNGwQAcevWLY39Dhw4IACIAwcOqLf16NFDZ3xbt24VAMSOHTs0tp84cUIAECtXrhRCCPH9998LAOLs2bOFxq5LRkaG6NWrl6hfv77W52SIIUOGFFrHCoVCyOVy8dVXXwmpVCrS0tKEEEI8fPhQ2NnZiT59+mjs/3//938CgMa5MG3aNCGRSLTeZ+fOnTXq9MmTJ8LNzU307NlTK4amTZuK1q1bq7epzu8PP/xQY9+UlBQBQERHR+tbBWpjxowR9vb2Ijc3V2O76rPv3r27xvbt27cLAOLYsWNCCGWd2Nvba+0XFxcnbG1txeDBgws9/rBhw4RMJhMXL14scB99YxFCCD8/PzFkyBCtMvJ/V1Xn5YYNG7T2bdCggWjevLmQy+Ua219//XVRrVo1oVAohBBCNG7cWPTu3bvQ96fLwIEDha2trYiLi9PY3q1bN+Hg4CDS09OFEM/f96uvvqp32QDE7NmzC3w+JydHyOVy0bFjR43zeNWqVQKA+OmnnzT2f+eddzTqSaFQCG9vb9GiRQuNc+b27dtav136/iYIofzcpFKpuHLlisa+y5YtEwDUdVKYL774QgAQly5dKnLfioTdZBXYm2++qfF4wIABsLa2xoEDBwBAfZu/Ob1169Zo2LChVveEq6srXnvtNb2P36NHD43/qTZp0gQA1K02V65cQVJSEgYMGKDxuho1auDll18usvyYmBgoFAqMHTu2yH29vLzQunVrjW1NmjTRakEqqV9//RWVK1dGz549kZOTo/5r1qwZvLy81F1tzZo1g42NDUaOHIlNmzbh5s2beh9j0KBBSExMxLlz57BgwQJ89NFH+PDDD9XPJyQkQCKRYMOGDQbHf+bMGfTq1Qvu7u6QSqWQyWQIDw+HQqHA1atXAQDHjh3Ds2fPtM6vwMBA+Pn5aWw7cOAAXnjhBTRt2lRj++DBgzUeHz16FGlpaRgyZIhGveXm5qJr1644ceKEuvVHpV+/fhqP3dzcULt2bSxduhTLly/HmTNnNLpBC5OYmIiqVasW+D/pXr16aTzOfy4fO3YMT58+1fou+fr64rXXXtP6LuX322+/oUOHDmjYsGGRsRYVizFcv34dly9fVn/GeT+T7t274969e+quudatW+O3337D9OnTERsbi6dPn+p1jP3796Njx47w9fXV2D506FBkZmbi2LFjGtvzf96GWr16NVq0aAE7OztYW1tDJpNh3759Gt2YBw4cgJOTk1Yd5z9fr1y5gsTERAwePFjjnPHz89Maq6Pvb4JKkyZNUK9ePY1tqu7MAQMGYPv27bh7926B71PVYlbYPhURk6EKzMvLS+OxtbU13N3d1c3Xqttq1appvdbb21urmVvXfoVxd3fXeGxrawsA6h9LVfl5uwBUdG3LT9XfrmrWNyQWVTz6/nDr6/79+0hPT4eNjQ1kMpnGX1JSknq5g9q1a+OPP/6Ah4cHxo4di9q1a6N27dr45JNPCi3/xIkT2LVrF6ZPnw5bW1vMnDkTH330EebPn68eWxAbGwupVIouXboYFHtcXBzatWuHu3fv4pNPPsHhw4dx4sQJ/O9//wOg/bnlP790bUtNTdVrP9W4mP79+2vV2+LFiyGEUHd1qOQ/HyUSCfbt24cuXbpgyZIlaNGiBapWrYrx48cXOEZJ5enTp7CzsyvweX3PZX2/S/k9ePBAr/NYn1iMQfV5TJkyRevziIiIAAD1ufzpp59i2rRp+PHHH9GhQwe4ubmhd+/euHbtWqHHSE1NLbC+VM/nZejvT17Lly/HmDFj0KZNG+zYsQPHjx/HiRMn0LVrV416S01N1fnbo+u81rVd1zZ9fxMKe5+vvvoqfvzxR+Tk5CA8PBzVq1dH48aNdY7LUp3Hxv5tK+s4ZqgCS0pKgo+Pj/pxTk4OUlNT1T+mqtt79+5p/RAnJiZqjBcCYPT+Z9Xx8w8QVcVelKpVqwJQtoTk/99lcah+RPKPVzJkvaYqVarA3d0de/bs0fm8k5OT+n67du3Qrl07KBQKnDx5Ep999hkmTpwIT09PDBw4UOfrb9y4AQBwdnZWb4uMjISVlRWmT5+O3NxcbNmyBcOGDVP/o6KvH3/8EU+ePMEPP/yg0cKTf/Cx6nPT9RklJSVpDHx3d3cvcL+8VOfaZ599hpdeeklnfPn/kdJ1Pvr5+akHz1+9ehXbt2/HnDlzkJ2dXeig0ipVqpRofZa836X8dH2X8qtatarWpIWSsLOz0znuLiUlpchYgOefR2RkJPr27atzH9XYsEqVKqnHkN2/f1/dStSzZ09cvny5wGO4u7sXWF95Y1Apye/P5s2b0b59e6xatUpje/4k2d3dHX/99ZfW6/Ofr0V9B/Iy5DcBKPh9hoSEICQkBFlZWTh+/DiioqIwePBg+Pv7o23btur9VP9p0OdzrkjYMlSBffPNNxqPt2/fjpycHPVgQVWX1+bNmzX2O3HiBC5duqQ1YNXY6tevDy8vL63ZKXFxcTh69GiRrw8ODoZUKtX6gSsu1T/i58+f19j+888/a+1bUKvS66+/jtTUVCgUCgQEBGj95R1crCKVStGmTRt1C0xh/yirFo/MP2tl2rRpWLhwIebNm4fk5GQsXbq08Derg+pHWNXSAChnjX3xxRca+7300kuws7PTOr+OHj2q1VXToUMHXLhwAefOndPYvmXLFo3HL7/8MipXroyLFy/qrLeAgADY2NgY9H7q1auHDz74AC+++GKRiU6DBg2QmpqKR48eGXQMlbZt28Le3l7ru5SQkKDuDipMt27dcODAAZ0z1IrD399f6zy+evWqVvkFtSrVr18fdevWxblz5wr8PPL/Iw4oE9ahQ4di0KBBuHLlSqEzIzt27Ij9+/erkx+Vr776Cg4ODgUmxcUhkUg0zmtA+T3P3xXXoUMH/Pvvv1rf+fzna/369VGtWjVs3bpVY0bnnTt3tH67ivObUBhbW1sEBQVh8eLFAJRd23ndvHkTVlZWBpdb3rFlqAL74YcfYG1tjc6dO6tnkzVt2lQ9Rqd+/foYOXIkPvvsM1hZWaFbt27q2WS+vr6YNGmSSeOzsrLC3LlzMWrUKPTv3x/Dhg1Deno65s6di2rVqhU5W83f3x8zZszA/Pnz8fTpUwwaNAguLi64ePEiUlJS1N1G+mrVqhXq16+PKVOmICcnB66urti5cyeOHDmite+LL76IH374AatWrULLli1hZWWFgIAADBw4EN988w26d++OCRMmoHXr1pDJZEhISMCBAwcQEhKCPn36YPXq1di/fz969OiBGjVq4NmzZ+rZWp06dSowxsaNG2PMmDFYtWoVMjIyEB4eDhcXF1y4cAFffvklqlevjrt372LWrFn49NNPDXr/nTt3ho2NDQYNGoSpU6fi2bNnWLVqFR4+fKixn6urK6ZMmYIFCxZgxIgReOONNxAfH485c+ZodRFMnDgR69evR48ePbBgwQL1bLL8LQaOjo747LPPMGTIEKSlpaF///7w8PDAgwcPcO7cOTx48KDIpPf8+fMYN24c3njjDdStWxc2NjbYv38/zp8/j+nTpxf62vbt20MIgT///BPBwcEG1JpS5cqVMWvWLMyYMQPh4eEYNGgQUlNTMXfuXNjZ2WH27NmFvn7evHn47bff8Oqrr2LGjBl48cUXkZ6ejj179mDy5Mlo0KCBQfGEhYXhrbfeQkREBPr164c7d+5gyZIl6tZUldq1a8Pe3h7ffPMNGjZsCEdHR3h7e8Pb2xtr1qxBt27d0KVLFwwdOhQ+Pj5IS0vDpUuXcPr0aXz33XcAgDZt2uD1119HkyZN4OrqikuXLuHrr79G27ZtC50VOXv2bPz666/o0KEDPvzwQ7i5ueGbb77Brl27sGTJEvWMU2N4/fXXMX/+fMyePRtBQUG4cuUK5s2bh5o1ayInJ0e9X3h4OFasWIHw8HAsXLgQdevWxe7du/H7779rlGdlZYX58+djxIgR6NOnD9555x2kp6fr/A7o+5tQmA8//BAJCQno2LEjqlevjvT0dHzyySeQyWQICgrS2Pf48eNo1qwZXF1dS1hr5Yxlx2+TJahm25w6dUr07NlTODo6CicnJzFo0CBx//59jX0VCoVYvHixqFevnpDJZKJKlSrirbfeEvHx8Rr7BQUFiRdeeEHn8QqaTbZ06VKtfaFjlsfatWtFnTp1hI2NjahXr55Yv369CAkJEc2bN9fr/X711VeiVatWws7OTjg6OormzZtrzI4pKHZds6muXr0qgoODhbOzs6hatap49913xa5du7Rmk6WlpYn+/fuLypUrC4lEIvJ+1eRyuVi2bJlo2rSpOqYGDRqIUaNGiWvXrgkhhDh27Jjo06eP8PPzE7a2tsLd3V0EBQWJn3/+ucj3m5ubK9atWydat24t7O3thZ2dnWjatKlYtGiRePLkifj44491zibU5/3/8ssv6rh9fHzE+++/L3777Tet95+bmyuioqKEr6+vsLGxEU2aNBG//PKL1rkghBAXL14UnTt3FnZ2dsLNzU0MHz5c/PTTT1plCiHEwYMHRY8ePYSbm5uQyWTCx8dH9OjRQ3z33XfqfVTn94MHDzRee//+fTF06FDRoEEDUalSJeHo6CiaNGkiVqxYoTGrUReFQiH8/f21ZlaqZjLlPb4Qz8/x/LOwvvzyS9GkSRNhY2MjXFxcREhIiLhw4UKhx1aJj48Xw4YNE15eXkImkwlvb28xYMAA9XfWkFhyc3PFkiVLRK1atYSdnZ0ICAgQ+/fv1/n5bN26VTRo0EDIZDKt7+e5c+fEgAEDhIeHh5DJZMLLy0u89tprYvXq1ep9pk+fLgICAoSrq6uwtbUVtWrVEpMmTRIpKSlFvue///5b9OzZU7i4uAgbGxvRtGlTrTot6H0XJv/7yMrKElOmTBE+Pj7Czs5OtGjRQvz44486vwMJCQmiX79+6t/Nfv36iaNHjxb4edetW1fjt0tXmfr8JgihnE3Wo0cPrffz66+/im7dugkfHx9hY2MjPDw8RPfu3cXhw4c19vv333+Fg4OD+Pjjj/Wuq4pCIoSRV2UjMrH09HTUq1cPvXv3xtq1ay0dDlUQH3/8MRYuXIi7d+/qveIvUWmybt06TJgwAfHx8WwZyofJEJVqSUlJWLhwITp06AB3d3fcuXMHK1aswOXLl3Hy5Em88MILlg6RKohnz56hYcOGGDt2LKZMmWLpcIgMkpOTg0aNGmHIkCGYOXOmpcMpdThmiEo1W1tb3L59GxEREUhLS1MPnFy9ejUTITIrOzs7fP3111oDUonKgvj4eLz11lt47733LB1KqcSWISIiIqrQOLWeiIiIKjQmQ0RERFShMRkiIiKiCo0DqHXIzc1FYmIinJycjH6JCSIiIjINIQT+/fdfeHt7F7kwb15MhnRITEw0yrWsiIiIyPzi4+P1vrgxwGRIJ9U1deLj4zUueGkouVyOvXv3Ijg4GDKZzFjhkQ6sa/NhXZsP69p8WNfmY8q6zsjIgK+vr85r4xWGyZAOqq4xZ2fnEidDDg4OcHZ25pfLxFjX5sO6Nh/Wtfmwrs3HHHVt6BAXDqAmIiKiCo3JEBEREVVoTIaIiIioQmMyRERERBUakyEiIiKq0JgMERERUYXGZIiIiIgqNCZDREREVKExGSIiIqIKjckQERERVWhMhoiIiKhCYzJEZCYJCcCBA8pbIiIqPZgMEZnBunWAnx/w2mvK23XrLB0RERGpMBkiMrGEBGDkSCA3V/k4NxcYNYotREREpQWTISITu3bteSKkolAA169bJh4iItLEZIjIxOrU0d4mlereTkRE5sdkiMjELlzQfCyRAGvWANWrWyYeIiLSxGSIyMQ++kh5W6mS8nbAAGD4cMvFQ0REmpgMEZnQkSPA4cOAjQ3wwQfKbQ8eWDYmIiLSxGSIyISiopS3Q4cCL7+svH/rlsXCISIiHawtHQBRefX778Du3coxQlOnAra2yu1xcUBODmDNbx8RUanAliEiE1i3DujaVXlfCCA2FvD2VnaXKRRcY4iIqDRhMkRkZKpFFvMaNQpITFSuPg0At2+bPSwiIioAkyEiIytskcWaNZWPOW6IiKj0YDJEZGR16yrHCeWlWmTR31/5mMkQEVHpwWSIyMiqVwdatnz+WCp9vsgiW4aIiEofzmchMgFHR+XtrFnK8UOq1aaZDBERlT5sGSIygeRk5W1QkOZlN1TJEAdQExGVHkyGiExAtcp01aqa21VjhhITgawss4ZEREQFYDJEZGS5uUBqqvJ+/mSoalXAwUG59tCdO+aPjYiItDEZIjKytLTnU+urVNF8TiLhuCEiotKGyRCRkam6yFxdAZlM+3mOGyIiKl2YDBEZWUHjhVTYMkREVLowGSIysqKSIS68SERUujAZIjIy1bR6tgwREZUNFk+GVq5ciZo1a8LOzg4tW7bE4cOHC9z3woUL6NevH/z9/SGRSBAdHV1o2VFRUZBIJJg4caKxwyYqELvJiIjKFosmQ9u2bcPEiRMxc+ZMnDlzBu3atUO3bt0QFxenc//MzEzUqlULixYtgpeXV6FlnzhxAmvXrkWTJk1METpRgfTtJktJAR4/NktIRERUCIsmQ8uXL8fw4cMxYsQINGzYENHR0fD19cWqVat07t+qVSssXboUAwcOhK2tbYHlPn78GG+++Sa++OILuLq6mip8Ip2KSoYqV1b+AZxRRkRUGljs2mTZ2dk4deoUpk+frrE9ODgYR48eLVHZY8eORY8ePdCpUycsWLCgyP2zsrKQlWc54IyMDACAXC6HXC4vdhyq15akDNJPaarr5GQpACu4uuZALhc69/H3t8bZsxJcu5aD+vV171Nalaa6Lu9Y1+bDujYfU9Z1ccu0WDKUkpIChUIBT09Pje2enp5ISkoqdrnffvstTp8+jRMnTuj9mqioKMydO1dr+969e+Hg4FDsWFRiYmJKXAbppzTU9c2b7QG44Pbtv7B79wOd+9jZtQLgjd27L8HK6qY5wzOa0lDXFQXr2nxY1+ZjirrOzMws1ussftV6iUSi8VgIobVNX/Hx8ZgwYQL27t0LOzs7vV8XGRmJyZMnqx9nZGTA19cXwcHBcHZ2LlYsgDJDjYmJQefOnSHTtfoeGU1pquvRo5Vfq+7dW6FZM937HDxohePHgUqVGqF79wZmjK7kSlNdl3esa/NhXZuPKeta1bNjKIslQ1WqVIFUKtVqBUpOTtZqLdLXqVOnkJycjJYtW6q3KRQKHDp0CJ9//jmysrIglUq1Xmdra6tzDJJMJjPKB2Wscqholq7r3FzlwGgA8PaW6VyBGgBq11be3rkjhUymfU6WBZau64qEdW0+rGvzMUVdF7c8iw2gtrGxQcuWLbWayWJiYhAYGFisMjt27Ii///4bZ8+eVf8FBATgzTffxNmzZ3UmQkTGlJ4O5OQo7+e/LlleXHiRiKj0sGg32eTJkxEWFoaAgAC0bdsWa9euRVxcHEaPHg0ACA8Ph4+PD6KiogAoB11fvHhRff/u3bs4e/YsHB0dUadOHTg5OaFx48Yax6hUqRLc3d21thOZgmommbMzUMiER421hoRQXsCViIgsw6LJUGhoKFJTUzFv3jzcu3cPjRs3xu7du+Hn5wcAiIuLg5XV88arxMRENG/eXP142bJlWLZsGYKCghAbG2vu8Im0FDWtXkXVMpSRATx8CLi5mTQsIiIqhMUHUEdERCAiIkLnc/kTHH9/fwhh2DRkJklkTvomQw4OgKcncP++cq0hJkNERJZj8ctxEJUn+iZDwPOusl9+ARISTBcTEREVjskQkRGpkiFB9dxDAAAgAElEQVQPj6L3VSiUt3PmAH5+wLp1JguLiIgKwWSIyIj0bRlKSABOnnz+ODcXGDWKLURERJbAZIjIiPRNhq5dU84iy0uhAK5fN01cRERUMCZDREaUnKy8LSoZqltXezq9VArUqWOauIiIqGBMhoiMSN+WoerVgSlTnj+WSoE1a5TbiYjIvJgMERmRIbPJwsKUty4uyun1w4ebLCwiIioEkyEiIxHCsGRItbbQ48eAj4/p4iIiosIxGSIykowMQC5X3jckGVIolK8lIiLLYDJEZCSqViFHR8Devuj97e2f75eWZrq4iIiocEyGiIzEkC4yFVXrEJMhIiLLYTJEZCT6TqvPi8kQEZHlMRkiMhK2DBERlU1MhoiMpDjJkLu78jY11fjxEBGRfpgMERkJW4aIiMomJkNERsJkiIiobGIyRGQkTIaIiMomJkNERqJKhjw89H8NkyEiIstjMkRkJBxATURUNhmcDJ0+fRp///23+vFPP/2E3r17Y8aMGcjOzjZqcERlhRBcZ4iIqKwyOBkaNWoUrl69CgC4efMmBg4cCAcHB3z33XeYOnWq0QMkKgsePwayspT3mQwREZUtBidDV69eRbNmzQAA3333HV599VVs2bIFGzduxI4dO4weIFFZoOois7cHKlXS/3V5kyEhjB8XEREVzeBkSAiB3NxcAMAff/yB7t27AwB8fX2RkpJi3OiIyojijBcCnidDOTnK1iUiIjI/g5OhgIAALFiwAF9//TUOHjyIHj16AABu3boFT09PowdIVBYUNxlycADs7JT32VVGRGQZBidD0dHROH36NMaNG4eZM2eiTp06AIDvv/8egYGBRg+QqCwobjIEPG8d4owyIiLLsDb0BU2aNNGYTaaydOlSSKVSowRFVNaUNBlKTGTLEBGRpRRrnaH09HR8+eWXiIyMRNp/v+AXL15EsmpuMVEFozr1DVlwUYUzyoiILMvglqHz58+jY8eOqFy5Mm7fvo133nkHbm5u2LlzJ+7cuYOvvvrKFHESlWrG6CZjMkREZBkGtwxNnjwZb7/9Nq5duwY71chPAN26dcOhQ4eMGhxRWVGSZEi1CjWTISIiyzA4GTpx4gRGjRqltd3HxwdJSUlGCYqorOEAaiKissvgZMjOzg4ZGRla269cuYKqxfmXgKgcuHdPeVuchRPZTUZEZFkGJ0MhISGYN28e5HI5AEAikSAuLg7Tp09Hv379jB4gUWm3bh1w967yfp8+yseGYDJERGRZBidDy5Ytw4MHD+Dh4YGnT58iKCgIderUgZOTExYuXGiKGIlKrYQEYOTI549zc4FRo5Tb9cVkiIjIsgxOhpydnXHkyBHs2LEDixYtwrhx47B7924cPHgQlQy5KNN/Vq5ciZo1a8LOzg4tW7bE4cOHC9z3woUL6NevH/z9/SGRSBAdHa21T1RUFFq1agUnJyd4eHigd+/euHLlisFxEenj2jVlApSXQgFcv65/GRxATURkWQYnQ7dv3wYAvPbaa5gyZQqmTp2KTp06Fevg27Ztw8SJEzFz5kycOXMG7dq1Q7du3RAXF6dz/8zMTNSqVQuLFi2Cl5eXzn0OHjyIsWPH4vjx44iJiUFOTg6Cg4Px5MmTYsVIVJi6dQGrfN8iqRT4b2F2vXAANRGRZRmcDNWqVQuvvPIK1qxZo15wsbiWL1+O4cOHY8SIEWjYsCGio6Ph6+uLVatW6dy/VatWWLp0KQYOHAhbW1ud++zZswdDhw7FCy+8gKZNm2LDhg2Ii4vDqVOnShQrkS7VqwORkc8fS6XAmjXK7frileuJiCzL4EUXT548ia1bt2LBggWYMGECunTpgrfeegu9evUqMEHRJTs7G6dOncL06dM1tgcHB+Po0aOGhlWgR48eAQDcVP/i6JCVlYWsrCz1Y9VsOblcrh4oXhyq15akDNKPJev6lVckAKzh7y+wf38OqlcHDAnDyQkAZJDLgfR0ORwdTRSokfC8Nh/Wtfmwrs3HlHVd3DINToZatGiBFi1aYMmSJYiNjcWWLVswatQojBgxAv369cP69ev1KiclJQUKhULrSveenp5GW69ICIHJkyfjlVdeQePGjQvcLyoqCnPnztXavnfvXjg4OJQ4jpiYmBKXQfqxRF0fO1YNQGvY2aXh/PkjOH/esNcLAVhbv46cHCl27DiAqlWfmiROY+N5bT6sa/NhXZuPKeo6MzOzWK8zOBlSkUgk6NChAzp06IAxY8Zg+PDh2LRpk97JUN5y8hJCaG0rrnHjxuH8+fM4cuRIoftFRkZi8uTJ6scZGRnw9fVFcHAwnJ2di318uVyOmJgYdO7cGTKZrNjlUNEsWdcpKcrz1d/fFd27dy9WGVWrWuHePaBp0w5o1syY0Rkfz2vzYV2bD+vafExZ17rWQdRHsZOh+Ph4bN26FVu2bMHff/+Ntm3b4vPPP9f79VWqVIFUKtVqBUpOTtZqLSqOd999Fz///DMOHTqE6kUM4LC1tdXZxSeTyYzyQRmrHCqaJepaNTbfxcUKMlmxrn0MNzflwo0ZGTKUlVOF57X5sK7Nh3VtPqao6+KWZ/Av99q1axEUFISaNWti06ZNGDBgAG7cuIEjR45gzJgxepdjY2ODli1bajWTxcTEIDAw0NCw1IQQGDduHH744Qfs378fNWvWLHZZRPpQ/UekBI2IXGuIiMiCDG4Zmj9/PgYOHIhPPvkEzUrYnj958mSEhYUhICAAbdu2xdq1axEXF4fRo0cDAMLDw+Hj44OoqCgAykHXFy9eVN+/e/cuzp49C0dHR9T5by7z2LFjsWXLFvz0009wcnJStzy5uLjA3t6+RPES6cJkiIiobDM4GYqLizPamJ7Q0FCkpqZi3rx5uHfvHho3bozdu3fDz89PfSyrPIu4JCYmonnz5urHy5Ytw7JlyxAUFITY2FgAUE/Lb9++vcaxNmzYgKFDhxolbqK8/puwyGSIiKiMMjgZkkgkSE9Px7p163Dp0iVIJBI0bNgQw4cPh4uLi8EBREREICIiQudzqgRHxd/fH6KIhViKep7I2FQtQ8U4/dW4CjURkeUYPGbo5MmTqF27NlasWIG0tDSkpKRgxYoVqF27Nk6fPm2KGIlKNWN2k3EVaiIi8zO4ZWjSpEno1asXvvjiC1hbK1+ek5ODESNGYOLEiTh06JDRgyQqzThmiIiobCvWCtR5EyEAsLa2xtSpUxEQEGDU4IjKAiZDRERlW7GuWq/rQqrx8fFwUl5XgKhC4QBqIqKyzeBkKDQ0FMOHD8e2bdsQHx+PhIQEfPvttxgxYgQGDRpkihiJSjVjtAxxADURkeUY3E22bNkySCQShIeHIycnB4ByxccxY8Zg0aJFRg+QqDQTwjizyfIOoBYCMNLqFUREpAeDkyEbGxt88skniIqKwo0bNyCEQJ06dYxyQVOisubpU0ChUN43RjdZdjaQmQlUqlTy2IiISD/FvjaZg4MDXnzxRWPGQlTmqFqFJJKSJTCVKgEyGSCXK7vKmAwREZmPwcnQs2fP8Nlnn+HAgQNITk5Gbm6uxvNca4gqkrzjhUrStSWRKFuH7t9XJkO+vsaJj4iIimZwMjRs2DDExMSgf//+aN26tdEuzUFUFhljJpmKu/vzZIiIiMzH4GRo165d2L17N15++WVTxENUphhjJpkKp9cTEVmGwVPrfXx8uJ4Q0X+MMZNMhZfkICKyDIOToY8//hjTpk3DnTt3TBEPUZnCliEiorLP4G6ygIAAPHv2DLVq1YKDgwNkMpnG82n8JacKhMkQEVHZZ3AyNGjQINy9excfffQRPD09OYCaKjRjDqBmMkREZBkGJ0NHjx7FsWPH0LRpU1PEQ1SmGLNliJfkICKyDIPHDDVo0ABPnz41RSxEZQ4HUBMRlX0GJ0OLFi3Ce++9h9jYWKSmpiIjI0Pjj6gi4ZghIqKyz+Busq5duwIAOnbsqLFdCAGJRAKF6kJNRBUAkyEiorLP4GTowIEDpoiDqEziAGoiorLP4GQoKCjIFHEQlUmmGED97Bnw9Clgb1/yMomIqGgGjxkioueMmQw5OgJSqfL+P/+UvDwiItIPkyGiEjDmbLL16wHVkLuXXgLWrSt5mUREVDQmQ0TFJITxWoYSEoCRI58/zs0FRo1SbiciItNiMkRUTM+eATk5yvslTYauXVMmQHkpFMD16yUrl4iIisZkiKiYVDPJJBKgUqWSlVW3LmCV79solQJ16pSsXCIiKprBydD9+/cRFhYGb29vWFtbQyqVavwRVRSqLjInJ+1ExlDVqwNr1yoTK0B5u2aNcjsREZmWwVPrhw4diri4OMyaNQvVqlXjhVqpwjLmTDIAGD4cOHQI+OorYPx45WMiIjI9g5OhI0eO4PDhw2jWrJkp4iEqM4w5k0zF11d5m3/8EBERmY7Bjfu+vr4QQpgiFqIyxdgtQwBQubLy9uFD45VJRESFMzgZio6OxvTp03H79m0ThENUdhjzUhwqqmQoPd14ZRIRUeEM7iYLDQ1FZmYmateuDQcHB8hkMo3n03hhJaogTNEy5OqqvGXLEBGR+RicDEVHR5siDqIyx5TdZGwZIiIyH4OToSFDhhg1gJUrV2Lp0qW4d+8eXnjhBURHR6Ndu3Y6971w4QI+/PBDnDp1Cnfu3MGKFSswceLEEpVJVFymGECtahliMkREZD4WXXRx27ZtmDhxImbOnIkzZ86gXbt26NatG+Li4nTun5mZiVq1amHRokXw8vIySplExcUB1ERE5YNFk6Hly5dj+PDhGDFiBBo2bIjo6Gj4+vpi1apVOvdv1aoVli5dioEDB8LW1tYoZRIVlynHDGVmAtnZxiuXiIgKZrFkKDs7G6dOnUJwcLDG9uDgYBw9erTUlElUEFPMJstbFrvKiIjMw+AxQ8aSkpIChUIBT09Pje2enp5ISkoya5lZWVnIyspSP87477/8crkccrm8WLGoXp/3lkzHEnX96JEUgBUcHHIglxtv7S1nZ2tkZEjw4IFc3VJUmvC8Nh/Wtfmwrs3HlHVd3DItlgyp5L+chxCixJf4MLTMqKgozJ07V2v73r174eDgUKJYACAmJqbEZZB+zFnXCQntAbjgypW/sHv3A6OVa2vbGYADdu8+huvXS+/gIZ7X5sO6Nh/WtfmYoq4zMzOL9TqDk6EnT55g0aJF2LdvH5KTk5Gb77oBN2/e1KucKlWqQCqVarXYJCcna7Xs6Ku4ZUZGRmLy5MnqxxkZGfD19UVwcDCcS9AHIpfLERMTg86dO2utx0TGZYm6njRJ+fXp1Kk12rQxXstQtWrWePAAaNQoEMHBpW+1d57X5sO6Nh/WtfmYsq5VPTuGMjgZGjFiBA4ePIiwsLASXajVxsYGLVu2RExMDPr06aPeHhMTg5CQELOWaWtrq3NAtkwmM8oHZaxyqGjmrGvVd87NzRrGPKSbm/L28WPjlmtsPK/Nh3VtPqxr8zFFXRe3PIOTod9++w27du3Cyy+/XKwD5jV58mSEhYUhICAAbdu2xdq1axEXF4fRo0cDAMLDw+Hj44OoqCgAygHSFy9eVN+/e/cuzp49C0dHR9SpU0evMomMQQjTDKAGOL2eiMjcDE6GXF1d4ab6r2sJhYaGIjU1FfPmzcO9e/fQuHFj7N69G35+fgCAuLg4WFk9n/CWmJiI5s2bqx8vW7YMy5YtQ1BQEGJjY/Uqk8gYnj0DcnKU942dDHHhRSIi8zI4GZo/fz4+/PBDbNq0ySiDiyMiIhAREaHzOVWCo+Lv7w8hih5DUViZRMaQt1va0dG4ZbNliIjIvAxOhj7++GPcuHEDnp6e8Pf31+qfO336tNGCIyqtVMmQkxNgZeTVunh9MiIi8zI4Gerdu7cp4iAqU0xxXTIVXrmeiMi8DE6GZs+ebYo4iMoUU1yKQ4UtQ0RE5mXRa5MRlVWmmkkGsGWIiMjc9GoZcnNzw9WrV1GlShW4uroWurZQWlqa0YIjKq3YMkREVH7olQytWLECTk5OAIDo6GiTBkRUFpgyGeLUeiIi89IrGRoyZIjO+0QVlSkHUOedWi8EUMJL9RERURE4ZoioGMzRTaZQAE+eGL98IiLSxGSIqBhMOYDawQHqa5JxEDURkekxGSIqBlO2DEkkHERNRGROTIaIisGUyRDA6fVERObEZIioGEydDLFliIjIfAxegbpPnz461xmSSCSws7NDnTp1MHjwYNSvX98oARKVRqacTQZwej0RkTkZ3DLk4uKC/fv34/Tp0+qk6MyZM9i/fz9ycnKwbds2NG3aFP/3f/9n9GCJSgtztQyxm4yIyPQMbhny8vLC4MGD8fnnn8Pqv8t15+bmYsKECXBycsK3336L0aNHY9q0aThy5IjRAyYqDUw5mwxgNxkRkTkZ3DK0bt06TJw4UZ0IAYCVlRXeffddrF27FhKJBOPGjcM///xj1ECJSgshOICaiKg8MTgZysnJweXLl7W2X758GQqFAgBgZ2dX6PXLiMqyrCxALlfeZ8sQEVHZZ3A3WVhYGIYPH44ZM2agVatWkEgk+Ouvv/DRRx8hPDwcAHDw4EG88MILRg+WqDRQtQoBgKOjaY7BliEiIvMxOBlasWIFPD09sWTJEty/fx8A4OnpiUmTJmHatGkAgODgYHTt2tW4kRKVEqpkyMkJkEpNcwy2DBERmY/ByZBUKsXMmTMxc+ZMZPz3r4Jzvr6CGjVqGCc6olLI1IOnAU6tJyIyJ4OTobzyJ0FEFYGpB08DnFpPRGROBg+gvn//PsLCwuDt7Q1ra2tIpVKNP6LyzhzJEFuGiIjMx+CWoaFDhyIuLg6zZs1CtWrVOGuMKhxztgz9+y+QkwNYl6gNl4iICmPwT+yRI0dw+PBhNGvWzBTxEJV6pr4UR/6yHz0C3N1NdywioorO4G4yX19fCCFMEQtRmRAXp7w1Za+wTPZ82j7HDRERmZbByVB0dDSmT5+O27dvmyAcotJt3Tpg6VLl/e3blY9NhdPriYjMw+BustDQUGRmZqJ27dpwcHCATCbTeD4tLc1owRGVJgkJwMiRystxAMrbUaOALl2A6tWNfzxXV+UxmQwREZmWwclQdHS0KeIgKvWuXQNyczW3KRTA9eumSYY4vZ6IyDwMToaGDBliijiISr26dQErK82ESCoF6tQxzfE4vZ6IyDz0SoYyMjLUCyxm5L0wkw5ciJHKq+rVgbVrgREjlI+trIA1a0zTKgSwZYiIyFz0SoZcXV1x7949eHh4oHLlyjrXFhJCQCKRqK9cT1QeDR8OLF8OXLwIbNwIhIWZ7lgcQE1EZB56JUP79++Hm5sbAODAgQMmDYiotHv6VHlrqu4xFV65nojIPPRKhoKCgnTeJ6qIzLECNcCWISIicynWIv/p6en466+/kJycjNx802vCw8ONEhhRaSSE+ZIhtgwREZmHwYsu/vLLL6hRowa6deuGcePGYcKECeq/iRMnGhzAypUrUbNmTdjZ2aFly5Y4fPhwofvv2LEDjRo1gq2tLRo1aoSdO3dqPP/48WOMGzcO1atXh729PRo2bIhVq1YZHBeRLs+eAXK58r4pL8cBsGWIiMhcDE6G3nvvPQwbNgz//vsv0tPT8fDhQ/WfoQsubtu2DRMnTsTMmTNx5swZtGvXDt26dUOc6noH+Rw7dgyhoaEICwvDuXPnEBYWhgEDBuDPP/9U7zNp0iTs2bMHmzdvxqVLlzBp0iS8++67+Omnnwx9q0Ra8k6mVF0uw1Q4tZ6IyDwMTobu3r2L8ePHw8HBocQHX758OYYPH44RI0agYcOGiI6Ohq+vb4EtOdHR0ejcuTMiIyPRoEEDREZGomPHjhoLQR47dgxDhgxB+/bt4e/vj5EjR6Jp06Y4efJkieMlevRIeevkpJxab0qcWk9EZB4Gjxnq0qULTp48iVq1apXowNnZ2Th16hSmT5+usT04OBhHjx7V+Zpjx45h0qRJWvHkTYZeeeUV/Pzzzxg2bBi8vb0RGxuLq1ev4pNPPikwlqysLGRlZakfq9ZSksvlkKv6RIpB9dqSlEH6MVddp6VJAFjDxUVALs8x6bEqVQIAGdLTBbKzc6BjRQuL4HltPqxr82Fdm48p67q4ZeqVDP3888/q+z169MD777+Pixcv4sUXX9S6NlmvXr30OnBKSgoUCgU8PT01tnt6eiIpKUnna5KSkorc/9NPP8U777yD6tWrw9raGlZWVvjyyy/xyiuvFBhLVFQU5s6dq7V97969RmkBi4mJKXEZpB9T1/X581UAvAyJ5F/s3m3aZSaePrUG0APZ2RL8+OPvsLUtXWt48bw2H9a1+bCuzccUdZ2ZmVms1+mVDPXu3Vtr27x587S2FWfRxfwLOKoWbyzu/p9++imOHz+On3/+GX5+fjh06BAiIiJQrVo1dOrUSWeZkZGRmDx5svpxRkYGfH19ERwcXKIVteVyOWJiYtC5c2etpJGMy1x1nZ2tPNd8fBzRvXt3kx0HUM5ck0oFFAoJ2rTpAm9vkx5ObzyvzYd1bT6sa/MxZV0XdZWMguiVDOWfPm8MVapUgVQq1WoFSk5O1mr9UfHy8ip0/6dPn2LGjBnYuXMnevToAQBo0qQJzp49i2XLlhWYDNna2sLW1lZru0wmM8oHZaxyqGimrmvVfzpcXKwgk5l40BCU44ZSU4HHj2UobacQz2vzYV2bD+vafExR18Utzyi/5unFmO5iY2ODli1bajWTxcTEIDAwUOdr2rZtq7X/3r171furxvhY5RvZKpVKTZLQUcVjrjWGVDi9nojI9AxOhhYvXoxt27apH7/xxhtwc3ODj48Pzp07Z1BZkydPxpdffon169erp8HHxcVh9OjRAJQLOEZGRqr3nzBhAvbu3YvFixfj8uXLWLx4Mf744w/1+kbOzs4ICgrC+++/j9jYWNy6dQsbN27EV199hT59+hj6Vom0qGaTmXqNIRVOryciMj2DZ5OtWbMGmzdvBqBsxfnjjz+wZ88ebN++He+//z727t2rd1mhoaFITU3FvHnzcO/ePTRu3Bi7d++Gn58fACAuLk6jlScwMBDffvstPvjgA8yaNQu1a9fGtm3b0KZNG/U+3377LSIjI/Hmm28iLS0Nfn5+WLhwoTrBIioJS7UMcXo9EZHpGJwM3bt3D76+vgCAX3/9FQMGDEBwcDD8/f01khJ9RUREICIiQudzsbGxWtv69++P/v37F1iel5cXNmzYYHAcRPpQtQyxm4yIqPwwuJvM1dUV8fHxAIA9e/aoByULIQyeSUZU1qhahszdTcaWISIi0zG4Zahv374YPHgw6tati9TUVHTr1g0AcPbsWdSpU8foARKVJhxATURU/hicDK1YsQL+/v6Ij4/HkiVL4PjfBZru3btXYHcXUXlh7m4ytgwREZmewcmQTCbDlClTtLYX54r1RGWNubvJVC1D164BCQlA9ermOS4RUUWi9+U4unXrBplMpnFpDl30vRwHUVlk7m6ys2eVt0eOAH5+wNq1wPDh5jk2EVFFofflOJKSkuDh4aHz0hwqxbkcB1FZYs51hhISgC++eP44NxcYNQro0oUtRERExmTw5Ti4kjNVVEKYt2Xo2jXlMfNSKIDr15kMEREZk+kvrkRUTmRmKltnAPMkQ3XrAvmuLAOpFOCkTSIi4zJ4ADUA7Nu3D/v27UNycrJWS9H69euNEhhRaaPqIrOyAipVMv3xqlcHoqOB8eOVj6VSYM0atgoRERmbwS1Dc+fORXBwMPbt24eUlBQ8fPhQ44+ovMrbRSaRmOeY48Y9bx06doyDp4mITMHglqHVq1dj48aNCAsLM0U8RKWWudcYApRJl7s78OABYGtrvuMSEVUkBrcMZWdnIzAw0BSxEJVq5l5jSMXdXXmbmmre4xIRVRQGJ0MjRozAli1bTBELUalm7jWGVJgMERGZlsHdZM+ePcPatWvxxx9/oEmTJpDJZBrPL1++3GjBEZUmlugmA5gMERGZmsHJ0Pnz59GsWTMAwD///KPxnMRco0qJLIDdZERE5ZPBydCBAwdMEQdRqcduMiKi8omLLhLpyZyX4siLyRARkWnp1TLUt29fbNy4Ec7Ozujbt2+h+/7www9GCYyotGHLEBFR+aRXMuTi4qIeD+Ts7MyxQVQhMRkiIiqf9EqG+vTpAzs7OwDAxo0bTRkPUanFbjIiovJJrzFDffr0QXp6OgBAKpUiOTnZpEERlUZsGSIiKp/0SoaqVq2K48ePAwCEEOwmowrJ0usMPXwI5LsuMhERGYFe3WSjR49GSEgIJBIJJBIJvLy8CtxXoVAYLTii0sTS6wzl5gLp6YCbm3mPT0RU3umVDM2ZMwcDBw7E9evX0atXL2zYsAGVK1c2dWxEpYqluslsbABHR+DxY2VXGZMhIiLj0nvRxQYNGqBBgwaYPXs23njjDTg4OJgyLqJSJTcX+Pdf5X1zJ0OAsnVIlQzVrWv+4xMRlWcGL7o4e/ZsJkJU4Tx+DAihvG/ubjKAg6iJiEyJK1AT6UHVRWZtDfy3yoRZMRkiIjIdJkNEesi7xpAlJlOqkqG0NPMfm4iovGMyRKQHSw2eVmHLEBGR6eiVDLm5uSElJQUAMGzYMPyrGklKVEFYao0hFSZDRESmo1cylJ2djYz//mu8adMmPHv2zKRBEZU2llpjSIXJEBGR6eg1tb5t27bo3bs3WrZsCSEExo8fD3t7e537rl+/3qgBEpUG7CYjIiq/9EqGNm/ejBUrVuDGjRuQSCR49OgRW4eoQmE3GRFR+aVXN5mnpycWLVqE7777DjVq1MDXX3+NnTt36vwz1MqVK1GzZk3Y2dmhZcuWOHz4cKH779ixA40aNYKtrS0aNWqk85iXLl1Cr1694OLiAicnJ7z00kuIi4szODYiFXaTERGVXwbPJrt16xbcVb/MJbRt2zZMnDgRM2fOxJkzZ9CuXTt069atwMTl2LFjCA0NRVhYGM6dO4ewsDAMGPFbOgwAACAASURBVDAAf/75p3qfGzdu4JVXXkGDBg0QGxuLc+fOYdasWbCzxOIwVG6wm4yIqPwq1tT6gwcPomfPnqhTpw7q1q2LXr16Fdmio8vy5csxfPhwjBgxAg0bNkR0dDR8fX2xatUqnftHR0ejc+fOiIyMRIMGDRAZGYmOHTsiOjpavc/MmTPRvXt3LFmyBM2bN0etWrXQo0cPeHh4FOetEgEoPd1kmZkAe6iJiIzL4GRo8+bN6NSpExwcHDB+/HiMGzcO9vb26NixI7Zs2aJ3OdnZ2Th16hSCg4M1tgcHB+Po0aM6X3Ps2DGt/bt06aLePzc3F7t27UK9evXQpUsXeHh4oE2bNvjxxx8NfJdEmizdTebsrFz9GmDrEBGRsel9oVaVhQsXYsmSJZg0aZJ624QJE7B8+XLMnz8fgwcP1quclJQUKBQKeHp6amz39PREUlKSztckJSUVun9ycjIeP36MRYsWYcGCBVi8eDH27NmDvn374sCBAwgKCtJZblZWFrKystSPVcsIyOVyyOVyvd6PLqrXlqQM0o+p6/rRIykAKzg45EAuFyY5RlHc3KyRnCxBUpIclmzo5HltPqxr82Fdm48p67q4ZRqcDN28eRM9e/bU2t6rVy/MmDHD4AAk+a5tIITQ2qbv/rm5uQCAkJAQdbLWrFkzHD16FKtXry4wGYqKisLcuXO1tu/du9coF6WNiYkpcRmkH1PV9Z07rwJwxfXrp7B7t+5k3dRsbF4D4ITffvsLCQkpFokhL57X5sO6Nh/WtfmYoq4zMzOL9TqDkyFfX1/s27cPderU0di+b98++Pr66l1OlSpVIJVKtVqBkpOTtVp/VLy8vArdv0qVKrC2tkajRo009mnYsCGOHDlSYCyRkZGYPHmy+nFGRgZ8fX0RHBwM5xIMEpHL5YiJiUHnzp0hk8mKXQ4VzdR1PW2a8qvSoUNLBAVZpmWoRg0pEhKAOnXaoHt3y8QA8Lw2J9a1+bCuzceUda3q2TGUwcnQe++9h/Hjx+Ps2bMIDAyERCLBkSNHsHHjRnzyySd6l2NjY4OWLVsiJiYGffr0UW+PiYlBSEiIzte0bdsWMTExGl10e/fuRWBgoLrMVq1a4cqVKxqvu3r1Kvz8/AqMxdbWFra2tlrbZTKZUT4oY5VDRTNVXau+X25u1rDUR1mlivL20SPLxZAXz2vzYV2bD+vafExR18Utz+BkaMyYMfDy8sLHH3+M7du3A1C2vGzbtq3AJKYgkydPRlhYGAICAtC2bVusXbsWcXFxGD16NAAgPDwcPj4+iIqKAqAcm/Tqq69i8eLFCAkJwU8//YQ//vhDo9Xn/fffR2hoKF599VV06NABe/bswS+//ILY2FhD3yqRmqUHUAOcXk9EZCoGJ0MA0KdPH43WnOIKDQ1Famoq5s2bh3v37qFx48bYvXu3uhUnLi4OVlbPJ7wFBgbi22+/xQcffIBZs2ahdu3a2LZtG9q0aaMR2+rVqxEVFYXx48ejfv362LFjB1555ZUSx0sVk0IBPHmivG+pqfUAkyEiIlMpVjJkTBEREYiIiND5nK7WnP79+6N///6Fljls2DAMGzbMGOERIW8XNJMhIqLyp1iLLhJVJKpkyNZW+WcpTIaIiEyDyRBRESx9KQ4VJkNERKbBZIioCJa+FIcKkyEiItMwOBnirCyqaErDTDKAyRARkakYnAx17doVtWvXxoIFCxAfH2+KmIhKldLWTfbwIfDfYutERGQEBidDiYmJmDBhAn744QfUrFkTXbp0wfbt25GdnW2K+IgsTtVNVlpahnJzgfR0y8ZCRFSeGJwMubm5Yfz48Th9+jROnjyJ+vXrY+zYsahWrRrGjx+Pc+fOmSJOIospLS1DNjaAo6PyPrvKiIiMp0QDqJs1a4bp06dj7NixePLkCdavX4+WLVuiXbt2uHDhgrFiJLKo0jKAGuC4ISIiUyhWMiSXy/H999+je/fu8PPzw++//47PP/8c9+/fx61bt+Dr64s33njD2LESWURpGUANMBkiIjIFg1egfvfdd7F161YAwFtvvYUlS5agcePG6ucrVaqERYsWwd/f32hBEllSaekmA54nQ2lplo2DiKg8MTgZunjxIj777DP069cPNjY2Ovfx9vbGgQMHShwcUWnAbjIiovLN4G6y2bNn44033tBKhHJycnDo0CEAgLW1NYKCgowTIZGFsZuMiKh8MzgZ6tChA9J0tNE/evQIHTp0MEpQRKVJaewmYzJERGQ8BidDQghIJBKt7ampqahUqZJRgiIqTdhNRkRUvuk9Zqhv374AAIlEgqFDh8I2z+W7FQoFzp8/j8DAQONHSGRh7CYjIirf9E6GXP77l0AIAScnJ9jb26ufs7GxwUsvvYR33nnH+BESWRhbhoiIyje9k6ENGzYAAPz9/TFlyhR2iVGFkJ0NPHumvP/4sWVjAZgMERGZQrFmkzERoopi1arn95s1A9ats1wsAJMhIiJT0KtlqEWLFti3bx9cXV3RvHlznQOoVU6fPm204IgsKSEBmDz5+ePcXGDUKKBLF6B6dcvEpEqGMjOVLVZ2dpaJg4ioPNErGQoJCVEPmO7du7dJAyIqLa5dUyZAeSkUwPXrlkuGnP+/vbsPi6rO+wf+HoZnBBRQHkQBH1JYtAxTMU2rFTRL74pbNITa3NTFBxQ3lU0vTWvR7i5j203T8rbun5Xee6s9ratgKWqStuAzqKgoYhJJCCrKw/D5/TE7AyOkDM7MYWber+uaa+ac+c45n/NhhI/f8z3f4wU4OgL19dreoa5dlYmDiMiWtKoYWrJkSYuviWxZ796Ag4NhQaRWA716KReTSqW9qq28HMjPZzFERGQK93XXeiJbFhwMTJnSuKxWA2vXKtcrBGjHLOnGC40erfwYJiIiW9CqnqFOnTrddZxQUy3NTk1krXT3IB4xAti4UdlCqKQEmDq1cbk9jGEiIrIFrSqGMjIyzB0HUbt09ar2OSJC+YKjPY5hIiKyBa0qhl588UVzx0HULulOSemu4lJSexzDRERkC1pVDFVVVcHr39PvVunuTfArvNrDNL1EJqLrGfLzUzYOQNv7s24d8MorgIh2MLXSY5iIiGxBq8cMXblyBV26dEHHjh1bHD+ku4GrRqMxeZBESmlPxRCgHdBdVaWd/2j4cMMB3kRE1DatKoa+/fZb+Pj4AAB2795t1oCI2pP2VgwBjYO6KyqUjYOIyFa0qhgaMWJEi6+JbF17GjOkExSkff7xR2XjICKyFa2+UWtTFRUVWL9+PQoKCqBSqRAeHo7f/e53+t4jIlsg0j57hnTFUHk5UFMD/HtyeCIiaiOjJ13Mzs5GaGgo3n33XVRUVOCXX37Bu+++i7CwMGRnZ5sjRiJF3LypLTaA9lUMdezYeE+yK1eUjYWIyBYY3TM0Y8YMxMfHY82aNVCr1QAAjUaD5ORkzJgxAydOnDB5kERK0PUKubgAHh7KxtKUSqXtHTp/XnuqLDRU6YiIiKyb0T1D586dw7x58/SFEACo1Wqkpqbi3LlzJg2OSElNxwu1cgJ2i+G4ISIi0zG6GHr44YdRUFDQbH1BQQEeeughkwRF1B60x/FCOiyGiIhMp1XF0LFjx/SP2bNnIyUlBW+//Tb279+P/fv34+2338bcuXMxZ86cNgWxevVqhIWFwdXVFVFRUdi3b99d22/ZsgURERFwcXFBREQEtm3b9qttp02bBpVKxVuKkNFYDBER2YdWjRl66KGHoFKpICL6dfPnz2/W7oUXXkB8fLxRAWzevBlz5szB6tWr8eijj2Lt2rUYM2YM8vPz0b1792btc3JyEB8fj+XLl+PZZ5/Ftm3bMGHCBOzfvx+DBw82aPv555/j4MGDCNL95SAyAoshIiL70KpiqKioyGwBrFq1ClOmTMHvf/97ANqbwu7cuRNr1qxBenp6s/YZGRkYNWoU0tLSAABpaWnIzs5GRkYGPvvsM327y5cvY+bMmdi5cyfGjh1rtvjJdrXHOYZ0WAwREZlOq4qhkJAQs+y8trYWubm5WLhwocH6mJgYHDhwoMXP5OTkYO7cuQbrYmNjDU6DNTQ0IDExEa+++ip+85vf3DOOmpoa1OiuoUbj/dfq6upQV1fX6uO5k+6z97MNah1z5LqszAGAGp06aVBX13DP9pbUpYsKgCMuXxbU1dVbdN/8XlsOc205zLXlmDPXbd1mmyZdBID8/HwUFxejtrbWYP24ceNavY2rV69Co9HA39/fYL2/vz9KS0tb/Expaek9269cuRKOjo6YPXt2q+JIT0/H66+/3mx9ZmYm3N3dW7WNu8nKyrrvbVDrmDLXx48PBNAVZWX52L79vMm2awqXL3cA8CSKi+uxfft2RWLg99pymGvLYa4txxy5rq6ubtPnjC6Gzp8/j2effRbHjx83GEeku3lrW27UeueNX3U3fW1L+9zcXPzlL39BXl7eXbfRVFpaGlJTU/XLVVVV6NatG2JiYuDl5dXaw2imrq4OWVlZGDVqFJycnNq8Hbo3c+Q6I0M7fcTw4eF46qm+JtmmqVy/DsyYAVRXO2HEiKcsOg8Sv9eWw1xbDnNtOebMte7MjrGMLoZSUlIQFhaGXbt2oUePHjh06BDKy8sxb948vP3220Zty8/PD2q1ulkvUFlZWbPeH52AgIC7tt+3bx/KysoMBl9rNBrMmzcPGRkZuHDhQrNturi4wKWFexo4OTmZ5Adlqu3QvZky17/8on3293dEe/vx+fhoJ4K8eRO4etUJHTtaPgZ+ry2HubYc5tpyzJHrtm7P6HmGcnJysGzZMnTu3BkODg5wcHDAsGHDkJ6e3urTUjrOzs6Iiopq1lWWlZWFoUOHtviZ6OjoZu0zMzP17RMTE3Hs2DEcOXJE/wgKCsKrr76KnTt3GhUf2bf2fDUZwEHURESmYnTPkEajQYcOHQBoe3Z+/PFH9OnTByEhITh9+rTRAaSmpiIxMREDBw5EdHQ01q1bh+LiYkyfPh0AkJSUhK5du+qvLEtJScFjjz2GlStXYvz48fjiiy+wa9cu7N+/HwDg6+sL3zsu/3FyckJAQAD69OljdHxkn9rrTVqbCgoCCgtZDBER3S+ji6HIyEgcO3YMPXr0wODBg/HWW2/B2dkZ69atQ48ePYwOID4+HuXl5Vi2bBmuXLmCyMhIbN++XX8FW3FxMRwcGjuwhg4dik2bNmHRokVYvHgxevbsic2bNzebY4jofty4AeiuDWjPxRDAYoiI6H4ZXQwtWrQIN2/eBAC88cYbePrppzF8+HD4+vpi8+bNbQoiOTkZycnJLb63Z8+eZuvi4uIQFxfX6u23NE6I6G50cwy5ugImuKDQLFgMERGZhtHFUGxsrP51jx49kJ+fj19++QWdOnVq9dVbRO2d7hRZe7xJqw6LISIi02jzPEMAcOnSJahUKgQHB5sqHqJ2ob2PFwJYDBERmYrRV5PV19dj8eLF8Pb2RmhoKEJCQuDt7Y1FixZx5k6yGSyGiIjsh9E9QzNnzsS2bdvw1ltvITo6GoD2cvulS5fi6tWreP/9900eJJGl6cYMWUsxJNJ+T+cREbV3RhdDn332GTZt2oQxY8bo1/Xv3x/du3fHxIkTWQyRTWg6Zqi9CgzUPt+8qZ2R+j4mSycismtGnyZzdXVFaGhos/WhoaFwdnY2RUxEirOG02QeHoC3t/Y1T5UREbWd0cXQjBkzsHz5coO7vNfU1ODNN9/EzJkzTRockVKsoRgCOG6IiMgUWnWa7LnnnjNY3rVrF4KDg/Hggw8CAI4ePYra2lo8+eSTpo+QSAHWMGYI0BZDBQUshoiI7keriiFvXV/8vz3//PMGy926dTNdRETtgDWMGQLYM0REZAqtKoY2bNhg7jiI2hWeJiMish9tnnTx559/xunTp6FSqfDAAw+gc+fOpoyLSDHWcJNWHRZDRET3z+gB1Ddv3sTLL7+MwMBAPPbYYxg+fDiCgoIwZcoUVFdXmyNGIou6cQPQzR/KYoiIyPYZXQylpqYiOzsbX331Fa5du4Zr167hiy++QHZ2NubNm2eOGIksStcr1J5v0qrDYoiI6P4ZfZpsy5Yt+L//+z+MHDlSv+6pp56Cm5sbJkyYgDVr1pgyPiKLs5ZTZABnoSYiMgWje4aqq6vh7+/fbH2XLl14moxsgjUVQ7pZqGtqgIoKZWMhIrJWRhdD0dHRWLJkCW7fvq1fd+vWLbz++uv6e5URWTNrmWMIAFxcGi//56kyIqK2Mfo0WUZGBsaMGaOfdFGlUuHIkSNwdXXFzp07zREjkUVZyxxDOkFB2gLuxx+ByEiloyEisj5GF0P9+vVDYWEhNm7ciFOnTkFEMHHiRCQkJMDNzc0cMRJZlDWdJgO0xdDx4+wZIiJqK6OKobq6OkydOhWLFy/GK6+8Yq6YiBRljcUQwGKIiKitjBoz5OTkhG3btpkrFqJ2wZrGDAEshoiI7pfRA6ifffZZfP755+aIhahdsMYxQwBw9ChQUqJsLERE1sjoMUO9evXC8uXLceDAAURFRcHDw8Pg/dmzZ5ssOCIlWNtpsvx87fP+/UBICLBuHTBlirIxERFZE6OLoQ8//BAdO3ZEbm4ucnNzDd5TqVQshsjqWVMxVFICNJ3ntKEBmDYNiI0FgoOVi4uIyJoYXQwVFRWZIw6idkHEusYMFRZqC6CmNBrg7FkWQ0RErWX0mKGmRAQiYqpYiBR3/XrjTVqtYcxQ796Awx3/itVqoFcvZeIhIrJGbSqG1q9fj8jISLi6usLV1RWRkZH48MMPTR0bkcXpTpG5ubX/m7QC2t6fdesalx0cgLVr2StERGQMo0+TLV68GO+88w5mzZqlv/1GTk4O5s6diwsXLuCNN94weZBElmJN44V0pkwBvvkG+OwzYOZMDp4mIjKW0cXQmjVr8MEHH2DSpEn6dePGjUP//v0xa9YsFkNk1axpvFBTjzyiLYY41xARkfGMPk2m0WgwcODAZuujoqJQX19vkqCIlGJtcwzp9O2rfS4oUDYOIiJrZHQxNHnyZKxpei3vv61btw4JCQkmCYpIKdZ4mgwAwsO1z2fOAPw/CRGRcYw+TQZoB1BnZmZiyJAhAIDvv/8ely5dQlJSElJTU/XtVq1aZZooiSzk/Hnts6ursnEYq3t37YDv6mrtMTzwgNIRERFZD6OLoRMnTuDhhx8GAJw7dw4A0LlzZ3Tu3BknTpzQt1OpVCYKkcgy1q8H3ntP+/rjj4Fhw6xnMLKDA9CnD3D4sPZUGYshIqLWM7oY2r17tzniIFJUSQkwdap20kVA+2xtMzmHhzcWQ+PHKx0NEZH1uK9JF01l9erVCAsLg6urK6KiorBv3767tt+yZQsiIiLg4uKCiIgIbNu2Tf9eXV0dFixYgH79+sHDwwNBQUFISkrCj7zMhu7ibjM5WwvduCEOoiYiMo7ixdDmzZsxZ84cvPbaazh8+DCGDx+OMWPGoLi4uMX2OTk5iI+PR2JiIo4ePYrExERMmDABBw8eBABUV1cjLy8PixcvRl5eHrZu3YozZ85g3LhxljwssjK2MJMziyEiorZRvBhatWoVpkyZgt///vcIDw9HRkYGunXr1uIVawCQkZGBUaNGIS0tDX379kVaWhqefPJJZGRkAAC8vb2RlZWFCRMmoE+fPhgyZAj++te/Ijc391cLLKLgYOCddxqX1Wrrm8lZVwydOtV4uo+IiO6tTVeTmUptbS1yc3OxcOFCg/UxMTE4cOBAi5/RzXbdVGxsrL4YakllZSVUKhU6duzY4vs1NTWoqanRL1dVVQHQnnKr092oqg10n72fbVDrmCLXAweqADjCx0fwr3/VIzi48T5l1iAkBFCrHXH9ugoXLtSZrZDj99pymGvLYa4tx5y5bus2FS2Grl69Co1GA39/f4P1/v7+KC0tbfEzpaWlRrW/ffs2Fi5ciBdeeAFeXl4ttklPT8frr7/ebH1mZibcTXCDqqysrPveBrXO/eQ6O7srgIEIDCzHsWPf4dgx08VlKQEBT+DyZU/8z//8gIce+tms++L32nKYa8thri3HHLmurq5u0+cULYZ07rwMX0Tueml+a9vX1dVh4sSJaGhowOrVq391e2lpaQbzI1VVVaFbt26IiYn51QKqNerq6pCVlYVRo0bBycmpzduhezNFrnNztWeNH3nEB0899ZQpw7OYqCg1Ll8GvL0H46mnGu79gTbg99pymGvLYa4tx5y51p3ZMZaixZCfnx/UanWzXp2ysrJmvT86AQEBrWpfV1eHCRMmoKioCN9+++1dixoXFxe4uLg0W+/k5GSSH5SptkP3dj+5LirSPvfp4wAnJ8WH07VJRATw5ZfAmTNqODmpzbovfq8th7m2HObacsyR67ZuT9Hf+M7OzoiKimrWVZaVlYWhQ4e2+Jno6Ohm7TMzMw3a6wqhwsJC7Nq1C77WdqMpUkRhofbZmq4guxOvKCMiMp7ip8lSU1ORmJiIgQMHIjo6GuvWrUNxcTGmT58OAEhKSkLXrl2Rnp4OAEhJScFjjz2GlStXYvz48fjiiy+wa9cu7N+/HwBQX1+PuLg45OXl4euvv4ZGo9H3JPn4+MDZ2VmZA6V2TzenUO/eysZxP1gMEREZT/FiKD4+HuXl5Vi2bBmuXLmCyMhIbN++HSEhIQCA4uJiODSZAGbo0KHYtGkTFi1ahMWLF6Nnz57YvHkzBg8eDAAoKSnBl19+CQB46KGHDPa1e/dujBw50jIHRlalogIoL9e+7tlT2Vjuh+7u9T/9pD2mTp2UjYeIyBooXgwBQHJyMpKTk1t8b8+ePc3WxcXFIS4ursX2oaGhEE6yQkbS9QoFBgIdOigby/3w9NTOjVRSou0d+pWzzURE1IR1jhIlMjFdMWTN44V0eKqMiMg4LIaIYBuDp3VYDBERGYfFEBFsY/C0DoshIiLjsBgiAnuGiIjsGYshIthmz1BRUWORR0REv47FENm9a9eAq1e1r635snqdf88sAUB7qf369crFQkRkDVgMkd3T9QoFBGgvTbdmJSXAtGmNyw0N2uWSEuViIiJq71gMkd2zpcvqCwu1BVBTGk3jMRIRUXMshsju6cbV2MJ4od69AYc7/lWr1bZR6BERmQuLIbJ7ttQzFBwMrFunLYB0/vxn7XoiImoZiyGye7bUMwQAU6YAFy4AkZHa5Y4dFQ2HiKjdYzFEds+WeoZ0goOB+Hjt6x07lI2FiKi9YzFEdq2yEvj5Z+1rWyqGAGDMGO3zrl1Aba2ysRARtWcshsiu6XqF/P2t/7L6Ow0YAHTpAly/Dhw4oHQ0RETtF4shsmu2eIpMx8EBiI3VvuapMiKiX8diiOyarQ2evtPo0drnf/5T2TiIiNozFkNk12y5ZwgAYmIAlQo4dgz48UeloyEiap9YDJFds/WeIT8/4JFHtK95qoyIqGUshsiunT6tfba1wdNN6a4qYzFERNQyFkNkt/72N6C8XPv66adt9+7uunFDWVlAfb2ysRARtUcshsgulZQAKSmNy7Z8d/dHHgF8fIBr14A1a2zzGImI7geLIbJL9nR3d7Ua6NlT+3r2bCAkxHZ7wYiI2oLFENmllq4es9W7u5eUAP/6V+OyLfeCERG1BYshsktlZYbLajWwdq1t3t29sBAQMVxnq71gRERt4ah0AERK2LhR+/zMM0BqqrZHyBYLIUA7bYCDg+FpQVvtBSMiagv2DJHdqa8HPvtM+3rqVGDkSNsthADtsa1bpy2AdKZOte1jJiIyBoshsjvffAP89BPg69t47y5bN2UKcOECkJioXc7M5J3siYh0WAyR3dGdIps4EXByUjYWSwoOBlavBgICgHPngPfeUzoiIqL2gcUQ2ZUbN4CtW7WvJ09WNhYldOgALF+ufb18OfDLL8rGQ0TUHrAYIrvyxRdAdbV28PDgwUpHo4zf/Q7o1w+oqADmzwd27+Zl9kRk31gMkV35f/9P+zx5svZu7vZIrQbeflv7ev164IknOBEjEdk3FkNkN/LytAOHASAhQdlYlBYRYbjMiRiJyJ6xGCK7sH49MHBg4+SD2dnKxqO0wsLm6zQaICeHp82IyP6wGCKbV1KinVen6SzM9t4LopuI8U7x8TxtRkT2p10UQ6tXr0ZYWBhcXV0RFRWFffv23bX9li1bEBERARcXF0RERGDbtm0G74sIli5diqCgILi5uWHkyJE4efKkOQ+B2qGSEu2cQn/8o/3clLW1WpqIEWgsGJueNispYW8REdk2xYuhzZs3Y86cOXjttddw+PBhDB8+HGPGjEFxcXGL7XNychAfH4/ExEQcPXoUiYmJmDBhAg4ePKhv89Zbb2HVqlX429/+hh9++AEBAQEYNWoUrl+/bqnD+lV3/mFp6Q+Nkm2U3v/9xHj8uJ9+ef16be/Gb38LbN6MZng7isaJGHfvbjlHGg3w3HPaPDbtLboz1wC/j+bcvylyrXSOrCVG5lq5XCtOFDZo0CCZPn26wbq+ffvKwoULW2w/YcIEGT16tMG62NhYmThxooiINDQ0SEBAgKxYsUL//u3bt8Xb21vef//9VsVUWVkpAKSystKYQ2mmtrZWPv/8c6mtrRURkXffFXFwEAG0z88/b7i8cqX2oVQbpfff1hjHjxdxcGgQQESlapDHH9e+1/ShUomo1drXarXIhx/e14/W5ly61JjTez1UqsZcT50qMnu24c/jmWcMl998U+TPfzZc99xztvt9NO3+G/693NCOY7SGPDLX7WX/d+ba1L+L2/r3WyVy5/2sLae2thbu7u74+9//jmeffVa/PiUlBUeOHEF2C6Ncu3fvjrlz52Lu3Ln6de+88w4yMjJw8eJFnD9/Hj179kReXh4GDBigbzN+/Hh07NgRH3/8cbNt1tTUoKamRr9cVVWFbt264erVq/Dy8mrz8dXV1SErKwujRo3CTz85oWdPR4jY6fXc7cCnn9ajc2egZ0/hsuCP8gAAFHRJREFUfblasGGDCsnJamg0KqjVgjFjGvD11+p7f5CIqI3UakFhYb3JfidXVVXBz88PlZWVRv39djTN7tvm6tWr0Gg08Pf3N1jv7++P0tLSFj9TWlp61/a655baXLx4scVtpqen4/XXX2+2PjMzE+7u7q07mLvIysrC8eN+EHn0vrdFrSUAGgtPB4cGVFd/g5s3b+PYMeDYMeUia6/8/YG1a11x5YoHAgNvAgD+8Y8YFvBEZDYajQqffHIQ/fqVm2R71dXVbfqcosWQjuqO2e9EpNk6Y9sbs820tDSkpqbql3U9QzExMSbrGerf3wlLlggaGprGcOcfbG0nnVJtlN6/qWJUqwVvvKHBokWNvRyrVzcgKekJkHE0Go2+t8jBQXQnyvTvK/2zVrqN0vtnjO2rjdL7t8YY1WpBQsJgk/YMtYWiA6j9/PygVqub9QKVlZU169nRCQgIuGv7gIAAADBqmy4uLvDy8jJ4AICTk9N9P3TbCQtzwrp1Kv3VO2o18OKLhsvr1qkUbaP0/u8vRvn3smDtWhUWLnTEhQsq7N4NXLigwtSpjib5edrbY+rUxjxevKjCBx8Y5prfR3Pv//5zrXSOrCdG5lqJXK9dq0JYmGl/b7WJaYcuGW/QoEHyhz/8wWBdeHj4XQdQjxkzxmDd6NGjmw2gXrlypf79mpqadjGAWkQ7UHX3bu1zS8tKt1F6/22N8fz5Wlm+fJ+cP9+YazKPlnLN76N5tm2qXCudI2uIkblWNtem0ta/34oXQ5s2bRInJydZv3695Ofny5w5c8TDw0MuXLggIiKJiYkGhdF3330narVaVqxYIQUFBbJixQpxdHSU77//Xt9mxYoV4u3tLVu3bpXjx4/LpEmTJDAwUKqqqloVkzmLITIP5tpymGvLYa4th7m2HHPmuq1/vxUfMxQfH4/y8nIsW7YMV65cQWRkJLZv346QkBAAQHFxMRyaTJU7dOhQbNq0CYsWLcLixYvRs2dPbN68GYOb3IJ8/vz5uHXrFpKTk1FRUYHBgwcjMzMTnp6eFj8+IiIiat8UL4YAIDk5GcnJyS2+t2fPnmbr4uLiEBcX96vbU6lUWLp0KZYuXWqiCImIiMhWKT4DNREREZGSWAwRERGRXWMxRERERHaNxRARERHZNRZDREREZNdYDBEREZFdYzFEREREdo3FEBEREdk1FkNERERk19rFDNTtjYj2jrpVVVX3tZ26ujpUV1ejqqqq7XfSpVZhri2HubYc5tpymGvLMWeudX+3dX/HW4vFUAuuX78OAOjWrZvCkRAREZGxrl+/Dm9v71a3V4mx5ZMdaGhowI8//ghPT0+oVKo2b6eqqgrdunXDpUuX4OXlZcII6U7MteUw15bDXFsOc2055sy1iOD69esICgoyuMn7vbBnqAUODg4IDg422fa8vLz4j8tCmGvLYa4th7m2HObacsyVa2N6hHQ4gJqIiIjsGoshIiIismvqpUuXLlU6CFumVqsxcuRIODryjKS5MdeWw1xbDnNtOcy15bS3XHMANREREdk1niYjIiIiu8ZiiIiIiOwaiyEiIiKyayyGiIiIyK6xGDKj1atXIywsDK6uroiKisK+ffuUDsmqpaen45FHHoGnpye6dOmC//iP/8Dp06cN2tTU1GDWrFnw8/ODh4cHxo0bh5KSEoUith3p6elQqVSYM2eOfh1zbTqXL1/G5MmT4evrC3d3dzz00EPIzc3Vvy8iWLp0KYKCguDm5oaRI0fi5MmTCkZsverr67Fo0SKEhYXBzc0NPXr0wLJly9DQ0KBvw3y3zd69e/HMM88gKCgIKpUKn3/+ucH7rclrRUUFEhMT4e3tDW9vbyQmJuLatWvmD17ILDZt2iROTk7ywQcfSH5+vqSkpIiHh4dcvHhR6dCsVmxsrGzYsEFOnDghR44ckbFjx0r37t3lxo0b+jbTp0+Xrl27SlZWluTl5cnjjz8uDz74oNTX1ysYuXU7dOiQhIaGSv/+/SUlJUW/nrk2jV9++UVCQkLkpZdekoMHD0pRUZHs2rVLzp49q2+zYsUK8fT0lC1btsjx48clPj5eAgMDpaqqSsHIrdMbb7whvr6+8vXXX0tRUZH8/e9/lw4dOkhGRoa+DfPdNtu3b5fXXntNtmzZIgBk27ZtBu+3Jq+jR4+WyMhIOXDggBw4cEAiIyPl6aefNnvsLIbMZNCgQTJ9+nSDdX379pWFCxcqFJHtKSsrEwCSnZ0tIiLXrl0TJycn2bRpk77N5cuXxcHBQXbs2KFUmFbt+vXr0rt3b8nKypIRI0boiyHm2nQWLFggw4YN+9X3GxoaJCAgQFasWKFfd/v2bfH29pb333/fEiHalLFjx8rLL79ssO65556TyZMniwjzbSp3FkOtyWt+fr4AkO+//17fJicnRwDIqVOnzBovT5OZQW1tLXJzcxETE2OwPiYmBgcOHFAoKttTWVkJAPDx8QEA5Obmoq6uziDvQUFBiIyMZN7baMaMGRg7dix++9vfGqxnrk3nyy+/xMCBA/Gf//mf6NKlCwYMGIAPPvhA/35RURFKS0sNcu3i4oIRI0Yw120wbNgwfPPNNzhz5gwA4OjRo9i/fz+eeuopAMy3ubQmrzk5OfD29sbgwYP1bYYMGQJvb2+z5759TP1oY65evQqNRgN/f3+D9f7+/igtLVUoKtsiIkhNTcWwYcMQGRkJACgtLYWzszM6depk0JZ5b5tNmzYhLy8PP/zwQ7P3mGvTOX/+PNasWYPU1FT86U9/wqFDhzB79my4uLggKSlJn8+Wfp9cvHhRiZCt2oIFC1BZWYm+fftCrVZDo9HgzTffxKRJkwCA+TaT1uS1tLQUXbp0afbZLl26mP33CoshM1KpVAbLItJsHbXNzJkzcezYMezfv/+ebZl34126dAkpKSnIzMyEq6trqz/HXBuvoaEBAwcOxJ///GcAwIABA3Dy5EmsWbMGSUlJ+nb8fWIamzdvxsaNG/Hpp5/iN7/5DY4cOYI5c+YgKCgIL774or4d820e98prSzm2RO55mswM/Pz8oFarm1WyZWVlzapiMt6sWbPw5ZdfYvfu3QgODtavDwgIQG1tLSoqKgzaM+/Gy83NRVlZGaKiouDo6AhHR0dkZ2fj3XffhaOjI/z9/ZlrEwkMDERERITBuvDwcBQXFwPQfq8B8PeJibz66qtYuHAhJk6ciH79+iExMRFz585Feno6AObbXFqT14CAAPz000/NPvvzzz+bPfcshszA2dkZUVFRyMrKMliflZWFoUOHKhSV9RMRzJw5E1u3bsW3336LsLAwg/ejoqLg5ORkkPcrV67gxIkTzLuRnnzySRw/fhxHjhzRPwYOHIiEhAT9a+baNB599NFmU0ScOXMGISEhAICwsDAEBAQY5Lq2thbZ2dnMdRtUV1fDwcHwT59ardZfWs98m0dr8hodHY3KykocOnRI3+bgwYOorKw0f+7NOjzbjukurV+/fr3k5+fLnDlzxMPDQy5cuKB0aFbrD3/4g3h7e8uePXvkypUr+kd1dbW+zfTp0yU4OFh27doleXl58sQTT/BybxNpejWZCHNtKocOHRJHR0d58803pbCwUD755BNxd3eXjRs36tusWLFCvL29ZevWrXL8+HGZNGkSL/VuoxdffFG6du2qv7R+69at4ufnJ/Pnz9e3Yb7b5vr163L48GE5fPiwAJBVq1bJ4cOH9VPKtCavo0ePlv79+0tOTo7k5ORIv379eGm9tXvvvfckJCREnJ2d5eGHH9ZfAk5tA6DFx4YNG/Rtbt26JTNnzhQfHx9xc3OTp59+WoqLi5UL2obcWQwx16bz1VdfSWRkpLi4uEjfvn1l3bp1Bu83NDTIkiVLJCAgQFxcXOSxxx6T48ePKxStdauqqpKUlBTp3r27uLq6So8ePeS1116TmpoafRvmu212797d4u/oF198UURal9fy8nJJSEgQT09P8fT0lISEBKmoqDB77CoREfP2PRERERG1XxwzRERERHaNxRARERHZNRZDREREZNdYDBEREZFdYzFEREREdo3FEBEREdk1FkNERERk11gMEZHZjRw5EnPmzFE6DD0RwdSpU+Hj4wOVSoUjR44oHRIRKYh3rSciu7Njxw589NFH2LNnD3r06AE/Pz+lQyIiBbEYIiKrpNFooFKpmt10szXOnTuHwMBA3niTiADwNBmR3Rg5ciRmz56N+fPnw8fHBwEBAVi6dKn+/QsXLjQ7ZXTt2jWoVCrs2bMHALBnzx6oVCrs3LkTAwYMgJubG5544gmUlZXhn//8J8LDw+Hl5YVJkyahurraYP/19fWYOXMmOnbsCF9fXyxatAhN7wZUW1uL+fPno2vXrvDw8MDgwYP1+wWAjz76CB07dsTXX3+NiIgIuLi44OLFiy0ea3Z2NgYNGgQXFxcEBgZi4cKFqK+vBwC89NJLmDVrFoqLi6FSqRAaGtriNprur0+fPnB3d0dcXBxu3ryJjz/+GKGhoejUqRNmzZoFjUaj/1xFRQWSkpLQqVMnuLu7Y8yYMSgsLAQAVFZWws3NDTt27DDY19atW+Hh4YEbN24AAC5fvoz4+Hh06tQJvr6+GD9+PC5cuKBvv2fPHgwaNAgeHh7o2LEjHn300V/Nhe7nunXrVjz++ONwd3fHgw8+iJycnBbbE9kls9/9jIjahREjRoiXl5csXbpUzpw5Ix9//LGoVCrJzMwUEZGioiIBIIcPH9Z/pqKiQgDI7t27RaTxRoxDhgyR/fv3S15envTq1UtGjBghMTExkpeXJ3v37hVfX19ZsWKFwb47dOggKSkpcurUKdm4caO4u7sb3JD0hRdekKFDh8revXvl7Nmz8l//9V/i4uIiZ86cERGRDRs2iJOTkwwdOlS+++47OXXqlNy4caPZcZaUlIi7u7skJydLQUGBbNu2Tfz8/GTJkiUiInLt2jVZtmyZBAcHy5UrV6SsrKzFfOn2N2rUKMnLy5Ps7Gzx9fWVmJgYmTBhgpw8eVK++uorcXZ2lk2bNuk/N27cOAkPD5e9e/fKkSNHJDY2Vnr16iW1tbUiIvL888/L5MmTDfb1/PPPy6RJk0RE5ObNm9K7d295+eWX5dixY5Kfny8vvPCC9OnTR2pqaqSurk68vb3lj3/8o5w9e1by8/Plo48+0t8Z/E66n2vfvn3l66+/ltOnT0tcXJyEhIRIXV1di58hsjcshojsxIgRI2TYsGEG6x555BFZsGCBiBhXDO3atUvfJj09XQDIuXPn9OumTZsmsbGxBvsODw+XhoYG/boFCxZIeHi4iIicPXtWVCqVXL582SC+J598UtLS0kREW5wAkCNHjtz1OP/0pz9Jnz59DPb13nvvSYcOHUSj0YiIyDvvvCMhISF33Y5uf2fPnjU4Lnd3d7l+/bp+XWxsrEybNk1ERM6cOSMA5LvvvtO/f/XqVXFzc5P//d//FRGRrVu3SocOHeTmzZsiIlJZWSmurq7yj3/8Q0RE1q9f3yz+mpoacXNzk507d0p5ebkAkD179tw1fh3dz/XDDz/Urzt58qQAkIKCglZtg8jW8TQZkR3p37+/wXJgYCDKysruazv+/v5wd3dHjx49DNbdud0hQ4ZApVLpl6Ojo1FYWAiNRoO8vDyICB544AF06NBB/8jOzsa5c+f0n3F2dm52DHcqKChAdHS0wb4effRR3LhxAyUlJUYdp7u7O3r27GlwXKGhoejQoUOLx1pQUABHR0cMHjxY/76vry/69OmDgoICAMDYsWPh6OiIL7/8EgCwZcsWeHp6IiYmBgCQm5uLs2fPwtPTU58HHx8f3L59G+fOnYOPjw9eeuklxMbG4plnnsFf/vIXXLly5Z7H0jRvgYGBANCmnz2RLeIAaiI74uTkZLCsUqnQ0NAAAPqByNJkHE9dXd09t6NSqe663dZoaGiAWq1Gbm4u1Gq1wXtNCw83NzeDIqclItKsje6Y7vXZO7V0XHc71qa5+7WYnJ2dERcXh08//RQTJ07Ep59+ivj4eDg6an8dNzQ0ICoqCp988kmz7XTu3BkAsGHDBsyePRs7duzA5s2bsWjRImRlZWHIkCGtOhZdLMb8jIhsGXuGiAhA4x/apr0Mppx/5/vvv2+23Lt3b6jVagwYMAAajQZlZWXo1auXwSMgIMCo/URERODAgQMGhcmBAwfg6emJrl27muRY7rbv+vp6HDx4UL+uvLwcZ86cQXh4uH5dQkICduzYgZMnT2L37t1ISEjQv/fwww+jsLAQXbp0aZYLb29vfbsBAwYgLS0NBw4cQGRkJD799FOzHhuRLWMxREQAtL0uQ4YMwYoVK5Cfn4+9e/di0aJFJtv+pUuXkJqaitOnT+Ozzz7DX//6V6SkpAAAHnjgASQkJCApKQlbt25FUVERfvjhB6xcuRLbt283aj/Jycm4dOkSZs2ahVOnTuGLL77AkiVLkJqa2qbL8I3Ru3dvjB8/Hq+88gr279+Po0ePYvLkyejatSvGjx+vbzdixAj4+/sjISEBoaGhBj06CQkJ8PPzw/jx47Fv3z4UFRUhOzsbKSkpKCkpQVFREdLS0pCTk4OLFy8iMzOzWbFFRMZhMUREev/93/+Nuro6DBw4ECkpKXjjjTdMtu2kpCTcunULgwYNwowZMzBr1ixMnTpV//6GDRuQlJSEefPmoU+fPhg3bhwOHjyIbt26GbWfrl27Yvv27Th06BAefPBBTJ8+HVOmTDFpYXc3GzZsQFRUFJ5++mlER0dDRLB9+/Zmp6kmTZqEo0ePGvQKAdpxSnv37kX37t3x3HPPITw8HC+//DJu3boFLy8vuLu749SpU3j++efxwAMPYOrUqZg5cyamTZtmkeMjskUq+bWT3ERERER2gD1DREREZNdYDBEREZFdYzFEREREdo3FEBEREdk1FkNERERk11gMERERkV1jMURERER2jcUQERER2TUWQ0RERGTXWAwRERGRXWMxRERERHaNxRARERHZtf8P88K+24Z4kd4AAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'boring chutes & ladders (no chutes or ladders)')" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(1:100, diff([(M^n * e₁)[end] for n = 0:100]), \"b.-\")\n", - "xlabel(\"number of moves n\")\n", - "ylabel(\"probability of finishing in n moves\")\n", - "grid()\n", - "title(\"boring chutes & ladders (no chutes or ladders)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And the expected number of moves is\n", - "\n", - "$$\n", - "\\sum_{n=1}^\\infty n [p(n)-p(n-1)]\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "29.047619047619005" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum((1:100) .* diff([(M^n * e₁)[end] for n = 0:100]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding chutes and ladders\n", - "\n", - "Now, we will add in the effect of chutes and ladders. After you make each move represented by $M$ above, then we additionally go up a ladder or down a chute if we landed on one. We represent this by a transition matrix $T$, where $T_{ij} = 1$ if there is a ladder/chute from $j$ to $i$. For positions $j$ with no chute or ladder, we set $T_{jj}=1$.\n", - "\n", - "The following is the list of chutes and ladders from the game board shown at the top:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "T = zeros(101,101)\n", - "\n", - "for t in (1=>39, 4=>14, 9=>31, 28=>84, 36=>44, 51=>67, 80=>100, 71=>91, # ladders\n", - " 16=>6, 47=>26, 49=>11, 56=>53, 64=>60, 92=>73, 95=>75, 98=>78) # chutes\n", - " T[t[2]+1,t[1]+1] = 1\n", - "end\n", - "\n", - "# Set T[j,j] = 1 in spaces with no chute/ladder\n", - "for j = 1:101\n", - " if all(T[:,j] .== 0)\n", - " T[j,j] = 1\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The matrix T is also a Markov matrix!" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×101 Array{Float64,2}:\n", - " 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(T,1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Making the move $M$ followed by the transition $T$ is represented by their product $TM$, which is also a Markov matrix. (The product of any Markov matrices is also a Markov matrix.)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×101 Array{Float64,2}:\n", - " 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(T*M, 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After a single move, the probability distribution is $TM e_1$, and we see the effect of the two ladders that can be reached in a single move:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGkCAYAAADKRqc6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdcFNf6P/DPsuxSVlylsyDFAioqKskVS2wREKMQCxIL1ni9UWOJlxgTvWByY0kiGmOw5CJqsHBNDGIJBA22G2MFYwvF2AURVFDqwj6/P/ztfllpSxkWk+fta/7Y2bMzn5mRPTtnzswRERGBMcYYYy8lA30HYIwxxlj9cUXOGGOMvcS4ImeMMcZeYlyRM8YYYy8xrsgZY4yxlxhX5IwxxthLjCtyxhhj7CXGFTljjDH2EuOKnDHGGHuJcUVeR87Ozhg+fHijLlMkEmHOnDm1ljt69ChEIhGOHj2qmRcWFgaRSKRVbuDAgRg4cKDmdWFhIcLCwrQ+J6StW7dCJBLh5s2b1WbSxdWrVxEWFqa1HF28uK6bN29CJBLhiy++qNNyarN8+XLExsZWml/VcWqOYmJi4O7uDhMTE4hEIqSkpODQoUMICwtr0hx3797F/PnzMWDAALRq1QoikQhbt25t0gyMvcy4In+J9OzZE6dOnULPnj1rLBcREYGIiAjN68LCQixbtkyvFcuLmXRx9epVLFu2rM4VeX3WVR/VVeS6Hid9evjwIYKDg9GuXTvEx8fj1KlTcHV1xaFDh7Bs2bImzZKRkYEdO3ZAKpVi2LBhTbpuxv4MDPUdQN+KiopgYmKi7xg6admyJby8vGot17lz5yZIUzdNkamwsBCmpqZ6335dj5M+paWlQalUYuLEiRgwYIDg61Mfm6r0798fDx8+BACcO3cOu3btEjwPY38mL/0ZubppOTk5GaNGjULLli0hl8sxceJEzZeDmrpZfO/evejRoweMjY01Zx/FxcVYvHgxXFxcIJVKYW9vj9mzZ+PJkydVrveHH35At27dYGxsjLZt22LdunVa7xcXF2PhwoXo3r075HI5zM3N0bt3b+zbt6/abdm0aRNcXV1hZGSEzp07Y/fu3Vrv69pkW7Fp+ebNm7CysgIALFu2DCKRCCKRCFOmTMGJEycgEomq/OLcvn07RCIRzp49W+O6fv31V/Tt2xfGxsZQKBRYvHgxlEpljZnUNmzYAA8PD7Ro0QJmZmbo2LEjPvzwQwDPm+cDAwMBAIMGDdLkVje5Dhw4EF26dMHx48fRp08fmJqaYtq0adWuCwBUKhU+/fRTODo6wtjYGK+88gqOHDmiVWbKlClwdnau9NkXL2GIRCIUFBRg27ZtmmzqdVZ3nOLi4tC7d2+YmprCzMwM3t7eOHXqVJXruXLlCsaNGwe5XA4bGxtMmzYNeXl5lXK9KDExEQEBAXBwcICxsTHat2+PmTNnIicnR2sb+/XrBwAICgrSZJ8yZQq+/vprzfapJ3WLCBEhIiIC3bt3h4mJCVq3bo0xY8bgjz/+0MpQ07GpioFBw76G1Os7deoU+vTpAxMTEzg7OyMqKgoAcPDgQfTs2ROmpqbo2rUr4uPjKy3j5MmTeP3112FmZgZTU1P06dMHBw8e1Lx/8eJFiEQiREZGVvrsjz/+CJFIhLi4OM289PR0jB8/HtbW1jAyMkKnTp00+5axRkcvudDQUAJATk5OFBISQgkJCRQeHk4ymYx69OhBpaWlmrJOTk5kZ2dHbdu2pS1btlBSUhKdOXOGVCoV+fr6kqGhIS1dupR++ukn+uKLLzTLKC4u1lqGvb09OTo60pYtW+jQoUM0YcIEAkCff/65ptyTJ09oypQp9O2339LPP/9M8fHx9M9//pMMDAxo27ZtWtsAgNq0aUOdO3emXbt2UVxcHA0dOpQA0J49ezTlkpKSCAAlJSVV2v6KBgwYQAMGDCAiouLiYoqPjycANH36dDp16hSdOnWKMjIyiIioR48e1Ldv30r79dVXX6VXX321xn1/5coVMjU11eTet28f+fr6kqOjIwGgGzduVJmJiGjXrl0EgN5991366aef6PDhw7Rx40aaO3cuERFlZ2fT8uXLCQB9/fXXmtzZ2dma5Zmbm1ObNm3oq6++oqSkJDp27FiV67px44ZmH/fr14++//572rNnD7366qskkUjol19+0ZSdPHkyOTk5VdrWF/fzqVOnyMTEhIYNG6bJduXKFSKq+jjt2LGDAJCPjw/FxsZSTEwMeXp6klQqpRMnTlRaj5ubG/3rX/+ixMRECg8PJyMjI5o6dWqNx4OIaMOGDbRixQqKi4ujY8eO0bZt28jDw4Pc3Nw0fwsZGRn09ddfEwBavny5JntGRgaNGTOGAGi26dSpU5r//zNmzCCJREILFy6k+Ph42rlzJ3Xs2JFsbGwoKytL61hXd2xqc/bsWQJAUVFROpVXr8/CwoLc3NwoMjKSEhISaPjw4QSAli1bRl27dqVdu3bRoUOHyMvLi4yMjOjevXuazx89epQkEgl5enpSTEwMxcbGko+PD4lEItq9e7emXHV/K2PHjiVra2tSKpVE9PzvQi6XU9euXWn79u30008/0cKFC8nAwIDCwsJ03i7GdPWnqcgXLFigNV/9xRkdHa2Z5+TkRGKxmFJTU7XKqiu6zz77TGt+TEwMAaDNmzdrLUMkElFKSopWWW9vb2rZsiUVFBRUmbOsrIyUSiVNnz6devToofUeADIxMdH6MiwrK6OOHTtS+/btNfPqU5ETET18+JAAUGhoaKVcUVFRBICSk5M1886cOUMAKv3geFFQUFC1uWuryOfMmUOtWrWqcfl79uyptL0VlweAjhw5UuV7VVXkCoWCioqKNPPz8/PJ3NychgwZopmna0VORCSTyWjy5MmVyr54nMrLy0mhUFDXrl2pvLxcU+7p06dkbW1Nffr0qbSeF/8vzpo1i4yNjUmlUlVaX3VUKhUplUq6desWAaB9+/ZVyljxhyIR0ezZsyttJ9HzHy4AaPXq1Vrz79y5QyYmJvT+++9r5tV0bGpT34ocAJ07d04zLzc3l8RiMZmYmGhV2ikpKQSA1q1bp5nn5eVF1tbW9PTpU828srIy6tKlCzk4OGj2+bp16wiA1vfHo0ePyMjIiBYuXKiZ5+vrSw4ODpSXl6eVc86cOWRsbEyPHj3SedsY08VL37SuNmHCBK3XY8eOhaGhIZKSkrTmd+vWDa6urlrzfv75ZwDPmxwrCgwMhEwmq9T86u7uDg8PD61548ePR35+Pi5cuKCZt2fPHvTt2xctWrSAoaEhJBIJIiMjce3atUr5X3/9ddjY2Ghei8ViBAUFISMjA3fv3q1l6+tv3LhxsLa21mr2++qrr2BlZYWgoKAaP5uUlFRt7tr87W9/w5MnTzBu3Djs27dPq+lXV61bt8bgwYN1Lj9q1CgYGxtrXpuZmWHEiBE4fvw4ysvL67x+XaWmpuL+/fsIDg7WakZu0aIFRo8ejV9//RWFhYVan/H399d63a1bNxQXFyM7O7vGdWVnZ+Mf//gH2rRpo/k/5+TkBABV/r/T1YEDByASiTBx4kSUlZVpJltbW3h4eFS6jFDXY9NQdnZ28PT01Lw2NzeHtbU1unfvDoVCoZnfqVMnAMCtW7cAAAUFBTh9+jTGjBmDFi1aaMqJxWIEBwfj7t27SE1NBfD8O8bIyEirR/2uXbtQUlKCqVOnAnh+Se3IkSMYOXIkTE1NtfbVsGHDUFxcjF9//VWw/cD+mv40Fbmtra3Wa0NDQ1hYWCA3N1drvp2dXaXP5ubmwtDQUHMtWU0kEsHW1rbSMl5cV8V56rJ79+7F2LFjYW9vj+joaJw6dQpnz57FtGnTUFxcXGv+qpYpBCMjI8ycORM7d+7EkydP8PDhQ/z3v//F22+/DSMjoxo/m5ubW2PumgQHB2PLli24desWRo8eDWtra/Tq1QuJiYk6Z6/qWNakuqylpaV49uxZnZZVF+rjV1VehUIBlUqFx48fa823sLDQeq0+FkVFRdWuR6VSwcfHB3v37sX777+PI0eO4MyZM5qKo6bP1ubBgwcgItjY2EAikWhNv/76a6UfYnU9Ng1lbm5eaZ5UKq00XyqVAoDmb/Dx48cgomqPDfB/x8/c3Bz+/v7Yvn275off1q1b8be//Q3u7u6asmVlZfjqq68q7Sd1j/z6/GhlrCZ/ml7rWVlZsLe317wuKytDbm5upS/EF++5Bp5/aZaVleHhw4dalTkRISsrC6+++mqldVW1fvWyACA6OhouLi6IiYnRWmdJSUm1+WtbplDeeecdrFy5Elu2bEFxcTHKysrwj3/8o9bPWVhY1Ji7NlOnTsXUqVNRUFCA48ePIzQ0FMOHD0daWprmLLImVR3LmlSXVSqVas7GjI2NqzxGDfnyVR+/zMzMSu/dv38fBgYGaN26db2Xr3b58mVcvHgRW7duxeTJkzXzMzIyGrxsS0tLiEQinDhxosofeC/Oq+ux0ZfWrVvDwMCg2mMDPN92talTp2LPnj1ITEyEo6Mjzp49iw0bNmgtT302P3v27CrX6eLi0shbwf7q/jRn5Dt27NB6/d///hdlZWU6PYTk9ddfB/C88q3o+++/R0FBgeZ9tStXruDixYta83bu3AkzMzPNvcMikQhSqVTrCy0rK6vaXutHjhzBgwcPNK/Ly8sRExODdu3awcHBodZtqEltZ3N2dnYIDAxEREQENm7ciBEjRsDR0bHW5Q4aNKja3HUhk8ng5+eHjz76CKWlpbhy5YpOuetq7969Wq0hT58+xf79+/Haa69BLBYDeH5nQ3Z2ttY2lZaWIiEhodLyjIyMdMrm5uYGe3t77Ny5E0SkmV9QUIDvv/9e05O9odT/116sVDdt2qTzMqrb58OHDwcR4d69e3jllVcqTV27dm1gev2QyWTo1asX9u7dq7XNKpUK0dHRcHBw0LoU5+PjA3t7e0RFRSEqKgrGxsYYN26c5n1TU1MMGjQIycnJ6NatW5X7Sugf5uyv509zRr53714YGhrC29sbV65cwdKlS+Hh4YGxY8fW+llvb2/4+vpi0aJFyM/PR9++ffHbb78hNDQUPXr0QHBwsFZ5hUIBf39/hIWFwc7ODtHR0UhMTMSqVas0X8jq29xmzZqFMWPG4M6dO/jkk09gZ2eH9PT0ShksLS0xePBgLF26FDKZDBEREfj9998r3YJWH2ZmZnBycsK+ffvw+uuvw9zcHJaWllq3Wc2bNw+9evUCAM1tO7VZsmQJ4uLiMHjwYPzrX/+Cqakpvv76axQUFNT62RkzZsDExAR9+/aFnZ0dsrKysGLFCsjlck0LSJcuXQAAmzdvhpmZGYyNjeHi4lLvL0KxWAxvb2+89957UKlUWLVqFfLz87UegBIUFIR//etfeOuttxASEoLi4mKsW7euymvoXbt2xdGjR7F//37Y2dnBzMwMbm5ulcoZGBjgs88+w4QJEzB8+HDMnDkTJSUl+Pzzz/HkyROsXLmyXtvzoo4dO6Jdu3b44IMPQEQwNzfH/v3763S5Ql0hr1q1Cn5+fhCLxejWrRv69u2Lv//975g6dSrOnTuH/v37QyaTITMzEydPnkTXrl3xzjvv1Dv7d999BwCaW9nOnTunaSUZM2ZMvZerixUrVsDb2xuDBg3CP//5T0ilUkRERODy5cvYtWuX1o9xsViMSZMmITw8HC1btsSoUaMgl8u1lvfll1+iX79+eO211/DOO+/A2dkZT58+RUZGBvbv36/pk8NYo9FnT7vGoO7le/78eRoxYgS1aNGCzMzMaNy4cfTgwQOtsk5OTvTGG29UuZyioiJatGgROTk5kUQiITs7O3rnnXfo8ePHVS7ju+++I3d3d5JKpeTs7Ezh4eGVlrly5UpydnYmIyMj6tSpE33zzTdV9n4GQLNnz6aIiAhq164dSSQS6tixI+3YsUOrXH17rRMRHT58mHr06EFGRkYEoMre1s7OztSpU6cq9091/ve//2lu6bG1taWQkBDavHlzrb3Wt23bRoMGDSIbGxuSSqWkUCho7Nix9Ntvv2ktf+3ateTi4kJisVirN/OAAQPI3d29ykzV9VpftWoVLVu2jBwcHEgqlVKPHj0oISGh0ucPHTpE3bt3JxMTE2rbti2tX7++yv2ckpJCffv2JVNTUwKgWWdVx4mIKDY2lnr16kXGxsYkk8no9ddfp//9739aZdTrefjwodZ89d0FFfdpVa5evUre3t5kZmZGrVu3psDAQLp9+3aluxaq67VeUlJCb7/9NllZWZFIJKq0zi1btlCvXr1IJpORiYkJtWvXjiZNmqTVY7ymY1MdANVOtalufdX9vav/3io6ceIEDR48WLNdXl5etH///irXl5aWpsmWmJhYZZkbN27QtGnTyN7eniQSCVlZWVGfPn3o3//+d63bw1hdiYgqtPW9hMLCwrBs2TI8fPhQ61oWq5vffvsNHh4e+PrrrzFr1ix9x2GMMaajP03TOquf69ev49atW/jwww9hZ2dX6RY8xhhjzdufprMbq59PPvkE3t7eePbsGfbs2dMona4YY+xld+DAAbi5uaFDhw74z3/+o+84NXrpm9YZY4yxxlRWVobOnTsjKSkJLVu2RM+ePXH69Okqn1fQHPAZOWOMMVbBmTNn4O7uDnt7e5iZmWHYsGFV3oLaXHBFzhhj7E/l+PHjGDFiBBQKBUQiEWJjYyuViYiIgIuLC4yNjeHp6YkTJ05o3rt//77WA8YcHBxw7969JsleH1yRM8YY+1MpKCiAh4cH1q9fX+X7MTExmD9/Pj766CMkJyfjtddeg5+fH27fvg0AqOqKc3N+WqFOvdZLSkq0HlupUqnw6NEjWFhYNOuNY4wxVhkR4enTp1AoFA0eD74mxcXFKC0tbfByiKhSXWNkZFTteBB+fn7w8/Ordnnh4eGYPn063n77bQDA2rVrkZCQgA0bNmDFihWwt7fXOgO/e/eu5oFZzZIuN5urH1LBE0888cTTn2e6c+eOYA8pKSoqIlOIGiVnixYtKs2raljmqgCgH374QfO6pKSExGIx7d27V6vc3LlzqX///kREpFQqqX379nT37l3Kz8+n9u3bU05OTqPtm8am0xn54sWL8d5772le5+XlwdHREWlpac2iF59SqURSUhIGDRoEiUSi7zgAOJOuOJNuOJNuOJNuHj16BFdXV5iZmQm2jtLSUhSCMAEySFH/lttSEHY8e4Y7d+6gZcuWmvm1jc5YnZycHJSXl2sNvwwANjY2moGVDA0NsXr1agwaNAgqlQrvv/9+s35Gvk4VeXVNGObm5s1i45RKJUxNTWFhYdFs/lA4k244k244k244U900xaVRY4gaVJGrG/5btmypVZE31IvbTi803/v7+8Pf37/R1ickfrIbY4wxwRhABIMG/GAwoEYMg+cDVInF4krDGmdnZ1c6S39ZcK91xhhjgjFohAkA8vPztaaKHbDrQiqVwtPTs9KogImJiejTp0+9lqlvfEbOGGOs2WvTpo3W69DQUISFhVVZ9tmzZ8jIyNC8vnHjBlJSUmBubg5HR0e89957CA4OxiuvvILevXtj8+bNuH37Nv7xj38IuQmC4YqcMcaYYEQiwKABl+JFAECoU2e3c+fOYdCgQZrX6s7akydPxtatWxEUFITc3Fx8/PHHyMzMRJcuXXDo0CE4OTnVP6gecUXOGGNMMBWbx+v7eaBund0GDhxY5UNdKpo1a9afZshmvkbOGGOMvcT4jJwxxphgDEQN7LUOPH8EDKsWV+SMMcYE01hN66x6XJEzxhhr9vLz87Ve1/Ss9b8a/rHDGGNMMAaihk/A89vP5HK5ZlqxYoV+N6wZafSKvLZxYIkIYWFhUCgUMDExwcCBA3HlyhWtMo8fP0ZwcLDmgAUHB+PJkyeNmvPp06eYP38+nJycYGJigj59+uDs2bOa9x88eIApU6ZAoVDA1NQUQ4cORXp6eqNmqGumZ8+eYc6cOXBwcICJiQk6deqEDRs26DWTSCSqcvr888/1lgkArl27Bn9/f8jlcpiZmcHLy0szRKE+Mk2ZMqXSPvLy8hIsjy6ZKpo5cyZEIhHWrl2r10xhYWHo2LEjZDIZWrdujSFDhuD06dN6y6RUKrFo0SJ07doVMpkMCoUCkyZNwv379/WWCQD27t0LX19fWFpaQiQSISUlRdA8DdFYD4S5c+cO8vLyNNPixYubdDuas0avyGsbB/azzz5DeHg41q9fj7Nnz8LW1hbe3t54+vSppsz48eORkpKC+Ph4xMfHIyUlBcHBwY2a8+2330ZiYiK+/fZbXLp0CT4+PhgyZAju3bsHIsKbb76JP/74A/v27UNycjKcnJwwZMgQFBQUNGoOXTMBwIIFCxAfH4/o6Ghcu3YNCxYswLvvvot9+/bpLVNmZqbWtGXLFohEIowePVpvma5fv45+/fqhY8eOOHr0KC5evIilS5fC2NhYb5kAYOjQoVr76tChQ4Ll0TUTAMTGxuL06dNQKBSC5tElk6urK9avX49Lly7h5MmTcHZ2ho+PDx4+fKiXTIWFhbhw4QKWLl2KCxcuYO/evUhLSxP8Gdy17aeCggL07dsXK1euFDRHc6K+/Uw9cbN6BfUZMi0vL48A1DqsG14YPk6lUpGtrS2tXLlSM6+4uJjkcjlt3LiRiIiuXr1KAOjXX3/VlDl16hQBoN9//73K9ZSWllJsbCyVlpbqlL+wsJDEYjEdOHBAa76Hhwd99NFHlJqaSgDo8uXLmvfKysrI3NycvvnmG53W0diZiIjc3d3p448/1nq/Z8+etGTJEr1lelFAQAANHjxYp+ULlSkoKIgmTpyoc4amyDR58mQKCAhoVpmIiO7evUv29vZ0+fJlcnJyojVr1ug9U0Xq75rDhw83m0xnzpwhAHTr1i29Z7px4wYBoOTkZJ2WrZaTk0MAKC8vr06fqwv1sVtoKKcPJa3qPS00lAue9WXXpNfIb9y4gaysLPj4+GjmGRkZYcCAAfjll18AAKdOnYJcLtcaxN3LywtyuVxTpqHKyspQXl5e6QzNxMQEJ0+e1DzDt+L7YrEYUqkUJ0+ebJQMdc0EAP369UNcXJym1SApKQlpaWnw9fXVW6aKHjx4gIMHD2L69OmC5NElk0qlwsGDB+Hq6gpfX19YW1ujV69elS7xNGUmtaNHj8La2hqurq6YMWMGsrOz9ZpJpVIhODgYISEhcHd3FyxLXTJVVFpais2bN0Mul8PDw6NZZAKeD+MsEonQqlWrZpOpOWuspnVWvSbdR+rRZmoaBzYrKwvW1taVPmttbV1ptJr6MjMzQ+/evfHJJ5/g/v37KC8vR3R0NE6fPo3MzEx07NgRTk5OWLx4MR4/fozS0lKsXLkSWVlZyMzMbJQMdc0EAOvWrUPnzp3h4OAAqVSKoUOHIiIiAv369dNbpoq2bdsGMzMzjBo1SpA8umTKzs7Gs2fPsHLlSgwdOhQ//fQTRo4ciVGjRuHYsWN6yQQAfn5+2LFjB37++WesXr0aZ8+exeDBg+s98ENjZFq1ahUMDQ0xd+5cQTLUJxMAHDhwAC1atICxsTHWrFmDxMREWFpa6jWTWnFxMT744AOMHz++UYfUbEim5q6xOrux6unlx05t48BWNUbui2Ua6ttvvwURwd7eHkZGRli3bh3Gjx8PsVgMiUSC77//HmlpaTA3N4epqSmOHj0KPz8/iMXiRstQl0zA84r8119/RVxcHM6fP4/Vq1dj1qxZOHz4sN4yVbRlyxZMmDBB0GvRtWVSqVQAgICAACxYsADdu3fHBx98gOHDh2Pjxo16yQQAQUFBeOONN9ClSxeMGDECP/74I9LS0nDw4EG9ZDp//jy+/PJLbN26tUnGpNYlk9qgQYOQkpKCX375BUOHDsXYsWMFbb3Q9f+4UqnEW2+9BZVKhYiICMHy1CXTX0ljjX72Z9SkFbmtrS0A1DgOrK2tLR48eFDpsw8fPmzUsWLbtWuHY8eO4dmzZ7hz5w7OnDkDpVIJFxcXAICnpydSUlLw5MkTZGZmIj4+Hrm5uZr3hVBTpqKiInz44YcIDw/HiBEj0K1bN8yZMwdBQUH44osv9JKpohMnTiA1NRVvv/22YFl0yWRpaQlDQ0N07txZ6zOdOnUStNe6rvtJzc7ODk5OToLeCVFTphMnTiA7OxuOjo4wNDSEoaEhbt26hYULF8LZ2VkvmdRkMhnat28PLy8vREZGwtDQEJGRkXrNpFQqMXbsWNy4cQOJiYmCnY3XJdPLQoSGNaurf2by7WfVa9KK3MXFBba2tlrjwJaWluLYsWOacWB79+6NvLw8nDlzRlPm9OnTyMvLE2SsWJlMBjs7Ozx+/BgJCQkICAjQel8ul8PKygrp6ek4d+5cpfeFUFUmpVIJpVIJAwPtQ1bxLLSpM1UUGRkJT09Pwa5l6ppJKpXi1VdfRWpqqlbZtLS0JhnZqLb9pJabm4s7d+7Azs5OL5mCg4Px22+/ISUlRTMpFAqEhIQgISFBL5mqQ0RNcvZVXSZ1JZ6eno7Dhw/DwsJC8Cy1ZXqZqB/R2pAJ4NvPatLoT3arbRzY+fPnY/ny5ejQoQM6dOiA5cuXw9TUFOPHjwfw/Mxp6NChmDFjBjZt2gQA+Pvf/47hw4fDzc2t0XImJCSAiODm5oaMjAyEhITAzc0NU6dOBQDs2bMHVlZWcHR0xKVLlzBv3jy8+eabWh31GltNmSQSCQYMGICQkBCYmJjAyckJx44dw/bt2xEeHq6XTGr5+fnYs2cPVq9eLViOumQKCQlBUFAQ+vfvj0GDBiE+Ph779+/H0aNH9ZLp2bNnCAsLw+jRo2FnZ4ebN2/iww8/hKWlJUaOHKmXTBKJpFKFJJFIYGtr26h/Z3XJVFBQgE8//RT+/v6ws7NDbm4uIiIicPfuXQQGBuolU1lZGcaMGYMLFy7gwIEDKC8v17QompubQyqVNnkmAHj06BFu376tuZ9d/cPV1tZW0/L5Z1OX0c/+curT1b2m28+SkpIIzx9xrzVNnjyZiJ7fghYaGkq2trZkZGRE/fv3p0uXLmktIzc3lyZMmEBmZmZkZmZGEyZMoMePH1ebp663dxARxcTEUNu2bUkqlZKEBnH8AAAgAElEQVStrS3Nnj2bnjx5onn/yy+/JAcHB5JIJOTo6EhLliyhkpISnZcvRKbMzEyaMmUKKRQKMjY2Jjc3N1q9ejWpVCq9ZSIi2rRpE5mYmFSar89MkZGR1L59ezI2NiYPDw+KjY3VW6bCwkLy8fEhKysrzf+nyZMn0+3bt/WWqSpC335WW6aioiIaOXIkKRQKkkqlZGdnR/7+/nTmzBm9ZVLf3lXVlJSUpJdMRERRUVFVZgoNDdVp+U15+9kSaSv6t1Hrek9LpK349rNaiIhqGbS1Cvn5+ZDL5cjJyWnSZqbqKJVKHDp0CMOGDYNEItF3HACcSVecSTecSTecSTe5ubmwtLREXl6eYGe56nriX0atYNyADpXFRPi45ImgWV92fIseY4wx9hLj0c8YY4wJhocxFR5X5IwxxgRjABEMUP+mdXVFzsOYVo9/7DDGGGv2+D7y6vEZOWOMMcE09DGrFYcxrdjZjc/G/w9X5IwxxgTTWNfI+T7y6nFFzhhjTDCNdUbOqsf7iDHGGHuJ8Rk5Y4wxwTwfNKX+p+Qi1PmZZX85XJEzxhgTDDetC4/3EWOMMfYS4zNyxhhjguEnuwlPp4q8pKREazxg9RN21GNk65s6Q3PIosaZdMOZdMOZdMOZdNOUWRqraZ2f7FY9nUY/CwsLw7JlyyrN37lzJ0xNTQUJxhhjTBiFhYUYP358k4x+tkbWGiai+p9XF5EKCwoeV5ofGhqKsLCwBiT889CpIq/qjLxNmzbIzMxsNsOYJiYmwtvbu9kME8iZdMOZdMOZdMOZdJObmws7O7smqci/lJk3uCKfV/Coyie78Rn5czo1rVe3wyQSSbP5jwk0vzwAZ9IVZ9INZ9INZ6pZU+ZorKZ1frJb9bgfAWOMMfYS417rjDHGBCP6/1NDPs9qxhU5Y4wxwfADYYTHFTljjDHBGEDUoEe0NuSzfxX8Y4cxxhh7ifEZOWOMMcFw07rwuCJnjDEmmOejnzXs86xm/GOHMcYYe4nxGTljjDHBNNbtZ/ys9erxGTljjDHBGIhEDZ4AoE2bNpDL5ZppxYoVet6y5kPwirysrAxLliyBi4sLTExM0LZtW3z88cdQqVSaMnv37oWvry8sLS0hEomQkpKi10xKpRKLFi1C165dIZPJoFAoMGnSJNy/f19vmYDng9d07NgRMpkMrVu3xpAhQ3D69Gm9Zqpo5syZEIlEWLt2rV4zTZkyBSKRSGvy8vLSayYAuHbtGvz9/SGXy2FmZgYvLy/cvn1bb5le3Efq6fPPP9dbpmfPnmHOnDlwcHCAiYkJOnXqhA0bNgiSR9dMDx48wJQpU6BQKGBqaoqhQ4ciPT1dsEwA8PTpU8yfPx9OTk4wMTFBnz59cPbsWc37RISwsDAoFAqYmJhg4MCBuHLliqCZ9O3OnTvIy8vTTIsXL9Z3pGZD8Kb1VatWYePGjdi2bRvc3d1x7tw5TJ06FXK5HPPmzQMAFBQUoG/fvggMDMSMGTOEjlRrpsLCQly4cAFLly6Fh4cHHj9+jPnz58Pf3x/nzp3TSyYAcHV1xfr169G2bVsUFRVhzZo18PHxQUZGBqysrPSSSS02NhanT5+GQqFo9Bz1yTR06FBERUVpXkulUr1mun79Ovr164fp06dj2bJlkMvluHbtGoyNjfWWKTMzU+szP/74I6ZPn47Ro0frLdOCBQuQlJSE6OhoODs746effsKsWbOgUCgQEBDQ5JmICG+++SYkEgn27duHli1bIjw8HEOGDMHVq1chk8kaPRMAvP3227h8+TK+/fZbKBQKREdHa9Zpb2+Pzz77DOHh4di6dStcXV3x73//G97e3khNTYWZmZkgmeqrsZrW+VnrNaB6yMvLIwCUk5NTa9k33niDpk2bpjVv1KhRNHHixEplb9y4QQAoOTm5TnlKS0spNjaWSktLdSpfl0xqZ86cIQB069atZpNJfRwOHz6s10x3794le3t7unz5Mjk5OdGaNWt0Wr5QmSZPnkwBAQE6Z2iKTEFBQTUeS31kelFAQAANHjxYr5nc3d3p448/1irTs2dPWrJkiV4ypaamEgC6fPmy5v2ysjIyNzenb775RpBMhYWFJBaL6cCBA1rzPTw86KOPPiKVSkW2tra0cuVKzXvFxcUkl8tp48aNOq0jJyeHAFBeXp5O5etD/f20VW5J/21lXe9pq9xS8KwvO8Gb1vv164cjR44gLS0NAHDx4kWcPHkSw4YNE3rVjZopLy8PIpEIrVq1ahaZSktLsXnzZsjlcnh4eOgtk0qlQnBwMEJCQuDu7i5IjrpmAoCjR4/C2toarq6umDFjBrKzs/WWSaVS4eDBg3B1dYWvry+sra3Rq1cvxMbG6i3Tix48eICDBw9i+vTpes3Ur18/xMXF4d69eyAiJCUlIS0tDb6+vnrJpB6+uWLLiVgshlQqxcmTJwXJVFZWhvLy8kqtNSYmJjh58iRu3LiBrKws+Pj4aN4zMjLCgAED8MsvvwiSiTVvgjetL1q0CHl5eejYsSPEYjHKy8vx6aefYty4cUKvutEyFRcX44MPPsD48eMFa9rRNdOBAwfw1ltvobCwEHZ2dkhMTISlpaXeMq1atQqGhoaYO3euIBnqk8nPzw+BgYFwcnLCjRs3sHTpUgwePBjnz58XpJdrbZmys7Px7NkzrFy5Ev/+97+xatUqxMfHY9SoUUhKSsKAAQOaPNOLtm3bBjMzM4waNarRs9Ql07p16zBjxgw4ODjA0NAQBgYG+M9//oN+/frpJVPHjh3h5OSExYsXY9OmTZDJZAgPD0dWVlalSxONxczMDL1798Ynn3yCTp06wcbGBrt27cLp06fRoUMHZGVlAQBsbGy0PmdjY4Nbt24JkqkheNAU4QlekcfExCA6Oho7d+6Eu7s7UlJSMH/+fCgUCkyePFno1Tc4k1KpxFtvvQWVSoWIiAi9Zxo0aBBSUlKQk5ODb775BmPHjsXp06dhbW3d5JnOnz+PL7/8EhcuXIBI1DR/brrsp6CgIE35Ll264JVXXoGTkxMOHjwoSEVVWyZ1x6mAgAAsWLAAANC9e3f88ssv2LhxoyAVeV3/7rZs2YIJEyYIds1e10zr1q3Dr7/+iri4ODg5OeH48eOYNWsW7OzsMGTIkCbPJJFI8P3332P69OkwNzeHWCzGkCFD4Ofn1+hZKvr2228xbdo02NvbQywWo2fPnhg/fjwuXLigKfPi3xwRNdnfYV2oO1HW+/NcldeuPu3xdblG7uDgQOvXr9ea98knn5Cbm1ulsk11jVzXTKWlpfTmm29St27ddNrWpsj0ovbt29Py5cv1kmnNmjUkEolILBZrJgBkYGBATk5OeslUnfbt22tdU2zKTCUlJWRoaEiffPKJVpn333+f+vTpo5dMFR0/fpwAUEpKik7LFipTYWEhSSSSSteGp0+fTr6+vnrJVNGTJ08oOzubiIj+9re/0axZswTJVNGzZ8/o/v37REQ0duxYGjZsGF2/fp0A0IULF7TK+vv706RJk3RablNeI/+2lRV939qm3tO3raz4GnktBL9GXlhYCAMD7dWIxeJqb2FqCrpkUiqVGDt2LNLT03H48GFYWFjoPVNViEhzHa+pMwUHB+O3335DSkqKZlIoFAgJCUFCQoJeMlUlNzcXd+7cgZ2dnV4ySaVSvPrqq0hNTdUqk5aWBicnJ71kqigyMhKenp6C9bXQNZNSqYRSqWzS74u67Ce5XA4rKyukp6fj3LlzgvSif5FMJoOdnR0eP36MhIQEBAQEwMXFBba2tkhMTNSUKy0txbFjx9CnTx/BM7HmR/Cm9REjRuDTTz+Fo6Mj3N3dkZycjPDwcEybNk1T5tGjR7h9+7bmPm31F56trS1sbW2bPFNZWRnGjBmDCxcu4MCBAygvL9dclzI3NxfkVqbaMhUUFODTTz+Fv78/7OzskJubi4iICNy9exeBgYGNnkeXTBYWFpV+4EgkEtja2sLNzU0vmZ49e4awsDCMHj0adnZ2uHnzJj788ENYWlpi5MiReskEACEhIQgKCkL//v0xaNAgxMfHY//+/Th69KjeMgHPn5a1Z88erF69WpAcdcnUsmVLDBgwACEhITAxMYGTkxOOHTuG7du3Izw8XC+ZAGDPnj2wsrKCo6MjLl26hHnz5uHNN9/U6mzW2BISEkBEcHNzQ0ZGBkJCQuDm5oapU6dCJBJh/vz5WL58OTp06IAOHTpg+fLlMDU1xfjx4wXLVF8GaNgDS/ipZTqoz2l8XZrW8/Pzad68eeTo6EjGxsbUtm1b+uijj6ikpERTJioqigBUmkJDQ3XKU9emq9oyqZv4q5qSkpL0kqmoqIhGjhxJCoWCpFIp2dnZkb+/P505c0an5QuRqSpC335WW6bCwkLy8fEhKysrkkgk5OjoSJMnT6bbt2/rLZNaZGQktW/fnoyNjcnDw4NiY2P1nmnTpk1kYmJCT5480TmLkJkyMzNpypQppFAoyNjYmNzc3Gj16tWkUqn0lunLL78kBwcHzf+nJUuW1Pg30NBMREQxMTHUtm1bkkqlZGtrS7Nnz9Y6RiqVikJDQ8nW1paMjIyof//+dOnSJZ2X35RN6ztbW1GsuU29p52tuWm9NiIiorpW/vn5+ZDL5cjJyRG8yVkXSqUShw4dwrBhwyCRSPQdBwBn0hVn0g1n0g1n0k1ubi4sLS2Rl5cn2J046npiZ2srmIrqf15dSCqMf/xQ0KwvOx40hTHGmGBE//9fQz7PasYVOWOMMcHwfeTC44qcMcZYs8fDmFaPOwQyxhgTjKgRJoCHMa0Jn5EzxhgTjAEAgwa0jxv8/+7Yd+7c0ersxmfj/4crcsYYY80eD2NaPa7IGWOMCYZ7rQuPK3LGGGOC4qpYWFyRM8YYE4xI9HxqyOdZzbjXOmOMMfYS4zNyxhhjguEHwgiPK3LGGGOCMYAIBg2ojhvy2b8KnSrykpISrTGv1U/YUY8frG/qDM0hixpn0g1n0g1n0g1n0k1zysIaTqfRz8LCwrBs2bJK83fu3AlTU1NBgjHGGBNGYWEhxo8f3ySjn+0zt4XMoP7dsQpUKgQ8yuLRz2qgU0Ve1Rl5mzZtkJmZ2WyGMU1MTIS3t3ezGSaQM+mGM+mGM+mGM+kmNzcXdnZ2TVKRx1k0vCL3z+WKvCY6Na1X93B6iUTSbP5jAs0vD8CZdMWZdMOZdMOZatZccrDGwZ3dGGOMCYZ7rQuPK3LGGGOC4Ue0Co8fCMMYY4y9xPiMnDHGmGAMRA0cxpRPyGvFFTljjDHB8DVy4XFFzhhjTDBckQuPr5EzxhhjLzE+I2eMMSYY7rUuPK7IGWOMCaaxxiNXj/GhVt2Dyv6KuGmdMcZYs9emTRvI5XLNtGLFCn1HajYEr8jLysqwZMkSuLi4wMTEBG3btsXHH38MlUqlKUNECAsLg0KhgImJCQYOHIgrV64IlsnZ2RkikajSNHv2bADA9evXMXLkSFhZWaFly5YYO3YsHjx4IFgeXTJlZWUhODgYtra2kMlk6NmzJ7777ju9Zbp582aV74lEIuzZs0cvmdROnTqFwYMHQyaToVWrVhg4cCCKior0lmngwIGV3nvrrbcEy6NLJjUigp+fH0QiEWJjY/WaaebMmWjXrh1MTExgZWWFgIAA/P7773rL9OjRI7z77rtwc3ODqakpHB0dMXfuXOTl5ektEwBs3rwZAwcORMuWLSESifDkyRNB8zSUQSNMAHDnzh3k5eVppsWLFzfpdjRnglfkq1atwsaNG7F+/Xpcu3YNn332GT7//HN89dVXmjKfffYZwsPDsX79epw9exa2trbw9vbG06dPBcl09uxZZGZmaqbExEQAQGBgIAoKCuDj4wORSISff/4Z//vf/1BaWooRI0Zo/fhoykwAEBwcjNTUVMTFxeHSpUsYNWoUgoKCkJycrJdM6kFzKk7Lli2DTCaDn5+fXjIBzyvxoUOHwsfHB2fOnMHZs2cxZ84cGDRg0IaGZgKAGTNmaJXZtGmTYHl0zQQAa9euhagh7Z6NmMnT0xNRUVG4du0aEhISQETw8fFBeXm5XjLdv38f9+/fxxdffIFLly5h69atiI+Px/Tp0wXLU1sm4PnIZUOHDsWHH34oaI7GImqECQBatmypNXGzegVUD3l5eQSAcnJyai37xhtv0LRp07TmjRo1iiZOnEhERCqVimxtbWnlypWa94uLi0kul9PGjRt1ylNaWkqxsbFUWlpah634P/PmzaN27dqRSqWihIQEMjAwoLy8PM37jx49IgCUmJio8zIbMxMRkUwmo+3bt2uVMTc3p//85z96y/Si7t27VzrWTZ2pV69etGTJknotS6hMAwYMoHnz5jWrTEREKSkp5ODgQJmZmQSAfvjhB71nqujixYsEgDIyMppNpv/+978klUpJqVTqPVNSUhIBoMePH9d5mTk5OQRA63uusanriSNWCvrVxqHe0xErheBZX3aCn5H369cPR44cQVpaGgDg4sWLOHnyJIYNGwYAuHHjBrKysuDj46P5jJGREQYMGIBffvlF6HgoLS1FdHQ0pk2bBpFIhJKSEohEIq1fe8bGxjAwMMDJkycFz1NVJuD5foyJicGjR4+gUqmwe/dulJSUYODAgXrLVNH58+eRkpIi+NlKTZmys7Nx+vRpWFtbo0+fPrCxscGAAQOa7LhVlUltx44dsLS0hLu7O/75z38K1tqka6bCwkKMGzcO69evh62tbZNlqSlTRQUFBYiKioKLiwvatGnTLDIB0AylaWjYNP2EdcnU7FVzCU7XqUE95f4iBK/IFy1ahHHjxqFjx46QSCTo0aMH5s+fj3HjxgF4fu0XAGxsbLQ+Z2Njo3lPSLGxsXjy5AmmTJkCAPDy8oJMJsOiRYtQWFiIgoIChISEQKVSITMzU/A8VWUCgJiYGJSVlcHCwgJGRkaYOXMmfvjhB7Rr105vmSqKjIxEp06d0KdPnybJU1WmP/74AwAQFhaGGTNmID4+Hj179sTrr7+O9PR0vWQCgAkTJmDXrl04evQoli5diu+//x6jRo1qkjzVZVqwYAH69OmDgICAJstRWyYAiIiIQIsWLdCiRQvEx8cjMTERUqlUr5nUcnNz8cknn2DmzJlNkkeXTC+DxmpaZ9UTvCKPiYlBdHQ0du7ciQsXLmDbtm344osvsG3bNq1yL/7aJKIm+QUaGRkJPz8/KBQKAICVlRX27NmD/fv3o0WLFpDL5cjLy0PPnj0hFosFz1NVJgBYsmQJHj9+jMOHD+PcuXN47733EBgYiEuXLuktk1pRURF27tzZpGfjVWVS92GYOXMmpk6dih49emDNmjVwc3PDli1b9JIJeH59fMiQIejSpQveeustfPfddzh8+DAuXLigl0xxcXH4+eefsXbt2iZZvy6Z1CZMmIDk5GQcO3YMHTp0wNixY1FcXKzXTMDzW5/eeOMNdO7cGaGhoU2Sp7ZMLwuuyIUnePtQSEgIPvjgA00v3a5du+LWrVtYsWIFJk+erGnWy8rKgp2dneZz2dnZlc7SG9utW7dw+PBh7N27V2u+j48Prl+/jpycHBgaGqJVq1awtbWFi4uLoHmqy3T9+nWsX78ely9fhru7OwDAw8MDJ06cwNdff42NGzc2eaaKvvvuOxQWFmLSpEmC5qgtk/r/T+fOnbXKdurUCbdv39ZLpqr07NkTEokE6enp6NmzZ5Nn+vnnn3H9+nW0atVKq+zo0aPx2muv4ejRo02eSU19a1GHDh3g5eWF1q1b44cfftC04Okj09OnTzF06FC0aNECP/zwAyQSiaBZdMnEWEWCn5EXFhZW6jEsFos1Z08uLi6wtbXV9MwEnl8XOnbsmODNtFFRUbC2tsYbb7xR5fuWlpZo1aoVfv75Z2RnZ8Pf31/QPNVlKiwsBIAa92NTZ6ooMjIS/v7+sLKyEjxLTZmcnZ2hUCiQmpqqVTYtLQ1OTk56yVSVK1euQKlUav1wbcpMH3zwAX777TekpKRoJgBYs2YNoqKi9JKpOkSEkpISvWXKz8+Hj48PpFIp4uLiYGxsLHiW2jK9bBpyfVxznZzVSPAz8hEjRuDTTz+Fo6Mj3N3dkZycjPDwcEybNg3A84M8f/58LF++HB06dECHDh2wfPlymJqaYvz48YLlUqlUiIqKwuTJkyt1XImKikKnTp1gZWWFU6dOYd68eViwYAHc3NwEy1NTpo4dO6J9+/aYOXMmvvjiC1hYWCA2NhaJiYk4cOCAXjKpZWRk4Pjx4zh06JCgOXTJJBKJEBISgtDQUHh4eKB79+7Ytm0bfv/9d8Hvua8u0/Xr17Fjxw4MGzYMlpaWuHr1KhYuXIgePXqgb9++eslka2tbZQc3R0dHwVudqsv0xx9/ICYmBj4+PrCyssK9e/ewatUqmJiYaDrGNnWmp0+fwsfHB4WFhYiOjkZ+fr7m6WJWVlaCXmqr6e8uKysLWVlZyMjIAABcunQJZmZmcHR0hLm5uWCZ6ouHMW0C9enqXpfbz/Lz82nevHnk6OhIxsbG1LZtW/roo4+opKREU0alUlFoaCjZ2tqSkZER9e/fny5duqRznvrc3pGQkEAAKDU1tdJ7ixYtIhsbG5JIJNShQwdavXp1tbejNFWmtLQ0GjVqFFlbW5OpqSl169at0u1oTZ2JiGjx4sXk4OBA5eXldcoiZKYVK1aQg4MDmZqaUu/evenEiRN6y3T79m3q378/mZubk1QqpXbt2tHcuXMpNzdXb5mqgia6/ay6TPfu3SM/Pz+ytrYmiURCDg4ONH78ePr999/1lkl9e1dV040bN/SSiYgoNDS0ykxRUVE6L78pbz87butAFxSO9Z6O2zrw7We1EBER1bXyz8/Ph1wuR05ODiwsLBrwM6JxKJVKHDp0CMOGDWuy61e14Uy64Uy64Uy64Uy6yc3NhaWlpeZ2OiGo64kTijZo0YAHMj1TqfDa/TuCZn3Z8aApjDHGBNPQW8H5EnnteNAUxhhj7CXGZ+SMMcYEw2fkwuOKnDHGmGAaegsZ335WO25aZ4wxxl5ifEbOGGNMMNy0LjyuyBljjAmGm9aFxxU5Y4wxwfAZufD4GjljjDH2EuMzcsYYY4IxEIlg0IDT6oZ89q+CK3LGGGOC4aZ14elUkZeUlGgNJageAUipVEKpVAqTrA7UGZpDFjXOpBvOpBvOpBvOpJvmlIU1nE6DpoSFhWHZsmWV5u/cuROmpqaCBGOMMSaMwsJCjB8/vkkGTTnf1gUtxA0YNKVcBc8/bvCgKTXQqSKv6oy8TZs2yMzMbDajnyUmJsLb27vZjC7EmXTDmXTDmXTDmXSTm5sLOzu7JqnIL7RveEXeM4Mr8pro1LRuZGQEIyOjSvMlEkmz+Y8JNL88AGfSFWfSDWfSDWeqWXPJwRoHd3ZjjDEmnAY+EIZ7u9WOK3LGGGOC4V7rwuMHwjDGGGMvMT4jZ4wxJpjnZ+QNedZ6I4b5k+IzcsYYY4JRN603ZGqORo4cidatW2PMmDH6jsIVOWOMMeGoH9HakKk5mjt3LrZv367vGAC4ImeMMcbqbNCgQTAzM9N3DABckTPGGBOQPprWjx8/jhEjRkChUEAkEiE2NrZSmYiICLi4uMDY2Bienp44ceJEI2ytfnBnN8YYY4IRNfA+8vp8tqCgAB4eHpg6dSpGjx5d6f2YmBjMnz8fERER6Nu3LzZt2gQ/Pz9cvXoVjo6OAABPT0+tJ5qq/fTTT1AoFHXfEAFxRc4YY6zZUw/WpVbdE0cBwM/PD35+ftUuKzw8HNOnT8fbb78NAFi7di0SEhKwYcMGrFixAgBw/vz5RkouPG5aZ4wxJpjGalpv06YN5HK5ZlJXuHVVWlqK8+fPw8fHR2u+j48Pfvnll4Zurl40SUV+7949TJw4ERYWFjA1NUX37t21fu3s3bsXvr6+sLS0hEgkQkpKil4zKZVKLFq0CF27doVMJoNCocCkSZNw//59vWUCno9C17FjR8hkMrRu3RpDhgzB6dOn9ZqpopkzZ0IkEmHt2rV6zTRlyhRNc5568vLy0msmALh27Rr8/f0hl8thZmYGLy8v3L59W2+ZXtxH6unzzz/XW6Znz55hzpw5cHBwgImJCTp16oQNGzYIlkeXTA8ePMCUKVOgUChgamqKoUOHIj09XbA8zs7OVR6X2bNnA3g+iNW7774LS0tLyGQy+Pv74+7du4LlaajGqsjv3LmDvLw8zbR48eJ65cnJyUF5eTlsbGy05tvY2CArK0vn5fj6+iIwMBCHDh2Cg4MDzp49W688jUHwpvXHjx+jb9++GDRoEH788UdYW1vj+vXraNWqlaZMQUEB+vbti8DAQMyYMUPoSLVmKiwsxIULF7B06VJ4eHjg8ePHmD9/Pvz9/XHu3Dm9ZAIAV1dXrF+/Hm3btkVRURHWrFkDHx8fZGRkwMrKSi+Z1GJjY3H69GnBrx3pmmno0KGIiorSvJZKpXrNdP36dfTr1w/Tp0/HsmXLIJfLce3aNRgbG+stU2ZmptZnfvzxR0yfPr3Ka4pNlWnBggVISkpCdHQ0nJ2d8dNPP2HWrFlQKBQICAho8kxEhDfffBMSiQT79u1Dy5YtER4ejiFDhuDq1auQyWSNnuns2bMoLy/XvL58+TK8vb0RGBgIAJg/fz7279+P3bt3w8LCAgsXLsTw4cNx/vx5iMXiRs/TXLRs2bJRRz978do7EdXpenxCQkKjZWkwqoe8vDwCQDk5ObWWXbRoEfXr10+n5d64cYMAUHJycp3ylJaWUmxsLJWWlupUvi6Z1M6cOUMA6NatW80mk/o4HD58WK+Z7t69S/b29nT58mVycnKiNWvW6LR8oTJNnjyZAgICdM7QFJmCgoJo4sSJzSrTiwICAmjw4MF6zeTu7k4ff/yx1ryePXvSkiVL9JIpNTWVANDly5c188rKysjc3Jy++eYbQTK9aN68edSuXTtSqVT05MkTkliacIAAACAASURBVEgktHv3bs379+7dIwMDA4qPj9d5mTk5OQSA8vLy6pVJF+rvp989OtC9nh3rPf3u0aFBWQHQDz/8oHldUlJCYrGY9u7dq1Vu7ty51L9//wZts74I3rQeFxeHV155BYGBgbC2tkaPHj3wzTffCL3aRs+Ul5cHkUhU5dmoPjKVlpZi8+bNkMvl8PDw0FsmlUqF4OBghISEwN3dXZAcdc0EAEePHoW1tTVcXV0xY8YMZGdn6y2TSqXCwYMH4erqCl9fX1hbW6NXr15V3hLTVJle9ODBAxw8eBDTp0/Xa6Z+/fohLi4O9+7dAxEhKSkJaWlp8PX11Usmda/lii0nYrEYUqkUJ0+eFCRTRaWlpYiOjsa0adMgEolw/vx5KJVKreu7CoUCXbp0abbXdxuraT0/P19rqqpHuS6kUik8PT2RmJioNT8xMRF9+vRp6ObqR31q/7qckRsZGZGRkREtXryYLly4QBs3biRjY2Patm1bpbJNdUZel0xEREVFReTp6UkTJkzQe6b9+/eTTCYjkUhECoWCzpw5o9dMy5cvJ29vb1KpVEREgp+R65Jp9+7ddODAAbp06RLFxcWRh4cHubu7U3FxsV4yZWZmEgAyNTWl8PBwSk5OphUrVpBIJKKjR4/qJdOLVq1aRa1bt6aioiKdli9UppKSEpo0aRIBIENDQ5JKpbR9+3a9ZSotLSUnJycKDAykR48eUUlJCa1YsYIAkI+PjyCZKoqJiSGxWEz37t0jIqIdO3aQVCqtVM7b25v+/ve/67zcpjwjT+3ege57dqz3lNr9+Rn5i1NoaGi163769CklJydTcnIyAdD83albVHfv3k0SiYQiIyPp6tWrNH/+fJLJZHTz5k3B9oeQBK/IJRIJ9e7dW2veu+++S15eXpXKNlVFXpdMpaWlFBAQQD169KjTf3qhMj179ozS09Pp1KlTNG3aNHJ2dqYHDx7oJdO5c+fIxsZG8yVDJHxFXpdjp3b//n2SSCT0/fff6yXTvXv3CACNGzdOq8yIESPorbfe0kumF7m5udGcOXN0WraQmT7//HNydXWluLg4unjxIn311VfUokULSkxM1Fumc+fOkYeHBwEgsVhMvr6+5OfnR35+foJkqsjHx4eGDx+ueV1dRT5kyBCaOXOmzsttyoo8vYcrZb3Sqd5Teg9XAkB37tyhvLw8zVTTD/OkpKQqK//Jkydrynz99dfk5OREUqmUevbsSceOHRNsXwhN8KZ1Ozs7dO7cWWtep06dBO2tWxtdMymVSowdOxY3btxAYmJio3a0qG8mmUyG9u3bw8vLC5GRkTA0NERkZKReMp04cQLZ2dlwdHSEoaEhDA0NcevWLSxcuBDOzs56yVTdZ5ycnATraVxbJktLSxgaGjbp30Fd9tOJEyeQmpqquadWKLVlKioqwocffojw8HCMGDEC3bp1w5w5cxAUFIQvvvhCL5mA5w8GSUlJwZMnT5CZmYn4+Hjk5ubCxcVFkExqt27dwuHDh7WOi62tLUpLS/H48WOtstnZ2ZV6YTcXjdW0ru7spp6qu4ccAAYOHAh6fqKqNW3dulVTZtasWbh58yZKSkpw/vx59O/fX+A9IRzBK/K+ffsiNTVVa15aWhqcnJyEXnW1dMmkrsTT09Nx+PBhWFhY6D1TVYio3teKGpopODgYv/32G1JSUjSTQqFASEiIYD0667OfcnNzcefOHdjZ2eklk1Qqxauvvtqkfwd12U+RkZHw9PQUrK+FrpmUSiWUSiUMDLS/lsRiMVQqlV4yVSSXy2FlZYX09HScO3dOkF70FUVFRcHa2hpvvPGGZp6npyckEonW9d3MzExcvny52V7fre42x7pMrBb1OY2vS9P6mTNnyNDQkD799FNKT0+nHTt2kKmpKUVHR2vK5ObmUnJyMh08eJAA0O7duyk5OZkyMzN1ylPXpqvaMimVSvL39ycHBwdKSUmhzMxMzVRSUqKXTM+ePaPFixfTqVOn6ObNm3T+/HmaPn06GRkZafWobcpMVRG6ab22TE+fPqWF/4+9Ow9r4tzfBn4HCAIREEjYyiIqrigKtiJuuEVAxarH/VC11tJTQUVtXaoveGrdStWqdauI2mqhLlBqrRoL7ksVi+KOqD+pBimL7EKE5/2Dk5QIQgJMBu33c11zXTIzmdyOwSfPNs/cuezcuXPswYMHLDExkfXs2ZO99dZbLD8/n5dMjDF28OBBJhQK2bZt21hqairbsGED09fXZ6dPn+YtE2OVv8smJiZs8+bNGl2X60z9+vVjnTp1YomJiez+/fssKiqKGRkZsU2bNvGW6ccff2SJiYksLS2NxcXFMWdnZzZq1CiNrl+fTIwxVl5ezpycnNj8+fOrHfvoo4+Yg4MDO378OLty5QobMGAAc3d3Zy9evND4+rpsWk/zbMcy3+lY7y3Nsx3nWV93nBfkjFUO0HJzc2PNmjVj7du3Z9u2bVM7HhUVpfVghqrq84tSWyZlX31NW2JiIi+ZSkpK2MiRI5m9vT0zNDRkdnZ2LCAggNPBbnVlqgnXBXldmYqLi5lUKmUSiYQJhULm5OTEJk+ezB49esRbJqXIyEjWpk0bZmRkxNzd3VlcXBzvmbZu3cqMjY3Zs2fPNL4ul5nkcjmbMmUKs7e3Z0ZGRqxdu3bsq6++Ug2m5CPT119/zRwcHFSfp8WLF2v8hb6+mY4ePVo5UOzOnWrHSkpKWHBwMLO0tGTGxsZs2LBhWn2+GdNtQX7fsx37q0fHem/3qSCvk4AxxrStxefn58Pc3BxZWVmcNzlrQqFQ4PDhw/D394dQKOQ7DgDKpCnKpBnKpBnKpJns7GyIxWLk5eVxNvZHWU486N4epgb1f1BNwYtyuFy+jfT0dLWstT1r/Z+GnrVOCCGkyWusZ62/iWj1M0IIIdyp55riVV8PoMYaOalEBTkhhBDONNZ65I39rPU3CTWtE0IIIa8xqpETQgjhjECvcmvI60ntqCAnhBDCmcZqWievRgU5IYSQJi8/P1/tZ5p+9jdqtCCEEMIdPUHDN9D0s9pQjZwQQgh3BA2cf/a/19L0s1ejgpwQQghnaPoZ96hpnRBCCHmNaVQjLy0tVVsqUznoQLnsIN+UGZpCFiXKpBnKpBnKpBnKpBmdZqnSz13v15NaabRoSnh4OJYuXVpt/969e2FiYsJJMEIIIdwoLi7GxIkTdbJoSrqPO8wasGhK/otyOJ64ymnW151GBXlNNXJHR0fI5fIms/qZTCbD4MGDm8zqQpRJM5RJM5RJM5RJM9nZ2bCzs6OC/A2hUdP6q+brCYXCJvPBBJpeHoAyaYoyaYYyaYYy1U6XOQR6Agga0DyufC3NI381GuxGCCGEO8rpZw3ZQPPIa0PTzwghhDR5b9I88hMnTsDHx6fRrkc1ckIIIZwRCASq5vV6bS/NI1dur3NB7uvri9atW2PZsmVIT09v8PWoICeEEMKdRmpaf5M8efIEs2bNwsGDB+Hi4oIhQ4bgxx9/RFlZWb2uRwU5IYQQokOWlpaYOXMmrly5gsuXL6Ndu3aYMWMG7OzsMHPmTFy9elWr61FBTgghhDt6aOCiKXz/BbjVtWtXLFiwADNmzEBRURF27NgBT09P9OnTBzdu3NDoGm/4LSKEEMIn5bPWG7K9iRQKBfbv3w9/f384Ozvj6NGj2LhxI54+fYoHDx7A0dERY8aM0ehaNGqdEEIId+gRrdWEhITghx9+AAD8+9//xurVq+Hm5qY6LhKJsHLlSrRs2VKj61FBTgghhOjQzZs3sWHDBowePRqGhoY1nmNvb4/ExESNrkcFOSGEEO400nrkb9KT3cLCwuDt7Q0DA/Ui+MWLFzh37hz69u0LAwMD9OvXT6PrUR85IYQQzgj0Gr4Bb9aT3fr374+cnJxq+/Py8tC/f3+tr6eTgvzx48f497//DSsrK5iYmKBr165ISkpSHWeMITw8HPb29jA2NoaPj4/Go/XqIzw8vNpgCltbW9Xxp0+fYsqUKbC3t4eJiQl8fX2RmprKWR5NMhUWFiI4OBgODg4wNjZGhw4dsHnzZl4zvWpgypdffslbJgC4desWAgICYG5uDlNTU3h5eeHRo0e8ZZoyZUq1415eXpzl0SRTVUFBQRAIBFi3bh2vmcLDw9G+fXuIRCJYWFhg0KBBuHjxIm+ZFAoF5s+fj86dO0MkEsHe3h7vvfcenjx5wlsmADh48CCGDBkCsVgMgUCA5ORkTvM0Fenp6cjLy1NtCxcu5DtSvTHGahzEl52dDZFIpPX1OG9az83NRa9evdC/f3/8+uuvsLa2RlpaGlq0aKE6Z/Xq1VizZg127tyJtm3bYtmyZRg8eDDu3LkDU1NTTnJ16tQJx48fV/2sr1+5Og9jDO+++y6EQiF++uknmJmZYc2aNRg0aBBu3rxZr5vc0EwAEBoaisTERHz//fdo2bIljh07ho8//hj29vYYMWIEL5nkcrnaub/++iumTZuG0aNHc5anrkxpaWno3bs3pk2bhqVLl8Lc3By3bt2CkZERb5mAyic5RUVFqX5+Vb+YLjMBQFxcHC5evAh7e3vO89SVqW3btti4cSNatWqFkpISrF27FlKpFPfu3YNEItF5puLiYly5cgVLliyBu7s7cnNzMXv2bAQEBODy5cuc5aktEwAUFRWhV69eGDNmDKZPn85pjkbRSE3ryie6vc5GjRoFoLISNGXKFLWugfLycly7dg3e3t5aX5fzgnzVqlVwdHRU+0+s6kg8xhjWrVuHzz77TPWX3LVrF2xsbLB3714EBQVxksvAwKDGGkpqaiouXLiA69evo1OnTgCATZs2wdraGj/88AM++OADTvLUlgkAzp8/j8mTJ6uez/vhhx9i69atuHz5MqcFeW2ZXt7/008/oX///mjVqhVneerK9Nlnn8Hf3x+rV69W7eM6T12ZgMr+vNqOc6GuTI8fP0ZwcDCOHj2KoUOH8p5p4sSJaj+vWbMGkZGRuHbtGgYOHKjzTObm5pDJZGr7NmzYgHfeeQePHj2Ck5OTzjMBQGBgIADg4cOHnL1/Y2qs1c/eBObm5gAqyz1TU1MYGxurjhkaGsLLy6teX844b1qPj49H9+7dMWbMGFhbW6Nbt2749ttvVccfPHiAjIwMSKVS1b5mzZqhX79+OHfuHGe5UlNTYW9vDxcXF4wfPx73798HANW661VrcPr6+jA0NMSZM2c4y1NbJgDo3bs34uPj8fjxYzDGkJiYiLt372LIkCG8Zarq6dOn+OWXXzBt2jRO89SWqaKiAr/88gvatm2LIUOGwNraGj169EBcXBxvmZROnDgBa2trtG3bFtOnT0dmZiavmSoqKhAYGIhPPvlE9YVVFzT9PJWVlWHbtm0wNzeHu7t7k8gEVPZhCgQCtRZFvjOR10dUVBSioqIQFhaGyMhI1c9RUVHYunUrFi5cCLFYrPV1OS/I79+/j82bN8PV1RVHjx7FRx99hJkzZ2L37t0AgIyMDACAjY2N2utsbGxUxxpbjx49sHv3bhw9ehTffvstMjIy4O3tjezsbLRv3x7Ozs5YuHAhcnNzUVZWhpUrVyIjI6NaU7KuMgHA+vXr0bFjRzg4OMDQ0BC+vr7YtGkTevfuzVumqnbt2gVTU1NVqwofmTIzM1FYWIiVK1fC19cXx44dw8iRIzFq1CicPHmSl0wA4Ofnhz179iAhIQFfffUVLl26hAEDBqi+NPKRadWqVTAwMMDMmTM5y6BtJgA4dOgQmjdvDiMjI6xduxYymaxe/7E1Zial58+fY8GCBZg4cSKnTbzaZHot0LPWqwkLC2vcblpWD3l5eQwAy8rKqvNcoVDIevbsqbYvJCSEeXl5McYYO3v2LAPAnjx5onbOBx98wIYMGaJRnrKyMhYXF8fKyso0/BuoKywsZDY2Nuyrr75ijDF2+fJl5u7uzgAwfX19NmTIEObn58f8/Pw0vmZjZ/ryyy9Z27ZtWXx8PLt69SrbsGEDa968OZPJZLxlqqpdu3YsODhY62s2ZqbHjx8zAGzChAlq5wwfPpyNHz+el0w1efLkCRMKhezAgQO8ZLp8+TKzsbFhjx8/Vh13dnZma9eu1eqaXNynwsJClpqays6fP8/ef/991rJlS/b06VNeMymvO2LECNatWzeWl5en1TW5yvTgwQMGgP3xxx9aXzMrK4sB0Prvog1lOZEx2psVj+9b7y1jtDfnWXWhW7duLCcnhzHGWNeuXVm3bt1euWmL8z5yOzs7dOzYUW1fhw4dcODAAQB/97NmZGTAzs5OdU5mZma1WjpXRCIROnfurBqZ7unpieTkZOTl5aGsrAwSiQQ9evRA9+7ddZLn5UwlJSVYtGgRYmNjVX2ZXbp0QXJyMiIiIjBo0CCdZ6rq9OnTuHPnDmJiYnSS41WZxGIxDAwMavy8cd0t8qpMNbGzs4OzszPnMyFelUlPTw+ZmZlqfbzl5eWYO3cu1q1bp7O+15ruk0gkQps2bdCmTRt4eXnB1dUVkZGROhuhXFMmhUKBsWPH4sGDB0hISND5gKu6Pk/k9TBixAjV4LZ33323Ua/NeUHeq1cv3LlzR23f3bt34ezsDABwcXGBra0tZDIZunXrBqCyf+zkyZNYtWoV1/EAVPaL37p1C3369FHbrxyYkJqaisuXL+Pzzz/XSZ6XMykUCigUCujpqfeE6Ovro6KigpdMVUVGRsLT05Pzvsy6MhkaGuLtt9+u9fOm60w1yc7ORnp6utoXV11mCgwMrPblb8iQIQgMDMTUqVN5yfQqjDFOuyDqyqQsxFNTU5GYmAgrKyudZXlVptdNQ5+X/qY8az0sLKzGPzcGzgvy0NBQeHt7Y/ny5Rg7dix+//13bNu2Ddu2bQNQ+Y80e/ZsLF++HK6urnB1dcXy5cthYmJSbRRrY5k3bx6GDx8OJycnZGZmYtmyZcjPz8fkyZMBAPv27YNEIoGTkxNSUlIwa9YsvPvuu2oD8nSZyczMDP369cMnn3wCY2NjODs74+TJk9i9ezfWrFnDSyal/Px87Nu3D1999RVnObTJ9Mknn2DcuHHo27cv+vfvjyNHjuDnn3/GiRMneMlUWFiI8PBwjB49GnZ2dnj48CEWLVoEsViMkSNH8pLJysqqWoEkFApha2uLdu3a8ZKpqKgIX3zxBQICAmBnZ4fs7Gxs2rQJf/75p8YLRzR2phcvXuBf//oXrly5gkOHDqG8vFw1bsfS0pKzKYR1fcZzcnLw6NEj1Xx25RdXW1tbnc+M0Ag9a51znBfkb7/9NmJjY7Fw4UL897//hYuLC9atW4dJkyapzvn0009RUlKCjz/+GLm5uejRoweOHTvG2RzyP//8ExMmTEBWVhYkEgm8vLxw4cIFVa1NLpdjzpw5ePr0Kezs7PDee+9hyZIlnGTRNFN0dDQWLlyISZMmIScnB87Ozvjiiy/w0Ucf8ZZJmYsxhgkTJnCWQ5tMI0eOxJYtW7BixQrMnDkT7dq1w4EDBzgdFFhbppKSEqSkpGD37t149uwZ7Ozs0L9/f8TExHD2+a4rE19qy/T8+XPcvn0bu3btQlZWFqysrPD222/j9OnTnI6qry3Tw4cPER8fD6ByqcmqEhMTVVNBdZkJqJwJVLXlZPz48QAqa3nh4eGcZGqYhg5YezMKcgsLC41bF2p66lttBIwxpm2g/Px8mJubq37h+KZQKHD48GH4+/tDKBTyHQcAZdIUZdIMZdIMZdJMdnY2xGIx8vLyOOvzV5YTT8f2gZlh/euM+WUvYPPjaaSnp6tlfd2etb5r1y6Nz63a6qkJWjSFEEIIZxqrj9zR0VFtf9NtgaiZtoWzNqggJ4QQwp1G6iOvqUb+OsnPz1flf3klt5dp20pCBTkhhJAm73V/1rqFhQXkcjmsra3RokWLGlsp2P8WUykvL9fq2lSQE0II4QxNP6uUkJAAS0tLAJWDJRsTFeSEEEK4Q9PPAAD9+vWr8c+NgQpyQgghRMdyc3MRGRmJW7duQSAQoEOHDpg6daqq1q4NzhdNIYQQ8g9Gi6ZUc/LkSbRs2RLr169Hbm4ucnJysH79eri4uNRrgSeqkRNCCOEMrUde3YwZMzBu3Dhs3rwZ+vr6ACrXO/j4448xY8YMXL9+XavrUY2cEEII0aG0tDTMnTtXVYgDlWtnzJkzB2lpaVpfjwpyQggh3KGm9Wo8PDxw69atavtv3bpV7XHAmqCmdUIIIdzRQwNHrTdaEl5du3ZN9eeZM2di1qxZuHfvHry8vAAAFy5cwDfffIOVK1dqfW2NCvLS0lK1pQSVT6VRLq/JN2WGppBFiTJphjJphjJphjJpRpdZaB55pa5du0IgEKDq8iaffvpptfMmTpyIcePGaXVtjRZNCQ8Px9KlS6vt37t3L0xMTLR6Q0IIIfwqLi7GxIkTdbJoSva0wTAzrP9iMfllClhFyjjNqgv/93//p/G52q5SqFFBXlON3NHREXK5vMmsfiaTyTB48OAms7oQZdIMZdIMZdIMZdJMdnY27OzsdFOQT5c2vCD/9thrX5BzSaOm9VctFycUCpvMBxNoenkAyqQpyqQZyqQZylQ7neZo6IC1/7325YVGXrdlTGty8+ZNPHr0CGVlZWr7AwICtLoODXYjhBDS5L3uy5hWdf/+fYwcORIpKSlq/ebK8QC0aAohhJCmo5Fq5K/7MqZVzZo1Cy4uLjh+/DhatWqF33//HdnZ2Zg7dy4iIiK0vh4V5IQQQjjU0Lngla993Zcxrer8+fNISEiARCKBnp4e9PT00Lt3b6xYsQIzZ87EH3/8odX13pAZeoQQQsjroby8HM2bNwcAiMViPHnyBEDlaPU7d+5ofT2qkRNCCOGOnl7l1pDXv2Hc3Nxw7do1tGrVCj169MDq1athaGiIbdu2oVWrVlpfjwpyQggh3GmkPvI3yeLFi1FUVAQAWLZsGYYNG4Y+ffrAysoKMTExWl+PCnJCCCFEh4YMGaL6c6tWrXDz5k3k5OTAwsKiXk+yo4KcEEIId6hGXqv09HQIBAI4ODjU+xpvXucDIYSQpoNWP6vmxYsXWLJkCczNzdGyZUs4OzvD3Nwcixcvrtdz8KlGTgghhDs02K2a4OBgxMbGYvXq1ejZsyeAyilp4eHhyMrKwpYtW7S6HhXkhBBCiA798MMPiI6Ohp+fn2pfly5d4OTkhPHjx2tdkOv8q86KFSsgEAgwe/Zs1b5t27bBx8cHZmZmEAgEePbsGa+ZcnJyEBISgnbt2sHExAROTk6YOXMm8vLyeMsEAEFBQWjdujWMjY0hkUgwYsQI3L59m9dMSowx+Pn5QSAQIC4ujtdMPj4+qqUTldv48eN5zQRUfuMeMGAARCIRWrRoAR8fH5SUlPCS6eHDh9XukXLbt28fL5kAICMjA4GBgbC1tYVIJIKHhwf279+vkzyvypSWloaRI0dCIpHAzMwMY8eOxdOnTznLEB4eXu3fxNbWVnWcMYbw8HDY29vD2NgYPj4+uHHjBmd5Goya1qsxMjJCy5Ytq+1v2bIlDA0Ntb6eTgvyS5cuYdu2bejSpYva/uLiYvj6+mLRokW6jPPKTE+ePMGTJ08QERGBlJQU7Ny5E0eOHMG0adN4ywQAnp6eiIqKwq1bt3D06FEwxiCVSrV+Lm9jZlJat26dztcNri3T9OnTIZfLVdvWrVt5zXT+/Hn4+vpCKpXi999/x6VLlxAcHAw9HTQb1pRJuXph1W3p0qUQiURqtQRdZgKAwMBA3LlzB/Hx8UhJScGoUaMwbtw4rZ901ViZioqKIJVKIRAIkJCQgLNnz6KsrAzDhw9HRUUFZ1k6deqk9m+TkpKiOrZ69WqsWbMGGzduxKVLl2Bra4vBgwejoKCAszwNQgV5NTNmzMDnn3+utqpoaWkpvvjiCwQHB2t9PZ0V5IWFhZg0aRK+/fZbWFhYqB2bPXs2FixYAC8vL13FqTWTm5sbDhw4gOHDh6N169YYMGAAvvjiC/z888948eIFL5kA4MMPP0Tfvn3RsmVLeHh4YNmyZUhPT8fDhw95ywQAV69exZo1a7Bjxw5Oc2iTycTEBLa2tqrN3Nyc10yhoaGYOXMmFixYgE6dOsHV1RX/+te/OH9e9Ksy6evrq90fW1tbxMbGYty4caonTuk6E1D5hSckJATvvPMOWrVqhcWLF6NFixa4cuUKL5nOnj2Lhw8fYufOnejcuTM6d+6MqKgoXLp0CQkJCZzlMTAwUPu3kUgkACpr4+vWrcNnn32GUaNGwc3NDbt27UJxcTH27t3LWR7ScKNGjVJtycnJOHToEBwcHDBo0CAMGjQIDg4O+Pnnn3H16lWtr62zgnzGjBkYOnQoBg0apKu3rJM2mZRr4RoYcDusQNNMRUVFiIqKgouLS7VVgXSZqbi4GBMmTMDGjRvVmv+4Vtd92rNnD8RiMTp16oR58+bppLbyqkyZmZm4ePEirK2t4e3tDRsbG/Tr1w9nzpzhLdPLkpKSkJycrJNWp9oy9e7dGzExMcjJyUFFRQWio6NRWloKHx8fXjKVlpZCIBCofeEyMjKCnp4ep/9+qampsLe3h4uLC8aPH4/79+8DAB48eICMjAxIpVLVuc2aNUO/fv1w7tw5zvI0CNXIAQDm5uZq2+jRozFs2DA4OjrC0dERw4YNw6hRo+pV6dDJYLfo6GhcuXIFly5d0sXbaUSbTNnZ2fj8888RFBTEe6ZNmzbh008/RVFREdq3bw+ZTFavPpXGyhQaGgpvb2+MGDGCswzaZpo0aRJcXFxga2uL69evY+HChbh69SpkMhkvmZT/CYeHhyMiIgJdu3bF7t27MXDgQFy/fh2urq46z/SyyMhIdOjQAd7e3pxk0TRTTEwMxo0bBysrKxgYGMDExASxsbFo3bo1L5m8vLwgEokwf/58LF++HIwxzJ8/HxUVFZDL5Zzk6dGjB3bv3o22bdvi6dOnWLZsGby9vXHjxg1kFEwanAAAIABJREFUZGQAAGxsbNReY2Njg//7v//jJE+D0ah1AEBUVBRn1+a8IE9PT8esWbNw7NgxGBkZcf12GtEmU35+PoYOHYqOHTsiLCyM90yTJk3C4MGDIZfLERERgbFjx+Ls2bOc3Nu6MsXHxyMhIUEn/ZeaZgIq+8eV3Nzc4Orqiu7du+PKlSvw8PDQeSZlX2pQUBCmTp0KAOjWrRt+++037NixAytWrNB5pqpKSkqwd+9eLFmypNFzaJtp8eLFyM3NxfHjxyEWixEXF4cxY8bg9OnT6Ny5s84zSSQS7Nu3D//5z3+wfv166OnpYcKECfDw8IC+vn6j5wGgNkahc+fO6NmzJ1q3bo1du3apuh9fHo/CGNP5GBXScH/99Rfu3LkDgUCAtm3bqrpQtMX5V52kpCRkZmbC09MTBgYGMDAwwMmTJ7F+/XoYGBjoZKBWfTMVFBTA19cXzZs3R2xsLIRCIe+ZzM3N4erqir59+2L//v24ffs2YmNjeckkk8mQlpaGFi1aqI4DwOjRozlrCq3P58nDwwNCoRCpqam8ZFLWnjp27Kj2ug4dOuDRo0e8ZKp6n/bv34/i4mK89957nGTRNFNaWho2btyIHTt2YODAgXB3d0dYWBi6d++Ob775hpdM5eXlkEqlSEtLQ2ZmJrKysvDdd9/h8ePHcHFx4STTy0QiETp37ozU1FRV95WyZq6UmZlZrZbeZFDTejVFRUV4//33YWdnh759+6JPnz6wt7fHtGnTUFxcrPX1OK+RDxw4UG3EJQBMnToV7du3x/z58zn7VtvQTPn5+RgyZAiaNWuG+Ph4zlsT6nufGGNqIx91mUksFlfrbujcuTPWrl2L4cOH85Kppvt048YNKBQK2NnZ8ZKpVatWsLe3r7Y84d27dzkbIa7NfYqMjERAQEC9awONlUn5H9jLI/n19fU5GyGuzX0Si8UAgISEBGRmZiIgIICTTC8rLS3FrVu30KdPH1WXkUwmQ7du3QAAZWVlOHnyJFatWqWTPFoToIGPaG20JE3GnDlzcPLkSfz888/o1asXAODMmTOYOXMm5s6di82bN2t1Pc4LclNTU7i5uantE4lEsLKyUu3PyMhARkYG7t27BwBISUmBqakpnJycYGlpqfNMBQUFkEqlKC4uxvfff4/8/Hzk5+cDqGxq4+LLR12Z7t+/j5iYGEilUkgkEjx+/BirVq2CsbEx/P39Gz2PJpkA1DjAzcnJibPaSl2Z0tLSsGfPHvj7+0MsFuPmzZuYO3cuunXrpvqF0XUmAPjkk08QFhYGd3d3dO3aFbt27cLt27c5myOtSSYAuHfvHk6dOoXDhw9zkkObTAqFAm3atEFQUBAiIiJgZWWFuLg4yGQyHDp0iJdMQGXfZocOHSCRSHD+/HnMmjULoaGhaNeuHSeZ5s2bh+HDh8PJyQmZmZlYtmwZ8vPzMXnyZNUc9+XLl8PV1RWurq5Yvnw5TExMMHHiRE7ykMZ34MAB7N+/X63l0t/fH8bGxhg7dmzTK8g1sWXLFixdulT1c9++fQFU/gJNmTJF53mSkpJw8eJFAECbNm3Ujj148KDGifxcMzIywunTp7Fu3Trk5ubCxsYGffv2xblz52Btba3zPE2VoaEhfvvtN3z99dcoLCyEo6Mjhg4dirCwMF5af5Rmz56N58+fIzQ0FDk5OXB3d4dMJuN0EJcmduzYgbfeekttFDRfhEIhDh8+jAULFmD48OEoLCxEmzZtsGvXLs6+rGrizp07WLhwIXJyctCyZUt89tlnCA0N5ez9/vzzT0yYMAFZWVmQSCTw8vLChQsX4OzsDAD49NNPUVJSgo8//hi5ubno0aMHjh07BlNTU84yNUhDm8ffwKb14uLiGrtCrK2t69W0LmCMMW1flJ+fD3Nzc2RlZcHKykrrN21sCoUChw8fhr+/P6f92NqgTJqhTJqhTJqhTJrJzs6GWCxWTavlgrKcyFkwAWbN6j+zJr+0DJYrf0B6erpa1mbNmnH+HAauDBw4EFZWVti9e7eq27akpASTJ09GTk4Ojh8/rtX1mkSNnBBCyJuqoQPWKl/78vMywsLCEB4e3oDr8mfdunXw8/ODg4MD3N3dIRAIkJycDCMjIxw9elTr61FBTgghpMmrqUb+ulLOQvj+++9x+/ZtMMYwfvx4TJo0CcbGxlpfjwpyQggh3GmkPnIzMzPOugF0SaFQ4MMPP8SSJUvUnnnREG/GI3MIIYQ0TTSPXI1QKGz0Z39QQU4IIYTo0MiRIxt1uWdqWieEEMIdetZ6NW3atMHnn3+Oc+fOwdPTEyKRSO34zJkztboeFeSEEEK4Q/PIq9m+fTtatGiBpKQkJCUlqR0TCARUkBNCCCFN2YMHD1R/Vj7KpSGL3rx5bRaEEEKaDhrsVqPIyEi4ubnByMgIRkZGcHNzw/bt2+t1LaqRE0II4Q41rVezZMkSrF27FiEhIejZsycA4Pz58wgNDcXDhw+xbNkyra5HBTkhhBCiQ5s3b8a3336LCRMmqPYFBASgS5cuCAkJ4aYgLy0tVVsqU7kSmEKhgEKh0OoNuaDM0BSyKFEmzVAmzVAmzVAmzeg0C41ar6a8vBzdu3evtt/T0xMvXrzQ+noaLZoSHh6utjqZ0t69e2FiYqL1mxJCCOFPcXExJk6cqJtFU/77AcyMGrBoyvMyWP6/7Zxm1bWQkBAIhUKsWbNGbf+8efNQUlKCb775RqvraVSQ11Qjd3R0hFwubzKrn8lkMtgtXAK9Kjn5VNGsGeQrPsfgwYObzIpHyvtEmWpHmTRDmTTTFDNlZ2fDzs5ONwX559MbXpAv+faNK8h3794NR0dHeHl5AQAuXLiA9PR0vPfee2qfk5cL+5po1LT+quXihEJhk/lgAoBeaSn0nj/nO4aapnaPAMqkKcqkGcqkmaaUqank+Ke6fv06PDw8AABpaWkAAIlEAolEguvXr6vO03RKGg12I4QQwh3qI68mMTGxUa9HBTkhhBDuCNDA6WeNluSN9eZ91SGEEEL+QahGTgghhDv0QBjOUUFOCCGEO1SQc46a1gkhhJDXGNXICSGEcEfQwFHrAqpv1oUKckIIIdyhpnXO0VcdQggh5DVGNXJCCCHcoRo556ggJ4QQwh2BXsP6uamPvE46v0MrVqyAQCDA7NmzVftKS0sREhICsVgMkUiEgIAA/Pnnn5xl2FdUgHGZcvSVp6OvPB1T/srA2eclquPpLxSYm/MXBmb8ib7ydMzPyUJ2eTlneYDK9Wm7dOkCMzMzmJmZoWfPnvj1119VxzMyMhAYGAhbW1uIRCJ4eHhg//79vGV6+PAhBAJBjdu+fft4yaR0/vx5DBgwACKRCC1atICPjw9KSkpecUXuM/n4+FS7R+PHj+csjyaZlBhj8PPzg0AgQFxcHK+ZgoKC0Lp1axgbG0MikWDEiBG4ffs2b5lycnIQEhKCdu3awcTEBE5OTpg5cyby8vJ4ywQA27Ztg4+PD8zMzCAQCPDs2TNO8zSYnqDhG6mVTgvyS5cuYdu2bejSpYva/tmzZyM2NhbR0dE4c+YMCgsLMWzYMJRzVHja6OsjxKwFvpPY4juJLd5uZoQ5OX8hTVGGkooKzMj+CwIAW6ysESm2gQIMoTl/oaLuheLqzcHBAStXrsTly5dx+fJlDBgwACNGjMCNGzcAAIGBgbhz5w7i4+ORkpKCUaNGYdy4cfjjjz94yaRc/a7qtnTpUohEIvj5+fGSCagsxH19fSGVSvH777/j0qVLCA4Ohh6Hz2uuKxMATJ8+Xe1ebd26lbM8mmYCgHXr1mm8MAPXmTw9PREVFYVbt27h6NGjYIxBKpVy9v9AXZmePHmCJ0+eICIiAikpKdi5cyeOHDmCadOmcZanrkxA5RKkvr6+WLRoEac5yGuE1UNeXh4DwLKysjR+TUFBAXN1dWUymYz169ePzZo1izHG2LNnz5hQKGTR0dGqcx8/fsz09PTYkSNHNLp2WVkZi4uLY5datWVJ9k712swEemyJuSXbaClhegA7aeugOpZo68AAsE1W1hpf71KrtiwuLo6VlZVpd3OrsLCwYNu3b2eMMSYSidju3bvVjltaWqqOa3OfGivTy7p27cref/99ra7X2Jl69OjBFi9eXO9rcZGp6ue9qWRijLHk5GTm4ODA5HI5A8BiY2N5z1TV1atXGQB27969JpPpxx9/ZIaGhkyhUPCeKTExkQFgubm5Wl8vKyuLAWB5eXn1zlQXZTmRs3YOe7FlYb23nLVzOM/6utNZjXzGjBkYOnQoBg0apLY/KSkJCoUCUqlUtc/e3h5ubm44d+4c57nKGcPRkiKUsAp0MWwGBRgEAAyr1FIMBZVNF8mlulkitby8HNHR0SgqKkLPnj0BAL1790ZMTAxycnJQUVGB6OholJaWwsfHh7dMVSUlJSE5OZnz2kptmTIzM3Hx4kVYW1vD29sbNjY26NevH86cOcNbJqU9e/ZALBajU6dOmDdvHgoKCnjNVFxcjAkTJmDjxo2wtbXVWZbaMlVVVFSEqKgouLi4wNHRsUlkAqBaE9vAQDfDizTJ1OQpB7s1ZCO10smnMTo6GleuXMGlS5eqHcvIyIChoSEsLCzU9tvY2CAjI4OzTKmKMkzNeooyxmAsECDCUoJWQiEs9PRgJBBgff4zzDA1BwCsz3+GCgBZFRWc5QGAlJQU9OzZE8+fP0fz5s0RGxuLjh07AgBiYmIwbtw4WFlZwcDAACYmJoiNjUXr1q15y1RVZGQkOnToAG9vb07z1JbpwoULAIDw8HBERESga9eu2L17NwYOHIjr16/D1dVV55kAYNKkSXBxcYGtrS2uX7+OhQsX4urVq5DJZJzlqStTaGgovL29MWLECE4zaJMJADZt2oRPP/0URUVFaN++PWQyGQwNDXnNpJSdnY3PP/8cQUFBnObRJhMhgA4K8vT0dMyaNQvHjh2DkZGRxq9jjHHad9fSQIgfJLYoqKjAb89LEPYsG99a2aCVUIhVFmKsyMtFdFEB9AAMMTZBe6GQ8wEF7dq1Q3JyMp49e4YDBw5g8uTJOHnyJDp27IjFixcjNzcXx48fh1gsRlxcHMaMGYPTp0+jc+fOvGRSKikpwd69e7FkyRLOcmiSqeJ/X7SCgoIwdepUAEC3bt3w22+/YceOHVixYoXOM3Xs2BHTp09Xnefm5gZXV1d0794dV65cgYeHh84z3bt3DwkJCZyOr9A2U9UvPYMHD4ZcLkdERATGjh2Ls2fPavV/R2NnAoD8/HwMHToUHTt2RFhYGGdZtMn02qD1yDnHeUGelJSEzMxMeHp6qvaVl5fj1KlT2LhxI44ePYqysjLk5uaq1cozMzM5rd0JBQI4GggBAB0Nm+FmWSl+KCrAZy0s0dPIGPFGxsgtL4eBQABTPT1IM/7EW8bc3i5DQ0O0adMGANC9e3dcunQJX3/9NT799FNs3LgR169fR6dOnQAA7u7uOH36NL755hts2bJF55mqDtbav38/iouL8d5773GWQ5NMCxYsAIBq/9l16NABjx494iVTTYPaPDw8IBQKkZqaymlB/qpMxsbGSEtLQ4sWLdTOHz16NPr06YMTJ07oPJPyPpmbm8Pc3Byurq7w8vKChYUFYmNjMWHCBN4yFRQUwNfXV1UzFgqFnGXRNNNr5Q2cR56eno7AwEBkZmbCwMAAS5YswZgxY3jLw3lBPnDgQKSkpKjtmzp1Ktq3b4/58+fD0dERQqEQMpkMY8eOBQDI5XJcv34dq1ev5jqeCgNQ9tKodAt9fQDA76XPkVNRgb5GxjrLA1S2SpSWlqK4uBgAqo281tfXV9VCdZ2pqsjISAQEBEAikeg0y8uZWrZsCXt7e9y5c0ft+N27dzkdSV9bpprcuHEDCoUCdnZ2vGRaunQpPvjgA7VjnTt3xtq1azF8+HBeMtX3OBeqvmd+fj6GDBmCZs2aIT4+ntOWAU0zEf4ZGBhg3bp16Nq1KzIzM+Hh4QF/f3+IRCJ+8nD9BqampnBzc1PbJxKJYGVlpdo/bdo0zJ07F1ZWVrC0tMS8efPQuXPnagPjGsvG/Gfo1cwINvoGKGIVOFZSjKSyUmywNAMAxBcXwsVAiBZ6ekgpK0NEXi4mikzR0oC7b+KLFi2Cn58fHB0dUVBQgOjoaJw4cQJHjhxB+/bt0aZNGwQFBSEiIgJWVlaIi4uDTCbDoUOHeMmkdO/ePZw6dQqHDx/mLIemmQQCAT755BOEhYXB3d0dXbt2xa5du3D79m1O59zXliktLQ179uyBv78/xGIxbt68iblz56Jbt27o1asXL5lsbW1rHODm5OQEFxcXXjLdv38fMTExkEqlkEgkePz4MVatWgVjY2P4+/vzkqmgoABSqRTFxcX4/vvvkZ+fj/z8fACARCKB/v++6OsyE1A5rigjIwP37t0DUNmfbmpqCicnJ1haWnKSqUHewAfC2NnZqb6IW1tbw9LSEjk5OW9uQa6JtWvXwsDAAGPHjkVJSQkGDhyInTt3cvaLklNRjiXPspFVXo7menpwNRBig6UEXv+rcT988QIb858hr6IC9voGeN/UDJNEppxkUXr69CkCAwMhl8thbm6OLl264MiRIxg8eDAA4PDhw1iwYAGGDx+OwsJCtGnTBrt27eL0P7m6MgHAjh078NZbb6nNOuBSXZlmz56N58+fIzQ0FDk5OXB3d4dMJuN0UGBtmdLT0/Hbb7/h66+/RmFhIRwdHTF06FCEhYVx9vmuKxNfasv05MkTnD59GuvWrUNubi5sbGzQt29fnDt3DtbW1rxkOnHiBC5evAgAqmZupQcPHqBly5Y6zwQAW7ZswdKlS1Xn9+3bFwAQFRWFKVOmcJKpQQRoYNO69i85deoUvvzySyQlJUEulyM2Nhbvvvuu2jmbNm3Cl19+Cblcjk6dOmHdunXo06eP1u91+fJlVFRU6Gx2RU0EjGn/lJP8/HyYm5sjKysLVlZWXOTSikKhwOHDh/HWnE+h91w3U8TqUmFkhMdrVsPf318nfWqaUN4nylQ7yqQZyqSZppgpOzsbYrFYNZ2OC8pyIuebBTAzrn+XRH7Jc1jOWIn09HS1rM2aNUOzZs1qfM2vv/6Ks2fPwsPDA6NHj65WkMfExCAwMBCbNm1Cr169sHXrVmzfvh03b96Ek5MTgMoHFNXUnXHs2DHY29sDqLyPffr0wfbt23UyY+dVmkSNnBBCyBuqkUatv1zjDQsLQ3h4eI0v8fPzq3VczJo1azBt2jTVWJF169bh6NGj2Lx5s2p2S1JSUq2xSktLMXLkSCxcuJDXQhyggpwQQgiXGmnUek018vooKytDUlKSapaLklQq1fghZIwxTJkyBQMGDEBgYGC9cjQmKsgJIYRwp5EGuykXkWmorKwslJeXw8bGRm2/Ng8hO3v2LGJiYtClSxfVYkPfffcdp8/0qA0V5IQQQv5xXn7gmDYPIevdu7fOp/7WhgpyQggh3BE0cCnSRn4gjFgshr6+frXad2ZmZrVa+uui6U3QI4QQ8uZQNq03ZANU8/iVW30fkGNoaAhPT89qax3IZDLeB63VF9XICSGENHnajFovLCxUPTAHqJz3n5ycDEtLSzg5OWHOnDkIDAxE9+7d0bNnT2zbtg2PHj3CRx99xOVfgTNUkBNCCOEOD6PWL1++jP79+6t+njNnDgBg8uTJ2LlzJ8aNG4fs7Gz897//hVwuh5ubGw4fPgxnZ+f65+QRFeSEEEK4w8OodR8fH9T1rLOPP/4YH3/8cf1zNSHUR04IIYS8xqhGTgghhDt6DRy13pDX/kNoVJCXlpaqjRBUrgCkUCigUCi4SaYFZYaKej7phwvKLE3h/igps1Cm2lEmzVAmzTTlTDrRSH3kynJHqbZnrf/TaLRoSnh4uNpqO0p79+6FiYkJJ8EIIYRwo7i4GBMnTtTNoik7v4CZSQMWTSl+Dsspn1XbX9uo9X8ajWrkCxcuVI36Ayr/gRwdHdG/f/8ms/qZTCbD4MGDm8zqQpRJM5RJM5RJM5RJM9nZ2bp7s0Ya7NZYz1p/E2lUkL+qCUMoFDaZDybQ9PIAlElTlEkzlEkzlKl2Os3RSH3kjfWs9TcRDXYjhBDCHYGggTVyGuxWF5p+RgghhLzGqEZOCCGEO400ap28GhXkhBBCuNNIg91o+tmrUdM6IYSQJs/R0RHm5uaqbcWKFXxHajKoRk4IIYQ7jTRqnaafvRoV5IQQQrjDw6Ip/zTUtE4IIYS8xqhGTgghhDs0ap1zVJATQgjhjp5e5daQ15Na0R0ihBBCXmOcF+QrVqzA22+/DVNTU1hbW+Pdd9/FnTt31M7Ztm0bfHx8YGZmBoFAgGfPnvGaKScnByEhIWjXrh1MTEzg5OSEmTNnIi8vj7dMABAUFITWrVvD2NgYEokEI0aMwO3bt3nNpMQYg5+fHwQCAeLi4njN5OPjA4FAoLaNHz+e10wAcP78eQwYMAAikQgtWrSAj48PSkpKeMn08OHDavdIue3bt4+XTACQkZGBwMBA2NraQiQSwcPDA/v37+ckj6aZ0tLSMHLkSEgkEpiZmWHs2LF4+vQpZ5k2b96MLl26qAZ39ezZE7/++qvqeGlpKUJCQiAWiyESiRAQEIA///yTszwNJ/i7eb0+G/5exrTqVnVp7X86zgvykydPYsaMGbhw4QJkMhlevHgBqVSKoqIi1TnFxcXw9fXFokWLuI6jUaYnT57gyZMniIiIQEpKCnbu3IkjR45g2rRpvGUCAE9PT0RFReHWrVs4evQoGGOQSqUoLy/nLZPSunXrINBBX5ammaZPnw65XK7atm7dymum8+fPw9fXF1KpFL///jsuXbqE4OBg6HHUbFhXJkdHR7X7I5fLsXTpUohEIvj5+fGSCQACAwNx584dxMfHIyUlBaNGjcK4cePwxx9/8JKpqKgIUqkUAoEACQkJOHv2LMrKyjB8+HBUVFRwksnBwQErV67E5cuXcfnyZQwYMAAjRozAjRs3AACzZ89GbGwsoqOjcebMGRQWFmLYsGGc/T/QYMpR6w3ZQPPIa8XqIS8vjwFgWVlZWr82MzOTAWAnT56sdiwxMZEBYLm5uVpds6ysjMXFxbGysjKt89SVSenHH39khoaGTKFQNJlMV69eZQDYvXv3eM2UnJzMHBwcmFwuZwBYbGysxtfkIlO/fv3YrFmz6nU9rjL16NGDLV68uEllelnXrl3Z+++/z2smkUjEdu/erXaepaUl2759Oy+Zjh49yvT09FheXp7qnJycHAaAyWQynWRijDELCwu2fft29uzZMyYUCll0dLTq2OPHj5menh47cuSIxtfLyspiANT+Xo1NWU7kHNzEXhyNqveWc3ATA8DS09NZXl6eanv+/Dln2V83Ou8jVzZPW1pa6vqtX0mTTHl5eTAzM4OBgW7GB9aVqaioCFFRUXBxcYGjoyNvmYqLizFhwgRs3LgRtra2OslRVyYA2LNnD8RiMTp16oR58+ahoKCAt0yZmZm4ePEirK2t4e3tDRsbG/Tr1w9nzpzhLdPLkpKSkJyczGmrkyaZevfujZiYGOTk5KCiogLR0dEoLS2Fj48PL5lKS0shEAjUHj5iZGQEPT09nfz7lZeXIzo6GkVFRejZsyeSkpKgUCgglUpV59jb28PNzQ3nzp3jPA+flF0Nyo0eCPM3nRbkjDHMmTMHvXv3hpubmy7f+pU0yZSdnY3PP/8cQUFBvGfatGkTmjdvjubNm+PIkSOQyWQwNDTkLVNoaCi8vb0xYsQIzjNommnSpEn44YcfcOLECSxZsgQHDhzAqFGjeMt0//59AEB4eDimT5+OI0eOwMPDAwMHDkRqaiovmV4WGRmJDh06wNvbm/M8tWWKiYnBixcvYGVlhWbNmiEoKAixsbFo3bo1L5m8vLwgEokwf/58FBcXo6ioCJ988gkqKiogl8s5y5KSkoLmzZujWbNm+OijjxAbG4uOHTsiIyMDhoaGsLCwUDvfxsYGGRkZnOVpEOWo9YZspFY6nX4WHByMa9eu6bQmUpe6MuXn52Po0KHo2LEjwsLCeM80adIkDB48GHK5HBERERg7dizOnj0LIyMjnWeKj49HQkICZ/2X9ckEVPaPK7m5ucHV1RXdu3fHlStX4OHhofNMyr7UoKAgTJ06FQDQrVs3/Pbbb9ixYwfnfX11fcZLSkqwd+9eLFmyhNMcmmRavHgxcnNzcfz4cYjFYsTFxWHMmDE4ffo0OnfurPNMEokE+/btw3/+8x+sX78eenp6mDBhAjw8PKCvr89Zlnbt2iE5ORnPnj3DgQMHMHnyZJw8efKV5zPGdDJGpV5oHjnndFaQh4SEID4+HqdOnYKDg4Ou3rZWdWUqKCiAr68vmjdvjtjYWAiFQt4zKQd6uLq6wsvLCxYWFoiNjcWECRN0nikhIQFpaWlo0aKF2vmjR49Gnz59cOLECZ1nqomHhweEQiFSU1M5LchflcnOzg4A0LFjR7XzO3TogEePHnGWp7ZMVe3fvx/FxcV47733OM1SV6a0tDRs3LgR169fR6dOnQAA7u7uOH36NL755hts2bJF55kAQCqVIi0tDVlZWTAwMECLFi1ga2sLFxcXzvIYGhqiTZs2AIDu3bvj0qVL+PrrrzFu3DiUlZUhNzdXrVaemZmps9YU0vRw3mbBGENwcDAOHjyIhIQETj/8jZkpPz8fUqkUhoaGiI+P57zGW9/7xBjjbBpGXZkWLFiAa9euITk5WbUBwNq1axEVFcVLpprcuHEDCoVCVaDqOlPLli1hb29fbVrT3bt34ezszEumqiIjIxEQEACJRMJJFk0zFRcXA0C1kfz6+vqcjRDX5j6JxWK0aNECCQkJyMzMREBAACeZXpWztLQUnp6eEAqFkMlkqmNyuRzXr19vugW5QNDAUetUI68L5zXyGTNmYO/evfjpp59gamqq6scxNzeHsbExgMq5oxkZGbh37x6DsqOBAAAd5ElEQVSAyv4hU1NTODk5cTIorq5MBQUFkEqlKC4uxvfff6+atwhUNrVx0aRWV6b79+8jJiYGUqkUEokEjx8/xqpVq2BsbAx/f/9Gz6NJJltb2xoHuDk5OXH2ha2uTGlpadizZw/8/f0hFotx8+ZNzJ07F926dUOvXr14ySQQCPDJJ58gLCwM7u7u6Nq1K3bt2oXbt29zNkdak987ALh37x5OnTqFw4cPc5JDm0zt27dHmzZtEBQUhIiICFhZWSEuLg4ymQyHDh3iJRMAREVFoUOHDpBIJDh//jxmzZqF0NBQtGvXjpNMixYtgp+fHxwdHVFQUIDo6GicOHECR44cgbm5OaZNm4a5c+fCysoKlpaWmDdvHjp37oxBgwZxkqfBqGmde/UZ6q7N9DMANW5RUVGqc8LCwuo8pzbaTu+oK5NyGlxN24MHD3jJ9PjxY+bn58esra2ZUChkDg4ObOLEiez27dsaXZ+LTK96DZfTz+rK9OjRI9a3b19maWnJDA0NWevWrdnMmTNZdnY2b5mUVqxYwRwcHJiJiQnr2bMnO336NO+ZFi5cyBwcHFh5ebnGWbjMdPfuXTZq1ChmbW3NTExMWJcuXapNR9N1pvnz5zMbGxsmFAqZq6sr++qrr1hFRQVnmd5//33m7OzMDA0NmUQiYQMHDmTHjh1THS8pKWHBwcHM0tKSGRsbs2HDhrFHjx5pnIcxHU8/+/lb9iJhT723nJ+/5Tzr647zGjljrM5zwsPDER4eznUUlboy+fj4aJS7MdX1fvb29jqpNVVVn3vA9X2r6/qOjo61DgrigqZ/5wULFmDBggUcp6mkaably5dj+fLlHKeppEkmV1dXHDhwQAdpKmmSaeXKlVi5cqUO0lSKjIys9biRkRE2bNiADRs26ChRAzXSMqbKVlGlZs2a0RS0/6Fx/YQQQrijJ2j4BnqyW21o9TNCCCFNXnp6OszMzFQ/U238b1SQE0II4U4jNa0rn+hGqqOCnBBCCHdo1DrnqCAnhBDCnUaqkZNXoztECCGEvMaoRk4IIYQzAoGgQc+Bb7LPkG9CqCAnhBDCHWpa5xzdIUIIIeQ1RjVyQggh3KEaOeeoICeEEMIdwd9PZ6v360mtNCrIS0tL1ZbKVD7zVqFQQKFQcJNMC8oMTSGLEmXSDGXSDGXSDGXSTFPKoil61vqrCZgGqwaEh4dj6dKl1fbv3bsXJiYmnAQjhBDCjeLiYkycOBF5eXmcPS0tPz8f5ubmyE3YB7Pm9S8n8guLYTFgTLX9YWFhOl1sqynTqCCvqUbu6OgIuVwOKysrTgNqQqFQQCaTYfDgwRAKhXzHAUCZNEWZNKPMZLdwCfSq/C7yqaJZM8hXfN4k7xNlql12djbs7Ox0U5An7m94Qd7/XzU+a51q5JU0alp/1Q0TCoVN5oMJNL08AGXSFGXSjF5pKfSeP+c7hpqmeJ8oU+2aSg5t0LPWX40GuxFCCOGOQNDAUes02K0uVJATQgjhDi2awjkqyAkhhHCH5pFzju4QIYQQ8hqjGjkhhBDu6DXwgTANee0/BBXkhBBCuENN65yjO0QIIYS8xqhGTgghhDs0ap1zVJATQgjhDjWtc47uECGEEPIa47wgX7FiBd5++22YmprC2toa7777Lu7cuaN2TmlpKUJCQiAWiyESiRAQEIA///yT01ynTp3C8OHDYW9vD4FAgLi4OLXjT58+xZQpU2Bvbw8TExP4+voiNTWV10yFhYUIDg6Gg4MDjI2N0aFDB2zevJnXTAKBoMbtyy+/5C0TANy6dQsBAQEwNzeHqakpvLy88OjRI17yTJkypdr98fLy4iSL0pXS55idnYkhGY/h+eQREkuKX3nuF89y4PnkEfYW5r/ynMZQ130KDw9H+/btIRKJYGFhgUGDBuHixYu8ZVIoFJg/fz46d+4MkUgEe3t7vPfee3jy5AlvmQDg4MGDGDJkCMRiMQQCAZKTkznN02DKpvWGbKRWnBfkJ0+exIwZM3DhwgXIZDK8ePECUqkURUVFqnNmz56N2NhYREdH48yZMygsLMSwYcNQXl7OWa6ioiK4u7tj48aN1Y4xxvDuu+/i/v37+Omnn/DHH3/A2dkZgwYNUsuty0wAEBoaiiNHjuD777/HrVu3EBoaipCQEPz000+8ZZLL5Wrbjh07IBAIMHr0aN4ypaWloXfv3mjfvj1OnDiBq1evYsmSJTAyMuIlDwD4+vqq3afDhw9zkkWphDG0FRpivrlFrecllhTjelkpJHr6nOYB6r5Pbdu2xcaNG5GSkoIzZ86gZcuWkEql+Ouvv3jJVFxcjCtXrmDJkiW4cuUKDh48iLt37yIgIICzPHVlUh7v1asXVq5cyWmORqNsWm/IhspFWKpupU1k8aCmgPM+8iNHjqj9HBUVBWtrayQlJaFv377Iy8tDZGQkvvvuOwwaNAgA8P3338PR0RHHjx/HkCFDOMnl5+cHPz+/Go+lpqbiwoULuH79Ojp16gQA2LRpE6ytrfHDDz/ggw8+0HkmADh//jwmT54MHx8fAMCHH36IrVu34vLlyxgxYgQvmWxtbdV+/umnn9C/f3+0atWKkzyaZPrss8/g7++P1atXq/bxmQeoXHjo5XvFpV5GxuhlZFz5Q27N52SWv8DqvFxstJJgVg53haVSXfdp4sSJaj+vWbMGkZGRuHbtGgYOHKjzTObm5pDJZGr7NmzYgHfeeQePHj2Ck5OTzjMBQGBgIADg4cOHnLx/U+Xo6Kj2My1j+jed95Hn5eUBACwtLQEASUlJUCgUkEqlqnPs7e3h5uaGc+fO6ToeAKi+6VWtwenr68PQ0BBnzpzhJRMA9O7dG/Hx8Xj8+DEYY0hMTMTdu3c5+7KjradPn+KXX37BtGnTeMtQUVGBX375BW3btsWQIUNgbW2NHj161Nj8rksnTpyAtbU12rZti+nTpyMzM5PXPBWMYUluNgKbm6K10JDXLDUpKyvDtm3bYG5uDnd3d77jqOTl5UEgEKBFixZ8R3l96Ok1fAOQnp6OvLw81bZw4UKe/2JNh04LcsYY5syZg969e8PNzQ0AkJGRAUNDQ1hYqDcB2tjYICMjQ5fxVNq3bw9nZ2csXLgQubm5KCsrw8qVK5GRkQG5XM5LJgBYv349OnbsCAcHBxgaGsLX1xebNm1C7969ectU1a5du2BqaopRo0bxliEzMxOFhYVYuXIlfH19cezYMYwcORKjRo3CyZMnecnk5+eHPXv2ICEhAV999RUuXbqEAQMG8No0uLMwH/oCASaITHnLUJNDhw6hefPmMDIywtq1ayGTySAWi/mOBQB4/vw5FixYgIkTJ9Jymlp41TgabTbg72VMlRutRf43nU4/Cw4OxrVr1zSq1TLGVP+AuiYUCnHgwAFMmzYNlpaW0NfXx6BBg+psPuXa+vXrceHCBcTHx8PZ2RmnTp3Cxx9/DDs7O1W3BJ927NiBSZMmcdYXrYmKigoAwIgRIxAaGgoA6Nq1K86dO4ctW7agX79+Os80btw41Z/d3NzQvXt3ODs745dffuHlS8+tsjJEFxVgj8SWt9+xV+nfvz+Sk5ORlZWFb7/9FmPHjsXFixdhbW3Nay6FQoHx48ejoqICmzZt4jXLa4eWMeWczgrykJAQxMfH49SpU3BwcFDtt7W1RVlZGXJzc9Vq5ZmZmfD29tZVvGo8PT2RnJyMvLw8lJWVQSKRoEePHujevTsveUpKSrBo0SLExsZi6NChAIAuXbogOTkZERERvBfkp0+fxp07dxATE8NrDrFYDAMDA3Ts2FFtf4cOHXjtFqnKzs4Ozs7OnM+CeJU/yp4jp6ICQ5/+Pfq6HMDa/GfYW1SAQzZv8ZILAEQiEdq0aYM2bdrAy8sLrq6uiIyM5LUZVaFQYOzYsXjw4AESEhKoNk6aHM6b1hljCA4OxsGDB5GQkAAXFxe1456enhAKhWqDSuRyOa5fv85rQa5kbm4OiUSC1NRUTgeV1UWhUEChUEBPT/2fTF9fX1UL5VNkZCQ8PT157880NDTE22+/XW2K4927d+Hs7MxTKnXZ2dlIT0+HnZ0dL+/vbyJCtMQWe6tsEj19BDY3w0Yrfmu+L2OM8doFoSzEU1NTcfz4cVhZWfGW5bVF0884x3mNfMaMGdi7dy/+f3v3HhVV2e8B/DvMADMolwZwmFEhNNPyQkWXo3VQTsBZaGqKt/S0EGwdTT1LlqZpWVCJlivJTh5TWb5oujSzC64uKy+9CnlslUq4vLynokUCBRK3GS4jIzPP+YMXFFEYLptnxr6ftfYfezMz+zt7hv3bz7P3nufQoUPw9fVtPe/t7+8PnU4Hf39/LFiwACtWrEBgYCD0ej1eeOEFjB49WtFWZl1dHQoKClrnCwsLkZ+fD71ej9DQUBw8eBDBwcEIDQ3F+fPnsWzZMjz99NNtLsrr60zjx4/HypUrodPpEBYWhpycHHzwwQfIyMiQlglovi3k4MGD2LRpk2I5upJp5cqVmD17NqKiohAdHY2vv/4an3/+OU6cONHnefR6PdLS0pCQkACj0YjffvsNL730EoKCgjBt2jRF8gBAg8OBYntT6/wf9ib8dM0GP5UHjBoNAm663UyjAoI8PHC3xlOxTB1tp8DAQKSnp2PKlCkwGo2orKzE1q1bUVJSgpkzZ0rJZDKZMGPGDOTl5eGLL76A3W5v3X/p9Xp4eSlzkWBn3++qqioUFRW13s/ectAaEhLSp3dGOK+Hv+zG3y3rnOgGs9ksAIiKiopOHwvgllNWVlbrY6xWq1i6dKnQ6/VCp9OJp556ShQVFTmdx2aziezsbGGz2Zx+zvHjx2+ZKzExUQghxLvvvisGDRokPD09RWhoqFi7dq1obGyUmqm0tFTMnz9fmEwmodVqxfDhw8WmTZuEw+GQlkkIIbZv3y50Op2oqalx+nWVzrRz505xzz33CK1WKyIiIkR2drZimTrK09DQIOLi4kRwcHDrdykxMbFL3+8bM50ecq84awrtdNoeOOCWmZ7S9bvl441qtVjhF+DUa7dMp4fc22vbyWq1imnTpgmTySS8vLyE0WgUU6ZMET/88EO3tlNvZCosLLzt/uv48eNSMgkhRFZW1i3/npqa6nSmiooKAUCYzWann9NVLXWiJu+EcPxypttTTd4JxbO6O5UQQnS1+FssFvj7+6OiosIlupquXbuGr776ChMnToSnp3Itiq5gJucwk3NaMg1cvgoeV6/KjgMAcGi1+D1jo0tuJ2bqWGVlJYKCgmA2mxU7599SJ2p+zIGfb//uv05tHQIeHK9oVnfHQVOIiEg5N9wL3u3nU4e4hYiIiNwYW+RERKQcjkeuOBZyIiJSDscjVxwLORERKYctcsXxUIeIiMiNsUVOREQKUv1z6snzqSMs5EREpBx2rSuOXetERERujC1yIiJSDlvkimMhJyIiBfEcudLYtU5EROTGnGqRNzY2thkT2GKxALg+RrZsLRlcIUsLZnIOMzmnJYvD21tykutasrjidmKmjvVpll7qWm+pOy28vb3h7UL/DzI5NfpZWloaXnvttXbL9+3bBx8fH0WCERGRMhoaGjB37ty+Gf3s/870fPSzEQ+3W56amoq0tLQeJLxzOFXIb9UiHzx4MEpLS11mGNOjR4/CuOYVeNyQUyaHtzdKN7zhkpliY2NdZjhFfnbOceXPjpk65oqZKisrYTQa3aqQFxcXt8nKFvl1TnWt326DeXp6uswXEwA8GhtdZqzmFq6YydU+N8A1t5MrZnLFz46ZnONKmfo2R+9c7Obn58fxyG+DV60TEZFyePuZ4ljIiYhIOSr0sJD3WpI7Fm8/IyIicmNskRMRkYL4gzBKYyEnIiLl8By54ti1TkRE5MbYIiciIgWxa11pLORERKQcdq0rjl3rREREbowtciIiUg5b5IqT0iLPzc3F5MmTYTKZoFKpkJ2dLSNGG3+rNePZP8vwr6XFiCkrwfKqP/Fbk9zRig7W12J2eSmiSosRVVqM+X+W4X+vWqVmutGGDRugUqmQkpIiLcN2Sw0i/yhqM8WVlUjL06Lc3oS11RX4t9ISjCstxjPlpfiHzSYtz9133w2VStVuWrJkibRMTU1NWLt2LcLDw6HT6TBkyBC8/vrrcDgc0jIBQG1tLVJSUhAWFgadTodx48bh9OnTfbb+zvaPQgikpaXBZDJBp9NhwoQJuHjxYp/l6zpVL0zUESkt8vr6ekRERCApKQkJCQkyIrSTZ2vEzH79MdLTC3YA/2OpwZLKcnwcbITOQ84ZCINajf/yC8BgTfPH9EVDPZZX/Yl9wSEY6uklJVOL06dPY8eOHRgzZozUHAAwVOOJrYEDWufVErMAgMXhQHLFFTzspcV/BwZD76FGib0J/T3k7ZBOnz4Nu93eOn/hwgXExsZi5syZ0jK99dZb2LZtG3bv3o2RI0fizJkzSEpKgr+/P5YtWyYt13PPPYcLFy5gz549MJlM2Lt3L2JiYnDp0iUMHDhQ8fV3tn/cuHEjMjIysGvXLtx7771Yt24dYmNj8dNPP8HX11fxfOR6pBTy+Ph4xMfHy1j1bW25oRAAQFpAIGKu/I5/XLPhIW+tlExR2rZDxC7xC8DH9XU4b7NJLeR1dXWYN28eMjMzsW7dOmk5WqgBBKlll+/rdtVZYFBrkHbX9ZEBTRq5Z7GCg4PbzL/55psYOnQoxo8fLykR8N1332Hq1KmYNGkSgOZeg/379+PMmTPSMlmtVnzyySc4dOgQoqKiADQP45ydnY3333+/T77vHe0fhRDYvHkzXn75ZUyfPh0AsHv3bhgMBuzbtw8LFy5UPF9XtfT+9OT51DFe7HYbdaK5e89PUmv8ZnYhcNhaD6twYIyX3KH7lixZgkmTJiEmJkZqjhZF9ib8e9nvmHzld6ypqkBJU5PUPLlXG3C/pxdWVf2JmLISzC0vxaf1dVIz3chms2Hv3r1ITk6WupN84okn8M033+Dnn38GAJw7dw4nT57ExIkTpWVqamqC3W6HVtv24F2n0+HkyZOSUl1XWFiIsrIyxMXFtS7z9vbG+PHjcerUKYnJOtByjrwnE3WIF7vdghACGeYaPODljXskd2H/cs2GpIorsAkBnUqFt/XBGCJxKMQPP/wQeXl5fXrOsCOjvLzxuqcXQjUaVDkc2FlrRnJFGT4aYESAh5xW+u9NTfi4qRbz+vsh2dcfF22NeNtcDS8V8JRP98dl7i3Z2dmoqanB/PnzpeZ48cUXYTabMWLECKjVatjtdqSnp+OZZ56RlsnX1xdjx47FG2+8gfvuuw8GgwH79+/H999/j2HDhknL1aKsrAwAYDAY2iw3GAy4fPmyjEhO4H3kSmMhv4W3zNX4pcmGnUGGzh+ssLs1ntgfHIJahwPfXLUitaYSmYEGKcW8uLgYy5Ytw5EjR9q1WGR5XKtrMz/G0wtTy//AFw31+I/+csYudgC439MLS/0CAAAjPL3wa9M1fFxf5xKFfOfOnYiPj4fJZJKa48CBA9i7dy/27duHkSNHIj8/HykpKTCZTEhMTJSWa8+ePUhOTsbAgQOhVqvx0EMPYe7cucjLy5OW6WY396QIIdgF/RfGQn6TjeYq5F61IjPIAINa/ubxVKkwWNNctO/38sYlWyP219fi5QB9n2c5e/YsysvLERkZ2brMbrcjNzcXW7ZsQWNjI9SSz1XrPDxwj8YLRRK714PUaoTfdKAVrvHE363y7zi4fPkyjh07hk8//VR2FKxcuRKrV6/GnDlzAACjR4/G5cuXsWHDBqmFfOjQocjJyUF9fT0sFguMRiNmz56N8PBwaZlahISEAGhumRuNxtbl5eXl7VrprqOn3eM8QOmMa5wAdgFCCLxVU4W/W63YFjQAAyVfnHQ7AoBNCCnrfvLJJ3H+/Hnk5+e3Tg8//DDmzZuH/Px86UUcaN42hU3XpF78FuHljcs3HUgUNTXB6ALbJysrCwMGDGi9wEymhoYGeNx0DYparZZ++1mLfv36wWg0orq6GocPH8bUqVNlR0J4eDhCQkJw9OjR1mU2mw05OTkYN26cxGQd4DlyxUmpVnV1dSgoKGidLywsRH5+PvR6PUJDQ2VEwpvmanxtrUeGPhg+Kg9U/PNWnf4eKmhVco53tlhq8Li3Fga1BvXCgSPWBpy1NeI9vZwuY19fX4waNarNsn79+iEwMLDd8r7yjrkaUVodQtQaVDns2FlrRr1wYLKun5Q8ADCvny+SKq7gb7VmxOp8cMFmw6cNdXjZv+97UW7kcDiQlZWFxMREaFzgQHXy5MlIT09HaGgoRo4ciR9//BEZGRlITk6Wmuvw4cMQQmD48OEoKCjAypUrMXz4cCQlJfXJ+jvbP6akpGD9+vUYNmwYhg0bhvXr18PHxwdz587tk3zkeqT8N585cwbR0dGt88uXLwcAJCYmYteuXTIi4eOG5quK/7OyvM3y1AA9pkg6r1nlsOOVmkpU2O3o7+GBYRpPvKcPxr/cdF74r6zcbsdL1ZWocdhxl4cao728sCsoBEaJhWqklzfe1gdji6UGmbVmmDQarPC7CxN95B1cAMCxY8dQVFQkvVC2eO+99/DKK69g8eLFKC8vh8lkwsKFC/Hqq69KzWU2m7FmzRqUlJRAr9cjISEB6enp8Oyj61I62z+uWrUKVqsVixcvRnV1NR577DEcOXLEhe8h58VuSpOyt5swYQKEpO7h2zlrktMT0JFXAwI7f5BkJ06ckLr+Dfogqeu/nSitDlEudsAVFxfnUv93vr6+2Lx5MzZv3iw7ShuzZs3CrFmzpK2/s/2jSqVCWloa0tLS+i5UT/AnWhXHc+RERERuTP6JMiIiunOxZ11xLORERKQgVnKlsWudiIjIjbFFTkREyuHFbopjISciIuWwkCuOhZyIiBTEc+RK4zlyIiIiN8ZCTkREylGhh7+1LvsNtFdbW4tHHnkEDzzwAEaPHo3MzEypedi1TkREyrkDz5H7+PggJycHPj4+aGhowKhRozB9+nQEBsr5NU62yImIiLpArVbDx8cHAHD16lXY7XapP3/MQk5ERApS9cLUNbm5uZg8eTJMJhNUKhWys7PbPWbr1q0IDw+HVqtFZGQkvv322y6to6amBhERERg0aBBWrVqFoCB54z441bXe2NiIxsbG1nmz2QwAqKqqUiZVF127dg0NDQ2waDTw8OqbEYo649BoXDZTZWVln43k1Bl+ds5x5c+OmTrmipla9t190Yq01NX1qHvcUtc8MqXFYmmz3NvbG97e3rd8Tn19PSIiIpCUlISEhIR2fz9w4ABSUlKwdetWPP7449i+fTvi4+Nx6dKl1qG0IyMj29S9FkeOHIHJZEJAQADOnTuHK1euYPr06ZgxYwYMBkO332ePCCekpqYKAJw4ceLE6Q6afv31V2dKQLdYrVYREhLSKzn79+/fbllqaqpTOQCIzz77rM2yRx99VCxatKjNshEjRojVq1d3670uWrRIfPTRR916bm9wqkW+Zs2a1jFxgeYuhbCwMBQVFcHf39+Zl1CUxWLB4MGDUVxcDD8/P9lxADCTs5jJOczkHGZyjtlsRmhoKPR6vWLr0Gq1KCwshM1m6/FrCSGguqlVf7vWeGdsNhvOnj2L1atXt1keFxeHU6dOOfUaV65cgU6ng5+fHywWC3Jzc/H88893K09vcKqQ364Lw9/f32W+mADg5+fnUnkAZnIWMzmHmZzDTM7x8FD2MimtVgutVqvoOrqqoqICdru9XTe4wWBAWVmZU69RUlKCBQsWQAgBIQSWLl2KMWPGKBHXKbz9jIiI/nJubuHfqtV/O5GRkcjPz1ciVrfwqnUiIvrLCAoKglqtbtf6Li8vl3exWg+p09LS0rr1RLUaEyZMgEbjGo16V8sDMJOzmMk5zOQcZnKOK2ZSwmuvvYY5c+ZgxIgRAJrf95dffgmr1YpJkya1Pm7FihWIjY1FTEyMrKjdphJC4l3sREREvayurg4FBQUAgAcffBAZGRmIjo6GXq9HaGgoDhw4gGeffRbbtm3D2LFjsWPHDmRmZuLixYsICwuTnL7rWMiJiOiOcuLECURHR7dbnpiYiF27dgFo/kGYjRs3orS0FKNGjcI777yDqKioPk7aO1jIiYiI3BgvdiMiInJjLORERERujIWciIjIjbGQExERuTEWciIiIjfGQk5EROTGWMiJiIjcGAs5ERGRG2MhJyIicmMs5ERERG6MhZyIiMiNsZATERG5sf8HFayqkBV6EQkAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'probability distribution after 1 move')" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plotchutes(T*M*e₁)\n", - "title(\"probability distribution after 1 move\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As above, the probability distribution after $n$ moves is $(TM)^n e_1$, and it is interesting to plot this:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740","id":"ob_08","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740","id":"ob_07","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_08","value":0},"value":{"sync":true,"id":"ob_07","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":100,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-6e9c3b95-f27f-4a98-aecb-54d85411d909","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_12","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_07\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_07\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_07\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_07\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_07\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_07\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-07c43a58-2006-4460-9a40-fbf7acab3740\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_11\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for n in slider(1:100, value=1)\n", - " withfig(fig) do\n", - " plotchutes((T*M)^n*e₁)\n", - " title(\"distribution after $n moves\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Games can end much more quickly because of the ladders, but they can also take much longer because of the chutes. Let's plot the probability distribution vs. $n$ as before:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdcU9f7B/BPgBDCFmQJCCIyVIaK+kNrEfceta2jiiiOOupAa7VWxW2dWL911t1qrYu6K1ZArWjVam2FuiqCCqKoUGUnz++PNJGQgAQCwfK8X6+88J6ce+5zD9fk4d57zhUQEYExxhhjrIbS03UAjDHGGGO6xMkQY4wxxmo0ToYYY4wxVqNxMsQYY4yxGo2TIcYYY4zVaJwMMcYYY6xG42SIMcYYYzUaJ0OMMcYYq9E4GWKMMcZYjcbJEHvrxMbGQiAQYN++fboOpUySkpLQvXt3WFlZQSAQYNKkSboOqdo4f/48IiIi8OLFC623vWfPHjRq1AhisRgCgQDXrl1DREQEBAJBudqTH3exsbEarefq6ooePXqUa5tlJRAIMH78eK22uWjRIkRFRWm1TU08ePAAAwYMgK2tLczMzNCkSROsXbtWozZcXV0RGhqq1bgEAgEiIiLeWK8ixxqrepwMMVbJJk+ejIsXL2LLli2Ij4/H5MmTdR1StXH+/HnMnTtX68nQkydPMGTIENSvXx8nTpxAfHw8PDw8MGLECMTHx5erzaZNmyI+Ph5NmzbVaqzVlS6TIalUip49e+LMmTNYvnw59u/fj379+uGXX37RSTzsv89A1wEwVl3l5OTAyMiown/d/fnnn2jRogX69OmjpcjYm9y6dQsFBQUYPHgwgoKCFOXGxsZwcnIqV5vm5ub4v//7P22FyEpx8+ZNXLt2DevWrUNISAgAoFOnTjqOSreys7NhbGys6zD+s/jMECuV/FTvjRs3MHDgQFhYWMDOzg7Dhw9HZmamol5SUhIEAgG2bdum0kbx08ryNq9fv44PPvgAFhYWsLKyQnh4OAoLC3Hz5k106dIFZmZmcHV1xdKlS9XGlpubi/DwcNjb20MsFiMoKAhXr15VqXf58mX06tULVlZWMDIyQpMmTfDDDz8o1dm2bRsEAgFOnjyJ4cOHw8bGBsbGxsjLyyuxb5KTkzF48GDY2tpCJBLB29sbK1asgFQqBfD6ssqdO3dw/PhxCAQCCAQCJCUlldim/HLH1q1b4enpCbFYjICAAFy4cAFEhGXLlqFevXowNTVFu3btcOfOHZU2tmzZAj8/PxgZGcHKygp9+/ZFYmKi4v3IyEhFXMV99tlnMDQ0xNOnTxVlp06dQvv27WFubg5jY2O0bt0aP//8s9J6T548wahRo+Ds7AyRSAQbGxu0bt0ap06dKnFfIyIi8OmnnwIA6tWrp+gf+WUoqVSKpUuXwsvLCyKRCLa2tggJCcGDBw9KbBMAQkND8c477wAA+vfvD4FAgLZt2yq2WTy5lV/GOnHiBJo2bQqxWAwvLy9s2bJFqZ66y2R///03BgwYgDp16kAkEsHOzg7t27fHtWvXVOJ6U/slycvLw7x58+Dt7Q0jIyNYW1sjODgY58+fV6m7c+dOeHt7w9jYGH5+fjhy5IhK37i6uqqsV7xfBAIBXr16he3btyt+L/I+BIC0tDSMHj0aTk5OMDQ0RL169TB37lwUFhYqtbtu3Tr4+fnB1NQUZmZm8PLywueff/7GfdbX1wcgS4q0KTc3F1OmTIG/v7/icycwMBA//vijSt2srCyMHDkS1tbWMDU1RZcuXXDr1i217R49ehT+/v4QiUSoV68eli9frrYeEWHt2rXw9/eHWCxGrVq18P777+Pvv/9Wqte2bVs0btwYZ86cQatWrWBsbIzhw4cDAE6fPo22bdvC2toaYrEYdevWRb9+/ZCdnV3B3qnhiLFSzJkzhwCQp6cnzZ49m6Kjo2nlypUkEolo2LBhinr37t0jALR161aVNgDQnDlz1LY5f/58io6OpmnTphEAGj9+PHl5edFXX31F0dHRNGzYMAJA+/fvV6wfExNDAMjZ2Zl69+5Nhw8fpm+//Zbc3d3J3Nyc7t69q6h7+vRpMjQ0pDZt2tCePXvoxIkTFBoaqhLr1q1bCQA5OjrSqFGj6Pjx47Rv3z4qLCxU2y/p6enk6OhINjY2tH79ejpx4gSNHz+eANCYMWOIiCgzM5Pi4+PJ3t6eWrduTfHx8RQfH0+5ubkl9jcAcnFxoVatWtGBAwfo4MGD5OHhQVZWVjR58mTq3bs3HTlyhL777juys7MjX19fkkqlivUXLVpEAGjgwIF09OhR2rFjB7m5uZGFhQXdunWLiIiePHlChoaGNHPmTKVtFxYWUp06dei9995TlO3cuZMEAgH16dOHDhw4QIcPH6YePXqQvr4+nTp1SlGvc+fOZGNjQxs3bqTY2FiKioqi2bNn0/fff1/ivqakpNAnn3xCAOjAgQOK/snMzCQiolGjRimOiRMnTtD69evJxsaGnJ2d6cmTJyW2e+fOHfr6668JAC1atIji4+Ppxo0bRPT62CvKxcWFnJycqGHDhrRjxw766aef6IMPPiAAFBcXp6gnP+5iYmIUZZ6enuTu7k47d+6kuLg42r9/P02ZMkWpTlnbV6egoICCg4PJwMCApk6dSseOHaNDhw7R559/Trt371bUA0Curq7UokUL+uGHH+jYsWPUtm1bMjAwUPr/MHToUHJxcVHZTvF+iY+PJ7FYTN26dVP8XuR9mJqaSs7OzuTi4kIbNmygU6dO0fz580kkElFoaKiijd27dxMA+uSTT+jkyZN06tQpWr9+PU2YMKHUfZZr27Yt6evr08GDB8tUXx0XFxcaOnSoYvnFixcUGhpKO3fupNOnT9OJEydo6tSppKenR9u3b1fUk0qlFBwcTCKRiBYuXEgnT56kOXPmkJubm8rn2alTp0hfX5/eeecdOnDgAO3du5eaN29OdevWVTnWRo4cSUKhkKZMmUInTpygXbt2kZeXF9nZ2VFaWpqiXlBQEFlZWZGzszOtWbOGYmJiKC4uju7du0dGRkbUsWNHioqKotjYWPruu+9oyJAh9Pz583L3EyPiZIiVSv4huXTpUqXysWPHkpGRkeKLuDzJ0IoVK5Tq+fv7K74Y5QoKCsjGxkbpC1r+pdS0aVOlRCApKYmEQiGNGDFCUebl5UVNmjShgoICpW316NGDHBwcSCKRENHrZCgkJKRM/TJ9+nQCQBcvXlQqHzNmDAkEArp586aizMXFhbp3716mdgGQvb09vXz5UlEWFRVFAMjf319pfyMjIwkAXb9+nYiInj9/rvgCKyo5OZlEIhENGjRIUfbee++Rk5OTYv+JiI4dO0YA6PDhw0RE9OrVK7KysqKePXsqtSeRSMjPz49atGihKDM1NaVJkyaVaR+LWrZsGQGge/fuKZUnJiYSABo7dqxS+cWLFwkAff7556W2Kz9G9u7dq1ReUjJkZGRE9+/fV5Tl5OSQlZUVjR49WqVNeaLz9OlTAkCRkZGlxlLW9tXZsWMHAaBNmzaVWg8A2dnZUVZWlqIsLS2N9PT0aPHixYqysiZDREQmJiZKiYTc6NGjydTUVGl/iIiWL19OABRJ0/jx48nS0rLUuEty8+ZN8vLyIg8PDzI0NKQjR46Uq53iyVBxhYWFVFBQQGFhYdSkSRNF+fHjxwkArV69Wqn+woULVT7PWrZsSXXq1KGcnBxFWVZWFllZWakkmOo+91JSUkgsFtO0adMUZUFBQQSAfv75Z6W6+/btIwB07dq1Mu0/Kzu+TMbKpFevXkrLvr6+yM3NRXp6ernbLD7CxtvbGwKBAF27dlWUGRgYwN3dHffv31dZf9CgQUqn9l1cXNCqVSvExMQAAO7cuYO//voLH330EQCgsLBQ8erWrRtSU1NVTsP369evTLGfPn0aDRs2RIsWLZTKQ0NDQUQ4ffp0mdpRJzg4GCYmJoplb29vAEDXrl2V9ldeLu+b+Ph45OTkqIyecXZ2Rrt27ZQubQ0bNgwPHjxQuoy1detW2NvbK/r//PnzePbsGYYOHarUd1KpFF26dMGlS5fw6tUrAECLFi2wbds2LFiwABcuXEBBQUG59x+A4ndYfF9atGgBb29vlct0FeXv74+6desqlo2MjODh4aH2uJOzsrJC/fr1sWzZMqxcuRJXr15VXCLVRvsAcPz4cRgZGSkukZQmODgYZmZmimU7OzvY2tq+cRuaOnLkCIKDg1GnTh2l40J+3MTFxQGQ/a5evHiBgQMH4scff1S69FqaZ8+eoUOHDujYsSP++OMPdOrUCf369cPx48cVdb799lsIBALcu3dP4/j37t2L1q1bw9TUFAYGBhAKhdi8ebPSpWT58Sf/7JAbNGiQ0vKrV69w6dIlvPfeezAyMlKUm5mZoWfPnkp1jxw5AoFAgMGDByv1m729Pfz8/FRGKdaqVQvt2rVTKvP394ehoSFGjRqF7du3q1xeY+XHyRArE2tra6VlkUgEQHaTcXlZWVkpLRsaGsLY2FjpQ0Venpubq7K+vb292rKMjAwAwOPHjwEAU6dOhVAoVHqNHTsWAFQ+oB0cHMoUe0ZGhtq6derUUbxfXur6pbRyed/It1lSXEVj6tq1KxwcHLB161YAwPPnz3Ho0CGEhIQo7teQ99/777+v0n9ffvkliAjPnj0DIBvGPnToUHzzzTcIDAyElZUVQkJCkJaWVq4+0GRftKH48Q3IjvHSjm+BQICff/4ZnTt3xtKlS9G0aVPY2NhgwoQJ+OeffyrcPiC7F6tOnTrQ03vzR3V5t6Gpx48f4/DhwyrHRKNGjQC8/j81ZMgQbNmyBffv30e/fv1ga2uLli1bIjo6utT2N2/ejJSUFMyePRuGhobYv38/OnXqhL59++Knn34CILt/y9vbG/Xq1dMo9gMHDuDDDz+Eo6Mjvv32W8THx+PSpUsYPny40mdMRkYGDAwMVPq0+GfO8+fPIZVKS/wsKurx48cgItjZ2an03YULF8r0WVS/fn2cOnUKtra2GDduHOrXr4/69etj9erVGvUDU8WjyZhWyBOY4jcca/tLqyh1X7RpaWmKD7DatWsDAGbMmIH33ntPbRuenp5Ky2UdOWZtbY3U1FSV8kePHiltuyrJ97ukuIrGpK+vjyFDhuCrr77CixcvsGvXLuTl5WHYsGGKOvL6a9asKXEUlZ2dnaJuZGQkIiMjkZycjEOHDmH69OlIT0/HiRMnKrQvxUd/Fd8XXXJxccHmzZsByEaw/fDDD4iIiEB+fj7Wr19f4fZtbGxw7tw5SKXSMiVEb2JkZKR2UEBZz9oAst+1r68vFi5cqPZ9+R8EgOwM5LBhw/Dq1SucOXMGc+bMQY8ePXDr1i24uLioXf/u3bvQ19eHqakpAFnSv2/fPnzwwQfo06cPVqxYgR07dqgdrPEm3377LerVq4c9e/Yo/V8v3ifW1tYoLCxERkaGUkJU/DOnVq1aEAgEJX4WFVW7dm0IBAKcPXtW8cdkUcXLSvosatOmDdq0aQOJRILLly9jzZo1mDRpEuzs7DBgwIAS9py9CZ8ZYlphZ2cHIyMjXL9+Xalc3SgNbdm9ezeISLF8//59nD9/XjHqxdPTEw0aNMDvv/+OgIAAta+ilxU00b59eyQkJOC3335TKt+xYwcEAgGCg4PLvV/lFRgYCLFYjG+//Vap/MGDBzh9+jTat2+vVD5s2DDk5uZi9+7d2LZtGwIDA+Hl5aV4v3Xr1rC0tERCQkKJ/Sc/O1VU3bp1MX78eHTs2FGlf4or6Qyj/PJA8X25dOkSEhMTVfalOvDw8MAXX3wBHx+fN+53WXXt2hW5ubnl+uJXx9XVFenp6YqzfgCQn5+vOONSVElnlXr06IE///wT9evXV3tMFE2G5ExMTNC1a1fMnDkT+fn5uHHjRokxNm7cGBKJBN99952iTJ4QtWvXDuPGjUOrVq1ULlmVhUAggKGhoVKikZaWpvI5Jf//WzQGANi1a5fKfrVo0QIHDhxQOrP0zz//4PDhw0p1e/ToASLCw4cP1fabj4+PRvuir6+Pli1b4uuvvwYArR1zNRWfGWJaIb8WvmXLFtSvXx9+fn749ddfVT48tCk9PR19+/bFyJEjkZmZiTlz5sDIyAgzZsxQ1NmwYQO6du2Kzp07IzQ0FI6Ojnj27BkSExPx22+/Ye/eveXa9uTJk7Fjxw50794d8+bNg4uLC44ePYq1a9dizJgx8PDw0NZulpmlpSVmzZqFzz//HCEhIRg4cCAyMjIwd+5cGBkZYc6cOUr1vby8EBgYiMWLFyMlJQUbN25Uet/U1BRr1qzB0KFD8ezZM7z//vuwtbXFkydP8Pvvv+PJkydYt24dMjMzERwcjEGDBsHLywtmZma4dOkSTpw4UeIZOTn5F8Dq1asxdOhQCIVCeHp6wtPTE6NGjcKaNWugp6eHrl27IikpCbNmzYKzs3O1mLjy+vXrGD9+PD744AM0aNAAhoaGOH36NK5fv47p06drZRsDBw7E1q1b8fHHH+PmzZsIDg6GVCrFxYsX4e3trfGZgP79+2P27NkYMGAAPv30U+Tm5uKrr76CRCJRqevj44PY2FgcPnwYDg4OMDMzg6enJ+bNm4fo6Gi0atUKEyZMgKenJ3Jzc5GUlIRjx45h/fr1cHJywsiRIyEWi9G6dWs4ODggLS0NixcvhoWFBZo3b15ijGFhYdi6dSvGjBmDP/74A507d4ZEIkF8fDzOnj0LZ2dnnDt3Dj/88AM+/PBDjfa/R48eOHDgAMaOHYv3338fKSkpmD9/PhwcHHD79m1FvU6dOuHdd9/FtGnT8OrVKwQEBOCXX37Bzp07VdqcP38+unTpgo4dO2LKlCmQSCT48ssvYWJioriMDMj+uBg1ahSGDRuGy5cv491334WJiQlSU1Nx7tw5+Pj4YMyYMaXGv379epw+fRrdu3dH3bp1kZubq5iioUOHDhr1BStGp7dvs2pPPsqk+FBm+eiroqOAMjMzacSIEWRnZ0cmJibUs2dPSkpKKnE0WfE2hw4dSiYmJioxBAUFUaNGjRTL8lE9O3fupAkTJpCNjQ2JRCJq06YNXb58WWX933//nT788EOytbUloVBI9vb21K5dO1q/fr3K/ly6dKnMfXP//n0aNGgQWVtbk1AoJE9PT1q2bJnSCC0izUeTjRs3TqlMPlJv2bJlSuUljZj65ptvyNfXlwwNDcnCwoJ69+6tGOFT3MaNGwkAicVixZD24uLi4qh79+5kZWVFQqGQHB0dqXv37ort5ubm0scff0y+vr5kbm5OYrGYPD09ac6cOfTq1as37vOMGTOoTp06pKenpzRaSyKR0JdffkkeHh4kFAqpdu3aNHjwYEpJSXljm5qOJlP3+wkKCqKgoCCVNuXxPX78mEJDQ8nLy4tMTEzI1NSUfH19adWqVUpTMpS1/ZLk5OTQ7NmzqUGDBmRoaEjW1tbUrl07On/+vKKOuuNGvu3io6mOHTtG/v7+JBaLyc3Njf73v/+p7Zdr165R69atydjYmAAoxfrkyROaMGEC1atXj4RCIVlZWVGzZs1o5syZipGQ27dvp+DgYLKzsyNDQ0OqU6cOffjhh4rRj6V5+fIlffHFF4rfvbm5OQUHB9OuXbuosLCQ+vTpQwYGBkpTbqijbv+XLFlCrq6uJBKJyNvbmzZt2qR2/1+8eEHDhw8nS0tLMjY2po4dO9Jff/2l8nlGRHTo0CHF/7m6devSkiVL1LZJRLRlyxZq2bIlmZiYkFgspvr161NISIjSZ1fxzzy5+Ph46tu3L7m4uJBIJCJra2sKCgqiQ4cOvaFH2ZsIiIpcZ2CMMcYYq2H4niHGGGOM1WicDDHGGGOsRuNkiDHGGGM1GidDjDHGGKvROBlijDHGWI3GyRBjjDHGajSedFENqVSKR48ewczMrMyPZ2CMMcaYbhER/vnnnzI/00+OkyE1Hj16BGdnZ12HwRhjjLFySElJUXmuYWk4GVJD/ryqlJQUmJubl7udgoICnDx5Ep06dYJQKNRWeEwN7uuqw31ddbivqw73ddWpzL7OysqCs7Ozxs+d5GRIDfmlMXNz8wonQ8bGxjA3N+f/XJWM+7rqcF9XHe7rqsN9XXWqoq81vcWFb6BmjDHGWI3GyRBjjDHGajROhhhjjDFWo/E9Q4wxxiCRSFBQUKDrMHSmoKAABgYGyM3NhUQi0XU4/2kV6WuhUAh9fX2tx8TJEGOM1WBEhLS0NLx48ULXoegUEcHe3h4pKSk8v1wlq2hfW1pawt7eXqu/J06GGGOsBpMnQra2tjA2Nq6xiYBUKsXLly9hamqq0WR9THPl7WsiQnZ2NtLT0wEADg4OWouJkyHGGKuhJBKJIhGytrbWdTg6JZVKkZ+fDyMjI06GKllF+losFgMA0tPTYWtrq7VLZvwbZ4yxGkp+j5CxsbGOI2Gs7OTHqzbvceNkiDHGariaemmMvZ0q43jlZIgxxhhjNRonQ4wxxv4zkpKSIBAIcO3aNV2HUukEAgGioqIq1EZERAT8/f1LrRMaGoo+ffpUaDvVHSdDjFWVBw+AmBjZT8ZYtVaVCcCKFSvg6uoKsVgMT09PbNy4sUq2y17jZIixqrB5M+DiArRrJ/u5ebOuI2KMVQNnzpzB1KlTMWXKFCQmJuKbb76BjY2NrsPSKiJCYWGhrsMoFSdDjFW2Bw+AUaMAqVS2LJUCo0fzGSL2n1KVJz6lUim+/PJLuLu7QyQSoW7duli4cKFSnb///hvBwcEwNjaGn58f4uPjFe+puzS0evVq+Pr6Kt7fvn07fvzxRwgEAggEAsTGxgIAHj58iP79+6NWrVqwtrZG7969kZSUpGgnNjYWLVq0gImJCSwtLdG6dWvcv3+/xH3R09ODvr4+wsLC4OrqijZt2qBv377l6pfPPvsMHh4eMDY2hpubG2bNmqUy4mrJkiWws7ODmZkZwsLCkJubq/S+RCJBeHg4LC0tYW1tjWnTpoGIlOoQEZYuXQo3NzeIxWL4+flh3759Sn0gEAjw008/ISAgACKRCGfPnsXvv/+O4OBgWFhYoG7dumjevDkuX75crn3VNk6GGKtst2+/ToTkJBLgzh3dxMNYKYiAV680e61dq3zic+1azdso9n1bqhkzZuDLL7/ErFmzkJCQgF27dsHOzk6pzsyZMzF16lRcu3YNHh4eGDhwYJnPTkydOhUffvghunTpgtTUVKSmpqJVq1bIzs5GcHAwTE1NcebMGZw7dw6mpqbo0qUL8vPzUVhYiD59+iAoKAjXr19HfHw8Ro0aVeropyZNmsDR0RFjx46FtPjnhIbMzMywbds2JCQkYPXq1di0aRNWrVqleP+HH37AnDlzsHDhQly+fBkODg5Yu3atUhsrVqzAli1bsHnzZpw7dw7Pnj3DwYMHlep88cUX2Lp1K9atW4cbN25g8uTJGDx4MOLi4pTqTZs2DYsXL0ZiYiJ8fX3x0UcfwcnJCRcvXkRMTAymTZsGoVBYoX3WGmIqMjMzCQBlZmZWqJ38/HyKioqi/Px8LUXGSlKt+zolhUhPj0j2eS976evLyt9C1bqv/2Mqu69zcnIoISGBcnJyFGUvXyofqlX1evmybDFnZWWRSCSiTZs2qX3/3r17BIC++eYbRdmNGzcIACUmJhIR0Zw5c8jPz09pvZUrV5KzszNJJBIiIho6dCj17t1bqc7mzZvJ09OTpFKpoiwvL4/EYjH99NNPlJGRQQAoNja2TPsikUioffv21LNnT+rduzf179+f8vLyFO83atSIli9fXuL6AOjgwYMlvr906VJq1qyZYjkwMJA+/vhjpTotW7ZU6gsHBwdasmSJYrmgoICcnJwUffHy5UsyMjKi8+fPK7UTFhZGAwcOJCKimJgYAkBRUVFKdczMzGjbtm0kkUjo+fPnir7WlLrjVq683998ZoixyubkBGzcCMj/OhQIgA0bZOWMMY0kJiYiLy8P7du3L7We/JIX8PqxDfLHOJTXlStXcOfOHZiZmcHU1BSmpqawsrJCbm4u7t69CysrK4SGhqJz587o2bMnVq9ejdTU1BLbO3HiBH755Rds27YNe/bsQUZGBnr27IlXr14p2nznnXfKHN++ffvwzjvvwN7eHqamppg1axaSk5MV7ycmJiIwMFBpnaLLmZmZSE1NVSozMDBAQECAYjkhIQG5ubno2LGjog9MTU2xY8cO3L17V6ntousBQHh4OEaMGIFOnTph1apVKvV1iZMhxirbzJlAo0bA5Mmy5f79gbAw3cbEWAmMjYGXL8v+unkTKP5EBX19Wbkm7ZR1Emz54xjepOjlF/llKvllKD09PZX7YMoym7FUKkWzZs1w7do1pdetW7cwaNAgAMDWrVsRHx+PVq1aYc+ePfDw8MCFCxfUtnf9+nXUrVsXVlZWEIlEiIqKwsuXL9G+fXtERkbCzc0NLVq0KNP+XrhwAQMGDEDXrl1x5MgRXL16FTNnzkR+fn6Z1i8reR8ePXpUqQ8SEhKU7hsCABMTE6XliIgI3LhxA926dcPZs2fRuHFjlUtwusLJEGOV6dw5YNEiICjo9ZmgCv51ylhlEggAE5Oyvzw8ZCc+5Y+I0teXnfj08NCsnbJOKtygQQOIxWL8/PPP5d5HGxsbpKWlKSVExeclMjQ0hEQiUSpr2rQpbt++DVtbW7i7uyu9LCwsFPWaNGmCGTNm4Pz582jcuDF27dqlNg5HR0fcu3cPD/6969zExATHjh1Dfn4+ZsyYgQULFpR5tuVffvkFLi4umDlzJgICAtCgQQOVG7e9vb1VErOiyxYWFnBwcFAqKywsxJUrVxTLDRs2hEgkQnJyskofODs7vzFODw8PTJo0CQcOHEDfvn2xdevWMu1fZeNkiLHKtHix7GdoKCA/ZXzvns7CYawyhIUBSUmy0WRJSZV74tPIyAifffYZpk2bprg0c+HCBWzWYLqKtm3b4smTJ1i6dCnu3r2Lr7/+GidOnFCq4+rqiuvXr+PmzZt4+vQpCgoK8NFHH6F27dro3bs3zp49i3v37iEuLg4TJ07EgwcPcO/ePcyYMQPx8fG4f/8+Tp48iVu3bsHb21ttHP369UNz185xAAAgAElEQVTdunXRvXt3nDp1Cnfu3MHhw4eRmpoKExMTbNmypcw3Vbu7uyM5ORnff/897t69i6+++krlrMvEiROxZcsWbNmyBbdu3cKcOXNw48YNlTpLlizBwYMH8ddff2Hs2LF48eKF4n0zMzNMnToVkydPxvbt23H37l1cvXoVX3/9NbZv315ifDk5ORg/fjxiY2Nx//59XLhwAZcvXy6xb6pcue5e+o/jG6jfPtWyr0+ckN0ZKhAQ3blD9PAhUUAA0aBBREVuwHzbVMu+/o/SxQ3UbwOJREILFiwgFxcXEgqFVLduXVq0aBERvb6B+urVq4r6z58/JwAUExOjKFu3bh05OzuTiYkJhYSE0IIFC5RuoE5PT6eOHTuSqamp0rqpqakUEhJCtWvXJpFIRG5ubjRy5EjKzMyktLQ06tOnDzk4OJChoSG5uLjQ7NmzS71R+PHjxzR8+HBycnIikUhETZs2pR07dlBCQgKZmZnRJ598UuK6KHYD9aeffkrW1tZkampK/fv3p1WrVpGFhYXSOgsXLqTatWuTqakpDR06lKZNm6Z0A3VBQQFNnDiRzM3NydLSksLDwykkJETpZnKpVEqrV68mT09PEgqFZGNjQ507d6a4uDgien0D9fPnzxXr5OXl0YABA8jZ2ZkMDQ3JwcGBxo0bV65jrzJuoBYQaTKgsWbIysqChYUFMjMzYW5uXu52CgoKcOzYMXTr1q36DB/8j6p2fb15MzBixOvlb775z9wnVO36+j+ssvs6NzcX9+7dQ7169WBkZKT19t8mUqkUWVlZMDc3h17xm6CYVlW0r0s7bsv7/c2/cca0TT7JYlE8ySJjjFVbnAwxpm1vmmRRKgWKzfrKGGNMdzgZYkzbGjRQHRqjrw+4uwOzZsnGEMtvrGaMMaZznAwxpm1OTsCmTapjjZ2cZGOI8/J4RBljjFUjBroOgLH/pLAwoHNn2aUxd/fXcwzVqyf7yckQY4xVG5wMMVZZnJxUH7nh6ir7yckQY4xVG3yZjLHKUK+e7PHdt2+rlgPAo0eyy2WMMcZ0jpMhxrRNKgWSk2UvU1Pl92xsZDdQEwHFpspnjDGmG5wMMaZtz569Hlpfu7byewLB67NDSUlVGhZjjDH1OBliTNvkD2K1tATUzRrcuTPw/vtABWY3Z4xVrYiICPj7++s6jDKJjY2FQCBQeqZYebRt2xaTJk0qtY6rqysiIyMrtJ3qgJMhxrTtyRPZTxsb9e+vWAHs3Qv83/9VXUyMsWpBIBAgKiqqUtpu27Yt1q9fXylt/9dxMsSYtr0pGWKMMS179uwZzp8/j549e+o6FI0UFBToOgQAnAwxpn1lSYakUuDp06qJh7Gq8OABEBNTJc/ga9u2LSZMmIBp06bBysoK9vb2iIiIUKqTnJyM3r17w9TUFObm5vjwww/x+PHjUtt9+PAhBg4cCCsrK5iYmCAgIAAXL15UqrNz5064urrCwsICAwYMwD///KN4T90lI39/f0Vsrv9OrdG3b18IBALFMgAcPnwYzZo1g5GREdzc3DB37lwUFhYq3o+IiEDdunUhEolQp04dTJgwQWk7R48ehZ+fHxwdHVX2KyMjAwMHDoSTkxOMjY3h4+OD3bt3K9V59eoVQkJCYGpqCgcHB6xYsUKlnfT0dPTs2RNisRj16tXDd999p1InMzMTo0aNgq2tLczNzdGuXTv8/vvvSvvRtGlTfPvtt3B3d4dIJAIRYd++ffDx8YFYLIa1tTU6dOiAV69eqbRfWXSeDK1du1bx5NlmzZrh7NmzJda9ceMG+vXrB1dXVwgEgjdep1y8eDEEAsEbr3kyplVWVkBgIODjo/79hATZiLKGDas2LsY08epVya/iz9Zbu1Y2lUS7drKfa9e+rpuT8+Z2y2H79u0wMTHBxYsXsXTpUsybNw/R0dEAACJCnz598OzZM8TFxSE6Ohp3795F//79S2zv5cuX6NGjB1JTU3Ho0CH8/vvvmDZtGqRFnjN49+5dREVF4ciRIzhy5Aji4uKwZMmSMsd86dIlAMDWrVuRmpqqWP7pp58wePBgTJgwAQkJCdiwYQO2bduGhQsXAgD27duHVatWYcOGDbh9+zaioqLgU+zz5dChQ+jdu7fa7ebm5qJZs2Y4cuQI/vzzT4waNQpDhgxRSvQ+/fRTxMTE4ODBgzh58iRiY2Nx5coVpXZCQ0ORlJSE06dPY9++fVi7di3S5fdIQtbv3bt3R1paGo4dO4YrV66gadOmaN++PZ49e6aod+fOHURFRWHv3r24du0a0tLSMHDgQAwfPhyJiYmIjY3Fe++9ByIqc99WGOnQ999/T0KhkDZt2kQJCQk0ceJEMjExofv376ut/+uvv9LUqVNp9+7dZG9vT6tWrSqx7V9//ZVcXV3J19eXJk6cqFFcmZmZBIAyMzM1Wq+4/Px8ioqKovz8/Aq1w97srerr58+JZIPrif75R9fRaOyt6uu3XGX3dU5ODiUkJFBOTo7qm/JjVN2rW7fX9VJSSq8bFKTcbu3aqnU0FBQURO+8845SWfPmzemzzz4jIqKTJ0+Svr4+JScnK96/ceMGAaBff/1VbZvr1q0jMzMzevLkidr358yZQ8bGxpSVlaUo+/TTT6lly5aKZRcXF5XvJT8/P5ozZ45iGQAdPHhQqU6bNm1o0aJFSmU7d+4kBwcHIiJasWIFeXh4lHgc5ObmkpmZGV2/fp2IiGJiYggAPX/+XG19IqJu3brRlClTiIjon3/+IUNDQ/r+++8V72dkZJBYLFZ8f968eZMA0IULFxR1EhMTCYBin3/++WcyNzen3NxcpW3Vr1+fNmzYQESyfhQKhXT79m2SSCRERHTlyhUCQElJSSXGW1Rpx215v791emZo5cqVCAsLw4gRI+Dt7Y3IyEg4Oztj3bp1aus3b94cy5Ytw4ABAyASiUps9+XLl/joo4+wadMm1KpVq7LCZ6x8LC1lL4CH17O3X/GJRauIr6+v0rKDg4PiLEViYiKcnZ3h7OyseL9hw4awtLREYmKi2vZ+//13+Pj4wMrKqsRturq6wszMTO02K+LKlSuYN28eTE1NFa+RI0ciNTUV2dnZ+OCDD5CTkwM3NzeMHDkSBw8eVLqEdvr0aVhbW6ucLZKTSCRYuHAhfH19YW1tDVNTU5w8eRLJyckAZGe88vPzERgYqFjHysoKnp6eiuXExEQYGBggICBAUebl5QVL+WfZv/vx8uVLxTbkr3v37uHu3buKei4uLqhdZNoRPz8/tG/fHj4+Pvjggw+wadMmPH/+vAI9qjmdPY4jPz8fV65cwfTp05XKO3XqhPPnz1eo7XHjxqF79+7o0KEDFixY8Mb6eXl5yCsyG3BWVhYA2Y1dFbm5S75udblB7L/sbetrA1dXCK5dQ+GdO6AiHzhvg7etr99mld3XBQUFICJIpVKly0EAgH8/B9XS1389l1b9+hDo6UFQZH3S1wf9+Sfg6Ajo6b2uCwB//63aXvFtl4GBgYFKzBKJRLEvAoFA5X0iUuxvcUZGRoo66t4nIgiFQpX3ivadnp6eSl8W7WN168iXIyIi0LdvX5XtGhoawtHREYmJiYiOjsbPP/+MsWPHYtmyZYiJiYFQKMSPP/6IXr16Kdos+lMqlWL58uVYtWoVVq5cCR8fH5iYmGDy5MnIy8uDVCqFRCJRG1fR/pDXUdc/Res4ODjg9OnTKvthaWkJqVQKIoKJiYnSegKBAD/99BPOnz+P6OhorFmzBjNnzkR8fDzqyedlK9bnRISCggLoyx+IXaS/y0NnydDTp08hkUhgZ2enVG5nZ4e0tLRyt/v999/jt99+U1yLLYvFixdj7ty5KuUnT56EsbFxuWORk1/HZpWvOvT1u59+CtHz57j86ad4XkKi09zICHUAJBw9insCQdUGqCXVoa9risrqawMDA9jb2+Ply5fIz88v+4oSCSCvb24Ow8hIiCdPhkAiAenrI2fVKuTb28vqSSTAm76gSku81CgsLER+fr7iD1d5WUFBAbKysuDi4oLk5GQkJCTA6d/nA/7111/IzMxE3bp1ldaT8/DwwObNm5GcnKz2ikJeXh4kEonSurm5uZBKpYoyKysrJCUlKZazsrJw79495OXlKcqEQiFevnyp1I6vry/+/PNPjB49WmW7L1++VPy7bdu2aNu2LUJCQtCiRQtcuHABvr6+OHz4MNatW6doMzs7GwDwzz//QE9PDzExMejatSt69eoFQJZM3Lp1Cx4eHsjKyoKtrS2EQiFiYmIUCdmLFy9w69Yt/N///R+ysrLg7OyMwsJCxMXFoVmzZgCA27dv48WLF8jNzUVWVhY8PT2RlpaG3Nxc1K1bV2VfsrKyFP0oj68oHx8f+Pj4YOLEifD19cX333+PcePGqbSTn5+PnJwcnDlzRukMWdF915TOH9QqKPZFQEQqZWWVkpKCiRMn4uTJk4osvyxmzJiB8PBwxbL8F9+pUyeYV2BivIKCAkRHR6Njx44Qqpt8j2lNdeprg48/huDpUwQGBwMlTNKmFxcHXLiARiYm8O7WrYojrJjq1Nf/dZXd17m5uUhJSYGpqalGn5kqxo0D9e4NunMHcHeHkZMTKtDaGxkYGMDQ0FDp89nAwABCoRDm5ubo1asXfH19MXbsWKxcuRKFhYUYP348goKCEBQUpLbN0NBQrFy5EiEhIVi0aBEcHBxw9epV1KlTB4GBgRCJRNDX11fappGREfT09BRlHTp0wPbt29GvXz/UqlULs2fPhr6+PkQikaKOq6sr4uPj0aFDB4hEItSqVQsRERHo1asX3Nzc8P7770NPTw/Xr1/Hn3/+ifnz52Pbtm2QSCRo2bIljI2NERUVBbFYjIYNG+L27dvIzs5Gly5dYGAg+0qX/xFvZmYGc3NzeHl54cCBA/jzzz9Rq1YtrFq1Cunp6WjYsCHMzc1hbm6O4cOHIyIiAk5OTrCzs8MXX3wBPT09RT83a9YMnTt3Rnh4ONavXw8DAwOEh4dDLBbDyMhI0e+BgYEICQnB4sWL4enpiUePHuH48ePo3bs3AgICFP0oj08gEODixYs4ffo0OnbsCFtbW1y8eBFPnz6Fv7+/2u/g3NxciMVivPvuuyrHrbpEt0zHVLnW0oLatWtDX19f5SxQenq6ytmisrpy5QrS09MVWSsgO2165swZ/O9//0NeXp7KKTUAEIlEau9BEgqFWvkA0lY77M103tdEiiHzwjp11M9ADQBubgAA/fv3of+WHhs67+sapLL6WiKRQCAQQE9PD3p6FbyFtG5d2auKyOMuuly0LCoqCp988gnatm0LPT09dOnSBWvWrClxP0UiEfbv34+5c+eiR48eKCwsRMOGDfH1119DT09P8Ud68W0WLfv8889x79499OrVCxYWFpg/fz6SkpKU4lqxYgXCw8PxzTffwNHREUlJSejatSuOHDmCefPmYdmyZRAKhfDy8sKIESOgp6cHKysrLFmyBFOnToVEIoGPjw8OHz4MGxsbfPXVV+jevTsMDQ0Vccm3Jf+9zp49W7EdY2NjjBo1Cn369EFmZqai7vLly/Hq1Sv06dMHZmZmmDJlCrKyspRi37ZtG0aMGIHg4GDY2dlhwYIFmDVrllKdY8eOYebMmRgxYgSePHkCe3t7vPvuu3BwcFDqx6K/Q0tLS5w9exarV69WnNlbsWIFunfvrvZ3JW9H3f+Lcv8/0eh2ay1r0aIFjRkzRqnM29ubpk+f/sZ11d21n5WVRX/88YfSKyAggAYPHkx//PFHmePi0WRvn2rT18+evR4hU2xEhZJz54j69SMqZURkdVVt+roG0OloshpGIpHQ8+fPFSOc3hY+Pj60Z88eXYehkYr2dWWMJtPpZbLw8HAMGTIEAQEBCAwMxMaNG5GcnIyPP/4YABASEgJHR0csXrwYgOw6YUJCguLfDx8+xLVr12Bqagp3d3eYmZmhcePGStswMTGBtbW1SjljlUI+ssTcHChlxCNat5a9GGOsnPLz89GvXz907dpV16G89XSaDPXv3x8ZGRmYN28eUlNT0bhxYxw7dgwuLi4AZDOIFj0l+ejRIzRp0kSxvHz5cixfvhxBQUGIjY2t6vAZU8WP4mCMVRFDQ0PMmTNH12H8J+j8BuqxY8di7Nixat8rnuC4urpqPCMlJ0msSmmSDEmlQFqa7CySqWnlxsUYY6xEOn8cB2P/KSYmQKtWJY4iU9K2rWwelhUrquR5TowxxtTjZIgxberUCfjlF6CEWdSVyJ/vFBEhe57T5s2VGhpjJdH0jDtjulQZxysnQ4zpwoMHwOXLr5elUmD0aD5DxKqUfBhyeSeqY0wX5MerNqeb0Pk9Q4zVSLdvywbgFyWRAHfuAP/OmMtYZdPX14elpaXi+VrGxsblnvT2bSeVSpGfn4/c3NyKz7nESlXeviYiZGdnIz09HZaWlmrnDSwvToYY06aePYFr12SXyXr0KLlegwaAQKCcEOnrA+7ulR8jY0XY29sDgFYeOPo2IyLk5ORALBbX2ISwqlS0ry0tLRXHrbZwMsSYNqWkyC51Gbzhv5aTEzB1KrBsmWxZXx/YsIHPCrEqJxAI4ODgAFtb2xr98N2CggKcOXMG7777Ls+sXskq0tdCoVCrZ4TkOBliTJs0GVo/ZIgsGbKwAP78kxMhplP6+vqV8iXzttDX10dhYSGMjIw4Gapk1bGvORliTFuINEuG7O2Bjz6S1eVEiDHGdIaTIca0JSsLkF9mKEsyZGMDfPtt5cbEGGPsjfiWeca0RX4DqokJIBbrNhbGGGNlxskQY9pSnueSFRTIkij5BIyMMcaqHCdDjGmLgYHsSfQBAWVfp1kzwM4OOHu28uJijDFWKr5niDFtadECOHdOs3WsrGQ/nz3TfjyMMcbKhM8MMaZL1taynxkZuo2DMcZqME6GGNMlPjPEGGM6x8kQY9oyYoRsvqBt28q+DidDjDGmc5wMMaYtDx4ADx9qtg4nQ4wxpnOcDDGmLeUZWi+/Z4iTIcYY0xkeTcaYtpQnGfL2lj2SQ5Ph+IwxxrRK42Tot99+g1AohI+PDwDgxx9/xNatW9GwYUNERETA0NBQ60EyVu1p+lwyudatZS/GGGM6o/FlstGjR+PWrVsAgL///hsDBgyAsbEx9u7di2nTpmk9QMbeCq9evZ5F2tZWt7EwxhjTiMbJ0K1bt+Dv7w8A2Lt3L959913s2rUL27Ztw/79+7UeIGNvBflzycRi2bPJNJGfDzx+LDu7xBhjrMppfJmMiCCVSgEAp06dQo8ePQAAzs7OePr0qXajY+xtIZEA77wjeySHJrKzXydPWVmAmZn2Y2OMMVYqjZOhgIAALFiwAB06dEBcXBzWrVsHALh37x7s7Oy0HiBjb4UGDcr3fDGxGBCJgLw82YgyToYYY6zKaXyZLDIyEr/99hvGjx+PmTNnwt3dHQCwb98+tGrVSusBMvafJhDwXEOMMaZjGp8Z8vX1xR9//KFSvmzZMujr62slKMZqFGtrIDWVn0/GGGM6Uq5JF1+8eIFvvvkGM2bMwLN//5pNSEhAuvwmUsZqmpkzAUdHYMUKzdflM0OMMaZTGp8Zun79Otq3bw9LS0skJSVh5MiRsLKywsGDB3H//n3s2LGjMuJkrHp7+BB49AgoLNR8XU6GGGNMpzQ+MxQeHo5hw4bh9u3bMDIyUpR37doVZ86c0WpwjL01yjPhohwnQ4wxplManxm6dOkSNmzYoFLu6OiItLQ0rQTF2FtHfom4PMlQq1ay0WTe3tqNiTHGWJlonAwZGRkhKytLpfzmzZuwKc8XAWP/Bampsp/lmTgxLEz2YowxphMaXybr3bs35s2bh4KCAgCAQCBAcnIypk+fjn79+mk9QMaqvc2bZfcMAUDfvrJlxhhjbw2Nk6Hly5fjyZMnsLW1RU5ODoKCguDu7g4zMzMsXLiwMmJkrPp68AAYNer1slQKjB4tK9dEfj7w/Ll2Y2OMMVYmGidD5ubmOHfuHPbv348lS5Zg/PjxOHbsGOLi4mCi6TOZAKxduxb16tWDkZERmjVrhrOlzOJ748YN9OvXD66urhAIBIiMjFSps3jxYjRv3hxmZmawtbVFnz59cPPmTY3jYqxMbt+WJUBFSSTAnTtlbyMuTjYLNT+9njHGdELjZCgpKQkA0K5dO0ydOhXTpk1Dhw4dyrXxPXv2YNKkSZg5cyauXr2KNm3aoGvXrkhOTlZbPzs7G25ubliyZAns7e3V1omLi8O4ceNw4cIFREdHo7CwEJ06dcKrV6/KFSNjpWrQANAr9t9IXx/4d2b2MrG0lP3k0WSMMaYTGidDbm5ueOedd7BhwwbFhIvltXLlSoSFhWHEiBHw9vZGZGQknJ2dFc87K6558+ZYtmwZBgwYAJFIpLbOiRMnEBoaikaNGsHPzw9bt25FcnIyrly5UqFYGVPLyQnYuFGWAAGynxs2yMrLqujQen5yPWOMVTmNR5NdvnwZu3fvxoIFCzBx4kR07twZgwcPRq9evUpMUNTJz8/HlStXMH36dKXyTp064fz585qGVaLMzEwAgJX8C0eNvLw85OXlKZblo+UKCgoUN4qXh3zdirTBykanfR0SArRrB8Hdu6D69WWJkCZxmJlBCAAFBSh48QIwNa2sSLWCj+uqw31ddbivq05l9nV52xQQle9PUSJCbGwsdu3ahf3790MikaBfv37YsmVLmdZ/9OgRHB0d8csvvyg94HXRokXYvn37G+/zcXV1xaRJkzBp0qRSY+zduzeeP39e6r1IERERmDt3rkr5rl27YGxsXIa9YTWZ3aVL8Fu/Hk8bNcJv4eGaN0CEHh9+CP2CApzcuBE5trbaD5IxxmqA7OxsDBo0CJmZmTA3Ny/zehqfGZITCAQIDg5GcHAwxowZg7CwMGzfvr3MyVDRdooiIpWy8ho/fjyuX7+Oc+fOlVpvxowZCC/yJZaVlQVnZ2d06tRJo84srqCgANHR0ejYsSOEQmG522Fvpsu+Fjx9CoOMDDiKxbDv1q1cbejVrg2kpiLYzw9o0kTLEWoXH9dVh/u66nBfV53K7Gt18yCWRbmToZSUFOzevRu7du3CH3/8gcDAQPzvf/8r8/q1a9eGvr6+yqzV6enpsLOzK29YCp988gkOHTqEM2fOwOkN92+IRCK1l/iEQqFWflHaaoe9mU76+t+b8/UsLKBX3m1bWQGpqRD+8w/wlhwrfFxXHe7rqsN9XXUqo6/L257GydDGjRvx3Xff4ZdffoGnpyc++ugjREVFwdXVVaN2DA0N0axZM0RHR6Nv376K8ujoaPTu3VvTsBSICJ988gkOHjyI2NhY1KtXr9xtMVYm8r9EKnAWEd26yc4IlXJvG2OMscqhcTI0f/58DBgwAKtXr4a/v3+FNh4eHo4hQ4YgICAAgYGB2LhxI5KTk/Hxxx8DAEJCQuDo6IjFixcDkN10nZCQoPj3w4cPce3aNZiamsL936HM48aNw65du/Djjz/CzMxMcebJwsICYrG4QvEyppY8GbKwKH8bS5dqJxbGGGMa0zgZSk5O1to9Pf3790dGRgbmzZuH1NRUNG7cGMeOHYOLi4tiW3pF5nB59OgRmhS5n2L58uVYvnw5goKCEBsbCwCKYflt27ZV2tbWrVsRGhqqlbgZU/LviMUKnRlijDGmMxonQwKBAC9evMDmzZuRmJgIgUAAb29vhIWFwaIcfxmPHTsWY8eOVfuePMGRc3V1xZsGv5VzcBxj5aeNy2SA7JEc+fnVfmg9Y4z912g86eLly5dRv359rFq1Cs+ePcPTp0+xatUq1K9fH7/99ltlxMhY9VanDtCwoexneS1bJnskx8SJ2ouLMcZYmWh8Zmjy5Mno1asXNm3aBAMD2eqFhYUYMWIEJk2ahDNnzmg9SMaqtRUrZK+KkJ9VysioeDyMMcY0Uq4ZqIsmQgBgYGCAadOmISAgQKvBMVZjFH0kB2OMsSpVrqfWq3uQakpKCszMzLQSFGM1DidDjDGmMxonQ/3790dYWBj27NmDlJQUPHjwAN9//z1GjBiBgQMHVkaMjFVvvr5Ao0ZAUlL52+BkiDHGdEbjy2TLly+HQCBASEgICgsLAchmfBwzZgyWLFmi9QAZq9aIgIQEQCIBDA3L3461teyn/Mn1Wpq+gjHG2JtpnAwZGhpi9erVWLx4Me7evQsigru7Oz/QlNVMOTmyRAio2NB6+ZmhvDwgOxswMal4bIwxxsqk3M8mMzY2ho+PjzZjYeztI59jSCCoWAJjYgL06AFYWgIFBdqJjTHGWJlonAzl5uZizZo1iImJQXp6OqRSqdL7PNcQq1GKTrhYkUtbAgFw+LB2YmKMMaYRjZOh4cOHIzo6Gu+//z5atGihtUdzMPZW0tbs04wxxnRG42To6NGjOHbsGFq3bl0Z8TD2dtHGQ1qLys+X3UAtEmmnPcYYY2+k8dB6R0dHnk+IMTl9fdmjONzdK95W//6yJGj79oq3xRhjrMw0ToZWrFiBzz77DPfv36+MeBh7uwQFATduAAcPVrwt+Q3YPNcQY4xVKY0vkwUEBCA3Nxdubm4wNjaGUChUev8Zf5AzVj7y4fX8fDLGGKtSGidDAwcOxMOHD7Fo0SLY2dnxDdSMaQvPQs0YYzqhcTJ0/vx5xMfHw8/PrzLiYeztsmQJ8O23wKhRwIQJFWuLkyHGGNMJje8Z8vLyQk5OTmXEwtjb5/592T1Dz59XvC1OhhhjTCc0ToaWLFmCKVOmIDY2FhkZGcjKylJ6MVajZGbKfmpjaH3R55MxxhirMhpfJuvSpQsAoH379krlRASBQACJ/DlNjNUE2px00ckJ6N4dqF+/4m0xxhgrM42ToZiYmMqIg7G3kzaTIU9P4MiRirfDGGNMIxonQ0FBQZURB2NvJ/llMn4cB2OMvbU0vmeIMVaEtp9N9uAB8NNPshuzGWOMVQlOhhirCAcHwNERsAxEaCUAACAASURBVLSseFubNwPOzkCXLoCbm2yZMcZYpeNkiLGKOH9edjbHy6ti7Tx4IJurSE4qBUaPlpUzxhirVJwMMVYd3L4tS4CKkkiAO3d0Ew9jjNUgnAwxVh00aADoFfvvqK8PuLvrJh7GGKtBNE6GHj9+jCFDhqBOnTowMDCAvr6+0ouxGuPvv4HGjYHOnSvelpMTsHEjIH/Wn0AAbNggK2eMMVapNB5aHxoaiuTkZMyaNQsODg78oFZWcz17JnsUh3x4fUWFhQFnzgA7dsiecxYWpp12GWOMlUrjZOjcuXM4e/Ys/P39KyMext4e2h5WD7w+E8QzuTPGWJXR+DKZs7MziKgyYmHs7SJPhrTxXDK5xo1lj+Ro2FB7bTLGGCuVxslQZGQkpk+fjqSkpEoIh7G3SGWcGRo4UPZIjjFjtNcmY4yxUml8max///7Izs5G/fr1YWxsDKFQqPT+M37iNqspKiMZYowxVuU0ToYiIyMrIw7G3j7yG6e1eZlMrrAQMND4vydjjLFy0PjTdujQoVoNYO3atVi2bBlSU1PRqFEjREZGok2bNmrr3rhxA7Nnz8aVK1dw//59rFq1CpMmTapQm4yVm0gE1KkD2Npqr83r14HAQNnjPR4+1F67jDHGSqTTSRf37NmDSZMmYebMmbh69SratGmDrl27Ijk5WW397OxsuLm5YcmSJbC3t9dKm4yV29SpsoRl4ULttWlqCmRnAy9eaK9NxhhjpdJpMrRy5UqEhYVhxIgR8Pb2RmRkJJydnbFu3Tq19Zs3b45ly5ZhwIABEIlEWmmTsWqlVi3Zz+xsID9ft7EwxlgNobNkKD8/H1euXEGnTp2Uyjt16oTz589XmzYZq1JFb8bms0OMMVYldHaH5tOnTyGRSGBnZ6dUbmdnh7S0tCptMy8vD3l5eYrlrH9HCRUUFKCgoKBcscjXL/qTVR5d9LX+yJHA7duQLlgAeucdrbVrYGEBQWYmCtLTX58pqkb4uK463NdVh/u66lRmX5e3TZ0PVyn+OA8iqvAjPjRtc/HixZg7d65K+cmTJ2FsbFyhWAAgOjq6wm2wsqnKvg46cwaW9+7hQlwcnsiH2WtBR0NDGAOIP34cz+/e1Vq72sbHddXhvq463NdVpzL6Ojs7u1zraZwMvXr1CkuWLMHPP/+M9PR0SKVSpff//vvvMrVTu3Zt6Ovrq5yxSU9PVzmzU1blbXPGjBkIDw9XLGdlZcHZ2RmdOnWCeQXmkCkoKEB0dDQ6duyoMh8T0y5d9LXB5MkAgBYdOoBattReuw4OwJMnaOXtDdLGQ2C1jI/rqsN9XXW4r6tOZfZ1Vjn/MNU4GRoxYgTi4uIwZMiQCj2o1dDQEM2aNUN0dDT69u2rKI+Ojkbv3r2rtE2RSKT2hmyhUKiVX5S22mFvVqV9/e9/OgMrK0Cb23z3XcDZGQbW1tptV8v4uK463NdVh/u66lRGX5e3PY2ToePHj+Po0aNo3bp1uTZYVHh4OIYMGYKAgAAEBgZi48aNSE5OxscffwwACAkJgaOjIxYvXgxAdoN0QkKC4t8PHz7EtWvXYGpqCnd39zK1yZhWEFXeDNRr1mi3PcYYY6XSOBmqVasWrKystLLx/v37IyMjA/PmzUNqaioaN26MY8eOwcXFBQCQnJwMPb3XA94ePXqEJk2aKJaXL1+O5cuXIygoCLGxsWVqkzGtyMsD5Dfq8eM4GGPsraZxMjR//nzMnj0b27dv18rNxWPHjsXYsWPVvidPcORcXV1BRBVqkzGtkJ8VEghkEyVWBqkU0NPpVGCMMVYjaJwMrVixAnfv3oWdnR1cXV1Vrs/99ttvWguOsWorJwdwcJD9W9sJy6pVwBdfAIMHAxs2aLdtxhhjKjROhvr0+X/27jwuqnL/A/hnGDY1RREFFQS3FMXSqExyK3MvSzMxDe2qmZEKapqkXtMsxF8pdbvupt3rLelel7RrCm6kiXrDPTXJDUmIXDFRlpnn98dxBoYZYGaYM2eY+bxfL14z58wz53znYZj58pxneUmOOIiql+Bg4OpVeY7t7i7NQH3zpjzHJyIiAxYnQ3PmzJEjDiLSqVtXuuUM1EREdsEOCUSORjfrNFuGiIjswqxkyNfXF9euXQNQMpqsvB8il7B1K9Cli9S3x9bYMkREZFdmXSZbvHgxateuDQBITEyUNSCiauHyZeDHH0s6UdsSW4aIiOzKrGRo1KhRJu8TuSzd0HofH9sfu3TLkBDS8H0iIpKN4gu1ElVLcs0+DUgtQ08/LSVFhYWAiaViiIjIdpgMEVnj9m3pVo5kqGZNYP9+2x+XiIhM4mgyImvI2TJERER2xWSIyBr2SobMWH6GiIiqhskQkTXc3aXLWXIlQy+8ANSqJQ3hJyIiWVncZ2jQoEFQmRjdolKp4O3tjZYtW2L48OFo3bq1TQIkckibNkm3crXcFBVxSQ4iIjuxuGXIx8cHu3fvxpEjR/RJ0dGjR7F7924UFxcjKSkJjz76KH788UebB0vkcOQa9s6JF4mI7MbilqGAgAAMHz4cn3/+OdwerNat1WoRExOD2rVrY/369Rg/fjzeffdd7OeIGCLrcOJFIiK7sbhlaPXq1YiNjdUnQgDg5uaGiRMnYsWKFVCpVJgwYQJOnTpl00CJHIYQwDPPAAMGADduyHMOtgwREdmNxS1DxcXFOHv2LB5++GGD/WfPnoVGowEAeHt7m+xXROQUCgqAvXul++4yTdXFliEiIrux+JM8KioKY8aMwXvvvYcnnngCKpUKhw8fxkcffYSRI0cCAFJTU9GuXTubB0vkEHTD6gHgoYfkOQdbhoiI7MbiZGjx4sXw9/fHwoUL8fvvvwMA/P39MXnyZLz77rsAgN69e6Nv3762jZTIUeiSodq1ATeZZqcICZGW5AgNlef4RESkZ3EypFarMXPmTMycORN5D74U6pSZa6Vp06a2iY7IEdljwsXevaUfIiKSXZU6PJRNgohcgpwr1hMRkd1Z3Mb/+++/IyoqCo0bN4a7uzvUarXBD5HTk3ORViIisjuLW4Zef/11ZGZmYvbs2WjUqBFHjZHrKSgAatSQNxm6dQsIC5Nub92Sb9QaERFZngzt378f+/btQ4cOHeSIh8jxDR0q/Wi18p3joYeA336T7t++DdSvL9+5iIhcnMWXyYKCgiC4kja5sqwsYM8e4OpV+c7h7l4ybJ9zDRERycriZCgxMREzZszApUuXZAiHyMGtXg0EBwPPPivdrl4t37l0Ey9yriEiIllZfJksMjIS+fn5aNGiBWrWrAkPDw+Dx2/ItTwBkdKysoBx40ouj2m1wJtvAn36AIGBtj9f3brAlStsGSIikpnFyVBiYqIccRA5vowM435CGg3w66/yJENsGSIisguLk6FRo0bJEQeR42vVSppxunRCpFYDLVvKcz7dkhxsGSIikpVZyVBeXp5+gsW80usymcCJGMlpBQYCK1YAY8dK225uwPLl8rQKAdLQ+mvXAF9feY5PREQAzEyG6tWrh+zsbDRs2BB169Y1ObeQEAIqlUq/cj2RUxozBli0CDh9Gli7FoiKku9cH34o37GJiEjPrGRo9+7d8H3w3+mePXtkDYjI4d27J93KdXmMiIjsyqxkqHv37ibvE7kkeyzUSkREdmPVHP+3bt3C4cOHkZubC22Z0TUjR460SWBEDquoSLqVOxnavBl4+23gySeBTZvkPRcRkQuzeNLFrVu3omnTpujXrx8mTJiAmJgY/U9sbKzFASxZsgTNmjWDt7c3wsPDsW/fvgrLb9iwAW3btoWXlxfatm2LTWW+JP78809MmDABgYGBqFGjBkJDQ7F06VKL4yIq1+3b0vpkTZrIex6VSprlWs6ZromIyPJkaOrUqRg9ejTu3LmDW7du4ebNm/ofSydcTEpKQmxsLGbOnImjR4+ia9eu6NevHzIzM02WT0tLQ2RkJKKionD8+HFERUVh6NChOHTokL7M5MmTsX37dqxbtw5nzpzB5MmTMXHiRHz77beWvlSi8nl6SqPJ5MR5hoiI7MLiT/PffvsNkyZNQs2aNat88kWLFmHMmDEYO3YsQkNDkZiYiKCgoHJbchITE9GrVy/ExcWhTZs2iIuLQ8+ePQ0mgkxLS8OoUaPQo0cPhISEYNy4cXj00Ufx008/VTleIrvSzTPEZIiISFYW9xnq06cPfvrpJzRv3rxKJy4sLER6ejpmzJhhsL937944cOCAyeekpaVh8uTJRvGUToa6dOmCLVu2YPTo0WjcuDH27t2Lc+fO4dNPPy03loKCAhQUFOi3dXMpFRUVoUjXP8QKuudW5RhkHrvV9dmzUM+YAdG8ObSLFsl7roceggcAcfMmigsLpctmDoDva/thXdsP69p+5Kxra49pVjK0ZcsW/f0BAwZg2rRpOH36NNq3b2+0NtnAgQPNOvG1a9eg0Wjg7+9vsN/f3x85OTkmn5OTk1Np+c8++wxvvPEGAgMD4e7uDjc3N6xatQpdunQpN5b4+HjMnTvXaH9ycrJNWsBSUlKqfAwyj9x17XfiBJ7etg15QUHY89xzsp7L/d49DACgKirCjs2bofHykvV8luL72n5Y1/bDurYfOeo6Pz/fqueZlQy99NJLRvvmzZtntM+aSRfLTuCom7zR2vKfffYZDh48iC1btiA4OBg//PADoqOj0ahRIzxXzpdXXFwcpkyZot/Oy8tDUFAQevfuXaUZtYuKipCSkoJevXoZJY1kW/aqa1VhIQDgoSZN0L9/f9nOAwAQAkKthkqjQZ8nn5S/w7aZ+L62H9a1/bCu7UfOuq5slYzymJUMlR0+bwt+fn5Qq9VGrUC5ublGrT86AQEBFZa/d+8e3nvvPWzatAkDBgwAADzyyCM4duwYPv7443KTIS8vL3iZ+K/bw8PDJr8oWx2HKid7XT/4r8PNxwdu9vidduoEAPBQqQAHew/xfW0/rGv7YV3bjxx1be3xbDIc5pYVHTw9PT0RHh5u1EyWkpKCiIgIk8/p3LmzUfnk5GR9eV0fH7cyo3zUarUsCR25IN1/HT4+9jnfjz9KP8HB9jkfEZELsjgZSkhIQFJSkn77lVdega+vL5o0aYLjx49bdKwpU6Zg1apV+OKLL/TD4DMzMzF+/HgA0gSOcXFx+vIxMTFITk5GQkICzp49i4SEBOzcuVM/v1GdOnXQvXt3TJs2DXv37sXFixexdu1a/OMf/8CgQYMsfalExjj7NBGR07F4NNny5cuxbt06AFIrzs6dO7F9+3Z88803mDZtGpKTk80+VmRkJK5fv4558+YhOzsbYWFh2LZtG4If/BecmZlp0MoTERGB9evXY9asWZg9ezZatGiBpKQkdHpwKQEA1q9fj7i4OIwYMQI3btxAcHAwPvzwQ32CRVQlt29Lt/ZqGSIiItlZnAxlZ2cjKCgIAPDdd99h6NCh6N27N0JCQgySEnNFR0cjOjra5GN79+412jdkyBAMGTKk3OMFBARgzZo1FsdBZJa7d6Vbe7UMTZkCJCUBf/0r8Oab9jknEZGLsfgyWb169XDlyhUAwPbt2/WdkoUQFo8kI6p2/v534P59YPp0+5zvzz+l5Thyc+1zPiIiF2Rxy9DgwYMxfPhwtGrVCtevX0e/fv0AAMeOHUPLli1tHiCRw7HnfD+6Wahv3rTfOYmIXIzFydDixYsREhKCK1euYOHChXjooYcASJfPyrvcRURW4vpkRESyszgZ8vDwwDvvvGO035oV64mqnUmTgBs3gFmzgDZt5D+frmUoIwPIygICA+U/JxGRizF7OY5+/frBw8PDYGkOU8xdjoOoWtqyBbh8WUqK7OHYMel2/35prqEVK4AxY+xzbiIiF2H2chw5OTlo2LChyaU5dKxZjoOoWtENrbfHaLKsLGDlypJtrVYaUdanD1uIiIhsyOLlODiTM7ksIew7A3VGhnTO0jQa4NdfmQwREdmQTZbjIHIJ+flS6wxgn5ahVq2AMkvLQK0GOGqTiMimLO5ADQC7du3Crl27kJuba9RS9MUXX9gkMCKHo7tE5uYG1Kwp//kCA6U+Qm++KbUIqdXA8uVsFSIisjGLk6G5c+di3rx5ePzxx9GoUSOoVCo54iJyPKXXJbPX+37MGKmP0K+/Si1CTISIiGzO4mRo2bJlWLt2LaKiouSIh8hx2XvFep2oKOCXX4DkZCZDREQysDgZKiwsREREhByxEDm2J5+UluLIz7fveXNygOxs4I8/7HteIiIXYXEH6rFjx+Krr76SIxYix+flVTIrtL3Ury/dXr9u3/MSEbkIi1uG7t+/jxUrVmDnzp145JFH4OHhYfD4okWLbBYcEYHJEBGRzCxOhk6cOIEOHToAAE6dOmXwGDtTk1PbuhX45hvg2WeBv/zFfudlMkREJCuLk6E9e/bIEQeR4zt6FFi3DqhVi8kQEZET4aSLROYqPbTenpgMERHJyqyWocGDB2Pt2rWoU6cOBg8eXGHZjRs32iQwIodjz3XJSmvaFAgNBfz97XteIiIXYVYy5OPjo+8PVKdOHfYNItek1DxDw4dLP0REJAuzkqFBgwbB29sbALB27Vo54yFyXEq1DBERkazM6jM0aNAg3Lp1CwCgVquRm5sra1BEDkmpPkNERCQrs5KhBg0a4ODBgwAAIQQvk5FrUioZunEDaN9eWoqjzMLIRERUdWZdJhs/fjxefPFFqFQqqFQqBAQElFtWo9HYLDgih5KeLiVE9k6GHnoI0M3pdesW4Otr3/MTETk5s5Kh999/H8OGDcOvv/6KgQMHYs2aNahbt67csRE5Fi8voEED+5/X01NKiP78Uxpez2SIiMimzJ50sU2bNmjTpg3mzJmDV155BTVr1pQzLiIqrX79kmSoVSuloyEicioWT7o4Z84cJkLkeu7eBaKigAkTgOJi+5+fEy8SEcmGM1ATmePmTWkpjuXLAbXa/udnMkREJBsmQ0Tm0M0x5OMDKDGakskQEZFsmAwRmUPpOYZatADatpU6UhMRkU2ZlQz5+vri2rVrAIDRo0fjzp07sgZF5HCUWopDZ/584OefgTfeUOb8REROzKxkqLCwEHkPvgy+/PJL3L9/X9agiByO0i1DREQkG7OG1nfu3BkvvfQSwsPDIYTApEmTUKNGDZNlv/jiC5sGSOQQSvcZIiIip2JWy9C6devQv39//Pnnn1CpVLh9+zZu3rxp8ofIKSndMnT4MBAWBvTurcz5iYicmFktQ/7+/liwYAEAoFmzZvjnP/+J+rrRLVW0ZMkS/N///R+ys7PRrl07JCYmomvXruWW37BhA2bPno3z58+jRYsW+PDDDzFo0CCDMmfOnMG7776L1NRUaLVatGvXDt988w2aNm1qk5jJBU2YALz2mjIjyQDpvD//XNJCRURENmPxaLKLFy/aLBFKSkpCbGwsZs6ciaNHj6Jr167o168fMjMzTZZPS0tDZGQkoqKicPz4cURFRWHo0KE4dOiQvsz58+fRpUsXtGnTBnv37sXx48cxe/ZseHt72yRmclGenkDDhsosxwFwaD0RkYysGlqfmpqKF154AS1btkSrVq0wcOBA7Nu3z+LjLFq0CGPGjMHYsWMRGhqKxMREBAUFYenSpSbLJyYmolevXoiLi0ObNm0QFxeHnj17IjExUV9m5syZ6N+/PxYuXIiOHTuiefPmGDBgABo2bGjNSyVyDLpk6N496YeIiGzG4mRo3bp1eO6551CzZk1MmjQJEyZMQI0aNdCzZ0989dVXZh+nsLAQ6enp6F2mD0Tv3r1x4MABk89JS0szKt+nTx99ea1Wi//+9794+OGH0adPHzRs2BCdOnXC5s2bLXyVRGV8/jkwcSJw8KAy569Tp2Tm6xs3lImBiMhJmb1Qq86HH36IhQsXYvLkyfp9MTExWLRoET744AMMHz7crONcu3YNGo0G/v7+Bvv9/f2Rk5Nj8jk5OTkVls/NzcWff/6JBQsWYP78+UhISMD27dsxePBg7NmzB927dzd53IKCAhQUFOi3ddMIFBUVoaioyKzXY4ruuVU5BplH7rpWf/st3HbuRHF4OER4uCznqIy7ry9Uf/yBopwc6ZKdQvi+th/Wtf2wru1Hzrq29pgWJ0MXLlzACy+8YLR/4MCBeO+99ywOQFWmQ6oQwmifueW1Wi0A4MUXX9Qnax06dMCBAwewbNmycpOh+Ph4zJ0712h/cnKyTRalTUlJqfIxyDxy1XW3y5dRD0B6RgZytm2T5RyVedbLC7UBHP7+e1zLylIkhtL4vrYf1rX9sK7tR466zs/Pt+p5FidDQUFB2LVrF1q2bGmwf9euXQgKCjL7OH5+flCr1UatQLm5uUatPzoBAQEVlvfz84O7uzvatm1rUCY0NBT79+8vN5a4uDhMmTJFv52Xl4egoCD07t0bdaowlLqoqAgpKSno1asXPDw8rD4OVU7uunZ/910AQPizz0J062bz45tD3bEjRO3a6PTUUxDlJPb2wPe1/bCu7Yd1bT9y1rXuyo6lLE6Gpk6dikmTJuHYsWOIiIiASqXC/v37sXbtWnz66admH8fT0xPh4eFISUkxGBqfkpKCF1980eRzOnfujJSUFINLdMnJyYiIiNAf84knnsAvv/xi8Lxz584hODi43Fi8vLzg5eVltN/Dw8MmvyhbHYcqJ1tdP1iCxt3XF1Dqd7llixSDMmc3wve1/bCu7Yd1bT9y1LW1x7P4c/Wtt95CQEAAPvnkE3zzzTcApJaXpKSkcpOY8kyZMgVRUVF4/PHH0blzZ6xYsQKZmZkYP348AGDkyJFo0qQJ4uPjAUh9k7p164aEhAS8+OKL+Pbbb7Fz506DVp9p06YhMjIS3bp1wzPPPIPt27dj69at2Lt3r6UvlaiEbn4fLsdBROR0rPonc9CgQUYTHVojMjIS169fx7x585CdnY2wsDBs27ZN34qTmZkJN7eSAW8RERFYv349Zs2ahdmzZ6NFixZISkpCp06dDGJbtmwZ4uPjMWnSJLRu3RobNmxAly5dqhwvuSiNBrh7V7rPZIiIyOko3uIeHR2N6Ohok4+Zas0ZMmQIhgwZUuExR48ejdGjR9siPKKSpTgAZZOhf/0LiI8HevUCFi9WLg4iIiejeDJE5PB8fICcHOlSmYm+ZXaTny8tydGsmXIxEBE5ISZDRJVxcwP8/aUfJXFJDiIiWVi1HAcRKYDJEBGRLCxOhjgqi1zOiRPApElAOWvm2Q2TISIiWVicDPXt2xctWrTA/PnzceXKFTliInIsp08Df/sb8O9/KxuHLhm6eRN4MNs6ERFVncXJ0NWrVxETE4ONGzeiWbNm6NOnD7755hsUFhbKER+R8nSjyZQeVq9LhrRa4NYtZWMhInIiFidDvr6+mDRpEo4cOYKffvoJrVu3xttvv41GjRph0qRJOH78uBxxEilHN+Gij4+ycXh6Ai1bAu3aSSPLiIjIJqrUgbpDhw6YMWMG3n77bdy9exdffPEFwsPD0bVrV/z888+2ipFIWY7SMgQAGRnAqVNAYKDSkRAROQ2rkqGioiL85z//Qf/+/REcHIwdO3bg888/x++//46LFy8iKCgIr7zyiq1jJVKGIyVDRERkcxbPMzRx4kR8/fXXAIDXXnsNCxcuRFhYmP7xWrVqYcGCBQgJCbFZkESKcpTLZEREJAuLW4ZOnz6Nv/3tb7h69SoSExMNEiGdxo0bY8+ePTYJkEhxjtQyNHeu1Gdo1SqlIyEichoWJ0Nz5szBK6+8Ak9PT4P9xcXF+OGHHwAA7u7u6N69u20iJFLaypXAL78AQ4cqHQnwxx/SUP/Ll5WOhIjIaVicDD3zzDO4ceOG0f7bt2/jmWeesUlQRA6lfn3g4YcBX1+lI+HEi0REMrA4GRJCQKVSGe2/fv06atWqZZOgiKgcTIaIiGzO7A7UgwcPBgCoVCq8/vrr8Cq1erdGo8GJEycQERFh+wiJlDZzJqBSATExQIMGysbCZIiIyObMToZ8HoykEUKgdu3aqFGjhv4xT09PPPXUU3jjjTdsHyGR0hYvBu7dA8aMYTJEROSEzE6G1qxZAwAICQnBO++8w0ti5BqKiqRECAD+/FPZWAAmQ0REMrBqNBkTIXIZS5aU3O/QAVi9WrlYAMDPDwgIkH6IiMgmzGoZeuyxx7Br1y7Uq1cPHTt2NNmBWufIkSM2C45IUVlZwJQpJdtaLfDmm0CfPsoth9GsGZCdrcy5iYiclFnJ0IsvvqjvMP3SSy/JGhCRw8jIkBKg0jQa4NdfuTYYEZETMSsZmjNnjsn7RE6tVSvAzc0wIVKrpZXjlZSVJSVqrVoxKSMisoEqrVpP5NQCA6URZDpqNbB8ubIJyOrVQFAQ8OyzQHCw8n2YiIicgFktQ/Xq1auwn1BppmanJqq2EhOB114DLl2SEhAlE6GsLGDcuJJtR+jDRETkBMxKhhITE+WOg8gx1awJdOsm/SiNfZiIiGRhVjI0atQoueMgoso4ah8mIqJqzqxkKC8vD3Xq1NHfr4iuHJFTWL1aukT28svSPENKCgwEVqwA3ngDEEJaIkTpPkxERE7A7D5D2dnZaNiwIerWrWuy/5BuAVeNRmPzIIkU8/XXwK5dQGio8skQIHXovn0bmDoV6NrVsIM3ERFZxaxkaPfu3fD19QUA7NmzR9aAiBzKtWvSrW4ZDEcQFibdcrACEZFNmJUMde/e3eR9IqenS4b8/JSNo7QmTQB/f+UXjSUichJmL9Ra2s2bN7F69WqcOXMGKpUKoaGh+Mtf/qJvPSJyCkI4ZjLUrh2Qk6N0FERETsPiSRdTU1MREhKCzz77DDdv3sSNGzfw2WefoVmzZkhNTZUjRiJl5OcDBQXSfUe6TEZERDZlccvQ22+/jcjISCxduhRqtRoAoNFoEB0djbfffhunTp2yeZBEitC1Cnl5AbVqKRsLERHJxuKWofPnz2Pq1Kn6RAgA1Go1pkyZgvPnKb2U1AAAIABJREFUz9s0OCJFlb5EZuYM7HYzaRLQujWwZYvSkRARVXsWtww99thjOHPmDFq3bm2w/8yZM+jgCEOPiWwlLAw4d066XOZocnKk2C5dUjoSIqJqz6yWoRMnTuh/Jk2ahJiYGHz88cfYv38/9u/fj48//hiTJ09GbGysVUEsWbIEzZo1g7e3N8LDw7Fv374Ky2/YsAFt27aFl5cX2rZti02bNpVb9s0334RKpeKSImQ5Ly9p1udHH1U6EmONG0u3V68qGwcRkRMwq2WoQ4cOUKlUEELo902fPt2o3PDhwxEZGWlRAElJSYiNjcWSJUvw9NNPY/ny5ejXrx9Onz6Npk2bGpVPS0tDZGQkPvjgAwwaNAibNm3C0KFDsX//fnTq1Mmg7ObNm3Ho0CE01n1xEDkLJkNERDZjVjJ08eJF2QJYtGgRxowZg7FjxwKQFoXdsWMHli5divj4eKPyiYmJ6NWrF+Li4gAAcXFxSE1NRWJiIr7++mt9ud9++w0TJkzAjh07MGDAANniJye2dStw+LC0Wv0zzygdjSEmQ0RENmNWMhQcHCzLyQsLC5Geno4ZM2YY7O/duzcOHDhg8jlpaWmYPHmywb4+ffoYXAbTarWIiorCtGnT0K5du0rjKCgoQIFuCDVK1l8rKipCUVGR2a+nLN1zq3IMMo8cde323/9CvXw5NEJA26WLzY5rC6qGDeEOQPz2G4rt/P7i+9p+WNf2w7q2Hznr2tpjWjXpIgCcPn0amZmZKCwsNNg/cOBAs49x7do1aDQa+Pv7G+z39/dHTjmTyuXk5FRaPiEhAe7u7pg0aZJZccTHx2Pu3LlG+5OTk1GzZk2zjlGRlJSUKh+DzGPLun785Ek0AXD6999xYds2mx3XFh7KykJPAMWZmdimUGx8X9sP69p+WNf2I0dd51s54MXiZOjChQsYNGgQTp48adCPSLd4qzULtZZd+FW36Ks15dPT0/Hpp5/iyJEjFR6jtLi4OEyZMkW/nZeXh6CgIPTu3Rt16tQx92UYKSoqQkpKCnr16gUPDw+rj0OVk6Ou1Q9aG0O7dkWb/v1tckybuXMHYv58uDdqhP7PPQd4etrt1Hxf2w/r2n5Y1/YjZ13rruxYyuJkKCYmBs2aNcPOnTvRvHlzHD58GNevX8fUqVPx8ccfW3QsPz8/qNVqo1ag3Nxco9YfnYCAgArL79u3D7m5uQadrzUaDaZOnYrExERcMjEU2cvLC15eXkb7PTw8bPKLstVxqHI2resHC6G6BwQAjvb78/UFsrMBAEpFxve1/bCu7Yd1bT9y1LW1x7N40sW0tDTMmzcPDRo0gJubG9zc3NClSxfEx8ebfVlKx9PTE+Hh4UZNZSkpKYiIiDD5nM6dOxuVT05O1pePiorCiRMncOzYMf1P48aNMW3aNOzYscOi+MjFOeK6ZEREZHMWtwxpNBo89NBDAKSWnatXr6J169YIDg7GL7/8YnEAU6ZMQVRUFB5//HF07twZK1asQGZmJsaPHw8AGDlyJJo0aaIfWRYTE4Nu3bohISEBL774Ir799lvs3LkT+/fvBwDUr18f9cusI+Xh4YGAgACjiSKJyuWoi7QSEZHNWZwMhYWF4cSJE2jevDk6deqEhQsXwtPTEytWrEDz5s0tDiAyMhLXr1/HvHnzkJ2djbCwMGzbtk0/gi0zMxNubiUNWBEREVi/fj1mzZqF2bNno0WLFkhKSjKaY4goKwvIyJDmTQwMNN6u0J9/ArrBAY66SOv8+cA//wnExADR0UpHQ0RUbVmcDM2aNQt3794FAMyfPx/PP/88unbtivr16yMpKcmqIKKjoxFdzof53r17jfYNGTIEQ4YMMfv4pvoJkXPJygJOnvTDI48AzZoBq1cD48YBWi3g5gaMGAH8618l2ytWAGPGVJAg1awpPXDtmnTfEd26JS3JceGC0pEQEVVrFidDffr00d9v3rw5Tp8+jRs3bqBevXpmj94iqipdEtOyJbB+PfDuu+4Q4mn89a8CbdsCP/9cUlarlRpQSm+PHQssWwakp0tXxHQJUp8+uuRIjcCWLaUTOCpOvEhEZBNWzzMEAFeuXIFKpUJgpdcciGwnPh6YOVNKYkpIibgQKoNEqCI//VRyX5cgubkZtx45LCZDREQ2YfFosuLiYsyePRs+Pj4ICQlBcHAwfHx8MGvWLM7cSbLIygL27AF27wYGDwbee69sImSsskbK8h7XaqXbcO1h/P7GLFxbudHygO2FyRARkU1YnAxNmDABK1aswMKFC3H06FEcPXoUCxcuxOrVqzFx4kQ5YiQXtno1EBwsLQ/WsyewaVPlz1GrgYULpVvd9qhRhtsJCVLrT3k6Iw3viQ+Rv/YbfTKWlVX112NTpZOhyrJDIiIql8WXyb7++musX78e/fr10+975JFH0LRpUwwbNgzLli2zaYDkurKygDfeMP6eV6kM96lUgJubgEajglotsHy5CmPGAMOGAb/+KnX7CQyUBl+V3vb1Bd58E9BopMRIiJLj+kEaVv/ftPp4u6lhvyKHuXTWqJF0e/cucOcOUIXZ0omIXJnFLUPe3t4ICQkx2h8SEgJPOy4JQM5v8WLTDR5Tpxq28qxcCWRkFOODD/YjI6NYn6wEBgI9epSMEiu7PWYMcOmS1Opz+bJ0HN1xGzxIhnKFnz4GrVZKnhymhahWLaB1ayA8HLByCnoiIrKiZejtt9/GBx98gDVr1uiXsCgoKMCHH36ICRMm2DxAci1ZWdJo8R07gEWLjB9Xq6VpdWJiDFt5ioqA9u2vVz5/UBmBgYbJUZ8+0nGf/OQ68B1wDYYTLmo0wH//Czz8sJnzFcnt7FmFAyAiqv7MSoYGDx5ssL1z504EBgbi0UcfBQAcP34chYWF6Nmzp+0jJJdRem4gnf79pcRIo5ESoeXLDVt6bE2fHM2TWoZuqPyAMq1TDyZHd7zLZkREZBWzkiEfHx+D7ZdfftlgOygoyHYRkUvKyjJOhFQqKfkBDFuB7OLBUhxRsfWR9JmUjJXtq6TVSjH36eMALURERGQ1s5KhNWvWyB0HubiMDMNECJASj19/NeznYzcPkqG+r/nh0hQpjtxcIDLSsJhWK817NH26NBG03S+dLV8OfPIJ8PLLUiBERGQxqydd/OOPP/DLL79ApVLh4YcfRoMGDWwZF7mYQ4eM96nVCk4AvW8f8McfQJs2CKxZsraZblLG0pYskX4ABS6dFRRImeT583Y6IRGR87F4NNndu3cxevRoNGrUCN26dUPXrl3RuHFjjBkzBvn5+XLESE4sKwuYN0+aSBEomQyxbP8gu2vRAnjqKYN1yQIDpUSn9Ei2Mt3p7D/ijBMvEhFVmcXJ0JQpU5CamoqtW7fi1q1buHXrFr799lukpqZi6tSpcsRITko3oeKcOdIlsa5dpSHue/ZIQ94dsWNy6eH4ly4BpgZQajRAWhrsM1kjkyEioiqz+DLZhg0b8J///Ac9evTQ7+vfvz9q1KiBoUOHYunSpbaMj5yUqQkVDxyQWoZKvbWUcfEisGoV0Ly5yYys9HB8wPSls5EjpStYsk/WWHYWai6WTERkMYtbhvLz8+Hv72+0v2HDhrxM5sLMaQXRlTl3ThqFVXZCRY1G6qisuLNngY8+Aj7/vNKiZS+dubkBQUHA/fuwz2SNulmoCwqAmzdlOAERkfOzOBnq3Lkz5syZg/v37+v33bt3D3PnzkXnzp1tGhxVD6XXDwsOlrYBwwSpdJnWrYHvvzc+jqIdpku7fl269fOruNwDZWey/uIL4zK6S2c2v2zm5QXUry/d56UyIiKrWHyZLDExEf369dNPuqhSqXDs2DF4e3tjx44dcsRIDqzs/EBarXT5a906IDW14vVDx4+XlsAwNaGioh4Mqzc3GQLMu3QWGSnTZbOOHYFbt6RpuImIyGIWJ0Pt27dHRkYG1q1bh7Nnz0IIgWHDhmHEiBGoUaOGHDGSAytvfqC9eyt/bmQkMHOmAhMqVsaKZKg03aUz3SKwOmUvm9lsssaUFBschIjIdVmUDBUVFWHcuHGYPXs23njjDbliompElzdYSndJrGyLikPQXSbTXX6yQul1znJygFdfNXxc1z/K4V47EZELsqjPkIeHBzZt2iRXLFSNZGUBf/878PrrhvvVamDhQulSUGkqleH8PA5zScyUKrYM6QQGSiPjunQxrg9A6mdkl+H3RERUIYs7UA8aNAibN2+WIxaqJnSdoSdMAPLzgdBQ6XKZbu6dadOMJydcudJwfh5HnENIz0bJkE7ZEWc6f/kL0LSpccdzi23aBDRrBjz3HLMqIiIrWNxnqGXLlvjggw9w4MABhIeHo1atWgaPT5o0yWbBkeMxtaDquXOAt7fh/EClLxOV7g/ksK1BpX35JZCdLc0zZCOl66NpU2DuXOAf/7BRP6Jdu6QM89IlKauy63ogRETVn8XJ0KpVq1C3bl2kp6cjPT3d4DGVSsVkyMmZ6jBdXv8Xh+wPZI6mTaUfGytdH6+/LiVDpVnVjygrCyg90anNe2cTETk/i5OhixcvyhEHVRNNmhjvc5j5gaqRVq1MD79PT5dai1q1MjOXsSQ7JSIikyzuM1SaEAKioolkyOns22e47fCdoS1196403n/xYuMkw4bK60f0zjsW9iHSZVWlMTslIrKIVcnQ6tWrERYWBm9vb3h7eyMsLAyrVq2ydWzkgHRXZN57r5p0hrbU779LS3HMnGl6CJgNlZ65+scfDZcVM3sJD11WpePm5mTZKRGR/Cy+TDZ79mwsXrwYEydO1C+/kZaWhsmTJ+PSpUuYP3++zYMkx/C//0mXcby8gMmTbTbYyrFYuBRHVen6Ee3ZY3qtth07pO4/GRkVXDobM0bqRP3119IQP6fKTomI5GdxMrR06VKsXLkSr5aaRW7gwIF45JFHMHHiRCZDTmzZMun2lVecNBECbD6s3lzl9SEaP15KiipdxqNbNylj4uUxIiKLWXwdQKPR4PHHHzfaHx4ejuLiYpsERY7n5k2p4QGQvqCdlkLJUNk+RGq1lCAVFxsPvzd56Wz8eKnpbuJEu8VMROQsLE6GXnvtNSwtPZT3gRUrVmDEiBE2CYoczz/+Ady7B7RvD0REKB2NjHTJUBWW4rBW6T5Ely4BS5YYl9ENFCMiItux+DIZIHWgTk5OxlNPPQUAOHjwIK5cuYKRI0diypQp+nKLFi2yTZSkqCtXgE8+ke6/9ZZhR1+no5s6wttbkdOXnZvJ1KWzQ4cqGH6va0ry8JA9ViIiZ2Fxy9CpU6fw2GOPoUGDBjh//jzOnz+PBg0a4LHHHsOpU6dw9OhRHD16FMeOHZMjXrKz1auBkBApIQIMV2F3OqtXA59/Lt3/8ssqrI9hG+UNv58xo5zh90OHAjVrAtu22TVOIqLqzuKWoT179sgRBzkgU0tvxMYCL73khCO3dS9W10FHCIeYybn0Mh6entKir6X7EI0bVypEDw+gqAg4cwZ48UXFYiYiqm7knUjFTEuWLEGzZs3g7e2N8PBw7Cs7s18ZGzZsQNu2beHl5YW2bdti06ZN+seKiorw7rvvon379qhVqxYaN26MkSNH4urVq3K/DKdT0eTGTseBX2xgoLTuW0GB8fB7rRb49FOp5e6CV6i088wZu8dIRFSdKZ4MJSUlITY2FjNnzsTRo0fRtWtX9OvXD5mZmSbLp6WlITIyElFRUTh+/DiioqIwdOhQHDp0CACQn5+PI0eOYPbs2Thy5Ag2btyIc+fOYeDAgfZ8WU6hVSvj/kFOO7lxNZjJ2VSIAPDxx9JSatPWSMnQHz8wGSIisoTiydCiRYswZswYjB07FqGhoUhMTERQUJDJEWsAkJiYiF69eiEuLg5t2rRBXFwcevbsicTERACAj48PUlJSMHToULRu3RpPPfUU/va3vyE9Pb3cBItMCwwEmjUr2Xa6pTdKCwwEEhNLsj8HfLGmht/361fy+BlIyZDXpbPIusJlcoiIzGXVaDJbKSwsRHp6OmbMmGGwv3fv3jhw4IDJ5+hmuy6tT58++mTIlNu3b0OlUqFu3bomHy8oKEBBQYF+Oy8vD4B0ya2oqMis12KK7rlVOYaSMjKACxc8oFIJrF+vwRNPCAQGSt1SHI0t6loVHg53ISDq10fx//4HR3yxI0dKnafPn1ehRQuBX39V4fvvpT/jX9ESxVCjDu4gZeNlnGkbiJYthc3zuer+vq5OWNf2w7q2Hznr2tpjKpoMXbt2DRqNBv7+/gb7/f39kZOTY/I5OTk5FpW/f/8+ZsyYgeHDh6NOnTomy8THx2Pu3LlG+5OTk1GzZk1zXkqFUlJSqnwMJXz9dWsAbdCxYy68vA7ixAngxAmlo6pYVeo6MDUV4QCuBwTgx2rwYk+cAK5d84ZK1RtCqFAET5xHC7TGOSyLPYedCIFKJRAdfQy9etm+VbS6vq+rI9a1/bCu7UeOus7Pz7fqeYomQzqqMh1ThBBG+6wpX1RUhGHDhkGr1WKJqRnsHoiLizOYHykvLw9BQUHo3bt3uQmUOYqKipCSkoJevXrBo5rN+6LVArGx0tsjNrY++vfvr3BEFbNFXbulpwMAfJ980uFfb2kajQbR0WpoNCpsQ38cRUfkwQcAIIQKy5Z1wNSpYTZrIarO7+vqhnVtP6xr+5GzrnVXdiylaDLk5+cHtVpt1KqTm5tr1PqjExAQYFb5oqIiDB06FBcvXsTu3bsrTGq8vLzg5eVltN/Dw8MmvyhbHcee9u2TZkGuXRt4+WX3ajOHX5Xq+sGEi24PPwy36vKCIQ2v799fGviWm7sYkZGGj2s0Kuzf74FnnqlkwVcLVcf3dXXFurYf1rX9yFHXVv8zbNMoLOTp6Ynw8HCjprKUlBRElLPmQ+fOnY3KJycnG5TXJUIZGRnYuXMn6iuwtEJ1989/SrdDhkjz+LmEjAzptlUrZeOwgm74fUSE6RFno0dLI85MTtZIROTiFB9NNmXKFKxatQpffPEFzpw5g8mTJyMzMxPjH6wGOnLkSMTFxenLx8TEIDk5GQkJCTh79iwSEhKwc+dOxMbGAgCKi4sxZMgQ/PTTT/jXv/4FjUaDnJwc5OTkoLCwUJHXWN3cvw988410PypK2VjsSjenkAMNp7dUYCCwYpkWzdwuAyiZHcDsBV+JiFyQ4n2GIiMjcf36dcybNw/Z2dkICwvDtm3bEBwcDADIzMyEW6l/dSMiIrB+/XrMmjULs2fPRosWLZCUlIROnToBALKysrBlyxYAQIcOHQzOtWfPHvTo0cM+L6wa27oVuH0bCAoCundXOho7uXkTuH5dul+NkyHcu4cxMfUxRnsP+7+9jpDHfHHuHNCzp2ExjQY4e1a6b8tLZ0RE1ZHiyRAAREdHIzo62uRje/fuNdo3ZMgQDBkyxGT5kJAQiLLT9JJFli+XbgcONH3JxSnVrQv8/rvUb6hWLaWjsV6NGkD9+kBWFrr4nQUCpcvHphZ8HTlSeslarfT4ihXS8h9ERK7GVb7qyEyLFwO7dkn3ly51ob4lKhXQsCHwoIWxWgs1XJaj7GSNbm5SzpSdXZIg8dIZEbkyJkOkl5UFTJ1ass0vyGoq1HiNsjFjpNGBe/YAly8D69YZP02jAQ4ckMrwd05ErsQhLpORYzh71nghUN1apU7fnyQxUVrtdMQI4LHHlI6makwkQ4D0Oyz9ezR16Uw3LJ+XzYjIlbBliPR++cV4n4OtVSqfpCRg0SLg/HmlI6m6Nm2k2wpWry976ays0q2CWVlsLSIi58ZkiABILUJffCHdd+C1SuWjG1ZfDecYMqJrGbp4sWTuJBNKXzpLSjJ+XKMBXn9dmpeI8xMRkTPjZTICAKSmAkeOSB1rDx4EbtyQWoRcIhG6dQu4dk2636KFsrHYwtatJffbtKnwepfu0llWlunLZrrO9EBJa9Gzz8oQMxGRgtgyRACA//s/6fYvfwEeeUSazdglEiGgpFUoIEBaf6Q6y8qSMhYdM3vBl71splYbz00ESK1FBw+qcPKkHy+bEZHTYDJE+PlnYNs26fLY5MlKR6MAJ5h5Wi8jw7h5R9cLvhKlL5tdugSsXWt6nqnhw9WYPftptGzpzstmROQUmAwRFi2SbgcNco58wGLVeE0yI61aGWcwFvSC161xprt8ZrqTtdSpTKtVYdw4drImouqPyZCLS08H/vEP6f477ygbi2IuXZJunSETNJXBxMdbfc2zsk7WWi3Qpw87WRNR9cZkyIWtXg088YS0iCcAnD6tbDyKWbUKuHoVGDdO6UhsQ5fBtGsnbfv4VOlwutaiiAjTl81Onzaeyfp//2NLERFVH0yGXFRWlvTdX3qSRZedbVqlAho1Avz8lI7EdgIDS2ZQ/P57mx1SanSS3jRqtcBrrxmX02ikVU3YUkRE1QWTIRdVhX62VF306yfd7toFFBba5JBjxgAZGcX44IP9yMgoRny86dYiXZLNyRuJqDpgMuSimjc33ucys02Xdvq01HP8o4+UjsT2HnsMaNAAuHNHWnTMRgIDgfbtr5vsZK2bsLM0Tt5IRI6OyZCLOnbMcNulZpsu7eRJYPNmaW4BZ+PmJvVuBmx2qcyU0p2sDx0y3VK0axf7FRGR42Iy5KJ0w+mjo0vmlXHJRTl1w+qdtUmsb1/pdvt2WU+j62T9xBPmT97IfkVE5Ci4HIcL+ukn4IcfAHd34L33gCZNlI5IQc60JpkpfftKsyfqWojsYMwY6XS//lqSYwYHG/dRK92vaNy4khAzMqRfh8u1UhKRYtgy5IIWL5Zuhw1z8UQIcK7Zp02pXx8YNUpaasSOKpq80dRlNK0WePJJoGlT49YidrwmIrkxGXIxWVnAN99I911y6Y2yzp6VbuvUUTYOJ1e6X9HBg6YTouxs49ai+Hh2vCYi+TEZciFZWcC0adIki927S4ONXNrnnwPXr0v3n3/eeb9p790DPvkEGDiwZIZNBVTUr+itt4zLa7XSZVx2vCYiuTEZchGrV0v/Wa9fL223b69sPIrLygJiYkq2zVzdvVry9JSmDti6FVi61CFeY9lFYd97z3RrUVnldbzmpTQiqgomQy5AN9t06Q6sDvKdqBxXmnVSrQZatJDuT5rkMNebKupXpFYDCQmVT+g4bhzw17/yUhoRVQ2TIRfgSt/7Zqvi6u7VSlaWNIRQx0Fbwcq2Fk2fXvmEjlot8MEHvJRGRFXDZMgFtGpl/EXirN/7ZqtTR2oeK90U4ayzTmZkGC5CBzhsNly6tQgwb0LHsjQaaWSarqVo1SppPy+lEVF5mAy5gMaNDUdWO/P3vtnmzJGur3zyifPPOlnNW8Eq6ni9cGHFCZJWC7zxhjRYoOywfSZHRKTDSRddwJYt0rDlhx4Cvv4a6NDBxROh4mKpIn7/XepL06OH0hHJS9ch5803pWYTQOpsUw3fBGUndAwMBHx9S16am5vxJWEAOHq05L5WC4wdK7WWCiE9Z8UK6dhZWZz0kcgVMRlyckJIc7UAwMSJ0ghyl7drl5QI1a9v15mZFaXLImbOBP74A5gyRemIrKbrcK1TOkGqVQt46inDhEiX9JRVuiP22LHAl18C+/cbJkh9+jA5InIFvEzm5PbsAQ4fBry9gdhYpaNxEOvWSbfDhgEeHsrGYk+BgcCaNdKitNXkEpm5KrqUVt6otLL27TNOkEpfWluxQnrM1OU1XnIjqt7YMuTkPvpIuh07FmjYUNlYHMKffwIbN0r3X3tN2ViUUDYrEML0MK1qzJxLaUIYthaZ03r05pvAvHnA1aslrUcJCUDdutJjWi1blIiqK7YMObHvvpOuCKnVwDvvKB2Ng/j2WyA/X+or1KmT0tEo57ffgNdfl77FnbBJo6JRaZcvAytXWtd69NtvhgnStGlSB+3SQ/vfeMP0vEdlW4/YmkTkOJgMOanVq4EXXpDua7XAzp3KxuMwdJfIXnvN6VpELHLqlNRJZuVKl5mtsHSCVHZOo2nTjBeTLfv2MPftIoRhcjR2rJR3l77kNmyY+QnTyZN+TJiIZMZkyAllZUn/neoI4ZBz7NlfVhbw0kvSt5MrXiIrrV07w20HnYhRTrZoPXJzM69F6fBhwxalpCTj1qS+fQ0TphEjgJYt3TF79tNo2dLdohYmtjoRWYZ9hpzQ+vXlz7Hnsv0XVq8uWZPEzU0acuRknYgtkpFhvE+jAdLSAD8/l+3sUnqkWmV9j3TzdQHW9UcqTQhgx46Sba0W+OorAFA92FbhjTcMR7ypVNLo0P/+17C/EmD4Vi9v2gBT0whwagFyVUyGnMz//ifNJVhWNZpjz/bKLs6mawXp08d1P/F1EzGWnZQnMtJ48h0XVtEwfl2CBBju27HDMGGKjwdmzDA9/5ElhJBGvJXe3rq1ZFt3Sa40XavT999L4wZ0v9qXXgI2b648iTLVEdyapIqJFzk84QD+/ve/i5CQEOHl5SUee+wx8cMPP1RY/j//+Y8IDQ0Vnp6eIjQ0VGzcuNHgca1WK+bMmSMaNWokvL29Rffu3cWpU6fMjuf27dsCgLh9+7ZVr0ensLBQbN68WRQWFlbpOOa4ckWItWuFqFdP+r80NFQItVq6r1YLsWqV7CEoymRdX7kixM6dQkRG6v5ZN/zZs0exeB3CqlUlbxJTP2q1VIdXrgixe7d0K+z7vq6urlyR3l4PqsygqtVqIUaNMtxeuFAIN7fyfxVK/ahUJbejRgkxblzJPjc3IV56qSRuNzfpda5aZbhv1KjKy+g+n8q81Yy25Sxz4UKh+OCD/eLChcIqHae8fVRCzs8Qa7+/FU+G1q9fLzw8PMTKlSvF6dOnRUxMjKhVq5a4fPmyyfIHDhwQarVafPTRR+LMmTPio48+Eu7u7uLgwYP6MgsWLBC1a9cWGzZsECdPnhSRkZGiUaNGIi8vz6yY5EyGrh6+Io58sltcPXzF5LY1ZVauFCJIdUX0wG7RBFdESIgQeXlSmaOLSj3I/VX9AAAY3klEQVTP2r9kRytjYl/hhQti/wcfiMILF6THS3/aVvRF7+p039pJSabr6YknjL61jOpadxw7/a4droyZzyv791h2e9UqIZq6SX/HTd2uiFGjhGjqlvlgO1OfMDVByd86YLitUknJStkyZcuZ2layjEolRP/+QgQ+2BeIK6Jbt5LtINUVMX26EO+9V/JZF6S6Il5+2XB7yRIhli833DdqlOG2LhkzLpP5YDuzgjIVH6e8fbb4nLdlGaXPf/nHC+Iff/lMXP6x1GeIjVTbZOjJJ58U48ePN9jXpk0bMWPGDJPlhw4dKvr27Wuwr0+fPmLYsGFCCKlVKCAgQCxYsED/+P3794WPj49YtmyZWTHJlQztfHWVKIb0xVIMN/Fj45cNtvf0SxA7XlpSaZk9/RIM9n2BUQbb76oSxM24BMMvseHDDbcTEqSfyvaNGFF5mbL/+pkq8/LLhtvLllVextS/kKaOPXSo0D7Y1rq5CfHMM6b/xXWlpjJLXblidtOE9kHTgLa839ELLxhuf/ihEEuXVvy7NvV7XbVKiL/9reLnLVlifH5zjm2r93VCghCff275+cs5tsH7+NVXDbcTEsShlw3/9g81Nfx8+GHUKvFD1HLDz4z+CWI6Kv7MmIYEMa1MmW9geOwxWFFpmdFYJUZjVYVlpiFBxGCRwb53zDi/OceejI/NOn/Zc5lTH+aUmYYE8Q4WGuz7GkMNtte2TRBftjN83hZfw2N/1SFBfNXBsMwuX8PX8VWnxeKbxw3L7PEzLPPPHqvEP3sY1sfmiASxOcLweTsajTTY3to1QWztalgmtaHhsf/dd5XY3PNTw/efv2GZjX2Xiw39V1VY5odRtv0stvb7WyWEEEpdoissLETNmjXx73//G4MGDdLvj4mJwbFjx5Cammr0nKZNm2Ly5MmYPHmyft/ixYuRmJiIy5cv48KFC2jRogWOHDmCjh076su8+OKLqFu3Lr788kujYxYUFKCgoEC/nZeXh6CgIFy7dg116tSx+vUVFRUhJSUFvXr1wrVjv6PJ0y2hRsUdB7RQwQ2W/UoEdN0sq1bGnscWKhVUlbz1xINhOqpKOluYe/7ir74CGjSAaNGCnRRMUK1ZA3V0NFQaDYRaDe2gQVD/5z8VPsfs35EZv2+TxxaiwucJlQpQqSo9v9HzYLv3tVWvzYbnN3iOjf9mSiuGG9wr+fwqhhtUQKWfc2XPb0485hxbANDCrdLzVxaPtWVMlbPVscuW0aLy4eDW/j7MUQw3uEFU+H2lgQqAqsLzF0ONqz9moNETtvlMzsvLg5+fH27fvm3R97eiHaivXbsGjUYDf39/g/3+/v7Iyckx+ZycnJwKy+tuTZW5fPmyyWPGx8dj7ty5RvuTk5NRs2ZN815MBVJSUpD3bSaizPgDtTQRAsx7E1s7o45cxzbny8PcLzhT5zf64HBzw678fNy/exc4cUL6IUP+/vBevhy1srNxt1EjAEDvDRsq/F2Z/Tuy4n8uc46t0rVXWXpsG5XRx6Dg+Q2eU4W/mcpUlgiZW8bU+c2Jx5xjm/PFb0481pYxVc5Wxy5bxpx5caz9fZjDnGOrIYBKvtPcoUHq6u9Q54+mVkRhLD8/36rnOcRoMlWZ2cyEEEb7LC1vyTHj4uIwpdTClbqWod69e9uuZajB79CsiTX4Qy37hW0qi7emjFblBpXK8IPR6L8VE/9BmtxnzvPsWcac56nV0MyfD/WsWSWtHEuW4NmRI0GW0Wg0Ja1FJlpqFP9dK11G6fM7U4wCUIlKPtfg2GXMeZ6tPuetLaP0+Y3LqNF9zPM2bRmyhqKTLvr5+UGtVhu1AuXm5hq17OgEBARUWD4gIAAALDqml5cX6tSpY/ADAB4eHlX+0R2naUQzHBi1AsWQZnErhhr7W4wy2E4btcKqMhkRoyAezA4n1Gq4rVwBVZnVKlWjRhlurzBRxtQ+c55nzzLlPK/061ctXw73GTOgejCDnurSJbiPG2eT36er/biPG1dSj5cvQ7VypWFdK/C7dqgyMp/fJnWtdB2ZG+PKFYavd5SJzzUHL2NqX0aEbT7nbVVG6fMbl1mOphHNbPq5ZRWb9lyywpNPPineeustg32hoaEVdqDu16+fwb6+ffsadaBOSEjQP15QUOAQHaiFeDCCZPEewxElpbatLWM0ltfUPnPKWPs8e5Yxsa/wwgWxr+wIJ5KFybq24+/a4crIeGyb1bXSdVQNYpSzrm31OW+z7wuFz3/5xwviH6M5msyAbmj96tWrxenTp0VsbKyoVauWuHTpkhBCiKioKIPE6McffxRqtVosWLBAnDlzRixYsMDk0HofHx+xceNGcfLkSfHqq686zNB6kgfr2n5Y1/bDurYf1rX9OOI8Q4r3GYqMjMT169cxb948ZGdnIywsDNu2bUNwcDAAIDMzE26lFv+JiIjA+vXrMWvWLMyePRstWrRAUlISOpVagXz69Om4d+8eoqOjcfPmTXTq1AnJycmoXbu23V8fEREROTbFkyEAiI6ORnR0tMnH9u7da7RvyJAhGDJkSLnHU6lUeP/99/H+++/bKEIiIiJyVly1noiIiFwakyEiIiJyaUyGiIiIyKUxGSIiIiKXxmSIiIiIXBqTISIiInJpTIaIiIjIpTEZIiIiIpfGZIiIiIhcmkPMQO1ohBAAgLy8vCodp6ioCPn5+cjLy7N+JV0yC+vafljX9sO6th/Wtf3IWde6723d97i5mAyZcOfOHQBAUFCQwpEQERGRpe7cuQMfHx+zy6uEpemTC9Bqtbh69Spq164NlUpl9XHy8vIQFBSEK1euoE6dOjaMkMpiXdsP69p+WNf2w7q2HznrWgiBO3fuoHHjxgaLvFeGLUMmuLm5ITAw0GbHq1OnDv+47IR1bT+sa/thXdsP69p+5KprS1qEdNiBmoiIiFwakyEiIiJyaer333//faWDcGZqtRo9evSAuzuvSMqNdW0/rGv7YV3bD+vafhytrtmBmoiIiFwaL5MRERGRS2MyRERERC6NyRARERG5NCZDRERE5NKYDMloyZIlaNasGby9vREeHo59+/YpHVK1Fh8fjyeeeAK1a9dGw4YN8dJLL+GXX34xKFNQUICJEyfCz88PtWrVwsCBA5GVlaVQxM4jPj4eKpUKsbGx+n2sa9v57bff8Nprr6F+/fqoWbMmOnTogPT0dP3jQgi8//77aNy4MWrUqIEePXrg559/VjDi6qu4uBizZs1Cs2bNUKNGDTRv3hzz5s2DVqvVl2F9W+eHH37ACy+8gMaNG0OlUmHz5s0Gj5tTrzdv3kRUVBR8fHzg4+ODqKgo3Lp1S/7gBcli/fr1wsPDQ6xcuVKcPn1axMTEiFq1aonLly8rHVq11adPH7FmzRpx6tQpcezYMTFgwADRtGlT8eeff+rLjB8/XjRp0kSkpKSII0eOiGeeeUY8+uijori4WMHIq7fDhw+LkJAQ8cgjj4iYmBj9fta1bdy4cUMEBweL119/XRw6dEhcvHhR7Ny5U/z666/6MgsWLBC1a9cWGzZsECdPnhSRkZGiUaNGIi8vT8HIq6f58+eL+vXri++++05cvHhR/Pvf/xYPPfSQSExM1JdhfVtn27ZtYubMmWLDhg0CgNi0aZPB4+bUa9++fUVYWJg4cOCAOHDggAgLCxPPP/+87LEzGZLJk08+KcaPH2+wr02bNmLGjBkKReR8cnNzBQCRmpoqhBDi1q1bwsPDQ6xfv15f5rfffhNubm5i+/btSoVZrd25c0e0atVKpKSkiO7du+uTIda17bz77ruiS5cu5T6u1WpFQECAWLBggX7f/fv3hY+Pj1i2bJk9QnQqAwYMEKNHjzbYN3jwYPHaa68JIVjftlI2GTKnXk+fPi0AiIMHD+rLpKWlCQDi7NmzssbLy2QyKCwsRHp6Onr37m2wv3fv3jhw4IBCUTmf27dvAwB8fX0BAOnp6SgqKjKo98aNGyMsLIz1bqW3334bAwYMwHPPPWewn3VtO1u2bMHjjz+OV155BQ0bNkTHjh2xcuVK/eMXL15ETk6OQV17eXmhe/furGsrdOnSBbt27cK5c+cAAMePH8f+/fvRv39/AKxvuZhTr2lpafDx8UGnTp30ZZ566in4+PjIXveOMfWjk7l27Ro0Gg38/f0N9vv7+yMnJ0ehqJyLEAJTpkxBly5dEBYWBgDIycmBp6cn6tWrZ1CW9W6d9evX48iRI/jf//5n9Bjr2nYuXLiApUuXYsqUKXjvvfdw+PBhTJo0CV5eXhg5cqS+Pk19nly+fFmJkKu1d999F7dv30abNm2gVquh0Wjw4Ycf4tVXXwUA1rdMzKnXnJwcNGzY0Oi5DRs2lP1zhcmQjFQqlcG2EMJoH1lnwoQJOHHiBPbv319pWda75a5cuYKYmBgkJyfD29vb7Oexri2n1Wrx+OOP46OPPgIAdOzYET///DOWLl2KkSNH6svx88Q2kpKSsG7dOnz11Vdo164djh07htjYWDRu3BijRo3Sl2N9y6OyejVVx/aoe14mk4Gfnx/UarVRJpubm2uUFZPlJk6ciC1btmDPnj0IDAzU7w8ICEBhYSFu3rxpUJ71brn09HTk5uYiPDwc7u7ucHd3R2pqKj777DO4u7vD39+fdW0jjRo1Qtu2bQ32hYaGIjMzE4D0vgbAzxMbmTZtGmbMmIFhw4ahffv2iIqKwuTJkxEfHw+A9S0Xc+o1ICAAv//+u9Fz//jjD9nrnsmQDDw9PREeHo6UlBSD/SkpKYiIiFAoqupPCIEJEyZg48aN2L17N5o1a2bweHh4ODw8PAzqPTs7G6dOnWK9W6hnz544efIkjh07pv95/PHHMWLECP191rVtPP3000ZTRJw7dw7BwcEAgGbNmiEgIMCgrgsLC5Gamsq6tkJ+fj7c3Ay/+tRqtX5oPetbHubUa+fOnXH79m0cPnxYX+bQoUO4ffu2/HUva/dsF6YbWr969Wpx+vRpERsbK2rVqiUuXbqkdGjV1ltvvSV8fHzE3r17RXZ2tv4nPz9fX2b8+PEiMDBQ7Ny5Uxw5ckQ8++yzHO5tI6VHkwnBuraVw4cPC3d3d/Hhhx+KjIwM8a9//UvUrFlTrFu3Tl9mwYIFwsfHR2zcuFGcPHlSvPrqqxzqbaVRo0aJJk2a6IfWb9y4Ufj5+Ynp06fry7C+rXPnzh1x9OhRcfToUQFALFq0SBw9elQ/pYw59dq3b1/xyCOPiLS0NJGWlibat2/PofXV3d///ncRHBwsPD09xWOPPaYfAk7WAWDyZ82aNfoy9+7dExMmTBC+vr6iRo0a4vnnnxeZmZnKBe1EyiZDrGvb2bp1qwgLCxNeXl6iTZs2YsWKFQaPa7VaMWfOHBEQECC8vLxEt27dxMmTJxWKtnrLy8sTMTExomnTpsLb21s0b95czJw5UxQUFOjLsL6ts2fPHpOf0aNGjRJCmFev169fFyNGjBC1a9cWtWvXFiNGjBA3b96UPXaVEELI2/ZERERE5LjYZ4iIiIhcGpMhIiIicmlMhoiIiMilMRkiIiIil8ZkiIiIiFwakyEiIiJyaUyGiIiIyKUxGSIi2fXo0QOxsbFKh6EnhMC4cePg6+sLlUqFY8eOKR0SESmIq9YTkcvZvn071q5di71796J58+bw8/NTOiQiUhCTISKqljQaDVQqldGim+Y4f/48GjVqxIU3iQgAL5MRuYwePXpg0qRJmD59Onx9fREQEID3339f//ilS5eMLhndunULKpUKe/fuBQDs3bsXKpUKO3bsQMeOHVGjRg08++yzyM3Nxffff4/Q0FDUqVMHr776KvLz8w3OX1xcjAkTJqBu3bqoX78+Zs2ahdKrARUWFmL69Olo0qQJatWqhU6dOunPCwBr165F3bp18d1336Ft27bw8vLC5cuXTb7W1NRUPPnkk/Dy8kKjRo0wY8YMFBcXAwBef/11TJw4EZmZmVCpVAgJCTF5jNLna926NWrWrIkhQ4bg7t27+PLLLxESEoJ69eph4sSJ0Gj+v727D2mqfeMA/h2+1I5T01kmVkqpaxGJWTY1GBE5onKQkulkhJGGZQMLxBCMCDL6IyL6r1pB2Qu06E3MAnX5koVLA92ckxUqgiQmKWbLXb8/wvO4NMvn5/Pw0K4P7I9zn/u+r3PdB/Ti3tEzKY4bHh6GXq9HSEgIBEHAzp070d3dDQAYGRmBVCpFdXW1RyyTyYSAgACMjo4CAPr7+5GVlYWQkBDI5XJotVq8f/9e7F9XV4ekpCQEBARgyZIlSE1N/elaTN1Xk8mEbdu2QRAExMfHo7m5edb+jHmlf/ztZ4yx/wS1Wk1BQUF06tQpstvtdOPGDZJIJFRTU0NERE6nkwDQ27dvxTHDw8MEgGpra4norxcxqlQqamhoIIvFQjExMaRWqyktLY0sFguZzWaSy+VUUVHhEVsmk5HBYCCbzUY3b94kQRA8Xkiak5NDKSkpZDabyeFw0Pnz52nRokVkt9uJiMhoNJKfnx+lpKRQY2Mj2Ww2Gh0dnZFnX18fCYJAhYWFZLVa6cGDBxQWFkbl5eVERPTp0yc6ffo0rVixggYGBmhwcHDW9ZqKt2PHDrJYLFRfX09yuZzS0tJo37591NHRQY8fPyZ/f3+6c+eOOC49PZ2USiWZzWZqa2sjjUZDMTEx9PXrVyIiysjIoNzcXI9YGRkZlJ2dTUREY2NjFBsbS3l5efTu3Tvq7OyknJwcUigUNDExQS6Xi4KDg+nEiRPkcDios7OTrl+/Lr4Z/EdT93Xt2rX05MkT6urqoszMTIqKiiKXyzXrGMa8DRdDjHkJtVpNW7du9WjbvHkzlZSUENH8iqEXL16Ifc6ePUsAqKenR2wrKCggjUbjEVupVJLb7RbbSkpKSKlUEhGRw+EgiURC/f39Hte3fft2Ki0tJaLvxQkAamtrmzPPkydPkkKh8Ih1+fJlkslkNDk5SUREFy5coKioqDnnmYrncDg88hIEgT5//iy2aTQaKigoICIiu91OAKixsVE8//HjR5JKpXTv3j0iIjKZTCSTyWhsbIyIiEZGRmjx4sX09OlTIiK6evXqjOufmJggqVRKz549o6GhIQJAdXV1c17/lKn7euXKFbGto6ODAJDVav2tORj70/HXZIx5kQ0bNngcR0REYHBw8P+aJzw8HIIgYPXq1R5tP86rUqkgkUjE4+TkZHR3d2NychIWiwVEhLi4OMhkMvFTX1+Pnp4ecYy/v/+MHH5ktVqRnJzsESs1NRWjo6Po6+ubV56CIGDNmjUeeUVHR0Mmk82aq9Vqha+vL7Zs2SKel8vlUCgUsFqtAIBdu3bB19cXjx49AgDcv38fgYGBSEtLAwC0trbC4XAgMDBQXIfQ0FB8+fIFPT09CA0NxYEDB6DRaLBnzx5cvHgRAwMDv8xl+rpFREQAwN+694z9ifgBasa8iJ+fn8exRCKB2+0GAPFBZJr2HI/L5frlPBKJZM55f4fb7YaPjw9aW1vh4+PjcW564SGVSj2KnNkQ0Yw+Uzn9auyPZstrrlynr93Prsnf3x+ZmZmorKzE/v37UVlZiaysLPj6fv9x7Ha7kZiYiFu3bs2YZ+nSpQAAo9GIY8eOobq6Gnfv3kVZWRmeP38OlUr1W7lMXct87hFjfzLeGWKMAfjrF+30XYaF/P87r169mnEcGxsLHx8fJCQkYHJyEoODg4iJifH4LF++fF5x1q1bh6amJo/CpKmpCYGBgYiMjFyQXOaK/e3bN7S0tIhtQ0NDsNvtUCqVYptOp0N1dTU6OjpQW1sLnU4nntu4cSO6u7uxbNmyGWsRHBws9ktISEBpaSmampqwfv16VFZW/qO5MfYn42KIMQbg+66LSqVCRUUFOjs7YTabUVZWtmDz9/b2ori4GF1dXbh9+zYuXboEg8EAAIiLi4NOp4Ner4fJZILT6cSbN29w7tw5VFVVzStOYWEhent7UVRUBJvNhocPH6K8vBzFxcV/68/w5yM2NhZarRaHDh1CQ0MD2tvbkZubi8jISGi1WrGfWq1GeHg4dDodoqOjPXZ0dDodwsLCoNVq8fLlSzidTtTX18NgMKCvrw9OpxOlpaVobm7Ghw8fUFNTM6PYYozNDxdDjDHRtWvX4HK5sGnTJhgMBpw5c2bB5tbr9RgfH0dSUhKOHDmCoqIi5Ofni+eNRiP0ej2OHz8OhUKB9PR0tLS0YOXKlfOKExkZiaqqKrx+/Rrx8fE4fPgwDh48uKCF3VyMRiMSExOxe/duJCcng4hQVVU142uq7OxstLe3e+wKAd+fUzKbzVi1ahX27t0LpVKJvLw8jI+PIygoCIIgwGazISMjA3FxccjPz8fRo0dRUFDwr+TH2J9IQj/7kpsxxhhjzAvwzhBjjDHGvBoXQ4wxxhjzalwMMcYYY8yrcTHEGGOMMa/GxRBjjDHGvBoXQ4wxxhjzalwMMcYYY8yrcTHEGGOMMa/GxRBjjDHGvBoXQ4wxxhjzalwMMcYYY8yrcTHEGGOMMa/2PwuiVzZtDxApAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(1:100, diff([((T*M)^n * e₁)[end] for n = 0:100]), \"b.-\")\n", - "plot(1:100, diff([(M^n * e₁)[end] for n = 0:100]), \"r.--\")\n", - "xlabel(\"number of moves n\")\n", - "ylabel(\"probability of finishing in n moves\")\n", - "grid()\n", - "title(\"number of moves to finish chutes & ladders\")\n", - "legend([\"chutes & ladders\", \"no chutes/ladders\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The expected number of moves (for a single player) is:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "27.130202016993287" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum((1:1000) .* diff([((T*M)^n * e₁)[end] for n = 0:1000]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Amazingly, this is about the same as the 29 moves expected when there are no chutes and ladders, but the variance is much larger!\n", - "\n", - "(In principle, we should actually sum for `n=0` to `∞`, but because the probability $p(n)-p(n-1)$ decays exponentially for large `n` we can just truncate the sum.)\n", - "\n", - "And unlike the boring version, the probability of the game finishing never reaches 100%. If you are unlucky, you could be trapped playing chutes and ladders for all eternity! Let's plot $1-p(n)$ vs. $n$:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHFCAYAAAAAM6ZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVFX/B/DPyL6IsgQuIJKpmbtoKqaCCgYuSa75ZO6JpGhAPJo+rhCaS2SGomb6yyzcHzML0cQlsRKl0laVxA0NNVFMBOb8/phnJseZYe7FGbb5vF8vXjV3ztz5nssAX88593sUQggBIiIiIjKoVmUHQERERFTVMWEiIiIiMoIJExEREZERTJiIiIiIjGDCRERERGQEEyYiIiIiI5gwERERERnBhImIiIjICCZMREREREYwYaJqb8OGDVAoFDhx4kRlh1LpDhw4gI4dO8LJyQkKhQK7du3S2+6PP/6AQqHAhg0bKjZAM1AoFJgyZYpJz/nWW28ZvHYV4dKlSxgxYgQ8PT1Ru3ZttG/fHsnJybLO0bhxY4wZM8akcSkUCsybN89ou3nz5kGhUJj0vYkqGxMmohpCCIFhw4bBxsYGu3fvRmZmJnr27FnZYVVLlZkwKZVKDBgwAIcPH8bSpUuxfft2DB48GF9//XWlxENEKtaVHQARmcaVK1dw8+ZNhIeHo3fv3pUdDpXTr7/+iuzsbKxatQqvvPIKACAkJKSSo6pc9+7dg6OjY2WHQRaOI0xU5f3yyy946aWX4OXlBTs7OzRq1AivvPIKioqKtNrduXMHkydPhoeHB9zd3fHiiy/iypUrWm1SU1MREhKC+vXrw8HBAS1atMCMGTNQWFio1W7MmDFwdnbG2bNnERYWBmdnZ/j4+CAmJkbnfYuKirBgwQK0aNEC9vb2cHd3R1BQEI4dO6ZpI4RAcnIy2rVrBwcHB7i6umLIkCE4f/68pGtw9OhR9O7dG7Vr14ajoyMCAgLw+eefa56fN28evL29AQD//ve/oVAo0LhxY0nnlvM+wD9ToAcPHjR6vYuKihATE4N69erB0dERPXr0QFZWluTpIinXVu2jjz5CixYt4OjoiLZt22LPnj1az48ZM0bvNXl0+kihUKCwsBAbN26EQqGAQqFAYGCg5vm8vDxMmjQJ3t7esLW1hZ+fH+bPn4+SkhKt865atQpt27aFs7Mzateujaeffhpvvvmm0T5bWVkBUCVOpnT//n3ExMSgXbt2qFOnDtzc3NC1a1f897//1WlbUFCAiRMnwt3dHc7Oznj++efx22+/6T3v559/jnbt2sHOzg5+fn5YunSp3nZSfwYCAwPRqlUrHD58GAEBAXB0dMS4ceMAAF999RUCAwPh7u4OBwcHNGrUCIMHD8a9e/fK7LvUz+Gff/6JyMhIPPPMM3B2doanpyd69eqFI0eOaJ1PPaW9ZMkSLF68GI0bN4aDgwMCAwPx22+/obi4GDNmzECDBg1Qp04dhIeH4/r16zpxpaamomvXrnBycoKzszP69u2LU6dOldkXqkSCqArLzs4Wzs7OonHjxmL16tXiwIEDYtOmTWLYsGGioKBACCHEhx9+KACIJ598UkydOlWkpaWJdevWCVdXVxEUFKR1voULF4p33nlHfP755yIjI0OsXr1a+Pn56bQbPXq0sLW1FS1atBBLly4V+/fvF3PmzBEKhULMnz9f0664uFgEBQUJa2trERsbK/bu3St2794t3nzzTfHJJ59o2k2cOFHY2NiImJgY8eWXX4rNmzeLp59+Wnh5eYm8vLwyr0FGRoawsbER/v7+IjU1VezatUuEhIQIhUIhPv30UyGEEBcvXhQ7duwQAMTUqVNFZmamOHnypMFz5uTkCADiww8/lPU+cq/3Sy+9JGrVqiVmzJgh9u3bJ5KSkoSPj4+oU6eOGD16dJn9lnptAYjGjRuLZ599VmzZskXs3btXBAYGCmtra3Hu3DlNu9GjRwtfX1+d95k7d654+FdhZmamcHBwEGFhYSIzM1NkZmaKM2fOCCGEuHr1qvDx8RG+vr4iJSVF7N+/XyxcuFDY2dmJMWPGaM7xySefaL4X+/btE/v37xerV68WUVFRZfZZLTAwUFhZWYmdO3dKaq+Pr6+v1jX+66+/xJgxY8RHH30kvvrqK/Hll1+K2NhYUatWLbFx40ZNO6VSKYKCgoSdnZ1ISEgQ+/btE3PnzhVPPvmkACDmzp2rabt//35hZWUlnnvuObFjxw6xdetW0alTJ9GoUSPx6J8XqT8DPXv2FG5ubsLHx0e899574uDBg+LQoUMiJydH2Nvbi+DgYLFr1y6RkZEhPv74YzFq1Chx69atMq+F1M/hL7/8IiZPniw+/fRTkZGRIfbs2SPGjx8vatWqJQ4ePKhpp/758fX1FQMGDBB79uwRmzZtEl5eXqJZs2Zi1KhRYty4ceKLL74Qq1evFs7OzmLAgAFaMSUkJAiFQiHGjRsn9uzZI3bs2CG6du0qnJycNJ83qlqYMFGV1qtXL1G3bl1x/fp1g23Uf8AjIyO1jr/99tsCgLh69are1ymVSlFcXCwOHTokAIjvv/9e89zo0aMFALFlyxat14SFhYnmzZtrHv/f//2fACDWrl1rML7MzEwBQCxbtkzr+MWLF4WDg4OIi4sz+FohhOjSpYvw9PQUd+7c0RwrKSkRrVq1Et7e3kKpVAoh/vklvmTJkjLP93DbhxMmqe8j9XqfOXNGABD//ve/tdqpkwljCZOUayuEKmHy8vLSJNBCCJGXlydq1aolEhMTNcekJkxCCOHk5KQ3vkmTJglnZ2dx4cIFreNLly4VADR/6KZMmSLq1q1bZtyG/Prrr+Lpp58WzZo1E7a2tmLPnj3lOs+jCdOjSkpKRHFxsRg/frxo37695vgXX3whAIh3331Xq31CQoJOwtS5c2fRoEED8ffff2uOFRQUCDc3N50kVOrPQM+ePQUAceDAAa2227ZtEwBEdna2pP6rPc7nUH2NevfuLcLDwzXH1T8/bdu2FaWlpZrjSUlJAoAYOHCg1nmmT58uAIjbt28LIYTIzc0V1tbWYurUqVrt7ty5I+rVqyeGDRsmq49UMTglR1XWvXv3cOjQIQwbNgxPPPGE0fYDBw7UetymTRsAwIULFzTHzp8/j5EjR6JevXqwsrKCjY2NZmH0zz//rPV6hUKBAQMG6Jzz4fN98cUXsLe310wZ6LNnzx4oFAq8/PLLKCkp0XzVq1cPbdu2RUZGhsHXFhYW4ptvvsGQIUPg7OysOW5lZYVRo0bh0qVLJpm6Kc/7GLvehw4dAgAMGzZMq92QIUNgbW18+aSUa6sWFBSE2rVrax57eXnB09NT63tlCnv27EFQUBAaNGig9b0MDQ0F8E+fn332Wfz111946aWX8N///hf5+fmSzn/z5k306dMHwcHB+PHHHxESEoLBgwfjiy++0LTZtGkTFAoFcnJyZMe/detWdOvWDc7OzrC2toaNjQ0++OADrc/+wYMHAQD/+te/tF47cuRIrceFhYX47rvv8OKLL8Le3l5zvHbt2jo/N3J/BlxdXdGrVy+tY+3atYOtrS1effVVbNy4UfJ0ttzP4erVq9GhQwfY29trrtGBAwd0fj8AQFhYGGrV+ufPaIsWLQAA/fr102qnPp6bmwsASEtLQ0lJCV555RWt62Fvb4+ePXuW+TuBKg8TJqqybt26hdLSUs3aHGPc3d21HtvZ2QEA/v77bwDA3bt30b17d3zzzTeIj49HRkYGvvvuO+zYsUOrnZqjo6PWHwL1Oe/fv695/Oeff6JBgwZavzQfde3aNQgh4OXlBRsbG62v48ePl/nH9NatWxBCoH79+jrPNWjQAABw48YNg6+XqjzvY+x6q9t7eXlptbO2ttZ5rT5Srq2hWNTxPPo9fVzXrl3DZ599pvN9bNmyJQBovpejRo3C+vXrceHCBQwePBienp7o3Lkz0tPTyzz/Bx98gIsXL2LOnDmwtbXF9u3bERISgvDwcKSlpQEAMjIy0KJFC/j5+cmKfceOHRg2bBgaNmyITZs2ITMzE9999x3GjRun9Zm+ceOG3u9RvXr1tB7funULSqVS57i+tnJ/BvR9Dps0aYL9+/fD09MTr732Gpo0aYImTZrg3XffLbPfcj6Hy5cvx+TJk9G5c2ds374dx48fx3fffYfnn39e72fJzc1N67GtrW2Zx9XX+dq1awCATp066VyP1NRUyQk2VSzeJUdVlpubG6ysrHDp0iWTnO+rr77ClStXkJGRoXW7/V9//VXucz7xxBM4evQolEqlwT/sHh4eUCgUOHLkiCapeJi+Y2qurq6oVasWrl69qvOceoG1h4dHOaM37/uo/xhdu3YNDRs21BwvKSmRlORJubZy2Nvb6yzYByDrj5OHhwfatGmDhIQEvc+rk0sAGDt2LMaOHYvCwkIcPnwYc+fORf/+/fHbb7/B19dX7+vPnTsHKysrzSifra0ttm3bhqFDh2LQoEFYtmwZ/u///q9c9bM2bdoEPz8/pKamai1yf/SauLu7a75HDycUeXl5Wu1cXV2hUCh0jutrK/dnwFANp+7du6N79+4oLS3FiRMn8N5772H69Onw8vLCiBEj9L5Gzudw06ZNCAwMxKpVq7SO37lzR++5y0v9s7Rt2zaDnwWqejjCRFWWg4MDevbsia1bt5rkX1zqX8KP/nJOSUkp9zlDQ0Nx//79Mv+A9e/fH0IIXL58GR07dtT5at26tcHXOjk5oXPnztixY4fWv3CVSiU2bdoEb29vNGvWrNzxm/N9evToAUB1J9DDtm3bpnNHmT5Srq0cjRs3xvXr1zX/ugeABw8eaEZuHmZodKp///44ffo0mjRpovd7+XDCpObk5ITQ0FDMmjULDx48wJkzZwzG2KpVK5SWluLjjz/WHFMnTb169cJrr72GgIAAnekxKRQKBWxtbbWSkby8PJ275IKCggBAKwYA2Lx5s06/nn32WezYsUNrhOrOnTv47LPPtNo+zs+APlZWVujcuTPef/99AMDJkycNtpXzOVQoFDq/H3744QdkZmbKis+Yvn37wtraGufOndN7PTp27GjS9yPT4AgTVWnLly/Hc889h86dO2PGjBl46qmncO3aNezevRspKSla61aMCQgIgKurKyIiIjB37lzY2Njg448/xvfff1/u+F566SV8+OGHiIiIwK+//oqgoCAolUp88803aNGiBUaMGIFu3brh1VdfxdixY3HixAn06NEDTk5OuHr1Ko4ePYrWrVtj8uTJBt8jMTERwcHBCAoKQmxsLGxtbZGcnIzTp0/jk08+MVlFZVO/T8uWLfHSSy9h2bJlsLKyQq9evXDmzBksW7YMderUMTpqJOXayjF8+HDMmTMHI0aMwBtvvIH79+9jxYoVKC0t1WnbunVrZGRk4LPPPkP9+vVRu3ZtNG/eHAsWLEB6ejoCAgIQFRWF5s2b4/79+/jjjz+wd+9erF69Gt7e3pg4cSIcHBzQrVs31K9fH3l5eUhMTESdOnXQqVMngzGOHz8eH374ISZPnowff/wRffv2RWlpKTIzM3HkyBH4+Pjg6NGj2LJli86aHGP69++PHTt2IDIyEkOGDMHFixexcOFC1K9fH7///rumXUhICHr06IG4uDgUFhaiY8eO+Prrr/HRRx/pnHPhwoV4/vnnERwcjJiYGJSWlmLx4sVwcnLCzZs3Ne0e92cAUK0t+uqrr9CvXz80atQI9+/fx/r16wEAffr0Mfg6OZ/D/v37Y+HChZg7dy569uyJX3/9FQsWLICfn5+kJF+qxo0bY8GCBZg1axbOnz+P559/Hq6urrh27Rq+/fZbODk5Yf78+SZ7PzKRylxxTiTFTz/9JIYOHSrc3d2Fra2taNSokRgzZoy4f/++EOKfu7a+++47rdcdPHhQANC6HfjYsWOia9euwtHRUTzxxBNiwoQJ4uTJkzp3jI0ePVo4OTnpxKLvjqq///5bzJkzRzRt2lTY2toKd3d30atXL3Hs2DGtduvXrxedO3cWTk5OwsHBQTRp0kS88sor4sSJE0avwZEjR0SvXr00r+3SpYv47LPPtNo87l1yUt9HzvW+f/++iI6OFp6ensLe3l506dJFZGZmijp16ojXX3/daJxSri0A8dprr+m8Vt9dYnv37hXt2rUTDg4O4sknnxQrV67U+z3Nzs4W3bp1E46OjgKA6Nmzp+a5P//8U0RFRQk/Pz9hY2Mj3NzchL+/v5g1a5a4e/euEEKIjRs3iqCgIOHl5SVsbW1FgwYNxLBhw8QPP/xgtM93794Vs2fPFs2aNRM2NjbCxcVFBAUFic2bN4uSkhIxaNAgYW1tLbZv317mefT1f9GiRaJx48bCzs5OtGjRQqxdu1Zv///66y8xbtw4UbduXeHo6CiCg4PFL7/8onOXnBBC7N69W7Rp00bzs7lo0SK95xRC2s9Az549RcuWLXVem5mZKcLDw4Wvr6+ws7MT7u7uomfPnmL37t1Grqj0z2FRUZGIjY0VDRs2FPb29qJDhw5i165dOndYGvpZU/8MbN26Veu4oZ+ZXbt2iaCgIOHi4iLs7OyEr6+vGDJkiNi/f7/RPlHFUwghRIVnaURksY4dO4Zu3brh448/LtfUEpEp8HNIcjFhIiKzSU9PR2ZmJvz9/eHg4IDvv/8eixYtQp06dfDDDz/o3IVIZA78HJIpcA0TEZmNi4sL9u3bh6SkJNy5cwceHh4IDQ1FYmIi/0hRheHnkEyBI0xERERERrCsABEREZERTJiIiIiIjGDCRERERGQEF32Xk1KpxJUrV1C7dm2TFQ4kIiIi8xJC4M6dO5L3qlRjwlROV65cgY+PT2WHQUREROVw8eJFyZu7A0yYyk29JcfFixfh4uJi0nMXFxdj3759CAkJgY2NjUnPXR2w/5bdf4DXwNL7D/AasP/m639BQQF8fHxkba0FMGEqN/U0nIuLi1kSJkdHR7i4uFjsDwr7b7n9B3gNLL3/AK8B+2/+/stdTsNF30RERERGMGEiIiIiMoIJExEREZERTJiIiIiIjGDCRERERGQEEyYiIiIiI5gwERERERnBhImIiIjICItOmPbs2YPmzZujadOmWLduXWWHQ0RERFWUxVb6LikpQXR0NA4ePAgXFxd06NABL774Itzc3Co7NCIiIqpiLHaE6dtvv0XLli3RsGFD1K5dG2FhYUhLS6vssIiIiKgKqrYjTIcPH8aSJUuQlZWFq1evYufOnRg0aJBWm+TkZCxZsgRXr15Fy5YtkZSUhO7duwMArly5goYNG2raent74/LlyxXaB0MuXQKOHm2A3FwFrK0Bd3fAzw/IyQFu3NB9DKiOBQQAMjZeJiIiIomqbcJUWFiItm3bYuzYsRg8eLDO86mpqZg+fTqSk5PRrVs3pKSkIDQ0FD/99BMaNWoEIYTOa+RuxGcOK1YA06dbQ4hO5Xr9pElA27b/JFV37wJNmzKRIiIiehzVNmEKDQ1FaGioweeXL1+O8ePHY8KECQCApKQkpKWlYdWqVUhMTETDhg21RpQuXbqEzp07GzxfUVERioqKNI8LCgoAqHZULi4uftzu/C8GYNo0awDlT9xSUh5+JP53LoGJE5WYOVNZLRIn9fU01XWtbiy9/wCvgaX3H+A1YP/N1//ynlMh9A21VDMKhUJrSu7BgwdwdHTE1q1bER4ermk3bdo0ZGdn49ChQygpKUGLFi2QkZGhWfR9/PhxuLu7632PefPmYf78+TrHN2/eDEdHR5P048cfPfCf/3Qzybn0Exgy5Fe0bXsD9evfhYfHfTO+FxERUdVz7949jBw5Erdv34aLi4vk11XbEaay5Ofno7S0FF5eXlrHvby8kJeXBwCwtrbGsmXLEBQUBKVSibi4OIPJEgDMnDkT0dHRmscFBQXw8fFBSEiIrAteljZtgDlzBIQw19SgAtu2Nce2bVV71Km4uBjp6ekIDg6GjY1NZYdT4Sy9/wCvgaX3H+A1YP/N13/1DJFcNTJhUnt0TZIQQuvYwIEDMXDgQEnnsrOzg52dnc5xGxsbk30z/fyAtWuBiRPNmzSp/7t2rRXWrrXCpElAr15Vb9G4Ka9tdWTp/Qd4DSy9/wCvAftv+v6X93w1MmHy8PCAlZWVZjRJ7fr16zqjTlXN+PFAr14lSE4+BV/fDrC2toa7O9C4MfDHH//cJffwYwD4/nvV+qXyTLCmpPyz9untt4E33jBNX4iIiGqKGpkw2drawt/fH+np6VprmNLT0/HCCy9UYmTSeHsDzz13FWFhAg8nwp0euXHu0cezZgGZmf8kVd9/DyQkyHvvuDjg4kUgPJx31xEREalV24Tp7t27OHv2rOZxTk4OsrOz4ebmhkaNGiE6OhqjRo1Cx44d0bVrV6xZswa5ubmIiIioxKjNy9sbGDr0n8dDhwIREaqkac0aQKmUdp733lN9KRTA4sUccSIiIqq2CdOJEycQFBSkeaxekD169Ghs2LABw4cPx40bN7BgwQJcvXoVrVq1wt69e+Hr61tZIVcKb29g1SrV6NPZs8D+/cBbb0mbuhOCI05ERERANU6YAgMD9RaffFhkZCQiIyMrKKKqzdtb9RUYqBp1yswEvvoKWL3a+Gs54kRERJbOYveSs2TqqbtVq1SjRy+/LO116hGn2bPNGx8REVFVw4TJwnl7Ax99BCxZAtSS+GlISGDSREREloUJEwEAYmOBCxeAgweBqVONt09IUI1Mbdmi2tKFiIioJmPCRBrqNU4rVkgbcfr4Y2D4cMDHR9WeiIiopmLCRHrJHXGKi1MtJudoExER1URMmMigh0ecZs0y3j4lBWjUiKNNRERU8zBhIkni41WJkMLIFne8k46IiGoiJkwkWWwskJur+q8xvJOOiIhqEiZMJIu3t2qk6eJF1ZqlskaceCcdERHVFEyYqFzUW67k5gKTJhluxzvpiIioJmDCRI/F21u1vYqUReG8k46IiKorJkxkEvHxvJOOiIhqLiZMZDK8k46IiGoqJkxkUnLvpOMUHRERVQdMmMjk5NxJxyk6IiKqDpgwkdlIvZOOU3RERFTVMWEis5N6Jx2LXRIRUVVlXdkBkOWIjwfq1lWNJgmhv01CAnDtWi106WJfscERERGVgSNMVKHUi8LLmqJbt84KEyaEYPlyI7fbERERVRAmTFThpE3RKTBjhhWn6IiIqEpgwkSVxnixSwVLDxARUZXAhIkqlZRilyw9QERElY0JE1U6KeuaWHqAiIgqE++SoypBva7JwwNISBAA9A85JSQABQVAeDjQtKnqdURERObGESaqUuLjgcTEUgAG6g4AeO89oFcvTtMREVHFYcJEVU5MjMC6dfswcWJpme04TUdERBVFdsK0ceNGfP7555rHcXFxqFu3LgICAnDhwgWTBkeWy8PjPt5/X2m0OjjATXyJiMj8ZCdMb731FhwcHAAAmZmZWLlyJd5++214eHjg9ddfN3mAZNmMlx5Q4Z10RERkTrIXfV+8eBFPPfUUAGDXrl0YMmQIXn31VXTr1g2BgYGmjo9Is6XKv/8NKJWG26mn6G7fVr2GiIjIVGSPMDk7O+PGjRsAgH379qFPnz4AAHt7e/z999+mjY7of2JjgQsXgIMHgalTy27LTXyJiMjUZI8wBQcHY8KECWjfvj1+++039OvXDwBw5swZNG7c2NTxEWl4e6u+AgNV02/GNvHNz1clTiw9QEREj0v2CNP777+Prl274s8//8T27dvh7u4OAMjKysJLL71k8gDN5eLFiwgMDMQzzzyDNm3aYOvWrZUdEskgpdgl1zUREZGpyB5hqlu3LlauXKlzfP78+SYJqKJYW1sjKSkJ7dq1w/Xr19GhQweEhYXBycmpskMjibSLXepvw3VNRERkCuWqw3TkyBG8/PLLCAgIwOXLlwEAH330EY4ePWrS4Mypfv36aNeuHQDA09MTbm5uuHnzZiVHReUh5U46lh4gIqLHITth2r59O/r27QsHBwecPHkSRUVFAIA7d+7grbfeMllghw8fxoABA9CgQQMoFArs2rVLp01ycjL8/Pxgb28Pf39/HDlypFzvdeLECSiVSvj4+Dxu2FRJuIkvERGZk+yEKT4+HqtXr8batWthY2OjOR4QEICTJ0+aLLDCwkK0bdtW7/QfAKSmpmL69OmYNWsWTp06he7duyM0NBS5ubmaNv7+/mjVqpXO15UrVzRtbty4gVdeeQVr1qwxWexUObiJLxERmYvsNUy//vorevTooXPcxcUFf/31l0mCAoDQ0FCEhoYafH758uUYP348JkyYAABISkpCWloaVq1ahcTERACqhehlKSoqQnh4OGbOnImAgACjbdWjaQBQUFAAACguLkZxcbGkPkmlPp+pz1tdPE7/vbxUe825uiqwaJEVDG/iK1BaWooFCwzvWVdZLP37D/AaWHr/AV4D9t98/S/vOWUnTPXr18fZs2d1SggcPXoUTz75ZLmCkOvBgwfIysrCjBkztI6HhITg2LFjks4hhMCYMWPQq1cvjBo1ymj7xMREvQvb9+3bB0dHR2mBy5Senm6W81YXj9P/Ll2A0aObYOPGltCfNKkSqpMn/8CwYb/Bw+N+ud/LXCz9+w/wGlh6/wFeA/bf9P2/d+9euV4nO2GaNGkSpk2bhvXr10OhUODKlSvIzMxEbGws5syZU64g5MrPz0dpaSm8vLy0jnt5eSEvL0/SOb7++mukpqaiTZs2mvVRH330EVq3bq23/cyZMxEdHa15XFBQAB8fH4SEhMDFxaWcPdGvuLgY6enpCA4O1pr2tBSm6n9YGDB3bgkSE2th7dpa0E2cFNi3zw/p6Y2RmFiK6OiqMdpk6d9/gNfA0vsP8Bqw/+brv3qGSC7ZCVNcXBxu376NoKAg3L9/Hz169ICdnR1iY2MxZcqUcgVRXopHVvgKIXSOGfLcc89BWdY+G4+ws7ODnZ2dznEbGxuzfZjNee7qwBT99/MD1qwBPD3LKj2gwIwZ1rhzp2qVHrD07z/Aa2Dp/Qd4Ddh/0/e/vOeTnTABQEJCAmbNmoWffvoJSqUSzzzzDJydncsVQHl4eHjAyspKZzTp+vXrOqNORMA/iZChpEn9HKuDExGLrJGVAAAgAElEQVSRPrLvktu4cSMKCwvh6OiIjh074tlnn63QZAkAbG1t4e/vrzO3mZ6ebnTxNlkulh4gIqLykp0wxcbGwtPTEyNGjMCePXtQUlJijrhw9+5dZGdnIzs7GwCQk5OD7OxsTdmA6OhorFu3DuvXr8fPP/+M119/Hbm5uYiIiDBLPFQzsPQAERGVh+wpuatXr+LLL7/EJ598ghEjRsDBwQFDhw7VVP42lRMnTiAoKEjzWL3gevTo0diwYQOGDx+OGzduYMGCBbh69SpatWqFvXv3wtfX12QxUM0kZUsVQPVc3bqqJIuIiCyb7ITJ2toa/fv3R//+/XHv3j3s3LkTmzdvRlBQELy9vXHu3DmTBBYYGAhhaCv6/4mMjERkZKRJ3o8sT3y8KiGKi1ONKukTFweMGME1TURElq5ce8mpOTo6om/fvggNDUXTpk3xxx9/mCgsoophbIpOCCAmhnvQERFZunIlTPfu3cPHH3+MsLAwNGjQAO+88w4GDRqE06dPmzo+IrNTT9EZ2sB3yxYuBCcisnSyp+ReeuklfPbZZ3B0dMTQoUORkZHBO9OoRoiPV5UVSEnRfU69EPz27apVq4mIiCqG7IRJoVAgNTUVffv2hbV1uco4EVVZs2cDa9cChmqaslYTEZFlkj0lt3nzZvTr14/JEtVI3t6qyuC1yvjJYK0mIiLLU641TIcOHcKAAQPw1FNPoWnTphg4cCCOHDli6tiIKsX48cCFC6zVRERE/5CdMG3atAl9+vSBo6MjoqKiMGXKFDg4OKB3797YvHmzOWIkqnDGFoKrJSQwaSIisgSy59USEhLw9ttv4/XXX9ccmzZtGpYvX46FCxdi5MiRJg2QqDJJqdXEdU1ERDWf7BGm8+fPY8CAATrHBw4ciJycHJMERVSVSNlOheuaiIhqNtkJk4+PDw4cOKBz/MCBA/Dx8TFJUERVjZQpOq5rIiKquWRPycXExCAqKgrZ2dkICAiAQqHA0aNHsWHDBrz77rvmiJGoylDXYDK2Bx2n6IiIahbZCdPkyZNRr149LFu2DFu2bAEAtGjRAqmpqXjhhRdMHiBRVSNlXVNKiqo8weLFwBtvVGx8RERkeuUqphQeHo7w8HBTx0JUbcTGqjbljY/XXxkcYHVwIqKa5LGqT969exfKR0oiu7i4PFZARNWFel2Th4fxKTqASRMRUXUme9F3Tk4O+vXrBycnJ9SpUweurq5wdXVF3bp14erqao4Yiaq0+HjV3XEKheE2CQlARARw6VLFxUVERKYje4TpX//6FwBg/fr18PLygqKsvxJEFkLKFB3XNRERVV+yE6YffvgBWVlZaN68uTniIaq2pEzRcV0TEVH1JHtKrlOnTrh48aI5YiGqEeLjpW2pwik6IqLqQ/YI07p16xAREYHLly+jVatWsLGx0Xq+TZs2JguOqLpi6QEioppFdsL0559/4ty5cxg7dqzmmEKhgBACCoUCpaWlJg2QqLpi6QEioppDdsI0btw4tG/fHp988gkXfRMZwdIDREQ1g+yE6cKFC9i9ezeeeuopc8RDVCNJmaJTb6ny739XbGxERGSc7EXfvXr1wvfff2+OWIhqtNhYIDcXmDTJcJuUFKBJE2vs3Nmk4gIjIiKjZI8wDRgwAK+//jp+/PFHtG7dWmfR98CBA00WHFFNI630gAIbN7ZE/fqlSEys2PiIiEg/2QlTREQEAGDBggU6z3HRN5E06rVKhtc1KbBokRVu3QJmz1YlWkREVHlkT8kplUqDX0yWiKQzvqWKAikpQKNGqnZERFR5ZCdMRGQ6UtY1qUsPLF1acXEREZE2JkxElUy9rslYdfC4OFYGJyKqLEyYiKqIf6bo9NcdEAKIiWHSRERUGZgwEVUhsbHAuXMl6Ns3B4Bu4rRlC9c0ERFVBiZMRFWMtzcwefIPmDBBqfd59Zqm2bMrODAiIgsmu6wAoLpT7uzZs7h+/TqUSu1f6j169DBJYESW7s03lVi/3gpK/XkTt1MhIqpAshOm48ePY+TIkbhw4QLEI3s8VMc6TPfu3UOLFi0wdOhQLOVtSFSFeHsDa9YAr76KMpOm/HzWaiIiMjfZU3IRERHo2LEjTp8+jZs3b+LWrVuar5s3b5ojRrNKSEhA586dKzsMIr3GjwcuXDC+nQrXNRERmZfsEabff/8d27ZtqxGb7/7+++/45ZdfMGDAAJw+fbqywyHSS9p2Kqp1Tbdvc4qOiMgcZI8wde7cGWfPnjVHLFoOHz6MAQMGoEGDBlAoFNi1a5dOm+TkZPj5+cHe3h7+/v44cuSIrPeIjY1FIjfromoiPt54raaEBCAigqUHiIhMTfYI09SpUxETE4O8vDy9m++2adPGJIEVFhaibdu2GDt2LAYPHqzzfGpqKqZPn47k5GR069YNKSkpCA0NxU8//YRGjRoBAPz9/VFUVKTz2n379uG7775Ds2bN0KxZMxw7dswkMROZW3w8ULeuajRJ6C/XhJQU1dqnxYuBN96o2PiIiGoq2QmTOnkZN26c5phCoYAQwqSLvkNDQxEaGmrw+eXLl2P8+PGYMGECACApKQlpaWlYtWqVZtQoKyvL4OuPHz+OTz/9FFu3bsXdu3dRXFwMFxcXzJkzR2/7oqIireSroKAAAFBcXIzi4mLZ/SuL+nymPm91wf6X3f9p04DBg4HExFpYu7YWAN3N6FRTdAI3b5ZiwQIDmVUVxs+AZfcf4DVg/83X//KeUyEevdXNiAsXLpT5vK+vb7kCKYtCocDOnTsxaNAgAMCDBw/g6OiIrVu3Ijw8XNNu2rRpyM7OxqFDh2Sdf8OGDTh9+nSZd8nNmzcP8+fP1zm+efNmODo6yno/IlPZtKk5tm1rDn1Jk4rAkCG/4uWXf63IsIiIqqx79+5h5MiRuH37NlxcXCS/TvYIkzkSIrny8/NRWloKLy8vreNeXl7Iy8szy3vOnDkT0dHRmscFBQXw8fFBSEiIrAsuRXFxMdLT0xEcHKwz5WkJ2H/p/Q8LA/z9S/Hmm1YQQl/SpMC2bc1Rt25TvPmmstqUHuBnwLL7D/AasP/m6796hkiuchWurCoUCu0/EOppQbnGjBljtI2dnR3s7Ox0jtvY2Jjtw2zOc1cH7L+0/s+YAbz8smp9U0qKvhYKrFtnhQ8+sKp265r4GbDs/gO8Buy/6ftf3vNVy61RPDw8YGVlpTOadP36dZ1RJyJLoC49UNZddNxShYio/KplwmRrawt/f3+kp6drHU9PT0dAQEAlRUVU+Vh6gIjIPKpswnT37l1kZ2cjOzsbAJCTk4Ps7Gzk5uYCAKKjo7Fu3TqsX78eP//8M15//XXk5uYiIiKiMsMmqnTx8aqq32XNTrM6OBGRPOVew/TgwQO9m++qayA9rhMnTiAoKEjzWL3gevTo0diwYQOGDx+OGzduYMGCBbh69SpatWqFvXv3VolF6USVLTYWGDGirHVNrA5ORCRHubZGGTdunE6xR1PXYQoMDNTZ3PdRkZGRiIyMNMn7EdU0UrZUAVTP1a2rSrKIiEg/2QnTmDFjYG1tjT179qB+/frluiuNiCqOlOrgcXGqEanqUnaAiKiiyU6YsrOzkZWVhaefftoc8RCRGRibohMCiIkBli1j0kREpI/sRd/PPPMM8vPzzRELEZmRsdIDW7ZwITgRkSGyE6bFixcjLi4OGRkZuHHjBgoKCrS+iKhqi48HJk3S/xxrNRER6Sd7Sq5Pnz4AgN69e2sdN/WibyIyn9mzgbVrgUductVISADy81XtOEVHRFSOhOngwYPmiIOIKpC3N7BmDfDqq4aTppQUVZvqtp0KEZE5yE6YevbsaY44iKiCjR8P9O3LWk1ERFJISph++OEHtGrVCrVq1cIPP/xQZts2bdqYJDAiMj85tZoAJk1EZLkkJUzt2rVDXl4ePD090a5dOygUCr1FJbmGiah6klKrieuaiMiSSbpLLicnB0888YTm/8+fP4+cnBydr/Pnz5s1WCIyn9hYIDfX8B10APegIyLLJWmE6eH92bhXG1HNJWWKjuuaiMgSya7DREQ1X3y84QKXagkJQEQEcOlSxcRERFSZmDARkV7x8aqpt7K2i+QUHRFZCiZMRGSQlHVNrA5ORJaACRMRlcnYHnRqCQlMmoio5mLCRESSSJmi47omIqqpZCdMrq6ucHNz0/lyd3dHw4YN0bNnT3z44YfmiJWIKpnU0gO+vsAHH1RcXERE5iY7YZozZw5q1aqFfv36Yf78+Zg3bx769euHWrVq4bXXXkOzZs0wefJkrF271hzxElElkzJFp1Sq9qnjSBMR1RSy95I7evQo4uPjERERoXU8JSUF+/btw/bt29GmTRusWLECEydONFmgRFS1qGswGarXpFSq2qxeXXExERGZi+wRprS0NPTp00fneO/evZGWlgYACAsLY9VvIgtgbF1TSgrXNBFRzSA7YXJzc8Nnn32mc/yzzz6Dm5sbAKCwsBC1a9d+/OiIqMpTr2saNkz/86zVREQ1gewpuf/85z+YPHkyDh48iGeffRYKhQLffvst9u7di9X/G3tPT09Hz549TR4sEVVN3t7AsmXA1q36N+/ldipEVN3JTpgmTpyIZ555BitXrsSOHTsghMDTTz+NQ4cOISAgAAAQExNj8kCJqGrz9gYWL1YlRoao1zsxaSKi6kZ2wgQA3bp1Q7du3UwdCxFVc2+8oVrPFBenf6QJUCVN+fmqIpfe3hUbHxFReZWrcKVSqcRvv/2Go0eP4vDhw1pfRGTZpNZq4romIqpOZI8wHT9+HCNHjsSFCxcgHvknpEKhQGlpqcmCI6LqSV2rycPDcNkBrmsioupEdsIUERGBjh074vPPP0f9+vWhKGufBCKyaMZqNamf4xQdEVV1sqfkfv/9d7z11lto0aIF6tatizp16mh9ERE9TMoedJyiI6KqTnbC1LlzZ5w9e9YcsRBRDSVlXZN6im727IqLi4hIKtlTclOnTkVMTAzy8vLQunVr2NjYaD3fpk0bkwVHRDWHlHVNgOq50lIFunSpuNiIiIyRnTANHjwYADBu3DjNMYVCASEEF30TkVHx8UDdumWXHli0yAohIW3Qpg3g51ex8RER6SM7YcrJyTFHHJUiJycH48aNw7Vr12BlZYXjx4/DycmpssMiqvFiY4ERI1TJU0qKvhYK7NvnhyZNBBYvVtV3IiKqTLITJl9fX3PEUSnGjBmD+Ph4dO/eHTdv3oSdnV1lh0RkMaSVHlAgLk61YDw2tmLjIyJ6mKSEaffu3QgNDYWNjQ12795dZtuBAweaJDBzO3PmDGxsbNC9e3cA0GwcTEQVS0rpgbg41YgUyw4QUWWRlDANGjQIeXl58PT0xKBBgwy2M+UapsOHD2PJkiXIysrC1atXsXPnTp33Tk5OxpIlS3D16lW0bNkSSUlJmgTImN9//x3Ozs4YOHAgLl26hCFDhuDNN980SexEJI+xdU1CADExqg1+mTQRUWWQVFZAqVTC09NT8/+Gvky54LuwsBBt27bFypUr9T6fmpqK6dOnY9asWTh16hS6d++O0NBQ5Obmatr4+/ujVatWOl9XrlxBcXExjhw5gvfffx+ZmZlIT09Henq6yeInInm0Sw/oZk1btrBWExFVnnJtvlsRQkNDERoaavD55cuXY/z48ZgwYQIAICkpCWlpaVi1ahUSExMBAFlZWQZf7+3tjU6dOsHHxwcAEBYWhuzsbAQHB+ttX1RUhKKiIs3jgoICAEBxcTGKi4vldc4I9flMfd7qgv233P57eQHvvQeUlAAffGCj87yqVpPAzZulWLDAwC12NYAlfwbULP0asP/m6395z6kQj24IJ8GBAwdw4MABXL9+HUqlUuu59evXlyuQsigUCq0puQcPHsDR0RFbt25FeHi4pt20adOQnZ2NQ4cOGT1nSUkJOnXqhK+++gp16tTBCy+8gEmTJqF///5628+bNw/z58/XOb5582Y4OjqWs2dEpE9+vj0mTgyBEIbKgwuEhPyBYcN+g4fH/QqNjYiqt3v37mHkyJG4ffs2XFxcJL9O9gjT/PnzsWDBAnTs2LHS9pLLz89HaWkpvLy8tI57eXkhLy9P0jmsra3x1ltvoUePHhBCICQkxGCyBAAzZ85EdHS05nFBQQF8fHwQEhIi64JLUVxcjPT0dAQHB+sUBrUE7L9l9x9QXYNTp7KxalU7KJX6fseoyg6kpzdGYmIpoqNr1mgTPwO8Buy/+fqvniGSS3bCtHr1amzYsAGjRo0q1xua0qPJmrp4plTGpv0eZmdnp7fsgI2Njdk+zOY8d3XA/lt2/4ODcxET0wqLF9sYqNWkKjswY4Y17tz55267msTSPwMArwH7b/r+l/d8sveSe/DgAQICAsr1Zqbi4eEBKysrndGk69ev64w6EVH1pa7VNGtW2e0SErgHHRGZl+yEacKECdi8ebM5YpHM1tYW/v7+One1paenV3oyR0SmFx+vujuurAHkhAQgIgK4dKni4iIiyyFpSu7htTtKpRJr1qzB/v370aZNG52hreXLl5sksLt37+Ls2bOaxzk5OcjOzoabmxsaNWqE6OhojBo1Ch07dkTXrl2xZs0a5ObmIiIiwiTvT0RVi/HtVFTH16wBt1MhIpOTlDCdOnVK63G7du0AAKdPn9Y6bsoF4CdOnEBQUJDmsTppGz16NDZs2IDhw4fjxo0bWLBgAa5evYpWrVph7969NWrrFiLSJm07FVUBzNu3a+a6JiKqHJISpoMHD5o7Dh2BgYEwVvEgMjISkZGRFRQREVUVUrZTSUgA8vNVa5tYHZyIHpfsNUyPKigowK5du/DLL7+YIh4iIkmkrGtKSWF1cCIyDdkJ07BhwzTblfz999/o2LEjhg0bhtatW2P79u0mD5CIyBDt7VT0U0/R8S46InocshOmw4cPaza43blzJ4QQ+Ouvv7BixQrEc8EAEVUwOaUHli6tmJiIqOaRnTDdvn0bbm5uAIAvv/wSgwcPhqOjI/r164fff//d5AESEUkhZYouLo5lB4iofGQnTD4+PsjMzERhYSG+/PJLhISEAABu3boFe3t7kwdIRCSVsSk6IYCYGCZNRCSf7IRp+vTp+Ne//gVvb280aNAAgYGBAFRTda1btzZ1fEREshibotuyhQvBiUg+2XvJRUZG4tlnn8XFixcRHByMWrVUOdeTTz7JNUxEVGXEx6vKCugrcslaTUQkl+yECQA6duyIjh07ah3r16+fSQIiIjKV2bOBtWsBpVL/86zVRERSSd4aZeHChXByctLaJkUfU22NQkT0uLy9VVulvPqq4aSJ26kQkRSSt0YpLi7W/L8hptwahYjIFMaPB/r2LXsPOk7REZExsrdGqYxtUoiIHoeUPeiAf55j0kREj3rsrVGIiKoLKbWaEhKAiAiWHiAibbITpsLCQvznP/9BQEAAnnrqKTz55JNaX0REVZmU7VS4Bx0RPUr2XXITJkzAoUOHMGrUKNSvX5/rloio2pEyRcd1TUT0MNkJ0xdffIHPP/8c3bp1M0c8REQVRp0IGVvXxNIDRCR7Ss7V1VWzlxwRUXUnZV0Tp+iISHbCtHDhQsyZMwf37t0zRzxERBVOyrom9RTd7NkVFxcRVR2yp+SWLVuGc+fOwcvLC40bN4aNjY3W8ydPnjRZcEREFUVO6YG6dVVJFhFZDtkJ06BBg8wRBxFRlRAfr0qI4uJUo0r6xMUBI0ZwTRORJZGdMM2dO9cccRARVRmxsaqEyFB1cCGAmBhg2TImTUSWgoUriYj0UE/RzZql//ktW7gQnMiSSBphcnNzw2+//QYPDw+4urqWWXvp5s2bJguOiKiyxcerygoYGmlirSYiyyApYXrnnXdQu3ZtAEBSUpJZAyIiqmpmzwbWrgWUSv3Ps1YTUc0nKWH6/vvvMWTIENjZ2cHPzw8BAQGwtpa9/ImIqFry9gbWrAFefdVw0pSSomqzeDHwxhsVGx8RmZ+kNUzvvfce7t69CwAICgritBsRWZzx44ELF1irichSSRomaty4MVasWIGQkBAIIZCZmQlXV1e9bXv06GHSAImIqgo5tZoArmsiqkkkJUxLlixBREQEEhMToVAoEB4erredQqFAaWmpSQMkIqpqpNRq4romoppF0pTcoEGDkJeXh4KCAggh8Ouvv+LWrVs6X5yqIyJLIWU7Fe5BR1RzyFq57ezsjIMHD8LPz4+LvonI4kmZomPpAaKaQXbhyp49ezJZIiJ6SHy84QKXagkJQEQEcOlSxcRERKbFSt9ERCYQH6+aeiujri+n6IiqMSZMREQmImVdk3qKbunSiouLiB6fRSdM77zzDlq2bIlnnnkGUVFREIZudyEiksjYHnRqcXGcniOqTiQnTFZWVrh+/bo5Y6lQf/75J1auXImsrCz8+OOPyMrKwvHjxys7LCKqIYxN0QnBReBE1YnkhKkmjr6UlJTg/v37KC4uRnFxMTw9PSs7JCKqQYxN0aWkcCE4UXVRZafkDh8+jAEDBqBBgwZQKBTYtWuXTpvk5GT4+fnB3t4e/v7+OHLkiOTzP/HEE4iNjUWjRo3QoEED9OnTB02aNDFlF4iINFN0ZSVNXAhOVPXJqg+QlpaGOnXqlNlm4MCBjxWQWmFhIdq2bYuxY8di8ODBOs+npqZi+vTpSE5ORrdu3ZCSkoLQ0FD89NNPaNSoEQDA398fRUVFOq/dt28fHBwcsGfPHvzxxx9wcHBAaGgoDh8+zK1diMgsZs9Wbc6rb7CetZqIqj5ZCdPo0aPLfN6UW6OEhoYiNDTU4PPLly/H+PHjMWHCBABAUlIS0tLSsGrVKiQmJgIAsrKyDL5+69ateOqpp+Dm5gYA6NevH44fP24wYSoqKtJKvgoKCgBAM51nSurzmfq81QX7b9n9B2rmNfDyAhITFZgxwwqA/oVNCQkC164pERdXAqBm9V+umvgZkIP9N1//y3tOWQlTXl5elVjn8+DBA2RlZWHGjBlax0NCQnDs2DFJ5/Dx8cGxY8dw//592NjYICMjA6+++qrB9omJiZg/f77O8X379sHR0VFeByRKT083y3mrC/bfsvsP1Lxr8PTTwOjRTbBxY0voT5oUWLfOCuvW2WP06CYAalb/y6OmfQbkYv9N3/979+6V63WSEyZFWdXYKlh+fj5KS0vh5eWlddzLywt5eXmSztGlSxeEhYWhffv2qFWrFnr37l3mdOLMmTMRHR2teVxQUAAfHx+EhITAxcWlfB0xoLi4GOnp6QgODoaNjY1Jz10dsP+W3X+gZl+DsDBg7twSJCbWwtq1tWAocdq4sSW8vJohPr7q/O6tSDX5MyAF+2++/qtniOSSnDBVxbvkHk3ihBCyEruEhAQkGNoA6hF2dnaws7PTOW5jY2O2D7M5z10dsP+W3X+g5l4DPz/VeiZPT8N70AEKvP22DWxsFBa9rqmmfgakYv9N3//ynk/yXXKjR4+Gg4NDud7E1Dw8PGBlZaUzmnT9+nWdUScioqrK+HYqCu5BR1RFSE6YPvzwQ9SuXRuXL1/GihUrMGXKFEydOhXvvfceLl++bM4Yddja2sLf319nbjM9PR0BAQEVGgsR0eOQsp0KSw8QVT5Zi76Tk5MRHR2NBw8eoE6dOhBCoKCgAG+88QaWL1+OyMhIkwV29+5dnD17VvM4JycH2dnZcHNzQ6NGjRAdHY1Ro0ahY8eO6Nq1K9asWYPc3FxERESYLAYiooqgrtXk4WF4io6lB4gql+QRps8//xxRUVGYMmUKLl++jFu3buGvv/7C5cuXERkZiWnTpmHv3r0mC+zEiRNo37492rdvDwCIjo5G+/btMWfOHADA8OHDkZSUhAULFqBdu3Y4fPgw9u7dC19fX5PFQERUkeLj1XvQGV4zyik6osoheYTp7bffxowZMxD/yD9t6tevj+XLl8PR0RGLFy9GWFiYSQILDAw0utA8MjLSpKNaRESVLT4ecHYuxcyZhus1paQAa9eqFo6PH1+x8RFZKskjTKdOncKoUaMMPj9q1CicPHnSJEEREVmymBiBdev2YeJEw4WAlUrg1Vc50kRUUSQnTEqlssxb8WxsbKpk6QEiourIw+M+3n9f+b8pOv2USq5nIqookhOmli1b4r///a/B53ft2oWWLVuaJCgiIlIxVnogJUW1Tx0RmZfkhCkyMhKzZs1CcnIySkpKNMdLSkrw/vvvY/bs2Zg8ebJZgiQismTq0gPDhul/ngvBicxPVuHKyMhITJkyBe7u7ujQoQM6dOgAd3d3REVFYdKkSRgzZowZQyUislze3sCyZWWPNLFWE5H5SE6YAGDp0qU4duwYxowZg3r16qFevXoYO3Ysvv76a7zzzjvmipGIiKBKmhYvNvy8ulYTp+iITE9W4UpAtWltly5dzBELEREZ8cYbquKVZW2DmZAA5OerEidv74qLjagmk5ww5ebmSmrXqFGjcgdDRETGxccDdeuqRpMM3ZyckqKq07R4sSrJIqLHIzlhaty4MRR6Js+FEJrjCoVCa0E4ERGZR2wsMGKEKnlKSdHfhtupEJmO5ITp1KlTeo8LIfDpp59ixYoVcHZ2NllgRERUNil70AGcoiMyBcmLvtu2bavz9eeff2LChAlITk5GXFwczp8/b85YiYhID2O1mgDeRUf0uGTdJaeWlZWF4OBg9O/fH126dMHZs2cxb948jjAREVUSda2mSZMMt+FddETlJythOnv2LIYPH47OnTvjiSeewE8//YSVK1fC09PTXPEREZFE6im6srZTAVRTdEyaiOSRVem7ZcuWuH37Nk6cOIHNmzfjySefNGdsRERUDlKm6BISgKVLKy4moupO8qLv1atXw97eHtevX8e4ceMMtjt58qRJAiMiovKTchddXBzQsyfQqVPFxkZUHUlOmObOnWvOOIiIyMSM3UUnBNC5M2s1EUnBhImIqIZT12AylDSxVhORcZrUvSMAACAASURBVOW6S46IiKoXY+uaEhKAiAjg0qWKjYuoumDCRERkIWJjgW++MZw0sVYTkWFMmIiILEinTqo1S4awVhORfkyYiIgszBtvsFYTkVySEiY3Nzfk5+cDAMaNG4c7d+6YNSgiIjIvqbWauK6JSEVSwvTgwQMUFBQAADZu3Ij79++bNSgiIjI/KdupcF0TkYqksgJdu3bFoEGD4O/vDyEEoqKi4ODgoLft+vXrTRogERGZj7FaTQBLDxABEhOmTZs24Z133sG5c+egUChw+/ZtjjIREdUgZdVqUktIAPLzVWubvL0rJi6iqkJSwuTl5YVFixYBAPz8/PDRRx/B3d3drIEREVHFio8H6tZVjSYJob9NSgqwZg2rg5PlkX2XXE5ODpMlIqIaSsq6JpYeIEtUrrIChw4dwoABA/DUU0+hadOmGDhwII4cOWLq2IiIqBKo1zVJKT2wdGnFxERU2WQnTJs2bUKfPn3g6OiIqKgoTJkyBQ4ODujduzc2b95sjhiJiKgSSCk9EBfHsgNkGWQnTAkJCXj77beRmpqKqKgoTJs2DampqVi0aBEWLlxojhiJiKiSGJuiEwKIiWHSRDWf7ITp/PnzGDBggM7xgQMHIicnxyRBERFR1WFsim7LFtZqoppPdsLk4+ODAwcO6Bw/cOAAfHx8TBKUqYWHh8PV1RVDhgzReW7Pnj1o3rw5mjZtinXr1lVCdERE1UN8fNkjTVwITjWZpLICD4uJiUFUVBSys7MREBAAhUKBo0ePYsOGDXj33XfNEeNji4qKwrhx47Bx40at4yUlJYiOjsbBgwfh4uKCDh064MUXX4Sbm1slRUpEVLXNng2sXQsolfqfZ60mqqlkjzBNnjwZn376KX788UdMnz4d06ZNw+nTp5GamopJZd2HWomCgoJQu3ZtnePffvstWrZsiYYNG6J27doICwtDWlpaJURIRFQ9eHur6jDVKuOvB7dToZqoXGUFwsPDcfToUdy4cQM3btzA0aNH8cILL5QrgMOHD2PAgAFo0KABFAoFdu3apdMmOTkZfn5+sLe3h7+/v8lKGFy5cgUNGzbUPPb29sbly5dNcm4ioppq/HjgwgXWaiLLUq6EyZQKCwvRtm1brFy5Uu/zqampmD59OmbNmoVTp06he/fuCA0NRW5urqaNv78/WrVqpfN15cqVMt9b6Cllqyjr/lkiIgIgr1YTkyaqCWSvYTK10NBQhIaGGnx++fLlGD9+PCZMmAAASEpKQlpaGlatWoXExEQAQFZWVrneu2HDhlojSpcuXULnzp31ti0qKkJRUZHmcUFBAQCguLgYxcXF5Xp/Q9TnM/V5qwv237L7D/AaVKf+z50LODsr8OabVhBC/z84ExIErl1T4s03lZLXNVWna2AO7L/5+l/ecyqEvmGWSqJQKLBz504MGjQIAPDgwQM4Ojpi69atCA8P17SbNm0asrOzcejQIcnnzsjIwMqVK7Ft2zbNsZKSErRo0QIZGRmaRd/Hjx/Xu/XLvHnzMH/+fJ3jmzdvhqOjo5xuEhHVOPn59ti6tRnS0hoDMDRSLzB69BmEh5+rwMiItN27dw8jR47E7du34eLiIvl1lT7CVJb8/HyUlpbCy8tL67iXlxfy8vIkn6dv3744efIkCgsL4e3tjZ07d6JTp06wtrbGsmXLEBQUBKVSibi4OIP75M2cORPR0dGaxwUFBfDx8UFISIisCy5FcXEx0tPTERwcDBsbG5Oeuzpg/y27/wCvQXXt/yuvAHPmlGLRIivoT5oU2LixJerXfxoLFpT9b/Xqeg1Mhf03X//VM0RyyU6YMjIyEBgYWK43K69H1xUJIWStNSrrzreBAwdi4MCBRs9hZ2cHOzs7neM2NjZm+zCb89zVAftv2f0HeA2qY/8TEwErK9XaJf0UWLTIGrduSSs9UB2vgSmx/6bvf3nPJ3vR9/PPP48mTZogPj4eFy9eLNebSuXh4QErKyud0aTr16/rjDoREVHVIGUPOpYeoOpGdsJ05coVTJs2DTt27ICfnx/69u2LLVu24MGDByYPztbWFv7+/khPT9c6np6ejoCAAJO/HxERmYaxPeiAf0oPLF1acXERlZfshMnNzQ1RUVE4efIkTpw4gebNm+O1115D/fr1ERUVhe+//17W+e7evYvs7GxkZ2cDAHJycpCdna0pGxAdHY1169Zh/fr1+Pnnn/H6668jNzcXERERckMnIqIKJLX0QFwcN++lqu+x6jC1a9cOM2bMwGuvvYbCwkKsX78e/v7+6N69O86cOSPpHCdOnED79u3Rvn17AKoEqX379pgzZw4AYPjw4UhKSsKCBQvQrl07HD58GHv37oWvr+/jhE5ERBXE2BSdEKo2RFVZuRKm4uJibNu2DWFhYfD19UVaWhpWrlyJa9euIScnBz4+Phg6dKikcwUGBkIIofO1YcMGTZvIyEj88ccfKCoqQlbW/7d372FRlvn/wN8DcgYRRDk4ipZiGsoqmmAH0H7BUh7y0IriaTOVVQ4ukknZFzW8pMO6rpYuZl+tLdMOUO3mqrjLIRPbBPEAaGAkWhgLIigqh+H+/THfmZxmhpnBOcDwfl0X18U8zz3P8/k8z5Cf7vue+ynEY4891pmwiYjIQnQN0WVkALGx7Gmirsvggik+Ph6+vr6IjY1FQEAATp06hYKCAjz33HNwcXHBwIEDkZ6ejvPnz5siXiIi6qYUQ3QdFU2cCE5dlcHLCpSWlmL79u2YNWsW7O3tNbbx8/NDTk7OPQdHRETWZ906+QN8NS2brJgIfu2aBCEh5o+NSBuDe5hSU1PxzDPPqBVLbW1tyM/PBwD06tULYWFhxomQiIisilQKvPpqx23S022xY8doDtFRl2FwwTRp0iRcu3ZNbXtDQwMmTZpklKCIiMi6Pf+8rrWaJDhyZAjuv78Xh+ioSzC4YNK2ynZdXR1cXFyMEhQREVk//dZqkmDNGvkwHpEl6T2HaebMmQDkjylZvHixymNCZDIZzpw5w8UkiYjIIIqJ4F5eHT1O5Zd9XH6ALEXvgsnd3R2AvIfJzc0NTk5Oyn329vYICQnB0qVLjR8hERFZvbQ0oE8f+YRvTZPBAXnRVFur3zPoiIxN74Jpz549AIDBgwcjOTmZw29ERGRUyclAdLS8eMrIEADUp39kZMi/Yffqq/J5UETm0qlvybFYIiIiU1AM0a1dKwOguatJsfQA5zWROenVwzR27Fj861//goeHB8aMGaNx0rdCUVGR0YIjIqKeaeNGgYqKC/jkk+HQ1NMEcIiOzEuvgmn69OnKSd5PP/20SQMiIiICgPnzLyA4eChefLGX1nlNGRnA22/Lh+mWLDFvfNSz6FUwpaamavydiIjIlFavFpg/XzGvSXOb9nZg2TIgMpI9TWQ6nXr4LhERkbko5jW99JL2Nu3tXHKATEuvHiYPD48O5y3dTdMq4ERERPdK19IDGRny9ZxYOJEp6FUwbd261dRxEBER6aRYemD1auCjj9T3cyI4mYpeBdOiRYtMHQcREZFepFLgT38CPv5Ye08T12oiY9NrDlNjY6PK7x39EBERmZpUKi+ItOFaTWRses9hqq6uRv/+/dGnTx+N85kUD+WVyWRGD5KIiOjXnn8eaGjQ/Qw6DtGRMehVMP373/+Gp6cnACAnJ8ekAREREelLn2fQcYiOjEGvgiksLEzj70RERJam+gw6zW0UQ3QNDfwWHXWO3g/fvVt9fT3eeecdlJWVQSKRYMSIEfj973+v7IUiIiIyJ8VaTV5eHKIj0zB44cq8vDwMHjwY27ZtQ319Pa5du4Zt27ZhyJAhyMvLM0WMREREeklLA15/Heho6cCMDGDQIHk7In0ZXDCtXLkSc+bMQWVlJTIzM5GZmYnvv/8e0dHRWLlypSliJCIi0ltyMlBVBSxfrr0Nv0VHhjK4YLp48SJWr14NW1tb5TZbW1skJSXh4sWLRg2OiIioM/R5nAogH6Jj0UT6MLhgGjt2LMrKytS2l5WV4Te/+Y1RgiIiIjIGfYboNm0C3njDfDFR96TXpO8zZ84of09ISEBiYiIqKioQEhICADhx4gTeeustpKenmyZKIiKiTtLnW3Rr1gBhYcD48eaNjboPvQqm3/zmN5BIJBB3LXKxZs0atXbz5s3DnDlzjBcdERGREej6Fp0QwIQJXKuJtNOrYKqsrDR1HERERCanWINJW9HEtZpIG70KJn9/f1PHQUREZBa6VgfnWk2kSacWrgSA0tJSVFVVoaWlRWX7tGnT7jkoIiIiU0pOls9ZmjBBc9HEx6nQrxlcMH3//feYMWMGzp49qzKvSfFAXj58l4iIuoPx4+UFkYYpuQA4REeqDF5WIDExEUOGDMHPP/8MZ2dnlJSUID8/H+PGjUNubq4JQiQiIjKN55/nWk2kH4MLpoKCAmzcuBH9+vWDjY0NbGxs8Mgjj2Dz5s1ISEgwRYz3bMaMGfDw8MDs2bNVtl++fBnh4eEYOXIkRo8ejY8//thCERIRkaXou1ZTbCxw5Yr54qKuxeCCSSaTwdXVFQDg5eWFn376CYB8YviFCxeMG52RJCQk4L333lPb3qtXL2zduhWlpaU4evQo/vjHP6KpqckCERIRkSXp8zgVPoOuZzO4YAoMDFQuZDlhwgS89tpr+Prrr7Fx40bcd999Rg/QGCZNmgQ3Nze17b6+vsrVyfv37w9PT09cu3bN3OEREVEXoM/jVPgMup7L4IJp3bp1aG9vBwCkpaXh0qVLePTRR3Hw4EFs27bN4ADy8/MxdepU+Pn5QSKR4LPPPlNrs2PHDgwZMgSOjo4IDg7GV199ZfB5dDl58iTa29sxcOBAox+biIi6j7Q0/eY1cYiuZzH4W3KRkZHK3++77z6Ulpbi2rVr8PDwUH5TzhBNTU0ICgrC73//e8yaNUtt/4EDB7Bq1Srs2LEDDz/8MDIyMhAVFYXS0lIMGjQIABAcHIzm5ma19x45cgR+fn46Y6irq8PChQuxe/dug+MnIiLro2utJoBLD/Q0nV6HCZBPmpZIJJDew8peUVFRiIqK0rp/y5YtWLJkCZ577jkAwNatW3H48GHs3LkTmzdvBgAUFhZ2+vzNzc2YMWMGUlJSMHHixA7b3V2UNTY2AgBaW1vR2tra6fNrojiesY/bXTD/np0/wGvQ0/MHusY1SEwEZs0CNm+2wdtv2wBQ7xSQD9EJXLsmw8aNWiqrTugK+VuSKfPv7DENLpja2tqwYcMGbNu2DTdv3gQAuLq6Ij4+HqmpqbCzs+tUIJq0tLSgsLAQa9euVdkeERGB48eP3/PxhRBYvHgxJk+ejAULFnTYdvPmzdiwYYPa9iNHjsDZ2fmeY9EkOzvbJMftLph/z84f4DXo6fkDXeMaPPUUUF8/HJ98MhyaiiZAgvR0W1RXl2DGjItGPXdXyN+STJH/rVu3OvU+gwumuLg4ZGVl4bXXXkNoaCgA+VID69evR21tLf761792KhBNamtrIZPJ4O3trbLd29sbV69e1fs4kZGRKCoqQlNTE6RSKbKysjB+/Hh8/fXXOHDgAEaPHq2cO/W3v/0No0aNUjtGSkoKkpKSlK8bGxsxcOBAREREoHfv3p3MULPW1lZkZ2fjiSeeMGoB2l0w/56dP8Br0NPzB7reNXjySSA4WIYXX7SFEJqLpvfeexCpqcON8jiVrpa/uZkyf8UIkaEMLpg+/PBD7N+/X2UYbfTo0Rg0aBCio6ONWjAp/HpulBDCoPlShw8f1rj9kUceUU5g18XBwQEODg5q2+3s7Ez2YTblsbsD5t+z8wd4DXp6/kDXugZr1wLz58vnN2VkqO8XQoK1a+3wpz8Z7xl0XSl/SzBF/p09nsHfknN0dMTgwYPVtg8ePBj29vadCkIbLy8v2NraqvUm1dTUqPU6ERERmZqupQc++ohrNVkrgwumlStX4pVXXlGZAN3c3IxNmzYhLi7OqMHZ29sjODhYbQwzOzu7wwnaREREppSWpn2RS67VZJ30GpKbOXOmyuujR49CKpUiKCgIAHD69Gm0tLTg8ccfNziAmzdvoqKiQvm6srISxcXF8PT0xKBBg5CUlIQFCxZg3LhxCA0Nxa5du1BVVYXY2FiDz0VERGQs69YBb78NaJvZsWkTUFsrb2esITqyHL0KJnd3d5XXv14v6V4Wezx58iQmTZqkfK2YWL1o0SLs3bsXc+bMQV1dHTZu3Ijq6moEBgbi4MGD8Pf37/Q5iYiI7pVUKl+Hadky7UUT12qyHnoVTHv27DFZAOHh4RDaVgX7PytWrMCKFStMFgMREVFnLFkCREZqnwgO/DJE19Agb0fdU6cXrvzvf/+LCxcuQCKRICAgAP369TNmXERERN2CYiK4l5d8GE4bxT4WTd2TwZO+m5qa8Oyzz8LX1xePPfYYHn30Ufj5+WHJkiWdXgyKiIiou0tLk387rqNVb/gMuu7L4IIpKSkJeXl5+Pvf/47r16/j+vXr+Pzzz5GXl4fVq1ebIkYiIqJuITkZqKrS/g06QD50x6UHuh+Dh+Q+/fRTfPLJJwgPD1due/LJJ+Hk5ITf/e532LlzpzHjIyIi6lb0GaLjvKbux+Aeplu3bmlcNLJ///4ckiMiIvo/aWnaF7hU4BBd92FwwRQaGorU1FTcuXNHue327dvYsGGD8tlyREREpN+8Jg7RdQ8GD8lt3boVUVFRyoUrJRIJiouL4ejoqPWZbURERD1VcjIQHa3f0gMSibw9dT0GF0yjRo1CeXk53n//fZw/fx5CCERHRyMmJgZOTk6miJGIiKhb03fpgTVr5MUVH5fa9RhUMLW2tmLZsmV4+eWXsXTpUlPFREREZJXS0oA+feSFkaY1m4WQt9m+3fyxUccMmsNkZ2eHrKwsU8VCRERk9XQtPZCRAaxYYYPaWkfzBkYdMnjS94wZM/DZZ5+ZIhYiIqIeQTFEp61o2r3bFs89F4EtWzqYLU5mZfAcpqFDh+KVV17B8ePHERwcDBcXF5X9CQkJRguOiIjImq1bJ384r+ZHqkqwdq0tbtzgWk1dgcEF0+7du9GnTx8UFhaisLBQZZ9EImHBREREpCepFHj1VfmcJs0k2LQJqK2VF1dSqTmjo7sZXDBVVlaaIg4iIqIe6fnn5csJaJsIDsjnNe3aJS+unn/evPGRnMFzmO4mhIDQdneJiIhIL/o8g06xVtO6deaLi37RqYLpnXfeQWBgIBwdHeHo6IjAwEDs3r3b2LERERH1GIqJ4PLHqWjvjNi0iUWTJRg8JPfyyy/jz3/+M+Lj45WPQikoKMAf//hH/PDDD0jjzDQiIqJOS0sDXF1lSEmxBaD5W3Kc12R+BhdMO3fuxNtvv425c+cqt02bNg2jR49GfHw8CyYiIqJ7tHq1QL9+R/DNN/8Pb79tq7EN5zWZl8FDcjKZDOPGjVPbHhwcjLa2NqMERURE1NN5ed3BW2+1/98QnWac12Q+BhdM8+fPx86dO9W279q1CzExMUYJioiIiOTS0tBh0QTIh+hiY4ErV8wTU09k8JAcIJ/0feTIEYSEhAAATpw4gcuXL2PhwoVISkpSttuyZYtxoiQiIurBdD2DDuAQnakZXDCdO3cOY8eOBQBcvHgRANCvXz/069cP586dU7aTSLicOxERkbEkJwPR0fLiKSNDcxvFEF1DA1cHNzaDC6acnBxTxEFEREQ6KJYe8PKSD8Npo9jHosl47mnhSiIiIjK/tDTg9dflK4Rrw3lNxsWCiYiIqBvSZ3XwjAxg0CB5cUX3hgUTERFRN6W6OrhmXHrAOFgwERERdXP6Lj3wxhvmiccasWAiIiKyAvrMa1qzBvj2W/PFZE1YMBEREVkJXfOahAAmTOCcps5gwURERGRFdM1r4pymzmHBREREZIV0DdFx2QHD9IiCacaMGfDw8MDs2bM17r916xb8/f2RnJxs5siIiIhMJzkZ+OYb7UUTlx3QX48omBISEvDee+9p3b9p0yZMmDDBjBERERGZx/jx8ufLacMhOv30iIJp0qRJcHNz07ivvLwc58+fx5NPPmnmqIiIiMzj+ef1W3YgIQHIyeEwnSYWL5jy8/MxdepU+Pn5QSKR4LPPPlNrs2PHDgwZMgSOjo4IDg7GV199ZbTzJycnY/PmzUY7HhERUVekz7ID27cDkydzmE4TixdMTU1NCAoKwptvvqlx/4EDB7Bq1Sq89NJLOHXqFB599FFERUWhqqpK2SY4OBiBgYFqPz/99FOH5/78888REBCAgIAAo+ZERETUFenzOBWAw3Sa9LJ0AFFRUYiKitK6f8uWLViyZAmee+45AMDWrVtx+PBh7Ny5U9kzVFhY2KlznzhxAvv378fHH3+MmzdvorW1Fb1798b//M//qLVtbm5Gc3Oz8nVjYyMAoLW1Fa2trZ06vzaK4xn7uN0F8+/Z+QO8Bj09f4DXwJT5e3vLe5I8PCRIT7cFoL3LadMmgZ9/bseLL7ZDKjV6KFqZMv/OHlMihBBGjqXTJBIJsrKy8PTTTwMAWlpa4OzsjI8//hgzZsxQtktMTERxcTHy8vL0PnZubi7efPNNfPLJJxr37927F+fOncMbWtaNX79+PTZs2KC2fd++fXB2dtY7DiIioq7i/feH45NPhqOjoklOYNGiEsyYcdEcYZnUrVu3MG/ePDQ0NKB37956v8/iPUwdqa2thUwmg7e3t8p2b29vXL16Ve/jREZGoqioCE1NTZBKpcjKysL48eMNiiUlJQVJSUnK142NjRg4cCAiIiIMuuD6aG1tRXZ2Np544gnY2dkZ9djdAfPv2fkDvAY9PX+A18Bc+T/5JBAcLMNLL9mivV0CQEBz8STBu+8+CF/fB7Bxo+n7WUyZv2KEyFBdumBSkPxqhpoQQm1bRw4fPqyzzeLFizvc7+DgAAcHB7XtdnZ2Jvswm/LY3QHz79n5A7wGPT1/gNfAHPmvXQvMnw9UVACZmRJs366tpQTp6b1gayufQG4Opsi/s8fr0gWTl5cXbG1t1XqTampq1HqdiIiIqHOkUvlPeLj8G3Jr1sgnfmuyaRNQWyufEG7OeU2WZvFvyXXE3t4ewcHByM7OVtmenZ2NiRMnWigqIiIi66XPN+l64grhFu9hunnzJioqKpSvKysrUVxcDE9PTwwaNAhJSUlYsGABxo0bh9DQUOzatQtVVVWIjY21YNRERETWS/EAXy8veY+SJoqlBy5fBmbMAIYNs+4eJ4sXTCdPnsSkSZOUrxUTqxctWoS9e/dizpw5qKurw8aNG1FdXY3AwEAcPHgQ/v7+lgqZiIioR1DMVdJWNAHyJQq2b5cviPnqq/JVxa2RxQum8PBw6FrZYMWKFVixYoWZIiIiIiKFtDSgT5+O5zUBv/Q4nT4NpKdbX29Tl57DRERERJan7wrhAPDBB8DAgfKeJmt6Jh0LJiIiItJJMa9J10N8Fd54Q144LV9uHYUTCyYiIiLSm+IhvjZ6VhC7dllHjxMLJiIiIjJIcjJw6RKQkwPEx+v3nu7e48SCiYiIiAymWOhy2zZ5j5O+D+BQ9Dh1tzWcWDARERHRPVFMCv/oI/ljVvSxZo287c6d8vd19V4niy8rQERERN2fVAo884z8JyhI9zIEgPwbdR988Mvr5cvl73V3l+D2bUfTBmwgFkxERERkVMnJQHQ0UFAAfPEF8P77+r0vI0PxWy8AEaitleGFF0wUpIE4JEdERERGp+hx+tvfOjtfSYK1a23xxhvGjqxzWDARERGRSSUny585Fxur/+RwOQleeKFrzG9iwUREREQmJ5XKJ3hXVckLKH0Lp/Z2oKLCtLHpgwUTERERmY1UKh+iU3yrbufOjnuebG2BoUPNG6MmnPRNREREZqeY46Tw0ku/TBLft0+gvV0CW1uBjAxJl3iQL3uYiIiIyOLuniReUdGGV145hvLyNixZYunI5FgwERERUZcilQKjRtV1iZ4lBRZMRERERDqwYCIiIiLSgQUTERERkQ4smIiIiIh0YMFEREREpAMLJiIiIiIdWDARERER6cCCiYiIiEgHFkxEREREOrBgIiIiItKBBRMRERGRDr0sHUB3JYQAADQ2Nhr92K2trbh16xYaGxthZ2dn9ON3dcy/Z+cP8Br09PwBXgPmb7r8Ff9uK/4d1xcLpk66ceMGAGDgwIEWjoSIiIgMdePGDbi7u+vdXiIMLbEIANDe3o6ffvoJbm5ukEgkRj12Y2MjBg4ciMuXL6N3795GPXZ3wPx7dv4Ar0FPzx/gNWD+pstfCIEbN27Az88PNjb6z0xiD1Mn2djYQCqVmvQcvXv37pF/KArMv2fnD/Aa9PT8AV4D5m+a/A3pWVLgpG8iIiIiHVgwEREREelgu379+vWWDoLU2draIjw8HL169cxRU+bfs/MHeA16ev4ArwHz71r5c9I3ERERkQ4ckiMiIiLSgQUTERERkQ4smIiIiIh0YMFEREREpAMLpi5mx44dGDJkCBwdHREcHIyvvvrK0iGZxPr16yGRSFR+fHx8lPuFEFi/fj38/Pzg5OSE8PBwlJSUWDDie5efn4+pU6fCz88PEokEn332mcp+fXKur6/HggUL4O7uDnd3dyxYsADXr183Zxqdpiv/xYsXq30mQkJCVNo0NzcjPj4eXl5ecHFxwbRp03DlyhVzptFpmzdvxvjx4+Hm5ob+/fvj6aefxoULF1Ta6JNfVVUVpk6dChcXF3h5eSEhIQEtLS3mTKVT9Mk/PDxc7TMQHR2t0qY7/w3s3LkTo0ePVi7GGBoain/+85/K/dZ8/wHd+Xf1+8+CqQs5cOAAVq1ahZdeegmnTp3Co48+iqioKFRVVVk6NJN48MEHUV1drfw5e/asct9rr72GLVu24M0338S3334LHx8fPPHEE8pn+HVHTU1NCAoKwptvvqlxvz45z5s3D8XFxTh06BAOHTqE4uJiLFiwwFwp3BNd+QPAb3/7W5XPxMGDFiSTQQAAEFpJREFUB1X2r1q1CllZWdi/fz+OHTuGmzdvYsqUKZDJZKYO/57l5eVh5cqVOHHiBLKzs9HW1oaIiAg0NTUp2+jKTyaT4amnnkJTUxOOHTuG/fv349NPP8Xq1astlZbe9MkfAJYuXaryGcjIyFDZ353/BqRSKdLT03Hy5EmcPHkSkydPxvTp05X/Y2TN9x/QnT/Qxe+/oC7joYceErGxsSrbHnjgAbF27VoLRWQ6qampIigoSOO+9vZ24ePjI9LT05Xb7ty5I9zd3cVf//pXc4VoUgBEVlaW8rU+OZeWlgoA4sSJE8o2BQUFAoA4f/68+YI3gl/nL4QQixYtEtOnT9f6nuvXrws7Ozuxf/9+5bYff/xR2NjYiEOHDpksVlOpqakRAEReXp4QQr/8Dh48KGxsbMSPP/6obPPhhx8KBwcH0dDQYN4E7tGv8xdCiLCwMJGYmKj1Pdb0N6Dg4eEhdu/e3ePuv4IifyG6/v1nD1MX0dLSgsLCQkRERKhsj4iIwPHjxy0UlWmVl5fDz88PQ4YMQXR0NL7//nsAQGVlJa5evapyLRwcHBAWFma110KfnAsKCuDu7o4JEyYo24SEhMDd3d1qrktubi769++PgIAALF26FDU1Ncp9hYWFaG1tVblGfn5+CAwM7Jb5NzQ0AAA8PT0B6JdfQUEBAgMD4efnp2wTGRmJ5uZmFBYWmjH6e/fr/BU++OADeHl54cEHH0RycrJKD6s1/Q3IZDLs378fTU1NCA0N7XH3/9f5K3Tl+981ls8k1NbWQiaTwdvbW2W7t7c3rl69aqGoTGfChAl47733EBAQgJ9//hlpaWmYOHEiSkpKlPlquhaXLl2yRLgmp0/OV69eRf/+/dXe279/f6v4jERFReGZZ56Bv78/Kisr8fLLL2Py5MkoLCyEg4MDrl69Cnt7e3h4eKi8rzv+jQghkJSUhEceeQSBgYEAoFd+V69eVfuMeHh4wN7evltdA035A0BMTAyGDBkCHx8fnDt3DikpKTh9+jSys7MBWMffwNmzZxEaGoo7d+7A1dUVWVlZGDlyJIqLi3vE/deWP9D17z8Lpi5GIpGovBZCqG2zBlFRUcrfR40ahdDQUNx///149913lRN9e8q1uJuunDXlby3XZc6cOcrfAwMDMW7cOPj7++PLL7/EzJkztb6vO+YfFxeHM2fO4NixYzrbWuNnQFv+S5cuVf4eGBiIYcOGYdy4cSgqKsLYsWMBdP/8hw8fjuLiYly/fh2ffvopFi1ahLy8PK3tre3+a8t/5MiRXf7+c0iui/Dy8oKtra1alVxTU6P2fxTWyMXFBaNGjUJ5ebny23I96Vrok7OPjw9+/vlntff+97//tcrr4uvrC39/f5SXlwOQ59/S0oL6+nqVdt3tcxEfH48vvvgCOTk5kEqlyu365Ofj46P2Gamvr0dra2u3uQba8tdk7NixsLOzU/kMdPe/AXt7ewwdOhTjxo3D5s2bERQUhL/85S895v5ry1+Trnb/WTB1Efb29ggODlZ2PSpkZ2dj4sSJForKfJqbm1FWVgZfX19ll+zd16KlpQV5eXlWey30yTk0NBQNDQ34z3/+o2zzzTffoKGhwSqvS11dHS5fvgxfX18AQHBwMOzs7FSuUXV1Nc6dO9ct8hdCIC4uDpmZmfj3v/+NIUOGqOzXJ7/Q0FCcO3cO1dXVyjZHjhyBg4MDgoODzZNIJ+nKX5OSkhK0trYqPwPW+DcghEBzc7PV339tFPlr0uXuv8mnlZPe9u/fL+zs7MQ777wjSktLxapVq4SLi4v44YcfLB2a0a1evVrk5uaK77//Xpw4cUJMmTJFuLm5KXNNT08X7u7uIjMzU5w9e1bMnTtX+Pr6isbGRgtH3nk3btwQp06dEqdOnRIAxJYtW8SpU6fEpUuXhBD65fzb3/5WjB49WhQUFIiCggIxatQoMWXKFEulZJCO8r9x44ZYvXq1OH78uKisrBQ5OTkiNDRUDBgwQCX/2NhYIZVKxdGjR0VRUZGYPHmyCAoKEm1tbRbMTD9/+MMfhLu7u8jNzRXV1dXKn1u3binb6Mqvra1NBAYGiscff1wUFRWJo0ePCqlUKuLi4iyVlt505V9RUSE2bNggvv32W1FZWSm+/PJL8cADD4gxY8ao3N/u/DeQkpIi8vPzRWVlpThz5ox48cUXhY2NjThy5IgQwrrvvxAd598d7j8Lpi7mrbfeEv7+/sLe3l6MHTtW5Su31mTOnDnC19dX2NnZCT8/PzFz5kxRUlKi3N/e3i5SU1OFj4+PcHBwEI899pg4e/asBSO+dzk5OQKA2s+iRYuEEPrlXFdXJ2JiYoSbm5twc3MTMTExor6+3gLZGK6j/G/duiUiIiJEv379hJ2dnRg0aJBYtGiRqKqqUjnG7du3RVxcnPD09BROTk5iypQpam26Kk25AxB79uxRttEnv0uXLomnnnpKODk5CU9PTxEXFyfu3Llj5mwMpyv/qqoq8dhjjwlPT09hb28v7r//fpGQkCDq6upUjtOd/waeffZZ5X/f+/XrJx5//HFlsSSEdd9/ITrOvzvcf4kQQpi+H4uIiIio++IcJiIiIiIdWDARERER6cCCiYiIiEgHFkxEREREOrBgIiIiItKBBRMRERGRDiyYiIiIiHRgwUREXUJ4eDhWrVpl6TCUhBBYtmwZPD09IZFIUFxcbOmQiMiCelk6ACKirujQoUPYu3cvcnNzcd9998HLy8vSIRGRBbFgIiKrJZPJIJFIYGNjeGf6xYsX4evr220f6kpExsUhOSJSCg8PR0JCAtasWQNPT0/4+Phg/fr1yv0//PCD2vDU9evXIZFIkJubCwDIzc2FRCLB4cOHMWbMGDg5OWHy5MmoqanBP//5T4wYMQK9e/fG3LlzcevWLZXzt7W1IS4uDn369EHfvn2xbt063P30ppaWFqxZswYDBgyAi4sLJkyYoDwvAOzduxd9+vTBP/7xD4wcORIODg64dOmSxlzz8vLw0EMPwcHBAb6+vli7di3a2toAAIsXL0Z8fDyqqqogkUgwePBgjce4+3zDhw+Hs7MzZs+ejaamJrz77rsYPHgwPDw8EB8fD5lMpnxffX09Fi5cCA8PDzg7OyMqKgrl5eUAgIaGBjg5OeHQoUMq58rMzISLiwtu3rwJAPjxxx8xZ84ceHh4oG/fvpg+fTp++OEHZfvc3Fw89NBDcHFxQZ8+ffDwww9rvRaK+5qZmYlJkybB2dkZQUFBKCgo0NieqEcyyxPriKhbCAsLE7179xbr168X3333nXj33XeFRCJRPiCzsrJSABCnTp1Svqe+vl4AEDk5OUKIXx6yGxISIo4dOyaKiorE0KFDRVhYmIiIiBBFRUUiPz9f9O3bV6Snp6uc29XVVSQmJorz58+L999/Xzg7O4tdu3Yp28ybN09MnDhR5Ofni4qKCvH6668LBwcH8d133wkhhNizZ4+ws7MTEydOFF9//bU4f/68uHnzplqeV65cEc7OzmLFihWirKxMZGVlCS8vL5GamiqEEOL69eti48aNQiqViurqalFTU6PxeinO98QTT4iioiKRl5cn+vbtKyIiIsTvfvc7UVJSIv7+978Le3t7sX//fuX7pk2bJkaMGCHy8/NFcXGxiIyMFEOHDhUtLS1CCCFmzZol5s+fr3KuWbNmiblz5wohhGhqahLDhg0Tzz77rDhz5owoLS0V8+bNE8OHDxfNzc2itbVVuLu7i+TkZFFRUSFKS0vF3r17xaVLlzTmobivDzzwgPjHP/4hLly4IGbPni38/f1Fa2urxvcQ9TQsmIhIKSwsTDzyyCMq28aPHy9eeOEFIYRhBdPRo0eVbTZv3iwAiIsXLyq3LV++XERGRqqce8SIEaK9vV257YUXXhAjRowQQghRUVEhJBKJ+PHHH1Xie/zxx0VKSooQQl7AABDFxcUd5vniiy+K4cOHq5zrrbfeEq6urkImkwkhhPjzn/8s/P39OzyO4nwVFRUqeTk7O4sbN24ot0VGRorly5cLIYT47rvvBADx9ddfK/fX1tYKJycn8dFHHwkhhMjMzBSurq6iqalJCCFEQ0ODcHR0FF9++aUQQoh33nlHLf7m5mbh5OQkDh8+LOrq6gQAkZub22H8Cor7unv3buW2kpISAUCUlZXpdQwia8chOSJSMXr0aJXXvr6+qKmpuafjeHt7w9nZGffdd5/Ktl8fNyQkBBKJRPk6NDQU5eXlkMlkKCoqghACAQEBcHV1Vf7k5eXh4sWLyvfY29ur5fBrZWVlCA0NVTnXww8/jJs3b+LKlSsG5ens7Iz7779fJa/BgwfD1dVVY65lZWXo1asXJkyYoNzft29fDB8+HGVlZQCAp556Cr169cIXX3wBAPj000/h5uaGiIgIAEBhYSEqKirg5uamvA6enp64c+cOLl68CE9PTyxevBiRkZGYOnUq/vKXv6C6ulpnLndfN19fXwDo1L0nskac9E1EKuzs7FReSyQStLe3A4By8rS4a15Ra2urzuNIJJIOj6uP9vZ22NraorCwELa2tir77i5OnJycVAohTYQQam0UOel6769pyqujXO++dtpisre3x+zZs7Fv3z5ER0dj3759mDNnDnr1kv8nu729HcHBwfjggw/UjtOvXz8AwJ49e5CQkIBDhw7hwIEDWLduHbKzsxESEqJXLopYDLlHRNaMPUxEpDfFP8Z391YYc32iEydOqL0eNmwYbG1tMWbMGMhkMtTU1GDo0KEqPz4+PgadZ+TIkTh+/LhK8XL8+HG4ublhwIABRsmlo3O3tbXhm2++UW6rq6vDd999hxEjRii3xcTE4NChQygpKUFOTg5iYmKU+8aOHYvy8nL0799f7Vq4u7sr240ZMwYpKSk4fvw4AgMDsW/fPpPmRmTNWDARkd6cnJwQEhKC9PR0lJaWIj8/H+vWrTPa8S9fvoykpCRcuHABH374IbZv347ExEQAQEBAAGJiYrBw4UJkZmaisrIS3377LV599VUcPHjQoPOsWLECly9fRnx8PM6fP4/PP/8cqampSEpK6tQSBIYYNmwYpk+fjqVLl+LYsWM4ffo05s+fjwEDBmD69OnKdmFhYfD29kZMTAwGDx6s0jMUExMDLy8vTJ8+HV999RUqKyuRl5eHxMREXLlyBZWVlUhJSUFBQQEuXbqEI0eOqBVkRGQYFkxEZJD//d//RWtrK8aNG4fExESkpaUZ7dgLFy7E7du38dBDD2HlypWIj4/HsmXLlPv37NmDhQsXYvXq1Rg+fDimTZuGb775BgMHDjToPAMGDMDBgwfxn//8B0FBQYiNjcWSJUuMWvx1ZM+ePQgODsaUKVMQGhoKIQQOHjyoNiQ2d+5cnD59WqV3CZDPm8rPz8egQYMwc+ZMjBgxAs8++yxu376N3r17w9nZGefPn8esWbMQEBCAZcuWIS4uDsuXLzdLfkTWSCK0DagTEREREQD2MBERERHpxIKJiIiISAcWTEREREQ6sGAiIiIi0oEFExEREZEOLJiIiIiIdGDBRERERKQDCyYiIiIiHVgwEREREenAgomIiIhIBxZMRERERDqwYCIiIiLS4f8DMnhjP0+828MAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'chance of long chutes & ladders game')" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(0:350, [1-((T*M)^n * e₁)[end] for n = 0:350], \"b.-\")\n", - "xlabel(\"number of moves n\")\n", - "ylabel(\"probability of NOT finishing in n moves\")\n", - "grid()\n", - "title(\"chance of long chutes & ladders game\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fortunately, the probability of a long game decreases exponentially fast with $n$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Absorbing Markov matrix\n", - "\n", - "It turns out that the matrix $M$ (and $TM$) for this problem is something called an [absorbing Markov matrix](https://en.wikipedia.org/wiki/Absorbing_Markov_chain).\n", - "\n", - "It is \"absorbing\" because the final position 101 (spot 100 on the board) cannot be escaped, and can be reached from every other position. This has two consequences:\n", - "\n", - "* Every initial vector eventually reaches this \"absorbing\" steady state, even though it is not a positive Markov matrix.\n", - "\n", - "* There are nice analytical formulas for the expected number of moves, the variance, etcetera. We don't actually have to sum up $n [p(n) - p(n-1)]$ as above.\n", - "\n", - "Deriving these nice formulas is not too hard, but is a bit outside the scope of 18.06. But, just for fun, here is the \"clever way\" to compute the expected number of moves to finish *Chutes & Ladders*:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "27.130202016993298" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = (T*M)'[1:100,1:100] # the 100x100 upper-left corner of (TM)ᵀ\n", - "N = inv(I - A) # N[i,j] = expected number of visits to i starting at j\n", - "(N * ones(100))[1] # expected number of moves to finish starting at 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This matches our brute-force calculation from above!" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/lectures/Circulant-Matrices.ipynb b/lectures/Circulant-Matrices.ipynb deleted file mode 100644 index 72d3c50a..00000000 --- a/lectures/Circulant-Matrices.ipynb +++ /dev/null @@ -1,870 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - " \n", - " \n", - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mInteract.jl: using new nbwidgetsextension protocol\n", - "\u001b[39m" - ] - } - ], - "source": [ - "using PyPlot, Interact" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Circulant Matrices\n", - "\n", - "In this lecture, I want to introduce you to a new type of matrix: **circulant** matrices. Like Hermitian matrices, they have orthonormal eigenvectors, but unlike Hermitian matrices we know *exactly* what their eigenvectors are! Moreover, their eigenvectors are closely related to the famous Fourier transform and Fourier series. Even more importantly, it turns out that circulant matrices and the eigenvectors lend themselves to **incredibly efficient** algorithms called FFTs, that play a central role in much of computational science and engineering.\n", - "\n", - "![a ring of springs](https://github.com/stevengj/1806-spring17/raw/master/lectures/cyclic-springs.png) \n", - "\n", - "Consider a system of $n$ identical masses $m$ connected by springs $k$, sliding around a *circle* without friction. Similar to lecture 26, the vector $\\vec{s}$ of displacements satifies $m\\frac{d^2\\vec{s}}{dt^2} = -kA\\vec{s}$, where $A$ is the $n \\times n$ matrix:\n", - "\n", - "$$\n", - "A = \\begin{pmatrix} 2 & -1 & & & & & -1 \\\\\n", - " -1 & 2 &-1& & & & \\\\\n", - " &-1 &2&-1& & & \\\\\n", - " & &\\ddots&\\ddots&\\ddots& & \\\\ \n", - " & & &-1 & 2 &-1 & \\\\\n", - " & & & & -1 &2 & -1 \\\\\n", - " -1 & & & & &-1 &2\n", - " \\end{pmatrix}\n", - "$$\n", - "\n", - "(This matrix is real-symmetric and, less obviously, positive semidefinite. So, it should have orthogonal eigenvectors and real eigenvalues $\\lambda \\ge 0$.)\n", - "\n", - "For example, if $n = 7$:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Int64,2}:\n", - " 2 -1 0 0 0 0 -1\n", - " -1 2 -1 0 0 0 0\n", - " 0 -1 2 -1 0 0 0\n", - " 0 0 -1 2 -1 0 0\n", - " 0 0 0 -1 2 -1 0\n", - " 0 0 0 0 -1 2 -1\n", - " -1 0 0 0 0 -1 2" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ 2 -1 0 0 0 0 -1\n", - " -1 2 -1 0 0 0 0\n", - " 0 -1 2 -1 0 0 0\n", - " 0 0 -1 2 -1 0 0\n", - " 0 0 0 -1 2 -1 0\n", - " 0 0 0 0 -1 2 -1\n", - " -1 0 0 0 0 -1 2]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This matrix has a very special pattern: *every row is the same as the previous row, just shifted to the right by 1* (wrapping around \"cyclically\" at the edges). That is, each row is a [circular shift](https://en.wikipedia.org/wiki/Circular_shift) of the first row.\n", - "\n", - "This is called a [circulant matrix](https://en.wikipedia.org/wiki/Circulant_matrix). A $4\\times 4$ circulant matrix looks like:\n", - "\n", - "$$\n", - "C = \\begin{pmatrix}\n", - "c_0 & c_1 & c_2 & c_3 \\\\\n", - "c_3 & c_0 & c_1 & c_2 \\\\\n", - "c_2 & c_3 & c_0 & c_1 \\\\\n", - "c_1 & c_2 & c_3 & c_0\n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "The general form of an $n \\times n$ circulant matrix $C$ is:\n", - "\n", - "$$\n", - "C = \\begin{pmatrix}\n", - "c_0 & c_1 & c_2 & \\cdots & c_{n-1} \\\\\n", - "c_{n-1} & c_0 & c_1 & c_2 & \\cdots \\\\\n", - "c_{n-2} & c_{n-1} & c_0 & \\cdots \\\\\n", - "\\ddots & \\ddots & \\ddots & \\ddots & \\ddots \\\\\n", - "c_1 & c_2 & \\cdots & c_{n-1} & c_0 \n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "When working with circulant matrix, it is convenient to number entries from $0$ to $n-1$ rather than from $1$ to $n$!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Multiplying by circulant matrices: Convolutions\n", - "\n", - "Suppose we have an $n \\times n$ circulant matrix $C$ that we want to multiply by a vector $x = (x_0, x_1, \\ldots, x_n)$. It turns out that the result is a very special kind of operation:\n", - "\n", - "$$\n", - "y = Cx = \\begin{pmatrix}\n", - "c_0 & c_1 & c_2 & \\cdots & c_{n-1} \\\\\n", - "c_{n-1} & c_0 & c_1 & c_2 & \\cdots \\\\\n", - "c_{n-2} & c_{n-1} & c_0 & \\cdots \\\\\n", - "\\ddots & \\ddots & \\ddots & \\ddots & \\ddots \\\\\n", - "c_1 & c_2 & \\cdots & c_{n-1} & c_0 \n", - "\\end{pmatrix} \\begin{pmatrix} x_0 \\\\ x_1 \\\\ \\vdots \\\\ x_{n-1} \\end{pmatrix}\n", - "$$\n", - "\n", - "Let's write down a formula for the entries of $y$:\n", - "\n", - "$$\n", - "y_0 = c_0 x_0 + c_1 x_1 + c_2 x_2 + \\cdots \\\\\n", - "y_1 = c_{n-1} x_0 + c_0 x_1 + c_1 x_2 + \\cdots \\\\\n", - "y_2 = c_{n-2} x_0 + c_{n-1} x_1 + c_0 x_2 + \\cdots\n", - "$$\n", - "\n", - "Can you see the pattern? This is one of those cases that is actually clearer if we write out the summation:\n", - "\n", - "$$\n", - "y_k = \\sum_{j=0}^{n-1} c_{j-k} x_j\n", - "$$\n", - "\n", - "There is a slight problem with this formula: the subscript $j-k$ can be $< 0$! No problem: we just *interpret the subscript periodically*, i.e. we let $c_{-1} = c_{n-1}$, $c_{-2} = c_{n-2}$, and so on. Equivalently, we define $c_{j\\pm n} = c_j$. (We could say that the subscripts are [modulo n](https://en.wikipedia.org/wiki/Modular_arithmetic).)\n", - "\n", - "Multiplying by a circulant matrix is equivalent to a very famous operation called a [circular convolution](https://en.wikipedia.org/wiki/Circular_convolution). Convolution operations, and hence circulant matrices, show up in lots of applications: **digital signal processing**, **image compression**, **physics/engineering simulations**, **number theory** and **cryptography**, and so on." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Eigenvectors of circulant matrices\n", - "\n", - "One amazing property of circulant matrices is that **the eigenvectors are always the same**. The eigen-*values* are different for each C, but since we know the eigenvectors they are easy to diagonalize.\n", - "\n", - "We can actually see one eigenvector right away. Let's call it $x^{(0)}$:\n", - "\n", - "$$\n", - "x^{(0)} = \\begin{pmatrix} 1 \\\\ 1 \\\\ 1 \\\\ \\vdots \\\\ 1 \\end{pmatrix}\n", - "$$\n", - "\n", - "This is an eigenvector because multiplying $C x^{(0)}$ **simply sums each row of C**. But since each row of C contains the same entries (just in a different order), the sum is the same:\n", - "\n", - "$$\n", - "C x^{(0)} = \\underbrace{(c_0 + c_1 + \\cdots + c_{n-1})}_{\\lambda_0} x^{(0)}\n", - "$$\n", - "\n", - "Thus, one of the eigenvalues $\\lambda_0$ of $C$ is simply the sum of the row entries.\n", - "\n", - "For our example matrix $A$ above, this sum is $-1 + 2 + -1 = 0$, so $A$ is a *singular* matrix with an eigenvalue zero." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Float64,1}:\n", - " -9.41142e-16\n", - " 0.75302 \n", - " 0.75302 \n", - " 2.44504 \n", - " 2.44504 \n", - " 3.80194 \n", - " 3.80194 " - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice the eigenvalue that is nearly zero (up to roundoff errors). \n", - "\n", - "**Is there also a simple formula for the other eigenvectors and eigenvalues?**\n", - "\n", - "(*This* matrix $A$ has special properties *beyond* being a circulant matrix. It is positive semidefinite — we actually already showed this in class, since $A=D^TD$ for a \"difference\" matrix $D$ — and the nonzero eigenvalues come in pairs — a consequence of the mirror symmetry of this problem. These properties are *not true* of *all* circulant matrices, however!) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Roots of unity\n", - "\n", - "The eigenvectors are simple to write down in terms of a very special value: a [primitive root of unity](https://en.wikipedia.org/wiki/Root_of_unity):\n", - "\n", - "$$\n", - "\\omega_n = e^{\\frac{2\\pi i}{n}}\n", - "$$\n", - "\n", - "The quantity $\\omega_n$ has the very special property that $\\omega_n^n = e^{2\\pi i} = 1 = \\omega_n^0$, but no smaller power equals 1. Therefore, $\\omega_n^{j+n} = \\omega_n^j \\omega_n^n = \\omega_n^j$: the **exponents of ωₙ are periodic**. (Just like the $c_j$!)\n", - "\n", - "For example, let's plot the powers of $\\omega_7$:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6234898018587336 + 0.7818314824680298im" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ω₇ = exp(2π*im / 7)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fd8d34d6-e95d-4a5d-ab0c-4ad2929f2a88", - "version_major": 2, - "version_minor": 0 - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [], - "text/plain": [ - "Interact.Slider{Int64}(1: \"input\" = 7 Int64 , \"\", 7, 1:20, \"horizontal\", true, \"d\", true)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAHFCAYAAAB2P2k0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3Xl8U1XeP/DPTZvuO0spWwstlAotZd8X6dAKyoCI4uiADi74KA8IOj7yjCgyP0SHGUEfBXVEHTc2QdARlY6sZbFAKVCKBUppSyktSzdaaNPk/v44JN3SJW2Sm+Xzfr3yIr25yT25LfnmnPs93yPJsiyDiIiI6lAp3QAiIiJbxABJRERkBAMkERGREQyQRERERjBAEhERGcEASUREZAQDJBERkREMkEREREYwQBIRERnBAEkO7fHHH4ckSY3eDh8+3OxrfP3111i9enWD7RcvXoQkSfj73/9uiaab1eXLl7F06VKkpqYqcvyNGzeib9++8PT0hCRJVm3Hnj17IEkS9uzZY9i2Y8cOLF261GptIPsksdQcObLMzExcvXq1wfYpU6bA3d0d2dnZcHFxafI17rvvPqSlpeHixYt1tl+8eBE9evTAypUr8eKLL5qz2WZ39OhRDBkyBJ9++ikef/xxqx776tWr6NKlC+655x688MILcHd3R0xMDLy8vKxy/NLSUqSnp+Ouu+6Cn58fAGDevHl4//33wY8/aoqr0g0gsqTw8HCEh4fX2bZ3715cu3YNr7zySrPB0dpu3boFDw8PSJKkdFPM5uzZs9BoNPjjH/+IcePGWf34fn5+GD58uNWPS/aPQ6zkdNatWwdJkjBnzpxm9x0/fjx++OEHZGdn1xmare/tt99Gjx494OPjgxEjRrRo6Pazzz6DJEnYuXMn5syZgw4dOsDLywuVlZUAgKSkJMTFxcHX1xdeXl4YOXIkfvjhhwavk5aWhqlTpyIwMBAeHh6IjY3Fv/71L8Pje/bswZAhQwAAf/rTnwzvQT/EeOHCBTz88MPo3Lkz3N3dERwcjLi4uBYNg3733XcYMWIEvLy84Ovri4kTJ+LQoUOGxx9//HGMHj0aADBz5kxIkoTx48c3+npLly41en7156p2Lz4sLAz33XcffvrpJwwcOBCenp7o06cPPvnkkzrPrT/E+vjjj+P9998HgDq/04sXLyIuLg59+vRp0LOUZRkRERG49957mz0n5EBkIidSXFwse3p6yr/73e9atP/p06flUaNGyZ06dZIPHTpkuMmyLGdlZckA5LCwMPmee+6Rt23bJm/btk2Ojo6WAwMD5eLi4iZf+9NPP5UByF26dJGffvpp+ccff5S/+eYbubq6Wt6zZ4+sVqvlQYMGyRs3bpS3bdsmx8fHy5IkyRs2bDC8xm+//Sb7+vrK4eHh8ueffy7/8MMP8h/+8AcZgPzWW2/JsizLJSUlhmO98sorhveQm5sry7IsR0ZGyhEREfIXX3wh7927V96yZYv8wgsvyLt3726y/V999ZUMQI6Pj5e3bdsmb9y4UR40aJDs5uYm79+/X5ZlWT5//rz8/vvvywDkN954Qz506JB8+vTpRl/ztddek419LOnbn5WVZdgWGhoqd+3aVb7rrrvkzz//XP7555/lBx98UAYg792717Df7t27ZQCG93P+/Hl5xowZMoA6v9Pbt2/L27dvlwHIiYmJdY7/ww8/yADkH374oclzQo6FAZKcytq1a2UA8vr161v8nHvvvVcODQ1tsF0fIKOjo+Xq6mrD9uTk5BYdQ/+hP3v27AaPDR8+XO7YsaNcVlZm2FZdXS3369dP7tq1q6zT6WRZluWHH35Ydnd3l3Nycuo8f9KkSbKXl5chSB85ckQGIH/66ad19rt27ZoMQF69enWTba1Pq9XKnTt3lqOjo2WtVmvYXlZWJnfs2FEeOXKkYZs+QG3evLnZ1zU1QHp4eMjZ2dmGbbdu3ZKDgoLkuXPnNjh+7YD/3HPPGT2OVquVe/bsKU+dOrXO9kmTJsnh4eGG807OgUOs5FTWrVuHdu3a4f7776+zXafTobq62nDTarUtfs177723zrXMmJgYAEB2dnaLnv/AAw/U+bm8vBy//vorZsyYAR8fH8N2FxcXzJo1C5cuXUJGRgYAYNeuXYiLi0O3bt3qvMbjjz+OioqKOsOdxgQFBSE8PBwrV67E22+/jePHj0On0zXb5oyMDFy+fBmzZs2CSlXzMeLj44MHHngAhw8fRkVFRbOv01axsbHo3r274WcPDw/07t27xee+PpVKhXnz5uHf//43cnJyAIhEr59++gnPPvusQ10bpuYxQJLTOHnyJI4ePYo//vGPcHd3r/PYsmXLoFarDbf6iT1NadeuXZ2f9a9969atFj0/JCSkzs9FRUWQZbnBdgDo3LkzAOD69euGf1uyX2MkScIvv/yChIQE/O1vf8PAgQPRoUMHzJ8/H2VlZY0+T/+6jR1bp9OhqKioyWObQ/1zD4jz39Jzb8ycOXPg6emJDz74AADw/vvvw9PTs0XXrMmxMIuVnMa6desAAE8++WSDx55++mncd999hp/rB1BLqt8rCQwMhEqlQn5+foN9L1++DABo3749ABEgWrJfU0JDQw3n5uzZs9i0aROWLl2KqqoqQ5CoTx+YGju2SqVCYGBgs8euz8PDAwBQWVlZ53dw7do1k1+rtfz9/fHYY4/h448/xosvvohPP/0UjzzyCAICAqzWBrIN7EGSU6isrMSXX36JoUOHol+/fg0e79y5MwYPHmy4RUdHGx5ra4/EVN7e3hg2bBi2bt1a57g6nQ5ffvklunbtit69ewMA4uLisGvXLkNA1Pv888/h5eVlmN7Q0l5t79698corryA6OhopKSmN7hcZGYkuXbrg66+/rpPxWV5eji1bthgyW00VFhYGQPT2a/v+++9Nfq2mNHc+5s+fj2vXrmHGjBkoLi7GvHnzzHp8sg/sQZJT2LZtG27cuGG099ic6OhobN26FWvXrsWgQYOgUqkwePBgC7SyxooVKzBx4kTcfffdePHFF+Hm5oY1a9YgLS0N69evN/Q6X3vtNfz73//G3XffjVdffRVBQUH46quv8MMPP+Bvf/sb/P39AYj5oJ6envjqq68QFRUFHx8fdO7cGdeuXcO8efPw4IMPolevXnBzc8OuXbtw8uRJvPzyy422T6VS4W9/+xseffRR3HfffZg7dy4qKyuxcuVKFBcX480332zV+548eTKCgoLwxBNPYNmyZXB1dcVnn32G3NzcVr1eY/RfgN566y1MmjQJLi4uiImJgZubGwDxReGee+7Bjz/+iNGjR6N///5mPT7ZCaWzhIisYeLEibK3t7dcWlpq8nNv3Lghz5gxQw4ICJAlSTJkP+qzWFeuXNngOQDk1157rcnX1WdmHjlyxOjj+/fvlydMmCB7e3vLnp6e8vDhw+Xvv/++wX6nTp2Sp0yZIvv7+8tubm5y//79G2SryrIsr1+/Xu7Tp4+sVqsN7SsoKJAff/xxuU+fPrK3t7fs4+Mjx8TEyKtWraqTmduYbdu2ycOGDZM9PDxkb29vOS4uTj5w4ECdfUzJYpVlkQU8cuRI2dvbW+7SpYv82muvyR9//LHRLNZ77723wfPHjRsnjxs3rsHxa2exVlZWyk8++aTcoUMHw++09mvLsix/9tlnMoA602rIubDUHBGREfps3IsXL0KtVivdHFIAh1iJiO6orKxESkoKkpOT8e233+Ltt99mcHRi7EESEd2hL0Dv5+eHRx55BO+9957N1esl62GAJCIiMoLTPIiIiIxggCQiIjKCAZKIiMgIZrE2Q6fT4fLly/D19WWhYiIiOyTLMsrKytC5c+c6xfWbwwDZjMuXLzdYKYGIiOxPbm4uunbt2uL9GSCb4evrC0CcWD8/P6seW6PRYOfOnYiPj+dcrBbiOTMdz5npeM5Mp+Q5Ky0tRbdu3Qyf5y3FANkM/bCqn5+fIgHSy8sLfn5+/E/YQjxnpuM5Mx3Pmels4ZyZepmMSTpERERGMEASEREZwQBJRERkBAMkERGREQyQRERERjBAEhERGcEASUREZAQDJBERkREMkEREREYwQBIRERnBAElERGQEAyQREZERDJBERERGMEASEREZwQBJRERkBAMkERGREQyQRERERjBAEhERGcEASWRHcnNzMX78eNx1112IiYnB5s2blW4SkcNyVboBRNRyrq6uWL16NWJjY1FYWIiBAwdi8uTJ8Pb2VrppRA6HAZLIjoSEhCAkJAQA0LFjRwQFBeHGjRsMkEQWwCFWIjt19OhR6HQ6dOvWTemmEDkk9iCJ7ND169cxe/ZsfPzxx0o3hchhsQdJZAPmzZuH0aNHG30sLCwMy5cvN/xcWVmJ+++/H4sXL8bIkSOt1UQip2NXAXLfvn2YMmUKOnfuDEmSsG3btmafs3fvXgwaNAgeHh7o2bMnPvjgAyu0lKjl0tPTsXbtWrz11ltGH4+KikJqaioAQJZlPP7445gwYQJmzZplzWYSOR27CpDl5eXo378/3nvvvRbtn5WVhcmTJ2PMmDE4fvw4/vd//xfz58/Hli1bLNxSopZbuXIlhgwZglGjRhl9PCgoCAUFBQCAAwcOYOPGjdi2bRtiY2MRGxuLU6dOWbO5RE7Drq5BTpo0CZMmTWrx/h988AG6d++O1atXAxDfxI8ePYq///3veOCBByzVTKIWq66uxpYtW7BkyRLDtrlz52Lo0KF44oknAABlZWWGLNXRo0dDp9Mp0lYiZ2NXAdJUhw4dQnx8fJ1tCQkJWLduHTQaDdRqdYPnVFZWorKy0vBzaWkpAECj0UCj0Vi2wfXoj2ft49ozuzhnWi2kpCQgPx8Z1dUoKytDVFQUNBoNdDodNm/ejLFjxxrew8mTJzFt2jSkpaXh0UcfNbzM2bNn8cUXX2Dq1Kltao5dnDMbw3NmOiXPWWuP6dAB8sqVKwgODq6zLTg4GNXV1bh27ZphPlltK1aswOuvv95g+86dO+Hl5WWxtjYlMTFRkePaM1s9ZyGHDiH644/hef06AODmne2XN2zADq0Wx44dQ1FREdLS0uDj44OzZ88iOzsbHTt2RGZmJpYtWwYAuHXrFp5++mlotVrs2LHDLG2z1XNmy3jOTKfEOauoqGjV8xw6QAKAJEl1fpZl2eh2vcWLF2PRokWGn0tLS9GtWzfEx8fDz8/Pcg01QqPRIDExERMnTjTa26WGbPmcSd9+C5e//Q248zcIAKEAJACpX32FP0VH4+XNmzFp0iTk5eUhJCQEr732Gu6++278+c9/rvNa69evR0JCAqZPn97mdtnyObNVPGemU/Kc6UcCTeXQAbJTp064cuVKnW2FhYVwdXVFu3btjD7H3d0d7u7uDbar1WrF/iMoeWx7ZXPnTKsFXnihTnAEgE4AlgN4E8DW//1f/L+1azF0+HBMnToVW7ZswZQpU7BmzZoG72Xr1q2YPXu2Wd+jzZ0zO8BzZjolzllrj+fQAXLEiBH4/vvv62zbuXMnBg8ezD9qsq79+4FLl4w+tPjODTod0Ls3EBODrKysRl+qtLQUBw4cwIYNGyzSVCIS7Gqax82bN5GammqYE5aVlYXU1FTk5OQAEMOjs2fPNuz/zDPPIDs7G4sWLcKZM2fwySefYN26dXjxxRcVaT85sfx8s+23fft2JCQkwMPDo42NIqKm2FWAPHr0KAYMGIABAwYAABYtWoQBAwbg1VdfBQDk5+cbgiUA9OjRAzt27MCePXsQGxuLv/71r3j33Xc5xYOsz0hCWGv327RpE2bOnNnGBhFRc+xqiHX8+PGGJBtjPvvsswbbxo0bh5SUFAu2iqgFxowBunYF8vIaXIcEAEiSeHzMmCZfpqSkBMnJySx2QWQFdtWDJLJbLi7AO++I+/UzqPU/r14t9muCv78/CgoK4ObmZoFGElFtDJBE1jJ9OvDNN0CXLnW3BweL7WaYskFE5mNXQ6xEdm/6dGDqVJHVmp4OlJQAw4cDd9+tdMuIqB4GSCJrc3EBxo8XgfE//wHKy4HqasCV/x2JbAmHWImU4uEBeHqK+0VFyraFiBpggCRSUmCg+JcBksjmMEASKSkoSPzLAElkcxggiZRUuwfZxBxfIrI+BkgiJfn6iqSd6mqgrEzp1hBRLQyQREpSqXgdkshGMUASKU0fIG/cULYdRFQHAySR0tiDJLJJDJBEStMHyIoKoLJS2bYQkQEDJJHS1GqRrANwmJVMcv/99yMwMBAzZsxQuikOiQGSyBZwmJVaYf78+fj888+VbobDYoAksgUsGECtcPfdd8NXP/pAZscASWQL9D3IkhJAq1W2LUQEgAGSyDZ4eQHu7oBOJ4IkESmOAZLIFkgSr0MSAGDevHkYPXq00cfCwsKwfPlyK7fIeXEBOiJbERgIXLkiMlnDw5VuDSkgPT0da9euxb59+4w+HhUVhdTUVCu3ynkxQBLZitqJOrIsepXkVFauXIkhQ4Zg1KhRRh8PCgpCbm6u4eeEhASkpKSgvLwcXbt2xbfffoshQ4ZYq7kOjwGSyFb4+YnarFVVQHk54OOjdIvIiqqrq7FlyxYsWbLEsG3u3LkYOnQonnjiCQBAWVkZvL29DY///PPPVm+nM+E1SCJb4eIC+PuL+7wO6Ry0WmDPHmD9emR+/TXKysoQHR0NANDpdNi8eTN8an1ROnnyJKKiopCRkYHY2FjDzdPTE9u2bVPoTTgu9iCJbElgoAiORUVAt25Kt4YsaetWYMEC4NIlAEDxnc0+x44B99yDn3/+GUVFRXBzcwMAJCcnIzs7G9OmTUNkZKThWuTNmzcRFhaGiRMnKvEuHBoDJJEtCQoCLlxgD9LRbd0KzJhRZ5HsUAASgPWvvAJvd3e88MknmDx5MrZv346wsDDMnTsXEyZMwNixY+u81HfffYe4uLg6Q69kHhxiJbIl+qkeZWWARqNsW8gytFrRc6wVHAGgE4DlAL4EMOl//geLnn8eK1aswN69ezF69GhERkZi8+bNDV5u06ZNmDlzplWa7mzYgySyJe7uomhARYXoRXbsqHSLyNz27zcMq9a3+M4NOh3QuzcQE4OsrKxGX6q0tBQHDhzAhg0bLNJUZ8ceJJGtYV1Wx5afb7b9tm/fjoSEBHh4eLSxUWQMAySRrdEPs3LpK8cUEmK2/Ti8alkMkES2Rt+DLC4WQ23kWIYMAdq3b/xxSRIZzGPGNPkyJSUlSE5ORkJCgpkbSHoMkES2xsdHLKKs1QKlpUq3hsxJpwNSU4GnnhI/16+WpP959WoxL7YJ/v7+KCgoMEwDIfNjgCSyNZIEBASI+7wO6VhOnxa/07FjgS+/BLp0qft4167AN98A06cr0z6qg1msRLYoKAi4elV8mPbooXRryBxycoDsbHF/wAAgOBh4+GGR1ZqfL645jhnTbM+RrIcBksgWMVHHsRQVAWlp4n5kpAiOgAiG48cr1ixqGodYiWxRQIAYar19G7h1S+nWUFvcvg0cOyauPwYHAxERSreIWogBksgWubqK1T0AXoe0ZzodkJIigqSPDxAby2XM7AgDJJGt4jCr/UtPF78/V1dg8GCRnUx2gwGSyFbpAyR7kPYpNxe4eFHcHzCA63vaIQZIIlulLxhQWgpUVyvbFjJNcTFw6pS437t3TVIO2RUGSCJb5ekJeHiIVR+Ki5vfn2xDZSVw9GhNUk6vXkq3iFqJAZLIlnGY1b7odCJj9fZtwNubSTl2jgGSyJZxZQ/7cuaMSMpxcWFSjgNggCSyZbV7kPUW2CUbc+kSoF+7ccAAwNdX2fZQmzFAEtkyPz/RG9FogJs3lW4NNaakBDh5Utzv1Qvo1EnZ9pBZMEAS2TKVqqZwOedD2qaqqpqknI4dRdYqOQQGSCJbx0Qd26VPyrl1C/DyEkOrTMpxGAyQRLaOAdJmqc6eBa5fF8PgQ4YwKcfBMEAS2Tp9gCwvF3PsyCZ0kSS46Jevio1lUo4DYoAksnVubjVlytiLtA2lpYjVD6VGRIi1HMnhMEAS2QMOs9qOqiq4pqbCVZKga99erO9IDokBksgesGCAbbizfJV06xbKZRnamBgm5TgwBkgie6DvQRYXA1qtsm1xZhkZwLVrkF1c8KtOx6QcB8cASWQPvL3FtUidTqzuQdZ3+TKQmQkA0PbrhzKFm0OWxwBJZA8kidchlVRaCpw4Ie6Hh0NmpRynwABJZC/0AZIVdaxLXylHqwXatwf69FG6RWQlDJBE9qJ2og4Ll1uHLAPHjwMVFaJSzsCBTMpxIgyQRPbC3198OFdWig9ssryMDODqVVETd/BgcR2YnAYDJJG9cHERQRLgdUhruHwZOH9e3O/fX6ysQk6FAZLInnA+pHXUTsrp2RPo0kXZ9pAiGCCJ7AkTdSyvdlJOu3ZMynFiDJBE9kQfIMvKxCLKZF61k3I8PYFBg8T1R3JK/M0T2RMPD5FNCYiqOmReZ88yKYcMGCCJ7A2HWS0jPx84d07cj4mpSYgip8UASWRvWFHH/MrKgNRUcb9HD6BrV2XbQzaBAZLI3rBggHlpNHWTcqKilG4R2QgGSCJ74+sLuLqKD3QWLm8bfVJOebm4vjtwIJNyyMDu/hLWrFmDHj16wMPDA4MGDcL+/fsb3fezzz6DJEkNbrdv37Zii+1LWVkZhgwZgtjYWERHR+Of//yn0k2i+li43HzOngUKC2uSctzdlW4R2RBXpRtgio0bN+L555/HmjVrMGrUKHz44YeYNGkS0tPT0b17d6PP8fPzQ0ZGRp1tHh4e1miuXfLy8sLevXvh5eWFiooK9OvXD9OnT0e7du2UbhrVFhgosi2LioCwMKVbY5+uXKlJyomOBgIClG0P2Ry76kG+/fbbeOKJJ/Dkk08iKioKq1evRrdu3bB27dpGnyNJEjp16lTnRo1zcXGB151pBLdv34ZWq4XM61y2h5msbXPzZk1STlgY0K2bos0h22Q3PciqqiocO3YML7/8cp3t8fHxOHjwYKPPu3nzJkJDQ6HVahEbG4u//vWvGDBgQKP7V1ZWorKy0vBz6Z1rPBqNBhorT8zWH8/axy0uLkZcXBzOnz+PN998E/7+/lZvQ2spdc6szscHrgCkW7egKSsT189ayWnOmV51NVyPHIFUXQ1dYCC0vXqZXHTB6c6ZGSh5zlp7TEm2k+7B5cuX0aVLFxw4cAAjR440bH/jjTfwr3/9q8EwKgAcPnwY58+fR3R0NEpLS/HOO+9gx44dOHHiBHr16mX0OEuXLsXrr7/eYPvXX39t6Fk5i+LiYrz55pt4+eWXEcDhJ5szXqWCvyQhWatFvtKNsSNDVSqESBJuyTL26nSobP4pZOcqKirwyCOPoKSkBH4mFJ23mx6knlRvLTZZlhts0xs+fDiGDx9u+HnUqFEYOHAg/u///g/vvvuu0ecsXrwYixYtMvxcWlqKbt26IT4+3qQTaw4ajQaJiYmYOHEi1Gp1m15rwYIFOHHiBPbs2dPgsV69emHOnDlYvHhxg8cOHjwINzc3TJ48uU3HtxZznjNbp0pPB3JzMahnT+jaUC/Uqc5ZZiZczp+HLElQDxuGuFZ+8XOmc2YuSp6z0lZme9tNgGzfvj1cXFxw5cqVOtsLCwsRHBzcotdQqVQYMmQIzukvzBvh7u4OdyOZbGq1WrH/CG09dnp6Oj788EPs27fP6OtERUXh1KlTUKvVKCgogKenJ/z8/FBaWoqkpCQ899xzdvchoOTvy2ratQNyc+FSUgIXM7xXhz9nBQWG5auk6Gi4dujQ5pd0+HNmAUqcs9Yez26SdNzc3DBo0CAkJibW2Z6YmFhnyLUpsiwjNTUVISEhlmiizVq5ciWGDBmCUaNGGX08KCgIBQUFAIBLly5h7Nix6N+/P0aPHo158+YhJibGms2lltIXDCgpEXMiqXE3b4r5jgAQGgo0kvVOVJvd9CABYNGiRZg1axYGDx6MESNG4KOPPkJOTg6eeeYZAMDs2bPRpUsXrFixAgDw+uuvY/jw4ejVqxdKS0vx7rvvIjU1Fe+//76Sb8OqqqursWXLFixZssSwbe7cuRg6dCieeOIJAGLuo7e3NwBg0KBBSNVn95Ft8/QU8/YqK0Xhck7FMa66WlTKqa4W2b99+yrdIrITdhUgZ86cievXr2PZsmXIz89Hv379sGPHDoSGhgIAcnJyoKpVBaO4uBhPP/00rly5An9/fwwYMAD79u3D0KFDlXoL1qHVAvv3A/n5yNRoUFZWhujoaACATqfD5s2bMWHCBMPuJ0+exPTp05GRkYGZM2catmdkZGD9+vWYNm2a1d8CtYC+YMCVK2I+JANkQ7IspnPcvCm+THD5KjKBXQVIAHj22Wfx7LPPGn2sfgLKqlWrsGrVKiu0yoZs3QosWABcugQA0C+I5HPsGHDPPfj5559RVFQEtzvL+CQnJyM7OxvTpk1DZGSkofd48+ZNhIWFYeLEiUq8C2qpoKCaAEkNZWaK8yNJolIOi4SQCewuQFITtm4FZsyoU8A6FIAEYP0rr8Db3R0vfPIJJk+ejO3btyMsLAxz587FhAkTMHbs2Dov9d133yEuLs4w9Eo2qnbBAFkWgYCEwkLgt9/E/X79as4VUQtxrMFRaLWi51hvWmsnAMsBfAlg0v/8DxY9/zxWrFiBvXv3YvTo0YiMjMTmzZsbvNymTZvqDLeSjfL3F0OGGo0ouE1CeXlNUk737iIxh8hE7EE6iv37DcOq9S2+c4NOB/TuDcTEICsrq9GXKi0txYEDB7BhwwaLNJXMSKUSNURv3BA3Hx+lW6Q8fVKORiPODZNyqJXYg3QU+S2spdKC/bZv346EhAQWdbcXXNmjhiwDJ06IBZDd3cV1RxcXpVtFdooB0lG0dG6nSiV6kk3g8Kqdqb2AsrPLzBRfAiVJZKzySx61AQOkoxgzBujatekkjfbtxQfGrl3AxYtGJ5eXlJQgOTkZCQkJlmsrmZe+B3nzJlBVpWxblHT1ak1STt++NV8ciFqJAdJRuLgA77wj7tcPkpIkbq+/Dnh5AbdvA2lpIlBmZoprNnf4+/ujoKDAMA2E7ICbG6DPNnbWXmR5OZCSIu5368akHDILBkhHMn068M03QJcudbd37SoPnlnwAAAgAElEQVS2P/ssMGGCSHn39BQVWM6cAX75Rays7sy9D3vnzMOs9ZNy+vXjdBcyC2axOprp04GpUw2VdBASIoZf9YkKLi5igdju3YG8PFG8ubxcBMgLF8Q37549RYID2Y/AQCA31/kWUJZl4ORJkZTj5iauOzIph8yEAdIRubgA48c3vY9KJYaiunYVgfTcOfEhk5kJZGWJABoeLnqaZPv01yGLi0USlrOUU7twAbh8uSYph3+vZEYMkM5OkoDOnUVPs7BQBMriYpHEk50tAmhERM01LrJNPj6AWi2GGUtLxVCjo7t6VVwiAIC77mItWjI7BkgSJAkIDgY6dgSuXRNDr9evi2G73FxxXTMiAvD1VbqlZIy+cHlhoRhmdfQAWVFRk5TTtau4bEBkZgyQVJckAR06iNuNG6JHefWquF6Zlwd06gT06iVKnJFt0QdIR0/U0WprknL8/YHoaCblkEUwQFLjgoKAYcPEgrznzolVEfS3Dh1EoORcM9uh/104cuFyfVJOaalIymGlHLIgBkhqnr+/+CAqKxNDr5cvi17l1aviQ7lXL1GEwBE/kO1JQID4HVRWArduiTmvjiYrS4xkSBIwcCCTcsiinCTVjczC1xcYMEBkyHbvLj6kbtwAfv0VSEoSPct6q4mQFbm4AH5+4r4jDrNeu1aTlBMVJb6UEVkQAySZztsbiIkRRQd69BBTCkpKxHWhffvEN3wGSmXUHmZ1JLduiaQcWRYJYz16KN0icgIMkNR6np6i5mVcnJgz6eoqhmGPHwf27BHZr80URiczc8SVPfRJOVVVooccE8PhfLIKBkhqO3d3MeQ1YYJYb1KtFtV5TpwAdu9utDA6WYA+QJaW1qmxa7dkGTh1SoxQqNVMyiGrYoAk83FzEwEyLk4ETHd3MTTWSGF0sgBPz5rEleJiZdtiDhcv1iwEPmiQYyYekc0yOUD27NkT169fb7C9uLgYPXv2NEujyM65uoohVxZGV4a+F2nv1yGvXwfS08X9u+5iUg5ZncnTPC5evAitkeGyyspK5OXlmaVR5CBYGF0ZgYFiKo49X4e8dQs4dkwMsXbuzKQcUkSLA+R3331nuP/zzz/Dv1YlFa1Wi19++QVhLPdExjRXGF0fKDmnzTxqL31ljwUD6ifl9O9vf++BHEKLA+S0adMM9x977LE6j6nVaoSFheEf//iH+VpGjqd2YfSCAtGjLC4WQfLiRRFEw8NZGL2tfH1F7726WnwR0c+NtAeyLK5ZMymHbECLA6TuTrp+jx49cPToUbRj5XxqLUkSNV2Dg8Xk73PnxPWynBxxY2H0tlGpxDDrtWuiF2lPATI7W0wPAkSlHCblkIJMStLRaDQICwszmqRDZDJ9YfSRI8WtQwexPS8P2LtXDLOVlCjbRntlj/Mhb9wATp8W96Oiav4eiBRiUpKOWq1GWloaJF4PIHPTF0YvLhZDryyM3jb2lslaOyknJERckyZSmMnTPGbPno1169ZZoi1EouD24MHAuHFiqBUQRdEPHhS3q1dZxq4l9AGyokJMsbFlWq0IjpWVYlidSTlkI0ye5lFVVYWPP/4YiYmJGDx4MLzrJVS8/fbbZmscOTF9YfTevUW2a25uTWH0gABxjTI4mB+kjVGrxTksKxPnLSRE6RY17vRpMXKgT8px5SJDZBtM/ktMS0vDwIEDAQBnz56t8xiHXsns9IXRe/USgTInR3yYHj0qAkCvXuLDn397DQUGigBZVGS7ATI7W/xOAfGFiBnMZENMDpC7d++2RDuImubpKary9OoligxkZ4sP/5QU8aEaEVEzJEtCUJAIPraaqFNUJKZ0AECfPkDHjsq2h6gejmWQfdEXRg8PF3Mns7JqCqOfPQtVWBgLDOvpr0OWlIjrfLY0n/D2bTEKIMtiyk94uNItImqgVQHyyJEj2Lx5M3JyclBVr6bm1q1bzdIwoibpC6P37Cl6kxcuALduweXMGUxUqaC6eFGUJ3Pm61leXuI8VVWJIGkrWcA6Xd2knNhYDpGTTTL5y/aGDRswatQopKen49tvv4VGo0F6ejp27dpVp/wckVXUK4wue3jAQ5LgkpFRUxhdo1G6lcqQJNucD3n6tGiPq6tYocOZv8SQTTM5QL7xxhtYtWoV/v3vf8PNzQ3vvPMOzpw5g4ceegjdu3e3RBuJmnenMHr1mDE4rtNB9vISgfHsWREof/vN9qc7WIK+12gr8yFzckSPHxBJOT4+yraHqAkmB8jMzEzce++9AAB3d3eUl5dDkiQsXLgQH330kdkbSGQSlQo5sozq0aPFB7Cvr6hJev68CJSnT4tJ6c6idg9S6fmjtZNyIiPFNB0iG2ZygAwKCkJZWRkAoEuXLki78wdfXFyMiooK87aOqLUkSWS1jh0r5tb5+4trX1lZYvHmkydFco+j8/cXtVmrqkTRAKXcvi2uO+p0IjBGRCjXFqIWMnnwf8yYMUhMTER0dDQeeughLFiwALt27UJiYiLi4uIs0Uai1muqMHpurlhdxJELo7u4iCBZVCTetxLzDHU6MR3n9m0xpMqkHLITJgfI9957D7dv3wYALF68GGq1GklJSZg+fTqWLFli9gYSmYW+MHqHDiJQnDsnytbl5Ylbp05ijqUjJpoFBooAWVQklhSztvR0cc5dXUVvXq22fhuIWsHkABlUK1VcpVLhpZdewksvvWTWRhFZlLMVRg8KEtNglMhkzc0V81UBJuWQ3WlVfrVWq8W3336LM2fOQJIkREVFYerUqXBlujbZE31h9LIyESjz8kSv8upVoF07MfTavr39DwfqE3XKykRmr7V6cMXFwKlT4n7v3kzKIbvTqlqsU6dOxZUrVxAZGQlA1GTt0KEDvvvuO0RHR5u9kUQWVbsw+vnzwKVLwPXr4hYQIHqUHTvab6B0dxdFAyoqRC/SGiXdKitFpRx9Uk6vXpY/JpGZmZzF+uSTT6Jv3764dOkSUlJSkJKSgtzcXMTExODpp5+2RBuJrMPbWyy1NGECEBYmsj+Li4EjR4B9+4DLl5WfKtFa+iFjawyz6ivl3L4tzimTcshOmdyDPHHiBI4ePYpA/bANgMDAQCxfvhxDhgwxa+OIFFG/MPrFi8YLo6vsqOprYKDoGVujYMCZM+I4Li5MyiG7ZvL/8MjISBQUFDTYXlhYiAjObSJHoi+MHhcnhl/V6prC6Lt3i8Cp1SrdypbRf6EtLhY9PEu5dEnMNQVqCjUQ2alWlZqbP38+vvnmG1y6dAmXLl3CN998g+effx5vvfUWSktLDTcih6AvjB4XJwKmu7uoxpOWJooOZGaKaj22zNdXTLPQakVv2BJKSkQBBkD0vjt1ssxxiKzE5CHW++67DwDw0EMPGRZIlu9cl5kyZYrhZ0mSoLWXb9dELaEvjB4WJgoNZGaK62xnzojknp49xWO2OKSoL1x+9aoY/jT3fM+qqpqknI4dxRcKIjvHBZOJTOXiIpbSCg0VQ4rnz4sM0YwMETTDwsTj7u5Kt7QufYAsKhLtMxd9Us6tWyJbdsAAJuWQQzA5QI4bN84S7SCyPyoV0L070LUrkJ8vAqV+TuWFCyKA9uwpkn5sgaUyWX/7TUyJcXEBhgyxzR40UStwZj9RW6lUIqu1c2egoECUsSspEckq2dkigEZEiN6VkgICRM/u1i1xM0fgzssTXwYAMZ2DSTnkQBggiczF1guju7oCfn4ieBcVtT1AlpSIjF5AvK+QkLa3kciGMEASmVvtwujXr4sh19qF0UNCREBRojB6YGBNgOzcufWvUzspp0MHsb4jkYNhgCSypHbtxK24WPQoCwrE9cr8fJHtGRFh3cLogYFi/mZbCgbol69iUg45OJPnQS5duhTZ2dmWaAuR4woIEAksY8fW9NwKC4GDB4FDh8SQrDXK2OmDcWlp6+du/vabaK++Uo6bm/naR2RDTA6Q33//PcLDwxEXF4evv/7asDYkEbWAnx8wcCBw991ibUZJEsOwhw8DBw6IHqYlA6WHh7jJsujVmury5ZqknP79xfshclAmB8hjx44hJSUFMTExWLhwIUJCQvBf//VfOHLkiCXaR+SYmiqMvn+/5Qqj6wsGAKZP9ygtrUnKCQ9v2zVMIjvQqmrLMTExWLVqFfLy8vDJJ58gLy8Po0aNQnR0NN555x2UlJSYu51EjklfGD0uTgQdFxcRiFJSgD17RParuWuntiZA6pNytFqxRmafPuZtE1EjMjIyEBsba7h5enpi27ZtVjl2m5Yj0Ol0qKqqQmVlJWRZRlBQENauXYtu3bph48aN5mojkeOzZmH02gUDWtJLlWXg+HFRLcjLSwwRMymHrCQyMhKpqalITU1FUlISvL29MXHiRKscu1UB8tixY5g3bx5CQkKwcOFCDBgwAGfOnMHevXvx22+/4bXXXsP8+fPN3VYix1e7MHqfPuLn2oXRL1xoe2F0Pz/RU9VogJs3m98/I0NMU1GpmJRDivruu+8QFxcHb29vqxzP5AAZExOD4cOHIysrC+vWrUNubi7efPPNOktdzZ49G1evXjVrQ4mciqurmAISFwf07SsSayorgfR04JdfxJQRjaZ1r61SiaxaoPlh1suXxTxOgEk5pLhNmzZh5syZVjueyfMgH3zwQcyZMwddunRpdJ8OHTpAZ8k154ichaUKowcGiuzZoqLGK+DUTsrp2VOU0yNSSGlpKQ4cOIANGzZY7Zgm9SA1Gg0+/fRTJuEQWZu+MPr48TULEVdXi4C5axdw+rRYequl9Ik6jRUMqJ2U064dk3LI7ObNm4fRo0cbfSwsLAzLly+vs2379u1ISEiAh4eHNZoHwMQepFqtRmVlpWEdSCKyMnMVRtcHyPJyEQxrq52U4+kJDBokjktkJunp6Vi7di327dtn9PGoqCikpqbW2bZp0yY8/fTT1miegcl/9f/93/+Nt956C9W2voI6kSPTF0YfPRoYOlRkpup0ojD67t1AamrTCThuboCPj3ip+gUDzp5lUg5Z1MqVKzFkyBCMGjXK6ONBQUEoKCgw/FxSUoLk5GQkJCRYq4kAWnEN8tdff8Uvv/yCnTt3Ijo6ukE20datW83WOCJqhiSJmq4dO9YtjH7pkrg1VRg9MBC4ebNugMzPF71SAIiJUaagOjm06upqbNmyBUuWLDFsmzt3LoYOHYonnngCAFBWVlYntvj7+9cJmNZicoAMCAjAAw88YIm2EFFbNFcYvVevmqFVQPQ6c3NrAuTNm6LnCYjEn65drf8eyDFptZD27kWXfftw4cYNlJWVITo6GoCYT79582ZMmDDBsPvJkycxffp0ZGRk1MlazcjIwPr16zFt2jSrNNvkAPnpp59aoh0ttmbNGqxcuRL5+fno27cvVq9ejTFjxjS6v/6bSmZmJsLDw7F8+XLcf//9VmwxkZXpC6OXlooe5eXLojB6YaEIoL16iX/vBEuppARqAK7Hj9ck5URFKfseyHFs3QosWADXS5cwGMCvdzb7HDsG3HMPfv75ZxQVFcHtzlB+cnIysrOzMW3aNEORAAC4efMmwsLCrFYkAGhjJR1r27hxI55//nn85S9/wfHjxzFmzBhMmjQJOTk5Rvc/dOgQZs6ciVmzZuHEiROYNWsWHnroIfz6669G9ydyKPrC6OPHGy+MfvMm4OoKSafDMJUKUkWFmG85cCCTcsg8tm4FZswQw/13hAKQAKx/5RUc//vf8cILL2Dy5MnYvn07jh8/jrlz52LChAkYO3ZsnZeydpEAAJBk2fSKyN988w02bdqEnJwcVNXLgEtJSTFb4+obNmwYBg4ciLVr1xq2RUVFYdq0aVixYkWD/WfOnInS0lL8+OOPhm333HMPAgMDsX79+hYds7S0FP7+/igpKYGflSdJazQa7NixA5MnT4Zarbbqse0Vz1kTbt0Scydzcmrqu6pUhvuyJEEaPpzXHVtAo9Hg5507kRAfz7+zxmi14vp3reCotwLAmwA8VSr8v7VrMXT4cEydOhWFhYWYMmUK1qxZg6B666ROmzYNs2fPxvTp001uSms/x00eYn333Xfxl7/8BY899hi2b9+OP/3pT8jMzMSRI0fw3HPPmfpyLVZVVYVjx47h5ZdfrrM9Pj4eBw8eNPqcQ4cOYeHChXW2JSQkYPXq1Y0ep7KyEpWVlYafS0tLAYj/EJrWVi5pJf3xrH1ce8Zz1gRXVyAyEggLg+riRahyciDVKughybJYm5KapQZwn4uLqGpExp06ZTQ4AsDiOzfodKju2RNyVBTOnj1bZ5/a/4f1RQK++OKLVv3fbu3ngckBcs2aNfjoo4/whz/8Af/617/w0ksvoWfPnnj11Vdxoy2rlDfj2rVr0Gq1CA4OrrM9ODgYV65cMfqcK1eumLQ/AKxYsQKvv/56g+07d+6EV3NzyywkMTFRkePaM56zxgUC6KVSIYTzmcmSWhgPUn/8EXnl5U3us3v3bvTt2xe7du1qVVMqKipa9TyTA2ROTg5GjhwJAPD09ERZWRkAYNasWRg+fDjee++9VjWkpeoXKZBlucnCBabuv3jxYixatMjwc2lpKbp164b4+HhFhlgTExMxceJEDuO0EM9ZI2QZUlERVJmZUN354JIBQK2GVOvbdXVMDOQOHZRpox3RVFdj165dmDBhAtSuJn+MOgVJrYbr3//e7H6xkyah/7hxTe7z0UcfYcGCBZg8eXKr2qIfCTSVyb/ZTp064fr16wgNDUVoaCgOHz6M/v37IysrC624nNli7du3h4uLS4PeX2FhYYNeYu22mrI/ALi7u8PdSF1LtVqt2Aeukse2Vzxnd8iyyF49f76mMLkkAV26QAoPB5KSAACXdDp0Vangmp4uig/cKSJAjdBooAWg9vDg31ljfvc7MVUoL8/4smqSBHTtCte77xY1hxtRUlKCo0eP4ttvv231uW7t80xOVZswYQK+//57AMATTzyBhQsXYuLEiZg5c6ZFp0+4ublh0KBBDYbOEhMTDT3a+kaMGNFg/507dza6P5HDkGUxvWP/fuDIEREcVSpR9Pzuu4HYWJGco9VCdnVFiixDFxAg6rsePdr6lUKI9FxcgHfeEffrj9rpf169usngCNQUCXBToKKTyT3Ijz76yLBSxzPPPIOgoCAkJSVhypQpeOaZZ8zewNoWLVqEWbNmYfDgwRgxYgQ++ugj5OTkGI47e/ZsdOnSxZDRumDBAowdOxZvvfUWpk6diu3bt+M///kPku58ayZyODpdzRJV+lJzLi4iMPbsKaZx6N3pUcr+/pALC6GNjYXq8OGaggGDB3NhZGqb6dOBb74BFiyom7DTtasIjq3ISLUmkwOkSqWCqtYcqYceeggPPfSQWRvVmJkzZ+L69etYtmwZ8vPz0a9fP+zYsQOhoaEAxPXR2m0bOXIkNmzYgFdeeQVLlixBeHg4Nm7ciGHDhlmlvURWo9WKD6DMTFFkHBBZqz16iJuxb9/6ABkQIIZh3d1FYfJDh0QVnvPnRVEBoraYPh2YOhXVu3cj9ccfETtpUrPDqraiVVeXi4uLkZycjMLCwgbrPs6ePdssDWvMs88+i2effdboY3v27GmwbcaMGZgxY4ZF20SkGK1WrOJx4ULNcldubqK3GBoKNHXtRZ+sU7v8XGAg0K8fcPKkWHPSzw9o4po9UYu4uEAeNw555eUiIccOgiPQigD5/fff49FHH0V5eTl8fX3rZIRKkmTxAElEENcI9YFRX6zD3R0IDxfrRjaXWXn7tigcADHEWkf37mIJrexssewVk3bISZkcIF944QXMmTMHb7zxhmLzAomcVlWVWPsxK0sk1ABi7cfwcHFdp6XfzPVz1Pz8jAfTvn1FLdeiIpG0M3p080GXyMGY/Befl5eH+fPnMzgSWdPt26K3mJ0thlUB0auLiBCLJ5taO1U/5aP28GptKpW4Hrl/f03SzqBBTNohp2JygExISMDRo0fRs2dPS7SHiGqrqBCJN7m5NfVT/fxE8kynTq0PWM0FSEBkvOqTdq5cEe2IiGjd8YjskMkB8t5778Wf//xnpKenIzo6usEEzN///vdmaxyR07p5U2SR1p5kHRgoAlTHjm3ryWm14hojINaEbEpQkEjaOXUK+O03EZw7dmz9sYnsiMkB8qmnngIALFu2rMFjkiRBqx/+ISLT1V7DUa99exEY27UzzxBncbEIuu7ugKdnzbXMxoSGioCak1OTtGPFJYeIlGJygKw/rYOIzKCoSATGgoKabcHBIjA2NQza2mMB4nVbGnD1STvFxSJpZ9QoJu2Qw+NfOJFSZFksYHz+PHDtWs32kBBxjdFSxfH1AbK54dXaXFzE9cikJKCsDDhxQiyszKQdcmAtCpDvvvsunn76aXh4eODdd99tct/58+ebpWFEDquJAuKIiLDsnENZrpniYWrP1NOzJmknP19k1YaHm7+NRDaiRQFy1apVePTRR+Hh4YFVq1Y1up8kSQyQRI2RZZENeu6cGK4ExHSKbt1EoLHG1KnyclFkQKUC6hcIaImgIDHcmpYGnDkjerlcHoscVIsCZFZWltH7RNQCphQQtzR97zEgwPS5k3r6pJ3cXCAlBRgzxjrBncjKeA2SyFJaU0Dc0loy/7E5kiSmfpSWikCpT9qxk/qaRC1lcoBctGiR0e2SJMHDwwMRERGYOnUqgkxJACByJI0VEO/RAwgLa7qAuKW1JkHHGBcXsRzW/v0iUJ44AQwYwKQdcigmB8jjx48jJSUFWq0WkZGRkGUZ586dg4uLC/r06YM1a9bghRdeQFJSEu666y5LtJnINrW1gLilVVXVDPGaY+qIPmnn8GExhBwQIIaMiRyEyRchpk6dit/97ne4fPkyjh07hpSUFOTl5WHixIn4wx/+gLy8PIwdOxYLFy60RHuJbE9VlVgaatcuUW2mqkpck4uOBiZMEEFD6eAI1PQevb3NN7zbrh2g/yKcnl53ugqRnTP5f+3KlSuRmJgIv1pztPz8/LB06VLEx8djwYIFePXVVxEfH2/WhhLZHHMXELc0cw2v1hcWJq5FXroEHDvGpB1yGCYHyJKSEhQWFjYYPr169SpK76SuBwQEoEo/xETkaBorIB4RISb52+p1uNbOf2yOJIneclkZk3bIoZgcIKdOnYo5c+bgH//4B4YMGQJJkpCcnIwXX3wR06ZNAwAkJyejd+/eZm8skaJu3hSB8dIl8xcQtzSdTpSJA8wfIIGGSTsnTwKxsbZ9ToiaYXKA/PDDD7Fw4UI8/PDDqL5T5NjV1RWPPfaYoYhAnz598PHHH5u3pURKsUYBcUsrLRVBUq22XKUeT09Rfu7XX8UqJAEBInOXyE6ZHCB9fHzwz3/+E6tWrcKFCxcgyzLCw8PhU+s/XWxsrFkbSaQIYwXEO3YUdVIt0QuzpNrDq5YM6O3bA1FRImEnPR3w9RXbiOxQq1PrfHx8EBMTY862EClPX6v03DnrFhC3NHMUCGipHj3Etci8vJpKO56elj8ukZm1KkAeOXIEmzdvRk5OToNknK1bt5qlYURWJcvA1asiMFq7gLil1S5Qbo0CHpIExMSIpJ3SUpG0M3Ikk3bI7pich75hwwaMGjUK6enp+Pbbb6HRaJCeno5du3bBvzXFj4mUJMtiZYqkJCA5WQRHlUrUG737bpFoYs/BEQBu3QIqK0XgCgiwzjH1STtqtehNnjpVk9hEZCdM7kG+8cYbWLVqFZ577jn4+vrinXfeQY8ePTB37lyEhIRYoo1E5mdLBcQtTd8j9vOzbi/Oy6um0s6lSyI4h4VZ7/hEbWRyDzIzMxP33nsvAMDd3R3l5eWQJAkLFy7ERx99ZPYGEpmVvk7qnj1AaqoIjq6uYhg1Lk5UhXGk4AhYd3i1Pn3SDgCcPi0WiCayEyb3IIOCglBWVgYA6NKlC9LS0hAdHY3i4mJU6FcsILI1Wi2QkyPmMdpaAXFLs2aCjjE9e4ph1suXayrtMGmH7IDJAXLMmDFITExEdHQ0HnroISxYsAC7du1CYmIi4uLiLNFGotaz9QLillZdXbM4s1IBsnbSTlmZCJIjRjBph2yeyZ8O7733Hm7f+Qa+ePFiqNVqJCUlYfr06ViyZInZG0jUKlVVIihevCiCJCB6LRERQNeuzvPhrK+e4+mpbK/N1VUk7SQliTalpYmgaQ9FFshptWqIVU+lUuGll17CSy+9ZNZGEbVaZSXukiS47ttnHwXELc1S9Vdbw9u7ptJObq5I2gkNVbpVRI1q9fhSYWEhCgsLodMXa76DxQNIEbduAefPwzU3F71UKhEc7aGAuKUpff2xvg4dgD59xLJgaWmi0g4XVycbZXKAPHbsGB577DGcOXMGcr15TZIkQav/1k5kDfUKiEsAbsgy/AYNgqszB0ZAzDu01BJXbREeLpJ28vNrknYcLXOYHILJAfJPf/oTevfujXXr1iE4OBiSM38AkXKMFRBv1w7VPXpg/6+/YnKHDs4dHAGREFNdLa63+voq3ZoakgT07y++3OiTdoYPd57rwmQ3TA6QWVlZ2Lp1KyIiIizRHqKmFReLcnCNFBCX9Qk5VHd41dauvdZO2ikqEnMkeXmGbIzJATIuLg4nTpxggCTrun7deAHxiAiAJQ6Ns7Xrj/V5ewMDBogSfzk54vfIpB2yISYHyI8//hiPPfYY0tLS0K9fP6jrTbD+/e9/b7bGkZPTFxA/f74mG9NRCohbgy1lsDamY0cgMhLIyBBJO35+tt1eciomB8iDBw8iKSkJP/74Y4PHmKRDZiHLwJUrIjCWlIhtKhXQrZtI8PDyUrZ99qCyEtBXtrL1gBMRIX7PV66IlT+YtEM2wuQLE/Pnz8esWbOQn58PnU5X58bgSG2i04ls1H37ROJGSYlI3OjRA5gwAYiOZnBsKX3v0dfX9svoSVLNqimVleJ3X2/6GJESTO5BXr9+HQsXLkRwcLAl2kPOSB8Yz5+v6fW4uooaqT16iNJwZBpbv/5YnwpTN5EAACAASURBVLGknehopVtFTs7kADl9+nTs3r0b4eHhlmgPORNjBcTValHc2tELiFuaLc5/bI6Pj0jaOXJE1M/19xf1cokUYnKA7N27NxYvXoykpCRER0c3SNKZP3++2RpHDsrZC4hbmlZbc+3WXnqQesHBQO/ewNmzNZV27O09kMNoVRarj48P9u7di71799Z5TJIkBkhqXFUVkJXFAuKWVlIihq3d3Ozzmm2vXuI9FBTUVNrhMDspoFWFAohMcvu26C1mZ9cUEPf2Fh+EzlhA3NJqX3+0x2pC+qSdpCSgvLym0g7/TsjKOJZFlnPrlri+mJNTk5XIAuKWp89gtafrj/Wp1cCQISJI3rgBpKcD/fop3SpyMi0KkIsWLcJf//pXeHt7Y9GiRU3u+/bbb5ulYWTH6hUQByCWNurVS0wMZ2C0nNoFyu392p2Pj+hJHj0qhuX9/cVcWCIraVGAPH78ODR3rhkdP3680f1YuNzJNVJAHL16iX/592F5FRXiWq9K5Rgl+Dp1En8/584Bp06JpJ2AAKVbRU6iRQFy9+7dRu8TAWi2gDhZkX541d/fcZKeevcWSTuFhTWVdpi0Q1bAq95kVEVFBUJDQ/Hiiy82vtP162J1+KSkmuAYEiI+wIYOZXBUgqMMr9YmSWJ+pLe3SPhipR2yEibpkFHLly/HsGHDGj7QVAHx8HDbWnfQGdljgYCWUKtrKu3cuAGcOQP07at0q8jBMUBSA+fOncNvv/2GKVOmIC0tTWxkAXHbp9GIBYgBx+pB6vn6iqSdY8fEfFp/fzF/lshCGCCpgRdffBErV67EwYMHRWDMyxOBUf/h6+IiKt707Ckm+pNt0Pcevbwc9xqdfg3Q8+eBkydF0HSEZCSySbwGSXVs374dvXv3Ru+ICHGNMTcXOH5cBEdXV/HhNGGCGN5icLQtjjq8Wl9kpEgC0+lE0o6+XCGRmTFAOol58+Zh9OjRRh8LCwvD8uXLAQCHDx7Ehq++Qljnznjx9dfxzx9+wLJNm8SHUlwc0KeP4/ZO7J09LJBsDvqkHS8vUYyCSTtkIRxidQLp6elYu3Yt9u3bZ/TxqKgopB4/Dpw/jxVxcVgxZgwA4LO9e5FWVIRXP/iABcRtnU4nptsAjh8ggZqknQMHxEjHb78Bd92ldKvIwbAH6QRWrlyJIUOGYNSoUQ0frKpCkKsrCjIyxIdMVZUYOo2OBqKixKRsBkfbV1Ym6ty6ujpPJrGfH9C/v7h/4YK4Vk5kRvzkc3DV1dXYsmULlixZYtg2d+5cDB0wAE+MGwdcvIiywkJ4u7mJeWYREWLKhkqFx+fMUbDlZJLaw6vOVLGoc2eRVZ2ZCZw4Ib4c+Pkp3SpyEOxBOiKtFtizB1i/Hplff42ysjJE31mdXVdejs0bNsDn4kXxoaLV4mRODqIGDUJGSAhip0xB7MCBiI2NhaenJ7Zt26boW6EWcsQCAS3Vpw/QoQOTdsjs2IN0NFu3AgsWiELhAO5clYLPoUNASAh+3rYNRaWlcHNxAQICkFxWhuwrVzDtj39EZJ8+SE1NBQDcvHkTYWFhmDhxokJvhEziLBmsxuiTdpKSRC3alBRg2DDn6kmTRTBAOpKtW4EZM2pW0AAQCkACsH7ZMnjn5uKF//wHk0eMwPbMTIR5eWHuf/83JkyYgLFjx9Z5qe+++w5xcXHw9va27nsg0926JW6S5LyFvN3capJ2rl0T19OjopRuFdk5DrE6Cq1W9BxrBUcA6ARgOYAvAUz617+waOFCrPjgA+z99VeMHjMGkZGR2Lx5c4OX27RpE2bOnGmVplMb6XuPfn7OnVBVO2knM7PuqjJEreDE/5sczP79hmHV+hbfuUGnE0NRMTHIyspq9KVKS0tx4MABbNiwwSJNJTNzlvmPLdG5s5jucuGCSNrx8WHSDrUae5COIj/fbPtt374dCQkJ8PDwaGOjyCqcOUHHmD59gPbtxagKk3aoDRggHUVIiNn24/CqHamuFgtVA86ZoGOMSgUMHCjm81ZUiFKJ9S49ELUEA6SjGDNGrGzQWOaeJImVN+5UyWlMSUkJkpOTkZCQYIFGktkVF4sPfw8PcSNBn7SjUonl2TIylG4R2SEGSEfh4gK88464Xz9I6n9evbrZVeb9/f1RUFAANzc3CzSSzK728CqnNdTl71+TtHP+fMsvQxDdwQDpSKZPB775RlTCqa1rV7F9+nRl2kWWw+uPTevSRSzLBgCpqTVLthG1ALNYHc306cDUqSKrNT9fXHMcM6bZniPZIVl27gIBLdWnjyhHd/26SNoZPVoUOydqht30IIuKijBr1iz4+/vD398fs2bNQrF+9YJGjB8/HpIk1bk9/PDDVmqxglxcgPHjgT/8QfzL4OiYbt4ENBrx++VUhsbVTtopL2fSDrWY3QTIRx55BKmpqfjpp5/w008/ITU1FbNmzWr2eU899RTy8/MNtw8//NAKrSWyAn3vMSBABAFqnLt7TdJOYSFw9qzSLSI7YBdDrGfOnMFPP/2Ew4cPY9iwYQCAf/7znxgxYgQyMjIQGRnZ6HO9vLzQqVMnazWVyHp4/dE0/v5ATIy4FnnunPiZnw3UBLsIkIcOHYK/v78hOALA8OHD4e/vj4MHDzYZIL/66it8+eWXCA4OxqRJk/Daa6/Bt4n18iorK1FZWWn4ufTOHDONRgONRmOGd9Ny+uNZ+7j2zJnOmev165AAVPv5QW7D+3Wmc4bgYKi6d4dLTg7k48dRPXy4qLZjIqc6Z2ai5Dlr7THtIkBeuXIFHTt2bLC9Y8eOuHLlSqPPe/TRR9GjRw906tQJaWlpWLx4MU6cOIHExMRGn7NixQq8/vrrDbbv3LkTXl5erXsDbdRUe8k4Rz9nbgAm3bm2vPPIEZjjI8fRz5meBGCkSoX2Wi1uJyVhn06H6la+lrOcM3NS4pxVVFS06nmKBsilS5caDUa1HTlyBAAgGZnjJcuy0e16Tz31lOF+v3790KtXLwwePBgpKSkYOHCg0ecsXrwYixYtMvxcWlqKbt26IT4+Hn5WToTQaDRITEzExIkToWbWXYs4yzmTCguB48che3tj4ujRbXotZzlndVRWQj58GL63b2NSp07QDhhg0jxSpzxnbaTkOdOPBJpK0QA5b968ZrNKw8LCcPLkSRQUFDR47OrVqwgODm7x8QYOHAi1Wo1z5841GiDd3d3h7u7eYLtarVbsP4KSx7ZXDn/O7vyHl4KCzPY+Hf6c1aZWi6SdgwehunoVqosXgd69W/EyTnTOzESJc9ba4ykaINu3b4/27ds3u9+IESMMJdCGDh0KAPj1119RUlKCkSNHtvh4p0+fhkajQUhL65YS2SrOf2y7gAAgOlqs+nH2rJgqw6QdqsUucsOjoqJwzz334KmnnsLhw4dx+PBhPPXUU7jvvvsMCTp5eXno06cPkpOTAQCZmZlYtmwZjh49iosXL2LHjh148MEHMWDAAIwaNUrJt0PUNjqdqMEKMIO1rbp1A0JDxf3UVDG3lOgOuwiQgMhGjY6ORnx8POLj4xETE4MvvvjC8LhGo0FGRobhYqybmxt++eUXJCQkIDIyEvPnz0d8fDz+85//wIUT58melZSIIKlWA97eSrfG/vXtK3ri1dWi0g4zU+kOu8hiBYCgoCB8+eWXjT4eFhYGuVZ1jG7dumHv3r3WaBqRddUeXmWB8rZTqYBBg0R5xps3RU9y8GCeW7KfHiQR3XHjhviXw6vm4+4ugqRKBRQUiNU/yOkxQBLZk9oFyhkgzSswEOjXT9zPyBCBkpwaAySRPbl1C6isFMN/AQFKt8bxdO9ek7Rz/DiTdpwcAySRPdEPr/r7c5UWS+nbV/Qm9Uk71a2ts0P2jgGSyJ5w/qPl6ZN23N1rkna4PJZTYoAksie8/mgdHh41maxXrgCZmUq3iBTAAElkLzQaQ4k5BkgrqJ2089tvYh1JcioMkET2Ql89x8tL9HDI8kJDReIOIJJ2ysuVbQ9ZFQMkkb3g/Edl9O0rMoY1GibtOBkGSCJ7weuPynBxqUnaKSsTxc2ZtOMUGCCJ7IEs1wyxMoPV+jw9RZCUJCA/XyyPRQ6PAZLIHpSViaE9V1fA11fp1jinoCAx3ApAdfYsOijcHLI8Bkgie6C//hgQwCLaSgoNBbp1gwRgsEoF3Fk9iBwTAySRPeD1R9sgSUC/ftD5+cFNkuCamgpotUq3iiyEAZLIHrCCju1wcYE2Nha3ZRkSk3YcGgMkka27fbtmKI8Fym2DpyeO6nSQJQm4fBnIylK6RWQBDJBEtk7fe/TzA9RqZdtCBtcB6CIjxQ/p6cC1a4q2h8yPAZLI1rFAgM3Sde/+/9u796CozvMP4N8FluUOQZRLoK4a5VJQQTGK3CIiilovkyjVMpralCTDGLWpiU3SQKbeU6ONqbFtqs7kYkVF06lV0SoSJV4I4AW0xnLRFrRaZLmoIPv+/ljZH8hBWWX3nIXvZ2Zn2Hffc97nvOzy8L7n3XMAf3/Dk4ICLtrpYZggiZSOC3SUS6UCwsIMtx9rvdIOF+30GEyQRErW0gLU1hp+5gIdZbK1Ndz5w97ecDH5s2e5aKeHYIIkUrLbtw1/bDUaw9VcSJkcHYGICMOI8t//5qKdHoIJkkjJ2k6v8gIByublBQQHG34uLeWinR6ACZJIyfj9R+syYADw7LOGUf933wF37sgdET0FJkgipRKCK1itjUoFDB1q+EpOU5PZF+2UlZXhhRdeQEhICMLCwtDA+1V2KyZIIqVqaDCsjLSxMaySJOvQumhHrTYssDp3zmyLdubPn48PPvgAJSUlyM3NhUajMUs7vRUTJJFStU6vengYkiRZDycnw+2xAODaNaCiotubuHDhAtRqNWJiYgAAnp6esLOz6/Z2ejN+6oiUitOr1q3top0LF4Bbt7p195cvX4aLiwt+9KMfISIiAitWrOjW/RMTJJFy8QIB1m/gQMDPzzDFWlDQrYt2mpubkZeXh08++QT5+fnIyclBTk5Ot+2fmCCJlKmpCaivN/zMFazWq3XRjqur4XdaUPDYRTvp6emIjo6WfE2r1WL58uUAAH9/f0RGRiIgIAAajQbJyckoKirq9kPozZggiZSodfTo7Gy4QgtZLzu7/1+0c/s2cP58p4t2SkpKsGnTJqxevVry9eDgYGMSjIyMxPXr11FTUwO9Xo9jx44huHVKl7oFEySREvH7jz2Ls7PhSjsAcPUqUFkpWW3t2rWIjIzE2LFjJV/39PTE9evXAQB2dnZYsWIFYmNjMXToUAwePBhTpkwxS/i9FZc8ESkRF+j0PH37AkFBwMWLhlGkq6vh6zt5eUBVFe7364ddu3bhvffeM26SlpaGUaNGYcGCBQCAuro6ODs7G1+fNGkSJk2aZPFD6S04giRSGr3eMBUHMEH2NIMGAb6+hinWDRuA/v2BF14A5szBlfHjUVdXhzCdDgCg1+uRlZUFFxcX4+Znz55FcHAwLl26hOHDhxsfjo6O2LNnj1xH1WNxBEmkNDqdIUmq1UCbP47UA6hUwLBhwL59wAcftHvpwb9EcPnNb4DwcBxwdERNTQ3sH5yDPnXqFCoqKjB9+nQEBgYaz0XW19dDq9UiMTHRkkfSKzBBEilN2+lVXqC851GpgM2bOxT3B6AC8BUA59dfxy88PZGcnIy9e/dCq9UiLS0N48aNQ2xsbLvtvv76ayQkJLSbeqXuwSlWIqXh9x97trw8wy2xHuIDYDmAzwFMun4dSyZPxsqVK5Gbm4vo6GgEBgYiKyurw3Y7duzA7NmzzR52b8QRJJGSCMEE2dNVVXX60rIHDwCGVa9Dh6LsEfeW1Ol0OH78OLZv396tIZIBR5BESnL3ruGhUjFB9lS+vt1Wb+/evUhKSoKDg8NTBkVSmCCJlKT1/KObm+GuENTzxMQA/v6dn19WqYCAAEO9x+D0qnkxQRIpCS8Q0PPZ2hq+4gF0TJKtz9evf+w/SLW1tTh16hSSkpLMECQBTJBEysLzj73DzJnAzp3As8+2L/f3N5TPnPnYXbi7u+P69evGr4FQ9+MiHSKluH/f8B1IgAmyN5g5E5g2zXglHfj6GqZVObWuGEyQREpx+7ZhFaujo+FBPZ+tLRAfL3cU1AlOsRIpBa+/SqQoTJBESsHzj0SKwgRJpARtLxDAFaxEisAESaQEdXWGRTq2tobbIBGR7JggiZSgdfTo4QHY8GNJpAT8JBIpAadXiRSHCZJICbiClUhxmCCJ5HbvHtDYaPiZCZJIMZggieTWOr3q6gqo1fLGQkRGTJBEcjNxetXOzg7Dhw/H8OHD8bOf/cyMgRH1brzUHJHcTLxAgIeHB4qKiswYEBEBHEESyaulBaitNfzMFaxEisIESSSn2lpArwfs7QEnpy5totPpMGLECERHRyM3N9fMARL1XpxiJZJT2+nVzu4w/5Dy8nL4+fnh/PnzmDx5Ms6dOwc3NzczBknUO3EESSSnBwt00n/3O0RHR0tW0Wq1WL58ufG5n58fACA0NBQhISH45z//af44iXohjiCJ5PLgAuUllZXY9OWXOHbsmGS14OBg46KcmpoaODk5QaPR4Nq1aygpKcHAgQMtGTVRr8EESSSXxkagqQlrs7MROXIkxo4dK1nN09MTV69eBQCUlpYiLS0NNjY2UKlU2LBhAzy5uIfILJggieRSU4P7LS3YdeIE3svIMBanpaVh1KhRWLBgAQCgrq4Ozs7OAICoqCicO3dOjmiJeh2egySytJYW4OhR4IsvcCU3F3WNjQgLCwMA6PV6ZGVlwcXFxVj97NmzCA4OxqVLl4wXCBg+fDgcHR2xZ88emQ6CqOfjCJLIknbvBt54A7h2DQBw+0GxS0EBMHEiDhw4gJqaGtjb2wMATp06hYqKCkyfPh2BgYHGc5H19fXQarVITEyU4yiIegUmSCJL2b0bePFFw+KcB/oDUAH46t134azR4Bd//jOSk5Oxd+9eaLVapKWlYdy4cYiNjW23q6+//hoJCQnGqVci6n6cYiWyhJYWw8ixTXIEAB8AywF8DmDSW29hyaJFWLlyJXJzcxEdHY3AwEBkZWV12N2OHTswe/Zsi4RO1FtxBElkCXl5xmnVhy178IBeDwwZAgwdirKysk53pdPpcPz4cWzfvt0soRKRgdWMIJcvX46oqCg4OTnBw8OjS9sIIZCRkQE/Pz84OjoiPj4eFy5cMHOkRBKqqrqt3t69e5GUlAQHB4enDIqIHsVqEmRTUxNeeuklvPbaa13eZs2aNVi3bh02btyI06dPw8fHB4mJiairqzNjpEQSfH27rR6nV4ksw2oSZGZmJhYvXmxcDv84QgisX78e77zzDmbOnInQ0FBs27YNjY2N+PLLL80cLdFDYmIAf//Or7eqUgEBAYZ6j1BbW4tTp04hKSnJDEESUVs99hxkWVkZqqurMWHCBGOZRqNBXFwcTpw4gbS0NMnt7t27h3v37hmf63Q6AEBzczOam5vNG/RDWtuzdLvWTMl9pvrtb2GbkgKoVFC1WawjHiTNlg8/hNDrDeciO+Hk5IRrD85ldtcxKrnPlIp9Zjo5++xJ2+yxCbK6uhoA4O3t3a7c29sbFRUVnW63cuVKZGZmdig/ePAgnLp4O6LulpOTI0u71kyRfabRwHfpUoT96U9wvHXLWHynTx+cX7AAVRoNsG+fbOEpss8Ujn1mOjn6rLGx8Ym2kzVBZmRkSCajtk6fPo2RI0c+cRuqh6a0hBAdytpatmwZlixZYnyu0+kQEBCACRMmWPyWQs3NzcjJyUFiYiLUarVF27ZWiu+z5GQgIwP3v/nGsCDH1xfq6GiE29oiXKaQFN9nCsQ+M52cfdY6E2gqWRNkeno6UlJSHllHq9U+0b59fHwAGEaSvm0WPty4caPDqLItjUYDjUbToVytVsv2QZCzbWul6D5Tq4Hx4+WOogNF95lCsc9MJ0efPWl7siZILy8veHl5mWXfAwYMgI+PD3JychAebvjfvKmpCbm5uVi9erVZ2iQiop7DalaxVlZWoqioCJWVlWhpaUFRURGKiopQX19vrBMUFITs7GwAhqnVRYsWYcWKFcjOzsb58+cxf/58ODk5Yc6cOXIdBhERWQmrWaTz61//Gtu2bTM+bx0VHjlyBPHx8QCAS5cuoba21lhn6dKluHPnDl5//XXU1NTg+eefx8GDB+Hq6mrR2ImIyPpYTYLcunUrtm7d+sg64qHrXKpUKmRkZCCjzb32iIiIusJqpliJiIgsiQmSiIhIAhMkERGRBCZIIiIiCUyQREREEpggiYiIJDBBEhERSWCCJCIiksAESUREJIEJkoiISAITJBERkQQmSCIiIglMkERERBKYIImIiCQwQRIREUlggiQiIpLABElERCSBCZKIiEgCEyQREZEEJkgiIiIJTJBEREQSmCCJiIgkMEESERFJsJM7AKUTQgAAdDqdxdtubm5GY2MjdDod1Gq1xdu3Ruwz07HPTMc+M52cfdb697v173lXMUE+Rl1dHQAgICBA5kiIiOhp1NXVwd3dvcv1VcLUlNrL6PV6/Oc//4GrqytUKpVF29bpdAgICMDVq1fh5uZm0batFfvMdOwz07HPTCdnnwkhUFdXBz8/P9jYdP3MIkeQj2FjYwN/f39ZY3Bzc+OH0ETsM9Oxz0zHPjOdXH1mysixFRfpEBERSWCCJCIikmCbkZGRIXcQ1DlbW1vEx8fDzo6z4V3FPjMd+8x07DPTWVufcZEOERGRBE6xEhERSWCCJCIiksAESUREJIEJkoiISAITpIIsX74cUVFRcHJygoeHR5e2EUIgIyMDfn5+cHR0RHx8PC5cuGDmSJWjpqYGqampcHd3h7u7O1JTU3H79u1HbhMfHw+VStXukZKSYqGI5fH73/8eAwYMgIODA0aMGIG8vLxH1t+1axdCQkKg0WgQEhKC7OxsC0WqHKb02datWzu8p1QqFe7evWvBiOVz7NgxTJ06FX5+flCpVNizZ89jt8nNzcWIESPg4OCAgQMH4tNPP7VApKZhglSQpqYmvPTSS3jttde6vM2aNWuwbt06bNy4EadPn4aPjw8SExON15Dt6ebMmYOioiLs378f+/fvR1FREVJTUx+73SuvvIKqqirjY/PmzRaIVh5/+ctfsGjRIrzzzjsoLCxETEwMJk2ahMrKSsn6+fn5mD17NlJTU1FcXIzU1FTMmjULJ0+etHDk8jG1zwDDFWLavqeqqqrg4OBgwajl09DQgGHDhmHjxo1dql9WVobk5GTExMSgsLAQv/rVr7Bw4ULs2rXLzJGaSJDibNmyRbi7uz+2nl6vFz4+PmLVqlXGsrt37wp3d3fx6aefmjNERSgpKREAxLfffmssy8/PFwDExYsXO90uLi5OvPHGG5YIURFGjRolXn311XZlQUFB4u2335asP2vWLDFx4sR2ZUlJSSIlJcVsMSqNqX3W1c9sbwBAZGdnP7LO0qVLRVBQULuytLQ0MXr0aHOGZjKOIK1YWVkZqqurMWHCBGOZRqNBXFwcTpw4IWNklpGfnw93d3c8//zzxrLRo0fD3d39scf/xRdfwMvLCz/84Q/x5ptv9tgRd1NTEwoKCtq9RwBgwoQJnfZRfn5+h/pJSUm94j0FPFmfAUB9fT369+8Pf39/TJkyBYWFheYO1Wp19h47c+YMmpubZYqqI+u4nAFJqq6uBgB4e3u3K/f29kZFRYUcIVlUdXU1+vXr16G8X79+xr6RMnfuXAwYMAA+Pj44f/48li1bhuLiYuTk5JgzXFncvHkTLS0tku+RzvqourrapPo9zZP0WVBQELZu3YqwsDDodDps2LABY8eORXFxMQYPHmyJsK1KZ++x+/fv4+bNm/D19ZUpsvY4gjSzjIwMyZP3bR9nzpx5qjYevg2XEMLit+bqTqb0mdRxPu74X3nlFYwfPx6hoaFISUnBzp07cejQIXz33XdmOya5mfoe6WnvqSdhSh+MHj0aP/nJTzBs2DDExMRgx44dGDJkCD7++GNLhGqVpPpXqlxOHEGaWXp6+mNXSGq12ifat4+PDwDDf2Nt/+O6ceNGh//OrElX++zs2bO4fv16h9f++9//mnT8ERERUKvVuHz5MiIiIkyOV8m8vLxga2vbYeTzqPeIj4+PSfV7mifps4fZ2NggMjISly9fNkeIVq+z95idnR369OkjU1QdMUGamZeXF7y8vMyy79ZpwpycHISHhwMwnD/Jzc3F6tWrzdKmJXS1z8aMGYPa2lqcOnUKo0aNAgCcPHkStbW1iIqK6nJ7Fy5cQHNzs2KmdbqTvb09RowYgZycHMyYMcNYnpOTg2nTpkluM2bMGOTk5GDx4sXGsoMHD5rUp9bsSfrsYUIIFBUVISwszFxhWrUxY8bgr3/9a7uygwcPYuTIkVCr1TJFJUHGBUL0kIqKClFYWCgyMzOFi4uLKCwsFIWFhaKurs5YJzAwUOzevdv4fNWqVcLd3V3s3r1bnDt3Tvz4xz8Wvr6+QqfTyXEIFjdx4kQxdOhQkZ+fL/Lz80VYWJiYMmWK8fVr166JwMBAcfLkSSGEEN9//73IzMwUp0+fFmVlZeJvf/ubCAoKEuHh4eL+/ftyHYZZbd++XajVavHZZ5+JkpISsWjRIuHs7CzKy8uFEEKkpqa2W515/PhxYWtrK1atWiVKS0vFqlWrhJ2dXbvVwj2dqX2WkZEh9u/fL65cuSIKCwvFyy+/LOzs7Izvu56urq7O+PcKgFi3bp0oLCwUFRUVQggh3n77bZGammqs/69//Us4OTmJxYsXi5KSEvHZZ58JtVotdu7cKdchSGKCVJB58+YJAB0eR44cMdYBILZs2WJ8rtfrxfvvvy98fHyERqMRsbGx4ty5c5YPXia3bt0Sc+fOFa6ursLV1VXMnTtX1NTUGF8vKytr14eVlZUiNjZWeHp6Cnt7ezFo0CCxcOFCcevWLZmOwDI+QNG+awAABRZJREFU+eQT0b9/f2Fvby8iIiJEbm6u8bW4uDgxb968dvWzsrJEYGCgUKvVIigoSOzatcvCEcvPlD5btGiR+MEPfiDs7e1F3759xYQJE8SJEydkiFoeR44ckfzb1dpH8+bNE3Fxce22OXr0qAgPDxf29vZCq9WKTZs2WT7wx+DtroiIiCRwFSsREZEEJkgiIiIJTJBEREQSmCCJiIgkMEESERFJYIIkIiKSwARJREQkgQmSqBfRarVYv3693GEQWQUmSCKyiK1bt8LDw0PuMIi6jAmSSOGamprkDuGpKekmuERdxQRJpDDx8fFIT0/HkiVL4OXlhcTERABAbW0tfv7zn6Nfv35wc3PDuHHjUFxcbNzuypUrmDZtGry9veHi4oLIyEgcOnTIpLbnz5+P6dOnIzMz09hOWlpauyS9f/9+REdHw8PDA3369MGUKVNw5coV4+vl5eVQqVTYsWMH4uPj4eDggM8//xwvv/wyamtrjff0zMjIeLqOIjIzJkgiBdq2bRvs7Oxw/PhxbN68GUIITJ48GdXV1di3bx8KCgoQERGBhIQE/O9//wMA1NfXIzk5GYcOHUJhYSGSkpIwdepUVFZWmtT24cOHUVpaiiNHjuCrr75CdnY2MjMzja83NDRgyZIlOH36NA4fPgwbGxvMmDEDer2+3X7eeustLFy4EKWlpUhISMD69evh5uaGqqoqVFVV4c0333z6jiIyJ5kvlk5ED4mLixPDhw9vV3b48GHh5uYm7t6926580KBBYvPmzZ3uKyQkRHz88cfG5/379xcfffRRp/XnzZsnPD09RUNDg7Fs06ZNwsXFRbS0tEhuc+PGDQHAeBeZ1juorF+/vl29LVu2CHd3907bJlIajiCJFGjkyJHtnhcUFKC+vh59+vSBi4uL8VFWVmac3mxoaMDSpUsREhICDw8PuLi44OLFiyaPIIcNGwYnJyfj8zFjxqC+vh5Xr14FYJjKnTNnDgYOHAg3NzcMGDAAADq08/AxEFkbO7kDIKKOnJ2d2z3X6/Xw9fXF0aNHO9RtXRn6y1/+EgcOHMCHH36I5557Do6OjnjxxRe7bZGPSqUCAEydOhUBAQH44x//CD8/P+j1eoSGhnZo5+FjILI2TJBEViAiIgLV1dWws7ODVquVrJOXl4f58+djxowZAAznJMvLy01uq7i4GHfu3IGjoyMA4Ntvv4WLiwv8/f1x69YtlJaWYvPmzYiJiQEAfPPNN13ar729PVpaWkyOh0gunGIlsgLjx4/HmDFjMH36dBw4cADl5eU4ceIE3n33XZw5cwYA8Nxzz2H37t0oKipCcXEx5syZ02HhTFc0NTVhwYIFKCkpwd///ne8//77SE9Ph42NDZ555hn06dMHf/jDH/D999/jH//4B5YsWdKl/Wq1WtTX1+Pw4cO4efMmGhsbTY6NyJKYIImsgEqlwr59+xAbG4uf/vSnGDJkCFJSUlBeXg5vb28AwEcffYRnnnkGUVFRmDp1KpKSkhAREWFyWwkJCRg8eDBiY2Mxa9YsTJ061fiVDBsbG2zfvh0FBQUIDQ3F4sWLsXbt2i7tNyoqCq+++ipmz56Nvn37Ys2aNSbHRmRJKiGEkDsIIlKG+fPn4/bt29izZ4/coRDJjiNIIiIiCUyQREREEjjFSkREJIEjSCIiIglMkERERBKYIImIiCQwQRIREUlggiQiIpLABElERCSBCZKIiEgCEyQREZEEJkgiIiIJ/wd4xIAWQGPx7wAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "execution_count": 5, - "metadata": { - "comm_id": "8449fefe-3fc0-4eeb-9c92-e9d398c02632", - "reactive": true - }, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for n in slider(1:20, value=7)\n", - " ω = exp(2π*im/n)\n", - " withfig(fig) do\n", - " for j = 1:n\n", - " z = ω ^ j\n", - " plot([0,real(z)], [0,imag(z)], ls=\"solid\", color=(1,.7,.7))\n", - " plot(real(z), imag(z), \"ro\")\n", - " text(real(z), imag(z), \"\\$\\\\omega_{$n}^{$j}\\$\")\n", - " end\n", - " axis(\"square\")\n", - " grid()\n", - " xlabel(\"real part\")\n", - " ylabel(\"imaginary part\")\n", - " title(\"$n-th roots of unity\")\n", - " xlim(-1.2,1.2)\n", - " ylim(-1.2,1.2)\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "They are called \"roots of unity\" because $\\omega_n^j$ for $j = 0,\\ldots,n-1$ (or $1,\\ldots,n$) are *all* the solutions $z$ to \n", - "\n", - "$$\n", - "z^n = 1 .\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Eigenvectors: The discrete Fourier transform (DFT)\n", - "\n", - "In terms of $\\omega_n$, the eigenvectors of a circulant matrix are easy: the **k-th eigenvector** $x^{(k)}$ ($k=0,\\ldots,n-1$) for **any n×n circulant matrix** is simply\n", - "\n", - "$$\n", - "x^{(k)} = \\begin{pmatrix} \\omega_n^{0k} \\\\ \\omega_n^{1k} \\\\ \\omega_n^{2k} \\\\ \\vdots \\\\ \\omega_n^{(n-1)k} \\end{pmatrix}\n", - "$$\n", - "\n", - "Therefore, the matrix $F$ whose columns are the eigenvectors is:\n", - "\n", - "$$\n", - "F = \\begin{pmatrix} x^{(0)} & x^{(1)} & \\cdots & x^{(n-1)} \\end{pmatrix}\n", - "$$\n", - "\n", - "with entries\n", - "\n", - "$$\n", - "\\boxed{F_{jk} = x^{(k)}_j = \\omega_n^{jk} = e^{\\frac{2\\pi i}{n} jk}}.\n", - "$$\n", - "\n", - "Multiplying a vector by $F$ is called a [discrete Fourier transform (DFT)](https://en.wikipedia.org/wiki/Discrete_Fourier_transform). This is one of the most important matrices in the world! (It is sort of a finite, computer-friendly analogue to a Fourier series if you've seen those before.)\n", - "\n", - "Before we show this, let's try it:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "F (generic function with 1 method)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# define a function to create the n×n matrix F for any n:\n", - "F(n) = [exp((2π*im/n)*j*k) for j=0:n-1, k=0:n-1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The $2\\times2$ and $4\\times 4$ DFT matrices $F$ are quite simple, for example\n", - "$$\n", - "F_{2\\times 2} = \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}\n", - "$$\n", - "\n", - "$$\n", - "F_{4\\times 4} = \\begin{pmatrix} 1 & 1 & 1 & 1 \\\\ 1 & i & -1 & -i \\\\ 1 & -1 & 1 & -1 \\\\ 1 & -i & -1 & i \\end{pmatrix}\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im\n", - " 1.0+0.0im 0.0+1.0im -1.0+0.0im -0.0-1.0im\n", - " 1.0+0.0im -1.0+0.0im 1.0-0.0im -1.0+0.0im\n", - " 1.0+0.0im -0.0-1.0im -1.0+0.0im 0.0+1.0im" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "round.(F(4))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's check that it diagonalizes our $7 \\times 7$ mass-and-spring matrix $A$ from earlier. We should have $F^{-1} A F = \\Lambda$:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Complex{Float64},2}:\n", - " 0.0-0.0im -0.0-0.0im -0.0-0.0im … 0.0-0.0im -0.0-0.0im\n", - " -0.0-0.0im 0.753-0.0im 0.0+0.0im 0.0-0.0im 0.0+0.0im\n", - " -0.0+0.0im 0.0-0.0im 2.445+0.0im -0.0+0.0im 0.0+0.0im\n", - " 0.0+0.0im 0.0+0.0im 0.0-0.0im 0.0-0.0im 0.0+0.0im\n", - " 0.0-0.0im 0.0+0.0im 0.0-0.0im -0.0+0.0im -0.0+0.0im\n", - " -0.0+0.0im 0.0-0.0im 0.0-0.0im … 2.445-0.0im -0.0-0.0im\n", - " 0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0-0.0im 0.753+0.0im" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "round.(inv(F(7)) * A * F(7), 3) # F⁻¹AF = Λ, rounded to 3 digits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compare the diagonal entries to the eigenvalues:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Float64,1}:\n", - " -9.41142e-16\n", - " 0.75302 \n", - " 0.75302 \n", - " 2.44504 \n", - " 2.44504 \n", - " 3.80194 \n", - " 3.80194 " - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Complex{Float64},1}:\n", - " 0.0-1.2326e-32im \n", - " 0.75302-5.32581e-17im\n", - " 2.44504+2.87857e-16im\n", - " 3.80194+1.90437e-16im\n", - " 3.80194+2.12572e-16im\n", - " 2.44504-1.93109e-16im\n", - " 0.75302+4.73147e-17im" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diag(inv(F(7)) * A * F(7)) # diagonal entries" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup!\n", - "\n", - "Since $A$ is real-symmetric, you may wonder why the eigenvectors are not real. But they *could* be *chosen* real. For a real-symmetric circulant matrix, the real and imaginary parts of the eigenvectors are themselves eigenvectors. This is why most of the eigenvalues come in pairs! (The only eigenvalues that don't come in pairs correspond to eigenvectors $x^{(k)}$ that are purely real, e.g. $x^{(0)} = (1,1,\\ldots,1)$.) These real and imaginary eigenvectors turn out to correspond to a [discrete cosine transform (DCT)](https://en.wikipedia.org/wiki/Discrete_cosine_transform) and a [discrete sine transform (DST)](https://en.wikipedia.org/wiki/Discrete_sine_transform)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Derivation and eigenvalues\n", - "\n", - "Why does this work? It's easy to see if we take our formula from above for $Cx$ and multiply it by an eigenvector. Let $y = C x^{(k)}$. Then the ℓ-th component is:\n", - "\n", - "$$\n", - "y_\\ell = \\sum_{j=0}^{n-1} c_{j-\\ell} \\omega_n^{jk} = \\omega_n^{\\ell k} \\sum_{j=0}^{n-1} c_{j-\\ell} \\omega_n^{(j-\\ell)k}\n", - "$$\n", - "\n", - "But the remaining sum is now **independent of ℓ**: because both $c_j$ and $\\omega_n^j$ are periodic in $j$, all $j \\to j - \\ell$ does is to re-arrange the numbers being summed (a circular shift), so you get the **same sum**. And $\\omega_n^{\\ell k} = x^{(k)}$, so we have:\n", - "\n", - "$$\n", - "C x^{(k)} = \\lambda_k x^{(k)}\n", - "$$\n", - "\n", - "where\n", - "\n", - "$$\n", - "\\lambda_k = \\sum_{j=0}^{n-1} c_{j} \\omega_n^{jk}\n", - "$$\n", - "\n", - "But if we define a vector $\\hat{c} = (\\lambda_0, \\lambda_1, \\ldots, \\lambda_{n-1})$, then\n", - "\n", - "$$\n", - "\\hat{c} = F c\n", - "$$\n", - "\n", - "That is, the **eigenvalues are the DFT of c** (where c = first row of C).\n", - "\n", - "Let's check it:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Complex{Float64},1}:\n", - " 0.0+0.0im \n", - " 0.75302+1.11022e-16im\n", - " 2.44504-1.11022e-16im\n", - " 3.80194-6.66134e-16im\n", - " 3.80194-8.88178e-16im\n", - " 2.44504-2.22045e-16im\n", - " 0.75302+8.88178e-16im" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(7) * A[:,1] # DFT of first row/column of A" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Float64,1}:\n", - " -9.41142e-16\n", - " 0.75302 \n", - " 0.75302 \n", - " 2.44504 \n", - " 2.44504 \n", - " 3.80194 \n", - " 3.80194 " - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, they match!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Unitarity\n", - "\n", - "The DFT matrix F is special in many ways. It is symmetric, but *not* Hermitian, so its eigenvalues are *not* real. However, it has **orthogonal columns**, which we can see from $F^H F$ for $n=7$:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Complex{Float64},2}:\n", - " 7.0+0.0im -0.0-0.0im -0.0+0.0im … 0.0+0.0im 0.0+0.0im 0.0+0.0im\n", - " -0.0+0.0im 7.0+0.0im -0.0-0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im\n", - " -0.0-0.0im -0.0+0.0im 7.0+0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im\n", - " 0.0-0.0im -0.0-0.0im -0.0-0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im\n", - " 0.0-0.0im -0.0-0.0im -0.0-0.0im 7.0+0.0im 0.0+0.0im -0.0+0.0im\n", - " 0.0-0.0im 0.0-0.0im 0.0-0.0im … 0.0-0.0im 7.0+0.0im -0.0-0.0im\n", - " 0.0-0.0im 0.0-0.0im 0.0-0.0im -0.0-0.0im -0.0+0.0im 7.0+0.0im" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "round.(F(7)' * F(7), 3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(It is a straightforward exercise to show this, e.g. using the [geometric-series](https://en.wikipedia.org/wiki/Geometric_series) summation formula.)\n", - "\n", - "The columns are orthogonal but not orthonormal because they have length $\\sqrt{n}$ (the lengths squared are $n$, which is what shows up on the diagonal of $F^H F$ above). But this means that if we divide by their length, then:\n", - "\n", - "$$\n", - "\\frac{1}{\\sqrt{n}} F\n", - "$$\n", - "\n", - "is a **unitary** matrix. Equivalently:\n", - "\n", - "$$\n", - "F^{-1} = \\frac{1}{n} F^H = \\frac{1}{n} \\bar{F},\n", - "$$\n", - "\n", - "where we have used the fact that $F^T = F$. This is the **inverse discrete Fourier transform (IDFT)**.\n", - "\n", - "Note that this means that **every circulant matrix C has orthogonal eigenvectors** (the columns of F). (Even if the matrix C is not Hermitian or one of the similar cases we have seen so far!)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fast Fourier transforms (FFTs)\n", - "\n", - "The product $Fx$ for a vector $x$ is the DFT of $x$. At first glance, it seems like it would require $\\sim n^2$ operations ($n$ dot products) like any other matrix–vector multiplication. \n", - "\n", - "One of the most amazing facts of computational science is that it is possible to compute the DFT $Fx$ in only $\\sim n \\log n$ operations (and $\\sim n$ storage), by a [fast Fourier transform (FFT) algorithm](https://en.wikipedia.org/wiki/Fast_Fourier_transform). FFT algorithms mean that DFTs and circulant matrices become practical to deal with even for huge $n$, and are are the **core of a huge number of practical computational algorithms**.\n", - "\n", - "(From a linear-algebra viewpoint, it turns out that the \"dense\" matrix $F$ factors into a **product** of $\\sim \\log n$ **sparse** matrices.)\n", - "\n", - "FFTs aren't too complicated to understand (the simplest ones can be derived in a few lines of algebra), but they are a bit outside the scope of 18.06. But `fft(x)` functions are available in Julia and in every other computational-science environment:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Complex{Float64},1}:\n", - " 0.0+0.0im\n", - " 0.75302+0.0im\n", - " 2.44504+0.0im\n", - " 3.80194+0.0im\n", - " 3.80194+0.0im\n", - " 2.44504+0.0im\n", - " 0.75302+0.0im" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fft(A[:,1]) # computes the same thing as F(7) * A[:,1], but much faster" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But now that we know that $F$ diagonalizes any circulant matrix, it leads to an amazing fact: **you can multiply Cx for any circulant matrix in ~ n log n operations and ~ n storage**. \n", - "\n", - "Specifically, $C = F \\Lambda F^{-1} = F \\frac{\\Lambda}{n} \\bar{F}$, so to multiply $Cx$ we just need to:\n", - "\n", - "1. Multiply $\\hat{x} = \\bar{F} x$. This can be done by an (inverse) FFT in $\\sim n log n$ operations.\n", - "\n", - "2. Multiply each component of $\\hat{x}$ by the eigenvalues $\\lambda_k/n$. The eigenvalues can be computed by multiply $F$ by the first row of $C$, which can be done by an FFT in $\\sim n \\log n$ operations.\n", - "\n", - "3. Multiply by $F$ via another FFT in $\\sim n \\log n$ operations.\n", - "\n", - "This means that **circulant matrices are perfectly suited to iterative solver algorithms** (e.g. the power method or steepest-descent), just like sparse matrices!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A personal note\n", - "\n", - "FFTs are near and dear to your instructor's heart — 20 years ago, partially for my final project in Prof. Alan Edelman's class 18.337, I developed a library for FFTs along with a friend of mine, [Matteo Frigo](https://www.linkedin.com/in/matteo-frigo-851212/). Being arrogant MIT graduate students, we called it [FFTW: The Fastest Fourier Transform in the West](http://fftw.org/). Fortunately, FFTW somewhat lived up to its name, and it is now the FFT library in Matlab, in Julia, and in many other software packages.\n", - "\n", - "![FFTW logo](http://fftw.org/fftw-logo-med.gif)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.0", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Complexity.ipynb b/lectures/Complexity.ipynb deleted file mode 100644 index b8f0bc2d..00000000 --- a/lectures/Complexity.ipynb +++ /dev/null @@ -1,305 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Complexity of Matrix Operations\n", - "\n", - "With a little effort, we can figure out that the **number of arithmetic operations** for an $n\\times n$ matrix **scales proportional to** (for large $n$):\n", - "\n", - "* $n^2$ for: matrix `*` vector $Ax$, or solving a *triangular* system like $Ux=c$ or $Lc=b$ (back/forward substitution)\n", - "* $n^3$ for: matrix `*` matrix $AB$, LU factorization $PA=LU$, or solving a triangular system with $n$ right-hand sides like computing $A^{-1}$ from the LU factorization.\n", - "\n", - "(In computer science, we would say that these have “complexity” $\\Theta(n^2)$ and $\\Theta(n^3)$, respectively.\n", - "\n", - "Let's see how these predictions match up to reality:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mPackage BenchmarkTools is already installed\n", - "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mMETADATA is out-of-date — you may not have the latest version of BenchmarkTools\n", - "\u001b[39m\u001b[1m\u001b[36mINFO: \u001b[39m\u001b[22m\u001b[36mUse `Pkg.update()` to get the latest versions of your packages\n", - "\u001b[39m" - ] - } - ], - "source": [ - "Pkg.add(\"BenchmarkTools\") # a useful package for benchmarking\n", - "using BenchmarkTools, Compat" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Measure the time for LU factorization of 10×10, 100×100, 500×500, 1000×1000, and 2000×2000 random real (double precision) matrices:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 1.179e-6 \n", - " 0.000151663\n", - " 0.00376315 \n", - " 0.0254582 \n", - " 0.165803 " - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = [10,100,500,1000,2000]\n", - "LinAlg.BLAS.set_num_threads(1) # benchmarking on multiple cores is weird\n", - "t = [@belapsed(lufact($(rand(n,n))), evals=1) for n in n]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's plot it on a log–log scale to see if it is the expected $n^3$ power law:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHJCAYAAABkJibBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdcVfX/wPHXZQsKiIPEAalpTlTEgRNJFPtqrlw508xC05+ae6dpaWUm+E0tTUsFzcxc5EBxb8ykcqG4cSBTGZfz++N8uYmIIusA9/18PO7Dzud87jnve8Du28/UKYqiIIQQQghhxEy0DkAIIYQQQmuSEAkhhBDC6ElCJIQQQgijJwmREEIIIYyeJERCCCGEMHqSEAkhhBDC6ElCJIQQQgijJwmREEIIIYyeJERCCCGEMHqSEAmRDw4dOsSMGTN4+PBhhnOtW7emdevW+R/Uc+zevZuGDRtiY2ODTqdj06ZNeXavK1euoNPpWLBgwXPr6XQ6hg8f/sxzGzZsQKfTsXfv3hfeLyAggFq1alGsWDF0Oh2hoaHZCTtTN2/eZMaMGbl+3TQzZsxAp9PlybUB1qxZw8KFC595TqfTMWPGjDy7txBaMtM6ACGMwaFDh5g5cyYDBw7E3t4+3Tl/f3+Nono2RVHo0aMH1apVY/PmzdjY2FC9enWtw8oVd+/epV+/frRv3x5/f38sLS2pVq1art7j5s2bzJw5ExcXF+rVq5er1wYYMmQI7du3z/XrplmzZg1//vkno0aNynDu8OHDVKhQIc/uLYSWJCESQmM1a9bUOoR0bt68yYMHD+jSpQteXl65cs1Hjx5hZWWVpy0bWXH+/HmSk5Pp27cvrVq10jSWl5WQkIC1tTUVKlTQLClp0qSJJvcVIj9Il5kQeWzGjBl8/PHHALz66qvodLp03TtPd5mldSHNnz+fzz77DBcXF4oVK0br1q0NX+gTJkzAyckJOzs7unTpQmRkZIb7BgQE0LRpU2xsbChevDjt2rXj9OnTL4w17ct2/Pjx6HQ6XFxcDOcPHDiAl5cXJUqUwNraGg8PD7Zu3ZruGitXrkSn0/H777/z7rvvUqZMGaytrUlMTMzG08s9AwcOpHnz5gD07NkTnU5neO4nTpygV69ehmft4uJC7969uXr1aobr3Lhxg6FDh1KxYkUsLCxwcnKie/fu3Llzh7179+Lu7g7AoEGDDD/rJ7uZNm/eTNOmTbG2tqZEiRK0bduWw4cPp7tHWrfYqVOn6N69OyVLlqRKlSrpzqVJe97Pej35e+Xn50fLli0pW7YsNjY21KlTh88//5zk5GRDndatW7N161auXr2a7jppntVl9ueff/LWW29RsmRJrKysqFevHj/88EO6Onv37kWn07F27VomT56Mk5MTtra2vPHGG/zzzz8v+MkJkT+khUiIPDZkyBAePHjAN998w8aNGylXrhzw4pYhPz8/6tati5+fHw8fPmTMmDF07NiRxo0bY25uzvfff8/Vq1cZO3YsQ4YMYfPmzYb3fvrpp0yZMoVBgwYxZcoUkpKSmD9/Pi1atODYsWOZ3nvIkCG4urrStWtXRowYQZ8+fbC0tARg3759tG3blrp16/Ldd99haWmJv78/HTt2ZO3atfTs2TPdtd59913efPNNVq9eTXx8PObm5jl5jDk2depUGjVqhK+vL59++imenp7Y2toCahJavXp1evXqhYODA7du3WLJkiW4u7sTFhZG6dKlATUZcnd3Jzk5mUmTJlG3bl3u379PUFAQUVFRNGjQgBUrVhie+5tvvglgSDLXrFnDO++8g7e3N2vXriUxMZHPP/+c1q1bs3v3bkPClqZr16706tWLYcOGER8f/8zP9eabb2ZIqA4fPszo0aOpVauWoezSpUv06dOHV199FQsLC86cOcOcOXP4+++/+f777wG1+3bo0KFcunSJX3755YXP9J9//sHDw4OyZcuyaNEiSpUqxY8//sjAgQO5c+cO48aNS1d/0qRJNGvWjOXLlxMTE8P48ePp2LEjf/31F6ampi+8nxB5ShFC5Ln58+crgBIeHp7hXKtWrZRWrVoZjsPDwxVAcXV1VfR6vaF84cKFCqB06tQp3ftHjRqlAEp0dLSiKIoSERGhmJmZKSNGjEhXLzY2VnnllVeUHj16PDfWtPvPnz8/XXmTJk2UsmXLKrGxsYaylJQUpXbt2kqFChWU1NRURVEUZcWKFQqg9O/f/7n3edH9ngYovr6+zzy3fv16BVCCg4Ofe43g4GAFUNavX//ceikpKUpcXJxiY2OjfP3114byd999VzE3N1fCwsIyfe/x48cVQFmxYkW6cr1erzg5OSl16tRJ93ONjY1VypYtq3h4eBjKpk+frgDKtGnTMlw/7Vxm/v77b6VUqVKKp6enkpiY+Mw6er1eSU5OVlatWqWYmpoqDx48MJx78803FWdn52e+D1CmT59uOO7Vq5diaWmpREREpKvn4+OjWFtbKw8fPlQU5d/n3qFDh3T1AgMDFUA5fPhwpp9HiPwiXWZCFFAdOnTAxOTfv6I1atQAMLQ6PF0eEREBQFBQECkpKfTv35+UlBTDy8rKilatWmVpJtbT4uPjOXr0KN27d6d48eKGclNTU/r168f169czdH1069btpe+jlbi4OMaPH0/VqlUxMzPDzMyM4sWLEx8fz19//WWot337djw9PQ3P/GX8888/3Lx5k379+qX7uRYvXpxu3bpx5MgREhIS0r3nZZ/h7du3ad++PeXKleOXX37BwsLCcO706dN06tSJUqVKYWpqirm5Of3790ev13P+/PmX/jwAe/bswcvLi4oVK6YrHzhwIAkJCRlarjp16pTuuG7dugDP7JoUIr9Jl5kQBZSDg0O647Qvt8zKHz9+DMCdO3cADGNZnvbkl3FWRUVFoSiKobvvSU5OTgDcv38/Xfmz6uaEqakper3+medSUlIAst0t16dPH3bv3s3UqVNxd3fH1tYWnU5Hhw4dePTokaHe3bt3sz2gOe35ZPYMU1NTiYqKwtra2lD+Ms8wNjaWDh06kJyczPbt27GzszOci4iIoEWLFlSvXp2vv/4aFxcXrKysOHbsGL6+vuk+48t+ppf5nShVqlS647Tu2OzeX4jcJAmREEVM2niXDRs24OzsnCvXLFmyJCYmJty6dSvDuZs3b6a7b5rcnlHm6OjIjRs3nnkurdzR0fGlrxsdHc2WLVuYPn06EyZMMJQnJiby4MGDdHXLlCnD9evXX/oe8G8ykNkzNDExoWTJkunKs/oMk5OT6datG5cuXWL//v0ZkrZNmzYRHx/Pxo0b0/1O5HStpFKlSr3U74QQBZl0mQmRD/LzX8Lt2rXDzMyMS5cu0bBhw2e+XpaNjQ2NGzdm48aN6T5DamoqP/74IxUqVMj19Xye9sYbbxAcHMzdu3fTlSuKwvr163FxcaFq1aovfV2dToeiKIafUZrly5dnaJHy8fEhODj4uTOjMvtZV69enfLly7NmzRoURTGUx8fH8/PPPxtmnmXH4MGD2bt3Lxs3bjR0Qz0pLbF68jMqisKyZcueGX9Wf0+9vLzYs2ePIQFKs2rVKqytrWWavihUpIVIiHxQp04dAL7++msGDBiAubk51atXp0SJErl+LxcXF2bNmsXkyZO5fPky7du3p2TJkty5c4djx45hY2PDzJkzX/q6c+fOpW3btnh6ejJ27FgsLCzw9/fnzz//ZO3atTluETp79iwbNmzIUO7u7o6zszPTpk3jt99+o3HjxkyYMIHXXnuN27dvs2zZMo4fP05gYGC27mtra0vLli2ZP38+pUuXxsXFhX379vHdd99lWERz1qxZbN++nZYtWzJp0iTq1KnDw4cP2bFjB6NHj+b111+nSpUqFCtWjJ9++okaNWpQvHhxnJyccHJy4vPPP+edd97hP//5D++//z6JiYnMnz+fhw8fMm/evGzFP3/+fFavXs2IESOwsbHhyJEj6T5bzZo1adu2LRYWFvTu3Ztx48bx+PFjlixZQlRUVIbr1alTh40bN7JkyRLc3NwwMTHJNImePn06W7ZswdPTk2nTpuHg4MBPP/3E1q1b+fzzz9N12wlR4Gk6pFsIIzJx4kTFyclJMTExSTcjKrNZZk/PuspshlTarK7jx4+nK9+0aZPi6emp2NraKpaWloqzs7PSvXt3ZdeuXc+N83mzvvbv36+0adNGsbGxUYoVK6Y0adJE+e2337IUz4vul9nrydlaFy5cUPr27auUK1dOMTMzU+zt7RVvb29l9+7dWbpXZs/w+vXrSrdu3ZSSJUsqJUqUUNq3b6/8+eefirOzszJgwIB0da9du6a8++67yiuvvKKYm5srTk5OSo8ePZQ7d+4Y6qxdu1Z5/fXXFXNz8wwzszZt2qQ0btxYsbKyUmxsbBQvLy/l4MGD6e6RNpPs7t27GT7D07PMBgwYkOmze/L36rffflNcXV0VKysrpXz58srHH3+sbN++PcPsvAcPHijdu3dX7O3tFZ1Ol+5eT38WRVGUs2fPKh07dlTs7OwUCwsLxdXVNcMMu8yee9rP/un6QmhBpyhPtN0KIYQQQhghGUMkhBBCCKMnCZEQQgghjJ4kREIIIYQwepIQCSGEEMLoSUIkhBBCCKMnCZEQQgghjJ4szJiJ1NRUbt68SYkSJXJ9CwIhhBBC5A1FUYiNjcXJyeml9m6UhCgTN2/ezLCDsxBCCCEKh2vXrr3UZsySEGUibUuFa9euYWtrq3E0QgghhMiKmJgYKlas+NJbI0lClIm0bjJbW1tJiIQQQohC5mWHu8igaiGEEEIYPUmIhBBCCGH0pMssB1JTU0lKStI6jELH3NwcU1NTrcMQQgghDIpEQtSlSxf27t2Ll5cXGzZsMJRv2bKFMWPGkJqayvjx4xkyZEiu3TMpKYnw8HBSU1Nz7ZrGxN7enldeeUWWNBBCCFEg6BRFUbQOIqeCg4OJi4vjhx9+MCREKSkp1KxZk+DgYGxtbWnQoAFHjx7FwcEhS9eMiYnBzs6O6OjoDIOqFUUhIiKC5OTkl17nwNgpikJCQgKRkZHY29tTrlw5rUMSQghRhDzv+/t5ikQLkaenJ3v37k1XduzYMWrVqkX58uUB6NChA0FBQfTu3TvH90tJSSEhIQEnJyesra1zfD1jU6xYMQAiIyMpW7asdJ8JIYTQnOZNGyEhIXTs2BEnJyd0Oh2bNm3KUMff359XX30VKysr3Nzc2L9//wuve/PmTUMyBFChQgVu3LiRKzHr9XoALCwscuV6xigtkUxOTtY4EiGEEKIAJETx8fG4urqyePHiZ54PCAhg1KhRTJ48mdOnT9OiRQt8fHyIiIh47nWf1ROY2+NVZPxL9smzE0IIUZBo3mXm4+ODj49Ppue//PJLBg8ebBgQvXDhQoKCgliyZAlz587N9H3ly5dP1yJ0/fp1GjdunGn9xMREEhMTDccxMTEv8zGEEEIIUYhp3kL0PElJSZw8eRJvb+905d7e3hw6dOi5723UqBF//vknN27cIDY2lm3bttGuXbtM68+dOxc7OzvDS/YxE0IIIYxHgU6I7t27h16vx9HRMV25o6Mjt2/fNhy3a9eOt99+m23btlGhQgWOHz+OmZkZX3zxBZ6entSvX5+PP/6YUqVKZXqviRMnEh0dbXhdu3Ytzz5XGr0e9u6FtWvVP/83NClf7d27F51Ox8OHD/P/5kIIIUQBoXmXWVY8Pd5EUZR0ZUFBQc98X6dOnejUqVOW7mFpaYmlpSV+fn74+fkZBk7nlY0bYeRIuH7937IKFeDrr6Fr17y7b+vWralXrx4LFy4EwMPDg1u3bmFnZ5d3NxVCCCEKuALdQlS6dGlMTU3TtQaBOl376Vaj3OLr60tYWBjHjx/Pk+uDmgx1754+GQK4cUMt37gxz26dgYWFhSyQKIQQwugV6ITIwsICNzc3du7cma58586deHh45Mk9/fz8qFmzJu7u7ll+j6JAfHzWXjEx8NFH6nuedR1QW45iYrJ2vZdZVnPgwIHs27ePr7/+Gp1Oh06nY+XKlem6zFauXIm9vT1btmyhevXqWFtb0717d+Lj4/nhhx9wcXGhZMmSjBgxIl0rWlJSEuPGjaN8+fLY2NjQuHHjDGtDCSGEEAWV5l1mcXFxXLx40XAcHh5OaGgoDg4OVKpUidGjR9OvXz8aNmxI06ZNWbp0KREREQwbNixP4vH19cXX19ew0mVWJCRA8eK5c39FUVuOstqDFRcHNjZZq/v1119z/vx5ateuzaxZswA4d+5chnoJCQksWrSIdevWERsbS9euXenatSv29vZs27aNy5cv061bN5o3b07Pnj0BGDRoEFeuXGHdunU4OTnxyy+/0L59e86ePctrr72WtQCFEEIUWUeOHGH8+PFs2rSJkiVLah1ORorGgoODFSDDa8CAAYY6fn5+irOzs2JhYaE0aNBA2bdvX57HFR0drQBKdHR0hnOPHj1SwsLClEePHimKoihxcYqipjL5/4qLe7nP1apVK2XkyJGG47TnHxUVpSiKoqxYsUIBlIsXLxrqvP/++4q1tbUSGxtrKGvXrp3y/vvvK4qiKBcvXlR0Op1y48aNdPfy8vJSJk6c+Mw4nn6GQgghiia9Xq98/vnnipmZmQIovr6+eXq/531/P4/mLUStW7d+5iKKT/rwww/58MMP8yWe7AyqtrZWW2qyIiQEOnR4cb1t26Bly6zdO7dZW1tTpUoVw7GjoyMuLi4Uf6IZzNHRkcjISABOnTqFoihUq1Yt3XUSExOfO7NPCCFE0Xbv3j0GDBjAtm3bAOjZsyeffvqpxlE9m+YJUUGTnS4znS7r3Vbe3upsshs3nj3+R6dTz3t7g1ZbfJmbmz8Vk+6ZZampqQCkpqZiamrKyZMnM+xLVjy3+hKFEEIUKvv376d3797cuHEDS0tLFi1axHvvvVdgJ/FIQpTPTE3VqfXdu6vJz5NJUdrvyMKFeZcMWVhY5PqSAvXr10ev1xMZGUmLFi1y9dpCCCEKn59//pmePXui1+upVq0a69evp27dulqH9VwFepaZFrIzy+xlde0KGzbAE3vPAmrL0IYNebsOkYuLC0ePHuXKlSvcu3fP0MqTE9WqVeOdd96hf//+bNy4kfDwcI4fP85nn31maCYVQghhPDw9PSlfvjx9+/bl5MmTBT4ZAkmIMsiPdYhATXquXIHgYFizRv0zPDxvkyGAsWPHYmpqSs2aNSlTpswLN8nNqhUrVtC/f3/GjBlD9erV6dSpE0ePHpUtUIQQwkicO3fOMCbYwcGB48ePs2rVqkIzdEKnvGhEs5FKG0MUHR2Nra1tunOPHz8mPDycV199FSsrK40iLNzkGQohRNGg1+uZPXs2s2bNYunSpQwePFjTeJ73/f080kIkhBBCiGy5ffs23t7ezJgxg9TUVE6dOqV1SNkmCdFT8mMMkRBCCFHY7dq1C1dXV/bs2YONjQ2rVq3Cz89P67CyTRKip+TXGCIhhBCiMEpJSWHKlCl4e3sTGRlJnTp1OHHiBP369dM6tByRhEgIIYQQWXbq1Ck+/fRTFEVh6NChHD16lNdff13rsHJM1iESQgghRJY1atSIuXPn4uzsTK9evbQOJ9dIC5EQQgghMpWcnMzUqVO5cOGCoWz8+PFFKhkCSYgykEHVQgghhCoiIoJWrVoxe/ZsevbsSUpKitYh5RlJiJ4ig6qFEEII2Lx5M/Xq1ePw4cPY2toyadIkzMyK7kgbSYiEEEIIYZCUlMTo0aN56623iIqKomHDhpw+fZru3btrHVqeKrqpnhBCCCFeSmRkJB07duTYsWMAjBo1is8++wwLCwuNI8t70kIk0omNjcXd3Z169epRp04dli1bpnVIQggh8knJkiXR6XTY29uzadMmvvrqK6NIhkBaiMRTrK2t2bdvH9bW1iQkJFC7dm26du1KqVKltA5NCCFEHkhMTMTExARzc3PMzc0JDAxEURScnZ21Di1fSQvRU4x9lpmpqSnW1taAugGrXq9H9v8VQoii6eLFi3h4eDBlyhRDWaVKlYwuGQJJiDKQWWbw8OFDXF1dqVChAuPGjaN06dJahySEECKXBQYG0qBBA06dOsX333/PgwcPtA5JU5IQiQzs7e05c+YM4eHhrFmzhjt37mgdkhBCiFzy6NEjPvjgA3r27ElsbCzNmzfn9OnTODg4aB2apiQhMjIXL15Ep9OxdetWvLy8sLa2pnr16hw9ejRDXUdHR+rWrUtISIgGkQohhMht//zzD02aNOG///0vOp2OSZMmERwcTIUKFbQOTXOSEBmZM2fOoNPp+OKLL5gyZQpnzpyhUqVKTJgwAYA7d+4QExMDQExMDCEhIVSvXl3LkIUQQuSCx48f07p1a/744w/KlCnDjh07mDNnTpFebPFlyFPIRfHx8ZmeMzU1xcrKKkt1TUxMKFas2Avr2tjYvHSMZ86cwc7OjoCAAMqUKQNA586dWbJkCQDXr19n8ODBKIqCoigMHz6cunXrvvR9hBBCFCxWVlYsWLCA5cuX89NPP+Hk5KR1SAWKJES5qHjx4pme69ChA1u3bjUcly1bloSEhGfWbdWqFXv37jUcu7i4cO/evQz1sjP768yZM3Ts2NGQDAFcvnyZqlWrAuDm5kZoaOhLX1cIIUTBExYWRnR0NE2bNgXgnXfeoXfv3piYSAfR0+SJGJkzZ84Y/mKkOX36NPXq1dMoIiGEEHlh5cqVuLu7061bNyIjIw3lkgw9m7QQ5aK4uLhMz5mamqY7fvKX82lP/7JeuXIlR3GliY6O5urVq9SvXz9deWhoKB999FGu3EMIIYS24uLi8PX1ZdWqVQA0a9ZM44gKB0mInuLn54efnx96vf6l3/syY3ryqu7znDlzBlNTU1xdXQ1lV69eJSoqSlqIhBCiCDh79iw9evTg77//xsTEhFmzZjFx4kRpFcoCeUJPKcoLM545c4bXX3893YDt06dPY29vj4uLi3aBCSGEyBFFUVi2bBmNGjXi77//xsnJieDgYCZPnizJUBbJUzIiI0aM4M8//0xX1rlzZ6KiojSKSAghRG7Zs2cPjx8/pn379oSGhtKyZUutQypUpMtMCCGEKKQURUGn06HT6fj2229p0aIFw4YNk1ahbJAnJoQQQhQyiqLg7+9Pnz59DEuw2Nra8uGHH0oylE3SQiSEEEIUItHR0QwZMoQNGzYA0KtXL9566y2Noyr8JCESQgghCokTJ07Qo0cPwsPDMTc357PPPqNTp05ah1UkSEIkhBBCFHCKorBo0SI+/vhjkpOTcXFxISAggEaNGmkdWpEhHY05kJ2tM4RKnp0QQmTd8OHDGTVqFMnJyXTt2pXTp09LMpTLinRCtGDBAmrVqkXt2rX58ccfc+26aatOJyUl5do1jU3aPm7m5uYaRyKEEAXfO++8g7W1Nd988w0bNmzA3t5e65CKnCLbZXb27FnWrFnDyZMnAfDy8uI///lPrvwSmZmZYW1tzd27dzE3N5cR/S9BURQSEhKIjIzE3t4+w5YmQgghIDU1lXPnzlGnTh0APDw8uHr1KqVLl9Y4sqKryCZEf/31Fx4eHlhZWQFQr149duzYQa9evXJ8bZ1OR7ly5QgPD+fq1as5vp4xsre355VXXtE6DCGEKHDu37/PgAED2LNnD8ePH6dWrVoAkgzlsQKbEIWEhDB//nxOnjzJrVu3+OWXX+jcuXO6Ov7+/syfP59bt25Rq1YtFi5cSIsWLQCoXbs2M2fO5OHDh4C6gmflypVzLT4LCwtee+016TbLBnNzc2kZEkKIZzhw4AC9e/fm+vXrWFpacu7cOUNCJPJWgU2I4uPjcXV1ZdCgQXTr1i3D+YCAAEaNGoW/vz/NmjXj22+/xcfHh7CwMCpVqkTNmjX56KOPaNOmDXZ2dri7u2NmlvnHTUxMJDEx0XAcExPzwhhNTEwMLVBCCCFEdqWmpvLZZ58xdepU9Ho91apVIzAwMN1m3CJv6ZRCMN1Hp9NlaCFq3LgxDRo0YMmSJYayGjVq0LlzZ+bOnZvhGkOGDKFLly68+eabz7zHjBkzmDlzZoby6OhobG1tc+FTCCGEEBlFRkbSv39/goKCAOjbty9LliyhePHiGkdWOMXExGBnZ/fS39+FcjRwUlISJ0+exNvbO125t7c3hw4dMhxHRkYC8M8//3Ds2DHatWuX6TUnTpxIdHS04XXt2rW8CV4IIYR4wooVKwgKCqJYsWJ89913rFq1SpIhDRTYLrPnuXfvHnq9HkdHx3Tljo6O3L5923DcuXNnHj58iI2NDStWrHhul5mlpSWWlpZ5FrMQQgjxLGPHjuXSpUuMHDlSxgtpqFAmRGl0Ol2647Rdf9M82VqUVX5+fvj5+aHX63McnxBCCPG027dvM2fOHBYsWIClpSWmpqYsXbpU67CMXqFMiEqXLo2pqWm61iBQu8iebjV6Wb6+vvj6+hr6IIUQQojcsnv3bt555x3u3LmDubk5X375pdYhif8plGOILCwscHNzY+fOnenKd+7ciYeHR46u7efnR82aNXF3d8/RdYQQQog0KSkpTJs2jbZt23Lnzh3q1KnD0KFDtQ5LPKHAthDFxcVx8eJFw3F4eDihoaE4ODhQqVIlRo8eTb9+/WjYsCFNmzZl6dKlREREMGzYsBzdV1qIhBBC5KYbN27Qp08fQkJCABg6dCgLFy6kWLFiGkcmnlRgE6ITJ07g6elpOB49ejQAAwYMYOXKlfTs2ZP79+8za9Ysbt26Re3atdm2bRvOzs5ahSyEEEKkc+DAAbp06cK9e/coXrw4y5Yty5UdE0TuKxTrEOWnJwdVnz9/XtYhEkIIkW3h4eHUr1+fypUrExAQwGuvvaZ1SEVedtchkoQoE9l9oEIIIYxbbGwsJUqUMByfOnWKmjVrys4G+cSoFmYUQgghCqItW7ZQuXJltm/fbihr0KCBJEOFgCRET5FZZkIIIV5WUlISY8aMoWPHjty7d49vvvlG65DES5Ius0xIl5kQQoisuHLlCr169eLo0aMAjBo1innz5snuBxrJ7vd3gZ1lJoQQQhR0mzZtYtCgQTx8+BB7e3tWrlzJW2+9pXVYIhskIRJCCCEsScF2AAAgAElEQVSy4cSJE3Tp0gWAJk2asG7dOln6pRCThOgpspeZEEKIrGjYsCGDBw/GwcGBOXPmYG5urnVIIgdkDFEmZAyREEKIp23cuJEWLVpQpkwZIOOm4kJ7Mu1eCCGEyCOPHz/mgw8+oFu3bvTr14/U1FQASYaKEOkyE0IIIZ7j/Pnz9OjRgzNnzqDT6XBzcyM1NRUTE2lTKEokIRJCCCEy8dNPP/H+++8THx9PmTJl+PHHH/H29tY6LJEHJL19iizMKIQQIiEhgffee4++ffsSHx9P69atCQ0NlWSoCJNB1ZmQQdVCCGG8YmJiaNCgAZcvX2batGlMnToVU1NTrcMSWSALMwohhBA5lDZrzNbWlsDAQKKiovDy8tI6LJEPJCESQghh9OLj4/H19aVhw4YMHz4cUDdlFcZDxhAJIYQwamfPnqVhw4b88MMPjBs3jrt372odktCAJERCCCGMkqIoLF++nEaNGvH333/j5OTEjh07DIsuCuMiCdFTZJaZEEIUfbGxsfTt25f33nuPx48f0759e0JDQ2nZsqXWoQmNyCyzTMgsMyGEKJqSkpKoX78+YWFhmJqa8umnnzJ27FhZaLGIkK07hBBCiCywsLCgX79+VKxYkZCQEMaNGyfJkJAWosxIC5EQQhQd0dHR3L9/n8qVKwOQmppKTEwM9vb2Gkcmcpu0EAkhhBDPcOLECRo0aECnTp1ISEgAwMTERJIhkY4kREIIIYokRVFYtGgRHh4eXL58mbi4OK5du6Z1WKKAkoRICCFEkRMVFUW3bt0YOXIkycnJdOnShdOnT1O9enWtQxMFlKxULYQQokg5evQoPXv25OrVq1hYWLBgwQKGDx+OTqfTOjQB6PWwfz/cugXlykGLFlAQtomThOgpfn5++Pn5odfrtQ5FCCFENkyZMoWrV69SuXJlAgMDcXNz0zok8T8bN8LIkXD9+r9lFSrA119D167axQUyyyxTMstMCCEKp5s3bzJz5kw+//xz7OzstA5H/M/GjdC9OzyddaQ13G3YkDtJUXa/vyUhyoQkREIIUTgcPHiQ4OBgpkyZonUoIhN6Pbi4pG8ZepJOp7YUhYfnvPtMpt0LIYQwKqmpqcybN49WrVoxdepUtm7dqnVIIhP792eeDIHaanTtmlpPKzKGSAghRKFz9+5d+vfvz44dOwB45513ZB+yAuzWrdytlxckIRJCCFGo7Nu3jz59+nDz5k2KFSvG4sWLGTRokMwiK8DKlMlavXLl8jaO55EuMyGEEIXGl19+SZs2bbh58yY1atTg2LFjvPvuu5IMFWB//gnjxj2/jk4HFSuqU/C1IgmREEKIQsPZ2ZnU1FQGDhzI8ePHqV27ttYhiUykpMDcueDmBqdPg42NWv507pp2vHChtusRSUIkhBCiQIuJiTH8d7du3Th69CgrVqzAJu0bVhQ4YWHg4QGTJkFSEnTsCBcuwM8/Q/ny6etWqJB7U+5zQhIiIYQQBZJer2fatGlUq1aNmzdvGsobNWqkYVTiefR6mD8fGjSA48fB3h5WrYJff1XHB3XtCleuQHAwrFmj/hkern0yBEU8Ifrqq6+oVasWNWvW5KOPPkKWXBJCiMLh5s2beHl58cknn3Dnzh0CAwO1Dkm8wD//QPPm6nihxETo0AHOnYN+/dJ3k5maQuvW0Lu3+mdB2LYDinBCdPfuXRYvXszJkyc5e/YsJ0+e5MiRI1qHJYQQ4gWCgoJwdXVl3759FC9enJ9++olRo0ZpHZbIhF4PX30F9erBkSNgawsrVsCWLeDkpHV0WVekp92npKTw+PFjAJKTkylbtqzGEQkhhMhMSkoKU6dOZd68eQDUq1ePgIAAqlWrpnFkIjMXLsCgQXDwoHrcrh0sW6bOGCtsCmwLUUhICB07dsTJyQmdTsemTZsy1PH39+fVV1/FysoKNzc39j+xxGWZMmUYO3YslSpVwsnJiTfeeIMqVark50cQQgjxEhYsWGBIhj788EMOHz4syVABlZoKixaBq6uaDJUooSZC27cXzmQICnBCFB8fj6urK4sXL37m+YCAAEaNGsXkyZM5ffo0LVq0wMfHh4iICACioqLYsmULV65c4caNGxw6dIiQkJBM75eYmEhMTEy6lxBCiPwzYsQImjZtyvr16/Hz88PKykrrkMQzXL4Mnp7qrvWPHoGXF5w9C0OGZJxSX5gU2ITIx8eH2bNn0zWToedffvklgwcPZsiQIdSoUYOFCxdSsWJFlixZAsCuXbuoWrUqDg4OFCtWjDfffPO5Y4jmzp2LnZ2d4VWxsKa4QghRSCQlJbF8+XJSU1MBsLGx4eDBg3Tv3l3jyMSzpKaCnx/UrQshIeq6QkuWwM6d4OysdXQ5V2AToudJSkri5MmTeHt7pyv39vbm0KFDAFSsWJFDhw7x+PFj9Ho9e/fupXr16plec+LEiURHRxte165dy9PPIIQQxuzKlSu0bNmS9957jwULFhjKZcXpgunKFXjjDRg+HOLj1dlhZ8/CsGGFu1XoSYUyIbp37x56vR5HR8d05Y6Ojty+fRuAJk2a0KFDB+rXr0/dunWpUqUKnTp1yvSalpaW2Nrasnr1apo0aYKXl1eefgYhhDBWmzZton79+hw9ehR7e3sZJ1SAKQp8+y3UqaOuGWRtDd98A7t3w6uvah1d7irUs8ye/peEoijpyubMmcOcOXNe6pq+vr74+voSExODnZ1drsQphBBCHas5btw4Fi1aBEDjxo0JCAjAuSj0txRBERHquKCdO9XjFi3U6fRFdX5SoWwhKl26NKampobWoDSRkZEZWo2EEEJo7/LlyzRr1syQDI0dO5b9+/dLMlQAKQp89x3Urq0mQ8WKqfuM7d1bdJMhKKQJkYWFBW5ubuxMS1v/Z+fOnXh4eOTo2n5+ftSsWRN3d/ccXUcIIcS/Hjx4wB9//IGDgwNbtmxh/vz5mJubax2WeMr16+oK00OGQGysuh9ZaKg6o8ykUGYMWVdgu8zi4uK4ePGi4Tg8PJzQ0FAcHByoVKkSo0ePpl+/fjRs2JCmTZuydOlSIiIiGDZsWI7uK11mQgiRO54cxtCwYUPWrl1Lo0aNZBZvAaQo6p5jI0dCdDRYWsKcOTBqVMHZWiPPKQVUcHCwAmR4DRgwwFDHz89PcXZ2ViwsLJQGDRoo+/bty/F9Fy9erNSoUUOpVq2aAijR0dE5vqYQQhib8+fPK02aNFFOnTqldSjiBW7cUJQ331QUNS1SlMaNFeWvv7SOKvuio6Oz9f2tUxTZ8fRZ0lqIoqOjsbW11TocIYQoNNauXcvQoUOJi4ujadOmHDx4UKbTF0CKAj/9BCNGwMOHYGEBn3wCo0eDWYHtP3qx7H5/F+KPLIQQoiB59OgRI0eOZNmyZQC0atWKNWvWSDJUAN2+ra4h9Ouv6nHDhrByJdSqpWlYmiriQ6SEEELkh7///ptGjRqxbNkydDod06ZNY9euXTgVpu3OjYCiwLp1auLz669gbq6OFTp82LiTIZAWogz8/Pzw8/NDr9drHYoQQhQKZ8+epUmTJiQkJODo6MhPP/0ki9sWQJGR8OGH8PPP6nH9+vDDD+qiiwJkDFEmZAyREEJkTWpqKj4+Puj1en788UdeeeUVrUMST1m/Xk2G7t1TxwdNnQoTJ6otREWNjCESQgiRb8LCwnBxccHa2hoTExPWr1+PjY0NpkYzR7twuHdP3X8sIEA9rltXbRWqV0/buAoiGUMkhBAiyxRFYfny5bi5ufHRRx8Zym1tbSUZKmB++UUdFxQQoK4lNG0aHD8uyVBmpIXoKTKGSAghni02NpZhw4axZs0aAK5fv05iYiKWlpYaRyaedP8+fPQR/O/HRO3a6gwyNzdNwyrwZAxRJmQMkRBC/OvMmTP06NGD8+fPY2pqyuzZsxk3bhwmRX0/h0Jm82Z4/311Wr2JCUyYoLYMGVPOKmOIhBBC5DpFUfj2228ZNWoUiYmJVKhQgXXr1tGsWTOtQxNPiIpSt9lYtUo9rlFDbRVq1EjTsAoVSe2FEEJk6v79+0yZMoXExET+85//EBoaKslQAbNtm9ottmqV2io0bhycOiXJ0MuSFqKnyBgiIYT4V+nSpVm9ejVhYWGMHj1aVp0uQKKj4f/+D1asUI+rVVNbhZo21TSsQkvGEGVCxhAJIYyRoigsXryYihUr0rlzZ63DEZkICoIhQ+D6ddDp1MRo9mwoVkzryLQnY4iEEELkSFRUFIMHD+aXX37B3t6eJk2ayCKLBUxMDIwdC//bLo6qVdUWoubNtY2rKJCESAghBEePHqVXr15cuXIFCwsLZs2ahaOjo9ZhiSfs2gWDB0NEhHo8ciR8+ilYW2sbV1EhCZEQQhgxRVH46quvGD9+PCkpKVSuXJnAwEDcZNGaAiMuTh0ovWSJely5Mnz/PbRqpW1cRY0kREIIYaSSk5Pp1q0bv/32GwBvv/02y5Ytw87OTuPIjI9eD/v3w61bUK4ctGihri69dy8MGgRXrqj1fH1h3jwoXlzLaIsmSYieIrPMhBDGwtzcnIoVK2JpacnChQt5//33ZRaZBjZuVLu/rl//t6x8eXXfse3b1WNnZ7VVqE0bbWI0BjLLLBMyy0wIURSlpqYSGxtraAV6/PgxFy9epHbt2hpHZpw2boTu3eF538TDhsHnn0OJEvkXV2GW3e9vSYgyIQmREKKouXv3Lv379+fx48fs2rVLNmPVmF4PLi7pW4aeVqaM2o0mP6qsy+73t6xULYQQRiAkJIR69eqxY8cOjhw5QmhoqNYhGb39+5+fDAHcvavWE3lPEiIhhCjC9Ho9s2fPxtPTk5s3b/L6669z/PhxmUVWANy6lbv1RM7IoGohhCii7ty5Q9++fdm1axcAAwYMwM/PDxsbG40jEwCPH2etXrlyeRuHUEkLkRBCFFF9+vRh165dWFtbs3LlSlauXCnJUAGg16uDpN9///n1dDqoWFGdgi/yniREQghRRC1cuJBGjRpx4sQJBgwYoHU4Arh0SV1Qcfx4SE6Ghg3VxOfp1Q7SjhculAHV+UUSIiGEKCJu3rxJYGCg4bhOnTocOXKEGjVqaBiVAHVa/X//C66ucPCgOoX+++/h2DHYsEFdd+hJFSqo5V27ahOvMZIxRE+RhRmFEIVRUFAQffv25eHDh1SqVIkmTZoAyEKLBcCNG+rO9Dt2qMetW6sbsrq4qMddu8Jbbz17pWqRf2QdokzIOkRCiMIgJSWFqVOnMm/ePABcXV0JDAykWrVqGkcmFAXWrYMPP4SHD8HKSt12Y8QIMJH+mTyT3e9vaSESQohC6vr16/Tu3ZsDBw4A8MEHH/Dll19iZWWlcWTi3j01EVq/Xj1u2BBWr4bXX9c2LpE5yVGFEKIQ2rZtG/Xq1ePAgQPY2toSEBCAv7+/JEMFwJYtULu2mgyZmcHMmXDokCRDBZ20EAkhRCF0/vx57t+/j5ubGwEBAVSpUkXrkIxeTAyMHg3fface16wJq1aBrIFZOEhCJIQQhYSiKIZB0iNHjqR48eL069cPS0tLjSMT+/bBgAFw9ao6ZX70aJg9Wx03JAoH6TITQohCYNOmTTRp0oTY2FhAnT02ZMgQSYY09uiRmvx4eqrJkIsL7N0LCxZIMlTYSEIkhBAFWGJiIqNGjaJLly4cO3aMBQsWaB2S+J8TJ9TusK++UmeUvfce/PEHtGypdWQiO6TLTAghCqjLly/To0cPTp48CcCYMWOYPHmyxlGJ5GSYM0ftEtPr4ZVX1HFDHTpoHZnIiSLbQvTPP/9Qr149w6tYsWJs2rRJ67CEECJLNmzYQP369Tl58iQODg5s3ryZBQsWYGFhoXVoRi0sDJo2VWeO6fXQsyf8+ackQ0VBkW0hql69OqGhoQDExcXh4uJC27ZtNY5KCCFebMmSJXz44YcANGvWjLVr11KxYkWNozJuqanqvmKTJkFiIpQsCf7+0KuX1pGJ3FJkW4ietHnzZry8vGSXZyFEodC1a1ecnJyYMGECwcHBkgxp7MoVaNMGxoxRkyEfH7VVSJKhoiXbCdG1a9fYv38/QUFBnDp1isTExNyMi5CQEDp27IiTkxM6ne6Z3V3+/v68+uqrWFlZ4ebmxv79+595rcDAQHr27Jmr8QkhRG46duyY4b8dHR0JCwtj7ty5mJubaxiVcVMUdWxQnTrqtHobG/j2W9i6FZyctI5O5LaXSoiuXr3KxIkTcXFxwcXFhVatWuHj40PDhg2xs7Ojbdu2rF+/ntTU1BwHFh8fj6urK4sXL37m+YCAAEaNGsXkyZM5ffo0LVq0wMfHh4iIiHT1YmJiOHjwIB2kg1cIUQA9evSI9957j8aNG7N27VpDuZ2dnYZRiVu3oGNHdVPWuDh1s9U//oChQ9V1hkTRk+WEaOTIkdSpU4cLFy4wa9Yszp07R3R0NElJSdy+fZtt27bRvHlzpk6dSt26dTl+/HiOAvPx8WH27Nl07dr1mee//PJLBg8ezJAhQ6hRowYLFy6kYsWKLFmyJF29X3/9lXbt2r1wOfvExERiYmLSvYQQIi/99ddfNGrUiOXLl6PT6bhy5YrWIQnULTdq11ZbgiwsYP58CA6GypW1jkzkpSwPqrawsODSpUuUKVMmw7myZcvSpk0b2rRpw/Tp09m2bRtXr17F3d09V4NNk5SUxMmTJ5kwYUK6cm9vbw4dOpSuLDAwkKFDh77wmnPnzmXmzJm5GqcQQmRm1apVfPDBByQkJODo6MiPP/7IG2+8oXVYRu3BAxg+HNIa6urXV7feqF1b27hE/shyC9H8+fOfmQw9S4cOHejevXu2g3qRe/fuodfrcXR0TFfu6OjI7du3DcfR0dEcO3aMdu3avfCaEydOJDo62vC6du1arscthBDx8fEMGjSIAQMGkJCQQJs2bQgNDZVkSGM7dqhjhdauBVNTmDoVjhyRZMiYZGtQ9aNHj0hISDAcX716lYULFxIUFJRrgWWF7qmO3Cf3+QG1D/7OnTtZWrfD0tISW1tbVq9eTZMmTfDy8sr1eIUQ4vDhw6xcuRITExNmzZrF77//ziuvvKJ1WEYrLg6GDVNnjt28CdWrqzvTz5qldpcJ45GthOitt95i1apVADx8+JDGjRvzxRdf0Llz5wxjePJC6dKlMTU1TdcaBBAZGZmh1ehl+fr6EhYWluMxUEII8SxvvPEGc+fOZffu3UydOhVTU1OtQzJaBw6Aq6s6cwxg5Eg4dQoaNdI2LqGNbCVEp06dokWLFoC6mqqjoyNXr15l1apVLFq0KFcDfBYLCwvc3NzYuXNnuvKdO3fi4eGRo2v7+flRs2bNPBv/JIQwLrGxsQwbNoyrV68ayiZMmEDr1q21C8rIPX4M48ape45dvgyVKsHu3erCi9bWWkcntJKtlaoTEhIoUaIEAL///jtdu3bFxMSEJk2apPtLnxNxcXFcvHjRcBweHk5oaCgODg5UqlSJ0aNH069fPxo2bEjTpk1ZunQpERERDBs2LEf39fX1xdfXl5iYGJn2KoTIkTNnztCjRw/Onz9PWFgY+/bty9DVL/JXaCj066curAgwaJC6Oav8716gZEOdOnWUr7/+WomIiFBsbW2VQ4cOKYqiKCdOnFAcHR2zc8kMgoODFSDDa8CAAYY6fn5+irOzs2JhYaE0aNBA2bdvX67cW1EUJTo6WgGU6OjoXLumEMI4pKamKkuWLFEsLS0VQKlQoYKyf/9+rcMyasnJijJ7tqKYmSkKKErZsory669aRyXyQna/v3WKoigvm0Rt2LCBPn36oNfr8fLy4vfffwfUqeshISFs37491xK2/Obn54efnx96vZ7z588THR2Nra2t1mEJIQqJ6Ohohg4dSmBgIABvvvkmP/zwA6VKldI4MuP1zz8wYAAcPaoed+0K//0vZHHitChk0np4Xvb7O1sJEcDt27e5desWrq6umJioQ5GOHTuGra0tr7/+enYuWaBk94EKIYzXpUuXaNeuHZcuXcLMzIx58+bxf//3f4b/R4r8lZoKfn4wfjw8eqR2iy1eDO+8I6tNF2XZ/f7O9m73r7zySoapoo1kaL4QwoiVL1+e4sWL4+zszLp162jSpInWIRmtiAh1fNCePepx27bqvmSyT67ITLYSovj4eObNm8fu3buJjIzMsHfZ5cuXcyU4LTzZZSaEEC8SHR1N8eLFMTU1xcrKik2bNmFnZ0fJkiW1Ds0oKYq6uvRHH0FMjDprbP58+OADaRUSz5etLrPevXuzb98++vXrR7ly5TLMmhg5cmSuBagV6TITQrzIsWPH6NmzJwMHDmT69Olah2P0IiPVzVd//VU9btoUfvgBXntN27hE/srXMUT29vZs3bqVZs2avexbCw1JiIQQmVEUha+++orx48eTkpJC1apV+eOPPyhWrJjWoRmtX36B99+Hu3fB3Fxdafrjj9VtOIRxye73d7ZG+pUsWRIHB4fsvFUIIQq1Bw8e8NZbbzFmzBhSUlLo3r07J06ckGRIIw8fQv/+6syxu3ehbl04fhwmTJBkSLycbCVEn3zyCdOmTUu3n1lRIStVCyEyc+jQIerVq8dvv/2GpaUl/v7+BAYGyiKuGtm1S92QdfVqMDGBiRPh2DF1Ow4hXla2uszq16/PpUuXUBQFFxcXzM3N050/depUrgWoFekyE0I8KSoqCmdnZ2JjY3nttdcIDAykXr16WodVpOn1sH8/3LoF5cpBixZqq09CgjqVfvFitV7VqupYoRzu3CSKiHyddt+5c+fsvE0IIQqtkiVL8sUXXxAcHMy3335r2L5I5I2NG9XNVq9f/7esQgXw9YXvv4cLF9QyX1/47DOwsdEmTlF0ZHthxqJOWoiEECEhIVhZWRnWWEv736XsR5a3Nm6E7t3VKfSZKV8eVqxQ1xcS4kn5Oqg6KyTPEkIUVnq9ntmzZ+Pp6UmPHj2IiooC1ERIkqG8pderLUPP+wqxtlY3aZVkSOSmLCdENWrUYM2aNSQlJT233oULF/jggw/47LPPchycFmRQtRDG7c6dO7Rv356pU6eSmppKq1atMoyTFHln//703WTPkpDw7271QuSWLHeZ7dmzh/Hjx3Px4kW8vb1p2LAhTk5OWFlZERUVRVhYGAcOHCAsLIzhw4czadKkQt3VJF1mQhifPXv20KdPH+7cuYO1tTV+fn4MHDhQ67CMytq10KfPi+utWQO9e+d9PKLwyfNB1W3atOH48eMcOnSIgIAA1qxZw5UrV3j06BGlS5emfv369O/fn759+2Jvb5+tDyGEEFrQ6/XMmjWLTz75BEVRqFWrFoGBgdSsWVPr0IzKvXuwZUvW6pYrl7exCOPz0rPMPDw88JC5jUKIIsTExITQ0FAURWHw4MEsWrQIa2trrcMyGnfvwoIF6s708fHPr6vTqbPNWrTIn9iE8cj2bvdCCFHYKYpiGCi9YsUKdu3aRY8ePbQOy2hERqobr/r7q+OCABo0AG9vdSo9pB9cnTaefeFCWYVa5L48m2UmhBAFVUpKCpMmTaJ///6GGbEODg6SDOWT27dhzBhwcVFbhhISoGFD+O03OHEC5s6FDRvUqfVPqlBBLe/aVZOwRREn6xA9xc/PDz8/P/R6PefPn5dB1UIUMdevX6d3794cOHAAgP3799O8eXONozIOt27B55/Df/8Ljx+rZY0awfTp4OPzbwtQmsxWqhbiefJ1t3tjILPMhCh6tm3bRv/+/bl//z4lSpRg2bJl9OzZU+uwirwbN9QusKVLITFRLWvSRE2E2rXLmAgJkRP5unWHEEIUJsnJyUyePJn58+cD0KBBAwICAqhatarGkRVt16/DvHmwfPm/iVCzZmoi9MYbkgiJgiXbY4guXbrElClT6N27N5GRkQDs2LGDc+fO5VpwQgiRG3r27GlIhkaMGMGhQ4ckGcpDERHw4YdQpYo6cywxUe3u2rVL7QJr21aSIVHwZCsh2rdvH3Xq1OHo0aNs3LiRuLg4AP744w+mT5+eqwEKIURODR8+HAcHB37++WcWLVqEpaWl1iEVSVevwrBh6u7zS5ZAUhK0agV79sC+feDlJYmQKLiylRBNmDCB2bNns3PnTiwsLAzlnp6eHD58ONeCE0KI7EhKSuLkyZOG4zZt2nDlyhW6yvSkPBEeDu+9pyZC334Lycng6Ql796ovT09JhETBl62E6OzZs3Tp0iVDeZkyZbh//36OgxJCiOy6fPkyzZo1w9PTk4sXLxrKS5QooWFURdPlyzB4MFSrpo4TSklRW4FCQtRWoVattI5QiKzLVkJkb2/PrVu3MpSfPn2a8k8vHCGEEPlkw4YN1K9fnxMnTmBmZkZERITWIRVJFy/CoEFqIvT992oi5O0NBw6o44RkFWlRGGUrIerTpw/jx4/n9u3b6HQ6UlNTOXjwIGPHjqV///65HaMQQjzX48eP8fX15e233yYmJgYPDw9CQ0Np06aN1qEVKefPw4AB8PrrsHKluk5Q+/Zw6BAEBakzyIQorLKVEM2ZM4dKlSpRvnx54uLiqFmzJi1btsTDw4MpU6bkdoz5ys/Pj5o1a+Lu7q51KEKILLhw4QIeHh74+/sDMH78ePbu3UulSpU0jqzo+Ptv6NsXatSAVavURKhDBzhyBLZvh6ZNtY5QiJzL0cKMly5d4vTp06SmplK/fn1ee+213IxNU7IwoxCFw6RJk5g7dy6lS5dm1apV+Pj4aB1SkfHXX/DJJ7Bu3b97inXsCNOmqVttCFEQabIwY5UqVahSpUpOLiGEEDkyc+ZM4uLiGD9+vIxhzCXnzqmJUGDgv4nQW2+piVCDBtrGJkReyVZCpCgKGzZsIDg4mMjISFJTU9Od37hxY64EJ4QQT/v7779ZsGABS5YswdzcHHNzcxYtWqR1WEXC2bNqIrRhw7+JUJcuaiJUr562sQmR17KVEI0cOZKlS5fi6emJo6MjOllgQgiRD1avXs0HH3xAfIEySfoAACAASURBVHw8FStWlIVgc8mZMzBrFjz5b9lu3dREqG5d7eISIj9lKyH68ccf2bhxIx06dMjteIQQIoP4+HiGDx/OypUrAXWhxaFDh2obVBFw+rSaCG3apB7rdPD22zB1KtSurW1sQuS3bCVEdnZ2VK5cObdjEUKIDM6dO0ePHj0ICwvDxMSE6dOnM3nyZExNTbUOrdA6eVJNhDZvVo91OujZE6ZMgVq1tI1NCK1ka9r9jBkzmDlzJo8ePcrteIQQwmDTpk24u7sTFhZGuXLl2L17N9OmTZNkKJuOH4f//EedIbZ5M5iYQJ8+6iDqtWslGRLGLVstRG+//TZr166lbNmyuLi4YG5unu78qVOnciU4IYRxq1GjBiYmJnh7e7N69WrKli2rdUiF0tGjMHOmumYQ/JsITZkC1atrG5sQBUW2EqKBAwdy8uRJ+vbtW6AHVYeHh/Puu+9y584dTE1NOXLkCDY2NlqHJYR4jvv371OqVCkAqlevzuHDh6lVqxYmJtlq0DZqhw+riVBQkHpsaqousDhpkrrthhDiX9lamNHGxoagoCCaN2+eFzHlmlatWjF79mxatGjBgwcPsLW1xcwsazmgLMwoRP5SFIWlS5cyZswYtm7dSivZGTTbDh5UE6GdO9VjU1Po319NhKpW1TY2IfJadr+/s/VProoVKxb4JOHcuXOYm5vT4n+7DDo4OGQ5GRJC5K+YmBh69+7NsGHDiI+PZ9WqVVqHVCiFhKi7zTdvriZDZmbqbvTnz6ubsEoyJETmspUQffHFF4wbN44rV67kcjj/CgkJoWPHjjg5OaHT6diUNi/0Cf7+/rz66qtYWVnh5ubG/v37DecuXLhA8eLF6dSpEw0aNODTTz/Ns1iFENl36tQp3NzcCAgIwMzMjPnz57Ns2TKtwypU9u4FT09o1Qr27FEToffegwsXYPlykEnBQrxYtppM+vbtS0JCAlWqVMHa2jrDoOoHDx7kOLD4+HhcXV0ZNGgQ3bp1y3A+ICCAUaNG4e/vT7Nmzfj222/x8fEhLCyMSpUqkZyczP79+wkNDaVs2bK0b98ed3d32rZt+8z7JSYmkpiYaDiOiYnJ8WcQQmROURT8/PwYM2YMSUlJVKpUiXXr1tFUdgrNEkWB4GC1aywkRC0zN1dbhCZMAGdnbeMTorDJVkK0cOHC3I4jAx8fn+du0vjll18yePBghgwZYogpKCiIJUuWMHfuXCpUqIC7uzsVK1YEoEOHDoSGhmaaEM2dO5eZM2fm/gcRQjxTUFAQI0aM4P/bu/O4qur8j+OvCwqoqbhFMiKSW5kLgWQyauoUamWlJlhJ7kVi6piZZLmNS06OqYkWleJSDpRLU1mmP02cdFJMSqM0k9wCDVwAFYHL+f1xEkPFhe1euO/n48Hj0fnec8/5QJ7Lh+/2AXj00UdZvHgxtWvXtnFU9s8w4P/+z0yE/vtfs83FBYYONROhPz7yROQmFSkhGjBgQEnHcVOys7PZtWsX48ePL9AeFBTEtm3bAAgICOD48eOcOnWKmjVrEhcXx7PPPlvoNSMiIhgzZkz+cXp6en4yJSIlr1u3boSGhuLn58eoUaPsdrWqvTAMc17QlCnwx8ccrq7m0NhLL0GDBraNT6S8u+GEKD09PX8i9fWGk0p7wnVqaipWqxUPD48C7R4eHqSkpABQqVIlZsyYQadOnTAMg6CgIB5++OFCr+nq6oqrq2upxi3iyC6uIgsODqZWrVpYLBaWLl2qROg6DAO++MLcWfp//zPb3Nzg2Wdh3Djw9LRtfCIVxQ0nRLVq1SI5OZlbb70Vd3f3q36IGYaBxWLBarWWaJCFuTyGi/e/6HrDblcTGRlJZGRkmX0PIo7g5MmTDBo0iP/85z+sX7+eVatWYbFYlAxdg2HAunVmIrRjh9lWpQqEhcGLL0L9+raNT6SiueGEaNOmTfnj+5s3by61gG5E3bp1cXZ2zu8NuujEiRNX9BrdrPDwcMLDw/P3MRCR4tm2bRv9+vXjyJEjuLi4cP/999s6JLtmGPDpp2YiFB9vtlWpAsOHw9ixcNttto1PpKK64YToz5uk+fj44OXlddUemiNHjpRcdIVwcXHB39+fDRs20KtXr/z2DRs28Oijjxbr2uohEikZeXl5zJ49m5dffhmr1UqTJk2IjY3l7rvvtnVodskw4OOPzURo926zrWpVCA83EyFVLREpXUWaVO3j45M/fPZnJ0+exMfHp0SSiczMTA4cOJB/nJSUREJCArVr16Zhw4aMGTOG0NBQ2rZtS/v27YmKiuLw4cOEhYUV677qIRIpvrS0NEJDQ/n8j+JZ/fr14+2337b7DV1tIS8P1q41E6HvvjPbqlWDESPghRegXj3bxifiKIqUEF0+V+eizMxM3Nzcih0UQHx8PF26dMk/vrgCbMCAAURHRxMSEkJaWhpTp04lOTmZli1bsm7dOry1+YaIXdi7dy9ubm7Mnz+foUOHar7QZfLyYPVq+Mc/4PvvzbZbboGRI+Hvf4e6dW0bn4ijualaZheTknnz5jFs2DCqVq2a/5rVauWbb77B2dmZr7/+uuQjLSN/HjLbv3+/apmJ3KC8vLwCE6V37NiBm5sbrVu3tnFk9iUvDz76yEyE9u4122rUuJQIaSsmkeIpai2zm0qILvbYbNmyhfbt2+Pi4pL/mouLC40aNWLs2LE0bdr0JkK3TyruKnLjjh8/TmhoKP369WPw4MG2DscuWa0QGwvTpkFiotlWsyaMGgWjR0OtWraNT6SiKJOE6KJBgwYxb968Cp0oKCESuTGbNm3iqaeeIiUlhTp16nDo0CGqVatm67DshtUK//63mQj99JPZ5u5uJkGjRpn/LSIlp0yr3S9ZsqTCJgmRkZG0aNGCgIAAW4ciYtesViuTJ0/m/vvvJyUlhRYtWrBlyxYlQ3/IzYXly6FFC+jf30yGatUyJ0//+itMmqRkSMSeFKmHyBGoh0ikcMnJyTz11FP5e5INHjyYN998s8C8QkeVmwvvv2/2CF1cKFu7trlibMQIc76QiJSeov7+LtIqMxFxXOnp6fj5+ZGSkkK1atV466236N+/v63DsrmcHFixAqZPh19+Mdvq1DH3EAoPh+rVbRufiFybEiIRuSk1atRg2LBhfPzxx8TGxtK8eXNbh2RTOTmwdCnMmAFJSWZbvXpmIjR8uLmUXkTsn4bMLqNl9yJXOnr0KDk5Ofj4+ACQm5tLTk4OVapUsXFktpOdDdHRZiJ06JDZduutZsHVsDBzc0URKXtlusrMEWgOkYhp3bp1PP3003h7e7Nt2zZcXV1tHZJNXbgAS5bAzJlw+LDZdtttZiL07LNmuQ0RsZ0yXWUmIhVfTk4O48aN46GHHiItLQ3DMEhLS7N1WDaTlQWRkdCkCTz3nJkM1a8Pc+fCwYPmpopKhkTKL80hEpErHD58mH79+rF9+3YARowYwezZsx2ydygrC955B2bNgmPHzDZPTxg/HoYNgxKqViQiNqaESEQK+M9//sPAgQM5deoUNWvW5L333qNPnz62DqvMnT8PUVFmIpScbLY1aAARETB4sBIhkYpGCdFl/jypWsTR5OXlMWPGDE6dOkVAQAAxMTH5E6kdxblz8Pbb8M9/QkqK2eblBS+/DIMGgQN2kok4BE2qLoQmVYujSkpKIioqiilTphSoV1jRnT0LixbB66/DiRNmm7e3mQgNHAgO9KMQKde0yqyEKSESR7F69Wp+/PFHJkyYYOtQbCIzExYuhNmz4fffzbZGjWDCBHj6aSVCIuWNdqoWkZuSlZXFiy++yIIFCwDo1KkTHTt2tHFUZScjw1w19q9/QWqq2da4sZkI9e8PlSvbNj4RKVtKiEQc0IEDBwgODmb37t0AjBs3jnvvvdfGUZWN9HRYsMBMhE6eNNuaNIFXXoGnnoJK+lQUcUh69EUcTExMDMOGDSMjI4M6deqwbNkyHnzwQVuHVerOnIH58+GNN+DUKbOtWTMzEXriCSVCIo5OHwGX0SozqcheeOEF5syZA0CHDh1YuXIlDRo0sHFUpev0aZg3z9xA8fRps+2OO+DVVyEkBJydbRufiNgH7VR9mfDwcBITE9m5c6etQxEpcXfffTcWi4UJEyawefPmCp0MnToFkyaZE6QnTzaToRYtYOVK2LsXnnxSyZCIXKIeIpEK7vfff6devXoA9O/fH19fX1q2bGnjqErPyZPmsNj8+eZ8IYC77oKJE+Hxx8FJfwaKyFXoo0Gkgjp37hyDBw/G19eX3y+uJ4cKmwylppp7Bnl7w7RpZjLUqhV8+CF8/z0EBysZEpHC6eNBpAL64YcfCAgIYMmSJSQnJ7Nx40Zbh1Rqfv/drCvWqJFZgT4zE9q0gVWrICFBvUIicmM0ZCZSgRiGQXR0NOHh4Zw/f57bbruN999/n65du9o6tBJ34oS5meLCheYu0wB3323OG3rkEbBYbBufiJQvSohEKojMzEyGDx/O8uXLAXjggQdYvnw5Hh4eNo6sZB0/bpbXWLTIrDsG4O9vJkIPP6xESESKRgmRSAUxefJkli9fjpOTE1OnTiUiIgKnCjRWlJxsJkJvvWVWogcICDAToQcfVCIkIsWjhOgy2odIyquJEycSHx/P1KlT6dSpk63DKTG//QazZkFUFGRlmW3t2pmJUPfuSoREpGSouGshVNxV7F16ejpLlixh5MiRWMphVmC1wtatZs9P/frQsWPBfYGOHjUToXfegQsXzLbAQDMReuABJUIicnUq7iriQHbv3k1wcDAHDhzA2dmZESNG2Dqkm7J6NYwaZSY9FzVoYO4oHRAAr70G774L2dnmax06mInQ3/6mREhESocSIpFyxDAMFi5cyJgxY8jOzqZhw4b4+/vbOqybsnq1uRT+8r7pY8egTx+zl+jiiHWnTmYi1KWLEiERKV1KiETKidOnTzN06FBWrVoFwCOPPMKSJUuoXbu2jSO7cVar2TN0tYH6i21WK9x3n1luo3PnsoxORBxZxVmCIlKBxcfH4+fnx6pVq6hcuTJvvPEGa9euLVfJEJhzhv48TFYYJUMiUtbUQyRSDmRlZXH48GEaNWpEbGwsAQEBtg6pSJKTS/Y8EZGSooRIxE7l5eXl7yPUoUMHPvroIzp37oy7u7uNIyuaM2fgiy9u7Nz69Us3FhGRy2nITMQObd++nZYtW5KYmJjf9thjj5XLZOjcOXNDxdtvh2XLrn2uxQJeXuYSfBGRsqSESMSO5OXl8frrr9OpUyd+/PFHIiIibB1SkWVnm+U1mjSBcePg5Em44w4YO9ZMfC5fNXbxeO7cgvsRiYiUhQqdEFWqVAlfX198fX0ZOnSorcMRuabU1FR69uzJuHHjyM3NJSQkJL8uWXlitcKKFXDnnTB8uDkfyNsboqNh716zt+ijj+Avfyn4vgYNzPbevW0Stog4uAq9U3XdunVJTU0t0nu1U7WUpa1bt/LEE09w7NgxXF1dmT9/PsOGDStXO1AbBnz8MbzyCvzwg9nm4QGvvgpDh4Kra8Hzr7dTtYhIUWinapFyKi4ujq5du2K1WmnevDmxsbG0bt3a1mHdlI0bYcIE2LHDPHZ3h5deguefh2rVrv4eZ2ctrRcR+2G3Q2ZxcXH07NkTT09PLBYLa9euveKchQsX4uPjg5ubG/7+/mzdurXA6+np6fj7+9OhQwe2bNlSVqGL3JTAwEACAwPp378/8fHx5SoZ+t//zHIaDzxgJkPVqpmJUVISjB9feDIkImJv7LaH6OzZs7Rp04ZBgwbRp0+fK16PiYlh9OjRLFy4kL/+9a+8/fbb9OjRg8TERBo2bAjAr7/+iqenJ3v37uWhhx5iz549hXafXbhwgQsXK0hiJlMipWX79u34+fnh6upKpUqV+Pzzz6latWq5GSLbs8ccGvvPf8xjFxd47jmIiDCHyUREyh2jHACMNWvWFGi75557jLCwsAJtd9xxhzF+/PirXqN79+7Gzp07C73HpEmTDOCKrzNnzhT/GxD5Q25urjF58mTDycnJGDlypK3DuWk//2wYTz5pGBaLYYBhODkZxuDBhnHokK0jExExnTlzpki/v+12yOxasrOz2bVrF0FBQQXag4KC2LZtGwCnTp3K7/E5evQoiYmJ3H777YVeMyIigjNnzuR/HTlypPS+AXFIKSkpBAUFMXnyZPLy8sjMzCQvL8/WYd2QY8fg2WfNZfMffGBOoA4OhsREeO89+KNTVkSk3LLbIbNrSU1NxWq14nFZ37yHhwcpKSkA/Pjjjzz77LM4OTlhsViYN2/eNes+ubq64urqSmRkJJGRkVgvltsWKQEbN27kqaee4sSJE1SrVo1FixYRGhpq67CuKzUVXnsNFiyAiyPKDz4I06bB3XfbNjYRkZJULhOiiy6fb2EYRn5bYGAge/bsuelrhoeHEx4enr9sT6Q4cnNzmTx5MjNmzMAwDFq1akVsbCx33HGHrUO7pvR0mDMH/vUvyMw02zp2hBkzoEMH28YmIlIaymVCVLduXZydnfN7gy46ceLEFb1GIraUnJzMggULMAyDZ555hrlz51KlShVbh1Wo8+chMhJmzjR3lgbw8zMToaCgK3eXFhGpKMplQuTi4oK/vz8bNmygV69e+e0bNmzg0UcfLda1NWQmJcnLy4vo6GiysrLo16+frcMpVE6OORfoH/+A334z2+64wzzu00eJkIhUfHabEGVmZnLgwIH846SkJBISEqhduzYNGzZkzJgxhIaG0rZtW9q3b09UVBSHDx8mLCysWPfVkJkUR05ODq+++ipdunShW7dugFmU1V5ZrbByJUyaBAcPmm3e3jB5MvTvD5Xs9hNCRKRk2e3HXXx8PF26dMk/HjNmDAADBgwgOjqakJAQ0tLSmDp1KsnJybRs2ZJ169bh7e1tq5DFwR0+fJgnnniCbdu2sXjxYg4cOGC3ZV8Mw9xD6JVXzPpiYO4f9MorMGzYlWU2REQqugpdy6wo/jxktn//ftUykxvyySefMGDAAE6dOkWNGjV47733ePzxx20d1lX93//Byy/fXJkNEZHyoqi1zJQQFULFXeVGZGdnExERwZw5cwBo27YtMTEx19zzylb+9z+zrMamTeZx1arw97/D2LFmUiQiUhGouKtIGTt79ixdu3Zlxx9dLaNHj2bWrFm4uLjYOLKC9uwxK85//LF57OICYWFmL5EWZYqImMrlTtWlKTIykhYtWhAQEGDrUMTOVatWjRYtWuDu7s7atWt544037CoZOnDAnBjdpo2ZDDk5weDBsH8/zJunZEhE5M80ZFYIDZnJ1Vy4cIHz58/j/scY09mzZ0lNTbWryfzHjpnL5d97D3JzzbbgYJgyxVxKLyJSkWnITKSUHThwgJCQEDw8PPj0009xcnKiWrVqVLOTmcgXy2xERkJWltnWowdMn64yGyIi16OESOQGxMbGMnToUDIyMqhTpw4HDx6kSZMmtg4LuFRmY84cyMgw2zp0MHeX7tjRtrGJiJQXmkN0Gc0hkj87f/48YWFhhISEkJGRQYcOHUhISLCLZOj8ebPW2O23m8NhGRlmT9Dnn0NcnJIhEZGboTlEhdAcItm3bx/BwcF8//33WCwWIiIimDJlCpVsvH1zTg4sXgxTp14qs9G8uVmBvndvc/K0iIij0hwikRJkGAYhISF8//331KtXjxUrVhAUFGTTmKxW+Pe/YeLES2U2GjY0e4dUZkNEpHj0t6TIVVgsFt59912CgoJISEiwaTJkGOayeV9fM/E5eBBuvRXmzzeX0A8cqGRIRKS4lBBdRnOIHFdiYiIxMTH5x23btmX9+vV4enraLKZNm6B9e3jsMbPmmLu7OVn64EGz1IZqjomIlAzNISqE5hA5lujoaMLDw8nNzeV///sfd9t4nfo335hlNv7v/8zjqlVh9GizzEatWjYNTUTErmkOkUgRZGZmEh4ezrJlywC4//77bdojdHmZjcqVL5XZuO02m4UlIlLhachMHNaePXsICAhg2bJlODk5MW3aNNavX4+HDWpa/PLLlWU2Bg2Cn3825wopGRIRKV3qIRKH9N577zFixAiysrLw9PRk5cqVdOrUqczjOHbMXC7/7ruXymz07WsuqVeZDRGRsqOESBzS8ePHycrKonv37ixbtox69eqV6f1TU2HWLFiwoGCZjWnTwM+vTEMRERGUEF0hMjKSyMhIrFarrUOREma1WnF2dgZg/Pjx+Pj4EBISglMZ7mSYng5vvGHuMK0yGyIi9kOrzAqhVWYVh2EYLFq0iCVLlrBlyxaqVq1a5jGcPw8LF8LMmZCWZrbdfbdZeLV7d7BYyjwkEZEKqai/vzWpWiq0M2fOEBwcTHh4OPHx8SxevLhM75+TA1FR0LSpuWQ+Lc0ssxEbC/Hx5jCZkiEREdvTkJlUWPHx8QQHB5OUlETlypWZNWsW4eHhZXLvvLxLZTZ++cVsa9gQJk+G0FDtLC0iYm/0sSwVjmEYzJ8/nxdffJGcnBwaNWpETEwM99xzTxncGz75BF55xdxTCMwyG6+8As88o52lRUTslRIiqXCmTJnClClTAOjVqxeLFy/G3d291O+7aZO5geI335jHNWvCuHEwciTcckup315ERIpBc4ikwhk6dCienp7Mnz+fVatWlXoytGMHPPAA/O1vZjJUtSpEREBSkpkgKRkSEbF/6iGSci8vL48tW7bQpUsXABo0aMDPP/9c6qvJ9u41y2ysXWseq8yGiEj5pR4iKdfS0tJ45JFH6Nq1K2svZiZQqsnQL7+YE6NbtzaTIScnGDgQ9u9XmQ0RkfJKPUSX0caM5cd///tfnnjiCY4ePYqrqytnzpwp1ftdrczG44+bZTbuvLNUby0iIqVMGzMWQhsz2q+8vDxmzZrFq6++itVqpVmzZnz44Ye0bt26VO6XlgavvVawzEb37mZy5O9fKrcUEZEiKurvb/UQSbly4sQJQkND+fLLLwHo378/ixYt4pZSmLmckWGW2Zg9+1KZjb/+1SyzYYM6sCIiUoqUEEm58vXXX/Pll19SpUoVFixYwKBBg7CU8FbP58/DokVmmY3UVLPN19dMhFRmQ0SkYlJCJOVKr169mDlzJg8//DAtW7Ys0Wvn5MCSJeacoGPHzLZmzeAf/zDnCpVhDVgRESlj+ogXu5aSkkK/fv1ITk7Obxs/fnyJJkN5efDBB+bE6GefNZMhLy947z344QcIDlYyJCJS0amHSOzWxo0b6d+/P8ePH+fs2bN88sknJXp9w4BPP4UJEwqW2ZgwwUyMVGZDRMRx6O9esTu5ubm8+uqrBAUFcfz4cVq1asXrr79eovfYvBkCA+GRR8xkqGZNmD7d3GNo5EglQyIijkY9RGJXjh07xpNPPklcXBwAzzzzDHPnzqVKlSolcv0dO8weoI0bzeMqVWDUKHjxRahdu0RuISIi5VCF7yE6d+4c3t7ejB071tahyHXs3r0bX19f4uLiuOWWW1i5ciVvv/12iSRDP/wAvXtDu3ZmMlS5MowYAQcPmqvJlAyJiDi2Ct9DNH36dNq1a2frMOQGNG3alLp169KgQQNiY2Np2rRpsa958CBMngwrVphzhpyc4OmnYdIkaNSo2JcXEZEKokInRD///DM//fQTPXv2ZO/evbYOR64iJSWFW2+9FScnJ2655Ra++OILPDw8cHNzK9Z1f/vN3En6nXdUZkNERK7PbofM4uLi6NmzJ56enlgslgKFOy9auHAhPj4+uLm54e/vz9atWwu8PnbsWGbOnFlWIctN+uSTT7jrrruYM2dOfpu3t3exkqG0NBg3Dho3NjdXzM2Fbt0gPh4+/FDJkIiIXJ3dJkRnz56lTZs2LFiw4Kqvx8TEMHr0aCZMmMDu3bvp2LEjPXr04PDhwwB8/PHHNGvWjGbNmpVl2HIDsrOzeeGFF3jkkUc4efIkq1evLnYx3YwMcwPF22+H1183a4799a/w1VfwxReqOSYiItdWLoq7WiwW1qxZw2OPPZbf1q5dO/z8/Fi0aFF+25133sljjz3GzJkziYiIYMWKFTg7O5OZmUlOTg4vvPACEydOvOo9Lly4wIULF/KP09PT8fLyUnHXEvbrr78SEhLCjh07ABg9ejSzZs3CxcWlSNfLyjJ7gmbMuFRmo00b87hHD5XZEBFxNEUt7mq3PUTXkp2dza5duwgKCirQHhQUxLZt2wCYOXMmR44c4ddff2X27NkMGzas0GTo4vk1a9bM//Ly8irV78ERrVmzhrvvvpsdO3bg7u7O2rVreeONN4qUDOXkmPODmjaFMWPMZKhZM4iJgW+/hQcfVDIkIiI3rlwmRKmpqVitVjw8PAq0e3h4kJKSUqRrRkREcObMmfyvI0eOlESo8ocjR47Qr18/Tp8+Tbt27UhISODRRx+96evk5cHKldCiBTzzDBw9qjIbIiJSfOV6ldnlVc4Nw7hq5fOBAwde91qurq64uroSGRlJZGRksee0SEFeXl7885//5MiRI8yYMeOme4UMAz77zNxU8fvvzbZ69S6V2SjmojQREXFw5TIhqlu3Ls7Ozlf0Bp04ceKKXqObFR4eTnh4eP4YpBTdhx9+SNOmTfH19QVg1KhRRbrOV1/Byy/D9u3mcc2a5s7So0bBLbeUULAiIuLQyuXggouLC/7+/mzYsKFA+4YNGwgMDCzWtSMjI2nRogUBAQHFuo4jy8rKYvjw4QQHBxMcHExGRkaRrrNzJwQFQZcuZjJUpQq89JK52eKECUqGRESk5NhtD1FmZiYHDhzIP05KSiIhIYHatWvTsGFDxowZQ2hoKG3btqV9+/ZERUVx+PBhwsLCinVf9RAVz/79+wkODua7777DYrHQt2/fmy698cMP8OqrsGaNeVy5sjlfaMIEqF+/FIIWERGHZ7cJUXx8PF26dMk/HjNmDAADBgwgOjqakJAQ0tLSmDp1KsnJybRs2ZJ169bh7e1tq5Ad3vvv+r2YswAAFg9JREFUv8+zzz7L2bNnqVevHitWrLhiJeC1JCWZJTX+XGYjNNRs8/EpxcBFRMThlYt9iMrSnydV79+/X/sQ3YALFy4QHh7Oe++9B0Dnzp354IMPqH+D3TnJyZfKbOTkmG19+phlNlq0KK2oRUSkInKofYhKU3h4OImJiezcudPWoZQblSpV4tChQ1gsFiZNmsTGjRtvKBlKSzPnBDVuDAsXmslQt27m3KGPPlIyJCIiZcduh8zE/uXm5lKpUiWcnZ1ZsWIFiYmJBYY5C5ORAXPnwuzZkJ5utgUGmrtL33dfKQctIiJyFUqILqN9iK7v7NmzDB8+HFdXV6KiogBzU8zrbXlQWJmN6dO1s7SIiNiW5hAVoqhjkBXdnj17CA4O5qeffsLJyYk9e/bQ4jpjW7m5EB0NU6aYO0uDWXLjH/+Avn21s7SIiJQczSGSUmUYBu+++y733HMPP/30E56enmzevPmayVBeHvz73+ZcoGHDzGSoQQN4911ITISQECVDIiJiHzRkJteVkZFBWFgYH3zwAQDdu3dn2bJl1KtX76rnF1Zm4+WXISxMZTZERMT+KCG6jOYQFWQYBt26dWP79u04Ozszffp0XnzxRZwK6dq5vMxGjRqXymxUr152cYuIiNwMzSEqhOYQXfLZZ58xfPhwVq5cWWhplPh4s0foyy/N4ypVYORIGDcOatcuw2BFRMShFfX3t3qI5Apnzpzhp59+ol27dgA89NBD7Nu3D7erjHUlJpplNlavNo9VZkNERMojTWmVAuLj4/Hz86NHjx4cOnQov/3yZCgpCQYMgFatzGTIYoGnn4Z9+2DBAiVDIiJSvighEsCcKzR//nwCAwM5ePAgNWvW5NSpU1ecl5wM4eHQvDksW2auJOvdG/bsgaVLVXNMRETKJw2ZXcYRJ1WfOnWKIUOGsOaP8vK9evVi8eLFuLu7559z8iTMmgVvvgnnz5ttQUFmDbKAAFtELSIiUnI0qboQjjKp+ptvviEkJIRDhw7h4uLCv/71L8LDw7H8sW10RgbMmwevv36pzEb79uZu05072y5uERGRq9GkaimS5cuXc+jQIRo3bkxMTAz+/v6AWWbjrbfMxOf3381zVWZDREQqKiVEDm727NlUr16diIgIatSocdUyG02amGU2goO1s7SIiFRM+vXmYL7++muefvrp/DlSbm5uzJw5k1tuqUFMzJVlNt55x1xa36+fkiEREam49CvOQeTl5fHaa69x3333sXz5chYsWABcKrPh52cmPT//DHXrwhtvmP89dKi5t5CIiEhFpiGzy1TEVWa///47Tz/9NF988QUATz31FIMHD2bLFrPMxrZt5nk1asDYsTB6tMpsiIiIY9Eqs0JUlFVmW7Zs4cknn+S3336jSpUqvPnmm7RuPZhXXrEUKLPx/PNmmY06dWwbr4iISHEU9fe3hswqsKioKLp27cpvv/3GnXfeycqVO1i3bgj33GMmQ5UqwfDhcOCAuceQkiEREXFUGjKrwO69915cXFx4+OEncHF5k969q5GXZy6ZDw2FSZPg9tttHaWIiIjtKSGqYI4dO8Zf/vIXAOrVa02fPnuIjW1CTo75eu/eMHUq3HWXDYMUERGxMxoyqyCsVisTJ06kcePGfPnlN4wfD40bw/vvm8nQAw/Ajh2wapWSIRERkcuph6gC+O2333jyySfZsmULAD17fkZ2djvALLMxfTp06WLLCEVEROybEqJybv369fTv35/U1FQsllswjCiys5+gdWszEXroIZXZEBERuR4NmZVTubm5vPRSBN27dyc1NRXwxTB20aTJE3zwAezeDQ8/rGRIRETkRighukxkZCQtWrQgICDA1qEUKi8P/v73WP75z9f+aBmOp+d2oqKakZgITzyhMhsiIiI3QxszFsIeN2Y0DPj8c5gwARISDGAA1av3ZMqUvjz3HLi52TpCERER2yrq72/NISonNm3KYfDgf3HoUDhQnRo1LIwdu0xlNkREREqAEiI7t2sXjBnzK3Fx/YBvcHLaywsvrOCll7SztIiISElRQmSnfvwRXn0VVq1aCwwCTuPi4s6iRY8zeLCtoxMREalYlBDZmV9/hcmTYdmyCxjGS8A8AHx927Fmzb9p1KiRDaMTERGpmJQQlSGrFbZuheRkqF8fOnYEZ2fztZQUc9+gt9+GnJxDQB9gFwBjx45lxowZVK5c2Waxi4iIVGRKiMrI6tUwahQcPXqprUEDmDYNfvoJ5s2D8+fN9k6d3Ni79yhQm2XLlvHQQw/ZJGYRERFHoYSoDKxeDY8/bi6b/7OjR2HgwItHudx7byVmzIAuXTz45puP8fT0xMvLq4yjFRERcTwVdvu+jIwMAgIC8PX1pVWrVrzzzjs2icNqNXuGrrXbU6VKP+PjE8CoUTH5NcfatWunZEhERKSMVNiNGa1WKxcuXKBq1aqcO3eOli1bsnPnTurc4Fr1ktqY8auvrldYdSXwDJBJ48aN+fHHHzVXSEREpIiK+vu7wvYQOTs7U7VqVQCysrKwWq3YIvdLTi7slfPAMOBJIJM777yPuLg4JUMiIiI2YLcJUVxcHD179sTT0xOLxcLatWuvOGfhwoX4+Pjg5uaGv78/W7duLfD66dOnadOmDQ0aNGDcuHHUrVu3rMLPV7/+1Vp/BO4B3gUswETefHMjnp6eZRmaiIiI/MFuE6KzZ8/Spk0bFixYcNXXY2JiGD16NBMmTGD37t107NiRHj16cPjw4fxz3N3d+e6770hKSuKDDz7g+PHjhd7vwoULpKenF/gqCR07mqvJLlWdTwYCgL2AB7ABL68pdO6s+e0iIiK2YrcJUY8ePZg2bRq9e/e+6utz5sxhyJAhDB06lDvvvJO5c+fi5eXFokWLrjjXw8OD1q1bExcXV+j9Zs6cSc2aNfO/SmpCs7OzuaQeLiZF9YEw4G9AAhbL35g799J+RCIiIlL27DYhupbs7Gx27dpFUFBQgfagoCC2bdsGwPHjx/N7edLT04mLi6N58+aFXjMiIoIzZ87kfx05cqTE4u3dGz76CP7yl4stM4H1eHndxkcfma+LiIiI7ZTLcZrU1FSsViseHh4F2j08PEhJSQHg6NGjDBkyBMMwMAyDESNG0Lp160Kv6erqiqura6nF3Ls3PProxZ2qK1+xU7WIiIjYTrlMiC6yXJqYA4BhGPlt/v7+JCQk3PQ1IyMjiYyMxGq1lkiMf+bsDJ07l/hlRUREpJjK5ZBZ3bp1cXZ2zu8NuujEiRNX9BrdrPDwcBITE9m5c2exriMiIiLlR7lMiFxcXPD392fDhg0F2jds2EBgYGCxrh0ZGUmLFi0ICAgo1nVERESk/LDbIbPMzEwOHDiQf5yUlERCQgK1a9emYcOGjBkzhtDQUNq2bUv79u2Jiori8OHDhIWFFeu+4eHhhIeH5+90KSIiIhWf3SZE8fHxdPlTzYsxY8YAMGDAAKKjowkJCSEtLY2pU6eSnJxMy5YtWbduHd7e3rYKWURERMqpClvLrKj+PKl6//79xa5lJiIiImWnqLXMlBAVoqSKu4qIiEjZUXFXERERkSJSQnQZrTITERFxPBoyK4SGzERERMofDZmJiIiIFJESIhEREXF4SoguozlEIiIijkdziApx5swZ3N3dOXLkiOYQiYiIlBPp6el4eXlx+vTpm6o4Ybc7VdtaRkYGAF5eXjaORERERG5WRkbGTSVE6iEqRF5eHr/99hvVq1fHYrEQEBDAzp07r/u+6513MXN1lJ6nG/25lYXSjqUkr1/caxXl/TfzHj0PRaPnwTbX0vNgn0rr36BhGGRkZODp6YmT043PDFIPUSGcnJxo0KBB/rGzs/MN/QO90fNq1KjhEP/gb/TnURZKO5aSvH5xr1WU99/Me/Q8FI2eB9tcS8+DfSrNf4NFKc7uPHny5MklH0rFdM899xT7vAsXLvDaa68RERGBq6trSYVm127051YWSjuWkrx+ca9VlPffzHv0PBSNngfbXEvPg32yp+dBQ2ZlTBs+ilyi50HkEj0PtqUeIhtwdnamc+fOVKqkEUsRPQ8il+h5sB31EImIiIjD08aMIiIi4vCUEImIiIjDU0IkIiIiDk8JkYiIiDg8JUQiIiLi8JQQ2ZlevXpRq1YtHn/8cVuHImJTR44coXPnzrRo0YLWrVvz4Ycf2jokEZvJyMggICAAX19fWrVqxTvvvGPrkCocLbu3M5s3byYzM5OlS5fy0Ucf2TocEZtJTk7m+PHj+Pr6cuLECfz8/Ni3bx/VqlWzdWgiZc5qtXLhwgWqVq3KuXPnaNmyJTt37qROnTq2Dq3CUA+RnenSpQvVq1e3dRgiNle/fn18fX0BuPXWW6lduzYnT560cVQituHs7EzVqlUByMrKwmq1ov6MkqWEqATFxcXRs2dPPD09sVgsrF279opzFi5ciI+PD25ubvj7+7N161YbRCpS+kryeYiPjycvLw8vL6/SDlukVJTE83D69GnatGlDgwYNGDduHHXr1i2r8B2CEqISdPbsWdq0acOCBQuu+npMTAyjR49mwoQJ7N69m44dO9KjRw8OHz5cxpGKlL6Seh7S0tJ4+umniYqKKouwRUpFSTwP7u7ufPfddyQlJfHBBx9w/PjxsgrfMRhSKgBjzZo1BdruueceIywsrEDbHXfcYYwfP75A2+bNm40+ffqUeowiZaWoz0NWVpbRsWNHY9myZWUSp0hZKM7vh4vCwsKM2NjYUovREamHqIxkZ2eza9cugoKCCrQHBQWxbds2G0UlYhs38jwYhsHAgQPp2rUroaGhtghTpEzcyPNw/Phx0tPTAUhPTycuLo7mzZuXeawVmcrplpHU1FSsViseHh4F2j08PEhJSck/7tatG99++y1nz56lQYMGrFmzhoCAgLIOV6RU3cjz8PXXXxMTE0Pr1q3z51ssX76cVq1alXm8IqXpRp6Ho0ePMmTIEAzDwDAMRowYQevWrW0RboWlhKiMWSyWAseGYRRoW79+fVmHJGIz13oeOnToQF5eni3CErGJaz0P/v7+JCQk2CIsh6EhszJSt25dnJ2dC/QGAZw4ceKKvwpEKjo9DyKX6HmwD0qIyoiLiwv+/v5s2LChQPuGDRsIDAy0UVQitqHnQeQSPQ/2QUNmJSgzM5MDBw7kHyclJZGQkEDt2rVp2LAhY8aMITQ0lLZt29K+fXuioqI4fPgwYWFhNoxapHToeRC5RM9DOWDLJW4VzebNmw3giq8BAwbknxMZGWl4e3sbLi4uhp+fn7FlyxbbBSxSivQ8iFyi58H+qZaZiIiIODzNIRIRERGHp4RIREREHJ4SIhEREXF4SohERETE4SkhEhEREYenhEhEREQcnhIiERERcXhKiERERMThKSESERERh6eESEQqjOjoaNzd3Uvt+p07d2b06NGldn0RsR2V7hARuzZw4EBOnz7N2rVrr3vu+fPnycjI4NZbby2VWE6ePEnlypWpXr16qVxfRGxH1e5FpELIycmhSpUqVKlSpdTuUbt27VK7tojYlobMRKREdO7cmeeff57Ro0dTq1YtPDw8iIqK4uzZswwaNIjq1avTuHFjPv/88/z3WK1WhgwZgo+PD1WqVKF58+bMmzcv//XJkyezdOlSPv74YywWCxaLha+++opff/0Vi8VCbGwsnTt3xs3NjRUrVhQYMjMMg/vvv5/u3btzsSP89OnTNGzYkAkTJhT6fSxcuJCmTZvi5uaGh4cHjz/+eIHv8eKQ2VdffZUf05+/Bg4cmH/+J598gr+/P25ubtx+++1MmTKF3NzcQu89cOBAHnvsMWbPnk39+vWpU6cO4eHh5OTk3Nz/DBG5aUqIRKTELF26lLp167Jjxw6ef/55nnvuOfr27UtgYCDffvst3bp1IzQ0lHPnzgGQl5dHgwYNiI2NJTExkYkTJ/Lyyy8TGxsLwNixYwkODqZ79+4kJyeTnJxMYGBg/v1eeuklRo4cyY8//ki3bt0KxGKxWFi6dCk7duxg/vz5AISFheHh4cHkyZOvGn98fDwjR45k6tSp7Nu3jy+++IJOnTpd9dzAwMD8mJKTk9m0aRNubm75569fv57+/fszcuRIEhMTefvtt4mOjmb69OnX/Blu3ryZX375hc2bN7N06VKio6OJjo6+7s9eRIrJEBEpAffdd5/RoUOH/OPc3FyjWrVqRmhoaH5bcnKyARjbt28v9DrDhw83+vTpk388YMAA49FHHy1wTlJSkgEYc+fOLdC+ZMkSo2bNmgXaYmNjDVdXVyMiIsKoWrWqsW/fvkLvvWrVKqNGjRpGenp6od/jqFGjrmhPTU01GjdubAwfPjy/rWPHjsaMGTMKnLd8+XKjfv36hd5/wIABhre3t5Gbm5vf1rdvXyMkJKTQ94hIydAcIhEpMa1bt87/b2dnZ+rUqUOrVq3y2zw8PAA4ceJEfttbb73Fu+++y6FDhzh//jzZ2dn4+vre0P3atm173XP69u3LmjVrmDlzJosWLaJZs2aFnvvAAw/g7e3N7bffTvfu3enevTu9evWiatWqhb4nJyeHPn360LBhwwLDfbt27WLnzp0FeoSsVitZWVmcO3eu0GveddddODs75x/Xr1+fPXv2XPf7FJHi0ZCZiJSYypUrFzi2WCwF2iwWC2AOlQHExsby97//ncGDB/Pll1+SkJDAoEGDyM7OvqH7VatW7brnnDt3jl27duHs7MzPP/98zXOrV6/Ot99+y8qVK6lfvz4TJ06kTZs2nD59utD3PPfccxw+fJgPP/yQSpUu/Y2Zl5fHlClTSEhIyP/as2cPP//8M25uboVe72o/w4s/LxEpPeohEhGb2bp1K4GBgQwfPjy/7ZdffilwjouLC1artcj3eOGFF3BycuLzzz/nwQcf5KGHHqJr166Fnl+pUiXuv/9+7r//fiZNmoS7uzubNm2id+/eV5w7Z84cYmJi2L59O3Xq1Cnwmp+fH/v27aNJkyZFjl1Eyo4SIhGxmSZNmrBs2TLWr1+Pj48Py5cvZ+fOnfj4+OSf06hRI9avX8++ffuoU6cONWvWvOHrf/bZZyxevJjt27fj5+fH+PHjGTBgAN9//z21atW64vxPP/2UgwcP0qlTJ2rVqsW6devIy8ujefPmV5y7ceNGxo0bR2RkJHXr1iUlJQWAKlWqULNmTSZOnMjDDz+Ml5cXffv2xcnJie+//549e/Ywbdq0Ivy0RKQ0achMRGwmLCyM3r17ExISQrt27UhLSyvQWwQwbNgwmjdvTtu2balXrx5ff/31DV37999/Z8iQIUyePBk/Pz8AJk2ahKenJ2FhYVd9j7u7O6tXr6Zr167ceeedvPXWW6xcuZK77rrrinP/+9//YrVaCQsLo379+vlfo0aNAqBbt258+umnbNiwgYCAAO69917mzJmDt7f3zfyIRKSMaKdqERERcXjqIRIRERGHp4RIREREHJ4SIhEREXF4SohERETE4SkhEhEREYenhEhEREQcnhIiERERcXhKiERERMThKSESERERh6eESERERByeEiIRERFxeP8P459StuwpxEsAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'time for LU factorization')" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using PyPlot\n", - "loglog(n, t*1e9, \"bo-\")\n", - "loglog(n, n.^3, \"k--\")\n", - "xlabel(\"matrix size n\")\n", - "ylabel(\"time (ns)\")\n", - "legend([\"time\", L\"n^3\"])\n", - "title(\"time for LU factorization\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's pretty close! For large $n$, you can see it starting to go parallel to the $n^3$ line.\n", - "\n", - "Let's also look at the time to *solve* $LUx=b$ when we are *given* the LU factors, which we predict should grow $\\sim n^2$:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 3.40284e-7 \n", - " 0.00015732 \n", - " 0.000886265\n", - " 0.00191413 \n", - " 0.00571998 " - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ts = [@belapsed($(lufact(rand(n,n))) \\ $(rand(n))) for n in n]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHJCAYAAACFTTOQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8Tff/wPHXzR5GxAhBRAelNCFIUZu0tIjR+kYlBC39oUZROlA12qqWVqgdglgNLVWzZo3aRaqKkNAQMRKSyDy/P04TIkTGTc4d7+fjcR+czzk5532D3LfPeusURVEQQgghhDADFloHIIQQQghRXCTxEUIIIYTZkMRHCCGEEGZDEh8hhBBCmA1JfIQQQghhNiTxEUIIIYTZkMRHCCGEEGZDEh8hhBBCmA1JfIQQQghhNiTxEcJE7N+/nwkTJnDnzp0c51q2bEnLli2LP6hc7NixgwYNGuDo6IhOp2P9+vVF9qxLly6h0+n4+uuvc71Op9MxePDgx55bu3YtOp2OXbt2FUGEjzdhwgR0Ol2xPU8Ic2CldQBCCP3Yv38/n332GX369MHJySnbudmzZ2sU1eMpisJbb71FjRo1+Pnnn3F0dKRmzZpahyWEMAOS+AhhBmrXrq11CNn8+++/3Lp1iy5dutCmTRu93DMpKQk7OzvpIRFC5EqGuoQwARMmTGDUqFEAVK9eHZ1Ol21Y5tGhrsyhn2nTpvHll1/i7u6Ovb09LVu25Ny5c6SmpjJmzBhcXV0pXbo0Xbp0ISYmJsdzV61aRePGjXF0dKREiRK8+uqrHD9+/KmxVqlSBYAPP/wQnU6Hu7t71vl9+/bRpk0bSpYsiYODA02aNOGXX37Jdo/g4GB0Oh1bt26lb9++lC9fHgcHB5KTkwvw3dOvGzdu8O6771K1alVsbW0pX748TZs2Zfv27dmuW7RoER4eHtjZ2eHs7EyXLl3466+/cr23r68v1apVIyMjI8c5b29v6tevn3WsKAqzZ8/G09MTe3t7ypQpQ/fu3bl48aJ+3qgQRkoSHyFMQP/+/RkyZAgAYWFhHDhwgAMHDmT7IHycoKAgfv/9d4KCgliwYAFnz56lY8eO9OvXjxs3brBo0SK++uortm/fTv/+/bN97ZQpU/Dz86N27dqsXr2akJAQ7t69S7NmzQgPD8811rCwMACGDBnCgQMHWLduHQC7d++mdevWxMXFsXDhQkJDQylZsiQdO3Zk1apVOe7Vt29frK2tCQkJYe3atVhbW+fr+1YU/P39Wb9+PePGjWPr1q0sWLCAtm3bcvPmzaxrpk6dSr9+/XjxxRcJCwtj5syZ/PnnnzRu3Jh//vnniffu27cvkZGR/Pbbb9naz549yx9//EFgYGBW24ABAxg2bBht27Zl/fr1zJ49mzNnztCkSROuX7+u/zcuhLFQhBAmYdq0aQqgRERE5DjXokULpUWLFlnHERERCqB4eHgo6enpWe0zZsxQAKVTp07Zvn7YsGEKoMTFxSmKoiiRkZGKlZWVMmTIkGzX3b17V6lYsaLy1ltv5Rpr5vOnTZuWrf3ll19WKlSooNy9ezerLS0tTalTp45SpUoVJSMjQ1EURVm8eLECKAEBAbk+52nPexSgDBo06LHn1qxZowDKzp07c71HiRIllGHDhj3x/O3btxV7e3ulQ4cO2dojIyMVW1tbpWfPnllt48ePVx7+MZ2amqq4uLhku0ZRFGX06NGKjY2NEhsbqyiKohw4cEABlOnTp2e7LioqSrG3t1dGjx6d63sQwpRJj48QZqxDhw5YWDz4MVCrVi0AXn/99WzXZbZHRkYCsGXLFtLS0ggICCAtLS3rZWdnR4sWLQq08ikhIYFDhw7RvXt3SpQokdVuaWmJv78/V65c4e+//872Nd26dcv3c4pao0aNCA4OZtKkSRw8eJDU1NRs5w8cOEBSUhJ9+vTJ1l61alVat27Njh07nnhvKysrevXqRVhYGHFxcQCkp6cTEhJC586dKVu2LAAbN25Ep9PRq1evbH8+FStWxMPDo1hXpglhaCTxEcKMOTs7Zzu2sbHJtf3+/fsAWUMlDRs2xNraOttr1apVxMbG5juW27dvoygKlSpVynHO1dUVINtwEfDYawvD0tKS9PT0x55LS0sDeOpw2qpVq+jduzcLFiygcePGODs7ExAQwLVr14AH7+FJ7/PR9/iovn37cv/+fVauXAmoSWh0dHS2Ya7r16+jKAouLi45/nwOHjxYoD8fIUyFrOoSQuRbuXLlAHVvm2rVqunlnmXKlMHCwoLo6Ogc5/79999sz82k7xVcLi4uXL169bHnMttdXFxyvUe5cuWYMWMGM2bMIDIykp9//pkxY8YQExPD5s2bs3plnvQ+H32Pj6pduzaNGjVi8eLFDBgwgMWLF+Pq6oqPj0+2GHQ6HXv37sXW1jbHPR7XJoS5kB4fIUxE5odZUlJSkT/r1VdfxcrKigsXLtCgQYPHvvLL0dERb29vwsLCsr2HjIwMli1bRpUqVahRo4Y+30YObdu2ZefOndy4cSNbu6IorFmzBnd3d5577rk838/NzY3BgwfTrl07jh07BkDjxo2xt7dn2bJl2a69cuUKv/32W56W9wcGBnLo0CH27dvHhg0b6N27N5aWllnn33jjDRRF4erVq4/9s6lbt26e34MQpkZ6fIQwEZkfZjNnzqR3795YW1tTs2ZNSpYsqfdnubu7M3HiRD7++GMuXrzIa6+9RpkyZbh+/Tp//PEHjo6OfPbZZ/m+79SpU2nXrh2tWrVi5MiR2NjYMHv2bE6fPk1oaGihe3hOnTrF2rVrc7Q3bNiQatWqMW7cODZs2IC3tzdjxozh+eef59q1a8yfP5/Dhw+zevXqXO8fFxdHq1at6NmzJy+88AIlS5bk8OHDbN68ma5duwLg5OTEp59+ykcffURAQAB+fn7cvHmTzz77DDs7O8aPH//U9+Hn58eIESPw8/MjOTk5x3yhpk2b8u677xIYGMiRI0do3rw5jo6OREdHs2/fPurWrct7772X92+cEKZE27nVQgh9Gjt2rOLq6qpYWFhkW4H0pFVdj65y2rlzpwIoa9asydaeuYrq8OHD2drXr1+vtGrVSilVqpRia2urVKtWTenevbuyffv2XOPMbZXV3r17ldatWyuOjo6Kvb298vLLLysbNmzIUzxPe96TXosXL8669p9//lF69eqlVKpUSbGyslKcnJwUHx8fZceOHU99zv3795WBAwcqL730klKqVCnF3t5eqVmzpjJ+/HglISEh27ULFixQXnrpJcXGxkYpXbq00rlzZ+XMmTPZrnl0VdfDevbsqQBK06ZNnxjPokWLFG9v76zv5bPPPqsEBAQoR44ceep7EcJU6RRFUTTIt4QQQgghip3M8RFCCCGE2TD6xOfvv//G09Mz62Vvb1+kVZ6FEEIIYbxMaqjr3r17uLu7c/nyZRwdHbUORwghhBAGxuh7fB72888/06ZNG0l6hBBCCPFYmic+e/bsoWPHjri6uqLT6R47TDV79myqV6+OnZ0dXl5e7N2797H3Wr16NT169CjqkIUQQghhpDRPfBISEvDw8GDWrFmPPb9q1SqGDRvGxx9/zPHjx2nWrBnt27fPqhmUKT4+nt9//50OHTrk+rzk5GTi4+OzvZKTk/X2foQQQghhuAxqjo9Op2PdunX4+vpmtXl7e1O/fn3mzJmT1VarVi18fX2ZOnVqVltISAhbtmzJsRvqoyZMmJBjY7Xhw4czfvx4vW9/L4QQQoiioSgKd+/exdXVNVux5bx8ocEAlHXr1mUdJycnK5aWlkpYWFi2695//32lefPm2dreeOMN5eeff37qM+7fv6/ExcVlvcLDw3Pd2Exe8pKXvOQlL3kZ7isqKipfuYZBl6yIjY0lPT09R1FAFxeXrErHoG4T/8cff/Djjz8+9Z62trbZCvQp/3V4RUVFUapUKT1FLoQQQoiiFB8fT9WqVfNdlsegE59Mjw5BKYqSra106dJcv349X/cMCgoiKCiI9PR0AEqVKiWJjxBCCGFk8jtNRfPJzbkpV64clpaW2Xp3AGJiYnL0AuXXoEGDCA8P5/Dhw4W6jxBCCCGMh0EnPjY2Nnh5ebFt27Zs7du2baNJkyYaRSWEEEIIY6X5UNe9e/c4f/581nFERAQnTpzA2dkZNzc3RowYgb+/Pw0aNKBx48bMmzePyMhIBg4cWGwxZmRkkJKSUmzPMxXW1tZYWlpqHYYQQgiRRfPE58iRI7Rq1SrreMSIEQD07t2b4OBgevTowc2bN5k4cSLR0dHUqVOHTZs2Ua1atUI999E5Pk+SkpJCREQEGRkZhXqeuXJycqJixYqyVYAQQgiDYFD7+GghPj6e0qVLExcXl2Nys6IoREZGkpqamv99AsycoigkJiYSExODk5MTlSpV0jokIYQQJiS3z+/caN7jY8jS0tJITEzE1dUVBwcHrcMxOvb29oA6Gb1ChQoy7CWEEEJz0oWRi8xhMBsbG40jMV6ZCWNqaqrGkQghhBBmnPgEBQVRu3ZtGjZs+NRrZX5Kwcn3TgghhCEx28RH9vERQgghik56OuzaBaGh6q9PWUtUbGSOjxBCCCH0KiwMhg6FK1cetFWpAjNnQteu2sUFZtzjU5y0znp37dqFTqfjzp07xftgIYQQZicsDLp3z570AFy9qraHhWkTVyZJfIpYWBi4u0OrVtCzp/qru3vR/sG3bNmSYcOGZR03adKE6OhoSpcuXXQPFUIIYfbS09WensdtlJPZNmyYtsNeZpv45Gdyc0EZStZrY2MjmwgKIYQocnv35vzMe5iiQFSUep1WzDbxKcjkZkWBhIS8veLj4f33c896hw5Vr8vL/fK6zWSfPn3YvXs3M2fORKfTodPpCA4OzjbUFRwcjJOTExs3bqRmzZo4ODjQvXt3EhISWLJkCe7u7pQpU4YhQ4Zk29k6JSWF0aNHU7lyZRwdHfH29mbXrl15/v4JIYQwbdHR+r2uKMjk5nxITIQSJfRzL0VRs+K8jj7duweOjk+/bubMmZw7d446deowceJEAM6cOZPjusTERL777jtWrlzJ3bt36dq1K127dsXJyYlNmzZx8eJFunXrxiuvvEKPHj0ACAwM5NKlS6xcuRJXV1fWrVvHa6+9xqlTp3j++efz/N6FEEKYprwmNFpu5i+Jj4kpXbo0NjY2ODg4ULFiRQDOnj2b47rU1FTmzJnDs88+C0D37t0JCQnh+vXrlChRgtq1a9OqVSt27txJjx49uHDhAqGhoVy5cgVXV1cARo4cyebNm1m8eDFTpkwpvjcphBDCoPzzD4waBT/9lPt1Op26uqtZs+KJ63Ek8ckHBwe15yUv9uyBDh2eft2mTdC8ed6erU8ODg5ZSQ+Ai4sL7u7ulHioS8vFxYWYmBgAjh07hqIo1KhRI9t9kpOTKVu2rH6DE0IIYRTu3IHPP4fvv4fUVLC0BB8f2LxZPf/wNI3MaaYzZqjXacVsE5+8Vmd/mE6Xt+EmUP/gq1RRJzI/bn5OZtbr46PNXwBra+tH4tE9ti2zKn1GRgaWlpYcPXo0R82tEvoa/xNCCGEU0tJg/nwYNw5iY9W2Dh3g66+hVq0n7+MzY4b2+/iYbeIzaNAgBg0alFXdVd8sLdWNmrp3V5Oc4sx6bWxs8pXQ5UW9evVIT08nJiaGZlr2UQohhNDU1q0wYgRkTh+tVQu++QZee+3BNV27QufO6uqt6Gh1Tk+zZtr29GQy28SnOHTtCmvXFn/W6+7uzqFDh7h06RIlSpTI6rUpjBo1avD2228TEBDA9OnTqVevHrGxsfz222/UrVuXDnkZ1xNCCGG0zp6FkSPhl1/U47Jl4bPPYMAAsHpMNmFpCS1bFmuIeWK2y9mLS9eucOkS7NwJK1aov0ZEFG1X38iRI7G0tKR27dqUL1+eyMhIvdx38eLFBAQE8MEHH1CzZk06derEoUOHqFq1ql7uL4QQwvDcuqX+B75uXTXpsbKC4cPVCc2DBj0+6TFkOkXJ6w4xpilzqCsuLo5SpUplO3f//n0iIiKoXr06dnZ2GkVo3OR7KIQQxik1FX74AcaPh9u31bZOnWDaNHhknYsmcvv8zo2R5WlCCCGEKGq//qrO48ncDaVOHfj2W2jbVtu49EGGuoQQQggBqBOWX3tNXaF19iyUL6/2+hw/nv+kJzk5mY0bNxZNoIVgtolPcdTqEkIIIYxBbKw6X8fDA7ZsAWtrdUPCf/558uTl3Jw9e5aXX36Zjh07sn379qIJuoDMNvEpSK0uIYQQwpSkpKhDWM89B7Nnq1XTu3aFv/6Cr77Ke1mlh+3YsQMvLy9OnDhBuXLl9L69SmHJHB8hhBDCzCgKbNwIH3yg9uoAeHqqSVBhl6B7eXlRrlw5atasyZIlS6ikZWGux5DERwghhDAjf/6pTlzesUM9dnGByZOhT5+CbzB4+vRpXnzxRXQ6HU5OTuzbt4/KlStjYWF4A0uGF5EQQggh9C4mRp2vU6+emvTY2sLYsWqPT79+BUt60tLS+PTTT/Hw8GDBggVZ7VWrVjXIpAekx0cIIYQwacnJ8N13MGkSxMerbW++CV9+CdWrF/y+ERERvP322xw4cACAkydP6iHaoieJjxBCCGGCFAXWr1fLTFy8qLZ5eanzeApbcjE0NJSBAwdmbSI4d+5cevToUfigi4EkPkIIIYSJOX5cLSuxe7d6XKkSTJ0K/v5QmBGou3fvMmTIEJYsWQJA06ZNWb58OdWqVdND1MXDMAfgRJGLioqiZcuW1K5dm5deeok1a9ZoHZIQQohCunZNna/j5aUmPXZ28OmncO4c9O5duKQH4NSpU4SEhGBhYcGECRPYtWuXUSU9YMY9PkFBQQQFBRnc/gLFxcrKihkzZuDp6UlMTAz169enQ4cOODo6ah2aEEKIfLp/Xx3CmjIF7t1T2/z84IsvwM1Nf89p0qQJ3377LfXr1+eVV17R342Lkdn2+Jj7BoaVKlXC09MTgAoVKuDs7MytW7c0jkoIIUR+KAqsWQO1asFHH6lJj7c37N8PK1YUPum5evUqnTp14u+//85qe//994026QEz7vERDxw5coSMjAyqVq2qdShCCCHy6MgRdR7Pvn3qcZUqag+Pn1/hh7QAfvrpJ/r168fNmze5c+cOu3fvRqfTFf7GGjPbHh+hunnzJgEBAcybN0/rUIQQQuTB1avqfJ2GDdWkx8EBPvsM/v4b3n678ElPUlISgwYNwtfXl5s3b1K/fn3mz59vEkkPSOJjss6fP49Op+OXX36hTZs2ODg4ULNmTQ4dOpR1TXJyMl26dGHs2LE0adJEw2iFEEI8TWIifP451KgBS5eqbf7+asIzbpyaABXWqVOnaNiwIbNnzwbggw8+YP/+/dSsWbPwNzcQkviYqJMnT6LT6Zg+fTqffPIJJ0+exM3NjTFjxgCgKAp9+vShdevW+Pv7axytEEKIJ1EUCA2FF15QE5zERGjSBA4dUhOgKlX085yDBw/SsGFDzpw5g4uLC1u2bOHrr7/G1tZWPw8wEDLHpwASEhKeeM7S0hI7O7s8XWthYYG9vf1Try3ISquTJ09SunRpVq1aRfny5QHw9fVlzpw5APz++++sWrWKl156ifXr1wMQEhJC3bp18/0sIYQQRePgQXUez8GD6rGbm1o1/a23QN8jT15eXtSrV4+yZcuyaNEiKlSooN8HGAhJfAqgRIkSTzzXoUMHfvnll6zjChUqkJiY+NhrW7Rowa5du7KO3d3diY2NzXGdoij5jvHkyZN07NgxK+kBuHjxIs899xwAr7zyChkZGfm+rxBCiKIXFaXW0Vq+XD12dFSPR4yAh/6/XGj79u2jUaNG2NjYYG1tza+//krp0qVNZj7P48hQl4k6efIkjRs3ztZ2/PjxrCXsQgghDE9CAowfDzVrqkmPTgeBgWoh0Y8/1l/Sk5KSwujRo2nWrBkff/xxVruTk5NJJz0gPT4Fci9zd6jHsHykvG1MTMwTr320cu2lS5cKFVemuLg4Ll++TL169bK1nzhxgvfff18vzxBCCJF/6emwdy9ER6tlJJo1U6uiZ2Soic6YMfDvv+q1zZurmxLWr6/fGM6dO0fPnj05evQooE6zUBTF5BOeTJL4FEB+5twU1bW5OXnyJJaWlnh4eGS1Xb58mdu3b0uPjxBCaCQsDIYOhStXHrRVqQLvvQfr1qn78oBaMX3aNOjaVb/zeBRFITg4mCFDhpCQkICzszMLFiygS5cu+nuIEZDExwSdPHmSF154IdvE6ePHj+Pk5IS7u7t2gQkhhJkKC4Pu3dUVWg+7ckUdwgIoWVL9/dChao0tfbpz5w4DBw5k1apVALRs2ZKQkBCq6GtJmBHRKQWZOWtC4uPjKV26NHFxcZQqVSrbufv37xMREUH16tWzrdQSeSffQyGEuUtPB3f37D09j3J0VAuJuroWTQwXL17E09OTxMREJk6cyIcffphjaoaxye3zOzdm2+Nj7kVKhRBCFI+9e3NPekCd1KzvxOfheTvPPPMMS5cupVKlSnh7e+vvIUbIbFd1mXuRUiGEEEUvMRFWrszbtdHR+ntuZGQkLVu2ZPv27Vltvr6+Zp/0gBknPkIIIURROXUKhgxRe3Dmzs3b11SqpJ9nr127Fg8PD/bs2cPgwYNlZOMRZjvUJYQQQuhTYiKsXg3z5sGBAw/aq1eHW7cgPj7n5GZQV25VqaIubS+MhIQEhg4dysKFCwFo1KgRK1asMPq5PPomPT5CCCFEIZw+/aB3JzBQTXqsrKBbN9i6Fc6fh0WL1GsfXZ6eeTxjhrqfT0EdO3aM+vXrs3DhQnQ6HR999BH79u3j2WefLfhNTZT0+OSBmS98KxT53gkhTFFiIqxZow5jPdq78847agJUseKD9q5dYe3ax+/jM2OGer6gzp49y8svv0xqaiqVK1cmJCSEVq1aFfyGJk4Sn1xkdg+mpKRk2xNH5F1mnTJra2uNIxFCiMI7fVodygoJgTt31DYrK+jcGQYMgDZtwOIJYyldu6rXPW7n5sKoWbMmb775JomJiSxYsICyZcsW7oYmThKfXFhZWeHg4MCNGzewtrbOUWJCPJmiKCQmJhITE4OTk5OMMQshjFZS0oO5O/v3P2h/Uu9ObiwtoWXLwse0ZcsWvLy8KFeuHDqdjkWLFmFjY2M2ZScKQxKfXOh0OipVqkRERASXL1/WOhyj5OTkRMW8/kQQQggD8qTenU6d1N6dtm2f3LtTVO7fv8+YMWOYOXMmnTp1Yv369eh0OmxtbYs3ECMmic9T2NjY8Pzzz5OSkqJ1KEbH2tpaenqEEEblSb077u4Penf0tew8v/766y/8/Pw4efLkfzG5k5aWJlMJ8kkSnzywsLCQcgtCCGHCzpxRk52lSx/07lhaqnNy3n0X2rUr/t6dTIqiMH/+fIYNG0ZSUhLlypUjODiY119/XZuAjJwkPkIIIcxSUtKDlVmG1ruT6fbt2/Tv35+wsDAA2rVrx5IlS6ikdWBGTBIfIYQQZuVJvTuZc3e07N15lE6n4+jRo1hbWzN16lSGDx8uC20KSRIfIYQQJi+zd2fePPj99wft1aqpvTt9+2rfu5MpLS0NS0tLdDodTk5OrF69GktLS7y8vLQOzSRI4iOEEMJkGVPvDsDFixfp2bMngYGBDBgwAFBLTwj9MYnEJyIigr59+3L9+nUsLS05ePAgjo6OWoclhBBCA0lJ6i7Jc+c+vncnMFAtL2Foli9fznvvvcfdu3eJjIwkICBANs8tAiaR+PTp04dJkybRrFkzbt26JfsZCCGEGQoPf9C7c/u22mZpCR07PujdMcQdNuLj4xk8eDAhISEANG3alOXLl0vSU0SMPvE5c+YM1tbWNPuvrK2zs7PGEQkhhCgumb078+bBvn0P2t3cHszdMcTenUx//PEHfn5+XLx4EQsLC8aNG8fHH3+MlZXRfzwbLM1HNvfs2UPHjh1xdXVFp9Oxfv36HNfMnj2b6tWrY2dnh5eXF3v37s06988//1CiRAk6depE/fr1mTJlSnGGL4QQQgPh4TBsGFSuDAEBatJjaQm+vrBpE1y8CJ98YthJz7Vr12jRogUXL17Ezc2N3bt3M378eEl6ipjm392EhAQ8PDwIDAykW7duOc6vWrWKYcOGMXv2bJo2bcrcuXNp37494eHhuLm5kZqayt69ezlx4gQVKlTgtddeo2HDhrRr106DdyOEEKKoPK13JzBQTYSMRcWKFRkzZgzh4eHMnTsXJycnrUMyCzpFURStg8ik0+lYt24dvr6+WW3e3t7Ur1+fOXPmZLXVqlULX19fpk6dyoEDB/jss8/YvHkzANOmTQNg1KhRj31GcnIyycnJWcfx8fFUrVqVuLg4SpUqVRRvSwghRC7S03OvWB4eDvPnw5Il2efuvPGGOnfHx8cw5+48zk8//USNGjWoVasWABkZGeh0OikuWgDx8fGULl0635/fmg915SYlJYWjR4/i4+OTrd3Hx4f9/22z2bBhQ65fv87t27fJyMhgz549WX+hHmfq1KmULl0661W1atUifQ9CCCGeLCxM3Sm5VSvo2VP91d0dQkNh2TI1CXrxRZgxQ0163Nxg4kS4fBnWr4f27Y0j6UlMTOT//u//8PX1xc/PL+s/4BYWFpL0FDPNh7pyExsbS3p6Oi4uLtnaXVxcuHbtGgBWVlZMmTKF5s2boygKPj4+vPHGG0+859ixYxkxYkTWcWaPjxBCiOIVFgbdu8Oj4w5XrqhJUKbM3p1334VXXzWOROdhf/75J35+foSHhwNq2QlJdrRj0IlPpkf/giiKkq2tffv2tG/fPk/3srW1leXuQgihsfR0GDo0Z9LzMEtL+PRT6N/fuObuZFIUhVmzZjFq1CiSk5NxcXFh6dKlOUYxRPEy6MSnXLlyWFpaZvXuZIqJicnRC5RfQUFBBAUFkZ6eXqj7CCGEyL89e9Sendykp0OLFsaZ9MTHx/P222+zceNGAF5//XUWLVpEhQoVNI5MGPQcHxsbG7y8vNi2bVu29m3bttGkSZNC3XvQoEGEh4dz+PDhQt1HCCFE3t26Bd9/D3365O366OgiDafIODg4ZG2o+92n10FtAAAgAElEQVR337FhwwZJegyE5j0+9+7d4/z581nHERERnDhxAmdnZ9zc3BgxYgT+/v40aNCAxo0bM2/ePCIjIxk4cKCGUQshhMirjAz47TdYuBDWrYOHFtY+laEUDs2LlJQUFEXB1tYWKysrli9fTnx8PC+99JLWoYmHaJ74HDlyhFatWmUdZ0487t27N8HBwfTo0YObN28yceJEoqOjqVOnDps2baJatWpahSyEECIPoqJg8WL1denSg3YPD3XPna++Unt0HjfPR6eDKlXUVV3G4Ny5c/Ts2ZMWLVowffp0ANzd3bUNSjyWQe3jU5wenuNz7tw52cdHCCH0IDkZfv5Z7d3ZuvVBUlOqlLpSq39/qF9fTWwyV3VB9uQnc+3K2rXQtWvxxp9fiqIQHBzMkCFDSEhIoGzZsvz999+ULVtW69BMXkH38THbxCdTQb9xQgghHjhzRk12QkIgNvZBe4sW0K8fdOsGDg45vy4sTF3d9fBE56pV1X17DD3puXPnDgMHDmTVqlUAtGzZkpCQEKpUqaJxZOahoJ/fmg91CSGEME5378LKlWrCc+jQg/ZKldTJy337wnPP5X6Prl2hc+fcd242RL///js9e/YkMjISKysrPv/8c0aNGoWloQcuJPERQgiRd4oC+/fDggWwejUkJqrtmZsM9uun7qacnzqblpbQsmWRhFsk7t69S6dOnbh16xbPPPMMoaGhNGrUSOuwRB6ZbeIj+/gIIUTeXb8OS5eqvTt///2gvUYNNdkJCICKFbWLrziVLFmSWbNm8euvvzJr1iyZJmFkZI6PzPERQojHSkuDzZvVZGfjRvUY1Lk6b72lJjxNmz6YjGzK1qxZQ5kyZWjbtq3WoYj/yBwfIYQQenH+PCxapFZD//ffB+3e3mqy06OHukrLHCQkJPD++++zaNEiXFxcOHXqFOXLl9c6LFEIkvgIIYQgKQl+/FHt3dm160F72bLqMFbfvlCnjmbhaeLYsWP4+flx7tw5dDod/fv3x8nJSeuwRCGZbeIjc3yEEOZOUeDYMTXZWbEC4uLUdp0OfHzU3p1OncDc6jpnZGTw7bffMnbsWFJTU6lSpQrLli2jRYsWWocm9EDm+MgcHyGEmbl1C5YvVxOekycftFerpvbs9OkDbm6ahaep+/fv07lzZ7Zu3QpAly5dWLBgAc7OzhpHJh4lc3yEEEI80ZPqZdnYqHvp9OsHrVuDhUGXri56dnZ2VKhQAXt7e2bMmME777yDzhxmb5sR6fGRHh8hhAl7Ur2sl15Sk52331bn8Ziz+/fvk5SURJkyZQD1c+Hq1avUqlVL48hEbqTHRwghBAApKQ/qZW3ZkrNeVr9+4OVlHsvQnyY8PBw/Pz+qVq3Khg0b0Ol0lCpVSv4jbMIk8RFCCBNR0HpZ5khRFObNm8fw4cNJSkoiOjqay5cvS0V1M2C2iY+s6hJCmIK7d2HVKrWEREHrZZmbmzdv8s4777Bu3ToAfHx8WLJkCRXNZetpMydzfGSOjxDCyGTWy1q4UK2XlZCgthemXpa52LVrF7169eLq1atYW1vzxRdfMGzYMCzMfVa3EZI5PkIIYeKkXlbhpKam8s4773D16lVq1qxJaGgo9erV0zosUcwk8RFCCAMm9bL0x9rampCQEBYtWsS3336Lo6Oj1iEJDUjiI4QQBujCBbVeVnBw9npZjRpB//7mVS+rMJYvX879+/fp168fAC+//DIvv/yyxlEJLUniI4QQBiK3eln+/mrvjrnVyyqo+Ph4Bg0axLJly7Czs6NZs2bUqFFD67CEAZDERwghNCT1svTv0KFD9OzZk4sXL2JhYcHYsWN55plntA5LGAizTXxkObsQQktSL0v/0tPT+fLLLxk3bhzp6elUq1aN5cuX07RpU61DEwZElrPLcnYhRDGRellFJyMjg1dffZXt27cD8L///Y85c+bg5OSkcWSiqMhydiGEMFBRUeok5UWLpF5WUbGwsKBFixYcOHCAWbNm0bt3bykuKh5Lenykx0cIUQSkXlbRS0xM5MaNG1SrVg1Qh7oiIyOpXr26xpGJ4iA9PkIIYQCkXlbxOHnyJH5+flhZWfHHH39gZ2eHpaWlJD3iqSTxEUKIQsqsl7VwIRw8+KBd6mXpn6IofP/994waNYqUlBQqVqzIhQsXePHFF7UOTRgJSXyEEKIApF5W8YuJiSEwMJBNmzYB8MYbb7Bo0SLKly+vcWTCmMg/SSGEyIfMelmLFsHZsw/apV5W0dq6dSsBAQFcv34dW1tbvv76awYNGiQTmEW+SeIjhBBPkZamTlBeuBA2bJB6WcVNURQmT57M9evXefHFFwkNDaVu3bpahyWMlNkmPrKBoRDiaaRelmHQ6XSEhIQwc+ZMJk2ahL29vdYhCSMmy9llObsQ4iFSL0t7iqKwePFizp8/z5QpU7QORxgoWc4uhBCFcOwYLFgg9bK0dufOHQYMGMDq1asB6NChA6+88orGUQlTIomPEMJsZdbLWrQITpx40C71srSxb98+3n77bSIjI7GysuLzzz+ncePGWoclTIwkPkIIs5KRATt3qkNZYWHZ62V16aLO3ZF6WcUrLS2NyZMnM3HiRDIyMnj22WdZsWIFjRo10jo0YYIk8RFCmIXMelmLF0NExIN2qZelvS5durBx40YAAgICmDVrFiVLltQ4KmGqJPERQpislBR1+fmCBbB1q9rbA1Ivy9D4+/uze/dufvjhB3r27Kl1OMLEyaouWdUlhMkJD39QL+vGjQftUi/LMNy7d4/z58/j6emZ1Xbjxg3ZgVnki6zqEkKYtdzqZfXurU5Wfv557eITqqNHj+Ln50dcXBx//vknLi4uAJL0iGIjiY8QwmhJvSzjkZGRwTfffMNHH31EamoqVapU4erVq1mJjxDFRX4cCCGMTkyMWi9r4UKpl2UMoqOj6d27N9u2bQOga9euzJ8/H2dnZ40jE+ZIEh8hhFGQelnGaePGjQQGBhIbG4u9vT0zZ86kf//+UlxUaMZsEx+p1SWEcZB6Wcbtxx9/JDY2Fg8PD0JDQ6lVq5bWIQkzJ6u6ZFWXEAZH6mUZN0VRsnp07t69y4wZMxg1ahR2dnYaRyZMSUE/vyXxkcRHCINx7Jia7CxfLvWyjJGiKPzwww/s2LGDNWvWyHCWKFKynF0IYZDS02HvXoiOVpeWN2umrrrKdPu2mugsXCj1sozZzZs36d+/P+vXrwcgLCyMbt26aRyVEDlJ4iOEKDJhYTB0KFy58qCtShX49lsoU0bqZZmKnTt30qtXL/7991+sra354osv6NKli9ZhCfFYkvgIIYpEWBh0767utfOwK1fgzTezt0m9LOOUmprK+PHj+eKLL1AUhZo1axIaGkq9evW0Dk2IJ5LERwihd+npak9PbjMIdTp45x31JfWyjFNAQAArV64EoH///syYMQNHR0eNoxIid9KRLITQu717sw9vPY6igJ8fNGggSY+xGj58OOXLl2fNmjXMnz9fkh5hFKTHRwihd9HR+r1OGIb4+HgOHjyIj48PAI0aNeLSpUs4SMVXYUSkx0cIoXeVKun3OqG9gwcP4unpSadOnfjzzz+z2iXpEcZGEh8hhN4dP577eZ0OqlZVl7YLw5aens7kyZN55ZVXiIiIoGLFity/f1/rsIQoMBnqEkLo1RdfwNixD451uuyTnDPn88yYkX0/H2F4rly5gr+/P7v+2z77f//7H3PmzMHJyUnbwIQoBOnxEULohaLAuHEPkp4JE2DtWqhcOft1Vaqo7V27FnuIIh/WrVvHSy+9xK5du3B0dGTx4sWsWLFCkh5h9KTHRwhRaIoCo0bB9Onq8ZdfwujR6u99fXPfuVkYpr/++ovbt2/ToEEDVqxYwfPPP691SELohSQ+QohCyciAwYNhzhz1+Pvv1eNMlpbQsqUmoYl8Sk9Px/K/rPTDDz/E2dmZvn37YmNjo3FkQuiPDHUJIQosPV3dcXnOHHXuzoIF2ZMeYRwUReG7777D29ubpKQkACwtLRk4cKAkPcLkmETiY2VlhaenJ56envTv31/rcIQwC6mpaomJ4GC1V2fZMjUJEsYlJiaGN954g6FDh3L06FGWLFmidUhCFCmTGOpycnLixMNlnYUQRSo5GXr0gJ9+AmtrWLlSJisboy1bttC7d2+uX7+Ora0t06dPZ8CAAVqHJUSRMonERwhRfBIT1QrqW7eCnR38+CN06KB1VCI/kpOT+eijj/jmm28AePHFFwkNDaVu3boaRyZE0dN8qGvPnj107NgRV1dXdDod69evz3HN7NmzqV69OnZ2dnh5ebF3795s5+Pj4/Hy8uKVV15h9+7dxRW6EGbn7l01ydm6FRwc4JdfJOkxRsOHD89KegYNGsThw4cl6RFmQ/PEJyEhAQ8PD2bNmvXY86tWrWLYsGF8/PHHHD9+nGbNmtG+fXsiIyOzrrl06RJHjx7lhx9+ICAggPj4+Cc+Lzk5mfj4+GwvIcTT3bkDPj6wezeUKqUmP61bax2VKIixY8dSo0YNfvrpJ2bNmoW9vb3WIQlRbHSK8vCeqtrS6XSsW7cOX1/frDZvb2/q16/PnMy1skCtWrXw9fVl6tSpOe7Rvn17Pv/8cxo0aPDYZ0yYMIHPPvssR3tcXBylSpXSw7sQwvTExqpJz/HjUKaMmvQ84Z+YMEC3b9/m559/pnfv3lltDy9dF8IYxcfHU7p06Xx/fmve45OblJQUjh49mlUJOJOPjw/79+8H1H/QycnJgLq9enh4OM8888wT7zl27Fji4uKyXlFRUUX3BoQwAdeuqfvwHD8OFSrArl2S9BiTffv24enpSZ8+fdiwYUNWuyQ9wlwZ9OTm2NhY0tPTcXFxydbu4uLCtWvXAHV30QEDBmBhYYFOp2PmzJk4Ozs/8Z62trbY2toWadxCmIqoKGjTBv75B1xdYccOeOEFraMSeZGWlsakSZP4/PPPycjI4LnnnqNSpUpahyWE5gw68cmky6xq+B9FUbLamjRpwqlTp7QISwiTdvGimvRcugTVqqlJz7PPah2VyItLly7x9ttvZ/WM9+7dm++//56SJUtqHJkQ2jPooa5y5cphaWmZ1buTKSYmJkcvUH4FBQVRu3ZtGjZsWKj7CGGKzp6F5s3VpOe559RaW5L0GIewsDA8PT3Zv38/pUqVYsWKFQQHB0vSI8R/DDrxsbGxwcvLi23btmVr37ZtG02aNCnUvQcNGkR4eDiHDx8u1H2EMDWnTkGLFnD1KtSuDXv2QNWqWkcl8iojI4O4uDgaN27MiRMn8PPz0zokIQyK5kNd9+7d4/z581nHERERnDhxAmdnZ9zc3BgxYgT+/v40aNCAxo0bM2/ePCIjIxk4cKCGUQthmo4cgVdfhVu3wNMTtm2DcuW0jko8TWJiIg4ODgB0796ddevW8cYbb2BlpfmPeCEMjub/Ko4cOUKrVq2yjkeMGAGoY9LBwcH06NGDmzdvMnHiRKKjo6lTpw6bNm2iWrVqhXpuUFAQQUFBpKenF+o+QpiK/fuhfXuIjwdvb/j1V3XpujBcGRkZTJ8+nZkzZ3L48OGsycsPbwkihMjOoPbx0UJB9wEQwpT89ht06gQJCeow14YNIFNCDFt0dDQBAQFs374dgClTpjB27FiNoxKi+BT081vzHh8hhLZ+/VUtMHr/vrpJ4bp1ajkKYbg2btxIYGAgsbGxODg4MHPmTPr166d1WEIYBYOe3CyEKFrr1kHnzmrS06kT/PyzJD2G7P79+7z//vt07NiR2NhYPD09OXr0KP3798+x7YcQ4vHMNvGR5ezC3K1YAW++Camp8NZbsHYtyN6ehm3q1Kl8//33gFpo9ODBg7wgO0oKkS8yx0fm+AgztGgR9O8PigK9e8PChSAVDAzfvXv36NChAx999BGvvfaa1uEIoSmTrNUlhNC/WbOgXz816XnvPTUJkqTHMMXGxjJp0iQyMjIAKFGiBLt375akR4hCkMnNQpiRadNg9Gj19yNGwNdfg0wNMUy//fYb/v7+/Pvvvzg4OGRt9SFzeYQonAInPlFRUVy6dInExETKly/Piy++KMU/hTBQigITJ8KECerxJ5+ox/IZanhSU1MZN24cX375JYqi8MILL2Tb60wIUTj5SnwuX77MDz/8QGhoKFFRUTw8PcjGxoZmzZrx7rvv0q1bNywsDHsUTTYwFOZCUWDMGPjqK/V4yhSQ7V4M0/nz5+nZs2dWKZ13332Xb775BkdHR40jE8J05Hly89ChQ1m8eDE+Pj506tSJRo0aUblyZezt7bl16xanT59m7969hIaGYmVlxeLFi41ixZRMbhamLCMDhg5V5/UAzJihHgvDs379evz9/bl37x5lypRh/vz5dOvWTeuwhDBYRb6BoY2NDRcuXKB8+fI5zlWoUIHWrVvTunVrxo8fz6ZNm7h8+bJRJD5CmKr0dBgwQF2xpdPBDz/Au+9qHZV4kqpVq5KcnEzz5s1ZtmwZVaUyrBBFQpazS4+PMEGpqdCnj7pXj4UFBAeDv7/WUYlH3bhxI9t/Jg8cOECjRo2wlGV2QjxVsS5nT0pKIjExMev48uXLzJgxgy1bthTkdkIIPUpJgR491KTHygpWrpSkx9Ckp6czadIk3N3dOXHiRFZ748aNJekRoogVKPHp3LkzS5cuBeDOnTt4e3szffp0fH19mTNnjl4DFELkXVIS+PqqpShsbNRf33xT66jEw6KiomjdujWffvopiYmJrF69WuuQhDArBUp8jh07RrNmzQBYu3YtLi4uXL58maVLl/Ldd9/pNcCiIiUrhKm5dw9ef10tOmpvDxs3whtvaB2VeFhYWBgeHh7s2bOHEiVKsGTJEiZPnqx1WEKYlQIlPomJiZQsWRKArVu30rVrVywsLHj55Ze5fPmyXgMsKoMGDSI8PDxr2agQxiwuDl59FXbuhBIlYMsWaNdO66hEpoSEhKytPm7fvk2DBg04fvw4AQEBsiGhEMWsQInPc889x/r164mKimLLli34+PgAEBMTIxOEhShmN29Cmzawfz84OcGOHfBfh6wwECEhIcyfPx+dTseYMWP4/fffee6557QOSwizVKCdm8eNG0fPnj0ZPnw4bdq0oXHjxoDa+1OvXj29BiiEeLLr19WenVOnoFw52LYNPD21jko86t133+X333+nT58+tGnTRutwhDBrBV7Ofu3aNaKjo/Hw8MjapfmPP/6gVKlSvPDCC3oNsijJcnZhrK5cgbZt4e+/oVIl2L4datfWOioBcP36dSZOnMi0adNwcHDQOhwhTFKRb2D4qIoVK1KxYsVsbY0aNSro7YQQ+XDpErRuDRER4OamDm/JyIlh2Lx5M3369OH69etYWFjw/fffax2SEOIhBUp8EhIS+OKLL9ixYwcxMTFkZGRkO3/x4kW9BCeEyOncOXVOz5Ur8OyzatJTrZrWUYnk5GTGjh3Lt99+C0CdOnUYMGCAxlEJIR5VoMSnf//+7N69G39/fypVqmSUqxKkSKkwRqdPq8Nb169DrVrq8Jarq9ZRibNnz+Ln55e1GeHgwYP56quvsLe31zgyIcSjCjTHx8nJiV9++YWmTZsWRUzFSub4CGNx7Bj4+KiruDw8YOtWqFBB66jEpk2bePPNN0lMTKRs2bIsXryYjh07ah2WECavWOf4lClTBmdn54J8qRCiAA4ehNdeU/fradgQNm8G+SdoGDw8PLCzs6NJkyYsWbIEV+mCE8KgFWgfn88//5xx48Zlq9clhCgau3erS9bj4uCVV9ThLUl6tHXhwoWs31euXJkDBw6wZcsWSXqEMAIFGuqqV68eFy5cQFEU3N3dsba2znb+2LFjeguwqMlQlzBkW7aotbfu31fn9qxfD46OWkdlvtLS0pg4cSKTJ08mLCyMzp07ax2SEGarWIe6fH19C/JlQoh8+OkneOsttdr666/D2rVgZ6d1VObr0qVL9OzZkwMHDgCwZ88eSXyEMEIF3sDQVEiPjzBEq1ZBr16Qlgbdu8Py5Wq1daGNlStXMmDAAOLj4ylVqhRz587lf//7n9ZhCWHWCvr5XaA5Pnlh5vmUEAW2ZAn07KkmPb16QWioJD1auXv3Ln369MHPz4/4+HgaN27MyZMnJekRwojlOfGpVasWK1asICUlJdfr/vnnH9577z2+/PLLQgdXlIKCgqhduzYNGzbUOhQhssyZA336QEYGvPOOmgRZFXh/dVFYe/bsYcmSJVhYWPDpp5+yZ88e3N3dtQ5LCFEIeR7q+u233/jwww85f/48Pj4+NGjQAFdXV+zs7Lh9+zbh4eHs27eP8PBwBg8ezEcffWQUQ0cy1CUMxTffwAcfqL9//32YMQOMcG9QkzN+/HjatGlD8+bNtQ5FCPGQgn5+53uOz/79+1m1ahV79uzh0qVLJCUlUa5cOerVq8err75Kr169cHJyyvcb0IokPsIQTJoEn36q/n7sWJg8WZIeLfz7778MGzaMGTNmyNJ0IQxcsa3qatKkCU2aNMnvlwkhHkNR4OOPYepU9XjSJPVYFL8NGzYQGBjIzZs3SU5O5qefftI6JCFEESiyyc1CiNwpCgwb9iDpmT5dkh4tJCUlMXjwYDp16sTNmzfx9PQ0+DmKQoiCk2mTQmggIwMGDoT589Xj2bPhvfe0jckcnT59Gj8/P06fPg3AiBEjmDJlCra2thpHJoQoKpL4CFHM0tIgMBCWLQMLC1i0CHr31joq87Nz5046dOjA/fv3qVChAkuWLOG1117TOiwhRBGTxEeIYpSSou7R8+OP6jL1ZcugRw+tozJPjRo1wt3dnerVq7N48WJcXFy0DkkIUQwk8RGimNy/r+7C/Msv6oaEq1eDVDwoXocPH8bLywsLCwscHR3ZtWsX5cuXx8JCpjsKYS4K/K/9woULfPLJJ/j5+RETEwPA5s2bOXPmjN6CE8JUJCRAx45q0mNnBz//LElPcUpJSWHMmDF4e3vz7bffZrW7uLhI0iOEmSnQv/jdu3dTt25dDh06RFhYGPfu3QPgzz//ZPz48XoNUAhjFx8Pr70G27erldU3b4ZXX9U6KvNx/vx5mjZtypdffomiKFy6dEnrkIQQGipQ4jNmzBgmTZrEtm3bsHmoiFCrVq2yKhcLIeDWLWjbFvbtg9Kl1eSnRQutozIPiqKwZMkS6tWrx5EjRyhTpgw//vgj33//vdahCSE0VKA5PqdOnWLFihU52suXL8/NmzcLHZQQpiAmBnx84ORJKFsWtm6F+vW1jso8xMXF8d577xEaGgpAixYtCAkJoWrVqhpHJoTQWoF6fJycnIiOjs7Rfvz4cSpXrlzooIqDFCkVRenff6FlSzXpcXGBXbsk6SlOFy9eZO3atVhaWjJp0iR27NghSY8QAihArS6A0aNHc+DAAdasWUONGjU4duwY169fJyAggICAAKOa5yO1uoS+Xb4MbdrAhQtQpQrs2AE1amgdlflZvHgxL7zwAo0bN9Y6FCFEESjo53eBenwmT56Mm5sblStX5t69e9SuXZvmzZvTpEkTPvnkk4LcUgiTcP48NG+uJj3Vq8PevZL0FIfIyEjatWvH8ePHs9oCAwMl6RFC5FCgHp9MFy5c4Pjx42RkZFCvXj2ef/55fcZWLKTHR+hLeLg6kTk6GmrWVHt6jGTk16j9+OOP9O/fnzt37tCgQQP++OMPdFLaXgiTV2zV2R/27LPP8uyzzxbmFkKYhBMnoF07iI2FunVh2zZ1bo8oOgkJCQwfPpz5/xU8a9SoEStWrJCkRwiRqwIlPoqisHbtWnbu3ElMTAwZGRnZzoeFheklOCGMwR9/qPvy3LkDXl6wZYu6iksUnRMnTuDn58fZs2fR6XR8+OGHTJw4EWtra61DE0IYuAIlPkOHDmXevHm0atUKFxcX+R+WMFt798Lrr8Pdu9CkCWzapO7XI4rO0aNHadKkCSkpKbi6uhISEkLr1q21DksIYSQKlPgsW7aMsLAwOnTooO94hDAa27dDp06QlAStW8NPP0GJElpHZfrq1atHixYtcHBwYOHChZSV7jUhRD4UKPEpXbo0zzzzjL5jEcJobNyoFhxNTob27dVq6/b2Wkdlunbs2MHLL7+Mo6MjFhYWhIWF4ejoKL3NQoh8K9By9gkTJvDZZ5+RlJSk73iEMHhr1kCXLmrS06ULrFsnSU9RSU5OZvjw4bRt25bhw4dntZcoUUKSHiFEgRSox+fNN98kNDSUChUq4O7unmNC4bFjx/QSnBCGJiQE+vSBjAzo2ROWLAGrQq2NFE/y119/4efnx8mTJwGws7MjIyNDqqkLIQqlQD+y+/Tpw9GjR+nVq5dMbhZmY948GDgQFAX69YO5c8HSUuuoTI+iKCxYsIChQ4eSlJREuXLlCA4O5vXXX9c6NCGECShQ4vPLL7+wZcsWXnnlFX3HI4RBmjkThg1Tfz94sHosHQ/6d/v2bd555x1+/PFHANq1a8eSJUuoVKmSxpEJIUxFgX50V61aVXY5FmZj6tQHSc/o0fDdd5L0FJWkpCR27dqFtbU106ZNY/PmzZL0CCH0qkA/vqdPn87o0aO5dOmSnsMRwnAoCnz6KXz0kXo8YQJ88QXIyK5+PbwBqqurKytXruTAgQOMHDlS5vMIIfSuQLW6ypQpQ2JiImlpaTg4OOSY3Hzr1i29BVjUpFaXeBxFgZEj4Ztv1OOvvoJRo7SNyRRFRETw9ttvM2rUKLp06aJ1OEIII1KstbpmzJhRkC8rUomJidSqVYs333yTr7/+WutwhBHLyIBBg+CHH9Tj779X5/UI/VqxYgXvvfce8fHxjBw5ko4dO2IlS+SEEEWsQD9levfure84Cm3y5Ml4e3trHYYwcunp6oqtJUvUIa0FC6BvX62jMi13795l8ODBLF26FICmTZuyfPlySXqEEMUizz9p4uPjs7qS4uPjc722uIeM/vnnH86ePUvHjh05feXhu0EAACAASURBVPp0sT5bmI7UVPD3h1Wr1GXqISHg56d1VKbl8OHD+Pn5ceHCBSwsLBg3bhwff/yxJD1CiGKT55mDZcqUISYmBgAnJyfKlCmT45XZnh979uyhY8eOuLq6otPpWL9+fY5rZs+eTfXq1bGzs8PLy4u9e/dmOz9y5EimTp2ar+cK8bDkZLUExapVYG2t7s4sSY9+Xbx4kaZNm3LhwgXc3NzYvXs348ePl6RHCFGs8vwT57fffsPZ2RmAnTt36i2AhIQEPDw8CAwMpFu3bjnOr1q1imHDhjF79myaNm3K3Llzad++PeHh4bi5ufHTTz9Ro0YNatSowf79+5/6vOTkZJKTk7OOn9Z7JUxfYqJaemLrVrCzg7Awtf6W0K9nnnmG/v37Exsby9y5c/P9nyQhhNCHAq3qioyMpGrVqjl2bFYUhaioKNzc3AoWjE7HunXr8PX1zWrz9vamfv36zJkzJ6utVq1a+Pr6MnXqVMaOHcuyZcuwtLTk3r17pKam8sEHHzBu3LjHPiOzztijZFWXebp7Fzp2hN27wdERfv5ZrbQu9GPDhg3Ur1+fypUrA5CWloalpaXs9i6EKLSCruoq0CYZ1atX58aNGznab926RfXq1Qtyy8dKSUnh6NGj+Pj4ZGv38fHJ6t2ZOnUqUVFRXLp0ia+//pp33nnniUkPwNixY4mLi8t6RUVF6S1eYVzu3AEfHzXpKVUKtmyRpEdfkpKSGDRoEJ06dcLf35/09HQArKysJOkRQmiqQIPriqI89ofXvXv3sLOzK3RQmWJjY0lPT8fFxSVbu4uLC9euXSvQPW1tbbG1tdVHeMKIxcaqSc/x4+DsrCY9DRpoHZVpOHXqFH5+fpw5cwYALy8vMjIysJTCZkIIA5CvxGfEiBGAOiT16aef4uDgkHUuPT2dQ4cO4enpqd8I/3vew56UePXp0yfP9wwKCiIoKCjrf6LCfERHQ9u2EB4OFSrA9u1Qt67WURk/RVEICgpi5MiRJCcn4+LiwtKlS3P02AohhJbylfgcP34cUH/AnTp1Chsbm6xzNjY2eHh4MHLkSL0FV65cOSwtLXP07sTExOToBcqvQYMGMWjQoKwxQmEeoqKgTRv45x+oXBl27ICaNbWOyvjdvn2b3r17s2HDBgBef/11Fi1aRIUKFTSOTAghsstX4pO5miswMJCZM2cW+WRgGxsbvLy82LZtW7bt7Ldt20bnzp2L9NnC9Fy8qM7huXwZ3N3VpOeZZ7SOyjTY2tpy/vx5bG1tmTZtGoMHD5a5PEIIg1SgOT6LFy/WWwD37t3j/PnzWccRERGcOHECZ2dn3NzcGDFiBP7+/jRo0IDGjRszb948IiMjGThwoN5iEKbv7Fm1p+fff+H559Wkp2pVraMybikpKVhZWWFhYYGDgwOrV68mIyODl156SevQhBDiiTTfOezIkSO0atUq6zhzHlHv3r0JDg6mR48e3Lx5k4kTJxIdHU2dOnXYtGkT1apVK9RzZY6P+fjzT3VOz40b8OKL6pyeihW1jsq4nTt3jp49e/LWW28xevRoAOrUqaNxVEII8XQF2sfHlEh1dtN25Ii6euv2bahXT92ksFw5raMyXoqiEBwczJAhQ0hISMDFxYXz5/+/vTuPq7LM/z/+OuDCkgpqMphL2uKICgyIqamZ4lY5mUpq5TZmQ24p9TOXGVMns9XRkkyyhBx1wBSnXFIsTVMrXNC+OelolJqIigsCgnK4f3/c0zFGLUXgPofzfj4e5/E498197vPhyP04b6/ruq/rILfccovVpYmImynXeXxEXMHWrWb31pkz0Lo1fPaZQs/NOHv2LAMGDOBPf/oTubm5dOzYkR07dij0iIhLUfCRCumzz8yWnuxsuO8+s6XHz8/qqlzXtm3bCA0NJTExEU9PT1566SU2bNhAvXr1rC5NROSGWD7Gxyoa41NxrVkDvXubC4927QrJyfCLKafkBp06dYouXbqQl5dH48aNWbJkCffcc4/VZYmIlIjG+GiMT4WyYgX07w+XLsHDD5urrWui7ps3e/Zsdu7cSWxsrK4TEXEKJf3+dtsWH6l4liyBQYPAbod+/WDRIqhc2eqqXNOHH35Io0aNCA8PB+CZZ57RvDwiUiFojI9UCO+9B088YYaeIUNg8WKFnpLIzc3lySefJCoqigEDBpCTkwNcuWyMiIirUouPuLy5c2H0aPP500+b2x6K9Dds165dDBgwgAMHDmCz2YiKitKCviJS4bjt10NsbCxBQUFERERYXYrchFdfvRx6YmIgNlah50YVFRUxa9YsWrduzYEDB7jtttv49NNPmTFjBpXVbCYiFYwGN2tws0syDJg2zXwA/PWv5nP1yNyY8+fPExUVxbp16wDo1asXCxYsoFatWhZXJiLy6zSBobgNw4Dnn78cel56CaZPV+gpCV9fXwC8vb155513WLFihUKPiFRoGuMjLqWoCMaMMbu0AGbPhmeesbYmV5Ofn09RURE+Pj54eHgQHx/P6dOnCQoKsro0EZEypxYfcRl2OwwfboYemw3i4hR6btS///1vWrduzZgxYxz7fve73yn0iIjbcNsWH83c7FouXYLBg2HpUnPwckKCefu6XB/DMIiLi2PcuHFcuHCBY8eOkZmZSUBAgNWliYiUKw1u1uBmp1dQAAMGmEtPVKpkhp++fa2uynVkZWUxfPhwkpOTAejSpQsJCQkEBgZaXJmISMlpcLNUSBcuQK9eZuipWhVWrlTouRGbNm0iJCSE5ORkKleuzOuvv84nn3yi0CMibsttu7rE+eXkwB//CBs3mouM/utfEBlpdVWuIy8vj/79+5OZmcldd93F0qVLHUtQiIi4KwUfcUrnzsEDD8C2bVCtGqxeDe3bW12Va/Hx8WHBggUkJyczZ84cbrnlFqtLEhGxnMb4aIyP08nKgm7dYOdO8PODdeugVSurq3INixcvxtfXl169elldiohImdLq7FIhZGaa3Vn/939QuzZs2AAhIVZX5fyys7MZNWoUixYtws/Pj4iICG677TaryxIRcTpuG3x0O7vzOXoUOneGAwcgMBA+/RSaNrW6Kuf39ddfM2DAAL7//ns8PDwYO3asblMXEbkGdXWpq8sppKeboSc9HRo0MEPPnXdaXZVzs9vtvPrqq0yZMoXCwkIaNGjAkiVLuPfee60uTUSkzKmrS1zWgQNm6Dl6FO64www9DRtaXZVzu3jxIt27d2fjxo0APProo8yfPx8/Pz+LKxMRcW6ax0cs9X//Bx06mKGnaVPYvFmh53pUqVKFoKAgfH19ef/99/nnP/+p0CMich3U1aWuLsvs2gVdu5p3cYWEQEoK3Hqr1VU5r7y8PHJycqhTpw4AFy5c4OjRo9x1110WVyYiUv40c7O4lO3boVMnM/S0amVOUqjQc2179+4lIiKCRx991DEg39vbW6FHROQGKfhIudu0Cbp0MScpbN/ebOnx97e6KudkGAZvvfUWrVq1Yt++fXz33Xekp6dbXZaIiMtS8JFytW4d9OgBubnmfD1r14J6GK/u5MmT9OzZkzFjxlBQUMCDDz7I3r17uVO3u4mIlJiCj5Sbf/3LXHsrPx8eegg+/hh8fa2uyjmlpKQQHBzM6tWrqVq1Km+++SYff/yxY3yPiIiUjNvezq4JDMtXYiI8/jjY7RAVBf/4B1SpYnVVzslutxMTE8Px48cJCgpi6dKlBAcHW12WiEiFoLu6dFdXmYuPh2HDoKgIBg6E99+HSm4bua/PN998Q1xcHK+88go+Pj5WlyMi4nRK+v2t4KPgU6befhtGjjSfP/UUzJsHHupgLcYwDOLj4zl79izjxo2zuhwREZegmZvF6bzxBjz3nPn8mWfg738Hm83ampzN2bNn+fOf/0xSUhKenp5ERkbSokULq8sSEamw9H9vKXWGAX/72+XQM2mSQs/VbN26lZCQEJKSkqhUqRIvvvgiQUFBVpclIlKhqcVHSpVhmEHn5ZfN7RdfhMmTra3J2RQWFjJjxgymT59OUVERjRs3ZunSpbRq1crq0kREKjwFHyk1hgFjx8Kbb5rbs2aBhqwUZxgGPXr0YMOGDQAMGjSIt956S+PLRETKibq6pFTY7fDnP18OPfPmKfRcjc1mo2fPnlSrVo3FixeTkJCg0CMiUo50V5fu6rpphYUwdKg5N4+Hh3m7+uDBVlflPHJzc/npp5+4++67AbPV59ixY9x2220WVyYi4rq0SKlY4uJF6N/fDD2VKsHSpQo9v7Rr1y7CwsJ44IEHOH/+PGC2+ij0iIhYQ8FHSiw/H3r3huXLzVmYly+HRx+1uirnUFRUxBtvvEHr1q05cOAABQUF/PDDD1aXJSLi9jS4WUokNxcefhg+/RS8vWHlSuja1eqqnMPx48cZPHgw69evB+CRRx5hwYIF1KxZ0+LKRETEbVt8YmNjCQoKIiIiwupSXE52NnTvboaeW24xV1hX6DGtXr2a4OBg1q9fj7e3N/Pnz2f58uUKPSIiTkKDmzW4+YacPm2GntRUqFEDPvkEWre2uirnYBgGDz30EGvWrCEkJISlS5fStGlTq8sSEamQNLhZytyJE3D//WboqVULPvtMoeeXbDYbCxcuZNKkSXz55ZcKPSIiTkjBR67LsWNw332wdy8EBMDnn0NYmNVVWcswDObPn8/In1dhBerUqcOMGTPw8vKysDIREbkWDW6W3/Tjj9C5Mxw6BPXqmWN7/jsljdvKyspi+PDhJCcnA+YA5sjISIurEhGR36LgI7/q4EHo1AmOHIHGjc3Qc/vtVldlrU2bNvHEE0/w008/UblyZV5++WU6depkdVkiInId1NUl17RvH3ToYIaeJk1g82b3Dj2XLl1i8uTJdOrUiZ9++okmTZrw1VdfERMTg4eHLiUREVegFh+5qrQ06NIFTp2CFi0gJcUc2+PO+vbty0cffQTAsGHDmDNnDr6+vhZXJSIiN0L/TZUrfPWVeffWqVPQsiVs2qTQAxAdHY2/vz9JSUksWLBAoUdExAWpxUeK2bwZHnwQcnLg3nth9Wpzvh53lJ2dzbfffkubNm0A6NGjB+np6dRw1w9ERKQCUIuPOKSkmJMT5uSYA5o/+cR9Q89XX33FH/7wB3r06MGPP/7o2K/QIyLi2hR8BICPP4aHHoILF+CBB2DVKnM5Cndjt9uZOXMm7dq14/vvv8fPz4+srCyryxIRkVKiri5h2TJ47DEoLDRXW1+61Fxt3d0cPXqUgQMHsmnTJgD69+/PvHnz8PPzs7YwEREpNWrxcXMffAD9+5uh57HHIDHRPUNPcnIyISEhbNq0CV9fXxYuXMiSJUsUekREKhi1+Lix+fMhOtp8PmyYue3paW1NVtm0aROnT58mPDycpUuXctddd1ldkoiIlAEFHzc1ezaMG2c+Hz3a3Ha3OfgMw8BmswHwyiuv0KBBA0aPHk0Vd2zyEhFxEy7/VXf+/HkiIiIIDQ2lRYsWvPvuu1aX5PReeuly6Bk/HubMca/QYxgGb775Jl27dsVutwPg5eXFs88+q9AjIlLBuXyLj4+PD59//jk+Pj7k5eXRvHlzevfuTa1atawuzekYBvz1rzBjhrk9bZq5/d9GD7dw4sQJhg4dypo1awBITEzkscces7gqEREpLy4ffDw9PfHx8QEgPz8fu92OYRgWV+V8DAOefRb+/ndz+9VX4f/9P2trKm/r169n0KBBZGZmUrVqVd544w0GDBhgdVkiIlKOLO/g2Lx5Mz179qRu3brYbDZWrlx5xTFvv/02jRo1wsvLi/DwcLZs2VLs52fPniUkJIR69eoxfvx4ateuXV7lu4SiIhgx4nLomTvXvUJPQUEBzz33HN26dSMzM5NmzZqRmprKyJEjHWN8RETEPVgefHJzcwkJCWHu3LlX/XliYiJjx45l8uTJ7N69m/bt29OjRw8OHz7sOMbPz489e/aQnp7OkiVLyMzMLK/ynV5hIQwdCu+8Y3ZpvfcejBxpdVXl68knn+SNN94AYMSIEaSmptKiRQuLqxIRESvYDCfqF7LZbCQnJ9OrVy/HvnvuuYewsDDmzZvn2Ne0aVN69erFzJkzrzjH008/TadOnYiKirrqexQUFFBQUODYzs7Opn79+pw7d47q1auX4m9jvUuX4IknICnJvE190SJwx56db7/9lu7duzN37lwefvhhq8sREZFSkJ2dTY0aNW74+9vyFp9fc/HiRXbu3EnXrl2L7e/atSvbtm0DIDMzk+zsbMD8EDZv3kyTJk2uec6ZM2dSo0YNx6N+/fpl9wtYKD8f+vQxQ0/lyubszO4Ses6cOUNycrJju1mzZhw6dEihR0REnDv4nDp1CrvdTkBAQLH9AQEBHD9+HDCXGejQoQMhISG0a9eOUaNGERwcfM1zTpw4kXPnzjkeR44cKdPfwQp5efDHP5rrb3l5wUcfwSOPWF1V+fjiiy8IDQ0lKiqK7du3O/brNnUREQEXuavrfweg/nLiufDwcNLS0q77XFWrVqVq1aqlWp8zOX/eXGx082bw9TXDz/33W11V2SssLOTFF1/kb3/7G0VFRdxxxx1UrlzZ6rJERMTJOHXwqV27Np6eno7WnZ+dOHHiilagGxUbG0tsbKxjAruK4MwZ6NEDvvoKqleHtWuhbVurqyp7P/74I48//jhbt24FYNCgQcydO5dq1apZXJmIiDgbp+7qqlKlCuHh4aSkpBTbn5KSQtub/EYfOXIk+/btIzU19abO4yxOnoROnczQU7MmfPaZe4SeZcuWERISwtatW6levTqLFy8mISFBoUdERK7K8hafnJwcDh486NhOT08nLS2NmjVr0qBBA2JiYhg4cCAtW7akTZs2xMXFcfjwYaJ/Xl1TyMiAyEjYtw/q1IENG8Bd7tY+ceIE586do3Xr1ixZsoRGjRpZXZKIiDgxy4PPjh07uP8Xg1BiYmIAGDx4MPHx8fTr14+srCymT59ORkYGzZs3Z82aNTRs2NCqkp3K4cPQuTMcPAi33Qaffgq/clNbhXDx4kXHYOURI0ZQvXp1+vfvrzE9IiLym5xqHp/y9MsxPgcOHHDJeXwOHTJDz48/wu23m6GncWOrqyo7RUVFzJo1i/fee4+vvvrK5f69RESk9JR0Hh+3DT4/K+kHZ7XvvjNDz7FjcPfdZvdWBZ2SCICMjAwGDRrEhg0bAHjzzTcZPXq0xVWJiIhVKuQEhnJ1e/ZAhw5m6GnWDD7/vGKHnlWrVhEcHMyGDRvw9vYmLi6OUaNGWV2WiIi4IAUfF5Oaas7Lc/IkhIXBpk3wu99ZXVXZyM/PZ8yYMfTs2ZNTp04REhLCzp07GT58uBYXFRGREnHb4BMbG0tQUBARERFWl3LdvvjC7N46cwZatzbH9FTkhegnTJjAW2+9BcDYsWP58ssvadq0qcVViYiIK9MYHxcZ4/Ppp+YyFHl50LGjuQxFRZ+q5uTJk3Tp0oWZM2fSo0cPq8sREREnojE+FdiaNfDgg2bo6dYNVq+umKEnKyuLuXPnOrZvvfVWdu/erdAjIiKlxvJ5fOTXLV9urqp+6RI8/DAkJkJFXGps48aNPPHEExw7dgx/f38ef/xx4Mp12kRERG6G27b4uMIYn8WLoV8/M/T06wfLllW80HPp0iUmTZpE586dOXbsGE2aNCEoKMjqskREpILSGB8nHeOzYAE89RQYBgwZYm57elpdVek6dOgQAwYMcKyX9uSTTzJ79mx8fX0trkxERJydxvhUIG+9BcOHm6FnxAh4772KF3o+/PBDQkNDSU1Nxc/Pj2XLlvHuu+8q9IiISJlS8HEyr7wCY8aYz599FubOBY8K+K9UrVo1cnJyaN++PXv27KFv375WlyQiIm6gAn6luibDgBdegAkTzO0pU+C116Aije3Nzs52PO/WrRvr169n48aNNGjQwMKqRETEnSj4OAHDgPHjYfp0c3vmTJg2reKEHrvdzowZM2jcuDHp6emO/V26dMGzovXhiYiIU3Pb4OMsd3UVFcGoUfD66+b2nDmXW30qgqNHjxIZGclf/vIXsrKyWLx4sdUliYiIG9NdXRbe1WW3m4OYFy40W3fmzze3K4rk5GSGDRvGmTNn8PX1JTY2lkGDBmluHhERuWkl/f7WBIYWuXQJBg2Cf/7TvGMrPh6eeMLqqkpHXl4eMTExzJ8/H4CWLVuyZMkS7rrrLosrExERd+e2XV1WKiiARx81Q0+lSuZszBUl9ADMmTPHEXrGjx/P1q1bFXpERMQpqMWnnOXlQZ8+8Mkn5izMy5eb63BVJDExMXzxxReMGzeOyMhIq8sRERFxUItPOcrJMUPOJ5+Aj4+52GhFCD0nTpxgwoQJFBYWAlC1alVWr16t0CMiIk5HLT7l5OxZeOAB2L7dXFl9zRpo187qqm7eunXrGDx4MJmZmXh7e/PCCy9YXZKIiMg1uW3wiY2NJTY2FrvdXurnttthyxbIyIDAQAgKgh49YNcu8PeHdevAiddGvS4FBQVMmjSJWbNmAdCsWTN69+5tcVUiIiK/Trezl/Lt7CtWwDPPwNGjl/dVqgSFhXDrrZCSAiEhN/02ltq/fz8DBgxg9+7dAIwcOZLXXnsNb29viysTERF3odvZncCKFdC3rzkT8y/9d+gLf/mL64eelStX8vjjj5OXl0etWrV4//33+eMf/2h1WSIiItdFg5tLid1utvRcq/3MZjNnZy6DnrVy1aRJEwzDoHPnzuzdu1ehR0REXIqCTynZsqV499b/Mgw4csQ8ztX89NNPjudNmzZl+/btrF+/nrp161pYlYiIyI1T8CklGRmle5wzKCws5IUXXqBx48Zs3brVsT8kJAQPD/3piIiI69G3VykJDCzd46z2ww8/cN999zF9+nQuXrzIqlWrrC5JRETkpin4lJL27aFePXMsz9XYbFC/vnmcs0tMTCQ0NJRt27ZRvXp1lixZwsyZM60uS0RE5KYp+JQST0+YM8d8/r/h5+ft2bPN45xVTk4OQ4cOpX///pw7d442bdqwZ88eBgwYYHVpIiIipcJtg09sbCxBQUFElOJMgr17w4cfwm23Fd9fr56539nn91uxYgXx8fF4eHjw17/+lc2bN3P77bdbXZaIiEip0QSGpTyBIVw5c3P79s7d0vMzwzAYNWoU/fr1o0OHDlaXIyIick0l/f5W8CmD4OMqMjIymDRpErNnz6ZGjRpWlyMiInLdNHOz3JBVq1YxdOhQTp06BcDChQstrkhERKTsue0YH3eVn5/P6NGj6dmzJ6dOnSI0NJTnn3/e6rJERETKhYKPG/n222+JiIhg7ty5AIwbN44vv/yS3//+9xZXJiIiUj7U1eUm1q5dS+/evcnPz6dOnTokJCTQvXt3q8sSEREpVwo+biIiIoKaNWsSEhLCwoULCQgIsLokERGRcqfgU4F9++23NGvWDIDatWuzfft26tWrp3W2RETEbekbsAK6dOkSEydOpEWLFixatMixv0GDBgo9IiLi1vQtWMEcPHiQe++9l5dffhnDMNi9e7fVJYmIiDgNBZ8KwjAMPvjgA/7whz+QmpqKv78/H374IbNmzbK6NBEREafhtsGnLNbqssq5c+d4/PHHGTx4MDk5OXTo0IE9e/bQp08fq0sTERFxKlqyogIsWbFx40Y6d+6Mh4cHU6dOZeLEiXi6wuJgIiIiJaQlK9zY/fffz2uvvUbbtm1p06aN1eWIiIg4Lbft6nJlR44coWfPnhw6dMix79lnn1XoERER+Q1q8XExK1as4Mknn+TMmTPk5+eTkpJidUkiIiIuQy0+LiI3N5ennnqKPn36cObMGSIiIpg3b57VZYmIiLgUBR8XkJaWRsuWLXn33Xex2WxMmDCBL774gjvvvNPq0kRERFyKurqc3JYtW4iMjOTixYsEBgayaNEiOnfubHVZIiIiLknBx8ndc889NG/enHr16vHee+9Ru3Ztq0sSERFxWQo+TmjLli20bt2aypUrU6VKFTZs2ICfnx82m83q0kRERFyaxvg4kYKCAmJiYujQoQPTp0937Pf391foERERKQVq8XES3333HQMGDCAtLQ0wZ6Q0DEOBR0REpBSpxcdihmGwYMECwsPDSUtLo1atWnz00UfMmTNHoUdERKSUqcXHQqdPn+app55i+fLlAERGRpKQkEDdunUtrkxERKRiUouPhU6ePMnatWupVKkSr776KuvWrVPoERERKUNq8Slnvxy306RJE+Lj42nUqBEtW7a0uDIREZGKz+VbfI4cOULHjh0JCgoiODiYZcuWWV3SNaWnp9OhQwe2bNni2BcVFaXQIyIiUk5shmEYVhdxMzIyMsjMzCQ0NJQTJ04QFhbG/v378fX1va7XZ2dnU6NGDc6dO0f16tXLrM6lS5cSHR1NdnY2zZs3Z8+ePXh4uHzuFBERsURJv79d/ps3MDCQ0NBQAOrUqUPNmjU5ffq0xVVddv78eYYMGcJjjz1GdnY2bdq04eOPP1boERERsYDl376bN2+mZ8+e1K1bF5vNxsqVK6845u2336ZRo0Z4eXkRHh5erKvol3bs2EFRURH169cv67KvS2pqKmFhYSQkJODh4cGUKVPYvHkzt99+u9WliYiIuCXLg09ubi4hISHMnTv3qj9PTExk7NixTJ48md27d9O+fXt69OjB4cOHix2XlZXFoEGDiIuL+9X3KygoIDs7u9ijLOzdu5e2bdty8OBB6tevz6ZNm5g2bRqVKmk8uYiIiFWcaoyPzWYjOTmZXr16Ofbdc889hIWFMW/ePMe+pk2b0qtXL2bOnAmYYaZLly4MHz6cgQMH/up7TJ06lWnTpl2xv7TH+BiGQd++ffHw8CAuLg5/f/9SO7eIiIi7q5BjfC5evMjOnTvp2rVrsf1du3Zl27ZtgBkwhgwZQqdOnX4z9ABMnDiRc+fOOR5Hjhwpk9ptNhuLFy8mKSlJoUdERMRJOHW/h+WyvwAADN9JREFUy6lTp7Db7QQEBBTbHxAQwPHjxwHYunUriYmJBAcHO8YHLVq0iBYtWlz1nFWrVqVq1aplW/h/eXl5lcv7iIiIyPVx6uDzs/9ds+qXkwC2a9eOoqIiK8oSERERF+PUXV21a9fG09PT0brzsxMnTlzRCnSjYmNjCQoKIiIi4qbOIyIiIq7DqYNPlSpVCA8PJyUlpdj+lJQU2rZte1PnHjlyJPv27SM1NfWmziMiIiKuw/KurpycHA4ePOjYTk9PJy0tjZo1a9KgQQNiYmIYOHAgLVu2pE2bNsTFxXH48GGio6MtrFpERERckeXBZ8eOHdx///2O7ZiYGAAGDx5MfHw8/fr1Iysri+nTp5ORkUHz5s1Zs2YNDRs2vKn3jY2NJTY2FrvdflPnEREREdfhVPP4WKG81uoSERGR0lMh5/ERERERKU0KPiIiIuI23Db46HZ2ERER96MxPhrjIyIi4nI0xkdERETkNyj4iIiIiNtQ8BERERG3YfkEhlb5eQLDwsJCwOwrFBEREdfw8/f2jQ5VdvvBzUePHqV+/fpWlyEiIiIlcOTIEerVq3fdx7t98CkqKuLYsWNUq1YNm81GRETEdS1c+lvHZWdnU79+fY4cOeIWd4td7+dWHsq6ltI8/82eqySvv5HX6HooGV0P1pxL14NzKqu/QcMwOH/+PHXr1sXD4/pH7rhtV9fPPDw8iiVFT0/P6/pDvN7jqlev7hZ/2Nf7eZSHsq6lNM9/s+cqyetv5DW6HkpG14M159L14JzK8m+wRo0aN/waz6lTp04t/VJcW6tWrW76uIKCAl5++WUmTpxI1apVS6s0p3a9n1t5KOtaSvP8N3uukrz+Rl6j66FkdD1Ycy5dD87Jma4Ht+/qKiuaGFHkMl0PIpfperCWWnzKkKenJx07dqRSJbfvURTR9SDyC7oerKMWHxEREXEbmsBQRERE3IaCj4iIiLgNBR8RERFxGwo+IiIi4jYUfERERMRtKPhY5JFHHsHf35++fftaXYqIpY4cOULHjh0JCgoiODiYZcuWWV2SiGXOnz9PREQEoaGhtGjRgnfffdfqkioc3c5ukY0bN5KTk0NCQgIffvih1eWIWCYjI4PMzExCQ0M5ceIEYWFh7N+/H19fX6tLEyl3drudgoICfHx8yMvLo3nz5qSmplKrVi2rS6sw1OJjkfvvv59q1apZXYaI5QIDAwkNDQWgTp061KxZk9OnT1tclYg1PD098fHxASA/Px+73Y7aJ0qXgk8JbN68mZ49e1K3bl1sNhsrV6684pi3336bRo0a4eXlRXh4OFu2bLGgUpGyV5rXw44dOygqKqJ+/fplXbZImSiN6+Hs2bOEhIRQr149xo8fT+3atcurfLeg4FMCubm5hISEMHfu3Kv+PDExkbFjxzJ58mR2795N+/bt6dGjB4cPHy7nSkXKXmldD1lZWQwaNIi4uLjyKFukTJTG9eDn58eePXtIT09nyZIlZGZmllf57sGQmwIYycnJxfa1atXKiI6OLrbv97//vTFhwoRi+zZu3Gj06dOnzGsUKS8lvR7y8/ON9u3bGx988EG51ClSHm7m++Fn0dHRRlJSUpnV6I7U4lPKLl68yM6dO+natWux/V27dmXbtm0WVSVijeu5HgzDYMiQIXTq1ImBAwdaUaZIubie6yEzM5Ps7GzAXMV98+bNNGnSpNxrrci0LGwpO3XqFHa7nYCAgGL7AwICOH78uGO7W7du7Nq1i9zcXOrVq0dycjIRERHlXa5Imbqe62Hr1q0kJiYSHBzsGA+xaNEiWrRoUe71ipSl67kejh49yrBhwzAMA8MwGDVqFMHBwVaUW2Ep+JQRm81WbNswjGL71q1bV94liVjm166Hdu3aUVRUZEVZIpb4teshPDyctLQ0K8pyG+rqKmW1a9fG09OzWOsOwIkTJ65I+SIVna4Hkct0PTgHBZ9SVqVKFcLDw0lJSSm2PyUlhbZt21pUlYg1dD2IXKbrwTmoq6sEcnJyOHjwoGM7PT2dtLQ0atasSYMGDYiJiWHgwIG0bNmSNm3aEBcXx+HDh4mOjrawapGyoetB5DJdDy7AylvKXNXGjRsN4IrH4MGDHcfExsYaDRs2NKpUqWKEhYUZn3/+uXUFi5QhXQ8il+l6cH5aq0tERETchsb4iIiIiNtQ8BERERG3oeAjIiIibkPBR0RERNyGgo+IiIi4DQUfERERcRsKPiIiIuI2FHxERETEbSj4iIiIiNtQ8BERlxMfH4+fn1+Znb9jx46MHTu2zM4vItbRkhUi4hSGDBnC2bNnWbly5W8ee+HCBc6fP0+dOnXKpJbTp09TuXJlqlWrVibnFxHraHV2EXEply5dwtvbG29v7zJ7j5o1a5bZuUXEWurqEpEb0rFjR0aPHs3YsWPx9/cnICCAuLg4cnNzGTp0KNWqVeOOO+5g7dq1jtfY7XaGDRtGo0aN8Pb2pkmTJsyZM8fx86lTp5KQkMC//vUvbDYbNpuNTZs28cMPP2Cz2UhKSqJjx454eXnxj3/8o1hXl2EYREZG0r17d35uwD579iwNGjRg8uTJ1/w93n77be666y68vLwICAigb9++xX7Hn7u6Nm3a5Kjpl48hQ4Y4jv/4448JDw/Hy8uLxo0bM23aNAoLC6/53kOGDKFXr168/vrrBAYGUqtWLUaOHMmlS5du7B9DRG6Ygo+I3LCEhARq167N119/zejRo3n66aeJioqibdu27Nq1i27dujFw4EDy8vIAKCoqol69eiQlJbFv3z6mTJnCpEmTSEpKAuC5557j0UcfpXv37mRkZJCRkUHbtm0d7/f8888zZswY/v3vf9OtW7ditdhsNhISEvj666958803AYiOjiYgIICpU6detf4dO3YwZswYpk+fzv79+/nkk0/o0KHDVY9t27ato6aMjAw+++wzvLy8HMevW7eOJ554gjFjxrBv3z7mz59PfHw8M2bM+NXPcOPGjRw6dIiNGzeSkJBAfHw88fHxv/nZi8hNMkREbsB9991ntGvXzrFdWFho+Pr6GgMHDnTsy8jIMABj+/bt1zzPiBEjjD59+ji2Bw8ebDz88MPFjklPTzcAY/bs2cX2L1y40KhRo0axfUlJSUbVqlWNiRMnGj4+Psb+/fuv+d7Lly83qlevbmRnZ1/zd3zmmWeu2H/q1CnjjjvuMEaMGOHY1759e+Oll14qdtyiRYuMwMDAa77/4MGDjYYNGxqFhYWOfVFRUUa/fv2u+RoRKR0a4yMiNyw4ONjx3NPTk1q1atGiRQvHvoCAAABOnDjh2PfOO++wYMECfvzxRy5cuMDFixcJDQ29rvdr2bLlbx4TFRVFcnIyM2fOZN68edx9993XPLZLly40bNiQxo0b0717d7p3784jjzyCj4/PNV9z6dIl+vTpQ4MGDYp10+3cuZPU1NRiLTx2u538/Hzy8vKuec5mzZrh6enp2A4MDOSbb775zd9TRG6OurpE5IZVrly52LbNZiu2z2azAWYXF0BSUhLjxo3jT3/6E+vXryctLY2hQ4dy8eLF63o/X1/f3zwmLy+PnTt34unpyX/+859fPbZatWrs2rWLpUuXEhgYyJQpUwgJCeHs2bPXfM3TTz/N4cOHWbZsGZUqXf4/Y1FREdOmTSMtLc3x+Oabb/jPf/6Dl5fXNc93tc/w589LRMqOWnxEpMxt2bKFtm3bMmLECMe+Q4cOFTumSpUq2O32Er/Hs88+i4eHB2vXruWBBx7gwQcfpFOnTtc8vlKlSkRGRhIZGckLL7yAn58fn332Gb17977i2FmzZpGYmMj27dupVatWsZ+FhYWxf/9+7rzzzhLXLiLlR8FHRMrcnXfeyQcffMC6deto1KgRixYtIjU1lUaNGjmOuf3221m3bh379++nVq1a1KhR47rPv3r1at5//322b99OWFgYEyZMYPDgwezduxd/f/8rjl+1ahXff/89HTp0wN/fnzVr1lBUVESTJk2uOHbDhg2MHz+e2NhYateuzfHjxwHw9vamRo0aTJkyhYceeoj69esTFRWFh4cHe/fu5ZtvvuHFF18swaclImVJXV0iUuaio6Pp3bs3/fr145577iErK6tY6w/A8OHDadKkCS1btuTWW29l69at13XukydPMmzYMKZOnUpYWBgAL7zwAnXr1iU6Ovqqr/Hz82PFihV06tSJpk2b8s4777B06VKaNWt2xbFffPEFdrud6OhoAgMDHY9nnnkGgG7durFq1SpSUlKIiIigdevWzJo1i4YNG97IRyQi5UQzN4uIiIjbUIuPiIiIuA0FHxEREXEbCj4iIiLiNhR8RERExG0o+IiIiIjbUPARERERt6HgIyIiIm5DwUdERETchoKPiIiIuA0FHxEREXEbCj4iIiLiNv4/NWtJFXiTqd8AAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'time for LU solve')" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "loglog(n, ts*1e9, \"bo-\")\n", - "loglog(n, n.^2, \"k--\")\n", - "xlabel(\"matrix size n\")\n", - "ylabel(\"time (ns)\")\n", - "legend([\"time\", L\"n^2\"])\n", - "title(\"time for LU solve\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, it's pretty close to the $n^2$ growth! The key point is that, unless you have many ($\\gtrsim n$) right-hand sides, most of the effort is spent in Gaussian elimination (finding L and U), *not* in the back/forward-substitution to solve $LUx=b$.\n", - "\n", - "If we believe this scaling, how long would it take for my laptop to solve a $10^6 \\times 10^6$ system of equations?" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.165802911, 2000)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t[end], n[end] # the last measured time and n for LU factorization" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.0725363875e7" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "secs = t[end] * (1e6/n[end])^3 # this many seconds" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "34 weeks, 1 day, 21 hours, 2 minutes, 44 seconds" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# convert to a human time period\n", - "Dates.canonicalize(Dates.CompoundPeriod(Dates.Second(round(Int,secs))))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In fact, we **usually run out of memory before we run out of time:**" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7450.580596923828 GiB for a 10⁶×10⁶ matrix\n" - ] - } - ], - "source": [ - "println((1e6)^2 * sizeof(Float64) / 2^30, \" GiB for a 10⁶×10⁶ matrix\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "In practice, people do *regularly* solve problems this large, and even larger, but they can do so because real matrices that big almost always have some **special structure** that allows you to solve them more quickly and store them more compactly. For example, a common special structure is [sparsity](https://en.wikipedia.org/wiki/Sparse_matrix): matrices whose entries are *mostly zero*. We will learn some basic ways to take advantage of this later in 18.06, and sparse-matrix methods are covered more extensively in 18.335." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Conditioning.ipynb b/lectures/Conditioning.ipynb deleted file mode 100644 index 05f7e452..00000000 --- a/lectures/Conditioning.ipynb +++ /dev/null @@ -1,1173 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Errors, Norms, and Condition Numbers\n", - "\n", - "(See also section 9.2 of Strang, *Introduction to Linear Algebra*. The book *Numerical Linear Algebra* by Trefethen and Bau is a good source for a much more in-depth discussion.)\n", - "\n", - "Throughout the semester, when we solve problems like $Ax=b$ on the computer, we notice that the answer is correct \"up to roundoff errors\" — little errors that appear in the solution, typically $\\lesssim 10^{-15}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 7.21645e-16\n", - " -3.33067e-16\n", - " 7.77156e-16\n", - " -5.55112e-16\n", - " -6.66134e-16" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = randn(5,5)\n", - "b = randn(5)\n", - "x = A \\ b # solve Ax = b\n", - "b - A*x # this \"residual\" should be zero" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These arise because the computer [only stores about 15 decimal digits](https://en.wikipedia.org/wiki/Floating-point_arithmetic) for each number, so almost every arithmetic operation makes a tiny [round-off error](https://en.wikipedia.org/wiki/Round-off_error).\n", - "\n", - "In real applications, there are lots of other sources of error, too. If $A$ or $b$ comes from measured data, they probably include [measurement errors](https://en.wikipedia.org/wiki/Observational_error). Often, the equations you solve on the computer are only approximations for the *real* equations of nature (which may not even be fully known!), so there could also be **systematic errors** or **modelling errors** in your problem.\n", - "\n", - "Such (hopefully) tiny errors are almost inevitable in most real problems. But the key question is **do tiny errors in the *inputs* produce equally tiny errors in the *outputs*,** or **do errors get amplified?**?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Output error from input error\n", - "\n", - "Suppose that we we want to solve $Ax = b$, but we actually have a *little error Δb in b*. Does that mean **we have an equally little error in x**?\n", - "\n", - "Let's work it out: we solve $A(x+\\Delta x) = b + \\Delta b$, and we should obtain\n", - "$$\n", - "x + \\Delta x = A^{-1} (b + \\Delta b) = A^{-1} b + A^{-1} \\Delta b\n", - "$$\n", - "so our error should be $\\boxed{\\Delta x = A^{-1} \\Delta b}$.\n", - "\n", - "Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.333333\n", - " 0.333333" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 2\n", - " 2.01 3.99]\n", - "b = [1,2]\n", - "x = A \\ b # \"exact\" answer" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.93\n", - " -0.47" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Δb = [-0.01, 0.004]\n", - "x′ = A \\ (b + Δb)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.59667 \n", - " -0.803333" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x′ - x # the error Δx" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.59667 \n", - " -0.803333" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Δx = A \\ Δb" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Okay, great, our $\\Delta x$ formula worked. But look at what happened here — we put a \"tiny\" error $\\sim 0.01$ into b, and got a \"huge\" error $\\sim 1$ in x! Why?\n", - "\n", - "That is, if we compare $\\Vert \\Delta x \\Vert$ to $\\Vert \\Delta b \\Vert$, we get a big increase:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.010770329614269008" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(Δb) # the size of the error in the input" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.7873692648384276" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(Δx) # the size of the error in the output" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Error growth and a matrix norm\n", - "\n", - "In general, what is the relationship between $\\Vert \\Delta x \\Vert$ and $\\Vert \\Delta b \\Vert$? If $\\Delta b$ is a \"random\" error that could be in *any direction*, how big can $\\Vert \\Delta x \\Vert / \\Vert \\Delta b \\Vert$ be?\n", - "\n", - "That is, we would like to know the **maximum possible value** of\n", - "$$\n", - "\\frac{\\Vert \\Delta x \\Vert}{\\Vert \\Delta b \\Vert} = \\frac{\\Vert A^{-1} \\Delta b \\Vert}{\\Vert \\Delta b \\Vert}\n", - "$$\n", - "over **all possible Δb ≠ 0**.\n", - "\n", - "More generally, for *any* matrix $B$, we define the [induced matrix norm](https://en.wikipedia.org/wiki/Matrix_norm)\n", - "$$\n", - "\\Vert B \\Vert = \\max_{y\\ne 0} \\frac{\\Vert B y \\Vert}{\\Vert y \\Vert}\n", - "$$\n", - "This is a measure of \"how big\" the matrix is, according to the *maximum* amount by which it can \"stretch\" a vector.\n", - "\n", - "By this definition, $\\boxed{\\Vert \\Delta x \\Vert \\le \\Vert A^{-1} \\Vert \\; \\Vert \\Delta b \\Vert}$: the **norm of A⁻¹ *bounds* how much the error can increase**.\n", - "\n", - "In Julia, $\\Vert B \\Vert$ is computed by `norm(B)`, for example:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.996014806077393" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(A) # ‖A‖" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "166.53382686925093" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(inv(A)) # ‖A⁻¹‖" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The fact that our $A^{-1}$ from above has such a big norm explains why $\\Vert \\Delta x \\Vert$ could be 100× bigger than $\\Vert \\Delta b \\Vert$.\n", - "\n", - "But how can we get $\\Vert A^{-1} \\Vert$?\n", - "\n", - "One way is to simply compute $\\Vert A^{-1} y \\Vert / \\Vert y \\Vert$. Since $\\Vert A^{-1} y \\Vert / \\Vert y \\Vert = \\Vert A^{-1} \\alpha y \\Vert / \\Vert \\alpha y \\Vert$ for any scalar α, we can freely restrict ourselves to $\\Vert y \\Vert = 1$ (by choosing $\\alpha = 1 / \\Vert y \\Vert$), i.e. we can *equivalently* define\n", - "\n", - "$$\n", - "\\Vert B \\Vert = \\max_{\\Vert y \\Vert = 1} \\Vert B y \\Vert\n", - "$$\n", - "\n", - "So, we can just plot $\\Vert A^{-1} y \\Vert$ versus angle $\\theta$ for $y = (\\cos \\theta, \\sin \\theta)$ on the unit circle:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHMCAYAAAAwHmdPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4FNX6B/DvhnTKUgJJkEBAegmEbugiHZSOYgFBfiggIqJeC8WCIIIVveiVCyiI4AVUQOm9B0iQXiQ0IYS6ISE98/vjMLsJKSSb3T0zs9/P8+yTyWay+26yO/POOe85x6QoigIiIiIigofsAIiIiIi0gokRERER0T1MjIiIiIjuYWJEREREdA8TIyIiIqJ7mBgRERER3cPEiIiIiOgeJkZERERE9zAxIiIiIrqHiRERERHRPUyMiIiIiO5hYkREbu3f//43GjduDC8vL0yZMkV2OEQkGRMjInJrwcHBeO+999C7d2/ZoRCRBnjKDoCISCY1Ifrtt98kR0JEWsAWIyLJ5s+fD5PJhHPnzkl9TGfEURihoaGYMmUKzp07B5PJhC1btuS579GjR+Hl5QWTyYSrV6+6LsgHKMxroIJz1nszPj4eEyZMQEhICHx9fdG8eXPs3r3boc9B+sPEiEiyHj16YPfu3QgODpb6mM6Iw1nGjh2L9PR0AEB0dLTkaEiPrl+/jlatWmHr1q34/PPPsWLFCmRkZKBnz564deuW7PBIIiZGRJKVL18eLVu2hI+Pj9THdEYczvC///0PmzZtQo8ePQDknRh17NgRvr6+ud4mTpzoypB14e7du7JDcKmhQ4dCURRs3boV/fr1Q7du3TBnzhzcvHmT3apujokRuZ0pU6bAZDLhr7/+woABA2A2m1G2bFmMHz8e6enpOHnyJLp27YqSJUsiNDQUM2bMyPb7Z86cwfPPP48aNWrA398fDz30EHr16oXDhw9b90lOTkZ4eDiqV68Oi8VivT82NhZBQUFo3749MjIyAOTsJihqfLk9pslkyvOm7pNbd4Uay9GjR/HUU0/BbDYjMDAQw4YNy/a6AFGjExYWBh8fH1SrVg1ffPGF9fcdJSkpydr1sWDBAhQrVizPxGjjxo1ITk7O9fbBBx8U+Dn79u2LSpUq5bg/PT0djRo1QqdOnex+PQCwY8cOdOzYESVLloS/vz8iIiKwevVq689//fVXmEwmbNy4Mcfv/vvf/7a+V1SnT5/G4MGDUaFCBfj4+KBOnTr4+uuvs/2e+n85ePAg+vfvjzJlyuDhhx/ON86CvO+zPrYr3jMFea252bRpE1avXo1PP/0U/v7+1vurVasGADh79myBnp+MicXX5LYGDhyIZ555BiNHjsT69esxY8YMpKWlYcOGDRg1ahQmTJiAn376CW+++SaqV6+Ovn37AgAuX76McuXKYfr06Shfvjxu3ryJBQsWoEWLFoiKikKtWrXg6+uLpUuXokmTJhg2bBiWLVuGzMxMPP3001AUBYsXL0axYsWcEl9u7q+bSEpKwrPPPouMjAyULVv2gX+rfv36YdCgQRg+fDgOHz6Mt956CwDw3//+FwCwZs0a9O3bF23btsWSJUuQnp6OmTNnOrz+5+OPP8b58+fx888/o1y5cqhRo0aRu9LS09ORnp6OjIwMpKenIzk5GV5eXtb/T9u2bbFixQqcP38eVapUsf7ep59+ihMnTuCXX36x+7m3bt2KTp06ISwsDHPnzoWPjw+++eYb9OrVC4sXL8agQYPQs2dPVKhQAfPmzUPHjh2z/f78+fPRuHFjhIWFAQCOHTuGiIgIVK5cGbNmzUJQUBDWrl2LsWPH4vr165g8eXK23+/bty+efPJJvPjii0hMTMw31oK877Ny9numsK81q++++w6hoaHo0KGDtUsWEDVHAODl5VWgGMigFCI3M3nyZAWAMmvWrGz3N2rUSAGgLF++3HpfWlqaUr58eaVv3755Pl56erqSmpqq1KhRQ3n11Vez/WzJkiUKAOXzzz9XJk2apHh4eCjr1q3Lts+8efMUAEpMTIzD4rv/Me+P94knnlBKlCihHDhwIN/fUWOZMWNGtscYNWqU4uvrq2RmZiqKoijNmjVTQkJClJSUFOs+d+7cUcqVK6cU9DBTpUoVZfLkyUpMTIwCQNm8eXO2n58/f17x8/NT2rVrZ71v4MCBioeHh5KYmFig58iN+hqz3ubNm2f9+YEDBxQAyk8//WS97+zZs4q/v7/y/vvvF+o13K9ly5ZKhQoVlDt37ljvS09PV+rXr69UqlTJ+vcdP3684ufnp9y+fdu637FjxxQAyldffWW9r0uXLkqlSpUUi8WS7XnGjBmj+Pr6Kjdv3sz2midNmlSwP1Iu8nrfO+M9k9t7s6Cv9X4ZGRlK6dKlc/zPs95+/PFHu/4mZAzsSiO31bNnz2zf16lTByaTCd26dbPe5+npierVq+P8+fPW+9LT0/HRRx+hbt268Pb2hqenJ7y9vXH69GkcP34822MOHDgQL730El5//XV8+OGHePvttwvc9WJvfA8yZswYrF69Gr/88gsaN25coN95/PHHs30fFhaG5ORkxMXFITExEfv370fv3r3h7e1t3adEiRLo1atXgeN6kPHjxyM1NRVffvlltjgyMzNzdOcUxpQpU6AoSrbb0KFDrT9v1KgRSpUqhZ07d1rve+mllxASEoI333zT7udNTEzE3r170b9/f5QoUcJ6f7FixfDss8/i0qVLOHnyJABg2LBhSEpKwpIlS6z7zZs3Dz4+Phg8eDAA0X27ceNG9OnTB/7+/taWsPT0dHTv3h3JycnYs2dPthj69etX4HgL874HnPuesee1qk6ePInbt2/jgw8+QGRkZLbbkCFDAADNmzcv8N+FjIeJEbmt+7uQvL294e/vD19f3xz3JycnW78fP348Jk6ciN69e2PlypXYu3cvIiMj0bBhQyQlJeV4nmHDhiEtLQ2enp4YO3as0+PLz4cffog5c+bg22+/RdeuXQscS7ly5bJ9rxZoJyUl4datW1AUBYGBgTl+L7f77LF582YsW7YMzzzzDCpXrozbt2/j9u3b1poQZ45M8/DwQEREBHbt2gUAWLRoEdauXYs5c+ZkO6kXlvp3y20UYMWKFQEAN27cAADUq1cPzZo1w7x58wAAGRkZWLhwIZ544gnr++TGjRtIT0/HV199BS8vr2y37t27AxAjsbIqzAjEwr7vnfmesee1qtQauhYtWqBp06bZbkeOHMHDDz+MmjVrPjAGMi7WGBEV0sKFC/Hcc8/ho48+ynb/9evXUbp06Wz3JSYm4tlnn0XNmjVx9epVvPDCC9JGvMyfPx8TJ07ElClTMGzYMIc9bpkyZfKcTyg2NrbIj5+RkWFNKBcsWIAFCxbk2MfZQ/bbtm2LiRMn4sKFCxg/fjyGDBmC9u3bF+kxy5QpAw8PD1y5ciXHzy5fvgwACAgIsN73/PPPY9SoUTh+/DjOnj2LK1eu4Pnnn8/2eGpr0+jRo3N9zqpVq2b7vjCF8YV53z9IUd8z9rxWVVpaGgDkqPGLjo7GgQMH8PHHHz/w+cnYmBgRFZLJZMoxpH316tX4559/UL169Wz3v/jii7hw4QL27duHEydOoH///vjss8/w6quvujJkrFmzBiNGjMCwYcPyLUq1R/HixdG0aVP8+uuvmDlzprUVJSEhAatWrSry43/99dc4cuQI3nvvPbRt2zbHz/v16+eSxEid4yYjIwMzZ84s8mMWL14cLVq0wPLlyzFz5kz4+fkBADIzM7Fw4UJUqlQpW8vFU089hfHjx2P+/Pk4e/YsHnroIXTu3Nn6c39/f3To0AFRUVEICwsrUmtWbgrzvn+Qor5nivJa1VbGw4cP49FHHwUgugnHjh2LqlWrYsyYMYV6LWQ8TIyICqlnz56YP38+ateujbCwMBw4cACffPJJjiHd33//PRYuXIh58+ahXr16qFevHsaMGYM333wTrVq1clkdQ0xMDAYMGIBq1arh+eefz1F7ER4eXuS5i95//3306NEDXbp0wSuvvIKMjAx88sknKFGiBG7evGn3416/fh1TpkxBREQEJk6cmGsLR8OGDbFv3z5kZmbCw8M51QHNmjWDn58fDh8+jP/+97/ZWnKKYtq0aejUqRM6dOiACRMmwNvbG9988w2OHDmCxYsXZ3u9pUuXRp8+fTB//nzcvn0bEyZMyPF6v/jiC7Ru3Rpt2rTBSy+9hNDQUNy5cwdnzpzBypUrsWnTJrtjLej7vqCK+p6x97XWr18fTZo0wYcffojAwECYzWbMmjULx44dw8aNG7MN3yf3xMSIqJC++OILeHl5Ydq0aUhISEDjxo2xfPlyvPvuu9Z9Dh8+jLFjx2LIkCHZCnlnzpyJ3bt3Y9CgQYiKiip0F4Q9zp8/j4SEBJw6dQpt2rTJ8fOYmBiEhoYW6Tm6du2KZcuWYdKkSRg0aBCCgoIwatQoXL58GT/++KPdj/vOO+/gzp07+Pbbb/Ps9mnYsCE2b96M06dP5xgy7igeHh4oU6YMmjZtmu3/WVTt2rXDpk2bMHnyZAwdOhSZmZlo2LAhfv/99xzF94DoTlu8eDEA5BpH3bp1cfDgQXzwwQd49913ERcXh9KlS6NGjRrW2ht7FeR9XxhFfc8U5bUuW7YMI0eOxPDhw+Hr64tu3bph//79Rf4ckDGYFEVRZAdBRMaTlpaGRo0a4aGHHsK6deseuH9oaCiGDh2KoUOHomrVqti8eXOR63gcZebMmXjnnXcQHR2NOnXq5Lmfll+DHhT2PUPkDGwxIiKHGD58ODp16oTg4GDExsZizpw5OH78OL744gvZodnl7t27OHToECIjI/HOO+9g6tSp+SZFVHhGe8+QMTAxIiKHuHPnDiZMmIBr167By8sLjRs3xh9//IHHHntMdmh2WbduHfr06YOgoCC8/fbbmDBhguyQDMdo7xkyBiZGROQQS5culR2CQ/Xu3RusNHAuo71nyBg0XWO0bds2fPLJJzhw4ACuXLmCFStWoHfv3taf51WMOWPGDLz++usARJ///bMCv/nmm5g+fbrzAiciIiJd0nSLUWJiIho2bIjnn38+16nr758Y7c8//8Tw4cNz7Pv+++9jxIgR1u+zTr9PREREpNJ0YtStW7ds60LdLygoKNv3v/32Gzp06GCdwEtVsmTJHPsSERER3U/TiVFhXL16FatXr851uYCPP/4YH3zwAUJCQjBgwAC8/vrrec6UmpKSgpSUFOv3mZmZuHnzJsqVK1eo6fOJiIhIHkVRcOfOHVSsWLFQk78aJjFasGABSpYsib59+2a7/5VXXkHjxo1RpkwZ7Nu3D2+99RZiYmLw/fff5/o406ZNw3vvveeKkImIiMjJLl68WKgZ2jVdfJ2VyWTKUXydVe3atdGpUyd89dVX+T7OsmXL0L9/f1y/fj3H6s9AzhYji8WCypUr4+LFiyhVqlTRXgQRERG5RHx8PEJCQnD79m2YzeYC/54hWoy2b9+OkydPYsmSJQ/ct2XLlgCAM2fO5JoY+fj45LpuVKlSpZgYERER6Uxhy2Ccs+Kii82dOxdNmjRBw4YNH7hvVFQUACA4ONjZYREREZHOaLrFKCEhAWfOnLF+HxMTg+joaJQtWxaVK1cGIJrKfvnlF8yaNSvH7+/evRt79uxBhw4dYDabERkZiVdffRWPP/649feJiIiIVJpOjPbv348OHTpYvx8/fjwAYMiQIZg/fz4A4Oeff4aiKHjqqady/L6Pjw+WLFmC9957DykpKahSpQpGjBiBN954wyXxExERkb7opvhalvj4eJjNZlgsFtYYERER6YS9529D1BgREREROQITIyIiIqJ7mBgRERER3cPEiIiIiOgeJkZERERE9zAxIiIiIrqHiRERERHRPUyMiIiIiO7R9MzX7iAxMTHPnxUrVgy+vr4F2tfDwwN+fn527Xv37l3kNc+nyWSCv7+/XfsmJSUhMzMzzziKFy9u177JycnIyMhwyL7+/v7WBQZTUlKQnp7ukH39/Pzg4SGuO1JTU5GWluaQfX19fVGsWLFC75uWlobU1NQ89/Xx8YGnp2eh901PT0dKSkqe+3p7e8PLyyvnvunpwJ07QOnSwL2/adZ9MzIykJycnOfjenl5wdvbu9D7ZmZmIikpySH7enp6WhecVhQFd+/edci+hfnc8xiR+748RhTiGOHhAaSkIM1kQmo+8briGKEZCuXLYrEoABSLxeKUxweQ56179+7Z9vX3989z33bt2mXbNyAgIM99mzZtmm3fKlWq5Llv3bp1s+1bt27dPPetUqVKtn2bNm2a574BAQHZ9m3Xrl2e+/r7+2fbt3v37vn+3bLq379/vvsmJCRY9x0yZEi++8bFxVn3HTVqVL77xsTEWPedMGFCvvseOXLEuu/kyZPz3Xffvn3WfWfMmJHvvps3b7buO3v27Hz3XbVqlXXfefPm5bvv0qVLrfsuXbo0333nzZsndjxzRln12mv57ju7Xj1FmT5dUa5cUTZv3pzvvjNmzLDGsG/fvnz3nTx5snXfI0eO5LvvhAkTrPvGxMTku++oUaOs+8bFxeW775AhQ6z7JiQk5Ltv//79s72H89uXxwhx4zHCdivUMaJUKUXx8lIUQJnt65vvvk4/RjiBvedvthgRkfPExAA9ewKrVz9436NHgX/9C3jnHaBlS+fHRuTu4uNt2/m0urobrpX2AM5eK43N5IXfl83kOuhKi4oCpk6F95o18AIADw+kN2+OlPBwoHFjcatSBbhxA7h6Fbh6Fd6XLsFr6VJg925kAEgGgIceAmbNEslVFuxKK/y+PEbYt69ujxHJyUh97z2kffIJoL4+Hx+ge3fgiSeASpXgW748ipUpA5QqhbSTJ5G6ZQuwc6e43bghfqdkSeDVV+Ezfjw8zWYA+ulKs/f8zcToAbiILFEh3LkDjBwJLF4svvfwAJ5+Gpg4EahRo2CPcfQoMHcu8MMPtoPz0KHA558D9w7MRJSP3buBYcOAEyfE9x06AEOGAH36AAU5jykKsH69aMGNihL3BQUBU6cCzz9vrQvUOi4iS0RynToFtGghkiIPD+CZZ4Djx0WCU9CkCADq1QM+/RS4dAl44w1xEJ4/HwgLAzZvdlr4RLqXmAiMGwe0aiWSosBAYNkyYNMmkRgVNDkwmYDOnYH9+4GffgKqVgViY4Hhw4ERI4B8WouMgIkR0T19+vRBmTJl0L9/f9mh6M/q1UDz5iIRqlhRNMX/+CNQs6b9j+nrC3z8MbBtG1CtGnDhAvDoo+Iqlg3dRNnFxYmE6IsvxOdj6FDg2DGgb1/7H9PDA3jqKZFkffSR+H7uXKBTJ+D6dYeFrjVMjIjuGTt2LH744QfZYehLZibwwQdAr16AxSIOzAcOOLZ4unVr4NAh0UUHiGRp1Cjx3EQEXLwItG0rPicVKgBr1gDz5gFlyzrm8b29gbfeAlatEjVH27aJ1uFjxxzz+BrDxIh0YcuWLQgNDQUgCjjPnTvn8Ofo0KEDSpYsKe35dUdRgJdfBiZNEtujRokm+6Agxz9XiRLAnDniYG8yie2RI5kcEZ05A7RpA5w8CYSEANu3A126OOe5unUT9UtVqwJnzwKPPAJs3Oic55KIiREZRlRUFLy8vNCmTRvZobiH994DvvlGJCrffQd8/bW4snSmoUNFF52HB/D996LANJ8RRUSGduSISIrOnxd1fDt2FK37uiDq1QP27RMtVPHxYoTbwYPOfU4XY2JEhjF27FhMmDABhw4dynW4cJMmTVC/fv0ct8uXL0uIVudmzxaJkbo9YoTrnvvpp0VBaLFiwIIFoqg0n2HRRIZ0/DjQrp0oig4LEy1FlSu75rkDAoB164COHUXBd/fuYs4yg+AEj2QIP/30E8qUKYPRo0dj+vTpOHv2LB5++OFs+xw4cEBSdAazeDEwdqzYnjJFdKG52qBBgKcn8OSTwKJFopbiyy9dHweRDLduAY8/Dty8KQY9rFkDlCnj2hh8fMSIt7Ztgb/+Arp2FYMuAgJcG4cTsMWIdC8xMRFvv/02Pv74Y1SqVAlmsxnR0dGywzKmtWuB554TNUWjR4v6Iln69QN+/llsf/UVsHChvFiIXCUjAxg8WNQWVakiCqJdnRSpzGbgzz9FbdOpUyJZy2fyUr1gYkS6N3XqVHTt2hV16tQBANStW9euxKhLly4YMGAA/vjjD1SqVAmRkZGODlXfTp8G+vcX3VaDBokWGtkTvfXrB7z7rtj+v/8To3KIjOztt0ULkZ8f8OuvQPnycuOpWFHEU7q0KMwePFj3dX/sSiNdO3v2LL777jscOXLEel/9+vXtSozWrl3ryNCMJTVVzGeSkCCKPX/4QRRAa8GUKWIiujVrxJwt+/fLu4ImcqbFi4EZM8T2vHlAo0Zy41HVrQv8/ruY3+i338QyPm+8ITsqu2nkyEZkn1dffRU3btxApUqV4OnpCU9PT3z//ffsSnO0d94R8xOVLSsKn509+qwwihUTdUbqEOKnn+YwfjKegwfFKExATHI6aJDceO7Xpo0YmQqIVlwdj1RjYkS6tX79euzcuRNRUVGIjo623ubOnYtLly7hhrrOFhXN2rXAzJli+7//BSpVkhtPbsqWBZYvF7Nl//mnbcQckREkJIhu7ORkMZfQhx/Kjih3w4aJ9djS0kSXmk7rjZgYkS6lp6fjlVdeweuvv45GjRplG37fsWNHAGCrkSNcvSqKrQFRbP3EE3LjyU+jRmI+JUDMxr1nj9x4iBzl7bfFcPjKlW1TVWiRyQT85z9AcLCYcHLCBNkR2YWJEenSypUrcePGDYwZMybHz0JCQuDv78/EqKgyM8UcQXFxQP36wCefyI7owZ591jZq7oUXDL/YJbmB7dvFqEtAJB2lS8uN50HKlRPziwHAv/8tRs3pDBMj0qU+ffrg6tWrKF68eI6fmUwmJCYm4rXXXpMQmYF89ZXoRvP1FcPi/fxkR1Qwn34qRuocPQpMmyY7GiL73b0rVrQHRDdV585y4ymoTp2AcePE9rBhouVZR5gYEVFOly/bhsHPmiWWAdCLcuVskz1OnWrYhS7JDUyeLKbJqFhRfA71ZNo0oEED4No14MUXZUdTKEyMiCinCRNEwWeLFro7qAEQI3Z69hRFoC+8oPt5VcgN7d0rWj8B4Ntvtd+Fdj9fXzFa1NNTzLe0Zo3siAqMiRHpQmhoKMbda5qdPHkySrv4ICH7+V1q82YxX4qHh1gkVivzFRWGySTqG0qWFJPO/fvfsiMiKriUFNEFlZkJPPOMSPL1qEED4OWXxfYrr+im5s+k5LbaJlnFx8fDbDbDYrGgVKlSssMhcq60NKBhQ7FA5ejRYoFYPfvmG/E6SpQQNUeuWmSTqCimThVd2YGB4n1brpzsiOxnsQC1aok6o48/dunEj/aev3V4KUhETvP55yIpKl9eDHnXuxdfBFq3Ft2C48fLjobowa5eBaZPF9uzZuk7KQLEemrq6/ngA1G/qHFMjIhIuHTJNjHijBnGWFbDw0N0o3l4iJXAObcRad2UKSKRb9ZMLMNjBM89B7RsKV6XDpYKYWJERMJrrwGJiUBEhG1SRyOoXx8YOlRsv/GGmOOISIuOHbNNUjpzpj7r+3Lj4SGm/zCZREH2jh2yI8qXQf7qRFQkO3cCS5eKA9jXXxvngKx67z0xSmb7dmDlStnREOXujTdEwXXv3kDbtrKjcaymTW1zMr38sqZHihrs6EdEhaYotjmLhg3TzordjlSpEvDqq2L7zTeB9HS58RDdb+NGYPVqMbz9449lR+McH30kph2IjgZ++EF2NHliYkTk7jZtArZsAby9gYkTZUfjPG++KQpZT5wA5s2THQ2RTUaGbV2xl14CataUG4+zlC8PvPOO2H7/fTEKVoOYGBG5s6ytRSNHGns4u9kMTJoktidNEvVURFqwcKFoRSlVyvYeNapRo8Q0BOfOAfPny44mV5pOjLZt24ZevXqhYsWKMJlM+PXXX7P9fOjQoTCZTNluLVu2zLZPSkoKXn75ZQQEBKB48eJ4/PHHcenSJVe+DCLt+uMPMVLLz0+s4G10L74IVKsGxMbaZhUmkiklxXZx8s47QECA3Hiczd8f+Ne/xPaHH4rXrzGaTowSExPRsGFDzM5nkrmuXbviypUr1tsff/yR7efjxo3DihUr8PPPP2PHjh1ISEhAz549kaHhwi8il8jMtHWdvfwyEBQkNx5X8PYWdQ6AmJLg+nW58RDNny+mynjoIWDsWNnRuMbIkUBwMHDhAvDf/8qOJgdNJ0bdunXDhx9+iL59++a5j4+PD4KCgqy3smXLWn9msVgwd+5czJo1C4899hjCw8OxcOFCHD58GBs2bHDFSyDSruXLgagosWyGDuYWcZiBA4HGjcWcKupis0QypKXZJj98/XUxctIdZG2hnjoVSE6WG899NJ0YFcSWLVtQoUIF1KxZEyNGjEBcXJz1ZwcOHEBaWho6d+5sva9ixYqoX78+du3alevjpaSkID4+PtuNyHAyMmy1DK++qv/ZdQvDZLIdlL/6CuBnnGRZvFjU2pQvD4wYITsa13rhBTFa9J9/gP/8R3Y02eg6MerWrRsWLVqETZs2YdasWYiMjMSjjz6KlHt9lrGxsfD29kaZ+2bwDQwMRGxsbK6POW3aNJjNZustJCTE6a+DyOUWLxZLf5Qp455LZfTpA9SuDdy+LVYuJ3K1jAxg2jSx/dprovbGnfj62kaoffQRkJQkN54sdJ0YDRo0CD169ED9+vXRq1cv/Pnnnzh16hRWr16d7+8pigKTyZTrz9566y1YLBbr7eLFi84IXTShLloEfPaZcx6fKC+ZmaL5GhDN92az3Hhk8PAQw/cBsR6VxpryyQ0sXy6mjihdWgzRd0fDhomRsLGxwJw5sqOx0nVidL/g4GBUqVIFp0+fBgAEBQUhNTUVt27dyrZfXFwcAgMDc30MHx8flCpVKtvNKbZvB555RhS/3hcfkVP98Yc4IJcqJVaed1dPPy0Oylevcl4jci1FsV2cvPKK+Cy6o6xzp02frpkpNAyVGN24cQMXL15EcHAwAKBJkybw8vLC+vXrrftcuXIFR44cQUREhKwwhQ58pjUcAAAgAElEQVQdgLAw8UZQ18YhcoWZM8XXkSPd94AMAF5eosUMECPUOBs2ucrq1cChQ0CJEu4zEi0vQ4YArVqJbjVPT9nRANB4YpSQkIDo6GhER0cDAGJiYhAdHY0LFy4gISEBEyZMwO7du3Hu3Dls2bIFvXr1QkBAAPr06QMAMJvNGD58OF577TVs3LgRUVFReOaZZ9CgQQM89thjMl+aKABVazu+/BJITZUbD7mHyEhg61ZxAHL3AzIgmvLLlxcFsD//LDsacgeKIubvAcRkh1lGUrslLy+xqOzYsYCPj+xoBEXDNm/erADIcRsyZIhy9+5dpXPnzkr58uUVLy8vpXLlysqQIUOUCxcuZHuMpKQkZcyYMUrZsmUVPz8/pWfPnjn2yY/FYlEAKBaLxdEvT1FSUhQlOFhRAEX58UfHPz7R/QYNEu+3556THYl2fPSR+JvUrasoGRmyoyGj27BBvN98fRUlNlZ2NIZm7/nbpCiKIjEv07z4+HiYzWZYLBbn1Bt99JFoQmzUCDh4ULQkETlDTAxQvboovj50SHTlEmCxiFqj+HhgxQqxsjmRs3TvDvz5JzBmjJgugpzG3vO3prvS3MKLL4phmtHRYiFPImf5/HORFHXuzKQoK7PZVoT+ySdyYyFjO31aJEUmkyi6Jk1iYiRb2bLA0KFie9YsqaGQgd28CcydK7bVVbzJ5uWXRd3Vrl1iNnAiZ1CXt+rRQ7TekiYxMdKCcePEFcTq1WIYNZGjffutGAHZsCEge+CBFgUHA/37i+2vv5YbCxnTnTu2aSE48EHTmBhpQY0awOOPi21O+EiOlpJiWxNswgTWseVlzBjxddEi4MYNubGQ8SxYIJKj2rV5caJxTIy04rXXxNcffgCuXZMbCxnLL7+ImWUfeggYNEh2NNoVEQGEh4tZsDW44jfpWGamrdD65Zd5caJxTIy0onVroGlTcVDm2k3kSOpU+y++KOYModyZTLZWo2++EWtZETnCunXAqVNiQtXnnpMdDT0AEyOtyDpK4T//4UGZHOPwYWDnTqBYMWD4cNnRaN9TT4kBEefOiaVTiBxB7coeNkzMdk2axsRIS/r1E6udX7ggrjCIikptfezdWxQYU/78/GwJpDqCiKgosg7Rd+e1CXWEiZGW+PmJdWMAdqdR0SUkiJo1QHSjUcG89JI4ia1bB5w8KTsa0jsO0dcdJkZa83//J76uWgX884/cWEjffv5ZjIKpXh149FHZ0ehH1apAr15im0P3qSgSEmxD9F9+WW4sVGBMjLSmTh2gTRtRY8SRMVQUatH1yJGABz/qhaIWYc+fL5JLInssXSrePzVqcIi+jvBoqUUjR4qvLMIme+3fDxw4AHh722ZWp4Lr2BGoWVOc1JYskR0N6ZU62/zw4bw40RH+p7SoXz8xMubiRWDNGtnRkB6prUUDBgABAXJj0SMPD+CFF8Q2W27JHsePiyVmihWz1Y6SLjAx0iJfX9sH6bvv5MZC+nP7NrB4sdhm0bX9nn1WnNR27xYnOaLCUBPqHj2AoCC5sVChMDHSqqxF2JcuyY2F9GXhQuDuXaBePaBVK9nR6FdQENC9u9hWC2iJCiItzTYidNgwubFQoTEx0qratYG2bcVU8mo/NdGDKIqtlXHkSC49UFTqSe2HH8TJjqggVq0C4uKAwEBbck26wcRIy9Qi7O+/ZxE2FcyhQ2K2a29v4JlnZEejfz16ABUqAFevst6PCk69mB0yhMvw6BATIy1Ti7AvXQI2bZIdDenBggXi6+OPi1nUqWi8vEStEcAibCqYf/4RM10D7EbTKSZGWubjY1sN/ccf5cZC2peWBvz0k9jmKBjHef558VXtHiHKz4IFogSidWugVi3Z0ZAdmBhpnboS87JlYhZVorysXStO3OXLA126yI7GOOrVA5o3B9LTRWE7UV4UxdayyEWbdYuJkda1aCFmTb17F1ixQnY0pGXqKJinn2Zdg6OpXSJz54qTH1Futm0D/v4bKFlSzCFGusTESOtMJluNg3riI7rfrVvA77+LbbWVkRznySfF/GLHjgGRkbKjIa1Sp3V48kmgeHG5sZDdmBjpgTq6aONGLixLuVu6FEhJARo0ABo1kh2N8ZjNYjAEwCJsyl1Skih5AFjjp3NMjPSgalVRyKcotuJaoqzU1sTnnuPcRc6iFmGrSShRVqtWiTrQ0FAgIkJ2NFQETIz0Qu0e+eEH1jhQdmfOiDWZPDxEfRE5R/v2QHCw6LZcu1Z2NKQ1ixaJr089xYsTnWNipBcDBojh+0eOiEn8iFRqa1HnzuLETc5RrJioHQFsa9ERASJZ/uMPsc2LE91jYqQXpUuLSfsAFmGTTWambY4r1jU431NPia+//cbpM8jmf/8T84iFhYnpHUjXmBjpiTo67aefxJwqRDt2AOfOAaVKAU88ITsa42vaFKheXRTaqqMAidTaz8GD5cZBDsHESE+6dgUCAsS6TRs2yI6GtEDt0unfH/DzkxuLOzCZbK1G7E4jQCzZtHWr2FbfG6RrTIz0xMvL9sHjDLyUnm4bHqwuHUPOp34G16wBbtyQGwvJ9/PPYkBMmzZA5cqyoyEHYGKkN2pT7W+/ieZ8cl+bNwPXrolWxEcflR2N+6hTR8wVlTUxJffFbjTDYWKkNy1aiKuShAQOGXZ3S5eKr/36AZ6ecmNxN+pJkPOKubfjx4GoKPH54xIghsHESG9MJtsHUD0xkvtJSwOWLxfb7EZzPfVvvm2bqDEh96Qmxl27AuXKyY2FHIaJkR4NHCi+/v47u9Pc1YYNwM2bQGAg0Lat7GjcT+XKoqZEUYAlS2RHQzJkXYmA3WiGwsRIj5o1A6pUARITgT//lB0NyaCejPv3FxMPkutxdJp7i4wEzp4Vi8Wqc8yRITAx0iOTydZqxO4095OSAvz6q9hmN5o8AwaI2pIDB4CTJ2VHQ672v/+Jrz17iuSIDIOJkV6pdUYrVwJ378qNhVxr7VrAYgEeegho1Up2NO4rIADo1Els//KL3FjItRTFNiKxf3+5sZDDMTHSq6ZNxSrOd+/a1ugh96B2ow0YIBaOJXnUk6JaCE/uITpadKP5+QHdusmOhhyMR1W9Yneae8q6FAW70eR7/HFR4xUVJU6U5B7U1qJu3diNZkBMjPRMTYxWrRKF2GR8f/4p5rCqXFnMaUVyBQQA7dqJbbYauQdFsdUX9esnNxZyCk0nRtu2bUOvXr1QsWJFmEwm/KoWnAJIS0vDm2++iQYNGqB48eKoWLEinnvuOVy+fDnbY4SGhsJkMmW7/etf/3L1S3GOxo2BatVEK8Lq1bKjIVdQu9EGDhSthiSfenLkLNju4dgxUWzv7S0Kr8lwNJ0YJSYmomHDhpg9e3aOn929excHDx7ExIkTcfDgQSxfvhynTp3C47kMm3z//fdx5coV6+3dd991RfjOx+4095KUJFoHAdv/neTr00d8Fvfs4WSP7kBtLercGShVSm4s5BSaXkegW7du6JZHYZvZbMb69euz3ffVV1+hefPmuHDhAipnWcyvZMmSCAoKcmqs0gwcCEyfLlqMEhKAEiVkR0TOsn69KLavXFkU35M2BAcDjzwC7NoFrFgBvPyy7IjImdTEiKPRDEvTLUaFZbFYYDKZULp06Wz3f/zxxyhXrhwaNWqEqVOnIjU1Nc/HSElJQXx8fLabpjVqBDz8MJCcLFb7JuNasUJ87d2b3Whao3ansc7I2E6eBI4cEfNXcVJHwzJMYpScnIx//etfGDx4MEplad585ZVX8PPPP2Pz5s0YM2YMPv/8c4waNSrPx5k2bRrMZrP1FhIS4orw7WcyiaZ8wDbpHxlPerqYswqw/b9JO/r2FV+3bQOuXZMbCzmPWkfWsSNQpozcWMhpTIqiKLKDKAiTyYQVK1agd+/eOX6WlpaGAQMG4MKFC9iyZUu2xOh+y5YtQ//+/XH9+nWUy2XRv5SUFKSkpFi/j4+PR0hICCwWS76PK9XOnUDr1oDZLA7KXl6yIyJH27IF6NBBLFQZGyuuWElbmjYVs2B/9x0wYoTsaMgZmjQBDh7k/1gn4uPjYTabC33+1n2LUVpaGgYOHIiYmBisX7/+gS++ZcuWAIAzZ87k+nMfHx+UKlUq203zWrYEKlQQsyFv3So7GnIGtRutVy8mRVqlthpxdJoxnT0rkiIPD9GdTYal68RITYpOnz6NDRs25NoCdL+oqCgAQHBwsLPDc51ixWz93exOMx5Fsf1feUDWLrXOaONG4NYtubGQ46n1Y+3aAeXLy42FnErTiVFCQgKio6MRHR0NAIiJiUF0dDQuXLiA9PR09O/fH/v378eiRYuQkZGB2NhYxMbGWourd+/ejc8++wzR0dGIiYnB0qVLMXLkSDz++OPZRq0ZgnrC/O03cSIl44iKAi5cAPz9xRBh0qZatYB69UQ9mDqtAhmHmhhxUkfD03RitH//foSHhyM8PBwAMH78eISHh2PSpEm4dOkSfv/9d1y6dAmNGjVCcHCw9bZr1y4AoltsyZIlaN++PerWrYtJkyZhxIgRWLx4scyX5RwdO4qp6S9dEs29ZBxqa1HXrmJtJtIuTvZoTFevinmqAOCJJ+TGQk6n6WKF9u3bI7/a8AfVjTdu3Bh71Dez0fn6inV7/vc/cSJt0kR2ROQoWYfpk7b16we8/z6wdq2Yc8rfX3ZE5AirV4uW+CZNgEqVZEdDTqbpFiMqJPVKhnVGxnHmjJg3pVgxLj+gBw0aAFWqiHnFNmyQHQ05irpwM+cucgtMjIykRw9xAj1yRJxQSf/UJLd9e86bogcmkxg5CNjmnSJ9S0oC1q0T20yM3AITIyMpU0acQAFRhE36p3ajcVJH/VBPnitXApmZcmOhotu4USRHISFAw4ayoyEXYGJkNGodCrvT9C82Fti9W2yz4FM/2rUDSpYUBbv798uOhooqazcal+JxC0yMjEY9ge7cCcTFyY2FimblSlHw2awZCz71xNsb6NJFbLM7Td8yM23/Q3ajuQ0mRkYTEiJGTigKD8p6p/7/2FqkP+pJVG1tIH3av1+03JYsKVoCyS0wMTIidqfpX1KSqG0AOBpNj7p3F0tH/PUXcP687GjIXmpi27Ur4OMjNxZyGSZGRqSOilGLBkl/tmwR8+BUqgSEhcmOhgqrXDkgIkJscxZs/eIwfbfExMiIwsLECTUpSZxgSX9WrxZfe/RgwadesTtN386dAw4fFlOgdO8uOxpyISZGRmQy2T7I6gmW9ENRbK0M7EbTL7XldvNmID5ebixUeGqNX+vWQNmycmMhl2JiZFQ9eoiv6lT2pB/Hjom6FF9f4NFHZUdD9qpVC6hRA0hLs00QSPrBbjS3xcTIqDp2FMWC584Bx4/LjoYKQ20tevRRrrWlZ5wFW78sFlsZgvo/JLfBxMioihe3zYLN7jR9yVpfRPqmnlRXrwYyMuTGQgW3di2Qng7Uri1a/citMDEysqzdaaQPN2+KyTkBJkZG0KqVWKrnxg3bLOakfX/8Ib6yxs8tMTEyMvXEumMHcPu23FioYNauFbPt1q8vVmknffPyArp1E9sctq8PmZnAmjViW/3fkVthYmRk1aqJpuCMDBZ/6gVHoxmPOkJUPdmStkVHi3XuSpQQI9LI7TAxMjp2p+lHejrw559im4mRcXTpIgqxDx0CLl+WHQ09iNqN9thjYt07cjtMjIxOTYz+/FM0EZN27dkD3Lol5kxp2VJ2NOQoAQFiIWCArUZ6oF6csBvNbTExMrrWrYFSpYBr14DISNnRUH7UbrRu3cRsu2QcXbuKr+pJl7Tp5k1xgQIwMXJjTIyMzssL6NxZbLM7Tds4TN+41JPs+vWiy5S0ad062+CHkBDZ0ZAkTIzcAeuMtO/iReDIEbEie5cusqMhR2vWTCwsa7Fw2L6WsRuNwMTIPagf8oMHgStX5MZCuVu7Vnxt2ZLrMhlRsWK2llvWGWlTZqYtMeKisW6NiZE7CAxk8afWqf8XthYZl3qBwjojbTp4UNRiliwpJuYkt8XEyF2oxZ9qywRpR3o6sGGD2GZiZFxqi1FUFBAbKzcWyinrMH0vL7mxkFRMjNyFelBev55rNmnNvn2i9qRsWaBpU9nRkLMEBgJNmohtttxqD7vR6B4mRu6iRQsxbP/mTeDAAdnRUFbqSbJTJw7TNzp2p2nT9evA3r1iW21dJ7fFxMhdeHkBHTuKbS4Poi1q9ya70YyPw/a1ad06QFGABg2ASpVkR0OSMTFyJ+qJl3VG2nHjhm3iTSZGxteiBVCmjJjhfN8+2dGQit1olAUTI3einnh37xY1LSTf+vW2K9WKFWVHQ86Wddg+u9O0ITPTdrHI+YsITIzcS2goULOmKL7etEl2NASwG80dcXkQbTl0SAzTL14ceOQR2dGQBjAxcjfsTtMORbH9H1jw6T7U//WBA0BcnNxYSLTaAkCHDoC3t9xYSBOYGLkbtRl/7VpxYiZ5Dh8WM5H7+4vFfsk9BAUBYWFie+NGubGQbTBKp05y4yDNYGLkbtq3FyPUzp0DTp+WHY17U1uL2rcHfHykhkIupp6E1dYKkiMpCdixQ2yrF43k9pgYuZsSJWytE+xOk4vdaO4ra2LEllt5tm8HUlLEEP1atWRHQxrBxMgdqXVGnM9InsREcVAGWHjtjtq0EfUsly4BJ0/KjsZ9qcfAzp0Bk0luLKQZTIzckXoi3rwZSE2VG4u72rJF/O1DQ4EaNWRHQ66Wta6M3WnyqH971hdRFkyM3FFYmFi3KTER2LlTdjTuKeswfV6puqes6xeS68XGAn/9JT5/jz0mOxrSECZG7sjDI/voNHK9DRvEVxZ8ui+1lWLLFiAtTWoobkn9DIaHAwEBcmMhTWFi5K6YGMlz+TJw/Li4Uu3QQXY0JEujRuKEfOeObQFTcp2s9UVEWTAxclfq1Wp0tFhZmlxHnbumaVOxbha5Jw8P28LO7E5zLUVhfRHlSdOJ0bZt29CrVy9UrFgRJpMJv/76a7afK4qCKVOmoGLFivDz80P79u1x9OjRbPvcunULzz77LMxmM8xmM5599lncvn3blS9DmwIDgfr1xTaXB3EttQmfdQ3E+YzkOHJE1Bj5+QGtWsmOhjRG04lRYmIiGjZsiNmzZ+f68xkzZuDTTz/F7NmzERkZiaCgIHTq1Al37tyx7jN48GBER0djzZo1WLNmDaKjo/Hss8+66iVom3pi5uy7rqMoTIzIRk2M9u3jws6upCai7dpxclXKSdEJAMqKFSus32dmZipBQUHK9OnTrfclJycrZrNZmTNnjqIoinLs2DEFgLJnzx7rPrt371YAKCdOnCjQ81osFgWAYrFYHPRKNGTlSkUBFOXhh2VH4j6OHRN/c19fRUlKkh0NaUHNmuI9keX4Rk7Wtav4m3/6qexIyInsPX9rusUoPzExMYiNjUXnLIVzPj4+aNeuHXbt2gUA2L17N8xmM1q0aGHdp2XLljCbzdZ97peSkoL4+PhsN8Nq1w4oVgz4+2+xRAg5n9pa1Lo14OsrNxbSBnanuVZyMrB1q9hmfRHlQreJUWxsLAAgMDAw2/2BgYHWn8XGxqJChQo5frdChQrWfe43bdo0az2S2WxGSEiIgyPXkJIlATVpZHeaa7Abje7HxMi1du0Sa6QFBwP16smOhjRIt4mRynTf5HiKomS77/6f57ZPVm+99RYsFov1dvHiRccGrDXqCVo9YZPzpKeLOWsAJkZk0769aLk9fRo4f152NMaX9eKEk6tSLnSbGAUFBQFAjpafuLg4aytSUFAQrl69muN3r127lqOlSeXj44NSpUpluxmaOlx40yYuZuls+/cD8fFA2bJiDhsiADCbbS23bDVyPnUUrnrsI7qPbhOjqlWrIigoCOuzHEhSU1OxdetWREREAAAeeeQRWCwW7Nu3z7rP3r17YbFYrPu4vZYtxbpNcXFiCCs5j3ql2qGDaCEgUqndaWy5dS6LBYiMFNuPPio3FtIsTSdGCQkJiI6ORnR0NABRcB0dHY0LFy7AZDJh3Lhx+Oijj7BixQocOXIEQ4cOhb+/PwYPHgwAqFOnDrp27YoRI0Zgz5492LNnD0aMGIGePXuiVq1aMl+adnh7A23bim0elJ2L9UWUF7X1YvNmttw607ZtQGamWLjZyPWjVCSaToz279+P8PBwhIeHAwDGjx+P8PBwTJo0CQDwxhtvYNy4cRg1ahSaNm2Kf/75B+vWrUPJkiWtj7Fo0SI0aNAAnTt3RufOnREWFoYff/xRyuvRLPWgzAJs50lMFEWfABMjyqlFCzHZYFwccOyY7GiMS+1GY2sR5cOkKLw8yU98fDzMZjMsFotx642io8VCiiVKADdvAl5esiMynjVrgG7dgCpVgJgYFn1STl26iPW7vvwSePll2dEYU1gYcPgwsHQpMGCA7GjIyew9f2u6xYhcJCxMLGaZkCBm4CXHU1vjOBKG8qK2YnCJHueIixNJESBGAhLlgYkRicUs1YMyu9Ocg/VF9CDqZ3DLFiAjQ2oohqROlREWBpQvLzUU0jYmRiSodUYswHa8a9dEdyXA2gbKW3i4GLp/+7bt/UKOw/oiKiAmRiSoidGePaJQmBxHvVJt0ADIZSZ2IgCAp6dthCi70xxPbQ3n/EX0AJ72/NKFCxfserLSpUsbt4BZ76pVA0JDxZpp27aJQmFyjM2bxdcOHeTGQdr36KPAypUiMXr9ddnRGMeFC8CZM2L+MDX5JMqDXYlRaGhooX/HZDJh8uTJ1qH2pDEmk7iSmjtXnMiZGDkOEyMqKLWbZ/t2IDVVzDNGRad+Bps2BXhxTg9gV2KUmZnp6DhIC9q3tyVG5BhXrgAnTojEk1eq9CD164sRotevixmaW7WSHZExsBuNCsGuxKhq1ap5LsKan3HjxmHs2LH2PCW5gjqE9eBBMXW+2Sw1HEPYulV8bdhQrJFGlB8PD9Gy+MsvojuNiVHRKQoLr6lQ7EqM5s+fb9eT2dMFRy5UqRJQvbroi9++HejZU3ZE+sduNCqsRx+1JUYTJ8qORv9Onwb++Qfw8QG4RiYVgF2JUbt27azbFy9eRAjXnDGODh1EYrRlCxMjR2BiRIWltmrs2gUkJYmlQsh+ajdaRAT/llQgRR6uX7t2bUycOBGJHOJtDOoJnHVGRffPP+Jq1cOD9UVUcDVqAA89JIqv1fX1yH7sRqNCKnJitH79eqxbtw41atTAvHnzHBETyaTWGUVFAbduSQ1F99TksnFj1mtRwZlMXB7EUTIzbZ9DJkZUQEVOjCIiIrB3715Mnz4dkyZNQnh4OLaoE9qR/gQHA7VqiYLF7dtlR6Nv7EYjezExcoyjR4EbNwB/f6BZM9nRkE44bObr5557DqdOnUKvXr3Qo0cP9OnTB2fOnHHUw5Mrqa1G7E4rGiZGZC/1PRMZCcTHy41Fz9SL9NatAS8vqaGQfjh0SRBFUdC5c2f83//9H37//XfUr18fr732Gu7cuePIpyFnUw/KbPmz3/nzQEyMmGm3dWvZ0ZDeVKkiZqPPyAB27pQdjX6p02VkGTBE9CBFTozmzJmD4cOHIywsDGazGY899hh27tyJ0aNH45tvvkF0dDTq1q2L/fv3OyJecgX1IHLoEHDzptxY9EptLWrWDChZUm4spE/q51A9uVPhZGba/nZqKzhRARQ5MZo6dSri4+MxZMgQbNmyBRaLBfv27cOXX36JYcOGYePGjXjppZcwdOhQB4RLLhEUBNSpI+qMtm2THY0+qYkRD8hkLzUxYsutfY4dEzOI+/uLpUCICsiueYyyunjx4gP3GT58OCZyojJ9ad8eOH5cnOB795Ydjb4oCuuLqOjUxGj/fiAhAShRQm48eqO2FkVEcM05KhSH1hjlpUKFCtjE0RX6wvmM7Hf2LHDxoij25JIOZK/QUFFrlJHB+Yzsoba0sdWWCslhidGBAwfy/JnJZMo2WzbpgPr/OnxYNEdTwanJZPPmQPHicmMhfWN3mn0UhfVFZDeHJUZ9+vRx1EORFlSoANSrJ7ZZ/Fk46kmM3WhUVOpJnZ/Bwjl+HLh2TSwBwvmLqJAKVWM0cODAXO9XFAU3OXrJeDp0EBOkbdkC9OsnOxp9UBQ24ZPjqC1GkZFAYiJbIAtK/QyyvojsUKjEaMOGDfjxxx9R4r4iQEVRsI2jl4ynfXtg9mzWGRVGTIxYI83TE3jkEdnRkN5VrQpUqgRcugTs3g089pjsiPSBFydUBIVKjNq3b48SJUrkWi8UHh7usKBII9T/89Gjolm6fHm58eiBeoHQrJkYJkxUFCaTOLkvXCi605gYPVjW+iLWtpIdClVjtHz58jyLqNesWeOQgEhDAgJsdUY7dsiNRS/UxIgHZHIUTvRYOCdOAHFxgK+vGABBVEhFKr6OjY11VBykVW3biq/sKi0Y9eSl/t2IikpNjPbuBZKS5MaiB1nnL/LxkRsL6VKREqPOnTs7Kg7SKvUEz6vVB7t0Scxh5OHB+YvIcapXB4KDgdRUYM8e2dFon1pfxFZbslOREiNFURwVB2mVmhhFRwMWi9xYtE5tVQsPB0qVkhsLGYdaZwTwAuVBOCqUHKBIiZHJZHJUHKRVFSuKK1ZF4SrfD8L6InIWTvRYMKdOAVevsr6IisQlS4KQzrHOqGBYX0TOoiZGe/YAyclyY9EyNXFs2VIkR0R2YGJED8Y6oweLixOjYQCgTRu5sZDx1KoFBAYCKSnAvn2yo9EuttqSAxQpMfLmjKLuQU2M9u8Xs+9STtu3i68NGgBly8qNhYzHZGJ32oMoii0xYqstFUGREqP9+/c7Kg7SstBQICQESE/nqJi8cEI5cjbOZ5S/8+fFyFBPT9GVRmQndqXRg5lMrDN6EF6pkrOp7609e4C0NLmxaJH6GWzalLPOU5EwMaKCYZ1R3m7dAv76S2yzvoicpW5doEwZ4O5d4OBB2dFoj9qdzc8gFZFTEqNbt25h8xG0OUsAACAASURBVObN+Oyzz5zx8CRD1qvVlBS5sWjNjh2ivqFWLSAoSHY0ZFQeHkDr1mJbTQLIhokROUihFpHNTUxMDKKjo7PdLl26BEVRULx4cbz66quOiJNkq1ULqFBBjL6KjLQdoInD9Ml12rQBVq4UScCECbKj0Y6rV4GTJ0W3P49NVER2txi1a9cOpUuXxsMPP4xhw4Zhw4YNCAoKwj///IO5c+fi/PnzuHPnjiNjJZlYZ5Q3DhEmV1FbQ3bsADIz5caiJeoi1/Xri+5GoiKwOzHavXs3Ro8ejYsXL+LWrVvYuXMnvv32W5hMJjRv3hwhISGOjJO0gIlRTnfu2Oo92GJEzta4sSgsvnkTOH5cdjTaoXaj8TNIDmB3YrR3715s374do0ePxqlTpxwZU4GFhobCZDLluI0ePRoA0L59+xw/e/LJJ6XEagjqQWfnTjF0n4Ddu4GMDNuUBkTO5O1tG4rOOiMb9WKN9UXkAHYnRuHh4di2bRsGDhyILl26YPTo0YiLi3NkbA8UGRmJK1euWG/r168HAAwYMMC6z4gRI7Lt8+2337o0RkNp0AAoXRpISACiomRHow28UiVXU0/+bLkVLBbg0CGxzcSIHKDIo9IGDx6Mo0ePonTp0qhXrx4yMzORkZHhiNgeqHz58ggKCrLeVq1ahYcffhjtstR6+Pv7Z9vHbDa7JDZD8vCwHXg4bF9QaxtY8Emuon4Gt28XoyHd3a5dot7q4YfFotdEReSQ4fr+/v6YOnUq9u7di549e6Jjx46YOXMmkpKSHPHwBZKamoqFCxdi2LBhMJlM1vsXLVqEgIAA1KtXDxMmTHhgQXhKSgri4+Oz3SiLrMWf7i411TYTOK9UyVVathSzO1+6JGZ7dnccpk8O5tB5jKpVq4bffvsNixYtwrx581CtWjVHPny+fv31V9y+fRtDhw613vf0009j8eLF2LJlCyZOnIhly5ahb9+++T7OtGnTYDabrTcWkd9HbRlR5+5xZwcPipXOAwLEdAZErlC8ONCkidhmnRETI3I4k6IU/ux24cKFB+6TlpaGVatWoU+fPtb7SpcujVKlShX26QqkS5cu8Pb2xsqVK/Pc58CBA2jatCkOHDiAxo0b57pPSkoKUrJMYBgfH4+QkBBYLBanxa4rqamA2SwSguPHgdq1ZUckzyefAG+8AfTuDaxYITsacievvw7MnAmMGAF8953saORJThbHo9RU4PRpoHp12RGRhsTHx8NsNhf6/G3XBI+hoaEF3led4NFkMmHy5MmYNGmSPU+Zr/Pnz2PDhg1Yvnx5vvs1btwYXl5eOH36dJ6JkY+PD3x8fBweo2F4ewMtWogaox073DsxYn0RydKmjUiM3L3FaN8+kRQFBYkaIyIHsCsxytTYxGLz5s1DhQoV0KNHj3z3O3r0KNLS0hAcHOyiyAyqdWtbYvTCC7KjkSMzk4kRydOqlfh64gRw7RpQvrzceGTJOkw/S20pUVHYlRhVrVo1W4FzQY0bNw5jx4615ynzlJmZiXnz5mHIkCHw9LS9nL///huLFi1C9+7dERAQgGPHjuG1115DeHg4WqkHFbJP1jojd3XihJhkz89PTLpH5ErlygH16gFHj4rPYZaSBbfC6TLICexKjObPn2/XkxWmC66gNmzYgAsXLmDYsGHZ7vf29sbGjRvxxRdfICEhASEhIejRowcmT56MYsWKOTwOt/LII+Lq7O+/gStXAHdsgVMPyC1bAl5ecmMh99SmjUiMtm1zz8QoPV0M1QdYeE0OZVdi1E5Da0J17twZudWPh4SEYCvn2nEOsxkICxOTqu3YAWSZUNNtqK1lPCCTLG3bAnPmuG+d0V9/iclmzWaxRhqRgzh0uD65EXefz4j1RSSb+hmMihJr9rkb9TMYEQGwF4AciIkR2ced64wuXQLOnRMzgavrVhG5WqVKYo2+zEyxZp+72blTfOXFCTkYEyOyj1rAHh3tflerajIYHg6ULCk3FnJvalKgJgnuQlFsn0MOpiEHY2JE9nHnq1W1poNXqiSbmhS4W2J07hxw+bIY+NCsmexoyGCYGJH93LU7jYXXpBXqZ3DPHjFKy12oiWDjxoC/v9xYyHCYGJH93LEA+/Zt4PBhsc0mfJKtbl2gdGkgMVGMEnUXHPxATsTEiOyX9Wo1LU1uLK6ya5eob6heXSxDQCSTh4eYVwxwr+409bXy4oScgIkR2a92baBsWSApSQwZdgdcyZu0xt26tG/dAo4cEdtMjMgJmBiR/Tw8bAcmdzkoswmftCZrAXYuk90ajjrYo2ZNoEIFubGQITExoqJREwR3mH03JQWIjBTbTIxIK5o1Azw9xSit8+dlR+N8HKZPTsbEiIomazO+0a9WDx4UyVFAAFCjhuxoiAR/f6BJE7HtDi23nNiRnIyJERVNkyaAjw9w/Tpw6pTsaJxLPSBHRIhFdIm0wl3mM0pNBfbtE9tsMSInYWJERePjY5tgTV3p2qjU18cDMmmNuxRgHzwIJCeLVtuaNWVHQwbFxIiKzh2uVhWFQ4RJuyIixNejR8VcW0aVtb6IrbbkJEyMqOjUg7KRW4z+/huIiwO8vW31HERaERgo5tZSFGMv0cP6InIBJkZUdGpidPw4cPOm3FicRT0gN2kC+PrKjYUoN0bvTsvaasvEiJyIiREVXdb+fqNerbK+iLTO6F3ap08D166JC5PGjWVHQwbGxIgcw+gHZdYXkdap7829e8XoLaNRW8KaNxdd2kROwsSIHMPIdUa3bomiVsD2Oom0pnZtoFw5MWrLiEv08OKEXISJETmGerDat894C8qq3YM1anAJAtIuk8mWuBux5Zbd2eQiTIzIMWrVsi0oGx0tOxrHUg/IbC0irTPq2oU3bgAnTojtli3lxkKGx8SIHMPDA3jkEbFttKtVNuGTXqijtXbtMtYSPXv2iK9qdyGREzExIscxYgF2WpooZgWYGJH2NWkCeHkBV68CMTGyo3GcrMvxEDkZEyNynKwF2Ea5Wo2OFt2DZcqIq1UiLfP1tU1AaqSBEOzOJhdiYkSO06wZ4OkJXL4MnD8vOxrHUA/IjzwiuguJtE7t0jZKYpSWZls4lokRuQCP9OQ4/v62ideMclBmfRHpjZo8GGWy1UOHbK22tWrJjobcABMjciwjDRfmwrGkR+pn8K+/gDt35MbiCGy1JRfju4wcS00gjNBidP686Bb09BTdhER6ULEiUKUKkJlp64LSM9YXkYsxMSLHMtLVqnpADg8X3YREemGkmeiZGJGLMTEix6pYEQgNFVer6twjesWZdkmvjJIYXbwobsWKsdWWXIaJETmeUeqM1OJVdZQPkV6o79ndu8VFil6pn8GGDYESJeTGQm6DiRE5ntrCoudRMYmJYjQMwMSI9CcsTHT/WizA8eOyo7Efu9FIAiZG5HhqIrFnj36vViMjgYwMoFIlICREdjREhePlBTRvLrb13J3GxIgkYGJEjtegAVC8OBAfDxw7Jjsa+7AbjfRO7/MZ3b0LREWJbSZG5EJMjMjxPD1tV6t6PSjzSpX0Tu8F2JGRQHq6GNBRubLsaMiNMDEi58ha/Kk3imIbUccWI9Krli3F15MngevX5cZij6wXJyaT3FjIrTAxIufQc2J05ow4kfj4iDmMiPSoXDnbwsd6nDqDrbYkCRMjcg71avXECeDmTbmxFJZ6QG7aFPD2lhsLUVHodUFZRWFiRNIwMSLnCAgAatYU23q7WmXhNRmFXuuMTp0SF1RstSUJmBiR8+i1O02Nl1eqpHfqe3jfPiAtTW4shaF+BtlqSxLoOjGaMmUKTCZTtltQUJD154qiYMqUKahYsSL8/PzQvn17HD16VGLEbkaPzfjx8cDhw2KbLUakd7VrA6VLA0lJYv1CvWCrLUmk68QIAOrVq4crV65Yb4fVkxqAGTNm4NNPP8Xs2bMRGRmJoKAgdOrUCXf0vripXmS9Ws3IkBtLQe3bJ+obQkOBLEk2kS55eNjq/fR0gcLEiCTSfWLk6emJoKAg6618+fIARGvR559/jnfeeQd9+/ZF/fr1sWDBAty9exc//fST5KjdRN26QMmSQEICcOSI7GgKhgWfZDR669K+c8d2vGBiRBLoPjE6ffo0KlasiKpVq+LJJ5/E2bNnAQAxMTGIjY1F586drfv6+PigXbt22JXPlVNKSgri4+Oz3chOxYoBLVqIbb0clHmlSkaTdYkePVBbbatUAYKDZUdDbkjXiVGLFi3www8/YO3atfjPf/6D2NhYRERE4MaNG4iNjQUABAYGZvudwMBA689yM23aNJjNZusthOtkFY2e6owyM20nD7YYkVE0by4mSIyJAa5elR3Ng/HihCTTdWLUrVs39OvXDw0aNMBjjz2G1atXAwAWLFhg3cd034ypiqLkuC+rt956CxaLxXq7ePGic4J3F3par+nECeD2bbEqeViY7GiIHMNsFt3agD4+h2qMam0UkYvpOjG6X/HixdGgQQOcPn3aOjrt/tahuLi4HK1IWfn4+KBUqVLZblQEalfamTPAtWtyY3kQ9YDcvLlY743IKPRSZ8TleEgDDJUYpaSk4Pjx4wgODkbVqlURFBSE9evXW3+empqKrVu3IoLdJK5TpgxQp47Y1vpBWe3u4wGZjEYvdUbqxI6+vkCjRrKjITel68RowoQJ2Lp1K2JiYrB37170798f8fHxGDJkCEwmE8aNG4ePPvoIK1aswJEjRzB06FD4+/tj8ODBskN3L3q5WmVtAxmV2i0VGantiR7VxK1JE07sSNLour/g0qVLeOqpp3D9+nWUL18eLVu2xJ49e1ClShUAwBtvvIGkpCSMGjUKt27dQosWLbBu3TqULFlScuRuJiIC/9/evQdHVd5/HP9s7lxCBENCgIgQlItBhCQCEpQ6Fq2tSNuppbWMdtSqDVal1cEyVmor2Mo4tlNNK1p1xusoWmN//FS8cK8SQiKRILcYI5VwE5P85BJCnt8fJyfJSoBs2D2X3fdrZofNyV6+eciefJ7nPOc5+uc/vR2MvvpK2rzZus/cBkQbe6HHr76yFnrMy3O7os7ROYEH+DoYvfjiiyf9fiAQ0Pz58zV//nxnCkLn7J2c3VtNTHS3ns58+KH17/DhUutaWEDUiIuz5vu99ZY1KkMwAk7I14fS4BN2b/XgQe9elsAewme0CNHK64e0Oy7syOcQLiIYIfLs3qrUPjLjNQQjRDv7d9urwWjdOmstsbPOkgYOdLsaxDCCEZzh5Z1yx4UdGcJHtLI7J9XV0p497tbSGT6D8AiCEZxhByMvni68das1KbVHD2nMGLerASLjjDPaF3r04ueQ+UXwCIIRnNFxocd9+9yt5ZvsPxL5+d6cGA6Ei1fnGbGwIzyEYARn9O1rTcKWvDfPiJ4qYoVXR263bZP275eSk1nYEa4jGME5Xt0pM/EascIO/+vWSc3N7tbSkd05YWFHeADBCM7x4gTsjqcI24f7gGg1apTUp4+1dEZlpdvVtGPUFh5CMIJz7GC0bp107Ji7tdhKSzlFGLGj49IZXhq5ZX4RPIRgBOfk5kq9elmjNPblN9zGDhmxxmsTsL/+un30isPZ8ACCEZwTHy9deKF13yu9VeYXIdZ4LRitX2+N2g4eLA0a5HY1AMEIDvPSBOyOpwgTjBArOi6dsX+/u7VIfAbhOQQjOMtLE7Crq6W9e62zYMaNc7sawBl9+0ojRlj3vbB0BsEIHkMwgrPsnV9VlbXatJvsHfL48db6KUCs8MrILaO28CCCEZyVkSENG2bdLy11txZ2yIhVXglGtbVSXZ2UkGB1UAAPIBjBeV7ZKduH8whGiDX27/yHH1oTn91i7wMuuMC6ViHgAQQjOM8LwejgQemjj6z7nKqPWJObK/XsKTU0SFu2uFcHo7bwIIIRnNcxGBnjTg0bNliXRMjKkrKz3akBcEtCgnXRZMndDoo9+ZtgBA8hGMF5Y8dKKSnSl19aF490Q8eeaiDgTg2Am9weuT1yxOqgSFyOB55CMILzkpKsi0VK7u2UGcJHrHM7GH30kRWOzjxTyslxpwagEwQjuMPtnTLBCLHOHqX5+GPp//7P+fdn1BYeRTCCO9xc6HHnTum//7UuUWKPXAGxZuBAa35dS4t1WQ6n0TmBRxGM4A67t1pZaZ0h5iR7wueYMdZFbYFY5ebILcEIHkUwgjsGD7Z6rMeOSWVlzr63HYyY8IlY51Yw2r1b+vRT6xBaQYGz7w2cAsEI7ggE2oOJ0ztleqqAxa2lM+zOyejRUlqac+8LdAHBCO7puPquU44ebZ9PwYgRYt24cdaaRrt3W5fncArrF8HDCEZwjx1MnAxGH38sHTpk9VLtK4wDsapHD+tyHJKzI7eM2sLDCEZwT16eFBfXfpaYE+wd8oUXWu8NxDqn5xkdOyatW2fdZ9QWHsRfBrind2/rzDDJuVEjhvCBYE4Ho6oqa92k3r2tOUaAxxCM4C6nJ2Db70NPFbDYwWjDBmsl6kizP4MFBdZaYoDHEIzgLicnYB840H4lcYIRYBk2TEpPl5qarMt0RBqjtvA4ghHcZQeU9eutq91Hkj2vISfH+kMAIHjpDCdWomcdMXgcwQjuGjlS6tPHWv36448j+170VIHOOXWGaEODtGlT8HsCHkMwgrvi4qwzxKTI75SZXwR0zqlgtH69tZDkkCHSgAGRfS+gmwhGcJ8TE7CNYcQIOBG7c1JdLe3dG7n34TAafIBgBPc50Vvdvl368kspOVkaOzZy7wP40RlnWIe1pfa5eJFAMIIPEIzgPnsnuXmz9NVXkXkPezRq/HgpKSky7wH4WaQ7KB1HbQlG8DCCEdyXkSENHWrdLy2NzHuwQwZOLtLBqLZWqquzrs02fnxk3gMIA4IRvCHS6xlxbSbg5OxgtG6d1NIS/te3P9tjx1rXaAM8imAEb4jkBOxDh9oXrmPECOjcmDFSSop1OHvbtvC/PqO28AlfB6OFCxeqoKBAqampysjI0IwZM7TFXtm41dSpUxUIBIJuM2fOdKlinFDHYXxjwvva5eXW4pEZGdZpwgCOl5hoXdhZiszILcEIPuHrYLRixQoVFRXpgw8+0LJly9Tc3Kxp06bp66+/DnrcTTfdpF27drXd/vGPf7hUMU5o3DhrUvS+fdYpw+HUcYccCIT3tYFoEqmR26NHpbKy4PcAPCrB7QJOx5tvvhn09VNPPaWMjAyVlZXp4osvbtves2dPDWAxMW9LTpYuuMCa3/Dhh9ZlO8KFnirQNZGa61dZKR0+bC0LcM454X1tIMx8PWL0TfX19ZKkfv36BW1/7rnnlJ6ervPOO0+/+c1v1NjYeMLXOHLkiBoaGoJucEikzoohGAFdY39GNm605uaFS8dV5+Oi6s8OolDU/IYaYzRnzhwVFhYqNze3bfu1116rF154QcuXL9e9996rJUuW6Ac/+MEJX2fhwoVKS0tru2VnZztRPqTIBKM9e6SaGusQWkFB+F4XiEbZ2dalOpqbpQ0bwve6dE7gI74+lNbR7NmztXHjRq1evTpo+0033dR2Pzc3V+ecc47y8/O1YcMGje9kLY177rlHc+bMafu6oaGBcOQUe6dZXi4dOWIdXjtd9g555EgpLe30Xw+IZoGA9Tl8/XXrszN5cnhel2AEH4mKEaPbbrtNJSUlev/99zV48OCTPnb8+PFKTEzUthOcjpqcnKw+ffoE3eCQnBypXz+pqan99PrTxQ4ZCE24R24PHJDss4Xta7IBHubrYGSM0ezZs/Xqq6/qvffe01B79eST2LRpk44ePaqsrCwHKkRIAoH2HWe4rtdEMAJCE+5gZK9mn5MjpaeH5zWBCPJ1MCoqKtKzzz6r559/Xqmpqaqrq1NdXZ0OtU4a3LFjh+6//36tX79eNTU1Wrp0qX70ox9p3LhxmhyuIWKEVzh3yi0t7QGLYAR0TX6+1Un57DNp9+7Tfz1WnYfP+DoYFRcXq76+XlOnTlVWVlbb7aWXXpIkJSUl6d1339Xll1+uESNG6Fe/+pWmTZumd955R/Hx8S5Xj06FMxht2SI1NFiXHxgz5vRfD4gFffpIo0db98PxOWTUFj7j68nX5hQrJGdnZ2vFihUOVYOwsA+lbdsmffmlNeeou+wdcl6edeFKAF0zcaK0aZM12jN9evdfxxhGbeE7vh4xQhQ680xp+HDr/unOM6KnCnRPuEZuq6ut1eyTkqyLxwI+QDCC94Rrp0wwArrH/syUlkrHjnX/dezOzbhx4Vl+A3AAwQjeE45gdPCgtXpvx9cD0DXnnSf16iU1Nrafat8d9meY0/ThIwQjeI8dZNats+YodEd5udXTHTDAWs0XQNfFx1tnp0mn10Fh1BY+RDCC94wda81J2L/fmqPQHR13yIFA+GoDYoU9ytPdYNTUZHVQJIIRfIVgBO9JTpYuuMC6392dMkP4wOk53UPaGzdal/bp189a3BHwCYIRvOl0d8oM4QOnx/7sVFZac/ZC1bFzwqgtfIRgBG86nWC0e7e1am8gIBUUhLcuIFYMGiRlZVlz9TZsCP35dE7gUwQjeJO9My0vt4bjQ2HvkEeNslbxBRC6QOD0Oigs7AifIhjBm3JyrMUem5qkjz4K7bn0VIHw6HiGaCgOHGg/zZ95fvAZghG8KRDo/lkxBCMgPLo7YlRaav1rd3AAHyEYwbu601ttaWnfKROMgNOTl2d1Uj77zJq711V0TuBjBCN4V3d6q1u2SA0NUo8eUm5uZOoCYkWfPtLo0db9UDoozC+CjxGM4F32obRt26Qvv+zac+wdcl6elJAQmbqAWBJqB8UY1hGDrxGM4F39+knDh1v37cNjp8IQPhBeoc71q6mR9u6VEhPbF2oFfIRgBG8LtbdqjxjRUwXCw/4MlpZac/hOxf4MXnCBlJISubqACCEYwdvsgNOV+Q2HDrWf2s+IERAeublSz55Sfb20deupH8+oLXyOYARv6zhiZMzJH1teLjU3SxkZ0llnRb42IBYkJFhz9qSujdwyvwg+RzCCt40da81V2LfPmrtwMh3PhOHaTED4dHXk9ujR9suHMGIEnyIYwdtSUtoncJ6qt8oQPhAZXZ3rV1kpHT4s9e0rnXNO5OsCIoBgBO/r6k6ZiddAZNifwY8+subynYj9GS0oYNQWvkUwgvd1ZRh/716putq6X1AQ+ZqAWJKdLWVmWnP4KipO/DhGbREFCEbwPnsnu2GDNYehM3ZoGjFCOuMMZ+oCYkUg0LWRW1a8RhQgGMH7hg+3ws7hw9Ychs6wQwYia+JE6981azr/fn299Mkn1n0OZ8PHCEbwvri4U6++yxA+EFkXX2z9u3Jl50tnlJZa24cOlfr3d7Y2IIwIRvCHk80zMoaJ10Ck5edbZ4nu2dP5Qo90ThAlCEbwh5PNb9i+XTpwQEpOls4/39m6gFiRnNx+OG3FiuO/z+FsRAmCEfzBHgn65BNrLkNH9g553DgpKcnZuoBYcskl1r8rVwZvN4YVrxE1CEbwh4wM6eyzrR3w+vXB32MIH3CGPc9oxYrgeUa1tdLu3dblQ8aNc6c2IEwIRvCPEx1OIxgBzpg40bpEz86dwZfosUdtx46VevRwpTQgXAhG8I/OJmBv3dq+4BxD+EBk9ezZvoBqx8NpHEZDFCEYwT86jhjV10t33SXl5kpNTdZaR8OGuVsfEAs6nrZvY9QWUYRgBP8YP16Kj5fq6qScHGnRImsl7CuukP73f7k2E+CEjvOMJOsyIWVl1n1GjBAFCEbwjx492k/H379fOvdc6X/+xwpFw4e7WxsQKyZPthZd3bFD+u9/pY8/ti4sm5ZmXZIH8DmCEfzl1luts9MWLbIuD3LllW5XBMSWPn3azzxbtar9MFpBgRWYAJ9LcLsAICQ33WTdALjn4outw2crVlhz/CQOoyFqEO8BAKHpOAGbideIMowYAQBCM2WK9W9VVftJD4wYIUowYgQACM2ZZ1pLZUjWCthnnSUNGOBuTUCYxEwweuyxxzR06FClpKQoLy9Pq1atcrskAPAv+3CaxGE0RJWYCEYvvfSS7rjjDs2bN0/l5eWaMmWKvvOd76i2ttbt0gDAnwhGiFIxEYwefvhh3XDDDbrxxhs1atQoPfLII8rOzlZxcbHbpQGAP3UMRswvQhSJ+snXTU1NKisr09y5c4O2T5s2TWvXrj3u8UeOHNGRI0favm5oaIh4jQDgO1lZ0g03SLW1jBghqkT9iNG+fft07NgxZWZmBm3PzMxUXV3dcY9fuHCh0tLS2m7Z2dlOlQoA/vLEE9Lbb0tJSW5XAoRN1AcjW+Ab19Eyxhy3TZLuuece1dfXt90+//xzp0oEAAAui/pDaenp6YqPjz9udGjPnj3HjSJJUnJyspKTk50qDwAAeEjUjxglJSUpLy9Py5YtC9q+bNkyXXTRRS5VBQAAvCjqR4wkac6cOZo1a5by8/M1adIkPf7446qtrdUtt9zidmkAAMBDYiIY/fjHP9b+/ft1//33a9euXcrNzdXSpUs1ZMgQt0sDAAAeEjDGGLeL8LKGhgalpaWpvr5effr0cbscAADQBd39+x31c4wAAAC6imAEAADQimAEAADQimAEAADQimAEAADQimAEAADQimAEAADQimAEAADQKiZWvj4d9vqXDQ0NLlcCAAC6yv67Heo61gSjU2hsbJQkZWdnu1wJAAAIVWNjo9LS0rr8eC4JcgotLS364osvlJqaqkAgENbXbmhoUHZ2tj7//HMuNxJBtLMzaGdn0M7Ooa2dEal2NsaosbFRAwcOVFxc12cOMWJ0CnFxcRo8eHBE36NPnz586BxAOzuDdnYG7ewc2toZkWjnUEaKbEy+BgAAaEUwAgAAaBU/f/78+W4XEcvi4+M1depUJSRwVDOSaGdn0M7OoJ2dQ1s7w0vtzORrAACAVhxKAwAAaEUwAgAAaEUwAgAAaEUwAgAAaEUwirDHHntMQ4cOVUpKHMvoRQAACtVJREFUivLy8rRq1aqTPn7JkiUaPXq0kpOTNXr0aL322msOVepvobTz4sWLNWXKFPXt21d9+/bVZZddpnXr1jlYrX+F+vtse/HFFxUIBDRjxowIVxgdQm3nr776SkVFRcrKylJKSopGjRqlpUuXOlStv4Xa1o888ohGjBihHj16KDs7W3feeacOHz7sULX+s3LlSl111VUaOHCgAoGA/vWvf53yOStWrFBeXp5SUlI0bNgw/f3vf3eg0g4MIubFF180iYmJZvHixaaqqsrcfvvtplevXuazzz7r9PFr16418fHxZsGCBWbz5s1mwYIFJiEhwXzwwQcOV+4vobbzT3/6U/Poo4+a8vJys3nzZvPzn//cpKWlmZ07dzpcub+E2s62mpoaM2jQIDNlyhRz9dVXO1Stf4XazkeOHDH5+fnmyiuvNKtXrzY1NTVm1apVpqKiwuHK/SfUtn722WdNcnKyee6558ynn35q3nrrLZOVlWXuuOMOhyv3j6VLl5p58+aZJUuWGEnmtddeO+njq6urTc+ePc3tt99uqqqqzOLFi01iYqJ55ZVXHKrYGIJRBF144YXmlltuCdo2cuRIM3fu3E4ff80115grrrgiaNvll19uZs6cGbEao0Go7fxNzc3NJjU11TzzzDORKC9qdKedm5ubzeTJk80TTzxhrrvuOoJRF4TazsXFxWbYsGGmqanJifKiSqhtXVRUZC699NKgbXPmzDGFhYURqzGadCUY3X333WbkyJFB226++WYzceLESJYWhENpEdLU1KSysjJNmzYtaPu0adO0du3aTp/zn//857jHX3755Sd8PLrXzt908OBBHT16VP369YtEiVGhu+18//33q3///rrhhhsiXWJU6E47l5SUaNKkSSoqKlJmZqZyc3O1YMECHTt2zImSfas7bV1YWKiysrK2Q+/V1dVaunSpvvvd70a83lhxor+D69ev19GjRx2pwf0lJqPUvn37dOzYMWVmZgZtz8zMVF1dXafPqaurC+nx6F47f9PcuXM1aNAgXXbZZZEoMSp0p53XrFmjJ598UhUVFU6UGBW6087V1dV67733dO2112rp0qXatm2bioqK1NzcrN/97ndOlO1L3WnrmTNnau/evSosLJQxRs3Nzbr11ls1d+5cJ0qOCSf6O9jc3Kx9+/YpKysr4jUQjCIsEAgEfW2MOW7b6Twelu6225///Ge98MILWr58uVJSUiJVXtToajs3NjbqZz/7mRYvXqz09HSnyosaofw+t7S0KCMjQ48//rji4+OVl5enL774Qg899BDBqAtCaevly5frgQce0GOPPaYJEyZo+/btuv3225WVlaV7773XiXJjQmf/J51tjxSCUYSkp6crPj7+uJ7Hnj17jkvDtgEDBoT0eHSvnW2LFi3SggUL9M477+j888+PZJm+F2o779ixQzU1NbrqqqvatrW0tEiSEhIStGXLFuXk5ES2aB/qzu9zVlaWEhMTFR8f37Zt1KhRqqurU1NTk5KSkiJas191p63vvfdezZo1SzfeeKMkacyYMfr666/1i1/8QvPmzVNcHLNTTteJ/g4mJCTozDPPdKQG/hcjJCkpSXl5eVq2bFnQ9mXLlumiiy7q9DmTJk067vFvv/32CR+P7rWzJD300EP6wx/+oDfffFP5+fmRLtP3Qm3nkSNHqrKyUhUVFW236dOn61vf+pYqKiqUnZ3tVOm+0p3f58mTJ2v79u1twVOStm7dqqysLELRSXSnrQ8ePHhc+ImPj5exTmSKWK2x5ER/B/Pz85WYmOhMEY5N845B9qmgTz75pKmqqjJ33HGH6dWrl6mpqTHGGDNr1qygsx/WrFlj4uPjzYMPPmg2b95sHnzwQU7X74JQ2/lPf/qTSUpKMq+88orZtWtX262xsdGtH8EXQm3nb+KstK4JtZ1ra2tN7969zezZs82WLVvMv//9b5ORkWH++Mc/uvUj+EaobX3fffeZ1NRU88ILL5jq6mrz9ttvm5ycHHPNNde49SN4XmNjoykvLzfl5eVGknn44YdNeXl525IIc+fONbNmzWp7vH26/p133mmqqqrMk08+yen60ebRRx81Q4YMMUlJSWb8+PFmxYoVbd+75JJLzHXXXRf0+JdfftmMGDHCJCYmmpEjR5olS5Y4XLE/hdLOQ4YMMZKOu913333OF+4zof4+d0Qw6rpQ23nt2rVmwoQJJjk52QwbNsw88MADprm52eGq/SmUtj569KiZP3++ycnJMSkpKSY7O9v88pe/NAcOHHChcn94//33O93f2u163XXXmUsuuSToOcuXLzfjxo0zSUlJ5uyzzzbFxcWO1hwwhvE/AAAAiTlGAAAAbQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAKLKX/7yFw0dOlQ9e/bUjBkzVF9f73ZJAHyEYAQgavz2t7/V3/72Nz3zzDNavXq1ysvL9fvf/z7oMddff73mzp0rSVq4cKEKCgqUmpqqjIwMzZgxQ1u2bHGjdAAewUVkAUSF0tJSTZw4UaWlpRo/frwkacGCBXr66ae1detWSVJLS4syMzNVUlKiSZMm6YorrtDMmTNVUFCg5uZmzZs3T5WVlaqqqlKvXr3c/HEAuIQRIwBRYdGiRbr00kvbQpEk9e/fX/v27Wv7es2aNYqLi9OECRMkSW+++aauv/56nXfeeRo7dqyeeuop1dbWqqysrO05I0eOVCAQ6PT217/+1bkfEIAjCEYAfO/IkSN644039P3vfz9o+6FDh5SWltb2dUlJia666irFxXW+67PnI/Xr169t22uvvSZJevfdd7Vr1y7V1tYqISFBL7/8sm6++eZw/ygAXEYwAuB7GzZs0KFDh/TrX/9avXv3brvdddddGjFiRNvjSkpKdPXVV3f6GsYYzZkzR4WFhcrNzW3bXldXp4SEBE2ePFkDBgzQ/v371dzcrClTpig5OTniPxsAZyW4XQAAnK6tW7cqJSVFlZWVQdunT5+uyZMnS5I2b96snTt36rLLLuv0NWbPnq2NGzdq9erVQdsrKyt17rnntoWgiooK9e/fX5mZmRH4SQC4jWAEwPcaGhqUkZGh4cOHt22rra3VJ598oh/+8IeSrNGib3/72+rRo8dxz7/ttttUUlKilStXavDgwUHf27hxo8aMGdP2dUVFhc4///wI/SQA3MahNAC+l56eroaGBnU8yfaBBx7QlVdeqdGjR0uSXn/9dU2fPj3oecYYzZ49W6+++qree+89DR069LjX3rhxY1AQIhgB0Y1gBMD3Lr30Uh0+fFgPPvigampqtGDBApWUlKi4uFiStGfPHpWWlup73/te0POKior07LPP6vnnn1dqaqrq6upUV1enQ4cOSbJO79+0aVNQEKqurtaQIUOc++EAOIpgBMD3MjMz9fTTT6u4uFijR4/W2rVrtXr1amVnZ0uS3njjDU2YMEEZGRlBzysuLlZ9fb2mTp2qrKystttLL70kSdqxY4cOHjwYFIzGjh2r+fPna+XKlc79gAAcwwKPAKLe9OnTVVhYqLvvvtvtUgB4HCNGAKJeYWGhfvKTn7hdBgAfYMQIAACgFSNGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArQhGAAAArf4f95WIptPGp8MAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,u'maximizing $\\\\Vert A^{-1} y \\\\Vert$ over angle $\\\\theta$')" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using PyPlot\n", - "θ = linspace(0,2π,100)\n", - "plot(θ/(2π), [norm(A \\ [cos(θ), sin(θ)]) for θ in θ], \"r-\")\n", - "plot(θ/(2π), ones(θ)*norm(inv(A)), \"k--\")\n", - "xlabel(L\"\\theta / 2\\pi\")\n", - "ylabel(L\"\\Vert A^{-1} y \\Vert\")\n", - "text(0.16,norm(inv(A))*0.95, L\"\\Vert A^{-1} \\Vert\")\n", - "title(L\"maximizing $\\Vert A^{-1} y \\Vert$ over angle $\\theta$\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, the maximum certainly seems to be matching what Julia's `norm` function computes for $\\Vert A^{-1} \\Vert$.\n", - "\n", - "But there must be a better way to compute it. Maybe $\\Vert A^{-1} \\Vert$ is related to $|\\lambda|$?" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " -166.533 \n", - " 0.20016" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(inv(A))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 166.533 \n", - " 0.20016" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "abs.(eigvals(inv(A)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hey, it certainly *looks* like $\\Vert A^{-1} \\Vert$ is the magnitude of the biggest $\\lambda$ of $A^{-1}$. Let's check it more carefully:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.0003336000409319695" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "abs.(eigvals(inv(A)))[1] - norm(inv(A))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hmm, this difference of 0.0003 is *much* bigger than the $\\sim 10^{-15}$ we normally get from mere roundoff errors. Let's try another matrix $B$, chosen at random:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9498866099125951" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = randn(2,2)\n", - "norm(B)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.842641\n", - " 0.842641" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "abs.(eigvals(B))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Whoops, no, in this case the eigenvalues have *much* smaller magnitudes than $\\Vert B \\Vert$. So the near-match in the case of $A^{-1}$ was just a coincidence?\n", - "\n", - "In fact, the right answer involves the **singular values** of the matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.949887\n", - " 0.747504" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The **norm is the biggest singular value** of the matrix!" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(B)[1] - norm(B)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(inv(A))[1] - norm(inv(A))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(In fact, computing the singular values is precisely how Julia's `norm` function works.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The Rayleigh quotient and the min–max theorem\n", - "\n", - "Why is $\\Vert B \\Vert$ equal to the largest singular value of $B$? We can derive it!\n", - "\n", - "To avoid square roots, it is convenient to look at $\\Vert B \\Vert^2$:\n", - "\n", - "$$\n", - "\\Vert B \\Vert^2 = \\max_{y\\ne 0} \\frac{\\Vert By \\Vert^2}{\\Vert y \\Vert^2} \\\\ = \\max_{y\\ne 0} \\frac{(By)^H (By)}{y^H y} = \\max_{y\\ne 0} \\frac{y^H (B^H B) y}{y^H y}\n", - "$$\n", - "\n", - "This final ratio is called the [Rayleigh quotient](https://en.wikipedia.org/wiki/Rayleigh_quotient) of the *Hermitian* matrix $S = B^H B$:\n", - "$$\n", - "R_S(y) = \\frac{y^H S y}{y^H y}\n", - "$$\n", - "\n", - "It is a remarkable and important fact, known as the [min–max theorem](https://en.wikipedia.org/wiki/Min-max_theorem) that the *maximum* of the Rayleigh quotient is given by the *biggest λ of S*!\n", - "\n", - "To prove this, since $S$ is an $m\\times m$ Hermitian matrix, we use that it's eigenvalues $\\lambda_1,\\ldots,\\lambda_m$ are real and the corresponding eigenvectors $q_1,\\ldots,q_m$ can be chosen orthonormality. Any vector $y$ can be written in this basis as $y = c_1 q_1 + \\cdots + c_m q_m$ for some coefficients $c_1,\\ldots,c_m$, and then orthonormality means:\n", - "$$\n", - "R_S(y) = \\frac{(c_1 q_1 + \\cdots + c_m q_m)^H (\\lambda_1 c_1 q_1 + \\cdots \\lambda_m c_m q_m)}{(c_1 q_1 + \\cdots + c_m q_m)^H (c_1 q_1 + \\cdots + c_m q_m)} = \\frac{\\lambda_1 |c_1|^2 + \\cdots + \\lambda_m |c_m|^2}{ |c_1|^2 + \\cdots + |c_m|^2}\n", - "$$\n", - "which is just a [weighted average](https://en.wikipedia.org/wiki/Weighted_arithmetic_mean) of the eigenvalues λ. If we number the eigenvalues in order $\\lambda_1 \\ge \\lambda_2 \\ge \\cdots \\lambda_m$, we immediately get:\n", - "$$\n", - "R_S(y) = \\frac{\\lambda_1 |c_1|^2 + \\cdots + \\lambda_m |c_m|^2}{ |c_1|^2 + \\cdots + |c_m|^2} \\le \\frac{\\lambda_1 |c_1|^2 + \\cdots + \\lambda_1 |c_m|^2}{ |c_1|^2 + \\cdots + |c_m|^2} = \\lambda_1\n", - "$$\n", - "so $\\lambda_1$ is an upper bound, achieved by $R_S(q_1) = \\lambda_1$.\n", - "\n", - "So,\n", - "$$\n", - "\\Vert B \\Vert = \\sqrt{\\max\\;\\lambda\\;\\mathrm{of}\\;B^T B}\n", - "$$\n", - "Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9498866099125951" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(B)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.747504\n", - " 0.949887" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sqrt.(eigvals(B'B))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But we already learned, in a previous lecture, that the **eigenvalues of BᴴB** are precisely the **the squares σ² of the singular values σ of B**." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.949887\n", - " 0.747504" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Key properties of the matrix norm\n", - "\n", - "Note that $\\Vert B\\Vert$ is defined above for *any* matrix, including non-square matrices. Some key properties of this norm are:\n", - "\n", - "* Positivity: $\\Vert B \\Vert \\ge 0$, and $= 0$ only if $B = 0$. (Obvious from the definition and the SVD.)\n", - "\n", - "* Scaling: $\\Vert \\alpha B \\Vert = |\\alpha|\\;\\Vert B \\Vert$. (Obvious from the definition.)\n", - "\n", - "* [Triangle inequality](https://en.wikipedia.org/wiki/Triangle_inequality): $\\Vert B_1 + B_2 \\Vert \\le \\Vert B_1 \\Vert + \\Vert B_2 \\Vert$. (Not so obvious, but easy to show from the definition and the triangle inequality for vector norms.)\n", - "\n", - "* Products: $\\Vert B_1 B_2 \\Vert \\le \\Vert B_1 \\Vert \\; \\Vert B_2 \\Vert$. (Not so obvious, but easy to show from the definition above.)\n", - "\n", - "It's easy to try some of these:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9.999999999999996" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(10*B) / norm(B)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.7022689744366356" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B₂ = randn(size(B))\n", - "norm(B + B₂) / (norm(B) + norm(B₂))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.8070017721511517" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(B * B₂) / (norm(B) * norm(B₂))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Norm of the inverse\n", - "\n", - "One thing to be careful of is the inverse. Even if $A$ is invertible, $\\Vert A \\Vert^{-1} \\ne \\Vert A^{-1} \\Vert$ in general! However, there is a cute trick to get $A^{-1}$. Let's look at the definition:\n", - "\n", - "$$\n", - "\\Vert A^{-1} \\Vert = \\max_{y\\ne 0} \\frac{\\Vert A^{-1} y \\Vert}{\\Vert y \\Vert} = \\max_{z\\ne 0} \\frac{\\Vert z \\Vert}{\\Vert Az \\Vert}\n", - "$$\n", - "\n", - "where we have substituted $z = A^{-1} y$, i.e. $y = Az$. But then\n", - "\n", - "$$\n", - "\\frac{1}{\\Vert A^{-1} \\Vert} = \\min_{z\\ne 0} \\frac{\\Vert Az \\Vert}{\\Vert z \\Vert}\n", - "$$\n", - "\n", - "since the maximum is 1 over the minimum. But, exactly analogous to the discussion above, $\\Vert Az \\Vert / \\Vert z \\Vert$ is has a minimum for the *minimum* singular value of $A$! So\n", - "\n", - "* $\\Vert A^{-1} \\Vert$ is the *inverse* of the *minimum* singular value of $A$ (assuming $A$ is invertible) \n", - "\n", - "Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "166.53382686925093" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(inv(A))" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.20016\n", - " 166.534 " - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "1 ./ svdvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, they match!" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0032863428932615e-11" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(inv(A)) - 1/svdvals(A)[2]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(At least up to roundoff errors.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Compared to what? Relative errors\n", - "\n", - "There is still a problem with our presentation above. How do we decide whether an error $\\Vert \\Delta x \\Vert$ is big or small? Compared to what?\n", - "\n", - "Above, we compared to $\\Vert \\Delta b \\Vert$. But this is often *not* the right thing to do. We can see that in a couple of ways:\n", - "\n", - "* In a physical system, $x$ and $b$ may have *different units*. e.g. $b$ may be a current and $x$ may be a voltage. $\\Vert \\Delta x \\Vert / \\Vert \\Delta b \\Vert$ is therefore a *dimensionful* quantity, and we can't say whether it is big or small without comparing to some other dimensionful quantity with the same units.\n", - "\n", - "* If we multiply $A$ by 1000, it is easy to see from above that $\\Vert A \\Vert$ multiples by 1000 and $\\Vert A^{-1} \\Vert$ is *divided* by 1000. But simply scaling the problem shouldn't change whether the errors are big or small! (You can't reduce the errors in your experiment by changing units from meters to millimeters!)\n", - "\n", - "The right thing to do is generally to compare $\\Vert \\Delta x \\Vert$ to $\\Vert x \\Vert$ and $\\Vert \\Delta b \\Vert$ to $\\Vert b \\Vert$. The ratio\n", - "$$\n", - "\\frac{\\Vert \\Delta x \\Vert}{\\Vert x \\Vert}\n", - "$$\n", - "is called the [relative error](https://en.wikipedia.org/wiki/Approximation_error), as opposed to the *absolute* error $\\Vert \\Delta x \\Vert$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Condition number of a matrix\n", - "\n", - "How much can the relative error grow when we solve $Ax = b$? Well, from above:\n", - "\n", - "$$\n", - "\\frac{\\Vert \\Delta x \\Vert}{\\Vert x \\Vert} \\le \\frac{\\Vert A^{-1} \\Vert \\; \\Vert \\Delta b \\Vert}{\\Vert x \\Vert} = \\frac{\\Vert A^{-1} \\Vert \\; \\Vert \\Delta b \\Vert}{\\Vert b \\Vert} \\frac{\\Vert Ax \\Vert}{\\Vert x \\Vert} \\le \\boxed{\\Vert A \\Vert \\; \\Vert A^{-1} \\Vert \\frac{\\Vert \\Delta b \\Vert}{\\Vert b \\Vert}}\n", - "$$\n", - "\n", - "The quantity $\\kappa(A) = \\Vert A \\Vert \\; \\Vert A^{-1} \\Vert$ is called the [condition number](https://en.wikipedia.org/wiki/Condition_number) of the matrix A. It gives an **upper bound** on how much the **relative error can grow** when comparing input to output. Since $\\kappa(A) = \\kappa(A^{-1})$, it is the same for computing $x = A^{-1} b$ or for computing $b = Ax$ (i.e. x from b or b from x)! In Julia, it is computed by `cond(A)`." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "832.0054647514568" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cond(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "832.0054647515068" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(A) * norm(inv(A))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the definition above and the relationship of the matrix norm to the singular values, the **condition number is the ratio of the largest to the smallest singular value** of A:\n", - "\n", - "$$\n", - "\\boxed{\\kappa(A) = \\Vert A \\Vert \\; \\Vert A^{-1} \\Vert = \\frac{\\sigma_\\max}{\\sigma_\\min}}\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "832.0054647514568" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "σ = svdvals(A)\n", - "maximum(σ) / minimum(σ)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From this, we can see that $\\kappa(A) \\ge 1$. **The smallest possible condition number is 1**. This happens for $\\kappa(I) = 1$, or for any multiple of $I$, and in fact **any unitary matrix** has condition number 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ill-conditioned matrices\n", - "\n", - "If the condition number is $\\gg 1$, we say that the matrix is **ill-conditioned** (or \"badly conditioned\"). When you solve an ill-conditioned problem, **any error can be greatly magnified**. This includes both measurement errors and things like roundoff errors during the calculations.\n", - "\n", - "Our matrix $A$ above pretty badly conditioned — it can magnify erros by a factor of $\\sim 1000$:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "832.0054647514568" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cond(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An **ill-conditioned matrix is a matrix that is *almost* singular**. A singular matrix has a condition number of \"∞\": the condition number blows up as one of the singular values goes to zero.\n", - "\n", - "It is easy to see that our matrix $A$ from above is almost singular: the second row is *almost* twice the first row:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.0 2.0 \n", - " 2.01 3.99" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's why our error increased by so much:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "787.184529039192" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(Δx)/norm(x) / (norm(Δb)/norm(b))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(In fact, I didn't pick `Δb` at random: I picked it to lie almost parallel to the singular vector for the smallest singular value, to magnify the error as much as possible.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just because a matrix is ill-conditioned does not mean that you can't get accurate answers, but it indicates that you need to be **much more careful** about errors." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Nearly defective matrices\n", - "\n", - "In class, we discussed defective matrices, in which we are \"missing\" some eigenvectors (due to repeated roots) and hence don't have a basis. In practice, *exactly* defective matrices are extremely uncommon.\n", - "\n", - "However, it is much more common to have a *nearly* defective matrix $A$, in which two or more eigenvectors are *nearly* parallel. Such matrices are still diagonalizable, $A = X \\Lambda X^{-1}$, so why worry?\n", - "\n", - "The problem with a *nearly* defective matrix is that the eigenvector matrix $X$ is *nearly* singular — it is **ill-conditioned**! That means that *working with eigenvectors of a nearly-defective matrix is very sensitive to errors (roundoff, measurement, …)*!\n", - "\n", - "For example, let's construct a nearly defective matrix $M$ with eigenvectors $(1,0)$ and $(1,10^{-14})$, and eigenvalues $\\lambda = 1$ and $\\lambda = 1 + 10^{-14}$." - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.0 0.999201\n", - " 0.0 1.0 " - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X = [1 1\n", - " 0 1e-14]\n", - "M = X * diagm([1,1+1e-14]) / X" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let's compute the matrix exponential $e^M$, both by the built-in Julia function `expm` and by the 18.06 formula involving the diagonalization $X e^\\Lambda X^{-1}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 2.71828 2.71611\n", - " 0.0 2.71828" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(M)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 2.71828 2.57572\n", - " 0.0 2.71828" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X * expm(diagm([1,1+1e-14])) / X" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The two don't match very well, and in fact the diagonalization-based formula gives horribly wrong results (off by about 10%). Computing matrix exponentials (and many other matrix functions) robustly for arbitrary matrices (including nearly defective matrices) is a tricky problem. There is a famous paper called [Nineteen Dubious Ways to Compute the Exponential of a Matrix](http://epubs.siam.org/doi/abs/10.1137/S00361445024180) on the many possible approaches." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The \"opposite\" of a nearly defective matrix is a matrix with an *orthonormal* basis $X=Q$ of eigenvectors (e.g. a Hermitian, unitary, or other [\"normal\"](https://en.wikipedia.org/wiki/Normal_matrix) matrix). In this case, the eigenvector basis has condition number $= 1$, the best possible conditioning, and working with eigenvectors is great!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.0", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Dense-and-Sparse.ipynb b/lectures/Dense-and-Sparse.ipynb deleted file mode 100644 index 7bfee4a1..00000000 --- a/lectures/Dense-and-Sparse.ipynb +++ /dev/null @@ -1,1441 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - " \n", - " \n", - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using PyPlot, Interact" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Large-scale linear algebra: Dense matrix methods\n", - "\n", - "The basic problem with most of the linear algebra techniques we have learned so far is that they **scale badly for large matrices**. Ordinary Gaussian elimination (LU factorization), Gram–Schmidt and other QR factorization algorithms, and techniques that computes *all* the eigenvalues and eigenvectors, all require $\\sim n^3$ operations and $\\sim n^2$ storage for $n \\times n$ matrices.\n", - "\n", - "This all assumes that you explicitly store and compute with all of the entries of the matrix, regardless of their values. Hence, they are sometimes called **dense matrix** algorithms (the opposite of \"sparse\" matrices, discussed below).\n", - "\n", - "So, doubling the size of the matrix *asymptotically* requires about 8× more time. For any *finite* $n$, it is not quite a factor of 8 because *computers are complicated*; e.g. for larger matrices, it can use multiple processors more efficiently:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5.249164365077982" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A1 = randn(500,500)\n", - "A2 = randn(1000,1000)\n", - "lufact(A1); # do it once to make sure it is compiled\n", - "@elapsed(lufact(A2)) / @elapsed(lufact(A1))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5.264232334427694" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qrfact(A1); # do it once to make sure it is compiled\n", - "@elapsed(qrfact(A2)) / @elapsed(qrfact(A1))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.650221586966426" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigfact(A1); # do it once to make sure it is compiled\n", - "@elapsed(eigfact(A2)) / @elapsed(eigfact(A1))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0.017973 seconds (10 allocations: 7.637 MiB)\n", - " 2.278926 seconds (87 allocations: 30.826 MiB, 3.50% gc time)\n" - ] - } - ], - "source": [ - "@time lufact(A2)\n", - "@time eigfact(A2);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Still, if we take the $O(n^3)$ scaling as a rough guide, this would suggest that LU-factorizing (`lufact`) a $10^6 \\times 10^6$ matrix would take $0.02\\mbox{sec} \\times 1000^3 \\sim \\mbox{months}$ and finding the eigenvectors and eigenvalues (`eigfact`) would take $2 \\mbox{sec} \\times 1000^3 \\sim \\mbox{decades}$.\n", - "\n", - "In practice, we actually usually **run out of space before we run out of time**. If we have 16GB of memory, the biggest matrix we can *store* (each number requires 8 bytes) is $8n^2\\mbox{ bytes} = 16\\times 10^9 \\implies 40000 \\times 40000$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sparse Matrices\n", - "\n", - "The saving grace is that most *really* large matrices are **sparse = mostly zeros** (or have some other special structure with similar consequences). You only have to **store the nonzero entries**, and you can **multiply matrix × vector quickly** (you can skip the zeros).\n", - "\n", - "In Julia, there are many functions to work with sparse matrices by only storing the nonzero elements. The simplest one is the `sparse` function. Given a matrix $A$, the `sparse(A)` function creates a special data structure that only stores the nonzero elements:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×6 Array{Int64,2}:\n", - " 2 -1 0 0 0 0\n", - " -1 2 -1 0 0 0\n", - " 0 -1 2 -1 0 0\n", - " 0 0 -1 2 -1 0\n", - " 0 0 0 -1 2 -1\n", - " 0 0 0 0 -1 2" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ 2 -1 0 0 0 0\n", - " -1 2 -1 0 0 0\n", - " 0 -1 2 -1 0 0\n", - " 0 0 -1 2 -1 0\n", - " 0 0 0 -1 2 -1\n", - " 0 0 0 0 -1 2]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×6 SparseMatrixCSC{Int64,Int64} with 16 stored entries:\n", - " [1, 1] = 2\n", - " [2, 1] = -1\n", - " [1, 2] = -1\n", - " [2, 2] = 2\n", - " [3, 2] = -1\n", - " [2, 3] = -1\n", - " [3, 3] = 2\n", - " [4, 3] = -1\n", - " [3, 4] = -1\n", - " [4, 4] = 2\n", - " [5, 4] = -1\n", - " [4, 5] = -1\n", - " [5, 5] = 2\n", - " [6, 5] = -1\n", - " [5, 6] = -1\n", - " [6, 6] = 2" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sparse(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Of course, in practice you would want to create the sparse matrix directly, rather than first making the \"dense\" matrix `A` and then converting it to a sparse data structure.)\n", - "\n", - "We've actually seen this several times in **graph/network-based problems**, where we often get matrices of the form:\n", - "\n", - "$$A = G^T D G$$\n", - "\n", - "where D is diagonal (very sparse!) and G is the incidence matrix. Since each graph node is typically only connected to a few other nodes, **G is sparse** and so is A.\n", - "\n", - "If each node is connected to a bounded number of other nodes (say, ≤ 20), then A only has $\\sim n$ (i.e. *proportional to n, not equal to n*) entries, and $Ax$ can be computed in $\\sim n$ operations and $\\sim n$ storage (unlike $\\sim n^2$ for a general matrix).\n", - "\n", - "So, a $10^6 \\times 10^6$ sparse matrix might be stored in only a few megabytes and take only a few milliseconds to multiply by a vector.\n", - "\n", - "Much of large-scale linear algebra is about devising techniques to exploit sparsity or **any case where matrix × vector is faster than n²**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Scalable computation of eigenvalues\n", - "\n", - "In fact, we already learned one algorithm that works well for sparse matrices: the [power method](Power-Method.ipynb) to compute eigenvalues and eigenvectors. If we just repeatedly multiply a random vector by $A$, it converges towards the eigenvector of the largest $|\\lambda|$. And since this only involves matrix × vector operations, it can take advantage of sparse matrices.\n", - "\n", - "Moreover, there are variants of this algorithm that work for the smallest eigenvalues as well, and it turns out that there are more sophisticated variants that converge even faster than power iterations. In Julia, these are provided by the `eigs` function, which lets you compute a **few** of the biggest or smallest eigenvalues quickly even for huge sparse matrices.\n", - "\n", - "## Example\n", - "\n", - "\n", - "\n", - "As an example, let's consider the **two-dimensional grid of masses and springs** that I showed in an earlier lecture, whose eigenvectors are the **vibrating modes**.\n", - "\n", - "This can be thought of as a discretized approximation of a **vibrating drum**, which is described by the partial differential equation $\\nabla^2 h = \\frac{\\partial^2 h}{\\partial t^2}$ where $h(x,y,t)$ is the height of the drum surface (= zero at the edges of the drum). (This is an example taken from the class [18.303: Linear Partial Differential Equations](http://math.mit.edu/~stevenj/18.303/) at MIT.)\n", - "\n", - "For 18.06, don't worry too much about how the matrix is constructed." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Laplacian (generic function with 2 methods)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# compute the first-derivative finite-difference matrix\n", - "# for Dirichlet boundaries, given a grid x[:] of x points\n", - "# (including the endpoints where the function = 0!).\n", - "function sdiff1(x)\n", - " N = length(x) - 2\n", - " dx1 = Float64[1/(x[i+1] - x[i]) for i = 1:N]\n", - " dx2 = Float64[-1/(x[i+1] - x[i]) for i = 2:N+1]\n", - " spdiagm((dx1,dx2), (0,-1), N+1, N)\n", - "end\n", - "\n", - "flatten(X) = reshape(X, length(X))\n", - "\n", - "# compute the -∇⋅ c ∇ operator for a function c(x,y)\n", - "# and arrays x[:] and y[:] of the x and y points,\n", - "# including the endpoints where functions are zero\n", - "# (i.e. Dirichlet boundary conditions).\n", - "function Laplacian(x, y, c = (x,y) -> 1.0)\n", - " Dx = sdiff1(x)\n", - " Nx = size(Dx,2)\n", - " Dy = sdiff1(y)\n", - " Ny = size(Dy,2)\n", - " \n", - " # discrete Gradient operator:\n", - " G = [kron(speye(Ny), Dx); kron(Dy, speye(Nx))]\n", - " \n", - " # grids for derivatives in x and y directions\n", - " x′ = [0.5*(x[i]+x[i+1]) for i = 1:length(x)-1]\n", - " y′ = [0.5*(y[i]+y[i+1]) for i = 1:length(y)-1]\n", - " \n", - " # evaluate c(x)\n", - " C = spdiagm([ flatten(Float64[c(X,Y) for X in x′, Y in y[2:end-1]]);\n", - " flatten(Float64[c(X,Y) for X in x[2:end-1], Y in y′]) ])\n", - " \n", - " return G' * C * G # -∇⋅ c ∇\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above code defines the matrix for a box-shaped drum, but for fun I will change it to define a drum over an oddly shaped domain:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xt4FOWhx/FfCMmGS7ICMRcUAno0hEZFgpBgESwaQ0VLPaeC0AAey6UtpQgcSwrKxVND0XqsF8BigHJKFSviI5XymFpATxMEaYIglGIPEFQCEmEXioTbe/7wsGXZTK47e/1+nmceybvvvPPOODO/fWdndmOMMUYAAMBHq2B3AACAUEVIAgBggZAEAMACIQkAgAVCEgAAC4QkAAAWCEkAACwQkgAAWCAkAQCwQEgC9SgrK9OcOXN0/Phxn9e6deumoUOHBqFX/1z+2LFjg7b8xhg7dqy6desW7G4AzUZIAvUoKyvT3Llz6wxJNOzRRx/VmjVrgt0NoNlaB7sDACLXtddeG+wuAC3CSBKwMGfOHP3Hf/yHJKl79+6KiYlRTEyMNm7c6FVv/fr16t27t9q0aaMePXpo6dKlPm1VV1drwoQJuvrqqxUfH6/u3btr7ty5OnfuXIP9OHv2rB555BGlpaWpbdu2+vrXv64tW7bUWXfnzp361re+pQ4dOighIUG9evXSr3/9a686GzduVExMjH7729/qJz/5idLT09W+fXvdc889Onz4sE6cOKHx48crOTlZycnJevDBB3Xy5EmvNl544QXddtttSklJUbt27XTDDTdowYIFOnv2rFe9ui63xsTEaNKkSfrv//5vZWVlqW3btrrpppv0+9//vsFtAQQaI0nAwve+9z198cUXeu655/T6668rPT1dktSzZ09Pne3bt2vatGmaMWOGUlNT9dJLL+mhhx7Sv/zLv+i2226T9FVA9u3bV61atdJjjz2ma6+9VuXl5frP//xP7d+/X8uWLau3H+PGjdOKFSs0ffp03Xnnndq5c6fuu+8+nThxwqvenj171L9/f6WkpOjZZ59Vp06d9Jvf/EZjx47V4cOH9cgjj3jV/+lPf6rbb79dy5cv1/79+zV9+nQ98MADat26tW666Sa9/PLLqqio0E9/+lMlJibq2Wef9cz797//XSNHjlT37t0VHx+v7du362c/+5n++te/1vkm4XJvvfWWtm7dqnnz5ql9+/ZasGCBvv3tb2vPnj265pprGpwfCBgDwNKTTz5pJJl9+/b5vJaRkWESEhLMgQMHPGVffvml6dixo5kwYYKnbMKECaZ9+/Ze9Ywx5qmnnjKSzEcffWS5/N27dxtJ5uGHH/YqX7lypZFkxowZ4ykbMWKEcTgcpqqqyqvukCFDTNu2bc3x48eNMcZs2LDBSDL33HOPV70pU6YYSWby5Mle5cOGDTMdO3a07OP58+fN2bNnzYoVK0xsbKz54osvPK+NGTPGZGRkeNWXZFJTU43b7faUVVdXm1atWpni4mLL5QDBwOVWoAV69eqlrl27ev5OSEjQ9ddfrwMHDnjKfv/73+v2229X586dde7cOc80ZMgQSdKmTZss29+wYYMkadSoUV7l999/v1q39r4Q9Kc//UmDBw9Wly5dvMrHjh2rU6dOqby83Kv88jtzs7KyJEl33323T/kXX3zhdcm1oqJC9957rzp16qTY2FjFxcVp9OjROn/+vP72t79Zrs9Ft99+uxITEz1/p6amKiUlxWu7AaGAy61AC3Tq1MmnzOFw6Msvv/T8ffjwYa1du1ZxcXF1tnH06FHL9mtqaiRJaWlpXuWtW7f2WXZNTY3nkvClOnfu7NXWRR07dvT6Oz4+vt7y06dPq3379qqqqtKAAQOUmZmpX/7yl+rWrZsSEhK0ZcsW/fCHP/RadyuN2W5AKCAkAZslJyfrxhtv1M9+9rM6X78YYnW5GCbV1dW66qqrPOXnzp3zCb1OnTrp0KFDPm189tlnnn74wxtvvKF//OMfev3115WRkeEpr6ys9Ev7QCghJIF6OBwOSWrRCGfo0KFat26drr32WnXo0KFJ8w4aNEiStHLlSuXk5HjKX331VZ87YwcPHqw1a9bos88+8wreFStWqG3btsrNzW32OlwqJiZG0j+3jSQZY7RkyRK/tA+EEkISqMcNN9wgSfrlL3+pMWPGKC4uTpmZmV6fpzVk3rx5Ki0tVf/+/TV58mRlZmbq9OnT2r9/v9atW6fFixfr6quvrnPerKwsffe739UzzzyjuLg43XHHHdq5c6eeeuopJSUledWdPXu25/PPxx57TB07dtTKlSv11ltvacGCBXI6nc3fEJe48847FR8frwceeECPPPKITp8+rUWLFunYsWN+aR8IJdy4A9Rj0KBBKioq0tq1a/X1r39dt9xyi7Zt29akNtLT0/XBBx8oPz9fTz75pAoKClRYWKilS5eqV69eDY4uS0pKNHXqVC1fvlz33nuvXn31Va1evdpnvszMTJWVlSkzM1M//OEPNWzYMO3cuVPLli3zPO/pDz169NDq1at17Ngx3XffffrRj36kXr16eT0iAkSKGGOMCXYnAAAIRYwkAQCwQEgCAGCBkAQAwIKtIfnuu+/qnnvuUefOnRUTE6M33nijwXk2bdqknJwcJSQk6JprrtHixYt96ixcuFDdu3dXQkKCcnJy9N5779nRfQBAlLM1JP/xj3/opptu0vPPP9+o+vv27dM3v/lNDRgwwPPFypMnT9bq1as9dVatWqUpU6Zo5syZqqio0IABAzRkyBBVVVXZtRoAgCgVsLtbY2JitGbNGg0bNsyyzk9+8hO9+eab2r17t6ds4sSJ2r59u+d7J/v166fevXtr0aJFnjpZWVkaNmyYiouL7VsBAEDUCakvEygvL1d+fr5X2V133aWSkhKdPXtWxhht27ZNM2bM8KqTn5+vsrIyy3Zra2tVW1vr+fvChQv64osv1KlTJ8+3hwAAwocxRidOnFDnzp3VqpV9F0VDKiSrq6uVmprqVZaamqpz587p6NGjMsbo/Pnzddaprq62bLe4uFhz5861pc8AgOA5ePCg5TdW+UNIhaQkn5HdxavBMTExXv++vE59I8KioiJNnTrV87fL5VLXrl118OBBn6/2AiKFv76GDsHlcrmC3YWQ5Ha71aVLlyZ9RWRzhFRIpqWl+YwIjxw54vlZIGOMYmNj66xz+ejyUg6Hw+vLmC9KSkoiJAGENKfTKb4YzZrdH5mF1HOSeXl5Ki0t9Sp7++231adPH8XFxSk+Pl45OTk+dS5+eTQARKKYmBjunwgSW0Py5MmTqqys9PzO3L59+1RZWel5XKOoqEijR4/21J84caIOHDigqVOnavfu3Vq6dKlKSko0ffp0T52pU6fqpZde0tKlS7V79249/PDDqqqq0sSJE+1cFQBANDI22rBhg5HkM40ZM8YYY8yYMWPMwIEDvebZuHGjufnmm018fLzp1q2bWbRokU+7L7zwgsnIyDDx8fGmd+/eZtOmTU3ql8vlMpKMy+Vq7qoBIa+uY48pMiYE7jwelb8C4na75XQ65XK5+EwSEYvLc5EtCk/dXgJ1Hg+pzyQBAI3Dm6DAICQBIEwRlPYjJAEgjBGU9iIkASDMEZT2ISQBIALwLKU9CEkAiCAEpX8RkgAQYQhK/yEkASACEZT+QUgCAGCBkASACMVosuUISQCIYARlyxCSABDhCMrmIyQBIAoQlM1DSAJAlCAom46QBIAoQlA2DSEJAFGGoGw8QhIAohBB2TiEJABEKYKyYYQkAEQxgrJ+hCQARDmC0hohCQCABUISAMBo0gIhCQCQRFDWhZAEAHgQlN4ISQCAF4LynwhJAAAsEJIAAB+MJr9CSAIA6kRQEpIAgHpEe1ASkgAAWCAkAQD1iubRJCEJAGhQtAYlIQkAaJRoDEpCEgAAC4QkAKDRom00GZCQXLhwobp3766EhATl5OTovffes6w7aNAgxcTE+Ex33323p87YsWN9Xs/NzQ3EqgBA1IumoGxt9wJWrVqlKVOmaOHChbr11lv14osvasiQIdq1a5e6du3qU//111/XmTNnPH/X1NTopptu0ne+8x2vegUFBVq2bJnn7/j4ePtWAgDgJSYmRsaYYHfDdraPJJ9++mk99NBD+t73vqesrCw988wz6tKlixYtWlRn/Y4dOyotLc0zlZaWqm3btj4h6XA4vOp17NjR7lUBAFwiGkaUtobkmTNntG3bNuXn53uV5+fnq6ysrFFtlJSUaMSIEWrXrp1X+caNG5WSkqLrr79e48aN05EjRyzbqK2tldvt9pqASGeM8ZoANJ2tIXn06FGdP39eqampXuWpqamqrq5ucP4tW7Zo586d+t73vudVPmTIEK1cuVJ/+tOf9Itf/EJbt27VN77xDdXW1tbZTnFxsZxOp2fq0qVL81cKCFMEJtB0tn8mKfkOyY0xjRqml5SUKDs7W3379vUqHz58uOff2dnZ6tOnjzIyMvTWW2/pvvvu82mnqKhIU6dO9fztdrsJSkS1S4MyGi6ZwT6R/tmkrSGZnJys2NhYn1HjkSNHfEaXlzt16pReeeUVzZs3r8HlpKenKyMjQ3v37q3zdYfDIYfD0fiOA1Hk8hMcoYmmiuSgtPVya3x8vHJyclRaWupVXlpaqv79+9c776uvvqra2lp997vfbXA5NTU1OnjwoNLT01vUXwBclgUuZfvdrVOnTtVLL72kpUuXavfu3Xr44YdVVVWliRMnSpJGjx6toqIin/lKSko0bNgwderUyav85MmTmj59usrLy7V//35t3LhR99xzj5KTk/Xtb3/b7tUBogpBicaK1CsQtn8mOXz4cNXU1GjevHk6dOiQsrOztW7dOmVkZEiSqqqq1KqVd1b/7W9/0//8z//o7bff9mkvNjZWO3bs0IoVK3T8+HGlp6fr9ttv16pVq5SYmGj36gBRh88vEc1iTBS+VXS73XI6nXK5XEpKSgp2d4CwRGCiLoGKlECdx/nuVgDNwueWqEukvXkKyCMgACIXd8ficpF0tysjSQB+FSknR0AiJAHYgEuxiJQrCoQkANsQltEtEoKSkARgO8IS4YqQBBAwhGX0CffRJCEJIOAISoQLQhJAUDCqjB7hPJokJAEEFUGJUEZIAgg6gjLyhetokpAEEBK4/IpQREgCCCkEZeQKx9EkIQkg5DCqRKggJAGELMISwUZIAgh5hGXkCLdLroQkgLBBUCLQCEkAYYWgDH/hNJokJAEAsEBIAgg7fEYZ/sJlNElIAghbBCXsRkgCCGsEZfgKh9EkIQkg7BGUsAshCSAiEJThKdRHk4QkgIhBUMLfCEkAEYWgDD+hPJokJAFEHB4Rgb8QkgAiFkEZPkJ1NElIAohoBCVagpAEEPEIyvAQiqNJQhIAAAuEJICowGgSzUFIAogaBGXoC7VLroQkgKhCUKIpCEkAQEgJpdFkQEJy4cKF6t69uxISEpSTk6P33nvPsu7y5csVExPjM50+fbrZbQLApRhNorFsD8lVq1ZpypQpmjlzpioqKjRgwAANGTJEVVVVlvMkJSXp0KFDXlNCQkKL2gSASxGUaIwYY/Oe0q9fP/Xu3VuLFi3ylGVlZWnYsGEqLi72qb98+XJNmTJFx48f91ubl3O73XI6nXK5XEpKSmriGgGIJKF0aQ/e6ounQJ3HbR1JnjlzRtu2bVN+fr5XeX5+vsrKyiznO3nypDIyMnT11Vdr6NChqqioaFGbtbW1crvdXhMASIwoUT9bQ/Lo0aM6f/68UlNTvcpTU1NVXV1d5zw9evTQ8uXL9eabb+rll19WQkKCbr31Vu3du7fZbRYXF8vpdHqmLl26+GHtAEQKgjI0hcIoPyA37ly+osYYy5XPzc3Vd7/7Xd10000aMGCAXn31VV1//fV67rnnmt1mUVGRXC6XZzp48GAL1gZAJCIoUZfWdjaenJys2NhYnxHekSNHfEaCVlq1aqVbbrnFM5JsTpsOh0MOh6MZawAgmtT3ZhvRydaRZHx8vHJyclRaWupVXlpaqv79+zeqDWOMKisrlZ6e7rc2AQDhIdhvWmwdSUrS1KlTVVhYqD59+igvL0+/+tWvVFVVpYkTJ0qSRo8erauuuspzV+rcuXOVm5ur6667Tm63W88++6wqKyv1wgsvNLpNAGguRpO4lO0hOXz4cNXU1GjevHk6dOiQsrOztW7dOmVkZEiSqqqq1KrVPwe0x48f1/jx41VdXS2n06mbb75Z7777rvr27dvoNgGgJQhKXGT7c5KhiOckATSEkAwddcVURDwnCQBAOCMkAaAOUXiRDXUgJAEAIS2Yl74JSQCwwGgShCQAABYISQCoB6PJ0BCsS66EJAA0gKCMXoQkADQCQRmdCEkAQFgIxiVXQhIAGonRZPQhJAEAsEBIAkATMJqMLoQkAAAWCEkAaCJGk8ET6Jt3CEkAACwQkgAAWCAkAaAZuOQaHQhJAGgmgjI4Avm5JCEJAIAFQhIAAAuEJAC0AJdcIxshCQAIO06nMyDLISQBoIUYTUYuQhIAAAuEJAAAFghJAAAsEJIAAFggJAEAsEBIAgBggZAEAD/gMZDIREgCAGChdbA7AESalvxCAaOR8GaMCegvVMB+hCTQAv4+IdbVHsEJBA8hCTRBMEYJly6TwAQCi5AEGiFULqERmEBgBeTGnYULF6p79+5KSEhQTk6O3nvvPcu6S5Ys0YABA9ShQwd16NBBd9xxh7Zs2eJVZ+zYsYqJifGacnNz7V4NRJlL969QFMp9i2a8eYkstofkqlWrNGXKFM2cOVMVFRUaMGCAhgwZoqqqqjrrb9y4UQ888IA2bNig8vJyde3aVfn5+fr000+96hUUFOjQoUOead26dXavCqJAqAdjXcKtv0A4iTE2v+3p16+fevfurUWLFnnKsrKyNGzYMBUXFzc4//nz59WhQwc9//zzGj16tKSvRpLHjx/XG2+80aw+ud1uOZ1OuVwuJSUlNasNRJZIChlGMsEXSftTqLP7PG7rSPLMmTPatm2b8vPzvcrz8/NVVlbWqDZOnTqls2fPqmPHjl7lGzduVEpKiq6//nqNGzdOR44csWyjtrZWbrfbawKkyByFRdr6AMFka0gePXpU58+fV2pqqld5amqqqqurG9XGjBkzdNVVV+mOO+7wlA0ZMkQrV67Un/70J/3iF7/Q1q1b9Y1vfEO1tbV1tlFcXCyn0+mZunTp0vyVQsSI5DCJ5HUDAikgd7defsA29oHbBQsW6OWXX9bGjRuVkJDgKR8+fLjn39nZ2erTp48yMjL01ltv6b777vNpp6ioSFOnTvX87Xa7CcooRoAAaCxbQzI5OVmxsbE+o8YjR474jC4v99RTT+mJJ57QH//4R91444311k1PT1dGRob27t1b5+sOh0MOh6NpnUdEIiARCHzzTuSw9XJrfHy8cnJyVFpa6lVeWlqq/v37W8735JNP6vHHH9f69evVp0+fBpdTU1OjgwcPKj09vcV9RuQJxztWAYQG2x8BmTp1ql566SUtXbpUu3fv1sMPP6yqqipNnDhRkjR69GgVFRV56i9YsECzZs3S0qVL1a1bN1VXV6u6ulonT56UJJ08eVLTp09XeXm59u/fr40bN+qee+5RcnKyvv3tb9u9OggjBCOAlrL9M8nhw4erpqZG8+bN06FDh5Sdna1169YpIyNDklRVVaVWrf6Z1QsXLtSZM2f0b//2b17tzJ49W3PmzFFsbKx27NihFStW6Pjx40pPT9ftt9+uVatWKTEx0e7VQZggHAH4g+3PSYYinpOMbATkV6Lw0A4p7IeBYfd5nO9uRcTgpATA3/jRZQCwASP5yEBIIiIwigRgB0ISYY+ABGAXQhJhjYAEYCdCEmGLgARgN0ISYYmABBAIhCTCDgEJIFB4ThJhg3AEEGiMJBEWCEgAwUBIIuQRkACChZAEAMACIYmQxigSQDARkghZBCSAYCMkAQCwQEgiJDGKBBAKCEkAACwQkgg5jCIBhApCEiGFgAQQSghJAAAsEJIIGYwiEUnYnyMDIYmQwAkFQCgiJBF0BCSAUEVIAgBggZBEUDGKBBDKCEkAACwQkggaRpEAQh0hCQB+xhvAyEFIIig4iQAIB4QkAAAWCEkEHKNIAOGCkAQAwAIhCQB+xJWSyEJIIqA4gQAIJ4QkAoaABBBuCEkA8BPeCEaegITkwoUL1b17dyUkJCgnJ0fvvfdevfVXr16tnj17yuFwqGfPnlqzZo3X68YYzZkzR507d1abNm00aNAgffTRR3auAgAgCtkekqtWrdKUKVM0c+ZMVVRUaMCAARoyZIiqqqrqrF9eXq7hw4ersLBQ27dvV2Fhoe6//369//77njoLFizQ008/reeff15bt25VWlqa7rzzTp04ccLu1UEz8Q4bQFgyNuvbt6+ZOHGiV1mPHj3MjBkz6qx///33m4KCAq+yu+66y4wYMcIYY8yFCxdMWlqamT9/vuf106dPG6fTaRYvXlxnm6dPnzYul8szHTx40EgyLperJauGJpDEFOAJgRXs/9/ROtl9Hrd1JHnmzBlt27ZN+fn5XuX5+fkqKyurc57y8nKf+nfddZen/r59+1RdXe1Vx+FwaODAgZZtFhcXy+l0eqYuXbq0ZLWAkGSM8ZoAtJytIXn06FGdP39eqampXuWpqamqrq6uc57q6up661/8b1PaLCoqksvl8kwHDx5s1voAoYhQBOzTOhALufzzKGNMvZ9RNaZ+U9p0OBxyOBxN6TIQ8ghGwH62jiSTk5MVGxvrM8I7cuSIz0jworS0tHrrp6WlSVKT2gQiDQEJBIatIRkfH6+cnByVlpZ6lZeWlqp///51zpOXl+dT/+233/bU7969u9LS0rzqnDlzRps2bbJsE8HFna3+RUACAWTrbUHGmFdeecXExcWZkpISs2vXLjNlyhTTrl07s3//fmOMMYWFhV53uv75z382sbGxZv78+Wb37t1m/vz5pnXr1mbz5s2eOvPnzzdOp9O8/vrrZseOHeaBBx4w6enpxu12N6pPLpcrIHdF4SsKgTvgImVCaAr2fhGNU6DO47Z/Jjl8+HDV1NRo3rx5OnTokLKzs7Vu3TplZGRIkqqqqtSq1T8HtP3799crr7yiWbNm6dFHH9W1116rVatWqV+/fp46jzzyiL788kv94Ac/0LFjx9SvXz+9/fbbSkxMtHt1gKAwjB6BoIgxUXj0ud1uOZ1OuVwuJSUlBbs7EY/LrS0ThYdoWGH/Dg6XyxWQ8zjf3QpbcQIBEM4ISSCEMYoMbbwJDI5AHheEJAAAFghJIEQxigxtjCKjAyEJAIAFQhK24Z02IhX7dvQgJAEAYSPQH0MQkkAI4vPI0MUoMroQkgAAWCAkAaCRGEVGH0ISABqBgAy+YHwMQUgCQAMIyOhFSMIWnFQARAJCEgDqwRu+0BCsO74JSQCwQECCkAQAwAIhCYQgRjDBx/+D0BHML9cgJAEAsEBIAsBlGEXiIkISAAALhCQQohjNBAfbHZciJAHg/xGQuBwhCYQwTtqBw7YOTcH+2bjWQV06AAQZ4Yj6MJIEQhwncfuwbUNbsEeREiEJhAVO5v7HNkVjEJIAog4BicYiJIEwwYndP9iO4SEULrVKhCQQVjjBtwzbD01FSMIWofIuELiIgAwfoXT+ICSBMMPJHggcQhIIQwRl07C90FyEJBCmOPE3LCYmhu0UZkLpUqtESAJhjQCwxraBP/C1dAAiCuEYvkJtFCnZPJI8duyYCgsL5XQ65XQ6VVhYqOPHj1vW/+KLL/SjH/1ImZmZatu2rbp27arJkyfL5XJ51bt4CeXSafHixXauChCyuKTofU4A/MnWkeTIkSP1ySefaP369ZKk8ePHq7CwUGvXrq2z/meffabPPvtMTz31lHr27KkDBw5o4sSJ+uyzz/Taa6951V22bJkKCgo8fzudTvtWBM1ijOGkFUAXt3Uovhu3E/tYZAjZ/dbYZNeuXUaS2bx5s6esvLzcSDJ//etfG93Oq6++auLj483Zs2c9ZZLMmjVrmt03l8tlJBmXy9XsNtA4kpiCMEWDYG9jpuDus4E6j9t2ubW8vFxOp1P9+vXzlOXm5srpdKqsrKzR7bhcLiUlJal1a+9B76RJk5ScnKxbbrlFixcv1oULFyzbqK2tldvt9pqASBbplx4jed2ikQnVUaRsvNxaXV2tlJQUn/KUlBRVV1c3qo2amho9/vjjmjBhglf5448/rsGDB6tNmzZ65513NG3aNB09elSzZs2qs53i4mLNnTu36SsBhLmYmJiQPgE1FeGIQGvySHLOnDl13jhz6fTBBx9IqnuHNo38nMrtduvuu+9Wz549NXv2bK/XZs2apby8PPXq1UvTpk3TvHnz9OSTT1q2VVRUJJfL5ZkOHjzYxLUGwlckjCojYR1Qt1B/E9fkkeSkSZM0YsSIeut069ZNH374oQ4fPuzz2ueff67U1NR65z9x4oQKCgrUvn17rVmzRnFxcfXWz83Nldvt1uHDh+ts2+FwyOFw1NsG7NHYN0WwX7jd2MN+g1DQ5JBMTk5WcnJyg/Xy8vLkcrm0ZcsW9e3bV5L0/vvvy+VyqX///pbzud1u3XXXXXI4HHrzzTeVkJDQ4LIqKiqUkJCgK664ovErAkSpUA9LwjF6hOo+eCnbPpPMyspSQUGBxo0bpxdffFHSV4+ADB06VJmZmZKkTz/9VIMHD9aKFSvUt29fnThxQvn5+Tp16pR+85vfeN1kc+WVVyo2NlZr165VdXW18vLy1KZNG23YsEEzZ87U+PHjGS0CTRBKYUkwImTZeetsTU2NGTVqlElMTDSJiYlm1KhR5tixY57X9+3bZySZDRs2GGOM2bBhg+Xtwfv27TPGGPOHP/zB9OrVy7Rv3960bdvWZGdnm2eeecbrEZGG8AhIYFn9P2UKzYn9gikc9rNAncdjjAmBt5EB5na75XQ6PY+XwH6MFMJXS08R/L9HXVq6XwXqPM53twKoFyEHfwunsRm/AgIACJhwCkiJkAQAwBIhCQCABUISAAALhCQCItw+hwDgf+F4HiAkAQC2C8eAlAhJAAAsEZIImHB9JwmgZcL52CckAQCwQEhPavQvAAAXV0lEQVQCAGwTzqNIiZBEgIX7AQOg8SLheCckAQCwQEgCAPwuEkaREiGJIIiUgwdA3SLpGCckERSRdBAB+KdIO7YJSQAALBCSCJpIe8cJRLtIPKYJSQBAi0ViQEqEJIIsUg8sAJGBkAQAtEgkv9klJBF0kXyAAZEu0o9fQhIAAAuEJEJCpL8bBRCeCEkAQLNEw5tbQhIhIxoOOCBSRMvxSkgipETLgQeEs2g6TglJAECjRVNASoQkQlC0HYRAuIjGY5OQREiKxoMRCGXRekwSkgCAekVrQEqEJAAAlghJhKxofvcKhIpoPw4JSQBAnaI9ICVCEiGOgxQIDo69r9gakseOHVNhYaGcTqecTqcKCwt1/PjxeucZNGiQYmJivKYRI0a0uF2ELw5WILA45v7J1pAcOXKkKisrtX79eq1fv16VlZUqLCxscL5x48bp0KFDnunFF1/0S7sAgPoRkN5a29Xw7t27tX79em3evFn9+vWTJC1ZskR5eXnas2ePMjMzLedt27at0tLS/N4uwpcxRjExMcHuBoAoY9tIsry8XE6n0xNkkpSbmyun06mysrJ65125cqWSk5P1ta99TdOnT9eJEyda1G5tba3cbrfXhPDDO1zAPsYYjrE62DaSrK6uVkpKik95SkqKqqurLecbNWqUunfvrrS0NO3cuVNFRUXavn27SktLm91ucXGx5s6d28w1QShhRAn4H+ForckjyTlz5vjcWHP59MEHH0hSnSezhk5y48aN0x133KHs7GyNGDFCr732mv74xz/qL3/5i6dOU9stKiqSy+XyTAcPHmzqaiOEcEADCJQmjyQnTZrkc7fp5bp166YPP/xQhw8f9nnt888/V2pqaqOX17t3b8XFxWnv3r3q3bu30tLSmtyuw+GQw+Fo9DIR+hhRAv7Bm876NTkkk5OTlZyc3GC9vLw8uVwubdmyRX379pUkvf/++3K5XOrfv3+jl/fRRx/p7NmzSk9P92u7CH8EJdAyBGTDYoyNW2nIkCH67LPPPI9wjB8/XhkZGVq7dq0k6dNPP9XgwYO1YsUK9e3bV3//+9+1cuVKffOb31RycrJ27dqladOmqU2bNtq6datiY2Mb1W5D3G63nE6nXC6XkpKSbFhzBBJBCTRduAdkwM7jxkY1NTVm1KhRJjEx0SQmJppRo0aZY8eOeV7ft2+fkWQ2bNhgjDGmqqrK3HbbbaZjx44mPj7eXHvttWby5MmmpqamSe02xOVyGUnG5XL5ZT0RXJKYmJgaOUWKQJ3HbR1JhipGkpGH0STQsEg63QfqPM53tyIiRNLBD9iBY6R5CEkAiHAEZPMRkogYnAgAXxwXLUNIIqJwQgD+ieOh5QhJRBxODAD8xbbvbgWC6WJQctcrohFvFP2HkSQiGicLRBPDL3n4HSGJiMdJA9GA/dwehCSiAicQRDL2b/sQkoganEgQidiv7UVIIqpwQkGk4PPHwCAkEXU4uSDcsf8GDiEJAGGEgAwsQhJRi5MNwg37bOARkohqnHQQLthXg4OQRNTj5INQxmfowUVIAuJEhNDEPhl8fHcrcIlLT0p87yuCgWAMLYwkAQucrBBIXM0ITYQkUA9OWggE9rPQxeVWoAH87BbsQjiGPkaSQCNxQoM/sT+FB0ISaAJObGgpPnsML4Qk0ESc5NBc7Dfhh5AEmokTHhqLN1bhixt3gBbgph7Uh2AMf4Qk4AeEJS5FOEYOQhLwI8IyuhGOkYfPJAEb8BlU9OH/d2RiJAnYiO+CjUwEYvQgJIEA4VJs+CMcow8hCQQYo8vwQjBGN0ISCCJGl6GLcIRESAIhgbAMHYQjLkVIAiGES7HBQTDCiq2PgBw7dkyFhYVyOp1yOp0qLCzU8ePHLevv379fMTExdU6/+93vPPXqen3x4sV2rgoQcBcfI+EEbg+2LxrD1pHkyJEj9cknn2j9+vWSpPHjx6uwsFBr166ts36XLl106NAhr7Jf/epXWrBggYYMGeJVvmzZMhUUFHj+djqdfu49EDoYYfoHgYimsi0kd+/erfXr12vz5s3q16+fJGnJkiXKy8vTnj17lJmZ6TNPbGys0tLSvMrWrFmj4cOHq3379l7lV1xxhU9dIBoQmE1DMKIlbLvcWl5eLqfT6QlIScrNzZXT6VRZWVmj2ti2bZsqKyv10EMP+bw2adIkJScn65ZbbtHixYt14cIFy3Zqa2vldru9JiAScMnQ16XbhO2ClrJtJFldXa2UlBSf8pSUFFVXVzeqjZKSEmVlZal///5e5Y8//rgGDx6sNm3a6J133tG0adN09OhRzZo1q852iouLNXfu3KavBBBG6gqESB9pEoKwW5NHknPmzLG8uebi9MEHH0iq+wA1xjTqwP3yyy/129/+ts5R5KxZs5SXl6devXpp2rRpmjdvnp588knLtoqKiuRyuTzTwYMHm7DGQPi6fFQV7qESSeuC8NDkkeSkSZM0YsSIeut069ZNH374oQ4fPuzz2ueff67U1NQGl/Paa6/p1KlTGj16dIN1c3Nz5Xa7dfjw4TrbdjgccjgcDbYDRAOrcAmVUSfhh1DS5JBMTk5WcnJyg/Xy8vLkcrm0ZcsW9e3bV5L0/vvvy+Vy+Vw+rUtJSYnuvfdeXXnllQ3WraioUEJCgq644oqGVwBAnQgnwJdtn0lmZWWpoKBA48aN04svvijpq0dAhg4d6rmz9dNPP9XgwYO1YsUKT5BK0scff6x3331X69at82l37dq1qq6uVl5entq0aaMNGzZo5syZGj9+PKNFAIBf2fqc5MqVKzV58mTl5+dLku699149//zzntfPnj2rPXv26NSpU17zLV26VFdddZVnvkvFxcVp4cKFmjp1qi5cuKBrrrlG8+bN0w9/+EM7VwUAEIViTBReY3G73XI6nXK5XEpKSgp2dwAATRSo87itX0sHAEA4IyQBALBASAIAYIGQBADAAiEJAIAFQhIAAAuEJAAAFghJAAAsEJIAAFggJAEAsEBIAgBggZAEAMACIQkAgAVCEgAAC4QkAAAWCEkAACwQkgAAWCAkAQCwQEgCAGCBkAQAwAIhCQCABUISAAALhCQAABYISQAALBCSAABYICQBALBASAIAYIGQBADAAiEJAIAFQhIAAAuEJAAAFghJAAAsEJIAAFggJAEAsEBIAgBgwdaQ/NnPfqb+/furbdu2uuKKKxo1jzFGc+bMUefOndWmTRsNGjRIH330kVedY8eOqbCwUE6nU06nU4WFhTp+/LgdqwAAiGK2huSZM2f0ne98R9///vcbPc+CBQv09NNP6/nnn9fWrVuVlpamO++8UydOnPDUGTlypCorK7V+/XqtX79elZWVKiwstGMVAADRzATAsmXLjNPpbLDehQsXTFpampk/f76n7PTp08bpdJrFixcbY4zZtWuXkWQ2b97sqVNeXm4kmb/+9a+N6o/L5TKSjMvlauKaAABCQaDO462DG9He9u3bp+rqauXn53vKHA6HBg4cqLKyMk2YMEHl5eVyOp3q16+fp05ubq6cTqfKysqUmZnp025tba1qa2s9f7tcLkmS2+22cW0AAHa5eP42xti6nJAKyerqaklSamqqV3lqaqoOHDjgqZOSkuIzb0pKimf+yxUXF2vu3Lk+5V26dGlplwEAQVRTUyOn02lb+00OyTlz5tQZOJfaunWr+vTp0+xOxcTEeP1tjPEqu/z1uupcqqioSFOnTvX8ffz4cWVkZKiqqsrWjetvbrdbXbp00cGDB5WUlBTs7jRauPZbCt++0+/Aot+B53K51LVrV3Xs2NHW5TQ5JCdNmqQRI0bUW6dbt27N6kxaWpqkr0aL6enpnvIjR454RpdpaWk6fPiwz7yff/65zwj0IofDIYfD4VPudDrDbseQpKSkJPodYOHad/odWPQ78Fq1svdJxiaHZHJyspKTk+3oi7p37660tDSVlpbq5ptvlvTVHbKbNm3Sz3/+c0lSXl6eXC6XtmzZor59+0qS3n//fblcLvXv39+WfgEAopOtEVxVVaXKykpVVVXp/PnzqqysVGVlpU6ePOmp06NHD61Zs0bSV5dRp0yZoieeeEJr1qzRzp07NXbsWLVt21YjR46UJGVlZamgoEDjxo3T5s2btXnzZo0bN05Dhw6t86YdAACay9Ybdx577DH9+te/9vx9cXS4YcMGDRo0SJK0Z88ez92mkvTII4/oyy+/1A9+8AMdO3ZM/fr109tvv63ExERPnZUrV2ry5Mmeu2DvvfdePf/8843ul8Ph0OzZs+u8BBvK6HfghWvf6Xdg0e/AC1TfY4zd988CABCm+O5WAAAsEJIAAFggJAEAsEBIAgBggZAEAMBCRIZkOP+OZVOXsX//fsXExNQ5/e53v/PUq+v1xYsXB63fkjRo0CCfPl3+bU52b/Omtv/FF1/oRz/6kTIzM9W2bVt17dpVkydP9nqMSfL/9l64cKG6d++uhIQE5eTk6L333qu3/urVq9WzZ085HA717NnT8yzyRY3Z3/2lKX1fsmSJBgwYoA4dOqhDhw664447tGXLFq86Y8eO9dm2ubm5Qe338uXL6/x/fvr06Wa3GYh+13UMxsTE6O677/bUCcT2fvfdd3XPPfeoc+fOiomJ0RtvvNHgPJs2bVJOTo4SEhJ0zTXX1Hl8+WV72/obI0Hy2GOPmaefftpMnTq1UT/RZYwx8+fPN4mJiWb16tVmx44dZvjw4SY9Pd243W5PnYKCApOdnW3KyspMWVmZyc7ONkOHDvVr35u6jHPnzplDhw55TXPnzjXt2rUzJ06c8NSTZJYtW+ZV79SpU0HrtzHGDBw40IwbN86rT8ePH29xu3b2e8eOHea+++4zb775pvn444/NO++8Y6677jrzr//6r171/Lm9X3nlFRMXF2eWLFlidu3aZX784x+bdu3amQMHDtRZv6yszMTGxponnnjC7N692zzxxBOmdevWXj8v15j93R+a2veRI0eaF154wVRUVJjdu3ebBx980DidTvPJJ5946owZM8YUFBR4bduampqg9nvZsmUmKSnJ51hsSZuB6HdNTY1Xf3fu3GliY2PNsmXLPHUCsb3XrVtnZs6caVavXm0kmTVr1tRb/3//939N27ZtzY9//GOza9cus2TJEhMXF2dee+01Tx1/be+IDMmLQu13LBvir2X06tXL/Pu//7tXWWN2vOZqbr8HDhxofvzjH/u9Xbv7fblXX33VxMfHm7Nnz3rK/Lm9+/btayZOnOhV1qNHDzNjxow6699///2moKDAq+yuu+4yI0aMMMY0bn/3l6b2/XLnzp0ziYmJ5te//rWnbMyYMeZb3/qWX/t5uab2uzHnmpZui8Zo6TL+67/+yyQmJpqTJ096ygKxvS/VmGPnkUceMT169PAqmzBhgsnNzfX87a/tHZGXW5uqod+xlNTg71j6gz+WsW3bNlVWVuqhhx7yeW3SpElKTk7WLbfcosWLF+vChQtB7/fKlSuVnJysr33ta5o+fbpOnDjhl3bt7velXC6XkpKS1Lq19xdY+WN7nzlzRtu2bfPaNyUpPz/fso/l5eU+9e+66y5P/cbs7/7QnL5f7tSpUzp79qzPLz1s3LhRKSkpuv766zVu3DgdOXIk6P0+efKkMjIydPXVV2vo0KGqqKhocZuB6PelSkpKNGLECLVr186r3M7t3RxW+/gHH3ygs2fP+nV7h9TvSQaLXb9j2Zx+tHQZJSUlysrK8vmy98cff1yDBw9WmzZt9M4772jatGk6evSoZs2aFbR+jxo1yvOl9jt37lRRUZG2b9+u0tLSFrVrd78vVVNTo8cff1wTJkzwKvfX9j569KjOnz9f575p1cfq6up66zdmf/eH5vT9cjNmzNBVV12lO+64w1M2ZMgQfec731FGRob27dunRx99VN/4xje0bds2v3xFWXP63aNHDy1fvlw33HCD3G63fvnLX+rWW2/V9u3bdd111/llW9jR70tt2bJFO3fuVElJiVe53du7Oaz28XPnzuno0aMyxvhte4dNSIbj71he1Ni+t2QZkvTll1/qt7/9rR599FGf1y49Offq1UuSNG/evHpP2nb3e9y4cZ5/Z2dn67rrrlOfPn30l7/8Rb179252u4Ha3m63W3fffbd69uyp2bNne73WnO1dn4b2zebUb2qbzdXc5SxYsEAvv/yyNm7cqISEBE/58OHDPf/Ozs5Wnz59lJGRobfeekv33XdfUPqdm5vrdTPLrbfeqt69e+u5557Ts88+26w2m6u5yygpKVF2drbn15UuCtT2bqq61vNi+aX/vrxOU7d32IRkOP6O5UWN7fuHH37Y7GVI0muvvaZTp05p9OjRDdbNzc2V2+3W4cOHLdsOVL8v6t27t+Li4rR371717t272ds8EP0+ceKECgoK1L59e61Zs0ZxcXH11m/M9q5LcnKyYmNjfd79XrpvXi4tLa3e+o3Z3/2hOX2/6KmnntITTzyhP/7xj7rxxhvrrZuenq6MjAzt3bu3xX2WWtbvi1q1aqVbbrnF0yd/tGlnv0+dOqVXXnlF8+bNa3A5/t7ezWG1j7du3VqdOnWSMcZ/27tJn2CGmabeuPPzn//cU1ZbW1vnjTvvv/++p87mzZttuXGnucsYOHCgz12WVp577jmTkJBgTp8+3ez+XuSvbbNjxw4jyWzatMmv7fq73y6Xy+Tm5pqBAweaf/zjH41aVku2d9++fc33v/99r7KsrKx6b9wZMmSIV1lBQYHPjTv17e/+0tS+G2PMggULTFJSkikvL2/UMo4ePWocDofXzT0t1Zx+X+rChQumT58+5sEHH/Rbm43R3GUsW7bMOBwOc/To0QaXYcf2vpQaeeNOVlaWV9nEiRN9btzxx/aOyJA8cOCAqaioMHPnzjXt27c3FRUVpqKiwuuRiMzMTPP66697/p4/f75xOp3m9ddfNzt27DAPPPBAnY+A3Hjjjaa8vNyUl5ebG264wZZHQOpbxieffGIyMzO9TuzGGLN3714TExNj/vCHP/i0+eabb5pf/epXZseOHebjjz82S5YsMUlJSWby5MlB6/fHH39s5s6da7Zu3Wr27dtn3nrrLdOjRw9z8803m3PnzjW63UD32+12m379+pkbbrjBfPzxx163xV/st7+398Vb2UtKSsyuXbvMlClTTLt27cz+/fuNMcYUFhZ6Hfh//vOfTWxsrJk/f77ZvXu3mT9/fp2PgDS0v/tDU/v+85//3MTHx5vXXnvNa9tePHZPnDhhpk2bZsrKysy+ffvMhg0bTF5enrnqqqv82vem9nvOnDlm/fr15u9//7upqKgwDz74oGndurXXcdpQm8Ho90Vf//rXzfDhw33KA7W9T5w44TlPSzJPP/20qaio8DyuMWPGDFNYWOipf/ERkIcfftjs2rXLlJSUWD4C0tLtHZEhOWbMGCPJZ9qwYYOnjv7/ObaLLly4YGbPnm3S0tKMw+Ewt912m9mxY4dXuzU1NWbUqFEmMTHRJCYmmlGjRpljx475te8NLWPfvn0+62KMMUVFRebqq68258+f92nzD3/4g+nVq5dp3769adu2rcnOzjbPPPOM1yMLge53VVWVue2220zHjh1NfHy8ufbaa83kyZN9nr+ye5s3td8bNmyoc9+SZPbt22eMsWd7v/DCCyYjI8PEx8eb3r17e0bbxnx1BWHMmDFe9X/3u9+ZzMxMExcXZ3r06GFWr17t9Xpj9nd/aUrfMzIy6ty2s2fPNsYYc+rUKZOfn2+uvPJKExcXZ7p27WrGjBljqqqqgtrvKVOmmK5du5r4+Hhz5ZVXmvz8fFNWVtakNoPRb2OM2bNnj5Fk3n77bZ+2ArW9rY6ri30dM2aMGThwoNc8GzduNDfffLOJj4833bp1M4sWLfJp1x/bm9+TBADAAs9JAgBggZAEAMACIQkAgAVCEgAAC4QkAAAWCEkAACwQkgAAWCAkAQCwQEgCAGCBkAQAwAIhCQCAhf8DHpfMeEx7jOkAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,u'the domain')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "N = 400\n", - "x = linspace(-1,1,N+2)[2:end-1]\n", - "y = x' # a row vector\n", - "r = sqrt.(x.^2 .+ y.^2) # use broadcasting (.+) to make Nx x Ny matrix of radii\n", - "θ = atan2.(y, x) # and angles\n", - "φ = @. exp(-(r - θ*0.5/π - 0.5)^2 / 0.3^2) - 0.5\n", - "imshow(φ .> 0, extent=[-1,1,-1,1], cmap=\"binary\")\n", - "title(\"the domain\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This all eventually leads to the following matrix, whose eigenvalues $\n", - "\\lambda = \\omega^2$ are the squares of the frequencies and whose eigenvectors are the vibrating modes:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(59779, 59779)" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x0 = linspace(-1,1,N+2) # includes boundary points, unlike x\n", - "Abox = Laplacian(x0, x0, (x,y) -> 1.0);\n", - "i = find(φ .> 0)\n", - "A = Abox[i,i]\n", - "size(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a $60000\\times60000$ matrix, which would too big to even store on my laptop if we stored every entry. Because it is sparse, however, almost all of the entries are zero and we only need to store those.\n", - "\n", - "The `nnz` function computes the number of nonzero entries, and we can use it to compute the fraction of nonzero entries in A:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8.313882809376213e-5" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nnz(A) / length(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.969956004617006" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nnz(A) / size(A,1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Less than 0.01% of the entries are nonzero! It really pays to take advantage of this.\n", - "\n", - "Now we'll compute a few of the smallest-|λ| eigenvectors using `eigs`. We'll use the [Interact package](https://github.com/JuliaLang/Interact.jl) to interactively decide which eigenvalue to plot." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 3.791509 seconds (1.65 M allocations: 313.391 MiB, 3.50% gc time)\n" - ] - }, - { - "data": { - "text/html": [], - "text/plain": [ - "Interact.Slider{Int64}(1: \"input\" = 1 Int64 , \"\", 1, 1:20, \"horizontal\", true, \"d\", true)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGiCAYAAACMDD3oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsfX2QZUV5/tN97p2ZJYH1Y8Mu4LKiQYXaisZFYLFI/MoKURPUJGssl1ilKEWMwU0qipgSsX5uxShlGQTFoBYVCrFiTLQkyvqBYkGUUGhMYhlShVmiOxJW2WHd3bn3nu7fH33ePt19us859869M3dm3oc6dc/p2+fjLjP3mef9eFporTUYDAaDwWBUIFf6ARgMBoPBmFYwSTIYDAaDkQCTJIPBYDAYCTBJMhgMBoORAJMkg8FgMBgJMEkyGAwGg5EAkySDwWAwGAkwSTIYDAaDkQCTJIPBYDAYCTBJMhgMBoORwERJ8pvf/CZe8YpX4NRTT4UQAv/4j//YeM43vvEN7NixA3Nzc3ja056Gj370o5U5N9xwA8444wzMzc1hx44duPvuuyfx+AwGg8FY55goSf7iF7/As5/9bFx//fWt5j/00EP47d/+bVx44YV44IEH8M53vhNvfetb8dnPftbOuf3223HllVfi6quvxgMPPIALL7wQF198MQ4cODCpj8FgMBiMdQqxXAbnQgh87nOfwyWXXJKc8/a3vx2f//zn8YMf/MCOXX755fje976He++9FwBw3nnn4bnPfS5uvPFGO+ess87CJZdcgn379k3uAzAYDAZj3aGz0g/g4t5778WuXbu8sZe+9KW4+eab0e/3obXG/fffj3e84x3enF27duGee+5JXndxcRGLi4v2WCmFn/3sZ3jyk58MIcR4PwSDwWAwJg6tNR5//HGceuqpkHJyQdGpIsn5+Xls3rzZG9u8eTMGgwEeffRRaK2R53l0zvz8fPK6+/btw3ve856JPDODwWAwVg4PP/wwnvKUp0zs+lNFkgAqyo6iwUIIbz+cU6cIr7rqKuzdu9ceHz58GKeffjoefPBBnHjiieN6dAaD4UBNKJEz7stO6jlTkA3BK/ftprnrGY8//jjOPPPMiX+HTxVJbtmypaIIH3nkEXQ6HTz5yU+G1hpZlkXnhOrSxezsLGZnZyvjJ554Ik466aTxPDyDsU4xDpJZyiWWev+VWHc+9Ue9S4oiMsaoYtIps6nqk9y5cyf279/vjd15550455xz0O12MTMzgx07dlTm7N+/HxdccMFyPiqDsW6htL8NA53Yhrlf0/211kNtClj2LfYc7melfysaY6wcJqokjxw5gv/+7/+2xw899BC++93v4klPehJOP/10XHXVVfjxj3+MW265BYCpZL3++uuxd+9eXHbZZbj33ntx880347bbbrPX2Lt3L/bs2YNzzjkHO3fuxE033YQDBw7g8ssvn+RHYTDWLUb9kh72tLb3aav8VMv7roCQhArEj4T/uVShI0lF0r8Nq8rlx0RJ8l//9V/xwhe+0B5TXvCP/uiP8KlPfQoHDx70+hvPOOMM3HHHHXjb296Gj3zkIzj11FPx4Q9/GK9+9avtnN27d+PQoUO49tprcfDgQWzfvh133HEHtm3bNsmPwmCsK4yiEJd6zSbyqyO9JqJTDROWmydFcEPthAyFAKA1JIBcl+FEKcy/IRPl8mLZ+iSnCQsLC9i4cSPm5+c5J8lgOBiGHCdNjKOQYh0Z1j3K0H8U1MxvkyILic4v1hHedSgnJoSAFGYuE6X5Ht+yZQsOHz480e/xqSrcYTAYK4fW4c4lXitFjMOSYooQU7euf6aam7e4Z+wBZA1bGoVYHrukR/eQBXVSaFZqDQXBinKZwSTJYDBaEeRSyHFYxTiMUoxNjRf0JB+hFfkNG3LLtUYdj0nnXfffoMxDVsmSiXL5wSTJYKxzjIMgx0GOSyHG9P2brxW7XvUZGibUIEVk7rPECNMlSykEtGaiXAkwSTIY6xiTIshhQ6ptyKwNMbYJyw4bjl1q1UYYWnURqkbAUY7OHHo/EwIKVaJ0r8UYL5gkGQxGEuMsdmkTVh2FHIe9xrBkqMZR+6p9tVhe26A2J+m8T8/oKko6n1XlZMAkyWCsUywlhDhMeHUUcmzKMw57fhOxAnEyHGftfw5dUZRS+6oRiOck6X0BZ6wgSnM+h18nBSZJBoMRxfBhSf+NtgU5LsENQ25LJcaQFOPPVh1bCkKLM0UNkzoeZjXPoM37QiBHGX4logQ4TzlJMEkyGOsQjf2LQ543CkEOQ3J159aFUj1SHYEUx91G7poDAD5pEmGG6tIr4ClUpc1TFuTJBT2TA5Mkg8HwsFSCjM8Jr5UmyLbqMXVOnWKsPkd4r2ayDxH7+LWGAoWbjrl+lTDryDIkSsBXlUyU4weTJIPBaMRScpBtCXKU0Oqw5DgsKTbb3SXeaKg4td6tMcIsyI1ymC5ZhkSJcCwgSsbSwSTJYKwz1DrPtJy/VHJMhVaHUY2pUKp/jfgzu89apy51TWVrm3xlniJLDYiCFLVDmKRA6ZmEEMihrR2d1gJCFM+lizFRjgldHEOba0jBNnZLBJMkg8EYO1aaIGPkOAoxjqt3Mt4racgvdwizDLmaV7d6FRqA1JBa2OvFQrCuqhSa20OWCiZJBoMBoL3tWts2D/vehAiyST3GlGNSZQZPVhfGDZ+rLbRGpVOyDJmaK1rCtCHXggyLh9BaeGHYkBiJPElVSsntIUsFkySDwVgS6sKsdZ6oMZU2LEE2hVZj6rGNatTenCryJfSGZC5TFZdxlSYRptKluiRlSR0jZkxbojSXMl6xnqoEF/MsFUySDAYjiXG2RMRIz1yTxtqHWMPjNurRzhmSGGOE2Go1kBQc5o4RZqgulXaVpSn0URCWKKnHMlbYkxesyEQ5OpgkGQzG2NAmbBqbP2wOctjcY0iQw5BjjBDzJZBkrjWyQjaqXNsltYgwKSxb5h1LsiRVaS3pKOfoqEqXKLVgolwqmCQZDMbI7qRt+ggr59TcbJginTqCjKpM6Cg5plSjS44hKapRPrh7PjRkYL8TI0xonyxdoqT2EVdVhkQptCFFJsrRwSTJYDDGjlGa/hGZFyNIrdsRZJh7jF2TdmPk6BJjSIpNSpKWt6qfRP2PVcKkDxOSZSa1F371+iJRJUqty/5KJsrRwCTJYDBaoSkfOWoEkkhJ2+PInEihjvtMTfnHkCDbkKNLjBUlWfNhqTfSPSeLEJFHpAFhUkiW1CWRpXlcXRCcH34lyzstaLFn0y/p5iuZKIcHkySDwRgJS4k4VsiuZk5qqapRCLIu5xhTjt5Y8NB55LFUIpasAMgoE5XPEBImpHNvCsUW5gCG9EpVqUXZKkKqModGYTfQSJSMNJgkGQzGxJAKtaZQm690SHApBBkryAnVoz325gTPGnnYujBsnpcFOxYeQ/mEmedmkWWXLKGKEKzNVcZVJRGlhum1bCJKduVJg0mSwWCsGFJhy1Q/pPL5IvpeKsQKpNVjLLRaznHuqarE2ubzuO+7uUqXOH216dwnJEs3X6l9VRkSpShylDnMv0uWIEotBIddE2CSZDAYy4qltBg2XrsmB9lEkClyrCPGNiHYECbfmHgzXB8rIEtkTguJ8omSPr3QpvUjg4bWIjAd8IlS6yK6qzQyyUQZA5Mkg8EoMlcriyZXHdcwQMXGG0KsMXJsUo1NYdcw5Nq2f7IPOKFXbRVkHwWBKrNOZDnPzCElatKWpsgnE8IW9+giBKthQrCqMB/IZGmQroS5hxbBvipVLRNlCSZJBoPRCkKIsS5CPIprTdP960KsQDuCJOLLtW5Fjn5xT8sPAgq9FteIhF1JcdoQrV1EUjtjfhg2DMEaUjQPJoqQLYVfKU/p7xckzIrSgkmSwWCMBNPIPlnEcpEuYlZzMZMApXU0/9iGIJvCruGzDefGUy3cMRctXp2wq9IaXUgnd0kPVijGoofSU5USfpuIaiZKpeMtK+sVTJIMBiMJ6qObJGKXT7V92HMib8eeM/RddfOPdQRpz695z7203z4yxD+YYyKQaz8ECzgKk8hSKU9V5lqbnGNCVZrnEq2IUheqVWsgB4ddCUySDAYDwHTkJduIsMqqIy1UJBDvfWxSkHXkmCLGoUKuufaJSJbP5RKmT5YxAi1VpUuUQpoQqgZMwU4NUUIJZBJ25RCueDVgkmQw1hmWog7r8pJCjFa5Oio5N32GWC7SzUMOS5DDkOOoIVePNGX4vvYUpA2JhrlKU9panOFXv6aIklQklHHpoR8SrnhlkmQwGA6GJaymvGTd9UyBSPu71RXt+D6t7nj1HBUhuZi6dMdDgqTzkiHXIT5X1ee1KOApCFMVla25BiCrCpKIUQlhc5X9vGjtgEI3k0mipGpXqyK1WZWSWkPEOidIgEmSwWAMiaVWudYpzlHVaIg6FWn2UXk/VJcuQYbkSOPh+alnaISTm/RJk3KR5lpuSwgUIkU88MKvUgPITR6zI0WFKK1a9IiynKPBjjxMkgzGOkRdyDVUf03hWVdNEsnFVOIkioBi+cgYKB8ZU5H142n1GCrHSpHQGHKT1qKOcpRKF+9RzyQqxOiFX50c5UChkSiFFnblEFF4v2ZY3/lJJkkGg9GIkOCGUZOj5ByNz+jSGDUV8oypyNh4G4K0OcxI+DW8fjOacpPFHKVtCJb+dfNcF+FWlA47QpgFm4cgyhwaUpsiH8pTCrG+85NMkgzGOsUwarLxWminJieNtnerU5GVIp8hCXLcuUl74bDytVCVZSWsrqjKvjItIl3IRqIUhUhVulCRRfiVPF7Xa36SSZLBWMdYSth1FDVJ14gRaVM4dpRcaP1SV76KjOUbYwTZRI7V3OQQDyyrn49I0KhLXS7EDFEqziIEGxKlIumnlFf1GiNKWlrL9EmacaGF9Xhdr/nJcD3sieCGG27AGWecgbm5OezYsQN33313cu4LXvACCCEq28te9jI75/Wvf33l/fPPP385PgqDseYgRfpLLxwO59LvH2C+TKQdp/nlZBs9FOk57ni4Pyr8FT6qKjIWZjXnmX0Ku/aVsrnHPHiPyLOfa+TKEGM/N8eqOLfNdnyg7HmLzv7xAc0p3zs+yO3Y4kDZ7XhevNr93FxHaTveVwq9XNnn7SvzOlBmXq41BsUxvV+O+/9max0TV5K33347rrzyStxwww14/vOfj4997GO4+OKL8Z//+Z84/fTTK/P/4R/+Ab1ezx4fOnQIz372s/H7v//73ryLLroIn/zkJ+3xzMzM5D4Eg7EOkFJysdBrneoL20LahF1DpWmuU+Yl/XFSOoAoKjCXijqjcm+/VlkW14pU07rnNiIlXYrcYhmWjatLr7inoiTNKpP9YkURoFSVpZIseyiFNv9nKEfphl7Xi6KcOEled911eMMb3oA3vvGNAIAPfehD+PKXv4wbb7wR+/btq8x/0pOe5B1/+tOfxgknnFAhydnZWWzZsmVyD85grENY97Pg+7yJKGOhULedg4gyFXYN4Y6Pqy3ERaygxlWRAIL9aig2JMgYOYbEOFRbCIAcLgGCmh+DsKxLjEV4VhcFPEJ64dd+rhqJMoOwPZREnG6OkkKv68W6bqLh1l6vh/vvvx+7du3yxnft2oV77rmn1TVuvvlmvOY1r8Ev/dIveeN33XUXTj75ZDzjGc/AZZddhkceeSR5jcXFRSwsLHgbg8FII/bFF/suDEOvlXOG+AJtM9W9R9tnTCFd/ZpWkXUK0p1PIVl3P3Yc23oDFR/PlRPyhQ3lErmb0Kzyx4owqSpCpCYkrJz9MlSsYQgwL/ovc2V8XLWGna90GaLWehwafvoxUZJ89NFHkec5Nm/e7I1v3rwZ8/Pzjed/5zvfwb//+79bFUq4+OKLceutt+JrX/saPvjBD+K+++7Di170IiwuLkavs2/fPmzcuNFuW7duHf1DMRjrBLFcJTUdhPPs+05+shyjecJewz3PmMfEyU8iPh4j31Hyl6ncWiVvGTEnAPwQq0uQ9DoqUdZuXn60IEelyrYV5ZCnnR+SY5Uo+7kJbmtoS5SUczXqMSBMjL/vdRqxLNWt4V+YmnpvGnDzzTdj+/btOPfcc73x3bt32/3t27fjnHPOwbZt2/DFL34Rr3rVqyrXueqqq7B37157vLCwwETJYLRELP9YV/lKode6tpBYDjK87jAh19ocqfSLd0K0XbUjHX6tkiMhNgaYgpi2yFUQciW4f4m4xuZF+DWHRiYyL0fph1sjoddcQQpp16K04VZRzU+aKliNrKiAXauYKElu2rQJWZZVVOMjjzxSUZchjh49ik9/+tO49tprG+9zyimnYNu2bXjwwQej78/OzmJ2drb9gzMYDA8pogRKUovNiXm7hkQZjofXqhTwoGRMMy9dvJMJEc0/tkG46DKN2f1IHjIkRZccQ2IcNj/pnkek6eUslSE1JU1hTyYE+sXSWl2gkSiVLQyiO5XWdGF+0iNMYE2bDEw03DozM4MdO3Zg//793vj+/ftxwQUX1J77mc98BouLi3jd617XeJ9Dhw7h4YcfximnnLKk52UwGGmkWkVEZI6XO6R5iS9RM5/2hReOrWsHqQtGZVJUWkvqUEekVbs5ncxDxl4HSluCHDXsStdI5i6DECyFWyn02lcaA5t/RDT02lcKSpW5V9pyXc1PlnPM61qOuk483Lp3717s2bMH55xzDnbu3ImbbroJBw4cwOWXXw4AuPTSS3HaaadVKl1vvvlmXHLJJXjyk5/sjR85cgTXXHMNXv3qV+OUU07Bj370I7zzne/Epk2b8MpXvnLSH4fBWPeIVcDGql+JKN3QayrsCgTh1WBcat+mLq5Qi7ERv7TrhB3l5vyxdFjVJUj3uG6/DsmQa/g+/UViVaFf+Qpb0ZpQlEqhq80/JK1FacKtxpEnDLdqQf8ua9dkYOIkuXv3bhw6dAjXXnstDh48iO3bt+OOO+7Atm3bAAAHDhyAlL6g/a//+i9861vfwp133lm5XpZl+P73v49bbrkFjz32GE455RS88IUvxO23344TTzxx0h+HwWAUCMnSDb/W5ShjROmFV2tceETBA7n2j+tCruNELPzaliDryDGvJE3bB/kqBCopVCwAqFJRO0SphEY3k0G41cRM+7lGNyvbQnQiP2nbQoQp9tHjcH6YQgi9lDVvVikWFhawceNGzM/P46STTlrpx2Ew1gTc730dGyPbNntMc7Q3Pxyna2gNKJiwn5lnKiztMbQ9XyOs8kRRAVr6s1IrQ3ls7kNVoX06X5Vm5244k+aGoVEANjQK1KnIajVRnWLMCjFB72dS2P2Os0/jmRToSolMwuYou5mw+1IA3Uza10wAXSkx25F2bjcz9cWZNPndTJjrC1Eez2TF/Yrj5VKTCwsL2LJlCw4fPjzR73H2bmUwGGOBpx5RKkqAjAPqFWUq7Fop4hHVeCoV8Eihbcg1s/FXANKsjAFoJy6L4Ng3E2hCKo85iJBijBxTodZ0CNZ+GG8ukeNAaXQChsqCVUCQA92M3hU2VOqGW6Uy8pzWouxm0vz/s49h7qlhwq0aa9tggEmSwWCMDZ45jK6Oq+JLNEOhLAt+ksX6iFnxpatglIouikN8vjMhQFU4w6igPYTmLkeMLFZgE++T9Ikx1RpSh1Ip6uC4VJh5oC7zjvZUpZIauXaUpDaqsZMJKK3QlQJSKCgloLQ5J9c5ulJCyyIyS8t1Ff/OAoCShovt+1g7RMkkyWAwJgJPRaJeWeZozlH6eU4q3imJMsxNmjBhya7k6DZqS0gTYgrS7DcT5CjtIKWK9BWmqy4z77rKEJ+jJG2OlQp6FCCLQh+phSnkgYQSGhqi+Pc36jMrWkOskhSlolxL+UkmSQaDMVFYn9bi2C3sIaIsa0sCooQfknUrWL17AJYom1aoyJyLt13vMcxHpog2JL4mghxHpatLliZq6odjPRR/kViiDPaRmRytErAhWKm1F3oFCuelouLV/L8ti3mEWFsG6EySDAZj4kipSiJKWRThGIUYVLeimqPU2uQmSU269YcCqdxklYQkLVYsBfIads0iK5m44dS68TqCXIoTTxomgA0AiwOFTArMdpxq2RqilArIpbZjSmn06bzMqExRVLzSSiHmn41aTdyWk7URdmWSZDAYy4awbcTNVcaI0pIpfPK0vZMOUYZh15AUJclNxEOuMSJsgzRZKm9OODdsFQnnjvIcpcI0qnKmY9hvcaDQkQIzRJYJouwnw60weUph1pkEBDJZhFuLOiq3d3IthV2ZJBkMxrLDDcGWVa3DEWWrewBWTfadjotUyNVwjG9cUL5HvYJxxMiyyUQgZjYQnm8t6IYgTzqvck6hLGc6MkmUJtwqgnCrKAxwJboZbH5SgKIBTrh1jYVdmSQZDMaKwFWVTaHXkCg1zJwmNSmFtjnKTBStEEoExGio2lsoOuGYnklA5ZVhDzGijCnJgYqHZZuu1wSfWMvQq4veQEWJUipTqdqn1g8bbvXzk27Y1djViTWrJpkkGQzGisKmsYLQK0DFOFWiFNohzQhRujxWph1Ls/MUMbp5yVHDr4AhpzpVma6EHUeoNbxne6LsKyBTqmj90IACukARbqWCHjjXFMhJTtrqqbWlJpkkGQzGioOIsiRCx3ggQpQ6qHYloqRoqAjUJJEhqcm8YFEZhFyzgjyJK2MhVpdsm5Aq4gnfqyPUENEwagK9IryaSeqXlGVeEj5RSirEURpSaFvtKjUq4VbKT9qwa1HpSmHXvPirR64BNckkyWAwpgJ+b2RpPFCGUH1nHhlRenSeG3a14daCEHOtCzJEUllmQmBQ3CmTAiqofM0a8pMhQhVZV/0aO2d8UOgNECfKQh1SuBWZNOHXSH7SDbt2JIVbdSXsmuvVryaZJBkMxtQgzFMCIekVfZSibAtpCrvalpAgN5nnZQEPhVndkKsUcBRlc/9lE5pylbE54ViTigwLfbzWD4sqUZbXLFYBKf6dTbFTmZ+ksGvfuVZHGblpyTAo4smVhpRYtWqSSZLBYEwdYqrSJUpbuIN42JUUpBt2FbRAcURNVvfL8KsbinWV6zBhT0KoIoHhjAVGuV8cAVFaNQn0c23cd6jaVQubn6Rz3bYQDfP/Kjf/A4xtIPwiHsojr0Y1ySTJYDCmEpXqV4covcKdCFHmRdGIG3Z1uC+pJjMBr5jHPEcZWg1zlKMQJTBeB54294kjTpS0kDJgql1j+Uk37Jp7la6Uj8SaUZNMkgwGY6pBZClgvmSFBiCNShHQ0MJ8IbvHUGbdQ63N/Bza5hE7UhQN8QAyqtY0vYFA0Q6Rl20guaZ8Ju2b61M+M0aUofF5aH7uzqH92Ks7N0R4X3epLPeV9mmjZbVmOhKZNNZ5VNBj+za1NIboBWF2zV8SJuSqASXNHyZKGoN0lQl07dIhZRhAO45GNJZlq4somSQZDMaqgNsqorVf9RqqSteRB9p2Odh5sbCrLGpXlNaQUiBTxlTAhmKLfTf8mjvFPW0xjG1d5Vz33i2UZt2cnhNiNQ49ZS7TbR2xShJla4irKO2x0hAQENKvds11UeVa5HXdfPNqAJMkg8FYNaiYDiSI0jUbsMtqCW1bQnShDpX2w64KQT+lU9lKVa4yIMc2Ki+GNkQJxC30wrEUaVILSAouUfYGOWY6GXKl7XgmtFHaWRl6pYpXW8ijtdcSkmvKS5bVrkqXxTwaq4ghwSTJYDBWGeg7n0Kvuli6ySVKN2dpAoVlEQ8V9JDBAGAtXUs1KXRpUSf861PItcl5pw1qidIhQtWkGt0i1jCpOuQzuFZ5PSjMFIsuK+1XvNJN+9L0VbpOPLSYc0xNqlVWwMMkyWAwVh3c0Ksq1jZ0iQyFkiOiy1EaEwjHrs6qQ4mKmqTQqgwUpB0vFCepxqUW8bj7RJAuOerEtYUUPomWEdR2CNRkJgXQkXYtylxqYzQAx0xACxtmzbVGn/KNrsEAzMLapCbzQk3mxb/dagGTJIPBWJVoIkrXlUdrUeQpdaFmTGFPnZqke+QajoKsEmaOuCXcMKQZC68S8ekaohRSeGMeYTqfoxEOUVJOcnGgMNuRlfxkJeyqtWNZZ1SlXU5L+72Txud1dalJJkkGg7FqERKlgPaLd9x9b47pBnGLeCSZnxc2dtayTsAW8MRCri4ZjqomAZ8o2xBkagxwyDJClLnSnpEAwSpHVbaGhPlJN+xKajLX8FpC+kohk5klwjJHiWLxavrDYxUwJJgkGQzGKodvkE6hVZN0zFEW8pQmAUUfZaSIR8GoRCmBTFHoFcmQawyGKN39SOGN0xrijesqKeoIeSb/LYJjRYOqvG8mhS3occkyVI65Et5YGHal175UyITryGNs7GYy6fVOiqxo1cHqUpNMkgwGY9WjiSizogCHinisE0wQdnXVJJGlMRkwY2HI1ahKbfsPR2nLCMkylof0xhLkLEQZaq3U8SRCr34bCDzl6C7plRXjhjH8sKvShUsPFKTMrK/rQBVWdYC1ETSVrqafdbWoSSZJBoOxJpAiStsOUuQmlTBf3lnRxuGGXaklRGphiVE5BTyZhhdyBar9kkatSeRF+WvbEGyoItsQpC6qScP3FOVU6RgmZEwhZO++zvUXC4VpyLJsCXEVZRh2dfsm+zmpyuLfzqr1Uk1qLaxl3WpQk0ySDAZjzSBmOJAVilKgdMuh3kkRhF0rRTyFmpRFSwMpTBtyldrmJTMpjOpqqHatI81UOJUIsE1eUkhh5yvVrCpjarJsR/Hzk27Y1RbvKO31TVLxDrWEyEBNUpWrQLFg85SrSSZJBoOxpkBESVZypddrWcRDxKk1AAnkhY2dW8RTFu5E1GQk5FoHItA2SKlIF3W5SRkctCHKyoLQXsjV5CdjYVcA6Ctt/r00nOKdMkQdqkklhQ1353r6jc+ZJBkMxpqD9XuVplDEfJ2XTe15ITNFVq5egUIdiSJz2ZVmSaiuyygFaXapTySHUZO69EUFyuIdVzW2zVkSlNIVBakcAk2B7iGkKKp4Cw9bYf5okFJASwElBXJt7Peo4pUUcS5Li7qwNcQuv1UQZV+afxvj5wqg4zJwWeBDvq7liiImtC202WeSZDAYjGWGqypNDrFYY1L7odcTzntGAAAgAElEQVSYoiQlBCmMQirCrq5VnRSwajIMuVJeMhZejY2lCDBFkKkCHsAU8WilPaoiOekqS1dVhgU7bh7SvAdPUfr5ybIlxFt3UihIKb2wa1nA4/ROghRn3f/NlQGTJIPBWNOwRFkU9NCqFLkyoVeTqzSTtIBtUTCkaOYrt4hHIJqbJLiKMbZSR51xOWBIMQyn1hXvhHOlk5N0BHAZcpVponSrW4GyshWormzSK5ZSme1Iz2CgL8wfEtQ7qShkrUv/XFE48+iCYIUQSFP+yoJJksFgrHlIAaeitTDfDvsmRVnIIwTl1IrzC8J01aSbmwRKJekTJJz94WggVsnqV7A25yulTKvKGFGG/ZthZSsV8gCwY/287BslNVlWuVbVJFnVUStISZbTmZtkkmQwGOsCmQDyoqI1K/JhUM5qFULbghINoJs5eUeRVpNSlF6k7rqNoZoMi3faLK/VqCprbOeENHOlw4TkxJMiylxUSZJeU2FXVbjsSFH2TyohPCceUpNaC1usU/aqYqorXZkkGQzGukDJSeS4U657SPlJE3Ys1SUZDJQqMqEmtd8vCSCZlxxJVcZ6JlX1ffsJpbDvq+KZXE9aG34NiLIP5T1faChAY96mTUtIX2hkMq4mc1kaDHSKcLAhy7LSlVZvmbY1masGfgwGg7FGIYX5Es5EofiKghvq4xNFWJb2qYDHbAhehVe4I0WpIjuOSnQVY2cJsUStqwTptot4c51xS5ZFuFZrbRUqhXDtvqMY3VcKu5bkqOyyWnmhJpU2oVdbvKNNiwetEqKKBa3J3EHpsm+S9nWxP01gJclgMNYVpFOco0WZnwzDrmRIkFKTqW9zN+SayksuxQjdJUhCykdWWrVZmCQUrju6aMOIKUpq0QhDre5+ZXMMBlK5SVKTlhALsiQ1Oa0FPEySDAZj3cEox7KQh/KT5SsgFGw7iNJlHpJyk2R8TiHXTBqrtjz4ms+kRCZ1LUFmQtiwaB1CgkyRI4HWvSwJVVTCryFR0uohMZJ02z+MmhT2fWoHsY47QW7SLKnlFOl4fq5lD+u0FfAsS7j1hhtuwBlnnIG5uTns2LEDd999d3Lupz71qSLc4W/Hjx8f+ZoMBoPhgsKuNrQK+K/C5CmloC/sQkUKYdobhIiEXEUl5BoW52RBGLaueCcMibrjgE+QFCqNbRQKLeeZc2z4NbgPHYftHrEWkN4gL8OwWiNXFD6lcCuFXstQrAYZHBhCVNDOyiDFMyzlf+6YMXGSvP3223HllVfi6quvxgMPPIALL7wQF198MQ4cOJA856STTsLBgwe9bW5ubknXZDAYDBep/KQUZnktCXovnpuUNNd9TzrXi2yENpWtIdyiHZ/00mTpjhFZNhIl5SZ1PLQ6iJAmHcdyk7TmJJGnOYfCrg5ZFuRI+cppwcRJ8rrrrsMb3vAGvPGNb8RZZ52FD33oQ9i6dStuvPHG5DlCCGzZssXblnpNBoPBCEFEKeE45xRkV6pMRy06arJawNN8v7Cox3uWpRT1tCrgKRUoEaVWPlECpbOPShBlb6BswY5LnCk12VelmswdMgwLeLS7P0UFPBMlyV6vh/vvvx+7du3yxnft2oV77rkned6RI0ewbds2POUpT8HLX/5yPPDAA0u65uLiIhYWFryNwWAwAENunYK8zGaOu8VG6rCbCcx1MnQzMz7r7Hcz43valRLdTGAmk5jpSMxaP1SZVJfDqEpShLSvHUKr2/KBMvOK1zxXyHNlyZKIMh8oqOI9NVDIBwq9XBWhVX9btPs5egOFoz3z2lcK/VzjeLE/yE11az83hTz0mitYQrXkWhCtQrkU2UpjoiT56KOPIs9zbN682RvfvHkz5ufno+c861nPwqc+9Sl8/vOfx2233Ya5uTk8//nPx4MPPjjyNfft24eNGzfabevWrWP4dAwGY63ADb2SorS5SUcpCsALu0o37BrkJwltyHDY8KtX2eqGWymnF2w0LwypuqqSiNJVknWKsm5TbmhVl5ty9sPcJDCdanJZCndE4KKgi1LfGM4//3y87nWvw7Of/WxceOGF+MxnPoNnPOMZ+Ju/+ZuRr3nVVVfh8OHDdnv44YeX8GkYDMZaBBFh2A9pi3xgwq/dTNqwa9g3SblLoCTHjiVJWRkLIYZUld5xopCH3nPJ0p1TIUoiyIAwU/lJt28yLOKhXKPbN2mOUZBpmZtUKPslVaEmp4AjJ9sCsmnTJmRZVlF4jzzySEUJpiClxPOe9zyrJEe55uzsLGZnZ0f4BAwGYz0hK3oPlCpaJ1B6uGayyOMV7jpKAN3MLDclZbkiCKBtO0iTQgwt7OqgVbXlQzkkaObE85JAZDFmWbaGKEk9lQJamuXCtDKtIDQnd9pY2qjJTJAbj7l+WchTtoRQX6qCcPKSvp/rSjvwTFRJzszMYMeOHdi/f783vn//flxwwQWtrqG1xne/+12ccsopY7smg8FgpGBDqrJsCckkbLVrSk1SlWsYcm2bi8wSkbAQlYrWCEGGOcnwPFKJ7jgpyli4tU5Nhi48rl1dWbyjjNk5PZMTci3VY9kOQgp0GkKuEzcT2Lt3L/bs2YNzzjkHO3fuxE033YQDBw7g8ssvBwBceumlOO2007Bv3z4AwHve8x6cf/75OPPMM7GwsIAPf/jD+O53v4uPfOQjra/JYDAYo4IceQQMwZn+Qap01daJh9SkWRaqXH/SmA8ASmovvJrXqEpXTQppXL/pNQXfxzWeowzHXPVI5gHFrpknAaGMmiSjASFNeFQo45pDbjypzTccKJfQIjWZ69L0PC8+J4VcaXUQXfwPmIaQ68RJcvfu3Th06BCuvfZaHDx4ENu3b8cdd9yBbdu2AQAOHDgAKUtB+9hjj+FNb3oT5ufnsXHjRvz6r/86vvnNb+Lcc89tfU0Gg8FYCqhnUivtkB+gc9jjbiaR6xxdLaBU2TNJ9mzmOmF/pHHf8XOVS7CoS4VfI9ejFUAAhyxlWd9hz8mc1UMUvLCr68YTJ0WFXEn7HilJsqmTqsxR5lKXoVWYkCutDjJNIVeh65a3XqNYWFjAxo0bMT8/j5NOOmmlH4fBYEwh+srYsPUtGZRm3YNCJfWKlobjucKRxQH6RfFKXynTApFrHC9aJKhl4lhvYNsoHj8+8Noq8qINIx8o25JBTjj5QDttG2VxTbhCSIwgXVBxEPVlCmlczaQUEFIgy6QZk7D7UgrITCLrmONu0eIy05H45bkOZjvl8YaZjm1/2TCT2baYuY5EV0qcNNdBV5rj2WKMWmkyAXSK/U5x3JUCMxGWXFhYwJYtW3D48OGJfo/zKiAMBoMRQVnpSit8mPykm5skgwHKSVKFrM1VSr/KFWiXoxzWWCBGkGQW4G40x12nMlwJxDMb0H4eM+XGE5oLpNpB6FmtsQCtDOK2gegyTwnY1b1WDEySDAaDEQF5u0qniEfCkJkQpQkB9Va6dnVuAY8bcqVWkLYY1YUntRhzSJZe72SEKGOtIAAainj8ZbTcdpCyZxKOZV3cgcc686xwrJNJksFgMBIgJUkm5yk12c2EY1dXEiKASpVruO/fT7TqlSTyclFZP1Lr6ObOqfi+OmqR5oW9k6OoScC3qiOCDHsmrYmAU+UK53UlwCTJYDAYCchCTWayWU2WLjzpkCsQ3x/Gni4kNr/K1bzWLaFVGp2TsvRDr1YtRsKu7VtCVDLk6rvvlM+UCrmSolwpMEkyGAxGDcgAnVpCmtRkXci1ExBkHVIOYjGkFmCOLZ0VzguJ0j2P5rhhVrcvM1STQLXyteLAY5VlOuQKTAdBArzoMoPBYNSC1CJg1mT2kJtFmLUEulIiz8oFhAGgqyWUVtaZZ6YjMVAaM50MudKY7Zh2CVdN5lpAOz2SQgroFm7friNPuPKHP0/bkK4qZJJURT+opCIdAaEEso5EDgWpBAAFqZ12FkhjgJ4ZWsukwOKgTIZmUqA3cP4g6ACZAvpKQioNQJk/QJT5I6KfKwjIQq1riAzQENb4XBSFUcsNVpIMBoPRAFn0TVKItXTloXAqyipX4YZffTUJwKtypdeUqnTzk2KM39axhZkJMUVp9v2x0LSgTW4yd/okAV9NAvDUpBt+XUlTASZJBoPBaIHQyNzkKykU61a5Cq8dxC3gCUOt4ULMZJBOvYmjwFWRqaWzonO19omwqdq1GGuyqgNQtn9oylGiUsBDRFnmIp2Qq0OYyw0mSQaDwWgJS4yiLOIRgVqUkhrjiSyrBTxuK8iwy2SFoOKacKwOoacrvYb+raEvbExNxpbRAtK5SaBsBQFgC3ioytWM+VWuwMotncU5SQaDwWiJTMDkIIXJ57mhwUwaYwFrUycFMlWGXM359VWuKYhidZEQripMVbRqFW+aFFIW9nPCy1MaIjSfKyus7CSMF61UhsyyzIwbX1eNXNT5t4bmAr41XRfCt6nTovRtJcWpjT3gSohJVpIMBoMxBOrUZFdKp7oVXsjV7ZfsOITo7hNZkkUc2cW1RWh0niJIM1fZeXRuZY3KhJp0x8IqVwDBvh9ydcOqSsNrA3GrXO0z6GIJrdb/CuMFK0kGg8EYAq6azAUghPbJUJoqTi8/qcqcJeCHXd3jcSBe0ZpXxoTMSqKEtIrSKEajXOvUpBAaoHMKNQmkC3jomPKSslhv0leUKN6rmpuvlNk5K0kGg8EYEqQmM0n2daZ4h6pew35JCrlSXhKoEiWNjQN+cU6VIGmc3tPFeo9mP17EQ/vm1V+TklCXl/QrXMvnDI0FALdwx+QlV6poB2CSZDAYjKFBla7Wrk441a4eQVZDrtXlsyKqMmIkMGy1q1bKI0giRZccaZzmh6QXXXw5KO6h17YhVwqrKifs6raCeO0oIKu6lVuEmUmSwWAwRoQUTu9kGHINCLMk06r7Ttg7CcC2gQgpgn5JKrBpzxYxNekrSZc0tacm3VVA3PtauzqHNGMLMIfHgN8KQnBbQcK8JFDmJZdbVDJJMhgMxgiQAlYpUpg1FXJ1EfNyjb02ITRCTzX5p8Kt4fuGNJV3LUJMTbr3VcH8UFF6r56CLPOS5b18w3Oqbl0pMEkyGAzGCKCltIgQKecYC7m6eUl7fqRXcliiJIQkUpJdOtwaU5Ja5ZW2kpSajLruJEKuVdPz8vqpvKR5v1Crdn/5TQW4upXBYDBGRFeaL+6ONESoRDmmCr/WvjDmAnkmCi9XIJdALn3P1pAgpTQerqLouVS5Id+8ZcAxHkr1VaWpcM2D8zJT7VocK2n8VfOBsl6uGSSU1MAAyDO/OSMXArnS6A0UMikwcPbdVUH6SkEKCSX9vGRfKEgFZDKDFBoKouK+k+vh/ohYClhJMhgMxhJACzO7uUlXTdZVubrk2LRCyDCrgsTQNi9JYVfruhOEXek1lRNt48CTCrnmkbCqV7iD5e+XZJJkMBiMJcC2gzherm4BT1jlGiKTMtoGEqtwHRYxNQkAqqIe4/Ps/KAlhF5txamqFvAAkXykU+WaB2znhlzdvGT8eZo++fjA4VYGg8FYAshcQAphzM6LQh4B7SzEXLZ1ZI65QKwVhPaBanHOUuGSo7svi7BrGH51w67IjHEApChyk6K4joYQBUEKbee7BDmIEKfbCqKK63rPWljUKY3Cw7UMu2IZDQVYSTIYDMYS4ZoLhAU8XhtI0ArSCUKuQLV4Z9T+yFAdhurRhUrkL11bO1KTYaVr9f71izG7hEnjSvt5yVjY1XuOZeyXZJJkMBiMJcJtBQlDrm4bSKzK1V6jxpouVJQp4gyrTcvxZlMB5eUk3XE/N+kSI61AEoZcCemwa9U4wHveoF/SXTrL3jt65vjBJMlgMBhjALnvkOE59UySsUCYl4wV7xBiKnKU0Gu1cjVevEMIiTKmJs0836ouVJX1eUmXRNsV74RYzuIdJkkGg8EYAzIpnMpWhwyLXGQlLxnJScYqXEO3nVHzlHWmAin3HYLylCSdEzMu8AmzVkk2xEvd4h2vBaTpg44ZTJIMBoMxBlCI1W0DCfOSAGxekuCaCrhj40KskrXJxzWcV45VQ67WcCBwzgnzkoOIkgyLd1KmAisJJkkGg8EYA0RheC5g1piM5SWpXxIoF2B2i3cqRTzF3DY9knVerk0tHmHItRqmLc3PYyFXb25NXpL2w+KdaQaTJIPBYIwJpBqFQG1eMlW84yJUk8MtvlwlujbnxK4RV5LlsWtR5xb4xPKSlX1SjokKV3LYoSWzVgLcJ8lgMBhjgO+244de3bwkzQXSa0qGq4GMirCqtdz3S19EEe617SIwvZOVc2VmSNDpmYzfV0MoDWRxJdkmJxnDSni4MkkyGAzGGECmApnQ0IKMzTVyAXQziW6u0Rca3Uyir8wrhVzryLKfw3q3xqBVeBxXhGY/XhfqjpOhgEI11KiUMRdQUkMqUfZMSg2hBLQ0ilLI6hqTZY+kQq6EM278Yb0KV+kvm7WS4HArg8FgjAlSwAm3liFXANaiDqgqS6C0p+vIun7J8TynzvPKZt+rrYItl9KiVzfMGmsFAdLh1tUAJkkGg8EYE8J+SBtyDd43+2kzcxdErEu1qLMElyeKd/JqZauKVMGGBTzxeyVykM4+Fe/EKlxDKPhGAssJJkkGg8GYAMh9hzZXPRJ5ZsU3cEo9xsZki0pXwtDFO3meDMm61/Ncd8jY3GkFAVDplxyqR3KK2kA4J8lgMBhjhAmxlt/wZf9k2R+ZeWHWah6yzqKuDi7BRdeTrAmrCqdQx32fcpP0vlbKFvDoBGErpRFcDsDwodaQr1ciUstKksFgMMYIlxAlAgJMmAo0EWIYam0Kvcb6HOveD8diajIWcjXj1fYPoFSUFD71w67KW1vSbQMJsdI5TCZJBoPBGCMy4YdZ3eIdANZUoJxfEmU05DqGdSWBUkU22tPl1erY1HEsL+lb2A1fuEO9ktOCZSHJG264AWeccQbm5uawY8cO3H333cm5H//4x3HhhRfiiU98Ip74xCfiJS95Cb7zne94c17/+tebHzxnO//88yf9MRgMBqMVXIs6t3jHdZ+bVMi1LVLWdOX7ylGOMRce33kndPxx3ycMowpTK5osdwHPxEny9ttvx5VXXomrr74aDzzwAC688EJcfPHFOHDgQHT+XXfdhT/8wz/E17/+ddx77704/fTTsWvXLvz4xz/25l100UU4ePCg3e64445JfxQGg8FYEmgR5rDCFRivX2sKdfZ0qdxl/Hy/FYRAxTv2uMaezt/i+UYK1a5UZSuwDCR53XXX4Q1veAPe+MY34qyzzsKHPvQhbN26FTfeeGN0/q233oorrrgCz3nOc/CsZz0LH//4x6GUwle/+lVv3uzsLLZs2WK3Jz3pSclnWFxcxMLCgrcxGAzGpOD6uLqhVxfEiWGvZN01U/DXeKwunJwivep1Qhs6FRmr5iUr1wlYra2CbLNM1nJjoiTZ6/Vw//33Y9euXd74rl27cM8997S6xtGjR9Hv9yskeNddd+Hkk0/GM57xDFx22WV45JFHktfYt28fNm7caLetW7cO/2EYjALkMbmUjbE+QMU7YYVrzJ6OMC5FGa7+QWha6cOOB8SatrirNxKItYHUISRKa6i+FvskH330UeR5js2bN3vjmzdvxvz8fKtrvOMd78Bpp52Gl7zkJXbs4osvxq233oqvfe1r+OAHP4j77rsPL3rRi7C4uBi9xlVXXYXDhw/b7eGHHx79QzHWHSZBcEyaaxtEiHWoK8jpJKpZ60zO65Qd0LwAc9NKIfFzIquA1FS4An64NbUaSNNnWU4sS59kGCbQWrda+uX9738/brvtNtx1112Ym5uz47t377b727dvxznnnINt27bhi1/8Il71qldVrjM7O4vZ2dklfALGesNy/47S/ZYhLcVYBsQrXI15gNsGAviGAt41nOKd/nCeAEm0WTLL7Zd01WTZJ5kX/q6mXxKo9kWm+iRTINcdF9MSep0oSW7atAlZllVU4yOPPFJRlyE+8IEP4H3vex++8pWv4Nd+7ddq555yyinYtm0bHnzwwSU/M2P9YYr+aPWehQlzdaOuwtWuLSkFkJch1qWGWkMSpHxk3cLKLlwidI9pjIwFiChNiNV4ylrnHakhIbxltID2Tjt1xyuBiYZbZ2ZmsGPHDuzfv98b379/Py644ILkeX/913+N9773vfjSl76Ec845p/E+hw4dwsMPP4xTTjllyc/MWD+Y9lDnND8bY3wIw7KTqnJtCrfSWCVnmbCqi60zWR77c93w6cCGW1WUOKcp1AosQ3Xr3r178bd/+7f4xCc+gR/84Ad429vehgMHDuDyyy8HAFx66aW46qqr7Pz3v//9eNe73oVPfOITeOpTn4r5+XnMz8/jyJEjAIAjR47gz//8z3HvvffiRz/6Ee666y684hWvwKZNm/DKV75y0h+HsUYw6u+hHmIbB6adyBlphBWuMcgpagFJzXWPY+eT2qPiHTvf8XAlpJRk21ArDS+nwpx4TnL37t04dOgQrr32Whw8eBDbt2/HHXfcgW3btgEADhw4AOmUPd9www3o9Xr4vd/7Pe867373u3HNNdcgyzJ8//vfxy233ILHHnsMp5xyCl74whfi9ttvx4knnjjpj8NY5RiWcJbyqxieu5SvQKU5/Lra4Rqdu72S48YwROjOC0OroZdr/FwFIPR81eEQgDZOO+n3V/IPxWUp3LniiitwxRVXRN+76667vOMf/ehHtdfasGEDvvzlL4/pyRjrBcP8kk3q99G9LvPd2kfZ8kEhu/RPVljp2qQqY1WlbZEiUfc4zE2aMfMplMqRFQszp4jUPJ+wBTwp4myDlS7gYe9WxppHm++TcYdJ295vGHDYdXWBKlwJqS/bYVx3klZtlbxeQYR5vfVcHepM0qt9ku1ziW4LSOw9+xmmoGgHYJJkrGE05fOWmxhTzzAMmChXFyQComzRPzksypxgeh1IQttQbF2LSO2xQ2zWTCDokXSx0it8tAGTJGNNoul3b5p+NYcl6lXwvcIIULWkM647S13ho1pVOpxaVCr3tjbXaO61bFecY8cr/q+1t1928KLLjDWHJvU4zuvFMGqBjcniMNYqjIHK5BmgjWEAELetUyqHDAp4XIgab1nvOrrslWyDaVaUrCQZawZtwqvDXGfU9ovlsJub4u8UxoThtly0wbhykmbMhHRVkJNUkaWy/PNW7w8skyRjzaNNOHNSxDbsNVfvVwkjhZVo3WmqYE2Zn4fz2t6nPHb6JFV1rA55JKU6DYsvM0ky1gRiv4dN5LicBuPD3GcKvhcYqwzGHm54g9fYwsshgQ5rhN5U5VpX3WqvEft9XqFqV85JMlY1UuQ4zPw6tPnFbGPWH7t/ncKgaXVXZoOBtQd3YWJ3TCtdeKOasXIZqlC9uQU4yo7FSDBlSxfzbw37JbXKPXNzobTnjkB9kWG1a1N16zRGZZkkGasW4S/UOMhxlL9Ww3PakiaTHKMJoxa0pNRe2wrWsICn6T5mv+56Ohm2HEwjMzpgkmSsSrT9vWpsBZlACMe9ZhNhNhFlU8UrE+3qxihuMqQcx2EEHi6sLLJ6Jx1zf5V8310ii1x3Vjs4J8lYdWgbYl0JghzlHlP+hzRjwsiDtRRjIdcQ7s+VcbxR1RU88rhatCoz8n44VlcZmyr+Wanc4aTAJMlYVWhDkI2tIFov6y/yUolybX3lrD+k/t+Gtmt1K2S46zLWXQOIF9q4ucq2aCrgaX+d5p9g7pNkMMaAtgSZwjDkqFpubdHm3lP8PcEYA7wilgb3mUFCTfpFOnV9iWXRjj+eVpGxeanxUQlzGExD+wfAOUnGKsFSCLKRnEZ7pMq5bf7i1FoPVQ1rz8NayO4wgKUbd8fIcRSzADrPRZvlsarXUNBKeKt81K360aQawzxtC0vaiYKVJGPqMWybh53ToN6GVYNNaKsw11rOhjE6lDZuNWHLh/sKmJCliqjIcKFjlVgY2QWpyFQLSCwvmUJs8WUXYah1msOqKTBJMqYao+Ygl5McU/eoQ+r5VuF3CKMF6H+3+/83DCcOIkQJ+EQzrAp185Gj2NLFWkaaQrVtMO1tHy6YJBmrCm1CrEkCwuTJMbxfHYZVlKvna4URg/vzkMq35UFsMaa8XCMBQuvK1hoV2YSmZbLMWF2edHX+BHNOkjG1aDILaKse2xDjqBHQpvSiwvB/iXLv49qBQvVnK2z3yFXVYcd9BYrUQURdUvuHnafyZNGOOye2D5Q5SZ3nENnw+cm1CFaSjFWBYapYvXl119TlNiranF//DKvzr2vGcFDFT7ANuwa5RACen6n7Gla00s9Mm9BrXai17cLKbd9bq2CSZEwl3O8PHYzHFKRXXo94aNUlxXFzU9O160K9MaJMVuqO/ISM5Ua/UIi51uXPBky1JhkImJ/n0vC7sjk9kq6adF13wryjzuMGADRuzm9HkOl5zfGZpVbxTgs43MqYOqQIMoaQYGK/um1+V4f5hZYtWji0jodiU+HXUVtDGNMLrbX9+XX/uPPCrYHbDpDukbTXDYiy8TmCitVUuDVs/6CQq1I5siFaQ+raP0ZBy3WeJwZWkoypQh1BNuUghyVIKr8f9i/etuel3h538dAqrYdYN6D/PxplOFUVKpIQLh+VO0ox3ICyaMe1o4vlI1VN/rHuuK2inASyKftjkUmSsSowLEHWhVRHIcb0c43vWtVrT+SyjGWEJUjtkmNBhE6PZKz9I6UkVYOSrAupjsMxZ7kIM5sSrmSSZEwN0h6X/nEbgoxfZ5KEFr/2MGqSi3jWJsIeyVzHW0BypSoE6eYitfLJ1l4/Upwzal9jnXPPsON1aYnOKirf5pwkYyrh5nK88REIslUVYMvnavrVVlpXvhxS+UnG2obb/kH7lH+k0Cm1f6QqW2MIi3a89xJuOS75TVoJigQB0ngWeT82Ni1gkmRMBdoU64ybIEfRbXRO/RqP7YhylB5KxuqDgnZaP8pwaVjZClQJMwUjuWwAACAASURBVKxsTRXtxFRkExmOw7d1WEwzGabAJMlYcbQJsw5LkOMmx9Q1Ur/yMaKcFFbh986aR64N4ami/UPp8mcmVtEKwMtNUvsH4BTv6HTRjnts9svVPkYh0GGwHOQKNC9gPinwH7KMqUIbAhuVIHXL6w+DumuGz8Epx/UDIkUNJxeptC3WUboky6bKVu+6Ldo/2lS21p233HDzk9P4Bx8rScaKok0FZ2gU4L8XXi9SPDOGZwDqf4E1RlvKikOuaxPaGgVQv6TfNhRWtpJnayXc6hbtOO0jQJlndE0E7P3HUNmq1dKt6eSIrEenTUOFK/9+MqYGLleFpfPR+Q0EWa/y4u49dWiaH3uL1eT6BP0xp3XhtmSVownFqpTDTsSOLuW0E8MwvZCtjsew4kcdVkOOkkmSsWJIFeskc5TOfhuCTN1zqf2HdddgDmQQDEGWlnRUtOMW7qSKdlw7Onu9gChDE4FKPjJS2Vpeq77addTQK1WwuhWuKTUZEmQ2pWw0pY/FYKTDrKMQ5DjIse01w6Fxqsnp/7ubkSrasTlINyfpEGRoR+c57WhdtHxQxWvctymWjwzfqztvUgiJskqQ05uX5JwkY0UwjIpMEWQTOSbV3hLJstLKUVzP/eUOq1/rql05L7m2YJQgMHAMzvu5Ql9pZ1NQ2hBjb5CjN1Delg9UJR+ptUuWRgnmgx7UoO+ZmmtVNTofJh+pVT5SxWr48x32S0opkBWbC/fYJ8uir1II+7tFt1iuynGAfzcZK4wUQVpnEXduS4JMKjw9npxg6jrDKFXOTa5dkHGAgvZMBFxlmCuNfp7OScb6I/0+yWprR52KbIO2arKJQN1Wjaa2jRgpAtPl38pKkrHsaCKTJoKszG+4dhtCSrWN1P3FGjUI0OMLF4XXiV122kJT6x0UaqXlsXJlfj77uR9q7Su//SPsj4yFWpUlSvOb0VTVGiPS2P44+hxTLjup92KKkiATxLlSWBYlecMNN+CMM87A3NwcduzYgbvvvrt2/mc/+1mcffbZmJ2dxdlnn43Pfe5z3vtaa1xzzTU49dRTsWHDBrzgBS/Af/zHf0zyIzAmjOGqTJ1ihoZr1BFkm9U8muYMoyjH7RvLBDl9yJW2vZEmF6ltflJZglS1a0gqT0GWoVZCm0KcunaQUVf4cMlUOOtXufsyUrhDx5mIh1uBuHIMx1bq533iJHn77bfjyiuvxNVXX40HHngAF154IS6++GIcOHAgOv/ee+/F7t27sWfPHnzve9/Dnj178Ad/8Af49re/bee8//3vx3XXXYfrr78e9913H7Zs2YLf+q3fwuOPPz7pj8MYI2KUEWv5SIVZ6ygnHRIdbXks99y656u8N/Rd4mA+XB1QKNQjhVgLUqTWj36uCjKkalZVIcmw9cOtai3NBKpVrUA61Dopp506FSpasEtImjHlWMl1LvMvg9ATXnrgvPPOw3Of+1zceOONduyss87CJZdcgn379lXm7969GwsLC/jnf/5nO3bRRRfhiU98Im677TZorXHqqafiyiuvxNvf/nYAwOLiIjZv3oy/+qu/wpvf/ObKNRcXF7G4uGiPFxYWsHXrVszPz+Okk04a58dlNCBWsBPLRQK+QbSZlyZI/xqx+45bxVV/U8MhW2yQOM+dL+1YvMovvBuryOlDroHjA4VerrGYa/t6tJfjaD/H470BjvUVjvbN8ZHFAQ4+dgzHejkePz7AsZ4ZG/RyDPrF1lPe/uKxHtTAbFS0o/rlGIVgVb9nXgc9AM0kSWRHxEeb7M6YV5lBdor9zgxktwvZmUHWmUFn7peQdSQ6XVm8ZpDFcaeb2bGZboYNMxme9MszOHGugw0zHWyYyXDCTIYN3QwndDPMdiRmOxIndDPMZdKO/dKMRFcKdKTATCbQlQJHjzyOraduweHDhyf6PT5RJdnr9XD//fdj165d3viuXbtwzz33RM+59957K/Nf+tKX2vkPPfQQ5ufnvTmzs7P4zd/8zeQ19+3bh40bN9pt69atS/lYjDGgSUUOszBxHUHWhkpbbvF7Vq9bvXd5H/e8NqgjQSbI6QSFWnPtmAdQdatSvhVdkI90Q62pfKTrtOPmI+tCrTTmvi4FKeVYqWQNineEU9kaLpOVSREt2on1V67Ez/5ESfLRRx9FnufYvHmzN75582bMz89Hz5mfn6+dT6/DXPOqq67C4cOH7fbwww+P9HkYS0O0vaOm5aONimwiyBjqyK9ufuyc5XDU8ZXo+K/PGA9ioValdVGkU1rR+XZ01VBrLB/pVrXSa1OoNVWoE8NSCNQlszYmAi4qhGnbPpwxynOu0M/+slS3hmXAWuva0uA284e55uzsLGZnZ4d5ZMYyoy7qP0yhTuyc2LmjQqMa+hx1xY9YdSxj9YIKdKiyVWtT1UpKcJCbto9+rk0vZEGM7n669YPaQuqLdsLjJjed+pxiFt/PMi88W86Ju+3EjATCXGQmyz8A3elUE+SqOSnM781y/cE4USW5adMmZFlWUXiPPPJIRQkStmzZUjt/y5YtADDUNRnThXGQVUiQTT2U6bBp/RZDk6KM8f2on5lV5OpBGGodOKFW2/LhhFp7A+WpyX6ukqFWoCTJMNRq7x8JtdJ4bL8ObdpCpDNnKUYCKbedmLn5SvwKTJQkZ2ZmsGPHDuzfv98b379/Py644ILoOTt37qzMv/POO+38M844A1u2bPHm9Ho9fOMb30hek7HyGDbUWs5prmalKdE8Yc3ztGk7SRFmjHhjRDlMawshRoZMkNOP4UOtqnWolQgTqIZaiTgJocuOO94GIUHKiGr058fNAygXGUOsqjXltiOKa8mCIgUMcS3Xr8TEw6179+7Fnj17cM4552Dnzp246aabcODAAVx++eUAgEsvvRSnnXaarXT90z/9U/zGb/wG/uqv/gq/+7u/i3/6p3/CV77yFXzrW98CYP6xrrzySrzvfe/DmWeeiTPPPBPve9/7cMIJJ+C1r33tpD8OY4kYpe0jPK+pkjV1n/DcYaF0laxi4dfm67QLzzIvrh7kBSlSqFU5odZ+rpYUagVIRaoo8aUWWG6DYS3o6ua27ZGsqEm3oruYC9S3gwjHqm7SmDhJ7t69G4cOHcK1116LgwcPYvv27bjjjjuwbds2AMCBAwcgnWbUCy64AJ/+9Kfxrne9C3/5l3+Jpz/96bj99ttx3nnn2Tl/8Rd/gWPHjuGKK67Az3/+c5x33nm48847ceKJJ0764zDGBFv5GalodZUh0I4gY3PD+SGGKbKh31f3evRL6hIlPYcUwuYciVyHIVSaxwpydaCvNHrKKMdernF8kON4rnA8V1gcKHM8UDjWz7E4UDjWMy0f1q+1nyPPjWdrPtBmn45zbbxcHa9WavHwwq8126iI5x5l0CoiIKQhQ1lUqtJxWNlabhKZFJjpSKMihShfiVRprMhXZpJykcv7SzHxPslpxMLCAjZu3Mh9ksuIsB0iJMmYBV1IfOMgyKX+tKd6IYF4P2RpyOzPqbxfjNtKvsj1GdOJvgJ6ucLjPYXjA0OUjy8ObD9k2Bv5+PEBjhzv41gvxyMLi429kXmuMOgNoAY99I8fifZGuqQ5LEm6pgDC7YcMeiTL8bJHMpvZgO5c1+uRzDKJzkzRL5lJdGYyzBU9khtmMpx80iw2zHRMf+RMhrlOhhO6EnOdrOiRlJjtFH2SMxk6EjihW+2T/MXjC9iyZZX3STIYLtrwUyrM2kSQIWKFPeP4czDVCwmM1g/pIqzOZoJcHbCLKVOhTq5sPpJW/OgrhV6hKim8ulioyKbeyMr6kZHeSELTqh+pJbbqEKtslQ6x1hXtUHVrMtQqhV1HUjoVq5koK1uFm4uMGHRMGmxwzlh2xEKt1Tk6kb/059jxyPVj53j3aFlzKoNfybB1w81VhiHVUUKuzI2rB31rL6dtZSvlHt0VP3JnXm+QD9Ub6S6NRXnJcMWPNoU6RJBaKc9vNYYw99gmb+kW6tB+nbk5EaZbtEMhVtq3ERUUYVwYZbecf0CykmSsOGLmAd77DVxWl7OMWtRBtyZId757Tp2iLMfWXSZj3UGTitSlww4px3D9SLtWZKEi7WohShe5R7NVeyOdStaIcXms7aPynC0UZCz/KINeSSLXMh8pIWRoKOBfN1a0Y4+dIh0ZIUrqh3TXkWxafmvcYJJkTB3arLgRm9NU9TosOTZh2Mpa71kaCJRDrdOPviqWvKIeSFWamRs1qYrN7YksiZJCrSUxGlLMqV/SqsuyQAeAd6yDsVgeso4g6xRjjDRjx2asLNqh41jRTqco2iFQsQ4AW7Rj94O8/Zp23GGsbygdzy22Pbc6Vt87WVF5CdpqK/S80GpxLQrBuqHXVNiVnXXWJjwVqYCB0pYcy15J2N5IV0nSqxqohMNO0R/phVqrJFjX9jHuFT9iY9IJqdIr5SFTtnQlWZKK9O3opKM2Qxee5XTaIbCSZKwIwqrWJsJqcrEp85z+nBhBDlvEE5ufCr3W/RGwlB5NxnQhVJEDpaMhVrdgh3KRi4GSjC+u7IdawzYPoL5gpxwfvlAHMAU6QHPRjn0vUJCEsGinEm5tUbRDxgFSLK+JgP0My3w/BqMWbjtH2zxfW4JcaoXrsERpPkOEpGuuyVgdCFWkqWotQ6xN5gH02uSwExqaE4Yp2GlCKpzqOu3ElaS0YVZzLGw+kop2wnykR5S2D9I/phAsEaMQZdHOcpoIEDjcyph6jOKFGiPIypyWBOX+UtJ1bIgVOhp6DcEh17WDmIrMi7G0ilQ2L9lzinbcgp184Ocm3UrWaOtHpIgnddwE1xwgHC/3ZWWeF2KN5CNddGqI0raKOIU8YY/xcpsIEFhJMpYdqVBrUzFLkwOPHQsUXqwSdZjQZ5lbKsc85RhRlKnrN92XeXT64arIQe6EW2tUJIVaPSUZkqLWtQU7AJIFO+H+UpFaAcQd8xWkn48kxPojiSzdVg93DcmSKM0flu62EgVtTJKMicIlhbbE1DYcGSOtpjaNceYFU0QZIm14EB/nytbphasiB0rbcKufjyxVpFuw4ypKav0IC3bUIFWwoyoqsqlgJ5WPdNs4ou8PkY90WzLcfGTMRKC6lblIU7xT5iMzKWw+0tyneI6m/0ETAIdbGasCbSzqiKiaehiX4sSonF9TKfzwq6181aKYW/w1XDy/hPCMBWK/8JSLZaKcPpD93GJu/FlpOzbIcbSwnjtW2M/9opfjWC+3FnRHi+NjPTPH2tA5FnQ29DpQyHvHoQY9z6uVLOja+LS2LdjxPVjLTVbGQr9WCdkpeySzTJb+rZl5byaTmOmYbbZD+xkyKdCV0myZhJQC3cwcSyGKV/JrLX1csxXIRwKsJBkrjDqf1jqj8/D81HFbglSRLf685flNfZn2vZrnozFV82yMlUeuTYvHQMG65xgzc6MQFwd5JczqVrS67R8uGbaqaM2DkGpe7Y0cN9weyVBFNoVaXRVJiBXuUOuH2cpQK7V+uCHWlQq1AkySjGVGzNB8WDTlIWPztNYVEmoixBRphkQZVte6itYPN8eekYlxNSBXOijM8S3o+sXKH7FiHbflo+c66uiiT5JcdwoTgViYFQDqco9tVWRjqLUgQ9qvrWotCm6IKGNWdPG2DxNqJTI0m7ChVoGy9UOitKJbqeAKkyRjWTCJHsG6MGtIkJXnGeF+IVHGVGUsNwpUVbBrsMCYblScdXRpZF6xoMtL1dikIvNB4e06ULUqEnBUYwsLuraIhVnd98r9eFWraz/nLo0FVK3oPKJ0Wj0qy2IVVa3U+kFLY61E6weBSZIxcQxLBjH1FctFtjk/pR6959P1W935bYgy/DwsHlcP3DDrQJlqVnLWOT5QdrP2c45xQFisE6rIVF+kqyIB34bOPR7Wgq4NKLQKtA+1ui0cNF61ojN2dB1ZkqElR6f9QwrhhVdpfyXBJMmYGNqqx7qcYwopxdZEkOE12hBWjDBTRJl6TiCRU0VJnEv7emNMArEwa7WaVWOxUJWh9VzY8uGpSF2qSGNPpyKkV7/0lTuvCXWh1piSbBVqFX6odZxVrUI4TjsrSJRMkowVwzgVVbWAp5kgl3qfGFHG3H9iuclwrHxvtOdijB+pMKtbrOP2RfYGCkd7eVRF2pYPVz0WfZKhigwLdupMzEdVkXVh1mFCrbLY9wzNEy47tJHLjq8eIy47zvJY2QqSJLeAMKYShkTiodY2KtIbD65beb8lMdFfs37bR/EeDFEKIcq1IzWgROnIU9f64YLbQKYDdWFWKtZZHJR5yd4gvYUqsizSqarIsC/SEmciHzlMdWvdupDUH0nz2oRaXfVI46lQq7s8lnRCrW5OMqxopZzkSoKVJGPZUff37ihKqk5F1hHkKM47qfuW7kHVPGT83qWadEOujOlArkObOUOWFGY9niscz4v9gjRTuci+JUd/vUhV2NG1VZH0Okrrh7vIckw5un6tbi+kP29podbZjrQVrdTzSK0f0q12hSHHjHOSDEaJtvyQUpHl++0JsvoM8f/C81L9kTGiNLlGv7in7rNyr+R0gBx13K0fCbMuFgR5rJ9XnHXI1Nx31kG5XqR12mmnImOkOKx5AKHOpzUVfi3bPfz1I4cJtdL7naxUj11ZhlozqmT1Qq2sJBnrBKMQQFNVa8orNUWQFZJLkKH/DNU5YX9kSd40FuZEfaXoFew4apKuzVS5cqBcpLsNlHYqWf0wK4Vaj/UGlTBrqCJJSSp6HUJF0v7w5uVlwU6yaCewoouFWgFYUjRzfQVZF2otVeTqCrUCTJKMNYSYUUGqdxJALTEm7xEhy/BeLlEq7T9DqmDHXg/pkC1j8iDruV6ubR5SaRQKsgy1umHWY73cqsew5UMNFFSuClKEZxqQ56WKNPZzvaiKBKrkuJS2j1jRTtWKrmpDRyrSC7XKkiy7mYyqx5mOOw505XCh1pXOzXPhDmNFEV1vsYEcQvOAJpUZmxMLo7aBLd4pzhcQ9lwq1qGCHvcv0FQRD3m6KvhfBly4s/wweceyWIfykMcHeUGMhgTDMGuUIINiHVWQI638QUbmWuUFORZh1lhFa95MlCm0cdhpoyI9Zx0n1OoSZpwgs0rBjlvV2ibUupKVrQCTJGOKkKxOjbRVJK+B6twwvFp3v7p7kDm5Cync6xWelHQsAKnNShHml98QJTQ8YnSJMi/YUWoNRZZcTJYTBZFjLy9Dq71c42g/x/GBMS5fpNdc2bFjvRxHezmOHO/jWC/HkeODioF5PlAY9JWzn0MV1a2D3gB575g1Mde5IUwizXzQ80gzvjxWs4r0zAHCrSDErDNjyLAzU1GRWSeD7EhkmbBm5rIjITvGzDzrGKPymY7EhpkMG2YynFC8uubm3UxgriPRlaLcz4wC7UhDhpkEOhKebd1Kg8OtjKlFfYGLeS0JVEerZtsQZMpdJ3bPiqlA5PouqbcJvYbVrXSe1tq2gzAmAyJIN/dIZHl8oGyY1Q2xusqR8pCLEQVp1WOYh7QmAvE8ZMpdh47bgsjO7MdX+wBQ8Wqthl7LAh2ZmbBrVqze0ZSLdFUkrfIR7kvHhs7mJzEdKhJgkmSsMtSt20iIhWGb8ojR6zhb7B7ufSwxFv+5Yy55xypew3u6hMlFPJODS5A96oNUpQerS442J1lYz9HSV6lCHSJFCqvW90WquFocQ18kUL9uZCo/mcpFehWuTutHqpqVCLObla0f3awMuXYzGbWhm4aCHQKTJGNF0Jh3DCbUklnDxdoSpEaaGFPv1ZGle4+wIIeIMlST3j5KBcpqcrxIEeQgIMiSHMmn1SXHoCeyKNTRhVL0ree0DbNWPFpbqMj4yh/Nq32Uxy1VZFbNRdo2D8pHuqt/CGHXjUwV7cxksnTZqVnxw3XcIau6aQCTJGPVoi6nGHsvRZAptViHGFmG9yFFqS0pNhOlW/3KYdfJoI4gBwqlgixI8vgg97xZU6YBnqsOGQU4pKlsr2RVRQJopSLbIGUc4I6lVaRMqkh3KSwhBLKO9FRkuLiy2/ZhC3Uy6RTtSKsgM1mu+GELeKaEJLlwhzExyEihy7AYtrimMjeyEkdIkCHyFg9NS//QTOFclwp86Jec9k2FqynmsfZ1KKpetSncETBFPNot6BGA0OW/57R8eaxGNBHk0V5eKMjc9kJSsQ4V6hzrDZz9UllSP2QYZnWXwsoHZXFOrDBHRZTl6DnJeD6SxmIqUgQqMlbRWvFqbdxgCnRISRbh19J9Bw5ZTkfbhwsmScaqQV0+0iiuYj8IebpIEWQbYnThzs+kiJKlqV4lkhZRoqRnIqLUAbESUWqYatdpCUGtRjQRJLV6LA5MVSuRI5mXhy0e3mZ7IXUlzOqTZWAcEBJkDQm26Y0MWz6iucasSp50bqgi3TYP2akW7WROmDVWsNOV0hbp2Dxkou3DhlsxPaFWgEmSsUIQYjhFmEIbF5+oGnX2YwQZ69904RYW0PkxsqQ2DxN6rRKlgjumIbSwatJtERHCtIXkRZ/lNP2lvVoQtnmEBEmWc1TBSq/H+q5qHHjmAUSQoauOl5vM29nPAahVkU2I5SFT+ykVKQMVKTtxFWmrXEWRdww2CrvSsljkrNN17Ohc1Vjulws3Tws4J8lYNozzh3+UMG6M90KCNMUzbYhXV+aSVyfgk3CYo6RncQtzaEw7hTturjJXmvOTS4Bx0qknyOMOMS7S4sm5qxhzp/Uj93OR1PaRCLPW2c8BGEpFxtDGwDylIg1Bjl9FlmRovFq7kvKSZn6sYGfaQq0AK0nGMmA5f+bDUGvMiIB2XYJMEWOeGHdNl+lcUpeusqSb2SW1hPZMB0JFqWBkZiarbjykQKE0Mik4P9kCufYXTq4jSLKdoxaQXl7NQ7oK8lgvty0fZDsXuupYx51Bv8xDjkFFCimhlUqqx6iBecRJx7Wga6siaSMVWdf20S1Crq5XK/m0xgp2pqU30gWTJGPq0WxTN8S1YucHN0gRY92cTAjvOlII5AWZUei1LOjR1s6uQpQoXHkiRAloZEUhDxNlMygHmWsiPacX0mvzMCFWtx8yLNSJKci+483qLoNFx/Fq1mrbx6gqso4g3bGw5SPmuONvwrrrxFRkRqFWWS6BRRWtNuRaafuAddqxq4FMecEOgUmSsaowTB4zpiIJpPa8cGni4ql2NPc7is4lham09ojSPEhxPQQFPUgTpblcPVEyfLjqMdfweyBbEiQpTAqxHnXI8Vgvtz2RbssHHZNpQCrMqvr9qHFAk4KsI9KQIFP2c9VCHl9FCplZEqxTkd1EbySpSNdZp5tJr/WDSFM46nGaHHZCTDQn+fOf/xx79uzBxo0bsXHjRuzZswePPfZYcv7PfvYz/Mmf/Ame+cxn4oQTTsDpp5+Ot771rTh8+LA3TxTJXXf76Ec/OsmPwhgR9B0+ie/yynJUNVWtZtwgJMhca48glfI3d4679XNdmUsr1udao6+Mmujnyq5PSPnEXBWvdL3CUNvsm2N6b1As3USN7u4XvsmzcY4y1ybneGyg8Yu+wi/6Ckf7Gkd6tK9wpJfj8PEBfn6sj8OLfRw+3sfh4wMsLA6wcHyAw8cHeOx4Hz8/2sNjR/v42ZFFHD7ax2NH+zhyfIDDR/s4fKyPY4sD9I4P0FscoL84QH8xR3/ReLUaz1ZV7A+Q944j7x3DoHfMtH4UBFnnzxrzaE0h7ZTjE2TWmfH8WWVnBrLbhSzGs5kNyGbm0JnpQHZMvrHTzdDpZpAdYfc73Qwz3dKXlbxaN8x0rF/rXCfDXFG808mM0pzLzDF5t3YkVbnCrgwyjQQJTFhJvva1r8X//u//4ktf+hIA4E1vehP27NmDL3zhC9H5P/nJT/CTn/wEH/jAB3D22Wfjf/7nf3D55ZfjJz/5Cf7+7//em/vJT34SF110kT3euHHj5D4IY6yQGC5E2gahCAxVZCwPCaBCjqn3UoiFXb1ryfDBinlBvpKUpdYiqiqpj1IK8xm0KMOxuQZMhyXWpSE6/XExUPTHRvHHRW7+bfrKFEfZqtW8dNFx2zzITcf1ZCUFGe2FzH1XHapkVQNl+yH9do9q2BWIk2G7FT7S1auhgkyNx1b6cEOqdcU6ZRVrudLHTEam5ZSPJHcdYc3M3RArhV6nyTwgxMRI8gc/+AG+9KUv4V/+5V9w3nnnAQA+/vGPY+fOnfjhD3+IZz7zmZVztm/fjs9+9rP2+OlPfzr+3//7f3jd616HwWCATqd83Cc84QnYsmXLpB6fscYR5iHbEGRd1ast2nHmZEJAKROWzbW2ectYGJZuT31i4QoiWhRhVpRtIRSOlRrIC+ceqiCe1i+ccSIMq+ZFMY5R8YYwB4XqplU8PB9WNRxBukU6ZDvntnvEQqx5Yhks1ziA0Lbdo1KQEyFB9714HjK+XqQUZXuHFAIZFe8ELR9hmJXykq67TtkXKSu9kdNe0epiYuHWe++9Fxs3brQECQDnn38+Nm7ciHvuuaf1dQ4fPoyTTjrJI0gAeMtb3oJNmzbhec97Hj760Y9C1fgYLi4uYmFhwdsY04FxGxkPs5AyEZr7o1MJvUZaPWJw57lhXLq+csKnNIdaRjTc9g9tw7F50Cbihmbz4lhrJ0SrzVzz3toOwfaKQpxeQYy0HxoF9HJfPdKyV8e9fsgqQYbm5f1cYdDLvSKdPJKXpErWukKdUEGmVGQ4Hq1YTVSzluowFoKVJtwaddeBX93q2s9FVaT0inVCFRmamVPfpBBwCnimN9QKTFBJzs/P4+STT66Mn3zyyZifn291jUOHDuG9730v3vzmN3vj733ve/HiF78YGzZswFe/+lX82Z/9GR599FG8613vil5n3759eM973jP8h2CMHUKIVgYA40QqFxkiVI+xeXnDo9Mve/QeihK01RAsqUrziLpQi+miHgq/AqWi1EXAVaxhVUmKsefmbQP1SPnivlK2SKevqmFWWjS5VI2lxRy1elCbR1jF7K1yoQAAIABJREFUSv2QSlEFq1/Jqga92jCrihDjqKt7JPOSscpVJ8wqixwlqcgsM0TohljJfk52pGccUFesE1OR3UxYM3MixdWgIoERSPKaa65pJJz77rsPQLx5XDt2XHVYWFjAy172Mpx99tl497vf7b3nkuFznvMcAMC1116bJMmrrroKe/fu9a69devWxmdgLC+kGF791OU223BxKgDhV722f57q3LKH0pJwhCxVbsKwKFpGKE+ptMldagGP/LTQRWuJibcKjeLbxuxrIWyWci3kKokcSUH3cpcky/GBAvoFAdpwqtLWrNwNs5JKDAnSDbP2I2rR63/My1xkPqi2dYRhVgBRM4FhMHIuMhJmlZ2uUYhBDpKWwiIVKaUfZq20fbRUkdTqsVpUJDACSb7lLW/Ba17zmto5T33qU/Fv//Zv+OlPf1p57//+7/+wefPm2vMff/xxXHTRRfjlX/5lfO5zn0O3262df/7552NhYQE//elPo9eenZ3F7Oxs7TUYk4MU5ksuJMFxWdMNgzAUSghDrOV4cH5LFpeScpRGXbqGA3VkaVVlETIVIq0qDXkaKzu3oIdUpSByLWzBVhtZUsi4DCHHVSMV7JgQq7IVwIuD3Nkv2ztoNY+SDAcBYfp9kG0I0qwRWRbrmP3+0K0dbapZw/06tTh0mFU4xTsdaVXkTCbLpa8iajJUkd1MRlUk+bKuFhUJjECSmzZtwqZNmxrn7dy5E4cPH8Z3vvMdnHvuuQCAb3/72zh8+DAuuOCC5HkLCwt46UtfitnZWXz+85/H3Nxc470eeOABzM3N4QlPeEL7D8JYNRiWTGM8FvVnddo7ynPjBNmWHKPzvW+CFmHYoAKWwqoagChM0I2/K6AgitxkSI5xspTFdaeZLEk1KsDmbIkQKTfrKkml0+qRCNJdD9I3Bqj2QZKKdAlSRQgy1Q9pi3UiBJlSkTFyFDLzxpsI0kXKNCAWZqX1ImUmi3ArykKdTtHj6BAkhVfrVCRVtIYq0iXU1aAigQnmJM866yxcdNFFuOyyy/Cxj30MgGkBefnLX24rW3/84x/jxS9+MW655Race+65ePzxx7Fr1y4cPXoUf/d3f+cV2fzKr/wKsizDF77wBczPz2Pnzp3YsGEDvv71r+Pqq6/Gm970JlaLUwwTCCwRtoFU3ncV1xIwzBXaEOSwz2QqXFsSphJRVak1vBBsrn2yhPLDr/VkaeS8mDJlGapGam1xSVKhJMZeXiVH/zUgSeUX6JAXa8Ws3LWb8xSjLh10tCFFlzS1UrV5yBSGUY7hWLRYJ1zuqjNjFlLudJNhVuqLJFUZc9aZCYp2XCNz136OjAPSuUjf2Hw1YKJ9krfeeive+ta3YteuXQCA3/md38H1119v3+/3+/jhD3+Io0ePAgDuv/9+fPvb3wYA/Oqv/qp3rYceeghPfepT0e12ccMNN2Dv3r1QSuFpT3sarr32WvzxH//xJD8KYw0h11XSWwpBxop00i0hRdhVCuc+7g0FFLR186FcJZEl2du5+UrIeK6yQo4w4VvlhruA/9/e2cfYUZ33/zsz9+6uje1L0sVeIGBI5dqmJgLHGJu0MSqpYwdKpVQpLmjj0siQqI6hpmqxEooN+vGmijYNSR0s1zSqaVQgVEFJrFIEpK1fSwyY2LHs1EBNsw6meNfUwezeOb8/Zp6Z55w5Z2bu3Xv3zc9XWt2ZM2fOnHu9vp99nvM8z9Fy1EYSmjwCdyiMIQQqtEDRuroFaQvM4UCk1yFuVcbHZgSrGaCTcbMyQJqRrARICtbJALKejWA1rcjhrEdag3Vsbla2DlnGzUpgJEuSV9bRd/fwdVern1bSMfMiyYpMolrHkRUJAJ4a6VDDMaCBgQHUajX09fVh2rRpoz2dM0Khot0tonOlaFcLuq6M6+mXI52HceBKMl48RnJdZXfaoF/uemhPzTAhWQaQZXYJMWWmuvAC6bR+Ga3VeNp132fH8ZcREMGM/hr34uLoJvToET481jeNpKVzKjgd9c1GxQ73y6zO/s2AtFIS/fuHccCNBsn43zp1u6YpL0OhSnIewzAflnwnj5PvDyXuVZuL1VyHHDw95ARkqNKiAbQWOfTBLzNl5zKRrhZ4ll2TNMHI2zJbXcUu1aCzK3qlKjuVDni+n7EiK9UgOe+cVI3OKz4mVdPKOpO1KjtphZ1aZwVdlQCdMUR5dZ2OwEdHkFbYqfjApKrfkgo7AwMD6OnpSdIE2yWp3SoaUTUavFPUvx3Ve4DygCwT+coDd+wPi199Ly46kNZ+5ZZl9EeDl7EsAz/rgqXHWa3LMD5n1qXNkiRwhk3mspowBFIQRscpJHneZ8iO6Q+lUFHhAD2tw4RjaFiZlOLhsiBdgDSLBWi7e8SApHVIHqzjqqqjfS4NWpGFxQOcgTpBAkgevGMC0oxspXMzWCc9DhKLklysFSOqlVuRyR9oWlRrw79OoyaBpGjEVGZdkkPR7N+sXEE7LiuSAGmDYzPRrvw9plGvbGwvDdjxPY9BScXBD+m1QaiMlemHZGEqzcIETOgpw72qYuuTYBnPMZ4PzcK0gvmpi/30eZlAjN4m2ytTpZYieQHIWiTgUTQrWY11BZwarMdl57j1GF8PlQHCOrMkDTiyDZMpGIdcrIOnhxKXKt88mRcM4FaiaUE2G6yT1+ZXOpI2FxxpHTICYmpBBpUgyneM8yEpUIeASdZjpSNAR5DWZe2o+InVOKmjgs7YmuQ1Wrn1GL0GqPhAh5/uJUnWZHWc7WIskBSNiLIWoV5UwPe8QjdmtBNGe1YHTEBy2eblgmNeYE8miIdkBPMkViQAhHHAjsXKrNfjWB8/tTABJFtoRcBUSfqNpzzUkVqe9F2VQDVe76TPIoVnY585h6F2nuMijyAZBeLUVVQ4noDIXaoETIpYDRWSa+RWrZOblQGS1h0JoDZA1oei8nJkQboAya3F0AJFFyCTz6cJK9IVoGO1HgOW7sFcrDySldI8qLIOD9bpCPQ0D54TmViTZkRrwNM+/HhtMi5EAL0E3XiTQFI04jKBaZNnmJE2t2wz1XvKVNXh/WwBPSboyka82vq5o1/T50dAjGu/IgvMKvzYJUv36MAEKOAnhlYYrWPW6XFKaWuSQPTZ1pNCCKXeXvzsePbM1UrPT64xizFag4x3TElSOlIL0m5Npu7WegxTAt9QAsEUjjo0U9dqYhVq+0EircfqAKTuXs2vqlNmvTEv1YOfl3Gv+lUCIr9ud7H69OqnKSBmNKsJyMTNaka0smjWCnOp8tQPCtgZbxJIikZUNhdqZp2xBERHWjZA2ougNzqy6b9NX/ySwKSET19F/cm6jO5Jg36ANKWEXK1kZUKl4Iz6p/Mq871mfhRkIdIx9aFuFEjlshrTY+qjtDXH9xNIpq7VugFIGxzNtccUhEZATrIGCasFaSte7vxscq4ln7HFzcrbk9eC9UcCZLotVtVdMMCLCpgnbtf4p8PyowHSt6xFBtloVrOqDv2MNwkkRSMmG/yK8iWd97UBpOZapGsdkveJ+tnHK7Iwo11BzFbWYAFm1uWqEMZVTrRrDJgArFYmoLtm6dnc5QqUsyT5+6C3bQKR5m+uB9cV0sAbgmLcRkE83LVaD5EUBeAgrDOL0gRkPYyCeKL8Rj0QxwbIKLUDWpoHD9JxlZ0rsiLLulptUaz06gKkXzVzITuiknI565BUeo4H65hQDHx7EfMUgGmBAA9GTqTHgOmP3e2w8iSQFI2KfC+qFlO0LlnG8qS2Ni1XJrIH9Oh9Gik2YO+bfotEIIz71tOAHesaZQLFNKgnOo9dpvF1Cvyh64OhkY5iANT2HjPvw+hAFiKQGLmJ6zQ6BoNhCkkCYhgqBkSlwTFU0doj5TxG1qO+1jjEjnk7rT9G644sUIflPJrWZXTsBmBR2bk8K9J0s1KbecytSKcFyYoI6NGs9nXIJJKVlZ7jlXU6K/b8SIKj73m5VmSSkjTOquvYJJAUjbjKgs8GTVvwjmmNmlZm4HvWCFdSYwXM7YDMrHU2a+YakX9R7VeCVRaaNmACcEIzalNJtCwALWI2KcjuRwAtI9tenLaIYdN6dFmNtI0YuVdp3ZG2FqMcRxOQ3OVaN0DJ94LkEawaGBkgUzerI98xtiLtn0f5FI+iaFYCYHLsACRV1EndrHE+pGMdku8TSdV2sqke2XQP38sWMTeDdUwrcjxV17FJICkaUZVxuVI/E15FOZWtlCstJL2eHmvgzOlX8sHZNgY4GzQ5MIEUmkDWkoza9BQTgEDJ51F+yra0GJvLWm93W41mwA4HnxmYQ9ds1mM9jKxOcrGaEax5gIzcsY5I1Rw363BktSKDAjcrA6ReSCCGX8XLXYekQuY8ojXXzcqDdShgp0Swzni1IgGBpGiUZYtQLbsuabs/3k2x6fmUcZfaAFkGjuVcsdlvk6g0HTtncCNopruMRNAEYICT3c9TOjSLMlVeFKI9YIkHNNnWd1MoaucWq5HctQQ6DsfoPC0jNxSqjPVIrzyClVysPILVvJZdh3SldrgByfeJtLlai1ys/Jxvd1UGkLxwOe0L6TNr0bYO6TNAmhakzc1qLxyQH6wznq1IQCApGiVR3hSHCSW28y9ccrna3LM+9PttIDWBG3jNF053ba/FAdnIGmUj5e24BQlE4ARobZdcpGk9WA5OAPC5tZsBoGKRtJEGS/yh4a5KlP1sOBQB5FqN/Oc0AyUF5tRDlbhbrYDk1mPsWg2NAJ0iQIYGJPP2hzTVTNFy3m5aj3RcBpBUuJw2UTYBmbcOyaGoAdJPLUYTjnlu1mQrLYGkSNSYyrpcXe7VdhYVsMkGwaL0j7L5mNkxiqHKg2s096sFnCQOwdD2pRWm97qfn21zuZpdUKR7iqxGHZahdt1lOdZjdy6PWuUw5BGsYag0QFIuJAGSKurYIlW5XFZkI7LBEUitR2orA8h0Jw99Zw8eqGNbh9R/0nVIcrP6Hpy7fExUNytJICkaVdmiXAGb05H6usAJmF9Rw13DLBPQwy2l9D4OC8P6bDagh48BlUSe8mekO4+kfU2AAoa7tUkVvV8bFKP2FIz0WfB1RR2EdbgsS77+aLMeVQaWupWY7gdZDpAuNyupjPWYWzDAAUgTkjzNwwZISvdIolmNQB3aI9JchzStSLIu04o6RfVZs5V1xrublSSQFI2aXFGuZV2u0TU7ZO25lcWl78rItQ7JrwE6MEwNl5XcakyezT6hNH0j+yCzFmvpZ+YA34SmCUVqJ6jR/bb1RhOMWberSkrMUeSqCvVAHB2EyAToDAeQXEXnXNZIVgsc6TwvzaMIkORiJUByt6sNkBXfUbw8qajjLj8XbeQ9Ma1IQCApGiVxiBHofJXW9fS9KADHtBzJmvSVh9BT2rV0nVIP3vGQTQPxfYDiKgJLJK2p/LVFvY8WxFJgaerjtNCFHL+3ZoFIss2pHtqv15UOPw5DAJqlmPYz3KVWd6tpYYZOMHLL0dyxI4lupW25GBzdxQLs65DmMYlbjARAl1xg5Me8FqvnB6h0TGLFAlI4+p6XSfXwPQ+ValSwnNpof0gqXE7Fy6O2aPurKZ0VVAMPnYGfbIFVjYsLmAXMK3EBgoqPJMq1FdtgjSUJJEWjJgIl/xr2Ea2ZuXImXRjxHL7VdqWNmG5WFyBNi7FoX8p6A6kXZVQf5tptdmuw7B8A/Ji/EuzoPD0OM7C0uVutgMxxqyqlMpZjAsGknxuQNqvQZkG2MtXDtu7IjzkgeZGAPEBSqge18SAdc/2R12alNgIkd7F2VvyMBZlYjBPUgiQJJEVjQja3aRIBi5wAnnj7JxNG0UbEWUil63bpOl5LLbhYpos1f51Sv7cd87HNo1R/Cwhdx0NWILrBWNZyTH4sQTku61FzoTK3ax4gXZGspOEUCDBVxnoE4MyBzAMkj2TNC9IxAWnuEZl1sToKmE+gdA+bBJKiUZXNmgTcZeaKwGlLDSEVVd4BilNEmkkfcQGyCI5lntWSQKCcMVxgHLK0m27U9NjuhuVw/GAozPThcCQYEhBt1mNmQ2SlNJA2Bkg7HButwcrlM3iWtR6zRQR8LcWDrz+agNSKljuCdCZ1VDSXq5bqYYlkteZETqB0D5sEkqIxI9vaZNqeDegx71XKXiiGgGveWQTEMmuVQNbVytchywDStq6X9sufQCOQbGYsGwxdxyYYba5WmwvWCUkDjhx8RdajCUjqVwaQpEatSL+EBZkpOWdGsToASUE6jQCSrMi8KFbtPKmqY7MkPXRVAntO5AR1s5IEkqJRl8uaLF6HtAfwJNcdLleAqtHoF3zfsSlyC2QDpAuONli5ADcciA6VHNO0FKPj0HndZTHya2Y/DZI5cCzjXrUBMlTFgCTxuqxl4GiromNet53bgnN4u16onODZSkBm8yGrvldiHdKMZh2fW2CVlUBSNObkeZE1act7JGvSVaaOAn/yXK4Is65N02o01yobrdTjYlMjgHTBqqgNcAOw7DhlgWhryw/asUOyLBzJvcor5+TBESgGJKmR+qtFeY+2/uZxOfcqATPQigQQGPMAae4NaQKSX8tYkI51yKqt9Jw/PrfAKiuBpGhMiKBnwo9g5YIikAbw2OrAkvJcrkD5YJnCNUvLJHnOoPksGyAbBaUJxLJWpx2WobVPERT5PIqgyI+L4AggA0hrAE6O9QiQqzW0wjG792O5EONGLEibmxUA/GpVa+OA5EE62tZWCRhZ4I4NkMyKnMxSPmgd0syHpFQPvg7ZVfHt65CebklOZAkkRWNSnheXKrdZixyccKd4RGB1u1x9H5ltnoAsCNvlhuV5hUlbCVAWQbGcpWiHoe3cBUU+F/Mad5/SawaSrCgDD7YBYLUeyb1K1xsBJK/FSrK5WblsAGyZBWlsf2XfJ1KPYvV8NAVIs+QcAXJSR4Cq78cgTIN1utjGytUgW5u1YliTE10CSdGYUSlrEgVQpMCfnPxIcrmaFmEQh85yIJYN3nHJZUXarNE8GAHlgmjs540D0TUPFxSL1iVNOIZhCdgxiJrrj/UYwuUBGWqRqe7o1XjcBjdLNq+7jlM45rtXtZ08Yhj6DJCRqxWlAJlakbZUD09ztXZy12u8DknFAWzrkBPdigQEkqIxLFdhARJPB/GV50ycTwJ4gIZcru3KoeQqgg3QWIRpdDw8KLqeXwaM9Go9dsARQJLLmFyzWI/cxWp1x5YEJCnPigSM6jkNWJBW65HBkdpdwTl6UfI0SIeKAiS1WOMtr/IAaeZCJsA09odMXK3sXM+H1Nchq3HKx0ReiyQJJEVjStyatAXSFKWDmNakK4AHiOHoq1IuV2pLiom3MRI2D1Cu4zwwlotWzYdyM6+mS9WEF2CxBDWQ6tYjv1cbowCQJBsoG8l3JOC5gGo7d8ERsO0R6XCvxoAMGgRkWn5OtyA7ghSKXZUgLVxOwTpxoE7FT3MgK76xDnkGrEWSBJKiMScCJUW5kjXpAiWde6B+NlDq1mTgewjrKgFlun+U0lyuPkX8xG3RX84pQM3zvIIFpqs1zwLLg6NpNTZqGZrPKHpOw68sEAfIQpG3UZ96nVIuUjBSPxtUE3cri1TO9LVYkGW3tfKCAKpet1qMLiuS12rNgyJv59tbccuRNks2K+tUqoEOTQccac1xSlc1OSbrkUrOpaBkgTuBh0lVP157jOuwxjVaye1aOUMsSJJAUjRmVWaNkYNT5eRM6mMi5p7dGg2YH7eRtI/huGddlpx53WU52vq4jssDuDk4AimwAFgDcpI+STvS6zaL0Hp/FpAkmwVZRp7vJ/cS9Fzrk2YBcw5G/urcF9JYd7RZjlodVm0D5bjUXA4gKQ/SBsi0UIAOyK5KkM2FZGXnzhQXK5dAUjQmZbpbAUueJApK01msSVdpAp8WQGFPByFw1uNJBfFDXC5XW8pKoxB1Q0nPWywLu+HAMfe6AUd6NeEGGG5Xy3183THp3wAguYu10W2s0vVHP+6vw9J+n6+NwV9dcKT7fIv1yPMf02NkAEnFymnfR1eQjquSDhUK0CJZk4IBQCVI1yArZ6CLlUsgKRqzSg26bKk6ABm3a1KBp2DnC7ovSMxKu8Xos+v6/pZZALryJ4vA6HLNllEro1Lzrjkh6VhvTNqM4Bq6bkatAjnAc1igJH5s+4OlkVqr2eAcP6d3eg8/9g1QZmuzFgTmGKA01x+Ld/Mw0jyqQQJAvuUVB2Qni3SNarFS4YB0TXKibX/ViASSonEhvj5JULThhZeqa8SatK1NmpZs4AGhJYcSoZ6HWaaQelHfIivSBjlbuysIpwwczb42OAJZ6xGANfqU2rk1aN5fykVrCdIxVSbH0dbGoWfraxuTlL/tlQ5Hcq+SS9XmXtXWJWNLsiFAdmQBWeXuVpbqkUSyxuuP+g4fZy4gAYGkaAzLlTcZXcsG8SjYiwZkx4yCeJRyl6lL+udYkzxgB8iv3hP4AOVKNlrirkguyBUBslErMg+OWjuLWNX6WSJXgUZcrO7PjAfr2GTC0PeDJHjHBcYyQTuuLa/Stghy0bkOSI9BUHezglmSvnbcCCA7+HpjDEhbsA6PZE1zIj1tLfJMlkBSNOaVcbs6gnjMvEmbNekuRBB/ExRYkwRNE3ImyIO4oa5an29ZBnJ5aRy2tsJ1ypLWY6bNcK9GbTog+Xi2dUz9eeZ5Y58rhyUBLiyZ/8jvMfu61hyjYwscfeZmNaxHblWaQTqT4jXHIHabmoA08yAbB6SnuVfPxEAdUwJJ0ZiW1YoENLcrj1h1jmFxu3qeStJBXO5RHukK6HAka9IM4OFQzJS449fYc8u4aG0RrUXKtQzLvjoCcwBYAam9NghIkq2N1MgfHC4Xa/QMHZZlxzOPG7IcyeXqpRV0TOuRu1e9GHBmkI7LgtQAGbgBmRQt9w23qg8tkvVMtyIBgaRoHEhzuyJbxJw4pkwXbImUEEqD5EE83Jq07RbiSg+xuWC1e5nLtR1yRbEOK72jCUCa7eYaJOAGpK1AvWlFlpGtWk6jdVdtY5rHtmjV6DwfjglAHdZj4mr1vNIu1gwgjXzIpHB5EFml6fqjJR9SAJmoOHxrGHr33XfR29uLWq2GWq2G3t5enDhxIveeq6++OipuzX5WrFgx7HFF41/EJ8/z4CMO0rEUWE77RdZm1M+8D7luJD/+69qP12V8P1vMOboevxqD+bHbip+b9ybHlonY2lwaToRsWbUKkHYXqj7/PCvSpdR6y6Zk8GOzRqpLZj+flY/ztVJyviVi1UcQRAC0ATIpLRf/kNXoB2mKBxUJmNQRlAZkV5wXyXMhuQVJ0ax5gBQLMqu2WpI33ngjjh49im3btgEAbrnlFvT29uKZZ57JvW/VqlW45557kvNJkya1ZFzR+FUZtyvPo3SJR8l6lio8RSkhvtIr8JjXo0nmVeSJJm1zuRYp8P2mXK5cDblbC9yaTkBmoAe9n2Nc1zZnefJ8L/M8rSCAYVGmc8q26WPYy8zR+ABy3ap03WY9Uu6jz9YkuSUZbU2lW5C0BmktM8dcqKnF6FldrARIzb3KAHkmp3q41DZIHjhwANu2bcPOnTtx5ZVXAgA2bdqExYsX4+DBg5g9e7bz3smTJ6Onp6fl44rGt/Lcrr4XR7ciu1apBfE4voeL3K55QTzRYqg90pWKrtsiX831SgJmxfcSl2kjEM1To2MU5UC6VJS3aPZrNPCGZIMjr6fLCwI0Asd0/CwU6Rn0fHolL4FfyYdjBNE095FHt/LgHAKkuQYZnRcDkrtXXYDMBOuQBdmAB+NMUdsguWPHDtRqtQRkALBo0SLUajVs3749F2Zbt27FP/zDP2DGjBlYvnw57r77bkydOrXpcU+fPo3Tp08n5wMDA614i6JREAclPA9R7E0ERy8BqB2U8ADPU1Aqug9+fIx0jCJQIvCjGq4qri9qgBJ+bOHGFmXop3mUiYtVGxPaogcHJRDBLdCOo3hdare9NqK8dUubitysLhVZkTYR9AiInh9ZpRT85Fm+0DPrR36gza2oQAB3m3uWYwJiGYuRoEhWo5dAMi0cUOkIknVHDkUevZq2B5jaVbFU0YleqVA5B+OUjkoaoMPgaF2HFD5a1TZI9vX1Yfr06Zn26dOno6+vz3nfTTfdhIsvvhg9PT147bXXsG7dOrzyyit49tlnmx73/vvvx4YNG5p8J6KxJgIl/7r1YQncaaSEXY7rlUPNtQely6L00wckVqwfFy7gQTyuSNcyx2Xk6l92nGYtPpLN8jPbPS/yDthdqHZQ0jWaowlOFarMerFrfq42DkZq11yt8XW9DmsWjrw4AIGUaq+a1mOnAUdbcA4HZGo9GuD0+XqjHZBnerGAIjUMyfXr1xcCZ8+ePQCQ/PJwKaWs7aRVq1Ylx/PmzcOsWbOwYMEC/PjHP8b8+fObGnfdunVYu3Ztcj4wMIALLrgg9z2IxrZcrteinUK461WplIOmPNhBGXJzFVn3KbcoKU8SyVg6RGl9EgBsu4i43K58bdJmRfL7TDXrvnVBrlFxKzBvPLquu1CzoCTZLEsbNF3PMucYtWf7aBGsng5Lns5hwjFTVcfPFicn61G3KPWAna5KkFl7zFTQYaXmTEBWfR2WPqRYQJEahuTq1asz0aamLrroIrz66qs4duxY5trbb7+NGTNmlH7e/PnzUa1WcejQIcyfPx89PT0Nj9vZ2YnOzs7SzxSND5mg9JBN97AVRSdQ6qXudGvSZnX6PrTAnZSw2UAeKoAexE3JPpRxII/eRm7YrHsVKLYmG7lu9jHbiiCauEC9bCpOs/J8L3FR83E5KEHXE6ClzzaBCdihmXkvtshoA4yZNUjPAks/WwzAFdVKUdIExUkdQQLFiuFuNS3IIAGhHZCdlUCDZVIowAFIKRZQTg1Dsru7G93d3YX9Fi9ejP7+fuzevRsLFy4EAOzatQv9/f246qqrSj/vJz/5CQYHB3Huuee2dFzRxBAHpVKWIgOMgHvNAAAgAElEQVRmsA0DpfJUqX0nbRGvZpEBHZzctQoQFAmC0f3p+iQvV2dCDojyHrPgzEa6FlmTZWCZvr/I4vULoGlafNxCTNsikCV9HdYkBzCAjOvVBkuyLE35ofub39af3gufiw2M1I8H7NiKAZhrlJTzSMExLteqCcfEqgxoKytfW3/MsyYpgjUpVO6lLlYfkupRVp5q1Z+DFi1fvhz/8z//g29961sAolSNmTNnJqkab731Fq655hp8+9vfxsKFC/Gzn/0MW7duxWc+8xl0d3dj//79uOOOOzBp0iTs2bMHQbxlTdG4RRoYGECtVkNfXx+mTZvWhncuGknR+mSo4vqgiIEZF0GP2i3nseWZvQ9JHVgVj10Po0CdwbqKEuxV5Eol69Fsi86BwXqYADPpE69PJhGkKgJldL9K0jR4MM2Qcc4Lnn8wFFrao1fbfWWr75TZ5cNso3MzTzJqh97fUaVHG8v4emo0epbLZVk6g3UMdypfoyQw0v3clWoG8FBKhwuQNuuRW5XkNq36PiZXAycguypRfqTvpUDs0nIi9Zqs492CHBgYQE9PD/r7+9v6Pd7WPMmtW7dizZo1WLp0KQDg+uuvxyOPPJJcHxwcxMGDB3Hq1CkAQEdHB5577jl87Wtfw3vvvYcLLrgA1157Le6+++4EkGXGFZ1ZMi1GV9m6ojJ26X1ui9I3o10zblZoFqW5SwgP5LGtT/K1SQCaZcjPXW5V6pPngrWNY3XBshQVazCNEWjDrUmEEeD0NcV8i5Jbh6nVmD6PnmX2saoEAUxouizGaDjdakz65ATl8JQOE5A875HDUavJGvjwPc+R3qEH6ER7QqaArCZ7QOqAlCjWxtVWS3KsSizJiam6YRUC+RZlPcy3JoGsRTlYD+NSbS7rMQ3WCUOFQWq3Wo9pG1lVZKm6rL+h0GYNhlYrkV6HLGM1VNM1nn8jVXfM2q1af0v1HdOqNI/5/ea4jcoM8LNZkjZ3KvUlMCbnfjYoh687ugBJa5IdlUCHY+ya5QD0Y7fpZLY/pAnIirHWGHgeOiusSMAEA+SEsCRFopFUasTpmzS7Il6jTIy8vSfp/tTydO0WYq5P1hXiCj2RxWi3HtOIVwDxHO1BPAC0/Ek6jyxApOMha0nS+qSZKG7mWNraaAzf96I/IEKL5WizKOkhBESltDXK9F8MGasS7DnJJ5qxHLMVj4pkWp75eZBZMFI7B2Ny3ddrrXI4ckBWfN3dOqmjksmJ5MUB6JxcrLRhshmgYwbjJNbjBAXkSEogKZowIuZooPTSSFXuCU32n0QRKPVNmnMLDVhAaUsL4VA0QVlHM6DUCwyk7Z52Dw/kcUHR2hZbzRr8gAwoac70ohUCSIASXbfB0ucF0EtUlQ784jSSojYOxbRPPH7gJ9fMvEjTreqCI49cNYNzMgUDWP6j7yGz5uj72QAdV6EAzb0qgByWBJKiCSUXKHlNV2KZVqGnAJRlCg3YQBmiMVCGPvlqy4My6WhkfdpA6bpmgpL3A/RoVz0VI+FiJoUjWVekT6MkLAEdmPEErNV6yuRBJmN6HIRZKPJ1RiAqDkB9TauRw9HmTjXh6AIkrUnyiFReQYeiU6mNipSbATq21A4BZGskkBRNOBWBUsV9XFtr5YGyrtyFBiLpoEyqoBml6zgoo45RG7kdeaGBIlCm16K0EBN0Lrmg6AKmZlGG2YCbFJbpiRaEg7TNhGV0PYVgNLb++ACNFTTIBOYY1qkJRb7OCAB+kBYy14J4DDjaolZtcKTCAHxN0mU9+n5OiocFkGaaRwJLAeSwJZAUTUiVAWVeoQEXKL14f8qyoAy9dH3SBco6rUX6Rl4nH9PifiRQ1jUY6KC0WYx565Mucdcrn48GPp+vVer9+CFnnweeB2k81M+meTRiOWpDGUDkY7kKBnBLkoMRQAaQFIRT8W3g1OHJ3audRpCOzXpMgWnu4sFSOhzWpGj4EkiKJqzoO8JDZDVSMfTIJQgAEe085cXgU1B0Dr0YenQfgDAqQgBEQPN8Dwoe/FBFcFVAGKZwBXxUEUeIejGEw7gfuTCTEncegBB+iKQguu9FEbB+vL1WEHio+3qEKpAWHIjaUyhSwQGzP7Xx+3g/M3jHGfkafxZ1X4949YxIWCD6gwEA/KB8/mOD+yJnZI1ctaR68FfTUgTsUKQfvt7IocgtxgSYMRApWrWrEmTAGKV9ZNcePQ/oCDwrDCdaDuRYkkBSNOHlsio9I3q1jFWpPADw4vGK1yn9jPnE3bGRJRkEccRrmFqUAQhEXmbM6Dw9zLcYsvZbWywMirCN3ws9jedX6oE2RnSq4/0Mx70K6JZjHhSBtAqSC4bmNdOlSmuNLjhSziMHZWdFd7PaUj8yO3fkWI7iXm29BJKiM0I2UKr4S7FsQfQQHoJkz8qSAT0+jC214s4aKAFywQacCcbapR/EYxkuWPoyzi9cngb2FEGyeKyCe8IUlgB092oONAGLe7WJb31XqkceFOm1yHI03anpj77vYwJIVhAgAmUExMDzWOWcrFs18BzBOQLIEZdAUnTGyASlFwOqqDJPuyJf4XvRs0IFsipDj4J3aAxYgnyicdMgn7LfjhFVAz8FUR4Qy1yz9UnaDOsynYa+swcADZxcjaZ42NrzoGi+8mNaOwSQC0c6ntwRZOBI5eRMOJJVSHmPUT6j3Xr0GCgrfgrEwJcarCMhgaTojBIHJX1vlylhR5s2R2kdxaAM4nXKwSh6J366EfnqmVamQjXwE9crL4xuul+5VdlB98Ti4LJtt9VRCZBXHN2mPCi6xuDnAeWB0nn8rZ7M23dYkiX+ALCVp0sKyCMfivRqOzatQhsYM2uSFjgGvh69mgIT6Krw0nPRuNx6TCEYjxl4SdCYrD+OjASSojNOBMokgMOIfLWBEnQPUGhReogAHPheFIxjWJRB4CUBPNRmrlNyCzKpoZpjVUbHjbhKoyhJFyz56+kh+96VNnDargH2mrOAG56NyrRA+XkRFM22MlajbU2SFyI34UiuVC1wJ/BLWY8pDD1xr46CBJKiM1K+l64G2lJEOCiBdN1S5bheo4QGJJV8zDJ2kWuVXI9Z92sQeEA9vjEGJVWuSS1IL6n7agb1kPuVr1U64ZScp7B0Abaz4jfkdnW1AfZ8T369WZWFpA2OFcd1M1LVuSYZB+V0VVI4UvSqC47kXiVrNc96TC1HCCBHQQJJ0RmrwFijtIGSLMi8eq8BUjCaViV3vUYAy65T0rpklKiPKPCFDFCVDJpZqwwA+CEwGGaDevg6oAkrsgz1a2kUbBnw2dy4JghdlqTtnFRkBbtgaoOi7di0Fs32MlajCUczYpXgGOSCkp+n1qLHrEcOTrpe8WWT5JGWQFJ0RsvPASWQjXzl9V7hISku4HK/Aqnr1QzoCbz4Hr4u6Uecqys400QyLliwIgS+QgBW9NwCS7IM7aAL4lfdunS5WYFsbVgXNEm55e9KEMDWpwiSJhTpVT/2tXbrmmQMxsBP3Z9kPXbGW2XZ4GgDZYVZi7nWo58G6AggR14CSdEZLxsoYVmX5PVeEwvT4X4NYtcskI189T0vrsSTXauM3K3xDYaV6XLB6pYmwdMOy8D38MGQ7lrlu4ToEAziPlnrsshqNKFJ7fycVFTtx1Sea5Xej9lusxajYz/Tnmc1mnCkiFU6Tq1IaGkdJhxpzbHq69ZjsvbIzj0J0BlVCSRFIuigROzWtLpffS/ZkzIx/hgoQZV9koIFekBPVKEHmlXJ1ypTd2vWyjRdsD64uzVejzRgGblho70zac2yI7YkbVaiHZhexroESu4gEstelB3WEnlFMscpsiLzrEU6trlfeaSqaTXyc15nlcMxPYYWuep7aXBOJYj+EMqzHmX9cXQlkBSJYhEok+OCgB5+HsRZlyF0qxJ+ZFFGNqU9TURbq8y4W+O5sDYTllWweWdgSe3Fa5bl1h2jOnF50KRjkstSbNSCpHm4zu2AtEMR0KNYeZ88lyqdU64jAc/3PXQFbjhGAIxCuzLuVbEex7QEkiIRE/9S8hDVfA0QQUgpxLuAROXpgrg8HVmWVPcVXtyGyIJL6r6CrNAYmCqCmoprxdZDhcEwsjnDMKqHSttD1VXkYk1qpCqltYUqzTkMQ5Xsx1hXbIxQAQEwGKZjIJ6jds77Q6/7ataLjcKHslC0HXOZqSdFItil53ZY8nbT7RqYUGQwBLJA5OkbJhB5SoatUg6Hoh+738mtyi1HukfAOHYlkBSJHKIvK75e6UEh8Cwu13h9kLZoToJ7fFYkvSBdJPpS9xPL0kwZMfMrycJEXbcuk/qpGddruidjqJAE/5CVSWuYSSUfw9oEdHCaa5CkoVKQbH4N0mzjz7a5WOmVoBidp+k5pqVIbTZrkeBIrtUUlEBXJcr6pPVGDkfuYuWWY0UDcOmPRDSCEkiKRAXS1ivhMdjFMPEARX2M9BGExeki0f2RNWhzwxbBshpElqaWSuJ56S4jgLbTSLSzSAxa1m4CM7ruIaCdPpTbncqPXfDkGnLAk8t1b+k1SCoWYYAxbc+CkVuOPAiHW438nIJxonXN1HLUQZmFI60/VmNXrFiPY1cCSZGohDgo9SjWrFXJ2yiv0pYugvjLNOqbTRlpBJYU5MPbbNalD8SWp25dUs4lgHjLLmiBP0AETJINnEA5VysAdORcz1undALSAkTtnFmL1E5tQLFLNYFhbDWmrtp0vZFXyuFwtIKSuVdFY1sCSZGopDSL0jNdqBZ3KzlU6T4NlmkEbQrLqD+ll5SBpe8BgzCtyDTQJy2gzoJ94j0aTSgSpG1WpnmdW5pcBE8g3WOyFeK1WKO5cFjqbdxSjK5HB9V4XZOsRerLwRi1uV2qBEdK4/C91HqkRH8bHOlY1h7HnwSSIlEDsq1T2vIqyQWL0OKSjVNGKJeSw5L2quQuWBWvVyoGyyCIoUcFCDJWpKdZlxyYNusyXb/kkGFBQvH16Nxjn4cOQm4cVlme5nAU6DE7GRhGbdTXs/bhblQ65xYj3cPbKELVtBo5HClS1Yvdsy44muuUovEjgaRI1IRMq5LnVXJ3a+BHEa/cJQuPtRmwDOJIWHLBcliCwZKgFXox9Jhlabcis+7YqD16P6GXuliBFJqA7gqOztNj34AgBygAVH2200eDMq1H+twB3dXqsiDNLbKqBFDmSqXr2bVHPX3DtBo9L4VjYiX6Disynq/H5iYaPxJIikRNyrQqTRds4BHMsmuVLljWw+x6ZRIJG8PSQ1qUIIAH1EPNsiQrEsgBJoEkhpoLmkC8NslgmG9JZoFYRflNnF3rkb4BzCIgJjClcwOCtjbKMslzqXKLMAJg2ifjboXAcSJIICkSDVM2F2yACJYq/kLma5V5sKSUkTilUYuE5WkjfN2yGviaZQm4gRld09cvzWtACk0eKUvilmGFwRfxHG08rDKXqWlZ2ixG87NNzg0Y8j4cftE5XdfdqHpbeq/pUtVhmFqNHI4EWc9D6m6FwHEiSSApErVI9IUYgYxgqZx5lJpb1kvXMHkkbGKdxuNorlnmiqXNiU1XLMCsQ0tkbNSuUsBYgEp9kvdpQDC0QC7PxVpBMTnyXK38ug2I5nW6lgTusHVGAE6XKs9xNK1GDykceVCOwHHiSSApErVYHJb1TG6kDkvN5RqvYUZWZFrmjsBIns20gg8reWe4YqN+DJhasI8diFGbDsUq4qo9rE8VUSAQV2iYj80GtlrhqKV6xG0eb8u3IKNrurUIwApGALo1aMCRrzlqoIRsYzVRJZAUidok+sJMrcosLG0uVxtArdZlEhEbdaZDFzABRNGxFgszmXMJcPJ+JLOATpVZiyZQTbmiPV3rkEAZCzKbO0lrjFGbHYzcckzcrdCtRhOOYj1ObAkkRaI2Kl0vi9MjvHgXEKRrikDkfk1qwCYAZdet7V5kaVL+I2Jwwks2GUnvj14rfhp4Q9c4wyjAhgfgpBGv+ntzuVRtwTtFMoEIWHIjff2aniupW4fRmIjbsmuLdN20FGkMXhlHgHhmSyApEo2Q+BdruqZoFhXIrlNS7mJm/RKxpYnIygSoIAE01yyAjHsWiCxOmgvJtDyByPqMDnQARm5XGxDJ8iz4PHx7e37hgBSGgB2I2rlHQU/s3hwwcmuRtqvyNIsy/z2JJp4EkiLRKIhHxObBEsi6XwFkgJm0x+Nz12wSKctSS6IxdOAAKThpbkAKznQ2qarxqzXFwwFBl2zpH9qTuQvYswORP5bgRtfMwJvoXnGjivIlkBSJRlH8C9hDCku+fhmUACZv54E/QHkrk/eh+dCBgg5Bk4nRll+NvfdkeAuE9M/Fy7TbgGheT4KkDAja2vh4aYGA5t6PaGJJICkSjRFRFZ/Aiy1CT49odQHT1g7oLtlojPjcgCbtl0nPIQUe2NqmToxkjZWLwxZ2Ynpwk8dmsWnWY9LmsiB1APIp8X0jTYuRxhSXqsgmgaRINIZkXbcEcoHphGJJaEbDJwjVLELWHAcFpeIQzaox0pieWY/RUbMqLUDkfUxrka4JGEXNqsFVg8b07rvvore3F7VaDbVaDb29vThx4oSz/+uvvw7P86w/TzzxRNLPdn3jxo3tfCsi0YjL95C4/TxQdRckGwjzBPZMmxdv3+SXuQ52Tf+p+l7SpxJ46VjxT9W331f0U/X1HxqvEsSbHcfP5OPTBsVVP9q7seIjLkSeXq8GtJlxeq1CY7NnRcfpZyoSudRWS/LGG2/E0aNHsW3bNgDALbfcgt7eXjzzzDPW/hdccAF+/vOfa22PPvooHnroISxfvlxr37JlC5YtW5ac12q1Fs9eJBo7KrIwKSiHLEyghCXJLUZmVxqe1aR/3DGz9sjX7kKLm9UvYVWa65LmWm3anu9S5WNl0j0gQBQ1rrZB8sCBA9i2bRt27tyJK6+8EgCwadMmLF68GAcPHsTs2bMz9wRBgJ6eHq3t6aefxg033IApU6Zo7WeffXamr0h0JsiVSgKwoBxWaMArgCYQBfrwNUYXQOMGx4ojkn0my8rsbeZLmhGtdI8NiNG5Z+nb0JREIk1tc7fu2LEDtVotASQALFq0CLVaDdu3by81xksvvYSXX34ZX/jCFzLXVq9eje7ublxxxRXYuHEjwpykrNOnT2NgYED7EYkmgmwuWc0Fa3Wzmu3GdcMVW7W4WSt+6v4s+1Pxsz+J2zZIXaXkLuUuU+5SjeYOzf0asHZyo4orVdQKtc2S7Ovrw/Tp0zPt06dPR19fX6kxNm/ejLlz5+Kqq67S2u+9915cc801mDRpEp577jnccccdOH78OL761a9ax7n//vuxYcOGxt+ESDSOZAMCWZpA1to0g3F4sIzLpZqpppNjVcaXS8w7x3rU2r2MG1YgKGq3Gobk+vXrC4GzZ88eAPp/OpJSytpu6pe//CUef/xx3HXXXZlrHIaXXXYZAOCee+5xQnLdunVYu3Ztcj4wMIALLrigcA4i0XiXNa2CHSv2f1HbGtISzQqk652m3ybDTsd/8SLXlQlCNp3ofoGiaITVMCRXr16NFStW5Pa56KKL8Oqrr+LYsWOZa2+//TZmzJhR+Jwnn3wSp06dwuc///nCvosWLcLAwACOHTtmHbuzsxOdnZ2F44hEZ4JcoDGbVc4fszy3EsjmRZprg2UkIBSNRTUMye7ubnR3dxf2W7x4Mfr7+7F7924sXLgQALBr1y709/dn3Kc2bd68Gddffz3OOeecwr579+5FV1cXzj777OI3IBKJrGoUTnpFGiGbaGKqbWuSc+fOxbJly7Bq1Sp861vfAhClgFx33XVJZOtbb72Fa665Bt/+9rcTkALA4cOH8aMf/Qg/+MEPMuM+88wz6Ovrw+LFizFp0iQ8//zz+MpXvoJbbrlFrEWRSCQStVRtzZPcunUr1qxZg6VLlwIArr/+ejzyyCPJ9cHBQRw8eBCnTp3S7vu7v/s7nH/++cl9XNVqFd/85jexdu1ahGGIj370o7jnnnvwx3/8x+18KyKRSCQ6A+Up2+r8BNfAwABqtRr6+vowbdq00Z6OSCQSiRrUwMAAenp60N/f39bv8baWpROJRCKRaDxLICkSiUQikUMCSZFIJBKJHBJIikQikUjkkEBSJBKJRCKHBJIikUgkEjkkkBSJRCKRyCGBpEgkEolEDgkkRSKRSCRySCApEolEIpFDAkmRSCQSiRwSSIpEIpFI5JBAUiQSiUQihwSSIpFIJBI5JJAUiUQikcghgaRIJBKJRA4JJEUikUgkckggKRKJRCKRQwJJkUgkEokcEkiKRCKRSOSQQFIkEolEIocEkiKRSCQSOSSQFIlEIpHIIYGkSCQSiUQOCSRFIpFIJHJIICkSiUQikUMCSZFIJBKJHBJIikQikUjkkEBSJBKJRCKHBJIikUgkEjkkkBSJRCKRyCGBpEgkEolEDgkkRSKRSCRySCApEolEIpFDAkmRSCQSiRwSSIpEIpFI5FBbIfn//t//w1VXXYXJkyfj7LPPLnWPUgrr16/Heeedh0mTJuHqq6/GT37yE63Pu+++i97eXtRqNdRqNfT29uLEiRPteAsikUgkOoPVVkh+8MEH+NznPocvfelLpe956KGH8PDDD+ORRx7Bnj170NPTg9/+7d/GyZMnkz433ngjXn75ZWzbtg3btm3Dyy+/jN7e3na8BZFIJBKdwfKUUqrdD3nsscdw++23F1p7Simcd955uP322/Hnf/7nAIDTp09jxowZePDBB3HrrbfiwIEDuOSSS7Bz505ceeWVAICdO3di8eLF+OlPf4rZs2dnxj19+jROnz6dnPf39+PCCy/EoUOHMHXq1Ba+U5FIJBKNhE6ePIlZs2bhxIkTqNVqbXtOpW0jN6EjR46gr68PS5cuTdo6OzuxZMkSbN++Hbfeeit27NiBWq2WABIAFi1ahFqthu3bt1shef/992PDhg2Z9lmzZrXnjYhEIpFoRPTOO++cOZDs6+sDAMyYMUNrnzFjBt54442kz/Tp0zP3Tp8+Pbnf1Lp167B27drk/MSJE5g5cybefPPNtn64rdbAwAAuuOAC/Pd//zemTZs22tMprfE6b2D8zl3mPbKSeY+8yCP44Q9/uK3PaRiS69evt1plXHv27MGCBQuanpTnedq5UkprM6/b+nB1dnais7Mz016r1cbdLwYATJs2TeY9whqvc5d5j6xk3iMv329vkkbDkFy9ejVWrFiR2+eiiy5qajI9PT0AImvx3HPPTdp/8YtfJNZlT08Pjh07lrn37bffzligIpFIJBINRw1Dsru7G93d3e2YCy6++GL09PTg2WefxeWXXw4gipB98cUX8eCDDwIAFi9ejP7+fuzevRsLFy4EAOzatQv9/f246qqr2jIvkUgkEp2ZCtavX7++XYO/+eabOHLkCHbv3o1///d/x2c+8xn09fVhypQp6OjoAADMmTMH559/PubOnQvP81Cv13H//fdj9uzZqNfruOOOO/DWW2/h0UcfRWdnJ8455xzs2rULjz/+OC6//HIcPXoUt9xyCxYuXIgvf/nLpecWBAGuvvpqVCpjalm2UDLvkdd4nbvMe2Ql8x55jcjcVRu1cuVKBSDz8/zzzyd9AKgtW7Yk52EYqrvvvlv19PSozs5O9clPflLt27dPG/edd95RN910k5o6daqaOnWquummm9S7777bzrciEolEojNQI5InKRKJRCLReJTUbhWJRCKRyCGBpEgkEolEDgkkRSKRSCRySCApEolEIpFDExKS43mLrkaf8frrr8PzPOvPE088kfSzXd+4ceOozRsArr766syczEIV7f7MGx3/f//3f/HlL38Zs2fPxuTJk3HhhRdizZo16O/v1/q1+vP+5je/iYsvvhhdXV34+Mc/jn/7t3/L7f/UU0/hkksuQWdnJy655BI8/fTT2vUyv++tUiNz37RpE37zN38TH/rQh/ChD30In/rUp7B7926tzx/+4R9mPttFixaN6rwfe+wx67/5+++/3/SYIzFv2/9Bz/Nw7bXXJn1G4vP+0Y9+hN/5nd/BeeedB8/z8M///M+F97z44ov4+Mc/jq6uLnz0ox+1/v9qyec9usG17dFf/MVfqIcfflitXbtW1Wq1Uvc88MADaurUqeqpp55S+/btUzfccIM699xz1cDAQNJn2bJlat68eWr79u1q+/btat68eeq6665r6dwbfcbQ0JD6+c9/rv1s2LBBnXXWWerkyZNJP8SpNrzfqVOnRm3eSim1ZMkStWrVKm1OJ06cGPa47Zz3vn371Gc/+1n1ve99Tx0+fFg999xzatasWer3fu/3tH6t/Ly/853vqGq1qjZt2qT279+vbrvtNnXWWWepN954w9p/+/btKggCdd9996kDBw6o++67T1UqFbVz586kT5nf91ao0bnfeOON6hvf+Ibau3evOnDggLr55ptVrVZTR48eTfqsXLlSLVu2TPts33nnnVGd95YtW9S0adMy/xeHM+ZIzPudd97R5vvaa6+pIAi0tLyR+Lx/8IMfqK985SvqqaeeUgDU008/ndv/v/7rv9TkyZPVbbfdpvbv3682bdqkqtWqevLJJ5M+rfq8JyQkSVu2bCkFyTAMVU9Pj3rggQeStvfff1/VajW1ceNGpZRS+/fvVwC0L5odO3YoAOqnP/1pS+bbqmdcdtll6o/+6I+0tjK/eM2q2XkvWbJE3XbbbS0ft93zNvVP//RPqqOjQw0ODiZtrfy8Fy5cqL74xS9qbXPmzFF33nmntf/v//7vq2XLlmltn/70p9WKFSuUUuV+31ulRuduamhoSE2dOlX9/d//fdK2cuVK9bu/+7stnaepRudd5rtmuJ9FGQ33GX/1V3+lpk6dqt57772kbSQ+b64y/3f+7M/+TM2ZM0dru/XWW9WiRYuS81Z93hPS3dqoirboAlC4RVcr1IpnvPTSS3j55ZfxhS98IXNt9erV6O7uxhVXXIGNGzciDMNRnzaGDDoAAAdQSURBVPfWrVvR3d2NX//1X8ef/umfaptrt/szb9X4/f39mDZtWqbqRys+7w8++AAvvfSS9rsJAEuXLnXOcceOHZn+n/70p5P+ZX7fW6Fm5m7q1KlTGBwczOz08MILL2D69On4tV/7NaxatQq/+MUvRn3e7733HmbOnImPfOQjuO6667B3795hjzkS8+bavHkzVqxYgbPOOktrb+fn3Yxcv+P/+Z//icHBwZZ+3uOvDlEb1K4tupqZx3CfsXnzZsydOzdTx/bee+/FNddcg0mTJuG5557DHXfcgePHj+OrX/3qqM37pptuSur1vvbaa1i3bh1eeeUVPPvss8Mat93z5nrnnXdw77334tZbb9XaW/V5Hz9+HPV63fq76ZpjX19fbv8yv++tUDNzN3XnnXfi/PPPx6c+9amkbfny5fjc5z6HmTNn4siRI7jrrrvwW7/1W3jppZesu/2MxLznzJmDxx57DJdeeikGBgbwta99DZ/4xCfwyiuvYNasWS35LNoxb67du3fjtddew+bNm7X2dn/ezcj1Oz40NITjx49DKdWyz3vcQHI8btFFKjv34TwDAH75y1/i8ccfx1133ZW5xr+cL7vsMgDAPffck/ul3e55r1q1KjmeN28eZs2ahQULFuDHP/4x5s+f3/S4I/V5DwwM4Nprr8Ull1yCu+++W7vWzOedp6LfzWb6Nzpms2r2OQ899BD+8R//ES+88AK6urqS9htuuCE5njdvHhYsWICZM2fi+9//Pj772c+OyrwXLVqkBbN84hOfwPz58/H1r38df/M3f9PUmM2q2Wds3rwZ8+bNSzaOII3U592obO+T2vmx2afRz3vcQHI8b9FVdu6vvvrqsLYBe/LJJ3Hq1Cl8/vOfL+y7aNEiDAwM4NixY86xR2repPnz56NareLQoUOYP39+05/5SMz75MmTWLZsGaZMmYKnn34a1Wo1t3+Zz9um7u5uBEGQ+euX/26a6unpye1f5ve9FWpm7qS//Mu/xH333Yd//dd/xcc+9rHcvueeey5mzpyJQ4cODXvOwPDmTfJ9H1dccUUyp1aM2c55nzp1Ct/5zndwzz33FD6n1Z93M3L9jlcqFfzKr/wKlFKt+7wbWsEcZ2o0cOfBBx9M2k6fPm0N3Nm1a1fSZ+fOnW0J3Gn2GUuWLMlEWbr09a9/XXV1dan333+/6fmSWvXZ7Nu3TwFQL774YkvHbfW8+/v71aJFi9SSJUvU//3f/5V61nA+74ULF6ovfelLWtvcuXNzA3eWL1+utS1btiwTuJP3+94qNTp3pZR66KGH1LRp09SOHTtKPeP48eOqs7NTC+4ZrpqZN1cYhmrBggXq5ptvbtmYZdTsM7Zs2aI6OzvV8ePHC5/Rjs+bCyUDd+bOnau1ffGLX8wE7rTi856QkHzjjTfU3r171YYNG9SUKVPU3r171d69e7WUiNmzZ6vvfve7yfkDDzygarWa+u53v6v27dun/uAP/sCaAvKxj31M7dixQ+3YsUNdeumlbUkByXvG0aNH1ezZs7UvdqWUOnTokPI8T/3whz/MjPm9731PPfroo2rfvn3q8OHDatOmTWratGlqzZo1ozbvw4cPqw0bNqg9e/aoI0eOqO9///tqzpw56vLLL1dDQ0Olxx3peQ8MDKgrr7xSXXrpperw4cNaWDzNu9WfN4Wyb968We3fv1/dfvvt6qyzzlKvv/66Ukqp3t5e7T/+f/zHf6ggCNQDDzygDhw4oB544AFrCkjR73sr1OjcH3zwQdXR0aGefPJJ7bOl/7snT55Ud9xxh9q+fbs6cuSIev7559XixYvV+eef39K5Nzrv9evXq23btqmf/exnau/evermm29WlUpF+39aNOZozJv0G7/xG+qGG27ItI/U533y5MnkexqAevjhh9XevXuTdI0777xT9fb2Jv0pBeRP/uRP1P79+9XmzZudKSDD/bwnJCTH8xZdRc84cuRI5r0opdS6devURz7yEVWv1zNj/vCHP1SXXXaZmjJlipo8ebKaN2+e+uu//mstZWGk5/3mm2+qT37yk+rDH/6w6ujoUL/6q7+q1qxZk8m/avdn3ui8n3/+eevvFgB15MgRpVR7Pu9vfOMbaubMmaqjo0PNnz8/sbaVijwIK1eu1Po/8cQTavbs2aparao5c+aop556Srte5ve9VWpk7jNnzrR+tnfffbdSSqlTp06ppUuXqnPOOUdVq1V14YUXqpUrV6o333xzVOd9++23qwsvvFB1dHSoc845Ry1dulRt3769oTFHY95KKXXw4EEFQP3Lv/xLZqyR+rxd/69oritXrlRLlizR7nnhhRfU5Zdfrjo6OtRFF12k/vZv/zYzbis+b9kqSyQSiUQihyRPUiQSiUQihwSSIpFIJBI5JJAUiUQikcghgaRIJBKJRA4JJEUikUgkckggKRKJRCKRQwJJkUgkEokcEkiKRCKRSOSQQFIkEolEIocEkiKRSCQSOSSQFIlEIpHIof8PvCpWlZ5RbG0AAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "execution_count": 13, - "metadata": { - "comm_id": "aee8e24a-558a-422e-a061-9f81707105f9", - "reactive": true - }, - "output_type": "execute_result" - } - ], - "source": [ - "u = zeros(N,N)\n", - "@time λ, X = eigs(A, nev=20, which=:SM);\n", - "\n", - "f = figure()\n", - "@manipulate for which_eig in slider(1:20, value=1)\n", - " withfig(f) do\n", - " u[i] = X[:,which_eig]\n", - " umax = maximum(abs, u)\n", - " imshow(u, extent=[-1,1,-1,1], vmin=-umax,vmax=+umax, cmap=\"RdBu\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that it took **less than two seconds** to solve for 20 eigenvectors and eigenvalues!\n", - "\n", - "This is because `eigs` is essentially using an algorithm like the power method, that only uses repeated multiplication by $A$.\n", - "\n", - "Or, sometimes, particularly to find the smallest $|\\lambda|$ eigenvectors, it might repeatedly *divide* by $A$, i.e. solve $Ax=b$ for $b = A^{-1} x$. But it can't actually compute the inverse matrix, and I said that LU factorization was $\\sim n^3$ in general. So, what is happening?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sparse-direct solvers for Ax=b\n", - "\n", - "Even if $A$ is a sparse matrix, $A^{-1}$ is generally *not* sparse. However, if you arrange things cleverly, often the $L$ and $U$ factors *are* still sparse!\n", - "\n", - "This leads to something called **sparse-direct solvers**: they solve $Ax=b$ by ordinary Gaussian elimination to find $A = LU$, *but* they take advantage of sparse $A$ to avoid computing with zeros. Moreover, they first re-order the rows and columns of $A$ so that elimination won't introduce too many zeros — this is a tricky problem that mostly involves graph theory, so I won't try to explain it in 18.06.\n", - "\n", - "Julia (and Matlab) both use sparse-direct algorithms automatically when you do `A \\ b` if $A$ is stored as a sparse matrix. When they work (i.e. when the L and U factors are sparse), these algorithms are great: fast, memory-efficient, reliable, and worry-free \"black boxes\"." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example: Helmholtz solver\n", - "\n", - "The following code solves a **scalar Helmholtz** equation\n", - "\n", - "$$\n", - "\\left[ -\\nabla^2 - \\omega^2 \\right] u = f(x,y)\n", - "$$\n", - "\n", - "This equation describes the **propagation of waves u** from a **source f** at a frequency $\\omega$ is the frequency. For example, imagine water waves travelling across a shallow pond, with $u(x,y)$ being the height of the wave, where $f$ represents an vibrating disturbance that creates the wave.\n", - "\n", - "We discretize this into a matrix equation $Au=f$ by discretizing space $(x,y)$ into a grid and approximating derivatives $-\\nabla^2$ by differences on the grid (this is an [FDFD method](https://en.wikipedia.org/wiki/Finite-difference_frequency-domain_method)).\n", - "\n", - "Again, don't worry too much about the details of this construction (take 18.303 to find out more). The important thing is that we will have a grid (graph!) of many unknowns, but the problem is sparse because each grid point only \"talks\" to its 4 nearest neighbors." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Helmholtz2d" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", - "Return `(A,Nx,Ny,x,y)` for the 2d Helmholtz problem.\n", - "\"\"\"\n", - "function Helmholtz2d(Lx, Ly, ε, ω; dpml=2, resolution=20, Rpml=1e-20)\n", - " # PML σ = σ₀ x²/dpml², with σ₀ chosen so that\n", - " # the round-trip reflection is Rpml:\n", - " σ₀ = -log(Rpml) / (4dpml/3)\n", - " \n", - " M = round(Int, (Lx+2dpml) * resolution)\n", - " N = round(Int, (Ly+2dpml) * resolution)\n", - " dx = (Lx+2dpml) / (M+1)\n", - " dy = (Ly+2dpml) / (N+1)\n", - " x = (1:M) * dx - Lx/2 - dpml # x grid, centered\n", - " y = (1:N) * dy - Ly/2 - dpml # y grid, centered\n", - " \n", - " # 1st-derivative matrix\n", - " x′ = ((0:M) + 0.5)*dx # 1st-derivative grid points\n", - " y′ = ((0:N) + 0.5)*dy # 1st-derivative grid points\n", - " ox = ones(M)/dx\n", - " oy = ones(N)/dy\n", - " σx = Float64[ξ < dpml ? σ₀*(dpml-ξ)^2 : ξ > Lx+dpml ? σ₀*(ξ-(Lx+dpml))^2 : 0.0 for ξ in x′]\n", - " σy = Float64[ξ < dpml ? σ₀*(dpml-ξ)^2 : ξ > Ly+dpml ? σ₀*(ξ-(Ly+dpml))^2 : 0.0 for ξ in y′]\n", - " Dx = spdiagm(1./(1+(im/ω)*σx)) * spdiagm((-ox,ox),(-1,0),M+1,M)\n", - " Dy = spdiagm(1./(1+(im/ω)*σy)) * spdiagm((-oy,oy),(-1,0),N+1,N)\n", - " Ix = speye(M)\n", - " Iy = speye(N)\n", - " return (kron(Ix, Dy.'*Dy) + kron(Dx.'*Dx, Iy) -\n", - " spdiagm(reshape(Complex128[ω^2 * ε(ξ, ζ) for ζ in y, ξ in x], length(x)*length(y))),\n", - " M, N, x, y)\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's set up a scattering problem with a cylindrical scatterer (a slightly slower wave speed, e.g. a different depth of water, inside a small cylindrical region, with a wavelength $2\\pi/\\omega$ of 1:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "((230400, 230400), 4.991666666666666)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A, Nx, Ny, x, y = Helmholtz2d(20,20, (x,y) -> hypot(x,y) < 0.5 ? 12 : 1, 2π)\n", - "size(A), nnz(A) / size(A,1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Again, this is a huge matrix: $230400 \\times 230400$. But it is incredibly sparse, so solving it will be no problem:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.166521990740741e-5" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nnz(A)/length(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the right-hand side `b`, let's use a \"point\" source on one side.\n", - "We'll use the `reshape` function to convert between 2d arrays and\n", - "column vectors for solving with `A`. Note that the solution is complex, since it corresponds physically to an oscillating solution $u(x,y)e^{-i\\omega t}$ and $u$ has a phase angle due to the absorbing boundary layers (which make `A` non-Hermitian); we'll just plot the real part." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " " - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAGgCAYAAADLmDKxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvcuPJEl+3/mxhz/jlZFRmVlZVV0zzeG0KBKQlquFuIcFJB2kswDddCF0EsATwYME3UhAIEES4E0Xnvgf8E6eKGCFPYhYrQBKGnKGM9PT1VWdVZEZTw9/mdkezNwjMrtePVXd1VXMH1CozMhwczNzs9/39/j+zIVzznErt3Irt3Irt/KeiXzXHbiVW7mVW7mVW/l55BbAbuVWbuVWbuW9lFsAu5VbuZVbuZX3Um4B7FZu5VZu5VbeS7kFsFu5lVu5lVt5L+UWwG7lVm7lVm7lvZRbALuVW7mVW7mV91JuAexWbuVWbuVW3ku5BbBbuZVbuZVbeS/lFsBu5VZu5VZu5b2UWwC7lVu5lVu5lfdS9LvuwJuKtZbPP/+c0WiEEOJdd+dWbuVWbuVWvqI451iv19y7dw8pX9+veu8B7PPPP+ejjz561924lVu5lVu5lTeUn/3sZzx48OC1v//eA9hoNALgb/7mb/qfAQ59sZcdt/8qn+1dXfuq61/Vxptc+zptvMnYX3X9m/b967r3uxzzm17/dfb9Ta9/n/v+quu/zfvsTe79tp/3er3m+9///jUd/jry3gNYFzYcjUaMx+P95wffeVcK7U2v/zZvzDe9/tt6728rgH3IxtKHfP2H2Pev0zj+qmmgD5bE8bZecvamVvPXde+3cf2b9v/brPS+rmt/3jbf5Fl+3Zndr7Pv33Z5n1+G+D73/W3Je++BvUxe9wE73s0mfdP7ft39Frx6Dl/Vh5e14Q6+86JrD7/3ouuf18bN32+28bw2xUv68rLrnidvw+t5nXbetQX/KnnX179O++8SCN7k/u+67zel68/rrKlX7e3XlQ/GA/uQrcQ3kW+7AoFv1yZ8U3kdEISvtsnfpI2vWz6kZ/d1yLuO0rxplOR5gCRe8O/nkTddox8MgN3KhysfmnHybQAe+Hb0430AwK871P6qa9+Gl/2qXNerQOhFYPY25E3W2QcFYO/KCriVvxvyNjbv22rjXeYQX7eN92VfvY0oxbeZZPO6bbxuO1+H/Lz3/aAADN6fTXMrt3Ir34x8E7nG12njVrw8Lx/98xpUHxyAwe1C+tDkfQgzvS35u6RIvwmm8NuUv0vr8OeV130Wbysk+UGzEA/lfdnUb1veh033Pjybb8qK/ybkQxrL68rrMHbfBuv2ZW2/rM03uf5ty7eN3fgy+WAB7G098HdZpPgq+TYk2d/1HLyNPryNfnwT139bFN23pR9fVV4XxLrvvqydV8m3cfzflHyTAPjBAtit3MrbkvfFGoW352m8ibxN5f26Hs/rjumrtHd4zfsm9kan5fMG7eyXPxPXs0qH7Ty3jRfINwVitwD2EnlfNvnXJe8Dy+xtKLd3edrKm0inXL6KYnkdeavz8RpKEr6scOE1le5BW18FxLrvv478PEW3zwXKru/PGT+85hw8bz5DmzfHf/jz4VoRh+0ctiek/z3072Z/rPPXv6uDH54nHwyAvU1Fc7OtFy2sr3oKxbXvvmghwgsX+Fdq5xVtvEyet/AP5aWK5eC+3aU/18Z8jf5/lfl85Ya7uZF59Tx08rK18NpGwPMUSteXg7no+nHYrnHX790rqde57/PkOXNxeE/rXnySybXnatsvt9e1KSQitG3c8+f6cE6/NKab8xXaEuFnx/Pn6rCvX2r3Rc8gtCkO1sWr2u7nwdkXg0X4d9iWdeDcvlUlRd+e6Npy1v9sLYRXjzipr7XXhkYPRyIBLcU1EBNtfX0OpcQJiVBx3ydzsPiFEETy7YVj31Q+GACDN7cMngdcL1v8+wtfbhU993uvATwvevD9OF+mtA+uf5Hy7RTvTXmdjX+tH/0fX1/Zfcma6649sABf1Idr8gql88K/3bz+8JobSvFFYwDf98Ox3JSXzf21PhwoOhH+dzdAXNwA1heFibr+HPbxlfKyeYQvzcVNRXt4COtNUOjGgw3/ByW5B+frAN21a5xvV4r9WNXh8zmYr36uOiAT8tp1/ZoObd88NPaaZ3LY524Yh/29AWSH89C17QB9+Axsux//jTmQUmOcb8s4x7XmrOv7qrr5NO1+vXRLVXsQ69aIBZwD61y/XpQQiG4eu7HaFuFcv++cFQghPSDiwbBry1/nsE58a8KJHxSAwVcHsRdZ2Y7nK59DRfUly+1LjdsX/v7cDdL/8csW9/P6IJ6noF/TSoQvW+43FePzNmb3vc4qvAlAN4HrZW3dtLAP+38oXykOfwg+r/FcXqio8PP7Ol7YoaK81tZrXHfYp96q7hQzgNLX+tQp++cpThN+7ea2k5ve2bXPD8HgeQDaGRQHz9dYd02p+T84/PLw91YBEK6NqQcyEFL3Slyp+JoXdti2wGGcH3UHZiL0q28bEK7dz5GUvTKXQvq23Y0+hx+cOACcbl6chQ4kus/CHDile++kewYmAIWfX4HAg5BSYj/H9gAsoAcKlA5g4dtyDpqDBWNFeGZSoA68OmHN3sMNz0VIi9MgpcYFMDTW/y8Ac7DZpJTh+TjfTmhLCAlS42y7fy6hrW7MnR54HU+/nz9eDmI/r+PxwQEYvBrEbiql7vfDjXlouUCwXsIGVQfuvLBtv9h7S+aFN35OaEZInBAIqXHKP45uM9+0yKxzyLB4hDi0W6/D0OFGte7Fy0YKce3ve4vyy9f6+3olpYQPbXT3P7SSDxWFDZv7Re11RvDhRpAveJ1C/92D+6lOmb1KDhXzoSIJFmj/nS5MJCROKtAxCImSGoO8NsZDMQe/Pm/sN5+BFAIt/RwqIYiCMsG0XjGZ+rl9QkhElHhgkRpzoJzNwRx3K/d5wN+tY4m/vxbSz4dtEU11Hcjg+lyoGCUk9Q3laA6W9X5ckGmNUhJEi2hrhGnC3O8vcFKDihEq8utfxVQGmjAmY921/RwrEdrXxBKErX2bbXXNc3JSe0WsIkQyBCmw1lG2dv9ccEgESvp5ybRAS42SIOtdPy+YsEYCMLp4gIpSpNTUBmrjaKwLbVqU8OO3SCIp0VL7Z9vsek9MHLQnE4uIc6wQWGupWodxrvekVVgvw1gRqzjomwZRbfx6cRanItAxTsW4KEOpjMZ6MNy1Fuf8HoqVIJaCVEsSFSPZIUyNaCpEW+7nztS4eECcDHEOdq07MIgtWgoiKa55ma+SryNv9kECGHzZS3qeGr8ZDmnCZjlU4uAfvA6LXHWKs633wGWaF4YevtSvw1DHoWWrwoYTktaEzRuUw3Uwdf24XqTs/dheDlxC7K2q7qvdpuk+swd3lWEeOmvQWdf3obOS++tCfzsFZw8URm9Zh1hGF2Tt2z64501Q68DTW+Fgr1mC10NI3eewNza8IrTXrM4+tHMjD4DU9LtealSUBmMDjNvP+6GHadkrXBOUR2e9XgcTFxQAaOlwTpBIDcrinFduwrZ7yx18nzqwCaCiohQlNU5KmjDX3fQ15vlrWUnn17EE5UAo4cNysA8p2eveRz8X1kKUooTovQ5joTa2z7UoK/rxgSWSwitd8CADe6B21o9F1wHEYpxq0VHuDQHrerDcr1FQwhEpgdIapUE0wZBs694wETeMEB0AwuHb6/bY3igTgCTREEuN7LxP0/bAi5AIqbHd3+IcJTXW2d5zMs4hccHIcqBBSIlSGnnYXmecSI1VMUhJpFOME1gsxjoaCw4XAEwQKQtIYh0jTINwDmECgJsaZxrQ/tnFwxzjfC6s24fOhT2pOjNXoqWiT3WYMH+iRnbjVBql0t6YBjDW73nJgZf5juSDBbBOXqTGO4XSeV3GOtobYCHYW5NR+F/YFmFaRLDQei/sUAl2chDSuPY7eKXQbbJgebYOjHGUxvULzytBx/NgsfNGXiWdwpd44HK4PhZ+c04OgeZaSFV4wHIuhEiCErTOcZjpuwZYB1b6oXd2XToge750iqDrv5I+rCSFQMk9mL947CIobG9Ze2UcDA0hvULpAK2/qUSIBmdb/32p/d+lRkivdLrvIbxRYp1XjnvA6p7hdWPEj8mvp96KlQ4RKyKdIoREmMYn0g+VXT8fu37duLbyRo9UxMnQe2RC0FpHzX7uOyDt7t0BWCR9GCuW3svsw10dwByElZyzYGOwLToZY9lHCK6Pbw8IrRXESpBYD2KJThAtIFvovBFnEa0PozkVeYBUmlgGEkFot7WdR+JQArT1zzVRGqVjqEBY4xV6UMROKu+pAtiWOBmihKAOfa6NozY2rCUR1q/AaYlWke8fnYdX9m1KwNkWC+hkiJJ+zp1z1MGSk8KF/SEgkmQqxgmJdM7rkADmTiq/h51FApFKkQgsHgyr1gaPvdtvICNNFCVh+/hwomt2CFki4hRnDS4dEauUxvpxWQdla8JzkR4oHeRp7q9va0TbYtu69xCls1gh0ZlGChH0IzQiALTb51vfFYh98AD2PLnG+oFeydwEr0gdKBlbXw+DNOXzw4YhJNgzeg6VXQdaQnh3PyhH46BqvaIx1lGZ7me/cR3XmUBAv+EOsx2HWOYX1T7UpqTACodC7D2n3usJC7GfA3HN4uodEbprOiC5HgoEQvsOQ/d9f08OchnXQ5z+fwMc+pl7IoLrxyGEQ5ovgxrsvcWbwCuFZ151cxBJQZ4MoS29xW5bv3k77+Yg/yOc9UAmBELHfS6qD+l1z1sqZJfLUJomLIe6M46cN47K1mADqKRaEikfloxDciNWQdFHGaKtvMdommAgHYSpgzgV9SE421YInXivTMU01oeHrfWK2oZwnGe1eeWqA8PNaUmsNJFUCBvGFZR2nwOzrQ9zR4kPs8V5b3Tsgv3WWkfRmL5/eaRItA9ZZZFDJUN0CJOLauvHVFc4axBSIaMY1yR+juMBMs4ppO9/N4dNAJxICSQCEwlyHSM7AA5tmmINUiJ0jAJsXOOcI47GNFZQBw91XRusdUgpMFZTG4mxkOU50lkPiK2EusJaPzYfivZ/t0AcjWitQ4Q5bw5iqkb5FS8JICZrT/ypdr13LQnGnbPozHtF0vi13M2nDEZY9/iHUYrUEaKVOGOwxdr3LU6RWYONM6IMMp2ipPHhROMorCWSltwqjIVhrMmSAdLUCKVwtcXVJViDGIIUEqcitBz20aDOWPE5cL92D8O836R8MAD2VSfvZnhFCu8Od9ZOLEHuloim8PHh2sebnTH+4UZxb+HZKNvHn5MBTsUYfH6iMrZ/8L2HZ8E0Lng6Tb8gvJXpaIzrrfibEgVvToaQ5qH1SAc0vdL2QJMqiZYQK0kkQdZFCDsc5FvgelhTSJyO9myp7it9Hukw6X+gVDs069qI9/ReFyi+HSAfhtx6JRvCO/tckm/OOj8+0z+9fVikU5yNdVSt8Ru1Mf21WnngipQkjxSzLCLRiljlTAYjYilQrkWWa2+9h7xHZ6xIZ6FcegvceGvVz0FQ1lIhdISIYnQ8INEJLs4ZDWbsjKNqfR4CPIiVjWNT1H3YVQmv7L3Cl4zjhESnpIkgjdbIeouod4h6g7m6wO62uLrEVWWYaokcTZHZAJmPiLIR0fgcm47YWcnlbr8OL3dN/6yUgDKNSJQl0YJpMiJJhohq4+/Zlh5g6tIrNQAdofMxJDkqysjSMWl+xLaxFI1lU7esa0PRGHaN8WAjBXmkeHiUMYg042TKRGpkcYVghf3iZ0FpWpASNT1FjKbYZMTR9DsoIVjVhqq1fLGtqcJcTrOISaIZxZL7oxOQGlmAqHbY5Ry72/q9GuZFTmYMz75Pnk9Za8WqsjzbOtZ1S9VanhU1qZIME01jE8ZJzmg8RO6WqLaE7crPRbEGHSHTATIbkR89IE6GbKRl19rec1rXhlRJ8lixaSx3B1MSnYDSyN0aWxa43RbWV4gkQ+Uj5GDK8ey7xEqhasui9CBbtZarXUMeKaZZxCiWPJjcx+k5UsxxVxe4cotrG4RUqNkKMZ4h8ynH2RnLymKs4tPlrieJpErS2oxRIplkdxg2JVIIXFtjri4Q6wVydIRuSyann7ARgl3r91sbAMwESzNkFvZ64kua6+uRDwbA4NVMl+de08e/8YoMi6i3iLZCbZ4i2gq722LLLc4YhFIgFXJ4BCryoJWOcXGG0ynrxlJXjtq01CZ4U8bSGEdj7bWE//OkYxrJkNyP1B6kBAd1HOI6oaEbS+clxWof+kykQzQlomqgLZHl2iduTbO3BK0BqbzVKpUHaBX1wIO8sVReVhLwPEbl8zzTgzCqi3OQmtbtLe6bOTS4Ht6sDZjwxDvwKhpL0Rg2desT9mGzeu/Lz+dVHpNHkmGsqfKo9xKG6ZRY4kGsKX3Sva3BNCHHYHB1iQ2KjLbBWdPPnZAKOTpCxClqMMa0JYMoJ0sGDOMYJQylFmTaMd/Rg23jPLlgXRsiKaiyiCySJEpyJxuRxLl/ZlIh0g2iqXHlFlusfB+MQWwW3voejJH5CAWIekOeTjBJTtEIlLA0VlIFIkNjHEVtMNqHlCIpMFqSpWMfLm2q4NUY3HaFa5vw8xqRpIh0gBysySaQZBNipdi1UWjbMm/8+MBHM4xz3MljKqPJxhNiwhqOYlxZ4KodrvNK2gY1MejBjDwa0lgfkrU27CfbhdgMjY0YxoqjfAq2RZm6D9t34OsC6OvBETjLaDADJJNU92usaEzIjTkmiQ5eEUyyiQfbsM7t+gqMwVof9pPpEg0M4iFrJbBOBSOqDX21mFizjgzEOUkKMpkj6hInpR97XeKaGmkNMpswHMxw+DVatpYK2NSmH7d1EZNUMcomfi8nKa7cQlNj2wak9G05y3B0hnGS1vp82i70qWotTzYVDh+OzPMpwhpkWmGX836tSx0hyzVZOsG4PSHkZfJNeWQfFIDBVwMxKToSQvi52iCaHbLaIpoC++yRt+KCohJSQZwisgHEKS7KscmAJpuyay27nWFRGra1YV23QZGafsN1LEIVQiCR9CEk7xl4xpJSgmGs+5h3omSfr1DC5xQOWWTixni6PIbPBbSIpkGUKx+Kakuodpiri35jd+PbN6L60ItIUoSOvHKOUz+/AcBfKnYfRnLGfOkzAkAKHYGOEDqGJMepGKUiz3wKCXgXcged53ZIjChbr9Qa5WhC6KsxjkgKGuOoW0tRG3a1v7eSglhLisaQau+NbeqYPFIMY03RWJIQToujEVmceyBrq2AsFD431DbQNntPKIRcAMTVBSJOEUmKOrmPysfIdIhKBpyOz9lZza6xKAm7RgXr2oT/fc6p698w1hgXMYgkw+SIJBmg2woZlLNdL7CmpC1r3LZEKIleL5CDMUiFmswQ+ZbR8UPSLGXb+NVSaUfZgae1mMbRhJySzwtJMp2R5VMPykIiinUPBKaeezDVESIbED0w2N2E0eCYKhsEVh/Mi4aybdnVxofprVfCRRMzjBRH6YRECPTwCNfU3rNtG+x60YOlzI9JBpJhnNFaR6IlpbE0jfdKqtYbh5PEq7Kj4YlfYqMpWItpa1yxxoU9LOefowJRZTQ84SjVYU82Adgdu8Z7OxD1S3aaT/0aAES59f2tdp4KkS4hfDuPskDCUGzqlsY6mtrPdaqDMRfnyHTiQ5Q2hP/a2o+5bVAdyA5PGMSSxmoa63x7te31ySRRiFQxyqdEoymuKvf7up9DixydMR6e0FpHHilKYylbR2kt86IJkZ6UO0dDRNb4cKKO9+BfrBH1Bh0lZDqlPdjLFhBub3gfymE65lXyVR2PToS7yQl+z2S1WjGZTPjiyRPG43H/+asGdU3RtzWi2aE2T3HbFXZ9hS3W2PXCf1dHyMkMOTpChdBGO31ARcS2sXyxbbnaNVyWDY9WJYuiYVM27GrjLdyQe8hjRRYrslhzd5wySrziHMaK81FCqgSJlkxThbY1st55y68t957gdnXd8oceUDqwAfq/ubbxoYWDxV0t1phdjWlamq23ep2xCBXqn6RExREqjVGRRsYancbISCNUALMDb+3wnr5ftldGzXaHbVrMrqYta2zTYEOOQCqJjCJkrIlHub9HmiKHRx484xSZDfYgJyUyya6Fbl2Ugk4x2YTSeOWzax3zXcOm8oaEV6Te6qxb/w/2gBYr75kNY02ipQ/7RIo7g5hEiRBeU96TrTao1RNEucFuFtjtCvPUGzptWdNuS1w3vlij0tiPKxugTu4jR0fI8TFmch+bTSisYlNbPl/XLKuGZdnyrGhogicyijV5pBinmuM04qNJzChWJM0GPf9b7OIZdjmnffoIW5a9B6PSxHtIaY6+9zFiOMElY8zkLo1KvcHVOJaVoTY2zE/wlkLI7yhV3lONJPHiZ8jdFfbyC5pP/5p2tfTPs27Rg5RoNERNT4g++UeY4Ql1PuNvFzWfrUouNhXLqmW+qVFSMEo13zvOOR8lnOQR93SJ2jxDrJ9iri4w8yfeYNQx+u5D5PQUO5hhBjM+KwTLyvCsqHm0qmisz4mdDmKOs4hZHjFJFCdug9w8hfUz2k//2ofr2nrvpQ6PUNNT2tNfpEnGrCrDZ+uaTWX6cHQ3D5NUcz6MGCeKqN6grz7FFSvvOTU+dyTSAWIwpp0+pE3GLCvD441/nl17iZaMYsVRGvFgHJGbHXI7h0f/yxsjIeQpB2Ovb6anNHd/mWUDlzvDX8+3rKq292rvjhLOBjHHmeaeKlDrC7h6jJk/oX36yO/lOCX67i8hju9hxnf5rM15um34YlsxLxqKxhApwSSJ+Ad3hxynmqPIEj/+qz5cDRDd+xiTHWHzKWU0urZWhBAHkaNX6+znyWq14u7duyyXy2t6/FXywXlgnXTz6J7zmf9DoAw3lQ+r1TvcbuPDQ2UBjV/sIooQ6QB99hCXjWnTES6bsDSaojFsG8vjTcWqbFlWDfNNza72Vmfd+noJHRTl8TAhjxXjNOJ8lDCM/eYYxopZpsm0JKZFrR4hqi2i3HjlWKx6a99sNpi6PRwJKvbsOJkeeEx6bz26tunzNp1HJJREoXFp0is98OAllP+3By2JSpN9ricO9wnemDjwyFxb45omUNEVsqywwcGzTeO9BWOxTXvtfu12h0oTdBoTjwt/v5Bn8PeQoFQPZELHPrcRB6DLj9BxxiDKsVnGJEmoAqAtg1IqGkPZ2mtecacMvHfQUjT7fFnRmD43VRtHpiWZHjI6fogo18jBMbreeOZXsUZtV6jLpwGoWw9oZU0jJUKtSDZr1HCEzEfohwVyeMwwn5LnUywRg1iR6IZNbbCNY9cYHpclsZYMdpp5UmOcY5ppRnHG6eknyOEJerZEpDm2WPehsu6Z2xLM/Aliu0KOpihnEemIKB2RZSkWx67xYepnRe0jBdaxrFqqNmKYKIpIcn50HxcIInI5R7UNpm69EXSxoFpsiBcrT5o4+4hkWnA2uE8kM/JIcbGpeuNhVxuudk0fuj86HpCPpM8/3wgn2u3KGy5hfR3nd30NohCsa59na4xjVbWeIWccxsbk4zH5NEHGGaouEcs5drv3Im0wAFU6ROQVx4MZlYnII8Wy9AapcY7SWChbhrHCAcNo4ENtUiOl8nNe7cICN8hkROQck3TCprGBpem9sE3V9umEYSxxScZgdEI0vQwqyfi+bVd9e2owYzI6wznFcRZhnV+njXGsyjaUlQhm0zHpwKBsi7QGEUKArq2xyzlKxygVMxkPaa2msX79F80+ZzwvmkDZV0yyI2TQFa6psdUOqRNckxKnY4TwIeHDFMbPC15vIl8rgP3n//yf+cM//EP+8i//ksePH/Onf/qn/Mt/+S/7vzvn+J3f+R3++I//mKurK37t136N//Sf/hO/8iu/8tb68Nw5PazZsm3Ic9T7UJqOfFgxzZGDMWI48RZzOqIWMUVjuSxbrxzLllWwsoyFREuUjMhiP7WJlt7K15I7eReu8h6XV4iCLJLk7Rax3XoiwdVjb5Gtr2jnT2i2Je3Wh4qaYocz3mOSAbhUHCEjTTzOe9CR2eAgHBj1gOasIc0G/c83yQj+/+BZ6WgfKkqya6HFHiQPPDEXwmvOGk8waBtEOkfXJa7cImPdW+1Nsbv+nJS/tzMWU7dYY1GRD6l097j2/Rv9k6MpIkmR6QCdDZjkx7goxcUZp4MhVQib1MZ5wkEgGiyDUqmCF2LdngXaGEuqFVoJShM8Hy2p0ogsvUM2PEG2JTIZoeotlFvkF5+it2tcuaV6NseU3tN1TYt5ukAtNqh0Tto2yMkMNbuLHN3h7skvkmlPpthULVelX4vrsqWoDeuy5UpLGuOYZhHTLMIcJQyzM4ajM1SUEVVrH0HYrrCruTckrMHutoi2xtUlyhrUcIIr14h0xDS7Qyx9SHNZSaq2pTSWtnZsqrb3QIRImGR3yOMB+nwRPG+Js5btao4rdt4Iif+GaLtC310z/d6YdDgm1YJRrKiMZV0ZypCrvCobpBTMsgiXZuSTc193NFv5EFiXZ9yuQ9USDNIJOsvRUlA0CVc7D/hl6/OevmzAEivBJIkZje+TtA06H2NXc8yzxx7cqxJr5ohsgGpLRFNycvQRSWWIlbhGCCqxLKsW4zxzLxnMkFL7/JdUmGrnIxxNjR4ssNYQOcs4nlwr4n/WGB9OtI7JTnsiUxozyY9R+HC7tQa7XWPWVzhriDZPATganXEnj/v1vwkpii4NMss0x9mU2FkUIOdPQhixxm7X3rDQEcOje5hUY50/ZWNVtn10Ylm2IYQuGHX5MPC5Vmv3uWFTE6kY6Tom9LuTrxXAttst//Af/kP+zb/5N/yrf/WvvvT3P/iDP+CP/uiP+JM/+RM++eQT/uN//I/883/+z/nBD37AaDT6Svf6SnHQ7rQBc0hPtjgd+dBVknrFODnBxgNMNmGthuxqx65tKFvH5a6har1FDwSyhSSf+FxRRxrIItnnW6ZZ1IcJJ4kiFtZX0xchfLnbYNcL73WVW8xmw26+ot3uesVvmrYP96kAYlJJiLoaJenzS+mgz2GJdLDPXXXg1Mm1n7sQour/JpTy5Iu+BECCinFC+OJrcVAqwL7LZhvnAAAgAElEQVQAt6thUruVJxzstqjZvPckbVF4C9vsw5dS+f7LOHouaGGtzz0Y21/ruymR8yfX8mpqMkOkA1Q2YDA5IdcpNs5wUUYzGLNrPaAtK9Mzxq52Pg/S2I5042jq1tfOGMeVliRasqm8txQrQaI108lDEiV8eHE4Q9cb7OoSkf4EW6wwmw3NtqReFZiyRmx9qC/ZLLx1PD1FS83R8A7ZYEjVZuRbRSRrNlXLumzZ1S2b0rPb5qlmnGqq1vRMvLuThyQ0yHLt/1193pNN3HaFa5oAaNZ7Y4MxajQlUzFxNkFJwbbWNMaGHIkHGSUbnhX+ORR5xFGScOfkY3SaB088prra0BQ7mm3J5tEz0rImKbek4xn50TnJ6IxERazrjKtdw7JsqIInsipbFmXr671SzWh8jq62qDj1IdoOyABrLSrKSfMpcT6lar3HdLVreLypaIxlU3lGYSQl1SBm20juHz9EJgNkOkQ2dfCavJdq5k9wuy1yUhBHKceDGbFSVG3EqhJ9+G9ZtsG7gzzSDAczv/aERETzPkRvri6QwxrpLEcn08Oly9WuDblHz6Y0LsICw/GZ1xlT7xXa7brPBZqnn9Pt0Gl6hiPqiWDPirqn2S8rgxBwnM9CW6f+vmEN2PWV3xfH896jc0Q8KzSyantvbFm2ZFrRHI09gIX6NFeXoXC68SVE4YSajun7Lrwv+AZzYEKIax6Yc4579+7xm7/5m/z7f//vAaiqirOzM37/93+ff/tv/+1rtdvlwJ48ecLkdWKn/QGW9vrxLt3ZZzrG6RSbDJg3Pj+xrFo+XZYhYeyVZqq9NZ5oyZ08ItNeoQ1jSaIEsZLEwnoqflsimgpZLrHVDlcWeyZb45O3ttz2CroLs3W5qS6nAvThPRlpokHmlUgglnRKW2YDbDrBRYkfSzrCCO0JD9axa/csP18Ps2f6XavpOjzp4uBzE04I6K7p6P+ddKxJKSANc6ElDCJv3QnbIrs6oIPjevqaukMP2dTQtvtwyHrR5/TMck5b1piyplpsMHWDDQBvm9aHHQE9SNFpQjRI0YOU5PyBz2dOZrg7D3HpGJuOWDTS54Zay67xSqYIZIEubOPnbT9WJQWjkDvLI8XDSRq8bMlJbJDFFWo7x63m1H/7V7SLS+pVQb0u/POUkmiQkj98gJqeoE7uY8//PnU64ao0/Oiq5FlRMy9qroqGx4sddWBXdvnUUap5OM2YphF38phJqrk31KSu8jnUZz/1tPIur9uxJuMUfe+7yKNTbD5lkZ1xVRqebj0g/OBi04PnMI04yiNOBjH/6N6EWaY4jh1q+RjzP/5vzNNH7C6u2D6Z+zUQaSYfnxPdOfNklrOHlGe/zKIyLCvD317uAqvOkqi9gTfNNPeHEWmXH/riR94DCww7kWSINEdOZtjT72GHJyxry4+vKp4VNVdl03t5qfY5vO/PBtzJI45SxXH5BXI7x84fY5ZzzPyJfw46Qp9/FzU9xY1O2B59h2Xlw8+LsuGLbY0NeawH45RJojwLUFmiL/4XdulzkXa79kbkYIx++EuYwQwzPOGyNPzg2Y5nRR08RkseSSZpxK+cDjhOFSNRo5ZPMD/8S8xy7lMZUqKGR8jpKfzCr2JGZ1yWhsud4a8uNgFgLZPE5//uDhOOUsWZuURtnmIvn9B+/mNP6JCS6N7HyNk5ZniCHZ3x42XD5a7xhkXVEknBMNH84nHGNIxPbueozVO/L6XGDGa4rnRIe4P9TUHkvcuB/fjHP+bJkyf8i3/xL/rPkiThn/yTf8J/+S//5YUAVlUVVVX1v69Wq/7n16ZuHh5SGo5vQnnauItzajSb2vCzZd1viqfbuidjpFoxTLRfgEnESR6Rac8kTKslotj4up2mwDz93FPwD5hBrvE5EnsATJ33ARANsmtswEOyRO9V6RgxGPn/4xTiFJuMsDrG6hSbTajDMT/rnaU2DbVx7FrvaZSBwdVZmF8CoOcwJbtz2Q4P9uxqXuxzFLsUPgkeyeB1ptqH5CRkeuDj7dG+wLgraYjk/vgnURfe6gtkGz1ZQ7XDFp7KLXdbXLHGhrygbVps01ItNsG7CzT6WCEjT6oYzlfE45zk+Ijoo5VPmA+PmU7uMcqH7FpL0TgiJVlXLZu6xTpHKfx8LYom5HNMP2YfJlY8XmdMUs00i/jkOGOSnjAaniAHT4naBjm6QF1d4H72xBsq1lKvC+STJyQhPxOlOclgxsnwhHaShFqnwJSsDcuiZlcb5psaqIm1ZF22zIYxszxmmkXAgEkSMRmdkzSVP61CKm84tTUEQo+ZP4G2QR57Vp5NVH8CzKexYl221K3ls8uCy41iHsLgDycZ1TDi5Ogjso9/GZkOEPGnNNuSpvDEne3jS5KyJg33irMJs9EZWmpWeYyUDZtqT3LwYTtLpiWTkB/SuyustYi6xLaNZ+zpCFmsiZMM05QcjU64k3tV1lhfkvB007KwTQjpCzZ1zL1RymR67g8Qdj4fbOZPAvmlAP2oD7Omo1NsktFYR21U33ZTewIJxJ68kCpGyQiZ1z7/uJzjrEW0DXb+OSromaN8xp1BTBnC1YvS9Hmop1sfGpRZwmB4BzmZeaO2bTCbtTdsrSU+fQpCMhmc0FjHOPW5rLKFZXXAJCbhZHoCznrG5fxxz3A0S29g7L26k/6qrnayaAzryp/aoVLFIAshZ1P7InPbBsKW3R+J9Rw1+014Ru8MwJ488ZbP2dnZtc/Pzs746U9/+sLrfu/3fo/f+Z3feeHfXxfEnJAex1QgOwhJE+Xs2q4Y0/Kjq4KrXcN8W7MpG2KtGAUlPIoVd/KYUaI4yTVRUyA3S+TlZ96yC+GP6uKCdlteY/wBqMDok5FGRZpkOkTGniDR1RIJHSNHR3sWXhQsnnB8kIvz/ggep2Nq9l5WsW0DJdrxNHgSHa3/YlMFennLsgj04XAKiJLee0q07C38WPtizDgog066a+rW+uOL+nY6lp/sr0m0ZJxGREr0FPEO2A7LCLQUfQ2bkoJEDYhiX6elpUBXK0RbIeqCKB8Fr+KKXCrqxQqVxlSLNfWqwNWGZtfSlh7cpBLISGHKmniUE4+vmDQ1ajLzYTxnkekInYwY5mOUhFwLxoGivSx9OHEhG4y1bEJ+alO2/dx9dllwlEccDxOq1nI+TLiTa47SEyb3/x7xZEabj8iqkmrhQ4u2aalXBbZuiYvCe9PTJbracn76SW8cTZLIE0tixXxT9eCyKT1p6HJTcZFHnI5TEi05G8RUxnFvdIqUCq0UdjXHtg2OBluWcHXhowDmgDCQ+vDScRaxqw2bsmFTtmzKlkXRkMWKTW1Y1yllm/ILs19A6ZQoScmurhBzSbPdUa+3fRQhbRuS2V2UaTkan3EcAMdaF6j1e1r8JPWhKZvETLIpsm19we9ui9mscdYi1z4Pp07uo0zD8dHHWOjrm/y8NOGIONcTeI4zxWx4grAtqq5odYSzBW1Zw+WzPg8up/fJxmcMY01tFEqInvhztRN9GE8KGGZHuLby5TXW+ggBYOaP/T4IhfyDaMRxGoV8ueuJXo83VfieQOdDBpM7PiS522KaK0yzIbIGO3+MEpJYxUySMZNE9+NaV/sIgXXOe8iDGaKtkfnY5/xKT+joct4KmJyf+QMB0DwrJLvG0hqfIomU9KcQpSmZTg54AzZET9T1M0RvyFcpafp5I5DvnIV48yw/59yXPjuU//Af/gO/9Vu/1f++Wq346KOPrrfBSybksLAWcDqlCZ7KfO3d6ItNzcW25n8+WfXKaZLvQyinw4RPZrmnGbsK/fh/Yp5+Tjt/wvaHP2Q3X1ItNrTbkmK+xdRdrkagU43ONPnJEcl0hE5j0tmY6MH3PEtsMsOMTrHxAJsMWbb0QNQVRpetwbZQ7izWOowzWFf0C7ixrmdnla3lqqhZly2bsmFdtjxZlNSNoalaql2LMdYfzhu8JqkFSknSQUwceer/8TDuCSkdQQXAWNvX+VRBmdYHgFgfHlVOdw6fIIvVnsauJaNU917MKNVksSKS3mvrqO2JlhxnsT+lIjpicv8jMi3RtiZZfE5arXpaefXTv2E3X1Et1hSPL2nLBlMbrHGUVwXNtvLPqKyJRxfE45+SzR/vKdajI06PznHJEDsecToYhpMmLNMs4llRc7GuuFiVPF1V7HYNbWP4vDFIKdCR4r/fWXB+lPLgOOf+JOUf3z/l+PSc0d2/T376gPjiM8yVp45vn1x672VbUq/+X09Nn4yJf+EzTqanzPIpdjbjbHjMojQ83lT898crLkLZxtNVxbJoeLwo+emzgkXRcD5JOR3E/O/nI45HDxgMZkRNjZk/wVxdwGZBs/Q5OrW6JLKG+PQBs+EdjsbnmHsT7uQxd4Yx67LlclOz3DUsfzjnr1LN+VHKd+4M+L++M+V89D1OTj9hmI9IH/+E9smnLH/0iGa7o9nuKOdLjqxBndxHn3+Xhx//Y4aRZJgollXLsmxZ1A0XAWxmuWfq/tLsI9I4R0XeS9l9+hOqqw1tWRE9ekY6+wHJ2Tnj/w3y6QMGkQ/h/my5Y1M2LLo5CcCeasnDScbd4T0GUY56+ghnDaZeUFws0KuCZLMmHU3RbcXR5B4yTxnGKhiADYvdjsFOsypbTgcxo7MRo4nyxeOf/wS7XVGvC8RqSzx/gpo9Rp9/zP3v/Z/EKiZSgotNTVFXLFYlRW2Yj2uudinFUcYnwSAQStE8+4J6VdCsCuC/o64u0PdXDGcfcX98hhL+lP3PlyW72nCxrvgi9yfNPBjFnIwfMDy/8nrx6SOqiwvE1RXR/Anq2WMiFXNnfJdsMGJVJnyxrVhVLU82FVVrKYcxxkXcy6fIUkJT7c/JtNqfkfmSN0Ic6uEXgdmbpM/eGYDdvXsX8J7Y+fl5//nFxcWXvLJDSZKEJEle2f7rgFh3hFETzh/chET+VdmwKJu+XiiLFedHmQevQcz5KGWWaZJmg9zOMY9/Sjt/THv5jO2TeW9Z15uGdmewxnqiQQCvaJCSnU5JjobEx74eJXrwi9h0QpuO2KXHbBvLbmv7eqaiMZTGsipbX3x6cC6Zeg7gd7marpi3C3dde7uqFD6KakVfidiBl9KyB69hqgOo7L2xQymCJVm3Bi0FVaBK90DmPDXbtpauAGBXtR4wpc+RLYOHdxPMjvKor9VKtGReND0x5nSQkGpPlLlz/F0iUyJGZ6iTNWmaEy/nmNUlydET6tUWU9Y9xf2wXMBZi61bnx8KDDVXblHWekDbLTka32WY5wxjC+QhrKeZZBHrsuXpSrLe1rSNwbQOa1ueXu36WsCiNszymMqklKnibPoQGWW+/WxAFrywtqxpgsduyhqh/xq1nKNmd9GTNeenn5BHkkHsT9SY5hFPVtU1i95Yx7Ko+zDus6JFCIHIMkajE2RXrwew3YWyjAI5fwLWok78307yc4TIkFLw4DhHScHTVcW2aq9532fDhMY4Whvz4M53iHSMkIpkvoLF2o+laSnnS9JQhiFP50wGJ9ShuLYjI1StZV7UfZj6fBgTD2aIukBOZug0plYyhInXfX44unyEihKOxvcpW8csj1kU3mBbFg3LokFLwcW29uf/RYIsn6InM9x2hS4KKqAta2RREq+v0MMjRDoiG+aMYs2yapFChDlu/HmSSrBpLFk2RKYjn3/exIDPczprSUK+Ud6dM87usGt9bi7Rkg2wKRueSdHnAh+OB2TZBDWe+Xq+wECuFmuSQMrSac749B5FahmW/uADHxXw+/xZUff3GCRjxGCEXOc4azEhxx5LhV49Q0YZ+dGQQaxIK8mukazrlk1tyCvjSwiyFNfs9rnqLynclwMZfD1sxXcGYB9//DF3797lz//8z/nVX/1VAOq65i/+4i/4/d///bdyjxdVgnefG0eIcftTHXyYzfZHEGWxZpj6wsuHRxlng9gnyROf65LbOWIzp766wCwuqa42/eJwxiGVIBr4EKWKFdlsSDzOiUcDRt+955P201NfUDl96AtbjeCLTcu69rUoj1aVt/wCG21zAKxAH/LrPKMu5n/4L++9HQ8SQK/stonGhvY8oAnSyH/vdJwEAIs4HSdE0gNHomUPmsa5azVVq7LpAW1Xtwf5or2n1gFaJ50i7H5WUvSfGWuJterDkOu47QuPr3atL0GIFMU4IdOaPDlhODwjTgZEuyV6u0BNf4TdrrHblQeIVYHtjiwKQCZj7Z9bYLyZ7lTu9RUiG6BNjYwHROkYMRwxjCV3BjFfbCpqY3m82PF4UfIZBBDzLMld1fJ05UNEPxmnVK3l/jhhMD1icJwho4xoMMZVO1R+SbPeUM5X2LqlrluEekIcqPFyMkdLzXQwYzic0trcEx9Sv8aWRc2mbPuQ8K5uWZUNz4o6rAvIB8eoQLUGiDYLTFlhjcVuFvt1ZQ3TBzPUIEaJjIuTAXF49n97sfWMvxCa/cll4Q8Odo6Tu+fEUhMp5T3aWPceU7MtUcsVIr4g2c5xOmEcj5hmUR/iXocwJXhvfRlo7UeDGbreooZD9KqgVtKHiTtS1dNHROmASKdM02NOB7E/j7H2nqOx/tisy13DOKmZpJp1ZDkez5DbFaosUPMVtjNmtmtssULmR0RZySD29YCpluEsQM+gTJRkU1sybTlKJz78v75CRhtfLkKJkCtE/JS4uCKNB4zjlEka+TBs2QZjo+Uybki1YlVnJPnUHx+Wj1CBhdxsS2Tk508OxuTnjmGkOE6jfl934Dov6r5k5yyboMbHPnwIPZMZQF9doPMhLhmS6SHDWPsDjp2P9KzrlkmjaUXsX4ujQrnR4QtKXwO8vi75WgFss9nwwx/+sP/9xz/+Mf/tv/03jo+PefjwIb/5m7/J7/7u7/L973+f73//+/zu7/4ueZ7zr//1v/7K93oZut+0Fzz5wCvfLixXG6+ApaC3rj+5M2CS+lzAvaFmqEEWV8jNEvfsU8x64etuNguctehByvi75z0tXCjPMOtORfA1P/40j3Z8F5eMqKKcbWN5WrQsVyVXu4ZPlyVXRc2iqHm8KPuwXG0sprW95zJMdMhT+bDbbNiRSzyj6zDH1I/dup4m3oUbOzCRcl/E6w81VWRaoaUgi0T/PrToxjuADt/a2h/vFABtGZL0VWuv0ac3wYpvD4BMh/xatxk7IAP6EOXFqsJYe82bVFIwyWNGqWYQyA4PJ2Mm6Yw8Fxw//DUyLYjqgrjZ7ZmhpgmkhsYXzobTGlzji4Db+eP+xPCueFtkA47OHjIdHmGzCX/vdMIvn5yxqiyXu4b/8XTDfFsz31Q8XpQ9MO9qww+erHiyinm08vVLp4OEo/ScyegBw/Fdou2ceHFB/JP/1bMVy/mK3cUVQj3xBJRHP0KOZ0Szu3z/4a/wvTszyrMpv3w65FnR9DT1y13TGwNdgfKyipBHAybTEenoFHl0ThSnqNUcu15QX13Bdoe6fIp8/GPizYLj4zMmozMm37vDfGf42ark//npFU8WOxaFP23m//t0wWeXBZ8e5zTG8WByxMndO4z/j4joi09Jv/gUs7iknK9otyVSPUN/9jdoUzMcn/OdyZQ05FuUEHx2tWO+qSlqwzjVFJOUapBwevZLJJ88ReY/Qg8+Y/HXP8MGz273o7/G7bboBytGpx/zD84e+PBnHnsSR0gFzDd1/yYASBnf8eG6eDD2pJaiwNStL/24eoqKU6RUzPIHQIoSsDg4ZedS+v3qXIrLU+7c/Z4/1V/HNMGjrhYbnLWon/4PtKk5PvqIv3cnD3tT8IO6Dfk6v64/XaaYcczdO79A9PCTUNbymOKJn0NnfB4qPv0up8cPESLmo0kGwOOF9/o/vdz1r++5e/+I4cQSOUfy+CfY2hfZm8WG+ItPfS5RSI5PfoXG7r3gyvii/2XZsmstOhkgu1dH3Tzv9EMEsP/6X/8r/+yf/bP+9y539eu//uv8yZ/8Cf/u3/07drsdv/Ebv9EXMv/Zn/3ZV64B+6riXvBzHimkFP3rFU4HEXkkGceKYXWJXC6RlS8ytFdPvdJrm+DSD9Dsj3MSUUfImCLS3J+UMJjh4iF1nLG2ml3j2JUNRWP5dOlpxZu65cmq7BPnndcCIX8U7XNHkzxilOqe4nx3lDAMjLXTQUKiPfEhVfJLr06B6+/+6trvXhqppCANr5NRgp4NiLWeznz4Vt3DV8XECU7HOBnRWNi1EXV4v9m28eDl667aHjwPX/h4WE9iw6Gw1vlT3BvrWOya/nzDZVH33sYihIg64snVrmEYe0B/MEoZJopURSQ6YTw99nR+U3srty2RTYUoFthi5dlkZeHPjGwbbN1g1hs/R5H23lDIlenJjJOTX2A2nnKSK0aJ5tm25rJs+LRX8t4AUdKHn+bbmmGswqkgEbs84sHojCQZ+ZMc2gaZ5qj8EtM88cXQdYOpGzZAtFiTbBZEgD65R55N+Wj8gEmiWA8irnYtj1Zlz+4Dr5Q2VcuqNlgc43hAPomJ6m1gtsbocBxWU5SIskboH6HWC9RsyexhRjYekWnBqmw5yiM+uyyYb7zXty5bHi92fBrqIJ2D/OgBWkhPVopTTGCIWmOxxQqxukRGOaOjGXWmKU1CYx0X6/2pHauy5VnU9GUqd47vo8M5icnFoi/sb7elrxu7eorOxxxPv4Nx3jN9VtTMt5656Y0iQlTDUI5SsnyKMjVqdheh56jghTtrcGWBbHYMY0UVishHgdTThWs3VcuibMi04DifoqYFqtoRjT/z6/ggRG2Xz5DxkMlgyFnwEodpxCYUrhchjdF7iEenqO2aqNwi555xbcoau10higUyHTHM7jDNNOs6CkfXVdStYVv7Qxa2jSXPJtjdEpGP0AM/Z9ZaT+4oVsjdhkR5QzWPFImS/drpDF4i3R/GDbwz0DqUrxXA/uk//adfev36oQgh+O3f/m1++7d/++vsxjXZK+8bL/mTMIgVA1R/mvtJrslokMUc+fTHvrAwHB3jwgkR/hSIwBqMYuR41rMFnU6w2cSfCKFiVrV/XXhZWBZl5UkBwUO5Khu2QTHv6j2rbZjqa3mrLozjQ3ypz0+F8xTvj1NGiSbVgkmiQg2W2L8+JbwF94XMIWv3b+MNhcj9u6iq3f6kje7Eku4A28NT7MM8OBURSf+uIadTz5QcjKnDa2N2bcjjhRcvHq6Tw/eFdS8dLAPlfx5r1nXLumr7vF7HxDtkUV5uKoYhb3dx5PMBnXd6NogDMUQwSqakqSBRArl5ihxskfUmnL4eTjEwK9pF2Yde9GKDSmOigT9XLyrWxJMZk+yIwfF3OBto1pXhOI24LD1VfFMb5qEUw9hQCB8s3HXtKcujOGFy9BGJaYiGR4inj8hLz1as1wVtWVEt1rTbHfWqYATYlS+EzqUkzaZMRrl/9lqyLH0oehdeUFYay7OiwbrIU+VjzXR8jlQxSseY9RWaBXXIv+0efU68WqDWVyTpgOHkjGx8zu50yDBWDGLFo0XJ315sMNaxLlseLcv+OZ7cHTE4euBfJqoj4mLtC9mN9aeDrBfodMBwZmkTRWMjGmN5NvT5K2P9q06SnQyvBBJMx3dRzqKB4eVT79WVNdZamu0OsZwj0px4NmeW+aLe7x5lDANzsjb+1JHW+LY3jSXuTrGf3UXoyBcSh6OmXFMj2orY1YGR6EsklBCswz6tjC+EH9YWM5si2hI1q4mnPwGg3YZC7GKFXc7R+ZjJ8XcpW8f5MOHR0BNU+vxl5dMHmZZMBjPUzL8NIxo862tE27LGrubIbEyWTTgdJP1rV7p8dB32TNFYdrFmkE1QkxlR6UOvfbqjKnFlgTYlqYp9LkwraP3+Nm7/T0jlX3D6AvD6pt8L9s5ZiG9Tfq7XqUA45f36ie+ZFmTFBaq4wi2f0nz2o/59O4AvpkxSZP7/s/emzZFk2Xnm4/de35fYEAEgkZmVlVW9UE22htJQGuNozObD/G59njFqKInsZhe7upbOTBSQAQRi9X2bD/e6Ayg2yaYkksOacbOytLKyQgIODz/3nPO+z5sgFxfghXROSBMutJesF5Rtx6HU8Sp1V3GfVtoH8r1xWtXq/dAwTvMdhf9IjUGKIZFVdxie0pLzma9jJAJbkriKqSfxlKWZisUeq8iwqhxRHnVsiik+fW0ywJ4S4gG6bmTEDUDeAUc00MGBxwL2u+7nQJj/PuLJ8bDiGUo6IB0iNxyJHiilqR7wPI8MU8C6RxXm3LfZFw0P5sS6y2r2ZtQ6CBnarudUNKMo5O5QjMUscCSr2B0Zh5eRS+hIfGWxCM7ww4UeMbqxZugp/Yuwdif6oqM1RcQyvj3luUSHHTLRxmjnzZF5MGPqTQjOfE61y7HUu5f3ttQFxew+8qoldXTXLS04CzSm7OXijZbz+zF9VSC8W4SzMyPFPW2uaR4A7u6As73TC/nZChHMcP0ZRK55aStujiVFqxWr+6KmbjtiR1G2Ei+a4ikXIW3UfkMDqLqhzLVooNydsDcHLCFRF6+xl0denv0EV1njgWBQ+7Vdz/pQjFaLq8Sl8wPiyQukJZD7DRhG3yA37047RKrpEG0v6XuX21OJtDRSqzK2lodCj9uWgT9+PftqjQjW1PvDCFHui5Ruv8E+3eEBq2DBaap5jA9FzaFoxi5fE941r3QSLVHzF0jjq+wyHV8zoLhEvieOlrQdnIeOyeLj2Uh8b0v2pa2J+K0uiA4gpAYf96X2grbeGnt1YObFNJ09IqKGe5jV+nmJHEU3WyCqHLlIcafvsI7abtG3Hd1xh4q2CC8mcRfaNmFWDZtTRWM8caeqJXKEFoZMFsg8xelahiRAjX7Lsaoc13VHvB0wBuL2poCpwTf7OwpY/70//ykK2f/naPRd/zTMsh/9HJYFvqGNi3yPyLdUX/w57XZNsdGyWE2/8LR68O3PkItLumhBNfuEY9VxqFp+uytGV/uxbMaZ9KAGHK6hkxpGXqvk8aV6ZmSwgS2IHeuFwuMAACAASURBVIUtHouYpywD3LRw0BxHqyn1GCzbQqFPa+3dtYaXFin5emuIFaVWhBkSPTBCdb9/Dabqp4inkVYvnz+8XdWM/rYBNNx3neE0GtCwo3DiEOU5SN/BiYPnkSpPqPYDuBchEUE80hesIKGNz+n8CXkvuTVil/us5uuHjE1ajUKGzakax1CDaESYA4pvFI++I1klLtPAYeLbvJ0HzD1Ng4gcwZkoEekGkW+pv/pL2u0d5cOOwzc3Wik4cA7bHulIpOcQXsxxpzH+aobz+c8Ri0tNUo+WfEg1uupjWvHlJh13SINQJfYUs8DmJ2cRq9BQ1buDpqrvPtLcXZN9+cWIbhpO9sJWhBcL3FmEmp9pYdCnP6cLF9TehA/GHrLNa26OJXXXj0b1VxOfM0NwP28fkMePtN99Q33zDZv/+tejMEl6Du4sIrxYkPz7/w3r4jOa2UseasmffXfk+lByvcu5MwUs8hQ/v5rwauJzGTksfMn08E4T5ze3er8IWMrBfvkZ1mRJGy1pwwVf7SrWJw0RWKfVqLQNbMmPFsEopDprDG1it6Z+92tNrjCUEbm4QE4WiPk5zdnnFNJnX2rq/xBgCRC5iomrCB3BVWSjyoOmlzxc6wNrXemvN1vRB3rv+aBm7MuWba4PUmvj4/KU5M3UZx4oZp5kenyPOKxp7q41ZX/3oL2eQYz74z+mm1zQTi75zaHj+lCwTiv2RUPVdsSu7vT++CJmGSi8fAO//j+1BWK/oasbZBRp/+L5a5q3/46Hyhr3lF8/ZFRthyMFb6Y+r6earHFRrxG7G9q7a0P7SEfvqfz839LGK46Wx9e7UuOzjEr0k4nLxJUEokXkOj5mAD8g1H+XRL7nXyCJ45/rEhZjXH2HhRoSjC0Q6YM+fZ80Yqa8+UCxOVCnGjw7kBxEmKBWL2mjM9poyW2qeW7Di2l9KNln1ejPqZ/6rIxsfB45xhysX1znoUvi6Q/TMtRkD09ZxLYwEM1cj/SyQo/3ulanRXft2F015oHs8pTm4X5ULhWbvdmjNEZKXtO1vR4jPImAH4qWkJZmLTrCGK6FjlZBjeKUp9cgRR++/iPjsDf/3UJIQbk7jbBhO/TGKBUhfvfXBJ6JYEQYoy4/RUZTpD/hdXLFsZLMPYUnBftEv6SPVcOHh2w0Gu/NyfapoGL4Z+jWdp7ClvrUf6z0qdhJPOLZK3o3Ql1liCDB8m5o84r8Ya9VcMeM4lRSpRWgeYB26OHebphXNersQncuiz2Xq5/qoEolDEncYkPFPtMm5KGTsYVgX9ichy7ufEK0CJFuiB1N8MsCJ9aHqrTd6N1K3ZA/6FO+W1S4RaZZh/MC2oqJq0dpXQfrtCKrO44me0zvcBxWkUMyP8MXSoNluxYn/kCTFlTHjPKg/6wOGd7iL7DLArutWMxe83YWjOnfg0o2r1ru0kpn3FlgWQ5xdIbsOx20eNzSGTxYu10jMXSIvuPMX4wFdhiB1Z0eh10fSg2fjVzC5AzP9pF2gMp159WZcMhuv9EG7bJA2gF+uMAJZhStVuoO4qKsbo2wSRLagthJcIVCVane9WRHTc457fT33TVMlzOk0KsGIQYgrsZXfUzLMSk8nlyCJcaX7BC/QpHRbm6RZvQ+8y7oem989u9M6vSpbDiUOuR0GS5wVy8NlaPFygwvMdVjSZFumMXnNB00kcvGcBLbTo+O90WNKy26YIZVl0gzTWmffO5p9WHY8wMCW9KZ/9c2LWvX9+Ou+/e9/rG7sR9sAfv7xol6dGjsT12DVRXPilezuTGdl57ZO3GoO6/ZDLW8oo1XtPE5+xq+O+bcHEvWacUX3x3YnCpNuCgbqvKxw1G2RDkSaVsjrWER6RyjN1OfxJNEtmQZSB2uWaTIzUZjf8z4ss/Tx2iUpoJWI136pho/IF3dGOmyzt8aildXN6a49LSV+f+eRUR3z4rYUGyko7DjYKTeK895di8Hb1Vb1dRHrbyyqoaWRpu4254WXdS6qkE46m94sSwpRmnvU/ajziJzx52Tlx71yXqywG1qbH/CNJrgKt8YjbVqau7bHEu9yB664MGflj/phKum42j2Z7fm5Ti82FxlkduS2J0SLj9FhlPEZAFdh53cUxijdFvdjcSP7D5HHkqKrWYdBssDwWmH2m9wnJBFolFKV4k7jrKGIjqMFb9VgmPlcKpaQkcycSXT+ArXjXHelrSbBSLWHcywG9OS7Xz0tInoHbKukH3H9HJpPIPaHA7tqKLLq9aIh1qmnmIZTAknoPqO8OILWiN/z+5zqrSmOtX4v35HUtU4TYXqO1bznwJaBXcb6cNb1XTsslpzMA2S7DwI8UwRs8JbrK4bEWt0nU5h7hqm5zMsSyIsh4e8BmpOlR6132eVAQ23eCpk5gXEs5fY1QnLdmC/GXmZbVPTVQW2H+qU5rZi5i2f+SYHgHPRdgS2NEGRPpGvAycZ0G/HrYb+VgXSDYmjJZanifRrR9L2evS3zWtNEel7pp7PJDkHs7Nrt+txr9Zu1/qdICXzyZVOH++0n25fNObrdazT0kQywTKYIxc6+LNFB5piQL12ugHpMPVmtL32wQnzs+l9X0vkdBSWi2esFKJrx3cJQupk5zpDuSG+EvQ92O3jvep5sgfr+//uQvY/YvT3gy1g8LdX/TE9tO+wymxEE/FwTbNdazrCYYclBf58gvQdgjdvkauXiMUL2vicWytht9OO9b+6O3GzK3g4lXx4yCnqlt7ss7zQwZbCmKG9sWh9Ogs4CzSAM7IlK9eAX49bml9+Qbff0O43nK7vaYtypNEP12PIpO5ihuDJoSjYSYCdBAAEF4tnYOBhfPh9UPDQDQlH6XiWaTLCguVkgeWHeq8VJnp3BVh9rwHFVaFn/Nu1PgUXqd4XbU+j+OFp7piwnz96w39vq5q2HQpiQ7czuWFmjOm8+4gd+tiBR3C1QgQxIp7y4vw1+DGdE9LPI+qrM/Kmo2x7tkU7qs6yujUUb01cH3BMwKhmzCsds3IomzFw9GUyJ4zPCOYWydXPcLItcfpAu7lh/uVfkt3tKDZ7ju/uqNKKOq14+OsbTtf3uN/e4C++YZ4eUC8+ZXH2kp+vfsSL2GVjvH5/pQSbU8mpaPjtfcrtLsd3JPdZZYIaHc5Dh9dX/5b4E1DphunbL2kNlDZ//+ERS3XMsL75Gne7Rm3X2EJxFp8TxTMOhY+wtLLsWDT86jutbIs9xb6seTXxeTMNWS3/kPn/2mNf/oLgm6/o6l+S3WeUh5L1f/0t6e0D0fs1k5tvWfypYjp/zcKPALg5lWxSPYFYH7VPLq9bIlcy90LmZ2+xB07odk27u6Pdb7A2N4ggwSlz5smKabRELkPus4abU8k6LY08vMcxpnYNFnD5ycUf4iSX2Icb2vUHqt/8BfUhpasfaHcPyOkctbhk+qP/mTi5xFOWIWKUI1T4UDTMfMUqdPnR/ArHDpBCYTU1zcf3encnBGq/wV5eMUlWRNMritbn+lBwc+y43hdc7/XOtTCev2X8iiRcYJ92NGs9Tiy+u0Y93NFsbnClzcXkiniaEDqCk/GrpVXDVw8527zhInbxVi+1ECOYIO4/UH39Cw21bu6wvvklcrkjmL3AnVxQz30eMk2M2Zdajdh1PYEtmHoRk7NE71mF1KDkpoYyR5gO6yy84KQs8trCaIBojQBLKefZZ3l41/4+Bel/9L7qB1PA/sFxKjAq86y2wmrrMYIbE+kRLKdjQrD99g/pogVNtCSTPve7xxm9NuvqU33kKSJP31YpdKc1mIFfzXwmrmLiKV5PfCJH6OUqNWrzLRzuabZrqm++oNgcKHZH8rud6aCGIErrsVgtkjFHSzgKdxqP3EThBb87cHIQbgx/tk+EHLbzmLM1CDAGULA/oZcOvXRoHP/Z6UtnBNXQVtjZVqdHpzqE0zntTHRF9ZgkDX/zexrk6nUzZp9pRmD6rPgNnUZb1XRdhx3usIM7uuNOZ7eZDDd3eo5j+/ROwHy6oGh7rQBtOw6lz9GMkHRaczvGSQCj6lNTzTtOlaZeDPuSVRgRTRO8yQVieonn+tibG6LNLZYx2NbHjDrX+7EmLahsRflRd02qa/GjJefhDNvAoU9Vg+9IM3Z+FKQMPsBj2RoBgkXiShJ3weQCZHKGPNwD4B53VMeMNn9UqlmHB+T2FiEUrrSZ+S5ZreXbJ6NwHbrS36xPOkam7ej6gGT+BgdASML3H7HEA/lWd3l1WlBuj2Q3G5z7D0jpMJ+95PVUd2LSssY906CG2+a18RlKpt4EOSl1Udjd6V1sfaIvC5qPMbKpkV37NxiHUhQmWkaLeArTPS0CxTJYQNegupbm+iusoqJLNdjZMc+Pe7WlVx6RO6Vo9F5U+xc76rYak7DPQ8Xci7GKgw4sbarRIwZAU+uXp1REzjkTV4uLSmPgPxYNEyO3l5aFCkMms5X+XGQH2s2Brm6wuw77/hohHYKJzcT1tPetbkkrOBQ1Xa/9qdvERQUJXlAipwXCCzXguKppTVyKcjyEskm8S+PH1GDyIZzzVLWjNSbyJ0g/HuNS+kZDs60qx417amnRdgKtCzZ0n96iFwqLJ7vzH6qR+f/V15NAyzEXDDTp2g/plYN0PUQQI2cr2uVn1N6EfalP7Ten0oTp6f/PdxRSWMwjd/RpBY5kETijH+kycglsga8EC1+i6gwrOyLyPd31l7TbO7rDhuP7NdUhpTpm5Pcnva8yHywndMDGjPJcA6UNkEGgjdImB0xEU3BcvWCVzjMG5NN78OyyhO6spKIXitbR96GXDmndGT8XFFn3XNovPWzh4zgWUXSO6hvtG2tKVL7XFOuugap8LKAwmoQHlWNfV4/UfkMwr3aHEQGlX8qPSQRNmtMWFdUhwz5mSM9BeTpwU04WemflhzjzC2w7IDR5YPNJQtlqH94hbsc9yzhOMgVN0/q7kc5tS8vkT7nMfJ0JlrjnzD8NUMs71H7NQtmU99pwmq23o0im7zrK3Qlp34GQOGdXOF3DKlriSIu3s4DIUWw9/WIedkn6Tz3uO5iX9iIwyrVkQRwuEMEMp2t1FpUZoVVHLZXuiuIxkVcopvFr2v6Riu47cixgH0x3M/jyzl8nJItPsYVkdv0tynNR4ZZic9T3v6godkfa9QeU4yGVzcy7gKnGT2W1TkwGxtFYYGs/VxLMdF5cVdB8fAfoKQNFhXV3Td/UqK4lTC7oPI++d6jbnm8dOd6bu4M2itddx+uJh7QslvE5bVMh4qn2tRm+5Iic2q0RdoDrhvhK4slHgkVmXvTCMngoWxG6ESKIxp936HI9c9C1bYfk/BHp9Ij0qrn2lEmv0DFCka9H0OK4e5TCVw32+hrb8RDKJZm9Yu7ZHIqGoxLGuK+/p13R4EhrRGtZfghFClWtExmEpFU20naIkiuqVtJ46Oyxpjfq5wZbaiqL7dpIJ0T0ne6gqgKqEksorCrDdyLaXkeJDs9Ea/Zg/e96f/wzXD+oAvZ7eRCe5E0xxAEACIWYnumMKCHppUMXn9P6E7ZVx4dDxcP9kX3ZGO/WQFyHz89CoyAUXMaeNgQqgW9bxMqYgOsckd1ilfohabdrnQtW5jRFRrW5f0xdTrXRUNiKYJVoEYXpuoLlDBV6ONMEdf5qBAB3TkgXLenckMZSHMp2lJ8XTT9GmQ/0jeGSv+OGtb0mdmj+YkrZHNmbRfVTnNXguxowVoEjWUVaTenbgtjxmfkJtq0JH8pkhA0riCGEwbKMhUHo02qgLITJUHOzLVZTQJmZk6sOIOyKlOphN5L+09vNKC8ergER5cQhduhpQUgQ4C6v8IKYWTzlxeSCzg/pJyFHKyFv+nGX9s0uN4GLNb+9P46YJoDAMCKngcO/Oo+5jK6Yn3/C67f/jvh0x+R0p5WL+40G5poCrPl432GJ/4SYLLBnK87CGdPzt2Stz6Fqeb8IeMhrDmXDu20+3vN9VvHhIRs7+reLgFXosAoT3nz2HwiaFDvdIE4b1Ne/oDXdb2MUqXK/Yf5WMplcMnVDXiUebQff3OsR+AAE/vCQ82XiUrcdb2Y+l9M/4OL/iPEfrmluvuH4i19SHVPaukFIQXH9DqcqUMct5z/+X5hPF8w8XRwGH1zd9WyL2ux2bPx5xHSZaHFKesC6u8baPVAdM7L3t8j7B9y7a1xgunhFNH3BxA04Vg2Rq/iwzfntvVZyPpxKPCXYTn0N6k1eMnn7h8aT+J7qy3fj92t/+ArV6Z3UfP6as0DvGo9lw8PJiK8CPZrse4/LaIHfVggvBB6oDinZzYZsvSW4e8Dfb4iSCy4jHSD5ReSwN/DsX313YHMqjR+vZfX6ExxLoLoO8dvfUh1TqmOK9Zvf4GcH7DzFbkpexJ+abqc3YqSaXVYRu5Ks9qlil4vZJ7iXuqOnu6V82CHSHLvQJnw3mLGaXCGFJgttu5qsblkbK8956NB2cJWcQ6p3eX2ho4mspkbaAVbQkvgTTlbHqeqNLB8c0eNINUYejZ83/mkiVJ5eP6gCBv8NRjpL6I4DwE3ohNRdhxOyswKOx5p92fLlJuNoYrzbrscx4M3AllwlLhPPJlDa/OxaLaI4YJ1OiP2tzgPLU5pxnFYbL0xLV9V68V43WFLoDmIxGb+9oXANAZZyusQKE22eXrykd0NqJ6R3I3YV5HlH0WiUkI4df+45a/v+mYhh8OwMBuCn1yB8qJqOBxPBUjXdqOobgKuOFKPnapW4RJ49EuXnvq0zwKQ1nnbFk79nKKC2EGP+WOJJlJA4MmQyTfCkKWhlij27gPxIlx0Rwbsx8bhvOxpRjt3aUDAAyu0J6aixQ/MfdtiBh4xi1PlrfS+jCcnkisiLKR2bkyOo2557WSEsuBEWjRFbbFPtoBl2m7us4nLq8yL26C9jpp7GL9lCIXdrlOmKmoe7R7uBwY/1VYGIjyhLEPkTAn+CtDzOAoe9YQ0+5PXod9uc9MtxsAk8JC73WY2rYqauz3z+Cb3tIVc7sJ1R0KBj4Vuc/S30HfPJJcJSvJn5SAGOks/UmetDydcP2diJTs4/wXMj7DAhKguahzuqJ56kvshG/xXoZOCL2DG/U4vcKAmH9OtDpROEJ9ESe3E5ju9l3egux+xs5cd3KKHjTKazV7xMPGrz7K0PxShGuT9V4+fRUxZRMEcuLnW+WrDW3R3QFSldekBVJ0RxJHK1ydlTeqQ9KCi3ec3ct8lqqQkpYaItII6tcU5dR+nYOPEDbrbFD2ZEtiaxRJ7NLqtHL+L6WGqyRtUx8yeo6Rl26I3w5uqYofYHZLRGThZEs8+Y+Yptrp79XvaFtoxMPJtT3eGFU0Q0pUsPwE5TTrKMzjugiiOde8BX8QhLLttHNeexanGV0GsBpUEL+ga1+plsCq1ydnyUsEcARGusR20PashVhGe5YP+URewHV8DgH1jEhnZY6LFZr1w6J+BUd3x3qE0abs2322zEFrlKME1sEk8x92xeJi6RI4htgdp8iyj2tNu1HuV8fDeKMNq8GiGygzx9ECfYgWf+XdMsBsqH5Yfap+GHWF4IyRm92e004YK80VSL4gm5/lg1Ri7dGk9U+awYfb+APQUCqyeFbGAVDqSLqukoTAxL/4ShWBgIsJSCU9GMBHtXCeaR+ywT7Pt5Yt//HmwhiF05krlXkQ5Q9JXCV1Pm5wvt1SuPONFU51sdd1jiq1HmLbKcwghHBhL6cM+FozRU1nOwQ5/wdERGWgiirjJENEf4E9xgRh3bBI7Elha3R3e8D3XZ0FQtWd9zMIbb395nXE61FPoqcVmFDp+c/xQRLVGzDf3xAcv1NImiKvTOLzNx7+kR1bU6eTeYsJq+NEQNXfA/piUbA2oe1IrVk4PFMvHGNOiq65mH5wRne6ShozQmwbprapqP75BmPDdLLvhs5uuoGil4OJVsTtX4wvztfTpmdC0Cm4U/Y7oMsd+eEJNbHcyZHWmLUiv1ioxuezuCgufezASU6k5sm9fjrnE3ZLRZkmm8RJnRstO11IfM5OeZwE0hUUIgLcEyeDH6+n4b2ONztMsqvX929D8vJktkUyKLFHf2Act8zSFpoE8PWMGJ0A6ZeIq40N7A3CQ3DGrWiSuJowhnskAla+ytRoq1lc73K3cn/P0dIpgRBytmvsa6PZwke1PE9lnFQ+5wqFriKEF4E1QywT5oBWlTlNSHDHuyQ2zXBJ/0Jq1ZTzXySn9fe4NHe8hrQlsw9/RzK047LHGrhU91gyhSyI8IP8X3EmJXcaoa8lqQ1S226A2fVFK0PYG0x1zEEXJQZljKw6oLpKOLW9v30FnGRwhSWlh/Sw7Y8B7+fa9/sXlg/6yXEPT9o4G2dyPytueU6xPKV9uMTVZxf9JwVmCMFJn5NqtQS+AvQoXMtojdhvbr/0q1vaPa3FPuTmQ3m5EBNygElefgTmPjcdJdgZytNJNuUPw5HjguvZvQK5teeXTKpXYiMxbsOB5qyrYfBQnrtOJUNaTmBH0yZPgH81Kq246u6Wifjtks7U0TSuA94Sz+ruDKoeBYlgUCBHrU2HU9WpytC9zguXKUMIt361lhBMZR3PdTnJUxwTpKQ4ovEndUAsaOlp/7yicKQkInRMRLVKlTetV+g3faaVKGEONIdvCmDVESpRnPNmafYQcHVLjBq2u9O5stEfGRi+XneLLDFj73WT3ChdfbnIaWptL3sqk7smPJ/bFECotPzkKuEg9pRUy9BVEwQwQblBDaq5QdtYy6qenKAqtIqasC4QU6ir4pEP4M15/QT0ISTzLxagJbizyaAUf1hEM4DWyzv/No2p7X8TkC/Tuytmu601Hv4+6u6fMUWaSopuBy9a9Q5nBxl1b4Ts76UI5d2GA9mPk2ryceeaB4cf4jVDhFxFO67R3cXZs9ZjUSzyUwPV9gmZGxEDwLrbzPHmku8UTHKSmArkXdb+hMd1fujrjiVpNAhGT55hUdNl0HH+YBjnqU7Z+Khq2jX/LZNCIMF8hFgZrOAcY96lDErDIl8AVTz2bmNUSePT6PWa2VqHnjkDUd3lQnJbuzPdJRWiFbmSK736Amugs7Cxy2Yc0uck1iNiYUtCGtOk51x8zX985J9mOCdVNUOpfttEPkeyJ7wsy3mfj2OPnIqqGw1ix8my6YoMIjItC5gvWgNC4LTRIJU0SVYQsNRlCyhfpREFM0eq/t2x4MJBzjM+uLFMsNsNoaA+Wg76ExMU2t0KGezwrI98Qcv2839i8yD+wf+/pbDXTfC7REebS9lofenzT48uNJe7r+6vY4fjh0oKXDKtan65+fRzrQskmRv/kzmo/vqG7fcfefv6R4OFDsS8pDOaYBS1sSnod4swAr9IiuzlBzHaciZkv6xSs6N6b3Eu7LziCnerZ5Q1F25sPfsC/uRtJ7aiCxQ5c08M+G6IjHSBITUdJboJ6fmIQhcw9w4Kfpy5PAGQvPUzL80wRn/Xe0zwrR96/hvw3f61Pk0/D9PbUePP6qHqNdBuL+1TxgETpMPMWbqc/MPydKLjn/k3+FKA6o8ohXHIluv9WL7fRA83A3FrJxx2g+7NUhpTqkWFJQbA7YoYeTBPqE/PYDy+mKebRk8mbOQ9FyfRGzTDwjdS84pRXZoaTIaqq84c/Khr94v2cZu1x/vuA8dLmIXc7DOa8/Pccu9qhsi/jwhZaQn3a0pxP59d048nSS/4I7jRHJgsuf/DGr6Iy3F+fsFj6LwOb9vuD9LueXH/acCh3X8mdfP7CIHD45C3k18ZEvE5bLH+MEM1R6BHFNs3vg+PUHLPkdyvsN7jTC/9maTxYveTm7YO6v+HAonn39u0PJ3aHk4VRyMfW5mnr86asZi8mU+flPkYcbnHe/0HSI9EBzd4213yA2t9hdwzxcMImWTFyXrmOUdV8fCtankshVVGchc/8F89kr5PwlgZC4d9eU9xsDEiiwH3a4mxs8IXkxu2K5OkcIeLcvWJ8qrnf5SFEHuIhcFn7C/GKCW+bIu2tsc3jom5p2v0Eqm+nkBTIKcGTAvmy4z2wN0Taqyd/ucsAnOfscpbSoa5JqPmVb1XS17motZaMswY/mn40EnarRhUsKi2PR8O0u13vgKGb+2R/pw6r3LYdvjKfvkCG9W+zde5KZgDDm7VxT69eO1NEreT0mTFxGEfHkBQpQ2zvEYUNX6YNBd9yighihXCb+C9repuv6J6Ka4Z3S09gKYQcI5eiQXyOkEsrGsn2EGwLKZAxC2fYIq8eyQEnxd4o5/rFxUj/YAjZcv3Oc+OSU0JhMsNKM4h7yIZJCw2IH/uAq8cY05peJDrT0yj3i+JHmw2+o19+R3j5QPBzIt7kOs3xSvJzIxl9EeIuEYDXDefWZhodOlrTBjDxYkdYdp2PNx5NGymjPkpZ5DyPAISb9+9fTMaAUwpwmH2XMTwvO0P08Hev5jmQaOIa1qHmLiafGeBX7SffUmTn4QJIvm25UKA30+CHafNi7DUVrKH7Dz1GZE/kA4x1iY7qup+968rKhqK3xFFs2HXeeYhI4FI1OR564iqr1CO2QIIrxJxbSnyDKFFVnqIePenRnRmntfjMWtEFV1rctXV1THfXY0S4qLOcrxHGHXBxYvHAJY50DVjQdF4nLu4ecm13ON+pEXTa0jSauNKbr/Xp9Ip+2T4y3FhM3IZy4qMF4K6U+9a531GlufFwpxeaAE281jmv1EnWWMo/P+XQajLuefVaZTrsZDdnrQ4GjBA95gxIWy2iJvbjQqs4ipasbmmNJJbTcX/i/RB53qKuMV5c/xzFKS9cwJAfa/GM31rAKXaqJR9PBMrnEWWzMg9HSFpneh3Ud3eZGiwMswSRakniSolUUrVZ8Zr0G4V4fJF2vD5JnySXui08BcGHcs1WtNoarm2/Gl9ZFeGZGlNb4GWkN/2+T63QCW0qmyUobiYV8ZiPp8xRR7Ilij8aVrEI9KpOWRfVkX7QrarIkIIyWyIsK//JbhK1GpWdfRSl7swAAIABJREFUahK+OD0wXf6YorEpk47LqT9abKRRZWpvoWAaLpCLE31V4Gz2dFVjzPwt/WmP5e2IZjFngc5Kq02igxQWXT8oZHvCIKGrUkQ8pW8qhND3adizW40WuHiy+xuU+c4IuuquxzZUkPHeGNuLtsc0CEuNGL5h/933/5TY3t99/WAK2D8kD2y4uieBllXbj8GROoaiM2MsPYf+dB6MgZYzT+LlG81h297S7u5GakdbtYYBKJGORHkKJ7Jx4oDpZ1f4qylqcYF68wd04ULvsbC5OdVs8+ZZHtjwQhqZft/bGfmOHHmKQ3qx78hREDEAR4efdRBddE/wl8/FExrJ5CoxqiqVUQc6Qqf7Pt67fmRKDl1V22v4bg+j6jGr21H5mNUtjSlow4ey7rqR2jB0kL8rBBMYBSQDDLfteqaBTeLp8dnEU0w8G09ZzPxz3EjgWB1icoUwsn6r0WZrxygZ280tbWaW6YdM7xHMqMn67honO9KnBxzXRwRzvHhJu4p4mXhcxR43i4DYU+OL/pDXo0hl92TsWHc9c09Hy1Suwzy5RAqlXxpCYt89jH93uTthCUG51dBg77RDHbeoyxMvX/+b8fezL2siz+buUIwg2Lxq2ZwqPqaVDv4UFmfxElGkiDxF2B/pU81RrI8ZlhSEJ/0zuv6Mq+kVjtRJ1x9PJVKkAGMoZNv1fLPNxmcJ4CJaIvvOECbutB2irmjvdWchASxB7MxpTJRJ22tBzAkQlqV9WIlH2/e8SC6wh+dzfUfVZsYTmOHeXQP6xbV8rZPbhWVpS4sUY+EZPWcCkmiJ1fdItIijLwtNsKkKZL6nlw6TaMlFpJPepaUz1IbYlX3RsC9bbH+G0zWo89d6L+ftqLNipOt3+w12vmXuT2l7hxeJh29L9rnuisqmY182TDxFFy2QdYlsKrzN7ag87tuOLj0g4yN9vmfuRZSNQ9fpgEnQhuKy6cibjrS2iN0YOVnokbSQI2y7b2pEW+FKfVANzfuCphuf0d4cLlGOBleb53EogMJ4ZC3LM3+39oK1nX6f9Fj/pPT5718/mAIGv//M9SnQt3picB0l0rbEloLXE208nvk2rxKbSHY60HK/pbv5mvqwoUuP4wjKiUMWP3szyt6l7+CtlpoWMVkgXv6Ezp/QBTOuC4tD1bJd19xnGd9sdbbSgwlCHHZWjRFcDHuqxNdjvmlg88lZSOLZ+sXtKq4Sj8A2nhNHFx97yPN68vM/vUcWGEtBg6hyaHNtZmxqrNNB46mqgj49PiKsvh+j4oUazOt4WGGiFU3Sofds+jjQC2Kp93iDgql54jfSkRT6Jd90emw64JyeilH0Pq8cxSU3u5z1ocBVgm/u1ZhI7TuSqWfjGmDyxHUIbF+nSfuCyfQPNHFbCezTR9ziiJVuqd//WqsFD3vDkDyQ3+2wxAfcb7/WY71oyidvf8Yn8Rl/dL6g+3TFhzczjpXGHH29zbSHp3g02+4yHc5YG5r+IrD5fD5hspgTLt4gz++IvRD/7ppyvWb36/dUx4wi06MqFb7HX3yFv/pLon99w4vLTzlPLpl9vmCTNXw4FPz6Ph3FHW3X836fmxO/i7/8BN+f4ExXxNkB9d2a9HZDuTux+eU37L+6xom/YnV4QF2+4cWrH7OavsT9/IxvFyHv9gX/19cb9lnNPqv5xYc960PJJqt4NfHxXyxJnBBpB8j9hvagk6W72w/I0w65XaPOX7N6+yc40kEJj9tjOQqMbnb5mPr9Ivb49y8XrF6c48QrgqrAvbsmX2+pjhmHL9/hfLzH+/geD7iYXbFcnAPJM2/mOi3HPZZaBsxnb3DDOaprxz1kn6c073+NnGyQkw2fn/+UuS/ZFi1f3Kccioay7bg5lQhhcRm5zPwZL/7gP+C+/Ei3+Q57u9bWjiKjubvGiX9FPL0gSC7gKuEurQ2kVwtYtqaYRU7A2eItTjDD6TqkEX2Ne0QhkX3Hyxc/x7f1zl0Ii7x+TDXf5g2WBb0XMF2+QUUTut29ViUOqRJVgSoPTNyEvsfYBhraXhf+ynz2Qs8DN9CiMePB7MsCihTLz3DcBGlZ1OjPqep6nM6i60H+M+aC/aAK2O97PaXRP2Xx20KM4xPQc/TAFiSuIKm2mlKdbulOO/3QGhipk4T0oacVhJ5WDVqDCfr8Fb0T0XkxWbDUHqO05cOxHNNz96WGzw4Yo4GgDuB4Ske8PKGnTwJHF7Cpz8zXidGRI1n4GkgqmgKRbrDqUpuI20qzy4af33p+ZrL6Xo8uBt5imdNVetQ2PMjlTkekD+F8wLPU6YGRKOKpjk4Z1JPxTKspbYdeuagh+FLIRwuDJehtH2xFrxzyyB8PFdtcx40cK90dr9NKd8lVO/rR4BHQO3Sna/UoSAkciW/L0Yi8Ch0iR5G4ilW41Obr+IBjO9oMvF0j9xu66pY6K7RS7KbUO7JgQ1CkOpZitsKZrXh19hl1FGl6g2/wPcbsPoxNAVJz3+pOx5kM3dhk9grnZYrlhwgv0MkHjtIy66ygSQtydBS8O/9SZzddply8/mN85YwMv21em5w0vaA/lQ1bKXgoHBb+DA+wLz/Vh5B22AHmlAc9Rt1/+Y640ApJ+3XN1cXPR6ju9S7AVcVYJE9FPUrXD2WHG0R4wQwRz+iqAlkU1FkBnLCEpHU8HZsyuaJsJImnOFaKnZk0ZEb913Y9b6Y+lgXnySX25RvoWry2NT66lOqgO0f18R221M/RzJ/R9XoE2PU9R4MNk5bFoeyQVsvcS7T4xHQXmnG4g6ZGdC0yXDCPloD2TnVdz77UY/BNVhnor8NsPsW3BMLS4/ouPYzG+3Zzo8HEluBs8gkCxjHnOq2o2wHSa74nf4Y3v9CfJyEfE8KzI93hATHZMA0WdKb4DGZ70N1h2EjyuifxJ1hdi5zoz3mf6865N2kVjgeu0s9/Z8gj0rLMAVIf5G1pDqHK0T+PAQxYTY30jU/zaedmpjD/1BlgT68fXAH7+7qwp+ujp6tHgTanDjshDc9UxLbQkRofv9Qnt8HLZVJbLeUgoukY+SFnqzEbrHcCqmhJ3ug04u1en8SGl9uxfAS4Pg1kfIqiejomjDybq6lH5KhRFRbaGkcVKIFzvMHapVj5QcclmHFJX6S6azL0gKfRJY9z726ce3dVPUahDxaAYbymGYVPCPbSelbA3Gk8RqYoz0ElkxFvZbne2LU9Q1wJgXB9XegcDxXOiByf3g44m8/IG5u07sjrnptjqYMIK800HHxAT3dqukN7visc9n1DEOjEFP0fLULmvk3ihpydfYbwp9jJArG5wcv0i7I66hyusu20cXd3xEm+G+HO9tst/nSFG8zwZxcsA5tT3Zox32M3mVcaLtz1PR+OBVltU4YOeSN4sXiDcELsaEpcZCNx/nR9N44WK+D0/pagKOjLHBVMmMXn+PGEugu5ORZs82b0K5Ztx7aoech14Zx7U6Krz0AIAvN714GQNXXekN5s6NuW2DwL4eQFL6IzpPC5WYYEjmT9ZFyZGan5odT7PcefoGZ6XNlXBf0AdhZGJZppjNPEmzP3bB30GTjc7IpnI/J30xxhTO0X00tUU9PXNa7ZDzZFCVvw7q6xlI0UktnqTId0GhTWsRwODg33aYWwHKQFjj/RYzFjZ+hOu/Egak/O9H2KlpxHOh26bDvKpuEhr0ds1dxTLIKEILGQgNjcat+aOfTRdUggjFfg++MzuC8bs7tquU8rLA3q4jxa6jGr+Z106UEfIo87ZLbFFoqJO2Hh68HqqWwozKg0rVocadElyRhYK6JW5/oJvV/VeKgMT+opRN3pv6ftH9coddfT265WwroeGN9g31RYbYVj/HyV9fztqjuwv+OF+498/eAKGPzdRUxYjBlgAk3ScLCQQhDYmDBLgapO2Otf0aw/0G5uSb+7HrFAwlZ4L650hs5sRX/+ls6bUDsR71NtHt4VNft9w/XXHzmMsR7VM1Xgo/BC8nYV4SiBp6T2f5hOcO4ZL5LQQZsTV+Apgeoq5OEj4nikN0mv1fVX1PsD5e5Eev2ovKtO1bN7oHyFkOIxHuZ7eV8De3AQOLRVS5VWtFVHW7V0RsnUtT1CWgj7ZHZ+Ajd50ONTz0E6ChV6xvP2hH3Yto+SZvN3daY4WELgzmKkpzPDvJevSeIps8kCK57x2eIVnZeQdxabrNGHg6rl5lTqTs0Q6D88ZOPh4O5Y0jadFln0PZZlIZXAsSVvVyHLxOMi8fjXFzHL8AWzy1fEL39OuHqJe/uO5u6a3S9/TbHRESq7b+4e76VnE13+uVb0rWaEf/BHxMsrSFa8fvOWfdlyKLU46OttZviKLb+5T8ffd+xK3s4C5v4Fk9ULzs4+xTndET18R/Lr/0Jx90C5O1GnOdnNhmKzx36/ZnJ4QC4uCM5f85NXP+dVEvOQa4/VF/cpp6phXzT8+c2Bias4Cxx+evYT5qsf47y5wd28x07+I+n1Hdl6R7nT+LJsvcP75oZl2xK+/jGfLl7hfHrOOtXg4b++O43Zdnnd8m6faxFGYHOx+gzbCxBBTF8WRiZe0Hf3yG9/hTw/EUwv+cnZSy3A8Wx2xqA9sB///MOe+6zm9cTDuXrFNFpiT8+RN1/Ttf+JwnAEsw83eHmKOu0I3Jir6RW+0onCh1L/7Mey4attxr5suIxcouUlnnT02KtrqW/eU2cPwK3+WssrnMtPeXn2B2aHZlG3Pb+6PVA1Hb6jyOuWN1OfF3HA+fLH+MWJ5uYbmrtriu++wxK3OB/f4XYtyeIVwfQFge2wL2vuM32A/fIh5eZUsgod5HLO/HyB9CeoIKH++hd0VQFVgaX+Gjnb4icrrpLXBLbgUKoxNqjta+quw1UWE3dK4PgIxzekeR1CO+R3eV7HxPWRQlE0+gBSNC3CREpFpvsUQDd0cGWBrHN8q6VxxLh2gaeZin9zTfEPuYYu7r/l+kEWsL/vsngsZNKysESPQjPLVN/oPVe2pfr2VzoX7GFHsTmYBF4TJT9Z6CTmZEWVXGlG4rHmi/uUba5JGJuTRv8MY0FgHGstIgffUcQG/nsZuUSuInYki8DGMblhkaN3WooOqzaRL1WOVWd0mxua9EB33NGddpyu76gOKfUxI1vvqfOGrm6p8ycUeylo6xZpS5TfmaKlUTJPo01A5wQNOV/Ks8fwxuHr9aMpW475YU8jWIStxniWvm11RpgZQQ7FsSkeC+Mj73GrBTCBR7Q54M6iUVZuvz7oPDA3xp9eUXYWaS2JXDku3E9Vi2/LMeByiCspREtTtTT14z+/vbdGyoWnBPtSq0xzV3Ixf4OwfewwJj7sxp+nPBRUaU1btZR7na/mhHuy9Q4Ab3OLXF7hSpuzeImvXDxlGRNpzb5kHJtJ0XAoBG3XM/M141DMJkxWM2S40PuR5APe7o5is+dk5PbVIX3SjRU48ZwwPkcGM6SAmW/T9T37tmEz7BErTYQvA5vl9BWO7eF/fqM7Zs+lq6+fCUmK63d4gOo6Lj67xBbOCB4eCrE0lI190eDbgi6eYbUVctEg7q6x2WnmX9vRHrdaOq4c5vNPaDvoeo938wApxEh7ORU1t4cCW1o85AEy8IiTC1TX4Nx8C6CnAwN5393g5Dt6JyAJl5Rtj2/oE1U7CDG0/PxUOboLK46IUAcndpV+DoWtI04s2yFYfk7iapLMNtcd5/GJ504Yg7YjLbxgqkHS+80YFtsWFXLxDqVspO0yiS+JHDXSVbZZTW0KwcvEw5aSxNdZXZbr6wilIdcMULZDML2idgRN11M2Ot1by+Ehr3sc0eG4HsoJEa4/7sGsttbvDOngeSGV2SHb0ohnRE8lehrhIJyIvi61D9WIQboyx6oyHDvGUxp+bJk1RAejcf2fY5T4gy1gv48b3LIsJL0J47Ow6wxR7BHZlu7hlub2Hfl6R3VM6drOwEw9VDJBLa/okhVdcs5t2rAxabf/5bvDKD/eZzWntGIIvbZdRehqI/TTLLCZZ/Nm5mt+orKYe3KE4Yr9XrMA20ozFPcbHQRoHu4uT6lTvScZgivrtKB7kvMlHUOslxaWtHBCZ0wQduJgjGNRoT+GSz7rxgzR4mnkyeCjGu+l6Z6kY48JzE+/1vA1uqqhs+txHDn8HXVajyGY5b7SBczXsF4nCbDjAG+6IawK3flOFqg6R7ohvhMRxgl5o8gDm7zpiBzJPnY5FA2+o8aA0VPRsE+rsRvLy0f5fuTZoxL1MnZxFzGTMx0m6aZHZPQOO/SoswJL6miRJm8otgXVqaZKK6Sj8LcnotMRL54i65woWuIGM9LaxTb5WIeiMTvPhr0Zx8WeYu3rblmnJM+Yv/oZ9myFWH9ARNdmnKvl8OXuSFc1eEWFnC2RFw1e33EW6Hj5utW7sJu9/rs2SitO95FL3rgsgwWzT/8IywtJ/K+ojinl9jQWsez2AQAPkPMrFtMrpKV4NfG5z/Qusmy7UVV6KFpOgSIOF9A22pwvJJbcaWRakekRmxDI2UeWsVYRvp74OvhSWE9MyTWbVHJzLJHCRQYxYXKJOn81PnPjXjbL9O7S9rFtn8gJmLi6UyqMklVaFnZec6wMpNefIKMDwtFjua5uKDY6WsZSDurVHZPkirTW6tZBTaqhx9k4kg4dyXkwQyYLxHZtildJW5T4m1s9EvcjlBOSuB5bWyJF/bj3MxlntnBwwwDPi3X6eKpxVe1JH4pa20FMXxIGC8qmp3IkMtNUjCHDzhZgS4vYCeilVhX2Ta0LkJBYlY0bWjjCojKq4s787qSwSOsO5cXQFAg/1F2YSYqw6hzXjaikRdVa2pz+pFp1JiT4H5LM/P/ngf0e1+8aJw6pzNICjNTc6hpEvtVk+Idb2vWHsXg1RaUDLWcRznyKXF7RzXQu2L4RvD/kXB8KvjsUfPHdgbtjSZnX5rTfYQkdZhkEgshTrBKXN/OARaBTd2e+4jKycfoKke+RNx/p8xN9dtQpy0/iSLo8fUQkGZp1+6QYWEKLKoai0bfdY0dlxoaPOytXk+wNDUSECZay9X7Ktp/tqfpB1dQacvywU3tKlwc9dxdDB/c8MmUI3NSnXRs7LrWc2yz7m6IZu7G20h2bJXKaosY2RRrATu6x41tUnurk4WhKEC/x3YjOC2mEQ2RLUkOSTzw1QnmHrvhkxotV++iVu9nlVI0mqGd1S+Qocl8yi14QflLiTBaIyTv9PKy3OtDyUJBv9ffV5C355qCDO+saOf01Kk+R5/oAsgyW41hqONVvTro7//CQjbvOuu1ZRQ6XkYtcLEn8CcKNseMpUXYcR4rVIaVqU/quw735Vu9e+g4HmHoTstrmNKCRjIeuajoeplo49HriEa9+jLR9HD8k2W7JvAfK7XEslJYQCCkIXrxD9T2zyQWXkYMnBfeyGrO0irbjWDXsSxvhuYTRUge/DvvW006LJjI9ybCPH7H6jlVyyWfzwPgNLdaO5GaXjx3POq1GS4gMZoTnr8YUg9bwDdu6oTvuUNEU4YbEk8hwDE0cTqEB3La02JeNPij6Ez3NCGKEc6RvWyqTdCDtW5x0g+3GJE7EzLfxHQWUVE3H5lThKEHoaPXvj6YThJ/oXbgU40EtX28JjJBJuDGBczV6sQbBStv1fEwrIkcR2C2OP0Ga3D2ALtO+LmwHVRyx3RDfdsgbTdBpjV1lYBu6TY8rFUo6WFKOxmQAIRSyq/CUrdWHZjyq35ANsSOwhSQ07McxIaKpEVVObwj1RdOP71b4/fZg/1h8xB9MAfv70pe/f403vK10nlWdI/YfdUDg5lZ3Ol2HCn381ex5oGW05FZM2e1bbk85//f13ki6S242GY2JKbeERZi4BL7NPHL416+nvEg8VqHDT88CZp7EKfaI9IbuP/+SdrumfLjj+H5NbaJCBggpPBanoWNy4hDpO9hJoAuQHz4yFF1vLECarSi0cVZIfcJTDtgOva1l7gPAuFdaAt/22nE/mJafqjWlGMawevYthTWOZa2ncE/0wUAXugarzrGaCq+tibOdZgGmx5EyXx10/EWxO+ribEItgfHFkN5uEA97/fNfr/W98BzsSaKjZPwQxwu5WlyMYpo/fHNOLT3jm+m4PdbsS+27e79/pL1rbp3+84NBK03NWO+nZ6+YvPyE2ed/yuJH/wZ2H2nurmk3t+y/fKdHt2kxft/55oD84jd4d2ucj++RiwsWb/8nptEZF6FOL7g5ldweS9ankl982I/Iry++OxrSvc2ffDrn9cTj1eSSxctXLJIVzv07mu++Zf+LvzKqvJTdr77CW9/h3V2jLt/w8mf/O77Sgp/3u5x9VvNwqvjm4wmpBBPf5uXc5+bHSz6bn3Px6RWz/4e9N3uO5MrOPH9+r+9LrIjAmshMZpK1l0Zqybql1jz0WJvN0/zF009j0zPT3eouValWkllMIhMJIAKB2Hxf5+HecIAsSqqS1JIZTW4Gy4UgCAbC/dxzzvf9vmiM/+ELqpsvyO/u1Uh6n9BWFcL6fzHnV5inL3nx4k+Yeg5Hvsm2aLja5pqCUSnVn2cxcGzOn/0RcnyGE99T398om0Kaqo88RY5nmNNTvnP5v3ARDbjPau7ikp/e7lkl6rV4s0p4yCrukpLLocv3T3+MPTjFOb3BMP+bUgTnBfXqhq5tMMscs644jy6VD04KNlnVA39/+5Bpc73NyfQF1uUnvSpz++aaJlOkFmv+11gf1UxmrzCGER/PAl1wEpa74iuik4+nHieTS6ymxJv+lFr77JLbFV3TEqAUzkcfX1I0Nnv9nt6kCtI88i3NFQ0QocVsNFf3RZ5SLh8w0hynrjBn7xCGQaRHia4UvVjnXqskwUYY4DqBmtyAZoVKjDJHuhF+dExjCUrtw0yrlibXXNPaYuy6TMMjJCglcpEh9kudpN0Q2gPqb4ApHLqwf87rW1PA4A+cweooAKPWRr26fJSRtw2GlHjTAdJ1/tZAy0WikFNPU319z6LRQXa2KfoU5vnA4UfHEcehw8iRzEWGWKvoi2Z5Tf7Z3+hF+p709kGHIba9UML0VNGytCjCjgL80ymGq6TXhheokc2BoWiHSqoudR6Y0HJ1TdvHECBMikYVqKpVJJK67Khaxdvb6RiMqml/J4JFGIrQIQ0U2kY8qjcNHmNTpGEiDJCGg22HmK6m149LhN7lmVWBtV9ia/RTcIiayfOexHCgkx86TVBsO0NDX+sk76n90jKRqxsl5w8GmLNzTC/CsQOGTsjwaERaqYyzqa92HNui5t06IysfvVQ3m0w9ZDIVA3Ic2Ex9i8vZJ1iDE8zpM6z9EuFHNFvlq8pX268kXtdJjrQ2amy2/oBsa7xgynEwwDGN3jh+6DrKulV4qqziISnxbMleCxJeTXyG0xdIaWGZNsH9IUBTKfPKXYqw7tXYanfHZPKcsu2Yh07/sKyKmiLrKDJVqE9HHkXdUk0DoulHSGljaTWoKsgFbaOyzAxrqVS3k3OiwTG4SkXnW6InsjzkSlRQtRYDxyGKjsEQioSxuoW6Uoez1T1WmStafDgiHJxi6oDPu6RU5mTtn4Oyj9o5CWymwQy6Vil+AcReTSeSHa0bYAYDookgb5QIKrDNHmO2LSq8VBA5Jp7ZMhvNkeMVTrJDWGY/Pm02S8TqBuGPGB4NmQc2DwNHgXm1qTvTGW1p1VI4FtIbIsMQM1D4q7asqdKcJt4j9xsco8EzFWbKNiWmUKGfe7233RY1I1fSWT5GEGGsrf591OQFbZYgq4y2TLFliCUfodtF3fZe1rIRyodpaFNymfeqY1E+7rMszTMs6kfzt5L8w8QOaa0Ew7SUIjJPlFK4dLDdYf/f/Qc9e/8Jr29VAfu9ryeZYEbb9MnMB4OusF1awB7NVPs/nn0l0HKbKZbbtlDLbADPln0C80H+HroWz7RX68i3eDFyGdgCt8mwlm+o728oV7fU97ds3lxTrGMl2V4/7rBM1+yN0Wbg4k6HSr49GmCevlD7oGhMa3m04YzOdOhsn7RW0tim7Shb5Xdrmo4WaHLoaGm7sqdhHGIuDrDVvNYwU/13iohxEKKIXoxyGHsdiB6uLmbCUObrA4pKGtogLoTeHQhsGWDbIbZnEI4v+r2fk6xUqnOWYK8XvRdNkdt3fVrzge5/yNk6XIYQiOWmV0Pad1cIN0DoGJro+CWBG3HkDQksn7hsWWe1EnHkSvSg8rceaeJl3XKru7G6DYlsn+Ewwh+dYXsR3XaJtV3h3rztyR4HPFBT1Yh0T7O8RtQlss6ZzANsaWKLQ0hm1UOU06zqRSaf3cZKPHCk9k0Tb8R89AxbmljnVwTyCiEE2cOWRlPNTXeBvVvQWS6T4JiTyFHWg7zi5j6h1V+7qVt+/n7bo8DmwZDp9AWmMLEcl2BzUD/qnLp9jGEuMOOVSiKOjmkcSWibVI16iO70qDKvldetcSUjveuSw6nCHeUFxTqmTnLMfYwRDLDOKtxByTw87sMpAfZ52ndPAMvUxTBgFh1jzc7VaLpt6NK9ZvitaRwXc7pjYEcUXkfkSPJasQR3ea2TDgocaTAJZ8jZThXS4LoPvyw2e8RgqQAE3pDTKFICoVHdh0weis8ubxg5EtcdIodTnNGOOskod2mvuLWSHaJI8K1I0e9dk22qBBmZtj3ERU1e27ROgNTThH5/XNYKsFsXytdlD9ShUb9OVfMI6K3ajs6UIPTjvVL3idE2yEplE9ruAPOQOtE9ppELvdtrQ5VGLWwXMhUH1Zk2hrSRXY2lv/a/nIVZXd+6Ava3Qny/4ToEsh1+Ff5AdTDTE4TjUQ9OaIMp20bwxaZgvdz1Kre8VxXCd4/D34n/cKWBZwmmrlRvhGKDcfNOCS+2K3bXV/0eo050p6EDAoN5iLCVr8o/mWIPfCW2iEZYl58gBhNad0gzfkbcGsSlGgNcPxRsi5K4TLndK0WXMvjWv+OJ+nr+1+FEeSBfZ2XDNin7B11VKNhuqxNrDWEoH7Kl2yQCAAAgAElEQVQUWI7Zy9I9DQJ+ymYEvgIFPvy9bcreaDzyLI2vsjjynxG6Jm4oGF4IPEvgSgNZpljxEq/KoEip767okh1tnlIsFv0+rUoziutYMw7bXt14sA348zHOKMSdDpm//jEn01OacMbL8YxNrviTN3HBz54Icn67SPrv/WlXfeTb/Oj4I6Lz10QvBYMfbHGyLSLfUr3/nDbZ9ybX+u4KltcYro95/J7xeM4omPBsdMQsOGJ5NuRqm/F/fX7PzSZnnZTsdjn7uOBqlfLryCGvW16NfS6HR1z++D/gPbvGun6D+OXf9IUmuX1A/Pq/Yx4vCM5e8W9OP+HZwOVy6Ol9W8Y+LqjLhi9v9yx3BV/eK9n0RxOP0/A5s+kLfDfAvruiWd2SL5QfrVyvEV/+CjnbYRYJ4+iYsyjA1T/nt1nWA3V3Rc08sDmLXKbenNnLH2NHI4T9Beni5xTLvd4VbfDmP8c9v8S5eM0PXv0FM1+lPeS1ouIr/5nqzM4HLpdDl49Pvov0BojoPeXnP1Ocy3pJW+Y4gynR6BQnOmU9CXCk4EYULHbqvjiElkbnE6aXEVYwYrR7ILu9p9jsKdYxhriCtsGqK168/l9xpCo+hY6xOYCs3+9zfFsiA5+jVz9SIhDXZvf2FkMIddiKN5j7O4ZTjzKweDH2kcJ4JNZXjxEu7XyKKBLkNMFZXlMlmXq26QOc4Y2w/RrfVri3VMekKKVpzcAx6UK1GhCm1Yu+jDyhWX5QCDPTJbQHuFLQdsqKcq8ZrHFRc+QPmQ2OVcHMExqdki0BEUwx3QhD2Jro8Y/vvv41TuUPvb5GUO6EVPEBjlLw1E5A4s/ZZArm+Zv7pJcON21HYJv4lipap5HTM/iOPBPPNBR7r9gjH+7o4i3tfkN1d0WbJdoYu9M061pjqPxvTBC25meKbqE7rXp4Ru1GVNLlTnvOVhpA/MU67RNqDziq8gmOytC5XQfC++HjcPUw3QN7UX+0jYoNaXXRbp98LZWg0CiqyRNm4d9WJL9+HT7nkB92ACcPXAvfEpwPXCLbJHQknmlzNLzEER1GESPdECOPaeMNhu3SxhuqfUy1S3upfl3l5NtCqyY7DGmQr/bYAw878pnkBdb8DHN+zvjlnxBEUzXmcZTX5vD9P8QledXQasJFuMl571tMQ5u0apgHNseBw+VwwGAyxipjTCHp9mu1T91vVEZcXkCaqpHXeoEYz7GOTjk/+R6h7TBwlfl56Ke8f0j58i6mfQIIfrtKFeNSGJycHmOjbmJ3dYPQCdVt21JvHnoCymh0gQh9DMPn6mKIZ0veP0jWSUlV1JSV+trvtpke9xqAxcnkAstSajanVONEUB4hY79B2i6G6RBGEWUjCfXo/ABoBvS+CcBlOjhGNhWyzDHdTymf7DXrvKBrWty2xTp+xTQ4pmo7Rq6lR/Q6aHNf9GSLZ1GI549VV2G7CqpbVgj2iohhu1iWz9D1GZdK1LFA0VHWqRpLPuQ+dmAz0ApHr1XEj0oTUA7UHffZlokXUbXKMyiF0ZNfMi3TDyzBJJgiZ+d0RYajVZKGFNC2iCpDFAmBPWLsmaSV3RvCVVqEos+UnUDYHmY0xnADzOZRKNW1DUbbYLQ1plDTjgNo+wDPLptWjQ+l+QgsqCs6Kro8UXgoP8V2h1hSqREPohlQK4G0aqldG2l76lCv2ZGqC8wxagfp2P8k4ox/jVP5h1yHNFFD0AkTw4RW74s6y6O2Q252Jbf7kpu44LertA+C9GzJLLB7jNOzoUNoCUJLINfvEMWeLt7Q7tcUd+/o8oQqyXoD5sETBWjflNWrAa3AQ05PVDcYRBiTMxVg6YSUTsC2McnKlrQqebfN2eY167xinVZ8ervvx177Xa4KT60Ky9OOqfUsSlvitfIbuiLxlQV1ZUvqskFIodR1+u+FMHpDcN+B6YTip1/z8HWeUjLKpu3J7V/5evpj4FmEesxyMfEZeor3OHBMXo59fNPAswKms9cq3HK4x/Yj2niD3K6w9xsMKSg2e8pdSlOueyN227SUcYVc59iBCif0Vmrv5voRzihmPjzFMU1ejX3FTzRFb4so6pY8KSmyis2+4HZjkpVNb4au2pCpbzF0PI4mL5R6MBhQ39+oVOQq1gq/G6S7wt4saVa32EIyjo4JBzPik4ihYzINbdUJpxWVlqvfbDJsLYd/NnA4DnURO77UkvW16kSTHEMow7U9e8ZwcIoZDfj+LCSyFc3//UPK9UPWpwUcSPaWVq0eHZ3SGQIpJO1+jaHHdNSV6nxtF+n6RJPnlJrz6FuSWOOsDiDqAxbtJAwZRHPMOsedDvoA0kpT3UGJdQa7W1zTZexGjD2LfVn3qLBVXPSj623R4vhj9R7wAsUjzJU/TKyXGI6HkDbD6CW5bxPrQlHWDRvdJd7sCzXmDgaEx5d0ZY7XNNRXC9pW+e0Md4UdLxmMHSrX4nzgIIXych3o99u8ZuRatMEYOcyQZY67WVIlGUK/nm2WYHg7fG/IPFDddNN1SFFhHz5H3x+OHdBaHiIaAQoJ1Rejtoa6xBSeAnHLx1Fio4tY1YKUNpjqEd9pFFeXJSorLMyQbanH+oYuyDVNq3L80koJnmw7RLi++u9Wpd7DFRhWRdfWYPzLlpBvbQH7fUaJnSHAMDCkrdKYpUVn+2StwTar+e1DxvU+53ZXcK29H6pTULuQeWgz9SxOXBDpCrFe03z5S2qNnCp3CdlyQ50XffT6wRdlR4FCLQUu9iBAzs4V9Dcaw+iE1lFv4MIeUDQted1RpC336SNK6WZfsMsf4+aXu4JY70+qoqFp2r54iRakKTCEgWmr07JnS22oVjT7p91SqaMzvh538k0pygfcleI1mt8Qhtn2cR8HU/c6KenaTjn5dZfXJzwnJStTYFqSxa7QWWwW09AhLpsesJyHNp4ZEIQRnh1iDHdYR+rwIFwfb/dA8XAoZjHFLqdKSopdofZAWY0h7/WDNGEa/QzrbI9VZYwHpzwfKbWgZ0kNnc15iA12eqx6MEV/1nUsdgXLgVJ9HSTw5sRnOPbpbB8pLVodYlklufJwNS1yucHyV4SAeXKJc3TBR+PXRBoXtkkrbjcZq7jsR7tLDTC+HZcIA+bhMZ6OILGFRMgHinVMsYnp2hb5/jPMk4JgcMJ3pkfKe+hZzCMHUxg92V/Bdct+hznzLabhMQgTOb9QRt39Wo2yyhzjwOsbrYncMWXTEdqS/SG7Kn3MqwN4OfIwQ+3nmp7g7lN9sNvT6rgUIQXehy+Qlkc09ZgHCj6rbA91T9v3LMmubPAtk4E3QvgDxTVEyevb3YrGsjBtl/HsNUXTceRbOuG41qkHJbexihuxpYE/PMEsc7qqwlrteqtKs9vA+gZhOkzGz7gYuFpxp8zpBy/VJq/IBz5eMEU2JXI0A3OjcE6mRZcniCqjy/dEts9x4PT3iTSUVaDpVDJG5/h0ToDwI4V0KvLelmLo3b2l96eWqH8ndaJuO7UDk7Y+2EjlvcxTlUpQpYgywzE9de9K0a8R9rlKxRh7kqHjIUxFou/aVkG+m1LrBmoM+VhC/iEKxH/s6PFbU8D+thfid8jr8NVQS9tXnyNMtmVLnKiR3PWu4L98uWaxy4nzmtA1mYQOF2OPZ0OXPzoJOfIkcn8HP/0r6rt3PUm82MT6xK/oEop6YRKcTHBGEe50gPfqE9VpDY9o/THF4Jy4VKeeD/uCfaKWuvfpHbmOGTn4eJ4Whac5X0Mdp9K0Hc3osdAc9lKK+mFxPvLwLUHomBwHamdnS3UTP/VztCjQZ0dH3T6OAA9xLEIbwA8oGgMF/Oxfe61ubDuUKERnnMVlw11caGNxpR/SOXn1hJRRqo+7omYpBaYtcS3Jm5FLpPPAzkcuvqVEBKehQ2Af4wUneCPB9PVfYOY77GxLdPdGWSPWC4r7B7afX/c/ozqvSO72lDuVxeXP3uKfqjHQ8+/+Oy5GR3znaMTLkcfNvuAmLvj59bbvyJKipsxrlnnNw17tWKahzWzg8scXQy4il1kw5mh2RGgIxO1bDPctqfaRlfuUpmyxf/EF7nRAcDJl+O/+PeOzV3w0v+B8cMq7bc7VNufDNufL+4RUm2l/4pjcxA6XQ5cfnP0R1uAEd3dL9eEL2k9/rpBiNw9kq/+MM/op9njM+Q//nNPRKT/46JiHIuI7RwG3ccEyKbnZKBXm9SYjKWuk3jdNvREnL/4YGS+Rmzuq928U92+/pisyLDfAG8w5HZ7y/XlI6Ji4piJrHNSPy12OJQxeTXyeDYdc/PAvCcdznMmvFW5qn6p8rbYl+PTnuGWOVee8mv5QdcE6dPUzHTIL8GaYAj4EEePT54pnWFc0+QPx9RJ7l+DsN9iDI06nL7Cly9VWsQlv9KHgJ+82LJOSu8TDvzxn5I+xB1O6PKG4X2lAwA75+c8w9xussy0fzX/A0JHcJTaLRKmR47LheleoqYw7YHIyxuoOlHld9LME1reKMn/yfUJbMvYUNq7QESfSMEirFktKougY6+wVYv+gCPMok7VST+f47pCykRz5ti6k6r47RK343hCjjFVWWJljlEqp2WibjZA2k8ErioFLVqnOK9OJD9f7nKFr4pk243CGEQwg2fVwYKPK6UwHYbpf4cv+fc/jf+rrW1PAfp/rK13ZkyLWdFA3Xd8236eVIopr9ZkUBvOBy+XE53zg8HLsM3MN5PYasf5A/u4zstt70uWa5PZxXAVKRWh6JnbkE5xM+zww66Mf0gZTqmBK2lm835TcJyX3acmXWr59eLg/7XoOnY4qTOZXOiHzyRHo0AXZhxwgecj4+qrQJHIktlTufNmWGE391f2gIUCoMSuGeEyy5smbtD38O92jDwzd4UqbWkemxJWKMM/rjvu0ZF82KnqkVBL2rSaTP+hu42AyBnpayqGTO7wmvq2EI9u86v//fEtyEtn4lk8Qhgy8IXK+xs42WPc32NHPyBYb8s2ebLnp6fpNXpJv9gB4TaNoH9OYMJjyfHjMyDU5jVRW1jIpfyf+puke87jqtmM+cKi1yrPrbFydnkvb4I6uevFOnVcUu4Jip6j/1sDHjTdYz/ZcPv8zHCkIbVOn/D6Gmq6emHxPAlt1S4AF1HdXitZRxprhmGBvYoVymi2wji85GpzyehIx8SzeO3m/jznE19+nZZ8bNZmMsVGqM7Fe0KJFBbmiYEidLjDxzmg7V+Wz+TZFrV6bTVpxuy90OKrgdHqG2ZR0ZU5w8p5MCiptVC82MdZ6gRxOGZ79mKQydQxIw3t9QCvrpucdhrZg5AxU8sF2hbB2NJuYQk887M0d0gkYDs458i3isu6TH1RmW4YtBQ9Zgx0GKrhyPMcuH3Fn9W4L5g2G4+JPP6J2XaqWPgVA+angXnvhhGEwDaYIfT+0yU6NXrOEzt4h0jVDf0zbdb3pumo6hDCoWsi1IVm6EaJrEUJoObxefTQ1tjQUYV5PQKq204g8nXHYgmv5KiHDDRCl2hEexCBWlWkYuCqkoWv1dqADlm3qmwydAOkFNNoQ3TWHPVzT+z+/qYj9c1zfqgL2++aBPf2cRj9cy/YxkXmnOwV4fEC+mgVcDl3OBy4z30Su32Fsbqhu3pJeL0iXayU51pxAaSu0UnAcKSjtdEj4sUphNucXVLPXJDiss4ZNXvA3d/v+FPzlvSJFVE9GgJY+gc4GDp4wCF2L06GLY4r+hOrryBBhKDm70FEYnvac2FJ9DDRfUdQ5Ir1X/LU6h2zfA0C7J4QNQ0jQZICvkOzhdz73QLzvP9d2sPSI1vOGSubvusx8j6zu9Gmx43Lo9grPRVz0i/s4/10F5eGKc4VikkKw0nuRwx7vJrYJbcnQtXg28BlEIdHkOWJ8iRsMsFY3BOslyRdXPW2lLes+ERlABG+QyQ45njM4FYT+mInn4JiCdabArOus4s190hffWC/CD2DafgfYwWQeEQzPMLsW//wzNaKqFH0kX++pkpIyqbCjL4mSHD9LcAZzzsfP+pDJbVFxH8t+HHsfK2XeMlXcukMRM2fnoLmT2XLd75oA/Icl1m6Febrh9OWf4ls2niWIy0blaWlq+rZ49NxNPZOpp7oKEY2VX7JWBahZL3sC+2T8jKaDy6HLFwOnJ04cSCdSWytejEaMRxeYbU10+SmGFOSr7aMPK45ptitkumboDJlrsczQt/uctUPe17gyad0IGSomoek+0DUNTdNQ7VKa1S1mOMS2Q04jTxH0Q/V19rqTvjFz7pIS1zRww5mi6mcJlh7/l7sUQzwgbBd5tiQaP6N0BFVrcW0KqvKrQZrCgLE/VkitQ5DsIZ4o3SPSNRiCoTskrlosKUj1IahuVQHK6hbHiZQA5Om9CBhtgysNCikoza7v4g5J6GWjSPq2E2BGo95mQLnpwyqb/RrntMHXeWMj3+pXB3mtyCpZ1VF7NqYbYBzQUpp6//Sg+3R8+M/pB/tWFTD4/YrY4XnYgXajqzfLLldju6ptsYTgB+dDQlsyDx1+NA/UyDBeIld3VL/5HzSbJcVm35/aLd9l8p1Q77aUys27fIEYzzGPTqmOXpFbIdui4bPbjJs44U4H+v3sakuWaaOpfggKw8ANLGwtapgPHH50MeLIVzu4y6HKK/MsgScNdVM0pTJnV5miYFQ1JIWOjNBZXzoSps4TyodNT/wo90m/qztAfPvXVc8GD8T4r7zm8pv/fPCvCcvS6kpNDHFdwvGMgRaqCH/Ad6MZ3VFI6wxJO4u8bimajrhUnVheH7xq6uFaNGpxnlVqZr/c5b1t4KCiPAhTTkcus4HLLHSYhzY/mP0Z42eSoSMYLz6F3T3NekF9/YZyl6gHaFWzf/MWIa6Qno1z9BOEP8CPRnzv4jWtE9GOx7TujOv9iH3ZskgK3jxkrNOSTVrqvDLVkX3YKzbh+cBlOvku079wsT96w+DqU5Ivr7n5r78hX6sd3d1P37O7usf/9B1neYr17GNOzz9mPrrAs8Zc7wpu44LPlknP1AP0e8Jl6k85+/5f4h5fIadvKPcpyc2KdLFl++UKyzNxRr8iOJ0y/YtrZpefMB5d4FwMuY1Lrnc592nFMlahk9uixhIG5wOHqTdmevwRpu2qyJ71guLmPfL+FqkJ7CfjM46OzsnrEcehw7tNxvuHlMWu6FPGHVPwauJzcvR9xn/eYr37jPruHfnygSrJKXcpcnmNdf8Fg/E59uAYV6Og7lOVfp3ow44lDE5OJ4RHAlsq+oy53FAnGflmj/Xb3+AWGeZlyvPn/xZLRGpsbgr2b9fs85qiTvn53V55sSY+r86/h+0GGJaFId6R3D7QLDfYeUkwnmPWBUejC8zA5cbX4OS85mqbsc0r1pmNZ4ZMR8+wLFftQPUosSlzJGCO9xj+hOPBBduixRIKrpuUTV/ErCDCH/p0mY8EjEYdMKlSZLJi5A0xhaQIHXY6uqftuv7w0Tgm06PnWI6HcXv1iKTT+0Lz6Ir56Axr4PBq4uOakrWOKVKHtJLAEpyNz5BC0KX7xwPsoYh9LdDyn9PU/K0rYPD7d2Kg9jlN+xhsKYSBZ0mEYfQRFEe+yVwWyNUCtrfUy2vq1W3vtrcHAQDSMnFGITKMlPQ9HCHOP6b1hpT+mGUp2e9LVmnFZw8Jt7uiX9AfilfTtEgpkKaBaUnGI4/ZwGE+cDkduXz3KGAW2ESOUOKRfIfYbDHKmHZ1o6LNNeHgcEo+ZHwdilKd5D10tNylPUuxSnKasu0JIIfYlK+8tnpJdihi4vBn+fU/G/1rcvjn0rVVQbNNnNGH3iogfR9zdo7hR5jBgMHohMj26EyXdjymbKFs1PjxMIYs6pa7pFQjSO9AQin74rWPVYQKwGqb4zgmk9BmPnDIqoaT0OEkdHipqRpyrGTncruiiTd9LE2dl1SpeqAqaruNs14gtcHdHB7xbPoRue8x9UwsIbhPLda5zdWDYiseitg7VyGX6pHH8OgjpOVgu2pRnz1sSW8eyNYZxa6gTCqMVcz+7Qci1FjQ7Frmk0/UrtEweMiqfhS22Bca+9XRdC5HR0qdaAH+yee9ZSNb59R5rZMKavyT36jd0fOGo/M/puvUw7jtYJ2WSg6f16zSSqU1CIPxQbqe7GC/VgegJEekOWL4BrNtMIGz6Fh/LXWPHb7XVVxyvVPjRGG4DEbPMA2hMuNMC27u1L1ZVmo86fg4dsDI9ZkHNm2nANylJsTEZUNctvj+mCbfIcYznFGo3sdJRrVLsYIlRjDAPU8Yuz6nkRIERa7Zj+lXSanHaRYvD16s8Zw22WMsN5qIoQQiIhoh3Igg8nvKvDAMYl04pDCIqwbHNBi5EW2ZKriuvi/b/QaERAiJMzrHswyq1qBuDeK2panUAymrW0zbxHECutTWCsQaA5T6UigwsWca1K0KNi1q5XOzRKt+Xu4QoyoQ4xnG6kZZSjRX1YhXCNtjODjlOHC0qb3rQc37siGpWmWu9gdKkKIZi4Daxz1ZK/xDr3+NU/kDrz6V+cnvheBRVuoayt/lCCauxPzwK5q7dzTrJe1u1ZMfhG3iTgcIT82ZzZNLRDii8wa0bkQeHitxRtbybpdzn5bKs3Wf9kvuOK8RWh1oIjEtieeomJWPTyJOh65SPQY2ryeeygRrMszFW9rNovcZFXc31AdqQpL1xPiDRPnw61fI8oeoiyeRJl3T0Tad/rX9xtdP9F2W0VPuQVMwnihB6idRLqACIoU0yBab3qwtXRt3eosVuKpLm55gBOo1tSbHmJaPZzqaLDGmNlSHFjmSpGz7mPbF3sQ21Zx+HysEUl225GmFlILdJuPGU2OSi4nP+dAFhozcgPFkoKjr+yVivUD4S7rmSu2okox8l/QqUnu5wfJdnHGIOZpgv94RDOd44QxjGjILbG7jQiX5aqZfWTfc7PKeHO6bEdPwjMAOscIR090DzugW52bF7upev/4t2WKNtMw+gDIaXYDvIwyHm1j5sg4enrpVEuq27Zh6FrPgGNcQuJdKodi1Lel9QpVUVElFSsL+6k511aaNN3vFxBvoHUzLh73U0R1qtG5KtYNtZo/iABFvdJpADglY12+hKjHblvmrc62KU9/j09Txq4e0F/ycXowIhvShjk6mRrpd29LGG8T+AWF5hCOXk9DpRUQPmYokSauGuGrwKoNBMMUcZ9jjcW9k78HE/gI7vmc0fUFWm5wPHGYDt9/9xXnFtlCJ2nHjMvDHmOO5AgW7H9QBr6ppkz3tfoMIJ1jukIFjsrYkllTTgabtsIRglyt0VOC72LavxvBSKkxaslN8UttF5HscZ4glOqSgB+y2XUdgK4m85bjKgKxzzNoyRwhJi5rUeFZA1UJRCx2xog6fUhjknofnjxFNiQgGtHX1OEZcL5COhzRdJn5IWtkUTUumd3IHg3QXqCIs/FrtttUb6vd+3v7Pur61BewP6cIMwBIGI9dkoll9nmUwyu6QqwXVhy/Y/uKv+1RiQwjC8yPkYKSApC9+QOOPaf0xi0oSl8rl/7CpuL5aqhNiUbOKi0eTsA61nA8cTkcuQ9/G1/L2eWAzdE2GjsVJZPUeM5FtkcufKkPsesHmzecqKXgTU+5S0lVCnTV9LAmgY0kk0pI6dFLFqBwyu5xRqF6Dr40Bga8Uvu4bCtnBEiAssy9owtL8tgMxXJ/827LuaSNVVpOukl7o0jWd2hlKA2lJnIHbE/Ld6bC3G5iujXl0ghVEOMGA0fw5nRvRRkO+czRlWzQsEiUW+K9fPnCzybnb5uzuU6qiJk9b4m3OX+0K/sYzcQObXzwf8XwacBI5/Pj4nPH5JdFlixkvCec/p7m/oV7dsvrFF1pun1H86sMjo9I1Gb78Cd58THg+4+xP/gMno1M+fnbKcehwtcm4iQsWe0W7eNPGOKbgy03GSeRwHrmcDz7mxf9+yXT7gcniS5Kf/hcyzcVUZI0VdV7ibXcEjsdodkk0PKM5jbjeFVw7Ob+42bHcKbXfl7YkLhvOBw7PhkNe/dn/QfT6Cu/qN5jufya5WVFsEqqsJn63oMlLwl3KcDwjmr/EnzzHs9S4bhGXrNOSZVz0yLGJazILz/CkjWXaONdve2tAvtrijBd4V2+JhODZ7CWzk2NOQ5u0arl6SPWeN1Fqt1GOKwWXw5D58Q9xo2OVgbZe0KZ7mtWtClVMdljFnufHPyS01c7ml4uYVGeRfbZKiUuHeeAym38X9/t7xPANzvKa/dWdil6p3iPHf41VxpyPnhEeRTxkA65Dh+tNRpxXLHbKKP1h7NMEQ0ZHrzClhbdeIO5XqtvcPIAQWFIiDcE0ekndulRtx2JfUNQty7jg/T7vk6Xn4UztovIEkn2fBE3bIkcnONLCt1zyxiB/UoCUyVjdbxPbQ1ZpL8Jgu8IIIszhnunJ95GGpEOZoRdJziotWcQFBiETL2Q6izDjBxohadYLmnhP9e4z2niDebzm8uN/j2d6fbZe1XTs8pqbfcHFIGI4PAVpYpSZ4qyqG/0fPUb8x3Rv39oCBn93Jpjx5FclDOgIhBqReKbAqVOMxReU7z+nvH2vot3LuidlmJMZcnaOnJ1RzV4TN4Jt1vL5Q8I6q7UYpNLS5Kb3whyQSpPQ6cMsfUsyD+yeODH1LDzTILAEXrnDiHe9Obq8+pR2t6LY7Nlf3VHuU7UziCvKuKJrOrq2RVgSoUMm7cDGdC1tlHZxRpHaRem9lCEVqf4Q4fBomHwi0Pg7olMM01a/fpPAQ2NsmrwgWylGXJ2XOsq+pM5qmqpRxazptNm4Q8gcaUuqNNfRL+r79VY7zAOlZL9ReK3xnNnkBaPBUIGSA/X/8WGS8/4h5WfCIE9KyqKm1cbuUo96frtIlFk48/AtycXAJXEE4+CE4LTA9CMMLyDcxH2Rz9Y5dVbTta3ylDXqAVls9szCEebFDrMqmIeXGHi9ku+QEn0wRC9Cm+Wo5D51sc8HzGafYPtj/CLHHl+RL5bE18qM3FaVEuB36KIAACAASURBVCQs3isWpSGYDl7QdmoMfr21KbXiLy0b3twn5JqNNzkfMJ69Rpouo9Utlu+S3K4eQck6GLJZ3WJHY7okZOhOOPLtHvR6SEyOzZptoaM7Aj1mG4yw9ylVqsz6qotv8K4+xRISV5jM/AnnA4eqbRV+6UGlAMhdzvVehVdKYXASzrCnJ0ogcgD0pju1i7JsnPGOoRNRtR2hY1K16rV8BNGqjuVkeIJZV6obXKzVey0vaXRGl5A2g4nD5dDTVo+OL7XgJC5q7pMS3zQIwhAjmCKGU+y6otyouJxeyVcmeJZQthRtVzlQSLKqIS4acrelaATWIQVCCEUMEZI2SzAbBRSXtqfSkNuuV6/GZY1vSfLGAKkg3N3hvsoSjENUynCL54xwpKLUH7iIqWi4jQsMw8EUJtNwgrHfwH4NQLnZYet7WZwuGQbHZLXZj0XV96BGkoGlAi+NuuoVyU+fp19/zv59Rexf88CeXH9fnMrTf36QfQodBUKrT9PCUGKIbIuIl1Rvf0X+4Zr0dkWxjtW4S++5zLOXGEcX1IMTbjJ4yEpu9gU/v9trbpsaDR5UaapoqS5r6Nu8mKrQvaGrDKvzwNKBlgK32GIUMcYuoXv4QJfsqVKVvJwvlkpRlmTqoZOXdLobsMODUlBgeSama/UjTsv3sAJXGaenRz3BXkRjDNtVxct2fueN2UOPu46u+aadmFSnMU27//q/a9Q5lAVtnmCvbmmTHV26J71ZUe6Tnt9XbOIno0stPW46qiRHSNHT5pusfOREJjn2INBpARlOdMSRP2YynCKNiPOBSle2Tclil/MQl+yyijKretP0VuOimrZjrP00x4FN5tu8nL5AOAGmP8BP9liBS+J7qguTBWVcUec12SpVe6WkwJu8IShzzCJn/L05RuBiGC5t2zH0bT2qqrlapSx3SoJ/M1Jq0pdjnyNvopiBOnvsMJ5rD4rFzRKkxBSS4fiCzjPpOpejMNM+QSVmOXi68rrhOHAoI5v57DX2JwsMN8AaqLy7bLlGWKaiw2jclbADfCfgyLco6oaqadnooptoeb1Sv5oMwiPk9AQ3Vz/LbLHRgaot+fUVWDa2ZRNOFEWl0orEhY4k2ec1t/uiV9Ha0uA4nCLyRB18dhu6QyaWkJjxPcHIpnLsPrTyoJh8FKu6zManmG2DrEvs2/d9hl6P2HJchOkw9S4oavXzWewfIb3bomZfWnhFw9QfI8dzuiLH0nl2B0l8m+zwRIdvCSaeIt8fvkbVaDRU05E3HYHpYjiuKmKgs7aUr4qm7IkYTaeKV64B275V41uCzpbqHmtVAW3iDUauXhs52+K4KjFZSepbEm3Y9i2JNJQCeewN1eh3t6LZPPRTERew4iWO5TF0QkL7sQvLa7UH86sW0wkwyvjx/u/av/PZ+z9bXf+tKWB/3/VN3ZiB9rXoE7JjNIh0j0hWdKv35B+uia+XFBv1A5OejTcf45ycYMxf0IzO2LQ2ny8T3m1zbnY5P73aqBN2UdO2ytchTEHgqHyn+cDlKLT57lHA2LMIbcHAloTVDiNRnVZ7f61OnsleqePyslcK1knWB+aZehRo6ge+tM0+Dfkp6cM50rErQYThBsjZGZ3pKkm7N6LVeWCNYXIIcj6kSBuHwE++GdrZ8bjjUMbnr0rebWEgaTGqHHm8wioTyPaYx2+VETbdU+4S3ZEV/f/nYUf3dHR5YNSRQmWZivIdeFi+TmoeTpHTE6zRnOez18x8n7PIIXRMFtqsu9jlfHmf9mrFg7dsk1ZcbzJyHWi5LxtsaTB0poTeEOc7lfKFja6p84JsuSG7jymTiipRnWQhC/bv7mjblrBtcE4/YjS6AN+l6zzejFwyTZXY7HLypGS7L1juCjzbZJVWvBh5BKeXeO4AKxjgJTush/tebFNs9ji605VHN4xG57Se5CR0FAdPqzUf4rIP7Ry5FmnlkTcOL06/g+2HqnMdXmFI0Y/FFc19gxmuEU7AwJ5T+DZ53bJMHkkg66zGMStly/ADhWDKE/y8IL5eqj1skpPePiCttximhSktjkbfIR+61E3Hl37S00UWuxxP+/c8SzALpmpUliXAO7WzjdU9aO4WCMthODxn6JpstfJutSu/gq06DSPGwxNkU2KOJjRlTbtPNaRXYDgupu0yefmcqrWo2pb3u7znAW7zivtU4poCz7QYjufIIlM0/epeFXzdhYl8T2ANCG1J5EgqPT4/jFxVxElHZ3nKk+W4jyN7HRppNKXK1uvp8tpiot+LI7eDQwwS0FUV1XanRFJtg1mo78OzRzimGjvuNb3E1pYa35JcHo2RwVo9D2xLKW71/WYt3iPtkMF0QGSbKk6pUXljcdEQ2gLPNHGlrRTO/Y35uyPEf67rW1XAfp+56+GfH3wLtjSU+batkds7ZPpAfXtFdfMF+3d36uQvBaPvPce7eIZ1+Qnd8Ue8t465XVW83Wz4v98oevjDviDTi3XDUKKM6dBjPnA4GXn82bMRp6HD2JOcyhwZf4DbW5rVLakmJ6g9wk7J2dtW3WxawWe6Ns4oUiPAwMUej/sbQrgBYjhV4E3LpnWHKvfLdGm8YX8KLJuObdHoKIiG+4eSrErJ65h98ZiFdbiechKl9pUJ4xEeCmrhf/D6FF/79yPX7B9OJ9GQoTNlODI5Ov03+JbApibI90TJCqNK1YL74Jcp857m3uaPnVqTF3oxn+rOrWXz5lp1yJ6NHQVEL87wxzOi8ZzLZ9+nPR1TmDP2ZcO7rTKMb4uad5usv9G3Wvp+s8nwbJPrXd4rUV+Of8Do5Mf4XcHZ939Js7ymXl6T396y+fTdkwIT05S1QlOZNtbFK6bHLxkNz+heTrkceny+SvhPP69J4oIsLom3Of/nJsOLHM7GHjc/POHjqc/p6Huc/NkQe/Wup8Jnt/dkt/fIzQ4PxUCcTc7507MLLocebyK1d/v/Pl+xTSvuNR1kPnB4fhTwv72acjL6AfOzH2Pvbpic/pXaqaZ7aBua7Ur93OuK42cR4SggcpTHaJ0rj+SHfc6+VLihzcDhR5d/ghnN8I/fMslLvWOLSW5WVElGsInx10tm/zZiePSMqTbuvn1Ie9o/aI5f2zF9NmA0eYFpCOTNW+r7FcUuxdilGLYiYphnGeeREqfUTcfnecyt9pm99W2EMHg58jibfkzwyQPC/RR5+5791R1VmmNvYrz1Ei8YcTG+JJh4PGQVi6Rkk1Usk5JWk2Tq1iWYfoQ0XSwvUEXnMBpfL7G314RDMIIBL0Yeno7HAUXF2OZqDNj6Y2SlOIntdqU8l0CbJ0olWOeYwuqRUlmlfGGH4lOPAoTtqWlJ25AtNor0426Q499gGoJg6jB0HCyp2IY3m5z3Dxk3I+WzPB8cMR9dYNWFAownn6v9+WKNPfgfOGWO1bWcD56RNy15nbMvat7rMa/A4NgOoC5U4WpbMNp/MjXiH3p9qwoY/P7Lw/5zukNacI4ok37m3hU50jIxIh8r8PBffYz17BOa6SV5cMy7u4S3m4yrddZHXzR1i2lJZTx2TAaexXfPBpyPPOahzScTj5EriYwS88On1HdXKsxyseThV18qMUasFGKgFH7e2MUKHBViOQiILuc9md48fQFuQGf5tLZH4w3pTJeyhVTLzaumI1mX5Fpam1bKO5NWasRwQGUdRltP8VRf5x0efu88IdjXXyPYH4gUh+sA+PVsycXEZxrajDyLFyNP5SLZJp4VMZyMcKWB0ZRqhNuUymBdxnS5KmxdluCsbvquLb1dKQxRklOn6gMgszaU+wQ7+oAzCvH3G8R4RjCa4/lj/KMTzkubveYqbjXR4XaX99EzcV7xdtURuSb3aUXetBwHNkNHcnHxY+ToFOfsJebpe0zXJlvtengwKKpHsVioZT8gu5bj0WsMfIQBv50H/Ba17+iyjiJXFor3dcsvb/cqRLQJmJ08U54hrUKUm13f4TTLa3X6bhumr89Rt7MCr34W2pR1S5W16mClc91OIod07FO1DrPwlOD8FYYXqKX+eqEUblmiiBaTFf7QZuyazENHKQpbJa9/ekg5CWzmY/V9ehfP+r/PVzuavCRbbVUu2/oay7Q58uf9PgzgdpP1XfDQMYnLljAIEY6eGNhb6kQFmDYbZSYWwYBo+pqhYzJw1WPsgFpLy4Z32wxLGNjSIxieII/2mOkeuNPk+0YpSlcf1G5w+oIj3yar1CFsm1XsyxonU6PNfOA/ku/dQO2G21bt6tIdhh3gOQEjVylk6+YxY6tqFQ+ys306y0P4kTpogtoZ68RymhpL2j1SCh7J/mnVULYdltS7aiFpq0q9JmWlTN/7NUa4x3FdXFMgheIbbtNKc1wt9mXDZBAinQgRRABKrZm3ZKsd5ugWc3aOf/y8V2QDxPoeiRxJ59rKj3Z4fv4LXt+6AgZ/gALmULz6VOaCJkvoqoquabGjQJlYJyOsVz+iGT8ntgbc7Ss+W6W822TcapEGoHl9dg+fnQ1cfngScRqp3KiLyELES2S8pPz0JxR3N6S3D+SrLdsv7injiuYgf9X8RCtwcKcD3OkQfzbCfvE9xHgG4YR6dEFt+WSaZrFPGoq66AkFag7f9r/PKrXgf4iLHtr5EJeUGk5b5mo3dHhPKoqU0XeTB/q8NL86LqjLhrZVkvuyqPXa7DE7TJgGUgputzmh9mMt5iFj3yZyJANHIZo8U+1AfGuCbRtYgYFvGiq+Qac3uyf3NPs15naFFbzpeYLx9fLRxxaXFLtc7QF9l2gT404H2FO1r4le/JDAHzMbTnGkUPgwjWXaZJUmaqhYmm1aYpuCpKy51hDcchYwcuaMB6fIwSme42Ivr2lWt+y+uFEPyFaFbBpyod4bTcM4OsaKBpgi4PpihG0KvrQlq01Gsiuoq5Y8LfntQo+shSLOz0fnqoi1LfbyuscbZYs1btMo+OzknOn4AiNQReyLedj/fB62OWlbcd12/Pou7lO269blxegCKW1M0+pDQ7u6pE132NkGpEkUHTMPrJ6If0hKbrRs/0Po0GJxPH6G9eJ7ICSGEE/8hkq04928xXY8PGlzPghU1EpLzzYsayUYSKqWuGoZ6X2NjDcYu5Q2VR2usJWny6lTQtth4lp4tknTqvd1nNdcPWQ4UqUfX4yOMCc7xHaFsCw1im90N794j+VHCDdi4g2Idbjkwf4Qm6rTjKuvke81heRgCpb+gC7bEtpDJp6lXuODErfTPsZO4No+6LDKR4GUikcxmgpTp3QfRC2Zzh48jCF901HJyFrt25ZqndDsNqqIjfcE0TGeNmoDZEXNAxC5OeusVn5FV4HDhfZp1nlFvtriTR8w1wuCC8HQMXFNCVQUWhlZ1B2dsFT81OE50bV0/0JjxG9lAfu9roM4oal18crpKnUjCS/Amp/hvPoBcnpCOz7jnXXM9bbk7eaBD7ucz273/bjso3lA6Kqi9foo4MhXlPrebJyuEek1zX/7JfV6Qf5wz1qPncp9qgpX2WrJu4l/5OGMQrzpgPEPFfTXPL6ki2ak4xcqFbpo+PVVwirds9bA1PcP6Vc6IeAr3dDhUkVKfdRV0//5afF6ehlPolMMYWBL8VVyvWFQNS1tbSgFVdX0RaysG1BTVfK0YiMFt7bgtzd7TFuR3g9U/AMGKnStHgs10r9X0N4BF4M5wVgQOYLg+wu8ZEW7WTD89X8nvVmRLhUkd/d+S3KX0LVr7n95h7QlVmDhjT1Gn/w/+PMR1tExL77/Z7TBlOZ0xvORyyavuUuU/PhnGtob5zU/e7cFVEd5MfGYDVzORx6nkcMfX/4lk09M3HzN0duf0CzeU69uia/vFXNxtcN6955gt2JwfMlgcs74ey9YPB/z5iFVIZa/XvKwL6irhtt1pmNUSkLb5PXEZx6cMwqmWMkOw7+iuL0lvl6SrbaY7oJhmWMeP+P47BXT4RnWJzPeHAW83aivvU5KiqLmJ2/XvH9IeTPxeTUL4PmY+eQVQTjDbBsaLbRptivKz36q1HfzCz46/yMiW4FjD93qzSbjfZuyyytOIqXo+9OP/gL3+BXRiy8w5H8iW6huuNjsiX/xc/ztCvP8Fa9/9B8ZOiHzUBmTV3rHttW5dgY+BCFHF68VO7JSdJRstaXOS4Kywj//iKPpRzD0eDb2elr9Nqv4xfutGgmXDSfRESfH38USJsG73yr16HpPUe5J3/4Wr66w6oqTl38OKNjvIlbBlwcxxvXAoWlt5pPnmMc3IASNHnU3q1sAZFszP53qUbvo0U6VNgRviwYrmELXIsdzRagv9XMnTzCcGM+NOAps9rqQZmVDUtZsc8G2aAjCAcKfIMdzpOvATqV/x9f3DNy3iGCAdCMuhwNWqWJ1Xi8T4rrkS+CzVULkmHjDGf7sEm867JMa0tsHZa/xfYLv7Rl7PlPfYltUOsm6JHRMziMl+afKf+eZ+g8ZIxr8a6Dl71x/UBd2eGoLqResEqIRYvaMJjomc0Z89v+z96ZPcmXnnd5zt3P3m3tWVmVVAY2t0Qu1jKiRZqRZHJ4Zx9j/hf8/f3E4HGF/mAl7Qh4NRxpKTTa7iW6ggUIVqpBZWbndffWHc/MCICWZFBlSmMEb0QGQjeoq3My855z3/b3P8ybk5Sbh9TrpsEVCV+k7Bo+PpLdo7Bg8GjoEZusGS7ZoN6+od3dU2xXF5fPOgVS1g5qaoWP1VKye2RmD/fMjzL6HGI0xn/4BjT+hdIdkIuDVViogFlHOX11uWqBsTpiVxPusU5QA3aJzKGtqbR/LNrWfuw3vq1IO1/tmZc/Su/LhoZz4/tceFs5NXHQLaFHVki5S1p3sEuSCeJA0RrWs9R/kgD/7fZ02muxZBr6lczOwGVgSpXW/P6HnH6H5kjqh9S+wRm+Ibu6oi5J0m5HtMopIpgXLVJZnm/oVyWKNPd3QUzX06RxjPGc++xTXeAc9vnsvobjappRFRVw3hFHOKzvmhSc4HdqoCpz3bKZuwHT+MYbXR7FdRPdaZ1RphvL8G6z9Bm2yYviJj9ef4BoqY0dqU67uYkm5T4puOHkRZTiGKt1Prk1vetr1YLTlRqZRi5L44hK7xYXp85z50fcwVGlKvpzGXN6p3IW5PJHHBUJPsYXGIsoRmoLh9LCDoSRFJJEcct/dtWzMGs2fMg6OqVr4bNT2DOO84sUilDimqmYemMzcKfYErPl595rneylyVRdLbGGhb68ZD84oa/laVk3TJXbDXKpJHENlaPUkDWO/wdjHZJs9VZqRbUKsu7eoVo/e4B5TV7DyzG7DIecuc663KbusJhAGvjNA7w8x1iFFlFC1fVQz3FBvV9hKhWuo9ExDOrHyd7H6dVLgC524VOk5AYq1QXnPtt3Ee5pwi17E3TyX2Ubq6waysmq5nyqucNEcnyZL2vKhTBUqZYaSx5iaLUMURtl9JrKqJisl8k6YHlogTe35PpLpyjSj2Ifo+zVassU3hwwsg54j0HRVVljaasxdUjB1dCy7h9n3JA1HhFR5JQHTmx0i2+M60h1ntqqVA+WjqBvpGTs4FQ/P0fYE9svM4P6q12/sAga/mBPsg8sQaP5Afq1mUI7us2sEb/cFP1mGvFiE3TxMr7XxHvdtPh67LbVDY6omqOEaNVlT7+7IL59Tx3uKfdgGEGTNWmsJFErLFhRBa2F2LMTZQ9TeCLU/phw/ItVstlnNdpvzxdt9x0/88nJHnBRkSUFZ1JTvoZ8MU0PTpCDSbN1fh398S28XiXdk+5+99Pf6X6IFBh88UZauSYVK+3V1q0wp6pp9VlHUdTePdNcOb7/vFAN+7tcDBbtqGqqoHXCuDyJOuaO1hcb10GbomUx9k7TymboGPbPP5Ox7GIMZ2vQN+ljGz9PVlvRux/5NSJkW1FVDHuXEtzFFUlLEKbolsFsRpq5bDLwxtifjyNtUsuE0VZY/D561NC6Idxm7jcbbbYqmqiwmOQ8HDt7xCbbhoBsCc3nV4ocy2ae7eEu2DrFuV3i2i3X0Eae9E7yRzTbtMQtMLu4SXizC7r6s43eUfaEpeP4R+kzOARnOjUxuJjnxck1VlLhFS3j3j5j7R+iqwvVxgC10bjYJl3dST3/QZryN5ClPaAqWGUhSQ7iBeE++2aGnclG0Zuc0qs7QmTBypGRyJfTWAJ53QZizng3YHHtHOKePMMuiS5QWUYKiqujWW8T2Bs2wGNpjRo5MAR58VGEuH7I9y6B2R+jZHrU3wgw3RNcrqgP2bL3ACEYIu8+Ra7LyClae5Dfetn2/bZzzNswITBXHHaH1RpiDOxkIal+bfBeh7deoyRZHDPBMDVdo3Xs4a+PscVERFSq+cLv7pBxKrkmEEu1Qsj2252DrDZYmqRh1QxuplwuQbb1XRjxAkcsCtYhRigRbd9uE5Tu3XlE17LIS31Tx7R6qHWD2fQlXaANfVZrLFGm8xfNVSe8JTIShkbUVlk1csE0LosJkYPlo/SHCv8VwQ9J13CadU5Qswg6kycIxtO5nSEvZzysbMFQVqr+5B/aLLmK/9YG11y86MPdzf05R5QyTblG7Iym2NGwK4fHTVco3qw3PVxF/9uyWtKgwNJWeY/BHD4bc79uc92wemAna7iXNm0uSL/68a+gfsE6KqqIJHWvUw3AsnNkQ8/gU1W3r0I5P3ZvRmB616bKpdOJCOn1eXCWs05htWrLYZ7xYhJ2HKo3yDvWk6QqmbaIbGqapM+tb9B2DoWdyb2DjmTq+kO6soW3IXbcqdQya0rq9FHlqO1wfxOcPJdfWBqs0zYenV0UFxaDRHBpd0ueL98IkeVUTlxLZc+jRxe0MT9qSC6R1t+z0JElRkbbhmLCquavh5u0eVVMRps6fT9yWZGLzByc9pt4DBg8e0/9EY/L5M9i8pVxeEX/zNelqR7bet1zDRC5mu4S7r19hXLzFHFzQWy/QBlPcyRx3cMzo/iNWSckyDpgGJi8WIa9uY66vdmRpQRxm7NcJ/2GT8IO+zdnI4e53jvl45DIbf8rwn9Tor36KeP2c3ctr1s+uqHJZbgqevcY5HuHdO2Ewf8i//ey/Y6f4LOOSv3yzYxnlbGLZj7si7ay/YjZkMp+geWP8Mse8ekV0Lf1X6WrH/uItZv81o/0GcXyfeyePcB89YHnS49Um4QevN92mIi9rLjYJdd1Q1Daj8bnU1tSyr5a/viFZblDUW5o8RT++j3v2hM8mH+MLvWvwXywjVpuKq6UcCn96Is3P/+LhH2P0pmiDrxCvn7H68kVLF8nQgx9gnG9wjx/zeHTaBgZUiVqLiy5G3jd7TI+eousWqu3irLakqy1FnJB891zOZuUpT+7/M1yh4QmNviP4by/X5KUcwH6xjqVlum9y9uB7oBto1nPiayFNBFFKtVli7N/iD0xK22HqmlQ1lLWcDVvFOZYmxY9Tb4JWFWh5CkVOtYnkog+IcAmqTs8eMbCNVrMi+0e3rTEAkKMCbYqvWi9kKrHI0ZuG6fwITZWfyXUbJsmrmqtd2oY7DGaTR4hHv0MgnqFb18StccC4fYtiP2d68hnNUJZDX5yE3WfqLpQg6KFtYOsW0wef0zukIfMrmrom3expbi8R7oiR3efYl9iyumlICinXtfUGXbdQ6vi9B+2HfbB/CKDvb8wCBr/Yqt+VFg83WlVpGg0F5DyUcMgajW1S8fwu5uU65vkiJMlKlLaUdjq0eTBw+KhvMfMMtO/+kvLiGenVBcsfftP1tZq6RreMloQhsEYB5ljWr8X9T6itHrXlU1g+20qXYYyw4Xofs89Ldpkc8jy4wQ66jryU8jvLfZdYOqhWDrLHs4HdDUrPA6sdkpaaFUcpUPMYqhx1H3V21Xder/Z+tqXIpqreUTnacgd1JWv3dU1TV53mQTUt0A0UYWGaNo7p0xim3CD0B+SNIK9q9vlhYWtIyopFmHeyy2mQtjT3ksu7hCgrO9FlXUl7c5YUXK1itnHBKszRVIWJKzpI7/noMVbvBG18juf1cdaLzh4QXi2pkvwDJmQRJSRvFpixTDtq+w22bnIcHOEJkzAL6FtyQxBlJfEuJUtKyqIiT0piNeU18O1thKYoKIpDrzdHn5c0WYIdp2yev+lAulXxjt4RbHf4o2N6wzPsYMIudbENeQq42ckHqHwA5qzTClWBUW+OPn/YvVbpaiu5ja3Dav/8JV4aoecpw88nCD9AaAq3cd4BbPNWlBrmrWy0svDsPlowlIEHVSU/QIBvbrFVFUU3GB49JfMM9rnFNivRdJUiKynLile30lxu6SqfThzG/hRjFlHHO3TrijyXoY58vUZ1rjG8PkHvHrEtTxz7vGQV1VR1IUM1WYWp6/S9Mfooxux7Un2zkyVJ/W6J6ga4ZxEjW24os6rm1a0k9Wuqwq41DI8dg8qVs4JNtMNMM6pCli3rvJB9qDzCdlw8oeEYKo7QiPN3XMAor2gGDo2wUSwHxZSLxIE6Q5aglClCqTE0SQYBeQqTXEEJK2gMCatWhPXuswRUW4E6WOOZfRIh6R5yTEV+Nm7jHFdo2HrNeHSMFu2wkqhjsxZRKsWb0Yp+74yZLzgdOl15v6obovb1DouaaTBGG0yxp+uO+tLUNfV+jZbucftDepaBpatUdVshaccdqkbp0rH/WNdv1AIGv3z9tVFUFE2n0eQpLKka9lnNJqu4DjMu72LuwhxFVQhsg9OhzaOpz4OBzdzT0VcvyX7yA/YvJG5q9dMFZVp2fL/gtB0mHvjY5/fRp3PU0TH59AkJhuQmhjWXu4htJmv3N/usVYO8ww4dSmzivR6Ubx1Kgzq+pTPzTXqWgSc05oHZkT36oiVX5xHKPoLtgiaNqJOIYr95tyC1LrC/9V5VVUc0aKq6g6UeHgIAajtIfWAt6v2hpH64gRR52h6O4RA4AxrHptYt0qph6hqd7PI6MDvZ5SSI2cZ5RzY5BB2auqHISrZlTdRioaaByU1gMXEFeeXTM016/hm9xwF6GqpJZQAAIABJREFUvMaINxjrBeb4GVUYtnNk++7nP7AHRZxihhsM3cCYrOn5Rzwdj5m4EqgcpgWvbmNW25Q0zuVCltekkUwQCl3FUBXOzofYgxL9NMXKU8z+K8qkZUHeJhL/FcmSjZj8Bcb5DnP6EfPgFEdoXBry4ZW0mhiAy11KVctI+2x8D6PdOFjXdzL52PZXo6ulZBymGe7ROd5gjvCPeDxycQwNV+jsWq9W2pInJNG9h5L05FC4LWAjk27xUqKHFFXDuH/FqHdGEphss5KhK1i0G4x9mHHZ9izvziqcwMfzp2iTOcL/Ska+23k+w79DXd3gnFd4hsbQMti1Zea8rLkNc673KaZmY7k+diuaNFt3WxklZIaO6lxj7hcMR/fJPIO0spn1bbSdpP/HecU2LdimJfV0gBpMZaw+T9F3cTdUXKcRap5gek1XwouLdqykfWinVU1SNbiGg2p7KJbTRuHlJq9OozYxm2KoBkYLtq6aFjqcyR5r43o02R5VWNAORStlAaqKFq+xhI1vCjxTJy4q0rJin5cYmoITaZi6wsCboE1CueG6uesSiXW0Q03WmHaPoeVxEljE7/WYk1xWQPZZRe1K+7jYrxHBVadTqqM9eh5iKhWOLufQ0rJGUxTKtl9eNaC9nzz8bQrxH+b64BSmqB0CKWmtzGEhlfeLXdbtWsa+2S1eT8cuc1dFX35LffEVdz/6hvD1gv2bkGghZYiaoaFbOmbfxZ2N8M+niAefUfdmFMERl7HCNpM9iFWc82IVt4O0Zfc9/6ZZrL5j4FkGjtCYtZSJQ2lw0uKoLF3BV0vUbI8Sh6hvl9ThRmKcoh3F4g1FnHYA1sOb9v2FCD50fx0+5O8vYE0rTDz0l959ndKCeVu9jC0wHBv3eIjmeahOIBdyx0e3PQzDwXVH1I5NpQrGtkbSNqzngcm2dVJtkoIXi/AdpispqMqauqy5WidSTLhJGXmSqD2wDKaeyf2+T9Dv44wa1NEaazCl3q0Q25UE0bb3oowSqjQjbXssHl9Srxdo42PG93+PwWBC35LKintj2au6vEt4exu9U7eEOZd3MZau8TZ2OPGOMOsSo8zx5t+2SKiKbJdR5RV1UVHlFc7X3xK0abjJJ8doioaCxSrO2baajiSvuNlnMhxTmwzGxwhVx1A1vOvX3f3Pd7HkTrb9VmP6BcZ5ilmXnAUzKUDVUyxdZZMWbWnoZ4ju/QjhO+S7mDJKydbhOxr/+gpLOEycAR/1bU6HtuR9FhVlXrFtxayvd6n01flH6MM91iiQp6dCLj75ZofqSWmlZ40JLFkCBEhyKTRdRHnX/zv2j9BGM0Qqy37xUuLU1Ns7zLsrNGEz8o7Jq4Z530JTFbbtzFpcSF7igTKvDY/Qkghzc9e975skkn2oLMQXdoeqOmhqiqomKysZZxc2jeGguoFME5ZIRmGWyhnGMkNXRdc3PtzjvargZBp5I7B0CR1o6lrG8euUpq7QW8VJEBwztAzCTIpet+1wtKFKeev57Ag1T9CmMeLipcRCteMbYvkGTXj0Rx7Hntklpg/Bm0OfsR6PUHtT9NEx1kiWeAGaNKLZr1GDLZ4Y4AkdaE+rB8NA07wLcvyWxPHru37RUiIAqt6hkDap9ArdhBlX7VCrxD+Z/P5ZnwcDh/OeyURUKH/xv5J89zXrb15z819fkqwTyrREt3TsgY175ODNx0z/9I8wTh/STO7z1j5hlVS8upC9iMs7ycMLk4IkzDo+nzD1rpf1YOoyCSymvsnANng6lmQE11AZiQY12aJkEkFVvbikiffU0Y7ibvnBInXox1VpTrJOqPKaMinJo7wFAH+YElQ0BeEKuRAJrTNMd/evfqdgKaKCKq+oiqqj4R+uw9ce7ovhGgjPwB4FEsrbMhrNvofqOKiWy6g3QnUDVMfn42BKMw6orSFJo3ETyoHK2zjnq2XYpjAzLu8SdknBZp9xuYz40estlqHhWToPph4jTzByBCPH4MnoewRTFV9o2NvXOMmaavmG4rsvO7p/sliz++4aRVPRLUHv4X/GnE45Ojrjf3ryx6QfHbOMS27CnP/nQkbTDwm4601K3upe7vdtTvwjZh/PGasavYtnRC++4+YHX3dQ4HSdcvvFC+KbFf7ZFX1VY3r0gOHglIagI9qvopyvbnYIXW5k1onPWa/H5HjE8F85mJffUFw9Z//yDeuvX5GuY9K1ZN158xfYZ6cc/+G/Zzo+Y+IYLOOCH73dExcyfPPNKiYppC17evQU85MbVPsrNEPn7utXMhK/izHc/4D50RWDj76HP3nEv/l4yunQ4ceXW7692lG1G4ov3+6p64aqcTibPkE8+h188xna6xuSuy3paoeiXeLfvcYb60ycHmVt89Uy7E7dX1xtuUsK7hKbZOTw6MHvI9wARVhkmz1FlFCmGeZPfoC+XeGePeH+8D7/7GzAd+uYmzDjZpfJof0o5yYqqZwe/amNJjyMXJLuKQs5LL9boWmCSf8BqmLJ8JCRd2SNw70SjonrjtCqHLU3knT4spAP/sNgsxPgCg0rU9llyIBTu9E78QVTd4SSxyiGQb1LyXdRS9/R0E/2GNOEE/8eVSPtyq9WEat2Y30b5/QsnZPePTzTxV5cot1cyv77OkR8+wVGvMfIQz6bfs7ANggsnR9ebqnqhpudnG0571nMx48whY2/ukbc3EigwnqN+uY7hBswmNic9yzeRnk7YN905X9b6L+WYebf+sD+npekedMOHsp+zCH62nNEK/ATfD71OfYMBsToi5dEz3/C9rtr4us7qrzqVCXBaYAzDfDmE/z7J4hPvk/Vm5OYfZ4vYi62Ka83CV9cbNhGOVlSUGQVVVV3Q7+GqePZBpPA5OlJwJFrMnIMZp4pZzDUCjW+Q33znHq7kjM74YbkzaKF42atPqJsYbAZddV0vq8yqbrfw3uSSk2Rp67W8aXberv4GBi23mGtgPeszYfTRE2ZFuSGHMY+gHnln22oi5q8DZ28K7GGndpFBE5nbxaB06Gz9Okc1euj+wMCf4gzuk/qWexy0TEOF5Hsga1aPXxeVOQttDeMVLZx0Q2XD1tz7dQVTF2T+/1THH+Cag/Q8xRbXKFoKk1VkSw38pRUNeT7GLN/jTu7JADc448w+6cMxn5HuLjaprxYhF3J92or52SqRrIlz+efYroBiu0y2OwRN3dt8qtoNwIpyd0W7+YCQ1houkHfnJF6grSSSc7rTdJCogtcIUtcWd/GHz9A1wSGbuCrKsliDXc7iqQkXe3a11eenjRNZ+gf/41Ed0NTMTQVXdWYjk/RkwgnT9m+lK65Ks2Jru/QrJfSf6cJHg7mFJX8O99sUtKiQlPk63Hr5kxTQSA0puNj6nCDFcfk++hdcm63QnWHeM5AEuCF3g3hyv6mTMH6QufBfIKa7tFGa3T3m44LmizWOOIKRViSrOHc49g3KWqpBAFZKl0nBZamYDmmJGsMpvI9mkRdmlDzYlxDJSnlyEDR+rHka9mQ1w1Z2WCbLopwUS0XipwaZCy+LFAqyYrUVaU9hSlysLmUYwJJWZNUKq5wOrjvYUDduFuimBaG4+P1P6JnSTq8JMTIk3hVN1yPMyxNwfZlaVULN2htCTld7VCMKxTLoTf7lMTWOMpF1/9M2hL9bVxg6zKYoo+OJcqtHT6v4z3VdoXqjfHElLjQiAt5mmyanykj/iMROX5jF7BftBd2OApXDZ0QEMDQFE56Vqc6OQsMgmKLvr4gf/kV+4u3JMsNeZQjPANFEwhXMPrsPt58jDG/j358n2L2KausYbUr+NHbsPMh3W1T2fgu5IyUbsh5LWHqnL+Xrvt04jHzZES/Z6o42wu0ZEO5uCR98aVM17UIo3i5+UBM2d2L905OmiEpCYZr0NQ11oAP/pzanbg0dMd6T7viSiaj8e4tcygl5vuog/C+eyC3P8d7pUVNaO2JTpWLW15RV+9o8/DOMfYuuXnzoTzywWd4vQm2O0KMR5z4gmVUoCoKN7u0Y+vdrGLqdg6tyCR3cGFoOLZBmBYc922OAwsIGNg6w94Zzr0E1XaleBAIr27Jw5w8KohvY4S3Jby6BcA5f41x/oRgep+n43uMXcHAMiSGqFWyr1oupkzUVfizAf2JjS5cBtEO+80bouuVBBm3GKwqySUR3nYxbJf+8Zy80okL0T1E47xiExfAjl1qExcVA7vHbPwATdUk/f31jbyPbSkx20ibgnP9EsNyEIbDwAr+VqK7gsWod4JeyVi+PbogrmrKOCVZrlE0lUBYGKbF7PE9itqhbuDVbcSiDZ4kedkGDwr6ls7IGUowQLRDs+5kryUvZfR7uENNd3jCkw9sy2DbDujraobdlsk3ucPQm6CNdjLQESXUuYQcq0LHbjFTw9GD7r4tQolSK2qZ5PSEjqlLsobojWgOi087gtDEIWoW4gmXvJL9sHVSdPcmK2UvrBQ6qumhuD5KnqK0gaYml2VEoakIrcZse6JyNKJuwxw1SVHjmK4McqhaZ3xOVztUa4nqBDjnh9k0Gak/bI6yUqYSfaHjGCpHg6ksd1sb2MckKzl4rwgLI1wycGfEjoFn6t3IwyrMuQ4zOdhs6Awnc0lgSVOJAQv3crxkuMXpzehZxgfPzYMMuAGUX6GE+FsfGH+38+tv+zN1uzN+f4jX0lX5ATJ1xo5Bz9SY2Br6s/8kF67Xl0Q3K5KFjM0604De/WPsaR99do7+9I+pejP2jWCVVPzw2Ya3kQyDfHMTSgp6UaHpKsKyEJr6c2Wuj8cuQ9sgMFXGRGjRG5TbO6rlFeGXPyRZbogX6w4/VaZlu2g1qIaKJjScsY1wBSKwsSd9RCDp9IZroXneO4eXLuQCp2kf/H/ohqzvt3DgRnhSm6LpNGr7tmlqlKaWTesqhyqn3tzSZIksx2QJVbiRpZWqkmLLVo55kFxWhfRRZWsZoCjjlPg6bpX3FVX+CgBNqBiuIDj9T9jTPu5sRP93/gnjo3M+8id8/NmcTVpxG5dchxlfXO+42STdYlYWFWmcE4cZ67sYw9QRls5fzwPujV1OA4s/nD9g8tkTxP0lvbvXqMb/zvb5FfuLJcuf3LJ9JV1Qt1+v8I5c/NM/I7h/zOTf/Y9Mjh7y5KMzxo7gYptw2dJaVmHOM/b4ls7FNmUeWJwF5zz+N/8z/vaaYH1F9fY10U+/7ISp6WpHUz2nTiIc4XI2OMUTNkPbYBnlcBtxeZfwxasNX17t6NkG66TgwdDh4eCE46f3GAgL7+VXJJevWf34O5pasu7ib77GzlKM+zHe9CHnvT51I+d7nr3dU9UNLy2Dl4GFcn/AbPyp7MUkEdZ3L7qNWxGlpKst/vVb+pbLk+kjjs57VE3D1S5tY9ty9MPUVTQFZqdnWLrAtFy8/aYDMZera9ANdEVlMDjn6djtPqOrUA7rZ22Y5bxncb/vMT35FPvBczRDJ7y6JV1tu9OYk6dYgxNOh+cIzWKdFNzGMuV6HWZttcWkrA3m/VM0TepVquUVTRpJS3HwBtebYLgDDFWRvfGspKgbtlkp5ySVioE9wB7MZAr3AKHOUppwgzkI6ZkOeWV03/tgQbjapRia/IwOJnOZ+tvsaNqUbBGn+GmKffYxx9MnFLXJyDNZ7DK2ccFyn/Ff9DvCvCKtfMaTh+hljpnGHVqtc9QdneHc+5zT/j1mvklSyPm4VZjzwzal+fHY5ftHTxCa7EHGyx+1J/fnoKpM/vAJqiLnP4uq+aBqhSpHcP6mZ+4v+8z+Za/fmAXsF7n+LsEl0DpzZAlFVeDI1fHVEn31mvzbL4gvr6UIcBd3ZS9r1MP//DP0449gcMI6OOcurrgOE272GX/5et2Vtg5JMtvUmQQmfUdOyo88wcOBw8A2GNg6M9fA0RrUeI22fEG1uqFaLyhu37J9fkW2kUOHyTptgwDytGW4MrJvuAa9eyPMvofZ93HOT6UDyPHlouQP5OybqtNoxgF6SNMK81BUGlWjFE43z5W1te/DSfVwQxUFyS3UpDrFnFUohaQKqGWKnkUoVY7SQmKbUrqU6iSSC1uWUKcx2WLRUkoiYNFRNLKdLDs2uwal7RlZtxHx9Z28l8dXaJM5vScqnjehb5lMXANDVVj0bRZhxo91WUYMk6ILGhSZXExfLGTcejMsGNgGaWkxcUb4UxP70ScS6Kyp7N+EkvUY1sS3ybs4fJrjn/8lRpaiVwXz4B6HA+/lXdymSSu27QzQYp+xCDOE1mfkzfGdAZo/xilzzPWSfLPrTrNquIHtAlUz6PfnVLbGiW91HMvVNiVLClZ5xRevN60GvqZqHB4dPZQRblXDWcgZITkuIBOW9XqJ6g1x/CE908Axis7PFbY79HlgAg6aP8Q/fYidp9R52clI2YSoQsd9/QxDmARDjYcDp/ssXa7l0HRcVG0Qp0IcJJi9EaLV49RxTL3fUG9vUU2fvjXn2DMJ85Jv2oHibig5yulbBq5hEkzm6NEOM5aL6cH6LXZbzOgO1fLxzCGe0AhztVObhHnJuoX01r4vE7qWSwVQyROUEm9RdBND2DiGwBeavLdFRVZWJKWKWSpYpYIpXDQ3k+/vdrC5yVM5lOx62Ebdzs2pJLR0jzbK7gmVvh2g+gMM9wbVMKiKslMM2btbVG+CZwQEbXgLJH90scsYeqkkmZwMUb2h1OS4ltwcpjKaXy6vMEfHmO6InintEAeN0HKXShO80PjedIhq91G9PqqqSuPDPpansGSLYw1Jy4a6LRc2jfwH3vkVf5Hr10np+I1awH4ZjfXfdOmqgqJIR5ipqwRNinb3hubtd0SvrjqLbVPVOLMh7vEI6+QE/ekfUQUz9qrDj97GXO1TrrbSBvzqNpZJprrBNaWBeeQJnh4HHX5qYBvMfSETW0qFvn6Fku2od3dkF8+kyLItFaarnYxepyWaocnEnytPXe6Rg/AdzIHH4PEZ+nCC2huhnz2hNn0a06MSNqlitnMccjGq2zdi1bS/rxuqEvKkpqyztrwkh0uL+h1l+3CZurTAmrqU+pm6QGgmwujhOmrbB1DQm/LdIHSRdAudUqbob19jhxJIqltmR9FoWnrGoW+WblLKtCTbZWjWK5zVFme2wtUNxPSUnjfGd0doRy77zGYZSX7bYp+xbEWjN+tE4q2ahn2Ud7HtkSfkjrZvM3Vdjh7+PqblMrIs4us7NKER38bEKxmBh4imavC+esmgqhB1xeR3zwFBXcM3ntnBZcO05JsbOVC66MvS9HnPZuZbTMaPsB7GqG9fozo3ZG+v5Sk1lcT5zsDcn3O/b3eeqZfLiLKoyPKCF8uoizfXDRzfn+JOJQnfvb5ENTYUsSy3VXGMtl+jxVu8kfoz6b+qW8ie91tZouLiHT3AKAucMmf78ppmH3dm7fzqFYqw0FWdaf9j6kbORm2TorMVhLn0Wtm6TuCOpCCyLGhqmQJU4x31doXhDxgE5ySeYJuVjDzRecPivGIV59yYsmwW9GdoozVmvEezl7IElxfkuxh7t0J1+jjOgJ6lt1ZhOccVt46tbVqSBw6W6YEVoeiCuoggS6nDDapp0yQWrn/UCjzVjo0YFzW23pAUDT3Toy5k+bkON/LvlUSoWYRu+di6wDOlWyxqF459LpO1g0KntuXYgur30a2NPJWmOelG+gC1/oxgJP8ePUcg9JS4vb/LXcptz2KX1wzsHlpvhOFYcrOSlEBMeXeLvrpG7R0xtEdScNmWNBe7rEPFbbMK0xmg9UayD9xueMTmDpFssZ0Blq6QvBdWrpuGunl3AvutTuVXvH5RJ9iHhmYFQ5P0b0NVMDVFCuJe/Dfyi2ckry/ZPL9qB5MF1qjH6E//BP3eJ5SDc34SC569jvj29g3/8ScLojAjS0qausEwNUzbYNSz+JdPJ8wDi/OexeOhhVMlqNEKNVlT/vCnVPs1VbwnbBXodcs4a9qyW1PVmH0PayT7RAdppRE4GL6HMX/4jlQ/uk+CwT6reb3LWG8K1mnBPtty1dp6DzSGv+061NsPSgYJ7JXE+bqqu9Skqsrwx2G4+gDotYXGNDCxhY6pqwwcgaHJIdfANLF0W0J6TZ3Rx5/hCRVHa5isXsJuIf1Xz37cAnFlOjBahFS5HGbeXdwRL3aIlze4r99iD3uyVzYcc3r/E5RgRO33+P7JXM6VZTV3icSCLfbZB3LLm23Kf/zJgqEnmAYW50OHf3HvlOkn9+l/8i95cPaY4vU37J5fcvMX35Ku05avWHL749ekqx3BzR1D22V29JDx0RlxMeC5b/Ls7Z4Xi4g3N3tuq5qLK4Wv3+y5N3Z4MPV4NHb556efMTx6irF5g/L1n0u9SRiSvfoGbXklgc6TOb/3+E+YB4IHAzmc+mIRslgnhJuEr/cZF6uYZ6M9qgJPRn3m9/8YD7CunlMurjpjsrZZwpXAnTxg5g6paocfBxabtjyVp3IG8euhzcvTHtbHRxw/PcIanTC627B7eS0Xr13C7RfPcVc7/NUN0z/p0RvN8U2NpKi4S2TlYRXnfLOKyUqbqetxdO8zDNtFEReklxfkdxuaTPrffLvPo+E9PKGyTQteraX1Ic4rvruNqWpZvpqcPcAWNqY/INiH0qPXBiHKQxBGM5g4x3LzVdXs0rILdQDMA8HEGclhfmFBEtGkEeXiCq3I0acVSlPTM6c0LRJqEeVtqKairE36gwEWUpmjrG6ok4gqS1GWL9GqnH7vBNV1mPkmVQsufrNNu59pdj7Gm4EAqOuuhJiuduTffY2papiqxqeTWVtKlZ/dfZh1g+N/cj7A6k9xZw8xtit05yvycEeyTlg/e83I0DFtl8n5jJlvcu2ZXN4lrDYyvRvnFb87CzBGHsPJR5h9j7xlTzZVjXXzHM0w6QdzkqLm8NRokG2YRlF+qVPYr+v6jVvA4Jc7iSmKgkKDhoJQpeBSTXdo0R3l8ory7rYzMhuOhTXqEXx0jPbR9yhG91lkGn9xdceP32z55iZk8WYny1N1g6ar2L5g1LN4MHX5dOJx3rOYODr+3XOa1SXV8op8vWT3/JIiTjpCxOE6hCikfdmQD2hLoFkm2miG6gSofh/F61H15pR2j7jWeLMvWCcxt3HBT5chizbcsI1l1Lyq6g6yq7TvOk1XpYH5vXdh3cKBy1wmJctCBiPkKa3+kCSlKghTR9VVdENF01QuXAkTFS2CS+jypOa1jXpHyAVsHlgMbIORbXDcu483uo86XeH1RtirG8rVNXn74DwM65btIG5d1WTrkCqRu1ZjscGP97IU0hvhnsnd49gdMPNsfFPnep+yiOwP0othK/QMUwmq9U2Ns57NqS84f/xPsUbHaKNn1EVB1CYIi6glKKQ56WpL+eYlhi7QNZ3z3ridH5KnkMVdTBnV5EXFbpPwTfGOtXfes2h8wah/gjaayUBBJh9iSpQi0pQmiTAGx0yG56h9k8+O/W449bJ9TbKk4Oou4eUmafmVcG90hl7XUFVo+4OvLEOJdujxGsfy6ZkaY0+wcAyp2ElLOZSM3Nj97ixAaBbj/inW6blMqeWyfylL6ms5DrF9ixAeA8tn0LqxDhuldVK0M2iKRCkNYtRIRunLKKWpawQLjM01mi4Y+8fMA0tWC+qm1QCVrNvXZpNWCG+CnkWI0VieXNowUNPakrVehO2oBKbO+r2TR9rqhZKiIRMNhm5JkLeqUtcVpBF1bFHt1yjCxbLbRKEmZZNFW7Y39ZKkNBCmi5pYoKodFKDertCEhWrY+AOPXvsz7HWVTVywjnMsXWWdVjjuCLW3lRsV15JW8romXe3QhwvEZEV/NJfp2cBiscvYhxl5IcvJt3HO1NWxbQk/NlwLRQtp0rITvxrbFY6h0GsrQUJXKdve+XInS9unvpAnOc9HNWSZvkyl/FJP9+huiqbqdIkWoAZ+Hg/+D3P9Ri5gv+ilKoeTmIT+CbUlVmR71HQr4+m7mCovMAeyn+SdzTDOHlNOHnEd13y3TvjzFyu+fRuyv5Nep/dThdOhw9OTgKdHHk/HDhOzQV+/ovjr/4v0zRXxzYpktSO63nQusENsXXcsROAifEdGyz0PfTKXfSzHh96M2nSpLJ9Cs1jGJeG2ZpNmfH0bsYpyFruUr9/sO+hvkVVkadHpU9QWlntwfmmaiqbL/628t5BVVf1BUvagXqmbhro9xSmqQl02KKpcDFVNJUvL7r+522kffC9DO+hTdI77FiPPZOAIno5dJq7ANwfMHv4R2myFFa8RmwXm9GvKzV2bulx3C35dSDhvmeYU+5giStAtExE42OsFWk+Wrfz+EY+nTxjbGnepJWdi9jJk82IRkRYVaSHLfkJXWY5zFoGFeTZkcj5B8yeMihz36qJzuWWbEEVTqdKcYvEGxTAwdIPp+THvn29fLCI2QBoVZGlJ0zRctf/u44mHoaponsF4eIKapahpTHl1K/9uUYqIU7TBVxhVznhwzqcTTzIsVYXbfUbeDnZnWcmr26hdLDROj4/RywKtzBGrG4oolX3FNIb9LZrp0veOmXkm677NpmVtxruUPXCpKrxcx/hCQ/QcBqcPcdJIzhUWZXu/5WLrLa9Q7QB/LA0Nh9Jd3NIfDE32nu4FPRQnlPFvQ6dEYpCaqka/lpsAoQnmgd+V7Q6DuPtUDuFuswrb0An8KdpohllXKNpamh7auS6yGMeQi6Zn6ghNJamrbhEr2l8dYaMLC9oQw2EBVC0XNYgx20ShoartILn8eWTAw8Q1BKqwZZqwTSJW2xWKLtAsh8b0GNgu60SXpcuyYhPXaKrCJi1xDcHQHaFP5lh9X+K29nLcoLxboq2u6c9/n2PfZBFZLIKU61VM00brV3HBLqsZBQOM/lg+N9ydTAS31P1qu8I15GLut/SeppH6oziRFZptVjF1LYTjo1uCDBnvr6MdZDFKnqCrgfy8/xpPW7/Vqfw9rw5WC3KoMI9QUzn/UMey36UJQ/q5jo/Q5w9R5094HdW8WCf8ZBloFMr6AAAgAElEQVTyzfWe7Som2WfUrZXZtA3cwOSz0x6fz3yeTjyOCNGvX5K//Irb//pXRFe3RIuQbJeRh0U3NBycGtJgGzj4Z1O0/rB7ADM6o7Z8KstnX+tERU0SNezzhJfrhG1Wsopynt3suQtztlFOuDlE9qW4sizePVZ1QwoqFU3pFhpVUz/QsACdP6yqaopMoyqbdlFrOrTTYUEEPvi6ipqmVqjK94el5a+qqrDSVG7WCbap03MMlmHGxDMZOwafTj0CMaU3mWGNH2AOZoj9HdZ2hX31nGIfUhwWszSnyuXDPm8RQYqmYt2sMPu+HJ4ejjE/Txn7Rwz7R9RNj4tNQmAZHVk9TgrCvOLLqx2LXcZl38LUVR4MHCbOnPHnf4o7u8B885Ji8YbN8yuqRJ7EsnWIZt2g6AJrdM6Jd4SKDDV8d+LzQldZKgnxLqMq5YnpZpvyepvIuLWmyAfZOOkAsWWaUe+kU8twvsRII8T9gvPp9+Tclqrw6jbiZpOSJFJKer1J5QnX0HgytBj5Uzl06/fRK9l3quKYanWDbjlYusV5z5G9qkOQY59JssY+48UqxjE0bEOlPz5Hj3Z4SURdlOyitD2JyQSfOpigOgN6ls860dhm7810KVIzss0sRu4IPd2jOg7KPqaOSrI0x1peoegGuq4zGn9O2bdJq1rG4OOcJJe0mpsww9QVTDfAncyhLDDqClWTFROZho0QlNi6HFw3dZW8HbQvqoZ9VuILlcoUGMJqU7kaVR6j6qnES8UhQqklAFtTWj1KTaEoaGpJVNR4ZY0hXGlLBuo0hbQdDTEtVMPBcwN6lo4Tq11pHiQezDE0vGCA5U+wRoFcuNqFR57CbnCqhKEtmPkmi77Nl0IOjedtj3qblsSujm8PsEYB8WKNHslNRr6PaOI9WrrDEzIw1nMEiqJQFrItcBvm3CUFYW4w9gforoVq6PK0nUqepVLECLvXhTf+sa/fmAXs74rM/12ru6bQmZnVdIuabGm2S+r9GlUYMrJtu4inf0AzOiMP5lyHBf/ntyt+0pYNN8uIooWa9sYOXt/m8ZHHZ/Me//7xmBNPx1i9JPs//heWzy7YPH/DzV+9JdvlFGmJqio4Yxvbs3CnLkfff4x3NkM/OkN9/H1qd0RmeOzzitfbnNtFzjrdcbFOWIVSH7FPS95uU+pSalXeNyMD6IaGYeooqvy9pssSn++Kn+tX+ZZMKnntKclQlQ/UKYdEYlHLX7fJO15jkpfdWEJVN++4aa0qoxNuJoUcam4VJUmYs64brlWFb79boxsqhqkzb2fipi2N5On4jNHkAf5cY/J7FUYsNRjBq59QrW7IV7ekqx2bZ69J1zHZLif/USscNDSEZzD65C/x5hOc81M+/f6/48n5KavCY2gbPF9FPLvZc7VO2CwiVtd7vtFUfvjdmtnA5vHM5394MuPk7Jzpx/8aK3zL0df/mWp5RXa76ojwxmqLmyWYs3Puj045m54w9c54uZblvf/7p0vuWtJ+VdZ89WbXkfqH9/uMJjaGZuC8fiHxVm2/Kby6xR59gzv/K4b//Zr+ycfcezjD1FWe38WyJ7aT74kXi5C8rJn7Fh8NLGbTJxjnb1D0l3B7I9FDz36MWN2gH53xye/8W0Z2X/Zphzb/W1mzbdmTP3y5ZhvnbLOS/uNTxk/72KNj9NGPqfKCog03pW/k4mPogqPj36Nu5OITtd6wbSx9Z0euIO+ZzCaP0I++xszkpiPfRdx+8S3W1RJvecXwn/fwBvdwdFn62sQF21bUKHtqNXll83j2Mbrlojg+6upGotPaU5AWLjuX2diRQ8Nxi4jaZqWcg9JrTHeA6kvkWlWsacJQLma6gXqyxRX9Ti1ysJvvUpWpK9AUG+G5uP4AZXVDmebENyt0d4OzuUPsN0z/6Tl1zyQta37Ylq4Xuwyha+yykrT0ude7h//pH6BoPwTkLOL+9VuqomTy6EtOjj9Bm7gYqsKLRdhRX767jVvGpcZH/TOcx09pqhpVuyJebMl3Mlo/3lwyPfqUR0OHdVLwX1whKUBVzfNFyNgTjB3B0fwh5nZFGaUkqy3Fdoe+XqL3p9j+HJALsIIMvf0q168UvPsVv/f/L66f9YL93OahNTNTylmmg+pb9fpy9+T1qacPSZ0JN2HBq03Kt4s915uULJMlMt0z0Q2V+6c9Hs98Hk9cPh67nFol+ttvKS++5vaLb9lfLNld7sh2OVVeobfMxOA0wD/2cedjep99in7yEQznRL1z1lnFrvUa/fQ2YrHPuGsbuEkbCz+crg4yS93QunCFsGTpxG7lkCNPdBDgkSdwDJmQGrQ79oMB2THk/I6myvr/4aqapiNTl/VBsVB3CcVDieWw2B1keAfDbJxXXSIwTEuirN3tF3V7wispMsjSkldFxfVKx7ENhp5gFeVMPUkmeTp28cWYwDvC0gT6ZIm+ukEsryiiBFVsgLDDfMkUo0ZdXZEsN3irLdPeCONeyGRwj8+mnpxZatmT4SahjCrSLKeqJKx3uc/oOwYPhw4PBg4zb8Lg/ueyrGtdUKXfdidA9eKlTMjtNxgnEfdPfhfXUGVpLSs7/NRhYQ/TgnVSsMkqbM+Wc0jjI8Q67EYnsnVKHhaS1Xj2V4i6xjkueTqeyZKspiJ0qX2R5AY5AzWwJSdz0huj7jcyor+Pu+CDVVeI0wumo/vUfZO6brg3dngF7KOcKCtZ7DJeOwmrpMIOArz+MfpJhDP9llRTO1RZHe+pdyucs5bLKeSD9ZD2XLUesr5l4Bk6/cGUar1AtzZk0M2HaYaOubnGMD361oCZJ0dPDtqddZzjGCqeqfNRL0B1Bmi9NsqeRu9EkVmEmse4hoUnNOJCa2eZmlbnU5FWqiTMOz6KaQGyt3oQVqpFjLAHGKqs2Lwvcd2mJbFTkZQavu12X1+0+DYA1blGRCsCZ8bYkfbxA1nj8i7GEVpb2lPpjY7RBleY/R37i8U7HNzbCzRvxHD0gJlnMgms7rS8jXO2ackyyhnaGkeTOdbqhnS1JVntJIEnSmjCDXp/h29K23LPFd1oSZiWrGP5Hqz9Htpggtm/6f4OTZlDnmKokLelK/XXWUf8e1y/UQvY/xd942f/nQLvHFd1iVJXnUJE0YUMSbgB9I/Y22MWYcHLjdxBH3a5AF7fwjR1hp7gXz+ddJ6wmaejX/2Q4tVXJN89Z3+xZP8mJNvl8jTgGp3mfvq7Z/jnR9inZ+if/jFVMCM1fF5s5LT8Isy42Wd89WbHXZh/4AM7pAE1TZb9VE2l55sd/HfWt/EtncDScQztg4WqZ0mvk9AUbF3t8DeHfqBSFfLepOk7XIymt7NiOghB7dmgWZSNxPUc2JISttF0C17azuHEhYS0HlTlqzDnm5u9PMklBcleLhh1WRPvMlJdurd2O50wLbukYJhXTF3BkWdy1r+H409RgynmaMYwT4mvFhjOkmwn+Y9FVJCHBbvLHUWUk4c59uivcaMdxoOY83t/hK7K3a3QVV4uI8nyq2qSfU6RlWRpyZ89u2V1ErDLSh4PXX5v+gBNk30v8/amo5PE7diFvdtSb1dYwuWkd4I3sthmASNX8GabtuEEuYhtk4JVi/exvAnaZI4TbqTReBcTvY0oE5l+3Hz9Hf1axvfnn51172tVUQjTsjsVr9tFzBUqozYmXW9XqMaOfB9JO3GSox99hd7UzMYPaAYWn570ANkD2yVys7HcpbzepVLNExxjFBn28RHwbuGpk4g62qEXMZ5htnNmbYm1rCnjgkWY02vj8P1gLOPfwQL1bit7NkC8XOO/fY3uBHgTv6XR6GyERl7KUufWkgGGfW4zsHooboQa76lW8tTdZClKIVsDtuvgCxmpP3jo5PtR2o4bw5HmBMtF1VSqvKTOC9QsRSky9KZEaO8EsHkpe2kHy3Hf0qkNW+KshC6DGG25UrcEVrTC8Sb4QtL6NVWhqCR+yxEaA0eefu61yhfzVtJUDiSVcnmFNjpGuCOGtsdxz2IbvxsxWOwzpq5glgmO+hJ8bE83hFe3XTS/Wi9Qh2uC4P9l7816JFuvM71nz3PMETlEZlZW1ngmkoczpSYtumGpBbdgw/aNLmz9B0E3upMAQvodEnwhowHDl22BkEVBFkiK05nPqSGrcqqIjMyYdux5Cl98O6OKEqkmKbboFnoDicqqyorKIWKvb631vs/rseMZDBoGQS0AurFPzJKcaiCeJ0qjhVYLf9a5CN+UqkKkIFS/+Bzxl1X2/lUVMPgF4qyrAqoKqSphXbGWFZHK7LUpvQGF02VZqnz/fMXZMuZ0FjOrEUHDjigMr+82RAZV0+Jh10BZXaLMn1B8+JTJt79DOJ6STFdE13G94/JoHAgf2U24pfapr1F6AyLV4b1ZwuhFyiS84p2zxUsjdFqQxvlmLCj2VBp6TQ651bPpuAZ91+Be16Zn63i6TN9WMaQSOVkh5RFy+AKylCqo4+PrKHrBgxNP0iJNxIumPlXnNbJnw0+suYiyrmK0vFoZqWN5LlKdByapmshLUjWkV8kehkW522etOxS6S1RUjIKCyyBlGuW8N/K58hMBLZ1FdXe5JgoyzsOcC1lC1WS+92xGxxGps2/tNdl2DXa8Ad3ekL3feo32akLr+pTWd/+G4OJqs3O8OURkQU6Zv4v78Qne/kd0/9sF93bvcvvWIZ/acmmZGh+NfR6PA06ez0njnGiZ8vTJlBfjFT/s2Nzbdkk+tcut5pDt+7cwqxLl9BHy2TnTD56JjqQU9ovO46fY+9s0h3f4t298ncVOj6uo4MJPeHe8YlUXnY+vQ5ZJwapl8eDhv8Ec7NHtv481+JjUf4foOiaZJ7z4zlNWpxMaTy/oqxq3h68x2Btw2BIdwNhPWEYZFwuxi6nWa7b3hliAWpUYWcL84xPSRYD/fEyyWNG8/R7GndfZP3yT37p7yJ2OxeNpxN98ckWclYwWCT+8WBKkBVHhsts4oP3mV5CbjzCvLognc/IwQZ6O0RfndLqHlA2dcr3mYzcgrVmOn4x9MYKu1gxv3UcFrEpYRaLRjMyPBXfxkw+wiwxtXbHVv8udjjBKnwBXfsJIrAmZRA6SY9JqbKNWBfLknCqJBFnj8gwFIVPvOy/ZacskJ8rLmo8oMxy0MYoEtZ9SXJ5CEIjEhWiFFEyRTQ/P6tEwVGa1by5ICp5PIxRJRI7sN7dQ+jPU6VhQVeYR6UIcPpw7P0CTVYZbD7nVtrjyE65WKct5xAexyPvLq4r7b23ROnwLo8jRfvSYPEyJrwNm7z2mU+QYVUl/701e77v14VDsPE+uQ5R63H/77n3hAZQVgourjXI3P32EYTl4qs7t1hZfuN3B0hVOrqONsfnCN5ivm3QGd9CLHEnVKJdToa5MIuQ0xLCaL++5krTRErx6H/6XuP7VFbBf6LpJFpYEjWKtAIpO6W2xyOA6LjhbxlwsxA0hLSoGDYF2GXgGn91p0LVVepaKPnqf8sUzktEz4hcT/OcjUj+hSHKMho7REOT1/tv3BHpq55B1e8jcHTKLSyaziHfGK0b1yfzkOiLJS6pCdFqb0aAq0/MMXFPdED0e9F26tkbP1tn1NBq6jBIvUcfPhShlOaUMffLrS1GY4mwj1wUo6/DCG9RT5r8Ezd6MPG9AvTfAX7neK90oJzWvhvLqak1yNwRjUVfR6qWw5liiu210MZtdDKeN1z1k13VYZRVtS2USZlyFGe+fL5kFGX6cU2QlWZJvuqLoFb9SWa3pN0yGLZOBY8CWS6d9G9sb4FYV5u4z3OEFq7NLZO2C1E8pkoIsyAkvRYSE9+RdtCREKxK22gd8ftikYap0XYNlmBH6CVksLBJpUuD7CSeqzONpWKdZw17vADVNMJMIWTsj82OyMCOZJ8AJyWKFt/RpDPZot/bQvU4dNJlzrdZxOvHL5N4tx6PVOURbV9hA48kFcE08T8jDjGgaIutXtE4fYZgOjqLTt5vseAZVPU3IimoDbl2mJYbTRW0tkZtjZE2tCSM5wdmEKi9oAwaw+4W7lGuLvFzzccPYGIqnQUrT0miaCaZq0fT6qP0Q8gz5Jo6jplnI1hzXHtC2xLj6hhO5qjvvjqWxzCradS6VsZyiOgJ9dWOPMJZTlOU1stOlbXVpmhotW3SDWVFTOpKchiHTtF0qzQJNhyQScvZohRwskY0GjtslqsMqo1zepIKvsoK4qNAMD9nykHQTWRPilHUuxqJyGmK5/c3IXamRK0GSs6jHv9V2E8VpCWuLLAuYdrZGUiKK6RhlPkZp7NCzdTqugaVFLIs1WZJz5aecXIcsk5KG1UZp99E8G2nqU+YlydQnGk1R+heo7R36zgGdWoxxPos3HfLENZgnJb26k9M9Z6PWTRcB6vUIrbuD5/bZcQ2mLUt0XjWyK0gK/Kyk5bRRGl1B20/CV3LPxMRKkdWf6P36lxwq/qssYD9LF/aTvslrRRM/JEVlrbub4nW6TBj76SZbyNYVjvouA0dn2DA5ahs4mY8yGZG+87ck4/Em4j26FvlgqqnhDTsiRn7Yx/zs16laOxSNHaZJyTsvAsarlJGf8P75UqjA6tk01B4rXaHj6LimEFrsdWxalkbTUGlbGrdbYsbv6TLG7DlSOKOcjggfC65ZPFvWqqbVphhtvh81yBegKtciHDHIax5hReqn5LU5u6w/pxtyve5oKLqCrMkYDUO8X2eCvfq4N5BgWVOxBi2MlofRctHbbfT7b9Nq9Gg4XeztNsu0ZJEUG/7fq7EpcVrUakoR3RJFGccTmPgp40VMv2FSrtfseSY922D/zhfR+geou6eYu89QNHXj40r9lCovSeYR80dneEmGGYeoBwFHt7+MrUp0TI1pfZgQpuEavFtULMOM59Oo9lzJ7HRfAnCN1lMhbvDXZEHO8mRB6ifkqwhj63toRzFO/zaKs8WwYYrcqWq9KRR5uWbYMFm7Nu3eXTRJpnX/kYAq61NWLwKKWHzuyYsXyE4DzbBodA2GDaPGSonTeZS9xDk5moFbS7b1hlPvwRJWL4LNz7YNWHfeZrt1i6Ky2OvYInKoBuxOVimurtA0NG51+yh5jByHqONzyqygTFIxrrKb2FYTT9foWBoL19jgtWZBypWtsUhKXK+L0dpG7U8xWi5VXiBlBXkUCwHBcoraXuK4fdo1+/GGWH8jfkmLNWm5xtJt0emLJzNV6FOZDorbxGpJWHVAoyYXNQdSJCXH+RrPdql0B9lyhAz/JvvulaywZj2Kt16hlyyinLmTE+QVTauJ3OhuvFhVkpEFEE8WqNtj1N6Unr1D19Vp2hqjak2RrYkiIeqYJQV928LxehuGaeqnpIuQeLbEno5RlxO83UO6tk7L1n7s8xj7Ccu0ot3sIre2alNyWCOqIsyFkOUrTpcdry0AB/UuDWCViLDLyDIE6qweOUtaDfOtE9wV9R+Xj3/pjdi/ygL281zSK07ctarXvxpUZoPZMmO0Erunm+Jl6Qpd1+CoY3PQNOlZKt7iBKZnZOdPmf7wA+KrxcbkepOrZbQcum/eRt8/QhveITv4LFdRyfgq5nSZ8HfHU0aLROy36mwwWZbQLQ1TUzZxILd6Dm1bo2lo7DdNmqaKpcqCqbaOhJJyNif/5AcU0zHxZMH0g2dE05B0mW34gjeXosub4nOT/yVvIlPWmxiWqs4MK+t49XK9RinXKJL4uBuI8Mvu7KU26SYf7IZMLykSRmMmcsHaFkbLpX09xRgIP0/36DO0nA67rqClz2Ox55gnOY+vQmaBCBq98oWRs6xVjWlasIxzJn5KVpRcdGy2HINq16PTOsJr7qINDunICs7onGg8Y/n0giwQu4poPKvDFhPsaIXpdthv7eENbFZZl72OzfEk4L2zJXmdAi1MoAmeqWIoMrfbLVrNXdRhhjt8V4xt6hRmISbJKZIc55PHeFWJXlWYW7DjdkiLkmQTmSJuKh1LIy0s8oZBf3Af+7VPoeiiw83CbBNjE46m6N4psu2haDZd64AoF/vGEeLmNo8yJkGGpcrY3hZyssLqt8Sifx4Tz5PNz0pSZKzxU0zNpG/32W9Zm1DEqOYSzmyNUZByv9vEdboo7QDFtqnKQOyPllNkr41sOLQbQwauQZCVBEm+Uc5Og4zrKMfVZXreAG17hT1obyYAN4T2arWAeIXbEbiya1PF0tXNHirKK9JyTVKuMVVDyNllEYtDElFFPnKwxNhZCyO9rmKoOWUFKQJ1FeYVUSHjmg1ku0EVrpCSpB4j+sjBAtlu4+pdIbiozcAbZWSss8oqPLOJ2h6gNxw0ayECX/OSZLHCnk/Qgintzr6ISXJ1ZFXaAAJmgfgZbTs6lt3GaLkCwK0JwHU6D0iuZqjTEY1DkWLdrgtYVlYC9OsnQrhjKnTsNnqrgTb1KcKEbBWSTJcorRFaZ4tuq8+2K0Jjz2di15UVgqDStVUcu43a6CJZjgAWA1JVsC4LJKVCqjWI/1wCx3/NA/sH1z/VhW2+1+uKtSQjSbLovnSLtWoS5BXLoODDq5BJkHEVpFi6yl5HCAYOWxaf2bLR/QuksxP8v/1L/GcjwvGM+fFikw+mOzqDT+/RuL2DdXCI8sX/ntDqcRzk/MfvveD98yXPr0KCRYx/HVOt18iShNsysTydVsPk1+/3GDZNtl2DLddg11VxNRkp8VH8cyQ/EJLh1Zxi9HxjrJ0/OtvsSvzzFVFaEN8UHkmAdx1Nxmu4GA0Do6nj7jQ3uyxZU5EVWYhEaiPtTU5QHtdjxrogiW7rZRQL1AquG45hXFIkeR3gKDq/xanIqFI1UTzdb59gtk2stkn7/v+DNWhjDvocHb2B3BpQdZpUZpP5Uafm6lV8ch1yHWVMVikfv/CZhYIgMVmljC9XQoFpqBzteOx1bA47NvvNPm9/9X/DqyLc5QtaP/gr4osXhOMp/rNLkvmY5bMJmvWY9pMT3GGP1u5tfvut3yA5FCGW3z5f8sJPGNW0+1UtWV8lBbamcNSxGPTfpPNv11gH79B4fszyyQXjH5yRhRl5HHD5vcdEoymt8Rj73gW3vvg/YKkOhqrw9CpkGiQso5DjScCgYXBv2+NO2+Zrn/sfse5/AeviE4zWXxLW+434SiyDmnmBkUTsfWEXUzUxFZnxKmUapIwWMT/SFa6jjLDvstM6ovXFr6G3foTqPCaZPxWddih+Vs72X+Mup7Tvvs3nd2/RrG/a75wuRGr4JKCs1tzt2Oy4bRpdBEWkuhBFsVZhqqs55l7M6/3DjXjoJpPqfBbx/mRFlJfc7Vjs7L6F95lTzO4jotGUZCFSCsrllOLylMbuG+SWQd6yxNdVk1AEMDgXRl23geY0kJdTKiBb+Oi1sljZOqLTGJKVIuvrbJkQJuLgcO4nyJKJ5DRo9IcbBWK+CigmwnKuyjI7t7YpK3tDyL+RwwM86bsoXZutrfu0XrsjCihj4nlMeHGNoov98K3f/AJ55ZIUJe+eLAj9hLJYswpSHk1D0eX12nhHD2jUasblyZxo4qOaI3TPxn1rwbDRYJlaNG2NcF6wCjNOqjUfXgVosoza6dK49RA3ETmB0XgmCCpZgVvk7HztLnLXRlPkzdoizkrOlsKbprcMuu0DlO6EdZqArCDVeWeUGbJq/hLv2j//9SstYH/0R3/EH//xH//Yn21tbTEej3/ux/ppcSo/U2WXZUBmrZrE5ZooX2/iE8JMnLR3miYDR+egabHr6ejzExg/JTt9xOyjE8LRQlDK42JTvOyeRev+PubhXbSjN7lUO5zPEj6cBHzz/UuurwKCRUIS5hRJiKJbGJaO5ens9ByOBi6fGzYZNgw6pkrLkFGvj5GiBZU/JR+fitC5SJAQwrHwbWR+RHQdb/Y8ALosoUgCuqnbIhVZd3TaRy2MloPZbeAdbKF5rhBg6OZmZLDO66TZIqdKEvIo2bAZN99r5WXYJbDJekoWqw1VIBgtawl4TnQdiyJXG6Tj+UtIb1WuMcczjNYlbX+JWhu55Xaf7uA2bbtN5TXwdJlZUjAJRKDleBEzWiQsVinBIqEsC+Ig46M45/lVyOOmydHARZEkDpoGg959nNcDZO8RuvecdB6IhXuYkYcZ1QfPRFDieEbbtHF272C09nh7x2PgiOibkS+W54AQTKxuBBMWXvc2miThGBayphJdvXyO5KFQlsVXC/TWBXpwRdPdZeBoeKa6oYUvVymzUKQTL7ZzbrUs9hq7OPsq3r0n9Th0ulnSp/MAtTFBC6d43pC2pW5M2lmRb07ZInHBprV1By0OaUUR0w8vNknbRVwQXFxhdk+R2306d47Y8QzmSY6tK0S1anIR5UzjHM+Qce02su1RqhqSIpPV6jVJN5Esh073Lqm7JkhF0vmNP3Dsp7i6SsfSsFSd/s4tkUFWlgL0W++S1lmCnIU4loVbE9SzUq3HrUJVWFQiKVg3HdB0JEWpD14pUhyiZjFKlWGqCramIEvSxqO4TAVg19VlPNNFMm9GkQF5mCAtp8h2A+uW+Hp7ts61naPI0mZ8NwkztlyDZsPB7A+xBiLWJI8LEfjqhxSza8zgirbZYccz6HhG7YcUI/ppbSheZQat7jZm9xm6ZyMrC6pyTR4JgZUVL3FbLdqWQLJpiiwsBmnB2E8Zehlbrkb7Rk3oiAy2PEpIFivM2RVmcEWzeUCvnvDEmQjMXGUF8zin72i0PRfVblCB6MJq3yzVq5yZX831K+/A3njjDb75zW9ufq8ov1yq1n+ys5VkUeQkmbQUnqa4qPDTgrS+Qdu6wrZncNA02XF1+qYEx4/ITx+xenbG6nxOMk/IwgzVUjEaBu6Wg7s/wLr/Jsqt18m7hzy6FMXrR6dzXpwuCBYJabCkLDJU3ULVVSxP52i3wWu7DR70Xd7o23T0NcpqhHx5SfbohwJxtYqIb6C/da5WWQOA87gQicqmuvm1KitB2NBlrK6N2TQwWi6t+/sYnRZKu486vINkuaxVU3SkdUHPitMAACAASURBVFIs6wopT8Xsu8wgjYVXrqrEUvfmqkcMVKXA6aQJXiCMoetoxer0knSxIl0ErM4XP5ZldrOPK+KC8DIk9VP0a3Hj0Bv2Zl9mHlwI1lt7wH7vDgPHZdvRkWWJi6bJczfi5DrkaZxTRmIsk8Y5oZ8SLGLG8xhdlXnQd7nXtXlj+Caq1UC2PbzxDLgUopU4wz9bkcwToquFCIOcjtEO7nN0/6u4mkKztiZE9VgsKyouFskGNtsZenQH91FUE9u06UwW6BdXxNNAiGPqHLTkaoYVXGOaTZqGRc/VGZkqYyAOMpJIJHcHScFR16aoPPYbfVpHbyLJCrKusnwiOoQ8Sij8JUY4xTCbeLqFZ7zc19yETYIY+9y+vY+xl2JkCd7eY4BacCJk8dFoitI6xbtf0TJVBvUONq2LxY13rWdrxIaC57WRTQdJXgjfUVkhKSMkVcM8mNOxmgwbAht2I+aYBSnXtsa5L4pKx9tC2RJ5cnptkAYhiZfTEMPpirG5oW5eo/Aynyqr1qJ46Sao2kZCriQRciYo8YbWrD1/wvKR1kKXpVHQMlXWhrNRzcqKTOpHSIqPbE5QwylNZ5u+ozMJM3RV3kS+XAYpPVvD02UOtg4wp2OsuXgep34iUrenPk44pTUQcO+9jiX8kPXPZRllzOOcIKuQmiJt2exeI2uX4uVVx8ZIqY8lr/F0dcMZjRG72VmQbuwFa0fssfSGaAzKGreWTH2ceIHp9mnoBi3r5qAjDiZLuyDMKsK8QjdspCITr/n1y7efW/X9E67/ogMtVVVle3v7l/JYv1CciiSDrFKsRdR3kFXMY3H60GSZbc+gbWp8etsVHMPZCeunT1n+3bcILq6IrxZUeYnuaphtk86DnY2fSzt8jeTOr3ES5Dw5j/k/vn/Os9EKfxoxH8+pigxJVjAbPbYOmuxue7yx1+R/eWuHHVelWaxY//D/JDt7yuxsQjiasng2pYiFnF3WlLrb01AtFbvfQrF0wQD0bGRdFaq/uquSTRvJclC3DsDyqEyPrDEkyIUX5sUqI8gKVmG58WsBKJKKrVmoiqD1e7qKXIfY/TQjo6aIKHVHF1ErlibRljKkeImcrKhePKHyp5TLKflS0CuKUHR3yTyizEqKpGD2yWTzmIouYzR+hOaIr691fx9jMGB7a5/te18kOxhwFRW8WGX834+ueDxecXEVcnW+JPJTVrOIa3nF/3UV4rUtDrZc/ue3hzzoHbDzqTv0vDaN4/dZPT7GfzZi/IMLomlE+XjO/HiBt/Me3l6H3d98xvDoTba7t7jb7mBrysZicTwJOJ4E2LrCJEzZb1octg4ZvHmXwdY+nbPH5OdPNxJ7QIx9P/khWhrT37rH53ebIssL+M5VWH/uMfPLgP89K3ljr8HnDtr8+3tfwe7fqgvPX9dBmCXRZIH+9D309Zpe55AHPWdjan5yGXAxFeGqH3csTFXmfveQnc8fsBeHBI8e4T8fEU2W5GFCcHGFYuk0X3vCsH8XWbJ5PnBR5GijKDxdxmh1koPbGaKEPnq0YvHojHLqE0/mWFOfbm+H1vAhRnuf17c8dFXm5DpkGmSU1Yq49md1Dvu0di00u4GZJayjV5SNqysUVaPfHHLQNNFkaZOWnBYVQSoSjFtOF6UbsE5CpMtrqqwgXwVo1yNk3cHtejR05SVZIys4W8SUtXLzYH+ImqcoKzHtSBYjksWK3I9obb+POyw4aOwBLu+N/E3m2zunC2HWzyt2bn8KQ9Np6SLZfPKjx2SriNXpJc2PvosJ3Nl6yFdud3FNjcfjFbNasHQ8jWiaGvdu30V/mNGsSlanlyLOqapEJ3dxjGI22W4ecHfgEiTFhnJzPotxTZHAfP/2AfpBiBX6KO8/qynzArflHb+PpmgMBvc5aJqbPecyyriONC78BEeXhTBlXUGWsN54Z0vx/k0T8HPcg39ZJKpfeQF7/Pgxu7u7GIbBl770Jf7kT/6Eo6Ojn/rxaZqSpunm977v/9jf/1xFrAby3Rhv882bUG+5ujhlDxyDvimhzs5YT56Tnz8luhJ+FwC7Z6OYOkbLpfeZB6g7h6h7dymbQ079jONZzKNpyNk0Ig4yirxEMy0k2cawVOyGwWfu93hrr8XDnsP9to46fc569Jjpt7/D6uySYLQkuo6JrkVIoKLLOAMH1VQxGiZmt0Hj9g5Gy0OyPdT+UCxedRPJabFWTSrdAtUkNJrEtYHzfBwyi8Up+vFVuIGl3pwogU1e0KskeV1VNobOm+vmZH/zb24iVDxDxMEftiwcvYPr9ei+sYccL1HjJWa0xDwQuWeFv2R1eiloFquI+Dp4GR4ZlKR+iiTLqNaSbBVhdkc42+c0AGvnNsPmkGavwTJt03V1PrY1vh9lRH5KGkuURUXopxsV4w8HrugmBi4Pd1/DUDXR1cgy/umMqqwos4zoOt4UVW//Y9wiRzvKcAd3OGw1qSpBnT+5DmsyQs6PThdcd8Rp+k7b5jPbr6PqLrLTwFtFpPOAIhHP5cqfCi6h3aDfeMBhy2KVFbxzPBMcy6wiS0vm05CPZQlLV/n8boOD5hAtTzF6HXGTroG45XJKcT2qAyJFUnTXNQBq0knBcSk8Z7IkoXRthkdv4hR5/dKQhTG5zoRaL6+QnS6e0aVtaszrcdOG3l+P39ZuC6XZpbQ9ATheCR+hpMgU41N0t4VpNthxDZa1UOVmjzgNUhqmJpSS7g1Zo0tZEzUA4clyYuQswtM1Av3lYSsvxa9JobLWbWTLFaZkTaUsxXRinYS1sTnCUF0B6a2pGMsow9YVlpZGVKxxDUfI4XVzkyAeVxXu+BS90cW02zQNi66rc+WrLGuW5vksomlpLPIGHW8LdfsA25+ifnyy8VUW0zHK9AWK02XYsJnF1kYoVr7S2UaVIvLtutsYbVcISuoUAEGIX2K1Srq2Tr9hCgVr/pLs4icFKRqqKTLHNMcUzNC8EEKb1YJ1sEBurGgaQsVs6cpmlHij7lwbJmtZRVbECHF904n9hOsfko9e/bNf9vUrLWBf+tKX+PM//3Pu37/P5eUl3/jGN/i1X/s1PvjgA7rd7k/8N3/6p3/6j/Zm/5xrXb+VayjqqOxyLXYEnq7Sc3TapoIyP2N99Zz8/AnpZEKVFUiKjObZWN2GgMVu9zDe/DLr9pC8NWSarvnkesWzecTj8YqsNiGrmoLXUTFtDadpctC1+c3XtrjXtdl2VLTTH5CffET09DGTHz5lNQrqEWXOulyjmiqKpmD3bOxBA2e7i7PTwbz3FnK7j+S0KL0tKt2iUkXYXVaKMUmWrRlPA3HDeUXVNw0yRtfh5mZZ5CI+BYRRUcSkCOCvZqgbiv3m+1ijo9avUD4lScKytDo6ReX+tkfP1WmbGg/7Lo7WxW31cfsyensXLVmhhwv07UeU/ox0tsB/NhLR6H5C6qck84Qyy2uxQYbR8InGM6Ga279A27tLY3DIp7du0as9cdMgYzyNCJYJSZiRp2LfEPkp754uxA6lqhgcdWhvP8DQdCTDpH12iaxNCUZBvVMUHdPiqRjXuYAuKwyGn6OsBPPP1pVN+vMnI4FfmgYpy6SgY3fY7R5h6JZQo43ONunG6WKFpF8g6SaDrYfkLZOkrNjpOZS1BzCLC5IwZ6HFHE80TpcJliqz1dhG7e5gpslmlJwvfWR7jOy1aO8f1hTzDE2RSWoAc1lUvHO6QJFERtt2/w5akWHXY+EyL5BkQdkvl1OU9hLX6YrkcFsTJIwoEyPUrGCZFFT9JrLdFAnguri9VLX/KL0cIXstFKdNx77FwDVYpgUnr2CVroK0prPL9Ow2stcWZPj6c1rHIUoWUqUrLK1L01QF7T4vBVm+3oVVDQ9Zd+uQSH3jdVzHIesoQHZDTMerAcXiMBYkAhI8t8T4zjFEgrlse5vdUZFk5NeXyM1TFKdDq31I39E5rw94yzBjtBAHvuu4wGv2MXp7KPMJuvexKDx5QTxZoLRP0dsDttwHzGIDP7FrhacQuCxqOrzjdNEGe9j99uaQAlBFIvRWbi7p2YIVOrY1gqTY7PVWWUGQVyJmpdlFbzjiQFIJcVYZrKhWc6TExzUcXEPF1hVmiI42LSviomTtGKDorIvkH9xAq5dk7p9wb/1Zr/8iafS//du/vXn/rbfe4itf+Qp37tzhz/7sz/j93//9n/hv/vAP//DH/s73ffb393/sY36eNrZcv5yd16I6bE3G1mR2XJ2OqaCvRpTvfotsfE48FZHv1qD90sP08HPQ3KZ0e5zkJtM45+LYZ7RK+dHpfMP8c1yDXsfGNVW+cNTZhFtuOzo7+Rjp6kPy733EyV/9HavzGatRgH8uPFuyIqOaKu0HLZwtG3fYY/Brn0fdvY3U26Ny+1zJjU1o4/FJxDJZsIzzTbR9UHdWQSi6wCIXEF3BUqzIk5SqECzImxuGLCvIqo6imxsAsKqLJ6wkS5vCVdV0+iIrNo9xw5SU6sf4rmehGSq6odIaOBuKRr9h1ibsBr3mbXZ/7Ys0dBk3XtK8fEQ5HVNcXZBOJly/+5R4Kgp6OAmJrmPmxwvmx3Osro2z5eHtb9H/2n/D9vAOnz7c49PbD3g6i3g6EweJ95/PScKcsqx4MfKZLRMej1ckRcW9rsOt1htsf/XT7Hd32H7+Ef6TE0bfeSSKZ14yf3JNthIE/Pb1Je2ve7i9IzzDqwUlCx5flswuA+aXAScnC/7e0xn7Ca9vebwx6PLgs/8Oe3qCdvaI/OI5wcU1mR+hT67wFIVbO/fYvXVIVR3w/uWKd04XnE+E6CeLC84nAd89W5AWFQ97Nod3Pg2qhsMjwvFMdLF+hB0saLV2MDq3MFSZ918s+eAc5tOQOMh4//E1p9OI4/0mrS8ccOvwy1itHZq7j4BvbYQYxeWpSF2WZI7aByiS4OC9UGVmQcrFQvz+bsdip3eEtq7w9j8QQp6pTx6mLB6diTTzquLgy0fIWCgSGybkDSPzeBYLwZGn0+vtoVQllKUQLC2nIMsokkRne0vsG8s180QApee1CXzgqHTbe6iA2nuONBdMwTJYIE1HqLaLpdkMayTZjf2i9MUN+sXAw2ibtFt7KNtzNOf7Gx7l9btPaYYJbpFj36t4czAU+WJZyeQ6ZBKLbLnXthvkZYM7vfvYkkzj4w9ZVxXx1Gfx9IKqqmhUJQdfv48ycDfxQn9/PGMR5ZxchzyZxUhdi52tB7j37yPrKuFoKvLnLq+RzafopsOdrc+K16skbcgaq6RgtEgYBzlWq4W3fZfmnSGSLBNfzYVRfBEIfmh7QGd7jz3PJM7Leqwr+KVBWlLpLrJmIBUv9+JUr0Qz/4quX/kI8dXLcRzeeustHj9+/FM/xjAMDMP4pf2f1RrW9RuIxbalKqiyRNtU0MIr5MWIdDomnQdUWYGsqbhDwalT+0PK3ddJNI9ZUvL+JGBSJ67edDY3/rGbm/WwZfLFYYuupdK3FVR/RPnuX5NdnLB8NmL6ySXRtSCpS7IkZO4NHattsfXZA7yDLczdXbRPfXXDTJwlJR+MxP89CVLeP1+yrHOd4jrAclNkXok/qYr1htggqxpyHQdx02Epiowks+m65LqIvXrdPF6Rl0iyRJHJVEVOVWSURQZVSVlkVEWGrOqouk6WFiwMlXNLxXR0LmYR/YbJoGHwsOfQs3Wahs3erc8h96YYwyu02RhFVwlHM8LxFJhslJbxPBE+GT8l82M0x8S+ukA7uM/dh1+jbXrsNUz2GkL2ez6LWYVCHFHkJbNVyvsXy804Kiks7hy+jdkUJII8jEX+1zyqhSeVYBOOZpjj56iqyVb3kIOmSZi5rJKCxSQkzcW4riwr3j1dbMase3c7uK0MNRNBleuziTDthjHG8QdoaYJWFbzWP0RTBJvR0hU+LqqNenMapEzCTFA37DbKDRR3ERBP5iSLFZIiY8wuMA2Xvt3mqO8KgHCcixiNuCBcJhwbKsfzCEuV2GsN0fIYayCwS0WSUUURVbBAiRY0mof0HJ1ZkrNKi03Q5CothA9KV2k4XYxeF/MGR1YnJaeLAGNeCyHMLgPHoGXrG8jzzU1zlZXERcVas5BqRSGyIrqxmqwhYlIkbL1WE66reg8mIk5sTcWxRDe4TkKUvNikPq+DJZLlY2s2jXpCAPUeLcmZJTn9TKNpN9GaPVTHQlKEGjJdBESTOWb/AqU/pLVzsCFryLJEkZckYcbzWcTA0WlbCoY3wOw2iSZzQbiJEuLJHKM1wvEvaXt7bDk6k0DbiEJWSfFS1WgYuIM9jEAkaqf1aLcKFpTzCc0DhZ6tMXB15g2T0SKplazCwB5kGo7ZRGn1MdoriiQVuWm1urNKQixNxq3H/br6kvkoViqgyCprWUWqCqT1+j/bWPDnuf5/VcDSNOWjjz7iq1/96j/7sf5TXdhm6bgWN/BqvUaSQJMlJAkBto3nKKtLitEzkqkvJL26iu7ZaPv3UXZvUzZ2GFU203nKuZ/w/fMlV36y2SMBG9zTp/db7LgGw4bJw66B6o+QT0cUF0+Zfff7BBdXBKMlwSiouy4Je9fFaps4Axd7p0P/S59F3buD1N3Db99hFhdcLmIu/IS/P51vzNCzaUiWCpLHS9Ot+Jpv0pNlWUIxRQrzTXclyZIIpFTkTcClJEvomrJ5Ur+6+7oZVeQ1fDeJsh8bQaZxQVVUlMXLjqzIMiIfMq1AjWQiP+X9MMN0dBqWxmi3wU7LpGfrxFseTaNDs9/DbB9g6yb65Sne+BRZkYkmN7vBaEOcL5ICRX+MczXHm0zwdJNB/xad3pCuLfA3z+dCrfjJaCXSpotqw4MLUhE77x406e++hWo26YY+9tk54XjK6lQIS8RoTFDCdctBVTWOOn2SUsBVn7/wRbRNIZSQk5pVp6syb+94AoabxSjdOZL80Qbttfj4GV4UYWQJe1/YQ+s5aLKMqSpc+SlBPYoOkoJFknMZZrzRaaN4wm6gzUQI5g0mzKn5d62+xVHHZlkrGou8FErYpGC2TDhbJnQsDVe36DR2xN4ly6EuQjeCBu9AJtCFjNxPCs5ryf8iyrkMUmxVwvVqELG/FBzNenSWrUIKf4kezfHcPo06CTrKSqAWtWwOEWvWmolcczVBCDnWNSxYTkNMrYGhVCiSRFWnXwOs0hJLlcXozGtRrRbIdX6ZnIRUqwVKY4Xb2qVjCprNjRx+lRRMowzfNWibOp7ZRPdsVFN0H8kyRTEXxONr1P4FzUOFHddgpykUi1VakNVpA8OWybBh0mk30LvbmC0RuRNPA5RVRDxZ0Ihm2I0tWqZKz9axdWWzg76OMkarBE+XabQHKO0BxlJMgcokJfNDlOUUIw9omxZbjs68RszdEPOXaUGQl7RMG6u3gxEsKOOMbCXsH+siZ50mmIqEqUi4uoKtv1SD32gEkNV/PC78KXuwf6nrV1rA/uAP/oDf+Z3f4eDggMlkwje+8Q183+f3fu/3fu7H+oloqH/iz+HHYcqyJFRUALoiYWsy8vSKcnIuRlj1Ilr3bIzBAHn/AUVrjwUmH46CjQrt4xe+mEHXXc2wbTFoGOx1bD697TFwNHqWinHxjtinnT/Ffz7m8gfHxNNI4JvKCtVURXbVgz7usId3sIW+vYf61tcom9v4a50PJhEXfsILP+F8FvHe2ZIkzMjigihINx0X1AVLkpBVCcPSRIyLJov3dbEH6LjixaOrN0nJGkb9vqkq3DReN8rDakOZF0vjtIaBvjquXK7SOkyzIq0zwMqioqzjLIqs2ux44iAjMBT8OKft6IKdlxQMXJ0d16DvGBwcfRGlfwtt/5ItTSc4GxONplx/NBLdWFyQhznz47mgS0wWKLqKvn+Evn+f3c4+n99tse0ZbHvGBoQapgXL8FVOX0rDVDlsmQwaB7Q/9W9Qu08xL54CbCgRVV6QjkWApaZq7NzapVo7VNWaH3ZskRTgQ5YWJFHO1Tzm2FS58FNsTWbgDVC7CzTHJL6a1ym8QiXW8CPawztsDe6i9BwMVebZdbDh3qV10fCTgqhShA+r2UVtCNBqmWQkeUFyfopsOaiqwZ32HYK0eCnUCTJBIk9yzudx7W/TcBtNjPaAKlyh1PaMKvQpl1PkaI6nN+nWRIwbz1qQCB+UQC3JbG0dUK0W2LUJPl2ICUbmR9jBDNmd0zCatE2N0C3rG25JXonnUl6tWRsG1L5EZFkERcoyUrRCyQIsq4muSHXEiXgu5lXFdZRhaTKWqtJudISpOfIpQ1HIyuUU2WvhDYRQq2lqm8KRFWIMPwlT2paCU3eTRkukp0fXMZkfE13Nsa4ucEjp2KL46KZKluQUWcWVn3KxSBg1U3q2ynZ3B7N7hjaeCk+kH4sD0OQcxRvQsLbo2SLq6OZ7OvFTOpbGwDHYq7tsbT5B8yOBhltF6IsrjOCaZueQnq0zcHJa9S4MIMgK/KQkMEqczhbKcooZ1R49RRZqwixBLhIsTcPTBRw8KytkSRLs0TWsZYW1rEBV3whuitc/sQf7z339SgvY+fk5v/u7v8v19TX9fp8vf/nLfPvb3+bWrVu/0OP9JE/Cz9LmypKEJK2xNREnYkklSjCmePwDivEp8UTcYMytHtr+feThfc7tA55fpzyeXvMf3xszXSaksdir6IYYi203Tb7+oM9h22a/YXBQXSG9eEZ++oiTv/p/8U+vCSchcZ3xdCOJ3/7MFt7BgMbhDt6v/xZVZ4/M22ESl3x/tOLidMHJNOTd0yVxnG9eMFn6ciZtOvomYdlyDSxD3XSCRwN3g6M6bFm4hoKlyjSNOk9KBqlINt6vjeejfsKuRQsHUh2/rlggq6wVlULWhRenXJMWa5ZpSVgvk8+WCYsk38z3l5HYFWSJMByLLLCS6wufmSxxLEu892SKYWnYlka/YfCloy47nsNB83Ue/M5naUdTev6Iwd9/k9XzF4I6P1owPxam4dnjOdNPrrC638Xba+MdbHHr67/Jre07fPmNW9zrOhzPIx5fhfzd42uiKOPpIub4XOLjFyv2OhZHA5d/d+8ug7ce0nozYnv/WxSj58SjS5LpktXZJcnUxxqd41UVDwa3Obi7g6bIfHi54qMXPudXoTCtRxnPRiu+e74gKSte69ns7r6Offg9obqc+kzeuwKuMBpn7E+XdN66x9bDz9PffQ3t07t8ch1yOo85n0UESS5A0yuXoTfA263Qqgrj/UfCc3QdMP72Bzhnl3RePOPov/tf6dze4qBpcbtn8x/qnLOyqDieBFi1IVaRJO7s3EMtS6hKVs/OqCYLjLzAGT6h0TtE9nqAw7NZxGgRs4hy3nvh14IOm87+Z9CsBl6zi9l9xPSDYyGGCBOKi6fohkWzc8jDvtj/mKqCn4gd1g1Zo2o3qG7EFMspaZIh5cJEqy0vUVSTptGp5fD5pjArkkSUV5Qdm0ZrH7UoWBc55YsJRZighoKyYfUPGTb3WWPz4aVVw4ozPn7hv1TV9mz2Hn6OViG8e+Hl81oNLHxZw898yMHepyi3Pe5tuXxcVIR+wnQW8YEqY+sKpiKzPXyAHvo0ooTlswlZmBFcTMmOP8CwHJoHJsNGg72OTVDvrx6PV5vP4+j+LvZ2gZbGWKkAF8STOVVW0N1/D3Ndcdg7QpEdLvyUixpJNl6laLJI++52DtEkWUS+uBdk87l4DSchSjil2RgS28LvF2QlmiImNVm5xtZt1nmMVOas/4F95p/jB/vn/NtfaQH7i7/4i1/lf/9jl1KPDw1FQo5WyNGcfDkVp8aqwu42UbcOkHeOKDoHHL9I+Pg65MMXSy6vQ9JYjGQMS0UzVPqewdHA5WHPZdfTGVgS63ffITv5GP/pOdcfjWrDbkaRFHUumImzZbP1uQfYhwfoh6+RHX6By6jg4jLi+SLmW4+uGC0SlqtUxNLX+xBJvumsxOjPc42N+m+vY9N1dbGbMFVutwTJwNZk+paClPjI6Qplci3Ap3HIOgnFrz/BrCzJMihK/b4iTsSqjiTLmE4Dq45MWasm206XtWeRKx73upYgnGQlx7OYZZpzHWQbUO4yzn+smFVFVRt5c0JNYVFHcey0TG71HJKizbbbpL/Vxf1cidp/hLP9FP/5iCzMN3vE1QtxSEjmCdHER/dsrDsTtNtL7vbexDMEx/DkOuSsWgvqfVxwebliuUqZ+CldW+de12a/abJ38AbaTUyMIgulZLaiynP0J++iZQnWdsZbg10RuGgKZddHdfcJMPETxq7BlqOL/UZ/iNUfiwV9VpKFOckyxfnoHICurGCoGsPtzwoWZb0DAwFfvQozXF3GdvtonTlGyyOe+kBEdB0B1yiaytann9HcNdlvNkhKl3tbLifXEVGcb+TbyyQnyEoqyxMyctMBxC5M8iPM6VhAeu02niHTsjSmQQbkzIJU2C0UmVlq021so+5EAm58cUURChtIFYeUqzmS3cHRHHq2tklJLuuRfl6Kg5Ci6si6CZq+Uc8pWiIi7t0Aw+5iqOIGLUbaBdMww9YUpnFO1fSQTRf5la+jqioUfYYZzTCsJk3DoefqTHyxO1pEOaNF/LL7aW6j9ofY/WtU64wsyMlCQT4pry5QWju0zS32OrYIuq2nDUIcItiE1aAtxrKdFqqlUuYlZSYo89r8CqUvyBqeoW66sKA2es9ioSY2a2uB7LWETSERo8ByPkHpbqM4XRq6R9NU8U3BiozqA+Qszim6DWSzidIesE5C1LimzJelyDyrMixN+ONenVCV63qEePNWH2KldfULFZ//mgf2U66ftZrf/HAkSUJhLaTiiiRu5vGStT+l8JdCtCHLQrAxPKJo7XGVSpvi9XgcbBRtkiy6nWHX5t62x4O+y0FTp6vmKFenJE/eZf7oDP/5GP/cr2nvFbIm4+24NPY9GofbND73JTGi7B7y3lXM42nEJ7VB9snJnDQuNnutG96fZii0OzYdV4zejgbupmDteSaOrtQUbpmOISHHS6TYIQ3YpQAAIABJREFUh5NnVMsp+XKKf3ZO5kfkUfyPolZu2Ig30SjABh0liPMykiJI8zc8RdXUUXvbyF4Lw2ux1z+kMj0qr8nQ0wkyMZ+fxzlPZzFXQSpUaJOQ6CbcMnipmEwiyFMROXM8CcmKisOOLdiUu59Gd3tY/SFq5yOhrjKnhJMQ/3xFkRQUsfCRGY1PaC4CGqsF7V/fQm8MUGWX41kDgNNqTZEnxIEYxyZRxt/aGoukySpz6R8coksSGkBVbfKW8jBBeXSMG/pooc/eZ3fQFadOt1ZErlucU9ajv0mQMlrpIqhxax/j6gJ7PEU1VVI/I4kL5seLmj6v0dZNugdvk7g6UV5yPBUdWJyJZX/b0nB1jaa3hbXdI665mALbFQJj2sfvY+gmve2H5C2Dh7via75h+WWFOGAsk4Kq7aHYDWTHE6+ZPCcPEZT5ZhfZatKwBhtG4jISjEPFFwGN07jE9Bzcxg7KVoTVfUwqy5R5wTqJhI+ptcJ1hrRMjWVS1F4u8Zy7yQuzVBN04+UerCZrrMMVSh6jlklNl5c2X8MsSEXKsakSr21c00Oqv44iSSFJWZcV5vgUxWzS7DRomyKaRCQfCMJGy05oWxqvH2yj7hxiTUfojk6ZCeRWtooori4wdm7RauwwbJqct8xN/E5RsxKvo5xU7WC7HZRGB80x63XBmmwVUS6naMkSSyppGiquKcQcflzT//2UIKvoNRuoTktQQm5YpWFCMbtCmY6R3S5et0nbEt/PVW1ujvKy3oVVtKwmqrsSifPzKwE9LnKkIkHOYiytgWuotTJbALvLCoo1aIomui/5FxsZ/rJp9f/qChj8bEVMlthk2UiSmKEr0Rw5nMJ8RPHiGXmYoDomeqeF8vqv4zf2OPNz3hnP+cv3x8yWCVmSo+oytmnQaZr85pvbHLYtbrcsthyV5uQ9ipNPiM+ecvE37xBOAuJ5gqIpuFs6ZtvE3XLY+4230W8/RD14yIV3j+NFwofvzfkP3zllOY1q7FRIkcWouoVu2/T3Ggx6DkcDh6O+yxf3mnRMFc9QBJk+XSGlS1hONjinKvSJzs9q7t+K+ZNLknlCskiYvwiIy4q4XFMhTl1azU9sagpaDetVzR9/2pRZSZULddzNEl2RhJLRaBjojobRMGgdNjE7Dcxuk/Zrd+m1BSZHanT5jdcPSdUtVlnJ84VQ141WKd97PuNiFhMGKVGQsZrFLK5CxsD58zmmo+G2LP7927vc6Tjc63+endtf4dbdT5Edf0D45Akn33yH4DIkmaeEk4iTvznB/nBCY+8pt/0Fzr23uH/wBv/TG0MebXkb2frHj65JwowoyPhBPObR6YL9bQ844EF3yPC1fYzuLt5kwvLpBeF4xtm3PkR3NKzee+xNx+ze/RTb2/d4rdfD09X/j733erItPc/7fiuHvXYO3bvzOX3yZGAwCAQgkKCkEiWzTJdT0ZIvfOl/yFe68pVLZVl2UbJLzABBgEiTzpk5+XT36e7dvXNYOfriW73PDAUG0CRcBLWqpqZqZvpUz+rd3/u97/s8v4dnE4/Tqc/cT3hewnD9JKN7+Aa2WafT7LE6GTJ+NGZ17rIalEZuLyZeeuxcf42d7dfRO7ZIB58UTN2IjwdLFlHCLKhwvVVn74u/Stu0UU2D1fkDwpnw0Wm//33aFxfYd0/YPnyHb1/vs1e31l5FRZZwI1EQF5lNs9ZH3fDQKh+TegHxysN7/gI7DtHSmOpWzt1ue03CuNrPzf2EnmPgdR326i3a2xbG4QXK5QnJYknm+0izIZJu0uhcp7B1wEJTJM5K3JWf5KzinEqljhSK/Y9q6kSBYGsaozMkw0TWLDr2FmNfcCRHSxjMQ4JS1fha1+Gg3kcLVyimvt7HBaM5eu0nVOIQ80bK3e4eUSZ2eacjj+MgYeEnzP2YW+09ru29g6XpND95hvTsXPzezELmDx7TkGUMSeaLW7fE51+W+OCpUJ+OlhFPhyvOVi2uda6j3wxwtj+gyHIRhTNZEF5coDSfolgNDpo9ZqHoZoezgPFKdLUv5gGWJtFv7KD25+jVn64ZmMujAXVFRlc1dEVjr75R7hFzjscewyUoksTIT1EqDrVaH6XIyWYjIYzJM4rlBFk1qTQMehUNRRKjXFmSiLOcMJVQDYciCcqD9jO7MEn+mefu33W8yi9lAft5nqskUSlPhUM/8cm8JXkcImuqyOPpbpM1dxkuEx5PPEGs8OI1X7BaM9luWex3Kry1WWW7prNhq6jLAcmzj4nPjoXPpyRnq6aK3bGwmhZWtyHQU1/4JkXvGp7T5/2jOfcvVvz0aMblyRxvtiL2F2JEVamh2zZOw+TOQZO7WzVutCsctmxuNXVkd4Qym5CePCRdzcn9JdF4KjwwZbJyMJyXxuCY+fGCaBnhJTmXUUp8xZJDAICv/rJycRP786TKK9VfkhUEWY6Xia+/ErHofoIpS1iKzGrgYjUnmE0T72KC1RbFzOy20K+/htPsYVkN6hv7zEKDRWRjazJni5BnQ5ezacBlmgv4camgC/2E0Ev4PU3hdKvK0Ktxp1PhS3vvoFWa1OptuqMZ5smQ5csVfimUueL9TR8e08xzjDRh70sHyNhCnSlLnI2ESiss5faSLHGmiABLU5HRFYteYwdjcxNz7hJOlmuzdTALsboPaIUeehxS232Ne72muCjJEqvThYiBX4ZYusKFl7LX2kdLI5p399ed7/J0RZ4VZR6UGFfJjT61+h7VUu4MMJiLQ0WTZWxNYauxg7Y3o7qaYzWfkScZSZDiDeZolQF6rYJebdC9vkuUCoTQVReW5SIjK0hz6mYV2a6j2SaRplF4IdF8hVoxkScXaPUO1XqXtq3RqxprJZ8bpgyWonupmQoVp0Kl2aPwlpAmZGEkDs7QQwpXWFZnndN1JXIVgN6CIC1wDAelUkMxDSTFhzwXY25viRp7WKYAD1TKdxKn+VqMs4pTvEShborkcEmRyeN0HUNjNE5Q2pvUd67RtnXqtk5e2kKmecGxKjNYRTRNm3a1h9VrEkyWa5ZnOFkQj4aow1Nat+/SrwrR1gNjQZbmxFlJKwlT/IqJYjUw2zWiWUnaL83J+WqOGq2o2lvUDdENXnktgzgTYp0kp7AdpEqjjFlRy99rQa5R3Tla7GFVZBxdBG+CiEgJSk9XYCiCMqLZSIYpKCd5Th54KImPFHkYSh1bU9YX0qyANIcMGVnR/1rCjV9ENtg/6AJ29YsilWwvKYkoQjGvJ03QaxWURhd1Y4/zIONoHvBiKuTXWSqKl1lReXOvzrWOw0HT4lbbpFaEKKMjitEJ4ckL4R+aLFB0GVkxMJsm1b0edreJvdNH7R+Q7b3NrDA5m4b8yfMJH50smFy6rEYTYm9JkWdIsoLVaFJv23Q3HH71dpfbnQrbVZ22lqE+/i7p+QviyQWzxy9JVj5pGBMvg3WuV5HnRAuxd7uiv4dpTlCqFRVJwlJE11VRZCxFFJ9ax0I1VVRL/VwHlicZ0VIjdhOMMCXzxRI+KAtZnBcEksQyzYlHPs4sxLTUcpRnYDVNjEaFxtkQq9dAafawb7+DYbfoVbvoew0u3ZiDls3R1Of3sxx3HuAvI9yZR5wmJGHCQJVxPRFrMVxFNK0NtluHVKw63dkQu/sCo3HG6nTG/MWcPBPE9cULIYmvZznO/j12OtdRZBtNlvh0u8YLVWalyGIcVBq/n1yssDVFiF8aNvWta1TmU4LhjCy+JPEEKWR8/yV5ktLOMgygf/NbJJlNkhfr+BWxO4JnXQdFgp3uDeqv3ROfS1kuuZfiEEm8SIyagjlGvU+tDDa9AKZlCCaAocrc7rRwetfQVnPs3gPSMC0LYUwwnAseX+2Ixo2vENgqfmLwcqGzKpVrUZYTJAWRoaKYVRSnimouiRWZxAvF3qY+RJkMqPdeY8MRpA/rM0q+iRsxdPQSbqvgVFtluq8PYQRpIsgakYdhN4UPSReqxiQriEqqRpDm2GaVXBdoNFlXyZKUxAuQSxSS3ZZoWloJLlZfEeZ9gWRyKxpVo4ps2yIpOc+JvZhgNMetjVDaJ9QPv85GRadbIreuAlNHi5CjeUDP0Wk0+pibm1jDmdiPJ5no5oZzjNEZjTcVtqomg2qEY2m4gUgQX4Up0zBhGWtU7CZGp4UxWYpkhzwn9QJyf0XhLanUZZqWEFwpqiyKYJka7cYZflpQ1SuigFk6kh++ijzylhCssOqCWWqXlJGrHLerBOrM1FF0a52bRlomTgQukuljWg2MEh13pQhN8oI0L1BlBamQKSRJCLrgc13YL/L5pSlgf1Hr+peNEiVYp4tKSYSU+ORlDLmkm6jbh8hbN0i6N/jeoykfnC14crFi5sV0mxY7LYvbmzW+fb1Fr6JSiebw0b8nvTzBG4pE5mgmQKSyptJ7+yZmu4ba6qK/9mUyp0tW3eAyyPizkyUvpjM+PV/y0acjvKXAHkmygt3ewqzoOA2Lb7zT583tOm9sVHnDDlCG94k//IjVk2cc/d5HuAMxolx6opDosoRVEfEpqqmiV3R0R8OoC09Lfb/2uaBJSRbBlJqlYrZq6DUbvVrB7rcFV860kQxLvNuSOJ8vJ0TzFfHSL4nzgiYfu4mA4cZ5WTxf/TRW5y6rc3dNyD/7wQmqJb6/+v7vYrYFImv/nXc53L7Ol3f6hLd2+ZWDFk8mHo8vV3zv/iX+UowW50OXxdhndLrgk8djHl+seH2nzq1OhW/+6v9E7StjmuMjkqNPufzO9/EvpgQz4R9LvFPcszH9JMU+uM7e9dfZ7lyj843rPBp7fHK54jsPLgn9mDwv+ORsWabWpswCh2/d+hXsWpuN2g9ZnoyZPZ/jDX3OfzRgcbxg/vSCzrMzNv9lh+rmPepGjZfzgE/Pl1zMQ85nAasw5dZmlbs9h3/6j/4lnbuPqT/9AKPx+4TTJUkZ0xOPhijnL1CNKru1HWZBwsAMmC5CxtOcs4nP86FL3VB5rbfN1ltdtkdn2PcfM392zvLlCm/oIikCh9W7/Yh+5xCtaXG2tLhUo/Vt/2QRIEsWfaePdXAXO8/I85zli8E6TqeWJjjbd9iv7SBR5dGm2NUu/ITBPERXFQxFpFX3GjuoeakGXM7JwgjcOdpqhKIZ1Kt9wrTAUGTCNCWMck4WAWABKp3mDurGHkaakMfjEkgrSPe17dfYqDj4TRs/yXhyscINBcrr2TTA0VUqbZvaxh725ZhgNCeLPebPp2tDb+fer7BX32MRVqhXDUI/xl/FhF7CHzwckuQ5RdHk3ptfo5lnZebdAH/sI8lnSIpM942HXOvdAep8dLbgeOzjlmnHz6c+VV3BbDm0r79OveROeoOJuBSMpiiDF/RufI2gYbGKM+7XTaYlDGG4ijizdRqmil3vo2/vUynZl4kXknoB2XxKNrmgvq/QslXaoY6lq2tu5TRMRKFPchpGFcmsIHkr8lh0gJKqo5g29cYucVaQFyp5ISgnfgnwNgwHsvhvNU7l7yVK6hfx/Cyg5H/ysvL8lVwckFQNqVJD6e2Q1jYZ+hlHM5/TqVDKAex3bO72xbhq35FQpy8oLp6x/OBH+MMZyconi1MUXUWr2piNKtW7d1B6O8itTeLNe0zDjNk85mwZ8v7pgudDl4tZsJbDa6ZgJVqOgdMwubbh8Ou3e9xqWWxXNfjJ7+I9+ZjJ/RdMH1/w8icXTOMMr+ymLEWmpsrUHaFwFIGRYmwpRBaGINbLIstLMXUUXRVjGt1EaW+KRF27SlHtUmgGhaJTqAYUOXJRQBajBQusWKjK6udH5MsJ8dITAoKLyRpgGi4i8iQTy28vFkUtK8gSobqLljG+EhDMAozaFKt5Qc8Lqe49Rtu6hrN3i7c236Tv6OzVTYI448mFy2LmM730yFMhwy/yiCcncxa+UIB1bJ3dWovefhu12qXrr/COz3DPRsyeXZLFOdFSoI6yIKYS+mgHS27e/ha2JlMzVUbLcE3vyFORfHs89qgaKrONDq32PtrBktreT4i9hCzJcIc+wSxEHbgYtSGdl09QzDqt2h7tir7unuIg4flgtfZ23elU2N+4gyrJtF8+Ly8F7jpctPCWSLGLU5epGyoNW1xG4kgoYQd5weOJh2OoGC2T7sFd6oGIlL8anaalei0dD5DtFk6tgqMrLCJ53UHNgpSmJfKxKqWJVp8KUUlWmpLDyQLLn2JW2jRMg82aiRsmayhtUHYNqzilMKoUmo1sVdZ/hhwJsobkBKhFKjxdsjAlh2nGLEhKEYyMoxlU6m3k2RDFXAoBhReSLaeo/oxaq07TUmma2uc6wZkfM/ZjNh2dZrMnUo5tE0WX8cfi82YOZ0irEdXmDj1Hp25rTEppfppkXCxCTqYBu3WLO01h0rbaA4LRnGAmolLCyYJ8doFe61M3HPoNax1PkuUFiyBh7CdsODrdZk9QMRoL/OFs/TPJvRVqsMDRHTq2XmZ0ZX+ugyqIChXLaWA0HOKlT17mFmZJShGHKHmMrsjrANE4FZ1SmglYeZoXFJqOrAn1MLAO8Cx8F5V87a+TJWmdwp7mpY1GVpH4zyipv9Xnr6Jv/Mx/95lsGyiLl1lBUhSy6gYr2eZiGXE89pi64gZeMVTu9mvc6zpcaxhopx+SPL+Pf/Sc8UfPiJbiVqToCrVrG9i9Jtb2FtrtL5BVN4idLk9nMeerkMEq4mwRikThVUQUJKi6sqZg1Ds2e22bw57DzU6FL/YdmtkK5eQZo+99l9nDYyZPRBL0My8mKLuprqGI4lXVad1o4fTr2L0GVq+JtbOLZFVEblOlKiTwqiak74ouoJ2aQVZpE8s6QZqziAQQOI0L4kC8K02RUWWLqtPCVCWsLRl9d4IWrjBjl8Jbko3O1rL8aCwCN9MwFqbdpS+kyMsI79ITB3+c4Q48vKGPaqrEXkK1f0Z174z64QtqX1Owm3u0+g5+0mO/U+HT8yX3SyN0Egop9moWkCYZyyChVzO50a4IWHJtj+bb30BpPsJsP1vHt6RhgjuYC1irH1LzlpitLfbbB1hqhYuDFnXb5XjscbkI10m8RxOfgZug1prUt27Tfv2aOETKcV2Ri/2VN3RJB0cY3W0qTpdeRaCHLD1glRcsy4tLEGe8tlkFHPZ6tzAO7yFrKt7FlHjpCRJ56JMvpzhdmZ6j03F0FFWmyCGKUrK04OH5koquUNUVupuH6IFHLYzxzsYkQXnYBTG5O0eLVhgkouD5grbixxmLKGHoiuDI3hURfTFBNc/WO9V46ZMOT5GtBvXGPv2qwTJM1gGPWV6I3UucEWWFGFuVv1/A2iCtloR4XXHQZIksR4wAZQnTT8pxmIzjNJCrDbTKBP8iE8rP+RLTm6JVWtSNCj3HoGqqazP9xI2YBSbLKINaR9AsmhfolRmrc5doERNOl6SjM+T2HnWjQ69mcFri09KkwF9FnE59LjoVsp02antT8FAvJhTPp2IcP3dFokBnQr1Zo10WoKvvY+7HgsAfZeR2E7nZw2hcoGiqSBAIY3JviRTMceo12pZGyzHWYIB1blmUEqQqlXq7BPS6xCtv/U6LNEZKY3TZwtYEguwqJiUr7QnJFVnjSk2YC8J8HnjIcYiUhKiyWYbgSmXRU8pRIuiy+mq69f+TiRl+yQoY/JxxKlfm3M8yllRNmCatCkGly2iZcDQTSb9BlKJrCt2S13fYNGmlM8KP/oT5J4KoMXsublOqqWF3LCqbbez9fbS9WySb95hGBZNZzI/OFgw+E0s/WYRkWY4sSzh1E91UaVV0vnS9xX7D4qBp0Xd02ssj8pefEjx/wODPHjN/MWd27nIZpQSZEFpYisyOrVHtO9T362x97Q7OrvCxKO1Nis4eheFQqAaZ4ayBxlFarE3IcVYwHSUsonCtSnOjFD/OCMrbnq4K5Ey/Zq6jZ7ZrVSpmHcuRMXoS9l6AkgRIaYjhzygCl8JfkZy/IF/NS6zOgtnjc/yxTzgLWQ1ckriAICV7OMG79FieLlmdDNlVFLT9OzR3bvPe9jX26ia7dWFAPbtSawbJmjafJjnfezxmuCm8ODfbFb689SaqWcdsdmlOlqxeXuIPF2UqdCIW4kuPzfYP0K67bHau8e52HUdXqJrq+ma/KL1Cj8Yequyg1Dap3H6LTinu8cc+cTnKjd0EfzBB3XiJUt+kX91gs2ZybGuMZakkqCQkUcaPT+bi4yg5XN8X+zBHeUagiV/XokQhVVXKkEkDx9II3IgkKoiChOcjD8dUqRsar93eR0sCTH+J9fglcpkFBZTqVIFlquoWpioOwTjNGbsxmiyCI69vdtGaC5T2BK3yWBSeLC89SCP09gTDbq5jUvwy2wteBUaGWYGl2ShWZR1+msXpq92LE2DaVZTSJBulOZEbi72sJlMzFXKrLqYCVkVQXZJAdHOjM5RKi3qrRscWB//cf1VIR17M0IvI223U3jZW9wT9bARQsjQDstEZxs6I5uYG/YZFtaLjLSPiKCUOUi7mIYNliJu3adR6oqA3LlF0WSQlexHZbIjmTjAbW7RtjbZjCPZkWYSmQcI0SMirddRmD6XeRrGOyeOUIhMF2bq6UOgyvaqBW5q7szxfY7aCNEeqNJDrghASzV3k8vNBliFlCbpmY6kKpqpgqBlp/gqbVxSik5JUXXg6gSKJKdKYIvCQsgRNs1BkUeOyTIhqUkUiKwqyQkKR5P/PKKm/UYbjZ55fugL2N34kmUKzQbMpFI2k0ubhJOTDixU/OpoyX0UYhsqdrSrvHbR4r6ugHP2A8MM/4eN//QfMjxe4boxtqFR6Nk6/SvPWNo1v/xdkG7eYKFX+8PGcZxOPZ0OX54OVWBLnBbIsUauZtBxBZ//injgINqs612sqyuoSeX5E8vgxg+98D/flkMXLJaNPxizjjDgvqCgyB30LZ6NCbafK7q+9hX1wHXXvFum195jHMAsFW+3Juc8qjpn7HlN3sMZAXd0Ug0QwFL2lwEDFV0DgOFhDeaXSxKyoOmathm4oaIZKtWmhmwJF45gq/YaJYwp584bTF4WupbF78KvUDJmqJlNzR2wefUBy/oLw/JzzP7nP6tzFG3rMRj7TZQTHC6wPLhl9MsLpf5fGtS79X/8Gmwd3eWP7gHf6tziaBzybBjy6WPKTx2N8VxSFp49GHB/N+J6j027Z/OY7W9zpdDjY32Hrt3rUXjzAf/IpL//wQ7xLj9W5y/jhhOXJmNre92jd3efeP/5tDm8ecLopghifXKwYzENOJj6/8/GAjzsV7m1W+Wdv/AbVwy9Qees+auXfsToZ4o8DiqxgcTRA1lUc4PZ7/zUgcFxxmjM+WxEEEd4i5A9keHKx4uRWh99+4wate22M9iby0UO8p08JJwuM7DHW9n32Ozcw+1Ue3erwI1VmMHTxlxGTwYofBQkTN+agYXHYukX97Sa91Rz/dEAwWQAIa8VshFztUDf3aVoqY18hy3MeX6wYLgU9pe902endwVBN6qfPWJ0MCSci9NJ/8RzyDC2NOdx9T2TGGep6jAgC8eQnOfVKndysI5k2rFwR6TEbIZkVVLuGadWpmyqaK1BKp1Of0VJcopK8YOf6NvZGghp4yMpjopVPvPQxH36IlcaYhzkH7evc2XCIS8TZ2TRYfx+v9zbpHrxNJREex/nz6Vo5Orv/mJZZwdRsvrSzQZzmfK/8uihIWM4D7p8uOL+7QaVzHf3QpeatGH/0vBwjRqyenyLbD9CtKoet62J8WnqxJm6MPvao6Apv9Lrl2DnEfv6CYLIQCd1zl/T0Kapq0u9c53anIqwF85AgTvHilImf0LI0tupbqDviMumUFwqtIvbTUuJjWU0cXaZlaeufgYAes76oGleZgapGHoZrsO8VpsssCSlulBGmOboiE2cFMsKD+vMUn79Ij/D3OpH57+L5uat66SovNINCVin0CqFicbJYcDT1GczF3qBVGoRvtm3U0VPChz9m+JNHjB9NGIcpSQGOI2N3bKrbLRq39sg2bjGWHF5MQ77/YsLzocd8GRKsBGle1WQ0S+PmpsNOy2a3bvGFrSotU6EqxSgvfkg6OCK6OBH+oPsvCSZityIrMg1LRtZkzLrB5tsbOLs96tf6ON/456SNHXyrzceXgpl4WnZ8D06XBGWoYRyl5QS1WAN4s1SQ60MvIIsD0jggXs1E8UritSJSUkQBi1Z1FMNE1S3ceXVNA1E1haeWMECrmkK9alC3NRq2xr2t+mcYhw3273wDvX8T/eAlAMsXA9yzCXxwKSgapVLySvYfzkIU689oXJxiXLvNwVv/mFbfYatq0nN05n7Cy4mPOw9YTUXhTZOMJMr4E2dcktMzuvv3UBUdW5ZxHh6ThoKwkHgJ0ydTEk8YuncPP8AAtlsH7DcsIeIIU7woFZioMCWIU262ba41NqgfqLTfeIBqGqjmJdFSjNzCyQJzMsCKl2xWHA4aFoOew6cVTXx/oVBYDi3hyxrf6FCttzFqC5TmBEl5ThrGMHfRB8comk2ve4PrLXvdceSZsBpEQcLFPORkEVA3VZz6BurGHlYZDpl4IXmciAMr8bGqr3YmwHpspasyQy8W7EanHMGthOFdpAP7GIsJymxE9Ro0TKUM0BSUeUWWyAtEZ5+DohlIqo6syKRZLg5ObwmhhxR52FoFrbQyXKUM66pMzdRYxRmmJcIZZU0TalIvFLi3+hlKu4/mdATT0TEE3HoVrYMmp0FGq9lF39zHvHyJUdNJQ2EoDiZL0vEF2vyCje4u23WTzYbJyo3WmLhFCSzeqKi0rGY5wrNIgpQ8yYhXHrk7p/DmVJyrHaXGUFeYlsGdM1+QThqVOorTQK2YKCu/JMRHQk7vzZArCzq2zSxI8OxsfSFIctGFFabAbCn1NorjIEchqBooClKaoJCjyqJ7NRPxM1VKtmFRQI7gG0qqLr4OhB4giZHSBClPUWRprdbOSwL91dfmxWdsNX/JGPHvklr/S1nAfp7IddOtAAAgAElEQVSnkGSkdQET3VeqOyyCTBz6U59lkGAYKjsti4OGGOUlP/6Q6cdPGH9ywSBIcdMcXZawOxb1/QaNW7voN95kJDk8nobcv1zx0fF8PeKSZQndUjEsjc2mxVs7DQ4aFts1g309QlkMYXpG8MH3cM/GeBcT/OEStzS2FllBpWdj1Awxquw36P/KW2jbhyg7N5m2bjH0U45eLvnDJyOOxz7DWYDvinj6LCvWlPjPvY8yx6vIM5LQJU9exaJ8Nt/r6snzjCwORIZYmpClMXLZnV3lgEmyjCxLjAyx29MMlU/OlmzUTXZaFvvtCt88aNGu7NJu7VGTFay9x9ROjsizAnewWgdK+lFKMg6IvQTVOhY078GUTqVGc/OQavuAulFjGaZ8erHk4blKHAgafBSkpHHGs9MFblmADpsWe90baED98EMhbnATEi/BG/rrNOjWgw9wZAVDVjhsdQWtwhfEhtk8EDf0IOFGr0qUOtxstence4+GqiFrKu7ZiNQLhdrscoy5HNDduMP1lsXYj6m2rHVHHkcZwSrmdBowWEW0TGUd7ggC0pt6AebZMzRVQ1E07nT7IrspTIjXKQCFiJcvhSw1Q6a/uUceephZJuJB8pwiCilCH0ORcErptaWrxKV8G+BsGdEwNWq1CnZvG8Odr8UDiR8QzV2U2RDFn1HVm0I6b7w6XrLiajydY6omkmGuxQOJH6L4K3J3jlRzMdTqWv4dlzlbiixRt0OWUU673hQHf0mHz5KUYDRDr9kozRPUxia9yvZaKJMmGau8YDBXeLkMaZgKGzVhX7F7NWIvIfFikpWPP5qjj85o7X2F7ZpAlo2WEV7pkQsTISxxY0G0EGNEh3gZEOc5WRCTrFxhX9iRqZsqtRIUPLoKmQxT/LQgKFQUo4pWdVDmLlks8FO5L6DJUq1HVXdoWtq6kwORf+YnQk7vmLVSaFWjUHUx75NFarKUxeiKjq0pBFpJ1CkBA/lnCPOSYYo9+Gdjkkp1tirrIvvtMwkUYgQpicL0V4wR/64jV/5hF7CrwqWIZWahmvhpwdRNOFlEfPRyzsnEJ09z3r3Z4ZvXW3yh79CcPeXod36Psx8cM3ixwE1zaqrMdtPk5m++Tesr76Hc/SqL6i7/5uNLfvB0wvH5ktHpcp3IvHnQ4Hq/yus7de50Hb65V8NYDZDG93G//3usTi7xzsbMns+IvZi8xOuYDROn72B3KvS+eBtzZw9t7xZFe5cLc4uBG/Nk4vM7f/wJZyOP1Sxgcjoi9pdkUfCqe5IVFMNEt+souomqK+iGgqzI6ywwSe6tyfPidUnr1/a5D3Q5ZsnTYo19uopUidwFaRyQReG60AGopsNDq4Ju17GqFv/7QZO9boVbm1W+ffgOW1/5Mt1fU7j39T8lOXlMcHLE8sWAwY+O8SeCcXj+0wtGn4zRKydsPjiidm2D5s1dNq7d4be/8BsMr7d4Pg/53356yqPBiuXYx3cjLk8WTC9dTl4ucMOEL+42eWtzn1v/4repHP6Q6vsfMXlwxPF3XrIcB3iTAEX/Md0XA7pfesFrv/E/4+iNdafyx6cLQi9hcuHyv64idrdqfOVGm//hza/Q3DikffCA6tOPuPzBx8Qrn8WzM8wf/Uf0Gxfc2HmN1o020yDhR8+nHJ8vWc0CcdtfRTyf+bQsDavZoNrcQjH1tRndu5jibJ9Qv/mQO9/+V3QOWxw0bT7cXPJ/5mfEJY/v4fkSvfy5djqHaLIixErGGcliKQ7M0RnVbZ9excKNTdw45X3ADUSm3E9ezgjTjDSv8fruPXRZoVqqV/3BhHCyQNbOqE2OqXVkikqdvmOgyQKqmxcFsyChosk4FdG55IsJ0sonmomdnKSbaGaFzu4u2zWT8ZUIJEi4SMQ48PFOHV1x2GnuYffb+KMZ/nDJ7Omw7ChTqsDue/8tblxhFaXcP5rhuxEvg4Q/fDIiSnPe3qyzfeurdN/5seBZnkxwLz1k7SWKptK69zXe6PVRJAlDlfl/yhDYIi84XYb0HAOn49AqQyKLLCcYCRFQOFmiX55Qfz2l7+jrtOXTaUBcJjaczANsVcJqbKNu7GKHV3L4gGg8RdJFRE/3cI+sEBl2qzgtTeY5izBlFmbolSZ6nqJu7pGvZsICpGoCxh15OLbJRulrM2J53U1lhRgh5mYVudZGicT4EBAdXGkt0nUDXZEwr7Bx/Iyi9LeQyPz3Eub7t/n8+ZHhXyiZ/0++sJSQyipRVhCkuShiJTU9zwtUXeGwU2GvblHLXPKXj1i8GOMNfYIsp6nJbNQMOnfaNN95E/XWu6zqezyfhvzg6YSj04U4lNJcRJdUdW5t13h7r8m9nsP1hok5ekz+8hHR0adc/vBT3MFyDaAFhDerotG83sTut6jublD92q9TtHdJm7sM/Yw/Pprx8NLl4fmSx49GeIuIcDkmWozXhUNWdfRqE8100G0Tp2G+2l85xjpKRS8p2lcZYFZpMFVkaX1wXz1ReVMPYuG7ccvRWhwkLKdG2QHFhMvRupCloSv+HnjEvoCsrqYBx5cuaV5wo1PhsGnz1o2voXb3qR28xD54DIB7NmF17jJ7MScrc5NGn4wJZmKU1BjNaTd7bG7exO62ObvRwTFVHmgK45HE7NIjiTK8ZchHJ2IXJEtw7eYttDylkSYUec744QSGPlGc4V16GLUxZvuUzuyUbn2fg4bFZaeCZqhi3+aHzC4liqJAkSX+0UELvdmjuhGgekvUypPSWO6zen5KTdXRdZNWX+eNjSpZLr7uafbqRuuVXMIg0agYlbViLQ0ToqFbepgyNl5/Qnv7dQ4aJlFa4adtm7NZQFoGRU48ISVP+k1koypu7as5xXQuwiq9FWq4oFoVN/4rKboXiTy34TKiV4sZuBH3tttrAYJenQsDd5KSlgGLUtXFtpo4hsoiSlGynCxnnfEVZAVVW3iQZE0tGYshhjsnX0xwDuUy4kRQNQKEqXgRiLgWL8lJKg6K00CrWMiKJEQyYw/jYoLdP8ORU9q2RsvSkCSpvFylHI99+g2LvmPQ6tQw+jvYF1OiuYt36RMtQ/zRjJY7plHdoF812C0FHW5JY1mFaQk8NmiYdfR2B6MhitdVxE4Rh8iRh63VqJsatZJteCVoceOMIC2Icgm72iyN4i5ZGJEFsWBFeksMSeSaVXUVU5UJ0ytOpChAYZqj6aU/MyoRT7IiOqgsRiFHkwXhJClDbEGMAbMCoTrWTaRyF7b++lLcppQxU5pSXl6lXwxh46/7/NIUMPir41R+5ou/6sKAOM8JkpxFKDKWsrxAU2Sx+2rZbDoq6vCE4OhTVucuYZCiSBLduiheG1/YR3/tK3jtGzyfhvz4bLm+UYeekMdXagb1ts2XrrV4o1floGHQylck9/8U7+lTlkcDRp+UScNBhqRI6BVtzUzsvnMTa3cHbe8W6fX3GEUSgxL4++/eP2cwdFlOfCYvX5J4S9I4QJYVFN1CLTue5mYTy9ExKzo3+9VyL6XTqxqYJUlcUwSKRlNkTEUuU2/FDF2R4aqE5YjdxtVYY+jFa5r5cBXx5GLFaBURejGLiUUUpMR+SOROyZOEIs/IohB3MiUKavhuxB/JEk9KIDJ02axusHF9G7W9y0aeU33xnMqLAVmS4Y8DEi/BvfTWiKhw5mO1/wjz5oTGwRu8u7UtyBmmxke6QuDGJRA5Yzry+AhQZJm3+1X2Nu6gFzmNPKP54QvxEZmIkaV36bE6uaR9+RzHbrJVrbDXsLAcHW8ZEuUZ/mKBJMOxIvPJyBXjuOYO2vYSo1ElmrmkYcLqRERx1ABDVrjdE5HwiiwxWkZEUYpaepmE6qyg0CvIto2sq+RZIXKpXGE9aD79CMO02dy8R9y0uLUpwLWjZbQew10lFetmDcVpIFmv6OyyO0f2ZxhWk7ph0HMM2o6OG6b4peJyuAzZrBr4UhWnzKbSZyNkXfy/ZElKvpqhtj2UXOzMDFXGjQWYd1X+v/iJTM1yREaZqZMlKXgiG0uuTdBiF0c3aVqiiK5kaR3OOvFiLt2Inq3SrLfLoEmNLBGg5mA0xx9MaHgT6kaPjq2jluGMSZQynAU8H7psVU26FY29zT3szVP84QzvUtgpoplLenGCUu3RsjbYrpn0GyYDWOeeLSOBdUoqNlqzi9kWidoiJ04Y/KXIxao1qBuiGF9500AUcy/OCFIVpyzmiqmLvV5e7gVDYS2wNAfHEIbwq7tNXo5ko6zAMW0k00a66qDyHKkoII2RkhBT1amWcN6oXBkUiC6sUA0K1UQyhT+vyLM1NJk8RZNBlUFXXu3Q/jrPLyqt+ZeqgMFfDvL9i/55Xt5GvBIeOvYT5mFC3dbWtI0v9SuYxz/C+8Hvcv4nHxOUSKR6Tefmb75B50tvYbz5dR7o1/n+/Uv+9OmEJydzLo7mFHmOZmrs3e7wzn6DL+42+Re3WpjTI/L7HxM++ZgX/+FHrAYu4SxcUxfMpsHGGxtUtjvUr/XRd68jv/VtAqvDqZ/yHz8c8+BswaPBivnI4/L5qRBbxOImppoO1eYG3YM+9bbNXrfC9Z7D1/abbDoGVUNmw1aRYx8pCQShPouFyz6OyBdz4eGKQ/LFhCIOycKIxAtfvW9FxmiUt+lKFbV/DalVIzfrFGYDV9vDjXPcRESojP2YkRfz4clc7BbciNBLWM4CkjDBm614sfB5qev81FL5/Q8HbHcr3NyscrNb4Vtf/Vd0v1VQnxzR/c6/Zfb4JYtnA85/ciH8VsuI6Ys5q4FLY/+nNG9tc/hf/Xdc27rLl7e3eXGjw7+2NZ4PVixnQuAR+jGziYeuynxxp87rvXvs/NotbuY5s48+Zfb4jPHDCbEXM3s6pvX9P8Lxluzc+hL2Xp8Hb/X5rqkyPlMZnZzjTqakSc5/+PgCP8lId5vc2HqT6s0fkHoB0dzj8sNzZk/HVB8eU3/wmJ3/Xmejf5sbrR66InM8EXlpUZqX70wXh/ruLarTOcFwTjC7JA1TVgMXvfZduhcXVN465+Dwi3zrepte1eDZyGMwDwjiKwl3RqXWxHCWYoxXIojilY/s/Bj9esBG7wZau84X9pvoqszx2CeIM06nAZauMtiqsVfbxuwnaEmMdTYU4oUkJVtMUBYjFKuOo7fXo6cgFjtl0QHYdOvbqP1AyPizYyJPpD7ncUrr9jP6G7fJyktMnOZMMpF39+n5EqcsCJ39e1QWE4LJgtEnI8JZSJEVSPILGif36dz4Mrc6Nrttm8eriNCPmVys+DB7tQ/aPXgHO4lpJSnLkwlpkLE6m+E9eJ+KLNO88S532l3e3mti6cv1hOFiFXFsBliqxLX9u9h5LkaRRwNACGRsf4ptN+nYFnt1k52WzWgZkuYFqzjl0ouomyrt+ibq5gojFVix1AvJkpRsNUPzZ1SbDoGu0LQ0FDklLD1dqygV/ktVpmbUkO2UPM8pokD4uRSNIjJxzG6ZvqExDQRoO8lyolQirdaQigJZklHSRIwRr3bcJWLPVBUsNSdHFDCtRM39RaXsF1W84JewgP28T168uo1cudSzcgTUdnT6DYvDloU+f0ly9CnzZ2esBitkRcZo6tT366J4vfE1wo17fP/jS777eMyzkzmLiU+eJutR3bvXWry71+DNDQdr+JDk6Qd4Dz9h+ulxqa4TdAqzbmC1hSS+9+5trL2D9Z5rILc4H4c8m/n84adDBkOX1SzAnQmlYJ7GyKqO3d7Crteptiy+/MYG97bqHDQtDhom12uqgP6uZmSPnpH7KwEwXs3XUfR5nIq02BIUGk5WxF5MGmTEXvw5/JTVNNEqOkbNpHbQx2zX0Bs1lFqL+sFdanad3Kqzd7CBG+cs44y7XUcQ50uhzP2jGd5SdGr+wif2XZJQIU+FKfls5PGkW8FQZG62K2zVr9P9yj9FbX+I3XtKMAtxByI6xI9SFsdLEk8oCmsH38EMPbp7r6O3N/j6jQ62rvBAloiDhLRMJn7/aPbqg9FzuPbGV2nKMrKm4Y+DUq0m4lPM9jOMepvGXpU3+zUWfsxP44zltEkWh2RpzuVn6A1tS6HT7mO2T9Eq4zUv8erPbD56H13R6G/c4XrLBmCghmsq+yJKcGONbqeP0eth9S5R9JckXkHiJaxO5xiNAUbnGWanz0btHovIFDEavjgY4/QVW1DX7XU+VhZGYgQ4vhCXEKtKoyd2WPOWvS5eV3lhyzDDNXP0Ug2oVszSvJ2Ly07gIScRqv5q9BSVVg1TlUU2VqeJbNfXsSBZLGTgwWRBenGCbLeoO9v06yaDecCiDN1c+AnDVcTQjcm7Il/LatdRdHnN9wxmAenwDK0/pV7do9+wOLZc4ekK0lcCGTcisfqY3S3MXhfV1EgDQYoJJ0vMyQV6f0KjukHH1hg5xpqKsQpTFpEQY+RlErbebKJeTNesxdxbItU8KlaFhqmVVI107SN8lTotxqFypYZWmZOFcXk45Uhp9HkxRpKTyUWp7BSJ6EleUKgakqquRRxFGiNnCVISotsiKirKRPGiPO+yoliby0lD1EqN/Kp4lVlfQsihoioSRSEKmIRI8PhZz89TvP46uL+/6vkHX8CgLGJX0tCyRddkmZ2WzXbN5KBhwflP8Y+eC//LLMSo6dR2q7TvbWO88TXi/us8m8V89/GYp8cz5kOf0AvQTINKzaC14fDVgyZvbjhsGSnR97/D4sFj5k9esni5JJwJlZPuaLRuNKnutEQi83vfROodkDW2mGU6758tOZoHPDxf8vJsgTsPCVYRsb9AMSy0Sg3drtPbb9HpOtzZqvJbb/TZqRn0bBV9NSD/4Z+SjM5YXY5ZvhiQ+GL5LQpTTp4VJaQ3IglSocibBLipoM27ab6mzSuSRE2VcVSZqqlS3x+usVVGw6F+8BCj6aA2Whh7t7DrbdpWg62DfRZRxizMGKwiujWT50OXs4nP5QmEnkYaenizKaFn4S0jVrOAf6/KvL5T527X4VsHb2HYLWqdPpvDGbPH56jmAvnSw3Vj0oFLFmdc/PBTOmGMHXjUD9/h3e2+uEXKEn86DwnciDTOGI1c3v/M52J7/y4mQnW5PBrgDVekgQggXL4Y0HAeozt17nTu4pcig+mlS+grFHlBHAij88UqYt4w2ehuY3afoVcHwgTsJqRBJpSWjx5Tsyqoms1efUuQE4qC4TLCi1NmQco8TMmqPdT+AdXdIVbzyfpCEcxC/Isp/ukApfuC1sab9B2DWZBglSM0sXtJCVOVml75HNIp9UK8iymy+RK5UkMxq+w1uiyidJ1HBaIILqIEL9Fo2FWUSgO9VhHKyDAWUNg4FIgxWVqLgK5Gb6oslI6rJKdeFkClNOCmZWefjs4wuttUq102qwa9msloGa3JKqNlyNCLya910dp9rM0OWkVfj1MTLyEdX6CvRtRbe/QbJo2qsU4viKOUeUnWWEQZ+hVlpGaSeLFAi81XpNMR6nyIXOvTsQXkd+HHpV0hxS272rxTR210kOttNPtsXczzwBN7sKrI4WtYGn6cocjCmJyUeKiialGYDrItkqcVT1hkQKRkkMboajneV+V14GdWQIGQ1hdl0KQkK6IgpAlFEiPpCboi9li6LKHJMkmek+eCLh9nBYauI2kWuWaJwpSmryC9WYqiCKZqVogCeCWtl3/OZdjfxe7sl7KA/U0jqsszuVx6ytiaxmHTpldRSY4esnh6Vs7JU5y+Q/Nwg/YbN0k27/F0FvP9lzMev5gyu/QIl3PyPKPWqdLccPjyYZt3NqtsyB7K0X0uf/Qhs0fnLE9XBLMQSZEwajp2x6b3ziG1m3tou7fID99jJduMvIzTpccPT+Y8H7oMJj7+MiKJxExbMx3sRlvkY9VNvvr6Bq9v1bndqfDFno46OSJ/+pT4+CFnf/QT3MECfxzgXfpkiWASSsrnP2JhIOJV3DRfkz7cNCfMP/92RVyKhOPJ7PoJjiqvAcLV/hCtomHWDZzdB5iNKlavgXH7HTbbfbrVDa7tdKmbKkebVZ6MPX63RCu5cwV3fCl8aL5C5Do8UGTOZgHH/SpNS+OgsUXnZpPOl88wG1WM2jFaZUp8fyRiXcYBo/sDQYUPY6ppwuFX/htkqYYsSTw4WwIQuK+k0ldF7PWew87GbQyg8egJknKGd7kinPko5gSt8gLJMNn7+ptkRZW8KHjwcsFqGhCFyauOwY0Yegk3q13U7jZW7xxFU8iTiDRM4RLmz84wmg5WvU3r+i59x8CNRaz8KkwZazGOrnDvWh+tv8KaDantfEQWixtXGqSEiwh/NMOeXGBLCTVDoWNrOKa4+V9lj0VpTmHZ5Jq1pjekYYx/MUFSZKqmjeE0aG5ssl0zWYSpSGDIhel6EaYEaU5UaChmFcmuopheeXBnUIYjqrKEpryK85iUUFpLV1hGOVW7iV5vo5gl/T1MBK/x4gKlfYJc7dJ32mL/NBccyjTOGC4jBsuQeZTTvnqnTVNcuMqu+0oOL3cO6DsG/YbJeOqzLBFjUSCK8irOaVvlPq9qo8588iwhXvlEcxe9TEruVLaouxF1W1/zDZelmCPRGiLluOxGKQtx4a+QYhcpXFLRHOqGim9ra1N1XhSEWU6uVpA1Swhr3DmqKXiTyHIpxkhQdSGe0mRRjPJC+LmuJkjrlOSygyqyTCgSs7js4DRURRINWiGVSCmBhxNdmC0Yp4Akp6/k8UUu0uoVCTkXIg65PGP/ugXpr/rv/jOJ42/hycvkUUMVzvWqrnKtadK3ZfTzj3j2e99n/Mkl4TxE1mT2fu11Gu99BeneN/i3j+f83w8u+OTJhJOPPiVPY1SrgtPp8833dvjWrS7vblXZfPK7uO//gOGPH/H8918Qlkw6q6Kx9/Udmrd2abx2C/VXfovA7nHqpXzn8YyjybgkEkTMpj5pklPkBZZjUG1aaIaKU9H58o02+02Lw5bNu/0K6vSY4uVPOP9f/g8mn54zfjjl5djnw0VI8pkaZMoSdU1m19JE8VEkNFPFtFS0OEOXJXLATXMsRWKR5OvMMABHldFlwUzzMlHg5DiDWUj+clWOKwAeocsSpiyx2f2/PpdC/fY/+Sd8Yfc26eEB37re5tHY4/75gu++b7OaBgQrl9hfcPrpjMsXFY5rDR68XPDabp23dhv85tf/R5pfWdA8/5T48fs8/Td/wOz5DG/oc/bphPnxkosPBrRvPuQw8Lh77z1u3BGYph8eTfn45YLB8ynTS4/lNOBiIMIdv7Tb4F73NXb+2X+J88kPmX/yjIsfP2f2dIQ3mFN5dsauqnPn5hc5uHMdWZL44HTOkwuX6SJkEYjgSsdQee31bRr3vkZT1eg+eIGkTPCGggc5/kQIITaAzsE7FPUaYZbz0dmC06kYsx6XgN6brUO6X97g2nxE7cFz5k8vcAcr8kR0h/7J6f/L3pvFyJKeZ3pPrBmR+1KZVVl71amzn+7Tu7qbzVWURI1Ik6PBSDMDzI3hBTLmYi4MGxj4wje+MzyQL7zNGPbAvhnDHo8E2eIqkt1kb+zt7HvVqSVryX2JzNgjfPFHZp0m2ZRICiODYgCN0wsyKzsr8//i+773fV6K3T0W5rbwQpO72THNoSg+RyNXCEs0mbn8AnplDq0pdmqDXYEk8oZjys6E+d/cRKuUMBSZRt+ma4mgyfbE52jkYqoyS/k6aqWehCIKKro86iEPu2TnxXcprYlD9Xjg0Bq69Cc+F6pZlGqaemWD7NIcTmeA3bFwew6tDx8Q2h75wOfcC39PKO4SIcr+4ZBmd8I1WeLuepkr1SWK516kcvkdonAH62iEbwf07++j59JkzQzPrX1OpAtHMVZfINt8N6TRE+KnbD1LtX6OwtaSEJQc9QVhpNXDPNlDLlWZW19htSDsBY2u2Ak2hw4ZXaU1CaiXVlBDn1TtEVKnPdsHSq1DFC1NsWxwppxGSwC7UzahSEqOKOWqKKGPmiQ8xFGIrBtIcSwKkAxZXcFNooz8hOATxyItGVklVgTTVFKUxNs3RlI1ZHeMmS7hhYKqEUWhSLtOVNcA6AqZdAnJt5H8ZMctyUhRCIFDSjEIZUHgUBMq/ccQfJ9w/TrQ8t/RJUsSUrKgnGYSlQ0FpbeHv3cf60gQIADMkknu7CbK+hU6Wom3dh5x/3GPztEIfzJA0U30dLJ/2ijzzHyWRWnM8J0fcPzuXVq325wMXRRJopRSSM+ZzD19hsLTT6Gde549ucLO0ZgH3THfud2kNRDmZ+FDAUWVUDWVUtGknOzplksmLy0XqGU0qqaKdv8NvO1b9G/d59HX79BoWDye+Bw6HydIy0BBk6mmVFbm0hilFKl8Ci3J/YqSwMpqz5ntwJyRSxiTxI1Ls6RmSRZ/xmGckNMjOhOfcRJ22fXCpJDBvu1TPraYv92mvNwmjiIql++jbVzmmae/xHxGYykveHYPG0OGHQ2rbzLuHuM7Y8LAo3Wg8kFyJ72UNzhfybG0+RKpbJH5nX30zC7dhx2cu13GE5/4aEwcxpQ/vE4pCtGBZ+tbyS4hpns0SvBTAXFk8+HjnugiZInF2hn0yYicZdG+uSd2YnYgqPO3b5AFDODp+WVAcCLfSxRnIyfgaODQnoTkCktoyz3y6wt4lj+D/gZOgDeaYHeGpO0B6WKRnK4keycRxzGY+NyrWYJSUcpROfcs5VD8jNALkZM4nNAX4axq6GBqp5lQUzL8wAmwvIhyPp+AcQ1kTRXhjIBi9Jk0mpStFoX5CiVTpZLVRSiiF+IEUzhvhBsppDM5kdOVhCvGzoR4PMJIRlcpRUZXFYIEe9YCjkcuy3mDavGJ16BIhF54Koc/2SOnROIznRFkj704JvBC2iOXxtChntXJ5Wpk6mXGxx3coZukCzjYrT5Gs0HxvMJS3mCzluVGVsdJMuvCIGLgivdiLl0QGV3FzkxEEXkic0wbjzBUkVU2PRum1pGxJ5SdbqSgpIScXTV0/DASXEFnjOyNkZ0RWQ8f7HYAACAASURBVD1PIaXiBhFRLF5DlMjho5SBlMqgZMVeMA48QcgAUSiiYOZJS6kyBBFPDkxiSTrtwGRF2GaSLozQS3ZZcmJkfqILi2L05E9UHaJQ/LzwiXMiihJcopSclb/8efvj19/6OJVfJA/sxy9FBl0RnYSuSJjeEKnbwNt/JBROUYxqqOQWs+ibVwiqW+y2bD581KV9OMI62SWKQlJmhkwpx8JinmfreVZSPtLD9zl86w7HH53QaI4ZhzElTZA7KmfLFF94EfnsCwwLq/zgfofrjQF3D0c0DgYEXii8RYpMtmhgZHSquRTPrZdYzBvUMjr1XIqtoo4yPELePaD/xrfo3tmlc6/Jnd0hO2OPcfiT78ZWVmfFVCkvZFh6cUmM94o59HwaLW0QRxGhJxht/tiepb9G/ukHXDH02cx+GvkROh6e5ZHZ7jPp2PQsDyuIGPiiQxsGEQ07oKEHVG0fSbnDaK9J5fIJc7kiq/NnKdZLDC7Nc2cuw62DAQfHI46jGH8i7AHDVg/PDfHsgO/OpenZRa4u5FitXaL40ssi8M/YwTqZYPcdJm4AzQmtRB5fkhXWPn+JMMrjhzEfPewQhhH2SMjsj09GXFNlsobK8/UF8vWzpEZ9UvkbM/adN/ZoX39EHEbkgNWXNogREvbdtlASekFE13LZG9hkNJn50irli+visI8ixicTJEUisAO84RjJs0SQqCafJhyPPUZWzEcJ6FeRJCpL59F9jzLg9gRXUNGFT0xIsG0MpTDDMoVRTGfsUTCEP2voKZRLNSG6yaeJw7YopEMbuzsgHrRQcvPk9DxFQ6Ov+7NOaJIQ5oUMXMCvZUXG9wLCyQRlMkT2JpiaTjalktaVWcqxDQJknU8xZypUSjX03GNUI2H29UTxsRotyqMTiqkFatkU1byBJEkEfoQz9tjv26wWDCqmSXZhmXStjdMZEdgB/lhgu4L2MTnJo57VWSmamLkUcbIriKMYKynqbtZAL1QwK038ZHw49XRFzhhTlTBU0T3pScjjkxEndqBi6Bnhp0oZSI4nuiBbpEZLpkXaLFIytcRKIOgi0yLihDFpzSTW0kjpHHiO2GdJkhBzJGIKTRYWlyiOZ/vFCEHUiCUJWVFOCfPiCylMyVGAIqdO6fI84QdLgipjTQfZE7u0aXeVjBGfLFrS9N//JdevE5l/zuunmZf/sjdRlsTjFAkRE58ofLKajPzgOs6Nt2h99ABv7JHK61TOV1n81FOMN17h3f0Rf3brmMc39hgePSKwLUrrV6iu13nhyjy/d2WBi85D7O/8GfvfeZ/X//wRDdsnjOG5osHalSrLnz5L9TOfon31a3x4ZPH9D7b58+/viMN5MkRWNVLZMrlymnwlzVdeXGarkmG9aHKhkkKxWijWPtFBA/vrP8JqtLEaLRpv7zM8smi5IY0kw2y6qzqT0VkspChtFNn8vWfInREqx2jzBfxUXigFk/k4JCnNqoShSKjJMvjJ9zyMYqYfZ12WUOIA2RkhOUOiRx8SnOwx2j7g7F/cor87oNWecHPoYgWiK+t6IdbNFtUHPZa+u8f6rR1K51YonF/n7776Vb5ybo3jccDuwOX//KjB3aORCK/c7zLuthl34c+GDt8vmyzW87y4WeYfP/MV5p/6AvmDm2iZf0XrZoPB7oBxx2bvhwf0tvuUb+5yLmVw4eIr1M+v0Jl4vH63xVFjyLBn026MmIw8mj2b1YLJs/VlFp/OUb19gzi6R/tuh9GRxfa3t+nca1G5tcNmrsiFjeeorBdpTzzuHg456jvstid8+36Lo5HLU/M5nv7sH7C4dp3i7Q/p399nsNNENUUHEzYPkLNViqk5sobYmdiWh225vN13uLM/4MZakcKnNti4+iXMhXUWwohJq0/kBaiGTjToIBcG5MolSqZGa+zRimJ222NsL8QPY6IISiuXSUUhJV+kU7tDF3foMjnq4j2+g5HJU5k/z0rBOJVvOwHtidjJ5XSVuUwZOVtESbfwG20xhgMyvT0W5i9gF016SUyQMxEd7gePe8IsrynU1q+QHXSwuwMmnTG97T5hkoZc2v6IufOvcr6SY+gEvG5quI6NPwx4+2Fn9jl85fKrlGYBi3siMPWgi6ztsPLSDdZWriIt5bl9do67h0N6Yw9ZlmhbHgdDh6KhsrF5hYwvvivDBLwceYFIjbYHFFJZahmdQlp/Iu8spGl5FFIq6WyedDJOJfCFutPqI/WaqEaGcmktET8ZYveVjOHtIGLiS+ipPFIUopSGgtAfhae7qDDAUDWCSCaKlZm5eCoGjBWVWDOI/dQMzju7wkQIkjLQZGYggqkQK0zGkCEyiibGlkTBx9KWpThC/huMTfmk61eqgP2ylyKDioSuyKieyPaxm33cvoVmqmRqGXKr8+hrZ9m2Au61x9zYH+AM2oSujazq5KoVlpYLvLxZ4Uoti/f2Wxy/e4fGu4fsJHldWVWmWs9QfapO5fmnUC+8zHuHI751t8l7d5qc3L+LO+oSRyG5xTMYGZ3CXJoLKwVeXimyVjCopRW0xz8iOHqM02pgH7fp3t3FbgspuTMQYz5dltjI6MiIXVU+o1F/boHS1jzFcyvkvvA1wuIKIy3P9eaEptWlPfEZJpEYU/JGKa2RSsjUT34BokhEv08X02lNET6dVIqyucjGCyvowyPmLu2j59MMHjaYe3RC9u1DWm7IMIH0gtixNcce6RvC0zNp9lgyMmjrF1mubVCt15n4C2zWslzb6/Oh7TMZ6rjWAKvTxXcL+K4w7J6vZXlmPsvK+nNUX3xv9juOwphux4YjgS8aXb9OXjconNd5eiHHyAmwE6hxv2nhTIRH7V7LEodXtUx6bY3MsUAPTdo2vb5DvDtEkmWWt29h5CtUlgvMZ1IcpXWaQxfHD9lujpPPmcTZ8yukV0PMJJXXH4sdkqTIxJMRijsmk65RTAszryRD4EW4tthP3NUVHnUnZLQs88VltNoiZgLWlRSZ2HOQ/EliKFYwkz3UIBmf5QyVvKHyzPw82twSWq2BUbojcqn8UAgyJiPCUQ+pOCatiWyp2SjSCbB9IcuPdFN0HqpG4LjguEiKTHrQQs5WyaeKzKU1MikVW5EJ/IDeWMB1j4om0bJQAaarJVL5JnEorAFOzyFoNdCXOxSKBWoZnVRKRVFkfDegO3DYbY9ZL6UJ12qoT5iSrZPxbCwbnOyhFBYoZZdYLZsfsxVMvBDbF9aCyCiglKqYtQ6TVg9FU8V7mYzh9JRELqUmWWPToMroiQiiiOyU7q4b4LgiZ8sT+ygl8jAUlZQaYSgyvjQVcyRkjShGVVOCjBGFYpw3vRIqhiIJU/F0fC9LifgsUSHGsiq4hpo+GycCiddLfPaUSGT5EUaCrDEtgtMfNR1HfsIVg+DHxtHfaBYY/LqAAcx8Daosug2dAMkbEww6Iu/IC0nlU+SWyxTOrqKuXeRRd8L1/T7D9oTAsZBkhVSuTKWe4+WtCs/W8ywbAe0PrnP8wQGPDy3GSQxBQZOpXqoy//x5Uk+9yqCwxrfeecA7N0442Tlm2LhHHEWoRoZ0sUppPsuV9RKvnqnwdC1NenyM9HCH4ZvfZnLcYdLs4/bHsy9tYAdopioCNRUJLaMl0N802XqRhdeeQ1u/iDS/yb65zH7f5UGnzddvHs+AvyLZOEZWZRRFxszq6IaKrsgzJE6YwFld2ydOMDV6SiWVUqnmUyyX03zmTIX1YpXqSp3yl/Jk9u9T3btPuvIh9YMh4+YYu+fQHnmzL6V1Msa3A9yhi6K9TWFrn/T6Jub6RV5efkGYQhNpdevEYqDKjJqHBF0b3ynguwHfqwvmnV/Pc+7p16gmv+s4jBl0bcZ+hNyc0Lm1g2Lq5MwM5zY+z8gTQNwPvBCr7xAFYlx1/3jEQi5F2dQ4u3qO3GGDcaMtgji7NsOxj3IwYvBgD6VyHyVbYSGXBCN2J3QGEc3uZAbHfX4xz0ZlHS30MAOfdKOFP3aQFJnIHs9CJqdU9yNNFDFvNGEsS6iawuO+TS2rkytnyNaWUZ0JkGRseQ54DrJnk9N1UgkebOpjSus2BVOj64TM5eZRF1YxKvmZnUJW5Nn+R/Im5FK52c1LNzn4R57wQsUZE8XIgKqJwM1ERh60GqjFeQrVCvWciAvqDx1cJ8AZezSHLs2xR5heQK/URUBkMYuU7MLcoYvXaqIPmmQr61QzIil5oIoT17aEn2t/YONoi2Qri+jVGmalhaw0RfL30BYhk6MWufw8C9kUvXIaL4gYOafKTMsNiXIJ5T5fQc8JUc0UcCv5DkZGJqVIZHQVU1eBAEWWEzWfmFjEagopeS8AiEJi309uKBxSWo6UcrrHgmSEFyZjPFUXZAw9QAqCWYGQohBVA1WRUCMwVGV20winKcmxoiFp+hNYqNMCIzEl6QhRlaYkOzE+ARGVUIqeLFJR/MQO7C8pXr9s1tdf5fqVLGC/yBsnfikSmgySKzhm0XgovC1Atp4nv15HW7tAUFrl/sGQhycWVhK1omcKpCuLXFkv8exSgfWijnZ8nZMPdzi63+Vxcuc7VfvNv3AW4+mX8epXuHU05r07TY4fNeg9vkmcjEJUI0u5nuXqVoXPnq3y3GKObPMW/sNrjO/f4+it2wInNPYIEkWjoitCvr6YRTVU9KxOfl2kxxq1Kur8Klx8DStV5NgK+LObJ1zb6/P4cMj+3SOcQRt/MiBwbSRFQdVNVCOLWZpH1XVkVUaWhIkyCiICz8MZtol8b2aiVs0MRn6OTCHFg+MRFxbzXFrI8Zm181TnL5DaarBeWcBp7DFutLAabYr3WrhDQYKfpjQHTgDsJrlcDQpb2xR+O0WmsklptUBzXOftRx0eaTJ238QbD3EGbQLP5v27JhMvxA8jNi4+jQFUo4g4jOg86GIl0Rbdhx0UYwctbbB44dM41axIEHYC2odDQbD3Ix63xtTyBrVsiq3qOubGGfLHHSbtCcruADuM0Icuo70TskvbpOvr1Cp1ocJLfFjTfLUwirm3MUGXJZYr62iBQ/rBHexWnzgMZzRyOd+jns2wVE6z3RozGbqMeyHexMFOKex2xizlDappjXxxDrnXRHHGYg9pjxMu4ZCMPk8uOXS9MMLxQ476EllDFLBCoUJqbpnMQoXQ9gBLFNIp08+30VLSrAhOPV0jN8ByA+JUDowMsm4kQFqRuh0c76FUFtCzVfKpHPWiSSPBqvluSGvkctCz6Tkh1VxVdGG1Boqm4Hk+vh1gN/uYnSPk+c4sKfmorSJJHr4bMEj8XD03xMye2hRUUyGwQ3Ej1O6gdo5QinXmM0U6WT8huzuzkMiRFwiwbbacRKSkibxgRsyXQh+VCF0RFpuccXp0+pFAqQURovikDLET1MS+UhQxDylw0VN5NFns06ZerigWI/gwglhTRcSJos+eX4pj4jgS3dMTBUiSJaTkpAtjRAqEqhMHooAJLJQuOqupJF4GJRLn3PSGUUlUhbKEMC/H8U8WJ0meSfafLGJ/2Tn7SUzavxTx91e8fiUL2C966TJI3gTZGSBN+ngjMY5J1wqC/H71NYLNl7g/iPh/rx3R3OszGQzIVFfIVSssrJf4j15Z52JRQr75DY6//U2uvb7Pfcuj50ecyWhcqWXY+Pw65X/4RzSMJf7iZot//e4+d773fezOIQCyqlFcf4qFrU3+069e5uXlAgthm/ju/8Od//F/p323w6Ax4sQN0SQoaArZksHi8wtklypkl6rkrj6LUl2C3Bx+dYueE3LshjSGLt98s8mtg8c0j0bsfnQd62SH0HN+5nvjWitoRhZZ1QW/0LPxbQt/MviZj93+YZ43qqtk59dYu1jlbD3H2YUcn77496m+oFE2FeaCMWd2PyQ43MFp7NF4/RrD/RHj5piHN9uEcQtF2qWgfcjKNz5g7soKlavn+Q9/+z/gS1sVPjqx+GNdobU/ZNg6xumdsP3+mJO9ZW4+aKPIF3lp6SnWv3SB5XPv4o3+Bc0bJ/R3BzTudLBOJgz3ulyuLXL2ymtUt9ZFTlff4fhoxHjo0D0a8WbSnZ3/zCYrL3yZar6CUXlT7FuOLPwwpnOvhZZ5xHw6zepXXmY4l6U19sRzPe4z9EOGXZv/I63RvFDlpaUiZxaeJn3+AarxgPFxF2v3kGwgME1PX/ptUglY+YcpNUmbDgmDiAfHFvWiSS2js5ytopRqRKM+8XCM12qKz7SqsbCxxNgzGbg+7zwCz/Y5sX0sJ+DCfJYoLrA+d47s08+hZW5jNdp4w7HopsZD1MmAbE5kW5maIoQLicLSUBW6bpa5bBVlrk4cRTg9kUQta8JAngl8Fjdf4IXVIrYXcD2I6J1YDLsTrisy9y/UMGrL5M+/SNEek3/vIcP9EZEfMXx8hFG5RbZQYX7rZa6uFOlYongNuzbWwOFWY8iDjo05X6K8/jQZZ0L2+iPGJyPiKGK0f4Kev0sqk2d19VXCOIMsQVpXRKZbEhLZ9dJUisuoUYDROSKejGafY8mzkO0BRaPIUt5AkSUGqQAvFKM9J4zEXsssoBTmiF0HeTwSY0BZEUIM30GJPExNqBlBRKOETxA1vDBG0ZLi84SQQgo9DEUiUCXiWAYigujjI0g1lSWKoxmnVIoj0Zmp+myXNmUa+hHE8algTVckYZoOg1mxm3nLFJVgGr+CmFZNm4QfL2SfJJ77WWK6X5M4/rquRK5KKO48JVlGS5uoRkqgnGobtFyJ+50xVt/GS0zE2YoYHT6/UWKtoKM1bzG59xHdO3u0E+mwIUucy+osPDPP/EsXGeVXubk/5Pv3Wxzu9mbFCyC/dJ7a5gZXLtV4ZaXAgndMeP17tH7wNjvf3eVg4tNN/FlzuoJhquTqWarPbglBxvIZ4jMv4RgFek7IgwOLxsihMXDYblp8cKvJoDNh1Gww2L/zM98SLZ0nlSuTq59B0Q0UVSYMIgJnjDcZ4o1MrJPHn/h4fzJk2LiHNxkgy1fpnVjcKfc56tuszWVYyhss5wwubX0aY+kSuXMNloD0nV16j05oNye0vQgrCDl0wHuzIYpbo82ZlXOsbr2IvljkxXNz/IgkqygKsXsnCYF/jTcetNFkGX05z9LqVSqXNwgcge0a7w2x+w7DgxGjO3cp5Erkz2VYL85xebmAnURoOBMP2/LYbo7Z7TtkaznKKxfJDDsU1q4TRzF2z0koDhZut0/GHVJOm1QzOuWsuKMOPI8wCDnqTLh3PGIhm6JiqiyWasitBpLSF1BbWSZjPCZ/bsRKPsvFapb+xKfRGOJMPCRJmokIJn5IrBrIydgo8gOCkYeiqYSdY3JnoWSqgjCvKTgICblt+zQGIhqkmFJYqi4R9pqkxo4wJANxQtbQlcRIq0jJ7iemP/FpWS4TPyI2c4IkoQnrhT/2GB/1SRVP0Ks7pKorLOfWWC6n2W1P6MtCTWiNPY5HLiv5FNlcErhZMnF6Dp7l4w4dnM6QdK+FPO5Qy2SEsbmjz0a8bkKpH7gGxXRpltHlj8VzhLaHNxyjDjpkdYWSqVIwNIGCSkaqTiCAyVE2TZQSRIwoElJ4ZBk8FylwMNISBUPFSh7nhqeBj3EMsaKJ38WU7h6FSJomniMRQyiSlNgzZMLkn6ePj+C0cDxhJp4+VpUlVDlGiyXC6LSAhFFMKEuoyQ2mpLjEyY4qThSKcDpGjBInsiIJWK8qS4laMfyYwjCWJOKk+4qS16gQEyF9TJn441OvXxQm8fNef6sL2LQdhlNpqBSFswWqaugiJM/QUVfO4eTqHLVtdroTXDtIZPUZitUMF1cFpDdrN/EfXqN7d5fedh8vitFliYKmUL86T/03zpF97hU+7Dm8tdvj3k6XbuN49pokWWb+3DkuXKjy5afqLDiHBO9/k+Pvvc3Bmzu817XpJne/W1mdOUOlvFWi9tQipZc/hbx6kbC0zKOxTKM94thyeWeny0HXpjtwsAYOrcdH2L0T7N7xT7wn00vRDUqbV0kXq6TzKYrVDKquIMuS8PO4RZxJDXvkoqULOMMW3qj7U7uxKPDxRl0GjUfYwxKDdoHx0CWTT1EpmiyXTX7rQo3NUo6F6hXKnw7Qq++RKt2l+6CHfWQx8GOhVgwiFtwek45N6cJfUHLG1C++yme35gijmPejOCkmJ3iTAePWATe3i5i6MO/qi3nmnro6O9y6ByPsMEZt23Tv7qLl02RzRWrrOZ5azGM5Pje9EGfi4do+/b7N3faYkqmRLa9hbI2oXHqTOIqQteTu1g5wOkNykx6FbJZ6LkW9aKLqMowh9GzGQ5eDrs2x5TJw0ywloYSyfIzbs5JRHpSf3qW2cImzlTSWF/JeNcOwLxOGIqU4iIQMO5ZP5dNTjiWAnD5CG3copCoiw8pQGShykk4dcNS3WSoYDPIGi9lKkrbcn43Op2xDMToTRHRgRlXvWoJm4WcN1EwRZRoy6UVM2japRpt07QB1/jFzm2dYTMjue7JEFER4js/hyKFjm8zPFTBry5jVInbPJvSS2Jj+iLDXRJ30qOfKsyLYPRFCnDCI6Nk+IzfEz2ZRC1WMSiEhwwtCSOh4xOMhOgGmKrrJnK7Skb0k5ViIkewgJpvKImeL4HtEnizk7IGP5LvIgUNWVyikVDGC88NZNl4Uk+ywUsiGQHXN/FxTxmAUISlCMKYpEmF8ituCUxrQVEghTQtYNPWC6TMhhiydlogwhiCKURQdlIBYS50WokTggSQnftc4oXnEM8yUJgN+IG7goyc8YEkhDROvJIgOTI7jU/XHX8P16zwwPl71f5E3RIpOf4FxFKKWq2g1DaW2zGDuIndOJrzxuMvrd1v4boCR0cjkU/z+a+u8ulriStUk+MZ/x/EPPqDx9i6t7T7VlMrFnELtbImn/snvoz73RZrpZf75n97h1u0mze0drOMdtHSe7PwG1c1N/rN/cJVPrxVZco94/F/9F+x+b5vre0PuW97stc6nFF55ZZmlV7eovPQ86uVXua+vcrs15ta9Jt+9cZyw3zys3pgo8AiSQMnQFR6TdGUJZXELRRfBlpV6nmzRoF5Js1nL8spaiXouRSGlUDZV1OSL6oYRth8n9P6A281nkzGZzYNjC8v2Z8ZrZ+wnh2WIa43wHQvr5DHdHZHDJcliz/aNtfMUqxkW6jn+yee2uPTpq8y/NuS5yh+z8IObNN494u6JxZ2RR9sLuTl0Gf7X32HtynVWP/c6v/tH/4xnFzZ5d2uO79xt8q0oZnSyT+BY7N/eY9QTr+3RlXn+45f/PrW18+TPfg93+Of0tvvYY5+Dt/eZtMfMH3cpv9zgiy/+QYIhMvkTy8W2PIadCX/yQYNG3+aVtRJXFy5S/+rXyK+/Q+/OLu07R8KM2+wR71yndM7gSm0OP4x5+14LSZawR0ISf9Qec/twSC2T4vz8PEqhgqyrDPe6eJaPfv8YWVfJPv0cm1vPU9lcYuQtc/9kxFHfIWeos/0aqj4zvgaOx3DnBEVv43QG1Ffep3zmec6Vy1xZLuAFEc1ujO8GbDfHZA1NED42V9H8CbHnYPoBdmeIPxJJy+nQpmjozKXFAer4IRNbKPFEbIzMemWd3Oo8k+Mu4+aY/u4Ab+zNZPUrFz+DX8/jBhE3trsJvFkEeRqqgqEqnKtfofr8xeSzcSI4nMddhg93KeausfnyJdygQBjFNLsT3MQictCz2Uk+qyuVdXJnNwGYHHVm70k0GaGOOxTMGrWszsgLaFrKLKOrZ4vilkqXMOfqBFEIVp/Y98Uo1cwQaynKxjwSoqAPXPHztcTTFcg6klkQcvjKeEZ3l4y0CM6FWQc2HeepsogomikCnxROJJ0XoY8UeOgpnVAR3bcqSzNPWxjF+JJQB+rJKFGa+t0UTfxsSUaRPqbCQFckVBJosG+LMzCOBFtx+jpkldCPBHsxTk5XWUKKPz5G/Ju4fmUK2PT6pVrX6LRVR1aQc0URE1JZpG0HPO7b7LbHWGMPVVMwMhrlSobL8yLXKz0+pn1vh8FuR4yT4pi6qVLaLLLw3DL6lVcY5Fe5eThiZ7/PsD3CG3UByC1uMbe2xtb5Kq+tFlkKWgQffoed7zzi2sGQR2N/9jJLmszFXIqVz16k/OoryBdfpZ2a5+s3jvnRdpf94xGH272Z4RdEoVBUXQRaztVRNRlVV8iVTIyMznzB4FNn51jKG8IcmlapyxOU8THycEBwf0+MUwAzV6KcLRKbeSKzwPkLc1h+hOVFHFmneWCWF7DTnjCYCMXZfmMghAgDh97uzaRjs8XeZNBiUFmid7LO/1U0aJ+r8uJSns1XfxNZUwWn8a1DHlrdGQbrzshFudVC0RXmPv8WC5c+zfP1AkEY8+G9FrAyI3dYvSxNY8SP0hq/e7bKZu0cqQsW5bM/InAC4oMR7tDDOrIwHjUwKncpPTdio5ShPcmQyRuiCNs+g96EWwcKxbRGwVBZWDyHOR4S+QHj4x5RGAu4beeI1OiEyuI8a0WT5WpmptiUZEl0isn7FGtmsvhXRa5Z38HpO3Tv7KIYOplMnvx6lrOVjLhzVhW8IERPLA2xJCMlJtY4ivDGHowBugQne6Rqy5TqVep5g1o+RS/hCjoJrX7oBHioqHoW2cigGCkiT3Qu0WSE6o0xNWMWMhknpuRRks/VnvjUMiapyhypYhbV6BL5Ee7QY3wyYXzcIW+1KGVWqGV0dFPDGft4QUBr5NLo2xyUTGFsri6RWWjidESiwBSuG/ZaZOWAWkZnMW+QS5KGASHtdwPsIMZXDLRSDbPSToz3tpDDR6EoAsnOZ2pK9hJw8pQO70UxhppCSplIzgQSvmPk2kgpGzMj4WgSQaTMjMjTMaAfxWiqTqyJLmyqRpRTJqEkz7pkmaQLQ57l631iIUg6KSkKiaMARVIToK4Y5ZGcedNUjTCejhLFeSYS59VTQUXyc2RAlRB7ryd3X1F0Gvgny7Pnjn/Og/XfxRjxV66A/aKXnLC9ZotTsmTsLAAAIABJREFUVUPOiejzIFvlZOhxOHQ46juz7itbNLmwmONc2WROdpGOHzLaP2HcFHJ2XZYobRaZv7rIwksX8RYu8bBl897BgO7JGLt3QhSF6JkCc2trbJyd4/eu1lmKe4TX/oKjb7/xE8Urr8pcLRicebFO5QtfhHOvsBdmeH+3z799Z5/u8YhRZ4h18ljw1FQdszSPls5jZDSMjE6xmmEuJwILn1ouUsvq1LMpzlUMcnKAMjhCOj7C+fB1eo02drPH+LhH6IWJqCVPqpidgXnN9YtkChUWskU2CvPEcyaRnsYJY1qTgLEXcWS5vL3b48HxiP3jEYGzzghwesfiwLV6eFYPu3fMu0WDjuVheQGrT32KnG6wqqkomsql1piHlqCKtNyQR2Mf40aT4XvvUtANls69wguLOS6dqXAbodQaNRt4kwFWX2f3cMitloWp5Visn6dyeUOYh72Q4cGISdtmsD8kVdyn2H1MfekqF6pZlippnCRWfjx0aSoy1xIv1XNPrWGsjTHHI4zKLm5fUDG8VhP1aBclU6GWqXNluYDlBMRxjJuoRt0gEjssPY2czqEaelLQXSI/or/TQcsY6KU7GIUKy/lLTHyTMIKW5aLJsjDEKrqQUKs6kiwT2CGBI1BVzuEhanUXJTfPQi7FQtGkORQE/jihSYw8Aeg1Ek8Xqkbk+3jDCVpmgG4PyGaqFAyhqpRkiTAQZtyjvs1R0WQxp7NUXcKsPcYsNYnCaBZvMjnqIg+bFMpr1HMpShmdydDBc8FJuvfjkcugaFKbXyFd32N83GF0NCL0QrzhBLfbJzfuUDREyORC0RCdR+JDdMOIoRsw9lUqhQpqeY5UAtadEu+l0EeVOC1gijwbjfmREEYEUSy4grohClDgEUehUGSGHilFwlBkPDUmh8rIDQTsVhKd0FQKTyotIk4Qie+xfHrcKrKElIwBJYQSUOK0bvzE9cQuTJbF7moK1p1e01SNOPl5SE+wCpM91uy8I4lESc48KSF2TG/ip4+b7b8StSRA/P+jTOZfyQL281Z+OfFATBeYsSQjp0yibJkgN09PyXHtuMm1vT79kYuiypxZLvDiRpln63nW/EOim+/S+eB9mjeOcXoOekajuJbnwj94leyzL8O5V/jXd9p849YJdx90GDR2iQKPTHWFwnyNf/+rl/jimTnO5yLaf/zP2P76DW7cbP1E8frDL22y/jvPUvjsl/ig8Cx/ca3DN2884Gi7y/77r+NPBsRRRLq6QrqySL66wOWrC1xYzHNmLsNKweBSNU0hpaC5Q5TD24StBsHtfRrfe5/Huz16232OWxPe7tpEn/CeGbJEWVco6worpoqe1tBMFaNkoBoqmqmiZXSKWwvMLVU5v7jIb734u3ifvsLByOd/eW+Bdx6c4WSvT3d/j+7DDwBwh23ufvtPOLxznts3ztCbXOJzG1e4+PdeYOtzDzBr/5yjHz3m5GaLD/oOAz/k1sAl+7+9Sf3WDouvfcD6C5/jP//Ci7x7vsobD9r84B2FyWCCPbJohRH/6s1d9i7VeHWlxItf/keYK6+TWbrGgz+9gTv0GOwOCZyA4rf+b3IvNDm/9Rv87pUFvq8r3H7c42RvgGsHOBOf1tDlbDnD5doFys/mKO89ZvCwgdMd0r7+iMJwQm7UY+7iS3z5wiZLBYMP9/t8uNMTRSCK6U18+h5UCgtoS+toGTEK7Ns+3Gjhjz0iP2A+Cln+O5cBU4QSRhFRHAu+oRdRylZRa0uYtQOARAQhUFeSLJNNmVxc+8zswL8rS7RHLrYXJjcMEcVUDiWdQ1J1vOGE0A/wJzbG2Tuk1BT17BJrcxmOkhgfZ+Lz/o7IUdNkieWzL1BwxgRjm9btNu7Qw+m59Hf7uHffR08XWCttcTkp5mEQM7E8to9G5AyVrK5wZuUiujOh4vlYjQ6+LQzJo70Tcgd3KK2qXKhUeOVMhfvZER3LQ5Elxl5Iz/bpOxrl6jpaIiNXjg6EKVk3BN3dm2CqBvkkGHO6g/LDGDeIcYKYKJVByeSRPYcoEh1Y7Dpgj5DtATmjAIAiRQj8gbi8MMaVZVJGDilwRCpyLHaUsZqaFTFFktDkGAXpVNSRRPycHmTyx/+CRAQiCqDYY52eedOHRlNjc1KIYklO5Pp87PssS8xEa/zU4iXN0uqf7L6kH3+On3H9dWR+/azrV7KA/TzX7BfwZPsM4gNn5IjMAqORCNGbLq61lMq5hRyb5TSrhRQ8uo+9fY/hzhGBHcxCHgtrBTIXn0LauEpTyvLOzqNZ0GUchWiZPLlKldpygVdXSpwt6SgP3+TgjXts3+lwb3S688qrMs8VDTb+zvMUPvd72Gsv8m++u8Pr14842u6KkZwlDhJJlsnXz1BZrlJbzPP7zy1xYS6TgH4VtKObhM0DwlaDzrVbWI0Wo4M+2+8csm8H7E38n4hM+fHLiWIOnYBDJ6Bh++h9Z0YKgMQQLkusp3fJz5kU1gqcbTVJX7jK5sbT/OHVRTbm0rxRSXMvb+AMWtidhggCDHyskx0kWeGbN8pJl1Lmcm2Lhd/5Iunq+6Tn7mF9e2em8uwdWqhGC8W4R11TWfvaC7AkDpnbj3vIssRkJEIRWy2LDx5r5FIqz1w5R+rChMpkxOHb28RhjJdQIAYPG6Tm7mCU5zlbOcvJYp6jvkPzYEgURNgjl0FK4VFvQi2rUyguYdSq2M0ebt/C6YjgUzVjIOdKLDx9jrPlDBM/ZLd9amp2g4ixH1EyCyilGuk5U4Sajn1cL8QdekLZ2O6SdUaYWn4mw/bCKOESinwtvVRDL5XQMhpSTyL0Q5zeBLvVx2weUDinMJ9JsZA3aA2dGZljxsObURxk4eWaCO5l0GpgLKySKy5RSQzF7WSUaI9cdtsT1ioZwo15kVe2uo1RMk7jXpwAr9NGH7bJzm2ykBfG5tHQIbBCPDegY3m0Jz6+UcYoL4gddCZFFMYJncMRYo65HoValVpGZ5KEf84+l1NDsSECVZXxCM3qgyyL7nQKxlXE7imlyPiqkLJPxRhhHM+ED5KqJd4qT/i5ohBCD4UIVRZFW5VFcZCQkjEeoCR0eJipAU+VhaJ7UmQJoliMEKc30bODSZ4pCH/cTDy9nixa0w5Okn7SaDztoOI45hO1F39FooYsCdHJj488f5nIlF/L6H/JawanfDIeQFaJtTSWHzEJRBJtGMWoukLB1DhTyXCmZFJNxXiP7zB41MA6GhBHMal8imw9R/HMIsrmVYbpBR40J9zc7dNvjZn0Oygpg0y5Rrme5bkzZc5VDPSjm4zf+x4HH51w3/JmRaSkieJ15tUlir/1dxktPM27ByO+86MDDh/s0du+RuCMZ/8/meoqS+cWubhZ5rWtOb64WaIYWaj9bcLbj+i9/w5Wo4Xd6nP80QnWyZgTO/iJmJW/6jXwo0/s1O5bHjTHrOz0cYcu81cfsPDSLS5/5Y+obM2xlDN4ay6Dbb1At7HIuLWP3TkkCjzs3jFH212+OzXOehW+dPW3KJVqmLUik/aE0sMe7ZEABacORqjGCZIis/H8NdZWrhItFnhjvcTt5PU4Yx+r7/BYG5IzVD6/XmKltoV+rk9x7T0CJyD0Inw7YLjXxqjsoZRus/T8Zc6U0xwsZNl50MYJRCTHeOjyqCUMxXNmllJlgVTxiPFxF/toRBTGyJqKljHIX/oMS/ksIy9NPRmTTmG9Yz/Cz+QxK4tkFsqYhxbOwMWb+En4pYAoS/4EPV2YydmnMvC+E1BI6RTSZZTq0kyKLvZQLm5vRNhvkZZDCoZK2dQoZ1McdMWO1AvCRM2oiVGkrIgxqOUh2SKjS50/QC4szuggeykVEF1Ys2ez3bLoulWqpSX0pTXSc6YAFI9F0KTbtzB7TeRJj1pWp5ZPcdzTsC2PKBTZaa1E1ainTzO6Ij8g9EIB1h10wOqi5AbMZ1JYSbrxyAlESnEUYwchkW4ipwTpXk4LuLKUEjYDKRYqvOkY0Y/iWZxSlBzyUyyTwF+IMSIwA+tKoYcmp1DleJZSnNQjojgmiCU0JaFx/JQCJkviJg8Z5KQLe1KNKIqXIgpu8vexrMz4hGKHJs06o2lXNn0tPy3qJEK8Nhkho5diPl4cZfm0RXvi9UbxdFx5+vqeTGT+mxwo/q0vYB8rXk/6HxSdKJXBdmO6to+dcAELpka9aHC2kmYho6J2d+hvH2A12tidCbImY5YMcktlihc2CKpbHPQ8rh0P6Z5YjHsDAntMurJIoZLm7GqRl9fL5IZ7uNd+wNFbt7hvCaUdfLx4bfzuCwwWnuatgxH/9tohe9fv0Nu59rH/n1z9DJUzl/mtF5b51HqJS9UMc8cf4T28Tn9nm8GjBscf7Iswy47N44nPwI8Y+OFfuXhpEklumMgBm4ZeDoNPKmOwbwd8670jrj7o0d/p8FRtkcXLr1Je32K1aNIaOtyuZmg3Fmjev4ZvW8RRyODkmDiCt/yQwcTnTHmTjbOfxixUWdtrYpYeYT7scbg/ZOQEyLtC3Vj/6HUMYGP1WV7erBBEMXejmCga49rCBHtHG3C3PcGsZ6ktX6R4bgV36BDYAXbPYXRkkco3MGtF5n7D52wlzbGV441sCs8NCbwQ3wnZbY9pVDOsFw3mKnVSxQeohi5oIlNCiqGz+Mou1cWnsfIG9aI5o5nbXsCJ5VIyFPTcPPmNOk5HjDFHhxZKwjGMvAAp8GdE8YkX0rVcLFXmYOhQSClk8/No86uYNSFFFwU5TAIaR2TtAVm9OItI0VV5Rqp3A9G9aEmuVOSL4hOHMVajhbGwT6q+QT27Qb1ocjc1YqTIOBOPiSW6sI4dUi7UUesbZOsFERmT3IhN5fD6pMd8Zol60eSgazPq2kRRzNgNGEw8LC+klC6hVhZIlXL4EwcQaeGhNSIadJCKfUrmInOuNiPDK5IYqfmhUAPKunkaTxKFp3ilKJiN4FKqTDpS8MNo1l1AMoFRNJSUSexMIPBPpfDJpEbRkt3VEzgmeMKeI6vJUmoqZz8tJsKLlYwQn1AgyokKMZZkwRuUBZkDRf1YQYGkYCZ/zigdibdrFi0PxMiz7msq9FCQiImTbJUniuuTjdhP6/qS5/+JjvGXuH5N4uDnj1OZvWlTk+BUhYOQnaLqjEKZvhPQtEQOWC0vFuAXa1kuV3T0w+vYH36fw7fuMjq0CJyAufMVqlc3KD//DOqV1/ju/ojvPGjzw9sndA6OCOwxqplh7WKNzz+1wO+crXJ13mTwP/037H77GtvvHM6wU3O6wld/c52N33mG4he/zGT9Zf7pn97hRx8e0rj+wU8YiLc+/zWuPLXAV67W+cNVCe6/wfDrb/H6//oDDveHHDoBAz/CSgqNLktkVRlFgmpKZSmZCSiS+G95VSavK5glg/LZEplaDqOSJ7c6j5r4faIwYtxoMT7uMjroc+vNBo/GHiduyI9fJ27IN5tj+PNHfPXuf8/CM/+GhRe2OPfs0/y3X/5HNCZwrzPhf/7hAo2jIf3mhO7eIzqP79M70Nm7XeLu/oBnz5T51GaNr/4n/yXV3Q+xP/oh1/7Fd+ht92kNXFrXm8T/wzeoXb1J/VNX+YOv/FMuVbN8byHHd283eXD9mEGzz2To8i9zj/ntKwt8eq3CxS99hVTxu+hv36J5q8Vgd5jQ2R0uXvgWWxdfQ98o8+bZCvdUiUFbhIs+PhjwVkJm31o6i77RJH3cJbC3Z5SO8cmY8sVvYTzjsrH6LGfnMrhBxG57zFHf4d39PpYX8lQty8YX/j2M2ltklu7S/PAxsqZgzmVn7zmIQ7rRnXDQtXF80YX0bJ/nFwtsrT5H9eVnUQ0dzWwwadv4Yxe72aMwaFBdrLBSMOjZAVlDnUWktCcetYyGmS4hl2ri54w97J6Dcm2POIyoqRpnPnuBgZujOXSwxh6DzoTAi9iL4M39Hopc4sz6cyy8dBFZe8Bwr4M78HA6Q+z9A9TKPTYvn2HkCUl9K0lJjoKI5tDlYOSR1U3Kc+sUzq4iyTJOZ0Doi1gftXOMVqhQW1slik20JwqDLImRrOVFFDMVESNSWZjJ2cWHNkCNA0xNZj6bwnB8/DCeGbUlKfFzaQZRYCJni0TJCFI2M0JNGEeJKZiP7aJOTc3xTDY/9VXFyeNkSUaVE6JFLNSI05sSCeEBkxSdWJLF+HEK6tUMQkkV+6zkDNOSAmokJA1pqiiEpCDJSEpicE+IHwCRFBNKoMqy8I5FEUT6qQdMVk8L21R5L01ZiqJQ/nV2Xr/oc/3KFDD4xeJUxAM/3n1N59dOEDNOSAemrmDqKosFg9WCidLbF0GXu4eCmu0EyIpMpl4kv76AunqOoLzKvWttbh2ImPnQc1BSBma+zMWVAs8s5tkopdBaD2lff0T7bpdDJ0CToKwrnMvqrH7hCoXPfBF/82XeO7B476Ojn1q8svPrPPfsIl97ZpHXVgoE3/+XHH/vHfZ/uMN3brdnHd30KmkyZV3hTEbHzGjoWY1MLTMLstSzOpmlOVLFHOlqkdSZy8ilKmTLRNmquCtEqLpywyPC5gHB0WOy9TfYvN2k+aDHfcubFeMfv242x3hvHmB3JliNFmu5EmvrT7Gwus7EX+HDgwHvbXdxbY9J5xB/MsCfDNjXTSZDl6O+w6Xaeba2XsFUNao/vEFgBzj7Q3p+xPHdrhjfKTKrrzzkTHmTrpOnOXTYvddm4oS41oDDoyzvZXXKpsaF+hbmmQbZRgvrZEx/b4jTcxkejPAe3yG9sMrC4lXOLeQ47ju4doA98gTXb+hyMnaJMvOopRqpYhaAyBdKPEWXGe2doNb3kCurFAxz5uGynIBHTQtTV8jqCquVNbT1PmXPSfiIEXoujWKeFrAwFrEm1tjDc3weHIvPZ8nUyKVklhY3yLSaImF5LMZfgeMRTywk18JUDbK6gPPaCRpq4ASCqpEWAoYfNyVPjrs4hw1ySkQ9Z7BcTnM3l+JYlggTqPNe16ZRSlNNZ8gtLJP5/9h7zyBJ0vO+85c+y7uu7q520zM9dsfs7qy3ABaOALGgAQESIkVG6E6iFFIgdBc6krgj7xiUTqQUuA8MSdTpgmIEvYMlSC6wxAILrDfY2d3xvnvad1V1+aystPfhzayuntmFANAGyDeiA7ONrsrMMu8/n+f5m8lt3I5FGEkLnLaF36qT0RUqaYOpnEkioTGQJeTIJLplu/Rcg3xCuMObpTaB6+JGjELh7m5hKhIJTSJtKCQ15ZY5li+pyFpS0NllZejuHudj6bKBJosA24EXDJmEwI74V9FB04fPIVp56q7q5GY24C0rBrwwGLFgEhVQDES3zK6kaA4HkUhdtDT9QFxbGMYhvAJUpMBD8hxBUold7CWZEI0R8qNokRK1D2UJPwRFlgkVFcnbaSeG0u6dc3hqo5XXt5HI/Ne9vqcA7Ltao9R5ELoHWSVUDRxXOFW7QUhCVxnPGlTSBuWUhrSxirt2nd6qMKEF0FIambkJYeU0tofqQOLCepv6toXVdUayvRKc3FPgSDlFwWvhX3uD2sUam9t9Wm5A2VCZT2rsPTpG4cFH8A88yBubfZ64sMna2dO3gFeiNMXkbXfw0ZPTPDKXI7d1mrO//2WuP73Ea037FvCaMlVmEypTpSQzD0yRLOcxSzmyeytISWGjI6fzKJPzBIkcgZmjGhi0BwEt22NlzcbzPWQJDFXhQOkgxcO3kT/msbcyz8z1s9TPXmPvuVVOf/0Gy32X6sDfRQzZsD38EFpnanQ3LbTUnzJ24jzGoTt57PB72JtPMFdM8N/rPapA13OwW1XqV16j35zG6s7x5P4S7t4SR/beS/nOAwzaNoO2Q6NmsWi5+Je2kRWJqQsvkbsjw6FSia3pHF/L6PQ7Co7Vplm1uGQ0Gc+afPDAXtLzR8ivLtJbrQEbWAMPebNH49Iy6uR5jMw4C6UUS2M9QUBw/aEear1p0/Ugnx3DGCuhJsTXy/YClLaDtVEnW9/AsBqk9QyJKHG5P/C4UbdQZQlTVbirMk5mcgGt3yMzu45r9VFNQ1DsRzYWJ3KysCKyz2VdYTxrMJEymBnfg1FZJVlv011vIilSFHTZQ3L7GGpimNQcW1KJdGIR7pjKFNEzSeSofTloD7BqFtZGnXS3St4YZyJlUMmbXFEkXC/AHXisbFtsTKRp2Cb5yTlSlRVRPTki38u1+gTdJoZnkTd1xlM65axBtb3z+YzjTRxJx8yW0It1fNtBUpShO3zoOsiejanoUVyMLDRYMYAFwplCVbRhPEkYyDtELc9BNUx0RSJEQpGVoc2SjLQzB1c1CMxIGypubMX/7uiqxExJ/FdcRQmKOrfeHIcBsiwL4IloHzEpYvjOSjKhFICkEHsRhrKKG4GXH4RRhqF4nCKB5HtIvrvbSUNWIZ6JxYdnx32IIBzqxpQR0fJbhVXGrdUheSO+rr/lWJW/3wB28xsV3eWEikZgpGl3B2zbLgMvYK6YYDaX4MhYkinNof/aN6i+fpn6RRG7kCiYFPYVKNz/EBy6n1W5wKurbV6/Uqex2cWxbPKVCqVKhnsOjvH4wTHGOos4rz7J2tdeYulCnZrjk1Ak7j5QZObBPUy/5wFWD76fJ8/W+YMXbnD11CLt1UvD09XTBabueIQ7Tk7x4/fO8v1coPZrn+X5z7/G7764esvlysA9BZN3/NRJxu86hHHoTvzb3kXLk2kNfM40bRp9l9bAo9l3OfNci43mOu3mNdaubGLV1+g3NoZsx3gV958kOzlDaTLNRx89wdGTD7Lw7gQH0honll/DXb6Eu7rI2nOn6a636ax1ubHYouH6LPddri42eePXXmDCeIXJ8p9w/Ce/zLH77+PE4fuZ/Mhx/uzMBq+eybB+6Rr1S69iNzfZvvIa/6kz4ItHJ/jofXP80x/6p+yf+jOM7Nfha4s8eb3BDcul/Mo66d/4LHs/sMz8O36QxMIB/nx/iQteQM3uUr96Frs9y1d6Lo8ulLh/+gS5hyWmgoCVF1fobvbYaNrkvn5RUNldhwfv/fHh3OHMYoNmtUevPeDsSoullkN6/CD64W0K+57G7bl4613svkdrqU5qehm1cpWxhQUyEZPQ7jl0Gn2aWz2WahYLxQTHxmcoH8mSb9Xxahv4roeSTCL5LroicqlAZIRZ7YFwXekJg14/CLnt7oOkjgbkAGujLqovPxAsvvEG2XKZsZQ+FPL2XZ8zqy1MVSahyewr76d4ZM9QTNxcaiEttVDNG5SvvsbEkUe4s5Kh43i8eblGe7tP4IUsbXZ5M2uQNVTmZ45iDmwKvsg561ebeD2b/kaNwvYilYnDuOUUJ+cLLNV6dGwPVZboOB41yyWty8xM7UdXFCTdxOxE7u6qJjwGnT5J0yTtyxSjpGNZkiKLJiEwNvSkSDlGVF4g5DKSN0BVbbKGTt+VBIElDEVciRxhT2zHJMmEqrFzc6snCBUd14+qmQiMZEn4CuqKHKVaODvegpJM6It4FEGFlwmJCCBRrtcQGGQZZFH9hoqOj6DBi9y9HT2WpEQtQAkkp79D24+CMENVE7KgMECKjhdXcCCqLC8QEU+yErngj5A4hoSRCAHFnE7asbd6iwrs7UY5f13rexLAvuscmuguJNRMHF9UX4NoXpTWVSZSOhldRu5UsapN+vU2Xt9DNVUSpSSp6TGU6QX6qTJbtT43miI6wvdDVF0nW0ywbyrLiekcxaBDsHSW9qVrtK7X6PmCBVXQFCbvmGDy3iMYtz/MN9c7PHVui9Wr2zQWz+w63cljD3Ho2AQ/cnKah2az1P7rZ7n4mVd59kz1lkszZYmHSgn2PzzLzI9+FPbdScss8/S1Fjcih5ELax36fRfHdhn0PRobLex2Dau2it3cfNuXbfvKa2xfeY2N/AS29SjjU1lOzOU4WsnyyJ4TjE3fScJps++2l3FXrtK7foPkl9+gfnmb1YbNmu1xtedyvedS7Dpof/wqM6tVpt65zv3v+1cEIViOj91zqF/aCafcOvccivooTyQ0Pnb0BIXDd1NavEHj2jbKYpOeH7Da99g6vUVm+ipTs6cpnZzh8FSWlY0O7VpOsB4bm7TSGS7Xe+zNJ0jnptFn92EWTBK1Pn3fp7tp0bq+RXZ+kdI7FOZyCfaMpViqWbRqFr4f0O27rHcGTGd0xrLjorLNd4ZsQs/2hMu71Rma4yqRHZDdc/GcAFmVuNGymcqY5PMF1Ewe2WqDJbK+JNdCDYSYNpfUUHUZSZZwuy0sXaHTFiGPrYGPmSygFMqoKVNkhAUiZkV2+6ihhyZLwwrMsT3WmzareZvpjEk5mSQ9PkWysoq53kFe6eD1BaXfr2+gdWvks/NMZ00SaYNB3xvah9W7Do2+S5AsoBXG0UtjmKW2EHhHcSthu46caZAzCkykjYgkJWbNQRgy8HwcPyQwMyjZEko/Ytl6LrJuImm6iBiJZlCGKjZ5QIi7I8JCzOBDVne5u8cpx6pqoCtic/ZDhmxAwbyTIWYSyt5IVWZGbu67o0V2zYeCEWeL4Y2yMmwjCgLGjhXUKCEiHAUESR5WkzFg7srkuul6hI9rdK6+NFJRRZR6whFBc0gQShE78Vu3Qb9b28Pvei/+Ntf3JIB9V2vkg46iYztCX+NGU8+coZIxFNJKgNytY9dbwuna9TELJulKjszsBH62QtXyuBGlxXrRXaGaUJmcyHByvsDxiQxK9RzW1bO0rq7SXhHGqwVNYaKYoHzHARJ3PIRbOcbzT17hyrVtmsvXGLRrw9NVzRQLxyb42D0zPLonT3HrNM99/jWePVNlue/turSsKvPO6QwL71tg9gOP0Dv2fi7WbF69ssUfPHOd9nZfWDxtb+APbHynj+f0dznkfzvLbm5y9flvsDW1wPLVcZ4rp7hwosLesSSzuQQnD7ybwuFHKGzfQE39AblvXiT5+jr61SZrtkcA1Byfp87VuGe9S7/e5eg97+O+6QN0nQmq7QHXnzOHhsFBpQcWAAAgAElEQVSu1aZ6+TUSmfu5sj3gzomDpI8coXRpmfRzK7Q9Qe9fXu+SPbNGbv9ZcvNHODRe4c2xFI3NLtu+L0x/t7c4u9LiQCnF1EyR9PQCqfEUibUuiuvTbdh01zt0ljeZ7FUppwpM54QbxFpkTBu7ojdsn0JmnPR0mdTqNoO22JjjOVDY72FEFO54DubafTxHQTMVlht9FgpJxlMqxVRWsOcsi8C2Cbst5GyLjF5kPGtyxdTQDAUrEKxI23LZag/oOgHjqRxKroRqGnh6ND+yLYJeG8mxMNUkuhoxHP2AWmfAUq3HdM5kOmuQn5onPS3aqbULwlPQ6Tm4tU209ha50jwzWZPJQgK75wxDTbu2CLrshwpqMo9SKGPkt5AjN4zAdQk6TWS7QzpZYiypYbnCFmrgCTagHwpRcJhIESayKLmS0GE59o5DBjt0dE2WMRWiOdgImQJ2s+yGAZEeBD6aLBFG3A45jEEo+kDLKihB9Bw77TwvjC2bwiGNPZ5jaTGAjYJJvN6iNber+rr5byLGYXwsPxypnsKd8xYvagSY0XxveK3R72OeSxjpwSAG0LexiBqZ2cWP+8uAGPz1ANnfbwCLB5ax7UpE3ui5AZ2BUPUPfDHcncsnmEiqqPWruNfOYG1sE7giqXn89lnGTuzHOPYAS0GGUxsdXlrc5uxqG0mWyBQTZIoJ/tG9s9w1lWVGtWh+4fNsvHyerdNV2utdZnIG+T1ZKnfvIf/D/4RaZp5nrzT4i+eW2LhwnvbqRUC0DccO3sPckUn+y0ePs8ddw3niNzn1e0+/ZdtwwlD46Z9/H+Xv/zDOoXfy4mqXn/mPz7By/vLQ/eKvctnNTezmJtVIeHXq8yZaMoeeyjF+8DZKlQy37yvyr3/ok8x/rM/e889w4KtPUfsPTw3NimuOzxObPfjDc/wL/5Mc+Efv50cf+SjHxo/yk0sfZOmV54YVYb++xrXnvsL/d+cUP3nvHA888BFmZYW7/+wiL2102Rz4vNEaoLy6jqJ/kwVN5dEf/iQDL+APHZ/atSJ2q4pVX+PU+SppUyWjK9wzfw+V+w7i2R7B6SpbPQfjWgsje4PK4uvMHH6EOyaztGyPM5dr2D0Xqz3glcVtkpqCOZNl6u57AVD0y7Qier/bs/G2qxRMQWKYzCdIpA3CwMdz+vRaGte2uhwop5jJGZR0EzwXu97G6fSQ9ZfR+j3G9t3Jowsl/CDgFVnCiW5aPMen1hmw2XOYSCXJZoWWatDo4FqifacUbqAWKhSLC4xnDeFq74oE6tN9d6gtmz9wL5kgQJJlmost7KaN7/g0r66iFt/ESOWZLx/mkYNldFXmRrWH7wU4XkC961C3PBKFGbTZLol+j2TUygz8AK++jp7Jo2sGewtjGKpweG8NPBH2GNH6bTWFmRlHkVXUdI6w2wJVQzKT+JJQJikymKoszG0Z0VgRCXgjh3bxZR8BiMATRraKHDmb7BAjAHFTG8284paaH4qZph8ynEVJCGd5VY6McR0byXdFSy9a4chzIMmjLPed6isCG8n3djwIJQEecRW24wgPeiDhy+GQni+F4VCovQNg2vB1GP5Ex5XDneeSJXYAN2JYhkNnDnmoHxtS77+LuddfhxvH328AG11Re8DxRaicE3mr+YH4cCZVCQMXqdfAb28T+AGSImGkdEErr8wTFqfZ6DqsRp6Jju2hGQrJtMF8OcXhcpqptIq6tigqr2XRXgLIVNKUDpUZO7HAoLSPq5sWp1ZatKstHCt2bpcZO3gPs4cnePyeGeakJu6rX2bxiRe58MKt4DVlqrzjeJmJj3ycxvRdfPXyNr/38jJnv/yF/2GApZ4uYObKAASeg1VfJfDemlH4rZbv2PiOjd3cpL16idXSFCt7b6eYNvjgoXHuuOMDlDWd2//oVbYvbt9CODn/9A0SY8+xp1DmyH0f4eChMr3W3ay99uTwfFyrzaUbTc7NF1kojDG1cILi/gKzrQEtN8AOQmqOT3OpRXtxnXFTYl8xyeGpDOdyY7i20Jz1Iy3TjZbNQsEkNz9F9uoq7ZU2RD6I/YaNX1tH6dXJGBOMJXV0Q41axQHrTZu1jk3VSrBnai/J6UVSG3WcrmghhkGAZzvojkXWVCmnDXIpHUVPDK/Z8QLRLgoZVh1Op4e11URSFHKqhpkrMV+4nSOTwh2kvtHBc3yUyNzXckULLtQM5GjWFsesJFp1tF4Do+STMVQSuoIkSQz6LpIssVy3uFa36BwskS/PYU5NkxxL4Lu+cCppW3jbNfRWFSM/QyVjsGcsRd/x2e456BGb0AmEHks1ssi5EmpKXKOkKMIct99Ddvqk0mKGNfB23ntZ3j3HCrwBchggp0KRUaWaghEIQxDbudOXhmy5WFf1VrZMwAipYqfy2rUtD1l58hC0RsErCCMqe/y4kUSLW2ZE8YgCUQUNG3ujouChI9Ct+HAz+AjRtfQdAUM4UjXGJdGQQBJXcHEQ5qgulnj2FoVZ/hWTN75bcPueAbD4LmZY8o78/ls/cOcN8EOGbtQDT/ScgeFgW7ab+K06bkfkEOkpHT2bwJyaQp09gJufZvlym5Vti+2u2PDMpE6llOTIVJZKWkXdXsK9fo7OyjZ20yYMQjRTONYXD+/BOHCcxa7LuWqXsys74KWnixiZIrOHJ3jPHVO8Z2GM8PSfsPbUCyx+7QavNHYD0nxS46ET4xz+6L1UK3fx5xfr/NYz17n40tlvCV6ZyoL4KaXJl1Moirgbti1n6Mbe7wyEuWlE15UjA1kQYOL02tjt6tCod3T162us1tf4bM5kZdvi43fN8Mix97LvvX+EVXudP1vv7vr7b9QsCl+5RmryG0xOzPF9x/dQbfSx2yepXXhp+HfNao/TK01un8wwPraP8eNTzK10aLg+13suXU9QwTs3tqg0V5nNVjg0mSVVKOL02riW8Dest2zW2jb1vk+pMk96+jqZShN9rSsyl/oefrOKZjXIjU9RSmpohoqiygz6Ltstm5Vti/ViEn9sHHViltSkoLP3tjqEfoDXs5EGHdLaGGNJjfGsgZnSGcgiIWDUDy/0XNxen369jbXVxrNE0KqczDL56N0cKCXZmslxZanBoO+haiKzzfWDyFlDRYoc6mMdlbPdRGvVkfstcoZKPqmhqDKeG2D3HKy2CD6t930y2UnUmQVSlbyY4XXdIR3eaGwhj9WZzo5TsxJ0bRGvEjvkC1/BAN1IIWcKQ2lB6AdDc1zJtUhqMn03oJAQ1YLtBUM2oReAr6pIWoIw8Aii6iJUNEb54bGrRRgyFPPucrZQVEFmiH0JR6jwsZ4r3i12tfQAvgV4QVzBRKJmx9mpZOLP/hAZxU2yaAWKXwU3z7ICYawbSgGEstAvS7vbd2EoHheDShCzCN9uxSD8FigREzN2tR+DYGd2FoHUzXOzb3m8v8H1PQNg8RoFMfgfI7v43Io3w/NDvCAy5IwiFhQZDEUmqcnIvQ5et4nbtpAVGdlUSZTzaFN78bMVth2J5Vaf9aaNFeUU5TIG+8bT7C+lyPpd2LqOvXiF3lYPt+8hyRJmzqBwcJrMkcPIc0e5VLM4s9pic6tL4LpoZhq1kCYzPs27TlR4/4EyR4oatWeeZfmZ67xet27xLnz4zgkOf/Q+Co//GL9+scpvP32Ni89981smMO958HEm5nIcnMtzZCrLkXIaY+SOvu+KuWAzstXyR44Zu0pc2+qyXrdoVns0Nhqsv/7UWx7r0lOfw+59KPKX3MMjH3g39nabB//kMs9H9kYg7jhfXW2Te+YSuYWv8dB7/jXLxyex2oNdANZt9Li43uFircd8vkjx6F7GrldZaNhUI1F12/HprHWR6stMLMxyoJQkO5bA7k0QBj6uPYgcJXqsTWY4OrWXzNw5MosbZE8rBEEovAXrLfRWjcSEz0RUQXWbNoOIABMHVfrzZbSJOZKVRaxqA7thCQCzHWEIWxofVi+vZgwkWUJRZXRVjtpgEA76uG2LQVMIokHMq1RTJ3ffNjPZHPvHUuQKSXqaqOZ1ZWd2gqIPqede38NpW9j1NmZ9A22qwVhykmLaQDNUwiDEHfhYHYe1Rp/1rkM5mSJbmiE1WcLtWIAlHDo6Qs+l2i2KmSkqaYNOMUnTcofklIEXMPBDQj2FlM6j5bKEfkAQ5YMR+OA6kZ5LJh0ouH6ILPloiowiRRlbQYii6oS+CVr0WEUIbYMwBg/Eri6NOlPsfL9F3Iw6JHZwk5YLRth23KpziqufWEcVO78P22/R+xWD15DEMVJ9hTF4RfR1ACmEMDrwsP0XeOL4EfFEkeRd4ZWw01YMlRGyShyCOVppyjF4xXOvnbVr/hafs++JHLHAg1CPfBx3wM9HgK+45r9dCj18DwLYd7pGJBE4QRiBV0jHEV+UpKYwnjZIOW3C6iLexg362y20TJLUZInsgTmC/fexGaQ4s9njlWvbbNQtPNdHN1QeOjjGXdM5jpaTcPqLtE69SvX1y1i1Poouk6mkKR4oMf6hHyDYdzeLboLPvnGF89e2aWz2SBQmSOaSlCoZ7j9c5hMPzFKoX6D/2T/lpV97jhe3+7ssnE7mTY7fMcG9v/4fqZaO8ZuX6/zCL3+a5tKZt7h6oSHbc9cD3H9yiv/rfQco+03k1XM4i8/QePqsYIz5AWrKHGqR1JQp8pX8neOqpo6SzmDcey9+aQ9ts8yV7QE/8+lprr9xnc0zz9xy7Bsv/ik3XoTXT/0An/m5H+bAv3uAykO/zfIn/nAXEWW57/HEs8vYjSd45J738C/vv4PbJjL8UndA7doV+o0N+o1NNhaT/ElCQ1MkPv59P8HhQoF05UX6f3yWdjS3aK90sF59mlQyzb1Tx3nHnVO8mNCorQoiQr/rcGG9w0wxyTvuv53kvX0qfkDjWgOr1kdWZLqrVRI3LqGPzVHJzXNgMk2zM8AdePTaA9a0Lt9MarxnX4nZiYPoBzsU7AHWxja+69GvNvCXzpE2UhwoVrC9PG/sK7LV6OP7AaW0TtpQURWJ0Lawmx3ayx3qVxpsDnwmrjTorHW5846vMn3sUdTpMS4eLnNpo0PLcknowhpJkCASQwcPEW3SFOnRuko+lWH/8b1sz+TY7g7YWBRVXL/r0Kz2eG2tRVKTOVzaT+HOE6imTmtxHa9n4/b6ONUtlOXLzNx3AkiSjDRjjheQ0BVsX5gUp5MJEpkJtOkFlHSdwLaQdFMEcAY+8qBLWkuJz5Es0XNEFRrdO4lNX9HBAHlEaBsq+pDGrssSYfT3iiRhRjOp4TxI0XfmULEwONJXxYzFYSUWMfqGS5KRIweMUfCCURKJFAGAg+Q7SFF7O5RE+zFUNDxpZ0ThBrFuDASPJ6q+fBfJsaInF2nQup4kjKyvQj/Ej87BD0NcH1Q5RIuidIgAVjw+8nOUVXxvh3RyM3NSlUBybUHF950hcIeyihQa0XsgKPiKLGZxIFKcpZvA6+YC4q97fU8C2Hf6IgYjH0x/eIclRJEJTSGjK0j2NkGrLqjAjoeWMjFLWdTyNLaWod4Us69aZyCYh7KEYajM5hPMZE2Keoi3epXODWGeKykSRtYgM5UmtzANlQM0pDRXG10Wqz36XQffD0gXUhQm0pzcX+LBvSVynWUGbwrPxKs9Zxd43VcwOXrPFAuP38V2+RhPXW3wOy8svS14Adz5wffysQf28L6FImNvfJ768y+w/vIlqmfrnN3o0o9AqqgrmLJEQpFJaaKt6MegH4ToskRKk5l76CtDK627jz/KJ95/kN8vJHgjnePGi3/6luewcuo5vnT5GOnbZph+7Ad5+NhXb2FTbg58VpdaDM68QDE3wd1T48wulAiDkKZhCqeGgU+92edytYd7ZB798F2Ua3Umn1sisWmJ99YP6a7WMFavkcjPcrSSHWa8eW7kDt932WrbbNs+5XwFc3qO1HhKBFU6Pm7PJug0kawm6TGZSj5BJqXTaw/wuoOhs3p74OOXcuj5MdR8EVlT8Z2BcFWvb6D26uSzFaazBnvGkkNBcUJXhyQEEMP0MAjo+yHVgYcfhphLbdy16yT2HKJQmWA8Y1DvDvCDEF0VFcMw10rThwxAt+di1SwSWw3S1VXyEZlkppjETOn4UW8rtnXa6jpMZ3TGxyokxjfELC76TMSMSslukzHSjKX0SI8VoMiIz0ggPiOmlhBMQgBNR5IVYa4rK0iBLwgQkcGuHyGXIt80Aoh9AWGnwoi+6KNtV2WkAiMIhDUT8g54RWStUJJxR0oSTWbYNpNGACxU1B2/Q8Tm79/EyhtWbCOJFuKcd6o9PxDA5UY3ynL0ZGE4QowIBYiJN0FG8gagqKiKOdLui96jaN/yg3AHrCRnCCqjcSii1bj7exdXjkP3jhiAw5BQERVZGASgiGovQPQu/TBECYlaidyy/iZB7HsSwL7bFd+dxK0xUxXgldYV5F4Lt1UXm5frYWZz6MU8SqnCtu1zo9VnudHH6Qv3cFXTyCU14VKeVFCayzRvbNLbaDBoD1BNleRYgsxcmez+PTj5WVbrNhdqPbrNPs5AtBfz5RRH5vLcO1/kxESa4PRfUHvlDTbfWBu2xkD4Jh67f5p9HzxJ/r0/yOeWWvzBy8tcPXXjLa9VVjXm7v8An/z+wzw8m0W/+DQv/fz/y+unq5yJaN+j62Zq/tuuT1/gyJevcfuBU+z7wEs8/rP/DzOZA/xO3uS/v2a+5fxt0K7xxW+uMpE2+MD+oxz48B2E/ileuVjflYe23PeonTrH5MQcs7e/l3fdNs6TfoCiyjTWN/G9gH7H4fJGh9WOy9zkIVJHq4wdOoWsyPSjOaG11SC3vog5vY/DYwfYmBnQslx67QGSJOE5PlvtAc1BZEw7s3/XDChuoemNLZRyi4m0cKRoNPv0uwMCL6TVd6lZDt2sRiFyRZcUmcAPcXsDnHoNtbqGnJkgb4yxpyRIEE3LHc6Q/AAkXVS+8Yyx74e03IB2y6a7WkOvrqGV9lFIaOSSOv2IQWh7PgMvxAlltGQGxdSRNQXP9hi0B9j1NvZmjbTTppxKMFdIkEjrwlkkItK0LIeG7dIeBEyWKqildRIdS7jiRxV44Nhogw6pbJaUJpMzNTTFH4pt/TCM9FxJ1FRegIAmKkLJTEH071jP5csSfoRRiszQLHe4In/BMNqYh7+OCQm7DG29ofZruJlr5s4cakTUuzMNiyn2opUWRk4WiqLjS7HVVLgbvOLWY+zqM+pSAUP6vRtF1sQ/8eOGcDcEwJ3zlnyD0NNQFH1oojv88zDEDyI6fSwVUNShZdao+e9op2l0ySPHlXwHPE8YH6uGaB/Gj4tE0KG0ox37ViD1NwViyi/+4i/+4t/Acf7a1mAw4Fd+5Vf43/7Nv8EwjP/xA95ixS+0KO9F66XvBZiqzFTGZDKtoZ77Br1Ll+iubOHZDsUjezAP3k44e5wXt3xeutHktesNWtt9FFWmWEhw994i799fpNBdxj/7LDeeeJ7mYguv71E8UGTi5H7GHnkQ9eR7+XpV4ksXq3zlzCa1SBeWySf4yKN7+cGjFR7dk2W8dpor//m/ce3Jy1y41sTyQ2YSGveXEtz/2Dy3//L/Do/9Y57ppPnkb7zC6a9+jcb1N2+53vt//Cf5mX/xOP/uI8eY++z/zalP/BL/6d/+Ea/daLP1Fia83+mqOT5n1rs888x1ck98niOJJX7onUcpPfxetjOz9G2V/vb6rsfU1+qcqassOT4f/sc/xp77Ztg/DdKbq8NNxg8hW+9Ae500dW578J3sncigZnQ22gFhAK7j0bU99KxBIpWluHCUor6FkQJFDZBkCd92COw+Rthm6uSDjGWSZFM6l7ctwmhzskOoFJOkEybZ8iSp/hKEYmMLPB9JljASEnomg1ycJVQkul5AvWULKrcisa+SpZjUyWUzqH6f3vmzDFqWiCgJfXTZRksYJHNF+nJCgAJiE86YKjlTo5IMUO06bquB3+pTi1irCUWmspAjWc6gjVVoKFnajk+r79Ib+CQMlYSmkDZU8kEbqd/AbXdoLTUJ3ECka4cexcPzZMoVkobJiuVgKzKKIqNqMrmsST5qZ84UMqiGhiIHMLBEOzlpoJoGWrmCrOqoZgIQMzwz+jFUZUhN13RDtA6TWeREGhIZQi1BqCdEJSYLAooiS5iqJJKPVXmorSKMPpuyArJCQCQ4JmqFyeJvNVlC9uyhN6CYBSmEmoGDysAPsaM5t4hSEXuAKkvIgSvaeK4lNvQ4qVhWUBTRbnQj8BHvlWApxy1EybEi9w0/CrHUI2PgBB03jGyyxJgibkOaqnAPkbwBsmOhDDow6IsIl8ipA0nGU/RdXoiw4wqf0CLgGgVPRQFFx9cSQ2a1O0QwUfEmNQU1dJGdHpLVIrR7hO4ASddB1gg1g0A16DiCExCzLuPjxjlkb7Wkm36+1RoMBnzqU5/ik5/85He0j/9DBXbTkiI2kaaIL0NSk0kqIX6rzqDZGRqKKuk0craEmyyw1auz3uzTjUxTVV2hmNYZzxjk1ACpuY67vjw0/ZVkiXQlT3ZvBX3+CIPCLBeurw9Nf4MwxDQ0klmDI+U0czkdc3uRwflXqV2oU61ZdL2ASVNlb9Zg6p4Kc4+dwN13P6fWezxxfpPNSxduESJrySyVE6Kt9+69edKXv86X/sOXb2H+/VWuP3x9E/tXn+L2jsVHP/EpigmN380n+OraFVxrxwDPqi5TXZzgpYzOm3fNcOK2dzGmahx69QrZ1zZYaQ3oegHdLYv6xS2S4+cpP1TltnIJyy3y0sUaQdDDHXjYlsOZlRbFhCYSfg/eSaHbjeZ5NZyuS2+jQfv6OuXGCpPZOQ6UkowXEqz7AZ4jqpDN7oDNrkPRTJAuT5Ms10W0fbOH17MFm6++Tr58O5W0QSWf4KKh4HshYSDmqF3Hx5MTaIn0LnNce7uNtdVEr6+jjs9TSEyTMRQSuiJ8CW2PmuXg58uoE7Nk51fIrrQYW+4QIOJsgMhF3BtGgfhBiOMFNC2Xhu3SdQLkyA3DyK+imiqBGxC4ImLFr66ilGYpJiocmMxgOT6rkoTj+iMxKz6BmUFOZJGzJYx8WlhbaVFeVtR6MiPACUIlqqjkKNAxcpHQk8K8VlaRAmNIbIhbbDEQ6QrDyHtNjsgN/k0dAEnenRJ8U+UVJyETBoSKPKxQvJEZVHxjFIwwEEEQMWI2ngSi5eh7oAQoshwJrcVjv60qI6qE/MAfJiMPvIBAkVDkHQeR4fm6jnDPByQjQeg5SJqPokhIkrB+iudgo44ju35GKsDRqiv+t8g+i38ZVVoxszgIwPNAF6zN+JWJX+/w273um1+Gt/n9X6ZS+wcAY6enHf9bQtxlZAyVhCoh2x2c5rbQv9gOqqkjJ7OEiSyWL7Hetqm2B9hWBGCaQiktjEqVbhV/c5nuao1Be0DgB+imTmq6jDq9gJefYaPn8caNJptbXbrNPrIkYSQ0JktJFopJSvQIbpylde6i0DJFc699BZPJO8aZefg2sg89xqlqny9drPL86Y2h8DlemcoC08fv4P6TU3xoIYf82p+y+Puf/rbBK6VIzCU1CpqCHYhZzLfbVvzC9SbBf3uO933gaR4/8hilpMbKjfezdv4SzaXTQ6p9Z+0qG+kiT1ysohwe5+ihR5l//zfQ06cxXt+kut6j6wUkVjrUztxgfOlNKgce4Gg5zdxEGnfg0WkIALqy2h5WMXsrBzEW6uQaXdyORb+xjVXroy9vMrZ+mWyywFQmxZ6xpGglBuJ9Wtm2mMqYTKR18hNzJCur9Ldb9OsCDO16G6O6SvEOhemsyVwxiW5qOLZoe3Ztj+7AF9W8nkY1DWRFIvAD7NYgyseqollNkvlZEpqCKku0LKGlypkq7swE5twhstVVStUG0xfqeLaHntIFII5EiQRhOIxG2WrbjGcNqj2HIFtCKU2SmlxBT+k4PYfAD4UkoFFF7dXJZStMZ02642lUWaJpuWRMFUWWcH3RilSMFEquhJIvIju2qJh0U2xyvoMUeJiqRIg8pLBLkmiR+SF4koqqJwVgRXOeuEoZje2Q47adRDST2ZkrhVEu1g6ZIhx+b0fZdEMPQtghJUgybhAMW3nxqCAcce4YtgD9HVf3MAyQNJ8w8JDknUSAeA2JEd/iOxASteHCMJI4CBWYruw8PjbWCD2XMCKByIEfGRF7u6n0hMIKOKLRxySU3QcNhq/NzecbSuGOK0fMVIzBK/B3V3PRiskfN7ch/7Lr26nQ3m59zwDY6F3Bd/OCiHJYfOFUWSJrqOQMhaIeomwu07y6Sm+jgdsXBA51cg6/MMNGz+XMSotqtUu/65DOmUyXkpyYznGknCK88hzN175J9c3r9Bs2ekojO5Mhf+/9SEffwaKf5tmlBqfObNLc6uLZXcrzFfbuyfPB45MsyNsEr3yFja89y/IzV1iJ4kkWUjrHfuIuJh57J9KJx7jmZ/nZ33+dpfNVapdeHYKCni5w54c/xPffPcOHDo9zUO9x+Z//KC//6RVeanxrMfMP7M2z7z37mH70dozHPo6fnRDCVALkXh1lexnn0ilOfeoPOfNmldeab/98X1xpEzz+sxz6gcM8/MF38tn/5ad49sYxvvjGA1y4UOX6i1/HtVpsnvkGv/lpja/sL/KuExU++ZP/J4cefpHpF77C6jfe4NyXrrFRteg/s0xm5g+YfPQqB+5+Hx89Oc2XTJXXL9Wob3RZuVyn0+hzbavHoR+4jYUT7yGnC/Zk7cKLtFfa9Bt9MrNfpthrM3vbw9w3X8QPQt5cbtFt9nl9qTnc5PbsOYbu2GR7fRoX1+htdQhcMeSeuP0CC+XDuEGWlyoZblSFhdh6s89qIUElY5DNTZKqFOmuVrFq/ShGpoZZyqFOXCczfjuZyFbq8maXa1s9lmo9ZnMJjpZvI/9QjunytAC/umgxp6fLKLkSoWrguiF916djezQ7A1o9B8cLUGSJ4zENnVMAACAASURBVBMT5PffRSbwGbu0THe9ReCKzbm/uoaSu4iqmtw5uY+xpM5cIcF2LAMxVDRFwnID9HQZwgBtrkfY74kKxTCFJgvBZEvrSVRZwlB25jxKlHvV9wIUSUFREihaEhitAmJGHwIM/WgO5Y+I56OMql2Eq7iiIJpBBR6SOxAuGCM0+PgwXsw0jkwKJAm0iJARwk5F6/aHNlCSrOJrpgBsQx/maglAAj12dI91afFMKQKBMHa2iIDK9UVF6ocBmi8NiWOhJCGHIaHnELqifRkM+kiqMTwXWWLoXQhRMOUooIwcOwRQvB1Bd3QOMYvQj27cw4gAIkfC8NCPKrHouUYB8K8avP6y63sGwEbXW96NvO0fBxFNVvynjIQiiw+UoUrIgy5hp4HTtoa5SrKmIqfzDBSTRt+i2hngDHx8L0AzROzKWFInqyt41VWs9TpWTWQiKbqCWUiiTszRMwusrHU5v9EWOqLuNgDJtM6+8TTzhSRy9TSdSxfZvrhOe6WDH4osr8JUmrG7jiMfupd1Kc8Ly9usX2vQXDo7tFky8xOU9p/kRx7cw/ftH2OvtI337Bf45p9d/ZbgNaYrvHN/gYd/9V+iHH8HVX2cz56vcnlziXrXIZ/U2Dee5mBpgSP3n+De/3yE2176Kvd/5RS/8cfnb9GkxeuJ9S72Z87htPscOf4Q37f/IAVT40tZg8baEVorlxi0q9SvniLwjvEVL+BDR8Y5MX83KdtivG2x9I1luu0B1YHP5uuraJkk44UyC4ce58BkhsubXVp1i87WGmFQRlFkLtYsSrNZSpV9JCYvICkSbhR137q6Snr6MsnKXmYyRxjPmiS0Ll2g3xHOHDPFJK4xTaIwjl4oAOD1fSzfQk3WCeprGLkpimaCUlqn2hbtzo7t0bI9Oo6Hm02gpEUopaLLDNoBTtcV5r69TpRFJdzB7Z6D7wUMBh4Xa12KCY1EfpbEfI/ikdN0V6sEjoeRTyOZKUJVJ4hecz8I8f0AfxBQbQ9Y2bZo2T7ZTFmkJE+XCYMAp91HUiQCxyPotVGtFrmCjJMSz2UoMgM/IKEpGKoi9E+ySqglUbJFQt2MBK+R3VLUrhJMQvF+7zhbCJ1WvOn6IUgjn5Ed+6YRH8EoGkTyxXdux+DWGLYPR62cht/4YKeCGgKYulPBxcAXszSVyPEjDEfLm1jUG1VgCHCMgQh2SA3iNWfH0ukml4+4khOO8Dv/lx9ZM8XnEr8cN+dw3bxGv1qxj+HQsTAikQy1aBC1l3f2w5iR6EWUeD8MdzRxsiKo+0qU9ReDIW8h7v47sr4nAey7XRIM6bKxlkSyLYKOiIHwnQDVVEUuUyJLzxUpuIO+izvwCIMQ3VQppQWA5QwZe2MDq9rEjgBDS2kY+TRBboJ632Ox2efyRhe73cQf2KiJFNmsKQxwswbuubM0Li3TWmpR6zjoskQhrVPcX8A8/gDN7BynbrT42sUq9cVL9KqCdRiD1/zRCT5wYIy9YQ33uS9w7dNf2SUUHl0FTebdB4oc+PAxJj/wfi4f+CBPXanzhW+e4o0vfYPO+tXh36Yn5inuPcbUQpFf+qHbOfGjD3Dbey/zr8Z/maWnr/LG9dbQ2zBeAfBU1aL7xFUqD/wehXd9kHfuvZ+0ofLy2U2CwMePTIT9QZ/Au52/uDxLUpvg4N67yDS2SJZeQOk4NFyf2sU6Rk4nVTnN1F0/zEIxyWTOpGaouL02/sBGkvdwbrPD/mKSfHYStTyNErHxeq7Qd6WmV9Fnr1I4epxSSidtqlSBftehrgun/obtYyQLyJk8AJ7t4vRCZK2Ft3YdbXyefG6eUtogbfax+i4ty6XeE87sXccgn86jZ5NiDuWLoEuvZxPaPdRo7uoHwpl+YLvYlsvplRY5QyOpZpgtzZOc34dq6jhtCzmTR06kCG7S4sSC5H5fGPtu2x7FhEkmUyYzN04YBNhmiyDagUPHJrA6pFUYGDJ+qKMpEh3HH86BQyKvQD1BaGSRFH148xeohgAxROs9jFpNfiAJD72RTTnWUAUjZYNIJBb7fxBKyDGA+I4gMoAQIcf0cHZcMWIxcRCy004d2cSRZMIRfz8YqYSCQBxv1GliBARCNzq2pu+0IeEWBqMbhKgBYtYW7yVDRqEqjh94yCgCCIbjy3AX437oDBJVQjevGLBEpMrO6wkjN+zDCswTz+ELRqMc55yxc95+IEXXAbKsgqpGx77JMi5mRA6Znt99y++vev0DgL3FkiQJhRBdkZCcPr7Vxuk5hH6IrEgopk5opLDcgJrliBiJiHqcS2iMpXUKCRXFamBt1LFqfQZtB0mR0NMaZimHn5mgWne5WuuxVesx6DQIAx9FLbBnLMl8PkE5qdK7dp3GlSqt1Q5tL2BMV8jOZCgemcGdOMSVhs2z1+qcu1yns35l2DoszB9j9lCZx++aFuD1/Be4/rmnOPPk9be85qwq8z/983uZ+dB7kO/6IFfcFP/zr7/MlRe/uSuDLF7dzUW6m4vceBE+Uf0Id99R4fHjFT70f/x7Zn/wWY48/wIrz1zk019d3KVVA3ipYbP/d59nodml/AGL+297jHuPTvBs32PQqgk7qm6D6oUX+fKpOcbSOtn9Y0zvv4PsbIbEcpu+H3C546C+WSU1fpm9H2uyt5Biz1iKSwkV1+4SRBvQmZU5jk1mmMvmSJWnUXThqtH2AtorHVpX1ykcvE7upEIhoZGISgi7J7wBr22JeJLxRA45Lejwbt/Ds0VbZ7C5jtbcIF2ap5DUh4/vDjyqbZua5dJ1fIq5EnomNQy69B1fmNv2eztMO8C2HKyOgyxLXFjvUM6ajKd0MkaS0tRewiBASTaREylBopBkNEVCj108FJkwCPFcn5blstV1KCc1Upky6uQcadcTmjR7MEx5Dgd9ZLtDxsgJwaokYaheRKqIaP1hSKiaBGYGyTdElSPLwpdQ0UBRI2Gu2BgDYfS34+IwrDZEBRBXDhqALCGHYkMago/niEosagFKkkwwdGgXFVQ8lxFtuBFG3EicSew8P0oLh6gok0dmQfEKA9FGi70/ZWWXtit2h/fiqjdqIQahqBR3a8KimZzvocqKcLuPfoaHi49/s09jxMwcGgCHIQFhlOsVvXYjZZEU+FHFF1WwYWQJFXhIkiYiYyLQDAiRpZjMggj+lCNSzqjn6Qh4xWcWH1GS3p6B+De1/gHARlb8EZajUkx2LORBB79VF7RjRcLImqQqJZxMhZWNHhc2u3SbNu7ARzMU9owl2VdIUklrKDeuUDtzg+3LDRpNm8m5LOlKjuzBfaz0Ql5eafH8xSpbN4TnoZEuki7leceBMicradLrb/Dqn5/i2msbImE4DDl+qMiexw4z8cHv52trDr/98jKvvrLK+rlXhua2mcoCj3/oGB8/OcPdRbj+cz/N+c+d58ubPYKbrvnj91Q48OE7KH//h/lq8iS/8OINXvy551h99Ylv+3W78ORnuPAk/A4w//CHOXTsAB9+3zt4xz8r8G/P/QkbX/4K1750nj98fSdT7HdfXMV8eY33/8YLHPuJu/n5//VX+exUjt9Kabz2GQGYvmPzzc99nsbWe1h9935+6uR+ph++jdZSm0sX61zqOlzpOjz02fPs+aEvcvCRH+PRfUUurLU5N+jjdBsM2jXeeGM/+aRGJWNwx9QRYUwbilTo7bUO/nM+ejbBng9ZzOVMxrMm54DW5iq9RgLP9Tmz2WVsPk+5shdZkRi0HSGZ2LTYfPk8Wi6LkRunkhkjY4qvVatmcS4ISZsaY0mN+ekDpPYsklytQkTGGDR79LeaZH2bnKlhqDKDvoe1vY4/6LOWUHkGSOoKSU2hOLkfTVbw6zsyBMmzGUtmmc6a1MfTOF7AiiuMfR0vYLVjkzNVlJzJ1KF7UUqT6PUNgiggUk5lQFaQrQYmMJ7M0fdl0o48rHDUmJEI6KnS21OnwwA1DNDCES9AWVg5eYou3EGi6ieeYflyJCJWxXG0MECKwEvybIZOGopgLMZzrL4bDA1xY1DQFRXJZccVIwxFhSrJSIqGIhm7WnlBEAFhfEVR2y/0HMKo+huWTJEnouOH2J7Q2gFISChSiKOEAowjMXIw6CMbvmBeSjJmIoEThPihjOVKw6eOZ2mhogodl6oJkXcQgG6AooOiD23uvCCKnZFBCyXR/oy1a94ABha+1UZSdaRkgOTa6IY+vEGKTZL9MGTgyfQVSbh9qCay4RLE71usaws8NFnZmTdGUoe/Cy3FfwCwt6Cawo5CPXSd4R2JosuoKRMjn8HyArb7LtvdAZ4bEAQhkiyRSwo3AiOw8RtbWLU+dmdA3w9QdAUjn0bJlWgNfFYafXptm0FXGPYqhomZ0pnNmWQlB/fGJZpLLTYHnmDfKRKZqTT5hWnk6YO8ea3DlaUGjZXFIWVeNVNkpw/yzoNljo8nkc/9BVeeuMzXqtYt4HVfweSuT3wf5js/xpIxwy/81xe4+I1vfMc5YKNr8dk/YeXVFBfefIwvnZzi137kh5iZPUB6+tM8/zOf28VctIOQL15von3mdd75z27w8J4pXl0oMRry4lpttq5c5fm5PPfvKfCOPVMkSgn06NsTAOc7Dr2rV8gdX2M6O0Ulb+46p061zuXNIqvtASfKBbSUgSIJh4iW61PrOEyut5DtFmm9PKygnE4DT+3RS2bZ7A3oOj4lPYWkCEufbmRP1dvqYG/WMPttktq4cGP3A2zLQVElVrYttnoZgkIOOZNHTYnz8x1f5GtZwsZHk9OkTRVJlgh9n8ATBsqO7dG0XDqOR5jWkXXhYBE6NqFtITl9UimZsaTOdN6kZTlsR/NaYSsV0nEEGzJIlZADD1XVCZKZYb6WnEhFm7eD5Fgk9CTo8i6/yziny/Z3fjf0A0RsbGoEPsPNNGozSrKKmlAJZHmkhSXYdDGBIwx3Ah6HFcxNTEIBIuHQdDuuwGJmoR6xFAmDHVGuohF6GpLvoijmjvs6o/laN32QgxFHjWDk2JG7iBCKi98ntd2sxriCw3Mj2YCC5BnokV4sDs28ZUWejbKqiz0nyiAT5sPK0M4pZjFqjEgJYgJLEIHvwBYkG1Vcd8zuhMiVIxCNwtib0QtBiY4TW1gNTysMkFB2tRBHX8O3W98RF+G7XH83LIX/llfMYNzpz4vfS2EoKK2+uNNSNAUtZSKn8/TcgHoUHug5vvCXkyXySaE9kmxBkbabNl0vwA1BNVX0TAq5UGaz57De7NPvOji9NrKsoCdzpLIGk2kdpbnGYOky1ZpFdeALAJQkMtMF9NkFvOIcr1zbprbaobN+ZXgtqfIc5dkcd09lSG2eYfvrT/H0aucWYsUjpQT3fmg/+gd/mteCCT719FVe/9wf/KXAK16e3WPp+S/y5G99hv/y4jJX0kfI/eA/4cFDJcybbtsC4ImLdZxvPsmBgs6jB8bQktldf9O4/gYbiw3ObnbQKntJT6RIjMwbao7P9vklwuoiRVNhppgUm0C0rPoa7W2L9c6AjhuI91CWcIKQnh+yOfDorHWR7Q6GIg8NjJ1eS2SFba+zsm1heSGhkUbRVHzXp+eHNFyf3qaFXW8RtOsYUUCk7wXYPeHusdbos9qyCY0McjqPlkoQ+iGBG+D1fZx2D2nQxVSFsFRRJGRNG56/cFwId+ZGgdgcw4FN0GsjOz0yhsx4SmMyLcyjpwsJJnMmpbSOLAl3+oEf4idyBKkS5CdRJmZRShXkXAk5lf3/2XvzaMvOss7/s989n/GeO9atW3OlMlQlZCSEQGIQiE1AgiLg1GqDumj89U+0nWjtRlisVlsUGtRubaVRfyqDSDdK1DAnJEBISIXMQ6UqVXWr6s73zPvs4d2/P95373POPeeGEOgOi+5nrbOSuvvs4bx77/d5n+f5fr+PcjTa8RhhB99U8mAZmTibwLLopxNJurGkG8lhkqw+hui184/Ra2GEHRzBUPosqyVlArdDJSHthPqRgNQ1qCyFpyKRXqwdSJrm6TaVvlNpQCOJ8rRkJjNlDNSixloGJc9MKC6ZpN8dOYglgW59kwFK8hSgVttPwwCiECPuYelI1tTk5/791TVBLTJsmKZK5WUNdoVS2MgcvkIw9p1v/0DK4adhoJ6PKFRpUK3sYeQRmE7n6nsWS60+pCPcQeeVSWNlNTSx1SVtgdrDMCI83fLZ+p1vFdT4XROBPRvofDZ4GQoofwlSvXbQqxkZxTglG7voUVqYwdq5n8VGyGPLLVW/am1gOT6WXWSh4jHlm1jLZ2gef5KNMy1WwwTTMLR01CzG9B4eP9nmyTMNGit1eq11vOoME7MVLt5XY5cdEH35c5z63L3cV+/RiCW2ofQI5194BOPi63lgPebo185w5ujniAPVbr08f5D9V13KT7zsEAtPfo5jH/gL7vjwAyM1qDe94iBH3vQKzJf+JN//V49x9DN3s3H8vm/1FoxYr7HKb//af+JPL3wBN//gC3jfB36Tqd95P3/zd4+wMSBC105Sbv+lP+fF7+rwuu9/K//xihs48cVPDB3ryTtu5eNTBd76xquYft7t7Pz0iSHJqyf+8TEmL/os07sv4fKdFdzyZI7GbJ49xvJTB7n7xDrX7a0xPVNTfKglNW7H2hH7TtSRa2co1c6n4tn59QPEQYuvn7ycY/unOHRwCuFYpEnKepioz/FNpk+cY3J5kcKcdn7dmM1TT2D5RVK5m68WHRpX7mRybjfeVIUkSug1QpIwwa0ss2vtFDMHd7NvQjU/7XXnEJZDseIyNeGzZ7LAfNlDdJZJ1s4Rr50lqjewW5ukYUCpNM2B6gJlx2R/rcB8yaUTJcgUar5N2bFIZMp6kOC7k/jFKYwkRPTakErk4ESUCdL2mmAITGEh3SKJcAilUqlRqay+wKsjlKK87woMmSin1VzJCbnC8dTkKhN8v0rdUJNxrCdQwzKwBqKYTBE9jXV7Ek+190hSBUPvxSnr3YhIL+xcy9DwfRDCzCfyNAyQMlH1GmHi+FNYIs1TjhFprhM4hPCTCWmSaCSfRiPqCKwbJ7TCmE6k0qBKccTO2y8Z+tyyrdJ4UkpM09SLlCKhJbCFANS1ZzW9VDuw1LQxLOVAU6F1G4WVO5sgkap3mmXmdcCc7B2p6EvqFKJE0RuMJMQ01KIuc1yRdoZhIgmlga/PI2wnX7RnqE5TgJmlELU6iDAY8UDfyCGNBac8g/22s+8aB7bVnumAZEz2dOAhHprudfrAtBX60CkXEKUJ6r2Y9VaPoBMh4xAcH2EJyo6JZwmt3NGiFavVqW8aOCUHUawgvTLLjTZBO8qbKZqOh1e02TVZwGwu0zmzSH2AtGwaBhVLYO3YgyzPcXxpg+bymdx5gUIG7ts9weXzFVq3fomTt50YC5c/cNMV2C96DXdtCO791FeeVuwXwK1Mc8H3vJSpuRIHZhVQIpEpa7oB5Fdve5RzX//8tvuvPvIVbrmlxLv/8Ac58Kq7uPa2kyME6ttP1jlw273sf+ETTO8s85TuYZVZHLTZWGqRlGYo7pikWHFhuf/bFzcCmieXmGitMF3Yh+UXh44fNFY5t7mHRi9mvuhhOsPL741IItsNlebZolCahAHtVo96EBEmKYYQyETSTVSzzHqkiMmy01AtQDSAotdcJwm7tEqTrNUDupECQZi2pdQ4ujFpktJZ7SLra9iJqlV5BQevaCPEJIWKy65JzSVzBWysqp509QZRQ7VncR0Pu7NBanlMFqYQBhycLNCJEqIkVQ1ZNUk6Uis1xVsybFy/1tcNDDt9+LpurQGAqVblpiMQmHl34F6s5JhsJbuBmeiFn66byE6TtNfN+WLCLys+lSz2dQAHNBMTaZAMLdOliiQscm1A9V10/SYhiJUTiGV/AYohVO0rQxIKEyNWcPZMT3Db+s1WRGfmxLJ/o6YExeWSOa9LRUf960519JdRDWSvq86va0emMIaEhNVY9NN8hmkOR3SGIE0TDcJQEZiUWVPLLbOdTCBJSFHOXy0GVIYo/4rMEJQSiUZhZg03t4HyD/qr74T6F3wXO7Bvxgad1lY0UmbCsbCKHqJQALdAY1Mpjiv4vHYyplAThQyRzQ16G03aSebAwCp4iGKZ1Cmy3lqn141IegEyCrG9kmp+WfFg8xTNU0s0z/QnaNOAsmdhze1hOUg4vt6hvXxq6HdUZye4dM8E+ydczn35Qb5+ssFWu7TqUn3JTZwQs/z5Xcee1nnte/GrOfy8Hbzy0nlef3gGv7uK2VwiWX5ATUj7p0km9vLJF+zhb756IV+57fFt+3+dPfoZ7jz9cr73Ra9i/0vugr9+cGj7aphw+s6n2P3Y3ezdeTGPzu0fgu0DNFZWaCaC0vQOvNqwXtqpbkRrcY20vkJ1/iDWQIdjgLC5TktD2q2ih+mYQ9vrUULabuRaelstaCskYShTJcqrazAAjVgStVVKD1Q7kThKCFvrxIGDU56k3ZikG0tSy0U4NkmYUI8SnETiraneWmbQpOxMUCo6tIqOSklP+ByYLbGn6jHtWyQriyQbqkFmEqg6l91ukDY3EJaHbQimCoqrFiZq1Z490gqFpp7xSCoeUqAFc21hUnBLEHYwIp02ihTdIo1VDQthYWkCcqLTd50owZaqpmOJtM/XSiVpt43UCywjDjFrPQXOiEPA6XOyJNjmADE5g5NrJ2RIsz8Ra1N1KKnBDAZBnFCwDK3M3pfZypCEqeOBF+ftT0A5C6nTkSljHME2lqUws+vvd7AY+JJWtEhlArGdE6TzHmUDxxrqkgwjTnTw35nDlzIlEaNp1zxa1DJYaRz10ZjbOJ0Mnj903kEljgEKwnea/V8Hpi2/iUN/lPkDYQihpIC8ItL2qfci6t2IKNCpBmFiWgYlx0KEXZJ2k7DZ0agjrbat62eJU8idXxKqScL2XCbKLlMFm2Rpkc7ZdVY3+nwt3xRq0q7Osh6oxpFZiiyziZkih+fKTBldHrrrzAgPC+CigzV6+6/hn46e47Y7xivVA+y84kb+7BdezPPnXMyHPsf9P/5+zt6zxBP1gOPtCF9LS124f4JXvv/f8vI3fD9/e8kOfvZnxjswgL+55zRXvuoidr3kshEHBvDgk5tc/PWvc+nlL+bOuX0jDqy9cop6kFCd2oFfG3ZQSz3VrDJZO0dhj8DySkPbe811gk5IK0ywiz7CFkOtIFqxRAYdrLxGMvzK9oKIVi9WbTBMkbeSyfYN2yGxdiiJTIlDiYwjZBwR1FcIOvsIkzRXUw87EQ0dPUxs9JCNNexeG8+rUfIsXM9CGAZ7pws6JWjjNs8SLp2iu7xJb7OJIYSidCQS2W1jeg3VL0vGTBWniDGVNqJO9SWpQs9lTi1JJYbu62SZBqZr4tpeX/1Cq5MLLQorTQfTVgCUFJXKUh/1ddu0c0mkLI2W9gLSOEQ4nopC3EirSmTpLBUFBDHYwhqt60ipQAmJ1+di6a9krUnMLArKsikDdShVB0NdQ0buhaF6kJQDi9hBKHvuDJIhGH1myomlWpkjHZ0/8jRc0kc0wgiAQ0LeKHPEeW0FswzuN3DCvPYnzJHvbbd/tnh4NiZTML8DvNr/8Q5s3JpLoNQDDI3mScIY07GwCx6iPEHqT3CuUafT7BG0u6QyQVg2jmdTdgSis0Fv9Rzt5SYtnQK0DYPijims2V2sBAnn1jq0N+qE7ToyDvFLDgdmixyoFeh88WFWHloZaiUy45rUDkwQzZzHvQ+vcvSx1ZHrfuml81y7uwL3fIy/e2h0+6v3VrnqF17Bu+84yZ988HZWHrpz5DsX3vhafuNHL+M1OxP+7NCL+Kv6aGsVUAjCjXqP+44u8eHrfgX4Fd544wH+vw/+Jb/yvts587VbR/b50Pv+OxOFn+W3XveL8DN/NbL9gUaPSz70Zb7v9W/nE+fv4OzR4e2dlVM8stph364LmbxgFm59cmj76qNr9J56nMlrDPzycIQWdZTayZlmoIAUftZzSz0BS72EpLGJ2Wvh2ybGliis2wxZbgQEsRI3DWVKpB+elV5MsBGoTt2GQSdMCNr9xUdn5RTNtYtohwlpUdUXlnoJx9uKGhHKlCtPLuEHddzibhxLYFoC27U4slDluj0VJp76MvUv/BPBWp2woRoelvfM4c/WMCdmlKRTHGJ0NjE7m1j1MzhAKkykWyZ1CqRemVVsWmFKSwsGN8MYW2cO0qpL1TUpOj5G1EE21nPJKFGbQWhisC1KuchvqxcrR5KoQn+vZCtOEYpbJjsNiCOSMMDsNBGFilamUE6nEyUEiapteZZ2rkKlIdNI9RtDKCSe4XgahKHGNdaK8sJQHcMjaak6lCkUj0uDGAwhSXtBPz2qnUQkJZEmc7uJqm+lutMz0HdasQKBGEmMKewhEApoJ6g5WoMOKJUyb4OTWcaDixIdPRp9MvEgmTq/dsfTDTJDTOFgmyJPBWb1wESiwB6mJiPbjjqvOezMtmJWTMPoMwR0GjlHb8YRhuMqnctM6oq+kkneD4zn1v4vCnGLGbpAaQpFDMxAHACGKTAsh9S06YYJcaRTBKDaQFgCxxQYcUDUCYi7SZ7Td4SBVfSQtk8Qp4RBRBx2Vf0MpWBf8mxcy6C32aK7EVCP+iiooinwaz6NUHKu2aNVH65t2YUKe2s+VTOm99TjI5B5gLlLZvAueSGfPnpmrPPa8bwbePNrjvCahZTT//HXuG8b57WdfeDWJ3nNQsoPvvrI2O1x0ObO+89xOnS4tDq+ZcLyiTo132RqsoDlFUe3t0OkX8Wfqoxsa0eSsNHBiAIse/TVinpKK9BwPcSY7XGgaga2MIbqBQBxqLQFszTTYKTQTVKibkyin5NEpvl9zSwJu2qfVCKjmHqUEGgnuB4mRO0uaRSSpEoEuNMKufzgJD9zyQS11YcwLJuJl7+GiQv3k0QxVtHD3zGNtXAQa9d5iIlZDL+kaidxSLx8mvjcSZIzxzHWFzFbK4jOBq6pUHBJqpzHWrRMSQAAIABJREFURjdirROy2glzcEamqkEckQYdZKdB2mmqFiNRJ+/TBeTK6tknkybqR0EaUp79V1s+kcts34RI6xNmlur3LwNjGEmkId0Mc7n0sfJbsiUVlr2jg6bLQrnzVbw0RsjEGZgj41lliiFbycjjYPGDzsvIIPEMOJ5UnT8dQULo1GcmCaWRhOaAyLHIx1+nPzNl/ywKM82cCJ33BRs4Rba/qWW8FCCjT/oGhlK2GT4gQ2nnx9oyXv+7g7LvSgf2zSBaBgc8u5F5nlyqlYgMB1TXLZvUtAjjREfmKn0oLIFjm0q9I+6RdEPiIMonOkcY2EWP1PbpJZJeNybutpFxSCoTLFtQ9iw8UxA22/QaPboDFe2qLfAmK7RCpZLe3uJc7GKV+bKL2Vqhfny41xbAwaLNzKV7kAuHOfXI0sh2gGtuuJAfvniWjQ/+Lu/5z6MO7pnY+p/9Dm954V4uePkPjt1+6uGneGC5xcEdpbHbT3Qiaq7Jrkkfrzozsn251UN6Zbyp6si2VixVs8W4h2mNPtpR0KMbJhiWg+mYIymQJAghCdVLvcWBpTIhjBVxVuqIITMJxEGcL3QSmY5MmnGo2uQYqSQJY+oDFfzVMCFqdtQ59IHf9WOX8/uXJ5z5zX9D9OjXaO95Ph/q7OXo1T/Lvl95O9X98zgHjmAeuAy58yKSyjyyUCO11MJA1teIVxaJzh4nPnscubqIaK/hmAJTGPnkXe/FrHcjGoFq/RImfSh62guQXaXVKJubpJ0WRtTTPCY9ZpkT0unEKElzwnE+dokchqUbgjRNcwh6lMhc4DZXpMhg82GgqCy9QKUgkzAHQoyorLPl3ZdSpfGyVGKSqcv3IwnlvNIcCp9xsZBSpw4THYHFOQjDFkJrV5I30NzWtCMh43JpoEkW/WVAkGE+V5LD8Al7ZKLGauEwes4cQZnB8C1bkZgtO1dqyS9nYHEmhKGPpRxjJn+VLxySvqJ/VmKR9BcKzxY5+O2077oU4rMZ1EwF2zTI3wrHNBBhG9ncJGy2iYNQvYgAhlI4SBJ1s4VtY9mCkqfaryTNDcJmm7ClUoCOUHwaszqFLNRYXovoNkN6rXXioI2wbCzbpOJZFGyDteVNNnpJvsrxhEF10qe8Z44HGj0eXGzQWHx86Df4tTn213w4dTfL954Y+Y3Pv2CKuRtfzmNReWx6D+CPX3cxa//ujbz7/V9+FqOo7Dd/7e95hyn4s//n7dz81EnWHrt7aPvKQ3fyp188wvtffQR+97aR/Y+1I/zuKkcWqhRndtNaGv4tD59psB7OM7F718i+jVgSNtsYUWdsBBZ26tQ7IUatMIJCBAibKnor2D6muSX1E4e5dJCMYtrJcIzbjiRx0Msjkzgc1puUUaRW6XFIb1NRKwateXqdZGWR0q6r+chr9/HUv/833PLxh3jFp97P6sLV3L/Y5P4zDf7glkf44RsO8EOv+VW+uNTmxKkuthlxxXyFHaUK08UpLE6QbK7QWlyht9nELvgU5ydxFvbi1vbgWyVs06AXq8VQIlN8x1JyVY5FOREUDYEM2sjGGlG7i63h8Jbj4U/s1U0NFQiiHSYkElwzppekpJ5Dartgq0nUMDUS0Ha08rlJoNOH9V6cw/0LtkoDAjkMXuoUJlGoFCrCLp7rqgWhKRBGMl4hfXABMRD5qW7MiUZRKg5bJFNsoZCMCULVEfUxMiShEffUc+VXcTVfL0pSgkRiC7UoyDlShlC/2/VBCIRfRPhFYtvTjTQVsTxLf0rtGEADV3pdZLuRUxBMW2V9/MokQaxg+71YkeWz1GMoUyzLVWoaxQqyrQBchuspcrJp9ZU09FwnDCNvxmkLAyPqgSbHDy44Un2fVe1UgUdiqaIfa4z3frZ0pmdj3zUO7JlyCbZCYrMHyNDseKWopm6wykOHJFGsCuVbKp5Cc0sUgEPp0JnCUDn/KCbRKUDTAGEKDF8ph/figLAXk/T6k5zQKztTGMgoHkpR+aaBU7RxKgXqQUTQDgnb9aFrsRwf3xLI+hrdMdD5yu4y9s79nNgYL+RrOh6V1Ue57SP3P4NRfHp75CN3cfXP+ey66LwRBwZw7myT8p45arYY4oNlJnptSk5xBIgBsN4K6cYpk8XRFCLo1X4Sj9TCAWQcKfWEcYVuIAlVrUOI0Qhs6zmSLQ9bKNPhSH3rPlJxAQ2ZkASjqdnuRkCysUK9l1ATMdPPO8iNr30VP3Snz0sOL/HmI2WuP303nZ//IUzDwN98ilN1j/f9zX3M7qnC9fu5Yr5CoeZScorIMCJud+lttPKamVkqYUddLK+UN2XshiqyTKSajGM5gASMQpKgR9wOEKZAtBu58LA5gOZLZJr32cpEdk0dCSBMRcwVIleWQHc27sWyH33JLI03GNpqwrZMSGOt0acjsEE4+jPt8ZFB0zPqTHZOEKozM1uAFNpxpraj4PhJlkZU76oQBnaqIpr8ackiODHwmy1bOxGHJEr6kV+iEJQjABDdDyyPPLttDKeY1//yOpj2y/n+pkWqz2XYKg2sSh4qpSsHximLvIShMk9qHOOhaDVvqUKfapQ5zOxQKd962vDZcHjz3/EtnvvbYn/0R3/E/v378TyPK6+8kttvv/1bPqaxzWfrd4b+rV/K7AXJUFRJV9XB8lTIFkSPIUwMQ4mpZo5PhorjA7pYaqtVGaZDEEuSMMjrJCoNaeQSLVtTVL4pcEo2ZqGgVA96MXEwzKMSloNjGsh2g15jeIL0hEFxtkxSmGSxOb6NSmXhAsIHv8w/LrXHbgf4gfMm+cOH/oL3furt1OztH50vPbiKs/QI5+2vjd1eX+vgz8+xwxu/fjLiQNERnNHtra7iYolCeWRbkqb9KHmMpYni0RimOVJcBxVZKd23b+zAwi2TZijVubenF5mqYC77tbLhcye4h6/mo/efQxanKB65nKcufg23/NGfcMdjqyy9+1f5+Zf+B5y//30KT95J6x/+nB+8SKVYTz58jq89tcHxzS71XkLqKscfByFhs0Ow1lTgj/VNjChQckb694WxpBMmdHVEkHOpUBDsJIyJg5CoHaiIrNvO1SxyMIF2XJF+brNUXD6JW7aqxQhN1BVWnrrr6fpTjiLUw2oMCurGUb8OlqlpGFnXdJH/lq1jP672laXrBtOWWTpvUOW9fwztxDIgRxzmShqZLJSpncBIGUyYKhLTihqKvwax7CMoMy7XwAk19D5S5w0DTeaO1byknU4W+GT7J2k6UAPToryWjWHZfYTigCkAh6F1HPXxdO0t60U2CFHM6l6D6c5nCWD8ttpz7sA+/OEP89a3vpVf//Vf59577+W6667jFa94BSdPbg/x/nZaljXMbqIplMKzhYImR+1AvcBdVeNIY1VINvUkp6IvB8sxcS2hXrw4QkYxMndgYDomhlcklNCNJHHYzSH0OY8sc5zJMLfDNw3soqMJ1BFBOxoiMIOKoDzTQHaa9BrDAIIdnkVpYZqkOs+j55pjx2Fq336WvvClbcfpD49/nO8vXYb/ox+k8su383tHbuC3/9uPjf3uiU5E797Pc8OFozUsgMa501hze9i5rQPr4VpiJI0H0OtGdKIEUR7vHGG4+DxoMlZAjO0iMBkqAq9tqslxq1l6AkmieMSBRWlKEsXbcm0APMvESELi9ugiQiYpf7y+wDt+6bfZeM8v8f9e9yuU//RtAPz8DQf54O+pdGvtPz1J4Sf+Cv9f/gb/vnqEu37rRpYfuoP7n1znwXNN1jox0lf1wSQICTYCWktt2uc26K5sIsK2So9rJ5A5r2agUnm9WPZX13FE3A5UTXazRdJqKTBHHOgoRGUterEkjKV2RlpSynSUxqLjYViOmkwdT+v6WTmHK9AdpLN/56OqScwyCBTARacTjaiHkYRY+j3N6lA5ATjbd9B0HSo1jFyKSjmuVEP4ZZ4ey2twGfhDpxEViEQJDDumAmspBQ6hzz9QkzOU7JRh2QoR6HikppOLEGc6ir1szJJ0GIHYCxSCM+ggu6p5qBH3sJB95y36NJBMI5FMtUOPveF4KhIT/S7WoMcri6I1IMdIJUYSahHjKOexZZadI+O9jaUNPAf2nDuw3//93+dNb3oTP/3TP81FF13Ee9/7Xnbv3s1/+S//Zez3e70ejUZj6PPtsqyVeT4JSaVxmDmYQRRVvurLkD7Z39LhG7/V0my1pI+91cZlQ0zDQJgGhhA5EXWcbeUu9fdHaevp2t3Y71gi5zGNs3PVQyN/K7389dt+Pw0D3DFOAFBtTiw7F+T9ZizNIgQhxsKCgW/YFPDZmCHM/J6nScpWvlKSkkd/5pjflTUJJJV5H65BW3jBPj50xwkAvvCezwHwjl//JAe/52bOn/KYcU1ed0l/QfCB+1YAcG77Cxau+F5FrNYOITWEIlsnEpmkyChBJilJGOWk1MFLzCKoEZMJUkrSREVDUtd8YTTayPZP04yLNfAFLQ6bR2GQRw3bnptsuPrnz7IfWX8rdeh+e5Jnctuz9Fd/ItZ/l2rRmHPB9O/fcjG5czSMPvJwK6xeHaIP3shSpxKt+COHOVzbX2ySR0IZoGKsCHB2eQPXno13fh8Ge55pU/qGfQRiBpzZDrmZX1Y6/P/PpR97Th1YGIbcc8893HjjjUN/v/HGG7nzzvEouN/6rd+iWq3mn927d3/L1zH2kRhYxakXKHvS+6H1uDoLsO0K/+ksHXiRDdMYe2PGObzBbame2Ldakup9deQ4zuIwwS56Y7cBzDWOjfyt89m/3fb7hlegM6a+BfrljqOROlJmqdaHe9qXfJuxMLTTHMPbHNh3+5fzG9m3IqHzdLuKgXTpoHNM9OrcNAzMAWDK4Nog1c/N0zmCb4f10YR9ebOnM8PcJtLNUlDfxBJ+XGr4G51/9IK2WVA9zXWMm8gHT/vNXEN2mkHx4u3u2eC7nqMhtX3DZ3Dbiem7z57TX7q6ukqSJMzNzQ39fW5ujnPnzo3d521vexv1ej3/nDp1auz3vhkb+wjpHL4hRD4pbru/frjy3D/DHJDctKiomYM/RkmOaaqUHgbBPUmaqnSkTLBNY2xqLZUJkUwxLAdrS2oulClRu4sRBVQLzsi+AN1ml9LC+JQfwO2v+Vn+6SO/k//71Offz6+/6S+3/b41s8Di5njAiFOsIIM23e3qVbpGko55uQ0NdkEmIzl409AObJsXeCiKkqNADBhQcfgmbSsYy9iyiBn7PAzY2a+e4PXX7gXg+re8CIB3vfe1nPjiJ3hsrctKL+ZDX+u/Ez91WKUJe9f9S07ddQupTHEsBe/OLkWYQukX2qZqxOrYQ6kk6Kets/rK05lhDtS1GHa0eUZi4BCDGYtx9nTRxNbz5u9gBpLYcv5vxUauY2D1s/U+wrBiz3bX8HSOL6+zG8a2C8oRDlkGgOEZYFaedvX23WXfEa56a+orTdNt02Gu61KpVIY+I8d7FteQ5cazTq8JAsP1sDwHy1O8ocEV5eCDl8oEmRE5ETr3b+VQ7SRVvZ/SoINjSEqOie2VMAf0+pJY5kgu03OG0mvdJKXX6JHU11TH4JKDW5keuv6wU6cVScypHZTmCkPbzgQxm0+cw1o/weULo/wpgDNfu5XqzT/Fzfsnxm7/8NElPnL+83nj0c/yxqOf5e0TR3Iliq32kzfspfu8m7jliyfGbp/bv5PO44+MlboCkH6VjSCi1xqt15UrHkVHiSVvNUcYCFspEiTjVuyuR8ExVY1hTBrQ9FW9IEPHDdqg8zNMYyT9aRsGluc8bV0gBaUn6I0uIoQp+Nfz67zz99/G7C//Lu+7/T+x/Ib/AMCH713kdT95GQCbv3GYzl/8GI3/9k7eVX+Qq371n5m+8BrO31fjgtkSU76NEai0ulX08Gs+pbkixR01/JkJUrtAmPRTZ64l8B2Tsmfh6ppOVtDHsrE8B7vo45SL2OUSwiuSmk4uo5Qdw9EK66ahVOGNJMrRdH0koaqtKO1f1aLFs0x8x8xBEUM1LCEQtoVpWxiu14eEa2V2mabE+j7mOopb7tnwDZBDPE9zEEZuqmsfmhAHUoCGZev6kj1UQ8tSoYPnyFNxeUuTPr/QMrNzivy/QgzXzwzTVBQEx8t/N7aj1PDTdOCjdsnSp1nzyYy/qsa+35k6O0fWD0xqHcVBDpmq3Tl9p5kNBf06X8ZFA/Xvb3/C/pnbc+rApqenMU1zJNpaXl4eicqeiT0bOGYGq81z4zIT6UQ5Is9TL5GjI6YxKzIpE5JEFbKTFAzb0S+e7g2Vqt5PqSZiupbAcpwhB5am/T4/wra2ODAlFhu1A6quhVd0sP1hiHnSU2rnojyBPzXswAAap5sk557i4OTotszWKvs4/IbLvskRHLULXn8NX1/ucPr+8ULBU3MlmieXWOqNX6GnTolGEBNtQVoCVAu2ogvobsKDZhoqykiFNTZ6E5aDYwm14BgTfpm2pRsHMnb//Dh6shs0RxgYplZaGBs5mtn/DKUL83M7gvChu/iBw3OIzgat++/h4GO38Nq3/mtesH+S/W//bd7ziV8iuPEtdA5cS+11P81HHlwhiSV7Du/j+fsn2TfhU3EFRtTFME0sz8UqeHhTivjtTFRIbTfXDATV8LLgKCfiWkIBVQbqu6bnqI+vJ1S/qNuK0J9A9T62qRRsTMPoE2JzMIRKP2Z9uTKgjG0aOKbQTmRLHUvDwYWjibmOB1Z/Io+SdMiRDgz2tvcuq3EPoQgHiNGGvvZcxQIdDWWEYGHlvdmiHIAx3I4lU84fIkKnAwAMU2CZRg7+GIl8NXLR0MAX1RtMoxhlRsQe/s2DShoKSKYd56Ao7xbLUJ+J7JPXDcsh6302NG4Z0hJj6N/PtT2nDsxxHK688ko+9alPDf39U5/6FNdee+03daztxjL9Bp+h7+oXO8tPZ2x203NGUomm6GuSqZdUFdFjmWI4HpbnarUH1SIijhJkGGBEPcqOhe2amK5yYIbQ6uaah2PpCCw7WzdJCVsRvc0Wk77NZNnFKU8OXXsSdmmGMWJiluLcKMR8/fgm0anHmStaCMse2Q6qpcnCD/8oN86OSjg9U7txtkjllT/Oh+9dpH7q4bHfuerAJOuPjqqFANRsodvNBETtUYDObMWlaAtka9SB2YZy/mzjwEztwJQ236jzFLYNpkpfJvFoBDZ0rC0PnCOMsY5pcP9EKqizaY9+z624mLUZSo4gtTzWHjjOZ37it/nLq1q84rxJvtyZ4F3WS/kX7/ki//3oWZZLe1mouPzrH72UH77hAJfuKLNQcShbikeHZWMXPLypCoXZGv7sBGZlktQuDGgXgu9YlDyLkmfjmcqBCdQkbFg2pm1hFz3VRsgrYDienviG04cqohLaKaAkiXI02wAwQE+mtm4cmjkuRUoeSGPqSMQYgIMbVtYXq98IMxPSzSb0Z5JUVNGEQuL1oyExJKnUv29CE7IdhaA0rVwKSg5EQiOR9yCCMZeCygjE5OTh7HcPOgNDc8ey82YoxkhmjTz70Rf0OV15C5xs7PW5M4UNg/7iKmtoOaikn2bNM/PIc9g9ZICPXM3/GYx1Zt9oHn62yeDnPIX4i7/4i/zpn/4pH/jAB3j44Yf5hV/4BU6ePMmb3/zmb+m4z3RQsmgrC8uzVuW9OCX1K4jqFN5EWTmxzIHJGMcSeZM8GUeEvYSNdkg7khilCdxaSU1Khjp2K5aEK8uI9hqTBYvShJJKsrwipuMT9RLWWiGtUOLP1ihO+VQ11yqQKUvrXerHFlkoOzz/wCTTe/cO/Y7O2iIPLLWIZs9n/ppRLcJ/Xmrz6N98lqmTX+aqH3rD2LH4+d++hfc1DvLKRz7L237thm9itPv2ykc+y1u/KvmTd/3nsduveO2P8MardnHHZ06M3X7NpM9iW/L1k3VaS8dH999ToxRuUn98lGZRtU3ciRLSKxP2RrlWbqnMbMVDthvIKGFrEObWSqROiZbWuRw0Ydn6nisn6W+pQ1aKNk65mKceTWs4TWhajppkherKPcijE0BpYQpzap52JPmR/3GKEz//B3zf5z7A2Q//FeWjn+CiaZ99UwXe8y+v5Od2tyl87Le4KTzKWw9J3nykzNWTKTvlBtbaCSXoW52iuH8Pk5ccYvLKyygcvhz7/MuIvCpdrVlom4L5CY+900X2TRWYLTkUbYFjqijEKFYwJyZxpyexZhcwZ3dBdVZpJmonCFB0TMquUpJxTQNThhhRL48C8s7AWXfgOMQWSs2i6tmUHIuSY1KwTbJhSQ3NH/OKmKUJRFl9UqdIL1Gajb14CwSdp8/AGGk6QAZW5/dtE98W+twG1qADEwLD9VUU5HikTkE19dQqIp1I5unmFO3EMjmmAe5a2utCr4sRdvAsgWcalB2LkmvlUe+QiofjKfWOQhlRncIoVJBukV6c5r+7F/c1WC39MaIeRtwj7bYU/L6nO0In8RByMxMfjqTivmVzXmraGF5BpS1tp6+jSEYxMgZI7CpaHTfe3y7n9EzsOVfieMMb3sDa2hrvfOc7OXv2LBdffDG33HILe7dM0P87TOoQHSAR+oY6nkqf5M5LpUFcrRhuCKV8LWOJzMRQLQ+74GH5KgIL9QMStwOMsIVfFHhFG6dQwXR8ZBySxJJWENFLUtwJ5fxKVl+pohFLOqttdjmCHWWX0sQwYjAO2pza7LIZTVHbe0gRogd/G3Du6DLn3/dFvveyN/Dk0Rew+shXho6x8tCdfOB/zjFXupzX/dJ/5Kr/+r3cvTme+DzOfuZV5/G3JyI+8Ynx3Z0tr8h1l86zywmHuikP2uT+Cda6EfWNDjKORrbPFh1EZ43O8sbINr9o41SKJIZFPAYBabsmJdci3YxIwi2qD4Bd8EhNmygJRqDuSmnFVF0KTIE98OZ6wsDyVG0rO+ZIxOb4SunFMDB9h6pt5vd2xjWxix6GaeJprcJ/99dHueHKnbzrl38Xa+0EtZUHeNNkSueOf+bYbffhTVWwq1/H7raxarOkxZpyOomqK4rKFKJQUVJn5QlEZRLp1+htqX9VXTUFlFxLN73sp8AMy0YUK6SW4iCK0gTScvsK6PQ5SbYQ+bUbWRQwBsSRRQOmAE+nDl1LRUBetigcGEPDVc95xmtKTYskzqKvkcMrG0yXmcO1HBjmfmZRUJZOzGD6ahCzFKKpoxMVfYU5+VrmdbCx5x/oapxHYSZ5HSxJR9NxqWEo7pZlq3Snrr2h646ZjmK//pUJMEDWiDSvO4oEIhuRpXAH1lzZ/llX7UzJI0sjpnE4BBxRUWKqo7B+2vW5tufcgQG85S1v4S1vectzcu7s0cvEKlNd2EykATp8F7aFMIWC02thT98xsWyzr0YQq1V7mKSkjo8oFHCKzgDZUGntpZ0W/oyB69sq+nJ9Uqn2bQYx9SDCqdUoTPtUbZNTXRVJtGJJd62D3d1goeJRrY3Wsh4/12S1GzOz5wIOV9wRJ/HgaodDX3qQm355ls9feQFrj311BJr/2Gc+zu+YgtYPHuGnPvbvuObPPsxn/v5xHm5uzxE7v+TwAz97Nbvf+jb+1R/ct2135n0vfDmvuHAO88Q92x5r5vAMX9/o0lgfRTAaQjBfdjFaa3SWR9OLXtXFKJQJkpR4S4rQEALXt1XbkDAYSSF6wkAUCkrqK+kMye4AWLbIIzBgqEZZsgROUaWas+EcdGCm42E5lq4tKWBC1RZ4Qsk5TTomTrlIKkxMoepSfsnhnuMbfHC2xOsOX0D5iS+w+blb6axsIGyLqB3QPbMMUiI7Tay5PbpeolpqWNPzgJoQU6eEdHykW1YAjjTNHU7Vs/NoyLdU9JU5QcMvIqQkdTxFHHcLpE6BWPbfG2GQgz+ylGAOHMjG3hxOR6lISE3irhZd9kzlxPLANkMBZ3JUrg+Om8sxbfUZWRpORRl645YUWKodlOJ79lOHnq7FmVopJed6Cd0VWdegMgBHVn8bpHqM1D01z1MFdCqdaGhwmtDnTvQj0m+w2b9OVYsywXFJTVsvrNK89ihlmovxigEH1gdwaP3JDA050NAye7YHOzrnSh6ZBJhM+l2h0bw3FGIjz/Iyav8ro61x9h3hwL7d9q0MoiIb6jYHlgrlLc9R8k5BD9luYAVNZooVJsouq0WbJkrlodeNWe2E7J+dwprbQ3FHjaptkqSqdUb77Brx2eOU91zGhfNlVhcbdNZn6MqEoB1xYqXNsfUOLzzveUxf/AAH7l/JndC5IGbt8Q3E6Qe4ZO+LuOmyeb48tZPu2pn82h94aJl/3DPB9KWHecnNh+j+3aNDPcWOtSNu+cuj/NzP3s2f/9QL+b39tbGpvkdu/Rj/5taP8Z7rbuZ5L3s7N/3CDt59eAa3sYioLxEvnVSRaW2WZHI3n15z+fdfPcUd73yIxbv/cdux/aOfu5br0ye47x2/N3b76y6ZYd+P3Mw7jp5h6ZFRTca5i6/nQM2ld/c9rDy0MrRt2jGZOTyNs+8iTndjeq3hCK04s4fqVIGFiktvfZOwPcxDW/AtrKl5OqlJs5cg4+GnyC+7zJZdPMugi+4uYECUKqWT4lwRZ6JCJBXXzvb8oXOXJjxc08CIEoQpmHMtQpniCIO9Ex6F3TuQXlW12tEdnYNOyKPnmnx1wueKg9dTm9mH95kP0VpcpbfZpLOyQRLFFKMQszqFUSiRuhWkV1bK9IZuvJkh9aRqQimAgi1wLYcdZSdHDtY8k4JlYHTVMycqk1BQKN+0MEHiV5GFGlFbaSeahnJ8oCK4imspB9hTizxsR6EWs75WGsGYGspZOLoPmepHJvrdsDUqLtvHsB1EoUxqF4h1liSWqaolaTCEZwkNyCAHYSgH6OhUoEe/9YfM981Sh75lavSkriOBJmALJUJs2qSWk4sAZyoez4h7lwNZVB3MEuSOG7QaxhB4xVKLEZmQWh6prT5xqOrkSrIrxTb6JG50zzCikLTXJY0iDJH0OzJvvSQ5jGaUKbnMl7AdVddpqwIEAAAgAElEQVQfIEJn6EPFSaTfkSDNV2zfeBz+F9h3pQP7ZixHrw48QBkfiywPb6uut0kUkwaqJ1LJmaRasLFdK4fXJ4mkGSbEoohbnsCtlfFEv/VB3AmQzU2sXpOZiodXtLG9IqHlkIQBQTtkpR3CvjlKCzOU50vwlBLtDWXKRi8hPnOciUMvYt+ET3Fm95AD21xu8LUTG1y3d5JDV1/EpXed5dijw3Dzh5shG5/5R3a9YQ//6uo9fOz8q8YK7gI8efv/5Mnb4daZ3fzx91zHzh1lDsxW2Tt1DUmSsnYi5Km7V7jt809y9uinx6b8Mtt19Su5Zt6n8dd/zxNfHOXu1WzB7hftxTp0BU99dZX2ypga19wkhaRL+9w5OqvDEdqCb1HcUcOoztDsJSThcOrTKU9SLjpUXZuoHeQ6lf3zmxhegVhPTFvTQl5BRW9Z5GUaBr4piGJJRUdghlfQQraGis4tG9Pxcco1vIKtaku6Nuf5FrVYqk4FswXM2iypV6Hbk9Q7EWE3JuzFnF7vcmKzy0LFo1zbhT27Ey8ItUJFghAa7OAVVaRVqCH9KutBQijjof5aQq+eLdPQL35fy882DXzLwIiDfFJKLQ/DVMoe0i2SWi4JgjRNctShmwrtyFT0lk/E2gEhE7Wi17BwqWHwyCz1ZYBAaxpmbYx0BGQqFGImyZQKK1duz7QY7VRoUITa36CfAlU/ehAWbo0sbrPfbgqdYRvHocpQeWPULDLEpuriPbwtbyqZq2JsAUXof2ZpuZGIJhurvJ/XGOCRoA+hz1SAMhmocXqfW2H/2vI/DSh5DP47P18e5X5n2P/xDgzUTUnSLEzORZ6VqrO+kamUJN2QpNMhbTeoFWymSg6u30f1yVjS6sV0Y0mhXMOdKOk6lrrhQb1H0mriBE1mSmW8goNdqCAshyhoEXQizm52kaUZ/IWdVPdW8e46Q6BlbtqJJDx3Gr9xlv21GapzO2icrhHqaKO9cooTp6e5b6nBFVddy97rj3HVUnukjvXE33+N583/LZfc+EZe8LIruEuYI/WwQeusnOKev/1rtk/8Pb3NXXwd3/8vDiG+fitP/sNd3LE2mh68bmeZhesvI5o9n/WzJ0acoVuZpjZbwmwu0z67xmowDNLYU3Yp75kjKU6xuh4Sd4ch+F5lmvkJj4pnEre7JFGCafShz5OOiSjXCBOl0L4VxegVHSqeijDSREGifdOgm6hebW5FRetSqsnVcgR2oYpTrOJVpilWdQSWhMhEYnkW1SDGKdgUpguY1SkSr0y9HtBqhwSdkLCnOncfX+2wb8Jn2i8xNbsLt9NERkpk1yrqKKU0QVKoEXlVNoOE5XacN5i0TcW3soVq62Np/TvTUFFQloIScQBxqCZCQ5Babi5PlNq+igKkToMZaa4DqJyfjmAyEMOAAwNUJGQ7CgZvWhDTj6DSvs7kEBHaMHIUYhYNpGmq6pCo+hUop+fmEZiRF7INU/XgIj+GNaLw0u+HZeQQ+qwD8VAN7Gkm8iHnM1g/G2wqafVJ5Clq/CPZTx9mCMi8/meafSJ4HjkOSNkZ/V5eAkDq685ShgPXnu2/1W8NnnvruOfnHfzvlt//nWDPOQrx22nfDjimYQwUJwcUtdNEKnXvRgfZblB1LaZKLo5nY2k+V5JIWmFCN0qRruLe+EUbXytrxEFMb7OF0W0w6dtMlF1c38J0fJKeisBOr3cJ/Rr2roNU9kwz4/ZrKa1Y0lpcxVg7xWzBojZXojizJ9/eWVtk9UyTO59Yg/Oez66XXMGRy0b5dPd87RyPffR24i9+lH/70vP43puuZOcVN45879thu65+JTe/5gre/MJ9nPuHv+eB208TjEm7HLzxIN4VL+F4PWTz7GiEVtl1PhfursLGGTrn1mlsgbnXDlQp7NmFLM2w3A6H+nGZjkehWmDHhE/BFkTt4RpYxRIUKy5GoUQQqxTRoNmFCtNll6prIeKAVLfBcIRByRL4Ex7uRAlR6KcQhSnwqjO41WlKEx47qh6+LSBoI6MY27dwCjZ+zaMw7WPWZukkBhvdiG4rJGhHBI0GnUaP0+sdzjZ71HsJojaLWZtVvK5yAWeikveZSwo11roJa92EYxsdjm10OLHZZbUT0ezFiqIhwLcFJVtQMiVu1MLuNTC7dYywm9dMUmGROqrmlbolUtsjMRSIIYNS+5ZCDhZsE9cycvRixpcSfhFRrKhPWZGoU1ORxbPJVBhGHj1lXCygP2lu6SpsDEy6CtEnciRfDsSQcX/fTFDXcvIILIONZzYoxpsLQevoxRgDAskcR3a+IQh+du1Z5JfTAJwBibThmtk40YanUzHJlOQzJza4/xB4SNceU8MAIcZKZg1x0Ab5YtlxvoGCzHNt3zUR2NZb80wXCKaRKSSoB3KQ4Z6aqiBuWI5qaNnu0VpcobB4jPkLb+SC2RKPzZc5e7xMHMYkseTUZpeVTsRsbRf23guZ2Fsl7ESshwmd1Q7Nk0uUTj3G4cMXc/m+GsurbbrNOVpLJ2itbXLilMejawEXH3ohO162zFUffwD/XItzQUwrlpz9yuMUdnya6ZdP8obr9/Nh4Lhts/bY3USdBmeOfoHb4+v45KU7eemr/y1X7j/C+uvezj8tNnLljAcaPR74+KNc+tkT/Mi7l/ngy1/PmZtexQ//yQyP3v5lmmdHdQ+/GXNKNXZdfj3Pu3yeP3ztEaaW72ftr9/OH7z7C2PJyzfvn+Dgb7yDh6w9vP8LT7L+xNeGtk+edwWXvvgwP3zFLrp3/g+W719iZeA4njA4+P1X4Fz5Mh6rh9z91AbRQL+06fOfz84Dk1y5q8oOX3B8ZZMglmphIVMuKjvMHJkiqczT6CXUOwrE4FamEbZDZf4gV+yrsafqIZrniIMI0zGZcS0mnZSpQzUq++exduyhE6gJwCvaVBcOUqi4zO+Z4PkHJimGDeKVRXobLSzPomALyjtLTBzcSTyxi5VOzLGNDvW1Dq3VM8TdFu1alcW1Dov1gNWpiAPFKcypHaQywasEmNUpzPm91As7OLMZcmxdOa0HT9eJZUrZs7h01wS2MKj5FpOeiWivIYImRtSBMFDAD2Eh/aqqUVmuipQsL5/s44HWH66pamZpls7Tk7kq6yiqQOr4GBNzCBmr1b+wVHrTK9OTaiI3MHQ0qGqKjj6uiuAMjKwWZFk5R0noGpJnGlRdO48wVU3PwBaotiemqfYVQtXhPAVkCbWCRlb/yaI2RdLVlvYjuK0mtOMcrGFl6VNrICwxLEdB0m0Ho1BWABi3lHNFIymRUvuYDJY+pKQR9q9FDvQh04CTJFWRrzWABkw1rcdwVTYAy8bwi+peCisv7fUdIFpZX429oVGMxPqLWeRnWqqxtZ4/FHF7fCfqAQjN2G3b2bMN6L5rHNi3agZ9pE2uFjcgr5ImKVE3Vu1VGnVKjmC64DA/4WO7JqlMSWVKvROy3o3o1UqUarMUpn28sou/GSAjSdjsIOtrlB3BjopLoeziFX2aMiEKWnRbIcc3u+ytVqntvYjagQl2bgZ0da+l5pkW9WOLFA4/ziWz38N9+2psruyiu7FEZ+UUUadB/dQjfObR85gtOlx15AYOvep8en/3MLcuD7dgua/e4/z33cr5J5fYcdMredcPvZg/3zPBHV98ipNf/odnNY4HrruZCy+Z49WX7eT6vRNUvvZxTv3zp3nikw+OOC8BvHJXhcNvuIy16gHufGSF+58Yrtk5pRqzB/bzgvOmODDp0Thxls5qd6idyeGKS+WCQyTVnSwu9Ti93h3SoitNTXJgpsh82UV0Nog0stMRBlVbMFdxKc1XSb0yrWZMGEsMYeCWJ7H8EsXaJDvKLmVHIDabyCTFEIaubxoUZ0t4M5NIp0jU1jwwU+CXHUoTHnunC8yXXIzuJklzk6ijokPbt3CKjkIgukU6dclmJ1KUjCjsK78PqGMAfWKvMFVk41ao9xKWWyGLjR5PLrd4arWDKQzCkpNP1I4wEJ0NRHsNWuvITpM0CjFcX/VXc8tgW2A5SEt1D85UHwbTZY7Zn6Rk2leTyCY0lbbzwO13csBUTk1NpKk+FnndyxQqDTe03tdk5ryflaHYUpnyR8FR5PB+9MVACtPIoyAcV73HGRRd8rSSX+rUJinRMKE3lZiGmUP+M/Msc+j35xGYrvsJ10daHgmCWMvFSU3EthlAT6aJJiHH/TqgVtZQ/cCsvN4XGf17YgycN48YtYqHYTlIjS5MB+p7mZxXPv6GocAr23TTkFukutLMiY0bu+w7PHvH9Ezt/zow+oM8ktfVqBxDk1JllBB3AnobLSpRhynfZrbi4vp2zjva7ERsdCNakaRYmqIwW8Gr1Sm2Q5IwIWr3CDc2qLomO0ouCzWftbKDsBxkpHp9HV/vcGSmRGVyN7Xzppk+3aBxRrIeJrSXO9SPLzP15IOcd8G/4AUHJjm+1KJTv4jOikq9tVdOcteDS0yWXCruPOe96qUkQUjyySf4zEpn6Cd+9P4Vrl28g0seOMX17z2PQ6+4gH86NM1fHKjxlb/eXqx3q3kTc+y58lp+9Ucv49rdE+w22xjHPs/97/1zjt25yFe3dImu2YIb9k5wwQ9czPzNN3PrYpNbH1hi6eRwp+np85/PgfOmeP7uCXZ48NTiKkGzTw/YV7A5uLuMfeAIa3icqq+xVg/6LW4cj4mZIhfurDDl28qBtUOSVNWw5lyL8nyJ0sIMkenRDBt0dHrRKddwS5OUJ33myy4lxyTtNEjCBNMxKVkC1zGVykVtBumV6USqaaZpCfySQ7nisTBZUM4zOI1sbeb9wIRtYhdd7EqB2PRohW26YYKUqXJOloPtWhRdK+dpEYd9hQtN9E0cn1YoWW6HLG52Ob3epdMJlRN1VO2r5JoUbIForsHmEsnaOWS7oRxhsaIm6ZogNe3ceQ12E3DMvpNythG31i6ONCdxa6qHIVQNy/JyRCRk4IN+d2cVCRn9mk2Wwh9oyJhFK5nTskQ/krOFATLKz2lYjpqMtYZhKsy8HVHKcEODTGUi21f9cQt/TEPRt6IIM0csDGOAQ+dAzl2zSS1bR17psIrIwFjkHLRMxUMmA+AMmSP/hCZiD9UMNdAkFSryNKIwd6AZfy1LIQphYCMGWtHoCFAjJVWD3f5vT3XtLuvWlj5Dt/S/o0z2f7YDG1iRiHx1B4ZUqcRekmK6RZWmcUxkktLd6NJaXKG2eZodtfO4cKZEueYrKalezOJ6l8dX2+yp+kzOHWDm8kPEHTVh9RohraU2m4+dYqF9hkt3zLFxwQz1TsTqyWnCdoPO5hqffmCJomNhHpxkz6teqgRVbz/G2eN1zrZCxF1nSJMvcck1D/D6I89joezx0Zkin1w6QWPxMWQc8dCn/pml41fw+fsX+OMf/zEOXv1K9r7m4xz+2Kd4/18OaxTeud7lzo8/yvQnX8NLLpjk+159CT9500088mPv4Z8fX+GT9yxy9J8+mztIgNLcPib3X8zOg5O88wcu5tK5AuW1xzn53l/l5G1PcuuxDe6rj5KVBUpt46b/cBMTL3sVvf3XcOfZNu/4y6+x+OhxNk+oazMdj9qBS/mJ11/GDxzZweFiD77ycc7ec4b1MGHSMblm0mf3lTvY/32X0dz7Ar78VJ3PPrLM+lILu1jFq85Qnj/Iy6/axcsOTrPL6pA8cS/djQBHGOz2bQ5cNMWuaw8wefWVnGxFnKp3qXciTFMwubCTcs3nogOTXDRdxG8uEp98DBklOEWbmm9RnC0yfcVF2Icup1WYZaV9hm6ooPLTMyWet2eCy3ZWOFDziO99lMax07TOKhksp2TjTVVwZmZpRpJ6ENMNY1zfIp3aiWmZ7NpX4/oLZ7h8vsLeqgNPHCc6cwLZaWDNLKj0mlPk3GaPExsdHj/XZHm9Q9COFFneEixUPOZLDlNGl/iRrxCdPUWw1iAOQorzk9jTc4hiBemWCawija5SmehEMld5qHkmjgWuSBHdzT5fSoM9EBZplqoSDjjDSiQyhTjuw/lNASJVKT/TUCmsLIrK0lZIpw8i0UAKQ8Y4pkWKJE0FEgXq8DIOW6iuKzUdjEy93fZVHc8pEPXSftdoNIpv4BpN+uCRvj8zVfQiJbatItmCbeJZapL3dS3O0SFYaggMy9IkcBfpFJFumW6c0tU923qxzDmkGRDDiENI4lzBA8BIIqWw4UTYwsPRkH8gF08WGKpmaTqa+pPk0WfqlUgdf0h+ytYFPwW+Efi2wEoCjDggDTrq3I6n0oED+o+xPkBiQmKosXquW7d8VzqwZ+z5DdHPdw/8OdXhciRTUruAUVRSUsLskCYpcRBidOqUZgXTBZtS0aHbCkkSSa8Xs9bqsdoJqfdcKjOz+DMT+LUWvUaYAznM1iqT8wvsqfoc2lHiwcoESazSRo3NLk8sNzk0VeDggYupXXSS5uI6wUaPjZU29WaI/+Qmwf1fouRP8Ly5XaxeMMOX9l9IHHbprJwibG2wpmtJ//PhBV590Sznvei1HLAcrrvlGLePQQKuhgkfvX+FnY/fxvX/+BDX/mfJhRe/mNddfAUfvXKBJ5dbrLVCpkoOB2ZLXDRT4qKZInvP3UXrQ5/lkc8d5S8+8vAIwCIzTxi8ZKbAeTfup3bzj7M+eT5fPdnglgfPce7YIs0zx4iDNk6pRm3fxcwfWuDlh6Y5f9LFPHYP9Yfup6sjuUnHZMeFk8xdsZfyJZdyrBVxbL3D4lqHsBvjliZxyzVqO6pcvKPMtG9iNpfprZ0lCRNcrYBeOzBB9eAC1sJBNoOYjU5EN0wwBBQqLrXJAgdnS0x4JqK+QdhYB8DylVhzca6ANbeHpDhFvadSgKGenCZLDvMTHnNFl5ItSDaW6W02idohhqn6e1meg/CLuf4mgOvbmJbAdi2O7Kpw3lSRhYpDMW4SnzlBtHyGOAgxSxN5vSLr8BvGSsdRMUBMJgo2cyWXqmtibqzSPXuK5qllwkabNJG4tRK2XrWnXoVWkNAMExpBQidSijNlrdZhCkMJBQcNtVrXDky68v9n782DJL3P+77Pe/bb9zXdc8/e9y4Wu7gPgqAJkiIpkhYpS6Et2VEUS65U2UnKrpSTSlKR7SrH5SipxI5KfymRHJmSRUogKd4iCQIECGB3sVhg72vu6Zmevs/3fvPH7317enZBkQR1VMH+VW1hB9vd79vvdP++7/M830O0DGUZG3Unsfee7+M4eUKTpdHfI3uncTcK0bp3kQJ1VwUWuXgI7VpAEDISFeme7304dxO/LH3kYh8E3n1UeMHCi8BHQorcKHyfkTdgeGyJ0Ekj2IlS0eTIxJgdEoskE0ghGUYV7EvHCULrptAFxh8/B2l0jMD3RiSOKMgS3xVGGaEjhmj/3bPThWATKBpyLGzlKuFNhb9zvhFxI2oharIEtgueveNdOf6akoyPOzrdHfPiey/6X/16TwLYT7P88HPlBcHIVUNJZISZqdYVHnqmjdeuI5sdsrE4pUyMVmuIY8nYlku9Z4cA5lGYXCA1u0JvvU5nTbSfzOYAZ2MRI7/AXDbF4ck0yUwMx8yO5mB3q33uTg14/8F9xA8eI7+yxaA2QKkN6Lg+8fUu9YtXKGeLTJ3O8Nhcjpl9eRzzJO6wh91rYveaVK++zPMvlxnYHj9/apojT36ahz71Dbznb/DKO7hdgIhf+YM3Ngn+4W+y9298icknH+S/fuYX8B89wtALMBQJZdBEaS1jv/4G5/+PP+Tyhc0faTv14fkMhz95jLmPfoCV1EG+d7POV9/e5Pr1bZpLl7F7TSRZpnjwLNMHyjx5aooHygmMylsML32f2lt3GPYddFmioMqUT88yceY4ysEz3KgNuL7RYdizcB0PIztBupihOJ3maClFUXUItlcYblQJvEBYP8UVMnuniO87QJCfpdK0qPcs7JBlGE/F2DORYG8hQczu4Ncr2K0wqsRQiWViJKcKqJMLOKkSnbZLo2cxDFuQxZROIa6RNVSMwMLqtLG7A5yhG+ZzKajJOJKRxPXDCkCWiKd0giAgnopxYjrDoWKCqYSKWlmhtXh3ZKNlTE2Ju+XwJixKN5ZlCT2mkk3qlDIGmZhMzO5Ae5Peek0I6gemMD4GJE1DjifpOT4dy6fad2ibDo4fkA6BXpFVVHwkZ4hsdcEJSQaqumO1RGz0vfHCO3453OPkUGQsS0DYOoxmKhEgje7lo4143E8ytDmCnTZitIHLEQBF7bZodh3p2aIZ0NhnUejIdgS5u7Ag1NYRmV6r6q5KQ0ZCkcSERwrBdyQhGH8PkmjJRqOIiDhybxbr6PjjFP5oDjVmgBx1iBRJwpej63rP8SLtWFiFRj9H8ULCxDgYidcjb0PJc5CCAD9ysB9/H+w4FcFuksZfxZzrz1vvKQB7Vxcy+gWFPwah0t9yA9r46IpOJj9LemESuztgWOvhOS5uZYnY5ALT5eOcXsjRM102/ADH8litD3hrvU3W0Ni3/wxps4/nuLSW27hDl361T+f862Rlhb3HnkbZV+D7Jye5dkeltW3Qa5ksLzX5Uz/gyfnjHHr4E0yl88SL36Fx+89Ya1ssDRy03zvH9OVV5t9/iYPPPMf/+unHeP7KJt8+l+XSF/8AAM82eeMLn+PaCzN8/oFHeeShWX77336O/b/6FZ78g8/zv/2bV3/opfnDN7fgzS3437/PfPy3mTFUsprC0PPZsjxu9+z7QiXfacnAp49P8Owf/Cv6+57gO2td/offfInKjVu0lt8eDfq1RIbiwbN89ufP8PFjZU5PJlG+9JvcefFNtt6s0ApF3VMzKSZPldnz934Z/+Dj3BpqfOHiTW4vN2nXBkiyxOzhKU7uL/D+wyWOxvrw9it03niN2lt3UHSFzFya3N4s5ec+iHT0CTbVCS6srXFrs4dtumgxlTP78jy6p8DZmTTK2jms22/RWaogKRKpySSZfZMUTx3CmT3JYsfjYqXD3WqfwcBG1RTmCgn25uJMJlWU5jLdlS2GtR6u6Qr6fDlLaraEWpqlHxrDxnWV+ZkMuYTGoak0HzpQoOQ24OLrtN54jTtfvoDdt9GTOolyHrU0izRlIcuxUbZXP66RT+ocnclwZjbLtGKirF7GvPR9qhfvMGyayIpMYiJOrJBDnVzAzS9wt2VxtzFko2vSGjij6i2hKcQUGXlQR+lu4a7dJrDFnFEyEigzOp5mEEgyA8fHdIVjugBkRrMqPXS7jxzZo0ooam2N2HSaIQDLE5v/zgdJHc2EVFlGD7+vkjTmZKGoYn6kxXbATNFHLvKSBJosvu9xVRmJqUd08hBsRFs01ICGVUy0V4jxlzyaCcWiLDPPYsxLTEgGVMHqFFWQK/aXsVmUEmrIJEIK/ziN3R/TgRGCD0KDF12rkYYrBC8par2G4Bloxsi9RLRuBVVGDVmfkXWY5Jr41nCUYTZqH4ZuLlHMFIRGD4RmD3/NJdh7BsB+2GX8SSid0aAyYEcLNHBk0vEsRjFLLJfCCQfwfr9D0GsRmzApJXXKmRj1toljmThhFVbtW/jpSbTpfaRml4hlYoLIMXRHdHxjeg9T0w9wci7LdsfCsTzatQFm36beGHBtu0c2lmV67hipYxVye16nf61Oz/VZbpkQpvRKisyp/+JZTK9Mz3S4+/qBXXT4YX2Duy99hWH3Ob58cornTn2Mvek8n/iTq3x57X5fwXvX6tAd+TL+JEuT4NOnJzn5y09SnXuMb16v8bnXVrn5wtdwzd2syPTMQaYOTPGJ45M8OJnAWD7H9a+9yuabW2xX+nRcn/m8QW5PluKJvQQLp6i4Om9vdVje7NLvWAS+MO2dm0rz4EKeBybTKNVLmMvX6SxWGNT7KLpMcjJJar6MunCUfnKSasNkrTGg3Q+FxiEAzWZiFAwFb3udQaUu2r+agp6JEy9kUUuzdHyVrf6Q9bbJcOjgueL5GUMla2gkVAnZ7gv9meMhKxJaUhfasVQO4umRNRGIym2ukGBPLk5RD5A37jC89Tb1K4vUbzUI/IBYRsfuDAhcG9l3UaSYqN50hWRMpZyJMZuLU07qKL0q7tYK/c0Gw6aJ03dQDRVJkZBTOaRsCS+RZ73SYrU9ZK0xoGu6QIKcIaoQXQbJHhD0WvjturAokmUxBxkDCtt0sTyfnS7yDmCpsoQuI2yPAmFpFcgqcigwjjRaI7AYaxveu2QpZCyOf5HHiR9RBSbJI2FuVLEosoQSALJoQEaGuLteR1Z3zYAiNvLoIZKY4UUMQuFFuHOewaiNGM7hxjaiUZimvBOnElVgu9/kWBKztPvYu67B2BLHFRIElFAe8Q7uIRHwKZKEFHlXjp3/O4m3/zLXu9XvvmcA7N71oy7IeH/+XmGjH4g+tWP7GKqMZRjouRKx3BZWq4dn2tjdAXq7jjxoUk4mmcrFqbRM+h0Lz/Vp9Gw2OxYty6eYnUSdXCAxEcfp29g9h/5mk+7SBmrpBnqyyLFSiuqcyWDo0GuZuI7PoGNxebNLORUjPTlF5tAZike+yqA2pLnRY2XgMPSGeK+uA3DqA69ydu/jWCen+Pbhk1jdxsilA8B3HdbPf41/880Jak/v4xNHHuOxf/Ihkr/3Ml++tEX/HUIef9r12ffNc/yXnyH1kb/N/3V5iz96cZG7F67cB16J0jzl/ft49MQkZ6cSaDdfovnCN1j67gqLHYu246HLEscmkxQOT5E7dYyGVuTqZo9zK6Lysoau8MVL6pzdm+fUZIq5jIZ94S0a15borNQwmyZaUidRzpDdN42bX2Cz73CrPmC9McSxXHw/IBZTmUzFKCd10pKNu7XCYLuJ3Rmi6CK2JV7OoZRmaQw91jsCAG1TsOAkWSKlqxiqhGT18LrNkYWVJMsY+QRGMYuSL+PHs3QHLma46xdSwndxNmOgNtdwV27SvLVK41aNzbBNW/YCfMfZtekosjSqwkoZg4mExkRCQ2o18OqbAoA7FoEXoCVF2h9qSEQAACAASURBVLKSL+ElizRNj5X2kLvVHpWWie36FFOihSdLEpI9QLa6eO06XrsuxNyGQaAbo5adGxAKwcUNoPAplCGcU+mSj2SbIq051IcJw9oE8ogpJ/7IkoyiiONL92yuwphWiJqjXLII/MTG7YOv724psiPAjvwIpUAAgKrsgKyYeYUtx6g7EzIYg7ANKUuC5DVyz/hRo6Cx40v3sgi5//mSLBKZgZ32pbRbiCxas9Ju44WxFURsTiLKe8h2HHv+Lj/DXZTMMRspSX7X4PLjrp/m9d+zAPbjrvGL5wc7vV4vgIHjkdA8erZMaWIao7iCWW9jeb64m27X0QdNptNFZrIG65kYm1sSvufTGzpstoY0TJdcehJtei+JUg6zaeIMXQa1Id2VLYziDZL5EodmnqI2yIjKba2NYwmD37dWWpTTMQpxjcPlwxRP7KNf7dKvD7nasYRLvefjvLzGwne/Su6DCo/OP8zxU1M41lOsvv7V+xzn3/7WC/Q7FpudvfyPn/2HPDo3TeGPvsNv/eHVv9Br+3DO4MH/5tOoT3+Ga06W3/vqy9x99SXM1tZ9jy0depATx8t84uQU6vUXqH3zqyx+/S2+v9Wj6fhoEszGNbJ7shRP7kM//gjX60NeXW5y/k6DQcfC9wMSaZ1U1uBYOcX+vEGqt0H96g3adyp0Kz3coUtmLkNqtkRszyGagcFyq8+N7R7djonreOgxEfI4mzEoxBXkzga99W3Mege7b5MoJtHTSdTiFGTLVPs2qyF93bY8VE1QlLMxlaQmI1td/G4L3xEVbASARqmAUpzCTeRp1i26lovtehRTwvWjENegvom5vkJncYv2coctyyOuSGQjJxFZDucr4seoCiumdPJxjZQu49UrmNsNrFYP3xEaNy2uEsulUMtz2KkSjZbN3Wpv1AKVJEmQUSQh3JWsNkGvhdcWVSiADsgJJ2TAadhegOn69GwBxmldJaYysoyS7IEggTjmDrCoOoEmGG9+2F6L2oIeEFN0At8Fyd89Ywp8ZEnGRwo36PD9jyomFwIJKRirXIjaf6IC2YkkuUdnJ8kEqrazqSvqCNR8f7cVlWjI7ZxT9PyRFm10rjsVjybL+CEV/z4j38h/NfpZVkPwVHZR2WGn5SqNH/ve9UOqqHdO8gJkRfxLWPkF0u7H3Tcv/AnWXwYQ/kcPYLBTfUUfsgBwPJ/6wBZ0V0miNHOYeL+DZ9oEno9Zb6OtLCHHk+x97DienwXg9lYPs29jDR1ubfV4fa2NP5vl4J6HKD9+KswV26C13MbqWFitPsVqi/3/+QGyB2eZTsdY3OpRr3QZdCxuXqtSrfW5st7mg0fLfOrn/z5H936D1PRLXP7dN0etvdWhS+N/+jInnz/HwU88xG//yj/j62dm+J0jE7z8u//vrvc72F7l8p+ucvlP4fu/8it89vG/xXP/9tf5P3/tT2i8+hqb52+zfbXGzUqPoSf0JxlVFrEhIf3WDzPObD9g6AUjUfDCk3NMnt1P4aEHUR54P1/YTvMHz69y6fXXfqhTfaI0z3/7S2f4m0cnmKxe4qX/8jd4+Vrtvpbl4ZTOwc9+BPWJT3GHAv/yj95m9U6d9lYV37VJl2coTKV59tQUz+3LYSyfo//qt7jxhfP0Kn1cxyNZjFM8sZf8Y48hnXiGF5ZafOdGlatLTVrbfWJxjWTGYH85yeGCQa63jnftB2xfvE13o0fg+xQOT5M5MId+6DTDiYOcu7DBq7frbFQ6OJaLHotRSOos5OIUDQW5WsHeWsE1bWRNwcgbTDxwkNjxR3Gnj7FhqVzeqnG32mNge0zn4uTjGnlDwVm6TuPKIrXrdVZrA3qujy4rxHSFxFQRpTSLmyzSXGvSGjh4fkBCV5hOxZjLGBRjEs76HborW/SrPSRZIjGRILNQoHBsD/bUMe62bX6w2uLCzRq9lonn+RgJnbiuko9rFOIqyvYK9tI1BsvL9Na30ZJxFENHUzX8eBZTTdIYuKy0hwxD/ZhwiFeJqzJpTUbZ3kS2+/hDUX3L8SS+niSIpfEV4fRue+JPNNfykdFkFVWGIGw9Sr4rWnxRew5G3pWC3KGiaoZ4nB8SIEKRblIzcEI3+yhTLKpGICJ8uIJVCTtVSDhLcsfYlfetcbCQ5NFMKwj1XbosEagA8qgC05UQPKN2p6yI5OsgENZTenJHAmAHu8gUYp4X6uc8WziQ+O7IDiuIyB9SFLsSjOJqdgFRKFuQ9PA9+x5oOwQQPxAkGUUWeWBRC/SdLLDG11925Qb/CcCA3QNl2CmzRUvHpTl08CfyKPmyuGtNGjjdAVazR6xewbDaFOMpZjMGE+kYm7aHY7nYpst622Q6HSNvJClN7yM1W2W43aJ5t4XVseisdVCNdSbWr1M4kOFAPsG+yRTDnoU5cOg3uwR+wOWwNfTsnv3kH3iaqUaNA5+/yrbljbwFz7dMzHMVfOd1Hv/423xo/ykcL+DKCydpLV++730DXPr6i7S2H+Ly2Rn++w98huLJZ5j46DWcpeuceOuasNDyfLSkgWLERNvJ0EdVnW+HVYWho2eSxE4+QVDeRzcxxc26yf/9rUvcffMO21dfecfjq0aShTOP8uEDBcqdO7S+9TwvXq2xcY9Z75ShUtqfI3bycWqxEm8stlhfbNBYXWHY3CRRnCEWV5kqJjhSThFrLGFdv0D14i2qS216oXVUSpFIzU6gzh+iF5/g7coyN9c7tOsDHMsjFteIx1Smc3Fhu7S5ibm+xKA2xOpYKLoIn1QyBbx4jq7ts9YY0Opa2CHgRvT1pCYjD9v4nTpOu0PgBSi6gp5OoBSnIDfFQE2yHbYfqx1L0OD9yOIIArOPZ7t4YUJ0XBE3E4mJOLFyGdIT9FyEeN50sFyfhK4QG+miBni9Hq5p43sBalwlltFJlHNo5Rm6vsp6p89SfUC/Y2ENRQs0MAJyCS1MTBYSALexjVlv45m2oP8rIrE40JP0HZ+u7dOxRPWlydKIeRidhzTs4HXqBJY5YvhJivivF8pWBID54YYJengtdsRaUZXjj/7fODEiYhErSuS37+7kkwUykuyiy6poA/q7TbxHS1FD0AlGlP5AkvG8YEQhj6rEEfkr2jdkGXx5V0Uk+R6B76KFRBJdATdy45fvObYckk4iQNNCIbSs4oUSgNENN2MEFj+0nIrcNKJrNVb9/VC8kcNZnaoi+RqBH1axyg48CLCTdr2WPPZruXf9VYAXvEcB7N1ePAlGG4ciSWFonUfbcvGNHGqmiJItoiVrop3U7WPVGsS6WxRLWeYzBtM5g/bAwfdEptNyrc9ESqecjDE1e4BEvUJyu4mkVLB7Dr2tAbKmYN24SDxTZG7hLCfnsmy2TAZdm261jWsPCXw4B1w+Oc3D08dJPNxi4fgLbF3c2hU2ebljMbywyeGv/BGln5X4mYMn+J0nHuS6a9NZv3nfe+5W7nDtm+u0qh+kkIrxyHyOw7NPUTr0fkpPVZEcU3yRtZhgY4XMptE1C53HkVVcZO50HVbaJldvb/LyzRo3Xr74Q8FTkmX2PPYcH3h8nj1BDfOl57n1/Ln7wAtE9TV1dhZn+iRX1gd850aV7bt36VZu49lDMtMHSGUNjs5kOF5K4S+9Qv3iFaqX1tkwXbFxyBJ6Ukeb3YuXnWVr4HJlrU1ru0+vOUSSZSFgTumUkjpydwu3skR3tcqgNsA1XSRFQk8nkfNl/EReWDh1rNA93kWPqWgxdURfl7qi7eZ0hAOKosvomQRKaRYvNUHL9FhpmyzXBrRDhxHbvV+bKCsycUWiFFOZTulk5tKo03vx0mVapkelbVLv2QztKOokBDDXEuAVti9jmRjxiRTxch61PEvT3JnfmX0bx/LQYgqqLlNM6kwkNNKaLGZo2y0xAw5vWmRNRUqksbUEvZ5DLbRR8/yApK6MiAq6IiGZffxOOD+zTORkmkDTxedHUXH8IKzAfGxfeD1oAXjqDttt5BUYXhtZ0UdtwPHYmIAAT5ZQQ/skOWL3SQE4JoGqo8oqiiJzX3B3SLyQIuslSSZQ1BEw7qKQh6g1egk5Im5Io+pwRIH3XFRFEwzIsY7PqJIJvB2wVML5XWh/FajifUaBu6NTHUkAJPDcneormi+OmfMKwodw3R+vIf2A0ftFVpE0ce39aAYYmRpLuwFT5q8fvOA9CGDv5uIJ4BI0Xy8s9aOgvr7tUcVis+8yk19AW6iTatdp3VxlMDBx+ibxuZcwjpscmj7JE/uKKLLElbUO3Y7JtZUWrYFDx3SZO3OU3MNJyvEktcurNG416deHDFsmsT9+hamVKoUnF/nUiU9RiGt8WVeorazR21qiu3GH2t0s/7Mk8bGHZvn4kYc5+09/ieKffIP5L97Y5XN4p+/wW//0i7z/91/h+H/2OJ//9X/B1z94kN/9/hI3Xrt2X3SKZ5usvf4V/tVbL5CZO0K6PEu6ECeTjyOrMoEfjDY323IxB87I+1GSJVRt5x7S7NtYvQZWu8agvn5fLle0jn74Mzzz6ByfPTvHwxMyd//xr3LxT67zQm231ZUMfOpggVN/7zEm/9Yv8TuXa/y7FxdZvLRIc/HS6HETC1M8/cAUP3diihMJk+XPfZ6737zNW5UuKwOH2bhGPqVTOl5COfV+Fv0M37xd5/rbW7Qqqzj9NsUDJ0gX4pzdm+fMdAZufoP6Kz+g8tot2utdNEMlMREnuW8BefYwNSnF9doOA9J3A1KTBkdnM5yeyZC1mwTLlxncuk57qYLvBcRzSVKzJYLZY1SDJG9udnnpdo3VpeYIAFsDm4Hjibt03SCWT5GZSyPJEnpKo3ikxOSjxwhOPMvdvsL5jTav3alj9gV9Xxk5RUhI3R7eUNzgqIZKcjJN4egeksdOwcJJrm33ubja4u5GB8fyhMdjUqdQTHJ6Ks3erI62eZWtS1foLFYYNoekprNiBlieRZnay3rX4Xqtz1JryK3NLnFdYToXJ6ErpHQZ3WyjdCpYKzdxO218zyc2OY1kJEGScWV9JKDu2R6W6xNTRdhlmpD67dnCkcIZiI1V0ZE0A5B3tGchsULxhU5LUiQxEwvNcKUQkCTXGgl+dT0xInFF5BFJ0Xcz8EIqeRBwH6MvcpZ3JAld0YUDSCAmVQJMBOhKnoOhJ0QLTgbVYyxFmoiBIgBL39Gv+bEkrqxjhiGaEWCLRGlpRIeXLEfYjHm2SNSOmIthiKYStQClUIDMjkmzrkY3pgkCWXxWAjU2EkEHQTASnisSo+PuEm6H668SvOA9BmDvFrzEk30USQ7vGGUSoYCzb4vBdN/x8ZMp1HQeOZ1DUmTsvo3v9TA31pGzRZR4nvlska2JJJWWyWAgZmHV5pBrGx0qh0qkC3vQ97dIz36TQW3IsGnSd3xaiy301DKxfIrZR3+O4+UUyws53kgVGNQ3sNrb2L0Ga7cO8fVwUH/0zAeZ67UwmwMe/rOlXULiDdPlO29VCbwf8L6PXuCTRx4mFVP5XDrG11eu4Qzup867Zp/G7TforN1ATxeIpQoAePaQQX39PubgO15PWb6PNDK+EqV5Cvse4Bc/fIiPHSlzPO3Bxa9z55t3eLk+uO/xTxXj7P3AXopPP4WzcJav//u32LjTGLmMRMfMT6Z4YDbLTFpD2bzC9uUKy7UBKwORvJxSZZLlBOmFMm5mmuXVLlfW23Tr25htke4ci6uUsgYzaYOCoeBUFumtb9Pd6DH0AjRASwrmnp/I07E96gMHK6TOS7LIDZsLvQ+V3irW9jrDahOr1SPwfFRDR08nRPXW9ah0LZZrgxF7FUQFFnnlSXFBGElMCF/B1HSGwtE9xA8eo+5qLLb6XN/q0WsNcW0fPR6ELcjw7t738COdXUjcMIoZlOK0iF8ZdKmGrUNJltBiCvGUzlwhTjGuoQ+beFsrDKpNhs0hrumi6CpaJoGcKeIl8tT6DtW+LVqpA9GC9MLolpgiIw16+J0GbqeNHVaiehRZL6sja6Wh49OzPLzQPDhQd0TLkmOCayI5FoSEBlFdyCFrONhhJMohGWTUYxRzM3whBkYJqRCR+HlMCxrNxKR7AIyo1fhOjD9EZRSEDMZAVpF8n2BcJRnOwRRZ3rXpSoztQSMxsjpidqLoeF4QAug9LMTo2kAI0MGOd2J0fUIB9A9bwo8xrFYj8kjgizZqROEPdm7yI7/KXbT/e0Dsr3K9ZwDsJ9F73f9k8YtW5B2BXxRvrsgSnh/Qszx6jk/OyKJki8iaimd7uKZDd3ULPbdELF9mampaeM/lDLa7Fr2WSd+3WFJlrm/3SGoZ5vML5A7MMqh2GNSG9OuCFi9rMlryDgeqN9lXOMyDMxnShQT97SzD+jqB71O7eZ7AP8vzssSnjp5h7rGPsa/XY9g0Of/tpV1va8vy+LPL2xz+wucofbzPx48+y0RCZ3X9Y6xdW6R599I7Vkiu2cc1+7u8D3/cdS94aYkMih4nli5QOniEiZkMZw4U+Nunp5mlTXDhO2x+6zuc3+qP4l7G1/FnFpj/yJNIJ5/lat3i1s0a27fe2AWmRn6KU/NZjpdS5N029s2LbN9osNi3cQJIKhJ5TSYzlyF7YJbNvsvd5oAblS5Wu4ZnDVFiceIpnT0TCeazBoWYRHt5g+5ai0F9iBcEI/cNpTiNm8jT2h5S7Vm4jk8QGvhOZQ1mswaTKR1/eRVrc5P+ZgOzaaIaKrKuoqTSWGjUBgPWW0MabRN7MCDwPVw9s+v9S6qGnklgFDLImkr2wCypQwdQ9xyj0nO4Ve9zfaNDL7x5kVXxeY0ysiRPzDAlWQ7Zj2mUfBkpXcCSDeqDOj3TxXcDVE3GSAoD4v3llLDfqm1hba0wqHYwQxsvNWmgZTMo+TJOssh6pcNqU7Awe6aLHhrdxhQZHRfZ7OJ2W1hNMYuTFJko5DFQY1hewNANaJsu3bA9qSmCvq1IkdDWQraHIjE6EjcHYg4WzcA8PwQYP9g1K4po4qOsMxCV2HibkB3wEpXG7jmWHB5HCv/us8NY9kPWsh+ALCs7VP4wv0QKiRz4Loqi40sSQcQgHCdSyDKBH2q4QkKHF+wca9fnQmLUPpQldoBrNLvb9aUUFlTR8cZeK5IfBEoUWeMDyi7htnj/0ggw77Pt+gtY7/b13jMAdu/6sS/I2C8ez0ZXdFxFwlBFG0YEVHq0LYeerZGJZ5GzRVRD6DTcoceg0kBPb6BkbjOx7wkWsgbrE0nWGkOqrpiFAVze7JKPa2SmsqQOHSC7Wadf7TNsmWxZHspKBy2usnDzAtkzRY6VchSn03RqMwzq69i9JmZri+3rrwKP88Jikw8f2Mfk+z/Jwc6AmZfX7psf1WyPq587x6H+kKmPtnjy5Af4Bx89yrf25Llxew/LFy5gtrdxzd6fWzn9JEtWNYz8FEa2RGF+gWTGIJUz+MjpaY6UUhydSLLQu4116UWqL19g6ds333HudTZncPBTj6M/+lGWgyzfXaxSvbvIsL6x63GZ6QM8vCfPQlZHWX+bxtUbLA0cmuGAo6ArlCYS5A9Oou89xlrH4upGh05tgN1vE/geqh4nU0hwsJxiKqWjdCp0V7bobfXpD5xwfqYRL6YgW6Zt+1R7NpXWENf2wupFZc9EUtDvDQV3c4Xu6hb9rS7Dpkl6OoVq6EiGID00hw7bHRNzIAI4ZVkJiQ87AldJ1dESBkYxi5o0yBzcg7b3GG5ujlvLA66stalUe5h9B1mVMVyRCG2oihAfu5YAMEVGMYR4WskW8eNZBo7wbhyGn0/BwIyxv5xkPhcnbnfwNpcYrq4xqA2w+7aIgEknhX4tVaTnyVR6Fsu1PttjKQHiHCRkqwfDLn67jt0VjjRaIo6kashGEk9PiA6E6dC2XHq2S1xThCM/IQHEMkMKvsgvkzQ9ZPntEDkirz9PCLWEF2OIOIK56O0EXUrSDqhI8k7I5IjCL+0mKITdGWRJEER8YKy+iiJnvEBCjZxAgnto/+yAjCLJeOGLy+y0EEezNxgxA4Ox1x99v8ZmUNI94LWLTj8OwOPfz7HNcQT0kVhbiZxAxsXk4+zFseprXDbwU6yfBgzfswD2Y6+xIavkOQSSSUJPQEyhnIoxcDxsz6fStUjpKolCisLMEdILk1itHlbHYvvqNsPmELvbZ/bIWU5MnRzRcu8uNum1TIbdHt88t8pyrc/msTK/+OSnmc4W0TMvoho3WPrBGjd7HltvbZP6nT9m70eWOfDMz/KPnjvE/5eO8XbCYOPNl0Yeh+vnv8a/UBWePzvDLz2+wAd/9Z/z9/smN75w4T4W3+ev1sjcfJGn/p9z7H3f7/LL/91/xS999AE6xnFeXj3NattkrTnk+kaHztDBHopYl8ZWj2Fri0F94z7QeKeVnj7A/kcfYXY2w4m5LEcnUzwxl6WYUEm4feTF87iLdxi8sMwbX32Dxq0mq7UBqyHzDUQ68ocPF5h/aoG5Dz5C72f+EX+22uE/fOc6ly5VdoVdxjITTD/wJA+eneFTRyZI3H6J6le+yO0vv8nt3g6x5bF9OQ5+/DjTP/tR/Ac/wpe+u8oP3t5ka3GDwPcwsiVy84f5xJkZntlTYF5q4731AptvrFFf7tB2fBYmk0wcLVI6cwhz4iA3N/tcWG9zfaNLEATE4hrZYoJHF3KcKCXIdlepvPYGW28s015u49k+mbnMaHbUCMkTlZaJPXRRVB3VSJLIxjhYTjOXMUjrMoHvIRsG8XIO1dAxTj+NUzrEqqXxnRt3eOtWjXqlh9VrE8/l0WIK5UyMvKEg97Zxa5Wd/LGEQWxqCmV6D056kkZHeDd6ro+qy2QmEpyaz/LU/iIPzWTg5p/Ree37bF24QWeti6LLxPNxAaIHHqCf28Pt7SEvXt8WIDpwyOTjxFSZQlyjaCgom+s4If1+WO+gaCEATkzjZ6cwEyUW1zqsdyxapjBCns+JhHNdkdDsHkq3Ct0aXrcFroMUFwkRnu8TSCKiRMyIIvq+QooxcoUnjGpH9PvIb1CS8ZCx/R3rK+EYAhrS7tajLMBFUdTQ6JuRYbEw5pUAHz0iOI1pwEbL90ESVdh4EvKo4huRJtSRvm9H4hPS5ccIIBEVn2C3d2Eg+WPgs7Pk0G/SvwcxgiAQxwsZoYDQnSk7/pFSdA4RYI5uBn488PqLrtii9R83gEVO9KPMHVdcaMckpqdI6yIuXdwZejSHDl1LI5fIEy/nBZtM74oqqj6gu1LFXbuNlipRSkywkI1jJDX6HRPXtmnXBtyNqVxM6Xz4wH6Ke0+S216nX6mTObfBhumybblU365i5K8xlyvw4PuOUzk+Sb1tMmydZOvyS6PT37z8MrL6Pv6DKmZ3H//Ep8Wd9vNv8PuhO0e0Oq7Pi7UBve8uk933eUpn3iJ7+AwfOfI0XT9Dx/JZ7Vg0h8LItW25XFppsd6Yot08ROVOVQBZc3OXu4ckyxQPP0JuepridJpffGovx0sp9uQMJpMqiY1LOFdv426tUnn5Ev1Ki26lx9qNBjXbox3e/e9NaEzGFGaKCY5/9hEKjz6EcvIZXl3r8LUrm1y/WaO+tLjrPU0cfoS5Q0U+eLxMoilo843ry3TWusJIFkG/L58qUzpzGGXvSSq2wvWNLr2Wid3voMTixLITZCYSHCommUqpqJtrdFYWGdSG9MK5VGoyQWq2iDG7wObQZb1jsd4Y0O+JqkOLKeTSQntVMBSkjQr99RqD2gCrI8BUi6uoSQPJSIYzH2/EOFSNJIm0TjITo5zSSesyqt0jMPvgeyiaKnRTRhZLTdAOwc/sO7i2i6zq6DEFI6kzlYuT0mXkRhu3U8cbhm1EQxYRH1oCO5AZOoKyH1WPM/k4+8spFrJxJuIKbmWJ3vo2/a0Bnu2hxVW0pIZSnMJLFmmZHmtdk3rbxBw4OJaLrMqkQgstyewQdOp4nUhE7aJoqngvqRxuPEvP9qgNHOoDezQ/A7E564qEbHWR7T5uu47fEzE0siwThGbCPgJAHN/HCRkOmhyCUfgdl8ZytSKCRRC26NwQvBwv2GlZIgggoivjiurNI9SH6aiyLgIeQ0cOCAMfkfACUBQdyfdB2nk/P9YaMSB3/tc4bV0Z6/+NA2D03B/6J3qIFFaXkRfj2EuMZABR6/QdgCl6/k/KNvjLAi94jwLYu75gEUXXBUXVSWgKqZiKNnDomA5N06FhuhTiBoniFPFShVilReAFDJsmqqHhrt/BmFygvDDJ3lycTEaY85p9m0G7R1OVeTOmsti0yEweRD9cpVDZYsK4StMRoZWrlR7ahXX09EVm39/nfXvybHaETdXWGCPd7jWpvPUKsvQUuirz7M89QemTwiLo4etfuc8dvu8FnGualL50hebtLQpHbjP5zBq58hyFfJn53Cz+pGA99R2fv7GvyHbfptKz+MHdMmuNAzTaJt3mEM/1UVSZWFzlyL4Ch6fSHCmneHZPlozbRW1cwb50jdVvf4/2YpXOWofKzQZtx6fv+SNg0GWJgq5waDZN4VCe4rFZyj/3C3izJ1lxDL5y+TYXr21TW9lkUN8B5XhxhvkjJT56epqnFvJ4N75P/e1bNG41qfZt4VahKRxO6ZTPHEA/+hBu6SArmwNqtT7DroXv2hjZEplSidJUmgP5OEmzgbNyk85SBatj4QUBcUUiNZ0ms28ade4g9YHLRlcAiDV0URQZPfQfLCZU5O4W3tYqva0+ZtPCCuNbIq2clMwwcDwGdkhYUGWS2RjJTIzpiSQLWQGCcruO023h9IfIinBo8PU4A8enMXToDR08T8RvaEYcI6ELEkrWIBFYompp14WWzxdtRNlIEuhxLM8PmY4BmiJDTBXkk1SMiYSK4XTprW+E/omiglMNlXg+LmaAqRKtlstm12LQs7CHDr4fYGgKuYRwAZEHNREh02hhNbujVqaaNAiSeXwjQ7cj6PfVjsnQ9nbmZ5GObdDHa9fx23X8QTdMo9ZHXoxeGBBpuQLAZFna7ZTxB5r+vQAAIABJREFUDu21EV1d1YUY3wt2aPhyQOhFIboyvidiRgAp1Hdphk4QCDq67zFy3fdCgbSshMJgT905bgQI44y9iHQiSfcDCBBFx3jsRM5E5VMkjRtvPyIrEIQejpGDx31VGES0jnFSyq498x3OVb4XMH/Iuhfe/jLBC96jAPZjr3sGtVIkBARk3yVvlDBTMTqmy0pjwMD2Rnd5Z48/RV5WkBSZ5t0mVsems9Zh/cU3mTItErbJsX0P87HT03xDFs4VW7c2sHpN+m2T35lM8dETUzwx/zgTnyxz6OIt9BdXuL7V442Wyerb2xxebPPc7L/m2HM/yz95+nEe35PnH7eGrF96dWTHZHVq3H3pi2xen8fzAz5z9iBP/t3f4O/s38dzL73O2it3+d4bm2yaLk4Aph/wjdsNssttCt9eYs/vnieWiaEnNRITCdS4gmpo6EmdwkKZmWKWx0oFfuHgA8gPTuAbU/ipEkEkFHVM1PYGfv0Wzt3brP3WS9y8usX2jQZ3+g43x1p54+t0NsaenMHEkSKlkzPMfuZvIu05iZXfw/N3mpx/eZvziw1uXVhmUN/AHrSRZIWpB56lMDPB/N48/+zjxzhWjKGtvMHtf//HVC5ssLnSoe8FPF6IM3Ugz/Qj80x89teoZ/dzbrHNt25UqW10sXoNtGSGmUN7OXqoyEdPTrGfGt4b36H64itsvHqXvuOT1RTyMykWnjtD+qmPYO99hO+d3+C7V6tsVroMexapnMH8VJpH9hWYVm2ku2/RefsS7eU2/Y6o0GIZnczeabT5w3iZaWqbIncsrimksgbZdIyjM2kems/zQFFD27qCc+MNmpdv4ns+Ri6NmskSaHGGrk8vtJJSNYVENkGulOTQQo73Hy7x+HwWde0S5tXXabx9i2G9h57UhQi9OIUbz9Ox/JFmK2Wo6KrMqZkMpybTzCUl1JUb1K8s0l5uYzYtjGxM2Hid2Ic3d5Llrsf59TYv36rRbQzxvIBYXOXQVIrjk2n25wyCG5cZ3LgiJCfVNloyRiyXJjY1hVvcy2rX4ep2nzeWmiJEVJYopnSyMZWcoVIwFPwbt3HX72BWt/GGNkYxgxw6RgSqgWWK8M226eIFAUYYLhmlNkumoN5H8S+Blgjtq+Ihfd8dUfBHzhiSJLoxrniu5Fji5lZWhcu9qqOrBj7jQZ3gSwGqL6oUTdEJlIi+H1oyRToxduZtwIg9okb7UeQeEv5zTNFDqysfb5eOTNqZX6mGAA5FJfCEDkzkkImUAH+scpMkEQK6k6smjViM4iLdPwv3A/GcgGD0Pn7k9vojH/HTr/ccgL2bixZI8k76aiQEBOIJkfQa12Rs12Nou1R1hfW4xgN7Z9BmD5DeXicxkcA1XTzbp1dp016soE1cQ8uWOTIxyfJMmmZrSFVR8Kwhw9YW11YmRoar6amDlM4col/tMdM2udG12QxnWIe/+xaKoZONxXl05hSnTk8T+I+z8faruzwFB9urXLpUwXZ9hs4Mv/jkp5mdWiCz72UC7/s0FltsmC5tR1Q/XhDQsD1hFdW1habjVmMsYlxiQr9FPKkRzxuUTrxMopTDKGZJL5TFIF2WwXVoLFbob9bprjW58dIqN3v2O5IyopVUJA4vZJh6cJLJh46QPnUa/8zHWes6XF9q87nXV1ldb9PaHjCob+DZQzQjhZ7OM3d0lpP7C7zv0ATH8gra0jnMN1+kfmObfnWA7QdkVJnpwwUmT88w/dRpzImDLFaHXN7qcmW9g2Na4cwpxfRshscPFHlgMg0brzC4c4vuSpVhfYguS6TyBpm5NPH9R/CKC2wNXG5tdmm2hpgDG8/10Q2N6ZxBOakj9+t4tQqD7Sae7QvdjKFi5A2SU8L70Enk6dkNbFdUHPG4xv5ykmNTGY5MJFEbK7hL1xgs3aW/2UCSZRF/4u5uSemaQiyuomoK0+UUx2Yy7C8kKCVU3KtLDFY3GW63cE0HPakjaxrE4vh6AmtojyyfdFUmbaginFWXkYctvGYVpy98O0EAcLyYIjFdxNIz1FoDVltDtrsWnido79pYFZczFNztdQabwjvR7tvEcknRds8W6fsKjYFJtW/R6Nn0LRcj1F4mNIW4KiNbPfxmFbvZxGr28B2HWD4lvqeqhu0L8+Ch62GGJZQW7sGKLKHgh7MvT+RcRd/3sPqKnD8sL8DxhPZMkULCRDRScB2hq/LsHfajayMpOtGuEYGDHEgjcFKCMN9Mkkd0j8ihPnLyGBnsSmK2NcqHHGMT4rkEgKroInjS380wDMLWpYhSEfo1aeTKL6qwXS5DEiMX/YgaL7DxzyeB3Lf+vFbjD3/WX/h6TwHYu7pw9/4iosEtIucnrkmkdRGp3TVdaA1JxVRaboZCcQFt/jDp6fM4fZtBbSjmJqtV4sVFMsUp9h/aywOzWdYaQ1ZTeQbWEHcovA5fi2ti4B7XOPTAWcrVJoPakHhjSN8L2DBdVl/dQNEusk9XyT+r8QsPz4Wn/Th3vvfFXW9l6/rbBH7A0PY4PXWCAyc+RKa8h2O2S+P6MtN3G3QrXdbXe5h+wNDzaTs+Q8/D9oMf6kYvL8LBmw3ymsyEoZLbkx3FcQD0q30GtSFbQ/dHhlrmNZmTmRj7P3SE8uOnME4+gTt9jJdWu7xZ6XDuboMrlzbp1rexu01810ZLZInnJ8mVMzx3dpbH9+Q5WUqi3HyJ/puvsHX+Bu3VLgPLJa5IJBMaU2fnmH7iJMaDz3C1ZfNGpSPu9EOhtJbIkMoZPLy/wMnJNHMZDecHV2jfXqez2sVsW8STGqnJBNl9E6h7j9FPTrJeHQjD256NG1ZB2XSM6VxcaL8Gy9itbaymMLzVDJV43iBZTqJNz+NnyvRc6Foenh+gq8L548iUCK6cTmn4V68xvHuD1s1VepW2cA9JGqO5D4hNJ2Wo2KkYgR9waCrNwYkkc2mdTGDibAgN27DWEw74ioxq6AR6CtML6NkicdnzBWsxZahkY6H9VbuL267jDt3Q/komXkyQnBbei3XTo9Kz2GwNMfvinGRVwkhozGQMSkkNw2rT39xkUG0J/djQG2ng5GyRtuWx1bdYb5l0+za+H+ApImU4FVPEefTb2J3GyPUmiPp8mg56DMvzsTyhHbNc4dnpK9EcTORzSY7IuQpsE0nVR/qqQFaxbR/LC0RnxReep5octvNCZwtCCn/g2EhaINiPEctQUokaZkFYgfnj6CLLOxYhY/MoQdnfESXLAaIdGUijeJoo8ToCtABQZMF89sbAzw9/lsLwzxF4hTM+lN1BnnIoPJMIQV4WjMzIK3KXi8fYis5ZksI53706ub+m9Z4BsHvB68cdM0rRBxrCDCArVM7byN0tJlKTDNMxUoZGpWWy2TKpdiym0jEenCwwf/pDzD93k1juOrVrFdrLbapXtjHbFhP1NnvmjpA9uJ+pVIzVzS5bKwk6lRW2b99g0J7n9xsiSfiff+STzMwfJnfgSzQWP8+5pknN9vjaVp/JL9/i7Eur7Hv2Aj/3L/857//MCV55dJ7/JamzeXuR1tJlPNukW7lDt3KH6s0D/HpjwKmDRR7ZV+Djf/c32CNb7G9vEGyv0L/4Cv31bQbVFluXNuhu9Gh0LM41zZGv4vjyYXcrsNIb/dUIFfle2J58p6VJsJDQePqRGaYf2UPpkROoP/NrrA4V3tzq8cr3Nvnad+/SqqzTr65itraQVQ0tkWX29FOUF7KcOVDgqf1FPnkghbZ+GeuFH/D2v/sGjVtNOrUhth+QTevk9+con5phz6/9A5z509zuS/zWi3e5HJr1Drs2qXySXCnJ8b15/s7paeZ1C/nGd7nz1e+zfXWb3lYf3/GZfmiSyTP7KD76ENuF47yx2uHFO3UqKy3MkHCQzMR4eH+BR+ZyHMwbWC9epH1nnWG9J/wKMzGye3JMPHAA5YFnaSWmuVk3Waz16JouaUPYTj0xn2N/TifZuMPWt75J9dIyrcUWztAlNZlAz8RHdlCSJIxy90wkKGdipAyVDx8ucWQiTsnvIN08T+UHV2jergnnjMkkejpBYrqIm5the+Cy0jZZbQ2xXZ+4rpBN6BQSKgnJQepu47W28b2AWCZGLBMbGTSrRx/nRn3AxbU2NyrCgSQWV0nn4xxayPHIbIY5dYB0+3WqF27QvNsY5Y8lpovo8wdg+hA36wMurLW5uNSk37HQYgp6OkYpYzCV1Ek5HaStu7RvrdCv1AUBxNBRUqmQwl+iNvBYbZtU+zZt0xUz69AHMqFKyJ0m8rCJ1xRCdWKG2ODVWAjiPrW+PdKeyZJETI3mXw6SPUQye3iDjmA/6gZyMiM2+SBMDgwERgXh5j5utjtqBQbBqAqLwiFdf8e/MTy4AK8QICPWpPg3FclzUI3Q8skXEzMvCETlFoCk6Cgx4dwfPS+qwqKKb8e6KmJbSmHKtoi4kTx7B7hCO6vxLicg9I7hPEwe61z9tOsno4XsrPcMgL3bFRCC2L2sHddFtoeovk1SU0gbKoosYToeZtvjdq1PWleIa0lK+06QbXWxuwM6ax2cvkOv0kOLVyjfvUTmeJojxQkOL+Swhi6OOUln/SbD5hYNXeftmMq12pCzU8eJn20xffolDp+vCPKHH7BleZxrmvDCMvte/BKFp12e2XOKDzw6xw8SGpVUgeby5RHVfVBfp3K3hmW6rDWGJDSFQ8UE5eReJiYOkpqYI9nYwNteJ71wSbhNrDWJv7zG0sBhZeD8UDC6dykSZDVl1HaMvpSKJKHLEnsTGpmJOPn9OQ7//FMYxx+ChZNcqAe8tl7jxevbLC412bh8bhdVX9HjJIqzzBws8PSREu/bV+BEKYH81tdpXzpH9fwNVl/dYNvycIKAhXSM3J4s5VMzTD56HGf+NMt9ifMbnV3g5fsBqZzB3pkMj+wrMJdSUFdvYt68SGu5xbBp4js+WlIjs1Akd3gB/dBpKj2Hu40Btza7OJZL4AdoMQUjobEnH2c6pZPEwmlWsTuiWjDyBqnJJNkDsyT27cfOzLLVtlkNfQtt1ydmqOQSGvm4QtzuEGyv0FnapL3cprfVR1Zk/DBDTNZUUHW8sMjNJnRSRkAxpTOdFsGbymYFe1MIj62Ohe/4QoCdTyNnilhodC3BNm30hHlwylB3SBPOEN/s49uOMB5OaaiGSmp2AmVqAS81QXXbYrtjjq5DzNBIpGPsmUiKc2hVsTcW6Ve7u88hl0LOl/DjeSprfTZbQ7p9m8AX5IuUoVJM6aRjMnKriVffxGp2cQfiDWtJA9kQFHonlqbdcmkOXRpDQb+PqSLGZhTdYg8JBj38UPQuyzJIEoGijtiHXdvFcv2Rm8dohfZTgWsL82HfEw4gnjfaJ/yR/iv8zIdPHZEjfHcknpbYydWKmJOj4owgbF2GpVGkIYuE0IRjDt9FUVU8SaiqR6CCAERkCSXyMBzXaAWRXmzn3CR2WJqjyssba/tH4u/ox2Dn3IPIKT+4JwrmXa53C17wnwAMGAMxWRVGnEDg2kh2D3nYJmVMkDE04rpC4Ac4lsu1jQ6pmGi7TM4dJdFrkWn2UN+sYDYthk0TablN/9rbpJMZJg8+xhMHirT/f/beLEaSPL/v+8SZEXlnZWXWfXRXd3X3dE/3TM/s7MxeXF7Lw6RJUxBh2rAECfCT9WDAD3oSYD/5xTD8YgN+kG3BB2zKpkSJFMXlsdxrdufomem7u7rrPrIq7yMi447wwz8yq3u4u1wuRQoY6Q8MajAzWVUdkxm/+P1+3+/nm8qNRw2FYDzAaiu0NYXvH/YpGRpX1m+z9IVLeEMP+3GbuwMhAmj7ooit/957rAUhxS+H/Oata1TzGf6kkKFRMDm++32CsTDmjhrbRP4iru3zO7rC5fkCGzVhsr1R26BUvYxx0aG2do3K2QHh2QH5hTus7Hbo7fQ5bY35oOf8QDqGjDAHz+iK2DfldSGv1uVULKCimip6TqN8aZ78Ug1zZRntc7+EV17hcBjw23f3+fBZh+bBgO7B9qeKl0F+7gLV9Qv80q0Fvrw2w7VZY9qdnH64Q/Nhm8cjnyhJyKsyxeUC1as16m9cIXPzi2ynxes7z9v0zizGI584DNCzBvNzBRF4WS+gNbfwnnxI5+EOdtMmdENkTcasGFQ2V9AuXCecWefpgYi0OWvbhEGMoghqRbFssl7JTnPD3M5wmtqdn8tRXJ+neGkN/eJ19uyQ7e6Y7Y5N1/JRZElQ63WVoq4g9zsEpweMTizGHYehH1E2ZRRNEPBlM0eiGoRxQBCJ2BRFlpjN6lQMBcXuELeP8c4aeEOf0A0Fd7BopPioeYZ+zJnt07H9afwKiD2YJgv4L2FAEsdopoqsSOhFE62+iDSziKflaY9HdF4YoRo5jaWKycVqlkLikrQOcE9OGLcdAjsQTEJdQa9UkMt1xopJy+5NIchwTvCfMTVMAiS7S9Rr4o+EhF/RFWRNRS5ViY0SgZ6nPR7QdQI6lk8mVS9OWH2SbyP5Ikg0todCuagb0895EKT7r1CoMV/MA5NgOoWJfRc+tXucjCGjQCRPJy8Ukin09s+ZpyerihfpHekOLJHOUVGyfC7fn8SxMKlrotjIk1HkC0UlEjM+kKUf2RlNitcECfWSQvMv2H9NhBwxohgq0gvy+7/gfPo28m+qc/t3voBNzIt/zjsRxySOhaxlyWYrzGY1ylkNSZYIg4iDlk029YndurGOfmFIadAhO/uEwA7whj52lNC+t41q6GSzBT6/fJuRFzJwAs52Kji9M9xBi4Es88cPZsnpKtqFGS5++UsEtotv+9y935r+rm0/Yvtbh8RRwloQ8trfuUk+M8dsXufPSgae8yZ26wjP6hKFPu6gTRxHPNMUGk2Le2WT5RmTw/UK9VyG2azGRv0WpZXbaOMOayubLB1vM9o95MJug5V39xk2LLp+RC8QggRdllg0VMyygVkxyM6alC7MohezgtlXL6MYGaRsATlXRFvZJM5XifM1njkqO3sDHpyN+PbHDdrHAwaHj7FbBy/9PymtvkLtwjobl2f5hcs1Nis6+vFdnDvfYOdfP+TgWZe9cUDXjyhpCjlFZvZqlfobVzBefYdo9TXefzbg28/aPNjpYvVs4tAXXqu8zs3VMq/OFbhQyRB88AmDh1v0n59O/VpGKUN+IU9u8wry8lV6aoGnraPp7kuSJTRDIVfMcHk+P907Sf0GTho3IikyuaVZoTxcv0ZUu8h+z2W7O2brdMTA9smbWgrelckqCZLVIWyf4vQcXEcQ9LWchlExpggoOxSiAzeKUWSJnK5QyqhCfDHsEfaa0+BNENJ3o1okMzuDOrsg6PmWR6Pv0E27QDXlfwrqhT/dtSmGjmKAWSuj1peIc9Upfd9yQ6IoRlZlikVjSiBRhqcEJ7uMDs6m4a1GKSMecFKC/9CPafQdBrZP6IuAzUxGZSafoZrVkcc9ok4Dr90hsD0iP0I1NBFjM/keXkTT9jkdunQtj5l8BkWSyKiK8I+5NvGwSzzokLhj0GNRiNLokDAWgAIvEpDcOIF4kikmS0ihEH8QBiShzyToUfAblTQbbEL/SNJ05HRMJ0sQBy+NAYWB+rwoTLLIklT9mCTwUsmYdEXpHiz5AXupODVkS8nELya9ENJ5vm8DUVRF15RMDc2yBFIcn6sP4TxC5qWidm5NiJNkaiGYhF2+aHb+9Plh3dVfpet68XwmC9iPe3HihFQ1RPrm1EDVwZchjog6DeTxCC3yeXVug3EQ0R8HPLF92idDPug6PDuzqOd0Xl+4Tv1LNZaf7qLoW7Qeduj1XfzffULz/imL97Z55b/8hyzcusRmNcd/0x5ztptn2NhmdLLNvW9B46DPn12t8d/9h7/B0pW3qL/zB/j/1T/ho1NrGu749abN7O8/59Z3DvlSz+LyF97hytW3+Y1rr/BPN2t8cnCRreMhp3t9PMcn8h16J016J3AkKzxSdb5hZFA1GVVXKFRMsoUM8yWDL2++zsr1L7Dyjkgi/mLUR7Y7YHWJWsfTLCa5UkMpVIgzBWKzhGPMYAcxVhCzbQdYfsg4EMm8xycuHcujOdzj2UEfq+8yHnp0dx/gjbpThJVRniM7u0Rxfplf+pmLfPnSLG8sFFje/QbD3/k2T795n+MPGvze/mD6QV80VG6VMix/boGN//zvwNUvsR/l+P7zAf/THzylfTLC7jZJ4ojczDwzC3mubVT5T19bZN0IUPa+y87/9/s0758yOhF7vcJCntorgvYufe5X2Q+z3Nnt8yd3Gww7Y1xb0Caqc3m+sDnL26tlVunC448ZP/4I+7hNFIQYlSyzn7uFcf3z+IuvsjuM+Kef7PD4cIDVd5FkCUWVyRsas1mBrhLG4TahG5LRFQxTFUrNNy9Tvv0G8pW32B/4PG3bnIxcEV6pKVRS6G7SOSJsCniwrEipcjBL7Y1rGDfewV+4zt2tAR8f9nlyMsK2PHL5jNiBGSp5TUbybGJ3LKT7VUEOyS/NwsorDPQKBx2X/baN4wTIskQ2r/PmxRm+uF7h1XqO8P1/Qfeje7QfHOENfeEdq5qUL9RQNm4xzM7z7NTm4ZHgN/peyMxcnquLBW4tFrlSzSIdfIjz9C69J/t4Qw8tJxBYhdU54vnLaQqAwwd73WmG2kw+Q1ZTqJoaZUMhOdwjONjCbzUJbVeML3MFEkXHjxKcUEjvX5Tfa4oYexuTUao9JHZskjBANnQk3SDWTGKjiOUJK4ObdnF6KkBRZQk1CZE9G9kdCfpHSriP9Ny5kDFKCGLSaJMYSZJRY0hSA/Wk+5Li8HxClBawSfc2IeTDpLNKBMhjUoCYKA1TGX+6O/u0pWsydZocKUmmYZikYhU5XQ9InIs5Jl3Yi/fdF7/Pv6ki9aPOZ66A/aQXLQESRRUssvRdFtsjEl+E781ubLJaMlmeybLXsuk2rOkI5W5jSMlQydbnKV5eFZLyEwtl4HI0DgieCXLFwoN3Kb9ucnNukQtrZZEhNR5iORbW6R4Asizx/aMBX1pdpv7m17jw09+Eb+yhnNnspcKBth/xYOix9s3HhK7HrD1i5vrb/NzGBusVk2fLJf5VRmU0dHEsH6vvErjCuOuPBzg9lySOSOKItplD1U328iWe7/fIl00u1nJcrOd5e7VCPbdOPr9Bef3t6Zt1HMY4QSJCDMchTw86tGyf5tBjp2lhuSGOFxIGEa4tRqZhEGEPXELXIkh3ElquRKYwg6KbVNYuU65lWV8p8x/dXOTarMmMe0b3m3/CybtPOPmgwf2u89JT6mZeZ+HWHAufvwyX3+IkyXEnHRu2joZY7RNCxyJXW6EwY7K4IPZea0UN7fgRzpM7dJ+1sc/G+OOA4oKILSltLJG9fI2elGenZ/PgVKRj+16IJEO+bHB1scC1ep6NionceoS3/4TBbgPf9sUotZBFnVslLC3S8RK2uwIePOiI3C2zIDqGrC7M8pLvEDs2oeuJrqkiuqfK5iKFyxdR168RzKyxt91PTdQOeUOgfzRFQgpdEs8ldFPqR05H0WVycwXUuRXi0jyjSOYkJXg4TkAYpDJ+XcXUlBSa65J4jggxzZpT2XtslLB8wW90XvCg6abGSsVkoWBQzsiEzWPGTRHWKiki/sWsGJj1CnGuSs8VndPk5wMUcvpUxVkxFKLmEXYjpXekKki9mEWdmSXO1+gPhLm+0XcZpoVUkSUyqkxGlTDlhHjQIeoLBSOAGoRoUSTGh7HAT00wcZOjyTKqIoqQFLrn48M4EgZq3SBOBSB+JNLIx0FEHEPqABAiiVBcRyl0RReX0vOlOJoWgJiJ8vAFMDApVir9fT7NUpzS6tOO8SURyKf7nxdGgkqamyallJGX/rNUdj+dPE1yyV44P9DsnJ7pBOvf0vlMFbC/bPGSU/Xc9EwiDFJXe+LaxGPxISte8lkqZlifyfKsZHCUJIRORBQ5fLTXo2RqlA2Nq5duUj5pMjrqYTXErsOJEvynXdbeu0M9V2D+1Z/hi5uztEcerr2EP+pine1NvSq//2AOTZF5Z3mdlV98R+ChvrWPeTKahle2vIijT86Io5jI9amNh6x/9beYXZplvWxgqDK77TFH3TE7RwMcy8e1fVzbZDTaJnAtQseaxqrIqkZ3d4lMaZa9mXneLxt8cKnK8ozJQtlkpWxO9wyWFzLwQjqWz2nf4cnhgHG6zxh1hoS+Q+S7JJEokuLSio+lpIivudoKim6iZw2yeZ3NzVmuL5e4uVDk84s5tOYW4aPvc/TNh5x+0uRRz+H4BWbiXEZh/VadpS9covqFdziVZ/jwZMi3nrf5ZKuN1T4hsIX5OVcpUJnL87mLM9yaL6A2t3Afvkfn/jOGR6Op2ThXz1G+NE/p2iXUC9c5Holu58nJEHfsp8INlbW5PDeWSlyr5VkqaPjfuyfUcsdtQjdAM030Yg5lbhU3V6PZ9djrOwzT2JTADcgVDUxdIW+oFHQFyR+TuDZJHE+Vf2bFYObaOvrFG4Qz65yOQ3Z7Y3aaFv1xwPKMPE1vJgqnuxpJkdPvYZBfqqEuXCAoztG1I466Y7q2T+CFxHGCqYvdUymjInu2ED34LkkcvyR7D/U8tuMz8MJz/JWmUDQ16jmdckZBtjs4zT5e38a3AhRNSdOfi+SXZgV+qu1yZnv4bjAl+C+UDeYLGeo5nVzs4DdPcFo93IGHrEhoufMRas+LOR35HPYd+iOPMIiEmVsXCkRTlQX9vteayu8VTRUSfEUhUbTp7suN4ukOUCgQxR5QSULwPRLPFePDKBK+R00n0Qy8UHRwThAzTkfrUSzwupqcKhgDDzyHOAyQVA0pw0sjwKl6EfE1Vj4lwf/USSTpBRM0L6kdJ/VmwktUJGEDmExMEllF/tRrBboxQZVVgR6SU/7ii2CHtBObpjn/TbRUf8nzmSlgP+za/rC3xItz28mTT5I67RMtg6wbRNaIcasPnDBTqXPh4puo6xVkCZ4+79AJEoooAAAgAElEQVQ7HWG129z/BBpNi52WxT/62Z+iUpxJOYl3uP8vn7Fr++zaPvr//D0uPDhk/Rce8p/9J/+IjUqW36nl+DCvs/WnxwTjIZ2tD/mj31N4+HSdz706x3/9tX/Axtu/wuon3+DKux+y/r9+wKETMggitm2fwUendJ/3qHywz/qzA4oby1xa2uDS5lvEr64xCOB51xWpu0OXnabFe/dLDDpjRs0TOlsfAhCHAdbZHtbZHp302mwZOYxSDb0wQ6G+hKIITlsYxASuh2d18Uc9Ro3tH/n/JlOcxSjVmL24Sb5skitm+NzlKmvVHPOFDKslg6tVE2PcQh3s0/vH/z3dx/t0njZ5cOeUth9hhYKKsZHTWFnIM//aHJv/xd+Dy29xKs/wP3xnlw+22pwdDBg1T/BHXbRsicLcCj/zxTW+ulnjrcUi83GX3v/+v3F2Z4vWozbdjiOwU0sFLv7y6xQ/9w5svs2xVOb/fnePD7e79Fs2URhjFjLMzOX5268v8fpCnlrQhjvvs/MvvpHSWDwKi3mMGRHbEsy/wnbP57sHPf744Rn9lo0/tpBVPe3iiil/USN6ekJkjQRb8kodo1qkdGEB/ad+k35+ieddjw9P2vzLO8e4ttjDFQwhkdYUGSkKiEMfWZHRcgblS/Pk5qtkL1wkWLrBwVji7ulIjA4HLmEQo2WEuOdKLc+FsoHSf0zQ2MVvNfGHY0Gur9RRa0s03Yim5dMe+0RxgmlqlLIaF+siXaCeiZD3nzE6PGPcFuip0lqR6pU6829dw3j9KzxJ/Xgf7HTxnBBJlsR74cIMby6VWMtLKHv3aH3yjN7zJk7PpbhcJL9UI7+5iXLhJk86Du8f9fn+8w6DzhhFkcmXFeZTDmXNkFAa+3S3drCOWwSjMbmlWRRdRc4WCfT8ND26l6oXTV3BUGUKukxBV5DHLaJek3jUI0kLkJwtEBsl4lyV7iikaQtmqBfGlFIVpyIpyP4YyekjuwPCzqn4AKgacqEMhYn8ntRELYACsqYQxdK0CxM3qBe6rwmZXhXjz4kBO3phZ6fIL8jifRcpcF72t6o6kqROAcRMi5+MrmchdIVwRfJfep2UxNNMtkmr9eIO7cXu699GI/aZKWCfPn/RxfxBDxRRghghKjqoKkksupvAdggOtjAqdeYXb3G5miNfShmHwwirfYaiSHxsahwOA67MXsK4covqwRkzf7hDywuxo4Qty8f46BSz8piNXzngxtwSzUuznPZdjqpLWGd7AAyPtlBUnTuqxAfX53lzcZ3qG19jPldk46BF6UmHwfGIlhehSBKuEzJqWLTu7eK0euSWTimNhyi1JWbLdUr1TTarBl0n4ni+iKkrPDwa0qpmCR0bu3XwA8MqQ9fGcm10e0Ac+CgZA0lWiMOAyHPwxwMCe/Ajr3O2tkK2ukixNs+FKzUu1nNcni/wzkqZWlbsK7KhjfL82wRH29hHBxx/5yHDoyHDoxFByiIsaSpFVebyGwvUbixSf/MqySs/xVFg8PHJkA+22rQOh1jtMwJ7OC1es0sF3rlY5bW5PHOyjbR3n87DXTrPulhnNroskauaFFcK5K9dQ1q7QV+v8PxsLFK1u8Ksq2VUETVSy7E5m2VW9pAbW4yf3ae302PUEIbh0poiHl7KNQZ+TGMkSP/9kUcURkiygmZkqFdMVlNqRSmjkIxHREEoiBv1MrmlGpm1y3jlFU76Po9aFvcO+ww6Y0I/QtVFJzu9iUw4nrKMYmTQCzmMuVnU+hKDWKU79miPAzwvFMIBVULPqCyUDPE7GArx/hnRoEMwHBO5HpJSRMoYkDGnar0XeYXlrDDiC3qHEExMRpiKrpCfE+nT2sIKSXmBxsjjsCfEIyA6OCOns5AXo0NldEp0JrBT3lCINyYKSrlSJ85VOe2I6JbuwBU8TkXscitGShEZ94i7Z3j9EUGqYJxcE8nM4YQxbpgwSpOfw9TInVFkYSVA7K8idyxGiHGMpAqCSaJn8VGxfIeBG2D5EUEUT9PbZSntvkJP7M8m8n0jd65klGTiJJXtpwir5IW7sMSnRocvjvdklSgUhStKx5CTldeEoCNFfvo7uNPXJ4oGiSoEjqQdXyrmCCXxVVV0JNk7331NTiqll9MWLEl/nvRjsBH/Mk3bT1r8PrMF7Mc5n75oU66YopOoBpIsE7oeXt9itHuIXHiAnp1htbTIUi3HsDPG6ZuMOycMZQVVV/joZEDxQoWltRtUbuyxXHpPFDAn5NgJMLsO5kcNLjx9n8XXvsZbyyU6Y5/HH10j9Bzc/hm+1WNwtIWs6vzR0yZRknB7YZG5mz/D2te2yS/t0nt+hvlILPwBkihheCS8P+PmAK8/wpwpCQXa5Vep1pcpF+qsLc1RMpZ4tlLhfmPI14He2QbDxh79/Qd8+siqNh3/gRgFSnKErOqoukkSRT+w+Cm6QaZUY/7qbcr1LPNzBX799UXWK1mWCzoruocyasDxMeHZAe2P7zI+7WA1+rQetfCGPq4TMps+HZsVg/xCnou//Dr56zdQL99my9X5uDHgezsd2sdDRp0WgS1GopPi9cpGlTcXi6yYEcreA5wH79N+2sZq2NhBTKVsUFwuMrO5gHb5dZzKGgcdl0cti27HZmwJVFIhp1GfyXJ9ucRiXkM9fYr3/B6dB7sMj0a4I0/ckEsZzHoFZaL4swWo1vdCFFVB1bNp5lae1ZJB1VTR3QHhqJeqFxXMWhljaRVtdZNDK+BJy+LuUZ+t4/PgyqwsoasyWU2o7qTIF4BbQJ3kflXqyNUFBl7Mme3RsjyRsyVJqLqg588XBLy3IIdE7QZeu4s/sgldH0VTkXSDRDWm+x4vFOpHYX4Wsve8JiNbI0KrT+yHSIqEltPIzVcorNZRFy4QFec4bow47TtYaQepZRRqhcw0P03ptPFbxzi9c4SVXsiSmSmj1BZxjRInoxNB4R/7JEmCrErkMyqzWT0l8Aslpte38CeFcqKKzZfT4MwAywuxvDQ8UxbFy0zzyyTfIraHgt6RvvcTRU/DN4X4w/IjLD+c5pBNDMKku6/IsYV/DEhUTYzSJ2O8+IUi9KIC8CUFxAsQYElEq0Tp3iucRLm8oJpQJAQ6K/TT30G8FxJJQlKNaec32Z1Nvk7GgyIuRkFK1HPp/4tQYUma/rCpgvGFX/ev0n39VV7773QBg/M9WPKCqidjliDyUcozKFoDf+hw/J1HjBsd6oMOC2/9Ir/5xjL/XJW5J0vsnu0xPNrCG7T5X/4sz+loif/gygKbP/t3uf5bD8h+/QmPt3vcHXg8HvlYTzvU/vH/w9rXtrn25V9h8fZ19ts27z8scbbbovnou/hWl+7OXf7gT3N89LzDrYszvHOxyi//rX/I4i81WekcMH7/T7CO27idAW53yOjESpFWY07unE7/jJni18kUM2Rns+QXylz76ue5tX6Nv/X6Rf7+m++w33fZ7r3BHz38Es2eg+cEBJ7YXcmqNH1SNjQFXRVqKz+M8cOYIIrxnYAo3YtoGRXT1KgVhbH1KxdnWC2ZzOVUSu3HhIdbhMfb7H/rE0ZH/SmxfThwp/vIgqGSKeqU14rM316huL5Adn0Vff0a40tfZncU8KRt80++/piTxpBh22FwJkj12eoihWqRr76zyjsXRfG61L+P+63v0PjgIc27RzS2ukSJ+DnrP71O/Y0r5N/8Env5Te486/LdnQ4fb3fpNCySOMHIabx2pcaXL8/y+eUSmcd/yuD9b3H2/mPO7jU564oxZK6oM3P9Arnrr5Gsv8ZWa8yTM4vTvkscxVTm8qJ4LRT42zcXuFDOUBgdkRw8xN7ewx/ZyJqGubGJtnETf/4VvvOwxbeetXm806V3ZuNZNno2i5ZRuTxXYL1iUsuqxIdN4lGfJI5RDB1taR19/RpBZZXDrsfhwOW4O0aWJXIlg/mSwbXFIm8sFFjUfNTjJ7QfPsI+bhHYLoqhIxsGcqFMnK3QG4mbtuNHlLIa1bzOhdk865Uspj+E7jFRr4WkyGRnTVRDp/72q2ReeYto9TX2HYUP93s8a4xwLJ+MoVKfzXF7vcLFso5+9gT3/vdof/IUq2ERRzFmxaC8uYK++Rrh7CUOhgEf7fU4a1o4lo+qKeTLJteXS6yXM+StE6Kdu1iPH2M1BiQpSaSwWkdbvkRUXeN46LPdHbPfc+haHvWiQSGjMJfLUEhclMEx4dFzgrbYL2s5EwplEqOAp+Xp2QHHQ5eW7TP2IzKqzFIxg6YIiLBsj4j7beKhiH+RdIMkk8KH0/3b5GFgHEQvUC1eLkLShPYhqySqBoou7BOhsFCE6fhQkiRkBIRYckX0jOTZAmCMIHREmgFxBhC0/Mn4UfjHJDG+VGWUNMtsgq9i8jUOUWT9pSwyiT9fxH7Q+YtWOH/V85ksYD9pRZ9IUyVJIqPnUAoVEb6nK4z3HRStjVE9YGbuEVc217m1WuagZaMZeTFSswd0T0d8sNNlqWRQWqtQe+sWbmeIN/R5OvJx44RBENN61MaoPmVppkbhdoGfv1oH4I4i4/Qu4VldAJx+j44mc08SRWOpaLBWqlJfmyOrZ8g09glbx3jNJtrDXdzOaMpkdOwAK4xxz2xkIK/KlAo6VqNP+dJdZq6usfblX2e5vsz1+iwblSxN26frBNh+OP2A6qpM2dCmS25NkcVT3AtqrsmTZF5XyeuKCDTMalwsqijDBtLBIYNv/WsGz4/p77Y4+aBB3wkYhjFOJEgEpiJTVGXyCzmKy0VKa1UWfuYLaKubJHMX8YpLvHc04mnb5t5hn72drpBijy1U3SSTL5EvG8wsFPjqZo3X5vKsmBHut75D64OHtB4c098XI8+cJn5O9foFctdfJ1m5ztPOmLsnQ+4fDqaRMXpGxcxnuL5c4spsjsW8RrD3WPw59gaMOw6KBLmsRq6eI7+2iLp0ET9fo73fYjD28aNYCA2KGuu1HLfXKiwXdfJuG862CY+3cboDkigmY2SE6i9bYeDHHA9cjrsO7lio9mRVx8iJ5OT5QoaqqZFNvNTvZBP5oYhNyRaI9RyJUWTg9rE8QZzIZFRKWQEfXq2YVE0VpXtA2Nhl3Oikyr8YOe2+ZCNHqGaE6CGMieJYCCYMjZKhUsqoSH5fyM0DXxQ+TRWqwblVkvICo0SnZQsEm5dGwOSKmal4wwht4s4JXrOJ0+yLn6/IQj4/W52an9vjMV3LJ/AiQQAxVWYLGZbKJuWMjNJuE3ROpyBlWZFQDQ2lVEWu1AlyVc7O+rRsn67l4fjCwGxqCjldQfJ6JEMR3eIPx1N+JLIiutAoxgsFR3LknotZlDSlWJUR6kVPKEqJI/EXCFZhChAOUxHJOcw3HQFO+I1RMPWAnXdginhtGh8Txecd2ySVWYojpMAT3bg7Ft2jfn5/i1PhSBQLCT9AJKV/JcnL48oXCpiUxNOCNbm//jjF60edf29k/ms4k9kwxGh6FrVSw6gWUbMGgR0walhkisfkFh6xdPvXuF7Ps7NSYrsyN1X1DVs9DvIZ3kvp5D938wss9LsEtseFM4tTVxhU28cjzEenmNV7zOaK3H7tNwAwdYVRz2HUGeJZPeJYSNH7LZvHScJ3Z3M0Z3OsV0yuzt8kM7OObrXR+6foxe8xOjjDOm4xbo8J3RDfTzgYB4I6L0noQ49rf7xL7ZMzKhf32RiNya5fpLq6yRdXX8OVRNy9ly6LZcSS2FRlVFn8vSZLU4yNGGmcP0/pskRGkZA8C3l8RvLRJ/iNXaz9Ew7+9AGD/QG91pjHIx8nivFTFd2SqZJTJCplg/nXFihvrlDYWEd942sElRVO7ZD9hs3vPTzlycmIbsum3xwS+Q5xHFGo1ijOplL5izO8uVhgQXFRDh7QSIvXYH+A03fFwn4hT/XyDIVXbyFduEnfqHGvccK9g/5ULaioMkZOozBjcrkqQLmZUYPO832GB23GnTGuE1LUFXL1LOX1kohLKS3RdiJats/IDVFSUvuluTw3V8rcmCtQCQfIp8/wdx4yfL6P2xmKmyWIsMdUtt4cui9Jzo2cTr5ksFzLsVHJMmsqyIPjKcIqcn0RmmnmSDI5nCgRarkJeDjdW61VcywVDAxvAN1jwrND3O4Qd+ChTPZrRhaMHImeZRyMponHpi7QanldIavJSF6Kn0oDK+WcSrZWQa0tEeZrDLyYhuXRtX1RnCSJQhq8OZ/PCIJ/p8H4tIPTc0iiBDWnkilmpuGZYgzqM04LIICZzwiVbCEj0qebR7hNAVJOogTZEAGiSnWeKC92kqepiXtCIZmMYU1VQnYGInvM6hPYLrKuokcxkqyk48ME24+wvBDHD6ev1xTxmdAVGTxHGKfDgCQSO09J1ZBUTXjQPNGBTQI4NWVifhYEETzRfUlxJLBVWmpiVs73XxMMliqfd2+k4GFBEAlIwoBEjpE1/TzEk/OH9EmciyJP+IwS00ToFwKeJ0ee2Mh4oXj9EBr93+T5zBWwv0pln/DJhGEvplKuo87OY1SPiaMYb+gxPBpibh2yaJ9yaabG7dUKf1ar4I9rOHGE0zujny/wYL/PQtnkp965Qfb2gAXb5fJ3j9D77pRsUdwfYlYO0AsfM/fqV3lzcYasprDTtDluGFj9IvbARZYlAi/E6rt8/3mHRt9hfzaHF5aZzZpUCuuUq+uYZg51aZfC8TZe3xI3ov0Be+MgJc2Ld+B3Ow41y2flzCZ0QmYuP6O4fo/KW3tkq/MUChVizZwCPYlDJNci8YWsOHHOd16SpguPzGRX4Lviadwe4g+7dO4/wz5uMzgcsne3yZkX0vIi2ukNVZOgpMksGiqzSwVmLlVY+sot9IvXkVeucZJZ5PB0zNO2zePTIe89PBNm6JFP4FrIskImX6G2UuRiyje8NV9gMRkg7d7Hffj+tHjZHQH9rS0VmLk8Q/X6OsrlN7BLq+x2XT7a69FqWWmCdkSulKEwY3JlocClGZOqGiAdCcrEuO0IqbgkzM+VixUqV9eQlzaxjRna/fOQRkWWKOX0aRd3sWwgn97H3/qYwdPdNDzTxazKSIoMZoFQyzJOcU9xFIuMqYxCYcZkrp7nxnKJuZyK6XaRuse4zdZ514AQDkRaFi9MXqLOV/PCczVfyAh6/nCb4OyA8XETd+AJlJYioegqUq5IrOfwYmkq4BD5YRqFjEhdNlUZyRqT+C6RH6LmDLSciVkvkxRquIpJ3/XojAV6KgpFAnStmGGxZIgCNurgd07x+haBLRiMWk7DrOZRakuEuSqDQURn7OOn/EVVU6iVBAFktWSgjI7wzg6xGx28fuozNFXMahFlboUgX6M7jDhOYdyDcYCuyhiqoOmYmgwtIURxOwOCsYOGKd7kskyiGfjjmJEfvtx9yef0D12G2LWFj853p6+VVB0yJn4i40UhXpjgTkbuSNNMLjUVgRD5xJ7z0r1J0EMgSEMzvTCePmgAU3q+lL5WBH5GJIE2/T3i5FM7sDhBjSUS+QWqx/QHToQcygtCDvH6Pzdi/Pc0+r/6OV8x/vDzo7hdMULa6gTi6WYgQW7+FTRZZTaOaLy3Q39/QG9H5CvV3vwd1t78eX71yiXufnGN9ysmZwcLDA6fMDjeJXA9/vnQY6Oa4/PL77D0Wzd4K4pZu/OU1sM2x/sDhgOX+M4p47bDFfN/ZPbaq/z0xutc+NVr7PZdnnXG/MmjM7ojb7qXahwPOW2M+FCV+MOyyUxOp17MsDyT5e3VSyxefYW52ypXbr6H//weg4db5P/ph5wcDtkbBxw7ITFw5kWceRHb3z2k9mGDWf0xq+t3MCpGCnDVkBWJOEoI3QC35+Jbgejq7IAkXVhJioRqqCi6yKyS0qfCKIgInYjhwMUKY+wooeWF0z3XZl6nosnMFTOU14pc+IWblK5dQr90k9GFdziwAp62x/z2nz7m8FQYgO2Bx7jbIIkiZE2jsrRMqZplcb7A33tnjauzWZbzClpzi97/+X/QebhL91mH5uM2UQKGqVKuZ9n89duUb91Av/42j9VlPnzS5r3dLltbbcaWP917bV6p8falKm+vlLkQN4k//oDBvY/oPG3iDUXIY2Exz4Wff4XKa9cxrn+encwKTw6GPG5Z7DRtojihloo2vrYxy3pJQz97QvN3/1+6T/YZ7A/whj75hTzZepFMOU+Ur9F1I05GLn4Yo2VUijMmqqbwletzvL5U4no9x1zvMcHTjxhtP6fzcBdJljGqRcxqkSRfJTBKDEYBo7RbKBgqF+t5NipZLlezrBU1gnt3GD14SHdCvTBVjEqW3FINdWWToLLCmRXSsLxp11LN69RzOnM5nRlTId45Ix71iYMQo1zArJfRVjcJquucDAKedcY8b1qpZ0smY2rcXqtwa77AalHDv/Mx/a0DrIb4bOXqOcoXZ5i9uUG0+ApHdsLDpsWjk+HU92XkNL5ypcZbyyUuzxh4f/wunY8f0ts6YdweY1YMCqs1yq9sECzcYGcYcudkyHvPO4zHPpIkUSpkmDE1FvI61YxEsPcE69k21nGLKAhRjQyyriHniowiib4b0RkHYiycQpCzuqB/lFIfXNxrEQ27RK6Hks0i54oCYJyt0Hcj+m5E0/aw0vF8VhLTjZwmIzsDoaLst9P4Fh2pgGC0KjpuFOCGgnAjujeJjJIirkJPeM98l8Qdk3gOUkYU4CSFM0z2X16YTLvpTHrnlCXpHCD8wvhSShISWZ4KQMQ3/OHF60dYq/9azmemgP2w8+ll4Y9aHk66LzuNem87CvXSItrqJrm5LOP2GKfn4vRcBk93manep5St8M6FKiM3JAxixt0ScSCIF4OOwfd2O8IjslBk/vNfEgv23DN8OyCwA+IgZtwZ0763TeT45O0Rq2//GjMLZZaLBpoisdcRhuTW0KPbsQn9GM+J8JwRfUXmMKPwMKfTsTwu1fNcrGR558LbZCpLzC5e4OLIpvjgiNqzHotNWwhJwpgY8OOEQTqeMg+HZJvjaUGKo4TIjwjdkLYrrACTDLEXqfN5VcZMMTy5NA13Qqb3YzGy0GWJJVNDS3ddtYUchYUCpbUyxfUFZn/hl2F+g2BmjQ8Pz/dcT7baqV2hj58qDFUzh1mcob5c4tpKiddWy7y5WGAmHqHsb+E9ucPp+0/o7w8YnVhECWm2V47KxfK0ePlzV7n7pCPQSsdDvNQorWUU8mWD2+sVbs4XWC8bsP+M4GCL0cEZcRBNu4TCYn5avIK5K2wdOzxuWTw+GWK54ZSwvlgyqGUV1N4h4d5D+s8O6e30sc8Etqm4XEA1dLRSkdgo4IyFSVZXZcyMiplRmcnr3FwscnU2x0pBI/jkLtbWFsO9Bk7bIlM0SGKxv0p0Ey8Na5x0C7oqM2MKdFUpoyCPewS9Fk53QGB753unch6zWiTOVhil2WWWez42y2oKBV3F1CTU2Bcdd9pxqDkROSIXyoyCtGPxQyw3TJWHKoWcKIAzhooROQTpzil0xfWfhH9m5ufx9CLdkUN77NNJVYVaRiGXF+rFek7DcHtYJyc4LUEACd0QPa9Px5g9H46HHgc9B9sSRBU1lb5Pzc/OgGDYwU1TJWRNFco83UAycripjeDFblZXFXK6iqmej82jdBcYRzFqukOUzDyxnscJYgZeyCiV32vypPsijTUZIwVjcT2nFHuYkO8nnZeb7s8mn0F5go5K6fmTvZv4l0pqUlYJ0iDbOEmI4zRYOUVLKTLn9Px075Uk8ZTKMcHuTX6fHxl2+Td4PtMF7MdRunw6NSSIzhVChYyKkc9Srq1TXJ9n3HYI3ZDQiRhsH2NUH5IvVbm18MXpiKXTWMAdtkniCM+yubffx9RVNFli/vLnyWsi2t1qiJurN/SJ/JjuszaR6+OPbGqlKqXly+TKy7BaYb1scjib47Dv8G6cYFserh1g9d3pIljVZL7rBDwsD7k8n0dTZNZKCyxcX2LBc6ls3qf6eJ/a8zNmv388LUh+nKDLovhECXh+RBzFYItr4URCZHHmhVihSHP+NKHeCmNMRcJUZMiIjDBdFkWrbGqCRp5SGTLFDJmSzuyNFUGpX15BW90kvPxFmk7C4emYrz9t8vBoSLtl0T3pil1g4JPEEdnqItlSntJslq9cn+PmYpFXajmq9iHJ4WPGTz+h83CX9pMO446A4uaKGXJzWaqXZ5i5fmFavHYHPncOejw8Fn6vJAY9o5AtZpibK3BrociV2Sx12SHYechg+3iakGxUdFGAN5amxevIVfn4uMXjkyEnPTEC0lWZaj7DQj5DIbKQWnv4+8/o7w2wz8ZT+b2W0zGqJZSSiDxxw4BxIJ7SZ/I6BUOkHV+dzbFS1NDaOwy2ntLbOmR0LEQLqqkK6XvGINaF52n0AjlDVxWKGVVwD3UZuTvA7w8JbZc4SlJwcBazXkGrL4q9kR1xZvv0065DwIcFO1GkJo+E58kPSKIYtaAj5woohQpOmGB55zd9VVPQNYVaUYwvS4aCPBaS94l/TDU0svUi2fkq6twq7dRA3Ri4DMYBiiI6uPmywWrJYMZQUVpn2I0OTluocAFRhOtllNoSXTfkcOCy3bSmHbaaKmorZuofGwxwO4N0jOmRKavIuhCySNm8+LP44fTPoqfipqwmEtvVYIzs2ySusCAkUSxemyuQ6Hlio4Bl+1MJ/yS6RZZTBeEPiH+Z2lckOd1TgTuBD3/6xjUpOnEsdmfim78EH45+AIJqsnubILCIfJEL9kJnlUjnHdhL2Ki/YHT4oyZeP+i//UnOZ7aA/SQXJElEaz3yQ5q2z/HIZalgcK22wMov/iJ68ducvPuE/m6fxkcN7KZF7fCMzb8/y+r1G7y+UOS/jRP2DgsM2w6u7XD0TBADPt7rEX31IjdWv8Ly5he4NjuP9XSL3rNDRkd9hkcjnI5D82GL3tYx+aUqhdU5Lr3zVS7XVonmFulT5Y2lEnt9hyeNIe9P9kGDMdZ4QGfPRdY0HmZLfO/+KbO1PPA7+bwAACAASURBVNeXi/z6jZ9l5dovM/8fKywNjnnl0buErWPcVlfQCmyXOAiJXPHkmKSdlzf08W2fwA6oNSysVDE4DM+fvhQJKppCSZMxChmKywWMioFZMacA1kw5j1Isoy1vIBerJLkZguo6PTfi1Is4Hnp8+9uHPDsd0eiMOd3r49oOgWuRxBF6toiezZMtZrj+Sp1bq2Wu1fP89HoZc3QMxx9z+rv/jMF2g/6+KAz20ENTJEpzWda+ujFVG0oXbvJIWuCTx20+3O/x7t1THMsjCmPK9Sy1Wp7X1yu8sVzi51ZNtLNH+I8+4PAP38VujvCtgPJ6idLGEuVrG2ReeYvd0nUeHFi8f9Dnjz44xLVFJ1FfKbE2m+OVuQLX6znknW9hffwuZ+8/pr8/wB8HqJoQgNRf36D8xm3UK2+xYwVsd8e0xz4z+QwXsxpLJYPLMzk2tRHS47s4D95n5199hNWw8K2A0loRLWeQna+iLW0wVPI0hwGHA1ckiSOMx6slk9msgm63oHOI2xkS+SGaqVJcnZ1yIJWNW2xbCU/aNlttm0bfRZEl6kVRjKtZlZISonQbBP0WXt8iCkKUvEA+RWaZkR/RdQOs9OfPV0zqxQxX5otsVAxKwQAazxg3hQdONTQRnvnGFYxX3iC5cJvHbZu7jSHPTkcMRh5GTme1luNzF2a4VMmQbW/h3/8u3cdHDI9GRH6EUTGoXF0jc+1NoqUbvP98wDe3Wjw76OOMPDKmhp5RWZ4xWSrq5P0+SeMZg+1jxs0hoRuQX6piVouo86tEhTladkBj5NEceWmCtcZ80WCpaFDNSCjtE6LGLl5bhG/KmopSqSFX5glL83S8hN2+Q9PyGboBRUNDliUKukJeiZFHHeifEp4dEPWa04RlOTUi+1HMMPWuuamIJU6ViIosDMwiwyzt3LRz+HCSyeOGqTAriieEKQxVdJ+mKtIQ5PFIjCHjkETNTDu3RNFxU9miLEnigfTH7ML+ukeKn9kC9uOeiQ9MONrFk0icgBfGNAauyF3SFNZWrlG4fEy50cEbevR2+kiyhKwdU3v4HoasslG7ylev1vm2LLErSwza4NoCpitLEu8f9AnihGguz8UbX6CYK4ild/YQb+jhDUWx6O30Gbcd8bSvyJjLK6jLG1Rr67y+sMJCIcNsVqc59DjSRiiqjCUrWPaegOXaQ86AUdeh2xFPc5tzBTYqWZaKddbe+jV0u4Mx7lFo7BKPRySeS2z1xfgjCAldH69nEYwdQttl3Bzg2z6+lY4+U6mzpEhkZ030nI5eNCmuL2BUi2ilIkqpiraySZItkRgFwuICVhAz9GJ2DkecWh6nI0FWuLfbYzz0GFsezsgiDn0UVccoFsnmBXppsZ7nV24u8Eotz0JeI3d6j2D7PvbWU5of7zE8EhYCz48wTJVsStiYf+samSuvw+oNBuYcHzzt8NFBj0fHw2nxUnXlpeJ1vZZDO3uM/+gDBo+eYjWGQrShK+SWxI1ev3STaG6Tx6c27x/0+XCny7DtEEUxqiZTMrXpDb+cQmrHp13cnvDo6FkNo5ShuFKgeGkNbWWTsLzI6alANvXHAaauUM3pzOczzOU11P4R7sEW/e1jrIaF0xOjOz2vCdN6vY5aX2bgxTRtLw17jKbAXiO9YUmjsTDrxjGKrgKCm2gsLqEurBMW52l0fY6HQrXn+BF5Q0VXRfeV02Rkd0AyHhLYDtEkLToducWaQRgK6jpMOlEhIKnndYoZBbnTIxp0iCYAYlOEXmr1ReTaCn6uSmOvRXMouq8kScin13S+kMEIRiTtI7yzBk7PFdSNFCCcqdeRq4tYao7jQY/Tvos7DkhikFWZTEalXjREDluvQ9huvDTG1HIGarGEXKwSmiUGPcGBtNJ/b+oKhYy4FrI7QnKGxFafKO2+FENHMnPEeo5AMbCdgKEbMnQDxn5E0dCmykXJF93bJLtsYoAWF1QWAZwhUwhxGCWCwCKL+5YiSdP058noEVUTGWiKToSMH0Xi9Sn9Q1OE9F9X0vGnb4sE6jSVOVHOxR9RIqJjABQ5IUqkNL7lLzdKfBHf94P++U9yPpMF7C97QSTS4iVPkCmizW4NXRw/JKPKfOHVi+gXb1A+PWXc6tN93mPccUjihO5H95iRFbI3ZD6/vDr9vnuSxJkTEvoRVt/lve0OfhgRRgnzlzcx1Qw5I4eWMxi3+oxOLNyeK27CQw+n5yArj8kdtyicHGOuHlC//fOUqwuUDZWBF3C/mOHR8RAto+KPK/ijHpHvYLcO8aw840GFb8YJ96q5Kcbpc0slZrOz5Et1avOvCMl76KG5o/MRQuCLgubYxK5N1GtOaeeh7YoRiSJUcyKqooicK6AuXEDKl4kzBRKjyFAvYvlin7N3MKTnhLTHPvcO+zSHHv2RgAAP2mMCL5riljL5ErqpMrtYZL6a5fJ8gatzeb68WqZuJKjdPdz3/4ju4z2Ge6d0ngkWYZB6yorLBcprJSqbSxi3vkS8eI2uUmK74/L9nQ5bx0OGqddL1UW21+vrFSGQqOVYzib4731A//5j+s8OGbcdJEUiU9IprMyhrV0lXtikKxe4c3zEhztdmidDnJElcFGZLPVihrl8hpmsSjZyCDqnuJ0Bvh1Mk44Li3lmNhdEMZy9QCfUOBiMaI48LDegXjQoZVTm0iIYnOwyPjjCOhSqwciP0HM6uXpBgHvnVogKdTpOQNP2aaWpy6YuqPWGmsZ9BA6hKwqpYuioOQNzsY66eIG4sshYK3A87HLcd2gOveneZyqfV8XYLR50xAjSD8XILWMg6QaoBq4bTcdVehodU89nmMvpaL6FNO4L83UUI+sqsqaKMer86lTIcjryhH8sVR8KD5vJXE5Hsc4I04eCwBZwYD2vfUp+LwDGtuXhOwGyKqFnxBizXsiQlQIYtYn6LXzbF/J7TZnCg5NsGU826Dlj+uNgitIqGCrFjEpBV5GcJlGvSZSitCRFCJrkbJHIKGIHMbYf03eDVAgTi9Gdcp6CnYyH4kHSHRO6PpomOrBEVkDRCfwILxS7syhFcAj6h9hhieyyc4CvpKbwYVXDjwW9I4yTl3bXiiTGl0rsIwWO2MFNOrgkEaNDWU19Y+J1cQK6LMDDisRPpED8YYXsJzmfuQL2kxQvJeXJmaqMrydUTI2mLeIanCDiqOtwuZrj1oV3KOaK6MUc3Wc9+vsDzo5GRL/9EdW7+8zdvsetv/sPuPjqBd5cKvL+0YD/65s7DDtjPCfkaKtD98zizm6PcRBxY67O6tUVKle+wEZ1nvHeDoPnxzQ+3MdJC9neNw/4/9l7zx7J0vRM7zrehjfpTWVWVZdp38OZniU5wyEXWq2WS0AQsJ9W0ALSD9A/kvSNsgAhAqK4kri043raV5fPqrSRmeHN8Sb04T1xqprkLDlDEgR6eYBC2YjKPBHxPu/7PPd93brbw6g+wel+zMZ3vqSyv8nOzi3+3Vu/xfB2m95CKL3+j0+anF3OmY8DhqfnBefwlJfjK04Nk0d2Dd22+d01B9PWqVUMDroONVvMWFq2g6FW0IpoikpVRWuIX9uaUvTKQX0tBGi5RNAFsiVBKuYV04nIWRr7M55cnjNaxMy9mOnQJ4lS4kjMB/M0Js8zZFlBNV00U8OuGnR3auy2bA67Lr912Ga9orFmq6jTc9K/+B/xjo+ZPj/n/EfHQs7uxeT5ErNiUG9buBsuh//625i33kLeu8+RscPDS48vL8/57GTCo0d94gJVVG1btIuT1799b5NdR0K7/Ir4xz/l+e/+X0yOp4TjENVUqe5UaN3dovq9f0my8w4vFhIfHY34g5+cMrxc4I0GyLKC02hS7zh8/1aH9zcr7FkZ6tkDBs/PC3uDzPq7a7hbbZp39jDvfcDkxq9yPI354mrE//Pwulwob69V2KqarDkqjn+N9/BzoV48naHoilDbbbps/+B9jDe/S7bzNheZyQ+f9Xl6KZKTK4VarmEK9qSyuGQ57ZN7MzTbFLimuov59q+RdQ4ZSC4v+gE/eTnieOAzCxLaFYNu1WSnbrHuqOiTU5aXz0nOnxNN5oBAWK1axJlVYzFckGR5OQfcb9rs1kz2aibq+DHp+XOiq165CTJbNSo3dljuvMVAqfN4EPDl2ZTLcVCqD+9uVrnfdTlsmGRffM7iyROmz8/J4gzN0XA3KjRu7yAfvsdIb/H4csHjnkgcyNKcStNid6vGh4ctvrNdR7t6RPToZ4weviSaRSi6jNWwcG/fRj14i7B1wMk05qurOWcjnyDOuLVeYc01uNGwWXdVePiE5PQJi+MLEi8QSQS2TV7pEOhV+vOE52Of44HHPBQbYkORaZoaFV1GGV2RXp2S9c8Jh8Jor1UQ3jGzip8u8ROBsPILwZWiKuiKjKlKWKs4nTgsW4iy5ZDrLrlRYRHnLJJMsBvzJaYiv3osCYo3RA6m5OPrV9ExRqVEWIVxTrCS/csSurIsWYjK36EK/X3QOL5RBeyXKV7igSJQTpMlTEUQqV1dRZEl0jijn4Y8HXqsOTp2cx9t7w7uxp8SjEO8YcDg2i+fs/nhT6jckbnZ2CPJlvz5ZpVjYD4OCL2EYB4hSxI/fTkiyXOi1GWv5rB570PcSgOjXiGe+yx6s5KoES8SsjgvPDLP8S+HVM6vqRsW3bUDms1tuk6NbLnk8fWCRxczHkkSwSImWswJpwOyKCRMEmJfI407aKbGyFDo9xdohiqwPJaGpb/CRVVMtVBbid2zWvxaV+USgZMtlwQFGDWIM3qTgEUoUqfjMGX+GpoqnE3I0pi8MHnKmoas6ii6RaUpGIHVusU/f3ONG02bG3WL+20TZXyKdHFKcvKEqz/9CbOTAYvenNnZvDT4ul2bykaF6naV+u0d7G/9Bvn6LWZmm58+G/HFxYwHZ1P6/QVhkaumG0pZvN7brrHrKqJ4ffVTxp89KFu5WZLhdB2cboXK7hpZe59hovBi4vGgN2cxDYl9kbFmVJu4dZONrstB02LNVlHGp6RXJ8SzonXo6FT312nc3ilbm0eTiC+vFnx5MeV86CPJEg1Hx1RlqkbRspsKhdyq5fZ6IrZ24z752iETyea8SB3oTYQPrW6L19U1VLHYRV6pHFQsISpS6k3ySofQqDGZx5zPhF9qFiTkBbG95eo0LA2DBDmckkyHJNOZmH1pQvQgFk6LsEiNzpe8YicaaimaWC4m5N6sTK/WHKvkN+ZOi+lUEOOn/itMmaordCsGXcegaihk42uC4ZR4EaPoCrqjY7Vc7PXmq/RoLyYOXkW3OFWTvbbNTs0U2WMvTwmv+2VumKIp4utob5C5HSaR2JT1izYmUEa32KqEJWVk42vi0YR4JszccqFeXBpuKWSZha/8Y8bKf1ZwPpe+YC8mXkAaxgX9o3gOzSjnV6v06FfkD+EfIxPii2UalwKOpawUyRomcSCk81GaC/GHQkmvl+MAKQ4gmLMs1I+SbpZqw6xQP65gBXKxzi6Xy78Eb/zHub4xBexvKl4/91a/ljxqKCqJKpUpt5auMAGSKOXJ1VxQszcrtHfuUr/RIRj6BJOQqyiDoohNP/2UuqpRuaNxu7XBhzdbKLLES1kijecscwj9mMe9OVm+LOW5zZ3bGGYFo9GhO/OwTq/wzgcMHg2JPaFUjBcJ46Mx/sDHv54K7tz+M7Ttm2ysHfAb+zvcatncW6vw+6rMWd9jMbEZ9izScEGWxoU6ckTsK0S6RRSkKIqMrEqMDRVJlsRsT5JKT5ckg6IU8QpFkjC8IlIvl0uyNGeZL4lC0TJNk4w0yYkWHmkckKcx2Wu9fc2poplumQe2uVvnoCuCNH9wo0XXUWnpS9Qnf0py8gT/+Jj5yRUXP35RtFhjojgTXpiqQedeh9qNLrXDLaybd8n23+c60XjZ9/nh0ZBHvTnTgU+wENlfK7Xhqni91XXRrh4RP/yI6VePGT08YXHlkYapmHutOQWT8YDQ7nA5CjkaiWyuKEhZ5hmqblFt23Q3Kry/32C7omOFI5aDE7HDLob7qm3SuL2DfvNt2LnH3F7ns+M+Hx+PeXoljNS6oZJZGlZBiVDzWMxJXp8XVQ0q2w2ad/eQdu6ysLtcTGKeDj2OBz7TQpGnq7IwHhsqUjgTz+PPRdKwpqK4rxWOKOPaE+3HqS+Kl1QYoDuF90vxhuRj0TZLZr5oJ5uKmPu4NZaaVS6Y2XJZ0FvkcnZmq5JQLvpz8jgtc8f0RgO50WGS5IyChIGfECSZgPYqMm5RAKuGghYviCcjUi8kS7IiBNTE7tbRO10izWU0Ceh78dc4nVstmxttV4hZLIW0MD/Hcx9ZkdBdoQaV21vETovxRIi5houYRZiKzVxh4rY1GTmYkEyHhMMZydwXKC1dRTZtcsPBC3JGYcIkfBUECmBpMoYiYakS+XxM7s9ftWIrtigilkOmmkSRwLolmZDAK5LAuWkyRXr0yvtVBHAW1I/VjyiLS2W1XJ6cBD2EOBTSfX/+V9SPS1kp24dpLtbQrDAz/7zJ1y9CoP/7uL4xBeznXX/jHmEVm70UfWlHU4mzJe0CudOfC9/I8cDnedNnq2pSb+1Tv72D358QjEMuTmbM0hyl7zN68ALV1KnoJrWbKu9vVEWvWZX53EuIiiA/fxbyjAKumeZsVEy69hqN3Qbut0PMzee4Z6dI8mO8azGsT7ykFHqE45A8e4j7skdl5yXOjV3WvvWf0W5sslutY6gyL8Y+Ty/nfGap+DOnPAnF/qL41jNi3y8I80qpnnt1a/Iyuflr93QVTikrSLIoZrIskefLrz1mmWekcVA+XrUcFFVHVnWcRgXbNbCrBp2GxQ/udtmvW+zVLW5VQZ2csnz5kumf/3/MXvSYnQzwrj3GR1OiwqfnunrZQtv49hs4hyL8MV875Lmn8GQ458nA48vjCbOxiEVJkxzDUnFrJmtdtyxee1WN5LNPmD18xPjRMZPjaUGlECT82o0u1Vu7aPt3OfGESvCov6A/FUVZMy00Q2F9s8q3Dpq8s1GlJQUow2Pis+f459flcN9qVdH37yLt3MV3NzmexHx8PObh6ZTZOCAvYkIUWaJmqFiajBxOyObj4uQqipez3qB2cwv71h3ixh69WRHAebVgNBUAYVVTqNl6cfpRkYPhK7FAInb7si0EN75qMw9irhdCbReW7SqZbtWkbevUTRV5MSYZX5NMRWAkgKypaBWXpe6yNKsEnmAvipmkJBShK3JHtGDpz8nDkDzPRfxLVQRnyrU2s0gkP499UXxW9PyarbHm6FQNGdmfEs99Ej8U0N7a6vQl5PfDKCu9Y8ulkM2rusxB12W/YdF1VJT5FYvLy4JVGiFrClrFxurWySprjMKM81nI+TRkVBRCXZVL1qerK8KKMJqI+JYVBFlTkSyHRNYJ0phZmDLxRfbYqoNR0QsbQiyKR+aL2VeeJCK7zHKQTYcgXRbxL2lJ7zAUyja/rkhI/mv4qjxDQivUg1ppXF75x0xVFv6vFbsxCQX+KvBYBp5oW+rm6oMuRGc5JAUCTJFfBWn+TRmMv0gh+6c4lb90/a1uyKp4ZWmRoTNFl1U6ZgWrbvDt/SaKLPHgbEZv4PHnQJzm+EmDD//Fv8HodnHWPyH+3z5nNItYpDmnPzzHH/i0Tq7ofPCU7/zz/4ZbzS7f3q7xe3WLo+sFV9MQfxYSzCOeRiknQ5/eJGC7abNZMXl/61dpHn6PihRz89c+Ju29ID4/Zvqix+VHL/AHPuE44sV/OAaOSzXb+rt/RHV/ndrhFr/z3f+cbGOH4L0NHg5CzuYhl/OI3jQUkmQ/IU4ykiglS3OyLCdNcvI0J00ysjQn9GLyNCaNAxJvxjLPytToVdGTVR3VclB1C0W3MCwdtaByKKqMYanIioyqKTRrZkkyv7tRpevobBRA2m3VR5ldsjw/Zvq//jHzkytmJwOuvugTTEKRap0vqWkybtE62/n1m8KHtX8T+f1/yUytcOSlPO/7/N7nz3jZ91hMAhaTUHh/dAWnavLWG23e3K5xv+vy/R1XpD8/+IKT3/tDJi+GeFcesZdQ2XCFUflml41//dtIB+8ydTb5s0cDPjub8OhiTujF1Ds2tmuw3XH4r7+9wxttmw09Jf+T32X87BmLcyEz1xwTZ6tD5dYBy7d+i/NE59OXU358POaHH1+wmISkcUy1XcF0dPbaNnt1k5a+RLnqkfTPRdxKt07FNGh+8C76rXdIOrf445MZn5xPBa194OEXxPdq1eTeWoU311x2qzo8eERy9px4KHyH1tYmSmsdmltcewlHo4DjScDlJBAig0Ju/t5mtfy+kk8+IXghiBWpF2K2ajjrTaFebO5y7WdczIWSMs5ydEUs2BVdFtDd4YB4fF0UnxyzVUVf30bbOiSr73A5Faee3iRAKYzc63VBz9+rmdTSOdLVEf71mDxO0Ryd6m5btI7vvYd04x2ej0Me9hccDzxB7rB1Nlo2v3HQ4n7Xphn0yB/9iP4nT5mdTUmDlNadDs27e9j33uNKrvPFlcePjsd88nLMYhKgGSp6Ef/SthRM74r8/EnpD8ziXNhG2i2Uzha9IOV8FnIxD7mcBCIIVFfoVs3ifa+gDC+J+ucEw1mRwaag1psonS3yxiaDIOVsJgJpvTgtlKRKAVJWUBZ9lPkVSSGykrSCu6gZLM0qizArwzujLEeRhLpwpYCUo3kpQMn9OZJuohgWS0UT7cdItC79JEOTZdTXo5X+FmvwP/Rp7BtbwH6ha1XIErGblvMU12mxX7cYBwnDRcyRHzPyYo4HHusVgw9uH6DfntAJPa4/O0MpQLFZnOEPAozzIXr1hO6bj2mu3UKtN/jWTp1u1eDoesGDczFfy/MlaZzx9HLBcBFz5upkyyUbrsF6Refg8EOU1g721jn61nPyJGX64prZ2QyvKJrZJESZRiRBins0pvrknN0kRd85wN065N29D9ivG0yjjHGQ8nTNZR5leHHKcBETxKI3v1JZBXEm2haLiCRySaIUf94mT0Xq7zLPvlbArIohjKGGils3UYt5i2uqIvDQ1KiYKusVozDSauzVDCq6LDww3hAefkTce4l/1uPihw9Z9OYsrnxGBb9QkQRNv75bpbLpUr/Roftr30Hbv8OyvcdxavNi4HE09nl8OefJyQR/EZNEKbIsoVkalqtTr1t897DFvY7Lbs1Au/yK5OhL/KePWPREkOIyX6JZKo2DOrUbXdGi23uToLLFxSzm5cjnehaRZELB2HBt9to297dq3Os4dCUP9eIZg4ePmJ9cEQ7n5NkSq1vH7tRR13aZSiZns4BnQ49HF+K1TEJhfjYdreT8NUwF2euznI/JA0+cvoq8L23/Lmljl2Fu8HQ45eHFjOuRj18SK1Q6VYOdwvCrB2PS63Pi4YCkmMdJqkAl5YZTmHUz/DgjLRbbpiugu1tVk4ahIM96xOPC9xXGLPMczTFF9FCjyyxXmMUJ4yAp87Z0RUYt5dqCNrFMk1LJqlVcJKcKVoXccFjEvqDh5EssTSneRyYdR6diyEjTSYmukhRZMA+7DYy1jZJ7eH05K9t+qiayz4Tvy6CmpMjjC+KrU/yB9zXzs9ntoKztMA4zTqcBxwOP6TwijXM0Q8jny9PXbEo6viae+6SB+FoUU0e2K0hOvRReTHyR3KyrMrauULM0HE1GjRfI0VzMzuK0ODGL9Ga52iQ1KswXmZDvF/dDhE+KMccqfHO5mJJ7s1KBCCK/LC0EVn6SiflZ9kqFKBXxLSSxYJy+JgBBLhKgJZk0zwpCEWi8GnuV2sOVjP7nqBF/mdPYL3L9J1/ApNdmYFKWFMGAEdIyZ7PSYRxYDLsuJ0Ws/HWBpOnHDdbW30CPQ7rvPEFzNBa9BdEsKsG/i/M+jaMHaHlOrXuDt9c6tG2B8lFkqYSKelHK3IvxopTLScgiTMWiUTeJtuq07U06BzsojS06gYfdeYnZOCUch2R9n2myxMtEbEp1GFA7Faqwyu4p1f0nuN/2aDc3abod9tYabFZ0wiIaYhImJMXAfRamhGmGn+R4ccrZSEiHp37CaBqSJoLSIYCslGm4FdegZmvUbY29tkPV1KgYQgjTdXTswn9UM+TChyShTs+R51PyyTXZ8JLpp5/i94Z4l+OvBVpmyyWuKpe+ro0Ptqjub1C9uYf67g9Im3tc+xk/PB7z6GohxAtDn9koeCXwqJs4VZOtls3dzSofbtfZcFWqyZTk8cd4z58xe9Ejmon5mFHV0Ryd9pu71G/vot98m6C+x9k85unQF6GMhTnXsDTub1e5u17lXsdlbTlDPn9I9OQTxg+P8a4XBSVDQa84qM0OSnebvp/ychLw9HLOYOSTxkW4omnh1i3R6qpbVOQUxRuSDi9Z+nMUTUWr2uidLnlzm4Ve52oa8+hixvnQJ5iLou1UDWoVkcm27urU1RRldE54fSHMy2EkUooNE9lyyDQLz88I06wkdzRdvVQeNkwFM5kjz/uEfRF6mScpkiyX4guqbaZRxsAXAgy/ABlXzRWtXRKCgThkmQi/lCzLSKYtcsd0hxgVP8nLr2GF4upWDbqugUWCHM1J5uNXBdC0xQlwfZfc7TDPZAavMQtt6xWBv2UpKNNTkvPnLE4vi+TnHM3RsDsNlNY6udvhbBxyMgq4nIQEi1jMnhSZui3e20bqw0zI75PVHE6R0Ss2cqUhyBtxVnrHVqrSVQyNSI+elz64PElEp8LUkd06S6NKblYZ9eeMg4RpgTlTZDCL9Gg5nCNFM7L5hKUvPvPIsihkskpSsA+DJC8IIuKfKEWGmCJRALqTUgAigYiPkVWS/K+mTcCrRGb5Fzhi/UOdxr6RBewX6acuJbk05EmJz3IxFbsRWWFrV6Wy3aLr6lxOAs5GAVNfhOpt1UzudV32Dr7Hzn9bZf3oS/yXR/Q/eUriReTZksQL6f/4Y5zjY8y1Njfe+z67lS6/sr7G+xtVrjyh9rqYGy6uWwAAIABJREFUCcr8cBoym0f85ExIaWVV5n/uOGw2LG6tV3ij4/KD3/jvaPz6nGb/ObXD/4Xxw2NGz4ZMjmccjUMuwpSLMKX/B0c0jGPcNYfun3+B3aljdRuYrSqdjW1kyylRN5Kqi9j0mlMmzy41k9zZIMolwmzJNMoKNRKEaVYOklUZXE3B0gSUVA/GwlcWexD5ZL2e8LcEnoir90IWXojfHxPPfOK5TzSL8K58Yi8mDTKyJEPRFGpVnf2Deqn+q+6vY/3qb5PWt5kpLn92MuPZs3MeXsz46vlQEOqjlCwTWVFO1cStm/yLdza42Xa43XLYcFWag69InzwmPntO74cPCIYCQWRUDRoHTez1JrUbGzjf/x3S5j5DbP7D0xGPi5bU+ShAV2V2WjZ7bYf/8v46O1WNatgn+v3/QUCEn/QYPBohFyITs1Gjdu8N9PvfIdl4k589LADC5+L0ZVUMDMul1rL5t9/d472NKvt1HeXpHxO9fER4eUnihWJ+tr6Ntn+XK73L877Px70ZX74c480i0ljIzW/uNfiVgybvb1TZWQ6RHj8gfPY51588JQtFbpfdbSBXW2RWnUivMvCnLAqhQcVUBem9bnG75dBJR8gXj4iOHjA/uSINY2RFxmhUMA7vI+/dJ2kf8PB4xtHI52wcsAgTmq6BpkhUdBVXBXk6JRtfl34pxdRRWxuCWFHpMI1WScerE6DBbtPioGFz0LBQh0cicPL6Akkp4MXNGsb9b7Pcvs/UaPF8FPH4clb6126tu7y1XeOdtSq1+SnZwx8y/fRTBp8/FxYJS8Vu21TevI9y8wPG1ho/+vSUj45GDK8WhH5MpWHRbVjc2aiytUrkPvqS6fPz1zY+Jub2Lsr2LeLaFkePR5yOhY8uTnO2mxY32jYHDRs3niBdvyA+e0YwnIqTrG1htqrIGwekzV0uFilPhz7nk4CpH7NRt7A1hbat0zAVlPE56elT0qtTgusxiqlj6Kag5+sWfpKziLMy309chjjFFdllyzgU4o88L+kdcmHAjrK8mKEVIhhFbEJ0RRS/cvO/MjT/DZ6wv25d/kVwU3/d9Y0rYL/QzXj9hhfk5TxNyuO4OutRaRpsuMIAHKU5/ZkIwnva91BkiTyH2tabqFYVt9FlmeXCrDrzS9OvdykMjrL5EUpnC62zyY2NN2mYFl1Ho21rTPyEI1WmN/QL6bmYTQXziEnF4ORqwdM1F1dXuN222dp5n8Y/6xWF6Rir1WNZhEQGRavAS3K48tAcDX8QYF2O0asWZqsnSNtawc4rDMmaY4oBtCEgpEpnC8ep4touTafFUjWFQ19WgSXkMVKWIPtTpHjB0l+Q9l6QzydkCyH59q/HpF5hgPZFVHwWZyReQhaLYrUCBgOoloKzZmNUDayGSfvtAyq7a6hbh6jbN5l17nK5SHkxWfD/Pr7m6eWC6dhncu2XJy5VU6g0LFpNm1vrLh/uNtirGWw4KsromOiLv8B/ecLivM+iNyVPBMGhst3A3epQOdgWacYbb9LzUo6nAT87HXM2ChgV7bmarbHdtLnVcdguipd0+oDB588ZPblkcjwl8RI0R/taNMhKHND3hMAgy4Rgw62buHWLe1tV3lmvsFfTcb1LkpePCM4vCIdT8izH3eogVxosnYbI2ZoLv2KyihnRFUxb49Z6hVsth52aIaJbXj5k9vyMcCh26rImjMOifeiWc444y0tUUsfRBUXEUFBmfZK+aD+uWH+KY4rTV2eL1G0LNFgxZx0Vak8As/ARSrH/yq8EZWCk5IjwzVw1iUNBWhfSe9GCbtk6a65B1ZCRBlPy+UR8njQVzSkW/cY6idNivMi48qKyHa7IEk1XPEfTVpGH18TDS4JrYXyXFAnd0TEbtnh9Vt/H5BX4N8+XaIbKRpHxp4XCM5WOBkTjOctsieboopXa6JBbNWaxUFKuToHiPaPTMDUhpvEvxexpMipboaqpo7gVcqvGIoVZlNFfRIwWkYhPkSUMRbQhLVUWbeX5hHgyI/FCJEUWgilZYanoJLF4TVenaqVQFauyCM8kS1kmr+C/kqqVRvSlqpPEyyI/bFkG2a4M0IrE11qWv+z1dxXif6MK2C91M15LIV1KEuRZmWklXZ2iKjqd7m1uNOzSxzH1E85GYoaQZEvadp1u6yam3aCSJlhXJ2WwXjickgUxQTwGnmINrlCvTjCXS1qVLvXaBjVDYRqm2LqCIktM+h5RkJKGHuEswBtbzN0Ki2nIH9ga17sN3lxzeffOr+F0t9G6n+FuPQOgdu0RjkOiWSG2UCRBKciWpEGKOg7xrubIrzkQ8wL3IytSOVNQTB2rU0evOsLo2u0imzaSYYk3eJE2m8chybhPMl+QzHzmp1fEM59oFhIXasksFgm6K87i6uuSX5PmG1UD1VTRXY3KljgpOhst3Hd+BWXjBll1g4VR55Oex9ORx+PLOR+vSPV+QhImop1lqVgVg4PtGm9u13ij4/Jmx6KaTFHPT4hfPmT4sy/wL0fF/CNBtRRx+rq9g33jAG3/Dnn3kKOpaBk+GXg8OJuVYYqtumD67bfEbrqWTJF7T4iefFIWL38QICsyuqNht23crQ7K+j6x22EyjbkuNkKSJKFballs396qcaNuUPEv4ewhsydHhMNp6Q+SdFO026wao4WQmq+KhaopaIZCq2lzt+ty2LBYt2SSl4+YvzhlfnolIlMc/VXxcOvkZgUvyomyvCRu2LpC19Fp28L8nL8UC244nInipa+KR43cbRHpVSZzoWDsz0ImfkLd1krTrqMrSMkCwlfkellTkU1TECt0m7AwxAPl19C0hPKwostUVMjG1+T+rGAnCvWiUm+SOS3mKUzClGFRvErRREXQP2qGUjJAo8miRIMZVfFelxvr+KpDf3VqilKWS+Efq1UMNupFeKZ3RTrsEQxnxHMfSZFKDJbS2iBxWsz9jLEfl2uGIkvUbU344DRFzPGmRQJ2kaOmWGJ+trREmOnAF8nR8zAtXxfhIVvJ7ydkq+dIipmirCApCmmBjwpT0Y6NCv+ZUpA7FAmkLPs6uV7VShRYJqnl/CtfLgsBByXM4GuJ0f+ImWDfmAL2t8kC+2v//SqFVJILeOWrYMa0f46k6SiaxWFzg0WcFh8Mj9FC7KyCOKVhaezXLbpOne7N9zFa6yitE4z+Ocv8JfFMEKrnJ1cE12P06oB6mqCu7aJt7NGpbfHuRlX0xk2Vk6tFIe6wCMZXxPMx0dwiWjT4malyPYu4XjSo319jc/MdDLdNbfMGe4pc/B8T5r05aZCyXKFlZMEtzOKs/PMszkuPWRZn5CtgpyaXlAejaqA5Gs5aBc02C+OrAUAWJ+RJKjwwXkQ0i5hfLIg9kRuWhIJgv7qsImpFM1WMqo6siWKpOYLsrlcFEaJ+5wZKax21s0W29x4z1aHvp1xc+fzhk76Ycw08Rr0FUSCUkpppYTqC5NFoOXz/jY4gt9cM6tOX5OdPCI4fMXt+xujhGcE4JE+y4qRnYa83ce+9hbp/l7S5zxibn52OeHS14OnlnPHIL/1I3aqYLe3XBQxWGYjW2uTJSYEDE0irakOnsulS3W1TPdwmrW0yCDIu5zFTPxaEdl3BsjTe3q1zb73C22sVKvMzlicPRJ7b83MST5wU5FYVyXSQ3Bq5VWPcD8pFUlZkNEOm4hrcWne5U/Ai1eER0xdHzF70WPSmxbxHsP6Muktu1YjQ8JOkJK0bhdepbYvCYSQLsmFPmHUL2bxSCEmUeofc7TAJxfe1SjsO4qwQ8KjCQK0KAceqnQyI079pg2GX3rGkwB2t5OYtW5inK7qIPMkXE7LFosjrEv6x0sO2EKbjoR+Xpy9LF57OhqVR1eWiCIv4mGW2FObntouz0SJzO4wL8/O0sFyA2BhsNy126hZdR4eBmNuunkcp5PerYu4vNUZhyHARsQhfa4cWUTYVQyYb9simwn+2zAVXVLNN5EqDUDaZRzFDX6CnVv4zq4ixMRUZOVqUj0+8oPycIytIulnOv/xEQAZWBXCVHq3JUgH/XT1ORi7ah+hmkRr9av5lqHJhnAaFHKl47FJR/16K1z/R6P+a6z92U8q/k2RQTTEL0x1kty5aiNMhwekZ2WSENr7mje/+V1T0Oi1b54Gr80dfXXM5DugNfY6uPTbqQjX26/tNNjtrdPd+BW1xRav1JyQXL5ifXDN88LIcGl9+9AyrYWF16lR21zj4wX/BfveQb2+ts+EafHw25fOTCU+/VPEnQxJvhj+84PjLgP5ZhydPBjy5nHN3s8rNlsNh5zvc+ne/jusNRSjexTPygnaQjkTbJ/FCUk9AguOZ4C3GXkwapnh+wiDOyvyubLnE6i3QZQlTlmgYSpETpqBZr942WZwRF+3A8LW4lZXayZRFzIqlSNS2KsU8yKRxcw2zVcPu1lHrTfSD+0jVFrndYOGsM40yZlHOj59MOB0POR54nA59Buez8sQFoOoqZsNi50aTW+sub27VuNVy+HDDQh0ckT9+zNW//0NmLy+ZXyzwBz6xlxRpvRbd9/aFqfjgPtl7/4oX84QnlwGP+pf8nz87ZzEJiYIEWZYwHY163eLXb7V5Z73KTlXDXVzg/cUfMPzyBePnV+K5HQ2na7P7vQOa928IaffemzyNTB4P5jwbCqRQzdbYa9tsN21++06X3aqONTlm8fv/E8MHL5i+GDC/WKBaKk7Xwd3S0baF1HyUKJzPQ65nIVm+ZKPrslE3ubMhxCR3zAD56COir37C2R9/gXftkQQp1e0q1d1XCKu5s8n5LOHZyGdQtEddU4hvNlyNlhSgDo+YfU02XxVRODcO0W6+w2mq83To81V/wfHAZxEJufdG3WK3ZrFfN+nYKtKLc9LrM/LFRNgsVuT6yhqebDH1UwaFItDWRFLyft2kawvBjTo+wb8+JxovWGY51noTbfMG6s5tToOcF5OQlxOhHBTJ0aLtd6tls+lqqONT5hcXBMMZSZCiWiqNm0I67771AQOlztO+z1dXc/GaSxKWq+PWra9hwaIvf8TwwRGL8wGxF1PZalA/3MK99xaL2i4vxoKqcnTtEcRZSTE5aNhsVjQc/5q4iOfxryeopo5Rr6C211E2b3DpidfjcX/B5UScVi1dzL7WK7oQogwuCXpnRQL1QpxETR25UkeqtpivvHRB8rU8uJohDNiGvESKFuSrdq5uItdaKI0uqdMq+aV+kokw2CJ009FkAf7NM9GxUv5xS8g3toD9IllgsgSSorPUbTACAaY1HfJYxJzL+iXG5IJu64CgbuInGZ+5OheFj2owEtSD61mEa6hMI5ugbtK1OzRu3AdVo6ooor3mxaRhImgagwDjyiPoTzDqLvp+n8ruXT7Y3KdWSNDni4jpQGcxaZD4M7I0JvYXeLLEk5MJo0VMrxvQm1cI0ypNs0ql1qBe20SOPdTIw5j3hdPem7H0ZjjnJ0QT0d5UTZVgHGKPQ/Tzeem3eh36qcuv2n1/+VplfUmyhJ3k6HLBYiseYzYMdEfkgNUPmhh1F7vTwL11iNLoIjc64DZJW/sEaMyjnKMrX5hpvZgfPR9yOQ3xpqJVGBR5ToqqYFX0coH5wb0ut9sOh02xWGnHHxEfPcB79oyrT17gXYkw0jRMMao6Zl0YoJt39wURY+sOJ7OERwOPLy/nfHk2ZTr0CT3x/7l1C7vAEB00bNqWghPPkIaneD3RkkqDDKOqC7jumkPn3VsYt94SEvz6Hk9fTjiZBsLfVKC6tps2B02brYqGNT1l+eJzBp8/Z/xswLw3J4vzctOgV5xXRX4u6OarbKqWq3PQdTlo2uzWDJTJ43Lu5Q8CkoL9aLcd3K0O2tY+UnePUZByMQ9L1aCuCqWou8JXLabkM0G8yAvivF510Jt1lNYGudNiFuVce6/aoookla27tq1R0RXMZUReeI2yMBKzVl2EX2aGQ5AIXNKK9acVuWP2atGcz8jmYxH9U5waZKeKXGuRGxUhWY8Ewsx/7fS1MnHbqiTUi8X3oegKsiJhdxuY6+uo67sFwT/merbyDcropsZmw2KnZtK2VOTZBcHlgGgsWpAARsPF6jZQOltMwkzMJWchi2J+5soqbjH7quoyyngszNOFFUGv2iIItCIg2PMoYxyI1nCS5cKPVxioLVVGzULk2COZ+YWCUaC8NMcULUjNFllwcVa2hS1d+MccXXmVP5ZGr4IzZUXQ8zVLnIaTnLhAV8Er9JSuSEhRIkRvsvr1g8A/wvWNLWB/22uJ8DhIgKRZ5MUpTHaqSIpMGsaEwyn64ATNcOjaHaKG2DUHccYwzfGKfnkSpXx8PGZaeGAOmzaV9gGKrCKpGu7WOXmcksV5iUMKxyHhOESrPKQ+nOFMh+x82KK6UaPrGAwXQiJ9NfBYTCxmI+EVWuZLFpOQLM2ZBQm9SUiYZnQcMSjeq1tYah3LaVJv7qNmIVIcIIcz3O1z7OmQbHyN3XlOMJoSjRdUTkbEC9H+S8P0VWSKLKFaKrIiIWtK+eEHMT9bzbVej1iRFQnVVLG71aI1WKFysI3S6ArJ9fohS6tOatWYJzmXs5RhIDKwHlzO6c9CepOQ3vWCOEiJwoQ0zgT2ypDQDZXmRoWdls1B1+X7N5psVXRaWoY6ek746Z8weXLC7OUl46MJ8UKkX0uKhNN1qO1URSTKnQ9g8w18Z50vXkx4cDnnwdmU3sAri5eiCpHFfsfh/laNnapBS01Q+qckvZdEkzlpmKDoMtXtKs5ahcrOGubbH8LmGyycdc5nMc9HAug6XMRivuMabNVMDps2TjCA3lPCp18wfjZgciw8aasWrlF3BCHCaYmk40j4tUCw+babdnna6Toa6VePCc5OxampEMjojk5ldw17d7uIbtmmNxSRKRdTkbygqzqaLEQXhpQhh3PSgrK+zETas9WqCuVgUwgnri6iglv4Cl1Vt7VihlakP88vSadDssWcNIwxbFsUILtCIOkEScI0TMqsK00pwiJV0S6TY4+08H4ts1ywF50KslsnM6ssFhmL6BVv0NIV6rZGxzWEZD0Q0S95LKT/ii6jaDruVrsk+A+8VzE2iirM+M3Cj7fu6jiZhzQ6x++PiSYeeZIhawpWs4bS2YL6OqMgpbeIOBv5pHGGrMrl1+JqCkowZTntl+SOFV5McyzkSp2lWWU0FOipeSiEOYom5oGrEFEpnJPNxwW5oxA/OVaRhN0gNxyiZFkIOPLXZmcyhirUwpIfIKUhJMWsXNXEpr3ID4sjAQ5eFdBV21EquIs/L5X5545q/oGub2QB+0VOX1m+JEfgUVLVwajbLDUTVdOxhj3CK9F+ix/9DHU+obF7B7d9wL+62+VRx+Fhb8ZPnwwIvQR/EfPV8yFHvTmfNYSXZ36ny071gM33btOxHOpHD5g9O4Y//grvyiOaxSLMcvwUq3GKu/ElO8+e4R7c4K2D+9z6/odceSkX84iXk4C/eD6kNwmZejHeLCRNcuajgPko4PhihqIK6kXN0XFNVRiI6xZ1W6NmqLhGlcPGOs6a2Nm2fnNJLZwL6fv0ssgGCwq2WtFbL5RNIGZpKMprv1eKYCKl3MVJehGpoZtkToul7rA0XPpBVkp7X4wCxkHEJDgXRvHrBVM/KQ3UaSLYist8iazKmLaO1lDKVtle2+Gf7TZYd3U6torb+4zkkyfEp8/pPz+n9+Mj/IFPNBMhnbqrYTVM3I0KOz94B+vwNtrBm/Sb9zifxzy6GPF7n15wOfQJCgO06ejYrk6jbvE7721yq+WwXzfY9I/Jnz4hPH2Cf3pJGsaYrQruVovOe7eFYnL3DhfVW5xMIx6fDHhyveCjFyOhaFNkvnenwxtdl/sdl92qRv5n/zvTz79g8PlzBo+HJKEwYLfvNGnd3aL97hsYb37Ildbm5TDkaOwz9WN0VaZTNfmV7Tr7dYN1I0e7+pLBRz9l8uSURW8mNhJti+pum/Zv/lZJFDmexvz7p5ccDzwWYSqyy+piZrTm6CiTc/L+KdnwkjxJREaWY2Ec3kPZu0fSPqAXwOOBx9G1MOI3XZ2NusnNboW311w2bBl18Iz87DHByUuBW9JUlOor2kTfT+ktRCGdRqJ1ZxTtrpoGymhAPhIikjxOSy+c0tkir60RGjV6vQmjICGIUxRZYrtpcdBxOWxagmTS75FenZbGa70qZlbWu/+M5dZdJmaHR8eD8n3ouAbrdZM3t2u8u1FlR54jvfiM4PMfMXl2WZLr7bZD5c37qLe/hde4wUcPrvnZyzHPrhakSUbV0tiom+w3bLpGhnL+nOjoAYvzAdEsLE+B6touUmcf36hzOh1wPBBz9lWC9V7bYbtq0FBi1MEF0cVL4cXLcjTbxN1ZR9s+ZNnaIbQ7nBxPGRbF2F5lylUM2paKGY5R5ldk/QvyOBSfW8Ni6bbIKx2mCVx7YhOeLZfUFMFttFUJ2fcE8KEwOheLwM9dd/+6P/v7LGrfuAL2yyUxi5lNkkOOhGU3kPIUpdHFiEKWwxnRZI6knyPpJqqis1MTuV+KJHE2CuhrYcnai4KEfiFZfdy2SbKcNDe5sX0fw3So2xUh5nAE3y8oVIP+ICANU3T3MZX+mPrgCkfV2Wlssb6+xk7NwNVVevOI80nAg7MpsyAhiQRAN4myMibEm4XIsoSqKTy2NBxDpWYLIsaLrkvL1qmaKjfqFrbmYhkVajvbAg6axUhpjJxGX2NFlvdrpdyEUvyylCSWskqu2yUBIC78Y5G/ZDryOJmGLOKUsZ9wdL0oB9RBlBbBkkuyTBQuEEZp3VUxLA3X0uhUDb6132SjYrBbM3mjZaL7Q5SrHsHP/oj5ywsW533mZ+Ny5iMpEm7bwVmzcTdqVPc3cN//LtLGLZLWPk97nlAaXguuYVLQIzRDpdK0Sg/e+xtVMRNSE/LHD0l7LwmvBsRzD80xSzm3fvs9WD8kbu7x1cmMRwNB2jge+PjzCEWVMV2Dtisk6g1TQfP6RL1T/N6QcBwiyVKJB2scrtG8s4d+823yzg2uPYEnupxHRWtILU47Gk1TRZmekl2flQKDPFtity0q201qN7eQd+4SVre4mApu4tPLOf15RJ4v6VYNLE0p+IsScuCRejOhyFUUQQGpu8Ls67RYZDLzWLTtVqDaVWjlRsWgaSooswuWwzPS/jlxAf5VClag5FTJzBqeLyTn8zjFizMqhipaiLqClIRIaVjS8wHkQgGpVBqkukuQ5gSvmZ+NIr6lUYgm5HAOwVx8H7Kwiyimgd2pIzU3hXhjkTH04lLx13R1tps2OzVB71Bmp8QXL/EuRyRFbpiiKUJE0tkiLwQgJ6OA3iQkDhIkWSqM2AYtW0MOCg/cZFSISHIkXdxTudYS5udEJMK/rqKs2xotR8fVZaRgKliW/qy8l2oh35eba6R2g3lhoPZiIZ+vuAImUDNUbGWJFIpRwtKfC/ivrggAsG6RqyaBn5bwX60YHWjKK+q9mH/9YmGWX1tvi5//KQ/s73DJr1GV82UBrMyXZPkSNAXLEVBQkhgjy8WMYzYVRUzTWb+7jyKZaLJMb7fOcRG7Pp4EQkGYZIy8mMeXc5Kit1/fblHfdFDtGt3ZCLN1xvz0ikVvyujpuCTOj56OCcchwfWETVlG29rH3Dpkq7GJub3BKEy5nDvUbY1eETg4WsSMRz5pIliGUfhKHqtqCjNFpq+L09nxwP8r5Axbk+m6hqBmKDKGqmGoeim7laVX9Hko4hQQ9zBLxQYgX8J06JWE/SARUuBpkDDxY3FyLMgjothn5H+paEmyhGYoJZpqu+MUJwOL9YrBextVGqZC01TQLz4n6x0T9l5w/ZMHeJdj/EFAMA5EPpSlojka7TfaVHa7VPc30HcOWR5+m7lW5XIa89nlnKNCfLAqXoalohkq7+7VudmtcNi0OGgYOOEIdXhGcPpUzEEmRTusXhEU9PVtljv3Cewu59OYj86mfHk2pTf08RcRy1yAcYVIwqDjaNR1UMZ9/P6EaLIgCVLMmrAUuBsu7bcPMd54F7bewLO7PL+acDYTnEB4hTaqGQpGskCe94mLYpFnSxRdxtmoC5L+4S3S9gHnxazvq6s5vaHwz8mKaHW5RavK1VaRJ/PSc6VXBTGe6kr1l3JVyLzTYhbXqZpsVk12ayZWPEOeXpFcnhD3r0m8oGgxr2gVNVLdZdBfMItS5pFYuCuGWprkpTQSs5pYkNZX5mfJFGbb3HCIwiVJnpfzQEWWaLvCAlAzFKRQpCUvY+GVUnUR3aK2BXVjmhTy+0X0tUK8VRfFq2mqZC9PiHpn+JdDkkDM0Fbkeqm5SWDUGI7E6zIv3tuWa5TFp23ryH6PdHwtuIfF/6MWwgu53iaxanieQLr5RQFb0VDato6rycjjqaB3LBYiOFNXRf5Yo0tuNYg0l9k8YRGnZTE2VVG8aqaKHEyRw+I55mOWaSI6JqpWzM4E/HcRpUTZqwKlSJJgxq7k879k8Xr9er2Q/ScP813yHz99vX6DXv93MpAhipifiPiHeSw8Exs7b6NW28iNI7IvPyLxQhLvGH3Ux0hiNtd2Waussf7uBkNfQDd/djalPwsLxqBgHJ6NAuq2xvksYqtqsFvb4+7v/Pe0p+d0hqekJ0+4/vMf450L1dnsTGSBDR6NuP7iCrNh4q452OtNOh++R2vzBre7e3zrW7cZhSnjQFCzP+vNyoLWG3jFySwnCsUpLV+I73zS90RsiiTxI1VGWc25NPHzSoCh6gpyAf1cLQyrH6srK2j6cSqGvlEgZlUrOHAcJEXUCmTZStIvoSiCMK4oMpqh4lQNbEujZmvc2ayyXhhY73UcaoZCzVDQwyny6Y9Jr05Ir885/tlj/GvhufKuvXIGp5oqGx+s46w3BcHjV38TqbNP2thmEEv88GzGyaTH8cDjwfmMOBR+n2rVLNs1+02b7+3V6Toapt9n+ZP/m/jiBePLEfOTK5ZZjmqKBaz+3jtoe3fJ2jcuiaTFAAAgAElEQVR4ENh8dS7yx/740wvBOIxSJFmiueay3XV5f7/Bu+sum0aKevmY5NlnBNdjlnmO3bZp31vH3eoIXNb3/g0zo8XFIuWrZ2P+8OGVyMjKl9zZrLJTF5SKNh7a4AXRs8/xj49Z5jlG1aSy1WTt1z5Av/0u+cZd/uxswaeXM356NOLsesFiEoosuLrJG+sV7rRdtqs61WRKevaMdHBZKg/1Thdt+yZJ+4DzecKLiWhlLsJESO9NlQ+2ahw2bXaqGtKDPyU8esD85QXB9RgAs1UTi353n6SxQ68Ie7yYhiwKZeluw6KiK0VciVhs88BjmWVC8FCtCYtFpcs8k5kVpHYxe9OxdIU32i47VYN1R0V6ekJyfU42m5TzWHVtF233NtdKjZNpxFfXi5KYUbM13tmpc6/jcrNp0oj6+F9+xOjBC6bHQxRdETlsh1vU37pL1LnNy0nMx70ZR715uVlZb1jc365xr+OyU9XIPv4C/+UR3nkfEOQOd6uNfvAmaXOf61DieBLQn4XlHO/2eoU3ui532g7a8CX5+VPS3kuC4axUL9q727BzD9/d5LzAnb0Y+ARxKszgrs5eEUSq9F6QnD4h658Tz7wSXSU7VSKzxthLufZiBkX2mWyKz7oQb4jsMClPRddFfJiFh/aXWrX/6nr8i17fmAL2866/rrKvuFzyX/rLfAlpDlGek+QSfsXBrq6j5in6+XPisaBKRJMFyvlzwabrTNjYeZtaw6FZyMsvFyaXM2HoPBsFJSAXxpxXTS6bEYrcoGWt07qxIRiHaSKQU82eAAIPfeJFwry3EAv0lYd5KtoGld0zrK3nOO+mmJU1Ok2Rn2VrCtctRwghXL3kGM4XUVlU8lScDvN8yXK5JCrC/uDrmyrxvhTZX6s4i1VGmKJ+/catWn95mgtyQfH7LM3J01cRLaquI6syiiLhVE00Q8GwNGxL49a6K3aars6tplOCW9eNHMW7Rh71yfoXLL78CP9yhNcbMn42IJpFpeBENUXMiN226b57C2dvC3XrkPzg20wwuZ6mHE8C/uJoyNkoYDCPCL1YwH4Ntcwju9GwxSJsJCiDF+TnT5l9+gnepZAsp2Es2lCWjtFwUbcOyZo7LPQ6j0/HfFUIQVbFC8QpuFEwDvfqFh1bRR6fkxd+IADVNtEqMs27e1i7Qh3Z11qcTMQC++hqwcnQF7EemiJi7c0iJsXvkw565IsJiReK3LGKjtVtCGN25wZTtcLTUb88FQZzIVJRNZmao7PuGjTt/5+8N/mRJE3PO3+2r74v4bFmZEZmZWWtXdXNndSwpQFmA3QiAQ7mMhfeCAgURhJ4E6WDxP9BwJwGGB50GGAOwowWaptuspfqpaqyKrfIjD3cwzfzxXazOXyfW2S12FQ32VRxOAYkMisrI8LDw93e733f5/k9Og0D1PmYdDmriPGbkZ3a7BIkBYtEyLQDKRARUnFLjA4dDTOckl4csz4fEg6nJIs1Zs0V5mm3RuG2CJKCeSxGdxtihWNqgjZhaJiqSBou4pBSpiBorithuTUKyyeKxHSjkLljvq1TM3W6rkHdUtHjgGIxo4xW5GkmvFZ+E7UhEFpBItiN8/jWcOxKyXrXNWiYKtpE5H0lwZpCZo85nTruQOzxJnHO5SLiYh4J83MBmq6w3bTZ8oQS09cK8qmAG6Qrga/a7OFo9MmsOstAUOM34pyNknPbt2hYKsp0JD7HbCFxYJYY6TZe97CJLLfNYWATyeMaKr4hfHDCQC1EJLptCoK9aVehmXPJRN0cVLUN+HfTff0Vur7UAnZ4eMirV6++8Hf/4B/8A/7pP/2nP5PP/2e1pZsitoFSqgqUlKS5yM0hBUdXwanh1bcFAqrIKdJMkDUurzGXC7T5GFNVqTUGuH4Xtny2axbnXsylb7FOcuZy1/NiJMaMZ5M1aV6y37C523LpOjv0v/J16oPnONtPSNcR5tmM5fWK4GxBGmUkq4RwGqFqKqurCf7uiJ6qom8dYG8d0PN76P0OB7Ggzvc9k3mcMQsFNWQRZVUhnS1iGTiZE63SKj5F/P7F/K9N5pfolpQvFLXNVeQi6fULxVHmgm0+XtNVbM/AsHQsW6fb9Wj7pgS12jzs+XQlqWDHN3C1EnU9RT3+XJhoR+dE1zeMPzkmvBH5aKvhqlJAen1PdKrbDdG9fO3n0ffukzf3eREanMyXPJ+EHN8s+eh4SrS6xTgZjqC/v7/f5KglZOgD30B7/m3SkyeEJy/F152Glfl5c/q1B4NqcX61SPh8JI3PMwETVuQe0qtbvLlT461BjTd7PuZqhDK7JLu5JJ0HqKaObdcx6x7eo3fRDx6Sde7xdBzy6WjJD8/mvBiuWM0jNF3FNDRarlkRJrTxjCQYky6WFGkmjco1/N0eSu+Q2N/iei5G2ifjdaWcNS0d2zPZazsy5FFHW1zBVDyuPEwoigLFrYk9jdNiIbO2plIpt0FPdTyTtiML4GxEMhoSTkRuVxYlOP2mEF80hBVgsUgr1d/ytUJo6SqOIVRzShZTZmlluBX8zjparcW6UIizvGL12bqGoSnUJSzXlzaAXJL8y7xArQnpvtbokDlNFishWZ/JjsORuWN9+byqqzHFbFgpTcVO0cLuNDB7fbT+HlMpnR8FIoNNUZHoKTH2btoa2vKaZHYLQdalEdzu3aZHj9cp0yitRqE16cfbjELz8RVFIHiieZKK/Vu9idrqsSgNgjjlaiGy3BaS7GPq6mvw4Cn5+Ir4Zkw8FfQOek0U3QRTJD8vE7H72vjXAHFwLbLqV0Ut+itwfekd2D/6R/+I3/7t367+2/f9n8nn/UmeXoXNbkf+QiEvBbwyLQpmkQxrdJrUdu6KhWeWEiZTovFcdGL2DD9L0DuiyO3Ibqxpi1PgdJ1wNlmTFyU3kzXromQqaebbTZsHgxqHTYdf3DukWetjdXcZBHPszjn2yZAsykSIZZSRrNNKXh1NxSnb373C3jlH6+3SPnibptti2/fpuDqhlNJe9nzWaV69OM+mAg46W6dcTcMq6DJcxmSJVu2kik2M+GsJzdprI8dNYnNZqJRFSa4XqD/SnYkgQQ3dUPGbDi1PFK239xq0HYOOPOnu1sSM3yJFnzxHWU1FZPzTH7IezYjGc6JxwPTFhFSSPoAKP9W618Lb7VI72MI+uIvy5i8R+ltcrzK+cTrlyVCQ6ofTkLnsYjRdxe1YDKRi9N1+jd26Sc/M0UdPiD/+BvPn5yxOrpm+mJKnOaqm4PV9rKaPv9tD39ona+wyXKScziNe3awYyZP45nt3fZNu2+Ure2Iste3r6MML0utT8pkwB5s1D8Ozsbe6aHffJe0cchWrfP/qhu++mvJytGIdRGSJeNzC2GrQ2dzcZKZTtooo8xyrWROE9q0DstYe16uMl9OwEpOkEpPk1Ex2pRWh7+l42QJtMSS5PrnFHNlm1X1lToP5UtxsgyiT0nu1wiQ1LA11OaScXBAOZ8RT0bECmDUPs9VC62wzlt3Xhhq/QR2ZuqBNWJpILajEG0UuhCRerfJLhVlJmJVV0rCqQc3UadsGvqGiyX1PuhZ7vLIobsn3Vo3CrjG5WTGPBDF+0301XZOWI/LL1GBKPhXE+c1O0W6L7kvfOiD3ewznScW23LzmXddkp26LA4YB6ngsDNQrUeTstovTb6H3dkmdFvMg5XqVMF3fFrCGa7LlWTQsDSOcVhSRJBBF0JSHAbXZZy67wOtVzFCOIF15GKiZYqepLuakgZgibIgqiqYKAYcuOrBlLO4Tm/gXEAIOpcjEsvt1bNSX5P16/frSC1itVmMwGHxpX19TxKhMBWxdISs04UCPCz67WeGbGluexbs772P6XazeLurJE+Jvf8R6OCVdrLn5wfMKa9P74AHezl2aB29w2Nyj+/aA55M1T8Yr/s+PLlhMQsJlzPXJnE80lX/niP3Pr7434NGgzsPuIV/9zf+FnckJxdnntP/o31RCj2gaEU4jiX/KyZMX2K0LrPrnWE2f+t1vYjVrKG6Nnc62UHrZLu/7bUGYN11KwyfSt1ilBWFWchrEIq4hSnkxFtLsjZdms9DemEItifdxTA1T16r/l8tCt/l9syezdJWWa1bRKodNB0+ejDt6ihLOUcMrlNWc9LMnAkwazBmfCJ5iuhbcxizKKvxVkZdVfHx9r4HTb+INOtS+9stog0Oyxg4LzeebZwueP73ks4uAjz4fsV4kJGFGnhcYlobtmfgNm//2gx0e9nwedl3uq1PU8+ckLz5m/PQFZ//2E+nXEygnq27h9T36X3uI++BNDLm7+PQm4rObFc8kqb4sSmzXZH+3wZ2uWwlBfmW/jrW4RDl9xfqjfycRXEJYULsnAh3V3Qec+fd4cRnxw+GCf/6NEwl3FqPeZs9jq+vx3kGTD7dr7Pka+s0z4hefEF7dyPGhQf2NexgHb8D2A54uCj6+XvJ96SdM4xzD0vEdnb/xzqBKpd5aHJO//Jj1yRMWJ+JmadZd9E4d4+AN0vYhU8Xn6XjGy+m6ulFuqPUPOx5+OEQ5f0zy7Acsz0cki7XAJNVc6m/cE7u4wUNezWOhghytmK1TecM22G067DUseq6OHlySjy+FAb/IRdhibxels0deF56rq2XMNMzQFAVfjv62axb1bIE2OyU7e0Z8M64I/Fqrj9rdJasPGMelUHQGIsJoYyw/6ngMPAMzOKe8Pia9OJbmZxWrXqP3wQOshx9Q3nmPidnjh8NrHl8EXM8jbNekWbN4e6/Bz+3WOfAUjMuPST79FouTa9LFGs3QRfjmw7fRjj7g6Tzh0+GSx0ORdgBCRHLUE7aNdjZFPf+U6edPCYfTaoRt9HfEz6V7j8fnaz65XvD4ImAUxNX7tO9bbHk6ZnBOcfYZsycnhONAdOmu7EZlhMxkLTxsw2V8O06VRBQlWQlBTZFTqvoXGbL/5W/b1fWlF7A/+IM/4B//43/M/v4+v/mbv8nf+3t/D9M0f+y/j+OYOL4lXQdB8J/8m5+4uS0LFEBTVEpVkawvYdhTFSojX1HCoGaw1dhFLwr0LMFqPhOijsWa1fUaWKOZ4rH4wxnefIxx+CYHD38dQ3VRVYXvd1yOE0HvWE5XxFlCuNAIly7fNDXOJiHDgyYtp8+gdYTvtmhHa2oHAkW1uhoTnIzJQpHLtWEbbiS5AJo9lpDTM0GbN3X0ekOMXiwBTq0NDvBMj8KusbW9xTIpWKUFDzqeUC/JE9hmNKMqYjyjS46aa2giU2gD9kSYwTeXpoixgy3pARvzZEPLUKMAdTmnvHouOob5mCyYizf3KiJdRcQzIYEv0pw8kd+XqaFoYsdlemL80nxjH2swEGrR+z/HyukIZuI05Buvpjy9WnB5s2J+syaNxWhT01Vc36LWdri75fPedp37bYcd30B5/Anxi48Jnp4QvLxkeS1gv0Ve4ncdvL5H/aAritfdt8haB8wUl5N5wLWkhguGnxASfHjY4rDlcq/tsO2b2OMXlFfPSSRaLItiKZZxRAc/uEPW2OF8mvDZzYpPzuYs5wJlVWSCDFFvOtzre9zvevRcvZKpxxOx+xKxHBtZtYgoubpKGK4SRoGQoeuGEM70Wg7vbtd5s+ux7RsUzz8nPXlC8PKK9XAqFYMahmdT2A0Ku06wSJnIkdtGtl63deExNFXUlRBdpPOAspCGYykV13u7UO+TOi2G13NGcvf1euezUUBa2RolWlCsFrIDK8CU4F+7Rma4LOdhRVtXFSTDUUT7KFFAuZhSroLK7KtoKqrjURouhekSLYXS7vXssZbsvlytFCbuhXheN/J7q+mj93dRe/uktS3mQcowEMzDsihxHUOMY9uOsBHMz8mvT0lvrgXNJC8wXbtKbc79LpejmMtlzNVMxDX59obcYdCwVNT5uGIvJou15JqqopO0G8SqzXi9ZBhETJYiV9C3bXzboG7L7yUU3Vci6R3V8+HVUByfwvKYTxIhn3/t4LrJcRPy+YwyzymN1/ixf8b1o/fhnwjt91NeX2oB+zt/5+/w4Ycf0mq1+JM/+RN+7/d+j+PjY/7ZP/tnP/Zj/sk/+Sf8/u///o/9/z/1ZFYuJXVFlR2YQs3SWSYZRVmyTAROZbhKUVHot/bRixx3b5s8zciihDyZk0iGG1xVLXpjFWB3D9jrHKIoLu8fNAF4UZYEk5A8Ccnkr5tzlTgUoou+b/Gg47LfaLD79q/ibB9i7J1Qvz7F6RxXUS2bRFxFFS+kZLGGxfqLz4d8sWuGXoF4/d0uer2BWmvi3HmE7TZp2zUGWz3ivCTKCjJpKwBRwEQGkIKmIpbrm0C7H/MzUGVekBrOUdI1yiqkHJ1QzMck8zGr4xOSxUpIx1cR6xtBNnid7KFoCoZnVCgl3bXxd3tYLR+r3cR84yuorQF5bYsr6owmEcezkOPJmm+/mBDMQimkEG9I09IxHZ3+do0HA5+3duq81XMZOCr6+AXxk4+YPz8nOL4UMORI+Mgsz6Bxp0HtoE/zaBfj6L2qeG18WRuM0sZr16vbfLBT56DhMPB1vHhG/vQ7pBfHLM9vWF2Nq87E8OwqamWlebyYjnk2XFTS/g3WyHZNHgx8Hg1E0XGiCcr4lPTipRQYpKiGIXxBnW1yr8MKi+FqXe1FdEPDdAy6NYsHgxpv9/0KYxVLPp/wOonssQ1fr3AazGNBAJmub1O8HVOjYQm/lW+qcD2pRpmKKiTvZt3F2+6gDw5Ia31mEpg7Xopu35QKxq5v3u6egikEN5TRSozuVQ1FNyltn9L0WGdCbLCUuCTX0DA0FUcXuCV1sSJfBQKhlmTVe0BxRepzlJeEmdx3g6TFiwLacoxb75gsgJop4mfsTqMaHc7iohqBhonYd/bqVuUfq5UR6vyK+FrgxvJUQpflz5vGgMiocR7ccDZZVwnS/bqQ37dtA209hdk12ei8Qk9ptikOBvLnskhEPM8wiAW+qlJkCniBGs4pg7H4uUh6hyoPFqpbp7BqJIrJPF5LK0OGqWtVDI5QICYS/ptvbixiD/afSWL+cX/3s+rafuYF7B/+w3/4ZxYYgG9961t87Wtf43d/93erv3vvvfdotVr8xm/8Bn/wB39Ap9P5Uz/2937v9/i7f/fvVv8dBAH7+/vAn9NLUN6SlWuGjamKH5iu2lWy7HAR8+28pOsaHLYcBt4+O7/wP9A+eIr/8jF5lLC8FNL36YsZwdmCybMx3scn7C/WuA/e5PDuW/zWO2/zy/stPh0t+UPXZDquiTiQVcp6viRaJQQ3If/rMma7KxRxX7/fYbf5Pq3BhzQsjf6vnaLGC8rljOz6RIxXojX5es3qUiyJk2DN4nxKskxJVynrm5A8vRVmWHWzUuy1JJ/QataoHfSxHQ/H9oQySTdvY1M2u4gsJV2FIplZfj5Fmh0FdkqMFPKiIE8y+aaLSYI1q6spySohWcqYldc6LHNTqDyDxn4doybJ9Ee7Iq6+0UFtdGDriMJpkFl1jpcpsyjj8irmO2dnnE3WXM0iFsu4wmwBtLd9XN+i33K403X5797c4qBh0fcMvJNvkZ4+YXlyzNU3PmE9XpEsRfxM+35bsgO7dH7llzD23yBv7/OSFheTmPNgxsUi+gI89ufuttmVPqgHToI+fUr22WPiV0+5+I8/JJquJY/Rwhu0cPstnIND8r13GONxfBPy7VdTnl4tWQRRRSBpNh0eDHz+xw/2xFipWFB8+1+wPjlmfTUhCYSh2u7UsfcOKLYfEpgtLhYpL6frqvt6Y7fObtvlftfjza7HQ2OO8vQTkiff4/RffYfl9ary0LXe2Kd2dx/z3jvcaA1OAjH2u5yFrJO8wmEdNh22PJ16sSa7fEk2EaNMuyNEKf7+AGP/Acnu+5wvM15M1zy+ChjLRId7fZ97HZcHHY+DhoU1ekJx+YL0+oT4ZlxNEbRGh6K2xUJ1Ga3FwWEeC69TyxY365ql0jBViukV+fiKLBDhsJptotWbtx62UIg3NtT6hmty2HY5arls+yZa8IpsdC6A2EmGO+iI53b3gGL/PW4Un+NpxMfDBZczAVSuOwY/d7fNWz2fh10H7eX/Q/TpnzB5/JLV+Q1lXmJ1fOp3t1GPPiCoH/BsEvHHxxMB/pXQ6F7d5qDhcKdpo159LGJ6PnnO6noh3iOSfK/0DllaTc4nkUjklqNmTVMFWqwpPoc2e0xy8oTlqwuydVSlaPu7PbS9B6StfYbLlMtFXB3E+nWbvmcxqJm0LA01WFBG6yrtuVR1mQv4xesnvQf/rIrZz7yA/c7v/A6/9Vu/9Wf+m8PDwz/173/xF38RgGfPnv3YAmZZFpZl/Sd//5M8cX9a+qdSFtVyUknWWKZLYajkBTQsvVLkjJYxxca8W0B/6xBN1TB1g/bpFZp9iW7PmL4Q2VfJMkVRQ+bPzinzAjeO6P7CLnanjW9pDJcxjy8CTkYrlrOIxUSvPn+4SLgoymouf16PGchMo93aLm5DxewlaO1djGQlGG+LGXpdSP1FPlCGot6q9PIkJ5WgXjPMMDQF3Q7lzXSOVbcIRyLVVbdNVMMQz1lRkCcpmeS25VEiuXi3LzsB9L0NxlRUVagQ84J0FZOGgq0YSZhunuSkYVZxEzVTxZbRLU7LEfuBfhO9LTwySq1N4TQo7AbT0maZ5CxW4mZ6s064nIs38HSVkIRCVbnJxjItnf1BTabh+hy2HN7dcqmXEdrNMfGnf8L67JLl+Yg4iETEhm+gGRqthzuCur63j/bol0ibu0wShceXS84XEVeBGBtuOpF+3eaw6XDQsOl7Ovrp90lfPmb1/BnB8SXzVzOSVSLwQV23klHr/V1Cs858ISTQM7nI1w2xq9t0S28Nahy1LRrpHG34jOXzpxWNXLdNNNvCbNZFqKLXYbESdPfXZdl3uh4HLYcHHZfdmil3fp8wf3oio3DE41PrFnZH7EdoDqRIIGbyIzLvpmtIlZuGupiThSty2fHYzRpOv4ne20Ub3OEmyhmHKVcyZmSzZ+nXLPq+MHa3bI3y1QX56JxsckMuk5uRYYu5XWMdlgSREBts9rSGJlSLG+l9KQ9ceZKhmrp4TduuMD4XCnF2Cw7e7Gsblk7d1vAMFcKFGD8mQp24MXFr3W1iuyFGh6+JLkQRNBjUrIpCkl0cs74cE45mxEGE6ZviYNZuCnJHlHMexJxNQtbrRNgjLEFW2dgAhGpwIt/TOZqpVfv2QuaGTUOhBt0c2FQJd96Yn4vZDcVyRrYS5nfRFXtY7Sa522KZwSIpCKKUJBPPiWfqFTzYUktIRBCpopuUqiajp77c/Rf8JRSwbrdLt9v9c33sRx99BMD29vbP7PH86BP84yKslSKHMkUpchzLozQ1+r5JlItd0GwdMiziitDc8wx6jX1s3aT2zjlG3cVqXpOnOfE8Ed1FmrM4nwjxQZLRHHyf2uCI+619fv1uh/2mwzPJkXt6MqtEBkVZksQZQRDx/ZMZl3WLXt2m51sctR2Zj6TTre3j6CpGHqFEC6xWH318iTWVRsnmlHA0I09z9EAjDhIMWciKoqyKitijCWGIZmpopmSb5SVFXpInOXEQU6R5VYxev3RbF/EYpopui8KnaAql/NjXs8c2hW9TJEzfwPBMmnfFCdftt/DfehetM0Bp9Ei794gxCJKCZVhwMl8yDTMmYcqz4YLxMmG+TitrQFGIzC63blJ3DNq+yS8dddit2+zXRaxHc3GKMjknO3vG7PHzSowDSHiuuHl3P3gLffcIdfses9o+o0XOWRDy/cuAoQxtTLKCjm/S8S0GNYs7TZuBZ2CvromffMTq+Utmz89ZnE9Z36yr710o2QTtRe0KivnNWviAKqKEZwr6fd/nbtvlza5HIx6jXj0Vu7rjy+qwsslS0+pt9P4eI+nVmkTiMW6W+gctYXze9k1aSnQbdnkiwi4BVFvHbljYOzvo23fJan2GE5FPNQwEwso1NXzboO0Y+KaKVUSo0YIiWomxtqZid+ronQHa1n6VRH0exIxeK6obqfhe3aZlC/9YPjonvbkmHIudsqmJrCrFrREWCqs0Zx4LVt+mEzRkETI1BSUV5I5SehBVQ0d1XRSvTmk4VXDmBnTrmhq+JUaHrqHiaqUcPYpDm6KpWE0R/aK2t5jHOZNQTGfGMkx0E5mywYNpyxHx8ILV1ZgkEAdFp+tjN2tonQFrzWEcRlwuYharpPILKqpC0zZoSiXlJkR08/rUTDmCrIsg0vWyYBoKi0xZlGiaimfp9DyTjmNQt7Qv+L5USa23mv7tQScsKjvD5lDRsHXa8vlQowXFOqhGubcBwD8bFeJfRJD/pe3AvvGNb/DNb36Tr3/96zQaDb71rW/xu7/7u/ztv/23OTg4+At//v/cwlCB2/ltWUCRocYrKAvU9RTfdLjX7Ek5vEmY5gyDiLmUxc+jjO2axW69zpu/8j/hfnVKbX5O56N/y/rsktWVMD+ub1bMX41ZXs5Yj6Z4gw7u3jY/98F/xYf72yQPD7gJM75/teRqGXM+E93EMsqI0pyr8Zqr8VpI2XWVumNUkN69tkurmttbHLXepdZ/n7ql0f7KK7RwRjY8Y//FJ0TjgHA8J12sJcqmqIQftyNAKYuXhSeLsqpgbXLMXg++VLRbKb1u6yi5UnVUgvh9S61/vUvTbBO33xJJz00fvd3DvP+egIl6HW4Un3ks+HiffjpjvBI3ivEy4XwSkkjfWvEa2cN1TToNm45v0qvbvL9TZ7tm0fdM7ngl2vwSZXpJ9ulLxt/5LuFwSjQJCKehWNA7Ou1He/i7Pey9A4y9I7I3fo2rdc7VKuFff+dCBGnOImZBVJm7W57Jm9t1DpsOR22XQ2WG+vI56YtPuPhX32BxNiWUpnTdEVDd2m6Lrb/xc5j33qHYOmLp9nl8vuBkLsywHQnE7fgWv3KnxV7dYtvT0ccvif/onzN7csLy/IblZYCiKTgth/rhNs79R+iHb5N073F8I8Ry1Q0AACAASURBVODPFwsxOtyYxL+206h2Xpx/xvU3vsXs2RWr61XVCdcPOrQf3cH84G+S9O5zukj57uXNF0j6e22Xw7bLg45LX4vRxyfkF88F4khVcTp1rAfvou0ckbUOuCksPjqd8mK85lzaSjq+yZ2ux7tbNfbrBtb0FVw8Yf6DHxIOpxRphrfbQ3NdtO42ZXObkSTenMxFYKSmqhWpfeP9UhYzinAlpfeqlO4PMHbuMjdqzFYZo1XC8rX4mJZtsFMz2XJ1tOkp+fhSsAIB3bPRtw/R9x+QtQ85nSc8Ha94OV6LCCUZffRwUOOoZdNOxygvv8f4k2OCkxuiaYRmqtT2t/AfHGEcvcfjWcJHlwHffjlhKTO/bE/4ER90XLZ9HWP8kunzlyKkdhpieCbeoE39cBvj4A2uYoWXszWncwFL2Nwf7nRd3ur57NUNrNkp0elzVpdjCZ2ui0SCB29iHL3H8arkySTk6XjFMIjQVYW2L1ijA9+gWa7R5udk0xHoBpppU+ompWaAZlZJHj9uH/6XfX1pBcyyLP7wD/+Q3//93yeOY+7cucNv//Zv8/f//t//L/L1/9ROrMhEXEBZoOYJNacBtklZmvQ8kyQrKl7a8c2S6VrELxiqSsep0xm0sL9SoPVe4FyfsD69gs9eVWO0xcmIeLZkPZrSKXL0rQPcnbvs1vqYO31msctVO6Hjm1zOIiZLMV6I0pwiK0jjjHGcMdNUVF2t3jxN16DtW0zDlK5r0Pcsdmr71Nt30NqHuP09rPmY2nxMsQqEIipKRLSLjKco84IiTSnyouoYk4VQLKXhpoDlldACEDlgUl5uODq6bWDW3WpBrBk6mm0JtZOqihuBbaLaNnpvVzDg6h1Kt0navcciLZhHOZ/dLLlZJ1wtxJh1o6xK5a+iKCtQsW5ouI7Bvb5Hr24zqFv0PYt3+4KM4hUh2vH3yC6PSS9PWZ7ffCFYVHSNGnanRvvRoSDJ790nax3wbCYiUF7OQv7jkxtmgVAEghCEGJpRjY0EXUNDH16QnD8nPDslGi9IVzJ409Gp79XxJZdwA+eNvC2uJT1hEW9AslZFDz9s2sKXNnxC/upTxp+8YHV+w/pmTZ4UWHU5ltreQ9++S17fZlHoXC7XApArRRIN6blrOxp2PEedX5FcnRCNAzJJbbBbdhXO6B7eI2sfcL3OOJvHXM6iamfVr1u0XCG4aNs6ajikXExE3lcuui/NdSshyVpzmIcpo1XCZBlXuWMN15TxPxITFgxJrk4qcod4jemo7m1syiqUIzP5XGmqiG+pyB2bnCvZfVUfX2sJ75jMHYvyQkSFyOiYhi1oFZvoljRcVeNDwStsVUrM+TBgmeQspenYlRSSjmvSsFS02Zh0OpTUlk0XqFUj2dzrMJzGktYjVhOaJjilHd+k4xr4OqjRnGSxqkb2Qn1bQ2/3UFt9OT7MKhO2bQgT9nbToWnruGWMtp5U4o8yL7CaNaxuWzwOv8ckzET2nsRo6aZWpVjXTA11PqUMxpRxWInFUHVKTf+C8rgov5wi9qUVsA8//JBvfvObX9aXr65SUVE2noayQMlTyjRBIUTVr6l5HVTXY7duS9RUSZJF1Rt6GEQUZcnAtzhoOLy58x6638PeOkDvPCeLEsLRlHAcEE0j4iBmdb0gDxPc7Qu8wRP0wQG9R79Ep75F33VxDY3LRsxwFeOYWjUmW8UZSZgSyzdWEqaMNBVTxrZPlvEXcExdz8QzPLZ23sfYilDiFXqyxgynIi4lkbsCadAuwpVA9mQpZRIJZE0odl7JYiWL3GbUod7CRGue3MGYmM06im5UgFDFcsT+QjdExpppg+WQ+z0K0yMxfdZZweU04VqGWP7wQozoRkHMdBZWeKqiLIVhVResxnrdFtSEusX7e02RIlyzaDs6O3qENjuFyTnr7/57ofy7HBOOBWuyzEsUTaHeEkXF2xVdoLL9gLR9wDAs+fb5hM+uBVnj6lKk9Jal8HjphkZbdhBHLZeeq1Mr1qRnz0gvTwmHUzmSVdFMAedtvbFD4+425v49isFDVlaT4TLlPIirYgMwqFvV66lvpOg3L8lefkL47DHB8TXrm5BkleC0bOyWizfoiKTm1i4rs87NMmO4ihnJw1bHF116Zaqdj8jkmC5didO/6RvUDzo0Drfx7t/HfPA+l6nGeSA6uWEQVYKHft2m7wv0VNPWUEdjsvEl+XJWMSJVt0bpNivBxHAlxo8bj2G/bondl2fSNEEdXZNdnxBfX1YHp42CUa01Kd0GhV1jPovFDvS1ME9bF14lx1BRIpFzVcoIINXWBLmj0SGzhfl5IbOuCpk07BjCp+gZKupCqA/LRFgSVE0V9hO/SW75rFKpfpToKYCGa0h4sCnyvhYT8umoKjyaqWL6Bla3g97fI/E63JwLZuoqzlAVwSGteSaDpuBAqiuR15cE4qCiaApW08fpN6s0gMk6ZR6nlRVBkO9N+hI9pa7GZDfi+SyqUagvstxaA1K/x/n1jCtJEUmygqaEfN+Ohedk8zFFEqEa0t4kBRwlt4XrL1q7/n8P8339+qkWi68Z8gDKPKeQ0l0VUPIUr9bnoOEAgrqeZIXskBKugEWU0a/bnEvGYdfp097roXttGosp5qnwZEXTC5JlSp5GpKsU6+QGt1/H7Z/TSRO0wQHNzh6Pukds+QazyMHSVIGHkYDg07EIytugoJCp0JGuEiY5Z5OQhmtws0zo+iYNy2C/YVO3dBy9jmU38et7mKqCRoESL1HyFIoMIwmF3yNPIE0wgzFlHFFmCcVqAcUtZkpRNRTdAEPcrBTLqTA/pWZKpZJGadjVCz4zHUrNlDErBauoYL2ImIQpT8drroKIURDx9Hop6SAZcZhVrEZVVzEdHdPSqXkmb+7U6NdtBjWL9wd16pZKy9KwsxXa6Q+qruv625+zHgYytiamSAtUQ8XyLGq7bep3t3Hv3IGDd1j72xIwG/LHxxOeXi9ZzkKWkv6+QWL1Jb3jftej7+m0tARtckE8Oq8Myrqjozu3O4fOB29j7B2hbN3lRmswClJOZTTKeJlUp/lN8drydPTx06p4zZ+fV940RVOwWzbuQDz+sndI4m8xWqacBUJgsgmY9Eydli2oHepqDPMh+XRIPF0CoNsGhqPTPNrFu3cX8/57ZO1DCYZd8VxmU4G4Wfc8setp2hq+mpGPLsinI/Kl+HyqLdOFpUAgiMWOZRndqv46vkXXNel7lnhMs2vpdQoqn5JqSPVhq0/hNFgXmui+ZNzIZn9Vk94vRyYN36rlVBTdrMgbpV0jXBYsk6yi7WyMunVLF7vkeCXI9bHwbGkyObq0fQq7RpiUlVdqI95ouuJ91nEMlPBGWEVmQVV4NEOrYmhyp8kyV6udkwi9VLBkXNCgLsgb6s2UbDqsKCaaoQl8Vad7WwRv1kwluX4jm99uOvQ9E1/NUFeiE9yohjVDl0nag8oGcLmIuZyFjJeiCJqvkzvWU4q5+H7KJAKvLqgdqkaOWoELeD2lgr/8EMvXr79WBeynVcSUIGKx5bNQ6haKLkyTxSoguzoRnUOjw90HP89gp8tBw2a3bjNfJ7wYrgiCiMuzeUVz/6P9Jg8GNR70PN7sbvGVv/U/0xi/xH/1Kar5f7M4GRKcLhg/nVAWJYp6JSTL336Bv10Xku2f/yr7O3fZb21z9Og+8zivsDtPx6tqJ/TqZi34hmlOluSsljGrZcw18Ow8qPZmnqVLeoZaSZ83f265BpamYusGLcfB0kWcilvTsFu33i9DVaoXZl6+nqEm4heyQiC41mlOmhakeVlhuYoS0iJlnUakeUmY5lxKnNYiylhGGbNAZHHlkqeoSHyV45tVHljbN3lnr0FPxlO80XVpWBp1U8UYPYPxUKjXRudcfe9zwuGM9XjF4mJZCU80Q6Nxp47Xr1E72KL7619H23tA1jrgB4HKZ0/GfD5c8tlFwLMXE6FqTAoMW8N2TfymzX/z/jb3ux4PO6J4dWbPKIevSK9OhFR5FaLZJltffSiEDP1dgXS6/0uMEoWbMOcbn484l2PidZILMUPd5qDl8E7fZ8fX0SeviP74XwiF4Mk1q+GCIs1F4eo6HPytr2I9eBd1/xGvjG1enS95Pl3zcrzmbLLG0lUhc2853G067Pg66qvnpCdPiK+uSNcR3qCNWRdJB7Vf++/Je0fcaDXOgoT/4xMRdjkKYjTpcbrX9/mq3KP50Q3qq+esH3+3Qkb5u120Vg99+y5To8HlMuPJeMWx5HFuGH8P+z4POx57dQPl6SfEz37A4sUZy/MRiqoK75jsiovtN1g6fS6W6Wueu4ztpsNuQyg/e46OFlyiLkZk4yux/zJttFoLpXtA3txhVphcLlbcrEXcSF5A3RKdadPWUINLmF6S31yKCBlNRXVdtFqLwuuwLg3R8cjua+Nfq3aBno5yci7k/7MlhqNjeiZOX4yNtaMPWDfvcDEXAa6bQ0Gr4/Fg4PPhQYsPtuu405fkxz8kPH5OHiUiFqjm0nj7Dey3f4F06yHnocoTKQCbr1P6daFUfdTzedTzMK4/Jfnsu6yePSOeib2k2XHF3nXnTSZ6i6eTkG+/nHAyXpNEGQdbPttNRxx40znK1TOSF58QDUeYNRdF1VAth8zySXLxntdVBeVHxoc/yX34Z1Xk/loVsD/PVRUxrQDdpNRlmjBQrEXXUURrrFYfp1Ow7W8BcK/vs05ywjgjS0VXBHBcwI1syedxRtftstt/A0Mz6bz9XMzktSuiWUQ0F91AnIpU5mSZEgcRuufgz0ZovV3cN8D2e3SbDXquIB5Mw5RJlLLddCRxXhhCr2ZRtS/L0pw0FiOOcCGUUpuoFN3QUHUVQxP4HsfUqsLmyhm4rYuTraGqFYEDxMgglUrMze8L+YaOJX4ql9lMQDVmyYuStQzYS7JCyKhlF7kBCW9A15ajSxm8zm7HFeOmuk3HM3mr59N2hMS4q8ao4RB1PCV98bHoKm4mhMMpy3OxPE+WcmflmRU3sfNoF3+3h3vnDsrd90jbd7haZ/zwespn14KZeDW+/Zkatkaj49Jtu9zre3x1t8Gdps2Wq+NEExFxcX1KMr4RicG2hWWbePfuovV20QaH5PVtTlYlZ/OIk3nI905m1U4JBDqo4Ri0bIO2I1RsyuyS8OqmCqcs8xKn4+K0HGoHfVG8Dt4m7Rzy4nTBi6mI0bichRULr2bfktntMqaYjijWgbRZqDj9Fm6vibF7SN47YiqL16cj8TxczyOyJKfXcuj4JjsNm46j4eUrtECkHIfjoJJoq7YYt5W2zzotmUVCLbiB/m6K6gZC7JYx+fiKdB6QrkIxgvRs7E4Db9CG1rbI7FpLbmIopN6aqlC3xfPVcgz0ZIkazkX3FK0q47NiuxR2jVSzWcdZxflL8xJDU6rRo60rqGkozM8yOFNRVTFVsF2hXpSv8U3n5ZgajinUi74p5PfFKhDjx7wQ6QKejdtrYfWF/2yR5NyskltMm64ykAnju3WLlqOhDDfUedHRahL8KwzUXVZYzCIxldmMUhuu2HH2fbGHy0cXZDdXhOM5RSJUqrrniNwxt8V8uQEQxyQyzcE1NUFVsUW6QT4dkgVzkkAkCaCqlJpBJlcphTzIlpSgKD/VHuxnFWr516aA/Xn9CJsuWNNE8UJP0ByPwrQp00TsCIIVqv0YPUtxehnbtV2O2m51M56NVqRRLqMUQtI447F80x42HdLCY7d1iPvWz9OyPXTPYX2zRrd14kAIPDY32rIosJ6ckgQr3PEcXzfQWn20Ro+W28Jrb7FMDFZpwbZvMY8zgihjHqcc39yyDC+mYTVq3MjzN4BeVYJ4FVVhbmlCAq+ruK75GutQnJQ3OWCbKy9KQnkTSOSbeRllJJJIX8pfm0t57WM3X78sS5kRJmNc5BJbs1RUTaXdELutjm/yaLteRVt0XINd38AuY5Rwgjo6ppiOSKZD1q9eEc+WxNMFyUKo/gR8VcP3PQzPxKoLo2/3w0cY23fRdu4SNA4YBikn84hPLkVy8nAakkSpJPAbWI7OW4ctHgxq3G27vN1zaZsl2uwEZXJOfPq0QjmJnaCL2W6K7qExIG3uMopKvnc559Us5NXNis8vFxRZIVJ7HYOma1YcPzcP0ZYjSV9YVGMk3dbxtpv4uz1q9/ZQ7rxD3LrD+SLl85sVL0ZCJbmMMnxbdN0t16Rp62IstRiKEMNYIqVsE3e7U2VjjfUaFzLs8rPrJVfTsMoya7iGMMc2bNqWgja6IL98RXZ9QjSey8gV+1Yw4TRYpnlFy0gkrLfhmvRrYnzYtDXUxRXpYkYa3O5pNlElel9kfs0SKpvBZnRn6iLIs+ua1E0NdT2lXM2EkCSUoFrLRnFE8OUqFbi0pcwOy8sSA1HABDhYhXhd7YYBVNMQ8n3HozBskvCL5I5NGvYmrkQvEspI5JYpmorV8jFrnnyO90ntBkEgDp+xlKv7jgiVFcnPNm1bJxudk0ly/eb15HQaaP090toWk1XGpRw7bwph0xXij7ati+iW8VUVkgpiHGvWXAp7M4qNROyKHNVv0qMblvh+lNmMfC6o9XkUo2iaGKVqpgz+FRmKImrlz1+G/qIjx782BexPu37cE7O5vRblZhxWkgGm20I1HUrDRlM11OtTysVayOGvvoP9/BnO7g7OwRv814/+Jo96Hu9s1fjfgZPrJYtpyGISspyJmJLFJOR/k8GDD/s+Xz/8ZdpHv0Dna2fUHvxLoosLVpdCbr+8nEvzbylpDQnhaMZ6OMXwHGGkrLnonQHtWouOV+NOe4eyVaMwPUq7zXCds0xzpmHG0/GqImR/dhEQyBfq63slkddVVMUsliQARZLn1dcLV1bIIkilBHw9RgXEGlHTVRlYKZSSuiHo9ZouVFaaLv7sGFpVLF1TY9AUJ/yGpXPUdum4QgXVN1IRq7K+oLwek3zjE5JAvDFXVwLSmifZF/huiqbSur9VGTb9OztojQ5aZxu11ScdvMUkgUmU8Z0nY06mIWeTNU+vl2SJ8JI5vsVbR34lF//VO016ro6XBPD4X5BdvmQ9HBGNA+Lpooq5bz46Qt8+RNu+y7TzJlerjOfHAc8na/7lx9cEQUQcinGmYWnU6jbbTZv3t+sctV0Gvo5+/hHp6RPS85cC3OqKHZpZ82h97QNBBOke8nnW4OmLGc/GK/7Np0PWYUpRlOimxps7NR4N6jzouBx4Cvr4BeXwJdn4ikwKJOxeG+udX6Ts3mHpb/Mfjmd8KoGw5+M14TJGNzRqvsWv3u/yzpbPnYaF/vybJC8+ZvX8pfA5LdYYro3uOeh7R5S9OyT+FudnCy6XMXOp3LzT9YSysuVyUDcwZ6dw/Zx4KHY9wqDr0Xj7DQEi7t/lJHM5DUJeTteczyPCJMO3Dfo1i7f6PlueTpMIXnxGOjynCMYUSYreHYjcr9aAuWIzXoub/lwetkyZOdZydBqWihEHIitrFVDG0W3QY6svaO8ZAvKd5piaMAq/Lr/vOhra9IJcFk+z7oo0gO4AY++IcuseZ4uU55M150FUjWSbrsEv3mnxRtsRYObRE5ZPPha+vOkSu1MX04IHb5Juv8OrIOXT0YofXAacT0TX2/ZNjjqeNKcbGNefMfn8CcHxJeF4id0Shnl7Z5esfYeLWcJnN0s+uwyIVgllWWJZBvd6PvfaIvgy/eETwtMzwok4nNzG6TQI04KkKFFRMDSRaq/9Be7Tf6VIHH9Vrp8kCwxE8SoQnUVegqnZGA4URYbW6mGuRJBdOF2Qp5nAymQJ1tY9DjqHaIrHL9/v0nQNnjqGoHBIU2JRlAynYUVsP2jYhDWLbusu/vt/A2PvAnd4Rj4bMX9+TroKqxvy5spWEblUAWqGjjmcoTmmuGF0BzJeooXqNxm09ylqLULfoeXojNcpN+uUjm9KD5uAsE5WSXWjLiX9Q5FwXuVHZgCbrqkoStTyljy/uVRVQTWl10sGQwpJ8CYDzKwSnRuuIbKeTI2Ga1YGUtfQ2K1b4vRn6wx8HYcUdX2DevpEjJimQ+KbMYvT6wpImq7kaFRTKhWk4dkYnnPLe2x0MA8fkTtCVBBbdU6ChOFKZCf94HzOMIiZSymyJfeFbd/kF+612W8IssYdK0UbH1MOXxF8949FuOVUyJNVU8fUXEEx2TpA275L1tzjcpnx+VhQ6p9cLZhO1sSRYNXZnoHtmQyaNvf6PgdNh66r4aYLQWCX3DrDc1BqYidkb3Ux7r9P3txnrtf49GLGU/m5F8uYUpq4PUvnTkeMpLZ9E21xDYEQbtx2c+IGTWNAXt9mtMw4mYvu8EoChFVNxXQMBk2xZxp4Jk0isrNnRBcXrEeC+qJowiJhNX3URpfMaRHEOfNYiCUyqRbseEIh1/cMjHCKGk6Fwk12XrrpYNZcjJ27KN0DsuYuo5HYe41WCTOptqtJXmHdUoWqcjoiv7mUWVnipm4YBqrjURgO67QkTEXWVZKLqYGqK1iaKve/Qr34uvl5071t4L9i5yP4oJaMGREFUJp9N/L9okDRBC1Db/ckyWSLwuswHWfMYyFA2bwPtpsO+3WbtsxhK2/OvmBcNmseVreN3tvlJi4YrhIuFwL8m+aF4D+aWnXg08I55XxEOJmTrQWkQN+oORsdaVURj2O2FqpaVVOxpJG7YelYpBQSYlxIkonqeCiOT2k4ZDnkBaD+l5Zs/KfXX9sC9tNcpezEkrwgLxUKzcbyxIm9DFdYq4j1lSA5F0lGURQYu5+g5wl77QO+tlun7Rj06jb/vixl3lJeFbPruRhJ/LDpMI8ydus2R703sRo76Fv3MKM5Wu8xxWJGsQqkN0dAN9NVSJFkZKuIJC8Ix0HFHDTrl+ieeNObzTrG7hF6q0et1sXpHDLwXJZJQd8zRWRKnLFMMq4k7yzJ8moM+KNXLkUZeVHe7qzyQo4l9dtxoXwDqKqQtjuOIXcDWkUncEz9C4IRQ1PlG1/ExruGRlsifCxS9PFTCG7Ip0OWTz4WuVKzhei6hovXCPWC/GGYGk6/KTwuTR+z1cI4fCSSap0mcfsOy7QgiAuCVczHw0UFP311s2Yp9wi+pVc+mr2Ww8/vNoVIw1LQnv6xCLc8O2X00VPiIKqEIbW9JoZnC/jt9h3yxi4LzefZJKiK18lYFK+yKFF1Fbdus99xebRTF0pGVxd4q8WQdDqiCEXmk+i8XPR2D31wQNa5x7S0OZ8nPB4Kif9mXKzpwlLRq1vsN2z2GzYdV0c9vya7PhUdhgxT3IQ65n6XiUQ8nU2EMTeRj9P2THZaDm8Mauw1LPquhjY8Y30lxBab16kjmYdmp0vhdYh1l8VS7L5CiWvapBxvdl/qckoxuSafjyvpvWabWN0Oam+frD5gkiiczENhr5Ay/rZvUZd7vZbMHlODIclMJBWLHaSJYoqokMzyCSX4d53eKgc3oFpHV9DLDDUJyV7PHbM9VNtD8Rvklkcid75FUWKoitgfW2Jf5BkqymqFkkqQtm6g+XL039sRXjjFYhItWCaCHiIk74Le0nY0vCJEXY5Ih2fCviIPsRvZO82tKjjzXKoGy6LEtMSov+0Y1E0VdSZCK5NgTSo7fV2Gm2qNDsu0qAI8wyQXhnzpH+tK+bwaTshWAXkkDojCS1enNH1K0yVdFZRlSVmK4vVlpoL9tSxgP+2ZoChLsctJC8oEFCXH1HQGd7+G3trB7++RraJqXBLPlmSr/wt38B3snV0+/MrXef/ugOBek187bHO+iDifRwyDqFIKztcpf/TZsPJq3O/7cgHdoetus/XVd8QNXMlpzM4FsHcxJT15Qj4XY8Z4tmBxMiRZJaQSiguS2u7oeP0/rvh6jQcHuK0efr3DzvY9yo4cNZoN4lITc+wfWcbmZSnHqiVlCXF+m1A9j7NKtCGUhRtSvVjMG/Km0HIMHH0DRFbwDBVdqhitTSxDlsh8oQQlDVHWEfnxKcV8TB5MmD4/EwGWk4D5aUC6SiWSqkQ1BDXDqls07/Zwei287Tb2ow/RejsUnqB5XCZGFRf/+Q+uuVkK5eZsnXI+EafXsigxDa36mXz1sMVuzZamZJ3u4iXls+ckLx9z8q+/xfJyzup6TSjJCqZn4m25NI52qT24h3nvHVaD97hcprwcLfn3z294dbNmIgMkvbqF5RgMGjZ/880+h69lX9VvPqcYnYqE5uGFiN2ouZj7R2hb+5StXfLmLt8bxjydTHg6WvEfPh+RhCl5VuDULHZajlCi9X1+eb9OI1ugXX9G9L1/RzQShHmz7qLXG+hb+6i7D7gsHE5kNtermzXLOJOF0OaXH3R52Pd5q+dzyAT1yROSZz9g+NFT4tmSMi/RbYPWm3dw7h5hHL3LjS2Sn4+na0YrIVLZ3GDf7HpseTp+GlC8+qTa9Wz8g3pvF337kGX3IRfLjOPZim+dTCuxi2tq7Lccjloud1s23uwV5eVT4rPnBMeXFGkqeJB1aaKu9UncDsOrFcNVwlwKSWqy29iuSexTcImymojdoKqh2J4Q3/R2yGtb5H6PxVR8fF6WNGwh2tjyLZqWhrkeo63GFMFEEGj8pujeDh6RNXYIFJvrhegkb6RdYq/tioNsy6VXBGhXz0ie/YDVi+Nqb2U1fZyjN9DvvUvaf4NPnk35/kXAZxcBk0WMpquVMnS3ZuKsh5SXT0lOn8ufTyH8fYfbGPtvUPYOuVqkguM5E/QOp2ax1bB5Z6/B/bZLV0/RhqeEwxl5Kg4DTr+FtiOQYvMU4rxAQZEhwLfXX8TI/P/JOJW/jOvP+xwKgjpyQVkSqQq2ptNs7aED3p3d6t8mizXr4UwafNc0LBt9+y6t1g7vbh2wW7cYNh0uFzGOKQzGG7n4RJqS5+uUhiuW9w3H4LApGIcNW2dQ28dvq6iNKabtkY8v0VojrBuxv1AkIy5ZimTiIi9IVylpmGH6K8zhnCyKsZpXIrZ8OkTx6sJIbLsY7he9g0zkDwAAIABJREFUWptsnw1hegPrLE23KnJhVlayeUlwAm6jVjY5aq4uYKpkCUoWoy5XVZYQSVQZpQup9iqTiCJckYyGpMGaaLZgeTr8f9l7s+ZI0utM8/Hdw91jRwSWQCL3LBarSDalkbpbPdN90WPWNj94bnoWs5mR2mii1GwupSpmVm5IIAFEIPYI35e5OJ87UEWJIimZZFZGNysrZhYDmXBE+PnOOe/7vMTrhGyfNb4tkBFlq9/C7bu0hgH97z1s8sC0xz8iC0ZsC511JDSP6T5lHqZ8+XEj9zwS301RlGiapEsPApuxisCQtGSbkVIXFq/+luT9K1avL5l/NSNUSCjd0MWX03dFjv/4AdbZC6rRQ6Z7MSZfbpLmwavpGnbL4rAr+66HBz4/Pu7cdXebj+TnX1HMryk2K4o6BTloYx4/ouweUfQfMA0LXi9D3sxD3t/um12kaRs8GHq8OGrz/MDne6OAbr7FXLwjO39JeDltEnjNca8RWlRu+w4Gq078LcvAUJ3oJ+OA7x34nLQtjI/npOcvCS+uyLahMuiKv8k9mWBOnlJ0jplHgnqaK3+SY+r4tkHXlZGfp2WNP6nYyGfIbntq3zSi7IxZ1J2G8j7ulPzeNnXxjgXSxXFzTT69JJlOyUIhRdg1/SXoUTht9lnJViWRZ+Xd7qurRtd6GqKlkSgX4RvescrpUKmvEeXy+rICz9LpuiauqUn22HYnApBGPNJC9zuUrS6Z5bEL86YDrMUbXUcQdR1HBCjF/Jp8IV1kLYix235D7linJdOdkEx2CtzbVenmB54t6dFrMR03FBNbstzsfh+9P6Lw+qy3Gft7Hra+L9iy444r5udwSbmZCwNS17H8Fk6vTelIBlsSFRQlmLp89nVN7cz/wOfuP/X6ThWw3/cm3j8xyF6sIs4LwkxGBboGRWUwHD7CevQpvn63qoxmK9lNbeTN4k8vMccT+t+HTnvMyBNgqq5rTHcp15uYV9dbdrHMwNdR1uyGWrbBxYGvMDI2z4e1iKHD+Oh76O0RzniB0b+gX5aE01VDesj2GXmcUaSlFLOsII8K4Aa7s8HyXDxFK7d8Vz7cri8mZN1AU9R5lDFZM235tzIoW7YDho1n+2B8K0ahKoVeEsVoRSYEhN1KdgmJ7BSy/fYbdI+qKKiKUvaJaqeYx2kDG833MdEyIo+KBi5stUx0Bf7tnA2VSm2I/4M/vQPFOiNWu4LpPuJmn/KLjxuu1ahlvo4buT6AaRuYtkGnZcn+adBi0nZ50neloKwu0GbvWP/dL9m8vWJzfst+KiGbVVnhHjgEhz7t0x7dpxPhOB4+Ie1MuLrec7mNuVJkgzrgMnBNPj/t8qArPpunfQc3XmLcXFHcnJOdvxQCRZRi+q74j/pjKV69CbNImIzvFsISnG0SNE1rTN2fn3Z5phb5R76JOX1H+u5Lsst3hLMlVVEK3svz0Nt9tPaAwu2yXecN1b1Wn9aGWGHyCQ8v+yDj0/31vPm5OL1AFHanT6mGD4i9EZeXWzHe75LmIVnvirqOgbGdwmZKuVuRhSI311u+xOX0xuTBiNk642qX8HEdN+PdOvLkwJOv45NQzC7FOrHaUaa5vL9btsr8apPbAWEo1IxMWTvaipzfjP6SLVq6a8QXmmnLvsfvNcGZUSzPhEyxk5ya/GHqeKaOnkWUocjnsWR8qXltSretlI9lE90ir9fpKhByx9HRbufN91EDdw3XxukH6L0xmddnu5cctm0skxBdKUPHHZcDz8JMNrBbNLsr3dDRLL0xUNM+ILcDtumSKC2avWR9eDtqOwSGcGAzNdY1bEuUpUGPqtUjzEviovyNbunbndfvmgzyz3F9pwrY73rdv3l1MGP9QyhLSFQRi4uSMLNIC4vTySfYpiUnNENXb7aEdJ9SxO8Jr+a4wyn9osA8eUxnMMHvHFEeBtz4KYOWRZTmTDcJi13KahMT35O1z7YJgWMyCGxWsZh1x75NPvTodU7x2iP04AAXsA6u8cY36LYp4ZmbiCzKG+4eIInGRShFIU6bQD7N0IVVaNxNrjVDCnP93+9SdNuCgVL7hLrAUTPRylIoHdG+6abShRT2u+iVpGEt/sbPQf1eVZbfYDMalqFOf98Ms3T6Af3nDzAPjjDHE6qHPyRrH7JKSr66jbjeJtzshdv3xcW6kQjXopp6T9cOnKbz+sFxh0nH4TCwOdAijNlHqul70vOXrF9fsr1YsJ/uG0m+1TLpPezSOTsQgsfjJ5THL4j9Q6a7jHeriEsFmq2tCIEyKf/pSZfjtsPIM/DmX1PNL8iuz8nn12zeXSv5tezzjECICXnnkEVScRvmnK/jhppQlBWtlqV2di6fjoJGxehHt6Svfk58ec7+cka6CTFseSjqQa9RkyWmxzreNruhnmeph5orsu62zdDMMG/P2V++b6Jb6kyq1qhP8OAIxo9JOxOmu4wP65gPq4h1mNKyTVqKcjFsWVjJRvBG8+sGUyahim3pEPwhsdHiarvmZneHN6rvY91t9F0DffWRTJE70u1eQaId7LYnuWFen50qHpKsLp964R7KCNCzNPRwTxXuGum85twVH7EClI36sA549Swd19Bkf5aFgp5SSDZNN5QAJGi8Z5t7/rOadtFvWfiW3hDny51K1Fb7QKfXltgVr09YGqyThFV4J5vXVfGR+BYXPbpRI/gVRZw01Hl32MUYHisPWtkQ/E3lYzsdeJy0XU47Lvp+TrWZU25XwJ3/rCahRGFBksuEytJlhFgnstfPz98nD+yfo4h9ZwrYb7txv+1GGfdQyrauYRkaRQW7NOfXs1hOpK7Fv3sw4ujJCcHk+/RfvEG3/3c2b6/YXy+4/fUtRXojfL6fvb7z6pwd8vTf/hcedSfEhwMedF35gK8jfvL1nMU2IYkykihnv0mYAxeGzteXG1qKPPGjsx5HKi/p0B9y9vn/RtvSccMlD5bn8ubfrii2S5Lra6XOi0m3e8o0pypLMqVkLLJcdWrZPbL8XQqyZmjohqY4hwLpreNVJCPsm2+XUoGAk42EU+ZR0USmlEV572ve/3oivHA6bpMsW39QdMtScnSB/goQVsmh2z0IBuTDR0RYrJOCV/OI6eWcm13Cz89XLHbia8kVXgskZDPoteioh/244/DDSVdxE10edW2cdIOx+0D+i78mvj5nf70gvJqzvViQxzmWb3Pypx2cno837jH893+OOXlKdfCQvHPML29jzqcrrrYJX0+3TSTFj856HAYOk47LSdvmkbHDWL8jf/k187/+CdF0qYCvKYZlKtZdH+vsBebpM4ruhPd7jfN12BSGVZhhK/PrpycdHvRaPOq1+NMjD2P5AV4JaWP2k581Ioua+l+TLYrhQ/bugJmCCIeZoIg+n3Q58GyVZ2ZxuHtPefmS+P1X3P7iNekmpCpLggdjuo+PcR5/gvnoMz64E95d7Xk13/OXr24bzNOfPOrLnmfgcRJYmBc/J/vwkvTyPclyJz9r18Y8fUY5ekzkjbncZQ1hYr5LVc6aw/PDNs+HHo+7FubtG8oPX7J9+4FYGXW942ETnKlPnnNTtbjeplzcC730bYMHXZdD35IxcbKimr5rvGOa40onODwm7U5YxAWLSMj1GyXYCWyDnmvScw3aSnSTzy6p9huqPBPZfdCT7Dr1+uk+ZZ1kTdEYtER6P/JMzPUl2eySeC5jf83Q8Y+G+A8nWI8+JfSPuNyI/H6uyB11TNCfPujz2Vio8/z6FfnVO0FxZTnB5ADvaEjr7BHl5DMWepvzTcL1NiHNpdsedVx+POnytN9i0rbQfi3Bl8l0iukKQcQ6e4F+9ikfw5y5GoV2XbOh8xi6hvEHshDr1/xRRv8PXP/YjbkfA1BpYBoiSHANHV3TFHi0YG6mdFyTvPQ59Pv0D1/gPX0prytKNh+25FFOGqes3q9JNqmYaldbxp0h1tmG1mDC494pHcek45ps45wLNQra7lPCXdL4qdJY5K1ZUfLyest8lzDruEx9m6wI6LgGgdVhfPID9MEWPd1hxlus048qoXkvbLpQ/GTyIEvIVTcWL0NAurUyK5qCQwEFNAUHaApYHuVN7Er9fRfqtcJ3LJoIljrzSzM0DAw0W3hwtm81bMDWqIfpOmqsqSDAtovuitxXa/kSd94eUTmBgFgrg+tdziKKuA1FhfdtRmQdsWK7FqZt4DsmT8Y+g0A4c0PP5vsjn7Zt0HUMWqv36Ls5xfyK9MMbQqV4zOMUO7CxA1HHdR4d4x8NsMYnmN//D+S9E1a5ye0q5efXW642cSMSqbOyzlS45ZFvM/IM9Je/kj3S+/csvnhLvE4aJWPntKsIFCJmKIIRaavfCBBWiiPoqTHfIHD4ZBQ0acjm7Ruqayle+/eXRNNVQ0KvhT3O4TFl91B2KmHOKhaZO8juq4YhjzyLUcugevuO/PI14eVUuoOyxHBtgskI+8ETzLNPyPtnfJgnvJrveXmzZaYyxQJX3ud9lRfmaZns+JYzkuWOMsvUWLuFFvSoWl029+jq9d/rPt/vpO2i72awulZKOzmk1eZnY3iEOT4lbx8q9Jrkq9VdnGPI7qrtGLhVgh6tKbZL+cyUBXq7h+b6VHbQdG+rWNS7cV7gmga6rmEbIljSwggt3VHF+4begWmB7VBZbpM5VpM/avBw4Ji0TB27StGSfUPu0A0dVOEwhkfogyM29/4OQLNyGHdcJh3hUXpF1FAz6t2VO+zijMcYR2dETpf1Tiw1dQ5b4FpNfllPpQEU82uK1YJ8H2O0ZA9o9MfSzaai5IyLkr6moSMGZk09RxuMzh+QEfZHI/Pfc/0uxQskkdnQdHRDwzV0cqMicAy8xKAoK9ZhRl5KBlKSl8RDj6IdcPjsR3i6jLq2lwsA4pVAestMups8yvFGL/HjPeZkw8GLHq1OB8/SSfKSo47bAGzfTPe/kXNV5iUzJXnfxTlzzyYpSrqORcc1Oeu6tEyflhPQCk7weqdoWYSR7LG2Mwnl229w59cSo7KPSbch9nTZdGV19yT5YHeFB+qgSk3GjobW/H4tY9d0XY29NPRSA9toRpN1N+d0hMRutky8Ua9B2gSTEZrro7sSNGj0x+K5MR0Kr09ptSicgFUKUV6y35Ss45Q3S4kJmW4S3kx37OKcfZI32Kcak3WossEGgcP3D9sMPatZmk8CU8zRiyXlhy9JlzPKzZxwumqo+4ZtYncGaokd4H/v+5iHZ9A/Ydk543ZXcLUNOV9H/Pxi1ciSawLGuOPwuNfiKLAY2hXm7RuSr/6WzesLth9uWL1bUyiJue1Lwq437kuR6Yv67TbMuVHqOUEGlYw6Lj0F1P3kQCj4nTKkfP8F2eVrtu8+iuVDJSubroV/NKQ1OcE8edwESwpgNyMrSyxDPFGHvhSvYUuUefnHt0RXN80Ore6U3dMzMVP3HrCsXF7N57y82fJmuieMhGBiK5PvUO2+9FCI9clCdl+aYaDbJprryzhTdwmzTO2K7kjzIwVrnnRceq6BsZ6Rz6/IF7PGP2b5LtbBoaCW2mNip8v1fKc6n1yNvHQCRzLDOraOvlmi7WVn1IwPTQvNCygcIXesEwlO3aU5WVnJ+F6X54RZ5WjJjiraCflDhT1qlg2GTWU6pImyoijFrsS+6LQVdkpPNuhZJK8FDNfBNHSR3w+PKb0+21TCM8NMxn5t12QQOJz2WxwGNgPXQF/OyNbzZgRp2BbuSLxj2uCEVVw0giaZDtxJ7/stg65Zoq9nZPPrZiLg9APhSKo09PU2ZZvmlJVQSOQfNcGqfnM98C91fScL2O/ckqogS60q0cqSnu3SMk1aypt0pdrtq1XMX7285cvA5pcDjxfjgP/1yaeM//33aL94x9Neh+27j+wuZyx+PSWPM6qyJFrG3P7yNbvLGa3xe3rLKcH4lM7giMnjF4SlRILvsoIP67jB7lwpxlmU5k28/HwnVI03013zBup5VsNja7smR22HjmPRtg846p/QGgkip2eDkexw0j1aGsFmShVuZXe1Xd2JLPIMFG3+771d9wQYdbTK/V8D3witNGwTc3AgS3HXxxxNwBVjaOEPqGyPXDMVnb4gLSqSouJqGbNNC3bJnMt1zCoU5eY2zpltk8aEDbLXMm2Dx8dtiZL4FjOx6+gMtQg9XovCanZLfvGabLci3eyJ55smB82wLZxeW9Hj21gPv4c5PqXwBqyCCYuo4GqX8lc/veRiEXK1ilmrNN3aA/fZaZcnQ4/nA5/PBibm/C3lxa+J33zBh//rb9nd7JsUbDuwaA092qcScGmdvYDDp1xZR8xuYy42MW8XYXNqHndcXhz4KqjT4qSYY1yek12+Zv6Tv26SpYu0UPQFoTh0/uI/Ux2cUfQf8HJVqwRTtkmBoUNgSyry475Djxhz+jXFx9dsfv2KSB123GGH1rhP8PAE88f/mX33ARfblL+brfk//u6G62VEEmXYjsnAt3kyDvj+OOCsY0t45tUrwnfnwubLcimqx4cSHNqdMN0KzutKiT9kd2jx44nIu48Dk066JPvqb4gvz4mmK8EjDX0BEn/+78kHj5iXDleLmP9xvVEZVwWnA49By5Ju2EW61ek70muJb9ENHSNQu55gROaPuLwRYsZtmLFPczquiWlotG2Ttq1jbG/Qd3MZH6rgS8310dX+rHI7hLtY7d/kkNC3xWs16bj4JBKZsp4D3CVqB23s7/0JRe8BO7vHu8st16qzH3XkUHbSFmP5w1aBOX1NcfFK1KH7uEnCtl/8Gzh+Ttie8Iv3a96tIi6WEVEqyRmTrsvzgc+xEWNevyF7/UvWr87J9pHszw4Osc5ekPXPmMYaH9Zx04WauiiPbV1sMfLN639Q91Vff4xT+T2u+zdLq0oocrSygDLHsVw026as4LjtsFfRDTMFvqxNv08GHkXXYXzwDOfzf4fRf403fo9u6KSbUO2C5KFeq+ziy3PsOMRYz7GqkrbTJnA7lO02A1cMl1FecrlxJTAvzdUDPGMXS/u/UNLsoqy4XscYmtZIjMcdRwVc2ky6Ll1XnPXHbQfX9Gg5AY6v4fVO0LIELY+xkr0U8TJXxfyu/FfFXTGr8lQULmXRqAkpi0bIAdwpGWsllu1S+X0qU0YqmT8kRyfOJe4+3VUkhfDtbkNJyA2zuwK+i7OG7Zfeg/6CIKuclkVX7bY+P+1yGEi+1GHg8KBj0SLD2E/h468p1Sm12KzYXd6Sx0kT8qcrgYs77OD02uidIUZ/hPboh2TtEdvK5qvbiHO1h/rJ13PW24Q0zijyCtPSGzPoSVcEEIeBhbm8oLp5K53R+ZRoGZHt5V4JUd5r4lzsZz+kOnhI2j7m+jbiciN5cHXxarsmPdfirNviwDMZtQz0N2/Jzl8SX543xUsKsYF/NKB9dog9eUh19Iy0fcwsynm9CLkN0wbAPPTtJtCxa+voyznVWmCyuYLrGrYpxWsywpo8FVXkPufDOuZ8FTFTu9yyKPFaIip50G8xcA3ZL4YL0vldLhXQkCH0wSGbtCTMq0boIO9nMcFPOmL0bWspxm5GtpqRbULyOMF0HWX0PaJoH7LVXObRndhlp3xfrimQ2rYtnbe2m5MvpyIXj1NwbUzdAFe4iaHyPe7Sgr0yHndcU2witoFRpmipUh5G+0Z8g67L+NB0SUuaRAZDlwmFyPctWqZSP+YxZRKBbog62HaVYKJP4fXZhMI5rWXvPU+Ui2PfZuRb6JtLyvlHyXZTI15T4dPqvK9FnHO1S7hax0pYI4CBjjJh6/spxc0Hivk1yXIrGWiW2UTQZJbHLqq7rwrXNDA0sc0YuoZWC7Hgn1TA/tDrO1fAfu+FYFk2xUsvUqo8wbFaDFzZL2QKPXOxiIgyMSRfLEJ+fbsjK0rSwuXR5HPM9gHGaMLYMhvTcR6nFHHaJJnKaT/H2qwk4dTvoLd7WF6Hodr1lIHPsOUTKvjo0BOKxjLKmO/TZqy5S3IJWCwrtkrJWJsbA8fkatCi69n0PIuTjktgG5Lz48gS2tJ9TDPAdUcyy1ZQzvtqom8E1RWpFPuybPLD6tGBdm/+XZkOlW5K7LhusstK0qIiLSr267yJXFlEGVFWEucFSVFyu0ubrnOqxqZRWhCpB2NN/qiZiqZt8GQkKczHXZfPD9uMfRlX9RwD5/Zr2N5SzC6Jvv6y2Unm+7ixPgBKPGJid3zckxOM/hhzNKFqj9h2TllEBbN9wk8v17yZ7rhYRNzcbBvSCoDrt+i1HU4HIqg4bduMPRMuP5B9fEv44ZpotqRIS3TLwHQtug97BJMDSWd+8LQJuJztMt4sZMdX/7zr4jX27Tvv2PID2buvSK4u2F/OyPd3gF677dF7cYZ5/AjzwXM2/hGzXcbHbcr5WoQgtdBk0lVECcdEj9Z3AYa7FeW94h5MRg3jcZZUXO9Sztcx72/3DbnDtIx7ZHWXgWtgzKbk0wsV8Jg0f0ezJ6nAZUv2K/WoLi3KBpJ7GMhIc+Aa6IsLyvlHsVuE8rC2Ox728ADj6IzEGzLfSr5a7R+rTdRtx2Dgyi7O2MzVLm7afEYN15acK8ujcgKiqGIT52xV8apHkK4y7OvJDi0L79S3RSmHNpVmUZkOaVE2vjGQ4MzANvBtoX9oUQhJJMpF0wJdMtT0/ojSH7JJS7ZJyTa9C84UAonNUVspMW+nZNML0rkcyAzbEgtG0BPzdSnJFR/XsqbYKshz7csLbB19NiedXxNezcnCuFEoSwK1+AQ3sRwsdAXtNZT60NRoctfk4Vv+ixex71QB+4PULMrLRJmjpRFaVVKlIVaeMPZ7gA/Am57bxG6vQyG/FyWEWUHrqE1v+Aw3GOHaLtb8Gl89BKLpUiWzipQ83Yi03VJvFtMV34nRH6N5bUy/w2Awod/qUXbbBLbHNimZ7VNufXmgzdQHdJoWpLkYmfNMsFW6rhFbBrskl5m/azLtuQSuRbt+8zpWQ8/wLFlMG8qUWJOldb0uaHLSMnXQMDB0A0u30RoTo7qNFZRUpJnkBOVlSZxHLKOsWWTXbLy0KJuHaI2zuvu1SH2LvPzGPtAwdTRNI/BtZQC3+MFpj3EgeKLngxY9R0ffzTBWM7Kv/oZ8fk00XbF6fUm6DcmjnCIrhJZgGxKx4ru0ht1G/acNTiiCEVmrz4dVyvkq4nIb89M3C27WMdE2Id5nDUHfckyGvRZPxj6fHLV52BMFn7W7If/4luT6mrgWhfgWWsfB6bgMP3uMd3Yqf+b4EVO9w+0m43wV8Xq+bwREQ4VOGqrRk/jULtHmH0iuLgivFw2PsPYOeaM+1uPP0I+fkPdOuVTjucuNKjg1Cd21aKnuy7N0tGglAYbbFUUYYtgWhm0JyurwDOv0GXl3wjySkffHtbwPq0rM1E7L4qniOj7quRgqXyufXZIsJK1ZqOhi0NV7Y3Kvzz4sWcey56lTgetOo+dKtIy+mZLNr1RCcdYIFeo9z22Uc7VLudzEXCwj1kqtaegagW3ScSU3TrrLKeliRbLcqf2ujm67lHaLpNTYZwXbVMAD9b1yTJ3AFvOyloVU0U6CM/NMANKm1exwK8slTaumA6s/V23bpGVqkhy9TWT3lmcyrVCpz3r3gMj02O4z5lHGVn1mHLVTrE3cPgn5jVgw4vmm6Zws3xWbhD9kqegfl0rBKGIWSZ8eKHFNoZK5o8W6OWzrloUe9MjdNvu4ZBFnRFlByzLQldjN0rW7Q2wJGP86QKnvTAH7vUPU6sJV/7cyR09E9EAao+kGh6MzDtpjHnR6eJbBu1XE+/m+2UVdLELarsnrRcjIFxPys9Gf0pkYBLaOle7oL8+pdhLzkF2+Jl1tSLch668vmw6tyOqwRbNRebnDDs7BkNMXP4bumE8GQ7LJgM8PA4ln3yX86nrLQs3H12HGTmGFANI4Z5UWrPdpE0hY/2Obd2+2eiRaKAJJfX37/1+r3+oYifq/1a9N86KJVvlG7peiRdyPWanp96Lo0n/jzxrZTvPrOtKlLsAPFbHkMHA4CUwCPcfYz6m++v8k2mM2JbxesHz5ockDa8IsbR3Lt+mctnGHHbxRn/YPfyi7uf4x4fAZq7hgHuVczTb85P2S61XE1Srm9nZPngl+qkZC1V3Xf3x2wKO+wG6P8yn6+QX51Tv2ryVMsCpLnJ542FrjHuZ4gvHZ/yx0jaRius/5qy9nzXtrHWa0bIOeZ3HWl67upO1w6JtY739Kdvma7PId69eXFHFKWZR0n05EJXn8AOvBC6KHf8bNPufDbcL/8+a6eYgVZaV8aQ7jjsOLoc9By2BgFWgfzslnl033VQORjeER+qd/QdQ+5nqf8zeXS17f7rlYCEdyPJDMtocHPv/l+YiTtkWv3FH+/L8Jtf9qTrrdY7d93GEH92SC/vTHTQ7by/mWeShSdUPXOO24nHVbHLUtgvU5TN+SnL8k/vixgVo7vTb2sx/CyQuS/kN+/nbFy9s9r663TNWoP3DNxpA9CSy83UfSN18Qnl8QzeWBHUxG8j0eHJO3D7ndiXBmvk+b8a1ni0LzoO4Gb+ai8t0uqdIYveXfdU/BiF2hs8sKYnX4qpmfB57JoGXi5XvY3jb7Z70t3jy9L2Dlq53QXM7XEVv13u22LJ4OxFg+1CLM6Rs2v/6C3aXkhtU7NPPoDPPBC95uM76c7fnV9Zavb3aUeYnjyM990nEZe+IXTF5/wfLlB8LrhexOBzbusEPZO2ZV2lzvYiW9L/Fts1FQOoaGlqbf7Lq+1X39SwRbfmcK2G+7/sGbdH/xqImirkrjJpROz1LMUUinc8yLg14TP/5hFfFmums6h68+brhQcM5dkjcPWN9ymRx9XxRvvSWWrqN715gKGZPHKXmckSquYY3nuYtAuGGYZyIPPjzD6Y55ePCMnmNwqHYXt2HakKWvV1GT03Uf0nu/MNUjyKISE3WeFgLmVPEq1b0dWI1b0lQIpmHqGJp4We5nhNV/Vg37LYq77qnI7xXGoIBwAAAgAElEQVRFU2uyx5yWnP7rmXxdqGzz/v/WG+SPZ4n8+KRtE1gyjmmtP2CEC/LbK+Iv/zv7qwWRIqTXKcxyTxX017do9VvNw948OMJ6+kOKQB48V5usoX1P9ykXi5DFLmWv+ICGKaf1Ub/Fcc8Vnl3X5UdHbYYt8QVpH9+S3ZwLGkidaO22j+na+M+eYY4naOOHbDpn3GxEUPFuFfHTtwsWu7Q56QauSdezOVJ7vYOWMPdy9bXj+abpaKy2TfvssBkZFr0HfNhknK8jXi8iYeftUrKixHdMlQxgM2hZtG1dwXXVA/VeVlgtozZHE7LOMfNQoL/zMGWnJPpCVJd7cdZrSfGqQszVBfHNB6LpUjyJRYk79HAOhhijCWXnTg25jO7wRi3baJBqHdvAWK5Ilbw73YTSPavdlz48Jg9GrBJR2V0pn1ytBu15Fn2VF+ZWCXq4VDlbYRO/Y/pqdNcZslem5XV8J+O31Ui+7lIdvaIKd5TxvlEParaL7nUw2n1y2yOKxPCbqQKma0LvaFm6jA/j6Bu5Y/XrS9uXsZ1ST4aZfK4821AdoEFgG+jrJeXqVmAKaq9YW1L0oCeqwaRgHmZcraJGoVsjrAY1QX+zbugfWZRj2DpGS3ZopdMmyiU/LVR7Z1dZjJruq7xLzfj29btOw/6YB/Zbrt96YzRdTg+6Luw/VcjuitiWcr+lCrcYox1nz/4CV3HUAttgF2cNp+1qJfk+VytRzA0Dh6GKvU8Ln67ToTvs41SlRJ/4HTwF7CyzXPmnIgHWbirSfUq8jHFuJQrcGy9wl1PM0QRH0znw+gy6fVzTZ5+12CUF6yTj9sBveGu7elyXl0Rqjl6nJtc4q5SyCZcsi5I8vYP0gowI86xE0yUPrB7jpVnxjdiVMi+bfDAJ9VQxLPe+lkSsGJiWgeOYHPXcRmnWdk3GbQdXeXUCx8Q1dIXcMcV3Y+g4pkbXyNGjBfp2TXn+JclySr6YScc135BsYrJ9SpkV6IaG7pp4B14TZukOu3Q/+z7GwTH68Jhs/IJdobPe5bxeRkx3iSLV32GMLEPH7bgqBuZOMDLpuBz6Ng/bhlKlzUjffUlxj0dndzwxZvcGOJ/8mKI9Jusc8/Us4s1Ccq7eTHe8v9lRqAdetyUj0nHH4bjtMGwZuNkWY3tDMr9upOi6bWK6Du6wg/Xwe02My8YIeHm94d0q4tX1tklV1nWNoCtUkJOuy5HyAFnxGiNcksVCk0DX0Vs+5vBYik33kHndmW6TpiuoE5+fjducdV0e9Vv0yh3m6oL8w0ui61shbmQ5hmXijgYCyT08Y1HZLGIp4FsVMVJT4mvEkqdl5LcSLVMLQAzbEivGQHZFsdFiGWZMt0lTvIqqajBLdUKxvptTLqekSgACiJG6HShUUocwq9gkOVF2l7rsqaLRtgU9pcebJjOsKgsRLqkOrGy4iSX7VMgdhibkes+SrkVPQ/RkTxntRfxUFGhOC2yXyglISk2pkXP26Z33q+7inDJGT7aKebinSPPG4qC3exjdIbnb5XYtsvlVKDtkUx0Wu66FZ2o4ZYwWyTQo34sq1ukIf1EPelROQLhO2aoImnqM6pg6pq6hKcFX9U8Is/znuL6zBex3uq2aLlDbuni5AbofU4VbqjRm++4jVfE1lu/SXk6ZnD7jqPeAF8M+/ZbV0BF+9m7JJspYrGM+XG/RDb1h7X122mXSa3HcdvjB+CG93hPaj1L6x49o38jIJr65Zf7FW+Jl2FDmi7QgWsYsvrxgf3mL3bnE6b2m8/4VRm+A0e7z4PABmteR5XPLoTzqUlkuOTr7THKY0qJin5WNeCLMioa+sInz5kEdKq9ZPUqsP8D3R3v1CNG8V7xyFbdSx658O56l7rA82+DhgS+qQdfkQbfVJNm2TJ2uoze0ej0WhZaWZ2jRDpKIMt5TRXvy2SVFuCXd7Nkp8UIWxqQbFWlvaHgHHv1nY5xegNNr4z97Jl3swbHEq/QfskgKtmnJ6w+hRM3EOZerqCn2QgxvNRaFJwOPA89m5NucdSzcQuIv9PWc9Kc/I17MGqGIZhjolkn70QnmaCI0+d4xV94p033O66+X/Ne/u+H9bch+lzQBo3bLxGs7/MmjPs8PfJ4OPJ61wVy+o7o9J/34jvDiijxO0S2T/oOxYLVOHlE8/wtuM4OrXcbrxYr/86spF4uIMMooihLLMTloO/wvL0Y8HbQ467YYeQbtxWvZUymiC4qmrneHaI9+SNY9Zp3r/N3NnutdwiISW8cgkDDGA8/mzyYdDhUAufrZ/0308W1DM9EMHafXlrgbFZ65D4755cedUNG3EpXSsuUQM/RsGZOZGcb8nPTyNfF01ghvgskB9uQh1oMXrL0jPm4zXs3Db6gOR22HP3nY58nA49mghbc+h48vyc5ffgOW6w672E8+Qzt+Tj444+M0UdL5VDoeJZqYdFxOAiF3GOtLsuW0gf9qrod5/Iiqd0zRPWa2E0XtIsrIiwrL0mjXAio9R1/PYH1NuV02Ag5dsRtLr886lNev1WfSs41GwCOerwvK20v5HETSRVq+KxSS02eUg1O2usf5+paLRcg6zCSU1Ld5eODxdOAx9i2MxQfyy9ckKufQsA2CyQHtJ6dYjz7lKiqY7rOG4XgQqBFqy8ImR8sS6cBMp4GBo+l/kA7hjySOb12/65mgln5qhk0FVFYL3QvQvDaa7TZ5XFkY4bz9iiqNsR6kBIMHPOn3JY7c1JltYq5WGktS4n1BkefkWUGeFrwyddZhyrLXwjF1TjsuPcfi8OgTjEAyx8zRFfo99WKNg6lRTABFmpNuQvbXC6xtiOFOsddzMQI7LZHgdodototl2ThOm8pywXQpe12SoiJWasBJx1XFrGS6S0hUZEotrf77dmG2Gh+KqEP+W403jNX+636GWP3aWjjiWQZHgSMkBNvkwBMYqlmmYuhczCVPKU0kIyrPKO+Nc6s0pogTkuWOLIzJ40Ty2ZQHze60GlGM3fHpPDqSFOb+GP3hZxJm6fXZpCUfF0lDabhoPHcFUXqfdmAy6bXoKprE036LrmNIeu/sa1heCQ1ifsXm1TlZGFFEaWOsNdteEw9S9k/IuxM+3ES8XoZ8fbvn65sdkcqNK4oS17Pw2g6TfovnBz7PhxI9Yi7fU92eU1wLNqyowx9dG+v4AebhGdXBGfPM4HonyKE3yqNWF686wuV04PG9A7+JcPHTDdX8gkIZ3SkLGWe1+xj9MXlb6P6LSMZRa5Wo4NkGXSWyOG47HPkWbjjDWHxg//4V+6uFFIqyxPRdUQuOxlT9CXnnmPk+byKH5sr35Zh3lPjANtD2t2jhWin95HvWla/Q6I+pgiGbtFCHjzvaRr07PGo7EhTpGuhLod/nm7V0Iyr52R12ZQzpD9jmsIizJvSypYpOvyVmbIcMPVpTbZeUcUhVFmi6IR5Hr0Ppdkiw2KZ3fk4QIZRj6tiGqBf1LKKMQyF3lGVjO6ksl7ySNIxMjePr92I9QjdKSXgooj1lLONHwzax2h5GZ4DRHZK5XcKsIsyKO3iwYqwe91q07bsuLtsr8YehY/imcBO7Q7T2QMaHSd4wJAPbvBOx5Ok3VMjVP9ED1jyL/4DrO1nAfpervmH1s1o3bCq3Q1UWGN2EKtw27L98H7P9MMXLcshSzDRm8uwvGqTMMpKl+9XK4EJ5leqR2q1agIZpQbdlsUtyxoGDMfDpDjtYwQFG/wTf9WkpkGZ0daNIGUmToFtfktqcoFuWgFXvAXot3208WHq7J4F8LR+rd4BpeXh2i8ryOOj1m2J22rbJSumk9mr88u0xoqFp31Al0tw7FbFSyGtq1VV9GZpG4BhNPljPlaJlk2OsL9HTPURbyt1KRkVqL5Btd01hqukCtdm49m5VpSLLK0aj02vLg7LtYfQG2E8+h84Bpddn5QxZJyX7ZcrNLuHNMmSpjNGL3Z23TygasjvpuCZP+t4dvcMDfT/DWMxIv/wb8ttrwplgp8KrRfP3aY16mH5LkFDHjygHp6TtY6b7nFeLPa9mwvmLtgm5iokxLYP+wOPhgSd5XqOAsW/SI26KVz6/Jt2G6LqkH9u9DubxY6rBhKL/gOt52hSv97d79go9ZDkmZ0OPhwc+T4aSozX2TKzdDcb2hvTjO8rdiipL0f1OI0iogiF7HJZx3nQUuyQnLytGgdMYco8CG3d/gzE/J/vwku35TUNzsNue2BMOD4SS0T1mFhbc7LImL28X53SVIb+WiTtlLJgnlUoNInAyffFJ6cNjCn/ILqnl90VzWKpTjs+6buMfK+ZXFIpUYdgWlifjZGN4RBGMSOwO633G5l7oZUehsA48i7ajo4dzsRjUxn/5wTUkkbLVZaf2ebK/KhqFr6ve/1oa3sWu5Hfg7cqwwLDJykrl88n70dQ1kd1bOm3HRMtiSXxIFdarZatgW1+Uh25X0fPvyPeGrjXFa+TbBLaOViO0VBdpuDama8uId3hM4fXZ1xDkUg4GgW3QVgIOrcj+Vekb96/vVAH7fTqvspJ/1/lfFWDaHdxWF90fYARDutGe+OKcaLYinC5JN3vs6wXe5Tl+vOd4/JDD9iGjT0askgFX25gvFIR0raIP6rHcOsz47++XtNVy/s3Ao+OaKtX1kPHzU3w1TmtHS7Rkh5ZFsLqR7CyFhUpnUxmb7WPCq3mT3Fzv0urLdC21I7Fxh10sz8X0XWEP9sd4LR/f9Ri2+3enQMNSo4D7N6tUN+pbC1vt3tjAMOXfzt0ukapEqyq0LERLM8poTzG/otxvKcINu4/C18vCqPFmVWX5GxDgbxP0Td/FdB0M18Yb9TCCtnjpHn5K5Qm9u/D6vNlmLMKcq5uEX1xdNNaDdZgRRmr5rmt0lSx/GNj8UMFsj9sOPddk0iox9nP0zYz0Jz8lvLlqFI7JJmkiX8yWie1btA4Cei8e4E7OMM9ekD76M27CnOtpxLtVxH97PW/oHZZj4vo6XZXH9J+ej3gyuKdkvL4iv3rL7tdfyI5CdV7Bg6NmLJk//nPmScV0kfGX58uGDrKLc/rq+zrutfiPTwacdYWZ2L39kuLlW/KbD4TzW6LpCs3QsTse/snjpmMsuhPez0UJN92nzHayN2q7Js+HHqcdtwmnrP7H/8v+/St2l7ds3l0D8lDsPp1I0OXDTykOHvNqXfL1IuTtMuTLj5umazodeJx1WzwbeIx9E3P+knL2gWJ2Ke9l38VqBxj9EcaTf0PWO2GRGbxbCi5ql+ScDjy6LRlpPui6fHbQwt5eoX18T/zmi6aoekcD7NEY6+Qx2uFjbu0R07XYJT5u7+j3k7bLWa/VKDT11y9JVXwLeSahl90h5mhC2p0wCwtmodgV6iLYdUzatoFnandpycupTBjSGM12wbKpLE8k/LkcKgFV9HSGns2h79BxdAm5jUMoCwzXwT8aSrc/OEA//YS8f8o8khDXWoVpmzpPxgGnHVdy4rI1xvKS7PqcbL3Bagsn0x12cL7/55SHT9l7Yy5vNw1/UbB1LYYtg56jo61lf1/pJqjP/h86PvynXt+pAva7XN++yZJErKTgRUVaaLTsDk7HxDp9qjxDF+RxorKrEuL5BvvjW8wsxRxHHB5+QtuRdFbHNBrj8TYVYO/93VCal82pX6CvorIb+3ZjNB55bZxWh1ZHx+scoSdbzGSPFq7R/deU2xX5akGZyYM4K0vKuLxHgq/QjQTdMtANTU6e6pRluDZubyWwTkuW2HWIX2NIrC/VVVAWsrBWl6YbUGej6eKhwZDf0+5lplVlIaQCNQKM52spWvtIxqRKhVmkRcMFBCm+hqLiW77b5CM1ggXfFZHB4ZnsaoIe+eCRxIMkBetVyq9udnzcCpHhi4sNu30qY92saGJVbBXceNwTVeFTtefqu/JBtW6+opx/JJteNFileL5hfxOSx5m6z1pTvPyjAe7ZYyHVDx8wC2WPcLGN+biNFc9QpUC3HSFNDDwe9Fr8+LgtY718C+e/Ip1ekt9+0+NjujbG8KhJaJ4rCf75WqT+a/Xgsk29UQaedFxeDD3Gnom9vSJ79TOyqw9N9yj7oJb8KNs9Kr9P2epLgOI+kfex4gmKKdjkKJAkY7+MMDZXxDfnhNMV8XwtX0eR9d2TCebxY4r+hMjp8f5mw+VGfia1aMOzDQmp9MXf1LV1qv2qYRQalonuujIi648p/AFhZbFN88ZXaOgaHVcwTcdth6PAxtrPMLZTspnyAMYpuq5j9/uYw2P0gwl5eyykiq3svequxTYk7uS+QrNYToVaH4bo9l3EEC2V+ZXdMQvr781Soi/bUPvdRIIzqzyVz48i19QBskUlB2ldk1QMkP2ZbxvYuoaWZ8o4bKDZLu5Q8FV13ElSGcRF3tBMAley/mrBUcfR0aM15WbeGLDtji/7wPEIumOJXYlLdqlE0Bia1ghIPEuXLrLIpWjVj4t/BQJHfX1nCtg/1n39faeDspIxWFVBXkKqknqTvMKzXLqHT7BcH81p4asuocwyyiwnnclJrAy3WLpB4HbxvD7OgccudQgzoUgfeLZSFBUNmy3NS2abuJGi3/c5tWyD48AR6a5jctL28FoBQUfHTHdYrk+5mmIohlo035Bu9phuSFWsm2JQFZWQ5kuNZBNjxCm5yvnKFTNNt00MNSatM8HgDiFV3hvV3c/z0gxdDI+G3ggWNENHV1lpd1/nLriySDMy9SAp05xkE0uMS3kHBtYNTQzGndZdsR12BdbqScijOTxG89rofodqMKF0Jfn2OirZ7GVEeL1L+Jv3S/FvbRO2i4g8u0/OsJrF9pNxwEnXZdJxedgVYKyTbjBub8nffdGIbOrRWLJJKFIxQ9uugdky6JwdSJzHZIT95HPyzhFZcMhsHnOpIizqKIzAFQ/dk3HApOc2J/2HbUOCNJeXJF//QkWtiNVComVc8fkcnjWCgfm64HITc71L2MUZuZKhO6bOJ0eSc/a473HslphzodXvX/6a/fVcEeFz7LaH1taxPOnMc69PbLRYhzm3oYzDtnGukpVlJ9R2dDGNL2aUy+tv/F0NRQLxRv0m6DILDpntJMr+Yhk196JlGwyUTWDkW/RcA303o7zvsXKVwVeNDiO7wzrKWUZq3FdVKqlZitdhIJYD4+aK7OPbBrMEYLTkAGAenZG3DwmtNte3e662ojxN8hJP7Wv7LWEemskGYz8nWc8pdsqQ7rrfyA0Tcn3BWqkpawFUrdpzVEp5Ge8b87IcGqUQVpZLgU5R1tQPTVE/dIWekl+LdL1oXqe5Mu41hkdiCE9LkrwiLsommNQ1DSYdl5Fv0XcM9OVadl9Kwu/0Aux+X9SmKtF8o6TzZVVhGRotVcBahoYW7dHKgqoetNQCuN/y7P2Hns1/zAP7Ha9v36h7GgU1TpTdTax2ORoQ5RpuZ4JteZi2i7ffYC9mzWku38dUxRxLJbnqQQ+zO2QwOKXndsl9jzCXD/wuKVjEGb5tsInFs1WjXeruDGjEEsPAbjBQz4Y+B55Fv2XRsVuMR8/Q/SFmfwmAOZhTrITGYLg22T6WgqEMrqDiUe4Vl2avplLUq7JsSCH1GA/uqPPfDqO8T6e/P+bTvlXA6tfWX1+IJNIhgkS1gKEMxu43QvjqomUeHCkYsCcn3t4hldWidAJit0+Ylex2hUjg9ykz5d/64nJDvE9JIoXcUuQM0zJoBQ6jrsvpoMWn46D5gI+dAmN7LZDV2UfS96+aTiVZ7cgjGak4XRvTtbB9obMPP38sMStHZ+SDR0R2h4UKoJzuE+b7lCjNmwNK4Fr88KTDadvlMLAYtkysq19QXL0nvXrL4st3CsqbNynaTl+Yf9VgQtGbsEg1LjYCv71VBuVaOTcMnGbMN/IMrNlX5B9ekl++Zv36Urw/9ffSC+TP6A0oWj1Kf8g6LFjFeSPauOu+BMnUdQz0/RwjEo9Wug0p07uv5436+A8naKNH5P0HTPc5F9uUy1XMYpewi3NatmId9lrCO3QN3GSNsZuRrufikyoKCfbsDkVB6g9ZxQWrWJR6dYdgGRrjxi9n4mZb4fvNLkkVAaRGbBmjCUV7TOoNWSgxyWwvoGxD5XWJbN4gMMHYLChXotCsE6TFt9VG8zoUTptQ7b5q64pZm/8tA9fQcA0NLYnEY1fINEMzbSmCTovKsMnLu/2xZejoutAufHUgcQztDt1m2hIwawt1g/YBUWUQ5YXI94tSRB+aRmCLZ7TvGrj5XjrJ/bYhiNj9fuMz3Ttd1nuJXYnVM8kxhJ4f2DpavJEOrMzRNL0pXv9QB/aPNRV/zAP7LdfvclO+wfpDsFC1gqioKs7XJgeeR7/zgpP/MMHa3uAuPor67MMbsn3M/npBeT6Vr2ebkkvkeehBj253yOD0uSx5h31uRj6bVGbUv7rZcqUYZdNNwu0iVMrFkleAbop5uNdrMVLUhONei8/GAWO/R8cfcvJvv4cRb7CSLa1kT291I/6SNG4C9ioF3yXPqIpCKStjNQ5Nm+DLPE7JM/GDlEUlnrSm+7pTQwIYQFFIISsoMf6BQtl0apaJ7golWxR0KjnXtZtxoDE8kg+l14b2AZUSnJRen6SEpBCm4i4tSYqKcFtwdbVirZRjr262DZFkE2XEeynghqnRPfAa8O9xz+V/etjnuO1w0nZ53LOx4zX67iPFV78iW06bA0E4W0ooaFHiHw3EN+S1CCYHGB15sBrDI8rjF/LgL3Ter1NupkKWuFzHDc1hGDhMui7jwOG04/K8b2NurtDnV2QfXnKjaPLxfEu6TzEsA6fjMvj0Ia0Hp1inz9DGj7j1HzBb53zYxHyhvucozTnqtRgFDuPA5rTt8oOx2gF9eM/mL/8r2w83hFcLtldCTjddE+/AZ/DpQ5yHzzEffsKme8Z0IxSIq13CMrzrSupss7FvEeyv0RcXpJevya/PqYpCZZl16X76DPP4EfrJM278B1x+y+9W75h+dNbjrNfiad/jqV9iLN9Qzc7Jphdk04/yPvM8zJPHaKMzsu4JG83l65uQq13COs7JypK2LZitp32XkathLIXcsf+7n6kxdSIy/qMDzONHFJPPWeJxtUh4vQz5xeWadSij+OdHbY4DR6TmVoYxO6e8ekN+9Y5oqlKKW3dj3KJzzN5sczmTXdwiktDKWn5/HNgMWiZuvpdDUbhV0nlbgjP7I/TemLTVZR9LGkNZye7MMmR0N2wZdBwDM9mgFSmVaaH5sveld0jp9Sn9IbOd5Lutk4yyQkayaqz6uGthbK4wtlOS63MR7RQFVreD9eQztOEpef+U9+uU96uIq13SEPhrG4GfbtC3N2jxDkxT7EcAuvn3Pmt/H3fYH43M/4SrloUbqsnIlBR8mwoJehnJGNAdtemN2hiOj93uU0V7dGsOqx17FY9elSXRdKkezC3sjoe3XaL3x1gHxxyOntN1WnRsgyQv5KSnTuW7JJeHblkpaTXkWclG14gz8Witwwzb0FlGOUPPoqgkD8z32zgdDbNzhJYn6IXQsmvCPFkqRS1PqZIYeyfEhSreky6XaheVkm7231D5FemdcKMuSnWRuv9797uuv2+8aKjRpd32ZH+gFuCa1xbVm9+hCA6aZXaoOc1Ce7dOSXL5mcSFnHSTXCDAiyhrJPCNiVUZj/HtBlV1OmgxCByOey4Hns2Pjtpqz3UP+ju/Vj6hXdPF3u3gLImo6IjJ0zx9it49oHS7FK0uSy1gsy9YxQmv5iHrOG8o5vWep+OayoNjM2gZWLOvqW7ekly8Jjy/YP36kmgZkUeFkEM6KqF5ctIUr7x/ymwjxetaGXfTvMA2DY46DkeqOI48C3tziTZ7T3b+ks27K6LpimgpXjnbt3D7nggaHjzBnDyl6ByzUAKA2oeU13taRx5kPUXH0LeiECz3Aqc2/RaGZYpp+/Qp2uFjiv4p07V0ofUusi5ew8DmtOPyWIVxGsu3VLNzcmUVqMemmu2i9w4o1FhzGUq6cd3tBI6pzO51V6iYiTPVZe7V99tRMvPhEVvTZ7nLZfSqRrupKtJ1AKd8rSlsbimXU4rNqjFj14SS0hXl4V7ti2rhRi2/rz2Onqmhh1vhJ9bGZ9tA89oY7T6F0xZFsOrAiko6aVd1cC1LrCZaFsnoDkXucFrkSv0YFhpxXhFmZSN776osto4t3bK+n4vSN9wKPd+y0V0fvXtA4Yvi9Hq34zZMWSmvn6XL38G3VPcV7yjDDUa7/69Gn//29Z0sYP9Y96VrMkbUEKpyqaEisgWTUlTywJzvxdC4jDMCxyDyLIbtCa4dYJ4uZQRgXBNOl1SlSL7zOG3GavVIzxt9pJhd4gC6N8Btj8gGHv2WjAb7nkWal0w3Cct9SriJFT9QCBhZkrPWNYqy4v18zy7JWScWWVmp9t7EMTU8y8MyfQxLw/YF0GvomoTv5anIX4sUM1qj/f/svelzJFd25Xn8vef7EhsigMDGJJPJImthqVptMrWNbL7Nfz2fptvULfWopJLEKm65AxlABGLzfff5cJ+/CKSoalLqUZnR6GZpmcXKBBCb33fvPed36hwoMoj1Hc3mi1zJqd/P+OqBpwC+c0x4fGlSzAHGoMllsyZ0aKatEm+Z7aKxh+gMB43hojYc7AoqUEXa4SHNFFGkX9RXLX04Mwl8rduOaCJyp2gqTiPt8nqBjGfp+GjiYOL0LDuBS0+OwPZr1C/+ieTauw3S5Q6NpDQAgDX0oQcOdN8jEvtgAi2YoB5eorYChCWl9r4NM+VH6ruuXkzRk+Qnjo7LwMTEFrDyLZpX/4z69jnClwvEtyuJvqJOwDkJYMssL/36E2inH5HCrNTwehdjEdNYsi9eviVw4dMer6fVazcvUN08R37zBvk6JIFP28IeWTCHLtz5BP7VDMaTz1APzpE7U6xWNIbd5pSBZUqM0sjWFenf0Sp00UaZ/YF+DGmDD6fQzp6iGZ5j2xh4tSPRxs0mxU7CdfuE5ScjG7kfypoAACAASURBVDNXx1hvKHLm3UuUqyWqMKX3m++AWQ5amzqMbVpjk5Kkfy8PMSNHh2dwjG0dZp2CJ2uV+lyGiUQsGRDBAGw0A4IZdnmD+6Qk9NQ+V4KLPoDzxDHgmxxsvUW9XaIJCT2lccIscc+jm749RNpoCg7QFw73qBCqsVuRoEtj2l8xBujUgbUm5YZlMrFBTu2kv1SDrWuwWQeWJWBlRoVHhma2uo3O9FFAl2nJlZS9d2AaSP2oM7IArNcEaQ7XaPP8AB92A7TOCJU9wl4eDjZZhV1aYejoKmbH0RlYFFF8TJED/vEHnu4FbXdIt/+3XD/lgcnr+85T+4kY40SW0FmH0uLgzJSephbf3B+wObe7XC3dPxjaePaz/xP8/B76boGx+G/I7x+QLrcIX92hjEvUOZEDksUOhmdA9x2MXr+WXoszPPn4z3DlTvD5yQRRDfzFxZAiNNIKr7apysPqv39/ZWWDxS7DOi5wKxFWfTbPMZ9QUTSkiqg3ijq6iZl7BcthMHwNgwsGgzPoDBB1TgojKYFXmBiNAVx8t2Gxa6E1tfrz4yeZRg0NGOq2U9Eqed1RJlXUIC5yxGWCRUgYrqxs1Kn4fUN1b1TtwcL9ntA2yABrSd6co3PMfRO2YHB1hpGWHwItb5eoXnyBfEvMxHSxVjBl3bVUArM1GcD4+HOwyRytO0HsnmFfNIiKFl/dJNhmS+wywoktw/ygYJPg44Fj4NnUxcylAMKxzTErl2A3C9S3z7H+6/+OZLFGtiZhCCAzwiYuTv/iM9jXT6A/+UxBee+WJd7uc/zTIlQcwllgYeabmHsmfjP3DqT6m7dIf/tflaEYAOwJ7bomv5D7usuP0Y0vsPKusM5q3L2L8eVDgqQ8ENgvBpY0K1v4IDCgp2vw7YooENEWGuMEwp1egE/O0A3nNOKMarzeRfib11tsYvoMcabh2ZmPD0Y2no4dfD61Idav0L18gfBv/ivS5VbxCQdPL4jBePkx0sEV7qIKr3c53u5zvF4nstMRmDgGrgc2Zo6A2Hyr9nzx7QpdS+pKaxJQ1trpR8iDC/zhTYgXmxQvVrHae008EvP88tTDmavDKzaoXvwzRfHINAlrEsCY0BiynnyEULOwSircRSXi8iA3/2jk4MyjDDM3XYIna7VD04QBzSGPZjO5JtFEDWySWhVBrmlwLQZPZwhMDh7eguURkMnxo2Gh1W209gChZmGf1tgXVJRbGavk6BwTR2BsCVjZGu3br+g1k52kbnlggwnE/AkS/wJ3cYWX2wxfLWNspF3iYmhj4uiYOAIDXqN9uCVSCwBgTvcGOT5s37vp/kfCpX5UBez7Fi/1BHcttK4F1xi45JW1HXDiGMjrFp6lIysbpGWDu12GpiWzbtV2GJg+Jv4cOjdgPFmDObfQ3Xdoq1qNoZqSxAtN2QBRiuSOfFt2mkITOkWHD6YYOCOYo1OcugJp1eIiMGUicY1tXqFqyJnfy/Br6V2jm3yrKBhZ2TxCOwFQI6zj5OaZb5JkX0qYHUOmrDIOzg5vibYDsRI7SIMz0PWL5P4AoAGC6WAg+O/xKaytgLJp0HTk6N9KmXFcNrhPChXU2fMkM7mA7uGjAMWoGPqBhO8fmY1nnqnYlDPPUEtzW2dEYChisHwPbfUazXap9lu757eoovRRx9yPfe3pEOZsBj45Ay4+Re1PkcDEy22hIL9/uAsVBzMrG2RVo4JFpzJUdCZHenOfBApjUwNbUvGq79+g2Eao0z4CnsEMTNiTAM7ZBM5nn0NcfoxmePUoCuUuKpQFwzY4TjySnz+KWdneol68RLYOUaUUSGlNAkWCN3/2Z+Cn12iCOXJrhJtNrh7XNi1Rtx3tcUyhitfQ5NCzLVhCYZetFC5B6GCGBTG9QBvM0AzmeIhoxHkbUYBiP0b1LYGrISGszn0TfPsW3eoVqjdfI7lbkw+wOQQy8sEECE6wLxps0hrrlCDCxx3TwBRwDQbPYJT4EO1QJRnaksZ9hu/AHNOuqPGm2OYN1jJnrY9KGUpm4olziClhyZpYg2Gi/Hf6IAAfTSFO5oiFgzAlJeS+qNG0gM4ptqX/OgOTg++36CScoPd9abYLzR+hdUaIa8juqUbVf165pgAJoi1V8WrzhLovzsl/JSzkdYes7rDPawUfNplG2WWcwejo39fRFm0SqryvXoQC20dckmBnm9Xq9aLDLnFIbUH+szZL0BUZwDkVL439yTmIwI+sgH2f67h4oWvlnoigvp5uyRuwAGDhdkj+mFWYyzTkw3jpIjBRtTrG9hje+ScwpFpqBKDYxpQBleQoI/pgapxJ5WJLaBz2Dfh2Rctcfwjn9ENYlo/OcDGeupSh1XSISqJ4pDKeIcxrFQLZ0yR6fl/fuWRVg1J2br36jgkGSwI950f5YMcQXVM87q6KmgL5qpZQU23XKXwUZwdKhyNzgvSeVH105U2LuumQ1yQzjnOSZfcUhr4AFDIK5jhypSfA23IcOHR0XEoDuGcIXA8seAaNOBTloyM0Fb9boIt3VLjkbitfE307Xe6VWIUbHNwV0B0L3sWJUhOyyTmSwRU2eY1tVuK3ixDv9jnudhleLBMURY2maVWQIyShfxZYmA8tnLq0jxrbHAPRgod3Mr9pgXy9pxsjYzA8QwZGnsA5m8A6vyCz7ugSm1LDlw8RbsMCt7sMm7hQfDzP0jGT3+PEEeDhQhavVzRGO6Ktu/MJzJMxZWc9+RWqYI5N0WG9L/H7VYxVUqo8tn7sObAE5r6FkcXpMLBaAeEDmv1ajsK4yrBqgxna4BRRK3AbxriLCtyFxaMd4NgzcRHQr6kjoL14i+rmObLbdxT0WtYUnmkIsIAEDq0zQiTTuh8kmLYv3o4cHXo6g97k0qMVHj1u6qS5DIhMOx37osImq7CXhZozjQJRAwtzz5TYqXfA7h51uD98LcuQgp05Gu9EKiFpPx6XNTgjtZ5nkOBiYDIY+Z6yx/ZrElS1LZjj0/Nl+sigIyqJx7mXkUOmpL0bTCPwb3Yg1XRFDtiUTdgxjo7rKAqCBlP31qqJSy/dZ2UGrYzRppGyr+iOpTxsvQVgm9HzcmwB8CTSyxYMWkL0/a6uaEUgJzLQ2L/ovoB/P2H+h1w/mgL2g3wIfRZY1yoopdaUMLoWOjcQ6DbOXA+mYFhEDu7iAl/ex8hKKhY32ww61zCyaIf14fAc3vwK3gcM1id/ASfbE8ct3qG+e4M2jdCkKTL5QW2rCrvnt2B8AY1ziYNxVBfgDKdwe6zPyQWJG1wXnW4jFSQdz6oWi5iW7ducOHWGiGRXU2N9FGtSl0SPL5mGmDPsswq23o/hdDWCbCTKpu/u9mlFnZ/cw7VH79beDMwFgy0jOnpwr3hvnNkzEjOZE9a0tMvqs8v6ImDaOgxOPxOR6gUuxw6Glq6oJZeBBVvX4OoMgVZCy0OwIgHu3qKNdmijLap4h+3rdyjDBFWUIl3uUWW1ilfRuAZhCRiejuHTc9izEayzM5i//is0/ilKd4p11uDvXu4oBHKd4B/f7JGmJaqiRlN30BghoAxT4INTT5mhf30WqH3RtIvBwjW0eK1EIr3k3LuYym7DIVL9p3+OdnCGZjDHH/YtXr9OcBvl+JsXG3od5HP10czF5djB1cDGb+YeTh0BES7Q/v6vVXBkb1y3p0MY4yGsz/8K7XCOOpjjd6sMb57v1W7q9YOk5ktiw7E37dnIAI9X4Pcr1C+/UFxK5T8azYDBDMngGg9Zg7s4x5cPCZZhgX1aYujoFAkTWLgeWPizM49o9fdfIf3t/4Po7VKNDoXEO/nXpzA+/U+ox0+wYx6+ehseGbVLlfF1GVgH6O/2BuV6gSYmQoTuWnCuLyFOr8DPn2IlRljsSzzfEqmkF23MAgu/uRjg6djBqStgLP4Z9c23qO/fIFuH9Lz4FAGjP/sN6uElIu7hqzsCG+9zSpAe2zQNuAosXNgtxO4G2FL2WJcnJNywHDIcD07RBHPc7Cq8i3JsM0p+tuQObmyT9F3PtuDRPerFK+p42wZcXKDTNHS6hdZwEEUFNnmFbV6haFo4jFYFvilgaw2NzPcPaOJIFWMekG8Mozka/xT39wV5FcNcBWeOPROXvkUjyHwLFq1Q9XYhlTptUer60T32eA/WF7H/1VTspzyw/8X1x54g7SiNGTWBMjUkAE+gmRnOvRMipVsCVdOplFbFDZTybgAYWHRimdhTuN6pav+NyRxdEqKNthD3bwkHFaUk8S0rtPJklK/3tFzlDIa/IESMa8GYzsD9Ed0wvCG80Tkc00fnBzA4Q+KQYnKbVdC5hm1KS1jb4Kpg9Dc/AEro0I/kAMgE5cPosf93sZSi9/L+VuaGaYyYiExo4Jyhazvkgql/f0yx76/+v/dhmsff/5hjZxs0fvNlDthFYD2i1k9sDtHk0IoEPFyo57a+f4sm3KGMUpRhimy1VSPCnlDCuAbNYLBHNoRjwRx5GH76ofLB1JOPkDAbD3GF+7jEt+tE4ZnStFSjTdMWygg99gz8+nqIU492UR8NLQxMBqsrwB9u0YU0jmqjQyIx0wUc36MTuZTi1/PPkHAXD0mNf7yP8HaX4WaT4naToeloN0KjSQvngYWrgaWKF9vcoDwqXmpsODmBOL1CM32KxAiwDCv87i7Cq3X6KOvM0jnGnoGZT2PPi8Ci5zlcgMUrNKt3aLZLiloBwEw6wWveEI0zwr5oERbUKcUySZoYfKZSR14PbQxZCb67Q3P3GulqdxBayNfCmY1gns7RHvEJt1JU0H/NiWeqghGYHFr8AC07GHOZLsBdQa/p7BK1N8Ve/mzh0c/Wv8+uB/RYB7xGsySw8SPvWECki8abItd9bNJaUfl7+v0BQszAkxW0iPaE9W6j4MGa5QCWi87wkDYaJayn9Pj61xegqYahtdCKmLqvJFTjQ/Q0HI2h6WhCUtQH5SHTyDvGNBBwtyll7Iu0uRgCTErwO9NFCYGoTJHLe0TvIyQWKIlAtDw9kPelKKvjB3rIH7u+z0rnpzywf+X6QT6EroXWNuRxkG8SXoTwNAbHm8DVGaqGhAdhUSMqGuQ1/erHa71Q4lT6LyyhwRZDTOcT2SVEMPwR2j2p3zT2Rkl927JWyb1t04LxjVIxOrONhKI6EMEA+vUnEMEEnR3gdHSJyrYQlxwTW4dnCOwLkv/Ph5ba32Vl/R2E+UMBoR0a5YQVx8VOMHRdJ6XzHVgLgGsyUZkyvrg4jCf7yBVDZga9n/58XLAMwRWtwJaREb3QZOYa8E0BUwKALa7BZB20MgVfL0mSnISUHiw5kdndg2IrNllJ0fOS6G+4BjSuqcRrdz6hfdB4COOTP4M2PkfrTbFsTOwSOhkvogKvVTdRQdM0CIODc4bJwMLEM2j8NLDwy1MfJw51XTO9Aku2BKNdvFQMy67MwQwdzHGgCYO6A0lVb90J7hsb67jEm32Gf3oXYrHLsAoLlb3m2QITzzhKaDZU8aoXrx4VL64LGNMZxOk1+NkTbISPu7DCt5sUv329xc0mQyTRWkLn4CbtRs98Gkn2Ska2XFCA5naJJiYxCLNof8IHEzT2AK0zQriv1WejbjsYgsMQHOcDGs1dD4mjx/fv0EkfZZ1kyqpgTQI4sxHsq0uI8w/RBHPsUtp97fJD92kbHBPXwEzChPUyVmgktC00RpR+7vkS1EsS8e19ptBuffGaeAZOPRMTR2BicfDNDerVLcr1g1IdCrengExRe1Nskhr3calGrj0Orlfr+QYDe1hT8VovUGxjUi/qApowDoGVWavSEHqls6OTelYwjaC9VUbJ2GmErioJ1QZIhJOQ1PoWVdOi6To1zu/H+FpTQWtKMixLLyY3BJgTQLM9NIaLommVwrd/fgeOgaFFgZcGamgyuwyANF5bMuXCQKcx2r78CVdhP9oC9m+5upK8UV0l2+26Bsv2GLsTNEMPI1tgm1G3s4gLpFLSHfeR9UzDXVQoYYFn9nsaB67jYXDhgY224MkGAGAEa8LwcCYJHxWqrEYruYBM56iiFMKRkRT+BkGZgwUTohM0JZjpw7ACDF0frm4hq1vkdYd9biuadFq1KoH5eGbdSLVlv+cKZQZRHy2ytoT8c4P8CMWkSc6bIhdYQikDPUtXBawvZgAUMUFnDEyDKvi932Vk6zDkAntgUtHSmhI8uSdPW5UCRUbRH3022GaFKs3RZCXyXURQ47Imz45EUfXRI8fePPvySnU+7ekzIjwULd5scyyTEsuEdjj9XogzDZ5rqMf62XmAmWdiIvFFHwxMBAYDz/bgy9doww3qiPZvnYzNAIjWotnkJWPnH6NxJ2icEbZ5g68eUtyGFDHyzV2EfVZRCKVgcGUU/AcnLj4aObgIDJw6AuwVFa96datEEMwgaruYXoCfPUE9vMQirvH1OsFXyxjf3MdIowK1fI8Zto6xZ+BMGpXPPJ0EIVvKi6rlaE55s4QO5o+kD4qECPucxAy5pFCYspu+CCxcym5uYnHg3R2a1S3qzQpNVatDmncxhXl2pvxuGxmeeZ8Uai/T2wVmroG5ZDGydAvEGxUFoxiFgwkwINL8vmhVajkRQKhYT+XXGVuCDLq7BaoHSdJPMphDXwKEZ2CjM2zzBhsZ6LkMC2SyGDoGFS9XJ+Vgu6aYneJhgyqlUS4AaLqOzvSQtRriisb+y4gQYAOH/o4u3/9alYFVGSoZm9JIOwBk19MxrgRl/eeZaxoEpw5MMMrV0yTDtP8MMMuC5vroDA+d4SAvDvFHnGkYOAYmroGRrcvwTmm3kebrHl/VcYPUxVLk1UID/3cUsZ9IHO9d3zvMkgmA6zRG5DXNbIucTJppiPLFF9BMC9wb4uyTP8PMnaCZThG3Fl7vTdwnlHr6xSJScuEeqNp3H72Jduab+OWpj5l7jsHsCtPpU+jJGma4RLO6hfPVFyoPLFvtUGXkw8r3BXhWo4xSCCtEGSXQ3VvojgVn/rUyA2uWi5PR7EC4Njx0BldSdjBxkL4KQ6qIGPKmk7svIKtJ5l7JD8e+qFE1rfzfrfqw6ExTqJs+bbY//QkZu6JpxPrkjP7MNfpw9h8woytlPERBnVWyo24qS9BulyozKZfRKj0R49ifpl5KzmANfcV3ZLqAPpCoHdslmbc/UifgyjtFKOPjb8ICm/sdtlmF19sMsTzx9wq1XvBy7CX7YGBiYDAyiKa3aP+JUpireIdotVFYJW4bxBj0aFRoPPkMjTNG64zwrrGxKxosHkIsogJ//3anur00q6AxDY6t49NzHx+cuLgeUOf12YiT2vDdLbLf/TdkS0IcAbSvsWcjiNNr4JO/RGiNcRfX+L+fr/DluxAvVgn2DyntHA0GyzHwX56d4NNTDz87cfH5mFP+2ItXqN+9RPzNc/W1nbMxxJCEIO3pUzT+KTZ5g21eYxEXiIsabdfhYmApAsSzsY2hAfDoHny9RP71P6DebVCGKezxgEbk4yHMn/8FutEFmsEcm1LDP9wnWMoxXd12GDrklZy5Jj4/9chLl62B2y9VEGevrGOjGfjsEtn4CVZpjfu4wJt9jlCyIi+GlET94cjBic3hPHyN9u1XKG6fY/9ygVYWVvt8Bv3qE7CLT1CdfIQv3kZ4sU3x8oHiagzBMAtMjCRx48wVEOtXKF58gfjtnbIv9K8/n8xROBOs4gqvdjlePqTYxAXqtsMssNQhzjMYWEim42a7VN0gLAPMdsn/ZTgoSmIe9vipfoxJykENWpargzhzA+X70iaXaLwTxA1TxCFLENZrbNOB7CKwELQpcSl3D+jqksRmgwkBf+0Byo6sMf+ewnV8/ZQHJq/vW7zUxQVJw4VBVHWhk9mwrpCvQwAhuLUDOAefXkCMEwTeFDM3kP4pDXceQXrTskFW1I/AsWFWIZCnXAAqBJCPfQxOBuDOCNw/oQWslHlHb5dqtHicB9YbiJuSxgL5eg+eZJJ0oaPZLmlOLY3DijIvdBKLCJ3+f8sFhACYgK476IROpyrLf+TbKlsdTXuQ0KunTDsQTDRQQeNMU8Zw5Qc7Vnm2NbSygNaU0KqCpLl9wUojlOsF2jRFleYSNFsRCPg9Gkgfq8J0nSgZ7xcsKVXmkzk0x0OnO2j8GRoZ155ULR52JfY5Ka9uwwJhXiEtG+zTUh0++lypoTSb/2ziqkBLJ7wBX21QPyxQre+QvnyhouqbvFQnXsclADGTwZp1cKa8P+92hGtaRLRA72NQyqaFY+uSaWjgl+cDXAQmrgYWpo6A2FA6c/WO8EZlRFJvezwg1Z3EHBWS9beICtxsUgJJ5zW40MA4h+UaOB/Z+NU8wLOJg7mnQ6yfK3RSsVwi2xBdXlgmdSOya63cCcKyRVi0jyXcnOHEMXDiGBg7AkO9BQ/vweMHEjMlIRqpNjR854Dimn6Ixj/FQ9bgIa2JMiI9kD0hY+bSjrE3gvN4hWq/RpuQP4o5vgribJ0RefZK6r4SOUI3pVCijycZWRzdq3c07tvsjl47U/EXK+8Eu6LFMilxF1J6dFm3B1uKSbsilodg+R7lLkSd0BhbuBZldlkumOMjq1skJQVFZiWNWwEa3fWhlSbXwKoMTQ/+hYQHyJy/ThhoNIGqPXwudDmKd3QOnckuru++GAezHEA3oDk+OtNFZ3oo8kYWIDkZ4UK9doHBwYoIrMpQyyKo2S40N0Bruqp4tV0HTdNwwID/x18/qgL2gw8DGkPHDaWW6SwPzKUxopZS1HaTl0CUQuMvYSQRRBJBnGWYnv8KOhPgDLiLTQC0S7rb56T8qxvyUEkFX5hVMAXDemhjX9TQGcPYERiYAwymIwgmoOd7NNslxPigXOxHQ237uOtgjBEgN8lRQxY3GWehHt579IyeEMJsl4qaICxOX/C4NwR0Azqjrs3hOsllcaBOa4QHUWbnXgSjBDHAY0Nzb4quygPxo8xRbpfo8lQ9xmy9p8eSl6jT/BGIuBc+CDkG7BmK5nhIkN++YFkONNuTqs0JfdggsMlrpCExLvd5jbf7HFFJUOVNXDwSn/Sw3aGj0yndIYrGdSCZids1mud/j2p9h3y5Qr4OEd+uqENsW/rZHAs48jPxyRm08Tlq/xTbvMGuaPBql+E+oXFU/zNwpsETNC487Nc8TB1d3bjb269R379BuVoil6nHGmME+z05A59eAIMzOYajUXc/CmVMg+2Z8Gwdl2MbH808/Hzm4dQVGHYp2rdfoVq8RPZuiWIXKWk7twzK4ppeoJMpzfuiUaPDtpP0dc4w900MTI6hxSm0VAoamu2Sdl6yuIuza/W8JM4MD3GNVUI/71LaBQAyB08cGvdNXZ2Av9E92vU7tDJXC6Aug/lDyoSzRwizFg8JjQ6Pd2gnjoGRLcinJckd9eYBxTam/aF8b1Gw4xiVGWAfEV5rJa0f/e7WtwQCKTdnexnAKd/DXdsq5if9XAOKXSkla1UWr+MkaluQUKnnmfbA3UciEN1B2XaoG1oJcI0wQo408JuCphzoC5zQqfhI5SjtvjpJ/ujUOJ9rmvKweQaDlsjdV10BjIM5NHpsDZeUyf3o8vie9CfYhf1oCtj3ee7eT2EmFzkDmAVmWsBQgFk+hD8GG0zgZok65YavFhB3G5jDd7Cmz2EmIU7GFxh5J3A+GCIsWtyEOS7HjiRlUHjiPinRtR3ausWLJYkCXlgC7/Y5pp6pIuuvB+ewB5ewJ7/E6JccvCmhlxnsPDwsZJsSbbghZVEpvS+yKFRJjmy1oy4gK1HsYiVi6IMue4p8H3bJJL+O60J1NL0SsucdAu/R6o/GeN1RUe2LZJ8Q/f7X6dpW7acayV2k1OkSTVWjCIujLDMNTOfQbQFz4kGXyb7m0IN1cQ3mj2icMTpHa7roDBcRs5HXLbK6Q1a3WDwU2BcR4qLG622GvVTIUQpzqUYvtvTGDR0dz858TF3jiD6hw6oi8Pge9V//LarVLdLFGpsvXyPfpiiTShHq+1DL4dkYznQEZz6B+fn/QbsYf4aU23i1pq5rnZb4ZpUgzg/em49mrtpB/HzqYeYRQXza7MDjFdrX79AsbxB//bXclxbE5gtc2JMA9ud/Ce3kEs3gHAl38c0dyfBv9zkE0zANTJhjG5+eBzj3LTwZ2jjzdVxU99DevEZ98y3Wf/cPZLCWXb87n8CeDinX67P/gmZ4jrAz8PWa8rPiI/L5QIJfPxyaMifsFs23f0ddUrRTOzQxJvk9+/jP0Qzm2FUMv7slr9syLrCWxdyzKGT0Zycezn2DstLKENrzv0W5vEUbktGYGwIiGByCOIM51kWH5xsC7O5yQli5BqUr94nURrSA9vAa+dsXSJc7VGkGc+TT4728Bi4/Q+qe4V1YUdK1DKpt2g7zoYWPZh6ejh08mziwknto67cUEpkSqkn3HQQfziEunkJcfYJ6eIl1WOM+KRGVtdoXDx0dzyYuLuVj1JMVfa6lcMIcD8G8oUqPrqwB4rxBVh8KoM40zFwTQ4sjMDisjiYdHUh4wdxAdk8+CiNAWDTIpILRMwV0psE3BK4GBpnW0zWwXZBytm1odDk4Q+tPkWom0kImiTMAXPtJxPH/9/Vd89UegXIc4Q3dgRC0oGRMQJzdwdENsNWGeIdNgyrJofEd+P0b8LaBaEqczT6BqzM4wgbXgPPAUgqj202K9Mj/1Put+lN3aIlHcFJH56SwYhoM7sLzfNoZMQ28q8EGe2hlClYX4Psl2miLNo3Aoh26tkUZpigBaBEDKhBZvg+LrIjF1jYduISTAocup0qzx8+RLFiU50W5Xn0BO756wC/R2q1HWWNM11UnSP++URlhxwVQyPA9ADBcQ52EvYspjcaGYxrrXD1DZ8pRhjtFVrfIqg67gliEPcGk7zz2aanGc733rJHdCDuSDU8D8j71J/2RxeHE78DjB1TvXiL58vdIl1tkqx3Cmz3qrFbPqxmYMAMT1siBf30K64xSk7vJFRr/lDqWlACyvaBAdVyWgCE4nSa8rwAAIABJREFUrse2YvF9PLZVLhlbfKVUbeVmh2y9V52MOfRhTQKIyRm06TUVSuFik9bY5BWigorj2DMVh/BXpz4uJJNxyErgxe9RSkPxMc6p95FZ5xcQl8Q33LUGNlmjdl5F04JJ4+zA1OH3JIt4BeyJSdiEO1UQmRuoFONqSIGc66zG802GuzBXRm1fioKGlo5T18DY4nCqCDxcoLx7g2a/RhmRf43pgoQFzgCtNVB0i0eAXZ3DN7kKqRRFCJZuqWOS8GquC1KmnkxUsQiLFpuMfFb969WPlk89E6euCV/CjdtoS5MbRiNI3bFonDs5I96g7iAqEyWa6EEC/V7VNznMNgfLIzS98Ed2PswnSEJt+arwlA29h3VAkTNMTgZoLS9UB6YxrkbpnempVIdargYsGbrpmRyeTpmDLJfkjbpU4o3W9FBzC0XZKt4i/4Ezr/f/9k95YN/j+teepAMmqVN7nrJpYHAG25lACJOWuBZlUR3fuNuyJiIBSPQhuIGBM4LvDWBwF3HVIMwpA+x8YBE+Ka+xSw+Mv6btpGCASOpxQacyg5PvrCdjDKSk1RZcKvRGMK0xbK6BWT7YMIEoIvp5GIPh71BGDgCgycp/MZIDoOjwGjt0TAAedVld2yr3fte2KONSBWX2OWEASJ5uMHCdy3wvuqn0byymHwoT0wU6xpR5m1uG+n70tZi6MeuuBcN3oF8QRJdJ60A9OEelO8jqFg8hoamissFdVCCSQXy7tMLdLkNaSoq/pHz0xukeT2UbHJdjG7PAwplv4mcTF0OLY2RxGNkWWHyD8u4NquU7hC8XyDch8n2BOpPjQp1D2ALBJUWyO9MRnGefQkwvgNEceXBBo7aCUEh915KVjTR8C5XI/XTkYCpTiU95Br59gBatUHz7jyjXD0od1xcv3bFhn88gJnOK9hicI2G2BN7WSlTRpzMPJFH+47GNqSNgpGvw/S3yb/8R8e0K2XKLKkrpBuxah0Tly6fQpk+wrnWZXlxgGZfIpZ/KEgy+IRDI0z+L7sDCpfJBqQLR0ywkdqpPk361y/Bmkz7iSc6HNkYypXlsc/hdDh7eoV29RfVwrywShk/jY+YPqUgYHqKUxppRSftEgEZk/eHA0xlYvCf0VLwjKg5nEIYN82RMgp/ZJcKGKX9lVByIIrbBFbnjxKFRpHa/J7l7mZPar9/xTS+AYIbGnSAsHhMzJh4lsPdJ1IHBoEV7aGUsE5uZUlTy0QydO0LBLKR5g7zpkNctuAbo8vnvuZ+iyaFVKY3tAUDo6IRFkwrTRVbS+JBEWR3R5g0izpuoSHlYhOT9koQizbDQGTYpnJtW4cba7hDK3Hdh/5YYlZ9UiN9x/dHC1f8ZQNMCpWQNpjUVFsE0CGbi9Pw3cC4/h0jWGFz/gVr7aKfGdj35mq1uySNhuTifnEFzAtrDTFxU1zPqEuoOD/LD1XcIkUy7jfMKX99FqrgdG49703GPD7oc2RjI2fuHoxFcawLXZ3DmDNb1r8CKBHYRwlu9I0tAmUsnf3swQjI5uT4aE6JtyUZQlWgrEo8U21gJE7iVqmL2flCmcK1DgvLQV+q73jOkCR3gZIJ89P1BJ0QwBs20Dwm17ojywAwPuTlAVpNiMKtb3N4X2BdbxEWNVVIq2X8vwCiODgh9xzv1TaUKNQXD2dDG0NExtnU8G7tqJzKut2DRGnh7j3p1i+TL3yv8VLYOyVPm6fDmAxiBozog++PPwCdzYDBDPf0Ya0mpf30bY1/UkhTeqpt+YOmYeQbGlo4T14BvMMytFjxZg+1WKH//P1FuDvu1/uDEdQHvYgp7NoSYnEH8/C/R+qfIrQFe7kqss5SKZFEjrciYeuIYeDZxMLYFxhaH9/AVmm9fob59jmhxj/UXLxW30554cGZDuBdTWBfX4P/p/0Lpz7HKavy/NyHFjyQl4ryCIZVrniFwOTBxYgu4dQTcfolyeYv64Q7FNj7czIdjiA9/oWgWv3sX4+0+w8uHFN/cRYreP/EM/PzMx9ORg3PfwDh+C+3hDaqb56iW7xC9uafnwjJhnpEBnc0/ws6cYB1VRJmPyOLCGQVCPhnaxKS0OcT6FbCldIg22sEIHFiTAMwNiIYyOkc1uMDbdYFbGRialDWmgQXfEhjbOv7zxQBThzpYLvFdPejWuTpT2Knu+tfIrBHWWU2dXEZZXb5BnrtTl/LCZloC/vAAhEs02xW6qlLKYnH9KRp3gtab4i6iYtpnoZmCKx7k1OHg2R5atlPsQjAGzXLo30v2Yp+23AtvPJMOHgOTQexuoEUrsn9kCX0mbepuE5jYFw3S6piFqkHTNFWI/q2TxJ+MzO9dP7Sit+jQAkhL4g1WTQuuUayKZzAE9gz+eQsxJDhns6flb3/Drx7u1Q6oWd2qyBDN8WHNLmGYPgLTQzAcI6kE4or2Bpu8ooTmXKCsW1nM6FfVHLiAXHZmtsGxT0valXgGRUrYdCN2dI6pM4HtTiGaHMybglUF+UFqqWaSo9L3IZzviyy6ModR5rDkkrzJC3XqfV8VyHWhChizLPBgTG98w1KsPE03JL+N5Pv9rx4KCi7olMh1dMJAAR1506GoO+z2pRoNhjl5g2LpV+uLVo/AEnK53herngbiSZN0r/aay93jwNJx6oqDh2v9Go308TT7tYIyAxQZwnUBbkvf0nhIwobJHLj4GRp7hEI4uN1X6uR+G0qvoAQx29L75kuOY5+vNTAZ9Psv0W7vUK1ukbx4iWy9RyXTv3uDrhE4cK5oPClOr1FNniBqBbZxhde7DNs+UqPp1PeZOBSFMrY49GSF+tUXqBevEN+ukC7WKMNMMiEZ3PkE3sUJjKuPoF99gsSbYxlXWMQlXsouKc5riQ0TcGV6saczOKxRY7k2prGhJiHJ3POJZuFOSBSR1FjG5LXrX8N+xHk2tFVC9sTm0O7ITN0XxLZpwQ3a1/LRDHx6jsadKKbgRgKjAcASDJ5Bnq/AZBgYDFoRoklCAtMCFI9iuRLzdIbGP8XuyDtWNfIQ1BNAXNpVDXgNtr+HFq3IqF6XQA/onpyBjc6QWCNs8hpRSaPItuugcyl28WhnNbY4+JaKV89z1PruyyfSSetOsC9b7PIasezkABDxRXZerIgVMKHLJJCBMWmbMVF2DEVDhSutWrRtp3xnRj96rFLqJPNUiYM0YaATJtE65EHf6LMBj4De/9412E9xKt/zYtqB2dWvvpjUIZLpl94gtURH9cFwl8EZHGcEZg8gggkAUDeWhqijDZqslOKGpdr/cMuAOXulgL3u/Blse4CxN4DBLUwLA2t5MmvaDuu4hCmIuE2jzU6NvmqmIStIDkx+M/rgjxwd65RYgVVr0RxcCHj2KXSXbuBC9ertd8ahEAuyptC8pqTssLognqMsamYaUSCflNVC5n5pggIqNZMgoZoTSKOjDggDje4QeoYLgBM7rekk/aMDAYI7oKg7VFWHuugQlwUiucNYxgXSqkVS9gKM4hGRv4+TGTq6JEAwKb3WoUuqdyB3i/2vHvzr6AxWtgYL99DSHarX0s+1D1GFKZqyUoDZfqxpDn3oH3xKJ2x3jMYdU6Bl0SAKczzfpIjLRqkcAShTt2dw5ZE6cw26ATUZ2GaF+s2XZIBdLhHfrpTAhRmkvrQmNKbUrz4hmrx/ilXJsc0PXqdeLs6ZhpFN6skzz8TU5uCS2pHdPEf0ZolsRXEybdORWGboIXhyBv3yKcTVMzTDKyxiIuG/3ed4/ZAo+sR8SN1IT18P+jDJfI8q2qFJU7TSTK773sFGIInwu7xWUN1UjlP7PeSVpIyc2FRwm/u39LzsYjIGGzoM34E1GZAnzZuSEX1d4CGtEMrd3LFB3jcZ7arSLYmgZDIyGAdXOK85qsEc+5phm9PYN60aGsNyhpln4NQlmfmA1+D7BVi4VAdZgIIme2Vl400lCLrBMiFuIkBWg4ElVPGyqoiK13ZFe7S6IrO7G4AFY1TuBPsK2BeNTHMg75cuR5pE/GFgyZ6KVxIq/iIzLHRMkG+sJn5qP8YEAB3aQXZfpoAEBPTFHRId1eoWKR+lP1TnNDrU8KelcAA/wgL2Q7ovTdPAWQfeAbylV6JqiOaeVg02GWh3YQlomouBqWPgX8C0BtCbCvXDgk4pG8rZKaOE5Lg9eUEXsO/WMHwX5siDmYQqQuVs+jECgz5cE1tH03UY2jp2GfnF+qThfVY9guj25I+m7WBLSn5o1QgKgbRqZKQIfUh0TqX5OH9SKTA7KIMxYWh02LoJoctTGdMgqlSFYLIyPcjmgUMHddQ9gQm0hoNK7hTrlubtTQ00VYeyoREKEUA6mbtGB4dIKtr6EMu0amQ2WKHYjMUR1/H9mJhZYMqO4CCEcXQOg1PcxuGkyWBWMdEO4gTYviMhTLxDtXiryB5NVZNkX3Zd1vm5Gg21Z89QuZTjFhYtvt3E2Mox0e0uU+iuHltkWgKuIRQCaWgJzBwZqhmv0G7vUN8+R7bcIlvvFfCX9oGUTeaejSFmF2AXn6AOzhBpFl49ZMpMfyvjfhRNXqUoH4pXdXsoXmWYoikbmAHtu9yzCYyPfgF+/hT18BIhc/DNfYQ3+1zuqIoDqdzSMbSpEI9tiXRKt2R6LWnfqnEGYxjILvUMGMwQ1VB0+Sg/PEezwMTYM3E1tJXfzS524OECuaT305izgiXHtnxypjqmbX5gHfYd6MAScu9FiC+zkj9jEqkbtCZ0sNEM4oQo8/uayVRq+lpVQ4gmR2dK3DO2OMTuDbC/I5RZtFM5XcwNwEYkAMmtEdabHPcyQbqoW+i85ybSz2TVCXj8oMaZfSHkoxlR662BsixsZHxL1bYqeFdnVLwcoYHlkYyUoSLIbFeRO2ow5HWDsu3U86NLB3IPGNDKgg6rZU6PR+g0+tcNgBuo+0inroOGPjqJxoca8Oi+8B95/agK2PctXv2pgV5DBq514FqHka0rSGZUNHj5EKsb5stNShJrGdv+ZP5rmJMPIaIlbN2AISXW2XKHIsxRJSWaskXb3EG3BYQlEFy/hDUZwJ4NYX/8GYLJHEFwgtYZ4frDEySSDrG4GqoOZJ2WCrZZ1q1K++2vsm6xk7EqdzIYUTBNmSS/KzfseMd24BfSTsMSnOJVZN4S4Z9smMJVwNGmI1pH25IIhk6qLaomR9VmitpxXKiarlOPoU9TbtpW7f36G1r/d/4lu1FTO5JefnwxsBCYtJeYe4YMs2QkcIlXpNYsM3TrDe0DixxtnqCRN4s2z1GluaJ8tG17KFiTAPr8CiyQhtaTp8iFi23R4PerFHev1liEORYyXiUragU6NnSOgaPj0/MAZ4GFE4mc+mgks7XyPfirr6mzWC/Q7DYIXy2UaMbwHSliceF/9in47JIk8sEZXtcO7jYlbsMdfnuzx14Wg34EN3R0nPkmnk0cTB0BrwrRPf8tisUrZIt7ZKstmrKGcIn+PvnFh9DnVxAXT1F99Jd4l9a421V4tdvhv79cYxkWyvs0cHTMAhO/uRjgydDGiSMwtTn029+jXt7I/U0J3aURsn79Cdhkrgj/i12JmzDHUsYSDRwDs8DCsxMXc9/EqUfjuWD1BzT3b1Dcv0H8+h0ZjBmDPRnA++QTiPMPgckVHpwLbMIat2GBb9apYvpZguFqYMsdE4cX3oDJ3U6zXQLAYbx99RnKwRxRK/CHVYZlXMhE6gauQcXmzDfxycRC0OXgu9eov/hrNDtKfe7alsQfoynE6TXK009xn9ZYrjP8/SKUAGGKqflEPs6Zq8OPblT8Tf7qW5UezT0yo7fjS9TBHG8ectyEOdZpRZYAeTgdCYGBycgsvr1F8+45jSDLnMzLtgvoBlrTpelA2WCdUmoFYxoY49AZg61rEG0JrYjRyeLetQ2YGRAyzPTRWj7K6AANFqwn6rwHLvgTXD+aAvZ9itd3xaoYjCn0kS0Yxrau8EmGOBDdF1LV1gMwHaFhbPtwRwb0iy00ocMROrLNHhoPwbiGMilRxq0sZBXyTSgl5BV010abROCjLdhgAmdSwjJ9jD0PvmmjqAkVQ+Bg+p550yr5ciWVSNVRYeqLW88y7AtCJD9ESiRyrEjUDszCgaMrpmEfGsmZBoMzMFm8WqXcPNDrHwsnHr+Z3y+2/d/r/0353u/HVy9b7vOfbIPjgxNXqt4EPhzatIMxGMFn8whaSHuA9oFAv02WoAk3aHMymPYClWO1Zb+/NALncBPxhtA/+AydO0bljnHf2NilFW7CHP/j9RY3mxSrsECUlEjjQk1nHSlZ9yyBi6GFmUsZWGNLYGJ0YPE9eLqVkNyVIuhrnBPvTo4LDd+BGE9hPPs1Gu8EtX+KXcXwYpuocMubTap8ZLPAhGcRcmkiO68+nLHarlCH1MX0/ME+edp8+gvw8w/RDC7wNqrwLirxapvi9TZT9gMAGHsG5kMb12NHFa8Tm4NF92RSliq8fpTM3ADs5EIJEPZ5QwT3gsIbfUvI7pjjycjGxNZxYnPYxQ7N/Rvae20eyEyt92PUQBWveniOh4hUkXdSaAGQr8/RCW49MBkGOsDTDSGnwvWhuzAsMH+ERmaFbXMigGyyCqH0jumMkZHa1uGzGnx7h271BuXdDYot+Sx5HxDpBuhc4lpus0ZmuOWSmUiHC8VINRj4ZoNqdUsxO+HBEiCEAdg+WmuAsGxxn5TkZ8uIFjN0dGld4JJXSKKNar+m16BtAHHgJkJYKJruMD5sO/S6YNZj3+oSWlOhbRs1PdIMS5E/OibQdqW6X3B2yAP8U18/mgL2x67vzAPrf29rcI3B5gKBSaBZeETWuPcMJXfvx3Y9RPPEoW6tsgyMJtcQpg3NcjFKU6TDnVKv5Vsa1TCuoZWeqjJMkS7WMPMCXZ6AxTuIuoLuBmh1GyNnhE6Y6EwLpWuhbFrUUi2ZVFRc85pm4n1xKxrC+mTVYwJ9n8PVpx23dauCGAFSEhbSE9WfFPtfm5j/i0iU71L6vd8t9b+/T6M//jr/WpcF4NHP0HdcviXgSzjywKS4h5kj5Ic4hLi/USOU6mgcWCW5iu34Lsm+sAx1g1Sm0QEFKjaTD4hmnjf4dpPhNsrxZpvh719tsY8K5GmJuqLnlAkGwRh818B8aOFC3ujPfetApti9Bs92shOg5X/vkTJ8R4kezPnlAds0+RC57qs04RfbFLe7HKswx17u2AyZ4TTzTYVcGugAC9e0X4l3R2KUfpfnQZ+dg33wC9TBGXaw8O2KlIFvNhkWu0wVr/7gcDUigcWpKzA2NRpNKqSTBOo6AUV2DCZovClab4pd0ZLIQuZWAcDQ0uEZtKM6k52Ska7BwwUKWbx6mnv/84rZhSpeu5rCMxey6PRBn6bcefapyCxZoX5YEF8zJT6hJhza27oBCt3DNiUKyINMay7rFrPAfByTEt8Dm1vUd2/I+JzIMWTQ76sIzLwrGlIvvpeeDejwZfiqDVo/NOs7ShGQ0F/GSbzRWj75xmJKod5lFdZxScIk6bvzDU4JDXlI7/s0OlDj5W6630WXFU1J+lDa/o7INYLwam1DvrGWfKIQBjRTMlW5gaqllUNf8A6/cMhW/AGjw/+dgZc/2gL2R5+gPsyyqWnH0xIaacAEAt1E7TiYezSauk9KLOMCL9YppR2XNRZ7mo0TfUDHh6MxgvEU/tkvYV3/Ak6+RxdJo+T9G7QpqckaefIH6Aba51VpD2vw29eqE9B0on6DcRiuD1MQSkYzbbDRTJoSbTSTKUoIFE1v5m0QFTXissYyKZFWDZKyUfTsfo+UHY0hH0ecEEW+v46L1XG2WD8u63dzvSlY59R5HHdMPZ3ePCLTf9fFGZHqOQMGpq7MmXOfhCm2oHGHz2qwPKKo9ZdvSfUW7RDevJFZYAnqJH9EIqHnW1P+N3PoQXdtAiJf0L6B+UOIq0/Q2mSITXUPN1GJ5bsEd1GBv329wWKXYxUVCDcp6qpVI0N/bMP3TJwNLfzVxye4GliY+yaeDg3wdAuWrIG7B9S3z1ElkVKvapzDGA+hGRbEZE5YL3+EenSNxgqwLVu83hdYxiGWctf1zV2kOuo++HMaWPjzywEuA0tipzj0+9+jfbilG2WaKmO4cXYJfjIHm5LJ+lXjYbEu8Wq3wd+83KiRIdB3XRYuxw7+6nqkvra1JMVku12hirbo8lSJefQnnwL+CVp3ggcWYL+nsdUmrxCXDX1uTIHrgS1RahzjbAH2cI9mdYtidYvk5RtKrOYM/vWpymvD5ApL9wrrsMHrXYTfLULlrZwFFoa2jgsZnnkqCvCHd9QxvfwCVZKha1qYZ2fETJxdohlcPBKqvFjFao944hi4Gli4CAyc2QzdP/4TytdfIn57h+jNverYddeCfvEUzeQDhMYI/3y7wzcPieJPepZQhJUzX8fU7CAeXqF4+QXi2xWKXUSBtj4Fm4qza5TBBe7iCm/2Bb5ZJaoQXo4dDCyBU9fAxBEEdd7col68RPGwRte2hDFjHJo/QmMPUAgH+yLDPieEVf95dXQOW2dUBKuUSD+Mk4KYMVKNWgO0lo+iaeWEioMzwBYaTCGp913zR+/D/9pk7Pi//ySj/yGX7L60vguTacxoagJgMg5dTxAYLuaeCc/gGEtKRCwpD43sgJDTSE1nTAVazoJL2MMLsGEEdhrDOr1GlycErpXR4F1dqZtYb5Dus5zeJ64fKxoJxTNV3Dd9egVuuLBMD77pwtYFRhZHVhOANi7IFnDqmSr3p2ooDRnAdxax/uq7pF44EUvgbVm3iAV71Hn1XrWe0N1HVtgSMWRypnKK2NH3OCZZ64yRxFiq9Qw5uhyYRBjQihhanoDHq0chln1AaLI4cOjaqlbeKUpfPnRZwrXgzidkgnUDiPkTKhzuEPXwErXhIa5aREmFt3uKV1klJdYxoaiauoXQOeVoCQahczyb+zgb2rga2fjPFwMMTY6xzaE/vKA05i11Qc36Dm0pQyEdh0zyfbzK/CN0lo/GGmDdmoil5+ebdaqoLvu0RHFE8JgPbeImugaejh2Mell2vEK7IStAm6c0NnToECQuPwZG56j9GULNwvOHmG7g2ww3m0yZifuu63ps42pg4zKQ6rvtDepXX6DZr9GlEZq8ALdMQDhgrk/Fy5uitAbY7MtDXL30D/Xdw4kjMLA4HUi274iXuLpFud2q4iUs41HxqofnsnhRN9yDdfvnY2QfRBssuQf2SzTrxSOuoyYMFSnSWj72axmaeZQ7ZgguFaOCjM/ZHu12iXIXqr0XN4RiHXbuCK0zQpS2eEgrrCUFRj1eKaqhr7WFlu7lQYuA3Ubgwgjo+eODCeKKPKmbvHqU5edJ5efQknEnIQEM2iRSBndNdnGdsNDpNoqG9uq5NC4zTYPFGSxOh9X+3oeuhcY4OkHilk6Y6AyH4N51S5MpTe6/+HEHdnRvfa8L+76ahJ+MzO9d37ui9+1vU5NsvErp3+YMnbAwCc4Q+B58g6HpXGyziozIZa32T/u8Q9NmcFLK/0orU5IzPJi2j0Ewp5tvXUCkW2h1ji5PSTYrZau8zFE8rFGXdAMuZLZVI43DGmMURqcL2LOdknOLaEeYmWACZnkY+KfwDRuNRUTp3reR1RZJYGUBq+QH4ljdeHz1Ig2V+No+Hk/GefVo/GcbQnVcU9dQewhH5xjbuopYEezATTsenzPIubpGi2FXZ5Jan4Dtt2BVBhQp2jREtbolJVmeIFtuZWdboE5yVbSYLmBIwgjXBcyRf+hAfIfUfN4QzB8RT9GiRfWuFkgSMgHv8kqNp3oGniEYbFPAs3W155p4Bj6/GBzEPQMDZhmCrx/Qvv5C+aKaNEVTHt2YBxP6GQYTwBujnjxBAR1h2eI2LCkqPqvwdpdJRSp1XcfKy6cnrsokO3MFPFaD7+/k3mup/EnMdlX6czf9gKJQSk1hnN5sKKE5LmpwjfaOs8DEs6mLJyMHl76BUb0HX9+iuXuN8vU3j5SStkOHAT6aofWmyM0BdlmDZUyPI5PKt/49MbJ1DC1OP294T/vA9R3K7RZVmKrnyBx6VLzGF2gGZ9jVAq93ETEedzki2Skeqy7HlgT1bjao1guyRcjxaZ9IzP0RatNF0XHs80zRUQAoG8ZYZmJ5OgML96hi2lU2eUmHITnW5IMJWpsQVlHZYqtSqVv1Hhk5lLHl6ewR9Ld/vxo+hdXy0Yy6/6qVu7j6qKiSqGpkE5nHEUyODkOVmMx0IdmHRJ1vDQd51qCoyRbUtB1MnaYhjkFqZdQZjRDrmsC/0KGZFsW2CFMpijXQZ7ePQ9IZ/qh444cWpZ/iVH7g1WkMmsYORaxr0aWxDCBsAMYh6hzMGmBiD9ANXYxtXY1D7qJCFbGNPGUanGGdluoG7hscE0eHyR1YwsVwOgVvS7AyA/NPwKsUXbxX0EyNhwBAuBY5cuxzwXoQb5XkdCMOQvhlRVlTPu1uxCxDq9vguo2xFaAzTHTcQA3qmFrQLLsH2QJ4FJPSHfmyug4KG1O3wCarUNQ0R8+q9tHXUOGUnGHqGiRXFyTFd3WZzoyWTnvviTxURyxHuVpTQiuSR4W+koW+zROUMvaiqWo6wUohBjNIPQhAmqvtgxfvZELmctf//8h7lx/JsqzM99t7n/fDHm5u/giPiIzMrMwqsii6W9B9b0l3ABMYwBQJISFqwgQYIMSEGQxKDGDGGKmY8QeAkBiA1OKKSyO6C7qryMrKzMiMR7q7udvb7Lz3Pnew9t7nmEdkVmZRj755j5SKSA/zY2bHju2111rf+n2UvU4fQLkhlJ+gjiZESqlaLIvmYGh6XTa23DrS5Tpj/DeKXGu18taUrFZGvoB/+67d+ZuF3ohG3DiAazzKJufg2vpDxRPMSoFdXWOZN3h/mVHJp2ws3BaA7gn6VJbyHXzpmExWU49jUK/Bs2WX8W1XNFwL0CZnfAJ+dIp6eIF5IS3G6d3ZVhPxKwhGmczJwMf9owhf0iDdk0iAv/tvqC+jZdQtAAAgAElEQVQfo758is0Hl5QlcQ5vEFuHZjak4NXNPxG4loaBgdB1ybPKd5AIBbG+Bt/eoF7e2OBF4wsBgskQYjSl4DU4w0p5uM2JYHO16fpLkXYRNiMKw4Ak8+SndYN6vbGsQyfwwOMBlBejDVJNh5eWTGEAu2PtSpx4HKzYgJUbqCyzQ/xGIRpMhta+ZVfQOrDV9jJCzyZO9AD0ceSB5zSr1exW3WZLl7TtrFw4xK5Umt7SBdUkoHttEroY+MRzVNslVL6HLEpbYeBRpx40YOuioe+roegb2xYyzyTYAZQEcz2Ac/BoAOlFaL1I96phN5jG049p/QB9eb+/zOsHcXyuAthn9gLjHBAefRCytoR3qev6bd3tXs/f+A84SY6hJhPskeLDtY/ZvsQyb/DefI9Vj3ZuDnMTGxHCxTBA4tEu6l76CpKUIzkjiGdw/wP42wXkcoZg8jbK1Q7laotsRgu2QTjZv2swrhOv4ATXEIEH7/IDa5PC/ICauZzD5YKURwYldTeI6GvBHLqBjfcQS4Y0fOwEUMNUDycHHVEDoNJDXVAAavbg+UdkppftqHS6XZE0tyGVk+Gr0UfRIaXapgaURNvUqLWJpcwrmsuqakvEN4R74bnwR+lBaZWFcVeWM71CLyTnY+4h18rNbaVQyhbZTuJ2tkahlaW7qoFUsHBnl3McJx7OB4E2GxRIPQenCS1uiasJHtf/QrYc80vMv/s+kfZfQtFIH90jp+TpBeSDn8LOibEqJBarBv/zeoFFXmOV1bjZFAcuuecjH4NAo68mEVKN/zlSW7B8BrFdofrg39DsNxT0CyKiG06g+/pXINNT1Okp3llWeLLK7XzX+7O9LcO9cZbgleMYr44jvH4U4YtRBWf5HTTfegez//pfkc1o+LmVLbxBiHA6Isn/a19GO3mAaniB7/Zk35cbynyI90h9r3EocBw6tkdXzZ6juLrq5t7iBOGrr0NML8Am97EaPsI8l3i+yfB8W+Cd660VVN0/inAyIAPGt6YRpiFR5vnqEsXTd1AtVmj0hs8fkbsyO+vAxCtdTZEtkUtGR5E1dTxLHAxUBrG5grz5iBykPQfBZIjoZAT35B7c+6+jPX6IqwJ4vqnwfFOgakhMkgYO3ro3xMNhgNeOQpzFLsTsO6ifvQs5v7LMTy+N4L/xFYh7r6Me3ceKRfjweovZnpBgZrM0jT186TjGSewgLlcQ6+eo5lcWYeVpyr9z+hAY38OGRzSbmOmAqsUf5ykpYoeBQOoAfLMGr3Oopu7siLwEKplSKbOmKo4ZeA4dTrJ7SetcK5yOroMfbfACPmcB7FMf5mJzh+SmwiNHZse1i6sqChTzDZjYQATzztByvEWSnuIkHugZqQq3ujdh1H55Ja1U/WZTalm6wGwU2Iburgxpqj9wkHguTiaPwKIxnPQIjAs46znCDQ1Bv2wRp+zCtzDeVirI3VbXwXuBQUpyNO7Jxs1O8q6zsQg9W64Ugd+5PWuoKPcCCnJecBDAUBF+qi32JFfWfkYqy2ypSalDBaAh4d8FCStFQVpWtXViNgfXfQdTDgxOpsRajAdwTh+iDRK02rG2iicotO/ROpOoZKUpK8p+XmWjsK2ag36eGRtwBcPQdxG6XLPrPEQuYXsGcge+W4MX1Bsp3v1XlIsVivkG2yfXOuNqITwBJyJTQ3+UUvA6fYB2dI4Nj7DYN5bd9+Eyx0IPbZeNsqKX81GAo9C11PL7A4/QV9kS4vYxufZu5mhmz23/j3EaIuZRCj4gGbtRA15udV9vRxgn0z9KAgdvnKZ4NArxaBziNHbg3LyN+vG3UXzwLjaPL5Evc6hawh/4OijH8I8n2jKGHJqfbej8c82pjDyaNyJoLMfAE3CrnUWyqWzT+2xphMGWDdMTLArK5Gb7Cov8kAp/MQpxkni4nwY4Chy42Rx8rzPQTOOQBD80zwyHqEWAvGqokqCoh51ozuEk8nAS+7p0uAUrqCojXMcqRb2z+xAn94HxOS30WTd8TzQYKvNe6OA68gUiVkNtFlT+rivLDvXGYzgn99HEE5Rugu2exC6GVWiYnScxjUZEbQmeLdFul50XmuvQ+xufgKVHkNEYu4rMM7dVY8lDgeBWCRk5nMC9TQFV5qQgDWMoJ4DyQuSy1b5h5P3l6P6XwxlY07x0cPlHHbyAz1EA+37MLMFIMmouvIgHUPkePN9DCU4k96IkeavgPUPLEpN7XyETSs5wm1V2JmK+IxSUUuQBVuk0WzgceSWRBCVuIiJv3GaVdUHFwEMSnSCMJ3CER4T57RJi8vzA4M6IAICeYeXdgFXVdjFTVWMDoJGS2zmoO0Glczt2NIQ17r5oI3I8JvPLoAPyKmmN79qq6KgJRanLfIUNnsZUk3FugyXvvYdWSjtqQO9F2cY0lUh8BJMBla2SEZx7r1IPwk/J7diLbNlkuToMWIauUujB724mTUFw4iYa4Ynp1VwMfIy0G8A0cuCrAixfg1+/B7mcoV7O0CxusXrvOYGPswL5UsurOYc3COGPE0TTMcKzYzgXr0MNTwkDtW1wta1wuStxvSstPd+Uxai/5uPhMMRJ7FlxwrhZg2+oVFi9/y2SyG93KFc7AGR06sSB7XmJ8YmlhqxLiVs9EGt6Pmb2bzoI8MYkwoNhgLPYRVKtbPBav/cc+9kOdd6ACw439jW94wjOKdm4rGqOed7galfidkfD1UbZGrkkchp4gpiJWqFL2XnRlb9iIndg8gAyPcGWBbje5bYXucpqO3SfBg4uBtR3nESdS7My8166d+zEAZwjooE4x+eo9OKea2m5IepHjOMk9qyvFi82YOVeU9kleBTBC2g2Spw9JFyU9nlbF7ml/xPSjGMUuPTaQhJWic3M0jZaqSioDoinKRMSvqxzcpHOakLJeXou9STxcZ4GGHocfD0Hy1Zo1nqmTQjAccEHE3DDmwyG2K8rG1Q5IzFJ4tPYSaxtU1ixQZtTgGZcEPLN8dF6Mc2hNi1J6NGCgxP9nkMb2LZo+Y/Ti5mOz00A+7jjZbuCAyI9DyD8ACIAGsbB/VSzC8cI9pSF1VmO9XvP4V4tEEyu4F8+hl/mmAzPMEqOEd4fYl1K3OwrXIwC3O4qrDIytJxtOsdfI0U3pcZUS2zTwMGDUUj9gcDBSfwAfsQQHHOkX+Rd/8gwClXTCU9UQyXQuqIvrqZN8OUMcrdDjQLtlrIwWZC9CikeyTzSmF0CABfM9tr66j0zi9MZVooDo8p+tmQC58sML504sMHLjUKrsDQByj62F+h4FFEGGMbg0QDi/BXyAwtS7IIj7f2k8Pgyx6ZYYF1S89vMMZU99JY5XiR7EIvvwTDEOCQxQOoL3Es6TBK+/TbkcoZmeYP1d5+gXG5RbTNLXTFGnP7Ap8A1SjD58qtwJmd2wdsfv4lVITFfNviXq01P3UioIRO43jxNcaxdiF8/8mmIdjcDn89Rvf3fUS1nKOYbZDdLm6F6g5jKUdo7zXvzP0ElEzTJFJcFJ1HKrsRSZzGhJ5AGEU5S3z7XW9MQQT6Hc/0M9ZN3MP+//wH7qwXyW2Im+gMf0XGM869+Gf4rb8B55YuQ41fwXu7g6ZrUjN/RrgqCM7x2kuA8oSzkLPFwJNcQq2uo5ZVlCDIhyKR0OIFzch8yOcY8PMeqkJjtc3z7ZmfFDA5n+MJJgnFAi/qXJiFGHoi68vRbJFzRQUIkCRwvgEjHcF79MmQ8QRVP8HyvsK+V7XWONeg59RzcSz2kPkfUlnBu9VzhnjJE9/xVsDgFHxyhmbxmqSybTY3nm0IHCobXjiKabUt8vDby4GZziKtrUoXq98yjCM7pQ2I5Dk6wCM+xWNd2ZKdoCBd1FAq8NU1wFDqYhA7cKyq7mvdJ/SraqLCHX7Ysx4U24dxVxHI0VjLj0MFJ0ILvZxD7Ob0/bcOEMEbrp1DxBIUIsdjVttftco6hDwIaNLpdAFgnezD+/YEkPmZ9/izH5zqAfdIMgrJ+YEADUsWF0RitcMGFC+H5CJYzCM9BudyRfbs2tOTuBs7NcwgAQjU4mX4BocuQeFR6WiQEFd2W0rLx7mKgfC1FNzJZz+FYFw2iTP+phRHDgLI8wQQcEcFzYitj9QWZXBr4Lo9G4HUGnu/AHBci2cPJtuCuYyXmTVHCjQrbUzPZTv8wwUloz7C+u7KSChyU6dnrqXqlQc+B8BxruWJmr7jrwI3DLqMbUGnSAoG15QoA+hnXO8tYZ37alK8ZnKHxEmSNwtWmxjynAdTHi0y7YFcadqyzrJbm1TjX0l9dMgt1n+JkEGAYuhgGDh4MA4xDB4krkPocnqZmtOsbVE/eQXk7txYn9b6wppZMMHiBAyd0kFwcU59kOoL3hZ+CmN6DSqZokilm+xqLoiF1nm74Vw1dRzOwPYk9vD6OcJKQT9SwXoPvbtAuPkI9v0L+5AOUyx2q7f7AfJIAtwNLQ1fDU6h4goz52O5rDYKlRTbxHQwCyjwejUJMdXkq2F/D2VyhfvYu6o8e0yydfo7oOLTMRP/VL8J5+EU044fYigRPb3bkqLylEqhhQB5rcYUxCOWrJdrtAmo9P/S8MlT5ZEqlyI20i7kJXqZseJb4OE99TEIXY1aAL2/Ad3PUs2dEomhocRVaZcrHU8jBOWQ0xrpU2JQ1dtpSBAAS30GqqfqjQMBvMvB8iban7jMldBaPoMIh9iLGupBYaQajGc6OXIGThFBRQ59gxHakYTmz75kHMcTkDG06hRqcYpXReYxfHJ2LBrJHGvwblGt7HhOkSZg0sKT/neTUU81p/aFAyKznV+Jx8HxF9/Sms4biQQzGBZTjoXUD5FVH7qDvcE82L/WG+TMyDz+uQnZXif9Zj89tAPskPzCAgpcCUKvWqu8aweB7A3hageM+XNMNklzaPpP5k3ZAAqKpIRwfw2CANErhiQDniYe8abGvJC4Gvr0ZzKyJma3qZwWrrIbvSGw4w66Sur/GrWW4maMygc0VZANOkFofgRsgnQzBqgys2sMJEyoPZFvw6BLK9KnK4jBL6vXB7vbEPu2h1OE5TGnTqABNT40nowPUEPMCEp1wAXhEP7FWK5yaw60XQumZltaLMC8k9rsa+0rhu/M9lkWN212F92Y7a0VTSYVGLwSGTWjm1IxE3KCy7g0Cm/neS71DccbyOVEz5lfIntE8UbXJbAbLBIfnCXgDGor2xymGr19AjKYQx+fAg7fQ6CCyLiSebWmRWurgJTWuLPQcnA8DDLVD7yujAGONghIfPYbUjszN4pb8wTRsmAvKao25Zd/Kox6ck7S7pAVtWzVoZIvIpXJpqFWy94c+xoFAKhTEzXPUl4/RXD9FPltBaoxTMHYQnowQn00Qnp9CvPoVNKP7WCHAzb7Bk3WB2bbEfFfaQDNJKKszjsqxyrXf1Qxqr4kY+j4QJ/eJ2qH7aJfb8oWeV6I/o1fHkZ2zEzfvA6trNPMryM3CDoeboOgcn0NGR8j9EdaZxK6mQGE4nq5gZEXkMKQ+BQmWr8CLNeR2ZUVPzA+B9BgyHELFEyx2jS7HVljrz9HVWKyT2KXXFwiIy2uo+aUNOlAKLIjA0xEZXaYn2LYeZvv8APprlIJHGocVNXvw3Q0aPRagMkJPuaOIAmt6hEyEWGUNbjPyRNuWOvgwpkviVMrlW9qQmc+BcY5WbyThBCgVQyGJnVg2tOFxOdfgb5Boq1VoP0MA+2ECpz6XAex7RfQ+kd0Q081/AElGPT7A9PX/C8GjHF6+hHf5Xdr57Dc0iNzU9sbk8yuqjfsBzpIR4Ic0SOj5UMMhWjeC5B62ldKKtxbLvLEOwnm/T1NJzDY7S70o7wS6PtXiZBBYR9/Uo57AMPDgCx/Do6mVsjt1BqdHHPH0TfjCYQYa27Yb8Nb1bmr0KqsUPDg418aU2rTScciHiDto/ZhUi8KDClJIcIL5NsRUVO3Lpf1mg1HJFnXRotwpZPWO7OyrBpuiwbNFduChZgnwrkCS+mT5oQd+B3oI1PiBxR45XI8CgUAw+LyF2F6DrfZg+QZqM0f50WOoLc3/lKutVaINHp2RbXwckLHlK2+Aj6fgw2M0k9dQOhF2lcTlrsbissYyp3LOvOdfNopc61c19B28fhSRZ5UvECw+AFssIG+eI3vvWyjmG1TbvYX9cs8hVePDUzhHxxS4Xv0pqGiMJhpjUynMVg1WWoptrTwcftDXG/gcw3IOsZijXd+geOd/WCuZpqiQPjy1Cj7/J34GfHIPcnCOD5oI14sazzcrXO5KfPdO2fAs9XGRBvjKaYQBqyDWz4H1Fer3vwWlnX7F4MiWDauzt7AoWyxWpOR7W1u3VI3CJPGsMvBeGuCNIYdYfwR29Rzlt/8b6vUGzb6wYg2ejsgR+7X/hEoHxHeuaRh8pyX9BlQ99MkPbuhx8N0N+EdvQ21XqHXfiwWk4uSjE9THr2FdA6utxLdv9takVLWtHaA+TwO8OvQgttcQi2uU/+v/gdqubM/ZPzuzQp588hpuMrLC+fbNDkttVeM5HBeDABcDncnl1+CLZwT9ffLYzqF5g9hyIevxfXywrPBkneNqV9pzDY1PYOxiGjkIshuoJ/+GZn6JNttCVTUZjaZj8DBGGQyxzonleJtVUKq1wZSyL6r0QOoM7HtAfD9t4LJE++/j+NwFsE+TjnJGnlQALZaGnL7RoFGzO6sVkHg+Bsk9RPc4nHyNdr8iAsGa+k1QEnI9t+dmHvV5oKXoYjghMncQw40nlEmkCYY+ETPyhmZRfIdjV1HZkbIzChJ9hJM5TP/GWNMbOnutFBKvRuIJnCa+tlwAfMeHYD64090mRipurhd5+9BAMdPPEQia96Ch4tIGQKYOy45tP2NyfLSORzYOLZBrI7xatcg3Eo2iDMnYOlAQ+/hPjWbtWjSS6CeLnAQIxm7GfOmPEs/OuYSe0EHLReoLXKQBEp/KRL6ghdvjVILl+RqsyMDqEmy/gMo2RDbItCTdDpvGdO+YuR1NQxHDCXDvTbThCFU4xPNtje22xG1W4em6wLai15npjNDYwBxHnh1MHYcO7iUOgrYE31yhvX7f7razmxWafW7nhvxxqrO9BP6rXyRDzcExmuPXsK0VNjsaxH6q+zKNbGkAVWcIxxFlmUOfymVicwm1ICBvvd7YkqGrafVGvYf7P4F6cI55IfHOgvBal5sC812JTN+/SUBOww+GIc4Tj+jt6ytgdUWWIbsVWknzRsyUvsIRBYayy7zmu8oGxFQPKJ+nASahgFg9s/ik/KMZqm2GVkoEkyEZqmrLmyo9xW0usSwknq5zO4gfe46tYMTajNPY2jTzKxr+rgpSt3IBHsRo3Qi7ngjmNquwLbsNk7FIST0Ooc8lr5+iWdxawo7QIhWejqFCgv4u9Fzb7Y4UmyZ7NbNyQ1+Aa/NcuZwdQH+ZFxAuKhojUwKzfUbWT1pAE3oCnDGEWrThqwI8XxO3ctuxMR1dqm8dH6UkgDhtqin78gFbemeyUx+yVn3iWvujwvx+rgLYZ/UCY2gPDNmMrLpsyA5kXTRkXRC6uEjPEMYT8HgNnq8huKCbvdgTSLMoNGm+GzxmXIsf/MDWvUU6BosHOBqck00B87CrJAJHYF3U1rl17Qk7FGmOPs1dqharrLblyErb1We1xK4SyGqJQBO1/R6D0Awq1xotI9uOyGHKlubPxBd68t5B4LgQTkfMMCQNkz0pbVJZ1i3qskWjKjQKWBcdcJgcbpWlfBiqvTmE7lOZQArAzmWZxxoOIKDROvp3k4DUdIlPSK+LQWDxXkeBQ/w2bdzH87Ud4DQy6bYqyKm3KkgQY7yZAp8WjKOR5f05JxfggwnacAAVjbHxxthWCttlhbdvdlgWNZZZjctVfuBfdpT4iDxhmX0TbbY48ATCbNb12569C7laWPIDADj6dcRnR1a9Jl79CpS2i3++a7CvFW73pD5b5jUNrzKms08qSY0DcoAW2ZIclC8/tLQQgyNyBxH1Ky9et0KDdXiKxbbG9Y7e40wPE2eV7JVmAzwYGkNKB2LxGO3iI8ib55qIkZNox+cQwwkhmOKJFmzUtmyYG7K85+rg5duyHHv2HM2zd1FdPbMiFgNB5slI00AmuM0lbrMGT9Y5nixzO5/pjbgtq4UOg1NuwPfzrr+kgbg8SgHHBfyQBEM1OSL3yfCOGUHwBAaB7jEt51Q2nF8dEusFpxK6lrmvc+rz3WYk+KL3S4R+mjkk6K+aX6KZX1rElhnIZkEMFQwhwyHWeyodzvW5qkYhDUgub2TzbL8G2y8t2NmYpRpVcesE+nva2kzVNS1p/Z2Hamjz+pLMq9/L+lEy6j9XAezTHHcdmYUxtVTMIpSM/HqR1wj2ZKkAxBh4Aml4jDAcwmkVREANaSJp0GJTzNcHdh1McDu/FJ1dkkNtMoL78E2IZAQRDuH7KdyEkFXj0IVgDOvQxa4iKfJOy577IF6ThRl+Yd9Tq5atNuPDwb+rFqiV+lh/sX55ss8xjPTfTXAzluIA3bS1VAfGlGbGqmgkYXp6CKq+fUr/MO/FyKSNUrAffAE9i+KZf/fgOWSrPg5c25AnF22q+4emNLjZg9UZZVXrOVRTk/S/qQCpbSR0z6PVf/Io1YISDp6OSYUWDaBG52iCoS0VPp4XuM1oVumd660dpTCCBmMymQZkb38cebifktJx6FEGwG8ek73Kcoby6sqihhjnBxgs9/7rXdY1/QLJ43cS7y3zg7K0QRkZZ+Jh4CD1hVXtiT2VDZv5pS1zmaFrkZCyzXn4JfLyCsd4uihtieq7V1tb4jOGlOejEPcGAe6nnjWkbGcfopk9h9rMUW20ICIgEYPJHko3wXKV296gYQiaHiXNPzk40tYtzeVjVFfPsL9coNpk1Af0ArhDLcEfnUINTrHcSnywyvF8U+DZIrOZumCh5m3Sws6zJbC5pXm65RKq1vYtgjy1CJwdY7dThJIruv6lo2fciJkokLqcznV7iWZxgzorSAQVdPgwGY1Rewlu53vMdqWl35vvXuLRvFzqCfD9rW1T1JsMrVTgsUMczZQEJRutwjXXzoxHJIFj+4Ym+5LrOert7hAq7oeavBGS7Yqm7ci2hQvaULqc96j1P5iy4Q/q+NwEsM8i47Q8Ps4QOqA5INbiKHShWoLd1krh/dnOBosnq7ybyUh8PJq8geiI/JZc1wO/vYRY3aCYr6GqBtU2Q70vUe0r3fBn8GIPTuDCG0SIL95GOBnAGR1BDCeYPHwTY01/fviKxhs1Cstc6oAqNS1CWg+wj0EZAqCsiOY4lL2x84rk+zebEnkt0VQSZV6j1SU8xhgYZxZUe5T6Vq1nsgcjhrDPo8cDXgb9rXoBV6r2oM9lyhImcCWBY4OVCWCRJxB7ZKppsslEW2YEDsckcuFxKpMcBQK83IGXG7BiC/XkfSittNpfXh/MpvWHwb00hggNzeOY5PpBTH8enXY0j/QUFRwyHN3VmK1K3GZz3GYV/uXJCjebEru8RrGv0LYtGGOIhwGOYs+imf7z/ZE1WRyXNxCLbudfPH2fXJL16xMu9bmsE/T4BGw4RT39AlaSY10qfOfJDvOMYMMf3u7t5kBwhrNRSJsQ38WjEQ36jnxOUuzFleUEVosVobhcB8H9h5TZnT6ASqa48k4wzyWeXK/x948XuFzlWOwq7MsGruDW4PK/vHKER6MQZ6mLe3IO5+oK9UePsf+3fz1gJiYXx3asoJm8hg0LcLut8d4y05kI3acngwCTyMNZ6uP1cYCxqCBuP0B7/Rj7d76DbLZEvaXg5Y8SRGcT+F/6GbTTV1AOiDD/j8+W+GCe2ddshCUnsYdHIxrUnjg18NE7qK+eoL69RjHfkGrWdcAHE2B0CpmeYNN6eL4hpeVcZzihJzDW2eF54mEaMIjFh6ifvIN69hHyuZbfxwHCkzHNy01fwz44wtWmxnfne3y0LrDQwpdR5OFiGODROMK9xIW/vQSbPUZ5+VSP8hTkzn16DPf8VYj7b+CGJZjtG7y3yPBsmWNXUPBPAsrwXx2FOE9ciOVj2kxcP0FjSpoh2QeJ0wekWE1PsZqXuM1okJpUzhScY4/DkQWYltC3XJCIow8zYPxHHryAH3IA+/rXv46/+qu/wje/+U14nofVavXCY548eYLf+q3fwt/+7d8iDEP86q/+Kv7kT/4Enuf9QF7Dyy6qscAWTM88MQYGhcQTkK1rMxjP4dgVDbJKknlg4qNWLWqpkHocTeAhHZzDnW6pJu2HiDZ7cNfV0vHMzlrRvJSRnmcQAQU6b1/A329IXpuOIZIRwmGBwEsw9EMMfQ9lQ5khiR+ITdYCKBoJpWD7SKanZLJIkwl1WQ9N0kvd55PSeIPBWoMIh6EBiSiMrQZAGVLVGNIA3bgmMH2ieWYv0/IEt5mVIdibQGVsVyJPYBC4NmgNfEc7RBN8dBDcIdXzFqzcQcyuwDLaZcrNHMUTkoFXmz3yG8Jx9aX9FkEVh3A4J6pJOrZcSQQxZHqK1o/RiADzXGJfk5rPEOIv1+TL9cHNHnXZoC4bK9l3PIGj2MP9oxD3jyLcHwR4MPBxFApEzR5i/oQI7MsZ5GqBfL7pzXSRTYczGMK9/wViJsYTNPEElzmwKmrM9iXevtnZ0YH5Tkvq9UB2Gjha1ehqbyzK9NRqZnf1Rs3mBB5EFFGJ++Q+YafiKa7mBR7rLObD2z0WuwpVLSF0v+tk4OOV41ijkoiZKD54gvryAzQ3z1HMN1A1LaqOF9K1HZ+Aj2gAeJNLbfPRlYVDT2gaBqkYRz4HX94QX3I5Q70vOtrIIEJ4MoZ/cgKMOhrIomgw035cxk061MzE48gjdqQvwHa3tnzaB/66Mb3W1o+h/AR5RhUZU7kIPZobHBrKvJan82INlW069mVEIh8aMp5CRmNscwJjbzVnE4DlLxrWoZk9lOs5OYbrDYaBB/PxlADCFfWE10WtB/KZdeamHiv1fVm+sS7kAPQcJrcWChAAACAASURBVA27IzkigHDTrRmqJQ2AGej3BAOajloP/PgHmM3xQw1gVVXhl3/5l/HVr34Vf/Znf/bCv0sp8Yu/+IuYTqf4+7//e8znc/z6r/862rbFn/7pn/67n/9jdwQ9gC8D4DEO4XCkXgvGuksy08aW0IKBlUbvAMBx5EG2gPQFjgbn4E4AJ4gRljm80YKsF7YZnGDeUTH0F48JrgkZRG1opQJzn4JvVyQrLvYQ8QCt40MEKWInIA6h66CNIzS631Qrh16Dol5WJSnIybbFppC2IcsZEHsONp5A6HXDvbkrwBhD27YHBpdmAe57e/VLe+bo27D0y5oABbw+nsmUA00Gl+gB0tAT1pnXjAokvoNAcGtOaOjX9DiyVxGqgtjPwMo9eLUnxpwu55arHTaPL62hZbkpIStlB7T9AS1UZkDbGw2ofzK9AEtGUH6K1k9QBGNkNfmfXe9qrEuC7X6wyDDflZjvKix2FeqSbFYYY/B8AVcT6790b4CLUYCLNMDDUYizmHBHYneD+uk7kMsbe59IXcIzvD0xmoKPT4Cz19EkUxQixLpUeHehm/VZhfdnO5u1GONEQ0A3+KGzhPpHxpdMLm8oeOV76ql4jnWgFqcPIZMp6niKm1zv7O8ELwA40qadrxzHeDgKcZF6mHgtZSBP30Eze458tkKd5bosSbYjQkvbm3iCTaUHisvaWtWb++wkpsxmHAoqr+Y9coekxZy7DmVeJydwzh9BpidYNxyrglyaVxoXBsC6BpwPA0xjKt261Q48X6PZbyCLEq1UcHSplkUpWDyC7AFxzcLeF1qMQxfHsYeQSW0suSa7JJ1B++OEVKJ6tGHVALtaapsUaYPOJCHSymnsI/WprGlJ83rTZUqQYnJOljXRGNm2tWpIwTlCj0rVE01uSbVQR+3o827Lwm7cxOiI+oXhEI2XYF9ILazSGwmX+smhS5BuVpdUQgS6UZfP6Mj8cQWjf0/mxtr2EyRgP6DjG9/4Bn7nd37nhQzsr//6r/FLv/RLePr0Ke7duwcA+Iu/+At87Wtfw2w2w2Aw+J7n3mw2GA6HuLq6so//nmaWqiEZed/QEiAFnRtYYcWTdYXrPdELrrblgf/VaeLb+aHTxEPscoQORyz3YNUevKSei5pf0s1jwLZNjbaurBPvAcpJ95a4pl2QLTi3Q72MC4txYnrIF8Ye3Q9p4XV9gu9GYzTgFl5babZZVpFE9uMAtgCpEftlO4OiEXduWCPeMIIMpYUWJrBx3Sx3ObO0A6MACx0yr3S1cMPhnYjD5bC0a17lJLbQSkhebslbLd+Tsi3bQmYZds9vUe9z26AuN4XNeLlgxCUMXDhxgPThKfxRAm88hvvoJ8BHx9QQHz9ArhiymhbXm722zykbC1fNKmnFC/2SnckkXzmOMY6IqfflaYKhzwkltJ+DPf2fVlG2+/Aj3YuQRKOYDAhOPJrCffM/QiVTyHiCZxmzw8+3WYW3r3d2WLvfYzsfBZgkvl68PEvIH/oc7s27wPYWanmD5vqJBSeDCzjTCxoBGJ+hOPkSFkUnfvhvT1a42RRWFWjKcP/50REeDAPc1+7Mw/l3IK8+QHP9BJu330W13WtcUgx/nCA4mUJML8C/+H9ApqdYVcB7S+ob3h24HYcu3piEGPsCQbOHeP6/7DUzvTrhOhBJCve1L4NN7kOmJ3jWRLjakQx/tq8OzClfPU5wnvq4GPh46ziEt7+B2F5Dzp6h1maXAOCNxzSSML2AfPgfsWUBZXRZg+8u9ih0QDyJPZzGPo4iB0eBwGjzBFh+BDm/RHP5AVRVg3suiWBOHxI+bHCOd1YNsSJ3JZ6vO9DxW9MEFwMfk9DBiFcQ7/8TWcwsb1Bvd/R+ByP4b/0X6r8OznGTSfyPqy3mGg0GwCo2LwZEKQlycriuv/PfIXcroKnBtHOAmF4AwzNshq9gkdNc2+NVblWrxnDUzAg6y2dErQfQBimNCen18pOGmj9tcNluNjg9O8N6vf5U6745fqw9sH/4h3/AT/7kT9rgBQC/8Au/gLIs8c///M/4uZ/7uRd+pyxLlGVp/3+z2Xz6J+yrZ5TxAqs6NFOVAcJB4Ebw/Bhy4GEQCCzzBoEjLKNM6f/M/3PGsHeFLnmF8IIIfnwKjwN8eAFea5l2trKKN1fDONuahASGft9KRdJbzSk0Aa5vcGkUjt4g7gKYHt60PZx8DeGF8JwASTREA67l7ERTpwwO2i5F+4Pp9wJQMOGM+oXGC8heupb4aGaGq1HtCwHQ/H4gGBxtwRC5lGE5DOSRpmQ3e2asVlpFPzcZclMATWOvW71dkrVKVViZsiGMmBIcdx34gwAAOphr4MGNQyo73X9AnMDhBO30EWQwgAqHuLH9Rgrsl9uSyipSIa87sUsSkMOAuU6jyKUdq1Y/mjLVRepS5nO7BDYzVE/eeUFdyF2XJOtnZ9R/mpxDjl9BFQyxLCSerHPMtFptvq9s8JSqtRzDJHDx+jTW80i0+z6JHYSowbdLCl7rOc1ggQwL4UTgXkAL2eAYMp5gVUqtCKRNW141aHRmN0k8DCMX948ivDVNcJrQbJG3v0Hz5G3Im+coZuQw3EqlM8kBZUjTC4jzV1APzrEoJNalstQJqcgnzKokQxdHgQO/3kHs6HW3enaM+QG8eEC2OMkIOHkVMpliz0PMt4U9ZyWVzfCTwMGjcYj7Gqrr5UuI/RxqfQu1ow21E3hgLplnisk5MDpD6UTIColSl9ZczsFduo9PYx/jkGTuiQOyWyn2xCb0AoggBg8IF6XSKWQyxbomS6Jd2aCUtBkIHBLXmCx56ALcQI5zmkVz45CCzvikO1epsKlofrTWWVzqUbn4NCZKiV+RurLdLq2ilnmBHXbH4AQyOca6JP7iIq+p/M2IKDIIBGIL/d3S97BVNNvJHeIgcv4DCV6f9bH948cawK6urnB6enrws/F4DM/zcHV19dLf+aM/+iP84R/+4cee8xOzr5cM37FWgTW1HtKjDxp8De5GOBmeYeD5NFzqcGx73kEm1S4bhdm+0rQMhsSKDijziN0BvGAIL2aIjiRZj9Q5RE4kaJQ5VLEng0sN7W3VwtbRq212QKLvA24NmV1ogz0v0724MKamfxBB+CFUlkIIF75w0AoPI8cHhKNp/G7HhbxzF1mxC3DwGIPikm37whCynSfTCkhHVWB1DiZr8L3+IsiK7FaaqhuO7qOpgE4R2LNZQV1ZXJAqqDyoqk70IFxCWBGQ2LWE82Ay7PzAkhHE2SvWkbeKJtjXCnnWYJ412GrX7ayWWvbf2kUi1GaSgSP0qAF9zpPIReo5iD2BSUiLsddWcGbvALsF1PIGcj236sKmVy700gjeaAD3/uvgk3OoeIK1k2K5q7HIGry3zDDfk8DBMBONYm06CCiw+A7emMQWg5V4HHGxoIWn3FDZsKASkgUyh4QhwugMSgNg15sK85zKpDud3aUBLRH3jyJMdWnv4dDDkc8gVk/Bls9RPn8P+Wx5ELy8NEZw7wLO2UPw4wvIwTlucgqQ85yEArWk60pBy/SUOIJyDb4naC1t7OoOwTQ+IRPQwTGao1ewrhTWOWWoJpsTnOFsEGiIsItXRyHGgcDI5xDX12jXNxYkbK4HD2NyNEinkPER3Qe1xF6LpnyH28X9KKLgZRSkbbazM6HMCIDSEVQ6hUqn2CkH21JiXdQWO5X6jg06R6Eg1Nb2mnpf+w3Q1AAXHZR5cgaZTrGVHOtSYpnX5AoPWEHTaezjWGdNYnVLisj1nDIvLsD09TPBq3BirHYdwkq1QOiSajXRpBYD/T3w/uI9UMFnWX9/CMdnDmB/8Ad/8IkBBAD+6Z/+CT/zMz/zqc7HXlJHNSqulx2///u/j9/93d+1/7/ZbPDgwQM616d6RlD9VjgWicIAMNVArW7R2iAiwaMUcTxAko4xHV5ATYa2xLTI6ebeVlReMoFtndfUh+oxD02fh4ZIBRI/wmk8QhhTKS10OIJiCafcgVd7uDdPqUy2XcG7vbZZhiwq1PvcBrJaKjRFCeE6tnRmAppczjp/L03JAPCCVLwvi2XAgVeX5RNyQVYqXEBwDuaH2nqmV+I0n52Rpjc12rKg3aS2WilXW4tBkkVpRRVccGsNwz3HvgfuuR1qqn9oyG+YpB1LUdu+GPAvG06plOqFUPEEkjnIXuIHtrjdWLFLP8MGyA8s8DlcTsPGlCkQm84XTPcHGMTuhubLyj3U8+fUY9pvkGsptaqazsCQcyqr3VUXnryJVQMsC4l3nm1xm9FMVH+WLPQEXjtJMNLmhm9MIiTaoiSpVmDFDXi+R5ttqOxmPgu6yNbYksUDG8AtEHlT4+m6wLpoUDQ0mPzmaaqHdIkUYoKA+9G/Ql4/RX39FOVshu3Ta1shSB+eIjg9ptLkl/5PyME55hWwKBp853ZrF3HOKGsYBA7ePArJoVkoiN0M7Opdy+mD9uRj0RnJ0KevoYknWFcKH97kWtpO5qMAMQQTn3iSqccxDASG1ZII/vslmssPyJ/OOJ1fvG5n0urJI2RKYFNJ/Z1WKHWQOE98PQzPcRZSn4pv1mDZivwDlSQzyfGU+mfRGJtginVB/MU+53Dou1Qy1AKbqVxBXN/QWMNyBlVkgONCRCncRz9BQTU9wbPCwTwnpeCmIJsUQ3L50nGEo9BBrHKI9XPIx//aMRO9wH726uLLyL0BFoXEal/hO7d7GwiNM8ZR5ODElwSQzpaAztwRxESs94g0JFvYna3Z7P5v7wf227/92/iVX/mVT3zMo0ePPtW5zs7O8I//+I8HP1sul6jr+oXMzBy+78P3/Rd+/lmClz2E3kk4LqBosW+VpJJeWaDZb8i+IJzBvS+hshRxOEQYpGCgQcjIo9KiUQFmWq5uGuuNauHoPsVRQnij2HOwHvgYBuRQG7kck3CIMBzDqTMIJ4BT7dDuN+DxAK7uobVVgWqzf8EGxQhDTCnEmlMCgFJUQtCZTt9qpZXKyrYPLpHg4JoabyxWROB3ZpmGNqKD20EA0+aVJpAZukNTVChXW5sx2QX9Y0j0JnjxIKbncN3uuTinBTnsSqgsHnUBywlQBUMazJQtNluFoiltkFqXJGQxM3F3y5++4JZcYZRYx5EL36ENx9BR4OUObLcjy43FR1DbFWSxp8BRlJb6b8/L9YBwmoBHKdyHb4INaAhZRmPM8habikgPl7sS25JGHgwr0QxpPxqFlix+kWrF2n4NNn+qe0R7W2Kl250ClwG/YnQGGaRogxS1CLDKGkuDqSUpKCNXgHOGoc4ShgE9l19tIG5v0Xz4HRquXZBghnFuXbCjV16BmF5AnD5EPrjAbU7uzJe7Epfb0i6W05g2czRW4CBGCb6+Ac+XaJYz2kgqZbMZQ+0owglWmcSmkni+IayY6U2ZYDsOqYQ69AXccgMx/xBqM4fcb4gur+8nFsQQJ/ehgiFUNMaiYtjVDYqmxbpobEk90FDtxCMREd/f0jB8vrF+ZqRCDoiZGI2hojHWe4WNzpasNF3P5Z3Enu1RmuAl13O0+d4OF/NkBDU4gdJl0lVBpd1dSZsMU3o9SbwueG1nYFudYerAw+MJMRO1Y/ayaGyp2GzajHhqEJBZKs9uwPM1QY2rAjwaUMbl0tBz03bztAzd33/Ux2cOYMfHxzg+Pv6BPPlXv/pVfP3rX8fl5SXOz88BAH/zN38D3/fx0z/90z+Q53jp0Te0dLpgyKMBeW7p7KEtMsiqACs0wmU4gZOOoYIhjsb3EboO/EqhSH0teGiw0Q1VMx9lpLKCM1SNwlr3LABgUzZY6h2UbD2djQUYTR4RlDfdQwyO4dY5VJmjLTI4urzQKmkb8fSWhM2ewAX9m1IUkE1WqV+LCSiqbtBoBdZBQDQUkTq081KOVBBuDSYKot/zTmRycJjgVVcHFi6mP2VAv47wrI2K8Fx4aUTeTVptZaC/LIgJPeTogOaHpH7iDs1oOS6Z8EVjVC1HKRWKpsVqVdkMeZ5RuaXUA9dVL2ALrgc1Oe1mfYdbBaTBcYUuw9gXnWT/9gqs2EHtVpD7DYlJ8j1lyvvCmncekvgDIngkI/DhBO3xK5C9YegrDXNdF1S+lJpDN4rcg4X51VGgHZk53Nv3wbIV1GaO+uqJ7RPSBXbtosqHEwhtMy8HZ2jcCFmjkOeSvLEa6vu5gsEVwtJbjqPOeTrcXZIMfzlDM7+0DEIACEYp3EFEopjXvox2dI5mcIqPdjVu9p2Ni/luhJ7Qlig0pByrnFiEu3lHW1cSzPG64BUdQaVTzPNu8b3NKqtgPNJIruOIzjlxJcR2Br6fo7l8TEaSVUHZux/YbEmmRO3fNcBi32BXSkvjMUImynL0DGKTQeznQL7tyrI9B3OZTCH1gLEJXtue67Pp9Y0C3fPa9YKX5qyyMLZUkUYHr2XRwYNNGdIGr0BvAHY3YNsbsm0p9t01HE7ARyeQyRSrQmJTKn39iJJjWh5HoYvUE4TE0s4BbbGn8v7gCK3jAzp41bbfwGwQ+3EcP9Qe2JMnT7BYLPDkyRNIKfHNb34TAPCFL3wBSZLg53/+5/HWW2/h137t1/DHf/zHWCwW+L3f+z38xm/8xmdSonzS8bEprRnEc4MuE4tKCG0QB8e1WUTbVJ2CMN+DD3MIx0XkpwjCAWTr6t0Q3agEm3WJSaYHH4FOTi5Vi71e0KWeKwOAxBcIHYFCcgQigBeEiOJJxyKUFXhddCKHO0xCC+g1/9Y03WvXO3NWFfAU9SlkbpSQ8qCcx4Swi64JMm4c2nLdQVmvX95TEq3TBVPhKkuSaKWCN4gOxSg992dLqg9iy4+E56N1I11vF4Bw0AjiLFIpI0KlgEoqbDMif2Q1kbSvtAAjq6WlHbyMOJLqObPQFTgK6HOMPCoRph4NTIcOIxWhLvGq2+eQukyoij3K28ULZUJm5naStHONvnjNepnlwRF2tcJ+T2T92Y5KTEVDgoEgIAXoJHIxDMiVN3Y5LhKHpOXrJdSz75A4I9uiWi7ttRWeA+copZGM4QTs6B6acIjWT7FhAfKcRiwqSfxPk4EOfZq/C10OX3AchwI+k+D5AnzxjIKLpqGbYVgnDuAfT2yfRp2+gToiQciHK5L8L3TwkqpFomenThIPk5D6P2JFWYNczoiX2NQ2C+kHrz183GQFZrsKS90PBKhMP4lcnCY+Bj7H2Bdwlk80/V4v6MZmZXBkg0ObTFDHUytkmO2oFVDrzYPvUMk41exIp9xQVrLXvblSm5fGA7B4ABUMUQdDbLXIwljYKE38GYfd5zh0FPhuDrGfkzllQRknc1xbWpbRkQ1eq6I5CF6BI2ywHgYCfHvV2wAsu+AVp9boUsYTrJcVrncllnmjDT2NaMOxMGm3oPdouJDUSiCrFeWFqPS8KYPev35GOf0P8vihyui/9rWv4c///M9f+Pnf/d3f4Wd/9mcBUJD7zd/8zRcGmV9WJnzZYWT01z0Z/fd6Q32QrxEgcACeYGCyAq9ysEqroLRk26TjVsKejsmjygmgkqm1/ViXyi4OlaRShBl+Nl84w6gzB3lV6b8zsk4RrJOzGz6gww1sl3Y9gnU9RPp/YhRyRu+F5qcYXFmQCtKoIUsC1aKprdoJStnSnHF5pQa3R27JXHy84uh7UKntYedHOH0hdFCi0kRIEGDhoZQ01ybtcDapHRVaGuLWpPqyoRJt2SgsNHndOC8vNSeyP4tm+pGmF5l6tJAGgmlCuYDHQcSBugQrNmCyBmsKtDutIM33tED0yqTm2t0t17Hj+0Tj1/2mRUkU/lIqzLPaOkSb+5BGCGiho8DKcBw6iBwNHc5XwIwI+Wq7QnN7ZUvATuCBB9qJOR7AffgmlcbCIXbeiIQqDfH8SITU9WgDHdDHgUDocEQOAys2EJteprmcWaEC9DiHea729DWoYIjSTfBsW2GZN7jNKjzflJYa4wmunaU9TGMPrwy9Tmn47G2io+t70YKSxyeop2+gECGZR5YKb9/sLI3GF+QyfBx5eOOIVIZuvgTf3UC+9y+U1egMgvkBRDKC98Z/OAiIz7a15UfuqsaOfjwcUqY7NNnu/AP63uzWZI0C2A1XO3kApRFRH2mrHzN+Ya7xi4aZ73eeXNnGOjnwdAScvwEVT154faSGpFLfUeDi1bFvszj29Fu0ucj3aJuKrmEyIhfqs5/AVjlYFhL/drPHTpNzABoJMFncg1CCb28gsgXqZ++S8lN7oanzL1KmWivkTWvXm9DRoF98fAnx04S39WaDs//dZPTf+MY38I1vfOMTH/Pw4UP85V/+5Q/sOT+tlYo1tFStVdVVqoVgLrzAgxOkaIUHFo4g6hztftWV7sxRlfTBZUu05Q7MDTAOUrR+l2YfBcIuxo2khVeqTsHXwgwlKyhFrEKC7baQrQJ6ziWCMXAzPMyM2o/ZKh6VwuhmMgFMcCB2PTieDy8YQkCBF1s7PsCaiuxTACrNMU5BhXGyQTEDi/3gZSxX9N8PAph5XP/3GKf+oibWg3F9TTpT0Uq2kHULWdIO+K7Csa+QNNetz2A018c3s3Qx03NpOFAMhi7HaUwN+cDYqTgcDhR4vtSy/QpMSbA6o/fWNHrh5rRwY9yVcIFOSOKHEMMJlBuidUPIdIpaBIQFy1usSxL+FFJhVzZ2jo4zKl8abuFIw4dDlyOqt6TeLPdg2Zp262aRCgLwAJTtJiMqPaVj8GSEZngPbZCi5AHWOfW58lphV0obLLmmvfuCwXcYZRmq0s+3A8vWpPoscxL1hLElxvAoBcKUlJyDC+xqhV3WYLYnMoT1tBPCzng9Goe6r8ZJ5p0tyXtLi6aozxnQXNrgyJZYNyWVOLclCRfMecdazDIOnS547efA5tYu5NBEeeMcIJNjyGSKrHWJLq+DQ9koG7wST+gyLQUvka+74JXv6T5wPRp4jgaQehh4V1H5mmC46gCKneoyZNCW3aCyfo1WfBQPwAYT6yG30V5upk9lfL3GIfXOLUczX3fvF6DxiOEE/OgUMhwja11sSomt/m4BsD6DJngNAwGe3WovtCVtyow4KqINWK5nSek72W26P+n4LJYq38/xuWEhAp/dSsX8jhnkrVqAsxZFQ1+SKJ5ChBVUXYB7Mbkeq0ZTmaX9fWKEVWibEm1dAMIB5w487iByfLS6RCnB7aJdaZYhKRapDFbrwGasRlTbHogMFKUhvffCbCZHWZyyP2scbgOYVLBDww5nCLyBDXTGpA4gWxTVC6qyPRxw7p6TMj9T+35xRqzLbs0GQUpANvSe2lbaxdtkU4THajt7m5eAHs2AtPEPcgUHZy3cljJU5R3itMxhhqnJDJQh9QQCh4Kd32RgWU5l2nJPM4HGNsa8dyGAIH45lkwIKmdyBxAemiC15pvrSqHUAatsWszz2tL4oV+/MSudhC48HUi6ftsWYndLgVSPW9AveuBCAGFMYh3HJXVhlKD1Ekg/pvmoWiEvJfa1gSurg+cNHI7AMUpYBrfODobw26qXcUWp7fVgeALlx1BejDYYYJFTgMm0cWutKEAOfQeuICPFoe/iJHaRuNRT44slDaXne21oGthBfT46gfJTok3ozNHg1HyHwwe9/vPU15k0t+U9Xu0he07KjAs788cGE9Q6eG0q6v+Z4ADAZuXj0CVwt8fBiw1RNorMliGZH4IFEVg0oNcZDHQvkcrYZn0xAiASA3H4qMHyNVih+3FGKh/Glv6hwiEK5mNbKquCNBsOA05IPMoMeb7WdkA72lBxAR7SZ8SPTqFCov1vKmk/G6ALXqnn2OCVCqXLoxvKtPVoAU9GaP0BKuYhr6Q1AAajyiFh+F7Mvn5URcUfCYnjh3m8jMTxvQ6ztrWgLKmPYjI7f8AAZ4mAHjqcCBGyoqylzrsB6B7N465RpIVe9vEreh7L9na4A+VFdrA41x5YFNjag6HhrnWq//yYO6Wb4dKBhlGZlPWsSvr4zbvlubY9zHr653BsWbOb+2IM1tnalPxMIDHn6l/bu+/j7nv5uNdvaB2mVPpJXxTzulxdonU4g4Ci7KIp6bOs8s4iwnx25rPqlzmdgD4vLSAB5/azbbmj3x+sUKRRsJ+jarts0RyRJ+BwWK5j6pMknzcFLXJ1YcuXrDcnZ8u53NE0BJdep6YjmJ5gVnf8TLqH6HC0NYYpL/efl2fLzmZG0X1tsujWS+i53AgyGiNvWqvy3FWKNmA6Gzal79Rz9EZBZ5MyB6v2euRgC9QVzU65dJ0N3UGlUzQ6c10VEpX+LjSaemJK5Kbk6UryHWN1BhTdGAzTZTk1OEHrJ1DhEIuKxmAK2blOANClW4dKqC7HiFdgxbYL5tmGSmqOizYa0iYlGED5MRYVs6XhvNYkd84p03S4HghmEOvnhD6rc1JDAtRvT4+JuxgM0bgRZlmXMW8rCaFJOEfaIiXxBHxVQCyfUU9Wi7SYLvsjTNGM7qPxEmwrhZussZk/AO3OTIPK57Fjy9NsdUmtBSVpUDxMraJyXgsUTYu2pXIwVXiAUM/H3f0uf9Zj8/9FEseP6+CMFlTKQPTKqEhKylvYYAH6MfVZpIJsGVzuwfGptAZZA6IhxIoBXfZLjHd7Q60CA0crG/qwVaMXQwnOOTzuwHUcMMZtZuaJ1vZ/7m41DhZ8MPQt5r7XYz/2uoCBty2Uviz93zcBhOMweJmAqOy5W0gAAgyKARKtPtdhxLE3fu+5TGbX/fwwWJkFzP6993v9c+pno8cafJjU+LCm1JlWl3n2S58mULVeJyBpXQpgpvxpssy2baFk2wVv1QVnoV+AagGHc/iOeR8MgdMFEU8whLylYNqUh2Vd4aEVAFx6bao3hG77htxB1XI02uW6li2U9rpzeOfd1t98UDZOpBRm7l9QGZnxOyVkLtD6iUUH5U2ruZuUKTOmszoBcCYsDixydX9NMIi2oeBlREiMAx7RUpRmfZJE20ctAttDZgYzdqev6wmGyOEQSguczGfnKf98hAAAEOVJREFUh2CeD2Y+R61Qbb0IFRw0StJ9yqBhA1R2dzhsZh46HCynrNwaOAZRd28EKVo3gvJCNMyBbCXNrqKz/yH1Kr1340Nnr7EeKjbO5TJI0XoxlBehbFrrNEGzcsQIdfT1jF0OD0238QKRVZjjWtGThRDXym5eOAcCECzbKGtjl9Nmrs7IaRmUtQKw5eHWiyG5B6nXNbMBFrz7Lprv2o/j+P9lAAPuDt6ZPlILAWZLiv0s4aCsxRkcN6BhaKmDkDABTCsD72Kr7BP3e0Q9OwIT1AB43IFgDC1v4SizWPZEHx970zD7nmyW+TFlQPvSrDMz6wVu9kLA7AcTl78YVPrP1YJBtGZxY2jbjz+f+XtfxHI3E2Po/q0vXBH9LKyvwDRHzz2W5uCaXr+PgwlNEjC/I5zuc+EOyYZ1sJCMwMmt6jLUF6+hfi9gYLwFwO2mom3775UWYMG6sq6hlaAlQUhrHgwc9iXdUKswKYs3MGfTOzWvy9WBU5/g4LMylBSXM8q0dPbZcgfMAdpeJmqvhR/T84FDtsqW3Rhj8AQ9L+u9H4MOM6IY6it2NIfWCbrg6EUEq3Y8yiJ1ubCFXij1HcDB7M7f5UwHrwJQDWWlTtCVw4VrRUGtnxBKzaiB9Y5JMIA5XUCPXZ1ZtM0BeaIVdJ5uM0PBS3LPloPpO0Drhzmfr2X4wpzPXEugO59w0XoxBVjZlb5du1GjEQ9PdAGRlfo9Mw4IAxRw7Bxk64bdBqOljUzokFrYdxgCwRG6OlBnJZHmAXA/pGvHBZWHvUQrfdvuu2gqGb32xY8reAGf4wD2aS+qsIsnffEOdtb6MWZR6CVrkIyD6xu77bmU3i0hHgSvT1Lr9YKZYESXbvVrunu8EMD6pS99mGpVP5h90mEqyXff88FL1E/YLx/2Xw9Agba1fz8sG949lylp0jlfPJc5R/84eO8mMH3ctT/4RQ5wTy8ern6Pdx5vxCZWeOLYbEuqw/uhH2Rd80Xu/fDu9bQvQ//pmAWqVUCr+6km+3Ej+3qs+lOLYFr9mlQLNE2vNwpa9MzV6V/fl2al9oXqYO54dP67gpze85oyKQMtqIoDXi8wm4zPApllBVZ1PWMTCFrgoBzbepEV9Ujd+zXn8oTpsTCbhZlrxmpDGXEoQ7TzncJmpi3jtjUA0ALuHWwmurK0xxSgatqUCn09HNU9R+/1GkeItqXXZK59/5yBYFYoBYAyTFcHWYNjEq5tH5jXGLrc3vcu77UxTJZu+u9+bL9rbT+LFR6qmnrnjg7MZsMYukyXrVmXYeqNnHR8vbnw0PqpHVORSsHhgANm35fZCH3W4PWypejfEwA/lwHss1wQ89gWdxZH1gWzuyd8Iab0SlAvLIovU573HmMWXZuN9YKQWWw+7jW/kHVoYzkAEIy/0Gd6Wd+pOyk7eAzw8sB3V7hx91yCdUHTKCU/6Tx3/343GJvzHbzUg//pAn/LXnaxcXBN6QnvPNfdx5nPsv9PjEqr/Rdwt2x5+LpevJ791/9C/45zAHcyQo086/dQTfAi3Bo9zAp5+q/1JRuMFz733v1CQfuTr4c5Vz/j7r/drkf54mfUcuDAR8rxbHZnNgkm6PPepuagd2sDvrrz2gEw115HO6aBbiNnFvB+edpcO5PJ280m52hbcfh6dQZsPoP++xasu7imrG1EUuZ8aOk12UvfGyFR7Z1z9b70pn8rOHtxo9NX/PYyTrPJELpXIvTuUHAKXg6nTQDT19D04+m1GjqRZwVn9n2xzoi295Y/9fFx++hPsb/+2ONzF8C+32j+skBmFmHz8/5j/9/2zi42hi6M4//d0qJYpYm1odpEEV9FBW3iK6EiUoIIkTS9IalEUFwQkjai4iPhpkSECDe4EG640IuGVxTVkEjjoo2mK7QaH6GaUKnzXtiZzszOzM5+zJxzts8v2YudnfOc5zxzZv7nOWdmRzsF6dNeIG3+nVlFIzhRF90Y5eMVZ6U9ypofYC6K8dRlmQECUN7MaoyhVfxMbWi/+/xqO9SflHLKnzPbxczu2FhlbIb9VH8jYmyMn3GgYRwwKGhmoKPq+veIgYk/2huAtJu1gqp818Q0SiBNsvQogXIQDx8GBVOZZNc/i6jJjoGIMPt14jDY3ki7IqKstknjuPrOOcVu1HS8VoD1sRoUBh8yIv5qs2Sdv9pQRaaXVbtKDJSPwa72z2h0gwfN4NSXMUx3rusGJoo/Eaf8OkEbfOZTXcxCxJZ2oKNknGrb/hXwRy5gvsg2dd1KWf/NGP5vWl0RMzXjHzZ4M1vEJ3UwAefXELW9Sf5uRVoJWDKpqJkN/dRY/HVaHRSf9qQwu2jYXJBNEkLb/bUiZvW7VT12nTRWrI1iabyj0YkNR3FwMmAw7KNmog7KGv03e/bFqj3a77bxtOoP2hG2xubgTOGgQctsy+lD5tr6LND6r1ujg8WxVNbQWOQ5Dm0dGqFR2qSImLY+UzFWbBvtabab9TfFX22sdHHSCoyJXbXdsD8O6namKafNcLXCFRFEv+/fDVRGoVV8VE36/JGiBl+VAUEE7VqxsreaxepsKdPGhqlqtWmDgwpFnE2Phw3JZFixSCsBSzXakX+8Iw47dFN5Ti7AVuUdlE2081hlEVq7akjiEIJEbMSaenASRzMbxqzQiFlWboUTQTf6oM+ooqfrzDAOqmynmG3sxeoXVmLsJBZqvWYZslYkDPaNgwPzqVmDLQt7WrtmGbOpv0b7FnYd9wUHxzRq6QLQCWJUtm7IxLW/ac8HZT1fa1cnPIotm4xcPSYmgwonuClcCmkjYCnUF6HrFAnTbFBS7NpiJj5eY+ZDTPHyyA/7AokNbrT1ObHnVGTczhySiX9Mnx0Odh0tGcQYXGjt2PlmhVfnS9oImFvYnbCxLuCxTnYZBMDtNqQiBiLE0Ys4pEpI3b64iHA8kiWeGInYVsdZcirsGPBysBf//JVkMMPHuF1mnPjP++RyUr8MxyEV7YhlwytxSrYt2jWZZPzwGqftdnIctR8rG1bXnkR88pJk6vPa17QVMKtOYyZkhNjwFmEvSVYEndgQhVQdVy9E26kdr6cdhzppK2DxINOII9X1e+G/CCeoCD4QcuNmH5Ixo00Guww2HtJSwGQ62DL5OtRJxQUsnWzIgldtHQrnsht9LxkhSysBc2tdayid7IT7pGK07YUNL3wQAafrXrzKp2rNMRXTqG4d00TtppWAuYUsJ6KopFP8vLpoixCzoTK9HAu3hT6ZsvHcdBLLRrJ2nGB100uipM1t9CKc8InA8+RIRXkvkO3YpuqWeBEeUYiFCM/IJYPbvvPOUhOtP5bgxVtPvPU7JW0EzAztvwc42S+ZOkTF7Zs8kj1Bkynv1clpLONkFGn8bvosqYN6Yz1gbVc2VnnFhujP+fFEZN9FeGzDaMvrf+lI2ylELzoe7+zH7Q7qtvgkuy6QaN2JlOF5sXBzAJaK+tO1bhHq50Wi7abnwASD5y32btft9tx8oog0skwHhrIAxkLkDCsWbs9+pLqcQir7Q9oKWDwLk3Y2EikXq6wX5WOV5Zn98BROUS9YMosybwHkXX8yZWX23Y0640X6NTDlhWu9vb0JlRdRwNz+NwaRfedZfij7HsuGyG2PVT4Vt49Tv0ldWbNyyvWbmb2+3QbpBUxpeGFhIWdPCIIgiGTo7e1FIBBwvL+PxSt5gvH37198/PgRY8aM0b3AzW1+/PiBKVOm4P379xg7dqxn9coMxSwxKG7xQzGLH54xY4yht7cXoVAIfr/zlS3pMzC/34/Jkydzq3/s2LF0gsQJxSwxKG7xQzGLH14xiyfzUkjbmzgIgiCI9IYEjCAIgpCSjNra2lreTshKRkYGVq5ciWHDpJ+J9QyKWWJQ3OKHYhY/ssVM+ps4CIIgiKEJTSESBEEQUkICRhAEQUgJCRhBEAQhJSRgBEEQhJSQgBEEQRBSQgKWAHV1dSgtLcWoUaMwbtw4033C4TDKy8uRnZ2N3Nxc7N27F/39/R57Kjb5+fnw+Xy6z+HDh3m7JRQXL15EQUEBRowYgeLiYvz333+8XRKa2traqD4VDAZ5uyUUjx8/Rnl5OUKhEHw+H+7du6f7nTGG2tpahEIhjBw5EitXrkRraysnb+0hAUuA/v5+bN26Fbt37zb9fWBgAOvXr0dfXx+ePHmCW7du4c6dOzh48KDHnorP8ePH0dXVpX6OHTvG2yVhuH37Nvbv34+jR4/i1atXWLZsGdatW4dwOMzbNaGZPXu2rk+9efOGt0tC0dfXh6KiItTX15v+fubMGZw7dw719fVobm5GMBjEmjVrEn7jh6swImGuXbvGAoFA1PYHDx4wv9/PPnz4oG67efMmy8rKYt+/f/fSRaGZOnUqO3/+PG83hGXx4sWsqqpKt23mzJns8OHDnDwSn5qaGlZUVMTbDWkAwO7evat+//v3LwsGg+zUqVPqtl+/frFAIMAuXbrEw0VbKANzgaamJsyZMwehUEjdtnbtWvz+/RstLS0cPROP06dPY8KECZg/fz7q6upomjVCf38/WlpaUFZWptteVlaGp0+fcvJKDtra2hAKhVBQUIDt27fj3bt3vF2Sho6ODnR3d+v6XVZWFlasWCFkv5Pj/0Iko7u7GxMnTtRty8nJQWZmJrq7uzl5JR779u3DwoULkZOTgxcvXuDIkSPo6OjAlStXeLvGnc+fP2NgYCCqH02cOJH6kA1LlizBjRs3MH36dHz69AknTpxAaWkpWltbMWHCBN7uCY/St8z6XWdnJw+XbKEMLILZ4q/x8/LlS8f2zN5Nxhjz9J1lPIgnjtXV1VixYgXmzZuHnTt34tKlS7h69Sq+fPnCuRXiYOwvQ6EPJcO6deuwZcsWzJ07F6tXr8b9+/cBANevX+fsmVzI0u8oA4uwZ88ebN++3Xaf/Px8R7aCwSCeP3+u2/bt2zf8+fMnamSTbiQTx6VLlwIA2tvbh/xoOTc3FxkZGVHZVk9PT9r3oVSSnZ2NuXPnoq2tjbcrUqDcsdnd3Y1Jkyap20XtdyRgEXJzc5Gbm5sSWyUlJairq0NXV5faCR4+fIisrCwUFxenpA5RSSaOr169AgDdiTNUyczMRHFxMRoaGrBp0yZ1e0NDAzZu3MjRM7n4/fs33r59i2XLlvF2RQoKCgoQDAbR0NCABQsWAPi3Hvvo0SOcPn2as3fRkIAlQDgcxtevXxEOhzEwMIDXr18DAKZNm4bRo0ejrKwMs2bNQkVFBc6ePYuvX7/i0KFD2LVrF70dNkJTUxOePXuGVatWIRAIoLm5GdXV1diwYQPy8vJ4uycEBw4cQEVFBRYtWoSSkhJcvnwZ4XAYVVVVvF0TlkOHDqG8vBx5eXno6enBiRMn8OPHD1RWVvJ2TRh+/vyJ9vZ29XtHRwdev36N8ePHIy8vD/v378fJkydRWFiIwsJCnDx5EqNGjcKOHTs4em0B57sgpaSyspIBiPo0Njaq+3R2drL169ezkSNHsvHjx7M9e/awX79+8XNaMFpaWtiSJUtYIBBgI0aMYDNmzGA1NTWsr6+Pt2tCceHCBTZ16lSWmZnJFi5cyB49esTbJaHZtm0bmzRpEhs+fDgLhUJs8+bNrLW1lbdbQtHY2Gh6/aqsrGSM/buVvqamhgWDQZaVlcWWL1/O3rx5w9dpC+h9YARBEISU0F2IBEEQhJSQgBEEQRBSQgJGEARBSAkJGEEQBCElJGAEQRCElJCAEQRBEFJCAkYQBEFICQkYQRAEISUkYARBEISUkIARBEEQUkICRhAEQUjJ/0avgkeURsSZAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.731805 seconds (295.17 k allocations: 648.420 MiB, 7.63% gc time)\n" - ] - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = zeros(Nx,Ny)\n", - "b[Nx÷2, Ny÷4] = 1\n", - "@time u = reshape(A \\ reshape(b, Nx*Ny), Nx, Ny)\n", - "s = maximum(abs, real(u)) / 10\n", - "imshow(real(u), cmap=\"RdBu\", vmin=-s, vmax=s,\n", - " extent=(minimum(x),maximum(x),minimum(y),maximum(y)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We solved a $200000\\times200000$ matrix problem in 2–3 seconds, and less than 1GB of memory. Pretty good!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Iterative solvers\n", - "\n", - "Unfortunately, sparse-direct solvers like those we are using above have two limitations:\n", - "\n", - "* They only work **if the matrix is sparse**. There are lots of problems where $A$ has some special structure that lets you compute $A*x$ quickly, e.g. by FFTs, and avoid storing the whole matrix, but for which $A$ is not sparse.\n", - "\n", - "* They **scale poorly** if the sparse matrix comes from a **3d grid or mesh**. For an $s$-element 1d mesh with $n=s$ degrees of freedom, they have $O(s)$ complexity. For an $s \\times s$ 2d mesh with $n=s^2$ degrees of freedom, they take $O(n \\log n)$ operations and require $O(n)$ storage. But for a 3d $s\\times s\\times s$ mesh with $n = s^3$, they take $O(n^2)$ operations and require $O(n^{4/3})$ storage (and you often run out of storage before you run out of time).\n", - "\n", - "The alternative is an **iterative solver**, in which you supply an initial guess for the solution $x$ (often just $x=0$) and then it *iteratively improves* the guess, converging (hopefully) to the solution $A^{-1} b$, while using *only* matrix-vector operations $Ax$.\n", - "\n", - "Iterative solvers are the method of choice (or, more accurately, of necessity) for the very largest problems, but they have their downsides. There are *many iterative solver algorithms*, and you have to know a little bit to pick the best one. They *may not converge at all* for non-symmetric $A$, and in any case may *converge very slowly*, unless you provide a \"magic\" matrix called a *preconditioner* that is specific to your problem. (It is often a research problem in itself to find a good preconditioner!)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Toy example: Steepest-descent algorithm\n", - "\n", - "If $A$ is a **real-symmetric positive-definite** matrix, then solving $Ax = b$ is equivalent to minimizing the function:\n", - "\n", - "$$\n", - "f(x) = x^T A x - x^T b - b^T x\n", - "$$\n", - "\n", - "Just compute $\\nabla f = \\cdots = 2(Ax - b)$, which equals zero at the minimum. The definiteness of $A$ means that the function $f$ is [convex](https://en.wikipedia.org/wiki/Convex_function), so there is exactly one global minimum. Another way to see this: if $Az=b$, then $f(z+v) - f(z) = \\cdots = v^T A v > 0$ for any vector $v \\ne 0$, so $f(z)$ must be the minimum.\n", - "\n", - "One of the simplest iterative algorithms is just to **go downhill**: minimize $f(x + \\alpha d)$ over $\\alpha$, where $d$ is the downhill direction $-\\frac{1}{2}\\nabla f = b - Ax = r$, where $r$ is called the *residual*. We can perform this *line minimization* analytically for this $f$, for an arbitrary $d$, to find $\\alpha = d^T r / d^T A d$.\n", - "\n", - "The steepest-descent algorithm simply performs this downhill line-minimization repeatedly, starting at an initial guess `x` (typically just `x=0`), e.g. stopping when the norm of the residual is less than some tolerance times the norm of `b`." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SD (generic function with 2 methods)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function SD(A, b, x=zeros(b); tol=1e-8, maxiters=1000)\n", - " bnorm = norm(b)\n", - " r = b - A*x # initial residual\n", - " rnorm = [norm(r)] # return the array of residual norms\n", - " Ad = zeros(r) # allocate space for Ad\n", - " for i = 1:maxiters\n", - " d = r # use the steepest-descent direction\n", - " A_mul_B!(Ad, A, d) # store matvec A*r in-place in Ar\n", - " α = dot(d, r) / dot(d, Ad)\n", - " x .= x .+ α .* d # in Julia 0.6, this \"fuses\" into a single in-place update\n", - " r .= r .- α .* Ad # update the residual (without computing A*x again)\n", - " push!(rnorm, norm(r))\n", - " rnorm[end] ≤ tol*bnorm && break # converged\n", - " end\n", - " return x, rnorm\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1001, 0.2857436922124249)" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = rand(100,100); A = A'*A # a random SPD matrix\n", - "b = rand(100)\n", - "x, rnorm = SD(A, b, maxiters=1000)\n", - "length(rnorm), rnorm[end]/norm(b)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHFCAYAAADbiAxsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XdUVNfCBfA99I50AamKCoJYAEVFBAwKKBpjmgVsMUZS1CTGxJdm7MaSxJbEQsyLEc2ziwWCvYKINdgVCxYkFjAqMOf7Ix8TJ6AyOMOdgf1by/UylzP3bmbksT33zL0yIYQAERERET0XPakDEBEREdUGLFVEREREasBSRURERKQGLFVEREREasBSRURERKQGLFVEREREasBSRURERKQGLFVEREREasBSRURERKQGLFVENWDp0qWYNWuW1DE0auLEiVi9evVz72fbtm2QyWTYtm3b84fSInPnzkVycrLUMYhIg1iqiGoASxWxVBHVfixVRERUY8rKyvDw4UOpYxBpBEsV0XO6efMmhg4dCjc3NxgbG8PBwQHt27dHeno6AKBTp07YsGEDLl68CJlMpvhT7tGjRxg/fjyaNm2qeP7AgQNx8+bNCsdKSUlBaGgozM3NYWFhgS5duuDQoUNKYwYMGAALCwscP34cUVFRMDc3h4ODA95++23cv39faawQAnPnzkWLFi1gamoKGxsb9O7dG+fOnVMad+jQIXTr1g2Ojo4wNjaGi4sL4uLicPnyZQCATCZDcXExfvrpJ8X316lTp2e+drm5uejatSvMzMxgb2+PYcOG4d69e5WOTU9PR1RUFKysrGBmZob27dvj999/V+m9KLdp0yZERUXB2toaZmZm8PX1xaRJk5TGZGVlIT4+Hra2tjAxMUHLli2xfPlypTHJycmQyWTYunUr3nrrLdjb28POzg69evXC1atXFeM8PT1x/PhxbN++XfH6eHp6PvW1kcvl+O677xTvTb169dC2bVusXbtWaczUqVMVf3ccHR2RkJCgeF/KderUCf7+/sjMzERYWBjMzMzg7e2NyZMnQy6XK147IyMjfPrppxWy5ObmQiaT4dtvv1Vsu3btGt588000aNAARkZG8PLywpdffonS0lLFmAsXLkAmk2Hq1KkYP348vLy8YGxsjK1btwIAjh8/jujoaJiZmcHBwQFJSUnYsGFDpad/q/L+f/HFF5DJZDh+/Dhef/11WFtbw8nJCYMGDcKdO3dUfn2Bqv3MESkIInouXbp0EQ4ODuKHH34Q27ZtE6tXrxafffaZWLZsmRBCiOPHj4v27duL+vXri7179yr+CCFEWVmZ6Nq1qzA3NxdffvmlSEtLEwsWLBCurq7Cz89P3L9/X3GcCRMmCJlMJgYNGiTWr18vVq5cKUJDQ4W5ubk4fvy4YlxiYqIwMjIS7u7uYsKECWLLli3iiy++EAYGBqJbt25K2d944w1haGgo3n//fbFp0yaxdOlS0bRpU+Hk5CSuXbsmhBCiqKhI2NnZiaCgILF8+XKxfft2kZKSIoYNGyZOnDghhBBi7969wtTUVMTGxiq+v8czVebatWvC0dFRuLq6isWLF4vU1FTRt29f4e7uLgCIrVu3Ksb+/PPPQiaTiZ49e4qVK1eKdevWiW7dugl9fX2Rnp5e5fdCCCEWLFggZDKZ6NSpk1i6dKlIT08Xc+fOFcOHD1eMycjIEEZGRiIsLEykpKSITZs2iQEDBggAYvHixYpxixcvFgCEt7e3eOedd8TmzZvFggULhI2NjYiIiFCMy87OFt7e3qJly5aK1yc7O/upr0///v2FTCYTQ4YMEWvWrBEbN24UEyZMEN98841izNChQwUA8fbbb4tNmzaJ+fPnCwcHB+Hm5iZu3rypGBceHi7s7OyEj4+PmD9/vkhLSxPDhw8XAMRPP/2kGPfiiy8KNzc3UVZWppRl9OjRwsjISBQUFAghhMjPzxdubm7Cw8NDfP/99yI9PV189dVXwtjYWAwYMEDxvPPnzwsAwtXVVURERIjffvtNbNmyRZw/f15cvXpV2NnZCXd3d5GcnCxSU1NF//79haenZ7Xf/88//1wAEE2aNBGfffaZSEtLEzNmzBDGxsZi4MCBKr++Vf2ZIyrHUkX0nCwsLMSIESOeOiYuLk54eHhU2P7rr78KAOJ///uf0vbMzEwBQMydO1cIIUReXp4wMDAQ77zzjtK4e/fuifr164tXXnlFsS0xMVEAUPrlIMTfvyAAiF27dgkh/i5CAMT06dOVxl26dEmYmpqK0aNHCyGEyMrKEgDE6tWrn/o9mpubi8TExKeOedxHH30kZDKZyMnJUdr+wgsvKP1SLS4uFra2tqJ79+5K48rKykRgYKAICQlRbHvWe3Hv3j1hZWUlOnToIORy+RPHNW3aVLRs2VKUlJQobe/WrZtwdnZWlI7yUvV4IRNCiKlTpwoAIj8/X7GtWbNmIjw8/InHfNyOHTsEADF27Ngnjvnjjz8qPfb+/fsFAPHJJ58otoWHhwsAYv/+/Upj/fz8RJcuXRSP165dKwCILVu2KLaVlpYKFxcX8dJLLym2vfnmm8LCwkJcvHhRaX9ff/21AKAoHOWlqmHDhuLRo0dKYz/88EMhk8kqlJMuXbpU+/0vL1VTp05VGjt8+HBhYmKieM+r8vqq8jNHVI6n/4ieU0hICJKTkzF+/Hjs27cPJSUlVX7u+vXrUa9ePXTv3h2lpaWKPy1atED9+vUVp0A2b96M0tJSJCQkKI0zMTFBeHh4pZ+U69u3r9LjPn36AIDi1Mv69eshk8nQr18/pX3Wr18fgYGBin02atQINjY2+OijjzB//nycOHFCpdfn8X2XlpZCCKHI0axZMwQGBlaas9yePXtQWFiIxMREpf3I5XJ07doVmZmZKC4uBvDs92LPnj24e/cuhg8frnQK9nFnzpxBbm6u4vV7/JixsbHIz8/HyZMnlZ4THx+v9Lh58+YAgIsXL6ryUils3LgRAJCUlPTEMeXv44ABA5S2h4SEwNfXt8Kpsfr16yMkJKRCzsczxsTEoH79+li8eLFi2+bNm3H16lUMGjRIsW39+vWIiIiAi4uL0usTExMDANi+fbvSceLj42FoaKi0bfv27fD394efn5/S9tdff13psSrv/+PH+/f3+eDBA9y4cQNA1V7f6vzMEbFUET2nlJQUJCYmYsGCBQgNDYWtrS0SEhJw7dq1Zz73+vXruH37NoyMjGBoaKj059q1aygoKFCMA4Dg4OAK41JSUhTjyhkYGMDOzk5pW/369QEAt27dUuxTCAEnJ6cK+9y3b59in9bW1ti+fTtatGiBTz75BM2aNYOLiws+//zzKhXIf+/7p59+UuQoz1RZzsdfIwDo3bt3hX1NmTIFQggUFhYCePZ7Ub5OrUGDBk/MW368Dz74oMLxhg8fDgAVXu9/v9bGxsYAgL/++uuZr09lbt68CX19/Upfn3Ll76Ozs3OFr7m4uCi+/qSM5Tkfz2hgYID+/ftj1apVuH37NoC/1405OzujS5cuinHXr1/HunXrKrw+zZo1A1Dx9aks461bt+Dk5FRh+7+3qfL+P+l7/ff7UZXXV9WfOSIAMJA6AJGus7e3x6xZszBr1izk5eVh7dq1GDNmDG7cuIFNmzY987l2dnZPHGdpaakYBwC//fYbPDw8npmptLQUt27dUvrlUl4syrfZ29tDJpNh586dil86j3t8W0BAAJYtWwYhBI4cOYLk5GSMGzcOpqamGDNmzFOzZGZmKj328vJS5KiseP57W/n3/t1336Ft27aVHqP8F/Gz3gsHBwcAqLCQu7Ljffzxx+jVq1elY5o0afLE56uDg4MDysrKcO3atUoLCfDP+5ifn1+hJF69elXxfahq4MCBmDZtGpYtW4ZXX30Va9euxYgRI6Cvr68YY29vj+bNm2PChAmV7sPFxUXpcWWzgnZ2dori8rjnef+rqiqvr6o/c0QAuFCdSBN69uwpHBwcFI979eolHB0dK4z773//KwCIffv2PXV/58+fFwYGBmLKlCnPPPaz1lTt3LlTCCHErl27BACRkpJSlW+pgnr16omXX35Z8djW1laldSZVXVN17949Ua9ePfHWW29VK+fj78W9e/eEtbW16Nix41PXVPn4+IjY2Nhn7rt8TVVmZqbS9q1bt1ZYbN2qVSul9T9PU77m59NPP33imNzcXAFAvPvuu0rbDxw4UGG9UHh4uGjWrFmFfSQmJla61q9NmzYiJCREzJ49WwAQubm5Sl8fMmSIcHFxEYWFhU/9PsrXVE2bNq3C16q6pkqV9798TdXji/SF+Od9On/+vBCiaq+vKj9zROU4U0X0HO7cuYOIiAj06dMHTZs2haWlJTIzM7Fp0yalWY6AgACsXLkS8+bNQ+vWraGnp4egoCC89tpr+OWXXxAbG4v33nsPISEhMDQ0xOXLl7F161b06NEDL774Ijw9PTFu3DiMHTsW586dQ9euXWFjY4Pr16/jwIEDMDc3x5dffqk4npGREaZPn46ioiIEBwdjz549GD9+PGJiYtChQwcAQPv27TF06FAMHDgQWVlZ6NixI8zNzZGfn49du3YhICAAb731FtavX4+5c+eiZ8+e8Pb2hhACK1euxO3bt/HCCy8ofY/btm3DunXr4OzsDEtLy6fO6IwYMQKLFi1CXFwcxo8fDycnJ/zyyy/Izc1VGmdhYYHvvvsOiYmJKCwsRO/eveHo6IibN2/i8OHDuHnzJubNm1el98LCwgLTp0/HkCFD0LlzZ7zxxhtwcnLCmTNncPjwYcyePRsA8P333yMmJgZdunTBgAED4OrqisLCQvzxxx/Izs7GihUrVP67Uj7bl5KSAm9vb5iYmCAgIKDSsWFhYejfvz/Gjx+P69evo1u3bjA2NsahQ4dgZmaGd955B02aNMHQoUPx3XffQU9PDzExMbhw4QI+/fRTuLm5YeTIkSpnLDdo0CC8+eabuHr1Ktq1a1fhfRw3bhzS0tLQrl07vPvuu2jSpAkePHiACxcuIDU1FfPnz3/qKVbgn/c/JiYG48aNg5OTE5YuXap4//X0/l6dUtX3XxVVeX1V/ZkjAsCZKqLn8eDBAzFs2DDRvHlzYWVlJUxNTUWTJk3E559/LoqLixXjCgsLRe/evUW9evWETCYTj//olZSUiK+//loEBgYKExMTYWFhIZo2bSrefPNNcfr0aaXjrV69WkRERAgrKythbGwsPDw8RO/evZU+Vp6YmCjMzc3FkSNHRKdOnYSpqamwtbUVb731ligqKqrwPSxatEi0adNGmJubC1NTU9GwYUORkJAgsrKyhBB/z4i8/vrromHDhsLU1FRYW1uLkJAQkZycrLSfnJwc0b59e2FmZiYAVOmTbidOnBAvvPCCMDExEba2tmLw4MFizZo1FWZ5hBBi+/btIi4uTtja2gpDQ0Ph6uoq4uLixIoVK1R6L4QQIjU1VYSHhwtzc3NhZmYm/Pz8KsxIHD58WLzyyivC0dFRGBoaivr164vIyEgxf/58xRhVZqouXLggoqOjhaWlpQBQ6QzR48rKysTMmTOFv7+/MDIyEtbW1iI0NFSsW7dOacyUKVNE48aNhaGhobC3txf9+vUTly5dUtqXqjNVd+7cEaampgKA+PHHHyvNd/PmTfHuu+8KLy8vYWhoKGxtbUXr1q3F2LFjFX/PnjZTJYQQx44dE507d1Z6/3/66ScBQBw+fFhp7LPefyGqPlNV1ddXiKr9zBGVkwnx/x/FIaJaYcCAAfjtt99QVFQkdRQilQ0dOhS//vorbt26BSMjI6njEKmEp/+IiEgS48aNg4uLC7y9vVFUVIT169djwYIF+M9//sNCRTqJpYqIiCRhaGiIadOm4fLlyygtLYWPjw9mzJiB9957T+poRNXC039EREREasCLfxIRERGpAUsVERERkRqwVBERERGpAReqa5BcLsfVq1dhaWn5xJu3EhERkXYRQuDevXtwcXFRXIi2KliqNOjq1atwc3OTOgYRERFVw6VLl555d4DHsVRpUPnNcC9dugQrKyuJ0xAREVFV3L17F25uborf41XFUqVB5af8rKysWKqIiIh0jKpLd7hQnYiIiEgNWKqIiIiI1IClioiIiEgNWKqIiIiI1IClioiIiEgNWKqIiIiI1IClioiIiEgNWKqIiIiI1IClioiIiEgNWKqIiIiI1IClioiIiEgNWKqIiIiI1IA3VNZBD0rKcPPeQxjq66G+tYnUcYiIiAicqdJJOZduI2zqVvRdsE/qKERERPT/WKp0kOz//1dImoKIiIgex1KlgvXr16NJkybw8fHBggULJMshk/1/rWKrIiIi0hosVVVUWlqKUaNGISMjA9nZ2ZgyZQoKCwslyVLeqc4VFCP9xHVJMhAREZEylqoqOnDgAJo1awZXV1dYWloiNjYWmzdvliSL7LH/HrIkS5IMREREpEwrStWVK1fQr18/2NnZwczMDC1atMDBgwfVtv8dO3age/fucHFxgUwmw+rVqysdN3fuXHh5ecHExAStW7fGzp07FV+7evUqXF1dFY8bNGiAK1euqC2jKmSyZ48hIiKimiV5qfrzzz/Rvn17GBoaYuPGjThx4gSmT5+OevXqVTp+9+7dKCkpqbA9NzcX165dq/Q5xcXFCAwMxOzZs5+YIyUlBSNGjMDYsWNx6NAhhIWFISYmBnl5eQAAISouYJJJ1m6Uj5t3675EOYiIiKic5KVqypQpcHNzw+LFixESEgJPT09ERUWhYcOGFcbK5XIkJSWhT58+KCsrU2w/deoUIiIisGTJkkqPERMTg/Hjx6NXr15PzDFjxgwMHjwYQ4YMga+vL2bNmgU3NzfMmzcPAODq6qo0M3X58mU4OztX99t+Lv/ucnHf7qx8IBEREdUYyUvV2rVrERQUhJdffhmOjo5o2bIlfvzxx0rH6unpITU1FYcOHUJCQgLkcjnOnj2LyMhIxMfHY/To0dXK8OjRIxw8eBDR0dFK26Ojo7Fnzx4AQEhICI4dO4YrV67g3r17SE1NRZcuXSrd35w5c+Dn54fg4OBq5XmWf8+P3XtYqpHjEBERUdVJXqrOnTuHefPmwcfHB5s3b8awYcPw7rvvPnHWycXFBRkZGdi9ezf69OmDyMhIREVFYf78+dXOUFBQgLKyMjg5OSltd3JyUpxSNDAwwPTp0xEREYGWLVviww8/hJ2dXaX7S0pKwokTJ5CZmVntTE9T2WnHO/crnhIlIiKimiP5bWrkcjmCgoIwceJEAEDLli1x/PhxzJs3DwkJCZU+x93dHUuWLEF4eDi8vb2xcOFCtaxv+vc+hBBK2+Lj4xEfH//cx3lelX2nb/+ajZ8Ht6nxLERERPQ3yWeqnJ2d4efnp7TN19dXsUC8MtevX8fQoUPRvXt33L9/HyNHjnyuDPb29tDX16+w0P3GjRsVZq+0QWX9cefpgpoPQkRERAqSl6r27dvj5MmTSttOnToFDw+PSscXFBQgKioKvr6+WLlyJTIyMrB8+XJ88MEH1c5gZGSE1q1bIy0tTWl7Wloa2rVrV+39aoqs0rkqoJhrq4iIiCQjeakaOXIk9u3bh4kTJ+LMmTNYunQpfvjhByQlJVUYK5fL0bVrV3h4eCAlJQUGBgbw9fVFeno6kpOTMXPmzEqPUVRUhJycHOTk5AAAzp8/j5ycHKXZsFGjRmHBggVYtGgR/vjjD4wcORJ5eXkYNmyYZr7x5/CkM51frT9Rs0GIiIhIQfI1VcHBwVi1ahU+/vhjjBs3Dl5eXpg1axb69u1bYayenh4mTZqEsLAwGBkZKbYHBAQgPT39iQvHs7KyEBERoXg8atQoAEBiYiKSk5MBAK+++ipu3bqFcePGIT8/H/7+/khNTX3ijJk22nryhtQRiIiI6iyZqOyqlqQWd+/ehbW1Ne7cuQMrKyu17ff41TuI+3ZXpV87Ma4LzIwk78pEREQ6q7q/vyU//Ueqe9KaKgD4Jv10DSYhIiKicixVOuhpV484c6Oo5oIQERGRAkuVDnpaqfo99wY/BUhERCQBliod9LTTfwDw876LNZSEiIiIyrFU6aBnXTw+r/B+zQQhIiIiBZYqHfSsG/Is3Z+Hm/ce1kgWIiIi+htLlQ6qym0OD1+6rfkgREREpMBSpZOe3ap+2ntB4ymIiIjoHyxVOqgqM1U7Txfgz+JHmg9DREREAFiqdFIVOhUA4M5fJRrNQURERP9gqdJBsqpMVQHo9PU2zQYhIiIiBZYqHVTVmSoiIiKqOSxVOqiKE1UAgGUH8jQXhIiIiBRYqnTQs66o/rgxK49qMAkRERGVY6nSQarMVAHAxVvFmglCRERECixVdUD4tG1SRyAiIqr1WKp0kKozVQBQJhfqD0JEREQKLFU6qKqXVHjcu78e0kASIiIiKsdSpYOqc0mFDUfz1Z6DiIiI/sFSpYOqc/oPAFYfuqLeIERERKTAUqWDVLmkwuNGpOSoOQkRERGVY6nSQdWdqQKAw5duqy8IERERKbBU6aDnuU3N0J+z1JaDiIiI/sFSpYueo1Vdv/sQl/+8r74sREREBIClSidVd01VuS/XnVBTEiIiIirHUqUBc+bMgZ+fH4KDgzWy/+dZUwUAaSeu4879EvWEISIiIgAsVRqRlJSEEydOIDMzUyP7f85OBQBYsOucGvZCRERE5ViqdFB1rqj+b99lnMGDkjI1pCEiIiKApUonqWOmCgDWH+FV1omIiNSFpUoHqWGiCgDwwYrDeFQqV8/OiIiI6jiWKh30vJ/+e1zWxUK17YuIiKguY6nSRerrVOjz43717YyIiKgOY6nSQeo6/VfuIGeriIiInhtLlQ5Sc6fCS/P2qnmPREREdQ9LlQ7SU/dUFYA1OVfUvk8iIqK6hKVKB2mgU+G9ZTnq3ykREVEdwlKlg9T56b/HfbWe9wQkIiKqLpYqHaSJmSoAWLjrPAqLH2lm50RERLUcSxUpGZismfsVEhER1XYsVTpIUzNVAHD40m0cv3pHcwcgIiKqpViqdJCm1lSVi/t2F4QQGj0GERFRbcNSpYM0OVNVLiXzkuYPQkREVIuwVOmgGuhUGLPyKO4/Kq2BIxEREdUOLFU6SFYTU1UAPll5tEaOQ0REVBuwVOmgmqlUwOqcqzhfUFxDRyMiItJtLFU6qIYmqgAAnWds56J1IiKiKmCp0kE1dfoPAMrkApuPX6ux4xEREekqlip6pmH/zZY6AhERkdZjqaIq+XT1MakjEBERaTWWKqqSn/ddxMGLhVLHICIi0losVVRlL83bi0elcqljEBERaSWWKlLJwOQDUkcgIiLSSixVpJLdZ27h9z+uSx2DiIhI67BUkcoG/5SF63cfSB2DiIhIq7BUUbW0mfg7yuS8KCgREVE5liqqttkZZ6SOQEREpDVYqqjaZqafwqnr96SOQUREpBVYqui5RM/cgYelZVLHICIikhxLFT23F2bskDoCERGR5FiqVLB+/Xo0adIEPj4+WLBggdRxtEZe4X0s2XtB6hhERESSYqmqotLSUowaNQoZGRnIzs7GlClTUFjI27aU+2zNcVy5/ZfUMYiIiCTDUlVFBw4cQLNmzeDq6gpLS0vExsZi8+bNUsfSKu0nZ6C0jLexISKiukmrStWkSZMgk8kwYsQIte53x44d6N69O1xcXCCTybB69epKx82dOxdeXl4wMTFB69atsXPnTsXXrl69CldXV8XjBg0a4MqVK2rNWRv0mLNb6ghERESS0JpSlZmZiR9++AHNmzd/6rjdu3ejpKSkwvbc3Fxcu3at0ucUFxcjMDAQs2fPfuJ+U1JSMGLECIwdOxaHDh1CWFgYYmJikJeXBwAQouKFLmUy2VOz1kXHr97FjLRTUscgIiKqcVpRqoqKitC3b1/8+OOPsLGxeeI4uVyOpKQk9OnTB2Vl/3yM/9SpU4iIiMCSJUsqfV5MTAzGjx+PXr16PXHfM2bMwODBgzFkyBD4+vpi1qxZcHNzw7x58wAArq6uSjNTly9fhrOzs6rfap3w7e+nselYvtQxiIiIapRWlKqkpCTExcWhc+fOTx2np6eH1NRUHDp0CAkJCZDL5Th79iwiIyMRHx+P0aNHV+v4jx49wsGDBxEdHa20PTo6Gnv27AEAhISE4NixY7hy5Qru3buH1NRUdOnSpdL9zZkzB35+fggODq5Wntpg2H+zceTybaljEBER1RjJS9WyZcuQnZ2NSZMmVWm8i4sLMjIysHv3bvTp0weRkZGIiorC/Pnzq52hoKAAZWVlcHJyUtru5OSkOKVoYGCA6dOnIyIiAi1btsSHH34IOzu7SveXlJSEEydOIDMzs9qZaoP42bv5iUAiIqozDKQ8+KVLl/Dee+9hy5YtMDExqfLz3N3dsWTJEoSHh8Pb2xsLFy5Uy/qmf+9DCKG0LT4+HvHx8c99nLqk/eQMHPuyCyyMJf2rRkREpHGSzlQdPHgQN27cQOvWrWFgYAADAwNs374d3377LQwMDJTWTT3u+vXrGDp0KLp374779+9j5MiRz5XD3t4e+vr6FRa637hxo8LsFanO//PNKJNXXOhPRERUm0haqqKionD06FHk5OQo/gQFBaFv377IycmBvr5+hecUFBQgKioKvr6+WLlyJTIyMrB8+XJ88MEH1c5hZGSE1q1bIy0tTWl7Wloa2rVrV+390j+6zOKtbIiIqHaT9JyMpaUl/P39lbaZm5vDzs6uwnbg70//de3aFR4eHkhJSYGBgQF8fX2Rnp6OiIgIuLq6VjprVVRUhDNnzigenz9/Hjk5ObC1tYW7uzsAYNSoUejfvz+CgoIQGhqKH374AXl5eRg2bJiav+u66cyNInyy6igmvhggdRQiIiKN0KmFLnp6epg0aRLCwsJgZGSk2B4QEID09PQnLhzPyspCRESE4vGoUaMAAImJiUhOTgYAvPrqq7h16xbGjRuH/Px8+Pv7IzU1FR4eHpr7huqYpfvz0NzVGq+FuEsdhYiISO1korKrWpJa3L17F9bW1rhz5w6srKzUum/PMRvUur+a9GNCEF7w41o1IiLSTtX9/S35JRWo7nljSRZ2nS6QOgYREZFasVSRJPot3I/MC4VSxyAiIlIbliqSzMtdkK4EAAAgAElEQVTz9+Lo5TtSxyAiIlILliqSVPfZu3Dq+j2pYxARET03liqSXPTMHThzo0jqGERERM+FpYq0QucZ23Hi6l2pYxAREVUbSxVpjdhvdyI770+pYxAREVULSxVplV5z9/BTgUREpJNYqkjrvDx/L3af4XWsiIhIt7BUkVbqu2A/0k5clzoGERFRlbFUkdZ6Y0kWVmRdkjoGERFRlbBUkVb78Lcj+HDFYcjlvEUlERFpN5Yq0norDl5Gx2lb8ahULnUUIiKiJ2KpIp1w+c+/0Pg/G1msiIhIa7FUkU5p/J+NuPugROoYREREFbBUkc5p/sUWHL/KGzETEZF2YakinRT37S5szb0hdQwiIiIFlirSWQOTMzE74zSE4CcDiYhIeixVpNO+3nIKgV9u4TorIiKSHEsV6by7D0rR/IstuPznfamjEBFRHcZSRbVGhylbsfbwValjEBFRHcVSRbXKu78ewuDkTK6zIiKiGsdSRbXO77k34PVxKm7ffyR1FCIiqkNYqqjWajEuDXvOFkgdg4iI6giWKqrV+vy4H5+tOYaSMt7ehoiINIulSkd92s1P6gg6Y8nei/AZuxGXCvnpQCIi0hyWKh01uIOX1BF0TtjUrfhhx1nI5VzETkRE6sdSRXXKxNRcNBqbiqKHpVJHISKiWoalSoc5WhpLHUEnyQXg//lmbDiSL3UUIiKqRViqdNiO0RFSR9BpSUuz8cr8vZy1IiIitWCp0mEmhvpSR9B5By4Uwv/zzdh1mpdeICKi58NSRQSg38L96DRtK24VPZQ6ChER6SiWKh03r28rqSPUGhdu3Ufr8elI3n2enxAkIiKVPVepKioqwt27d5X+UM3ycjCXOkKt88W6E/D+JJXXtSIiIpWoXKrOnz+PuLg4mJubw9raGjY2NrCxsUG9evVgY2OjiYz0FI6WJlJHqLXCpm7Fl+uOc9aKiIiqxEDVJ/Tt2xcAsGjRIjg5OUEmk6k9FFWdrbkR+rRxx9L9eVJHqZUW776AxbsvYPmboQjxspU6DhERaTGVS9WRI0dw8OBBNGnSRBN5qBpauduwVGnYK9/vhYedGZYNbQtna1Op4xARkRZS+fRfcHAwLl26pIksWm/9+vVo0qQJfHx8sGDBAqnjKLRwqyd1hDrh4q37CJ2UgY9XHsGDkjKp4xARkZaRCSFUWjBy9uxZDBs2DP369YO/vz8MDQ2Vvt68eXO1BtQWpaWl8PPzw9atW2FlZYVWrVph//79sLV98imhu3fvwtraGnfu3IGVlZVG8/WetwdZF//U6DFI2ZSXAvBKkBtPgRMR1TLV/f2t8um/mzdv4uzZsxg4cKBim0wmgxACMpkMZWW181/wBw4cQLNmzeDq6goAiI2NxebNm/H6669LnOxv/q7WLFU17KP/HcVH/zuKdW93QEADa6njEBGRxFQ+/Tdo0CC0bNkSe/fuxblz53D+/Hml/1XVvHnz0Lx5c1hZWcHKygqhoaHYuHGjyvt5mh07dqB79+5wcXGBTCbD6tWrKx03d+5ceHl5wcTEBK1bt8bOnTsVX7t69aqiUAFAgwYNcOXKFbXmfB6vh7hLHaHO6j57FzrP2I5rdx5IHYWIiCSkcqm6ePEipkyZgjZt2sDT0xMeHh5Kf1TVoEEDTJ48GVlZWcjKykJkZCR69OiB48ePVzp+9+7dKCkpqbA9NzcX165dq/Q5xcXFCAwMxOzZs5+YIyUlBSNGjMDYsWNx6NAhhIWFISYmBnl5fy8Ar+wsqTad9mlS3xI+jhZSx6izztwoQttJv+O9ZYdw56+Kfz+JiKj2U7lURUZG4vDhw2oL0L17d8TGxqJx48Zo3LgxJkyYAAsLC+zbt6/CWLlcjqSkJPTp00fpNOOpU6cQERGBJUuWVHqMmJgYjB8/Hr169XpijhkzZmDw4MEYMmQIfH19MWvWLLi5uWHevHkAAFdXV6WZqcuXL8PZ2bm637ZGuNmaSR2hzluTcxWBX27Bl+uOczE7EVEdo/Kaqu7du2PkyJE4evQoAgICKixUj4+Pr3aYsrIyrFixAsXFxQgNDa3wdT09PaSmpqJjx45ISEjAzz//jPPnzyMyMhLx8fEYPXp0tY776NEjHDx4EGPGjFHaHh0djT179gAAQkJCcOzYMVy5cgVWVlZITU3FZ599Vun+5syZgzlz5tT4+rJxPZohI/dGjR6TKld+fasPohvjrU6NoK+nPbOaRESkGSqXqmHDhgEAxo0bV+Fr1V2ofvToUYSGhuLBgwewsLDAqlWr4OfnV+lYFxcXZGRkoGPHjujTpw/27t2LqKgozJ8/X+XjlisoKEBZWRmcnJyUtjs5OSlOKRoYGGD69OmIiIiAXC7H6NGjYWdnV+n+kpKSkJSUpPj0QE1pYGMGYwM9PCyV19gx6em+3nLq7z8vB+KlVq5adcqYiIjUS+XTf3K5/Il/qjsz06RJE+Tk5GDfvn146623kJiYiBMnTjxxvLu7O5YsWYKUlBQYGBhg4cKFavll9e99lH+isVx8fDxOnTqFM2fOYOjQoc99PE14wc/p2YOoxn2w4jC8Pk7FluPXKl2fR0REuk+lUlVSUoKIiAicOnVKrSGMjIzQqFEjBAUFYdKkSQgMDMQ333zzxPHXr1/H0KFD0b17d9y/fx8jR458ruPb29tDX1+/wkL3GzduVJi90naTegVIHYGeYujPB+H1cSrWHb7KckVEVMuoVKoMDQ1x7NgxjZ/CEELg4cOHlX6toKAAUVFR8PX1xcqVK5GRkYHly5fjgw8+qPbxjIyM0Lp1a6SlpSltT0tLQ7t27aq9XylYmhg+exBJ7p1fD8Hr41T8sv8iynjDZiKiWkHl038JCQlYuHCh2gJ88skn2LlzJy5cuICjR49i7Nix2LZtm+LGzY+Ty+Xo2rUrPDw8FKf+fH19kZ6ejuTkZMycObPSYxQVFSEnJwc5OTkAgPPnzyMnJ0dxuQQAGDVqFBYsWIBFixbhjz/+wMiRI5GXl6dYQ6ZLvnmthdQRqIrGrjqGhp+kYvHu85y5IiLScSrfpuadd97BkiVLFKfrzM3Nlb4+Y8YMlQIMHjwYv//+O/Lz82FtbY3mzZvjo48+wgsvvFDp+LS0NISFhcHExERpe05ODuzs7ODm5lbhOdu2bUNERESF7YmJiUhOTlY8njt3LqZOnYr8/Hz4+/tj5syZ6Nixo0rfz+Nq8jY1/+Y5ZkONHo/U49NufujX1h3GBvpSRyEiqrOq+/tb5VJVWTlR7EwmQ0ZGhiq7q9WkLFWBX27hRSh12KD2Xhjxgg+seDqXiKjG1VipoqqTslRdvf0X2k1mwdV1YT72mP5yIBytTJ49mIiI1KK6v79VXlP1uMuXL2vV/e/oHy71TKWOQGqw83QBQib+jjYT03H40m2p4xAR0VNU6zpV48aNg7W1NTw8PODu7o569erhq6++glzOi05qk6m9m0sdgdTk+t2H6DFnNzzHbEBG7nUuaici0kIqX1F97NixWLhwISZPnoz27dtDCIHdu3fjiy++wIMHDzBhwgRN5KRqeCXIDaN/OyJ1DFKzQclZAID3X2iMQR28YG6s8o8xERFpgMprqlxcXDB//vwK9/hbs2YNhg8fztOBj5FyTVW5HrN34fDlO5Icm2pGGy9bTOsdCHc73lCbiEgdamxNVWFhIZo2bVphe9OmTVFYWKjq7kjDVg5vL3UE0rD95wvRcdpWeI7ZgA1H8nlqkIhIIiqXqsDAQMyePbvC9tmzZyMwMFAtoUh99PV4A9+6JGlpNrw+TsXkjbm4ff+R1HGIiOoUlU//bd++HXFxcXB3d0doaChkMhn27NmDS5cuITU1FWFhYZrKqnO04fQfAGw/dROJiw5IdnySTgMbU3z7eku0dKun8dtLERHVFjV2+i88PBynTp3Ciy++iNu3b6OwsBC9evXCyZMnWai0VGADa6kjkEQu//kXes3dA6+PUzFp4x8oflgqdSQiolqLF//UIG2ZqQKAkSk5WHWIHyIgoL6VCWa91gJtve2kjkJEpJWq+/u7Wp/Fvn37Ng4cOIAbN25UuDZVQkJCdXZJGtavrQdLFQEArt19gNd+2AcAeDPcG292bAhbcyOJUxER6T6VZ6rWrVuHvn37ori4GJaWlkrrNGQyGT8B+BhtmqkCAN9PN+GvkjKpY5AWMtSXYforLRAX4MwPNxBRnVdj9/5r3LgxYmNjMXHiRJiZ8bo4T6NtpSolMw8f/e+o1DFIy4X52OPjGF/4uUj/d5aISAo1VqrMzc1x9OhReHt7qxyyrtG2UlUmF2j4SarUMUiHjOjsg8RQT9jw9CAR1SE19um/Ll26ICsrS9WnkRbQ15Ph7YhGUscgHTIr/TRafpUGzzEbsDL7Mh6V8v6eRERPovJM1cKFCzFu3DgMHDgQAQEBMDQ0VPr6v29fU5dp20wVADwoKUPTTzdJHYN0WEMHc3zazQ/hjR147SsiqpVq7PSfnt6TJ7dkMhnKyrgQupw2lioAGPO/I1iWeUnqGFQLdGzsgE9im6KJkyULFhHVGjVWqqjqtLVU3X9UCr/PNksdg2qZ14Ld8HZkIzSw4QdYiEi31eh1qki3mRkZoFcrV6zM5nWrSH2WZV5SzIAmhHpgeKdGqG9tInEqIqKaw5kqDdLWmSoAeFQqR+P/bJQ6BtUBwzs1xID2nnC0ZMEiIt1QY5/+o9rByEAPb4bzshikeXO3nUXIhN/hOWYDZqWfwq2ih1JHIiLSCM5UaZA2z1SV8xyzQeoIVEe9EeaFN8K84WjFGSwi0i5cqK6FdKFU8SrrpA0GtPPE4A5ecLPlIncikp5GS9Xdu3ervENtLQ9S0IVSBXC2irTLK0ENMCy8IbwdLKSOQkR1lEZLlZ6e3jOvQSOE4HWq/kVXStWeswXo8+N+qWMQVRDe2AFJEY0Q7GnD62ARUY3R6CUVtm7dWu1gpP3aNbSXOgJRpbafuontp24C+PtK7v+J80O7RnYwNtCXOBkRUUVcU6VBujJTBQCnrt9D9MwdUscgqhIjAz181s0PPVu6wsKYl9sjIvWq8YXq9+/fR15eHh49eqS0vXnz5tXZXa2kS6UKAJp9tgnFj3j6lnTPwPaeGNDOEx525lJHIaJaoMZK1c2bNzFw4EBs3Fj5hSO5puofulaqOFtFtUGHRvYY+YIPAhvUg4E+L8VHRKqrsYt/jhgxAn/++Sf27dsHU1NTbNq0CT/99BN8fHywdu1aVXdHWqSxkyWa1reUOgbRc9l1pgAvzduLRmM3osW4Lfh530UUPyyVOhYR1QEqz1Q5OztjzZo1CAkJgZWVFbKystC4cWOsXbsWU6dOxa5duzSVVefo2kwVANwqeojW49OljkGkEa+HuCEh1BO+zrrx80hE0qixmari4mI4OjoCAGxtbXHz5t+fzAkICEB2draquyMtY2dhjBGdfaSOQaQRvx64hJhvdsJzzAZETt+GTcfy8RfXERKRmqj8sZkmTZrg5MmT8PT0RIsWLfD999/D09MT8+fPh7OzsyYyUg17q1NDzEo/LXUMIo06d7MYw/77zz8E+7f1QGI7DzRy5ClwIqoelU///fLLLygpKcGAAQNw6NAhdOnSBbdu3YKRkRGSk5Px6quvaiqrztHF03/lMi8U4uX5e6WOQSQJDzszjHqhMSKbOsLSxFDqOERUwyS799/9+/eRm5sLd3d32NvzIpKP0+VSBQCv/bAX+84VSh2DSHKvBDVAQqgnmrlY8cruRHUAb6ishXS9VN2+/wgtxqVJHYNIq1gYG+DdqEbo2cIVjlYmUschIg2osVI1aNCgp3590aJFquyuVtP1UgUAm47lK607ISJlwZ42SIpohLbedjAx5O1ziGoDjd7773F//vmn0uOSkhIcO3YMt2/fRmRkpKq7Iy3X1d8Z3vbmOFdQLHUUIq2UeeFPDFicqXj8cusG6NfWA80bWPNUIVEdo5bTf3K5HMOHD4e3tzdGjx6tjly1Qm2YqQKAooel8P98s9QxiHTSyM6N8VJrV7jWM2XJItIRkq+pOnnyJDp16oT8/Hx17K5WqC2lCgDST1zHkCVZUscg0mmedmYY2rEh4gKcYW3GTxUSaasaO/33JGfPnkVpKW8FUVt19nNCx8YO2HHqptRRiHTWhVv38cmqo/hk1VEAQKBbPQzu4IXIpo6wMFbb/x0TkURU/ikeNWqU0mMhBPLz87FhwwYkJiaqLRhpnwUJQWj8n8pvpE1Eqjt86Tbe/fWQ4nFkU0cMbO+JYE9bLnon0kEqn/6LiIhQeqynpwcHBwdERkZi0KBBMDDgv7bK1abTf+U2HbuGYf89KHUMojohxr8+Xg9xR/tG9tDX43osopoi+Zoqqqg2lioA6DRtKy7cui91DKI6Jz7QBYntPOHvagVjA85kEWkKS5UWqq2l6q9HZfD9bJPUMYjqvB4tXPBasDtCvGw5k0WkRhotVS1btqzyR4Gzs3mhyHK1tVQBwLErd9Dtu11SxyCix8Q1d0b/th5o4VaPa7KInoNGP/3Xs2dPxX8/ePAAc+fOhZ+fH0JDQwEA+/btw/HjxzF8+HAVY5Ou8ne1xtsRjTB76xmpoxDR/9twJB8bjvxzWZuuzerjtRA3tGtoDyMDPQmTEdUNKp/+GzJkCJydnfHVV18pbf/8889x6dIl3qbmMbV5pgoAyuQCDT9JlToGEVVRqLcd+od6oIOPPaxMeJ0soiepsTVV1tbWyMrKgo+Pj9L206dPIygoCHfu3FFld7VabS9VAHCr6CFaj0+XOgYRVUOAqzUSQj3Q2dcJNuZGUsch0ho1dvFPU1NT7Nq1q0Kp2rVrF0xMeMf2usbOwhjr3u6A7rO5vopI1xy9cgcf/nZE8djR0hgD2nsi1t8ZnvbmEiYj0k0ql6oRI0bgrbfewsGDB9G2bVsAf6+pWrRoET777DO1ByTtF9DAGrNebYERKTlSRyGi53Dj3kNM3XQSUzedVGx7I8wLPVq4oml9Sxjoc10W0dNU65IKy5cvxzfffIM//vgDAODr64v33nsPr7zyitoD6rK6cPrvcZNS/8D3O85JHYOINKhLMye81KoBwnwcYGrETxhS7cTrVGmhulaqAF4YlKiuaexkgcEdvBDRxBEOlsZVvvwOkTZjqdJCdbFUlZTJ4TOW9wckqqsM9WVICPVE90AXNHe1hh4vSko6SKOlytbWFqdOnYK9vT1sbGye+i+RwsLCKh+8tquLpQoAztwoQucZ26WOQURaIszHHv3beqCNtx2sTXkpB9J+Gv3038yZM2Fpaan4b07v0tM0crTA9JcD8f6Kw1JHISItsPN0AXaeLlA8trcwQp82HogLcEZjJwv+TqFag6f/NKiuzlSV+3DFYaw4eFnqGESkAzr7OuL1EHcEe9nywqQkuRpbU5WdnQ1DQ0MEBAQAANasWYPFixfDz88PX3zxBYyMeAG5cnW9VMnlApHTt3HhOhGpzN7CCK8FuyM2wBm+zpaczaIaVWOlKjg4GGPGjMFLL72Ec+fOwc/PD7169UJmZibi4uIwa9YslcPXVnW9VAHAg5IyNP10k9QxiKgWCPW2Q9+27gj1toOtuRGLFmlMjd6mJjs7Gw0bNsSUKVOQkZGBzZs3Y/fu3Xjttddw6dIllcPrivXr1+P999+HXC7HRx99hCFDhjx1PEvV3+4+KEHzL7ZIHYOIahl9PRleD3FDXIALgjxtYMiLk5Ka1NhtaoQQkMvlAID09HR069YNAODm5oaCgoKnPVWnlZaWYtSoUdi6dSusrKzQqlUr9OrVC7a2tlJH03pWJobIHNsZwRN4j0AiUp8yucB/9+Xhv/vyFNs87czQr+3f9zN0szWDPi/pQDVI5VofFBSE8ePH4+eff8b27dsRFxcHADh//jycnJzUHlBbHDhwAM2aNYOrqyssLS0RGxuLzZs3Sx1LZzhYGmPXRxFSxyCiWu7CrfsYv+EPdPp6Gxp+kgrPMRvQf+F+/O/gZdwqeih1PKrlVC5Vs2bNQnZ2Nt5++22MHTsWjRo1AgD89ttvaNeuncoBJk2ahODgYFhaWsLR0RE9e/bEyZMnn/1EFezYsQPdu3eHi4sLZDIZVq9eXem4uXPnwsvLCyYmJmjdujV27typ+NrVq1fh6uqqeNygQQNcuXJFrTlruwY2Ztj6QSepYxBRHbPzdAHeX3EYrcenw3PMBniO2YAPVxzGnjMFKH5YKnU8qkVUPv3XvHlzHD16tML2adOmQV9f9ftAbd++HUlJSQgODkZpaSnGjh2L6OhonDhxAubmFe+Svnv3boSEhMDQUPkjt7m5uahXrx7q169f4TnFxcUIDAzEwIED8dJLL1WaIyUlBSNGjMDcuXPRvn17fP/994iJicGJEyfg7u6OypaecZGk6rzszZE+KpwXByUiSa04eFnpki/WpoZ4NdgN0X5OaOFWjzePpmqp1nWqbt++jd9++w1nz57Fhx9+CFtbW2RnZ8PJyUlpNqc6bt68CUdHR2zfvh0dO3ZU+ppcLkerVq3g4+ODZcuWKUrcqVOnEB4ejpEjR2L06NFP3b9MJsOqVavQs2dPpe1t2rRBq1atMG/ePMU2X19f9OzZE5MmTcKePXswbdo0rFq1CgDw3nvvoU2bNujTp88Tj8WF6k+Wnfcnes3dI3UMIqIncrM1RZ8QD0T5OsLb3pxFqw6p7u9vlf+GHDlyBD4+PpgyZQq+/vpr3L59GwCwatUqfPzxx6ruroI7d+4AQKULwPX09JCamopDhw4hISEBcrkcZ8+eRWRkJOLj459ZqJ7k0aNHOHjwIKKjo5W2R0dHY8+ev3/xh4SE4NixY7hy5Qru3buH1NRUdOnSpdL9zZkzB35+fggODq5WnrqglbsNfhnSRuoYRERPdKnwL0zZlIvomTvQaOxGeI7ZgNhvdmLBznM4c6Oo0jMYVLepfPpv1KhRGDhwIKZOnaq4dQ0AxMTEPHXWpiqEEBg1ahQ6dOgAf3//Sse4uLggIyMDHTt2RJ8+fbB3715ERUVh/vz51T5uQUEBysrKKiy0d3JywrVr1wAABgYGmD59OiIiIiCXyzF69GjY2dlVur+kpCQkJSUpmi5Vrn0je/x3cBv0W7hf6ihERFVyIv8uTmy4i/Eb/lBsa+VeD71buyHMxx4NbEy5NKQOU7lUZWZm4vvvv6+w3dXVVVFAquvtt9/GkSNHsGvXrqeOc3d3x5IlSxAeHg5vb28sXLhQLX+J/70PIYTStvj4eMTHxz/3cegfHXzs8duwUPSev1fqKERE1ZKddxvZebeVtgV72qBHC1d09HGAmy2LVl2hcqkyMTHB3bt3K2w/efIkHBwcqh3knXfewdq1a7Fjxw40aNDgqWOvX7+OoUOHonv37sjMzMTIkSPx3XffVfvY9vb20NfXr1AKb9y4UasvE6EtgjxtsSapPXrM2S11FCIitci88CcyL/yptK2tty26B7qgo48DZ7RqKZVLVY8ePTBu3DgsX74cwN+zO3l5eYpb16hKCIF33nkHq1atwrZt2+Dl5fXU8QUFBYiKioKvry9WrFiB06dPo1OnTjA2NsbXX3+t8vEBwMjICK1bt0ZaWhpefPFFxfa0tDT06NGjWvsk1QS61WOxIqJabd+5Quw7V6i0LdCtHnq1dEV447+LFhfD6zaVS9XXX3+N2NhYODo64q+//kJ4eDiuXbuG0NBQTJgwQeUASUlJWLp0KdasWQNLS0vFbJG1tTVMTU2VxsrlcnTt2hUeHh5ISUmBgYEBfH19kZ6ejoiICLi6umLkyJEVjlFUVIQzZ84oHp8/fx45OTmwtbWFu7s7gL/XivXv3x9BQUEIDQ3FDz/8gLy8PAwbNkzl74mqJ9CtHta/0wHdvnv66V8iotri8KXbOHxJ+dRhgKs1YgOcEdnUEY2dLDijpUOqdUkFAMjIyEB2drbiMgedO3euXoAn/GVZvHgxBgwYUGF7WloawsLCYGJiorQ9JycHdnZ2cHNzq/Ccbdu2ISKi4tW8ExMTkZycrHg8d+5cTJ06Ffn5+fD398fMmTMrXNZBFbykQvWcuVHE61gRET3GzdYUL7ZsgGg/JzRytICJoerXhaSqq5EbKpeUlCA6Ohrff/89GjduXK2gdQlLVfXduPsAIRN/lzoGEZHWsjEzRI8WrojydUSQhy1MjVi01KVGShUAODg4YM+ePfDx8VE5ZF3DUvV8HpSUoemnm6SOQUSkU3q0cEG35i5o5V4PtuZGPH1YDTVWqt5//30YGhpi8uTJKoesa1iqnp9cLuD9SarUMYiIdFpbb1vENXdBh0b28LA1g54ei9bTVPf3t8oL1R89eoQFCxYgLS0NQUFBFe7PN2PGDFV3SfREenoynJ0Yi45Tt+LK7b+kjkNEpJMq++Sht7054lu4ILyxA5q5WMPIgJ88fF4qz1RVtuBbsTOZDBkZGc8dqrbgTJX6yOUCH/52BP/LvvzswUREVC16MqBHC1d0aVYfrT1sYG9RN08f1tjpP6o6lir123AkH0lLs6WOQURUpwR72iDarz46NnaAj6NFrT99yFKlhViqNOPo5TvoPpvXsiIikpKFsQHiW7ggxr8+AlytYW1qWGtmtViqtBBLleZcvf0X2k3mqWYiIm0T7GmDrv7OaN/IDo0cLHTyKvEsVVqIpUqzSsvkGLIkC9tO3pQ6ChERPYWJoR5ebNkAkU0d0drDBjZm2j2rxVKlhViqasbUTbmYu+2s1DGIiEhFTetbIjbAGeGNHeDjZAEzI5UvSqARLFVaiKWq5mw/dROJiw5IHYOIiNSgs68TOvs6IrShHdxtzWp8VoulSguxVNWswuJHaPVVmtQxiIhIAyxNDNA90AUv+Dmhuau1Rq8Wz1KlhViqat6DkjIkLDyAAxcKnz2YiIh0XkKoB8b18FfrPqv7+1v3luQTPYWJoT6WDwvFgoQgqaMQEVENOHntntQRFFiqqFbq7LI8SzQAACAASURBVOeEnaOffPV/IiKqHbTpQ4QsVVRrudma4dzEWAwLbyh1FCIi0hAZtKdVsVRRraanJ8OYmKZY+kYbqaMQEZEGcKaKqIa1a2iP3K+6ws7cSOooRESkRixVRBIwMdRH1n86Y3xP9X5KhIiIpMPTf0QSkclk6NfWA5ljO0sdhYiI1IAzVUQSc7A0xvlJsZjWu7nUUYiI6Dlo0z0EWaqozpLJZHg5yA37P4mCh52Z1HGIiKgatKdSsVQRwcnKBNs/jMB3r7eUOgoREalIiyaqWKqIynUPdMGJcV3QyNFC6ihERFRFWtSpWKqIHmdmZID0UeH4eXCI1FGIiKgKuKaKSMuF+Tgg96uu6NfWXeooRET0FNpTqViqiJ7IxFAf43sGYPeYSDhZGUsdh4iIKqFFE1UsVUTP4lrPFPs/6YxlQ9tKHYWIiCrQnlbFUkVURW297XBuYixGdPaROgoREf0/zlQR6Sg9PRlGdG6Mw59Hw8/ZSuo4RER1nhZ1KpYqouqwNjVE6nth2Dyio9RRiIjqNM5UEdUSTepb4sLkOCwZxEswEBFJgTdUJqplOjZ2wLmJsZj5aqDUUYiI6hTOVBHVQnp6MrzYsgFOT4jBB9GNpY5DRFQnsFQR1WKG+np4O9IHuV91xatBblLHISKq1Xj6j6gOMDHUx5TezXH0i2hE+zlJHYeIqHbSnk7FUkWkaZYmhvghIQjZn76AqKaOUschIqpVtKhTsVQR1RRbcyMsHBCMg//pjLgAZ6njEBHVCryhMlEdZmdhjDl9W+HwZ9GID3SROg4RkU7TnkrFUkUkGWszQ3z7eksc/7ILXm7dQOo4REQ6SYsmqliqiKRmbmyAaS8H4o9xXfFGmJfUcYiIdIoWdSqWKiJtYWqkj7Fxfjg9IQYTXwyQOg4RkU7gmioieiJDfT30aeOO85NiefsbIqJn0J5KxVJFpLVkMhk6NnbAhclxWJ3UHvYWxlJHIiLSPlrUqliqiHRAC7d6yPpPZxwYG4XOvryQKBFROW26orqB1AGIqOocLU2wIDEID0rK8NOeC5i0MVfqSEREktKiJVWcqSLSRSaG+ngzvCHOT4rF8jdDpY5DRCQZLepULFVEukwmkyHEyxYXJsdh95hIxPjXlzoSEVGN0qaZKp7+I6olXOuZYl6/1igpk+OXfRfxxboTUkciItI4bVpTxZkqolrGUF8PA9p74cLkOPz+fjiCPW2kjkREpDGcqSKiGtHQwQIrhrXDg5Iy/C/7MsauOiZ1JCIitdKmUsWZKqI6wMRQH33beODC5DikvhuGNl62UkciIlIT7WlVnKkiqmP8XKyQ8mYoSsrkWJ51ibNXRERqwlJFVEcZ6uuhbxsP9G3jget3H2BW+mn8eiBP6lhERDqLp/+ICE5WJpjUK0Bx3St3WzOpIxER6RzOVBGRQvl1r3aMjsDD0jL88n/t3XlYVOe9B/DvLDAswsgiu2xxZxQVNTEaxSWKa9SYR70GsWmbmicoaG6jjU00NKneJE2st9FU2xuTJlFjRWuNjWIkooKiIDqIigubwAgou7LOe/8gjplg4pLDHAa+n+fheeScd8785ocOX8955z3H8xG3l0szEFH71Z4mqjNUEdE9adQqvDAyCC+MDMKNmnr8JfEyPj6WK3dZRETtFi//EdF9uXXRYNW0EOSunYKDy0bzps5ERPfAM1VE9FB6eHTB36KGQAiBY5dv4O1953G+uErusoiIZMdQRUSPRKFQYGRPd/wn5ik0GwUSsgxYvScLhqo6uUsjIpIFQxUR/WwqpQIROm9E6LxR39SMb86XIGbbaTQ2C7lLIyKyGIYqIpKURq3C5P7emNzfG7cbmrE7oxCv7dJDMF8RUQfHUEVEbcbeVoV5w/wxb5g/6hqbseNUAf6w9zwamo1yl0ZEJDmGKiKyCDsbFSKHByJyeCBuNzTjQJYB/73jDC8RElGHwVBFRBZnb6vCMwN98cxAX9Q1NmP/OQP+sDcLZTUNcpdGRPTIGKqISFZ2NncDVrNR4Jvz1/GnA9m4eL1a7tKIiB4KQxURtRsqpQITQrwwIcQLRqPA2cJKvJ+QjaTsUrlLIyK6L4YqImqXlEoFBnbvik9fGAYAyL5ejb8duYovT12TuTIiontjqCIiq9DL0wnvzA7FO7NDcbO2AZ+m5GLdwUtyl0VEZMJQRURWx9XRFrHjeyF2fC/cbmjG4ewSxP07C0WVXM2dqLNpT2vgMVQRkVWzt1WZVnMXQuBUXjk2JV1FQtZ1uUsjok6GoYqIOgyFQoGhga4YGugKACitrscXJ/LxwcFsmSsjos6AoYqIOqxuThrEjO+JmPE9UdfYjONXb+Dd/RdxrqhK7tKIqANiqCKiTsHORoXw3h4I7+0BALhSWoPPjufh42O58hZGRB0GQxURdUqPdeuCVdNCsGpaCOoam/HtxVL876FLPItFRI+MoYqIOj07GxUidF6I0HkBAHLLarHtZAE+OnxF5sqIyJowVBER/UCguyNWTOqDFZP6oKnZiKRLpdiclIOUqzfkLo2I2jGGKiKin6BWKTG2jyfG9vEEANyoqcdX+mKs/c8F3Gpolrk6ImpPGKqIiB6CWxcNFgwPxILhgQAA/bVKbD2Zjy9O5MtbGBHJjqGKiOhn6O+nRX+//vjjzP5oaDIi+UoZ/n40B0culcldGhFZGEMVEZFEbNVKs2UbymsbcCDLgA8TryD/5i2ZqyOitsZQRUTURlwcbTFnqD/mDPUHABRV3MaXpwrw18NXcbuR87GIOhqGKiIiC/Hpam+6EbTRKHC1rBZfnirApqSrcpdGRBJgqCIikoFSqUAPjy54bXJfvDa5L4QQSM8vx/aTBfjy1DW5yyOiR8BQRUTUDigUCoQFuCIswBXvzA5FY7MRZ69V4LPj+dh1ulDu8ojoATBUERG1QzYqpSlkfTBnIOqbmnEypxxfpOZhn94gd3lEdA8MVUREVkCjVmFkT3eM7OkOAGhqNiI15yY+T83HV2eLZa6OiACGKiIiq6RWKfFkD3c82cMdH/4XUNfYjDMFFfj8RD72nCmSuzyiTomhioioA7CzUeHxYDc8HuyG9fMGwWi8O/F9RxonvhNZAkMVEVEHpFQqMCTQFUMCXfHuc6FoajbicmkNvjx5Df93LEfu8ogko1DIXcFdDFVERJ2AWqVEHy9nvDGtH96Y1g8AcLW0Bv/KKMKW5FxU3m6UuUIi68dQRUTUSQV364KlT/fC0qd7QQiBspoGfHP+OjYfuYorpbVyl0dkdRiqiIgICoUC3Zw0mDvMH3OHtdxWp6a+Cd9eLMGXp64hKbtU5gqJ2j+GKiIiuqcuGjWmDvDB1AE+AIDGZiMyCysRn16IfxzPk7k6ovaHoYqIiB6IjUqJQf4uGOTvgj/M0EEIgZyyWuw/dx3/SMlFUWWd3CUSyYqhioiIHolCoUBwty54KbwLXgp/DEDLJcOjl8rw5akCHLpQInOFRJbFUEVERJLpolEjQueFCJ0XgJaV388VVWHv2SJ8kpyHhmajzBVSRyOE3BXcxVBFRERtRq1SIrR7V4R274qVU1qWcrhZ24BDF0rw5ckCpObelLlCIukwVBERkUW5OtpidpgfZof5AQAamozQF1Zi79ki/CMlD03GdnTqgeghMFQREZGsbNVKhAW4ICzABaumhQBoOZt1OLsE/0y7hmOXb8hcIdGDYagiIqJ2x9XRFjMH+WHmoJazWU3NRlwwVOPrTAM+O5GHiltcAZ7aH4YqIiJq99QqJXS+Wuh8tfjvib0BALcampBy5Qb+lVGEPWeKZK6QiKGKiIislIOtGuP6emJcX0+snzcIQghcK7+Nb7NL8eXJAugLK+UukToZhioiIuoQFAoFurs6IPKJAEQ+EQAAaDYKnC+uwoFzBnyRWoCymnqZq6SOjKGKiIg6LJVSYbpsuGxCy2XD2vompOWV46uzxdh+qkDmCqkjYagiIqJOxVGjxqhe3TCqVzf8z+wBAIDKW41IuVqGf2UU4T+ZBpkrJGvFUEVERJ2e1sEGETpvROi8AQBCCBRX1iEpuxS7ThfiRA4XKaX7Y6giIiL6AYVCAZ+u9pg7zB9zh/kDwN2J8BdLsCPtGs5e40R4MsdQRURE9ABME+GHByJyeCAAwGgUuFJag8SLJYhPL8QFQ7W8RZKsGKqIiIgekVKpQE9PJ/T0dMKLox4D0LJQae6NWnx7sRTbThbgckmNzFWSpTBUERERSUitUqKHhxN6eDjhV08FA2i5dJh9vQaHLpTgXxk8o9VRMVTdx969e/HKK6/AaDRi+fLl+NWvfiV3SUREZGUUCgV6ezmht5cTXgq/e0aroPw2Ei+UIP70NWQWVslcJf1cDFU/oampCcuWLUNiYiKcnZ0xePBgzJo1C66urnKXRkREVk6tUiLI3RFBI4PwwsggAC1ntApu3sa32SXYe7YYqfzUoVVhqPoJqampCAkJga+vLwBg8uTJ2L9/P+bNmydzZURE1BEpFAr4uzlgwfBALPjeZPjSmvrv7nNYiMSLpfIWST9KKXcBbSkpKQnTpk2Dj48PFAoFdu/e3WrMhg0bEBQUBDs7O4SFheHIkSOmfUVFRaZABQB+fn4oLCy0SO1ERERAy2R4T2c7zBjki49/MQy5a6cgd+0UnFk1AZsiw/BcmB8UCrmrJKCDn6mqra1FaGgofvGLX+DZZ59ttX/79u2IjY3Fhg0bMGLECPz1r3/FpEmTkJWVBX9/fwghWj1Gwb+5RETUDmjtbTAhxAsTQrzw7nOhAFpuwaMvrMQ3569j1+ki3uvQwjp0qJo0aRImTZr0o/vff/99/PKXvzRNPl+3bh3279+PjRs3Ys2aNfD19TU7M3Xt2jU8/vjjP3q8+vp61Nff/QtcVcVJh0REZDmOGjWeCHbDE8FuWDmlH4CWCfFXy2qRlF2K3RmFnBDfhjp0qPopDQ0NSEtLw4oVK8y2T5gwAcnJyQCAYcOGITMzE4WFhXB2dsa+ffvwxhtv/Ogx16xZgzfffLNN6yYiInoYapUSvTyd0MvTfIkHQ1UdUq7cwNeZBhzIui5zlR1Dpw1VZWVlaG5uhqenp9l2T09PGAwtN9NUq9X405/+hDFjxsBoNOLVV1+Fm5vbjx7zd7/7HZYtW2b6vqqqCt27d2+bF0BERPSIFAoFvLX2mDXYD7MG+5m2V9c14nxxNQ6cM2B3Bi8fPqxOG6ru+OEcKSGE2bbp06dj+vTpD3QsjUYDjUYjaX1ERESW4mRng2FBrhgW5IrfT225fCiEwJXSWhy9VIr9564j5eoNmatsvzptqHJ3d4dKpTKdlbqjpKSk1dkrIiKizkqhUKCHRxf08OiChSPurqdVcasRZ65VICHrOvacKUJ1XZPMlcqv04YqW1tbhIWFISEhATNnzjRtT0hIwDPPPCNjZURERO2bQqGAi6Mtwnt7ILy3B96e2R8A0GwUyCmrRfKVMvxHb+h0Z7U6dKiqqanB5cuXTd/n5OQgIyMDrq6u8Pf3x7JlyxAZGYkhQ4Zg+PDh2LRpE/Lz87Fo0SIZqyYiIrJOKuXds1p3Fi8FgKq6RpzOr0DihRLs0xejpLpjztXq0KHq1KlTGDNmjOn7O5PIo6KisGXLFsyZMwc3btxAXFwciouLodPpsG/fPgQEBMhVMhERUYfjbGeD0b26YXSvblg9PQRAy1IPxZV1OJl7E/v0Bhw8b/2fQFSIe61wSZKoqqqCVqtFZWUlnJ2d5S6HiIio3WtoMuJ8cRWSsktx8EIJzhRU/OT4qOEBePMZnaQ1POrv7w59poqIiIisi61aidDuXRHavSsWj+sJwHxi/LcXS02XEJ3s1Ige21Pmiu/imao2xDNVRERE1udRf3936BsqExEREVkKQxURERGRBBiqiIiIiCTAUEVEREQkAYYqIiIiIgkwVBERERFJgKGKiIiISAIMVUREREQSYKgiIiIikgBDVRv48MMP0a9fPwwdOlTuUoiIiMhCeJuaNsTb1BAREVkf3qaGiIiISEYMVUREREQSYKgiIiIikoBa7gI6sjvT1aqqqmSuhIiIiB7Und/bDzvtnKGqDVVXVwMAunfvLnMlRERE9LCqq6uh1WofeDw//deGjEYjioqK4OTkBIVCIemxq6qq0L17dxQUFPCThW2IfbYM9tky2GfLYa8to636LIRAdXU1fHx8oFQ++EwpnqlqQ0qlEn5+fm36HM7OzvwHawHss2Wwz5bBPlsOe20ZbdHnhzlDdQcnqhMRERFJgKGKiIiISAKq1atXr5a7CHo0KpUK4eHhUKt5Fbctsc+WwT5bBvtsOey1ZbSnPnOiOhEREZEEePmPiIiISAIMVUREREQSYKgiIiIikgBDFREREZEEGKqs0IYNGxAUFAQ7OzuEhYXhyJEjcpdkVdasWYOhQ4fCyckJHh4emDFjBi5evGg2pr6+HosXL4a7uzscHR0xffp0XLt2zWxMfn4+pk2bBkdHR7i7u2PJkiVoaGiw5EuxKmvWrIFCoUBsbKxpG/ssjcLCQjz//PNwc3ODg4MDBg4ciLS0NNN+IQRWr14NHx8f2NvbIzw8HOfOnTM7Rnl5OSIjI6HVaqHVahEZGYmKigpLv5R2q6mpCb///e8RFBQEe3t7BAcHIy4uDkaj0TSGfX40SUlJmDZtGnx8fKBQKLB7926z/VL1Va/XY/To0bC3t4evry/i4uIe+t5+9yXIqmzbtk3Y2NiIzZs3i6ysLBETEyMcHR1FXl6e3KVZjYkTJ4qPP/5YZGZmioyMDDFlyhTh7+8vampqTGMWLVokfH19RUJCgkhPTxdjxowRoaGhoqmpSQghRFNTk9DpdGLMmDEiPT1dJCQkCB8fHxEdHS3Xy2rXUlNTRWBgoBgwYICIiYkxbWeff76bN2+KgIAAsXDhQnHixAmRk5MjDh48KC5fvmwas3btWuHk5CR27twp9Hq9mDNnjvD29hZVVVWmMREREUKn04nk5GSRnJwsdDqdmDp1qhwvqV166623hJubm9i7d6/IyckRO3bsEF26dBHr1q0zjWGfH82+ffvEypUrxc6dOwUAsWvXLrP9UvS1srJSeHp6irlz5wq9Xi927twpnJycxHvvvSfpa2GosjLDhg0TixYtMtvWp08fsWLFCpkqsn4lJSUCgDh8+LAQQoiKigphY2Mjtm3bZhpTWFgolEql+Prrr4UQLW8CSqVSFBYWmsZs3bpVaDQaUVlZadkX0M5VV1eLnj17ioSEBDF69GhTqGKfpbF8+XIxcuTIH91vNBqFl5eXWLt2rWlbXV2d0Gq14qOPPhJCCJGVlSUAiOPHj5vGpKSkCADiwoULbVe8FZkyZYp44YUXzLbNmjVLPP/880II9lkqPwxVUvV1w4YNQqvVirq6OtOYNWvWCB8fH2E0GiWrn5f/rEhDQwPS0tIwYcIEs+0TJkxAcnKyTFVZv8rKSgCAq6srACAtLQ2NjY1mffbx8YFOpzP1OSUlBTqdDj4+PqYxEydORH19vdllFwJefvllTJkyBePHjzfbzj5LY8+ePRgyZAiee+45eHh4YNCgQdi8ebNpf05ODgwGg1mfNRoNRo8ebdZnrVaLxx9/3DTmiSeegFar5XvLd0aOHIlvvvkG2dnZAIAzZ87g6NGjmDx5MgD2ua1I1deUlBSMHj0aGo3GNGbixIkoKipCbm6uZPXKv/woPbCysjI0NzfD09PTbLunpycMBoNMVVk3IQSWLVuGkSNHQqfTAQAMBgNsbW3h4uJiNvb7fTYYDK1+Di4uLrC1teXP4nu2bduG9PR0nDx5stU+9lkaV69excaNG7Fs2TK89tprSE1NxZIlS6DRaLBgwQJTn+71vpGXlwegpc8eHh6tju3h4cE+f2f58uWorKxEnz59oFKp0NzcjLfffhvz5s0DAPa5jUjVV4PBgMDAwFbHuLMvKChIknoZqqyQQqEw+14I0WobPZjo6GicPXsWR48eve/YH/b5Xj3nz+KugoICxMTE4MCBA7Czs3vgx7HPD8doNGLIkCH44x//CAAYNGgQzp07h40bN2LBggWmcfd732Cff9r27dvx2Wef4YsvvkBISAgyMjIQGxsLHx8fREVFmcaxz21Dir7e6xg/9thHxct/VsTd3R0qlarV/2hKSkpapXi6v8WLF2PPnj1ITEyEn5+fabuXlxcaGhpQXl5uNv77ffby8mr1cygvL0djYyN/Ft9JS0tDSUkJwsLCoFaroVarcfjwYaxfvx5qtRqenp7sswS8vb3Rr18/s219+/ZFfn4+gJYeAvjJ9w0vLy9cv3691bFLS0vZ5+/89re/xYoVKzB37lz0798fkZGRWLp0KdasWQOAfW4rUvX1Xu8lJSUlAFqfBfs5GKqsiK2tLcLCwpCQkGC2PSEhAU8++aRMVVkfIQSio6MRHx+PQ4cOtTrtGxYWBhsbG7M+FxcXIzMz09Tn4cOHIzMzE8XFxaYxBw4cgEajQVhYmGVeSDs3btw46PV6ZGRkmL6GDBmC+fPnm/7MPv98I0aMaLUkSHZ2NgICAgAAQUFB8PLyMutzQ0MDDh8+bNbnyspKpKammsacOHEClZWVfG/5zq1bt6BUmv/KVKlUpiUV2Oe2IVVfhw8fjqSkJLPlWA4cOAAfH59WlwV/FsmmvJNF3FlS4e9//7vIysoSsbGxwtHRUeTm5spdmtV46aWXhFarFd9++60oLi42fd26dcs0ZtGiRcLPz08cPHhQpKeni7Fjx97zo/7jxo0T6enp4uDBg8LPz48f9b+P73/6Twj2WQqpqalCrVaLt99+W1y6dEl8/vnnwsHBQXz22WemMWvXrhVarVbEx8cLvV4v5s2bd8+PpA8YMECkpKSIlJQU0b9//07/Uf/vi4qKEr6+vqYlFeLj44W7u7t49dVXTWPY50dTXV0tTp8+LU6fPi0AiPfff1+cPn3atFSQFH2tqKgQnp6eYt68eUKv14v4+Hjh7OzMJRVIiA8//FAEBAQIW1tbMXjwYNNSAPRgANzz6+OPPzaNuX37toiOjhaurq7C3t5eTJ06VeTn55sdJy8vT0yZMkXY29sLV1dXER0dbfZxXWrth6GKfZbGv//9b6HT6YRGoxF9+vQRmzZtMttvNBrFqlWrhJeXl9BoNGLUqFFCr9ebjblx44aYP3++cHJyEk5OTmL+/PmivLzcki+jXauqqhIxMTHC399f2NnZieDgYLFy5UpRX19vGsM+P5rExMR7vidHRUUJIaTr69mzZ8VTTz0lNBqN8PLyEqtXr5Z0OQUhhFAIIfVyokRERESdD+dUEREREUmAoYqIiIhIAgxVRERERBJgqCIiIiKSAEMVERERkQQYqoiIiIgkwFBFREREJAGGKiKyauHh4YiNjZW7DDMKhQK7d++WuwwisjAu/klEVu3mzZuwsbGBk5MTAgMDERsba7GQtXr1auzevRsZGRlm2w0GA1xcXKDRaCxSBxG1D2q5CyAi+jlcXV0lP2ZDQwNsbW0f+fFeXl4SVkNE1oKX/4jIqt25/BceHo68vDwsXboUCoUCCoXCNCY5ORmjRo2Cvb09unfvjiVLlqC2tta0PzAwEG+99RYWLlwIrVaLX//61wCA5cuXo1evXnBwcEBwcDBef/11NDY2AgC2bNmCN998E2fOnDE935YtWwC0vvyn1+sxduxY2Nvbw83NDS+++CJqampM+xcuXIgZM2bgvffeg7e3N9zc3PDyyy+bngsANmzYgJ49e8LOzg6enp6YPXt2m/STiB4dQxURdQjx8fHw8/NDXFwciouLUVxcDKAl0EycOBGzZs3C2bNnsX37dhw9ehTR0dFmj3/33Xeh0+mQlpaG119/HQDg5OSELVu2ICsrC3/+85+xefNmfPDBBwCAOXPm4JVXXkFISIjp+ebMmdOqrlu3biEiIgIuLi44efIkduzYgYMHD7Z6/sTERFy5cgWJiYn45JNPsGXLFlNIO3XqFJYsWYK4uDhcvHgRX3/9NUaNGiV1C4no55L09sxERBY2evRoERMTI4QQIiAgQHzwwQdm+yMjI8WLL75otu3IkSNCqVSK27dvmx43Y8aM+z7XO++8I8LCwkzfr1q1SoSGhrYaB0Ds2rVLCCHEpk2bhIuLi6ipqTHt/+qrr4RSqRQGg0EIIURUVJQICAgQTU1NpjHPPfecmDNnjhBCiJ07dwpnZ2dRVVV13xqJSD6cU0VEHVpaWhouX76Mzz//3LRNCAGj0YicnBz07dsXADBkyJBWj/3nP/+JdevW4fLly6ipqUFTUxOcnZ0f6vnPnz+P0NBQODo6mraNGDECRqMRFy9ehKenJwAgJCQEKpXKNMbb2xt6vR4A8PTTTyMgIADBwcGIiIhAREQEZs6cCQcHh4eqhYjaFi//EVGHZjQa8Zvf/AYZGRmmrzNnzuDSpUt47LHHTOO+H3oA4Pjx45g7dy4mTZqEvXv34vTp01i5ciUaGhoe6vmFEGbzu77v+9ttbGxa7TMajQBaLkOmp6dj69at8Pb2xhtvvIHQ0FBUVFQ8VC1E1LZ4poqIOgxbW1s0NzebbRs8eDDOnTuHHj16PNSxjh07hoCAAKxcudK0LS8v777P90P9+vXDJ598gtraWlNwO3bsGJRKJXr16vXA9ajVaowfPx7jx4/HqlWr0LVrVxw6dAizZs16iFdFRG2JZ6qIqMMIDAxEUlISCgsLUVZWBqDlE3wpKSl4+eWXkZGRgUuXLmHPnj1YvHjxTx6rR48eyM/Px7Zt23DlyhWsX78eu3btavV8OTk5yMjIQFlZGerr61sdZ/78+bCzs0NUVBQyMzORmJiIxYsXIzIy0nTp73727t2L9evXIyMjA3l5efj0009hNBrRu3fvB+wMEVkCQxURdRhxcXHIzc3FY489hm7dugEABgwYgMOHD+PSpUt46qmnMGjQILz++uvw9vb+yWM988wzWLp0KaKjozFwtLlkrwAAAMJJREFU4EAkJyebPhV4x7PPPouIiAiMGTMG3bp1w9atW1sdx8HBAfv378fNmzcxdOhQzJ49G+PGjcNf/vKXB35dXbt2RXx8PMaOHYu+ffvio48+wtatWxESEvLAxyCitscV1YmIiIgkwDNVRERERBJgqCIiIiKSAEMVERERkQQYqoiIiIgkwFBFREREJAGGKiIiIiIJMFQRERERSYChioiIiEgCDFVEREREEmCoIiIiIpIAQxURERGRBBiqiIiIiCTw/xUSaVEW+yLiAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,24,u'iterations')" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(rnorm)\n", - "title(\"steepest-descent convergence\")\n", - "ylabel(\"residual norm\")\n", - "xlabel(\"iterations\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To see what's going on, let's try a $2\\times2$ matrix where we can easily visualize the progress." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd4FWXah+85vaT3hFQIBBBC7yC9hqIu4mKhqaiILGJDYUV3QRZ0XbCjICyoKCoivReVIkWk9xJCSUhvJ6fNvN8fc3Ikhurnrrvu3NeVC857nvNOzcwvz/N75khCCIGGhoaGhoaGxu8U3W+9AhoaGhoaGhoa/0o0saOhoaGhoaHxu0YTOxoaGhoaGhq/azSxo6GhoaGhofG7RhM7GhoaGhoaGr9rNLGjoaGhoaGh8btGEzsaGhoaGhoav2s0saOhoaGhoaHxu0YTOxoaGhoaGhq/azSxo6Gh8aszceJEEhMTMRgMhISEXDNu8eLFDB48mNTUVKxWK8nJydx3332cOHHiFy330qVLTJw4kTZt2hAREUFQUBDNmjXj/fffR5blX7o5Vdi2bRsvvfQSRUVFv8p8/4l88sknzJgx41eZS5IkXnrppV9lrv8UVq5c+bvbpt87mtjR0ND4Vfn666+ZMmUKQ4YMYcuWLaxfv/6asdOmTcPhcDBhwgRWr17N5MmT2bt3L02bNuXQoUO3vOw9e/Ywf/58unbtyvz58/nyyy/p2LEjjz32GA8//PD/Z7P8bNu2jZdfflkTO//DrFy5kpdffvm3Xg2NW8DwW6+AhsZ/Ow6HA5vN9luvxn8MBw8eBGDMmDFERUVdN3bZsmXVYrp06UJycjL/+Mc/mD179i0tu127dpw6dQqj0egf6969O263m7fffpuXX36ZhISEW5pTQ0Pjvx8ts6Pxb+Po0aMMHjyY6OhozGYziYmJDBkyBJfL5Y85ePAgAwYMIDQ0FIvFQuPGjfnnP/9ZZZ7NmzcjSRILFy5kwoQJxMXFERQURLdu3Th27Jg/buzYsdjtdkpKSqqtyz333EN0dDQej8c/9tlnn9GmTRvsdjsBAQH07NmTvXv3VvncsGHDCAgI4MCBA/To0YPAwEC6du0KgBCCV155haSkJCwWC82bN2fdunV06tSJTp06VZmnpKSEp59+mpSUFEwmEzVq1GDs2LGUl5dXiZMkidGjR7NgwQLq1auHzWajUaNGLF++/Bft3+zsbB555BHi4+MxmUykpKTw8ssv4/V6r3XY/CiKwvTp06lbty5ms5moqCiGDBnC+fPn/THJyclMnDgRgOjo6BuWMK4mhuLi4oiPjycrK8s/9umnnyJJEm+99VaV2EmTJqHX61m3bh0AoaGhVYROJS1btgSosq7X2sbJkyeTlpaG1WolJCSE9PR0Zs6cCcBLL73EM888A0BKSgqSJCFJEps3b/bPcTPnEcDu3bvp378/YWFhWCwWmjRpwqJFi6rEzJs3D0mSWLduHcOHDycsLAy73U6/fv04ffp0tTnXr19P165dCQoKwmaz0a5dOzZs2FAlJjc3l5EjR5KQkIDZbCYyMpJ27dr5M3CdOnVixYoVZGZm+rdPkqTr7jdQz+mHH36Y8PBwAgIC6NWrF8ePH79q7IkTJ7j33nuJiorCbDZTr1493n777SoxNzoWlfxa5/3Zs2eRJInXXnuN119/nZSUFAICAmjTpg07duzwxw0bNsy/rlfun7Nnz95wH2n8hggNjX8DP/74owgICBDJycnivffeExs2bBAfffSRGDRokCgpKRFCCHH06FERGBgoatWqJebPny9WrFghBg8eLAAxbdo0/1ybNm0SgEhOThb33XefWLFihVi4cKFITEwUtWvXFl6vVwghxL59+wQgPvjggyrrUlhYKMxmsxg3bpx/bMqUKUKSJDFixAixfPlysXjxYtGmTRtht9vFoUOH/HFDhw4VRqNRJCcni6lTp4oNGzaINWvWCCGEeP755wUgRo4cKVavXi0++OADkZiYKGJjY0XHjh39c5SXl4vGjRuLiIgI8frrr4v169eLmTNniuDgYNGlSxehKIo/tnI7W7ZsKRYtWiRWrlwpOnXqJAwGgzh16tQt7d9Lly6JhIQEkZSUJGbNmiXWr18v/vrXvwqz2SyGDRt2w2M4cuRIAYjRo0eL1atXi/fee09ERkaKhIQEkZubK4QQ4ocffhAPPvigAMTq1avF9u3bRVZW1g3nvpJTp04JnU4nnnzyySrjjz76qDCZTGLXrl1CCCE2bNggdDqdmDhx4g3nHDp0qDAYDCIvL++6cVOnThV6vV5MmjRJbNiwQaxevVrMmDFDvPTSS0IIIbKyssQTTzwhALF48WKxfft2sX37dlFcXCyEuPnzaOPGjcJkMokOHTqIzz77TKxevVoMGzZMAGLu3Ln+uLlz5wpAJCQkiBEjRohVq1aJ999/X0RFRYmEhARRWFjoj12wYIGQJEnccccdYvHixWLZsmWib9++Qq/Xi/Xr1/vjevbsKSIjI8X7778vNm/eLJYsWSJefPFF8emnnwohhDh06JBo166diImJ8W/f9u3br7vfFEURnTt3FmazWUyZMkWsXbtWTJo0SdSsWVMAYtKkSf7YQ4cOieDgYNGwYUMxf/58sXbtWvHUU08JnU7n3883cyyE+HXP+zNnzvh/33r16iWWLFkilixZIho2bChCQ0NFUVGREEKIkydPioEDBwqgyv5xOp3X3Ucavy2a2NH4t9ClSxcREhIiLl++fM2YP/7xj8JsNotz585VGe/du7ew2Wz+i02l2OnTp0+VuEWLFvkvQJU0bdpUtG3btkrcO++8IwBx4MABIYQQ586dEwaDQTzxxBNV4kpLS0VMTIwYNGiQf2zo0KECEB9++GGV2IKCAmE2m8U999xTZXz79u0CqCJ2pk6dKnQ6nf+mXckXX3whALFy5Ur/GCCio6P9F24hhMjOzhY6nU5MnTrVP3Yz+/eRRx4RAQEBIjMzs8r4a6+9JoAqN+Ofc+TIEQGIUaNGVRn//vvvBSBeeOEF/9ikSZME4BdAt4LH4xGdOnUSQUFB1c4Dp9MpmjRpIlJSUsThw4dFdHS06Nixo1/cXos1a9ZcVTxdjb59+4rGjRtfN+bVV18VgDhz5kyV8Vs5j+rWrSuaNGkiPB5PteXHxsYKWZaFED+JnTvvvLNK3NatWwUgJk+eLIRQBXRYWJjo169flThZlkWjRo1Ey5Yt/WMBAQFi7Nix193GjIwMkZSUdN2YK1m1apUAxMyZM6uMT5kypZrY6dmzp4iPj/cLxEpGjx4tLBaLKCgoEELc3LH4Nc/7SrHTsGHDKufUzp07BSAWLlzoH3v88ceFliv470IrY2n8y3E4HGzZsoVBgwYRGRl5zbiNGzfStWvXap6KYcOG4XA42L59e5Xx/v37V3mdnp4OQGZmpn9s+PDhbNu2rUp5a+7cubRo0YIGDRoAsGbNGrxeL0OGDMHr9fp/LBYLHTt2rFKiqOQPf/hDldc7duzA5XIxaNCgKuOtW7cmOTm5ytjy5ctp0KABjRs3rrK8nj17ViuJAHTu3JnAwED/6+joaKKiovzbebP7d/ny5XTu3Jm4uLgqy+3duzcAW7ZsueZnN23aBKjH4kpatmxJvXr1qpVKfglCCB588EG+/fZb5s+fX+08MJvNLFq0iPz8fJo2bYoQgoULF6LX66855w8//MCgQYNo3bo1U6dOveE6tGzZkn379jFq1CjWrFlz1RLotbjZ8+jkyZMcPXqU++67D6BKbJ8+fbh06VKV8xXwx1bStm1bkpKS/Mdl27ZtFBQUMHTo0CrzKYpCr1692LVrl79E2rJlS+bNm8fkyZPZsWNHlVLujZBludr88NP58fP1vPfee6u8djqdbNiwgTvvvBObzVZt251Op79kdKNj8a867zMyMqqcU1e7rmj896GJHY1/OYWFhciyTHx8/HXj8vPziY2NrTYeFxfnf/9KwsPDq7w2m80AVFRU+Mfuu+8+zGYz8+bNA+Dw4cPs2rWL4cOH+2NycnIAaNGiBUajscrPZ599Rl5eXpXl2Gw2goKCqq07qELk5/x8LCcnh/3791dbVmBgIEKIasv7+XZWbmvldt7s/s3JyWHZsmXVlnvbbbcBVFvu1bbvWsfn58fmVhFC8NBDD/HRRx8xb948BgwYcNW41NRUOnTogNPp5L777rvq+lSyd+9eunfvTu3atVm5cqX//Lgezz//PK+99ho7duygd+/ehIeH07VrV3bv3n3Dz97seVQZ9/TTT1eLGzVqFFD9WMTExFRbXkxMjH+/V845cODAanNOmzYNIQQFBQWA6ikaOnQos2fPpk2bNoSFhTFkyBCys7NvuI1du3atMveIESMA9fwwGAzVztWfr3d+fj5er5c333yz2nr26dOnyrbf6Fj8q877m7muaPz3oXVjafzLCQsLQ6/X39AcGh4ezqVLl6qNX7x4EYCIiIhbXnZoaCgDBgxg/vz5TJ48mblz52KxWBg8eLA/pnLeL774gqSkpBvOeTWzZuUFsvKmcyXZ2dlVsjsRERFYrVY+/PDDq85/q9t5s/s3IiKC9PR0pkyZctX3K0Xl1ajcvkuXLlW7uVy8ePEXHZtKKoXO3LlzmTNnDvfff/81Y2fPns2KFSto2bIlb731Fvfccw+tWrWqFrd37166detGUlISa9euJTg4+KbWxWAwMG7cOMaNG0dRURHr16/nhRdeoGfPnmRlZV236+5mz6PKuOeff5677rrrqjFpaWlVXl9NiGRnZ5OamlplzjfffJPWrVtfdc5K0R0REcGMGTOYMWMG586dY+nSpYwfP57Lly+zevXqa643wKxZsygtLa22LeHh4Xi9XvLz86uIhZ+vd2hoKHq9ngceeIDHH3/8qstISUkBbnws/h3nvcbviN+yhqbxv0OXLl1EaGjodX0cgwcPFhaLRVy4cKHKeEZGxlU9O59//nmVuMqa+5UGTyF+8hMsXbpUxMTEiMGDB1f7nMFgqGKCvhZDhw4Vdru92nh+fr4wm81VfBlCXN2zM3nyZGGz2cTp06dvuDxAPP7449XGk5KSxNChQ/2vb2b/PvTQQyIuLs7vibgVjh49KgAxZsyYKuOVfoYJEyb4x27Fs6MoinjwwQeFJEni/fffv27s/v37hdVqFUOGDBEul0s0a9ZMJCUlVduevXv3irCwMJGenn5DQ/LNMGPGjCrejjfeeEMA4vDhw1XibuU8ql27djXP2dW4kWfnr3/9qxBC9QWFhISIxx577GY3qwp33HGHiIyM9L++6667RFRU1E1//lY8O926dRONGjUSLpfrltfz58fi1zzvK68fr776arX3fr4N48aNE4BwOBy3vA0avw1aZkfj38Lrr79O+/btadWqFePHjyc1NZWcnByWLl3KrFmzCAwMZNKkSf76+osvvkhYWBgff/wxK1asYPr06Tf91/nP6dGjB/Hx8YwaNYrs7OwqJSxQ26X/8pe/MGHCBE6fPk2vXr0IDQ0lJyeHnTt3Yrfbb/gAsbCwMMaNG8fUqVMJDQ3lzjvv5Pz587z88svExsai0/1UMR47dixffvklt99+O08++STp6ekoisK5c+dYu3YtTz311FWzFdfjZvbvX/7yF9atW0fbtm0ZM2YMaWlpOJ1Ozp49y8qVK3nvvfeuWRJIS0tj5MiRvPnmm+h0Onr37s3Zs2f585//TEJCAk8++eQtrW8lY8aMYc6cOYwYMYKGDRtWafE1m800adIEgPLycgYNGkRKSgrvvPMOJpOJRYsW0bRpU4YPH86SJUsAOHbsGN26dQNgypQpnDhxosrTmGvVqnVdf0e/fv1o0KABzZs3JzIykszMTGbMmEFSUhK1a9cGoGHDhgDMnDmToUOHYjQaSUtLu6XzaNasWfTu3ZuePXsybNgwatSoQUFBAUeOHOGHH37g888/r7Jeu3fv5qGHHuLuu+8mKyuLCRMmUKNGDX/ZKyAggDfffJOhQ4dSUFDAwIEDiYqKIjc3l3379pGbm8u7775LcXExnTt35t5776Vu3boEBgaya9cuVq9eXSXL1LBhQxYvXsy7775Ls2bN0Ol0NG/e/Jr7rUePHtx+++08++yzlJeX07x5c7Zu3cqCBQuqxc6cOZP27dvToUMHHnvsMZKTkyktLeXkyZMsW7aMjRs33vSx+Fef99ei8hyYNm0avXv3Rq/Xk56ejslkuqV5NP6N/NZqS+N/h8OHD4u7775bhIeHC5PJJBITE8WwYcOqtGweOHBA9OvXTwQHBwuTySQaNWpULVNzq5kdIYR44YUX/C28lZ0uP2fJkiWic+fOIigoSJjNZpGUlCQGDhxYpW33WpkdIdQsxeTJk0V8fLwwmUwiPT1dLF++XDRq1KjaX+ZlZWVi4sSJIi0tTZhMJn8r7pNPPimys7P9cdxkZkeIm9u/ubm5YsyYMSIlJUUYjUYRFhYmmjVrJiZMmCDKysquul2VyLIspk2bJurUqSOMRqOIiIgQ999/f7XW8lvJ7CQlJQngqj9XdgPdf//9wmazVesY+/zzzwUg/vGPfwghfsqEXOvnaufGlfz9738Xbdu2FREREf59+OCDD4qzZ89WiXv++edFXFyc0Ol0AhCbNm3yv3cz55EQ6qMRBg0aJKKiooTRaBQxMTGiS5cu4r333vPHVG7P2rVrxQMPPCBCQkKE1WoVffr0ESdOnKi2/lu2bBEZGRkiLCxMGI1GUaNGDZGRkeH/XXE6neLRRx8V6enpIigoSFitVpGWliYmTZokysvL/fMUFBSIgQMHipCQECFJ0k11HhUVFYkRI0aIkJAQYbPZRPfu3f0ZwSuzIkKov6sjRowQNWrUEEajUURGRoq2bdv6u8tu5Vj8Wuf9rWR2XC6XeOihh0RkZKR///y8O0/jPwtJCCH+XcJKQ+N/jTNnzlC3bl0mTZrECy+88FuvjsZ/GfPmzWP48OHs2rXrupkVDQ2N66OVsTQ0fiX27dvHwoULadu2LUFBQRw7dozp06cTFBTEgw8++FuvnoaGhsb/LJrY0dD4lbDb7ezevZs5c+ZQVFREcHAwnTp1YsqUKVdtSdfQ0NDQ+PeglbE0NDQ0NDQ0ftdoDxXU0NDQ0NDQ+F2jiR0NDQ0NDQ2N3zWa2NHQ0NDQ0ND4XfM/aVBWFIWLFy8SGBh41Uf/a2hoaGhoaPznIYSgtLSUuLi4Kg9rvRH/k2Ln4sWL1b5RWUNDQ0NDQ+O/g6ysrFt68vX/pNgJDAwE1J3182+v/q0R3vOIosdBPodAj1e4EejxCBcCHV68gIRHyCiAVwgUQBYSMgIFI26hIDDhQQZMuBVFnQuBQMIjdCjokYUBjwAw4xEyEkZcCECPR4BA8sfosOAWXnSSkQpFIACvokdBh4QJt+JFL5mpUBQEEorQIQswSCYcsoxBMuCQ1eXrMeESXkyShXJZ3R4JAx6hYNGZKfF4kNABOrxCwaq3Uux2IaFDwoBLUbAbrJS4nYCEWWeh3OPGpjdTKrsBiUC9lUK3E6NkQBESLlkQbLRS6FK/uTjEZCff6cAo6TFKBhxeD8EmK0UVTgQSkZYAcsrLwPf/yxVlGCQ9gQYLha4K7AYTQoDD4yHMbKXU5cEty8TYAsgtL0MREB8QzPniYkAiKTCEc0VFgETNkFBOFxYCUDM0lMyCIhQBKSGhXCgqxqMoxAcFUeJwUupyE26zYURHTmk5NpOB+KBgjl/ORwKaxceyO/MSEtCoRjTHs/Oo8MrEhwRhRMfZgiKMOj2tkmuw9eQ5AJokxpKVW0R+WQVBFjONE2L59uhZANrWTuT0pXxySsqxW4x0SqvJqr3HEAIaJkZjkHT8eFb9stb+zeux89g5corLsZoMDGyTzpff7sfp8RIdGkC3RrVZtHkfXkUhNS6cFrUT+GzTjwgB9ZKiaJmWwEdr9qAIQe34SLo3r82cpd/j9sjERAQxtFdz5ny9g4IiB1aLkdGDOrB+xzH2HrsAwF1d04kMsTPni+3IiiApNpTHB3dgzhc7OH7mMgCD+zYnuUYob87djKPCTXCghWcf7cHhY5dY+PUuhICUxAieeaw7azYcZOma/QDUTY3hmdHdWbfpCIsWq3FJieE8N7Y3mefyeOu9DTgq3NhsZv70WDfq1Y3lHzNWs29/FgDt2tTm8VHdOH78Em/MXEthYTkGg4777m/PnXc247tvjvHe2xsoL3diMhsY/uDt9M5owpGD55nx2kouXyoGoM+AJgx5sCMAC+ZsYeVXPwAQERXEqKd60rR5TUqKHHz49ga2rDsIQHRsKI891ZNGzVOQZYXVS37g4w82U+Fwo9NL3Dm4NXcPaY/ZYsTj8fL1Jzv4fN63eFwyOoOOAX9sxcBh7bHa1G/7vpCZz9yZa/hh20n1dyfMzn2PdaFzRiP/X9ayrLBp+Y989t4mCnLVLwqtWTeGB/7Ug/QWNatc49wuLxuW7GHxnC3+2Mi4EP7wYEc69W2M0VT9tuR2efl25Y8sX7CNcyd9X7YrSbTsXI++97ehfrOUG2bphRBkHs/muxU/8t2qfeReKPS/Z7aaaNapHm16NKBJ+zSsdvN15/o9oSgKn7+3gUVvrQcgvU0q4/5+L4Eh9l8033t//Zp1n++kRed6jJ957S/1vZLSYgfDOk0F4J9bXiAgyHrN2JKSEhISEvz38Zvlf7L1vKSkhODgYIqLi/+jxI7wHEcUjgDlsk/ouPxCR0GPjAeBDo/woiDhFYpP8IAMqjBBIDDiQQFMOBUFMOJFFTxuIaGgwyv0eIUEmPAIBQkzFUJBwohHqILFq+jxVooZIaOXzDgUGdDjViSf0DHiVmQMkoVyRUaHHrfiEzWSGYfsxSiZKZdlRKWoURTMOiulXg869HgFKIBFZ6HE48YgGXArqoiz6qwUe1y+MZAFBBisFLud6HzixykrBBqsFHkqAAm7Xn3fqjfj8MjIAkJNdvKd5YBEoMFGkbsCm96MS5bxKgoRZjuXHQ5AIsocQLajDJ2kI8RoJd9Zgd1gRCjg8HqJsNgodrrwKAo17EFcKClBIJEUGExmcTESUDMojNOFBYBEakgYJ/MLkJCoExbO8fx8AOqGRXA0Nw8JifoRkRy+nIsE1IuI5GRuHl5FUDMslNxiB2VuNzGBARjQcaG4BKvRQO3wcA5cUC/8bZIT2H5GvdE2jIvmYkEJBeUVhNms1AwPZU+m+s3xXdNq8d2xM7hlhZSIUAJNZg5kZSNJkNG4Lhv2ncDplUkMDyElIpRvDp8BoGejOhw6l82FghKsJiMDWzfgi+8O4PR4SYwMoXXtBL749gAAzWvHExFoZ83uYwB0a1ob2aOw+cdTAPRrWx+n08363ep3VvVuXQ+b0cjizarQaNswmWZ14nnvy23IskJKjXAe7N+KNz75htzCMqxmI08P7czWH86w6fvjAHRvW5dOLWozbdY6SsudBAVYeOGxHuzZd44vV+0FoHH9eMYM78xbczez96C6r/r3SOeu3k14ZcZKTpz2CaQ7W9CvRyOmvr6Sg0dUYdWvdyNGPNCeDz7cwqq16nY2qF+Dic/14+TJHF77+0pKSp1YLEZGj+pGl871mP3BZr76ag8AiUnhTJgwgOjoIN74xxo2bTgMQFrdWMZP6E90dDD/nL2FzxduRwiIig7iqRf60bR5Cgd+PMdrk5dyyXdz7t2/CSOf6IY9wMK3Gw7z1vSVFBWUo9NJ3PHHVgx9rAsWi5Gzpy4zY/JSjvgEWL2G8fxpQn9SaqvPfNq36wxvTVlK1pk8ANKbpzB6Ql8Sa0YB4Ch38cmsTSxZsA2vV8Zg0DPg/jbc+0hn7AEW/3Xrh60n+GD6Ss4eV7/hPCouhGFP9qRjn/QqZQavR2btl7v49J2N5F4q8scOfrwr3e5sjsGor3ZNLC91smrhdpbM/Zb8nBIALDYTPQe1pP/Q9sQlRVT7zM/JvVTEhi93sXnJHjKP//Qt7Fa7mVbdG9AhoxHNOtbFbPnf/l6rrav389rYj3A63NSoGcn0RU8QFnXr98esU5cZ2X06kiQxe8NzxCXf+BgB3N9+Cvk5xby+6HHqNUm6ZtwvvX9rYuc/ROwI9w+IwpEgStQMji+j4/YJHi8en/CpFDwyAvAIfMJHwouEgsGXwTHhUlTBo2Z4DLgFKOjwKDpk9AgMeIUAzDiFgg4TLiEDOtyKDgUd+MSPTrLgULzoMOJUBAIdCDUbo5csOBQZvWTE5Rc1JpyKjFGyUCZ7kdAhKzpVgkkWymQPBsmIS1HjTZKFMq8bk86Ew5ftMUsWSr1uzDoz5V4vwidkSjxOTDojTq9AFhBktFHodiChwySZKPd6fBkYNcsTarST7yrHIOkxSEbKvR5C/FmeSnGjCqFwk53cinIseiN69JR53ISZrZS4XHgVQawtkEtlpYBEQkAI54rVbE1SYAiZxUVIQHJgKGeLCgGJlKBQzhQWokOiZkgYpwoLkIA6oeEcy8uvJnTSo6LZfykHCWgQHc3R7FxkRVA7Ioyc4jJKXW6iAuzYDSbO5hdi0utpVCOGXZnqTbltSiK7z5zHIyvUjAgDRXAmrxCTQU+HWslsPKwKjhbJNbhUUMqFwhLsZhOd6qawcq8qTpql1KDc4eLYxTwMOh13trqNlXuO4nB5qBEWRMtaCSzZcQiA1nUSMUgS2w5nAnBn2wYcP3eZw+cuo5MkhnZvzpa9JzmTXYhBr2Nk39as23mMkxfy0Ot1PNK/Ddt+PMO+k6oYG5bRgpzcUtZsPwpA15Z1uC0lmncXbcUrKyTFhTFqUHve+eQbzl1S53zi/o7kF5SzYMlOAOqnxvDEkI68NXczR06qN7cH7mpF49vimTJjFYXFaqbo2VE9kJCY/tZqKio8BAdZmfBkHzwumb/NWElZmYsAu5mnx/QkPi6Uv7yylKwLBeh0Eg8MbsOgu1ry/uzNLFuuiqnataOZ8Hx/PG6ZV6Z8zdmzqoi4885mPDyyM4cOnufVqcvJzS1Fp5e4f0h77r2/LWdP5zLtL19z9kwuAD0zGvHYmO4YDHo+fG8TSxZ9jxAQGR3Ek8/3pXmrWhTklfHW9JVs3XQEgMSUSJ56sT91G8Tjdnv59MNv+Gzud3i9Mja7meE7SPptAAAgAElEQVSju9J3YAt0Oh1F+WW8//fVbFyxD1AzNQ8/1YsuGY2QJAkhBJtX7eeD11b5My8t2tfhkecyiL/ixpV1+jIfTFvJrm/U8yYgyMIfH+1Cv/vaYLoiO6MoCluW72PBzLVcOqcK/fDoYP74WBd6DGyByVw9k1OQW8LXc79jxcfbKC91+j4TxIBhHeg9uPV1//IHcDs97Fh3kLWLvueHb45ReZszmPS06FyfTv2b0rLbbVis/zqB43F7yc8uprigDEeZE0eJk/LSCspLK5C9Cnq9Dp1Oh04vodPrsAVYCI0KIiwqiNDIIAKCrf92T+mZIxd5acQHXL5QSIOWNZm68PGritAb8efhH7B7yzEGP9GNIU/2uqnPjB/yPvu2n+TpV++h6x3Nrhn3S+/f/5NlrP80hOsbROFowImCDlm4Ufylq0qhY8DjL2l5feUogYKER0jI6Hw/AsVXuuKKUpZLKAgM/oyMIvSocqlS6JhxCa+vTKSKIlUM/SR09JKJClkVOoqiLkvnEzoGyUSFT6QowoBHyBglK2WyB71kwC2rpS+DZKZM9mDSmXHIHvCVtcq8biw6C2W+MpRBMlPqdWPTWyn2qGNqiUvN2JS41WUFGqwUuh0YJQOyIlEuewg22sh3qiWuIIOVfFc5Vr0Jl6xQLnsIN9vJq1DFTYRJFToGSY9FZyK3wkGwyUq520OF4iba+lM5K94ezPlStSyVYA/mXHEREhI17EFkFhdh1OmIsgRwtqgIk95AhNnO2cIirAYj4RYrpwoLMOsNRFsDOJ6n/j8hMIgjl3MxSBJp4REc8AmdRjEx7LuQjYREo9gYDl3KQVYEqRHhFJY6OFtcSJjNSpTdzq7MC+glibYpiXx3QhUdzRLjOHO5kEJHBeF2G7UiwvxCp1v9VLYfy8Th9lAjNIiksGC/0OmVXoddJ7IoKKsg1G6l0201+WKbmsloWrMGZknvFzp3tWnAjycucDZHFVMPdG3G11sPkl/iINhu4YGuzZi/ZjelDhcRwXaG9GjG7GU7KHW4CA+283Df1sxZuoO8onLsVhN/uvt2vlj/Iyez8tDrJB75QztOZ+Xx5sJvAejSsjZtGibz0lsrcLq8RIcH8uxD3Vm4dDd7DqoluoG9GtO8QSLjpy6htEzN8EwY3Yvjpy/zzF++RAiomRTBi2MzWLJyL1+vVm/46fXjeWFsbz5fspvFS9VSUb06sbz4XF927DrNK9OX4/HIREQEMPHZfgQFWhj9pwVkZqqC5p5BrRg+tAPLlu3lg/c34fHIhIbaeebZDJo0TuLD2Zv5YpEqxmrEhzF+Qj/q1Inl04+3sWDON8iyQkionSefy6BthzocOXieV//6NefPFajHpV9jHhnTHZvdzMbVB3jntVWUFleg1+u4Z2g7Bj94OyaTgUP7zjHjr0s55xNOrW9PY/T4DCKjg1EUhVWLdzPnH2spK6lAkiT6DGzOsDHdCfSJh7Mncnj7lWUc2K1m9GITwnj0uQxadazrv16VFJbz0dsbWPHp9yiygt6go+/g1tw3qiuBIbafrmtCsGvzUf75+mpOH1VLnyHhAdzzaBf6DG6FyWysdi3Mzsrn81mbWffFLjxuLwAJtaL4w8Od6Dyg6VWF0ZWcOXKRVQu3s+mrPZQVO/zjDVrVotsfWtCudzoBwbbrzHBrlJdUcO5ENudOZJN1IofsrHzyLhZx+WIhRbml/H9yCUazgdikCGo3TCC1YQKp6QnUui3+X1piS6kXx5SPHmVMv9c5uPM086Yv56EJA255no79mrB7yzF2rDt002InLFItSxXll93y8m4GTez8xoiK5YjiZwEvipCQcavZl58JHbdwAwZfZkePW8i+DA8+kSP5SllqJuYnoWP2CR0jbp+IkYUOBcnv76kUOjpMPs9NZQyA2Sd0zDhkBQk9Xl+ZSsJEhS9745DdSP6sERh8QscomaiQZVDzLjhkr+qx8YkahJEKRcaqt1LqVX05CAMO2YtNb6PY41KLX76MjV1vpcitftaut1DkUctRpW41nxVitJPnrECHDoveRJHbSZDRSpHLhUAiwhxAboUqXkKMdi5XlGMzmPB6ocTtItJi57IvyxNnC+JiWQn4BM350mJ0kipozpWUYNYbCDKYuVBaQqDRhBE9F0tLCTFbkBSJS6WlhFqsCCG44Pu/XujIKi4m2GzGpjdyuqAQm9FIjC2AIzm5GHQ60sIj2H8hBwmJZjVi2ZOlenKa1Ijl8IUctQQVHkqF28PRy3kEmE2kRUb4hU7H2slsO3FO9cpEhYMs2HX6PEa9nq51a7L2wAmEgEaJsTicbrafyMKg19G/ST2W7z6KR5ZJjQknLjSIJd+rwiajWV0OnckmM7cIs1HPvbc34ctvD1BW4SIqJIC+Leoxf+1uvLJC7RoRtK6bxDtLtiIEpNeKpWlqDWYs2qJ6f2rF0qFhTf7+8Sa8skLNGuEM7taUtz79hlKHi9AgG2MHd+SjFbs4eU4VPo8Oas/l3BJeeX8tAC0bJnFPryb87d215PlKW8+O7M7Zc3m8MO1rAOrVjuHph7rx3kffsnufum8yujXk7oymvPKPlZzw+XoeGNSaHh3rM+mVrznu84P88Q8tGHRXC15/Yy1bt6vltratUnn2yV5s3nKUd2dtxOORCQuzM/7ZvtRMieLFF79k187TALRuncozz2ZQWFDG44/O5cxpVXz07d+ER0Z1pTC/jHGPz+fwwfMAtLs9jbHP9sFmNzPnnQ18/vF2FEUQFhHAuOf70rJtbfLzSnn1pSVs36IK01p1YnjqxQHUSouhwuHi7RlrWLZoF0IIQsMDGPVMHzp0q48kSWSeuswbf13Kob3qfqiVFsOYPw8graFq8Cwvc/LxuxtZ8vF2FFnBbDFyz0MdGTisvV+UeD0yKz77no/eWk9Zsep9a9W5Hg8905v4lMgq17XDP5zlw1dXcmj3WQBsARYGPtyRO4a2v+rNOvNENp+/t4lNS/eiyOqVp17TJO5+pDOtuta/btdNRbmLb5btZdXC7RzzbR9ARGwI3Qa2oPvdLYlLjrzm528GIQR5l4o4vu8cJ/ZncWL/OTKPXiI/p/i6nzOaDYSEB2IPtGALtGALtGILtGA06pFlBUURKLKCIiuUl1RQkFtC4eVSyoodeFxezh3P5tzxbDZ8uQsASZJIbRhPm17ptOvdiMTaMf+v7boa8bWiGffavUx5dC5fztpEvabJtOvd6JbmaNm5Hjq9jjNHL5GdlU9MQvgNPxMSHgBAUX75L1rvG6GJnd8Q4fgYUfIXQKAIkPEgI/lLWFcKHeETOmo5yusTPL4SFlf6cFTPjtcndJw+H45LET4fkKSKGQx4hEDyCx3VXAwGvAIEOgRGXEJWy1SyjA6jz+xc+Z7iFzo6DL7yloQOM+WyB5Nk8WdvhDDiFAoWnZUy2YUOPR5ZQkbBqrdQ6lV9OS4ZZKH4MjouDJIeWZFwKl4CDFYKXar4MepMlHhdBBhUIaNmcWzkOSsw6QwoiqSWoEx2cp2qF0ctUZVh1BkwYqTAWUGIyUaR04kiIMYayKVytURVKXR06Iiw2LlQWopFb8SqM3KprIxgkxlFFuRVOIi02ilzuinzOomxB1BU7sQly9QIDCKvvByXLBMfGERhuROHx0lcYCBlThfZFWVE2e1qqamgkCCzmXCLjcPZuZj0etIiIvjBJ3RaJsSz8+x5tdQVF8Op3HzK3R7iggOx6Y38kHkRg05H+1pJbDmm/lXeMjme0zn55PuyNA1io1izX71xd70tlR9PX6CgXH2vTa1EvvIJm7ZpSeQXl/Pt4TMY9DruaZvOsu+PUFrhIjokgG4NU1mwTjUWp6fEkhQRwtw16sW4S+NUkAUfrVW9Kv3a1qe0zMk/V6nvD+jQANkj8+6XW9X1aF6blJgw/jZ3HUJAg1qx3NUlnb//c6Nf+DwztAufrtzDgeO+UtcdrQi2W3nu1aXIskJSjTCee7g7cz7dyt5Dqj9lYJ8m3N4ilfFTl5BXUIbFbOCpR7pjNOgZ9dzH/rLVn8dlUFbm4tGxC1QDc5CV58f1IcBu5rEx87mcW4rRqOfRBzvRtXN9/v76KrZuU/dhq5a1ePbpPhw/domHH55NUaEDk8nAI492oV+/Jnz91W4+mLUJj1smJMTGU89m0LptKquW7eXdN9bhrPBgs5sZ/WRPuvVqyOmTOTz3xEecOaWKsK69GvLY2J4EBlnYsHI/7/x9FWUlTtXo/FBHBg1th8GgZ8/2k8ycsowcnw+mR/8mPDy2B0HBNtwuD598sIUvfCUts8XIkMe7cse9rdEb9Agh+HbNQWa9uoL8y2rJqm2Xeox8NoOYGqH+a9UPW08wa+pyzvnWLblODCPHZ9CkTWqVa9r505eZ+9pqtvnM0iazgf5D2jNoZKcqWZ9KTh2+wMI317N1zQH/WNMOdbhnVFcatqx53TLO2WOXWD7/OzZ+tZuKMhcAeoOONj0a0mtwaxq3T0Ov/2WPkpNlhdOHznNgx0n2bz/J8R8zKfSV9H5OeEwwibVjSKwdQ2xyBJFxoUTVCCUiLoTgsIBfVIpyOz0U5paQeTybE/vPcfJAFif2Z5GfXewTW1nMn76CxDoxdB/Uim4DWxIScWuG3evRvk8j7hrZmcXvb+LvT31CrdviiUm8sWCpJCjUToMWKezfcYod6w9zx/AON/yMX+zkXX0//3/RPDu/gWdHCAHl7yLKZgDqzV1BQRbgRTUfy8i+UpbnKkLHgFsIVeBwpQ9H9excWZ5SvTMCfOJGzQbpkak0J8voMONQFF9HlPB5hlTvjw4LFYqMXjLh9GVoZGHA6ys1VchuX8eVamoGIy5FwaSz4PAZkNXSma9rSnZhlIw4vGq8WWemXHZj1pko86j+HavOQolXHavwqlsToLdR6HZikAwoAjxCIchoo8B5pSnZhU1vxuFR7dnh5gAu+8pVwQarako2mHF7FdyyQqTFTk65+v6VQifKEsBlRxlmn7gpcjkJMVtwuWUcXi9RVjtFFRV4FIWEwGAuFJegCEgOCiGzUPXw1AoJ5ZSv4yo1NJwz+QUoAlJDw8gsLFTNx6GhZBeXUeHxEBcYiNujkF/uIMRiIcxq5Ux+IUa9jobR0ezNUssArZIS2JmZpXY0xUSSV1xOXpmDEJuF1PBw9vi8O13r1uLbo2dU705kGFadnsMXc9HrJDIa1WX1j8fVDE50OGE2K7tOqhmGAS3q8+2hMxSWVxAaYKVHeh2++G6/KmySY4kKsLNxn9qV07tFXS7mFrP/9CUkCR7o2oxtB85y6mI+Br2OhzNasXbnMU5fzMdo0PNI/7Zs2n2cw2dy0EkSDw9ozZFTOXz3o5oNuaNTQ0IDrMxbqpZ7GtaOZXCvZrz24QYKSxwE2Mw893B3tuw4wYZtanaja9s0+na8jVfeXk1+YTlWi5HnHutBbl4ZsxZ8o3Zp1QjjxXEZLF+7nyUrfwSg0W3xjB/Tm88W7+TrFepY+m3xTHymL+s3HmLO/G9RFEF8jVAmPT8Ah8PFlKnLyMtTxc/IhzrRN6Mxsz/YzOLFuwFIqRnJxAkDCAyyMn3qMvbs8onOVrV4ZnwGAK//bQU7tqpiKb1JIs9O7E9ERBCLPt7Ggtlb8HoVgkNt/OnZPrTvVI+CvDJmTl3ODp8vJrVuLE9PGkBKajSlJRXMen0165ap6x8dF8LYif1p2qoWAPt2nuaNvy7lgs8n06pjGqPG9yU6LgSAC5l5vP3KMn+XVWxCGKOe70uLDmn+a9XFzDw+mL6SHRtVb1BQiI2hY3vQc2CLKkKi4HIJH72xjjVf7EKRFXQ6iR4DW3DfE92JiAmudg08dfgCn7yxjm1rD/rH2vZowKDHupDWKLFafCWyV2bHuoMs++d37POJToC45Ah6DW5Dt4EtCY289Zu+EIJzx7PZs+UI+7ad4NDO05SXVFSJ0el1JNeNpU56IrUbJZJSL47E2jHYb+Af+jUpyClm54ZDbF21nx+/O4bXIwNqN9ndj3XlD492wWL7dcpcXo/Mc/e8xeHdZ2jfpxET3ht+S5//4v1NzPnbCtr2aMCf3xt2w/gVn2znrUlf0ab7bbz4ztBrxmmenf8ShFAQpX8DxzzgSqGj4EW5Qujo/CUr9V8jbuEBX0ZFUNl5JfmEjq+dvNKcLBTwZWvUDivhm0uNVf04MhKq50YnmfxZGzUGtUNLkX2iRjUZu30lMD0mn9Ax45BVU7PsyyyZdFYcXjcGyUiFTwSZJDPlsguzzkyZR/UcGSUT5bIbq85CsUfNAJkkMyVeNza9hVKfV8emU9vILXoTFV4vCvh8ORXoJR16jBS73QQZbRT5TMdhJrVEpZf0mCUjRW6nL4vjQhEQbQngks+LE2UJ4FJ5KUadAbvexGVHOUEmC26PTJHHSbQtgNwyB7IQJAQEk1WidlxVmo9BolZwGKcK1I6r2mHhnLhBx1X9yEiO5eSiCKgTHs75ghIqvF4SgoNxuj2cyS8kxGohymZnb9Yl9JJE88QafH9WzVy0TIpn/7lLuLwyyeEhGNCxJ/MCRr2e21OT2XjIZ0ROiScrt4gzxWUEWsy0q53Isj3qjattnUQu5Zey6+R5zAY9d7S8ja92HMIjy9SOjSAxLIRF36qell5N65CZXcjGfSfR6yTu79KM1TuPcLmonACLiaHdm/Pxuh8oLncSHmRjSI9mzFn+vd+v81Df1nywZDsFPj/P6Ls78PGK3ZzLLsRk1PPEH29nx49n+Xqj+hf+H7o1IiY0kBffWK4atJMieXxwB2bO28zZCwXo9TqeeOB2ZI/Cs68sRlYEyfHhvDC6Fx99+T3ffq/ewLvfXo/772zJ1DdWccxXorp/YCt6dqrPi1OWcPL0ZSQJ7h/UhgEZjZn++kp2/XAWgG6d6/OnUd1ZvGQ3Cz7aqoqf+DD+PKE/JqOBJ0bP55Qv03HnXc0ZObIze3ad4ak/fURxcYWa5RnVlf53NGXH1hO8PnU5RUUOjEY9w0d24q57WpF9sZBxj83jyEGfwfz2NP70XAYhoTY2rz3IW9NXUlpcgcGg4/6Rnbj7gbYYDHq2bTrCm1OXU5BfhiRJDLinJcMe74rVZqa02MEHr69h7RLVexQWGcio8Rm066qWtNwuD5/N3sKiOd/g8cgYTQbueeh2Bo243V+yqih38emsTSye9x1ej4zeoKPfvW24d1RXAoN/urlXlLv4YvYWvpyzBVeFB4DWXesz7KneJPm6vq7k9JGLfDxzrV/kSJLE7RmNGDy6G0l1rl2SKS0qZ9XH21m+4DtyL6oZLJ1ezeJkPNCORm1Tb+kBcwBlxQ72fnuMPZuPsGfLUfJ8mbFKbIEWGrSqRXqb2tRvnkLN+jUw/wsNzTdDWHQwve5tS69721JW7OCbZXtZ/ck2TuzP4qPXV7Hy460MeSaDbne3+sVZrUoMRj2jX7mb0b1e5buV+zj4/Ska+IT0zVAnXX2W3UlfqfZmlgcg+wTcr42W2fk3ZnaE8CKKJ4DzKwBkIaMg8AoFGcVnLhbIQsLry+x4/ZkcL/i6pSpbywX6n3w4SD4fjgl3ZYeVomZ23EKBK9rOFZ+YqYzRSWZcioyEHpeoNCcbcSsCg2ShQvaoZSpfeUvCgPuKTisder+p2SiZqfAZkMu9sq8F3YhL8WLRWSnxCRidpLas2/QWitxuJLU4hUtR/K3lleKn3OvBbrBQ4lHLVYEGG4WuCsw6Ix5Zwq0ohJps5PvKVcFGGwWuCqx6E15Zwf3z1nJLANnlamt5sNFKgbOCAKMJWRZUeL1EWu3kOxzqs3LsQWSVqL6dKzuuriV0avk6rgDSQiM4lqcKnXoRkRzxCZ2GUdF+I3J6TAwHL+aomZqoSDLzClXRExKM1yOTXVJGgNlESlgoBy6qN+v2KUl8dzJTNTLHx3ChoIT8MgehNit1IsPZeVq9uHSrV4utxzJxerwkhAcTFxTIzlPqe/2a1uWbg2coqXARFRxAi1o1WLlHzR60r5dMQbGDI1mX0eskBt/emNXfH6WgrIIQu4W72zdiwfrduDwySVGhdGmUyoK1u5EVQf3kaFqlJfDP1bt+8uc0SOH9r3cgywp1EiP5Q8d03vz0GxxOD9FhgTx+T3s++Hwb5y8XYzbqefKBzuw+kMmGHWpbea/29WiVnsxrH6zH4fQQERrAxFE9Wbp2H5t3qH/dd+9Qjzt7NmLKzFVczCnGaNAz5sHOhAXb+NsbqykrdxEUaGHCkxk4yl28+sZPHVgTn+mLXicxZfpyCgrLMZsNjH28O80aJzF12nL/s3N6dm/AE6O7s2nTEd5+ax0ul5fgYCvPPteXJk2SmPXOBpb6BEat1Che+PMAoqKDmfXmelZ8rY7XTI1i/It3kFwzkhVf/cCsN9fhcqrlrMfH9aRb73SKCx28OW0F3/myKalpMTz90h2kpEZTXFjOO6+uYrOv7BOfFMG4SQO4rVEiQgi+WXOQd6etoKhA9T30HdSS4WO6Yw9UW8V/2H6StyYv5aIv29OsXW0ef6Efcb4ShRCCLSv3MfvVVf5W72btazNyfF8Sa0X5r2WyrLDuy13Mn7HWX96p2ziRB5/LoEHzlGrXvswT2Xw0Yy3frVIfL+AXOU90I+k6vpPzp3L4as4WNnyxC5dTFVNBYXZ639uWjPvbEhkXes3PXo2c8wXsWHOA7WsPcGDHSb8/CMBkNpLeJpXGHdJIb5NKzdvi/9+C4d+BEILvVvzIh68sJdt3XFPqxfHIS3fRqF2d//f8b4z/jFWfbKd2wwRmLHvypkVleamTgY0mAvDp7pcJDrv+c3vWf7WHvz/7Gc061GHyhw9dM07L7PyHI4QLUfQkuNb7HtanGmq9QkZGIKP4Hg6IKnSEzlfSMvi6ryrbwlXjsdpZJa4QOj7PzhVt5xJm3L6HBTp95SlZqKJI+ISFTrLgUrw+MeObT6gt6Xqf0NFLPxmXhdDjEbLfgKyXjL4OrcpsjwezzkKp96eHBboU2S90dOiRwSd0rBS5XeglPV5FfYDgz5+hU+71EmSwUeh7ho5N73uon95CiduD8GVx8pzl6NBh1ZspcKmm5BKX+ojESHMAOT7TcYTZTnZ5mb+1vMBZQbjZRrHLiVcRxNmDuFiqipvEAFXcqEInmMziInRAgj2YM4VFGHR6Ym2BnC4oxKwzEGW3+zqu9MTaAzmel49JpycpKISjV3RcHfQJncYxsfx44RISEk3iYtl34RJCQP3oSLLyiilzu4kNCsSs13PgYg4Wg4H0uBi2+oTO7anJ7DydhcsrkxIRigk9O0+fx6DX0bVuLdb5jMhNkmIpKXex89R5TAY9fZvUZdnOI3gVhXo1ogi0mPxC565WDfj24GnyShwE2czc1aoBCzf/iMcrkxoXTpOaNZi96nsA2tZPIshiYd5q1Y/Tq2UaHo/MvEp/TvsGeDwy7y7eBkCPVmnEhgYybd4GAJrWi6dnqzSmzl6H0+UlJiKIsfd15INFWzl9Ph+9XseY+zuSc7mEv7y5CoAm9eN56O42TH9vHVkXCzEYdIwZ3hmjXs+Tkz7H7ZGJjQpi0rgMtmw7wevvrAPgtrpxvPAntduqsmzVqEE8Lzydwao1+5n/yTaEgOSkCF56YQDZ2UWMfGweJSUVWK0mxo7pQZvWqbz26kq2bFHb4ps2S2b8+H4UFzkYNXIumb5W84GDWjLi4U6cOXWZUcNncz5LFb8DB7dm+MhOlJZU8OenP2Wnr3zUuFkyT0/sT1RMMFs3HWHm1OUUFzrQ63Xc++Dt/HF4ewwGPd+uP8RbPiGj00kMfKAdDzzSCZPZSF5OCW9OWcr3PvNyYs1I/vTiAG7zPa+kIK+U96evZLNPbIRHBfLoc31p3/02v6fkzLFLvDN5GQd9nVgxCWE8Mj6DVp3rVfGd7P7mGHOmrfA/VycmIYwRz/Shfa+G1fwpF87k8vEb69i8dC9CiJsSOUIIftx6gq9mb2bXxsP+8Zq31eCOER3p2K8JJkv1Tq5rcf5UDt8s28u21fs59bMsQ0LtaJp3qkezTvVo0LLWb565+SVIkkSHvk1o1b0By+Z9y6dvrOH/2Hvv8CjL9H3/nF6SSe+BEEJooffeey+KIiqKKEhRiogi0tS1gLKsa0VREEVFIDTpvZeAFOk1QEjvmV7e3x/PO5MEQtFdd4/9/j7PcXBIpmVCYuaa+76u87p27javP/4Jo2YPYtDznf6lxx8+pTe71h7n0umbpOw6T/POSQ91Pz+Tntiq4aRdy+by77do0r7mfW/vFZYul+e+t/uz5//Ezn/gSJ4SpIKx4DjkEzoCBigmO16h45IkIXwkynh2ygsdB27wGY7VuECOoQsfjkcSk51SoaOVhY7KZzwWVGThx7F7XCjLiBmnR4VHTk7Z3E6xpvKIyZDbg5gnKfSY3c67YIF2j6sCWKAHnQwL1Cg02GSujl4phI5W6fXvSPjLMECNUoPdJeGWfTleho5GoaFIXlfl2cSUJ0hjJMdmRqtUI0lKipwOQspMecJkoaNSKPFT6cmyWAjQ6LE43Vg9DqIMJjJkr07ZaHklPyFuVAolEQZ/bhQWolepCNIYuFFUhJ9Gi1Gp4VZhEQFaHRqlkltFRQTp9GgVKlLzCzFptZg0Wq7k5WHUaIg0+nEuMxuNUkn1kDBftLxxTDTHbwkjcpNKMZy8mY7bI1EzIozsYjPphcWE+hmJ9PPj6LVbqBQK2ifGs0s2IjeqHE1abhHXi80EGfXUi4lki9eInFSN366mkW+xEWYy0qRKLMlydLxDUgKpWfmcv5WFXqNmcMt6rNp/CrvTTUJkCPWqRPHdNmE0ble3Km6XhxV7xIvlkPb1OXs1k4OnU1EqFIzo1Yy9J65w6Zbg54wZ0JqdKZd8/pxRA1tx+uJtlspem8e6N0KFgve/EcKnWd04+rRN4p3PN2G2OggL8uO1F7rz07oUjsum42H9mpIYF8arf1uFzfboh8IAACAASURBVO4iItTEzAm92bjjDBt2iLVI66YJjHm6Ax9+tplTZ8Vq6LEBTejfoyFvfbDOl7Z66vGWDOjVkPc++pXfTorYeu8e9RnzfCe+X3aAX1YI31D16pHMeGMAhYUWRr3wDZmZhahUSkY8157HHmvB2uRjLPyiNJk19Y1+NGocz8/fH+A7OVIeGmZi6oz+NG5alX27zrHg/V8pKrSi0aoYOaYLAx9rjsVsZ+6sZLZvEP++VRMjmDJ7IIk1oynIN/PJ+7+yd5v4vlWpFsErswZSs04skiSxcWUKX83fhKXEjlqtYugL8kpKqxZx8xUpfLtgMyXFNpRKBf2eaMnw8V19YEBzsY2l/9zKOjkBptNreHxURx55rl25eHjqpQy+em89x/aKiZt/oIFh47rS98lWd1GPs9LyWfbPrWxdmeKbnrTuXpenJ/UgvmZ0hb8n3S43ezecZMUXO3yiRKFQ0KJrHQY934F6LRMf2uybcSOXPeuOs3vtca6eSfNdrlQqSGqWQOue9WnZvR7RDwEl/F85Wp2GR0Z3pttjLfj23bVs+vEgC2cnU5xv4ekpvf80sycozESPx1uyetFutq848tBiBwQ2IO1aNhk3cx94W7f8c6JW/zXTtP8TO3/xkTz5SPnPg/O0LDScMgRQmGgF2Rh5lQVuSZL/q5RXWRoc5YSOmNpIPnigwufD8YoYfEJHmJSR4YGlVGRKU1gK4csBFc4yVGS7x1WGiqyW/Twibi6oyKWwQElS+rw6xa67YYHFThkM6Pb6csRKyqDSUyR7dYRvx4ZepaPEITw9dzJ0LG6XLG5KGTp5dgt+ah1mpxu35C4XLQ/WiBi5XqVB8igosNsI1RnJtVqQUBBrDCDNGy03imi5SqEkTOfHzaIiDGoNRqWGjJJiArV6JLdEptlMmMGIzeEix2Yh0s+fErudIrudaH9/iq0OCh12ovz9sdmdpBeXEG40opDgel4BgXodQVoD5zKz0alUJIaG8tstb+IqliPX04ToqRzD6bQMHG4PCaHBOBxuzqVn46/TUjc6wid0OtaoyuFLN7C53MSHBWPSaNl3QQiQPg1rsvnEJZxuNzWiwzBptWw5KUTQ4OZ12H7qMkVWO5GB/rSpUYUfdwk4XutaVfA4Paw7KN5VD+3QgENnb5CamY9Oo2JE92as3H2anEIzAUYdz/VqzpKNRykosRJiMjKqf0u+Wn2ojD+nLUvXp3ArU8TWJw7ryI7DF0k5K0TMU32aolEpmfOpmN40rBXL0/2aM/errWTllmDUa3htVHfOXLjNOx+L2zStX4UXh7Vl7udbuXQtC6VSwfPD2lIrIZIJ038iv9CCn1HL6y/3QomCMZOWUmK2C3DglD6oVUpGT/iO/Hwzer2GV17uQd3asbz2xs+cl5kwgwc15fnnOpC8KoVvvtmNxyMRHR3Em28OICo6kJnTV3D4oJjOtGyVyJTX++CwuXj15e85fUIIqHadajNxam9UKiXz3l7DVlnMVKseyWuzBxKfEMGxw1eY/9ZacrKKUCoVDBnehqde6IBWq2bv9rP88731FOabUaqUDH22LU88L667fSOXf7y1hpOyEbpWvUpMnD2Q+EThlbl+OZOP56zmrPxcEmvHMGHWQKrXiRW/mySJHWt/Y9GHG8nPEWyTtj3q8sLUPkTIJmaAwjwz33+8hQ0yV0etUdH/6dYMHdsF0x3MmoLcEn7+bDvrfziAyyGW5c071ebpST1IrFtxj5HNYmfL8iOs+monmfIUTGfQ0v3xFgwY0Z7Yqg8XGy/KN7N7zTF2rErhvOy7ApHQatSuFu36NqRFt7oEhvg/1OP9r56AYD9enjuUyLhQlnywnh//sZmifDNj3n70T6/lOg9qyupFuzm09QzmYptvLfqg4zWn52TcP6IPYLM4AP4ykvVfKnb27NnDvHnzOHbsGOnp6SQnJzNw4EDf9ZIkMWfOHBYuXEh+fj4tWrTg008/pU6dOvd93M8++4x58+aRnp5OnTp1WLBgAe3aPTja9p8+kjsTKX8EuC4jocIt2csYjxW48MIBy/dcuSSF7OFRy9UNZeCAHo8cLReTGGEY9sbOwZuwqqj+wWtkRhZQFVGRJRkIqFYYMHtc5ajIICYzGqWBEpcTlbxKk0CIH1fFsEAvQ6fsZWVhgVqFlhKXvTxDRy0YOgaVDrNDfLVlGTo6pTAdC3+OED9eoaNUKPFT6sm1WQnQCECg0+Mul7jyCh0lSsL1fqSViGi5XqEhw2wmSKfH6XKTZ7MSafQn32LDIUfIs4rMOD0eqgQGcauwELckkRAUzM38Ql/KKi2/EIfHQ3xQENlFZizexJXDzY38QoINegK1es5mZKFTq6gVFs5RWeiUrX5oEBvF9aw8imwOogL8CTEYOHz1Fiqlgk41qrHj7GWxqoqLJrvAzO+ZmfjptLStEc/6Y2Ld0rpGFdJyCrl0KweDVk2/JrVJPnQGl8dDncqRBBn0vmnP4FZ1OX7hFjeyC9Br1TzduQk/7zxBsczTGdS6Lt9uOIrD5SYhJpQujRL5ZOVe3B6JWnERdG1Sg49+2IXL7SGxUhiPdqzPP37YjcXmJDosgDFD2vL5z/vIyCmSax86s+PQRQ78JhJZQ3o0okpMCNM+XIvT5SYuJpjXXujGwmX7OH1evEN/enALkhKjmTRnBSVmO0EBBmZO6sP5ixm8OmcFHo9EYtVwZk3py/pNp1ieLNJSdWrHMOPVvmza+jvfLRMMoKrxYcyePpDU69mMGvMtZrMdf38dU6f0Ial2DDNmrOD4sesAdOpUm0mTe3H+3G1GjfiavDwzGq2K0WO6MGBQE/bsPMeCuRsoKbZhMGgZN6kH3XvX5+ypW7w/ZzWZ6QUolQoee6o1Tz/fAbfLzScf/Mq6FeL5xcaFMGXWQJLqV6aowMJHs5PZtVlMrKomRvLK7IFUrx2D2+1h1dIDLPlkG3abE51ew7MvdaX/Ey1RqZQ47E5++koYkF0uNwajlmde6ka/oS1QqYUJ9NrFDD59aw1n5K8tNj6MsW/2p3Gb6r7fX06Hi3XfH2DZJ9t8FOPW3eoy8rXed9U0mIttJC/azapFe7CaRQy8fstqPPNKL5KaxFf4+7Gk0MK67/ax+uvdFOULj1FAiB8DRrSn7/C2BAQ/uJvJYXdydPtZtq88wtEdZ33pJKVSQb1W1enQvzFtejd4qMf6f+koFAqGvtSdgGA/Ppm2nF+/20dxgYUpC56qsHvsQSexXiUqJ0Zw83IWBzadotuQ5g91P6/YyX0IsWO3CbGjN/4Pih2z2UyDBg0YMWIEjzzyyF3Xz507l/nz57N48WJq1KjBO++8Q7du3bhw4cI9S75+/vlnJk6cyGeffUabNm348ssv6dWrF2fPniUu7t6Rxf/0kVw3kPKfBfct7uy5KmXo3KvnSirjv9HIHh2vifhe9Q+lxGNkoeOtf1CU6bJ6GCqySqHH7HHJKSwhXLw+Ho1CCB21QoPN7cErYMyyV+d+sEBJUmH1uPFTGSlw2mVfjgqr24W/2ki+zMvRK7UUOe9k6PjJDB0NHg+YXU6CtYKr401fZVtL0CrVKCQVhQ47oTo/si13R8ujDCbSSorQKdUYVBoyLWYCtXrsTjf5LhtRRn9yLWZcHonKpkBuFojVVkJgCFdlI3JicAiX82QjckgYF7JLjcjnswRArlZYGJezc3F7JGqEhZKWV4TFKczHVpuD1PwCgg0GQg0GTqVloFEpaRQb4xM6ravGceTqTSEkIsMpttg4l56NSaelQaVotp8RU4VOtRJIuXyLEruDmOAAKgcHsuWkWDX0aViLvWeuUmxzEBnoT+OqMfwiE5E71a3GrawCDlxPRaNS8VSHRqzad5piq52oYBM9Gtfg201HcHsk6lWNokZMBAvXHQKgff0EAgxavpY/7t6sJn5aDZ+u2AcIfk7l8CDmLtkBQJPalenavAbvfrUFu8NFpYhAxj/Rnk9+2ENaZgFajZopI7pw+nwaH30tVlsdm1enf+d6zJq/jrwCMal5Y1xPLl7J4o33VwNQt2YMU8d254vFuzmYIgRT7671ePLRFrz/UWm31eODm/HogCa8/9EGjp+QAYM96zN6ZEcWL9nLatlAnJQUy5tv9OfWzTxeeGERBfkW0Xf1Uje6dq3D4m/2slzur6oSH8b0mQOJigrko/fWs1muX6iVFMu0WQOIiApkycJd/PSdSHJFRgfx2qwB1G0Qx/nfb/HBzGRuy5OM/o81Y+T4rugNWg7sOs/H764jP7fEN80Z9kIHNBo1N69lM39WMudOip+Rhs0TmDBrANGVQgA4nXKNf8xZzS3ZP9SiYy3GT+9HeJSY1FjNdr7/dDurv9sv4IEGDcPGdGbgM23LVTyk7LnAF++sIU3uzUqoHcPo6f2of0cax+lwsWHZQZZ9so0i2RRdvW4lnnm1F43b1qhwdVKYV8LqRbtZu3gvFllERVUO5ZHRneg6pPlDVTikXkhn47ID7Fh5lOKCUlJytbqV6PJoMzr0b/Knep3+Xzu9n2qDf6CBeS8vZc/a4xj99UyYO/QPP45CoaDTwKZ89+EG9v164qHFTkik+B7kZhU98Lalk517+7Hcbg9fzd3wUJ/7zvOXip1evXrRq1evCq+TJIkFCxYwffp0Bg8eDMCSJUuIjIxk2bJljB49usL7zZ8/n5EjR/L888KtvWDBAjZv3sznn3/Oe++9V+F97HY7drvd93FR0YP/4f+VIwo9R4An+y6hU7bQ0+GrfRCrrPI9V8g9Vx7ZcHyHZ0f24Xg7rO6qf1DosHvK1z+4JRUy3cZHRba6PYASl4fSNZXHjUYhJjQKeb0lqMhy1YNc8Ik87bHKBmQvLNDlUcht5WVggS7hRzKqDBTIxZ4uj/DlCKFjQ6VQoUCJ2e2UV1RiYuOvMpBnt8rrKiceCR8sUCGvs3JtFvzVeqxOF06Py5e4AgWRstBRK1QEavRkmEvw1wgoYIHdTqTBn2zz3dHy+IBgrsuJq8RAIW4UKKgeHMqlvLuj5XXCwjlTQeKqXmQkZ9KzkCSoFR7GjdwCrC4XcUGB2B0urmTnEWjQExsQwJHUWygVClrHx7H/snhRblalEudvZwkxE2Qi1GBk/0WxqupeJ5Ftpy/j9kjUrRSJw+HmyOWbaFTCiLz+qDAiJ1WKwE+rZdNvQgQNaVWP7Scuk19iJdRkpFfjmny//ZgQNvFRVA4N4rutwq/Ts2lNCousrJL9OsO6NOLM1XT2nriCUqHguT4tSDlzg5OXb6NQwHP9WnDpWhbfrRdG5SHdGqJCydxvhYhpWT+ers1r8NanG7HanUSHBzBlRBe+Xn6A81eEx2f0E23QqdW89n4ybreHhLgwXhvTnUXL9nNUpiE/0qcR3drV5rW3VpGRVYhWq2bS6K5EhpkYN/l7Cous+PvpeH1SbwJMesZMWEpuXgl6vYbJL/WgblIsU1/7mYuXhNF26GMteGZ4W77//gA/yoblqgnhzJgxEI1GxaSXvuf8OQE27Nu/ES+O60rqtWzGPPc1t2/lo1DAE8Pb8PRz7cm4XcCkUYu5IN++a6/6jHulJzqdmiVf7OSnxXvxuCXCIgJ4ZeYAGrdIoKTYytyZq9gui6a4hHCmzB5EzTqxuF1uln+zh6Wf78TpcGH00/H85B70eqQpCoWCkiIri+ZvYuNKMSUKDvNnzOt9ade9rq/v6uD2s3z+t3W+lUKbbnUY9Xrfciur26k5LHx3HYflJFhQqD/PvtKTroOblluBSJLE3g0n+XbeRl8CKLZqOM+80pO2vepXKHLysopYuXAnvy7dj90qXtjiqkfx+PiudOjXyDd1utexWey+qPU5eSIFAurXaVBTujzSjPhaMfd9jH/luF1ucjMKyb6dT87tfIrzzVhK7FhKrFhL7FhLbHg8EhqtGpVaiVqrRqNRYQr2IywmmIjYEMJjggmNDvpTfVN/9rTv1xitXsPbI79m07IDNO1U+w8TkQGadqzNdx9u4EzKVdxuz0OtxIx+Yt3lxRLc7xTKYtkLF6zopN/IZZNcu/JHz3/Ns3Pt2jUyMjLo3r277zKdTkeHDh04cOBAhWLH4XBw7NgxXn/99XKXd+/enQMHDtzzc7333nvMmTPn3/fk73Mkx0nh0ZEKywkdUeipxoW336psoed9eq4kjRwd1+HEGz+XuF/9gwKdnLDyGo+95GRZnJSjIqt9LeUgKMdeKrJKofYlrZRoMbtdPligogxXRycLHbVCg9UlhJteKYROOVigTEXWK7WY5bSWn0oIHa1S0JndktvH0PEWexY4HHLlgxA/wbLQUStUaBVqmaFjIM8qro/Ul05xwnT+ZJiLMai0qFCSa7MSphfUZJdHEjUQFUXLTaXR8oQAIXRUCiXxgUFcystFpVBQNTCYC9m5qBRKqgeHcjYrGyWQFB7hEzplE1cNY6I5VSZxdSOnALPDSWxgAEqFgrMZWRi1GupEhvuETvvq8Ry4lCpi3dERFJtt/H5LrKpaVK3EZtmD065mPOdvZZFTbCHYz0CLapV9VQ9eI/K5m1notWoGNxeN5U63mxoxYSRGhrBsh/Dr9GhSg8y8EjYePY9SoWB4t6bsPHaJG1kF6DRqRvVtwS87T5KZV4y/QceYga1ZuiGFzLxiX7/VT5uOcz09D61GxctD27M75QopZ4RvZHi/ZnjcHv725WZAGJMf6daQdz7ZREGxlUCTnjfH9mTb3vNs3StecLu2rcXA7g2Y9eE6MrOL0evUvDauBzarkwlv/ITD6SYmKpA5Uwdw6MgV5i3YiCRBYkIEs6f1Z8++iyxasgePRyK+Shhzpg8gNTWH0S9+i9liJyDAIFc+hDN16k/8flqO5/drxJixXTiw/xJ//3AjFrMdf389k6f2pm27mvzy40G+/XIXbreH8MgAXp85gHoN4ti49jc+X7AFu82JyaTn5am96dC1Djeu5zB35iounROeoM496zFuam/8TXqOHbrC/LdWk5MpfDuPPN2a4aM7odVpuH45k49mJnNJNto2bVOdCTMHEC6vCPZvP8Onf1vnK+3sPaQZz03s4SvLzEzL57N31nJkl1hrRlUKZsyb/Wlepu/KZnHw0+fbWbloj4+rM2B4G4aN74qfqTw079ThKyx6bz0X5Uh+cLiJpyb2oMeQZhUKlrzMQn75Ygcbvj+Awy5e9BLrVmLoy91p1b3uA6PMNy9n8ut3+9j6y2HfJEipUtKyW116DmtN4w61/m0RcUmSyM0o5MbFdPlPBjcuppNxI5f8zEI8nn+d1KJQKIitFkGd5tXEnxbViI4P/0tLP1t2q8ejY7qw/NNtfDJtOXVbVPvD3qWEpBgMfjrMRTZSL6STkBT7wPtotOLnwft9v9/x/vzeDwp57ULGPa970PmviZ2MDPGkIyPLg6ciIyNJTU2t6C7k5OTgdrsrvI/38So606ZNY/Lkyb6Pi4qKqFy58p996vc8kv0QUsEYkMyyCLGXKfT0Cp07Cz2VOCXPHUKnbM+VhIibu/D2XJWmsSquf3Dco/7BgxqHt6Xc7W0pF7Met3w7tSx0SqnIwuNj9bjRKQ2YXUIE2eRiT61SwAK1Si1mWdRolTpK3Hb0ylIDsteUXBYWaFDqKXCIYs8Sl7gsQC2EjkahxiMpMbtcdzF0cmwWH0PH7HbexdDxTnH81DqyrWYCtQYsDhdWj+OO1vJAbhSKFVW8fxDX5Wh5Jb9ArhXI0XKDP9fy89Gr1IQajFzNz8egVhOqN3IlV/w9wujPxZwcdCoVlU2BnM3IQqNUUius4sRV49hoTt5MxyNB7chw0guLKbDaiPD3I9hgIOW6qH5onRDH3gvXAWiVEMfZm5kU2exEBfpTKSiQnWfktU2Dmuw4fRm7y01CRAjh/kY2yxOcQc3rsEM2IkcE+tOqehw/7hbR67ZJ8VgsDjalXBRgvc5N2H7sIul5xfjrtQzv1pTvtxyj2GInMtjEYx3r89W6Q9gdLuIig3mkfT3++fMe7E43cVHBPNW9CZ/8vJcSi53wYH/GP96Ohb8c4HZ2IQadhlee6cS2/Rc4fEp8TU/2bUqIycib89eJVV/VCCYM78iCRTu4kipoz2OHd0Cv1TB59gqcLjeVooOZNbk3qzecZMM2sY5r3bwaL43szILPtnLkmDDr9ulRn2efbMP8jzdz6IgALHbvUodxo7uwdOk+Vq0WU6s6SbHMmD6AK1cyGTVqEcVFNvz8dEx+pRctWyby6cdb2bBe/HvVqVuJN2YMQK1WMm3SMo7LEe12nWozaWpvJEni7TdWsE8WFQ2bxPPqzAGEhZtY98tRvvrHFux2F/4Bel56rQ8du9fFZnXwyfvrWfeLmILFVA5hypxB1GkQVzrN+UykvfxNeka92otu/RuhUCjIyynms3fXsW+rELWx8WFMnDWQejLnxu1yk7xkP9/L3h61RsUjz7Vj6OhOvlWRJEns23Sahe+WTnwat63B6On9iEss/3v21tVsvvlgPQflz2fw0/HICx0YPLJDhX1XuRmF/PL5djYuO+h7savVuArDJvSgacfa931xd7vcHNryO+uW7OXk/ou+y6OqhNLziVZ0G9KCkMi7ycx/9BTllXDht1QuHL/G+ePXuXgileL8e3czqTUqwqKDCIsJJjDUhNFfh9Gkx+Cvx+CnR6lS4HK6cTlcuJxunA4Xhbkl5NzOJystn+zb+bgcLm5dzuTW5Uw2LxNv0oPDA2jcoRZ9RnSgdpO7OUX/jvPk5F4c2vo7Ny5m8MWMlbz26b0pxRUdlVpFrcbx/Lb3AmeOXn04sSOn+Zx21wNvmy/XRNxvsuMtlP0z57+exrrzB97LYvh33ken06HT/XVNsQCSbTtSwQTAISjI0p2Fng7uXeipKlP/oPCtnAT1WHtHz5VWNhOXihhR7QCglYWOoCLfq/5BCB0dNrcLUOKShMDyUpHLRsq9Xh2tQggdtY+ro0Sj0GJxOwRXRxY1KoUGi1uYkgtlWKBKITw9fiqDDwyoVegocjoFV8dZfl1lUGmxOAVV2svQUaDAqNbfl6ETqhUMHYNKiyRBgd1GuN6PHKsFSeKuaPmNQlHsGW00kVpUgE6lIlhj4KYcLTcoNdwqKiZQp0OFktu+Mk8FaYXFhBgMqFFyo6CAQL0ef5WGK7l5+Gm1RBn9OZOejUalpFZYuC9x1bRSDCmpt8Xf42I5dSsdh9tDtbAQrDYHFzNyCNDrqBkeyt6L1wFR/bD7/FXcbola0eE4HW6OXU1Dp1bRpU4iG+XG8mYJlcgrsnDkkiAiD2iWRPLhM7jcHmpXiiDEaGDtYZGweqR1PY6cTSUttwg/vZZhHRuxbPtxLHYnlcOD6NqoOl+uOYhHkqiXEE29qlF8slL4cVrViadqVAgLftoDQOt68dSrGs0Hi7eJ4s/qMfRpk8T7iwQ/JzYikPFD2/HpD3tIyypEr1Pz6nNdOXIilWVrxNqlZ/skOjZNZNoHqykx2wkONDLj5d7s2H+BX2VR07Z5IiOHtua9f2zk0lU5gfVkWxrVi2PS6z+RmV2EVqtm8rhuVI0L46XJ35OZVYRGo2LC2G40aRjH628s58IF8Qtz6OMtGf5Ua5Ys3sfy5YIdVKNGFDNmDMThcDH+xW+5fi1HrKeeas0zz7Yn5cgV5v1tHYUFFnQ6NWMn9qBXv4acOHadeW+tISe7GLVaybOjO/HosFYU5puZOelHjsgVEY1bJPDKzAGERQRw5uQN5s1MJv2W7Nt5vDkjX+qG3qDlxtUsPpqRzAU5gt28XQ0mzBxAaEQAkiSxJfkYC+cJM7RSpeSx59oxTJ4EAVw4fZOPZyb7XhzqNq3K+FkDqFJGwNy4nMnnb6/hhMz7iawUzOjp/Wkpk5a9p7jAwg8fb2X99/txuzwoVUp6DW3Bky93r/BdeEFOMcs/28b6pft9L3JJTaoybFIPGrered/f1cX5Zjb+cIC1i/f4TK1KpYIW3erSZ3hbGrWr+YdJyeWeW3Yxpw5c5OT+i5w6cJFbMoqg7FGqlMRUDadKzWjiakQTVyOK6CrhhFcKJijM9C99fo/HQ0FOMZdP3uDMkSucOXKFC7+lkp9dxPYVR9i+4gg1GlZhwPMdaduvcYXN8H/2aHUaJs9/ksn957NrzTEeebEzifX+2Jv+pCZC7FySp3oPOiq1l53zYCqyV2zfz2t1+WzaPa970PmviZ2oKAGUysjIIDq6lLuQlZV11+TGe8LCwlCpVHdNce53n//EkaxrkQpfA9y+Qk8xqXmYQk9vz5XK13PlkpQyo0aDu5zQEcTj0ii5t9pBgRBQD1v/4KUiq7DLVGWRyHKWoyJ7vTrCv+OQ/1tKRbZ6nD5YoAIloMLucWNUGSlw2FEqVHgkJVa3u0JYoEltoECGBXqnPMKULKY8wbLQUStUqBRqihwOgrVG8uQpT3gZho5RqSPbaiFQ601fecpNcbyt5V6D8s2iIrRKNYEaHbfl1nKlpCTTbCbUYMTucJErR8uLbXYKXXZiTSYKzHYsTiexpgAKrTbyHVaiTSZsdie3zcWE+/mhkpRczRXFnhF+fvyenolGpSQpIoJjstApm7hqWCmaqxm5FNsdxAYF4K/VkpJ6+67qh5bVKnP5dg65JVZC/Y3UjY3wCZ0e9Wtw9OJN8s1WwkxGWlSP8xmROyRVJT23mAPnUtGqVTzRriHJ+05TYnMQGxpAp3rVWLTxMJIETWtUIjLA3wcG7NWiFlaLgx+3CgPvY50bcjuzkB+3iI+f6N6Y/HwzXyUfBKB/h7oEGvS8/802AJrXrUL3VjV5+7NN5fw5X/64j0vXxfRm3FMdsFrtTP9wDZIEdWpEM2FEZ/7+1TbOX870xcoTq4QzYfrPFJfYCAwwMPOVvqRnFDBh6o84XW5iY4J4640B/H4mjZem/IDT6SY2JpjZ0weQnVXE6LGLKSmxYzLpfWurKVN+5NxZ4asZNLgpL7zQkR3bzvCJPIUJyEF0hgAAIABJREFUCfHj9Tf7U7deZb76bDsrfxaiKCExkjfmDCImNtjXUi5JUCkuhGlvDaZ6zWgO7bnA/HfWUphvEUyd8V0Z8HgL3G4333yyjV+W7MPjkQiPDOSV2QNp1DwBt9vDL4v38d2n23E6XPiZ9IwuM83JvJ3PP+as9vVZJdaOYdJbg6gme1UsZjtLFmxm3Q+HkCQJU6CB56f2ptugJj6RYTXbWfbpdpK/3YPb5UGjVTNkVEceG92pnDnU6XCx/vsDLPvnVl/LefNOtRk5re9dUx8QomjllztY8+0en9k0qWlVnpzYk0btKjYre8/Ny5msXrSL7b8c8ZGSA0P96TmsNb2ebE2kbMD+o8dudXD64CVSdp7l5N4LXD9/+67bxFaLoFajeGo2rkrNxvHE1475t4qMskepVBISEUjzbvVo3q0eIEo/L/x2na0/HWRncgoXT6Qyb/wSvp6TzMBRnRg4qvO/7fnUbFiFDgOasDM5hZ/+uYU3F478Q/evJFO001NzHur2Dvl7+SBYo8Pu9NWAxFSpuHDU4/Fw/iFFVkXnvyZ2qlatSlRUFFu3bqVRo0aA8OTs3r2bDz74oML7aLVamjRpwtatWxk0aJDv8q1btzJgwID/yPO+80iWZUhFcxDN5RJu3DIF2SnTjZ3yKqsioePtuVLhhHLxcGFk9ogU1j16rryxc7HO8vjETNn6B29iy0tM9gkdRWncHBkIqPFRkdX3pSJ7RY1X6KgUapweCQ8eDDIsUCOntTxIckmnDY1CjcMtzMteWKAS0W1V7CwPCxS+HTN6lRaH24Pd7SJM50e21TvFEULHy9ApdNgJ0/uRYzEjUdpa7m0wTysuQqNUEaDWk15SgkmrQ+HxtpYbKbY6sbntxPoHkF1ccbT8Rn4hbo9UrsyzWkgIaXmF2N1uqgQFUVBio8huIcrkj8IDV3LyCNDriPLz59StDNRKJY0rRVeYuKodFU5+iZWLeTkEGvQkRYaz46wQOt3qJLL37DXsLjfVIkLw02rZc+46SoWCAU1qs+HYBRwuN9WjQwkz+bFBjp0PblGXPaevkFtsJcTfSK/GNfhh+3E8kkSjajGEm/z4Qfbr9G+VxM2MAjYcPu8DBe757TKX00SR55iBrVm/9wzXbuehVat4aUg7Nuw7y4XrWahUSsY/1o6jp1NZd0rEpZ/o1QStUsnfvijvz3n7k40UFtsICjDw5tierNt6ir1HxIv3gO4NaN88kal/W0VhkZUAfz0zJ/fh/IV0Xn97pajVqBHN9Im9+WH5ITZtE5+rbavqTBzTlS8X7WLbTjG9ate6BlMm9uTnnw/xkzy5qVUrmplvDuTa1SxGj/7Gt7aaOrUPjZvE89HcDeyQ4X1Nmyfw2hv9sJjtTHxxCZfkidDAIc14YUwXsrOKmDT6Wy7KHpxeAxrx4oTuKIB/vLeeDavEqqxq9Uhef3sw8dUiuH4li7kzVnJF9h506dOAsa/2wt9kIC01lw9nrPQlrZq2qc6EWQMIjwzE4/Hw6/IjLJq/CavFgUarZvi4Lgwe3sbnkzm04yyfvr3W9w65c7+GvPB6H4Jkb4YkSRzY8jtfvFN6mxadazN6en+iyzRaS5LE0Z3nWPi3daRdE8nC+JrRvPBGPxq3u7t+wGq2k/z1LlZ9tRNzkfDU1GgQx/BXe993kiNJEqcOXGLFFztI2VmelDzohU6079foT73IZ6TmcHT7GY5u/51TBy7eZY6tmhRLg7Y1adCmBnWaV8P0X46la/Ua6rWqTr1W1XnuzUFs/GEfv8qTrW//toZtyw/z8rxh1G2Z+OAHe4jz+Phu7ExO4cDGU6ReTKdKjYohjxUdL4Qx/caDIYGAT7jeL2ElHi8PSZIw+uvvucZKu55DSaH1D9Gzy56/VOyUlJRw+fJl38fXrl3jxIkThISEEBcXx8SJE3n33XepXr061atX591338VoNDJs2DDffbp06cKgQYMYP348AJMnT+bpp5+madOmtGrVioULF3Ljxg1efPHFv/JLqfBIJQuRSj4EyhZ6SjIMUIEb113N5fcu9FTKkxSv2JHknishdO7Vc+VNWHnFkEqhwyavsOzyaswjwwbL1z/IcXNJiVvy+Oofynp1lGjvQUWWylGRBZRQgV6plw3IOp8wMqr0FDlt6JU62agslcIClWpcbgVWT3lYoL9cCWFSi0oID/gYOt70VbbVgkmjx+Jw4fS4iSxDQvYKHZVCSajWj9slxRjVYnKTY7USZjBSbLXj8LiJ9Q8gvagYjwRVA4O5lpcvR8tDuSwnrmqEhHIxO5e7yzwjOJ8pUla1w8O5nJ2Hy+2hWmgIOcVmimx2ogNMKD1wKSsXf52W+OBgjqSmicRV1Tj2XypNXJ1Ly8TscFI5OBCTVsuhKzdRK5V0TarGllOi+qFJfCzZhSWczsjAT6elc1ICq+XVVKsaceQVWTh04QZatYohreqzUiYiV4sOpUZUKD/uFP6TXk1rciu7kK3HL6FSKni2ezM2Hz5PWo5Ya73QpwXfbTpKfrGV0AAjI3q34KvVBygy2wkP8mP0wNZ8sWI/eYUWgkwGJg7ryOLVh0hNF+DBycM7sTflCvuPC1/RE32aEBbg5/Pn1EqIZPxT7flo4TZS0/LQqFVMer4zFouDqe+swuORqJ4QwRvje/L19/s4cFSIvv49G/Bo38bMeX8tl+VV1gvPtKd1i2q8+sbPXL+Ri1KpYPTIjnRuX4uZs1dyWjYcDx7UlJEj2rN06X5+/klE5mvWjGLGzEGYS+yMeeFb0m7loVQpeO75jjw2tCW7tp1hwdwNWK0OTAEGprzRj9btarBt4yn++eFGrBYHJpOeSW/0pW3H2lw6n877b67kVqr42Xn0qVY8M6YzarWSVT8c4JtPxMQmINDIy9P70a5LEh6Ph7U/HWbR3zf7erJGTelFj0GNUSgU3L6Zy99nJnNa9gglNarCpDmDqCzD9vJzivnib+vYs0lM8qIqh/DSrIHlmDm3U3P5/O3VpMh1ElGVQnhxRn9a3EHDvXE5k4XvrOWY3LIeFOrPM1N60e2OlnMQk5+Nyw7y48ebKZChhPG1ohk+pTctu9W9p8hxuz0c2HiSXz7fziWZXq1QKGjZvR4D/yAp2XtuXc5k36+/sW/9b1w5Xf7df2h0EM0616Fxh9rUa12doLA/3or+nzpB4SaemNiLIeO6s3PVUb55O5mblzJ4deB8Bo3uzMgZgx6YWnvQqVIzmtY963Ng0yl++Ww7UxY89dD3jZJFcW5GIXab44EAQK/QfJDYSbsuRHVsfOg9v/fnZDhmtdrRcPqhn7Lv/KViJyUlhU6dSns5vCbhZ555hsWLFzN16lSsVitjx471QQW3bNlSjrFz5coVcnJKR2aPP/44ubm5vPXWW6Snp1O3bl02bNhAlSpV/sovpdyRJAmp5CMwLwRKhY630NODt+5BcUdzuVoWOg8u9HT7/Da6B/Rc4buNUqHHJkMCrV6vjkfl8+OUr39QyvUPoFLo7qp/QFLjkNz3oCLr7qIiaxQ6ipyOclRkvVJHsWxKLnSIy0phgVrMDnc5WKBKoUSDmiKnnSCtgVxZ/ITKDB2NUo0GNfl2OyE6I7kWQUKONgRw2yymOJF6E7dLitCpNOgVarKsZoJ1Bsx2J3a3g1g/sdqSJKgSEERqvui+uldreVmGTp3wCM5kZsnR8ghOp4u/14+K4pRsRK4XFcn5jGxcHg+JYSFkFwrRE2XyR6dW83t6JgaNmrpRkT6h0z4xnv2Xr+PxQJ2YCAqKrZzLycak19G4cowvcdUlqRpHL9+k2OYgOshEjcgw1qeICU6fxjU5cvGmSGP5G+hcpxrLZCJyq5pVcDlcbPYZkRuzNeUimfklmAw6nuramO82pmCxO4kNC6R/6yQ+XbUPl9tDzbgIOjVMZMGPu0S8PSGKbs1qMm/JDtGXVTmMJ3o05qMlO3zG5ElPdeTL5fu4cVs0mk8Z0YXjv9/kp7Vi0tGrfRJtG1dj2gerMVschIX4M3NCb9ZsPsmOfeJFtmfHJAb3asSM99aQllGAVqNi8phuBJkMjHvlB+HrCTIy87V+FBVZGTNhKVarg9AQf2a90R+3y8OLYxeTX2DBaNTy6iu9Saodw+uv/czvsg/Gu7basuk0n32yFafDTXhEANNnDqBaYiTz3y9l59RrGMe0WQMx+ul4f3YyO2TYX72Gcbw2eyBh4QH8snQ/iz/bgcvlITTcxKvyaio7s5APZyVzQiYdN29TnYkzBhAabiI7o5D5s5L57ZAQcw2bJzBpziAiY4KECFp2iG/+sRm71YnOoOG5CT3o90QLlEolkiSxNfkYX83dQEmhFaVKyeBn2/LkuC4+A7LD7mLFV7v4+YsdOOwu1BoVjz7fgcfHdC7HsykutPDDP7aybul+HyV54Ih2DB3X9S5arsfjYdea4yz9cKOvBiAmPoynp/Smfd+G9/S0OGxOtiw/xKovd/rWIDq9hu6Pt2TgCx2JiX84UrL3pF3NYldyCvvWHS+3nlKqlCQ1S6B517o07VKH+Foxf2nS6a84ao2Kbo+3pGX3enzzt9Vs+n4/yV/u4Mrpm0xb+Py/LNgeHdOFA5tOse/XE4x/77GHYhuBoDNrdGqcdhcFOSUPXC+WFAkGktH//sTl1IvCO1UpIeKet/k95ToAtRpUhuUP9XTLnb9U7HTs2JH7laorFApmz57N7Nmz73mb69ev33XZ2LFjGTt27L/hGf7xI0kepOK3wLIMeJjmcmW55vLSniuv0Ckt9HShkM3EKrnz6s5Cz3v1XHlQeuPmcv2DJMMGRf2DFtsD6h+08ppKgRKPRyHoPj4qstbH1VGjpcTllBk6coM5IkruhQUK8aPF7HKWgwUaVDqKnLZysMBAtbEMLFDC4nH5GDqi8kF0X4n0FZS4nYTr/cmUGTpRBhO3zUUoFUqCNAYyLSUEaPQ43R4KnYKhk2U245EgziRMyfdrLU8MDuFSbi5KhYKEwGAueqPlIaGczcxCCdQOC+d3Weg0iIzyJa6axMZw7Kbw5DSIieLc7SycbiF68i1WMopKfB1XKdfTUCuVtEmIY49sRG6VEMeZmxkU2xzEBAUQ6e/HnvPXUChE4mrziYsigh4bgRoFe85eQ6VUMLhFXdYfPYfN6SIhMoQqoUGsOiBejPs3T+Lk5TRuZhdi1Gl4smMjftjxG1a7k7iIIDrWr8aXa4TfpEmNSiREhfDFapEQ6dw4kQCDni+Txcc9W9UmUK/jH8t2A9CpaSI14yJ596utwshcPYZHuzbgvYVbKLHYiQjxZ+rIrixafpDzVzNL/TkWOzM+WgtA/dqxjHu6A3M/38LVVNGrNWFkJ0xGHROm/4zN7iQqIoA5U/tz8MgVPpgv6iLq1I5hxtS+JK85zvJVwl/UsH4cb77Wj82bT/Htkr14PBLVEiKYNWMgGekFjB71DYWFVvz8dEx5tTdNmlRl3vvr2SUzZVq1rs6U1/uQl1PCuJGLuJkqpkRPjWjHsGfacvlCBlPGfkd6Wj5KlYKnR3Zg6PA25OeWMG3cUk7Ik5c2HWsxcXo/AoKM7N7yOx+/u46SYhs6vYbRk3vQe3BTALat+43P3v8VS4kdnV7DyInd6ft4c5RKJek385g/c5VvmlO/WVUmzRlMdGXx4pJxK4+PZybzm1xXUa12DBPfHkxindKEzKnDV/jnzFXcuireNTdsnci4WQPLvaC43R62rjjKt/M2+KCArbrV4flp/YiJv7s36tie83zz7lquyj6n4PAAnpzYgx5DW96THWMpsbFh6X5WLdzha0g3BRnpP6I9fZ9tR1Dow79w52YUsGfNMXauOuqbCkFpJUTbfo1o2aMBgfdJ9PwvHVOwHxM+fJKmnZL48KXvOHXgEpN6z2Xu6sl/uPG97KnVOJ6ISiFk3crj2K5zD83dUSgUGPx0OO0uHyn7fsf7/Q6JuP/3+IpsPK6WVDEnSZIkTspvCOo0/XNptf96Gut/6UiSC6lwGtjWIAEen9DxNpd7hY5oLndLSnnCc3dz+d2Fnl7D8b0KPSvquVKX6blyV9hzBWocZYROhfUPCjG9USnUOGSvjhcgWHZ6o0CDxX03FdnmcYuqB5mKDCpsbhf+agP5dnE7jUJNictBgNpYBhZoJNduw6jSYXHJsECdH9lW4eXxU+vIs1vl9JUDj0Q5WKA3Zq5XadAo5AZzvZHCChg68SYRLVcA8aYgruXno1QoqewfyNW8fLRK0VR+OS8PnUpNlNGPK7n56NVqooz+XMyWo+UBgZzLzEatVFIjJJRTtzNRIhg6x2Wh06xyLCnXxf+8DWKjuJiZg9XpIj4kCLfL4+u4qh0Z7hM6nWsmsOfCNdxuiaSYCGx2JydS0zFo1HSolcCG42Li0bpGFVIz87mdV4RJr6Vb/eqskI3IzRMrY7M72XX6KiqlgmHtG7Hu4BmKLIKI3KVBdRZtOuIzIoeb/Fi6WUxb+rVOIrfAzIpdYpLxdI+mnL2Szs6jl1Eo4IUBrTh5Po0tZ4QwGNG/BRnZhXy5Yj8A/TvWJTY0gDmfbhCJrJoxPNW3Ge9+voX8QguBJj0zxvVi/bbT7Dks93P1bEiLRlV59Z1VFJfYCAkyMvuVfuw/fJnlckqracMqTH6xKx9/sYPDMiF5UN9GDH2kOe/OW88peUrzxJAWPDa4GfPmb+CQ/EuxZ496jB/bleXLD/P9UlEPkZgYyaxZg7BYHIwdJdZWKpWSF0Z3YvCQZmxaf5JP/74Zh8NFaJiJabMHUq9BHKt+OsSiz3bgdnuIiApk2uxB1GlQmQO7zzP/7bUUF1rR6TWMeaUnPQc0wlJiLwcIrFEnltfeHkylKmEU5pv5+O217N8u1o+16ldmytuDqRQfJk9zDrJogZjm6A1aRk7uQZ/HhAhyuz2s++Egi+XrtTo1T43vyuBn2/rWG4V5Zr5+fz3bksX3NjjMn1Fv9KND34blJhznfkvl81nJXJL/DSsnRvDijIEV+nKunk1j0btrOS6vt4wmPUPGdGHgc+3RGytOuhblm1mzaDdrv93tMzhHxAYzeHRnegxtec/73XnsVgf7N5xg608HObnvou8NtFKlpHH7WrQf0ISWPRtgCjI+4JH+d0+bPo2oVC2S2cM/J+NGLm889jHzkicTdB8mzf2OQqGgTa/6JH+1i/0bTv4hyKDRT09Rnhlrie2Bt83L8rJz7k+zviLDN6vdI86ecSufrPQC1BoVtev/uaaE/xM7D3kkyYFUMAnsWyltLpfu01yueEBz+Z2Fnt7UVMWFnnf3XKnkFJb2nj1XHkmFW+bqmD3ucvUPXh+PxufVKa1/UCIIyXqlnhK3Q572qHDcSUV2i+JSLxVZIxuVy1KR1QoVHkn4ckphgcLfU+CwY5JTWqWVDxY0ChVqhZoih1hX5VhEYitCL3w5SoWSQI2BTIsZk0aPw+Wm2O0gymgiowKGThX/QK4XFqBWKIg2BnC9oBCtSk2I1siNgkL8NFr81BpuFBUSoNOhV6i5UVBEkF6PXqkitaCAQJ0Of42WKzkiWi4azIUAqh4WyglftLxU6LSoUomjqbfwSFA3OoK0vCIKLDYiTf6EGQ2+6U776vHsPCteyFtVi+PS7WxyS6yEmfyoHRXOZrn6oXfDmuw9c02kqEICqB0bQbIMDuzduCanrqSTlleEyaBjYIs6/LzzBC6Ph7rxUVQKCWTZDpGg6tsiibSsAjYduSAIyL2bsyPlItfS89BpVIwZ2JYV20+Qll2IUa/h5SHt+XHjMW5mir6sSU92ZN2u3zlzJQOVUsH4J9pz7nI6XywXwmdAl/pUrxTG9I/W4XJ7qF4lnJeHd+TvX2/n+i1hdn7lhS7kF1qZ9m6yL4H16phufPzVDn6TPRdPPtKCjq2rM+XNX0jPEITkV17qTkxkIGMnLiUv3yzKPl/pQ2R4AONe/o6MjEIRNX+pO61aJjJr1ipft1Xffo0YO7YLWzf/zqf/3OJbW82YNZAqVcN5b85qdm0TAqRZy2pMfbM/kgQzpvzEUXmC0rZTLSZP64dGoyrXa5VYK5rX3x5M5fgwTv+WyrwZq3xdWE+MbM+wkR1Qa1Qc3n2BBXNWk59bgkqt5OkxnRkiC5WMtHzmz1jJqaOl05zJbw0mSl4V3LiSxYI3V/q8C/WaVWXi24N9PVWSJLF1ZQpff/ArxQUWFAoFvZ9oybOv9PQBBkG82/5m7q9sk2nLRn89T03sTr+n29w1ncm+nc+SeRvYsSoFSZJQa1T0e6atr3epolOYV8LKL3awbnFpKqtStQgeG9+NTgObPhQ9WJIkLp28wZYfD7ArOQVzkdV3XVKzBDoOaka7fo3/9Iv9/+KpUiuG91dO5NWB87l1OZO3n/uSucmT/rSHp03vhiR/tYvD235/aCIygMFfiFTLQ0x28uSaiPuBAkuKrGTItSnValc82fFOdWrUq/Snu7P+T+w8xJE8FqSC8eDYR2lzORUIHW9zOWKl9cDm8ocv9FT6xJLSVxEBGpxlhE7Zniu3R4kH5OvK1j94u7QEQLBE9upYy9Q/2MrUP6gUKhwu0dflpSKXBQgafKbkslRkA/l2GzqlSIC5JY9P6KgUKpSSmmKnkyCNkTy7WFcFacTqSi/DAi1uZzmGjpeErFWq0SrU5NmshOjEFMctiSlOWrGY4niFjgIFMX4mbhQVoleJqohbRUWYtFrUkorMkhJCDUacLjdZFjMRRj9sDhfZdgtR/v5Y7Q4yLTYi/f1xOtzcLiwmzGhEJSm5lisazEMNRs6kizLPmqFhpKQKodMyvjKH5MRViyqVOHkjHbvLTWJ4CDaHi7Nyx1W9mCif0OmWlMi+c9ewyYkro0bDvgvXUSuV9G1Ui19TzgvxUjkSrUrF9lOXUSoUDGldj41HL1BstVMpNJBm1WL5YbsQNp0bJFJQZGVzihA2z3RrypYjF7gt83We792cJZuOUlhiIzzIj+E9mvFl8gHMVgcx4YE827MZnywXoMCoUBNjHm3Lpz/tITvfTIC/nlef6cyydSmcv5aJSqXk5ac6kHozj4++EZ1YXVrVoGvrWkyfu4YSi52wEH9mvNyb1RtPsOugEHF9u9ajT5e6vPbWKrJyijEYNEyb0AuHzcX4V3/E4XARHRXIW28M4OTpm0z8aAMej0TV+DDenjGIkydv8s7f1uB0uomODmL2zIE4bC5eHP0tOTnF6PUaJk7qSds2NcqlrVq0SmTqtL5kZxYxVq58UKoUjBjViceGteLk8et8MGc1eTklaLVqXpzQnT6DGpN6JZv33lzJ9StZADzyZCtGjOuCAljy2XZ++las0KJjg5n6ziMk1a+M1WLn0/fW++oc4hLCmfruoyTWjkGSJDauPMrCuRuwWhzoDBpGTurpW2m5nG5WfLOHHz7djsvpxuCnY+SUXvR6rJnPH5N2PZuP31zJqcPiZ6lqrWheemswtRuVehndLjfrfzjIdx9twiK/K+8+pDkjXu11lwfEUmLjl8+3s2rhLh8QsH2/Rjw7tY8vkXPnKcwrYdWXO1hbJnperW4lhr7UnVY96z/Ui6m52MrOFUfYsHQf18owVSIqhdB9aCu6DGlB1D0+//8fTmTlUN5d/jITen7A2aNX+fnjzQyb3PtPPVbtJvHojVosxTbSr2dTqdrD4Vv+iP3J6+mKjL33yu2CvI6Mqhxyz+lcyj7xu6JRqz+fSPs/sfOAI3mKkfJHgfNYGaGjwOUVPHh7rUonOx6QPTseX4VDaXO5SEt5PTtlk1UPU+hpv6PQU6G4f8+V1eP21T8oUck9WWJ6Y3Y771H/oKfELeLjFpfcpuWjIusodrrky/QUuRx3UJFF9Nyo0vk8PSaZiqxVanC6we5xl6Mim9QGcu1WTBo9JQ6xrgrXmci0iHVVsNZIlsWMn1qH0+2h2OUg0lDq2ykLC4wxBnCjsFAwdLQ6bhcXY9LqUHoUZJlFzNxic1LgshFrCiDHbBax8cAgMgqLcbg9VA0K5nZBaWt5VmEJVpeLKkFBFJpt5NqsRJv8kTwS13LzCTLoCTcYOX07E61KRd3oSJ/QaZdQhX2XU0ESPJ3U7HwKrDaiAk2EG40cvHwDlVJB9zrV2Xzyoi9xlVVYwtWMPPx1WtrXqsqaI2Li0L52VVKz87mRXYBRp2FAszr8svckbo9Eg6rRBOh0rDkobju0fQP2/36dWzmF+Om1DO/WhKWbjmG2OYgNC2BA6zp8lrxfQAerRNK2XgILftwtYuk1YmlZpwpzl2zHI0nUrx5Dz9a1eO/rLdidbqrGhvL8oJbMX7yDvEILgf56po3qzk/rj3HyXBoKBYx6vC0qBbw5T/Bz6tWM4aVnOvKB7M9Rq5VMfL4LOo2KidN/xuF0UykmmLde68+GzadZKRuaWzRNYMrL3fny611s3yXWaF061ublMV1Z+PUuNm4SnV2tWiby+tQ+bNl8mi+/3Inb7SEuLpRZswejQGLci99yIzUXpUrByOc78ujjLdiw9jc+/1hMeSIiA5j+1mBq1oph6de7WbZ4L5IEcfFhTJej47+uOsaXf9+Mw+4iOMSPKbMH0rTV/8feWwZGda5t28e4xd0DISG4uwco7lZKXZEWaWlxKaVQSt13d4VCFS+FUgoUl+LuFgIh7jK+1vvjXjMkEKR793m/73n3vv8ASWaY2Kxzrus8zyORG9fyeXPGSs4qK6EH+jRizKRemC0Gzhy/xsJpK8i4lo9KpWLgI615YmxX9AYdednFvP/qag7sFE/mdRrH8/Lrg4lSUi9Xzmfy7tTlXFQ8Ms3a12TcnIGERgqeldPhYuVXO/jh4804HS4MRh2PjHuAAU+0rzRBOX0olU9mreKysi5Iqh/DmDkDqdWocrDD7ZbYtGwfS95e7/Vb1GtZg2dm9Ce5YdXrg5KCMlYqIsfj40isH8PDL/WkZdc7p7IqngvH0li/ZCfbVh/EVi7uQ2fQ0rZ3Y7o91JrF4RCgAAAgAElEQVSGbWv+W2V+/y+dmBrhPL9gOG89/w3fv7Oepp3qkNyk2l++H7VaTXxyJOeOXOXKmRv3LXacDlEQqLvHhM7tcnsj6tHV72w+P6VMXus2rVbl+11ON0f2iNV3sypWrPd7/it27nJkKR85/xlwnVSEjqcV2Sk8M3hAnu5KQsdDLnfLWsWErLtF6NxKLtfc7Ne5b6AnoPTq3B/nSodViZQLEXSTc6X2UtEr4h8MlCmiRqfSU1ahFRlUaFV6Sl0OpSywYiuyvVIrspjyWDFrDJQ6xNcpUG8hzybKAAX7yk6g3kS+QjD3CB2tSoNJrSfPaiVAL1qT3bJMpNmPDKVDJ9osygI1Kg3BBjPpJSVYdAa0sorc8nJCTGZKrU5sbhcxvn5kFZfikmSq+weSWlSALENSYDAXc/MAFcnBIVzIzRVx8pBQLuTk4pZkkkNCSM0tEG3HwUHkFJdSYncQ5ecLkszFHNGnE+3vx+FrAvfQMj6GXUriqm2NeA5evobDLZEUFozD4b7JuKoWw4aj4mLXuU4Chy+lU2S1ExngS2JYML8pfp1+zeqw89RlsQrz96FVUiw/KeiHLg0TuZFdxO6LGei0Gh7r3ITl249TYrUTGeRHr+a1+OeaP5FkmUaJUdSMDuUzrxE5CR+Dni/XiGLAvu3qopbh8xXi/b3b1SHIx8xbi8S0pm3jBNo2qM6cT37D6XJTIzaEMcPb8fZXW8jMKcZi0jN9THe27TnP5l0iLda3awM6tkjklddXUVxqIyjQwpyJfdi+5zwr14opVJvmNXj+qU4sfH8Dx08J0fDYQ615IKUuk2cs50qqMDCPeTaFNi1rMGnqUi5cEKWDTz7enn59m/Deu7+xfbv4Pzul1GbixJ7s2XWB99/5DZvNSXCIDzNmDSAhMZwFr91cW7Vqm8QrM/rhsDmZNPZbTiirop79GjP6xe44HS7mTlrGbgUF0ax1Iq+8OgD/QDOb1h7lk4W/Yi13YPExMm56Xzp1q4fb5ebbz7bw4xfbkdwSoRH+vDx3EA1bJACw7bfjfPz6L5QWW9HptTw+tisDH22LRiOmOcu/3M4Pn23B5XTj429i5JQ+dOnf2Csezh5N44PpK0g9Lzp7mrSrydjXBhERezMhU5hXytdv/sqmFcLE7eNv4slXetH9wZa3TVqO7DzHP+f+TKrSuhxVLYRnZvS/Y4y8rMTKz19uY9U/t3qZVTXqxfDISz1peZfouec47E52/nKYNV9urWQ2jk2KoPfj7ek8pOX/mA9HMLAKyUrLIy+jkNyMAvIyCsnLLKKsuByn3YXD7sRudeC0u1Br1Zh9jDfRED5GgiMCqFYrimp1oompEf5vR8L/ykkZ1Jz9m06y/eeDLHx+ER9vnorJcvfEU1Wneq0or9hp36fxfd3GrbQh3+vzzUovwO2S0Bu0hETeGe1x5oh4jqxzB8F29lga5aV2/ALMJNWLoays9L4e563nv2LnDkd2Zwlyuesit5LLZdT3EDoq0YKMjORdVd0klzvvQC73iBjh76mQsKoC6CkKCSsKHZ03YSUpxYNVca485YIezpXWK4JU6NQC/1CRaSWakl3Cl+MQ/h0VWqUV2UyRw4ZKaWAuc7nw05opqNCKXKT4cgqUVuQApSxQr9YiS2pK3U6CDRZyrTfXVVnlpRg0OlSymiKHnVCjhWxlnVWxLDDC5Et6qTAoG9U6sspEzNzmcFLsdhHt40dmSSluRdx4OnSSAoO4kC92xBWp5RU7dG6llp+8kQWoqBcexvmsXJySRFJIMNlFpd4+Ha1azZnMHCx6HbVCQ9lzUTyBp9RMYNu5yyBD0/hoUjPzyS+3Eu7nQ1ygv3eN1btRLTYePY9LkqgdFYpWpWbXGbHGGtSyLmv2n8bhcpMcHUqoxcIv+8SUY1jbBmw/domcojICfEwMaFWXJRsP4ZIkGiREkhAexNfrBSm4R4talJXbWa707TzavSmnLmay9fwF1CoVzw1ozYETVzlyTkxnRg5uy6kLGazfIUTBI72b4XK5eUtpSO7YPJGOTROZ8d46bHYXsZGBvPJMVz5dsp3zl8Vqa/xTKdhtLibPX40kydROimDS6Af48IutHD0pJmCPP9iaVk0SeHHKT+TklWI26Zn+cm/UahWjxy+hrMxOUKCFV6cPwGZ1MOr5xZSU2PD3NzFjWn+CAy288Pxirl/PR6tVM2pUF3r1asinH2/i17Xic23ctBrTZvb3pq3Srwlz8tOjOzNkeEsO/HmJt15bQ1FhOSazngmTe5PSrR6njqWxYMYqsjOL0GrVPD22KwOGt8JaZmfB9BVs88TQm8Qz6bVBhEUGcCMtj4XTVnBW6fhJ6dWA56f2wcfPRElROR/PW8v238REKqlOFBPnDaGa0kp85VwG70xd4TVttupcm7GzB3hr9K1ldha/9zu/LNmNLMv4BVoYOb0vKf1uCiFJkti4/ABfLVjnNQd3H9aCJyf1xj+ostfmRmouX8z9mT83ic/Dx8/EiAnd6fNYO3T62y8RNquDdd/sZPmnmylWOFLVa0fx6Mu9aNWt/j1FTmFOCb8u2cmv3+ygIEd4OrR6Le36NKb3Y+2p27LG3xoVLy0q5/zRVFJPp3P1bAZp52+Qdi6jkg/o3z06vZbYmhHUbZlIu75Nqdc66W+Dk1Z1VCoVzy8YzukDl7hxJYcVn2zm0Ul9/vL9eCjxV8/dP3PKoSBAtFX8bFQ815U1b1R8yB2nci6nm7PKC4vaTaqujzmgmOKbtP33vqb/FTtVHNmdjpz/OLjTbhM6otnYqfhshOBxKSssp4yy4lIp6AetssoS6Ib7J5fLQujIHqEjUxXQ8ybnSo/NLYr93AonS4PhLpwrA2Uuh8K2EiJI+H3uhH8QqymNSoNLUuNSDMhFDuHBcUtqbJK7ciuySrQiC6+OmPL4aU3k28sxaw1YnW5csrtSK3KATgA9fbQGrC43TrezUllgpMnXWxYYoDeRWVaKr86A2y1TYLMRYfYht6wMtyzfuUMnMJgLSllgRaFTOzjkptCpRC2P4KgSLW8cFcnR6+JJoUFkOOcycnBUiJZnlFkJ9bEQZDRxOE3gHlpVi2HbWSFmOiRVY//Fa8K7ExaMRoaDl9PRazV0rZvI+sNiatA6KY7rOUVczyvC16ina4MkL/qhTXI8hcVWdp9JRafRMKJDI1bsOI7V4aR6RBCNE6JYvFH4Qro0TqK8zM6aXcKj8nj3Zuw5fpmL6XnotRpGD2jLqq3HuJ4t1lxjh7bnh/UHuZ5dhNmo58WHO7J0wxEuXcsVPTePprB9/wX+PJYKwBMDW6KSYO4nGwBo0TCeB3s1Zc576ygoKifAz8Ss8b34fdsZNm4XYqln57r069qAKXNXk51bIkTNi70oLrIyfrLAPsTHBvPa9AFs3X6Gxd8L03O9OtHMmtqP338/wTdLxHqpVq1IZs8cwKkT15k1YwU2m5PQUF9mzhpAYKCF8S8s4eKFLNEt9Fg7Hn6sLRvXH/emrULD/Zg+ZyDJtaP4+rMtLP1WTLJqJIUzY95gIqIC+XHRTpZ8vhXJLRMVG8S0eYNJqh3F6ePXWDB9BVk3ClFr1Dw6shMPPtEetVrF76sP8dmb67FZHVh8jbwwrQ8pvUTa5eDuC7w3ayV52SWoNWoeerYjDz2XglanEeDPL25Oc3z9TYya3peUCimqw7vO8+HMlWRdLxDf4wFNeHZq30oCJvVcBh/NWMlpZT2QUDuKF+YOovYtr5ytZXZ++mgjq77chsshSOd9Hm3HiAndqzQfu5xufv9pLz+8v4H8LCFSYmqE8cjEXrS/S7+O93GducGqf2xm6+qDuBzighkc4U/vJzrQ85F2f0vZnyRJXDmVzpkDlzh7+ArnDl3h2oWqIdFqjZrQ6ECCIwMIiVD+jAzAN9CCzqBDb9RhMOrQ6bW43RLlpTaspTbKS2yUl1jJSssj9ewNUs+kYyuzc/nkdS6fvM7ar7YRGOZH296Nad+vKfXa1PwfET6+AWaefXUw85/9kp+/2MLgMV3v2Wdz6wmOEBOXQgXCea8jy7IXlOp/j+Zpj1ivVuvODc1nj6VhK3fgF2ghPqnqNdpepRqiZUrt+3qMdzr/FTu3HNl1BTn/CZAyqhQ6LpwIn41TSVC5lQmPfAu5XC2i6LJOaT3+a+Ry+y3k8qqAnlZvwkr04zgUwVQV58qzpvIYlfVqA6UuIZDUCi7iJv5Bg1PijvgHH42JIofw4Fid4m0eoaNTaXFLKqxul7csUKyzDBQ6BMSz0G5HVqY4OdZSNCo1JrWBfJtYVxXabEgyRJh8yVCEjufvRo0OvUpDntVKiNFMkc2Owy0R6+PPtWLRoZPgF8hlpUMn0T+Ii54OnYAgLuR7OnSCOJeTh1alJiEgiLM5uWhVKpKCQjiZKfp06oWHcyw9CxUqmkRHVRktbxAVwYVsES2vHhyI0+HmfJaAedYMDfGusbrWqsGW05eQZWgSH0VGfgmZhSUEmo00jIuqwLhK4s+zaRRb7UQFisTVz0riqm+z2hw4d42swlICLEZ6N63tRT80S4rBpNOyepd4dT4ipTH7Tl3lckY+Bp2W5/q05MdNh8krLlcakVvw+aq9lFrtRIX48XjP5ny8dKfXmPzswNZ89MN2CoqtBPmbmfhoCv9cvpu0GwUY9FomPd2Vnfsvsl3BPDzUpylxEQFMXbAal0siqXoYE5/tygdf/sHZi6Jj54WnRH/OhJnLcDhcxEYHMmdSP35Zf5Q1vyok9tZJjBvZmfc/2cTefSKBMaBvEx4f0Ya33/2NvX+K/69v70Y891wKi77ewepVQtw1aVqN6dP7c/Z0OtMnLaO01Iafv4lpM/tTt14M776xjk1Ky3CL1olMntkPm83Jy2OWcFqZwPQb3Iznxj5AaYmNaWO/8xYBdu5Rn7FTemMw6vjhq+18+/k2JLdERHQgU+YNpnb9WEqKyvngtTXsUlZjDZpV5+XXxaTHZnXw5TsbWKewtaKrhTBp/hCSFRDj1YtZvDN1ORdOip+r1l3q8MLsAQQpKZaSonK+eGMdmxSDc1hUAONeH0zT9sne5y6b1cEPH25i1VfbcbskjGY9j07oTv8KsXQQF6ytqw/x1fxfvGmZJh2SGTl7IHFJEbc9J0qSxM51R1my8FduKE234bFBPPxiTzoPanbXdYYsyxzdeY6Vn23mUAUkRHLjagx4LoV2fZrcVzrrTkeSJFLP3OD4rnMc23WWE3svUFpYftvHRcSHkNggjvjkKOKSI4mvFUVUQtjfwpySJImstDwun7rOvo3H2fPrEQqyi1m3aDvrFm0nPC6Yh1/uQ5dhrf72VVfb3o2IrhFG+qVstqzYT58nOvyl23sEpqcB+17HVu6oxC6727l0SunOqXtnOvoxJeXYsFWNKsXy9Ss5XLuUjVanoXmH5Nve/1fOf8VOhSM7zyMXPAFSbiWh45DtSkTcUaEN2RMpr0roqJRUlk6JkFcwJysR8tvJ5ZoqyeVqZdJzs4MHVF6h4wF6arErDCwVukqcK7VKi83bnVOZc6VCrUyoJGV1JfAPNqUp2ag2UeS0i64dl/hczRojRU6bKAh0iPSVB/9gUOuxu0STdOVWZDHlCdSbveLH04psUOtAVlPscBBiuLmu8ogbjUpNoN6sTHGMOF1uit0OBfJZKpqQfQO4qnToVK8gdKr7BXIpvwCtSkOMrx8XC/IxaDREmH25lJePUasl3GzhYl4eJq2WSIsv57JzMGg0VA8I5OSNbLRqNXXCQjmiCJ0WsTHsT70u/h4fw8EK0fLrecUUWW1E+fviZzBy6Go6Oo2Gtglx/KHAPDvUrM6Ry+mU2h3EBvsTZrGw/fRl1CoV/ZoIxpXT7aZ2dBgmnZYtJ0TialibBqzbd4Yyu4P40AAaxEXy41bRkNyzWTKpGfkcunYdnVbDU92bs2LrcfJLygnxt/BQ58Z88cse7E43idEhdGuezPs/bhem5sQo2tWvzluLtyDJMg1rRtOleU3mf7ERl1uiZnwYj/ZuxptfbqakzEZYkA+vPNWVf/60m4tXc9BpNbz8TBcuXcnmrc/FaiuldU0GdGvE9AU/k19Yjr+vidkTe3PgcCofrhbekVbNEnjhyU4s/GADJ06LldlTj7SjbctEJk5dyvX0AnQ6DRPHdSc5MYJxE74j/YZ424Rx3WnerDrTpizztiGPeLgNjz7alu8W7+KH78SEpnadaGbOGYjN6mDcc4tIvZwj/D3PdWLYw204uO8SC+f8THGRFbPFwEvT+tChcx0O7bvEwlmrKcwvw2DUMXZyL7r2bkheTgmzX/yB48rEpFP3+oyb2geLr5Fj+y/z1vSV5GYXo9GqeeKFroJbpVFz/tR1Fk5ZzvVU0Rrcb0RrnprQDaNJj9stsfqbXSz5cBNOhwsfPyOjZ/SrNM3Zu/kUH81aRUFOCSqVir6PtOHxl7pXehV/eOd5Ppq5kkzFENq6Wz1GzexP2C0pmEunrvPpzJWcVsoKI+NDeG7mAFo+ULfK1dHhHWdZ9MYvXFTEYECILw+N707Ph9tUueLyHLfLzfY1h1j56WYuK/4rtVpFm16NGDSqC7WbJdzxtvc61lIbh7adZt/vxzmw+QSFOZWnEiaLgdrNE0humkCtJtVJblr9fxQRoVariawWSmS1UNr2bsy4tx/m6M5z7FxziD3rj5CVlse74xaz9IMNjFkwnKYpdf/W/7vPEx34fOYK1i3aTu/H2/+lFWBAiBAshXn3N9kpyhOiyGDU3TMCfvke3TkARxWx0+gOKau9ShdVgxYJtzV5/9XzX7GjHNl5Ajn/aZALFfFRldDReknmQuiolRSW2gvcdHGTWSWmMXpclYSOHpskA7oK5HIN7gpR8orkcruCdhCJLdGrY6sodCoCPWXR0lyxO6dciaKr0WFz34FzpRJCp2JTsl5lpNhpv2/8g1ljpFgxL/srQken1iJLKsolZ5WtyBatAZvTjVNyVSoLDDcKoWNQazGodeRaywkymCixO3BKEjE+/lxTOnQqlgXG+wZwpaAQrVpDhMmX1IJCTFod/noDV4sK8dMbMGl0pBUWEWA0oldpSCssItBoxKTRciVfkMoD9SbOZedh1umI9fPjxI0stGo19SPCOaAInYrR8uZx0Zy4lond5SYpLBirzcG5zBz8jAZqhYey/ay4sHSvm8Qfpy7idsvUiwnHandyOPUGJp2WB+oleRNXbZLjycwv5uz1bJG4alaH5buO45ZkGidEYdZq+XW/GO2OSGnMlkMXxLTHx8Twjg1ZtP4ADpebmrGhtK4dx8crdwLQtn51IgN9+WylWA31aFULk07LZ0oxYK92dfA3G3nv260ApDRPokFiFHM+WY9bkqmbGMlj/Zsz/9PfKSwRE58ZY3rw45oDHDoh9u7PPNSWEH8Lr8xdidPlJiE+hOnjevKPb7Zz8KiYcj06tBVtmiXw4rSl5OaVYjHrmTmpLw6Hi+df+g6bzUl4mB+vzRzIjfQCnh+3RLwt3I85swYJz87IRRQUlGGxGJgypS+160QxffJSjhwW/8fAwc14bnQXdm0/y3sLfsVqdRAU7MO0OQOpVz+WRf+4ubZKTI5gxuuDCY8I4JvPtvDTIrEmq54YxrQ3hhJXLYQ/d5zjnVd/prioHKNJzwuTe9O1T0NcLjdfv7+R5d/sQpZlouODmbJgKEl1onG7JX7851a++2wLbpdEcJgvE+cOoUkb8cR+42ou70xbwWnlMTdrX5PxcwcREi5WC0X5Zfxj7hq2rRNTr9iEMMbPH1IptVKYV8oX835hy8/C5B0S6c+YVwfS+oF6lZ7fSgrL+fad9fz67W4kScZo1jP8hQcY+GwKesPtl4Erp9P5ct4aDitmb5OPgSGjujDw2RRMljuXATpsTjYt3cuKTzZ5hZfBpKf7iDYMeK7zHWPr9zr5WUXs+fUIezcc4/iucziVNRiAwaynbstEAfdsl0xSw/j/q2bhW49Wp6VZ57o061yX0W88yLqvt7Psw99Iv5TF9KEf0O3htjz32lB8/P8e83XXYa1YNG8NV89lkHY+k/jk+wd7eh5DeYkNSZLuuYr0AGQDQ/3uKqqKC8rIUPhwd2pFLiuxec3JjdokVfkxuzaKSXXrLnWqfP9fOf8VO4DsOIhc8CzIZYpQcShlgFUJHa13suOQ3cqfildHETouWa1MbHS3CB0B9MRLLr8pdMSUx+2d2twEemq8UxtZMSHfD9BTJKg8SAiBhzB4OVdapedHiJoSl0OAOpXCQa3KQKnLgVljokiJlOvviH+wV8I/+Ckxc5NGj93lxiVLBBt8yLaWoUKFr9ZIvt2Kv85EkdKK7BE3wqBsIbO8FIvWgCzJFDvslWLmcT7+XFWETpy3LFBNuMmHq4VFmLQ6fLV60ouL8TcYUKtUZJaVEmo243RKZJeWEW6xYHe4yLGXEeHjg8PhIqOslDAfC7Ib0gqLCDKZ8NHpOZ+Th0WvJ87fn6PXMtCq1TSOifQKnbbV49h7KQ1ZhsaxkaRmi2h5pL8vQUYjBy5fR6tR0zlZwDxBeHIuZ+SRXVxGsI+ZhnGRrD0oxEvPxsnsP59GfqmVUD8LrZPi+WmHaOHt2jCRa1mFHEu/gUGn4ZHOTVm69ShlNgfx4YG0r1Odz38RgMv29atjMehZskGsPYZ0akhGdhErtwpT7NN9W3LyQgYbT6WJhuSBbThzKZPfFCPyE/1aUFxi5cPvtgHQvW1tGtaMYsY768TEp3oYLzzcgbc+30R6ZiEmo45pL/Tk+KnrfKX4bDq2TuLhgS2YveAX0jMLMRpEf47N6mD85J8q+HP6s3nLab77SaTBmjSKZ/qkPixfsZ9ly4WxummTakyf2pfNm07x+edbkCSZhIQwXp0zkKJCK6Of/ZrcnBKMJh0TJ/WmXftkPv9oE2uUtU/DxvFMmzMQWZJ5Zey3nFRMkZ61VVFhOZPGLObkEfH2XoOaMurF7qjUKv7xzm+s/kF8XROTI5n6xhBi4kO4kZbHG1OWc0EZ1/cc3IyRL/fEaNaTeT2fhdNWcFp5Mm/frR7jZvXH19+MLMusX7qfLxb+it3qxGQxMHJKb7oNbua9gOzacIJPXl1NYV4parWKIc924mElrg5iPbR51UG+mLfWWyDY7/G2PPZSj0oTH0mS2LziAF+/sdb7qrxDn0Y8M6N/lbiB3IxClrz9K5uX7feWCPZ+rB3Dx3W7K9bBWmZj/ZJdrPrHH+RniQuif7AP/Z9Noc/jHf4lsnheZiG71x1m55pDnPzzYiX0UGT1UFp1a0DL7g2p2yrxrlOm/y+P0WxgyAvd6PV4Bxa/8TO/fLGVjd/v5tjOs8xbNoGYxPuLe9/t+PibqdcqkcPbznB42+m/JHbUFbxEdyE7eY+HaeYBgt7pnD6cCkBMQugdyyeP7rmA2yURXT2EqPjb7+/G1VzOn7iOWqOmXbd6VdzDXzv///wJ+b94ZPtu5MIxIFsFgNMbLxeTHY/QccgO8II8PZwrTYWJDhW6clRIaBGVgx6PjvDfqCoIHU+RoIibS3Cb0LlJLveYizUqYyWgp3wXoCeokWW1Yko2UuISIsgqeThXQtR48A8ofp/yCpwrtTd95cJXQT1Uwj/ozN7IuEVjIt9uw0drpMQhfDlBegvZ1jI0Kg0GlZaiW1qRPUJHo1LjqzWSYy0nQG+k1OHEJUlEWfy4oZQFxvl41lUqoi1+XCsuwqTR4qMVfToBBiO4IaesnDCzhTKHgzKnkxhfP3JLypU+HX+yi0uxud1UDwggq0KHTkGplRK7g2g/P+xOF9cKiwixmLFo9ZzNzMGs11EjOIgDHmp5tVh2K4mrtgnxHLwiouU1w4Ox292cvpGDr1FP49goNp0QQqd7/SR2nUml3OGkWmggIRYzW09cQqWCQS3qsf7wWWwOF4mRwUT7+7JWmfYMbduAHUriKsjXTL+WtVn8+wHckkzTpBhCfC18v1m8uh/SsQGXruWw65jARozs15pN+85z8XouBr2WcUPbs3LTMVIz8jHqtbz0SArLNx7hYtpNI/Ife89x8KQQQs8Na0thoZW3vvwDgJRWNenauibTFq6h3OogMsyPGWN78c2yvRw8Ji7uTw1vQ0JcCBNmLMVqdRIR5s/cKf3Y+McpVqwR/TltWyUyflQX3v1oI/sOCBP3sMHNBQpiwVoOK0Jh+IOtGDG8Fe+/t4GtW4Uo7Nq1LhNe7MHGDcf57OPNuFxKp87cQZhMel4as4SzSindQ4+15fGnO3L8yFXmz15FUYGAg744tQ8du9blwJ6LLJy1Slln6Rk/TUTH09PymD91OReVKPbAEa14auwD6HQaNq89wifz12Etd+DjZ2LC7P6061pXiJBfjvDp/LWUl9kxWwyMmd6XLspaKjeriA9mruKg0qvTsGUCL84b4i1dK8wr5bPXfmbHeiFK45PCeXHBMJIbxHqfszKv5fHh9JUcUYrWEmpHMW7+kNt6cK6cucHH05Zz+pCYLMYmhjP6tcE0bnd7V4m1zM7yTzez6vMtXk9Gh76NeXxyn7sCOstLbaz9ehur/vGHl60VEhXAkDEP0H1E27/cdltSWMbONYfYsnwfp/ZVFji1mlanbe/GtOzRkNikiP9VcE+zr5HR84fTvl9T3nlhERmpuUzss5DXfxpH0i1dR//KadKxNoe3neHQtjMMHNnlvm9X6St4H2onI02IncgqxEnFc1qBdtZpemeO1X6lxqF5x1pVvn+bglpp1KoGAX8D6+w/WuzIth3I5VMAhyJ0nIrQcShCx+kVOp6Jzk2ho1USVWqcqBSEg9KVg+jK8UTIUSY6KvQ4ZElMWuSKKSzwdPBoqiSXa3EjgJtC6HiAnhqcSq+OB/GgUxspdbmU94EMilFZmJLLlemNGj3lbmclzpUka7BJkiJ0BOrBLYl4vUfoaFQaZFl9G/7BoDZS5BDpqwK7EDKBek8rsg7JDWVup+LLERu4A6wAACAASURBVOusUINgW+nVWnQqLQV2G6FGC7nWcmSZSmWBMRZ/rhYVolNrCNKbSC8pxldvQOWG3HIhbkqtDqwuF7F+fmQWl+KUJRICAkkrKMItySQFBXM5Lw9JhuTgEC7l5lXZoZNVVEqZw0FcgD82u4u0/EKCLWYCTEZO3MjCqNVSLzLcK3RSaiaw/dxlYT6OiyItp4C8UhEtj/H3Y+fZVNQqFb0bJbPhiIiWN4qPpNzq4NCldIw6Lb2b1GL1vpPIsmBcWa0OdpxKRatRM6JDI1btPEG5XSSuGlWPYvFGIRh6NEsmO7+UjQfOoVGreLpXSzb8eYZr2YVYTHpG92/DorX7yS8uJ9jfwsgBrfls2S7RmBzow+ghbfnkp53kF5XfNCIv201aRgEmg44pzz7A7zvOsPeIuGA+NaQVJr2OWe+sRZahUd0YRj7Unvkf/cb1DDHhmT6uJ1ev5THzjTUANK4fy8TRD/DeJ5s4rPSpPDGiDR3bJnv9OXq9lkkv9iQuJojnxy0hK6sYo1HHpJd7k5QYxoQJ33Hlcg4ajZrRo7vQo2cDPnhnA5uVuHSHjrV4eUpvzpxM5405P1NUWI6Pr5HJM/vTonUiPy7exZIvtiHLkJAYxsz5Q4iIDGTRp3/w06JdgEA+TJs/hOjYILZuOMEH837BWu7A19/Ey68OpFWHZMpKbbw3ezVbFTFSv1k1Js0fQmi4PyVFVj5+fQ3bFRN0vSbVeHn+ECIUIbPt12N8MncNpUVW9AYtT77Ug36PtPauDnZvPMnHs1aJaY5GzbDnOvHQ8129aya3W+KXb3ax+N3fvFysh8d3Y5CCovCc8lIb37+3gZ+/3oHkFkblhyf0oP9THW6bgEiSxB8rDvDNm2u9Cas6zRN4ZkZ/at/lQlVWYmXt19tZ9Y8/vOmcqOqhDBvbjc5DWv6lSYvL6eLgH6f4Y/mf/LnhGE77zRVVrWYJtO/XlPb9mhAWc/cL7P+GU69VEu/9NoWZwz/iwrGrTOr/Nm+vm0SN+rH3vvFdTtNOdfhyzipO7L2Aw+ZEb7w/47VKfVPuSJLMvZZ/GakesXP3daQnCVjnDkWBkiRxcIcQOy063Z6ykmWZbcrvWKfe98/tutv5zxY7RRPBV0aSwY1TMRlXFDqaOwgdHXZZ9N44oZLQEWJHFnFzhW9lq0Qu11WY1qhuxs0lCbVH6Kg8vToecrloQ7bfgVyOpyTwDkDPMsWUXOYWKylkLTbJjVljptglBIzDrarAubKhU+twuDzpKyF09GrxON2yG3+dhTxbORqVGrWso9TprNSK7Kc1k2srV3w5LlyyXAn/EKy3kFWhFbnU5SCiQszcI3RUqAg3+XKtuBizVo9BpSG7vIxgo5lyu1OIG19/MotLRFlggIdmDslBIZzzRMtDQjmjRMvrhoZxKlNQy+uHh3MqI1vwmZQOHZckUSsshBv5xZTYHcQE+CO5JS7l5ONvMhLj58chD7W8Rpw3Wt4uMZ5Dl9OxOV3UCAtCI6s4nHoDo05L59o1WHdI/HJ3qFWN89dzySoqJdBionXNOFb9KS7a3RvV5HRqJtfzBOOqf4s6/LjlCG5JpkliNBa9np93i499uHMTdh27TFp2oUA/9G7B4vUHKCqzERnsx/DOjfl42U7sTjdJsSH0bVuXtxdvEY3J1cPp26Eeb369GYfTTWJcCI/1buE1IkeE+DLxiS58+t0OUtPzMei1TB3VjQNHUvltm5IO69qA1k2q8/LclZRbHUSE+vHqxD4sW3OQrbtEumxAr0b07lqfV2auIDOrSKy7Xu6NCnj+pe+wWh2Eh/kxd+ZArl7NZdyE73A4XERHBfLaq4PIyipi9KhvKCuzExhoYdbsgYQE+zD++SVcvpSNWqPi2ZGdGTSkOT8u2c2Sr7YL4GfNCGbNG4zZbGDGxB85qLB1uvdpxAsTe1BaYmPymCWcUKZHfQY3Y+SL3ZEkiffmrmGD4oGp1zieKfMGExruz7kT13lj8jIy0wtQa9Q8MiqFB5/ugEaj5sTBKyycupyczCIRRR/TmWFPd0SjUVNSZOWT135mu/LknVQ3mpffHEZcDUEfLyks57O5a9j6izCcxyeFM3HhgyTVi/E+V105m8H7U5Zx/rhYnzZoVYPx84dWIpPLssyuX4/x+ZzV5CmrpLY9GzLy1ZuNyxXPyf2X+Oerq7ig3GdkfAhPT+9Pm54N7jg1KS+18ctX2yqJnOgaYYx4qRcdBzT7SxHraxcy2fDdLjYv3UtRhehztdpRdBnaio6Dmv8/IXBuPQGhfrz580RefeRjju8+z9wnPuOjzdP/pVWf58TXisQ30EJJQRnpl7OoXifm3jfiZmeOSqVCo7339+6qUmAZo/zsVnVs5XYvAqJe86oF87lj18jPLsFkMVRJMb9wKp1rl7LRG7S06fr3GLr/o8UOuJQVkkshlYvJjhA+ntSVx6OjU1ZYAt0go8WJso5SEA5ifaXyRshlDNhvETo22RM3VzpzZKVXR2XErmAfym8jl+vuSC4XPh6FXH4L0FODXgF6Cs6VGrXSkyML47HLVgEJgWhIropz5bBh1Ogpd7mQAX+tEDp6tRaXW41VchOkt5BrE0LGRytuI3w5NmQ8EM9S1Co1vpqb66oShwOXJFcqC/S0IuvUGvy0RjJKS/HXG3C5JQodNiItvuSUlnmbkD1lgYmBImYOUCs4lLPZOahQUTc0lFNZt5cFNoqI5Gh6Brd26DSMjOBMRjZOt0RyWAhZxaXCh+Pni0mj5fSNbMx6HQ0iI9hxLhWALrVqsO3MJSQJGsdFklVQSkZhCYEWEw1iIvjtqLj4926UzPaTlymzO4kPDSAmyN/bkDy0dX02HjovYudBfrRMjOGHLeIC2K1JTdJzijhyPh2dVsOT3ZqzfOsxCkuthAf6MrhDfT5dJdAP9apH0KJWHO//tB2Atg2qkxAZzPvfi3+nNEukemQQby0Sa6l2jRNoXjeO1z77Dbdbol5SJI/0ac68TzdQVGIjJNCHGWO68/XSPZw8d0PEyJ/ohNPhZsabAgXRsE4M455O4c0PNnDhSjZarZoXR3bF38fE+Ek/YrU5iYoI4PUZA9i55zzffCd8PY0axDFzSl+WLtvHipUiqdWyRQ2mTu7DmjWHWKwgG+rWjWbW7IFcvJDF6KnLKCu1ExBoZuarA0lICGPW5GXsV5Idvfo15vkJ3bl0MYuJo5eQm12MwaBl7Cu96Na7IYf3XWbBzJVinVVhbZV2JYd5k5eReikblUoAPB95tiMqtYrl3+zim4824XZJhEUFMGXBUOo0jMPldPPNJxtZ+uUOZFkmMjaIKW8O80bKj/55iXemLidXEUEPjUph+MgU7yRm/9YzfDBjBfnZJajVKoY+14kRLzzgneY4HS6WfvoHP336B26XhNnHyDPT+tBdoaB7TmZaHp/MXMFBZc0XGR/CmLmDaVbFq+bs9Hy+en0NO9aKny2Tj4ER43vQ76kOd4xi260O1n2zg2UfbaQ4X3h//hWRY7c62Ln2EBuW7OLknxe8bw8I9SVlcEu6PtiahHox/6tWVP/KMfsambl4NOO6ziMjNZc3nvuCuT+N+5f7eFQqFbGJ4Zw+cJlrF+5f7HiKFS1+xnuak50OF9cuZgGQcJeE1amDqbicbsKiAiqJ8Ypnj2I8bplSu0qD/ObVYnLdpmvdfzuF5Tn/0WJHTHQ8QselCBXXfQgdnYKB0NwsBfSak0WEXFZgnzeFjl4ROp64ucpLN1cpTcmCTu5CjRabhDdh5ZTdaFQmyiSXEh8XQuRWcrlOpceqlAuq0GGtBPTU4nDJuAGjQi43qA2UKkgIET0X6avS2zhXRq+nx1drJs9ejkmjp9wpIJ8eoePBPxQ57ARVmPKEGkTSSq/WokNDgd1GsMFMnrUcWRE36be0Ipu0enSyhlyrlVCThSKrDafkJtbXn2uFYrVVsSywZlAw5/OE+z85KMQrdGqHhHJaETp1Q8I4qQidhhERHFPKAptGR3Goig6dRtGRnM3MFmDOkCBKy+1cKSggyGIixs+PfVeuoVWr6ZhUjS1KtLxdUjzHUzMosTmIDfIn1NfCjjNX0KhV9GtSh3UHz+BySzSIj0RyS+w5exWdRsPQ1vVZufsEDpebunHhhFrMNxlXHRux49glMvJL8LcYGd6xEd/8JhJXtePCaJIYxWerhXjo3CQJs07LonXC2Dukc0OKiqx8v14YdR/p1YycvBIWrRHvH96jCZJb4v3FIoH1QJtaNEmOZuZ7wohcq0Y4o4e3Z8GnG8jKLcHHYmDW+F5s3X2eDVvFhKd/t4Z0aZfMK7NXiDJBfzOvTerH0eNpvP3B7wA0bRTP5PE9+OjzP9ilcG4G92/KiGEtmf/GWo4oSa1HHm7D0MEteGvhr+zeLTwp/fo3YdSoLiz7cS9LFPFTp240s+YMorCgjDFPf0XmjUL0ei3jXu5Jt14NWLvyIP/4YCMul0R0bBCz5g8hrnoo332xje++ENOfhKRwZiwYSnRcMJvWHuWjBeuw25wEBvswae4gmrSsQWFeKW/PXMXB3eIxt+9Wl/Ez++PjZyLjWj5vTlnGWWUy0m1gU0ZN7o3ZYsBhd7L4/Y2s+kasyKLignll4TBqKb6a8lIbX7yxjg3LxPchJiGUiW8+SK1GN303F05c591JS0lV2m1bP1CX518bRHD4zep9l9PN6i+38f17G7DbnGj1GoaN7sqw57tgMFb2y9itDlZ+voVlH2/CbnOiUqno/lBrHnulF4GhflU+RzrsTn7/fg8/fbDBazyOqh7KwxN70XFg8/u+OGek5rDu6238/v1uSotED45araJ51/r0eKQdzR+oh1b3n3U58g2wMHPxGF7s8QaHt57m2wVreGL6wH/5/mI8YkcRJPdzbood0z0/Nu1CpkCX+JluqzSoeI4ov7eN2tasUrTKssxuRey0qcJ47HC4vH6drgOb3PuTuM/zn/XTdctx41aAnW5F6LgrsK9uCp6qhY7gUImiwYpdOSokWaywbgodkcYSLchiveSSxMcKH48gl5cpXh2bN2Glwa2Ykssll1IgeCu53HDTj6NMY2RlWuQROrcBPV32SkgIvUpAOy0aE8VOIWoMSu9OVZwri9ZIkV3cNlAROnq1FllWU+pyVmpFDtaL1ZVJo8fthhK3k3DTzZh5lCJ0NCoNgXojmWWl+OkNOJwSRS47kRZfsktLkGSo5hdIqqcsMCCYi3l53onO+bybZYHnc/LQqTVU9w/kbHYOWrWaGgGBnM4SvTnJwSEcT89CrVLRICLcWxbYIjaa/anpqBCk8gNKh06DqAhSs/MpsTuIDfRHp1JzIj0Ls15Hk9gotlSglm8/fRmnW6JOdBhOp5sjV5Roef0kbzlg+9rVuJpdwLXcInxNBno2qsmPCuOqXZ1qlJTY2HHyClqNmse7NmX5NsG4ign1p2P9GvxzrUgGdWhQHYNWyw+bxSv0EV2bcD41m63nrqNWqRg9uC07D17i5KUMgW0Y3oHNf57nxIUbglA+ogMHjl9l92Hx+J8Z0pryMgcLFSNyl9Y1SWmZxLSFP2O1OYmJDGTaC9357Jsd3gnP2KdTMOl1vDx7BU6Xm8Tqocyc2Ievl+xixx7xpDd0QFP69WzE5FkrSL2ai06n4aWx3UhKCOeF8d+SlVWMyaRn8iu9qRYfwrixS0hLy0On0zB+Qnfat0tm7uxV/KlMbvoNaMLoFx5g66aTfPDWbzgcLiKiApg9T/htFrz6M1uVJ9N2KbWYOL0fToeLGeO/57BCBe81sAmjXuqBLMu8/epqNilIiUYtEpg8dxBBIb4c2XeJhdNWUJBbit6gZdSkXvRUElNbfz3GR3PXUF5mx8fXyLjZA+jQvT4g4J0LX1nqZVb1erAFz07q7TXrHt93iXenLCPreoEAgz7Zjsde7IFB8Vk47E5++HATy/8pigv9giw8P2cg7Xs1rHTxOHM4lQ+nLPWyrBq0TmTs/KG3AR1lWWbPhuN88dpqsq6JyWe9ljUY9dpgatStegLgdktsXbmfbxeuI/u6uE1YdBAjJvai67CW9xXtliSJw9vO8MsXWziw+aTXbBwWG0z3h9vSbUTbKhNh/0knoW4ME957jDdHfcXS9zeQMqQl8clVR7XvdTzf9+uX7l/seISnxffeYueyYvivVjvqrpO3I8oLg8Ztq46TXzp9g4y0PPQGLc2qKArct/UMJUVWgsP9aNSqcv+OrdzB1+/9fs/HWtX5jxY7LllSUlQVhY+Y7LgUb45oShZCx1MOKFdsP4ZKEXJJ1nq9OpWFjg6nLFXy94DOK3TKFa+Oze1JWAnjslpZa3mAnirvNEmlpK9ct5DLxZrKqJDL9Wo9ZU63wr4yVAn0LHO7KnCulOi504mv1kThXThXgQrnyqQRj9slub2tyB4OVo61HF+dkXKHC6ck3daKfKO0GINai1GtI9dqJdhoplhpRY7z8SdNaUWu7ufx4oiJzsW8PDQqNXF+/lzMz0ev0RCplAWatFrClLJAs05HmMnC+Rzx92gfX05n5qDXaEgMCuJYeiYalYqGkZEcUIRO62qx7FWi5S3iYzh29QYOt0St8BAKSq1cLykj2GImPjCA3eevolap6FY3kY3HLyDL0LJGLFezC8gqKiXIx0STuCjWHhDrhd5NarHnbCqFZTYiA31pFB/F8l3C0Nq3eW2OX7rBtZwifEwGhrVvIBhXbokG1SOJCfbnh03CSzK4Q30uXc/l2EUhXEb1b8P6XadJzcjHbNQxbmgHvl13gIzcYvwsBsY/1JGvV+/jRk4RPmYDk57ozLdrDnAxLQe9TsvkZ7qy7c8L7DooJlRPDWmFUadl9rvrBIm9fhxPDW3Na+/+SlZOCT5mA7Ne6s2ho6ksU9JVHVon8fSIdsx9cy2XrojCwZde6EZYiC/Pv/gdJaU2goN8eG3mALKzihk74VvsdhdRUQHMnTOYjPRCnh/zDeXlDkJCfJkzZxBGo47nRy4iPb0AnV7DhJd6ktKlDp99sJG1yqi7easaTJk9gKKCMsY98zVXL+eg1qh45vmuDB7ektPHrzN/2nJys0swGHWMn9qHLr0akHYlh9cnL+PqpWzUahWPPNeJ4U91AFlm8ceb+UlZTcUlhDJt4YNUSwqnvMzOp/PXslnx19RpHM+UN4cRFhmALMv88t0evnp7A06Hi4BgH8bPHUQrpebeYXey+N0NrF4kOnnCYwKZ+OaD1G9xs2Dv7NGrvPvKUq4pXKEOfRoxevaASmmUshIbixeuY10FNtYzM/rRdUiL2y5C1y5m8dmsFRxR+ELBEf48M3MAHfs1ueOr7gObT7Jo3hpSz4pSuKBwf4aP70H3h9vcV+OwrczOpqV7+fnzP0ivcOFt2rku/Z5JoVmXev+j3Kj/bSdlSEt2rj3Mnl+PsPLTTbz0weP/0v0EKuw0j5fqfk5uRiEgvsf3OmeVPqjkRnF3/JjczCIun76BSqWi0R3EztZfxHNY8061q+xs+l2B1nbt3+S2n5M/1h3xtpD/1fMfLXbcSIqhWKow4VErQkd7m9BxeACelYSOCqesmJNlLU4ZwKCUAxqwyp64uaT4e9RKZ44Wlyx5hY5GZcDqlgANLgmlH0dQzT1CR6y3PCWBwo/jAXreREKoBArCLdZUJU4lZq60J5s1ZgodIn2FF+hposhhQ608rnKXy4t/EDHzqjlXefZyJWbuRAJCDT5kW4Uvx6I2kG+zEag3UaDgHyJNvtxQhI6nRNCiNSDLUOSwE2H2IbO0DFmmUlmgR+ioUBHnG8Dl/AIMGi2hJguphYVYdDp8tQbSCovwMxgwa7TeskCDWsvVgkICjEZ8tAYu5hbga9ATZrZwJisHo1ZLYnAQR67dQKNS0TQu2it02iXEs+fiVW/K6lJmLsXKesqs1nHkqjAft0uM5/dj4tVMlzo1OHDxGiU2B3EhAUT6+vCHEi0f3LI+vx48g83pIjk6lCCTiQ2HzqFSwYgOjflt/1kKS61EBvnSsV4CizaIX/qURjWwljv5bd9Z1CoVT/Vqwab9Z0nLEomrUf3bsOiXfRSUWAkL9OHpPi296IeYMH+e7NuK97/bRmm5negwf8YMa8d7i7eSV1hGkL+Zyc88wFdL93Dhag56nYbJIx/gyPE01itrqgHdG9K0Xhwvz10pYJ9Rgcya0Jsvv9vJ/iOpADwxvA2N68YyfvKPFBVbCQq0MHd6f86dz2TSjN8EALRWJK9OG8DatUf4QenUEU3I/bz+HIAGDWKZOWsgJ4+nsXDBOmxWJ+ER/sx+bRBBQRZefuFbzpwSrcuPPtWBh59oz+7tZ3n7dZGeCgrxYfrcwdRrGMvqH//kyw8343ZLxFYLYcaCoVSrEcaW9cf5YP5abErZ4OR5Q2jUvDq5WcW8OXU5J5Q0SY9BTRk1qRdGk54Lp9J5Y9JSbqTloVareGhkCiOe64RGqyE/p4T3pq/wRspbdEzmxXlDvCLl4qnrvPXyUtKUFUOPYS14dmofbyeOw+7ku/c3svKLbUiSTGCoLy/MHXzbmP/PTSf5ZMYK70Wqy+DmPDuzP/5BlaO51jI7P37wO6u/2IrL6UZn0DJkVBeGPd8Vo7nqUsAzh67w9dzVnFSQHD7+JoaN7U6/pzthMN07Qp6bUcAvX25l/eIdXmSD2ddItxFt6fNkp7+lU+ZuR5Ik8jIKyUjNoSCriOL8MkoKyyjJL6WkoAyX041Gq0GtUYk/1Wr8giyEx4UQHhdMWGwwYTHB951k+jvPkBe6sefXI2xdvo/Hp/YnOOJ2Q/m9jlnxtpSX3D/gNDtdhDnCYu49YfNUGNwtpbdf8YzVahxXZVzc7ZbYqkxRuwy4fUWVlV7A4d3i56/b4GaV3ifLMmu+33vPx3mn8x8udmRF6CCEjqxWBI9WaUi+VejolTI+wacSQkdMdFyyMB2DvpLQUSv3ofKKEY/QkVGpDF6hU+6WUHnj4kpTsnxT6GhUOqxKGzKKH+d+yeVCJLm8QE+1SoMkifZnj9DRqrS43CqcsuQVOlqVBlnWUO66lXNlpNBhw18nUlqeMsBsq/DlaNBSdAv+IdLkx40yAfH015nILi8jQC8mPg7JTbTFj+vFwrdTVSuyTq0h1OhDWmERFp0es1ZHekkxgUYjKklFVmkZYRYLTqebrNKbZYFZZaVE+PjgcsmkFxUTarGgV6u5nFeAv9FIqNnMqRvZGLVaaoeHelEQ7RLivVyrtglxHLhyHadbolZEKCVlNs4X5hJgNlI3Mpw/ToppSK+GyWw6dgGXJFEvJhy3S2L/xesYtBr6NqvD6j9PIskyLZNiKS618ee5NAw6DQ+1b8TSbUexO93Uig2jWmgAS7eJnfXQDg04ej6di+l5GPVanu3dkm9/P0hRqY2IIF8e6tKET5TEVa34MHq0TObtb7fidksK+iGJN77ehNst0aBmFP061GPuZxuwO1zUiA1h5LC2vPn5Jm/0fPro7ny7ah/Hz6SjVqsY92QKdpuT2W+LqHmzhvGMerQ9r7+7nqvX8jDotUyb0IuyUhsvz1yGyyVRMzGcV6f04/ulf7L+d5FA6t61HiOf7sjb7/zGnwrzaviwljw0vBVvv7WeXUpnzIABTXluZArfLt7FT8oTW+Om1ZgxawBpqbmMeeorCvLL8PE1MmXWAJq1SODLT/5gxQ/iYxs0jmfa3EEYDDpen7KcXQpEsFO3ekyY3heNRsUH835h/SoxFWrYrDpT5g0mKMSXg7sv8Nb0FRQVCOr5uFn9SenZAFmWWbVkN1+/9zsul5vQCH8mLxhGPSVWu2/rGd6dvpLigjL0Bi3PTupF74daoVKpcLslVn65nW8/2IjL6SYwxIfx84bQsvPNRthzx9J4d9JS0i4IIdR5QBNGzRqAb8DNht387GI+f3UVO5Q25Yi4YMa9MYzG7SuvAUQi6yj/nLPaK4haPlCPka8OumNcOONqLt/M+5kdyitunUFL/2dSGDa2e6XHcKeTeiadZR9uYPvqA7hdokgjsnooA57rwgPD23gvwn/XkWWZ7Gv5nD9yhfOHU7l2IZOMK9lkpObgUDqC/p0TkxRBw3bJtOjekMYda/9fET91mtegTosanN5/ibVfbf2XvDtmZRVVXmK779t4VpTh0UF3/biyYitXz4m17K1A2YrngCJ2mt8B2nls70UKckrwDTBXucLatPoQsizTqFUNom4pLjy89yJpl3Mw/cXuJs/5jxY7MjIuWYget+zx7GhuEToGHB5SuSQprchSpVJAp+RpQdbh8hQIyhJqlTAeq9BiV4zMkpdvZVAKBAW5XK14gLwJK1lCqwgdrZdO7klfyegVoVORXK6tglzuYV95hI5OJR6LW/YAPW0K0FMWQE+tAvRUa3G6wSW5vUJHjRq9WkeJ016JcxWkFx4djy+nzO2shH+IMPlyo6xYwT9oybdZCTFaKLBaccsysT7+pHnwDz4BSiuyikizn7cV2UejJ6OkhECjEUmCnPIywi0+lFlFcWCsnz/5ZeWUO53E+fuTW1KO1ekkPiCA/BIrpQ4HMf5+WG0ObljLCPf1QSurvHHySF9fjlzPQKdR0zQ6yit0OtWszvZzV0CGZvHRXM7Mo6DcRlSAHyEWM3vOX0WrVtO9QRLrlVRVm5rxpGUVkJ5fTIDZSLta1Vi5V6yqujVM4lRqJjfyS7wwz283H0KWoU3teFwuN78fPI9apeLJ7s1Zt/s02YWlBPuZeahzI/65Zq8wJseH07ZeNW/iqn3DBOLCAvjwRzEd6daqFqH+Ft77dpv4d+taVIsMZN7nYt/dplF1urSsycz3fsXhdJEYH8rYRzuw8LNNZGQXYTHrmTW+F9v2XPAakQf1bET7FolMnLWc4hIbocE+zJ06gD+2nvYWBaa0T2bkkx2Zt3AdJ08LwTTq6U60alGDFyf+wLVr+ej1Wl6Z2JPkmpGMH/cdVxUfz/gJ3WnbtiazZ6zkYaGxjwAAIABJREFU4H7hrRk6vCVPP9OJtT8f4vOPxIQmITGM2fOGYDLrmTL+O44p4/UhI1rz9OjOXEvNZe7kZVxPy0OrVTPyxe70HdqcjOsFvD55KZfOZaJSqRjxTAcefrYTyDJff7CRZV+Lr12N5AimvTWc6PhgigrKeGfGSvYra6A2Xerw4pyB+PqbsducfPXWetYq7crVkyOY/NZwL70581o+b0/6iVNKwVqbB+ox7vXBXkK5w+7ih482sfzzrUhuicAQX8bOG1wJ9SDLMpuW7+eL136mtNiKWqNm0LOdePjFHhhvmbZcv5zNp/+HvPcMjKpcu79/0yeT3gsJhIRQQu+9996RYsNyVBBBBAEBAUEQxH702BWlq0iVIh2l994hECC9T5+99//DvTMkJBTPOc/7nPc59xclM4HU2Wtf11rrN+0n78oqqmIoL8waQLPOtct9/SvMs7H8w42s/XYXHpcHjUZDp8ea8cTEnoQ/5OIHcP7IVZZ/sJH9m05431a7eRL9X+pE0651/22rKrfLw4Uj1zj55wXOH7rKxWPXyvCwio9OryOyYiih0UEEhPjhH+xLQLAvfkG+6I06ZElBlmQkj4QkyeRlFpJxM5v0G1mk38zGYXWSeimN1EtpbPhuFz5+Jhp1qk2nx5rTpOv9I/n/jjNgVGfOHrzC5iV/8uSUvg9NR917fNSJnd3qfOT3uaMiPSLiHvz9PnvkGoqiEBUXSkhE+WZ2u9XpLbpsch+xU5yyat29TpkuJskjsUldYXUd1LjM+/76gwhhtO9Vj/VHHvjhlnv+q8WOR1FUYGfxSkuHR5FE7413olOe0NGprCqt139TvJYqRkNoKRY6Yu11t0BQ7cVR7godHQYvvkFS01qCfeUSTclqzLy4RdmoMWPzuFSCuXhMpzHgkD34aC3ku50lyOWKN1Vl1BqxecTzfXXCeGwusery1/uQ67Zh1hqxuUWnc7HQ0Wt0aNBi85TlXGU7rPjpzdjdEm5ZLoV/CDf7ccdahEVvRJGhwOUiyuJPWpF4vKTQqegXSEpBHiadjiCDD6kq8kEjaciy2Yj09aPQ4cTmcVMxIJD0giJRBBgcws3cPNyyTFJICNdz8gTSICyMFLUssEpoCGn5hVhdbioFB1Fkd5BhdRDp74ePXs/59Ez8TEYSQ0M4cE0YfFsnxnu5Vq2rxHP4yk0cHomkyFBkj8KpG2lYjAZaJsV7hU6X2kkcuniTPJuDCiEBJEWFskHt1xnYrBbbjl0i3+YkNjSQhgkVvDDPnk1qcPFGBpdviwnO050bs3jLEawOF5WjQ2hbO4FPV4lf9jZ1Ewj2tfDNWrG7Hti+Dvn5dpZtEnfmT/ZqzM3buSzdKF4RRvZtQlZOEV/9JFhQg7rWI9TflzmfqcKnQQJ92tdi2rtrsdpcxEQGMvXl7nzx4x5Onb+FTqvhlWc7oNdqmTjrFyRJpnpSFG+M7c4nX2znsLrKGvl4S1o0SWTsxKVkZBbi62vizSl90CgweswPWK1OwsP9eWvGAAoK7IwetYiiIgehoX7MnDUAH9Wfc+d2HiaTntde70mLVlVZOHcd21TDcYfONXl1ci+uXU5nwqgfyMosxMdi5LWpvWnTIZntm07x4dvrcDrchEcGMO2dwVSvFcveHedYOHM11iIHgUEWJr09iIbNEslKL2DepJWcKe7beawJf3utG0aTgZOHrjF/8gqyMwoxGPX8bWJ3ej3WFI1GQ8qldN55bRnX1WlM/6da8vT4bhiNetGi/OsR/vHWGuxWJz6+Rl6c1pfOJXAQV8/dZuFry7immovb9qrHqFn9S1Xrp6fm8PHkFRxVxUuVWrGMXTCUKrVKm4pdDjcrP/2dFZ/+jsclVlaDX+rEkNGdyl0/edwSGxbtZsl7v3n9HfXbVuf5GQMeGlkWFPPzrPhgI8f3iJ9rjUZDqz4NGPxyV6rWj3/g+z/KkWWZS8euc2zXeU7+cZ4zBy7jtLlKPUen11G5ZgWq1q9MfHIFKiRGEpMQQURsyD/NxVIUhfysQs4dusqR7WfYv/E4Wbdz2bP6MHtWHya5aRWenTmQms3K96L8q6dJ59qYfU3kZhRw5dRNkur+tWZlj0cCeGSKvKIopKhJv0rl0O5LnuOqiKl7Hx8OwIHtZ3E63ERXCiWhRlmTtbXQzp+b1Zu+e1ZUAPt3nCc7vYDAEF9adC7drXP9cjqH/7yERqOh55AmvDbrwZ9beee/WuzcnegowthLsdCRUbykcqO3/Vj8+W77sRA6OnVaoxYIFgsdRW1BLvb3KBoUdfrjLCl0NEYcalxcUvR40KDDhF1yqc3Hgk7uUdNXQuC4MKpNySJmrsepxszz3U6VfaWggPdtZq2JQvX5Fp2ZArejFNDTTzUjlwJ66oXQMWkNuGVhQH5UzpUWLUFGsa4KMJqwuyTc6rrqlhf/IDhXWo2WKB8/bhbkY9EbMGv1ZFithPlYsDvc2Dwe4gJEcaBbkUkMCuF6Ti6yAtXDwriQIVo9k8PDOZeWCUDNiAjOp2Ui31MWWC0ijFvZ+UL0hARhd7q5npNHmK+FUB8fTt5Mw6TX0SAuht0XhdDpVCORHWdFh069itGk5RSSnl9EmJ+FatHhbFVREH0b1mDz0Ys4PRLVY8KxGA3sOnMNvVbL4BZ1+HXvKZxuieS4CML9LKzbL6Llw9vXZ9uRi2TkWQkNsDCgZW2+Xn8ASZZpUDWW2JAAFqn+nYFt63A7I5+1R0+j0cCL/Vqw9/g1Tl2+g16nZeywtmz+8xxnrqQJg/AT7di27yJHztxAq9Ew5om2XL6ayZe/CeE0pEcDYiMCmb5wLZKsUKdGBV4c3po5H/3GnYwC/CwmZozvycGj1/l5nRBPHVtX5/GBTZk2+1du3srFbDIwdUJPFEXhldeW4nC6iYsNYc6M/hzYf4UvvxY+lFo1Y5nxZj+2/X6Gr77agSwrJCdXYOasAZw5ncqCeetw2N1ERQUyc84g/PxMjHvxe65cSker0/DC6E70G9yY31Yf47MPNuHxyMRVCmXGO4OJrhDCp+/+xtqV4uvUoGkCk+cMxNfXxFcfbuZnFfqZXDeON+YNJjwysNTayuJn4tWZ/WjduRaSJLPkH9tZ8rlgcMVVDmfKu0NJqBaFoiisX7afr+ZvwOX0EBzmx2vzBtNQRTAU5tn45M1V7Nko1nfJDeOZ+O5QotQ7Z8kj8dMXO1nysVhrBYb6Mmb2IFp2uzt9kWWZDT/+ybfz1uGwuTCaDDw+vhsDnm9X5kJ+ZNc5Ppv6M7evi5/7Ru1q8NKcQfdFPBzcepqvZv5CquodqlQtmudmDKBRhwcXtymKwpEdZ1ny7jrOqWgPnV5LxyHNGDymG3EPuVg+7BTmWTm6/QwHt5zi8LbTpUoGAQLD/KnTqho1m1WhWoPKJNau+G9fL2k0GoLCA2jeox7Ne9Rj9LvDuXQ8hZ2/HGDDt7s4e+Ayr3WfT/Me9Rj55gAq/pOpqfsdo8lAvdbV2b/pBEe2n/nLYqcYjvqo7dWZt3OxFtjR6bUP9VMdL46Tl4MaKT671bh4m571yp2A7Vp/ApfTQ6WkSKrWKdsYvWGZmJB2G9QY4z2fwyp1qtOiYzLRsQ+fOpZ3/rvFjqKUEDpyOUKnmFFV7NnR41RQ+3W0pdZSxQysu0JHQDrx9upokdHjUmS03Ct0BDxUOHuMOOS7QkeLTl2BabzRc5PWTKHH411TuRVZXV2JmLldVhdl2vLI5WYK3U58dT7kqaLGojOT77aXBXo6BdDT7vEgK3iFjk6jxaw13pdzZdDq8NEayXbYCTH5kO9wIilKOfiHfIxaPYFGE3eKBNtK8ijk2EVxYLbVhlsSyIdrebkoCqJPJ1NEzpPDwjmbUbYssGSHTv2YaE7cuiOK76KjOHsnQ/THRIZzOzefAjVOrpHgYno2AWYTVcJC2H/lJlqNhg7VEryenJZVKnEq5W6HTqivhb0XxBqrd4PqrD14DllRaFIljrxCO8eu3cZiMtCnYTIrdh9HUaB5tYrYbC72nL6uRssbsXLHcYocLuIjg2levRJfrxcTm86NqmKzOVm394yAdfZuzs7Dl7l0MxOTUc+4x9qw7LcjpGbk428xMW5EO75dtZ/bmfkE+JmZ+FQHvv1lH9dviYTW5Oc7s3rLSY6dTUWn1TD2qfak3s7lw2+2A9CtXTLtm1Zl4pxV2OwuKkQFMfO1nny7dC/7D4sL3LPDW1KrWgxjJy+nsMhBRLg/b0/vz/4DV/j2R9Ep07hhZaa81oOvvt7JZhXn0KNbHV54oT2ffrKV39W3detehzFjurBsyV6WqC9m9RvGM21GP65eTmfS2MUU5NsJCrIwbfYAatSM5YN5G9is+lZata/OhKl9sFmdTHzhe86dSgVgxHNtGPFcW/Jyipj00nJOq1ObASOa8+yYzmi0mlJpq8RqUUxdOJSYiqHkZBWyYPJKjqsR9c59GzD6jd6YLUYKcq18OH0V+7YJkdqodVXGzx1EcJgAZJ7Yf5mFE1eQlZaPTq/l8Ve6MPhv7bzrnNSrmbw3cTnn1Y+neRex1goKuwvYvHUtkw8nLuO0usar2TiBce8OJTahdGNtTkYBX85axa41YpoXGhnIC7MG0Oo+F5obF+/w1YxfOLxDfOyBoX48Oak3XYe3eOAkpDidtXThes6rBlWj2UC3x1sx6OUu/1LDcV5mAXvWHGH36kOc2X8ZWZK9j1n8fajXtjp1W1enbqvqVHpI3Pl/4mg0GqrWj6dq/XgGjOrC4vlr2bL4D/b9dpwDm07Qf1QXnp018C+vmx50Gnesxf5NJzi07TRDX+3xl963GLPxKIk5EOw0gLgqUQ8USHlZhVw9K557Pzq5tdDBYZV11fY+eIct6oqqy6DGZVODVzM4tu8yWq2G7kOalHosJ6uQHerv/MCnWj7s07rv+e8WO4BH0agrLL2amLpX6BR7dgwqC+uu0JEU3V3cQ7lCR4dbFTrFrcpaFfYphIsQLMXeH9Gx4/aWBOo0eq8pWadysYrJ5Vq0eBSNQI2qosaoFQkt0Z1jptBdHrncVYpcbtYaKfQ48ddbyFXNxsV4CD+9mQKXeF6x0DFo9WgVLUVuV7mcK7POgFbRku9yEuHjS4ZVGJRLCp1oFf/gozdg1ujJstkI9/GlwO7EKUlU9A8kNb8ARYGk4FAu5Yi9cvWQMM6r+If7CZ2SrcglywIbxsZwNEX8wtatEMX5O5k4JYmqEWHkFtrIKrIR4e9LiI8Px27cwaTX0Sy+ItvUssBOyVXYc/YqLkmmRkwELreHEyl3sBgNdEhOZPUBcRHpWDuRszfSScsrItTfQstqlVixR9zxdGtQlQspGaRk5JWIlh/GI8nUS4whMtCf5dvFL/XQDvU4fiGVCzczMRl0jO7fiiWbjpCRW0RIgIUX+7fgsxV/UGB1EB0WwPP9m/HhjzsptDmJjQjkxSEtef+77eQW2AkP8WPiMx359Ifd3LiTi8XHyLRR3fht2yn2HhEX1RdGtMbHpOeN+WuQZYW6ybGMGdmOuR9u5NoNARCd+moP8vNsTJz+E5KskFw9hukTe/HVd7vYoXJuBvdvxOD+jXlz5irOnruNVqth1EsdadWiKpMmruDChTvibaM60blLLd6etZp9asngoCFNeO5v7Vn9yyG++nQbsqxQtXo0M+YOAuC1lxZxQf07n3mpA4NHNOfk0RTmvvEzeapp+fW3+tO0VVVOHrnO3Ck/kZtdhMXXxPgZ/WjdMZnc7CLembSSE4fEhbvn4Ma8MLE7RpOBo/sus2DySvJyrJh9jLw8vQ+detcH4PTha8xXhYzeoOOZ8d3o+2QLtFotbpeHHz/aws9f7UJRFCrEh/H6+8OoqrYoK4rChsV7+XqeKC20+Jl5aWY/OvZv6H3Rl2WZNd/uZtGCDTgdgoQ+cnIvej7RstTFVJZlNi/bz7dzBWNLq9XQe2QbnpjQo9yulMI8G0sWrmfdd4KTpTfo6Pd8e4aO6/7AIjlFUTi87TQ/vLOWS2rho8nHQM+n2zFwdOd/Ki0EUJhbxJ/rj7Fr1UFO7D6PLN+FT1asHkOTzrVp0rUOyU0S/6NKBsNighn30VP0f6kz389exb7fjvPL3zfjtDkZvXDEv02I1WsjoJgXj11HkuS/5HsqTmGZHtHAe/G4QDok1rx/GzLAIVUgJ9aKLSXMS54/N53E7fIQlxhBfPWy1PWr525z4eRNdHotHfqWTWGt/kFMXpu2r+GF4haftUv34XZLVK8TR3K9ShQUFDz8kyvn/Of8NP0vnLvm5GL0g0Ht0THiLCF0SrYfe9EQqv9GCB21BVnxoFXp5niREXdblTVeoWPGLrnF1Eb1/ghvj6eE0LmbvtKqXKxioaPTFJuZ8Yoa0atT3J1josjj9pLLNaqnR5DLfchxOikml1sltxfoCRosqr8nwGAhrwTQM8NuxawzIEkKDtnjxT/c5VyJGLlHkrFKbqIt/twpKs250ml0hBot3C4SxYHyQ/APJVuRq4eGcT5D5VyFhnk5V7XCRSuyFsG5Kp7oNIiJKbcssEnFWA7fEGWBdStEcTU9hyKni0ohQSDDhbQsAswmakSGs/uCuCB2q1WV309eQlYUGifEkpqVT1peIaF+FupVjPZ6cvo2TmbHqcsU2l1UCg8iMTyEdQdEOmFIyzpsP3qJnCI7UcH+dKhbpVS03Frk8sI8n+vRlHV/nuFOdgFBfj4827MpX6zaK/w7MSEMaFuH937YgdsjUTMhim7NazD3a2HerZ0UQ++2NZn92WZcbg9V4yN4pn8z5n62mfxCB5Fh/kx5sQufLdrF5euZGI163hjdjVPnbrHqN+Ef6t6hJt3bJjNh5s/kF9gJC/Fj9pS+bN1xllVqYqdz+2RGjmjJzLlruHgpTeAhXr5bFJiVVYi/v5npU/ti8TEyetT35ORY8Q8wM+PN/oSH+/PKS4tEeaBRx/gJPWjdtnopf07n7nUYO7E758/cYs40gXfwD/DhjdkDaNC4Mr8s2cc3f9+KLCkkJEUyfcEQoisE89MPf/Lt37ciSzLxiRFMf/cxYiuFcerIdeZNWklOZiFmHyNj3+xD+x51kSSZH/6+lWVf7kRRFOKTIpm6cBhxCeFIksyKL3awRBVfFSqFMvm9YVRRLxCpVzOYP34Zl8+IwrVujzXhhTf6eAsEs9Pz+WDSSo6ovpt6LZJ4df6QUg20t69n8v5ryzijrofqt6rK2AVDibxnXH/zcjofT1rOaTXNllQnjlfmD6VKORBJSZLZsmwv389d68U7NO9Wh+dmDCCm8v25RgDHd59n0bzV3nWVyWKk9zPtGDiqi7fL5a8ct8vDod9PsXX5Xg5uPonHLXkfq9ognrb9G9OydwOiKt2frv6fcipVj2HGkpfZunwv7436jvXf7kRn0PHivKH/FsETFR+O3qDD7fSQeSuHqIoPBm6WPDkZQgTcz0B87zmrTmtrlMOmKnn2qb+PJY3z955tqvG4pIAveX5bLqbVLTrXKhNJz8+1sk2dUPZ7svTkxmZ1sl593yHPtHngx/mw818tdmRQhYiC7DUfCzNyyRTWXaFTklR+d1ojmpI9ojNHktCqAqhkq7IGI45SQqeYkyX6blwlhE7J9JVGZV8VCx29xoBTVksCNWaKPC58dGYKPULoaBEMK1+dD3luwcMCHU6pNLlcw73kcoF6KHC7CDJYyHGKiU2QoSzQs1joaLhbHBhgMGNzi+LAkpyrGJVzZdTq8dUZSbdZCTH7YHO6cUoeKvoHckPFP1QJCuFytop/CC6BfwgO5UKGKBGsEhTC+cwstRU5hDNpohU5KSSMU7fF/9eMiOBYqhA6jWIreMsCm8XHsb9EWeDxlNu4JZkaUeFkF9rILLQS4e9LpJ8fB6+motdp6VA9kc0nxL66XfXKHL92m3y7k7jQQKID/Nl+6gpajYaBzWqx9uBZXB6JWhWjMOt07Dh1FZ1Ww4g29Vn1h6CWJ8WEUS0mnGUq82pQ6zqcvHSbS7ey8DEZeL5nUxb9dpACm5O4iCD6tqzFRyt2I0kyDarFUj8plg8W7wSgbcMqJESH8P6PAvXQqWlVqsSFM++LLQC0bJBA24ZVePPDDbg9EtUTI3nhsZa8/fFGsnOtBAdamDmuJ8tWH+KAajJ+8YnWhAX5MmHmL7g9ElUTI5k2vieffrmdg+oa4/mn2tCwbkVembCU7JwiAgN9eGtaf3JzrIwdvxin00PFuFDmvDWQs2dvMe29jbjdEpUrh/PW7IGk3sxh9IvfYy0ShuWZcwYRHGTh1ZcWcfliGlqdhpfGdKHPwIasXnmIL//+O7KkkJgUyYz5QwgMtDD3jV/YvVWkxDp2r8Mrb/RC8kjMfn0Ff6px84496vDKG70xmQ389P0ffPfx78iSTKXECKa9N5S4yuFkZxYwf9JKTqqTnu4DG/Hi5F6YzAayMwp49/UVnFBXWh371GfUm32x+JpQFIUtPx/mH7NX47S78Q+yMPbtQbQs0Yvzx8aTfDz1ZwrzbBhNep6Z1JPeT96d1MiyzNrv9vD9/PXeac5zU/vQfUSLUhcMt8vDyk9/Z/knW/C4JMwWI0++3pM+T7cpdwV17sg1/jFlBZdOijv3ilWjeXHOYOqrU4P7nTMHLrNo7mpOqv4Mo9lA72fbM3hM1/ve0d/vKIrCxWPX2bpsLzt/OViq6C4+uQLtBjShzYDGDxVe/6mn09AWyJLM+y9/z5ovtqHTa3l+9pB/WfDodFpiKkdw4+Idbl1J/0tiJ1cVO8GPUBAoeSTOH70OQPIDenMcdhdHd4mbuWbloB0A0m/lcFIF7bYvZ2pjtzrZroqZ7kOblnn8t+UHcDrcVEmOofY94NCNPx+iqNBBbHwYzdo/+Of3Yee/WuwUT1xk9Kpnx4hLFTru4hSWolCqSFA1GguhwwOETnEHj9qZI8teoaPTFBuXtSiKDo8ioy/Bt7KqQkdwsWSMWjOFHpV9JaslgZiwekQbcqFHTGoURYdDlrxCR6/R4ZE1SIrsFToGjUh0eUqRy3VoFT1Wj6cUudxf70O200GAwYcCpxMFvEJHp9HiqzWrvhwLOQ47ikIZztXtokIseiM6RUeOw0GkxZccmw2PrJTGPwTeFTpVgkO4mJONTqMhPiCYi1miIbmCnz+XsrMx6/XE+PpzMTMLs15PnH8A59WCwMrBwZy8nYZeq6V2ZCSHU9SJTqVYr9BpnVCJP9WywIYVY7islgXGhwahUzScTk3H12SkSXwsv58UK5budaqy4/QVnB6JGjHhaGUNh9QOnb6Nk/l53ykRH69Wiex8G2dupeFjNDC4RW2W7ziOR5ZplBSLWa9nw8FzaDQwsktjNu4/T1pOoRotr8/nq/fi9kjUToymfmIMn/4sfDBdmlbDx6DnuzXCxPdYl/oUFjn4fq1gKz3esxFWq5MvVojnD+pSj+AAC/M+F8KnbZMqdGpejakL1uBweqgcF8rEFzrz3udbuaquqaaN7cHlqxm8/f1G8XVqlsSzw1sy4+3VXL+R7TUiS5LE2NeX4XJ5iK8UxtyZA/h96xkW/SD+7SaNE3hjcm+WLd3HypXqHV3LJCZP7sWGdcf5+gthTq5ZK5YZbw3g1s0cRj/7DXl5NgKDLEyfPYDqyRV4d/Zatm0S6Y2O3WozdlJPsjMKGDvya1KuZorm6PEiVp5yNZPZE5eTmpKNXq/jxQnd6DWoMdZCB/On/MS+HeIFu0PPurwyTUxejh+4wvxJK8nNLlJ7dfrRXvUbHN5zgXcn/URBrhWzxcjo6X3ppJagFRXY+eTNVV5DZt1miUx4dyhhUeIiYy108Plbq9n6i+CRJdaswMT3h5VKvKTdyOb9CUs5pV4k6rWsyrgFjxEZV9oDc+FYCh9MWOpNzTRqn8zL84aUmfoA5GUW8u2cX/l9hfgZsfibeXxiL3qPbPvAhM7187f5bvYqDqidSAajnu5PteGxsd3+8rrKXuRgx88H2PDdLq6oYgsgJCqQ9oOa0fGxZiTUKjuJ+v/j6TKiFZJH5qNxP7Dq098JiQxi0Jiu//LfG1slkhsX75B6OZ2G7R+d+F3MLguJeLjYuXbuNg6bC4u/mYrVyq6dis/R3edxOtxExAbfF/65fbUQMnWbJ5bLzNq14Th2q5PoiqHUbZZY6jGX0806tSNrwMjWpcSiy+Xxxs0HjWz9L3uj/rvFDsVCRylH6AjDMV5W1V2h41H0qFYwIXRUw7FWUzwV0qrRdCF0nKWEjtErdGRZi4QiaOaSG4PGhFU1LCuKFklR1NSVu5Qfp5hmXix0tOiQZC1uRfEKHYNGJKgkRfEKHZNWRNwlRSFQL0SNQatHkrXYpbvkco1qWs5zOQky+pCrrrjCTf5eoKcePXkuB+Hmu8WBxUJHi5ZQk4U0axGBRjMut0SBx0kFX39uF4qURUJAMFdL4h9yctBptFQqhX/w42pOLhaDgRCTD9dz8/A3mQg0mLiWk0uAyUSg0extRQ63+HI+PRMfg56EoGCOp95Br9VSt0IUB64L82qbxHj2XLwOQIuEihy5lip8ONHh5Bc5uKOup6qEh7Lz7FU0GuhZtzqbjl9AksUaKyO3iBtZeQRazLStUZmf9ooLcrd6VTl59Q53cgsJ9vOhS90kFm8TLwSd6lXhTnYhR1JSMRl0PNO1CUt+P0qhzUnFyGA61a/Cp6uEWGhbLxE/o5Ef1ej4490acvVGFltPpaDRwKjBrTh4MoXDZ2+KWPiIthw4fp19x6+h0cDoYW24diOLXzaq/p+eDYkI9mPmBwL90KRuPCP6N2b6grXk5NkIDfZl9sTe/LzuKDv+EOuW4QOb0KxBAuMmLxerrFA/5r45gH0HLnuJ5c0aJzDx1e58+tlWdqp3f4MGNmbEsOa8M28dB9R1y4gRLRg2vDkfvbeJrao5uXvPerw8tjNbfjvJpx9sRpJkEpMimfXOYDRoePXF77l8QUx5XhjTmX5DmnAC1DRqAAAgAElEQVTwz0vMn74Ka5GTkFA/ps0fQs26cezacpr331qDw+4iLDKA6fMfo3rtWK6cv8Oc15ZxJzUXg0HHi5N60mNQIxRFYcnn21nyD5G2ik+KZOp7w4irHI7HLfHDx7/z09eivyihejRT3h9GbGWxYjl79Drzxy8j41YuOr2WJ8d1ZeBzbb3eijOHr/Hu+KWkp+YKivkL7RkxtovXAKooCpuW7eer2auxW52YLUaendqHno+3LPVC77C7+PHdDaxWk2yBoX68+NbAcjEPkiSz8cc/WDRP+HgAOg9tzsipfe8L+ASRxvlx/lq2LtuLLCtodVq6Dm/J8AmP1rNT8lw/d4sN3+5k24r9Xu+IwaSnZa8GdBrWgvrtkv9PIiK6P9UGp8PF55OXs+jtX2nSpfa/nNIqRjcUrx8f9dxJEanUh3XmwN0oec3GCQ/8vuxRjcEt7tMxJMsyv6vG444DysbJFUVhrZqE7DG0aRnBsn3tcXKzigiLCqR119J9UFt+PUJWRgFhEQF06FXvoZ/Tw85/tdiRioWOYsSllBY6DkVWV08lSeV311KCdSWhwYxNvit0NOhwqtF0AeSU0alCR68xYVPFkCSLNZquWOioUXINWiRZgwzqmsqNSWvCKok0lQYDdknCovOhwCOaj52SSJZZVKFj0hq9UFBf1Wxs1om3KeBNWpm0BpweBc895HKDus4KUcnkoCHM6Ee6rQgfnRFZgiLJVQroWSx0DFodfnoTmXYbISYfCp1uXJJEnF8gN1XOVUJACFdzcwCNED05uRi1OiJ9/biWl4fFYCDQYOZGXgFBZjNGjY5bBQWEWizoFLiVX0CYxYIeLal54u0+Oj3X1FbkMB8LZ9My8TEYSAoP4cgNgYJoFh/nFTrtkiqz59I1ZBkaVorhWloOuTYHscEBBPv4cPDyTQw6HV1qVWHDUXEhb1cjgdPX75BdZCcqyJ9asZGsOyxWJoOa1WbrsYvk25zEhQVSp2I0P+0Wd8oDW9bm0Pkb3MzMJ8BiYniH+nyz4SBuj0SdhGiSKoTy3W9iQjOgbW1up+Wz+4hYj40e1Iqt+y9w4XoGJqOe8SPasXLzMa6mZmMxG5j4dEeWrT/MpRSR0Jr0XGc27jzD4VMiaj5uZHtupubw90U7AUEob1AzjklzfhUtyvHhTHm5Gx/843fOXhTA0Imju6DVaJgwdSVuj0S1KpHMmNyHrxftZocqaoYMaMyAfg2ZOu1nr2dn3CtdqVsnjnHjFnMjJRujUc/rk3pSu3YcE8Yt4cL5O2h1Gka93Jkeverx2Yeb2bBGrPPadUzmtTd6c+HsLeZM/YV8dcoz7e2B1K5XiSVf72bxVzsF8bxOHNPmDyYoyFIqVl6vcWWmzBtMULAvW1Yf5e9z1+FyeoiMCWLae0NJSq5AXo6VBVNWcnSvqKTvOqAhL03uhdnHSOadPN55bTlnizt3hjXj+Uk9MJoMSJLMyi92sFhdhUXFhTD5g+FUUynmHrfE0r//zgrV2xMZG8zE94dTs4QfIjstnw8nLeew2jJbs3EC498bTkx86VXFiT8v8uHry0hLEWvcDgMa8cKsgaU6eIrPhWPX+XTyci6dEFOUKnXiGP3OUKo3uP9qwlpgY8WHm1j95TZv43Cr3g146o1+fylCLkkyBzefYM0X2ziuGtQBKiRG0mNkWzoPa0FASFlkwP+10/dvHTmy9TSHtp7mgzGLeH/z5H9pnWVSywGddtdDnln6pF4WDccVH+F7eFTtSKpfTotx8XHYXexXb07a9qlf7nNOHbjKnZRsfPxMtO5ep+zjB69y7fwdTD4Gug4unbKSZZmfv90NiJ6qktNHl8vDCvWGY8izbcpE0f+Z818udhQkxYhbkRGQz7JC5y6p/C7sU4gfyWs41mmKk1t3hY6sCD+PTmPGcY/Q8ahRci0mbJJbXVOJmHkxLkKvEQLHpDVjVY3HKHqcsuwVOgaNAbtHRkYj4J5qn47VI4SRaE0WfTqFHpGqElMeOz46E1aXKA4sFjoGrR4ULdZ7yOUhqkHZT2/C7pFwS6WBntE+/twqKsCsM2DU6Ml1OIjw8SXLKhqS7+VcXc3NQavREucbyLXcPHz0egKNZlILCggymdGjJa2wiHCLLx6PRKbDSoy/P1aHixyHk5gAf+wOD9l2KzEB/rjcErfyC4jw88Wo0XE1S7QiR/r5cvJWOma9ntrRkey9LC4IHaomsOO88GG0TKzIsWu3sbs9VI0MQ/LInL6Zjp/JSPMqFfntmJh0dK9bjT1nrmJ1uqkSFUqor4Vtpy6j02oY0qIuq/eexuH2kBwXQZifLxsPnRfspg4N2bD/HDmFNqJDAujasBpfqKuodvUSQVFYtUtMhp7r1YzdRy9z6WYWZqOesY+15cd1B0nLLiTY34dXhrblsxV7yMqzEh7sy7jH2/PJjztJzy4kOMDC5Oc788WyP7h2Mxsfk4Fpo7uxcftpb+Jq1BNtUGSFme+tB6BZw8qMHNKC6fNWk5ZRgL+fmbcm9eHY8Rv8uEKMltu0qMpLz7Zl9jvrOHdBiCFhRI5gzJgfvZ6dWTMGIHlkRo9eRGGBg7Awf2bPGYgsKYz+23dkZxfhH+DD9Jn9qFw5nNfHLubMyVQ0GnjmxQ4MGd6Mtb8c5vOPtiBLClWqRjHjncH4+ZuZNXEF+1WDb+9BjXhhfDeshXamjP6RE4eF12bwUy0ZOaojkqzw0Vtr2KiukBq3rsrrbw/EP9DC2eM3mDthOVnp+ZjMBl6e1ofOqsfg4M7zLJy8ksJ8OxY/E+PmDPTeaeZkFLBgwnJOqNT1dr3r8fKsAfiqGITbKVkseHUpF9R0S8cBDXlpRn/v4wC71x3jkzd+oijfhsGk56mJPen3bNtSd9W2IgffvL2G334Uk7Ow6CDGvPMYTTqWXWUU5dv4fu4afvtBQEV9A3x4anIfejzV+r536h63h99+2MOSBevIzxZTg1rNknh25kBqNEoo933KO4V5VrYs/oO1X+0g/YaYJmh1Wlr0rE/PZ9pRt3W1f2sc+z/9aDQaXvnwSZ5vOp1zh66wf+NxmvcoXxw8yiluxnbYHl3s5GUVUpBjRaPRPNQH5XK4OaP60Bo8wMd1aPtZHDYXkXEhVKtXfufP5pXiJq1d7/rlMtdWLxLT6o79GpZBj+zffo5b17PwCzDT7R4h9Pvqo2Sm5RMS7k+3EgWEkkdityrA/ur5Xxc78fHxpKSklHn7qFGj+PTTT8u8/fvvv2fkyJFl3m632zGb/xqDRVYMuBUFSsbN7xE67nKFjlxG6GjR41CKm5L1eBSNNy6u15ixypIK61RU47Hw3xhLJqwkRW1DNmGTPJi1PhRJTnXaI2jmPqrQKUkz91E7dnx0ZorUmLmP1od8lxNfvYili0i5D7lOO756M/lOIYiKhY4oDgS3LHmBnl6Dst1OgMGHQqcLSVHKAD3vlAB6FricIolVWIhCac5VvH+wl3MVYfbjRn4+/kYjBo2ONGsR4RYLbrdMtsNOjL8/+TYHNhX5kFlgxe52Uzk4mIwCKzaXm/jgIHKtdgocTuKCAnE63dwqKiDczxdfg4GLGdn4m0xUDgni8PVb6LVaWiRU9Aqd9tUS2HPhGpKkUC8umvS8ItLyCgnzs1A9Opytp8TFrW/DZDYeuYBbkqhbKRq3R+Lg5ZuYDXoGNK3Fyj0nkGSFZtUq4rC7+OP0NQx6HU92bMiy7cewO91UiwunZlyUtxywf6taXL2VxckrdzDodYzq15KVW4+Rll1ISICFF/o157MVf1BocxIXGcRTvRqzcNE2bA43ibGhPNWnCfO+2IzV7qJiTDAvD2vLgi9/JzvPSliwH1Nf6soXi3dz8VoGRqOeqS934+jJG6zdIqZNA3rUp3mDyrz25kqsNhexMcHMntSHH5btY6e6yhoxpBntW1Vj3OvLyMgsJMDfzKxp/SnItzHutSU4nR7i48N4+61BHD58jU8+3iLalatH89bsQZw4lsLC+RtwuTxUig9j9tzB2KxORj/3LZnpBfj6mZgyoz/1G8WX6s/p0LUW4yb3IjMtn1fGfE1qikhsjZnUk6596nP+dCqzX19BVnqBaE+e0Y/WnWqSfjuPOROWc+nMLTQaDY+/1J5hz7dFo9GwevFevnpvI5JHJjY+jGnvDyc+KRKPW2LRh1u8d5hJNSsw+f1hXi7P4d0XWDhxOfk5Vkw+BkbP7E8nNXGiKApbVx3mHzPFSsrX38zLcwbSrvfdC11Rvo3P3vyFHWpapUqtWCZ8MIJK9/gkju25wIcTlnrBjD2eaMkzb/QpEydXFIVda47w5fSfyc0UhtSOg5rw7IwB911ZKYrCgc0n+Xrmz94ywbikKJ6dMZCmfwGBkHEzm1Wf/c7GH3Z7G40DQvzo/lQbej3TjvB/suzt/8IJrxBC3791ZMUHv7Hyw03/ktgx+oienL8y2blx8Y76cQR7k4D3O6cPXsHldBMaGfjAKdAuNXnZplf9cn9GCnKt/KGWZ3a9pxsHxE3A/q0itt73npSVoijeVXHPYc2wlKCfu90lpjrPtCnVG7Rtwwk+nLH6gZ/f/c7/utg5dOgQknQ3inj69Gk6d+7M4MGD7/s+AQEBXLhwodTb/qrQAXArCgZMeEoJHRMOb3RcLRBUSpPK8QodMw5ZbUouTl/JwpSsxYhD9pQQOnpcKhICNZllLJGwckgyxX4cewmho0WHW9IggerRcWDSmihye1BQiwM9TjG9UYWO6N1x4a/3Ic8tunN8VQ+Ov96HXKd4nkhaWbHoxMRGJK3EukqLFl+duSy5XE1aadESYrKQYbMSaDTjcHtwShKxvgHc9AI9g7men4sWiPUL5HqemOL4603cLiwkxOyDR5LJcdqp4O9PbpEDu8dDfFAQd/IKcMkySSGhpOTk4pZkqoWFcV3FP1QNDyU1Ox+7x0NSWCgZ+UVe0eOSpFKtyKdS0/Ex6KlbIcq7xupUPZHtZ6+Ior/EipxPzSDP5iAuJJAwP1/+vJCCXqelV/3qrD14FkWBltUrcTMzn5uqX6dT7SSW7RIX6M71kriamsW19Ny7HTqbD+ORZRpXiyPAZOLXPWKC83S3xuw8cokU9bkv9m3Ol7/uE/6dqGCGtK/H+z/uFGuupBg6Nk7inW+2IskKjZLjaN84ibc+24QkydSrHsuATnWZ8dF6HE4PiRXDGPNEW975bDMZWYUEBfgw89VeLFt9iIPHrqPRwJiR7TEb9UyZvUq0JifHMmF0F+a//xtnL9xBr9cyYUxXggIsvDJxKXa7i7gKIcydNYCdu87znUonLzYi/7BoD7+qF/MOHZIZ/1p3li3ey9LFYr3UrHkVpkzvy+EDV3h3zlqcTg+xcSHMmj8EX18TE0f/wLnTgqP17KiODBrejAN/CH+OzeokLCKANxcMoVrNCmxec5RP5q3H7ZaIrRTGmwsfo1JCBEf3XWbeJDGZ8Q/0YdK8wTRqmYTN6uTDGb+yW62pb92lFq++NQCLr4ms9HzeeW05Z1TCeZ/Hm/PsxB4YjXohgt7fxM8lvTsfjfCW+1kL7Px9+ip2rhNruFpNEpj43rBSBs3jf17kvfFLybqTh1an5bGXOzH8la6lxvXWQjtfz17DpqXiaxUZF8K4hcOp17JsU21aShafTl7uLQaMS4rk5fnDqNPi/q22V0/f5ItpKzmhCtjAMH+eeL033Z9s/chYhWtnUvnp403s/OWgt/gvPrkC/V/qTLuBTR6JiP7fcPr8rQMrP9zIuUNXyLiZTUTcP1e4+FfLAQEunxThi8RyagjuPQfUyUjjDsn3FbqFeVYObBNpx/b9Gpb7nN9/OYTb5SGhRky5jci/frcHRVFo1LYaFe9paD5x4CrnT9zEaNLT9/EWpR7b8usRMu7kERzmR/cSjCyX082Pn21/6Od3v/O/LnbCw0t3K7zzzjskJibStm3b+76PRqMhKurRd8tOpxOn8y4crbiUSNDLyxM6Bu9Ep1joiKZkIXQc5QodDR5Z7xU6zhJCR6fR45TuCh2nLGHQFAudu7gIUUYoeYWOTqPH6VHEv6o1U+hxlKKZG7UmijwufHU+3umNQWOiyO0mwOBDrksYi81aM/kuFwEGH3Ic4nmBeh9ynDb89GYKXW5kINwkhI5eo8OoEQ3JZcjlRQXoNTr8DSay7DZCTBYKnU7cslwa6OkfxPX8XPQaLRFmX27mF+BvNGFQtGRabUT4+lLkcGHzuKkUEMSdgkLckhA313JykGSFGmHhXMjIRFGgVmQk5+5kICtQKyqCC2mZeGSFmpERXMvIEaInPJSsIhu5NjsVAgPQo+FiejaBPiYSQkM4cFU0B7dLSvCWBbavnsD+izdwuD1Uiw4DCY5fv42P0UDH5ETWqGWBneskcexKqvDrBPtTv2IMq1Rj8sDmtfjz1DUy8q2EB/rSpX5Vb4dO5wZJZOfZ2H72Mnqdlr/1asZP24+TlW8lMtiP4Z0a8MmKPbjUBFaLWvG8v1hEyds1qkKlyGA+XCwuuN1b1SA6NICF324Tf3eL6tSuEsOsj38Tzc11KzGwcz2mLxSMq4oxIUwe1ZX3v9zKleuZmE163ny1J6fP3WbZKjF+7tIumcG9GzJp+k/eVdbsaf24cjWDdz/YiCwr1K9bkamv9+LLr3ayVX0BHDigEY8Pb8Hbc9ZwWF0lPfNMG/r3b8S8OWvZqxogHxvenKefacOS7/ew5Hsx0m7UNIGpswaQeiObSS8vJjurED9/M2+8NYCGTRNY9t0efvh8h/i+16/ItHmD8Qsw88m89axXzZDN21Zn4lv9sfiaWPHNbhb9fSuyrJCUHMPUhUOJqhDM9cvpzHl1KanXs0Q0eEJ3+g5vjkaj4eifl5g/cQUFuVaBinh7EK3UaG36rVzeGbeE8+paqvfjLXhuck/vxefcsRTmj10sTMg6LU+M68rgF9t710cuh5vvF6znV1UoxcSHMeHDx8vQoo/tucAHry0l87aY5vR+qjUj3+iDj2/pdYDHLfHrF9tY8t4GnHY3eqOeYeO6MWh05/teEPOyCvlh3ho2/bgHWVYwmPT0f7ETj43thm/Aw0nmAGcPXmH5exs4qE4DQZTeDR7bnQbt73+h/G89oVFB1GqRxKk/L7Jn7REGju7yT/09xSBPs2/ZtdD9zkW1+LHqfdZNxUdRFK8Pp+l9ouQAu9Ydw+OSSKhZgcrlcK5kWea3JWId3/PxFmV+FvJzrPyurpIHPVf2Wr7iC/Ea13VQY28DOQivzrIvxe/N0OfaYSqBBFm/8hCZafmEhv+1GoTi878udkoel8vF4sWLGT9+/AN/kYqKiqhUqRKSJFGvXj1mz55N/fr3HxvOmzePWbPKksM8yJiweIWOXWVgCbPyXdinaEqG4lZlbbHQ0Rixy4I47pZFyaDGK3R8sMoedBoDThXWKatRckOJmLldFToaNZ5eLHT0qh+neHpTJIk1VTHLyqAxYfV48NNbyHc50KBFhwGbx+MVOsXdOUVul9qnI6Y8/nofcl0iUl7cpFy8ujJq9WgVPUVu133J5UbtXV9Ops2GokBFvyBS8vO4y7wSQM9AvZk7RUUEm32Q3DK5LgcV/APILLLikqVSnKsaYeGczxCMn1oREZy+k4FoRY7iuFoWWC8mihOpwohXLyaaM7fS8MgKtaIjuZaVg9XlJjEshCKbk9tqb06YxcLxG3cwG/Q0rRTH9rNC6HSpmcT2M5fFGqtSNNkFNlKz8wn29aFhpRhvWWCfRjXYfvIyVqebxKhQKgQFsOnoBTQaGNG2Puv2nqXQ7iQ+Mpi68dEsVTt0Brauw4mLt7hyOxtfs5FnezTh2/UHsDpcJFYIpXPDqny0YjeKAm3rJxIe6MdXq4RXZnCnethsLn5YJy7uT/cRMM/vVokXmMd7NwZZ4YPvxJ1Or/a1qF0lmmkL14qJT3Iszw5tyYyF68jKKSIkyMLsiX34ae0Rdu0VQmTksBbUrBrNq1OWe1dZc97sz+q1R1mzXgWUdqvD0yNaMuut1Zw5ewudTssrL3emYf14xo1dzI0b2ZjNBiZN7kW1atGMG/MjV69kYDDqeG1iT1q2qsrbb67iT9VzM2hYM557qQM7tpzmg3fW43ZJVIwPY9aCIYSE+jNn8k/8ofbkFPtzCvNtTHphEWdO3ECj0fDEC+0Y9mwb7DYXc15bzp8qvqFr/4aMniJEya5NJ3n/zVU47W7CIgN5Y+FQkutVRJJklv1jG0s/246iKCTUiGbqB8OJqSRMwvu3neG9SSspyrfjF+DDuLmDaKl6dyRJZuXn21n84RavSfn1D0dQo/7dC8z1C3eYP+YHrquAzx4jWvD89L6l/Ax2q5Nv565hvepniKoUyqvvDqdOOVX8l0/e4IPxi7l6WqQJ67asyssLhhGbWD7LyO3ysO6bHSx5dz3WApGKatO3Ec/MGPDInS2n/rzI0oXrOLZTfB80Gg2t+jZk8Cvd/i2gz4cdSZJJu5ZBZmoO2Wm55KTlk5OWR056Pm7VUF3y+If6EVM5gpiESKITIoiuHPHAduj/ydO6byMhdlYf/ufFTpEDoIzofdB5VLFz/dxtMlJzMJkN1Gt1f3Pytl/un7ACOPbHJW6nZGHxM9O+HPPy+iV7cTrcJNWqQJ2mpePm547f4Pj+K+j0WgbdUxS46ZfDZKXnExYRQPdBd/9ta5GD5SUMyyt3PvDTLPf8R4md1atXk5eXx9NPP33f51SvXp3vv/+e2rVrU1BQwEcffUTLli05ceIESUnlczumTJnC+PHjvX8uKCggLi4ORZ3ocI/Q0ZRoNhYFgnjLBrUaM07ZI3w1soiJu1V8hCgAvCt09BqxksIrdNSEleTGqPpyUJNdTllWW5CdGDR36eRGrQmr5BQGZJcLTXFxoOTBT+9DvsuhFgfqsUsSAQYLuS4bOo1W7c5xq+uqu+usfJeDIKOPV/yEGYXQMatJK5vkLkUuF76cQpVcrqHQ5SrVkFwsdDRo1DWWAHqatHoybTYiLL4U2V3YPR4qBQaRmp+PpChUDQnjoop/qBkewZl0IW5K4h/qR0dzLFXgHxpUiObozTtogMZxFTh8XbTWNoiN4fTtNFySTHJUBLdz8sm3O6kYHIgODefuZOJvNlEzKoLdF0Q8u2vNqmw5eVGsp6pW4uKtTLIKbUQH+VM5NJhtp66g0cDAprVYd+gcLo9EvfgYNDLsOXMNg07HiLb1WbHzGE63RO34KEL9LKzdJy68T3dpxOYDF7wdOkPb1+Mfv/6JR5JpWDWWpAphfPGrEDb92tamsMDOqm2it+XFQS05euYmh87cEAyrx9ux98hVDpy8jlaj4dWn2nPy3C227hUC4rkhLZDdEvPVTp3OrWvQsXlVJs1Zhd3hpnJcKFNf6c4Hn2/l7EWxppo8phsOh5vJM35BkhXq1oplyvgevP/JFg4dEV+jF55tR9NGCYwdv4S0tHz8/EzMnN4fvV7H6NGLKCiwq0bkQXhcHka/8B15uTaCQ3yZNWcQoaG+jHtpEVcvp2Mw6Hh1Uk86dKnFt//Yzk9LxOfevHVVXp/Rj4JcG+Oe+YbrVzLQ67W8PKkn3fs14Nypm8yeuILszEIsviYmzRlIszbVuHktk7deXcrNa1no9TpGTelJj0GN8bglPp+/gdXqCq1e00QmL3iMoBBf8nKKWDBxBcfUJFb3IU14YYooEHS7PHy3cCO/fidWdNXqxDHloxHePpvs9HzeHb+UE/uEUG7Xuz4vzx7gvagWFwR++8463E4PQWF+jFswjKadSpuLTx+4wnvjF3uTVr2fas0zU/uUMXc6bC6WLFzPqi+2I0syfkEW/jZzIJ0ea3bfG8HD28/w+RvLvb6cxNpxvDR3KLWaP5zSrSgKx3adY9m76zmlimGdXkfHoc15bFx3KtxHXP2rx1pg58KRq1w5mULK2VtcO3OTG+dve1Ni/+ypWD2G1v0a06Z/EyolV/j/bArVqk9DPnt9KecPX6Uwz4p/UNkE3cOONd8GiJ6kRzl5mYXcUUGwSXUqPvC5f24UrzH1WlfzGqHvPTcupXH+aApanZZ2fctfYa1Wf086D2pURpQ5bC7Wqib7Ac+2LfO1X/qZmEx37NOAiJi7PU5Oh5sVX+8E4LHn25aaWv78/R8U5NmIjQ+jQ4+yqa9HOf9RYuebb76he/fuxMTcv6egWbNmNGvWzPvnli1b0qBBAz755BM+/vjjct/HZDJhMpVVyS5FRo9FpZqbcCkSGhX2WQYJUa7Q0XnxEahNx+UJHbHeAn2x0NGasamJKVkRaa9ioVPSeGzQGLFJLjVV5UKDFg16HLJoQ85z2dFp1I4dWfYKHb1Gh6yI7pxggy+ZDjtatJi0BgrdToKNFrLU7pxQoy+ZjiK1IVnCLSulhE6YyZd0mxU/gwmPR8YheUqRy+N8hdDRaXSEmy2kFhYQYDSBBLl2BzF+/mQV3QV6im6d0pyrWuERnFaFTp2ISE6WI3RKcq6axMVy8HoqxWWBh1ME/qF+bDQXbmeKZFVEGIU2BzcLBJ28QmAAB67cFK3I1RK8rcgdkxM5eOkmRU4XiZEh+BtM7Lt4A4NOR78myazadxpZUWhVPZ6M3CIu3c7C12RkYPNaLN56BFlRaFGjEk6Xh10nr6LXaXmuWxOWbztOvtVBpchgOtavwme/il/+jg2T0KFhxVbh9Xmmd1OOnb3JiYu3Meh1vDqiLWu2n+Jiilg7TRrZieUbjnDxegZmk54pz3dh9ZaTHD+Xik6n5fXnOnHi7E027RQi64kBTYkK82faAkExb1C7Ii8+3po356/lTno+Af5mZk/uy4FDV1n2s7rK6lCTJ4c2542Zv3DtepYoD5zUC7PRwCtjF2O1OYmJCWLu7MGcPXuLD97fiMcjU61a1F0j8oINuF0SiVUieGvuYLIyCnj5ue/Iy7USFOzLzHmDiK8czozXV3BQFRvDnmrJU39rz8mj15kz+ScK8/T+RN4AACAASURBVO2EhPoxfcEQkuvElfLnVEwIZ8bCocRWCmPv9rO8O/UX7DYXYREBTH1vKDXqxJGdWcDbJaLjQ55tw1NjOqPTaTl3/AZzX11KVlo+Jh8DY2b0o6OaxEpPzWHe2CVcUH0P/Ue2ZuSE7t5unEM7z7FwwnIKckTB4KhZ/ek0oJH3RTwnPZ/3JyzjiBrLb9whmVffHUZwiXG7y+Fm0bsb+PXLHSiKQnhMMK++N5z6rcveXR//4wIfT1jqvYC16duQF+cMvq8BOe1GFl9OW8ne38TPVFC4P0+90Y8uw1s+UrfNiT3n+WHuGs7sFwWaBqOeLiNaMnhc97/U4PsoJ+t2Dqf3XuLMvouc2XeRa6dvluJjFR+Tj5HIimGERAUREhWo/jeojD9IkRXyMgu4cy2D21fTuX01g/ysQm6cv82Sd9aw5J01xFWNpnX/JnQe0ZKYhP8Z0VZ8QiIDiYgNISM1h5Szt6j1AD/V/U56ag7AI3cdnVK/b/E1YvAvp56g5NmzQfyMtO55/96aTcvEjUiTDsnloidSLqVxeNd5NBoNfZ5qVebxzT8dpCDXRlRcCK27le7OOXsshcN7LqLTaxn6YvtSj61fcYDsjEIiYoJKJbCyMwtZpdZLjHyl8yN7ze49/zFiJyUlha1bt7Jq1aq/9H5arZbGjRtz6dKlf+JfNd1X6IgCQQ2yIhqRHyh0FD1uRULnFTqCTq5Rpz7FQsdaQuhoVDHlUfCuqUoaj/VqW7JFZyHPJbAPMjpcsuwVOgaNHpekwaMoXqFj1OpxSeCRZa/Q0Wl0goPlcRNi9CVTbUgOVlEQ/gYzRU4PkqIQ6SMmNhoEEyvTbiPIaMbqcuOWZWJ9A0hVhU6sbyA3CvIEudxg+n/svWV8VOcar32Nz8Q9xEkgWNDiUtzdpViFUtoCxbUULV4opUKp0OJW3KFYcffigQBxTyYZWzPvh2dlSBqgsvd7zt6/fZ5vzMQT1lzrvv9CklGsq8wWG3lWG2HunsRnZWP/Y6Gnr1hXFUx0CkCnon8A1+Weq8qBJbjytKDnKuh5z1VoCOdl0KkXGc6ph0JXUTsilEuP47FJdiqFBPIsLVtod7w8cNdouRYnEo3rRIZxUHZZta1Sll+v3cMi2akUVgKz2crVxwm46rS0rBLNZlmT06pqGW7EJhCfnoOvuwstKpd2hgW2rl6W2Pg07j5LxUWnYUDzGvy09zxmq42KkSUoFxrgzNDp1rgyT+IzOP/7E7EO6vE6O47eIPZZGq4GLaP6NeH7X06TmJqNt4cLowc04as1x0hMFdbyiYNb8s3q4zx6lo6rQcsnQ9vwy57LXLj2GJVSwah3m5OYnM3CZYfE19YkhlYNyzNm2mZyck0El/Bk1oROrFx/hmOyYPWtvvWpVb0kw8euJSPDiI+3K3NmdOf27XiWfnkQu91BpUqhTJvShV82n2edfCFs1KgcY8a2Y/2a50Lk+g3KMGFyR44f+Z0lC/ZgtUqUig5kxtyeWK02hg/6kSdy/s6YKR1p1KwCOzadZ9mifdglB2XKBzN1YS+8vF35av5udmwQP7d6jcsxdkZX9AYNK7/6lbXLjwJQqXpJJi3ohbevGzcuPuLT0etE8aebjrGfdqdu0wo4HA62rz7F9/P3YLNKhEb68/GSvkREixe9s4dvsXDcBrG28jQwel5P6shWb6vFxk8L97KlQKRcPpiJS/sVaSA/c/AGi8euIzvdiFan4d0pnWjXv2hA4P0bT1gwfBVxd8X6tWWvOgye2qXYqsWYnc/3M7awTw5t9A3yYui83tRp+eI7WXO+hc1fHmDDkr1YTFaUKiWd3m1Kv3Ht/5Iu58apu6ycs51r8t+CRqem7ZuN6DG8NX7BxZNw/8mxmCxcP3WXi4euc+HgdR7//qzY2wRG+FGmWiQlY0KJjAmlZEwYJUr6/+MQwuz0XM7tv8pvW89x8dANntxNYO287WxctItO77fgjXEdcfsHE5e/ekpWCCX5aToPbz79R7CT/ERcJ/9qo3xBvUeVF4jaC5/HdxKIu5uIWquiTstKL3wbi9nGr7LWpnWfui98m20/iqlO3RYxzvVvwbFZJX75QTgbuw9qVAxMVn1xEIAWnasTVCj80Jhrcjqw+g1piqZQCeyaZUcwm6yUrxJGvablyZGDaf/u+Y+BnRUrVhAQEEC7du3+1vs5HA6uXLlCpUov/uW96pjsdlxxcYKOSXZfFQQIvgh0CpxVJjty3YOYzKgUBvLsNjQKPXmSpRDoKJzBgQWgo3SCkkLO0TGjU+rJkYXHKoUGk90mT3TMqBQqbLL1vAB0tEoN+VYHdp6DzvOQQIcTdNQKFQqHkjzJ6mwufy5QzsdLayDTZMbuQEx0cnNQKVS4q3WkmYQAOdOUj90BYa6ePJGby4NdPJzN5QalmtR80VyelW/GIkmU9PDicYbQ8BQp9PR5DjoV/Py5lZSMSqGgrI+fs+eqnK8f1+KTUCkUVCwRyOWnCSgVCqoFB3H+sbhY1o8M56QMOg2iIjgl1z/UCA/hdnyy0O74+2Cz2rmTmIqnQU9MUIAzFbl91XLsvSxSkWuXDuNZShbP0rPxdjVQJzqMbWeFELdLrRiOXntAptFEmJ8n1UoGs1EOC+zxemVO33jEs7RsfNxd6Fq/It/tPIPd4aB+xZK4aDX8ckyMjd9pX5sTlx5y90kKBp2Gj3o2ZMX2s6Rk5OLv7cr7PRqwZNVRso1mwkp48V63esz//hA5RhPhQd4M7duQBcsPkpphxN/HjckftOarFUd4EJeKQa/hk4/acvjEHQ7JYWFv965HaKAX42dsEYWhZYOYMLwNcxfv5dbteNRqJeNHtMGg0zBy/HrMZhulIv2ZNbUrW7ddZLO8s2/ZoiIfvt+Mzxbu5bffxItiv/716dmzNvPn7OSErMXp07ceA956nZ+WH2WjHP/eoFE5xk3pyO0bz5g1eTM5OSb8/N2ZNr8XkaUCWDJ7F3vlqPmmrSsxYnIHTPkWJn64kmuyQ6r/e014Y1BD8nLNTBu+hnO/iQt7l351eWdEK1RqJdvXnGb5wj1INjslSwcy5fM3CInwI99oZsknWzi2R/y+Xm9diRGzuuHiqkOySfy8eD+bZHAqWzmMiV/0czYuJz5JY+7w1dy5KqY9HQbUZ9DE9s7RusVk5fvZO9gpO9OiYkIYt6Q/EWWeGyckyc7mbw6x+rO92KwS3v7ufLSgD7WbFxeGnv/1Jl+MXUNqfCYA7Qa+zlsfd35hkznA2QPX+GbiehLl1NwqDcry/tw+lCz35+m99648YsWMLVySXV0arZrWA16n96h2+Ab9szbzwseYlcep3Zf4bet5rhy9VcRCrVQqiKocTsW6ZahQJ5qYutH4Bf97LesePm4071Of5n3qY8zK4+y+KxxYfYLLR27yyxf7OLT2JGOXv0vNllX+rZ+34ETGhHLuwDUe3SoOdn92LGars/Yh8C8kIQNcOyVu9Cv9CVgdl52D1RuVf6mm6dS+q2RnGPEt4UmNxsUzeDJTc5yln11fIDw+svMyKbKTqkW3onqf6+djuXLmAWqNqthUZ8vKk841VbMOz6dOTx6lsE/+fO+MaPkvrSP/I2DHbrezYsUKBg4ciFpd9EsaMGAAISEhzJkzB4Dp06dTp04doqOjyc7O5osvvuDKlSsvzOT5s/N8olNQyvkcdCQ5FFBJAejoMdptRUDH7lAhycGBRUFHJZeGPg8O1CkNGG0WVKgxy88V6HEKO6yUqDHbJSfoqBWigFRyOHCTQUen1GK02nGALDbOEwnJckiglww6OqUGm92BxS45QUdYynVkWkz4aEWGDiicqyuNUo1eqSHDLKogUmQnVgHoKFAQaHDnWU4ObhotSoeCDFPR5vIoT5GKrEBAzJ00cUEu6+PHnZRUVAol0d6+/J6cglqpJNLTi9vJKehUKkp6eXMzMQWtSkW0rw/XniU6yz0vxcWjVCioFRHqBJ2GpUpy/O4jMekpVP8QExxAWnYeSVm5BLi7Eurlyel7cahVStpUKsMuWXzcuEIUN2JFKnKwtwfRJXzZd1m8oPauX4WdZ2+RZ7ZSNsSfYE93dp393RkWuOv0LTJy8wnx86RxpVL8sFtMItrWKU9aRi6HrsWiUin5sEsDfjl8lfiULLzdDQzpUo+vNpwgN89MyWAferesxvwfDmG2SlQsHUTnxpWY+c0+LFaJitFB9G5TnelL9pBnshIV5sfw/o2Ys3QvKem5+Hq5Mm1kO35cf4orN+XV1vstSE83MnPRbvEzqhvNW73qMWHqL8QnZjodV/fvJzHnu8M4HFC7ZhTjRrbh8yX7OSlfPN9+syGtW1Vi/Lj13LmTiEajYvSYtlSrFsHYkWu4Kz82ckxbXm9Ylpkf/8Jp2YXVd2ADBgxqxK6tF/l6sZjclIsJYercHqiUSsZ/sJKbV+JQKOCdYc3p3q8eD+8lMX3UOpISMjG4aBk3sxv1Gpfj8YNkZoxYy7O4NLQ6NcOndKJ5h6qY8i0snrqFX3eK0XzjNpUZMa0LehctT2NTmDlsNXEPklGplQwa25ZO/YVrJC0pi7kj1nJDdpF1GlCfd8a3c66tTu67zuLxGzDmmHDzNDByXi/qFXKuPL6TwNxCIuQugxrx5vgOaHXPr13xj1L4bMRqbsmfo17rygyb1wsv36JOkpzMPJZ/splDG4XwPKikPyMW9X2pnTwlPoNlk9ZzUhaQ+wV7M3hGD17v9OK26cIn/mESP8/axrGtAmRVahWt+jWg96i2/9gmXXCM2fmc2XOJ41vENMVqsTmf8ynhRY0WlajRvBLVmsT8H01VdvV0oWmvejTtVY/zB6/x7fi1PLmbwJRui3lzajd6jW7/b9fzBMuTv4IJzd858Q+TASFO9vwL5atJT9KIu5uAUqmgUp3SL307u93OYfn33rDDy808O2R4b9On7gvXRTtWnsRqsVG2ajgVqpcs8pxkk9jwjTBMdH7z9SKaG4fDwcolQlPYsmt1500FQHpqDr/ITs2Bw4quqX5YLMwAtRuVpeIf3Ix/9/xHwM6hQ4eIi4vj7bffLvZcXFxckTTOzMxMBg8eTGJiIp6enlSrVo3jx49Tq1bxUKM/OxaHhAa9s9VcgI5CBh0BQ2ZHYdAp6MlSYrerkEAUgBYCHSUqGWaUKNGRb7c9Bx2FGpMk3l+j1JEnWdArDWRbxSRIOMDsTtDRKDTkSw4cgJvKhSxLPnqVjhyL0AKJHJ18XFQ6smWXlpfGlVRTPnqVFoucneOncyMpX1RB6JVasq1mfHXCSQUKAnQCdPQqDUqHkmyLmRKFqiDCXL14kpOJSqHEV+tKQm4unlodNslOjtVCqJsHz7JzcDgo0lxeADoKoLSXL3dT0tAolUR4enE3NRWdWk2wqxv3U9Nx1WgIdHHnbnIarloNIe7u3EoU5Z6lfLy59iwRjUpJ5eAgzsQ+QYGY6Pwmg06j6JKcuPfIWf/wMCGdzHwT4T6euGu0XH4Uj0GjplG5KHbJ9Q9tqpTlxM1Yp17H283A8VuxqJVKetWrzKYT17FKEtVLh6Cww7HrQpMzsHkN1h++LCAozJ9ywf6sPSQmFH2aVePy7SfckSc4H3apzw/bz5KZm09ogCe9m7/mzNCpUiaEhtVKsWDFYaELqhZFtbIhzF6+H4cDGtYoTd0qJZn2xR7Reh4TRq82rzHlM2EtLxnqw/ghLZn39QEeP03H1UXL9DEdOH7qLjvlUseenWrQoFZpRkxcT3aOiaASnsyZ2o3tuy6zbaf4mju1r8YbPWo7qx80GhUTxrUnPMyXYUNXkpycjYeHgRkzu6HXaRg65CdSU3Lw8DQwfWY3AgM9nwuRtSrGTOpAoyYV+HrRPnbII/FmrSsxckJ7nsalMW30OpISsnBx1THx027Uqh/Nb4dusmDqVswmK8FhPkxb1IeIqIAi+pyAIE+mLH6D6PLBJD5NZ+bItTy4nYBSpeTd0a3pLFtgTx64wWeTNpNvNOMb4MHExX2IkS+UV07fZ97ItWSm5WJw1TFyTg9nzL3FbOOHubvYIbukyr8WwYQl/ZzZOQ6Hgz2rT7F8xjYsZitefm6MXtSXGo3LO68pDoeD/etO8+20LZjyLBjcdLw/szvNu9cq9qJ69sB1vhi7lvSkLBQKBZ3ebcLA8R1eaDmWbBI7vj/CyjnbyTeaUaqUdBnSnH5j22Nwe7WQNSM5i7ULdrHnp+NINgmFQkHTnnXoP7EjJSL8X/m+rzo2q42Lv97g13WnOL37UhFRcXi5YBp1q03d9q8RVTHsP8KmXrNFZao0LM83Y1azZ8VRVkzbTNzteMYsf/ffmvhcMDXJk11Vf+cUuO4iY0L/0s/sjPz/vEKtUq+EyBtnH5D4OA2Dq456rV+8Fr1zNY7fLz5CrVHRpm+9Ys/nG83slIXHPQY3Kfb1Hd11hWePUnH3cqF936IrsEun7nHj4iM0WjW9hzQt8tyabw5jyrdQrnIYDVo8F/RfPfeQM0dvo1QpeWfEP3O2FT7/EbDTsmVLHI7iIjWAo0ePFvn34sWLWbx48b/l84qJDlAIdGx2NTbZCm5xSM9BR6HFJAmbuWQXVnSlQsDMc9BRO2GoICG5AHTUTnBRolHoyJcsIuVYBh3Ru2WXNToiIbnAkeWqMpBlzcelkPXcTQYdkYYsQgI91QJ0XFQ68mxW7A7wlUFHo1CjVqjItVrw07k5s3P8dW4k5gmnld0ORpu1iNMq1NWTJzki9dhDbSApz4iv3oDRbMUs2Yhw9+JxplhXlfby5X5aGgoURHv7cictFZVCQYSHN/fT0tGr1ZRwceNBWjpuWi3eOj2P0jOdhZ6x6Rl46nV46wzcS0nHXaclyM2dWwkFPVe+XIwTSci1w0M5cU8IUZuUieTobfkOulQ4Vx8lkGexUqaEHzarxK34FDwMOqpHhDiFyZ1rVGDfxTuYbRKVwktgtzu4eP8Zeq2aLjVjWHf8irCEV4wiOT2HO09ScNFp6Nv4NX4+eAGrTaJGmVA89Dp2nLqFQgGD2tZm35nfeSpPcN5uW5uvNp3AZLFRvmQgTV8rzeLVIj+mUXWRofPlOrHf7ti4Im46LV+uEf/u2qIKvp6uzF8u9DctG5SnVqVwpny2A5tNtpb3qsfHC3aSnmHE39eNGWM7snLDac5cEKu64e82w9vDhbEfb8RilShfJohPJnRg6TeHOH1WuM2GDGpC9aoRfDRyDckp2Xh6Gpg5vRvGHBMfDV8lAgXDfJg9uyexsSlMnLkek8lKeLgvs+b2JCszj6Hv/khGuhFvH1emzelBWLgvk0at5fJ54ep6a0hTevWvx+ljd5j3yRZM+QJopn/Wm9AIX1YuO8ya78S+vnqdUkyc0wNXNx1rlh1hlXynWLlGJJMWCFfVpVP3mTNuPTlZ+Xj6uDJpYW+q1IwSq6klz0s8K9aIZOKiPvj4u2O329n47VFWfb4fu91BVLkgJn/Z36k5SIhLY87QVdyTX2y6D27MwNFtnAGAOZl5LBm/npNyYmyNxuUY9VnfIiLkrPRcloxdz2n5BahSndKM/rxfsYby3Kw8vp3yfJoTWjqQkYv7UaFmUYtuwbl7+RFLRq3iwXWxUitfM4phC/sRFRP6yuubKc/Mlq8PsmnJXvJzRXZLzeYVeeuTbkT9hfC5l537Vx9zaO0Jjmw8Q6ac4gwQGh1Eo261aNi1FiUrvPpr+791tDoNHy19i+hqJflq9Cp+XX8K32Bv3pnR89/2OQpcVAWFqH/nxN4Sf39/9rstOAWwU6fVqx1KBzeeBaBRx9deWOsAsENOEW/YvtoLhcn7NpwlNyufkJJ+1GlR1GUo2STWfSVcVt0HNcKlEIA7HA5+/lxMddr1ro1/ieet7E8epjirXQaNau0EKEmy8+3CvQC071GTcHlaZrfbuSZPS//u+Y+Anf9bx4wDAyo5KVmBza56IeioFFonqEh2YUVXKHTk2yUn6KgKwUxBQnJx0CkQHj8HHSViQiQ5HBiUostKp9SSaxP5Oy4qA9lWk2gztwiocVXpybLmC+CRc3IKyj1d1XpyLWYcKJyrK51SAw4FeTarnJ0jQEeUewqnldlqx2KXCJYTkgvKPZ/mZKFXadArNYV0OflY7XYiPbyJlZvLC0BHiYIobx/upafJzeXuxKZn4KrR4KXT8zgzEy+9HoNSLZd4GtA4VDzNzMbf1QWtUsXjjEx8XAx4aHTckysfwrw8uPYsEZ1aRZWgIE49iEMBNC4TxVG5/qFxmUhO3X2MVbJTObQEadlG4jNy8HN3Jdrfh6O3HqJUKOhSI4Yd525hs9upHR1GSmYusckZeBh0tKgczfrjQmfTtnpZbsYm8iQlCy83A13qxPDDvrM4HNC4SimMuWaOXH6AWqVkSMe6rDtwifScPEL8POneqDJLNhxHkuzUjomgTIgf32wSd0WdG1dCskms2iXGym93qcPT+HR2/ioE0YN71ic5OZvvNwjhb79ONXE3aJn95T4AmtUvS8uGFRj/6VbyTVaiwv2YNLw1C748wN0HSei0aqaMbsezZxlM/3oHAA3qRvPhO42ZNmsbd+8niQqJce1x0WkYMWoNeXky1MzqwYXzD/lyqRAnV60awdRpXTiw9xrffvMrDgdUrxHJlGldRCLypzuxWGxElQ5g5rxeWK02Pnr3R57GpaM3aBg/tTP1GpZl/U8n+ElOP61aM5LJc3qg0SiZNW4jJ+VizK596zJoeAvMZhuzRq/nlJy30+mNOrw7qjUqtZJNPx5nxZID2O0OylYK5eNFb+BfwpPM9FzmjV7PlTPCGt71zQa8Nao1ao2KnKw8Fo7dwDn587TsXpMPpnZ2Bpad3H+dxePE2srdy4UxC3tTq2kF53Xi94uxzB22kuSnGag1Kt6a0J7O7zQqMg24dPw2n41cTXpSNmqNioHj2tP1vSbFJgYXj9zi89GrSY3PRKFQ0HVIM/qPa//CFOL8XBMr5+5g+3JRLurm6cLbn3Sldf8Gr5xE2O12Dm88w08zt5IqBxaWea0k70zrTpXXX96F9KpjzrdwfMs5dn73K3cuPHQ+7unnTpOedWnepx6lq5b8j5jg/JXT9u0m6Fy0zB+0nI2LdlOuRhT1O744U+bvnoJJW17O35/sPLghgDbyL8BOTmYe10+LlXPdl0xrQKR0F7SXt+hV+4Vvk56UxXF5NdrpD9k3IMT6W2XhcbfBjYuJx4/sFFMdD28XOvwhEfn0r7e4d+MZOoOGXoMbF3nux8/3Y5fs1G1SnoqF1mIHt1/m4Z1EXN319C2k7zm06yrzPtnw0u/1Ved/GnYoBjpKJ+goXwg6Cjk4UIQLFged55k5BaAj7ON2J+iY7FYMSheyrEJ4bJXbzwX8iCLPHLmx3KDUk/MH0HFRiXoId7ULGeaCkEDRbO4u5+4IS7kAHb1KgyQJ3U6A3t25mvLRupCcb8RDqydPdloVNJcXpCU/yxUTH5VDRYbJRAkXN1KMudgdEOXpw8N00VxeytOH+2lpqBVKwj08eZCejkGtxlfnQlxmFp46PXqlivjsHPxcXECCxJxcSri5YbXaScozEuThjmSzE5+VQ6C7G2qHgsfpAnq8DQZuJabgptNS2teH84+eOnuuCkCnRXlR/2C3Q83IUB4mpJFuzCfUxwN/V1fOyC3mHaqVY8sZkSDaOCaKO0+TSczMxd/DlVqlQtlySjzXvV4ljl19QFp2HiW83WlUKYqfDog7kA51KnD/SQq348Sq6t12tZ1hgWXC/GlYuRRfbBS775a1y6JVKFmzV4js3u5UmzsPkzh1VWTmjOjXmBMX7nP+RpxoHH+7GScvPOTEBTF5+WhgE548S2etnHjcq0N1osL8mDx3u1htVQxjyICGTJmzncTkbDw9DMye3IWDh2+yXbaZdutYnXYtKzJivOi48vJ04dNpXXkUm8rMJdsE1FQJ55OPO7N27Sl+kVOKW7epzLChLVn29SF27RAXwvYdq/Hh8BZsWH2an+UJSp360Uyc2pl7dxKYMWETOTkm/AM9mDG/F2ERfsybspUjcl1Dhx41GTKqFalJ2UwbtY5YOYNn+KQOtOxYjfgn6Uz/aA2PHySj0agYOrkDrbpUx5RnYcGkTRzbJz5Oyy7VGTq5A1qdhns3nzFz2CpSErLQu2gZMbMbjeQsjvs3n/Lp0NUkPk1Ho1Xz4bTOzvZlm1Xix3m72Srf0VaoXpIJS/rhL2d/2O12Nn9zmJ8X7sEu2QmK8GPiVwOJLhSNbzFZWTF3J9vkfJCw0oGM+3IApSsWnZzk5Zr4btovTqdVcKQ/o78Y8NJpzvlD11k6dq1T99G4ay3em9UT7xfccRc+107eYfnkDdyXW9ADwnx5e2o3GnWt+Y9AJCE2md0/HGHfymPkpBsBUGtU1G3/Gi36NqB6s4qoNf+dLyPNetcXVRiL97B80npqtqyMVv+vV184ZCv933WTSZKdOxfF1CK6yqvDAQFO7bkiRPnlgl9Z/nlkywXM+RbCSgdSvnrkC99mx88nsFklKlSPpEyV4lk9h7deJCUhE58AD5p1KZq9Y7XYWCO7rLq906hI7o5kk/hJnup0HlAfL9/nq7brF2I5feR3lColbxVaUxlzTfy0VHy8vu81wVO20+fm5POD/Pg/Of+df6X/pmN1gAoFVrso+aQQ6OTJ7qt8qaCpXPG818rxHHTUhWDGgQaL3SEcVn8AnQKHVQHoqBVqzHahx9HLoGNQPRcq65V6cm1m3NQuzpRjg0pHjs0s1z4IqBHlnuKxTBl+vLWuJJuMGFRaLJIdm93uBB0FCjzlck9vrXgfuwMn6ChQECCLld01OiTJQbbVTIirB/E5YmRdytOHB4VA52F6BlqliiBXd2IzM3HTanFTaXmWnYOvwQB2SDYaCXJ3J89kER1Wnp7k5JnJMpmJ8PIkO99MZr5JdFuZbcTn5lLC3Q2tSsWD1HS8DHqC3d25+kRMd6qHBTt7bzxZVAAAIABJREFUrlqUL82hG8JO/np0Sa4+iifHZKF0oC8ahZIrjxNw0WpoWqEUW2WXVZtqZTlz5zGZRhMR/l5EBfiy54LsNmpUjZ2nRSpyVJAvFUID2HhUTHveaFKNE1cfOqc9/Zq/xrJtp7DaJKqXCSUq2I8fdoj1RK/mVYlPzOLQ1ViUCgUf9WnIoTN3uXE/AZ1Gxfi3mrNx3yXuxCZj0GmYPKQVG3Zd5MbdBLQaFZPfb8Xhk3f47dx90Wn1ZhOMRjNzv9wvvu+G5WnfrCJjpgpreWiwNzMndOT7n3/jlLym+vDdppSO9Gf42HUYjWbCQn2YM707+/dfY41sI2/RPIahH7Rg4YLdnJAFxu8MakTHjq8x7ZNfuHBOrMXe+6A5HTpV47M5u/h1v4DCbr1r8+4HzTiw+ypfzBfaonIxIUyb1xMcMHbIT9y+IZKXPxzXhnZda3D90iNmjt1AVmaeyNVZ2JsKlcO4dOYBs8duIDc7Hx9/d6Ys6kP5ymEkPhUAFHs3EZVayZDx7WjfqzYKhYKDWy+ydNo2rBYbIRG+TFna32kr37/pPF9N24rVYqNEqA+Tv+xP6ZgQAFLiM5kzfBW/XxKr0G7vNuLNMW2da6uMlBwWjlzNJdlt1rjTawyd3bNIk3ncvUTmfvATsb/HA3JA4MedioW13Thzn8+G/0xinACXToMa8+akzi8sbMxMyWbZ5I0cleE2IMyXYQveoGbzV7tNE+NS+X7KJk7sEFDt4q6n96h2dB7SHK3+r3csgVg7XPvtNlu+2s/ZPVecEoOAMF/avdOE1gMa4fUn0PXfcvpN6Mzh9adIfJTC9mWH6DGi7b/8MU15f7/uAeDx7XiM2fnoXXV/qePq2HZx89XwJd1VIH6Xu1cKDVq7/g1eCLymPDO7C0IA32tS7HnJJrFhmZjKdn+3cbGKkoO/XCDxaTrefm507F+08PPAlos8eZCMh5cLPd557t6y2+1895lYU7XpVsO5pgJY990xMtONhET40qH3cy3uqm+PkpluJDjMB66+9Ft+6fmfhh1HEdDRYH0J6FgLgY7ZYX8h6BQ0qBeAjlapwyhrbpRoMNsl5/RGo9CQbxdrKr3cWO6iEmstUeSpw2izyBMbs/yYllxbQe2DcFC5KMXEx0sjbOQiO8eVVJPovMqzWpEcDifoKBVK3FR60k35+OpcSMvPwyHrcp7mZKFEia/elaS8XLx0ekwWG/k2iTA3T55kZ6GgKOhEegjXlU6lxkevJy47Cy+dHg1KknKNBLq6km+xkmO2EObpSUZuPkaLRTSXZxnJs1op5etDclYuuRYLUb7eZOTkC+jx9sRqlYjLyCLAzRVPnY7fE8R0p3ygP6cfPEGlVNCkTJQTdJqVL8XJ248w2yQqhgZizDfzICUNTxc9taLCnPUPXWrHcODSXfIswmXlrTdw9NoD1EolfRtVY9Oxq5isNipHBuHr5sJu2YH1dqta7Dx5k5RMI0G+HnSoU4Gvt54Qa61qpdCp1Gz+VUxTBneuy7lrj7l2Lx6dRsXo/k1Zu+cij+PT8XDVMe6tZixbd4JnyVl4exiY+G5Lvlp9nLj4DNxd9Uwd1oZVm89w/U48Wo2KSUPbcOlaHDsPih19v261KRPpz7jpv2CxFljLWzPns738fjcBrVbNlLHtMZutjJ28EZvNTqWYUKZO7Miy5Uc4LNuOB/SrT4f21WTHVQIajYrxE9pToUIII4etIvZhCnq9holTOlGxYigTRqzlxrUnKFUKho1qTZsO1YokIjduEcPoSR14GpfG1FHrSEnKxs1Dz5S5PalaM5J92y6ydM5ubDaJ0uWCmLaoD34BHmxbc5rln+3DLtkpVymUKYv64BvgweUzD5g9Zh05Wfl4+bjy8aI3qFi9JFaLje/m7WbnWgGWtZuUZ+w8ASMWs41lM7ezd4PQKdRqUp4xC3rh7imyZy4ev8P8kWvIzsjD1V3P6IW9qdviudvq6ql7zBu2ioyUbHR6De/P7EbLnrWdLxQOh4O9a06xfNoWzCYrnr5ujFrUl1rNiuoYLGYrq+bv4pevD+FwOAgI9WH0kgFUfkEeisPh4MjmcyybLMILlUoFnd9rzoAJHV/5omkymtnw+V42L92H1WxDqVTQZmBD+k/shNdLQghfdixmK8c2n2XrV/t5cC3O+Xj15pXoOLgZNVtV+cfZN/+pR++q461pPVj43nesnb+DFm80+JdBrqDb6u/UPQDcOiuuY+VrRP1pcF5mSg5X5SiIRi9JOQa4ef4hj+4koNNraFaoVLPwObDxHLlZeQRF+FGnRfFYhKM7r5DwOA0PH1fa9Cm6BrOYrayVtTq93m9WBOBNeRZWfyk0h72HNClyo3Bs33Xu3niGwUVLv/ebOR9/9jiNbavFteS9sW2deTux95LYsVHcAAwa0ZLVu8a/9Ht+2fmfhh2rXSW7oDRYHfYioJMnidoIq52XgI6OvCKdVw55dWWWCzoLOq/UWBwvBh3RTl4UdLQKLXk2q3M1pUCBRqEhTyqofchHIU9+sq0WvLUupMkhgZ4aF1LN+XhoDGSbzTjACTpqhQq9UkumbCkvECiHugjQUSlUeGn0pOQZ8dEZyDFbsUiSECBnZRYBHaVCSZirJ48yMnHRaHBTa0nIzcXX4IJkc5BqyifY3Z2sPBN5VitR3t4kZGZjskmU8fMlLjULsyRR1t+PuLQMTDaJsgF+xKdly9DjQ2ZePul5+YR6eaByKLifLKY7Ed5eXHj0DI1KRYNS4c5Cz9YVy3Doxj0kyUGNyBDi07JJyMwhwMOVckEBHLp6D4UCetSpxI7ztzBbJapGBmO32Tl7Nw69Rk2vBlVYd/gyNruduuUjkGwSR68KTc6gNrVZe/ASOXlmooJ9qVchgu92iv+UnRpUJDkth2M3HqBSKhjeqyE7joiwQHcXHaP6NeGbDb+RkmEkwMeN4X0asWjFr2Rk5xMS4MmI/o2Zt/wQaZlGAv3cmfx+Kz7//lcePU3HzVXH9JHt2bLnMqdk4fHId5ths9qZNn8nDge8Xqc0b/epz4SpW4hPzMTDXc/sT7py5VocP/ws1mlNGpbjw8FNmTl7O9evC4v6qBGtKV8umGFDV5KUlIWHh4GZs7qjUasYNuQn0tON+Pi4MmtuTwx6LcMHryD+WQYurjqmzOxKTKUwZkzaxOnjYhrUf1BD+r3dkNPH7zBvihAih4b7MmNxH0oEe7Hss71sleGkYYsYRk/tjFKl5PPp29kvZ2k0a1+Fjz7phEarZtuaUyxfsBe7ZKdMxRCmLO6LfwlP0lNy+HTEGm7JU5l+Q5vR5/2mKJVKUhIymTV0FXevPRE9WiNa0muI0M5Ikp11Sw+ydqmAj1IxIUz+agBB4cJ2LUl21i89wFpZxBweXYJJ37xZJDsnJ8PIknHrnbH71RqWZczifvgEPhddAjy8+ZQFH/7Eo9ti6tOyT10Gz+j+wtyclPgMlo5ezbmDYkUXVTGUEYsHvLKHyuFwcHTzOX6Yttmpy6nyejmGzOn9l/QehY8xO5/dPxxm65f7nRkvOoOW5m/Up/MHLQkv++fZPf/Np1mfemxfdpB7lx+x/dtDDJzS9V/6eAXCZP2fuOT+eApqOirUevFqs/A5vuOiKL6tHP7KFdZu2VnYqFN13DyLB01KNomt3x0FRITCH2FWskmsk4Gl26BGxcTNu9eeJi0pC/8gL9r8QQ+05affSE/JoUSoN+36PG89MJusrJBXWz3eboi33/PV1vLP9mKzSdSoH02t18VNgcPh4Kv5u7FLdho0q0C1mlGv/Nm87PxPw470CtBRylk5zvVUIdDRKHQYZdCRHMLJpVXoZdDRkytrbhSI4s+CNZVWqXX2YWkVenKsorE8UwYdjVwxUQA6SpSoFGry7TbZUp4n5kQKLTlWkYacahLQ4iG/j6fGQJY5H4dsKU80inJPNWqyLWYCDG4kybqdEFchQNYo1biptKSZ8vE3uJKel4/N7pCbywXoRHp48yA9HZVCRZCLG3FZWbhrtWiVKpLzxBQnz2Ql12Il3NOT5OxczJJEtK8vj9IysEl2yvv7cz85TRR3BgZwJykVm91OTIkAHialOaEnITObbLOY9OSbrDzLFlk5vgYXrj1NxKDRUD08mKO/i/1220pl2H/1nqhuiI7gztNk0o35hPl6Euzpzm+ynbxbnYr8cvo6kt1B3bLhpGYYuZ+QhrtBR+daFVh1SLzgNq8WTWJqNjcfJ2HQaXizRU1W7DmH2WqjclQQUUE+rDkg3rZfy+pcuf2Um7FCGDyyVyN+3nGOpPQc/L3deL97fRavPEJOnpnIEF/e7FCT2d/uJ99spWxkAAM71Wb60r0Y8y2UCvdjWP/GzPpiL6npuQT4uvPJR235ZuVxbhVMa0a05ebvz9iwTYywO7epSvOG5Rg5cQNZ2flOa/kv2y6wS35B7t29Fh3aVGX0uHU8eZKOq4uOaVO7oFQoGD5sJUajmZAQb2bP6Unc41Rmz9iOyWQlMsqfWXN7khifyYSP1pCTY6JEkCcz5/fG1U3HqCE/8eCebDef3JHGLWLYtOoUP355CIcDqtWKYvKc7igVCj4ZuZYLck1E//ca0/fdxmSlG5kxah23rsShVCp4e0RLug2oj9UqsfiTLRyQAwebd6zG8E86odVpuHPtCTOHrSYtORsXNx3j5veidhNh/b586h5zR6wlO8OIu5cL4xf1obpcx5CdYWT+yLVclNdSbfvU4T35Y4JYW80fvoorchpti561+GBGtyIX9xtnHzBv6M+kJmQKEfL49nQdXFSELEl2tnxziJXzdmKzSnj6uvHRZ32p27p4gJ3D4WDfqhN8N3UTeTkmNFo1fUa3o+fwVq/UwcTefMpXY9dwQxanBob78e7MHtTv8Nrf0uVkpmSz/ZuD7Fh+iNxM0cfkF+xNx/ea0+atxv9H83D+bx6lUkmXD1syf9ByTu648C/DTrJc9/B3Uqglyc6lY0JAX61R+T95a5xOvibdXx65kpaYxW+7hdauw5uvv/Btftt9hcQnYmrTokfxj3V42yWexabg4eNK+z8Ij405JtbLbsm+w5oXyZlKT85mkyxoHjiiFVrt8+c2r/iN5IRM/Et40nXA87XX+RN3OXvsDiq1kvfGtnE+fmTvda5feoxOp+G9ka1e+v3+2fmfhh2HDCPPQUdPniQSki12ITi2o3EWeBYGHeQ29ALQyZMsTtApsJIXgE621SyCAAuBTq7NgqvKhUyrGQUKVGgwFQYdhRIlKkyFQEelUKFyqMmz2YqATkGLubfWQLq84hKW8lz0Kg3YFeTaLAQa3EmUO6+CXUS/lU4lCjszzCYCXdxIzjVidwi4ic3MEKDj7k1shqiF8NO58Cw7By+duGtJy88n2M2dTKOJfJuNKG9vnmZkYbULuLmblILdAZUCA7mVkIzdAVWCSnAjPhG7Q24uj08SNQ/BgdxPTiPfaqNsgB9p2UbSjGK6o1epuZ2YgodeR/lAf07efYxSoaBVTDR7r4gXqCblo7j44KlTr+Oi0XDu3lP0GjUdapRn40mxAmpWqTT3nqbwJDULX3cXmlUqxRq5qbxjnQpcf5DAo6QMPF319G5cle92nkayO6gXUxJXrZrtv91AoYDBHetx8MxtYuXV1NDur/P1hhNkG01EBHnTt3UN5v8owgIrlwmmbf3yzFq2H5tkp0bFcNq+HsO0JXuw2iSqlg/ljQ7VmbJwO8Y8C5Fhvox9rwVzlu7naUIG7m56Zo3ryM59V/lVTkkePKAhEcHejJ68CYvFRtnoEkyd0IGlXx/izPmHKJUKhg1pToWyQQwfuZqMDCP+/u7M+bQHD+4ns3DBbmw2OzExIcyc1Z3Dh27y9dKDIom6VhRTpnXh9Im7fDZ7JzabnfIxIUyf15O05GyGv7OGtNQcPL1dmD6vF9Hlglg8awf7d4g1XofuNRgyujXJCVlMHbmWuNgUdDoNY2d04fXmMTy8k8C0j9aQnJCFi5uOifN6UrNBGdJSspk5Yi23rz1BqVTw7pg2zvycwvqcsFIBfLK0H6GR/jgcDn75/hgrFu7FbndQqkIwH385gBJyAu2dq3HM/nAlyfGZ6PQahn3avYjI8tqZ+8z9cKVYWxm0DP1U5OIUHEmys2HpAdYsEh8/JNKf8V8NLFa6mPw0nc+G/+xMtK3bpgrD57+Bl3/xcLikJ2l8PmIll+UXuHLVIxn5xUAiXjFFMWblsXreDrYvF+WgOoOWXqPa0n1oq7+ly0lLyGDj4j3sXXHUmW4cViaIXqPb06Rnnf9awfG/cmq1qopKreLx7894dj+RkNIl/vydXnKSZG1WiYi/3it2/+pjcjKMuHoYKF/j1ZOLx3cSuHc1DpVaSZMuL15NAexZfRLJZiemVhSlX6ABcjgcbJRLOTu/XXxqY7XYWCsLgnu816SInRxgy4/Hyc7IIzTKn+Z/EC2vWnoIU56FspXDnGYBgOSETDbKhoBBo1s79W1Wq41l8/eIr+WNuoRFivwnY66J7z4XGsU+gxoSEORFdnY2/+T87/1VFzqSwyFA5U9AR6ysLGgUehlYnndeFUCQTqknpxDoiHLPAtDRYZSE8Fij0JFrsxYCHaUzNVnYx02oFCocDiVmh1QEdBQONXmS5AQdhWxNz7SY8Sm0zvLXCUu5QaVFksAk2ShheF7uGWzwID43B4Nai9qhJNtsFtk6OTk4UBDl4c1DGXQi3LyIzczEoFbjodbL6yoDZptErsVCuIcnSdm5WCQ70T6+PExLw+6AmIAAbiWINNCqQYV6rkKCuPxEJM/WCA3hctwz7I6izeUVgwJ5kppJtslMlJ83VqudBynp+Lq6EO7tybmHT9GoVDQtF8U+OTenVaVojt98iMkmERMaiM0icf1xIu56Lc0qlXb2XHWoXp4ztx+Tmp1HiK8H1SND2PybeK5Po6ocuXKfpIxcAr3daF+rPMtlsXHLGmXIMZo4dPEeKpWSoV3qs/7AZZIzcgnwduOd9rX5fPVRTBYbMaVK0KpOOeb9eKhIWOC878U4uHndslQsHcysr/YKvU+taBrWLMWUBTsF+MgZOlPm7yA9M48S/h5MH9OB5SuPc+macG1NGN4aU56FT2Zvx253UKdmFB8Nac702du5cy8RnU7NlAkdUSsVjByzFpPJSlSUP7Nn9eDAvuusWCEuOKLjqi0//XicLZuEC6tt+6oMG9GS9atOsVK+O2vYtDzjPu7IpXOxzJkqVlQRkX7MWNgbV1c9k4ev5uqFRyiVCoaMakWnXrW5fvkxM0avJzsrD78AD6Yt6kN0+WBOHb7FvImbMZushIT7Mu2LvoRF+nPn+hNmjFhDWnIObh4GJi3ozWv1SmOzSny/YA/b5TLAOk3LM2ZeT1zd9JjyLHw+aRPHdospVvMu1Rk6oys6vUZoa9ad4ZsZ27BZJIIj/Pj46wFElhdA4XRbLdiN3e4gokwJJn5ddG2VlpjFguEruSoDTLPutfhgVvdiF/6jW8/z5fj1QmDqomPIrO607FOv2KTFOc35ZBN5uSa0eg0DJ3Wm83vNXqqHcTgcHN54hu8/2URGsrjQ1+/wGoNn9SIw/K8nH6cnZbJx0W52/3DEGQAYXa0kvcd0oF6H1/6twXr/bcfd25XKr5fj8pGbnNp16V8SKifJFR6BfyOV+sJhYZyo2rDcn+p1CqY6NZtVfCFIg9DS7JGdf53eLl7rAHDu11vE/h6PwVVH+wHFCz0Pbj5P4pN0vP3di011MtNy2SpfQwaMaFXka469m8iBLWLyPHhCuyL/B35YtA+zyUql6iVp2Oq56H7rqlM8e5yGt68bbxSyp69efpT0tFxCwn3p1q940OHfOf/TsKOQQwGfg45oN/8j6OTLoJMrCZix2EUbekE4oE5pIEcu97SjQCoEOqLNXKyp1AodRpsNN7WBDLncUxSKSnioXUkz58uN5QqshUBHrVDjcCgxSZLcUi5qH/QqnTMNOTW/aHaOq1qH2SZhkewEFcrOKWFwJ94oqh7sdsixWsQ6K1s8HymDjhIIcfXkcVYWrhotBoWaZKORABdXcs0W8mxWIr3EFMdmd1DOz487yeI/eaWAQK6/qLk8NJiLcaLQs3Z4KOdiRYBWzfAQLsXFIzkcRZrLywX6kWk0kZSdS5CnO956PVceJ2DQaqgbFc6Ba+IFqH3Vchy4ek+kHUeGkJppJC41Ex83F2qXDmX7OSHG7V63Egcv3iU730xUCR9K+fuw66y4sx7YvDo7T4n6h4gAb+pViODHPeLFv+vrFbkXl8KN2ET0WrVIRd5xlqxcEyWDfOjWuDILVx1BkuzUqRRB5VLBLF51FIB2DWPwcTM4wwK7t6qKm07Hkp+OANClRRVKBnnz6VIZfOpE065pJWeGTumS/kwc2po5S/by4FEKBoOGmRM6ce3aU1ZtEJqhdq0q07NzDUZPXE9CotDezJnejdiHKXz+hdCfVH+tJB9P6sh33x1l7x4BBj171aZ//wbMn72DE3Ln1KD3mtClWw0Wzd3NIdnm3btfPd4c3Jgdm8+zbMkBHA54rVYUH8/qRlaGkZFv/8DTuDQMLlomze5OrfrRHNhxmSWf7sRmkyhTIZhpi/rg4+fO+u+P8dNSAX3V6pRi0oJeuHsYOLL7Kos+2YLVYiO8VADTvuhHcLgvWRlG5oxcy9WzImKg74fNeOMDoc+Jf5zGzA9/5tEd2aX1cUfavVEXhUKB2WTlqym/cFAOLKvbsiKj5/dyptvmZBpZOGIN5w6Lv43m3Wvy4ac9ijipzh++xcIRq5xt5x/O7llk4gNC7/LVxPUckbvEyr5WknFfvflCHUXyUzHNuXRU/M1VqF2K0V+8SUiplzdxP7mXyJejV3NVnuaFlA7kg3lvUL1pzEvf548nIymLjZ/vYdd3vzohp0Kd0vSb2JnXmlb8r8nG+f/71G5dlctHbnLtxO1/CXaePUgCRPXHXz1n5XDAGk2LC4QLH5tV4lc5ILB5zxdn5gAc2XqBzNQc/IK8qPuCwEGHw8Gaz0VuV7v+9XH3KqrnMZusrJW1Or3eb1rMYbj6i4PkGy1EVwqlQaFmc4fDwXdzxc1Dg1YVqVDtuYX+2vlYju27jkKhYEghCEpJzGLNt0cBeHtES6eQ+cGdBLatF9/r+2PbOFdhkmR/5c/oZed/Gnby7RKuCrdioCPJicrFQed5gadGbjYvAB2l3JRuB3QvAB0VOvJsNlxVAnQKpjdWu90JOhqFEDpLDrsTdDRKNZKkxGK346tzIyU/V24x15BjteCncyVFBh2RrSOcWPlWG1Z7UdAJ1IsKCHeNDqtNwiRJhLp58iRLlHsWrK7UCgUlXNx5mp2Nh1aH2qEkLT+fIDd3MvLyMEkSpbx9eJSWgd0BFfz9uZWUggKoEliCq/GJxUCnRmgwF2TQqRMeyplY0Vxeu2QY5x49weGAWhGhXH0cL1rIgwOJz8gm3ZhPuI8XOqWK3+NTcNfrqBpagiOyMLljtfLsvnRblG+WieBhQhqJmbmU8HKjQkjA856rBlXYeUb0XFUMD8RLr+fXK/dRKRW81aIm649cwWiyUC4sgDLBfqyXXVX9W1Tn5LWHxCak4+GiY3DHeny9+QT5ZisVIgNpXK0Ui1cfBaBlnXJ4uen5bouAkL7tapCVlcfqneKF8N0e9UhOyeHnPeI/8Dvd62KzSixZIYNP66pUKhPMpLnbsNlEhs57/RsyefY2klKy8fFyYc7HXdm26zL7Dgnr91t961OjWgTDx64lOzuf4CAv5s7ozsFDN1mzVkxCWrWsxPvvNWH2pzs4fz4WpVLB0GEtaNiwHONGreX27/FotCrGTWhPjZpRTB69nquXH6NUKfhoTBtata3Kss8PsF3O32nTqRrDxrTh92tPmT5uAzlZ+QSU8GT6oj6ULOXP918cYNPP4q7y9eYxjJnWGaVSwfxJmzkil3J26FWbIePaoFAqWLHkgLPxuHajsoybK6Y2sXcSmP7hKpKeZWBw0TJmXk/qNRcv8hd/u8PckWvJzcrH28+NSUv7U7GGyBBJeprOrA9+5v6NZyiVCt4c25bugxs7L653rsYx+/0VJD/NQKNT88GMbrTqXcf5vM0qsXLBbjZ9LS72URVCmPjNm4T+AUp+vxjLvCE/kvQkDaVSQe8Rbegz8nnqcsFxOBwcXHeKZZM2/OVpjsVkZcPiPWz8fC9Wiw2dQUuf0e3oOrRlMevvy05OhpFNS/aw7esDmPPEuqp8rVL0n9zl/0HOC05EBRFLkCD3U/2Tk5maQ2p8BgqF4i+nSCc9SePuZTEVrfMCbVfhc2b/NTJSsvH296B2yxcHCdrtdn75VmhpOr3TqNjfI4ipzr1rT9AZtHQbXNxuvnv1KdISZeHxH9rPH99LcjodB40vOrk5d/Q2l0/fR61R8fbo57obySbx9ZydALTtUZNShQprl83fg9lkJaZaBM3lElBJsrPk053YJTuvN6tAzXrRADy8l8Qno39+5c/oZed/GnZUsqOqOOgoioGO6LwSoKMuBjpCuyNAR0+O1YxeJXQ5AnSE8NhN5UKGVayp7HYFNocddzn5WKsUX4PkcDhBR6vUYJHAZreLiY4TdNQYbVb8ZPgBBT4aV1Ly8/DQ6Mm1WLDZHUKXI2fn+OldScoz4qnVk2+xYbELS3lcAei4C9DRKJX461x5lp2Dt06PXYIMs4lQdw+ScnOx2u2U8fHlXkoaoKCifwA3kpJl0Al0gs5rQUFcKgCdkOcTnTrhYZyVu63qRYZzSi70rFsyjAuPnmKTHLwWFsyDpFSyTRZKB/hitUjcT0nD29VAGX9fTtx5jEqpoF2Vcuy8KO6Sm8aU4urDeNJz8wn38yLMx4MjNx6iUiroU78qG3+7hlWSqBkdisPm4NTvj9FpVAxoVp1VBy9itkq8VjoEHzcDO+X6h3fb1WH3qZvEp2bj7+VK/5Y1+GLDcaw2iZrlwygXHshWOmxtAAAgAElEQVSyTQIoejSvSk6uiU0HBCR92LsBN+7Ec/zCA5QKBaPebMqFa485du4+SoWCkW835d6DJHbJqcmDetdHr1Uz83Oxt27aoCydWlZh3PTNZOeYCAvxZuaETnzz/VHOXYxFpVQwelgrvDwMjJ64AbPZRrkyQcyY0pkfVxznwEEBQwP61ad9u6qMHbOe+/eT0Os1TP64E+FhPgz/4GcS4jNx9zAw49Pu+Pu7M+L9n4l7lIqLi5Yps7oRUymMaeM3cvaUcLO980EzevSty6E91/h8lqiuKFcxhKkLeuPiqmXm2A2cOiqmEG8MakT/9xqTmW5kxoi13L7+FKVKyQcT2tG+Zy3yjGYWTNzEaTnZuOfbDRk4vAUqlZKTB26wcOImTHkWgsJ9mPrlACKiA3E4HGxafpSfPtuHw+GgXNVwJi/tj58cQX/xtzvM+2gNOZl5ePi4MvGLflSVL5QOh4Pdq0/y7bSt2KwSQRF+TF72JqUKuZdS4jOY++HP3DovJkkdBr7OoCmdi2hiJMnOxqX7Wb1AOEQCw3wZ9/WbLwwIzEjO5vORK5137uVrRjHqizcJi365JuTysd/5cvRq54SgZotKfLjgjb/cY2XKM7P9m4NsXLzbKTwuWyOK/pO7UKN5pf8HOS85BZOYxMepOByOf/RzKrDsB0cFOGsj/uz8tl2YHSrWjf7T0Mi9q4W7qmWfui+EGIBzv97kyb0kDG462rxRfPXjcDhYs1hMdTq++TpefygcNeaY2PCN0PL0/ahlEeExwA/zxN993RYxVK79/G/earHxnay76TKwAUGFWtt3bzzHo3tJuHsaGDishfPx8yfucvLXWyhVSoZOfl7KuvuX89y5+QwXVx3vy2JlSbLz+ac7SXia8cqf0cvO/zTs5EsSLgodZumvgA5O0DFJVrGmsllRKQo0PqCTHVYGlZ4cGXSUaMmXJCfoqBVqbHKLeYEYWacUqcuSwyH3W+WJx2wObA7w1bqRYspFo1CjQIXRZsNf50ZyIdBJNeXjqdWTZTLLIYGePM0V2Tk+OhdS8vJkS7kFq91OuJuwlINCdl1loFOp8NYYhC5Hb8BslTBarER4ePEsOwubw0FZX7GuUvwBdCoHBHI1PskJOpdljU6NkGAuPhH229phoZyNFXHoDaIiOPFAWIfrR4Vz+n6caN8uGcr1J4nkW21UCPInK9dEfGYOgR5uBHu4c+7BU7RqFa0qRjtBp3XlMpz6/dH/x95Zhkdxt23/t56VeAIhCQkSCAkW3N3drVCgFC2uxa1oSwUrbSkUt1Lciru7JiSBQEKIezbr+36YYUkaKL1738/9Hs/b9/rCwczsZneS+c8513UK2QYTZYt54axScjniJUq5jF51K7P93B2sNjsNQkuSlpnLk5dJaJ2U9G4Yxi/HbmC12alfoSQ2i41Tt6KQSaWM6FSHHSduk5qlp3gRNzrVq8DyHeex2e00qRaEq9qJrUfETJfOtXkSncDlezHIZFIm9W/K8YtPuBseJ3jkDG3FwVMPuP0oFoVcxszPWnH6YgQXbkQhlUqYOKQ5r15nsG6bGLLXvipVKhQXPHRMFkLLFmPa2NYsXHaEiMgEnFQK5k3vSHJyNrO+2Ovg7EwZ34bFSw9x67bwlDhhXGvKh/oxZvRmEhMzcXPTsHBhD6xWG2NGbiIrMw+fYm4s/rIX+lwjY4b+QnpaLt5FnFm4rA8uLmomjthI1NMElEo5n8/tTP3G5dj801m2/iyM5Ro0D2XynM7kZOcxacgvRD6JR6GUM2F2J5q2qcSzpwnMGb2F5IRMdC5qZizrRZVapUl4lc7c0ZuJiUxEoZQzbm4XmnUIw2azsXX1SbasEhbbKnWCmPZNH5zdNBjyTHw37S0/p3WvmoyY1RmlSi6AoB/OsGHZUex2O2UrFWfG6v6OEE9DnolV03ZxSuQS1G1diQnL+jjGWiCOrcZuJis9F42zE+OXfUT9dmEF1ozkV2l8NWqjw6a/cZfqjFpa8H3e1MWDt1g5aSuZqTkolHL6T+1I15Et39vNyU7P4aeZuzghduQ8fFwZsaQP9Tt+ONEchGDOoxvOsW3JfoeEPDDEj4FzulOnXZX/Csgx6I28fPKKmMdxvHj8irSEDDJTs8lKzSErNZvstBykchlaFzVaV43wr5uWwHK+hDUpT/k6Zd8ZnfHfKE9RPWU2mslMyf6XfYrgLdgpXemvZ4+df2MO2OnP4yriY5IdI9DWfeu98xi73c6vq4WOZLuP67/z7/LaiUdEPohFrVXR7R0mgnvXnXtLPO5akHh8++JTbpwLRyaX8umUgqO+g9uu8ComBTdPHb2GNXZsz0jLZZM4EhswugUu4sjMaDDz/ZLDAHTpW4eS4gNAanIWv4jX/6BRzfEUfw8HfxUAkPo92V4fqn802JFKFG+Bjl0IAC0MdN6Ge8pR/gHoyBxARykRAI5apibbIiisQInBahVckE0GYUxls2O1kw/oKDFYLdgAV7mWVKMeJ5kSg9mGxQ4eSi3JBkE+brdLybMWBDpucsF7x02pJsNgKAB0ZBIZrgonUvL0eDlpyDAYsNjshYDOi8wMnGRydHIVibm5eGu06PPMAi/H1Z0XmcK4KsTTmydJyUiQCLycBAHcvOHoSIHKPj4i0BGUVrdihY5O9eJ+XI8RODp1SwY4gE7D0iU4LyaX1ysdyM1nsZisNir7+xCflkVKth5/dxdc8/F1GgeXdCSXd6gawsm7kRjMFioG+GC32bn9PB6NSkHnGuXZckaQL7cIK8OzuBSeJ6bjpnWic50KrD8mmFS1qh5MUmo2d6PiUSnkjOhYh3WHrpGTZ6RscW8aVCjJ6t3CE1WHBuUx5Jo4cE5QZI3p04iz1yO5/zQelVLO1EHN2X7oJpEvktGqlcwY3ooNv14l8kUyGrWSOaPbsGPfTe49EYDQrLFtuXw9mmNnBe7I8P4NcdGomLVYIB7XqV6Kof0bMG3uHl69zsDVRc2Sud24diOajVuFm2LblhUZ2K8+U2f86ujezJ7ZGY1aydgxm8nONuDn586SJb2Iikpk8YL9mE1WgssVY8GSnjx5+IrFc/cKJOagoixc1ovszDxGD15PSlIWru4a5n/Zi9JlfQpEP/QaUI+BnzXjeWQCs8dtE4510zDnmz6UrxzAtXMRLJm6izy9Cb9AT+at6Id/CS8e3XnB/HFbyUzLxd1Lx+zv+hJSOQCD3sSyab9y6bjQler0cV2GTGmLTC4jMS6N+Z9t4tmTeGRyKSNmdaLdR0J7PS/XyNeTd3BJ5Bi16lmTz+Z1cYx74mOS+WLoemLEhPRPpranW77UZqvFysYv346tgir6M23NJ/j+gXNx+ehdvh2/hZwMPWqtis8W96JZj1qFQEROpp4103ZwSiSSlqrgz6TVg94b7mi327mw7ybff76NjORsJBIJ7T9tzMCZXdC+wxvlXa+/cvgO62btJC4yAYCigV70n9mVJj3r/I8ZAVotVp7df8mDSxE8uvyU6PsvSHie/N5Q5/yVk55b4P9XD91m57JDKFQKytcpQ1iT8jTsVutP+Uz/6VKqFKh1TuTlGNBn5/0tsPP4ujBeLxNW4i8dHxv5WhhhyaTUa1/1T4898LMw7q7WJPS9Sq/7lyN5fPM5CpWcLoMbF9pvs9nY9LXQfek4sAGuf7AXSEvO4jdxpNx/QusCxGOrxcraxYcAaN+3Ln75ro+05GzHA8rAcS3R5iPw/7L8d3KyDZQuV4w2+YwNd647z+vYNLyKuBTIv/r+q6Poc40El/ejbTcBACa+zuAXUTnWf1hjDl+a92en6p31jwY7JqsNJXIsdjlWJKJrsgmFVE2O2LV5k4slQ4XBZsZJqiHLYirQ0XkjJS8IdBQYPwB0nGRK9BYLdt4CHbVMhd5sxSoCnRSDEORptUkw2qwOoCPJ563jodKQqhfckH01LsTlZCKXyHCWq0gTvXNS9XpsdgoAnUCdKy8yM9DIFailClL0eny0OjJyDRitVkq7uROdLrQM3wt0vIvw8HUiUomw/d6rRGQSCRV8inI37jUyiYQw32LcjHkljLHyja4alS7J+afPkQCNypTgcuQLLDY71QP9iH6dSkaegZLe7iiQ8jguCWcnFTVL+TsUWF2ql+fwzXBhPFXan4ycPKISUnFRq2hVuSzbz4ky6Boh3H4ax+u0bIq46WheuQwbxZyrznXL8+R5Ik/jUtCpVQxuW5Mf9l/GaLIQFuRLSPEirD8kgKKPWlXl2YsUrj96iVwmZdLHTdl94i7RsSk4a1R8Pqg5P2y/wKukTDxcNUwd0pLlG84Qnyj8f9aoNny/8RzRL5LRaVTMm9Ce3Ydvc1UcS00Z2YqUlGy+Wi0YbrVtVoEOrSozcfou0jP0+BR1Zcm8bvz62w2OiGORAX3r0rRhCGMnbCExMQt3Nw2LFvQgISGTubN/w2y2EhLqy4IFPTh98iFrRA+cOvXKMGN2Z34/fI/vRRO9GrVLM3N+Vx4/jGPB9N3o9Sb8AzxZ+E0ftFoVU0du5tFdQQ02dnp7WnWswtXzESyevhtDnomAkt7M/+4jfPzc+W3TJX7+5nfsdjthNUsx4+veOLuoOXnwDsvn7MVstlI6pBhzV/TD28eNpPgM5o3cxLPw18gVMkbN6UwrcaG7fy2ahaO3kJWei6uHlpmr+lOhhsDPiY9JYf7wX3jxNBG5QsaIOZ1p+9FbjsGV4w9YNn4r+mwDbl46pn0/kEq1gxz70xIzWfzZBh5eE25SHQY2ZPCsTgV4MSaDmZ/n7+HgeuEmUKZyAFN/GPROEvL9SxEsG/kLSXFpSKUSeo5tTd/JHVAo373UpsSns2rSVq4eFf5WA4KLMW7FwL9kLAfw9PZz1k7fwf2LAvh39XKm37TOtPmk8Xt/5t8tu91OzKM4rh+9y/2L4Ty+8vSdYZduRVwoEepPYIgfRQK8cPVyxtlDh6unMy6eOqxWG/pMPblZeeRk6MlOzyH8ehR3Tj8iJT6du2cfc/fsYzZ/sYcOQ5vRd3pnXDzfrTr6T9cboPZ3umA2m42HV4S16V0u2e+qEzsEfl+NZhX+dISVk6nn923CsV2GNX3vcdtE0nHr3nUKGV0CXDh0l+dP4tG6ONHtHe+z+dvfBcl45eLUb1OQE/T7rzeIeZqAzlVN31HNC+xbv+woeblGylb0p0W+btDjuy/4fY8wphs5o4MDeMfGJPPrL4Lh6fDP26IR3aavno/gojjWGjerIzKZFLvdzsolhzHkmSkfFkDLDlXe+/3/rP7RYMeOpADQMVhNKCVveDhvgY4cZQGgI+RaCR2hwkBHCnZhv9YBdBQOoKMTAYpapiLXYsYOouRcj0amIsdkxcZboOMkU2IWgzzfAB0pQuxDutGApziicnjn5GShkMrRSJWCd45aR5I+F7sdAp3diclIR4IEf60LL7My0SmUyJEJfjlaZ1Jy9ZitNoLcPYlKE/wi8gOdCt5FeJggdHHKexfhYUIScqmUcp5e3I9PRCGTEuLtzf1XCcilUioWLcLtl/HIJBKqB/hxRQQ6QkdHMAVsUrYk5yKeCzfh0gE8fJFAjtFEsI8XJqOFyBSBr1PBryinHwqZT12rV2D/9UdYbXbqBQcSl5LJy5QMPJ011C9bgt2XhKf8HvUqcfZOJKnZeRT3dqNGkD/bzwieOn2aVOGSmHPl4ayhX/OqrNpzEavVRr2KJfHQadhxUrgJDelUm2v3XvAw+jVOSjmT+jfll73XiE/OxMtNy4SPm/DNhtOkZuQKrsj9m7Dkh+OkZerxLerK1KEtWPr9cV4nZeLppmXu+Pb8uPk8j56+RqWUM3die27cjmHvEeGz9etei7DyxZk4Yyd5eWaCShXhixmdWfnDSa5ci0YqlTB+VEtKlfBm7PgtZGUb8PdzZ/Ginly/Gs3q1YJfTr16ZZk6rQObfjnPbtFuvVOXagwf2ZwNP51ll7iAtu1YhdETW3Py6AO+W3oIm9VOpSqBzF7cg+xMPWMHrSM+Ng2tTsWspT2pUrMUe7dd4UcR0FSpVYqZS3vi5KRkxRcHOCqqoNp0q87Iae2RygoSkes2C2XKoh44aZQ8vvOCL0ZvISM1BzdPHbNW9iO0SiB2u51DW6/ww4ID2Kw2gsr7MXvNALyLCUGdN8+Fs3TsViFLq4gLM7/vT0jVEoAw39/89VF2rhJ8QkKrl2T69wPx9Hl7A7h36SlLR20kPTkbtU7F+GUf0aB9wYU0LjqRxcPW8eyh0JXsNqI5A6Z1LAQkzCYLm5cc4NeVwvkoVtKbyd8Pem/QpyBBv8Damb+iz85DrpDRa0Jbeo1v+5cIyMmv0lg/exenRUWe0klB11Gt6Tmh3TtHF3+3TAYT986Hc+3Iba4duesIJn1TWlcN5euWpULdYIJrlKJEiB9uRQrfZD9U7Yc0w263E/v0NXfPPOLSgVvcPfOIfd8f5+S2i/Sd1pkOw1v8xwHcH+vfATsxj14JXT+diqC/EORptQrp9AAt/kAC/mMd23IJg95IiXK+VH2P6eDDa9HcF8nBPUY2L7TfarGy+Rshj6rrkCaFFFgxEa85Lq4RQ2Z0LHAOcrPz2CT63fQb3aLAax/eiuHUgTtIJBI+m9XRYWFgtVhZ+cUBAFp1rUZomHBO7HY7qxcewmy2UqN+Geo1CwUgT29klTjW6tavDqXEsdaZ3x9y43IUCoWMcTM6IJX+vXHsPxrsWOxyQIJMohSAjkg4/rOOjlwix2Czkd8cUCNTkyUCHbtdjslmE3x0TAaUUgVGiw0bCLwdowGNTOXg9AjdmTy0cieyjGbsSBxARy1TYrTaMNvsDqAjk8jQSFVkmIx4qd7GPrwBOiqpHJVUQabJgI/GmYQcwVsnUOdGTEY6UomUYmodcdmC0kpik5BhNOCvcyExOweLzU5ZD0+epgqLWqinN4/fAB2vIjxKTEImkRDs6cWjhCQUMiml3T15lJCMSi4jyMODB/GJqOQygr28uBuXgEImI8zPh2sxcUglEuqVDHSEeDYLLsXpJwIZtGGZEtyIjsNgtlDBrygZOXm8SsuiiIuWUl4eXAyPQS6V0qlaKHuvPcRuhyYVShMem0hCRg7F3J2pHFCMA6LUvF/jKhy++oTMXAOli3kS7OfF3kuiiqlldY5eDScxPYdini50rlueVXsuYLdDyxrBWC02Dl18hFQiYXTPBhw5/4jouFRctEL8w8pt50nL1ONfxJXhPeuzZO1xsnONBAV4M7hbHeavPEqO3khQoDej+jZg/neHScvQ4+fjxoxRbfhqzXFiYlNx1jmx8POO7DtylzMXI4TR2JBmuOqcmDbvNywWG9XCApk8pjULlh7g0ZN4lEo5c6Z1RAJMmrJdICeXK8aCed3Zvfs6O3cIC2jHTlUZOqQJy748zDmRBDxkWBM6d6vOlwv2c/akcJ4GDm1Mn4/rsmXdebasF562mraqwITpHYh88pq5E7eTlZlH0WKuzP/2I4qX8OL7L4+wX1RktOlSjVGft8OQZ2LWqM3cuRqNRCJhyMTWdOlXB2Oema+m7ObSScFLpNfgRgwY3RypVMrJfbdZPnsPFrOVUuWKMWd1f4r4umE2CflWR0TpaeMOYYxb1MPhn5OfnxNSNZAZq/vjKT7JZqXnsnT0JkeIZ6dPGjJ4ZicHodNms7Fr9Uk2i/46Jcr5MuOnQfiXKtipOb37Giun7MCgN+LioWPiiv7UbF5YGvwiIp4vh68j+oHAR2vVtz7DFvR8L0E1KTaV78Zu5LaYT1aueinGLR9ACVEN9GdlMpjYvfwoO74+5FBYNetTl4FzulPE/6/7uvxZWa027p17zKltl7i0/yZ5OW+7N0onBWFNylO1aQUqNShHiQrF/2NjMolEQkCwLwHBvnQc3oJbpx6wdup2nj+M5cfPt3Fh7w3m7Br3t8ZLf7neTOD+xv30nthdK1+rzAe9ckAgoqe8zsDZXUvN9yirQADS+9eJis1hzd4LxN50dVr0rIX3O9ybT+25yatnybi4a+mcL5TzTf28+BA2m516rStSvnrBdPTtq0+RmZaLfylvx/gYBECzZoEIaLpXJzifeeG+rVd4/jQBZ1c1g8a9dT4+deged68/Q6mS89m0t6TkjWtOk5yYiY+fO/2GNAYgIz2XH74WvtdHgxsSUMLr/5sK/p2yIkEl8nAU7wQ6SowFgI4Cg5hrpcjX0cmyCJ45NrsMk83mICMrpUoMFit2RKBjMqCROZFtEcI9nUWgo5M7kWEUTAffAB2NTEWe1YolH9CRS2SoJEoyTUa8nbQk5gpAp5haADpOMgVyZGSZRJPA/EAnMwOZREoRJx3xOYIDssViJ8dkpLizK/GZWdjsEOzhRUSq4JcTIgIdKRJCvLx5lCR0cYLcPHiSmIxKJiPQ1Z2IxBTUCjmBrm48TkhGrVBQyt2dB68ScZLLCfUpwo0Xr5BLpdQK8OdiZAwAzcuV5tRjYXzQNLgUFyNiMFttVAnwJT41k6SsXPzcXfBx0XEtKhalXEb7sHLsuSoAllaVy3IzKpa0nDwhudzbg99vP0UigQFNqrH7/H30RjPlA4tS1NWZo9cjkEokDG5bi91n7pGenUcJHw+ahJXih/0C/6VT/QokpmRxTRxVTejdiO3HbvMqSejgjOrZgG82CvEPZQK86du2GgvWHMNoslAp2JceLcKYs/wIJrOFyuX86NepBrO+Pkiu3kSZkkWY8Gkz5n17iMTkbLw9dSyY0omfN1/g5r0XyOVSZoxvR3pqDl98KczGmzYsx6cfN+DzWbt4GZuGs86JRfO68fJFKt8uP4bNZqdWzdJMn9qelStPcEoEFIM+bUSHDmHMmLqT+/dikculTJ7anpq1SjNtwnYeiOOoidPa07h5eZYtOMjJo8JorM/A+gwc2pgLpx7z5Zy9mE1Wyob4Mu+bPqg1CuZN3M410Zfn0zEt6NG/HomvMpg9ejMvnyXjpFYydUkPajcuR2pSFnNGbSbqSTwKhYyxc7vQvGMVrFYb65YdZbdoWlinWSiTl/ZErVWRkZrDwtGbeXjjORKJhIETW9NDlI4b9Ea+mbKTC6KEvXXvWoyY08WhGIl6GMeCYetJjE1D5aRg7Je9aZIvFTo7Q8+ycZu5Lp6n5j1qMnJRzwI+Iga9iTUzdnJcTIWvVLcMU77/BE8ftwLrh91u59Av51g7+1dMBjMuHlrGftufeu3e3Wa32+0c2XCen2fvIi/HKEjQZ3Sm84gWHwQMdrudK4du8+O07STEJANQvk4ZRnzZlzJVSv7pa/9qPX8Yy8mtFzmz8wqpr98qXrx83anZtgq12oQR1ji0kNPu/1RVa1aRsKvlOb7pPGunbefx1UimtF7EivNzcdL+a7lTf6UMeqPDUfpdOVIfquvHhb/JKk1C/9LxRzYKf/tNutf6027e2T03SInPwKOoK427vpvE/PB6NHcuCFELvUa1KLTfaDCxWUwZ7zmyeSFTzBtnn3DrfIQgGZ/SrsC+2Ogk9m8SxBNDprUvoAI7tOMaz8Jfo3NVM2BcS8f2pNcZbBYDQgeNb4WruxYQyMo/LRM+x0fDGlPMX1BsPXkQy77twoPN6KntHdfjmmXHyMzQUzKoCD0+fjcp+6/WPxrsyFBgsJn/0NEhH9CxoHon0BFSyTUyDVkWA1JkWO1SzDY7WhHoqKRK8kSgoxWBjlYuBH++ATrpxjx0cjUZRqHL8wboaOUCb8ciJpYn6rNFoCN46xQR/XLeAJ343CzUciVSu4QcswlfrQvx2YK3TqDOnZjMdGQSGV4qDQm52birBKWV3mymhIsbLzMysdsRlFYpAtB509GRSaQEe3jyJCkZhVRKCVc3IpIFcOOrcyEyORWtUomvszMRSSnolEr8XVx4/DoJjVJBkJcnt2PjUchkVPP35XL0SyRAk7KlHECneUhpzj5+htVmp1Ypf6LiU0nLzaOEtzsuShW3n8ejVipoUSGIvdeEm1SHaiGcf/SMrDwjZYp54a3TcvbBM+RSKR83qcqOM3cwmq1UK+OPUirjzN0o5DIpQ9vWYvPvt8nJMxJc3JuqQb5sEM0DP2pRlUdRr7kfJYyqJvZpzNo9V0gRR1ODOtZmyfqTGE0WKpf1o019If7BarVRt0opGlULYt7Ko8JorWopWjcIYdZXBzCZrYSV92dQj7pMW7KPzKw8ivu6M3dCe5atPk54VAJqJwULpnXmzr2XbBVb2107VqVdi0qMm7KNlNQcvL2c+XJBDy5efMovYsBn61YVGTakCfPn7+P2LUENNnFSG6pUKcH40Vt4EZOCRqti3oJu+Pq6FZCWz1nUneAQX2ZO3M6dG88FX50p7WjdIYzdWy7z8wqBsFunUTBTv+hKbo6BSYN/ISriNUqVnCnzu9KgeXnC78cyd+xWMtJy8fR2Zt7KfgSF+BL1JJ65ozY7SM6zl/ejfJVA8nKNfDllJ1dPC92m3sOa8PEYodPzPPw180ZsIDEuHbVWxdRvP6KmmH2V+CqN+cM28OyxSFKe05l2fd9Ka0/vucnyz3diMprxCfBk9tpPHW7JAFEPY1k4dD0JL1NRqOSMXNCDVn8YH8RGJrBoyM/EhMcjlUr4aEJbeo9vUwiMZKZm882YjQ5JebWm5ZmwYkAhQPSmEl+m8u2YDdw998ZQMIgJqwbi/xdiCV5GxLNm8hZuiy67Xr7uDF7Qi8Y9av/bCqu8HANnf73KkXVneHrrmWO7zl1Lo+61aNa7HqF1yvxfk6vLZFLafNKY8nXK8Hmbxbx4/IoVYzYw+edh//HPlJaQAQjdq79CDM9fuVl5PBBz1T7klQOQ+jqDq8cEVWHbAQ3fe5zNZuPX1cIotvOQJu8FRVtEINOiZ+13OjfvX3eelNcZFPFzp8Mf3JItZitrFwkeOB0H1Me3xFvys91uZ838/VjMVmo2CaFm47cjtPSUbDavED7bwHGtcMtHdl6z+BCGPBPlqwbSKl+UxI9fHQFk56wAACAASURBVCErQ0/JskXpLn4Ok8nCN/P2Y7fbadauMtXrCpy6y+fCOXv8oaAsndUJhUJGdlYev/xw+r3n68/qHw12DDYLzlKXPwAdiQh0rI6OTv6kcgVOhYGOTYrZbkcrF0ZXKqlAPAaJY5z1IaDjrngLdHLNFqx2HEBHIQZ5ZpvNBYDOGzdkjVwJNgm5FjN+WiHzKj/QUUhluCvVJOlz8HLSoDdaHEqrmLR0QEI5Dy/CU952dJ4kpSCXSAly9yA8OQUnuRx/nQtRKWlolUqKqLU8S0nHxUmFt1pDVHIqrk4qimh0RCSmoFMpCXB34/6rBJzkcioVK8q1Z7HIJBIaBJXgTLiwsLYKLcPJh1GCKWCZQB6+SBAAjI8nMruUB7FC5EPD4JIcvCHcKLrWqsDvtyPQm8yUL14UtUzOlXDBN6dvwypsOXkbi81GvdASGAwWrkYI+z5tXYtfjlzHIJKPA73dHOaBg9vX4sKdZzx9mYyzRsW4Xg1Zuf0CWbkGSvt70r1ZGEvWncBitVGncglqhAawdK1wobeqF0JwiSIs+VEgFrdpGEpYsB/zvhPGJA1qBNGhRSWmLhJckcsFFWXS8BbMW3aQ2FfpuLqoWTyzK4eP3ePIcdF3Z0ADKoX6MXbKNnJzjZQI9GLJ/O5s33GVg4cEXk/fj+rSuWMVpkx+66EzZ24XvL2cGfPZRlKSs/HydmbR0l7YbXbGDN1AWmoOnl7OLFzWGxdXNROGb+R5dBJqjZKZC7pRtUYpVn95hIO7RQJ3r5oMHd+Kl8+SmTl2CymJWbi6a5n3bR9CKhbnwomHfDXjN0xGC6WDfZi38mO8irpw9ewTlkzZJRCXS3kzb1V/ihX3IPl1BnM/E4jICqWc8Qu70aS9IO++cvIRX07cLnrreDL3x4EEBAlqnAfXo1k4chOZqbm4emqZuXoAFWoKGUJWi5WfFx5g3zqBD1S9SQhTln9cgFdwYtc1Vk3b5QBCM34aRFCFgvLg/GMrd28XPl/zCZXrBxdaN+6cf8JXI9aTlpiJQinn0znd6DikyTvjFux2O8e3XuLH6TvQZxtQqZUMnNWFjkPfbyjoWJ9yjWz7cj+/rTiGxWxFoVLQfUxrek1sj/pfTNT+Y0Xefs7hdac5u+uqY0wlV8io1aYKzT6qR43Wlf+yeeF/owLK+TF98yimtF7MqW2XqFAvmLaDCsum/51KfS2AHU9f938ZSN08+QCL2Yp/GZ+/pCD7fdslbFYbobVKU6Lc+/PQrp94SGxkAhpnJ9r2f3eY54OrUdy79BS5QkbvMS0L7c9IzWGnqDQcMLldoRy1I9uvEBuVhIuHlj5/IB5f+v0hdy5HolDKGTajY4F9678+Rm62gaBQX1r3eKuyunL6MVfOPEEmlzJ6VifHdXHzUiRnjtxHKpUwbk5nR4do+7rzvHyejJuHluETWgOQnZXHysUCf6d7v7qUDRXO0ZrvjnNMNGn9V+sfDXaUUicR6CjE0VV+oKMuBHTkqMi15gc60rdAR/YXgY5MADrOcjXp+YBOqjEXrdyJXLNZADoqAegopXKkdsFEsKj67WiqqJMzr3Nz0MmVWG128t4DdJQyOS5yFcn6XLzVWrLzTBisFkq5uvMsTSArl/PMB3Q8vAlPSkEulVLSxY2nKamo5XJ8tM5Ep6bholLhrnIiJi0Dd7UaF6WSZ6npuKudcFepBdCjdqKYs47Hr5PQKhUEe3txI0YYY9UtGcC5CIGY3Cq0DMcfCH4ljYJLcisqjlyTmVC/IhiNFqKSknHXqqlZ0p8jtwX+Rc86lTh44zEGs4UqJX2xmq3cin6FRqWgV73KbDpxC5vdTrOwIBJTs3n0IhGtk5L+Larz86FrmC1W6oQG4uyk5MClR0gkMLJLfQ5eeMTLhHQ8XDSM6FKXb7ecRW8wU760Dy1qBfPVhlPY7dC8VlkCi7mzcotwY+3eKgwXtYqVm4T/92pblSLuOpb+ICqqmpSnVpWSzFyyH7PFStWKAQzr14BpX+wlJS2Hot4uLJ7RmfVbLnHpqui7M6olbq4aJk3fhdlspWJ5f+bO6MSKlce5cFEY040e2YLq1UoydswWXr/OwM1dw+LFPcnTmxg3ejO5OUYCS3ix6MtexMelMXfqr+j1JkqU9Gbh173JzTEydsgvpCRl4eGpY8HXvfEP8GT+lJ1cvSD8jKHjWtH1o9rcvhbNF5N3os81UryEF18s74uPnzu//nKBdd8J37Nmg7JM+1IYB+3ZdIm1Ip+mSu3SzPi6DzoXNRH3Y5k3chPpKQIRefaqjwkJCyhkFBhWN4jpy/s5wMrhrZdZM28fVouNoAp+zFoz0OGfk5mWw+LPNjqyq/qMaUnf8a0dQMJkNPPjnD2OnKCazcoz6Q9AyJhn4oeZv3Jsq3BMWINgJq8eiMcfiLYWs4VNi9+SkIuX8WHa2iGUqvBuT5XUhAxWjHtrKBhaszQTvx/0wZvhm5HVmilbHYTgmq0rM+LLvviW+vtSbKvVxtVDt/lt+VEeiaohAL8gH9p80pgW/er/LXLxf6sq1i/HwLk9WD9rJ2unbqNR99r/UTJ2UqywBnr7enzgyMJ16ZBgcVGnTdgHjhTA+dFNwgjrz7o6drudHcvFSIcBDd/5Xe12O5u+EkBBy161Kepf+LNvW/47+mwDpSv407hzQXl7doaeLeI1/PHYlujy/QyD3sRPYsen+5BG+Aa+7Rjdv/6Mk/uE7zxydifH9abPNbJ6kTCC7z6wASXEh5U8vZEVIren00d1CK4g2DBEP01gp6jKGvV5O4cHzw/f/E5aag7+gZ58LGZlXbkQwcmj9/m7Db1/NNjJsVhQSzSFgI7qPUBHbzUX6OhYbELgpxDqacBJKiis8gMdnVxNptkASNDJ1KSb3g10dHInsk1mbIhAJ+8N0JGht5iFLo4D6AiJ5kLsgw2D1YK/1pW4bMENOUDk6KhkcpzlKlLz9BTV6MjQv5GUexCdmlYI6JTz8CI8OQWFVEpxF1ei0oQujpdKTUxaOm5OTugUKl6mZ+Gp0aCWyXmZnomnVoNOruB5ajruGjVeGjXhiSk4q1SU8nDnzsvXKGUyagb6cyEyBokEWoWU4XcR6DQLKc3l8BgMFiuVivuQmWvgZUoG3s5aKvgV5fg9wb23V91K7LnyCLPVSq0yxcnMNhDxKhlntYoutcqz8YTQjWhboxxPY5OJjk/FVetEn8ZVWHtASC5vHFYaq8XGiZtPkcmkjOnWgO2/3yYxLRsfT2cGtKnB15vPYDJbqREaQNVgf5aLwKZz04qo5HLW/yaMmT7tWofMLD2//CZap/esi8lgZrUIfHp3rE5AMXfmfyN0eBrVKUP3tlWZPHc32TkGSgZ4MW9KB75ZdZx7DwXfndmfdyQ7O4/ZollgvdpBTBjTigUL93PvfiwKhYzpUztQtIgLY0ZvIjMzD19fN5Ys7UV0ZCKLFxzAbLZSvqI/Xyzqwc1r0XwlOh1XqhLA3EU9iI5MZN7UXeTmGAko4cXCb/qgVMqZPHwjTx/HiyOqLjRoGsrxA3f4bsEBrFYblaqVYPay3mg0SlYuOMgRMT6iY5/aDJvcBux2Vi88yKE3xOXuNRg5vQNyhYzzR+/z9bRfMRktlCjrw9zv+1PUzx2T0cyKmb9xSlw4O/Sry7AZHZDJZVjMVn6Yv4/DWwXuTKP2YYxb+pZfE/0ojvlD1pEkjrwmftuXeq3fEj2T49NZMGQdT++9RCKR0HdCa/qMbVWgAxMfk8zCwWt59jAOiUTCRxPa0GdC20Jdl4QXKSwe8hMRt2OE79a/AcMW9Hwvf+X83husnLiF7PRcwVBweie6jmr1wW5OwotkVk/czHVxxFE0wIvhX/b9t0wBDbkGft90gb2rjjmiEOQKGfW71KTtp02o1KDc/xpX5R4T2nJiywViI+I5ufUinUYU5qf83XomEswDQz5MFM9fuZl6rh4Vfl8Nu74/hfxNXTl6l+RX6bh6OdOw4/uNBO+cDyfidgxKJwWd3xHpAIIR5sNr0ShU8nd2dWKjEjm8WQDxg2d0LNR93PztMbIz9JQo60ObPrUL7Nv+/SmSxdFXz3zmgyaThZVz9wHQpmdNylUOcOzbuPIEKYmZFPP3oE++QM+Nq06RFJ9BUV83BoxsBgjjs2/m7hPUr01DaCBGwVw9H8HJw/eEB7/ZnVCq5GRl6vlOVGp16lGT03+jufOPBjtvycgFgU72vwl0NO8EOsI2F4WGNIPQ5XkDdJwVajKNRuxIHEBHJVWATYJeTCx/A3SKOOlI0OfiohCCPo1WIfYhNksAOsW1brzIzMRJJkcrU5CaJ3jnpObmCZJyNw+i3gAdcXQlAcq6exGRnIpKJsNX58zztHSclUrclGpeZmTioVHjJFHwKiOLIjotMiS8ysyiqLMOhV3Ky7RMvLQanFUqIpPTcFM74e/iwv24BNQKOWF+xbgU9QKpRELzcqUdQKdV+TKceRSN2WqjWgk/EtKziE/PxsfNmSBvD84+EiIfetSpxO7L97Ha7DQMLUlcUgbPE9Nx16lpHRbMllPCzbJL3QrcioglNjkTL1ctXepU4KeDV7DboU2tcqSm53AjXCA7j+3ekPUHr5GWpSfQx50eTSrzzeYzWG12GlULIrCoOz/9JhCXP25fg7T0HPafEJ7Sx/RrRER0EscvPkEigfEDm/LsRTIHxP3D+jZAYrfz1Rph1NWxZSUa1AhiyrzfMBjNlA8uxtQxbZi/9CBRz5LQapQsnN2VJ+Hx/CT6ubRpWZFP+tVn6rRdRD9LQqtRMX9eV8wmCxMnCEnmZcr4sGhxT86ffcLqFUJIZ/0GZZk6syMH99ziJ5Ek2KhpKFNmdeTS2XCWiYCoQlgAc5f0JCtDz5ThG0mIz8DFVc3cr/sQWsmfLT+dYbMY0NekdUUmzOmMxWxl7tit3LgYiUQiYdjkNnTuWwd9rpHFk3Zw4+JTJBIJgye2pmt/gVC4fc1pNomz/ZqNgvn86z5otCrSU7L54rNNPLnzAqlMMAps31fg0GSl57Jo1CbuXRGUXQMmtqbniKaOm/LZ/bf4bvIOjAYzviW8mL32UwKDizmu7fuXI1k04hcyU3PQuWr4fFV/qv+BOHr56F2+GbuZ3Kw8XD11fL5mEFUaliu0Tlw4cIvvxm0iNysPnauGcd99TP0O1QodB4IfyupJWzmzWwB8pSsFMHnNpx9UWlnMFvauPs7mhXsx5pmQK2R0H9uWPlM6/G1CcFZaDvu/P86+7487TPx07lraD2lGx2HNHY7B/5tKKpXSaUQLVo3byIE1x+kwrNl/LK096q5gdBoU9mHZeP66dOg2JoOZgOBiBFUK+ODx+8TcqrYDGhYaKeWv7d8KPJw2/eoV6jKC0Kn7ZZHYLRnU6J0KrJ8X7MdmtVG7RQXC/uD98/xJPIe3CQ9uw2Z3KqAgi41OYs96ofs0YlbHAgT+XT+dJe55Mu5ezgya2NqxPfx+LAfE9xs9q5PjNeH3Y9kvbh8zqxNOGmH77s2XiIp4jc5FzajPBVJ0dlYey0Xjwq4f1SZUdKJe9fUx0tNyCSzpxUcDGzB2yntP23vrHw128qx2FP8i0JFJZJitAtB5o7pykqnINf95R0cAOmoH0HFTCN46BYCOyNFRSRXYbVIMVotDaQUSiqh078y3egt0XHmZlYlGrsBJKifNIHjnJOfohUwrd0+epqQiQUKwhxfhqSlIJRKC3Dx4mpKKk1yOj0ZHTHoGrioVOrmSuEwBxMjtUl5nZePjrMNutZOQk4OvizMSGw7Q4ySX8Tw1HU+tmqJaHY/ihTFWhWJFufosFrlUSuOyJTnxMAqAthWDOf7gKVarndpBxXmekEZSVi7+Hq74uTlzKfwFCpmM7rUrsPPSPex2aFYxiMi4ZGJTMvF21dIwpCQ7RfPA3o3COHs3SpCTe7jQulowPx8WbjpdGlQgOjaZB88S0KgUjOpWnx9+u0y23kjZAG9a1yzHt1vPCqCoXggapZLNh4THh2Hd6xL5PIkz1yORSiRMGdyci9ejuXT7GTKZlOnDW3L11jNOXRKk45OGtiA+IYNte4XX9+tWi6BAL6Yv2ovFYqNmlRKMHNSYafN+41V8Bu5uGpbO686pM4/ZtUd4TZ+etWjXshLjJ27ldUIm7u5ali7qyfPnyXz15WGsVhvVqpVgztwu7Nx2lW1bBFDWsXNVRoxqwc/fn2KP6JnRrVcthoxsxp4d11gr2rY3bBrClNmdiQx/Ky0v5ufOguV98fF14+t5+zhxUDyvgxowYERT0lNymD1qM9ERCaicFHy+uDt1m4aSnJDJnFGbePZm+5Ke1G0WislkYcXsPZzaL3CMugyox6eTha7J8/DXzB32C0nxGehc1Exf0Y8q9YQMq5dRicwdsp7XL1JRa1VM+e4jajcTnvqsVhsblh5it0hSrN64HFNW9HeMpex2O/vWneXnL4RFvlR5P2atHYxPwNsWvNViZcPiA+wWiZ+hNUox9cdPC90sjHkmfpr1K4c3COAzpEYpPv9xMD4B73avvXcxnGXD15P8Kg2pTErvCW3pM6n9B71hwm9Gs3z0Bp49EDyoKjUox+jvBhAQ/H4ux59VWkIGe1Yc5dDa0w4+jm/ponQd3ZoW/er/jyiZ/pvVvG991s/eRVxkArdOPqTGn8i2/2rZ7Xai7gtgp/Rf8MjJX2+8cpr+BcJ41P2XPLwaiUwupd3A94+w7l9+ysOrUciVcrp99u7u1enfbhAT8Rqdq4aeIwsfc+dCBNdPPxaiHf7At7Hb7Xw/bx82q416rSs68uMc++bvc5CS31x7ALHPktj501kAhk9v7xh7mc0WvpuzVyAZdwijqkgyNpksfDdvH3a7neYdwqgmbn/5PJkt4vuMmNQGDzGfa83Xx0hLEcZX/cVu0vlTjzl74hFSmYTJszoVyur6q/WPBjt/haPzR6Bjskqw2t+qrj4MdDTvBDppxjxcFE5k5O/o6LNxkimwWSWFgI63SkdiXi5uSidyTRbMNisBOjdeZgluyP5aV15mZaGRK1BKpKQb8vDVupCUI3rn/AHoRKSmIJNIKOXqQWRKGmq5HG+1lhcZGbg7OaGSyInPyqaITgtWCYk5ufi6OGM2W0nJ1ePv6oLFbCUxOxdfV2ekSHiRlom3Tou7kxNPXgsJ5cHenlx/HodCJqNBUCCnxLTydpWC+f3eU0G5VDaQ8Ngk0nLzKOntjodGzfXIOJwUcjrVCGXHRTELqUowd6NekZiRg6+HC9VL+Tl8c/o3q8bRa09IydITWMSdeqGBbDgmAIfeTcO4HR5LZFwKLhoVwzvVY9WuC+QZzVQu40vtkEBW7RTmxt2aVUavN7Ln1D0kEhjXtzFX7jzj2v0XKOQyZgxryf4TD7j7JA6lQs7cMW04eOI+1+7EIJdLmTm6LbfuveDQSYFo/NmARmicFMxfdgi7HZo2KEefzjWYOGMXqWm5FPNxZencbmzbdY3fxSTzEUOaULVyAGPHbyE9Q4+vrxtfLunNlUtP+V60TG/WLJQJE9qyeuVxjopZUZ8MbkT3njULeOgMHdWcbr1q8dPKE+wRPWu69KrFsDEtuHohgsUiuTi4vB/zv+mDUiVn1tit3L4WjVQmZfTUdrTtWp2YyERmjtxESmIWbh5a5q3oR3BFf6KexDNn1CZSk7Jx99Qxd9XHBFfwJys9ly/GbOXhzedC12ZGB9qLbfLrZ56wZPxW8nJN+JX0Yu6Pn+BfUrCev3H2CUvGbEWfY6Covztz1w6ihNixyc3KY+mYzdw4LXy3HiOaMWBKO8doyJBnYsWUHZzZK4wzm3Spzpgvexd4Kk1LymTx0HU8vCoA7s5Dm/LprC6FQhVjI1+zaPBanj8SzAR7jm1N/6kdkSsKL5kmo5lNC/fx26rjDkPBKT8OJuQ9hoJvSp+dx4Z5v3Hgx5PY7XacPbQMWdiblv0a/K2xUnJcGjuXHeTYhnOYjWYASlUKoPfkjtTvUuN/LDbiv11qnRPN+tTl4I+nuHbkzn8E7LyKSiRHHDn+K2OshBfJ3D0v+Os07lHrg8f/ukLg4DTsVB2vYu/urNntdjYuEbgyrfrUeWfHxpBnYqNoT9FrVItCBoFWi5Uf5+0FoH3/+oU8pM7sv83D689QOSkY+gcgdPbgXe5ejkKpkjN85tt9NpuNFbOFEN0aDYNp0LqiY9+un88TE5WIq7uGoZPfZmZt++ksMVFJuLprGSJ2gawWK1/P3SeYCtYrQ7O2wu/v8rlwTokE5klzOqNyUpCWmsOKr4R4i94f16NsiO//99n5O1UY6CjJswnk4vcDHd6OrvIBHY3YvckPdLTv6ei8ATrpRmGbAGSycZIpsVnBYLUWADpeKi1JDqBjdgR5vgE6fhpXYrOy0CmUyOwSMo1G/HUuvM7OwfoHoFPWw5OIVEFpFejiRlRqGlqFAg8nNbGZmXiqNciRkJiTg49Oh8VsI1Wvp7irK3qjkTS9gQB3N/IMJlJy9Pi7uWK12YjLzMLHWYdOoSQyMRU3tRMlPdy59SIelVxGnZIBnHksKLDaVyrHkbvh2O3QOKQUd5+9IlNUYKnlCm4/E7Kt2lUpx65LwlioQ/UQrjyOITU7jxJF3CnnW4RD1wR11qCWNdh74QEZuQaCfL2oXKoY20WV1YBW1Tl/J5qYhDQ8nDUMaleT5TvOYbJYqRkaQLC/N2v3CpyQj9tV52V8OudvRSOTSpg8sBlHzz/ifkQ8Tio5s0e0YfO+64RHJ6JRK5k/th2bf7vGg/BXqJRy5k1oz+9nHnP2ylPhgh3egswMPV+vPwtAp9aVadEwhAkzdpKTY6RkoBeLZndh1Q+nuXxNICd/PqEtPt4uTJi4nVy9kaCgoixe2IO9v91ku+j70q1bDT4Z1JCFX+zjyqVIQd0wsQ2Nm4Qwe8oubt98LvjqzOhI/cblWDJ3L2dPCLLlIaOa06NvHQ7vucmqpUcEn576ZZm+qBu5OUYmDVnv6NzMWNKTWg3KcvfaM+ZP2IY+x0jxkl58sao/Pv7uXD8fwaJJOwTFVekizF/dHx8/d17FpDBn+AZeiZ2ZGd99RLX6Qgt9/6ZL/LTwADabncp1gpixsh/OrhqhI7P+Aj8vPojNZqdCzVLMWN0fN09Bzhr3LIn5g38mNioJpUrB+GW9adzp7SgpMS6N+Z+u5dmjV0hlUobM6kynTxsVAA2PrkezaMjPpCVmotY5Mf7bfjToUDiP6MzuayyfuAVDrhE3b2cmfz+Iak3KFzoO4EV4PEuHrOXZQ4Hv0WZAQ4Yu6PlBtdSNE/dZMWaDg4DcrHddhi7qg9sHUq/fVamvM9j51QGOrDuD2WQBIKRWEL2ndKRWm7D/NXycf6VCapXh4I+neC6e93+37p57LL5v0L+kQvtdJL5XaRzy3o7fm4qLSuS8mHDeY0zr9x534+RDHl+PRumkoPe4Nu88Zu/aM6QmZFLE34OOnxTuEB3ZepkXTxNwcdfSd1zBn5WTlcfPIom4z6jmDrI/QHam3kFK7v1ZM4rl64ge/+0WD2/FoFIrGDm7k+PvKiYyke1vujTTOjg8dSIfv2KXaFI6akZ7x/ZfN10i/GEcWp0TY2d0QCKRkJGey3LxM3XrV4eQiv7Y7Xa+W3KIrMw8SpcpSt9BwvfMysp777n7s/pHgx2j3YqLVJevo5Mf6Fj+FOioZSpy/tDRcZarycgHdDJNRlwVGlINwjZXEei4KtSkGYVtbwwD1TIlFisYCwEdHcl5ubir1OTkSyx/C3RciMt+C3SyTALQic/KxmYXuDhPU1IKdHTkUikBOleepaWjUypxUzoRl5mFl0aDxAZJubn4ubiQZzSTrjcQ6O5Glt4gZFV5uJOtN5Cam0eghxsGk9nR3VFJZEQnp+GhVePv4sLd2NeoFXJqBvpzLvw5Egm0qxjM4TvCk1Dz8kFcj3xJtsFEiF8RpDZ48EKQmjevGMTuK0J3pFvtCpy+E0WG3kBQMU9KeLpz/JZgEPhpqxrsOH2XHIOJ0MCiBBX1YM854XVD29fmyJXHvErOpKi7jr7Nq/LdjvNYrTYahpWmqKuWrUeFxWdo17rcC3/F9YcvUCpkTPu0BTsO3+JpTBLOWhWzhrfmh20XeR6Xipuzmrlj2rJm83kinyeh06j4YlIHtu+9wY17Qgdo9oR2PA6PZ4c4yurfsw4Vy/kyedZugbMT4susKR1Ysuww9x7EolTKmTu9E3abjSnTdmI2W6lcqTjz5nTlxx9Pc0w0/Bs8uDHt2ldm2uQdPHwQh1IpZ8aczoSG+jJp9GYiIxJwUiuYs7A7IRX8mTlhO3dF/51JszrStGUFNq45zTZxEWrdqQpjprbnVWwqM0dvIfF1Bq7uWr5Y3pfg8n6cOnSXb+fsw2KxUrFaCWZ/2wdnVw1Hfr3OqoUHsVltBRRXD28+Z/6ozWRn5lGkmBvzfhhAibI+wpPmwoMcFMdtrXrUYNS8rsgVAhF59Zw9HBM7T6171eKzeV0c459b58NZ8tlGcrLy8Crmxuy1n1ImX6r0/cuRLBy+nqy0XFw9dUz/4RMq1SnYlj+w7ixr5/6G1WIjoGwxZq0fin9QQWWTyWBmzfQdHN0knJvK9YP5/MfB78wYstvtHF5/lp9m7sJkMOPqqWPcioHUafvnapys1Bx+nLaNk2LCvU8Jb8asGEi1poWdmT9UGUmZ7Pz6MId+OonJIHRyKtYPpt/MrlRuGPL/JMh5U6UqCtyY5w9jsdvt//Z3fQN2whr9NUNAEDoUJ8TfY5v+7x9JvaldKwW1Ya1Wld4bCmuz2RxdnY6DGuFVrLBvU3pyliPZ/JOpHQrxfrLScx0Ggh9PbFOo67P5299JT8nGv5Q3XQcXdFJe/9URMlJzKF6qCN3yuSynJWezbpnQYRkwpiVFRYBktdr4ds4eLBYrtRuXo5HY7TGZLHw9aw82q42GLSvQoIXw9/08MtHBAxwxqQ3eRV0d2VYo5gAAIABJREFU2VcZabkElPSmv0jGPnbwLlcvRqJQyJgyW/DZuXY5inkztv3ZaX5v/aPBjpPkfaMrixgB8Z8FOunvAToamRLzH4COBAmeKq0D6GQbjVhsdgJ1brwQgY6vxoW47GxclCqwQZbJSHGdK3FZWYJJoLtgEpgf6CikUvx1LjxPz8BZqcJZoeBVVhZFtFpsFhsp+jz8XV3JzTMJ4MbdnbRcPVkGI6U9PUjL1gvbPd3JMZhIzsmluLsrWCEmLQNvnZYiOi0PXiWiVSqpUrwY5yNikEoktK1YlsN3BAl5q4pluPgkBr3JTIXiRTEbrYS/TsFV40TDkJLsEyMfetWrzLGb4WTpjYT4F6GITsvpe1HIpVIGtarJlpO3yDOaCSvtS1FXHQevCIThzzrV47czd0lMz8HP25VuDSrx3c7z2O3QqnY5lBIpv50WZIxjejfi3I0o7j19hVqlYPrgFqzbfYUX8Wm4u2iYMawl364/Q3xSJt4eOmaNbM3XP50kNj4dDzcNX0zsyA+bzvMwIh61k4IvpnTk7MUIDp8QQNeoT5vg7aFj+vw9AmenWknGf9aC2fP3EhmdiFajZNG87sS/Sufrb48KKqy6Zfh8cju+XHqYS5eETtG48a2pVbM0E8ZsJeZ5MlqdigWLeuDpqWPc8I3Ev0rHzU3DgmW98S7iwqQRG4mOTEStUTJ7cQ8qVw3k2wUH+P2A0PXqN6QR/YY04tHdl8yZsJ2crDz8AjxZsKIfxfzd2bHuHBtEY8GGLSswaYEATvJnXLXoVJWxomfGmUN3+Wb6bixmK2Ur+jNndX88vJ3JzTawZNxWbp6PQCKRMGhyG7oNFrou2Rl6Fo7cxL0rUULExPQOdB4kjHEE/s05gWRpsxNarSQzfvwED7H7YbfbOfDLeX6atxeb1UaZSsWZ9fPgAm1/g97EyinbOL1b4C817FiVcd/2Q/0H3kr8syQWfvoj0Q9ikUgk9JnQlr5TOrxz9JOZms13YzZy5YhwHqs3q8CE1Z+8ExTlrwv7brBq/CYykrOQSCR0/qwFA2d3x0n7rxGQ83IM7P7uCL9+e9gRGRFauwz9Z3cjrHHo/9Mg5035ly2GXCEjN1NP4ssUfAK9P/yi95TNZuO+OIoKe0/u1Lvq5smHpMSn4+Kho/YHQG5SXCqnxByz3uPbvve48wdu8+xRHBpnJ3qMKqyuAsFAMC/XSNnKATTsWNite9OyI4LCKrgYbT4qaJoZ9egVh0R11mfzuhbgkz28+ZxjO4XrZMyCbgW4MT8uOkhOloEy5f3o2O/te+7bcpmIB3FodCpGzfw/7L11QFQJ+/79obsbBBQVUUHF7u5u11q7XbsTBMWude3udu2OtddORFEJ6WaG6Xr/OCOxoOs+z/f7e97397z3f3IODgwzcz7nvq/7ugrytA4VGl+Nnd0REHQ9KxeeEsCocQVadhTMF29ees3dG+8wMjJkxiLBDT05MZvN64SV+EEjm1KmnBs52RJWRZxFpn/N/9P6r4YdsUaJpYHV/wDoWJKjkvFN0DH+DugYm6FUa1FqtCWAjhRHMwtEfwEdA72hYKIedHRaHXlKJd42diTkFged8g7C6MrUyAhPS9t8AbKlkQnJ4jzcrK1RKzVkyWT42NshkijIlSvwc3QgXSwhT6GkvLMTabl5AvQ4O5IjlZMpkeLrYI9arSEpR4ybrTWOFhZEJqVhY2ZKkIcb9z7EYWRoQNvAAtBpX7UCN19/RK7WUM3XA7FEwefULBytLalb3ptzT4TxVL9G1TjzIBKJQkmQrzvWJqbceRuDibERQ1vXYs/lxyhUGmoHeGNlbMKVxx8wMjRgXNf6HLj8jCyxlDIejrStHcCvx4S79a6NA5HkKTj/OAojQwOmDGjGuT/eEhWTirWlGbOHteK3A3+QnC7C1dGaGcNasWzLFTKyJXi52TNrZCuWbLhIaoYYN2cbQqd0ZOXma3yKTcfayoyI2V05efYZt+4LgDJ9XBu0Gi2hS88IWV6NKjBsYCOmzz1KYlI2DvaWLA/vzbPnsWzZKuTftG0TxOiRzVmw4AQvX8RjYmLEvHldKF3amYnj95KakouTkzURK35Cq9EyacwesrMkuHvaE7G6HwbApJG7SEnKwd7BisVr+uLt60zo9CM8uiuMvX6Z2YH23Wtw78Y7IuYeR6VUExBYitC1/bCxMS+yWt59YH2GT2mDWq1l+axj3NJ3mQaMbU7/0UJy8uEtN9mj9+uo37Iy0/WeO+nJOSwYsZNY/Whs+sqfaNBGuPtL+JxOyPAdJMZmYGFlxsy1/amjDwVUKdVsnH+CS/rRXavetRm/uHf+B7BSoeK3Oce4ckQQhzbrVpOJy3/CrJA+Jzkug/ChW/n8NgFDI0OGze9Gt1HNi8HA3bNPWf3LHqR5cuycrJmxedg3x1Yvbr9jxegdZCbnYGJqzNCQHnT5m42g3AwxG6bs5fZJ4ULiU8GTKZuGUbF2uW9+T0mlUWu4vPc2+8JOkJWSC4B/DT8GLexBjZZB/xWQ87VMTI1xcLMnPSETUYb434Kd908+k5spxtLWAv8afj/8fWe3C+/XVv3q/+3o68jaS2jUWqo2rEDFmiU/hkqpZk+EsF3Vc2wrbAs5En+tmMhELh0UuqPD53ct9rr78DKeC/ru6ZhF3YtsWGk0Wn6dexytVkfjjtXyFwIAlAo16+eeAKBt79oE1iqIILl/7S23L73G0MiQCaHd8v/PhNgM9vwqiPxHTGuHsx72oyMTOaLvHP8yrxP2jsL46tCO23x8n4yNnUX++CotJZcNy4WOUb9hjSkf4IFGrWVZ6O/IpEoCq/nQo29ddDoda5adJztLgrevEzz67tNdYv1Xw86PbF19FSP/W6Cj/IegYyqAjpOZJbkKuQA6NvbE5X4FHVuS8sTYmZqh0WiRqFTC8Ryh41MYdPwdnPiQJayUu1vaEJeTg725OWYGRqTodTkKpZocmZzSDvZkiWWIFUrKOTuRmiMmT6nE38WZlGwRYoWS8i5OZORJyZbKKOPkgFyuIkWUh6edDdYmpkQlp2NnYU5FN2cefPqCsZEhrSuW44IedDoFB3DlxQeUGi01/bxIz5EQn56Di60VwaU9uag3DxzQOJgT914jV6qpXtYLIx38+T4ecxNjBrWsyc6Lj1BrtDQMLINOreXWy8+YGBsxrmt9dp9/RK5ETgUfVxoFlmHzSeHN36dFNZJSc7n3MgZjI0NmDGrB4YvPiEnMxMHWghmDW7J613UyciSUcrdn0oCmLP7tEjliGX7ezkwa1JTQtefIypHi4+nInHFtWLzuIgnJOTjaW7JkVld2HrzH4+exwihrWkcSE7PZskvognRuV5XunYKZPOsQGRl5uLnasnJJby5ffsPBw8JFvU/vOvTqUYsZ0w8THZ2CpaUpYeE9sbQwZdL4feTkSPEq5ciylT+RmpLLgplHkUoU+JVzI2J1XzIzxMyZfJDcbCmeXg4sWdsPa2tzZo3dy7vXCZiZGTNnSU/qNq7A2WOP+G3ZBXQ6HXWbVGD24p4ALJpyiD//ELowo2e0p0u/uohzZSyadIDXT2IwMjZkUkg3WnWpjlqlYUPo71zWp5x3H9yQodOEeIWPbxNYOHIXWWliHFxsCNkyGH99UODLBx8JH7uHvFwZrl6CELlMgCBEFmVLCB+1k9cPhXT34fO60LWQ/iYrNZewETuIehaLoaEBQ+d2ofvIZkUu9k9vRbJ09E7ycqTYO9swe+swqtQvunqrVqnZFXaKExuFD+zKdcsxe9uIEoWjGrWGfRGnObJGMEv09ndn1vaRlA36/qrxvTNPWD9xDznpImFDa2pH+s7s/I90ITqdjseXX7JtzmHi3yUC4OHnyrCwPjTsVuu/CnIK19f0a61W9zdnfr/u6w0Ba7eu8sOp6omfUnly/Q0GBgZ0GNr0u+emJ2Zx+cBdAPpP7/jN8y7uu0tKXAYOrrZ0G9m82HGdTsfWRYL/VsMO1QiqWxSWNRotv807jk6no1m3GkVGuQAXDz3kw6svWFqbM2peUVHykc03+PI5DQcXG4bOKOg8iXOkbAgVPHV6DWtMucqCeFurFcZXSoWa4LplaavP7FIq1aycJ4yvmrQJpKHeO+dDZCKHvgLQrI44Otug1epYteg0kjwFFSp70XeI4BB9ZP89Il8nYGlpygy9YeGFM8+4f+cDJiZGTJndiX3Hpnz3OS+p/qthR6bVYILxd9fLSwKdr2Lkfwd0rIzNUHwLdOQC6OTI5Wh0+o7OV9CxtCVJLMbO1By1Rsi38rW1Jy5bAB3/v3R0BNAxxs3CSvDLsbDAGAPSJBI8bWyQyJWI5ArKODiQLpIiUSrxd3YiKUeERKkiwNWZhMxcJEoVFVydSRXlkSOTU9bZkTyZQgjrtLfFwsiY6LRMHCzNKefsxJ+fEjA1NqJ5gB8XXwpurZ2rV+TS8w+oNFrqlvchMS2HhCwR7vbWVPJy4+pLYbV7QONgjtx+iVKtoW4FHxQyNU9jBNHygOY12HHxTzRaHc2rlUOcJ+fJ+wTMTIwZ17U+W888QCJTEuTnQXA5L3acFXQgP7evxbuPyTx9l4CZiREzB7dk16mHJKTl4uJgzZSBTVm+/Wo+2Izp3YCQ9ReQyJQElHVjVJ+GzF91FnGeXAj0HN6ChSvPkZYpxt3FlvCZnVm35TpvovSjrNldePEingPHhMfv36sOjRv4M3HGYUQiGaV9nFga1otDhx5w9rwwDhkxrCnNm1Vk8qQDJCRkYW9vydJlfZCI5UybdACpVEl5f3eWLO9D5OsEFi88iUqpIaiaD2HLevPhXTIhs44ikyop5+/O4jV9USk1TBmxiy+xGVjbmhO2ph8Vg0qxZ+N1DupDONt3F1LL88RyFk44QNSrL4Kx4JKeNGxZmbTkHOaN3k3853Qsrc2Yt7of1euVQ5InZ/HEAzy/L4irR8/pRCe9T86fNyJZOvkgcqmS0v7uhG4bgqt+vHTl2CPWzz2ORq2lYnVf5m8ajIOLsHoaH51CyNDtJMdlYGFtxqxff6Z2odXX6FfxhA7dRmZKLtZ2FszaOJgahUYPOp2O479dZfcSYfRVIbg0c3eMKLbRkpmSQ8Twbbx5KPg99RjXmiHzupa4bZX2JZOlI7YR+aewwdVuUGNGLe7z3fGTKCuPjdP2c/OoALGlK5Vi2tYRlK9W+nsfScUqPiqRzTMO8FQ/ErVxtKb/7K50HNnihy/M/7eWgR52dP8u7JzVux93LNk7qaQ6p08hr9UqCM8yrt8998g6Ie4jqL4/VRoUjx8BkObJObha6HAMmNahxNfWg8uveXH3AyZmxgyb26XY8cuHHvDhZTyWNuYM/8vxrHQRu/VbTYOmtc0fBQPERadwdIvw+4yZ3wWbQrlgWyLOkZ2Rh3dZV/qNLQCw0wce8PZZHOYWpkwM6ZYP3Ae33CTuUxr2jgXjK6VCxYoFwqi5SetAmrQW9Dtnjz3ixeMYzMyMmRHaDSNjQz68S2LfduFzadzUtrh72JMQn8mmdcINyZBRzfAr+/3n+1v13/1uQUgv/2vWlfpvQCdXqfhh0LE3tcj/2vdAxxBDHM0s8zs6BaDjQJxIiHXw0I+u7M3MUakLgjxjC4HOh4wMDDGgnIMj0VmCd46LmSVfckU4WVhgiAHpEilehUDHz9GRtNw8AWhcnEnIykGqUlPRzYX49BykKhWV3F1JzM4lV66gvIsTuRI56WIJPo52GOkM+JSehZOVJaUd7XkSk4iZsRFN/P24/FK4mHStUYnzz6JQa7Q0qOBLTFIWyTlivBxtKefmxM03wgbUgEbVOfjHc9QaLY0qlSZHJONtXCrWFmb81Lgq2y88FHQ3Nf1JSRfz6nMylmYmjO5cj02n7gmdIP9SlPd0Zt9FodswoktdHr2K4/XHZCzNTZgxqCWbj94lNVOMl6sd4/o0YsmWK+RJFQSUcWNQ59osWHceuUJN1YpeDOhUi3krTiOTqwiq4MnoAY2ZE/E7OSIZvl6OLJzSgYh1F/kYI4yyls3vwZUbbzmj13SMHtqEiv4eTJl1GKlUSYC/B4sXdue3Tde49UeUYEo4qS1BlUsxccI+0tPFuLrasnzFT8TFZLB4kbCmWbWaD4uW9OL2jUjWLhc2qRo0rsCckG48uPOe5YtOo1JpqFajNAuX9SY9OZc5E/aTmS7G2dWWJb8OoJSPI2vCTnNZ730zcFQz+o9oQmpiDnPH7iExLhNrWwtC1/encrAvn6KSmD92L1n6/yNs0yDK+LuTnpLLglG7if2QgpmFCbNX9aWOPrCz8MZVcIPyzP11AFY2Fmi1WvauusSRTYJHTpOO1Ziyok9+l+Pp7SiWjNmNVCzH3duJkJ3DixgF/nHmGasnH0CpUOFd3o2QnSPxLFMwvpBLFKyZvI/bZ4SLV5t+9Rkb0adYF+XVvfdEjNhGdpoIS2tzpmwYTMOOxbeyAB5ceM6qcbvIy5FiaWPBpHU/07jb911yH195yeoxO8hKzcXQ0IBeUzowYHbXf9TNEWdL2L/4FGc2X0Wr0WJiakzXca35aUZnrO2tfvj/+W8orVb7L39v3LtEEqKTMTYx+uEVdolIxhV9tEin4d/P50pPzOLyfqGrM+A7XZ3jv10lNzMPr7KutO5bv9hxhUzJtkXCKnmPUc2L+EaBkH+1a5ngMPzz1HZFYAZgy6LTSMRyygeWKhKeq9FoWavX2dVtUYmGhdbJH92K4vqZ5xgYGDA5vEf+6zchNoPd67+Or9rirhcrR736wtFdwu86fm7BVtbujTeIj0nHwck63zwwPiad7b8KesDhE1pRytcJuVzFUr2jcqNmFWnZrgpqtYali04jl6uoVqM0PfrUIS9P/O0n/Dv1H4WdkJAQQkNDi3zNzc2NlJSUb37PH3/8wZQpU3j79i2enp7MmDGD0aNH/0uPXyy93MAIjaZQ1tU/GF3Zm1iS8W+AjoMedJzNLcmWFero6EHH3cKGxLw8AXRUGqTqoqDzdXRliAFlHRyJzhK8c5zMrEgQ6UFHZ0CGVEopW1tEUjlihZKyjo6k5OQhVamo6OpCXEY2MrWaSm6uxKZnIVOpCfRwJS4zB7FCSQVXZzJFkvxtLLR6YbKNFaVsbXkWm4SFiTENypXm6usC0Dn39J3gfhxQhvcJaaTlSvBxtsfH2Z7bkcJYqX+jYA7efI5aq6VpoB+pmWLeJ6RjZ2VOjwZB7LgoDGo71a3E54RMIvUQNKJjHTaevItCpaFOJV88HW05ql89H9ejITcfRRMVm4qNpRnTf27BugO3yMqV4uvhwIju9QnfdAmZQkWVCp70bBVMyK8XUKo01Klamq4tgpi/6ixKpZqaVXz5uXsdZi05RZ5Egb+fGzPHtSZkhRDo6WBnyfIFPTh66jHXbglC6SnjW+PsaM2MecdQKtUEV/Vh/qzOLF9xnkePP2NsbMicWZ1wd7Nj0sT9iEQyfHydWL78J548imHNSj3UNPRnzvwunDr+mB16WGjbsRqTprfnwplnbFh5EZ0OGjWryMyQrnyITBJEx2I5PmVcWPLrAGxszQmddpg/7wh6ol9md6R995p8fJfE/PH7yM7Iw9XDjvCNP+Pj58qz+x8Jn3IQqURB6XJuhG0ahIu7HbEfUpg/ajcZKbk4ONsQunkQ5St7odFo2b70HL/vFj7w2vauzbgQwcNGIVexatoh7lwQ9D59f2nJwElt8u8Iz+27y6YFQvu7ci0/5m0dmr92rtVq2bfyAofXC5qgWs0rMXPDoCJZQSlxGSwasoWYyESMjA0ZHd6bDoOK+tXodDpObrzKjkXC45Su6Mm8XWOKbWWBcDe6Y+FxTm8RfI3KB5dmzs5ReJT+tjZELlGwdc4hzuvv+r39PZi2ZQQBf+O3U7g0Gi2Xdt1iT+hxcjOED/V6Haszclm/fysX6/+20ul05KQLfiv2Lv98Xf9rfe281WgZ9MM5Wxd23UIiklGqvDs1WpSs7fpaB1eeR6VUC12dEkJlQQCik5v121VzuhTzfAI4tvEaKfGZOHvYl2gguGPxafJypfhV9qLjX1LNH157y+3zLwXNTUSvIqL7M3vvEfUiHgsrM8Yu7Jr/fskTyVi/UICrboMaULGaMK7VaLSsnHschVxFcN2ytO9VGxAWAVbMPYFWo6VZ+yr546sXjz5zUh/3MmleZ2ztLVGpNCxbcAqlQk2NumXp2FO4edj661US4jNxcrZh4sz2GBgYsGf7H7x/l4SNjTkz5nXG0NCAjPT/j/rsVK5cmWvXruX/28io+B/6a8XExNC+fXtGjBjB/v37uXfvHmPHjsXFxYUePXr848eWqFXYWdoXpJfrQSffGdnwW1tXxTs6GSVsXf046FiQUSLo5GBoYIibuRAX4WBmjkKlQaZWUdrWgdhsIbG8COjYO/IxKwtLYxMczSxJFAkr5Wh0ZMgEv5xciaDLKe/kRFK2CKlKTSVXF2IyspCrNQS6u/E5NROZWk2Qpxsx6dnkKZVUdHMhLTdPMP9zdkCj0vIlOxc3G2vcra15EZ+MhakJ9f18uK53Se5WoxJnnrxDq9PRrFJZ3sQmkyGWUsbVAXc7G+69i8XEyIi+Dauy/8YztDodLauWIy45i0/JWThYW9CtXmV26Q0CuzUIJPJzCh8SMrCzMmdou1psOH5H6ARV8cPWwozf/3gtbFn1bszFO5F8/JKBvY0FUwc0Y9WeG+TmySnn48zADrUI23QRpUpD7SBf2jaoyKINF9FotDSpXY7mdcqzcM051GotDWuVpWvravnJ5UEBXkwc3py5i38nNV2Eq7MNyxb0YPue29z/8xNGRobMm9YBrVbHvNCTArDUK8/UX1oTEnqKN28TMDc3IXRBN4yNjZg29RAymZKAAA+WRPTm8sVXbP0KNe2rMmlKW3ZuucmxQ4Ig96cB9RkyqikHdt3Jb/t27F6DcVPa8vheNIvnHEepUFO5qjchq/qCTsesMXt49zoBUzNj5kT0ol6TAJ49/ETY5IPIpErK+LsR/tvPOLnacu3Mc9YsPIlGraVKrTIsWNsfa1sLXv75ibBf9iMRy/H2cyFs6xDcvBxQyFWsmHqIe1cEY8Qh09rRa2RTDAwMyE4XEzpqF+9fxGNsYsTEiF601M/4NRot28J+57Temr5Fj1pMWNonX4gskyhYMWEfD/Rhmj1Ht2Dw7KJbUi/vvmfJyO2IsiQ4uNgyZ/twAusU1TPI8uSsmbiX26eFbl/zXnWYsHJAieOClLh0Fg/ZQvTzWAC6j2vFkAU9vjs2inr8ieUjtpD4MVV4nY5rzZCQXkUE039XUY8/sWHSHqKfCUG5vpW8GL1iANX/hbX0/9tLnC1BLlEA4Oz1z4M7QQCmm8f07se96/3N2UIpZEpO6jVefSa3+64wPfFTKpf1q+mD53b9prZqZ/jvKGQqAuuWo34JW11Jsekc1aeWj1zYDYu/vGZf//mJa8cfY2BgwC9LehURJUtEMjbMF4THPYY3ydfcACTFZbJnjWByOHxmB1wKrblvXXaezDQRXr5O/DyxYCvsxO67RL36gqW1GZMXdc//nbavuUxifCbObrb54yuxSMaKEMFVuX33GtRtLMDe3s03+RglCJWnLuiCoaEBD+584NxJwQZk2vzO2NpZ8vJZLEf0YuvJMzvg4mrLzetvWRJ+/JvP+ffqPw47xsbGuLu7/9C5mzdvxsfHh7Vr1wJQsWJFnjx5wsqVK78LOwqFAoVCkf/vrw6MX7euDDFCo9ODjrEl2cpvh3rm/MUZufDoyr4EHx1XM2tS9WLkr6DjaWFLQhHQkf0t6NgXAp0ytg7E6EHH/y8dnQLQscgHHa1GR7ZMho+dHdl5MvKUAugkZomQqdVUdnPlU1omCo2GKh5uRKdkCKGcnu58TMtEqlJR2d2V5GwR2VI5ZV0cUShUJOaIcbe1xsXKilcJKViZmVKndCluvP2EgQF0qV6J008i0emgVVA5nkYnki2RUc7dCSdrSx5+iMfMxIje9aqw/+YzdDpoW92fD3HpxKZl42xnRfuaAey6LFygejWuwrOoBD4nCwaBA1vV4Nfjd9BodbSoUR4jDLlw/x2GBgZM7tuEU9deEZuchbO9Fb/0acyyndeQyJRUKutOj+ZVCN90CbVGS+OaZalfzY/FGy+j1elo3bAitQK9CVsvrIG3aBBAywYVmLv0d5QqDTWr+jKibwNmhh4nK0eKt5cDi+d0Zd3Gazx7GY+pqTFhc7uQmiZi7QYhr6p1i8qMHNKEWXOO8vFTGtbWZiwJ74UoR8b8ecdRqTQEB/sSuqg7hw885NAB4U3e+6e6DB3ehHUrL3DpnOCU/NUVedOay5zWb0wNGNaYgcMac+38S1aHn0Gr0ZsFRvRElCNl7vh9xMekY21rwaK1/ahc1YebF1+xap7gkVG1VhkWrOmHpbUZh7f/wW792meTdlWYGt4DU1PjIqvllWuUZuEGIT08N0tC6OjdvHseh7GJEVOX9aZpJ2El9sunNOYP2UZqQjbWdhbM3zyYKnWEToc0T86yX/bx6LpgeDhoRgf6jGuZ/wGanpRNyOCtfI5MxNjUiInL+9KyZ+3897FOp+Pcrttsnn9MWD2v6sP8XaOK6XMSP6USNngTse+SMDI2ZNTiPnQa2rTEi8/Diy9YOWYneblSbBysmLZxKHXaVv3mZ4tapebgsjMcWiF4Djl7OTJt83CCv7HNVVKJMsXsWniMiztvodPpsLKzZNCCHnQc2aLIhev/r4JK15sx2rva/iOgLFyRf34kJTYdcysz6nYovsJdUl3ef5fsNBGu3k406/l9x+S9EUJkSa2WgVSuU/LmXeTjT9w69UTImQvrVew1qdPp2LLwJCqFmuDGFWjYoSgMqZRqNsw5BkDbvnUJCC5d5PjO5RfITBXh6etM/0LQotVqWT/vOAqZiip1/Gjbp+B99eTOe66efIqBgQGTFvfETO/jExudyj69v8+0ZRweAAAgAElEQVTomR1x1cPR47sfOKePppka1h0bfYdsw9JzZKSK8PJxYtQUwdjw1dNYjulX3yfN6YSTiw2ZGWJW640Me/StS43afohypSxddFq4JnSsRqNmFUlOzmHNqkuolJrvPu/fqv847ERHR+Pp6YmZmRl16tRhyZIl+PmVvJr34MEDWrcu6j3Qpk0bduzYgUqlwsSk5Jl4REREsXEZgFitwNTMXAAdrQ5rYyuylTLMDU3zQcfaSICfkrKuCndvSgYdIdSz8NZVUdCxLNbR8fkG6Ci/go6dAzFZRTs6RgaGlLFzyAcdB1MLEkViXCwt0ehBx9fOnsw8QYBc3smJhKxcfRfHlejUDJQaLVU93XmflI5Co6GqlzsfUjOQqdQEebiRkJlLjkxOeVcnJDIlybliPO1tcTAz401CKjbmptTw8eJm5OcC0HkseOW0qeLPo/fx5Ejl+Hs4Y2thxqPoL5ibGtOzbhD7bwr6kY61KvL6UxJf0nNxs7emZbXy7Lsq0H6/ZsHcexVDfFoOLvZW9GlajQ0n7qDV6WhbJwC5XMWNZ9GCeV6/Zhy88ITEtFzcHG0Y07M+y3ZeQ6ZQERzgRdv6FYnYegWNVkerehUILO/Jsi36wM4WQZT3diHit8vCz9QiiFpBvsxfcRaNRujw9O1ai+mhJxDnySlXxoWQ6Z2JWH2ByKgkLC1MiQjpzruoZLbsuAVAt87V6dO9NlOmHyIhIUtYN1/ah8+f0li+XEhEb9DAn9lzOrFl43XOnRGej+GjmtG9Ry3CF5zk3u33GBoaMHlWB1q0DmJZyClu6l2Rx01pS5detTi27x7b9b44rTpUZdK8TiTGZzJn/D4yUkU4u9qyeMNASpd15eS++2xdKRiPNWkTyNTwHhgZGbIp4hxn9N2jHoMbMmyyMGo6vuM2O/TnN2obxLSlvTA1MyEpLoP5w3aQpNf6LNg0iKDawvv31cOPhI0WzAA9fJ1YtGM4pfyEMVB6cg4hQ7byOTIJUzMTpq7uR+NOBRecqGexLBq2jex0MfbONizYMZyKNQrWYVVKNRvnHOGS3sG2WY9aTFzZv9iF78/Lr1g+ZgcSkQwHV1vm7Rpd4oVHrVKzO+wUx38V/u4BNf2Ys3MUrt5Oxc79WskxaSwdupmox0IESvM+9Ri3auAPa2q0Wi1X991h+9zDiDLzACH3afjin3D4G8+e//ZK+iR00Fy9v+9a/L26pt+QatCpxg+FrSoVKo6tEzohvSa0LVHM/rXeP4vhj98FiBkyv3uJ52g0WjbNPQpA6771KBfkXeych1de8+j6W4xNjBgb1rMYDB3ffIP46BRsHa0YMquoJuj1o09cOCiMkCYsKYAWgAuH/uTlw0+YWZgwcXGv/A5VnkjG2vknAegysD6BNUoDgkfOijnHUKk01GkaQKsuwntVlCNltX7c1bV/PYL1NzI3Lr7i1uU3GBoZMiOsO+YWpohFMpYtOCUATJdgGjaviFarY0XYGXJzpJQt78aQ0c3Q6XSsXnqejHQxpbwdGTupNWq1hsWLfkcqURBQ2Ys/7n/zqf9m/Udhp06dOuzduxd/f39SU1MJDw+nfv36vH37Fien4h8yKSkpuLkVnVu7ubmhVqvJyMjAw8Oj2PcAzJ49mylTClbVRCIR3t7eGGCAVmekBx1BZ2NmaIpULayjlww6loVA52t6uSWZ3wIdI9NioGOAAY6mejHyPxhdlbH9Nuh8ys7C0sQEBxMLksRiXCyt0Kg1ZMvl+NrbkyGSIFWp8Hd2Ij4jF4VGQ5C7Gx9S0/NBJyopDaVGSzUvD96npOePsb5k5JArU1DBzRmxVEFyrphSDrbYmJgRmSRkYAV7e/DHuxgMDQzoXL1iPui0q+bP/cg4RDIFAV4uWJqY8PRTIhamJvSoE8gBPeh0qVOJp1FfSMoS4+lkS+PKZTh4Qy+ibVGdW88/kZCei7ujDd0bBbLx1F10OujUoDLZORLuvRLWvaf3a8buM3+SohcfD+tSl6U7rgl6niBfGlXzY9n2q+h00KFJZUq7O7J2l6Cx6N2+Oq4OVqzZIeg0erYPxr+0K4vWCkDSslEAnVtVYUboCaQyJZUreDBnUjtCIs7w8XMaNtbmrAjryb0HH9mvXyXv36cubVoGMmnqAdLSRLi62rJi2U88efSZDRsEwGrVOpBJk9qyatl5bt6IxMAAJk5pS/MWlZk77RAvnsVhYmrE3NDuVK9VhoUzjvDkoTAqmz6/M81aB7Jt3RWO7xces+eAegyf0Ip3rxNYMOkA4lwZ3qWdWbJhIC7uduxYc5ljel1Nl351GTW9HWqVhojpR7h7VRhDjZrRnm4DG6DVatkScY7T+4RPl26DGjB8RnsMDQ159zyOkFG7EWVLcPVyIGz7UHz0+pcbvz9lzcyjqFUaKlb3ZcGWIfkanI9vEggZso3M1Fzsna1ZuGN4kTvSW6efsnrKAVQKNaUDPAnZPRK3UgWjipx0MeHDt/L2TyERfcjcLvQc16rIhUCr1XJo9QX2LRV8SyrVLsvcHaNwKsGRNiMpmyVDt+RvW3Ud3ZJhoT2/O7a6fvgeGybvRSqWY2VnyYS1g2jaq+43z/9rxb9PYv34nby+K1gt+Fby4pd1gwlqWDx1/X+rtFotyZ/TiHkTT+ybL8RFfiE3Q4wsT44sT45ULEMhUWDvZod3BS98AjzxCfDCu4IXflV9/6PbYO+fCtEz5f7SyfjRkohk3NDrddoOavI3Zwt19cA90hOzcPKwp82Aht88T6fTsXWB0G1p0afuN92SLx+8z8dXX7C0MWfQ7M7FjsulCjYv0I+gRjWnVNmi17746BQOrhfgfHRId2wKQbZCrmLdLH3Hp08dqtYrAPyUL1nsWC6ImYdMbYenb8G1dlP4GTJThfHVoEkFjYUDm27yKSoZW3tLJuq1PTqdjvVhp8nOyMPHz4UhEwQtUWpyDr/qk8v7D29MQKAQ/bAu4hwZaSI8vR0Zre/0nDz8kGePPmNmZszsRd0wNTXm7Kmn3Lv9XtAzhnbDwsKUbVtuEhWZhLW1OdOmt2fLtm8+/d+s/yjstGtXkPsRFBREvXr1KFu2LHv27CkCJ4WrpDZfSV8vXGZmZpiZFSd3nc4YpbZgdGVmaIpMrUEHWBsJXZ7CoGNjbEm2Qsi6KgAdKzIVUn3WVQmgo9EVA5389XJzS3JkRbeu/go6yhJGVwEOzkT9IOiUtrcnXQ86FZydicvIyQed9ynpqLRaqnl68C4ptRjoVPF0Jy49C5FcSYCbM7lSBSm5Yko52GFtYkJUcjq2FmZU9fLgTlQsRoYGdKpWADodqlXg9tsY8uRKKnu7YWxgyPOYJKzMTOlSsxIHbgkw071eIA/exJKak0cpZzvqB/hy5JY+3LJNLa78+Z6kTBFezrZ0rFeJTaeEC2+PJlVITMnhz8h4zEyNmd6/GdtO3Cc9W4KvhwMD29di6Y5rqNQaGgT7Ub2CF6t2CzqY7q2q4mBtwcaDgvfDoG51MDUyZONeQTsysHsdXB2tidig7/C0DKJpXX9mhJ5AoVQTHOTNlNGtmBN6iviELBwdrFgR1ovzl15ySr8NNHJoE+rUKMPkKQfIzpHi7e3I8og+XL3yhl27hMfp1r0mQ4c2YdHCkzx6+AljY0Nmzu1M9eqlmT5hPx+ikrG0NCV0aW/Klndj9oQDRL4R/HIWRPSiei0/Vi06w9VzgiB7+ISW9BrYgMf3ogmbcQSFXEVAYCnC1vXH0sqMVfNPck2fZj50Yit6DWmENE9B6MT9vHocI+iHlvSkabsqguX7zKPcviSsPY+Y2Z7ugwUvjIfX37J00kEUchXlA70I2ToURxcbdDodhzZcY98a4Xlr1L4KU1f2zb+rfHT9LRHj9iCXKvH1dye0EMjodDr2r7rIwbXC3XPtlpWZuWEQloVypmIiEwj5eTNpCVlY2pgzc9NQarcsqmmRiuWsHL+L++eF11enYU0ZGda7xIvzi9vviBi2ldwMMZY2Fkz5bTANO317BVmSK+XXyXvzha2B9f2ZuWP0dztAhUupUHF01TkOLzuDSqnGzNKUgfO60218m+92Cv4nSqVU8+7hB55ee83Lm2/4/Do+X/fyvRJnS/gSlcT90wVfc/ZypPvEDnQY0eJvc8D+N+r9EwF2Ar5h0Pd3df3QPeQSBd7+HgR9QzhcuFRKNYf1q+G9J7UrFtFQuO6df87bhx8xszBh0JyuJZ4jzpGyJ0J4QgdM74hDCSLrQ+suk5aYjWspR36a2KbIMa1Wy7oZR1ArNdRqXommXYpuE+5fe5nE2Ayc3GwZNrtjke9bM/socqmSoNp+dBpYsJl15/Jrbpx9gaGhAVOX9s4P0I18Ec/RHYJX2IQFXfITyq+fe8nda0Kq+nR950ij0bJiwUmkEgUVg0rRV59ndfXcS+5ci8TIyJBZYd2xsDTlQ1QyO/W6xNGT2uBT2oWYz2ls/rrpNbYF5St48PRxDEf0HaopM9rj+i92Pf/jY6zCZWVlRVBQENHR0SUed3d3L7aplZaWhrGxcYmdoL8rpVaLvX50VRh0bIytyFLIsDI2zwcdW2NLshRFQz0Lg06R9HKZGAt9BIRSo9XHOhR1RnYysyRXXnTrytDAEHdzGxILgY70B0DHysQUBxNzEksAnYy/AZ1gLw8iEwXQCS7lwbvkNMHZ2MudmDQBdCq6u5CdJyNVlIePox0WRsa8T87A3tKcQE837r6PxdjQkI7BAfmg0zE4gFuvPyFRqAjyccdAp+NVXDLW5qZ0rlGRQ7eFC26vBlW4/fIT6bkSSrs5ULNcKY7d1udAta3NufvvSM0W4+NqT+uaFdh6Wm++17waH+PTefZeiHiY3r8ZG4/eJStXip+XEz+1qc7SndfQaLQ0q1WeCj4ubDggAEa/DjUwxICdx4VxzcifGqCQqdhxXICoEX0bYm5qzOqt+g5Ph+rUCPJmzuJTqNQa6tQow9jBTZix4Dgpqbm4udiyPLwXh4485PK1N0Ja+rjW+Jd1Y/K0g+TlKShX1pWlS3pz7Ngjjh7Re//83JAePWsxb9YRXr38gpmZMQvDeuDn58LUcXuJi83A1s6CJav64uJqy/Rxe/n8MQ1rG3PCV/WlnL874bOPcf9WFIZGBkya04k2nYO5cfEVKxeeQqPRUqtBeeYt6w06CJ18kMd3PmBoZMjkkK606hxMZpqIeWP2EPMhBUsrMxas60+1OmWRiOUsGr+PV48+CzqciJ401esFLhx6yG8hgrlZrSYBzF7XHwsrM9QqDb/OO8GVY8L8vufIpgzRd4EAzu65w+aFglg7uKE/czcPyd+AUcpVrJl6kFv6oMSShMgPL79i+dhdyCQKPMu4ELJ3DN7li+r9kmLSCB24kbioJExMjRm/oh9t+he/C9fpdBxbd4ndYcLPU6ZyKebvHfPdjaeox59YMngjqXEZGBoZMmB2V36aXnKkREn15t571o3fSXxUEgC121Zl/NrBuPn+66OYv6uslBzunHjIkysveflHZDG4MTEzwbdSKcoEelMmyAdHd3ssbCywsDbH0tocM0szMpKyiH+XyJeoROKjEol5HU9GYhZbZ+zj0NJTjF75M60G/n021P9UaTTafBF3hX8BdnQ6HWe3Ce/tTiNa/JAp4xV9V8fR3e67OVgqpZqdocIYqPvY1iUmlgPsW34WUZYEH38POg0p3lmK+5DMSb2j+phFPfLB42ud23uPyKcxWFiZMX5xUa3Ph1dfOKn30Bof1gPrQltm5w484NWfnzG3NGVyRMH4KitdzIYQwTyw94im+dtXMqmCFXOOodXqaN6xGg31GVepSTlsXCp0bwaMbkb5ip4AHN93j9fP4rCwNGVGWA+MjI1I/JLFRv0IfOCoplSo7IVMqmTpQiE+p2HTANp3CUahULFkwSmUSjW165WjW+/aZGflsXSJ0J3t2DmYxk0C/u9IPVcoFLx7945GjRqVeLxevXqcPXu2yNeuXLlCzZo1v6nX+V5Z6UHH1NAE+V9Bx8gckUqAGltjK7IUUmyMC0DH0cSKDIUEGxOLfNBxM7chRSqAjkafdVUS6Dh+0xm5wEenRNBxdCEqPR1DDAqBjsl3QUfyHdCp7uXBm8RUVHrQiUxKQ6HREFzKg08pmYgVSip5uJApkpImluDjaI+5oREfUjJxsLKgkrsr997HCaBTrQB0OlWvyI2XH5EqVVQt7YFarSHySxo2Fma0r1aBQ7eFrk2fhlW58TyaTJEUP3dHqpbx4MQdoYswvF0dTt95Q0auhNLujjSr6seOcwKcDGhTg9cfknj1MRkrc1Om9mvKhsN3yBHLKO/jQo9mVVi+81q+JsfH1YEtRwVtx9DudRGL5Ry/JMDWhJ+bkpqWy7HzQjdm/KCmKBQqNuy6BUD/brUpX8aF+UvPCAGi9cozqHd9ps49SmaWhFKeDixb1JPtu/7g1h1BVzNragdcnKyZOuMQcrmKypW8CF/Ug507b3PurNBtGDOmBa1aBTJjykE+vBdAY/HS3jg5WjF5zB5SknNxdrFh6dr+mJoaMWXUbpISs3F0siZibT9c3e2ZN+kAL5/EYmJqxJwlPanfJIDfDz1kk/6DpXm7Kkxd2BWZVMGCX/bz7uUXzMxNmLOiD3UaVyAhNoM5o3aRlpSDg7M14ZsGUTbAk8w0EfNH7iLmfQoWVmbM/3UAwfXKodPp2Lf2Coc2CheKNr1q8Yvekl4mUbBk/F6e/CE8B2NCutFxgHDXqNFo2bH4NKf0eVptfqrL+MW98ldsczLFLBq6jXdPYzEyNuSXiD606VuwHfPVKHDX4tPodDqqNqzA3G3DsXEoqo15evMtEcO3kZcrxdHNjvl7xpRozS/JlbJqXEHnp2Xf+oxf2f+bug2tVsuJ9ZfYFXIcjVqDm68zs3aOodI3RKd/LVmenB3zjnB2i6CncnCzY8zKgTTuUft/xf1YKpZx7/fH3Dh0l+fXXxdxGLZ3tSO4eSDVWwRRsW55vMq5/60I2rdSKWq0LPCgUSpUXNt3m6OrzpL0MYUVQzcS/ewzI5cP+F/vTgFEP4tBlifH0tYC7wCvv/+Gv9STa6+Jj0rCwtqclv0a/O35SrmKQyuFC3ufye2/29U5u+MmSTFpOLja0mt8mxLP+fj6C+d3CzAyutD74GtpNFrWTT+EWqWhTqtA6rYOKnI8NSGL3cuEn2fIrI5FUsuVChWrph8WDPw6VqNuywKhfGJsOjv1xoJDp7fPTzTX6XSsm38CUY4Uv4oeRcwDNy87T/KXLFzc7Rg3p5Pw86k1LJt9DGmegopVvemtdz5+/zaRPRuFTs2Yae3w9HZEpdKwdN4JZFIlQcG+9P5ZeL5/W32JhPgsnF1smDSrIwYGBmxad4XYmHQcnayZNrcTOh0sXXKW7CwJpcs4M2Z8S7Ky8ti86eo3n//v1X8UdqZNm0anTp3w8fEhLS2N8PBwRCIRgwYNAgStTWJiInv37gVg9OjRbNiwgSlTpjBixAgePHjAjh07OHTo0L/0+DlKGRZm1ig1OrQUgI6lkTkidXHQyVYoAQMcTa3IkAugI1Ioi4COuZEJGo0Bco0aDwsBdL6ml6fJJDj+NdRTDzoelrZFDQNL6ujoQaesgxMfszL1oGPxL4FOcCHQqe7tydvE1BJAx5VMkYQ0sQRfJ3tMMSI6NRNHKwsC3Jy5/yEOYyNDOlYN4PQTAXS61KjE1RcfkCnVBJfxRKlUE5mQhp2lOW2qlufoXb3PSuNqXHvygUyxlHKezlQq5crv9wTB7agOdTlx6xWZIillPZ1oGFia3ReFraPB7WrxNPILbz6nYGNpxpSfmrDu4B+IJAoqlnGjY4NKLN99XdDkNKqEk50VO08K3aDRfRqSkibi9DXhZ5g2rAUfY9I4c1X499QRLUnLELP/hNB5Gd6vAS4O1oStEjQ7rZtWolenGkybd5ScXCllfJ2JCOnBut+u8vDRJ0xMjFgwuzMmRkbMniv46lQP9mXhgq78uu4K168LepzJU9pRp3ZZJk/YR3xcJnZ2Fixd2RdjI0Mmj91LVmYenqUcWLa2P3KZkimj9pOZIcbd056l+nHUzLF7iH6XjKWVKSGr+lKluq+QZq4Hiq4/1WHU1LZkpecxd8we4j4JHaHQXwdQOdiX6LeJzBu7h9wsCZ4+TizZMhj3Uo4kxKQzd/hOPQDZELZ1MGUreqJWaVg/7wRXTwqbcQMmtKLfeGFzKitdxMJhO/j4JlEwGFw/MD/jSiFXsmLifu7p87T+unEVH53CwkFbSInPxNrOgrlbh1GtQUGsg1Kh4tfph7h2VADdDoMaMTq8d5ELhE6n4+Sma+wIEXJ/Amr6MX/X6BL1ObGRiYT9vJHET6mYmBozemlf2g9u/E3oyEkXsXLUNh5fEX7+Jj3qMHH9YKzsLEs8/6/1/OZb1ozZTmpcBgBtBjVmRES/YqD275ZOp+PV7UgubL/O/dNPUMgKwhIr1ilPg661qNGyCmWq+Hx3XfpHytTMhPbDW9BmSDMOhJ9gf/gJft9wiYzELOYfmfy/Hl/x5Ipws1S9eeAPd9UK1/G1ws1Au8FNfujveG7nTTKSsnHxcqTdoG93dXIzxRxYIUDIz7O7YGlTfLyn1WrZOPuwkE/VpQbBjYprtM7vvcu7p7FYWJsxbnGvIsd0Oh0b5hxFJlFQqWYZOgwsCmv71lwmPjoVB2cbxoZ2y/+6RqNl9cyjKGQqqtYrR4d+BfqyS8ce8+iP9xibGDF9acG49971t1zWb2VNW9ITK/3vc3j7bSJfxAufQ/pVd0menIg5xwVDwJaVaa0PKN2z6QYfIpOwtjVnxqJuGBkZcv3ya66cfyncGIZ0w9bOglvX3nL+9HMMDGDm/M44OFhxcN89nuodluctFCw6Foef4cmT99/9e32r/qOwk5CQQN++fcnIyMDFxYW6devy8OFDfH19AUhOTiY+Pj7//DJlynDhwgUmT57Mb7/9hqenJ+vXr/+XPHZAyMZSaXRodLpCoGOGWA86dsbCmKpE0DE2R6xUooV80DEzMkGnMcwHncQ8AXSE9fOv6eVKVFotpW0ciM0VDAM9Le1IEIuwNzNHne+MXLij40xU+ldnZCeiszKxNDbBvjDoaLT/CHTe6kGnhrcnbwqBzseUTPIUSip7uJIukpAullDayQETDPmYJoBOBTcXHkTHY2JkRIeqFYqAzpXnH5Cr1NTw80IiU/I+KR17K3NaVynPsbtC16Z/k2AuP35PlliKv5cz5T2cOftQAIHRHepx9MZL4VgpZ+oE+LD3knCBHdqhNg9exhIVl4adlTmT+jRm9f5bQjxEOQ9a1qnAqn030emgS7MgLE2N2XdaGKmM79+Ez7HpXLwdiaGBATNHteLl2y9cuhUpvOnGtuHj5zSO6XNyxg1ugoWZCUvXC/qRTq2r0L5lIFPnHkWcJ8e/nBth87qyfPVFnr2Iw9TUmPAF3ZBKlISF/Y5araV+vXLMmtGRZUvPcf++sCk2e04nKlTwYNIv+0hJzsHZxYblq/oiyVMwc8J+xGI5fuVciVjdj/RUEXMmH0QskuHr58LStf3RaLRMHbGLhLhM7OwtWby+P37+7mxYep5z+jX0QWOa03dYYxLjMpkzZg9pSTk4udiweNMgSpd348WfnwidsF+IlajoSfimQdg7WfP+1RcWjNqNKEeKl68T4duH4l7KUejaTNjPk9vvMTQy5JdF3WjbW1i7LbxabudkRej2YVSoKrTAc7PyCB22nXdPYzE2NWLqqn407VKgh3lx7wPhI4RNKXdfJxbtGY13IYO/3Mw8woZu4e2fnzA0MmR0WC86DS3a8lcqVPw67QBXDwkjyDb9GzJued8S3Ypv//6E1eN3IZcocC3lyNw9Y6hQvUyx877Wy9vvWDZsM5nJOZiamzBmxQDaDW7yQxdziUjG9jmHuKA3GHTzcWbSpmH/4545oqw8ru27zblt10h4n5T/9VL+HjTv15DmPzXAs+yPWXv80zIyMuTnhb0oW600S/qt4+6pR1zadZN2Q4vnOv1P1mO951KtNj/meFy4op/H8OKPSAyNDOk2ruTOS+GSiuUc0Wt1+s3o+F0X7P3LzyIRyfALLEXrb3SMLh+8z7snwvhpREjx61ZaYha7lwrTi6FzOhcbg904+YQnt6IwMTNm8oqfioBr5NNYTmzTa2uW9MS2EFCf2P4Hkc/isLAyKzK+Sv6SxVa98/KgSa0p7S+8VjLTRazTj7V6Dm5I1VpCh/Tt8zgO6KMlfpnXCfdSws/327LzJCdk4eZhz6R5Qsjn4/sfOaZfbJg6vwuu7nYkfslkvT74s//QRlSp7ktSQhZr9D9D358bUL2WH69fxrNb7731y6Q2lC7jwu7dt3nxIg6zf+BEXrj+o7Bz+PDh7x7fvXt3sa81adKEZ8+e/Y88vkqrw0Cnw9bYikyFTHBL1q+cfwUda2NzcvSgIwiLJVgbmyNWqdHoCoGOoQkGWkOkfwEd4XgeDmYW5P0FdMAgf8xlZ2qeH+pZ2DCw8OjqawREgY+OsF6u1WiF9fJCYuQAF2di0/810An0dCMtNy8fdIwNDPmYmomTtSX+Ls48/Ao61Srkj6661iwAnZplvRBLlHxITsfB2oKWgeXyQWdA02Au/BlFTp6MCqVc8HN15MKjKAwNDBjTqR4Hrz4Xjnm7UKN8KfZfETQcIzrV5Y+nn4j+ko6DjQUTejVm1b6bSOVKgit40Ti4LGv33QKgZ6tqGGh1HL4gvE4m/9yM1++TuH7/PUaGBswb25b7Tz5x/Z7+3xPa8/JtAqcvC3eMU0a1RK3UsEpvHtajY3Wa1vdn2txjwhZWRU8WzOxM+NIzvIlMxMLClIjQHqSm5LJileB43KxpRSZNaE1o6CmePY3F1NSYhSHd8HC3Z/Iv+8jMyMPLy4Flq/qSkpTD/JlHkMtUVAosRfiKPnz+mMqC6UeQSZUEVPYifFVfRDlSZijCHWIAACAASURBVI3bS3qqCBc3WyI2DMTdy57l809w67IQSjhuZns69apN9Lsk5o3ZS262BC8fJxZvHoS7lwN3rrxh+ayjQvxEbT8WrOuPlbU5T+9+IGzCfhQyQXC8aMtg7B2tycnMI2TkLt6/EkZgs9f1p05zoWvz9kkMoSN3Ic6R4unrTNju4Xjq9SdJsRksGLSFRL23z4IdwwmqU+AkfPXYn6ybfgiNWkulmmWYv2M49k42+ce/RKewYMBGUuIysLK1YPbWYdRoWqnI+zcrNZewwZt49/gzhoYGjAzvTZcRxVPNNRote8JOclS/NlytSUVm7xiJXaHHK1xarZbDK86yb7GgS/L292Du3nGUCSy+GlxSPbvxhtWjtpOeIHjBdBrVgqFhfbC0+TGH3h+pmDdfOLn2PDeP3EMpVwFgYW1Oi34NaTO4Gf41/f6PBYQ26FKLwWF92DbzAJun7qV+55rYOf/rrsbfq5x0Ub44uWarfw47x/RdnaY96/yQqPzEb5f1MQ5utCohxuFrxUQm5I+mRoX1LrHjlJMuZme4ABADZ3bC+S+dR51Ox6+zhK5N5dp+tB9QFJiy0kRsCRXWvPtNbFNkO0suVbB6+mF0Oh0tutcoMr76/C6JfXrfrDHzu+CmH3tp1BpWzhLEyoE1y9BtkKBt02q1rJ5/ElGOlLIBHvz8S0sAJGI5y+cI3dPmHarSrL3gP3Xt/EuuX3iFoZEhMxf3wNrGgqyMPFbqA0Q79apF/aYBKJVqFs87iUyqpEqwL/0GN0KpVBO+4BRSqZLAKt78PLQJOTkSFocJ2XYtWwfSpl0Vnj6NYb/en2f8L624em3+t/9o36j/V2l2/k+XRqfDsRDoSNQqdICdiRWZcqkgUFao0GGAk6k16XLBBTlPpUaj0+WDjqmhMQY6I6RqVYmgY29qTp5CVQx0vPQdHVtTM3RaLXlKJb629t8AHaGjI0RAWJJQyDAwSybD184uX4z8LdAprNH5J6DzqTDofIzH1NiIdlUKg05lrjx/j0ypplbZUuRK5EQnZ+BgbUGLymU5fk8AnYFNq3P+YSQ5EjkVvV3xcbbn0pP3+aBz4MozciVyKvq4UsXPg0PXBFgZ3aUe1x9F8zEhA0dbS37p1YiVe24gU6ioUdGbekGlWX9Q+KDp06Y6CrmS0zcEF+VpQ1rw5GU8tx5FY2xkyMJf2nP9bhS3/4zG2NiQhZM68ODJZy7eeCu0UMe2ITtHylb9VlbfbrWoVa00M+YfR65QUa2KN3OmtmfBolO8j07B2tqMZWG9+PgxlXX6OIP27aoycnhT5s07zpvXglNy+OJeWFuZMWXCPnJzZZQu48KyVX35+D6Z0LnHUSk1VK9ZhpCIXrx6HkfYnOMolWqq1ShN6PI+JH3JYs6E/eRkSSjl60TEhoHY2lmwaOphHt2LxtjYiOlh3WnaOpDX/w97bxkY1f2tbV/JZCbuSgju7k5xKBYsQHAr7sEJEgiEBC2FQqFYcIJDKVDc3d0txF3G7fnw2wykQO38z/Oe8/RdH2f2DCSTvefaa93rvm++IWz0FlS5WoqVzkfEyj64eTpxeNc1ls85iNlspn7zckyKFF45p365zZJQEcxZpW5xZizrhb2jLYmx6UwfsJa4N6k4uzkw++f+lKkiuq6Xjz8gavQWdFoDpSoXZNaaj/EOT26/YdaAtWSl5eIT4M6cjUMoKAmJzWYz25YeZcti8aXToF1Vxi/pmUcHcfvcEyIGrhEdn4KezN4ynIIl89pKvLj3jtm9V5ASl4GTqwNT1w6i2heM/HIycokcuIZbp8SINGjktwwI6/RVnUpWag4LBq3mhhS82bxXfUYu7vOHoZ8fSqPSsn56DAckTUG+Ij6ErBpIpQZl/uSVf70eXnpKzMKDXDl00/JY0QoFaTukOU161P+PAtXfqU5j2nB80znePIzl0sEb/23dnYsHbmA2myleudDfdk6OfZbAub2SeH5s6z85WsQ47JZWu/tO7/hVPZLJZGL5xK2YjCbqta1CpS+MpgBWz9xFbqaKouUDaDfgc1Hy6X03uHH6kcVA89Oujdls5ofJMeRkikiIzkPy/n43LDwitq/8XBk68+MGmE6rZ8F4of+p06wczTp97KzG/HzG0u0ZH9nZAmgHtl7m5sXnIgw4qityuY1YM597kKT4TPzyuzMiVGx4xb1L48cPQuVBDSlXqSAmk5kFYfvITFdSpIQvgyUzwzU/nuDFs0RcXO2ZMqsDMpk1q5Yf5/nTBJxd7Amd3RErayvmR/xCakoOBQt6MiakJWlpucyLOCikCW0q06jRPzuf/tWw42Ij/HHsrBWoJNBxkzuRqlHiILMjR2vIAzoOMltUeqMEOi4kqrJRWNsgwwbl70DHz96ZBGUurgo7VDoDepORQk5uFtAJcHQlNluADibI0emEWFnKuvoAOp+ml9vb2OBl58j7rGw87UUERLrkjJyWqxZbV95/rtH5K6BTxMsdGZ+Cjmce0Dkoja461ijHb7cE6NQsXoCMXBUvEtLwdHagUdmi7LkkfFv6NK7KL5cfkaXUULagLwEeLhy7+QyZtRXDA+uy6egNslVayhX2pVxBX3aeEgLi4R3r8dvlJ7yKS8PLzZHhHeuxIPokWp2BmuULUa1UACt2iPXx3m1rkJml5NAZAS5TBjbnwo1XXLjxErmNjNljWnP45AMu3XyFQi5j9vhATp1/wonzT5BZWxE6uhXv49KJljxy+nWrS5nifkydtUdESlQrwoRR3xIatoeXr5JxdbVnUUQwd+6+5adV0kp7h2r07lWPKZN38PRpIo6OtkTNDwaTmQkhW1HmailZKh+RC4O5c+MNkbNF8F3db0oybXYnLp1/ynwpDK/ONyWZNieI508SmDFWvLZYST/mLe+FXC5j2qgtPLgt2rozFgVTo24Jrp57SsSEHei0BipUK8ysZULj86krcqvONRg5vR0ymTX7N11kteSJ0ahNJcbNE/4yrx7HM/27dWSk5ODj78bc9QMpIKUNH95+hRUz9mAymanZpAxTl/e2bItcOfaAqJEb0Wr0FC8fwOzowZZQQoPeyLLJOzi+U2iigkc2p8+kNnku6ke2XODHyUJgWbZmMWasH4ybV94OzIVDt1g4fD1alY78xXyZvXXkF/OtXj98z+yeP5L4NhVbewUhy/vRKKjmZ8d9qMfXXhDRZwUp79OxtVcw8vs+tOj15WWJ39eT6y9ZOHA1758lANB2cFMGRnT7j6xlm81mrh+9w44FB3hw4QkgrDa+CapFp9GtKVO7xP+1Ls7XSiazplFwXaJnxnBx//X/Ntg5K21QNuz81z2NPlTMkkOYzWZqt65MsQoF//T46Dn70Kp1lKtdgm/af92O4MSOyzy6+hI7R1uGRgR/8ZjrJx9yZt8NrK2tGLu412ewnZmWw+owscXVM6RVnnEuwInd14S5oELGhO975tGs3bn0nIMbhW9WyPyuebavNiw6wtvnSbh7OTF6bpDl7+Tx7bdslcTEI2e2x0+yf3j1NIH1km3EoAmtKCSd8ycP3eHs0fuiexPVBUcnO/R6A5Ghu0Wnplphuklr5rs2XeT2tVdiGSIiCIWtDRfOPOHALjFmnzSzPV4+Llw4+4T90mOTZ7TD28eFHdsuc/3aKxQKG6bP6ojC1oZp03aRmamiWDEfRoxshlar/upn8Uf1r4addK0GB4UzGpMRE5+Cji1KvQETSMLiXOxlCjRGEwazGT87FxJU2citbZBjQ45eLwV1CtDJZ+9CvDIHV4UdGr0RnclIIWd33kqgU8DRlXfZ2TjLFViZIFunpZCLG+8ys/io0RGgU8rDi6dpqSK93M7xY3q5GVI/iYBQ6nSU8vLiXWomGsNHw8Avja4exgvQqfypRudPQSf2M9DpVKM8R289kUAngPQcFS8TP4LOXgl0+jWpxv6LDwTMFPLF392F47eeY2NtzbDAOmw8eoMclZaKRfNRMsCbXZLHzsig+hy+8IjX8el4uzkytENdFm48iVZvpE7FwlQo5s+qXaK12b9DLZKSszlyXmhyQoe04NSlZ1y+/RqFXEb42DbsO3KH63clfc34dhw+dZ+zl4WWJmxcG54+T2TbHnHnN6RvAwrn92DG3P3Cp6d2cUYPbsrk6Tt58y4ND3dHFkcGc/Hic9ZL7evu3WoT1LE6E8Zv59WrZFxc7Jm/oBuqXA3TQ3ehUespXyGAuVFduXD2Cd9HCeFzk+blmDi9HccP32Np1CHMZmjcojwTZ7Tj7s03zJ4g/HLKVSpA+Pc9MBiMTBoazYsnCTg42jLnh56Ur1KI00fusWj6HowGE7UalCJ0ociYWrvkKHskE8FugxrRV2pLb1x6jB3S/L1977oMniLA497Vl8weuhFVrobCpfyYu+47PH1dRVdm2XG2SNDUoktNRkcEWS7ch7deYsU0saZavXEZQlf2s+T4KHPURAxZz23JCXrEvK552vQmk4kNc/ezW8oAahxUg7GLe+Xp+JjNZmJ+OEr0XNHKr9q4LKFrB+P0BZHphV9usmjYejRKLX6FvJi5eQRFv+BQ++F99688zpppOzAajASU8GP65pF/aWxl0BvYFnWA7fMPYjKa8MznzrjVA//RiOVL/6/bpx4QPTOGJ9eE4aGNXEbz3g3pMr4tASX9/8v/xn+y6neoSfTMGG6fvI8yS/WXRdx/tdISMrl3TsBegz+Javh9Jb1L5ZR0E9N94ucGfr+vp7deczJGHD84outXYTI7PZe1s0RWU6+JgXh/odukUWr5cbJYoukwqAklKn0OWqtn7iU7Q0nRsvnpPLRpnueS4zJYNUv8zfce14oipT9+7socDd9PigGgdY86VPvmo2fQ7YvPLaG8Y+d1sXRelbkaFkyKwWQ00ahNJRoHCksJjVpH5MQYi0ty22DxO457m8aKeeKGqPewxpSpKM6L6BUnef44HmdXeybN6YRMZs2je7FESzd+Iya2omARb5ISMi1xEJ2716Zm3RIkJmSyWLrJ6tK9NrXqluD+vVjWrz0DwKixLShazIcN689y9+477O0VzJjZAa3WwMZNF774WfxZ/athR2EtR2syYTSbcZc7kaJRYi+zRaU3YTTnBR2d0YzeZMJXAh0bKxm2yMnW6/CzFyaAYIW/vQtxyhxc5LZo9Qa0xrygU9DJjbdZWTjJFciwJkunoaCzK7GZWZjNUMpdiJGtsKK0p/DUsZPZ4PMJ6MiwJkWlpICrK5lKkXVV0suT2LSPERAfnJEr+/vxSAKd6gX8eRgvfHQ+bF1ZxMifgI4Nn2p0PoJO64ofxchBNcpxJA/oqHmZmIaXswMNyhT5IuiUL+SHr5sTJyTQGd6uLut/vYZSo6NSMX+K5/NgjwQ6o4K+4eC5B7xLzMDH3YlB7WuzYOMp9AYj31QpSqkCPqzZI8RvAzvVITY+nWMXRYdm+tBvOXruMdfuvsVWYcOcsW3Y+ctNbj2Ixc7WhohJ7dl/+A4XrouOT/jEQG7fe8eug2I0MGpgE7zcHZkRcQCj0USj+qUY0r8B40NjiIvPwNvLmcWRwRw//oCt26UuUJ/6tPy2IuNCthIbm46HhyMLF3YnKSmL2TP2otMZqFa9CLPmBvHbobusWCrunlq3q8LoCa04sOs6qySIaNuxGiMntOLKuafMCxW5WdVqF2Pmgq7kZKuZOnwTsW9ScXV3JGJ5L0qU8efQzmusmCfuXBu3rsj48E5YWcH3Yfs4tk/8XIMntqZTn3oYjSZWzjnA4RgBdn3HtiBYCu28+Nt9okK2YdAbKV+jCGGr+uHkYi9eM3Mvh6Uoie4jm9FbipIwm81sXnKE7R8gKLgWoyO7WiAoJT6DsL6ref04HjsHBVN/6k/NT9KitWodi0Zt5MIhsQrea2JbeoxrlecLRqfVs2zcFk5IX0DtBjVhyJwun90hm0wmti74ha3zxcW1SqMyhK4fgrO70xevAepcDd+PWM9ZaQOvQaeajP1xwF9KwI57mcT8fistGpLGwXUY8X3f/8im1YMLT4gOi+HeuccA2DrYEjikGZ3GtPnHwZf/3VWwTH4CSvnz/mk8t08/oH6Hr3fR/kmd3X0Fs9lMmZrF8Sv09fT5L9WOhb9gNBip0rjcn6bQm81mVocKgGgaXOcPRezrw/eSna6kcBl/Ogz5cjdr04JfSH6fjk+AB70mtfns+UtH73HmwE3R9VnUPU/XxmQysXTidlQ5GkpXLUTQ7/6Nn2bvIzk+E78CHgz8xDwwJ1PF4skiiqJ199rUbPxx9LMy/ACJ7zPw8Xdj5CdJ56vn/0rs6xQ8vJ0ZJ4V86nQGIifvFKvj1QvTVereXL/4nN2S+HjcjPZ4+7qSnaUmavoeTEYzjb+tQIvAyhgMRiJn7iM3R0Opsv70H9YEvd5IxMy95OZoKFMuPwOGNiYjQ0lE+H5MRjNNm5ejZetKXL36kq1SRuC48a3In9+D6TN3c0Ha2v279a+GHb3JjNlssoCOnUyBWm/E8Ano2MnkwhzQZJI0ONnIrGTYW9uSpdPi+ynoOLgSl5uNk1yB3mhCYzRKcCNAp5CTO2+yMnG0kSPHmkythgLOrsRl52AyYzEMtPrQ3UlNxVYmw8/BibeZWXjY2yPDihSlkgAXF7KVGkt6+YdQz/K+PrxISrOAzmMpAqJqgAAdtcFA5fx+edbLUz/ZusoLOh81Oq0rfdToCNARo6taxQuQJnV0vF0c+aZ0EfZd/hx0KhT2w8fViVO3X2Ajs2ZEYF3WSaBTubg/RXzd2XtO6CRGd/6GA2fu8y4pEz9PZ74LrM0iCXQaVi1G0fyerNsvvnSHdK7Ly7cpnLzyDJnMmhlDW/Lr6QfcuP8Oe1s5c0Lasm3fNe48eo+DvYJ5k9oTc/AGV26+Fh2eSe24fP0l+w+Lsdm4oc1wsFMQPv8XTCYzzRuXpV+PuoybEkNiUhZ+vq4siQrmwIFb7NojWrCDBzWmcYPSjAvZSkJCpoiEWNSdN69SmDt7HwaDiTr1SjAjrCN7d11jneQaGhRciyGjmrF94wWiV58BoEvPOgwc0ZTTR++zcLY4+es1LsOUuZ1ITcpmyvCNJMVn4uXrQuSKPhQs4s2OdWeJljKxAoNrMWxKawx6I1GTd3LppNg8GTurIy06VEWnM7BwUgwXPgiaZ7anTTdxB3ck5io/zhQme3Wal2PK9z1Q2MrF3H/sNi7+dh8rKyuGhXUgUPLLMBqMLA/dxW87JAga04Len4DK26cJTO/1E6kJmbj7uDA7ejAlKn68s81MzWF231U8ufkaG4UNIUt60uR3d+1ZaTmE9/2Jh1deYC2zZnhkN9oOaPTZ+azO1bBw2DouSdDUcVgzBoZ/DkQf6v3zRMJ7LOPt4zhkNjIGz+tG+2HN/3QkZDabObH1AitCNqHO1eDk5sCoZf3/VlzE1+rl3besm7aNG5JYXm4rp+3gZnSb3B53389X6f+nVQEJdjKT/5nx29fKbDZzZL3oQjbt+efeOJ9W3MskftssRt09p7T/0+PP7LnGo6svsHVQ0G9Gx68e9+jaS45uEV2GkQt6flHT8+TWa/ZL5oCjFnTH3jHvWDMzLYdlk8WiTtDQpnnODYBfN1/k9oVn2NrJGb+kZx7h87lf73Byr4CkCYu7W7qoZrOZZTP2kJaURf4iXgz6JDPr9KE7FpfkSQuDLevk5367z5E9Istr4rwuuErAvu7733jxOB4XNwexZi6zJiUpiwVSfla74JrUbVwGs9nM4tn7SUrIwr+AB6OmtMHKyop1K0/x6MF7HJ1sCZ3TCblcxorvf+PJo3icne2YFt4RKysrIuccIDUlhwIFPRgzriVJSVlERgqdTrt2VWjSpCxbtl7iytWXKP6hl9O/GnYMmPCSQMfWWo7WYJZAx5lktdiwMhqt0JqM+Nk5k6DKwdrKGieZiIbwtXMi4Xeg42ijwGQEtcFAQSc33mULDU5hZ3deZ2biYCPH1tqGDI2aACdXErJzMJrMeTQ6ZTy9eZyagkImw9/RhTcZmbjb2SG3siY5V0l+Fxdy1TqytVqKe3oSn5GDSi+ll6eI9HKRdZWSxxlZbTBQSXJG/mAYmJ4jDAMLe7qjsJLxPCkVD0d7SvqIravPQae8paNTq3gB0nM/BZ3CFtDp37Q6+y7cl0AnH76ujpz8AuhULZGfQr5u7D8nnIdHd27AvlP3iE3OJJ+nCwPa1mRh9EkMRhONqxenoK870dI6+fCu9XnyMpHTH8THw1ux//g9bj2MxcFOTsS4QKJ3XeH+kzgcHRRETu7Alt1XuS51fCKnduD0haccOnYPKyuYNLIlVmaYt/hXzGZo3aIC3YNqEDJ5BympOQTkd2fRvGBidl7lgBQJMWpEc2rVKMrYsVtITs4mXz43Fi/uwcMH74maJ9LHGzYuw5RpgWzbeJEtG6SLbr/69PmuARtWnWbHJjGK6zOoIT37f8OR/bdYFinGWc3aVGLc9Ha8f5fKlGGbSE/Nwb+AB1E/9cXHz5X1S4+xU3rP7oMa0mdEUzRqHbNHb+HO1VfIFTaELgymTpOyqJVa5ozawu3LL7CRy5i0IJhvWlbAbDazc/VpoheLbaVPzQKV2WpmD9nA/auvsFHImPx9T+q3EiMajUrLvOEbuX5KrO+PiOhC654fN1buX3lB+HdryM1SU6C4L3M2D8X3kw2Y9y+SmNFzBYlvU3Fyc2DG+sFUrPvRYwfg3bMEwnosJ+GN2Mqatn4IVX+3lQWQ+DaFWT1+5M2jOOQKG0Z93/ur678Alw7dYuHgn1Flq/Hwc2P65hGUq1Pyq8d/qNxMJctHR3Nml4C7CvVLMWn9sL8cF/G1So1LZ2PYTo5tOovZbEZmI6Nl/8b0CO2Id8B/7b3/b5ajJJBW5fwzXcXX6sHFp7x7Eo+tg4Im3f4e7GwM34PRYKRGi4pUqPfH0RAapZZ1YWIsFRzS+otjKRDjy2UTtgDQomc9ytcp8dkxep2BH8ZtFRtSnWtSvUleAb3ZbObHKTvJSsulcKl89BrfKs/zca9TWCeNf/pPDSSgqI/luZT4TJZPE7lZwcObUq76x+7Tsd03uHD0PjIbayYt7o6dg9DTJb5P50dpQ6r7sCaUq1pYPB6XwQ/S412/a0CV2qLzdenUIw5sE3/n4+d0wsvXBaPBSOTU3WRnqSheOh+Dxor1/d1bLnPl/DPkChnTI7vg6GTLhTNP2CN1gifOaE8+f3fOnHjIfskiY/LM9vj6uRG97iy3br7Bzk5OWHgQNjYywmfvIydbQ6lS+Rg2vBk3b71hw0YhFxg2pAknj///21h/q9zlYpVcYS1Hb7RCbzLhLcU9yK1tMJmt0HwKOljjLLMnQ6vBx86JBGUulq2q3CwcbBRgtkJl0FHAydUCOkWc3XmVmYm9jQ321jaka9Tkd3IhKScXg8lMqU80OmW9vHmUkoLc2poCTi68Ss/Ezc4OO2sbEnNz8Xd2RqnRkaXRUMzDg8TMHFR6PWV9fXidko7GIEDnWYJIL6+cPx9PpKyrSvn9eJuSYYmASM8RERCFPN2wtbbmWaIAnTJ+3lx6JtbLW3+ydRVUszxHbkqgU6IAGTlqXiSI0ZUAHdFeHNC0Onu/AjrDfw86Ph9BZ0znBuyVQMffy4X+bWqxcKMAnSY1SuDv6cKmX8SJMrL7Nzx8lsCZa8+R28iYOaIVe4/c4c5j0cGJCAlkw85LPHgaj5OjLVGTO7Ah5jK37r/D3k7OvCkdOHb6IUdPPcTa2oqpY1qhVetZ/KMYxbRvU5mObasSMjmGtPRcChX0ZNG8YDZtvsCvh+9iZQXjxraiYvkAxo7dQlpaLgEBHixa3INbN16zaL6AlebfVmD8xNZs+PkMO6V8lwFDGtOtd11WLT3Gvp0C3AaPakbnHnXYu+0KqyWBYGDn6gyf2JqXTxMIHbGZ7CwVhYv5ELmyD24ejqyYd4hD0usHjWtJUN965GSpmDF8E0/uxWLvoGDW8t5UqlmU7AwlM4dG8/Tee+wcFMxY1ouq9UpgMplYN/9X9q4XwNR1SGP6jW9pMQuc0X8trx7FY+9kS9jq/pZAwaz0XML6r+Hp7bfY2smZ8mNfarf46CFz/tBtFozehEFnpGyNosxaPyjPeOfBlRfM7reK3EwVfgU9Cd864rPohzvnnjCn308os9XkK+zF7G2jPtvKAnhw+Tlzeq8gKy0Xd19XZm4eTpmvjCqMRhOb5+5l+0LxJVK+bkmmbR6Bx1/omjy68pyovitJeifiIvrMDKLr+Lb/yNjuQ6ly1Oxa/Au7lxyyGAE27FqH/uHB/23+OP+d5SCN/1TZqv/o+35wn27Sre5fGjF+qOd33nB2z1URGDu7y58ev2vZUVLjM/Ap4EnQiBZfPW7/6lO8eRSHi4cjA8O+7PO2Y+lR3jyJx9XTicHhnT97/sz+m1w8cheZjTXjf+iVx8PHaDSxZNw2tGodleqWILDvx8gTk8nE4onbyc1WU6pSAXqMam557v3rFFbNFZlbfcZ+S0lJp2Y0GFk4aSeqXC1lqxSi+9DGgFgamD95J8ocDaUrFqD3cKEXSk7IZEmYAKCgPvWo1UBA4safTvHwrjAUnBbVFYXChod3Y1m/Qnw+w8a3pFgpPxLiMlgcIWIeOnevTd0GpYh9m8aSKOGn0613XWrVLcG1qy/ZIt3shUxoReEi3iz9/ihPnybi7GJHWFhHsrJUzJ13QNyAtqxI8+b/zKvqXw07KRoVdo6OGE1W6D4BHRsrGdbYoDLq8ZVAxworKRdLg7edE4m/Ax17mQKZ2ZocvU7atBJi4yLOHrzKzMBWJsNJpiBVrcLf0ZnkXCV6k0mkl0sanbKeAnRsrK0p5OzOy/R0XGxtcZDJScjJIZ+zMxqtniy1hqLu7iRl5aLU6Snr483b1HSRUp7Pl+cJqQJ68vvxLCkVtV6Eer5LEenlpf28yVRqBOh4uGFvbcPTxFTcHe0p4/sRdNpWLs3+69LKcwVSYgAAIABJREFUbs3yHLn5ydZVjprnCakS6BT5y6DzQaNTrWQABbxc2X9eypLq0pDdJ+/wPjkLfy8X+rWuaQGdpjVL4ufhxNbDQnsypmdD7jyK5dyNlyjkMsJGtGbXr7e4+yQOR3sFEeMDWbPtAo+fJ+LsZEfk5A6s23aBOw/fY28nZ/60Thz67S7Hzz4WGp9xbcjKUvPDT+KE7dy+Gq1bVGDc5O1kZKooWtibBRFdWLfuLL8dfyBawBNaU6K4HyEhW8nIUFK4sBcLF3Xn4vln/LBEdEjaBFZm1NiW/PTDMQ5KzsPDxrSgfVB1lkb9ypGDYtwyamIr2nasxrZ159i4SrS8u/Suy3ejmvHobizTR29BpdRSsqw/Ect74+hky6Lpezn1612srKwYNT2Q1p1rkJ6aQ+jgDbx5noSzqz1zV/WjVPkA0pKzmfbdet6+EI/P+bk/pSoWwGgwsjR0NyckTc+gqW3pJM3kE96lMa3vzyS8TcPN04k50YMoXk5Y8ye9T2d671W8f5ksVtI3DKJMtY93lgfWnWX1rL2YzWbqtqzIpOV9sP0k2+f8wVssGBmNQWegVNXCzNo4DDfvvBtXx7Zd5Idxm4UPT61ihG0a/kVfnGPbLrJs7CYMeiMlKhcibOtIvL6SR5SbqSRqwCqLG3KH4S0YFBH8pxEHJpOJXUsOEz1rFyajiXxFfJgSPYzSNf9aXMTX3vPE5nOsm7adjKQsAMrXK8Wg+b0oU+vzLsH/lpJJepMP3j//iUp6m8qF/eL8CRzc7C+/zmw2s3aa0N407lr7Tzew4l8ns0syER0Y3iXP3+zvj9s8XwDFwFmdcfH4XA/24t47YqT3Gj4v+LNjUhMyWTldpJJ3H/MtxX8nht+54oTIvnKyJWRR3jX0vWvPcvfyS2zt5Uxc0sOi8dHrDMwP2YZGpaNS7WIEDfy43r7lx5M8uv0WBydbJi0Mtox2N688yeO773BwsmXKgmBs5DIMeiORk3cKmCofQL/R4nd+/eJzYiTBc8iM9vgX8CArU8W80N2YjGYafVue1h2rodMamBO6G2WulrIVAhgwvAlqtY7wabtRq3VUrFKQfgMbkZSYReRcAUSB7avStHl5jh+7zy+/CCfl0NB2eHg6ETJ+K1lZaooX92XUyOZoNP8MpP/VsGNjJQOzDK3RaAEdmZUMuZWcXIPe4qMDVrjJHUnTqPGydSRZAp0AB1dic7Owk8lRWMnI0mnJ7+jC+xwBOkVdPHiZIUDHVW5HikqJn6MTqUo1eqOJku5ePJU0OuW8fHiYkoyNtTVFXNx5kZaOs0KBi1xBXHYOfk5O6HUGMtQaCru7kZKtQqnTU9rHi7dpmaj0Bsr7+fAyKU1KLPflZXI6Kr2eCv6+vE/LJFOtoZSvFzkqDYlZORTwcMXBRqSXuzvYUy6fLxefvsFGZk1g5dLs+wx09JKPjgAdT2cHGpYpyl5pdJUXdPy+OrqqVjKAAC9XDlz4Auh4u9KvVQ0WbTqFwWiiea1SeLs5se0T0Ln14B0Xbon18VkjWrPj0E3uP43HycGWiHGBrN5yjicvk3B1tidycnt+3nKBu4/e4+igYP60Tuz/9TYnzz8RW1gT25KclM2KNQIyugXVoGnDMoRM3kF2tprixXxYMKcLK1ed4tRpMa4JnRJIgQAPxoVsFccU92X+gm6cOvGAlcsFMHUMqs6Q4U35YeFhjh66IzpXE1vTsk1lFs09yMmj97G2tmJcaCDNW1dkw4qTxGwUdzi9Bzei58AG3Ln+mrAQkSxevkohwpf2QK6wIWJCDJdOP0ZmY82EuUE0blWRxLgMpg5aT0JsOh7ezsxb3Z/CJXxJiE0ndMBaEt9n4OnjQsTaARQq4YtOqycqZBuXjz8UwaCRXWjWUazXvn4cz7R+a8hIycGvgAcRGwfjX1iYBb55msD03qtIS8zC29+NuZuH5vHQWT/vILt/kkIW+37DkPCgPJ2PfT+fYk3YHsxmM3VaVWLSiv6WNjsICNgUddCSMN2wYw3GL+/3WR6R0Whiw+w97F4uumD121djwsoBX823evcknlndlhL3IglbewVjVwygSdc6Xzz208pMzmLBwNXclHx3GnWpzei/KGD+Wj27+YoVYzbw+KoIPPYv7sfAeT2o16HG/+cr5P/VSk/IAMDL/z8not677AhGg5HKjctRrFKhv/y6q0fucOfsI+S2cvrO/GOXfbPZzI8TtqLT6KncsMxXV81NJhNLx24SsQv1S33RaFCn1bN49CaMBhP121bhm3Z5E8nNZjM/TNxObpaaEpUKEjwybwfpye03bPleAqXwIHwDPv4uXzx4z0Zp3DxkRnvyF/ko1I5ecpQXD+NwdnNg/IJgy3l3+9ILYn4+A8Do2Z0spoI3Lj5npxQYOnZWR/ykxzetOMnju7E4Otsxdb7w2flUpxPYpQYNmpcTfjoz95GanE1AQU/GTBUZV6t+OMaLZ4m4ujkwba44/xdHHrLkXk2b3QmjyUR42F5ystWULJWPYSOb8epVMt9LP3ev3vWoWbMYPyw/xqPH8Tg52TJrZkdi4zKYv2j/H36WX6t/NexYY4PaaMTb1okktdDj2ForyNHr8PkEdDwVTpYAz1S1CvOH9fGcLBTWNthZy8nUavB3dCFOysIq5uLBi4x05NYyPBT2JCpz8XVwIlOpQWc0UtLdi2cS6JT18uZhSjIyKyuKuXrwLDVNJJnb2hOblYWPoyNGg4k0lXBJzszVkKvTUcrbi/fpWaj0esr5+fAmJQO13kAFf19ep2aQq9NRPp8PCenZZKg0lPTxQqnWEZ+ZQ4C7C85yWx7HJ+PmYEfF/L6ceyLSy9tXKcPeawJ0OtYox9FbH0EnW6XlWXwqHk4ONClbjN2XxJdA/89Ax+kPQefgF0Anv7cr/VrXYOFGATotapfCy9WJ7UcE6Izt1ZDr995x6fYrFHIbZo9szdYD13n4PAFnRzvmjQ9k5aazPH2ZhJuLPVFTOrIy+iz3n8Th5GDLgumd2H3wJqcvPsXGxprZk9oRG5vO6g3CYr1XcG2+qVOC8VNiyMnVULpkPiLDg/hh2THOnX8qBNDT2uHj7cKE8dvJzRUz5fkLgjn8yx3WSGvcwT3q0H9AAxZHHuKEBDUTpgXSqGk55s3cy/nTj5HJrJkyqwMNmpZl1ZLf2L9DbAMNHtuCoJ51uHr+GXMmxaDXGahWpzgzFwaDGWaN2sKtKy+RK2yYtjCY2o1KE/sqhamD1pOanI1ffnfmremPfwFP3jxLZNrA9aRL0BK5/jv8AjxQ5WoIH76Ju5dfIFfYMPWHntSRHFcfXH/NrIHrUOZoKFI6H3OjB1l8ch5ce8XsAWvIzVZTsIQfc7cMxVtygTXojSyduJ2Tu8VYrf+UQLp8koFlMplYO3sv+1YLcXZg/4YMmdslDwjpNHoWj4rm7D4xquw+vg29Jwd+luWkytEwf/Aarh4VIt6ekwLp+YXjPtTlX2+xYOBqVDkafAp4ErZjDMX/wpfmvfOPieyzkvREERcxfEkfWv7FuIgvVXZaDhtmxHB47UnMZjN2jrb0mtGZjqNaWfKI/rdX8jvhGu1T8D+T5J6VmsOR6DMABE9o+8cHf1IGvYE104Twt+OIFn+6vXVmzzVunXqI3NaGUYt7ffUzPrLxPPcuPsPWQcHYpX2+eNy2xYct46sRUd0+O+bI1kvcOPMYua0NE5b2yrN9pcrVsGD0FhHk2a4KTYNqWJ7TqLTMH7sVg95I3RblaRn8Uch/8/xTS9J5SGQXy3mZnpLDwskxmM1mWgfXpGFrobdLS85mYeguzGYzbbrWpMG3Imz02vlnFg1gyKwO+AW4i05P6EedzuAQodPZufECNy6/EF44UV1wcLTl1G/3ObTvpjBondUBbx8XDh+8ZbkOhs7uiIenE8u+P8rTJwk4O9sxc3ZHdDoDs2btRas1UKNGEXr3rs/xEw8s2sjQKYE4O9kxITSGd7GJf/hZfq3+3zjD/mGpDEZ8nd1IUudijTUO1nZk6bV42zmRJIGOl8KZZLUSd4U9GWoNJjMUcHTjXU4mcmsZTjJb0rVq8jk4E/870LGxluFt50hCbg5e9g5kq7VojEZKunt+Ajo+PEpJxtrKipLS2rmDXI63vT1vM7PwdnDA2mRFklKsmmertGRptJTw8iQhM1uMsXy9iU3NRKkT0PMuLVMIkP18SMzMJU2ppri3B2qtjrjMbPK7ueCmsONhfDKu9nZUDvDn7ONXAnSqlWXvVdGp6Vi9HMduP0Ol1VO9WABKjY5n8VIERIVilgiI329d+bk7c+KmWC8f0a4e6w5dtWh0PgWdcV0bsfPEbQvo9G9TkwWSGPnPQGfO6DZs3neNh88TcHGyI2JcICs2nuXZqw+g04EV0Wd48ERodhZM60TM/uucuyyck+dMac+r1yms3ShO7H496lKrehHGT41BqdRSrow/EWFBLF56hIsXn4uQz+kdcHdzYNLEHeKYcvmZF9mV/XtvEC1daHr3q0+PXnWZP+cAZ04+wlpmRWhYR+p8U5I5obu4ckG817S5QdSuX5JlUb9yeK/4GUdObk1g5xqcP/HQEqpXt1FppkZ2Qa8zEDZqCw9uvcXOXsGsH3pSuVZRXj6JJ3RINFnpSgoW82He6n54+bry9H4sMwZtICdLTeESvkSsHYCHjws5mSpmDFzP07vvsHdUELaqH5Vqi3HMtdOPmTdik/D0qV6EWWsHWAzKrhx/QOTwjei0espWK8KsDQNxdhMaHI1KS8SQDdw4LW1+LexO864fL8Qf7nTPHRA/Z/9pHegyMu/WU06Gktm9V/LgynNkNtaMWfJlgXHK+3TCui/n1YNY5LY2jF8x4KtGgSaTie0LfmHTXHFHWrF+aaZtHoGb9x9HGVjiIsKFcWLB0v6E/kXfnS+V2Wzm+OZzrJ64mZz0XAAad6vHoKie/2PXyP9pJb0Tgaf/VcH2hzq46jhalY7iVQpT5QsO2V+rX9ee5v3zRFy9nOk2/o8hKSdTyepQAUbdJ7Qlf7HPDSoBkt+nWTx1+k/vSL7CnwPUk1uv2SXp/kYt6P6ZIWb8mxTWhAvPnP5TAi1d0Q+1KmwvCW9T8cnvzsiILnnOkdVzD/L+VQqevi6Mifz4XEZqDosminFdYK+6lhsXo9HEosk7yUjNpXBJPwZLW1lGg9jUzEpXUrSUH0MmCTfp5IRMFk4TP1+7brWoL71P9MqTPJSCP0OjhOv63ZtvLCP3ERNbUbSEL29fp7BUyrjq0e8bqtcqxvOnCfwoaRD7D25EpSqFOHn8AQf3C4iZMr0dPr6uzArbS9z7DHx8XJga2o43b1JYslR0eXr3rEvNGsUIDdtNfEImvn9y/n6t/tWw46lwJFktRlKONvZk6jRiTKUSj3nbOpOkUuIqtyNLq8VoNltAR2Ylw0VuT5pahZ+DE0nSaKuoBDoyK2t87ZyIz83G084BtdaA2mCghJsnz1PT8oyurIDSHl48Thbmgb4OjrzJyMTT3h4brEnMzSXAxQWlRkemWkMxTw+Ss3PJ0eoo7eNNfHo2OVodZXy9icvMJkujpbSvN6nZStJyVRT1csegN/E+I5t8rs542Nvz4H0SLna2VCvoz+lHr5BZW9GhWln2SKDTQUovV2n1VC2aH7VGz+P3ybg72tOiwsf08r5NqnHw0kOylBrKF/bD38OFYzeeCdBp/1GjI8TI7uw/f/8z0PH/Heg0r/V10LFV2BA+Ki/ozBsXyI/RZ3j2OtnS0flx/WkePkvA2cmOhdM7sW3PVc5feYHcRsbcqe15/iKJdZvF/Hlgn2+oWqkgE0N3olTpKF82P3NndmLh4sNcvvICuVxG+KxOONgrmDRxB2q1jgoVChAxrzO7dly1COz6D2xI1261iZi5l4vnRPdo+pwgqtcsyqxJO7lx9aXIyIrqQtUaRVkcfoATvwqxc8j0dnzbrgonfr3L4lkik6nRtxWYOLsjapWW0GGbeP4wDkdnO+b82JuylQvy+O47ZgzbSG6OhuJl/IlY3Q9Xd0fuX39N2LCNqJVaSlUMYM7q/ji7OZCenE1ovzW8fZ6Es5sDc9YOsIR2njl4m0UTRFZVjUalCV3Rx+KKfHLPdZZM2I7JaKJm03JMXdnX8lx2hpKZfVZZhMqhqwfk8dBRZquZ0381dy8+w0YuI2Rpb5r8Dk4S36UyI3gZsc8TcXSxZ3r0UKp8IWLh+Z03hHVfTnpiFu4+LoRtHUnp6kW/eG5rVFoWDV7D+f2iS9RuSDOGRHX/U31OdnouC79bxTWpa9S8V31GLu2LneM/c0JOeJXE0uFruX1S3BgUKV+QEcv6U/Gb/1yExP+UykzJtoyx8n0FGP5OKbNU7F8hviiDx7f9yx217LRcNs2TTPimdfxTc8N1YbvJTMmhQEk/Oo/6cjio2WxmachmkTZesxjtBjb+7BiNSvhFmUxmGnWqQb02VfI8b9AbWTBqExqVjgq1i9P+u7yREed+uc3xXddEyvjSXnnMMs8eusPRHUJoPX5Rd0vIp8lkYuGEHWSmCaD5bvJHH5+da85y+/ILbO3lTF3SHVtpFLzlp1Pcv/EaewcF0xaL0Fy93sC8STvJyVJTolx+Bo5vCcClM0/YJV3fxs1sT/4CnqSl5AidjslMszaV+LZdFZRKLbOnCOPUytUK0+u7BmRnqQiXonBq1ytB1551efkiiSULxYi6V5961KpdnG3bLnHx4jPkchlhs8Qq+kypy1OzRlH69K7Pxq0XuXJdclaeFMjeHeP+8DP9Uv2rYSdFo0TmYIerXCSee9o6kqJWInKtXEhQ5uIstyVXp8dg+hR0rPFQOJCiVuJj70iKUoXJjKTRScfaypr8Di7E5mThbmuPVm9EqddTzM2Dl+np8AnoAJTz9OFhcgp2Njbkd3LmVXoG7tIGVnx2Dv4uzmh1RjJUGop4uJOeqyJbo6WktydJmTlkabSU8vEiMTtX6HJ8vMjMVQuTQE93TEYzb9Mz8XNxwsfRkXuxiTjZKqheKIDTj15ibWVFp+rl2X1FXJDbVyvLybsvUGr1VCnij05n4NH7JNwc7fi2cklizokvgr6Nq/HLZZF1Va6QLwHuLvx2Q0RAjGxfj/WHr5Gr1lKl+If18g+g05BdJz5qdL5rW5P5Gz6Cjo/7R41OSO9GXL/3Ng/obNp7lUcvEgXojG/H8g2nef46GXdXByInd7CAjouTHQtnBLFl1xUuXH2BQi4jIrQjj5/Gs2GLOIEH92tApfIBTJy2E5VKR6UKBQif3oHI+Ye4Jp1cc8ODkNvImDI5Bo1GT+XKhZgzN4itmy4SI61WDhrahI6dqjM7dBdXL71ArpARFtGZilUKMX3CDu7efIOtnZzwhcFUqFyQqBl7OXfiIdYyKyaHi0yrw3tvsEwyBmzZviqjpwWSnali6pBo3jxPwsXNgYhVfSlRxp+7118xa+Rm1CodZSsXZM7Kvjg6S4Geo7ag1eipVKsoM1f0wcHRlqT36Uztu4aEd2l4+DgzL3oQhaS7ykNbLrEybB9ms5lG7aowfmE3S2v9wPqzFvfWpkE1CFnYzSJuTI5LZ3rPn4h9IeBp9sYheYTK6clZzOixglcP3mPvZMeM9YOp0iBvbtDzu2+Z2X05GcnZeOd3Z86O0RQuk/+zc/Xy4dtEDVqDVqWjUGl/wmPG4Fvwy92DlLh0ZgUv5cWdt9jIZYxa2peWfT/PIvp9Pbv5irk9lpP0LhWFnZyRS/vy7V943ZfKaDCyb/kRNobtRKvWobCT02dWV4LGtP6q78//9np46SkAhcoFfNXE8e/UgZ+OkZupomCZ/NTvWOPPXyDVprl7yc1QUqRcAK37N/rDY+9ffMbRTaK7O+b7Pl9NNf9t60VunX6Ewk5OyA99vzgyjY48QNzLZDz9XBk+7/PYiG1Lj/L09lucXO2ZuKx3nvdIjstg+VRhAhg8slme0NzE2DSWhYqOS9dhTahS76OAfefqM9y++FxsRC7taQGaBzdes2W5yGgbMbM9BaXYh5uXnrNDSkYfM6sj+aXg3vVLj/HkXixOznZMWxCMQmFDfGw6i8LEud+xR22+aVYOg8FIxNRdIvequA+jpgi4WhxxkPfv0vDydmZqeCcAImfvJzEhC//87kye0R6lUsOsGXvEqKpmUXr3+4Yb11+xfp34/4wa3YKSJfMROn0XCYlZ5PNzJXRKIFdvvGLjVnG9njD6W4oV+7iC/3fqXw07INbPU7VqPBQOpEqg42cn4h4cbWxR643oTSYL6FhhhaetI8kqJV52jmSoNRjNZgvoWGFFAUcX3mVn4Wprh8loJleno6irO2/SMzCbobyXDw8k0Cnv5cvDpGQUMhkFnF14kZaOq50dTjYK3mdl4+fshFFvJlWpopCbGzkqDZlqDcW9PEjLVpGpFlqc1FwVGSo1xb08yFFpScrOpaCHGzKseJmWgY+zI/4uztx+m4CjrYLaRQtw8oEAnc41yrP7qgCdwKqlOX3vBblaHZUK5cNoMPIwNglXBztaVynN9rPCfK9346ocuvKIzFw1ZQr4UMjLnSPXn0igU58Nh6+Ro9JSqZg/xfJ5sOfsvU80OnfFerm3KwPb1iJqwwkL6Pi6O7P1sNi8COndiBv33nLxlhhdhY9q/VXQ8XBzIHJyR5avO/VV0Jk3rSOPHsezQTpxhvRvSPky+Zk4bRdqtY7KFQsyK7Q9c+cd5OYt4fswNzwIzDB1SgxarYFq1QozOzyI6HXn2LNL8vsZ1Yw2gVWYOWUnN6Vcl9lRXShTPoBpIdt4cDcWBwcFc5d0p2QZf+ZO2cXls6LzEzqvM/Ual2HftsuskoSH7YJrMmxCK9JScpgyaANxb9Nw93IicnU/Chf35fr5p8wJ2YZOa6ByrWLMWtYLOwcFl048JHKcCP2r2bAUodLFL/ZlMlP7riEtKQu/AA/mbRxEvoKewl/np1NELxKhnIG96zI0rAPW1taYzWa2fn+UrZLTc/sBDRg8s4PlAv3ueSLTeqwkNSETb3935m4dlqclH/cqmendlpP4Lg03L2fmbBtB8d8Zpl0/cZ+I735Go9RSpFwAc3aMwitf3k0qs9nM3pXHWTtD6AuqNinHtPVDvnq3/uT6S2Z3+4H0pCxcPZ2ZuX005ev+sX+O2Wzm17WnWDVhC3qdgXxFfZixbfTfEsN+Wq/vv2PRwFU8vyWclSs3LseYlYPIX/x/3yr536mHF0WUQ/m6Xw7C/DulzFazR9pm6jml/Vf1WL+vVw/e8es6oQsbtvDzDKpPS6fV80PIJgBa9W3w1b+TlPgMfp4hQKTPlPafWSQA3D7/hAPSksOYxb1wdsv79/ng6ktilkvjrahgvD/ZGDQaTSwK2SK2n6oUoufYlpbnDHojUaO3oMrVULZaYXqN+ShmfnD9NZul83N4WAcKlRDdtMz0XKIm7MBkMtO0fRWadxBi67TkbBZM/ajTaST5ZV048ZB9W4Qtxvi5nfALcEer0TN3cgzKXA1lKxVg4Gjx765bfoKHd2NxcLRlxvyu2NnJ2bX1MhdOP8HGxpoZ8zrj7uFI9M9nuHH1Fba2NoTN64yDoy3Tp+4kIT4TPz9Xps5oT0pKNnMjpJXy1pVo06Yy0RvPW24yZ4d1IjtXQ8QCESvRIbAqTRqX5czZe1/9TP+o/tWw46FwIlWrxk1hT7pGBViRz86VOGU2DjIFBoMZndFoAR2wwtfemURlLh62DmRrtOhNJgvogBWFXdx5k5mBi8IWa5MVGVoNhaXcK5MZyn0COhW8fHmQJG1gubrxLDUNZ4UCN7kt7zKFMNnaZEVCbi4Bri6otDrSVGqKerqTpdSQrlJTzMuDLJWGNKWKIp7uqDV6ErJyKODuip1MxvOkNLycHCjo5sbNN3HYK+TUL16QY/deYGWFBXTMZmhduRTnH74mR6OjQkE/rK3gzrsknO1tCaxWhq1nxKp0z4ZVOHr1CRm5akoFeFPM14Nfr0mg064+G49cJ1vKuioV4MWu06ITJHx07vIuSfjoDAysZenoNK1ZknweLmz+VYwdxvYSoHPh1keNzgfQcXUWoLNs/X8VdPyZNH0nGo2eqpULMXNqO+ZGHODW7bfY2cmJnNsFvd7IjOkigbxWrWKEzerI2tWn2bdHANnokG9p0bIiMybFcPuGAKQ5C4IpUcqP0LFbefwgDkcnW+Yt7Umx4r7MmbSTaxefI1fImLkgmJr1SrBr0wXW/iDuwrr0qcd3o5uTFJ/JlEEbSIzLwCefK1E/98e/oCcXTjwkamIMBoPIr5m2qBsKWzmnD91h0RSxGl3/2/JMWhBsCfQM7beGrHQlBYr5MC96EF5+Iudq/fxf2S1taXwa/2AymVg9ax8Ho6WA1fGt6D66hWWM8PT2W2b2WUV2hpICJXyJ2Do8z8X72Z23zOwpfG/yFfZm7o6R+P9O33Bs20WWhmzGZDRRtVEZpm0YajGk+1BGo4mfJm/n0DrxJdKmf0OGL+jx1S+wUzsvs2TYOvRaPYXLBjB719g/FaZq1TqWj97AcckJt25gNcb/PAgnt78f+WA0GNm5+Be2hO9GrzPg5ObI4AW9+LZfo//1W1Z/pT5EW5Sv/1+HnQMrfyM3Q0mBUv58E/TXcrBMJhM/hmzGZDLzTYcaf5o2v2Pxr7x/noi7ryvfzf7cBwckN+Jxm0VcQ7UidBz2+ep7ToaSJWMENLXuU58aTfNqi3KzVCwcvUk4snetRYPAvNtZMT8e5/6Vl9g72jLph7yC5Y2Lj/D0bixOLvZMWvpxzTwzLZeokK0CaDpUpXlQdcvvYNHknaQlZRNQxJsRM4RjtNFgJGpSzGc6nbi3aSyRujed+9WnjpQovnLBYV4+TcTV3ZFpUV2xkcs4d+IheyWTwYmzO5C/oCf3br1lnbR9OXTst5QpH8DlC8/YKgWTjp3chqLFfdkUfZ5rV6Qx/pwgbG1tmDhhu2Qc6Meo0S24eOlzB9qxAAAgAElEQVQ5m6SO+/iQlvjnd2dEyGaUSi3ly+ZnxOAmrFp3mu1SHuLfrX817KRoVLi7upGl1WDGinz2wgXZTibHbLZCbdQT4OhqAZ38Di7E5ebgZmuHSqdHZzLmAZ1iLh68ykzHUS5Hjg1pGhUFnF2JzxIuyWU/GV1V8vbjXmISNtbWlHD35ElKCo5yOV52jrzJyMDL0QGFlYy4LDHGMhpMorvj7oZSrSM1V0VhDzeUWh1JOcIvx6g3EZ+Vg7+bC45yufDOcbCnmKcH1169x05uQ6MSRTh67xkAXWpWYM+VB5jN0LJSSS4/fkuWSku5Ar7IrWXcfh2Hk52CjjXKsvm0AJ1u31Ti+M1npOWoKJnfi1L+3vxyRYRvjmhXj41Hr5Ol1FCusC9lC/kSc1K8bkyXBuyXIiDyebowqF0dojacQG8w0qRGCQK83dj0i+iUjO7R4JP18o9i5A8dnchPQEeMrj4Hnc07r3Dx2kfQefgojuhtImdl6ICGlCvtz6Tpu9Bo9FSrUoiZU9oxRwIde3sFUfO6oFHrmTFdZFPVqVOcGTM78PNPpzgg+dKETGhFk2blxJhKel3Eom4ULurN5NFbePZYbBtELutFwcJehI3fzq0PdzuLu1GtVjG2rjnDJkno13NQQ3oPaUxCbDqTB20gJTGLfAU8iPq5P77+bpw5co8FUwXQNPi2ApMiu2Ajl3F013WWSWOopu2rEDJXhHM+vv2WmQPXk5utplhZf+auH4ibpxMmk4kVM/dxWDI5HBjalqCBjQBxUfx+wnZOfvAFCg+iXb+Pyd+3zz8l/Ls1aFQ6SlUuRPjmoRb9AMCts4+Z0/9nNCotxSsWIHzrCNw/ERSazWZ2fH+YjfOET0mz4DqMXdr7My2NRqVl/qA1XD58BysrKwbO6UKn4V+OcjCbzWyau49tkvdJ7daVmbxuKA7Of7wenvwulfDuy3h+6zXW1lYMmBNM55DW/whMYp/Gs3DASktgZ+221RizciCe+b7s+fP/WqXGpfPsptTJ+oLD9d+pzJRsdi0RQteeUzv8ZdPGoxvP8fDyM+wcbRkc1f0Pj315/x0x34uO5rCo7l8MkwU4HH2O6yceILe1Ydzyfp/9X8xmM8smbiM1PpP8RX0Y9DuDQbPZzPIpMSTHZeBXyJOh4Xmfv3flBVuldesRczvnuSm4fuax5WZkbFRXfCUxu8lkYvGkGAE0Rb0ZIelcAHasOs3NC2KsFbq0hyVCYv0Px7h/840QGS8SOh2NWsfcCduF0WDlgvQbKUDutwO3OHrgFlZWVkyJCMLLx4V3r1NYHC7Or6596lG3YWlSk7OZK2VhNW1ZgcBO1Yh7n878OeK49kHVafZtBa5cfsEmacNrzLiWFC/hy/z5h3jxIglXV3vCZnUiMSmLqPlSB6d9VZo1LUdYxH5ev0nFw92RWdPac/LcY3btv/mHn+sf1b8adpxsbFHqdJjM4G/vyvvcbBTWNsjMso/mgJJnToCDeN5FYYtOb0RjNFDExd0COsVdPHiZmY69jQ0O1gpSVCryO7mQnCPMA4UzsgQ6Pn7cS0jC2sqKUh6ePEpOwd7GhnyOzrxMS8fd3h4HawWxmVn4OTthZYaEHNHd0ekMJOcoKejuht5gJDE7lwLursjMVrzOELocdztbHsWn4GZvRxkfLy6/jMXWRkbT0v+HvbOMqjJt+/5v090lIqWA3TF2tyAqdusoomIHaaCC2N3dHWOMOXa3YoCkgHR37L3fD+d2q2PM3PO874f3nudYy7Vc67quvYGr/udx/KMy55+LuXq/JrU48SAMmVxOp9pOPI6IJ7uwmKoVzdFVV+dRVAK6mhp4/FKL3VfFBTagZR2uP4skPaeAKhVMqWFrxak7Qlk10a05+y49IaegmOp2ltStbM2By4JxP8mjJWduviYuOQtLE33G9mxK6C4BdNo2csLeypidpz8DnZfvErn1RBgGBnl3Z9+pz2TkT0AnQgF0Fvv8BOhoqBHs787r15+Bzvhf21DNuYIS6DSsb0/gbFeCFp7m2XMBWEKD+1FYWMKcwOOUlUlp1tyJgAB3Nq67zNnfhOHVtJndad2mKv7TD/JKMaYKXjGQSramzPbep/SZWLxmMBVtTJgz9QAvHseipa1O0MpB1K5vx+4NVzmgUHGNmNCegaNaER+Ths+YnWSk5WFjb8biLSMxszTg8umnrFTkVnVwq8fUIJEy/Nv+u2xcKNyAewz8Ba8AIcF+cT+SeZ67KC4spXoDe4K2jkRXX5vyMikrZh3mmuJh5r2oD10HiEyn0pJyQr33cPfCS1RUVZi+YhDtejVU3i+3zj5jibcw8KvXyoXArb8qH6agMAucsJPyMil1W7oQuNMTHb3PxF6pVMZm/8P8tk0h0Z/SlRH+7t+Ai+z0POYNXMu7x9Goa6oxa/OvtOzZkO9VaXEpy722K+Mb+k7txsh5ff/yBfni5lsWDV5LTnoeBqZ6+O+bSN02f1/t86lkMhmn1l5gR8BBSovL0DXUwWvFcDoObfWv6OZ8qrunRUe2elNnTP+HHjv7g09RmFdMlbp2tO7797o6mSnZbA8UiqThgb2x+EnERllpOcu8diAtl9LCrcEPPXUSIlPYMlcY/40K7P1d9+4rh+9z++wzVNVUmLl+BFq6X/s8XTn6kJtnxHafdSO+uh+yM/JZ4i06UR08Gn0lM09PzmHZDKEQcx3WnOZdaim3Hdt6g8c3w9HQVMNvzRDlPfjsbiT71okuy4S5PXFwFuO221dec1xhBjhtYR9s7M2Er9CiM8REpGBorIufwlDw/duPrFW4HA/zakv9JpUpLCghaNYRiovKqNPQnhGKMM+F/sfJzirAsYoFk2d3p7i4jPlfmAl6enckMSGTEIWjs5t7fTp3rc3JE4+5fEmYswYGuqOrp8ks78MUFJZQq5YN48e1Z//h+9y8HYGamgpBge6kZ+SzfI0Y2Q3s25i7V354en9Y/2qwU1wuRaamogQ66iqqaErUySktwVpBMAYJtrpGfMgTSeUyKRSWl2Ovb0R0lgj4dDI0JTIrA01VNYzUtUnKz8dKV4/MgiJKpVKqKpyRQQCdF0nJqCChppkFr1JS0FRVxVbfiIj0dAw1NTFS1yI2KxsLPV3UUSEhJ5cKBvogg+TcfGyMxEo5MScPa0N9tCSqRKZlYq6ni7muLmGJQmlVy9qK2xGxqKuq0qmGE2efipl638a1OPngNVKZnA41q/A86iMZ+UU4VTDFSEeLBxHxaGuo069ZbXZdESv8fs1rc/NFNKk5BThYmVDX0ZrjCmXVBLfmHLjylKy8IqraWtDIxYY9F8Rx3n1a8vudt8R8zMDCWI9xvZoRuvMKpWVSWjeoTGVrU7afFC8q74GtCItI4sYjoZqa792dg789IixC+Ogsmu7GWoXqSgAd9++Orr4EOm/efPyPgU5BQQlz5wig07y5M/4BPdmw9hLnzghzwJk+PWje0gXf6Qd580qE3IWsGEQFayNmTdxLdGQqRsa6hK4dgqWVIf6T9xP27AM6uhosWDWYGnUqsX3tZY4qTATHTOmEx9DmxEam4Dt2F1kZ+dhVtiBkywhMzPT5/dgj1gSdRi6X07VPQ7znCA7Dse032a7g2/QZ1ZLRM0QA5+Ob4SwYv5vSknLqNXNizsbhaOloCCPBSfu4d/m1MCRcPpA2rkIxUlxYQtCYHTy7FY66php+60d8Ff/w+/67rPURfh2tXOsxfdXX9vbn99xi3exDyOVyWrrWZ8a64V9tLy0pY+n4Hdw6/QSJRILnon64j23/zT35MToFf49VJMWkoW+sy9z9E7+bOwSiAzB/4Gre3I9EVU2VyWtG0HlYq5/e83K5nFPrL7HF5wAyqYwqde2Yc2gKlnb/uS9MemImS0au5/k14UnVoGNtpm3x/P8qy+r/Vt06KRYrLXr9z5LO4yOSOLdNcG7GhAz821ydzbMPkJ9dSJW6dvQc1/Gn+x5cdpaY1wkYmuoxcdng74LS8rJylnhtp6SwlLqtqtJz7LeJ5h9jUtnoL7g8Q2f1wKWe/VfbE6NTlS7JQ2d0w6XeZw6YTCZjxfQDZKTkUKmKBeMXfB6jSculhE7eR25mAZVrVPwqzTzscQy7V37m6Ti4CACWnpJD6Exx/3Xu01DJ00mITWdFgMjQ6jO8hVJOfv7oI64oAkH9lvTDzNKA3JxCpbdX4xbODBjZUgR8Bp0mPjYdU3N9/BZ5oKqmwvql53kTloCevhZzQvqiqalG8NyTxESlYmyiS+CCPpSXSZkboAA/NSriNbEjL158YMMGgVTGerajTl075sw7Tnx8Jubm+swN7MWjJ7FsV+RgTZnQkYrWxoyZtIfSMilNG1dmSL+meHv+9BR/t/7VYKdcJsVG24yE/FxUJSroqmgpPXMS84Vnjp2eMXG5IsBTVa5CTlkJtvpGxGSL0ZazkSkRmRloqqhipqlDYl4eFjq65BeVUlxejoupGe/SvwY6EiTUsRT/V1dRobKRCW9T09DT0MBcW5eojCxMdXTQVVMnNjMbSz091OUqxGfnYG2oj7qKCjEZ2Vjq62Ggrkl4SjqmujrYGBrwPD4JPU0N6ley5sa7GNRUVOhWy5nfnoh5ukejmpx+9IZymYy21SvzOi6ZtNwCHC1NsDDQ4+67OLTU1RjYoo4S6PRpWpN7r2NJzsrD1tyIhlVsOHZTkMTG92jG4avPycgtxKWSOU2r27LrvFjljXdvxqX774hMSMfMSJfxvZsrgU7LepVxsbVg63ExShnfvyVvI5O49iBCAJ2J3Th89gkvwz+ir6tJyAxX1u++rvTRCfXtxdov5OXL5vRh39EHX3B03L/i6HiNbkM1588cne8CnZB+FOR/BjotWjjj59+Tdasv8fs58WCY6dODZi2c8Z16gLevE8WYauUgLCwNmTVxL7HRwiV0ybohmJoZ4D9pP29exqOrp8miNUOoWrMiW1Ze5MR+xe89sys9B/xCdHgSvp67yMkqxNHFiuBNIzAy0eW3A/fYECLau26DmuKlUD/sX3+VfevEQ2OgVzuGegsDvzuXwlisMB5r0q4afmuGKFvWQZ67eHY7QpiArR9G43Zi3JCfU8jcEVt58yQGLR0N5mz7lXotPpM1j228yvZFYnXWbUhzxi/63DmRy+UcWn2BPYtFd6nbsBaMDxnwVWelIK+IoKEbeHE7HDV1VWZuGEXr76hrwp9EM6f/GnIy8rG0NWPh0clU+s5qGoQjcqDHCpJj00SI6P5J1G39c45GaUkZa7x3clmRgN1+YHMmrx/1w1iAn9Xtkw9Z6bmZvKwCNHU08VwyhO5jO/yrujmfKj0xk1c3RX5ec/f/GdjZ4nMAabmUJt3q/u1O26NLL7h+7AEqKhKmrBv1U1JyxLNYpTv3hGVDfui5dHD5eSKexaJnqMP0dSO/AV3lZVKWjN9FUUEJtZo64fGnHK3S4jJCxovOau2mVfD4E9fnxJbrPPrjDRqa6viuH/FVh3TPiouEPRJREX5rhyoXDdkZ+Syesh+ZVEa7nvXp5NFI+bOETDso+DhVK+AV4AYIKfzCqQcoLCihZn17RirIze9exrMxVPwNRk7uRJ3GjkilMhb7HyflYzYVKhoza0FvVFRUOLz7Nrf/eCvIx6H9MDLR5eLZ55w9IYwDfea5Y21jwtED97h+9Q2qqirMWdgHUzM9Fsw9SWxMOqamesxd0IfMzHyC5gtbjfYdauDh0Yjde29z956w95g/tzf5+cUsDBVp5z171KNzh1pM8ztMWnoetjYmBMzsQWpa+s8viB/UvxrsWGobkJCfiwoqGKnpkFZciIX25yRzAXSy0FT9lFRejI2eAR9yRMfnE9BRl6hgpa3Ph9wcTLW0KS4pp6CsDCdjU95niBPzJdCpZ2nF86Rk1FRUcDEx43VKKjrq6lTUMyAiLQMjbS2MNLWIzsjETFeAnhiFokpHXYPINEE6NtXW5m1SGsY6WjiaGPM4ThCQm9jb8IfCO6dHnaqcfiweRL0b1uDsk7eUSaW0qupAREIqydn52JkbUcnEkJtvYtBUV2VIq3rsuPxIXHBNqvM4PJ7EjFxszAxpUcOeg38IRZaXa1OO33hJek4Bla1NaVnLge1nhROwZ8+mXH8SRcSHNEwMdPDu25LQHVcoKZPSvI4DNR2t2KQgmnn2bUZkbCpX70egpqrCvAldOX7hOS/eCufj4GlubNx7U+mMHOrbm/U7hWGgvp4WywJ7s//YA27df6/k6Lx9m6SUl3uObE11l89Ap0E9u78EOi1buuDn78baVZ+Bzmw/V35p5vQV0FmyZgimZvrM8t5LXHQapmb6LFk3BBNTffwn7ePtqwT0DLQIWTsUp2oV2LT8AqcUcnVv3x708GjE+7fCGPCTx0XwxmHoG+pwfPdttn7q3Ixowa/ThEpj96pLSvv34VM6McBTeH5cP/ucpTMOIZPKaNm1NrOWD0RNXZXC/GLm/rqDsIfRaOloMG/rKGWgZ3ZGPgFDNxEVloCegTZBezyppkhDlsvl7Fl6jkNrhIqk34QOjPBx/aEr8oApXRg22/WrF352Wi7+/VYT9SoeHT0tAvd4fddD59HlVywcsVEYyNWxJejwZEwsDb973z6/8ZagQWsoyCmkgoM5QcemYeti/dN7PTM5m6ABq3n7IBIVFQljFg+i18TO/zE4KcovZuO03VzYKUZxTvUd8dkzkUp/8f3/zXVm82VkMjm1WlajgsM/kwUDPLzwnIe/P0dVTZUxIYP+1jFF+cWsmbwbEFlnTnXtf7hvaXEZy7y2C85br4a0cv/+aPTNoygOrhRgwHvZ4K/I959q39KzhD+LRc9Qmxlrh38zNt228DRRYQkYGOsyc82wr7a/fRLDLoXCyHOuOw7VPl87D/94w5FN4n6aurifMqZFWi5l8ZT9ZKTkUsnRgonzP/N0diz/nTdPRe6V/6pBaGqpCy7RgtPERqZgbKqH7zIxpsrOLGDhjEOUl0tp1q4aHsOFcee+zdd4ci8STU11ApcNQN9AmycPoti1QaFsm9GVarVsCH/zkTUKn5yho1vTuJkTTx9Fs22jYr/JnahZx5YD++5y84ZQaM0J6o2eniZTJu8jO7uQKlUsmTatK3fvvWfPXoWHz5Qu2NiY4DV5DwWFpdSqYcNEz/as2XyVl69F1M/CwF5cvxPO8vXnfniOf1b/arCTlJ+Hio42phq6pBQVYKqlQ1phAXIk2OsZE5ubhbqKKvpqmqQXFVJBV5/E3DzkcnAxMiM8Mx1ViQQbPUNis7Mx1tRCJoW80lIcjYyJycpEJv8a6NS3qsCzj0moSMQY60VSMlpqatgbGvE2JR19TU0sdfWISE3HWFsbY01tItMyMNXVwVhLm/DUdEx0tKmob8DLhGT0tTRxMTfnQUw8WupqtHS04/JrobRyr1udE4p8K/cG1bnwLJyScinNne2IS8nkY1YelUwNqWJhyh9hUairqjK0VX12XXmMXA6ujarxKiqJ+LQcrE0NaFenCnsvC/6OZ/dfOH3rNSlZ+ThUMKFDfSe2/KYgvPZowt3nMbyNTcFIT5up/VsTuusKxaXl/FLLjrrONmw4LFbXY/o05UNiFpfviqyqeRO7curyS56+jkdHW4OQGW7KUE8DPS1CfXuxcfcNXr5NRE9Xk6UBvTl4Qjgjq6sJH53w98nsUKhrPEe2pnYNIS//BHTm+rp9A3QKC74FOl92dP4u0Fm2YShGxrpfAZ3F64dRxcWKDUvP89th0e6f7O9Kt94NiXidiJ/nLvLziqlay4aFG4ahZ6DN4W032LlagIyBY9swTEEe3Bp6jpOK8dfY2d3pNUKkIV869ohVfscESblXA6YGe6Cqpkp+bhEBI7YS/vwDOnpaLNz1qxLMZCTn4DtoA/GRKRiZ6bFonxeO1YXHjUwmY9OcE5zZJdrJI31c6Tfx83hAWi5l1bT9XDkigNvYIA96/anVn/whHX+PVSRGp2Jops/Cw5Nw+o6c+/LBO6z03o1MKqNB+xoE7PJCW+/7Jn5/HL7L8nHbKC+TUv2XKsw9OPkvHZEjn8cyr+8q0hIy0DPSwW/fRBq0r/XTY777Oc9iWDR4NYnvk5FIJPSb6cawuX3/a6Ie/kmVFJVybovoMLpP7PIXe/+4ykrL2TRzPwC9Jnb+YUfvz7V7wXFS4zOwtDNjeODP8692LzrFh/AkjC0MmLB08Hf3KcwrZun4HcikMtp6NPluB/L57XCOKGTkk5YNxsLma47S7XPPlffNjNVDMVNEN4Bwa148UeRmtXKtR9fBn7O1UhIzWTr9IABuw1vQslsd5ba9qy/x4n4UWjoaBKwfquwE3brwSvk8mBbcF2vFOPbckYf8cfY5Kqoq+C0bgKm5geje+BwhPSWXinamTF/QG4lEwr0b75TcwSkBblR2tiI5MYsQf+Eg3tmtLt17NyArs4D5vkcpK5XStKUzg0a2JOljFgvniG5N5+51cOvdgIf3o9i57ToAEyd3pnqNioSGniUiIhkDA23mB/UmJSWH4MUC8PV2b0DHDjUJmH+C+IRMzMz0mB/gzvlLL/ntvKAOBM5yJTeviBWbLlNSWv7T8/yj+vfepcBn88A8jDW1yS4WcRD2+sbE5mShKlHFREOHlMICLLX1SMsX5oHOCqAjQewbnZWFvoYmaqiQXlyEnaERCTm5lMvl1P4O0JEAdS2teJaYhLqqCk4mZoQlpaCroU4lAwPepqRhoKWJlZ4e75IF0dhST5c3yWkYamvhYGzM0w8f0dXQoI61JXciRUp5GycHLr4S4YK969dQ5lu51qvGpRcRFJWV06RKJZIzcvmQnoO1sT41bCy4+FxEOwxvXZ/dV54glcnp2sCF8LhUYlOysDTSo0t9F3ZeFOOp0V0bc+7uW5IycrGzNKZrYxc2nhS8mBFdG/H4TTxh0ckY6moxfVAbluy6SmFxGQ2rV6JRdVvWHRRAZ3SvX0hOzeXCrTeoqkiYO74r5/54zeNXH9DRUidkuhvbD90hLFxEPoT69WLz3lu8eJOAno4mSwP7cOT0Y27cFaOvhX7uREWnKiMgPEe2VhoGFhWVKuXlCxb9ppSXhwb3o7iwVElGFqMrN9avucT5s38FdPSYNXEPcTHpmJnrs3T9UAyNdPHz3se7sET0DbVZvH4ojk6WrA89x5mjj5BIJEwNdKNzz/qEv0rAz2s3BXnFwhhw/VB09bQ4sPkaexQjqqHj2zPYq50AH8FnOaMYf00IdKPHIBFkeXb/XdbPE+F43Qb+woR5wg8nJ7MA/+FbiFKEAy7aPRanWjaASC73HbiBpLh0zCoYEXLACxuF661SkXVMuLmOX+RBj2GfFVmlJWUsGb+TO+fEw3TaqqG0/xORNPbdR/w9VpGRnI1FJVNCjk35xoZfLpdzdPUFdswXnIL2/Zsyde3w77ocy+VyDi07y675wlytZa9GzNo6Fg2tn4+gbp14yNIxmykpLMXGyYr5x6dh4/T3XqRffveZjZfYPHMvZaXlmFU0YdauCf+I0PzfVn8cvE1uRh6WdmY0c/t+p+Tv1Kl1F0mMFDLwQb7uf+uYd4+iOL1RWDZMWv0tOfjLCrv3nhPrFQBl5TAMTfW/u9/mgCMkxaRhYWPChNBvFV3ZaXksnbBLGH8OaU7LP8nIkz9ksGqmACweXu1p1O6zMk0mk7F82gFSE7OoYGfGpMX9ld2ZstJyQrz3kZ9ThHPtSoz2+czTuX/1NYcVis0pwR7YVhH30YeoVFYq4h08RrWieUdxPb57Gc8mBcl41JRO1GoojD73rL/K8wfRaGqpE7hiILp6WiR+yFAGfLoPaEK7brUpLi5jwWzhpuxczZqJs7ojlcoIDjyuDP2cNacnpaXlzPc7JsI8q1Zg0vSufEzMIniB8M7p7lqXHm71OHHikZKQPGeOO3p6Wszy3UNRUSl1aldinGc7du69xd0HYpy1MLA38YmZrN4kyNZjhrfC0cEcz+l7KS+X0aJJFe5d+OGp/mH9q8GOpbY+SQV5GGhokV8iXJI/AR0ViQoWWrokFeRjpqVDVlExZTKZYnQlgE4VQ1MiMzPRUVdHR0Wd1IICbPQNSM3Pp1QmFQTkL4DOUwXQaVDBmicJH1FTUaGGmSUvPiajraaGo7ExYUmp6GloYGdoRNjHFPS1NLE1MuLlx2T0NTVwMTPjUWwC2upqNLS15maECO/sVK0K518IpVWfBjU5pejodK3jzPWwKIpKy2noUJHsvCKiU7OwMNSjnkNFzj95h4pEwoi2Ddl99THlMhmd6joR9zGTyKQMzAx0cGtSnW2/i47E8I4NufroPYnpOdiYG+LWrDrrjosuytDODXn1/iMv3n9EX0eTGYPbsmz3HxQUlVLPpSIt61Zm1b7rAIxwa0xGZj5nr4ehIpEQ4NWFizffcv95LFqaagTPcGP3sXuig6OjyRLfXmw/cIdnYfHo6miwJKA3J8485dptYc63wLcncXHpylDPMcNbUa92JWb4HqawsJR6dWyZ59+ThYs+GwYuDu5HcVEpAQp5ebPmTvj592TD2sucU5D3Zvn+DOjs/Qbo+E7cS8Sbj+gbahO6fhgOThasXXyO88cfI5FImDanJ53c6vHmxQcCxu+hML+EGvXsWLB+KNo6GuzdcJX9ipbwiEkdGTCmjfAPmX+a348I8DE5qBedFfP6U7tus3nRbwD0GtmSMYrk4cy0XPyHbiE2IhkjUz2C94xVtssTY9LwHbietI/ZWFUyZfGh8VgqsozKSssJnbibO+dfKBRZg2n3ZRhhQQlBozbz7MY71DTU8NsymqZdPq9AQYwB5gxcS352IXZVrVl0dPI3ZoEymYwt/kc4tUmAOg/vzoya1+e7hFRpuZR1U/dwfqe4djwmd2X0gn4/Ja/K5XIOhp5mtwJINehYC789E/5j/5yCnEJWeG7m1nExnm3q2oDp27wwMPmfOwT//15SqYyjKxR8st92xvoAACAASURBVPGd/7EzdFpCJvsU8Q6jFvT7W4nyJUWlLB27VfA/BjSjYYcfd+oKcotY5rUduVxOh4HNaNqt7nf3u3nqMRf33xZxDetHfiNHl8lkLJu0m8yUHGydK+AZ1Per7WWl5YR47aQgt4hqDewZPuvrTK5jm/7gwRURNuq3cQS6+p+7l1uDzxD+/AN6htr4rRuKhqZ4NX+MS1fmXvUc1pzW3cXPXlhQwsJJ+ygqLKVOE0dGTBV8nKz0fBZOPUB5uZTmHWrQZ7jo/N6+8prDn4JC57ljX8WSwoIS5k0/SGFBCTXq2jJmSmcx/go+S2S4UJMGLumHhqYaG1Ze5MXTOLR1NJgXKkI/Q+afIup9CkZGOswN9qCsXBCS8/OLqVa9IhMmdeLp01g2bhCgxdOzHbXr2OIXcJSEhEwszA2YE+DOrbsR7D0oFnEzJ3fByEiHsZP3IJXKaNe6Kr3d6uPte4jM7EKqOJgzfXxHls7/4en+Yf2rwU5Sfj4GBgaUlkkplUmVQAckWOsYkJCXi7GmNgUl5ZRIpTgZCo6OBNHdicjIQEtNDSM1LZLy86mgp0dWUTFF5eVUNTXjTWoa/AnoNLauyKP4RFQkEupYVuBpwkc0VFWpam7G88RktNXVcTI15XlCEjoa6jiZm/L0w0e01dWpZWXJveh4NFRVaepgy7V30ahIJHSr6cyZZ0Jp1at+DU4/fi0k5bWcuPcuTrgh21agqKiMiI/pmOrr0MzZltMP3yCRwMh2Ddl37QnlUhlta1UmOT2Xdwki8LNP81psOSce9IPb1efOyxjiUrKwMtGnb6varD4mbqCBHeoREZvK0/BEdLU0mDWkHSv2XiOvsITaTtZ0bOzC0t3iJT64WwMKCko4/YdQc/l7duba3QjuPhWREMHTXDlw8hHPXyego61BqK87e47e58nLD2hrqRPq15vfLrzgyk2RHh40uycJCZls3H4dgNFDW9Cwnp0I9VREQMzzdyc45AyPn8QIw8BFIlwz8JO8vJkTgYHubFj7WV4+y9eVps2d8Jt28NvR1Xc6Op+AjoGhNos3DMOhigVrQ85y/oRQIE2f507HHnV581wBdApKqNXAnqB1Q9DS1mD32isc2qr4HaZ2pu+oVkilMtbMOcmlEwIsTQ3uo1RaHNt2g+2K4L2+Y9swUqHGSk/OwWfwJhJjRGhgyL5xVFJYrMeFJ+E7aCNZablUqmJB8IHxmFmJNntpcRmLPHfw8Opr1DRU8ds4kqadayvvl/ycQuYMXs/bxzFo6WgyZ7cn9Vp+bSD35NprgoYL7k3Vho4sOOiNvvHXAKOstJwVE3Zy7Zgi6X1RP3qP/5rg+amK8osJHr6BhxdfIJFI8FoymJ5eP1fblJaUsWr8dq4eEO199wmdGbt44H/8Mo54HMWiwatJik5FTV2V0cGD6D35n/nw/DfW7RMPSAj/iL6xLt1+/VZZ93dr86x9FBeUUP0XJzoMbvG3jtkx9ygJ75MwsTJi3JLvj6Q+1YZZB0iOS8fS1gyvkAHf3ScpNo1VCjfl/lO6ULu5yzf7HFt/mSfX3oisqc2j0dL5uqu4fdFpIl58QN9IB58NI74yB3x57z27l4h71Wt+H6rUtFFuu3b6KWcU+VMzlg3EUjEWKy4qZeHEvaLzW99OmXsll8tZ4XeMeEUoqM9ycW2Xl0lZNP0g6am52DqaM31hHyQSCbHvU1gWILo3vYY0o03X2iJTa84JPkSnYWKmT0CoMA48vv8eV39/iYqqBP/FfbGwMuTi2eecOiIWu7Pm9MTW3pzD++9y7fJrVFVVCFzUBzNzA+b6H/uCkNyb9LQ8JSG5Y8ea9PFoxKYt13j0WDyDFwT1Jj0jn8XLBQeoX59GtGzhzMQZB8jJLcK5iiWzJnVhydqLRESlYGigzSK/XhQVFf70fP+o/tVgR0vts3mgrZ6REujY6RkRl5sjPHXKZRSWl1HZ0IT3WQLouBiZEZ6RgYaqKhaaesTn5mCuo0tBaRkFZaU4m5gSlZ6JXA71rKy+AToADa0r8uhDImoqKtSytOBpQhKaaqrUtDDn8YePaKmpUauCJQ9iE9BUU6WBjTV3IuNQV1GhjZMDl98IXk6PWi5KoONerzpnn75FKpPTvnplnkQmkFNUQg0bC+RSGW8SRZBn2xqOHL8nAj9HtWvIwevPKSmT0qK6Pdm5hYTFpWCoq8WgNvXYeEaMp/q3rsPjt/FEfczA3EiXQe3rsfrITeRy6Nu2Dh8+ZvHwzQe0NdXxHdaBlfuvk5NfTHVHS3q0qM7iHWIF369zPWTlMo5dErNYnzGduPMkmluPha/OoumuHD33lMcv4wSw8enFwVOPefBMdHxC/Xvz+9UwLl57jaqKhHkzXUlJyWG9wqp9xKBm/NLQkWm+Ipm8dk0bggLcCV0isq4+OSPLpHKlM/Inw8DNG65+BXSaNXcS8vKwBCXQMTPXZ6aio2NqJoCOkbEuvhP3/RDoqKhImDG/F+271eHN8w/4e+0WK7JGDsxfMwRNbXV2rrrEkR0COI6Z0ZU+w1sglcpY6XeMq789E58R2o+2PcTK7vCmP9iliJcYOKE9QycLh+PUxCx8hmwiKS4DC2sjQvaPU87xo14n4Dd4I7mZBThUsyZ4v5cylbm4sISg0dt4ditctLm3/0qDL9RN2Wl5+A9YS/TrBPSMdFhwYAJV63/OwQK4ffYpoWO3UVZaToN2NQjcOe6b0UJxQQkLh2/k8dUwVNVUmbFhFG1/4KWSnZZLoMcKIp7EoKGlju9OL5q5ft8T5VPlZuQRNGA1r26Ho6KqwoSVw+gx5j97Ecvlcs5tucLGabspKy3H0t4c//2Tqdq4yn/0Of/NJZPJOKDoxrh7d0XX4Odhmz+qRxdfcOvkI1RUVfBeM+JvSc2f33jLqQ1iJDVtw6ifdtn+OHKfq4fviXH0ll+/GzNSVlpO8K9bKMwrpnqTygyd7fbNPq8fRrFboTj0WtQP+2pfE9Jvn3vOaUXG0/RVQ7D4Is0+MyWHxROFg3L7Po3oMvAX5bbY8CRW+wl5ev/x7WnSXoy95HI56+eeJOZdEkameviuHqLkhh3fcYs7l8JQU1fFf9VgjEzF779l2e+EPY1FR0+TwFWD0dHVJC+3iPlTD1BcVErdxo78qugAHdx+k7vX34nwzWUDMDHT5+mDaLatEWNBzymdqdPAnrevE1mzRBHcOboVzVtX5cHdSLYrus8Tpnamdl07dmy7zr27whl+/iIPtBWhyXl5xVStWoFp07ty6XIYR48pQNOM7pia6jNu0m4R+NnQgbEjWxO05CyR0akYG+mwKLAXx88+5eotwedc4NOTZ6/jWbbhfwnK/3Gpo0Z+WSmVdA35kCuk5A76JsTkZKGrrgEyCfmlJdgbGBOdlSnSyY3NeZeehppEFRtdQ2KysjDW0qZcKiO3pITKRibEZWZTLpNTx9KKZx+TBdCpKMANQNNKlbgfm4CKREJ9a2sefUhAXUWF+hWsuR8bj7qqKg0qWXMn+gPqKio0tbPlRkQMqioSOlStwoUw4YDsVrsavz0VknK3utW48DyccqmMVlUdCPuQTGZBEc5WZmipqPE05iP62pp0qevModsivmFku4YcufmSotIyGjtXorSonBfRSehpazKsfQM2nL6LXA69W9TidXQyEQlpmOjrMKJTI1YeuY5MLse9ZU3SMvK5+yoWTQ01/IZ3YO2hG2TlFuJiZ4FHuzoEb7uMXA692tVGU1WVfWcE92fmqA48ffWBa/cF52bBlB78dvGFEtgsnu3O8XNPufNI2Iwv9uvF1ZtvOX/lFSoqEgKm9yArq4A1itnu0P5NadHUiek+h8jPFxbjCwJ7s3T5Oe4/iEJTU41FCzyQAAH+RykpKafJL5UJnOPOts3XOH3yidJHp0VLF/wUPjp6+lqErh6Mmbk+s733ERedhomZnpKM7Oe9j/DXiV8DncXnvgE6r5/FETB+z2egs3YImlrq7Fh5kaMKh9FxPt1xH9wMabmUZb5HuX5WjJN8lg2gpcJY7MC6K+xVkJeHTOrIYG/R6UhJyMRn8CaS4zOxtDEm9ICXcpUY/uIDAYM3kp9bhHMdWxbu9URfMdIpyCti3ogthD0QBMj5uz2p/YW3TdrHLPz6rSEhMgVjcwMWHfHG4U9hnVcO32OF9y5h1d+zAbM2jv6GuJuXXcDc/mt48zAKTW0NAveMp2GHmnyvkmJS8e+1jMTIFAxM9Ag6NpVqfwE2EiOTCey1nMTIZHQMtAnY702Dn4w3vlclRaWsmbCNy3sF8GzWsxHTt3r+Xwm2/G+qe2eeEBP2AR197X9MTC7KL2btpF2A6L451rL9+QGIseLycVsB6DayDY061fnhvkmxaaybsQ+AQbNcqd7k+9fPzgUnef88Dj0jHXw2//pNBzA3M59QL0FabtO7EZ0GNvtqe2J0KitnHADAY1x7mnxxTUvLpYRM3ENWWh72VSswMbivsjNYkFvEQq/dlBSVUa+FM0Onfk5cP3/wPldOiueHz6pBmFkJZeLz+1HsXCEWOeP8XKlWV/zNrpx5xm8KR/SZwX2p5GCOVCoj1OcoSfGZWFgb4bukH6pqqty/Ga50bff2c6VqLRuSErII9hdJ5h171KVn/8ZkpOUx3+eI6Hy3cmHIqFbEx2UQPO+k4OT0rEcP9/pc/+MNB/aKRfG0Gd1wdqnA3DnHiYsTXZ75QX2IjExhxSrxcw8b0pxmTasw3fcwqWl5VKpoQqCPG/uPPODGJ1qCvzsR0als3Seei1M826OqpsKyjZcpKi774Tn/Wf2rwU5uWTE2BhZK80BHfROic7LQUlVDAzUyS4qw1TckPicL+Ax0VCQqOBgYE5mZiYGmJmoSCWlFhdgZGpGUk0epVEYtC0teJX8GOg8/JCIBmlWy5V5sPABNKtlwPzYeVYmEJrY23In6gKpEwi/2NtyKjENVIqFVZXv+eBeNRAJdqjtz/qXg5bjVrsaZZwLodKvtwuWX7ykpl9K0ii3RSemk5hbgYG6MsbY2DyPj0dXUwL1hdfbdFPENQ1vV48SdV+QXl1Lf0Rp1VLgXGYeOpjqjOzViw+m7yORyXH+pTnRCOq9jRbdnTPcmrDh8HalMTvem1SgsLOXGsyg01FTxG96BjUduk5ZVQGUbUwZ1qc+CLZfEvi1rYGqgw3aFr870Ee14HZHEpdsCtQdN6c7F66+5/UjR4ZnlzpnLr7hxX6isgn16cvtBJL9deIFEAn5TulFcWMrK9WIlMtCjMe1auTDV5xC5ecVUr2rNonm9WbHyd6WPw8IgD9TVVJk96xDFxWU0auTA3Lm92LntBieOCQA2bWZ3Wrauiv+MQ4Qp/HEWK3x0ZnvvJSYqFRNTPZauG4qRsR7+k74kI38BdBQcnb8COttXXuSYAuiM9+2B26CmAuj4HOX6uReoqqngu3wgzRUGf/vWXGL/WtElGzG9C/3HCQXUx7h0fAdvIvVjNhXsTAnd74W5tRhPvX0SQ8CwzWLl2sCBoD2eSr5AXnYhgUM2Ev48Dl0DbRbsHfdVcnlyXDq+fVeT/CEDi4omBB+dREXHr+XFp7f+wUZf4fbaaXBzJq8Y+o0UNyM5G//eK4l9m4ieoQ5Bhyf98OUT+SKOgF7LyUrNwdLWjEWnZvylOifsTjjz+q0iL1N49ASdmIZ9jUo/PebPlRSdQlC/lUS9iEVFRcLokEF4TO3xv2OrP5VMJmPPPNGNcBvf6R8Dwe0Bh0n5IMZLwwJ7/61jNs7aT2p8Blb25owJ/v5ICoQpYOiYrYpuTRUGTu/+3f0eXHzJCQXJefqaEd84L8tkMpZ57yYtMYuKjhZ4Lxn41fVQXFTKwrE7KMwrpkZjR4bP/pqnszP0LGEPotDW08R/00i0FJ5OMpmM5TMPkRibjoW1EbNXDVbeM6+fxLJpoeDhjZjelTq/iPskJTGLkGkHBSDp1YBu/YWn0fvXiayZLwQKg8e1pWlb0ZHdve4KjxWJ6HNXDsLQWJcPMWmEKkwGXfs1prNbPYoKS5k34xB5OUW41KjIJJ/ulJVKme97lMz0fOwczZk1pyeFBSXMmX1Y+PbUrsSEqV2IfJ/CUoWqqm//JnTsXIvt229w9+571NVVCQrqg1wuJ3DeCYVJqxNDhzRn+eoLvHqdgK6uJovm9ebJ8zilgnbahE7o6GgwY/4x5HJw71aXJvUdGDNzH2XlUlo0qsz9f9Dc+VeDHUFAFp46lRVxDxoqauiraZKqiHtIzstDJv8MdD45JkdkZKCrroGuugZJeXlU1DcgI6+IovJyqpuZ8zY1FblcjKuUQMfWlnsxAui0sLflTvQHJEBzeztuRcYiAVpWtuf6+xgkQAeXylx6LbJ2utesyrkXYlzlWrsq51+8Qy6HTjWqcPN1NMVlgoCclJlLokJSXsnYkFtvY9FSV8Pjl5rsuS7iGwa2qMu5R+/ILSyhlp0Vhlpa3HgVjZa6GmO7/sKG3+5SLpPRpaELKem5vIgS3Z7xPZux4tB1kVDe0BmJXMLlh8Ibx3d4B7aduEdyRh52FYwZ6daEoE0XkUpldGpWFTsrYzYeEi/1SUNaEx2XzvnrilGUdzeu3QnnugLYLJzpxuUbb7h6W/g0LJzlxtPncRw/I35+n0ldQSZnqSIVua97Q7p2qMmU2YfIySnCxcmKkPl9WL3mErduR6CursqC+X3Q0lRj9qzDQoLewJ5583uze8ctjinm0VNndKVt++oEzjzEq+cf0NHVJHTVYOGM7L2P6MhUhWHg0G98dBavH4qDkwXrvgA6M4O+BTp1Gzsyb41II9+24oLSxn28nytuA3/5Buj4rxpM0/bVkcvl7FtzmQMKldboWd3wGNMGEITj2YM3kZGcQ0UHcxbvH6dcCYY9iGLOiC0UFZRQs0llgnaNVcpWczLz8Ru4nujXiRgY67LowHiq1PoMEBKiUvDtu5r0j9lUsDcn5OgkJZEZFCTgFefZEyIMB3uN68DYBX2/AQcfY1Lx67WC5Lh0TKwMWXRsKg41bPhePbv2mqBBayjMK8axli0LT07H1Mrou/t+qpvHH7Bk9GbKSsqo2qgy845OxfgHHj0/qocXnhE6bB15WQUYmhvgf2Dy/6qtflA3jtwjJuwDuoY6eExz/Uef8er2O85sFtfy5A2jfmg18GXd+e0xl/ffFsKBrWN/mn22L/QM7x5Ho2ugzewtY77L10r7mMWyiTsB6Dm23XeJy0fWXuLR1ddoaKnjt/XXr+Ie5HI563wOE/vuI8bm+vhuGPkVT+fW2ecc3yw6KNOWDcLmi0XCsc3XuXdZcOP8NwzH0ER0WTNScljkvZfyMiktu9bGY0xrQICqIO+95GYVUKW6NRPm9EQikZCdkc+CqQcoLSmnSWsXBnuJxc/Ni684skPRFZnnTuWqFcjPK2K+gpBcq74d46Z1QS6Xs2z+KWIVi7g5S/qhrqHK8kVneKfgKc4P7SdG27MOkxCfibmlAXMW9SE/v5g5/scoKSmnUWNHfvVsy7VrbziwX3R5pk/vir2DOVOm7ScrqwBHB3P8Zrty/NRjzl8S3fm5vm4UFZcRvFygF4+eDWjauDKeM/ZRVFxGgzq2jBncAu85R8jOLcLJwYIZXh1ZNu8vLpbv1L8a7GQWFyHX1KSygSlR2RmoSVQx1dThY34+ljp6ZBQUUiaT4WJspgQ61UzMeZeWjpaqGiZa2sTn5mCpq0tBcang65iaEpWegVQmp16FCjyJF0CnaaVK3I35gAQJrRzsuBUVB0BrRwduvI8BoL1LZa68iwKgc1UnLr4WMvIetVyUQKd7LRcuvnyPVCanTVVHHr6Pp6C0jDq2FcgpKCYuPRsrQ31crMy5+jISdVVVBjavw65rwh+nb9NaXHkWQVZ+EVVtzKloZMClp2KM5Nn9FzaduUtZuZT29aqQX1DCo/AEdDTVmdS7BSsPX6e0XErrupXR19Li5I2XqKpI8BnWnj1nHpKYmkNFC0PG9WnO/E0XKCuX0qZRFWo4WLJqz3UAPPs1Jzk1l1NXXgpy8vguPHgazZVPHZ7prty6H8nF60KOPn+6K+/eJ3HwpOi8zBjfCS0NNYJCzwjU370ePbvXZeqsg2RlFVClsgWLF3iwbsMVritMrebN6YWBvhazZh6iqKiUunXtmB/Uh/177nLkkPCJmTytCx061SRw1mGeP41DR0eDkBUDsa5ozGzvfUS/T8HYRJcl6wRvx3/SfiXQCd0wjMrOVqxbfI5z/wDoTPB3xXXA3wc6Y3x70HuUiEVIiE5l9qBNZKbmYutkScg+T0wUvjMv7r5n7sitlBSVUre5M3O3j0ZLRwCd7PQ8fAesJ/bdR4zM9Ak5NAH7qp95CLFvP+LXb40gMjtZEXJ00legQy6XsyPoBEfXCuv6IbNcGTzz2y5I7JtE/PqsIDM5hwoO5gSfmEYF++8nkd888ZDQ0ZsoL5NSu2VV5h2a/F2OxZd1Ys3vbPE5iFwup5lrA2bv8lL+jn+n5HI5h0JPsWvOEeRyOVUbVyHw8NR/ZeTD36nysnJ2zxddnb7TXf+RKq24sITlnmIU1WVkm7/leZSZks1q713ie6d2o0ZT5x/u+/JOOIcVLsmTVw3D0vbbcyktlxI6dht5WQVUqW3L6LnfevQ8u/WOvaGCpzM+uD+OfwLov++/y9Xjj8Soaf0ITK0+A+y4iGRWKEZbfTzb0uILz5xntyPYvVyYhU6Y3xvn2mKBUVpSziLvfWLk5WzF1BCxcJDL5awOPEH02yQMTXQJXDsUTS11JSE5NSmbinamzAzui4qKCtERySyfI/hUfYY3p23X2mKkFXCChLgMzC0NlYTkA9tvKh2SA0L7YWZhwMkjD7l07gUqKhL8F/bB2saErRuu8ui+oALMD+mLnr42M6fuJy01F5tKJvjPcScyMoUlCsFEv/5N6NCxJgsWnSbifTKGhtosDOrDi1fxbFIISbzGtKWyowWek/cI3k4DB0YPb8mMOUdJScvFxtqYeTPdCFl/kajYNEyMdFjk05PYhJQfnvuf1b8a7JTL5DgZmBCVnYEECRV0DJQuyAXFJZRIy3E2NiU8PR2QUMPUgjepaairqGCtr090VhYm2tpIy+TkFJfgaGxMYlYOpTIZdayseJmYBMAvlSpxLzYeCRJafgF02lZ24HqEADqdqlbh0lvRxenyBdDpXtOF3xUp5Z2rO3E1LJIyqZTmTnaExSUJAnJFC8rLpEQmZ2Cmr0N9e2t+fxqOqoqEIa3qsUcBdNwb1+DO61jScwtxtDLB2dKMsw/foqoiwat7U7aee0BJmZSWNR2QS+FOWCya6mpM8WjFmmM3hSlgdTsqGOtz+IogGM8a0o4jF58Rl5SFlak+kwa0ImjTBUpKy2le14EmNexYsl0xdnFvQmFhKUd/F6M0X89OhL1N5PwnsvHU7jx+EcdZBScncGp3PsRnsOuQGH1NGtMOE0Md5gSfRiaT071zbfr1asTU2QdIz8jHwd6MpQv7sWXrda7+obAuD3DHzFSPGdMPCsJy7UosXOTB0cMPOKhYgUyc3InOXWoz1/cIzx7Hoq0tQj1t7czwmSxCPY2MdVmybigWloYETD7Am5fx6OkLw8DKzsIw8OyxR0rVVftudZTy8p8BnYkBbvTo3+SnQGfv6kscXC94SWP9etBrpAA68VGp+AwWQMfe2YqQfZ5KwvGzW+HMH72NkuIyGrSuSuDWUWgqPGkyU3LwGbCO+PcpmFgasPiwN5WqfPbAiXwVj3//NeRmFuBYw4ZFh72VnwsKw0G/z4GeYxf0pfd3FFLhT2MI8FhFXlYB9tUqEnxy2g9dkc9tv8baKbtFtlavRsza5vlVttafSyaTsWX2AU6uE2DL1bMDXsu/HZ/9rIoLS1g+ZhM3jojrq8fYDoxbMfyn3/tvr/Nbr/IxMhlDcwN6eXf9R5+xa+5RkqJTMatowtiQn6eTg2LkM24bORl5ONayZaj/j0deORl5LBm7DblcTqchLWj1HVNAgD2LfyPs/nt09LTw2zb2m3OenpTNEq+dyGRyOg1sSudBX/N0wp/HsXGO8LgZ4eNK7WafOW4FuUUsGLud4sJS6jRzYuQXo62UhEwWT94nTPj6NaZL/8/k/E0LTvP2WRx6BtoEbhim7MAe33nrq+eChWI8vXnJOWWS+dw1Q9Az0CYnq4D5k/dTUlxG/V8qM2qSuC93b7jKQ0VUzNzlAzAy0ePujXfsVnB3Js7uTo06lXjyMJrNCsf0MRM7UL+xI1cuvuKIwt9rup8rVZytWL7kPGGvEtDR1WRBcF+KS8qYE3ic0tJyGjd25Ndf27Bn352vFpxFxWUELf5NPLu71Ma1ax2m+BwmLSMfu0qmzJntysqNVwh7J3zVFgf05tBvj7n1KQLIx52zV1+x49D1H57/n9W/GuzY6xsTlS1Sy+30jInJycZQQ4tyqYwChQIrIj0DkFDT1JKw1BTUJCo4GJoQkZmOgaYmmqiRXJSPraEh6XkFFJaXU93cnDfJqcjk0MimIg/jEpAgobm9Lbei4pAAbb4AOh1cKiuBTueqTlx6I4BO5+pOXAp7j0wup33VytwOj6WkXEpjBxuikzJEeKelKRoqqjyPT8JIR4tmVew48/gtEgkMa92AfdefIpPL6VrPhWeRiSRl5VHJzJB69hU5eUdIv716NGPnhUcUlZTRuKotepoaXHgYjrqaKtP6tmLDidsUFJVS39mGqrbm7D4nMrOmD2rL6WthRMaL7Ktpg9uyYMtFYSBYw5a2DZ0I3qJIqu3WAHUVFXafFnLjGb+2JyYunVOXBAfH37srb8KTOHFeqKF8J3YhPT2PLYoco3HDW2FjZYz/ghNIpTI6tq3O0AG/MG32IUFyszFhWXB/du25zUVFizTAz42K1sZMm7qf/Pxiata0ITikH6dOPGbPJ0LwhA50d61HkP8xHj8Qaq2Fy/pj72iB35T9RLxNwtBIhza20wAAIABJREFUR4R6VjBiztQDvHoWh46uJsFrh1DFxYrNKy7w2+GHSh+djj3qEv4q4SuOziegs3P1pf8M6Ky6xMEN3wKdD5Ep+AzepFwFhuwfp1RlPL0pgE5pSRmN21XHf9NINLTEwzw9KRuf/utIjE7F1MqQ0CPeX3Fwwp/FEjBgrTA3q2vHwkPe6Bt97q5IpTLWTNun9CPxXjaYbsO/Dd98dSeCuQPFOMqlgQMLj07+Lrfjz2aB3Ue3ZcKKYT8FLaXFpYSO3MTtUwqTy4X96Tut+3/ErUmNT2de72VEPo9FVU2VCatH0mNsh78+8F9cmcnZ7AgU3KyhgR5/a/T053p1+x2nFOZ+U9aP+svOHcDxtRd4fPkVGlrqzN7u+UPHaplMxhLPbaR/zKJiFcsfyszv/f6cw6tEZ2XyyqFY/4mDVlZaTvCYrWSn5+FYw4bxwf2/2p6dkceisTsoL5XStHMtPLw+q/2EceB+EqPTMKtghM+6YcoRWnFhCUGeu8jNKsSppg3j5/dSHnf+0H1+P/wAiUTCrBUDlQrKJ3ci2KlQXXr69KBWI8Gn+/3YI84cEvvPDOmLraNY8C6ccUjkW1UyURKS/zj/ksOKZ87UwJ44VbMmKiKZUIWZoGvfRnR1r098XDoL/Y8hk8rp0LU2vQc04U1YAisU2XwDhjajbYcaHDv8gAvnRecnYI47FpYGTJ2yn/T0PGztTPEP6Mmt2xHs3iO+c8qkztjZmeE1eQ+FCiuQyeM7ErLyPG8jkjDQ1yJkXm9OX3ihVNkGzXbjdcRH9in8rWaO70RCcja7j91HLv/xtfKz+vvLoP8HFRISQqNGjdDX18fCwgJ3d3fCw8N/esyuXbuQSCTf/CsuLv6Pv/+T1NxR34SYnGx01dVRQ0JuSQn2BkbEKFLNa5kJoKOCBBcTMyIy09FVV8dITYvk/Hwq6OmTX1xKXmkpLqZmxKRnUi6VUa9CBZ7FJyGXQ1O7StxVcHRaOdpzQwF02jk7clUxuuroUpkrb98jl0OHqpW59jaKcpmMVk72PI5KoLC0jLq2FUjOyiM5Jx87MyOMtbV5HpeEnpYGHWpU4cxjQVoe0aYBB289o1wmo32tKkQmpvMhLRsrY31aVXPg5J1XAHh1b8r+K0/JLyqhbmVrrI30ufBQdIWm9W3FltP3yCkoppZjBRo52yiBzuT+rbhyL5x3sSkY6Wsza3h7grddIr+whDrOFXFrVYPFWy8JNVeHOpgZ6bLtqFgdTB7ehvT0fA6fFR2n2V6d+ZCQyaHT4rNnjOtIUVEp63dcB2D0oOZUrWxF4KJTlJfLaNvShbEjWjHL7yhJyTlYVzBixeL+HD7ygDNnFWBpdg8c7c2ZMeMAublFuLhUIDikH+fOPGe7Ildq9Ng2uPduwKI5J7h/5z0aGmoELemHk3MFAqYd5G2YmFkvXjOYijYmzJ9xiBePY9HR1SB47RCcq1uzbfUlTh4Qo7ApAa50cqvH+zeJ+HntpjBf+OjMXyN8dPauv8oRhbHXeD9XAXSkMlb4HfsbQMdVCXTi3ifjM0gAHYeqFX4IdJp0qIH/5lFKoJP2MYtZHmtIjE7FoqIxS49P/grovH0Sg1+/NeTnFFG9kSPBRyd9DXTKpSwbv4OLCt7EjPUjvwt0Hl56ib/HSgrziqnTsiohJ6f/EOhs8TukBDqDZrnhverbnKEvKz+7AD/XJdw+9Qh1DTV8d4+n3/T/jET8+m44E3/xJ/J5LIZm+oReCvhfoPM3avPMvRTmFuHcwJHu/+DvVZRfzPKxW4X78Mg2NOr8YyXVp3r3OIqdc8X14bV0CPbVv8/1Av4Pe28dVWXe7v+/6O6QkBBFMTCwu7uwu1sxwACkQwG7FR0bu9tRZ8RuxQ4Upbs79t7fPz5bHMeYmXOe5zznt87vWmvWmtt933sD+47357rewcFV53n020vUNFR/GDmS9DGNFbO+8HS+FwexPegErx9+REtXA6/tU74KipVUSAidsYv0pGwsq5kwf/Xor869QxuvcOfSC5RVlfAOn1DZEZXJZKz2OELM6yT0jbTx2TK+spv08tEnNgcK3ts4t+40bS+8q5LiMgmdf1B0gQY1oc9IIVl/+SSWjUvEeG2sS+dKQvKWZed5/lB0evzXjkJHT5M3LxJYFSTee9j4NnTqWZ+crEL85x+kpLicRs3smOHWg/y8YvwWHRIJ5fWqMs+jN+mpefh5HBHE4na1mDC1I/fuvmerPLtr2szONG1ux7Jl53j7NhldXQ2WBA8hKSmHsOUCIA0e1JSuXerhF3yy8l4d4O3MgaP3+f2anLrg5cz7j+ls3SPujXOmdkZFVZllmwUoHjOoORZm+oRuEgvnYX9hP/Gj+o+CnWvXrjFr1izu3r3L5cuXqaiooFu3bhQWFv70OF1dXZKTk7/6T139n68yQIEaukZ8yMlGTUkZbSVVskqKqaqtS2KeICbXNTbleWoqCihQz6QKrzLSUVdSpoqmDvF5eZhoaiKRSMkuLsbOwIDknDxKKiQ4VqnCy+Q0JFIZzayq8iA2AZATk99/AqB9jWpEvotBBnS0tyPy7UekUmhnb8vt6FjKJVJa2lnzKiGVvJJS6liYUlhYSnxmLhb6OlgZ6PEgRrgp921Um2N3hXfOmPZOHL71THjnONiSkplX6Ybcq1EtDkSKIM+pPZtz9NozcgqKqW1tSk1LE07deomCArgOacfu8/fJyi+ippUJHRvVYOsp8VCfPqAVd6M+8UzulLx4UlfCdlwRvjrVzRjevRFBmy8KFVb7ulSvaswGuZR36vDWlJaUs+eYeC/XyZ3Jzili9xE5d2ZyJ5QVFVktd9YdPbg5To7WLA48TllZBa1b1MBlaicWeR8hPjGLKqa6rA4bwenTTzh6TM7rcetFbQcLFiw4QE62CJ4LWzaMK5ees2WjeN+xE9oydFgLQgNOcev6W5G6GzqE2nWr4rPgIC/lSqyQdaOxsjEmYOEhHt+LQV1DheC1o3CoZ8nOjb9xVC65nLO4Dz2cG/PhTTKe075EQARuGI26pir7Nv/OfjlZcbp7b/qNaIFUKmWN9zF+PyNiFzxXjaSl3GcjYt3lPwEdEddQCXQy8rGrbUFIxE+AzpYJlU6saYlZLBq8juTYDMysjVh2bC7m8tUjCNdjr2HrKcovoV6LGgQdcEHrDwTQz14kV4/dFwqxX6bSeegXv5DPdfP0IwJHb6SspJzm3esTeGgOmjrfXpuSCgmrZm7n+Hr5qjVsJON8B/0UtGQm57Cg2xKe33yLpq4GS84sosPQlj/c/3t1ee91FnYJJCctFztHazbcXUr9tj9PS///C55cfcHVg7dQVFRgzsbJ/2hc+LnC3feR/DENUysjpob+ddBnYW4RIeM3I6mQ0G5gM3qOb//DfaOuvyZCTpSftWLUdwnwpcVlBE/YQmFeMXWaVWey/+Bv9rl28iGn5J5dC9aPw+JP/LIdS0/z9HY0Glpq+Gyf/JXb88PI1+yVB/e6BA+hVsMvOXBHtlzl+tkosaDZNK5SKZmenMMSlz1UlEto08ORofJQ3+LCUoJc9lKQW4xDAytmygnJ6Sm5lQ7JbbvVY7hcpHDuyAPOyh3W3UOGYFPdlIy0PALmH6S8rIIW7WoxflZnysoqCFx0iLSUXCytDfEKEX+DYO9jJMRlYWqmh1/YECQVUnzcD5OTXYhdjSq4+/QnLjaDJQEnkUpl9OzdkIGDm7J37y0irwpzV/+AgaiqKePlK0jLzZraMXVyB9ZuuszT5/FoaqqyxG8gT57FVSqvXGd1RVNLjSXy4NUBvRrRrFE1vEJPUVEhpUPLmvTq7MjisJOUV0ho19yeCUO+Hin+3fqPjrEuXvw64GLnzp2Ympry6NEj2rX7dsX4uRQUFDAzM/vbn1NaWkppaWnldl5eHgA1dI2Izs5EWVEJYzUNkgryMdPSJrOgmHKJlDpGJrxMTUMBBeqbmvEsVSSV2+jq8y4jE311dVQVlEgqyMdKT4/swmLyy8pwMDEhJj2LcokUJ0sLniYkIZHKaGFjxb1PCUhl0NrOhlsfYpHKoG11G+6+j6VCDm6iPiVRXF5BY2sLPqVlVY6rkML7tCyMdTRxMDfl6ksh+R7c3JGIa4IHM6J1A07de0lRaTlNa1SlqKiMV/Fp6GupM6hFPbbJYx/Gd23CubuvSc8tpIaFEc3srdhzSXRa5g1ux6ErTypDPvu1rsfKfXLTvt7NePU+hQevRH6Vz5TurNp9lazcIuytTZjYrzlea89SIZHSuUVNGtasytItApGPcW6Ghooy63dFAjBzbHtkEhlb5V4K08e2w0BHg8CVciljv8a0bV6D+V6HKS4pp6mTLQtmd8Pd+yifYjMwNtJmVehwLl1+zj653fjc2d1wamTDvLkRZGTkY2trTNiy4dy49pb1a+TBmqNaMWpMa1YsPcO131+hrKyI39LB1G9og++iQzx7IicorxlFteqmBLsf5uGd96ipqxC8ZhR1G1gTsfUqh+SjsFnuveg9qCkfo1PwnLaLgrxiajewInjTWDQ01Ti4LZK9cuAyZUFPnEe3QiqVstbnBFdOPhY+OiuHV2bb7Fv/hYwsRlcC6MR/SMNzVDg5mQXY1bEgZO80dOXuxN8DOp/b/akJWXgMXU9KXCbmNsaEHZn9VZLzi7vv8R21keLCUhq0ron/nhlfmQGWlZazZEI49y49Q0VVGe+d02n+B2flz/X74bsiVVoqo/3AZizcMvG7OVflZRWETdzCjZPCTM5t0yS6/oVzbuL7FDz7hJEam4FBFT2WnFpI9e+Eiv6oZDIZu/0PVxrhtRnYjIXbZ/6XRjH/16qspIz1LtsB6Du9GzUb2/3j97h16iEXdkQKO4Zfpv1lJIRMJmP1rB2kfEqnio0x89ZP+CEQzkzOIXTyVsGvGd2GbiNbf/f9NizaT8yLBPSMdVi8feo347BPr5NY4ybCSIfO7kaLP53jkScfcXyruA/OXz0amz/YISR+TCfMZQ8ymYyeI1vSffiXhcD9q6/ZJQdBM/ycqScfRZWWlBM0czfZGQVUczDHLXQoCgoKwt3Y/TCfolMxMNbBe91oVFWVKSkuI2BOBNmZBVSracb8ILE4ePrgI5vk8u/xs7vQvH0tse/8A2Rl5GNb3RR3uZvyupBzvHwqFnL+K0ego6vBxpUXefLgI+oaKgQsG4qevhaBXkeJeZ+KvoEWQWFDKSurwNvzCEVFZdRvaM0c1+5cu/aG3bvEPXDuvO7UqmWO6/x9ZGYWYGNjjLdXP46desTZC2Lk5evRj5LSCpbKHZOHODemRVM7ps2PoKS0nKaNbJkwshUuiw+Sm1+MQ40qzJ3SiXn+R8jJK6amXRVcxrfnlyO3fnru/Kj+V3F2cnNzATA0NPzpfgUFBdjY2CCRSGjYsCFBQUE0atToh/uHhIQQEPBtmEZ0dibKmppYauoSl5eDsYYmhSXlFMuJya/T0lFAQaSWp6agqKBATQNjXqelo62qir6qOrE5OZhpa1NaWk5OcQnVDQ1Jyc6nqLwCR7MqvE1Jo0wipXFVC57GJVEhkdLMpiqPYxOpkEppbmvFk09JlFRIaGxtQXRyOvmlZdSzrEJGXhEpuQVYG+mjraJKVGwyeprqNLWtysWn71BSVGBEywbsvSYk2YNa1OPXJ+/ILy6lgY05KgqKPPyYgJaaKiPbNSL8nAAEIzo05FrUB5Iy87Ay0adjgxr8clbMRl2cW3P6xgsS0nOxNNZjeOdGLNsj2pbDuzYiMSWHm1ExqKko4TulO+v3XSM1Mx8bC0OmD2mNz9qzlJVX0NrJjvaNaxCwXlzkg3s0wsJYl+XhwtNi4rBW6GqpE7ZRAKEJw1pibW6Ab6gIkevbvT49O9VlnoeIfGjoaMXi+b3wDjhB9IdUDPQ1WRk6nNu3o9kpv+CmT+1Im9Y1cZ0XQVpaHlWrGrJ8xQgePYhh9QpxgQ0e2owJk9uxbsUFrlx8jqKSAt5Bg3Bqakeg5xEe3xfdmyWrR2Jfy5wQ72PcvSGIfYGrRuDoZMOhnTfYGx4JwLT5Peg3tDlxMWl4TNlFXk4RNetaErxxLJpaahzZeYNdclfSifO6M2hcG6RSKev9T3Lp+EMho102jLbdhSLlwKbfiJDvP8m9d+XoKiEmXXB0MvKxq2NBaMT0yhHTXwEd9yHrSI3PwsLWhNDDLl8Bned3ovEdtYmSolIatq2F3+4ZX9ngl5WUEzR+Mw+uvEBVXQW/vTNp3PFbSfalfTdZPVsQjLuNas3ctd8fR5WVlBE0egP3Lz5FRVWZxbtn/qUrcvTjj3g5Lyc3PR9zO1NCzrpjXs30p8f8+TNXTN5C5CHRhRvh4cy4gJ9na/27SyaTEfc6gdd3o1HTVMPEyghTKyOMLAz/yxlT/646uOwUCe+SMTQ3YHzgsL8+4E+VnpDF6pkCLA2e15MG7f66k3Zu+1VunHyAkrISi3fN/CG3R1IhIWRSODnp+VSrW5VZy77fMbqw5waXD9xGUVEBz61Tvslqy88uJGD8lsrrYKz715L6mFeJrJGrq4a5dKX1H9RVhfklBEz6RSxyGtsyPeCLsishJp1l8/YJEDSiBb3lKecymYw1nkeIfpGIroEmvpvGVRKS96y7zJ3fXqGiqozP+tEYmeoKLpD3Md6/TkLPQBO/daJjnBSfxZIFB5FUSOnQ05GhE9uKOInAU3JHd038V41AU0uNoxG3uSwPN168dDDWtsacOf6QU3KPMXc/Z6rbm7F9y+9fdbv1DbVwn3+AlOQczC308QsYyIf3qYTJAdagwU3p2bMBgcEneStPNg8OHETUs3i2yEUMM6Z0pJqtCdNd9wrX+qZ2jB/Vhnneh8jIEgRlH7feBKw6R2xiFqZGOgQv6s/S9Rf5lJCJsaE2gW598Ft7nqevPv7l+fO9+l8DdmQyGW5ubrRp04Z69b7vqgrg4ODArl27cHR0JC8vj7Vr19K6dWuePn2Kvb39d4/x9PTEzc2tcjsvLw8rKyuEY7IBMTlZ6KmpU1EhI7+sjOr6hsRkCb7OZ6AD4GhchWcpqagrK2OhpUN0ZiZGmpooo0BiYRHW+nrkFZWSW1pKLRNj4rNyKCqvoL65Ge+SMyipkNCoqjmvk9MorqjAycqCd0npFJaVU9/SjMSsPDILi6lZxZjS0griMnMw19PBQleHe3JjwA4Odpx+KDKtRrduxL7rTwQ4aFybW68+kV1YTC0LE4y0NLgq986Z0LkJ4efuCP5M63o8fpvAp9RszAx06N+yDhvlieWTezfjysN3xCRlYmqgzaRezVi65zekMhn929ajqLCU3+S+Oj5TerDt2B0S0nKxMNHDdXQHfNaepbi0nKb1rOnbvh7eq88KY8JO9ahTw4wl6wTgGNm/KVZm+gStEdvD+zehrr05i5ecRCKV0b1jHQb3aYyr50HyC4RBoJ9HPwKWnuLVmyR0ddRZsXQYT6Pi2BwugNiE8W3p1tURN9d9JCZmY26uz4qVI3j1IpGwECFT79vfiakzOrFl3RXOnRIRDJ6+zrRoZc9S3+Pck/N2glYMx6GuJSsDTnHjt1eoqCjhu2wYDZtW4/j+O+yQd10mzu7CwJEtSYrLxGPqLnKzC6nuYM6SLePQ0lHnZMRttsvdTse6dGHopHbIZDI2B5/h4pEHlREQ7XuJFeShLb+zZ7UAfxMX9mLwZNG2T/qUgceozUJ1VcucpXumVQKdqFvvfgx04jNxH7r+p0DHZ+RGSovLcOpQG9+d077iJ5SVlBM4bhMPf3uJmoYK/vtcaPSdB9W5nddY77YXgN4T2jNrxajvAomSwlL8hq0hKvKVAE4H5/40wBEg6tor/AevprighBoNbQg+ufAfeejkpOfhP2gFr+68Q0lZiXmbp9B9fIe/ffy/shLfJ/P4ynOeRr7gaeQrctJyv9lHUVEB46pGDHLtw8C53zfC+5+suDeJHAoT46GZq8f9LULxH0sikbJs4mbyswqo6VSNcf5D/vKYD89i2eIugMWkoKE4NK3+w313BZ3gxZ1oNHXU8d4946vz93O9ffyx0vRyvPcAGrb7Os9NIpESOmOHyM+yMsIzfNJXgDMvu5CgyULZ2KRDbcYs7P3Vscvm7CX+fSpGZnp4h0+sHB0X5hUTOG2nGGk3tmWG35c09yNbI4n8PNZaPwYzK7HAv3o2ikPyhdS8oIGVDsn7tlzlxqUXKCsr4bN6FGaWBhTml+A/J4K8nCLs61ri6j8ABQUFIrZGcu3SC6FGXTEM86qG3L3xrjIKYuq8bjRpWYPH92PYKL8/TZjekdbtHbh84RkHP7she/ahdl1Lloee5fmzeDS11AgOEcorb3nUTvPm1Zk2rRM7dl7n+g3hfhzoP5DCwlKCQ8V9t1/vhvTqVp/Zi/aTlV1I9WomeC/sQ+i6C5WZV6HeA/hl/y0ePhUxQSGLndl7/B73nwo3/RB3Z8IP3eJldDI6mt9+x3+n/teAHRcXF549e8bNmzd/ul+LFi1o0eJLi7B169Y4OTmxfv161q1b991j1NTUUFP71nvDXteQmJwsNJVVUFVQJr2kEGtdPRJy8pBIZTiaVqkEOk5VLHiSlIyKoiLV9Q14lZaOrpoausqqfMoW3Z3yMikZhUVUMzQgq6CI3JJSHEyNSczKpaCsjDpmpsRm5ojOjXkVEjNzySkuoVYVY/IKS0jNK8DaUB8VFHmVmoaRtia1qhhz7fVH1JSV6FW/JkfvCV7O6NaNOHDjKRKpjK717Xn6MYnU3AJsTQyobmrIhUdvUVZSZEq35oSfu4NEKqNXUwc+JGTwLjEDQx1NRnZsxBp5kOeoLk7cfxnH27g0DHQ0mOXcmpDdV4QpYPNaaKiqcPjSExQVFPCa1I195x4Sk5CJiYEWHhM747f+PAVFpdSvZcGIXk3wXHEaiURKl1a1aNXQDt+Vp4UvTvcGONaywGeZ2O7fvQGtGtuxKOCY8OVpVZNxQ1syz+Mg2TlF2Fc3ZYm3M6Erz/H0uTzxfMlQPnxIY806AQxGDm/JgP6Nme+2n9jYDExMdFi+YgQfY9IJDjiBVCKjWw9HZs/rzq5tkZw4IkZ5bh59aNepDiuCTnHj6mtUVJTwDxtK/UY2rF16lt8uPENJSZHFIYNp2qoG5449IFyujBg9tQPDxrclNSkHj6k7yUrPx7aGKSHh49HR1eDc4ftskXtOjJjagZHTOgpCbug5zh64K0I9lwyuzLo6ui2yMutq/PweDJnaAYCU+Ew8Rm0hMzUPm5rCR+ezAdmzO9H4T9gmVFedv9PR+QPQCTsyG2PzLz45fwQ6jTvWwXfntEoiMwh+Q+C4zTz6/SVqmqoE7nOhwZ9CPwFOhl9hi4d4kDhP78K0pcO+O24ozCvGZ9BKXt6JRkNbncAjrtT/zvv9se6ee0zwqA2Ul5bToH1t/A67/q1E7M+V8C4Jr76hJMekoa2vhe8Rt/9xo0CZTMbTyJccDDvJo0tPv3pNVV2F2i1qIpVISY/PICMxi4pyCWlxGWx23QUyGDjvPwd4pFIp62aJrLPmvRrRduD3M8x+VodWnOHZjTeoa6nhsXvmD5VUn6swt4jgMRspLy2nec+GDHTp/sN975x/whG5sajbhglYVq/yzT7ZaXkEjdtMeVkFrXo1ZMjsb99v19JTPI58jZqGCr67pn3lHSSpkBA6axcpcZmY2RixaMPXHcu9K85z/7eXqKqp4LttEoamwuNKIpESNm8f8R+E6tFr09jK3/3+1deV1/p07/7Uby7A3Ntn8az2Eu7GQ6e0p1M/Ma24dvEZ++RZVHN8+1Ovsa3oaLkfJi4mHWNTXfzXjERNXYVrl16wV84NnO3ZB0cnWz6+TyXU+xgyGfR0dsJ5eHPiPmUQJFdede7hyPCxrXnxNI5VoV+UV126O3Jg320uyTvgPv4DMDHVZe6cCGESaGeKt09/rvz2kv1ye5AFbj0xN9dnxtw9lJSW08TJlllTO+EXcpoPH9MxNNAixG8Q+4/f5/odYSK7ZLEzNx984JRcmevr2psnL+Mrlbp+8/pw/eF7frstnml+c3ry+/5FPz2Pvlf/K8DO7NmzOX36NNevX6dq1R+z7b9XioqKNG3alOjo6H/8ue9zstDQ1sJAVYPE/HwstHXIzC+mTCKhjrEJz1OFeVFjMwseJyajqKBAHWNTnqWkoKmigrmWNu/SMzHU0EBNUZm43FwsdXUpLSsno7AIOyMDcgpKyCoqpoaxEVmFRWQVFWNvYkRuYTFp+YVUMzJAJpERmyW6OMaaGjyJTUZXQ43G1pZcfh6NsqIiA5vW4+AtcbMc0bIBx+68oFwioV3tanxKzRKkZQMdnKpZcOLOSxQVFJjRowXbL9wTaeYNqpOVW8izjynoaKgxqXtTVh8RQZ4D2zryPj6d5zHJ6Giq4Ta0PaF7fhOeOw3tsDLWY+dpARDcx3fm1O/PefNRqLB8pvYgeMtFcvKLcahWhcmDWuG5/BRl5RW0aWxHr3Z18QyTd2za16Ft0xp4LpVvd6hDz451cfM9TGlZBS2b2DF9fHvcFgvvBVtrI8ICBrN6w2XuP/yIupoKIYFDSE3JZdkKASQGODdmxPDmuLsf4v37VPQNNFm+fASpKbn4ex+jokJKuw4OzF/YmwN7b3FAni48e34PuvWqz5qwc5XjLK/gQTRubsfmlRe5cPKxGDEFDqBVewcun4li3VI5l2hca0ZP7UB6ai4eU3aQlpxLVVtjQrZOQFdfk0snHrFeroAYPKEtY126IJPJ2LnqV07KP39u4AC6ODsBcGr3TbbLw/bGzuteGQGRmpiF+8gtpCfnYFXdlJC9X8jIwhl5G6Ul5TSVy8s/30zTk7Lx+G8CnYAxG8UDQFOVoAOzv5sCfXzTJbZ6HRZ/kzk9mOj/fYJxXlYBXgNW8O7RR7T1NQk+Pv8vc65+P3ib5ZPDkUqktOrbGM89M1FV//srujf33+PTP4ygzQGmAAAgAElEQVTcDDH6CjrljrWD5V8f+C8qqVTK7VMPOBR2kjf3ha2EopIijm1r06BDXRp0qItDc/uv/F2kUinZqbmc3XKJiKCjHF115j8Kdk6uv8iz669R01Rj1tofc2Z+VC9vv2NvkJA3u6wZh2WNn/MsZTIZK6ZtI+lDKqZWRiwIn/LDz4x/l8zy6WI0NmBGF9r0+3YUWl5WwZKJ4WQk52Blb8b8jd/+DpEnH3JUHjnjunrMN8aB25ec4sn1t6hpqOL7y5Sv1ImRpx5xSC54mLtsGDUbfMn22hF2jgeRb4SvTfiESqPP2OgUQl33I5PJ6DW8OX1GCYJ9ekouAbP2CmDZsTbj5onAzrcvElgpj3cYNK4N3QaI33Pbql+/REGsG4WRqS5vXyaywl9w0gaOaknPAY3JzizA1/WAsMBoYouLey/ycovxXXBQKK8cq+Lq2YfkxGz8PI9QUSGlbQcHJkztyPVrbyqVq7Nmd8WpsS0+PkeJiUnDwECL4CWDiY5OZeVqQVUYNbIVbdvWYs584XtmY22E3+L+bN11nTv3Rb7hEp8BPHwaS8RRQZtYNLs7ufklbPzM4xzXHhRgw275547tQF5RCbuPi/3dp3XF2uLnNJcf1X8U7MhkMmbPns2JEyeIjIykWrVqf33Qd94jKioKR8d/FvgHoKygiLmGDp9yczHR0KSwpIyiinJqGn52TBZA51FiEgoo0MjMnMeJSagqKWGnZ8DL1DR01dQwUtfkfUYWplpaqCgoEJtXQFU9XcrLpKTmF2BtoEdZRQUpeQXYGOojlchIyM7DQk8HLVUVXiamYailQTVDA+68j0NDVYV2Natx7vEbFBUUGN6iPvtvCQXV4Gb1OP/ojQjvrGFFVkFRpZlgx7rV2X9N7De9Rwt2X35ESXkFLWvbIJPAvTfxaKipMLNvK9YcuY5EKqNHMweycwu5/1okli8a0ZEV+64Kr5zaVtS3s2DzETlzflQHIu9H8/RdItqaavhP78myXy6TnlWAXVUj5oxuj8fy0+JYR2uG92rMopDjlFdIaN/cnj6dHFkULDo47VvYM6xvY1x9DlNcXI5TfWvcZnRlgfdhklNysTTXZ0XwUDZvu8qN2yLyIdhvIEWFJQQvFcZUPXvUZ/LE9nh5HeH1qySRTL5sBPl5xXh7Hhaz4Vb2eHr359SxB+ySX7hTXbrQd0Bjtqy5xAX5OMvDfwAt29Zkx4bfOHVI3vnx6UeHbvWIvPSCVYEie8Z5eHMmze5KdmYBHlN2kpyQjbmVIaFbJ2BgpM3Vc09Z7SduOP1HtWSSa3cUFBTYu/4yR34RqcizfPvTfbCQvJ4/eLcyB2fEzM6MmCU8OzJScvEYFU5aYjaWtsaE7puOgYmQsb58EIPPuHABVto74P0H1VVmSi4eQzd8RUb+EdBx6lAbnx1Tfwh01LXUCD44h3otvx0PH9vwK9t8hJPu8Pm9Gefl/H2gk1mAR98wPjyLQ9dQm5Azi6jxF8TiM1uvsHGeIHt2Htma+eHft/v/UT289JTAoasoKSylZmM7gk67Y2D6z+Ij/qslk8m4c/ohv3juI/6NCP5VVVehx8RODJ7fF/Nq33YfPpeioiJG5gYMcu1DRNBR0hMyKcwtREtP63/kZ/9jfXwex3avAwBMCR2Fme3f50iBALgh4zYhlUjpNLwVXf6CgA5wePV5bp99LEjwES4/dGcuzC0iYPRGivJLcGxdk0kB36qqALb6HBbGgTrq+O6Z+ZW6EODDi3jWuIrx6xCXbrR3bvLV678evMOJbZEAzF89imp/SDqPfhbP6gWiozl4eic6Dfhy7KUj9zkuv9bdlg/H3lEAqJzMAvyn7qK4sBTHZnZM9+kPQElRGYGz9pCdkY+tfRUWLR+GoqIiGam5BMyJoKy0gmbtajFRHhR67sgDTspN/hYED8S+tgXpqbn4ux0Q+7apyeS53SgrrSBg4RfllXfoUKRSGQGeR0hKzKaKuT5+oUMpK63Ae9Eh8nKLqelgziKf/kS/SyFsibgvOQ9sQv8BTdi06Qr37grQEhw8mLJyCb4Bx4Vqqr0DY0e3JiDkFNEfUtHX0yQ0cDCXr77i6CkhfPFa0Jvi0nJWyBPrxw5tia21ES5eByu7/A3rWeHiI7aduzXA3s4U1yUC7I0b2BwZMM5zz3e/77+q/yjYmTVrFvv37+fUqVPo6OiQkiJGRnp6emhoiBNz7NixWFpaEhISAkBAQAAtWrTA3t6evLw81q1bR1RUFBs3bvzHn2+jrc/H3Fz01dRBAnmlZdjpG/AxOwupDBpVMa8EOs0sLHmQkIiSggJ1TUyJSkxGQ0UFK109XqWko6+ujr66OtHpmZhoaaGuqMyHrCzMdLVRU1ImOj0TM11ttJRVeZ2chrG2Jha6OjyKTUJHXZWGluZcfR2DqrISvRxrcvz+S0B0cQ7dfiZSZhs5EPn8A3nFpdS3MUcqlfIyLhU9TXX6NanDzivCp2ZKt2YciowS3jl2FuhrqHPx4VtUlZWY69yG9cduitiHBnYoKUBk1AcRkDmyE2sOXievsBTH6uZ0bFidlRGRAEwd1IpnbxO5+zwWdTVlAmf0ZN3eyMqIiIWTuuC18gz5hSU41rJg0uCWLFp6nJLSCpo3smWUc1PmBxyjpLSCZo1smTS8Na6+h0VoZ01zFs/ryeKA48TFZ2FirMPKpUPZs+8WV64KJ+QAL2cUFcAv4AQSiZSOHWoze1ZXAvyP8zQqDk1NVULDhiGVSPF0P0RJcTmNm1TDx38Aly88ZbN8Xj1ucnuGjGjBzvCrnJBnYrkt7kuHLnXZv+M6h+WdlzmevenapyF3rr1hmfcxAa4GNGb6gp7k5xbjOXUXibGZmFroE7ZtAsZVdLl55SXLvY6KVduQpkx3F0Z3B8Ovsn+T3JvCsw99Rogx7JUTj9jw2dZ9UjvGyFdzWel5Ir08LhMzayNC9k2vbI+/fvwJn3HhlBSV0ahNTXy2ffHRyUrLw2PYepI+pWNmbfQN0BGqq00/5egEjN30BegcmkO9Fj8HOqMW9WW0R7/vAp2c9Dw8+i7j44t49E10CTvn/lOfFIBDy8+ww1d0i/pN78qMlaP/EZH4t/03WTFJyJWdujjie9jtpxlK/8r68PQTW9x2EXVVXLtaepr0m9mdAXN7/yOwpa2vhZGFAZlJ2cS+SqBOy2+7av/OKispI3SsGB8279WIvtO/dcf+WUmlUpZPDic9IRPLGmbMXjf+L7tCUZGv2CUPF525YjS1fqD4kkqlLJ+xg4ToFIwtDPDaOf27ir9f993kzHah/nLfMhkr+6+7SjkZ+QSOD6e0uJzGHeswzrPfV6+/uP+BDZ7iPBzt1pO2fb4IYLLS8gicsp2yUtFVHf8Hh+SXDz+yXt6JGTG7C+3lY+qy0gqCZu0hJSELc2sjvDeMQUVVWQSNehzm/askdA208NskhA2flVdZ6fnY1DDFPWwoSkqKRN2LqVRejZ3VmbZd61FSXIa/6xfllceSQSgqKrAs6FRlpE3gqpHo6KqzIvg0L+S5f0ErhqGjq47X/IPEx2ZiYqpDYNhQ8vOK8V18RMjHm1dnxqwunDnzhGNyIrOHRx/MLQ2YPWcP+fkl1HawwH1hb7btvMZNeQBosN8APsVlsj5cbp8xvh221kbMdN8v6A3ta9OnmyPTPPZXPhNGDmzGTK8DYruBLQN7NmSG32Gh7G1Vi0Z1rHBbdpzS/y+mnm/evBmADh06fPXvO3fuZPz48QDExcV9dbPLyclh6tSppKSkoKenR6NGjbh+/TrNmjX7x5//IScbHV0dNBVVSC4ooKqOCP4sl0pxNKlCVFIyCijQ3LIq9+OFT46TuQUP4xNRUVLCwciYqMQUtFRVsNLT40VyKvoa6phqavIqJR1DTQ1MNDV5npyGoaYG5traRMWnoKuuhoOJMbc+xKGhokyb6jZcfBaNkqICzo3qcOSuMPwb0aIBx+4+p0IqpUu9GkR9SCSzoJia5sboa6px49UnNNVUGNG6AeEXRZtvTEcnzt19LbKvrEyxMzPixM3nKCkq4DqoLVtO3aGotJxmDlZU0dPmSORTlBQVcB/Via0n7pCVV4S9lQnObR1ZukNu6tSrCcmpufx+X8xYA2b04pejt/mYmImJoTY+M3rgv/Y82blF1Kxmypyx7XFfeoLCojIa1K7KtJFtmR9wVHB6alsyb1In5vsdJSu7EDsbYwI8+hEQcoboD2kY6GuyaulQTpx+zJkLcnflRX3Q19VggftByssltGpZg0ULehEacpb792NQU1NmydKhaKir4jZnL4UFpdRzrIp/8CBuXn/DGvmIaOiolowa34ZDe29x4LOL8YKedOvdgOP777J7s5h1T3PtRu+BTXh09wNL3A8jkUjp3Ks+cxb3oaigFK8Zu4n9kIaRiQ6hWydgaq7P/etvCV14CKlEStf+Trh4CwBwYtdNdssl7xPn98B5rJDFXj//lNUeIo+p75hWTJIDo9ysQrzGbCXxYzqmFvqE7puGiRywRD+Lx2fsFooLSmnQyh7f7ZMrIyByMvPxHL6BhA/CMDD00Ndk5FcPPuAzciMlRaU/JSM/vvrqS0fnvwF0slNzce8TRuzrRAyr6BF2zgPrP2Rv/blkMhm7A45yIEze5XLvxzi/wf9odHJszTnCF4qVesfhrVmwfcZfckT+FZWdlssu7wNc3PE7UqkMFTUVBrn2YbiHM1q6/4zQ+7ls6lqRmZTNp5f/82Bnh/dBPr6IQ89EF7et0/7x+OrIynPcvxCFipoKXvtc/hJspidmsXT8JpHmPboNPSd0+OG++5ef5e6FKFTUlPHZOxN9+Xjoj/X6YQwbFgqC82j3vt/YJAiH5F9IS8jC3NYE980Tv+LhpMZnEjxluwjj7NOQEfO+8HxKS8oInLKdjOQcqlY3xX3dl4iS1MQsgmbsoqJcQuvujoyeKxYvMpmMdT7HePXoE1o66gRsnVBpGbFn3WVuXX6JsooSPutHY1bVUAAgr6NEvxLKq4D1Y9DSVifhUwbBcuVVx171GTGlvTzz6hjv3yajZ6BFwJqRaGmrE7HtGpG/CpKyT9hQqtoYcXDPLS6ffyacj4MHYVPNhLXLL/D4oZCdB4YNQ0NTFdfZEWRmFmBbzQQvP2eePPnEurVy4cTEdrRsZc8ij0MkJGZjaqpLUMBALl5+weHjcjDk1gs1NRUWeB8R0RDdHOnRtR4zFu6noLCU+nUscZnUEVf/I5XPAI9Z3Vm49DgZWQVUszLCdUpnXJceI7+whLr25ozu3wSX4KNIJFI6NavJw2M/PaW+W//xMdZfVWRk5Ffbq1evZvXq1f+Sz1dRUsJYTYu4XBHmmV9aSlFFBbWNTHidJoI/m1lYci8+AQWghWVV7sUloKggRloP4hJRVVKilrEJTxKS0FRVoZqBAVHxyeioqVLNyIBHcUloq6lS09iYex/j0VRRoYm1JVffxKCipEi32vacfiJcjwc3duTIvWcADGpalzOPXlNaIaF1TRtikjNJys7H2lifaqaGXIp6h6qyEuM6NGbrBQF0Brd25PrTD6Rk51OtiiFN7asSceUxCgowb2Bbdpx7QG5hCfWqmVHXpgq7LoiTc/7wjuy78IjkzDysq+gzpkcTgrb9ikwGAzrWp7xcwtnrggfkM60bh84/4nWM4OwEuvRm6eZLQn5uaYjH1K54hp6s9EWYP6UzC4OOV257unTHI/gEKWm5VLUwINRnIMtWX+TF60S0tdVYETyUyOtvOSw3CFw4ryc2Vka4zt8n0sqdbPFe3J+1a37l+vU3qKgoERg4CGNjbVxn7yU3t5iatcwIDh3Kk4cfCQuSS9kHNGbyjE6cPvqQ7fIuy6SZneg3qAnnTzwiXK6CGjO1AwNHtuT5k1gC3A4I99BOtZnv50xZSQU+LnvlNyEtQraOx8LKkKf3Ywh2E0Zf7XvWZ17AABQVFTl/+D5b5STl0S5dGCJXV9258pIwtwNIpTJ6DG3GdDkwys8twmvcVj69S8Goii4hEdOpYinm0x/fJOE1ejOFeSXUa2aH/47JqMvBSl52IYuHbyTuXQpGZnqEHHL5Kp387eNPeI/YWCmr/QbolAp5+cPf5GTk/S5/Obr6GdDJSs3BvVcYcW+TMDLXJ+ycB1Z/8CT5c8lkMnb4HOaw3F9p8pLhDHH7+1wVmUzGLt9DHAgVo8YBc3oybfmYf7u0XCaTcWH774Qv2E1RXjEA7Ye2ZHLo6H889vlzlRQKX7A/pmj/T9TDy085vlYsDuZvm4ZBlZ8nzv+5oiJfVnZoZq0eS/X6Px9ZlpWWEzRqPbkZ+VSvb83s1eN+CK7unI8iIlSA4dkrR1PL6VvaQ0ZyNoFjNwlCcu9GjHDr9dXrMpmMTYsP8VxOlPfbPf0rHk5xYSn+E7aRm1lA9XpVcVv1RVkok8lYs/Agb5/Eoq2nif+OKZWE+aKCEvwn7yQ3sxC7OhYsWDm88rgjWyP57cQjYRy6djRW1cW5ceXk40rl1dzAgdRrbAvArnWXuXn55RflVVVDcrML8Z29l4K8Yhwcq+LqL8bG29dd4nakuA/6rRyOmYUBv194xl75yN7FvRcNm1Tj+m+v2CEnOc+Y150mLapzZP8dzp0SzwdPP2eq2Zni43WED3LuY3DIEFJScgkIOCGAaNd6jBjZktBl53j2PB4tTTVCgofw7n0qazfJ7TXGtsXR0YoZrntFanlDG2ZO6ch8v6OkpAl6gv+ivixZd4GY2AwMDbRY6uFM6OZfef8pHQM9TYIW9CNwwwWSUnOxqKKHx/RuLFh2Qrjz17JkwcTOLHP/6Wn13fpfQVD+T5W1lh6fcnMxVNdAIpGRW1pKdQNDYjKzkEhlOJmbcz9Bnlpe1Yq7sfEAtKgqgj2VFBRobGnB3U/xqCopUb+KGfc+xaOurIyjhRm3Y+JQV1amaVVLIt99REVJifb2tlx8EY2iggL96tfm+EPR8h7a1JHj91+IcVXDWvz27D2FpWU4VbMkO7+Yj2nZVNHTxqmaJafui/yQyV2a8svFB0hlMno3ceDFh2Ti03MxN9Sla6OabDsvXIln9WvNod+iyMgtpIalMe3q27H5hBjXzBvSjrM3XvIpOYsqhjrMGNiawPCLSCRSurd0wEhXk+0nxPt4TurCpZtvePI6AS0NVYLn9mH1jt+JT87GzEQXv9k98Vt5lvSsAmyrGuIzuyeLQ0+SlpmPTVVDAhb0xS/sFHEJWZga67DcfzAbt17l4ZNPaKirsCxwCM+ex7Njj/DNcZnemfp1qzLXbR8FBaXUqWNJgN8Afvklkl9/ledfeffH1taEebP3kplRgG01Y0KWD+ftqySCfY4jlcjo2sMRF7ceXD7/rFJqOXJ8G4aNac3vF5+zTp79MmRMK0ZNbsfbl4n4zt1HaWk5TVvb47l0MBKJFP95+3gVFYe2jjoh4eOwtjPlVVQcfi57KSutoEUHBxYuGYySkiK/n3nCBn/x8B08qR0jZwrS8eOb71g6J0JwGfo74RI4EEVFRQrzS/AZv40PLxPRN9ImJGI6FrbC4Tj+fSqLR24iP6eIWo1sCNg1tTLZuyC3CK+RG/n4OgkDU11CD8/+yvX1/bM4vEesp7igBMeW9vj9SZ5bVlpO8PgtPLjyAjUNFQL3f5+MfGzjpS9Ax70vYzz6f/eaykzOZlGvMBKikzG2NGTZeY/vqmQ+l0wmY5vnAY6tFSTHmSvH0H9mtx/u/+eSSqVsdtvDqY3ie524ZATDFn4fhP0rKz0hk9VTt/DgouDI2TtVY+aaCdRr8993Yy4tLuXdA0FqdvwfdHfOzchjxaQtAPSZ1pUWvf+ZLX9GYhZLx24U5n5j29HjJ47HIL779fN28/ZhDNoGWvjun/Nd6ThA7Jsklk//BYB+UzrR7TscoJKiUgJGbyI7LQ/b2hYs2DDhG8B7enskFyNuoaCggMeWidjU+gLCpVIpy+fs5dObJAxMdPDbMaXyOgPYv/ZXIk89RklZEe/wCVhWE9eZpEJC6JwIPr1NxsBEB/+tEyuPu3XpBTvlhoLTvfvRuK1Ia3/x8CNrfQV5e9i0DpVihV9PPKyMlJkXOIB6jW2F67HrAZLisqhioY/f2lGoqqlw9ugDjkXIZeJ+ztRtYM3zJ7GsChKAcMiYVvQa0JhXzxMI+8w5HNqM/kOacuPqa7bKw4WnuXSlZZuarF/zK/flyebBISIV3WvxYZFn1cAat/k92RNxiyu/vURRUQE/X2ckMhkBIYJD2aNrPQb1b8wc9wNkyAUmvh59CV13sTIDK8x3ENsP3Ob+EyEpD1vsTMSJ+9yTb4d6OLP1s8RcS52l8/uxJPxXUjLysDIzYM6YDizb+dtPz6sf1f9psBOTnY2uni7qysok5edjpatHam4hZRIpjqZVeJacUgl07sTGowC0tbHhZkwcQGWwp5KCAi2sq3LjfSwqioq0sLUiMvojyoqKtK9uy6VX71FUUKBnHXvOPH0DwMBGdTn2QMjIBzjV4fTDVyLHqm51Hr5PILe4lDqWpijJ4HVCGgZaGnSqV52DN4Uia0rnZuy6/IhyiYSOjtVJTs+rlJQPal2PjafERTCpRzMu3HlNYkYeVU306N+6LqvkqbFT+7XgxpMYXn9KRV9bA7dh7Qn65ZKImWhoh4OtKev2yS+80R14+CKOW49jUFVRZsm8vmw7eIvo2HQM9TRZ4tqHpesvkpiSg7mpHoHz++K/6iwJyTmYV9EjdPEAQteeJzomDQM9TVYGDGHP/ttcv/1OyA99B5KQkMW6zfKE9NGtadvKnrmu+8jOLqS6nSmhS4Zw6OBdThwX3KRFi3pTz7EqbrMjSEnOwcLSgLCVI4mPzcTfU2S6tO3gwHzPvtyMfM2qpSJPZsCw5oyb2oHbkW9Y7n8CmQz6DGrCpNld+PQ+jcUueykqLKV+Y1t8lgkTteD5B4m6F4OGpirBm8ZiV8uc96+T8Jm5m5LiMpxa1mDxiuEoqyhx+8pLVnoK7k6fES2YOL8HCgoKvHjwkcAZuyvb3G6hQ1BSUqSkqBT/ydt5+zQeHX1Nlu6dVrn6S/qUgeeITeRkiJVm8J5paMpdf4sLS/Edu4X3zxPQNdQi5OAsqv4h6+rjqwQWDxOhnnWaVScg4mvDwIryCkImb+W+PGTRf58LDdp8C3ROhl9hm7fgL4xa9BOgk5LDol6hJESnYGplxLLzHj81/5PJZGxZuI+TcmNJlzXj6Dvt72cuSSokrJ62lUt7rolQ0vUT6TPtn/FL/mnJZDKu7L3Oxrk7KMwtQkVNhQnBIxg4rxdKSv+aLsybe++pKJdgZGGA2T8wT/zvlEwmY/X0bWQlZ2PlYMHUZaP/0fHlZRUEj1pPbno+dvWtcVnz4w7N5zq95QqX9t4QJne7ZmD2p2iGz5WfXYD/yPWVhOSpS4Z+9+dfNXs30U9j0TPSxj/C5ZuYkkdXX7FVnlQ+yXcAzbp87ee2O+wsd359hoqaMr7bp3w1Br5+5gkR8oXSrOAhNPhDyvm2pWd4EPlGKKO2TqiMgnj/MoHlCwTJu+/oVvQdLQwFk+OzCJodIe4D3eoxVp5M/vR+DOvkGVkjp3WkS99G4nvxO8HLJ7Fo6agTuGEMBkbaPLgdzUb5eH7cjE506lmfhNhMAhYeorxcQptOtZno0oWkhCz8Fh2ivExCizb2TJvTlVcvEgiVf06/gU0YOKwZxw7f5/RJeZfHuz82tsbMmxtBeno+VlaGBAQOJPLaa/bsFYtk17k9RLjnvD0UF5fRqIE182Z1wy/kFO9jBB0hNGAwEUfu/UFiPoDrd6M5e0UsVP3c+vDgWRxnrjxDQQH8Xftw9V40kffE/kvn92X7sTu8/pCCnrY6fi498dt8no/xKT89r35U/6fBjpqSMiYamnzMyaGKlhaFJWUUlpfhYGxMdHoGEqmMJhaW3JUDnTZ/ADodq9sRGR0DQHu7alx9FyPSzO3tuPzmPQqIBPPzz0Wwab/6DpySj6sGOdXl5CPR0elVvxaXn0ZTWiGhpb0175MySMsrxM7UECNNTW6+Ebyc/k1qsztSOCVP6tyUA9ejKC4rp3lNKyrKJETFJKGtoca4Lo1Zd1zwUUZ0bMjdF7HEJGdhoq/FuG5NCI0QqHhkFydefUjl8VvRpfEY25nQnVcoKimjcW0r2jtVZ+kvojU5ZVBL4pOyuHRLBLcFzenNobOPePY2CR0tNUIW9GP1L78TE5eBkYEWYZ7OLNt4iZhYsb3MayBrw3/j2atEtLXUWBEwmNPno7h45QVKigr4efSjqKiUsFXi4h3k3Jh+vRoyb/7+SifkZaHDOH/uKRHylcycud1o2cqeha77iYvLFN46q0aSnVmA14KDlJSU07RFdTz9B/D4QQyhfqIV27NfI6bP7cqT+x9Zulie8Nu7AbMW9SIpPgvPWXuEE6pjVQJWj0RZRYkwjyPcv/EONXUVAtaPxqG+FXExaXjJDcPqOtngu0asth7fiibE7QBSiZQuzk7M8O6LgoIC757H4ztlhzAma18L91UjUFJWEsTFGbt58eAjWjrqLN0zlWoOYrWZnpSN58iNZKbmYlvLnCUR09GWm7qVFpcRMGErrx99QltPg5CDLl/Z18dHp+A5ZB352YXUcrIlcN9MNLS+3PwlFRKWTd/BnQtPUVFTxj9i1vcNA3dEVvroDJ/fm9Ee/b7ZBz6Prr4AneUXPTGz+f7DC8TDaaPrHs6Ey6W7GybQa1KnH+7/5yovqyB07HpuHLuHopIiC7bPoMuotn/7+P9K5WbksXLyZu6cFmDboVkNFu5y+ZdL2h/+KrpFjm1r/9s7VJ/r9KZfuX3qAcoqSnjumf1VR+Pv1Fb3/by+9x4tPU18Dvy4Q/O5oq69ZouH3DgweBiNO39fTVtRXsGSCeEkf0ynirUx3rtnfJeQvG/5Wa6feoiyihLeO6dj9ofcN4C4d8mETBNRJl2Ht2Tg9BfGTycAACAASURBVM5fvX75yD0Oy2Xk85aPwMHJtvK1t1GxrHQTP+uAye3pOfJLHtvZvbc4Jef/zV8xnFpy+Xl6cg7+03ZRWlyOU5uaTPMSjsz5ucX4zdhdaQS4IHQIioqKxMekEzRvn9wJuT5j5KrMiC1XuXr+mTAfXDEcm+qmxESnsNTjiOAH9m3IiEntyM0pwsd1P/m5xTjUs2RRwAAK8kvwnn+Q3JwiatQywzNgIGkpufi5C6Vq81Y1mDm3GzdvvCV8s7zLM6MzLVvb4+tzTFh56GuyNGQoH2LSWLFKdKhGDG9Bxw4OzF14gIyMAqytDAnwcmbT9qvcfRCDqqoyIX6DuP3gA4fl4c6ec3uSnlVAuDwaaM6kjpSUVRC+Tx43MbETadkF7D8j9l88oxvXH73n+sP3qKooETyvL2v3XSM+JYcqhjrfPVf+qv6jQaD/6bLW1eVjTg4G6uooSBXILi6hmr4BiTl5lEokNDAz42liEgAtrKy4GRMLQMfq1SqBThf76lx9J/6/e217Lr8R7efedWpVAp3+9R04EyU6Ov3qO3DuyRskUhmdattx710chWXlNLKxICuviDi5X469qRE333xCVVmJUW0aVgKd0e0acebuK/KKSnG0MUNfXYNbrz6hrqLM9F4t2HjqtnAtblGHD/EZvIpNRU9LnRn9WrH8wFXxWqu6ZOUUcuvZR9RUlPAe35U1+yLJLSihdrUqOHdwJGyHuPCH93CivLSC45cFWdhnRg8u33jN3Si5s+WCfuw4dJtX0cnoaquzbPFANuyI5OW7ZHS01VnuM4idB25x7/FH1FSVCfMZyK077yvliItce6KpoUKgvBXavUs9xo1qjYfXERISsjA11WVFmIiFCJe7JU+e3IEePerju/gI0e9S0NfXZNmqkZSXVeDpup+iwlIcG1jhu2Qwb18lEij3j2jfpQ5zFvXizYtEAhYKsnPrjrVx8+5HZnoenjP3kJ1ZgF1NM4LWjUZDU5X1wae5/tm5dNUI6jepRkpiNoun7CQ3uwj7OhYEbhiLuqYqLx59ItBlrwj1616PeUFiRPXpXQreE7dTXFhK/eZ2eG8QBmMV5RJC50bw+MY71DVVCdo5mRr1hFopOz0fz5GbSEvIxtLOhCX7ZqAnl+KWlZYTPGW7CCTUViM4YiZ2db48cJNjM/AcslbwDhytCP5TqKdUKmXVnN2VDwefXTNw6lDnm+vjwp7rrJ8fAQgfnR/Jy7NTc3HvFUb8u2RMqorR1V8Dnd2cCb8izBU3T/pHQKe0uIyAwSu5ceyekCkfnPdvBzpv7kczo/Ei7pwWf7OJS0ay5mbwvxzoFBeWcG6buPbaDvo2aPXfUS9uvmHLAkHsnrR0JDUa/TMLkF/3XOf0FrEwWrR9GhZ2Px5bAqR8SmfJmA1IJVI6D2/FoNk9frhv+OJDRF17jYa2Gv77XdAz+vZBd/3UQyKWia6ty/JROLaq+dXruZkF+I3ZTGFeMXWbV8clbPhX5/GzO9GsWyQH9HO60WnglyT01ISsSofyZp3qMMnrS1fz4bU3bA4Q46HxC3rSVh4hUVRQgt/UnWSm5mFdowqL141CSVlJdL/mRAijwSq6+G0ai7qGKjlZhfjO2kNBfgm1G1jjFjQQBQUFrpyJYt8WIZpw8eqLU4vqZKbn4TN3H0WFpTRoUo25Xn0pL5MQsOAgSfFizOW/YjgKigoEeh4hIS4Tkyq6BC0fTkWFBK+FB8nJKaJGTTO8Agby7l0yIUHC4LWfsxMDh/w/8s4yLMr86+MfupEOBQG7xe7uFgu7AxsL6Q4Ru7tRBNYWu7tbFERQRLo753nxG0ddXTee/77a82aZa+5hLtw7vuecb7Rg44YL3L37TrjJf5GYe36VmE8c3wFP/28l5sM5de45x08/Fc+IJf1Jz8pn/Q5xv542tgOGhlr4rxNgacSAZlS3MMRPGiVk278ZxkbarNopjp8+sh0ZOQWEnhV5jy52vTl66TnPoz6jqa5CwPzvozz+av2nJzvRGRloaWuhrajKx+xsKmtpkVNYRF5JCXUNDYlOTqOsQkKLKlV4+DEBOeToaGXB1WiRzdG1RjUuvYkBoFedGpx9LYwN+9arxZmXUeLnBrU48yKKComEnvVqcPlVDMVl5bStUZW3n1LJyC+ktqkhSCREJaahp6lOq2rmHLv/GgV5OSZ1ac6ui4Ksa9OqPteex5Cak08NU31qGutz7M4rFOXlmTOwHZtP3Ka0rJwujauTn1/Mg7efUFNRwn5YR1YcvCzea1oDNSVFTt14hYKCPK6TerI1/DYpGXlYVtZj0oCWuG2MEInlHepjpKPBeukqa/Gkbjx99YlLd0RkhO+CARw585QHUovv5c427A+/K3sd5DqEo6efcOWmsBH3cx7M26gkdgdL5d123ahaRY+FjgJ4dGxXi/mzuuPkGsa7dyL/KihwJJGRn1mzWoyQR45szfARLfF0/Y3nz4SFeUDQSFRUFLGfuZesrAJq1jbBZ7ktCR/TcVscQnFxGS3a1MDBfTAfY1NxnR8spOmtq+PoO4Tc3EKcZu0jOTGLKlX18d8wDk0tVXauOc/ZI4+EuWDAMJq3qylA0bRdpKXkULW6Eb5bJqKhpcq7Vwl42O0RJn8da+Ow3BYFRQUS4lJxnrBN8G0aV8Vjy0RUVJUE4HA4zJ3zL1FSVsRj2yTqSrvJ3KwCXMZuJuF9KkZmugQcnCWTnpeVlrNs1l4eXo1ERU0Z73121G7ylQSalpiF8/C1pCdlY1HbFL+QubJpEEh5EouDuRR6VxAmd0ynZY8fu+oLh26xzl48AG1m9fhDw8CslByW9hdk5C8cnT9dXS0+wMmtl5CTk2Ph1qn0HPfHob+/r6KCYjxsgnhy+SUqasp4/LaI5j0a//kH/2FJJBIitl9k47xdlJaUUaWmKW6hC6ne2PJf+b7TWy+Qm5FH5erGtLP5+wrTv1vpiZn4jlpDeVk5nUa0Ycj8vn/+oW/q1Z0o1s3ZBcA4Vxta92v6y+ML84rwHLmWHGl8xPxfBHye2nmFkzuuICcnh8PWaT9NMo9++oGVc3YDYGPXnd5jv+fylBSX4jN5K0kf0jCpqo/rzunfGTkmvE/5Tnk1bvHXvz8/pxDPSdvJTM3Fqm5llm4YL1Nexb1NxH/ufjEpGtqcETMFWC8vKyfAPpjYN4noGmjivX0SGlpqSCQS1rod4fn996hpqOCzdSL6RtoUF5XiOXc/iZ8yMDXTw2PdWJRVlHj2IJY1Us7fiEkd6DOkOYUFxbjbHyQtOQdzSwPcgmxRUFAg0POILNzTZ/VodPQ0CPI+Lgs09l0xEq1KajgvPCSTmPsstyUzKx83pzAx5WlTg9lzexIe/oDjX0jLzgMwNq7EnPn7yMsrpn69Kixd0o81G89z/2EsKiqKLPMeRmRUIlt3C1+hOdO6YmikxTynECoqJPTv2YiObWsy0+mQzF+tX/eGzHYLkfmvdWlXm7neYbJoIXNTXVzXCR7lnDEdeRuXLIsp8p7Vh+fRCb88x/6o/tNgR0lBATPNSkSlpaOvpgYVkFFYSDVdXT5n5lBYVkYjE2NeJCSL1PKq5tyJFWusTtUsuSad6HSVrq4AetSpwYXX76iQSOhWpzpXI99TWl5B+xoWPIpJIL+kFOuqpqRk5fE5Kxdz/UoYaKhxO+ojmqrK9G5Yk0NSXs7kLi3Yd+URZRUV9Gxck1exSXxKz6GKvjZta1lw4LI4KecOasfOiHtCUl7bHE1VFU7dfo2SogJLbDuzNvSaeK9uVaqb6LPzpFBvOY7vxsEzj/iYlImJvhbzbDvitvE0JaXldGpWHetapvhvEx3bDNv2pKTmcly6X/WY25cb995x9Y7g3Pg7DOLUxZdck+5n/R0Hc/1ONKfOC6mj+6L+ZGYWsH6bNMtqbDuaNbZg3mKhsmpqbYHj4r74+p/gxYtPaKirEBhgS3JSNv5+x4WEsZ81k6d0YnnASe7eEZ2HX8BwDA21WDhrH6nJOZhX1cd/5SgyM/JxtA8WMnTrqrj5DyM1ORvnOQfIyy2iXiNz3JePoLSkDNe5B4iPS8PAWJtlm8ajq69JyM5rhEvH0/PdB9GxZwOhlpqxh8T4DEyq6OK/dSKVdDWIf5+Cy7TdFOQV06C5FS5rx6CkrEhqYhZO47eTmZZHtTqm+OycjLqmqphsuB3hipTs6LJxPNZSDkBhfjFuE7YKwrGhNgEHZ8m4A+XlFay0PyDjFXjsmkaDll9zg7JSc3EesZakj+lUtjLEP3QelfS/GrNJJBK2uBzmzD7Bk1i6ZQrt+v0YoHsl/B6rZu9BIpEwcFpXpvuO+OkDKTstF8cBQl6ub6rD8gjHX3b1EomEbY6HOCY1FVuw5e8BncL8ItwHB/Hs6ivUNFXxPbmUhv8DQvAfVXFhMetn7+TcHtFdt7NpyZJds/41k7/CvEJClgnfpZGONv8zDtAfVWlJGb4j15CRlIVlffO/LTNPiU/HZ9Q6Mckc3ILRToN/eXxFRQUr7XYQ+zIeXaNKuP9i3fX0eiSblgq+y0Q3G9r0tf7hmPTELLzGbaS4sJTm3eoz9XfmghKJhDULD/DqXgwa2mp47p+FjsHXyVBuZj4eE7fJiP+LVn/1dCorLcd/1h7i3iaiZ6SN1+5pMq5cZmouHlN3UZhXTMNW1ZjrJywSJBIJW/1O8vDaW8Hf2TIRYzOhpjy46RKXTjxBXkEelzWjsaotfNKCnMN58zweTW01vDeNR0dPg4/vU/BZINSdHXrWZ+K87gJEOYfz7o2QmPusHYOWthq7Nl7i6pccrOW2WFQzZO+2q19Djv2HYVndiECf4zyTgh+/FaNQVlFkycJgMeWpaYyr+2Bu3opi6xapH5hdN1q0qIb9omCSk3Mwq6KLr88wwo4+5PTZ57IU8+LSMgK+STFv27oGM5cEU1wivHMmjWrLHBdpxmEtU2ZP6sQ8j1By84qoX8uUKSPbMsc7jOKSMlpbW9KrYz0WLBO68mE9rVFRUSI4QmwBnKb24LfLz7l2//Uvz7M/qv802Kmpo8/btHQ0lZXRUlLhQ1YWVbS1ySsqJqe4mNoGBsSlZlFcXk6TyqY8/5RIWYWE1hbm3H3/kQoJtKtmwc2YOCok0LGGJbei4igrr6Bd9ao8fP+JwtIymllUITY5g4yCQmqZGFBRWkFMcgZG2hrUMTbk4st3qCgqMKxlA/ZeEeuqiZ2bcfjWM4pKy2hXx4LUzDyiE9Mx0Fanf7O6bJfKzWf2a8Ohy0/Iyi+ivoUxNSsbcPCiyLByGNmZbcdvk51fRH0rE9rWt2TtYTGlWTCyE+duRfI2TmRhLZ3YHa/NZ4T7cT1zerSujcd6cRKP6tcMJXl5th0TJnwO03oQFZPMyYvipPdc0I8HTz9wWkY860fUuyQOHRHHL57VEyUFebxXf7komtOzS33mLQ4mJ7eIunVM8XGzYc3a89yVqgH8/YZRUlKGh7uIfOjUqQ7z5vdk0/oLXLogplLu3kOoVt2IJfMOEC8d1y5bPZqSkjKWzjtAdqbYVfsE2ZKXU4jj7P1kpOdRraYxPmtGIycnh8eCg0RHSqXkG8djZKrDqdD77FknVgnTF/ehl00zCguKcZu1j7joZPQMtQjYPhkD40okJ2TiPGUXOZn51KxfBc/N41FRVSIrPQ+nCdtITcyiipUBvrunoiWdsOwKPE3EobvIy8uxZNVoWnUTK6SSolK8puzg7ZMPgqh8cKZMWSWRSNjoHMrV448EQNo6mSYdvpKJ87ILcBm1nvjoZAyr6OIfOg+93wVm7vE7xnEp2FywbgKdbFrw+7oT8YQgu53CGHFiJ2YGjvp51lV2Ac6Dg4h99Qk9Ex2WRzj9qepqp0sIR6Sj7PkbJ9Nr/N8AOnlFuA4M5MWNSNS11PA75Uj9tv+e/0xKfBqeNsuJfhyLvLwck/3HMOJfVnnt8wwjOy2XyjVM6Dmh87/2PV9q6+J9vLr9FnVtNTzCFn7H6fqzKiooxst2DZnJ2Vg1NGfx9ul/KvXf53OEG8cEL8gteA6GVX5u+x8fnYTvhM1UlFfQZXgrRtj3+eGYwrwi3EevJy0xi6q1THHaPu07rxyAg6vOcOW3B+J62THtO+VVSXEpPtN2kvBe+FJ57JomA14SiYSNruE8lsZEeO3+SlYuKijGY+pOmbO566YJMi+nY3tucPLAbeTk5FiycpSMv3Px2GMObBCcmNnug2jWXqzZdq4+x80LL4VsfO0YzK0MyUjLxXX2ftGQWVdlsY+YqG4MiuDejSiUVRTxWj0KUzM9Io484rC0IbN3GYB1CyvOnnxK8G4pL2ZJX5q3qs6ebVe5dO6lyLfyHUoVMz0cFh0k/mMGRsba+C4TnJwAf6HisrFpho1NM9w8jhAdLXg7Af4juPfgPTv2iOfHXLvuVKmix5zFwZSWldOxbS3GjGjNXOcQMrMLqGFliPP8vjgGHJVJyD0W9MN1xUkSU3IwM9HBaXZvlgYdF7YkVkZMH9me+QHhlJSW07F5dZo1qIqzdMIzfVhbnr/7zM2n71H+h3YM/2nOTmRqKqqKilTR1OJDVhb66uooSCA1rwALHR0y8wrJLSmhrpEhsWkZFJaVYV3ZlFefkikpr6B51So8i0+kpLyClhZmvPiYRGGpSDOPSUonp6iYepWNyM4rFFMcvUroqqjx4lMy2moqtK1hwcWX71CQl2Ns+ybsvyp2lCPaNuL0w0hyC4tpbGmKXAU8jU1ES02FMR2byIDOhO7NOHPvDcmZeVia6NGhfjUOXhS/Y8HwjgSff0RyZh5WpnoMbteAdaHiRJ0yoBVP33ziceQn1FWVcZvWi8BdF2WcndF9muGz+ayQtHeqj1VlfTYeEJ+1G92e/Lwigr8Anxk9SUjM4tAxsWpzmNmT3NwituwVx8+c1AkzUx08A06IeIruDRg5tCVLXEJl8sQAr2Hs3H2Ni5cEiPFws0FTQxVnp1CKikpp3twKJ+eBBO+7xfGjj5CTAwenATRpaoG7YyjRbwVvJ3D1GJRVFHGcF0xqcg5mVfXwWzWa8nIJTnMOkPw5i8rmevivH4uqqhJ+jqG8ePwBdQ0V/NaPpaqVIVcinrFRmoE1enpnhoxrS0lxKV7zgmUdmP/WSZia65GZlovz5J2kJWVjXt0In+2T0NBUJT+3ENfJO0iITcOosg4Be6ejK+0oQ7dcJlzqgTHPb5jMYfVLJ/nsdrQYc++3w/Kbm/PugJOcCZbeSNeNp9U3SpLC/CLcRm/k/ctP6Bpq4x867zufHYDQdWc5vEYAjblBY+gxsu0P18Pjq6/xnyTyqLrZtmHOyjE/fbgX5RfjNmwV755+oJKBFoGnl2JW849zjyQSCXs8wwmTgt256ybSd3KXPzz+91WQW4hzvwABdLTVCIhw/leBTuyLD8xv60L041gqGWgRcM4NW4dB/yrQefvgHUfWiPNu1ppJfyse45/U+X3XOLFZTNiW7p1DlZp/7IP0+5JIJKyasZ13T+KoZKCFZ9gC1DR/DZQuBN/kUJDg1cxbN5H6bWr99ListFzcR6wlL6uAOi2qYb/2R1VXeXkFy6bvIOZFPJUMtPA6OOcH88YrRx5wIEj8e85eNpIm3ySdSyQS1i45xIu77wQXaM8MdL8xJwzfcpmzh+4Iefr68dRoaP71e+cHE/3iE9q66njtnCIzB7x59gXbA4Sn1pSlfWnXU1yfz+7FyCTmw6d2ou8IsZo8GXKX36RAZYH3EBo2t6KooASPecGkfM6iclU9PKThnuH7b3Eq/IFwg/YdSt2G5ty/Fc365VIPr2md6DnAmod3Y1gTKP7mURPa0XdQUyJOPCZ4r/R7HPrRtEU1AgNO8vLFJzQ0VfAPtKWwsARXV6FebduuJnYzu7FuwwXu3ReNp5/3MFJSc1guvX5HDG1Bx/a1WOoRLiY2dSrjML8XbsuErYihgRb+LjYs23SOyHdJVNJSY5mzDat3XuJtTDI62mr4OwwiYOt54hMzMTbQwmVWL1zWniQnr4h61U0Y0bspHpsiqJBIGNi5AXLychy78kKYzE7569YU39Z/GuwoyMlRW8+AqLR0tJSV0VNRJT4rBxNNTSrKJKT+JMH8U0YWeSUitTwuLZO8khIaVjbmY1oWWYVF1DUxJDOvkOTcfCz1dVGSyBGTkoGhlgY1DPW4/z4eNSVF+jWqzfGHYhw3oUMz9l99QoVEQv9mdbgdGUdabgG1TA2oUkmbW5EfUFFSYGqPFmw+KTJRhrVvyIM38cQlZ2Kiq8WQtg3YKn1vxoA2nL0byYekTEz0tJjYuyWBBy4jkcDwbtakZeRx7VEMykoKeM3ozfqD14UpoKkus23b47b+tAxdt7W2InCrWGWNHtAcPS01Nu2XAplxHZGTg837xOtZEzqhpaEiyz4ZNaQlzRpZ4Ox1hJLSctq1rsHMKZ1Z6hZGwudMTIwrEeRvy7Fjjzgm3RM7OvTHoqo+Sx1CyM0tol69Knh6DeHU8cfsl160c+b3onOXuvi5H+X5ExEV4b9qFPoGmrguOsSnj+kYGGmzbK0ANW72wXyMTcXASIuADeOopKvOKu9jsk7Je+0YatatzL3rb1nhdkSsb0a2YtysrsJDY2koT+/FoKqmjO/mCVjWNCY3uxCXqbv4/DEd4yq6+O+cTCVdDYoKS/CYvpuY15+ppKeB355pMgfkiEN32S2Vi05zHkAvW5EiXVFRwcpFB7l3UaQne+6eJusKAUI3XCBsk5g0zQu0pdPAr7yIkqJSvCdu5c2jWLR0NfALnYvZ7yYsp/dcY5e3uOFOcR9Cv0k/+p+8vvcOrzEbKC0po92ApizcMPGnnXpJUQmeI9fy6k40mjrqBJx0oGrtP3ZGBggOOEbIctE1zlo1nv7Tuv3y+G8rP6cA534BvLr9Fo1K6iw740Ldnzg7/6/q6ZWX2HdwIy0hA4t6Zmx8EEjTP1AK/a+qrLSMVdO2UFEhoevo9rTq+2vey/+3oh7GsG628KwZ6zaUNv3/np9OSNBJroXfQ0FRAbdD835JRgd4dj2SNVJej+3i/vT6g9VlSVEpXqM3kBiXiomFAZ7Bc35Yc0kkEra6HObe+ecoqyrhFTwb099J1l/dj2GVlG82bFZ3+vyOx7N/RQSXjzwUK6Wtk7/LvLpx+im7AgQom+ExmNZS0CKRSNjqfYx7l15LOXaTZT47rx/HEbT4kLCaGNOGIZPF3/chOlkmMe/YpxETF4iH9L3rb9gs9faaMLc7XftbU15eQYBjKNGvEtDWUcdnw3gq6Wpw9fxLdqwV99/pC3vRvms9oiM/4+cUJjzE+lszdlonYqKSvksxnzijC/fvvGOt1ONn7KQO9O5vzfatl7l2JRJFRXm8fIZSSUcdJ8dQcnOKqFPHFBeXQYSG3eeUlGzs6jwQFTUlXL2PUlZWQZeOdRg/qh2Onr+RlJxNlco6+LoJ9e0XtW2Qx1D2hd/jziOpMstpMGERj7kjFan4Lx3EjvA7vJCqef0XDcR/63k+S6OH5o/vgvP6UxSXltPO2opGtauwJVwqeR/dCVXVf7aQ+k+DncbGJjxPSkJFQQELbR3epWWgq6qKtpIKn7JzMNXSpKJcQkpePha6OuQVFJOeX0h1Az2yCwpJyy+guoEeeQXFJEtDPuUlcsSlZ2KsrYmJpibPPyWjrapCS0szrr4W3jvDWzUi5I5wSh7b3prDt55RWl5O5/rViE5IIyEjhyp62lhbVObM47coyMsxs08btp66S1lFBb2a1SI+OYvIjynoaKoxqVcL1v0mRpejujXhydt4Xku9c+YO7UDAvovCJLB1HdQVFTn5xQ15ai/2nrhP3OcMjPQ0WTqpG+7rT1NQWEKTumYM7WGN9/ozAoR1aUDj2pUJkqouRg9qQVVTPZZLgc1omxbUqW6M94pTgl/ToyH9uzdgiWsY+QUlWDc0x9G+D27eR4mRpuauCLDl5s0o9h2QEpbn9KSJtQVLHUJIT8/DysoQP//h3L4Zxcb14nsnTu7IwMFNWRV4ijs3o1BSVsB7uS0WVoZ4OYYRFZmIdiU1lq0dg46eBj5LQ3nzMgGtSmr4rx+HsWkltq46x6WI5+Jmt2wEDZtY8OrJB/yXHJZZsdstFUTFtd7HuX3ptRg1rxOy86KCEjxn7iX2bRK6Blr47xQrrdKSMvznHuDVwzjUNVXx3TUVM+kN8frpp2yQZubYzurGEKmbskQiYYvHEa4ek66ntkykUeuvieCn999k9zJx853qNpjeo79OZMrLylk2cxdPb7wV06CDs7Gq+7066OqR+zLr/JEL+jB83o/Kl3fPP+I2Yi3FBSU061afpdt/HrxZVlqG/8TNPLnySkRKHFlE9YZVfzju2wpbfVqWfD0jcDSDZv51H5zC/CLcBgby+k4UmjoaBJ51oc6fpKX/f+ryoZs49falIKeQhh3qsvqGD8Z/8iD/X9Th5cd5//wD2vpazFw98V/9rvTETDyHraSkSORejXUd+rc+f/vEQ/Z6Cq+aOWvG07B9nV8eHx+ViPeY9YIAbNOCie4//76KigpWzNpJ5IMYNCup43143k+jII5tvcSJL6TlzZOp87sMrc+xKXhP3EpZSRnt+lkzyfV7HtG5kDsckkYfzAu0pVmnr5yvyEexrLAPBmDgxA4Mmvy1KTiy8xon94vJqsPq0dSTuh0nxKXiZbeHkuIyWnWtK3NDz0jJwX3GHvJzi6jXxIJFAcOQl5cn+lUCAYsPC+NFm2aMnNZZAKnlEdy79hYlZUU8146hioU+L558YIV0KjR4VGuGjG5D0ucs3BccoqiwlKatqmHv0p/U5BxcFkmTzZtZstB5AO+ikvBx+00Aoj6NGD+lI8eOPCQsRGwFljj2p3bdyri6hJGYmIWpqQ6+fsO5cfMtO3ZJycazelCzpglLXcPIzy+mYX0zFtv3xivwBFHvhBJrufcwgsPvc+2LX5rzYG7ej+HkBSm3X8RLSAAAIABJREFUc2E/nryO54T0tfv8vly6EyXz0vFbOIDt4bd5Eysc+T3m9MVz8xmy84qoV82YwV0b4b9L3PvH9GlGTGIGS9af/OU590f1nwY7Tz4noiAnRwMjY14lp6AuDfaMTstAV02VSiqqfMzMwlhTAxU5BRKyc6lcSQt55IjPEqnlqvIKxKVnYaSlgaGmBq8TU6ikpkoDEyPuvY9HRVGBXg1qEvFUyNDHtrMm+IZYNQ1t2YCIh28pKC6leXUzcgqKiEpMQ19LnV6NaxF2SwCiWX3asOfcA4pKy2hbz4LysgruvxUJ5nMGtmN16DWhnmpdl5T0HB68iUddRQmH0V1Yvv8SxSVltGloSS0zA/ZHSA35JnTl9PVXvIpJQltTFU+7PvhsPkdmTiG1LI2YMaIdLitPiglPixr0al8Hj1WnKK+Q0LdrA1o3scJz5UkBbLo1oEvb2jj5HqWktJwOrWsy0bYNi13DyMouoGZ1I7xcBrNsZQQvXn1CQ0OFIL8RvH2TyPqN4kSeNKED3brWw8nxMAkJmZiYVGJZoC2RrxNYLu2CbIY2Z/S4tmzbeInzEc8FAc97KA0ambPM8yhPHsaipq6M36rRVDHXI8jjGI/uxqCiqoTP6tFYVDPk0M7rHDskHKEXew6mdcfavI9Kwn3uAYqLSmnZoRaLpK7GO1ef4/xRocZyDLKlSevqlJWW42cfzOsnH9DUVsVv52QqWxgIdZVjKA+uCXMxr+2TqFFfAI9H198StFB0fn1Ht2HCoq+AY/+qM5zcexM5OTkWrxlLy271Ze9dPfaIjc7SZPF5PRk646s8u6KigjULg2U+OR577ajdxPK78/ve+ecEzdolOs7JnZng/COBND46CZehq4Ust3VN3PbN+k6t8u33rZixgzunHqOkooTXYXvq/gnwOLX9EjuchaR3gucwhsz7kXvxR1VSVILnkBW8vCWd6Jx1oVbz6n/+wX9YYStPEjBmrXgoD2vNsnOuaOn+PHX7f1nRj99zwFv8P565eiI6hv9eOvsXJVtaQgbmdSrjuG/u34rUePMghmUTN4s8txnd/9QuICs1B7ehK8nLzKduy+os2fbHvJ49Pke5flRqhXBg1k+nhbdOP2Gb1MV7isdQ2g/4fiKVlZqL66iN5GTkUbNRVRav/346+ehqJOuWHgZg1Pxe9Br51S/n0/sUPCdLJebd6jPdw0b23o2IZ+yQrranOvWnfR+RtZWVnofblF3kZBZQs6EZjquFxLwgvxg3uz2kJGZRxdIAj43jUFZRIjE+4zsT0nluYjUavucmJ76AEL+h1LOuysfYVDylcTVtO9dh+oJe5GQX4jo/mIz0PKxqGOG6bASFBSW4LDpERloeFtUM8QgYTlpqDq5LRBhy0+ZWLFjaj5s33rJxnWhMJ03tROeu9fD1Oc6bN4loaasSIPXSWb5Cyqsc1pLu3euz1C2M1LRcqprr4ethw/qtl7n/SKrE8hzKzXsxhJ8UBGJn+z4kp+Wy/aBU2DG1K3n5xWz78npyVxJSsgk7I5WUz+rF2VuR3HkqJj6+8/uzct8VPqeKCc9M2w64bzlDeXkFPVrXRk1dmaPXXiD/D9fJ/2mwA9CyihmPP31GSV6e+oZGvEgUoMdSR4e3KWlUUlXFRFOL6NR0EeypoSH7uYqWNq8TU9FWVaGukSGP4hJQU1KkQw1LLke+R0FejqHNGhB+Tzglj21nTcitZ1RIJPRuXIs7kR/IzC+krpkRGspKPHn/GU1VZWzbNvouwTzs+nPhq2NpgkklLS49eYeigjwLh3ZkbfgNikvL6dDQChVFBS4/Fu85j+/O2m8SzLs2qcHGw+KkmzW8PU8iP3FPmmDuO6cfK/dcJilNEMccJosE8/zCEprUM2PcoJY4Lz9OSWk57VtUx6ZnY5wCjglg06oGowa1YKnXb2Ii1NCchXbdcfQ8QlJKDlUq67Dcexhbd1zh9j2hoArwGkpGeh7LlktBzOBmjBje8quRla46y4NGkpSYhbf7ERHE2aM+M+f0IPTgXcKlYGWRY3/atK/JuqAIbl4R+TCey0ZQq64pG5ZHcP3iKxQV5fEIsqVuQzNOht1n75d8mMV96Na3MZ/jM3CZuVeYAzaxwDnIFkUlBcJ2XSdcSvSz97ShXbf6AtC4hPPwi8HglolY1TIRnZnvSa6efCqmMxvG0aC58CqJfBwnCwfs2N+aWV42Mg7C0R1XObRW3IBm+w6j8zfrqYdXXrPCfr94sEzowPglX7OiJBIJ2zx+46JUPu68beoPzscvbkfhN3kr5WUVdB3eilnLRv7AfUj9lIGzzSqy03Kp0bgq3iE/N5OTSCRsWLCPK6F3UFBUwHX/bKx/4svzbV06dIsN8/cCYnUxeunPXZd/VqUlZfjYrubJ5Zeoaarif8qJWn+Qgv3/LYlEwh63ELYt2QeAzby+uIYsQFn116Z4/4sqKigmYKxQM3UY2opu/6JXUEVFBcsnbSTq0Xu09bXwOeaARqW/HlKaGJuC+9CVFBeW0KJXI2au+LXDcklRCV6j1pIYm4qJpSGeIfZ/qLw6s/c6oVI+mf26CTT+ybQo8uF7ltvtEMB9UieGzv5+QliUX4zHuE0kxqVibK6P5+/cwmNefcJvxi4R0zKk+XcS88zUXNzGbSUnM59ajavitPGrxPzl/fcELRSqsIET2mMzRayoigpL8Jyxh8SP6ZiY6eG1bRKq6sqiGZofzPvIRHT0NfGRhn5mZ+bjOnMPWRn5VK9jisuqUSgqKXDp1FN2SoOCpy3qTceeDUhLycF5tsjBqtvIHEe/YZSVluO56JBQjRpp47NmjLjfLQ3lw/tU9A208Fs1ivLyCpwXHhJCjBpGuPsN5U3kZ/ylGYH9Blgzakwb1qw+K/PS8fMdTlFJKR5eRykvr6BL57pMmtgBN++jxMaJ/KrlviP47cRjzlwQIhRPx4F8Tslm0+6rAMya1BlNLVWWSd3QR9u0oIqpLoGbpa8Ht0BbW40NUu7n3PGd+JCYwelrYsvgNacvByIeyiY8zlN74LHlDAVFJTSta0bTumZsOyZoGvNH/nVhw7f1nwY7X/Ku5IBWZuY8jBegp7GpCU8TklBTUqSuoQHPE5LQUFamtpEBzxKSUFdWoqGJMQ8/JKCqqEg7q6pcj45DUV6efg3rcFpqIDiyZWMOS9dVw1o24MQDEezZvo4lMZ/TSczKxcJABytDPa6/jkVZUYFJXZqzTZpgPqqjNZcfvyMlKw8rEz2aVa/C0VsvkZODhUM7su3EXfIKi7GuUZmaZgYcvS4IXE5ju7Pz+D1SMvOwqqyPbbcmLN8r1ACjejclLSOP83feoqAgj/fsvuwKv8P7+DT0dTTwnN0Xj3WnycguoKaFIfMndMEpUCSYW9czY/qo9iz1O0pBYQnW9c2YM6kzDt6/kZldQM1qRngs6o9HwAnex6Wip6vBSt8RhB19yJnzUqWW00AU5eXx9BYXVtcu9bCb3hVf3+M8e/YRDQ0Vli2zpbioDFfHMIqLy2jZqjpLHPtz9tRTdkrByvQ53enZtzG7t1zhzPEnyMvL4eRtQ5MWVuzbcoWII1Iis/cQmrWuztXzL9kYKLqW0VM7MXhUa9JTc3Gx20NmWh5WtYzxWjcGVTVlzh55yE5pMOjURb3padNMAIxlp7nyBdCsHUM9qb9NyObLnJDaqC8KtKVFJ3GzjnubiPvknUIa26k2i1eMlN1EL4bfZ5s0r2b8kr70G9dOdl5GPorFd/ouyssq6DSoKXY+33vcHFwZwfHtQg69cM04Wv8u1fnd8494jNlASVEprXs3ZuG6CT901NnpuTgPXUVqQgZmNU3wDV/whw+/fT5HOL1TujrYPp3WfX+Uq39bt44/ZMW0bYL7ZNeDSd4/2vv/UZWXlRM4YQP3Ip6grKqEz3GHf42j8wXoBPuJ9eLUZWOZufrnXKV/47vXztxG/JsE9Ex1sd/y99PF/07tcT/MzSP3UVRSwCN8IZWr/zGh/PeVk5GH6+AVZKfmUsPaAuf9c35JoK6oqGD5tG28visclX3CF6Jj9ONKCuDhpZcy48oxSwfQ/SfE+YSYZDzHbKC4sJQW3RswM+B74F5eVk6A3U6inn5AS1cD30Nz0DP6OiFL/ZyJx/itwtSzTQ3sV4yWfb4wvxiPSdtIik/HpKo+Xru/5mF9iE7Ca/puSkvKaNOzAdOlK6ry8gqWLzrE22cf0dJRx2fnZHQNtES6uedRHt+KRkVNCa8tEzA11xM8vjn7SfiQjpGpDt4bx6OhqcrjO+9Y5SGsBmzGtmXo+Hbk5xbhOu8AqcnZmFkY4P3Fxd1NeOloaqnit3YM+oZaBHod48XTj0JgsXoU2pXUcXM4zKd4obLyWzGKtLRc3J3DKC0pp027msyz782B/beIiHgmsgXdBqFvoImTSxiFhSVYN67KkkV9Wb7qDE+ff0RNTZlA3+E8fBLH3oPCvX7B7B6oqinjLyUsDx3QFOuG5rgtPyGmMB3r0qlNLdxWCFFKr471aN7IEl9pfp1tv2ZoqCuz64h0wj65G9cfv+fOszhUlBXxnNmHwL2XSM/Op4a5AUO7NWb5AXHfn9ivJeYmX2M8/k79p8HOHWmwZycrK27FfkQOaGdpwd24eBTl5Wlpbsa9uE8oKSjQysKMO7HxKCko0LGaJdej41CQl6N3vZqcfSXMBIc3ayDLuxrRoiHh915QIZHQt3Ftrr16T25RMdYWpuTnl/AuKR0DLXVa16rKmcdvkJeTw65na7afuydWUs3r8Op9IrHJGRjraNKveR32XhDjwrmD2n8X7NnZujq7Twt1lP3wThy9+lwW7DlrSDv8dp4X66d29aikrkrYBWFH7zKtJ6evvOTZ2wQ01VXwtx/A8m0XZFJBt9l9cA06TkZWATUsDXGw64lTwDEhLbQ0xHV+X1z9j5GYnE0VEx0C3IawcsN5Xrz6JGIhfIdz41YUh0KlI1r73phV1sXZNUzEOTS3wmFxX9asOcvtW9EoKSng4zsMLU1VnJaEkJdXRP0GZrh7D+He7XesDRIXl+3Ytgwf1ZojIfcI2Sfl+zj0pX3nuhwPvc/BXWIiM9exH5161OfxvRiCpMTjAcNbMN6uC3k5hbjO2kvip0xMzfXw2zwBTW01bl96zTqpK+qIyR0ZNlF024e3XeX4fmnonv8wWnQUk5SIkLvskwIjO9eBdBkogEByQgauE7eL7qypBS4bx8skqncvvGT1ErHesZnaiZFzvnapH6IS8ZiwleLCEpp1qvOd9weIIMMDK4QKw853ON2Gt/runE6IScbVdq3IEWpbC6ft036w1y/ILcJtxFrio5IwqKyL/28LvvMf+baObDzHQSm5eM7q8XQe/mtX30eXXuAvdcftOb4jM1eO/csP8YqKClbP2Mb18LvSh/IiGnX89QTpn9YXoHPQX3AiZq6a+K8rrr6tY+vPcHH/dQHSD8xD+yfOwP+rOr/3KiGBIgtpwdYZf8ubqKS4FG/bNXyKSsTQTB/v3xah/o0b989qu8thbhwVEnP3g/OoWufnBPboZx/wm7hZpv4bu/THKJKs1BxcbYUbeE1rC5x3TP8OaH1JMb9/4aXId9tnh1mNrwT93KwC3MZtIT05G/Oaxrhunyq7DstKywmYvZfo5/Fo62rgu99Odh2kJ2fjPmkHeTmF1GtmydI1Y1BQkBccO5/j3LnwCiVlRdw3T5Dl0R3YcJELUhNS51WjqdXATPDqHA7LlJy+Wyagb6RNzJtEfBeFUF5WQceeDZi2qJcI/FwSQmx0Mrr6mvitH4tWJTU2rzjDLWmyueeKkVhUN2TL2vPckBKNPQNHYGFpiJ/7ESJfJaClpYr/qtEAOC45LIQe9avg4j6Ys+ees1cq9Jg3vxcNGpqz1DmUjIx8qlkZ4u05hN37b3L5WqSIBnIbTGpaLqs2iOnT+JFtqF+nMi7+R4UpYNta2PRtgoPvEQqLSmne2ILxw1qzNOAohUWltGxsybB+TXFedYKy8gq6talF0/rmLN8pzUC0aU1yZh6nb4hwaw+73uw4docPiZkY62lhN7wdXjvPiedX27rkFRezYN2xPz9xf1L/abAjB3SysuTauzhARD9ceyfckbtUt+J6dBxyQPfa1bkszb7qU7cm56TgZnDjehx/KvKuhjdvSNj9FwAMsK7LmSdvKSkrp2NtS17HJ5OWW0ANY320VVR4GifWVYOa1yNUysuZ0bMVey4+FCGc9SzJzink5YdktNVVGNetKZtOigftpF4tuPQwmo8pWZjqa2PbuTHrwsRocHLfltx7+YFX75OopKGKw9iu+O04R3FJGW0bW9Gwhilbw8XvsR/biSev4rn+UKiy/OYPYFvILaLjRLBnwKKB+G04IwM+PosG4LnylOy1v9Ng/FZH8C42FT0ddVZ4DWP3/pvcvCuyTPzdhxDzPpVN0gnE9MmdaN7EEgenw+TkCua/p7sN+/ff4uwZ4dfj5j4YSwsDHJcIgrKllSG+y4YT9eYzfh5HRLJuf2um2HXhyvmXbJGugCbN6ELfQU25duEVm6Xqg/EzOtNvSHOiIz/jvTiEsrJyOvaoz8wlfSktKcPL/iCxUcnoGmjiv2UCegZavHwUR4CDIA/2GtKMSfZCPXEm9D57paPmGU796TpAAJqbZ1+wUdqZ2c7syqAJQvWRlZ6Hy/jtwi6+pjFeO6bIusVXD94TMGuvyM4a1oKprl8fsCkJGbiO2SwzOXPdPkV2Ywa4fvwRW1wFZ2Hs4n4Mmvq9fDs9MQvn4WvISs2lekNzPA/M+mF1UFJcive4jUQ9jkNbTxP/Iwsw+p1M/UtdOHiTrUsFuXmC+1D6T/01RyPq0Xu8baW8lyEtsd805W9NSXY4BnN+3zWxmgueT4tePxrJ/S/qB6CzeiJD7Pv9yaek9fAhdO0q/vsP6/6ZJ2xZuAeAqYHjsO7S4Ncf+H/Uo4vPWW23HYBRjoPp8TdMHCsqKlg5bRsvbgovHp+ji9Cv/Ouu+sjGcxxZLzr4RVunYd3p58Aq6UMq7iPWUphXjHWnutiv+1FiXpRfjPvoDSTGpWFiYYD3wbk/SNxD1p4lYp/gvDlsnEi9Fl95XSVFpXhP2c6Ht4noG1fC98BMtHTE9FIikbDeOZQHl1+joioUkF/UVfk5hbhN2kHK5yyqWBnisW0SKqqCxxay+TKngoUsfcmKkbJ19emQexzcJKYPsz0G07JzHeHX43+Su1ffCOLx+rFUrWZEUkImrrP3iVib5pYs9hOk7ZWex3j6QPAOfdaOwaSKLof33ORk+EPplNqGhk0tCAu+w7FQ0dwucR9E46YWrFt5hru3olFWVsQ7cISY1jiEkJqSg5m5Hj4Bw3nyJE7mRD9mTFt69GiAq1s48fEZGBpqEeA3nDPnX3D4N6mtyII+qKmr4Lnsq21I314NWewVTn5BCY3qmTF7SheW+h0Rk30rIxbP6M7SZUfJzC6glpURcyZ2ZmnQMUFxqGeGTS9r3NZLuZ8d66Ovq8Ge46IZXjyhKxG3XvPiXSJa6io4TOqG987zFJWU0bqBBeYmOoRdEbFF/6T+02CnlbkZN2JE3lXXGtW4+FZEP/SuXYOL0hiIvvVrc+aViH4Y2LDO19Ry63oceyyk4wMb1+XU40jKKyR0q1edO2/jyCsuoYmFKem5BXxIy6Kyrha1TQy4ESnyrsZ1bMLuK+KGOaFzU47ceil8daxM0VJR4XbkB1SVFJnVvy3rjt5CIgGbdg14/T6J1x+E0mrmwNYEHboi3uvQkKS0HO68iENVWRH3yb0I2nuJnPxiGlQ3pV+7uqzYIy7GCQNakpVdyKmrL6X70n4cv/icx6/iUVdTJtBhEBv2XCU6ViSUBzrZsGLzBdnrILehbNx5hacv49FQVybIcxinz70g4suqynEgRcWlsmDP4TbN6d+7MUudQ2UpugG+wzl75jkHg6Xga0Fvmja1xMUxVDaGXRY0krSUXNyXhooxbPta2C/py6P77wnyEZ3q4BEtGTmhHU/uv2e5+xEkEhgwvAWjp3QkIT4dl7kHKCwowbplNZZ4DwEg0CmcF4/iUNdUwW/TeEzN9IiLTsZz7n4xsu5SV0YevH3xFRukkx7bGZ0ZPF6sm57dfUfgwoMCgNm2ZMKCXoDIxXGfvIOE2FQMTXXw3TNNdoP9EJX0lQTZtR72y0fKwEB2Rh4uozeRlpiFeU1jvPfZfcefeXbzLUFz9wrOwsSOjF70va1/blY+LiPWkPwxncpWRvgenv+D90h5eQXLZ+zg6bVIVDVU8Amb/4ey8TunH7Nq5k5xrs/pxaglv86jSYhJxtVmBUX5xVh3qY/DLrsfTN5+VWGrThK+WkysFm23o/2/FJXwU6Az/y8CHYB9++DKFdi//x99f+zLj/iNXC3Om0ldGLaw/z/6PX+loh69x3v4KsrLyuls25YJXn99nQiwwzmEq2F3UVBUwD1kPlYNzH95/PUj99nmKPgtU3xG0HVEm58el52ei8uwNWSm5FCtgTlu+2Z9B+pBrKb8p24j6kkc2noa+B6ej+7vVmEXQu6wT6pUtPMd/p0beHl5Bcvn7uPlvRjUtVTxOTATo29MDPevPMP5w/eE+GDDBFlUS2mJCOaNfZOIrqEWfnunybx0zoU9+DrFdRtIBylR+daFV2yS3o9Gz+oq89I5uOUKEWFSf5zAETRoaklOVgFus/eRmZaHZU1jPFaPRllZkZ3rLnD13AsUFORxW25LzbqVuXDqKbulAMpuYW86dq/PpXMv2LFRUBKmz+tBlx4NCN5zk4gT0lW+52Bq1a2Mp+tvxL5PRU9Pg2VBI0lIyMTH+5ho5Ho1ZPyE9vj6H+fV6wQ0NVVY5j+C5y8/sVFqOjptUifq1DbF0SOc4uIyWjWvxvRJHVni9RvpGflYVTXAfXE/3Jef4FNiFqZG2ngvGYjH6lMkJGVhalQJ1/l9cV55grTMfKqZGzBrbEecVp8Qzbe1FW2bWLFynzTvcEhrIuOSufHkPSpKCrhN60XQgctk5RVS19KYjk2rs+W44OzMGfrPuG3/abDzOD4RiQQ6WFlw7UuwZ63qXIiUgp66NWVAp3/92kQ8Fz/3a1CbiOdvqZBI6FG3Btdev6eotIzW1c2J+ZxOel4hNY31UZFX5PWnFHTUVelYy4qIx2+Rl5NjareW7Lz4UICUVvW5/iKWlOw8qpnoUb+KEeceCrm5/eAObDx2S5Z3VVBYwv03QoW1aEQnlgdfkeVdaagqc+bOGxTk5XCf3JNNYTdF3pWpyLvy2XpOZI90qo9+JXX2HhNo2mFqdx69+MiVu0I6GLBoIKEnH/HoxUeRd+Vkw+6Q2zx+KYBQkNsQQo8/5PqXWAgXG56//ERwqHT/OrcXBnqaePgeo7y8gu5d6jF5fAfcPH4jLi4NfX1NAgNsefrkAxu/KLEmdaRXr4b4eBzlTeRntLTVWBY0kvLycpwWHhKRD43McfG2ISY66btgT7v5PXn3Nglvh8OUlVXQoXs9Zi7qLdLPZ+8nOzOfGnVMcQ+yRUlJgU0Bp7j1RUq+ZgzVapuSkpiFq90e4VraxAJHaa7Vy0dxBC4WGS+9hjZnwnwx6Yl5/Rkvu72UlZbTrmcD5niJ4L7SkjJ8Z+6VmY757Zsu89hJTczCbfwW8rILqNPUAqfNE2Xj+ML8YtzHbeFTTAqGlXXxC54lu8ECxLyMx0sqp23fvwl2ft/HNxQVFOMxZgNxkZ/RM66Ef7j9Dw8GiUTCpiXB3Dz+SIzfD8ymdtOfBz6+uPkGv/GbRKrymPZM8/+R3PxtZSZn4zJguYzT4R4y/6eKrj+qi8E32L5USH6nBY75W9OHv1uHAo7+faDz4QM8egSPH8NhoeYhJES8fvRIvP8XKis1G/eByyjILaRRp3rM2zztX1ubJbxLwmXAMgrzimjStQGLd878W1O28DUR/LZWTEkXbp1Kky71f3n8i1tvWS7laQ2Y3o3h9j/P2CoqKMZj1HoS3iVjZKaHT+h8NLS/X4tJJBI2OBzk/oUXYjUVPOe71RTA/YsvWbNInDPDZvdg4JTO331+q/tv3DrzDEVlBTx2TvvOS+fUvpsckiqTZvsNl3npfMmre3bnHWoaKnjvmiqLe7h/JZJ1blLrCLsuDJRy7F4+jJXdI3oPb8HYOd0BiAi7z/5NApTMcu5P++71KSoswX3uAeJj0zA0qYTvxvFoaqtxJPg24V9W5B6DadamBg/vvGO1rwByw8e3ZfDIVjy6/56VvmKlPHRUa4aNak3EiSfs3SGVii/sTdsOtQn0P8lTaTSE//KRlJSW4+wcKjICW1ZjwcLerF1/nttfInd8hpGekU/AStFsDB3UjJ7d6rPENUxM4WuZ4LSoD64B35sGBm258NU00GUIq3Zc5I3UNNDPYSD+m8/xUWoa6Dq7F67fmgb2aYrX1rNIJDC4S0MqJBKOXxPNt8vUnmw7cYfPaTmYGVViVK+mrDgkNgTjejXD6B+qJP/TcRFl5RW0sqrCww+fqJBAeysLbkTFUiGR0LmGFZfexFAhkYg1VmQMZRUVdK5pxc2oWIrLymlTrSov45PIKSqmfhVj8vKL+ZCehamOFhb6Olx6GYOakiJDWjRg92UxxZnaTeRdlZaX07VhdWIS0olLEcaAPRvXYluEAA3zBrVn59n75BWV0KRGFYy1NTl89RkK8vI4jurC2rDr5BeV0LSWGQ0tTVkfJngqS8d3I/T8U2IT0jHU1WTh2M64rD8t1mNNqtG8XlW8NoqJy4wR7cjMKuC3c9K02jm9ufUghku3RHCnv8Mgzl55xRWph4K/42Bu3YvhxFlpAvrifiLvaqu4qKeO70Cj+mbMWXRAcHKaWrJ4fm/8Ak7w4qWQnAcGjCDxcxYBASeRSGDQoKaMHtOGoGWnuX8vBlVVJfwDR6Cjo4693V7S03KxtDLEO3AEaSnCT6KosJQmLaxY4jaIpM+ZuM6HKr6gAAAgAElEQVQPpiC/BOvmVjh42VBUWILrvAMkJmRiaqaH77qxaGiqErz1CqelnZZDwDAat7AiJ0vkXX0J9vRaPxYVVSXiopLwmrVX+Gd0qctcT5H4nRSfgdtUkWDesGU1HFaNQkFBXtwolxzmya1oVNWV8d41FfPqYpf/hTeQ+jkL8xpGeO2ejqp0vVRWWo7/jF1EScmOvsEzZdb0AEkf0nAbvZHCvCIatqnJkg0Tv5uYlJeVs2z6Dl7fE/4kfmHzMbEw+OFcP7TyNKd3XxN/+7apP005B4h7/QnPkWspLS6ldV9rFmyc/MuHZH5OIa6Dg0iMTcHUygjfY0t+eHj9qh6ce8rKqVsAGGrfj+EL/1mi8V+pS8E32O0qJg8zVoz/6xMdS8uvP38BJ6mp0Owb6bNE8stfUZhXiNuAZSTFpVK5ujEe4YtRUv7rgPDvVGZyFs79/MlOzaGGtSXuYQv/Fvi8dOgW253Ev9NUv5F0H93+l8fHvfp6zrTt35SZQT/naZWXlRMwZRtvHrxHU0cd33B79KXNwLd1IPCkLL/Nadu071ZTIAj8/tO2C67P8FZM/p2XTujGC5zce0OsmtaOo1HbrwT3mxHP2CQFLWMX9KbvGEGIlkgkbPc7ydUTT1BQlMd10wSZdUTkkw/4zzsgVs82zZiwUFhHxEUl4TV7H6UlZbTuWpc57tJp8KXXbJCCklHTOzNgZGvxtzuEfuXubBqPgbE2lyOes3WVmBZNntud7v0a8+ZVAj5LQ4WAo3dDJs/uTlTkZ1mT17lHfabN6c7tG1EyHuOo8e3oP7gpG9ael5kGekhNA+fN3SczDfTwsOFA8G1OfyEoOw9EWUUJB7dwYRrYqQ4TxrRjvmMIyak5mFXWxd99CMvXn+fVm88y08A9YXe4+0hIxgOcBhN89D73n8ahqqKI/9LBbA25xet3wtbEd2F/fLecIyktl6qmuswd24klq4S6t0PT6lS3MGSFdMKzYGxnjt14SdTHVPS01ZkzvAPuu86KtVfruqRk57P79O1fno9/VP/pyU4dIwOiU9IoKiunqVllnn8T/fDoYwKlFRW0sTLnUWwChaVlNLeowtvEVHKKSmhYxZi0nHySsvOoqq+DlrIyrxJSqKSuSuvqVbn0MgZFeXnGd2jKHum6akwHa47efUl+cQnNqlWhtLiMFx+S0FZXYVSHxjKgM61PK47eeCkIyJX1aVXbnMNXRTiow8jO7Dp9XzDVqxjQp2UdGdCZNbQdtx7H8jz6M1rqKrhP64XvtvPkFRTTsGZlhnZrhN+Wc0gkMKRHY/S01dkWIgi+9hO7kJScTXiEyOZymdOHN++SOXJG6qRp34eEz5nsCZEy8md0R1tdFf8Vp8WEqn8T+nRvwBKXULKzC6lV0wRPl0Fs2nKJW7cF+djXayiSCgnubuGUlpbToWNtZs/pwc5tV7lwTgTXuXnZYFXNCNclh2V5V/6rRlFWVo6T/UFZ3pVHwHAK8opxnntAyDlrmeAeZIucHHgvDiHmbRI6ehr4bxiHrr4mZ448ZL90JDzTsR8dejSQqSTiY1MxMK6E35YJaFVSJzUxC9fpu8nLKaKudVUcV45EQVGB7Ix8XKfsIDM1F8vaJrhvniB7iOwKPM3Vk9Ib5eYJMgfk4qISvKbs4ENUEvrGlfDZZyeb2kgkEtY6HBIJ5qpKeO2dQdVvYhey0nJxHbWBzJQcrOpVwWOvHcqqXx9aEomEzU4h3D0rvHY8g2djVe/HZOjzwTfZ5ydWcTMDR9FhUPOfXg9pnzNwHbKSvKwC6rWugfPe2b9U3ZQUl+I9cq2IjTDUwu+kA7rGf90n5u2DGHxsV1NeVk6Xke2YFjjmL3/279brO29ZOXUzACMWD2TYXwBVnz594sqVK3xauxYUpX3hF1Dz5b+KinDgwC9/T2FeIS79A3hz/x1aepr4nHT61wjJBbmFuAwIJPF9CiZWRviedPxhnfmrenjhOSunC47PkLm9Gbbg1ynoSXGpOA0KEl46rWqw9A/WlxUVFayet5d7Z58J5+NDc3+6Qj2+/TLBK6SxGctG/RAAGh+dhMfYTULh2KUe9qu+B1bnDt1hzzJpnpKHDR0HfLVzeH73HYHz9gm/qzFtGW3fS/Ze2JYrHJNaTSz4P/b+MiyrfXvDhk8aBEFERZQwUbHFxsDuDmzFLhRFpDtFRezuxMJW7O4OVFBBWro7ng+/6a0uY+2193+/73Mc+xmf1r2YNwhM5hxzjOs6r2UWtOos4iyiP3zBbeZOCguKad2lAQul0M8vcek4zxDXCJNWRtivHCumwU+j8Lf7pvubNL+n+Dv3PMWDm+9FttWa8RjVrcaTex9Y4S40f0PHtmf05E7ERKXgan2AgvxiTNvXZbHrEBLi0mTQwJata7PEeTBhr2LwcRU6xj4DmmM505yD++5yMkSYWOwcB9GgoR4O9sEkJWWhr18ZH9/RXLz0mr2SdGChVW9q166KvYtwYrVqYYSNVR9cfE7I3LTLvUaydd9t7jyUsCHOwwm9EcaFa0JQ7LFkEDcfRhB6MwwFeTk8bQZx6sor7j2TaMk2g1l/4BYfY1KoUkkdx1m9cVl/lmzpntSzvTEr94rr8rQh7XgWEcfjtzFUUFVi6cTu+O69LDhxjY2oqKHKhYfvUfg33ZL/081ORm6BFANRldjUTLILi2iiV42olHSyC4toqqdLdLKIgWhYvSoZ2fkkZuVQu4o2isjz4UsqVTQq0KBaFR58iEFVSZFBLRpx4tEbACy7mrLr2hOhI2ndiNthkd9iICppcluKgZjdpz3rT4kTcHTn5tx7HcXnJBH1MNysKZtPiSZo7tCOnL7zhugv4mOW/dvKLHljerYkISmTW8+kGIjZ/Vi19zrJ6TnUqlGZuaPNcFlzVqy92tanXZNaBGwRivhJQ9tSUU2FTfskF9MUc0qKS9kivV4wtTvKiooESvTkSaM70LhBDZy8JEV+pwZYTuiEnetREr9kUkOvEsu8RnL0+GPOnH2OvLwcTg6D0dXVxN4umLy8Ipo1M8DRcTCnQp4Q/JWbYzuA1q3r4OsWInMV+K0ci7q6Ck6LD5IYn0GNmtr4BI4VguZFB0iITUe3RiW8Vo9DrYISK9y+ify810yghkFlHtx4z1ov8aQ1ZkZXBo9pJz1pBfP2RTQammr4bJ5C1eqVyM7Iw2nGTlK/ZGFQtxoeGyejqqYscmtm7pTlXXltm4aGNME4sfMWx7aKUfLiAAtMpYDO0tIyllnt5c2jT6hrquK1d5ZsLA6wO+Asl488RF5BHodNljQy/bZWKsgtxH3iRhFUqF8ZrwPzfpqYBK++wBlpWmO3eTpNfmHRfnjxJUELBUPGYlF/Bs/4tcg4Nysf5+GBJMemoV9fD4/gRb/looBotFbN3sbzrzTlkCV/DAL9a8VFJOA82J+C3EJa9Wz6j9cs/6S+fE7GbdhyiguLMRvahmn+f26qYmNjsbW1xcjIiO7du2Nobc2KefN+ffCDBzD+95/va6Pz6qbI9fI954hhw5q/Pf4/qeKiEjxGBfLhWSRaVTXxO+dI5eo/T05+V+8ff8Jr7BrRfFp0YIb/r0Ngv1b6l0zsBweI1HQTfTyPLPotp2mb6xEuH7wrzvXts2j8i3P12rGHbHQQLsUJSwcxcKr5Dx9PScjAecw6stNzadCyFk7bZqD4XSjknfMvWGMn3j96Xk+GTv/2/si38XhM20ZJUSkd+jRlrvdI2fcWGvyAncu/xbj0GCYmdskJGThZbhOGgWYGOK2diKKSAlnpubjM3EmqNA12Xy/Cf6M+fMF9/l4xDTZvKNP97Vp7mYsnn4pJVcBoGrc04v2bODxtgyktLcO8T1NmLe5DWkoOTgv2kZmRh7FJDVyWjSYrM++HhzxX/1HExabhYneYoqIS2pvVZ9HSAVw494Id0jprnlUvzDo3wMX5KJGRyUI6EGDBi5fRrJFcVZMndcLMzBhbp8OkZ+RRv64u7o5D8A86z/NXkhbTaxRnLr3inBTw7G47iLcfEjkQIuUgzutDTEI6B0+Jh3n7eX15/i6OczdEI+RpPZDDoU959jYWdTVlPKz647vtEsnpudTR12HSoDZ4bbsoJvzmTcjML+Tyo3AUFeRxmNyTwMM3ZCHWzY31OXRVuIgdJvzZKPG7+p9udhKzczCopEVhYTHJObnUrqxNbmERSTm51NbRpqiohPjMbAy1tVBVUOBjShrVKqpjUEmL59EJaKgo06V+bVmY57gOLdh/W9AhJ3RqSfDtl8KRZVKbyMQ0olMyqaGtSbt6Bpx+9BZ5OTmsBpix4fRdSkrL6NXKmITUTN58/oKWuioz+rUjUArvHNO9BS/C43gTKZxWNhbm+O66JN7XtgGaaiqcvC4YPC7T+7D39CNplaWO4/ReuKw5KyCBjfQZ1bslbmvOClu8eWNaNtLHb4MYpY4d3JpaNXVY9h0cqkFdXdyXC1py/55N6d+jMUtdjwrWTlMDli7og4fvSREDUakCy31Gc+duBLv3CIuj1fxeNG9mgL1dMGlpudSuXRUv75HcvxvBhnWigZo6w5zefZuyNvA8926HC1dBgAU1DSrj7XSMD+8T0dKugM+qcVTUVMPH4SjhYfFoaqkJ7kSVir8U+b17GYOv5LDqPaQVk+f1EJoAn9M8uP5OPGmtm4hR3WoUFhTjPm8PMR+T0NHVxGerJRUrVRCN0cJ933E1plGluphg3Dr3gi3SyNpyaX+6DxUXyq8xEPdCX6GorIDrtunU/s6Ce2b3LYLXiguPld/oH4I9v8ZAvH8WJeOG6PzlpnX58D12eYunwtm+FnQa+HOe0vunkfhYbhLj9zEdmOIy7KdjQBJljl9L5OsYtKtp4RNig6bOn/fiu9yPcvXQXVk+0j+B/mWmZOE0eJmAGbasjevhxT8JVP+vKi87H+dBfmQkZVK3RS3s/oYavH37dgwNDVmxYgVlZWWA+F3arl7NcoCv7/0XGrP83AKcB/nLGh3/UBcatv3vMINKS0rxn7SWZ1deoaqugs8pO2rW+9dZOrERCbgMFwLzlt0bY/MH2jFATkYujkNXkPApCV2jKvieXIJm5V+fM4eDznNc0uctWjv5p2kNwOOrb1gxT+RnDZ7ejfG2Pwq3szPycBm3jqS4NGrWrYbHvrmoqn9rrF7ejWDZ/N1i0jGmPVPsv03uvsSk4jxxE3nZBTRpWwe7tRNl06d7l16zxknEX4ya1U0W45KVnovTlG0i5LdONTy2TkW1grLQ183eTcynZKpU18JbukYI3d9ucrILaNTcEAdJ93fywH2Ct0sgPZfBdDBvROznFFwW7KMgv4iW7eqwxGMoeblFOC3Yx5eETGoaVsYraBxlZWU/PeTlZhfguPig0Bc21cfJczgPH3xkleRCHTu+I4OHmeLrc4qXL2NQV1fBz9+CxC+Z+PoL6cCgAS0YMaw1ds5HiE/IQK+6Fn6eI9iy+ya37koxDq7DefY6hn1HJafU3N7kFRSxftd1AGZP7IyiojzrdovXcyZ2ISu3gH0npUZoZi/uPP/EjUfCneu5YCDrgm8LS7lORRaO74rb5vMUl5RibloP3aqaHL4imhm7id3Zce4hX9KyMaquTb/2jdh4UgwD5g7pSGJ69m/Pyz/V/3SzU7mCGpWUVYhKE3EPGspKRKZmUE1DncqqqoQnpaKjXgEj7Uq8iElEQ0WZNkb63HofhZKCAkNamhDyWExxJnVqxd5bYgU0xNSEi8/CBVenlh6lJWW8ifmCVgVVhrQ1YZ+Ubj63fwd2X3xMXmExbYwNUFNU5PbrKFSUFLAe1pnA4BuUlpXRq7UxefmF3H0toEuOE3viv+cKeQXFtG5ogKmxPttOiOnI4gnduPownOfv41BXU8Zr3gB8NoeSmpFLXYMqWI3vgmOgUMR3aFmboT2b4bxCwKB6d2lEtw4NcFkurIa9u5rQ17wxDt7HKSoqoUPrOsyc2Bk7t2OkpedSp1ZVvJyGsmrdRZ4+/ywAVF6jiI5OJUjKn5kwviN9ezfF2ek7i6P/aD5++IKf9ynKy2Hw0FaMHd+B/btuc/bkMwFGdB9K46b6BPqe4fEDKfJh+Rhq6Guzxu8MD+9EoKKiiOeqcRjUqkLIgXsykd8i1yGYdqhHbFQKbgtEDERrs/oscBFQsAObr3H+6CPhxFhmQeOWRpSWlrF8aTBhTz+jXlEV7y2WVNWrJBojtxAeXpdiILZYYiiJJV89/CiLgRg0sSOjZn2zgh/ZeIUzXy2xQRN/yLu6e+ElG5zFBXaCTb8f8q6+ckMeXHwl44YY/CVR/OmNMFYtEHTiEfN6M+QX05qEqGTcxqyhMK+IVt0b/9La+/XrBc3fIcu78jq2iOq1/pwHdW7HNVmwp/WGqbTu1eyPx39fRYXFeIwKJP5DIrq1quJ9yu5vuS3/bpWXl7Ni6nqiXsdQuXolvE7Zo6bx+68VGxvLzJkzKf+N/sYeiG3aFDZtEnqd6tWhWrVfHpufk4/TAF9e3giTNTqN2v13Gh1hEd/MrWMPREjlUZt/FK3x5XMK9v2XCYF5y1q4Hlr4x+azIK8Q11FBfHoVjXY1LfxOLUVH79eW9PO7b7JTCqGd4T2aXmPNfjrm7eNPeE3ZKCCaw9ow29fiRwF+biFuE9bLBPg+B63Q+q4Z//A6BvepWyguLKFDn2ZY+X97f3pyNo7jN5KWlIWRcXVct01HRaJjv3r4ET+rfeJBaFRbLJeKlV1+biGuM3YS8ylJNDQ7p6FVWV0YEBbu5/3LGCpqqeG9VVwjMtJycZy5k5QvmRjWqYrn+omoqilz9ewLNi4Tot9J83rQb3hrGR05MyOP+o1q4Lp8DGWl5bjZHCTyQxKVdTTwXTOBChVUcFt6mE8RX9CurI5v0Djk5eWxX3SAlORsjGpVwSvAgoj3CXi5h4gmr18zLKd3YXVQKLduvUdJSQFPrxGUlZfh7HqM4uJSOpkZM3tWd1y8Qoj4+EU8nPpacPLsc06fl7SYSweSkp7D2m0SwHViZ6roaOArIQVGDTKljlFVfNaJ16MHmqJTWYPVUuMze2wn4lOyOHnlpchgnNOPw6FPCZOiiRyn98JjSyi5+UW0aFCTNk0N2XRcXLutRnXm1N03fIpPpZq2BpP7tiHwiJhYje/ZktthkWw99+C35+af6n+62amrrc3rhCQqqihTT6cyr6T/bqRblafRCVRQVqKtkT63P3xGSUGB/k2MOfdCZFyNbdecg3dFJzq2Q3OO3HtFSWkZ3RrX4c3nRJKzcqmjWxn9yprcfS9s5JbdWrPlvPhFTepmytn7b0nNzqN+zSo0NtTl9P0w5OXkWDLKnPUhd0RmVgMDDKtocfqO+JjzxF5sOHaHtKw86htUYXjXZrKd5+RBbYmOT+f6ow8oKSrgbTWADQdvER0vummXuX1xWXWWzOwCGtWtztxxnXHwPyFgUM2MmDy8Pfa+ITI41PRxZth5HiMru4BGxno4LOyHi/cJomPTqFa1IgGeIzlw+D5XrgsAlafzUEpLyvD0liyOvZsyaYIZ3t4nCQuLQ0NDFX9/C3KyC3B1ErqdTp2NmbegNxfOPP/BVdCpa0N2bb7G5fMiA8vFZwQNG9dk75brhJ4SqzEHn5E0aqrPzUtvZCI/y3k96DWwBempOTjP3UNmeh71TWrgtELEQISGPGbv+q8uiUF07GEixInLznLn0hsBQls3kVrGosE4tOEqFw4/FI1R0DgaSdTkzxGJeM7cRXFRCR17N2GW61DZBfZqyGN2SrqBGS5D6Dzw25Ps2yeRLJsnLOR9x3VknPWPwZzBa0K/cUM2WP4kzvz0OgbvyZtkN4ZpbsN/Oq+z03NwGb1axttx3jXnJ7Dg19rjHcLlA3eQV5DHee886rf8tUPraz26+JK1C3YBMN5xKL3/gXOqvLycoNlbeX37neC2nFj6j9Ys/7RCVp/j1rEHAlB43Jaq+r/mCYFodA4fPiyb5vyqyoAPq1bBrFlifRUVBfo/a6Tysn9cXf03G53y8nLWWe3g8r6bYkW0fwGmPf/15jM1IQO7/n4kx6Zi0KAGPieW/LH5LCkuwWfSet7cC0ddqwI+J2x+u768dfIxaxcLi/5o636MmNf7p2Oi3sbhIjXlpt0bs2S95Q8TpaLCYrymbeHt40g0tNTwPjgPXcNvv8e4T0m4TNhEfo6gI9uvnyzTmeVk5uE8cSPxUSnoGlTGe99sGQbiY1gc7tMFHbl9z8Ys8Bkhc1T6WO2VTXG9d0ynWg1t0VA6HPmOjjwFo3q6Igdrzi5io4TDymfzFCpqVeDhrXBWSiGeg8e0Y+yMrmIlNW8PXxIyqGFQGe8141FWUcTH4Sivn0WjrqGC95rxVNXVwsf1GC+ffRZ05MCxVNJWx9Hm4A86xuSkLJwdj4h1Vod6LFrSjx07bnL2q3TAaQhVqlTE3uEweXmCjuxgNxC/FWd59iKaChXEw+mDx5/Yc0jYuhfP6y3oyFJ8x4hBrWje1EA8AJeW0bNzQ8w7GMsekHt1boRpMyN8pFiI0f1boaqmxK6Qb3TkW88+cl+KJnKb3ZcAiY5cV1+HId2asnyfcFpN6teapx9ieflRcHbmDu+E/8FrQpzcrhFRyRm8+JSAxr8Z5fI/3ew8jo5HSUGB9rUMufs9HTlcRD/0M6nPhdfCbj7KtAlHHgo68vj2zQm+94LychjYsiGXX0YI0XHtmmRlF/LxSxrVNNXpUN+Qs0+E3XxOn/ZsOn9P2L/bmvDiQ5zQ5WhXpH/rhuy+KPaeC4Z1Zv/Fp6Rm5VFfvwrmzeuw45yAPNmMMefIledEJ6ZTXacic4ab4bVN0CUHdG6MuooSRy9JzqpZfThx6SWvwuOpqK6Cr/Vg/DdeJD4pk5q6lXCe2wengJMyGJTtrF7Y+4XIYh+crPrh7HuCxCRJke84lBVrQ3n9VnAZlnsJOvKho98AVHq6Wji6SBEPbeqw2LoPa9de+oGOrK6uguPSYHJzCmncVB8HlyE8fvCRoO9cBYOHt+b08ccc3C2Jp+0G0rZjfc4df8L+bdJI2G4AHbo24NXTKAJcjonpyui2WFh2FhegeXtJjEtHT18bz3UTUaugwqNb71ntIXgYFtO7MtBC0IdDdt+W0ZGX+I+mWVuxkrkc8oQ9QeKPeI7rENpLIZ1/pasuleiqAM9uh7NqiXCyDJ9hzrDvdAPxUcm4W26hqLCYNt1NmO876ocn2MuH77PbT0xM5viMxuwv4/7k+HRcx64lL6eAZmbG2Kz7OdpAQAM3EBuRSNWalfEMXkiFij+C2L7Wpf23OSCRdResnkyb3s1/edzX+vjiMz7j14q12PhOTHT+udH6Ux0KOCm7KTsftKZW4z9zW/6Tinz1mW0Owpo8O3AKJu2Nf3vs9u3bMTIywsbG5o+fU0FBgXr1paZFTg5UftanpCWms6Sb2//PGp2tdvs4s+WyaI53zqXT0H+dT5SZko3DQH8hZq5VFf+zdlSq9nuBeWlpGctnbuXhV5HxYWvqNjP65bFPr70hYOY2ysrK6Te5C5auP58r8ZFJOI4MIicjj4at6+Cyc/YPE6XS0jJWzN/N0+tvUVFTxvMvAvzUxEycxm8gIyWbuk30cd0xQybgL8gvwn3qNj6FxaNdtSK+++dQRWqs4yKTcZ68lbycApq0qY39mgkoKCoIR6XdYZ7cChcNzRZLjOrripW0z2lunHspgkrXTKBRC0Pxt7ZwHxFh8WhpV8B3syVVq1fizbPP+CwRdORu/Zsx264/BflFuCzYT/SnZHSqVsRvwyQ0K6kT6HmKB7fDxTo9cCx16uuyyv8M926Go6SsgGeABYa1q+LmcITwdwloaqnhv2ocJSVl2NseEliOpvq4eAwjJOQJBw+IpsV6UV8amdRgqUMw6Rl51Kuni6f7cDZsucrNO+EoKSng4zac2Ph0mZt26oRO1KtbDRf/k6Kx6dKIgb2aYecTQkFhCW1b1mLs0DbY+YdQWFRCu5a1GNK7OS5Bp8VmoFMjTOrrEbRHNC/TR3YgKiGN0LvvUFCQx3VWXzYdvUNsUiZ6VTSZPqwDPjsvUVZezuDOjUnJzuP2y0hUlBSwGWPOiuDrFBaXYNakFmVy5dx+HYmqkiLLZvwDLtZ39T/d7MghWDqX3n1ADomlIzU3w1uacFyCBo5p00xGRx7S0oQzT98JLU7D2oRFCzpyXV0dKqmp8jQyDg1VZYa1bcyBW2LyM7tP+x/oyNk5BbyKSqSimgpTerVm3QlxU5/Suw3XnkTwWRIgT+jZilXBYtoxdUA7Hr2J5tXHBDTVVXCY1BPvrRfFOqpZLUwb6LPxsBSdMK4rL9/FcfOxmPD4Wg9ia/Ad3kcmUUlTDb8lg/Bdf4HYRAGD8l4yCI/AMzI4lL/9UPzWnCfikwQRdBvBvsP3ZftcX5fhREensnaTEDhPn9KFNqa1sXP85sRycxnK4eAHnDkt1lJOTkOoU7sqDkuDSU7OxtBIBy/fUUR9Ssbb5ThlpeX06tcMy5nm3Lv1nvUrxYh00vSu9B3Ugge3w1krjYTHTetC/+GmfP6UJEsGNuveiDlL+lFaUoavbTAf3ooLkPeGyWjraBDxJg4fm0PCrjqoBVMWiIiGWxdesVXKzJpm24+u/cVT8bO7EQRJieMjZ5gzULKo5uUU4DZ9xy/pqpHv4vGetUOEfg5qyTSnb/j7rPRcXCdtJistl3pN9XHYaPmD0+nZzXcELRaunpFzezJoatcfztXc7Hzcxq0lJSEDQ2M9XH+RTl5eXk7Qgt28uhNOhYqqeAYv+KW1F+DFzbcEzRcaCQubAfSbYv7L475WSlwaLsNWkp9TQAtzE6w3TPtHjJhbxx+w01mIR+eumkLrv2ms/pMqLirGf+JaiguLaTegFYPn9vntsV9XV3+a6IBodDZv3oz+LyY5ss8VHs9CM2cinkZSqaomAZfd/muNDsBez6MyEKP1xhl0H/tni885N1UAACAASURBVPj3lZuZh9OQ5XwOi6NKDW2WnbenynfQvb9WeXk566x3yyCDzvvm09SswS+PDXvwAY8J6ykuKqHTEFPm/yIyJCUhHceRQaR9yaSWSU28Dln9oMERrJ2D3Dr9VExbd82iUetvurCs9Fycxm/gS0waekZV8No7G3VpIlVSXIrfnF0yY4D33tnUkFazKYmZOE7aQkZqDnVMauC+dSoqqkpSDMQprp8R2XfO6ybJprgHNlzh9IH7yMnJYeM3EtNOxiLDzf4Izx98EsTjjZMxqFOVT+GJuFmJ1XnbzsbYeA6ntLQML9tg3r2ORUNTDd/1k9DVq8SWoFCuSJNrJ79RNGlhyNa1l7l49gXyCnI4e4+gcXMD/D1O8PxJFGpqyviuHIu6hip2Sw6SnpZLnbrV8PYbzY0b79i0UUKATDenS5eG2DseJjExk5o1tPH3HU3wsYeyVZWz3SBKSsvwWfnNTdulkzFLPY9RUFhMm5a1sBxnhq33MbJzCmhsrIeVpTl2fiFk5xTQpEENpo/thP2KkxQUltC+RS36dG6I18bzlJfDiN4tkFeQJzhUSDbsp/bkyJXnhEcno61ZgcUTu+G58yJFJaWYt6qLhroqZ+8JR9eSsd1YG3KH7LxCmtXRQ1+3EucfCYbcgmGd2Hnx0b98nn9f/9PNTv/Gxpx+JYjIQ5uZcPK5aG6Gt2hMyJPv6MjP3okVVcM6PAiPJiu/kOaGemTnFhCZnI6ulgYtDPW4+uojigryWHZrzbbL4hcyqWsrTt1/Q0ZuAY0NddGtqMHNV59QVlRgwRAzVh+7JTrbDiZExqXy8lMCmhVUWDC8E/77rlBWXs7AjiZkZuVx49lHlBUVcJ/elxV7rpKRnU+j2rqM7N4Cv+1CADi2nyklxaUcuygmPG5z+3Hh5lsevBAMhGVLh7L1wB3eRoj96TLH4azZfk32ernLCLbtv82jZ1Goqijh7zqcW3cjOH5K6JEclwxAXl4O74AzQm8zoAXDB7fCyeUoCQkZ6OlVwtdnFLdvh7Njh5jCzJ/fi/Yd6uHheowoyR3gFzCG3JwCnG2DKSgoxrRtHRbbD+BdWDy+LsJS2W9wS8ZP7Ux4WDw+DkcpKyun18AWTJplTmpyNs5W+4RQr7kBdl4jkJeXY73fGR7fiRD6mjUTqGmkw5f4dFzn7RGCwPZ1sZaSx18/jiRgqYDEDZ7QgRGWgswZ+T4B73l7xapoQHMsl4hVU2lJKX5We/n4Jg4tHXW8dk6X2chTEzNxnbxFZFK1r4tN4HjZ1KWooBiPqVuFs6qmNh67ZqH23YX98/sEvKdtEV9vaGss/8INKS0pxW/6Fj69jkW7miaeh6zQ+EVo575lp7gqJaE77ZpD7ca/vjHHhCfgOX6tiHUY1oYpbiP/+HdSmF+Ex+ggUhPSMWxUE5eDC/6RoPjji88EWG4AYMi8vgye8/M64/+yDvmf4NPLz1SqqonNtjk/3WhllvLYWCIiIv620Vm1ahVRUVFMmzbtt8eE3XvPQjNnEiOTqFFXl6A73jT4B7qZf1r7vI+xz1vwYuasnES/af+6QyU/pwDnoSuIeBqJVtWK+J2zp3qtX2uPQDQeWxwPcW7ndbHO3TGbdn1/HeXx4WU0LqNXi7VUj8Ys3Tz9Jyt6Zmo2jiODSPycgl7tqvgesaZipW8QzfLycnZ4hXBh/x3k5eWw2ziVVt/FTuTlFOAyYaMsBsL34Dy0qwqIZllZGSsX7+fh1xiIHTOpYyLcb5lpuThO2kxSXDo1a1XBZ9cMmcNxb9BFTu+7KxqaZRa0lrLvTu69w751oomY7TQQ8wEtROCn10nuXH4j4KRrJmDcWJ/4mDSc5giRskkLQxyXWyAnL0eAy3Ge3Be6Q+8146lVtxoHd94i5KCQNNi4DqF9Z2MO77vLUcmZuthhEO07GbNmxXlufc3F8h9FTf3KONgeIiE+A70alfBbPoaXr2JYHiCa3pGj2jJ0mCnOrkf5FCkIygH+Fly5Hsbeg9LUZ35vqlSpiLPXCcHW6dyAUcPasMTtiEyyYDO3F3Y+x0lOzaGWgQ5OC/rhEHCS5LQcaunrYDOjJ/bLT5KVU0Dj+npMGNIWp9VnRP5Ve2NqG+jIookWjuvCrecfefo2lgqqyjhM7YnPrkvCMNOgJo3qVGe/lPtoPboruy8+ISUzl7o1dGjfxIhD18XQYP4QM7aFPuRRROwfzu7f1/90sxMa9gGA/ibGnHv1nvJy6Nu4PqGvwykpK6Nbg9rcDY8SKyqjGsSmZvIlK4daVbXRVlPl+ecEKqqq0L95Q47fFyuu2b3ase3yQ9GktG7Eo/cxxKVmYVBFiw7GhoTcFY6pRcO6sOHUPQqKS+hoYoSyvCI3X4omyH5cd5YfuEZBUQkdm9TCoGoljl8XieYu03qz48R94pIyqVFVi/kWnXHbeE6cZO2MMTasyoaDkmV8gjmRMSmcuy6sgF7WAwm9/oY7jz+irKyIv/1Qjp95xt3Hn8Rrp2FcvvGWC1clhoLdYOLjM9i4/ToA82Z0o17tqji5H6OoqASz9vWYP6sHPn6nef8+AU1NNZb5juZzZDIrlos/vtEW7Rgy1JSVAWd59lSImH2WWaBWQRknm0NkpOdSt74urt4jSErMxNX2kCB9dqjHAtv+fEnIxHXRAQoLBHfC2mmgIJFa7ycpMZOahjp4BI5DRVWJ4B03OX/ssSQ8HkXDZgbkZOXjMncP6ak51DaujvOqcSgpKRIbmYzn/L2UFJfSoYcJM+0HIicnR0piJq7Td8hG3IuXWSAvLwIA17ke5/GN96KR2jYNPUk7kJ9biNvUraQkZKBftxouW6ahrCKagbKyMlYu2kfYo0+oa6rhuWc2lb9j0WQkZ+M2YYNwirSvx+LVE39YTZWXl7Pe7iCPr7xBRU0J933zqW74MzTw8qG77F8miKtWgRMw7f5r4m1mSjYuIwMFF6VtXWz/xnVTXl5O4OxthD+NRFNHA6/ji9H47sb0d5WVloPHqJUU5gmL+ewVE//l9/479TkshgNSivnc1VPR1v1xsvV1ZdW9e3eMjIx4/PjxHydUCgoKjBw58o8TnbsnH2Hbw4Os1GwatKlL0B0fatbT+7/5hv5S5eXl7PE4wh4PMXWc7jeOYQv+zML5vgpyC3AZtoKw+xFoVKqA3xm730aGfK19vidkeVfW66fSZfivV2XR7+NxGh5IblY+TTrUx+UX08fc7HycLdYQ/T6BKnqV8Du26Ie/B4BDQRc4ukFMjResGE+ngd9iIArzi/Cw3EL4i2g0tdXxOTiX6tLfYXl5OeudjnL95FMUFOVx2mxJE2kl/TXGJeZDElX0tPDZO1MW+nl8x00OfqUduw2VhfleOvGETb5Cezdhfg8Gj+8obPQrLxAqBX7aL7egRbu6pCZn4zR7F+kpOdQ21sVTgpOuX3aWm5feoKiogNuKMTRqasCZY4/ZvVGseubY9KVn/+acP/WM7RIHbKZVT3oPaM6Ozde+xUC4DcWkiT7ODof59DGJypXVWbZyLHGxabIYiF69mzB1alc8vE58B3G14OWbWNZvFp976qTONGtigJ3rUTHBaVWLeTO6s9TzKMmpORgZ6OBuOwjX5aeJiU9Ht2pFvGwH4776rHhdpSKu1gNwDjojGp+albGa1BWHoFPkFxbTrpkRXdrWZ8VuSUc6uC2fEtK48eQjSooKOE3vReChG5LmtCo92hizIURsJOYM7cjpe2+JScqgho4mg8xM2HxWYs8NaMeR2y9Jzc6jnt7P179/pf6nm52SsjK61qvFnYgoikpK6VjXkCeRceQVFdPKsAafkzJIzcmnXjUdFMrlZUnlLQyqc+NtJEoKCozv1EIGDZzavTUHbj0XTUoDI1IzcnkXl4y2hhqjOjZlR6iY9swbaMaBq0/JyMmnoUE1mtbS49jNl8jJgf247mwMuSMyQYx06dGqvkypbm3Rlcv33hP26QtaGqo4T+uNx8bzokNuWJOBnRvju1mykPc3RUNVmR1HJYbN9J5ExaRyIlSMMd0W9udFWBwnL4rXrtb9ifqcwu5g0f3bzO2NmooifiulfKuhpvQ0N8HORer+G+jhbDeIjZuucu/+N+x4cXEpbm7HBenTvBEzZnRj146bXL74GnkFOVw9h2NoqIOb3WGZ2M57+RiKi0txWnxQxpNw9h5Bbm4hzgv3i3FtfV2c/EYhB/jaH+HDuwS0tNXxXjMBzUoVuHbuBbvWiAvk7KX96WDeiOLiErwXHyD6YxI61SriuX4S6hqqZKTl4DJrF9mZ+TRoZsDS5RYoKMiLFdWMHTK7qeuGybKm5fDGq1w49EAwbVaPl0EDBUtnDx9fx6Klo4HnrpkyESTALv8z3Dz9DEUlBZy3TsOowbebYGF+ER5TNvElJpUatavismPmTzeHY+svcW73TeTk5LDfPIMGUobP9/Xi9juCJHfWaOt+9Jv0a9FwUUERHmNXy+zC7oes/8jSATi84gzXD98Tq4sDC/44AfhrlZaW4TdhDYmRSejVqYbj/oV/hBT+p1VWVkbgjE2UFJfSfqAp5hYdf/j4X1dWZWVlLF269Lfuq79bXZWXl3NkxSk8RiynqKCYtv1bsvyqO9p/0L38J1VeXs4ut8Oyic6MZeMZveTnpPDfVUFeIW4jV8mCPX1OLf2t5uZrHV1znn1+Akg5d/kE+vxGkJ74ORnH4atk6eQeB61+Yu4U5hfhPn49Ec8/o6Wjge+xRT817iFbrrJHatpnuI+gz3dOxZLiUvzm7uLlvQ+oaajgtW8ORsZ6sp/NDt/TnNsvpjO2QRNo001QwosKi/GavZvwlzEixmX3THSllV3okUds9RMNzeTFfRk4XuR53bn0hiAn8XMeOsmMcXN7AHBo63WOSanh1u7DMOvRmOzMPJxm7yIhVmgEfTZORkNTjV0brnD2mGiml3oNx7RDPa5ffM2679bxQ8e04+bVMFZL/89iYkdGjuvAkQP3OCTpCBfa9qN9J2M8XY/z+lUs6hoq+K8YS05OIc7OR4VTtkM9Fi3qS8CKszx89AkVFUX8vEeR8CXzh4zCnt1NWOJ8mOycAkwa1sDBpj+OviHExKWjW1UTP+dh+K8P5f3HL2hpquHvOIzAbZd5/zUGwnYIvptCiZFiIBzn9sF5zRkx4amnx8i+rfDaHCqLgSgtL+OUFAPhOLUn207dJz45E/1qWlj0bsnKQ9cBGN/LlAfvYngfk4R2RTUm9DZldYj4OY/t1oJrLz7KhgYOY/4/zs4/rhb6ukQkppJVUESTGrokpmeTkpNHvWo6lJWWE5mSTnUtDeroaPMoMhY1ZSX6N2vAycci6Xxat9bsuCwanWHtGnPlRQTpOfk00q9G5Qpq3H8fjaqyIrP7tGedBA0c160lN158JDY5kxo6mgzp0Jgtp6WIiOGdCbn5ktjkTGpW0cKyXxv894gnjvF9TIlNyJAFpXnO7sfKPVdlgKY5ozvhuvYsJaVldG9nTOsmRizbIkEAh7VDQ1WZjXslce+UbhQWlnyDBk7rjrKSIoEbxfFTxnSgScPvoIFmxlhO6IST+zESEgU00NdjBCdPP+Pk6afIyYGj/UB0q2ni6HCY3FwhmrOzH0jo+Rfs3yM690U2/TBtXZvlPqd4/TIGdQ0VfFeMpWJFVdyWBhMXk0a16lp4rRiDgqI8nrbBxESlUKWaJl5B46igrsz6gHOS7VwJz1XjqGFQmVdPogh0FcyZYRM6Mnhse0EtdT8h26l7rp9E1epaFBYU4zlvL4kxaVTX18Z9wyRU1ZTFqsh6P5/eJVBJRwOv7VNlTcv108/YJXEsZrsNoUOvb0ycrV4neHD5DUoqirhtm4bed1ENoQfvcUR6Ql24fCwtzL6JZMvKygi03su7J5FoVKqAx965P3FK7px9xjZ3YVGf6TXql3yS+E9f8Jq4Qaykhrb+LUunvLycIKudvLkXgbpWBbyOLqbSX/Kz/lr3zz1jp5uYIMxZOYHmXX6dYP272uN+mCeXXqKipozrYZvfclj+r+rC9quE3QunQkU1rNZP/2li86+srL7W362u8rLz8bIIZMvSvYI/Nb0HnifsUFP/tRj8P63y8nJ2OB/ioJ84z2ctn/iPojWKCorwtFjN8+thqGmo4nPSloZt/rxmO7X5Mlsdhc5qittIhszp9cvjkuPScBgaSEp8OoYNa+B91Br1v6xZiwqL8bbcxKu74VTQUMU7eCGGxj9Ov0IP3GGLq4RksB3I8Nk9ZB8rLRUT0geXXqOsooT7zpkYSw8cAIfWXeKoNL1Y4D+aroMFd6qkuBQ/q308vxuBmroKXjtnyNARt86/ZI2EgBgxrQsWswU64tndD/jbHBTTkuGmzLDrj5ycHKcO3GP3WvH3PGtpf3oPM5WZIaI+JAnh8WZLKlepyJE9dzi0Q4K0Ogyga+8mPLwTQYBriDC2jGjNpFnmPH7wEX83YR3vN6QlU+d05/zpZ2yRHKPTZnejz4AWBPie5uGDj6ioKOLjPxolJQUc7IPJzS2keXNDnF2GsGnzNa5JzlgPt+EUl5bh4XtSOGN7NsFiZFuWOB8mJTWH2kZV8HIagtfKs7z/IBqbANcRbNx9k6dfcxGdhrE9+Fsuop/9UNbuu0G4pP30XDgAr40XSE7LoXZNHWaM7ojreglc26Y+NXS12HtW3B9tJnbj2I1XfIxLpUoldWYO68gySaYxyKwxsamZPAmPRV1VmdmDOxB4/KbYjrQzISwmiYj4FKpoVqBv24bM2Xj8j+ft7+p/utnJyy8hITMbo8qVUJSTIzIlHV1NDfS1NHkRLVZUnevX4pIEDRzfsTl7bwnBlWVXUw7cfE5xaSnmjevwMT71GzSwrgFnH79DXk4O60GdWX/qjgwaGJ+cyesoERExs397Ag8LAfK4ni15ERHH608SNHCMOZ47LlJSWkbPNsZoq6ty7Ko0hZnZl71nHvMpVkADnab3wXXNWXLyCmneoCZj+pviuuo0pWXl9OnciLZNDfFZK27WFgNNqV+rKn4SI2HMkNY0bVgT9wDB1unbvTGD+zTHzvUoOTmFNGlUE/tF/fANOMPb9wloVlRlmdconj+PZstWaRQ7uwetTWvj5HiEpKQsDAwq4+U1khfPo1m1UnzdCZPM6DegBTs2X+P6lTCR3eI7EsNaVVjudZIw6YnFJ3AslXU0CPQ8xSvJeum9ehxVqmlydO8d2ZOSnfcIGjbVJyYqGQ/rA0Kk3MOEGTZCjHpg0zUun3qGvII8jivGULdhDcrKylhhf5i3z6PR0FTFc/MUKuloiNgFr1OyFZX75iky0nHYkygCbYWuZ9jULgye9E0EenLnTU5KuqQlgeN/ICA/vxPOWgfxvnHWfek58sfR/96AM9w8+US4O7bP/Cno8MPLaAKk1PFB08wZOqsHf63czDzcxq4lJyOPBqa1WbLh9zlWx9eFckUi2Drvm49Roz9TfD+/jWPZlA0CrT+9O4Nm9vzj8X+tOycfcdBfTAQWbZ5J3eZ/niD8p1VUUMReT9GYTfawoJrBz6Pu+vXr//TzkZOT+6kp+rvV1ee3scxv58Cto/dRVFJgwfrpWG+e9V+bWpWXl7PN4QDBAcI5NydwMiOs/3VHSlFhMR4Wq3lyWQAHvU8sweQXBOPv68y2q6y3EbZxC5sBjFny63T21IQM7IesJCEqGb1aVfE7vhitv0RhlBSX4Dd9C48uv0algjKeB62o3+LH8+H6icestjkAwIg5PRm3uN8P3/86+2Cun3iCgqI8jpstadbh27//5M6b7PlKQHYZQt+xYjpTWlrGyiWHuH/5DcoqirhtscS4mXAAPrrxjgCpoek7ui3T7AYgJyfH22ef8bTaKwv5XegxDHl5eS6fesYGaQI0fnY3hk00E24s6wO8exVLRS01fDZNprq+NueOP2bbagEMnWrVkwEj2vDq6WdZ3pV5nybMW9qfsFexeNiLvKsu3RuxwLY/t66/IyhAfC+jx3XAYkJH1gaFcu1qGAoK8rh5jqCarhZLlx4iIyOP+vWr4+U9kgOH7ssePB3sBqKppYaTh2DrmHWoz5wZ3bBzO0ZcfAbVdbVY5jGCwE2XefoyGjU1JZa5jODgqUfcfBCBspLIQTxx8QW3HgoooI/tYPaeeMizMEFD9lk8iBW7rhKdkE71KpostuyOy/pzgv1mYkCbpoasPywmM3NGmXHz5SdefhAxRtZjuuK/74oQJ7eoSxlw/bnQo1qN6ERQyC3xkN28Lmm5eTz/FE9FNRVGm7dgc+gDCopL/nju/q7+p5udiGQBDaxd+Rs0sH0tA268i0RRQZ7hrUw4+kBocaZ0NmXPDdHoDGtjQujTcLLzC2lmpAfl5byKFg3MyPZN2H1ViK3mD+jIrouPyCkoolW9mmipqXBD0uUsGWXOyuAbopkxrU9JcSk3pF+48+ReLNtzRaynjGti1rQ2G45INuxx5tx59oknYSI/xHv+QJZtu8iX1GwMa2hjY9kdp5WnyCsoxrSJIeMHtcYx4KQgVbavz4DuTXH0PymEaR2NGd6vJXaex8gvKMa0uSHzpnXDweO4zHLu7TKULTtvcuf+B2FXdB9Benou/gHiD3/4sNYMG2KKl+cJPnz4QiXtCvj6jSY5KQsvN+Gy6tm7CZOnduHsyacE75PSfR0G0tK0Njs3XeXmVSm4zn80RrWrsmfzda59JSEvG03terrcuvyGbavF5Gnm4j6YdW9ERlourvP2kpOVT8NmBiz1HYm8vDxXTj+XJQ7PdxpEGym+YefKUG6HvhYNxtqJGNQRK5kTu25x9sA9Mf5eOVa2okqMScVztmBxdOjVmGkO3y74D6+8YYuHeMq2tBtIl0HfdAWxH7/gM3M7pSVlmA8xZYLNtws3CIv5oSDRbC5YPo5mZj/aotO+ZOI+Yb0AAnYzYbaPxU835NLSMvymbSEmPJEqNbRx3TfvtyupJ1desc1JPKHP8htLq79JsM5Ky8FtZCB52QU069yQuSv/mc4m5n08yyVB8rAF/f6RS+jfrXPbrpASl0ZVAx0G/kYAra+vz5YtW2Q/Szk5OQICAti6dSsKCqJR+bvV1Y3Dd5nf1p6Yd3FUqVmZlTc8GTSnz38tvbysrIwNi3ZzZKVY7cxfbckwq35/865vVVRYjNfYNTy++BKVCsp4n1hCk9+4qL7WuR3XWGst1qIjF/bD0n3UL7+/9KRM7IeuIO7jF6oZ6OB/cslP7r/SklICZu/g3nkpv23fPJp0+LHRuh/6khXzd4nGelJnprkOk3298vJyNrsd58LBe8jLy7F07aQfaOOXjjxgk5t40p+wqC/DZ3STvW+d8zFZXp3T+kk07yDAni8ffMR73h7hmuzfjPmew5GTk+PTuwRcZ++iIK+IVmb1xXpbUYF7V8MIlJg5Qyd0ZMLcHmISbHeY5w/F5Nh7wyRq1dPlxsXXrJF0PqMnd8JiSmci3iXguvggRYUltO1UH1v3oUR+/IKzzUEBPG1fFzv3YTx7HImfBAjsP7gl0+d2Z+f2G5w5JRyt9s6DMW6ox1Lbg7KHSv9lFpw7/4J9sryrPtStWw07lyPk5RXRsrkhtov64eQZwodPSVLe1Si27b/N7QeikfFzGsaVO+84L2k13RYP5N6zT5yT8q/cFw/k/K233H7yCWUlRbwXD2LLkTuERyWhramG8+w+eGw6L0s0H9C1Ccslzc74/qZExKVw71UUqsqKLJ3YnYCDV8ktKMK0gT7Vq2px5p5gyC0c1ZmNZ+4JvpyxPspKCtwJixKMuj5t2HheSCxGm/3rHKnv6/8Vzc6GDRuoXbs2qqqqmJqacuvWrT8ef+zYMUxMTFBRUcHExISQkJB/6+uqKSrQqY4RN8KjUFKQZ3CzRpx6JlZUEzu0ZN/tb9DAo/dfUVxaStdGtXkXk0xCRjZGVSpRv7oON94I/c6sXu3ZKIV5TjBvSeij9yRl5FC7emXaNzDk2C0hMrYdbc7GE3fJyS+ked0aNDKoxpFrYmrjOKknW0/cIyk9h1p6lZnUtzX+O8XodGyfVmRl53P+9lshOJ43gJ3H7xPxWdj5vKwG4r7mHCnpudQxqILt9B7Y+58gJ7eQpg1qMG+yOXY+x8nJLaRJwxpYT++Bvddx0tJzqW1UBTfbwfitOEv4hy9U0qpAgNdILl55wwnpicFp6UAqaVXA1e07GufMbqxdc5GHD8We2Md7FMpKijjZC5BV8xaG2CwdwOOHn1gjTXkmTetCr77NOHfyKcFfqccOA2lhWouLp59zQMKrL3QcSKt2dXj3KpYA6WIzxKIdw8d1EE9VUjaWnr427qvHo6KqxKvHkaySjh1l2Zn+o8RE5VzwA45KU5hF3iNkLJ27l16z1U/sy6fZ9cest7iQ5mbl4zZ9B5mpudRtXJOlq8bJXCWRb+Pxn79HhqYfNffb1CUzLQfXSZvJycynkWktFq0c98ON4vWDD6y2EfwXiwV96DWmww/nZFFBMZ6TNpASn45+PV0ct8385cRgh/tRHl95jYqaMm775/0UJ/G14j5+wXfKRkGJndj5t6uIr1VaWob/5A0yXY/Tfqt/5LzKy87HY9RK8rLzadq5ETP+Jofq/6JKS0o5FiiagbH2w1BWUfrBcfV9TZs2jd69RTNUXl6OnZ0dAFFRUVy7du23q6vcrDwCZ2zCe8wqCnILadGtMRueBPyR3/Mff1+lZayauYWT6y8gJyfHgvXT/2ij/2sVFRThNXYND88/F5ya4zY07dTwj++5sPsGqyVo5PD5fZju/XOjDSKk1n7ISmLCBc8p4PSSH2B/IK1qF+zm5snH4gFj1xxa/mUV+vTGW3xmbKO0pIweI9sy7zv6cXl5Obv8T3Nyh5h+Lwoc/0Ow560zzwmyFU388BnmsmDPrwnmF4IfCDdX0Hjadhf6nfcvonGftVPkV3VvhO2KsSgoyBMbmYzjtO0i2LOlES5rJqCsrMiz+x/xU/OwoAAAIABJREFUtQ2mrLSMXkNaMdO2n8iFcz/BvWvvUFJWxH3NBBo00efRnQgCXI6Lpm1Ea6Za9SQ6KgUnq33k5RbStKURzn6j+JKQgaP1AcEaa2aAq98oIt4n4OEokse7djdhwZJ+HD38kANfdTuL+9G2XV0c7IOJiUmjWjVNApaP5d79CDZK67vpU7vSpk0dbByDvyFAHAbjHXD6Oz7aSELOPSP0WpjMhPLqfTyHT4sHdPv5fYmKSyVYem03tw9P3sRwQQr69FjQn8Ohz3j+ThD63ecPwG/H5R/yrny2XxTrqS6NyS0s5uKD9ygoyGM/qSdrj90iM6cAk1q6tGpgwMErYoBgNbITey49EVpVw2roV6vExafhKMrLM3NAezZeuCeo/i2Nqaz57xHX/zuBNP+ggoODsba2ZsOGDZiZmbF582b69etHWFgYhoaGPx1/7949LCws8PLyYtiwYYSEhDB69Ghu375Nu3bt/tHXHtC0ISdeiOZmTJtm7JeIyOPaNyf43kvKysvp28yYW2GfyMovpKlBdYqLSnkXl0xljQr0aW7M1ssCqmfVvyObzt2jpKyMPi2N+RCbItszjunSHP9DYuUzb7AZx66/IjEtGyNdbYaYNcZrl5SRNKIzoXffERGTQmXNCtiO74bTujNiKtO6HnVq6uC7TUw3llr24MajCB68lCzlNkNYu+cGkTGpVNHWwGfxQDyCzpKYnIW+njZuiwbgEnBKel0JryWD8Qo8Q2R0CjqV1QlwGc6Ovbe490g4s3zdhhPx4Qsbv66qpnejRVND5i3YIwTKDWvgaD+IY0cfcforS8d5CIZGOiyy2kdKcjaGhjq4e48g5nMK3s7HZCydCZadefzgI2uk0fOEaV3o1b85zx9FEuQjblpjLDvRZ3BLEuPScVt8QFycOhszy6avcDi5HCfseTQaFVXxXDeRSpXViY1KwWPhfkpKSunUqwmW1uKm9vROBOulINAJ83vSXXJbRLyOJUCKe+g/tj3DpwrxZWlJKb5We4mO+IKOribuW6fKxJZpSVm4WW4hP7eQ5h3rM9/n21NvcVEJ3jO2k/BZEFtdt8/4IaX8S3QqXpZbKCkupdPAlkyy/1FzUV5ezirrPd90PPvn/9JifvHAHY5JgX42G6ZSv0WtX57fedn5uFsEyZxXVkG/joz4vvZ6HePJ5VeiiTpsTaWqf9b1/LXWWe0g+m0cOjW0cT648Lfk5v/LenrlFYlRyWhVqUivyeZs375dJkSWk5NjxIgRNGvWjPz8fJKSkggNDZW9t6ysjFmzZhEVFYW5uflvP//KaRtIik5BTk6O0baDsfQe+18VWxcXlbBs8jpuHhUogSXb59BzfOd/+f2F+UV4jlktJjpqyngcW0yLriZ/fE/o3psEzd8JwNC5vZnp9+sg0Ky0HByGruTzu3h09Cqx7JQN1Y1+jBgpKytjrc1+rkgoBIdtM2nbq+kPx7y8E47H5E2UFJVgNqAFi4J+dCIeXB3K4fXiQc/K3+KHVfD9S69ZtkA8cPQd057pzkNk/9a9QaGESA821stG07m/YDp9ehuP89Tt5OcW0aJjPRzXTEBRSYHE2DTsLbeRmZZL3UY18Ng0GdUKyrx59hn3BXsFJb2HCdbugpK+3vcMl08/F4iH5RY0b1Obl0+i8LINpqSkFPM+TZhvN4AvCZk4zNsjRUPo4RE4lszMPOwXCNNF3fq6eK0YQ2x0Kk5LDlFQUEyb9nWxcx3ChXMv2CxNp6fP6kbP3k1wsA8mPDwRLS01AgLGEPY2npWrpMiGUW3p07sJVksOkJKSg5GhDn4eIwhcf4lHTwVGZJnHSG7ci+DYGYERcVjYj8SULLYdkPhsU7uRW1DElgNi/bTAshvxyZkcOS8aEofZfbjyMJy7zz6hoqyI14IBrDl4g9gvGehV1WSuRWdcNp6V3a8qaVVg97lH4gF/fHe2n7vPl/QcautVplebBgQdE0ON2YM6EHL7NYnp2dSqXplWxvrsuyoesGcP7MDWiw8pLC6ls0ktErOyOffo5R/P49/V/9+bncDAQKZNm8b06dMBCAoKIjQ0lI0bN+Ln5/fT8UFBQfTq1QsHBwcAHBwcuHHjBkFBQRw8ePCXX6OwsJDCwkLZ66ysLABCnoYhp6zC6NZNOfLglRCONW/IxRfh5BcV066uAbEpGcSlZ6NfWYtaOtqcefIWVSVFJnZpydpz4iSZ0bMtB64/I6egCNO6NVGWl+fh+xjUlJWYN8gM/4Oi8x7VpTnP3sfJFOdzBnfEbbuYdozu1oLP8Wncf/MZVWVF3Kf3xXf7JbJyC2lSV4+BnZpgv1rcsCcPbktGZj6nrwmVu5fVQE5eesmT19FUUFUiYOkQNuy5KVPQL3MYyuqtV3n34QtaFdVY5jScbftu8eTFt33t9dvhnDwr0ZdtBwrXk2QfHzqoFUMGtsRm6SHB0qmuhbfnCB48+MiWLVIzNLcn7dvVw8XpCB+ldZZPgAWFBSU42x4SU56WRiyyGyBAgo5HKSstp0ffpkyc1oXoyGTZTrtrr8ZMnt2d7Kx8XBbuJyMtl3oN9HDwHYmCgjy71l3mRuhrFBTlcQkci0HtqmRn5uE2fw85Wfk0aKqPrbTSiv6YhO+iAwImOLgl4+YKJX9KYiYes3dRWFBMq07GzHUVF8vy8nI2epzgqURRdd86VRb6WVhQhOeM7STHZ1CzTlWcNlnKUpfLy8tZ73iY1w8+oqahgseuWTJrKwjrq/ukjWSl5VCvmQE2ayb/pB85vOYC144+EBfRHbN+ieEPe/CBtYuElmL80kF0Gdr6l+d8WVkZy2dsIVq6Ibnst/rJ6fXXun/uGQeXfc28mva3Tp2/1rXgu1zef0ug6vcv/Mn2/d+ql9dFPl2HQf8PeWcZFuW69v2fdKeAIqgoYqCiKLZid6GoKHZiByDdjd3d3e2yuxULA8UCJUS6e94P1zgulrGW+3n23u9xPOdx+GHwnmGGue77/l/n+Y/mpKZ/qaC4kkgkHDx4kIMHD/70+WVlZbx58+a70VVBbgEb3HZxQmqFX8XMEJfN07Cy/fUY8H9aRQXFBA5dzP0zj1FUUsBj16zfckYuzC/Cf8gSHl16Ljgyh53/EdBZMm0zEomE/lO64hQx4odAJyczD89Bi3n//BO6RtqEH3PBuFbFdSqRSFjttoc/doi1MH/NeNr2aVrhmGd33+A3ao1QsXVtiNua8RXA48G1F9mxUGyGJvvZ0Xvkt0ytqGsxhEzdIsbEA5sxI2yo7L3uW32RPVIS8TR/O7oNtgHg49sUPMduEK7n1jWkSktF0lKy8Ri/ibTPIsE8eOM4NLRUiX2RgM+0bRQVlNCsbR3cI4chJy/HxiVnObn/nhh5Bw+iVcd6xER/wnfOLoqKSmjRzgLXgEFkpOXiPm07qSk5VDerTMjykRQVleA2cyefk7Mwqa5H6NIRpKfn4jF3N7k5hVg2NsEneDDXr8awVNoFHza8FYOHtMDH56As2DM8woGkz1mEhh8XI69eVoxwaM2c+XtITBKcnMjgoWzYdp2rN1+L6CAfO168TpKpbedM6UI5sHSDuDeNG9YaTU0VgqXczjH2rZBUQqbmnTuuE8/eJnFe6obsP703W47f4018Kvra6riO7YLfWsHZsWlQnfq1q7DqoFS15mDLoWtPiP+cSVV9Lew7NWHBPnHfGNXNmsvRb0WagJ4mXa3rsOGM8B+a2LMlO648JK+oGOva1SiWlPPkQxIaf6Mg/Vn9V8dYxcXFREVFydrKX6t79+7cunXrh8+5ffv2d8f36NHjp8cDhIWFoa2tLftnaipIauUSCT0bWnAhOpai0jLamFfnxcfPpOUWYFGlMkpy8jz/lIKOmgpdLGtzMuqlQJvdW7Hu3B3hFNmqIVefvuVzZi61jPRoYmbMqXuCnOxib8vyw9cpLi3DtnEtykvLuPX8A8qKCngM70z4rgvCiblJbSprq3P8+nPkKlXCb2JP1h+6SVJqNiaG2kwf1g7/NaeFJXebetQy1mPtPrGQ5o7tROz7FE5fFfPVwDl9+eOy1EtHUZ5wdzuO/PGYG/fF4zDPgVy5+YrTF58hJ1cJf9f+JH/OYs0mKWiZ0Ik6tQ1lXjqtWtRm+uTORCw4Jc23UiY0eAiJiRmEh4kujJ1dMwYNas6qFee4d0coBoLDhqKjrYbP/H18ScnBtIY+fqH2ZGfl4+28h/z8Yho3rcFcj75kZeTjM0ec8A0am+LiN5CysjKC5+8j/v0XKhtqEbB0BKpqypw79pC9G0Rbe7bvAKxa1KKkpJTAObtJiEvD0FgH/+WjUFZRJCsjD7+p28jLKaSBdQ1mBYnZfGFBMQFOW8UFztwIz+WOsgvt8W03OLVL8Hfcljpi3lDcACUSCUtd9/LqURwa2moEbKkoMT+66Qpn994Rnhirx1WQmJeVlRM5bQsfYkSQoe9WJ1TUKp6wt08/ZmuwIPRODXP4rt0PkJqYQdCYNZQUl9K2nzWObj9X4+yOOM6tkw9RVFLAd/esnwY1fq2k9yksmLAWgP5O3ejs0OaXx/+1UuJTWT59IwDDPexo+Dfjkv/NenpddGcbtq//U8VV3759mT17NlOnfm8yKC8vj7n5t6BWiUTC3dMPmdLEVQZ0+jl1Z/2Thf92oJOXnY9X3zDunxGjp4Cjrr8HdPIK8R20iEeXRLBryDHXvwU6p7dcYfHUTSJyZVIXpi383vEYpEDHbjFvnsSjXVmT8KPO34XUSiQSVrvv4eSWq1SqVIl5K8bS8S++PDEP3+PruJrC/CKsO9bHa+OkCqPS41uusSlYkLHHuPXFbtK3gN2nd94QNHETpcVltO1lhcvib+PlI5uuyVST49360G+0AEhJ8Wl4jNlAVnoe5pbVCNgwHlV1ZTLTc/EYv4nkj+lUra5H6OYJ6Ohp8OHNZ7ymbCU/t4hGzWris2QESkoK7Fp3mUPSCJtZvv3p1NuKt6+T8Zq5g4L8YprYmOETOZTc3ELcp+8gKSGDqtV0CVs5SnBuZu0k4WM6RlW0CV8+ksLCEtxm7xJE47pVCFngwKOHHwgPFQHJ/QZYM26iLSEhx7h/7x0qKoqEhg2lsKgEvwBh79GpY32cJnfC3fcg7z58QU9XnYWhQzlw9AF/nI9GTq4Svm79+JyazUrpNX7SyPZU1teUiVTs+1hTu6YBYaukj3s3paqRtizYc9KwtqRm5XHkgtR92ak7Ry4/5elrQTj2mNiN4I3nZBvzDs1ry4COk10bLj16w+uPX9DXUmNcnxYs2n9VuDa3b8TTuGRiPqagp6mGfYfGMqAzumszjt57TkZeAfVNDNDWUOHOa6FuDhtZMU/wn9Z/tbOTmppKWVkZRkYVdwZGRkYkJyf/8DnJycm/dTyI7s+8efNkj7OzszE1NcWmZjViPqWQkV9I/aoGFBWVCkdkLQ0sjQ05+uAFygryOLZtyuozAhFP6tKCbZdF9EOHBmYkpWYTm5SGvqYag1s3ZNEh0T6dNaAdW8/eF87JNYywNDVizfHbgpczsgurjtyQzS47N6lNwCYxlpg73JYzN17KvHR8J/XEd/VpmZdO/w6WzIsQHCWH3s3QVFVhsTSd1nlCFz4mpHPoDzFW8pndm5jYZA6dEm1I79m9+fw5m407pYh7chd0tFSZ7bYHiQQG9GlCr24Nmem8S+Sp1DbE16M/27bf4MrVGBQU5Aj0H4Siojw+f/J3mDqtK4f23+P4UakawHsAdSyq4O9xgDevk9HRUSNkoYPYpc7ZxZfP2ZhU18c3bAiScgn+LntJTsykqokufguHoagkz5KgYzy+/17Ixpc5UtlQiyf33rEsUFwEHSbZ0n2AtXAzDThG9IP3qKkrE7hyNLqVNSguLiV45k6ZxNxnhZjBl5eXs9B1H2+eJ6Clq47/urEym/kHV2NYHyw6G+Pd+1SQmO9edlZmVuazfhzVzL617R9cfsHGQAFUJvoOxKZzxZvLtrDj3D0XjaKyAr5bpmBgXBF4fIhJJFJ6s+k7viP9xnf8bg0XF5YQPGYNGZ+zqFm/2i+VV3fPPGZnqHg/M5eN+VuJcXFhMcEjlpObmU/9FuZMjhjxy+P/WmVl5USMXUVeVj71Wpjj6PV7mVn/kyoqKOL1fWEO2qh9fcqVS5GTk6sAeOTl5VmzZo2sc9OsWTOmTJlCWVnZd4TkuBcfWeeynftnxEjbsHplnDdOxfo3wjX/1cr4nIlX33DePP6AmpYqwcfcfgs05ucU4DtokfDR0VQh+Kgrlm1+zSk6ufGSjIw8cGo3nCIdfwl0vnrkRBxzoUa9imaEEomEtV77OLHpCpUqVWLu8jF0HVaRkxb7JB5vh5UU5BZi1dYCn81TKox6T++8yRof0YVzmNUdh5nfNrYvo97jN3a9iGLoYonbilGyTcrJnbdYHyIdVc/pzpApAiB9ScrEY8x60j5nUd3ciODNE9HQUiU3uwDviVv4+FYkm4dtnoi+oRaJ8Wl4TNpMdmY+dRuZELBKWFMc2naTnVIjQKf5vek1qDnx77/gMW27zMXdf/FwiopK8ZyxU2aZEb56NKrqyrjN3MGHd1/Qq6xBxIqRyMlVwnnGLlmCedjiEcTEJBHkd0Qm6pg+qzuLF53m+jWRYB4QOBglJQXmue6mqKiUli1qM29OT3yDj/AiJhFNDRUWhg3jwpWXHDgqJN/zZ/ekVFLOglVS/zU7G+rWMcI9VBgR9upsSevmtXALOyICNztZYmVpis8SQbJ26NsMBUU5tkszEF3GdeFK1FvuRsehqqyIr1MPFu64RFpWHuamlRnYpTHBm8W9zLFnM568S+RxbAIaqspMHdSOyD2XKCsvp6dNXZIzc3j8NhENVWXG9GjO0iNirGXfvjGXnokGgpmhLmbG+pyKikFRXp5Rttb477/wyzX9s/qvj7GA704uiUTyS27B7x6vrKyM8g9C+4oKS4hLy6aqjiamOtqcf/YGdWUlelvVZevVKCpVgkmdW7D+nPiih7RuxNlHrwWAMTVCT02VY9EvUFFSYFrPVkQcuAKAYydrLj9+I/xy9LWwa9uIkB1SR9DB7Tl6LVrW0pvQuyUea6QmU92tSUrJ5voj0YUJnt6HxTsu8zkthxpVdZk13JY54YeELM/GnHZNzZgbIsi4jv2bo6elhtc6AQamjbZFUV6e5ZsFEHIa3QF9XXXmeu8HYNjA5rRqVoup83aK4M5mZkyb0AlP/0PExadRubIGYQH2XL36kt3SRFyXeb0wr23EzBnbycoqwNzcCC/vAdy5/YZ10lyWKVO70K5DXdYsO8edm7EoKSkQEDEUoyo6BHsd5PXLJLR11Ahe5ICmlgrh3od5Gf0JDS0VgpaMQEdXnQPbb3D2mHAO9QwbQm2LKiTEpRHkLML1bHs0ZLR0HHVg83XOH3soJOaLhlNTGty3wu8Iz6I+oKahjP+aMehIPV52LD3HzbPRgjC5arTMBTn+zWfCZu4UpOOhLRg88Vs21fVTj9m5WOx6ZoQMqSB7/fjmM2HTtsrIygMndKywxi4duscBKb9m7pJR35kC5mTmETBqleAAtauLU8jQ79apRCJhpesuYh68Q0NHDd9d01HV+LGfS9L7FCInrhPAaWLnn5rA/bnWuOzkzeM4tCtr/jYhGeDAohNEX3+Jiroybttm/Ed4Ol8rNSGd0pIyFJUUqFrLiEqVKrF+/XomTZqERCJBTk7uO3XVhAkT6NGjB2/evMHc3BwTExOyUrPZ7r+fk+vOU15WjoKiPINm92GE92DUtb7nTf1vV+LbZDz7hJH49jPaBlqEnHDHolmtv3+itLLTcvAasJDXUe9Q01Il9Ph86rc0/+Vzjq09z2oXkcc2aEaPn3J0cjLz8Bi4SHR09DWIOO5KzQYVrQskEgnrvfdzbL243sxZOoruwyt2B99Ef8Rz2HLysguwbFkb/+1TK3Q4z+69zQp3Yddg79SF0a7f5PWvnsTjPXodhfnFNG1ngdeasbJ1enb/PVZJRQlDnTozYqYg4aenZOM+ah2fP2VgXEOfsG2T0NZTFzE1kzbz9mUiOvoahG2egFE1XT4nZuA+cbPUBbkKwWvGoKauzMn999ggPf/HzuzKQMfWJH1Kx33qNrIy8jCvV5WgZY5IJOAzZzdvXyejo6dO+CrBJfScu5vXL0WIZ8TykaipK+M8YwfJiZkYV9MlfKkjHz+m4ed1UAg/2lvgMr8Pa9dc4OxZ0Z3x9hmIfmUN5jrvFpSAxqZ4e/YjdMFJoh7FoaKiSETwEO4//MCWXaL7NHNyZ3R01PAMPSqifXpa0balOc6BB8U9pHUd+nRthHOQ9HHLOnRsUxf3BceEx02nhphU1WHBZqm7tEM7nr/7zJX7InPRe0oPVu6/ISYQRjqM6mtDwKazlEskDOzQkKT0bG49EyqsOUM7sGjfFdEkaGxGCeXckiqtJvdpybJjNyiXSOhlU4/HcYnEf8mkqq4mzS1M2H87GrlKlRjT2ZrNlx5QVJD/y3X9s/qvjrEqV66MvLz8d12ZlJSU77o3X6tKlSq/dfyvKjohBU0VZWz/5KUzum1Ttl0TTPSxHZqx8+ojSsrK6GRZizeJqcSnZmKsq0Ubixocu/tCRD/0b8/yY8JLp2vTOqRk5PD0XRKaqspM79+WBXvEjmBYpybEfPgsQ7puIzoTtPmcIHRZm2Osp8Xes4I85jOpB/vPPOKVVN7nP7UXvitPkZ1bSP3aVRg/qDWei0QWSadWFnRqaUHgMhHqNrC7FU0bmBKwWJpf1b0x7VuY4xVylJLSMtq3qsPIIa1w9z9EekYetc0M8HPvx/I1F3j4WJw4YQH2fPyYxmJp6vcoxzZ07tSAgIAjxMenYWCgSUjoED59TCcs6JjgO/VvyuChLThxJIrD+6Vp6D79adDQhK3rLnNDmvHiFz4EYxM9dm28ypVzz2QSc9Oalbl9NYZNUifkKfN60qKdBbnZBfjN2ikk5o1MmBc4CDk5OW5dfMEWqZ+Fk1sfmrcVIOTAxmtcOPpQgKUlI6gh9bC5dOwhe9dIjceCB9PQRvjiZGfk4T/pW0TEdKkUFeDt808smif8PwZOsJV5eADkZOThP1bkYVm2qMW0kIoS3dgn8RWUV50G2VRYf2Vl5URM2UjS+y8YmurjuWnyD4HC6S1XObfzhhiRbZqCsdmPXYyLCooJclwh7dDUxiny75VQl/bc5PSmy2Jst3UqBiY/D4P8Ub2Oesc2PwGgpy0ZSzXzKn/zjP/dMqxeGXkFeUqKS/nyKQ0QYGbQINFdcnd3/6G6ysTEhI4dO6KposV2//2MtZjF8dVnKS8rp+1AGzY+X8KkyFH/EaAT+/A9czr4kfj2M1XMDFl6NeC3gE5aUiauPUJ5HfUOLX0NIk67/y3QObzqrAzoDJnT++dAJyP3G9CprPlToLPR7yBHpOnZsxePoodjRbuBN9Ef8RiyTKzN5mYE7JxWIfjz4sF7LJMqqwZMsGW8V3/Z+4l9+hFvxzUiUqVlbXw3TpB1gy4dfcgyD+GvNHBce8a69qJSpUpkpuXiPno9iXFpGJnoEr5jCnqGWhTkFeE7ZSuvngpvnNBN4zExM+BLchbuEzaTkpSJSc3KhK4bh6a2GueOPmSlVDQxbEIHHCbakpKchdvUbaR9yaFGbUNCV45CUVEBf5e9so1b2MpRGBnrEOC+n2eP41FTVyZsmSP6lTXxmLeH+A+pGBhqErHMkfT0XLzc94uMQBszPHwGsHXrdY4cERvu+W59MTMzwNVtL9nZBdS1qEKA3yAWLT/HTal7fVjAYN5++MLqjeJeM2FUO2rXNsQn4rhIMLcVCebzQw7LEsxH2NngFiZNNLeqycCeTfBafEIY07ayoImlCQu3iO90VH8bvmTlc+q6oEt4TerOtpP3+JCYjqGeBk72bQne8s0XrhQJF6NEcPQ8h44sP3yD/KISmlmYoK2lyoWHsSjIy+HUvw2rTt6itKycjla1+ZSRxeuEVPQ11ejStA77b4sA7jGdmrH9ykNKy8vpZvWvhev+V8GOkpISzZo14/z58xV+fv78edq0+TFnoHXr1t8df+7cuZ8e/6tSkJdjqE1D9t0Rf9AJts3ZejVKAIbmDbjwOJas/EIamhqhKC/P4w/CaHBEOys2Srs903u3YceFKHIKirCqVRVjXS3ZF+k2rBML9l4RvJzGtVBVUuDcPSHD8xvXncW7r5CVV4hlrSr0alWPpbsFF2XakHY8e53EDalbcuisvizbfoVPyZlUqayFj1MPvBadICdPhLBNcWiLR8RR2aJ1HNgCjzDx2MaqBuOHtcE96DBZOQXUq1MFj9k9CYo4wfu4VCrraxAeYM+J0084ffYpcnKV8PMYgLKSAv6BRygrK6dzpwaMGd2OFSvO8zDqAyoqigSHDAHAx/OAOEmbmzFjdnce3n/PSqlCYOzkjth2bsC5U0/Y+9VF2aMvDa2qc+XcM3asF593pnsfmjQ34+3rZMK9DiGRSOgzuDkDHFoKZZTrPj59SMWgija+S0UO1rtXSUR6HBA8A4eW9B/eCoA7l16wdYkAaFM8+9KsnWjjv3wUx1JP0R4fMrkj3QYJYm9pSRmhM7aTJL0oeq0eI9sxZqbmEDhxE0UFxTSzrcfEP6WYl5UK6/rED18wNNHDe/2ECgTgzC85BI1fJyNgjvoBv2Zb6FFZ5pXf9mnfmbEBPL8Tyxp3Qbwf5zvop5lXEomEFXO38fapuCl57Zjxtx2aT7FJLJsp1DcjPAbQrEujXx7/1yrMLyJ8zErKSstoZ9eCHn+TnP7vKEUlRUykTrwfnn2U/dzYWIxY4uLivpOfA6TEf2H1nC2MrDmNHYEHyM3Mo5ZVDRZc9MP/8Px/W7bVX+vRpWhcugSQmZJFbauaLL0WSLU6//x3J39IwblLEB+ef0K/qi4Lz3v/LVDav+QU69wEgB/m0pcJQUN/DnT+xNGJOObyQ6Czwfcgh1bKvbvWAAAgAElEQVSLa/KsRSPpNbqiauzPQKdeMzOC9syQjY4BrhyLYvG8XaIbOaYdU/y/bTbePPuEp+MacrMLsLSpReDWyTJl5PXTT1jkItSUfRxbM9lbAKSczHw8x26QjajCt0/BoKoOhQXF+E/bzouHcWhoqRC6aQJmdauS9iUb90mbSfqUTlUTPcI3jke3sgaXTz9hib8YBw90bM3YmV1J+5KD+9RtfE7MxNhUj7BVYkwVOH8/Tx58QE1didDlIwUp2ecQUXffoayiSMji4VQz0cPTeY8Y7euqE7lsJAUFxbi57CUvt4hGjU0JCLbn4IF77JGGds6e3YNGjU1xnr+H9PQ8apkZEBYylLUbL3PpqvAnC/QeSFpGHotWSEdV9i1obl0T9+DDIsOwhTkj7VviGnyIvPxirBqYMGVke+aHHhG2JPWqMdq+JR6LjlNUXErrpmZ0bluXUGnsg333JsgryrP/nKBDzB/XhUOXnoiNuKYqs0d0JGTreYpKymjb2Ax9HTVO3BT803nDbFl/8g5ZeYU0qGFELRN9jkt9dWYMaMuGM3cpLC6lVb0a5JeU8OS9aBL0a9WAHVfFxn+kbVP23XpKUWkZretWp7rBvyZ8+K+PsebNm8eoUaNo3rw5rVu3Zv369cTHx+Pk5ATA6NGjqVatmkyZNXv2bDp06EBERAQDBgzg2LFjXLhwgRs3bvz273Zs2YTtUkfkYa0ac+jucwpLSmlXtyYfktP5lJ5NNT0tmtQ0Zte1RyjIyTG9Z2uWHBOzRYf2Tbj+9B2J0syObk3qsOig4Ow429uy8eRdkX9V3ZA2ljWI2CW6Ch6OXdhz9iEfU8Qoa/qgtrguPS7Sz20bovynheXr1JNjF6J58ioBDTVlIpz7E7n+AglSuZ//rN54RR4jLSMPM1N9PKb3YH7wYVLTczEz1cd7bm98w47zKTGDKoZahHrZsW7zVZkcMcxvEDExiayThn3OmNKFBvWNmTFzO7m5RTRoUI35Lr05cvgBJ/8kMTcx0WPeLKnEvIY+Pv52JHzKIMhHSMy79mzEiNFtiX4cz9JwMf8dPrYdXXs1JubZJxYGiIvIYMfW9BpoTXpqDn5zdlNYUEyTFrWY5ios2tdG/sFDaWKw/zJH9CprkpGai//MnbIUcyc30e5+/zqZSNd94uLn0JL+jgIAf0nKJGjaNpk54FjnbwS3NQFHeXL7LarqyvitH4+Ovhh3lRSXEuK0RSQkmxngtmJ0BbXIhsCjPLr+ChU1Jfw3T6qgvCotKSNk0ga+JGRQrbYhrqvGfpf8fO3YA/YvE6Bw7rIx1G5k+t36TEvOJHisyHrqYNcc+1k/J+b9sfUq56XdH8+t0zCo9usOTXFRCWGjV1GYV0TjDvVx9PxxzMSvapPnHj69SkTfWJc5ayb924z1vtbXlPI6depUGEvVsDQl7sUnnl59ToteQvXz7t07AHbt2sWePXtYv3499gOG8PTqC24dv8/lPTcpKy0DoI61GcPc7Gg3qIXMXPA/UZf23GDRxLWUFJdi1dES/0POv9VJinuZgEefCNKSMqhqZkj4abe/TS/fGXpUlnU1wm0Ao73tfvi9Zabm4Gm3mHfPPko7Oi7UrP/j0dXXjs7MBY70HlNxbPpXoBO8tyLQuX7yEQtmiciNniPaMDXIXvZ+3r9MxHPEanKz8qnfrCaB2yajKu0G3TwbTfjsXSLSwd6GaQHic+RmF+A1fiPvY5LQNdAkbPtkqpjqCXPFmTt5eu+diI1YPw5zy2pkpufhMWkLCR9SMayqQ/im8VQ20ubGhecs8BaeOX2G2DDFtRdZmfm4T9tGQnwaRlV1iFgzBm1dNUI8DvLg9huUVUSEjXm9qoT7H+H2tdcoKskTGDmM2hZV8HLZw8vnCWhqqRKxdARUgvnOe8jJLqBefWOCw4dy6uQjNktl805Tu9CmrQVz5u2SmQhGhA9jx55bnD4nHW+59aOsvJzQhadkvMuunRowx3sfBQUlWDeuzpSxHZjnf4DM7AIsahkxZ1JnXEMOyx5PG22La8QR8guKsbY0ZXDPJrgvFo76vdo3wMhAi5V7xT1vzsiOXLwfy9PYRDTUlHEd04Ww7RfIKyymeT1TLGoasPmUaATMGdKBHeej+JIpEsyb1zdl23nBJZrWvw1bLzwgt6CIJrWqoqQiz5Xod6goKeBga8X68+I1hrZpzMmoGPKKimlqZkxmQSEbL7/+J6fHd/VfBzvDhg0jLS2NwMBAkpKSaNiwIadPn6ZGDSF7jY+Pr0DEbNOmDXv37sXb2xsfHx9q167Nvn37fttjB+Dw/WeUSuToYmnOvdiPpOfmU8/YAFV5BW7GJaOpqsyglg1ZeVoovWb0asP6M3eFzXXDWqRm5BAtjX6Y0KMFwbvE+GV8zxZcfBBL3OcMjHQ1GdujOd4bhUpgQt+WPHj5kUevhSmTz/huBKw7S0GRsNlub1UL92WibTrdoT0fPqVz9qbIOwmZ3Zc9J6J4EiMFPvMHsmzTJd58+IKuthrh7nYsWHOeNx++oKejRoTXINZuucrTF59QV1Miwncwl6/FcPwPaeyEW1/KyyWELBBgZGA/a/r2ssLVfS8JiRlUqaJNkP8goqLes+YrJ8epC61amRPkf5jXr5LQ1lYlOHwoZWXl+LjulRplmTDXrQ9JCRkEuO+ntLSc9p3qM2ZSR1KSs/B33ktJcRkt21kwYWZXYWfvvJcvn7MwqaGPd8RQFBTlObHvLif2CXb+/FB7aterKrVo30VKUibVaujjuVD4nWSm5+I/dRsF+cVYtaqNk6fopBQWFBM4dZuYw9eriusCB9l6OrnzFqelzsnzl4zArN63UME1vod4du8dapoq+G2aWEF5deHgPZnRmevy0Zj9Zbe73u8gz+68QVVDBd8tU77zyvnwMoHF0uDOwdO7f6dWAWnnaPw6GSF53opxPwUTb5/GyUYSY/3sadLx1+obgC0++2U8HfctU78DY39XMffecHy12Ek6b3RC6wddqf/N+qt3zsiRI2nevDkFBQW8KnhBrCSawIjHRKwMRVFHgZcJ0bLnlpeXM2niJLZOPIxKpW/fRdMujXBwG0jTLo3+7UDtzyWRSNgZfIgdgaLT2H5wS9y2TkdJ5Z9Lal89eIeP3UKyUnOo0aAaYSfc0Df+ueJOIpGw0XsfB5eJ69A4f3scXH6s5kv/nIX7wEXExySia6hF2FHnHwKdtV77ZBydWYtG/hDoeA4VxPe61jUJ/ktH5+rxh0TO3C4M+4a2ZGb4UNm5+eFVEu7DV5GTmU/dJtUJ2u6EmpSndufCc8Jm7hB2EnbNmB02BDk5OZGoPm4jsdGf0NJVJ2zbJEzMDCguLiVk9i4e3oxFWVWRwHVjqWdVnZysfDwmbZYFBYdvGo+RsS53r74izG2/eF/9mzLdsy+5OYV4Tt9O/Lsv6BtoErF2DPqGWkT4HObWlRgUleTxX+iApVV1Foee4OoFaSRO2BAsrUzxddvP00fScdbi4aipKzN35g4RclzbkNDIYVy+/ILVUm+dsePa0717Q+Y475ZdixdGOHDk+EMOHRM0i/lze6GuroyH/2FhuNfZErt+1szx2kd2TiENLKoy16krrsGH+ZKWS01TfTxm9cAj/JhILDfRx2VyV9wWHBPux+ZVGGXXAvfFUsf9FnWob16FRdvFaGyKfVsevfrE3WfCHsV9XFcW7L5MVl4hDWtVwcayOquPig7+tIFtOHzzGQmp2ZgYaNOleR1Zgvnk3i3Zf/0JGbkF1DUxwFBfizMPX6EoL8/oLs3YIAU6A1o04PKLd1JFliESOXgRn4K22vf8239S/3WwAzBt2jSmTZv2w/+7cuXKdz+zt7fH3t7+f/x7cwuLaWZhRnZuIR++ZGCkrUGzmtXYff0xCvJyTOnakmUnRcdoTMdmHLsjpHANTA0x1ddm16VHKMjL4TLYlgX7rohsKZu6pKTlyELN5jt0xH/zWcrKyunRoi5yEjh7J0a4UU7qyYo91/mSkUtNYz0m2bVh3oLDwn3StiEGOuoErBIXJ9dxXYh+lcjZ61LgM68fJy9EcytKmACGu9tx6PQjbksfh3rYcelGDGcuPUdOrhIB8/uTlJTJKqmvgpCYGzF19g5BUG5uxowpnVm4+A+ioz+hriYk5unpuQRLOTl9+jbB3t6GLRuvcv2qUAj4B9tjYKCF2+ydJCVmUsVYB//QIZQUl+Lruo/srAIs6lfF1XcARYUl+M3bQ0Z6HmZ1jHAPHoScXCUWBB4j5tknNLRUCVzqiKaWKg/vvGVNhPDZGDerG227NBDyb/+jvHwizAQDVo5GU1tVmPnN2kVKYibG1fXxWjICBUV5YdLncUCmvPJbO1a2M4y+95a1UgXVGOeetOr6bTx0audN/pCCILcVozH9U25V7NN4Vrh9y7xq07OiSufcntuckAKh+avGfhd2mJedT9CYNcKFt0M9xv8kuHNr0BGe3Y5FTVMFnx0V+Q1/rvycAoJHraKkqISWvZowZG7vv1v23D/3lMMrRFdp3rpJv7xJ/qjKSstYOnUDEomEriM70Lyb1W89/3frr2nlEomEHTt2sGPHju8PzpP++0tJkJBPLvUs69LYtgHdRttSr8W/Nvv/n1RxUQlLJq/jotS4bYhzPyaEDv+psu5HFXUxmsBhyyjMK8LC2oyQ466/BJvl5eWsdt7JiQ3iRuoU4Yjd9B9HaqQmZuA2YCEJbz6jX1WH8GMuP5WXf1VdzVo8kl6jvh9deQ5dTk5GHnWtaxKydybqWj8HOrMXfPsbxL1Kwt1hFdnpedRpbErwDifUNQXQuXfpBSHTtwuPnX5NmRs5DHl5OfJyCvEev4lX0mTzsG2TqFGnCiXFpYTN3c29q69QUlYgYM0YGjarSW52AZ6Tt/D+dTK6+hqEb5yAsak+UbfeEOy8R7x+r0bM8R9IQX4xXjN28PaVODZi7ViMjHVZHHiMq+efo6Agh2/kMJq2MGPFwj84d+oJcvKV8AwahHWLWgR6HSJKKh0PWeiAfmVN5szcwRep8WrEouHcvfuWpdLxv4NDKwYObIaL217i4lKpXFmThZHDOXPhGTulYpG5M7pTpYo2830FubhDGwtGj2jDHK+9ZGTlU6eWIV5ze+MedpSkz1lUq6KDv3NffBedIClFPPaa2ROvJSdJy8zDvIYBTiPa4b74OIVFpbRsXJM21maEbJCGSfe1Ie5zOleiBDnZc0J3Vhy4TlpWHnVMK9OlhQVLD4iO1Pg+Lbnw6C3vk9Ix0tXArkMjlh+V3ke7Nef0gxg+Z+ZS01CXutUNOXpX8IDGd7dh48V7lEsk9Ghiwf23n0jJyqWWoS7aGircjo1HXVkJ735t6RfxD06Uv9T/F2Dnv1WmetoY62jxx6NXqCkrMtimIWvOCvQ5rUdr1p+7S2l5OT2b1uVF3Gc+pGRQRVeTnk3rymRyLoNtWXviDrmFxTSpbYyZgR5rT9xGXq4S3qO6smTfVXILimhc25gW9aoTvEUsHteRnTlx5Tmv4sTc02did7xWnJIFqfVqW585YYcAcOzbHBUlRTYdEAvddWIXPiamc/C0lMw8qxex7z5zQGrx7TWrJ6mpOazbJpXBT+qMno46M1x2CSJxz8b07dmY2a67SUvPxaxmZfw8BrBv/13OnRf+O77eA9DSVGH6tG0UFpZgbV2TWbO6c+HcM3Z/zbdy7U3DRiYsCjtJ9JOPIrQzchiamqr4uOwl/kMqlQ00CYgYhpKSAkFu+3kX+xkdPXUCFjmgpq7M3s3XuHwmGjkpSbladX0S4tIIddkrdm59rRg6XlxI92+6xqWTj2XKK5OalYVSKeAYz6M+oK6pgv+a0bIuzP51l7l26gnyCnJ4rxyFUTVxU09JyJBdMG37NmHo1M6yNfH0zhtZ1s44974ym3mAzLQcgidtoriohBZdLXGcV3Gs9OrhB1a4CX7NSJc+tOpREQhJJBIWzdxGwrsUDKrp4rFh0g9deG+ffsyB5VIwsnLcD80Fv77esllbSXz7GQMTPVzWTvrbm2bG5ywWTloHCD+dVr2b/vL4H9Xh5ad59zQOTT0NJkeO/O3n/279zDunU6dO1KhRAxUVFVRVVSkrKic3LZ/M9CwOn99f4Vg5OTm2Ra2hYZO/73r9uyo7LQd/+0U8uxGDnLwcs1ZOoPfE7wNef1VX9t9mwcR1lJaU0bSzJb57Z6Om+XP7/LKycpbO2My5HdcFMFk+lt7jOv7w2M/xabgPWEiSlIcWftzlOzJ8eXk5q+bv4dRW4aMzZ+n3ZOTYJ/F4Dl1GblbBz4HOjG1iBDWsJbMjh8s6i3HSjk5WWi7mDU0I2TlV1hmNuvaKoGnbKC0po33vxrgsckBeXo783EJ8J24i5nE8mjpqhG6dTK36xpSWlBHuvJc7l16iqKSA36rRWLWsLdRYU7cR+yIRbV01wjaOx9TMgCf33hE491uosEvQYIqLSvCZvYtXzxPQ0lYjfPVoTGrosyLiFOe/gppQe2zamLN+xQVOHpaSin0G0Lp9XcIDjnL7xtdx1lCqmerhPGsnyUmZVDXWIXLxCJ4+iScyQohJ7OyaMcKxNW4e+4mN/YyOjhoLIxy4ces1m7ZJHYcndsTc3Ahnr30UFZXSyqYWUyd2ZI73flkHx39+P3wWnCA+IR3DypoEz+9P8Io/iEtIx1BfE7+5ffBf8QfJX7IxrarLnLEd8Vh6gryCYprUM6FXhwYErJX67nSzIreomD9uipgi93FdWX/sFklp2VQ30mFgx0YyEY5jN2sevP4kM84d0c2aJYfFfWhIByuuPX/Hx1ShUm7RoAZ7rwsj23HdbNh6+QGlZeXYWprxOimVhPRsTPS0MDXS5cqLd6goKtCziQVeB87909OlQv2fBjvt69Zk/4NXyFWqxMSONqw5I4DOaFtrDt2OJqewiCZmxihWkuPBm0+oKysxqVsLIqTujxN6tODUnZckpWdjaqBDv1YNCN4uRllzh9iy98IjElKzqGagzdhezXFfJSTmo3vb8Ck5s6LEfPs3ifnM4R2YE3ZI1kpsb12bWUGi5e3Y3wYjPU3mh4ob8hTH9miqqRCwUIyiJo5oS7UqusyUkloH9WmKbWsLnObuEGGfTWow26krAaHHePM2BV0dNcIC7Hn46AObtohFOXN6N6ysqjNvrpgVm5jo4es3kNcxSSyWRjyMGNmGbj0acWDPHc6eeiLmx4GDqGFmwJql53hwV5gLBiwYhr6BJlvXXBLtXkV5fCOHYVRVh1tXYtiySuw2p8/vTZMWtcjLKcR/9k5ycwqp19iU2VJn47tXY9i6XADFqe59sJaG+h3bcYtzhx8gJ1cJ90UOsnDPu5desG2xGLNM9RlAI2kWVmFBMUFTt5KVlketBsbMifhGzkxJyCDESTizdrJrhr3TNxBUVlpG+NStMg6P67KK1vaZqTkET1xPaXEprXs2Zvi878MaD648x61Tj1BUUsB7y9QfEpKT476waNpmAAY6daVd/2Y/Xb9nt1/jygGpHf/WaWhJ+UY/K4lEwqIp68lMycasoSmTwhx+efyP6nPcF7YHiLU4OWLkb8dJ/Cv1Na38r94527dv/2lg56ZN3b/z0vlvAp2PrxLxtYskITYZNS1VfPbNpdlvevccW32ONS47kUgk2Nq3xGXjlF+6YhcXlRA5YR3Xj95HTl4O1/WT6Dzsx0KOxHefcR+4mJSPaVStaUD4se+zrsrKylnhvJMzO29IDQPH0O0v5pOvHn7Ay2EFedkF1G9uRtDuGRWAzpWjUSyQxjx0G9aSOX/t6AxfRWZqLrUbmhC6e6ps4xJ17RUBk7cIM8EejZi/RBiBFuQV4Ttps5R0rEro1onUbmAsAkjn7+PWhecoKMrju3Ik1m3rkJ9XhM/UbcQ8/YimtiphG8ZT09yI6KgP+M7cKTx82lvgHjGE0tIyfOfs5rk0liZs9Whq1DZkzaIznDokBTUBdrTpWI/Nay5xaI/UbdijH7ZdLVkUeoIrF6XjrJAh1DI3wmXOLpmadcHiEbx+nUxIiHBC7tmrMeMndMTL5wAvXiaiqanCgvBhPHoaz2ppbM/4Ue2wblqTuR57KSgQ1/O507vh7HeA5JQsqlXVIdhzIEFLT/NWSmcI8xjIgvXniX2fgq62GoEu/QhZc5aPSRlUMdDCbUpXfJYLpa+leVWG9LLGd9UpyiUS+rRvgKKiArvPiM/rOqYLu85FyaxTHHs1J2LXRWGwa9uY2MQ0nrwVZoMT+rRkyaFrwiCxVQOi45J4l5yOgbY6XazrsFUamD22a3P23HhMYUkpLetUJzkrl3cp6Rhqq2NZswpnnrxGQV6O/s0bsO/uUxnX7nfr/4sg0P9W7bn5BBBeOlsvR4lcKysLHr9LJDE9GxN9bVrUMuHk/ZfIVarE3IHtWXb0BqXl5fRqXo/45HSeSTk7M/q3IXK3WJDDOzfh+bsknkoNk9wduxC4SUjMOzevQzV9LXb/Ib5o7wk9OHT+icxEMGh6H/xXnSYzp4B6ZkZMGdIWj0XHRavSxpye7evju/iEII91tKS9TW18IgWZrLttA3p1ssQj6DCFRSW0aFqTyaPa4xV4hJQvOZhW0yXAYwBbdt6QpZgH+w0iJ6eAsAgBluwGNqN/v6YsXHCKl9ITLiR0CPl5xfh6Cx+Itu0sGDvBlru3Ytkgza6ZMrMbNq1q88fxRxyR8mxcfQdQp25VLp2JZs9msSuZ7dkXSytT3sUmE+EtOlf9htjQ195GhFB6HODje2HI5btkOErKisS/SyHCbb8gCw5tQT8Hobx6fOctGyIF+Jrg2ovm0nTz+DefifhT5lWfEUIuLpFIWOZxgDfPEtDSU8d33VhUpNbjxYUlBE/eTHZ6HrUbmjA7omIA4ubQ4zy5FYuKmhI+GydW4OGUlZUTMXUzqYmZmJgb4bzi+yiIJzdesSVIAFSn0GHf+e18fQ8hY9eSm5VPvea1mBDw81FtfEziN56O72AsW/39SObkhovcP/sURWVF3LdN+y2OyNdaPW8bRflFNGpfn+5jbP/+Cf8L9aO08l8lk4OQn/9duOd/qu6decSstt4kxCZjVKMyS68F/hbQkUgkbPU/wGrnHUJ9OKUrblun/RLoFOQW4jdkCdeP3kdRSQGv7dN/CnQ+vEjAuXckKR/TqGZuRORJ1++BTmkZC6dt5oyUBO+8aux3QOflg3cyH50GLWoT/JeOzqVD92VAp/uwVt8BHTeHb0AnbPdUNHXUAWH2GTB5i0xg4LbMEQXFb0Dn+QPR1Q3ZOhFzSxPKSstY4Laf62ekflrLR9K8fV0K84vxnbZdlqkXun4ctepW5fmjOHym76CosIRmbczxXuRAeZkEv7m7eRr1ATV1ZUJWjKJ23SqsX3qOY/sEp2Sud3869WjEjo1XZYHGM5x70r2PFUsjT3P+TLTo/AQMokGjarg57+H9uy/o62uwYKkj8R/TCJQqXrt0tWTGjG74Bx7hydOPqKkpERE2jNdvP7NE6tM1Ymgr2rW1wMVrP7m5RTSyNGH+nJ64BR3mY0IGRgZahPsMImLVWV7GJqOloUK4px3Lt1zm+esktDRUCJk/gEWbLsoyFH2m9yRg1R+kZ+VjXt2A0QNbErDmNKVl5XRpaYFhZU12nxH3qjkjOnLkWjRvPqVSWUediQNbEbn7EmXlEvq0asDnrDzuvoxHVVmRKf1bsezIdSEVb2ZBXGomLz+moKOhSr/WDWRAZ1Qnaw7deUZuoSAgF5SUEJPwBV11FVpYVOfMk9fIVaqEfcuG7LsrMrHGd/j5BvBX9X+6swMwpGUjTkfFkFNQRJOaVZFIyomOF+TkEe2asOCw4F/M6NuGbWfvS9njxlTR0WDruQcoyMvh4dCZyD1CYt6+sRmaasrsvfBIZIiM7yEk5rmF1K9pRL82DZgvzbiaPKgN7z6mcvm+kKqHzurH6j3X+JCQjoGeBv7Te+G5+IRgzZsZMntMR2b57RfywfomTB7Rjpne+8jNF/LB2RM7Mc/nAKnpopXp59qPhSvO8fJ1EpoaKoT7D+bW3Tfs2S/AiNu83lQ10mbqDDGqat7MjGlOXdi9+zYXL74QEnk/O/T1NJg9YzuZGfnUNjfE3as/8R9SCfU7gkQCvfs3xW6IDU8fxrFcCj5GT7KlQ+cGvHqewBKpK/GQ0W3o1rcJmRl5+M/dI5RXNmY4OYsuyNbl57l//TVKygr4LRuBXmVNcrMLCJglTQ1uVhMnd6G8+pyQQZg086pzvybYjRGt9LycAgKnbaMgr4iGNmY4eX+Tix/aeJUrxx+J7KmVozCSKpYkEgkrvQ8QG/0RLV11fNaPR/lPQODKsSgOSzPAnJeMrBAFAbBzwUkeX3+Fipoy3psmVyBhgvBBCZ+8gfJyCV0dWn9H5Pxa6732Efs4Dk1ddTw3T/mpdLyooJjQMasoKijGurPlP+LpJL1PYaOn8DEZHzSUmg1+DhR+VrdPRnH7+APkFeSZuWL8f5TUO2HCBOLj4wkMDKR///7/CLyYmJj8EhD9u0sikXBwyUk2eeymvFyCZZu6+B6Yh66h9j9+jdKSUpbN2MK57aLrOsZvMMPdBvzyb5+dlouP/WJi7r9FRV0Zv72zse70Y8uCVw/f422/lJyMPMwsTQg9PPe791dSXEr45A3cPPkIeQU53NZNpMOAiplsz+6+wXeEMMds1LoOATunoqr+zfjy3L47LJXKxHsOb83MiGHfAZ2vo6vQPwGde5dfEjR1K6XFZbTu3hCP5SNRVFKQAZ1n99+jpqFCyNZJWDQypaysnEWeB7l6+ikKivJ4LXOkRcd6FBYU4ztjO88eCmAUumEcdRpU4+XTj/hM3yFTdvouEe7hAc57ZA7uIStHUbdhNTavvMjh3aJ7M9uzLz36N2XXluvslG7knGZ3p9/g5ixf+AdnTj4Wykg/O6xtzHBz3sObWJEZGLl4BF9SsvHzPUxJSXbS1ucAACAASURBVBkdOtRj3rxeBIUc40HUe1RUFAkPGUpCYgaRSwRnc/DAZvTs3pDZbnvJyi6gnkUVfOb3xTPkCO/jpGHOvoNYvP4iT19KBSxedqzfc4PHUoFKqNsAVu68yqv3KehoqeI/uxch686Skp5LDWM9pji0w2flKSEhb1oLi5qGrD4guDYzhrXnYlQsLz+ITfl0+3aE7booQFGzOhSWlXL9qbBKmW7XlhXHbsgsV7LyC3nyTmz8h9pasVY6QRnW3orTj2LIyi/EsroR8gpyPHzzCU1VZTo1NufQvWcADG3TSGYP08vKgqiPiT8/YX5R/6fBTru6NXibmMqntCyq6WlhVaMq2688REFOjhm92rDkqLjAOLS34sbT9ySkZWNSWZuezerKRlku9h3ZdOoe6Tn51DU1oHNTcwK3CCQ+f3gnDl58woekdAx1NZgzrAOuS0UXpmeb+hjpahC8QRzrObE7V+6+5u7TOFmK+XJZirk6wXP7ErjsNEkpWRgbaRMwty/+i0+SkJxJVSNtguf3Z+HKc7x++xltLVXCfQZx9OQjLl4VhOZArwFkZuWzUCp3HunQmg5tLZjrvJsvX3IwNdXD13sAt27GsnmT1P9mZjesmtTA3+cQ796moKunTmDoEIqLS/Fx2yfNt6rOjHk9SU7KJNDzgAjy7NoAx3HtSfuSg7/LXpFY3s6CcdO6UFJSSvD8fXxOyqSqiR5eUuXVpVNPOLBVnFjzAuyo06Ca6PTM3ycyr6rq4LVoOIqKCkJhNWMH2Zn51LGsxiypCWB5eTmRzntJeJ+KQVUdvFaMkgGGqOuv2BIhxohTfPrTuNU307XTO29xfv895OQEIdnoT8Z6H2ISWeoiRoJDp3elXZ8mFdbQ3XPR7F0q/qazF434DgiVlpQSMnEdGSnZmFmaMCPyxwGLVw7d4+TmK2LdrJuIoan+d8d8rfUee0QQo6E28zdM+VueTnl5OYsmrxcy8/b1GPgTcuqvqiCvkNVzhCeP/dw+1LT8Xir/766vCs3i4uL/+O/+3SouLGap0wYu7BI3wp7jOjFz5YTfcqfOzykg2HEFUdKMo5krxtF7fKdfPictKQOP/guIe5mApp46wYedqdf8x3EhT2++ws9hOQW5RdSzqUXQ/tkykPG1igqKCR63lvsXnokO0eYptOpp9ZfXeY3fqDUU5gsXcP9tThUI9X/susVyNwG0+4xux7Rg+4qqq58BnUsvBEenuIw23RvisWJUhY6ODOhsmUjdxgLoLPY4wOUTj5FXkMNj8XBadapPUWEJ/jN38vS+iJQJWTsWC0sTXj37hNfUbeTnFWFlY4bf0hFUkqtEoMteou68RUVVieDlI6nfyITtay+zX+oVNsOtN73tmrF/5y22rb8CwMTpXbAb1oLVy85xUhqbM9+7Py1am+M+fy8xLxPR0lYlctEIcnIL8f5T3I6be1/CI09yW2oQGBJkT3pmHiELBI+nX+8mDB7QjFlue2UmsAEeA/CLOE7sOzGaWuBnz+rt13gYHY+qiiIRXnbsOHKP+0/iUFVRJHT+ADYeuM2z10loqqsQNKcPkZsukpCSRTVDbWaNssVn1WkKikpo0bAGzS1NZb5vkwa14e7LeJkZ7pxhtkTuvkRRcSltG9VEWVmRU3deoiAvx8xB7Vlz4haFxaW0rF+dcomEu6/iUVVSxLFzU9ZKObF2rRty5cU7UnPyqVNVH211FW7GxKGqpEgv67rsuyO6OA5trDhwL5pyiYQulrW58SaOjKysX584P6n/02BHVUGRO28/oamizNDWjVkqVV7N6iPMjkSsvBm5uYU8liLTKb1bEbhDcEfGdm/O9SfveJuYRmVtdab0bYXHOnFDHdm9GbHxX7j7XGSIBEzqRfDGc+TmF9G4jjF921syN1KMNcYOaEl+QREHz4k8Hr/pvTl37SW3H71HSVGBcJcBbD1wm+ivknMPOzbuucGTr5JyLzuO/vGIK7deo6AgR4jnQN68TWHjdqk3wrSuGFfRYers7ZSUlNG+jQXjRrUjYsEpXsZIR1WB9iQnZxEe/i3cs19/azZvuMItKcEuIGgw+voauM3ZJbKsjHXwC7GnpLgUvz8pr1y8+lNSXIa/y17SU3OpUcsAt6BByMvLsSriFNEP40SO1dIRaGmr8fp5gsy8y2FiBzr2Ei3+rcvO8eBmLMoqivguc0RHX0MosrwP8S4mCW09dXxWjERZ6qa6a8UF7l1+iZKyAj6rR8s8c5I/phE+S0RBdB/Sgn6jviUov4x6z1p/8T2Mmd8H6w51Zf+Xl1NA8CRhKti0Q11Gz+9bYf0kx6WycOZWAPpP6EhHu4oOyQBbQ47y4u5boara4iQzRPtzJX34wvK528Xnd+6DTbefm/vdOvmQk9IsNNeNk9E1+vsuwYm1F4i+8QoVdWWc1/89iflHdWjpKT7HpWJUozIj/oPZV38ubW3xWbP+xYvdf6pSE9IJHLqYmHtvkJOXw2nhaAZM7/FbnbC0pEx87Bby9kkcympKeO6Y8bdk8k+xyXgOXMDnuFQqG+sSesyVGn+RjH+te+eeEjxGpI436VAPv10zvosgKcgtJGDUah5fjxHGlzumY/0XW4MHl54TNH49xYUlNLWth++WiiG3J7ZeY7W34HgNGG/LlICK7uSeI9aQnZH3HdC5e/EFwVIyctuejXBfNvIb0Jm4mWcP3ovR1ZaJ1LWqLjo6fwY6i4bTpqulCP2dtZPHd9+iqqZE8Nox1GtsyuvnCXg5bSM/t4iG1jUIWD4SeQU5glz3cf9mLMrKigQtc6Rh0xrs3HCF3dLuzTSXnvSzt+HQnjtslPINx07pyBDH1mxYdZGjB+4DMM+jL21t6+Hlto/n0Z/Q0FAhYuFwCotK8HDfR2FhCTY2Znh5D2DBotNcuy7UrYH+gygoLCFQmmjeo2tDRgxtxRz3PXxJzaFmdX1CfQcRvOQUL14noaWpQqS/PZv33eLOw/coKykQ5jGQA6cfijBoJQWCXfqz8/gDHj7/iJqqEkFz+7Jk+xXiEtMx0tfEeXwX/Nb8IctftLUxJ3Kb+Gyj+9rw/EOy7D42d0RHFu67Qn5RCTb1TDHQ0+LI9Wjk5Soxa3A7NvwhxDpNzY1RV1Xi4uM3KCnIM7Z7c9aeFeHZfWzq8eD9J5Izc6heWYdqlbW5/Owdygry2LWyZNdNcR8c0qoRhx88o7SsnPb1avLwYyLZhUU0NjHiX3Ha+T/N2bnwVERETO3eklV/CKXTKFtrTt57SVpOPhbGlalfzZDTD14hL1eJ+fa2LD5wVbTumppTWFgiSzH3HtWVkO3fUswNtTU4dPkplSqB38QebDx8i4SULIwNtJnraIvPylMi6sGmDlYWxizdJk0dd2hHVlYB+6RKK98ZPXn0/CNnrrzg/5H3VmFVrW37949uwUIMRAkbYxnY3d3dAYKFokgI0tjdnQhid7diJ2KRAgrSnZP5bdzDiS5jrfU87/f+3+NY144bc4wBOMc9xnlf1xkqykp4z+/Hw2fRnJVSyz0d+hEZlcQeSZK4YEYPNDXU8F0hQNeQ/k3p2rEerh5HFeGezgv6EBT8gCtXhSx9sdtAdHQ0cFt0RLghN62BrV1Xrl8LK1Veze9NvQbV2LT2kvCL0FbHe9kIdPW0WO59UhFy57FkOOoaqqz1P8P7sE/o6WvhuXIUOroanDv2mLNHH6OkpIST71Cq16xIWko2XvYBFBUWY9W+NuNnCHXKjfMvCd4tHjBzvQZjXlc44h7ddZub516ioqqM65oxVKws3DRDrrwmYIOUP+YzBAsprbwgvwjfGfvIzsijVkPj76Ig0pKy8J2+RzxQezVimG2pMkYul7N6XgDxUUlUrFKWhRsmfOdFU5hfhO+07WRn5FGnaU2mLv4RADy68ooj0rx93vqJVDH90fCtuKiYpdO2i8iJlhaMc+r/wzFfK/1LJmtmCvLy0Dm9aNq5wS+P/VqfIhPZ6Sak8lP9Rv7WdO5XlZmSxZFVgtM1xW/0d+OJ/80yMBDf9f9lsPPyVhh2LZx5+zAcvbI6+J9zZuDMnv8I6Hx8G499Bw8iXsRgYFiG5Rdd/xLovH0cwbyuPiTGJFPFrBIrL7v+EujcOPoQzzEbKcwvwqpnI7yC5vwAdLLSc3Aeuobnt98KE77A2T8AnXvnn+M5YYtwCe/WAI+932ddHd9xXQF0Btt0/g7ovH/xEaeRm8hMy6FWo+r4BdgpgE7I5VAF0Gnbq6EC6ORm5+M2dWcp0Nkz7ZdAp033BsIxedYBnt0XQMd78wTqNTbh/et4nG32iADPxtXx2jAOFTVlfBwP80Aao3uuGU3DpjUI2HlL4fRubd+dASOsOH74IVslscTYKe0ZNaEtO7dcJ1giKNs79qZjl/q4OR/mxXPxrFyyYiSykhKcpI5448YmuLkPYs26i1y/Ibrv7osGIleCxb4nKC4uoXOHukwe3w4H1yASvmRSrUpZ/D2GsGT9BV6GxaOro8Fyj6EcOvGI2w/CUVdTwc9pIGeuhXI95D1qqip4OfTj6KXnPHgRjaaGKt72fdgceJuI2GTKG+jgNK0bXlsvCnKymRG92tVj+T4BdEZ0a8LHL2nceSHGU/PHdGTdkVuSurgyZsYVOX77FUpKMHNwW/ZcfqwIvjYsp8fV5+GoqigzpZcV2y49RFYip2sjc8Liv4jsKwM9aleryPXQSFRVlBnauqEC6AxsXo/Tz99SUCzDytyYt4lJpObkYWFUgWam/9lo+l/d2QEhMd9x5RFFMhmdLc2ITkjlwyeRzTG0lSVLDgsQYj+oPXsuii+zbnVD/jCryoogsQgWjevChqO3Sc3KpZZxRfq1qofTRvFymDWsHfdfRPPsXTzamup42/bCe+slBQF5Yv8WzPA+rHCrrGdqxFxJaTVteGvUVVXZckCSkE/ujKy4hE17xc+dMbEjerqauEoJ16MGNadFkxrY2O8XBOWmNbGd0hFP/5NERCVRtqwOfh5DePYshp2SF8ysmd2wbGDMfIcAhfLKzX0gkRFfWCE5Hw8f2ZJuPSw5e/IppyVppdPigZjUrMj+nTe5K3nuLPYfRgXDMhwLuM8VSZbp6jeUytXK8vr5RzZKvjkT7Tpj1a6WGGk5BJL8JRPjmhVw9BPt7ch3n1n9Ndhvcmmn58nd9+yWAvmmu/TDUsq2io34wvL5Uq7OhLZ0GSgIbHK5nI3uxxSE5EWbJqCuIW55WbEM/xl7SEnMwNi8EvNWfp8NdHz7de6efyHm/lsno1/ue6XTVvdgwl/GUqacLi7bfhxPJH9OY8UMMfbpP7UTbfv+8dP778CSU7x9HIlOGS0Wbpv6Uyn6179l9axdZCRnUbOBMRPch/z0uG+rpKSE1bY7KcgtpGH7uvSZ2vkvz/lZHV5xitzMPEwbmtB+aMv/6Br/E/V/ubMjl8s5uuYcO5wPUiIrwbShCe6H51LF7J9lhb28/QbPEWvJTsuhqrkRvqcWUPkXWWhf69GlF3iP3UBBbiEWTWrgc9QBA8Ofq+RO77jOJscA5HI5HYe0YP7myT/ksaV9ycRl2BqiXseha6CNT9Bs6vwpguLmiccsm7GHElkJ7fr9wYKNE79bA4c3XGa31CUeMbMbExb2VayvN0+jWTRuC7lZ+dRtWgPvvTYKIvPtcy9Yan8QWXEJ7fs0YsGq0Qqg8z0ZeZpidPVroLOf5w8ipY7OROo3KQU6ORLQ8dk0HjV1FXwcD3P/lvDi8Vg1miYtTAnYdYu9WyTl7ayuDBnTihPBD9ksxdGMmtiWsZPbsXvbDYKkTeHMeT3p1rMhbi7BPHsag5aWOv7LR6KsosSC+YHk5BTQsKExXt5D2Lj5CpeviA2nm+sANLXUcF58VPB42tZi+rROOLgGEf85ncpG+izzHsbqLVd4+vIjWlpqLHMfzNFzz7h65y2qqsp4LujHlbtvuCx5sS2e24dzN19z50kk6mqqeM/tx+4TD3gblYiBnhauNj3w3XGJtMxcapkYMrhrI3x3XhJxSR0tScvN45rkq7NgbBc2nrhLenYe9WpUolGtauy7KLkhD2xNwPVnpGTmUqtqBcyqVeBkiIiLmNrLip2XH1Ikk9GhQU0+pmYQmZhKxTLaNDWvxuknQvwzsk0jDtwTqQF9/6jL5dBw8gqLaFqzCrHpGXzJzKFGBQOUVZTYeffJX6yin9e/GuwMadmA80/eKhwaDfV0Cbr9Ag01FWb3bcOSIDEuGN2xCSGvo4mSZHPjuzTFbZd46doOaMWlh++IiE+hvL4O9sM64LhBRD/0a1sfFZQ4dTMUZSUlPKf3Yufx+0TFp1CxrA5u1t1ZuPIUOXmFNKpdlXH9W2DrHohMVkK3NnVo39yM6S6HSsM961fDzvkQJSVy+na1pENLC2zmH6CwsJjWzc2YMLI1Di5BJCVnUd24HIud+rP34F3u3PsglFfug8jJKcBvyWlhLd7vD/r3bcLqVRcIDY1DR0cDH5+hFBfJcHcJFmaDVmZMse7Iq+cfWb9Syrya1pFWbWtx9+Zb9u+QgJhjb+o2qMazh5FsXye6GdNmd6dJC1OSv2Ti7RhEcbGMdl3rM2KS8M3Zuvw8r5/FoK2rgfua0ejoaZKZnovXnINCGdHGggmzRYLx59hUljgEConm0Ob0GSkcs3Oy8hWEZMsWpkxdWJqUfCHoAZePPBKy9LVjqVilNFNlz9KzvLovYiLctk1WuLMChD6IYKevIFXbeAymdhOT7+6b68cecW6fkN86bpr4QzSDCPjcSUZKNmaWxkz1+Lmq6sWdtwRJBMQ5ayf8lqdzaf9t7kuydccd1r9V4nytczuv8/LWGzS01Zm7ecp/NL5K+ZzGyY3i4T7Je8R/dI3/qfoKdpKTk4mLi/t/Sj7+tnKz8lhts5WbwWJn33VMO2ZvmvrTkeXv6vKB26yx20lxkYy6VuZ4HpmHfoXfO1NfDrjDartdyIplNO3SALeDs37o0oAAYwHLz7Df/yQA/aZ2wnbpj2aGX+JScB6yhviIROGefHTuD+7JlwNDWDNPjIW7DG3B3DXjFCBdLpezf8U5Dq0V98yYuT0ZM6+XAuiEPozEfeJW8rILaNDCFM891oq1d+P0M5bPO0SJrISO/Zswf8VIVFRVyMnKw23KLt48ixHk4r0SGblYxkqXI/810PFdGFwKdFaOomlLMw7tvs3ezZLce0YXho9vw6kjj9gk2VmMHN+GidYd2bfzFockLs8M+x706tuYxYuO8ORxFJpaavgtG4GGphrzHQLIzs6nQYNq+PgOY+v261z4mmju0h99A20WLgoWWVYtzZk1vSsL3IL5GJuKYUU9lnsPY/3Oazx4GoWmhhpLFg3hzLXXXLwhhCQeDn0JeRrFuevCoM99Tm9uPPzAjQcijNPLvjcBZx/z6v0n9HQ0cLPtydLdV0hKy8G0WnlG92mK1/aLyErk9G5bDxlyLtx/i4qKMgvGdmbbmRBhIFitAq0a1GDHOaFIs+7XkmN3Q/mSnk1No7I0sqjC4VtiojG1lxV7rj0mv6iYVnVMSM7J5d2nJMrqaNGunilHH4SipASj2jUmIOQ5cjl0b2jB7fdRZBcU0rC6Ecm5ecSnZVK1bBl0tDQI/ZSIgdZ/1ln+V4+x4pMziEgUev6ejWsRdFtI0ecP7MDGU3cFZ6dBTWSyEkLCYtBUU8VxeCf8FXK7umRl53PnZRQaaip4Tu6J357LYvZZqyodmpixXsoUmTWyPU/DYgl5ES3mqrP7sXrPdUXG1SLbnriuPKWw7bYd3Q6nJSfIyy/ijwbGTBrWChf/k4ogtxkTO7DI/wSpaTnUNKmA27w+rN54mbB3Qnnlv3gIDx9HKhw3F8zpSbWq5VjkfpS8vEIaN6rODLsunDzxhLNnnysyryoZ6ePhdkyQlquXw8VtAClJWXi5HhHk4871GDW+DVERX1jmJR6cA4e3oEffxnyOS8PX5YjIxurTiEGjrES8w/xA0lKyqWleifkeA1FSUuLCsSecCXooAIPvUIxrVBSE5IVBJMSnUblaOZyWDkdFRZn8vEJ8Zh8QJmUNjbF1E4F/crmcVQsPExeZRAUjfVzWiXY3wLsXH9nkcRyACQ69aNKmVJp97+JLjmwVQHbuilHfOSSnJWXib7ebElkJnQY1o8/47w3T4iISWTdfhCiOtO9J059EMwSsOMOre+/R0tHAebu1IqH528pKy2a5zU7kcjndx7al/cBmPxzztRKik9jsKNLTx7sNxrRB9V8e+7VSPqWxc5EYX03yHE4V058bE/5VHV5xioK8Quq1tFDkTv2nFRcXx/Xr138azPl36uxZMZrNz8/HxMSEnTt3/le/z/9ExYTFMbvNIm4G30dVTYWZ6yazYLfdPwI6JSUl7PEIZsW0bSIHbYgVS887/xboyOVygladZYX1dmTFMjqPaIVn8NyfAp2SkhI2Ox1SAJ0xC/tht2z0D0AnLjwRhz7LiI9IxNC4PCvPOP4AdE7uuM4qe5Fl1Xt8W+atG/8d0Nnpc1IBdCY592OsQ28F0Hlx7wNu47eQl11Ao9YWeO+zUQCdq8efsFxSV3Yd0oz5K0UMTHZmHq4Td/DmWQy6+loKoFNcJGOZ4+EfgU5uIYtnlgId361/DXRCbr4tBTqtzAncfZs9m8TzYZJdZ0ZMbMvpY4/ZIG32RoxrzaTpnTiw+zYHpFG77exu9B7QBA/3ozyS3JL9lo5AR1eDBfMPkZWVT716VfHzH8aOXTc5c1aotZwX9qVceT0WugWTX1CEVXNT5s7szsLFRxQqq+U+w9my9xb3HgoOjp/rQK7de8vZKwIsudv35tnrWE5eEn5nzrN6cf9FNJfuCLDiMbs3Ry+/4GmY4Oy42fZi5f7rJEi+bpMGWuGz45LYZFvVQlNLjZO3xQbdYXRH9px/SGJqFiZGZenSrJYC6Ezp3YJzj97yKSWT6oYGtKpfg8O3JHl4j+YcvPWM3IIimplXJa+4iNCPiehra9KtsQVHHwil1Yg2jQi8/wJZiZzO9U15HB1Pem4+dasaklNcRHRyGpXK6FBRX4fQT4noaahj2/GfR0PBv7yz8+BDLDq6ulh3a8nSYIHip3VvwfG7oSRn5mJepTwtLIxZdVR0L5xHd2HDsTtk5RbQyKwyjc2q4Ldf8EQWTejOrtP3iU8SvBy7wW2Yu/IEJXI5Azo0QEdTjcALEg/Hpifnb4XxJCwWbU01ls4fwOpd1xSScx/7fnivPcfnL5lUNTJgsX0fvFadFcorwzJ4O/Zj1eYrvAtPRF9PC3/XQZy5+IJL1wSq93IZQG5OAUtXibHRyKEt6NyxLo7OQXyWWqKL3Qfx6mUsGyWfHGvrzrRoYcqq5ed4HRqHjq4G3n7DUFVTYbFzMOnpuZhZVMLBpS9Zmfl4LDxMXm4hjZvWwHpWV/JyC/FcEEhWRh616lVhjrMg867zP8O71/Ho6WuxeOVINLXUefMylo1+osU91rYTLTvWAWDv+ss8vReOhpYgJOvpawtZuMcJIt9+xqC8Lq5rx6AutcuP7rjJvcuhqKqpsGjDOAUhOSM1B1+7fQq56rDppQqWT9HJrHIQYGXQ1A60+0ZdJZOVsGzWPlITMzGpXZnZf/LaKcwvwt96J/m5BTRsbcGY+aVdpK/14s47Dq0UL+VZK8ZSzfxHkCGXy1kzZx/Jn9Koal4J29+Y+5WUlLBy+g7ysvOp36oWQ2b/aFb4s9q84AC5mXnUaW5Gf9tuf+ucP1falwzOSREDY92G/ldS82+zrZSVlZkxYwbt2rUjPz+fvLy8v/w3LS2NK1euKK5XUlKCjY0NPXr0+H/W4bm07ybrZ+2iILeA8lXKsuiQPfVb1/7rE7+pgrxCVkzbxq2jwg5ipGN/Jiwe8tsOmkxWwuYFBzi9TXw3Q+f0Yor38J+eU1xUzMoZu7keLK5vu3QUA6x/dG2OeBWL6/A1pCdlUc28Ev7H5lHxmxgRuVxO4JoL7FsqCRhsOjPNY4jinigpKWGz2xHO7BUij+leQxgwudSH6dH1MHysd1NYUMQf7Wvjtn2KwuPq4uGHrHUOFrL0EVbM8hV//9f0chH3oo3v7mmY169KUWExSxcEcfeSWPvOqwQZOS+3AHe7fbySvHF8tgiOzrvQOFyn7yUnK5/6TUzw3jjuO6Cjpl4KdIL23GG3BHQm2HZi5KR2nDn+hPXLRQd26OhWTLbtTMDeO+zbKd4L1jO70m9wM7zcj/HwvjBT9VkyHL0yWsx3CCAzM4/atSvj5z+MXXtuc/KUUGstcOhNJSN9FrgGC65kExPmz+nJQo+jREQlUa6sDit9h7P70F1u3xcdGl/nAdx7EsmJCyLf0GVWT8IiEjhyToyAFk7vzvM3cZy9Id4FbjN6cvpmKA9fCYLx4hm9WH/olkKFNW1oa7y2XaCoWEaHpmaUK6vDocsi8Hne6A4cuvqU+OQMqlXUp0/remw8IcZ143s049rLcGKT0qlSvgwdGpmx76pkEti9GcH3XpGVV0CjmpVRVlXm2YdYdDXV6d20DgF3BC9neJuGIp9SIiCHfvpCSnYu5pXKU6IkJzwhhfK6WhhXLMuj6Di01FRpZFIFv4s3f7k2flf/arADMK9fO9afFkaBPZrUIvJTCm9jv1BWV4uJXZvhsU+MZGz7tuLsvTA+SknlE3s0x3GzWPhT+1rxJCyWZ+/i0dFUx3NqTzy3XiA3v5A/6lSje6s62C8VHJSpg1uRnpHLsSviZvWY2YfzN8IIeSaY9EsWDGDPkRBevJGUVs6D2Bd8n6ehsWhpqrHEZRDnroRy5ZaYy3o7DyA2LpUtEgdnhnVnaphUwGbWXgoKirFqbsq0SR3YuPkKz59/REtLHR+voeRk5ePpdVw4mXZrwLDhLTh5/AnnJTdkV/eBVK1WDj+P44S/T8DAQBuvJcNRV1PF0ymYz/FpVKpsgKvPEFRUlFnifYyocCFPd182AnUNVU4G3ufyo+X+2gAAIABJREFUaclvwn8YlauVIzU5C595hygqktG6U11GTRMPxNuXQjksPTzmeQ2mZi3BdTh76D5XJW8c51WjqGgkRhkvH0Swe4V4AE1f1J/ajUS3QyYrYan9QZI+p1O1RgUclpUCloL8Qnxtd5OTmU+9pjWZ7Pw9GThw3UWe33mPprY6Llsm/bA737b4CJGv49Avr4vjpkk/hGemJ2ex1GaHUH2Nbk3nYT/fgVzYf5u7p5+iqqaC0/ZpP92Nf60Tmy7x8s5bNHU0mL916t8K7Hx8+SW3jwkp/ewNP/6ef7eOrT1HQV4htZqa0rTbP3P7/bb+nG1VUlLC+vXrWb9+/X98TQCZTEZ4ePj/OtjJy8ln4+zdXNon1lyTLpY47Z1B2UoGf3Hm95WWmIHn8DW8eRiOqpoKczZOpvu4n3swfa383AKWTN5CyBmxcbJZMorBM3v+9Ni87Hx8Jm7mydXXqKiq4LBxEp2H/8i5enXvPYvHbCA3Kx8zS2N8g+0x+KarJJfL2eF5jGNbJOC7oC+jvxlNyWQlrHMM5FLQfZSUlJi1ZAS9xpQaDt49/4IlM/dRXCQ2H04bJyq4c2cP3mODm3g29hnTCjvPQSgrK5ORmoPLhG1Evv1MmbI6LNlnTc06lSmUsq7uX3sjNjlrx2DVqS65OQUsst1LmDQW990ykbqNqvPmZayQl2cXKICOqpoKPgsPc//mO9TUVfFcVQp0dkkKqwnTOzF6cnvOnniq8A4bMqol02Z2IWDfXfZsF9/9VLvODBzaHK/Fxwi590HE4vgPw8BAGweHANLTc7GwMGLJ0uHs3X+X4ycE53H+vF5UMy7HAtfD5OUV8kdjE5zn98HF8xjhkcLZfqXvcPYfecD1O+9QVVXG26k/T0JjCZa+e0e77kTFpRB4SnBn5lt3JSwqkVNXX6GspISzbQ8uh7wl5Ll4t3jM7M3mw3f5mJCGUXk97Ea2w2vbBeGr06gmxpXLsu+8uNbs4e05cvOlwil5SMdGrDkqulgjOzfh3ptoIj+nYmigS4/mtdl1SajQxndtysmHYYLbamyItpY6994JSfmAFvU5cFuAsmGtLTn19A0FxTJaWlQnIimVxIxsalQoi4amKqFxYlxVu4ohdyNi0FBVoYWZMTfeR6HyH266/tVgZ1KXZgTeekFmbgENTIyoWrYMey4/Rk1VBcehHfE/JI2rrOqSlJbNo7exaGmo4Ty6Mx67LlAsK6FzUwv0NDXYefsBykpKeFn3YuuRu3ySOjz2oztiv+yoOLaFBQ0tqjBviXAOth3ZjozMPALPCETsNqMnoW8/ceaqaE96zO3Ly7A4jp0XYyb3uX1I/JLJNslgzN66C+UNdJg+V7SV+3S3pG+Phjg4C96OcbVyuDn15/zFl5w4KRaIi1NfKlUqw6yZ+8jKzKdOncrMc+jFi+cf2bRBKAym2nSihZUZhw+GcOOKmAm7+Q7B0Eif7Ruu8PRhJBqaanguG46+gTZBe+9wW0r5dVs2nIqVyvDqWQxbpfn2lNnd+MPKjOIiGT4OgaQkZVHdtCLzpR1cTMQXVkpuykMmtqWDFK755lkMW5eILslkh540lCIfUhIzWGJ/UHAGBv5B71GlD/BD6y/z7M57NLTUWLR5wncOrlvcjxH5Oh798ro4b56gGHkBvLj7noMS+Xmm33Cq/yn88Papp5yVsmkWbJhIeaPvX2xyuZxVs/aQmphB9VqVsfMf9dN77lNkIltdxHhpwqJBWDSu8cv78+O7T+xaLEUz+I36W6OowoIiNkoy9gF23TFraPIXZ/y8stNzOL1ZAP0xroP/q67Or7KtGjZsiJGREVpaWop8q1/9m5ubi5OTE3K5XHG+iooK5ubmP1z3/8+Kfh2L7+i1xITFoaysxLjFwxi5cOA/BpQRL2JYPHQ1SXEp6JbVwT1wDo3a1/3tOelfMnEfvpp3jyNR01DDcbs17Qe3+PmxyVm4j1jL+6fRaGirs2iP7U8tDe5feIHfVCEdt2xlgcfBGeiU+d4dfIPjIS4cFLwUG++hDJxWSnQvKixmxZz93Dr9TDgrrx5L5yGlFgzXjj9m5TwxnmrfrwkL1pSOmo/vvMU2iRs3YGI7bKTxdFpyFi4TtxP9LoGyFXTx32eNiYURhQVF+Mw+yKNbAqS4bxDOyDlZ+bhO38Pbl7Ho6mniu20StRtUI+z5RxbZ7VMYknptGIuKqgo+jkEK1dW3HZ2vQGe8TUdGTxFAZ63kzTVohBXWs7oKoCN560yZ3onBw63w8ThOyF0J6PgNo1x5PRwcDpKenou5eSWWLhvBwYAQjh0XQMJhbi9q1KzIfGehzGrSqDquC/ri6n1cdOvLaLHSdziBJx5xRfJJ81jQj1fvP3PohAAVC2y7kZCUyYHjYqRkP7kTUZ9SOX5JbKKdbLpx+2kEd54KcrLHzN5sPxYi8UV1mT2mA947Lgk/nAYmWNQwZNcZ0f2bOawdZ0LCFEGeo7r9wapgAe6GtLfkeVQ8H+KTqVBGm/6t67P9gjhvdOcmnHv6TqFkrmigw80wQfEY2tqSfTfFO2hIywace/FOIiBX5VNGJvFpmVQrp0/ZMlo8jfmEnoY6liZG3PoQjaqyMm0sanD1XYRIMujWBuslv10qP61/Ndh5HZVAVGIqlQx06d+srkJ5NX9we7aeuU9WXgENTStT17gSK4NuoKQEbuO6sv7IbdKy8qhd3ZBeVnVw2iBUS7NHtOfe8yievo1DW1Mdnxm98d52gbTMPGqZGDJpgBUzvIORlcjp0aYujWpXZZZnMACTh7akjI4mnpLE13Zce7Q01FgltaqnjmpLtcplmT7/gCAX92xEl/Z1sZ27n+ycAhrUrcocu66s23SF0LB4dHQ08PMYQnR0EuvWi5fWpIntaN3KAk+P40RHJ1O+vC6eXkNIS83Be/ExSmRyunSrz7ARVjx5GMnOLaKda2ffnYaNTbhx5TXBByUO0KL+mJpX4sn9CMV823Z+L+o3qk5KUia+Cw8jk5XQsYclQ8aKXd6O1RcJe/5REJJXj0ZbR4Oc7Hy87Q8KN2UrUybPEYZ3aclZ+NoHiNC/npYMnii4M8VFMvzmHCQtOZsatY2Y+Y2U/MntdwSsl+TnvkOp8Y3B39Wjj7gQKHaeC9eNo8I3YCUtKZOls/Yhl4u8ni5Dv3+BJH5MYe18wZkZPqs7TTv9yNM5t+cWDy+/Qk1DFaft036aUi6TlbDCbjf5OQU0aleHITN/be5XUiICHIsKimja1ZLekzv+8thv6/i6C3yKSKSckT7j3P5asfWrOr/rGrlZeZjUr4ZVn58ryf5u/Srb6uzZs/+oK1O+fPkf8q7+t7o6crmcs9uvsnX+PgryCilXuSwuB2bRsP0/z9u6ffwRy6duoSC3kGoWRngcmYdxrcq/PSfuQwKLBq/gc1QSeuV08Ai0p0HrWj89NiEmCVeJZFymnC5eQbOp08z0h+OuBIWwavZeSmQlWPVoiMsOazS0SqXjRYXFrJi5h1unnqKsrMSclWPpPqqV4vP8vEJ8rXfx+HoYqmoqOK4fT7u+pbyu8wEhrHcWMS/dhrVgzrKRClAYuPEqe1eKzuwwm05MchTcnuSEDJwnbCMuMolyhnos2WeDsZmhyLSbdYCnku/W4o3jadLaXKSX2+zmfWg8umW08N82CYv6VQl9GoPbjH3k5RbSsFlNvNaPRVlFCe/5gTy8+0HIy1eP5g8rM6G6ksjIE6Z3YvSU9pw59oR1Ug7g4JFW2Mzu9h3QmWzTiSEjW+LjcZy7X4M+/YZSwVAPh3kBpKcJoLNs+UgCAu8TfFTy37HviamZIQ7OQYJ/aWmM68K+LPI5wZv3nxVA5/CpJ1yQaAnuDn14H/WFA9Ko035aZ1LSc9hzRBDiZ03syOeULILPi66J47SuPAiN4cZDMfpaPKMXu0484MPHJMrpazN3XEd8d10mN7+QpnWNaVCrMttPimvZDm7NpcfvCI9Ppry+DmN7NGdV8E3kcujfuh7vPiXx5qOIfRjSviFbzonzhrdvxNWX4XzJyKamYVmqGupz7VUEaioqjGjTmL03xYa+f/N6XAr9QHZ+IY1MjEjNzSMmWcjQjcrp8ShKjKv+MKvKjXdRqCgr0amuKZfehAPQpZ4Za2+E/Hat/Kr+1WDnUXgcOrq6zO7bBu+D4iU5vktTbryIJEZKOB/TqQmuO8SinDGwDZceSjdCGW3mDu/AgnWlyis1ZWWOS946XtN7se/kQ8I/JlNOXxtP2564rDlNVk4+9cyMmDq0FdPdAhVhnz3a1sPa+aBwV+5Yj45WFkxzPIhMVkLntrUZ0KMh0xccJDevkMYNjJkxuRMe/if5GJdKxQp6eC8ayIVLoZy9IH6+u1M/tDTVmOtwnOLiEtq3q83Y0a0JCAjh9m3RFl3sMQg9PU3sZ+4nIyMPc4tKzJ3fm4TP6fguFiOunn0b0W9QU6LCE1npK0lJx7WmfZd6JMSn4b/oqDC/6t+YPoObUlRUjLfjYQUhea60W7tx/iUnvgIlnyGKxPLV7seJi06mQiV9nJYJ9YWsWMbS+YGkfMnE2LQi9j6l3IBdy88R9iQabV1NFm0Yp5j7JydksGxugCIPq/PA0vyU2PBE1rsIUDnGvgdN2pXyKkpKSlg+Zz9pXwRPx85n2Hf3iKxYxlK7XYpgw3GO/X64j2I/JLDNXaRsT3YbjGn9n7+Aj2+6TNiDcLT1NJm3YdJveRnndt3gdcgHNHU0sF8/6W91VpLjUwlYKkioU3xHftfV+iclK5ZxapPoyg2e3fu/VmB9zbaaOnUqIBLI/xOgMmXKFHr06EF4eDjm5ub/a0AnIzmTVTbbCJHGBU27NcRxz4x/FPsA4l4L8D/Bfp/j0nUscdk3A90/uRb/uV6HvMdjxFoyU7MxqlERn2MOvwRHEa8+smjYWtISMzA0Lo/v0bkYW/wofz+2+TLb3MSa6DqyFXPXjP/O9iA/pwDvKdt4ekOMixZunkzbb4BMTlYeHhO3EfogAg1NNdx2TKVpx9LO1PEdN9jmJSwx+o5vi63XYJSVlYVaa/VFDkmeWGPtuzN6VjeUlJRIjEvFafw2EmJTMaxigP8+a6qYVCAvpwAPu328fBiJprY6npsn0LCFKVkZubhY7+ZD2CfKGGjjv30SZnWq8PJxFO4zDyg2UB5rxwhPsvmBPL4XjoaGGp5rJHn5zlJ5+US7zoya1I7Txx6XcnRGtWTanzo6k206MXTU90DH228YhpX0mTf3IGlpOYqOTtDhBwQfkbK05vTAopYRDs6SBL1BNRY59cPd9yRhbz+hp6vJcu9hHD37jPNXQwXnZn5fouJS2Csp/eZM6UxufhE7gwR3xnZce9Ky8jgkTQfmT+nC07dxXAl5h6qKMm62Pdl/5hHvY75Qtow2CyZ2wW+XMLdtXLsqzRpUZ/Mx0bWbNqAlN15E8O6jSCyf2LsFq4NvUiKX09uqLjHJ6byKSkBfR5ORnRqz5Zx4ng9uY8mdt9F8TsuiekUDzKtV4NKLD6gqKzO6fWNFR6dP09rcehdFZl4B9Y0rkVtUTGRSKoZ6OlQ3NOB+RCyaqiq0qmXC1beii9O1vgUXXgsLwe71zbn4Nvw/DgL9V4MdAMfBHVl7QsrxsDSlsEjG/TcxaKqr4ji8Ix57LimUVzm5Bdx8HoG6qgpeU3riv/eKMFgyr0LXZrWYv1os7hnD2xEWkcDNJxGoqargP6cfGw/dJjo+lQpldfGa1Ru31WdF+JpJReZN7oS95xGysvOpZ1GZWRM6MmdxMBmZedQyrcQC2+64LzlJ/Od0jAzL4LWwP/sCQwh5FCnsxd0GERefyrrN4gEybVIHmjQyYd78AFJTc6hZoyILF/Th4YMIdkvcntlzelCvXlWW+p3mw/sE9PW18PQREmkP5yNkZeZRp14VZs3rJQjJTsFCDm5lykSbTuTnF+HleFhBSJ7p2EcENK66yJuXsejoauK2YgSaWupEhycqHJJHTGlPq07ioXhs313uXA5FVVUF15UjMSgnHvr71l3mxQPxYFu0bizaUpfk9vmXHJfUDw7LhlO1RkVAdHv8Z+0nM1Ukmdu4D1B8vwX5hfjZ7aEgr5BGrS0YOfv7bkrQhss8u/UODU01nDeXBoN+rYMrz/HmcZTwwdk0+bvRl/jZxSyz3UlBXhFNOtRlgPXPvWyi38SzV3rJ2fiN/CFo8dtK/pTKTgk8TVo89LeS9G9r56Ig8nMKqGtlTueRPw99/DsVcvoJiTHJlCmvR+dRbf/6hL9RU6ZMITAwkCtXruDv7/8fB3P+b+ddPbnykuWTNpGakI6qmgqTfUcxeM4/B4D5OfmssN7O7WPixTdoZg+m+Y/6pa/S17p2OIRV03dQVFhMraY18To895eu2c9uvsF73EZys/KpWb8aPsH2lK/847h1t89xDkuxMYNtuzHV83tCdFZaDu5jN/H2SRQaWuq47bb+TnWYkZqN29jNfHgZi7aeJp57bWjQwkxx/YC1FzkgjYSH2HRiikupenKH/xmO7RDPoClOfRhqLcQD8dFJOI3bRnJCBpWrl8d/nzWVqpYlJysfd5s9hD2LQUtHA6+tE2nQtAbpqTk4T9tF1PsE9MvpsGT7ZGrWMuL5g0gWzxbp5X+0NGPx2jEAeMw7xJP7Aph5rRlD4+Y1ObD9Jvu/ApgZXRSqq38KdLx8h1Gpkj7z5gmgY2ZmyNJlIzh85BGBUg7hnNndqVW7Mg7OgWRnF9CgXlXcnPrh4XeK128E0FnhM4yTF19wTlJZLXLoS0x8KruDBKiYOakjhTIZW6UIEuvRbcnJL2LfCQlMTezEq/BPXLorVFiu03tw6OJT3ki+Oo6TuuC/+zKZOQVYmlemdWNTNhwR15rUtwUhYTGESdlXU/u3YtXhm2IK0bwWiZlZPJeCrUd3bsLmcyGi29OqPg8jYolLyaBa+TI0qGnE2SdvUVFWYnSHJuy/9ZQSuZwejWoREh5LWk4edapUpEQu531CMuV0tDCvUoG74TGoqyjTrm5NLoWFo6QEPRpYcE4COt0koAMwuWVTXH+7an5e/2qwM6lrc47dfkVyRg7mVcrTuo6JIvPKZVQX1h+7S1ZuAZamlWlRxxiPXWK36zK+KwcuPOFjQhqVyukxd0QH5q48JowB29TFqJwebodEC9R5SjdCnkVx92kk6moqLJnXn+1BIbyNTERfTxM/h/6s3HaV6LgUypfVwXdBf1ZsuUJEdBLlDLTxcx7A3sB7PH4eg6aGGn6ug3j64iMHDwuk7zinJ2UNtLGZtReZrIROHeowcmgLVq2+QNibT+jqauDlOZiUlGx8fU+JrJV+TejTpzHHjzziyqVQlFWUcPMYhGGlMizxPEFkeCIGZXVw9x2KiqoySz1PKAjJzp6DUFZWYp3/GSLeJ6BfVhu3pcI1+crZF5w+LBbeQp8hVDUuL8ZU8w5RkF9Ek5ZmCofk0CfR7JTMuawde1NXIhg/uP6GwxL5z957CNXNhKFafHQSq53FTnSYdUdadyt1D9678ryi2+O6Yfx3HjRbPY4T/fYzBhV0cVw37jtuxetHkRxYIb4nO99hmPxptxx6P5wg6aUwa9monwKUgyvO8uF5DLoG2jhsmPhrRYzdLooKi2nezZLuY9r8cMy3tcmhVEnVz6brb4/9WmH3P3At8B5KSkrYrRz3X3Vjzm4XoLnPtC7fjTX+2zIyEh2G/5dePX+3CvML2e0WxNE1grNhXKcKLvtnY/YbjtWv6nPUFzxHrCHqVSyqairMXj+JHn+RGC+Xyznof4L9kmFom35Ncdxp80tJ+5XAEFbP2oOsWIZlm1p4HJyJjr72d8cUFxWzZu5+rkh2FBMXDWLEnO/dnZM/p+M6Yj0f339Gr6wOngfsqNu05vefj9nEx/cJlCmng+9BO8wtjRW/8w6fkxzbfgOA8Qt6M3Km6NrIZCVscj/GOcll2NZjIP0lW4fo9wm4TNhGWnI2xqaG+O+bRvlK+mSl5+I6bRcfQuPRLaOJz/bJ1G5oTEpSJs5Td/ExMomyFXRZsmMKJmaGPL77Aa+5ARQWFNOsjQVuq0Yhl8tZPO8QzyWeoc+6sVj+YcLeLdcJkAQRU2Z1Zfj4NpwIfqjw0Rk6uhXTZnbhwO7bCtXVV6Dj7XG8NELHZyiVjATQSU3NwdTUkGXLR3I4+KEC6Mye2Y26darg4BykADqLXQbg4X+K0Dfx6OpqsMJnGKcvv+TMpZcC6MztQ3xiOrsCRQfHbkIH5MAmiRQ/dVQbCmUl7Dkm/j9nT+jIu49fuHDnDSrKSiyy6cHRqy8IixDp5wsndWXpnitkZOdTz7QSHZpbsO6w+LvG9WrG0/B4XkV+poy2BjYDWrMq+JZICvjDnLTcfB6/j0NbQ43x3Zqy+awAOn2s6vIy5rNwQy6rRxOLapx6FIaSEoxp34SDt54J1+SG5jz9+ImU7FxqGVVAVU2FV7EJ6GtpUN+kErfeRaOqokznBuacDxXgpmeDWgqg07WeOZckoNPJoiYnQ8N+u3Z+Vf9qsBObkEbYx0QMdDSZ2sMKtz3ixWbdpyWXHr4nOkEQtGz6tmT+RjEeGNejGR8+JnM/NAYNdVV8bHrju/MSmTkF1Dc1YmiXxsz0Fy/l0b2boq6qzN4T4qZ3se7B87A4Lkk3pM/cfly4HsrtR5LVt+NALtwI40aIyLjydhzAy9dxBJ0Q7XMX+14gh6WSEd3IIc1p39qCWfMDSEvPxczUEMe5vTh99jnnLohF4+YygLIG2sycsY+cnALq16/KjJndePE8hs2bJNn59C40/qMGRwMfcO3ya0FI9hlMRcMy7N12g0ch4WhoqOKxZBhl9LU5dfghV8+J67v4DcXQSJ+Id59ZK5ENx0zrgFW7WoK0636c+JgUKhrps9B/GCoqyqQmZ+G3IFCYh/VqSD/JIDAhLpUVTqKj0W9MKzr0FkTlwoIi/GYfVCSZT5jbQ/EdPrwWxhFp1zV36XCq1Kig+OzmqaecDwgRXj5rx1HuG1fZ7Ixcls3cS0mJnM6Dm9Ft+PfKqeyMXJbP2CPUaiNa0uEnPjhhjyIIWi3A0uyVY6lQuewPxwAcXntBAYjs10747Ujq3pmn3D39BBVVFeasn/i3iK9yuZxtTkJO3318O2o1/ZGf8XcrMzWbZ9eEB0b3CR3/4+v8rP4vOyB/W++fRLJ88iZiwoQfUF/rrlgvH/ePTQIBnlx5hd/4jWSn5WBgWAa3gNk0aPN7eXphQRFrZuziqvSi+520XPjtnGOP1DXsMKg5Dpsn/2A6mZ9TgO+UrTy6EoqyijJzVo2lx5gfPaRcR6znS1wq5Y308Q2chUmdKqWfR37BdfQmxed+h2YoiPwyWQkbnA9zIVC8fKd7DFJIz4uLZKycH8iN089QUlJijt9QeowQ6y38dRyuk3aQmZZLzTqV8dszDYPyuqSnZOMyZSdR7xIoU1YHv52TMatbhaSEDJym7iQ+JoUKhmVYsnMK1WpU4P6Nt/jOD6SoSIZVh9q4rhgpzFHtD/LqaYyIi1g3lgaNq7Nrw1VFqOfU2d0YNq41Rw7dZ5sUATFsTCum2HVm746bHJTCiadM78TgEVZ4uh3lfkj490BHGl2ZmhqyfMVIgoIfEvQN0KlXryoOzkFkZedTv24VFrsMwHNJKdBZ7jWMM1decfqi9Ey1782npAy2H5Rk/OPaoayixPo9NwCYNKwVJcCuI1LHZ1x7IuKSOXtTcHxcbHpw/PorXn34jJ62Bk5TurF071XBMzUxpGurOqwJFKBpVPc/CI1OUIR82g5qy+ojNwW9opEZOUVFPHj7ES0NNSb2bM6WsyGUyOX0bFqbt/FJREo+dS3qVOfEw9coKcHY9k04eOc5xSUldKhvSmh8Il8yszE1LIemphovPn5GT1OdJqZVuf42ElVlZbpbWnD21TsAelmWAp0udc248k4AnQ7mNbgZEU1RXt5v18+v6l8Ndq69CEdDUxun4Z1ZFnSdYlkJ3f6woCC/iLuhgkXuNr4b3nsuCXmeZU1qVCqHj5RqvnhyDw6ee0xkfAoVDHRwmdyN+atOkl9QjJWlCd2samHrJV7eY/o2o4yOJl7rxcvRfmInsrPzFSSzBdO7k5mVx3apRTl3Whc01FVZul7sNMYNa0kTy+rY2O8jv6CI5n/UYNqE9ixbfZ73HxIoU0YLH/fBhIcnskHyzpkyqQPNmtXE0+M4MTGCkLzYYzDpaTl4exxXEJKHDGvOi6fRbJPAz/RZ3WjY2ISQ2+85KI2N5jj1wayWEWEvY9kqdWQmz+xK42Y1yc7Kw3tBEIUFxTRvY8FY644AHNl7l7tXw8SYavkIDMrpiJiGBUGkJmVhYm6IvccglJSUKCwsxm9uANmZ+dRuaMw0x96K72mb3xki33xCv5wOTqtHK1r/SZ/TWfE1JmJiW9r2KpVHf4pOZq2TUD2NmNn1O56OXC5nvVMQX+LTMDIpzwy/4d8BELlczoaFgXyJT8XIpALTfYf/cO/kZeez3G6XUIQNb0n7AT83BYwMjSVgmeA62S0d/cNY4dvKzcpjo8N+AIbO6fm3zAMBbh97yJsH4WhoqzPB/eduzX+37p9+LOIOLKtT1fyfRR38Vf1fz7YqKizmkP9xAvyPUyIrwcBQn7lbrWnVt+lfn/ynksvlHF55lj2LD1NSIqd2M1PcDs2hYrVyvz0vIzkLr9HrCL33HmUVZWatmUDvSR1/eqysWMbGBQGc2yNeXENn9WCyx48ePRkpWSwevUEaS6nhssMGqx7fWwl8ePERt9EbyEjJpqqpIb6Bs77rZIa/imXR2M2lnwfYUUn6W4oKi1k57yA3TwlF1pxlI+kubR4KC4rwm7mfB1fDUFFVxnH1aNpL3lavn0TjPnUXudn5WFhWw3fXVPQMtEn5konz5J3ERnyhbAU9/HdNwcSiEgnxaThN2UlCfBqGVQxYumMKlY3LcefKa/wXHkaM8iRXAAAgAElEQVRWXELbrvVYuGQYhfnFuM4+wJuXsWjraOC3cRx1GlRj6+qLHD8keQ459GTgSCuC9t9lpySyGDWhDROsO7Jn+02FM7L1jC4MGNIcD7ejPLwfoVBdla+ox7x5B0lPy8XMTHR0/groeLgOxHPpaV6FlQKdc9dCOfXVN2dOLxKSMxVAx3psO1TVVBRAZ+LQlqioqbAtSPxudmPa8TExnTM3hAmgk3V3Tt0M5cV7ERrtNKUry/ddFZEQ1SvSu309VgaIa43o2oQPn5J4+j4OHU117Aa1YfWRm8JM19KUImQKM90pPVuw+VwIshI53f6wIPxLCh8+J1NBT5u2DWpy9L7YII3p0ITAuy+Fd07dGnz4kszn9CxMKhhgoKvFk+h4dNTVaGFRnSthIpuyR8NanHn1FoCe3wCdznVMufYhEjnQ1syEO5ExlMjl9LeszerfrqKf178a7ADMG9Ke3RcfkZadR+1qFWldtwZe+wTCdxnble2nQviSlk0No3KM7tqEuWskAmh/K6LiU7j1NAJ1NRX8Z/Zl5b7rJCRnUq2SAfPGd8beL5iCwmJaNqpB3w71sV4UKOacXSxpXLcq010OATC8b1PqW1TGxvGgUFp1b0R7KwumzdtPYWExVk1rMn5EK5w9jvI5IYMqRga4L+zH8dNPuSSFeXq4DEBVVRkPrxNCBdWhDiNHWBF46P4PhOR5sw+IBWouCMkpyVn4uEvgp0cDBgxtRnxsKsskguGAYc3p2rMh6ak5+DoHU1xcQrsu9Rg6tpUg+C4+LsZcVQxw9BZExFdPotkt7ZSmL+xNnYai1b1n3WVePY5CS1udRatGK4IDty85y4dQYT7osnq0Imfn1rkXnA2QiM0rRlJe4ivIimUssz9IVnouFg2qMXlhaSJ5YUExS2bsJS+7gPrNTRk793sfkivBD7l1+hkqqso4bZj4XVQEwLUjD7l54jHKKso4bpr0w+cA29yC+RyVhGG1ctgt+bkpoKxYxqqZuykuktG6TxM6/cJ352vt9T5GcnwqRjUqMnrhgN8e+7WKi4rZvVga783tQ/kqP+8u/d26I0lb2wz6uaT5v6mvnZ309PT/8Wv/txX5MoblkzcT8SIagA7DWzFz7ST0K/w8Y+p3lZedz0qbUn5Oz4kdmLFmwl9GfESHxbF4+BoSopPQ0ddm0YGZ/NGp/i9/xpKp23hw8SVKSkrYLh1F/2k/8sUSPiazaPha4sITxVgqYCb1mpt9d8yzW2/xnrSVvJwCzCyN8QmYiUHFUp+dl/c+4DF5G3nZBZhbVsN7v63Chyc/rxDf6bt5fF0QmR3XjVMYdeblFOBpvZsXIeGoa6jiumkCLSS+3tM77/Gy20tBXhENmtfEY+skdPQ0SYxPw2nSDhJiU6lgpM+S3VOpWqMCnz6msHDKTpISMqhsXI6lO6dgWNmAG+dfssz1qNQltmSBzxBycwtxmbmf968lhdbGcZjXqcLG5ec5LaWSz1zYm35DmxOw5zZ7tt4AYNzU9oyZ1I6dW65zWBJT2M7uRt+BTVm86AiPHkaioSF8dMqW08Vh3vfy8m+BzpxZ3albt8qPQGfJKQF0dH4EOs5zepGQkqUAOtPGtEVDQ5V1uyWl2NCWqGuqseWQ1PEZ1ZZPyZmcvPpSAJ1p3Th7O4zn7+LR0VLHeWpXVh24QWpGLhbVK9K/YwOWB4hrDevciKjEFB69iUVbQw27wW1Zc/S2tKmvgZIq3HkZjYaaClP7WLHl3H1hn9LInJiUdN5L+ZGdGptz+J5wTR7ToQnB915RWCyjdW0TolLSiE/NxLi8PoYGujyMFEqrNnVrcDH0A0pK0LNhbQXQ6WVpwfkwAXQ61q7JjfAoSuRyWtWszv3oWGRyOVY1jHkS//m36+hX9a8GO4NbN+D5h3jexyVRTk8b236tcNoqZvQTezbjydtYXkaIVuCi8d1w3nxGtPf+MMO8agVcN4hjnSd141LIW55JknP/2X1Zsu0SCclZVK9cFqep3bD3PUp2bgGWtaswbXhrbF0PkZdfRFPL6kwc2hI7l0Pi8zpVmTGpI07ex0hMEkm37g592bnvNk+ex6ClqYaP2yAio5LYvF3cuHbWnWlQryrz5geIdmrNiixw6M2TJ9HskgjJM2d1p379aqxecY63bz6hp6eJh2QI6OV6lPS0HEzNDbF37ENBQTHeLsHkZBdQz7Ia1rO6ISsuwd/1KMlfsjCuUYF5ksrq8N47CnMut2UjKKOvTVpKNn6OQZTISujcpxF9hgnfjfs33iiSzOd5D8G4piAY3zz3kjPSLH/BshEYShlWn2KSWeMifGZG2Ham6TfdmYPrLxP6KAotXQ2c1o9VmJQB7F12hg+vYilTVoeFG75XmXyKSmLTIgEOxjr0/iH3KvFjChudRUdojEPv7/gKX+vxtdec338bJSUlHDZM+s6X5Ns6tuky4S8+omugzcyVY387vop4GcOpLQIczl474W+PTC4fuMOniEQMDMsw1L73X5/wmyosKOLpFfHgajOg+V8c/c/r/+IYq6iwmKBlJwnwO0ZxkYwy5fWYtX4yHYa1+uuTf1Ixb+LxHrWO2HefUFVTwW7VeHpP6fSXaroHF56zZNJmcrPyqVyzIp6H5/4ytTz5UxqLR60n4uVH1DXVcNphTes+P0Z5fHgRg/uo9aR9yaRi1bL4BttT/U+8tBsnHrNylkgYb9S2Nm67rdHRK1Xx3bvwkiUz9lBUUEzDVua475qm+Dw7I5fFk7YT9jgKDU01Fm2bTDNJkZWVnovb5B28e/4RLR0NPHZMpqGVAFn3LofiP+cgxUUymrWvjaukqoyLSsJ58k6SEzIwMi7Hkt1TqVS1LNEfEnG23kVacjbValRg6c4plDcsw8XjT1jrdZKSEjld+zdhrsdAsjLzcJmxj4h3CZTR12bJ5vHUtDBinf8Zzp8QzsX2rv3o0b8J+7bf4MAu8TyaaNORURPasnX9FY4GCcAyY24PevZtjJtLsMi60lTDx38YevpaOMw7KBSskrz84KEQjkjy8jmzulO7TmXmSWTk+nWr4PEnjs5yr2GcvSpGV0pK4GLfm8Q/AR1NTTUF0Bk/pCUa3wAd6xFtSEzN4rhkTrtwajfO33vDs7dx6Gip4zK1O6sPXic5PQdz4woM6GTJ8oPXkMthcEdLPian8yBMjKdmDGnLumO3KSgqplV9E9TVVbn2PBx1VRWm9m7J1nP3KSqW0d6yJp8yMnkbl0RZXS26NrEg8K6IWBrTrjFH778iv6iYFhbGxKVnEJuSQdWyelQpX4b74UJp1a5eTQXQ6d2ojgLodG9gwYWwcORyaF+rBnciY5DJ5bSqaczj2HiKS0poblKVJ/Hx5Ofm/nYt/ar+1WDHQEeLU9dfoaqijOvoLvgfuEZBkYy2ljUpr6vN3nOPRIDnlJ6sDbpJcnoOplXLM65nc2YvEyZ4I3v8QXGxjCOXxZfuYduLU9de8fxtHNpa6iyZN4BVu64RIymxvO374rv+Ap8SMzCqWIbF9n1YsvEiMXGpVCini7djf3YcuM2zVyLZ1s9lII+eRBF0TCykhXN7oaerwXxnEYrZrXN9hgxoytr1lxSEZE+PwWRk5OLrIx4EPXs1pG/fxpw/+4Kzp4VBobPbACpXNmDdyvO8eR2Prp4mi32HoqGhyjKvk0RKbsiLfIagpqbCro1XeS6F27ktHY62jgYvHkexRzLislvQC4u6VYSDsVMwacnZmJgZMnuRAEVfPqezwlX8nw0Y04p23QXB+FNMMmulhPMRNh1p3l4AGsHTOUBeTgH1m9Vg3OzSyIMXIeEEbhA/d7bPUKqYlPJ0ntx6qyBIzl0xiorfjI2Ki2Qsm7WP/NxCLFuaM8zue/JvSUkJK+fsIy87n7rNajJidg/+XDlZefx/7L1lXFXpu///pksURUIEC1QUxe4eO7AVO7FbREqQEANbRx1jLOwau7s7UVRAUQHpzp3/B/dyK4OOM3O+53/O63V+1xNlu9beCOte63Nf1ydWzZRM+8b/Qp2W3+dffI5JZtdiwWEaH+JKmR8oaEBKZ3cXwYqt+zamQfvi5m/fK4VcwV5Jau46x+UvnZj/TkU+eoesQE4pi5JUrv33Rmj/pP63jbEi7kayYuJGPrwU3JxmLg2YsX4cZaz/mRPyl7q87zarpoiUefNypfHdPRWnZt/3wvlSarWaQ2vO8Ps84Ufj3NKRebum/jAXK+r5R+YPWkPq5wxKlTUlYM9UavypUwPw4OILQsZuoiC3kMpOtgTtnVYk/gHg6ObLbPQTm4nWPevjvrZo9+nc3jus8RKblmadnfFaN1KT85aenM284Rt49yqeEiWNCNg2DqdGX00/543cTMzbBEzNjAne5qZxOL987DHLPQ+gUqpo0akWc1cMQd9Al/dvPuMzdisZqTnYVbFg4daxlLUqReTLOHwmbCM7M5/K1axZuHE0pcuW4Pjeu6yXDEe79mvItHkupKfm4jV5Bx/fJWNWxoQlG0ZiV8mC5UHHuCg5w8/270WHbs5s3XCZ/WGCE+U2pT39hzRj7YqznDgiJNzT53SlQ5fazPM6wNMnHzA00iNk8UCMjA1wd99DdlYB1apZs3iJKzt3CWdkEKqrqlWthY9OrkRG9u7J/MVfVVdLgwdw8sJzTkhkZJ/vdHS+BTrD+zYpAnTcBjYnOSNH48Lv6daR83df8zhCbLZ93Dqycs9VktNzsbc1p/cvzhqg07tNLRLSc7j7UiiOp/Zrydo/bglzwRoVMDTU4/JTkXQ+rnsTNp+9i0yhpKVTZVJy83j1KQkzE0M6N6jG3pvimTeoZR0O339JvkxBI3tbkrJz+JCSgXWpElSwLM3tyI/o62jTtpY9Z16Izk33uo6ceC6ATseaDlyMiEKlVtPCoSK3Yz4hV6loUtGWx7HxyJVK6tvZ8PRzAnKVig5Vq7DpL1fV9+v/NNjZdu4BOvqGeAxoy86zD0nKEOOqfq1q47FePKim92/F1YdRhL9LoKSJAfPHdMbn15PkF8pp7FSBdg0dmLZIPMTH92tOVnY+h86L7I+AyV25cvctNx5KEvQ5PTl0+jH3v4SBevbm+Pnn3LgnLq4Fnr149DSGg8fFwvGd2Q2VSs2SVYI4PWRAE1o0cWDG3K+EZPfpnTl3/gXHT4g8Ex+vnpQ1L8GM6bukTBZrZszoTOTbBNZI7zNydGsaN7HnwpnnmsXt5d8LG9syHD/8kEtnX6Cto4VvcD/KWpbk9rXX7JeIerPm9aRiFQtSk7NZ5HNIAK4edenaR/Aadv92haf332FopI/vMlcMjfWFEeCcfeRk5VOtVnnc3MVYSSZTsGj2XkE8blCJ4VO/go8tS04R/SpedGdWfOXpZKTmsHS28NPpPLAxbXt+3dFmpOawfJYg6vYY0ZKm3yi2AHavPMObpyJQ0ONPyiyAY1uu8uJOJIbGBsz5ddR3ZcFb5h8iJT6dcpXKMsqn93evK7VazVr3XULu3sqRjoP/WgZ+7dA9Xt55i4GRPuMW/jgn6891ac8tEj+kUNqqFN3Gtvv5CT+p8Fvi5lOrRfX/kmPyj+p/yxgrP6eAbX77OLbuHGq1mlIWJZm8chRtBzb7V/9vWaGcTZ67ObFRAPC67Zzw3j4Js5/48MgK5ayduYPzYaK70G10WyYvH64Z4f657p55yuJxmynILaRC9XIE7Z+OdUWLYsedCbvB2jm7USlV1GtTg3nbJxbp1qjVaraFHOPgr4J72HNsWyYE99dwfdRqNfvWnmdnqAATnVybMn2Jq2Y9JH5KxWfoBuJjUihtYUrIrklUriGIzPEfUvCVvHLMrUoSsmM8FaXol5O777A+8ChqtZoOfRowc2F/dHR1ePPiE/PGbSMnM58qNcoRsmUMZmVKEP44Bv8pO8nLKaR6bVsWbBiJaSljDm67we+rxPfeZ1gzxs/pSnJCJp6TdhD/KU0QlzeMpJxtaRb7HeH6xZdo62jhGdSXNh2d2LDqPEcl1ejEGZ3oPbAxq0JPcUbaCM6c2522HWriM3c/L55/wthYn5Alrujp6+AxZy85OQXUqGHDwkUD2br9uubeO2tmFypXssDDRxgG1nayxd/LBf9FxzU+OssWDODE+W+AzsxufE7OZMseyevmT6Or4X2bYGCkx8Z9EhBybU5KZm4RoHPh3lseSjmLPuM6snLPNZLTc6hc3pw+7esUATpJmbmCj6qvy7T+rVl39JZ4ljnaYWJiwKUnkejqaDO+exO2nL1PoVxJ85qVyCwsIPxDIiWNDeja8Gu+lWsLZ44/jBBuyPblSc3P531yOpYlTbAvZ87Ntx/Q19WhQ20HTj0XBOQe3wCd9jXtufz2HUq1mub2FXjwKRa5UkmjiuV5Fp9AoUJJXdtyhCclIlMqqVPemqi0tL9cVz+q/9NgB8C1TR0iPiTx/J0YV3kPaYfnbyeFjLxpDXS1tTlx8yXaWloEj+/GugM3+JySRXnLUswa2pbpiw+L0VYjBxo5VWBKsCAku/VrhhZabDkgdg8ebu1JSMpkj8SJ8JnahaSUbLbuExe5+4QO6Otqs3SdWMTDBxYlJDeoWxG3Ea1Yvf4CEa8/U6KEAcF+ffj4KZWVUsrwyOEtadK4CsuWniYyUnjnzA/oS36+jED/I8hlSpo1r8qQ4S2IjkxklZT5Mmx0K5o0r0rEyzh+WyVFPExqj3P9isTHprFM8sjp7dqYtp1qCZKxz0GNceBUL+Gx8/BWJHsl2fgM/55UqCJk49vWnOf180+YmBris3QQenristu67AxRkiHY3GWDNDfTW+fDOSHtuuYsddV0Z9RqNSvn7ic1MQs7B0smfuOno1arWT13H+nJWdg5WOE2r2juVfi9aPavlcZESwYV2+V+ikxg+0LRJXGb3webSsUfIo+vveLMTolAvnrkd12SAa4cvMfjyy/RM9Bl+srhf/kALcgrZLOUTu7q3gNL27/nqaNUKNm7RADy/jO7/Sul0J8r/Ja4GTk1d/wvv9f36n96jKVWq7l9/CEbZu8g6WMKAB2Ht2bC0uGUNP9xwvhfVcKHZEKG/srbR+8AGOLVi2Hz+v5URZeakEHw0LVE3ItCW1uLCYuH0GtSx+9eK2q1mmObLrHJZz8qlZp6bWvgu30SJf4kLVer1YQtPs4eKYi2g2szZqwsCp7kMgWr3XdzSQoGHeXTk4HTOhcJ9Nw4/wjHtwlZsuu0ToyUPLQAYt58Zt7w30hNyMTKrgwLd0/SrJX3rz/jO3IT6cnZlKtozsKd47G2Mxdk7Y1X2C6lhrsMa85Ev55oa2vz/P47AibvJD+3EMc6dgRvGk2JkkY8vhNF4IxdFObLqd2gEoHrRmBkrE/Y+kvsljg2g8e1YcSU9nyOTcdr0g4SP2dgZWNG6G+jKGNhSrDnQe5eF3xFn4X9adbGkTWhpzl1VJjcTfPoSrde9VkWcpwLZ4W3zRxfF5q1rIbXnH28ehmHSQkDFoUOAi2Y67FPo2gNWTiQTVuucOr0M02op61dGTzmHSBPckae5+mCf8hRXr35rAE6R89+9dHxmdmN+KRMft8rEaGHtULvT2RkXQNdNknPiPGuLUjNyuXIBfGZc8dKQOflR4wN9fB268iqb4BOvw51WLb7igA6rWuRmp3HrRdCeDOtfyvWHb1FboGMBtVsKWlqyIXHAuhM7NGMzefuUSBX0LxmRXLlMp69/4ypkQE9Gtdg942vQZ4nH78mt1BGvco2ZBYUEp2YSllTY6qVt+DGmxj0dHToXKcax59GAKKjczJcAJ12jlW49vY9CpWKplUq8DgunkKFknp2NoR/TqJAoaCOrTWvU5IpVChxtrHmVVIyBbm5f7m2flT/p8FOPYfyVLAszbJ9V9HW0iJgVCdW7L9GZk4BNSpa0a1JDWatEpLOaQNb8SD8Iw9fiXyshVN6sOj3C2K0ZWvO1EGtmRy0X8w2G9rzS9PqjPcVXYa+nepQw96aCd4icmBI70ZUr2LFOCn6oXeXOrRq4oDbrDAKZQqa1K/MKNfm+IUcJS5eGAn6e7pw/lI4x0+J3YefpwsmJga4e+xBLlfStKk9w4a24PSpZ5yVZOfz/HpTtqwpvl4HSEzIpHz50nj6uJCfV0iQ7yFkMgWNmtozfExrsjLzWOB7CIVCRct2jvQf0hRZoYIQL8HdqVHbFjcpymH7+su8ePwBYxMD5oUOxNBIn+TETJb6HkKtVtN9QCPadasDwL1rrzksdYVmB/fFWlJw3L74kmMSoHFfNEAT8Jn8OYNVkttxf7c2NGrz9cF7fMdN7l+JQE9fF+/Vw4o84E/vus3dC+Ho6uvg9esIDAy/+sPk5RSwbGaYsK0f2KSIpT0I4LB8+k5kBXIatKtJtxGtil0r+TkFrJ4llFIuY9vi/AP5cHZ6Dht9BXgZMqcH5e3/Os/q8JqzpMSlYVWhLP1n/L1EcxDdoM/vkyhV1pQe3yGm/pt6/+IjADUa//fkTf1PjrE+vYlnw+wdPDwvWu9WlSyYuWEcDTr8+4DTm0cfsGLiFnIz8yhR2gTPrRNp3KXuT897/SCawMFrSEvIoISZMT47Jv9wdKmQK/jNax8nt14FoOvI1kxZOgRdvaK3blmhnJUzdnLlkJRT5N6d4V49i4Cn3Ox8Qtw28+TaayE/Xza0SPyDrFDO8pm7uH5CxA5MDOxHr7Ff/YDC778jcMxmcrLyqVjNmgW7JmpiV149imH+2N/JycqnsmM5FuwYRxmLkqjVaraGnuaQZCQ4eHJ7hs/shJaWFveuRLBQ8sWp06QK89eNwMjEgDuXX7FQkpE3aFEVv5VDMDDUY/PysxyR7hmjp3fEdWxrPr5PxnPiDtJSsrGtaM5iqfsT4L6PR3ej0dPXwT/UlQZN7Vmx8ATnTwmgMMvbhQ5da7M46ChXL75CW0cLb//eNGhShbmz9/L2zWdMTQ1ZvGwwMrkCby8R2OnsbEdQcD/W/3aJc+cFaPH06I6llUgvz8+XUde5Aj5zu4usq8gESpoasnTBAI6cesLZyy8loNOV2IR0jWHgxOGt0NLR5tcd4vc8ekAzobr6Buh8O7qaO7YDF++90XR0vMZ2ZM2+6xqg079jHZbuuoJKraZXKydSsvO48fwd+ro6TO3XmvVHb2uATmkzYy48eouutjYTejRjy7n7YqzlWIFcuZwn7+IxNTLApclXoNO/WW1OP3kjxT6UI0cuIzIhBfMSRtSwtdR453SpW1UDdLrWqc6p8Neo1dDWsTI3oj+IcVVlO57GfyZfrqBOeWveJCWTL5dTu7wVb1NSyZcrqGVtyeuUZGRKJa2rVOLdT1dZ8fo/DXYGtnYmIEwi8PZpwbl7b3j7SZCVPQa3w331MRHf0NSRsqbGrN0jdjv+4ztz9PJzjY9ByLQeLNhwluS0HCralMF9dAdmBh8kN19GHcfyjBnQjEk+eykoVNCoTkVG9GvCFO995OQVUsvRhikj2zJv0VESkjKxsS6Fn3t3dh+4y537ksxxXm8Sk7JY8SXjalhLGtavjLfvQRITs7CxMcPH04XIyATWSseMGduG+vUrsXP7DR5KKoL5wf0wKWFAoM8h4uPSsbQqiZfUHVkSeIzkxCzK25XB3VfcJH9beZaoNwmUMjPGd9EA9PR0uH/zLQd2SCMtv17YViyLUqFksedBMtPzsHcsxwQP8dAWPB3BCeg9rDkt2gtlSWJcOiul1/uNaUXjtgLQKJUqQt33kpOZTzVnO0Z846fzPiKeLYtFbtg4HxdN2xzgY2QCm4NF92mMlwtVahYldm4OOkripzSs7MowMah4XtSh9Rd48yQGk5JGzFg+9Lu7620hR0n8mIqlnTlj/Pr+8Jr6PeAwmSnZVHC0of/076dRf6nUhAwOrJSCTgMH/G0DP7VazQEpQ633lE4YmvzXuDogAF9KnGgPW1cu3tX6T9S3nR21Wv3fMir7c+XnFLBn4REOrzqFQq5ET1+X/rN7MMirN0b/8ucmK5Cx2XufhlDu2Mge77Ap3x0p/bnOhV1n7YwdyGUKKtYoz/x9M34IiLPTcwgZvZGn1yLQ0tJibGB/+k3tVOznlp2eS9CI9by4Eynk6suG0nV4UcCempCB/7D1vAuPxdDYAJ/NbjRq/1XplZudz4Jxv/P05lt09XRwXzWMtr2+Su7vng9n0ZQdyArl1GxQmYBtbphKMRcPrkYQMmUnhflyajaoRMCWMZiWMhbeO/5HOCuNjMZ596DvGJHqfuXkU5Z7H0SpUNGkXQ28VwzGwFCPiyeesMLvCCqliubta+IV6oqOjjZrgo9z5rDwG5vk2Z1eQ5oS/eYz3lPCyEzPpZK9JYs3jMTQSB//WXt49jBGuCWvGEytehUIDTzKlQtinDXXrxetfqlJiP8f3Lz2Gl1dbXyD+lK7TgXmzNxDdFQipUoZEbpiCFnZBczzPUhBgZx69SoSENiX1WvPc+nyKwFavFwwK22C57yDFBTKqV+3Il7u3fAOEOnlpUoasWzBAA4cf8T5q6/Q0dbCd3Z3Yr6JgBCGgWqNYeDogc3Q0tHWyMsnDGpBQlo2Ry89/wbofB1debsJoJOU9rWj8wXouLRyIjUnnxvP32Ggp8PU/q3YcEwAnfpVy2Ne2oRzD9+gq63NuB5N+f3cffJlchpXt0OmUvLkXTwlDPXp2bQmu64LENyvWW3OPntLdn4htStak69S8PazcEOuVbEcVyOEd07XutU1QKdbneqcefkWtRraVK/MreiPYlxVqTzPExLIl8txLm9FdGoaeTI5NctZEp2WRp5cTk0rC6LS0ihUKKlVzpL3mf9vjPWPK3TvFZQq6NyoOiqVigsP3qCjo03wuC4s3XWZjJx8HCta4tq+LpMXi4fzKJfGZGUXcPTKC5GBNaUbh88/5Zkk91s8uyertl7+Gg0xsweL150jLiFDQ0hetuEi7z6mUKa0CcEePQk7eJf7TwSPZ4F3b15GxLNNShl2n9oJS19rjngAACAASURBVIuSTJi2A7lcSfMmDgwb3JydYTd5+Og9Bga6BM7vi1KpIjDgD3FMi6oMGtSUB/ffEbZd8smZ3ZUq9pYc2neXW1Jr1z+kPyVLGbN3+00e3IlCX18Xv4X9MTEx4Mq5F5w6/EgsrqA+WFiVJCkhk6X+otPV07UxrTuKm2XYhsu8fPIB4xIG+C51Rd9AD4VcyeK5+0WcRK3yjJ0tgItCrmSx+16Nn87IGV/jG/ZvuCwUVib6eK74Kj8vLJATOmsPCpmSxu1q0GP4Vw6MrFDBkulhwqG5VXV6STfTL3X/0kvO7hG7wdkrhhaTkb+PiGPXUgE4JgQPKDbeAgi/E8nxzcKHY+aq4T8kAofffstZacw1fcWPuRdfamfwYRHv0NieNv3/Wpb+bT08/5z3Lz5hVMIQlwkdf37C36jU+HRUShW6ejqU/pcE3Z/VF7CjUql48+YNjo7/PeOyL59xafdNts7bS2p8OgCNutRl8oqRlK/616Gbf1Vx0YksHLaWqKcfABgwqxujAgcU67T8uRRyBZu893FMAkjNe9THY/N4jE2/n18WG5XA/EFriYtOxKiEAZ6bxtG0a/GuUfy7JPwGi+OMTQ2Zt20i9dsWDSf9+PYzfoPXkRSXhllZUwJ3TaZa3a8qxLTETPyG/8a7V3EYmRjgt8WtiC/VuX13BVFZpaZxeye814/UxKpcPvqYFXP3oVSoaNjGEd/1IzA00hchoh77uC6Zj05f0J/Okirz5N67rA8+jlqtpp1LXWaH9EdXT4cT++6yTsrf69CzHrMC+6BWQ6jPIa5JY6YZ/r3o3KcBr55/wm/6LnKyC3BwLMeidSPQ1tHGe2oYES9iMTbRJ3jVUKrVtGGB72FuS/c876C+NGlelQDvg9y/E4Weng7+If2p5lgO95m7iHmfgllpY5auGEJKag7+foeRyRQ0bFgZ//m9WbbiLNeuS3EM3j0xKWGAl7/okjduWBn36Z3xnH+YdzHJlDYzZmnwAPb+8YCL10V6ub97dyJjkgmTQj2njGqL/JsIiNEDm6HWgt8l+sOEwS34nJLFscsvviEjv+HRD4BO3w7OLNstgE6PljVJ/wboTOvfmvUS0KnnYINFmRKcffgGHW0t3Lo3Ydv5BxqgI1ereRQdh4mBPr2b1yJMyrfq06QW5yWgU6uCFXK1ijfxyZQ2NsS5UjmufAE69YoCnbOv3qJSq2lVrRJ33n9EplTSoKINLxOTyJPJqV3OivepGeQUyqhhbcGHzAxyZQLovMvIIF+hwMnagtepyRTm/j811j+ujJwCatrb0blhNeZIhGSPQW05fSuC1x9Esqvf6E7MXX2cQpmCZs6VaO5ciSkLBfCZOKAlaRm5HP5CSJ7ajev3ozRpswvdXThx8Tm3H0kZVnN7ce7qKy7dFIsleI4LEW8/EyYh/LnTOgtp+VKxa+/Tox4d29XEy/8QiUlZlLcpjbdHdx48fMfOXQIMzZZIcb4+B0hMzMTGxgxPzx4kJ2ezaMExYevtUpdOXWoT/vwTWyTzrInTO1G9hg3PHsewQ1IvTZ3TlSoOVnyKSWH1QvE9DB7diobNHARI8TlEVmYeDo7lGDdTgJfHd6LY/7tYqDP9e2EjGZGFrb+kSTj3Dv3K0wlbe4HXzwR/x3vFYA0gePkoht0Sp2ZqYF9sKn7lrmwLPUXM2wTMzEswa0lRA8Cw5ad59zKOkqVNcF8+pFjGz+q5wsuot1tbnJtVLfL7V8jF+EohV9KkU206DCwOOGSFclZK6qsuw1pSv833U66VCiW/SsnoXUe2ptafPuvP9T78E+ckYDR+0ZB/1OU4sEKAs25j22Fa+q9DJP9uJX1MoUCdh0FpHeLj4/9b8qf27Nmj+buTkxObNm361xlZf1VProSzee4uop7GAGBd2ZJJK0bStHv9/1I36dLeW/w6Yzt52QWUNC+Bx5YJf2tslZaYQcjwdYTfFkqU4T69GeLV64exGY+vvmLhqN/IyczD0rYMAXunUaWWXbHjXt6LImjEejJTc7C0LUPQ3mlU+pNc/fnttwSP2URORh7lq1gSvHcq5b5RL36KSmTesA0kxaZR2sKUwB0TqOoslFNqtZoD6y6yXSIqdxzYmBmLvxKV/9h6nU0LxH2zXa/6zA51RVdPh/zcQoKn7OTJrUjhvbN8MK26OqNWqzm45RrbpEgGlyFNmejrgpaWFvu2XGP7aokwPaQZEz27IZcpWeixn3vX36Crq8PcRf1p3akWT++/Y/7svRTky3CqU4Hg1UORK5R4T9pB1JsESpQ0ZOGaYVS0tyTA8wAPpXGWX0h/6jSoxLy5+3jyMEa4wi8aQMXKFsyesYvYT2mYly3B0hVDiI1LJyhQbB6bNXPAy8eFxUtPcetWpPAs8+uNto4OPgGHNZvQ6ZM74Dn/MO8/iI3s0gUDCTt4hys3xSY6wKMHr6IS2POH4G1OG9OOvEIZWyTOzljX5shUKnZ8AUJDW/EhMZ0TV4RhoKdbB84VATqdWL33K0enbwdnlu++Koz3WjmRmpPHzefvNUBnw/E75BbIqOtgg4W5qQbojOvelO0XHpIvk9Oomi1KLTWPokQ8RN8WtTRBnn2aOHEpPIosCegotdRExCZhZmxI3SrlufwqGh1tre8CHaVKTcuqFbkfE0uhQkn9Cja8SU4hVybHqZwlHzIyyC4spLpVWT5lZZFTKMPRyoKYzAzy5XJqWJXlbVoqcqWKtlUq8/6nq654/Z8GOyWNDXAf2IY560RmVO9WtVAoVJy+LcU5TOzG2n3XNYTkmUPaMnXhQRRKFe0aVaVJrQpMCBAOvm79mqGno6Nhzc8a8wuZWflsldJpPcZ3IC+vkA07pLHZqLaUNjPBM0goufq7NKB106pMdt9NTq7wZpgy7hd27rnNA6mDEzSvN7k5BSxcLHY/PV3q0bFDLcLCbnL/vgBUAYF9MTDQw8tjH1mZ+VStZs2UaZ3ISM8lxP+IMBzsUJOefRuQlprDIn+Rbt6xmzNdXOpSWCAnxPsg+XkynBtU0rgh79hwmZfPPmJsYoDv4oHo6+uSlpJNqI/g6XTr34jWnQXv4MndaA5IeTIzA/pQzk7wdJ7ejebgFun1Bf2wKi+6KDlZ+YS670WlUtOuZz1+6VVf8zt6dP0Nx74owUJdNWZmILKtDm8UqoUZoa6YWxdVv6z3O0RaYha29paM+sZ08EsdWn+B6BefKGFmzPSl3wccB9ecIy46kdKWJXEL/LE78alt14iJiKNkmRKM9v/xmOtLbQ04iFqtplWfRtRs8vc5Mu/DP/H8egTaOtr0mfrXY7J/UoeOH+CG8gTEQ8WKx1myZAl9+vQhPz+fgoKCf/3nl79nZmby8OFDzeepVComTJhA586d/2PA6mNEHJu9d3PvlLg5G5c0YrBXb/pM64q+4b/P+MrNzOPXmTu4LMU31GpRHa/tk3/qhgzw8m4kC4b9SlpCBsamhnhsGk9zl+87MqvVak5svsJvPiJKpUYje+bvnoKZRXFjwyuH7rFixg7khQqq1q1I4O6pxewNLh++z8qZYSjkShwbVCZg5yRKmZf4+r09eEfg6E1kZ+RRvrIFwbsmaYCQUqliY8ARTkgj64GT2zPKs4cm0HPHsjPs3yA2Tr1GtWL8PBe0tbXJTMtl/ritvHn+CQMjPfzWjaRBq2qoVCp+X3qGI9JaHjShHSNmiK7k1pXnNP5bQya0Y/iU9uTnyQicsZtnD96jb6DLvOWDadyqGnevv2GB5wHkMgX1m9gzf/kgcnMK8Zqyk4/vUzArY8KiX4djbWPGvNl7ef7kAwaGegQuGUh1p/L4zN5L+PNPGBnpE7zUFSvrUsyavouEzxlYWpVk2cqhREUnsiD4GEqlilatq+Ph0Z0FC49z7340eno6BM7vi1ypZH7wEWGw2rwak8e3w8PvIB9j0yhrXoJlwQPYsucWN+4KcBQ4tydPXsVy8IQkbR/TjqzcArYdFJyd8UNaklsoJ0wK9ZwyrDXv41M5dU2IYzzHd+TMzQjJy01wdFbvFfLyyuXN6fOLs4aM/GegM/Wbjk4d+3JYmptyTgI647s3ZZsEdBpWs0WpBQ8jBdDp0/wr0OndxIlL4dFk5hXgZCeAzqvYJEoaGVDvG6DTvZ4jxySg08W5GudeRaJUqWlmX4GHH+MoUCioX8GGt6mpZBfKqGltSWxGJlkFhVSzLEt8TrYAPZbmfMrMJFcmp7plWaLT05ApldS2tuJVStJP19336v802PEd1oGle66QnVdIrSrWdGhQjZkrxZhmumsbHoR/4P7Ljxjq67Joag8WS4TkyuXNmT6kNZODDiCTK2lRvwpdWtZkrI9wQHb5pTYNnexwm7sLgD5d6tLQuSJj3cNQqtR0alOTbu2dmDx3D7l5MpxrlmfSqNYsW3ueqHdJmJUyJtC7F4+fxrBTkiS6T++CnW0Zps/cRXZ2AY6O5Zg8sT0PH75nx5dR1czO2Ntb8evq87x+FU+JEob4B/VFR1ebRYFHSUnOxq6iObPmdkelUrNo/h+kpeZQqYoF0zyEId36ZWd4L3nseC0QqpIHtyI1PJ3Z/r2wsSsj+DU+h8hIy6VyNSsNTycjLZelPuJB3rVfQw0AykrPZZmn8BLpMqARLSWfHbVaza/+R0R0g20ZpgT00fx+MlJzWO4hwKTLiBYa91UQKqblkgS944DGNP+T/f2Nk0+4evSRUFisGl6MD/MpMoE9K4QabWLwgO/64MRFJ7JvlXRMiGsx9cuXykrLYacU2DjCpxcly5T47nFf6sXN19w/+wwdXR1Gz/9n8Q4nNwt5c3OXBn/rYft3KjY2luBlgZqvVSoVHh4eeHh4/Efe/0elVCqJior6L4OdhJgkdocc4ULYdVRKFTq6OvSY0JGhvn2/CxT+Sb26G8niUetJ/JCCto42w3z7MMjD5adp5Wq1mhObLvGb5x6UCiUVHG3w3zMdu2rfH6HJZQrWeezWjEHbuzZjxqoRGl+bb99315IT7F4mOq/Nu9Vl7m9ji5D11Wo1+1adZecSsSlq0b0eHr+OLLIGbp15RujUncgK5VSvV5HAHRMoJV23sgI5oTN2cevMM7S0tBjv35veElFZqVCydt5hzkk8nFFzujJw0i9oaWmR/DkD31Fb+PQuCVMzY4I2j8GxbgWUCiWr/I5wUVJBuc3tRr/RrVAqVawNPsZZiYszbk5X+o1sSXZmHn5Twnj9IhZjEwMC1gzFuWFlrp0PZ8m8wyiVKpq1ccRn8QDSUnLwmryTz3HpQnK+bjilzUvgPXM3EeFxGBvrs2DFYCpUtmDu9F28ff2ZEqaGLFw+GNNSRsyaFkZycjY25UuzdMUQwl/GsnjRCRED074mM2Z2ISDoDx49Fp2gBUH9ycrJZ8GSkyJ4ubUjbqNb4+57gLjPGVhamBIa3J/ftl/nzkMR/hzk2ZN7zz5w5LTgvMwa356U9Fx2HpZCUYe1IiO3gN3Hxc9h+ggp1PPGK7S1tPAe34kT11/y7K3kjDy2Ayv3fPV9693emeV7rnyVl2fkauKOpvb7ytGp62Dzl0BHpQUPv+nohF0T32/vxk5c+QJ0bC1RfQN0GjrYcullNNpaRYFOZ+eqXIiIQqFS0dy+Ao9jBQG5rl05IlNTyS4oxNGqLHFZWWQWFFLVwpyE3BwBeizMic3OJkcmo7qlOTGZ6RQqlThZW/IyJen/ZWP9mzr/4A1RcSmYlzRmzqBfmL3qDyE5b1YDy1ImrN51FQC/cZ05/Y0N98LpPVi8+YKIhrA2w8utI3MW/0FWTgE1HayZPLQV0/33CwJydRsmDWuNe+Ah0jPzsK9kwZyJHVi+/gLvPqRQxsyYgLk9OXvpJWcvhqOtrcV8TxcUChUhoSdFfESPenRq78TKVWc1OVjz/XqTkSGMA9Vq6N69Ll26OHPl8iuOHhGLxtPHhXLlzAjbep3HD4QDqP+C/hibGLB94xWePYoRsQ0h/TE01OPi6WecPSY8IzyD+2Je1pTkxExC/YTpX0/XxrTqIHg6B7Ze5+k9kSTsE+qKgaEearWa5fMOkZacTQV7SyZ4dgckWbj/H6QmZWFb2YIJXl+7LFeOP+HaqWcimmHFYExMDTXnrPE5SHpyNhWqWjHWq2hn5veFJ/j8IQULGzMmzO9T5N/Sk7P41UdYAAyc2rGYS7JKpWL1nN3ICxU0/MWJX/oXj0ZQq9Ws89yDvFBB/XY1af2dINAvtWvxcXIy8qhUszxdR7b+4XFf3ndrgFCbdRnZ+h/lTxXkFnBZanl3/w8psAAiIyNRqVXFXjc0NMTU1BRDQ0OMjIz+8s+fHZObm8uECRNQq9Wa99fR0cHB4d8rv1Lj09i7+Cint1xCIVcC0LxXI9wWDsa2ms1Pzv7rUiqU7Ft6gl0hIifLqmJZvLZPpmbTvx5PggDia2fu4KK0UWnVpxHuG9x+yPVKT8okeMQGXkky9LGB/ek7pTgRuTBfxopp27kmBQMPmNaZ0X59iozD5DIFaz32cGG/eJD2n9yB0fN6Fznm+Lbr/OZ/GLVaTdNOtfBcN0rDwcnOyCPIbQvh99+hq6+Dx8phtHYR6sWCfBlLZuzm7kWhKJoW0p8uUqDnp+gkfEdvIflzBmWtSxGyzY0KDlYUFshZ7L6Xu5dFN3Lmgr507N0AmUxBqNdBbl4Q97zp83vTpW9DUpOz8Z24nZioJExLGRGyYSTVnMpz9ugjVocIENKuS23mBPThc1w6XlPCSEnKolz50ixePwJDIz3mTg0j6m0CpqaGLFw1FMtypfCYFsa7qCRKljJiyaqh6OrpMHtaGGlpuVSoYE7oyiE8ePCO5ctOo1ZD5861mTS5Pb5+h3j+4hOGhnosWjCAxOQsFq84LVyb29VkxLAWzPbeT0JSFuWsSxEa2J/VWy7z4EkM+vq6LPDpxc170Rw7L0nUJ3UiNiGD3VIHZ+rINiSm57L/lOj4zBrVlvB3CZy/9RodbZF1deyqCPX8knW1YtdVUjOFM7JLm1rfAJ3aJKRnc+el4H9O69dK09GpX7U8ZcuU0ACdcd3+1NEBHkXFYmKgX2R01atxTa68jCYjr4CatpaodbR4FZtISSMDGlW142J4lAA69b8BOrWrcjEiWgN0nsR9FgRkW2ui09LIkoBOYk4umfkFOFiYk5SfS2ZBAfZlyxCfk0NO4Regk0GBQoGTtSURKcko1Wo6V3Vg409XYfH6HwM7MTExBAcHc/nyZRISErCxsWHYsGH4+vqir//jlnPbtm25du1akddcXV3Zt2/fP/4eLj+KRN/ImCC3roSGSamwFSwZ3KEek6Tk8mHdGqJUqth/TqDc+RO7cO5mBPdffMDQQJdFM134bc9N3r5PwqykEQtmubBm6xWiPwogE+zuwubdNwl/E08JYwPB27n8UsPMD5jbk9TUHNZsECGcbiNaUatmeaa57yYruwDHauWYMv4Xzl8I54QkO/f1csG8TAlmzdxNVlY+VataM3VaR2Jj01gheecMGtqMZi2q8vjhe8K2itHRdI+uVKpiwaP779grdWpmenanQqWyfIpJYa3kSDpsXBvqNa4iVFa+h4vxdMIffyBM4v5M9XXRxD4c232HBzfeom+gi3eoq+YGeubgA25ffImung6eS101eViJcemskzx8hkxpT41vQMn5A/e5c0GcM1eSnn6pJzfecHKnNNpaOhiTkkVJnut8D5KVlkuVmuUZMrP4qOf0zpu8vBeNkYkBU5cM+u746tofD3h8NQI9A12mLvkxp+bD63iNLHjiokE/3fE/uhTOq7tR6BvqMdTr7+VffakbfzwQcQJVLKnb9vvcoX9TVatW1YwnvpSOjg6RkZH/Ue6OtrY2EyZMQKlUoqOjw8aNG//V+6clZHBoxQmObziPrEAOQL32tRkVMJAafwOM/KziohJYOnYjEfdF2vIvg5ozddVITH7Q2fu2YiMTWDBsLe9fxqKto83Y4IH0m9blh9dP5NMYAoeuIyU+HZOSRnj/PoGGHWoVOy4tMZPA4et48zgGXT0dpi8fRqchLYock5OZR4jbZp7eeIO2thaTF7nS/RvwrVKp+D3kOEc2irXbbVgLJi/or7lmk+LS8RuxkY+RCZiUNMR/81gNzy07I4+AcVt59SgGPX1dvNYMo7nUnX399CPzx28lKz0P2yoWhGxzw9KmNLnZBQRM3kn4w/fo6evis3IwTX+pSX5eIcEz9/BYIgh7hrrSsoMTn2PT8Jmwnc+x6ZhbmBLy20gqOVhxKOwWmyUTwW59GzDVqwfvoxLxmbaLzPQ8KlQuy+J1I1Cr1bhP2sGnD6mYlTZh8ZqhlDA1ZPakHcR+SqN0GRNCVw9DrlAye8YusjLzqVzFgtAVQ7h2NYK1Emewh0s9xo5tg5fPQSJex2NibMCihQOI+ZjC8jXnxOayizMD+jZittc+klNzsLUpzaLAfixff4EnLz5iaKDHQt/eXLz5mlOXwtHSAq8pnYn6mMKBk5Lb8ph2fEzI4PA5wfmcPeYXnryO5fK9t4IAPaEzBy8+5VW0MLSdO7oDy8KukJ6Vh4NdWbq3dmL53qsA9G5dm/i0LO69+uKMLHx08grl1K9anjKS6koDdC4+oECmoFE1WxTAo+jiQKdn45pcefmOTAnooKPFyy9Ax6Eo0Dn+LdB5I4BOU3s7nsR9Jk8mx9nWipj0DA3QSc7NJT0vH/uyZUjJzyUjXwCdpNxcsgsLqWZRhg9ZmRQoFNSwsuB1agpKtRpnaytuf/r403X4vfofAzuvX78WBlYbN+Lg4EB4eDjjxo0jNzeXZcuW/eW548aNIygoSPO1kdH3FQ1/p2YNbMOFe2+IiEmklIkhAW6d8V4rHJIb1rSjY5PqTAgWvimjejUBNew4KghkPuM7E/72M6eluWrQzB7cfhTNuesCyATNduHZq1gOSRyCeTO7kZmVx5ot4mYzfmRrqlQsy7jpO5HJlTRvYs/g/k1Yvf6Cxp8hwLcXcXHprFwtDLlGDG9Jo0ZV+G3DJV69isPExAD/+b1BDcHzjwgviDp2jB7ThrTUHBYHHkWthq4udenYxZm01ByWBIjXuvWqT7tOtZAVKljke5iCfDl1G1ZmsKRo2rv1OuFPPmBkrI/P4gHo6+uSnZVPqM9BVCo1v3SvQ0fJwTj6dTy/rxDf47g5XaksuaZ+epfEpkWi5T5yRiccnASBUqlUsXzufvJyCqhRryKDJn3tVCTGprFRIj6OmN0F+2+k5LlZ+ayYI0jH3Ye3KKIaAbh56im3Tj9DR1cb91XDiimiUj5nsC1EAKyR3j2xsitu4peblcfGeaIzNGhmN2wkc8Tv1eZ5wvq+efd61G1d44fHfak9khFg97HtMC/3z0I7r0pE9g5DW/6Q3PpvytbWFh8fH0JCQgABSv4tEPmrGjt2LJ07dyYqKgoHB4d//P7x0QkcWnGSczuuIS8UIMepeXVGBQ2kTpvvB2b+k1Kr1ZzcdInNPnspzJNhXNKIqatG0n5wi5+fDFw/cp+VU34nL7uA0pal8N4+iTp/cU1cPnCXVTN2ICuQY1vVmvm7p2JXtXinL/rFJwKG/UpyXDqmpU3w2z6xmM9TfEwyAcPX8ykyESMTA7w2jqXxN6CpMF/Gspm7uHlKPFhHefVg4JSvJobvI+LxG7mR1IRMzK1LEbxzApUdRXcsKS6deaM38ykqiRIljZi/aTS1GotoiPtXI1g4XZj/VXO2I2jzGEqVMSEtORu/Cdt4F/EZ4xIGzF83AufGVcjKyMNv8g7evIgVMvHVQ6nfzIGYyER8Ju0gLTmbcralWbhxFNblS7N9/SX2Svy/ASNbMHZaR6HEmrmH3JxCHKpbE7J2GPl5Mjyn7yIhPoOyliVZsmYoOjrazJ68k8SETCysShK6ehiZmXl4z91PXm4h1R3LsWjpIE6desoWSaTRr38jhgxpxhzPfURFJWJqakjoIldevo7XbEj79KxPj651meW9n7T0XCpVMGeBXx+WrD3L81dxGBvps2heH05cfMGF6xFCoj6tC+GRn/njrPj5z3L7hahPqRy7KOTkc8a25/7Lj1y9L4z9fCd2Zv+5J0S8T6RkCUM8RrVnadhlMrLzqVrBgi4ta7Byn9j092vnzMfkDO5HCMrFlL4tNUCnQTVbzEoaaXx0xnZrXAToyFHzWKO6ctIAHZeGNbgqAR0nqaPzFejYcvHlF6DzlYzc6QvQUapoWsWOZ3EJQmlVXgCdzIJCqlsKoJOam09l89KkFuSRnl9AFfPSJOflklVYiENZcz5lZ5Ivl+NoKYjJCpWK2tZWPEtKRCWT/a31+Of6HwM7Xbp0oUuXr7vuKlWq8ObNGzZs2PBTsGNsbIy19d9v/xcWFlJYWKj5OisrC4BOjatjoKPDsesCeQeN78bGw7f5mJCOVRlTPEd1YFboEZFcXrsiXZo74uYnFCWuXetT3tKMSf6iozRhcEuM9L/mmUwc3ppSpkZ4BAsC8vB+TXCqVo6xs3aiUKho3awqA3s2xDf4DxISRZK5j3t3Ll+L4NhJMUry9XShVEkjvLwPUFiooGGDygwb0pzbtyI5eFC0Qed69sDGpjSrlp8hOioJMzNjfPx7gxYsDjpKeloulapYMHlmZ5FbFXCUjPRcKttbMmmmkH1vWXuB6LcJlCptzNygPujoaBP+5AO7JTfk6d4ulJecUNcGHyfps0genurrAoj29uK5B4RyoV0NekitbblMwZI5+ykskFO3qT19R7fU/A7+2HqdF/ffYWSiz5ylXzsiKpWKlZ77yc8tpGaDSvR1+2pqBvBbwBFSPmdQrmJZ3HyLuiRnZ+SxXsr6GTilYzG/HYANvvvJyy6gev1K9Bjdpti/A+xcfJz0pCzKV7FkwHfysb7Uw4vhPLwUjq6eDm5BP+fevLj5mpd33qKnr8uAfxjamZmSzeNL4QC0HdD0H537d2rkyJGEhISgjTYeveb/t6ikQACrfwpyX4+kNAAAIABJREFUop/GsH/Zca4fvINKJbpPNZtWZei8fjTsVOc/4teTHJvGyklbeHTxBQB129bEfeM4LCuU/cmZ4jrf7PNVVu7c0hGv7ZMw/4GEX6lQssX/IH9ID89GHWvjtXncdztHN088YumUbRTmybB1sCJoz7Ri4Pvl/WiCRm0kKy0H83JmBIZNwv4b9VZmWg5BY0Rgp66+DrOXD6Vdn69j2Sc33hA8YSv5OYVUqGrNgrAJGguGmDefmTd6iwYELdjmRqXqgnd04fBDVvkeQqVU0bB1dXzWDMPIxID4j6n4um0l4VMaZuYlCN40GoeaNiQnZOI7cTsfo5MoaWZM8PoRVK9tR8TzT/hNCSMnK59KVa0I2TCS0uYmrAs9zQmJGzRmagdcR7fi4Z0ogjz2U1iowKluBYJXDiY5KQuvGbtJS8nBxrYMS9YMpaBAzpxpO0lLzcHGtjRLVw8jNi4Nf59DFBTIca5jR9DCARw6dJ+wnWLcOGx4C3r2rMdsj73ExKRgZmbM0iWDePDoPb/9fhUA136Nad+uBrO895GZlY9DFUsCfXoSvOI0EW8/U8LEgMXz+nDg1GOu3YlER0cbvxndeBj+gRMXhXzcY3wnXkTFc+rqS0EZGN+JW0+juS7FCvlO7Mzu0w95+yEZM1MjZo9oR+iOS2TlFuBYyYr2Tauxer8AgAPb1+WdlF5uZKDH5D4t+PWoyLpqWN0W0xKGXJQiINy6CXl5gVxBk+p2FEg+OiYG+vRq9tVHp3djJy6//Iajo41mdNXQwZaLEkenxzejq461HLj0DdB5Hp+oATofMzM1QCclN5fUvHyqmJcmTVagATop+XlkFhRKY6xM8uRyHC0siEwXQKeWlRXPkxJRo6aXY3XW/HRVFq//VZydzMxMypT5Oely9+7d7Nq1CysrK7p27cr8+fMxNf2x3fuiRYsIDAws9rpL85p4bhDt0Ul9W/A2JpHrj8UFt3BqD1aFXSUuKRMbi1J4j+3E7NAjwiiwenmGuzTCzXePcExu5ECPdk6MnbsLhUJF26ZVcWlfmwmeeygoVNDAuQKjBjbDa8ERklOysbUpjfeMruw7fF8YB+rpEOjbi7T0XJZJHZxhg5rRuEFlFi05ycdPqZibl8DHy4WU5GxCQ0WnpF+/RrRsWY0rl19x8rgASF7zelK2rCm7tt3gycMYDA31mBfcD0NDPfZsv8ETKaHYd0FfDAz1uH3tNcf2ixuKx/zemFuYkp2Vz2Lfw2Iu3b0Ov3QT5N8Lx55w/Xw4OrraeC0egLEUl7Bl+Rk+vU+mjIUpMwP7aB4+O1dfIDoiXqQELx6g6Ua8i4hnx0ohP53g27OIzPxE2G2e3YnGwEgP96WDitju3z0fzsVDD0Ta+IohxSIStgQfJT1JxEUMmt6JP9et00+5LXV9Ziwf+l1L/6jnHzmxRQDWKaFDigQjfltKhZJNfqL702tCe2yq/LVTMsCeUNHV6TS81T/u6tw69gCVUoVD3YrY/hd8Yn5UGg8cVERciUZWKP/h//3/j5IVyrl19AEnN17gxY0IzeuNutTFdW4vard0/I+AHLVazaW9t9jgHkZORh76hnqMXeBKz0kd/1b3LOFDMotGbeD1g2gAXOf0YOS8vj8cZ2akZLNozEae3RCW+YPn9GCYV89i16JarWbPslOESZ3A+u1q4rNlfDGS/OXD91k5axcKmYKqzhWYv3NiEZAV/z4Z/xG/Efc+mRKljPDb4lbEguHiofusknxyaje1x2/TWEzNxGe8uB9N0Pjt5GTlY+dgScj28VjYmAkJ+aarbFt2BoD2fRowU/LKiXoVj9/4bWSk5mBtV4aQzaOxqViWT++T8Z2wnaTPovMSsmk0Fe0teXw3mqCZeyjIl+HobEfwr8MwMjZgWcBRLp0SBOkpnt1wGdCYm5cjWCS5vDds5oBf6EA+vk/GZ9YeMZKyt2TR6qGkpmTjJb1WqYoFS1YN5e2bzwTOF5E5DRtXYX5QX3buuMmBA6JL7+bWlvYdnJg1Zy+xsWmYm5dg2ZJBXLnxmu2SzceIIc1p2tieWT77yckppLqDFX6eLsxfcoLI90mUMjVikV9fdh25x60H4jky37071+9Hce6aMCH0mtSJh69iOXtdIh9P6sSle2+58/Q9+no6zJvYhe3H7xEdm0qZUsbMGt6WJdsvkZ1XiJO9NW0aOrD2oCCxu3aoy9u4FB6/FaTiiX1asPaPWxTKFTSuUQEjIxHqqaujzbhuTdgqAZ3GjhXIVyp4qjEMdGL3DQF0ejWpyeVvyMhKbYiIk8jI9l/JyH8GOpffvisCdHJlMmpJQCcjv4CqFuZFgE66rID0PNHdScnP1wCdzzlZ5MqFAitKA3QseZEsgE5taytORr396br8Xv2vATvR0dGsXbuW5cuX/+VxQ4cOpXLlylhbWxMeHo63tzfPnj3jwoULPzzH29ub2bNna77OysrCzs6OBdsuIFMoaV3XHseKVsxeJpRYc4a34374B24/E4z2hdN7sGHfDd59SsHczITAad1YsP4ciSnZ2Fqb4T2xEwErT5KUko2dTWm8JncmdP15PsalYWluyvzZPdh16B4Pn37A0ECPBd69iIxOZIukvJgxqQN25UszaUYYBQXChXPUsJacOvOMi5cEGdDPtxcmJgbM8z2oUWONG9+OuNg0Vi4VPJ3Bw5rTsFEVnj358JWnM6crFSuVJfzZR3ZKlu3T5nSlQiULkhIyWR4k8qD6DW1GoxZVUavVrFpwnOTETGzsyjBFIhnHxqRoUoZHTmlP9Vpid373agQnJbA0J6Q/pSTfl+f333FYkpPOXNCPspLaSVaoYOmcfSjkSpp1dKJT/0aa30vsu2S2LRGfMdazBzaVvu6qszPyWOMtwEXf8W01Cctf6smNN5zffxctLS1mLB1c7EGdl1PABl9xfv/JHalco3jXR61Ws95bSODb9G5YzJzt2zq36yYfX8dTskwJBs8pLmv/c0U+jeHx5Zdo62gzcFb3nx7/57p5TJBSW/f7z3d14CvYAcjKzubAsuMM8y3uNv3fXZ/fJXJ6yyXObr9KZrLowGpra9F6QDNcPXphX6fiT97h71dKXBqrp23j/hkxWqhWvzIeWydSofrfIzffPPaQlVN+JydDxEV4bBr/XeO/L/X2SQzBw9eTHJeGUQkD5mwYS4se9YsdV5BbyPLp27lxTHA7+kxoj1tg/yIASq1Ws2vpKY2isHm3OnisHVUkry38fjTBY7eQlZ6LpW0ZgsMmUkEak6nVavauOU/YcgFY2vaqz6xlIoEc4Pqppyx134tCphSuyJvHYGpmjEqlYlPICY5J3ZD+49oyxqMrWlpaPL0bTdDUMPJzC6lSoxzBG0dTxsKUN+Gx+E/eQWZ6HuUrlWXhxlFY2ZTm+rkXhPocRqFQUr+pPf4rh6ClrUWQxz7u3XiLto42HoF9+KWrM+eOP2GVRFBu1aEmnkF9iXgRi7/HPvLyZFSvaUPIiiHEvE/Cb+4BMaaqYcPCFYN59OAdi0NOoFSqaNGyGl7zevLbb5c5KcViTJnagSZNHJgxexeJiVlYWZVk6ZJBnDzzjH2HxL3NbVRrateyxd33AHn5MmrVKI/nrK74LjxKzKdUypgZs8ivL5v33OLBU0FODp7jwrkbr7h0S3BlfKd15frDaC7ffYuOthY+k7pw5uZLHoR/xEBfF9+Jndnyx10+xKdR1syE6UPbsGjbRXLzZThXtaFZ3Ur8ekhwFYd0qs/LDwk8jYrHxFCfCb2b8+sfNymUK2nmVBFdfR2uPhOAa2zXxvx+XoR6NnWUsq5ipKyrJjU0QKd3EycuvRA+OjVtLYWPTlwypYwMaPCt6uoboNOhlgOX37yT8q2KAp1PX4COpTmpuXmkSeAmXVZAWl4+FcuYkZqfryEmJ+RmkyuXU83CnOj0NOQaoJMkgI6VFS+SE1Gpiosp/k79x8FOQEDAd7so39aDBw9o2PBrGzU+Pp4uXbowYMAA3Nzc/vLccePGaf5eq1YtqlatSsOGDXn8+DH16xe/cQAYGBhgYFA8KDEpLYdKttZM7teCyYsOCjOmNrUoV7YUS7aKFrPHqPa8jPzMuVuS986MHpy4FM49Kbl8oXtPDp16zINngrAc4tGTs1dfceW2IJkFznEh6l0SOyS/HffJHTEraYy7zwFUKjWdfnGie2dnFi8/TYxkRjXP04X375NZ+6sAcGNHt8G5th3r118kIkJIyv38e6NWqQkO+IO8PBm1ne0YOao1Gem5LAo4KrxzujrTsaszWZn5/H/svWVYlWnb/v2ju0tSEFCUUuwYxcTA7u7ubhADu0Ydu7tr7Bi7EzERFOnuXPV+OC8Rx5iZ+76f7bn/2/Men8B1rWvhumo/j2OPhcHHUSpUNG7uTdOWPijkShYHHSM3u5DyFe3oP7IxAOeOP+bWlVdoamowPVQot2QyOYunH6awoBjf6i507CvGURmpuawMFgCxQ5+6+NUWypq83EKWTxfy84CO1ajT5AufYveqCyUGgWPmdSxZnSsUSlZMOSBGXnXcadXrS2YPwNbQU2SkZGNfzoo+E78eARUWFPPrNDFODOxT7xsgBLBn6e+kJWRSpqwl3cd/P4Pq5snHvLofiY6+NoPmdv7uNiD4D/sk48cekwN/KEkvXUckCbt/p5qU+U7I6M+qML+IsBuiE1CrVZW/2PpfKx0dHXR1dSksLESOjL3zj+HboBLe9f6ah/TvVk5GLjeP3ufKvltfdXEs7c1pPqAhLQY0wupvBqT+nVKpVFzcdYONU/eRl5WPlrYmPWe2p/P4ln/phAxSXMTMg5zaKO4RHtVdmb5j+E/jIi7sucXaSXuQFcmxd7MhaPdIynp8C6qSY9MI6f0bkS9i0NTSYNTSnjTvVe+rbQrzi1k5bhc3Tgl+RaeRTek/82uTwqvHHrJyknAdd/d1Ys62wSX2CnKZgrUzD3PhgOCAdR7emH5TW6Guro5KpeL41htsDpVk6wHeTJYEAsVFMpZNPsjNc2EADJnRmvb9RSzFzfMvWDLlIHKZAp8a5Qha2xsDI12e3HnP3HF7KSwoxt3Tnnm/9cXU3IDfDz1gXejvwmuqmSeTF3SiuEhG8Jj9hD+NRltHk5mLulCrfgUO777Dll/FvbB52yqMmR7IgzvvmT/rCLJiBb5VnQlZ3IUXz2NKMv98qjgxd3FX/rjyitUrzqFSQaMmnkyY3IIVy89x5corkZE1vgWVPO0ZO2EP6el5ODiYs2RhVw4cuc+J3wUIGDWsMc5lLZk8+zBFRXKq+DgxfmRTps0/Rmx8BlYWhoTO7MC6ndd4Gh6Dro4m86e05cSl59x88B5NTXVmj2nJxdtvuPkoEk0NdWaNbM6Jq2E8fR2Lno4WM4cFsOHIbWISM7E2N2Rk919YuP0S+YUyqlSwp0olR9YfE8+QXgFVeRYVz4uoBAz1dBjStjZrjt2iWK6grpczKnW4IeVgDWxRgy0XHlAsl9LLCwt5EZ2IkZ4OLat7sE/Kumpf05NLL96TU1BEJUcbFCh5E58iDANd7EqATmnDwKalgY7rF46Ol531F6Bj9TXQyZSAjrO5GRmFn4GOGYl5QmrubmlBVGYGMqUSz1JAx8vGhhepSeJ8r+jJir+8Sr+t/zjYGTVqFN26dfvpNs7OziU/x8fH07BhQ2rXrs2mTZv+8ef5+fmhpaVFRETED8HOj0pHW5PQ4a1YsOUimTkFVHC2pnfLagwOOSAk3w29cbYzZ3iIICiP7FGfggIZ248KI6gpQ5qSmp7LjiPi98lDm1FYKGedlFo7sm8DylgZM2DcTuG/08yHJvUrMmnWIdIz8nApa8mEUU05f+kFFyTZedD0NuhoaxIy74QI+KzpStcuNbl9+x1HjwjnzSlTW1GmjClrVl3gfYTIcZkZ1A41dTWWLjhNWqrw0xk9obmQg4eeKsm9Gj1JrML2bbtO+NNP6BtoMz20I1paGkRHJbNhmRij9R/VmPIS52XX2itEvBLjqMkLOqGhIW6KK4KOkpWeh7O7Df1KxT5sXPg7yfGZ2NibMWT6l67Hy8cfOSqRDcfM74hpKYOz41uv8/pJNHqGOoxf3OWrG/fTW+9KbszjlnT/xntkz7KzJEanYWVnRr/prb85zh9ex3Fyi3RMFnb9bgZVcaGMLSGCX9V5VMB3YyM+1+/brpEan4GVvTktf8D7KV2J0SnckFxTO/1Drg5A2I3XyIpkWDta4PSdB+R/qkxMTCgsLMS3qQfvLscwLWABY9YNIqCf/3/8s/JzCnh8KYyr+2/x4OxTZMVyANTU1Kja1IfAoU2p2bLKX6rb/mklRaeyevQ2Hl8S3JwK1coxYeNgnCv9PR5RbEQioX3XERkmFCGdx7ekX1DHH4Kk4kIZv03dV+KfU7O5L1M2DPwuP+fFnXfMH7CRrNQcTCyNmL1jGF5/UpelJmQyt+8GIsI+CTC0uDsBPb7Ep6hUKvatPM+eFaJjU6e5D5PX9ClRRuZlF7Bg+A6eSoqt4fM6EthbgCmFQsnmBac5Kfl2te1Xj8EzxYgtJyufucN3Ev7wg8jOWtIV/0DRxTq19w4bFgjgUreZF1OWdEFbR4sb51+wZPph5HIFlWu6ErS6J3r62uzd8Ae7JUPCVp2rM2J6IFkZecwcvYeod4kYGOoSsqoHXpWd2LrmMoekLlLnPnUYOKoJVy68YNn8UygVKmrXL8/MuR25c/Mti+YKI8CaddyYPb8jJ48/ZpP0OYFtqjBsZBMWzD/JnTuCSzNtemscHMwZLylfy7lYsTC0C1t23ODCZcHjnDgmAHNzQ6bPOUqxTEHNauUYMcifySFHSUzOooy1CQtmtGX5xsu8fJeAvp42C6a2Zf/ph9x/+hFtLQ3mjAvkxNUw7j0Tv88e1YKD55/w4l08BnrazBwWwNoDN4lLzqKMpTHDOtcldOslCovl+Hk44FXeji2nxP2vX6sa3H8TzauPSRjr6zCwdS1+PXYLmVxBPW8X5Cold19Go6OlQf/mNdh84YF4zcuZ9LwCwj+J9zWvVoEDt0UoboeanlwMe09OYRFejjYUIyIgTPV18XWx44/XUcIZuXIFTj8Xi65m3u5ceSNUV7XLOfKsFBm59OgqLf/HQCezUPB1EvNyS4DOx+xMAXSsrQn/DHTKWBOeIoBOBQtLjrx5+Xcu1W/qPw52LC0tsbT8a1IfQFxcHA0bNqRq1aps3779X1KYvHz5EplMhq3tP+cxTO7ViFPXw3kZJaR9c4e1IGTDebJyC6ngbM2AdjUZErRfOCbXcMe/hjv9p4qk8vZNffGr5MCASbsFMGrmS20/FwZO3I1crqRBbXfatajM+FmHyMzKx83FijGDG7Fz/x2ePP+Enq4Wc6a3JSEhi5VSB2dAn1/w9XZkfugp4uIzsLYyZuqUQFKSs1kijXc6da5B3brluXnjDSePizb31BltsLQy4siBezyQMq5mze2Anr42Jw8/5O6Nd2hpaTBzXgf0DXR48TSafRLoGD0tEDsHc4qLZCyccYSiIhlVa7vRoaforDy9H8nhzw7Gc9phaSNM2s4cesDDm4JsO21xV7Ql1dPdK6+4dOwxampqTCrF6ynML2bF1IOoVCqatK9K7VLdnuiIRHat+MLhsbb/AjQK84v4daoAm6371itRgXyuiLBPHN8sODajFnb5JvtKpVKxbppwpK3bqgrVGn1ftXNsw2WSY9KwtDOj06hv+T6fqyC3kEMrRZem59TWf4vXcnztBZQKJX6NPHH1dvrL7f9cDy+IlXS1gP8MGfdHZWpqSlJSEm3GNuO2/nPunnrE8sEbeHTpOT2mtcflX/jbP5dCruDdoygeXwnjyeUXvL4XgUKuKHm9nLcTjXrUw79rHawd/979459+/snfLrIj5AhF+cVo6WjRN6gjHcY0/1uASqVScXnfbdZN3E1BbiEmFkZM3jyY6s18f/iexOgU5vddz/vnn1BTU6PPjLZ0ndDym/ucSqXi9+3X2TBDcGdcvR0J2jXiG6Xgu2fRzO23gbTELIzNDZi1dQjepfg3xUUyfp1ygCtHJWA9rDH9Z7Qu+bzkuAyC+23i49sEdPS0mba2D7WaCsVWUaGMpRP2cfu8AIGDZgTSYWCDErPA2QO3Eh2RhL6hLkHr++Bby004Ka+6yMFN1wBo1a0mw2cJcHRq313WLzojdW68mLywM5qa6qxfdIZTBwRPpudQf3oNb0RiXAbTR+4mITYdMwtDFqztjbOrNatDf+ecZEQ4cHQTuvSpy8nDD1knqT6btPBh4ozWnD/zjNVLhT9Oo6aeTJrZmj27brNXAkndetamR686zJ51hCdPPqKlpcGckA4YGOowcfJ+8vKL8PCwZV5IR9ZuuMIfN96grq7G9Emt0NTSYNb8E8JNuY47/XrWZULQYVLTc7G3NWXu1LYsWneBd1FJGBnqsmBqG7YfvssTqcMTMqE1+8885slL8Xvw6JbsPPWA15GJGBnoMGNoAKv2XCMxLQd7axMGdqhN6LaLYuTkXRYXJ0t2nJFGaW1qcfNFFG8+JWNiqEu/ljVZffQWCqWSBr7lyJfJePA2Bl1tTfoHVGfT+fvIFUrqe7mQnJvHq5hkTPR1aepXnoO3xT2lU21vzj0T6eU+TjYUKBS8S0zFTF8Xb2cR6qmhrkbLKh5fqa4+A51a5Rx5GicFeTrYEJ35LdApV2p09TXQMSUxP5e84mLcrYSnTrFCQSVra8JTBdDxKWNDmAR0PCwteZOWirbGvwZb/tc4O/Hx8fj7++Pk5MSyZctISUkpee2z0iouLo7GjRuza9cuatSoQWRkJHv37qVly5ZYWlry6tUrJk6cSJUqVahb9+/JQ0uXSqHk6BWBbucMa8GRS894KXkazB/dioWbLpKcnouTrRlTBjVh8qITZOcW4uFqw4ievzBh3hGycgqo4GrDqL7+BC87TWJKNg62pkwb2Zxte28T9ioWfT1tQqa2JexlHLv2S+Os0c2wtjJi2JidJSFyPbrU4szZ5/xxTQqNm9UWA31tZs04TG6u4OkMGuRPUmIWyxeLB27X7rWoUcuVd28S2Lr+c+5VU8q52fDhfRKbJCA1aGRj3CrYkptTyJLPERGtfGnUXDgcb193hQ8RSZiYGTBpjjAhy8kuYPksYSjYomM16jQSHJbYj6lslsiJA8Y1w9ldkHMz03JZHSS279C/Hl7VXEq+6+3LzhEfnYZlGROGzvqiolIolKyU7N+rNfCgWZevDf52Lz9HYkwaVnam30Q+KBRK1kgBhf5tq1Kj8bdA5o9jD3l5PxIdPW2GhHyfg5KRnM1BCcD0n9X+G+Jz6Tq95Q+y0nKxK2dN0+51frjd58rPKeDiHrFS7jT2++Ozv6rwO28B8Gv0rf/Kf7I+83YKiwsIPjyBvQuOsXvuEa4fusv1Q3cp6+lA834Ncapoj2MFO6ydLL/74M7PKSD6ZSwfwj/x4cUnPoTHEPn8I/nZXzuf2rna8EuHmjTqXu/fAlJ/Ve+ffWTVyG1EPBGJOt71KjB23cAfuhn/uXIz81gzbifXjoiHtE89D6ZtH/ZTkvnDSy9YPGQzuZn5GJsbMnXzYKp+B2gXF8n4bep+zu8RCwr/DjUYt6r3N+fg9ROPWDFuN8WFMpzK2zJn9/CvMq4y03KYN2grrx5Goa6hzqjQLrTo+eX8jAiLIbj/ZjJSsjG3NiZk+2DcvB2l9+YSMmQ7b55Go6mtwcSl3fCXjAQ/vElg9qCtpCVlY2FjzLytA3GpYItcpmB10BdX5D5jmtJtWEMAtq++yEGJHxjYtSbDpweiUChZNPUwNy6Go6amxrApLWnboxZREYnMHLmb9LRcytibsXBdHyxtjFk46yg3LwtS7+hprWjRzo89226wS1KItu1cneHjAji8/25J3l9gOz9Gjm/OhnWXS4xVBw7xJ7BNFaZOOcirV3EiJmJ+J+QKJVOnH6KwUIavjyOzZ7Vl8Ypz3H8YJbKvprclJ6+I0M8Ggv4V6dKhOhOCDpOZlY+zowWzJrZi3qozfIhJw9RYjwXT2vHb7uuEv41HX0+buRMD2XHsPmHS70GjW7DlyB0iolMwMdRl6uCmLN91lZSMPJzKmNGnTXVCt10SnZjKLtiVMWXvebGgHdq+DleevCMiNhVTQz16N6/GmmM3UShVNKriRmZBIY8jxEisb7NqbDp3H7lSib+PK7GZWbyLS8VUX5dGVdw5fFcAnc51fDjz5A15RcX4lC1DnkzG+6Q0zAz08HSy4fqbD2iqqxNQufyX0ZW3G5ffvEehVJVyRhaGgUJeLpGR8/PIyC+knKU5GUUFJUAnXRpdlbMwKwE65a0s+ZCVIQEdK15JQMe7FNCpUAJ0NGhYzon3P7zyflz/a2Dn4sWLvH///rt28Z/NzWQyGW/fviU/X6Scamtrc+XKFVavXk1ubi6Ojo60atWK4OBgNDT+ebt7+Z5rgCYD29UiL6+YI5cE8Ake1oKLN19zPyxajLrGt2HH0fu8jEjAyECHBeNbs+3gHV6+E66W8ya25uiZJ9x9LOzB501uw4tXseyVAt2mjm6Ovq4WC5YJR+TWLXxp2tCThcvO8ClGZKnMmBzIx+gU1v4mmQsObEClSvZs2XKtxE9n1ux2qKupETr/pAA/lezoP6gB+XlFLAgWOS31GngQ2M6PokIZocHHkRUrqFHHjXZdaghX4oW/k5yYha2DGSOkiIenD6I4tleM4iYEtcVcyp/6beHvpCZnY+9kwdBJYluFXMHSGYcFt6amK22lDpBKpWLNnBMlY60+Y76kcYfdj+TUbrHKGhfaCcNSJoCndtzi7bNP6BvqMia001edi7fPP3Fiq5QlFvpt1+bcnttEhMVgYKzH4D+5KIMgJW+dKzhF3cY1x/oH8Qp7lpymIK8I98plafgdN+XPVZBbyJE1ogPV429EBgBc2X+H/JxCHNxt/yWwUphXyMfwGAAq1nBgHPmiAAAgAElEQVT9x+//J/UZ7GRmZqKurk7v2Z2oHViVg0tPcuPIfWJex7Fx8u6S7XX0dbB1sUapVJKfU0BBTiEFuYUoFd8nEBqaGlC5kSd+jX2o2sQb27+hYPt3qjCvkN3zj3NszXmUCiWGpvoMCu1OQN/6f7uL/PLuOxYP3EjSJxEX0Xtme7pODPyukg8EAN+7+BT7l4muRnk/Z2btGI71d/yc0hIymT9gA68fRqGursaAoI50LOV9A8KKYc/SM+xfKRYX1Rt7MnXDAAxKpaV/fBPPnP6bSIpJx8BYjxkb+uNX/0ui/L2L4SwavYuigmKcPWwJ2T6kpHsaG5XC7AFbSPyUJtRaG/rhU1OcZ0/vRDB/5G7ycwsp627DvK0DsbI1pSCviNDx+3gkkYjHhLQnoGM1AYBCTnDppABAfUc3odtgf/Lzipg3fj/PHkShqanBxPkdaNjCh7DHHwkev4/8vCJc3G1YsKY3evrazB63j2cPPwjDwXkdqNuwIutXXeSEJEPvPag+Pfv/wtYNVzkk3be69a5Dn4H1Wbbody5fEiOo0eMCqFe/AhPG7yMqKhkjI10WLepKcmo280NPIZcrqVG9HJMntSQk9BTPX8Sgo6PJvNnt+RSXwZqNIpqldQtfApp4MX72IXLziijvasPUMQEELf2d2IQMLM0NmTelNSu3XuVtpOjwzJ0YyPr9t3gTmYSRgQ5Bo1qwZt8NouPTMTfRZ/LAJizefoWM7HzKOVjQrYUfodsvi+zCam6Ymuhz4JLgDI3oVJez917zISEdCxMDujfxY+3x2yhVKgKqlycxK5dnkYKo3KuJH5vO3RMgyNeNj2kZvE9Iw8xQjwY+5Th6T3TuutTx4dTj1xQUy6jiYkdmYSFRyelYGOrh4WDNzbcf0VRXp5mvO7+XjK7cuPwmshTQiadAJsfXoQxRGRlSvpUFKXn5ZOQL0nH6j4BOKTJyVKYgI1eytuZVajJKCei8KDW6eisBHUtDfc5Gvf1b1+6f638N7PTr149+/fr9dBtnZ+evXF0dHR2/cU/+d6q4WE4dP1caV3dnkBTo2a9tTbQ01Nl6TOLlDGxCdFw6h86KC3j2yBa8i0rioOSCOXN0C5JScti8T3IkHtwYI0Ndxs0So5eOgX7Ur+3OxJmHyMjMx9XFitFDGn3F05k9TfB05s0/Kbo81cvRuWMNHj36wIH94u+YOLEFtrambN96nZdSZszMoHZoamqwYtEZ4mMzsLIxZvy0VqipqbFpzWWio1IwMzdg4sw2qKmpcenMc65feom6hhrTpJFWdlY+yySScauO1ahVX5iVXTsXxh9nw4QiYkHHEtfjA1uu8/ZFLAZGukyc36HkoXH11NMSl+RJi7uUjHcK8opYOV2KR+hag6qlTAATPqWxU1KDDJweiJXtF8msrFjOqslSOGj7qtRo9LUyKiMlmx2LJbPCKa0wt/42A2n/ynOkJ2Vh62xFh2GNv3sORL+N59xuKX18buefPgRPb/mD7PRc7F1tfgqKPpdKpeLMVmnVOajRvzSCingajVKpwtLODEv7/0wW1o/K1FR8/1lZWSX/5lbFhZn7xtEvJIFn117y+HIYMW/iiYtIoCi/iI8vY767Lws7M1y8nHD2cqSct5P42dvphyDhP1kqlYo7px6zftIeUmLTAGjQqSbDlvbC/AfeN38uhVzB/iWn2LvoJEqlClsXK6ZuHUbFGj+Ot0hPymLx4M0lsvKW/RowbFG37446w+9FsGDARjKSszE00Wfa5sHfjFjzcwtZNmoHd8+LlXiHYY0ZMLv9V9/hgysvWTRyBwW5RdiWtSRk51Ac3WxKvoeT226weZ4QLPjVr8CM9f1LIlnCH0Qxd9gOcjLzKeNoztxtg3B0FR4+l48/ZtWMwyjkSryquxC0vi9GJvpkpOYQPHwnEeFx6OhpMWNFD2r4e1CYX8yCift5eEsAoLHBbQloX4301Bxmj9xN5JsEAWRW9sCvliu3JRm5rFiOt19Z5qzojlyuZMrwnUS8TkBXT4vgpd3wqVqWJXNPcPWC8JgaPj6ANh2rsWrJWc6dFuTaQSMa0a5TdeYGHefunQjUNdSYOr01nt4OjBu7h7i4DMzNDVi8pBtv3yWyfOU5obis78GoEU2YEXyUtxGJGOhrExrSibCXsSVK2a4dqlOnliuT5hymoECGl4cd44Y1ZeaiEyQkZ1PGypg5EwNZvOEiUZ9SMTXWY86EQFbtuEZUTCqmRnrMGtWcFTv/IC5JkI8n9G9E6JZLZOUWUr6sFe0a+7Bo+2WRm1irApo6mhy7JswGR3X+heM3XxCTnImNmSGdG1Vm7Ylbwii2pgcxaZm8+JCIoZ4O3RpWZtO5+yhVKppVLc+7xFSiEtOxMNKjrqcLx+8LrkuXuj6cfPiKQpmcquXsScvP50NKBpZG+rjbWXLrXTSaGuo09XHnTJgAFgHe7lx8/R6lSkUdNycef4qnUC7H17EMkekZJVlXiTm5JW7IpQ0DUz+rrizMiM/LIb8E6GSUAJ2XqV84Oi9KdXTepqWipaGOpaE+cbnZWOvr8/27zs/rv0Z6/r9RVmaGTO/fhPFLj5c4Jrdt6MXAmSLQs01Db3zK29Fvqgj07NmmOi4OFgyYvAuA7m2q4VXelv4TdqFUqmjuX4nm/pUYO/OgiHpwK8Pw/g3Ytf8OT8M+83TakJiczSppvNSvVz18vR1Ztvws0Z/SsDA3ZNqUQDIz81m08DQqlbAvb+BfkWdPo9kndUjGTxLg5+rFcC6dCxMz5qB2GBvrcffmO05LbdzJQW0xMzcgITaD3ySJeu/B/nh4OYhOT6jo3jiUtWTIeGGgl5qUzdpQASS6D6qPh49od0e8imOflDI+ckZrrKQHR2pSFusXCPVGz5GNca34hUS7ffk5EmPSsbYzZVCpMZTIvjpCUaEM39qutOhW86tjc2TjVT6+ScDY3OCb7CuArQtOkZddgJu3Ay171/vm9bioZE5sEkBj6NxOP+TWbAs5JhyQW1bGu075724DQg58dK3o6nSfFPi3ujpvHkby4WUsOnraNOnxz8esAO8eRwFQodr/bFcHvnR2SoOdz2Xvbou9uy2tBjcBBBhIiEoi8WMKWjqa6Bnoomekh76RLvrG+j/MgfqfrrjIJNZP3FXCc7Ipa8nIlX2p+RNJ+Pf2sXTwRl4/EN45jbvXYeTyPt/EkpSu57fesGjQZjKSstA10GHMit406vKtTYBKpeL01j/YOOsQCrkS54p2BO0c8Y1RYEJ0KiF91hP9NgFNbU3GLutBk1L7U6lUnNx6nc1zxUjau5YbszYPxFiyflDIFWyYc7wkVqV599qMnC+8cACunX7K8skHkBcrqODryJzNAzC1NBIE57WX2SOpnxq08mXC4q5o62gS+yGF2UN3kBiTjrGZAXM39KWCjyOZ6XkEj9rF2xexIitvWTdqNvAgLjqNWSN2khCbgam5AfPW9ca9kj1njz1izcLfUSpV1PH3YNqCTmSkC4Jy7Kc0TEz1mbeqB2VdrQmecoiHd9+joaHOpNlt+KVhRRYEHePmNcGrGTelJfUbVWL6lIOEPfuEtrYmQSHtKWNnxtgxe0hNzcHW1pQlS7px9/571q0X3ZqWLXzp07suE2cc5GN0KiYmeiyZ15nrt9+x97DoyPfvWRcPD1smzzlKUbEcPx8nhvStz5T5R0nLyMPB1pSZ41oy79dzJR2e2WNbsnTzZT4lZGBpZsD04QEs2XqJxNQc7KxNGN2rAfM3XSQnv4hK5Wxo/kslluy8IsBLvUrIVUp+vyUc+cd0/YWDfzwjPjUbO0tj2v7izZrj4v7fuk4lIhJSef0pGWN9HTo38GXLhftiP9Ur8DI2mY/JGVgZG1CzohMnH74CoFs9X47dD6dIrqC6mwPJuXl8TMnA2tgAFxtz7kR8QlNDnSbebpyVgM7n9HKlSkVd97I8jI6lSK6giqMdEWmp5BQV42FjRUJODlkFhbhamZNakC9Aj4UZKZJhYDkLc+LzssmXfUkyF0DH6gvQsRHEZPga6FgZGhCXm425nh62P4mT+ln9nwY7QUMC2HD4Nh8lX4OgoQEErTlLRnYB7mWtGNnjF0bPPUx+QTG+Hvb071iLUUEHycsvxtvDnsHd6zFt4QnSMvIo62DOhKFN2LrvNuFv4jE00GHOlNaEv4xjZymejo2VsfDTKRJ+Oj271uLK1VecPS+Q/IzprTE21mP6tINkZOTh7GzJiBGNycrMZ6EU+tm8pS8NG1UiIS6D1RKA6dmvHt6VnUhLzWGFJBvt2L0W1Wq6lsjM8/OK8azsRNd+AhxcORvGzcsv0dBQZ+r8DujqaaNUKlkRdIzc7ALcPe3pPtgfEF2wZTOPoJArqdfUi4atBDFTpVLxa9Bx8nIKqeDjQOeBX7J4XjyI4vRu8X8fu6BTyYoS4NKRhzy7E4G2jiZjFnT+quuREJ3KAelmOzS4fUka8+cKvx/JlSMPUFNTY1Ro1+92CzbPOYpcpqBaI09qNvP+7vEPvxfB/YuiezUg6OeeMmd3XicrLRdbF6u/1dUBMcICqNe2GkbSQ+ifVnyUWOE4VfyfU2F9rp+BnT+XhqYGDuXt/u3Azf9UFRUUc2j57xxc9juyIhla2pp0Gt+SblPa/JSDVbpUKhVnt11j4/R9JXERo1f1pVGX2j98j1Kp5NDKc+wKFd2Tsh52zNo5/Lt8oML8ItZM2suVQ0JZ06BdNcav7vuVNw7As1tvCR28hZyMPMysjZm9fSgVq37hv8mK5fw26wjn94nzK6BbLUaGdimJRsnLLmDhyJ08vv4GNTU1BsxoTcchDUvyzw78doVdywXJt04zLyav7IGunjZymYI1Qce4KKk+Ow32p/+k5qirq/PqaTQhI3aRLXWB5m/qj72zpXBLHraDhJh0jEz0CFnbh0qVnYS3zqg9ZGXkYetgxoIN/bB1MGPfluvslLiFzdv6MWZGIDEf05gxZg9pKTlYlzEhdE0vTM0NmDZmD69exKKjo8ns0E54+Toxa/IBnj4SJOPpwe3wruLEpHF7iXiXiL6+NvMWdkZXT5vx4/aQnV1A2bKWLFrclXMXwtgpAb/OnWrQtk0Vxk3ZT3xCJpYWhiyZ34XjZ55y6qzoFo0Y5I+1tQkzFhxHLldSu1o5enWuyZR5x8jKKaCckyWThzcjePlpklJzKGNlzIxRzVmw/gIJKdnYWBoxZUgTQjdeIDUzDyc7M4Z0qUvIhvMUFMnwKW9Hg2puLN8tFo/t/L3IyC/kj8cC2I3tWp89Fx+RlJGLo7UpATU9+O2kON7t6nkR/imRiDjB32lfz4stF8SIL7BmRZ5+jCcmNQsbU0P83Ow5/eg1amrQra4vh++FI1MoqFXeidjMLGLSsrAxMcTJypR7kTFoaajTyMuNcy+EcV9zn/Kcf/UOlQrqupflwcdYihUKqjjZ8i41ldyiYiqVsSIuS6SXu1mZk5yfX+Kdk5wnIiAE0MmiQCangpUl7zPSkZcAnZQvQCdVAjoW33Z0zPX0KFLJeJ6S/jeu5m/r/zTY+RCXxoU7Il123qhWHL7wjOdvRbbJgrGtWb/vFhEfUzA11mPuuFZs2HODd1FJmBjpETIhkIOnH/PwmfDbmTe5DWEv49h3VIpxGB2Anq4W85YKnk6rZt40bejJ8l8vEPUxBTNTfWZODiQxMask96p3z7pUqVyWgwfu8ejRB3GRz24n0nNDTpCWmoujkzkjxzRFIVeyaO5J8vOL8fRxoGffX1AqVSybf4qszHxc3W3oLxEG92+/wWtp9DVVioNIjM9gnaTw6jXUv0Rm/vvBBzy5F4mOrhZTQjuWrAT3rLtC9PtkTM0NGD27TQk4uXLyKQ9vvEVTS4PxC74YnxUVylg1QxpfdamBX70vXZP0lGw2S52g3uMDvjIPVKlU/BZ0lOIiGZXrlqdhu6pfHTOFXMG6mdJ+e9T+JtEc4PG1V9y/+AINTfUfkpJVKhXb54vxXfNe9XBw+zF/pLhIxtG1wmm7y7gWf6urI5fJuXFMnAuNuv01kflHlRwjxjB/J7bg363SnJ3/V0qlUnHr+EM2T99P0qdUAPwaezFyZZ9/5DSdnpTJyhHbeHBB8PZ861dk0sbB3+XafK6M5CyWDt/Gk6tiPNCkW21GLev1DXgBSIxOZV6/9US+iBEBocEd6TC8yVcgX6VScWrrNTYFH0WpUFKhijOztw/5yhE5My2HBUO2EX4/UvB8ZralgwRkABI/pRHcfzOfIhLR0dNmyq+9qBMgHNBlxXJ+nXmEy0dF17f9gPoMnC74R3k5hYSO2cOTW++EJD2oHYESH+/2pZcsmXyA4iI55b0dCFnfF1MLQ96+iCFo1G6y0vOwsTdj/m99cSxnxcNb75g/UXhmuVW0Y9663hib6rNu8RlOHxZAqsfA+vQZ3ohXYTEETdhPbnYhZctZEbqml1ByjtjFh8hkDI10mbe0Gw5lLZgydi9vX8ejp6fNnEWdsXc0Z/zo3cR8SsfUVJ+FS7uRl1/EpIn7hNFgBVsWhHZm7747HDshaAcD+tWnTl13xkzaR2paLna2piye15kd+25z+ZoABRNHB6CuoU7IMmFi2OgXD9o292Xy/GPk5RdT0a0Mowf6M3PpSdIy83C0M2PikCbMWXOO1IxcHMqYMrZ/Q+b+dp7MnAJcHS3p064Gczecp0imoLqXE36VHPn1gBT50KQyselZ3Hr+AS1NDcZ2q8+2M/dJy87HuYw5Dfzc2HxGdJs6N/TlUUQMUQnpWBjr06pWRbZdFN9pm9qe3H//iYT0HOzMjfB0LsPZp28F0KlXmUN3w5ArlNStUJaotAziM7KxMzPC1tyYB1GxaGuo08DTlfPhAui08CnPOQno/FLembsfYpApFPiVteN1cgr5xTIqlbEiNitb4utYkpiXI4EeCxJzc8gpKsbNypzYHAF0PKwtifgu0LEhPLUURyddcHQsDPWIz83BQk+PAqWMfLkMH+sy//8Y65/W2v03QU2LoZ3rkptXxJ7T4qSZNTSA15GJJSFtwaNb8vJtAsekELdZY1qQmJTFVomnM35wY4wMdBkzQ/B+2resQv1a5ZkSdLgkKG7MsCb8ceM1p89KyeVTAjE21mNW0BFhCujtQO9edXnzJp6tEil35MimOLtYcfL4Y+7ejhDy8aD26Olps3PLdV6Fx2JgqMP04HZoaKpz/OB9Ht+PQltbk+lz26Otrcmb8Fj2fpaZT22Jja0pCoWSpUHHyc8rwtPXia79hDFYzIcUtkgxDgPHNcNRMr979SyaI5L3xpigdiUuyWnJ2WxcKIGW0U0oWwow7Fl9kfjoNCxsjBk49WvH4A0hJ8jNLsDNy572A+p/9dqd82E8+uM1mtoajJzf8Ruey+kdN/n4Jh4jU336TfvWU0chV7A5WPjltB7g/91gRYDHV1/y8t57tHQ06THp547Gl/ffIS0hE0s7Mxp3/fEq/6v9XwknKy0HUytjqvwbCeXJ0gP8Zw/d/1R9j7Pz31yRYdFsmLyXsBtCKWLlYMGQRd35pUONf8SPunn8IWvG7SQrLQctHS0GhHSi3YhmP+VvPbvxmsVDtpCRlIWOnjbDF3cnoFe9737u/QthLB2xjdysfEwsjZixZQi+9b4O8iwqKGbNlP1ckUYojTvVYMyynl95Sn14LYjIybHp6BvpMm1dP6qX4rK9evSBuYO3kpWWi4WNCXO2DSpRXOVk5jN/xE7C7kWirqHO8OB2BPYSIDwlIZPgIdv58CYBHT0tpq/qSU1pv6U9dGr4ezB9eXd09bW5f+MNoZMOUFQgw7WiLfN+64u5pREXTzxh1dyTwmqhthuzlndDU1OdBdMOcfvqa9TU1Bg+qTltu9Xi3o23LJhxhOIiORW9HZi7sgfZWflMH7uXpMQszC0NWbiyBwZGuowfIdLMjU30CF3eHV09bcaN3EVKSg5W1sYsWd6dTzFpzJsr/MkqVy7LnJD2rFt/hYuXBN9n1MgmVKpoz7jJ+8jOKcTF2ZLQ4I78uukKd+5HoqGhzqxJrUjNzGPtVtFxCWzmQ4O65Zmy4BiFRXJ8KzkwqEddpi06SVZOAa5Olowe0JCgVWfIzCnAxdGCYd3rMWftWXLzi6joWoZOAZWZu/ECcoWSOpVd8HCxYcMRKY+rZTXexCTz4NUndLQ0GNO1ARtP3yErtxA3ewtqejmz47x4LvVsUoWbLz8SnZyBtakhTauVZ+dlAeI61PPmxqsPJGfl4mhpQgVHay4+j0BdTY2u9Xw5dCcMuVJJvYrORCSlkpiVi4OFCVYmBjz6EIeupgZ1K7pw8WUEIDo6Z18K0NOgggu3I6ORKZVULWvHy6RkCmRyvGytic7IEinl1hbE5+aQU1SEm6U5CTnCJLC8lQXR2ZkUyuV4WH/JuvK0+eKj42ljXQJ0yltYlAAdc4NvgU5ZE1OiMjP+4or+fv2fBjvFcgUNalSgcY0K9J8peDldmvvh6mjJgGni934dauFgY1rC0+nZrgYV3cowYMIuFEoVTetXJMC/EhODD5OVXYC7izUjBvhz4OgDHj75iI6OJnOmtyUjM49lq0QHp2fX2lTzc2HDpqu8fSfSzWdNb0NxsZzQBadQKJTUr+9By1a+fPyQwsbfxJx50NCGuLnbEB4Ww76dAmiNndwSmzKmfIhMZou03ZAxTXFytqKwoJglknOyfzMvGrUQK7xje++WpJlPljo9CrmCZbOOUVwkx6+2G4FdxaimsKCY5bOknKw2VajTWNwEVSoVa0NOkJtdiLuXPR0lJ1WAiPBYjklxFaNCOnylvrp35SU3JeLzuEVdvuqSFOQVsWGO6LZ0Ht4YB9evuy2ZqTnsXi5JxKe3KeEnlK5LB+8R/TYBIzMDekz4voGfSqVi50IRk9FmYEMsfyIhViqVHF0nujodRzX723lR1yWZsn+nmv+WMV5qvLiw/6fJyfDPxlj/m5WZnMWu+cc4t/UPlEoV2rpadJkYSOcJrf72yAogOy2XtRN2cV1STZbzdmLqlqE4e/7YYFAhV7B70SkOrjiLSiXGVtO3DcX5O/EjCoWS3YtOckBSUnlUK8fMrUOw+tOxTI5NZ/6ATUSEfUJdQ53BczrQdlDDr4DTnfNhLB2zi8L8YuycrQjePrgk+gHgytGHrJoqODjlPO2Zs21wCeE//mMqQQO3EvchBT1DHWas6U21BkKt9f5lHHOGbictKRszKyPmbOxHeW9HFAolW5ee5fhO8VBu2bUGI2a1QUNTg3NHHrJmniBuV63rzszl3dHT12bfpmvsWifuQY0DfRk3px1FhTJmjNrLiyfRaGlpMGVeR+o39eT8ySesDhW8nZr1yjNjYSeio1KYNXE/WZn52DuaE7qqB8XFCsYN20FKcg5W1kYsXNmTgoJixo/ZTXZWAU5OFixa3p0nTz6yfJmQidetW54pU1uxaMnv3Ln7HnV1NaZOboWllRHjpx2goKCYih62BM9oy8IVZ3kWFoO2tiZzZ7ThbVQy2/aJ/3PXdtXwqmjP9NATyOQKalZxpmvbakxddLykwzOwW11mLD9Nbn4RHuVs6NOhBsFrz1JQJKOyhz3N61diweaLQh1Vw50yVsZsPSnGmAPa1uTR21ieRcShp6PF6C6/sO74bXILiqhY1hpvNzv2XJKk/QHVuPz0HXFp2diYGdLA15U9V8VrXRr4cul5BGk5+bjYmOFkY8alsAg01NXoXMeHA7efo1SpaODpwsv4ZFKy8yhrZYaJgS5PPsajq6VJ7QplufzqPWpqEtCRujv+FVy4GRmNXKmkmrM9LxKSKJTL8bGzISo9g9yiYirYWBKbnS3AjbUFsdnZ5BXLKG9tQXTWZ6Bjybv0VBQqyQ1ZyrrytBHEZBBA5116GjoaGpgZ6JKQl4Olnh55ShkFEtD5mJOJsvhLqPc/qf/TYMfGzJCZA5sydcVJcvIKqeRahsGd6zAy+CD5hTL8PB3p1a46o2dLPJ0KdgzqVoeZi0+RkpaLo50Zk4Y1Zffhezx9EYOenhZzpoh4iC07JafgoY1xdDBn7KS95OUX41XJnn696/Ho8QcOScnlkye1xMrKmKVLzhAXl4G1tTETJjZHJlMQOk8otKrVKEf7jtXJyytisXSjaRzgRcMmnhQXy1kccqJEZt66gxj9bPn1EnGf0rG0NmLUVPHg/xiZzE4JFA2d0BxbSY59ZOdt3oYLldWEkPYlq9pday8TF52GhbURw0p1aK6dec69q6/R1NJgQqnxlUKuYPXMI0Lt0MqXWo2/rDwL8or4LUiKlxhYH9c/pZLvW3WB1IRMyjha0HVkk2+O145Fp8nPKcTdx5GA7t+SPwvzi9kjxTh0H9+iJNDwz/Xg0gsinkWjo69N59E/TjUHeHrtNXHvk9A30iOg1y8/3fZzyWVy7ktdwF/a/z1+z4/qs4z7Mx/jf7L+28dYhflFHF97gUPLxHkAUL9jTQaHdvvHY747vz/h1zE7yEjOQl1Dna4TWtFzeruffs8pseksGryZl/ek1W+fXxi2sNt3AVZmSjaLhm7hmRTz0WZQQwbP7fzN/sNuvyN0yBay0nIxNjdg+qZBVC7V9VEqlexffYE9kmqxcr3yzFjfv4QDplQq2bX0LAfXCcuK2gHeTF4l0sdBKK7mDd9BdkY+1namzNkyEBcPMd67f/UVi8bvozC/mLLuNoRsHoCNvRmFBcUsnXKIO5fFeK7vuGZ0HeIPwI5fL3Fg8zUAmrb1Y2ywcG5fu+A0Z6QRVZf+v9B/bFNSk7OZNXoPHyOT0TfQYc6K7vhUdWbfthvsXC86J81aV2bcjNY8e/KRkGmHKCyQ4e5hy/zl3UlMyGTmpAPkZBfgWNaCRSt7EPMpneDZRygskFHBw5bQxV25eCmcDRLxuHlzH4YOa0TQnGM8e/4JLS0Ngma1Q6UGU2YdRiZT4Fe5LJPHtyA49CRv3iUK2kJQe24/jOTwKcnE2vsAACAASURBVGnc1aMuNtbGBC87jUKpokEtd1o09mTaohMUFcup7OlA97bVmbnitODgVLCjU8sqBK89K5yWfcpSt6ori7ZdlsjHFdHR1WLvOck3p2Mdrj2L5PXHJAz1dBjRqS5rjt4kv0iGj6st5ewtOfiHGKn2b1mdMw9ek5SRi72lMTUrluXgDfFaj4aVOfPkLRm5BbjZWmBtbsS1l1FoaqjTsbY3B+48F2aL3q48+5RAWm4+LlZm6Otp8/xTAvraWlRzc+Dq60jU1CDAuxTQ8SjHjYgPKFQqarg48Cw+gSK5Al/7MkSkppFfLMPDxpJP2VnkFQvS8aesrBIC8ofMdIoUCiraWPE27edAx938C9AxNdAlIS/3u0AHVDQt68r2H16lP67/02Bn9tAA9p15RHiE8MuZPzaQ9XtvEhEteDrBo1uyaa/wSjA21GXOhECOnn1W4qcTMqk17yKT2HlQkocPb4aZqQGTZx8WSL6+B60CfNi26yYvX8djYKDDzCmtyc0pZJGUXN6mdRXq1inPtWuvOX9eUlVNb42RkR4b1l0mKjIZExM9pkwLRF1djXUrL5AYn0kZWxNGTxTeN7s2XyMqIgkTU30mzGiNmpoaj+6+5/QRMZufGNQOI2M95DIFS4OOIZMpqFHXnebtRLzGx/dJ7PlsSDilZYlL8qtn0RyXCMZjgtuVdGgyUnNYP1+kMXcf1hDn8l9WmMe33yTylRgzDZvd9qvve9+aS6QkZGJtb0bPUj48ANFvEzi+9RoAw+d2QEf3a8b9+/AYLh4UK/Bhczt+d8RwausfpCVmYeNoQau+3wcmKpWKvRIgCuzvj6nVt5L1r/a5WXwvTXvUQd/o7ymMwm+/IzdTjCwq1vyxVPnvlLq6WN0rlaq/2PLfr//WMZZCoeTq/tvsCD5c0uly93Nh6OIeeNfz+It3f13Z6blsmLq3hDzu5GHH5E1DKO/n8tP33Tr1mFVjdpKblY++kS5jVvbBv+P3geyrB5GEDtxIakImOvrajFvZh4Z/2lalUnFi8x9skdSArt6OzN425CvX5IK8IpaP28Ptc+LB1rpffYYEty/h0RXkFbF03B7uXhDeKV1HNaXPpBYl18alIw/5deYR5DIF5X0cCd7cH3PpfD+1+zYb559CqVRRpa47M9f0wsBIj4zUHEJG7uJtWKyIhVjYCf9WlSkulrMy6Bh/nBF/S89hDek1ojFFBTIWTjvE/etvxYhqakvadK/Fx8hkZo3eQ0pSFuaWRixY24uy5az5bdk5Th0SoKhb/3r0G96Ia5desnTeSeRyJVWquxC8sDMvw2OZO+MIhYUyPCrZs2BZV54+iWbhfLGdX1Vngud14MCB++zbK45lly416dK1JlOnH+StRFheMLcTiSnZLJbMAevVcWfYoIZMDTpCdEwaJsZ6LJrTkZMXnnPuihh3jR7UCDUNNULXiE58i0ae1PRzYeZS4c1Tp2o5WjbyYuaK0xTLFFT3KUvALxWZs+6c6MpXc8OzvC3LdwlA176RDwUyGcevSnLyrr9w5u5r3semYmKoy9B2dVh15AZFxXKqVXDAytyI47eEV9CgwFocvRUm+Ds2Zvi42XH0tjjePRv5ceLBS3IKivBwsMLYUJfbbz6iralB+1peJXEQTX3deRAVQ2Z+IW42FmhqqRMem4SRrjaVXey4/vYD6mpqNPF245w0umpU0ZU/3kWhVKmoWc6Bx7EJyBQKKjvY8jY5hQKZnEq21nzIyCBfJsPD2pIPmaKLU9HakveZ6cIk0Maa12kpKH8CdNzMzYnI+AJ0EvNysdTXJ09RRIFc/hXQcTY143Lsv2Ip+H8c7OTkFrL3dwEIZg4L4FVEIsclY8GgUS158z6Rw2dEq3DGqBakZ+SxcY80nhnQEGsLIwbMFSOeFo29aNqgInOXnCYhMYsyNiZMHB3A8xcx7DkgGfaNbkYZG2NmBh0hPT2PsmUtGTakEUlJWayQVm7du9fGx9eJxw8/cEQy0Zo0NRBzC0OuX31VIjOfOlukoIc9ieawZKw1frrYLjurgBXzBBhp27UGfjVFxMKB7Td4/yYBQ2M9xkkkY4VcwYqg48hkCmrWr0CT1kKiW1wkY8XsYyLeoU0VapYyKVu/4DQ5WQWUq2hLF0mtBRAfncbu1WLkM3ha4FfZVx/fJnBcGm2NDPnapfgzKVkhV1K7mdc3TsgqlYqNweJv8W9blUrVvg36zE7P5dAa8dl9pv04xuHRlXDePf2Ijp4WnUb+OBYChN3/A0nCHDiw4U+3LV13fhfnTK2WVf5tXxl16f2qfzHp95/Uf9sYS6VS8fDCc7YHHyZKyqKycbKkX0hn/LvU+sfxMrdOPmLt+F2im6OuRufxLek1vR3auj+WshbmFbFx5kHOSZ3a8n7OTNs8GLvvGCKqVCqOrrvEtnkCwDi42TBrx3Cc/5RnVpBXyOqJ+7h+Qtx7GnaszpilPUu8rEAoEucO3MLHN/EiAyu0CwHdv/DFkuMyCBm4mahX8WhqazB+SXcadRDhykqlkh1Lz3FYson4paUPE5Z2Q1dPW+RfhX5JLW/epQYj5wgAFROVTNDQHSTGZmBkokfQ2t54VXMhJ6uAeeP3EvbwAxqa6owJEh46mWm5BI/Zy9vwWLR1NJkS2ol6TTx58eQjcybsJzenEIeyloSu642ZuSGhM45w66ogAQ+f2Jy2XWty/OB9Nqy+iEoF/k09mTy7LTeuvmKplFJerWY5guZ34tLFF6xZdQGVCur7ezB5WiDrf7vCmTOS184gfxo2rsS4iXuJiUnHxESPxQu78vxFDOskC4qAJl5071qLiTMOkpicjZWFIQvndGLHwTvcvCfGPlNGB5CUlsvW/VIeV6Afri7WhKw6I8jKdSpQp7ors1efEcCmuhs1q5Rl/sbzqFTQtE4F7MuY8dtBQTPo2aoq8anZXH0o9j++pz8Hrz4jOjEDCxMD+gVWZ8Xh68jkCmp7OaOnq83Z+0I0M6R1bfb98YTMvELc7S1xtbfk5N2XqKlB78ZVOXznBXlFxXiXtUFLW5P7ETHoamnSpnqlEqDTvHJ5br2PFoDIzgoFKl7HiyRzT6cy3Hj3EXV1aOzpygWJr9OkkiuX30aiUkFtVycefopFplTi52jHq8RkCuVyvOxseJ+eToFMRsUyVkSlZ1Aol1OpjBXv0lORKQQv51UJ0LH+IdB5n5GOrqYmxvo6JUAnV15EoUKOs4kpH0qAjinRORn/78VF/DfU4i2XADU6NauMu5MV/aYId9g+7WrgbG9O/0mCp9O1dVWqeDp8lXvVtpkPM0NPkpKWi5O9OWOHNObcpXCuXhcn6uwpgSiVShYsEWqs5k29aOxfiRMnH3PvXiRaWhrMmtEGLS0NFi08TV6eyGfp07ceWVn5LJGIv4FtqlC7rjupKdmsXiL4Kt1618HL14m8vCKWzpPk6K0rU0cyBFy39CxpKTk4OFkwYJQYB0W8jmffFgmoTW2FhbTCO7zzFu9exmFopMuYUiqrPeuvEvsxFXMrI4ZO+TK+unvlFTfPv0BdQ53xpXw7VCoVa4MF56dyHTeadPiiolKpVKydfQyFXEmdZl7fGAReP/2UsLvv0dHV+q6nzt0LLwi/H4m2jhb9Z3xLSgY4tOYiedkFlPN0wL99te9uo1Kp2L9CfIet+vlj9h0jwtJ1budNVCoVfg0r/ZDo/L16cFHcaGq1/PcTyj8/iHMz8//tff1V/beMsVQqFU+uhLNr7lHePBReNwYm+nSf0oa2I5r+FJx8r9KTMlk3YTe3Tgpw4VTBjgnrB/7UIBDgfdgnFg3aRGxEImpqanQe25w+M9p+N/QzJyOPZaO2c18Cxw3aV2fsit7fdAPjopKZ138j0W8T0NBUZ/CcjrQZ6P8VP+fprbcsHLadnMx8IT3fPPAr6Xn4/UjmD9tOVlouppaGBJV6vSCviKUT93P3ouhSdB/dhF5jBdk6P7eQxeP38eCaGK31n9SCzkPEZ4c9iGLe6N3kZhdSxtGceRv74eBiRVJ8BrOH7+RTVIowMl3Rnap13L/y0DEy0SPk115UquzE9YvhJd3jSr6OhKzogZq6GtNH7yb8qRgrTQ5pzy+NK7F57eWShdrn+Idjh+6zcY0YyTVs6smkGa3Zv+cOuyWOYmCbKgwd0ZhFC09zS1KOjRvXHE9vB8aME7461tbGLF7YhUtXX5UsNDu3r0bTxp6Mm7qfjMx8HOzMWDC7Pau3XOHx809oaWoQPDmQsDdxHPw8yupWBwMDHRauEx2e1k28cS9nw7x1IkW9Wb2KuLtYsWSrGKG1beSNjq4220+KDvTgjrUJj0rkjqSymtDLn53nHxGfkoWNuRHdmlVh5aHrKJQq/Ku4IlOquPIkAk0NdYa0rs3Oy4/ILSiikpM1tpYmnHv0BnU1NXo3rcr+m89EUKirPXKUPI6KQ19HixZ+FTgoxUG0qlqBP15/IK+oGE8HawrkciKT0zE30MPNzpLb76P/P/beKj6qs3v//o7EPSEeEhISgnuw4O5OgeLFXYpDcJcipRQvXihOkeLuGgIBQoi7T3wmI+/BvQlQpPJ7/kd91wn5DDszOzOz733da12CQiGjcVkfzoeKbknz8r5ceCV+rlfak3sxcYKv4+nOs4QkNDodld1deJ2WJoEbJ96kp6PR6ajg4sSr9FRBQHZx4kVqCgYQsQ8pHwMdmQx8bAXQMVMqsTQzJjkvF0dzc7K1atR/Bjo2tkTnZGEsV1DNqQRvv3rlfr7+02BHlaemQhlPRvSqz7gFh8kr0FDZ342B3evy/YLD5Eg5WCP6NGTZT+eIT8rCxdGaaaNbcfzsU27dDy++SNLSc1i/SVykg/rVp0JZN+YuOk5qWg4e7naMG9WCyMhUNm0Ru63hQ5tQ2seJ/ftv8+xZLGZmxsya1QmFQs7a1WdJT8/F09OBEaObYzAYWLXkFDk5hfj5u9JPUjBtWnOO5CQVLm62jJBSx69ffMHVc8+RK2RMWdAFU1Mj4ZEz95gIs2tWnsatRGxB1Jtk9kmz8xHT2uEg3fzfhMZzWAr/HDu7I1Y2YnyVn6dmozS+6jaoAb7l3+9Yr5x8wpNbwjdn7IKuHy3eF48+5MXDSEzMjBgxp/NHn0Fhvprti8VzfjO6+Sfhh9oiHTsWCzJx1+FNcPoMUTctMYvffxEKtoEzO31xxx9yO4zQ+28xMlHSbXSLzx7zrnRaHeclomLbgX+dbP6ukmPSSIxIQa6QU6Vhub/9e18qr3LupMVnEBUaR/k/JWD/r+vdGKuwsBCNRoPxvzTv+rdlMBgIvv6S3QuO8OK2aKebmBnTcURzvvm+PdYOVv/4+S7uv8Wm6fvJzcxDoVTwzcS2fDu901eJ5nq9nqM/XWDXomMUabQ4uNoyZdNgqn7h83z9OJLFg7eQEpuOkYmSEYt60nZgw0+UWXfPPWPlmJ3k5xRi52TNzK1DqPjBmNNgMHBs6xW2Lz6JXqenTBVPgrYNocQHzuJn999hY5AYTZWu6MGcrYOLox9SE7KYN2wHEaEJGBkrmbDsG5pKo+qUhEzmDd9J5KtEjE2UTF7ZiwaSYOHCsUesmyM2I+WqejLnp37Y2lvy5kU8c8bsJjMtlxJO1izY2B8ff1dePotl7ti9wnPH3Y6FG/tRspQjR/fdZrMU6BvYpBzTFnVDlZXPrHH7iIkUYGne6l6Ur1ySlQtPcEkKHR00ognf9K3H1o2XOPyrIO92/aYWQ0Y146f15zl1UsQm9BtYn249ajFr1iGCnwrgNGtWJ0o4WjFh4l6ycwrx8nRg6ZIe7Dt4j98lz5whAxtSqYIHE6YfIC9fg6+PE3OmdWDpurOEhiUKi5Dpnbh06zVnLkujrEGNySlQs/4XsT72bF8DOzsLVknApnOLytjZmrNhv9hA9mpXg7xCDQfPia7u6F4NuP0sksev4jAxVjKxb2O2nLhDWlYeHk42dGpUiXWHr2MwQKtaZcnIK+D+yxiMlQqGdqjD9nP3BRfIxxUbS1MuPn2DUi6nb/Pq7L32BI1WR60yJclWq3kZl4KliTHNqvpx+K44/44B5Tj/PJwCTRFVvFzIyC8kJj2LEpbmeDnbcS8iFqVCToOypbj4SkCH5uVLFwOdQF9PbkfFojcYCPBy52l8EkU6wdcJTU1Fo9NR0dWZV2mpFOn0VHR1IjQ1RfByXJ0JSUnGACLIUwI65Z0di4GOt60db7MysDAywszEiJT8PJwtLMgsKkCj01HKxo7InEzAgJeNLdG5WZgolJgaKbiT/G+E5/9xsGNuasTCce3ZceiOlEJryrzx7dh37B7BL6UAz0kduHTzFeevhaKQy5gzqR0pqTls3HEVgJGDGuFV0oFRk/ZSUFhEtcqefNu9NqfOBnP9VhhKpZyg6R1RKuQsXnqyOA6iS+cahIUlsvMXIekeM7YFbu52nP/jGTeuvUahkDN9dkdMTY04ceQhj+4LSfn0uZ1QKhXcufGac6eDkclg6pxOmFuYkJGWy4/LhHdOrwH1KVtBEID3brlK1NsUbOwsGDOjffH4avXc9+OrZu2FSaC2SMeaOaIN37BVJep+0IXZve48aUkqXEra8+2opsWP56jy2SIZGfYe3Ry3DwIKc1T5bF8mODJ9xrXE0e1ju/5DP18mLTEL55L2dBv+6ajozN5bxEemYlvCih6jPiUtA+z/4QyawiIq1C5NzaZflnkfWCtGha2+DfzIu+Rzdf/8MzKTVdiUsKJ26y8nW/+5giUZtH8N76867v7d8qlUkkcXQ4gM+XcX+D8pa+v3nS6VSoWjo+P/89cEcZN/eP4Zvy4/yYs7AuQYmxrRfmgzvvm+PXbONv/4OePfJrN+/E6eXhXOsb5VvZi0cTClK3/qy/RhpcSms2rUDp7dFO6x9dpVY8L6AVj/ydjy3Xkf23SRHQuOoi3S4ertyKztw/Gt/HGoqU6rY8+KUxxcL4BAhdqlmbllCPYf/F2F+WrWTTnA1ROiq9C8Ry3GLu1ZLD3XFunYsuAYv0sdjobtqzJxtTADBHj5OIqFI3aRmZaDrYMlczYPpFz1UgC8fhbL/BE7yUzNwa6EJXM3DcS/iqcgN6+/wMHNV8VztqnMpCXdMTE14s6VlyybdhB1QRGl/JxZuHEAji423LoUyvIZh9CotfhVcGfBj32xsTNn8w9/FOfrdexZixHftyEmMpXZ4/eRlpKDg6MVi9f3wdnVljlTDvDoXgRyhYxJMzrQtFVFVi4+ySUpEmLoqGZ06laTxQuOc/O68IkZN7E1gQ38+X7SfsLDkzE3N2bBQhHo+f3UXyksLKJcWTfmz+/KT1JyuUwGE8e0wtHRislBh9BotFSu4MH341oxZ/lJImPSsLYyZfHMLhz8/SE37oWjkMuYMqolb6JSOHxGgKzBvepRWKRj436xVvftFIBGp2PHUQHMhnSvS2RCBhfvhSGXyZjQrzFnboXyMjIZCzNjxn3biJ8O3yQrtwAfdwda1C7DhqPic+xUvyJRKZk8DU/AzMSIQW0D2HLmLhqtjgB/D+QKOdefi85Qn2bV2H3lsfDKKedFUnYu4Unp2JqbUr+8N8fvC0J559oVOPP0FWqtjure7iRl5xCfmY2zjSWu9tY8jIrHRKmgtp8nl18Jh/Zm5UtzQQI9DcuU4vrbKAxA7VIePIpNQKvXU7WkKyFJyWj1eiq7OfMiRXRxKrk58TwlBb3BQGVXZ4K/AHRC01KRy8BTko9bGBlhaqIktSAPFwsLMjQFqPU6vP8EdGJyszBVKDAxUqDSFFLa2v7/99n5pzVpYFPiErP49V3O1ahWJCWr2HVYfIknD2+BXm/ghy1Sx6ZXPfy8nRg2aQ+aIh11a/rQrX11Nm67wpu3KdhYmzFrcjviEjLZIIXIDRnYEH8/F376+SIRkanY2pozdUo71Or3MvMGDf1p1aoSSYlZbJA4LwO+a0gZf1fiYtLZKiktho5qhqdXCVRZ+axZKkBNjz51qVjFUzgZLztFtqqA0mVc+HaI6Ea8fhHPoXcy9ZkdsJVUHId23eTNZ8ZXh365TsTrJKxszBg14328w+tnsZzcKxazsXM7Fy+yADtXnUWVkYenrzPdBn/sm7N79R+o0vMo6etE50Efk4ZT4jM5vEnM04fM6vQJKTkvu4B9PwiA0vf7Np8EgQIkRKZwTnKSHTiz0xf9Vd48jebxlVDkCjndx3xdgQXwh5SN06J3vX+khHp6TdxcK/8PujpAcRr42+Do/8nzfa0UCgXm5ubk5+fz6tWr/+dgR6/Xc+vEIw6sPEn4kygAjEyMaDOoMb2mdMDB7cuWAF+qIo2Ww+vOsn/5CTSFRRibGtF3Zhe6j2v9lxYAVw7dY8PkveRlF2BqYcKIpb2+6J2jSs9h9Zid3L8guhP1O1Zn4tr+WFh/rADMTM1m+YgdBN8SIK7TkMYMmfverBMEP2fhkG1EvkwQRphzu9JhYIPi11Vl5LJ01C6CbwtORf8pbek15n1g6KVjj1g74ze0Gh3eZV2Zu3UQzlIH9MbZZ6yeehB1YRGl/F2Yv2UQTm52qAuL+GHGIa5L3ZXeI5rQd2xz5HI5x/fdZvNyIa2vEejHzFW9MLcw4dje22xZ9Yfw3GlQhpkreiJXyFgy4zA3JOXW4HEt6NE/kGePo5k/+QB5uWo8vR1ZvL4PRsYKpozZw5tXiZiYGhG0pDuVqngSNPUgDyXwM3lGB+o2KMPMaQeLuzczgjrh6+fMhPF7iI/PxNbOnGXLehIXn8nS5b+j1eqpWcOb6VPbsWTVaR4+jkKplDNranuKtHpmLTiKTm+gboAPQwc2ZOr8IySlqChhb8mimZ3ZvPcGj0NiMDZSEDSxHTcfhvOHBJInfNeEqMRMjkqj6WG9AolPVXHqqtQB6tOQR6/iuPU0EqVCzuSBTTl4/gkR8enYWpkxumd9fjhwjbwCDWW9nKhduRSbTkijtSZVCIlM4mVMCpZmJvRvVYPNp+8KMFOhFAVaLfdfxWBqpKRn46rsvPRISMgreROZmkV0aiYOlmbUKuPJ74/EJqtrnYqceByKVqcnoLQHMRlZJKlycbe3xt7anCcxQmpew8eda2GRIIOmZX2KuzuN/L25Gh4JQB3vktyPjkNvMFDD042niUlo9XqquLsQkpSMzmCgspszz5KTBLhxcyFY+vnD0dW7gE+FTIaHjQ1RqiwsjY0xNlKQVpCPq6Ulaeo8NHo93rZ2RGa/Azo2xORmYaZQYCQBHRcLS1Jzcr56HX+p/tNgp7KfG6MXHgege+tqIhLie5Fz1aZxBZrUKcPIGftFx6ZiSfp2rc3azReJik3H3s6CGePb8OhpNL8dE1yAaRNaY2tjzqx5R1CrtdSo5sU3XWvx6HEUR95lVX3fFns7C35cf57Y2AwcHCyZOLE1BgOsWPq7cESu5EHP3nVEzMPCk6jVWqrX9KZjN8FF+XHlGbIy8/DycaT/kMYAXD4bwp1rr1Eq5Uye1xkjIwUajZbV84WNfZPWlQhsKm7AsVGp7Nt0FYAR09oWj69iI1LZv+ndWOs9wVhbpGP93GMYDAaadqhK9cD345TXwTGcPSiI1GPmd/kIGIS/iOfMfnFhj57f9RPQ8MvyU2jURVSqU5pAqaX+YR3aeJHszDxK+jrTuvfnzfwOrBWJ1jWbVvhoJPDnOrJRxE807hqAi9fXZcpZqdk8uCgWs1b9/p7c/F29fih2SpUC/b96XFxcHG/evMHPzw8Pjy/7urxTc4XefUNSVAoupZy+eOz/tbZv305+vuAGNW7cmC1btjB48OD/+etoCjVcPnCbI+vOEvMqAQBTCxPaDWlKt/FtcXD9e2Gdf64Xd9+wbuwvRL+MB6BakwqMWzfgs2TiDysnK48N3+/jmuR4XbamD1M3D/7i74XcDmP58G2kJWZhZKJk2MJvaD+o0Seg6PndcJYO305GsgpTcxMm/NCHRp0/5pM9uvqSZaOFysu2hBWzNn9Hxdrvc9AiQuNZMHQ7ybEZmFmYMGVdX+pK8Sc6nZ6dK89weMtVAOq2rMiU1b0xszD5JOOqZiN/pq/pg4WVKZlpOSwYs4dXwbEojRSMW9CFFp1roNPp2bj0FCela7ZN9wBGz+yATC7j5+VnOCmNmNp/U4uR09qSl6tm3qRfeREcI9LM53amadvKXP4jhNXzj6PV6qlQ1ZN5q3qRrcpn8ujdJCVkieyrVb1wdrXh+zF7ePM6EVNTI4IWdcPHz5lJ4/YS8TZFdG8Wd8fc0pSxY3eTlZmPi4sNy1f04v6DCDZslLg9jcsxcnhTZs47yquwRExNjFg4pwtRselskMjJLZtWoGvH6kyac4hMVT7urrbMm9qR1Zsu8DI8SYyypnTk+PlgbjwQHZ5pI1txLySaC7dEl2jCwKY8fhXL1fvCrO/7QU25cC+MJ9KoasrApvxy8h5xKSoc7SwY3KUuK/ddoVCjpaqfG2W8ndh5RnzH+rSswe0XUUQkZmBraUbPplX5+dQd9AYDTav6kqzK4Xl0MhamxnSpX5FfLov7R/OqfoTGJxOfITo1Fbyci12Su9SuyPFHL0QqeRlPXielkZabj5eDLWbmxjyLTcLc2IjKXi7cDI9GLodGZXy49FqsWR8CnbreJbkbFYsBqOnlzuP4BHQGA1U9XAlOTEJvMFDV3YUnSYkAVHFz4ek7oOPsJI2xDJRzciQ0PQWlTIabtTXRqiysTYyRK+WkF+bjZmlJijqPIr0eH1s7IiSg42ljQ0yuCjOlEqVCTrZGjauFFYkF2eiLCr96PX+p/tNgZ/mWC2RJOVij+jRg/trTpKTnUNLNjolDmrFl3w1eS7LzoAltuf3gLSf+EAh/9sS2yGQylkqE145tqxJYx49tO68TFp6MtZUpMya3Izf3Y5l53Tq+PHgQwXHJvnzq1HbY2Jhz6OA9ngXHYmpmxLQZHVAo5OzfdZNXofFYWJoweVYH5HIZVy++4PrllygUSGPiPwAAIABJREFUcqbO6YSxiZL0tBw2SmquPkMa4eMnFukDO64T/VZEPIyaInx29Ho96+afoEijJaC+H83aVy1+fL3kPloz0I+m7d+Pbo7tuknEq0Ssbc0ZOv09WVmn07NBAkHNutSgUq33KimDwcDP80RIYaP2ValS92Mg8upJFFePP0ImkzEsqPMnN4q0xCyOb7sKwKAZHT67K0+KTuPSYWnxmPx5A0GA9MQsbpyULPJHfH4U9mFdO/ZA2PXX8P5HxOSC3ELiw4UTqF+VUl88bvv27QwbNgy9Xo9cLv8qqHDzcaZG80o8uBDMofWn6DWjA4WFhRQUFPxP/1WpVLx8+bL4dfV6PcOHD6dVq1ZfBWP/pLJSszm19RK/b75IVko2AJa25nQc2ZLOo1piU+KfcXLeVXZ6Ljvm/sbZnYK3ZeNgxfDlvWnas95fOik/uBDC2vG7SE/MQq6Q02dqB3pNavvZ75tOp+fAD2fYt1LECHj4OjNz2zB8Kpb86DiDwcDRTZfYseg4ep0ezzKuzN4+9KPvkl6v57efLrJ7xWkMBgP+Vb2YteU7HD/oZl09+Zi1k39FXViEq1cJ5mwbTCl/4ZGTl1PIion7uH9ZfGa9Rjej38RWyOVy1IVFrJn+G9ckmXiXQQ0YPK0dCoWcyLAk5o3YRUpiFpY2ZgSt70vlWj4U5KtZNu037knk5cGTWtN9YP2PpOUAQya1olv/QBLjMpk9bi/xMelYWJoyZ1UvqtQsxcGdN9khGQs2aF6eqfO6EB6WxJwpB8hWFeDmbsfiNb0xGGDc8J3F4GfRyp6YmZswbtQuUpKzsbe3YMmKXqiy85k0cR8FBRp8fZ1ZvKQHJ04+Zt+vApB17lSdHt1rM3H6AWLjMrC2NmPZgm7cvhfBHskSpEfnGgTW9WPSnN/Iy9fg5+3EtHGtWbD2NNFxGdhYmbFwage2/3abpy/iMDZSMHtcW05fe8GdJ5GCUjC8Bedvv+J+SDRGSgXThjTn8MXg4lHV5IHN+Om3G6Rm5uLmaEOfdjVYsfcyWp2eOhW9cHKw4uAlwSEa3K42fzx8TVyqCkdbCzrWr8im0+JcW9csS3hSGm8S0rA2N6F93fLsviJ4QG1rluVhRBzJqlw8HKwp5ezApZC3KOQyOtWqwNGHz4Varaw3z+KSyMwvwMfZHrlCzsuEFKxMjSnr7sSdiFiUchn1/Ly4HPYp0An08eRWpFA/BpTy4EFsHAagmocrTxISMQBVPVx4kij9/CHQcRF8HTDg71iCl+mpGMnlOFtaEpOtwsbEBIMCMgsLcLOyIrkgF63hY6BT0tqG2FwV5kZGyOWQU/Qe6ICB+i5e/PrVq/rz9Z8GO49D47C0tGT+hHacufKcGxLheP7E9rx4ncABSb0xfUxrZMhY8aOUet0lgBpVvJiz+ARp6bl4etgzekgTnj2PZZ90gU0a1woHe0sWLj5BenouHh72jBjWFJUqn5UrxAiqS5ca1AzwITIihR2SUdfI0c1xc7cjPCyJPe+k2hNb4ehkTUZ6Lj+ulCTqA+vj5+9anFyem12Ib1lXvhkg0rXfhiVxYIcYxYye2g5ryWDv7JFHPH8cjamZMWNmvR9fnTv2iJBHQpI9Juj9OCgpLoN90uI1ZGpbbD/gLpw9cJfwF/FYWJkyeOrHYOPqySeESs83+INxGIibwdYFgnTcvHtAsaX9h7VvzR+oC4soH+BDnS8Eef624bywpW9cjrJf8Uk5vfMaOq2eCnV88avydc4GwGUpqPFzqdVfq4iQGAwGAw6utth+QekVFxdXDHRA3PSGDBnCtm3b0Ov1nwck+QXo9DourtnPuDX/6JT+T6XT6QgPD/8/g52IkBh+33KJi3tvoCksAoQjdOfRLWk7uOm/5jbp9XrO7b7OjjmHyM7IBaBV/4YMWdgTa4dPOTYfVn5OIVuDfiuWlLv7OjPl58GU/YytAUBqfAYrRmwn5I4kz+1Vl9HLen+S7p6ryueH8bu584dQxDTuGsC4lb0xszD96JjVE/dyV1JMte5dl5GLuheTpnU6PTuXnyoe8dZoVJZpP/YvNslMiEpj3rAdxIanYGwiiMhNOgkicnqyigWjdhP2LBaFUs6Y+V1o/U1tAO5ffcWy73+lIF+Du5cD834egIe3I6lJKuaN3cNbibw8ZUkPGrSsSHpqDvPG7+PNi3iMjJVMWdyNhi0r8iokjjkT96PKzMPJxYaF6/tS0qsEPy4/zekjUnzBt3UYOr4ld268ZumcY2g0WvzLubFgVS8SEzIJmnqQbFUBrm62LF3zLVlZ+UwYu4ec7AI8StqzbGUvQl8msHyZGFNVq+bFnLld2LL1Cmek93bwoIbUq+fH2Ml7SUvLxcnRiuWLenD05GNOSt5EQwY0wLuUI1PmH0Gj0VKlggejv2vCzOXHSU7NwdHBkrmT2rPulyuERSRjbmbMnAlt2XfyIcGv4jExVjJ7dGsOnH3E8zeJmJkYMX1YS345cY9IaVQ1vk8j1uy7giq3kFJu9nRsXJGVe6+ILk1NPxRKOSck35zhnepx9EZIsUFgkxp+bDsr1Fsd61bgaWQC0SmZ2Fua0axGGfZeFbyhTnXKc/1lFBm5+ZRyssPZzoobL8XorFOt8hy+L75LTSuW5n5EHDmFasq4lkCj1/E2OQ17czNKOdtxPyoOpVxO7dIlufZG8HI+BDr1S3tyM0IAnVqlPLgXGwdATU93HsRJHVMPVx4nJnwCdCq6OBUDHT9HKfZBrsDR0oK4nGxsTE3Qywxkq9V4WFuTmJ+N1mD4E9CxJi5PAB2ZzEBuURGullYk5gug42Zpxa3kqK9e21+q/zTYAZg0qCk6rZ4NO68CMLJfQ5xKWDF10VEAOreuQmBAaSbPO4QqpwA/HycG963PmQshXL8dJvJUprRHq/tYZt64QVkuXnrB1WuvUCjkzJreARMTJSuWnypWWg0Z2oSiIh3LFv8uiMJ1fWnbXhh4rVgkDKwCG/rTvFUlDAYD65afJie7AN8yLnwrJZdfPhvC3RuCCD1ZIi/rtDp+mH8cnU5PYNNyNGguSLtpydlsXysA28CxzXGWyMKZablsl1KQB4xpgYuk7jAYDPy04ATqwiKq1PahuaTsAMhKz2WXpLzoP7EVdh/sygvz1WyXQkZ7jmxWbFv/rm6eDib0USQmZsYMmPJpLlV8RArnD0qW6jM7fnZ3npaYxQVJVtp7Ypsvfr5FGi1ndosbWqehTb943LtKiEjm9aNI5Ao5jboE/OXxH9ZbyQum9FcA1Zs3b4qBzod19+7dv/06xsbGmJmZYWpq+j/7Nzc3l/79+390bgqFAl/ff2eKWJBbyLXDdzmz/UrxaA+EGWC3cW1o0DXgsxLuv1vhwdFsmLiLl/cF18C7ggdj1gygYr0yf/GbEHIrjNWjd5AULXLHOo9ozsCgLl+Mmrh56jFrJ+wmNysfMwsTRq/8luafSUJ//SSKpcO2kxybjtJYyfD53Wj3J1VWZGg8C4duJzE6DSMTJaMWdqf1t++DYnOy8lg+dg+ProkOS4+RzRgwtV2xX9PjG2EsHbeHXFUBDs7WBElkYxAxLfNH7CI9WYWVrTmzN/Sjcu3SwsBw9y22rRDGelVq+zBrbR+sbM158yKeuWP3kJGag629BXPX96VcFU+i3iQzZ+weUhJVWNuaM29dH8pX9eTW5Zcsn30EtboIX39XFqzrg4WlCfOnHOTezTBkMhgxqTWde9Xm5OEHbFxzTkRCBPoxc2FXgh9HsyhIjPnLlHVl0cqevHyZwKJ5x9FotJQt78bipd9w8eJzNkpO740bl2P8hFasWHW6OP5h4vjWeJVyYNzk/eTkChXW4rld2fzLda7fFucxaXRLlMYKgpYeF6OdWqX5tmstJi86giq7gJJudswY04olG88Rm5CJrbUZcya046d913kTlYqluQlBY1qz5dBtwmNSsbIwYdqQFvx44AZJadk42lkysmd9Vuy+TH6hhvI+zjSo4cvag2K9aR9YnqyCQm48eINCIWdk50D2XnxEZk4BXs521KrgyR4p26pn4ypcex5BYkYOzraW1KlYioM3BWDrHliJc8FhZBeoKePqiKW5MXfDYjBRKmhbs2wx0GlR2ZebYdHka4qo4OFEllpNXIaKElbmuNlb8ygmAROlgmql3Ln5NhqZTJCRrxUDHS9uRghu4IdAJ8DTnfufATrV3F15kiS6OxWdBUlZJoPSJYQbsqlCgZ25OfE52diZmlIk05Gj0eBpY01cXja6D4CODAPu1uJxSyMjdDID+doi3C2tic9XAQbR3cnPwUL571Si/2mw07i2H80DyzJs+j40RTrqVPOme9tqzFp+kvTMPLw87Bk9sDGHf3/Ew6fRmBgrCfq+PSmpOfy4SVyIg/vVx9/PhaWrTpOcko2riw3jRjYnOUXFuncmd30D8fd35dKlF1yTwM/0GR0wNTVix7arvA1PxtrGjO+niNHY3l9uEPk2BRtbc8ZPFY9d/OMZdyRQMyWoI0qlgoy03I/GV95SEOfhPbeLzQPHTGuHTCYTwGXp7+TnqilbyYMOvWoXvw9bVp4hN6cQ33JudPr2fTfjzqVQHt4IE6Zmcz8eNe1cfZbc7AJ8yrnR7tuPF/4jW6+RnqTCyd2OrkM+lm0XabT8slyM9XqMaIqDy6dKm/0SD6dWswpUCPj8TvvY5ktoi3RUrOP7Va7O7dNPyErNwcHFlnptq37xuPfHi1ZzlQb+f+mu/Od6l1DuXvrLHBE/Pz/kcvlHoEIul7Nhwwbc3d2/CEbunQ5m47g9KOVKlp2dQdVG/z5c9EtVWFjI8OHD0el0KBQKNm/e/I+6OgaDgVf333J+7w2uHrxdHOmgUCqo2746nUe3pGKg/z8K6fxzZafnsmvhEc7sELlYZpam9JvVhU4jmv8leCrMU7Nz0TFObL6EwWDAycOe7zd+R5UGn3dhLsxTs3n2b5zdIzqkflW9mLFlKG4+H/Om3qWVb5svVFkung7M3DoUvyofq7IuH3nA+mkiDdzJ3Y5ZWwZT5oNjIkLjWTh0B0mx6ZiYGjFhVW8ad6xe/BrHd9xg21IxQitbzYugnwdgL3UQr556yprpv6FRaylZ2ol5mwfh5uWAtkjHz4tPckbi1bXqVpPRczphZKzk9qVQls/4DXVBEV6+Tszf0B8Xdzse3nrDkikHyc9T4+7lwMIN/XAtac+RvbfZuvY8BoOBgEA/Zi3rQX6+hsnDd/LmpegKTVvQlXqNy37kodO2U3XGTm7D2VNP+HH1H+j1BgLqlCZoYTcuXXzO+neAqK4vM4M6sWf3TQ5JUTpdutSgT7/6zAw6TGhoPMbGSoJmdQSZjEnTD6LRaClf1o3Z0zuwfO1Znj6LxUipYPbU9iQkZ7FpkwAebZpVpGnDckxeeISCwiL8SzuLAM8fTpGakYtzCStmjGnNym2XiE3MxN7GnBkjW7Jm1xXiU1Q42FowcUATVu+5QoYqHw9nW/p3DGDZLxdQF+moVtadyv7u/HxUMiNsVpWIxHQevo7FxEjBiM6BbDtzn9wCNWU8HPEv5chv1wSY6du8OmcfvSZNlUdJRxsqeLty7I4AMD0bVOHko1Dy1UVU9HRGJpfxKCIeM2Mlzav4cfSBIIa3rlKGyy/fijgHLxeSc/JIVOXgamuFraUZwXFJmBkpqVDShTsRMcjlULe0F9fCowAxunoHdGp7l+RujNA71fRy535sPAYMVPdwKwY6VdxcioFOeWdHnqemoJDL8LKz5U1GOuZKI6xMTUh8F+RpKCJPU1RMOtYj5OfvgI6rtRXxedlYGRmjRUfBZ4BOUkEOFkZGOBkreT9w//v1nwY7EwY2YfO+G0TEpGFnY87MMa05dTGEm/fDUSrlzJ3UnviETDZLre4xg5vg4WrL2CmCtFy1Ukl6davF1euvOHfxOXK5jJlT2mNqaszsuUfIy1NTvpwb3/auS2pqDuslpVXffgL8vHqZwAGJDDh+YmvsHSx5/TKBg3uFumj85DbY2VmQnpbDz1IXpe/ghsWg5qeVZ8T4yt+leHwVG5XGHomwOGJSa+yljsutS6HcufIKhVLO+Lmd3u8Ub4dz5UwwcrmMcXM7FXMVCgs0bF4iQEm37xrg4f1emfM6OIZzUg7O6HmdP3IJTktScUjyEho8vR0mph/7mZzec4vE6DTsHK3pOuxTqXnc22SuSnymPpM+37HJycrn7B6hMPvmL7KtzkifXas+gX+rk3D3rAA7ddr8NTD6c72LMnD4SrCoh4cHW7ZsYciQIQDFoOKviMBdhroR8SCWC3tvsmzARjbcWvA/DwcdPHgwrVq1Ijw8HF9f378NdOLfJnPlwC0u/XqbhLfJxY+7lXamzaDGtOjb4F/Jxz8snVbHmR1X2bnwCLmZeYAIWR22tPdX3+93FXIrjB/G/kJiZCoALfvWZ/jinl8cob0JjmbFiO3EvjMUHNeKftM6fkKyz1Xls3bSPm6dFuOGwHbVmPBDHyxt3quyNOoitsw/xund4jtbo1FZpm4Y8FGQ7eVjD1k/TaimXEo6MHvLIEpLgaQadRHrZx3m0lFxXbToHsCYhd0wNlEK+fja8xyU4l4CGpVl2preWFiZkZ2Zx5KJ+wm+F4FMJmPwlDZ0lTrCh3feYPsP54RpZj1fZq3qjYWVKacPPeCnpafQ6/RUqlmKOT/0xtzChA3LTnPqsLjm23cPYNSUNsRGpxM0YT8pSSpsbM2Zt7oXvv6uLJ1zlGuXhJpp0PAm9Oxfj51br/Gr5Nrcql0Vxk9pw55dN9kvxdG0aVeFUWNa8MMPZ7l8WfzukKGNadKkHBMn7SMmNh1LSxMWL+xOdGwGP/woAFLd2qUZM7wZQYuOEx6RgrmZMQtndeZ+cBQHjonz7d0lgLL+rsxYcowirY7qlTzp36MOM1eI5PJSHg6MH9yUBRvOkpaZh6ujNZMGN2Xp1gukZ+Xh7mTDyN4NWLrjIrn5avw8HencrDLLdl5Cp9NTv6oPzo7W/HJKALSB7QK49yqG0ChBMB7SoQ6bfr9DoUZLldKuOJew5uSdUGQyGNgygCO3Q1DlFeLr6kBJFzvOPBKE6N6NqnL4bogAUz5u5Kk1vI5Nw9LUmPrlvTn5WNzy21cvy9mQMLQ6PTV93InMyCItJw8PO2vMzIwJTUzBysQYP1dHHkTFoVTICPAuWQxu6kkcHQNCgXU3RhCTa30AdGqUdONRwnugE5ycBCAIyKmpKOUy3G2tJe8cYyyMjYRJoIUFOVp1cb5VdG4mBnjf0ZGBi6UViXk5WJuYoNZrUeuK8LC0IU4COi4S0LE0MkaLlsic7K9f7F+o/zTYefkm8X0cxOjW5OapWb9dMv3r2wBPNzuGfb+XIq2OerVK07F1FX7Zd4vQ14lYWpgw8/t2ZGTmsVryz/j2mzpUquDB4aMPePo0BlNTI2ZME8Ti1atOk5tbiL+/K3361EOj1rJi6e/odQaaNC1Poybl0Gi0rJTyaho3L0+DJuUwGAz8uPIsOTkSqOkrWt43LoVyUyIqTwoS4yu9Xs+ahYJ8XKOuL80lknFudgE/LRXA5ZtBDfCWiJIadREbJEO/9r3qUOaDtOfftlwlJTELJ1dben0ASvR6PT/NFwq25l1qUF7y8nhXO1edQV1QRPkapWjQ9mN/mrzsAn5dLwG+Sa2Lwwo/rH1rxM6vdouKH+16P6xTO69RkKfGu7z7V3114sKTCb75GrlcRut+9b943LvKzsgl9J4w1arT+p+DnYwk4Tz8V5LpwYMHM336dNLS0jh9+jStWv21FF4mkzFm3UDePIki6kUc4xvNJ2j/WMr+hQvwPy0PD4+/BDkGg4HYsETunX7CrZMPeXnvfVaNqYUJgZ1q0mpAIyo3KPt/6uK8q+DrL/l5yl4iX4i2uncFD0at6kflL3RkPqzCPDU7FhzhpKTKKeFmx4R1A6jZvOJnj9fpRMr97qUn0BbpcHCxZfLGQVT7jJXAq8eRLBu+Q4ytjBQMmdv1Ezfk5Nh0Fo/4hTfBYsTZe3wr+kxqU7xB0Bbp2Lb4BCckfp7g5/TDylYAodTELBaO2MmbkDiRiD6zA50GCjl8fm4hKycf4K4ELLoPbczA71ujUMiJeZvCvFG7SIzJwMzcmKkre1KnaXmKirRsWHSScxJwat+zNiOntwOZjK0//MERKeW8eYeqjJ/biSKNjrmTfuXBrTfIZDKGTmhJ1z51CX4UxYIpB8nLVePuac+idX2wtDJj+vi9PA+ORamUM2lWBxo1q8DKxb9zUZK49/uuAb37B7Jm1VnOS4/1H9SArt0DCAo6zJMn0SgUcqZMaUtpP2fGTthLenoujo5WLF3cg5t3wtkh2UK0bVmJnj1q8/3s30hMUmFvZ8HiuV05fuYJf1wWHY+RAxthYWnCvNUiYb1RXT/aNK3I9GXHKCgsopyfC4N7BjJ7ze/k5KnxKVmCYb0Dmb/xLDl5anw9HenbMYAFW86h1mipXMaNhjV9Wbn7knBRrlsWuULGoctikzSiaz3OPXhNREI6NpamDGhTi59O3Bap6eU8MTZRcu7haxRyGYNaB7DvyhPy1UVU8HLGxtqMS8/CUcrl9GpUhV9vBaPV6antV5Lk7FwiUzKxszCluq8HZ4MFYbxjzfKcevpSSOt9SxKanEpWfiHejnYY5BCWnIaduSklS9jxKCYeY4WcKl5u3I6MQSaDut6e3C4GOh7FQCfA84OOzgdAp7KbM8HJSchk4O/oyMu0VIwUclysLYlSZWFlbIyJUimZBFqSWZSPWqfD29aWyBwBdN51dOQycLKwICk/B1sTU/J1GjR6LR5WNsTlvQM6liQX5GBtZEyhoQitQUcVBzei/vLK/7T+02Bn1RYhy+zWpho1K3sxYvp+1BotNSp78k2HmmzYfoXImDTsbc2ZNqYVoa8T2fMu52pMS5wcrZg6+xA5uYWU8XNhYN9AoqPT2CqpiEYOb4q7ux2nTj3hwYNIYQooKa22b7lKTHQ69vYWjJkg3I/37LhOdFQadvYWjJ3UGoBrl0K5fV1IyqfMFuOrbFUBG6ToiJ4DAintL8DL2WOPePE0BlMzY8bP6lC86O5Yd4HMtFw8SpWg99D3Y6WD26+TECMSzQeMfa9SSohO49B2sfgOm97uo8yei0cf8SYkDnNLUwZN+ZiU/CYkrnj3OWz2p1ybo1uvSlJyJ1r1rM2fK+5tMtdOCPDZ9wtdHU1hESel97f76BZfvZme2yd20jWbVcTJw+GLx72rx1dC0esNlCrvjrPnXx//58pMEZlSdn9j/OXg4EBaWhqmpn8vXBTA1NyE+YcnMqvTKuLCEhnfaD7NegcycH4PnEr+8/P9J1WYr+bFnTDunw3m3tknJEakFP+fXC6jWrOKNOsdSGDHGpha/P2/6WsV9yaJHXN+49bv4jtlaWfBwKButP2u8V965gA8vf6SdeN3kxglujmt+zdg6IIeWNiYf/b4ZMlQ8B0JObB9Ncat7ovNn5yb9Xo9R3++xM6lJ9Bp9bh4lWD6pu/wr1bqo+PuX3rBynF7yFXlY2VrzpT1/Qn4AJxnpGSzdPQunt8TvKNeY1vQ9wMgFHL/LUtG7yErPRcrW3NmrO9LtfqCk5QQnc6CkTuJfpMs3JKXdKepRFJ+eOM1Syf9Sn6uGmd3O+Zu7I93GReys/JZOHE/IQ8jkctlDJvSlk596lJYoGHFzMPcuSJ4Qv1HN6P30EakpWQzZ8J+IsKSMDExYtqibgQ2LceFU09Zs0hkV1Wo6sm8lT3Jy1MzYdgvxMWkY2Fpwtxl3+Dn78Ksyb/y5GEUcoWMCVPa0qhZeWZPP8Sjh5HIFTImft+WgNo+TJywj4iIFMzMjJk3vytKIznjJ+wjL19NqVIlWLKoOwcO3ef4KdFB69urLoH1/BgvxT+4udiyaE5nNu++wd2HEcIccEwrUjJy2fizWOc7tqxM5fIezFopwkRrVSlFx5aVmbH6JGqNlkr+bvRoW405P54WwMbfjXaNK7Jgyzl0Oj11KntRvrQrPx4Qa2OXJpVIzc7n+lOhiBrTowGHrgYTn6bCyc6SHk2q8uPRm8Ibp4oPuRoNd0MiMFYq6N+yJrsvPURdpKO6rzsoZNwMFSGePRpUZt+Np+gNBhqU8+ZtSjrxGdk42VhQtqQTF5+HI5fJaF+jHCefhGIwQH1/L57GJZJTqMHftQT52iJi0lSUsDTHycaS4LhEzIyUlHV34n50HAqZjBpe7tyOfEdGdudujFBd1fR040GcADpVPVx5nCDsISq6OvEsORmFXIaPgz0v01IxUSgoYWVerLRSyOWkFeTjYmlJujofjV6Hj50dEdkZxUAnMjsTpVyGvbkZyQW52JuakqNVU6TXfQR0nM0tSS7IxdrYhEK9Bq1Bh6uFFSEZcX957X+u/tNgJ1NVgJ+PO6P6NWT7gVuERQiZ+axxbXj8LJrD0iI7bVwbzEyNWbJKhME1b1yOZo3KceL0Ex48EiBm1hTBjVm28rRIFQ/woX27qiQlZbFJajEPHtwIT08HQl/Ec/g3wcCfMLkNNjbmhL1K5DdppDVuchusbcxRZeXz0w+CONx7YP3i8dW29efJysjD07sEvSUTv/TUHLavF74TA0c1xVkiBb98FssZqf08dnbHYsVHfHQav20TUt3hU9thIalKDAYDm5acQluko3qgH/VavA/lLMhTs/Pd+Yxuhr3j+5uAwWBg6xLRJWrSqXoxafJdqTJyOSaBlP6T2332ZnVgveAD1GlZ8bMKLYArRx+QlZaDo7sdDTvW+OwxIMYelyRV1d/p6gDFrrnVGv87PoxeJ3g4yr9hQvhvQzddSjmx9upcfp68h0v7b3Hp11vcOHafbuPb0KJfQ9x8nP4n3ZS87AJC74QRcvMVITdfE/YoAm2Rrvj/jYyVVG5Ujtqtq1K/S61/7Y3zuVKl5bB/+Ql+33oZnVaHXC6j7XdNGBDU7S9VViADNQG1AAAgAElEQVRIvluDDnF+rwC7Th72jF83gBpNK3z2eIPBwJXD99kwdR/5OYWYWZgwYklPWn4b+Ml7mZWaw+pxu3h4RXRTGnaszrhVfT4ah+m0OvasPstBibPnX9WLGZsG4ezxfuz4/H4ES0ftJCMlGzNLEyav6UO9VpWLz+fUnttsXiTAlE85N4I2DcBFArRPbr1hyfi95KoKsHeyIuinAZSt6vkJEblCjVLMXtcHWwdLYiJSmDtmD4mxGZhbmDB9RU9qNfQnNVnFvLF7efs6CSNjJZPmd6ZJ2yq8eZnAnAn7yUgTxOUFa/tQprwbuzdfYZ+UsdeoRQUmz+3M2/Bk5k45SFZmHo7O1ixa3RsLSxMmjtpN5FsBYIIWdcPb14mJY/fyNjwZUzMj5szrirOrDePG7iE5WYWdnQVLln5DQmImS5efoqhIR6VKHgTN7Mz6ny9w/ZYgHo8d2RwPd3smTj9AQWERfqWdmDW5Hct/PEdoWCLGxkrmTm7Pw2fRHJXG0v2718HOzpxFP57BYIBmgWWpXd27ONCzTtVSNKlbpji5vG5VbwIqe7F0+wUMBmheuwx2tuZsPyHWlL7tavIiKplHr2IxVioY+00DfvnjAemqPEo62dKqdlk2HJfGdrX8iUtX8TwqCTMTI75tWo1fzj9Aq9dTt5wnKrWG55FJmBkb0aluBfZeF4CuWWVfgqMTSc3Ow93eGg9HG669jEQpl9O6WhlOPBbfwcYVfLgbEUuBpogK7s6kF+STqMrB2doSa3NTXiSKOInSzg48jk3ASC6niocr96PjkMmgmqcb92MFAbm6hysP4xIAA5XdXXiamIhMBmWdHXmekoKRXE5JO1vC0tMxUyqxtTAlLicbOzNT9AYDGYUFuFlLknK9Dh87+2KgU8rWlsjsTIzkcmzNTEgtyMPB1AxVUSFaw3ugI8OAo7kFKYW52JqYkKfToJOATnJhNkrZvwtX/k+DHSOlgrkT2vPqbTL7j4l569RRLTE1MWLpOkH87dymKnVr+rD254vEJWTi6GDJhJEtiE/I5OetYuQ1dFBDvDxLsHffbV6/TsTS0oTvJ7URRoErTlNQoKFSpZJ07RaAWl3EymWCZNi8ZUXqBZahqEjHysUn0esMNG5WnvqNRHt+45pzqDLz8S7tRK/+4ob95H4E504+FSZXszpiLN1YN60+S15uIWXKu9FR6protDp+lLKsWnSsRpUAIc82GAz8tEQowGoE+tGg5fuW/r2rr3hw/TVKIwUjP+gOARzacpXM1BxcPR3o2C/wo/fy3qVQQu5FYGyiZODkT7syh3++TEGemtIVPT5rIJgQmcoViavTe3zrz35eBoOBY5IzdcfBjT9yof1zPb4aSkayCmt7CwKaf166/ucKuS3ATuW/MAT8q/o7YOP/ErppZWfB1O0j6DyqJZun7ef5rdf8uvwkvy4/iVNJB6o1rUC1JhWp3LAcds7WX8wK0+n05GbmkZmcRVRoPNGhcUS9iCMqNI7EiBQMBsNHxzu42lGzZSVqt6lG9WYVP5Fd/19LU6jhxOaL/Lrid/JUwtywVusqDFnYE69y7n/rOW6efMRPU/eTmSxAZIchTRgY1PWL3JzsjFw2TNnPdclmolyAD1M2foeb96fmjU9uvGLl6J1kpmRjbGrEiEU9aN3nY0CUnqRi+ZhdhNwVo70OAxsyJOh9FpfBYODEjutsWyyAjKefC0FbBuEhkdo16iI2BB3lgrRBadyhGuOX9cDUzFiAmZ032LZMbLr8K5dk9k/9KeFig0ajZcP841yQOqstu9ZkzFxBRH50+w1LJh8gL6cQF3c75m3oRylfZ14/j2P+hP1kpOZgY2fB3LXfUr6qJ7evvGTZ7COoC4vwKu3EgrXfYl/CiuVBx7hyToyeeg4IZOCoZty+/oplc4WSqrSfM4tW9yYzM49xw3aSnpaDvYMli1f1EuaFkoeOrZ05i5f1RK3RMm7sHnJzC/HwsGfZ8p7cvB3Gz5LkvkH9Mowd04L5S04Q8iJOZGFNaY+6SMf0eUfQ6fTUqOrF2OFNCVp2kpj4DKwsTVk4oxMnzgVz+ZYw2xv7XROycwtZu108b7c21XB1sWXRRrFxa1m/LP6lnVmyRYDTFvX88XC1Y90+sRns2qwy+ZoifrsggNPw7vW4+uQtL6OSMTc1YlS3QDadvENOvhpfdwcCKpRi62mxme3aoBLBUYmEJ6RhY2FKlwaV2H7+PgYDNKlSmuj0LMIT07EyM6ZVDX9+vSleo22NstwOiyYztwBvJztsrMy4Gx6LsUJO8yp+/P5EdOGaV/LlWlgkGq2Oql6uxGapSMvNx8POBqVSTlhKGrZmprjaW/M0PhFTpYKyLo48jI1HKZdR0cOFR3EJyGVQyd2FxwmJyGVQ3tWZZ0lJKOQyfB0dCE1NxVgux83WhreZGVgaG2NuakRCbg4lzM0p1GnJ1WgoaWNDQl42WoOO0nb2vH0HdGxsicrOwlihwMrEiLTCfBzNzMnQ5KMz6N8DHRk4mJqTWpiHnYkpOdpC9OhxtbAUQEcup7StI2F/azX4uP7TYGdwr3q4OlkzaOIuDAZo07QCjeqWYcHqU6Sm5+LhZsfIQY148DiKY7+L8cq0iW0xNzdmxtzDFBYWUbWyJ9061SQ8PJnd0k5y3JiWOJaw4tjRhwRL3J2pU9shl8vYueM6sTHCOXn0OBFGuW/nDaIiRJTE6ImCv3HnRhhXzgvS86SZHTAyUlBYWMQ6iTTcvnsAFaqI7sf9m2Fcv/ACuULO+Fkdi9vgJ369R8TrJCytzRg88T0v5OaFFzy+HY6RsVI4pEqLtUZdxGYp46rLgPofkZJTEjI5sl1c/IOntcPY5P1XR6fVFedfdfmuYXEw4bvKSFbx+y4xZ+8/ue1nwcDBDReEE3KT8l/k6jy++pLo14mYWZjQpu/XuzUXJNOxJt1r/624h4xkFbFhgoxasd6/C9z8Mzj4Wr0L3fynnZ0Pq0wNH1ZdmMXN4w85+fN5Qu++ISU2nXO7rnNOImbLZDLMrEyxsDbH0tacIo0WgOz0HHIy8r56zq4+TlSqX5ZK9f2pGOiPq/f/pmv059JpdZzfe4O9S0+QFp8BgE8lT4Yt6UW1Jp/vxvy50hOz+GnqPm5LY46SZVyYsG4AFb4Snnr/Qghrxu8iMyVbGApObk+viW0+6ToWabTsXv47RzZexGAw4FnGlRmbB1OqnNtHxz2+/ooVY3ejSs/FzMKEcSt60bjT++5jQZ6addMOcE0KtmzcqTrjlvUs5q6lxGeyeLTwyJHLZXw3vR1dBwtnZnVhET8GHeHScbEOtehakzELumBsYkRGag6Lx+8j9Ek0crkgIncZIK6PE/vusHnlGfQ6PRWqexG0pg+29hbcuPCcVbOPFgOa+T/2xdnNlkO7b7F9/QURFVHXl1lLe6DT6ZkxRqSWKxRyxs9sT8sOVTny6122briIwQC16vkyc0FXXoTEsXD2EQoKNJTydmTRqp4kJqqYO/sweblqSnras3h5T8LCkli2VGy4ypd3Z8HCbhw4eJdDRwTI69ypOt271WLyjINExaRjYWHCojldePUmiU07xDrUvHE5vukawPdzD5OWkYtTCSsWTu/Elv03eRgcjVIpZ8aYNgS/iuOEFPcwuGc91Dod63dfBaB766qYm5uwfq94zh6tqqJHxo7jAqwM7FSL8Lg0bjwRo7GxvRpy9HoIUYkZ2FiaMqRTHX48epNCjZZKPq6U9ijB/ovSKL5Fda6GRBCbmkUJGwtaBfjzy3nx97Wu6U9IbBKxaSocrMwIrODNoTsCSHauVZ4LIeHkFmoo41YChVLOk6gEzIyVNCzvw+mnYlPWukoZLoSGi1Rybw/CUtNQFRTiU8IOjUFPZHomDpbm2FuZE5qUgoWxEd4l7Hkan4SxQo6/qyNP4hNRymWUdXHiaUISSrmMMs4lCElORqmQU8rBjldpaZgplZSwsiAyKxNrE2OMjRUk5+XibG5BjlZDflERpWxFYKfeoKe0vT1vVQLoeNnYEpWThalCiZmxggx1Ac7mFqQW5qHnPdCRy8DO1Ix0dT72pmaoivIxYJCATg5GcjlGCjkvVUl/sRp8vv7TYKdzy6qs236ZxJRsXJ2sGT+4KZduvOLitZco5DJmT2yLtkjP8jWCH9OlfTUCqpfiwKF7PA+Nx9zcmGmT2qLT6Vm28hRarZ4G9cvQrGl5EuIz2SaNbYYNb4Kbux2hz+M48pvoIE2c3AYrKzPevknmgKRIGDOpNbb/H3tvGRjFwa99/3azye4m2bgLCZDgVtzd3R2qQIu7tMWlUJxSoZTi7u7u7hY0xD3ZZF3m/TDDQiDQ9j73897nPOf5fwqbSbJZsjPXXP9LvN3Q5Rn5aa74Mzt2r05xqV18/fLTJCVk4RfgwecDGwGia2qpVP7Zvns1okqICavpKVrWSjkVXw5vipePKHg06s38Ln3vLp/XIeQtbcqOVedIjs/CN9CDHl/nd0qtmn8Is8lK2apF8q22AI5uv0b88zQ8fNzo8vX7WTZbfjmOyWihZKVIqjR4X+iZlpjFiR3iSaDn8A+LdV83mzftWfOjQXSGPCOXDosnt4LyUAqaR1IWTETJEIc49J/O64uk2WT5y2P/1TXWuyOTyajToQp1OlTBqDNy70IMN0/c59ap+zy9FYsgCOi1BvRaA2nxGTi7KByA5/W4e7kSXiyEiNJhFC4dRmTpMCJLheEV8F9zUP3V2O12zu68ypoZO4h/Ip7A/EJ9+HRiRxr1qJXP5fehsdns7FtxktUzdqLPNYrN5sNb0GNUK0eJ5rujzzWyfNJWh6W8ULFgRv/8OcXe0dyAmPk055s/HQLjln1r029K53w6NpvNzvoFBx1r2CKlQpnw2+eEvWVRf/UkmRkDVhL3NAUnhZx+37ej7edvMnhunn/C7GHr0Gbq0Hi5Mn5xbyrWEfU5aUnZTB+0xiFS7j+hNW37iozSk/sJTBu8lvTkHNw9VIyf34NKtYthsVj5ZeZeDm6XagbafsLQyWKNzPplJ1n7i+Teqh3N+DldUSqdWTxzLwd3isxQmy5V+GZ0C5ISspk4YgOJcZm4uSuZOKcr5SpG8tO8g+yTWKQ2HSszcEQzDh+4xeJ5B7HbBCpUimTyzM5cvvSUubPFc2PpsmFMndGJo0fv89uv4rmpdu1ijB7TkoWLD3NKyhbq/1V9KlcpzNDR60nPyMPPz53Z07pw6Nhdtkrsb7eOVahetSgjJm4hT2eicCE/vh3Rkjm/HObJ81TUKmemjGrNvhP3OHP5iVgK+mVDHsemsVdqNu/XrRbJGVq27haBzVeda/AyOYujF0VGaHD3upy99YybjxNwcXZiWM96rDpwlZTMXAK83enRrCKLtp4RU5JLR6BxU7FTCg/8vGVV9ly8T1qOjmAfDTXKRLLuhAiCOtQqw9mHL0nNySPER0OZwsHsviqJzGuUZe/1hxgtVspFBJFnMfM4IR0PtZJKRcM4dEfkNJqXL8ah+zEIAtSILsTt+CR0ZgvFg/zINhpJ1uYRqHFDrXYhJjUdT5WSYC8P7iWloFYoiAzw4U5SCi5Ocor4+3I3Wfy4sL8391NTUTo5EeLtwZOMDFydnfFyVfMqJwcvlQqZAtL0YqdVlsmI0WqlsLc3L7SZCAgioyMBnXBPT2Jzs1ErFDgr5GRL/VYphlwEBAfQcZLJ8FAqyTTp8VOryTTr4S2go5Q7IXcCg81McU9/3iR3/f35Xw12Ll5/zsET95HJ4PthLdEbzCyQxGy9u1SnVPEQZswVWZ7wUG++/qI+L16msUJyAwwe0IjgIE9WrDzD8+dpeHqqGT60GYIAc+fuF5mfChG0aVMRs8nKvDn7Heur6jWjsVntzP9BFPrVqluculJ31YpfT5CelktIqDd9JUHxs8fJbFsvgqIh41ri5i7eDa5bfoqUpGwCgjzp+xZA+X3eQQx6MyXKhdOsw5swwM0rTpOWnENAiBfd3srAyUzVslmyrH8xKr9T6vGdOE7uuSlWO3zbOt/dvdlkYb3ksOr+TSPcNPlXG+nJ2RyQijr7jCqY1dm5/CRWi42y1aMoWangJOS0hExHX1XrT+sWeMzruXzkDmajhZDCAUR9gCV6d14HAkZX+OuE5Q+NX4g3rx4lkiFZ0D82/y6w8/ao3FRUblKOyk3ENaHZZEGfoycvR48ux4BOq0ewCzgrFXj4avD01aDxcfsvhfv9KyMIAlcO32bNjB08vSXaXz183Ok+pg1t+jXERfX3QsOe3I5lyYi1PJFKREtULsLQhX3eq294e+6cf8yCoatJjk1HJpPRfkAjPvuuPUp1/p8pCALHtlzmlwmbMepNuHu5Mnx+L2q1+iTfcRnJOfw4ZDV3Loprq5a9a9F/cod83+/krussGb8Zo96Mb6AnE3751JEfJQgC25efYqWksylaOpSJv37q0PfcufyMWUPXkZOpw8PblQmLe1NBql45tf8WC7/bLmbrFPFn8s99CY30IydLx4wRG7h7/SUymYwvRjSj82e1MZuszB6/ldOSC6pdz+r0H9Ucnc7Ed0PWcuuqJFwe0Yz2Papz90Ys08ZtITfHQGCwJ9MW9iQgyJMp47Zw+YIIIPoNbkyHbtVYtfyU46atSfOyDB/Xim2bL/OnpAusW78EY8a15s8/T7ND6gns0KESvfvUZuLkHdy5Kzq4xo5uhY+vO8NGb0CnNxMZ4ceMSR34Y81ZTp4VGY2BX9UnIMCTMVO2YbHaKFsylCH9GjJx7h6SUnLw8lAzdXQb/txygVsP4nFWOPHt4OYcu/iYs9eeIZfJGPlFA64+eNNzNaxvfc7ffsHlu6IbbFTfBuw4eYcnr9JwU7swpEddftl+nuw8AxFB3rSqXYrF286I+p9K0RgsVo5ci8FJLuPL1tXYdOoWOTojRYJ8KBEZyPZz4mvevX4FDt54TJbOQOFAb8ICvDh8S2xL71SjLDuu3BMt5EXDSMnN5VVGDr7uaoqHBXDigfjcm5aL5uA9EfTULV6Yy7FxGC1WyoQGkqjNJUMnrrGQI7I7bmq8XNU8SknD3cWFYB8ND1JScXVWEOrjycPUNNQKBSE+Gh6lpaN2dsbfw43nWSKLo1a6kJCrxc9VjRk7OQYjoRoP0g06TDYbRXy8eZaTCQgORgcgzMODuNwc3F1ckMkFci0mQtzcSTTkAgKhGjEt2Vkux83FmWyzAT+1K5lmHQ4nljEXlZMCZAJGm4UAtRvPs96YI/7J/K8GO4v+EO8uenaoStmSoYyZso3cPCPFowL5tFsNTp17zNGTD8T8nFGtUCjk/DBPFCBXr1qUFk3L8vhxEhslh9bwoc3w9nZj185r3LkTh0rlzOgxLZHLZaxbc45Xr0T31cAh4vpq++bLPHmcjLtGxZBRzZHJZNy7/cpxxzR8QmtUKmdsNjuLZok29TqNSlG9rqgpef4kme1SE/mgca1QSwmwNy4+5Yy0AhvyXRuHZiMpLpNtq8RVW//RLfJl4KxafASj3kyJ8uE0aP3Gdi0IAst/EFdbjdpXJKp0flvy/vUXSU/KwS/Yk1a932dRtvx8DIvJSpmqRahQ6/2VQl6OnkOSMLvLwA/3Vh3ZeBG7XaBczWjCoj5e7Hh2j/j61W1f6W+vXZ6+Tj8u9/fAUUHz2hGVLLl/Pjb/Fc3O3x0XpTMuAZ7/xxmavzuCIHDt2F3WztzpSFV21ajoNKQ5HQY3/9u1ETqtgXWzd7N72XHsdgE3DzWfT+pIi8/qfZANMupM/DljJ3uWi4xGQLgvo5d+VqA+Kzdbz9KxGzizR7wTL1sjmjE/f5avtwrg6okHzB+x7s3aak536rd/s7Yym6z8Pm0n+9eKQtXyNaMZ91NfvCVhvz7PyKLxWzh7QKw/aNKpMoOmd0KpchaDCtec53cp86ZIyRAm/dKXwDAfbDY7qxcdYasEJKrULc64ed1x06h4+SSFKUPWkpyQhaubknE/dqVa3RJkpOUyddh6Yu4n4KSQM2hCa1p2rkJ8bDqThm8g4VUGalcXxs/sTPW6xTm85yZLfhAZmRJlQpkyrztWm52R36zm+ZMUlEoF46a0p2qNaGZP3cUpyf7+2lq+ZOERDkoBnV26V6PPp3WYPXsv586JF+kBXzekbt3ijBi1nthXGbi5Kpk6pQOZ2XrGfr8Fq9VOuTJhTBjVih8WHuD2vXgUCjnjR7REqzMyZe4eBAHqVI+ma/tKjJ4upiKHBnnx7dDmzP/9GM9epePm6sLEYS1Zv/catx+KDM2Er5uy59Q9bjwQAwjHftmYHSdu8+B5CiqlglF9G7By7xUSUnPw8XSlf6eaLNp8Gr3RIjaXl43g553i/2nb2mV4mZrF7aeJKJ2d+LxVVVYduYbBZKFURCCBPhr2X3mITAa9G1Vi24W76ExmSoYF4O6m5MwDsfKhY/UybL14F7sgULtEJDGp6aTk5BHkpSHU14PzMbE4OcloVCbKAXQalCrCmacvsdrsVCgUwvOMTHIMRgr7eaO3WUjOFtkdlbMzz9Iz8VKr8NG4EpOWgbvSBX+NGzFpGbi5uODnoeZpRiYapQseripis7PxUqlwUshJzssj0N2NPJuZPLOZCE9PEvJysdrFddXTnAxAoIgEdOQyCHTXEJ+nxcPFBZvMjs5iIdRdQ4JU+xCq8SBBp8VZ7oRaajQPcHUj3ZSHCHTcSDXmolYosGHHYrcSqBY//69u0v9Xgx1trpES0eF82b0Wuw/e4srNl6KzakQrtLlGFiwVGYteXapTqkQIq9adI+ZpChp3FWOGNcdisTFHcmg1qF+SenVLkJSUzXKp56r/gAYEB3vx9EkKmyQNydARzfHwUJMQn8nq126oIY3x9dNgNltZJK2kmrWuQIVKkQDs23aVmAeJuLkr+WaUKN612+0smbkXu81O7bcAkNlsdWTqtOlejaLSWgvEpGSL2UqFakWp1fjNKurp/QSO7RRP7AMm5GduLhy9z/1rL1GqnPl0ZH7hsEFnYrNER/ca2tQhwnw9aUnZHJR+794jWxQIPA6sO49BZyKyeDCVC1hxgbgmOLRBPLm0+AtnlVFn4tpxkQGq3ebDbq135zWzE1X2Xwc7r1uyE5+n/MWR/x7Nzv+UEQSBGyfusXbWLkcmj1LtQpv+jegyvOXfTqoWBIGTWy/zx+StZCaLr1u9jlUZMKsbPh8JLbx7IYYFw1Y7AgVb9KnDV9M646Z5H1zdPveYeUNXk54oFoP2Ht2KrkOb5QNRFrOV1XP2sX2ZCJyKlAplwq+fOUTGAMmvMpg1cBVP7ohJtD2GNqXXiOaO7xP7JJmZA9cQ9ywVhbMTX09qR8ueNQrU5zRo+wlDZ3RCpXYhN8fAj2M2ce2seMHr/GVdPhshPr+LJx7w44StGPRmgsN8mPxTbyKjAnnyMJGpQ9eTnqpF46nm+3ndKV+1CLeuPGf6uC3kaQ0EBHkydVFPIosGsuKnY2yRAgDrNi7N6MntiH2ZzqQxm8hMz8Pbx42pP3YjONSbscPXcf9OPE5OckaMa0Xt+iX4fsJWrkss0cAhTajfsBRjx27k4YNEnJ2dGDuuNWHhPgwetpbMTB1+fhpmzejM1RsvWbbiFAD16xTny8/qMWHaDl7EiqBl2rftuXY3lg3bRSlA+5YVqF65CGOm73CkIg/9qgHTFh0gOU2Lr5cb3w5twdK1p0Xgo3bhu4HN+HPnJZ7EpuGqdmHcV41ZsfMSsUlZeLqrGNa7Pj9tPkNmjp7QAE96tqjEvPUnMVttVCoeRmSYL6sOiiv37o0/4XpMPDHx6birlfRuWok/Dl7GYrVRpXgYcic5J24/ReEkp1fDT9hw9hYmi40KhUOwyexceRqHykVB68ol2XxBBLwNyxTlxqtEsnQGIvy88HBTce1FAkqFE7VLRnL4ntTNViaK44+eYRcEqhQO435SCjqzhWKBvqQbDGTo9IR6ahCA2Kxs/NxdcVW58CxDBD0eahXPM7PwVClxd1XyMisbL7UKpYuCeK0WPzdXrIJAul5PqIeGTLPBocuJ0+ZgFewU8/UlJvsN0HmekylZyt1I1OXipRJDAo2ONOT8QEcpd8JZISfXYiLI1Y1UCegEuolOLFeFMxbBilWwOYCOQiajsIc/j/76dPHe/K8GO84KJyYOb0laRi6/So3JA/rWJSLMh4kzd5GjNRBVJIBPe9bk6fNU1koX7mGDmuDr686KlWd4+TIdLy9Xhg5ugiAILJh/EKPRQvnyhWjTpiI2q515c/ZhtwnUrV+C2nWLIwgCi348gNls5ZPKkTSTwve2rLvAq5fpeHm70W+wyHJkpOWySrKufzG4Mb7SXeHRvbd4eDcetasL37zlftq59gIJsRl4+7rTV9L1gJiUfPHkQ+ROcr4e38oBPARBYPmPBxAEgfqty1PirbWPzWpjlVRH0fGLuvi9U+2we9U5cjJ0hET40bhj5fde3+3LTmA12yhTrSjlCxD92qw29q4SV4Idv274QRbm1tlHpCdmo/F2+8vKh9vnH2MyWAgs5EvRD9jX3x2j3uRIP454R3T6T6aIxArdPvPQ0Wj+ofk/scb67zZ2u51L+2+yaf4+B5PjonKmdb9GdB3e8h+lKr98kMDPY9Zz94J4kQ8u7M+gub2o3KjgcEAQge/KmTvZs/wkgiDgH+rN8EV9qVSA6NlssrB2zl62/ypWSYQU9mfsz59T/J3QzKTYdOYMWs1jaf3W5tM6fDWxfT590KUj95g/cj15WoOYr7O4N1UavIkzOLX3JosnbBXXWkGefLe0DyWln5MSn8mMwWt5ej8BuZOcr8a1or0UIhj7JIVpg9eS+Eqqk5jRifqtyiMIAut/O8FaqbC3XJXCfL+gJx5erpw5co/5E0UhcnhhP6Yu6U1IIV8O7LjG0tmi7bpk2TAmz++B2k3JjPFbOX9STObt+UUd+gxowKVzMfwweacoZi7iz4x53bFYbAztvwlm3vcAACAASURBVJLEhCwxV2dWZ8LCfRk+eA0vnqehUjnz3aT2hBXyYcjg1SQmZqPRqJg2vTMGo5nhI9djNFooHOnPzBmd2LTtKrskE0jnDpVp3qQsI8ZvJC0jDz9fd2ZO7MC2fTc4ckpkkPr1roOvnzvfzt6NzWanSvkIenWqyoTZYipyWJAXo/o3ZtayI6Sk5+Lr5ca4/o1ZuPYUiRJjM/Kzhixaf5q0rDwCfTUM6FKLeWtPoDOYiQr3o3ntksxdLxZ61v2kCCqVM9tOSULn1tU4dFVsLvf1cKVD3bIs239RzNQpV4RMnYE7T+JROSvoUq88a07dEPu5ShQiNU/Pk6R03JUuNCof5RAmN/+kGGdjXorC5CA/BDnciUvGzcWZikXDOPZAzGNqXCaKow/Fm4aaURFcexWPyWqjdEgAcTk55BhNRPp4obNYSMvTEeypAbkIenxd1bi4KIjNFj92dpETn5ODn5srghwHi6O3WdGaTIR7epBi0GGyWSni7c2L7CzsCPmATqS3N89zMnGWO+GpVpGiz8NHpUZnM2G2WwnXeBInZeeEuItAR61QIJODzmoiyM2dVKMIdPxdXUkz5uHu7ILRbsYm2Al4DXTkclzkMmJy/98a6x9P3y7ViAz3Y9h3Yl5DhTLhdGpdkWOnHnL2gljeNmFkS2QymD1fPDHUrhlNo/oliXmS7FhfDRvSFE9PV/bvv8WNGy9RKhWMGt0CuVzGpk2XePokBY1GxZBhYnjg4QO3uXVdPG641IcV/yqDjavFFdM3w5vi4SnedS5beBi9zkyJMqG07CAyFblaAyuWiNqiPgMa4Cf146SnaNm4XHJMjWjm0M9YLTZ+m/OG7Yl8aw10+eRD7lwRLeOfj8jP3BzbeV0UHnu70umdjqs8rYHtEoPVe3jT92zgOZl5HNooZlL0GNK0wNf/wqE7pCdl4+WnoV7bigUeA3BMKgWt377ye+zRu3NdSk6t3LDM315hve60ctWocf8XxckA5euWxFWjIiMpm5jrLyhRpegHj/3/Y431nxqb1capbZfYNG8frx6JgWQuKmdafdmAriNb4RP49zN5dDl61v24V1xZ2ewo1S50H9mSToObfVCADHDrzCMWj1xD0kux7LN579r0m9YZN4/3AwVjHyXy4+BVPL8XLx1bi/5TO+VrKgc4vecGS8ZtQp9rxN1TzfB5PanV4k1KuMVsZdWcfeyQ3hfFP4ng218+c7gTLWYrK2bvY7e0Si5fI4rxi3vhJVW6XD8bw5yRG8jN1uPh7ca3S3pRvrqoz7lw7D7zxm3BoDcTEOLFpKV9KFoyBIPexPzvd3DuqMhmtu1Rnf5jWiJ3krHm5+NskHR4lWtFM2FOV1RqZ36de4Bdm0RRbsMW5RgxsS25WiNj+q8i5qHIvgz/vg2NWpRj+6bLLP9JzJqpVK0I38/oxLOnKUyZsI1crYGgYE9mzOuBxWJj8DeryEjPw8fHjRmzu2K22BgyZA25WiPBwV7M+qErd+/Fs3CxmJJe8ZMIxo9vzaKlRzknaYAG9mtI0SIBDB0raXYK+TJlQjt++uME127HOsIC07N1/PCTaB1vUrck9WsUY+ysnZjMVkpGBfFFt5pMXLwfbZ6RQsHeDO5bj1m/HyZLayA00Iuvu9dm9p/HyNWbKBzqS7fmn/DDyqOYLTYqFAuhQskwlmwRb8Ra1SpFZp6e01ce4+Qk5+t2Ndl44iYZWj0hvhoaVi7Gcqm5vHnV4jxJTOdpYgYatZI2NUux+qS4Vm9UviiPk9OJS8/Bx11NlehwdknC5LZVSnH4bgxGi5Wy4YHkmEzEpmbj5aqieJg/Z2JeIJNBo9JvgE7dYpGcf/4Kq91OhfAgYtIz0JktRPv7kq7TkWUwEu7ticFmJU2rI1Djhl0GidpcAjVuWGV2knLzCHR3xyRYydIbCfXQkGUyorNYiPT2Ii4vB6vdTrSPL0+yMhAQiH4L6ER4efFSmyU6rZTOpBl0+KnfZOe8DXSC3DQk6rW4KZyxy+wYrBYpO0fU8Pi7upJh0uHhrERnN2EX7A5Gx1kuRyGXYbRbiNL48viD7/wPz/9qsNOpZUW277vB7fvxqNXOjB/anKxsHUt+E8P5+vaoQVSRANasP8/TZ6l4aFSMGNwUq9XOj9L6qm6d4tSrW4K0NC3LpHyIzz6vS2ioD/HxmaxZKb5hvh7UGG8fd7Iy8/j9J/H79/myLiFhPgiCwJIfD2Ax26hUrQj1JbfT9cvPOH30vqi9GS9a1wFW/3KcnGw9EUUDaPdWEvGKRYcxGsyUqlCIRq3fnIT3bb7Mq+dpeHi50vubN2yP1WLjj7kic9Ph09oEhLy5CJlNFtZJgKr7Nw3fEx7vXHGGPK2BQtGB1G39Ptuye+UZTAYz0WXD+aROwU3Ue1ZKJX29an4QxOi0Bi4cFO+mGnV9P3X53XkNdip9pEbi3Ul5JYKdoAi//5K12kXpTJWm5Tm9/TIX9l3/KNj5v3GNpc81cHjNWXb+cpgUqVHc1UNNm/6N6DiwGV4Bf79Y1W63c2T9eVZN30F2Wi4ANVt/woCZ3T+abq3T6vljynYOSiYCvxBvhi/sUyADZLfb2bnsBKtn78FisuLh487wBb2o0Tx/zYlBZ+LXids4KgWBlqpcmLFLP80XEpgSn8kPg1bz+KbI+HTsV5/PxrV2xB6kJWUze+g6Hlx/CUC3gY3oI62f7HY7W5adYs1CsasqumwY3y/tQ0CIN3a7nfU/H2eD5J4qV7UIExb2wMvHneSELKYOXceLmGQUCicGfd+GFp2qYNCbmDt2OxdOiAxNxz41+XJEMwx6ExOHref6JZEh+HRgQ3p8UZenj5KYPGoTGWm5eHiqmTyvOyXKhLJ4zgEOSInmrTtUYtDI5pw4do+Fs0XdYolSoUyb04WYmGRmTNkl2c39mDm7Gw8fJTqs5cWLBzN9Rmd27bnBesms0LRJGb78oh4Tp+3k4aMkR4aOxWZjzKStomandBijhjRl2vx9PH2RhlrlzOQxbbh44zm7DonnhF4dqhIS7Mn388WanRoVC9OyURm+XbAXk9lKqaggerStzOSl+9EbLRSLDKBbi4pMX3YIk8VG2ehg6leNZs6q4yIrU7Eovr7u/Cn1XPVqVok7LxK58ywJpYuC/m1r8OfBq+QZTBQN8aVcdIijubxz3XJcfBRLvGQnr/9JFOtOiTEDLSsX58qzeNK0OoK9NRQL8efQLTEksX3V0uy58VC0kBcJIy4rh2QpFDDEz4NLz+JQOMmpUzzSAXTqlyjMqZgXYrVDZBi3k5IwWW2UDPInLjuHPJOZwn7eZBkNZBmMhHl5oLNYyDQYCPXUkGc1k200EubpQbbZKLaRe3mSrBNZnKI+YtKxTZBYnMw3QOeJBHQKeYlOK1eFAmdnBZlGA4Fu7mSY8rAJ9nxAJ8DNnWRDLhpnF8yCFbPNmg/o+KrVZJh0eLooybUaERAcQEcpdwK5gMluwV+l5mXO/2N2/vEkpWTz+xrxgjvw8/oEB3ry/fSdaHONRBcNoHfX6jx/kcaajeIbdOjAJvj6uLNm7TmeP0/Dw0PNsCFNEQSBxYsOo9OZKFEimE6dqmC3CyyYK66qKlUuTNPmYrDdr0uOkptrpGh0IJ27iQ3jxw/d5dZ1US80VGJ6zCYrS+eIFvG2XaoQVVzU3jx9lMR+yU46aGxLB6Ny/2YsJw/cQSaT8c1baypttp51kgX90yFN0Hi+0Skc3HKFhJfpePq40aVffuZm/4aLpCfn4B/s9V6reW6Onp0SUOkzvNl7olCDzsRe6e61y8BGBQKIZ/fjuXf5GU4KOS1713rv86/n7N4bmI0WChULpthfOKWSX6WT8DwVJ4X8g03WBc1rZuffUblQs3VFTm+/zKmtl+n9bYcPgrj/m9ZYybFp7P71KIfWnEGvNQDg6aeh4+BmtOnX6IP1DB+a+5ee8NuETTyRVkWhUYF880OPD/ZZvZ7Lh+/w0+h1pCeJbFnrz+vx+aSOBWpzUl5lMH/YGkc1RJVGpRm+sDc+74i5n9x5xZxBq0l4kYZMJqP7a+3NW1k8F4/cZcHIDeRpDbh7qBm5oCc1mr4JsrxxNoY5I9ajzdThplExen4PqkuaOV2ugfljt3DxmNRe3a0q30ghhHlaA3PHbubKafE+tl2fmnw1RnzP37r8jFmjN6HN1uPt687ERT0pVSGC5IQspgxbz8snKTg7OzFkYluatqtIfGw6k0dsID5WXIGNnd6R2g1Lcfb4A+ZO3onJZKVQYX+mLeiBu4eK70Zs5OY1kU3oN6QJHbpWZe2KM6yX2Oc69UswblI7Dh24zc9LjmK3C3xSMYJJUzuyb98tR+xGzVrRjBnTkp9+PsZxqeCzd6+aNG5UmmFjNpCYlI3GXcWMyR24+yCR5VI+VP3axenVrTqjp2wjNT0XHy9Xpo1vx8bd1zh35akjLDBPb+LH38SbslYNy1C6eAiTFu3HZhccqciTlx4QAwhLF6JulShmLD+CXRCoWaEwxSIDWLJR/Jlt6pZGb7Gw7YQIpPq3r8HR6zE8T8xA46rk0xZVWbb3IiaLjXJFggny07BDcln1aVyRA9ceka7VE+rrQfnoULaeFz/XsUYZjt17So7eSOFAHwI83Tn14DkKuZw2VUuy89p9BAFqFY/gQWIqmToD4T6eaNxV3IhNRKVwonJUGCcei6vgBiWKcCJG/Lhm0UJceRWPxW6nXGgQMWnpGC1Wigf6EZ+rFUGPrzfpej1ak4lC3l5kGHWi0Njbi1SDDr3FQmFvb+Jyc7DY7UT7+UgsDhTz9SMmMx0BgShfH55kZyCXQbCHB69yc3B3dgE5ZJuMhLhrSDZoERAcQEcmAz+1G6mGPDxdlOhtYu2DeGwuMgS81SqyzHq8lGK2DggEqF1JN+WhcnLCjh2r3Ya/Sk2WRYfiI/KAj81/FOxERkYSGxub77Fx48Yxe/bsD36NIAhMnTqV33//naysLKpVq8bPP/9M6dJ/L3zs7Zn/61FMZiuVK0TQtll5jp16wLlLYuP5hJEtQSZj9oIDWK12alWPolH9krx4kcY66e5kyKDGeHu7cfLkAy5eFL9u9JhWODnJObj/FnekQMHho0Vx7tVLzzgpMTUjxrXCSSFHm2Ng2U/im7XXF3UIlijvLWvOkxiXiY+fO32l7Bq73c5Syb5er2kZylcu7Hj8N6krq3nHSkS/pTvZuOwkeblGChcLonmnN7oavc7EegkE9R7UyFEXAZLw+DcxHbrXkMbvXbB3rzyLIc9E4RLB1Gz2/gXoyJbL5OXoCYn0o2bz99OSAQ5IDpVaLcrj95GqgdO7RGDXoFOVv2Rd7l0SL1zR5SMKvMB9aHKzxbTev1NF8FdTveUn+AR5kfIqnd2/HaXLsJYFHvc/fY0lCAJ3zz1m929HubD3Ona7GE4YFh1E+4FNadKrNirX94tePzZp8Zn8OXU7J7eJDIqrRk2vsa1p27/RR4Mhs1K1/PbdZk5LLdchhQMYvqhPgU4rQRA4uukSv03ciiHPiMpVSb+pnWjRO38Sst1uZ+fyU6yavRerxYZfsBdjlvShXI032jOzycqfP+xxlHgWr1CICT9/SqAEmm02Oxt/OsqGn45J+TshfPdzX0Ii/AB48TiJmYPXkvAyHWcXBQMnt6O5xF6+jElm+pB1JL7KwEWpYMiUDjRuX1FMEV97nuXzD2G32YkuFcKkxb3xD/LkzrUXzBy9iZwsCQAt7EGp8oW4fukZs8ZvIS/XiH+gJ1MW9KBo8SA2rDjDaul9XrlGFN/O6kR2lp5h/cSOK5XamQlTO1KxauF8jqtuvWvy6Vf1WP7bCXZISc/NWpRj8LCm/PLzMQ4cEMFCx46V6dW7FpOn7uT2nTixtHh4M8IL+TJ41Hq0WgPBQZ7MmtKJHftusueA6N7q2qEyNatHMfz7zeTpTISHejNpVGsWrTjBvUeJoqNqaHOu341j7zFR2Nu3UzUULgpmS32HzeuWokghX0cqcqPqxYgI82XBWvH3bVWnFC5KBSv3iH9rvVpW5nFcKlceiMGJgzrVYvPJWyRn5uLn6UaXhuX5Zfd5UXdTJgLkMg5fF63mfZtWZsvZO+QZTEQF+xIa6MW+q6IDq1ud8uy6+gCD2UKp8AAUTk5cevIKFyc5zSoVZ8dVEeQ2KF2Uqy/iyDWaiQr0RZDD/YQU3JUulAoP4OyTWGQy0Wr+GujUjo7g3PNYBKBieDB3k1Kw2OyUDgngaWYmRouVaH9f4rVa9BYLRX19SNDlYLBYKerrQ1xuDiabjShfH55niyxOcX8/HmWKQn6R0RGBThEfH55mZ+Isl+PrriYhT4unUolZsKO3WAjTvHFavQY6TjIZXiqVIw1ZazViF+yEuHuQbNAil4GHUkm22YCPUk2WBHT8VeI6SxQoW7AJdgfQcZHL8VW7c/uDZ4MPz3+c2Zk2bRr9+vVz/Nvd/eMXnB9//JEFCxawatUqihUrxowZM2jSpAmPHz9Go9F89GvfnYcxyXh4eDBuSHMys3QslpxFfbvXpGjhANZvukjMk2Tc3ZWMHNIMu11grgR+alSPomGDUuTk6Fm6VHyD9exZk8KF/cnKzGOZRDt/+kVdgoO9MBotLJHEvu07V6G4BEhW/HqcnCw9EYX96CwxKInxmWyShLsDRjRzZOocP3CHh3fiUKld6Df8jQ7m2J5bPHmQiKu7kk8HvVlTJcZlsFfazfcb1SIfA7P9zzPkZOoIjfCleZeq+V6X3WvOk5OpIyTCl8Yd8juadFqDQ3PQY3Dj90S4NpudXZLLrMNX9Qu0AutyDY4QwVYfcVdlpWm5c14UpNZr/74A+t25L2WdfCw1t6Ax6owABbaw/9NRuSn5bHInFnyzgg1z9tCkZ+0C3Uav11hGoxGz2YyLy9/LlvlPj05r4PjG8+xdftyhxwGo2LA0HQc3o1Ljsh8VZhc0+lwjWxYfZMfPRzAbLchkMpr1qc2n37XH+yO2eUEQOLLhPMsnbyMvW49cLqPDN03oM65NgUArMzWHJaM3cPmIeMddqmpRRi3pS0ikf77j0pOyWTByPTelXJdaLcoz7MfuaLzf6LkSX6bxw8DVPJV0Ph2+qsfn49s4QFl2ei4/jtjAzfMiAG/RozpfT3pTG3Fi9w2WSJUMASFefLe0D8UkQf3ZQ3dZ8N02jJI+Z+KS3kSVDsVktLB46i5O7BNBQaM2FRg6qT0uSgV7Nl1m2dwD2Kx2okqGMHlxT/wCPNi18RLLFh7GLgmRJ83rjrtGna/6oUOPavQb2pT7d+KYOmEruVoD/oEeTJvbDR9fd8YMWcfD+wk4OckZPq4l9RqUYtqkHVy8IP5uX/SrT5t2nzBl8g6uSSWjgwY1plr1KIaPXM+ruAxcXV2YMqkDOoOZEeM2iWuwYsFMmtCWn34/zoXLz8Qgv/6N8PF1Y8yUbZgtNsqUCGFY/0ZMXbifuMQs3N2UTB3dhm0HbnDh+nPkchnDPm/A0/gMdkvAp0+7Kpjtdn7eKJ5DOzf7BJsgsGKnqP3r1aoyCWnZ7Dv/AJkMvu5SmxPXn/DwZQpqpTPfdKrFH/svkZNnpFCgNw0rR/PLblGf2aRKMZKzc7nzPAmlsxO9G1di7Ynr4kosMgiV2pmTd5+hkMvpWrccmy/cwWqzU6lIKDlGI/fjxZ6q2qUj2XNdXDM2r1CMUw+fY7BYKR0WQLbJRHx6Dj5uasL9vbj8Ih6FXE61ouGcinkBQJ1iEZx5JhIFVSPCuB6XgE0QKB8WzP1UEfSUCvLnSUYmZpuN4gG+PMvOxGKzUzzAj6dZmVjtdor7+/E4Ix07AiX9/XnoADoioyMKkL14npOJi5MTnmolybrXAmQLRpuVQh4ejnXVa6DjLJfj7uJChkmPn0rMzhEQHOyPQi7D1VmB1mLAV+XmyNbxU6nJNOtwU7hgspuxY8dPAjpKJyeQ2UjW/Ws3iP9xsKPRaAgKCvpbxwqCwKJFi/juu+/o2LEjAKtXryYwMJANGzYwYMCAAr/OZDJhMpkc/9ZqtY6PB3/ZgAA/Dd9P3ym2l0cF0qtrNWJfpbNqvcg+DB7QCF9fd7Zuv8KjR0m4uSoZPqwZMpmMZb+dIDtLT0SEHz0ksPLLT8fIyzMSXSyIjp2qAGIlRHJiNv4BGj6VxL4P7sZzcLe40x06thXOzk4IgsCv8w5hMduoUKUw9Zq8pruNDlFyr3718JecLLo8IytfP96/AV5vsRMrFx3BahX7ryrWjHI8npmWy3ZJS/TZyOb5xMV5WgPbJbDSe2jT96Lz9669QJ7WQHhUALWav985deHQHZLjMvDwdqPxOyDq9ZzccQ2j3kx4VCBla0QVeAzAub03sdsFilWIIFi6G/7Y3JdszWWqffh7FjRGvRngHzMRH5omvWqz57djPL0dy5oZOxi6+LP3jvHweAOAcnJy8Pf3f++Y/y4jCAIxN15weM0Zjm+6gFEnvpdUbkoadq1Bu6+bEPlO/tLfGZvNzpF151gzaxdZqeJ7skyNaAbM6kZ0hciPfm3CsxQWj1zrAMNFy4YzfFFfosu/v+oUBIHTu67xy7dbyM3SoXBR0GdMazoNbPweGD9/4DaLx24kN1uPUuVM/ykdadGrZj7W59Tu6yyZsAVDngkPbzdGzu9JtbeiHO5dec7s4evJSM5BqXZm6MzONJTyd8wmK7/P2st+KVuqYu1ijJ3fA08fN2xWGysXHmb7n+J7s0L1ooxf0ANPbzdSk7KZNmw9Tx8miinKo1vQrlcNLBYbi6ft5pCUzdWgZTmGTWqHk0LOohl7OCTZ1xu3Ks+w79qQm2tk9IBVPJbAy6CxLWjVsTKH991i8Zz9WK12ipcKYeqP3dDmGBjafyXJSTloNComzexMWCFfRgxdy9MnKTi7ODFuQhtKlg5lxIj1b1xY37fD28eNwUPXkJWtx99ftJZfuxnLb3+cRBCgZrUoBn3dkCmz9/D4STIuLgq+H9OKxNQcpvwo5nrVqR5Nt/aVGTNjB1k5egL9NXw/vCU/rz7Nw6fi13w3uDmHzz/i3DURLA3rW5/7L5I5cl40Jw/oVpvHsamcvCoKoL/pVpsLt19w83ECzgonhvaoy6ZjN4lLzcbLXc2X7aqxVKp/KBkRQOmiwayUrOYd65bl1otEniVm4K5W0qVeOVYevYrNLlCjZCG0ZjOXY+JQOSvoULMMG87dEtdTJSN5mZZFfIYoTK5QJISDt8W/21YVS3DoTgxWu52KhUN4lZVDWq6OYC8NXho1t+LEPqvyESGcexYLMpHReQ10ahQO5+JLMd6gUqFQbiQmYhcEyoUEcT81FavdTumgAB6mp2ITBEoFBvAgPRUBKBXgz/30NAQESgb48zAjP9CRyyDU05OX2mxcnRWoXBSkGXT4u7qRZTZgsdso5OlJXJ4IdEI1IuhxkTuhdHYiy2zAX/0mO+f16srZSY5SISfPasRP5UbGW0Any6zH3dkFg82EgOBgdNROTtiwYhfsFNcE/s9kdubMmcP06dMJDw+nS5cujBkz5oN3uS9evCA5OZmmTd+wGkqlknr16nHhwoUPgp0ffviBqVOnvvd45QoRtGpSlhNnHjnWV+NHtEAulzN30SEsFhvVqhShWeMyJCVls/I12zKgAf5+Gm7ceMnhw3eRyWDU6Ba4uCi4euU5J0+IQYQjx7TESSEn9kUaWzeIdxWDRzbH1U2JzWZ3VEI0a1WeshVE2/LlszFcOf8EhULO4LFvEofX/3GarIw8wiJ86dCzuuN32LziDFkZeYQW8qVtzzcC3oe3X3H2yD1kMhlfvuOy2rTsJCaDheLlwqn1TvXDjj9F4XFksSDqtc4v1DQZLexaJVL23Qc2KvAO/jWr06pPLVTqgv8fD0prwJa932+VfnvOSlbUuu3+Oi8nL0fPq5gkAEpW/bAwuKAxG8V6B2flv+ftIJfLGTC7J2Na/MD+FScpV6ck9TvnF1c7OTnh7u5OXl7ef1uwkxqXwYnNFzi24Txx0msLEF4smDb9GtG4Z61/rMeB1+GC91gxZRsvH4htyyFFAvhyamdqtvrko38TZpOFrT8dZtPCA1hMVpRqZ/qOb0f7AY3eA+YgtpQvHb+J8/vFm4qocuGMWvzpe71WBp2J3yZt54jk/IsuF87Yn/rmy84x6k38OnkHRzaLbGmZakUZu6QP/tIa1m63s/W3k6yRmJTwqAC++7kvEdHizVxKQhazhq4j5k4cMpmMHoMa0XOwCLiy0nOZPWoTd66IK4rOX9TlsxHizcbtK8+ZNXojOVl6PL1d+XZeD8pXLUJGWi4zRm3k4W2pS2t4Uzr1rUV2po7pYzZz//YrsStraBM69a7J00dJTBm9ifTUXNw9VEyc3ZWyFSP4fclRtknOyXqNSjH6+7bcuhHLrMk70OvNhIR6M2Nud4wmC4O+XklGeh5eXq5Mm9UFuZOMQQNXk5Wlw9fXnRkzu5Ccks2IURswm61EFQ1g2tRObNx6md1Sb1n7NhVp26oCIydsJjlVi6eHmhkT23P87GN2HhCP6dSmIpXKRzBq2jaMJivRhQMY3q8hM346SGJKDp4aNd8Pbcmf2y9y/0kSLs4KJnzdhH1n7nPtnriKGvlZQ45eesTNRyKwGd67PttP3OJZfAauKheG9qjDb7sukqnVE+LvSeeG5Vm49YxoZS9ZCB9PV7aektiiJhU5euspSZlaR8/Vn1LPVeNPonmamsHz5EzcVS40rVSMDVKhZ5Py0dx8mUiaVkeIt4aIIG+O3xeTkFt+Upx9tx+J4K9YBPcSU8gxGIn080aukPEgMRWN0oWiQb5cehGHk1xGtaKFOCsBnZqFw7kgAZ0qkaGO5vJPwoK5mZiEAJQNCeBuSgoCUCY4kLup4selAwO4n5aKgECJt4BOlI8PMZnpKOQy/DVuvMrNQaNUIpcLDgFymlGPTbAR4enFq7xsQCBE88ZSLpfLyLWYCJSay8XaiwqQ+AAAIABJREFUBxHoqJzE2ge91YS/yp10s/h5X6Wo2/FwVpJnMyKCHxVZFh2uCgUWwYKAHR8XV55m/w/sxho2bBgVK1bE29ubK1euMGHCBF68eMEff/xR4PHJyeIvGRiYP0E3MDDwPe3P2zNhwgRGjhzp+LdWqyU8PJxh/RuRozWw+FfJHdWtBkULB7Bzzw3uPUhArXZh5BCxq2nh4sNifk65cFo2L4/JZGHRQtH62LZtRUqXDhOLOheIj3XoVIXoYkGi02r+QWw2O9VrRVOzjqgj2L/zOs+epOCuUfGltHoym638tvAwAB171iA8UmQz4mPT2SWdjL4e1QJnKd4/OSGLnVKCcr9RzR2PC4LAH9LzaNK+IkWKv2HOUhKyOCj1c302olm+C0tutp7dq0U2q9eQJu+BmaNbr5CToSMwzJt6BTiwYm6/4sH1FyicnWjdp2DR8dN7cTy/n4DCxYlGEutV0Ggz8xxMTa2/yNYBeHFfXCf4h3o7rLx/d5RSz5FJYnj+HVOuTgk6Dm7GjqWHmTdgOW4eKqo0zQ8ePT09ycvL+2+l28lJz+X83uuc2nqJO2cfOYpCXVTO1GxdkRaf1ad8vZL/smvt8fXnrJiynTvnxBWRu5crvca2ofWXDf6ysPX22Uf8NGY98U/F0MaKDUoxdF5vggpg/QRB4OyeG/w8YTPazDycFHJ6jGhJt6HN3otJeHj9BXOHriVJqpDoMrARvUe1zPd8nt6NY/aQNSQ8F4XKPYY2peewN8xndkYe80Zt5PoZ8fdq2L4ig6d3cqxGr55+xNzRm8jN1ovZO/O6U6WeKKJ/eOsVM4evJyNFi9rVhRGzOlOnWVmxSmL1OVZI4KloyWAmLepFYIg3j+/GM33kRtJTtbhrVIyf05XKtaLFAMFRm0hLycHNXcWEWZ2pUiuaU0fusWDabkmI7MeU+T3w8nFjylix+gGg95d16f1FHXZtvcqypcfExPJPCjF5Zmfu3onjhxl7MBotRET6MWN2V548Ecs8TSYrhYv4M2NGZ06decxyib2pVrUoo0c2Z+6iQ1y6+lxkVr5qQHR0EEPGbiAvz0RoiBfTv+/AH+vOcf6K+H4f9EV91K4ufDdnN3a7QJUKkfTqWIVvf9xNttZAcIAnY79uyrw/jxOXlIXGTcW3A5uyYvtFMSxQ5cyYLxuzZt9Vnsdn4KZ2YUSfBvy+4wIpmbn4errxVcfqLN5yFp3RTHS4P/UqFmXxNvFGrmGlaAxmK4euPMZJLuPzVlXZeuYO2XkGwv09qVwi3NFz1bZGaS49eUVyVi5+Hq5ULVGI7ZfEGIA2VUpy6v5ztAYTRQJ90LgpuRDzCmcnOY3LRbP3lsg+1S9VhEsv4jBI3Va5FjMJaVp83NQEeWm4GZeEi5Oc8hEhnH8uXueqS0BHAKpFhnE5Tjz/VQwP4XqCuF4uFxrI7eRkBKBccCB3CgQ6fjzKSEMmg0gvb55miesqL1cViXm5eKtUmLGRazYTovEgUScKkN8GOkHuGhJ1WtydnbFiR2c1E+SmIUWqhXhd+6BWKBBkNow2KwFqd9IkxsdbqSTbYsDLRYXWagAEfFUqsi163BTOmASTeJyLKGDWKP41Bv7fDnamTJlSIIvy9ly9epXKlSszYsQIx2PlypXD29ubzp07M2fOHHx9P+yMefdEKwjCR0++SqUSpfL9F8jfV8OSZSfI0RooHOFHr67VSUnV8rtUONn/83oEBnhw9Ng9rl1/gbOzEyNHiPk569ddICEhC19fd778qj4A69ecJzkpG39/DZ99IfY3HT9yjzs3X6FUKhyN5lmZOlYuE4Vynw1ogJekBdi54RJJ8Vn4+LnT44s6jue5fPERbDY7VWtFU+WtyoWVi4+IichVi1Ct3hsx5qVTj7h/Ixalypk+bwULAmz89QRWi43y1YtSoXp+BmTnyrPo84yi8LhpfsbHZrWxfYV4Muj4Vb0C76JfW8nrtK7wwUTbo9JdcY2mZfNpIN6dq8fvY7cLRJYMKfBi9u68eCC+2YuU/ntBgm+Pq2SrN+QZ//HXfmy+mtmdpJdpXNx3g4mdFvL5lM50HfnGKefl5UVCQsJ/3JGlzczj4r4bnN5+mZunHmC32R2fK1enBI171qJ2uyp/u86hoIl/msyqGTs5t1tctzgrFbTt14juI1ug8f64Ti87Tcvyyds4vkUE/N4BHvSf3pX6HQsWrWem5vDLhM2cl+oKIkuGMGrJp0S9EzJpMVvZsOgQW5aKbqKAUG9GL+5D2epv1qB2u51dK06zcvY+rBYbvkGejF3cO59Q+e6VZ8wZJoIVpcqZb6Z0oGkX8bnZrDbWLjnKZikYNLpsGN/91IfAUG8EQWD/xkssm70fq8VGeBF/Jv7Um/AiARj1ZhZO2cnpgyKz8Fqfo1Q5c3jndZbOFG3dhYr4M3lRL0IjfEVAM2UXJpOFsAhfpizoSWghX1b/dpIN0nu3aq1oxs/oiDbHwPD+K4l9noaLi4IxE9tSq34Jlsw7xH7Jbt6iTQUGj2zOzm1X+eN3EcBUqlKY7ye3Z//+2yz/XTyHVa1ahAnftuGPP8+wT3rN27WtSPdu1Rk/aTtPnon1Et+PbYPRbGG0VAdRpmQoY4Y144clh3gYk4SLsxPfjWjJk5dpLF0tnoNbNixDjcpFHBk6xYsG0q9nbaYsPUBWjp4gfw9GftGQ+auOk5ye6wgLXLzhNKmZefh7u/F1t9osWn8arc5IoSBvOjUuz9z1J0UtTfEwioT7snyf+LfVqX45HselcfdFMkpnBZ+3rMLqo9fQmyyUCPcnLMCbHedFMNOtfnkO3YghS2egkL8XRUN92X9dBDBvF3qWDg/AIti5FZuEq4sztUpEcOC2CIqblo3ixOMXWGw2yoUHkqDNJT1PT7CnO65qJfeTxLbyqGA/rsTG4ySTUbFQCJckoFMlMpTLcfEIQOVCIVyLT0RAENmdJInd+QDQKebvy6OMdBQyGSEeHrzIzhLXVUpnUvR5+Lq6orOaMNqshHt48kpaV70GOjIZ+Lu6kazPxcNFicluwWS3Olgc0XIusjtuzs5YsWKxvwE6ckDj4oLWYsDbxZUcqyhQ9lUpRVDj7ILBLrI8Xs5qtBYD7gpnBMu/dp7+t4OdwYMH0717948eExkZWeDj1auL65mnT58WCHZea3uSk5MJDn5Tg5Camvoe2/N35ur1547uq3HDW6BQyFm49AgGg5kypUJp1/oTcnL0/PKbKFzu06sW4WE+vHyRxmaJ7h4ypClubkpiX6axZZO0qhrWFLWrC3m5RpZJmTq9P69DkER3//nLcXR5JqKKBdGqvRiml5GWywbJ1fHVkCa4SneENy4/49JpMcyq34g3jeAPbr/i9GFxTdV/dHPHSd9mtfGnxA61710T/7dSjxNepnNU2uH3Hdok32uRm6Nnl2Qr7TnofeHx+cN3SX6VgYe3K00L0OJkpeVyeq9IQbf7ot57nwfx4nJKai1u0rV6gce8nouHxJP8u5knH5rXgXCFy/xz7Yir5ETT5Rr+8dd+bJyc5Hy7eiC/jl7HgZWn+HPyVh5ceco3P/YiKML/P2Y/FwSB53dfce3oXa4du8v9i0+wWW2Oz0eVj6Bux6rU71KdwEJ/DTQ/Nsmv0tk4bx9HN1zAbrMjk8lo3KMGfca3+0urv81m5+DqM6yatYu8bD0ymYxWn9fjs+/a417A+kwQBE5uv8JvE7eRm6XDSSGn29DmdBvW7D1HYWxMEvOGreXpXfHvpmHHynwzvXO+75uVlsuCUeu5dkq8gNVoWobhc3vgIYF0m83Oll9PsG7RYex2gfCiAXy7tA+RUkxEZqqWOSM3cOeyuJpq07smX41vjYtSgVFvZunUXRzfI75najcrw4iZnXF1U5L4KoNpw0X7uJNCzoCxrWjTvRpWq42ls/ayb7PIzNZsUJJRMzqiUrvw509H2SwZByrXjGLCrM7I5XKmj9vCBen5d+5dgy8GN+b+nTimf7uNnGw9Pn7uTJ3TjeAwb74dtZGb114ik0H/wY1p27EySxYe5pDkrmrbviL9v27Ezz8fdTiuOnSoRN9P6zDzhz1clazqA79uRLnyhRg8ch1p6bl4eboyc0pHrt+KZcVa8TnWq12cPt2rM276DpJScvDQqJg2ri37jt/j6BlRuPtZ1xp4eaqZOF/swapRsTAtGpbh2/l7MJqsFCscwOedqzPt10Pk6sTwwH5daznCAiNDfOjRshJzVh7DZLFRumgQNSv8f+y9dZyU9d7//5yOjdnuhgV26e4u6W4MRARpkBBQQEQwCDkoKkcRlU4lpVMp6W7Y7pqdjuv7x3UxsALWOed37vtx/95/8ZgdZmcX5nO9rtf7FQksXHtY/DevnYhCLWfDIfFnGdKpHocu3OV+ZgG+eg392tTkn7tPiaAoMRK1Wsm+86IDa1DrWqw/fgmL3UFSVAg+3hoOSsLkng2rsOnkZVxugbrlo8gylpKSV4S/XkuV2DD2XhEZrBdqVGDPldu4BYF65aK4npVLidVGXKAfLgTu5OTjp9cS7u/DhbRMNAoFlSNCOZOSjkwGtWIiOJOajgDUjn4MdGo8AXSqhId4VlfJocFczc1BLoO4gABuFeSjUSgI8vIipaQYX40GmQLyLWZCvbwpsJuwu93EGvx4aBRZnBiDgZTSIpRy0WmVYxGdVkanDafgItLblwzJlRWs15NnNeGrVmNx23EJLg/QUchkeKkUlDqtBGj0FElOrAAJ6BjUWkwukeXxU+kwOs34qDRY3Racrsf6278y/3awExQURFDQ3zsgz58XP/hPApknJz4+nrCwMPbt20fNmmL7sN1u58iRI3z44Yd/+fstXS7ebfXuVpukiuEcOHyNk6fvolIpmDz+BeRyGZ9/eZDiYgvxccH061sft1tg8eKfcDrdNGqUSJOmFcScnUU/4XK5adg4kcbSquqb5YcpKjQRHRtIr/7ixf36lTT27BQ/XKPefNyV8/Wn+7FaHCRVjaJVB1H463K5Wb5IBC5d+tQlJl7UdQiCwNeLRUtl2241Saj4+Pe1b9t5Uu+LAYJ9Xy3bDr5mmZhCW7dZRZJrlhVy7lh1QuqoCnuK1REEgU1SEmuX52hx9qw/idPholKtWCo+p2n8/LGblBSa8A/xpVbz5+fguFxuLhwTD+j6bZ8WQT9rUu+IK87Yin+97sEgrb3yM//96yS1RsW4pUMoXyOOZZO+5+TO85zdf4VeY15ApxUvrP/pNZYgCKTfyebqiVtcOn6DcweuUJBdFmDFV4mmea/6NOtRl8jyf84w8HuTm1bAukU72bPqOE6HCKTqtavGq7N6EZcc+Yd//+qpOyx7ay13L4uahHJVoxm7cDAVa8U/+/tlFPLp1LWclpKEy1WNZsLiwZT7TQO62+1m24qjrJgvBgn6+OkZ80E/mnYu22Z+5tA1Fk9aS2GuEbVGxeszu9Nx8GOhcn52MR9PXMPFE2JAX+setRk1p6dnbXXx5B0+nLCGwrxSdF5qxr3fm+adxHVs2v1c3peycOQKOUMmtqfXkKbIZDJOHbnBx9M2Umq04h/kzduLBlK5ZiwFeUben7Seq+cfIpPJGPxGSwYMa47ZZGPWhDWckVxffV5uzJBRbcjJLGbWm2t5eC8XlUrBuOmdadu5Bjt/OMenC8S1emKlcN79sC9mi50xw1aQkVaITqdm2uzuJFeJ4q1Ja7kk6YHeGN2G1m2rMGPGRi5ceCj2Xo1sQ4OG5Rk3cTUPH+aJ4uRpXVAoFYydtAaLxU5MdABzZ/Zk9cZT/LRfYkR61qVh/XKMf3sDxlIrEWEGZk3qwrLvjnDhqtizNWl4Gx5mFLD4a3FN37VtNRITQpn5yU4RHFSPpX2zZGYu3Sm6thLD6dKqKnO+/Am7w0XVxAha1CvPB9/sFzN1qsURGe7Plz+IesGeLaqRll/MqQtiy/nwrg3ZcOQiuUUmQv29aV+/Est3Ssnt1cuRW2Li17vpaFVK+raozqoj50UQVD4Sq9PJqduiMLlj7UqenqvmyfFcy8whp8REmJ8PUUEGjt58gFwObaomsvuyKFJuWjGWMw/TsTicVAwLosBiIccoJh576TVcyxLbyuOC/DmXloFSISc5PISzaRnIZVA1MkxaXQlUiwjlQqakXQwN5kqOCG7KBQVyLTcXlUJOuMGHu0UFeKlUeEuN5v46HXbBSanNToSPuIJyCgJxBj8eSEAnWhIjq+QKvDRK8qxmArU6ihwWXILbA3TE7Bwd+TYzfhoNpU4rbtweoKOSy9Ao5JicNgK1egrtItDx06gocZjxU2splYCOQaXF6BS1PBa3+Fg5nxBO/+EJ8vT81zQ7J06c4OTJk7Rs2RKDwcCZM2eYMGECXbt2JSbm8cWyUqVKzJ8/nx49eiCTyRg/fjzz5s0jMTGRxMRE5s2bh16vZ+DAgX/5PeTmlRITHcarLzahuMTCUsl6Prh/Q2Jjgjh37gF7910RBcgTXkClUrBz5wWuXElDq1UxZmw7ZDIZe3+6xKWLYsv56LGiePr2zUx2SCzG2Dc7oFIpcLncfLpQ1NK061SdytXEg/j65TQOSM3HIyc9Lszcu+089+9k4+2rY9DrLTzv+9SRm1w9/xC1Rlmm/8puc7BKsrz3H9aiTOpx6r0cDksg68XfsDpWi93D6vQb3vIpVufqrw+4fTkNtUb5TC2O2+1mj6Qp6jjo+QGBRyXmp2mnGs9tpwZRf2MqsaD30VK+2p9bSz0KBvy9dN3nTWwlESA9uJb+hyvRvzudhrYkuX55vpi6hgtHrrFuwXauWsU7vGM7T9GlfXeCIwP+4FX+3BRmF3P/Whp3Lz3k2onbXD15m+I8Y5nnaL00VG+WRJ02VandpiqR5f46M/qsycsoZMMnu9n97VEcdicANVsk8eJb3Uj+Ey65guxiVszZwv714kXO26Dnpend6PRys2euTt1uN7u+O86KuT9gKbWiVCsZOLEDfUY9XWGSnZrPoomruSRFFNRpkcT4BQMJfIL9tFntrJi3nW2SGSGuUjhvLX2J2CduKM4cvs7Cyesozjeh1asZ+W4P2kr6M5fLzfrPD7J6qbgai6sQxoylg4lKCAHg2J7LLJ6xGYvJhn+QD28t7E+1egm4XG5WLdvPWummIql6DG8vGkBgiC/XL6Xy/pvryMspQe+tYeq8PtRvXpGU+7nMnriW9JR8NBoVE2Z2o+ULVblw5j5zp23EWGwhINCbmR/3IzEpnM8W/sSPUi5O8zbJvDmjK5cvpPD+rC2YSm2EhhmY82FfFEo5o99YSWZGEXq9mrdn9SA80o/Ro78lPa1QfOztbnj76hg19juKiswEBnrz/pzeXL2RwdIvRL1PzeoxTJnQkY+W7OacJJYe90YbvLw1TJq1CYfTReWK4UwY0ZY5n+zkYVoBep2aWRM7sefoNQ78LK56Xh/YBIvdycdfiSx5xxaViY8O5L3PdyMI0KxOOapUjGT+12KtRbNaCcRGBT4OC2yajMXlYv1+8fx5tUt9fr5ynxspOeg0Kl7r0sCTihwf5k+tStF8u0/M9+raMJlLD7O4nyWyPZ0bJLPyoHiuN60cT2pBEfdzCvHRqWlepRybT4mArl2NRE7cSaHEYiMu2A8vnYYz99KeKvRslVyOI3fu43S5qRYdxsOCIoqkmge3XOBuXgH+eh1B3nquZGajUyqJDfbnYmYWKrmcxNAgLmRkoZTLSAwN4lJ2Ngq5jHJBgVzPy0UllxPtb+BWfj5apZIAbx0Pi4swqDUolHKyTSaCvfQYnTYsTqfkrirCDcT7+XG/RAQ6Ub6+pJUWo1MqUSrkFNmsBOv05NpEJ9UjoKOQyfCRsnMCJSeVGBIoAh2tXIFMLmBx2QnUelFoNyFDwEetpNRpxV8jsjgg4KPUUOq0YFBpMEtAx0up4oHxf5lAWaPRsH79et59911sNhuxsbEMGzaMKVOmlHnezZs3y9D8U6ZMwWKxMHLkSE+o4N69e/9yxs6jmTy2PTqtmk8+3UlRsZm42CAG9m2AzeZg8RKRVenapRbJyZEUFZk9e+ohQ5oREuKL0WhhubSPH/xyE0LDDLjdAksXiv0vLdtW9rSX79lxgds3MtF7aRg68lFQoMCyBWL+TrsuNaiQLF54zSYb30qvO2hYc3wlet3ldLFiicjqdB/UkKDQxxbmXRvPkJddTFCogc79yq6a1iw7KMapt04msXLZO+s9G89QUmgiLDqAph2eDgHc8rW4P2/ds04Za/ujuXD8Nlmp+Xj5amn6DOEyiEDsxB4R0DXtUvOZz3k0FyU7cZUG5Z95gfvtOB1ODysTGvXXwU5MxQjkchklBaUUZBcTGPbnu5v+ysRXieaDHVM4seMcm/6xm2uHRYB4dPtJBu+ZQMU6CSRUiSY8IZSIhBAiEkIIighA+RvhrsvpojC7mIKsIgqyiyjIKiY3rYAH19J4cC3tKWADoNKoqFg7nsoNE6nVsgrJDRP/sGfsr0x2Sj4bl+xmz6rjHpBTtXEFXprWnaqNn10X8uQ47E62/fMgqz/egbnUKmbtDGrMK2/3eK7gPPV2FksmrebqKZFdqVgrjgmLBnvA66MRBIGf1pzgn3O2YjHZ0OjUvPZONzq92KQMsL13LZ2Pxn7Pw1viYdptSDOGTOuMRqv2vMdvF+5ms9Q/l5AUwbQngExhnpGP31zHeUnw27ZnHUbO7o5Wp8bpcLFi4W62SgaAKnXimbawPwEhvhQXmvjwrQ2c+0UEYV0HNGDY5A4olQp2bjzD5x/sxOkU9TkzFw8kKi6IXw7f4OOZWzCbbISEGZi1UAwK/HH9Kb5YvAe3S6BCcgSzPu6HWqNk+vg1XJCqKl4Z3oL+LzUuI0SuUi2amfN6c/tWFnPf/QGzyUZYuB9z5/ehsNDEmNHfYTRaCQ01MPf93tx/kMfMOVtxOFyULx/KnHd7snHzGTZLmqwO7aoyoG8Dps7axMPUfHQ6FbOmduXOg1wWfSmCluaNKtC3W20mv7+FgkITwYHezJzQieVrj3PpejpKpZwpw9tx5moKe45Jq62e9THbHXy6RtIPtq2OUqXgs3VSoXDraticLr7bIYK6lzrX5eqDLM5cT/WEBW46con0vGL8fXQMbFebz7edwOF0Ub1cOKFBvmw6Jp5TA1vVYN+FO+QUlRJi8KJR1XhWHXlU/1CJX++lkV0sfq1KbDjbfxXfY9e6Sey5fBurw0lyVAhWp5Mradn4aNVUiwsvU+i5/8YdBAHqxkdxJTMbs91B+ZBAimxWcktMhPl4o1YpuJ2bj69WQ7DBm+s5uehVSiL9DVzNzkGjUBATZOBaTi4ahYJIf19u5uehUyoJ8vHibmEh3moVeq3I4gRqdThwU2CxEOEjuqvsbhdxfn48MBYiAHES0JEhEObjTbqpBC+VCkEmiC3lUv0DCERInVcquRydSkmJw0qQTk+B5LQK1nmRaytFp1Ai4MLudhIkZesoZKBTKTC7bARo9JQ4RXDkrVRjdlnxV2spdZmRATqlEqvbRpTO//cPk+fMfw3s1KpVi5MnT/7h8x65QR6NTCZj9uzZzJ49+19+D+1bV6ZWjVjOXXjInv0igzN5nMjgrFj5M+kZkgBZWgd9+eVBjEYr5cuH0kNq+V7xzyMUFZmJjQuil6Rl2bv7Itevim6u10eJ7eXGEgsrJPDy8rDm+AeIoOHArovcupaB3kvNkCdYmo3fHqcwv5SI6AC69HnsWtq//QIp93LxMejoO+SxiNlqtrNOKiAcOLxFmQvZwzvZHJGYo8FSm/qjcTpcHjDT+xnC44yHeZzcJ6Z8dn/i+z05e6RC1FY96jzXbn7+2E3MRiuBoQaS6zx7FfFoLknN1tUa/fFFEsQQOLdbQKVW4h/65/uXHo1GpyaiXChpt7O4dzn1PwZ2QPz/26hLbRp1qY1zdC5LP7uFIcwbWaGMm7/e87SD/6vfI6JcCHHJ0STVK0flhhUoXyP23wpuHk3G/RzWL97F/rUnPLqfKg0TGfxWV6o3rfSHLJkgCJzee5nl72wg/Z7YeZNYI5bRHw187srK6XCx8bO9rF28G4fNiVav4ZXpXek8pPlTjGFeZhFLpqzj10Ni+m/leglMXDiIiPjHVn+3282PK46y4oPtOO0u/IN9mLhwIHVaJD3+OR/k8cG4VdyWND5dXmzEa9O7eH6nF0/e4cOJ4tpLo1MxanYP2kpnRG5mEfMnruX6hRQAeg9txivjRSfXratpzJ2wlpzMIjRaFeNmdadV5xrYbQ4Wz/6BvZLGrnHrZCbO6YFOr+bbzw+yRop4qForlrc/7IveW8viudvYs00KHOxYjfHTu5CRXsDskRvISC9Eq1Px1uwe1G1Ynk8+2sXu7eJz23eqzpg3X2DX9gt8/pkIfqpWi2b2e704fvwWS5bsweVyk5wcybtzerJj5wVWficywY0bJTJhXHsWLNnDL5J7ctgrzahePYaxU9aIOTuB3sx9pwc//HSRXfvFIMP+PepSNTmSie+K1vKE2CDeHN6G+cv2iOGBeg0zxnZg/a5znLsqpS8PacmZqykcOi2CyeH9mnA7NZcDp8TzYlivRly6k8HJyw+Qy2SM7NuE3aeuczs1D71WxYiejfl65ymKSi1EBhvo2DCJz374GUGAptUSsLud7PlVdGC92LYOm45fwmixER/qT7noYLacEFmb3o2rsffSLYrNVmKD/Qnz9+HA5TvIZTK61kti27nruNwCdRKiyCguIb2whCBvPbGh/hy//RC5HFokJXh6rpokxnLyQRoOV9nm8pgAA3ani5RCsZVcq1VxJ08EPf5eOm7l5eOlVhPsq+dWXj56lYpAHz13Cwvx0ajx0qhJKS7GX6sFJWSbSgn18sLosGN2OIg2GEg3FeMS3MT7B3C/pAABiPcTe7EUMhmBXnqyzKUYNBqsbic2qbwzUwI6j/6sVShQKmSUOq2E6B9n6wTpvMizmfAZCHrJAAAgAElEQVRSqnAIdikNWczWUcplaBRgddkJ1OgpdpqQA1qFCovLhr9GS6nTjBxQK+TY3Hb8VFqyS/J+90x53vzXc3b+mzP0xabY7U4WLxWZkm6dalI5OZKU1HzWPRIgj2qDt5eWy5dT2Stl6oyT+qBu38pixzbxMBozvj0qlQJTqZWvPxfZnxdfbUpQsHhXumrFMUqKLcTGB9FFqm2wWux8I62dBrzajIAgEQDl5ZSwWbKUvza2ncdSbrM6+F4CTP2HNsf7CXfM9vWnKCowER4VQLvuZXNp1i8/jCAING5bmYRKZfVQR3ddJCejCL9Ab9r2ejqleOeqXxAEgTrNKxJT/ulVh7HIzAlJJ9Gu3/NFxyeltNZGHar/bsKuIAjckO5AK9f/c3k5xkITAL4B3n85vffRJNcvT9rtLE7vvUTdP6kT+lcnPFLUxlRvXYEF8xZx/vA1Mu5mk3k/h4x7OWTey8HhcHr6pp4cbz89AaF+BIT5ERBmIDDCn5iKEcRXjiK6YsS/LSDxeXPvciobluzm6A+/etxbNZonMXBy52fWNDxrHt7M4Mu3N3BOAiL+Ib68MqM7bQc0eu6/4/Vf7/GPSWt4IKU312mZzOiPBngqGh6NIAgc3HyGL2ZtprTYgkqj5JWpnek2tGyqd25GIQsnruGixMbUb1OZ8R8P8DCYgiBwYOtZls0SWSFvg47xH/SlcfvHurp1yw6wRmJIYhNDmbZkMLGJ4mfl12M3+XjKBkqKzHj5aJk4rzeN2lRGEAR2bzrDsvk7cNidRMQE8vaigSRUDCMns4j33lzH7avpyOUyXh7dhr6vNsVUamXWhLWcPi5e3Lv1q8/rE9pTXGRm8vCV3LgiPn/omDb0GtSQX47e5KM5P2Ix2wkN92POR33xC/RmythVXLkkanGGjWpN1551+HTJXnZJycztO1RjzPj2rPj6CJs3iwxJ69bJjB3XniVL93o6rvr0rkf3brWY/PZG7t7LQaVSMG1SJwAmvLUOu8NF+YQQ3p7cmSX/PMC5S+Iqa+ywVrgFmPHhjwgC1KsZx4Duj63loUE+TB3ZniXfHeZ+aj56rYppb7Rn/U/nuHwrA5VSwZtDWrH75+tcuJmOUiFn/Ist2Hb0Cjcf5KBRKxnTvynf/fQrWflGAnz1vNK5Hp9tFcMCK8WEUC0xkuU7RGdo50bJ3M3K59rDbLQqJQPb1OL7A2exO8VUZC8vDXvP30Iuk9GvWXW2nLqC1eEkKSoEhUIu1j8oFbxQqyJbfxV/N00rxXE5PZtCk4VIf18M3lp+fZCOWiGnQWIMB26INzUtKsVz5PYD3IJAzZgIrufkYnE4SAwJJM9kptAsFnc6cJNaVEyglx61SsGDQlHwrNOouF9YiEGnQatWkVJcTIBOBwoZmaWlBHvpsbgdGC12In18ybWYsLtcxPmLbeUCAvH+/h6gE2swcL+kELVCgY/UYh6g1WF0WnG4XUQ8IUAOldgdvUqFgBuzy06o3ptcmwiEArSPWsxFlkZA8IQIqhUyFDIBm9tJoFZPscOEQiZDLRdBTYBG1OooZKCUy3AIDvzUWkxOM2r534Mt/6fBjo+PljUbTpKaXkCAvxevDWkuio3/sRen0029ugk0bVIRl8vNEmml1bFjDZKTI8VV1Sd7EARo2TqZGpLgd9XK4xQVmoiKDqC7xPSkpeSzTdqVDx/XDqXEnmxefYL8XCOhEX50f6K9/PsvDmGzOahcPYZGLR8LeXesP01edgnBYQa69H+8pjKbbGyUnFwDR7Qso1XISMnniKTV6S91bD0aQRA8dvKuLzV+6s7farGzV3rfXZ6Tm3Ns5wUcNidxlcIpV/nZwlO3280pSZzYsP3vA4mc1AJPLkpC8p9zVj2yjOu8//4FvmnX2uxddZzj284y4oMBv6sp+nfNk83ngeH+tBnw9O/YYXciuN1lHpPJ5X+YSfOfGEEQuHT8JhuW7Obsgauex+u2qcKAyV1I/pNhjkV5RlZ/vJ2dK4/idrlRqZX0GNGGfhM6PLfTrLTYzDfv/8ju748jCAK+Ad4Mn9OLlr3qPcUe5WcV84+31nFaKtdMrB7DpE8GE5NYVnh9+MezfDZjE6UlFjQ6NcPe7lZGhGwqsfDpzC0clhxTVesnMHnRQE+IYH52MR9PWsdFqUW8Xe+6vDGzG1qdGpfTxapPD7BOipgonxzB9E8GER4dgNVi59O529gvvW6DFpWY9H5vvH11nD91lw+mbqC40IyPQce0D/tSq2F5Ht7L4d0315EudWWNnd6Ftp1rcO1SKu9N2UBBfinevlqmz+tNzboJrF5xjO8k9qd67TjentuL3JwSRg/9mpzsEvReGma824OKSREeIbJMBsNGtKJDp+rMnr2FM1LA4StDmtKxY3WmTtvA9RsZKBRyxo1tR/lyoYyasIqCQhP+fnrem9mD85dS+UpqnG9UvxyvvdyMdz78kZS0AnQ6FTPf7MLZyw/ZuEPKqWlXjdrVYpgyfyt2u5MKCaEMH9yUuct+Iq/QRJC/N5Nfb8PSVUdIzSrEx0vDpFfb8PXWEzzMFBmgCYNb8M8fTpCZV4K/j47hvRuzdNMxjGYbMWH+dG5amU82HhHLQSvH4uutY/0hEdgNbFOTo1fuk5pbhJ+Xlm5NqvDN3jO4BYGGSbEU22z8cuMhGpWCno2qsv6Xix6XVX6pmbvpBZ76hx/PikCnbbVEjt96IK6kQgNxyQSuZog1EZWjQzly+wHIoEXFeA5J9Q8NEqI5k5qO0+2mSngo9wsKMNkdxAf6U2gTm8sjDb5Y3U4ySoyE+njhkgmkl5QQ7K3HhUBWaSmh3l5YXE6KzTYifH0osJmxOJ3EGvxIN5bgEFyUCwjgbnEBIJDg78+9kkIAonx9eWgUdTkalZwCm4VgvZ58qxk3ogA53eO0Ess9fdRqbG4HTsFFmJc3OVax3NOgEdOQ/dQajFJ2zqPVlVahQJA5cQguD9BRyeTIZQJ2t8MDdFRyOTKZG6fgxE+lweQ0o1XIUSrLbnv+7PyfBjtp6QWslhic0SNa4+2l4cDBq5y/8FBsIB8jCpC3bjnD/Xu5+PhqGSpVPezfe5lr0qpq+Bvi+in1YT5bpcC+N8a1QyWBjuVL9+FyuanfKJE6EltRkFfKhu/E/f2ro1qjltJ7H9zNYa8k5H1tfLvHB6/Ryjpp3fTiG63KAJNta09SUmQmMjaQVp3KWrU3fnVEDOZqVpHyyWW1DBd+ucO96xlodCo6DXialTm64wKlxRbCogOo/Rz31IFHd36/U9R560IKhblG9D5aqvwBW3ProhiaFZ8ciVr759YuFqm+QPdEmelfnRrNk/D201OYU8LVk7f/NDvxr8yfsZ7/N0DNb8fpcHJ82zm2LNvLrXMPAJDLZTTtXpc+416gfLVnu+9+O3argx+XH2Dt4l2YjSJAbdihOsPe7UOEpHv57QiCwPHt5/n87Q2eSom2/Rvy2swe+AZ4P/Xc/ZtOs3z2FkqLLSjVCgZN6EDvEa3L3AAYi8x89vZGjkhgo2INEQxFPfEerp97wEcT1pCVWoBcIWfw+Hb0HdHKA4LPHLnBgsnrKSkURcqj3+1Ba4lRLcg18tHkdVyULOed+tfn9bc6odaoSHuQx9wJa3hwJxu5XMYrY9vRe4jYD7fu6yN89+kB3G6B8kkRvL2wP2GR/hw7cI2Fs7diMdsJCTMwc0F/EpMi2P3DOT6VKh7iyoUwe0F//AK8mDtjE8clu3m3PnUZPrYtvxy7xcdSKGBkdABzPuyL0+lm1PBvyMoqFsHPzG5ERwcyduz3pDzMR6NRMvWtLkRFBzBqzPfk5Jbg46Nl9sweFBstjJuyBpvNSUJcMO++3Z3v159gjwSC+3SvTfMmFZnwzgaKisVV1pypXVn9wxmOSeuu4S82RaGUM2vxDjFFuHaCaC1fsA2LzUFCdBCv92/EvC/3UGS0EBbky6hBzVj0/SEKis2EBvowvE9jFq8+TInJSlSoH33b12TBmkPYnS6qJIRRo2Ikn20RV24d6lciv9TCnjPiqurVjvXZdPwSBUYz4QE+NKmawEpJmNyudgWuZ+TyUBIft6v1OBW5ZZVyXEvPIavISJCPnuTY0Mf1DzUr8tOV26LgOCaMHJOJzCIjgd56IgN9OXk/FaVcRsPysR6gU7bQM4IrmdnYXS4qhQWTWlxMqb1sc3m0ny/FDivFVhuRBl+KHTaMNhtRBl/yrRbMDgexfn6km8QW8wQ/f+4XF+JGoHxAIHeK80FidO5J66pgL2/SSkvwUasR5ALF9rK6nEgfceUll4GfVkeeVO5pdInlno+AjlwGXirRPh7wRIt5oNSPJaYh2xEEN4FaHcUOExq5AjcunILbA3TUcgUCTlyCWwQ6LotUGWHH/D/Fev6/aT5bfhCHw0Xd2vG0bFaJUpOVz7+URMEDGxIR7kd+finffiveqQx7rSUGg57SUiv/lO7YBr/cxLOq+vwfez1JyfWkzqfzZ+5z8vhtMSdnzGO9zPfLD2G1OKhUJdLTfwXwjUSHN26VRPITTqTN3/2MsdhCTEIwrZ+ocTCbbGyWnCMDh7cqo7nJzylhv7Tz7ze8xVM//xaJDWrfu54nO+TJ2SX193QY0OCZTEdWSj7XpOK/lr9T6fCI1anTIukPL953Lom6hmd1HD1vHiUfP08v9GdGpVbSqHMt9q46zp7vj/9/Cnb+JyUoPzlFeUZ2rzzCjhWHPQJwtVZFu0FN6DW6HeFxf67iQhAEjmw9wzdzt5KdIrrmylWN5vU5faje9PkRBBn3c1g2fQNnpTVXZLkQxn40kGrPEDznZhSy9K31nJFWLBWqxzBx0aAyLiqAs0dvsHjSWvKzipEr5Awa355+o9p4Pjcup4u1n+5n7WdiTENolD9TPxlEUq04QGTaVi76iS0SI5qQFMG0JYOIkjRA53+5w0dT1lOUX4pWr2bcnB60kCznx/ZeYbEkKvYP9Oatj/tRvW4CpSUWFryzhZMSQGnXvRajpnVGqZTz1T/2slESNVerHceMD/ui99KwZN52dm0VP9tNWiUxaVZ3igpNjH/9G+7fzUGplDNmckfad67Bd18fYbWUwVO7XgIz3u3BpUupfDB3GxaLWAfx3rzeFBaZGTlqJcYSK0FBPrw3txd5+aWMGfc9VquDqKgA5s7pxdGfb/GVVBvToG4C40a1Zf6iXVy8koZCLmPsG23wNeiYMHMjdruTxIQQpoxpz8ef7+Pm3WzUKgVTR7fn8s0Mtv4kAogeL9QgNjqQdxbvwC0I1K0aQ4eWlXln6S7sDieV4kPp26EWc/+5R6yPiAmmZ5tqzP9mH3ZPhk48C9eI4YdNqifg463h+72iYHpg25r8eiudm6m5aNVKhnSox8p9ZzDbHFSIDCI+MpANx6S29iZVOHL1PrklJkL9vKmdGMUmKRW5c+1KHLvxgCKzleggA6H+Phy5fh+FXEaHmhXZcUGsf6hfPpqbOXkUmixE+PngrddwMS0LnUpJtZhwjt55gAA0TYzlmJSKXC8uil9T0sVuq8gwrufmYne5qBASxMOiIqxOsa08wyS2mMcH+JFhKsXqdBLv70+qUQQ35QIDuFdcgFsQKO8vtpULCCQGBnK7SAQ6sX5+3C8pRCVX4KvTkGkW05Itbgc2h6PMuirS25d0qdxTr1JRaLNIlnMzgpSQnGM1opTL0SrF7JxAje5xdo7E8vioVJ6QQBHomNHKlTgFp1gFIQEdjUKBS3AgIEhAx4xeocKJmKQco/t71Tr/p8HOxcup6PXejB/VFplMxjcrj1FQYCIqKoB+fcS10pdfHsRstlOpUjgdOoog4/uVxyksMBEdE0DP3qJ4+NQvdzhz8i5KpZzhY0Rrt8vl5st/iHqgzj1rEyPVP6Tcz+UnqQB02LjH7M3ViymcPHpTzN4Y9RgYlRSZ+WG1CDxeGlW2A2j72pMYiy1ExgXRomNZJ9UP3/2M0+Gicu04KkuH9aNJvZvDr0dvIpPJ6P7K083j969ncPNiKgqlnHa9n13r8MhKXq1hYhn77m/n3BHxEK/TKvm5z3k0KZITJj7pj7NYHo1Cumt3udx/8Mzfn05DmrN31XEObTxJ/4kdia7w7Lynf9c8ucb6nzS3zj9g+1cHObz5NA6b6KzyD/Gl45DmdBna8pkt7s+bi8du8PWcLdw6/wCAoHA/Xp7RndZ9GzxXl2Oz2Nn46V42fLoXh82JUq2k35h29B37dDig2+3mpzUn+GruD1hKbSjVCl6c2JFeI8oCf4vJxlfv/8iuVWLOSmRCMJOXvFgmEyozJZ+PJ67h+jnx4tOyWy1GvdvDkxyd8TCfDyeu4dYlMfun64uNGTq1E2qNEpfTxerPDrDuS1EfF1chjOmLBxCdEILD4eTrRXv4QfreVWrFMW1BPwKDfbl3K4v3Jq4lM7UAlUrByGmd6dCrDkWFJuZP38QFaZXUa3Ajho5pQ2GBiSkjvuX65TRkMnhpREsGDGnK2dP3mP/OFoxGK/4BXsyc30dke6Zt5ISk8enVrz6vvdGKDetO8s3XRxAEqFEzlnfe7cHRozdZKt2sVawYzpz3erH/4DVP9UPNGrFMf6sLX3x9mH0HRfamV7fadOpQnTdnbCA9swgvvZqZU7tw816Ox3HVqF45BvdpwPQPfiQnz4jBV8fMCZ3YuPMsJ85JIYQvNievxMSiFeKNZqcWlYmPCWTOMtFa3rhWAnWqxvLe8j1ixk6VGGolR/PhtwdEYFMjgdBgX778QTwjuzevQlahkV0nryOXyXitSwO2n7hGRr645urdohrLd50UyzelsMCffr2JXCZjQKsabD15lVKrnYSwACKCDOw8J55fPRtUYee5G1gdTipFBINS5rGTt6hSju3nxec1T07g9P1UzxrL6nJyMzsPg05DXHCAp+eqXkK0B+g8WehZKyaC8xmZuAWBymEh3MjLw+l2Uyk0iDuF+ThcbioEBXK3uBCn201iUCB3CkVwUyEokJuFooA3MSCQ24X5CAiUCwzgdlE+MhlE+vry0FgkrauU5FnMBOv1FNktYjCgxOKAQLi3D+nmEjRyBSqlnBKHlRCdl6fTSuy/MqKWK1AowOS0EaTVUyiVe/pptBQ5LBjUak9IYIAEdPQKFTa3nUeVEUanGZ1CiV0QHzOo1JhcZryVauyCCJL0CiXp5pzfOXGeP/+nwQ7AiwMaEhnhz63bWfwoiY3HjWmHWq3k4sUUDuy/6hEly+UyHj7I5YctItU5coy4qnI4XHwhgZqefesTFS3mpezdeZF7d3Lw8dHy4tDHAX9fS1R1oxaVqCIVgAqCwMrPxJyfdp1reHqxQGR1zCYb5SqG0ajVY4eIxWxjs5SPM+D1ssJLk9HKLqmaoc/QsuGCAD9KK7QGbZIJf0Y2zZ6Np6WvV36u9feIVOzXvOvzreTGQhO3pYtDzSZ/zJY8CgeMSvzzuS9aqdvKav579OajqVgrngYdanBy9wX+MeF7Ptw+6W8Lnv/M/LcSlJ81VpONw1tOs3PFYW5feNwzV7F2PN1eb03T7nX+0krt3tU0vnlvC2ckVk/npaH3mPb0Gtn2d8XTp/df4fMZG8h6KB7YtVokMXJePyKfsebKuJ/LJ5PXcvmkuBapVCuO8QsGEPsbkHrl9D0WTlxNlsQqdXmlKa++1dnzPn4rQtZ7axn9Xk9adqvleY2DP57j01lbsJjseBt0TPygLw2lpvP8nBI+eHMdV34V1xId+tZj+LTOaLQqsjMKmTdpHTclF1fvIU0ZMrYtCqWC/dvPs3TudmxWByERfry9oD8VKkdy82o6701eT252MVqdmokzu9G8XRWuXEhh7tQNFBaYxD6s93pSp1F5Nq4+wYrPxWiJiskRzJzfB5vNydjXvyHlQR4qtYLxkzvSrFUyH8zbxuGDokW6S7daDB/ZiuVfHuJHqSKiZcskxk1oz7JlB9gjGQ+6dKrB4EGNmDl3K1evZ4h5OSPbEhnpz5jJayg12QgLNTBnejc27TjLHomJ69utNrWqxTJx9kYsVgcxkQFMHdmeRV/v586DXDRqJdNGvcCh07c5dFIEZK/1a0Sh0czS1SJz1KN1NbR6NZ+sOgxAp6bJaLQqPt8knl89Wlal0GRl40GRIXoyQ0erVjKsS0NW7jlDidlGVLCBZjXKsXyXeC62qlme7CIjZ++mo1Ep6NeiBquPXMDhclE9LhyUMo5dv49KoaB7/WQ2n7qCyy1Qu1wkuaUmHmYX4avTUDMhkp8uie+/XbVEDty4K+XmhJJpLBUDAn29MXhpxSRkpYIq0WH8cl9ksRs8AXSeLPSsERnOhSeSkK/m5uAWBJJCg7mel4sAYomn1Fwu9lyJn5sKgYHcKhCBTnyAP3eLClDJ5QR66aR1lQa3TKDQZiXMS8zAcQtuonwMpElAJ9TLm0yzEb1SiSATMDltkgBZBDohej25tlL0ShVOQey8CtZ6UWAvlbJzNFIVhBajS2R5/DUaShwigLG4pM4rjZpSpxkvpQarxPz4qlSYXRZ8VGps0mM6uQK720649n+Z9fx/wkRF+tOvVz3cblGU7HYLtGyRRO1acTidLpY+YmU616RChXAEQeCzf4j6m0ZNKlC3XgIAP24+Q1pqAX7+XgyUWBKzycZKadU16NVmnpycy+cfSuyNjCGjHlvNz528y6WzD1CpFAwa9rhuobjQxDYpsG/wG63KXHx3rDtFSZGZiJhAWv4mH2f3htOYS23ElAuhbvOyIMNYbGb/VhGwdX/5aVbHbnNyUFp/te/7dDUEQNrdbO5dTUehlNP4Gdk8j+bCz7cQBIGYCmEEhf++pdthd5L5QPywRv+FFF+N7t9X5Dlifj8uHL3O5V9usW35QbqPaPPHf+lvzpNg5z8VZvh7IwgC966ksmfVcQ6sO4FJcn2p1Eqadq9D12GtqFQn4S+9ZlZKHqs+3M6BDScRBAGFUk7Hl5sx8M3O+Ic8nxHKfJjHP2dt8tSEBIb7MXxOb5p0froF3eV0sfWrw3z/8S7sNgcanZpXpnamy5BmZQC/3erg+4W72bz8EIIgEBzhx4QFA6nZ5PEarKTQxKfvbOaYFM1QpW48kxYNIFQKeDQZrSx79wcOSmCgSp14Ji/sT0iEeOD+euwmC97aSHGBCZ1ezdgn1lanjt7g42miANrbV8ek93vRoEUSdpuDT+ftYPdm8TNYu1F5ps7vg6+fnt1bz/LZR7tw2J1ExgQyc0F/YhOC2bbhNF8sEi3g8eVDmPlxPwKCfJg/ayuHpWiI9p1rMGZSBy5deMj7s7ZSarQSGOTD7Pm9CQjyYcKY77l9KwuFQs6Y8e1o1iKJd97ezDlJh/Xq0Oa80KEa02ds4uo10dk16o02VKsWzeg3V5OdU4K3t4bZ07uTkVXElHc24nILVEmKZMr49nz82T4uXRNXWeOHt8GNwLQPfsDtFqhVJZpX+jdi1uLt5BaU4m/QM2NMB77eJLaWq5QKJr3WmmPn7nLsrCj4Ht63MbfT8thyWHRyDulenztpeRz9WQRTw3o25OS1h1y8LaYKj+rdhPWHLpApMTgD29bmi+0nsDtdVI4LJT4ykNVSgWevJlU5fTuVlNwiDF5aOtSr5AkLbJIcR0axkbup+XhpVLSrWZENJ8T30LxyPFfSc8gzmgg1eBMT7Mfh6/eQy2S0q/44FbleuWiuZeVgtNqIDfTDLYOb2Xn4ajXEBvvza0o6SpmMGtGPe67qSUBHAOpER/BrulT/EBnOhazMpwo9k0OCuSYBnaQnmssTpSoImQyiDQbuFxeiVSjx1qnIMpcSoNVhcjmwOp1E+vh41lWPgI5MBoE6PdmWUnzVGqxuBw6X2HmVbRU1PEF6HXk2E94qNVa3aCkP0XmRL1VBaJVKqQpC58nOMWjUGJ0WfJW6x1UQajWlTgs+Sg1mCdT4KJVYXFZ8pXoIGaCRy3EIDgwqDfnW/996/pdn1OutUauV7P7pEtdvZKDTqRkxXHQsbd92nvv3RVHyq0NF8HHil9ucO/sAlVrBCAmolBSbWfWNqJl5dXgLvKS4+I2rT1BYYCIiKsBjNRcEga+lrqwXutXyrLUEQWDlMpHV6dynLiFPgILN3/2MxWynfFIEDVo81jfYrI6yrM4TlL3D7uQHibnp9WrTp9iJ/VvOYrM4iKsYRtV6T1/MTh24irHITFC4gVpNn83GHJO6cWo2qYCP3/MLPR9Zev8Mq5OTVoDb5Uar1/zuWuy3o5ccPMYi05/+O8+bsNhgXp3Vi2VT1rB8xnr8Q3xp3vPZgO9fnUdrLIfDgcViQa9/uu/pPzH5mUUc2nSK/et+4cG1dM/j4fHBdHylOe0GNcYQ+NdCOnMzClm3aBd7Vj+uh2jWrQ6vzOj+XPExiPlQG5buYdOyfThsTuQKOd1fa8mgyZ08nWVPzp3LqSyZstbTaVWjSQXGftif8N+Uxd688JCFE9eQKjWkt+1Tj+GzepQpMz179CaLpqynIKcEhVLOoHFlRcg3L6bwwSORslzGwNFt6D+yNQqFHIfdyXdL9rFJ0r0lVApn2qIBRMUH43S4+HbpPjZK50KFKpFMXzCAsEh/MtMKmPvmOu7eyBRrH0a0pP+w5jgdLhbN+YE90nq7QfOKTHm3J0qVggXv/sh+yVHZvG1lJr7TlcICUZ9z73Y2CoWcNya0p3OPWmxed4qvJJYnqXIks+b1JjOziJGvr6Co0IzBoGPWe73wNegZNXIlGRlFaLUqps/oSliYgVFjviMnpwQvLw2z3umO3eFi9JursVjsREX6M3dmD3bsucTGRx13LZPp17seb723lfQscZU1e3JXTp6/z6adIrDo2KoKjeomMGXeFixWB3FRAYwb2ooPl+8nI6cYHy8t00a05dsfT3PjvqjpeXNIa7YfvcplCciMG9Sc3b9c5+q9LNQqBWP6N2P9wQukZBXirdMwvGdDlm87QYnZRnSIH23rVeSzH8UMnQz5BNMAACAASURBVCZV4xDkMrafvIZMBoPb1GbH6esUGM2E+ftQp1I0a46KzFCHOhU5dz+drKJSgnz01CoXxRYpFfmFmhU4duuBuOIK8UejUXH6XhpqhZzmlcs9Uf8Qz6kHKdicLpLCg8k1m8k1mgj20WPw0nEpIwudUkn50EB+TU1HLoMaMREeoFMrOtwDdKpHhj0GOhGhXMp+GuhUegLoxPv7c7uwAJVCTqCXnhRjMd5qNQqlzLOuKrSLNvIYXwOpEosT6eNLmqTL8VarybOa8ddoKXGKAuQILx+yJKeVv05LgU3srzI6LQgIHqCjkstRyGVYXHaCtDqKHCZkgLdahclpxaDSUSq5s3zVSkwuC74qsQdLhoBeqcDqtmGQ6iHkgEoOTsGJr0qNxW1GJ/972sz/02CnetVoSk1Wvvr6MAAvv9iY4CAfiovNHlHy0Feb4+urw+Fw8aWUidO7T30ipDu7Vd8cx1RqI6F8KO0kTU9+npFNEhszdGQrjyvrxJGbXL+chkarYvAT7M2Jwze4dS0DrU5N/yeC+0qKzGxfJ1Kug0a0KHOHu3/bOYoKTISE+9GyY1kH1rGfLpOfU0JAsA8tf5NoLAgCu6XX7DSg4TPZhANbxYOsdffaz7Vgn5Bycxp3+P2izmtnRM1B5WeAqt9OfpYogg0MN/wlliNMKqssKTBhLDL9Lvj6M9N5aAvuXEph76rjfPj6VyiUCpp0fb4A+++Ot7eYC+R2uykuLv6Pgh1TsZkTuy9waNMpzh+6htst2jdVaiX1X6jOCy81pVbL5L+8tivMKWH9kt3sXHnEo++p2TyJV2Z0f24oIEguqx3n+Wr2FnLSCwCo0bQiI+b2fUpUDOKKctXC3Wz96jBulxtvg47X3u5Ou/4NyvxfsVsdrFr8E5u/FC/4/sE+jJnfl4btHkceWC12Vnywg+3fixqa6HIhTF40kMSqYtSBy+Vm0z8P8/2SvbicbkIi/JiyaCCVpST0zNQCPpy0lpuXpIDBgQ14bUpH1BoVuVlFzJ+8nmtSgGDXgQ0ZNukFVColJw5fZ+HbWyg1WjH465kyrw+1G5UXAdCUDdy5mSnm6rzRir6vNCE7o5j3pm7g7q0s5HIZr45uQ+/BDTl76h7zZ4r6HD9/L96Z15vESuF8MOdHDkkszwudqzPmzQ7s23OZpZ/swel0U658CHPe78O9+znMmLERs9lOWJiB9+b2Jj2jkDHjV4lC5Eh/3pvTixOn7vLlisOiZqd6DFMndmTRZ/s4JQVfDn2xCZUqhTNu+jpxlRViYPaUznyz4QQnz4orvWGDmoiN5wvEMs861WLp1bEmMxbtoNRsIzLUj3GvtPC0lvv56HhzSGu+2PQzadlFeOs1jB/cnK9+OElmXgm+XlpG9m3C51t/ptBoISzQh35ta7Jk0zEcThdV4sOoFBfK17vENXznhsncy87n6sNsNCoFg9rUZs2h81jsDspHBBERYmDbaZEp6t24Kj9dvIXRYiMm2I+oIAN7Lt5CJoMudZPYdeEWDpeLqjGhlFjtXEvPkVKRI9h79XH9w6Fb93ALAjViwrmbV0CJFBDokgmeJOQwgw+XM7LRKBQkhgd5eq6qRIRxLj0TEEXKF7OyPGusR0CnUkgQ1/JykcmgfGAgN/JzUcpkhD9qLlcq0WvVZJqM+Ou02NxOSm0Owr19yLKI66pHzeUgEOHtS7qpBK1CgUqpoNBuIUirJ1/S3YRLQEchk+GtUVFkt4iiY0mAHKzVk28rRaNQIOCWEpJFoKOQydAp5VhcNqnQU2RqvFQKLC4bBpXYgyVHQKuQY3fb8VNrMLssKGUyZLhxCW58VWqsbgtauQoH/0Naz/+3zbffHaewyEx0dAA9uosMzLcrj2E0WklICKGjREn/uPUs6WkF+PnrGTC4IQBpqQVsk/Q7w0e39gCDVV8fxWZ1kFQlkiYSG+NyuflGYm96DKhPoKSDcbncnlqI7gPq4/eEnXbLql+wmO2UqxhGgyes3y6Xm02Su6LnS43L2GoFQWCL9LUugxo+pbO4cuY+qfdy0OrVtHyG1qYoz8ivkqC4VY9nX+BzM4u4fSkVmUxG/TZVnvu7NZVYeHBDLKWrXPePwU6BZC0OCPnzrA6A3kdLQKiBguxiMu7l/O5F9s+MXC5n/JKXcDtd7F93gvlDl/P2tyNo2PH3ay7+6shkMnx9fSkqKqK4uPi5Bbh/d6wmGyd/usjRrWc4s++yp8YBILleOVr3b0SzHnX+FjgszClh02d72fHNYc/6sEqDRF6a1vUPnWx3r6SyfOYmLkmsX0hkAMPe7UXjTjWeCXLPHr7O0mnryU4VQVGzrrUYPrsnAb9Zi928mMKiiWtIuS3qvlr2qM0b7/Ys8/PdvJjCgjfXknZPvBPu+nIThkzp6HHy5WQU8vGkdVw5I16sm3Wsxpj3enkCPI/uvsSSmVswl9rw9tUyfm5vGktuylNHbrBgxiaMxRb03homvNuTpu2q4HS4+GrxHs9nNql6NNM/6kdwmIGTR2/y8cxHAMiLafN6U7NeAmd+vs0HM7dQWiICo+nzelO9dhzrvvuZlV+KouFH+hyXy834ESu5K7E8I8a2pWPXmixbuo8dkr2+WYtKTJraia1bz/LNClGcXK1aNDNn9WDHzgt8I93c1a4Vx7SpnflyxRH2SHqrLh1r0KdnHabO2sSDFNGSPm1iR4qMFqa+uxmXW6BqUiTjXm/N+//Yzb2UPFGPM/YFLlxL8ziuurSpRnKFMKYv2o7L5aZaxQj6dqrF7M92YbLYiYnw57Xejfjo2wOUlFoJC/LltV4N+WT1YYxmG1EhBvp3qM3CdYex2Z1UjAmmac1yfLJRZNeaVU9AoVSw8Yi4knyxXW0OXLxDel4xBi8tPZpUYeW+M2K6cWIUTpnAYampvE/Tamw6eVlceUWHIlfI+PnGQ1QKBR3rVOTHs9cQBGiQGM2dnAKJqfEiOtjA8dtiuWfLpHLsvyGu4BqUi+ZcagY2p4sKoUHkWczkm8yE+nihVam4lZOHj0ZNqL8PlzOzUSvklAsO5GKm1HMVEsSlrCzkMkgMCeJKTg4KuYz4gABu5OWhUsiJMPhwu1DsvPLXaUl9ork812IixEtPkcOK3eUi2tdASqnI4jwJdEK9vMkwi1UQbgSMDithem+yraIu59HqSqWQo1HIMDqsBEp5OWJ2jk60lCtU2AUHbtwES51YSrkMlQKsbjv+aj0lDjEkUKOUYXPbMai1lDotKGQieyMGB4pARyWTA04ESb9jdVvQKdQ43DacguN3z5fnzf9psPMwJZ+tEh07emRbVCoF9+/nsl1yGY0c1QaFQk5xsZlV0spoyNDm6CVh44ovDuJyuanboBy1pIt56sM8dj/KyRnVxnN4H9x9iZT7efgYdPR5IqDv6L6rPLibg5e3lt5PPG4ssbBtjcgODRzessxF4Of9V8lMLcDHoOOFnmVTjy+fuc/d6xlotCo6PkNvs1sSLbfoXKNMUeijObLjAi6nm8SqUc9MTAY4JQkXk2rH4R/8/HXHjfMPEASBsJhAAkL/GMAUSk3cv6fteN5ElQ+lILuY1DtZ/zLYARHwTPh0CC6nm0ObTvH+K18wYHJneo1sh9br35dO7OXlRVFREbdu3aJSpefbsP/s5KYXcGbfZc7su8y5w9fK6JiiK4TRvGc9WvWpT0TC3yv+zM8qYtOne9n17RFsFvHQqVgrjpend6dm86TfZeSKco18++E29qwWU7nVWhW9R7alz+h2HpH5k1OQXczyOVs5IullQiL9GTWvL/VaVy7zPJvVzurFe9i8/BBulxv/YB9Gz+tDo/aPtWROh2gpX7dMtJQHhvoy4aN+1H5iTXtk5wU+nbmV0hILOi81b7zTnTY9ayOTybCa7Xw5fwc/SSGbyTVjmfJxP0Ij/XE6XHzzj71slsBMYnIE0xb0JyI6kNzsYuZP2eBheroPasjQCe2Qy+WsXHaAtZKFvVKVKN7+qC+Bwb6s/uoI3y8XGZWKlSN558O+eHlreG/64/ycDl1rMurNF7hyKZX3Z26hpNiCn5+ed97vRXRMIFPfXMvlS2JQ4JChzenRuy4LFuzi8CFJnNylJkNfa86iT/Zw5KjkNupem379GjBz7g9ckTQ7Y0a0IT4+iNGT1lBcYiEo0Jv3ZnRn39HrbJaCAdu3rEyndlWZ9N5mCovNBPh7MXNCR9b8eIZT5x8gk8GIwc0wWmzM/3IfAG0aVaRaUiQzl+7E5RaoUSmK9s2SmPPlHhxOF8kJoXRomsz8FftwutxULR9Oo5oJfLz6oJjJUzWOkCAf/h977xkeVd22e/+m1/QOSUgCARJ67733XuxYsSEo3EovIor9tuOtYkGkVwWkSgfpvSRACOm9TabPrPfDf2UITdFnv3vvZ/tcx+GRyEwmyWRmrXOd11m++kUcI4d1bsTV3GJOXxFrr8f7t2LlntOUVtqpEexHx8YJfCtn6PRoVodrBSVczSnCqNMwsE0yyw6cQpKgXd1YcsospOWLsMBODeNZL6cid29YmyPXMqiwO4kLDUSn13A8PRudWkWbxFgf0OlcN559V0UqcpOYSK4UFWNxOKkVHIDN5Sa9pJQQkwGjXktqQRFmnZZwfzMX8gswqNXUCPbnQkFVz1UAlwoL0alURPj7kVpchEGtJtCk53pZKf5aLVq1mhyLhRCDAZvkotLhoqafH7lyc3mtgEDS5eby2IAAblhKUSkUBBoMt+hynF6hy6nK1okwmcmzV2BQq0EhEpLD9CYKZaATotdT4pTFxl4HEpIP6OhUKhQKDy6vh2CtkTKXFY1CgVrlxeV1E6g1yMGBCpR4RJ6ODHR0SjUe2ZHlp9Fg99oxqrQ4vQ6USIRp7+xnvJ/5R4Odr77+TWTatE+kVct4JEnic7kbplOnejSrSkX+fj8Wi52E2uH0lVdGF85lsm/3JV/ketV89+VuvB6Jth0TaSQ7rdxuDz/K5YFjHuuAWQYZHo+XpXKf1chH2uNXTU+w8afDWCsdxNUJp121FGVJknxanYFj2txxktggU/M9hjS/IzunoszK/l/F+qlvtcTm6rNb7svpcQ9WB/BlmbTp2eCe9wF8Lqz6zeL+8H6+n6/UCnDXzJ8/m7jkaM4cSOHikWv0HN3uL3/93UalUjLliyfweiX2rD3Ckjc38Ms3u3n41UH0eaQjas3d3z6SJOF2u7HZbNjt9nt+/Pnnn8nKEpqZoUOH8tVXX/Hkk0/+pZ/RaXdx8ehVTu6+wJFtZ7l2LuOW26PiwugyvBWdh7UivkH03xZBF2SXsPrTrWz5YR9OuwA59VvE88DkAbTu1egPH9fpcLHxm90s+3CLL0yw85AWPDFz6B01DyDeF5t+2M/37/yCtcKOUqlg0OOdeezVgRhuA5rnfr/Kv19bTpbM1HQd0pznXh9xy2soPSWX96Ys48o58Vx3GdiUF14fjl+gWBtWVtj5Yv4G3/q2XpNYXn1/LDVkHdCVC9m8PWU5mWkFKBQKRj/dhYdf7IlaoyI3q4SFr67gkvxaH/JQO558pS9arZpjB1J5d8ZqykqsGM06Xpk3jI49G1BSZGHhjNWcktmjQaNbM/6VPtisLua8sowjBwTjNWBEC559pS95OaVMm7SUG9cLUauVvDC5H/2HNGP18t/5+nPh7KxbP4o5b46ktNTK8898S0FBBUaTjumzhhCfEMakiT9y5YpgfiZM6EXrtrWZ/OpyrlzJQ61WMnFCH+rWjeSFl5eQX1DhEyLnFZYzecZK3G4v9epEMONfA/jk6984IkcJPPNoZyIj/Jk8b7Woh4gL4+XxPXh30XbSMoru6rh6dFhrnB4P738nGO0+HZOIjgpi4TdCz9i5RW1qx4by3hJh8OjWsg5BQSa+WCt0iIM7NaSwopJ1e0V9z2P9WrPr5BXS84R+5+HezVm89QgOl4ek2HBiIgJZsVfO0OnQkL0Xr5NfZiHEz0C75DhWHBC39W6ayIm0bArKKwnzN5EUE87mU6J5vW/Tuuw4f1X0V0WHU+5wcCmnAH+9jno1w9iTkgYK6Fw3jj2p4u/aOj6ak1k5OD0e6oWHklNRQbndQc1Af5yShxulZYQYDeh1Gq4WFeOv0+Fn0nKlqAizVkugycDVkmLMWi1mvU60let1qDVKsi0VhBgMuCQvhTYrkWYzRU4rTo/HB2gkIC4gkOsy0Inx9yfDUoZWqcKoVVNkt8o2cBseWZdT1XkVZjRSYLdg1mhxSk7cXg9hcs+VAokArY5SZ5Vupyo7R0+JqxKDWo1bciFJXoJkoKNVKVHgxi15CdTKeTpKFRJOvLJQ2eqxoldqcEtOFEiYNGocXjsmlRaH14EKCbXSS6n777lX/9Fg59TpGxgMJp57VoCVQwevcOKEcESNl6sVMjOK2Cg7k8bL4kRJkvjPZ+KN2bt/E+JlAWbKxWz2/XZRXE1Vq2bYtvEUudmlBAWbGDTqJtuyb+cFMq4XYvY3MGTsTfBhszpYLwf6jX2qyy06igunbnD5bCYarZrBD9x6Ui/ILeOwDEQGP3TnCX/PL6dxOd3E1YukbqM7qxjysoq5dDIdhUJBp/531+K4XR7Oyi3TzTv/MRNR1V8Uf1ty872mas1SlaWSmZlJamoqiYmJREf/cXVEi67JbPxqF8d2nfM5myRJwul0/iHg+LOPdrsdq8aKolkul05ew3q1ku3jV6CZqCQwyg+NToXNfufXer1/LfNHkiTGjx9Pnz59/vB3ddicpJy4zun9lziz/zIXj171aWVArMbqt0ygVe9GtO7dmNqNYv5LLq+sq3ms+mQrO1Yc8gmPk1ol8NC/BtGiW/IfPnZV+vHiBet9VvLExrE8M38kDdvUuevXpJy+wafTVviAct0msUxYOIY6jWJuuZ/VYue7t3/hZxn4h0QE8OKCUbTtfXOt6vF4Wbd4Lz+8/ysupxu/QCMvzh9O5wE3dWznjqbx3qvLycssQalUMOa57jz4ggAykiSx/ocDLH7/V9wuDyHh/vzrndE0kVPA928/x4dz1lFZYcfsp+fl+cPp0KOBWE1/uoPlX+9FkiRq149ixrtjqBEbwtmT6bw5dRXFhRXoDVomzRxMt76NSL2Yzfypq8jLLkWrUzPhtQH0HtSU/bsv8t78jVitTkJC/Zj91kjiaofz5tx17N4h3uu9+zdm4pT+7Nl9kQ/f24LT6SYmNpjXF4wSQYHPf+cTJ8+dOxyFSsHzL3xPSamVwEAjc2cPo7i0kgmTl2J3uIiJDmb+rCohsmBDunWqxyMPtGfGW6L6Qa/TMG1SP67dKGTeB5sA6NCqNiMGNGf626LjKiTIxPQX+vLVqoNcuJKLWqVkypM9OHT2OrvlMs/Hh7clr8TC12vF8W5M32aUV9pZvEEw0GP7NCOjsIzVuwQgeWJQGw6eT+Niej46jYqnBrdj6Y4TlFTYiAjyo1+7eizadEiwNMm1cHm9bD0ueq3GdmvK+t9Fhk58eBC1ooJ9TeVD2zRg2+lUKh1O4sOCCAowsueSCAvs27Qem06LsMDWtWO4UlhEkcVKRICZUH8TR65nolYqaVs7RlRBAB0Sa3FATkVuUjOSy/mFIhQwNJh8W6UAPXL9Q2aZqHxACZll5YQYjShUkFEu91wpIcdSQajRiAM3hVYrUWY/Sh02bG43MQFCcyMKPUWJp+i5EkBHoYBIsx+ZleUYNRoUCih12gk3GMl3CJamhtmPHGuFLyG5yGElUKfD4rbjxUu4QVjOVQoFRo2aCreNIJ3Rl5AcrBepycKdJcBPkNZAucvqSz72IvlEzQaVCndVno5Wi9Vj87E3VUJlp9eBWSXs6GoFKBUeEWKoC77nMeeP5h8NdgBGj2xNjahAnE43ixYJTc3IUa2Jkh1R/1n0m0hFbleHFnJb98F9KZw/k4lOp+axp25m2CxeJK5EevRpRHxtAYCcTjc/yY6NMeM6opcrELxer6+5eNgDbTFVc55sXnVMBAXGhtCp962amCpWp8egpgSF3krnbVl5BK9XonHrBF8RYfXZJlc79L5HtcM+2fHRqE3CHXqIqrl8Kh1bpQP/YBMJfwJi0i7KYOc+AwKrwI5Gp+arr75i/PjxPuDSvXt36tSpc09QYq20cr00E0+xm43BX+JwCKAiSX+vR+VPxwK5qfd3V71ej16vx2Aw+D66XC5SU299AI/Hw5UrV3xgx2l3kZmay+WTaaScuE7KiTTSLmT5ijerJiQqkMYd69GyR0Na9mz4l51Ud5tr5zJY8dGv7NtwzCdmbtQukQemDKBZ5z9eVwFcPJ7G13PX+ATqwREBPDZ1MD3HtLmrCLqi1MqSdzexacl+vF4Jk7+BcVMH0u+hDneI5I/tvsgn01aSnyU6ffqObcuTMwZjDrgp8M68VsCHr63gglwq27pbEhPfGuV7Xbucbn78eDur5JLciOggprw7lobye7yksIIPpq/m2D7BRrTrkcyk+cPxDzLhsLv4z7ub2SRXw9RvHMPUd8YQWTNIZO5MW8XZY+L7Dhzdmmem9EWjVbPqhwMs/nQHXo+X2PgwZr07htj4MLasP8Fn727G5fQQVTOIWW+PJq52ON98vpMVMlPbqGksM94Ygd3mZOL470i7mi/0ORN6MWBoM/7zxS7WyVb2tu3q8NqMQezadYHPPt2Bx+Oldu1w5s8fydETaXz8iej+q50Qzry5w9m64yzfLxXfp1XzOF6Z2JcPPt3GEVlkPO7B9jRuFMPEGcspr7ATFmJmzquDWbPpBLsOCObjgaGtSKgVyqtvrsXl9lA3PpxnH+3CW4u2kldYgb9Zz9Rne/PDxiNcvJqLRq3ilXHd2f77ZY5fyBAt5WM7ceDMNU5cFPb1Z0d1YMexVC5ez0OrVvHcyA6s2CWs5YFmAw/3bcl/fj6Mw+WmbnQYDRIi+HareA76t65PSk4hqVmF6LVqRnVpwtI9J0X+TVwUKrWC384Jvc7Qtg1Yd+Q8bo+XJrWisHpcHE/LQq9R0zk5nl9OyWGBSfEcuZ6J1ekiISwIrxLOZedh0mpIqhnOvqvpoIAOdUT9A0DrWtEcz8jCI0kkR4VztbgYu9tNQmgweRYLFqeT6EB/yl0OyirtRPn5Uelxim4rPz/KXU4qbA5q+vtRJPdcxfoHkF1ZgdvrJS5IJCFX1T9UBzrpFaVolEoCDTpyrRW3NJdHVltXRZkE0NEolRi0akqdNpmlkQXIBhMFstNKqwKr20GI3kiJU9weqNNS7hIsj89SrjFQ7rJhUmt8gYD+Gp3I01FpcEoOqvJ0bB4bJpUOh9eOAgmDWolLcvqAjlapAFyAhEGlptBa8IfHnnvNPxrshISYeVBmR9avP05WVgnBwSYefFD82+lT6Rzcn4JSpeCZ5wRT43F7+UYWFI8Y24ZQOU325LE0Thy5hlqt5JFqTqst609QkFdOaLgfA6rpaw7uvkT61XyMJh1DH7jJ6jidbtYsEXTt6Cc63XKgz84o4pAcCDb80VtLI90uD7+uEmBm4F16rtIu55B6NhO1RnVXYTLAXhnsdB5wb4fVqQPi4N+0feIfOnecDheZV0XSZVz9+xPeVjEU5dZSXn72WR9QkSSJnTt3snPnzvt6HIe8Drt9qoON/8pHJSpO/XaJ07svY69woVSoUaJCo9YSERNKvSYJ1KgVSXR8JDXiI4mIDkGtVaNSKVHK/2VlZdK0VeNbGCClQsmeJafY8sExsq/lU5hdclewFhTuT6MOdWnSsT5NOtenZu2I/yUZPZIkcfy3C6z9YruviRygda9GjJnUjwb3YGOqT056Id+9uYG9G8RKSGfQMvL5nox4vicG050aMa/Xy45VR1j85kbKiiwAdB3SgqfnDLsDcJcWWfhy3jp2yzq7iJhgJi4cQ7Nquhuv18uG7/bz3bubcTrcGMw6xs8YTO/RNwtD01PzeHfKMq5eEGC81/CWjJ852KdhO7LnEh/OWENpkQWtTs3Trw1gwNg2KBQKblzL580py7meKizto5/ozKPySkusrdZQViIydybOHkLXfo2pKLexYNoqDu8RwKB7v8a8NH0gSqWSD+ZvYOtGsTpu26ku/5o3DJfLw7RJSzklA7URD7Tlyee7c/xIGgtfX49FTkmeNX8E0bVCeG3Kcs7ImqCHH+3A2Ifa89mn29ksx0N07ZbEpEl9WPzdPl9wapfO9ZnwQk8+/HQ7+w6K9/To4a3o368Jr85axY3MYp8QuaLSwZS5q/F4vCTVjWLyc714d9E2LskrsMnje5JbUM4bn2wBoFPrOvTpksz09zditTmJiQpiwqNdeO/bneQVVRBg1jP58R58LZd5GvUaJj3clR+3HJP/X8uEsZ34dvMRcuX7Pz2kHYs2HqRCtpb3bl2PT9ftF9UMSbHo9BrWHhBawge7N2PHqVTySi0Emw30bFmX7+UMnU7JcWTJGTpGrYY+zeuySs7Q6Vg/jquFxWSXlBNkMpAcG8HWs+KCpHpYYKPoSPIqLeSVWwg1GwkPMHM0XbSvt6hVwwd02ifE+oIDm8ZEcSYnF48kkRQZztWiIhweD3VCg8moKMPudhMXHEiOXP8QFxhIttWCw+0mLiiQDEsZbq+XhKBg0kqL8SLdUuhZBXQAavpVJSSrREKy3UqIwUiZnJBcvQqiCvToVWqUKgmLy06YwUSRnJAcKq+uDCo1EiI4sKrQUwmYtWosbhuBWuGqqgI1FW4rftVYHj+NSFD2U4t/UyBh1qixe+34qXXYPHZUSGjV4JZcMtCxoVeq8CIYIL1KhUtyEKL9awaWqvlHg51xj3bCYNBSVmZlqRzl/oQsQJYkif/IoGbgoGbEyvv7rZtPkXGjiIBAI6Mfag/IOTlygOCAoS2Ikm3pToebFbJocey4Tr6yT0mSWL5YuB+GjG2DuVrT8+7NZyguqCA03J/uA28FHRt/EkFtrTrWJfa27JIjey5RUlhBUKiZdj3urGXYJed3tOpan8CQZ9f8FQAAIABJREFUOwVeRXllpJ7NRKFQ0L73vZvJz8s6g0Zt//jEV5BVgtfjRWfQ/mmYYNVotMJVlpWbcdc10Lhx40hOTr4nEDn52yXWfLKDsKgQ3t/4GmY/s+82rVb7vza07xkRbnfh96sc3HySQ5tOkpteiD3Py7FfLgGX/vQhknTtOW87AEiAgiR9ew6tPXfLfUz+Buo0qUW95nHUbR5PvebxhNYM+l/6uzhsTnat/p11i3Zw47JwzymVCjoNbsHoif2ofdsK6W5TWlDBsn9vYfMP+3C7PCgUCnqOactjUwcREnn3v/+Vcxl8PmMVF+WTekxiBC+8MYomt3VfSZLEzjVH+Wr+BspLKlEqFQx+vDOPTul/i4Yn+3ohH762wuekatYhkYkLR/kCAr1eLxt/OMi37wkg5BdoZOIbI+jQR7zeHXYX37y3hZ/lapa4xAhee28scXUjRWTDmqMsWrgJh91FYLCJf701ihbtE/G4PSz+aBsr5fd0Qr1IZrw7lpq1Qrh8PosFU1eSl10q1uOT+zJwZCuyM4p5Y+oqrqWKQtBHn+3GmMc6cvlCFvNnrKEwvxy9QcMr0wfRuXsyP32/nx/kiofkhtHMemMERUUWnn96sdDnGLW8Nn0Q9ZJqMGXKT1y8IJKOn3yqK336NGL23LWclleDj4/rRM8eDZgyfSXXrheg0ah4ZUJvQkP9eWHyj1gsDsJC/Zg/cyjb9lxgzc8CIPXsnMSwAU2Z+tY6CoosBPgZmP1yfzbuPMvuQwIwPTCkJSHBfsyUO66aJUczrE8T5ny6CavdRWxUEE+ObM97P+yizGInIsSPZ0a15+NleymtsBEebObxIW34eNU+4dCKCGRwl4Z8sGoPHo+XRglR1IkJ42vZWj6gbRLphaUcTrmBRq3ikZ7NWbH3NBa7k1rhgSTFRbJc7rzq37I+R65mUFBeKTJ06kSz9nc5kLFpXQ5eSafc5iA6JIAQPyP7L19HpVTQo1Edtp4ToKdt7RjOyWGBMcEBKFUKzufkY9JqSIwK5XC6qPFoExfNwbQbIiCwVk2OZQq9WJOakZzJzRNJyJFhpBSJKoi6YaFcLS321T9cLSnGI0nUDgniSqlwId5e/3C1VACdKnZHrVQQbDSRVSkXeiq8lDntcqWDBUm2mWdby1EgEWo0kWerwKzR4JaBTITR5EtIDtYbKXJUYtaIWgev5PUBHbUC9GolVo+DIJ0QG4OEWa0VeTqy2BgkTGoNVjkk0Cbn6ZjUShxehw/oqBWgUkp4JK8P6BiUajyItZZOpcQtOfFTabC4i/70eHS3+UeDnS6y5mTpjwexWOzEJ4TRWz7R7919icuXcjAYtDwyTmTfOBwulsgHtAcf7eALEDy8P5WL57LQ6dQ8UK1nasv64xQVVBAW4U+fITfZlOOHrpIqO6aGVWNhJElirczqDHmwLZpqAthKi51tsoByyMPt7/hdqlidnkNb3GJFB3GQ/022oPaoFoFffY7KLo+6jaPv6bDyeLxckoWJyS3/2PFUtWIIj77/E3NVOKC/PtiXP1M1KpWK+fPn/6GepUO7jhxZdZWyggqyzpXQZdifMxH/lVGpVTTqUJdGHeoyfsEYcm8UknYuk4yUHPIzisi7UUheRhFFOaW43R68Hi9ej4THLbQv9SOakWxqjEdnJzoyhuiYGCLjQqkRH05UfDg1EsIJCDH//5asXJBdwqbv9rDl+70+VsVg0tH34Y4MeaYHkbcF9d1trBY76xbtZM0XO3zt8y26JfPEzKEkNLj736q8pJIl721i85IDeL0SBpOOB1/uy9Anu97x2s1JL+ST6as4uU+wIgnJNXjp7bG3dFp5vV5+/uEA3767GYfNhcGk46lpA+n3wM0MnrysEj6cupLTh4XerEWnuryycLSPPbp2KYe3pyznhsxGDn20A4+/Irq4KspsfDRvPftlF2KztrX511ujCA71Iz+nlIVTV/ncVgPHtOaZyWJttX7ZYb769zbcbrGemvH2aBKTarB/10Xef30D1koHgcEmpr0xgiYt4/h5zTEWfSRWTNGxIcxZOIrgEDNzpq7ksCxaHjSsBc9N7M2uHef59wdbcDk9xMQGM3f+SCyVdp5/7juKiiyYzXpmzhpCUJCJ5yd8T15eOUajlmmvDcJk1vHsxB8oK7MRFGRi/syhXLqSx7uzRSJyg6QavDapHx99tZNjcnXIUw93JLpmEC/PXY3D6aZWtKh++Pe3u7h8VTA8rzzVg8vXC1j6w27xs3ZvSHxsKHM+2YxXkmiRHEPPDvWZ/x/huEqKj2Bg1wYs/HYHTpeH+nER9GxXl3d+3CUcWok1aFAnik/WiAvG7i0ScXm9rN0nmJhHerdg15krZBaU4W/UMbxzY77fcRy310vj+CgMBi2bj19CoYCRHRuz6fglockJDyIiyI+tp0SGzuBWyWw+fRmn20NyzXAcXg+nbuSg16hpVzfWB3S6JiVw4Fo6TreH+lGhFFlt5JdWEmo2Euxn5GRmDlqVkoY1Izl8PRMJUf9wVA4LbBETxfEscTHRuEYEp/NEREKDyHDOFeQjAUlhoVwsKhRhgWGhXCqWtW4hIaTK9Q8Jcv1DVc/V9fJS9Co1eq2GPKuFYL0eq9eJw+2+hcWp+lylUOCv01NorxS6HI/jluZyBRL+OuG0CtTqqJBDAKss5zqVEqXCi93rJERnoMxtRaVQoFOK7JwgrR6Lx4oC0FcLCbR6hM1cq1LglFz4qfXYPDaxplIIm7lJJfJ0TCoNLkkwQFqVArfkwk+twem1YVDeyRDfz/yjwY5SqSA7q4QNMuX+7HiRnup2e1gsu6RGj21DkOzs2LjmGIUFFYRH+DNQdit5vRLfy/cdOro1wTJr4rC7WF7F6jzeCW21vJvl3woNz4ARLQmo5ho5fvAK16/kYzBq6TfiVkv59vUnsFY6iE0Io0X7W0/iBTmlHJfL/vrc9nUAZ49coyivDLO/gVZdk+64HeCIbElt/QdlnTdScrFZHBhMursGv1Wf/ExxNVJ1VX0/U5WYq1OYmDdvHrNmzQIE0Pnyyy//VKSsM2gZ/GQ3lry9kdWfbqPz0Jb/WysYImNDiYwNpV3/pn963/8T9RBV3/fcoVQ2fL2Lg5tO+fQ/4dHBDHmmB30f7oDJ/8/DDZ12F5uX7GPFR1spLawAILFJLE/MGkbTe6Rlezxetiw9wA/vbPI57zoPbs7Ts4bewf65XR7W/uc3lv57K06HC41OzcOT+jL8mW63AKLbtTlN2tXm5bfHEBEd7Pt9d6w7zqL5G7Fa7OgMGp56bSADHhRAyOv1sv6HA3z7wVbcLg9BoX5MfmskLeRKifMn03n7tZXk55SiUisZN6EXI8Z1RKlUcui3i7wvW9WNZh2T5gylc++GVFbYeWfWWvbtFKvADt2TmDx7KDqDhi8/3MpaOVKiQdNYZrw5EqNJx8K56/ltmwBTnbol8cqMQeRml/LCk9+Qk12KRqvipSn96NG7EZ9/sp2fZTt+u/aJvDZjELt3X+STjwVQqlUrlPlvjOBySi6z563F4XBTs0YQr88bzqkzGXy6YD0ej5e6iZHMmTaYpSsPs2mb7NLs2ZBRw1oybcE6MrNLZCFyX65nFjPnvV8AaNMsjoeGt2HWBz9TWCwYnhkT+rF883GOnb2BQgHPPdiZ3KIyPlqyG4CBXRsQFuLHwsXVHVdhvPO9YM87Nk2gZlQgH68UF5O929RDUsCPcmv52B7NOJOWw3lZv/N4v1Ys23NK6FyqrOXbxAVftya1yS6t4NTldHQaFcPaN2LVwTO4vV6axEXh9Hg4lHIDrVpFvxY3M3Ta1InhelEpuWUVBJsM1KkRyq5L11AooHtyHXZevoIkQfNaNUgpKBLsTlAAkgou5xfir9MSHRzAiYxs1EoFDWtG+oBOMxnoSEg0i47ipNx51SgqgrNy/UODiDDOF9xMRb4kpyLXCRZAp4rFuVZWgkalJNgo91xpdEhKiRKHjQiTiSJHJR7Je0ehZ7a1HK1SiU6tErocg8Gnu4kwiUJPtUKBXqOh3CWCA6sEyCFyuadRrcaDE5fkJVRvpNRViVqhQKVQ4PC6fM3lKgWolQqcXheBGj2VHisaBaiUckigWo/VY0OvurmmMqk0OLx2zGoNTq8dJZLM9ngwq9UC6KjU2Lm7TOHP5h8NdgC++WYPbreXli3jaSln5Wz+5RRZWSUEBhkZOVroaSorHSyXV12PPNnZB14O7LnEtdQ8jCYdo6o5oH7dcILiQotgdappZM6fvsHZE+loNCpG3MbQrJMfv+/wFr4QM5DpdzmRechDd6Yeb193HK9XolGreGrG3Xk1XsXqdOzXyLdKqz4up5tT8pVj6253B0MgRKcA9ZrWumeyctUUZAtmJ6zm/Ze2Gf1v1j6Mn/YEs2bNQqFQkJaWRkzMn69SAAY+0YWVH28h9XQ6u1b9To/Rd+qX/m+Y/91Ax1JmZdfq39n8/d5bKiIata/L4Ke60b5/01sqR+41Lqeb7csP8dOHWyjKEYnXNeLDGDdtCB0H3dljVTVnD19h0ew1XJO/d1z9Gjz3+ggat0+8474XjqXxybSVXJdXak3aJzLhrdHUjA/z3cfj9rBu8V6WfLhVaHNMOp6cOoB+D9xsUy8prOCT2Ws5JKcKJzevxeR3xvgs5QU5pbw/fbWP7WnTLYlJbwwnMNiMx+Nl+X92s3SRSGKOiglm6jtjqNcwGqfDxdcfbGajnESe2KAm094eTY2YYFIuZPHm1FXkZJWgVqt4elJvhoxtQ0FeOTMn/cQFeZU06pH2jHu+O9mZJUyd+CPpaYWoVEqefrEnw8a0ZsfWs3z0zmYcDjeRUQHMXjCSoGAzr7z0IxcvZAnL9eOdGTmmDZ9/toNNm4Tup1Pnekye3I+flh9mxUrx87VulcCrU/rz9ff72LxVBO717JbMk4914o13N3HuosjUee7JrsTGhvCSnIgcEebP3FcHsfLn4z4h8pjBLaifGMWUBWtwON3ERYcw6cnuvLd4JzeySzDoNLw2vheb953n9zPpKBTwzOiOXM0qZPF68fOM6duMUoudxRvEMW10r2bklVWwbJsAcI/2a8mZtBxOpmahUil5amAbNhy8QE5ROQEmPaO7N+WbbUdFHk+tCGqGBbBStpYP69CQQyk3yC4uJ9Cop3vTOizbL56bzsnxXMkrIqu4HH+DjvZJtW5m6DSozZG0TN96ys+s4/drGahVSjrVi2PHJVE2275OLEfTs4SdPDKUAquVonIRFmjUabmQW4BRoyE2NJCT2TmolQrqRYZzUk5FblIz0gd0GkaF+4BOcvhNoFM3TKQiKxTCOn6lpAiNUkmYn4nr5aUYNaKtPM9qIcRgxOJ2Yne5qWn2I9smWJwYv5tVEOG3FXpa7ij0NFFgt6BTqlDcpbk8SCdAkVhn2ZGQCJETkrVKFRIe3JLHB3TUSgVKhYRbchOo0VHpsaJTKkHhwoskerA8ovXcjRAqG5RqHF6HD+ioFKBQeAEJs0qNy2vHqFLjkcRa6+/MPxrspKTksHu3sIo/M74bADab0xcg+MhjHTHIOTbrVh6hvMxGTGwIveSwMq9XYqnstBo2urWv7NPl8rDyBwFcxozr6KuLAFgpsz09BjQhtJoAM/1qPscPXkGpVDDkNkv5maNpZN8owmjS0f0u9Q875Ku8u7E6HreHQzvEwb7zPezkl0/dwFbpICDkjx1WV+UTVZ272NZvH0uZKJX0D77/AKiqfqOc6wW+3ihJknyf388EhPgxakJffnznZz6evIT4BtH3XKf8vz6SJHH+8BW2LNnHvo3Hffk4OqOW7iPbMPipbsQn399z43F7+G3tUZa+t8nXHh5aI5AHJvWj9wPt71g/VU1eZjGLF2xgrxy0aQ4w8siU/gx4pMMd4Kqi1Mp3b//CZtkZ5B9s4umZQ+hxm3sw7VIO/566khQZODTvVJeJb44ivBqw3rflDJ/OWUt5iRW1RsUjE3sz4qkuPpC+e9NpPnt9PZZywfY889oA+ski5tysEt6dvorzJ8QKp8egprwwYzBGk46M6wW89epKrl0WK4gRj3Zg3Es9UatVrPvpEF9/tB2320NEjUCmvzWK+g2jOXoglXfmrKO8zIbJrGPKnKG071qfvTsv8P6bP2OzOgkONTPzjRHUS67JJx/8ys9rBaPRsk0C0+YMJf16Ic89s1g0npv1TJ05mDqJET59jkIBjz/RhYEDm/L6Gxs4Lpd7jh3TlqFDmjNrvmgsVyjgmSe60qxJLBNeXUZBYQVmk47Zrw3iemYRU+evFY7OZJGI/Pbn226uqZ7pSWGJhbkfCoanbbN4hvZtyowPf6GiUuhvXnmqB5/9tJf07GL0OjWvjOvBxj1nOZuag0ql5MWxndh94gqnLmfJjquO7DqRyvlrwqH17PD2rNt3loz8UkwGLY/3b8O3vx7FYhOt5V2a1eY/mwVI6tgwDpvLzbYTKaiUVdbyC1TYHMSEBlA3Jpw1cq/VgBb12X/pOqVWOzWC/IiLDGbLacGG929Wj23nruDyeEiqEYbF7eJ8Vj5+Oi3JsRHsuiwchV3qxbMnNQ0JaBobRUpBIZVOF3EhgdhcbtKKSggy6vE36rmYX4BRo6ZmcADncvNQq5TUCQvm9G2pyEoF1A4N4UJhASqlgtigQFKKBbiJNJtJKyv11T9kWcoJ0OlwK7yUOGzy2smKR/IQ4+9PZmVVoac/GZVlqBQKAvR68m0WArQ6bF4nLo9H/joBdMKMRgodFtk15cbt8dzRXF7mshKg1fmcVsE6PWUuK0aVGqfXhYRoM69wW9GpVHgkFx5JkoGOzWc9F8BFK9xXaq1vTaVTqnBJTvzUAkxplAok3ELbo1LhkuyYVBrckh2VQoFa/fdgyz8a7Hwrr5N69mpI7drCqr1uzTGKiyuJjAqk/0DByFSU21i9XLzBHnmyMyq1OGAe3HuZa1fyMRq1DKsW0rdryxkK88sJDjXTZ9BNVuf6lTwO772MQqFg1G1uqg0ytd22a30io29lQzbLepxuA5pgMN4aqnb+RDo5N4oxGLV06HVndcO5Y2mUl1jxDzLS+B79VCdlVqdpuz92WFVZyWs3+HMruUVu0K7OUP3ZRMt2/ey0AjRqLWq1GrfbTVlZGX5+92+nfmDyAC4eu8bxXeeZ/9jnfLx9Bn5/I6jwv+sUZJfw2+rf2b7sIBlydQJAXFIN+j7ciR5j2t53RYTH7WHP+mP89OEWsmQ9S1CYP2Mm9qHfwx3RylEKt4+t0sHKz7az5stduBxuFAoF/R5qz6OvDiDgNgBcJUD+esFNR1bvMW14cvrgW8IBnQ43Kz7fyYovduJxezH56Xlm5mB6jbwJhsqKK/n89fU+Z2FC/SgmvzOGhCQB4i3lNj6bv4Hdv4jb6zWOZsrC0UTLrNFvm07zyRsbsFocGE06XpgxmB6DmiJJEts2nODztzZhtzkJCDIy5Y0RtOpYl4pyGx/MW8VBWffWoXsSr8wegsGgY/GnO1jxvdDhJSZFMePNUYRG+PPZB7+yQX5fN25Wi+nzh+N2e3jl+R+4JF9UPPx4Jx4a15GN64/z5ecirT0+IYx5b4ykqNjCc89+S7EMfmbMHExomB/PT/iBnBxR7vnqlP5ERAbw/MtLKCy0YDLpmD1tMBUWOy+9tgyHw01sdDBzpw1mxYZj/LpLXBQN6NWIvt0bMuWNtRSXVBLgb2DOywPYuOMMv8lC5NEDW1AzKpBp72/E4/HSIDGKh4e2YsGiXymz2AkLNjPxka58snwfuYXl+Bl1THq4K4s3HiYzvwyTQcuLYzvz7abfhePKpOepoW19ZZ41Qv0Z1LEhn284iMfrpXFCFDUjAvhxp7iwG9K+AWeu53AttxijTsPwTo34ae8p4ZaqFYFWp2HHmVSUCgXD2zVk49ELONwe6tUMQ61RciAl3ZehU2Utb107mquFxRRarIT7mwkPNHH4WgYqpYL2dWqxWw4LbJMQw7GMLNxeL8mR4WSWlVFud1AjwB+3wsv1klKCDHrMBh0pBcL1FeFv4mJBAXq1ishA/1tSkVOKitCpVIT6GblWWoJJo8Gk1ZJRUY6/TgcqiQJbJWFGI+VuOw63RwY0AtxUr3+IkvN0dCoVWrWKYoeNEL1gZqRq9Q9VhZ5Fjkr8NToqPQ6Rp6MXTqxbm8v1lLurbOY6yt1WzGodNo9gZYJ0OixusWJyVmXnaLRUeqyY1Bpcss3cpBJpyH4arWwzB63yph7H4bWhVarw4hJZOyoFLsmBWaXBJdnQKFWAG4f3Zir8X5l/NNg5dzYTg8HE44+LrJzychsrlgknxrgnOvsYmdXLD1NpcRCXEEYXWdMiSTdZnSGjW+MfIE7qHo+XFTIzNOKhdresjVbJTeQduicRXU38WVFmZecvgmodelsYYGmRhYPy7r//qFZ3/A47ZNFyx76N7hq5f0DWAbTt0eCea4pTckdR0w53rhSqxuv1/qXcnMpysVc1/QWwExIViN6ow251kHejiICAAIqKiigrK/tTvU71UamUTP3yKSb0XEDO9UIWjv+aOUue94UV/r841go7BzadYOfKw5zed9lnWdebdHQZ2oq+j3Skfov4+16fedwedq87xrJ/3wQ5fkEmRr3Qi0GPd7lnZYbX62XnmqN8t/BnivNE11njdnUYP28ECcl3vm7SL+fw2azVnJVXSTF1InjxzVE0vs3td/HEdT6cupKMK+JnaduzAS+8PpzQyJs21EM7zvPJrDWUFFpQqpSMebYbDzzfw9cPd+JAKh/MWE1RXjlKlZIHnu3G2PFCA1RZYeezN39ml/w+TG4ay6tvjSIyOpjKCjufLNjI7i1C19KkVTyvvjmSkHB/LpzJYOH01eTlCLfV0y/3YfDo1hQVVDBn8nLOnRTC5UGjWvHMpN6UFFmY/Nz3XDovAM2YR9oz7plunDpxnTfnCvbH7Kdn6uwhNG5ai7cX/MxvclBotx7JvDylH1t/PcsXX+wU4Cc+jNdfH8Hl1FzmvrQEu91FVGQAr88bQcqVXF6a8hMul4dasSHMnzWUTdvOsXyNcDK1bZXAC093581/b+ZCSg4qpYLnn+iG2azj5bmrcLk9JNQKZcqzvfjwm12kXLspRL6SUcT7i4XepnfHJJom12TmR7/g9nhJqh3JmH7NWfD1dqx2J9ERgTw+tA0fyh1XUaH+PDKoFR+v3Eul3UlsZBCDOzXg36v24vZ4aRAfQaPaNVi0URyLu7eoQ4XNweYjl1AqFDzcszm/HLlIUYWVUH8jXZvW4YffBAjq3CCO7LIKzlzNQ69R079FfVYfPisCAetEk1Nh4UZuKWadlrb1Yn1Ap1tyAofSMrA5XcSHBSEp4WxWHkathkYxkey9ch0J6Jh4M0OneUwU53LycXo8JIaFkGu1yKDHD4f3ZkKyRqviWkkJ/nodJr2WtJIS/HRajDqtLxVZo1GRWVFOoF6PBORbKwk3mSh3O7DdXv/gH0i6DG6qgI5CAaFGEznWilt6rsKNZgpu67lSKxUYNaLQM0hnoLR6oafTglapRKkEm8dJiN5AmUuss/y1WixuG/4aA5WyaDlAq8HivlkZUZWdY/XYfKAGJIwqsaby1winlUoBKoT7qgro6JRCD6TAi0EWJVcBHa1SjYQLJV6CNH/vwvUfDXYAhg1rSYTc27SyCtTEh9FNtm+XlVpZt1JcgT32VBeUSnGyOLw/laupeRiMWkZUSz8+uPsSWTeKMfvrb8nVKSoo5ze5qmH0YzcdWwC/rjuBw+4ioV4kjeRm5arZ+csp3G4PdRvWpHb9W1dMToeLfXL7eM+7uKwkSeKwnLLavtfdqx3sNieXT8tZEO3v7V7KzyzBbnWi1qqITgi75/2qxlYp0Pft8f5/NEqlkti6kaScSifldLoP7JSWlt73Y1SNX5CJ2d8/x8v9FnJ813nmPPgps757DuNd+sD+u4690sGRHWfZt/E4R7afvaUHq1G7RLqPbkvnoS0x+d0/4HS7PPy25ggrPt5K1jUBLPyDTYx4ricDH+/iE5HfbU4dSOHr+eu5ek60gUfWCuGpmUNp37fxHSDLVungp4+2su7r3XjcXnR6DQ9O6sOwp7reUl5rtdj5/v1f+fmHA2KlGWLm+XnD6Njv5mOWl1Sy6I2NPm1abJ0IJr8zmrqyZd5udbL4/S38LLOnNWuFMHnhaJLkOpfzJ9N5Z9oq8rJEivKDz3bjgae7olKruHD6Bm/LycZKlZJHn+/OqMc7oVDA8sV7+X6R6OOKig5mxsJRJCbV4Pjhq7w9e62oiTBpmTRjMF16NeDIoSu8PXc9FeU2/Pz0/Gv2EFq3T2Tpd/tYsngvkgSJ9SKZ9cYI3G4vLz73HenXhZbn2ed70HdAEz788Fd2ymvpbt2SmPRyX5YsPciq1QLAtGgex9TXBrJk2SHWy5bxju0TeXF8D96vFhT40Oi2tG9Tm0kzV1BYbMHPrGfOlIEcPZPOx9+KGI3ObRIZPqApM9/dSFFpJYH+BqZP6MfKLSc4clqc8J8e04EKm5235aqH7m0SSUqMYt6iX4X1vH5NOresw4LF24V1vE4UHZon8M6SXcKhVS+aevHhfLJWXCB2a14HlAqW7RKgc0z3phxNyeBqThEGnYax3Zry028nsbvc1KkRQlxUMCsPCB3SoNbJHEpNp6C8kmCzgVaJMb41Vs8miRxLy6Sk0kZEgJm4iCC2nxM6nN6NE9lx8Qoer0Tj2EhyyivIr6gkxGwkKsiPw2mC3WkVH+0DOm3jYvg9PUOIjGtGcLmwEIfbc0tYYM0Afyo9DgorrISbTbjwkl0hkpBdeMm1WAgzGbFLbgqslUSYzJQ77djcbqL9/cmxVeD2eoiVAc3d6h9uWERwoFmnpcBWSaBOT6XHgcvrIdLkR54cHBgp91zpVCpUKgmL206o3uRrNq8q9DSo1Ljx4PR6bmsuV2H12H3N5QL8qLF1RCXNAAAgAElEQVR67PhpdFg9dtlSrsYm28ztXtFwrlOKNvOq5nKNQomEGy8SZrUah9eGQSUYICVedErwSG6h1ZFs6JQavDhR4kWrkLD+T13EXx+jUccDcoBgcZGF9XIC6RNP39ztr1p2GJvNSZ26kXToLFwmkiTx03fCNTB4REufVkeSJFbK7M3gUa19eh+AX1YdFXRv01jqVVsDeTxeXxLrkGpW2arH2yozN32G3anHObo3BavFQWhkAA1bxt1xe3pqHgU5In6+6V2EoCDi+T1uUYxY5WC52+TIcf9RsSH3JWT9u9O4Q11STqVzYvdFn1anrOzvvbgTGsYwZ8kLvP7YF5zcc5HXhr3PrO+eJTz6zj6m/y5jrbBzbOc59m48xtEd524BODUTwuk+ui09RrW9L9t49XHYnGxbdojVn20nP0s46e4X5KSn5LB4wUaO7BQnYYNZx9gJvRn6VNc72DRJktj3yym+emMDhbLAuV3vhoyfO/yO19/hnef5fPY6CuT79RrRkqdnDPZ1WgEc3H6OT2evFWyOUsHwJ7vwyMRevu978dQN3p+6kqx0oTMa9GBbnpjcD71Ri9vl4ccvdrHymz14vRIRNYN4beEokpvWwuPxsuyr3Sz5QoCZiBqB4rYmsRQXVvDO7LWc/F1oObr2achL0weh12tZ/NlOX7ZWQmIEMxeOIrJGEN8u2sUyeZ1VNymKmQtGYjRqmfmv5RyVWa3+g5vxwqQ+/P77Fd596xdRERFiZta8YQSHmJn40hKuXs1HqVQwfnx3evZqwJx56zgp28PHjmnL8GEteP2tjZw+K2fqPNKRju3r8sqMFWRll6LTqZk6qR9Oj4dJM1fgdHmIiwlhxsv9+XrZAQ6fEGDosVFtqRkVxL8WrMXp8lA7NpQJT3Tjva93ciOnBL1OzatP92L74cscPCmeh8eGtqbEYufTZeLYOKBTMiaTjn//JJLie7Wth9mk4/M14nkY0D4Jm9vN0u0ClI3t0Yyz13M5lyaqJR7r14p1B85SVC4YnL6t6/Pt9qOCpakXg0vysu1UKiqlglEdG7Ph2AWsDpfPWv7rKbFyG9wqma1nU7C73CRGhqJSKzl8RYiPuyYnsPW8YLbb14nldHauXNoZiEKt4GxWHgaNmno1wjh0XTynbeNjOCx/3qJWDU5k5eCVJJIjw0kpKsTl8VInNJhMSxk2l5vYoAAKbFasLhfRAf4U2W2+z/NtlTg8bmL8A8i5j1TkqvqHCLPZV/+gVEKJw0aoQeTiSNXqH6p0Ofl2C2aNaCa3ezyEGcwUVuXpyDZzP40Wq0cUeob6BMhKVEoJu9dJoNZIhdxcrlcrsXkc+GtEarISCb1KZOcEaHTYvDbUCgVKhFC5CuiIkk+XT4/jrCr5lESooEYpIeHFLGt19EoNHpyokVDJdRFB2vvXcFaffzTYGTGyFf7ymmXZ0oPY7S7qJ9WgnQwMSkoq2SBXLDz6ZGcfEDlxNI3LF7LR6dQMH3vT7XP6+HVSLmSj1akZMuZmB5bT4WKTDKSG3ZZufGx/KrlZJZj9DXTpe2uYX8q5TG5czUerU9O1X2Nun92yA6NL/8Z31dpU2cmbtK2D7h7aivOyZTe5Rdwfrjhugp37O4lWMWB/tSOqRbdkVn+2nRN7LhIQKhi3vwt2AJp3TebtdZOZ/cDHpJ5K59mO83hy7gj6PdrpD/VJ/zdNXkYRv289zeGtZzh7IMVXqwEQWSuUToNb0HFQC+o2q/WXXV6VFTY2f7+PdV/uoqRArJ2CwvwZ/mwPBozrdNfU46opzivjxw+2sHXZIbxeCZVaSf+HO/Lgy30IvEtlxY3UXL6YvdaXwh0RE8yzc4fT9jatWXF+OV/MW8/+LeKKPTImmAlvjKR5p5thg2XFlSyav4Hd8toppnY4rywcTX2ZrXE63fz0+U5WfSWATEiEP68sGElzeVWbkVbAO9NWkSqvk3oObsZz0wZiMuspyC3jnemrOSu/N7r2a8SEGSJh+djBK7w7Zy2lxZXodBpeeK0/vQc3oyCvnFmTfuL8aXESHDCiBeMn9cFSYefVCUs4K+fwDBrekvETe3E1NY/JL/xAfl45Wq2al6b0o2efRnzz1W5WyvrAxk1imDlnGKmpucycuZqKCjuBQUZmzx6GwaDluRdFfo7Q5wwgMiqA5yYuoaBQhAzO+NdAvBK8MOVHbDYXkeH+zJs+hB37LrJSjtvo2KYOj45px7wPN5GRXYJOq2bqi31ISctnwaciEbljq9r0796I6e//jMXqICLEj8lP9+CLZfu4llmEVqNm8uPd2HboMscuiKb1Z0a259zVXH45IJjlRwe14tKNfLYeFa6uJwa14fDFdM7LwOapQW1Zf+A8OUXl+Bt1PNirBd9uPSIASs1Q6sWGs2SXAEV9W9bnYnY+aXlCrzOoTTIrD53B45VoFl8Du9vts5b3bV6PjSeEtbxFQk1yyyvIzC/HT6+lcVwU2y8Idqd7cgJ7Uq/j9npJigqnwFpJQalgd8L8TZzMzEGtVNIkOpLD1wWj0zoumiMZgsVsGh3FqWzhskqODOOyLywwhKulJbi9XmoHB3O9vFQkIQcHcb28RAQHBomAQOm2VOSEoGCulRcjAdH+IhVZq1Lhr9eSZxWiY7vXhdXlvmv9g8jT0VHksBKg01Ep91xVAR2VAswaLWUuK4FaA+W+PB09pa5KWVjsxiUXepa7REu5WunF6XUToNVjcdvQKBSolBIuyeVrLq/O3lQBneoln0aVEqfkwKQWqy6N3H0lVl4iKdmg0uKWHKgVEipZsKxTKf8nVPDvzODBYvWTn1/OLzIF/vhTXXwnjNU/HcZuc1G3fhRtq+lZfvpWXLn0H9qCoOCb+8NVsgOrz6CmBFYTVv7261nKSq2ERwbQvuut5Zkb5QNbn2HN0Rtu1dxUsTodejbwRdlXjbXSwRFZENn1Hi6ro3tk4V23exd2XvSBnT8OCcyuAjt3sbbfdarOuX/RJZjcKgGdQUtJfjnqMPF8/FfADkC95nF8uGUq776wmItHr/HJlKXsXHmYcTOG0rjD3TNh/k9OZbmVc4eucHr/ZU7uvUja+cxbbq8RH07HQc3pNLgFdZrE/i0be0FWMRu+3s2WH/f7msjDo4MZ9WJveo9td0/hMQgb++pFu1j/9W4cNsEste/bmMenDyb6tmRvEKuoZR9tY903YmWl0akZ/VwPRj3fA53+5mve6/Xy6/LfWfz2Jior7ChVSoY/2ZmHJvb2vTckSWL/r2f5fN56SosEmzPqma48+GJPH5tz9WI2709bRZrsmOo2qCnPzRiMX4ABSZLYtPIIX723BYfdhdnfwMQ5Q30ddHu3nePj1zdgqbBjMGp5ftpAeg5qitvt4euPtvl0d/F1Ipi+cBSx8WH8vj+Fd+eup6LMdsva6viRayycu06ss4xaJk0bSJceyWxYfYwvP92O2+2lRnQQs98YKRKZX1nKGRksjRzdmsef6sKyZYdYIn/PpOQazJkzjOMnrvPhR1txuTwiP2fucC6l5jBh8lJcLg8xNYN5ffYwdu29yA+yBrFp4xgmv9iHD7/cznF5bf3o6HYk14ti0pyVVFqdhIf6MXNif5auP8Lhk4LheXREG/z9jUx/fyNeSaJRvRo8NLglb3whhMihgSYmjevOolX7ycgtxajXMPHhrqzcfpIrGYXoNCpeGNOZNXvOkJZdhF6r5tnhHVi28wS5xUKY/Fj/Vny96QiVdifRYQF0a5HIok0HkSRom1QLSSHx8+8XUChgTJcm/HoylWKLlTB/E22Ta7Fcbi3v1rA2l7ILyC4R1vK29WPZcFzWOzVI4ER6ts+NFRZoZn9qOkoldE2qzc5Lgl1rHR/N+dx8LA4nscEBeJVwMa8AP52WmOBAjmdko1IqaBITxZGMzFvCAiXZWn46986wwPphoVy6W1hg9VTkakAnLiiQa+XFqBQKQk0mMi3lmDQaVCoFRXYroQbRTeWRvNQ0+5Plq38wk2urkAXKSspcskC5Ws9VoUPocjQqhSxANvp0O1WFnia1BocsLK4q9NSrlHjl5vIqoKNTClDjkbw+oKNTCkeWqInQYPfaMCq1OCUHCrzoVQpcklMGOuIx8ImSlbh9QMeOVqFAIQMdrVKBR3IRqPmfuoi/PFWlnMuXHsTl8tC4aayv7LO8zMrGdYKNqc7qnD+dwdlTN9BoVIx68CZLc/1KPscOCev48GoiY0mS2LBC5EsMHtP6lhVQXnYpJw6JN9mAam3oINigvbLGp/fQFnf87Mf3peB0uKkRG0Ltu9jFbZUOLp4U9HaLTnc/oUuSRIpMd9dvFnvX+1RNUa4AHOH3mZtTdXKyWR33df+q0eo0tOiWxMHNp7EUipPw39Hs3D41EsJ575dX2fjVLr5bsI4LR67y6pD3adqpPn0e6kCbPk3+j+l5inJLuXwijQtHrnJ6/2WunrnhK98EwZI1aFOHNn2a0KZPY2ISI//297pyNoO1i3awd8NxPG7BusUkRjLqxd50G97qnhZyEKuun7/fx8pPt/tCAZNaxPHE9CE0lJvAq48QKx/j24W/+FijNj0bMH7OMF/MQNWkXcrhk5mruSjbvRMbRTPxrVHUriZqLsor47N56325ObUSI3h54WjqNRbaHLfLw4r/7GbZol143F78g0xMmDuU/4+9s46O6lDX/m/v8Ym7EYUQPBA8uDsEqTsthbaUChWgUKDtqZz6aU+9pYVCaYu7u7uG4BInLuOyvz/2niEhgcK5cu5d93vXYi2SkWQmM3ue/byPdFWATElRJZ+9uZSDSgBnm04NmfzOaEIjAjCbbHz9/mo2Kic9KS0a8Pp7Y4iOCyE3u4T3py3inNKlNWR0O8a/PBBRJfLdZxtYrNRLNGoSxRvvjSEiKpBfvtvGgp93IknyOmvG30YTGOzLO28uYYfSb9etZxMmTx3KhQuFTHltIWWlJoxGLa9MGUpq6zhmvrmYg0r1xfARaTz5VA++/34bKxVGt1Onhrz68mDm/LqLFcr3unRqxKRn+/HpVxvZe0A+towe3pYBfZvz6uxF5BdWYNBrmPLCQPIKK5jy3lIkCVo1jWHCo91575/ruZZXik6r5rVn+nMkM4efl8lr9sE9mtOscSRveITISRHcN7gt7/24kWqzjcgQP8aNSeeLhTsoq7IQHGBk3Kh0vl6ym/JqC2GBPjw6pD1fLd2N2eYgLiKQgZ2a8uXS3XJicqNoosL8mbtRPu4O7dSUrJwizucVo9eoubdnKr/tPIbN4SI5OpSIYD9WHJTBzPD2zdhy+qJcmhnsT4OwQNafkNdTg9uksPH0BexOF42jQrFLNxKS05JivECne0oiuy9eVdidMAqqqyk1Wwj39cGo05BZcB2DRk1ieDCHc/IQBWgRHVkH6NwcFtg0PIwzxXXDAmsCnaTgIC5WlCIKEF0jFdmg01BgriZQr8fmZXF8vSyOB+gISIQYjBRaqvHRaHDhwuS0EW7woVjpuQrRG2v0XDmxulyE6H28eToBOk09hZ56pdBTfaO8U3vDfeVUvic3l5sxihrsCnvjo1Fhc1u9JZ8iElpFj+OjiJL1ogqplijZjlEl29J1ggjI96URQcKJUSVichXf8hh1u/k/DXYAiq5XslaxqT6q1EIALPnjAFaLg+SUSDp0viHcXajUOfQd1KpWTs7iBfIBL71nE6JraA8yT2Rz8WwBWp2aATeJiDcsP4IkSbTukER0bG29woGd56iushIa7k+r9nVZlz2KPqJz32b1ntmfPHgJl9NNZINgouLq16iUFFZSUWJCVIkkNrl9g3l5sWwJrm89Ud947MUeK/HdzOBHurFnzXGuX5U/IP+jzI5nVCqRkRP60m1EWxZ+upZ183ZybGcWx3ZmodGpade7Od2Gt6PjwFZ3Jeq905EkiZKCcq5m5XH5dC5ZRy5x9vBlipRqjZoTnRhOatcUWnVNoW2vZneVV3TzuFxuDmw8ybLvtnBiz42m9VbpyYx+pi/t+jS/7UrP6XCx8Y/9LPhsnVdnE9c4ksdfH0qn/i3rff1lHb3CNzOXcFZZ30QnhDJ+5kg69KktlLeabcz/x0aW/LgDt8uNwUfHoy8PZNijN9rOJUli/Z8H+OF9mfFRqUXum9Cb+yb09rodr5wr4JNpi7xrqS79mjNxZoa3B27HupN88c5yqiosaLRqxr7YnxEPdUYURc6cyObv0xaRn12KKArc92R3HlJcWptWH+fL91dhMdvx9Tfw8owRdOndlLycUt6btphzikNxxH0deGpSP6oqLEyZ9CvHFdA2eEQaz7zYn9ycUp578kdys0tRqUSentiXjDHt+PP3A/z4/VbcLomExDBmvT0Ks8XOMxN+prCwAp1OzUsvD6J16zhen/IHZ7LkrJzHHunKwIGtmPH2Uk4pIYNPPNyVbl1TmPzG72TnlqHVqnnl+QHo9Gqen7oQq81BdGQAb74yjD9XHWbTTpn5HdE/lc7tk3j13SVUm2yEh/gxdeJAflq0l+NZuYiCwIQHu1FYVsmHP8llvL07JtMsOdorRG6ZHE2/9BTem7NJbj2PC2Nw9+Z8tGArDqeLlLgwurdtxCe/b8ctSaQ1jiE+KphvV8rMdr/2jSmtNnsdVw/1SWPNoSyKK02E+Bno27YxPytlnh1T4qiy2dh55jJqlUhGh+YsPSi3ljePDcclwL4L11CLIv1Tk1l9XF6dtUuK4UppOUVVsoA5LjSQ3Rfk4MPuKYlsOycDy3YJ0ZwquI7F4SQxNIhqm50rpeUE+xjwN+o5XXAdvVpFfEgQx/MLUIkCjSPCajE6N4BOqBfopISFeoFOUlAQ58tKUIkCUf7+XKooQ6dSEWDQkVNdib9Wh0uQKLVaCDf6UGqX83RqsjjRyv/VooCvVl5XBen0VLmsuCV3rZ6rQJ2BUrtZZlpcdtzc1HOlUWFyWmv1XPmr5aqIOoWeTgu+aq23pdxPo67TXG5Uy6JkT3O5WllTuZEwKnk6npBAEbcXBBmVmgiDqMIt2bwpyuDGoBJxSTZ8VXceQ1Jz/s+DnYUL9sqsTmosrdvEA3Ja8nJFY/PAI128B/PLF6+zf/d5BAHuffgGe1NSXMUWRV8w5qZU5JWK+LjXwJZeITPIH0AbPWGAI+s6qbYoIWy9hqTWSSt2OlwcVBqU6yv9BDi+V95F385h5UmzjW0YdktNj2cqSmXQEhB6Zx+6AaHyC9IDku5m2vRoQnRiGOdPyo/7PwvseCY0KoiJf3+QMRP7s+7XXexcfpjci4XsXXucvWuPo1KLNGgUSULTGBKbxZDQNIaoxDD8g3wx+unR6jX1fsA7HU4s1TZKCsopzi+nJL+M4vxyrmeXcu1cHtfO5mNS8odqjiAIxDeJIiUtiZZdkknt2oSw6DtPnr7VmKosbPhtLyt+3EaBsoYUVSLdh6cxakJfklNvz+a5XG62LzvMr5+s9Wq2wqKDeOSVwfQe3b7eFO2Sggp+/vsqNi2StW4GHx0PTOrPiLE96qR379+cyVezlnp71LoMaMn4N0cQVqM6Iu9qCf+Ysdj7em7cKpYX3x1DolJX4nK6+PPHHcz/52acDhe+AQaenT6cnkNSEQSBqgoLX727kq1KA3ijptG8+t49xDcMx+V0Me/bLfz2/XbcLjfhUQG89u4YWqQlYKq28vHsZd73dcu0eF57ezThkQFs23CKz99didlkx9dfz+Q3R5DeowmH9l3kg7eWUVFmRm/Q8MLrQ+jdvwVrVx7jn5+ux253Ehbhz/S3RhEbH8LM6YvZq2Rc9e3fgkkvDWDrljN88cUGHA4X0dGBzJo9msoqCxOe/ZmycjO+vjremCoHHE6YNJfSMhM+PjpmvD4Mh9PNsy//itliJzzMj7emjWDn/gv8ukhmltulxvPs2B68+8V6zl++jkol8sKTvbDYnUz9YJmcwp4Szdj7u/Du1+spLKnCx6Dl9af7sWLbSQ6ekoHrk6M7U1Rh4ovf5OiNQV2bEhzow8fzZBdXj7SGxEQF8slv27xf+/vq+U6xkg/q1IQyk5UlO2Wn1MP909hx6jJXC+UE5gd6t2H+1iNY7U4aRgXTsEEovyllnoPaNeHY1TzylBTkni0b8uc+mQHv0iSeS8Vl3jVW24YxXqDTu3kSey9lY7Y7iA8NRK1RcTQ7H51aRduEGC/Q6doonj1XruGSJFpEhXO5tByT3U5MoD92ycXl0jICDXJwYFZRMUaNmshAPzKvX0ejEokPDuJ00XXUokB8UBBniotRiwINggI5W1qMRhCJ9PfjUnkZerUaf4OO7KoK/HQ6RBVct5gIMRipdNiwu13E+Pl5u60a+AWQo6QiR/j4kmeuRK9So1YJVNithBqMlCosTYSPnIqsEgQMGg0VDrO8jnLeqH/w9lyJbqwuO8E6+XIBMKo1mFz1F3rWbC730cjdV34qHRa3p7lcwOFtLreiEwUk5LWWQaXG7q4RElhDlOxxZHmAjgoQRbe8+hIFXJINo6jG7P7XmP7/02CnpKSKNQr9+0gNVmfl0sNUV1mJjQ+hS48bepdFCnvTpWcTYmJvsCWr/jyI0+mmWatYmtZIFy4rqWanYv0edtOa6viBS1zPr8DXT0/6TX1UVRUWDuyQqfY+NUIJPXPy0GVMVVYCgn1ocosPrGPKeiy1863BzkXlrDTpDnJzPKDl5kC4W43njNqzvribEUWR0c/0Zc9zsp31emHRXd/HnUxkXCiPT8vgsakjuHIml53LD7NzxWGyzxdwNSuPq1l5bF96sO7vpxIx+urRGbQ47A7sNid2q8PbM3W7EVUiMUnhxKVE0bhNAk3SEklunfCfukK7nJnDmrm72LzoAJZqeRXoG2hk0MNdGfZEd8L+oq9MkiR2rznOvI/XcO2cfLYaGOrHvRP7MuQWQYJWi53F327hz6+3eHU8fce054nXhxIcUXvHXphTyrdvL/euo8Jjgnh21kg61gDuLqeLJT/tZP4XG7FZHej0Gh59aQAjHuvqBVmXzxXwaQ02p0PPJkyaPZIQhXE9vOc8n85YQvF1OVfn/qd68MD4nmg0avKulfD3aYvIOinroXoNbsVzU4fi62/g9PFr/H3GEgpyyxBVIo883ZP7nuiGw+7kk7eXs36FfMxo3jqOKW+PIiTUjx+/2szv82TNXlJyBNPfGU1IqB8fvL2czevlD/UOnRvx+ozhFBRU8MxTP1FQUIFGo+LZ5/vRt38L/vGPDWxQoiTS05N57fUhrF5znB9+kkXWDZPCmflmBgcOXeaf3ykhgwmhzJ6ewfrNp/n1d5klad0qlleeH8Dn323mgFLce++IdnRql8SLsxZRUWkh0N/AjJcGs257Jht2yGu1oX1a0qZlLK/9fRk2u5O4qCCef6wHn83bRk5BOQadhslje7NqRyZHs+R276dHd+HMlQLWrJHv46FBbblWVM6v62QW5oF+aZzLK2Lb8YsIAjw+qAPbT1ziYl4JOo2aJwa357etRyk3WQkP9KFfuxR+2nBAdlw1jsUpSKw7cg5RELina0tWHzkrVzqEBJAUFcJyZY01sE1jdp2/6l1jRQb5sSVT7rUakNqYDafP43JLtGwQQaHJRGFZOUFGPbGhgey+JPd5dWkUz07FWt4uLppjuQWyyDg8hLzqKqpsdqID/LC7XVwtKyfYoEenU3OxtBQ/nZYAHwPnS0swajQE+Ri4UFaKUaMhwKjjcs2wwMoKAnQ6JBUUmqsJNRowuRxYbA4iff0otFTjltzE+QeSbZJt5jF+/uSYKhAFCNLL6yp/rRab24nJ6ay3/kErqhDFuvUPwUr9g1GtxinZcbjdSp6OGbUgoBFFrC67t9BTBHQ3F3oioVML2N12b6GnWhCU7isXvkqhp0G8kZ6sV4k1QgJri5I9KzGjqMIlWdEIIghOBeiAGwc+ymW6/18EevezZNFBHHYXLVo28LI6dpuTJYrG5v6H072uopLiKm9R3z0P3WBv7HYnqxUh8agHazutNqw4itPpomnLBiQ3rb0m8mgDeg5qVYdV2bslE6fTRUKjCBKSI+r83od2ykCoffeUes+uTVVWb69Qy3pWYJ7JUcLiEhr/tQbEZr273JxoJZHW8zPudvrd35nwd8LJOg8nDmT9lxZnCoJAYrMGJDZrwCNThlOcV8blzFyunMnlcmYulzNzqCypprRQZpjcLjfVFWaqK+ovpPML8iEkMoDQ6CBCIoMIjQ4krnEUcSlRxDSM+C8JN7RZ7OxceYQ1c3dy5tBl7/djkyPJGNeL3qM73DII0DOSJLF3/Unmf7qWSwqA8A0wMOaZPgx/oke9f3u3283WpYeZ88Eqr66rSVo842eOpEmbhFrXtdscLP5+Owv/uQm7zYlKLTJybHcemtQPfY1k8HMns/n8jcVcUsB4audGTHp7NNHx8gmG0+Hizx+2s+DrLV42Z8LUofQeLndzWcw2fvxkHat+l1nVmPgQXn33Hpq0ikWSJNYuOcS3f1+L1WLHx0/PxDeG0WtQK1xOF79+t5X5P+y4YTd/ZzTNU+O4cDaf995YTM7VEgQBHhjbnYef6kFJcRWvPDeX00p1xdBRbZkwqT+5uaU899SPZF8tQVQJPDGuJ/c82JnVK4/y9ZebcDhcREYF8ubskRh9dEx6fh6XLsm28rFjezBkWBs+/HgNuxTnWv9+LZjwdG++/HYzm7YqfU49mjLhqZ58+I/13vycMSNu6HPyCirQadW8OrE/lSYbr7y1CJdbonFSBC+P78MnP2zm7MVCVKLA84/3pKTKwuwvZAdWx9QEhvZuzswv12Cy2IkM9WfSIz344red5BVVYNRrefGRnvy+4QgXsovRqFU8e19XVu3O5Hx2EVq1ivGj0lm26yTXCssx6jQ8NawT8zYeobTKTGiADyO7t+D7tftxutw0iQ0jISqYXxXH1aD2KZzOuc6V62UYtBqGd2rGor0ncbrdtIyLBFFg2+lLqESBIX/OBB0AACAASURBVO2asvpolpxoHBOO3e3i0OVcdGoV3Zolsvak/Bx2ahTLybxCqm12YoMD0GhUHM8pQK9W0SI20gt0OiY0YP9VGQSnNoji9PVCr508X8nQifb3w+y2k1dVRZivEbcA2RUVBBkMiCqBnMpKggx6BBXkVVcRrDfgws11s4kwHyNVTjsWm4NoPxncOCU3sf4BZFfLzE1cQCDZSnBgpK8fuUoqsk6tosRmJlhvoMJhwS25vWGBIBFiMNSqf7C5b9Q/yNoaHeUOC/4aLWZ37foHnahCwo3d7SBIp6faaVYAjITd7fACHbnQE5ySEz+1DovLgk4lIiFXR3iSko0KgKmvubymKFmnUuGU7PiIKpySVUlKdijrLQkJlwKCbOgEFSbp7rcF8G8EO9u2baNXr171XnbgwAHat6+bFgzQs2dPtm/fXut79913HwsXLrzr32H92hOAmocf6+r9IN247gRlpSbCIvzpVcMSu2LxIZxON81bxdK0Rk7Ozk2ZVJSZCQ33I70GC+R2u1m9RF6FDRld+7GYTTb2KCLFvsPqNmTvUM7uut9kRffMoR3KDvoWwuOzx2WBa0SDIEIibq1cz70sMybRd+CwcjlcAKjVd2bXTlTAXfaFAhx2Z62guDsZjVbNvc8MZMfLyygqLGbDb3sY8GCXv77hf3AEQSAsJpiwmGA69Kv9/LvdbiwmG5ZqK5ZqKzaL3Mat1WnQ6uV/OoP2vzWp+eKpbDb8tpctiw9QrYiGVWqR9EGtGfRoV1p3TflLkChJEvs2nGT+p+u8gYAGHx0ZT/Vk1NO98A2ovwX9xL4L/PDOcs4rH/ThDYIYO2UY3espBD20PYuvZy3zuvpSOzfkmVkjia8htraYbMz7fAPLf9mF2y3hF2hk3JSh9B3V1nt/FzLz+HT6Ii6dkcF8p95NeX5mBsEKm3Pq8BU+nr6Y/Bw5K2j4A50Y++IA9EYtZSXVfDZ7GfuVFXCrdom88s4owqMCKcgt44MZi8lU3FB9BrfiudeGYPTVsWTBPn5SAEpImB+vvTWS1u0S2bUti0/fXUlVlRWjj46Xpw6lW++mrF99nC8/WYfN5iQ0zI9ps0bSsHEE7/9tBVuVNPT0ro15dcoQjh29xocfrsZkshEYZGT69AwCA41MfP4XcnLL0GhUTHy2L23axPPylIVculIkl3aO60XrVnG88PpC8grk/JxXJw1ArZH1ORarg8jwAGa9OpRlG46zVqmC6N+jGYN6NWPK+8soqzAT6G9g6sSBLN98kl2HZDb4gaFt8Q8wMOOL1UgSpKbEMLxPS97+bj1mq4OY8ACeGt2Zzxds9wqRnx6VzjfL9lBaaSbY38jYYR35dsUeKs02IoP9GNWjFV+t2CvreRqEkto4hu/WyCeVPVolUWWzs/bQWURB4L6eqaw5cpayagvhAT50bHrDcdW9WSKXi8q4VlyOj05Dj5YNvY6r9MbxnL9ezPVKE8E+Bho3CGPjaY+1vCHbz1+WAVF0OEUmE9fKKwgyGogM8uPgtVxUgkDb+Bj2X5VdVu0TYjiYLYP+FlERnCkqwumum6FTbDFjcjiI9vejwm6j2mwnys+PcocFs8VBtK8fJVYzNpeLBgH+5JmqcEku4gPkJOS6YYEBZFeXoxIEggwGCsxV+Gm0OHBReYtUZFEAf52OMrvcY1XllAs7ww0+lNg89Q8aqpxWWdejrLOCdHoqnRaMKo1Sw+Cpf5DBj0txX3l6rvQKqPEUelpcciCgSyn09CQl+6o02KVbNJeLctN5TYeVB+joRLU3QFAjugE3BlHELdnkyyQrGuF/WTdWeno6+fn5tb43Y8YMNm3aRLt2dQP0as64ceN46623vF8bDP+amNRuc9K8RazXgeVyuflDcVaMub+Tty7CanWwSinmG/1Ax1r3seJP+exxyOh23s4sgMP7LlKYV46vn57uN6UX79p0GpvVQUx8CCk3lWpWVZg5ul8+6HjssDXnel4515RgsbRb6HE8LqxmaQm3fOySJJF7Wf7gqa8p/eZxeMCO5s5eMqFRgfj4GzBVWsi5UEhiPVUBfzUpLWWHj1Oy8830RbTolExMPdbm/64RRREfP8N/iXj5bqaq3My2JQdZ/9seLipuOpCt44Me6Ur/BzoTHP7X9ky3282+Daf47fN1XDh5A+QMH9uDUU/3qtVLVXOunS/gp/dWsn9TjRDBif3IGNujzoqrILuE7/62kr0KKxoc7s+4N4bRY2jrWoBo3+bTfDV7uTdAsOew1ox/Y7h3HWq3OVjw9Rb+VFgXvwADE6YNo9cw+X7sNge/fLGJJUrScnhUIC+9NYo2neTX0J4tmXz+1goqykxoNCoendiX0Y+mIwgCm1Yf558frMZskvuwnp86lN6DWlFeauLNl37jgKKr6dwjhZenD0dv0PLlR2tZoej6UppGM+3tUQQEGvngreVsVh5ru45JvD5jBKWlJp59eg452aWIKoFx43uTMaotP/ywnUXK8aNly1imzxjBsePXeOPNRVitDsLD/Jn5ZgZlFWbGT5qLyWQjKMiHWdNGcL24kudemY/N5iQqMoDZU0ewdc9ZFihVELI+pycffLWerAuFiKLAhEe6o9drmPy3JbhcbholhPH8E734+MfNXMktRatR8fKTfTiSmc2CtfLxbnjvloSH+vHWt+vl+20WS492jXjnhw04XW4ax4UxRBEi250ukmPD6NuxMZ/8sQ2XW6JFYiQtGkXzz+Xyiq9bq0QElcAf22Xwck/3Vuw/l81VhcEZ070Vv+08hl3psQoN9PE6rjI6NGPL6UtUmK1EBfrRKCaE1UdlkXX/1GR2nr2C2e4gITQQo1HL3gvXUKkEujdJrGUtP5VfiMnuIDYoAFQCmQXXMWo0NAoP5oDC6HiAjmwtj+ZwrswyNo+UnVUuSSI5LJRL5aXe3JxrlRU4lFDA7OoKnG43iYFBXK0sxyW5vQGBN2foeMMCkYjy8yPHVIFepUKnUVNsvcHiuBQWx+PEiqiRiqxRQaXDQojOSGnN+gebvM4SRAmLy1ar/iFAq6XKacZPrcfskgXIgVot1U4zBpWmTs+VUa3xuq98VZp6Cz3tbru3uVwtCKCsqXxVqlrN5SISahEkXPiIIk7Jil6pi1AjoRJdCEgYBAG3ZEcnqnBLVtnqLtTVPd7J/NvAjlarJTLyxlmdw+FgxYoVTJw48S/PRI1GY63b/tXYbDZsthsW6MrKGzqShx+9wers2p5FXm4Zfv4GBtVgXDatPUFVpYXI6EA612BTzp/JI+tULhqNisE32cPXKuCo79DWddZUW5QSwr7DWtd5rPu3n8XldJPQKILYxLq1DEeUA2+T1LhaSbI1J0txwDRVVnP1TXWFxVvW+VfZOZIkefUoYj1rs/pGEAQSm0Zzav9Fzhy58i+BHU+CsqBxYzXbePOhf/LhspfraED+L4zd6uDgltNsW3KQ/RtP4rDJwYJqrZr0ga3od39n2vRoWu9a8+ZxOlxsX36YP77a5NXk6I1aRoztwajxvW8JckoLK/j103WsX7gPt1tCVIkMerAzD704kKCw2g4Jq8XOH99sYdG323DYnYgqkYzHu/LgpP61MqOK8sv5uoZ+J6JBEBNnj6Jd9xvvs8yjV/ls+mKyL8lMZLeBLXnmjWEEKSL4M8ev8cmMJWQrTOWAUW15+tXB+PjqMVVb+eaDNd61cWLjCF792xiSGkdSWWHmi/dWsUP52c1T43jtnVFERgdxeN9FPpq1jNKSajRaFeNfHMDQMe3IvlrCu8/P45LS0XXPQ515fHwvrl4uYurk38hVAI1nbbV+7Qm+/HwDdrvM8kyfmUF4RAAvv7SATMUgcM89HXj0sa5898M2VijGhLZpCUydMpQly4/w60L5BKx502jeeH0Yfyw9xFKlCqJD20QmPdOHT7/exCGlwuH+ke3p0DaRl2b9SXmlBX9fPTNeHMz2A+dZuUlmjft0SaF31yZM/WgF1WYbYcG+vDquHz8u3kPW5UK5ofzB7py+VMD3i+WfP6pPKhqNyEe/ykLknu0aERUewMeKELlbahIhwT58tVR2rPZrn4Ld5eK3zfJjuqdnKieu5JOVfR2NWsXDfdNYvPskFSYr4QE+dG2VxC9b5eNmetN4Ss0WdmVdQaNSMbJTc5bsP43D5aJJdBgqrciOrCtex9XaE+dwSxKp8ZEUmy2czr2Or05Ly/hItmTJCc/dGyew6+JVXJJE0+hwCqqqKK20EOpjxN+g40ReITqViuTIUC+jk6YAnZut5S2UDB2AJjWs5cmhsp0cIDk4mPNl9YUFBtUTFijir9eRb67CX6vDgYsKu5UwRX/jcV/lK2LlEIOBIiUV2YkTs8tZq/4hRKl/MKrk1GS3212n/sHkshKgMVBdo/7B5LLIJZ+K++pWPVdWt+0uCj1lrY6PstZSCQKi4AYkDKKAU7KhV2kUrY6AKDjl2ghBwI1DATo29KII2BD51+QM/2M0OytWrKC4uJjHH3/8L687f/58fv31VyIiIhg0aBAzZ868bSv2e++9x+zZs+t8PyExjE4KOyJJEn8q3TkjRrfDUCPEbLly9pVxT4daHyarlDO7rr2bEVgjXLC8zMQ+ZdU0KKO206qkqIrjSnZGr3rCAPcpQYGdezet97EcV1if1p3r5pp4ft8Lit4iucWtyzNLr8uAzy/QWCfM8OYRBAGdXoPN6vCKT+9k2vVqyqn9F9m99jiDH777FVRAgAxqJJWLiNgQ8i4XMe3ef/Dun5PuiLn43z4up4sTe8+zbclBdq8+VsvJldgshv4PdKb36A53bEu3Wexs/HM/i77eTGG2vObx8Tcw9LFujBzX85bic1OVlcXfbWHp99uwKvUUnQe0ZOyUoTRoWFtTJkkSu9ae4Pu/rfSyNK3Tk5nw5gjia2jDXE4XK+btYd7n67GY7KjUIqPGdufBiX29r0ezycbczzew4te9SJJEUKgfz80YTheF8bTbHMz952aWKGuvoFBfXpw1ko7KOvn4wct8/OYSrueVIwgCYx7rwiPP9UGrVXP0wCU+mrnUK15+eFwP7n+iGy63xLefrmeJciyISwxj2rujSWgYzobVx/ny43XYrA4Cgoy8OmME7Ts1ZOXSw3zzxUYcdhdh4X5Mmz2Kho0i+PC9VWzaKLM87TskMeWN4Zw9l8/4p3+istKCj4+O114fSqPkCCa/tpCzis7ukYfSGT48jb/9fRWHFZZ25PA07h3VgXc+XMWpM/L7+9H7O9O5UyNenvEnhUWV6HUaXnt+AOWVFl6ZLetzGiWEMXlCX774eRunz+UjigJPP9gVBIFpH69AkqBlSjQPZ7Tnve/XU1phJsBXzytP9mXeqoOcvSK7tibe3429J6+w/5T8+zwytD2X8kqYv14RIvdP42JeMUt3yGDqsUHt2X/mGmeuXUetEnlicHuW7D5FcYWJQF8DGV1bMHfzYTmvJy6c8GA/Fu2Rbzu8Y1P2X8ihoLyKQKOe7i2S+H2P7Irr3DiOa2UV5BRW4KvT0jkl3uu46tYkgeM5BVRYrEQG+BHib2TPxWuIInRNTmD7+Svy3yIhhpMFhVgcThJCAjHbHVwqkV1WwX5GThYUohFFGkeEciQ3D5BoGR1RI0MnnJPX5bDA5uFhnPZm6MjBgVB/hg5IxAUGcKmyDI0oEmQ01hsWWG634JRcchJyrVRk2Wbuo9VSZrcQqJOD/eRUZB+KbSZEwF+ro9xuxl+jo1phbEKVVGS55FOuf/CkIguAj0ZVq/5B7rlS3abnSv6eWhAQcCuFnup6Cj1FnJK9TnP5DYeVHYPizJJ1PHYF6MhaHZ2ywjKIKiSsqAURl+C41SHutvM/Buz8+OOPDBgwgNjY2Nte76GHHiIxMZHIyEhOnTrF1KlTOX78OBs3brzlbaZOncrLL7/s/bqyspLY2FhG39PBy6ycOHaNs2fy0GrVjBh9Y4125OBlrl4uxmDUMmDoDXBiqrayTaGrh4yuzepsW3cSl8tNctNoEhrV/jDYueEUkiTRNDWWyJsC+hwOJ0eUHJROPeumHkuSxHGljye1nhA3kEGMJ1k2IeXW7FdpURVAnTPyW43BV4fN6sBiuvOQwC6DW/Pz+6s4vvscVeXmWzJRtxoP2KmuruLthc8xZdTnXD2bz6T+7zP9p6dpknb71Of/jeN0uDix5xy7Vh1lz5pjtXKKQqMD6ZnRjh4j29OwRYM7FmxXlZlYNW8XK37aQXmx/HcPCPFl1LheDHm06y2b6e02J6vn7WLhFxupLDMBsvj4yWkjaNEhqc71L2bm8u3byzmpvEbDY4J4+o3hpA9oUet3PXP0Kl/OXOoVIDdLi2fiW6O8dnKAgzvO8uWsZVz39GKNbMu414fgFyD/rjezOX2GtWbC60PwCzBiszqY84+NLFNW0pExQbzyzmhapMVjtzn49pN1LFEuaxAfwmtvjyaleQxXLxXx/vTFXDpfCMDQ0e0Y92J/XE4X781cyjaFAWrdNoHXZ2ag1al5e/pidionKJ26JPPqG8MoKanmuQlzuOYRJz/ZgzH3duTXebuYP19OBm7UKIKZs0ZyLbuU8c/MoarKir+fnqlThuHnb+CZF+ZyvagKvU7DKy8OJCzUj2cn/0ppmQlfHx3TXhlCZbWVSVN/w+5wERMVyMxXhrJ4zVHWbZPXPv26N2VI3xa88eEKSjy3e24gm/aeZdMeGSAM79OS5MRwpn26EqfLTaO4MB4f1ZGPftlKWaWZQD8DLzzcg5+W7+daQRl6rZqJ93dn8bbjXMwtQatW8czoLizddZKryuXjhnViwZZjXmBzX+/WzNlwAJvDRWJkEG2SY5izQXY59miZRLHJzNaTF1GLImO6tWLZgdNY7A7iwgJJCA/yOq4GpaWw69wVKi02ogL9iA0LZMMp+XjZv1UyW7Iu4XC5aBwZisXl4FSe3FreokGkF+h0aRTP7stXZXYmOpzLJTes5U7cXCwpxV+vI8TXyKnC62hVIomhQZwsLEQUoHF4KCevexidUC/QaRwW4gU6DZUMHUGAuMBALlXI4CbE18i1qgqMajUajZpCczXBej1mtx2zw1UrLDDa199rOQ83+lBgqcKgUiOo5DbzmjZzD9DRiAI6lUiV00KQzkiFw2Mz11Hu8LivHDglN0EaORVZIwioVRI2t92biqwSZKbG5rYTqNFhvkXPlVaQE5UlJHzVcoBg3UJPR41CTzVuRXisEyTcklNxYVnRiyISdlS40Sisj05ZYXmAjkaQhcsSrnqPV381/+lgZ9asWfWyKDXn4MGDtXQ5OTk5rF+/nj/++OMv73/cuHHe/7do0YLk5GTatWvHkSNHSEurm1cDoNPp0OnqOkm61qDK/1Rs5f0Ht6pV9bBMcXT0H5KKT40yxC1rT2K1OIhLDKNF69r2740rZWtqv3rEx9uU3I6eA+t2XZ08eAWzyUZQqC/JzeuufXIuF1FWXIVWp6ZJav2g0GMnb5AUflvGpkwBO8Fh/re8Ts0x+uopL67GrFiZ72QaJIWTkBLFlbP57Nt4kn73dPzrG9UYD9gB8A3W8felLzH7sW/IPl/Aqxmf8uSMDIaN7XlHq5v/yWOqsnBs51n2bzjJvvUnqFKABcjOrm7D2tBzZHuad2x4V31e13NLWfr9NtYt2ONlZMJjghg9oQ/97+90y9eHy+Vm69JDzPtkLddz5AycBg3Defy1IfU2mJcXVzH30/Ws/30/breEVqfmnvG9GDO+V62fUVVuZs5Ha1n3xwEkScI3wMATrwxi4L0dvI+rvLSa795fzVblPRQRE8Sk2SO9nVZWi515/9zM0nm7vWzOCzMz6NRTZkKzTmTz0Ywl5FyRP3gGjW7HuMkDMfrouHiugL9PX8wVxSE4ZHQ7nn5pADq9hlWLD/Htp+ux25wEBBp5ecZwOnVPIfNkDu/NXEphfjmiSuCxcT259+F0zp7J492ZSyksqECtFnnymd6MurcD69bcWFuFhPoy/c0MYmKDmfL67xxTCjuHDWvD+Am9WbBwH/MXyFqWlJQo3pw+gv0HL/HGW0twOt3ExgQze/oIDh27yrsfr8bllkiMD2XmlOEsXXOUZWvl5yi9fUOeergr7365jvOXrqMSBZ55rAc6nZrJ7yzG6XSTGBvCS0/14fNftnH+ahEqlcjzj/TgSn4pH83xBAU2pnWzBsz8ai1Ol5vkuDDuH5TGR/O2ehOSx2Z04stFuyivthAa6MPjQ9vzzfK9VJltRAT7MaZnKt+u2ofN4SIpKpiOzeP5ZrV8bO3cLB6VWmTxbvkkcXTXluzMukJBWRV+Bi0D2zVh4e5jSBKkJUZjc7nYnnkZtSgyrENTVhw5g9MlO64ckpv9F7PRqER6Nm/oLfPskNSAc0UllJktRPj7EuxnZP8VubW8Y1Isuy7Lf4MO8TEcycn3Wsvzq6uptNmI8vfFhcSl0jL89Tr8jTqyiosxqNVEBPpxprgYrSjSICiQrOJiNCqR6AA/zpWWoBFFIv38uFhehlalIshHz9XKcowaDTqNigJTFUF6PVa3i3KblUgfH4psJtySu1aGTpSvnK2jEgQCdHqKrCb8tVqsbgdOl4two4+3xNObiqxWI0lOLC57rVTkQJ3cfeWv0WFW1lCBGrkHS69SISGDnwCNDHS0oojgESUrGTseUONW1lr19ly5bd5CT7UAauGmQk+VBpckgxm14MaNG72y1pIFy1bUCKgFOVdHo6ywjCoRt2RFK6iRsPEfsX78p4OdiRMncv/999/2OgkJCbW+njNnDiEhIQwfPvyuf15aWhoajYbz58/fEuzcajwfkjnXSti/5wKCAKNrFHvm55ZxYK/8Jsq454ajSpIk1ih28yE1nCIAVy4UcuFsPmq1il4Dart5CvPKyTqZgygKdOtfW7QMeGPs23dLqfdD7dShKwA0bR13S8fP1XPyWWlSk6h6L/eM50zdP7h+fcbN43HkeMIF73S6DWvDlbP5rPp5J33HdLgr+7hOp0Ov12O1WqmoqCAhKYHP1r7Gx5N+Yc+a43w7YxFbFx9k0kcP0rDF7RnB/0kjSRJXs/I5tOU0h7ac5tT+C97qBpBZly5DWtN1aBotOyfftsKhvjl77CrLvt/GztVHvfeb1CyGMc/0odvQNre8P7fbze61J5j38VqyL8ivo5DIAB5+aSD97ulQp+3eYXeycu5u5v9joxcEdx/amrGvDyaiRpaP2+1m89Ij/PDBau/rru/Itjz5+hCvAFmSJDYvP8r3H6ymstyMKApkPNqFR57vh94oA6aThy7z6cyl5F2TNRE12RyHw8n8b7byx087cbslgsP8eGlWBu27NsblcvP7nJ3M/WYrTqeLwGAfXpoxgk7dUygvNfHutMXsV957bTs1ZPLMEQQG+bDg553M/WE7bpdEZHQgU2ePJKVZDL//uoeff9iG2yURHRPEtNkjiY0P4b13brit2ndI4vU3hnHpUhFPj/uJsjITer2GlycPok2beN6YsYhjSkfViGFpPP5YV7745oatvHvXxjw/oS9ffreFbbtkFqZPj6Y8/nA67366lsxz+XKS8n3pNG8SzQtv/kFltZVAfwPTXxzMtn3nvPqcnp0bM7Bnc6Z9spLKaitBAUZeH9+P31Yf4liWnL785Jh0SirMfDxX1uP0bp9MckI47/ywQdbCNI6hS1oS783bjMvlpkl8ON3SGvLxQjkRuWVSJM0bRvPlMlmv06VFAjq9hgVbZb1ORpcWnL5WwLncYrRqFff1SOXPvScx2xzEhgbQND6CP5RVVb/UZE5lF5JXJhd2dmueyJKDSmJ8chwXi0oprKwm0KineVwEGxSg06tZErsvXsXmdNEwLBir20lmvqzdSY4KZfdl+fnunBjrbTBPbRDJ6evXvdbyAlM1VTY7kf6+2CWX106u1aq4XFaGn06Lj17HxbJSfLQafPVarlSU46vVYtBovBk6qKDAVE2IwYDF7aDMZiHSx5cimxmn20UDvxtJyDWBTriPL/nmKm9YYJm9dreVJyxQAPx1ekrtZvw1WiwuW61UZJUABo2KaqeFQK2eaiUYMEAjO7Fka7pS/6DRUe2yYFAs4BI36h9qghpfjVq2lNfTc2VUa7G7rWhFAUEJEPRodWoXerq8dnOXZMOokrNztIKAqKy3NAKAE6OywvICHQFUOLFxowj5buY/HeyEhoYSGnqHZZHIB7k5c+bw6KOPotHcPW47ffo0DoeDqKjbf7jfbjxpyR3Tk2lQo7Zh9bLDSBK069iwVojghax8Lp0vRKNV0fumNvKtim28XZdG+N+0ttmzRT6QNU+LJzi07vroiAKs2tUoHa05Z5SDY9PWtxYe516Raf0GSXXFzTXHo735K72OZyJjgzl3/BoF1+6ucXbwI13448uNnDt+jaM7z5LW/dalpPVNQECAF+yAzDC98cM41s7bxU/vLOPcsatM6v8+nQa2YsSTvWiZnvxflsfzr44kSeRfLebE7nMc33WW47vPUXa9dthiTFI47Xo3I31Qa5p3anTXbJXL6WLPuhMs+2EbmTVydlK7NGbMhN607dn0ls+LJEkc3JLJ3I/Xeq3nvgFG7n22D8Me71bnNSJJEns2nOKn91d7reSNWsQwfnrd9dbFzDy+mr2UTKU+IT45gudmjaRljevlXS3mi1nLOLZP1qMlNI7kxbdHeTuvzCYbP326nlVK/lVouD/PvznCq805fyaPj2cs4Yqyfuo1uBXPTpFBUH5OKR++uZTTynsnvWcTXnhjGIHBvuzfdY5P3l5Beans0Bo7sQ8Z93eiuKiS1ybeaCrv1a85k14bjM3mZOpLCziiPL+9+jXnhVcHk5dbxjNP/URubhmiSmDsUz0ZfU8HFszfw7x5u5AkSEwKY+abIykpq2bchDmUlZkwGLRMfmkgDRuGM+nVBVy9VoIoCox/sicd2iXy8hu/cy27FLVa5LlxvYmPC2HilIWUV5jx6YIWKAAAIABJREFU9dEx/eUhXLxWzKvvLEaSoGmjSF58ug+f/biFzPMyGBr3QFc0WjVTPlyOW5Jo0jCCJ+/pzIc/bfYmJE8e24cV205yNEvWAo0d2ZHs6xV8s1gGLsO6NUfUiHz5p1yA3K99Y3R69Y1E5I5NMdntNYTIrTh1rZDMM7KA+OF+aazYl0lJlZkgXwMD2qcwb/tR3JJEm6QYRLXA+mPnEAQY1akFa4+ew2SzExPsT3xEEKuPyWBvYGpjtp+9LKcghwTi66Pzlnn2ataQTWfk10+buGgulpRSYbES4e+Ln1HHkew8NKJIaoMo9iqt5e3jYziYIz/mllERZCrW8oahQeRVV2F2OIgJ8KfKYaOg2kKErw9Wt4v8qipCjUbsuCgwVRNqNGJzOSkymwj38aHCacVqcxLl50eRtRqH++YMnRv/94QFqkUBP52e65Zq/LU6bG5HPWGBRoqs1ahFEZ1KpNJhIVhnqLGuqpGKLNRORQYJX7WWaqelViqyr0ariJJr1j8oTiuVFpvbptQ/qLC5bXfRcyXW6rmqW+hp9wIdveDJ3HGjFiTAJdvNsaET1LixKWDIjqi4vv6V+bdrdrZs2cLly5d58skn61yWm5tLnz59mDt3Lh06dODixYvMnz+fwYMHExoaSmZmJpMnT6ZNmzZ06fKvZbCYTDY2KFHyGWNusDd2m5N1CpU+7CZNzrrl8pu6S6+m+Afc0DtIksRWpbyzVz1rql1KmnLXPnVZneLCCq5euI4gCF677M3jdVm1vnXMv8dOHh1/e8Bps8oiL53hzgCmp7gx/+rdgZ3AED8GPpTO8h+389vn6+8a7AQGBlJYWFirMkIURYY81p3OA1P5dsaf7FhxhD1rjrNnzXESmkYz4qle9BzZ3ssI/HeP3erg4qlsso5c4eyRK5w5eInruaW1rqPVa2iV3ph2vZvRvk9zohP/NUt9eUkVGxbuY/XcXd7aBbVGRc+Mtox4sgeNbsN4SZLEkZ1n+fWTtWQpYMTgq2Pkkz0ZNa5nvVqe8ydz+O5vKzh1QNblBIX68djkgfQdU7s+oqrCzLzPNrB6wV7cbgm9UctDE/uS8Xg3L7PksDtZPGcnv329BbvNiVan5qHn+jCqxnUO7T7PP2bf0O4MGt2OpyYPwsdPj8PhZOH321n44w5cTjcBQUYmvjGMbv1ayOzrkkN89+l6LGY7Rh8dz7wyiH7DWmOzOfni/dVeg0FCw3Bef3sUSckR7NicyWcfrPa2nj/38kD6DW7Fgb0X+ehvKygvN6PTqZn48kD6D27FimVH+ParzTgcLsLC/Zk+M4Oo6ECmTvmdo4q4ePDgVJ59ri9Llh5izi8y85SYEMbMNzM4f7GQ8ZPmYrU6CA3x5c2pIyguqeKZl37FYnUQFuLLzKnDOZWVx+SZf+J2SyQnhjP1xUHM+X0vO/bLJ0hD+7akd9cUpry/lNJyM36+eqY9N4DN+86xYZesKRrcszmtmsQw7bOV2B0u4qKCmHB/Vz6bv53Ckio5KPDhnizecpysK7Ija8LodHafusKRs3Ji8uNDO3D0fC5Hj8idWY8P7sCOk5c4nyMHCz4xqD1Ldp+kqMJEoI+e0d1bMXfzYexOF42iQ0iKCWXBDvm42j8tmay8Yq4WybbzwW1TWLL/tOKqisLmdrL73FVUosDA1imsOX5WviwukmKLhVO5hfhoNbROjPYCna7J8ey/koPd5SI5PIQKu43zRSX463U0CPLnUHYuogCt46I5mCNby9NioxUhMjSPCudM0XXFWh7ClYpy7C4X8YEB5JtM2FxOYgP8KbQo//f3p9Bswu5yERcgMzQuyU18YCBXq8q91vKrngwdBegIAoQZfck1VWJQq1GpBMpsMotTbpdFxzXDAkMNBmVdJZd8ml32WqnIQUoqslzYaccl3UhFVgkCWlEWIHtSkUHCqFZ7BcgWjyhZo8LqtuKr1mF1yaBGp5bZG0/9g0YA4TY9Vx6tjgfo6AVRAUFyoadbKfR0SVYMggoJGyKgEtze27uxK7k6NgUMKfURghub9D+E2bnb+fHHH0lPT6dp07ruI4fDwdmzZzGb5bA0rVbL5s2b+fzzz6muriY2NpYhQ4Ywc+ZMVKp/De1tXHMCs9lObHwIaTXShndszaSywkJ4ZAAd0m8wLVargy0KoBl0U7Fn5olsCvPKMRi1dOrWuNZlpcVVZCpgJb0ep5Wn/bxxixj86glxq6qweK23KbfQ6wDkXVPAzl/YyT3Mzl91YnnGA3byrtx9dcPo8b1ZPXcXp/Zf5Njuc7Tu0vivb6SMR7dTX/N5cEQAU797igcn57Pix21s/nM/V87k8fnk+Xw+eT7tejeneceGNO/QkMat49HdIYt1pyNJEsV5ZVw9m8+1cwVcO5fP5cxcLp3OwemoLaJTa1Q0aZtIq/TGpHZpTJO2ifXWLtzpz806coXVc3exfeURnHb5ZwWE+DLkka4MebSrN2TvVrc/siOL+Z+t58zhK4D8Ohj2eDfGTOhdryurKK+cXz5Zy2YlUkGrUzN6XE/GPN0TYw0tm9vtZtOSw/z04RoqSuWVVfchqTz1+pBanVenj1zhi5nLuKqsy9qkN2LizAyildLaynIz3324hk2KZTwiJogXZmaQptSfXDqbz0czlnDprGyd79qvOROnDiUwxFduN397hTcfp2VaPK/MHklkdBDnz+TxwZtLyVY0PaMe7MQTz/bB5XLz8TsrWK+UAqc0i2bKrJGERfjzzT82skTpuEtqFM602aMIDDIya8YS9ijrr85dknl1ylDOny+otbZ68aWBtG+fxOy3l3HgoAwQB/RvyTMTevPTLztZtkp+fGmt43l98mAWLj7AkhWyrTwtNY5XJg3g65+3s0NhfQf0as7oYWnM/HgV13JL0ahVvPBUb2wOJ6+8sxiXW6JhfBgvjO1VS5/z3MPdyC+u5L3vNwDQJS2Jbu0aMevrtdgcLmIjA3lyZGc++207ZZWyI+u5+7rx06r95BVX4qPXMmFUOr9uPExBqcwIPTm0E3M3HKKsykKIv5ExvVKZs14WIidFBpOW0oAf1svPW5dmCZgcDtYdkYMDx3RtydqjZ6m02IgI8CU1MZpF+2QtT68WDcnMK6Sgohp/g452DRuw6pgM2Lo1SeBYTr5XpBwa4MMupcyzW+NEtp+XWbc2sVGcKymh2mYnJsAPUSWSWVCEUaMhPiyQwzlyoWpqdCRHFGt5mwZRHM3Pl11WkeGcVqzlKWGhnCstwS1JNAqRLeRuSbaQXy4vw32TtdyTp1MzLFBAItrPj5zqCrSiCqNWzXVLNQFaHRa3A4tDZnGu3xQWqBIEfHUaeV2l1WFyyuuqMIXFEQFfrY4Khxwm6Gkr9wAdrahCklzY3Q6ClTBBlQBqUfQKkE0uRZSskusf/NV6zC4LaoEbgYAq2X2lE+VQwdo9V4qlHLnnyu3tubq50FMWHhtVcs+VQVArDiuZ9ZGBjuLCElS1gI7nOipcGFT/2nHz3w52FixYcMvLEhISkCTJ+3VsbGyd9OT/yEiSxIql8tndiNHta9H8axX2ZuCw1rXOWPduz8JsshERHUirtgm17s+T19G5R5M61P+hXeeRJInkZtGERda1TZ9QDoS3YnU8wuPI2GACbpGD4nS4KL0uC48jYm5fJFnjab2jiVNswxdO5dx1dUNYdBCDHkxn5S87+fy13/h645Ra9QC3Gw/YuV0ZaHxKFM///QEenzaCjQv3svKnbVSUVHs1MSCDjaTmDYiMDyU8JojQ6CDCGwQTHBGAVq9Bo1Gj1qhQaVSIoqAkJdswV1mwmGxUlZspziujKK+MotwyivPKKMwuuaU7LSDEl5S0BJq0TaRJWiJN2yb+ZV3DX42pysK2ZYdZO3+Pd90EkJwax9BHu9JzRNvbAihJkji07QzzP1vPWYV10Oo0DHqoM/c+27degFRdaeGPr7ew/Oed2JVsn94ZaTz+ymDCogNrXffs8Wt8/dZyziqJyrENw3l2Zgata/SzVZaZ+OnjdaxXWBX/IB/GTxniDQeUJInt607y9furqCg1IQgCIx7qzGPP98Vg1OFwOPn9xx389v12XE43/oFGJk4bSvcBLb3M6pcfrKa6Um43f+K5PmQ80AkkWPDjDn79fjsul5vgUF9emZVB244NyTqdy/uzlpGXU4ogwP2PduGRp3qQl1vGpKfncFFZj2WMac+4Z/uQlZXHlFd+o6ioCo1GxdMTejMsI425v+xiwQLZbZWYGMaMNzOorLLw9DNzKC6uQqtV88Lz/UhNjeeVaX9w7rwM1B6+vzODB7Ri1rvLyVTs5w/d24ne3Zvw6uzF5OSVoVaLTHqqN75+eibN+B2L1UF4iB9vvDiYlZtOsHGnnMjer1tTendJYerHK6kyyRqeKeP78/u6IxzJlP8uj2V0xO508d6PsoM1PTWR9i3jePuH9bIjKzaUjN6t+GjBVqx2Jw3CA7inT2u+XLoLq91JbHgggzs345/LdsvBgg3CSGvSgG9W3RAiiyqRP3fKGpyM9OYcvJhDdnEFRp2GYZ2asWiPXP3QLDYcg07L+uPyGmtou6ZsPHVBdmOFBBISYGRzptyr1b9VYzaduYDT5SYlKhSz08GJnAIMGjWt4qK8QCe9UTz7lDLPphFhFFRVUVZpJdTHiEGvIbOwCINaTXxoEMfyCxAEOSHZA3Q8GToS0Cw8jEyPtTwslKzSutbymkAnIdATHChn6FypkaGTZ67CV6PFLbgpV4o7S2wmJAXceJxY4T4+3rBAtQqqHFaCdUavbidUAToaUUQtClQ7rQTr9N51VZBOBj83pyJXOc1oRREJF07J5QU6WlFAEFyKfVxecelEAUmQnVY+np4rhb2RNTc1e64sSj5O/T1XnlydmnZzozcNWV5hqWokJsuCaDsGQVS0OrIlXS1IqAU3Dqn+mp6/mn872Pl3zoljV8m+WoLBoKVvjWqG3OwSTh67higKDBha21G1abX8Bu47uJW3NwvkM9qdSqLszYnJAAeVjpsO3epnNU4oOoCW7eq3U1/Okg+CSSm31iaVKzZlUSXiH3R7m7engdphvzMbX6MWDdDqNFSWmsi+UEhc8p2HOgI8NmUo+zaeouBqCXPeW8kzb4+5o9t5ggXvpPncL9DIqAl9yHi6F1fO5PH/2Hvr6CjPtX37mGd8Ju6eEBICQRPc3SFAlTrSAm2pQSlQoO2WujvdbSmUFqji7u5OsOCBuNv4PL8/7meGBAKlfff6vvdde99rdUHJzBBmJjPnXNd5Hufx3Vmc3HeeE3vPU5JfztkjlzmrJGL+XUetkYhODCeuUQRxjSKJT4kkuVU8EXHB/xbvkGeKs2bBbrYuO+SdyGn1GnoMa83gR7uQchsPFyik5PUnWPTpem+1g96gZdDDnbhnfK96IY12m5OVP+xi4ecbqFRqKJq1S+Tx6UNIuaF8trSoku/eW816RcAYzToenNiX4Y918a6jZFlm/eKDfPvuaiqU2xtwT1tGT+rvhRgW5pXx2T+XeescEpLCef5vI2iseHeyTuXwwSu/c1Ex4Xfq2YRnZmUQGOxDeWk1n7610vszmNwkiil/H0F8YhjXskt499XFnFIo0V17p/LstMGYfQz8MGcbP8zZhtslExrux9RXh9O8VRyrlx/hy4/XYbU68A8w8eLLQ2nboSEL5u9kvsL1iY4JYuarwwkINPHi5IUcV2jWQ4amMWFCLxYvPcic77bhdsvExQbz6qzhXMsr44mJc6mutuHnZ2TGlMGgUjH++e+pqLSKVvPJg6my2Hlq6gKsNgdhIb68OmUoW3af5eevxWQtvXkc4x/pyttfrOX8lSIxvXm0O1aHk+nvLcMty6QmRTDm3o68O2cDeUWVmAxaJo/uzepdp7wN5g8PaUNljY2PFogPkT3bJBEVEcA7P2wCoF1qHI0SQvngZ/H19qlxRIUGMHu5EDY9WjXEpZJZqBiR7+rSjGOX8sjKEWutkT1a8tvuE1RZ7UQG+pKeHM2iHUr1Q9MGXC4sI/NqAQatmv7pKSw9eFJUVMRHUm61cuhSDgaNmi5NGrDmhHgNbd8wltP5hZRZrIT5mgnxM7PnYjaSBB0SRbQcRJnn8dx8bE4XDYIDKbNbuVJWTrDJiMmg41SBED0xQX4czxcdYUmhwbVggSFeodOoltBJCgryCp0GCkNHpYJoPz8uVZaildQEGA2CoaPTopYEQ0e0mVtwuFxE1BI3HqEjSj6NFFmr8dVqsckOLC4XoUaf6+krvYFSezUmtQYHLmxup5eKrAJ8dVoqnRb8NAaq74CKbFQLJo6MjK9Gh8VlEZ1WSnmnqH8QLeUeUrJWok7P1XWvTn09VxIoUxudBHKtQk+dssLSIKNRiMlalQpw1BI6avCYk1UuMdmR/tqE/j9a7KxWPDl9BjTHXOtTt8er06ZDQ0JrfdotKarikAL1632DMfnUsasUF1ZiMutpfcN0xuV0eddUbbrcLHbyc0opyClDUkuk3sKPc/600lB+m5RVqcJQCQzx+cOIstYjdmx3BmjS6jSkpMVxfM95Mvdf/NNix+xr5Ll3RjLz4S9Z9t022vZKpU3P1D+83u3WWLc6kiSR2DSGxKYxDHu8J7Isk3+lmKxjVyjKKaXgmpjOFF4robSwAqfdhcPhxGl34XQ4cbtljGY9Rh89Jh8jRh89Zj8jIZEBhEYFEuqZDEUHEZkQ+qfTUndySgoq2LLkAOt/3scl5bEHiE0Kp/8DHel7X/tbko49x+Vys33FYX76bIO3GFZv0DL40S7cPa5nvZMcl8vN1uVHmP/hGvIU8GBsUhhjpw6hXa+6JmeH3cnyH3bx46cbvGms3iNaM+bFgXVu+3JWPp/9bQknlJVZQnI4E18bTlOlzsTlcrN80R7mfbIeS40drVbNyHE9uG9sN7RaDXa7kwVfbebn73bgdolpzlPTBtN9QHNUKhU7N53ikzeXU1ZSjVot8eDjAhCo1kis+v0gsz9ci83qwGTWM/GlQfQa2Jy83DJeeeknTioCqHufVJ6dMggZ6rBzWrVOYOqsYciyzJRJCzimrKL79m/OM8/349ixbF56aREVFRZMJh2TJg8kPT2hztqqT++mPPN0H35YtIeflDqH1MZRzJo+lNXrT/D9QjENSkkKZ+aUIfy28jCLVwnx0DYtgYlje/L+Vxs4elJ8rw/d1Y6mjaOY9I9fqaq2ERRgYsbEgSzddJwtiodnaK/mpDaKYPqHy7A7XMRGBPLUA135ZOE2cgrLMeg1PP9QD1buPMmxLLHSGTOsA6ezC5i/WojWe3u3Ir+skvkKOPCeHi25XFDK79vFGv/BPmnsO5tN1rUiLxH5910nKKuyEORjZED7JszfIozILRIiMBi0rDgo7tfh7VPZdEJUP4T5m2mWEMmSA8LT2DM1kcPZuZRWWwj1NdEgIpj1J895v7b93GUcLhdJYUFYXE4ycwsw6bQ0jgr1Cp3aiatmUeFkFRdjdTqJDwygwmHjSlk5QSYjBr2Gs8WiqTzUz8xpJVoeHeDvjZbHBPhxtqQIjUpFlJ8f50pL0KolQn3MXCwvRa9W42fUc7WqAh+tDpVaRYGlmmCjkSqnjRqHsw4gMNrnehIr3CTYOnq1Gp1GotReQ6DeSLkypQkzCoOyBPjqdEqJZ21YoKAiayQVOrWKGpeNAK2RyjugIvtoRFQcRHmnxWX1/tnt6h9kZHzUnp4rYSCur+dKJ2mQFUigzttzpRR6Kustj4hRIaNRUlgGlQoZm1cM6VQqJJVdrMlUbuzydTTHnzn/0WJn764sJJWeoXddNyC7nG7WKyycATdwcrasO4HbLdOkeQzRccF1vrZ9o2eFlXJTLPzUsatUV1rxCzDRqB5+zomD4gc0OTUK4y3WOxcVrP+diB1PnPd2x/M92u5Q7AA0a9eQ43vOc3TXWQY+2PGOr+c5rXs0YdAjnVk1fyevj5/DK3OeIK1L/WWmnnMna6w/OiqVioj4ECL+wLT9//exWuzsWXucjb/u49C207jdYteo02vpOjSNAQ92pGnbxD+cGNmtDjYtPsCvszd5y16NPnoyRnVj+Nju9T4/ZFlm76aTzHtvjVcYBYX58cgL/el7d5s6sXPPZb95ayXXFO9LcvMYnpw1rE5FSXWVlQWfb2TJ/F24XW70Ri0PP92H4Y929grEC2dy+ei1xZw9IVIxqWnxPPfqcOIbCsP26WPZfPDqYq54qiL6NeXpacKbU1FWwxfvrvKGAuIbhjHlbyNIbhJFcWElH/5zGft3iTfJlm0SePHV4YSG+7F+1TG++GANNYpxeeKLA+jdvzlHD13m7X8spaiwEo1GYvS4ntzzQAd27zzLe++sorLCgtGo45nn+9OjVxO++XoLv/0m4HjJyRHMemUYRcVVPD5+DsXFVeh0Gp6d2Jf09ASmvfIrmcoq+r672nLPiLa89eEqDiqTxoxBrbh3RBte/3AVp86K+3/UyI6kNY/j+dd+oaS0GpNRx/SJAzh3uYDpby0BoFlKFBMe7srbX2/g8rUSNGqJ5x7rwcXcEt76WqypOqcn0q1tEq/OXo3N7iQ6zJ9x93bi00XbKSytwsekZ+LIrixcf4iLOSVeUOCyXZlcyClGq1HzxJAOLN2dydXCcox6LY8NaMPCLUcoqxJ+nYxOTb1E5JSYUBKigvhhi/Ae9WmZzLmCIo5m52HQahjStgmL92bidLtpEh2G3qBm44lzSCoVA9NSWHs8S4iZ8GBUGhV7L2SjUUt1Oq7S46M5V1REucVGuK8ZX7OBg9k5aCSJ9LioOomrA4oRuUlEKBdKSrE6RYFnud3KtYoKQswmkOBSWRn+ej0GvZYLZaXeaPmFslLMWi1mnY4rFeX46nRotRLXqirw1+txq9wUWqoJMZqocNqw2V1E+viQb6lEvkHcRCm/l1QQYDBSYK1SSj6dVDtthBrNFCsN5SFGM4W2KrSShE6CKqf1BligoCIb1RpcKgd2twILVMCABo10ExXZdBMVWcYgiaSVp/5BAjSqP6p/qO3VAUkSXJ1b9VyBp+fqeqGnTlIhKZBBtUoWay6VChm7V+joJQmVZ/qjcilAwusewT9z/qPFjtsl0yI9lga1yiUP7r9ASVEV/gEm2t9gpN2mjMh73FDQKcsyu5RPgl163Tyt8BR7prVPrDdSfEYZf6feYh0hyzI5Sgoq9jaRco9/pHb30K2Ov8LXKSu6c25O216pLPxkHXs3ZGKtsd2x76b2Gf/aXeReLuLwtjO88uhspn02is711GZ4v89/g9j533wcdieHt58RibK1x7BUXfcANU5PoPfdbek+rPUd0aerymtY9cMulszZRmnh9TqQYWO6kTGq2y1v49je88x7bzUnlcmL2dfAPeN6Mnx0l5se44unc/nqjeUc3S1ERECwD6MmD6Dv3W2800RZltm66hhfv73SS+ru2DuV8dOHeL1kVoudBbM38+s8Ma0x+egZ+0J/Bt7TFkmSsNbYmff5Rpb8KKoiAoLMTJwxlC59xIp499bTfPL6ckoUWvi9j3Xh4XE90Ok0bFl3gk/fXklVhRWtTs3op3oz4oEOVFZY+MeMX9mxWfysNmsZy0uvDic4xJdvZ2/mZ4VuHBMbxPTXRhDfIIRPPlzDCsUk3SglgpdfGQ7As8/MJ0vx3Nx1VxvGjO3Or7/vZ973YsUVGxvEq7OGk1dQwbiJc6motGI265k2aRB+fkYmvPA9xSXVGPRaJj/TDz9/I0+99CMVlVZ8fQzMeGEQV3JKeOG1XwRMMDaYqRP78+1Pu9h3RDxOdw1oRYvUGF58azE1VgehQT5MHdeX75ft4+gZT4y8AxaHkze+EcKnffN4uqQn8s9v1mF3uEiIDGLkgHQ+/nkb1RY7YYE+PDa4LbOXisbyYH8zD/ZN55uVe6mxOYgK9mNQxyZ8vWovTrcQNo3jw5mjEJG7NW9AudXG6oPCiHx35+asPXqW8horoX4m2ibH8stuIU67NE7gUkkpJ/PKMeo0dEtN9BqR2zaM4VJxKQVF1QQYDaREh3qFTtdGCey6cEU0kIcFUWG3exNXsYH+7LsskmOtlcQVQKuYSI7kCE9O4/AQLpSWYHO5iAsIoMhaTbXVQaSvL1VOO3lVVYSaTdhkp2DlmIzYXW4KaqoJNZuodtmpsNoIM5sps1uwu11E+fqSW1OFWxYxcw8350aGTk5NhVLcKXnTV+UOkb4KN5m9MfNAg5FiWzVmjRaH7MDqdt0AC9RS7qjGV6tMbOTrsECdWkJSubC7nQIW6BIEZK0Edrcdf60ei0JFVqvAITsUKrLw0MgKQNBHqX8wSGKtVW/9g0oNKsHHMUrSHfZcWev0XKlVsnIZsebSKSssz2U8fB0JGTUy7v96dv7aGXxDd9V6JYbes18zb+s5QH5uGaeOix+irr3rCpoLWfnk55Sh12tJr8dgfETB57e6RcXDaUXs3NiA7jnlJdVYa+yoVCrCbmM8ttaIKc2dsHNCIoQXpjjvzkVE47R4IuNDyL1cxO51J+h5Q/npnRydXstr343j3Wfns2PlEd6YMIdn3x5J/wfqnxT9Gc/O/5Xjcro4tucc25YeYseqo1SVX//hjYgLptddbel1V5s7bngvzCllyZxtrP5xl1fwhkQGMOLx7gx8sBPGWxijzxy9wvcfrOHQduGF0Bu0ZDzWhXvH97xJGJUWVTL/o3Ws/WUfbreMVqdhxOiu3De+Zx1xfflcPl++vpyjCjMnMi6IJ2dk0LYWrfzAjrN89s9l5ClR+S59m/LktCEEK6uvI3sv8PHfl5Cr0Jt7D2nJ+CmD8AswUVFew+z3VrNxlZi+xiaE8OLfRtC4WQzlZTW8++oS74eS5CaRTHltBPGJoezbfY4PFHGkVks8+nh37nukE9eulvDc+O/IUlJdgzLSmPBsX3Jzynh6/HdcUlAO943swOjHu7N16yk++nAtFosdPz8jU14aTOPAi7jpAAAgAElEQVTGkcx69TcOKabv/n2b8dSTveusrVKSI5g1LYNtu87yzZtLcbll4mODeW36UDbtOMv3H60CoHFyBNOeHcCcRbvYukespPp2a8KwAS159YMV5BVWoNdpeHFcHy7mlPDKxysBSG8ay8ihbXjzm/UUKdOaF8f0Yvm2kxzIFKu3hwa1xupw8t58AQ7s0iqR5AahvDl/g+jIahhJhxYJvLdoi/D8JITTpkkcny4WrKC05GhiwgP4erXgHfVs2ZBKm50lu0WK6t6uLdh++hI5JRX4GHQM7ZDKzzuPiQlOTCg+RgMrDwk/1pA2Tdhy6jyVVjuRAb7Ehwey5ph4HvZplsSOc5ewOJzEBQdgNGjZc1FQkDsnJ3iNyK3jozhVUEi13UF0gB+SpCIzrwCjVkNiWDAHropJWlpsJIeu5VK7zBOEJyerVLSWNwwK5LLSWh4X4E9eTSU2l4tYP3/ya6qwu1zE+vtzrboCl+wizj+A7Koy3NSNlnv+3ENCFgwdCR+djgJLFb46PXa3g2qn7QaGjhA6GpUKg1ZLmb2GAJ3Bu47yCB2NCgwaNVVOaz2wQIsSPbfhkq/DAkWCSlCR/XXCl6NTRI24nE5JWmlwydenN/Za9Q9qxatz6/oHbtlzpbtlz5UKFS7lMh5zspjseISOh6+jBkXsuDGq/+vZ+dPHx9dA11odVJUVFnYpBZ59B9X15GxXyKjN0+IJvqFParcy1UnrkHiT0LDU2LxiplX7m/uE7HYnF06LH76UWxR35iogv9AIf3S6Wz9kVk+c/A7ETnCEeGMp+hNiR6VS0XN4axZ8vJZNiw/8JbEDQvBM+2IUn03/mTULdvHRlIWUFVdy71N9bvIa/RXPzv/GY7XYObT1NLvXHmPv+hNe0y+IfrIug9PolpFGapsGd1wJcfrwJRZ/s5Udq456W+kTUiK5Z0Ivumek39JLdOFUDvM/XMseRRSoNRID7m/Pg8/0vcnHY7XYWfzddn7512Ys1eL51XVgC8ZMGURELQBndaWVHz/fwLIfd+NyutHpNdw/rgf3jO3mXZkWF1bw1dur2KaAN0Mj/Hnq5aF07ClQDFUVFr75cC1rlHh7aIQ/z87KoK3ic9u1+RSfvLmCUmWac9dDHXnsyV7o9Fr2bD/Lx7XEzINjuzJydFccDhefvLuKFcptxiWEMPW14SQ1imDFkkN89el6bDYnvn5GXpg6mC7dU1jy2wH+9dUmHHYXgUFmpr48lNSm0bz//irWK314LVrE8vKMDC5dLuaJ8XMoLavBYNDy3DP9aNUqvs7a6u7hrXng3va89+k6du8TIrBvz1TGPtqFdz5by0EFeDhiUBoD+zZj5jvLyFYSWM+M6YlGI/HC334RHVgRAUx9sj/f/b6Hg4rJeOTgdCLDA5j+wVKcLjeJMcE8cV9nPvphC3nFlRj1Wp57qDurd5/iiDLxGZXRjkt5pXy7TAiX4d2bYXW6vKDAAe0bY3O6mLdWSat2bsqV4jKW7c4UibWerdieeYnswjIMOg33d2/FTzuPUmNzEBPsR8uGUSzYLryPXVMbkF1cxslr2eg1aga0TmH5oVO43DJNY8JxyC52Z11BrVbRu2kS605mCZNyXAS5lVVczivDz6AnJSrUK3Q6J8Wz69IV3LJMk4hQcisqKbNYCfUxYTbqOZEnGswbhgVz6FouINOiVmt5i8hwjhXki/VWaAiniouQkUkJCeFsaREy0DAwiPNl9bWWB3lbyz3R8usMnTLUKhWBRiO5NZWYNVpkSabMQ0K213jTV16GjslIka0Kg1qDrHJT7bTVYegE6cXvDWoxRbG664cF+ml1Xl+Or5K0MiliBWSv0DFKWhwKFdlXqxFJK++fielNbSqyVoU3aVVf/YO2Tv2DVTEse1ZPbuHnuUXPlRoX2loVEeDAKInJjl4lVlhqBF1ZCC43tv9Odv786dGnKfpa/prtm0/hsLuITwwlqVFdA65H7HTrc3PSau92IZA6db8ZmJd5+Aoup5uwqAAiY4Ju+vqlrDycThd+ASYiYuqf2uTniE+44bf4uud4zMaepNXtjod5UlVhobK8pl62T32n5wghdg5tPc21i4VEN7g9qflWR62WePbt+/ELNPHz5xuY+9YKtq84whOzhtOy1vrw//IaKz+7mINbT7N/UyaHtp7BXssf5RdopvOglnTLSKf5nyAmC1LycRZ/u8XLyAFo2SmZu8b1pG3PW5OSL5/N48dP1rFdmYpIkoreI1rzwDN9ibzBg+Zyudm05BDzPlxLcb647xu1iOWJ6UNoVisx6Ha72bj0MN99sIZSZSXasXcq46YNJkJ5vrtcblb+vI+5n6yjpsqGpJYY/lBHHnm6N0aTXjSlb8jki7dWem9j6P3tGf1cX0xmPeWl1Xzx7iq2rBVCIzYhhMmvDadJ81iqKq188uZK1it8nLgGobz0t+EkN4nidOY13vn7Eq5eEUbrEfe1Y8yTvaix2Hll6s/sUTg86W0aMGXmUNRqiRlTf2afsnZu16EhU6YNoaCgggnjvxOEZEnFww93ZuQDHZg3fyeLfhLt6IkNQnll5nCyr5Xw+FPfUVkl1lZTXxhIULAPT076gYLCSnRaNc892YeYmECemrqA4pJqjAYtLz7dD6fLzcSXF2GzOwkL8WXm84NYvSWTVZvEv7tzm4bcMziNv3++ioLiKox6LZMf782BzCssnCfSU707NKJ1szhe+WIVdoeLmPAAnri7E5/+tI3C0irMRh3PjOzGz5uOcO5qERq1xPgRndh0OIuTl0QiadSgdmw9JkCBGrXEqAFtWLn/NDnFgrfzYO80Fmw+TJXVTkSgL91aJjJ38wHRadUwGkmtum5EbteUTZnnlTWWmZaJUV4jcrcmDTiZU0BhZTX+Rj3N4iO8HVfdUhqw/8pVauwOYgL9MRq07Lt0FY1aRZsGMd6Oq7bx0Ry5lovD5SYxJJAyu42LJaUEGg34mgxk5hegV6tJCA3gWJ6ImaeGh3qFTu1oeZOwUE4VC29Y7Wh5UnAQ58quM3Q8QscTLddIKoJNJq5WiZJPtVqiyFpDkMFIpdOKw+kiwuRDfj0MHV+9jhKbwtBx2XC73YQazJQovh1/nYEyRw2+Wi1WtxVZlr1CR6ymBCwwQGegWoEFmjXCgOyrEaspT9XDzVRkqV4qslN2YFKSVmJCU9urc3P9A8gYlPoHT8+VmMi4vCJGxiHqH7jec3VdDLmvm5MlYU728nWQUOFQ+rYU6KDqryE8/qPFTr+Bdb0im5VPbX2UlIfnFBVUcPqE6JDp1LOuoCkvrSbrlDAUtul0c82DByTYPL1+P47XeJwSccs3qdJC8QYQ9AcN5ZLyhulyuW97ORC1CxGxQeRll3A+8xqt6vne6zsxiWG07ZXK/k0n+e6t5cz8aswdXa++o1KpGD09g7CYIOa8sYzzJ64y7f7PaN+3GWNnDCM2Kfz/1BrLUm3jxN7zHNx6ioNbTnFVKZz0nIi4YDr0a07H/s1p2jbxpq6p252y4irWLtzNyh92UpgjplwanZoeGekMH9udhk3rnwqCEDkLPtvA9pVHvYykboNb8vDz/YipZ1V2aMdZvn17JRcU3EFYdCCjJw+g2+CWdaZOZ45nM/v15Zw+KiaX0QkhTHh5CG26Xl9Znc28yqf/WEZWppgopDSP4ZlZw0hqEgVAYV45n7+5gj3KdDQ6PpjnXx1O89aCsbVtfSafvb2S8tJqJEnFPY905pHxPdDptezfdY6PXl9GUUGl6LV7qCOPTeiFSlIx96vNLJq/E7dLJjjElxdnZdC6XSJ7dmbx/psrKCsVFRFjJ/RixH3t2L/vPO++tYKy0hq0OjXjn+zN0GHp/Pbrfr79dgtOp5uwMD+mv5xBaKgvk15cyCklJTd0SBpPjO3O3B938qvC7WrcKJKZU4eyY08Wr729HJfLTXRUAK9OzWD/0cu8N/Nn3G6ZhNhgZk4axOI1R1mhdFm1S0tg7AOdeWf2Os5dKkSSVDw+sjNms4HJby7G6XITFxXI86N68sWi7QIcKKkYf18XcksqeVsp9uyclkh7hZ/jcAp/zgOD0vnk5+1UKn6csRnt+Xr5HkoqBUjwsYHtmLtmP+XVVoL9TNzbUzSWW+1OokP86NEqia/X7BWTlwaRBPibWLRdCM2BrVM4cTWfK0Vi2jOkzXUjcuPoUAwGLeuPZ6FSwaBWKWw4eR6rw0lCSAAmU63qhyYN2XjmvFitRYeTV1VFdn45fgY98WGB7L4onm+1E1ctoiM4U1TkNR9XORxcLi0j0GjAZNRxulCUeUYG+JFZKO6vBkFBnCwqRKWCpOBgr9BJVFrLQSYhMIBzZSVIKojy8+NihWgwDzAaRbRcq0WjEemrQL2BapedGoedcNP1yU0dho5JMHQMajWSWlYqH64zdAQs8HolhGgwFzBAMeURPB3hfRGwwEC9gSoFFqiVJKxuG/5awctRI6NXRI2vRo/FZUUN6DTCq3OdiqxCpXJ6qch2t9WbtBKwP1Wd+ge9SgW3qH8QE5kb6x9USu1D7Z4rl3KZ6wwesHuFjhY1YFcSW8Kzo0HG+t/Jzp8/8Q2up3MKCyo4puzce9wwvdmtcD8aN4sh+IZOq8P7LiDLMg2Sw29abwFkKrfZNK1+sXNJYYYk3CbKXeKNlN9e7HjePN13IHZAsHPyskvIOn71jsUOwJjpQzm45RQ7Vx/j2J5ztOiQ9MdXus0Z/EgXOg9qyYIP1rDyh53sXX+C/ZtOMvChTiR1EBOH/41rLEu1jZP7L3BsdxbHdp8j69iVOoWeklqiSesEWndvQod+zUloHPmn2TtZx7JZNncbW5cfxqFA/fyCzAx+pDNDHrk9KflGkQPQuX9zHnquHw3qSfWdy7zGnHdXcViZeJh9DYx8shcZj3aukzAsKahg7kfrWK+U4RpNOh58qjfDHumEVlmzVpZbmPfpelYqDedmXwOjnu3LoHvboVZL3mnPd0rcXKNRc9+Yrox8XKy9igsr+eytFV7jf3zDMCa/OpyUptFUV9n44r3lrF4i0j7RcUFMfmU4TVvGcvF8Ae/+fSnnlA8RPfs25enJA9Fq1Xz0zkpWKrDQBg3DmP7qcKJiAvni0/Us+V2pjmgQyoxXhuEfYOLl6T9zQOFfde2WwuTJAzl46DIzZv1KdY0NHx89L04aSMOG4Uye/hNnFMPyfXe15b672/Hep2u9a6te3RozbnQ3PvxqI3sOKCTlnqmMvKstr3+8hqyLBSL+PbIzDeJDmPT3X6mqsRHgZ2TGMwPZsOsMq7eJiUiP9sn07dKYVz5bRWW1lUA/Iy+O6cPCNYc4niUE2Ohh7SmurOH9H7aI7z8tkaSEUN6YJ/w5zRIj6JrekPd+2oLL5SY5JoQe6cl8tngHLrdMk7gwWjaK5ssVopW9bUoMvmYDP2wS9/nANimcKyjh8PHzaCSJe7u2YPmBU1RabUQE+NCqQbTXiNw1tQEXCks4lVeIUaehR9OGrDgqXlPTE6LIraziolL9kNYgmg2KEblTUhyHsnOxOBzEBPqh1kgcu5aHXq2mWXS4N3HVLiGa/dmexFUYF0pKsDqdxAaKXqur5YKto9GqOV9ago9Oh5/RQFZJMQaNhhBfE1mlxejVakLNZi7Uai2/VFGGUaPBbNBytaoCX60o+fREy6tddmrsTsLNPhQo6asoHz9ylPSVR+hoJBW+Oj1FNtFgbnHbsLvchBrNFNnEuirYYKTErqSrcCkN5oKhAzL+eh0VzhrMGj1Wl1hNBer1VNWCBTpqwQK1kgq1yq2kqoTQqQ0Q9FFggQZJjVvh6hjVaoWKLLw316nILmUlJszFsrLy0kog4/LWPxhUQqBIyKhriZja9Q96lQoV9joVETpJBpyKiLoudETs3IEaUHs8O9J/Jzv/o7NlfaZ4EWgVR3hkXTLsTuUFt3PPm9dUBxUj5o1sHRArh9MKx+NW/JyLWR6xE37L780DCwwMuX2kXKMRn7qdjjsTO8nNYtix+hjnatF47+QkpEQy8KFOrJy/k6/+tpiPl036H7NmAoJ9eer1e8kY041vX1/KnnUnWPn9DmrmiIlOSXEpeVeKibhh3fL/1XHYnVw6nUPWsWyyjl7h7LErXDqde5OwDIsJonX3xrTu3oRWXRrV2y/1R6emysrWZYdZvWCXFwIIkNwiloxRXek2JO22pORzJ66y6IuN7Fp7oo7IefDZviQqE5XaJ/9qCfM+XMtmJXWk0aoZ8lBHRj7Z25vaA+EvWzJvJ4tmb8JSI/w7vYelMXrSAK+5WJZlNq44wjfvraZMqYvoNaQVj08e4C2/vXAml0/+scz7s9GkZSzPvTKMhKRwZFlm3bLDfPXBGqoqrajVEiPHdGXkmG7odBoO7D7HR68vpzC/ApUKho9sz6ineqPVqvnlx93M/WozDocLXz8jz700iG69Uzl54ipv/2MpOVdLxQRoZAdGP9GDK1eKeWrcd1xW4vPD72rDuAm9OHjoIi++uNDbg/X0033p2asJX361iZVKgCE1NZqZ04dy6mwu4ybOpbrGjp+vgWkvDsbP18iTk+Z711bPjO9NgwahPDN9EQUKSfn5cb3x9TUw8eWfqKqx4e9nZNbzgzh44goz3lkKQPOUKCY80o33vt0owIGSigkPdsVidzDj4+XIMqQ2jODhjLa8O28TJeU1+Jj0PP9wD37ffJTM82JtMzqjPedzi73+nIyuTXEj88ViUfTZu00yOq2Gf60QK7l+bRtRbXd4QYHDOzfjVHYB+7KuopEkRvZsxYqDpymprCHAbKB/6xQW7Twq2s/jItBo1axWyjuHtm3CppPnBVQwwJfEiCBWKUKnV9OG7LmYTbXNTlSAL0F+Jrafu4RKBT1SEtl89gIy0Cw6nGsVFZRUWAg2Gwk2mziYnYNaUtEqLop9itBJj4nksJK4SgkP4aIncRXoT4nNSlGVhTAfM3a3i2uVFQQZDaBWKU3lBjRqFVcrK/A36JEl0VoeZDRgl10UWWoIMZkot9uw211E+YjJjVt2E+3rx7Xq69HynJoKVMiEmMzkWSoxaTQgyZQ7LIJ+rIgXj9BRq8BHq6PMXoOvVke1ImS8DB0V6DVqqp1W/LVGqhTTsr9OS5WzBpNGrKbqgwW6kfFRK16dWgBBs1qsxWrDAnVqTwdWXSqyjKAiOzxrKsWwLEkyKB4fl2zzUpFrG49F/YNTFHre1HPl8pKTVbgUoWP3Ch0RO7ejUTw7Yu0l/9ez8z892xRPTs8b6MfVVVaOKd6I+jw5R5RCxPR6klaXzhVgszow+xqIu0Vk/KryQuvhitR3PMRZv4DbQ+Q8b4Aeo/IfncZpQoAd23Mel8v9p5q2H540kK1LD3Eh8xpz3lzGuFdG3PF1b3diGobz6pxxHNuVxe9fb2bXBvFJ0u6w8VjHV4iIDaV198YkNY+lUcs44lMivdOEf8ex1tjIu1JM9rl8rmTlcSUrnytn87h6Id/bQVX7RMQF07xDEs07JtGiQxLhsX9NjMmyTNaxbFYrpGRPqkqjVdN1SCsyRnWlcVrCbW/jxL4L/PTlRg4ok0i4vcgpK65i0ZebWLlgt7fLq8fQVjz2woA65mNZltm14STfvreKXMX/ktIihgkvD6VxLZryhTN5fPHGck4cugRAbINQJs7MoKXScG6tsTN/9iYW/7BbxM3NekY925ch94m4eV5OKZ+8vtz7ASK5SRSTXh1GYnIE1VVWPn9nlbeENzI6kEmzMmjROoFr2SW8989lZCrCsH2nZJ6fPhj/ABNz/7WFhfN34nYLQvJLMzJokRbPrz/v5btvtuJwCBPylKlDaJkWx+zZG1m6VDznGjYM4+UZw3C5XDw18XuuZBcLc+79HXjg/g58+c1mVq4R/qdmqdHMnDqUTdtO8828bbjcMjFRgbwydSiHTlzh2ZcX4XK5xZ9NHsz67af5ebmYjDVrHMVzj/fis7lbOKKAA+8dnE7zJtG8+NZiqi12gvxNTJvQl9/WH2XPUXH/jujdgqjIAGZ+tlJ0YsWG8MiQtt5+Kz+z4Of8uO4wF3OKvf6czUfOkXkxz1vkufvUZU5eykdSqXi0f2s2HzvPpfxSdBo1j/Rtze+7Tghh42NkaMdUftx6GKfLTXJUCHHhgSzaKQRg7xZJnM4p5GpxOQathgEKEdkty7SIi8DqcrJDKfbs0zyZtZlnxQfMmHBKLBaOX8vHpNPSMi6STWfF62qHxFgOXs3B7nLRICSQGruDs4XF+Op1xAT7cyBb2AtaRUdyKKe+xFUoWaXFON1uEgIDyKmqwuZyEuPvR5G1GovdSaSPD2U2K+V2J5G+PhTbarA5RJy8QGktj/b1JadaTG7i/PzJridaHq5Ey7WShFGrochaTYBeeHFcrrrR8mCDiSJbNXpJjVqSlXSViI7XZujo1WpUKhc2t4NArYkKZw0qwKxVU+Oy4qvVU6MABn01mnphgVa3VYmwC0FkVLg6Hlig6K1SOrA0Ghxui9IsXpeK7Kl/0KokULmUqQ1/WP+gV6lxY/NSkTUqIWI8l/EktsDpFToGSSEnezw7CM+OGtD917Pz109BXjlnTgmKaJcedQXNob0XxItUXPBNIMG8nFIK8spRqyWa1jO5yTopRsrJTaLqTdjY7U6KCwQPpT7zsud4GsoNptsXoHlgceUld8bOSW3dALOvgbLiKs4cuULqDV1ff/R3vfD+A/zjiTks/mYrTdIb0PWGao3/yWnRKZkWnZIpzCkhLPorANw4KC2sYPWPu7yX0+jUxCVHEBIRQFCYH4FhfgSG+uIf7INarUZSq5DUEpIkIcsyNVVWairFf9WVFirLaijMKaUop4zCnNI6Kakbj4+/ieSWsTRqGU9y81gatYojNOr2pvE/OmXFVWxefID1v+zj4qnrpOToxFAGPNCRPve0uy0kUpZl9m85zS+zN3Fiv1i5SJKK7kPTuG9CTxLqqReprrTw27fbWPzddqzKhCatUzJjXhpI0g3en3Mnc/j67ZUcU0R9UKgvoycNoFdGK+9zurrSyvwvNrJs4R4BDzRoeWB8T+5+rDNarXiJ2bvtDJ+/uYICxW/UpW9TJkwZREi4Hy6Xm99/3MXcLzZhszrQ6TU8Mr4ndz/UEbVGzb6dWXz8xnKvN2fY/e0Z/ZRIYS37dT9ff74Rm9WB0aRj/LN9GZiRxpVLRcx66SdvpLx3v2ZMnDQAi8XO1MkLOKy0vHfsnMzklwZRUlLNU0/O5ZLy4ePue9oydmx3Vq46yldfi2lRcJAP06cNISDAzMRJP3DpihA/D4/sSMaQNN75aA37DorHoHf3Jjwxqisf/2sTu/Yrq6yujXns/o68/flaMhVw4MhhbWjXKoGX3vidkrIaTEYdUyb05czFAmZ+uAKAlo2jefSu9rzz7QbyikT0/IXHenLgZDafLdwOQN+OKSTHh/H3r9fgcsskx4Vyd5+WfPiT4OeEBJgZM7SWP8dsYPTgdsxbe9D7/w/1TWfehoNUWWyEBfgwuEMT5m444BU2jeJCmbdJCLSuqQkU11jYcCwLtaRiRPtmrDp8hmqbmOCkxIay+IBI+/VMTeT4tXwKK6sJMBloHh/hrX7omhLP4excKm12Iv19CPQxsevCFeGPTIpnxwXxOLWMieBcYTHVdgdR/r6gVnEyvxCTVkNsUACHc+pJXEWFcyxfSVyFhXK6qBAZSAoRKSu3LNMgIJDLFWW4ZDcNAgK5VFmKjFyntbx24ireP4Ar9UTLffU68i1V+Gh1OGUXlQ4roSYzxcqKyiN0VIC/3kCJvQYfrQ6724bN7b6BoaOj3FGNj1aH1W0DWSZQZ6TCUYNWUqGRZGxuu5ehIyFjUAuvzh/BArWSCocXFnidiuxNWrmtGNViCiOqIW6kIquRlbi5TintNCnsnFvVP8j19lx5xIvbm8YSZmS7YooWqywVdrQqFWqcqFEpHqD6+wj/6PxX7AA7t3ogY3EE3tD4vHeH8C+063Kzp+W4Qj5ulBpVL9vmnPLmlZR686dqgMLcMmRZRm/U1lkX3Hg8b0h6w+0j5Z43xbLiO8Npa7Rq2vZswpZlh9m9/sSfEjsAnfq34J4Jvfh19iY+nLKQhMaRxCbdeh33V05oVBA+Pj5UVVXxztKnsZVInDxwkXPHs8k6doWqcgsXMq9xQTHA/juO2c9ITMMw0XeVFCF+TY4gPDbo39J35XK6OLj1NOt+3sveDZneqYpWr6HLoJYMeKAjzds3vO3f5XS42LbyCL98tcVLPNbo1PS7uy13j+tBVD20aJvVwYofd/HT7M1eUZfcPIbRkweS1rnu87ukoIK5H69jw+JDyLKMTq/hrlFdufeJ7pgUbo8sy2xcfoRvP1hDqbJq7dK3KeOmDCJMWQUX5pUz+51V7FQmp2GR/jw9fSjtuwsT84WsPD78xzLOKo9f8/R4np+ZQUx8CBXlFv714Vpv0ioqNohJszJonhZPfm4Z77++nCPK1LVl6wQmzxhKWLg/v/+0j2+V6Livr4FnXxxIjz5N2bQhk08+XEtVlRWDQcuTE/swYFBLliw5yNf/EoImMNDM1GlDSE6O4G//XMIeZcrUsUMSUyYPZNvOLKa9+ht2u5OgQDMzpw5FJakY/5yABOr1Gp6b0Ie4uODrayutmmee6EVoiC8TZyyiosqKj1nPtIkDuHytmMmv/4ZbaSuf9ERvvlq0kyOnxITngSGtiY0KZNoHS0X0PDyAZx/uzuxfd3LhajFqtcSEeztx5nIhn/8shE+/DimEh/rxxrwN4r5JihL8nFr+nF5tGvHJ7ztxud0kR4fQoVk8X6wQUMUWiZHEhgV4QYE9WiRSZrWxfL8oG72nS3O2ZF6gsKIaX6OOfi0b8eve4+K68RE4kdl88gKSSsWgdEFEtjtdNAgLxGTUse2sWFX1Tm3IxjMXBNMnKpRSi5XM3ALMOi2No8O8QqdDg1j2Xb6KW5ZJCQ8hp6qSiq3JTSkAACAASURBVCoboT5mdFq113wcHeTnTVw1CQ/zCp3U8FBOFnrKPEM5XSKMyI2CgzlbcnOZZ+3W8vhaQifGz48rVWVoJQl/g75OtNwDCCyzC0BghPl6g3mYyUShrQqdJKFRS5Q7LATpjbVIyKYbGDqWmxg6FQ4LJo2YsDhlkdKqcgpfjqSSccgOAnR6pa1chUT9sECXLCZANg9XR5neeJJW1706eNdUJoWKLLg6YiKj8VCRFXaOp/5Bp4AEryesXPXUP4CkctaKnctoABUOL59H5/XsSEg40CCh9k52/svZ+ctnh4d+fMNUx+2WObBLETud6xE7hy8B0Fzp+Lnx1J7s1Hc8ULWI6MDbvrF5Jjv62/g0oO5kx+123xGvpWPfpmxZdphda08wZurgP/1mPuqlwZw5cpnje87z9ye+5Y0FT3lj7f+u4+/vT1VVFW6Vkw79WtOhnyhtlWXZu3IqyS+ntLCSkoJySvIrqCitxu1y43K5kd0ybrfw1ph8DJj9jJh8DJh8jfj41+q8ihK//hWfzR8dt9vNqYOX2LL0ENtXHqG8+Pr0Lbl5LP3ub0/3jPQ/JCVbqm2s/Xkfi7/d6p2SGM16Bj7QgRFjuhESUV+pp4PVP+3j5682UVIgzO6xDcN47IX+dOrXrM5jbq2x89t32/l1zjavyO4xuCWjJw0grFbL+dnMq3z55kpOKYyY6IQQnpo+hNaK0d3pcLF0wR7mf7kJq8WOpJYY8VBHHnmyFwaTDrvNwY/fbOWXeTtxudyYfQw8/lxfBgxPR5Ikdmw6xefvrKKkuKqON0ev17Bq6SH+9cl6amrs6PUaxj7dm4y721KQX86UZ+dz7LD4ntp2aMikaUPQGzS88Y+lbFK4QimNI5k+MwODUVfHhNy+Q0OmTBnM+QsFPD7+W0pKRGJrwrhe9OrVhPc/Xss2pdC3fdtEpjw/gGWrjzJ/0W6RrIoLZtZLQ9l3+GKdtdWsyYPZujuL974S4qNxUjiTJ/Tlm4U72XNY/N2DejWjZ6dGzPhgOSXlyoTn8d7sz7zCgm/F9bqkJ9KzQyNem72GGquY1jzzUHfmLtvLhWtC+Iy/qxOHsq6yZpUQKnf3bEGVzc7spWIa2q9tIzRaDbMVnk6vtCTcKpnvN4iJzaB2jblaXM6KfadQqeD+7i3ZnHmB3JJKzHodIzo15addx7ziJS4skF/3ihRr7+ZJHL+WR355Fb4GHZ0bJ7D88HUi8tWyci5cFTUM6YnRrK9lRD5yNZdqu4NIf1/MRh0HrlxDo1KRHh/NHiVxlR4XxdHcPJxuN4khQRTVVFNQXk2w2YRWK5FVXIxRqyXC34eThQVoJBUJQUGcLCwEZJJDgr1CJznoutBJVMo8PemrixWlSCoI9/HlcmUZOrUaf4OOa9UifaWS8EbLKxxWnE5XncSVR+iISggDRTbPlMaBxWWvEy0P1Av2jlGtxn2HDB0/rV4p9tTglO24ZcHQqXHVeMGAbmrDAgUTR4WMWaPGVgsWWDtp5YEFaiU1ImnlxiipcN1ERRZ+HIPCzvEIHY/H5vb1DyrFh1Mrdg6olO+jttDRqzyTHTUSLtRIyu3eecVR7fMfL3Yqymu8u/5O3er2NF3Myqe0pBqDUUuzetJUJ5XIbX0rLLfbzaVzwnycmFJ/0sqD0g++TaIGQFY6kqQ/8NQEhvii1kg4HS6K8soJu4MVS5vujTH66Mm5XMShHWdp3fX2XVU3HrVGzbTPHuO5oR9w9XwBzw35gFlfj6HJLQTgXzkBAQFcu3btpvi5SqUiMj6EyP+lnVeyLHP+xFW2Lj/MtuWHKVDELYhEVa8Rbeh3X3sa3EIM1z6FuWUsm7eDNYv2UlVhAYS4HTaqK4Mf7lgvJ8lhd7Lu1/0s+nKTFx4ZFh3IQxP70Ht4ep3ou8vpYt3vB5n/6QZvx1pKi1jGTx9Ck1rP77LiKr77ZB3rlImPwajjgXE9GPFoZy/w8uSRK3z6+jJvO3lqqzgmzhhKosKuOrLvAh+/sZwcpWi0c88mPD11EMGhfpQWV/H5u6u9XKvYhBAmzcogtUUsBXnlfPDmCg4pK7XU5jFMmZVBVEwQa1YcYbYigAxGLROe6cugjDQOH7rEu2+uoLCwEkmt4qGHO/PQo53Zs/sc77+/mooKCzqdhief7E3/Ac2Z8902flH6ruLjQ5j5cgZV1TYef2ouhUWiM+vxUd3o0bUxf3trOccyxQRmYN/mPPZQRz74YgN7DwkB06trY0aN7MjbX6zjhBJTv2tQGt07JvPy20spKBZm5RfG9qKkwsKUt5bglmUSY0N45rHufL5gG1mXC5FUKh6/pxOVFht//2otAGmNoxncrRlvz91AtcVOsL+ZJ+/tzLcr9nKtsBy9VvRbrdxzirPZImo9elA7dmZe5uRl4c95pF9rtp+8yHnFz/NIn9as2H+KgrIqfIx67unaggXbD2O1O4kN8adVw2jmbxOeqfbJsZRbrGzJvIBGkhjargmrjpzB6nASHxxAWJAvqxUict/mSew4d5kau8NrRN6WdQkUI/LWrIvKdCeMguqqm6ofANomRLMvW5n+RYVzsqAQp9tNg6AACq01FFXaCPMxI0twobRUSVzpb0pc6SQ14b4+ZJUWe8s8L5SL9FWQSaSvDBoNRp2WnOpKfHU6kGSKareWO+q2lkeZ/ci1CINyqMlMgbVKqYRAkJD1ohJCFHuaKVaKPc06PeWOGvy0emrcFpBlRUDdnqFTfQNDx1erVdrKxVrMw9URsEAdDtnmhQXa3TZMai122aaskkTSSggdK3pJi1sRLHqVjEt21qIiC+if52vuWlRkD/FYjZg0XScnO29R/yAEkxrZ24iuwql4dIQ4Er9qUOFEo1IjKasuneqvhWH+48XOvt3ncLtlEpPCbkphHVJioy1aJ9SpjgBBW85W9vtN6ql5KMgtx2Z1oNGoiYqt34/jSasE/kFxp1rj4efcbJCtfTRaNVHxIWSfL+ByVv4diR2Tj4F+97Rj6dztLJmz/U+LHRCFke/9+gyvjf2GS6dzeem+T3n2zfvpe2+7P31b9Z3/SxRlWZY5e/QKO1YeZceqo+RlF3u/ZvTR06l/C3oMS6dV50Z3lGA7eyybxXO2sX3VUW+sPSo+hLse70afu9vWO+1z2J1sWHyQRV9u8gqskAh/HniqN33vblPH0C3LMvu3nuHb91ZzReECRcQEMuqFAXQd0Mw7HXQ6XCxbuIcfvtxIjdLf1XNwS8a+0J+QcOXxKanmu0/Ws1aJpPv6Gxn7fH/6DU9DkiQqymr410drWb9ckHWDQnx5euoguvRKRZZlNqw6yuwP1lJZbkFSq7jv0c48NLY7Wp26zjRHp9MwakJPRtzXjtKSamZO+Yl9SldX0xYxvDQjg+BQX778fAO//yKES3RMENNmDCWhQSgffbSW1UqqKikpnJdnZADwzHPzOafcB8OGpvPE49356bf9zF+4C7dbJjoqkFemZ1BYVMkTz86jotKKyahj8jP9CAnx5emXFlJUIgpAn3uiF8FBPjz9slhbmU06pj7dn/yiSl74+69i6hMZyNQn+/HDsv3s9kx4ejSlQ6sEZny0nGqLnUA/Ey+O6c2vG45wSFltjRyQjkYr8Y9vhPBp2SiaPh0a8faPm7DZnUSF+PHwoDbMXrKL8morAT5Gxgxux5w1+ymttOBvNvBwv3TmrT9IpcVGiJ+JYZ2b8f3Gg9idLhLCAklLiWHORnHftUmOAQmWKTDAYe1S2XH6EkWVNfib9HRJbcDv+8XUrHWDaEpqath3PhutWqJXs4aszRRE5OYxERRbauoYkTfXMiIfvpYrODlB/sgyovpBo6FhRLA3cdU6NoqD14RwbBoZxukij+gJJK+mihqHgwgfH2pcDq5VVhJsMiJLcq3ElUR2RTl+ej1qjcpb5okkk1dTRaDBiMXtpMRqIcxkptReg9PlItLHl9waRdzUipZHmH3JtVR4o+XFSrTc6rZT43IRYjBTrHhxQgxGim1V6CQ1kgTVTquXmyOmPAYqHDUYJQ1O2Ynd7SBIYewIho66DkPHAwa0uq34aPRYXUL8GG+ABXqqHq7DAq1eWKAwMYtiTyFqlDWVyoUbAQt0ylYFFngdBAiy6LuqRUUWxmNnHR+Ox7Nzu/oHrSSmQFpUYpWl8qywhNDRqjSocKFBjVolVmt/5fzHix2PJ6d9PWuqQ0qnVVrbm2sePB6DyJgg/ANv9ttkK23TMQnBt4THlZcKsVPf9WsfT0qqNsPlVqdB40iyzxdw8XQubetJj9V3Mh7rzLJ5Oziw9TRXzuUT9xd8N+GxwXyw+Hnee+FHdq05xgeTF3DpTC5jpg35U/C8+s7/doqy3erg+N5z7N14kr3rT9SZ4OgNWtr0TKV7Rhrteqf+oe8KhFjZufY4y7/f6S3nBGjRoSEjxnajXc8m9a4oHXYn6387wE+zN3lXXEFhvtw/oRcD7mtXh5UDcProFea8v4bjirHZ19/IA0/2YvADHbxTGlmW2bf9DF+/u9qbHExOjeLJ6UO8xbUul5s1vx3gu083eKdO/YalM/aFfvgHmoW3Z9VRvnp/DeVlNahUKobc04bRT/fB7GsgL6eMT95c4U1hNWwUwaRXMkhKiSQ/t4wP31pZZ5rz4swMomOD2Lw+k88+WENlpVL4+UQP7rq/Peey8pk5/ReuKDUrQzLSGP9Uby5cKGDcE9+Sk1MmVjT3d+CxUV1Zs/Y4X361EZvNib+/kRcnDSIpKZyps37luDK56d+nGU8+0YN5C3fz+zKR1kpJjmDWS4PZuP0M//xoFW63TFxMELMmD2HTztO8M1uUb6Y0DGfKk/2Y+8tutu8Xoqx358YM69eCv3++mvyiSnRaDS+M7kF2fhmzPhV9Vy1SonhgcBvem7eJorJqTAYtzz/Sg3W7z7D/pFjV3dOnJS5k3v1R9F21bxpHasNI3lmwCVmGJvFhdGnZkI9+247LLdMoRvhzPl8u/DnNEiJIjA7mm7Wiw6tjajwuZH7bJRg5wzo05cCFqyJhpdOQ0TaV3/dm4nC5aBgeREiADyuUVVW/FsnsOZ9NucVKiI+JlJhQ1pwQr6/dGzdg/+WryqqqrhG5S3IC286L53nzqHAul5aJok1fM0aDluO5+WglicaRYRy8loOMLIo9c4VXrWlEGCeLCnHLwntzpbJcdFkF+FFgqcZqcxLt60uJ1Uq53UqEjw+ldgtWq5MIHx9KbDXYnULQ5FuqcMluYnz9uVZzc+Iq0seXHKW1PMhgIt9SiVGjQaVEy4MNxuuAQKMPRbYqVMj46/WUKqZkq8uO0+32RstVgK9OR6WzBl+NwZuuCtTrqazD0HFcZ+ioQKNGMRsbsLgsYlIjyTi9sEALOkkFuOqFBYppj1hhCSqyIB+rcCmwQKkOLPB2VGStIlA87eTiMgBOjAoV+Vb1D2Jio0KFU7mMXRE4TrQqrVfwiEmQGs1/xc6fP06niwMKGv7GhnOHw0WmQj9Ob3ez2DmtsGkaN4uu97avXBBi53Yt5eUldyh2NNc/Xf/RaZASybaVRzn3Jwy7UfEhdOiTyu71mfz85SZefP+BO75u7WM065kxexQ/fLiGhR+v4/d/beb47nOMnj6UVp2T/7K5938jRbkwt4xDW0+zd2Mmh7ef8fpbQNwP7Xqn0mVQK9r0aHzH7fAlBRWsXriHVQv3UKKk9NQaiR5D0xg+phtJTet/rtltYl3181ebKcwVIicw1Jd7n+jBoAc63DT9yb5QwNwP17FL8bBodRqGPdyJ+8b1wNf/ul/p0rl8/vXuKg7tEm/Q/kFmRj3bl37DW3sF+JkTV/nsjRVeQnJiSgRPTx/ihWhevVzEp2+t9CIaEhqG8dxMsZZyudz8vmAPc78UKSytTs3Dj3fnnkc6IUkSy347wLdfbMSiTHNGT+jJ8PvaUVFh4R8zf2O74rVr1DiSlxQB9OP8nfzw/Q5BTg72YfJLg0lvk8D873ewYIHw1oSF+TF12hDi40P42z+WsHuP+Pe1Tk9g2ktD+H/svXd0lHX+9v+67+mT3hskkAAJhN5DhwChIyiKKIgFUEEBEUTd7+76XV3X3VVXURQUFBQsNOm9I733HhISEtL79LmfPz73TBIIxS2/53fOPp9zPIPJTDKZlLnm/b6u13Xq7E2ee2khlZU2zGY9r72SRqOECGa8vYyr18Xk54mRHXhkSBs+mLOJE2r33cDU5jw5sgMffL6Fs5fUXqzBbejdNZG3/7aa3PwydFoNr4zvhcPtZtp7K3C63NSLDGTG86l8s+qgt638iYFtCQny5e0560TreUwIz47oxJwf95BXJKoiJo/uzsYDFzhzTTzpjx3Yjsz8EhauFzydIV2aYXO6vPycfu0bY3e7WbRVTN4Gdkwip7iM1QfEz8GoHi3ZfymTmwUlGHVaHuvWkhWHzlBlcxAV5EerhtH8tF9E7bskxnGrrIyDVzPRaWTSWjdhw6lLuNwKiVGhKDJ1EpGToyMoqKr0GpGbxoR7hU7nhvU5kpGFS1FoEh5CXlUVt4tKCDIbCTSbOJ2Ti1Yj0yQ8hJM5gqdTs+OqZvVDk1BP3YMgIt8oVRNXQUHcKBOJqwaBwnysAHH+gWRUeMo8A7hZIcRNjJ8/WZWlSBKEmnzIqSrHqNGi00gU2qoE3dhlxX1HtDzU5EOBakrWaSTKHRaC9GZKnR5TsoiW62UZjUahynUPho5Gj02pzdAxaoRRWJiNDVhcVRg1GtwIr46PCgs0yRpcd8ECtTi9xZ4ibu5ZUxklGUU1LOtkkX71CB0PLPDhqcjiOqL+wX7f+getZ5UlicmOXtJCLaGjUz07QvDI/L811m8+Vy7kUFlhw8/fROIdiamrF3PEK71AM3EJdwuWa2qktck9kla31Vf30ffhrnjAbPdqpfYcX9Uw63nVfL/TvIPoLTp18OpvYueMntyXA1vPsX3VMQY+2ZnkGv1Hv+XIssy4GYNomBTNp7N/5sqZm7w1Zi7N2jfkqWkDaNO9yW8WPf9/mOxUllk4ffAqJ/Ze4sS+y3dVQYREBNChTzM6pSbTpkeTh5rggJicnDl0jfVLD7J/8xmvoA0K82PwmBQGPtn5npRka5WdjT8dZMWCPRTeLlPvhz+jJvRiwBOd7hI5+bmlLP18O1tWHsXtVkQ31vC2PD2lby3zcWlxJd99vp0Ny4/gdrnR6TQMf7oLT07o5W04Ly2u5Ns529i08hiKomD2NTDu5VSGPtERjVaD3ebgp2/38dM3e3E4XOgNWsa80JNRY7ui1WlIv3qbf7y3lotnxZN78zaxTHtrKPUbhJJ9s5CP/ryOM+qLjeSW9Znx9lDqxYawe8d55qgTIo1G5ulnuzN6bBeys4p59eXFXFaTaT17N+XV6WmUlVp49ZXFXFJ/X/v2TeaVV/tz9lw2L0xcQHFJFTqdhhee78nAtJZ8Nm87m7YKw23TpCh+N2soJ05nMnHqImw2J4EBZt58bSAKMGnG95SWWzAZdbz2Uj/MZgMvv/Uj5RVWfM0GZk3uT15hOa/+4WdcLjfREQHMfjmN5ZtOsuuwmHj07tyEtB5NeWfuBorLLPiY9Lz+bCq7jl/lxy3CH9MvJZGk+AjembcJp8tNXFQQY4d04LPl+ygqq8LXZOClR7vw446TZN4uRqfV8MLQTmw5eoWr2QJGOC6tPbvOXON6ThE6rYan+7Zl/eEL3C6pwMeoZ1SPVvy476RX2KQ0jeO7PWKC1bqh+Bu38YQKCmyfxK6L6ZRZbIT5mWkeF+U1IndLjOPC7QIKyivxNxpIjo3wEpG7NorjeNYtr3fHbNRzJDMbjSTRvoYRuU1sFGdz87C7XMQFBVLusHO9qBh/o4FAHyPn8vLQaWTiQ4M5nSd8YU1rCJ2k8FAuFoopZM3EVaPgYK4+qMzT35+bFaXIEoSafciuLMOg0aDXasi3VhJoMFLlslPhdBJurqYfR/j4kG8V0XJ/g5FCWyW+Oh12tx2ry60mrjzrKj2ljip8tDrsih2H202Q3kyZQ6yrjFr5oRk6FpelFkPHrNFi+42wQGcNWKBg7rjVjyXhUqyYVHOxAAG6vaZmN3YBC6QmFVmpQUUGcGC8g4qskyQ0kkMlInuEDki4VK+OEDjgRC/phWcHHRIudJIOnfTgF/11nf9qsXNCTWG07djwLlFwTk2ZNG1Zv84n5+ueTqt71DzcVtcIEdH3TiZ5iiENxvt/GzyTn7LiB5Mjk1rFYvY1UlZcxdVz2SS2rP/A24Aoeew/qiNblh3mo5k/8fn66Q89kajrdB/cmuQO8fz8+TY2LN3P+aPpvP30FzRt14AxU9No2yPxodu9/294dkoKyjl35DpnD1/n3OHrXDuXhVs1ioNg2TRuFUvHPs3omJpMQnLMbxJx5SVVbFt5lA1LD5ClTgEBmrVrwNBxXema1uKesMSKMgtrv9/PL9/uo0xdhYZEBPD4pF51rqtKiipY9tVu1i49iMMuKic692nK+GlpxNUgd9vtTtYsPcAP83dRWW4FoEtqM16YMcAr2l1OF+uXH2Xx59u94rvP4Fa88Fqal5B87OA1PvvLOq8BuX2XRkyeNZjo+sHYrA6++2oXyxbvx6WCBSe8KlJYiqKwfOkBvp23C7vdidGk4/mXUhn6aHvKSqv40/+sYM8OEX+ObxTOzLeH0TAhnFXLj7Dg613VUfPpafTs3Yw1a44zf94O0WruZ2Ta9AF07tyIeV/tZLW6imrYIIy33hyK3eFk4iuLuJVTIso+R6cwYlhbPp67jd37xJN8u9ZxzJo6gOXrjvHzajEdaRwfztvTBrF22xmWrxcfs2njSF5/sS8Lfz7APpWx0yulCY8ObMN7X27m1u1StBqZKWN7UGGxM/uj1SgKNI4LY8LjXfl06W5u5pag1chMHt2d8+m5fPrDHgB6t29EowZhvPftVsHTqR/K0O7JzFm5D4vNQUSQL2P6t+Or9YdE/5W/mdGpbfh2yxEqrHbCAnwY2iWZ71R/Tlx4IO2TYr3+nNbx0RgNWlaoCatBbRM5fuMWOcXlmPRa+rdpwppjF4ShOCYcSSOx4/w1ZEmif6vGbL9wTfh+QoMwGrXsv5aJLEOPJg3ZdTkdBUiODie3ooJs1YgcGxzIoYwsFKBTg3ocuimm5s2jI7icX4DN5aJeoD+VTjsZJSUEmoyYjXouFhRg1GiIDPDnQoEwYccFBXGxsABJEq3lNRNXHqETFxjI9bIiJAli/ESZp06WCTIbyaosw6TVotdqyLNUEqA3YHU7KHdYCTf5eic3NVvLw8xm8q3Ci6PRSGrfVc1ouU91tFynodxpIUBvpFKNlgfqhCnZoJGRJBd2t7NOhk6AzoDlHgwdCTDIMna33QsL1EggSyosUE1aiUZyDyxQxqnYvQwdrSQ+v6fiwaWCBN2KTaUiO++gIgsfT20qskfo1E1F1suy17PjqX/QSQoyCjpJVgWNZ4V1p9DRI+NG+n/R899+PIyOdh3vph97k1at7hYLlRVWctTJTXyTe4kdtan8Pibh6kj5/b95/kEiaeNZe93vaHUaWqUkcGDrOY7vvfzQYgdgwttDOb7vErcyCvj6/XVM+dOjD33buk5wuD8vvjOSUS+lsuzL7WxccoALx27wP+PmERIZQLdBrejUtznNO8bfl4L8n15jVZRWce1cNlfPZnHtXBaXT2WSXUOAeE69hHDadGtC625NaNm5Eb4P2RTvOW63m9MHr7F1+RH2bTyNXe26Mpr19BneloFjUu65qgKR3lu9aB/rlhygqkKIkcj6wTzxYm/6DG93V9t9ZbmVld/uZdW3+7xTxObtGjD+tTSSa6TlFEVh75azLPx4sxeHEJ8YycSZg2hdgwx+9ngGc/+yjuuXqstrX549hOZqyW1hfhnzP97sbScPDvXjpdcH0r1vMyRJ4uSRdD55v1oEde2VxMszBxIa7k/61dt89P46Lqm4hjbtGzLtzcFERQexZ+cF5vx9IyUlVcgaiSfHduWp8d3Jzyvj9WlLOKOmKTt0jGfGrMEoKMx+40eOeX6/2zVg5qwhFJdU8uLL35KpmsZHjmjP88/2YMXqY3zz3T5BuQ335+1ZQ5AkiUlTv+N2fhkajcyEZ7rTtXNj/ueD1VxSU5aPDW3H0AEtefcfG7l8Xbxt9PD2dOvYiLf+usa7tpr8TE8kWWLaeytwOF1Ehfkza2I/fthwlEOnBUtmWO8WJCZE8Ls567A5XESG+DFlTA++/uUg6dmFaGSJCSO6cOHmbeatErHxAZ2T8Pcz8uFPuwFon1iPZvFRfLx8j/DjNIykZaNoPlsjaiFaxkcRGxHEghr+HEWCZb+K1dTQjk05nZnLjQxBTx7RuTmrj5zDYncSE+xP45hQb2N5z2YNuXArn9tlFfga9HROjGXjGZG+atcwhsziEtJzivE36kmKjmDnZfHCsktCLEezsrE5XcQGB+BWFM7m3Mao1dAkKoxDN4XoaR8bw9EsMfVLigjjenEhNpeL+gEBlDqsZJeVEWI2IWtk0kuK8dXr8DUZuFZShEmrJdhs5mpxEXqNhhBfE9dLizFoNASajWSUi74rk14v+q70eiQZ8i2VBBtNVDptlNrthJt9ybdWoKDcFS2v2VpeaKvET2fA4rbhcLnVMk8x8QlWGTpGjaAOW121o+V+WuHL8VVFC4oaLXcJv42E+4EMHSFE3DgVlwoLtKCXxVrLCwtUrJg1Wlzq9EYrg0tx3gcW6PQKHREb9xCPBV9HL8m4a8ACtWr5pwZXDSoygAM94vbV9Q8edo6ofxBCB9Xno/FOcITQEYJHLxmQcKGR9Gj/X/T8t5+rl3KQZQPtOt3tybmgenKa1SEWbqgrjNBwf/zvwUXJV9cKYZH3jpU71JXFg1I5gSHiFXNhftl9r+c57XskcmDrOfZtOs3ol/s89MTB19/Eax88wVvj5rN+yQEaNIlkyNiuD3Xb+52QyABe/ONIU9YTMAAAIABJREFUHn8plWVf7mDrskMU5payeuEeVi/cg8nXQOuuTWjcoj7xzWKIbxZNaFSg937/O9ZYiqJQUlBB1vU8sq7leS8zL+fWSkx5jiRJxCVG0rxjAskdGpLcMeGf5gfdzipi24qjbF1xhNtZ1eblhklRDH4qhV7D2nrXQ3WdrOt5rFiwh22rjnnXXLGNInjixd70HNzqLgO4tcrOmiUHWL5gN+WlYvrSqFk046en0fYO79T5k5l89feNXl5OcJgf41/pR+qwNt5pZ35uKQv+sZldG4Vp1dffxDNTUhn0WAc0GoE6WP3TIb6btxNLlR1Zlhg6qiPPvNwHH1+jSGF9spWt60QKKyTMj8kzB9K1d1PsdiffztvJT9/tV3k7Bia+0o8BQ1tTUlJ7mtMwIZyZbw+lUZNI1q05wbwvtmO1ODCZ9Lw4OZWBg1uxc+cFPv1kCxUVVgwGLRMn9mbwkDb8vOwQ3y4WgiYk2JdZMwdTv34wb/zPMk6rv+u9eyQxdXI/Vq497mXnxEQF8rtZQ8jMLmLCa4uxWB2iA+vVgVRZ7UyatQSL1UGAn4nZr6SRmV3Eq38Ua6uYyEBmTxZrq50HhRDo1j6B4X1b8u68zRQUV2DQa5k2rjdnrubwV7WtPKVVA3p1aMy7X2/BYnMQGujDS6O68c36Q2TeLkGn1TBpRAr7zqSz8YhYHz3Ztw0ZeSUs2iwKTYd1TSavrIIlanHnsJRkbuQVsfaQECuP92jFr5cyuFlQgkGnYVS3Vqw6fJYKq53wAB86NYn11kC0S4ihwm5n5/nraGSJQW2T2Hz6shAsIQGEBviw9ZzwPfVpFs++axnYnC7iggPR6TUcunETjSyR0iiWvdeEuGsZE0l6YTHlNgEH9DHpOXUrF60s0ywqnKNZ2cKIHBPJSbX6ITE8jKue6ofAQG5bKqmyOojw9aHS5SCnopxQkxkXbrLLywg0GnHLCrcqygk0GnFJbm5XVRBiMlPlclBorSLMbKZUjZN7BM2dZZ7RPn7kWMqFKdlkJs9agUmrBcl9j9bySmQJfHQGSuyV+Ov0VKlCRhR7VqGRJAyyqHwI1Bu8Ux7RjWVRSzdtKFQzdIyyFqfK0PHT6VSGjuDqCCaPBpvbglGjw6lUG5Adis27wtJIMrKapvJRYYFGFS5YJyxQnd6I5vFqKjI4HpqKjDeNZa+mIiOhkVxoAK0EMqCVZGTc3vSVBh0yTnSq0NGql0j/HLX+v1rsuN0K9eOCCbvDE1GYX05RQQWyLNGojnbo7Azx5FivQd18F6fD5V0D3M98rJHFk86DWspj4sQKIVtNwzzodB/Qki//tIbrF3O4fCbrN0132nRrwtjpaXz38Wbm/vEXgsL96ZrW4qFvf78THBHApD+M4NnZQzm2+wIHtpzh6M4LFOeXc2DzGQ5sPuO9rl+gmbgmkQSH+3MlVzxRXL+Uwf7Np++qgUBRqKq0YamwUlUhLstLqyjMLaUgt5SCnBIKb5d6W8PrOhH1g2nUvB4JyfVIaF6Ppm0bPBDwd79TWW5l38bT7PjlGKfVlBGIqH+voa3pN6oDia1i7ylEFUXh/PEMVizYzcFt572Fns3axvHoCz3pnNrsrjWgzepg/Y8H+fmr3d4pYP34MMa+2o9ud8ADszMK+OaTLezbKsypBpOOUc9257FnumM0670fb/m3+/j5m73YrA4kSWLAyHaMf6Wv9+f67IkMPvvLetLVaUdS83pMmT2Yxk2jURSFretP8dU/tqgpLBg8sj3PTUnFx9fIuVM3+ej9tdxUf5+69EjkldcHEhzqy85t5/j8482UqTH00U934elne1BUWMEbM37guDq1adk6lpmzh2A263n3T6vZrdLQExOjePPNoWh0Gl57fSnnzospQY/uiUyfNoDDR6/zx5d+obLKjsmkZ+rLfWnZvB5v/e9Kzqnk87TUZF54pjtfLtrDtt1CcLVuXp8ZL/dnyapDbNwhHrtWzeox9YU+zFuy1wsJTO2ayPC01rz3hVhbaTQyL43phtPt5o0Pf8HlVoiLDmbKUz35Ytk+rt0sQJYknhvZmZJyC39eKJJc7ZrWp1fHRvzl++3Y7E4iQ/wYP6Qj89cepLC0Eh+TnonDUvhp5ymyCwRfZ/zAjqw9eI7swjIMOtFvterAOQpKK/E1GRjVoyU/7BX+nMhAX7o2b+j157SIjcRg0LLmqPh6B7VN5OC1mxRWVOFvMpCSGMea4+J97eJjyC2v4FjGLQxaDSlN4th+SU2wxkaRWVJKQUkVASYD8eEhXqFT04jcODyEAksV6UXFBJqMBPmYOJWTi0aWSIoM56Sn+qGGEblpeBiXCgsEkyg4iIzyEpxuN7EBAeRWVmB3uYj29yPfUold7bjK93Zc+ZNTVa4mrvzJVgVNzcRVzTLPMLMPOZZy1bcjU2SrUlNSVtyK25u4qtlaLvqslLui5cEGI6WOKlVcOEXflcFIhdp3ZdQK8eOvM2BRo+W+Oq3w5WhE2aeEgo9O+HKquTo1GTrC01PTgOxZYellLQoO75rKeQ9YoCdSXg0LFMbhaiqyUzUz16QiS8iSvYbQeRgqsoRGUlShI6kTHo0qkrTqhOcOoSPHIAX/A/jt1UT/1WIHoGXbu2GBl9VRelx8GMY6OCZZaqS1flzd5uNy1csgSZLXXFzX8bwif1CkvF5DYZDOSs9HUZQHTmr8As10G9CCnWtOsOmnQ79J7AA8OaUvBbmlbPzhIB9MXcKfv5vkNT7/O47eoCWlfwtS+rfA7XZz5UwWZw5c5fqFbNLP3yLz6m3KS6o4qyZ48i3iCeT65Zv8acLCf/rzSpJERL1g6iWEERMfTr2EcOrFh5OQHIPfA0pWH+Y4HS6O773E9l+Oc3DrWe+aCqB1l8b0H9WBLmkt7kvCdjld7Nt8hlUL93KpRuN5St9kHn2hJ8l1VHrYbQ42LjvCT/N2eYGAkfWDGfNyH/oMaV1r8lNSVMnSL3ewftlhXE43sizRd3hbnpnSt1Zz+d6t5/j6o03k5YhpWvO2cbw4axCNVABicWEFX3+yhW1qlYNfgInnpvT1EpBv3ihgzgfrOXX0BiBSWK++OYTkVvWprLTx2d83snblURQFgoJ9mDxjAN17N6WosII/vrmM/XuFwI1vFM7rb4lpzoZ1J5k3d3s1OXliLx4Z2YGDB67y0UcbKS6uRKORGTuuK08+mcKWrWf5/IvtWCx2zGY9r07pR0rnRnwydxvbdooJR3LTaN6eNZRzF2/xwiuLqKyy42PWM+OVNKIiA3j1rR+5lVsqoHxjutKxbUPe+ssvZGYXIcsS4x9PoWWzGGb+eWU1Y+fZ3thdLqara6vIMH/emNiPnzefYP8J8TM9oFtTOrSM4/dzN1BlFUWf05/uxQ9bjnPumphkPDWoPeVWG3/7Xo2VN4ulVWIMf126QxR/xoQwMKUZn//yKzaHi5hQf4Z1a87CTYexOpxEB/uR1jGJb7aKfqv4yGBaNY5mwTbhz2mbEIPBoGX5AfEiY2DbRE5n5pJ1UxR5DmyXxJrj58Vtw4MJ9DOxyQsKbMyv1zKotNmJCPAlJsSfnarQ6ZnYkP3XM7G7XDQICUSR4XjWLXSyTJvY6FpE5NO5uThcbmKDAqh0OrheVEyA0UCwr4mzt2+jlSUahYVWJ65qVj/UMCI3Dg7mSnERd1Y/NPD2Xd3ZcRVA5h2JK1AIV8s89WqZZ75V+HYsbjuVTgdhJh8KVfpxmJq4qt1absDisuFW7o6Wl9URLa9wVqGTZSTJjd3t8DJ0NCgYtJIo7NQYsKqFnUathP2+DB0LelnwboSJWaywjLIOlwoL1Etu3IpbNSdbvWLEAwtU6oAFyl5h4sYgwcNQkWVc6O8QOtVUZFmNkktoJNQJj6yKJI1YtUl6kcKS9ELoaBsjBS1AqvznXoT+14ud1nWQfq+otNNGSXUnrbJVsXNnMajneFrKff2N901DaT2Rcuf93eVRcSHIskRVhY2i/PIHEpcBBj7RiZ1rTrBr3UlemD0YH7+Hr0CQJInJ74ygOL+cg9vO8c6Ehbz1+bi7+pP+HUeWZRJbxZJYoz3bbnWQeSWXrOt5FOeXc+ToIY7NW4PWCElt43A53bjdCm61CgIEsM/sa8TkY8DsZ8THz0hIZCAhkQGERgYSGhlAcETAXb6Wf/U4HS5OHbjK3g2n2L/lbK0i0fqNwkl9pB29h7clPOb+o9fKcgubfj7MmsW/ehk5Or2W1EfaMvK5HtRPCL/rNjarg40/H2b5gj3eQtnw6EDGvNSH1OFta61HLVU2Vi7+lRXf7qNKbVTv0L0Jz08fQIMaJuXL57KZ//eNnFWLMsMiA3hheho90sRkyOV0sebnwyz+cqf34wwY3pbn1GmP3ebkp0V7+OnbfTgcLgwGLU9N6MmjT6Wg1Wo4sPcSc/62kQKVHt5/cCsmvtIPP38jWzee5otPt1JRbkWrlRnzTDdGj+1KUVEFs2f+yDGVB5Tcoh4zZw8hMNDM3/+2ns3qRDA2LoTZs4cSFu7PH95Z5Y2Ut2hRjzdnDSHndinPv/wNefnlyLLEM091ZfiQNsyZt51tu8S0okWzGN6cMYid+wQ7x+VyExnuz+9eG8zl9Dwmv/UDdoeLsBBffjd1ICcvZDP9f5fjdivExQTzxstp/LjumDdt1b19Ao/0b8X7X23hdqHoyZo6thdXswpr0ZCH927BXxfvoKzSqraV92DFrtNcuHEbSYJxA9uTkV/CPLXmoX+HJpjNRuas3AdASnIcEaH+zF0raiE6JcUS4Gfy9lv1bBFPpcPBiv3CTzW8czInb9zixg3hzxnZuTmrj54XaaxAP5LjIlh5RFy3S5NYMotKOZaejVGroXfzBDaeVRvLY8Ips9s5lnELvUamc6M4dl0R36c2sdFcKyqi1GIlxMdMuJ9P3UTkqAguFVQbkatcDq4Xi/SVv9nIhYJ8dLJMXHCQt/qhSVhItdAJCeGKJ3EVEszVkrs7ru5MXGV6E1e+3sSVUaclz1KBn96A3e2gzGGtnbiqo7XcqNEgSW4qnFaCDWZKHPeOlgfqTJTfES03aUQiC0XxMnQMGhlwqh4cAxaXVfh3JOHLqWboiOvVZuhocKsRcZNGFkkrlaGjVaPh4IEFqiksrN5W8dqwwJp+HKdXKIH7LiqyXgIZpwoKrElFdqBTV1nVQkercnZE/YMo+BReJA2yOunRqskuPRJu0LVFCvoSSQ4EHs7Ocef5rxc7LeqoerimYu4b3aPmIVf1XdyrqbxSNY/6+N7bhwFgUMtDLTUYLXUdvV5LTINQbl7P5/KZLFJSm933+iAi6LGNIsi8epsVC/YwblraA29T82i0Gt745CneHjef88du8Pa4+Tz+Ym+enpb2UOTff+XojToatahPoxZiItW4cyjvz5uNxqjw8S/T/6Of+2GO3ebg5P6r/LrpDAe21hY4gSG+9BzahtQR7WjU/MEJrYwrt1n7/X62/3LMy+oJDPFlyFMpDB6TUmfjubXKzvqfDrFi4R6KC0THVmhkAKMn9ab/yHa1zN52u5ONy47ww/ydXmJ3o6bRvDBjQC3zcf7tUhbN2cY2lW5sMOp4bHw3Ro3v5i25PXU0nbl/3eD1rDVpFs3kWYNJUgnixw5d47MPNngNyB26NGLKrEFExgRRWFDO5x9tYt9OsWaKjgli6huDadOhIbk5Jfz5j6s4pk7yGidGMfPtoTSID2Pj+lN8OXc7VZU29Hotz73QkxGPdeDUqUxmvv4DeXllSBKMerwTzz7bg4OHrjH77Z8pLbWg02l4dnwPhg9rwzff7WPZyiMoCkRHBfL2rCE4XW4mvrqY2/llQvw82YX+fZP5yyebOHlWTB96d0tkwtPdmfPNTvYfFfeva4cEJozpxscLt3NShQ4O6p3MgN7JvDNnAzn5ZWg1Mi8/1R2H283Mv63C5VaoHxnE1HE9mb/iAJduiMdw7OAOoIE/zNsEQNOGEYxMbcknP++hrNJGgK+Rl0Z2Zcm242TeLkarkXlhaGf2nL7OuWNXkCQY07ctp9Nz2L9PiL7He7biZPotDl7ORJYkRvduzfYzV8kpKseo1zKqW0tWHDxLpU34czonxvGD6s9p3SAah+Ji69mrSBIMapPEjvPXqLI7iAz0o0F4EBtUI3KPpAYcz7xFuc1OmJ8PUUF+7FaFTo8mDfg1PROn202jsGAq7HYu3M7HrNPRMDzYS0RuXz+Go9lC9DSNDONakTAixwT4U+G0c7O0lECjEaNey5WiQkxaLSF+Zi4XFaKTZaL9/blSJAzc0QH+XC0pQpYg2t+f9LJitLJEmI8vN8pL0GtEgWdWZRlmnQ6tRiLPUuFNXJXaLYSZfCm0VZuSPYkrT5mnVpYxaTUU2dWaB5cFRVEINfp4TcmBBt19o+UmdV1VM1rur9NR6aqqFSP31eixuCyYNMJTo1CDoaOaje/N0AGX4sCs0YsaCNVXI2CBUh2wQGcdsECbFxaoQUEnVQMFoVoMeWLnAhaoenZkscqqpiKrEx5v/YMWuQYVWUYSUx4ktJIGCdBIWiF0DL2QAj9Bkv61zsL/arETFhFAaB1TkgwVHNagjlfTAPl5HvPx3aWLAA672mKtv78o8Jiby0oenLJq0SGem9fzOXXo2kOJHUmSGDetP+9O+Y6VC/cw5KkuBIf5PfB2NY/RpOe9xRP56t01bPjhID99sYNTB6/xxj/GEHkfftC/+9SMnj/MGu8/ccpLqziy8yIHtp7l2J5LWNSpBghx0iWtBd0HtaRFp4QHso1cLjeHd15gzXe/clIF9oEwHY94tht9hre9Kz4Owge07oeDrKwROY+ICeLxib3o+0hbL/XY8zl2bjjFd59v9zKfouoHM25KX3oOaOH1+1ir7CxbtI/l3+7zpgNTh7Ri/Cv9vD/febmlLPh0izdl5R9g5tkpqaQNb4tGI1OYX86XH21mjwopDA715cXXBtCjbzMUBdatOsaCuduprLAhayRGjUnhqed6oNNpWPnzYb6ZvxOrxYFer2Xs8z0YNbozBQXlzH79R46peIhmyTHMnD2E0DA/PvtsK2tWC49JdHQgs94YQsP4MD76xya2qIychPhw3pw9BJCYMv17rqlE86EDWzHhuZ78tPIIS5cdwu1WiI4M5O2ZgyksrmTC9O8or7BiMuqYOjGV8DA/pvzuRwqLK9HrNLw8vicRYf688oefKFOvN2NiX4pKq5j67govT2fWhL78uPE4B06K+9+vSxJd28bzhy82UVElRMz0cb1ZvfuMtwZiZJ+WmMx6/vSN8Os0j4+kf+dEPl62G6vdSUSQL08PaM9X6w5RWmnF32xg3ID2LNlxgqJywdsZk9qGH3adoKzKRqCviUe6JrNk9wlsDhf1QvzpkBTL4t0qP6dBNDqdhtVHxEpvYNtEjlzPIr+8El+Dnh7JDVl3UojTlrFRVDhsHLiWiUYj0btpAtsuXkVRICkqlHK7g1NZuRi1Gto0iGG3CgpsFxvN+dx8LA4H0QF+yFqZs7m30WtkmkSEcTTbY0SO4mSuYCQlhYdytbgIh+rDKbRZKK6oINRsxim5vdUPOo1MRmkJvno9Rr2WzLJSfHQ6jHotWRVl+Or0aLQytyrLCdAbcElu0XFlNFHmtFFld94zcRWlJq5qlnn6aHU4cFHhtBGqpqw8U54ieyU6WUKvkahwWmu1lt8ZLbe57bWi5SatjMVl9aarPLwcUQMheqyq4+a1GTo6mfsydByeqgdvCkusqcwauRYsUJR3iqmNSRU694YFOjGqQuduWKBSAxaIN34u4bgPFVn2TnWESVlCI2kABYwjkALeRZLuX4L9MOe/Wuw0aXa3+dhqdXjjt3WJHbvN4a15uNPY7Dkelsn94tRQbV5+mEh565QENvx0iJMHrj3wup7TpX9zElvFculUJks/28aUd0Y89G09x2jS88p7j9G6a2M+fWs5F09kMHnwx7zy3qP0HNL6/xPh4YmeOxwOrFYrJtO/v5X8zqMoCukXczi6+yJHd1/k/LEbtbxVIZEBdE5tRvdBrWjeMf6h4I1FeWVsXnaEjT8d8pKOZVmic2oyw8Z1oWWnhDofz5KiClYv3s/apQe8xveo2GBGT+pNn6Ftak3aFEXh1+3nWfzZNm/XVXCYH0+92Ju0Ee2913W53GxdfYLFc7d7C2mT28Qx8fUBJDYXkxq7zcHy7/fz48Jqg/Kgke0Y/3Iq/oFmXE43v/x4iEVf7qCqUqSwhj3ekXGTeuPjayD9Wh6ffLCe82fEk3li02imvTmYhMaRZKTn89Ff1nNeTUK1aB3La28MJrpeMOvWHOerL3disajk5Bd6MvKxDpw9m8Wbb/5MjvrYDRvWhomT+nD+wi1emLCQPHVCM/rxzjw1JoU1G07y9bd7cDhcBAaYmTV9IPXrBfP675Zx6YrwxQzo25xJ43uwYOmvrN0iIthJjSJ5c/ogtuw+z1/mbkZRIK5eMG9PHcSWPef5eMEOAJrERzBjQioLVxz0dlulpjRhUO/mvDtvM/lFFeh1Wl59uicZuUX84YuN4mttHM2otNZ8vGSXaDg36nhldA82H77E8Uvi8Xi0V0ucuL2x8o5NY2naMIIPf94tBEZsGCktGjB37X5cboVG0SF0bBrL/I0HURRoFhtBw+hgFm4T6azOibG4JIWVB4UYHNwuiZM3bpFVVIZRp2VQ+yTWHLuAw+WiYVgQYYG+rD8p+EJ9khM4mpFNqcVKsI+JxJgwtl4QIr1r41hO3BSN5RF+PgT7m9mfLpJ9XeNj+VX9d7OocG6WllJWYSPEbMLXZOBM7m20GpmkiFBO5t5NRE4KC+VKUSEuRaFhUCDZlWXYXMJwXGy1UGp3EuHrQ5nDRr6lknAfM+VOO4XWKrXXyordZifSx4cCWxUuRSSuclRBE+NbbVD2CB0JhRCzmdvWCkwaDbJa5hlkMFGilnnWjJYHGowU26vw0WpxYsfmdhNiMHlJyXVFywP0Riqc1d4au7s6Wq6RhFnX7rbjrxPrKo+BV1RD6LC5xUoKyY0b5R4MHQ1OlZPjUqxoJElNYbkxamRcig2zrMWtVEfXBUOHh4QFVlORq2GBeK8jqMiKCgt0PpCKLCY8EjIyGkn9W+ozAcn39X/bc8x/tdhJano30+Rmej6KAgGBZgKD7zatFqpPDAaDrhZav+ZxOFSxo7v/w+v5+CUPIXZaqZUVGVdvU5hX9lC+HUmSeG7mQN54eh4bfzpE2qgONG5+d2npw5zug1rRpFV9/jptKeeP3eCDqUv4ZeEeRk3qQ+d+yQ9Nav5njq+vL7Is43a7KS0t/Y+JnYLcUs4cusaJX69wbM8lb2WD58Q1iSClX3M6902mcYt6DwVFdLvdnDp4jQ0/HOTAtnNeweQfZCZtVEcGj0kh4h5+nvycElZ8s5dNy454py6xCeE8MbEXPQe1rGU8VhSFo/sus2jONq6qaSJfPyOPP9+TYWM6e1dRAEd/vcLXH23ixlW1+DMmiOen96db32QkSUJRFA7svsS8jzZ5hX9y61henjnIm048dyqTzz7YwPUrnhRWDK/MHkyjxCisVgcL5m5n+dKDuFxuTGY94yf1Ztij7XG53Cz6ejc/fvcrTqcbs1nPhMmpDBrWltzcEma9tpSTJ4RfqHmLerz+xmBCQv34Yu42VqkFo+Hh/sycNZimTaOZ//UuLyAwOjqQ2TOHEBLqx+zfL+eUWuOQ0imB16cOYN+BK7zzwVqsNgd+vkZefzWNiAh/prz1I1m3isVKaGQn0vok8+c5G7mgCqJh/VsyPK0V78/dzJV0tS5iSDs6tmnAmx+uoaC4UoiaZ3pRWmnh9b+uwq0oxEYHMfXpXny18gAX0sXj9OTAtphMev7wxUbR5VQvhKcGtefTZXspKhPC5+VHu7HuwHkuZAi/ztP923Mtp5BvNwnhMjSlGeU2Gws3CT9Ov7aNqbDbWbJTEJcHdkgks7CUtUeED+mxri3YfzmDbFXYPNKpOb8cOYvF7iQ6yI/kuEhWHBYiqHPjWG6VlnFILfLs27Ixm85cxq0oJEaG4pIU9l/LRCNL9EhsyM5L14VxOCqMAouF87n5+Oh1JEWG8Wt6JgrQsUEMx7Ju4VIUEkKDKbRYuFEs4IABZgNn6jAit4gI50x+njAih4VxsUhM5hKCgrleUoRb9eRklJfgVtzEBgRys6IENxDrX20+ru9fnbKK8fMnu1KNk6tCR0Ih1OxDrqUcY43EVYDBQKVaAyGMyNVlnkX2SrSyhF6jpcxhIVBv8E5xglWho5NktLIkaiBUIeOJlosaCC0ORaymAtVouV7W4FacuBRFnfJUoZc0uFVfjp9Wi81twSBrcOFAQsGslnjWZuhIuBTHPRg64PbCAq1qbNzhXT0puB8SFlhb6Ig0luMOWKBg5zwMFVl4fTTIqrCR/GYj+TxX59/Ff/b8V4udxnXFylW/Qb17JK1KVYpxYLDPPRWnhHi7Jy58rxMWJdYEHgDh/Y5/kA/N2sRx/kQGu9af4tFnuz/wNgAtOyXQtX9zft1ylncnL+bTVVMJqEPEPcyJiAnmrz+8xNI521g2byeXTt3k3ZcXEdMwjEcn9CR1RLs61y//6pEkCV9fX8rKyrh48SKRkXV7qX7LURSFvFvFnD96g9OHrnHm4LW7ov0Gk45WKY1o3yOJdj0TiY6rGzVQ1ynILWXbqmNsXnaYXPVnCkR0fPCYFLoNaHHPx+rG5VyWL9zDrvXVTeeNk2N4YlJvUlLvLgE9dfg6iz7bxnlVJJjMekaM7crIcV1rpQGvX8rh64+3cFxtCPf1MzJmUm+GPNHRuwK7cfU2X360iRNqCW5ouD8vTO1PL9WgXFxYwddztnlTWL7+Rp6bnMrAR9ohyxJHDlxlzt83kquarLv0SGTyjAGEhftz9lQmH32w3hs179y1Ma/MGEBIqB+rVhzhm693Y7U6MBp1PD+hF8NHtvdOc25ggX5RAAAgAElEQVSpH2/w4NZMerEP6TfymfjiN2SrvzuelvLd+y4x6/fLqKqyYzTqmDKpDymdGvG3TzZx4Ij4mtq1jmPmtAFs23WBdz5ch8vlJizEl7emDSKvsJyJs77HYnXg62Ng5kv9qLI4ePl3P2C1OQn0NzHrpf5cvJ7Ha++vFFOfmGBmPJ/K4tWHOHJWTDIGdGtKp9YN+J+5G6i02PH3NTJ9bG827DvH4XPiOoO7NSMy3J//XbhFCJ+YEB7r25q5K/dRpq66JgxN4fttx8lRY+TPDurIhsMXycgT/p2n+7Zl64krZBWUotdqeLJ3G9YcOU9heRV+JgOPpCTz8/7TIp0V5EfbhHr88KvwZbWLj8bqcrHlzBWvP2fnhesiYeXvQ+OYMDacFtOdbk3iOJtzm+IqK4EmI42jQtmhpq+6NIrleNYtLA4n9QL80es0HLt5C60s0So22mtEbh0TxZnbt3G63cQFBVLqsHCjpIQAkwFfo4ELBfnoZZnY4CDO5OcBColhoV6hU7P6oXFICFdKCrmfEdkjgLziplIUeIaYfLhVJUzJBq2GAmslgXojVW4bFU4HYSazt6ncQ02WAX+1zFN4cRxYXXaVm+OZ8hgoU4WM3e3E7nZ7W8tlwOCJlmv1WNxWb7S8ymWpESMXbxPdVjocit0ramxu0UzuUGxiCqOWeHpWWIKALKY3ZpWhY5BFj5YGxcvQMatJK0+aSqu+TzB0asMCPQwdjxiqhgVWU5GrYYHC+1MbFijdQUXWURcVWaMKHtAiBbyPZBpe59/Gf+X8V4udO/uwAO8r2XuZj8vLRazc1//e5mPP+upBKasY9ckz60bBQ3lRUoe34fyJDLb9cpyR47s99Hhv2vujSL+Uw62MQt6ftoT3Fj7/TzeRa7Qaxk5PY8jTXVizeB/rvttPdno+n761nMUfbqJL/+Z0SWtBy84J913jeVZSFovlgZdbt26lrExMWVJTU5k/fz7PP//8b7rflkob185lc/FkBheOZ3DxZOZdkxtZlkhIjqFl5wTadU8kuUPD3yTeHHYnR3ZfZPPPhzm655K3XsLkYyD1kbYMGt2ZhnUIbBDi6+zRGyxfsJvDuy95396iQ0OemNSLtl3uLlI9e+wGiz/fxmk1paQ3aBk6ujOjnutRayp5+1YJiz7bxs4Np1EUBa1Ww7AnO/HkhJ74qRTo0uJKFn+5kw1qb5ZOr+XRp1MY/Wx3TGYDLqebtcsPs0hNYUmSSGE9OzmVgEAzBXllfPnJFi8AMDTcnykzBtClRyKVFVY++dsG1v0iJjBBwT5Mnp5Gj95NycwoYNqU77igcnBatY5lxqzBBAX7MPfzrd5pTliYH6+/PoiWrWL5ZtFeli0/jNutEBbmx8wZg0hICOfPf1/Pvv0iBdW8WQxvvj6Y9IwCnn35G0rLLOh1GiaM70G3lMa899EGTp9XYYJdE5n0TA/mLdnLDrUaonVyPaZPTOXbZQfZsV+ti2gRy4tPd+eTRbs4rRZ9Du3TnO4dGvH7OespLqvCaNAybVwfrmbl88cvhOm4ReNoRg9oy0dLdlJQUolRr2XK6B7sPX2dtQeEX2ZQ12YE+hn5y/cCLJjcMIIerRvxjxV7cThd1AsLYFi3ZBZsOuz17wzrksyibUexOVxEBfvRp01jFu86JmokokJoUj/c68/p2Kg+DreLtcfE92dwO8HPKSivws+op3uzan9Oi/oRWFxO9l6+gSxDarNG7Lh0HafbTUJ4CIqkcPhGFlqNROeEalBgi+gIbpaUUlJmJchsIjzAh6M3s5EkaFM/mmNZ4jFLjgrnUmG+iJwHBlBit5JVVkawyYROp/EakUP9zFwqKkAnydQL8OdyUSGSBA2CgrxCJy4wkPSy4lrVD7IEEb5+3KwQNRD+RgO3qkQNhFYj1+q4EjUQPhTY705cBRuFKdkgy2hk1DJPE6VqoipUTVxpJTBotVQ4LfjrjFQ6624tt7urW8s1Ehg0arRca8DqEuLHpJWxuW1ero6MgkEjfDlmrR67usLSSgpKDYaOEDUObzTcdRdDR6SpjJKsMnTECkuvvk/4cTywQEkVOhrAhk4SK6z7wwJVzw4esKAHFqioaS4PFdnlFTo1qcgybpBMSIFzkAw96vwb+a+e/6jYee+991i/fj0nT55Er9fX2W2UmZnJ5MmT2bFjByaTiTFjxvD3v/8dvf7eFQrFxcW8+uqrrFmzBoBhw4YxZ84cr7fjYU9dYsFTAxEVU/fH8hBpfe8R5c7KyuLE6cNY7WU47PefBETHVkfKiwsrvN1C9zrdB7Tkyz+v48blXK5fzCGhad3R+DuPr7+J33/xDNMe+4xTB67yzd838sLsISiK8ptER12Xkd3KuXIukyvnMqnKq2LHeSfuj10guzH56tAZJRTJjcNpr3U7l+ufK3Nzu91MmjSJtLQ06tW7eyXnsDu5nVVM1vU8rl+4xfULt0i/kENOZuFdkzaNVia+aTQtOiXQslMCzTs0xOc+XKS6jqIoXD6TxfZfjrF73SmvcRgguX0D0kZ1pPuAll5Q353H6XCxb8tZVi3ax2XV2yJJEl37J/PYcz3qZCSdP5nJd59v44QKK9TpNKSNbM/oCT0Jjag2zZeXVvHj13tY88NBL627Z1pzxr/azyvmnQ4Xa5YdZsn8XVSofqBuqc2YMLU/kep67czxDD7/2wbS1bVX46ZRTJk1iKTm9XA53az6+TCL5u2kqsqOrJEY8Xgnxj7fA5NZz96dF/js480UFYrU2IAhrZk4ORWTWc/S7/fz/SIRUTeb9Ux8KZVBQ1pz+nQms2b96PXmDBzUihdf7ENWdjGTXvqGDBX90L9fc6a83JfjJzMYP2kBpaUWtFqZZ8d2Z9ig1nyxYCfrt4iEUkLDMH43cwjXMvJ5YfpiKiptmEw6pk3sS3RUAFN//zO5+WVoZInnnuxKq2b1mPXnVeJtGpkJT3YlJiqIae+tpLzSitmk5/XnU0m/VcisD39BUSChfiiTn+rBFz//yuUM8ViNGdwOs1HP7+aux62I9vJxQzvy+fK95BVXYNBpeGlkV3adusb6g0L4PNqzJeVWO3NXixh5z1YJBPqb+HyN+P+OifUJD/Zj/kbRbt4pKRajUcd3u4Sw6dMqgfzyStapwmZEp2T2X84gt6QCk17LwLZJrPbyc4IICajtzzmeme2d4LSIi2SL6s/p1LAeF/MKKLEIMRMbGugVOl3iYzmckYXT7SY+JIhyp52LeQX46HXUDw7kWNYtFBTa1ovmeI4QPU0jwrhcJIjIcYGB5FsqKaywEO7jgx0XmWWlBBgM6LUa0ktLMOt0+Br1pJcWY9Jq8TPpySgvwajVYlarH3x0OvQ6mdyqcvz1Bpy4KLRWEWw0Ue60YnHYiTD7kme9u+OqZuLKqNVQbK/CX6/H4rLhdLu9HVdiXWWgxFElUlGSA5vb7k1cSSj46bVUOKvw0eqxumu2lteMlru90XKdJCHLbpyKw8vV0UkSkiTWWh6GjkEW0xRqrLBEtNzmFSNu7s3QceNQYYHWGgwd1ESUMBPXZOjoZQkZR4001oNhgSJRdScssCYVuQ5YoBSEFDQfSd+qzr+T/47zHxU7drudUaNGkZKSwoIFC+56v8vlYvDgwYSFhbFv3z4KCwt55plnUBSFOXPm3PPjjhkzhqysLDZtEq+cJk6cyNixY1m7du2/fJ9zsz0FnnX7KDyxct868P4LFixg4sSJuN1uQMKufQyYes/PpddriYgJ4lZmIZfPZdK0db0HigtjVCHXT91g1vTf0zk18TeJk+KiMgpuF7H97c+Y8gcFh9Ou3tf/0HmwFQkAg8GAyWTCaDTedWmxWDhx4kSt67tcLtb8tI34ek0pzi+nIKeEnMxCcjILycsurlXYWfOERPiT1DqOpDaxJLVpQKPmMbW8LL/l5N4sYufaE+xYfbxWkWdQqC+pI9qT9lh76sXXneYDIZo3LTvMmiUHKMgV4D6dXku/EW0ZOb47MXXQuc8eu8HSeTu9ayitVkP/EW0ZPaEX4TWqLKwWO6uXHmTZN3u9AqZ1x3iem9afJmr3lseX8/UnW7zcqPgmkbw4YwCt1Mb7/NtlfP3pVnZtEX4OvwAT41/qw8BHRArr4rlsPv3bBq6qXVlJyTFMnTWIhCaR5OWW8v47v3DwVzFpiakfzLSZg2jdrgEXL9zio79t4LpqoO6U0ohprw3A18/IZ3O2sFpNWoWH+/PajIG0ahXL4u9+5cefD+J2KwQF+fDatAG0bFGfT+ZuY6tKMo5vEMabMwdjsTqYMHURObmlSBI8MbIDj4/swGdf72T7XjG9SE6MYvbUgWzdc4G/zN0sUlkRAbw9dRBHz2Twyh9+wu1WiAoP4K0pA9i2/xJzfxBMm6YJkUwe24MvftzL2SsiQfRIakuSm0Tx9px1VFkdBPgaeW1sL9btO+9dWw3q1ox6kYH874JNgqAcGcRTA9rxxS/7KSqvwseoZ+LwFH7Zd5brOUVoZIlnBnTg4KUMdp0VwnZ0r9acunGLQ4duish991YcupJJ+pVitLLMEz1asfHkJbHGMhoY3D6JFYfOYne6iA0NJCE6hBUqP6drk1gyi0s5rPpz+rVszKazl8VkKCIEWSuz58oNJAl6Jcaz+0o6LkWhUXgIVpeTk9k56DUybWNjvKbkNvWjOJ+Xj9XpJCbAH5ekcCEvH5NWS4PQQI7n3BKenKgIznhAgeFhXCjIRwHigwO5WVGG3eUixs+PIquV0iob4T4+VLjsou7BbMLqdpBXVUmIyUylS5iSQ81myh1Wqmx2ws0+FNoqcSluonz8ybHUNiLXFDqejitv4kpxUllH4spT5mnSaShzqtFz1XTsETo6SUKrAYvLJqY8HhJyHa3ldUfLdeoKS4uL2tHyal+OaB13KnZvtFwnCYjfwzF0xPsUPOZkl7qeEp1Y1QwdT4mnqIoQyal7wQI9kx1ZnQKhGo5RCz6FCfneVOSFSNp/H7i2rvMfFTvvvPMOAN9++22d79+yZQvnz5/n5s2bREeLKcWHH37I+PHjee+99/D3v9uEe+HCBTZt2sTBgwfp1KkTAF999RUpKSlcunSJxMTEu25js9mw2aqjwp6VSF2nqFAYkO+ZtHJ4YuW1H7qsrKwaQgdA4cDZZfTr1w9Jku4pQsrLKnA47Wzp9f4971Nd51wurNz8m25S+9SB9qlLbPwzl3q9nuLblVw/l0v2tULys8twOSRkSYNG0iJLWvVSgyxpkSQJrU4j/tOKS41OsBaK7YWc4CRQU8BILPvkAEbt2Tq/NINJR3RcKA2ToohvFk18UjQNm0bXyaz5Lacgt5S9G0+ze/0pLqldUiCYNCl9k0kd0Y42XRrdd0V483oea5ccYOsvx2tzdZ7szODRne66j4qicOrwdZZ8uZMzagxb1sj0G96GJyf29k5fQBjjN608xtL5u7z8nQaNI3h+Wn/a1+jEunLhFvM/3sxptXIhMNiHZ17q442S221OViw9wA9qCkuWJQaNaMczL/bGP9BMWWkVC7/YycY1x1EUIfyfe6kPg4a3RXErLP/xIIu+3o3V4kCrlXni6S6MGdcNl9vNF59tY9WKI7jdCv4BJia/0o8+fZM5djSdDz/cSJ66Whw8pDWTJvUhO7uYlyYvIv2GEJR9ejfjlSn9uHQ5h2dfWkCBWusy+rFOjHmiE9//dJAfVxxGUSAy3J83ZwzC5VaYOON78gvK0cgS455IoXf3JN77tNqEPKB3MqOHt+fv87dx5qJYqaX1aMaIAa14f/5W0tX+tKeGdaBJfDhvfLiaiiobvmYDr43vzfGLWbw7fwsgIIGP9m3NR0t2UViqrq2e6M7+cxmsWyWmM/07JRIdHsD732/HrSg0rhfKoC7JfLHmgOjDCvDhqX5t+WbLEW/M/Mk+bfhh90lKK60E+Bh5tHtLlu45QZXNQai/mX5tmvDDrycFXTkyhPjIYC8/p3NiLEWVFnacEw3lg9smse3cVarsDiICfGkcFcp61Z/TpXEsF28XUFhZhb9RT7N6Eey4LPw5neLrcTY3jwqbnTBfM6G+Pl4icscajeXNIsO5UVLsTWlptDLn8/MxaDTEhgRyJk8YtpMjwjmnGpGbhodxoVB8nxsFB3Ot+E4jskL9AH9uVZbhVBTq+/mTVVmGgkI9/wCyVSNyzeqHmomrSB9fci1C3AQajdy2lmPW6kB2UeawEFQDChhu8qFQXWd5EldmrQYXTix3lHn664yUOSoxa7U4FTvOGokrjQR6WaqjtdwTLRfip2aTua9G532bXiPViJYL4aKRRQrLpL5NVDfUzdDxiBBJNQyLgk8ZN1Z1TaWWd6oVDzp1slMNC5SQPWks/h2wQI9Hx0NFTkQK+hpJUw02/U+d/6uenQMHDtC8eXOv0AFIS0vDZrNx7NgxevfuXedtAgICvEIHoHPnzgQEBLB///46xc7777/vFV4POkXqk0TQPZ4YPYZRjba2SfTKlSt1Tkm2bdv2UJ+35jGZTPcVE+kX86gosREbH0mbzom/WYxsW3GC9UsOIUtaBj7ehZfefgRfv3sbrv/V43K5yckoJP2iWCtlp+dTnF9OcX45RQXlWCpsOB0ub8ll7aOleWg/zhZsRQgeiU7xQ2mR3JSgMD+CwvwIjvAnqn4IUXGhRMeFEBTm92/7WgpySzmw7Rx7N57m7JF07ypMliVa/B/23js8qjpv/3+dM30mvVdSCIEEEjqhhd5BUECw0QUUQcW+u8/21WdX3bXQFBtKURABEZAWeui9E0ILBBLS62Tq+f3xOZkkdLf+nv36vi4ukpk5U5OZO/f7LmmN6TW0NV36p9yzyNPtdnNwZxarF+3m0K7zntNjE8MYPr4r3Qe3bJCRAwLkHNiZxTefbOP0UQGstFoNfR9uw+hJ3Qirpylzu91s+/EEC+dmcEMNvAyL9GfMtF70GJhaV+iZX8aCORlkqNodvUHL8Cc7MWpcVyxeRhRFYfe2s8x/f6Nnndu8VSOee2UgjZuG4XYr/Lj6CJ/NzaBcXef2GZDC5Bl98A/w4uzpXD5450eyswSAaJEazYuvDSImLpgD+y/ywV9/JE9lsXr3bc6z0/ug0ci8+8461q8Xtu+wMF9efmUQLVpEsXDxbr5WCzn9/My8+Hw/2rWNY96n2/hhnRDZRkX684uXB2M06Xj+ta89eToD+6YwdUI3lqzYz9JVwsUUGe7H/8wcxOVrxUx5tU6E/Nqz/XApCtP+52uqqu2YTXpentybyhoH0//wLXaHi0A/C69P7cvuo5f4zay14rlJCGfSyE58uGQHl3KFnmT8sDQkSeLX89Z51lbjh3Zg9vJd5BdXoNdqmDq8M3tPX2HDOgEuhnRORtbIvL98BwDtm0bRJCaED1btRFEgqVEIrRIi+NhjKw8hMTqETzeJ9vLW8RH4eBlZsks8Jz1aNCavtIKNx4TweFiH5mw9fYHS6hr8zEbRb3VErLhSG4VT7bSz87zQ5/RpnkDGWaHPiQvyF6nXF68iy9A1IZYdFy4LW3hoEEXVVs7kF+Cl1xMX4u9pLG+vNpYrQGJwINcqy6mqthNkMaPRymQVCU1OmK83pwpuIkuQEBTkATp3EyLH+wdwsbxYCJH9/LhcXlv94EeOKkSuD3TCLN7kVpejlSV8DEbyrZWYdTokSaHEXo2/0USFw6o6ruo6roKNZopslehkGZ1Gvs1x1bDMU0uV0ypqHtzifB+dgUqnsIK7ceBU3HdoLbd7cnVEXcKt1nKRmOxSXHhptTjcVnVt5FCt5SJAUFjLRZCgLLtR1PXWT8vQcTfovTLJQrNT58a6V1hg7Qrr1rBAGY2EJyxQVsMChYVdDQvUtUfyn4ck399Z/M+Y/yjYycvLIzS0IaLz9/dHr9eTpzbd3umYkJDb1wMhISF3PeYXv/gFL730kuf78vJyoqNv10LYbU4P7R8QdGewU1vaqb0F7DRp0sRjj64/v/7V70lsFn9X8FFeXMMbkxag1xtYtuPX+Ph63feD+sSBS7w2dj5at4bf//rlu1qX7zZt2rQhPi6Bz99ex9YVx8m/XMar7z5OWPSdRdn/6Gg0MlHxwUTFB5M+6PadbE21jYpSK06nywN6XE4XiiJYGoNJR1FxIddu5JCU1PSOr90/c65fKWT3xpNkbjzJ2aM5Dc5LbhtL98Et6Tog9b4hjRWl1WxedZi13+z1lMdKkkTHXkk89GQnWnW8PVfH5XKTuekUSz/bzoWzYkWi02sZOKIdj05MJzisbl1Vm6mzaN4Wj43cP9CLx6f0YOCItp7og6qKGpYu2MnKr/d6+rp6DUxlwnO9Peuvy9k3mfe39RxVxc6Bwd48PaMPPQekIEkS2eduMPvd9Z5cnJj4YGa8MpDU1jFUVdbw4V9/ZM3KQygKeHsbeXpaLwYMaU15eTV/fnM1m9VVWEioDy++NJAOHRuTmZnFB+9voKioEkmChx9px6RJ3cnJKWrA5vTo3oznp/fj0pVCJj77BXn5AjA9MrQNk8al8/3ao3y+aBdOpxtfHxOvPj+AsDAfXvz1Mi5dEQ67oQNa8tTINGZ9vo0d+wTgbNMimhen9Gbxqv2s3yb0Mi2aRvDipF58/t1edh0Uq6NOreN4clh7/vpFBhevidfxqYfaExbiwxvvr8bmcBHoa2HmmB58t/WYJyRwcNdkosL9+d1nG3C53DQK9WPMoPbM+363h/GZMrQzGw6e42zOTSQJnuzThnPXC1icUddWnldawZJtAsgMSUsip6jUk5fzcMfmHL1yg8NXrqOVZUZ0asH6o1mUVtfgazbQMzWB7w+eFtbx8GAsJh3rjgmQ1adFAvsvX6PMWoO/2UhKo3A2nBYr0g5xUWQVFFFSbcXXZCAhNNATFNgpLppDV69jd7mI8vNFkRWO3xBBgc3CQjigNpa3iYrgiLq2ahwYwPWqCqprHIRYLLgkhYslJXjpdfhZTEKIrCYiZxUXIUsQ7efnATqx/n5cLBeuxkY+vlwuL/WIknMqS9FIEoFmC9eqytDLGix6HXnWCrx0ety4KLFZCTAaKXfW4Ha7GwiRa4GORgJvvYFie5Wai2OnxuX0dFzVOq7KHNWYZC1OnEKrU6/M06zVUqWuq2xqQGBda7kOp2LHTa21vK613K2uuupby0W3lYzDXYNZXWvVZ29qreU6SQY13dgoSw+coSNYG4cHDNWux+pn6NwtLFDGhV7N4PkpYYGypEFCAcMAJL93kCTDvd5C/6nzk8HO7373u/uyJAcOHKBdu3YPdH13+mC/nzPppx5jMBgwGO7/pJapsf8ajXxHTU7t7dxpoqKimD9/PlOnTsXlciEhkRw1iMdGjif5DpUU9a8vKjqSgrwyTh26SucHSEdOaR9Hy46NObb3AvP/vJZfz3rqvsfcOiOf7k6jxiG8/fLXnD58hWeH/I2Jrw5i8BMdHyg/5p85RrMBo/ner09oZADJKYn/ktt3OlycOnSJA9vOsn/bWa6qWpLaSW4TQ+d+LUgfmErIXbRctaMoCmeP5rB26T52rj/hARcWbyP9R7RjyBOdCL8DqHQ4nGT8cJRvP9/hAUZGk57BozowfFwXAoN9GtzG/p1ZLJy7xZOpY/E28uiErjz8eCePGNrhcLJ2+UEWf7Kd8jLxs92idQxTZvanqardKS+t5qv521j7Xa0LS8PIpzozelxXTGY95WVWFszfyrpVh3G7FUxmPWMmdePhUR3QaGS2bj7FRx9u8giQ+wxIYcr0Pvj5mdm4/gQfzc2gotwqwMzwdkx8ugfWGgd//MMqtql9VNHRAbzy6mASE8MaanP8zLzwfD/at4/nk893sGK1cGaFhfry+ksDCQr05tVfL+e02mXXpWMCM5/ry4atp/ntu6txOt34+5p5bUZ/NBqZqW8sobikCq1W5uknutKiWQSvvbWSGzfLkGWJscPTaJEUyWtvr6KwpAqdVsOzT3RFp9cy888rsDucBPiaeWVibzbtPcfCdWpgX2osg9KTeWfhFkorrJgMOqY/ls6u45f4YYUAUf06JBIdHsBbCzeLtu6IQB7plsJHP+yl0irSjscPbM+ijEMUqEBoXN92rNxzkvzSSow6LY/1as2qfadEWrJRz4guKSzbc5xqm4NgHzPdmzdm2Z4TAthEBBHoa2HlAaFn6tE8nrM3CjibX6D2WyWw/mSWBwQhw/bzl4Q+p1k827OEPqdxcABO3By8KsBUh9gojz4nJTKUC8UlVNkFa2Mx6jl2Iw+tLJEcHlpPnxPCyZs3PaDnakU5NqeTcG9vKl02rpaLSgiNXJeIbDZouVxeilmrxcuk53J5KUaNFi+jnpzKMkxaLWa9ltwqIUqWZOqqHxQnJfZqgowWSuzVuHETZqkTJYdZLNysqURCwc9ootBWiUmjBcklHFcGM2XqOqsW6GglMNY6rrRGqu5Q5ilLbmrcdk+Zp2go19yxtfxO1nL7LdZyo2ott6hiY40kbkPBjeUWa3ltBo44T6O6sH5qho5IRzZIEg3DAiU0kui90tausiTpPmGBapnnncICzU8ief8PkvSvrR26dX4y2Jk+fTqPPfbYPS8TGxv7QNcVFhbGvn37GpxWUlKCw+G4jfGpf0x+fv5tpxcUFNz1mAed2mJDs5fhrsBJrzZW12+0rp1JkybRv39/srOzWf7pEbJPFHPl4s17gh1Jkkjv14IVX2Wydd2xBwI7AFN/MYQZI2axe/Mptq45Ss8hP73yvkPPJD5c+QLvvbGMkwcvMff3q9ix9hiTXh9Ms3vc5/+Gyc8t4UhmFod2ZnF413mqVeE5CE1My7TGdO7XnM59WxDwAAGOleVWtv5wlB+/3c+lc3UMY3xSOINGpdHroVaYLLcDuqrKGtZ9e4BVizIpuin0Yt6+JoY92YlhT3TyWMNBgJwjey/w1dwtnFUb0U1mPQ8/2YkR9TJ13G43OzafZsGcDG5cE38NR8cGMen5vt/11GAAACAASURBVHTs1hRJknA4XPzw7QEWf7q9zoXVK4nJz/clLNIfl8vN2lWH+eKjLZ6VVfc+yUyZ0ZfgEB+u5RQx62/rOawyQVHRATz/6kBat43j2tUi3vz9Kk84YOOEEGa+MoimzcLZuPEE8+ZmUFFRgyxLjBqVxrjx6WRn5zdwWvXskcTz0/ty5WoxT09b4MnTeWhQK6ZO7M7Grad5/XffYbM5sZj1PP9MH1KaR/K7t3/gxBmhuUnvmMCMp3vx9aoDrPhRMCOx0YH86vmBZB66wIzf1IqQfXhjWn/2HrvMS2+tAER2zqtP92Hp+sPsOCjYjk6t4hjRrxXvfLmFvELh0po6sjOllVZ+PW8dAE0aBfPkoHbMrue2mjq8C/tOX2HDmr0ADOqYhNls4N1lIh05NT6MtknRfLhqJy63QmyoPz1aJ/Dphv043W4aBfvRNTWeBRkHcSsKCeGBJMeEsmCbAH+t4yIwGrR8u1c4z/qkJpCVX0hm1hV0Gg2DWjflx+PnsDldRAb4EB3kx7oTgt3p1jSO49fzKKm24mM00Dwq1JOf0yEuitP5BVTYbARazIT5erFbDQpMi4tif45YWzUJDuRmVZUnKNDfYuRYXh6yBM1CQzihAp0WoSGcLFAdfUGBXCwtxqm4aeTjS351JTaXizAvL8ocNeRXVxFkNmFVhcgBJhNWl5MCazVBJhOVLjvFNivBZjMlNitOl4tQizf59cTHtwqRQSHIbOJmTSV6WYNWI1FqrxbVDs7bO678DXpKHVUex1WN246/zlyn1VHLPM1aAWTciuIBOjpZtITb3XaP40oD6G9pLZdR0MuKai3XYXerqyVJESsstfJBL2tRVO2NUZZw1rOWCx2PECebZJGOXAtqxHXVZuhID5ih46gLC5RlZOy3hAUKwKNTC0JvDwvUqoJkrbqiqxcW6DUTLM/8Ryp/fjLYCQoKIijowcPV7jWdOnXizTff5MaNG4SHi/yRjRs3YjAYaNu27V2PKSsrY//+/XTo0AGAffv2UVZWRufOnf+h+2OtVsHOXWzCAAa1Nbs20fbWiYqKIioqinMHqsk+sYecCwV3vFz96Tm4JSu+ymTf9rNUVdbct0AUIC4xjMem9mTxnAxm/XYliS2i7ujgud9ExATyl8VTWbN4D5+/s46TBy8x89HZtOvelCen9/2vAT3lJVWcOHCJI5nnObr7/G0Bgr4BFtp1b0aHHs1o3aVJA5Bxt6nNxtmw/AA7N9SxOAajjm6DUhk8Oo3ElKg7/mIXFZTz/aI9rFm2j+pK8XMXGOLN8LFdGfRoe0z1mC5FUTiy7yKL5m3x6HcMRh1DH0tj5PiuntoRgCP7L/LZh5s4rzI+/oFejJnagwHD2qDRalAUhb07s/jk/Y1cU4FFXJNQnpnZn1bthRvizMlrzP7res6ra7SY+GCmvzyAlm1isdkcLPhkG8sW78HhcKHTa3h8TBdGPyV+9xZ9uYvFizJx2EXj+djx6YwY1UF0Xb2+lIOqyDohIZSXXxlEo0aBfPb5dparJZ3+/hZemNGPDu3j+WTBdlZ8L1ZjwUHenrqHX7+5isOqQLxtqxhee2EAB45eZuKLX2K1OjCb9LwwpTdxMUG88ofvuJIrAN+jQ9rwUN8U/jxvI6eyxGPr3y2ZkYPb8PYnmzinpiM/0rcl6e0b8/u567hZXIlWI/PsY+nYXS5ee+97XG6FyBBfZjzRja/WHuDUBQFuh/dOxc/HzO8+XY9bEW6rMYPaMW/VbgrLqjDotUwd2onNh7M5dVkcM7pnS3KLyz1pyH3aNsHldvOF2lbeM7UxNsXFItVW3rdVAnkVVZ4+q6Htkzl0MZdrxSJUcFiHZH44char3UGIj4XU2HBWHRaXbRcfSUFVtaffqndyApvPZou6ieAAJI3E7os5SBJ0bRLLTlWfkxgSRHlNDadu3MSk1dIsIoR9KtBpGx3O0et5uBSF2AA/Su1WT2O5v8XEqYKbaGSJhKBATqpC5OSQYE7fQZ8T7wkHFPk5VyvLcCmipTy3qgK34iba25dr1bXiY19yq28XIkeolRC16cj5NRXoNTJGNR3ZR2+g2mXD6nI3qH6o7bjSyhJGjUyF04qvXjiq6juutJLowLK6avDWGT3pyD46HdWuaswaHU5sauqxAavLikEjUoxdinLP1vLaygfPCksRbI9TsXscU27FqZ5Wo66davN1JDVDR3RhGWTJI04WehzXbRk69ddT+rtk6GgRlvLbwwLd6OqlI98xLBAtsgSgQfL5E5J5xB3fS/8d8y/V7OTk5FBcXExOTg4ul4ujR8VfVwkJCXh5edGvXz+Sk5MZM2YM77zzDsXFxbzyyitMnjzZ48Tav38/Y8eOJSMjg8jISJKSkhgwYACTJ0/m448/BoT1fMiQIXcUJ/+Uqa4S7hjTPVYqBqMAQncDO7XTSLUdX7llJXKnSUiKICo2iGuXC8ncdIp+j9wZ6N06jz/bi+P7L3LiwCXefHEx7yycek+h7N1GlmWGjulCWs8kFs/eTMaqwxzcfo6D28/RslMCDz3ZiXbdm2Ew/vPTkf8VoygKeVeLOX34MqcOXubUocvkZDdkA2WNTNPUaFp3aUL77s1ITH2w+gcQNQ5b1xxl08rDXLtUB2ZjE8MYMLIdvYa2uWuVyKWsPFYu2s3WNUc9zr7ouGAenZBOzyEtG1SMKIrC0f0XWTRvK6dUlkRv0DL40fY8OiG9QS7T+TPX+XzWZg7vEzoTk1nPyDFdGPFUJ8/P86XsfOa/v5HDajqyX4CFcc/0pP/Q1p5Cz8/mZrB5vWAIzBYD4yZ356ER7dBqNezbnc3s99Z70pHbpcUz/aUBREYFcOzoFT7463pyVADVtn0cL7w0gNBQX1auOMgXX+ygpkaUfY4d15VHH+3AqVO5PD31M086cr++LZj2TG8u5xQyaVpdOvKgfik8M7knOzKz+M1b31NttWM06Jg6sTtdOzXh3bkb2as2krdsHsXrMwaQkXmWv8zbiMvlJtDfwi9mDKCguJIpv1iCtcaBxaznpcl9sNqdPPf7pdTYnPh4GXltch/OXbnJS2+LdORG4f7MHNeTRWsPcvC0YNP6dGxKx9QY/vDJBqqsdrzNBp5/vBvr959j+TYhtB7UKYnQYG/e/EqsreLCAxjRoyUf/bCHimobPmYDEwd14Jvtx7hRXI5eq2Fcv3asP3SOnIJStBqZJ3q2ZtPx8+QWlaPTaHisW0vWHD5LcaVYYw3tkMzyPSewOV1E+HvTqnEEy/aJ165VbDh2V117ef/URHacvyyazr0tNIkIYsNpoV3q2DiaM/kFQudjMpAQFsSOevqcI9duUON0Eu7rjV6v5XCuSEdOiQzjUK4AjakRoZwquCmYKD9fyh02kY5sFOnIZwsL0WlkGvn7eoBOk4A6oJMQGEi2qs9pHBDAhTJViFwvETnW148rdxAih3sJIXJtOvKNetUPRbYqfPV6rG47lU4HQUZLvXRk4biSAS+9SEf20mpxYKfG7b6D40o4spyKA4fibuC4MmhqyzwFkEG1kVtd1gZN5mbVWm5WBcZ3ai2vby0XGTpqDk8Da3mNKjaubSQX4mSDmo5cl6EjqRk67ntk6Lg9bixtrfDYExZY67SS0OC6Q1igG72kg3uFBWIUreXG2w1H/875l4Kd3/zmN3z55Zee71u3bg3A1q1b6dGjBxqNhrVr1zJt2jS6dOnSIFSwdqqrqzl37hwORx24WLx4Mc8//zz9+vUDRKjg7Nmz/+H7W9tpdaszpv5YvMQHR0W59Z7XFd9UVBpkncrF7Xbf84NUkiT6DGvDgg82snLRbvo+3OaBaD6NRua1d0YzY8RsLp3L43fPfskfP5nwd2fHhEYF8NKfR/HYs735Zl4GGasOc2xPNsf2ZGM062mb3pTOfZvTvkezB2I+/h2jKAqFeWWcP3mN8yeukX0ql6wT1xqE+9VOVHwwrTs3oXWXJqSmxWO5SzDkncZaZSNz0ykyvj/MsX0XPdoto1lPj0EtGfBo+7uyOG63mwM7s1i5cDdH99UVuSa3juHRCemkdW/a4OdDURQO7c5myfw6J5ZOXwdyAusJo69dKeSrj7ayXRUAa7Uahoxsx+OTuuEXIET2RQUVfPnRFjb+cBRFESGEjzzekccmpGPxMmC3O/l28R6+/nIXVtUO339wSyY824uAQC/ybpTy0YebyNwhVh9Bwd5Me6EfXXs0o7zMyjv/u4YNqpvKP8DCs8/1oWfvZLKz85n+3Jdkqe6s1NRoXnp5IAEBXsyas5kf1oj8pOBgb5GbkxrNp18IbU4tm/PKiwOIiw3mj2+vYf8hwQqlJEfyxkuDOJedx4TnF1BRWSPSkcek06ldY/70wToPc9OjUyKTn+zKvEU72LlfrKNaJUcxY3wPPv9uLztVEXK7lEZMerQTHyzazhmVqRnSowUdW8Xy23k/UlZZg9Gg5YUnunP6cj5//FTYzFMSwhnepyUfLN1BcXk1Rr2W50Z2Zcfxi6zdr6YVd0zGbNbzztJtADSPDaVTSiyzVmfidLmJDPJhcFoyCzYfwOZwEernxYAOzVi8/Qh2p4uIAG+6tYhn0c4jnjVW47BAFu8Ufzx2SIjC6nKy9oh4fQa0SmTvhauUVFnxNurp3CyWH09kAdAiKpRqp4Nd2VeQZejRtDFbsy6KuorgABy4OZiTi1aS6BAX7dHnNI8IIae0jPLKCvzNRgIsZg7n3kCSoGVkOEfUoMDk0BDOFRcK0OPrS7GtNh3ZiEYrk11SjEmrJcBs5nxJETpZJszHi+zSOlHyhTK1ssdHJCJLEkR4+3ClUqQjB6lCZJ2swdug40Z1BSatFo0sUVhThb/BSJWrtvrBQpG9oRBZsDhGimyVGGQNkqxQ6azBX612EOnJoqlcOK40d3VcGWQZBScOd53jSgb0skhC9lYLQCX1NHs9a7nosbpTa3mdtdx5H2u5XgVBgmWR6nqvqFHBiNMDZhTc9TJ0arut6so7Nagt5apI+dawQK0HONUPC9SoqcjaO2foSH5I/p/8S8MCH3Qk5X4FTv+FU15ejq+vL2VlZQ2yfPbuzOK3L31NYnIEs76cfMdjs07nMmPMfIJCfFj848t3vQ2X08XI9LewVtuZs3Qaje9SE1A7FWVWxvZ7G2u1nd/PGUNat2YP/HiyT1/njfGfUFVRQ7v0RH4ze8x9G9cfZPJzS1i7ZA9bVx/xBN+BYEWat42lWatGNGkRRZMWUYRG+f9L97Aup4vC/HKuXykk53w+V87ncyU7n5zsfCrLbgeeWp2GhOaRNG8bS/N2cSS1jvnJOTtOh4vDu8+zbe0xdm8+hc1aB7hT2sfRe2hr0gemYr6DFgeEBmzz6iN8v2SPZ20myxJd+jTnkTFdbtNyKYrCvu3nWDJ/G1mnhO6k1ok1emJ6g/LXm3llLP5kGxt/OOpxCPYamMrYZ3p60pGt1XaWL9rNtwt3e5jI9D7JTHquD+FR/mKltSuLjz/YxHXVap7cIoppL/UnMSkCu83Jt1/vYcmXmdjtTmSNxPBRaYyZkI7RpGfDj8f55GOh6ZEkGPxQa56e0hOtTsOXX+5k+bei0sFiMTB1ai8GDmrJvv0XeP/DDRSohbqDB7Vk6pSenM/O553313NdTU0ePCCVZ57uSebebGZ9nEFllQ29TsPT49Lp27M5H366hS1qQGBi41B+9eJAjp3JZc6CbdTYnHiZDcyc0htvLyN/nruBolIhTJ78eFfiY4J5a556mkZm6uNd8fM187cFGVTXOPC2GHhpfC9OX8xn2UYByBJjQpg8ohNzvt3lsZmPHdweJwqL1h9EUSAhKojRfVszb1UmRSrwmTq0E5sOn+fUZcEsPto9lZvlVWw7LkBWj9R4DEYd6w8KoNIpKQYvi4ENRwQ46ZwUAzJknhXMXp+WCVwtKuNsboGwlbdPZse5yxRVVmMx6OidksAPR84KUBQWiLfZwOErAoj0bt6YfZevUVFjI8Bsokl4EHsvCbYqLT6KU3k3qbDZPfqcUzeE1qZjXBT7r+YKQBQUQHGNleJqK94GPaG+XpwvEmxeakQYx/LzqA0KPFtUiFtRiPX3Ja+6EqvTSajFixqXgzKbDT+jEUkDxTVWvPR6jHoNhdZqzFotRr2eoppqLDodBp2GEpsVi06HLEtUOGz46o3YFAc1LqdqBbfiUtyEmr08Lqswsxc3bapWx2imyC6ExAaNhNVlV0P/alDqCZFrHVeVThHi53A7ceP2OK5AwaLVUuO23+a4srrU2gbFgeJxXNUKhV0ouFVruRWdCpIkFCyqLufW1nKX4vBYy2UUNLKChBuT2lpeay0Xayr1PI+1XFyXWD3VgSFwqqzNvTJ0XGqGjqNeho5GFR5Lqg4HFUyhhgWirrLcdUBHE4Xk/9k/PSzwbp/f95v/p7uxbhsV993rQ7t2dVBcVInL5b5r27dGq6F56xgOZp7nxKHL9wU73r4mBo9OY/kXO1n6yXY6pDd9YPCQkBzB7z8ax68mfc7BnVm88/oyXn9n9N/df1U7oZH+THx1EBNeGUj2qVz2bDrFns2nuJyVx4n9Fzmx/2Ld/fczE98snJAIf4LCfD3//IO9MRh16A069AYteqMOjUbG6XDhsDtxqP/brA7KiispK65S/1VSXFBBfm4J+VeLKcgr9WQc3TqyRia2SSgJKvBqkhJFXNOwv6uU1O12c/pIDtvWHGXn+hOUqw49gMiYQHoPa0Ovoa3vafe/nlPE6q/3snHVIY8ex+xlYOCI9gx9ouNt6dwul5vMjNMs/XQ7F1Rxs8GoY9DI9owc16UByCktqWLpFzv54dsDOOyCiUxLT2T8c72JbyLYRJfTzYbVR1g4f5vHJZWUEsWUF/uRrNZPXMrO56MPNnFE1dAEBHnx9LTe9OqfIgo9915g9nvrua7m9qS2bsT0lwYQFx/CxQs3+eC99ZxS6y3iG4fw4ssDSW4eyYEDF/ng/Q2eqocePZKY9pzI03nrzz+wZavQj0RE+PHyzIE0TQzjo8+2sXqtYClCgr155YUBxMcF8+Y7azzlnc0Sw/jFS4PJzSth4otfUlxShUaWGDOqE4P6tODdjzax78hlANqkNOLlZ/qwfO1hVqxXhclRgbwxrT+b95xjzpKd4rTIAF6d0peVm46yaY/aidUsignDO/LBku1cuCoA6uj+rYkI8eWXc9aIzB1fCy880Y2lGUc5cUEwSI/0SMFiNvDmwk2iOiIykEe6pTJv9R4qrWJtNWlwGku3HyW3qBytRmZc37ZsO3GR7BtFyJLEYz1asScrhwtZV9DIEqPSW7Lt9EWuq2uuEZ1SWHPoDOVWGz4mA31bNWHlwVO43ArxIf6E+vvw/WHBJnVLiuNcfiHnC4owajV0S4pn45nzKAo0Cw/G5nKx99JVNLJEl4QYT35O05Agyurpc5IiQ9ibI17nNlERHMvLw+l2E+3ng9Xt5HxREWadjgh/H47li5/dBkGBwcGcUYs84/39ySkrw6m4ifLxIb+mErtDiJJLHVYKrTaCzWbKHSIROdhspsJZQ4nNTojJQrG9WgiR1boH5VYhsledQDnEbOamrQKtLGPSaimyV+Ot02Fz27G63AQazJSojqtAteNKJ8voNVDptOKrM1GpdmDVd1xJ93RcGVQWR8FbdVzV2s1FirIGm9uKUaPDqdg8Lqz6reUSCrpbWst1sgBL97eWS7ix3WItd3rAELgw/kMZOhrVei550pHrwgK1aoZObVhgkhoWGHzX98l/9/wMdu4w9yK7/NW2c7fLTWlxVYOVwq2T2i6Wg5nnObLvAg8/2em+t/vImM58v3gPp4/mcGTPBdp0Tnjg+9y8TSy/nvUUv5v2FTvXn6C4oIJX/zLqJ2fw3GkkSfIwOGNn9uf6lUKO7b1A9slrnD95jUvn8qgorebY3gv3v7J/YLQ6DaGR/jRKCKVRk1BiEkKJaRJKVHzwP9S27nK6OHnoMpkbT7J782mK6hWE+gd50W1gKt0HtaRZy+i7AlCXy83h3ef54Zt9HNiZ5fkZiowNYuhjHen7cJvbGCC7XbWbL9jJ9RxB3ZvMeh4ancbwMZ0bMFHlpdUsX5jJ90v3U2MVq6bUtrGMf643zVsKhqi2AuLzORlcVZmk8Eh/Js3oQ9deSUiSRGlJFV99sp113x/2WM1HPNaRx8Z2wWwxcCO3hI9mbWL3TsEsBAR6MXVGH3r2aU6N1cHHczP4bvl+3C4Fo0nHuAndeGREO8rLrfzpj6vYulV82IaE+PD8C/3o2DGBTZtPMfejDMrLrciyxKMjOzBuTFeOnbzK+KmfcVNleYYObsWUCd3ZtS+b3z/7OZWVNnRaDROe6sLgAanM/Xwb69VqiJjoQH754kBy88qY+PJCzyprylPptGgWyev/u5KrquZn5KDW9E1P4q2PN3qSkIf3a0nX9o35/Zx15BeJZOWJwzvh7W3k1b+twuZw4e9j5qUxPdiw9xzfbBIMT+eWcXRvl8CfF26h0mrDy2Rg+qNdWbfvDMeyBYMyLL0FOp3Gs7ZqERdGZ3Vt5XC6iAj0YWjn5izYdBCrXaQfD+vSgkXbjojvvc0MbN+Mr3cdw+ESDqoOiY08oYHJUSH4+5hZvl+sLrslxXGpsITd56+g1cj0T01kw6nzOFwuovx9CPX39uhzuiXGcfhqLhU2OwEWEzFBfp78nI5x0Ry5dl1ogPy80eu0HLp2HY0s0TIynEO54vGlRIRwrrAQm8tFpK83NrfLA3pCvL08QYFNguuCApsFBXG2qFDocwICyC4r5tbG8kY+vuRUCh1OIx9frt4nETnCy4cb6tehFgv51gp0soRFr1Y/6PQ43A4qnTUEGswe5qa240oGvA06yhzVeGl12BQ7Nrf7lo6rho4rFMVT5qmTJbRyrePKiNVlRUbBqJXUMs9a8CNs5Ha3TbSbKzVoVBfW3VrL72wtF3UOZrXbqtZaXt92fru1XPFYyw0ygAPjLdZyUSx6vwwdrbqu0qirLBEWqFHDAiWoCwvUd0Lym4Mk/2OJ9f/s+XmNVY8GO7TvAr+cvoi4hBA++vrZux4/buj75OWW8PbH4z09Qneai1l5THt0Djq9lm+2vP5A4uGP/rKWVYt2Ex0XzNzvpjcQrD7I7Nt6hr+8uhRrlQ2Lt5Hnf/8I3Qam/qTr+Kljtzm5cj6PnOx8CvPKKLhRRmFeKQU3yigrrsJuc4h/Nc4GQFKSJHR6DTq9FoNJh4+/Bd8AL3z9zfgGeOEX6EVolD+hkQGERvkTEOJzVybtp46txsHRPdnsyTjNni1nGmh8zF4GOvdpTs8hrWiZFn9Phqy0qJINKw+xbvkB8tVVEED7rokMe6ozbTo1vk2vVV1l48flB1mxMJMi9YPey8fEsMfTGPZEJ3z86vRQFeVWVizazcqv93r0NInJEYx7tjdtO9WFEp46dpVPP9zEadWS7uNr4vGJ3Rgysh16vRa73cnq5QdY/MVOqlS2qWvPZkye3ofwCH+sVjvfLMzk26/34rC70GhkHn60PWMmdsNs1rNzxznmzdrkWT917daUaTP6EhTkzdq1R/lk/laqqmzIssQjj7Rj/IR0ysqsvPfBBg6qWpv4+GBefWkQ4RF+zPl4Cxs2iw/r8DBfXn1xII2iA3h31kb27BeguWmTMH7x0iAKiiv4y6wNFBRWiK6rh9szcmhb5nyxjS2ZgpFp2jiU16f3Z8e+83y1fC8ut0JQgBdvPNufC9cK+fjrXThdbgJ8zbw+pS+nLubx1ff7UBSIDPXjlQm9+S7jGDsPi9vumBLDsN6p/HXhVgpKKtFpNUwd0ZmrhaWs3CZEwCmNw3moW3Nmf7eLsqoaLCY9U4d2Zu2+M5zNEcaE0T1bklda6VlbdUuJw8ti9Oh52iVEERzoxdqDYiXXNiESf28Tm44LfVGXZjHUOJ0cvKBWWLRO5HTuTXKKhIh5cOtmbDiRhdXhJNTHQlJ0KFvPCjasfXwUuWXl5JaWo9PIpCfGkqHaypuGBVHpsHOttBydLNO+QX5OGFdKSyirseFvMhHobeZ8oRAPt76lyPNCSTE2l4sIb2+sbifFVrHe8jYZyK0oF43lfr5cKi0BFOIDA7hQKoBOfEAAF+8gRG6YiCwqIWqZmxvVFaoQ2UxhTRV6jYxJp6XCYcNbr8euOHC4nQTUY27qVz/4G8TKy6jRIMkuHG4n/gaTR6vjpzNR4bSiV4GMQ3F6Oq5qHVdWVw1mrc4jMK61lutlGUlyouCuV+YJsiRWWLWOK71cW+GgYNFocCi2hq3lsoRbcdRZyyXQSGLlZZLlBo4rLaCVnaq1XEbB4bGWa9UsnDrWxqVm6NSzlksSsuRQbeX1M3RcD5ChI7JzhAhafY80DkXyfQtJ+vt0ow8yf+8a62ewU+/JOnPiGi9O/IzQCD+++v7uBZ6/nbmEvTvOMe21QQwbnXbXyymKwtThs8i5WMBLf3iEfsPa3Pe+VZZbefqh9ygtrmL0092Z8EK/n/bggBtXi/nLK99wTv3g6ze8Hc/8csgdc17+naMoipqO7Bb9V1r535q3UFJYwf5tZ9m79QxHdmc3cNT5+Jnp2CuZLv2a06pTwj1F6oqicPzgJdZ9e4DMTadwOoWrysvHRN+hrRnyWBqRMbfHABQVVPD9kj2s/fYAVWq2TVCID8PHdmHgiLYNXICVFVZWfb2XFYv3espnGzcNY+wzvUhLT/Q8b5cv3GTBvC3s2S4+9A0GLY880ZFRY7t4KiAyt5/l09kZHl1O4yahPPtif1LbxKAoCtszTjN/zmYK1JyfNu3jmPZif2Jig7h2rZhZ72/gkJqnExbux4wX+5HWMYGLF2/y3t/Wc/q0+CBOTAxj5ksDadw4hO9WHGDBV7uoqXGg02kY+1QXRo9KI3NvNu/P2URJSRWSBMOHtWXSuHS27cxizidbqKyqY3OGDGzJ/K928MMGIX6ODPfjly8MpKLa6KPkqgAAIABJREFUxl/mbvSsssaN6kT3Tk343zkbOJMtVim9uzRjzPAOvP/lNg6fEr8H6e0a89QjHXhvwRbOXBQamiE9WtC1XWPe+SKDwlIRJPjMqC6UVdbw1VrRsRUT7s/UEV2Yv3oPF1W9zpP921HjdPDtVtE9lRwbyoCOSXy0eg9VNXZ8LUbVbXWU6+raamzfdmw/eZHs64VIEjzWrRWHLudy9prQ34zsksKBi7lcyhcloCM6pbD15AVulldh0ut4qF0S3x8+TY3DSaivFy1jw9lwQk2Djo2g0mHnXF4hsiTRNyWBbVmXqHEIF1WYvzeHc9TwxSYxHLp6HavDQYiXhSBvM6fzClR9TjT7r14TwYeB/pTZbRRWVWPR64n09+ZcYSEK0CoyjKNqYn3T4CCyS4pxut1E+fpQardSYbfjbxJBgYXV1Zh1WnxMRm5UVaDXaAi2mMmtElUOIRZvz9fBFgt51RXoZBk/k5ECa5VIRDboKLFZMWu1yLJEldOOn96AVQU3wSZzPZdVnW4nyGiixF6NVpYwaDRYXXZ89QYPeKmtfpAAL62OapcNi1aHXQUyDRxXsqh0qNXi1DqubG5bA8dV7WkmWYNLtZGbNFocig2TRotbsdXT3jhuay1XPK3ltltay0HB5QE6tW4qsaYSAMXoydCpby2vK/oElwfoGGQZCTtaJLXTSlEzdBRPeeftGTo6jyBZ1EHUCwu0TEbyehlJ+uf8QXq3+Rns/IS525N1+cJNpj42Dx9fE99ufu2ux38+ezNLv9jJoBHteOGXD93zthZ/vJWFc7fQplMCb3007oHu367Np/jTzCXIssTbXzxNizaxD3Rc/XE6XCyZm8E3H29DURQiGgXy9GuDSOvZ7N+ekPyfGofdyZmjORzefZ7DmefJPnW9AbMUHO5Lx55JdO7bgpR2sffVOBUVlLP5+yNsWHmI66rFGqBZajSDHu1A9wEpd7TnX71cwHdfZpLxQ53dPDImkEfHp9NrSMNerMoKKyuX7GXlkjqQE9s4hDHP9KRzj7rXLv9GKQvnbydj3THcbgVZluj3UCvGTOlBkKrxyTpznY8+3MRJ1dEVEOjFuCk96De4JRqNTHZWHnPf38CJYwIMhIX78szz/eicnojN5mTJoky+/WafyNPRaRj9eEcef6ozbrfCV1/uYvlyIUA2mfRMnNSNYcPacuHiTf723nqy1ILNVi0bMfPFAZhNej6Yu4kdmWI9FtMokNdeHEhQkDfvztrgcVolJYbz+syBFJVU8pdZG8gvECvFEUPa8OTIDny6JJO1GYIRiokK4JczBnI6+wbzFu7AZnfiZTHw0tO9cQN//SyDKqsdk0HHC+N74FIUPlwkBMzeFiOvTOzFmUs3+fpHEc4XGxHAjMe78dnqvZ7snCHpySTEhDBn+U5PLcS0EV34ZssRsq6KFc1jvVtTZXewOlOs2FolRNA+uRGfr9+P0+UmKsiXhzons2DTQaptDgK8zYxIT2HRtiNU2ez4W0wM7dicb3YfpcbuJNjHTM+UBJbvPSFCBkP8aRoVzPpj4rlrGxeJ1enkVK4AbANaNiXzwmXKrTb8TEZaxUWwVWVwWjeKIL+yktzScvQambTGjTy28ubhIeRXVFJYVY1Zp6NpeDCH1VVVm+hwjt3Ix+l2E+nrg11xcrNKlF1GBfp5QE9KWG1ooEKz4GCySoQoOcbXj7yqSmwuJ6FeFiqddioddgJMRly4KbPb8DUYUCQoswtWRpKhwmHDx2DAjZtKhx0/gxGr24HN5STIZKbUbsWluBoKkS1e3KwNDTSJtnOtJGHWaaly2jzVDy7FrYIbAYoCjEbKHVb0sqgwcCpO/PRGqlyC5fHWGah21WDUaFTRcZ3jSiOBTpJwKs56jisFgyys6V4qi1Nb5ulSnJ4yTw2KJ9G4trVcsCm1vVcaXIr9ltZyYTs3qMxOnbW8zk0lrOWOOmu5BLLkbFD0WVv/UGctr20rr11lKegkVMGxxgN4pHrW8tszdCQk718hWcbe9b3znzk/g52fMHd7sgryy3lqyHtoNDJrdv8Psnxn1mHLj8f5y/98R9PmkXz41ZR73tb1nCImPvQ+sizx+ZqZDVqq7zXv/mo5m1cfwT/Ii/cWPfPAx906x/df5J3Xl3ncVLGJYYye0p30/in/sID5/2/jcrm5dC6PEwcucnTvBY7vv+hpFq+dJi0i6dgziY69kolrGnZfZsnpcHFg5zk2rjrMvh3nPM4ns8VA94GpDB7VgYSkiNuOUxSF4wcusWLRbvbvqNPwJLWMZtQd7OYV5VZWLtnDyiV7PUneMY1DePLp7qT3SfZctrSkim++2Mma5Qc9wKlLzyTGP9uTRnFCDJh/o5QF87eRoeblGAxaRj7RiVFPdcZk1lNSUsUXH29l/RphRTcYtIx+qjOjnuyEXq9l964s5s7eTL76M9O+QzzTX+hHRKQ/mZnnmTN7k6edPD29Kc9N74OXl5EvvtzJipWidsLLy8AzU3oxoH8K6zedZO4nW6istKHRyDw5uiNPjOrIhoyTzPt8G1arA71Ow8QxXRk8QLA5q9cLxiQ81Jc3nh+Ay63wv7PXc7N2lTW0HUP7pfLu/M0cOiHAXPuWMTw3rgcLvtvLlr0CGDRvEs6L43vwxap9ZB4WAKBt80aMfySNDxZv53yOACzDe7ekaVwI7y/ZRnWNAy81O2fX8YtsU1dbnVNi6dQyjjkrdmG1OfD3NjF1WGeWbTvGhetFnm6ryzdL2HlSgLeerRpjNulZs0+srdokRBIZ4sv3+4RQOzU2nIggH35UbePtGkdh0GvZdfYyIGoebpRXcPa6YH8Gt27GrvNXPLbyLvVs5c0igpFkidM3xAqtd1I8uy7kUON0EubjRaCPhZM3BEDq2jiGvZevCjbGzxeNVuJySSlaWaJlVDgHrwnQ0yI8hKwioc8J9/bGJSvkV1Zi0moJ9/XhQolYSSWFBnO6UDyXTQODOFcs9Dnx/gFcrijBrSg08vUlt6ocl+Im3MubmzVVON1uwr28KKypwqm4CLd4c7OmEpfiJqye+Li+Pqd+InKI2UKhrVKAG72OCocNL60Op+LEoYh1Vukt1Q8aScKs02B12fDSGrC6BCMToFrPZcCg1ahanDoWx1enw+qu8fRZcR/HlVaSQAUptUnI9cs8jRrRkm5SdTYSbnSyhIKrnrVc9rA3opHciUmuXVMJa3l91kav2tQFa2Nr4MYSGTouTxChvv4qC2e9DJ1ap5WirrLc98jQ0SP5vYtkHHDbe+C/an4GOz9h7vZkOZ0uhnT+E4oC36x/+a7N5/k3Shk75D1kjcx3W9+4q/W4dn4xdQFH9l5g2BMdefb1wQ90H6urbLw8dj6XsvJoFB/MX7+aeteguvtNZbmV5Z/tYPXiPVjVD9LwRgGMnNiNbgNTPTUD/9fGbndy4fR1Th2+zIkDlzh16LJnPVQ7vgEWWndOoG2XRNp0Tnig6geAC2evs+n7I2xdd4yy4jo9T3KrRvQf3pZu/VPuGD5ptzvZvv4EKxft5mK92oi07k0ZNSGd5q1jGly+tKSKFYt288O3BzwgJ7ZxCE9O7kHX3kkekFNVWcPyRXsaaHdatotl4nO9adYiCoDKihq+/nIXq77dj8MugFDvASlMeKYnIaG+OBwuVi0/wKIvdnpuq0efZCZP601IqC9Xc4qYM2sTB1WXXXCID9Nm9KFrelPy88uYPWsTe/YILUl4uB8zZvQlrWMCu/ec58NZm7ipsjA9eyQx7ZneWG0O/vrBeo6oaceJTcJ4beZAjEYd73y4nqPqmrVFUiSvzxzAzcIK3p69gTwVSD0yqDVjR3dkwbI9rFLBT2SYH29M78+NgnLe/yyDqmo7Br2WaWO7Exnmx1sfbaCwpAqNRmbiyE7ExwTxl082UVJeLXQ3o7qgN+iY/fV2bA4Xft4mZo7pSeaxi2zYI3QzLRMjGdlXZOfcVPU6kx/uRHZuIRv2i8u0axpFp5Q4Pv5hj2B8fMyMH9iehRmHyFePGdu3LduOXyD7hgBCo7u15MiVG5y5KsDIiM4pHL96gyx1rTW8Ywv2ZOWQWyxCBB9OS+bH41lUWG34mgykJ8ez5ugZFAUSw4PwMhs4dFmsEHsmxXPk2nVKqmvwNuhpFRvBjvOXAUiNCuNGZQU3K6ow6bSkRoWx77JwWLWKCud8cRGVNjsBZiMBXpY76nOahQRxqayUGqdgahyKQpFVMEJB3maulIkMnHj/ALJLirm1sfxuQYH19TnR3nWi5EhvX3LVr2sTkevATZUqRNZR7qjBotXjwInD7WwgRL61+qHCWYNJq0XBiVNxefQ5oOCn11PlqhErIoTd3E8nWB4ZBZNWxqE4GjiuLDotdretQceVRavB7hYaHBd1vVdOxd7AcaWXZdyq2Nil1Ah3k1rrYNKILB2Tah8XRZ211nJR+VDbWt7QWi40O0aPtRy16LO+tVzoeDyrLNVaLvQ3Imun1mmlU0s7a+sfbs/Q8UXyn4ukb3/b++C/cn4GOz9h7vVkPT7wrxQXVjLry8kkJt/+F3vt1IqU//ThU7Tv0uSet3d4Tza/fOZLDEYdCze80kCAeq8pyCtj5pMfUXiznJS2sbw5f8I9tST3m4oyK2uW7GHVV5keS7VWp6FdeiLdB6WS1iPpP67rudu43W7yrhZz/tR1zh7L4eyxHLJPX8epshu1Y7IYaN4mhtQO8bTu3IT4ZmEPnoycV8b29cfJ+OEol7LqgIp/oBc9B7ek//B2xDQOueOxxYUVrFt+gLXLDlCi2r0NRh19h7Zm2JMdiY5taMEsKihn+cLdrF1+EJtNaIfiEkJ5cnJ3uvSqAzk1VjvfL9vPsq8yqSwXQC6hWTgTn+tNm7R4T8/VmhUHWfT5Tk/YZcu2sUye3ofEZuEoisLunVnMn7PZYyVv0jScaS/0pUXLRlir7SxamMl3y/bhdLrR6TQ8OjqNx5/qjEYj8+2yfSxatBu73YlWKzNqdEeefLIzlZU1zJ67mR07BSsRFubLCzP60bZtHN+uOMAXC3dhtzsxGLRMGNOVR4a2ZdWaw3y2cBc2mxOjQcfkcen07dVcaHM2Cm1OeKgvr88YgCRL/O/s9dxQW86HD2zF6GHtmPXFNnYeEKCreWI4r0zpy/cZx1mxUQCimMgAXp/Slw2ZZ1iVIa4zPjqImWN7svjHg+w5dhkQIuThfVvxt0VbuVFYjkaWmDAsDZvLxVfrRH1FTJg/Ex5KY/7qPeQWlgmN0MAOXM4vIeOwmkCc3IimsSEs3HQIl1shJsSfQWnN+HzTAWrsTgK9zYzolsri7UeosNrwsxh5pHMLvsk8RrXNgZ/FyKC2zVi2+wQOl0hDbtskitWHBBvUPDIUs0nH/osCoPRsHs/pGzfJK6vEoNXQPSmeTWeyRbZOcABanYYzqganR9M4Mi/lCGeWnw9GvY7sAgG+0uKi2XNFAM4mwYEUVldTbBWZNxEN9DnhHM0TFvsmQYFcLivF7nIR7u1FtctBqa0GH70es15PXlUleo2GEG8LVyvK1KBAX66UiyiCRr5+XFGBTiNfX65W1oIbH3KrypEkCDFbyLdWopUl/AxGimzVIhFZp6HSYcNHr8d2HyFyLaOj10hoZbC7HaIDS9Xq1DquNBKYtDI2t12wPB4WR0+1S2ViVNFxXceVgkErVlj1HVcmjYxTcXgcVzKK2jTu9DiuNGpooISCWbWW62VRJVHXTO68xVru9Jyn4Lyttbx+zo6wltsxSILZEdZylypSFpcR1nInek+GjlZldmQ0kvJgGTpyBFLAp0jaB3cM/7PmZ7DzE6asrAw/Pz+uXr1625P12rNfcv7MdV7/w3A6drt7/cTsP68hY91xHn48jXHP9r7n7SmKwivjP+HS+ZuMnd6bh5+4vw29di5n5/OrqV9grbIzenJ3Rk/q/sDH3m2sVTY2rzrM5lUN6w70Rh1/+mQCje+wlvlPzveLdrNs/rbbVlIg8n2apkaT1LoRLdrGEpcY9net59Yt289n723wrJu0Og3t0xPpObglrdMa3/M6s05e41fTFuJShcqBwd4MGNGOfsNa3zFp+vrVYl4Y/4kHqCU0DePRcV1p1znhtiTlFyZ86rGRR8UE8sTE7nTslthg/fabV5dy/PBlAKJjAxk3uSdtVSAEsHzpPhZ+Kkon/fwtPDUxnd79RJ6Ooii8/MIiss+L9UbbdnE8/UxPIiNFMOGf/riKfWrqc4uUKJ59tg+NGgVSXW1j0pTPqagQdvJHhrXlsdEdMananFqnVavUaGY804fwMD/mfbaV1euOeU5/fmpvwkJ9mfk/yzirCosf6pfKhCe6cPFKAS//4TsAQoK8mDmlD6lJUUx69Stu3CxHq5UZ80gajw5py2/eX8P+4yJ07+E+qUwe3Znfzl7HgZOCURrZrxVjh6XxzB+XklsgOqQmj+hEq6ZRTPnTUhRFISzIh19N6sumA+dYtV3c90GdkxjRqxWT316Ky+UmNMCbX4/rx/w1ezh24QYaWWbKQ2lYHU6+2CC6rPq1TaRtYhRvLd0ins8mkQzpkMxvv9kEQEpMKA+lNefN5eL8VnHhdEuO44N1uwHolhxHqL8Xy9RSz1EdUziVm8/J3JsYtBqe6dOBOVv243C5aBTgS7dmcSzcJyzpD6U25WhuHjklZfgY9AxrlcxXB8R5PZrEkVVQyPWyCvxMBno2jWfFCTXhOTmR9VnZuNxuGgcGgBayC4sw67R0iYth4wXx+vdNaMzGi+LrtMhIDuZfx+l2kxgQyE1rJaU1NkItFmSdxPWKCnwNBgItZi6WFWPR6Ynw9iartAiTVkekjxcXyooxabSEenlxuaIEi0aHxajnprUSf50Jt+ym3F5DqNmLEkc1TreLGG9frlYLwB7vE8jFSvG7Ee/tz5WqIrSyjK/eSIm9Gn+9iUpXFQoKUWY/8mxi5RZq8KbQVoFZo8dJDW4UQo3eFNoF8PLXiwBBH52JGrf4wyVQ702poxyjRgANgACdF+XOcsGASHYUFPx0ZiqdFaoOSFzOV2fC6qrEIOvUYxW8ZK2ar2PCoYjb0MtOcZ7GgNNdjV7W4VasqhbIBbgxSkZcVGNADwhhtVYSx5lkSWV29ChKFVpJh6QGEurUolA9IljQKOkAGzrJiIQVjaRHgwMZGZ361iI6skAv6QTD48nQSUTym4WkufMffv/qKS8vJzo6mtLSUnx9fR/4uP8nwc61a9eIjo7+T9+Nn+fn+Xl+np/n5/l5/o65evUqUVFRD3z5/yfBjtvt5vr163h7e//Trc+1qPNOrNF/w/z8+P7vz3/7Y/z58f3fn//2x/jf/vj4/9q795imzjcO4F/uIMNOYFgaJnRsQhRkgMplQ9Q5LgPdLSiOdWwTsxmRy1w2dEtAMzI0mWbBbbiM1C1b1E3AuLggkAhu4yJiYQzUoFQICDoIImNBbs/vD382FtrCKVChPp+kf/Q9z3v6vH36Ht6e0xbM3BiJCH19fZBIJIK+WfxI/oKyqampoBWhPubPn2+0L2KAx2cMjH2MPL65z9jHaOzjA2ZmjEIuX933aPzgCmOMMcYeWbzYYYwxxphRM8vIyMh42EkYGzMzM6xevRrm5sZ5lZDHN/cZ+xh5fHOfsY/R2McHzK4xPpIfUGaMMcbYo4MvYzHGGGPMqPFihzHGGGNGjRc7jDHGGDNqvNhhjDHGmFHjxQ5jjDHGjBovdgTKzMxEcHAw5s2bh8cff1xjTGtrK9avXw9bW1s4OjoiKSkJg4Pj/4nlg3p6eiCTySASiSASiSCTyXD79u2ZGIIgpaWlMDEx0Xirrq7W2m/16tXj4mNjYw2Y+eS5ubmNyzUtLU1nHyJCRkYGJBIJbGxssHr1ajQ0NBgo48m7fv06tmzZAqlUChsbG7i7uyM9PX3C1+Nsr9/XX38NqVQKa2tr+Pv74/fff9cZn5eXhyVLlsDKygpLlixBQUGBgTIV5vPPP8eKFStgZ2cHJycnvPLKK7hy5YrOPkeOHNE4PwcGBgyUtTAZGRnjchWLxTr7lJWVwd/fH9bW1njqqaeQk5NjoGyF03Q8MTExwfbt2zXGz4X6nTt3DuvXr4dEIoGJiQlOnjyptl3f46HQeTwVvNgRaHBwEDExMdi2bZvG7SMjI4iKikJ/fz/++OMPHDt2DHl5edi5c6fO/b7xxhuora1FYWEhCgsLUVtbC5lMNhNDECQ4OBgdHR1qt4SEBLi5uWH58uU6+27dulWt3+HDhw2UtXB79+5Vy/XTTz/VGb9//34cOHAAhw4dQnV1NcRiMV588UX09fUZKOPJuXz5MkZHR3H48GE0NDTg4MGDyMnJwe7duyfsO1vrd/z4caSkpOCTTz6BQqFASEgIIiMj0draqjG+oqICmzZtgkwmQ11dHWQyGTZu3IiqqioDZz6xsrIybN++HZWVlSguLsbw8DDCwsLQ39+vs9/8+fPHzVNra2sDZS3c0qVL1XKtr6/XGqtUKvHSSy8hJCQECoUCu3fvRlJSEvLy8gyY8eRVV1erja24+N5/vI+JidHaZ7bXr7+/Hz4+Pjh06JDG7focD4XO4ykjphe5XE4ikWhc+2+//UampqbU3t6uajt69ChZWVlRb2+vxn01NjYSAKqsrFS1VVRUEAC6fPny9Cc/BYODg+Tk5ER79+7VGRcaGkrJyckGympqXF1d6eDBg5OOHx0dJbFYTFlZWaq2gYEBEolElJOTMxMpTqv9+/eTVCrVGTOb67dy5Up6//331do8PT0pLS1NY/zGjRspIiJCrS08PJxiY2NnLMfpcuvWLQJAZWVlWmO0HYtmq/T0dPLx8Zl0/EcffUSenp5qbe+99x4FBgZOd2ozIjk5mdzd3Wl0dFTj9rlWPwBUUFCguq/v8VDoPJ4qPrMzzSoqKuDl5QWJRKJqCw8Px927d1FTU6O1j0gkQkBAgKotMDAQIpEI5eXlM56zEKdOnUJXVxfefvvtCWN/+uknODo6YunSpfjwww9n3VmPB+3btw8ODg549tlnkZmZqfMyj1KpRGdnJ8LCwlRtVlZWCA0NnXX10qS3txf29vYTxs3G+g0ODqKmpkbtuQeAsLAwrc99RUXFuPjw8PA5UysAE9br33//haurK1xcXBAdHQ2FQmGI9PTW1NQEiUQCqVSK2NhYNDc3a43VVr8LFy5gaGhoplOdksHBQfz444949913YWJiojVurtXvQfocD/WZx1P18H/D2ch0dnZi4cKFam0LFiyApaUlOjs7tfZxcnIa1+7k5KS1z8OSm5uL8PBwPPnkkzrj4uLiIJVKIRaL8ffff2PXrl2oq6tTndKdTZKTk+Hn54cFCxbg/Pnz2LVrF5RKJb777juN8fdrMrbOCxcuREtLy4znOxXXrl1DdnY2vvjiC51xs7V+XV1dGBkZ0fjc65pfQuJnCyLCBx98gOeffx5eXl5a4zw9PXHkyBF4e3vjzp07+PLLL/Hcc8+hrq4OzzzzjAEznpyAgAD88MMPWLx4MW7evInPPvsMwcHBaGhogIODw7h4bfUbHh5GV1cXnJ2dDZW6YCdPnsTt27d1vjmca/UbS5/joT7zeKr4zA40f2Bu7O3ChQuT3p+mFTwR6VzZ69NnKvQZc1tbG86cOYMtW7ZMuP+tW7di3bp18PLyQmxsLE6cOIGSkhJcvHhxRsYzlpDxpaamIjQ0FMuWLUNCQgJycnKQm5uL7u5unY8xtjYzWa+x9KnfjRs3EBERgZiYGCQkJOjc/8Ou30SEPvcPs1b6SkxMxF9//YWjR4/qjAsMDMSbb74JHx8fhISE4Oeff8bixYuRnZ1toEyFiYyMxOuvvw5vb2+sW7cOp0+fBgB8//33Wvtoqp+m9tkmNzcXkZGRamf6x5pr9dNGnzlmyHnJZ3Zw76Ay0TdN3NzcJrUvsVg87oOPPT09GBoaGreKfbDPzZs3x7X/888/WvtMlT5jlsvlcHBwwIYNGwQ/np+fHywsLNDU1AQ/Pz/B/YWaSk0DAwMBAFevXtX4TvP+N0c6OzvV3lXeunVrxuo1ltDx3bhxA2vWrEFQUBC+/fZbwY9n6Ppp4+joCDMzs3Hv/nQ992KxWFD8bLBjxw6cOnUK586dg4uLi6C+pqamWLFiBZqammYou+lla2sLb29vrflqq5+5ubnG+TlbtLS0oKSkBPn5+YL6zbX66XM81GceTxUvdnDviXd0dJyWfQUFBSEzMxMdHR2qwhcVFcHKygr+/v5a+/T29uL8+fNYuXIlAKCqqgq9vb0IDg6elrzGEjpmIoJcLsdbb70FCwsLwY/X0NCAoaEhg51ynkpN718v15br/cs7xcXF8PX1BXDvGnRZWRn27dunX8ICCRlfe3s71qxZA39/f8jlcpiaCj+ha+j6aWNpaQl/f38UFxfj1VdfVbUXFxfj5Zdf1tgnKCgIxcXFSE1NVbUVFRXN2NyaCiLCjh07UFBQgNLSUkilUr32UVtbC29v7xnIcPrdvXsXly5dQkhIiMbtQUFB+PXXX9XaioqKsHz5cr2ORYYil8vh5OSEqKgoQf3mWv30OR7qM4+nbEY+9mzEWlpaSKFQ0J49e+ixxx4jhUJBCoWC+vr6iIhoeHiYvLy86IUXXqCLFy9SSUkJubi4UGJiomofVVVV5OHhQW1tbaq2iIgIWrZsGVVUVFBFRQV5e3tTdHS0wcenTUlJCQGgxsbGcdva2trIw8ODqqqqiIjo6tWrtGfPHqqurialUkmnT58mT09P8vX1peHhYUOnrlN5eTkdOHCAFAoFNTc30/Hjx0kikdCGDRvU4jw8PCg/P191Pysri0QiEeXn51N9fT1t3ryZnJ2d6c6dO4Yegk7t7e309NNP09q1a6mtrY06OjpUt/vmWv2OHTtGFhYWlJubS42NjZSSkkK2trZ0/fp1IiKSyWRq3+j4888/yczMjLKysujSpUuUlZVF5ubmat9oVgdZAAACcUlEQVR+nC22bdtGIpGISktL1Wr133//qWLGji8jI4MKCwvp2rVrpFAo6J133iFzc3NVPWebnTt3UmlpKTU3N1NlZSVFR0eTnZ2dqn5paWkkk8lU8c3NzTRv3jxKTU2lxsZGys3NJQsLCzpx4sTDGsKERkZGaNGiRfTxxx+P2zYX69fX16f6WwdAdcxsaWkhoskdD9euXUvZ2dmq+xPN4+nGix2B4uPjCcC429mzZ1UxLS0tFBUVRTY2NmRvb0+JiYk0MDCg2n727FkCQEqlUtXW3d1NcXFxZGdnR3Z2dhQXF0c9PT0GHJlumzdvpuDgYI3blEql2nPQ2tpKq1atInt7e7K0tCR3d3dKSkqi7u5uA2Y8OTU1NRQQEEAikYisra3Jw8OD0tPTqb+/Xy0OAMnlctX90dFRSk9PJ7FYTFZWVrRq1Sqqr683cPYTk8vlGl+vD77PmYv1++qrr8jV1ZUsLS3Jz89P7avZoaGhFB8frxb/yy+/kIeHB1lYWJCnpyfl5eUZOOPJ0VarB197Y8eXkpJCixYtIktLS3riiScoLCyMysvLDZ/8JG3atImcnZ3JwsKCJBIJvfbaa9TQ0KDaHh8fT6GhoWp9SktLydfXlywtLcnNzY2++eYbA2ctzJkzZwgAXblyZdy2uVi/+3+zxt7uj2Myx0NXV1dKT09Xa9M1j6ebCdH/P+nFGGOMMWaE+NtYjDHGGDNqvNhhjDHGmFHjxQ5jjDHGjBovdhhjjDFm1HixwxhjjDGjxosdxhhjjBk1XuwwxhhjzKjxYocxxhhjRo0XO4wxxhgzarzYYYwxxphR48UOY4wxxoza/wDhih+Qq+rOUwAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,u'convergence of 2x2 steepest-descent')" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "θ = 0.9 # chosen to make a nice-looking plot\n", - "Q = [cos(θ) sin(θ); -sin(θ) cos(θ)] # 2x2 rotation by θ\n", - "A = Q * diagm([10,1]) * Q' # a 2x2 matrix with eigenvalues 10,1\n", - "b = A * [1,1] # right-hand side for solution (1,1)\n", - "x1 = linspace(-11,11,100)\n", - "contour(x1', x1, [dot([x1,x2], A*[x1,x2]) - 2*(x1*b[1]+x2*b[2]) for x1 in x1, x2 in x1], levels=linspace(1,2000,100))\n", - "plot(1,1, \"r*\")\n", - "x1s = Float64[]\n", - "x2s = Float64[]\n", - "for i = 0:20\n", - " x, = SD(A, b, [-10.,-10.], maxiters=i)\n", - " push!(x1s, x[1])\n", - " push!(x2s, x[2])\n", - "end\n", - "plot(x2s, x1s, \"k.-\")\n", - "\n", - "title(\"convergence of 2x2 steepest-descent\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The solution \"zig-zags\" down the long, narrow valley defined by the quadratic function `f`. This is a common problem of steepest-descent algorithms: they tend to go towards the center of valleys (down the \"steep\" direction), rather than *along* the valleys towards the solution.\n", - "\n", - "To fix this problem, basically we need to implement some kind of \"memory\": it has to \"remember\" that it just \"zigged\" in order to avoid \"zagging\" back where it came from. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## From steepest-descent to conjugate-gradient\n", - "\n", - "The most famous way to improve steepest descent with \"memory\" is the [conjugate-gradient algorithm](https://en.wikipedia.org/wiki/Conjugate_gradient_method). I won't explain it here ([Shewchuk's article](http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf) is a good introduction to its relationship to steepest descent), but the implementation ends up being *almost identical* to steepest descent. However, instead of setting the line-search direction equal to the downhill direction `r`, the line-search direction is instead a linear combination of `r` with the *previous* search direction:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "CG (generic function with 2 methods)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function CG(A, b, x=zeros(b); tol=1e-8, maxiters=1000)\n", - " bnorm = norm(b)\n", - " r = b - A*x # initial residual\n", - " rnorm = [norm(r)] # return the array of residual norms\n", - " d = copy(r) # initial direction is just steepest-descent\n", - " Ad = zeros(r) # allocate space for Ad\n", - " for i = 1:maxiters\n", - " A_mul_B!(Ad, A, d) # store matvec A*r in-place in Ar\n", - " α = dot(d, r) / dot(d, Ad)\n", - " x .= x .+ α .* d # in Julia 0.6, this \"fuses\" into a single in-place update\n", - " r .= r .- α .* Ad # update the residual (without computing A*x again)\n", - " push!(rnorm, norm(r))\n", - " d .= r .+ d .* (rnorm[end]/rnorm[end-1])^2 # conjugate direction update\n", - " rnorm[end] ≤ tol*bnorm && break # converged\n", - " end\n", - " return x, rnorm\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(185, 7.322261832982186e-9)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = rand(100,100); A = A'*A # a random SPD matrix\n", - "b = rand(100)\n", - "x, rnorm = CG(A, b)\n", - "length(rnorm), rnorm[end]/norm(b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After some initial slow progress, the conjugate-gradient algorithm quickly zooms straight to the solution:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHFCAYAAAAXETaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd8FHX6xz+zPdnspvdK6KGEDiJVFAQphyCIeBRBT+FsoN55/ixwtrNweBrBhogVC6LSqxRpAQktCS2E9F42dev398fszM7upswkIQW+79eLl2Z2yndnZ3c+8zyf5/kyhBACCoVCoVAoFApkbT0ACoVCoVAolPYCFUYUCoVCoVAodqgwolAoFAqFQrFDhRGFQqFQKBSKHSqMKBQKhUKhUOxQYUShUCgUCoVihwojCoVCoVAoFDtUGFEoFAqFQqHYocKIQqFQKBQKxQ4VRhTKDWTBggWIiYlp62HwfPPNN1i9enVbD+OGkZ6eDoZhsH79en7ZK6+8AoZhbuhxq6ur8corr+D333+/ocehUCg3HiqMKJQbyIsvvoiff/65rYfBc7MLo7pYvHgxjh49ekOPUV1djRUrVlBhRKHcBCjaegAUys1M586d23oIHQKz2QyGYaBQtPxPUkREBCIiIlp8v5S6qampgUajueFROgrlRkEjRpRbhtTUVMyZMwfBwcFQq9WIiorCvHnzYDQa+XXOnz+PadOmwdfXFxqNBv369cMXX3zhtJ/ff/8dDMPg22+/xQsvvICwsDDo9XrceeeduHjxotO6rqm0ulI9HAzD4JVXXnFa9ssvv6Bv375Qq9WIjY3Fe++9V2dqKCEhAaNGjUJQUBC0Wi369OmDt956C2azmV9nzJgx2Lp1K65fvw6GYfh/HCaTCa+++ip69OgBtVqNwMBALFy4EIWFhaLOLyEEr7/+OqKjo6HRaDBo0CDs3r0bY8aMwZgxY9zO35dffonly5cjPDwcarUaV65cQWFhIZYsWYK4uDh4eXkhKCgId9xxBw4dOuR2vJycHMyaNQs6nQ7e3t6YPXs28vLy3NarL5W2ceNG3HbbbdBqtfDy8sKECRNw+vRpp3UWLFgALy8vXLlyBZMmTYKXlxciIyOxfPly/rpJT09HYGAgAGDFihX8eV2wYEGD56usrAzLly9HbGws1Go1goKCMGnSJKSmpvLrlJSUYMmSJQgPD4dKpUJsbCxeeOEFp2sWYK+dv//97/jyyy/Rs2dPeHp6Ij4+Hlu2bOHX2bx5MxiGwd69e93GsmbNGjAMg7Nnz/LLTp48ialTp8LPzw8ajQb9+/fH999/77Td+vXrwTAMdu3ahYceegiBgYHw9PTkxyf2+iWE4MMPP0S/fv3g4eEBX19fzJw5E2lpaU7rjRkzBr1790ZiYiJGjhwJT09PxMbG4s0334TNZpN8fpt7zVNuUgiFcguQlJREvLy8SExMDFm7di3Zu3cv+eqrr8isWbOIwWAghBCSmppKdDod6dy5M9mwYQPZunUrmTNnDgFA/vOf//D72r9/PwFAYmJiyNy5c8nWrVvJt99+S6KiokjXrl2JxWLh150/fz6Jjo7m/7527RoBQD7//HO3MQIgL7/8Mv/39u3biUwmI2PGjCE///wz+eGHH8jQoUNJTEwMcf3qPv3002TNmjVkx44dZN++feS///0vCQgIIAsXLuTXuXDhArn99ttJSEgIOXr0KP+PEEKsViu5++67iVarJStWrCC7d+8mn376KQkPDydxcXGkurq60XP8/PPPEwDkkUceITt27CCffPIJiYqKIqGhoWT06NFu5y88PJzMnDmT/Prrr2TLli2kuLiYpKamkscee4x899135PfffydbtmwhixYtIjKZjOzfv5/fR3V1NenZsyfx9vYm77//Ptm5cyd54oknSFRUlNv5ffnll93O12uvvUYYhiEPPfQQ2bJlC9m0aRO57bbbiFarJRcuXHD6/FQqFenZsyd55513yJ49e8hLL71EGIYhK1asIIQQUltbS3bs2EEAkEWLFvHn9cqVK/WeK4PBQHr16kW0Wi1ZuXIl2blzJ/npp5/Ik08+Sfbt20cIIaSmpob07duXaLVa8s4775Bdu3aRF198kSgUCjJp0iSn/XHX45AhQ8j3339Ptm3bRsaMGUMUCgW5evUqIYQQs9lMgoKCyNy5c93GM2TIEDJgwAD+73379hGVSkVGjhxJNm7cSHbs2EEWLFjgdm4///xz/rN85JFHyPbt28mPP/5ILBaLpOv34YcfJkqlkixfvpzs2LGDfPPNN6RHjx4kODiY5OXl8euNHj2a+Pv7k65du5K1a9eS3bt3kyVLlhAA5IsvvpB0flvimqfcnFBhRLkluOOOO4iPjw8pKCiod53777+fqNVqkpGR4bR84sSJxNPTk5SVlRFCHDd215vT999/TwDwYoOQ5gmjwYMHk8jISGI0GvllFRUVxN/f3+3GIsRqtRKz2Uw2bNhA5HI5KSkp4V+75557nMbD8e233xIA5KeffnJanpiYSACQDz/8sN7jEUJISUkJUavVZPbs2U7Ljx49SgDUKYxGjRrV4D4JIcRisRCz2UzGjRtHpk+fzi9fs2YNAUB++eUXp/UffvjhRoVRRkYGUSgU5PHHH3fatqKigoSEhJBZs2bxy+bPn08AkO+//95p3UmTJpHu3bvzfxcWFrp9fg2xcuVKAoDs3r273nXWrl1b57H/85//EABk165d/DIAJDg4mBf5hBCSl5dHZDIZeeONN/hly5YtIx4eHvy1TAghycnJBAB5//33+WU9evQg/fv3J2az2enYkydPJqGhocRqtRJCHMJo3rx5buMXe/1y18i7777rtH1mZibx8PAgzz33HL9s9OjRBAA5fvy407pxcXFkwoQJ/N9izm9zr3nKzQtNpVFueqqrq3HgwAHMmjWLT3nUxb59+zBu3DhERkY6LV+wYAGqq6vdDLxTp051+rtv374AgOvXrzd7zFVVVTh58iT+8pe/QKVS8cu9vLwwZcoUt/VPnz6NqVOnwt/fH3K5HEqlEvPmzYPVasWlS5caPd6WLVvg4+ODKVOmwGKx8P/69euHkJAQ3lRss9mcXrdarQCAY8eOwWg0YtasWU77HTZsWL1VeTNmzKhz+dq1azFgwABoNBooFAoolUrs3bsXKSkp/Dr79++HTqdz+wweeOCBRt/rzp07YbFYMG/ePKf3otFoMHr0aDcDNcMwbue8b9++zfqct2/fjm7duuHOO++sd519+/ZBq9Vi5syZTsu5FJ1rSmzs2LHQ6XT838HBwQgKCnIa50MPPYSamhps3LiRX/b5559DrVbz5+7KlStITU3F3LlzAcDpHE2aNAm5ubluKWPXz1LK9btlyxYwDIMHH3zQ6VghISGIj493+zxCQkIwZMgQp2Wun4eY8yv2mqfcelBhRLnpKS0thdVqbdSAW1xcjNDQULflYWFh/OtC/P39nf5Wq9UAWPNpcyktLQUhBMHBwW6vuS7LyMjAyJEjkZ2djffeew+HDh1CYmIiEhISRI8nPz8fZWVlUKlUUCqVTv/y8vJQVFQEAFi5cqXTa5y5nDs3YsbLUde5XrVqFR577DEMHToUP/30E44dO4bExETcfffdTu+juLi4zv2GhISIeq8AMHjwYLf3unHjRv69cnh6ekKj0TgtU6vVqK2tbfRY9VFYWCjqegwJCXHz4wQFBUGhUDR6PXLjFJ63Xr16YfDgwfj8888BAFarFV999RWmTZsGPz8/AI7z88wzz7idnyVLlgCA2zly/SylXL/5+fn8uq7HO3bsmNuxxLxPMedX7DVPufWgVWmUmx4/Pz/I5XJkZWU1uJ6/vz9yc3Pdlufk5AAAAgICmj0W7gbrap51vcn5+vqCYRj+JiXE1WC8efNmVFVVYdOmTYiOjuaXJyUliR5XQEAA/P39sWPHjjpf5yIRjzzyCCZPnswv58Qgd7Oqb7x1RY3qMkR/9dVXGDNmDNasWeO0vKKiwulvf39/nDhxos5jNQb3Of74449O56s1CQwMFHU9Hj9+HIQQp3NVUFAAi8XS5Otx4cKFWLJkCVJSUpCWlobc3FwsXLiQf53b7/PPP4977723zn10797d6W/Xz1LK9RsQEACGYXDo0CH+ehJS17LGEHN+xV7zlFsPGjGi3PR4eHhg9OjR+OGHHxp8Chw3bhz27dvHCyGODRs2wNPTE8OGDWv2WIKDg6HRaJyqfwC2ekeIVqvFoEGDsHnzZphMJn55ZWWlU6UR4LgpCW8ghBB88sknbsd3fbLmmDx5MoqLi2G1WjFo0CC3f9yNMCwszGl5nz59AABDhw6FWq12StEAbIpNSsqJYRi3G+HZs2fd0phjx45FRUUFfv31V6fl33zzTaPHmDBhAhQKBa5evVrnex00aJDo8XJIjRZOnDgRly5dwr59++pdZ9y4caisrMTmzZudlm/YsIF/vSnMmTMHGo0G69evx/r16xEeHo7x48fzr3fv3h1du3bFmTNn6j0/jYkGKdfv5MmTQQhBdnZ2ncfirjEpiDm/Yq95yq0HjRhRbglWrVqFESNGYOjQofjnP/+JLl26ID8/H7/++is++ugj6HQ6vPzyy9iyZQvGjh2Ll156CX5+fvj666+xdetWvPXWW/D29m72ODgvxbp169C5c2fEx8fjxIkTdd7QV65ciXvuuQcTJkzAk08+CavVirfffhteXl4oKSnh17vrrrugUqkwZ84cPPfcc6itrcWaNWtQWlrqts8+ffpg06ZNWLNmDQYOHAiZTIZBgwbh/vvvx9dff41JkybhySefxJAhQ6BUKpGVlYX9+/dj2rRpmD59er3vy8/PD8uWLcMbb7wBX19fTJ8+HVlZWVixYgVCQ0Mhk4l7Bps8eTL+/e9/4+WXX8bo0aNx8eJFrFy5Ep06dYLFYuHXmzdvHv773/9i3rx5eO2119C1a1ds27YNO3fubPQYMTExWLlyJV544QWkpaXh7rvvhq+vL/Lz83HixAlotVqsWLFC1Hg5dDodoqOj8csvv2DcuHHw8/NDQEBAvf6qp556Chs3bsS0adPwz3/+E0OGDEFNTQ0OHDiAyZMnY+zYsZg3bx4SEhIwf/58pKeno0+fPjh8+DBef/11TJo0qUH/TEP4+Phg+vTpWL9+PcrKyvDMM8+4fT4fffQRJk6ciAkTJmDBggUIDw9HSUkJUlJS8Oeff+KHH35o9Dhir9/bb78djzzyCBYuXIiTJ09i1KhR0Gq1yM3NxeHDh9GnTx889thjkt6jmPPb3GuechPTls5vCqU1SU5OJvfddx/x9/cnKpWKREVFkQULFpDa2lp+nXPnzpEpU6YQb29volKpSHx8vFsFGVdV9cMPPzgtr6vibP78+SQmJsZpvfLycrJ48WISHBxMtFotmTJlCklPT6+zqunnn38mffr04cf75ptvkieeeIL4+vo6rffbb7+R+Ph4otFoSHh4OHn22WfJ9u3bCQCnMveSkhIyc+ZM4uPjQxiGcaoOMpvN5J133uH34+XlRXr06EH+9re/kcuXLzd6fm02G3n11VdJREQEUalUpG/fvmTLli0kPj7eqaKsvvNHCCFGo5E888wzJDw8nGg0GjJgwACyefNmt+o+QgjJysoiM2bMIF5eXkSn05EZM2aQI0eOiCrXJ4SQzZs3k7FjxxK9Xk/UajWJjo4mM2fOJHv27OHXmT9/PtFqtW7b1rXPPXv2kP79+xO1Wk0AkPnz5zd4vkpLS8mTTz5JoqKiiFKpJEFBQeSee+4hqamp/DrFxcXk0UcfJaGhoUShUJDo6Gjy/PPPO12zhLBVaUuXLnU7RnR0dJ3j2LVrFwFAAJBLly7VOb4zZ86QWbNmkaCgIKJUKklISAi54447yNq1a/l1uKq0xMTEOvch9volhJB169aRoUOHEq1WSzw8PEjnzp3JvHnzyMmTJ/l1Ro8eTXr16uW2bV3Xh5jz29xrnnJzwhBCSFsIMgrlVmD69OnIzMzEyZMnW2R/ZrMZ/fr1Q3h4OHbt2tUi+7yRXLt2DT169MDLL7+Mf/3rX209HEob09GuX8qtCU2lUSg3gIyMDBw5cgT79+/HX//61ybvZ9GiRbjrrrsQGhqKvLw8rF27FikpKXjvvfdacLQtw5kzZ/Dtt99i+PDh0Ov1uHjxIt566y3o9XosWrSorYdHaQM60vVLoXBQYUSh3ADWrVuH1atX44477sDLL7/c5P1UVFTgmWeeQWFhIZRKJQYMGIBt27Y12V9yI9FqtTh58iQ+++wzlJWVwdvbG2PGjMFrr71Wb8k+5eamI12/FAoHTaVRKBQKhUKh2KHl+hQKhUKhUCh2qDCiUCgUCoVCsUOFEYVCoVAoFIodar5uBJvNhpycHOh0ujqnMKBQKBQKhdL+IISgoqICYWFhopvMAlQY1UtCQgISEhJgMplw9erVth4OhUKhUCiUJpCZmdnopMJCaFVaI5SXl8PHxweZmZnQ6/VtPRwKhUKhUCgiMBgMiIyM5NuHiIVGjBqBS5/p9XoqjCgUCoVC6WBItcFQ83U9JCQkIC4uDoMHD27roVAoFAqFQmklaCqtEQwGA7y9vVFeXk4jRhQKhUKhdBCaev+mESMKhUKhUCgUO1QY1QNNpVEoFAqFcutBU2mNQFNpFAqFQqF0PGgqjUKhUCgUCqWZUGFEoVAoFAqFYocKo3qgHiMKhUKhUG49qMeoEajHiEKhUCiUjgf1GFEoFAqFQqE0EyqMKBQKhUKhUOxQYVQP1GNEoVAoFMqtB/UYNQL1GFE6IoQQ1Jpt8FDJ23ooFAqF0iZQjxGFQuFZuSUZ8St34UpBRVsPhUKhUDoUVBhRKDchx9NKYLLYcCazXPK2v53JwfZzuZK3s9kI9qcWoKjSKHnb5mCzEZgstlY9JoVCuXmhwohCuQkpqzax/60xS9qu0mjBUxuT8OR3STBarJK2PXi5EAvXJ+KVXy9I2o7DamtaVv+v645j9Nv7UWOSNl4KhUKpCyqMKJSbEE4QldsFklhKq0yw2ghMVhsMNRZJ22aV1gAAMu3/lcKGo+no88pOnEwvkbQdIQRHrxYjt7wW10uqJB+XQqFQXKHCiEJxwWy1IadM+s29vWC0WFFtj55IjRgZas11/r8YKmpZIWWQeEwAOHipENUmK45eLZa0XZXJCi7QVFYt/bi3ClcKKjH5/UPYcT6vrYdCobR7qDCqB1qu3zHZeSEPHx242qx9PPfjWQx/cx+ScwwtNKrWRSgQSiWKBWGUSKrAqbALqaYIo5IqNrIl1Z9ULjhWmcTo2K3E3pR8nM82YPPp7LYeCoXS7qHCqB6WLl2K5ORkJCYmtvVQKBL416ZzeGN7Kq4VNT2tkpLLCqLLHbSiSyiMpIoFodAw1EpLpXERo/IaM6R2AeHGXFQpbbwGJ2EkXZDdKt1KuOhflUnaZ0qh3IpQYUS5abDaCIqbGHkQwqeEJAqD9kKpQAyVNyOVViExlVZpZM+XxUb4VJ5YuDEXSvzcnISRxPdaUmXC8Df3Ndks3pHgrgPuM6JQKPVDhRGFZ9XuS1jy9SnYmlgd1NYIb+TlzfCbcDdbqcKgvSCMEkmNogiFhlTzdUUT/UlWG+Fv3FIFrVC8Sn2vZzLLkFtei10Xbn7fTbn9s6zsoGKfQmlNqDCi8Hx88Cq2ncvDlcLKth5KkxBGR6RGSjhsNoJKe7qhooPeRJw9RhJTU4L3LNV8LdxWyvk31Jh5A3VRRdM9RuU10t4rH12sMnWYlNqfGaW42oTvJyd4q2jEiEJpFCqMKACAGpMVtWa2SR5nhO1otIQwqjBawN0jm2Iibg8IDdcVtRZYrOKbHzpHjJpWlQZIi9gJxZuh1iKpf5JwjKVV0sZbar/OTRZbh0gxFVUaMWvtUcz77ITkbbnvQ0UT3meNyYrz2eUdRjxSKM3llhBG06dPh6+vL2bOnNnWQ2m3CG9OpbewMBLeaDtuxMj585PilWpOuX6lsWnGbdfKuWIJBmzhGMuaGDECpJu+24LrxdWw2Aiyy2pgliB2AYH52miRLHBe/OU8Jr9/GEfTpLVSoFA6KreEMHriiSewYcOGth5Gu0YojEo6aNlzi0SMBDf0jusxch63lHSac7l+06rSAGnn31WIS/EZlTejKq2kynGc4laexqQpFFbU8v/fVO+YjQA1ZmnGeK7C83J+x0yxUyhSuSWE0dixY6HT6dp6GO0a5xLvjikIWiRiVNvxI0auQkjK59nUqjRCSNOFUXXThZFQvEn9zEuaETGyWG04m1UmKU3JkbD/Cu798A/JwrtA4L+S4qcihDidJ6kGbM6X1FFT7BSKVNq9MDp48CCmTJmCsLAwMAyDzZs3u63z4YcfolOnTtBoNBg4cCAOHTrUBiPt2DhFjDroDyBNpbG4CiEpN1Enj5GE919jtjrNdSbFn+Q63qKKJqbSJAp6YSqtuEpaxGj9kXRM/eAPrD+SLmk7Qgg+O3wNf2aU4cQ1adOfFBgcY5TSuLPWbINJIOCk+qm474FUIz+F0lFp98KoqqoK8fHx+OCDD+p8fePGjXjqqafwwgsv4PTp0xg5ciQmTpyIjIyMVh5px8apkukWFkY3RSrNLoSUcob9W8JNVPj+pYgb1yhEcyJGUnoZCY9TY7aiVkKaSPgAIMXXBAApuWzzz9Q8aU1ACyuN/HHzDLWNrO1MQRNTaa5eManCqJJGjCi3GIq2HkBjTJw4ERMnTqz39VWrVmHRokVYvHgxAGD16tXYuXMn1qxZgzfeeEPy8YxGI4xGxw+zwdAxp4WQitCw21GfDA03SSqtymhBldGCIL2mSdtz0YQoP09cLaySFF1wjhhJuflaXP6WLowYBiBEairNNTpmhkYpF7WtszCSFjHiREqBxPYCFwVCKq9cqjASRozEf0ddvwtShBEhhE+lNeV3odJogY0Q6DVKydtSKG1Fu48YNYTJZMKpU6cwfvx4p+Xjx4/HkSNHmrTPN954A97e3vy/yMjIlhjqDScps8zpR1cqwptnSQf1GDXHb1LXPipNljZpdvnAp8cx6u39TXpCJ4TwIjfGXwsAKBd5Q7PaiFM5txTztWt0TUq0iSuzj/bzBCDN7+MqXsVGUkwWm9O2RRLPNZfWKpAY9RF+R3OlCiNBKk3KVC+un4UUj5HRYoPF/h0okdgOwWYjuHv1Qdz57gHJVXQUSlvSoYVRUVERrFYrgoODnZYHBwcjL8/RzXbChAm47777sG3bNkRERDQ4/9nzzz+P8vJyvPPOO+jevTu6dOlyw8bfUpTXmDHro6O4/+OjTb6R34zl+k3puyK8wRMCvtlja0EIwYXsctSabU1q5FdtssJsZd93TAArjMROleEqbmrMVpgs4m5orgKlKam0LkFsgYSUJo/ccRQyLm0o7tp1jX5IjRjl2yNGUjt1Ny9i1LRUmutnIWW+NOHnKvV3objKhKzSGhRUGCWnKimUtqRDCyMOhmGc/iaEOC3buXMnCgsLUV1djaysLAwePLjefanVauj1eixfvhypqak4derUDRt3S5FZUg2TxYbSarOToVQKN5vHyGSx8Q0rpeCaAmrtdJqhxsI/oRdKTNMAjhu+SiFDqDebihN7E+UiRCqF42dBrM/KNT0jJdrEja9rsBcA8WLDYnU0Zozw9WD3JVKQud6opdy4jRYrP+biKpOkyrSL+cKIUY3o7SxWm9N3W0p61C2VJuGaFnbKLpHYIVz4OUrtiUWhtCUdWhgFBARALpc7RYcAoKCgwC2KJJWEhATExcU1KKLaC8KQvJQfWyHCJ+gKo6VDhr5dbwBNSae53tBb24BdJKiOaspEuNwN28dDCV9PFQDx3hDu5uXrqYSXmrUfihWG3HkK1KkBSDv3XN+srkHShJFQjEXa03BiI0ZcmpKLNEl5oBCmtFhPlPhU5aV851SaWKFRVGmCcNWmVhoCQKVRvEFdeI5NVhuqJEwOLBT2HbWLPOXWpEMLI5VKhYEDB2L37t1Oy3fv3o3hw4c3a99Lly5FcnJyg2m39kKeQAxJ9S1wNKcpYHuhJYRRhbFtI0bCyIXUecMAx+fm66mCjydreBV7Hribl16jhF7DCiOxT/rceeIiN2KPKfREdQtmU2ml1WZRwpw7hodSjkAvVpCJjY5x5fmd7OnG0mrxkR9hSquuv+sjo6QatWYbVHL2Z7faZBU9RYfrMaRMf1LuIvYrjeK3db3+pUSTC536LlFhROk4tHthVFlZiaSkJCQlJQEArl27hqSkJL4cf9myZfj000+xbt06pKSk4Omnn0ZGRgYeffTRthx2qyIUQ1J9CxyuQkjqvFNtjc1G+Ju4VsVWJbVExKi1n3SF0RIpZescfMTIU8kLI9GpNPv58/ZQQu/Bbis2JWbghREbuRHrT6py8UTJuQiOiCgMNzZvDyW8ufcq8vPibvCdA734ajixHd/zDc6fS4FB3OfE+Yu6hXjB235+xX5fXY8hqZu5i7itkhAxcp10VkpBQGEzUmnlNWY8suEktp3LlbQdhdIStHthdPLkSfTv3x/9+/cHwAqh/v3746WXXgIAzJ49G6tXr8bKlSvRr18/HDx4ENu2bUN0dHSzjnujU2nJOQZ8eigN+RKrWupC+OOa04RUms1GeBHBRQo6Ws8S4eSvXFqlScLI/gOuUbJfjdaPGAmEkYRGhxxc9MXHUwlvD4mpNLvQ0HsooZMYMeJ8K2HejhYDYrblBIpaIYNWJYeflh2zmHQat3+9h4JPG4oVgdz1HahTw8++rVifkWslmlgBywmj7sF63v8lNsLLleoHNSFV6frdlnJNu3rHpEwX5BQxkljpeuBSIXYl5+OjA1clbUehtATtXhiNGTMGhBC3f+vXr+fXWbJkCdLT02E0GnHq1CmMGjWq2ce90am0/9t8Dq9uTcHBS4XN3ldzI0aGWjMvKjoFsj4PKeXA7QEusqNWyJrkc+HgbhphPh72v1s7YuQ4702JGHGmXGEqraLWIipNxAsNjYLvOyM2YlbBixQldHZ/kphthak/hmEQYE+JiXnvwtSfI20o7rrlPEV+WhX8vaQJo/yKJkaM8tmeaD1CdAixC6M8kQ8yXCrNkW6U7jHirmnXKFBDuKb6mppKk9J8aLQhAAAgAElEQVRFXbhtR5jcl3Lz0e6FUVtxoyNGw2L9AQDH0qRNC1AXwg66TfEYcTdTrUqOYLuoaIuJZG020qQSe8Ahgrw9lHyaQqowYueUYrcJt99EpP6gNxfh1BRN8Rg5Umkq+Hg4muqJeR+80BCm0iR6jPQaBb+tmPNfKkj9AUCAXaSIee91feZiU8BcxMjfSwV/LXvNi50WhIvyclFFsR6jVD6VpmtyxIgTRrVmm+gu39x54vxfUho8NieV5lSVJvG7yAmjwkpjk38TKJSmQoVRPdzoiJFDGBU3az+EEKdKtKZUpZXy6ReVo5KplVNpZqsNk/53CLM/OtakH0LhTZKPHkgUd7VmRzO7cD5i1Hbm66bcFISpNIVcxkdvxEQADby4UUpOu3CmdZ1GKUkYlQkiRgB4E7WYSIFBEKXy4VJpYsv1qxzHDdCJPybguGn3DNUDENf9utZsRbp9lvoeITqE6NnrS6rHqFOgw4cl3jvmHAWVIoxcS/sleYyaYb7mRJXJYpM8hQmF0lyoMGojBsX4QiFjkF1Wg8yS6ibvp7zG7NSvJ7/cKLnJI39z0irha/d4SO1y21yuF1chNa8CJ9JLmuRvMrRAxIi70cplDILt03G0dipNKIxMFpvoqiUOR2qKPQecKVlM3xtHxEghMF9L8xjpNAp4e3D+pMbHXiJIaQEQiBQxqTRHlMpXohjmI0ZaFfy1XCpNWsSoT7g3AHH9pq4UVMJGWMEapFNLjhgV2qNSwTo1HwkU7x1zTqVJEkb2de1aTFIKrznma+HnT9NplNaGCqN6uNGpNE+VAvGRPgCAo82IGnE/rHqNAgzD9hqRmgbj0g++nir4ablKptb9Mbpe7BCH6cXShWJLpNK4G4hOo+DNx60dMXIVBFLTaVzEhIugSPHeODxGQvO12D5G7HpeaoWk819vKk2ESHGKEnpIixhxEVE/LxV/TNEeI3v0pneYeGGUlFkGAIgL1YNhGIHHSKL5Wq+RXm3YDI8RJ4xCvdltxT60CJtgsmOQ9j1yFkbSU8oUSnOgwqgeWqOP0bBYPwDNS6dxP6yRfp58GiK3TJrPqK5UWmt7jITCKKOkSvL2LSKMnFJJnHG5bcr1uXSJ1O7XwgaPACRVa5ULPUYSzdcGPmIkbVu3VJqUiJEglcZFxqpNVhgtDXtvbDbCX/Os+Vq8x6jWbOXPU29BxKixlCf3HR/aiU2hOyJGjae+bTbCXwdBOrXgM238Oyqc/y7chz2mlM7X3LpR9kpPsR4uV5EpOZUmqMiUOl0LhdJcqDBqQzif0fG0kiYbDLny/FBvjaQfWyFlfCWTss08RhmCdGJ6UdMjRvoWSKXpPdomYmSy2HiBwTUelJpG4FNp9vQQdy7ECCNHaqop5mtHtM1bQhqOi0A4IkZ2YSSiVYGwKk2nVvDpnsZKw8tqzOCyzb6ejlSamHPNCRSVQobOQexnZLLaGjy/hBC+yIJ7GOIiRoZaS6MRnJJqE+99C/BSOyJGIs6vUNhzUZ9Kk0X07w0XMeKEkdgHJldBLyWVZrMRl35eNJVGaV2oMGpDBkb7QilnfUZZpU2byoOLGIV4axzheYm9kcpqBBEjLdf7pnUjJUJhdL24eREjKeZfIXwqTa2Ejo8YtZ4w4kSCXMagi71tQqHIiifAuR8Vd/N0pF2kmJmF5fqNv3+TxQajvZmjXrL5ml2H8xjF+LNi43JBBbJKGxbIQjEskzEOEVjHcatNFsxccwTLvk9CiT0ypNcooJTL+IiRmCgV5y8K1quhVsj589uQATutqApFlUaoFDI+fa7TOKZdaez7yhmv/bQqqBQyPk0qxu/DnSNPlWOshLCRNTFwwijST1oqjTuX3HuU2nfJIvBJ0ogRpbWhwqgeWmOuNE+VAvERdp/R1aal0ziPUai3B/9EmCM5leZIv3A3qNaOGAnF0PUmmNGFN0nObyJVGPEl504Ro9YTiNzNxF+rQpBeWqUU4NyPijsHUrw3BidxKb7Bo9DMq1XLHREjMQ0eXVJpkX6eGNElADYCbDh63W39Y2nFWHf4GttaQfB5CfdRVm3GT6eysPl0Nr/djvN5OHm9FJv+zMaBS0UAwAsiKR4jTgAF69iHEK7hYkMpTy6NNiDKBxqlnF8u1mfEtQPgjuUjIQoofGDwUMr5qJpYn5FDGDnmorOKKO7gzkfnQC2/H7FFIW4+OyqMKK0MFUb10FpzpXHptKYasPmIkd6RShPbNI7DqSqNawpotIia0qElsNkIMgURs+vNNV8L5giTkqJsjvm4JeCFkZfakVKScFMQ9qNSKdivtlijrkUwQaizx6rx98+JR0+VHAq5jBcqUiJG3DgB4KERMQCAb09kON3Az2aVYd66E1i5JRn7LxY4pdIARwXelrM5WP7DGTy1MYmftHVzUg6/n48Pst2UuYcATiDVmK2oNjX8frmIESdcg+wCqaCiFpfzK/DG9hS3vkbH+TSav9NysZVpQuM14EiTiooCCtKjDMM4JgcWKYyqXISRjYhLkTqEERv5JET8MV2be4o1xVMoLQUVRm3M7V0CAABbz+biZLr0Zo+cnyjUx5FKk9rkkTNU+niqoNco+afKplSm7bqQh2d/OCO6+RwA5FfUwmSx8cctqTJJLu+tq1zfbCWokTAO7iai0zhSaZVGi6gn5JaAuwEEeKl4E7IU8/VPp7IAgG81AEB02kUogIRVeZXGxrtmVwhK9QFI8niVVDlHjABgTLcgdArQoqLWgp/+ZN9TUaURj355ihfruy7kO4lhwBFJEUaaPv/jGgorjDh82dFhPl+QmgJYIam2C0nuM8g31OLD36/g/b2XnT5/btsgl4hRQYUR/9x0Dh8dSMO8z07w1y/rL3I2XnOIfZApdJkOhG9mKTFiBDhSW2IN2Nx6PoJpYsT4jDhxE+bjwTfCFGvkd73macSI0tpQYdTGDIv1w6Q+ITBZbfjbl6ca9VUIYZs7OlJpXDmuVGEkrAySyRiHAbsJPqN/b03GD6eysP28+MkfuQhRpJ8nHynJkBg1Et4AtCo5X9UlJZ1WUYf5GpDW96U5cFVR/lqV5IjRb2dy8MH+KwCAx8d14ZfH+LNP+keuFjcovIUT8CrkMl4YAo2//wpBRRoAgfm64e1qzVZeuHJREACQyRgsvD0GALDu8DX8cDITf/vyFHLKa/nPZVdyvsPXxAkjgbjiBMCmP7Px5dF02AgQH+HNp3YA8KZr4VQkz286hwc/PY7hb+7DWzsu4t3dl/BLkiMlx0WDOPHJCdi9Kfk4db0UANvh+pENJ2G0WHGtqAoFFay/qH+Uj9P7D7Gnvr8/mYWpHxzG/R8fxdazuW5CnPMfcsKI+36KmX9M6BsDAC/7+ROTSiOEoNIeQfPSKPjzJSbNzombQJ1acjEElz4Okth4k0JpKagwamMYhsE798WjV5gexVUmLP7ipOhITYXRwpsoQ/QahOgdngUpKaRSQVUaAEGTR2k/SHnltcgsYX/Ek3MMorfjjNdRfp6Itt/I0yUasLmUl7cHmzJoSmWasORco3Sko1rLZ8RFK9hUGvsZiIkYnc4oxbM/ngEAPDIqFtP7R/CvDYz2xdT4MFhtBH//5nS9n6lwAlmArbrysPthGhM43PnhxAiX2mrs3G/6kxUcGqWM77TNMWNABPQaBdKLq/Hsj2dx6noptCo5Nj5yG3RqBf8+GAZ8d2/uMweAN2f0Qd8IbxgtNrxvF4zT+oXjgaGOyaWFYoy77g5fKcLhK0Ww2gjf/Txh/xXeH1NgcI7ecMIoMZ0VRUM6+cFLrcCxtBLc//ExvL+PPXa/SGd/EQBE29NTGSXVOJtVjmNpJVj6zZ8Y9+7vTt+fI1dZTxRn3Pblm3aKN19zn6tWQiqt2mTlPWteaoWk3wWhMJLa+oF7GOhh7yxOI0aU1oYKo3poDfM1h6dKgU/mDUKAlxqpeRW498Mj/PQBDcH5i3w8lfBQyfmnWJPVJlrUCJ/auSdu7oe3qNKIt3em4t9bkkWJtZPXHRGJ5FwJwqjYXRhJ8RkRQupNq0iZ1dvhWVE4/be1KtOKeGGkEvTzMdUrcm02gk8PpWH2R8dQa7ZhdLdA/OPuHk7rMAyD1+/tg9gALfIMtXjyu9N1PvEL/VUcYg3Y9aXSDLXmeg23R68W46VfzgMAlo7pAoZhnF7XqhX4v3viEBeqx8iuAbhvYAS+fngY4sL0GNMjiF9Pp1ZAZo8OciXlo7oF4p4+oVg0ohMA1t8iY4DJ8aGYMSCcT5v5C4TRf2b0xctT4rBiai+8Pr0P9iwbhR1PjYReo8DVwirsuJAHQFiVZk+lCdKWAPB/9/TE2gcHQqWQ4XRGGX62G8Bd/UUAcE/fUDw7oTuen9gDax8ciCfGdYWPpxLpxdV4fVsKACC9qArXi6uhlDN82r1J3cw1zqk0MREjYddrD6UcfhKq4TgxE6hTS279wDU17RnCzgtXUWuRlJqnUJqLovFVbk2WLl2KpUuXwmAwwNvb+4YfL8zHA18vHoqH1iciragKf/nwD3w4dwCGdw6od5tcgfEaYJ/yA7zUKKo0Ire8ljeVNgRnfpXLGF4IcKH6N7enIruMjQD9eiYH/57WG3f3Dql3XyftT80AGzEihLjd8OqCq0KL9vfkpzcRIww5qkxWPv3A3ZSbUrIvnCEeYCNHRZWmVhNGXCotQGC+NlltMNRY+JshR63Zise+OoX9F1nvzJ09g7FqdjyfQhTipVbgwwcHYNoHf+DQ5SLc9uZezBoUiTlDotAjRAeGYZymA+HQa5TINxidnvSTMstw5GoR5g6J5sdU4SKquPNHCNszR6dWOF0HGcXVeOzrU7DYCKbEh+HvdzhSf0JmDY7ErMGRbsvvigvGb2dynI4FAHOGRMHfS4VxPYPBMAwm9QnFG9tSkWeoxe1dAnhf0LzbovHJoWsYGO3Lbxvp54mFt3dyO9aC2zvhf3sv4/19VxDu48F/H4J587XjOzYw2hd97VWme5eNxubT2fj1TA4KK42YGh/mtm+NUo6lYx3v/e7eIbi3fzjGvPM7jlwtQkFFLX6/WAAAGBTtx4saPpVWY2r0O1avx0iEMBJ2M2cYho8YFUuJGHmpRadW+W3toqpTgBZKOQOzlaCkysRbBSiUGw0VRu2I7iE6/Lx0OB7ecApnMsvw4KfHsXx8dzw2ujP/VCwkT9DckSPMR4OiSiO+OnYdGqUchlqz3djMINzXA1F+nrijRxD/xMv3MLKnoACHKTW7rAYMw87KnVlSg0e/OoW/jY7FP+/uUeePcaLAw1JabUZuea2oHzNhKo3zjUgp2ed+/FVyGW/0bKinTX0YXCIfrV2yzz1lB3ipoFHKoVMrUGG0oLDSiMsFFSivMWNs9yAQAE9+dxr7LxZCrZDhxclxmDs0qsEbZI8QPdYtGIzXt6XgQo4BG45ex4aj19ElyAtT48P4lIkwYiSszLNYbXh/3xW8v+8ybATYmJiJT+YNQrdgHX+T5dbn0pAmiw13rTqAokoTXpjUEw/ZIzivb0tBWbUZ8RHeeHtmX1HiWciY7oH8DVM4Xg+VHNP6hfN/K+UyPDuhO1759QL+Nqozv/xfk3ri8XFdnbatj4XDY/DZoTSk5BowLeEP+zlSIMKXjU4JhRHniwJYofX4uK54fFxXSe8tJkCLfpE+SMosw9azuThwiRW+o7sH8utwFXxmK0GVycqLnbpwtDSQLoy4qBK3jdhWHlVGC1/hGKBT8w9c4j1GjmiTv1aNPEMtiiqNVBhRWg0qjNoZQToNNj4yDP/6+Rw2/ZmNt3dexPFrJXhuQnd+CgIAqDFZsTuZfZrkTJwAK5LOZpXju8TMeo+hUyvw4pQ43Dcwgq9IE0YkhCbWV//SGzMGRGD1nstYe+AqPjqQBpPFhpcmxznd0CpqzUixp88CdWoUVhiRnGMQJ4zsfqIoPy1M9gqo+po8puYZ8MnBaxjdPZB/CufSZXqBuBN2X76UXwGrjfCzoQNswz8Zwzj5PlzTDq3d/Zr3GGkd/pUKowVHrhZh5W/JsNgIBkb7ItrPEzsv5EMll+GLh4bUmaapi9u7BGDL4yNw9Goxvjiajv0XC3GloBKrdl/i1xFGYLj//+1MDt7fdxkX7L4XnVqB68XVmJ7wB95/oL9TZIEj0tcDVwur+Cqud3ddxLR+YSitNvFpqXfui3fz3YhBr1FiWKw/Dl0ucvIV1cWMgRGYMTDCaRnDMKJEEcD6kP56WwzWHrgKhgGm9w/H03d2g4eKHXeErydiA7XwUiswoVf90VQpTI0PQ1JmGX48lYWrhZUAWDHI4SEQnmXVpgaFkWvESCuhKo0TT14ukeTGJpjmhI2HUg6tSt6EVBr7PQjUqRGgU/HCiEJpLagwaodolHK8e188hnbyw0u/XMDBS4U4eKkQI7sGYEiMH/y91Fj3xzVcKWB/NO+Kc3gu5g+PQWmVGf5eKkT5e8LPk+2Wa7ESZJZWIzG9FCm5Bjz341l8n5gJhZwVEk7l0t0D8eOpTPxtVGfMtZtV/zmxByJ8PfB/m8/j8z/SYbMRvDK1Fy9ETmeUwUbYqM+gaF9sOp2N5FwD7owLbvC9GmrNvFciyt+TLw3PNxhRY7KisMKIzNJqWG0E+1IL8OWx67DaCH5Jyka0nyfiI30EBlPH5czdCD4+mIZXt7J+jfFxwZg7LBpbzuRgc1I21Ao55g6NwsLbOyHEW8Pf4LltderWmy+NECIwX9tnmvdSI62oCm9sS+U7AZ+6XspXP62aHS9aFHEwDIPhXQIwvEsADLVm7LqQj+9PZuLENTbax/XnARwCces5tsJQp1Hg1b/0xsiugVj69Z84mlaMx785jUExfvbXHWJj7YMD8WdGKToFeOHfW5JxLrscH/5+lU/djo8LRtdgnbSTJGBy31AculzEe9JuJMvu6oZOAZ7oH+WLbi5jVilk2LtsNKw2AoW8ZSybk/uG4tWtybwQDdFr0F1wXIZh4OOhREGFEWXVZkT41rcnd9+cTkJVmqvg5avSGvEYCY3XwkIIMeZrm43UmVKmlWmU1oQKo3YKwzCYPTgKA6N98f6+K9hyNheHLhfh0OUifp0gnRqrZvXDiK4OH9LwzgEN+pKsNoJPDqVh1a5LOHnd4QkSRnaGxfoj8YU73VIcDw6Lhkouwz82ncUXR68jwEvNpwq4UvBBMb6IC9WzwkhEZRpnvPbXqgRVTQoYai144edz+DkpG67e41BvDXLLWSPxlidG8kZzYfSA+/+CCiMYBmDAlnjvSs7n1zFbLfjoYBo+P5KO1bP78SZ011RaazR5rDBa+GgZdzPgDNg1Zis0Shm+XjwUXxy5jp0X8vCvST0xua+7b0UKeo0SMwdGYObACFwtrMSRq8WY3CeUf/22zv749UwOeoTo8Jf+4bh3QDjv0/ly0RDc//ExnLxeyqd7hC0OugbreOHz7ITumLfuBL48dp03Yy8ZW7evSCyzBkXCX6t2K4G/EagUMsweHFXv6wzD8A8YLUGQXoPhnQNw+Ar7XR/TPdDtu+jrqUJBhbFBkUKIQ2S4RozEVKVx4onbhvcYNRK9EQojwL1KsbDCCJVc5jCRV5kw99PjGBrrhyfu6Aqzlb1G/L1UfPSURoworQkVRu2cLkE6vHd/fzwzvjt+Pp2NrNJq5JbXItLPE8+M787n/cUilzF4dHRnTOgVgsOXC3njsqs5tD7fx6zBkTBarHjxlwt4d/clhHhrcN+gSL5ceXCMH1+GLKYyjfcXCZ78YwK0OJtVjk32ip7OgVqoFHL4aZV4dHRn9A33wcT3DiK9uBoz1xxBmt2ozf2IAsDwzv5YfyQdt3fxx/Lx3cEAeHfXJfxxpQi3dwnAw6NiUVZtQsL+K/gzowxPfZfEb8sJtObMl1ZtsuDIlWKM6BrAp4tKqkw4nVGKEV0DoFY4p5C4aJGXWsGvz5XsA8Djd3TFwGg/DIz2g81G6vScNYfOgV58l2KOOUOicO+AcLexAoBCLsNbM/ti4nuHeF+YTlP3z8nIrgEY2skPx+1RqeGd/dEvsnmChmGYRqORHZmp/cKchJErnM+ooa7QP57KQmZJDVQKGWLtn21TqtK4z5WbLy2tsKpB0zfvEfJybkhpqLWgvNqMO1cdgJ9WhV1Pj4JSLsMvSWx0OTXPgLvsn6leo4BaIUeATvx0LRRKS0GFUT0kJCQgISEBVmv7KBON9PPEExKNnA3RKUDLz+Aulb/eFoOc8lqs+f0q/rnpHLaczcXpTFYYDYr2dTRpLKmGodbs5ucorjTi94uF+DOjlJ8jjhNTAHuTPptVDp1agdfv7YMpdVT0rL6/P+7/+ChS89gpHwZE+eDpuxznZ3iXAJx7ZbzTj/favw5028+oboF4aH0iH4nzUiv4lEhTzddWG8HCzxNx/FoJhsX64dP5g1FYYcSDnx5HdlkNQvQaPDo6FvcPieJFkGM6EIcY4rxjsYFaPDwyll/e0qKoIeoSRRyxgV5YPr4bXt+WCqB+YcQwDJ67uwdmrDkCAFgypnnRoluBCb1C8O8tyQDYa9mVaH9PHL9WgpVbkhHqrcFQl5RqvqGW3/7pO7vx0Rsp5utKF/N150AvqOQyVBgtyCqt4acJcYX7Tob7stevcIqYPzNLUV5jRnmNGQcvFWJcz2A+VWsjwFfH2K7l3HgDmhgxqjZZ4KmitzdK06BXTj20drl+R+O5Cd1RXGnE9yez+FSKj6cSnQO9IJMxCPPWIKe8Fqm5FRjSyQ+EEOxOzsfHB9NwKqPULT12W2fHD/vjd3RBqLcGc4ZE1fvjO6STH96c0ReHLxdhzpAoDIv1c3uCFVPtpJTLkDB3AGauOYJL+ZVON3fu//PKa/HdiQzkG4wY0dUf/SJ96yyL5/jscBofHTmWVoK5nxxDdhlrIGUYdjb1V35LxneJmdjw0BAE6TW8cV3YW2fWoAgUVRoxZ0gk32yyvbFoRCz2phQgMb0EPUL09a43MNoXr0yJQ5XJitu7SPNF3Yp4eyjx299HgAB1GsWXj++OCzkGXMgxYO6nxzEgyhd5BnZqnWGxfsgpr4Wh1oL4CG88PNLRhsAhjBp/4Kt0SaUp5TJ0CfJCcq4BybmGer+b3MMO538TNng8n1XOr/fTn1noFebNR5sBdrJfwJFO5iJGUoTR539cw7+3JOP9OQNwT9/QxjegUFygwojSJBiGwX9m9MWiEbE4eKkQieklmNArhI9mxIV5I6e8FonpJSipMuGjg1dxOqOM3z4uVI+R3QLQO8wbfcK9ESOIXsUGeuE5l0aFdTFrUCRmDXLvcyMVvUaJdQsG44lvT2NM9yCn5QCwN7UAe1PZCsD/7mHFy/Lx3fHAUHffSUquAe/sZKu8Fo/ohB9OZeGM/WbQM1SPz+YPwr7UAqzec4lt5rnmCKb1C8OHv7MTmwp76/h7qfHi5Lhmv78biVzG4KvFQ2GoMTfaN2tBHX2CKPUT00BEN1ivwY+PDsezP57BlrO5OCFolcFNmKuUM3hrZryTKdxRldZ4FJSrXNMJqt56huqRnGtASq6hziq83PIapBVVQcawDy8AnKrSzmU7hNGe5AJ0CWJ9aLEBWqQVVYHrBxpgjxhx6fHiShPMVhu2ncvF7V0CeOFUF/tSC2AjwH92pGJCr+AWM8VTbh2oMKI0GYZh0D1Eh+4hOjw8KtbptbgwPfak5OPtnRf5ZR5KORbeHoMHh0W3u54kEb6e2LTkdqdlwYL+UJ0DtegeosOhy0UorjLhXz+fQ3pxFZ4c1xVbzuZg+/k8FFeakFFSDZPVhjt7BuOFe3pixsAI/O3LU4j298QHcwbA21OJB4dFY1TXQPx13XFcL65Gwn5WFM0ZEoVnJzQuCNsbSrlMVDNRSsvioZLj/Tn9MWNABAy1ZoT5eMBsteHw5SKcul6KGQMj0D3EuYrOUZUmPmLkpREKI3Z/KfX4B7loUZ9wb95bJJye57xdGHko5agxW/GhfbqWv94WjW3ncvnoEedPEs4ZuOK3C/jqWAZGdAnAV4uH1jvuq/Zq3YySavx6Jgf3Doiod92W5PeLBYjw9eDFHqXjQoUR5YZwW6w//rf3MgC2hH9Cr2A8PCqWr2rqCIzoEoDVs/sh3NcDg6J9wTAMzFYb1v5+Fe/uvoSPD6Zh/R/pfDUZR7iPB96c0QcMw6BnqB4Hnh3jltaL8vfEj48Ox6IvEpGSa8BLk+Pw4LBoyc0OKbc2DMNgrGCKFAANVqXW5zG6UlCJkioT+kX68Glb11QawEZ6gfoLKzhhdJtgDFzktdZsQ469W/+jozvjv3suwWIjYBhgYu9QyBjGIYx0rqk0E746lgGAnc/uz4xSDIhy71NQZbTwxwCAD/ZfwbR+4Q2mvqVittqw7PszCNGr8cI9bEQ3Nc+ABZ8nQqWQ4T8z+jjNV0jpeNwSwmjLli1Yvnw5bDYb/vGPf2Dx4sVtPaSbnts6++PnJcOh91AiNkDbIW/4chmDv/QPd1qmlMvw+LiuiPTzxLM/noHJakOknwc/vYa3hwpxoXq+ASBQv9cpUKfG5iW3o9JkEd1wkEJpDpzIqTJZYLMR2AjBf/dc4qOWWpUcI7sG4pWpvfhUmpdLKg0AMktqUFFrhlalwK7kPAyK8YO/VoUjdmE0XOAZ1GkUYBjwvsLYAC3mDovC+/suw2IjGBzthxBvDSb2CcGK3y7ARhwVmX6eKqdt/bQqlFSZkLDvCj5b4D6P5TV7hapew05jklZYhe3nc5vd2kLIvtQCfkqapWO7wMdTxfcWM1lseHrjGZxML0WYjweqTRZM7hvm1FyW0v656YWRxWLBsmXLsH//fuj1egwYMAD33nsv/Pz82npoNz3963iiu1n4S/9wxIXpUVRpxLBO/k2uFJPJxHdhplCaC5dKIwR4a+dFnLpewkdpfDyVKKs2Y8eFPIT7eriV6wNsLyOuj1hqXgUu5lXg/zafR2ygFv+7vz+yy2qglDMYFOP47qYOKpgAACAASURBVMtkDLzUCr7tRe9wbwR4qXFXXDC2n8/jHz6CdBqMjwvBzuQ8vsu/Qi6DrycrhnqH67FqVj/cvfog9qYW4Hx2udNsAAD4prc9QvQY3sUfq/dcxkcH0lpUGP14Kov//3PZ5RjZNRDns9kIWoy/J9KLq/H18Qx+neNpJfjxseEtdnzKjeemd6WdOHECvXr1Qnh4OHQ6HSZNmoSdO3e29bAoNwHdgnUY3jmgVcvnKZTmoFbIoLVHM9ceuIrE9FJ4qRV4f05//Pl/d+GtGX0BANvP5fJtKrQuZe9c9ONCdjk+O3wNANvbaMHnJwAA/SJ93Erlhc1X+9jFzJsz+uKz+YMwZ4ijgOK/s/vh92fGoFeYQ/BM6BWMMG8N/nd/f3QL1vEi57WtKfjy2HVsTMzgx8pNodI5SIs5Q9jiiPM55ag1S2u7kpRZhkXrE3EsrdhpeVGlEfvthRgAcNZeWHEhh/3vc3f3wNoHB2Jy31BM6sOa0y/lV4C4luFS2jXtXhgdPHgQU6ZMQVhYGBiGwebNm93W+fDDD9GpUydoNBoMHDgQhw4d4l/LyclBeLgjHRIREYHs7OxWGTuFQqG0JxiGwQcPDMCC4TFYMDwGfxsdi98eH4Ep8WGQyRhM7RcGL7UCOeW1SLd3pffSuAoj1ly87o90XCuqgpdaAZVCxk/bcVsdHidhVLRXOCusvD2UGNcz2CnV7KGSI9rfuRrvjXv74vA/7uCbVC61d00/mlaMFzefxz9+OofVe1g/Iy+MAr0QpFPD20MJQhwpNjH8caUID3xyDHtTC5yKRwDgl6QcfnoeADibVQaz1YbUXLZ3U+8wb9zdOwQfPDAAq2b1A8A2tiypY+LdV369gIc3nITJYnN7jdK2tHthVFVVhfj4eHzwwQd1vr5x40Y89dRTeOGFF3D69GmMHDkSEydOREYGG8qsS6l3RL8LhUKhtARjewThlam98MrUXnh+Yk+nRq8apRzjejqbubk5Azm4iBHXtX7u0Ci89pfe/Ou31TF/n3AeQ9f0lxiEUdnuITq8PCUO43oEYai9JcA+exSHS6V1DvICwzDoHKh1Wt4Ye5LzsfDzRFSb2AjTqeulyLS/T0IIfjjJTs7NNZ09m1WOy/mVMFlt0GkUfHdwgD2X4fbq23SXSbEzS6qx/kg6difn4/g156gUpe1p98Jo4sSJePXVV3HvvffW+fqqVauwaNEiLF68GD179sTq1asRGRmJNWvWAADCw8OdIkRZWVkIDa2/6ZfRaITBYHD6R6FQKLcKk/o4/z5q1c7dz4VGYrmMwfzhMbhvUCRemhyHRSM68WJFCJdKi/H3bBFP3cLbO+GzBYPx6fxBUMgYXCuqQnpRFdKLWBHTxR5d6hLE/leMMCKE4IXN52Cy2nB3rxC+D9OvdqP1hRwDUvMqoFLI8M+JPcAwQG55LfZfZEVZ7zBvt4fumAC2CeY1+7g4dgvmbDxob5BLaT+0e2HUECaTCadOncL48eOdlo8fPx5HjrDTDwwZMgTnz59HdnY2KioqsG3bNkyYMKHefb7xxhvw9vbm/0VGNr+BIIVCoXQURncL5H1IgHsqLcZfC42SvXVM7B3C9yR7aEQnvDg5rk7PHSeGmhItagidRsmX7X99/DpMVhvUChkfqeGEEZdia4iiShPyDUbIGNbrNNPe/+jXpBwQQpBg77k0Pi4Y4T4e/NyCGxMz7e/NvfIsxp4WvFbkfPxdyXn8/x+gwqjd0aGFUVFREaxWK4KDnSeTDA4ORl4ee+EpFAq8++67GDt2LPr3749nn30W/v71T0nw/PPPo7y8nP+XmZl5Q98DhUKhtCfYdBr7m6qSy9zmy5PLGIzqGgiVQoZHR3cWtc94+6TBrmm6lmBUN9bT9J1doMTapyUCpEWMLuWzPqEYfy08VHJM6B0ClVyGi/kVeHNHKrafz4PCPgk3APSNYEUel1KsS/Rxacp0QcSotMrEVwIyDHApvxK55TUS37WDphi7bTaCxV+cxPObzjX5uDczHVoYcbiGL11nfp46dSouXbqEK1eu4JFHHmlwX2q1Gnq9Hl9++SWGDRuGcePG3ZAxUygUSnuFm2NM6A0S8r85/XH4H2NFR4AeHBaN0y/edUMaH47qFggAfDsAzlfE/j8rjNKKqmC1OQuIPzNK8fHBq7DZl1+0T37bLZg1l3t7KDG2B7vvjw6kAQCeHNeVf899Xd57Q8IoTWD+3pdaAKuNoEeIDvERrGA8dKlI2pu288b2FAx+bS/yBE0txZBZWo09Kfn49kQG//4pDjq0MAoICIBcLuejQxwFBQVuUSSpLF26FMnJyUhMTGzWfigUCqWjcUePIMy/LRrPjO9e5+sapVxyF3tfwQTJLUmvMG/4ejp8S1yUCGCn+lEpZDBZbMgqdURtCCF4/JvTeH1bKj8PIhcx6hbs2H5aP0dFc79IHzw2xhEh62uPggFsY8xO/u5z2zkiRlV8ZIdLo43vFYLRdlHX1HTavpQCFFUa8WdGaeMrCyiscEzKWyOxlcGtQIcWRiqVCgMHDsTu3budlu/evRvDhzevoVZCQgLi4uIweLB7d1UKhUK5mVHKZVgxrTfuH+I+UXJ7Qy5jMKJrIP83FyXiXosNcK9MS8mtQHYZm746bu9VdJETRoL55e7oEYQgnRpeagVWzXKekDcuVM9PNRIXpq/TWxXp5wm5jEGN2Yp8gxE1JisvgsbHBfPRrsNXitwiWmIw2Ps3FVcaG1nTmQKBMKoyWRpY89ak3QujyspKJCUlISkpCQBw7do1JCUl8eX4y5Ytw6effop169YhJSUFTz/9NDIyMvDoo48267g0YkShUCgdg1FdHb2ThMIIqNuAvS/VURWWeL0UhBBcsqfSugc7hJFGKce2J0di7/LRfB8l4Wtc2k3YkFKIUi5DhC9rBL9WVIVDlwtRa7Yh3McDvcL0iI/whl6jQHmNGWeyyurcR2GFEdX1iBdDDbu8sNK9T1JDCCNG1SImFL7VaPdTgpw8eRJjx47l/162bBkAYP78+Vi/fj1mz56N4uJirFy5Erm5uejduze2bduG6OjoZh03ISEBCQkJsFrpRUOhUCjtmdHdAqGQMVApZE59mQCHUBJGjPakOLpXX8gux5WCSlSZrFDKGcS4bB/gpa73uPf0CUFqngETeoXUu06nAC2uF1cjvbiK75p9d+8QMAwDhZzBiK4B2HYuDwcuFrpNjFtSZcLot/ejU4AWW58Y6fSayWLj02BSI0aFNGLUIO1eGI0ZM6ZR1/2SJUuwZMmSFj3u0qVLsXTpUhgMBnh7t2yJKYVCoVBajiC9BhsWDYFSLnOawBlwr0wrrDDy0RlvDyXKa8x8yX3nQC8o5eITKUvGdMH84THQNdCbiS3ZL8SJayW8n2n2YEcbmLHdg7DtXB52J+fj6bu6OW17OqMU1SYrLuQYYLRYnSoEuWlQAKC4OREjE334d6Xdp9IoFAqFQmmM4Z0DMDjGvbmkUBgRQrD/YgEIYeds48zPP9gnhu0mSKOJQSZjGhRFABBrr5L7JSkbVhvBgCgfp+OM6xkMGQMk5xr4Ltscqfb0HgDklztHhQy1jkhPcZVUj5Gjio0KI3eoMKoHar6mUCiUjk+nAC0YhhUSRZUm7E1h/UV39AjCYHt36/IaNvrSPUSaMBID1+SR81bfP9jZ0O6nVfFdtndecK6wTsl1zLyQ49LrqFkRo0qhx4im0lyhwqgeqPmaQqFQOj4apRyRvuzUHCt+u4BDl9meQXf2DMbgGGdPj9SIkRiEnietSs73iBLCeZR2CaYKAZwjRjllzsKIM14DQFGzPEY0YuQKFUYUCoVCuanhulRvOZuLapMVwXo1eofr0S1IB71gypPuN0AYhfl4QGX3LU3tFwat2t3aO94ujE6ml/BG6lqzFWmCSrpclyaOBkHEyFBrgcliEzUem42gSBBhqq/i7VaGCqN6oKk0CoVCuTn497TeeH16Hywd2xmzBkXg7ZnxYBgGMhmDQXZfkodSzpfWtyRyGYP+UT5QyBjMHVp3tXS4jwf6hHvDRoA99lTf5fxKCFsbZbtFjMxOf5dUiUunlVSbnHomVdFyfTfafVVaW0Gr0igUCuXmwFerwgND625WOTjGD/tSC9A12KvOJo0twdoHB6Kk2uTWY0nI+LhgnMsux84L+Zg9OAopeQan13NdhVGtszAqqjQixLvxbuTCNBoA1NCIkRs0YkShUCiUW5b7BkVgVLdAPCZyQtym4KtVNSiKAGBCbzaddvhyEUqqTEjNZf1FXFVdTplLKq3GWdAUi4wYuQoj6jFyhwqjeqCpNAqFQrn5CfBSY8NDQzCxj7spujXpGuSF3uF6mKw2fJeYwVekjesRBKDhqjRAfJNHV2FEPUbuUGFUD7QqjUKhUCitBcMwWDC8EwDgy6PX+VTaWLswqqi1OIkhYR8jQHzJfoFrxIh6jNygwohCoVAolHbAlPhQBHipkFtei7JqM2QM0C/SB94ebBNJYWUaZ772sle5FYls8shFjHw82X3SiJE7VBhRKBQKhdIOUCvkeGCIwyTeKUALjVKOMB+2Wk5YmcaZr7k+SWIjRlxzx2h740na+dodKowoFAqFQmknzB0WDYW9Oq5nqB4AEGavNsstE0aM2EiPQxjVHzFKzjHgdEYpAKDQPh1IjD/b9JKar92hwqgeqPmaQqFQKK1NsF6DKfFhAIABUWxnbi5ilFveQMSonqo0i9WGBz49htkfHUNOWQ3vMeIjRnRKEDdoH6N6oH2MKBQKhdIWvDa9N+6KC8adPYMBAKE+bMRImEqrsJuvuUlq60ulZZXWoKyaFVHbz+fxHiMuYkRTae5QYUShUCgUSjvi/9u7+7go63R/4J/hYYYHYQARhAQkTYsQzIEtLR8rcip70FradQ1N3dwwQ9yzm+uvtdhaOtWauy/B7JhL7dlTbrtpnc2T0dEVizwpSqmUD4lCCiKPA4PMwMz398c8yDg8Dc5wDzOf9+s1r2Xu+565r7tbl8vre32/d5DcD/d2Wz4gVmmuGJmH0roMRrTpbIfS6tt0EEJAJrNdpPJsg9b6844jP1gTKkvFSMvmazscSiMiInJjlqE0y1pGbd2Gv8aaEyNdl7HHfqGz9VcSo2PnTUsAKPx8rKtks2Jkj4kRERGRG4uxNF+3dMBoFNbG60B/X4QG+CNI7gug5wbssw3tdttGhSgQbP6MvsuITsPAHkDrLZgYERERubHRygDIZKYkpkGrtzZehwaaumFGjpADAOp76DOyDKVNiL7ySJJRIQoEya900rBqZIuJERERkRvz9/VBVIgCgGlmmmVxx9AA0yKNI4NN+3qsGJmH0p6cceVZcKNGKCD384G/r6kfiYs82mJi1AtO1yciIndh7TNqvmx9HEioeUXsSHPF6Oop+50GI35oMvUlTR03ErfEhwEAokJNiZSlasTHgthiYtQLPiuNiIjcRVy4aXp9ZX37laG0APNQWi8Vo/NNl9FlFKZm69AAPDljHEYo/HDnjaZlACx9Rpc5lGaD0/WJiIjcnKVH6NTFVvj7mlbEDrEMpfXSY2TpLxo7Mhg+PjLMTR6NucmjrfsDzYkRp+zbYsWIiIjIzd0QHQIAOHGxtdtQmqX52lwxumoozdJflGBezPFqweYH0LLHyBYTIyIiIjc3wZwYna5rQ3O7KQGyNF9beowuajpsPmOZqm9ZBPJqlmn+7DGy5RWJ0cMPP4zw8HA88sgjUodCRETksPiIICj8fKDrMqLigmmhRkvzdVyEqSL0Q6PtmkWWoTTLKtdXC5azYtQTr0iMVq1ahXfeeUfqMIiIiAbF10eG8VGmPqNvfmgBcKViFG9OjGo0HdB1Xan+WIbSxkb2PJQWZB1KY8WoO69IjGbPno2QkBCpwyAiIho0y3Ca3rxStbXHKFiOYLkvhIB1en73qfpje6kYBfmbhtKYGNmSPDEqKSnBvHnzEBsbC5lMhp07d9odU1hYiMTERAQEBEClUmH//v0SREpERCSdG7qtXg1cmZUmk8msw2lV5uG0q6fq9yRIYekx4lBad5InRlqtFqmpqdi0aVOP+7dv346cnBysW7cOR44cwfTp06FWq1FVVWU9RqVSITk52e514cKFoboMIiIil5oQZTvyYVnHCLgynFZlbri+eqp+T670GLFi1J3k6xip1Wqo1epe92/YsAFLly7FsmXLAAAbN27E7t27sXnzZuTn5wMAysrKnBaPTqeDTndlkSyNRuO07yYiIhosy1CahaX5GrgyJd9SMarsZ6o+wIpRbySvGPVFr9ejrKwMGRkZNtszMjJQWlrqknPm5+dDqVRaX3FxcS45DxERkSPGhAci0NwXBFxpvgauVIzOmStGx86b/lF/Y0xor99nrRh1smLUnVsnRvX19TAYDIiOjrbZHh0djdra2gF/zz333INHH30Uu3btwpgxY/p8zMfatWvR0tJifVVXVw86fiIiImfx6TYzDQBCug2lWXqMqs0Vo6PnmwEAKdcpe/0+y8rX7awY2ZB8KG0gZDLb8VEhhN22vuzevXvAxyoUCigUChQUFKCgoAAGAzNpIiJyDzdEj8DR8y1Q+PkgoFv1yLJWUVVjO9p0XThd1wYASBnTe2JkqRhp2WNkw60rRpGRkfD19bWrDtXV1dlVkZyND5ElIiJ3M9HcZxTSbRgNAK4LC4RMBlzuNGDfiUswCmB0aACiepmRBlzpMeICj7bcOjGSy+VQqVQoLi622V5cXIxp06a59NwFBQVISkpCenq6S89DREQ0UBNHmxKjiGDbxEju54NYZSAA4J/fmGZk91UtArr1GPGRIDYkH0pra2vD6dOnre8rKytRXl6OiIgIxMfHIzc3F4sWLUJaWhqmTp2KN998E1VVVVixYoVL48rOzkZ2djY0Gg2Uyr7/cBEREQ2FO8ZH4uczrsfU60fa7YuLCMT55svY810dgP4TI8uz0jhd35bkidGhQ4cwe/Zs6/vc3FwAQFZWFoqKipCZmYmGhgbk5eWhpqYGycnJ2LVrFxISElwaF3uMiIjI3fj5+uA3997U476EiGAcONMIXZdpZeyUMWF9fpf1IbIcSrMhE0IIqYNwZ5aKUUtLC0JDe5/2SEREJKWCvafx6u4T1vdHnrsb4cHyXo+/qOnArb//X/j6yHD6JbVDk5qGg8H+/nbrHiMiIiIaGMuUfcC0rlFfSRFwpWJkMAprlYmYGPWKzddERDScJHRLjCb1018EAEHyK9007DO6golRLzhdn4iIhpP4bolR6gASI18fGQL8TWkAp+xfwcSIiIjIA4QF+VtXw550Xd+N1xZBfJCsHclnpbkrzkojIqLhRCaT4Tf33oSj51vwo8SIAX0mSO6LRi0fJNsdE6NecB0jIiIabn7yo3j8xIHjg1kxssOhNCIiIi9leSwIK0ZXMDEiIiLyUpaK0eVOVowsmBj1gtP1iYjI0wVaVr/m89KsmBj1gtP1iYjI04UGmB5G26jVSRyJ+2BiRERE5KUSRprWPjrb0C5xJO6DiREREZGXGhsZDAA4W6+VOBL3wcSIiIjISyWONCdGDUyMLJgY9YLN10RE5OnGRpqG0urb9NB0dEocjXtgYtQLNl8TEZGnCwnwR+QIBQAOp1kwMSIiIvJiieaqUSUTIwBMjIiIiLzaWEufUT1npgFMjIiIiLyadWYaG7ABMDEiIiLyaonmxIhDaSZMjHrBWWlEROQNxnLKvg0mRr3grDQiIvIGlin7ze2daG7XSxyN9K4pMWpra4NGo7F5ERER0fARJPfD6NAAABxOAwaRGFVWVuK+++5DcHAwlEolwsPDER4ejrCwMISHh7siRiIiInIhS9WIw2mAn6MfWLhwIQBg27ZtiI6Ohkwmc3pQRERENHQSI4Nx4EwjKi8xMXI4Mfrmm29QVlaGiRMnuiIeIiIiGmKWBuzKBq5l5PBQWnp6Oqqrq10Ri0tUV1dj1qxZSEpKQkpKCt5//32pQyIiInIr1rWM2GPkeMVo69atWLFiBc6fP4/k5GT4+/vb7E9JSXFacM7g5+eHjRs3YvLkyairq8OUKVNw7733Ijg4WOrQiIiI3EIiF3m0cjgxunTpEr7//nssWbLEuk0mk0EIAZlMBoPB4NQAr1VMTAxiYmIAAFFRUYiIiEBjYyMTIyIiIrO4cFPzdWtHF5rb9QgLkksckXQcHkp74okncMstt+DLL7/EmTNnUFlZafO/jiopKcG8efMQGxsLmUyGnTt32h1TWFiIxMREBAQEQKVSYf/+/Q6fBwAOHToEo9GIuLi4QX2eiIjIEwXKfREVogAAVDV6d5+RwxWjc+fO4aOPPsL48eOdEoBWq0VqaiqWLFmCBQsW2O3fvn07cnJyUFhYiNtvvx1btmyBWq1GRUUF4uPjAQAqlQo6nc7us59++iliY2MBAA0NDXj88cexdetWp8RNRETkSeIjglDXqkNVYztSxoRJHY5kHE6M5syZg6+//tppiZFarYZare51/4YNG7B06VIsW7YMALBx40bs3r0bmzdvRn5+PgCgrKysz3PodDo8/PDDWLt2LaZNm9bvsd2TLC5aSURE3iA+IgiHzjXhnJfPTHM4MZo3bx5Wr16No0ePYtKkSXbN1w888IDTgtPr9SgrK8Ozzz5rsz0jIwOlpaUD+g4hBBYvXow5c+Zg0aJF/R6fn5+PF154YVDxEhERDVfxI019RtUcSnPMihUrAAB5eXl2+5zdfF1fXw+DwYDo6Gib7dHR0aitrR3Qd3zxxRfYvn07UlJSrP1Lf/nLXzBp0qQej1+7di1yc3Ot7zUaDXuSiIjI48VHmBIj9hg5yGg0uiKOPl29urZlBtxA3HHHHQ7FrFAooFAoUFBQgIKCArebZUdEROQKlsTI24fSHJqV1tnZidmzZ+PkyZOuisdGZGQkfH197apDdXV1dlUkZ8vOzkZFRQUOHjzo0vMQERG5A0tiVNNyGfquoS+CuAuHEiN/f38cO3ZsyJ6PJpfLoVKpUFxcbLO9uLi43ybqa1VQUICkpCSkp6e79DxERETuYFSIAgH+PjAK4ELzZanDkYzD6xg9/vjjeOutt5wWQFtbG8rLy1FeXg4AqKysRHl5OaqqqgAAubm52Lp1K7Zt24Zvv/0Wq1evRlVVlbXXyVVYMSIiIm8ik8nYZ4RB9Bjp9Xps3boVxcXFSEtLs1tBesOGDQ5936FDhzB79mzre0vjc1ZWFoqKipCZmYmGhgbk5eWhpqYGycnJ2LVrFxISEhwN3SHsMSIiIm8THxGEkxfbcM6LEyOZEEI48oHuSYzdl8lk2LNnzzUH5U40Gg2USiVaWloQGhoqdThEREQu88J/H8efvziLn8+4Hr+59yapw7kmg/397XDFaO/evY5+ZFhixYiIiLxNgmUozYtnpjncY9TdDz/8gPPnzzsrFrfCHiMiIvI2lkUevXkozeHEyGg0Ii8vD0qlEgkJCYiPj0dYWBh+97vfSbLGERERETmHpfm6urEdDnbaeAyHh9LWrVuHt956Cy+//DJuv/12CCHwxRdf4Pnnn0dHRwdeeuklV8Q55DiURkRE3mZMuCkxatN1oam9ExHBcokjGnoON1/HxsbijTfesHsm2ocffoinnnrK44bW2HxNRETe5Lbf/y9qNR3Y8dQ03BIfLnU4gzbY398OD6U1NjbixhtvtNt+4403orGx0dGvIyIiIjcSFxEIwHvXMnI4MUpNTcWmTZvstm/atAmpqalOCYqIiIikERtmSoxqWzokjkQaDvcYvfLKK7jvvvvw2WefYerUqZDJZCgtLUV1dTV27drlihglwR4jIiLyRjFKU2JU46WJkcMVo5kzZ+LkyZN4+OGH0dzcjMbGRsyfPx8nTpzA9OnTXRGjJDhdn4iIvFFsWAAA731emsMVI8DUgO0ps8+IiIjoCm+vGA0qMWpubsZXX32Furo6u7WLHn/8cacERkREREMvRmmqGNW0sGI0IP/93/+NhQsXQqvVIiQkBDKZzLpPJpMxMSIiIhrGLM3X9W166LoMUPj5ShzR0HK4x2jNmjV44okn0NraiubmZjQ1NVlfnjRdv6CgAElJSUhPT5c6FCIioiETHuQPhZ8pPfDGmWkOJ0bnz5/HqlWrEBQU5Ip43Aabr4mIyBvJZDJr1ehCMxOjft1zzz04dOiQK2IhIiIiNzA61NRnVKvxvj4jh3uM7rvvPvzbv/0bKioqMGnSJPj7+9vsv/pRIURERDS8xFin7HtfxcjhxGj58uUAgLy8PLt9MpmMCyISERENc7HWKfusGPXr6un5RERE5FksFaMaL6wYOdxjRERERJ7NUjG6wFlpZMHp+kRE5K2sFSMvHEpjYtQLTtcnIiJvZXksSHN7Jy7rvat3mIkRERER2QgN8EOw3LTi9QUvqxoxMSIiIiIbMpkMMeZFHrs3YJ+62IrbX96Dd7+qkio0lxvQrDSNRjPgLwwNDR10MEREROQeYpQBOF3XZtNntOe7OpxvvoxPjtXiJz+KlzA61xlQYhQWFmbzsNieCCHcch2j1tZWzJkzB52dnTAYDFi1apV1LSYiIiLqWYzS0oB9pWJ0vtmUJGl1XZLENBQGlBjt3bvX1XG4TFBQEPbt24egoCC0t7cjOTkZ8+fPx8iRI6UOjYiIyG3F9LDI4/km089t3p4YzZw509VxuIyvr6/1gbcdHR0wGAwQQkgcFRERkXuL7eGxINaKkd5zE6NBN1+3t7fju+++wzfffGPzclRJSQnmzZuH2NhYyGQy7Ny50+6YwsJCJCYmIiAgACqVCvv373foHM3NzUhNTcWYMWPwq1/9CpGRkQ7HSURE5E2uCzMVFaqb2q3bLIlRW4fnJkYOPxLk0qVLWLJkCf7nf/6nx/2O9hhptVqkpqZiyZIlWLBggd3+7du3IycnB4WFhbj99tuxZcsWqNVqVFRUID7e1PilUqmg0+nsPvvp3IMh2gAAIABJREFUp58iNjYWYWFh+Prrr3Hx4kXMnz8fjzzyCKKjox2Kk4iIyJskjgoGAFQ1tKPLYER7pwGt5oRIq3OvfmJncjgxysnJQVNTEw4cOIDZs2djx44duHjxIl588UX84Q9/cDgAtVoNtVrd6/4NGzZg6dKlWLZsGQBg48aN2L17NzZv3oz8/HwAQFlZ2YDOFR0djZSUFJSUlODRRx/t8RidTmeTZDkyI4+IiMhTxIQGIMDfBx2dRlQ3XYau60oypDcYoesyQOHnK2GEruHwUNqePXvw+uuvIz09HT4+PkhISMDPfvYzvPLKK9ZExVn0ej3KysqQkZFhsz0jIwOlpaUD+o6LFy9akxuNRoOSkhJMnDix1+Pz8/OhVCqtr7i4uMFfABER0TDl4yPD2JGmqtGZS23WxmsLT60aOZwYabVaREVFAQAiIiJw6dIlAMCkSZNw+PBhpwZXX18Pg8FgN+wVHR2N2traAX3HDz/8gBkzZiA1NRV33HEHVq5ciZSUlF6PX7t2LVpaWqyv6urqa7oGIiKi4WrcqBEAgMp6rbW/yMJTp+w7PJQ2ceJEnDhxAmPHjsXkyZOxZcsWjB07Fm+88QZiYmJcEaPdGkqWNZMGQqVSoby8fMDnUigUUCgUKCgoQEFBgduty0RERDRUrjf3GX1/SYvQQNuUodVDG7AH1WNUU1MDAFi/fj3uuece/PWvf4VcLkdRUZFTg4uMjISvr69ddaiurs7lzdPZ2dnIzs6GRqOBUql06bmIiIjcUWLklaG0USEKm32eOmXf4cRo4cKF1p9vueUWnD17Ft999x3i4+OdPg1eLpdDpVKhuLgYDz/8sHV7cXExHnzwQaee62qsGBERkbe7vttQmt5gtNnnqYs8OpwYXS0oKAhTpkwZ9Ofb2tpw+vRp6/vKykqUl5cjIiIC8fHxyM3NxaJFi5CWloapU6fizTffRFVVFVasWHGtofeJFSMiIvJ2lopRXasOlztNhYJguS+0eoPHrmXkcGL0xBNP9Ll/27ZtDn3foUOHMHv2bOv73NxcAEBWVhaKioqQmZmJhoYG5OXloaamBsnJydi1axcSEhIcDd0hrBgREZG3Uwb6I3KEHPVtemtP0Q3RISivbmbztUVTU5PN+87OThw7dgzNzc2YM2eOwwHMmjWr30d0PPXUU3jqqacc/u5rwYoRERERcH3kCNS3NQIAAvx9EB8RhPLqZg6lWezYscNum9FoxFNPPYXrr7/eKUERERGRe0iMDMZXZ02JUWxYIEYEmFIHT02MBv2sNJsv8fHB6tWr8frrrzvj69xCQUEBkpKSkJ6eLnUoREREkrFM2QeA68ICMUJhSow8dSjNKYkRAHz//ffo6vKc/0jZ2dmoqKjAwYMHpQ6FiIhIMpaZaYBtYtTmoStfOzyUZmmOthBCoKamBh9//DGysrKcFhgRERFJzzIzDTAlRkEKzx5KczgxOnLkiM17Hx8fjBo1Cn/4wx/6nbE2nHBWGhERERAfEQRfHxkMRoHrwgPRaV7PyFOH0hxOjPbu3euKONwOZ6UREREBcj8fjB81AicutiIxMhgXmjsAsGJEREREXmpDZioqLmgwOS4MLZdND4/36gUeb7nllgE/tPXw4cPXFJC74FAaERGRyc2xStwcaxo9sc5K8+ZnpT300EPWnzs6OlBYWIikpCRMnToVAHDgwAEcP358yBdhdCUOpREREdmzrGPk1T1G69evt/68bNkyrFq1Cr/73e/sjqmurnZudERERORWguWm1KHVQ4fSHF7H6P3338fjjz9ut/1nP/sZ/vGPfzglKCIiInJPlqE0XZcRXeYZap7E4cQoMDAQn3/+ud32zz//HAEBAU4JioiIiNxTsOLKYJPWAxd5dHhWWk5ODn7xi1+grKwMt912GwBTj9G2bdvw29/+1ukBSoXN10RERPbkfj6Q+/lA32VEq64TyiB/qUNyKpno79H2Pfjb3/6GP/7xj/j2228BADfddBOeeeYZ/PjHP3Z6gFKzNF+3tLQgNDRU6nCIiIgkN+V3xWjU6rE7ZwYmjg6ROpweDfb396DWMfrxj3/skUkQERER9W+Ewg+NWj3adJ1Sh+J0TnuILBEREXmHYA9+kOyAKkYRERE4efIkIiMjER4e3udij42NjU4LjoiIiNzPCIUvAM9cy2hAidHrr7+OkJAQ688DXQWbiIiIPI9lyr4nPhZkQIlRVlaW9efFixe7KhYiIiIaBq4MpXleYuRwj9Hhw4dx9OhR6/sPP/wQDz30EH7zm99Ar9c7NTgpFRQUICkpCenp6VKHQkRE5Fasz0tjYgQ8+eSTOHnyJADgzJkzyMzMRFBQEN5//3386le/cnqAUsnOzkZFRQUOHjwodShERERuZQQrRlecPHkSkydPBmB6PMjMmTPxX//1XygqKuIjQYiIiLwAh9K6EULAaDQ9G+Wzzz7DvffeCwCIi4tDfX29c6MjIiIit8OhtG7S0tLw4osv4i9/+Qv27duH++67DwBQWVmJ6OhopwdIRERE7mVEACtGVhs3bsThw4excuVKrFu3DuPHjwcA/P3vf8e0adOcHiARERG5F08eSnP4kSApKSk2s9IsXn31Vfj6+jolKFdob2/HTTfdhEcffRSvvfaa1OEQERENW1cWePS8la8H9UiQ5uZmbN26FWvXrrWudF1RUYG6ujqnBudML730Em699VapwyAiIhr2Rij8AbBiBAD45ptvcOeddyIsLAxnz57F8uXLERERgR07duDcuXN45513XBHnNTl16hS+++47zJs3D8eOHZM6HCIiomEt2Fwx8sTEyOGKUW5uLpYsWYJTp04hICDAul2tVqOkpMThAEpKSjBv3jzExsZCJpNh586ddscUFhYiMTERAQEBUKlU2L9/v0Pn+OUvf4n8/HyHYyMiIiJ7nJXWzcGDB/Hkk0/abb/uuutQW1vrcABarRapqanYtGlTj/u3b9+OnJwcrFu3DkeOHMH06dOhVqtRVVVlPUalUiE5OdnudeHCBXz44YeYMGECJkyY4HBsREREZM+SGLXrDTAYhcTROJfDQ2kBAQHQaDR220+cOIFRo0Y5HIBarYZare51/4YNG7B06VIsW7YMgGlW3O7du7F582ZrFaisrKzXzx84cADvvfce3n//fbS1taGzsxOhoaH47W9/2+PxOp0OOp3O+r6nayUiIvJmlllpAKDVdyE0wF/CaJzL4YrRgw8+iLy8PHR2dgIAZDIZqqqq8Oyzz2LBggVODU6v16OsrAwZGRk22zMyMlBaWjqg78jPz0d1dTXOnj2L1157DcuXL+81KbIcr1Qqra+4uLhrugYiIiJPo/DzgZ+PDADQ1uFZw2kOJ0avvfYaLl26hKioKFy+fBkzZ87E+PHjERISgpdeesmpwdXX18NgMNgtHBkdHT2oYbuBWLt2LVpaWvDaa69h4sSJ1nWaiIiIyEQmkyE61NRnXNXYLnE0zuXwUFpoaCg+//xz7NmzB4cPH4bRaMSUKVNw1113uSI+AKYb0J0Qwm7bQCxevLjfYxQKBRQKBdasWYM1a9ZAo9FAqVQ6fC4iIiJPljJGifPNl/F1dTNuu36k1OE4jUOJUWdnJzIyMrBlyxbMmTMHc+bMcVVcAIDIyEj4+vraVYfq6upc/viRgoICFBQUwGDwvMWriIiIrlVqXBj+51gtyqubpQ7FqRwaSvP398exY8cGVa0ZDLlcDpVKheLiYpvtxcXFLn/8SHZ2NioqKnDw4EGXnoeIiGg4Sh0TBgD42psTIwB4/PHH8dZbbzktgLa2NpSXl6O8vByA6WG05eXl1un4ubm52Lp1K7Zt24Zvv/0Wq1evRlVVFVasWOG0GIiIiMgxKWOU8JEBF1o6UKfpkDocp3G4x0iv12Pr1q0oLi5GWloagoODbfZv2LDBoe87dOgQZs+ebX2fm5sLAMjKykJRUREyMzPR0NCAvLw81NTUIDk5Gbt27UJCQoKjoTuEQ2lERES9C1b44YaoEJy42Iry6mZk3Dxa6pCcQiaEcGhlpu5JjN2XyWTYs2fPNQflTizN1y0tLQgNDZU6HCIiIrfxq79/jb8d+gHZs8fh3+65UepwbAz297fDFaO9e/c6+pFhiRUjIiKivk2OC8ffDv3gUQ3YDvcYeQs2XxMREfUtNc60nM031S0wesijQZgYERER0aBMjA5BgL8PWnVdOFOvlTocp2Bi1IuCggIkJSUhPT1d6lCIiIjckp+vDyZdZ6oaecpwGhOjXnAojYiIqH8p5vWMjp1vkTgS52BiRERERIM2JjwQAFDX6hlrGTExIiIiokEbOUIBAGho00sciXMwMeoFe4yIiIj6NzJYDgBo0DIx8mjsMSIiIurfyBGmxKiRiRERERF5uwhzxaipXQ+DB6xlxMSIiIiIBi0iyJQYCWFKjoY7JkZEREQ0aH6+PggP8gfgGQ3YTIx6weZrIiKigYmwNmDrJI7k2jEx6gWbr4mIiAbGk6bsMzEiIiKia2KZsu8JM9OYGBEREdE1sUzZb2jjUBoRERF5uYhg81AaK0ZERETk7SKtFSMmRh6Ls9KIiIgGJoI9Rp6Ps9KIiIgGZqR5KK2e0/WJiIjI23nS89KYGBEREdE1sUzXb27vRKfBKHE014aJEREREV2TsCA5fGSmn5uGedWIiRERERFdE18fGcKDLI8FYWLk9vz8/DB58mRMnjwZy5YtkzocIiIijzPSQ6bs+0kdwFAICwtDeXm51GEQERF5LE95kKxXVIyIiIjItTzlQbKSJ0YlJSWYN28eYmNjIZPJsHPnTrtjCgsLkZiYiICAAKhUKuzfv9+hc2g0GqhUKtxxxx3Yt2+fs0InIiIiM095kKzkQ2larRapqalYsmQJFixYYLd/+/btyMnJQWFhIW6//XZs2bIFarUaFRUViI+PBwCoVCrodPalu08//RSxsbE4e/YsYmNjcezYMdx33304evQoQkNDXX5tRERE3mKk9Xlpw3soTfLESK1WQ61W97p/w4YNWLp0qbVpeuPGjdi9ezc2b96M/Px8AEBZWVmf54iNjQUAJCcnIykpCSdPnkRaWlqPx+p0OpskS6PROHQ9RERE3ijCQ5qvJR9K64ter0dZWRkyMjJstmdkZKC0tHRA39HU1GRNdH744QdUVFTg+uuv7/X4/Px8KJVK6ysuLm7wF0BEROQlIoM5Xd/l6uvrYTAYEB0dbbM9OjoatbW1A/qOb7/9FmlpaUhNTcX999+PP/7xj4iIiOj1+LVr16KlpcX6qq6uvqZrICIi8gae8iBZyYfSBkImk9m8F0LYbevNtGnTcPTo0QGfS6FQQKFQoKCgAAUFBTAYDA7FSkRE5I0ss9Lq24Z3j5FbV4wiIyPh6+trVx2qq6uzqyI5W3Z2NioqKnDw4EGXnoeIiMgTRJp7jFo7uqDrGr5FBbdOjORyOVQqFYqLi222FxcXY9q0aS49d0FBAZKSkpCenu7S8xAREXkCZaA//H1Nozn1w7gBW/KhtLa2Npw+fdr6vrKyEuXl5YiIiEB8fDxyc3OxaNEipKWlYerUqXjzzTdRVVWFFStWuDSu7OxsZGdnQ6PRQKlUuvRcREREw51MJkNUSADON19GnaYD14UFSh3SoEieGB06dAizZ8+2vs/NzQUAZGVloaioCJmZmWhoaEBeXh5qamqQnJyMXbt2ISEhwaVxsceIiIjIMaNCFKbEqHX49hnJhBBC6iDcmaVi1NLSwkUhiYiI+vDzdw7h04qL+N2DN2PR1LGSxjLY399u3WMkJfYYEREROSY6NAAAhnXFiIlRLzgrjYiIyDFRIaYp+3UaJkZERETk5aJCTYnRxdYOiSMZPCZGRERE5BRRIeahNFaMPA97jIiIiBxjqRixx8gDsceIiIjIMZaKUYNWhy6DUeJoBoeJERERETnFyGA5fH1kEGL4rn7NxKgXHEojIiJyjI+PDKPMD5O9qBmeDdhMjHrBoTQiIiLHDfc+IyZGRERE5DTWtYx6mLLf0en+j9liYkREREROE2Ve/friVVP2//S/p5Dy/Kc4UtUkRVgDxsSIiIiInMZSMbp0VcXowJkG6A1GfPNDixRhDRgTo16w+ZqIiMhxvS3y2Kg1zVLT6ruGPCZHMDHqBZuviYiIHBfdy2NBmts7AQCX9e7dZ8TEiIiIiJymp4qREAKN7eaKkY6JEREREXkJy3T9+jYdDEYBALjcaYC+y7QSdjuH0oiIiMhbjAyWw0cGGAXQ0GaqGjWZh9EAoJ1DaUREROQt/Hx9MHKE7SKPTdorjwdhxYiIiIi8ytWLPDa1d0+MWDEaljhdn4iIaHCir1rksftQmpaJ0fDE6fpERESDY6kYWR4kazOUpuNQGhEREXmRKxUjDqURERGRl4tRmhKj2pYeKkZsviYiIiJvMtqcGNVYEiP2GLmXyspKzJ49G0lJSZg0aRK0Wq3UIREREXksS2LU01CavsuILoNRkrgGwk/qAIbC4sWL8eKLL2L69OlobGyEQqGQOiQiIiKPFRMaCMBUKeroNNgkRgDQ3mlAqK971mbcMyonOn78OPz9/TF9+nQAQEREBPz8vCIfJCIikkRooB8C/E0pxkVNB5q0nTb72934eWmSJ0YlJSWYN28eYmNjIZPJsHPnTrtjCgsLkZiYiICAAKhUKuzfv3/A33/q1CmMGDECDzzwAKZMmYLf//73zgyfiIiIriKTyRCjNFWNalo67CtGbtyALXnpRKvVIjU1FUuWLMGCBQvs9m/fvh05OTkoLCzE7bffji1btkCtVqOiogLx8fEAAJVKBZ1OZ/fZTz/9FJ2dndi/fz/Ky8sRFRWFuXPnIj09HXfffbfLr42IiMhbjQ4NQGW9FlWN7dYp+oH+vrjcaXDrKfuSJ0ZqtRpqtbrX/Rs2bMDSpUuxbNkyAMDGjRuxe/dubN68Gfn5+QCAsrKyXj8/ZswYpKenIy4uDgBw7733ory8vNfESKfT2SRZGo3G4WsiIiLydpYG7G9rTL9HfWSmbZX1WmjdeJFHyYfS+qLX61FWVoaMjAyb7RkZGSgtLR3Qd6Snp+PixYtoamqC0WhESUkJbrrppl6Pz8/Ph1KptL4sCRUREREN3NWJUXiQHMEKXwCm5mt35daJUX19PQwGA6Kjo222R0dHo7a2dkDf4efnh9///veYMWMGUlJScMMNN+D+++/v9fi1a9eipaXF+qqurr6mayAiIvJGo0MtiVErACAsyB9BctNAlTs3X0s+lDYQMpnM5r0Qwm5bX/obrutOoVBAoVCgoKAABQUFMBjc9+YRERG5K0vFqOWyaUZaRLAcQXJTxUjrxs3Xbl0xioyMhK+vr111qK6uzq6K5Gx8iCwREdHgWR4LYhEWJEewuWJ02Y2br906MZLL5VCpVCguLrbZXlxcjGnTprn03AUFBUhKSkJ6erpLz0NEROSJLENpFuFB/sOiYiT5UFpbWxtOnz5tfV9ZWYny8nJEREQgPj4eubm5WLRoEdLS0jB16lS8+eabqKqqwooVK1waV3Z2NrKzs6HRaKBUKl16LiIiIk8zcoQCfj4ydBkFACA8WI4Oc6WIPUZ9OHToEGbPnm19n5ubCwDIyspCUVERMjMz0dDQgLy8PNTU1CA5ORm7du1CQkKCS+NijxEREdHg+frIEBWiwAXzg2TDg+RokZn6jdx5HSOZEEJIHYQ7s1SMWlpaEBoaKnU4REREw8b8wi9wuKoZAPDvCybhUqsOr316Eo+lx+HlBSkuPfdgf3+7dY8RERERDV+Wx4IApopRoLn5WuvGFSMmRr1g8zUREdG1ie7WgB0eLEewufn6shs3XzMx6gWn6xMREV2b7lP2w4P8EaQwV4zcuPmaiRERERG5RLRNYiRHkL/5kSCsGA0/HEojIiK6Nt0rRspAfwRZnpXGHqPhh0NpRERE1yYxMhj+vjIkjAyCn6+PdeVrd06MJF/HiIiIiDxT5AgFPsy+A6GBpnSDK18TERGRV0uKvbKGkKX52p0rRhxK6wV7jIiIiJzLMl1f32VEp8EocTQ9Y2LUC/YYEREROVegOTEC3LdqxMSIiIiIhoTc1wd+PjIAwGUmRkREROTNZDKZ2zdgMzHqBXuMiIiInC/IMmXfTVe/ZmLUC/YYEREROd+VRR5ZMSIiIiIv5+6LPDIxIiIioiETyB4jIiIiIhPLWkasGBEREZHXs65+rWPFiIiIiLxcsHUojRWjYYXT9YmIiJzPMl2fCzwOM5yuT0RE5Hxc4JGIiIjILFjBBR6JiIiIAACB/uZZaZ1MjIiIiMjLBVtWvuasNCIiIvJ2luZr9hhJ5MSJE5g8ebL1FRgYiJ07d0odFhERkVeyNF+766w0P6kDcLWJEyeivLwcANDW1oaxY8fi7rvvljgqIiIi72Rpvm7tYMVIch999BHuvPNOBAcHSx0KERGRV7ouLBAAcL75MoxGIXE09iRPjEpKSjBv3jzExsZCJpP1OMxVWFiIxMREBAQEQKVSYf/+/YM619/+9jdkZmZea8hEREQ0SDHKAPj7yqDrMqJW0yF1OHYkT4y0Wi1SU1OxadOmHvdv374dOTk5WLduHY4cOYLp06dDrVajqqrKeoxKpUJycrLd68KFC9ZjNBoNvvjiC9x7770uvyYiIiLqmZ+vD+LCgwAAZxu0EkdjT/IeI7VaDbVa3ev+DRs2YOnSpVi2bBkAYOPGjdi9ezc2b96M/Px8AEBZWVm/5/nwww9xzz33ICAgoM/jdDoddDqd9b1GoxnIZRAREdEAJYwMwpl6Lc7Wt2PaOKmjsSV5xagver0eZWVlyMjIsNmekZGB0tJSh75roMNo+fn5UCqV1ldcXJxD5yEiIqK+jY009fqec8OKkVsnRvX19TAYDIiOjrbZHh0djdra2gF/T0tLC7766ivcc889/R67du1atLS04LXXXsPEiRMxfvx4h+MmIiKi3o0daUqM3HEoza0TIwuZTGbzXghht60vSqUSFy9ehFwu7/dYhUKB0NBQrFmzBt99992AhumIiIho4BJGmnuM6tsljsSeWydGkZGR8PX1tasO1dXV2VWRnK2goABJSUlIT0936XmIiIi8TaJlKK1R63ZT9t06MZLL5VCpVCguLrbZXlxcjGnTprn03NnZ2aioqMDBgwddeh4iIiJvc11YIPx8ZOjoNKKuVdf/B4aQ5LPS2tracPr0aev7yspKlJeXIyIiAvHx8cjNzcWiRYuQlpaGqVOn4s0330RVVRVWrFghYdREREQ0WH6+PhgTHoizDe2orNditLLvGeNDSfLE6NChQ5g9e7b1fW5uLgAgKysLRUVFyMzMRENDA/Ly8lBTU4Pk5GTs2rULCQkJLo2roKAABQUFMBjc81kuREREw1nCyGCcbWjHuQYtpo4bKXU4VjIhhHsN7rkZjUYDpVKJlpYWhIaGSh0OERGRR3j+o+MoKj2LFTPH4Vn1jU7//sH+/nbrHiMpsfmaiIjIda7MTHOvKftMjHrB5msiIiLXcde1jJgYERER0ZC7svp1O9ypq4eJUS84lEZEROQ614UFwtdHhsudBreass/EqBccSiMiInIduZ8PrgsLBOBefUZMjIiIiEgSYyODEaLwQ1N7p9ShWEm+jhERERF5py0/UyHA38eh55+6GitGvWCPERERkWsFyn3dKikCuMBjv7jAIxER0fDDBR6JiIiIrhETIyIiIiIzJkZEREREZkyMesHmayIiIu/D5ut+sPmaiIho+GHzNREREdE1YmJEREREZMbEiIiIiMiMiRERERGRGRMjIiIiIjMmRr3gdH0iIiLvw+n6/eB0fSIiouFnsL+//VwYk0ew5I0ajUbiSIiIiGigLL+3Ha3/MDHqR2trKwAgLi5O4kiIiIjIUa2trVAqlQM+nkNp/TAajbhw4QJCQkIgk8mc9r0ajQZxcXGorq72qiE6b7xuXjOv2ZN543XzmofHNQsh0NraitjYWPj4DLylmhWjfvj4+GDMmDEu+/7Q0NBh84fMmbzxunnN3sEbrxnwzuvmNbs/RypFFpyVRkRERGTGxIiIiIjIzPf5559/XuogvJWvry9mzZoFPz/vGtH0xuvmNXsHb7xmwDuvm9fsudh8TURERGTGoTQiIiIiMyZGRERERGZMjIiIiIjMmBgRERERmTExkkhhYSESExMREBAAlUqF/fv3Sx2S0+Tn5yM9PR0hISGIiorCQw89hBMnTtgcM2vWLMhkMpvXY489JlHE1+7555+3u57Ro0db9wsh8PzzzyM2NhaBgYGYNWsWjh8/LmHE127s2LF21yyTyZCdnQ3Ac+5xSUkJ5s2bh9jYWMhkMuzcudNm/0DubVNTExYtWgSlUgmlUolFixahubl5KC/DIX1dc2dnJ379619j0qRJCA4ORmxsLB5//HFcuHDB5jt6+vPx7LPPDvWlDFh/93nx4sV213PbbbfZHKPT6fD0008jMjISwcHBeOCBB/DDDz8M5WU4rL/r7unvuEwmw6uvvmo9Zrjd6/4wMZLA9u3bkZOTg3Xr1uHIkSOYPn061Go1qqqqpA7NKfbt24fs7GwcOHAAxcXF6OrqQkZGBrRarc1xy5cvR01NjfW1ZcsWiSJ2jptvvtnmeo4ePWrd98orr2DDhg3YtGkTDh48iNGjR+Puu++2PotvODp48KDN9RYXFwMAHn30UesxnnCPtVotUlNTsWnTph73D+Te/vSnP0V5eTk++eQTfPLJJygvL8eiRYuG6hIc1tc1t7e34/Dhw3juuedw+PBhfPDBBzh58iQeeOABu2Pz8vJs7v//+3//byjCH5T+7jMAzJ071+Z6du3aZbM/JycHO3bswHvvvYfPP/8cbW1tuP/++2EwGFwd/qD1d93dr7empgbbtm2DTCbDggULbI4bTve6X4KG3I9+9COxYsUKm2033nijePbZZyWKyLXq6uoEALFv3z7rtpkzZ4oTDx29AAANBElEQVRnnnlGwqica/369SI1NbXHfUajUYwePVq8/PLL1m0dHR1CqVSKN954Y6hCdLlnnnlGjBs3ThiNRiGE591jIYQAIHbs2GF9P5B7W1FRIQCIAwcOWI/58ssvBQDx3XffDV3wg3T1Nffkq6++EgDEuXPnrNsSEhLE66+/7urwXKKna87KyhIPPvhgr59pbm4W/v7+4r333rNuO3/+vPDx8RGffPKJy2J1poHc6wcffFDMmTPHZttwvtc9YcVoiOn1epSVlSEjI8Nme0ZGBkpLSyWKyrVaWloAABERETbb//rXvyIyMhI333wzfvnLXw7r6gkAnDp1CrGxsUhMTMRjjz2GM2fOAAAqKytRW1trc88VCgVmzpzpMfdcr9fjP//zP/HEE0/YPGzZ0+7x1QZyb7/88ksolUrceuut1mNuu+02KJVKj7n/LS0tkMlkCAsLs9n+7//+7xg5ciQmT56Ml156CXq9XqIIneNf//oXoqKiMGHCBCxfvhx1dXXWfWVlZejs7LT5sxAbG4vk5GSPuc8XL17Exx9/jKVLl9rt86R77dnLV7qh+vp6GAwGREdH22yPjo5GbW2tRFG5jhACubm5uOOOO5CcnGzdvnDhQiQmJmL06NE4duwY1q5di6+//to6HDPc3HrrrXjnnXcwYcIEXLx4ES+++CKmTZuG48ePW+9rT/f83LlzUoTrdDt37kRzczMWL15s3eZp97gnA7m3tbW1iIqKsvtsVFSUR/yd7+jowLPPPouf/vSnNg8XfeaZZzBlyhSEh4fjq6++wtq1a1FZWYmtW7dKGO3gqdVqPProo0hISEBlZSWee+45zJkzB2VlZVAoFKitrYVcLkd4eLjN5zzp/9vffvtthISEYP78+TbbPe1eMzGSSPd/VQOmBOLqbZ5g5cqV+Oabb/D555/bbF++fLn15+TkZNxwww1IS0vD4cOHMWXKlKEO85qp1Wrrz5MmTcLUqVMxbtw4vP3229YGTU++52+99RbUajViY2Ot2zztHvelv3vb0332hPvf2dmJxx57DEajEYWFhTb7Vq9ebf05JSUF4eHheOSRR6yVheEmMzPT+nNycjLS0tKQkJCAjz/+2C5R6M4T7rPFtm3bsHDhQgQEBNhs97R7zaG0IRYZGQlfX1+7f0HU1dXZ/atzuHv66afx0UcfYe/evRgzZkyfx06ZMgX+/v44derUEEXnWsHBwZg0aRJOnTplnZ3mqff83Llz+Oyzz7Bs2bI+j/O0ewxgQPd29OjRuHjxot1nL126NKzvf2dnJ3784x+jsrISxcXFNtWinlj+gXD69OmhCM/lYmJikJCQYP3zPHr0aOj1ejQ1Ndkc5yl/z/fv348TJ070+/ccGP73monREJPL5VCpVHbDCcXFxZg2bZpEUTmXEAIrV67EBx98gD179iAxMbHfzxw/fhydnZ2IiYkZgghdT6fT4dtvv0VMTIx1OKn7Pdfr9di3b59H3PM///nPiIqKwn333dfncZ52jwEM6N5OnToVLS0t+Oqrr6zH/N///R9aWlqG7f23JEWnTp3CZ599NqCqwJEjRwDAY+5/Q0MDqqurrdejUqng7+9v82ehpqYGx44dG7b3ubu33noLKpUKqamp/R477O+1hI3fXuu9994T/v7+4q233hIVFRUiJydHBAcHi7Nnz0odmlP84he/EEqlUvzrX/8SNTU11ld7e7sQQojTp0+LF154QRw8eFBUVlaKjz/+WNx4443illtuEV1dXRJHPzhr1qwR//rXv8SZM2fEgQMHxP333y9CQkKs9/Tll18WSqVSfPDBB+Lo0aPiJz/5iYiJiREajUbiyK+NwWAQ8fHx4te//rXNdk+6x62treLIkSPiyJEjAoDYsGGDOHLkiHUG1kDu7dy5c0VKSor48ssvxZdffikmTZok7r//fqkuqV99XXNnZ6d44IEHxJgxY0R5ebnN33GdTieEEKK0tNT6mTNnzojt27eL2NhY8cADD0h8Zb3r65pbW1vFmjVrRGlpqaisrBR79+4VU6dOFdddd53NfV6xYoUYM2aM+Oyzz8Thw4fFnDlzRGpqqlv/me/vz7cQQrS0tIigoCCxefNmu88Px3vdHyZGEikoKBAJCQlCLpeLKVOm2ExlH+4A9Pj685//LIQQoqqqSsyYMUNEREQIuVwuxo0bJ1atWiUaGhqkDfwaZGZmipiYGOHv7y9iY2PF/PnzxfHjx637jUajWL9+vRg9erRQKBRixowZ4ujRoxJG7By7d+8WAMSJEydstnvSPd67d2+Pf56zsrKEEAO7tw0NDWLhwoUiJCREhISEiIULF4qmpiYJrmZg+rrmysrKXv+O7927VwghRFlZmbj11luFUqkUAQEBYuLEiWL9+vVCq9VKe2F96Oua29vbRUZGhhg1apTw9/cX8fHxIisrS1RVVdl8x+XLl8XKlStFRESECAwMFPfff7/dMe6mvz/fQgixZcsWERgYKJqbm+0+PxzvdX9kQgjh0pIUERER0TDBHiMiIiIiMyZGRERERGZMjIiIiIjMmBgRERERmTExIiIiIjJjYkRERERkxsSIiIiIyIyJERFJatasWcjJyZE6DBsymQw7d+6UOgwikgAXeCQiSTU2NsLf3x8hISEYO3YscnJyhixRev7557Fz506Ul5fbbK+trUV4eDgUCsWQxEFE7sNP6gCIyLtFREQ4/Tv1ej3kcvmgPz969GgnRkNEwwmH0ohIUpahtFmzZuHcuXNYvXo1ZDIZZDKZ9ZjS0lLMmDEDgYGBiIuLw6pVq6DVaq37x44dixdffBGLFy+GUqnE8uXLAQC//vWvMWHCBAQFBeH666/Hc889h87OTgBAUVERXnjhBXz99dfW8xUVFQGwH0o7evQo5syZg8DAQIwcORI///nP0dbWZt2/ePFiPPTQQ3jttdcQExODkSNHIjs723ouACgsLMQNN9yAgIAAREdH45FHHnHJf08iujZMjIjILXzwwQcYM2YM8vLyUFNTg5qaGgCmpOSee+7B/Pnz8c0332D79u34/PPPsXLlSpvPv/rqq0hOTkZZWRmee+45AEBISAiKiopQUVGBP/7xj/iP//gPvP766wCAzMxMrFmzBjfffLP1fJmZmXZxtbe3Y+7cuQgPD8fBgwfx/vvv47PPPrM7/969e/H9999j7969ePvtt1FUVGRNtA4dOoRVq1YhLy8PJ06cwCeffIIZM2Y4+z8hETmDtM+wJSJvN3PmTPHMM88IIYRISEgQr7/+us3+RYsWiZ///Oc22/bv3y98fHzE5cuXrZ976KGH+j3XK6+8IlQqlfX9+vXrRWpqqt1xAMSOHTuEEEK8+eabIjw8XLS1tVn3f/zxx8LHx0fU1tYKIYTIysoSCQkJoqury3rMo48+KjIzM4UQQvzjH/8QoaGhQqPR9BsjEUmLPUZE5NbKyspw+vRp/PWvf7VuE0LAaDSisrISN910EwAgLS3N7rN///vfsXHjRpw+fRptbW3o6upCaGioQ+f/9ttvkZqaiuDgYOu222+/HUajESdOnEB0dDQA4Oabb4avr6/1mJiYGBw9ehQAcPfddyMhIQHXX3895s6di7lz5+Lhhx9GUFCQQ7EQketxKI2I3JrRaMSTTz6J8vJy6+vrr7/GqVOnMG7cOOtx3RMXADhw4AAee+wxqNVq/POf/8SRI0ewbt066PV6h84vhLDpd+qu+3Z/f3+7fUajEYBpSO/w4cN49913ERMTg9/+9rdITU1Fc3OzQ7EQkeuxYkREbkMul8NgMNhsmzJlCo4fP47x48c79F1ffPEFEhISsG7dOuu2c+fO9Xu+qyUlJeHtt9+GVqu1Jl9ffPEFfHx8MGHChAHH4+fnh7vuugt33XUX1q9fj7CwMOzZswfz58934KqIyNVYMSIitzF27FiUlJTg/PnzqK+vB2CaWfbll18iOzsb5eXlOHXqFD766CM8/fTTfX7X+PHjUVVVhffeew/ff/89/vSnP2HHjh1256usrER5eTnq6+uh0+nsvmfhwoUICAhAVlYWjh07hr179+Lpp5/GokWLrMNo/fnnP/+JP/3pTygvL8e5c+fwzjvvwGg0YuLEiQP8L0NEQ4WJERG5jby8PJw9exbjxo3DqFGjAAApKSnYt28fTp06henTp+OWW27Bc889h5iYmD6/68EHH8Tq1auxcuVKTJ48GaWlpdbZahYLFizA3LlzMXv2bIwaNQrvvvuu3fcEBQVh9+7daGxsRHp6Oh555BHceeed2LRp04CvKywsDB988AHmzJmDm266CW+88Qbeffdd3HzzzQP+DiIaGlz5moiIiMiMFSMiIiIiMyZGRERERGZMjIiIiIjMmBgRERERmTExIiIiIjJjYkRERERkxsSIiIiIyIyJEREREZEZEyMiIiIiMyZGRERERGZMjIiIiIjMmBgRERERmf1/pKXYCC5bSEMAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,24,u'iterations')" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(rnorm)\n", - "title(\"conjugate-gradient convergence\")\n", - "ylabel(\"residual norm\")\n", - "xlabel(\"iterations\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In our 2x2 problem, you can see that it actually converges in **two steps**:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd4FVX6xz9ze0nvvREIIIROAEFa6AhigUURcFVUVMSOgo0VWdFlxQoLCCKIgoUaeokoQTrSOyFAEtJ7bpk5vz/m5koM1bL6c+/nefJAzn3nzJkzc2e+ecscSQgh8ODBgwcPHjx4+Iui+aMH4MGDBw8ePHjw8HviETsePHjw4MGDh780HrHjwYMHDx48ePhL4xE7Hjx48ODBg4e/NB6x48GDBw8ePHj4S+MROx48ePDgwYOHvzQesePBgwcPHjx4+EvjETsePHjw4MGDh780HrHjwYMHDx48ePhL4xE7Hjx4uGEmTJhATEwMOp0OPz+/K9p9/fXXDB06lMTERMxmM3Fxcdxzzz0cP378F+03OzubCRMm0L59e4KCgvDx8aFVq1b85z//QZblX3o4vztz585FkiTOnDnzRw8FgK1bt/Lqq69SXFz8Rw/ldyMuLo6RI0e6f9+8eTOSJLF58+bfdb8ffvghc+fO/V334eHG8YgdDx483BBLly5l0qRJDB8+nPT0dNavX39F2zfffJPKykrGjx/P6tWref3119mzZw8tW7bk4MGDN7zvXbt2MW/ePLp37868efP46quv6Ny5M4888ggPPvjgrzms35V+/fqRkZFBeHj4Hz0UQBU7r7322l9a7Pycli1bkpGRQcuWLX/X/XjEzp8T3R89AA8e/uxUVlZisVj+6GH8aThw4AAAY8aMISQk5Kq2y5cvr2PTrVs34uLi+Pe//82sWbNuaN8333wzJ0+eRK/Xu9t69OiB3W7ngw8+4LXXXiM6OvqG+vxvEBwcTHBw8B89jD89Qgiqq6sxm82/ed8+Pj60a9fuN+/Xw/8PPJ4dD78ZR44cYejQoYSGhmI0GomJiWH48OHYbDa3zYEDBxg4cCD+/v6YTCaaN2/OJ598UqufGnfzwoULGT9+PBEREfj4+JCamsrRo0fddmPHjsVqtVJaWlpnLEOGDCE0NBSHw+Fu++KLL2jfvj1WqxUvLy969erFnj17am03cuRIvLy82L9/Pz179sTb25vu3bsD6o34jTfeIDY2FpPJROvWrVm3bh1dunShS5cutfopLS3lmWeeIT4+HoPBQGRkJGPHjqWioqKWnSRJPPbYY3z66ac0atQIi8VCs2bNWLFixS+a35ycHB566CGioqIwGAzEx8fz2muv4XQ6r3Ta3CiKwpQpU2jYsCFGo5GQkBCGDx/OuXPn3DZxcXFMmDABgNDQUCRJ4tVXX71in5cTQxEREURFRZGVleVu+/zzz5Ekiffff7+W7SuvvIJWq2XdunUA+Pv71xI6NbRt2xag1livRHFxMU8//TQJCQnu4+zbty9Hjhxx2xQWFjJ69GgiIyMxGAwkJCQwfvz4WnMN13/+LhfG+nmYpYbLXU8HDx6kZ8+eWCwWgoODefTRR1m5cmWdsMy6desYOHAgUVFRmEwmEhMTeeihh8jPz3fbvPrqqzz77LMAxMfHI0lSnX6u57tyNZYuXUpycjJGo5GEhASmTZvGq6++iiRJl52/6dOn06hRI4xGo/t+8Nprr5GSkkJAQAA+Pj60bNmS2bNn8/O1qx0OB8899xxhYWFYLBY6duzI9u3b64zpSmGsnTt3MmDAAAICAjCZTLRo0YJFixbVsqk5f5s2beKRRx4hKCiIwMBAbr/9di5cuOC2i4uL4+DBg6Snp7vnNS4u7rrnzcPviPDg4Tdg7969wsvLS8TFxYnp06eLDRs2iPnz54vBgweL0tJSIYQQR44cEd7e3qJevXpi3rx5YuXKlWLo0KECEG+++aa7r02bNglAxMXFiXvuuUesXLlSLFy4UMTExIj69esLp9MphBBi3759AhAzZ86sNZaioiJhNBrFU0895W6bNGmSkCRJ/P3vfxcrVqwQX3/9tWjfvr2wWq3i4MGDbrsRI0YIvV4v4uLixOTJk8WGDRvEmjVrhBBCvPDCCwIQo0aNEqtXrxYzZ84UMTExIjw8XHTu3NndR0VFhWjevLkICgoSU6dOFevXrxfTpk0Tvr6+olu3bkJRFLdtzXG2bdtWLFq0SKSlpYkuXboInU4nTp48eUPzm52dLaKjo0VsbKyYMWOGWL9+vfjHP/4hjEajGDly5DXP4ahRowQgHnvsMbF69Woxffp0ERwcLKKjo0VeXp4QQojdu3eL+++/XwBi9erVIiMjQ2RlZV2z70s5efKk0Gg04sknn6zV/vDDDwuDwSB27NghhBBiw4YNQqPRiAkTJlyzzxEjRgidTify8/OvaldaWipuuukmYbVaxcSJE8WaNWvEV199JZ544gmxceNGIYQQVVVVIjk5WVitVvH222+LtWvXipdeeknodDrRt2/fWv1d7/mbM2eOAMTp06fdbbGxsWLEiBF1xti5c+da19OFCxdEYGCgiImJEXPnzhVpaWni3nvvFXFxcQIQmzZtctt+9NFHYvLkyWLZsmUiPT1dfPLJJ6JZs2YiKSlJ2O12IYQQWVlZ4vHHHxeA+Prrr0VGRobIyMgQJSUlQojr/65ciVWrVgmNRiO6dOkivvnmG7F48WKRkpLiHu/P5y8yMlIkJyeLzz77TGzcuFEcOHBACCHEyJEjxezZs8W6devEunXrxD/+8Q9hNpvFa6+9VquPESNGCEmSxLPPPivWrl0rpk6dKiIjI4WPj0+t+a25r1w6Xxs3bhQGg0F06tRJfPHFF2L16tVi5MiRAhBz5sypc/4SEhLE448/LtasWSNmzZol/P39RdeuXd12u3fvFgkJCaJFixbued29e/c158zD749H7Hj4TejWrZvw8/MTFy9evKLN3/72N2E0GsXZs2drtffp00dYLBZRXFwshPjppvTzB8uiRYsEIDIyMtxtLVu2FB06dKhl9+GHHwpA7N+/XwghxNmzZ4VOpxOPP/54LbuysjIRFhYmBg8e7G4bMWKEAMTHH39cy7awsFAYjUYxZMiQWu0ZGRkCqPVwmjx5stBoNO6Hdg1ffvmlAERaWpq7DRChoaFuwSKEEDk5OUKj0YjJkye7265nfh966CHh5eUlMjMza7W//fbbArjqg+rw4cMCEKNHj67V/sMPPwhAvPjii+62V155RQBuAXQjOBwO0aVLF+Hj41PnOqiurhYtWrQQ8fHx4tChQyI0NFR07tzZLW6vxJo1ay4rni7HxIkTBSDWrVt3RZvp06cLQCxatKhW+5tvvikAsXbtWnfb9Z6/XyN2nn32WSFJUp3z16tXrzoP70tRFEU4HA6RmZkpALF06VL3Z2+99Vad8QhxY9+VK9GmTRsRHR0tbDZbre0DAwMvK3Z8fX1FYWHhVfuUZVk4HA4xceJEERgY6P6Doea6/fm5X7BggQCuKXYaNmwoWrRoIRwOR63t+/fvL8LDw4Usy0KIn87fz78fU6ZMEYDIzs52t9100021zp+HPweeMJaHX01lZSXp6ekMHjz4qnkJGzdupHv37nVyKkaOHEllZSUZGRm12gcMGFDr9+TkZAAyMzPdbffddx9bt26tFd6aM2cObdq0oUmTJgCsWbMGp9PJ8OHDcTqd7h+TyUTnzp0vW51xxx131Pp927Zt2Gw2Bg8eXKu9Xbt2ddzUK1asoEmTJjRv3rzW/nr16nVZN3rXrl3x9vZ2/x4aGkpISIj7OK93flesWEHXrl2JiIiotd8+ffoAkJ6efsVtN23aBFAnrNK2bVsaNWrEhg0brrjt9SKE4P7772fLli3MmzevznVgNBpZtGgRBQUFtGzZEiEECxcuRKvVXrHP3bt3M3jwYNq1a8fkyZOvOYZVq1bRoEEDUlNTr2izceNGrFYrd955Z632mrn5+Vxc6/z9WtLT02nSpAmNGzeu1T506NA6thcvXuThhx8mOjoanU6HXq8nNjYWgMOHD19zX9f7XRFC1Pq8JkxaUVHBzp07ue222zAYDO5+vby8uPXWWy+7z27duuHv71+nfePGjaSmpuLr64tWq0Wv1/Pyyy9TUFDAxYsXgZ+u23vuuafWtoMHD0anu3pK6okTJzhy5Ih720uPpW/fvmRnZ9e6r8D13ZM8/DnxJCh7+NUUFRUhyzJRUVFXtSsoKLhsNUpERIT780sJDAys9bvRaASgqqrK3XbPPffwzDPPMHfuXCZPnsyhQ4fYsWMHH374odsmNzcXgDZt2lx2XBpNbc1vsVjw8fGpM3ZQH2Q/5+dtubm5nDhx4rK5JUCt/Amoe5ygHmvNcV7v/Obm5rJ8+fLr3u+l1Bzflc7Pr72ZCyF44IEHmD9/Pp988gkDBw68rF1iYiKdOnVi5cqVPPLII1etXtqzZw89evSgfv36pKWlua+Pq5GXl0dMTMxVbQoKCggLC6uTXxISEoJOp7vmdQq1z9+vpaCggPj4+DrtP7/uFEWhZ8+eXLhwgZdeeommTZtitVpRFIV27dpd13iu97uSnp5O165da312+vRpdDodQojr+p7UcLlzvH37dnr27EmXLl2YOXOmOwdtyZIlTJo0yX0sNeciLCys1vY6ne6y5+VSao71mWee4ZlnnrmszbW+q5e7J3n4c+IROx5+NQEBAWi12msmhwYGBpKdnV2nvSbBLygo6Ib37e/vz8CBA5k3bx6vv/46c+bMwWQy1fqrt6bfL7/80v1X7tX4+UOuZuzw0w3yUnJycmp5d4KCgjCbzXz88ceX7f9Gj/N65zcoKIjk5GQmTZp02c9rROXlqDm+7OzsOqLqwoULv+jc1FAjdObMmcPs2bMZNmzYFW1nzZrFypUradu2Le+//z5DhgwhJSWljt2ePXtITU0lNjaWtWvX4uvre11jCQ4Ovq7r9IcffkAIUetauHjxIk6n81fNxaWYTKY6Cc+gPmAv3UdgYOAVr7tLOXDgAPv27WPu3LmMGDHC3X7ixInrHtP1fldatWrFjh07arVFRETgcDiQJOm6xlvD5b5vn3/+OXq9nhUrVmAymdztS5YsqWVXc93m5OQQGRnpbnc6nXVE6c+pOdYXXniB22+//bI2SUlJV+3Dw/8fPGEsD78as9lM586dWbx48VW9B927d2fjxo21qhcA5s2bh8Vi+cVloffddx8XLlwgLS2N+fPnM2jQoFovuuvVqxc6nY6TJ0/SunXry/5ci5SUFIxGI1988UWt9m3bttXxevTv35+TJ08SGBh42X3daHXG9c5v//79OXDgAPXq1bvsfq8mdrp16wbA/Pnza7Xv2LGDw4cPuyvSbhQhBA8++CBz5sxhxowZ3HfffVe03b9/P2PGjGH48OFs2bKF5ORkhgwZQlFRUS27vXv3kpqaSlRUFOvWrbtsCORK9OnTh2PHjrFx48Yr2nTv3p3y8vI6D9Z58+a5P/8tiIuL48cff6zVduzYsTqhk86dO3PgwAEOHTpUq/3zzz+v9XuNaPi5h2vGjBl19n0lj8T1fle8vb3rtBsMBqxWK61bt2bJkiXY7XZ3v+Xl5ZetMLwSkiSh0+lqhTCrqqr49NNPa9nVVK0tWLCgVvuiRYuuWYGYlJRE/fr12bdv3xWP9dLw5PXyW3r1PPx2eDw7Hn4Tpk6dSseOHUlJSWHcuHEkJiaSm5vLsmXLmDFjBt7e3rzyyivuvJKXX36ZgIAAFixYwMqVK5kyZcp1/3X+c3r27ElUVBSjR48mJyenzgM1Li6OiRMnMn78eE6dOkXv3r3x9/cnNzeX7du3Y7Vaee211666j4CAAJ566ikmT56Mv78/gwYN4ty5c7z22muEh4fXCoWNHTuWr776iltuuYUnn3yS5ORkFEXh7NmzrF27lqeffvqy3oqrcT3zO3HiRNatW0eHDh0YM2YMSUlJVFdXc+bMGdLS0pg+ffoVQ2FJSUmMGjWK9957D41GQ58+fThz5gwvvfQS0dHRPPnkkzc03hrGjBnD7Nmz+fvf/07Tpk3Ztm2b+zOj0UiLFi0ANddj8ODBxMfH8+GHH2IwGFi0aBEtW7bkvvvucwuPo0ePuvNtJk2axPHjx2u9jblevXpXzWsaO3YsX3zxBQMHDmTcuHG0bduWqqoq0tPT6d+/P127dmX48OF88MEHjBgxgjNnztC0aVO+++473njjDfr27XvVfJ8b4d5772XYsGGMHj2aO+64g8zMTKZMmVJn/GPHjuXjjz+mT58+TJw4kdDQUD777DN3qXzNtdewYUPq1avHuHHjEEIQEBDA8uXL3WX7l9K0aVMApk2bxogRI9Dr9SQlJf0m35WJEyfSr18/evXqxRNPPIEsy7z11lt4eXlRWFh4XXPTr18/pk6dyt13382oUaMoKCjg7bffriPkGjVqxLBhw3jnnXfQ6/WkpqZy4MAB3n777Tqh6MsxY8YM+vTpQ69evRg5ciSRkZEUFhZy+PBhdu/ezeLFi69rvJfStGlTPv/8c7744gsSEhIwmUzu+fbwB/KHpUZ7+Mtx6NAhcdddd4nAwEBhMBhETEyMGDlypKiurnbb7N+/X9x6663C19dXGAwG0axZs1olnkL8VDWxePHiWu2nT5+uUxJaw4svvigAER0d7a6g+DlLliwRXbt2FT4+PsJoNIrY2Fhx5513ivXr17ttRowYIaxW62W3VxRFvP766yIqKkoYDAaRnJwsVqxYIZo1ayYGDRpUy7a8vFxMmDBBJCUlCYPBIHx9fUXTpk3Fk08+KXJyctx2gHj00Ufr7OtylTrXM795eXlizJgxIj4+Xuj1ehEQECBatWolxo8fL8rLyy97XDXIsizefPNN0aBBA6HX60VQUJAYNmxYndLyG6nGio2NFcBlf2JjY912w4YNExaLpU7F0eLFiwUg/v3vfwshfqqKudLP5a6Nn1NUVCSeeOIJERMTI/R6vQgJCRH9+vUTR44ccdsUFBSIhx9+WISHhwudTidiY2PFCy+8UGuuhbj+81cz7jNnzrjbFEURU6ZMEQkJCcJkMonWrVuLjRs31qnGEkKIAwcOiNTUVGEymURAQIC4//77xSeffCIAsW/fPrfdoUOHRI8ePYS3t7fw9/cXd911lzh79qwAxCuvvFKrzxdeeEFEREQIjUZTp0rper4rV+Obb74RTZs2dV+n//znP8WYMWOEv7//dc2fEEJ8/PHHIikpSRiNRpGQkCAmT54sZs+eXaeKzGaziaefflqEhIQIk8kk2rVrJzIyMuqcg8tVYwmhvsJi8ODBIiQkROj1ehEWFia6desmpk+f7rapOX8/r7C8XJ9nzpwRPXv2FN7e3nWucw9/HJIQP3tDkwcPHq6b06dP07BhQ1555RVefPHFP3o4Hv6kTJs2jbFjx1JWVoaXl9dv0ueoUaNYuHAhBQUFtSqf/ow4HA6aN29OZGQka9eu/aOH4+F/EE8Yy4OH62Tfvn0sXLiQDh064OPjw9GjR5kyZQo+Pj7cf//9f/TwPPwJKSkpISMjg7lz59KkSZNfLHQmTpxIREQECQkJ7vyXWbNmMWHChD+l0Ln//vvp0aMH4eHh5OTkMH36dA4fPsy0adP+6KF5+B/FI3Y8eLhOrFYrO3fuZPbs2RQXF+Pr60uXLl2YNGnSFctqPfxvs2fPHgYNGkRycjKzZ8/+xf3o9Xreeustzp07h9PppH79+kydOpUnnnjiNxztb0dZWRnPPPMMeXl56PV6WrZsSVpa2m+W7+TBw43iCWN58ODBgwcPHv7SeErPPXjw4MGDBw9/aTxix4MHDx48ePDwl8Yjdjx48ODBgwcPf2n+JxOUFUXhwoULeHt7X/ZV5R48ePDgwYOHPx9CCMrKyoiIiKizruHV+J8UOxcuXKiz4rIHDx48ePDg4f8HWVlZ11wc+VL+J8VOzXonWVlZ1/VK8f8mwnkOUfwoyGcRaHEKOwItDmFDoMGJE5BwCBkFcAqBAshCQkagoMcuFAQGHMiAAbuiqH0hEEg4hAYFLbLQ4RAARhxCRkKPDQFocQgQSG4bDSbswolG0lOlCATgVLQoaJAwYFecaCUjVYqCQEIRGmQBOslApSyjk3RUyur+tRiwCScGyUSFrB6PhA6HUDBpjJQ6HEhoAA1OoWDWmimx25DQIKHDpihYdWZK7dWAhFFjosJhx6I1UibbAQlvrZkiezV6SYciJGyywFdvpsimrlnjZ7BSUF2JXtKil3RUOh34GswUV1UjkAg2eZFbUQ6u/1+sKkcnafHWmSiyVWHVGRACKh0OAoxmymwO7LJMmMWLvIpyFAFRXr6cKykBJGK9/ThbXAxIJPj5c8q13lOCvz+ZhcUoAuL9/DlfXIJDUYjy8aG0spoym51AiwU9GnLLKrAYdET5+HLsYgES0CoqnJ2Z2UhAs8hQjuXkU+WUifLzQY+GM4XF6DVaUuIi+f7EWQBaxISTlVdMQXkVPiYjzaPD2XLkDAAd6sdwKruA3NIKrCY9XZISWLXnKEJA05hQdJKGvWfUxVwHtG7E9qNnyS2pwGzQcWf7ZL7a8iPVDieh/l6kNqvPos37cCoKiRGBtKkfzReb9iIENIoNoW1SNPPX7EIRgvpRwfRoXZ/Zy37A7pAJC/JhRO/WzF66jcLiSswmPY8N7sT6bUfZc/Q8ALd3TybYz8rsLzOQFUFsuD+PDu3E7C+3cez0RQCG9m9NXKQ/783ZTGWVHV9vE8893JNDR7NZuHQHQkB8TBDPPtKDNRsOsGyNulZVw8Qwnn2sB+s2HWbR16pdbEwgz4/tQ+bZfN6fvoHKKjsWi5EnHkmlUcNw/v3Oavb9mAXAze3r8+joVI4dy+bdaWspKqpAp9Nwz7CODBrUiu++Pcr0DzZQUVGNwajjvvtvoU+/Fhw+cI533k7jYnYJAH0HtmD4/Z0B+HR2Omnf7AYgKMSH0U/3omXrBEqLK/n4gw2krzsAQGi4P4883YtmreORZYXVS3azYOZmqirtaLQSg4a2467hHTGa9DgcTpZ+to3Fc7fgsMlodBoG/i2FO0d2xGxRl2Y4n1nAnGlr2L1VXVDUL8DKPY90o2u/Zu6/rGVZYdOKvXwxfROFeWXqtd0wjHuf6Elym4Ra9zi7zcmGJbv4ena62zY4wo877u9Ml/7N0RvqPpbsNidb0vay4tOtnD3hWmRUkmjbtRH9h7Wncav4a3rphRBkHsvhu5V7+W7VPvLO/7TmmtFsoFWXRrTv2YQWHZMwW41X6emvhaIoLJ6+gUXvrwcguX0iT/3rbrz9rL+ov+n/WMq6xdtp07UR46ZdedHfSykrqWRkl8kAfJL+Il4+5ivalpaWEh0dfcPrlv1Plp6Xlpbi6+tLSUnJn0rsCMcxRNHfQbnoEjo2t9BR0CLjQKDBIZwoSDiF4hI8IIMqTBAI9DhQAAPVigLocaIKHruQUNDgFFqcQgIMOISChJEqoSChxyFUweJUtDhrxIyQ0UpGKhUZ0GJXJJfQ0WNXZHSSiQpFRoMWu+ISNZKRStmJXjJSIcuIGlGjKBg1ZsqcDjRocQpQAJPGRKnDjk7SYVdUEWfWmClx2FxtIAvw0pkpsVejcYmfalnBW2em2FEFSFi16udmrZFKh4wswN9gpaC6ApDw1lkotldh0RqxyTJORSHIaOViZSUgEWL0IqeyHI2kwU9vpqC6CqtOj1Cg0ukkyGShpNqGQ1GItPpwvrQUgUSsty+ZJSVIQIJPAKeKCgGJRL8AThQUIiHRICCQY67VmBsGBHEkLx8JicZBwRy6mIcENAoK5kRePk5FkBDgT15JJeV2O2HeXujQcL6kFLNeR/3AQPafV2/87eOiyTitPmibRoRyobCUwooqAixmEgL92ZWpLr7aPake3x09jV1WiA/yx9tgZH9WDpIE/Zo3ZMO+41Q7ZWIC/YgP8ufbQ6cB6NWsAQfP5nC+sBSzQc+d7Zrw5Xf7qXY4iQn2o139aL7csh+A1vWjCPK2smanuqBlasv6yA6FzXtPAnBrh8ZUV9tZv1Nd06pPu0ZY9Hq+3qwKjQ5N42jVIIrpX21FlhXiIwO5f0AK7372LXlF5ZiNep4Z0ZXvd59m0w/HAOjRoSFd2tTnzRnrKKuoxsfLxIuP9GTXvrN8tWoPAM0bRzHmvq68P2czew6oczWgZzK392nBG++kcfyUSyANasOtPZsxeWoaBw6rwurWPs34+70dmflxOqvWqsfZpHEkE56/lRMncnn7X2mUllVjMul5bHQq3bo2YtbMzXzzzS4AYmIDGT9+IKGhPrz77zVs2qAu6pnUMJxx4wcQGurLJ7PSWbwwAyEgJNSHp1+8lZat49m/9yxvv76MbNfDuc+AFox6PBWrl4ktGw7x/pQ0igsr0GgkbvtbCiMe6YbJpOfMyYu88/oyDrsEWKOmUTwxfgDx9dV3Qu3bcZr3Jy0j67S6uGxy63geG9+fmIQQACorbHw2YxNLPt2K0ymj02kZOKw9dz/UFavXTyuR7/7+ODOnpHHmmLqqeUiEHyOf7EXnvsm1wgxOh8zar3bw+YcbycsudtsOfbQ7qYNao9P/tOhnDRVl1axamMGSOVsoyC0FwGQx0GtwWwaM6EhE7LVXoM/LLmbDVzvYvGQXmcd+WnndbDWS0qMJnfo1o1XnhhhNf76XM/43+X71j7w9dj7VlXYiE4KZsuhxAkJu/PmYdfIio3pMQZIkZm14noi4a58jgGEdJ1GQW8LURY/SqEXsFe1+6fPbI3b+JGJH2HcjikaBKFU9OC6Pjt0leJw4XMKnRvDICMAhcAkfCScSCjqXB8eATVEFj+rh0WEXoKDBoWiQ0SLQ4RQCMFItFDQYsAkZ0GBXNChowCV+NJKJSsWJBj3VikCgAaF6Y7SSiUpFRivpsblFjYFqRUYvmSiXnUhokBWNKsEkE+WyA52kx6ao9gbJRLnTjkFjoNLl7TFKJsqcdowaIxVOJ8IlZEod1Rg0eqqdAlmAj95Ckb0SCQ0GyUCF0+HywKheHn+9lQJbBTpJi07SU+F04Of28tSIG1UIBRqs5FVVYNLq0aKl3GEnwGim1GbDqQjCLd5kl5dIJMgaAAAgAElEQVQBEtFefpwtUb01sd5+ZJYUIwFx3v6cKS4CJOJ9/DldVIQGiQS/AE4WFSIBDfwDOZpfUEfoJIeE8mN2LhLQJDSUIzl5yIqgflAAuSXllNnshHhZseoMnCkowqDV0iwyjB2Z6kO5Q3wMO0+fwyErJAQFgCI4nV+EQaelU704Nh5SBUebuEiyC8s4X1SK1WigS8N40vao4qRVfCQVlTaOXshHp9EwKOUm0nYdodLmIDLAh7b1olmy7SAA7RrEoJMkth5SV34f1KEJx85e5NDZi2gkiRE9WpO+5wSnc4rQaTWM6t+OdduPcuJ8PlqthocGtGfr3tPsO6GKsZH92pCbV8aaDHWRy+5tG3BTfCgfLfoep6wQGxHA6MEd+fCzbzmbrfb5+LDOFBRW8OmS7QA0Tgzj8eGdeX/OZg6fUB9u996eQvObopj0ziqKSlRP0XOjeyIhMeX91VRVOfD1MTP+yb44bDL/fCeN8nIbXlYjz4zpRVSEPxPfWEbW+UI0Gol7h7Zn8O1t+c+szSxfoYqp+vVDGf/CABx2mTcmLeXMGVVEDBrUigdHdeXggXO8NXkFeXllaLQSw4Z35O5hHThzKo83Jy7lzOk8AHr1a8YjY3qg02n5ePomliz6ASEgONSHJ1/oT+uUehTml/P+lDS+33QYgJj4YJ5+eQANm0Rhtzv5/ONv+WLOdzidMharkfse607/O9ug0WgoLijnP/9azcaV+wDVU/Pg073p1q8ZkiQhhGDzqh+Z+fYqt+elTccGPPR8P6IueXBlnbrIzDfT2PGtet14+Zj428PduPWe9hgu8c4oikL6in18Om0t2WdVoR8Y6svfHulGzzvbYDDW9eQU5pWydM53rFywlYqyatc2Pgwc2Yk+Q9td9S9/AHu1g23rDrB20Q/s/vYoNY85nUFLm66N6TKgJW1Tb8Jk/v0EjsPupCCnhJLCcirLq6ksraairIqKsipkp4JWq0Gj0aDRSmi0GixeJvxDfAgI8cE/2AcvX/N/Paf09OELvPr3mVw8X0STtglMXvjoZUXotXjpvpnsTD/K0MdTGf5k7+vaZtzw/7Av4wTPvDWE7re1uqLdL31+/0+Gsf5sCNu3iKLHgGoUNMjCjuIOXdUIHR0Od0jL6QpHCRQkHEJCRuP6ESiu0BWXhLJsQkGgc3tkFKFFlUs1QseITThdYSJVFKli6Ceho5UMVMmq0FEUdV8al9DRSQaqXCJFETocQkYvmSmXHWglHXZZDX3pJCPlsgODxkil7ABXWKvcacekMVHuCkPpJCNlTjsWrZkSh9qmhrhUj02pXd2Xt85Mkb0SvaRDViQqZAe+egsF1WqIy0dnpsBWgVlrwCYrVMgOAo1W8qtUcRNkUIWOTtJi0hjIq6rE12Cmwu6gSrETav4pnBVl9eVcmRqWirb6crakGAmJSKsPmSXF6DUaQkxenCkuxqDVEWS0cqaoGLNOT6DJzMmiQoxaHaFmL47lq/+P9vbh8MU8dJJEUmAQ+11Cp1lYGPvO5yAh0Sw8jIPZuciKIDEokKKySs6UFBFgMRNitbIj8zxaSaJDfAzfHVdFR6uYCE5fLKKosopAq4V6QQFuoZPaOJGMo5lU2h1E+vsQG+DrFjq9kxuw43gWheVV+FvNdLkpgS+3qp6MlgmRGCWtW+jc3r4Je4+f50yuKqbu7d6Kpd8foKC0El+riXu7t2Lemp2UVdoI8rUyvGcrZi3fRlmljUBfKw/2b8fsZdvIL67AajbwxF238OX6vZzIykerkXjojps5lZXPewu3ANCtbX3aN43j1fdXUm1zEhrozXMP9GDhsp3sOqCG6O7s3ZzWTWIYN3kJZeWqh2f8Y705duoiz078CiEgITaIl8f2Y0naHpauVh/4yY2jeHFsHxYv2cnXy9RQUaMG4bz8fH+27TjFG1NW4HDIBAV5MeG5W/HxNvHYE5+SmakKmiGDU7hvRCeWL9/DzP9swuGQ8fe38uxz/WjRPJaPZ23my0WqGIuMCmDc+Ftp0CCczxds5dPZ3yLLCn7+Vp58vh8dOjXg8IFzvPWPpZw7q64S3vvW5jw0pgcWq5GNq/fz4durKCupQqvVMGTEzQy9/xYMBh0H953lnX8s46xLOLW7JYnHxvUjONQXRVFY9fVOZv97LeWlVUiSRN87WzNyTA+8XeLhzPFcPnhjOft3qh698OgAHn6+HymdG7rvV6VFFcz/YAMrP/8BRVbQ6jT0H9qOe0Z3x9vP8tN9TQh2bD7CJ1NXc+qIGvr0C/RiyMPd6Ds0BYNRX+demJNVwOIZm1n35Q4cdicA0fVCuOPBLnQd2PKywuhSTh++wKqFGWz6ZhflJZXu9iYp9Ui9ow0390nGy9dylR5ujIrSKs4ez+Hs8RyyjueSk1VA/oViLl4oojivjF/jS9AbdYTHBlG/aTSJTaNJTI6m3k1Rv2uILb5RBJPmP8yYW6dyYPsp5k5ZwQPjB95wP51vbcHO9KNsW3fwusVOQLAaliouKL/h/V0PHrHzByOqViBKngOcKEJCxq56X34mdOzCDuhcnh0tdiG7PDy4RI7kCmWpnpifhI7RJXT02F0iRhYaFCR3fk+N0NFgcOXc1NgAGF1Cx0ilrCChxekKU0kYqHJ5byplO5LbawQ6l9DRSwaqZBlUvwuVslPNsXGJGoSeKkXGrDVT5lTzchA6KmUnFq2FEodNDX65PDZWrZliu7qtVWui2KGGo8rsqj/LT28lv7oKDRpMWgPF9mp89GaKbTYEEkFGL/KqVPHip7dysaoCi86A0wmldhvBJisXXV6eCIsPF8pLwSVozpWVoJFUQXO2tBSjVoePzsj5slK89Qb0aLlQVoaf0YSkSGSXleFvMiOE4Lzr/1qhIaukBF+jEYtWz6nCIix6PWEWLw7n5qHTaEgKDOLH87lISLSKDGdXlpqT0yIynEPnc9UQVKA/VXYHRy7m42U0kBQc5BY6nevHsfX4WTVXJiQQZMGOU+fQa7V0b5jA2v3HEQKaxYRTWW0n43gWOq2GAS0asWLnERyyTGJYIBH+Piz5QRU2/Vo15ODpHDLzijHqtdx9Swu+2rKf8iobIX5e9G/TiHlrd+KUFepHBtGuYSwfLvkeISC5XjgtEyN5Z1G6mvtTL5xOTRP414JNOGWFhMhAhqa25P3Pv6Ws0oa/j4WxQzszf+UOTpxVhc/DgztyMa+UN/6jLiLZtmksQ3q34J8frSXfFdp6blQPzpzN58U3lwLQqH4YzzyQyvT5W9i5T52bfqlNuatfS974dxrHXXk99w5uR8/OjXnljaUcc+WD/O2ONgy+vQ1T313L9xlquK1DSiLPPdmbzelH+GjGRhwOmYAAK+Oe609CfAgvv/wVO7afAqBdu0Sefa4fRYXlPPrwHE6fUsVH/wEteGh0d4oKynnq0XkcOnAOgJtvSWLsc32xWI3M/nADixdkoCiCgCAvnnqhP2071Kcgv4y3Xl1CRroqTOs1COPplwdSLymMqkobH7yzhuWLdiCEwD/Qi9HP9qVTamMkSSLz5EXe/ccyDu5R56FeUhhjXhpIUlM1wbOivJoFH21kyYIMFFnBaNIz5IHO3Dmyo1uUOB0yK7/4gfnvr6e8RM19S+naiAee7UNUfHCt+9qh3Wf4+K00Du48A4DFy8SdD3bmthEdL/uwzjyew+Lpm9i0bA+KrN55GrWM5a6HupLSvfFVq26qKmx8u3wPqxZmcNR1fABB4X6k3tmGHne1JSIu+IrbXw9CCPKzizm27yzHf8zi+I9nyTySTUFuyVW30xt1+AV6Y/U2YfE2YfE2Y/E2oddrkWUFRREosoIiK1SUVlGYV0rRxTLKSypx2JycPZbD2WM5bPhqBwCSJJHYNIr2vZO5uU8zYuqH/arjuhxR9UJ56u27mfTwHL6asYlGLeO4uU+zG+qjbddGaLQaTh/JJiergLDowGtu4xeorhtXXFDxi8Z9LTxi5w9EVC5AlE4EBIoAGQcykjuEdanQES6ho4ajnC7B4wphcWkejpqz43QJnWpXHo5NEa48IEkVM+hwCIHkFjpqcjHocAoQaBDosQlZDVPJMhr0rmTnms8Ut9DRoHOFtyQ0GKmQHRgkk9t7I4SeaqFg0pgpl21o0OKQJWQUzFoTZU41L8cmgywUl0fHhk7SIisS1YoTL52ZIpsqfvQaA6VOG146VcioXhwL+dVVGDQ6FEVSQ1AGK3nVai6OGqIqR6/RoUdPYXUVfgYLxdXVKALCzN5kV6ghqhqho0FDkMnK+bIyTFo9Zo2e7PJyfA1GFFmQX1VJsNlKebWdcmc1YVYviiuqsckykd4+5FdUYJNlorx9KKqoptJRTYS3N+XVNnKqygmxWtVQU2ERPkYjgSYLh3LyMGi1JAUFsdsldNpGR7H9zDk11BURxsm8AirsDiJ8vbFo9ezOvIBOo6FjvVjSj6p/lbeNi+JUbgEFLi9Nk/AQ1vyoPri735TI3lPnKaxQP2tfL4ZvXMKmQ1IsBSUVbDl0Gp1Ww5AOySz/4TBlVTZC/bxIbZrIp+vUxOLk+HBig/yYs0a9GXdrngiyYP5aNVfl1g6NKSuv5pNV6ucDOzVBdsh89NX36jha1yc+LIB/zlmHENCkXji3d0vmX59sdAufZ0d04/O0Xew/5gp13ZaCr9XM828tQ5YVYiMDeP7BHsz+/Hv2HFTzU+7s24Jb2iQybvIS8gvLMRl1PP1QD/Q6LaOfX+AOW730VD/Ky208PPZTNYHZx8wLT/XFy2rkkTHzuJhXhl6v5eH7u9C9a2P+NXUV329V5zClbT2ee6Yvx45m8+CDsyguqsRg0PHQw9249dYWLP1mJzNnbMJhl/Hzs/D0c/1o1yGRVcv38NG766iucmCxGnnsyV6k9m7KqRO5PP/4fE6fVEVY995NeWRsL7x9TGxI+5EP/7WK8tJqNdH5gc4MHnEzOp2WXRknmDZpObmuPJieA1rw4Nie+PhasNscfDYznS9dIS2jSc/wR7tz293t0Oq0CCHYsuYAM95aScFFNWTVoVsjRj3Xj7BIf/e9avf3x5kxeQVnXWOLaxDGqHH9aNE+sdY97dypi8x5ezVbXcnSBqOOAcM7MnhUl1penxpOHjrPwvfW8/2a/e62lp0aMGR0d5q2TbhqGOfM0WxWzPuOjd/spKrcBoBWp6F9z6b0HtqO5h2T0Gp/2avkZFnh1MFz7N92gh8zTnBsbyZFrpDezwkM8yWmfhgx9cMIjwsiOMKfkEh/giL88A3w+kWhKHu1g6K8UjKP5XD8x7Oc2J/F8R+zKMgpcYmtLOZNWUlMgzB6DE4h9c62+AXdWMLu1ejYtxm3j+rK1//ZxL+e/ox6N0URFnNtwVKDj7+VJm3i+XHbSbatP8Rt93W65jZusZN/+Xn+tXhydv6AnB0hBFR8hCh/B1Af7goKsgAnavKxjOwKZTkuI3R02IVQBQ6X5uGoOTuXhqfU3BkBLnGjeoO0yNQkJ8toMFKpKK6KKOHKGVJzfzSYqFJktJKBapeHRhY6nK5QU5Vsd1VcqUnNoMemKBg0JipdCchq6MxVNSXb0Et6Kp2qvVFjpEK2Y9QYKHeo+TtmjYlSp9pW5VSPxktrochejU7SoQhwCAUfvYXC6kuTkm1YtEYqHWp6dqDRi4uucJWvzqwmJeuM2J0Kdlkh2GQlt0L9/FKhE2Ly4mJlOUaXuCm2VeNnNGGzy1Q6nYSYrRRXVeFQFKK9fTlfUooiIM7Hj8wiNYennp8/J10VV4n+gZwuKEQRkOgfQGZRkZp87O9PTkk5VQ4HEd7e2B0KBRWV+JlMBJjNnC4oQq/V0DQ0lD1ZahggJTaa7ZlZakVTWDD5JRXkl1fiZzGRGBjILlfuTveG9dhy5LSauxMcgFmj5dCFPLQaiX7NGrJ67zHVgxMaSIDFzI4TqodhYJvGbDl4mqKKKvy9zPRMbsCX3/2oCpu4cEK8rGzcp1bl9GnTkAt5Jfx4KhtJgnu7t2Lr/jOcvFCATqvhwX4prN1+lFMXCtDrtDw0oAObdh7j0OlcNJLEgwPbcfhkLt/tVb0ht3Vpir+XmbnL1HBP0/rhDO3dirc/3kBRaSVeFiPPP9iD9G3H2bBV9W5075BE/8438cYHqykoqsBs0vP8Iz3Jyy9nxqffqlVakQG8/FQ/Vqz9kSVpewFodlMU48b04Yuvt7N0pdqWfFMUE57tz/qNB5k9bwuKIoiK9OeVFwZSWWlj0uTl5Oer4mfUA13o3685s2Zu5uuvdwIQnxDMhPED8fYxM2XycnbtcInOlHo8O64fAFP/uZJt36tiKblFDM9NGEBQkA+LFmzl01npOJ0Kvv4WnniuLx27NKIwv5xpk1ewzZUXk9gwnGdeGUh8YihlpVXMmLqadcvV8YdG+DF2wgBaptQDYN/2U7z7j2Wcd+XJpHROYvS4/oRG+AFwPjOfD95Y7q6yCo8OYPQL/WnTKcl9r7qQmc/MKWls26jmBvn4WRgxtie97mxTS0gUXixl/rvrWPPlDhRZQaOR6HlnG+55vAdBYb517oEnD53ns3fXsXXtAXdbh55NGPxIN5KaxdSxr0F2ymxbd4Dln3zHPpfoBIiIC6L30Pak3tkW/+Abf+gLITh7LIdd6YfZt/U4B7efoqK0qpaNRqshrmE4DZJjqN8shvhGEcTUD8N6jfyh35LC3BK2bzjI96t+ZO93R3E6ZECtJrvrke7c8XA3TJbfJszldMg8P+R9Du08Tce+zRg//b4b2v7L/2xi9j9X0qFnE16aPvKa9is/y+D9V76hfY+bePnDEVe08+Ts/D9BCAVR9k+onAtcKnQUnCiXCB2NO2Sl/qvHLhzg8qgIaiqvJJfQcZWT1yQnCwVc3hq1wkq4+lJt1XwcGQk150YjGdxeG9UGtUJLkV2iRk0ytrtCYFoMLqFjpFJWk5pll2fJoDFT6bSjk/RUuUSQQTJSIdswaoyUO9ScI71koEK2Y9aYKHGoHiCDZKTUaceiNVHmytWxaNQycpPWQJXTiQKuvJwqtJIGLXpK7HZ89BaKXUnHAQY1RKWVtBglPcX2apcXx4YiINTkRbYrFyfE5EV2RRl6jQ6r1sDFygp8DCbsDpliRzWhFi/yyiuRhSDay5esUrXiqib5GCTq+QZwslCtuKofEMjxa1RcNQ4O5mhuHoqABoGBnCsspcrpJNrXl2q7g9MFRfiZTYRYrOzJykYrSbSOieSHM6rnom1sFD+ezcbmlIkL9EOHhl2Z59FrtdySGMfGg65E5PgosvKKOV1SjrfJyM31Y1i+S31wdWgQQ3ZBGTtOnMOo03Jb25v4ZttBHLJM/fAgYgL8WLRFzWnp3bIBmTlFbNx3Aq1GYli3VqzefpiLxRV4mQyM6NGaBet2U1JRTaCPheE9WzF7xQ/ufJ0H+rdj5pIMCl35PI/d1YkFK3dyNqcIg17L43+7hW17z7B0o/oX/h2pzQjz9+bld1eoCdqxwTw6tBPT5m7mzPlCtFoNj997C7JD4bk3vkZWBHFRgbz4WG/mf/UDW35QH+A9bmnEsEFtmfzuKo66QlTD7kyhV5fGvDxpCSdOXUSSYNjg9gzs15wpU9PYsfsMAKldG/PE6B58vWQnn87/XhU/UQG8NH4ABr2Oxx+bx0mXp2PQ7a0ZNaoru3ac5ukn5lNSUqV6eUZ3Z8BtLdn2/XGmTl5BcXEler2W+0Z14fYhKeRcKOKpR+Zy+IArwfyWJJ54vh9+/hY2rz3A+1PSKCupQqfTMGxUF+66twM6nZatmw7z3uQVFBaUI0kSA4e0ZeSj3TFbjJSVVDJz6hrWLlFzjwKCvRk9rh83d1dDWnabgy9mpbNo9rc4HDJ6g44hD9zC4L/f4g5ZVVXY+HzGJr6e+x1Oh4xWp+HWu9tz9+juePv+9HCvqrDx5ax0vpqdjq3KAUC77o0Z+XQfYl1VX5dy6vAFFkxb6xY5kiRxS79mDH0sldgGVw7JlBVXsGpBBis+/Y68C6oHS6NVvTj97r2ZZh0Sb+gFcwDlJZXs2XKUXZsPsyv9CPkuz1gNFm8TTVLqkdy+Po1bx5PQOBLj75jQfD0EhPrS++4O9L67A+UllXy7fA+rP9vK8R+zmD91FWkLvmf4s/1IvSvlF3u1atDptTz2xl081vstvkvbx4EfTtLEJaSvhwbJ6rvsTrhCtdezPwDZJeB+azyenf+iZ0cIJ6JkPFR/A4AsZBQETqEgo7iSiwWykHC6PDtOtyfHCa5qqZrScoH2pzwcJFcejgF7TYWVonp27EKBS8rOFZeYqbHRSEZsioyEFpuoSU7WY1cEOslElexQw1Su8JaEDvsllVYatO6kZr1kpMqVgFzhlF0l6HpsihOTxkypS8BoJLVk3aI1UWy3I6nBKWyK4i4trxE/FU4HVp2JUocarvLWWSiyVWHU6HHIEnZFwd9gocAVrvLVWyi0VWHWGnDKCvafl5abvMipUEvLffVmCqur8NIbkGVBldNJsNlKQWWl+q4cqw9ZpWrezqUVV1cSOvVcFVcASf5BHM1XhU6joGAOu4RO05BQdyJyclgYBy7kqp6akGAy84tU0ePni9Mhk1NajpfRQHyAP/svqA/rjvGxfHciU01kjgrjfGEpBeWV+FvMNAgOZPsp9eaS2qge3x/NpNrhJDrQlwgfb7afVD+7tWVDvj1wmtIqGyG+XrSpF0naLtV70LFRHIUllRzOuohWIzH0luas/uEIheVV+FlN3NWxGZ+u34nNIRMb4k+3Zol8unYnsiJoHBdKSlI0n6ze8VN+TpN4/rN0G7Ks0CAmmDs6J/Pe599SWe0gNMCbR4d0ZObirZy7WIJRr+XJe7uyc38mG7apZeW9OzYiJTmOt2eup7LaQZC/FxNG92LZ2n1s3qb+dd+jUyMG9WrGpGmruJBbgl6nZcz9XQnwtfDPd1dTXmHDx9vE+Cf7UVlh4613f6rAmvBsf7QaiUlTVlBYVIHRqGPsoz1o1TyWyW+ucL87p1ePJjz+WA82bTrMB++vw2Zz4utr5rnn+9OiRSwzPtzAMpfAqJcYwosvDSQk1JcZ761n5VK1PSExhHEv30ZcQjArv9nNjPfWYatWw1mPPtWL1D7JlBRV8t6bK/nO5U1JTArjmVdvIz4xlJKiCj58axWbXWGfqNggnnplIDc1i0EIwbdrDvDRmyspLlTzHvoPbst9Y3pg9VZLxXdnnOD915dxweXtaXVzfR598VYiXCEKIQTpafuY9dYqd6l3q471GTWuPzH1Qtz3MllWWPfVDua9s9Yd3mnYPIb7n+9Hk9bxde59mcdzmP/OWr5bpb5ewC1yHk8l9ip5J+dO5vLN7HQ2fLkDW7UqpnwCrPS5uwP9hnUgOML/ittejtxzhWxbs5+MtfvZv+2EOz8IwGDUk9w+keadkkhun0jCTVG/WjD8NxBC8N3KvXz8xjJyXOc1vlEED716O81ubvCr+3933Bes+iyD+k2jeWf5k9ctKivKqrmz2QQAPt/5Gr4BV39vz/pvdvGv576gVacGvP7xA1e083h2/uQIYUMUPwm29a6X9akJtU4hIyOQUVwvB0QVOkLjCmnpXNVXNWXhauKxWlklLhE6rpydS8rOJYzYXS8LrHaFp2ShiiLhEhYayYRNcbrEjKs/oZaka11CRyv9lLgshBaHkN0JyFpJ76rQqvH2ODBqTJQ5f3pZoE2R3UJHgxYZXELHTLHdhlbS4lTUFwj+/B06FU4nPjoLRa536Fi0rpf6aU2U2h0Ilxcnv7oCDRrMWiOFNjUpudSmviIx2OhFrivpOMhoJaei3F1aXlhdRaDRQomtGqciiLD6cKFMFTcxXqq4UYWOL5klxWiAaKsvp4uK0Wm0hFu8OVVYhFGjI8RqdVVcaQm3enMsvwCDRkusjx9HLqm4OuASOs3Dwtl7PhsJiRYR4ew7n40Q0Dg0mKz8EsrtdsJ9vDFqtey/kItJpyM5IozvXULnlsQ4tp/KwuaUiQ/yx4CW7afOodNq6N6wHutcicgtYsMprbCx/eQ5DDot/Vs0ZPn2wzgVhUaRIXibDG6hc3tKE7YcOEV+aSU+FiO3pzRh4ea9OJwyiRGBtEiIZNaqHwDo0DgWH5OJuavVfJzebZNwOGTm1uTndGyCwyHz0ddbAeiZkkS4vzdvzt0AQMtGUfRKSWLyrHVU25yEBfkw9p7OzFz0PafOFaDVahgzrDO5F0uZ+N4qAFo0juKBu9ozZfo6si4UodNpGHNfV/T/x957R0dVr+/b1+zpk0x6TwghhBZCL6H33kFRREURAUGUIqKANLugHPSIBUVBFBGBICC9NykBKdJrgJDeM73s94+9Z5JAKHqO56zze7+ftViSaZmQmLnnee77upVKJs76GbvDRWSYH7Mm9WbPwUvM/2wbAHVrRzFtvJS28qytGiTFMG1ybzZtOcV3yw8iihBXNYTZ0/qTmVnIqDFLKC62oNdrmPByN1q2SODDeRvZs0eKxTduEsfrr/elqNDM2FHfkiZHzR99rDnPjezAtSvZjB3+NbduSuL30SdaMHxUB0qKLcyYvIIj8vqoYZM4Jr/Rj7AIfw7sOsfH722gqMCMUikwdEQ7hgxvg0qlZN/2M3wqCxlBUPDo0615enQHNFo1uVnF/POddRyWzcux8aGMn9mfujKvJD+3hEVzN7JbFhvBYUZeeK0PbbrW9XpKrl3I4LO31/OHnMSKqBLE6Nd7k9yxTgXfSereCyz+4FcvVyeiShDPvdqLNj3q3eVPSb+Www+fbGP3ut8RRfGhRI4oipw4cImUr3dzdOdZ7+XxdaMZ8Fx72vdthEZ3d5LrXufWlSz2rv+dg5tPceWOKUOVGuE07VCHJh3qkNS8+n99cvNXjkKhoG2fRiR3TWL9kn2s+GQL187d5vXHP2XU7IEMfL7jv/T4wyb3Yve641w6fZPU3edp3inxoe7nY9QRXS2U9PacZnwAACAASURBVGs5XP7jFk3a1brv7T3C0ul03/d2f/X8n9j5DxzRXYpYOBbsh7xCR4IBSpMdj9BxiqIkfETKeXYqCh07LvAajlU4QY6hSz4ctyhNdsqEjkYWOkqv8ViiIkt+HJvbiVBOzDjcStxycsrqckhrKrc0GXK5keZJCh0ml+MuWKDN7awEFuhGK8MC1Qo1VpmroxMkoaMRPP4dEV8ZBqgW1NicIi7Zl+Nh6KgVaorldVW+VZryBKgN5FpNaAQVoihQ7LATVG7KEyILHaVCwEepI9tsxk+tw+xwYXHbidAbyZS9OuWj5TE+krhRKgTC9L7cKCpCp1QSoNZzo7gYH7UGg6DmVlExfhotakHgVnExAVodGoWStIIijBoNRrWGK/n5GNRqwg0+nMvKQS0I1AgK8UbLG0dFcvyWZERuEhPFyZsZuNwitcJCyCkxkVFUQrCPgXAfH45eu4VSoaBdQhy7ZSNyoyqRpOcVc73ERIBBR72ocLZ6jMiJ1fn9ajoFZishRgNNqkaTIkfH2yfGk5ZdwPlb2ejUKga1qMeaA6ewOVzEhwdRr2oE322XjMZtk6rhcrpZtVd6sRzcrj5nr2bx2+k0BIWC4T2bse/EFS7dkvg5Y/q3YlfqJa8/Z9SAlpy+eJtlstfmsW6NUKLg/W8k4dMsKZbebRJ5+/PNmCx2QgJ8eG1kN1asT+W4bDoe2rcpCbEhvPrOGqw2J2HBRmaO78WmnWfYuFNai7RqGs+Yp9vz4WdbOHVWWg091r8J/bo35M0P1nvTVk893oL+PRvy3ke/8vtJKbbeq3t9xjzfke+XH+TnVZJvqEaNcGZM609RkZlRI78hK6sIpVJg+HPteOyxZNalHGPRF2XJrCnT+tKocRw/fX+Q7+RIeXCIkSkz+tG4aTX27z7Hgvd/pbjIglqjZMSYzgx4rDlmk425s1LYsVH6962WEMbk2QNIqBVJYYGJT9//lX3bpe9b1ephvDJrALXqRiOKIptWp/LV/M2YS22oVEqGjJRXUhqVFDdflcq3C7ZQWmJFEBT0faIFw8Z18YIBTSVWlv1zG+vlBJhWp+bxUR145Lm2FeLhaZcy+eq9DRzbJ03cfP31DH2xC32ebHkX9Tg7vYDl/9zGttWp3ulJq25JPD2xO3G1Iiv9Pelyuti38SSrvtjpFSUKhYLkLnUZ+Hx76rVIeGizb+aNPPauP86edce5eibde7kgKEhsFk+rHvVp0a0ekQ8BJfxfORqtmkdGd6LrY8l8++46Nv/4G4tmp1BSYObpyb3+MrMnIMRI98dbsHbxHnasOvLQYgckbED6tRwyb+Y98LYu+edEpfp7pmn/J3b+5iO6CxALngfHaVloOGQIoGSilcjGyKsscImi/F9BXmWpsVcQOtLURvTCAxVeH45HxOAVOpJJGRkeWEZFpiyFpZB8OaDEUY6KbHM7y1GRVbKfR4qbS1TkMligKAper06J825YYIlDBgO6PL4caSWlV+oolr06km/Hik6ppdQueXruZOiYXU5Z3JQxdPJtZnxUWkwOFy7RVSFaHqiWYuQ6pRrRraDQZiVYayDPYkZEQbTBj3RPtNwgRcuVCoEQrQ83i4vRq9QYBDWZpSX4a3SILpEsk4kQvQGr3Umu1Uy4jy+lNhvFNhuRvr6UWOwU2W1E+PpitTnIKCkl1GBAIcL1/EL8dVoCNHrOZeWgVSpJCA7m91uexFU0R66nS6KnShSn0zOxu9zEBwdit7s4l5GDr1ZDUmSYV+h0qFmNw5duYHW6iAsJxKjWsP+CJEB6N6zFlhOXcLhc1IwMwajRsPWkJIIGNa/LjlOXKbbYCPf3pXXNqvy4W4LjtapdFbfDzfrfpHfVQ9o34NDZG6RlFaBVKxnerRmr95wmt8iEn0HLcz2bs3TTUQpLLQQZDYzq14Kv1h4q589pw7INqdzKkmLrE4Z2YOfhi6SelUTMU72bolYKzFkoTW8a1o7m6b7NmfvVNrLzSjHo1Lw2qhtnLtzm7U+k2zStX5UXhrZh7ufbuHQtG0FQ8PzQNtSOD2f89BUUFJnxMWh4/eWeCCgYM3EZpSabBA6c3BuVUmD0+O8oKDCh06l55eXuJNWJ5rVpP3FeZsIMGtiU559rT8qaVL75Zg9ut0hkZABvvNGfiEh/Zk5fxeHfpOlMi5YJTH69N3ark1df/p7TJyQB1bZjHSZM6YVSKTDvrV/YJouZ6jXCeW32AOLiwzh2+Arz31xHbnYxgqBg8LDWPDWyPRqNin07zvLP9zZQVGBCUAoMebYNTzwvXXf7Rh4fv/kLJ2UjdO16MUyYPYC4BMkrc/1yFp/MWctZ+bkk1Ili/KwB1KgbLf1uEkV2rvudxR9uoiBXYpu06Z7EyCm9CZNNzABF+Sa+/2QrG2WujkqtpN/TrRgytjPGO5g1hXml/PTZDjb8cBCnXVqWN+9Yh6cndichqfIeI6vZxtaVR1jz1S6y5CmYVq+h2+PJ9B/ejuhqDxcbLy4wseeXY+xck8p52XcFUkKrUdvatO3TkOSuSfgH+T7U4/2vHr9AH16eO4Tw2GCWfrCBHz/eQnGBiTFvPfqX13KdBjZl7eI9HNp2BlOJ1bsWfdDxmNNzM+8f0Qewmu0AfxvJ+m8VO3v37mXevHkcO3aMjIwMUlJSGDBggPd6URSZM2cOixYtoqCggOTkZBYuXEjdunXv+7ifffYZ8+bNIyMjg7p167JgwQLatn1wtO0/fURXFmLBcHBeRkSJS7SVMx4rcOKBA1bsuXKKCtnDo5KrG8rBAd1uOVouTWIkw7Andg6ehFVl9Q8eIzOygKqMiizKQECVQo/J7axARQZpMqMW9JQ6HSjlVZoIkvhxVg4L9DB0yl9WHhaoUWgoddoqMnRUEkNHr9RisktfbXmGjlaQTMeSP0cSPx6hIygEfAQdeVYLfmoJEOhwuyokrjxCR0AgVOdDeqkULdcp1GSaTARodTicLvKtFsINvhSYrdjlCHl2sQmH201V/wBuFRXhEkXiAwK5WVDkTVmlFxRhd7uJCwggp9iE2ZO4sru4UVBEoF6Hv0bH2cxstColtUNCOSoLnfLVDw2iI7ienU+x1U6Eny9Bej2Hr95CKSjoWLM6O89ellZVsZHkFJr4IysLH62GNjXj2HBMWre0qlmV9NwiLt3KRa9R0bdJHVIOncHpdlO3SjgBep132jOoZRLHL9ziRk4hOo2Kpzs14addJyiReToDWyXx7caj2J0u4qOC6dwogU9X78PlFqkdG0aXJjX56IfdOF1uEmJCeLRDfT7+YQ9mq4PIED/GDG7D5z/tJzO3WK596MTOQxc5+LuUyBrcvRFVo4KY+uE6HE4XsVGBvDayK4uW7+f0eekd+tODkklMiGTinFWUmmwE+OmZObE35y9m8uqcVbjdIgnVQpk1uQ8bNp9iZYqUlqpbJ4oZr/Zh87Y/+G65xACqFhfC7OkDSLuew6gx32Iy2fD11TJlcm8S60QxY8Yqjh+7DkDHjnWYOKkn58/dZtTwr8nPN6HWKBk9pjP9BzZh765zLJi7kdISK3q9hhcndqdbr/qcPXWL9+esJSujEEFQ8NhTrXj6+fa4nC4+/eBX1q+Snl90bBCTZw0gsX4VigvNfDQ7hd1bpIlVtYRwXpk9gBp1onC53KxZdpCln27HZnWg1al59qUu9HuiBUqlgN3mYMVXkgHZ6XShN2h45qWu9B2SjFIlmUCvXcxk4Zu/cEb+2qLjQhj7Rj8at67h/f3lsDtZ//1Bln+63UsxbtU1iRGv9bqrpsFUYiVl8R7WLN6LxSTFwOu3qM4zr/QksUlcpb8fS4vMrP9uP2u/3kNxgeQx8gvyof/wdvQZ1ga/wAd3M9ltDo7uOMuO1Uc4uvOsN50kCArqtaxB+36Nad2rwUM91v9LR6FQMOSlbvgF+vDp1JX8+t1+SgrNTF7wVKXdYw86CfViqJIQxs3L2RzcfIqug5s/1P08YifvIcSOzSqJHZ3hf1DsmEwmGjRowPDhw3nkkUfuun7u3LnMnz+fJUuWULNmTd5++226du3KhQsX7lny9dNPPzFhwgQ+++wzWrduzZdffknPnj05e/YssbH3jiz+p4/ovIFY8Cy4bnFnz1UZQ+dePVdiOf+NWvboeEzE96p/KCMeIwsdT/2DolyX1cNQkZUKHSa3U05hScLF4+NRKySho1KosbrceASMSfbq3A8WKIpKLG4XPkoDhQ6b7MtRYnE58VUZKJB5OTpBQ7HjToaOj8zQUeN2g8npIFAjcXU86ascSykaQYVCVFJktxGs9SHHfHe0PEJvJL20GK2gQq9Uk2U24a/RYXO4KHBaiTD4kmc24XSLVDH6c7NQWm3F+wdxVTYiJwQGcTlfNiIHhXAhp8yIfD5bAsjVDgnhck4eLrdIzZBg0vOLMTsk87HFaietoJBAvZ5gvZ5T6ZmolQKNoqO8QqdVtViOXL0pCYnwUErMVs5l5GDUamgQE8mOM9JUoWPteFIv36LUZicq0I8qgf5sPSmtGno3rM2+M1cpsdoJ9/elcbUofpaJyB2TqnMru5CD19NQK5U81b4Ra/afpsRiIyLQSPfGNfl28xFcbpF61SKoGRXGovWHAGhXPx4/vYav5Y+7NauFj0bNwlX7AYmfUyU0gLlLdwLQpE4VujSvybtfbcVmdxIT5s+4J9rx6Q97Sc8qRKNWMXl4Z06fT+ejr6XVVofmNejXqR6z5q8nv1Ca1Ex7sQcXr2Qz7f21ACTVimLK2G58sWQPv6VKgqlXl3o8+Wgy739U1m31+KBmPNq/Ce9/tJHjJ2TAYI/6jB7RgSVL97FWNhAnJkbzxrR+3LqZz8iRiyksMEt9Vy91pUuXuiz5Zh8r5f6qqnEhTJ85gIgIfz56bwNb5PqF2onRTJ3Vn7AIf5Yu2s2K76QkV3hkAK/N6k9Sg1jO/3GLD2amcFueZPR7rBkjxnVBp9dwcPd5Pnl3PQV5pd5pztCR7VGrVdy8lsP8WSmcOyn9jDRsHs/4Wf2JjAkC4HTqNT6es5Zbsn8ouUNtxk3vS2iENKmxmGx8v3AHa787IMED9WqGjunEgGfaVKh4SN17gS/e/oV0uTcrvk4Uo6f3pf4daRyH3cnG5b+x/NPtFMum6BpJMTzzak8at6lZ6eqkKL+UtYv3sG7JPsyyiIqoEswjozvSZXDzh6pwSLuQwablB9m5+iglhWWk5OpJMXR+tBnt+zX5S71O/6+dXk+1xtdfz7yXl7F33XEMvjrGzx3ypx9HoVDQcUBTvvtwI/t/PfHQYicoXPoe5GUXP/C2ZZOde/uxXC43X83d+FCf+87zt4qdnj170rNnz0qvE0WRBQsWMH36dAYNGgTA0qVLCQ8PZ/ny5YwePbrS+82fP58RI0bw/POSW3vBggVs2bKFzz//nPfee6/S+9hsNmw2m/fj4uIH/8P/K0cq9BwO7py7hE75Qk+7t/ZBWmVV7LlC7rlyy4bjOzw7sg/H02F1V/2DQovNXbH+wSUqkek2XiqyxeUGBJxuytZUbhdqhTShUcjrLYmKLFc9yAWfyNMei2xA9sACnW6F3FZeDhbolPxIBqWeQrnY0+mWfDmS0LGiVChRIGByOeQVlTSx8VXqybdZ5HWVA7eIFxaokNdZeVYzviodFocTh9vpTVyBgnBZ6KgUSvzVOjJNpfiqJShgoc1GuN6XHNPd0fI4v0Cuy4mrBH9J3ChQUCMwmEv5d0fL64aEcqaSxFW98HDOZGQjilA7NIQbeYVYnE5iA/yx2Z1cycnHX68j2s+PI2m3EBQKWsXFcuCy9KLcrGoM529nS2ImwEiw3sCBi9KqqlvdBLafvozLLZIUE47d7uLI5ZuolZIRecNRyYicGBOGj0bD5t8lETS4ZT12nLhMQamFYKOBno1r8f2OY5KwiYugSnAA322T/Do9mtaiqNjCGtmvM7RzI85czWDfiSsICgXP9U4m9cwNTl6+jUIBz/VN5tK1bL7bIBmVB3dtiBKBud9KIqZF/Ti6NK/Jmws3YbE5iAz1Y/Lwzny98iDnr0gen9FPtEarUvHa+ym4XG7iY0N4bUw3Fi8/wFGZhvxI70Z0bVuH195cQ2Z2ERqNiomjuxAeYuTFSd9TVGzB10fL6xN74WfUMWb8MvLyS9Hp1Ex6qTtJidFMee0nLl6SjLZDHkvmmWFt+P77g/woG5arxYcyY8YA1GolE1/6nvPnJLBhn36NeOHFLqRdy2HMc19z+1YBCgU8Maw1Tz/XjszbhUwctYQL8u279KzPi6/0QKtVsfSLXaxYsg+3SyQkzI9XZvancXI8pSUW5s5cww5ZNMXGhzJ59kBq1Y3G5XSx8pu9LPt8Fw67E4OPlucndafnI01RKBSUFltYPH8zm1ZLU6LAEF/GvN6Htt2SvH1Xv+04y+fvrPeuFFp3rcuo1/tUWFndTstl0bvrOSwnwQKCfXn2lR50GdS0wgpEFEX2bTzJt/M2eRNA0dVCeeaVHrTpWb9SkZOfXczqRbv4ddkBbBbphS22RgSPj+tC+76NvFOnex2r2eaNWp+TJ1IgQf06DmxK50eaEVc76r6P8a8cl9NFXmYRObcLyL1dQEmBCXOpDXOpBUupDUupFbdbRK1RoVQJqDQq1GolxkAfQqICCYsOIjQqkODIgL/UN/VXT7u+jdHo1Lw14ms2Lz9I0451/jQRGaBphzp89+FGzqRexeVyP9RKzOAjrbs8WIL7nSJZLHvggpWdjBt5bJZrV/7s+a95dq5du0ZmZibdunXzXqbVamnfvj0HDx6sVOzY7XaOHTvG66+/XuHybt26cfDgwXt+rvfee485c+b8+578fY5oPyl5dMSiCkJHKvRU4cTTb1W+0PM+PVeiWo6Oa3HgiZ+L3K/+QYFWTlh5jMcecrIsTipQkVXelnKQKMceKrJSofImrQQ0mFxOLyxQUY6ro5WFjkqhxuKUhJtOkIROBVigTEXWCRpMclrLRykJHY0g0ZldosvL0PEUexba7XLlgyR+AmWho1Io0ShUMkNHT75Fuj5cVzbFCdH6kmkqQa/UoEQgz2ohRCdRk51uUaqBqCxabiyLlsf7SUJHqRCI8w/gUn4eSoWCav6BXMjJQ6kQqBEYzNnsHAQgMTTMK3TKJ64aRkVyqlzi6kZuISa7g2h/PwSFgrOZ2Rg0auqGh3qFTrsacRy8lCbFuiPDKDFZ+eOWtKpKrhbDFtmD07ZWHOdvZZNbYibQR09y9SreqgePEfnczWx0GhWDmkuN5Q6Xi5pRISSEB7F8p+TX6d6kJln5pWw6eh5BoWBY16bsOnaJG9mFaNUqRvVJ5uddJ8nKL8FXr2XMgFYs25hKVn6Jt99qxebjXM/IR6NW8vKQduxJvULqGck3MqxvM9wuN+98uQWQjMmPdG3I259uprDEgr9Rxxtje7B933m27ZNecLu0qc2Abg2Y9eF6snJK0GlVvPZid6wWB+OnrcDucBEV4c+cKf05dOQK8xZsQhQhIT6M2VP7sXf/RRYv3YvbLRJXNYQ50/uTlpbL6Be+xWS24eenlysfQpkyZQV/nJbj+X0bMWZsZw4euMQ/PtyE2WTD11fHpCm9aNO2Fj//+Bvffrkbl8tNaLgfr8/sT70GsWxa9zufL9iKzerAaNTx8pRetO9SlxvXc5k7cw2XzkmeoE496vHilF74GnUcO3SF+W+uJTdL8u088nQrho3uiEar5vrlLD6amcIl2WjbtHUNxs/sT6i8Ijiw4wwL31nvLe3sNbgZz03o7i3LzEov4LO313Fkt7TWjIgJZMwb/Wheru/Karaz4vMdrF6818vV6T+sNUPHdcHHWBGad+rwFRa/t4GLciQ/MNTIUxO6031ws0oFS35WET9/sZON3x/EbpNe9BKSYhjycjdadkt6YJT55uUsfv1uP9t+PuydBAlKgRZdk+gxtBWN29f+t0XERVEkL7OIGxcz5D+Z3LiYQeaNPAqyinC7/3VSi0KhILp6GHWbV5f+JFcnMi70by39bNG1Ho+O6czKhdv5dOpKkpKr/2nvUnxiFHofLaZiK2kXMohPjH7gfdQa6efB832/3/H8/N4PCnntQuY9r3vQ+a+JncxM6UmHh1cET4WHh5OWllbZXcjNzcXlclV6H8/jVXamTp3KpEmTvB8XFxdTpUqVv/rU73lE2yHEwjEgmmQRYitX6OkROncWego4RPcdQqd8z5WIFDd34um5KktjVV7/YL9H/YMbFXZPS7nL01IuzXpc8u1UstApoyJLHh+L24VW0GNySiLIKhd7agQJFqgRNJhkUaMRtJS6bOiEMgOyx5RcHhaoF3QU2qViz1KndJmfShI6aoUKtyhgcjrvYujkWs1eho7J5biLoeOZ4viotORYTPhr9JjtTixu+x2t5f7cKJJWVHG+AVyXo+UxPv5cK5Sj5XpfrhUUoFOqCNYbuFpQgF6lIlhn4Eqe9Pcwgy8Xc3PRKpVUMfpzNjMbtSBQO6TyxFXj6EhO3szALUKd8FAyikootFgJ8/UhUK8n9bpU/dAqPpZ9F64D0DI+lrM3syi22ojw9yUmwJ9dZ+S1TYNa7Dx9GZvTRXxYEKG+BrbIE5yBzeuyUzYih/n70rJGLD/ukaLXbRLjMJvtbE69KIH1OjVhx7GLZOSX4KvTMKxrU77feowSs43wQCOPdajPV+sPYbM7iQ0P5JF29fjnT3uxOVzERgTyVLcmfPrTPkrNNkIDfRn3eFsW/XyQ2zlF6LVqXnmmI9sPXODwKelrerJPU4KMBt6Yv15a9VULY/ywDixYvJMraRLteeyw9ug0aibNXoXD6SImMpBZk3qxduNJNm6X1nGtmlfnpRGdWPDZNo4ck8y6vbvX59knWzP/ky0cOiIBFrt1rsuLozuzbNl+1qyVplZ1E6OZMb0/V65kMWrUYkqKrfj4aJn0Sk9atEhg4Sfb2LhB+veqmxTDtBn9UakEpk5cznE5ot22Yx0mTumFKIq8NW0V+2VR0bBJHK/O7E9IqJH1Px/lq4+3YrM58fXT8dJrvenQLQmrxc6n729g/c/SFCyqShCT5wykboPYsmnOZ1Lay9eoY9SrPenarxEKhYL83BI+e3c9+7dJojY6LoQJswZQT+bcuJwuUpYe4HvZ26NSK3nkubYMGd3RuyoSRZH9m0+z6N2yiU/jNjUZPb0vsQkVf8/euprDNx9s4Df58+l9tDwysj2DRrSvtO8qL7OInz/fwablv3lf7Go3rsrQ8d1p2qHOfV/cXU4Xh7b+wfql+zh54KL38oiqwfR4oiVdBycTFH43mfnPnuL8Ui78nsaF49c4f/w6F0+kUVJw724mlVpJSGQAIVGB+AcbMfhqMRh16H116H10CEoFTocLp92J0+HCYXdSlFdK7u0CstMLyLldgNPu5NblLG5dzmLLculNemCoH43b16b38PbUaXI3p+jfcZ6c1JND2/7gxsVMvpixmtcW3ptSXNlRqpTUbhzH7/sucObo1YcTO3Kaz2FzPvC2BXJNxP0mO55C2b9y/utprDt/4D0shn/nfbRaLVrt39cUCyBadyAWjgfsEgVZvLPQ0869Cz2V5eofFN6Vk0Q91tzRc6WRzcRlIkaqdgDQyEJHoiLfq/5BEjparC4nIOAUJYHloSKXj5R7vDoahSR0VF6ujoBaocHssktcHVnUKBVqzC7JlFwkwwKVCsnT46PUe8GAGoWWYodD4uo4Kq6r9EoNZodElfYwdBQoMKh092XoBGskho5eqUEUodBmJVTnQ67FjChyV7T8RpFU7BlpMJJWXIhWqSRQreemHC3XC2puFZfgr9WiROC2t8xTQXpRCUF6PSoEbhQW4q/T4atUcyUvHx+NhgiDL2cyclArBWqHhHoTV01jokhNuy39PTaaU7cysLvcVA8JwmK1czEzFz+dllqhwey7eB2Qqh/2nL+KyyVSOzIUh93FsavpaFVKOtdNYJPcWN4sPob8YjNHLklE5P7NEkk5fAany02dmDCCDHrWHZYSVo+0qseRs2mk5xXjo9MwtEMjlu84jtnmoEpoAF0a1eDLX37DLYrUi4+kXrUIPl0t+XFa1o2jWkQQC1bsBaBVvTjqVYvkgyXbpeLPGlH0bp3I+4slfk50mD/jhrRl4Q97Sc8uQqdV8epzXThyIo3lv0hrlx7tEunQNIGpH6yl1GQj0N/AjJd7sfPABX6VRU2b5gmMGNKK9z7exKWrcgLryTY0qhfLxNdXkJVTjEajYtKLXakWG8JLk74nK7sYtVrJ+LFdadIwltenreTCBekX5pDHWzDsqVYsXbKflSsldlDNmhHMmDEAu93JuBe+5fq1XGk99VQrnnm2HalHrjDvnfUUFZrRalWMndCdnn0bcuLYdea9+Qu5OSWoVALPju7Io0NbUlRgYubEHzkiV0Q0To7nlZn9CQnz48zJG8ybmULGLdm383hzRrzUFZ1ew42r2Xw0I4ULcgS7eduajJ/Zn+AwP0RRZGvKMRbNk8zQglLgsefaMlSeBAFcOH2TT2ameF8ckppWY9ys/lQtJ2BuXM7i87d+4YTM+wmPCWT09H60kEnLnlNSaOaHT7ax4fsDuJxuBKVAzyHJPPlyt0rfhRfmlrDys+1sWHbA+yKX2KQaQyd2p3HbWvf9XV1SYGLTDwdZt2Sv19QqCAqSuybRe1gbGrWt9adJyRWeW04Jpw5e5OSBi5w6eJFbMoqg/BGUAlHVQqlaK5LYmpHE1owgsmoooTGBBIQY/6XP73a7Kcwt4fLJG5w5coUzR65w4fc0CnKK2bHqCDtWHaFmw6r0f74Dbfo2rrQZ/q8ejVbNpPlPMqnffHb/coxHXuhEQr0/96Y/sYkkdi7JU70HHaXKw855MBXZI7bv57W6fDb9ntc96PzXxE5EhASUyszMJDKyjLuQnZ191+TGc0JCQlAqlXdNce53n//EES3rEIteA1zeQk9pS+jX1gAAIABJREFUUvMwhZ6eniult+fKKQoyo0aNq4LQkYjHZVFyT7WDAklAPWz9g4eKrMQmU5WlRJajAhXZ49WR/Dt2+b9lVGSL2+GFBSoQACU2twuD0kCh3YagUOIWBSwuV6WwQKNKT6EMC/RMeSRTsjTlCZSFjkqhRKlQUWy3E6gxkC9PeULLMXQMgpYcixl/jSd95a4wxfG0lnsMyjeLi9EIKvzVWm7LreWCKJBlMhGsN2CzO8mTo+UlVhtFThvRRiOFJhtmh4Noox9FFisFdguRRiNWm4PbphJCfXxQigJX86RizzAfH/7IyEKtFEgMC+OYLHTKJ64axkRyNTOPEpud6AA/fDUaUtNu31X90KJ6FS7fziWv1EKwr4Gk6DCv0OlevyZHL96kwGQhxGgguUas14jcPrEaGXklHDyXhkal5Im2DUnZf5pSq53oYD861qvO4k2HEUVoWjOGcD9fLxiwZ3JtLGY7P26TDLyPdWrI7awiftwqffxEt8YUFJj4KuU3APq1T8Jfr+P9b7YD0DypKt1a1uKtzzZX8Od8+eN+Ll2XpjcvPtUei8XG9A9/QRShbs1Ixg/vxD++2s75y1neWHlC1VDGT/+JklIr/n56Zr7Sh4zMQsZP+RGH00V0VABvTuvPH2fSeWnyDzgcLqKjApk9vT852cWMHruE0lIbRqPOu7aaPPlHzp2VfDUDBzVl5MgO7Nx+hk/lKUxQkA+vv9GPpHpV+OqzHaz+SRJF8QnhTJszkKjoQG9LuShCTGwQU98cRI1akRzae4H5b6+jqMAsMXXGdaH/48m4XC6++XQ7Py/dj9stEhruzyuzB9CoeTwul5ufl+znu4U7cNid+Bh1jC43zcm6XcDHc9Z6+6wS6kQx8c2BVJe9KmaTjaULtrD+h0OIoojRX8/zU3rRdWATr8iwmGwsX7iDlG/34nK6UWtUDB7VgcdGd6xgDnXYnWz4/iDL/7nN23LevGMdRkztc9fUByRRtPrLnfzy7V6v2TSxaTWenNCDRm0rNyt7zs3LWaxdvJsdPx/xkpL9g33pMbQVPZ9sRbhswP6zx2axc/q3S6TuOsvJfRe4fv72XbeJrh5G7UZx1GpcjVqN44irE/VvFRnljyAIBIX507xrPZp3rQdIpZ8Xfr/OthW/sSsllYsn0pg3bilfz0lhwKiODBjV6d/2fGo1rEr7/k3YlZLKin9u5Y1FI/7U/WNkinZGWu5D3d4ufy8fBGu02xzeGpCoqpUXjrrdbs4/pMiq7PzXxE61atWIiIhg27ZtNGrUCJA8OXv27OGDDz6o9D4ajYYmTZqwbds2Bg4c6L1827Zt9O/f/z/yvO88onk5YvEcpOZyERcumYLskOnGDnmVVZnQ8fRcKXFAhXi4ZGR2Symse/RceWLn0jrL7RUz5esfPIktDzHZK3QUZXFzZCCg2ktFVt2XiuwRNR6ho1SocLhF3LjRy7BAtZzWciPKJZ1W1AoVdpdkXvbAAgWkbqsSR0VYoOTbMaFTarC73NhcTkK0PuRYPFMcSeh4GDpFdhshOh9yzSZEylrLPQ3m6SXFqAUlfiodGaWlGDVaFG5Pa7mBEosDq8tGtK8fOSWVR8tvFBThcosVyjyrBwWRnl+EzeWiakAAhaVWim1mIoy+KNxwJTcfP52WCB9fTt3KRCUINI6JrDRxVScilIJSCxfzc/HX60gMD2XnWUnodK2bwL6z17A5XVQPC8JHo2HvuesICgX9m9Rh47EL2J0uakQGE2L0YaMcOx+UnMTe01fIK7EQ5GugZ+Oa/LDjOG5RpFH1KEKNPvwg+3X6tUzkZmYhGw+f94IC9/5+mcvpUpHnmAGt2LDvDNdu56NRKXlpcFs27j/LhevZKJUC4x5ry9HTaaw/JcWln+jZBI0g8M4XFf05b326iaISKwF+et4Y24P1206x74j04t2/WwPaNU9gyjtrKCq24OerY+ak3py/kMHrb62WajVqRjJ9Qi9+WHmIzdulz9WmZQ0mjOnCl4t3s32XNL1q26omkyf04KefDrFCntzUrh3JzDcGcO1qNqNHf+NdW02Z0pvGTeL4aO5GdsrwvqbN43ltWl/MJhsTXljKJXkiNGBwM0aO6UxOdjETR3/LRdmD07N/I14Y3w0F8PF7G9i4RlqVVasRzutvDSKuehjXr2Qzd8Zqrsjeg869GzD21Z74GvWkp+Xx4YzV3qRV09Y1GD+rP6Hh/rjdbn5deYTF8zdjMdtRa1QMe7Ezg4a19vpkDu08y8K31nnfIXfq25CRr/cmQPZmiKLIwa1/8MXbZbdJ7lSH0dP7EVmu0VoURY7uOseid9aTfk1KFsbVimTktL40bnt3/YDFZCPl692s+WoXpmLJU1OzQSzDXu1130mOKIqcOniJVV/sJHVXRVLywJEdade30V96kc9My+XojjMc3fEHpw5evMscWy0xmgZtatGgdU3qNq+O8b8cS9fo1NRrWYN6LWvw3BsD2fTDfn6VJ1vfvvML21ce5uV5Q0lqkfDgB3uI8/i4ruxKSeXgplOkXcygas3KIY+VHQ+EMePGgyGBgFe43i9hJT1ePqIoYvDV3XONlX49l9Iiy5+iZ5c/f6vYKS0t5fLly96Pr127xokTJwgKCiI2NpYJEybw7rvvUqNGDWrUqMG7776LwWBg6NCh3vt07tyZgQMHMm7cOAAmTZrE008/TdOmTWnZsiWLFi3ixo0bvPDCC3/nl1LpEUsXIZZ+CJQv9BRlGKACF867msvvXegpyJMUj9gR5Z4rSejcq+fKk7DyiCGlQotVXmHZ5NWYW4YNVqx/kOPmooBLdHvrH8p7dQQ096AiixWoyBKUUIFO0MkGZK1XGBmUOoodVnSCVjYqi2WwQEGF06XA4q4IC/SVKyGMKqkSwg1eho4nfZVjMWNU6zDbnTjcLsLLkZA9QkepEAjW+HC7tASDSprc5FoshOgNlFhs2N0uon39yCguwS1CNf9AruUXyNHyYC7LiauaQcFczMnj7jLPMM5nSSmrOqGhXM7Jx+lyUz04iNwSE8VWG5F+RgQ3XMrOw1erIS4wkCNp6VLiqlosBy6VJa7OpWdhsjuoEuiPUaPh0JWbqASBLonV2XpKqn5oEhdNTlEppzMz8dFq6JQYz1p5NdWyZiz5xWYOXbiBRqVkcMv6rJaJyNUjg6kZEcyPuyT/Sc+mtbiVU8S245dQCgqe7daMLYfPk54rrbVG9k7mu81HKSixEOxnYHivZL5ae5Bik43QAB9GD2jFF6sOkF9kJsCoZ8LQDixZe4i0DAk8OGlYR/alXuHAcclX9ETvJoT4+Xj9ObXjwxn3VDs+WrSdtPR81ColE5/vhNlsZ8rba3C7RWrEhzFtXA++/n4/B49Koq9fjwY82qcxc95fx2V5lTXymXa0Sq7Oq9N+4vqNPARBwegRHejUrjYzZ6/mtGw4HjSwKSOGt2PZsgP8tEKKzNeqFcGMmQMxldoYM/Jb0m/lIygVPPd8Bx4b0oLd28+wYO5GLBY7Rj89k6f1pVXbmmzfdIp/frgJi9mO0ahj4rQ+tOlQh0vnM3j/jdXcSpN+dh59qiXPjOmESiWw5oeDfPOpNLHx8zfw8vS+tO2ciNvtZt2Kwyz+xxZvT9aoyT3pPrAxCoWC2zfz+MfMFE7LHqHERlWZOGcgVWTYXkFuCV+8s569m6VJXkSVIF6aNaACM+d2Wh6fv7WWVLlOIiImiBdm9CP5DhrujctZLHp7HcfklvWAYF+emdyTrne0nIM0+dm0/Dd+/GQLhTKUMK52JMMm96JF16R7ihyXy83BTSf5+fMdXJLp1QqFghbd6jHgT5KSPefW5Sz2//o7+zf8zpXTFd/9B0cG0KxTXRq3r0O9VjUICPnzrej/qRMQauSJCT0Z/GI3dq05yjdvpXDzUiavDpjPwNGdGDFj4ANTaw86VWtF0qpHfQ5uPsXPn+1g8oKnHvq+EbIozssswma1PxAA6BGaDxI76dclUR0dF3zP7/05GY5ZvU4knH7op+w9f6vYSU1NpWPHsl4Oj0n4mWeeYcmSJUyZMgWLxcLYsWO9UMGtW7dWYOxcuXKF3Nyykdnjjz9OXl4eb775JhkZGSQlJbFx40aqVq36d34pFY4oioilH4FpEVAmdDyFnm48dQ+KO5rLVbLQeXChp8vrt9E+oOcK720EhQ6rDAm0eLw6bqXXj1Ox/kGQ6x9AqdDeVf+AqMIuuu5BRdbeRUVWK7QUO+wVqMg6QUuJbEouskuXlcECNZjsrgqwQKVCQI2KYoeNAI2ePFn8BMsMHbWgQo2KApuNIK2BPLNEQo7U+3HbJE1xwnVGbpcWo1Wq0SlUZFtMBGr1mGwObC470T7SaksUoapfAGkFUvfVvVrLyzN06oaGcSYrW46Wh3E6Q/p7/YgITslG5HoR4ZzPzMHpdpMQEkROkSR6Ioy+aFUq/sjIQq9WkRQR7hU67RLiOHD5Om431I0Ko7DEwrncHIw6LY2rRHkTV50Tq3P08k1KrHYiA4zUDA9hQ6o0wenduBZHLt6U0li+ejrVrc5ymYjcslZVnHYnW7xG5MZsS71IVkEpRr2Wp7o05rtNqZhtDqJD/OnXKpGFa/bjdLmpFRtGx4YJLPhxtxRvj4+ga7NazFu6U+rLqhLCE90b89HSnV5j8sSnOvDlyv3cuC01mk8e3pnjf9xkxTpp0tGzXSJtGldn6gdrMZnthAT5MnN8L37ZcpKd+6UX2R4dEhnUsxEz3vuF9MxCNGolk8Z0JcCo58VXfpB8PQEGZr7Wl+JiC2PGL8NisRMc5Musaf1wOd28MHYJBYVmDAYNr77Si8Q6Ubz+2k/8IftgPGurrZtP89mn23DYXYSG+TF9Zn+qJ4Qz//0ydk69hrFMnTUAg4+W92ensFOG/dVrGMtrswcQEurHz8sOsOSznTidboJDjbwqr6Zysor4cFYKJ2TScfPWNZgwoz/BoUZyMouYPyuF3w9JYq5h83gmzhlIeFSAJIKWH+Kbj7dgszjQ6tU8N747fZ9IRhAERFFkW8oxvpq7kdIiC4JSYNCzbXjyxc5eA7Ld5mTVV7v56Yud2G1OVGoljz7fnsfHdKrAsykpMvPDx9tYv+yAl5I8YHhbhrzY5S5artvtZvcvx1n24SZvDUBUXAhPT+5Fuz4N7+lpsVsdbF15iDVf7vKuQbQ6Nd0eb8GAkR2Iins4UrLnpF/NZndKKvvXH6+wnhKUAonN4mneJYmmnesSVzvqb006/R1HpVbS9fEWtOhWj2/eWcvm7w+Q8uVOrpy+ydRFz//Lgu3RMZ05uPkU+389wbj3HnsothFIdGa1VoXD5qQwt/SB68XSYomBZPC9P3E57aLknYqJD7vnbf5IvQ5A7QZVYOVDPd0K528VOx06dOB+peoKhYLZs2cze/bse97m+vXrd102duxYxo4d+294hn/+iKIbseRNMC8HHqa5XKjQXF7Wc+UROmWFnk4UsplYKXde3Vnoea+eKzeCJ24u1z+IMmxQqn/QYH1A/YNGXlMpEHC7FRLdx0tF1ni5Oio0lDodMkNHbjBHipJ7YIGS+NFgcjoqwAL1Si3FDmsFWKC/ylAOFihidju9DB2p8kHqvpLSV1DqchCq8yVLZuhE6I3cNhUjKAQC1HqyzKX4qXU4XG6KHBJDJ9tkwi1CrFEyJd+vtTwhMIhLeXkICgXx/oFc9ETLg4I5m5WNANQJCeUPWeg0CI/wJq6aREdx7KbkyWkQFcG529k4XJLoKTBbyCwu9XZcpV5PRyUItI6PZa9sRG4ZH8uZm5mUWO1EBfgR7uvD3vPXUCikxNWWExelCHp0GCoU7D17DaWgYFByEhuOnsPqcBIfHkTV4ADWHJRejPs1T+Tk5XRu5hRh0Kp5skMjftj5Oxabg9iwADrUr86Xv0h+kyY1Y4iPCOKLtVJCpFPjBPz0Or5MkT7u0bIO/jotHy/fA0DHpgnUig3n3a+2SUbmGlE82qUB7y3aSqnZRliQL1NGdGHxyt84fzWrzJ9jtjHjo3UA1K8TzYtPt2fu51u5mib1ao0f0RGjQcv46T9htTmICPNjzpR+/HbkCh/Ml+oi6taJYsaUPqT8cpyVayR/UcP6sbzxWl+2bDnFt0v34XaLVI8PY9aMAWRmFDJ61DcUFVnw8dEy+dVeNGlSjXnvb2C3zJRp2aoGk1/vTX5uKS+OWMzNNGlK9NTwtgx9pg2XL2Qyeex3ZKQXICgVPD2iPUOGtaYgr5SpLy7jhDx5ad2hNhOm98UvwMCerX/wybvrKS2xotWpGT2pO70GNQVg+/rf+ez9XzGX2tDq1IyY0I0+jzdHEAQybuYzf+Ya7zSnfrNqTJwziMgq0otL5q18PpmZwu9yXUX1OlFMeGsQCXXLEjKnDl/hnzPXcOuq9K65YasEXpw1oMILisvlZtuqo3w7b6MXCtiya12en9qXqLi7e6OO7T3PN++u46rscwoM9ePJCd3pPqTFPdkx5lIrG5cdYM2ind6GdGOAgX7D29Hn2bYEBD/8C3deZiF7fznGrjVHvVMhKKuEaNO3ES26N8D/Pome/6VjDPRh/IdP0rRjIh++9B2nDl5iYq+5zF076U83vpc/tRvHERYTRPatfI7tPvfQ3B2FQoHeR4vD5vSSsu93PN/voLD7f4+vyMbj6omVc5JEUeSk/IagbtO/llb7r6ex/peOKDoRi6aC9RdEwO0VOp7mco/QkZrLXaIgT3jubi6/u9DTYzi+V6FnZT1XqnI9V65Ke65Ahb2c0Km0/kEhTW+UChV22avjAQiWn94oUGN23U1FtrpdUtWDTEUGJVaXE1+VngKbdDu1QkWp046fylAOFmggz2bFoNRidsqwQK0PORbJy+Oj0pJvs8jpKztukQqwQE/MXKdUo1bIDeY6A0WVMHTijFK0XAHEGQO4VlCAoBCo4uvP1fwCNILUVH45Px+tUkWEwYcreQXoVCoiDL5czJGj5X7+nMvKQSUI1AwK5tTtLAQkhs5xWeg0qxJN6nXpf94G0RFczMrF4nASFxSAy+n2dlzVCQ/1Cp1OteLZe+EaLpdIYlQYVpuDE2kZ6NUq2teOZ+NxaeLRqmZV0rIKuJ1fjFGnoWv9GqySjcjNE6pgtTnYffoqSkHB0HaNWP/bGYrNEhG5c4MaLN58xGtEDjX6sGyLNG3p2yqRvEITq3ZLk4ynuzfl7JUMdh29jEIBI/u35OT5dLaekYTB8H7JZOYU8eWqAwD065BEdLAfcxZulBJZtaJ4qk8z3v18KwVFZvyNOma82JMN20+z97Dcz9WjIcmNqvHq22soKbUSFGBg9it9OXD4MivllFbThlWZ9EIXPvliJ4dlQvLAPo0Y8khz3p23gVPylOaJwck8NqgZ8+Zv5JD8S7FH93qMG9uFlSsP8/0yqR4iISGcWbMGYjbbGTtKWlsplQIjR3dk0OBmbN5wkoX/2ILd7iQ4xMjU2QOo1yCWNSsOsfiznbhcbsIi/Jk6eyB1G1Th4J7zzH9rHSVFFrQ6NWNe6UGP/o0wl9oqAAJr1o3mtbcGEVM1hKICE5+8tY4DO6T1Y+36VZj81iBi4kLkac5vLF4gTXN0eg0jJnWn92OSCHK53Kz/4TeWyNdrtCqeGteFQc+28a43ivJNfP3+BranSN/bwBBfRk3rS/s+DStMOM79nsbns1K4JP8bVkkI44UZAyr15Vw9m87id9dxXF5vGYw6Bo/pzIDn2qEzVJ50LS4w8cviPaz7do/X4BwWHcig0Z3oPqTFPe9357FZ7BzYeIJtK37j5P6L3jfQglKgcbvatOvfhBY9GmAMMDzgkf53T+vejYipHs7sYZ+TeSOPaY99wryUSQTch0lzv6NQKGjdsz4pX+3mwMaTfwoyaPDRUZxvwlJqfeBt87M97Jz706yvyPDN6veIs2feKiA7oxCVWkmd+n+tKeH/xM5DHlG0IxZOBNs2yprLxfs0lyse0Fx+Z6GnJzVVeaHn3T1XSjmFpblnz5VbVOKSuTomt6tC/YPHx6P2enXK6h8EJEKyTtBR6rLL0x4l9jupyC6puNRDRVbLRuXyVGSVQolblHw5ZbBAyd9TaLdhlFNaZZUPZtQKJSqFimK7tK7KNUuJrTCd5MsRFAL+aj1ZZhNGtQ6700WJy06EwUhmJQydqr7+XC8qRKVQEGnw43phERqliiCNgRuFRfioNfio1NwoLsJPq0WnUHGjsJgAnQ6doCStsBB/rRZftYYruVK0XGowlwRQjZBgTnij5WVCJ7lqDEfTbuEWISkyjPT8YgrNVsKNvoQY9N7pTrsacew6K72Qt6wey6XbOeSVWggx+lAnIpQtcvVDr4a12HfmmpSiCvKjTnQYKTI4sFfjWpy6kkF6fjFGvZYByXX5adcJnG43SXERxAT5s3ynlKDqk5xIenYhm49ckAjIvZqzM/Ui1zLy0aqVjBnQhlU7TpCeU4RBp+blwe34cdMxbmZJfVkTn+zA+t1/cOZKJkpBwbgn2nHucgZfrJSET//O9akRE8L0j9bjdLmpUTWUl4d14B9f7+D6Lcns/MrIzhQUWZj6boo3gfXqmK588tVOfpc9F08+kkyHVjWY/MbPZGRKhORXXupGVLg/YycsI7/AJJV9vtKb8FA/Xnz5OzIzi6So+UvdaNkigVmz1ni7rfr0bcTYsZ3ZtuUPFv5zq3dtNWPWAKpWC+W9OWvZvV0SIM1aVGfKG/0QRZgxeQVH5QlKm461mTS1L2q1skKvVULtSF5/axBV4kI4/Xsa82as8XZhPTGiHUNHtEelVnJ4zwUWzFlLQV4pSpXA02M6MVgWKpnpBcyfsZpTR8umOZPeHESEvCq4cSWbBW+s9noX6jWrxoS3Bnl7qkRRZNvqVL7+4FdKCs0oFAp6PdGCZ1/p4QUMgvRu+5u5v7Jdpi0bfHU8NaEbfZ9ufdd0Jud2AUvnbWTnmlREUUSlVtL3mTbe3qXKTlF+Kau/2Mn6JWWprJjqYTw2risdBzR9KHqwKIpcOnmDrT8eZHdKKqZii/e6xGbxdBjYjLZ9G//lF/v/xVO1dhTvr57AqwPmc+tyFm899yVzUyb+ZQ9P614NSflqN4e3//HQRGQAva8kUs0PMdnJl2si7gcKLC22kCnXplSvU/lkxzPVqVkv5i93Z/2f2HmII7rNiIXjwL6fsuZyKhE6nuZypJXWA5vLH77QU/CKJcFbEQFqHOWETvmeK5dbwA3ydeXrHzxdWhJAsFT26ljK1T9Yy9U/KBVK7E6pr8tDRS4PENR7Tcnlqch6CmxWtIKUAHOJbq/QUSqUCKKKEoeDALWBfJu0rgpQS6srnQwLNLscFRg6HhKyRlChUajIt1oI0kpTHJcoTXHSS6QpjkfoKFAQ5WPkRnEROqVUFXGruBijRoNKVJJVWkqw3oDD6SLbbCLM4IPV7iTHZibC1xeLzU6W2Uq4ry8Ou4vbRSWEGAwoRYFreVKDebDewJkMqcyzVnAIqWmS0GkRV4VDcuIquWoMJ29kYHO6SAgNwmp3clbuuKoXFeEVOl0TE9h/7hpWOXFlUKvZf+E6KkGgT6Pa/Jp6XhIvVcLRKJXsOHUZQaFgcKt6bDp6gRKLjZhgf5pVj+aHHZKw6dQggcJiC1tSJWHzTNembD1ygdsyX+f5Xs1ZuvkoRaVWQgN8GNa9GV+mHMRksRMV6s+zPZrx6UoJFBgRbGTMo21YuGIvOQUm/Hx1vPpMJ5avT+X8tSyUSoGXn2pP2s18PvpG6sTq3LImXVrVZvrcXyg12wgJ8mXGy71Yu+kEu3+TRFyfLvXo3TmJ195cQ3ZuCXq9mqnje2K3Ohn36o/Y7U4iI/x5c1p/Tp6+yYSPNuJ2i1SLC+GtGQM5efImb7/zCw6Hi8jIAGbPHIDd6uSF0d+Sm1uCTqdmwsQetGlds0LaKrllAlOm9iEnq5ixcuWDoFQwfFRHHhvakpPHr/PBnLXk55ai0ah4YXw3eg9sTNqVHN57YzXXr2QD8MiTLRn+YmcUwNLPdrDiW2mFFhkdyJS3HyGxfhUsZhsL39vgrXOIjQ9lyruPklAnClEU2bT6KIvmbsRitqPVqxkxsYd3peV0uFj1zV5+WLgDp8OF3kfLiMk96flYM68/Jv16Dp+8sZpTh6WfpWq1I3npzUHUaVTmZXQ5XWz44Te++2gzZvldebfBzRn+as+7PCDmUis/f76DNYt2e4GA7fo24tkpvb2JnDtPUX4pa77cybpy0fPqSTEMeakbLXvUf6gXU1OJhV2rjrBx2X6ulWOqhMUE0W1ISzoPTibiHp///w8nvEow7658mfE9PuDs0av89MkWhk7q9Zceq06TOHQGDeYSKxnXc4ip/nD4lj9jf/J4usKj771yuyCvIyOqBN1zOpe6X/pd0ajlX0+k/Z/YecAR3SWIBaPAcayc0FHg9AgePL1WZZMdN8ieHbe3wqGsuVxKS3k8O+WTVQ9T6Gm7o9BTobh/z5XF7fLWPwgo5Z4saXpjcjnuUf+go9QlxcfNTrlNy0tF1lLicMqX6Sh22u+gIkvRc4NS6/X0GGUqskZQ43CBze2qQEU2qvTk2SwY1TpK7dK6KlRrJMssrasCNQayzSZ8VFocLjclTjvh+jLfTnlYYJTBjxtFRRJDR6PldkkJRo0Wwa0g2yTFzM1WB4VOK9FGP3JNJik27h9AZlEJdpebagGB3C4say3PLirF4nRSNSCAIpOVPKuFSKMvolvkWl4BAXodoXoDp29noVEqSYoM9wqdtvFV2X85DUSJp5OWU0Ch5f9j7y0DozrXtu1j3OLuISEhuLtbcYdSSnXXsCItFIcKhVLqvqtIFS9SihWX4u4WAiHEPeNrvT/uNUMCQbp3n/f7nnfv+w+QzAwTEmadc13neR42Ivx9CTWb2XsxDY1aRZdayWw4dt6buMoqLOHyzTx8DHraVk9g1X4xcWhbI4Gr2fmV7Rp4AAAgAElEQVSkZRdgNujo26QWS3cewy3J1EuIxM9gYNVecdshbeux+2Qq13MKsRj1PPlQI75ff4hSm4PoED/6tqzF5yt3i9LB+HBa10nkw5+3i1h6tWia14pn3sI/kGSZuslRdGtZnbe+2Yjd6SYhOpjn+jfn/QVbyCssw9/HyJQXuvDL2kMcO5OOSgUvPNIajQqmvyP6c+qkRDH6qfa8rfhztFo1457rhEGnYdy0xTicbmKiAnljUh/WbTjBcsXQ3KxxIhPGdOHLb7bxxzaxRuvUvgZjRnTmq2+28ft6wexq0TyJyRN7snHDCb78citut0RcXDCvvjYAFTKjhs8n7Wouao2KZ59rz6BHmrFu9RG++FhMecLC/Zj2xgBSqkfx/Tfb+WnBTmQZ4qqEME2Jjv+24hBffrABh91FYJCFCa/1o3GLJG5cy+Pt6cs5q6yEHupVn5ETe2C2GDhz/Brzpi4j41oeKpWK/o+34OnRndEbdORmFfHhays5sFO8mNdsEM+ENwcSpaRerpy/yftTlnJR8cg0blONMa/3JzRS8KycDhfLv93BT59uxulwYTDqeHzMQ/R7uk2FCcrpQ6l8NnMFl5V1QXKdGEa+3p/q9SsGO9xuiU1L9rHo3XVev0XtZlV5bnpfUupVvj4ozi9luSJyPD6OpDoxPPZyd5p1vnsqq/y5cCyNdYt2sm3lQWxl4jF0Bi2tejagy6MtqNeq2r9V5vf/0ompGs6ouUN4Z9QCfnxvHY3a1ySlYZW//DhqtZr4lEjOHbnKlTM3HljsOB2iIFB3nwmd2+X2RtSjE+5uPj+lTF5rNapS6eddTjdH9ojVd+NKVqwPev4rdu5xZCkPOe85cJ1UhI6nFdkpPDN4QJ7uCkLHQy53y1rFhKy7TejcTi7X3OrXeWCgJ6D06jwY50qHVYmUCxF0i3Ol9lLRy+MfDJQqokan0lNarhUZVGhVekpcDqUssHwrsr1CK7KY8lgxawyUOMS/U6DeQq5NlAEK9pWdQL2JPIVg7hE6WpUGk1pPrtVKgF60JrtlmUizHxlKh060WZQFalQagg1m0ouLsegMaGUVOWVlhJjMlFid2NwuYnz9yCwqwSXJJPgHklqYjyxDcmAwF3NyARUpwSFcyMkRcfKQUC5k5+CWZFJCQkjNyRdtx8FBZBeVUGx3EOXnC5LMxWzRpxPt78fhawL30Cw+hl1K4qpV1XgOXr6Gwy2RHBaMw+G+xbiqEsP6o+Ji17FmIocvpVNotRMZ4EtSWDC/K36dPo1rsvPUZbEK8/eheXIsvyjoh071kriRVcjuixnotBqe7NiQpduPU2y1ExnkR48m1flq1Z9Iskz9pCiqRYfyhdeInIyPQc83q0QxYO/WtVDL8OUy8fmerWsS5GPmnfliWtOqQSKt6ibw+me/43S5qRobwsghrXn32y3czC7CYtIzbWRXtu05z+ZdIi3Wu3Nd2jVN4pU3V1BUYiMo0MLr43uxfc95lq8RU6iWTaoy6pn2zPtwPcdPCdHw5KMteKhDLSZNX8qVVGFgHvl8B1o2q8rEKYu5cEGUDv7jqTb06d2QD97/ne3bxd/ZvkMNxo/vzp5dF/jwvd+x2ZwEh/gwfWY/EpPCmfvGrbVV81bJvDK9Dw6bk4mjv+eEsirq3qcBI17qitPhYtbEJexWUBCNWyTxymv98A80s2nNUT6b9xvWMgcWHyNjpvWmfZfauF1uvv9iCz9/vR3JLREa4c+EWQOo1zQRgG2/H+fTN1dTUmRFp9fy1OjO9H+iFRqNmOYs/WY7P32xBZfTjY+/iWGTe9GpbwOveDh7NI2Ppi0j9bzo7GnYuhqj3xhAROythExBbgnfvf0bm5YJE7ePv4l/vNKDro80u2PScmTnOb6a9SupSutyVJUQnpve964x8tJiK79+s40VX231Mquq1o7h8Ze70+we0XPPcdid7Fx9mFXfbK1gNo5NjqDnU23oOKjZ/5gPRzCwCshMyyU3o4CcjHxyMwrIvVlIaVEZTrsLh92J3erAaXeh1qox+xhvoSF8jARHBFClehRVakYTUzX8346E/5XTYUAT9m86yfZfDzJv1Hw+3TwFk+XeiafKTkL1KK/YadOrwQPdx620Id/v681Mz8ftktAbtIRE3h3tceaIeI2seRfBdvZYGmUldvwCzCTXjqG0tOSBnuft579i5y5HdmcKcrnrIreTy2XU9xE6KtGCjIzkXVXdIpc770Iu94gY4e8pl7CqBOgpCgnLCx2dN2ElKcWDlXGuPOWCHs6V1iuCVOjUAv9QnmklmpJdwpfjEP4dFVqlFdlMocOGSmlgLnW58NOayS/Xilyo+HLylVbkAKUsUK/WIktqStxOgg0Wcqy31lWZZSUYNDpUsppCh51Qo4UsZZ1VviwwwuRLeokwKBvVOjJLRczc5nBS5HYR7ePHzeIS3Iq48XToJAcGcSFP7IjLU8vLd+jcTi0/eSMTUFE7PIzzmTk4JYnkkGCyCku8fTpatZozN7Ox6HVUDw1lz0XxAt6hWiLbzl0GGRrFR5N6M4+8Mivhfj7EBfp711g961dn49HzuCSJGlGhaFVqdp0Ra6wBzWqxav9pHC43KdGhhFosrN4nphyDW9Vl+7FLZBeWEuBjol/zWizaeAiXJFE3MZLE8CC+WydIwd2aVqe0zM5SpW/nia6NOHXxJlvPX0CtUvFCvxYcOHGVI+fEdGbYwFacupDBuh1CFDzeszEul5t3lIbkdk2SaNcoiekfrMVmdxEbGcgrz3Xm80XbOX9ZrLbGPtMBu83FpDkrkSSZGskRTBzxEB9/vZWjJ8UE7KlHWtC8YSIvTf6F7NwSzCY90yb0RK1WMWLsIkpL7QQFWnhtWj9sVgfDRy2kuNiGv7+J6VP7Ehxo4cVRC7l+PQ+tVs3w4Z3o0aMen3+6id/WiK+1QaMqTJ3R15u2Sr8mzMnPjujIoCHNOPDnJd55YxWFBWWYzHrGTepJhy61OXUsjbnTV5B1sxCtVs2zozvTb0hzrKV25k5bxjZPDL1hPBPfGEBYZAA30nKZN3UZZ5WOnw496jJqSi98/EwUF5bx6ew1bP9dTKSSa0YxfvYgqiitxFfOZfDelGVe02bzjjUY/Wo/b42+tdTOwg82sHrRbmRZxi/QwrBpvenQ55YQkiSJjUsP8O3ctV5zcNfBTfnHxJ74B1X02txIzeHrWb/y5ybxdfj4mRg6riu9nmyNTn/nJcJmdbB2wU6Wfr6ZIoUjlVAjiicm9KB5lzr3FTkF2cX8tmgnvy3YQX628HRo9Vpa92pAzyfbUKtZ1b81Kl5SWMb5o6mknk7n6tkM0s7fIO1cRgUf0L97dHotsdUiqNUsida9G1G7RfLfBiet7KhUKkbNHcLpA5e4cSWbZZ9t5omJvf7y43go8VfPPThzyqEgQLSV/GyUP9eVNW9UfMhdp3Iup5uzyhuLGg0rr485oJjiG7b69/5N/yt2KjmyOx057ylwp90hdESzsVPx2QjB41JWWE4ZZcWlUtAPWmWVJdAND04ul4XQkT1CR6YyoOctzpUem1sU+7kVTpYGwz04VwZKXQ6FbSVEkPD73A3/IFZTGpUGl6TGpRiQCx3Cg+OW1Ngkd8VWZJVoRRZeHTHl8dOayLOXYdYasDrduGR3hVbkAJ0AevpoDVhdbpxuZ4WywEiTr7csMEBv4mZpCb46A263TL7NRoTZh5zSUtyyfPcOncBgLihlgeWFTo3gkFtCpwK1PIKjSrS8QVQkR6+LF4W6keGcy8jGUS5anlFqJdTHQpDRxOE0gXtoXiWGbWeFmGmbXIX9F68J705YMBoZDl5OR6/V0LlWEusOi6lBi+Q4rmcXcj23EF+jns51k73oh5Yp8RQUWdl9JhWdRsPQtvVZtuM4VoeThIggGiRGsXCj8IV0apBMWamdVbuER+Wpro3Zc/wyF9Nz0Ws1jOjXihVbj3E9S6y5Rj/chp/WHeR6ViFmo56XHmvH4vVHuHQtR/TcPNGB7fsv8OexVACe7t8MlQSzPlsPQNN68TzSoxGvf7CW/MIyAvxMzBzbgw3bzrBxuxBL3TvWok/nukyetZKsnGIhal7qQVGhlbGTBPYhPjaYN6b1Y+v2Myz8UZiea9eMZuaUPmzYcIIFi8R6qXr1SF6d0Y9TJ64zc/oybDYnoaG+zJjZj8BAC2NfXMTFC5miW+jJ1jz2ZCs2rjvuTVuFhvsx7fX+pNSI4rsvtrD4ezHJqpoczvTZA4mICuTn+TtZ9OVWJLdMVGwQU2cPJLlGFKePX2PutGVk3ihArVHzxLD2PPJ0G9RqFRtWHuKLt9dhszqw+Bp5cWovOvQQaZeDuy/wwczl5GYVo9aoefT5djz6Qge0Oo0Af359a5rj629i+LTedCiXojq86zwfz1hO5vV88T3u15Dnp/SuIGBSz2XwyfTlnFbWA4k1onhx1gBq3PbO2Vpq55dPNrLim224HIJ03uuJ1gwd17VS87HL6WbDL3v56cP15GUKkRJTNYzHx/egzT36dbzP68wNVvxzM1tXHsTlEBfM4Ah/ej7dlu6Pt/5byv4kSeLKqXTOHLjE2cNXOHfoCtcuVA6JVmvUhEYHEhwZQEiE8mtkAL6BFnQGHXqjDoNRh06vxe2WKCuxYS2xUVZso6zYSmZaLqlnb5B6Jh1bqZ3LJ69z+eR11ny7jcAwP1r1bECbPo2o3bLa/4jw8Q0w8/xrA5nz/Df8+vUWBo7sfN8+m9tPcISYuBQoEM77HVmWvaBU//s0T3vEepXqd29oPnssDVuZA79AC/HJla/R9irVEM061Hig53i381+xc9uRXVeQ854GKaNSoePCifDZOJUElVuZ8Mi3kcvVIoou65TW479GLrffRi6vDOhp9SasRD+OQxFMlXGuPGsqj1FZrzZQ4hICSa3gIm7hHzQ4Je6Kf/DRmCh0CA+O1Sk+5hE6OpUWt6TC6nZ5ywLFOstAgUNAPAvsdmRlipNtLUGjUmNSG8iziXVVgc2GJEOEyZcMReh4fm/U6NCrNORarYQYzRTa7DjcErE+/lwrEh06iX6BXFY6dJL8g7jo6dAJCOJCnqdDJ4hz2bloVWoSA4I4m52DVqUiOSiEkzdFn07t8HCOpWeiQkXD6KhKo+V1oyK4kCWi5QnBgTgdbs5nCphntdAQ7xqrc/WqbDl9CVmGhvFRZOQVc7OgmECzkXpxUeUYV8n8eTaNIqudqECRuPpVSVz1blyDA+eukVlQQoDFSM9GNbzoh8bJMZh0WlbuEu/Oh3ZowL5TV7mckYdBp+WFXs34edNhcovKlEbkpny5Yi8lVjtRIX481b0Jny7e6TUmP9+/BZ/8tJ38IitB/mbGP9GBr5buJu1GPga9lonPdmbn/otsVzAPj/ZqRFxEAFPmrsTlkkhOCGP885356Js/OHtRdOy8+Izozxk3YwkOh4vY6EBen9iH1euOsuo3hcTeIpkxwzry4Web2LtPJDD69W7IU0Nb8u77v7P3T/H39e5Znxde6MD873awcoUQdw0bVWHatL6cPZ3OtIlLKCmx4edvYuqMvtSqHcP7b61lk9Iy3LRFEpNm9MFmczJh5CJOKxOYPgMb88LohygptjF19A/eIsCO3eowenJPDEYdP327ne+/3IbkloiIDmTy7IHUqBNLcWEZH72xil3Kaqxu4wQmvCkmPTarg2/eW89aha0VXSWEiXMGkaKAGK9ezOS9KUu5cFL8XLXoVJMXX+1HkJJiKS4s4+u31rJJMTiHRQUw5s2BNGqT4n3tslkd/PTxJlZ8ux23S8Jo1vPEuK70LRdLB3HB2rryEN/OWe1NyzRsm8KwV/sTlxxxx2uiJEnsXHuURfN+44bSdBseG8RjL3Wn44DG91xnyLLM0Z3nWP7FZg6VQ0KkNKhCvxc60LpXwwdKZ93tSJJE6pkbHN91jmO7znJi7wVKCsruuF1EfAhJdeOIT4kiLiWS+OpRRCWG/S3MKUmSyEzL5fKp6+zbeJw9vx0hP6uItfO3s3b+dsLjgnlsQi86DW7+t6+6WvWsT3TVMNIvZbFl2X56Pd32L93fIzA9Ddj3O7YyRwV22b3OpVNKd06tu9PRjykpx3rNq1Yqlq9fyebapSy0Og1N2qbc8fm/cv4rdsod2XkeOf9pkHIqCB2HbFci4o5ybcieSHllQkelpLJ0SoS8nDlZiZDfSS7XVEouVyuTnlsdPKDyCh0P0FOLXWFgqdBV4FypVVps3u6cipwrFWplQiUpqyuBf7ApTclGtYlCp1107bjE12rWGCl02kRBoEOkrzz4B4Naj90lmqQrtiKLKU+g3uwVP55WZINaB7KaIoeDEMOtdZVH3GhUagL1ZmWKY8TpclPkdiiQzxLRhOwbwFWlQyehnNBJ8AvkUl4+WpWGGF8/LubnYdBoiDD7cik3D6NWS7jZwsXcXExaLZEWX85lZWPQaEgICOTkjSy0ajU1w0I5ogidprEx7E+9Ln4fH8PBctHy67lFFFptRPn74mcwcuhqOjqNhlaJcfyhwDzbVkvgyOV0SuwOYoP9CbNY2H76MmqVij4NBePK6XZTIzoMk07LlhMicTW4ZV3W7jtDqd1BfGgAdeMi+XmraEju3jiF1Iw8Dl27jk6r4ZmuTVi29Th5xWWE+Ft4tGMDvl69B7vTTVJ0CF2apPDhz9uFqTkpitZ1Enhn4RYkWaZetWg6NanGnK834nJLVIsP44mejXn7m80Ul9oIC/LhlWc689Uvu7l4NRudVsOE5zpx6UoW73wpVlsdWlSjX5f6TJv7K3kFZfj7mnh1fE8OHE7l45XCO9K8cSIv/qM98z5az4nTYmX2zOOtadUsifFTFnM9PR+dTsP4MV1JSYpgzLgfSL8hPjZuTFeaNE5g6uQl3jbkoY+15IknWvHDwl389IOY0NSoGc2M1/tjszoY88J8Ui9nC3/PC+0Z/FhLDu67xLzXf6Wo0IrZYuDlqb1o27Emh/ZdYt7MlRTklWIw6hg9qQede9YjN7uYV1/6iePKxKR91zqMmdILi6+RY/sv88605eRkFaHRqnn6xc6CW6VRc/7UdeZNXsr1VNEa3GdoC54Z1wWjSY/bLbFywS4WfbwJp8OFj5+REdP7VJjm7N18ik9mriA/uxiVSkXvx1vy1MtdK7yLP7zzPJ/MWM5NxRDaoktths/oS9htKZhLp67z+YzlnFbKCiPjQ3hhRj+aPVSr0tXR4R1nmf/Wai4qYjAgxJdHx3al+2MtK11xeY7b5Wb7qkMs/3wzlxX/lVqtomWP+gwY3okajRPvet/7HWuJjUPbTrNvw3EObD5BQXbFqYTJYqBGk0RSGiVSvWECKY0S/kcREWq1msgqoURWCaVVzwaMefcxju48x85Vh9iz7giZabm8P2Yhiz9az8i5Q2jUodbf+nf3erotX85Yxtr52+n5VJu/tAIMCBGCpSD3wSY7hblCFBmMuvtGwC/fpzsH4KgidurfJWW1V+miqts08Y4m7796/it2lCM7TyDnPQtygSI+KhM6Wi/JXAgdtZLCUnuBmy5uMavENEaPq4LQ0WOTZEBXjlyuwV0uSl6eXG5X0A4isSV6dWzlhU55oKcsWprLd+eUKVF0NTps7rtwrlRC6JRvStarjBQ57Q+MfzBrjBQp5mV/Rejo1FpkSUWZ5Ky0FdmiNWBzunFKrgplgeFGIXQMai0GtY4caxlBBhPFdgdOSSLGx59rSodO+bLAeN8AruQXoFVriDD5kppfgEmrw19v4GphAX56AyaNjrSCQgKMRvQqDWkFhQQajZg0Wq7kCVJ5oN7EuaxczDodsX5+nLiRiVatpk5EOAcUoVM+Wt4kLpoT125id7lJDgvGanNw7mY2fkYD1cND2X5WXFi61krmj1MXcbtlaseEY7U7OZx6A5NOy0O1k72Jq5Yp8dzMK+Ls9SyRuGpck6W7juOWZBokRmHWavltvxjtDu3QgC2HLohpj4+JIe3qMX/dARwuN9ViQ2lRI45Pl+8EoFWdBCIDffliuVgNdWteHZNOyxdKMWCP1jXxNxv54PutAHRokkzdpChe/2wdbkmmVlIkT/ZtwpzPN1BQLCY+00d24+dVBzh0Quzdn3u0FSH+Fl6ZtRyny01ifAjTxnTnnwu2c/ComHI98XBzWjZO5KWpi8nJLcFi1jNjYm8cDhejXv4Bm81JeJgfb8zoz430fEaNWSQ+Fu7H6zMHCM/OsPnk55disRiYPLk3NWpGMW3SYo4cFn9H/4GNeWFEJ3ZtP8sHc3/DanUQFOzD1Nf7U7tOLPP/eWttlZQSwfQ3BxIeEcCCL7bwy3yxJktICmPqWw8TVyWEP3ec473XfqWosAyjSc+Lk3rSuVc9XC433324kaULdiHLMtHxwUye+zDJNaNxuyV+/morP3yxBbdLIjjMl/GzBtGwpXhhv3E1h/emLuO08pwbt6nG2FkDCAkXq4XCvFL+OWsV29aKqVdsYhhj5wyqkFopyC3h69mr2fKrMHmHRPoz8rX+tHiodoXXt+KCMr5/bx2/fb8bSZIxmvUMefEh+j/fAb3hzsvAldPpfDN7FYcVs7fJx8Cg4Z3o/3wHTJa7lwE6bE42Ld7Lss82eYWXwaSn69CW9Huh411j6/c7eZmF7PntCHvXH+P4rnM4lTUYgMGsp1azJAH3bJ1Ccr34/6tm4duPVqelccdaNO5YixFvPcLa77az5OPfSb+UybSHP6LLY6144Y2H8fH/e8zXnQc3Z/7sVVw9l0Ha+ZvEpzw42NPzHMqKbUiSdN9VpAcgGxjqd09RVZRfSobCh7tbK3Jpsc1rTq7fMrnS2+zaKCbVLTrVrPTzf+X8V+wAsuMgcv7zIJcqQsWhlAFWJnS03smOQ3YrvypeHUXouGS1MrHR3SZ0BNATL7n8ltARUx63d2pzC+ip8U5tZMWE/CBAT5Gg8iAhBB7C4OVcaZWeHyFqil0OAepUCge1KgMlLgdmjYlCJVKuvyv+wV4B/+CnxMxNGj12lxuXLBFs8CHLWooKFb5aI3l2K/46E4VKK7JH3AiDsoWbZSVYtAZkSabIYa8QM4/z8eeqInTivGWBasJNPlwtKMSk1eGr1ZNeVIS/wYBapeJmaQmhZjNOp0RWSSnhFgt2h4tseykRPj44HC4ySksI87EguyGtoJAgkwkfnZ7z2blY9Hri/P05ei0DrVpNg5hIr9BplRDH3ktpyDI0iI0kNUtEyyP9fQkyGjlw+TpajZqOKQLmCcKTczkjl6yiUoJ9zNSLi2TNQSFeujdIYf/5NPJKrIT6WWiRHM8vO0QLb+d6SVzLLOBY+g0MOg2Pd2zE4q1HKbU5iA8PpE3NBL5cLQCXbeokYDHoWbRerD0Gta9HRlYhy7cKU+yzvZtx8kIGG0+liYbk/i05c+kmvytG5Kf7NKWo2MrHP2wDoGurGtSrFsX099aKiU9CGC8+1pZ3vtxE+s0CTEYdU1/szvFT1/lW8dm0a5HMY/2b8urc1aTfLMBoEP05NquDsZN+KefP6cvmLaf54ReRBmtYP55pE3uxdNl+liwVxupGDaswbUpvNm86xZdfbkGSZBITw3jt9f4UFlgZ8fx35GQXYzTpGD+xJ63bpPDlJ5tYpax96jWIZ+rr/ZElmVdGf89JxRTpWVsVFpQxceRCTh4RH+8xoBHDX+qKSq3in+/9zsqfxL9rUkokU94aREx8CDfScnlr8lIuKOP67gMbM2xCd4xmPTev5zFv6jJOKy/mbbrUZszMvvj6m5FlmXWL9/P1vN+wW52YLAaGTe5Jl4GNvReQXetP8NlrKynILUGtVjHo+fY8psTVQayHNq84yNez13gLBPs81YonX+5WYeIjSRKblx3gu7fWeN+Vt+1Vn+em960UN5CTUcCid39j85L93hLBnk+2ZsiYLvfEOlhLbaxbtIsV//yDvExxQfQP9qHv8x3o9VTbf4ksnnuzgN1rD7Nz1SFO/nmxAnooMiGU5l3q0qxrPWo1T7rnlOn/y2M0Gxj0Yhd6PNWWhW/9yuqvt7Lxx90c23mW2UvGEZP0YHHvex0ffzO1mydxeNsZDm87/ZfEjrqcl+geZCfv8TDNPEDQu53Th1MBiEkMvWv55NE9F3C7JKITQoiKv/PxblzN4fyJ66g1alp3qV3JI/y18//Pn5D/i0e270YuGAmyVQA4vfFyMdnxCB2H7AAvyNPDudKUm+hQritHhYQWUTno8egI/42qnNDxFAmKuLkEdwidW+Ryj7lYozJWAHrK9wB6ghpZViumZCPFLiGCrJKHcyVEjQf/gOL3KSvHuVJ701cufBXUQwX8g87sjYxbNCby7DZ8tEaKHcKXE6S3kGUtRaPSYFBpKbytFdkjdDQqNb5aI9nWMgL0RkocTlySRJTFjxtKWWCcj2ddpSLa4se1okJMGi0+WtGnE2AwghuyS8sIM1sodTgodTqJ8fUjp7hM6dPxJ6uoBJvbTUJAAJnlOnTyS6wU2x1E+/lhd7q4VlBIiMWMRavn7M1szHodVYODOOChlleJZbeSuGqVGM/BKyJaXi08GLvdzekb2fga9TSIjWLTCSF0utZJZteZVMocTqqEBhJiMbP1xCVUKhjQtDbrDp/F5nCRFBlMtL8va5Rpz8Ot6rJDSVwF+Zrp06wGCzccwC3JNEqOIcTXwo+bxbv7Qe3qculaNruOCWzEsD4t2LTvPBev52DQaxnzcBuWbzpGakYeRr2Wlx/vwNKNR7iYdsuI/Mfecxw8KYTQC4NbUVBg5Z1v/gCgQ/NqdG5RjanzVlFmdRAZ5sf00T1YsGQvB4+Ji/szQ1qSGBfCuOmLsVqdRIT5M2tyHzb+cYplq0R/TqvmSYwd3on3P9nIvgPCxD14YBOBgpi7hsOKUBjySHOGDmnOhx+sZ+tWIQo7d67FuJe6sXH9cb74dDMul9KpM2sAJpOel0cu4qxSSvfok6146k6lnmAAACAASURBVNl2HD9ylTmvrqAwX8BBX5rSi3ada3Fgz0XmzVyhrLP0jJ0qouPpabnMmbKUi0oUu//Q5jwz+iF0Og2b1xzhszlrsZY58PEzMe7VvrTuXEuIkNVH+HzOGspK7ZgtBkZO600nZS2Vk1nIRzNWcFDp1anXLJGXZg/ylq4V5JbwxRu/smOdEKXxyeG8NHcwKXVjva9ZN6/l8vG05RxRitYSa0QxZs6gO3pwrpy5wadTl3L6kJgsxiaFM+KNgTRofWdXibXUztLPN7Piyy1eT0bb3g14alKvewI6y0psrPluGyv++YeXrRUSFcCgkQ/RdWirv9x2W1xQys5Vh9iydB+n9lUUONUbJdCqZwOadatHbHLE/yq4p9nXyIg5Q2jTpxHvvTifjNQcxveax5u/jCH5tq6jf+U0bFeDw9vOcGjbGfoP6/TA96vwL/gAaicjTYidyErESflzWoF21mx0d47VfqXGoUm76pV+fpuCWqnfvCoBfwPr7D9a7Mi2HchlkwGHInScitBxKELH6RU6nonOLaGjVRJVapyoFISD0pWD6MrxRMhRJjoq9DhkSUxa5PIpLPB08GgqJZdrcSOAm0LoeICeGpxKr44H8aBTGylxuZTPgQyKUVmYksuU6Y0aPWVuZwXOlSRrsEmSInQE6sEtiXi9R+hoVBpkWX0H/sGgNlLoEOmrfLsQMoF6TyuyDskNpW6n4ssR66xQg2Bb6dVadCot+XYboUYLOdYyZJkKZYExFn+uFhagU2sI0ptILy7CV29A5YacMiFuSqwOrC4XsX5+3CwqwSlLJAYEkpZfiFuSSQ4K5nJuLpIMKcEhXMrJrbRDJ7OwhFKHg7gAf2x2F2l5BQRbzASYjJy4kYlRq6V2ZLhX6HSolsj2c5eF+TguirTsfHJLRLQ8xt+PnWdTUatU9KyfwvojIlpePz6SMquDQ5fSMeq09GxYnZX7TiLLgnFltTrYcSoVrUbN0Lb1WbHzBGV2kbiqnxDFwo1CMHRrnEJWXgkbD5xDo1bxbI9mrP/zDNeyCrCY9Izo25L5a/aTV1RGsL+FYf1a8MWSXaIxOdCHEYNa8dkvO8krLLtlRF6ym7SMfEwGHZOff4gNO86w94i4YD4zqDkmvY6Z761BlqF+rRiGPdqGOZ/8zvUMMeGZNqY7V6/lMuOtVQA0qBPL+BEP8cFnmzis9Kk8PbQl7VqleP05er2WiS91Jy4miFFjFpGZWYTRqGPihJ4kJ4UxbtwPXLmcjUajZsSITnTrXpeP3lvPZiUu3bZddSZM7smZk+m89fqvFBaU4eNrZNKMvjRtkcTPC3ex6OttyDIkJoUxY84gIiIDmf/5H/wyfxcgkA9T5wwiOjaIretP8NHs1VjLHPj6m5jwWn+at02htMTGB6+uZKsiRuo0rsLEOYMIDfenuNDKp2+uYrtigq7dsAoT5gwiQhEy2347xmezVlFSaEVv0PKPl7vR5/EW3tXB7o0n+XTmCjHN0agZ/EJ7Hh3V2btmcrslVi/YxcL3f/dysR4b24UBCorCc8pKbPz4wXp+/W4HklsYlR8b142+z7S9YwIiSRJ/LDvAgrfXeBNWNZsk8tz0vtS4x4WqtNjKmu+2s+Kff3jTOVEJoQwe3YWOg5r9pUmLy+ni4B+n+GPpn/y5/hhO+60VVfXGibTp04g2fRoSFnPvC+z/hlO7eTIf/D6ZGUM+4cKxq0zs+y7vrp1I1Tqx97/zPU6j9jX55vUVnNh7AYfNid74YMZrlfqW3JEkmfst/zJSPWLn3utITxKw5l2KAiVJ4uAOIXaatr8zZSXLMtuU/2Ptez44t+te5z9b7BSOB18ZSQY3TsVkXF7oaO4idHTYZdF744QKQkeIHVnEzRW+la0CuVxXblqjuhU3lyTUHqGj8vTqeMjlog3ZfhdyOZ6SwLsAPUsVU3KpW6ykkLXYJDdmjZkilxAwDreqHOfKhk6tw+HypK+E0NGrxfN0y278dRZybWVoVGrUso4Sp7NCK7Kf1kyOrUzx5bhwyXIF/EOw3kJmuVbkEpeDiHIxc4/QUaEi3OTLtaIizFo9BpWGrLJSgo1myuxOIW58/blZVCzKAgM8NHNICQrhnCdaHhLKGSVaXis0jFM3BbW8Tng4pzKyBJ9J6dBxSRLVw0K4kVdEsd1BTIA/klviUnYe/iYjMX5+HPJQy6vGeaPlrZPiOXQ5HZvTRdWwIDSyisOpNzDqtHSsUZW1h8R/7rbVq3D+eg6ZhSUEWky0qBbHij/FRbtr/WqcTr3J9VzBuOrbtCY/bzmCW5JpmBSNRa/n193ito91bMiuY5dJyyoQ6IeeTVm47gCFpTYig/0Y0rEBny7Zid3pJjk2hN6tavHuwi2iMTkhnN5ta/P2d5txON0kxYXwZM+mXiNyRIgv45/uxOc/7CA1PQ+DXsuU4V04cCSV37cp6bDOdWnRMIEJs5ZTZnUQEerHa+N7sWTVQbbuEumyfj3q07NzHV6ZsYybmYVi3TWhJypg1Ms/YLU6CA/zY9aM/ly9msOYcT/gcLiIjgrkjdcGkJlZyIjhCygttRMYaGHmq/0JCfZh7KhFXL6UhVqj4vlhHRkwqAk/L9rNom+3C+BntQhmzh6I2Wxg+vifOaiwdbr2qs+L47tRUmxj0shFnFCmR70GNmbYS12RJIkPZq1iveKBqd0gnsmzBxIa7s+5E9d5a9ISbqbno9aoeXx4Bx55ti0ajZoTB68wb8pSsm8Wiij6yI4MfrYdGo2a4kIrn73xK9uVF+/kWtFMeHswcVUFfby4oIwvZq1i62phOI9PDmf8vEdIrh3jfa26cjaDDycv4fxxsT6t27wqY+c8XIFMLssyu347xpevryRXWSW16l6PYa/dalwuf07uv8RXr63ggvKYkfEhPDutLy27173r1KSsxMbqb7dVEDnRVcMY+nIP2vVr/Jci1tcu3GT9D7vYvHgvheWiz1VqRNHp4ea0G9Dk/wmBc/sJCPXj7V/H89rjn3J893lmPf0Fn2ye9i+t+jwnvnokvoEWivNLSb+cSULNmPvfiVudOSqVCo32/t+7q0qBZYzys1vZsZXZvQiI2k0qF8znjl0jL6sYk8VQKcX8wql0rl3KQm/Q0rLz32Po/o8WO+BSVkguhVQuJjtC+HhSVx6Pjk5ZYQl0g4wWJ8o6SkE4iPWVyhshlzFgv03o2GRP3FzpzJGVXh2VEbuCfSi7g1yuuyu5XPh4FHL5bUBPDXoF6Ck4V2rUSk+OLIzHLls5JASiIbkyzpXDhlGjp8zlQgb8tULo6NVaXG41VslNkN5Cjk0IGR+tuI/w5diQ8UA8S1Cr1Phqbq2rih0OXJJcoSzQ04qsU2vw0xrJKCnBX2/A5ZYocNiItPiSXVLqbUL2lAUmBYqYOUD14FDOZmWjQkWt0FBOZd5ZFlg/IpKj6Rnc3qFTLzKCMxlZON0SKWEhZBaVCB+Ony8mjZbTN7Iw63XUjYxgx7lUADpVr8q2M5eQJGgQF0lmfgkZBcUEWkzUjYng96Pi4t+zfgrbT16m1O4kPjSAmCB/b0Pywy3qsPHQeRE7D/KjWVIMP20RF8AuDauRnl3IkfPp6LQa/tGlCUu3HqOgxEp4oC8D29bh8xUC/VA7IYKm1eP48JftALSqm0BiZDAf/ij+3KFxEgmRQbwzX6ylWjdIpEmtON744nfcbonayZE83qsJsz9fT2GxjZBAH6aP7Mp3i/dw8twNESN/uj1Oh5vpbwsURL2aMYx5tgNvf7SeC1ey0GrVvDSsM/4+JsZO/BmrzUlURABvTu/Hzj3nWfCD8PXUrxvHjMm9WbxkH8uWi6RWs6ZVmTKpF6tWHWKhgmyoVSuama/25+KFTEZMWUJpiZ2AQDMzXutPYmIYMyctYb+S7OjRpwGjxnXl0sVMxo9YRE5WEQaDltGv9KBLz3oc3neZuTOWi3VWubVV2pVsZk9aQuqlLFQqAfB8/Pl2qNQqli7YxYJPNuF2SYRFBTB57sPUrBeHy+lmwWcbWfzNDmRZJjI2iMlvD/ZGyo/+eYn3piwlRxFBjw7vwJBhHbyTmP1bz/DR9GXkZRWjVqt4+IX2DH3xIe80x+lwsfjzP/jl8z9wuyTMPkaem9qLrgoF3XNupuXy2YxlHFTWfJHxIYycNZDGlbxrzkrP49s3V7FjjfjZMvkYGDq2G32eaXvXKLbd6mDtgh0s+WQjRXnC+/OviBy71cHONYdYv2gXJ/+84P14QKgvHQY2o/MjLUisHfO/akX1rxyzr5EZC0cwpvNsMlJzeOuFr5n1y5h/uY9HpVIRmxTO6QOXuXbhwcWOp1jR4me8rznZ6XBx7WImAIn3SFidOpiKy+kmLCqgghgvf/YoxuNmHWpUapDfvFJMrlt2rvVvp7A85z9a7IiJjkfouBSh4noAoaNTMBCaW6WAXnOyiJDLCuzzltDRK0LHEzdXeenmKqUpWdDJXajRYpPwJqycshuNykSp5FLi40KI3E4u16n0WJVyQRU6rBWAnlocLhk3YFTI5Qa1gRIFCSGi5yJ9VXIH58ro9fT4as3k2sswafSUOQXk0yN0PPiHQoedoHJTnlCDSFrp1Vp0aMi32wg2mMm1liEr4ib9tlZkk1aPTtaQY7USarJQaLXhlNzE+vpzrUCstsqXBVYLCuZ8rnD/pwSFeIVOjZBQTitCp1ZIGCcVoVMvIoJjSllgo+goDlXSoVM/OpKzN7MEmDMkiJIyO1fy8wmymIjx82PflWto1WraJVdhixItb50cz/HUDIptDmKD/An1tbDjzBU0ahV9GtZk7cEzuNwSdeMjkdwSe85eRafR8HCLOizffQKHy02tuHBCLeZbjKt29dlx7BIZecX4W4wMaVefBb+LxFWNuDAaJkXxxUohHjo2TMas0zJ/rTD2DupYj8JCKz+uE0bdx3s0Jju3mPmrxOeHdGuI5Jb4cKFIYD3UsjoNU6KZ8YEwIlevGs6IIW2Y+/l6MnOK8bEYmDm2B1t3n2f9VjHh6dulHp1ap/DKq8tEmaC/mTcm9uHo8TTe/WgDAI3qxzNpbDc++fIPdimcm4F9GzF0cDPmvLWGI0pS6/HHWvLwwKa8M+83du8WnpQ+fRsyfHgnlvy8l0WK+KlZK5qZrw+gIL+Ukc9+y80bBej1WsZM6E6XHnVZs/wg//xoIy6XRHRsEDPnDCIuIZQfvt7GD1+L6U9icjjT5z5MdFwwm9Yc5ZO5a7HbnAQG+zBx1gAaNqtKQW4J785YwcHd4jm36VKLsTP64uNnIuNaHm9PXsJZZTLSpX8jhk/qidliwGF3svDDjaxYIFZkUXHBvDJvMNUVX01ZiY2v31rL+iXi+xCTGMr4tx+hev1bvpsLJ67z/sTFpCrtti0eqsWoNwYQHH6ret/ldLPym238+MF67DYnWr2GwSM6M3hUJwzGin4Zu9XB8i+3sOTTTdhtTlQqFV0fbcGTr/QgMNSv0tdIh93Jhh/38MtH673G46iEUB4b34N2/Zs88MU5IzWbtd9tY8OPuykpFD04arWKJp3r0O3x1jR5qDZa3X/W5cg3wMKMhSN5qdtbHN56mu/nruLpaf3/5ceL8YgdRZA8yLkldkz3vW3ahZsCXeJnuqPSoPw5ovy/rd+qWqWiVZZlditip2UlxmOHw+X163Tu3/D+X8QDnv+sn67bjhu3Aux0K0LHXY59dUvwVC50BIdKFA2W78pRIclihXVL6Ig0lmhBFusllyRuK3w8glxeqnh1bN6ElQa3Ykouk1xKgeDt5HLDLT+OMo2RlWmRR+jcAfR02SsgIfQqAe20aEwUOYWoMSi9O5VxrixaI4V2cd9ARejo1VpkWU2Jy1mhFTlYL1ZXJo0etxuK3U7CTbdi5lGK0NGoNATqjdwsLcFPb8DhlCh02Ym0+JJVUowkQxW/QFI9ZYEBwVzMzfVOdM7n3ioLPJ+di06tIcE/kLNZ2WjVaqoGBHI6U/TmpASHcDw9E7VKRd2IcG9ZYNPYaPanpqNCkMoPKB06daMiSM3Ko9juIDbQH51KzYn0TMx6HQ1jo9hSjlq+/fRlnG6JmtFhOJ1ujlxRouV1kr3lgG1qVOFqVj7XcgrxNRnoXr8aPyuMq9Y1q1BcbGPHyStoNWqe6tyIpdsE4yom1J92dary1RqRDGpbNwGDVstPm8U79KGdG3I+NYut566jVqkYMbAVOw9e4uSlDIFtGNKWzX+e58SFG4JQPrQtB45fZfdh8fyfG9SCslIH8xQjcqcW1ejQLJmp837FanMSExnI1Be78sWCHd4Jz+hnO2DS65jw6jKcLjdJCaHMGN+L7xbtYsce8aL3cL9G9Olen0kzl5F6NQedTsPLo7uQnBjOi2O/JzOzCJNJz6RXelIlPoQxoxeRlpaLTqdh7LiutGmdwqxXV/CnMrnp068hI158iK2bTvLRO7/jcLiIiArg1dnCbzP3tV/ZqryYtu5QnfHT+uB0uJg+9kcOK1TwHv0bMvzlbsiyzLuvrWSTgpSo3zSRSbMGEBTiy5F9l5g3dRn5OSXoDVqGT+xBdyUxtfW3Y3wyaxVlpXZ8fI2MebUfbbvWAQS8c94ri73Mqh6PNOX5iT29Zt3j+y7x/uQlZF7PF2DQf7TmyZe6YVB8Fg67k58+3sTSr0RxoV+QhVGv96dNj3oVLh5nDqfy8eTFXpZV3RZJjJ7z8B1AR1mW2bP+OF+/sZLMa2LyWbtZVYa/MZCqtSqfALjdEluX7+f7eWvJui7uExYdxNDxPeg8uNkDRbslSeLwtjOs/noLBzaf9JqNw2KD6fpYK7oMbVVpIuw/6STWimHcB0/y9vBvWfzhejoMakZ8SuVR7fsdz/f9+qUHFzse4Wnxvb/YuawY/qvUiLrn5O2I8sagQavK4+SXTt8gIy0XvUFL40qKAvdtPUNxoZXgcD/qN6/Yv2Mrc/DdBxvu+1wrO//RYsclS0qKqrzwEZMdl+LNEU3JQuh4ygHl8u3HUCFCLslar1enotDR4ZSlCv4e0HmFTpni1bG5PQkrYVxWK2stD9BT5Z0mqZT0les2crlYUxkVcrlerafU6VbYV4ZKgZ6lblc5zpUSPXc68dWaKLgH5ypQ4VyZNOJ5uyS3txXZw8HKtpbhqzNS5nDhlKQ7WpFvlBRhUGsxqnXkWK0EG80UKa3IcT7+pCmtyAl+Hi+OmOhczM1Fo1IT5+fPxbw89BoNkUpZoEmrJUwpCzTrdISZLJzPFr+P9vHl9M1s9BoNSUFBHEu/iUalol5kJAcUodOiSix7lWh50/gYjl29gcMtUT08hPwSK9eLSwm2mIkPDGD3+auoVSq61Epi4/ELyDI0qxrL1ax8MgtLCPIx0TAuijUHxHqhZ8Pq7DmbSkGpjchAX+rHR7F0lzC09m5Sg+OXbnAtuxAfk4HBbeoKxpVbom5CJDHB/vy0SXhJBratw6XrORy7KITL8L4tWbfrNKkZeZiNOsY83Jbv1x4gI6cIP4uBsY+247uV+7iRXYiP2cDEpzvy/aoDXEzLRq/TMum5zmz78wK7DooJ1TODmmPUaXn1/bWCxF4njmcebsEb7/9GZnYxPmYDM1/uyaGjqSxR0lVtWyTz7NDWzHp7DZeuiMLBl1/sQliIL6Ne+oHiEhvBQT68MaMfWZlFjB73PXa7i6ioAGa9PpCM9AJGjVxAWZmDkBBfXn99AEajjlHD5pOeno9Or2Hcy93p0KkmX3y0kTXKqLtJ86pMfrUfhfmljHnuO65ezkatUfHcqM4MHNKM08evM2fqUnKyijEYdYyd0otOPeqSdiWbNyct4eqlLNRqFY+/0J4hz7QFWWbhp5v5RVlNxSWGMnXeI1RJDqes1M7nc9awWfHX1GwQz+S3BxMWGYAsy6z+YQ/fvrsep8NFQLAPY2cNoLlSc++wO1n4/npWzhedPOExgYx/+xHqNL1VsHf26FXef2Ux1xSuUNte9Rnxar8KaZTSYhsL561lbTk21nPT+9B5UNM7LkLXLmbyxcxlHFH4QsER/jw3ox/t+jS867vuA5tPMn/2KlLPilK4oHB/hoztRtfHWj5Q47Ct1M6mxXv59cs/SC934W3UsRZ9nutA4061/0e5Uf/bTodBzdi55jB7fjvC8s838fJHT/1LjxOosNM8XqoHOTkZBYD4Ht/vnFX6oFLqx931Njk3C7l8+gYqlYr6dxE7W1eL17Am7WtU2tm0QYHWdu7b8I6fkz/WHvG2kP/V8x8tdtxIiqFYKjfhUStCR3uH0HF4AJ4VhI4Kp6yYk2UtThnAoJQDGrDKnri5pPh71EpnjhaXLHmFjkZlwOqWAA0uCaUfR1DNPUJHrLc8JYHCj+MBet5CQqgECsIt1lTFTiVmrrQnmzVmChwifYUX6Gmi0GFDrTyvMpfLi38QMfPKOVe59jIlZu5EAkINPmRZhS/HojaQZ7MRqDeRr+AfIk2+3FCEjqdE0KI1IMtQ6LATYfbhZkkpskyFskCP0FGhIs43gMt5+Rg0WkJNFlILCrDodPhqDaQVFOJnMGDWaL1lgQa1lqv5BQQYjfhoDVzMycfXoCfMbOFMZjZGrZak4CCOXLuBRqWiUVy0V+i0Toxnz8Wr3pTVpZs5FCnrKbNax5GrwnzcOimeDcfEu5lONaty4OI1im0O4kICiPT14Q8lWj6wWR1+O3gGm9NFSnQoQSYT6w+dQ6WCoW0b8Pv+sxSUWIkM8qVd7UTmrxf/6TvUr4q1zMnv+86iVql4pkdTNu0/S1qmSFwN79uS+av3kV9sJSzQh2d7NfOiH2LC/PlH7+Z8+MM2SsrsRIf5M3Jwaz5YuJXcglKC/M1Meu4hvl28hwtXs9HrNEwa9hBHjqexTllT9etaj0a145gwa7mAfUYFMnNcT775YSf7j6QC8PSQljSoFcvYST9TWGQlKNDCrGl9OXf+JhOn/y4AoNUjeW1qP9asOcJPSqeOaELu4/XnANStG8uMmf05eTyNeXPXYrM6CY/w59U3BhAUZGHCi99z5pRoXX7imbY89nQbdm8/y7tvivRUUIgP02YNpHa9WFb+/CfffLwZt1sitkoI0+c+TJWqYWxZd5yP5qzBppQNTpo9iPpNEsjJLOLtKUs5oaRJug1oxPCJPTCa9Fw4lc5bExdzIy0XtVrFo8M6MPSF9mi0GvKyi/lg2jJvpLxpuxRemj3IK1IunrrOOxMWk6asGLoNbsrzU3p5O3Ecdic/fLiR5V9vQ5JkAkN9eXHWwDvG/H9uOsln05d5L1KdBjbh+Rl98Q+qGM21ltr5+aMNrPx6Ky6nG51By6DhnRg8qjNGc+WlgGcOXeG7WSs5qSA5fPxNDB7dlT7Ptsdgun+EPCcjn9XfbGXdwh1eZIPZ10iXoa3o9Y/2f0unzL2OJEnkZhSQkZpNfmYhRXmlFBeUUpxXQnF+KS6nG41Wg1qjEr+q1fgFWQiPCyE8Lpiw2GDCYoIfOMn0d55BL3Zhz29H2Lp0H09N6UtwxJ2G8vsds+JtKSt+cMBpVroIc4TF3H/C5qkwuFdKb7/iGaveIK7SuLjbLbFVmaJ26nfniiozPZ/Du8XPX5eBjSt8TpZlVv24977P827nP1zsyIrQQQgdWa0IHq3SkHy70NErZXyCTyWEjpjouGRhOgZ9BaGjVh5D5RUjHqEjo1IZvEKnzC2h8sbFlaZk+ZbQ0ah0WJU2ZBQ/zoOSy4VIcnmBnmqVBkkS7c8eoaNVaXG5VThlySt0tCoNsqyhzHU758pIgcOGv06ktDxlgFlW4cvRoKXwNvxDpMmPG6UC4umvM5FVVkqAXkx8HJKbaIsf14uEb6eyVmSdWkOo0Ye0gkIsOj1mrY704iICjUZUkorMklLCLBacTjeZJbfKAjNLS4jw8cHlkkkvLCLUYkGvVnM5Nx9/o5FQs5lTN7IwarXUCA/1oiBaJ8Z7uVatEuM4cOU6TrdE9YhQikttnC/IIcBspFZkOH+cFNOQHvVS2HTsAi5JonZMOG6XxP6L1zFoNfRuXJOVf55EkmWaJcdSVGLjz3NpGHQaHm1Tn8XbjmJ3uqkeG0aV0AAWbxM764fb1uXo+XQupudi1Gt5vmczvt9wkMISGxFBvjzaqSGfKYmr6vFhdGuWwrvfb8XtlhT0QzJvfbcJt1uibrUo+rStzawv1mN3uKgaG8Kwwa14+8tN3uj5tBFd+X7FPo6fSUetVjHmHx2w25y8+q6ImjeuF8/wJ9rw5vvruHotF4Ney9RxPSgtsTFhxhJcLolqSeG8NrkPPy7+k3UbRAKpa+faDHu2He++9zt/KsyrIYOb8eiQ5rz7zjp2KZ0x/fo14oVhHfh+4S5+UV7YGjSqwvSZ/UhLzWHkM9+Sn1eKj6+RyTP70bhpIt989gfLfhK3rdsgnqmzBmAw6Hhz8lJ2KRDB9l1qM25abzQaFR/NXs26FWIqVK9xApNnDyQoxJeDuy/wzrRlFOYL6vmYmX3p0L0usiyzYtFuvvtgAy6Xm9AIfybNHUxtJVa7b+sZ3p+2nKL8UvQGLc9P7EHPR5ujUqlwuyWWf7Od7z/aiMvpJjDEh7GzB9Gs461G2HPH0nh/4mLSLggh1LFfQ4bP7IdvwK2G3bysIr58bQU7lDbliLhgxrw1mAZtKq4BRCLrKF+9vtIriJo9VJthrw24a1w442oOC2b/yg7lHbfOoKXvcx0YPLprhedwt5N6Jp0lH69n+8oDuF2iSCMyIZR+L3TioSEtvRfhv+vIskzWtTzOH7nC+cOpXLtwk4wrWWSkZuNQOoL+nROTHEG91ik07VqPBu1q/F8RPzWbVKVm06qc3n+JNd9u/Ze8O2ZlFVVWbHvg+3hWlOHRQfe8XWmRlavnxFr2dqBs+XNAETtN7gLtPLb3IvnZxfgGmCtdYW1aeQhZlqnfvCpRtxUXHt57kbTL2Zj+YneT5/xHix0ZGZcsRI9b9nh2NLcJHQMOD6lc/b5obAAAIABJREFUkpRWZKlCKaBT8rQg63B5CgRlCbVKGI9VaLErRmbJy7cyKAWCglyuVjxA3oSVLKFVhI7WSyf3pK9k9IrQKU8u11ZCLvewrzxCR6cSz8Ute4CeNgXoKQugp1YBeqq1ON3gktxeoaNGjV6to9hpr8C5CtILj47Hl1PqdlbAP0SYfLlRWqTgH7Tk2ayEGC3kW624ZZlYH3/SPPgHnwClFVlFpNnP24rso9GTUVxMoNGIJEF2WSnhFh9KraI4MNbPn7zSMsqcTuL8/ckpLsPqdBIfEEBesZUSh4MYfz+sNgc3rKWE+/qglVXeOHmkry9Hrmeg06hpFB3lFTrtqyWw/dwVkKFxfDSXb+aSX2YjKsCPEIuZPeevolWr6Vo3mXVKqqpltXjSMvNJzysiwGykdfUqLN8rVlVd6iVzKvUmN/KKvTDP7zcfQpahZY14XC43Gw6eR61S8Y+uTVi7+zRZBSUE+5l5tGN9vlq1VxiT48NpVbuKN3H1f8h7z8CoyrVt+5g+mfReSEhICCX03qT33pGiWxHdFkS6gICAIEixb912RekKIr1XRXrvNUAgvWcm09Za7497ZUhIEN17v9/zfO++f8nMBJOQzDrXdZ3nebSuF0/lsAA+WimmI12a1yDU35v3f9gn/tyiBnGRgbz9udh3t6xfhY7NqjHz/c04XW6qxoYy5uk2LPrnTlIz8vG2GHlzbA/2HbrmMSIP6F6f1k2rMvHNHykotBMa7MPcaf3YvfeipyiwfevqvDiyLW8v2sT5i0IwvTSqHc2bJjB+4gru3s3BaNQzeWJ3qleLZOxry7it+njGjutKq1bVmDVjLcePCm/N4KHNGPV8OzauP8HnH4sJTXzVMGa9PQgvi5GpY5dxRh2vDxreglEvd+BuchZzp6wh5U42er2WF8d3pffgJqSm5DJvympuXElDo9Ew/Pk2jHihHSgK33y4gzXfiO9dQvUI3lg8lEqxweTnWnl3xlqOqmuglh2TGD+nP77+Fhx2F18v3sJGtV25SvUIpiwe6qE3p93NYcnrq7igFqy17Fyb1+YN9BDKnQ43Kz7eyY+f70WWZAJDfBnz9sAyqAdFUdj541G+fGs9RQXFaHVaBrzQjhHju2F+aNqScjODT2f86FlZRVQO5sU5A2jeuU6F73+FeTZWfbCVDd/sx+10o9Fo6PRkc56e3JPQx1z8AC6fuMmq97dyeNsZz2N1WiTS/+VONOta7z+2qnI53Vw5cYuzv13h8rGbXD11qxwPq+To9DrCKwcTHBmAX5APvoHe+AV64xPgjd6oQ5YUZElGcktIkkxeZiEZd7NJv5NF+t1s7FYHKdfSSLmWxuZv9+PlY6Jxpzp0erIFTbs+OpL/nzgDXunMxaM32L78N/42re9j01EPHy91Yldsdfzpj0lVkR5hMX/8733xxC0URSEiJpigsIrN7MVWh6fosukjxE5Jyqp197rlupgkt8Q2dYXVdVCTch/78/cihNG+V302nfjDT7fC818tdtyKogI7S1ZaOtyKJHpvPBOdioSOTmVVaT3+m5K1VAkaQkuJ0BFrrwcFgmovjvJA6OgwePANkprWEuwrp2hKVmPmJS3KRo0Zm9upEszFczqNAbvsxktrId/lKEUuVzypKqPWiM0tXu+tE8Zjc6lVl6/ei1yXDbPWiM0lOp1LhI5eo0ODFpu7POcq227FR2+m2CXhkuUy+IdQsw+p1iIseiOKDAVOJxEWX9KKxPOlhU5lH39uF+Rh0ukIMHiRoiIfNJKGLJuNcG8fCu0ObG4Xlf38SS8oEkWAgUHczc3DJcskBgWRnJMnkAYhIdxWywKrBgeRll+I1ekiNjCAomI7GVY74b4+eOn1XE7PxMdkJCE4iCO3hMG3dUKch2vVumocx2/cxe6WSAwPRnYrnLuThsVooFVinEfodKmTyLGrd8mz2akU5EdiRDCb1X6dgc1rs/vUNfJtDqKD/WkUX8kD8+zZtCZX72Rw/b6Y4DzbuQnLdpzAandSJTKItnXi+WSd+GVvUy+eQG8LX28Qu+uB7euSn1/Mym3izvxvvZpw934uK7aKd4SRfZuSlVPElz8KFtSgrvUJ9vVm3qeq8GkYT5/2tZmxeANWm5OocH+mv9qdz384yLnL99BpNbw2qgN6rZbJc9YiSTI1EiN4Y2x3Pv58D8fVVdbIp1rRsmkCYyevICOzEG9vE29O64NGgdFjvsdqdRAa6stbswZQUFDM6FeWUlRkJzjYh9lzBuCl+nNS7+dhMumZ+HpPWj5RjSXzN7JbNRx36FyL8VN7cet6OpNe+Z6szEK8LEYmTu9Nmw5J7Nl2jg/e3ojD7iI03I8Z7wymRu1oDu29xJLZ67EW2fEPsDDl7UE0ap5AVnoBC6as4UJJ386TTfn7xG4YTQbOHrvFwqmryc4oxGDU8/fJ3en1ZDM0Gg23r6XzzsSVJKvTmP7PtOLZCd0wGvWiRfnnE/zzrV8otjrw8jby0oy+dC6Fg7h56T5LJq7klmoubturPq/M6V+mWj89JYePpq7mpCpeqtaOZuyioVStXdZU7LS7WPPJTlZ/shO3U6ysBr/ciSGjO1W4fnK7JDYvPcDyd7d4/B0N2tbghVkDHhtZFhTzy6x+fyunD4qfa41GwxN9GjL41a5UaxD3hx//Z44sy1w7lcyp/Zc5++tlLhy5jsPmLPManV5HlVqVqNagCnFJlaiUEE5UfBhh0UH/MhdLURTyswq5dOwmJ/Zc4PDW02Tdz+Xg+uMcXH+cpGZVGTV7ILWaV+xF+XdP0851MHubyM0o4Ma5uyTW+2vNym63BPCnKfKKonBbTfrFVkC7L31OqyKm3iN8OABH9lzEYXcRGRtMfM3yJmtrYTG/bVdv+h5aUQEc3nuZ7PQC/IO8adm5bLdO8vV0jv92DY1GQ88hTZk454+/torOf7XYeTDRUYSxlxKhI6N4SOVGT/ux+POD9mMhdHTqtEYtECwROoraglzi71E0KOr0x1Fa6GiM2NW4uKTocaNBh4liyak2Hws6uVtNXwmB48SoNiWLmLkehxozz3c5VPaVggKex8xaE4Xq6y06MwUuexmgp49qRi4D9NQLoWPSGnDJwoD8ZzlXWrQEGMW6ys9ootgp4VLXVfc8+AfBudJqtER4+XC3IB+L3oBZqyfDaiXEy0Kx3YXN7SbGTxQHuhSZhIAgknNykRWoERLClQzR6pkUGsqltEwAaoWFcTktE/mhssDqYSHcy84XoicogGKHi+ScPEK8LQR7eXH2bhomvY6GMVEcuCqETqeaCey9KDp06leOJC2nkPT8IkJ8LFSPDGWXioLo26gm209exeGWqBEVisVoYP+FW+i1Wga3rMvPh87hcEkkxYQR6mNh42ERLR/evgG7T1wlI89KsJ+FAa3q8NWmI0iyTMNq0UQH+bFU9e8MbFuX+xn5bDh5Ho0GXurXkkOnb3Hueip6nZaxw9qy/bdLXLiRJgzCT7dj9+9XOXHhDlqNhjFPt+X6zUy+2CKE05AeDYkO82fmkg1IskLdmpV4aXhr5n24hdSMAnwsJmZN6MnRk8n8tFGIp46ta/DUwGbMmPszd+/lYjYZmD6pJ4qi8NrEFdgdLmKig5g3qz9HDt/gi6+ED6V2rWhmvdmP3Tsv8OWXe5FlhaSkSsyeM4AL51NYtGAj9mIXERH+zJ43CB8fE+Ne+o4b19LR6jS8OLoT/QY3Ycv6U3z6/jbcbpmY2GBmvTOYyEpBfLJ4CxvWiO9Tw2bxTJ03EG9vE19+sJ2fVOhnUr0Y3lgwmNBw/zJrK4uPifGz+9G6c20kSWb5P/ew/DPB4IqpEsq0xUOJrx6BoihsWnmYLxduxulwExjiw8QFg2mkIhgK82x8/OY6Dm4V67ukRnFMXjyUCPXOWXJL/Pj5PpZ/JNZa/sHejJk7iFbdHkxfZFlm8w+/8c2CjdhtTowmA09N6MaAF9qVu5Cf2H+JT6f/xP1k8XPfuF1NXp436JGIh6O7zvPl7LWkqN6h2OqRPD9rAI07/HFxm6IonNh7keWLN3JJRXvo9Fo6DmnO4DHdiHnMxfJxpzDPysk9Fzi64xzHd58vUzII4B/iS90nqlOreVWqN6xCQp3K//H1kkajISDUjxY96tOiR31GLx7OtdO32bf2CJu/2c/FI9eZ2H0hLXrUZ+SbA6j8L6amHnWMJgP1W9fg8LYznNhz4S+LnRI46p9tr868n4u1oBidXvtYP9Xpkjh5BaiRknNAjYu36Vm/wgnY/k1ncDrcxCaGU61u+cbozSvFhLTboCYYH/oa1qlTnZYdk4iMfvzUsaLz3y12FKWU0JErEDoljKoSz44eh4Lar6Mts5YqYWA9EDoC0omnV0eLjB6nIqPlYaEj4KHC2WPELj8QOlp06gpM44mem7RmCt1uz5rKpcjq6krEzItldVGmrYhcbqbQ5cBb50WeKmosOjP5ruLyQE+HAHoWu93ICh6ho9NoMWuNj+RcGbQ6vLRGsu3FBJm8yLc7kBSlAvxDPkatHn+jidQiwbaS3Ao5xaI4MNtqwyUJ5MOtvFwUBdGnkyki50khoVzMKF8WWLpDp0FUJGfupYriu8gILqZmiP6Y8FDu5+ZToMbJNRJcTc/Gz2yiakgQh2/cRavR0KF6vMeT06pqLOduP+jQCfa2cOiKWGP1bliDDUcvISsKTavGkFdYzKlb97GYDPRplMTqA6dRFGhRvTI2m5OD55PVaHlj1uw9TZHdSVx4IC1qxPLVJjGx6dy4Gjabg42HLghYZ+8W7Dt+nWt3MzEZ9Yx7sg0rt5wgJSMfX4uJcSPa8c26w9zPzMfPx8zkZzrwzdrfSb4nElpTX+jM+h1nOXUxBZ1Ww9hn2pNyP5cPvt4DQLd2SbRvVo3J89ZhK3ZSKSKA2RN78s2KQxw+Li5wo4a3onb1KMZOXUVhkZ2wUF/entmfw0du8M0PolOmSaMqTJvYgy+/2sd2FefQo1tdXnyxPZ98vIud6mPdutdlzJgurFx+iOXqm1mDRnHMmNWPm9fTmTJ2GQX5xQQEWJgxdwA1a0Xz/oLNbFd9K0+0r8Gk6X2wWR1MfvE7Lp1LAWDE820Y8Xxb8nKKmPLyKs6rU5sBI1owakxnNFpNmbRVQvUIpi8ZSlTlYHKyClk0dQ2n1Yh6574NGf1Gb8wWIwW5Vj6YuY7fdwuR2rh1NSbMH0RgiABknjl8nSWTV5OVlo9Or+Wp17ow+O/tPOuclJuZvDt5FZfVz6dFF7HWCgh5ANi8dyuTDyav5Ly6xqvVJJ5xi4cSHV+2sTYno4Av5qxj/y9imhcc7s+LcwbwxCMuNHeupvLlrLUc3ys+d/9gH/42pTddh7f8w0lISTprxZJNXFYNqkazgW5PPcGgV7v8Ww3HeZkFHPzlBAfWH+PC4evIkux5zuLrRf22NajXugb1nqhB7GPizv83jkajoVqDOKo1iGPAK11YtnADO5b9yu9bTnNk2xn6v9KFUXMG/uV10x+dJh1rc3jbGY7tPs/Q8T3+0seWYDb+TGIOBDsNIKZqxB8KpLysQm5eFK99FJ3cWmjnuMq6avsIvMMOdUXVZVCT8qnBmxmc+v06Wq2G7kOalnkuJ6uQverv/MBnWj3uy3rk+e8WO4Bb0agrLL2amHpY6JR4dgwqC+uB0JEU3QPcQ4VCR4dLFTolrcpaFfYphIsQLCXeH9Gx4/KUBOo0eo8pWadysUrI5Vq0uBWNQI2qosaoFQkt0Z1jptBVEbncWYZcbtYaKXQ78NVbyFXNxiV4CB+9mQKneF2J0DFo9WgVLUUuZ4WcK7POgFbRku90EOblTYZVGJRLC51IFf/gpTdg1ujJstkI9fKmoNiBQ5Ko7OtPSn4BigKJgcFcyxF75RpBIVxW8Q+PEjqlW5FLlwU2io7i5G3xC1uvUgSXUzNxSBLVwkLILbSRVWQjzNebIC8vTt1JxaTX0TyuMrvVssBOSVU5ePEmTkmmZlQYTpebM7dTsRgNdEhKYP0RcRHpWCeBi3fSScsrItjXQqvqsaw+KO54ujWsxpXbGdzOyCsVLT+OW5KpnxBFuL8vq/aIX+qhHepz+koKV+5mYjLoGN3/CZZvO0FGbhFBfhZe6t+ST1f/SoHVTmSIHy/0b84HP+yj0OYgOsyfl4a04r1v95BbUExokA+Tn+vIJ98f4E5qLhYvIzNe6caW3ec4dEJcVF8c0Rovk543Fv6CLCvUS4pmzMh2zP9gK7fuCIDo9PE9yM+zMXnmj0iyQlKNKGZO7sWX3+5nr8q5Gdy/MYP7N+HN2eu4eOk+Wq2GV17uyBMtqzFl8mquXEkVj73Sic5davP2nPX8rpYMDhrSlOf/3p71a4/x5Se7kWWFajUimTV/EAATX17KFfXvfO7lDgwe0YKzJ28z/42fyFNNy6+/1Z9mT1Tj7Ilk5k/7kdzsIizeJibM6kfrjknkZhfxzpQ1nDkmLtw9BzfhxcndMZoMnPz9OoumriEvx4rZy8irM/vQqXcDAM4fv8VCVcjoDTqem9CNvn9riVarxeV088OHO/jpy/0oikKluBBef28Y1dQWZUVR2LzsEF8tEKWFFh8zL8/uR8f+jTxv+rIs88s3B1i6aDMOuyChj5zai55PtypzMZVlme0rD/PNfMHY0mo19B7Zhqcn9aiwK6Uwz8byJZvY+K3gZOkNOvq90J6h47r/YZGcoigc332e79/ZwDW18NHkZaDns+0YOLrzv5QWAijMLeK3TafYv+4oZw5cRpYfwCcr14iiaec6NO1al6SmCf+rSgZDogIZ9+Ez9H+5M9/NXcfvW06z9h/bcdgcjF4y4j8mxOq3EVDMq6eSkST5L/meSlJYpj9p4L16WiAdEmo9ug0Z4JgqkBNqR5cR5qXPb9vO4nK6iUkII65Geer6zUv3uXL2Ljq9lg59y6ew1n8vJq/N2tf0QHFLzoYVv+NySdSoG0NS/VgKCgoe/8VVcP73/DT9D5wH5uQS9INB7dEx4igldEq3H3vQEKr/RggdtQVZcaNV6eZ4kBEPWpU1HqFjplhyiamN6v0R3h53KaHzIH2lVblYJUJHpykxM+MRNaJXp6Q7x0SR2+Uhl2tUT48gl3uR43BQQi63Si4P0BM0WFR/j5/BQl4poGdGsRWzzoAkKdhltwf/8IBzJWLkbknGKrmItPiSWlSWc6XT6Ag2WrhfJIoD5cfgH0q3ItcIDuFyhsq5Cg7xcK5qh4pWZC2Cc1Uy0WkYFVVhWWDTytEcvyPKAutViuBmeg5FDiexQQEgw5W0LPzMJmqGh3LgirggdqtdjZ1nryErCk3io0nJyictr5BgHwv1K0d6PDl9mySx99x1CoudxIYGkBAaxMYjIp0wpFVd9py8Rk5RMRGBvnSoV7VMtNxa5PTAPJ/v0YyNv10gNbuAAB8vRvVsxufrDgn/TlQQA9rW5d3v9+JyS9SKj6Bbi5rM/0qYd+skRtG7bS3mfrodp8tNtbgwnuvfnPmfbie/0E54iC/TXurCp0v3cz05E6NRzxuju3Hu0j3WbRH+oe4datG9bRKTZv9EfkExIUE+zJ3Wl117L7JOTex0bp/EyBGtmD3/F65eSxN4iFcfFAVmZRXi62tm5vS+WLyMjH7lO3JyrPj6mZn1Zn9CQ3157eWlojzQqGPCpB60blujjD+nc/e6jJ3cncsX7jFvhsA7+Pp58cbcATRsUoW1y3/n63/sQpYU4hPDmbloCJGVAvnx+9/45h+7kCWZuIQwZi5+kujYEM6dSGbBlDXkZBZi9jIy9s0+tO9RD0mS+f4fu1j5xT4URSEuMZzpS4YREx+KJMms/nwvy1XxVSk2mKnvDqOqeoFIuZnBwgkruX5BFK51e7IpL77Rx1MgmJ2ez/tT1nBC9d3Ub5nI+IVDyjTQ3k/O5L2JK7mgrocaPFGNsYuGEv7QuP7u9XQ+mrKK82qaLbFuDK8tHErVCiCSkiSzY+Uhvpu/wYN3aNGtLs/PGkBUlUdzjQBOH7jM0gXrPesqk8VI7+faMfCVLp4ul79yXE43x3aeY9eqQxzdfha3S/I8V61hHG37N6FV74ZExD6arv6/5cTWiGLW8lfZteoQ777yLZu+2YfOoOOlBUP/I4InIi4UvUGHy+Em814OEZX/GLhZ+uRkCBHwKAPxw+eiOq2tWQGbqvT5Xf19LG2cf/jsVo3HpQV86bNllZhWt+xcu1wkPT/Xym51Qtnvb2UnNzarg03qxw55rs0ffp6PO//VYkcGVYgoyB7zsTAjl05hPRA6pUnlD6Y1oinZLTpzJAmtKoBKtyprMGIvI3RKOFmi78ZZSuiUTl9pVPZVidDRaww4ZLUkUGOmyO3ES2em0C2EjhbBsPLWeZHnEjws0OGQypLLNTxMLheohwKXkwCDhRyHmNgEGMoDPUuEjoYHxYF+BjM2lygOLM25ilI5V0atHm+dkXSblSCzFzaHC4fkprKvP3dU/EPVgCCuZ6v4h8BS+IfAYK5kiBLBqgFBXM7MUluRg7iQJlqRE4NCOHdf/HetsDBOpQih0zi6kqcssHlcDIdLlQWevn0flyRTMyKU7EIbmYVWwny9Cffx4ejNFPQ6LR1qJLD9jNhXt6tRhdO37pNf7CAm2J9IP1/2nLuBVqNhYPPabDh6EadbonblCMw6HXvP3USn1TCiTQPW/Sqo5YlRIVSPCmWlyrwa1LouZ6/d59q9LLxMBl7o2YylW45SYHMQExZA31a1+XD1ASRJpmH1aBokRvP+sn0AtG1UlfjIIN77QaAeOjWrRtWYUBZ8vgOAVg3jaduoKm9+sBmXW6JGQjgvPtmKtz/aSnaulUB/C7PH9WTl+mMcUU3GLz3dmpAAbybNXovLLVEtIZwZE3ryyRd7OKquMV54pg2N6lXmtUkryM4pwt/fi7dm9Cc3x8rYCctwONxUjglm3lsDuXjxHjPe3YrLJVGlSihvzR1Iyt0cRr/0HdYiYViePW8QgQEWxr+8lOtX09DqNLw8pgt9BjZi/ZpjfPGPnciSQkJiOLMWDsHf38L8N9ZyYJdIiXXsXpfX3uiF5JaY+/pqflPj5h171OW1N3pjMhv48btf+fajnciSTGxCGDPeHUpMlVCyMwtYOGUNZ9VJT/eBjXlpai9MZgPZGQUsfn01Z9SVVsc+DXjlzb5YvE0oisKOn47zz7nrcRS78A2wMPbtQbQq1Yvz69azfDT9JwrzbBhNep6b0pPef3swqZFlmQ3fHuS7hZs805znp/eh+4iWZS4YLqebNZ/sZNXHO3A7JcwWI397vSd9nm1T4Qrq0olb/HPaaq6dFXfulatF8tK8wTRQpwaPOheOXGfp/PWcVf0ZRrOB3qPaM3hM10fe0T/qKIrC1VPJ7Fp5iH1rj5YpuotLqkS7AU1pM6DJY4XX/9bTaWhLZEnmvVe/45fPd6PTa3lh7pB/W/DodFqiqoRx52oq926k/yWxk6uKncA/URAouSUun0wGIOkPenPsxU5O7hc3c80rQDsApN/L4awK2m1fwdSm2Opgjypmug9tVu75LauO4LC7qJoURZ2HwKFbfzpGUaGd6LgQmrf/45/fx53/arFTMnGR0aueHSNOVei4SlJYikKZIkHVaCyEDn8gdEo6eNTOHFn2CB2dpsS4rEVRdLgVGX0pvpVVFTqCiyVj1JopdKvsK1ktCcSE1S3akAvdYlKjKDrssuQROnqNDresQVJkj9AxaESiy12GXK5Dq+ixut1lyOW+ei+yHXb8DF4UOBwo4BE6Oo0Wb61Z9eVYyLEXoyiU41zdLyrEojeiU3Tk2O2EW7zJsdlwy0pZ/IP/A6FTNTCIqznZ6DQa4vwCuZolGpIr+fhyLTsbs15PlLcvVzOzMOv1xPj6cVktCKwSGMjZ+2notVrqhIdz/LY60YmN9gid1vGx/KaWBTaqHMV1tSwwLjgAnaLhfEo63iYjTeOi2XlWrFi6163G3vM3cLglakaFopU1HFM7dPo2SeKn38+J+Hj1WLLzbVy4l4aX0cDglnVYtfc0blmmcWI0Zr2ezUcvodHAyC5N2Hr4Mmk5hWq0vAGfrT+Eyy1RJyGSBglRfPKT8MF0aVYdL4Oeb38RJr4nuzSgsMjOdxsEW+mpno2xWh18vlq8flCX+gT6WVjwmRA+bZtWpVOL6kxf9At2h5sqMcFMfrEz7362i5vqmmrG2B5cv5nB299tFd+n5omMGt6KWW+vJ/lOtseILEkSY19fidPpJi42hPmzB7Bz1wWWfi/+302bxPPG1N6sXPE7a9aod3StEpk6tRebN57mq8+FOblW7WhmvTWAe3dzGD3qa/LybPgHWJg5dwA1kiqxeO4Gdm8T6Y2O3eowdkpPsjMKGDvyK27fzBTN0RNErPz2zUzmTl5Fyu1s9HodL03qRq9BTbAW2lk47Ud+3yvesDv0rMdrM8Tk5fSRGyycsobc7CK1V6cf7VW/wfGDV1g85UcKcq2YLUZGz+xLJ7UEraigmI/fXOcxZNZrnsCkxUMJiRAXGWuhnc/eWs+utYJHllCrEpPfG1Ym8ZJ2J5v3Jq3gnHqRqN+qGuMWPUl4TFkPzJVTt3l/0gpPaqZx+yReXTCk3NQHIC+zkG/m/czO1eJnxOJr5qnJveg9su0fJnSSL9/n27nrOKJ2IhmMero/04Ynx3b7y+uq4iI7e386wuZv93NDFVsAQRH+tB/UnI5PNie+dvlJ1P8fT5cRTyC5ZT4c9z3rPtlJUHgAg8Z0/bf/3uiq4dy5mkrK9XQatf/zxO8SdllQ2OPFzq1L97HbnFh8zVSuXn7tVHJOHriMw+4iLDrwkfDPPeuFkKnXIqFCZtb+zacptjqIrBxMveYJZZ5zOlxsVDuyBoxsXUYsOp1uT9x80MjW/7Y36r9b7FAidJQKhI4wHONhVT0QOm5Fj2oFE0JHNRxrNSVTIa0aTRdCx1FG6Bg9QkeWtUgogmYeJa/hAAAgAElEQVQuuTBoTFhVw7KiaJEURU1ducr4cUpo5iVCR4sOSdbiUhSP0DFoRIJKUhSP0DFpRcRdUhT89ULUGLR6JFlLsfSAXK5RTct5TgcBRi9y1RVXqMnXA/TUoyfPaSfU/KA4sEToaNESbLKQZi3C32jG6ZIocDuo5O3L/UKRsoj3C+RmafxDTg46jZbYMvgHH27m5GIxGAgyeZGcm4evyYS/wcStnFz8TCb8jWZPK3KoxZvL6Zl4GfTEBwRyOiUVvVZLvUoRHEkW5tU2CXEcvJoMQMv4ypy4lSJ8OJGh5BfZSVXXU1VDg9l38SYaDfSsV4Ntp68gyWKNlZFbxJ2sPPwtZtrWrMKPh8QFuVv9apy9mUpqbiGBPl50qZfIst3ijaBT/aqkZhdy4nYKJoOO57o2ZfnOkxTaHFQOD6RTg6p8sk6Ihbb1E/AxGvlBjY4/1a0RN+9ksevcbTQaeGXwExw9e5vjF++KWPiIthw5nczvp2+h0cDoYW24dSeLtVtV/0/PRoQF+jD7fYF+aFovjhH9mzBz0QZy8mwEB3ozd3Jvftp4kr2/inXL8IFNad4wnnFTV4lVVrAP898cwO9HrnuI5c2bxDN5fHc++XQX+9S7v0EDmzBiWAveWbCRI+q6ZcSIlgwb3oIP393GLtWc3L1nfV4d25kdW87yyfvbkSSZhMRw5rwzGA0axr/0HdeviCnPi2M6029IU47+do2FM9dhLXIQFOzDjIVDqFUvhv07zvPeW79gL3YSEu7HzIVPUqNONDcupzJv4kpSU3IxGHS8NKUnPQY1RlEUln+2h+X/FGmruMRwpr87jJgqobhdEt9/tJMfvxL9RfE1Ipn23jCiq4gVy8WTySycsJKMe7no9Fr+Nq4rA59v6/FWXDh+i8UTVpCekiso5i+2Z8TYLh4DqKIobFt5mC/nrqfY6sBsMTJqeh96PtWqzBu9vdjJD4s3s15NsvkH+/DSWwMrxDxIkszWH35l6QLh4wHoPLQFI6f3fSTgE0Qa54eFG9i18hCyrKDVaek6vBXDJ/25np3SJ/nSPTZ/s4/dqw97vCMGk55WvRrSaVhLGrRL+n8SEdH9mTY47E4+m7qKpW//TNMudf7tlFYJuqFk/fhnT+ptkUp9XGcOPIiS12oS/4f/LgdVY3DLR3QMybLMTtV43HFA+Ti5oihsUJOQPYY2KydY9mw4TW5WESER/rTuWrYPasfPJ8jKKCAkzI8Oveo/9mt63PmvFjtSidBRjDiVskLHrsjq6qk0qfzBWkqwriQ0mLHJD4SOBh0ONZougJwyOlXo6DUmbKoYkmSxRtOVCB01Sq5BiyRrkEFdU7kwaU1YJZGm0mCgWJKw6LwocIvmY4ckkmUWVeiYtEYPFNRbNRubdeIxBTxJK5PWgMOt4H6IXG5Q11lBKpkcNIQYfUi3FeGlMyJLUCQ5ywA9S4SOQavDR28is9hGkMmLQocLpyQR4+PPXZVzFe8XxM3cHEAjRE9OLkatjnBvH27l5WExGPA3mLmTV0CA2YxRo+NeQQHBFgs6Be7lFxBisaBHS0qeeNxLp+eW2ooc4mXhYlomXgYDiaFBnLgjUBDN42I8QqddYhUOXruFLEOj2ChupeWQa7MTHehHoJcXR6/fxaDT0aV2VTafFBfydjXjOZ+cSnZRMREBvtSODmfjcbEyGdS8DrtOXSXf5iAmxJ+6lSP58YC4Ux7Yqg7HLt/hbmY+fhYTwzs04OvNR3G5JerGR5JYKZhvt4gJzYC2dbifls+BE2I9NnrQE+w6fIUryRmYjHomjGjHmu2nuJmSjcVsYPKzHVm56TjXbouE1pTnO7N13wWOnxNR83Ej23M3JYd/LN0HCEJ5w1oxTJn3s2hRjgtl2qvdeP+fO7l4VQBDJ4/uglajYdL0NbjcEtWrhjNrah++WnqAvaqoGTKgCQP6NWL6jJ88np1xr3WlXt0Yxo1bxp3b2RiNel6f0pM6dWKYNG45Vy6notVpeOXVzvToVZ9PP9jO5l/EOq9dxyQmvtGbKxfvMW/6WvLVKc+MtwdSp34sy786wLIv9wnied0YZiwcTECApUysvH6TKkxbMJiAQG92rD/JP+ZvxOlwEx4VwIx3h5KYVIm8HCuLpq3h5CFRSd91QCNentoLs5eRzNQ83pm4ioslnTvDmvPClB4YTQYkSWbN53tZpq7CImKCmPr+cKqrFHO3S2LFP3ayWvX2hEcHMvm94dQq5YfITsvngymrOK62zNZqEs+Ed4cTFVd2VXHmt6t88PpK0m6LNW6HAY15cc7AMh08JefKqWQ+mbqKa2fEFKVq3RhGvzOUGg0fvZqwFthY/cE21n+x29M4/ETvhjzzRr+/FCGXJJmj28/wy+e7Oa0a1AEqJYTTY2RbOg9riV9QeWTA/2un7987cmLXeY7tOs/7Y5by3vap/9Y6y6SWAzqKnY95ZdmTcl00HFf+E/+GJ9WOpAYVtBiXHHuxk8PqzUnbPg0qfM25IzdJvZ2Nl4+J1t3rln/+6E1uXU7F5GWg6+CyKStZlvnpmwOA6KkqPX10Ot2sVm84hoxqUy6K/q+c/3KxoyApRlyKjIB8lhc6D0jlD2CfQvxIHsOxTlOS3HogdGRF+Hl0GjP2h4SOW42SazFhk1zqmkrEzEtwEXqNEDgmrRmrajxG0eOQZY/QMWgMFLtlZDQC7qn26VjdQhiJ1mTRp1PoFqkqMeUpxktnwuoUxYElQseg1YOixfoQuTxINSj76E0UuyVcUlmgZ6SXL/eKCjDrDBg1enLtdsK8vMmyiobkhzlXN3Nz0Gq0xHj7cys3Dy+9Hn+jmZSCAgJMZvRoSSssItTijdstkWm3EuXri9XuJMfuIMrPl2K7m+xiK1F+vjhdEvfyCwjz8cao0XEzS7Qih/t4c/ZeOma9njqR4Ry6Li4IHarFs/ey8GG0SqjMqVv3KXa5qRYeguSWOX83HR+TkRZVK7PllJh0dK9XnYMXbmJ1uKgaEUywt4Xd566j02oY0rIe6w+dx+5ykxQTRoiPN1uPXRbspg6N2Hz4EjmFNiKD/OjaqDqfq6uodvUTQFFYt19Mhp7v1ZwDJ69z7W4WZqOesU+25YeNR0nLLiTQ14vXhrbl09UHycqzEhrozbin2vPxD/tIzy4k0M/C1Bc68/nKX7l1Nxsvk4EZo7uxdc95T+LqlafboMgKs9/dBEDzRlUYOaQlMxesJy2jAF8fM29N6cOp03f4YbUYLbdpWY2XR7Vl7jsbuXRFiCFhRA5jzJgfPJ6dObMGILllRo9eSmGBnZAQX+bOG4gsKYz++7dkZxfh6+fFzNn9qFIllNfHLuPC2RQ0GnjupQ4MGd6cDWuP89mHO5AlharVIpj1zmB8fM3Mmbyaw6rBt/egxrw4oRvWwmKmjf6BM8eF12bwM60Y+UpHJFnhw7d+Yau6QmrSuhqvvz0QX38LF0/fYf6kVWSl52MyG3h1Rh86qx6Do/sus2TqGgrzi7H4mBg3b6DnTjMno4BFk1ZxRqWut+tdn1fnDMBbxSDcv53FovEruKKmWzoOaMTLs/p7ngc4sPEUH7/xI0X5NgwmPc9M7km/UW3L3FXbiux8/fYvbPlBTM5CIgMY886TNO1YfpVRlG/ju/m/sOV7ARX19vPimal96PFM60feqbtdbrZ8f5DlizaSny2mBrWbJzJq9kBqNo6v8GMqOoV5VnYs+5UNX+4l/Y6YJmh1Wlr2bEDP59pRr3X1/2gc+3/70Wg0vPbB33ih2UwuHbvB4a2nadGjYnHwZ05JM7bd9ufFTl5WIQU5VjQazWN9UE67iwuqD63hH/i4ju25iN3mJDwmiOr1K+782b5G3KS1692gQuba+qViWt2xX6Ny6JHDey5xLzkLHz8z3R4SQjvXnyQzLZ+gUF+6lSoglNwSB1QB9lfP/7jYiYuL4/bt2+Uef+WVV/jkk0/KPf7dd98xcuTIco8XFxdjNv81BousGHApCpSOmz8kdFwVCh25nNDRoseulDQl63ErGk9cXK8xY5UlFdapqMZj4b8xlk5YSYrahmzCJrkxa70okhzqtEfQzL1UoVOaZu6ldux46cwUqTFzL60X+U4H3noRSxeRci9yHcV4683kO4QgKhE6ojgQXLLkAXp6DMrFxfgZvCh0OJEUpRzQM7UU0LPA6RBJrMJCFMpyruJ8Az2cqzCzD3fy8/E1GjFodKRZiwi1WHC5ZLLtxUT5+pJvs2NTkQ+ZBVaKXS6qBAaSUWDF5nQRFxhArrWYAruDmAB/HA4X94oKCPXxxttg4GpGNr4mE1WCAjiefA+9VkvL+MoeodO+ejwHr9xCkhTqx0SSnldEWl4hIT4WakSGsuucuLj1bZTE1hNXcEkS9WIjcbkljl6/i9mgZ0Cz2qw5eAZJVmhevTL2Yie/nr+FQa/jbx0bsXLPKYodLqrHhFIrJsJTDtj/idrcvJfF2RupGPQ6XunXijW7TpGWXUiQn4UX+7Xg09W/UmhzEBMewDO9mrBk6W5sdhcJ0cE806cpCz7fjrXYSeWoQF4d1pZFX+wkO89KSKAP01/uyufLDnD1VgZGo57pr3bj5Nk7bNghpk0DejSgRcMqTHxzDVabk+ioQOZO6cP3K39nn7rKGjGkOe2fqM6411eSkVmIn6+ZOTP6U5BvY9zE5TgcbuLiQnj7rUEcP36Ljz/aIdqVa0Ty1txBnDl1myULN+N0uomNC2Hu/MHYrA5GP/8NmekFePuYmDarPw0ax5Xpz+nQtTbjpvYiMy2f18Z8RcptkdgaM6UnXfs04PL5FOa+vpqs9ALRnjyrH6071SL9fh7zJq3i2oV7aDQannq5PcNeaItGo2H9skN8+e5WJLdMdFwIM94bTlxiOG6XxNIPdnjuMBNrVWLqe8M8XJ7jB66wZPIq8nOsmLwMjJ7dn05q4kRRFHatO84/Z4uVlLevmVfnDaRd7wcXuqJ8G5++uZa9alqlau1oJr0/gtiHfBKnDl7hg0krPGDGHk+34rk3+pSLkyuKwv5fTvDFzJ/IzRSG1I6DmjJq1oBHrqwUReHI9rN8NfsnT5lgTGIEo2YNpNlfQCBk3M1m3ac72fr9AU+jsV+QD92faUOv59oR+i+Wvf2/cEIrBdH37x1Z/f4W1nyw7d8SO0Yv0ZPzVyY7d66mqp9HoCcJ+Khz/ugNnA4XweH+fzgF2q8mL9v0alDhz0hBrpVf1fLMrg9144C4CTi8S8TW+z6UslIUxbMq7jmsOZZS9HOXq9RU57k2ZXqDdm8+wwez1v/h1/eo8z8udo4dO4YkPYginj9/ns6dOzN48OBHfoyfnx9Xrlwp89hfFToALkXBgAl3GaFjwu6JjqsFgkpZUjkeoWPGLqtNySXpK1mYkrUYscvuUkJHj1NFQqAms4ylElZ2SabEj1NcSuho0eGSNEigenTsmLQmilxuFNTiQLdDTG9UoSN6d5z46r3Ic4nuHG/Vg+Or9yLXIV4nklZWLDoxsRFJK7Gu0qLFW2cuTy5Xk1ZatASZLGTYrPgbzdhdbhySRLS3H3c9QM9AkvNz0QLRPv4k54kpjq/exP3CQoLMXrglmRxHMZV8fcktslPsdhMXEEBqXgFOWSYxKJjbObm4JJnqISEkq/iHaqHBpGTnU+x2kxgSTEZ+kUf0OCWpTCvyuZR0vAx66lWK8KyxOtVIYM/FG6LoL6Eyl1MyyLPZiQnyJ8THm9+u3Eav09KrQQ02HL2IokCrGrHczcznrurX6VQnkZX7xQW6c/1EbqZkcSs990GHzvbjuGWZJtVj8DOZ+PmgmOA8260J+05c47b62pf6tuCLn38X/p2IQIa0r897P+wTa67EKDo2SeSdr3chyQqNk2Jo3ySRtz7dhiTJ1K8RzYBO9Zj14SbsDjcJlUMY83Rb3vl0OxlZhQT4eTF7fC9Wrj/G0VPJaDQwZmR7zEY90+auE63JSdFMGt2Fhe9t4eKVVPR6LZPGdCXAz8Jrk1dQXOwkplIQ8+cMYN/+y3yr0slLjMjfLz3Iz+rFvEOHJCZM7M7KZYdYsUysl5q3qMq0mX05fuQGi+dtwOFwEx0TxJyFQ/D2NjF59PdcOi84WqNe6cig4c058qvw59isDkLC/Hhz0RCq16rE9l9O8vGCTbhcEtGxIby55Eli48M4+ft1FkwRkxlffy+mLBhM41aJ2KwOPpj1MwfUmvrWXWoz/q0BWLxNZKXn887EVVxQCed9nmrBqMk9MBr1QgS9t42fSnt3PhzhKfezFhTzj5nr2LdRrOFqN41n8rvDyhg0T/92lXcnrCArNQ+tTsuTr3Zi+Gtdy4zrrYXFfDX3F7atEN+r8Jggxi0ZTv1W5Ztq025n8cnUVZ5iwJjEcF5dOIy6LR/danvz/F0+n7GGM6qA9Q/x5enXe9P9b63/NFbh1oUUfvxoG/vWHvUU/8UlVaL/y51pN7DpnyKi/zecPn/vwJoPtnLp2A0y7mYTFvOvFS7+1XJAgOtnRfgioYIagofPEXUy0qRD0iOFbmGelSO7Rdqxfb9GFb5m59pjuJxu4mtGVdiI/PO3B1EUhcZtq1P5oYbmM0ducvnMXYwmPX2falnmuR0/nyAjNY/AEB+6l2JkOR0ufvh0z2O/vked/3GxExpatlvhnXfeISEhgbZt2z7yYzQaDRERf3637HA4cDgewNFKSokEvbwioWPwTHRKhI5oShZCx16h0NHglvUeoeMoJXR0Gj0O6YHQccgSBk2J0HmAixBlhJJH6Og0ehxuRfxftWYK3fYyNHOj1kSR24m3zsszvTFoTBS5XPgZvMh1CmOxWWsm3+nEz+BFjl28zl/vRY7Dho/eTKHThQyEmoTQ0Wt0GDWiIbkcubyoAL1Gh6/BRFaxjSCThUKHA5cslwV6+gaQnJ+LXqMlzOzN3fwCfI0mDIqWTKuNMG9viuxObG4XsX4BpBYU4pKEuLmVk4MkK9QMCeVKRiaKArXDw7mUmoGsQO2IMK6kZeKWFWqFh3ErI0eIntBgsops5NqKqeTvhx4NV9Oz8fcyER8cxJGbojm4XWK8pyywfY14Dl+9g93lpnpkCEhwOvk+XkYDHZMS+EUtC+xcN5FTN1KEXyfQlwaVo1inGpMHtqjNb+dukZFvJdTfmy4Nqnk6dDo3TCQ7z8aei9fR67T8vVdzftxzmqx8K+GBPgzv1JCPVx/EqSawWtaO471lIkrernFVYsMD+WCZuOB2f6ImkcF+LPlmt/i7W9agTtUo5ny0RTQ314tlYOf6zFwiGFeVo4KY+kpX3vtiFzeSMzGb9Lw5vifnL91n5Toxfu7SLonBvRsxZeaPnlXW3Bn9uHEzg8Xvb0WWFRrUq8z013vxxZf72KW+AQ4c0Jinhrfk7Xm/cFxdJT33XBv692/MgnkbOKQaIJ8c3oJnn2vD8u8Osvw7MdJu3Cye6XMGkHInmymvLiM7qxAfXzNvvDWARs3iWfntQb7/bK/4d29QmRkLBuPjZ+bjBZvYpJohW7StweS3+mPxNrH66wMs/ccuZFkhMSmK6UuGElEpkOTr6cwbv4KU5CwRDZ7Unb7DW6DRaDj52zUWTl5NQa5VoCLeHsQTarQ2/V4u74xbzmV1LdX7qZY8P7Wn5+Jz6dRtFo5dJkzIOi1Pj+vK4Jfae9ZHTruL7xZt4mdVKEXFhTDpg6fK0aJPHbzC+xNXkHlfTHN6P9OakW/0wcu77DrA7ZL4+fPdLH93M45iF3qjnmHjujFodOdHXhDzsgr5fsEvbPvhILKsYDDp6f9SJ54c2w1vv8eTzAEuHr3Bqnc3c1SdBoIovRs8tjsN2z/6QvnfeoIjAqjdMpFzv13l4IYTDBzd5V/6e0pAnmbv8muhR52ravFjtUesm0qOoigeH06zR0TJAfZvPIXbKRFfqxJVKuBcybLMluViHd/zqZblfhbyc6zsVFfJg54vfy1f/bl4j+s6qImngRyEV2flF+L3Zujz7TCVQoJsWnOMzLR8gkP/Wg1CyfkfFzulj9PpZNmyZUyYMOEPf5GKioqIjY1FkiTq16/P3LlzadDg0WPDBQsWMGdOeXKYGxkTFo/QKVYZWMKs/AD2KZqSoaRVWVsidDRGimVBHHfJomRQ4xE6XlhlNzqNAYcK65TVKLmhVMy8WBU6GjWeXiJ09Kofp2R6UySJNVUJy8qgMWF1u/HRW8h32tGgRYcBm9vtETol3TlFLqfapyOmPL56L3KdIlJe0qRcsroyavVoFT1FLucjyeVG7QNfTqbNhqJAZZ8Abufn8YB5JYCe/nozqUVFBJq9kFwyuU47lXz9yCyy4pSlMpyrmiGhXM4QjJ/aYWGcT81AtCJHcFotC6wfFcGZFGHEqx8VyYV7abhlhdqR4dzKysHqdJEQEkSRzcF9tTcnxGLh9J1UzAY9zWJj2HNRCJ0utRLZc+G6WGPFRpJdYCMlO59Aby8axUZ5ygL7NK7JnrPXsTpcJEQEUynAj20nr6DRwIi2Ddh46CKFxQ7iwgOpFxfJCrVDZ2Drupy5eo8b97PxNhsZ1aMp32w6gtXuJKFSMJ0bVePD1QdQFGjbIIFQfx++XCe8MoM71cdmc/L9RnFxf7aPgHl+u068wTzVuwnICu9/K+50erWvTZ2qkcxYskFMfJKiGTW0FbOWbCQrp4igAAtzJ/fhxw0n2H9ICJGRw1pSq1ok46et8qyy5r3Zn/UbTvLLJhVQ2q0uz45oxZy31nPh4j10Oi2vvdqZRg3iGDd2GXfuZGM2G5gytRfVq0cybswP3LyRgcGoY+LknrR6ohpvv7mO31TPzaBhzXn+5Q7s3XGe99/ZhMspUTkuhDmLhhAU7Mu8qT/yq9qTU+LPKcy3MeXFpVw4cweNRsPTL7Zj2Kg2FNuczJu4it9UfEPX/o0YPU2Ikv3bzvLem+twFLsICffnjSVDSapfGUmSWfnP3az4dA+KohBfM5Lp7w8nKlaYhA/vvsC7U9ZQlF+Mj58X4+YPopXq3ZEkmTWf7WHZBzs8JuXXPxhBzQYPLjDJV1JZOOZ7klXAZ48RLXlhZt8yfoZiq4Nv5v/CJtXPEBEbzPjFw6lbQRX/9bN3eH/CMm6eF2nCeq2q8eqiYUQnVMwycjndbPx6L8sXb8JaIFJRbfo25rlZA/50Z8u5366yYslGTu0T/w4ajYYn+jZi8Gvd/iOgz8cdSZJJu5VBZkoO2Wm55KTlk5OWR056Pi7VUF36+Ab7EFUljKj4cCLjw4isEvaH7dD/N0/rvo2F2Fl//F8XO0V2gHKi94/OnxU7yZfuk5GSg8lsoP4TjzYn71776IQVwKlfr3H/dhYWHzPtKzAvb1p+CIfdRWLtStRtVjZufun0HU4fvoFOr2XQQ0WB29YeJys9n5AwP7oPevD/thbZWVXKsLxm3x9+mRWe/1ViZ/369eTl5fHss88+8jU1atTgu+++o06dOhQUFPDhhx/SqlUrzpw5Q2JixdyOadOmMWHCBM+fCwoKiImJQVEnOjwkdDSlmo1FgSCeskGtxoxDdgtfjSxi4i4VHyEKAB8IHb1GrKTwCB01YSW5MKq+HNRkl0OW1RZkBwbNAzq5UWvCKjmEAdnpRFNSHCi58dF7ke+0q8WBeoolCT+DhVynDZ1Gq3bnuNR11YN1Vr7TToDRyyN+QoxC6JjVpJVNcpUhlwtfTqFKLtdQ6HSWaUguEToaNOoaSwA9TVo9mTYbYRZvioqdFLvdxPoHkJKfj6QoVAsK4aqKf6gVGsaFdCFuSuMfGkRGcipF4B8aVork5N1UNECTmEocTxattQ2jozh/Pw2nJJMUEcb9nHzyix1UDvRHh4ZLqZn4mk3UigjjwBURz+5aqxo7zl4V66lqsVy9l0lWoY3IAF+qBAey+9wNNBoY2Kw2G49dwumWqB8XhUaGgxduYdDpGNG2Aav3ncLhkqgTF0Gwj4UNv4sL77NdGrP9yBVPh87Q9vX558+/4ZZkGlWLJrFSCJ//LIRNv7Z1KCwoZt1u0dvy0qBWnLxwl2MX7giG1VPtOHTiJkfOJqPVaBj/THvOXrrHrkNCQDw/pCWyS2Kh2qnTuXVNOraoxpR56yi2u6gSE8z017rz/me7uHhVrKmmjumG3e5i6qy1SLJCvdrRTJvQg/c+3sGxE+J79OKodjRrHM/YCctJS8vHx8fE7Jn90et1jB69lIKCYtWIPAi3083oF78lL9dGYJA3c+YNIjjYm3EvL+Xm9XQMBh3jp/SkQ5fafPPPPfy4XHztLVpX4/VZ/SjItTHuua9JvpGBXq/l1Sk96d6vIZfO3WXu5NVkZxZi8TYxZd5Amrepzt1bmbw1fgV3b2Wh1+t4ZVpPegxqgtsl8dnCzaxXV2j1myUwddGTBAR5k5dTxKLJqzmlJrG6D2nKi9NEgaDL6ebbJVv5+VuxoqteN4ZpH47w9Nlkp+ezeMIKzvwuhHK73g14de4Az0W1pCDwm3c24nK4CQjxYdyiYTTrVNZcfP7IDd6dsMyTtOr9TGuem96nnLnTbnOyfMkm1n2+B1mS8Qmw8PfZA+n0ZPNH3gge33OBz95Y5fHlJNSJ4eX5Q6nd4vGUbkVROLX/EisXb+KcKoZ1eh0dh7bgyXHdqfQIcfXvHmtBMVdO3OTG2dvcvniPWxfucufyfU9K7F89lWtE0bpfE9r0b0psUqX/z6ZQT/RpxKevr+Dy8ZsU5lnxDSifoHvcsebbANGT9GdOXmYhqSoINrFu5T987W9bxXtM/dbVPUboh8+da2lcPnkbrU5Lu74Vr7DWq78nnQc1LifK7DYnG1ST/YBRbct971d8KibTHfs0JCzqQY+Tw+5i9Vf7AHjyhbZlppY/ffcrBXk2ouNC6NCjfOrrz5z/VWLn66+/pnv37kRFPbqnoHnz5jRv3tzz51atWtGwYUM+/vhjPvroowo/xmQyYTKVV8lORUaPRaWam3AqEhoV9lkOCVGh0NF58EzK+5oAACAASURBVBGoTccVCR2x3gJ9idDRmrGpiSlZEWmvEqFT2nhs0BixSU41VeVEgxYNeuyyaEPOcxaj06gdO7LsETp6jQ5ZEd05gQZvMu3FaNFi0hoodDkINFrIUrtzgo3eZNqL1IZkCZeslBE6ISZv0m1WfAwm3G4Zu+QuQy6P8RZCR6fREWq2kFJYgJ/RBBLkFtuJ8vElq+gB0FN065TlXNUODeO8KnTqhoVztgKhU5pz1TQmmqPJKZSUBR6/LfAPDaIjuXI/UySrwkIotNm5WyDo5JX8/Thy465oRa4e72lF7piUwNFrdylyOEkID8LXYOL3q3cw6HT0a5rEut/PIysKT9SIIyO3iGv3s/A2GRnYojbLdp1AVhRa1ozF4XSz/+xN9Dotz3dryqrdp8m32okND6Rjg6p8+rP45e/YKBEdGlbvEl6f53o349TFu5y5eh+DXsf4EW35Zc85rt4Wa6cpIzuxavMJriZnYDbpmfZCF9bvOMvpSynodFpef74TZy7eZds+IbKeHtCMiBBfZiwSFPOGdSrz0lOteXPhBlLT8/HzNTN3al+OHLvJyp/UVVaHWvxtaAvemL2WW8lZojxwSi/MRgOvjV2G1eYgKiqA+XMHc/HiPd5/bytut0z16hEPjMiLNuNySiRUDeOt+YPJyijg1ee/JS/XSkCgN7MXDCKuSiizXl/NUVVsDHumFc/8vT1nTyYzb+qPFOYXExTsw8xFQ0iqG1PGn1M5PpRZS4YSHRvCoT0XWTx9LcU2JyFhfkx/dyg168aQnVnA26Wi40NGteGZMZ3R6bRcOn2H+eNXkJWWj8nLwJhZ/eioJrHSU3JYMHY5V1TfQ/+RrRk5qbunG+fYvkssmbSKghxRMPjKnP50GtDY8yaek57Pe5NWckKN5TfpkMT4xcMILDVud9pdLF28mZ+/2IuiKIRGBTL+3eE0aF3+7vr0r1f4aNIKzwWsTd9GvDRv8CMNyGl3svhixhoObRE/UwGhvjzzRj+6DP8/7L1leJTnGq59js/E3YUEAoQQpLi7u0ORGqW0BYprKVq8UEqFUqHFrbhD8eJuxUMCxD2ZZHy+H8+bIWmAylp777WO9T1/ejQz8fDO+d73JQ3+UrbNtZN3WDVnB7fOigBNlVpJ6/4N6DWy3d9K8P0rJz0xk5un73PrzD1unblH3M0nJfqxio5Gp8Y/zAevAA+8Atyl/3qU0gfZbXay03JJiksl8VEKiY9SyUnPI+FOImvn7WDtvB2Elg+kUbfatOrfgKDI/zPQVnS8/N3xC/Ei9Wkm8befUfkVeqqXnZSnmQB/OevohvR7KxMdhOsL4gmKn5N7xN9Iow4vz63Zv17ciNRuXumF1RPx95O5ePwOMpmMzm80LPX4gc3nyc0qICDUi0ZtS2bn3L4Sz8WT91Ao5fQd2qzEY7s3niMjNQ+/II8SDqyMtDy2SvESb41o9Ze1Zn88/zGwEx8fz+HDh9m6devfej+5XE6tWrW4f//+P/ismpeCjggQlGGzi0TkV4KOXYnZbkXhAB3RTi6Tpj5FoKMvBjoyCaYsdhxrquLCY6WUluykcCLbJGofbCgw2WwO0FHJlJisMix2uwN01HIlJitYbDYH6ChkCtGDZTHjpXYmTUpI9pSqIFxVWvKNFqx2O/46MbGRITqx0goL8FBr0ZvMmG02QpzdeCqBToizOwm52aK5XKUhRS/WVUaThQKzhVBXdxJzcrH9sdDTW6yriiY6RaBT2dePG1LPVRX/AK4+Leq5CnzecxUSzAUJdOpHhHH6kdBV1AkP4XJ8Iharjdhgf55l5Artjocbrio11xNEonHdiFAOSS6r9lUr8Ov1+5isNmJDAzAazVyLT8JZo6Z11Si2SJqcNtXKczMuicTMPLxdnWhVpZwjLLBtjQrEJWZw71k6ThoVg1rW5Kd9FzCaLVSOCKBiiJ8jQ6dH0yo8Scziwu9PxDqoVyN2HrtJ3LMMnHVqRg9oxve/nCE5PRdPNyfGDGrGV2uPk5wurOWThrTmmzUnePwsE2edmk+GteOXvVe4eD0ehVzG6Hdbkpyay6Llh8XX1iyGNo2jGTt9C3n5BoIC3Jk9sQurNpzluCRYfat/A2rXKMOIcevIytLj5enM3Jk9uXMnkWVfHsJmsxMbG8L0qd34ZcsF1ksXwiZNKjJ2XAc2rH0uRG7QsDwTp3TmxNHfWbpwL2azlbJR/syc1xuz2cKIwT/yRMrfGTu1M01aVGLn5gssX7wfm9VO+eggpi3qg4enM18t2MPOjeLnVr9pRcbN7I5Wp2LVV7+ybsUxAGJrlGHywj54ertw89JjPh2zXhR/umgY92lP6jWvhN1uZ8ea03y/YC8Ws5WQCF8+Xtqf8CjxonfuyG0Wjd8o1lbuOsbM701dyeptNln4adE+thaJlKODmLRsQIkG8rOHbrJk3HpyM/WoNSrendqFDgNLBgQ+uPmEhSNWk3BPrF9b96nLkGndSq1a9LmFfD9zK/ul0EbvQA+Gze9L3dYvvpM1FprY8uVBNi7dh8lgRq6Q0+Xd5gwY3/Ev6XJunr7Hqrk7uC79Lag0Stq/2YReI9riE1Q6CfefHJPBxI3T97h0+AYXD90g/vdnpZ7jH+5D+eoRlIkJISImhDIxoQSU8f3HIYS5mfmcP3CNk9vOc+nwTZ7cS2Ld/B1sWrybLu+34vXxnXH5BxOXv3rKVAoh9Wkmj249/Uewk/pEXCf/aqN8Ub1H1ReI2ouf+LtJJNxLRqlWULd17AufYzJa+FXS2rTtV++Fz9n+o5jq1GsV41j/Fh2L2covPwhnY8/BTUqByeovDgHQqmsNAouFH+rzDQ4H1oChzVEVK4Fdu/woRoOZ6Kqh1G8eTZ4UTPt3z38M7KxcuRI/Pz86dOjwt97Pbrdz9epVYmNf/Mt71THYbDjj5AAdg+S+KgoQfBHoFDmrDDakugcxmVHIdBTYLKhkWgqspmKgI3MEBxaBjtwBSjIpR8eIRq4lTxIeK2QqDDaLNNExopApsEjW8yLQUctVFJrt2HgOOs9DAu0O0FHKFMjscgqsZkdz+XOBciEeah3ZBiM2O2Kik5+HQqbAVakhwyAEyNmGQmx2CHV254nUXB7k5OZoLtfJlaQXiubynEIjJquVMm4exGcJDU+JQk+v56BTyceX2ympKGQyKnj5OHquKnr7cD0xBYVMRuUAf648TUIuk1E9KJAL8eJi2SAijN8k0GkYGc5pqf6hZlgwdxJThXbH1wuL2cbd5HTcdVpiAv0cqcgdq1Vk3xWRilynXCjP0nJ4lpmLp7OOulGhbD8nhLjdasdw7PpDsvUGQn3cqV4miE1SWGCvRlU4c/MxzzJy8XJ1onuDyny36yw2u50GlcvgpFbxy3ExNn6nYx1OXX7EvSdp6DQqPurdmJU7zpGWlY+vpzPv92rI0tXHyNUbCQ3w4L0e9Vnw/WHy9AbCAj0Z1r8xC1ccIj1Lj6+XC1M+aMtXK4/yMCEdnVbFJx+158ipuxyWwsLe7lufEH8PJszcKgpDKwQycUQ75i3Zx+07iSiVciaMbIdOo2LUhA0YjRbKRvgye1p3tm2/xBZpZ9+6VWU+fL8Fny3ax8mT4kVxwMAG9O5dhwVzd3FK0uL061+fQW814qcVx9gkxb83bFKR8VM7c+fmM2ZP2UJengEfX1emL+hDRFk/ls7ZzT4par5521hGTumEodDEpA9XcV1ySA18rxmvD25MQb6R6SPWcv6kuLB3G1CPd0a2QaGUs2PtGVYs2ovVYqNMOX+mfv46weE+FOqNLP1kK8f3it9Xo7axjJzdAydnDVaLlZ+XHGCzBE4VqoQy6YsBjsbl5CcZzBuxhrvXxLSn06AGDJ7U0TFaNxnMfD9nJ7skZ1pkTDDjlw4kvPxz44TVamPLN4dZ89k+LGYrnr6ufLSwH3ValhaGXvj1Fl+MW0t6YjYAHd5oxFsfd31hkznAuYPX+WbSBpKl1NyqDSvw/rx+lKn45+m9968+ZuXMrVyWXF0qtZK2gxrRd3QHvAP/WZt58aPPKeD0nsuc3HaBq8dul7BQy+UyIquEUbleeSrVjSKmXhQ+Qf9ey7qblwst+zWgZb8G6HMKOLf/KgfXnOLK0Vv88sV+Dq/7jXEr3qVW66r/1s9bdCJiQjh/8DqPb5cGuz87JqPZUfvg/xeSkAGunxY3+rF/AlYnJOdgjSbRL9U0nd5/jdwsPd4B7tRsWjqDJzs9z1H62f0FwuOju66QJjmpWvUoqfe5cSGOq2cfolQpSk11tq76zbGmatHp+dTpyeM09kuf752Rrf+ldeR/BOzYbDZWrlzJG2+8gVJZ8ksaNGgQwcHBzJ07F4AZM2ZQt25doqKiyM3N5YsvvuDq1asvzOT5s/N8olNUyvkcdKxSKKCcItDRordZSoCOza7AKgUHlgQdhVQa+jw4UCPXobeYUKDEKD1WpMcp7rCSo8RoszpARykTBaRWux0XCXQ0cjV6sw07SGLjApGQLIUEekigo5GrsNjsmGxWB+gIS7mGbJMBL7XI0AGZY3WlkivRylVkGUUVRJrkxCoCHRky/HWuPMvLw0WlRm6XkWUo2Vwe6S5SkWUIiLmbIS7IFbx8uJuWjkImJ8rTm99T01DK5US4e3AnNQ2NQkEZD09uJaehViiI8vbi+rNkR7nn5YRE5DIZtcNDHKDTuGwZTtx7LCY9xeofYoL8yMgtICUnHz9XZ0I83DlzPwGlQk672PLslsTHTStFcjNOpCIHeboRFeDN/iviBbVvg6rsOnebAqOZCsG+BLm7svvc746wwN1nbpOVX0iwjztNY8vywx4xiWhfN5qMrHwOX49DoZDzYbeG/HLkGolpOXi66hjarT5fbTxFfoGRMkFe9G1dnQU/HMZotlK5XCBdm8Yy65v9mMxWKkcF0rddDWYs3UuBwUxkqA8jBjZh7rJ9pGXm4+3hzPRRHfhxw2mu3pJWW++3IjNTz6zFe8TPqF4Ub/Wpz8Rpv5CYnO1wXD14kMLc745gt0OdWpGMH9WOz5ce4Dfp4vn2m41p2yaWCeM3cPduMiqVgjFj21O9ejjjRq3lnvS2UWPb06hxBWZ9/AtnJBdW/zcaMmhwE3Zvu8TXS8TkpmJMMNPm9UIhlzPhg1XcupqATAbvDG9JzwH1eXQ/hRmj15OSlI3OSc34WT2o37Qi8Q9TmTlyHc8SMlBrlIyY2oWWnaphKDSxZNpWft0lRvNN21Vh5PRuaJ3UPI1LY9bwNSQ8TEWhlDN4XHu6DBSukYyUHOaNXMdNyUXWZVAD3pnQwbG2+m3/DZZM2Ig+z4CLu45R8/tQv5hzJf5uEvOKiZC7DW7CmxM6odY8v3YlPk7js5FruC19jvptqzB8fh88vEs6SfKyC1jxyRYObxLC88Ayvoxc3P+ldvK0xCyWT97Ab5KA3CfIkyEze9Goy4vbpoufxEcp/Dx7O8e3CZBVKBW0GdCQvqPb/2ObdNHR5xZydu9lTmwV0xSzyeJ4zCvAg5qtYqnZMpbqzWL+r6YqO7s70bxPfZr3qc+FQ9f5dsI6ntxLYmqPJbw5rQd9xnT8t+t5gqTJX9GE5u+cxEepgBAnu/+F8tWUJxkk3EtCLpcRW7fcS59ns9k4Iv3eG3d6uZlnpwTv7frVe+G6aOeq3zCbLFSoFkalGmVKPGa1WNn4jTBMdH2zUQnNjd1uZ9VSoSls3b2G46YCIDM9j18kp+Ybw0uuqX5YIswAdZpUoPIf3Ix/9/xHwM7hw4dJSEjg7bffLvVYQkJCiTTO7OxshgwZQnJyMu7u7lSvXp0TJ05Qu3bpUKM/Oya7FRVaR6u5AB2ZBDoChoz24qBT1JMlx2ZTYAVRAFoMdOQoJJiRI0dDoc3yHHRkSgxW8f4quYYCqwmtXEeuWUyChAPM5gAdlUxFodWOHXBROJFjKkSr0JBnElogkaNTiJNCQ67k0vJQOZNuKESrUGOSsnN8NC6kFIoqCK1cTa7ZiLdGOKlAhp9GgI5WoUJul5NrMhJQrAoi1NmDJ3nZKGRyvNXOJOXn467WYLHayDObCHFx41luHnY7JZrLi0BHBpTz8OZeWgYquZxwdw/upaejUSoJcnbhQXomzioV/k6u3EvNwFmtItjVldvJotyzrJcn158lo1LIqRIUyNm4J8gQE52TEug0iSrDqfuPHfUPj5IyyS40EObljqtKzZXHiehUSppUjGS3VP/QrmoFTt2Kc+h1PF10nLgdh1Iup0/9Kmw+dQOz1UqNcsHIbHD8htDkvNGyJhuOXBEQFOpLxSBf1h0WE4p+Lapz5c4T7koTnA+7NeCHHefIzi8kxM+dvi1fc2ToVC0fTOPqZVm48ojQBVWPpHqFYOasOIDdDo1rlqNe1TJM/2KvaD2PCaVPu9eY+pmwlpcJ8WLC0NbM//og8U8zcXZSM2NsJ06cvscuqdSxd5eaNKxdjpGTNpCbZyAwwJ2503qwY/cVtu8SX3OXjtV5vVcdR/WDSqVg4viOhIV6M3zYKlJTc3Fz0zFzVg+0GhXDhv5Eeloebu46Zszqgb+/+3MhslrB2MmdaNKsEl8v3s9OaSTeom0soyZ25GlCBtPHrCclKQcnZw2TPu1B7QZRnDx8i4XTtmE0mAkK9WL64n6ER/qV0Of4BbozdcnrREUHkfw0k1mj1vHwThJyhZx3x7Slq2SB/e3gTT6bvIVCvRFvPzcmLelHjHShvHrmAfNHrSM7Ix+ds4ZRc3s5Yu5NRgs/zNvNTsklFf1aOBOXDnBk59jtdvauOc2KmdsxGc14+LgwZnF/ajaNdlxT7HY7B9af4dvpWzEUmNC5aHh/Vk9a9qxd6kX13MEbfDFuHZkpOchkMrq824w3JnR6oeXYarGy8/ujrJq7g0K9EblCTrehLRkwriM6l1cLWbNSc1i3cDd7fzqB1WJFJpPRvHddBk7qTEC47yvf91XHYrZw6deb/Lr+NGf2XC4hKg6rGESTHnWo1/E1IiuH/kfY1Gu1qkLVxtF8M3YNe1ceY+X0LSTcSWTsinf/rYnPRVOTAslV9XdOkesuIibkL/3Mzkr/zivVLvtKiLx57iHJ8RnonDXUb/vitejdawn8fukxSpWCdv3rl3q8UG9klyQ87jWkWamv79juqzx7nI6rhxMd+5dcgV0+fZ+blx6jUivpO7R5icfWfnMEQ6GJilVCadjquaD/2vlHnD12B7lCzjsj/5mzrfj5j4Cd1q1bY7eXFqkBHDt2rMT/L1myhCVLlvxbPq+Y6ADFQMdiU2KRrOAmu/U56MjUGKzCZm61CSu6XCZg5jnoKB0wVJSQXAQ6Sge4yFHJNBRaTSLlWAId0btlkzQ6IiG5yJHlrNCRYy7EqZj13EUCHZGGLEIC3ZUCdJwUGgosZmx28JZARyVTopQpyDeb8NG4OLJzfDUuJBcIp5XNBnqLuYTTKsTZnSd5IvXYTakjpUCPt1aH3mjGaLUQ7upBfLZYV5Xz8OZBRgYyZER5enM3Ix2FTEa4mycPMjLRKpUEOLnwMCMTF7UaT42Wx5nZjkLPuMws3LUaPDU67qdl4qpRE+jiyu2kop4rby4liCTkOmEhnLovhKjNykdw7I50B102jGuPkygwmSkf4IPFbOV2YhpuOg01woMdwuSuNSux/9JdjBYrsWEB2Gx2Lj14hlatpFutGNafuCos4ZUjSc3M4+6TNJw0Kvo3fY2fD13EbLFSs3wIbloNO0/fRiaDwe3rsP/s7zyVJjhvt6/DV5tPYTBZiC7jT/PXyrFkjciPaVJDZOh8uV7stzs3rYyLRs2Xa8X/d29VFW93ZxasEPqb1g2jqR0bxtTPdmKxSNbyPvX5eOEuMrP0+Hq7MHNcZ1ZtPMPZi2JVN+LdFni6OTHu402YzFaiywfyycROLPvmMGfOCbfZ0MHNqFEtnI9GrSU1LRd3dx2zZvRAn2fgoxGrRaBgqBdz5vQmLi6NSbM2YDCYCQvzZva83uRkFzDs3R/JytTj6eXM9Lm9CA3zZvLodVy5IFxdbw1tTp+B9Tlz/C7zP9mKoVAAzYzP+hIS7s2q5UdY+53Y19eoW5ZJc3vh7KJh7fKjrJbuFKvUjGDyQuGqunz6AXPHbyAvpxB3L2cmL+pL1VqRYjW19HmJZ+WaEUxa3A8vX1dsNhubvj3G6s8PYLPZiawYyJQvBzo0B0kJGcwdtpr70otNzyFNeWNMO0cAYF52AUsnbOA3KTG2ZtOKjP6sfwkRck5mPkvHbeCM9AIUW7ccYz4fUKqhPD+ngG+nPp/mhJTzZ9SSAVSqVdKiW3TuXXnM0tGreXhDrNSia0UyfNEAImNCXnl9MxQY2fr1ITYv3UdhvshuqdWyMm990oPIvxA+97Lz4Fo8h9ed4uims2RLKc4AIVGBNOlRm8bda1Om0qu/tv9XR61R8dGyt4iqXoavxqzm1w2n8Q7y5J2Zvf9tn6PIRVVUiPp3Ttxt8ff3Z7/bolMEO3XbvNqhdGjTOQCadH7thbUOADulFPHGHau/UJi8f+M58nMKCS7jQ91WJV2GVouV9V8Jl1XPwU1wKgbgdrudnz8XU50OfevgG/C8lf3JozRHtcvg0W0dAGW12vh20T4AOvaqRZg0LbPZbFyXpqV/9/xHwM7/q2PEjg6FlJQsw2JTvBB0FDK1A1SsNmFFl8k0FNqsDtBRFIOZooTk0qBTJDx+DjpyxITIarejk4suK41cTb5F5O84KXTkmg2izdwkoMZZoSXHXCiAR8rJKSr3dFZqyTcZsSNzrK40chXYZRRYzFJ2jgAdUe4pnFZGsw2TzUqQlJBcVO75NC8HrUKFVq4qpsspxGyzEeHmSZzUXF4EOnJkRHp6cT8zQ2oudyUuMwtnlQoPjZb47Gw8tFp0cqVU4qlDZVfwNDsXX2cn1HIF8VnZeDnpcFNpuC9VPoR6uHH9WTIapYKqgYGcfpiADGhaPpJjUv1D0/IRnL4Xj9lqo0pIABm5ehKz8vBxdSbK14tjtx8hl8noVjOGnedvY7HZqBMVSlp2PnGpWbjpNLSqEsWGE0Jn075GBW7FJfMkLQcPFx3d6sbww/5z2O3QtGpZ9PlGjl55iFIhZ2jneqw/eJnMvAKCfdzp2aQKSzeewGq1UScmnPLBPnyzWdwVdW0ai9ViZfVuMVZ+u1tdniZmsutXIYge0rsBqam5fL9RCH8HdKmFq07NnC/3A9CiQQVaN67EhE+3UWgwExnmw+QRbVn45UHuPUxBo1YydUwHnj3LYsbXOwFoWC+KD99pyvTZ27n3IEVUSIzviJNGxcjRaykokKBmdi8uXnjEl8uEOLlatXCmTe/GwX3X+fabX7HboUbNCKZO7yYSkT/dhclkIbKcH7Pm98FstvDRuz/yNCETrU7FhGldqd+4Aht+OsVPUvpptVoRTJnbC5VKzuzxm/hNKsbs3r8eg0e0wmi0MHvMBk5LeTtdXq/Lu6PbolDK2fzjCVYuPYjNZqdCbAgfL34d3wB3sjPzmT9mA1fPCmt49zcb8tbotihVCvJyClg0biPnpc/TumctPpjW1RFY9tuBGywZL9ZWrh5OjF3Ul9rNKzmuE79fimPe8FWkPs1CqVLw1sSOdH2nSYlpwOUTd/hs1BoyU3JRqhS8Mb4j3d9rVmpicOnobT4fs4b0xGxkMhndh7Zg4PiOL0whLsw3sGreTnasEOWiLu5OvP1Jd9oObPjKSYTNZuPIprP8NGsb6VJgYfnXyvDO9J5UbfTyLqRXHWOhiRNbz7Pru1+5e/GR4+3uPq40612Plv3qU65amf+ICc5fOe3fbobGSc2CwSvYtHgPFWtG0qDzizNl/u4pmrQV5P39yc7DmwJoI/4C7ORlF3DjjFg513vJtAZESndRe3mrPnVe+JzMlBxOSKvRLn/IvgEh1t8mCY97DGlaSjx+dJeY6rh5OtHpD4nIZ369zf2bz9DoVPQZ0rTEYz9+fgCb1Ua9ZtFULrYWO7TjCo/uJuPsqqV/MX3P4d3XmP/Jxpd+r686/9OwQynQkTtAR/5C0JFJwYEiXLA06DzPzCkCHWEftzlAx2Azo5M7kWMWwmOz1H4u4EcUeeZJjeU6uZa8P4COk0LUQ7gqncgyFoUEimZzVyl3R1jKBehoFSqsVqHb8dO6OlZTXmonUgv1uKm1FEhOq6Lm8qK05Gf5YuKjsCvIMhgIcHIhTZ+PzQ6R7l48yhTN5WXdvXiQkYFSJifMzZ2HmZnolEq8NU4kZOfgrtGilStIzM3Dx8kJrJCcl0+Aiwtms42UAj2Bbq5YLTYSc/Lwd3VBaZcRnymgx1On43ZyGi4aNeW8vbjw+Kmj56oIdFpFi/oHmw1qRYTwKCmDTH0hIV5u+Do7c1ZqMe9UvSJbz4oE0aYxkdx9mkpydj6+bs7ULhvC1tPisZ71Yzl+7SEZuQUEeLrSJDaSnw6KO5BOdSvx4EkadxLEqurdDnUcYYHlQ31pXKUsX2wSu+/WdSqglslZu0+I7N7uUoe7j1I4fU1k5owc0JRTFx9w4WaCaBx/uwW/XXzEqYti8vLRG8148iyTdVLicZ9ONYgM9WHKvB1itVU5lKGDGjN17g6SU3Nxd9MxZ0o3Dh25xQ7JZtqjcw06tK7MyAmi48rD3YlPp3fncVw6s5ZuF1BTNYxPPu7KunWn+UVKKW7brgrDh7Vm+deH2b1TXAg7dq7OhyNasXHNGX6WJih1G0QxaVpX7t9NYubEzeTlGfD1d2Pmgj6Ehvswf+o2jkp1DZ161WLo6Dakp+QyffR64qQMnhGTO9G6c3USn2Qy46O1xD9MRaVSMGxKJ9p0q4GhwMTCyZs5vl98nNbdajBsSifUGhX3bz1j1vDVpCXloHVSM3JWD5pIWRwPbj3l02FrSH6aiUqt5MPpXR3tyxazlR/n72GbdEdbqUYZJi4dgK+U/WGz2djyzRF+XrQXm9VGYLgPk756g6hi0fgmg5mVuv6rywAAIABJREFU83axXcoHCS3nz/gvB1GucsnJSUG+ge+m/+JwWgVF+DLmi0EvneZcOHyDZePWOXQfTbvX5r3ZvfF8wR138XP9t7usmLKRB1ILul+oN29P60GT7rX+EYgkxaWy54ej7F91nLxMPQBKlYJ6HV+jVf+G1GhRGaXqv/NlpEXfBqIKY8leVkzeQK3WVVBr//XqC7tkpf+7bjKr1cbdS2JqEVX11eGAAKf3XhWi/IpBryz/PLr1IsZCE6Hl/ImuEfHC5+z8+RQWs5VKNSIoX7V0Vs+RbZdIS8rGy8+NFt1KZu+YTRbWSi6rHu80KZG7Y7VY+Uma6nQd1AAP7+erthsX4zhz9HfkCjlvFVtT6fMN/LRMfLz+7zXDXbLT5+cV8oP09n9y/jv/Sv9Nx2wHBTLMNlHySTHQKZDcV4XWoqZy2fNeK/tz0FEWgxk7Kkw2u3BY/QF0ihxWRaCjlCkx2oQeRyuBjk7xXKislWvJtxhxUTo5Uo51Cg15FqNU+yCgRpR7irdlS/DjqXYm1aBHp1Bjstqw2GwO0JEhw10q9/RUi/ex2XGAjgwZfpJY2VWlwWq1k2s2EuzsRmKeGFmXdffiYTHQeZSZhVquINDZlbjsbFzUalwUap7l5uGt04ENUvV6Al1dKTCYRIeVuzt5BUZyDEbCPdzJLTSSXWgQ3VZGC4n5+QS4uqBWKHiYnomHTkuQqyvXnojpTo3QIEfPVavochy+KezkjaLKcO1xInkGE+X8vVHJ5FyNT8JJraJ5pbJsk1xW7apX4OzdeLL1BsJ9PYj082bvRclt1KQ6u86IVOTIQG8qhfix6ZiY9rzerDqnrj1yTHsGtHyN5dtPY7ZYqVE+hMggH37YKdYTfVpWIzE5h8PX4pDLZHzUrzGHz97j5oMkNCoFE95qyab9l7kbl4pOo2LK0DZs3H2Jm/eSUKsUTHm/DUd+u8vJ8w9Ep9WbzdDrjcz78oD4vhtH07FFZcZOE9bykCBPZk3szPc/n+S0tKb68N3mlIvwZcS49ej1RkJDvJg7oycHDlxnrWQjb9UyhmEftGLRwj2ckgTG7wxuQufOrzH9k1+4eF6sxd77oCWdulTns7m7+fWAgMIefevw7gctOLjnGl8sENqiijHBTJ/fG+wwbuhP3Lkpkpc/HN+ODt1rcuPyY2aN20hOdoHI1VnUl0pVQrl89iFzxm0kP7cQL19Xpi7uR3SVUJKfCgCKu5eMQiln6IQOdOxTB5lMxqFtl1g2fTtmk4XgcG+mLhvosJUf2HyBr6Zvw2yyEBDixZQvB1IuJhiAtMRs5o5Yze+XxSq0x7tNeHNse8faKistj0Wj1nBZcps17fIaw+b0LtFknnA/mXkf/ETc74mAFBD4cZdSYW03zz7gsxE/k5wgwKXL4Ka8ObnrCwsbs9NyWT5lE8ckuPUL9Wb4wtep1fLVbtPkhHS+n7qZUzsFVDu5auk7ugNdh7ZErf3rHUsg1g7XT95h61cHOLf3qkNi4BfqTYd3mtF2UBM8/gS6/lvOgIldObLhNMmP09ix/DC9Rrb/lz+moeDv1z0AxN9JRJ9biNZZ85c6ro7vEDdfjV/SXQXid7lnldCgdRjY8IXAaygwsqcoBPC9ZqUet1qsbFwuprI9321aqqLk0C8XSX6aiaePC50Hliz8PLj1Ek8epuLm4USvd567t2w2G999JtZU7XrUdKypANZ/d5zsTD3B4d506vtci7v622NkZ+oJCvWCay/9ll96/qdhx14CdFSYXwI65mKgY7TbXgg6RQ3qRaCjlmvQS5obOSqMNqtjeqOSqSi0iTWVVmosd1KItZYo8tSgt5ikiY1RepuafEtR7YNwUDnJxcTHQyVs5CI7x5l0g+i8KjCbsdrtDtCRy+S4KLRkGgrx1jiRUViAXdLlPM3LQY4cb60zKQX5eGi0GEwWCi1WQl3ceZKbg4ySoBPhJlxXGoUSL62WhNwcPDRaVMhJydfj7+xMoclMntFEqLs7WfmF6E0m0Vyeo6fAbKastxepOfnkm0xEenuSlVcooMfTHbPZSkJWDn4uzrhrNPyeJKY70f6+nHn4BIVcRrPykQ7QaRFdlt/uPMZosVI5xB99oZGHaRm4O2mpHRnqqH/oVieGg5fvUWASLitPrY5j1x+ilMvp36Q6m49fw2C2UCUiEG8XJ/ZIDqy329Rm12+3SMvWE+jtRqe6lfh62ymx1qpeFo1CyZZfxTRlSNd6nL8ez/X7iWhUCsYMbM66vZeIT8zEzVnD+LdasHz9KZ6l5uDppmPSu635as0JEhKzcHXWMm14O1ZvOcuNu4moVQomD2vH5esJ7DokdvQDetShfIQv42f8gslcZC1vy9zP9vH7vSTUaiVTx3XEaDQzbsomLBYbsTEhTJvUmeUrjnJEsh0PGtCATh2rS46rJFQqBRMmdqRSpWBGDV9N3KM0tFoVk6Z2oXLlECaOXMfN60+QK2QMH92Wdp2ql0hEbtoqhjGTO/E0IYNpo9eTlpKLi5uWqfN6U61WBPu3X2LZ3D1YLFbKVQxk+uJ++Pi5sX3tGVZ8th+b1UbF2BCmLu6Ht58bV84+ZM7Y9eTlFOLh5czHi1+nco0ymE0Wvpu/h13rBFjWaRbNuPkCRkxGC8tn7WDfRqFTqN0smrEL++DqLrJnLp24y4JRa8nNKsDZVcuYRX2p1+q52+ra6fvMH76arLRcNFoV78/qQevedRwvFHa7nX1rT7Ni+laMBjPu3i6MXtyf2i1K6hhMRjOrF+zml68PY7fb8QvxYszSQVR5QR6K3W7n6JbzLJ8iwgvlchld32vJoImdX/miadAb2fj5PrYs24/ZaEEul9HujcYMnNQFj5eEEL7smIxmjm85x7avDvDweoLj7TVaxtJ5SAtqtan6j7Nv/lOP1lnDW9N7sei971i3YCetXm/4L4NcUbfV36l7ALh9TlzHomtG/mlwXnZaHtekKIgmL0k5Brh14RGP7yah0apoUaxUs/g5uOk8+TkFBIb7ULdV6ViEY7uukhSfgZuXM+36lVyDmYxm1klanT7vtygB8IYCE2u+FJrDvkOblbhROL7/BvduPkPnpGbA+y0cb38Wn8H2NeJa8t649o68nbj7KezcJG4ABo9szZrdE176Pb/s/E/DjtmmkFxQKsx2WwnQKbCK2gizjZeAjoaCEp1Xdml1ZZQKOos6r5SY7C8GHdFOXhJ01DI1BRazYzUlQ4ZKpqLAWlT7UIhMmvzkmk14qp3IkEIC3VVOpBsLcVPpyDUasYMDdJQyBVq5mmzJUl4kUA5xEqCjkCnwUGlJK9DjpdGRZzRjslqFADknuwToyGVyQp3deZyVjZNKhYtSTVJ+Pt46J6wWO+mGQoJcXckpMFBgNhPp6UlSdi4Gi5XyPt4kpOdgtFqp4OtDQkYWBouVCn4+JGbkStDjRXZBIZkFhYR4uKGwy3iQKqY74Z4eXHz8DJVCQcOyYY5Cz7aVy3P45n2sVjs1I4JJzMglKTsPPzdnKgb6cfjafWQy6FU3lp0XbmM0W6kWEYTNYuPcvQS0KiV9GlZl/ZErWGw26kWHY7VYOXZNaHIGt6vDukOXySswEhnkTf1K4Xy3S/yj7NKwMqkZeRy/+RCFXMaIPo3ZeVSEBbo6aRg9oBnfbDxJWpYePy8XRvRrwuKVv5KVW0iwnzsjBzZl/orDZGTr8fdxZcr7bfj8+195/DQTF2cNM0Z1ZOveK5yWhMej3m2BxWxj+oJd2O3QqG453u7XgInTtpKYnI2bq5Y5n3Tn6vUEfvhZrNOaNa7Ih0OaM2vODm7cEBb10SPbEl0xiOHDVpGSkoObm45Zs3uiUioYPvQnMjP1eHk5M3teb3RaNSOGrCTxWRZOzhqmzupOTGwoMydv5swJMQ0aOLgxA95uzJkTd5k/VQiRQ8K8mbmkHwFBHiz/bB/bJDhp3CqGMdO6IlfI+XzGDg5IWRotOlblo0+6oFIr2b72NCsW7sNmtVG+cjBTl/THN8CdzLQ8Ph25ltvSVGbAsBb0e785crmctKRsZg9bzb3rT0SP1sjW9BkqtDNWq431yw6xbpmAj7IxwUz5ahCBYcJ2bbXa2LDsIOskEXNYVACTv3mzRHZOXpaepeM3OGL3qzeuwNglA/Dyfy66BHh06ykLP/yJx3fE1Kd1v3oMmdnzhbk5aYlZLBuzhvOHxIousnIII5cMemUPld1u59iW8/wwfYtDl1O1UUWGzu37l/QexY8+t5A9Pxxh25cHHBkvGp2alq83oOsHrQmr8OfZPf/Np0W/+uxYfoj7Vx6z49vDvDG1+7/08YqEydo/ccn98RTVdFSq/eLVZvFzYuclUXxbJeyVK6w9krOwSZcauLiXDpq0Wqxs++4YICIU/gizVouV9RKw9BjcpJS4ec+6M2Sk5OAb6EG7P+iBtv50ksy0PAJCPOnQ73nrgdFgZqW02ur1dmM8fZ6vtlZ8tg+LxUrNBlHUbiRuCux2O18t2IPNaqNhi0pUrxX5yp/Ny87/NOxYXwE6cikrx7GeKgY6KpkGvQQ6VrtwcqllWgl0tORLmhsZovizaE2llqsdfVhqmZY8s2gsz5ZARyVVTBSBjhw5CpmSQptFspQXiDmRTE2eWaQhpxsEtLhJ7+Ou0pFjLMQuWcqT9aLcU4mSXJMRP50LKZJuJ9hZCJBVciUuCjUZhkJ8dc5kFhRisdml5nIBOhFunjzMzEQhUxDo5EJCTg6uajVquYLUAjHFKTCYyTeZCXN3JzU3H6PVSpS3N48zsrBYbUT7+vIgNUMUd/r7cTclHYvNRkyAH49SMhzQk5SdS65RTHoKDWae5YqsHG+dE9efJqNTqagRFsSx38V+u31seQ5cuy+qG6LCufs0lUx9IaHe7gS5u3JSspP3qFuZX87cwGqzU69CGOlZeh4kZeCq09C1diVWHxYvuC2rR5Gcnsut+BR0GhVvtqrFyr3nMZotVIkMJDLQi7UHxXMHtK7B1TtPuRUnhMGj+jTh553nScnMw9fThfd7NmDJqqPkFRiJCPbmzU61mPPtAQqNZipE+PFGlzrMWLYPfaGJsmE+DB/YlNlf7CM9Mx8/b1c++ag936w6we2iac3I9tz6/Rkbt4sRdtd21WjZuCKjJm0kJ7fQYS3/ZftFdksvyH171qZTu2qMGb+eJ08ycXbSMH1aN+QyGSOGr0KvNxIc7Mmcub1JiE9nzswdGAxmIiJ9mT2vN8mJ2Uz8aC15eQYCAt2ZtaAvzi4aRg/9iYf3Jbv5lM40bRXD5tWn+fHLw9jtUL12JFPm9kQuk/HJqHVclGoiBr7XlP7vNiUnU8/M0eu5fTUBuVzG2yNb02NQA8xmK0s+2cpBKXCwZefqjPikC2qNirvXnzBr+BoyUnNxctEwfkEf6jQT1u8rp+8zb+Q6crP0uHo4MWFxP2pIdQy5WXoWjFrHJWkt1b5fXd6TPiaItdWCEau5KqXRtupdmw9m9ihxcb957iHzh/1MelK2ECFP6Ej3ISVFyFarja3fHGbV/F1YzFbcvV346LP+1GtbOsDObrezf/Upvpu2mYI8Ayq1kn5jOtB7RJtX6mDibj3lq3FruSmJU/3DfHh3Vi8adHrtb+lystNy2fHNIXauOEx+tuhj8gnypPN7LWn3VtP/q3k4/y+PXC6n24etWTB4Bb/tvPgvw06qVPfwd1KorVYbl48LAX31JtF/8mwcTr5mPV8euZKRnMPJPUJr1+nNRi98zsk9V0l+IqY2rXqV/lhHtl/mWVwabl7OdPyD8FifZ2CD5JbsP7xliZypzNRcNkuC5jdGtkGtfv7YlpUnSU3KxjfAne6Dnq+9Lpy6x7njd1Eo5bw3rp3j7Uf33eDG5Xg0GhXvjWrz0u/3z87/NOzYJRh5DjpaCqwiIdlkE4JjGypHgWdx0EFqQy8CnQKryQE6RVbyItDJNRtFEGAx0Mm3mHBWOJFtNiJDhgIVhuKgI5MjR4GhGOgoZAoUdiUFFksJ0ClqMfdU68iUVlzCUp6PVqECm4x8iwl/nSvJUudVkJPot9IoRGFnltGAv5MLqfl6bHYBN3HZWQJ0XD2JyxK1ED4aJ57l5uGhEXctGYWFBLm4kq03UGixEOnpydOsHMw2ATf3UtKw2SHW35/bSanY7FA1MICbicnY7FJzeWKKqHkI8udBagaFZgsV/HzIyNWToRfTHa1CyZ3kNNy0GqL9ffntXjxymYw2MVHsuypeoJpFR3Lp4VOHXsdJpeL8/adoVUo61Yxm029iBdQithz3n6bxJD0Hb1cnWsSWZa3UVN65biVuPEzicUoW7s5a+jatxne7zmC12akfUwZntZIdJ28ik8GQzvU5dPYOcdJqaljPRny98RS5egPhgZ70b1uTBT+KsMAq5YNo3yCa2csPYLHaqFk5jPaNYpi+dC9mi5Vq0SG83qkGUxftQF9gIiLUm3HvtWLusgM8TcrC1UXL7PGd2bX/Gr9KKclDBjUmPMiTMVM2YzJZqBAVwLSJnVj29WHOXniEXC5j+NCWVKoQyIhRa8jK0uPr68rcT3vx8EEqixbuwWKxERMTzKzZPTly+BZfLzskkqhrRzJ1ejfOnLrHZ3N2YbHYiI4JZsb83mSk5jLinbVkpOfh7unEjPl9iKoYyJLZOzmwU6zxOvWsydAxbUlNymHaqHUkxKWh0agYN7MbjVrG8OhuEtM/WktqUg5OLhomze9NrYblyUjLZdbIddy5/gS5XMa7Y9s58nOK63NCy/rxybIBhET4Yrfb+eX746xctA+bzU7ZSkF8/OUgAqQE2rvXEpjz4SpSE7PRaFUM/7RnCZHl9bMPmPfhKrG20qkZ9qnIxSk6VquNjcsOsnax+PjBEb5M+OqNUqWLqU8z+WzEz45E23rtqjJiwet4+JYOh0t5ksHnI1dxRXqBq1gjglFfvEH4K6Yo+pwC1szfyY4VohxUo1PTZ3R7eg5r87d0ORlJWWxaspd9K4850o1DywfSZ0xHmvWu+18rOP5XTu021VAoFcT//oxnD5IJLhfw5+/0kpMiabMCwv96r9iDa/HkZelxdtMRXfPVk4v4u0ncv5aAQimnWbcXr6YA9q75DavFRkztSMq9QANkt9vZJJVydn279NTGbLKwThIE93qvWQk7OcDWH0+Qm1VASKQvLf8gWl697DCGAhMVqoQ6zAIAqUnZbJIMAYPHtHXo28xmC8sX7BVfy+v1CI0Q+U/6fAPffS40iv0GN8Yv0IPc3Fz+yfnf+6sudqx2uwCVPwEdsbIyoZJpJWB53nlVBEEauZa8YqAjyj2LQEeD3iqExyqZhnyLuRjoyB2pycI+bkAhU2C3yzHarSVAR2ZXUmC1OkBHJlnTs01GvIqts3w1wlKuU6ixWsFgtRCge17uGaRzIzE/D51SjdIuJ9doFNk6eXnYkRHp5skjCXTCXTyIy85Gp1TiptRK6yodRouVfJOJMDd3UnLzMVltRHl58ygjA5sdYvz8uJ0k0kCrBRbruQoO5MoTkTxbMySYKwnPsNlLNpdXDvTnSXo2uQYjkT6emM02HqZl4u3sRJinO+cfPUWlUNC8YiT7pdycNrFRnLj1CIPFSkyIPxaTlRvxybhq1bSILefouepUI5qzd+JJzy0g2NuNGhHBbDkpHuvXpBpHrz4gJSsff08XOtaOZoUkNm5dszx5egOHL91HoZAzrFsDNhy8QmpWPn6eLrzTsQ6frzmGwWQhpmwAbepWZP6Ph0uEBc7/XoyDW9arQOVyQcz+ap/Q+9SOonGtskxduEuAj5ShM3XBTjKzCwjwdWPG2E6sWHWCy9eFa2viiLYYCkx8MmcHNpudurUi+WhoS2bM2cHd+8loNEqmTuyMUi5j1Nh1GAxmIiN9mTO7Fwf332DlSnHBER1X7fnpxxNs3SxcWO07VmP4yNZsWH2aVdLdWePm0Yz/uDOXz8cxd5pYUYVH+DBzUV+cnbVMGbGGaxcfI5fLGDq6DV361OHGlXhmjtlAbk4BPn5uTF/cj6joIE4fuc38SVswGswEh3kz/Yv+hEb4cvfGE2aOXEtGah4ubjomL+zLa/XLYTFb+X7hXnZIZYB1m0czdn5vnF20GApMfD55M8f3iClWy241GDazOxqtSmhr1p/lm5nbsZisBIX78PHXg4iIFkDhcFst3IPNZie8fACTvi65tspIzmHhiFVckwCmRc/afDC7Z6kL/7FtF/hywgYhMHXSMHR2T1r3q19q0uKY5nyymYJ8A2qtijcmd6Xrey1eqoex2+0c2XSW7z/ZTFaquNA36PQaQ2b3wT/srycfZ6Zks2nxHvb8cNQRABhVvQx9x3aifqfX/q3Bev9tx9XTmSqNKnLl6C1O7778LwmVU6QKD/+/kUp98YgwTlRrXPFP9TpFU51aLSq/EKRBaGn2Ss6/Lm+XrnUAOP/rbeJ+T0TnrKHjoNKFnoe2XCD5SSaevq6lpjrZGflsk64hg0a2KfE1x91L5uBWMXkeMrFDiX8DPyzej9FgJrZGGRq3eS6637b6NM/iM/D0duH1Yvb0NSuOkZmRT3CYNz0GlA46/Dvnfxp2ZFIo4HPQEe3mfwSdQgl08q0CZkw20YZeFA6okevIk8o9bciwFgMd0WYu1lRKmQa9xYKLUkeWVO4pCkWtuCmdyTAWSo3lMszFQEcpU2K3yzFYrVJLuah90Co0jjTk9MKS2TnOSg1GixWT1UZgseycAJ0riXpR9WCzQZ7ZJNZZueLxCAl05ECwszvxOTk4q9ToZEpS9Xr8nJzJN5oosJiJ8BBTHIvNTkUfH+6min/ksX7+3HhRc3lIEJcSRKFnnbAQzseJAK1aYcFcTkjEareXaC6v6O9Dtt5ASm4+ge6ueGq1XI1PQqdWUS8yjIPXxQtQx2oVOXjtvkg7jggmPVtPQno2Xi5O1CkXwo7zQozbs14shy7dI7fQSGSAF2V9vdh9TtxZv9GyBrtOi/qHcD9P6lcK58e94sW/e6PK3E9I42ZcMlq1UqQi7zxHTr6BMoFe9GhahUWrj2K12qgbG06VskEsWX0MgA6NY/By0TnCAnu2qYaLRsPSn44C0K1VVcoEevLpMgl86kbRoXmsI0OnXBlfJg1ry9yl+3j4OA2dTsWsiV24fv0pqzcKzVCHNlXo3bUmYyZtIClZaG/mzuhB3KM0Pv9C6E9qvFaGjyd35rvvjrFvrwCD3n3qMHBgQxbM2ckpqXNq8HvN6NajJovn7eGwZPPuO6A+bw5pys4tF1i+9CB2O7xWO5KPZ/cgJ0vPqLd/4GlCBjonNZPn9KR2gygO7rzC0k93YbFYKV8piOmL++Hl48qG74/z0zIBfdXrlmXywj64uuk4uucaiz/ZitlkIaysH9O/GEBQmDc5WXrmjlrHtXMiYqD/hy14/QOhz0mMz2DWhz/z+K7k0vq4Mx1er4dMJsNoMPPV1F84JAWW1WtdmTEL+jjSbfOy9SwauZbzR8TfRsuetfjw014lnFQXjtxm0cjVjrbzD+f0LjHxAaF3+WrSBo5KXWIVXivD+K/efKGOIvWpmOZcPib+5irVKcuYL94kuOzLm7if3E/myzFruCZN84LL+fPB/Nep0Tzmpe/zx5OVksOmz/ey+7tfHZBTqW45BkzqymvNK//XZOP8nz512lbjytFbXD9151+CnWcPUwBR/fFXzzkpHLBm89IC4eLHYrbyqxQQ2LL3izNzAI5uu0h2eh4+gR7Ue0HgoN1uZ+3nIrerw8AGuHqU1PMYDWbWSVqdPu83L+UwXPPFIQr1JqJiQ2hYrNncbrfz3Txx89CwTWUqVX9uob9+IY7j+28gk8kYWgyC0pJzWPvtMQDeHtnaIWR+eDeJ7RvE9/r+uHaOVZjVanvlz+hl538adgptVpxlLqVAxyolKpcGnecFniqp2bwIdORSU7oN0LwAdBRoKLBYcFYI0Cma3phtNgfoqGRC6Gy12xygo5IrsVrlmGw2vDUupBXmSy3mKvLMJnw0zqRJoCOydYQTq9BswWwrCTr+WlEB4arSYLZYMVithLi48yRHlHsWra6UMhkBTq48zc3FTa1BaZeTUVhIoIsrWQUFGKxWynp68TgjC5sdKvn6cjslDRlQ1T+Aa4nJpUCnZkgQFyXQqRsWwtk40Vxep0wo5x8/wW6H2uEhXItPFC3kQf4kZuWSqS8kzMsDjVzB74lpuGo1VAsJ4KgkTO5cPZo9l++I8s3y4TxKyiA5O58ADxcqBfs977lqWJVdZ0XPVeUwfzy0Wn69+gCFXMZbrWqx4ehV9AYTFUP9KB/kwwbJVTWwVQ1+u/6IuKRM3Jw0DOlcn6+3nKLQaKZShD9Nq5dlyZpjALSuWxEPFy3fbRUQ0r9DTXJyClizS7wQvturPqlpefy8V/wDfqdnPSxmK0tXSuDTthqx5YOYPG87FovI0HlvYGOmzNlOSlouXh5OzP24O9t3X2H/YWH9fqt/A2pWD2fEuHXk5hYSFOjBvJk9OXT4FmvXiUlIm9axvP9eM+Z8upMLF+KQy2UMG96Kxo0rMn70Ou78nohKrWD8xI7UrBXJlDEbuHYlHrlCxkdj29GmfTWWf36QHVL+Trsu1Rk+th2/X3/KjPEbycspxC/AnRmL+1GmrC/ff3GQzT+Lu8pGLWMYO70rcrmMBZO3cFQq5ezUpw5Dx7dDJpexculBR+NxnSYVGD9PTG3i7iYx48PVpDzLQuekZuz83tRvKV7kL528y7xR68jPKcTTx4XJywZSuabIEEl5msnsD37mwc1nyOUy3hzXnp5DmjournevJTDn/ZWkPs1CpVHywcwetOlb1/G4xWxl1cI9bP5aXOwjKwUz6Zs3CfkDlPx+KY75Q38k5UkGcrmMviPb0W/U89TlomO32zm0/jTLJ2/8y9Mck8HMxiV72fT5PswmCxqdmn5jOtB9WOtS1t+XnbwsPZuX7mX71wcxFoh1VXTtsgyc0u0DYfB3AAAgAElEQVT/h5wXnPBKIpYgSeqn+icnOz2P9MQsZDLZX06RTnmSwb0rYipa9wXaruLn7IHrZKXl4unrRp3WLw4StNls/PKt0NJ0eadJqb9HEFOd+9efoNGp6TGktN18z5rTZCRLwuM/tJ/H309xOB0HTyg5uTl/7A5XzjxAqVLw9pjnuhurxcrXc3cB0L5XLcoWK6xdvmAvRoOZmOrhtJRKQK1WG0s/3YXNaqNRi0rUqh8FwKP7KXwy5udX/oxedv6nYUchOapKg46sFOiIzisBOspSoCO0OwJ0tOSZjWgVQpcjQEcIj10UTmSZxZrKZpNhsdtwlZKP1XLxNVjtdgfoqOUqTFaw2GxiouMAHSV6ixkfCX5AhpfKmbTCAtxUWvJNJiw2u9DlSNk5PlpnUgr0uKu1FJosmGzCUp5QBDquAnRUcjm+Gmee5ebhqdFis0KW0UCIqxsp+fmYbTbKe3lzPy0DkFHZ14+bKakS6Pg7QOe1wEAuF4FO8POJTt2wUM5J3Vb1I8I4LRV61isTysXHT7FY7bwWGsTDlHRyDSbK+XljNll5kJaBp7OO8r7enLobj0Iuo0PViuy6JO6Sm8eU5dqjRDLzCwnz8SDUy42jNx+hkMvo16Aam05ex2y1UisqBLvFzunf49GoFAxqUYPVhy5hNFt5rVwwXi46dkn1D+92qMue07dITM/F18OZga1r8sXGE5gtVmpFh1IxzJ/lmwVQ9GpZjbx8A5sPCkj6sG9Dbt5N5MTFh8hlMka/2ZyL1+M5fv4BcpmMUW835/7DFHZLqcmD+zZAq1Yy63Oxt27esAJdWldl/Iwt5OYZCA32ZNbELnzz/THOX4pDIZcxZngbPNx0jJm0EaPRQsXygcyc2pUfV57g4CEBQ4MGNKBjh2qMG7uBBw9S0GpVTPm4C2GhXoz44GeSErNxddMx89Oe+Pq6MvL9n0l4nI6Tk5qps3sQExvK9AmbOHdauNne+aAFvfrX4/De63w+W1RXVKwczLSFfXFyVjNr3EZOHxNTiNcHN2Hge03JztQzc+Q67tx4ilwh54OJHejYuzYFeiMLJ23mjJRs3PvtxrwxohUKhZzfDt5k0aTNGApMBIZ5Me3LQYRH+WO329m84hg/fbYfu91OxWphTFk2EB8pgv7SybvM/2gtedkFuHk5M+mLAVSTLpR2u509a37j2+nbsJitBIb7MGX5m5Qt5l5KS8xi3oc/c/uCmCR1eqMRg6d2LaGJsVptbFp2gDULhUPEP9Sb8V+/+cKAwKzUXD4ftcpx5x5dK5LRX7xJaNTLNSFXjv/Ol2PWOCYEtVrF8uHC1/9yj5WhwMiObw6xackeh/C4Qs1IBk7pRs2Wsf8/5LzkFE1ikuPTsdvt/+jnVGTZD4r0c9RG/H/snWV4FHfb9n/rWYkLIQkJEghBg7u7uxUKlKJFixW34qWClbYUWlyKa4sXl+KWkAQCEeKezfq+H2ZYEgKld+/7ud/jefteXziYmU12Jzv/Oee6TnlfXTgoiB0q1Sv7XtPI41sFdVXrfvXeCmIArp9+SGxkEmqdinYfFB392O12tn0tdHU6D26E2xuBo3k5BnatE7g8/ce3LkQ8BtiwTPje12tVkSp1Xn/nzSYL60XeTbdBDSleILX96O7rxEQm4eyqZtDYVo7tNy4+4dLpR0hlUsbMfB3KenTvDSIexqPRqhglkpWtVhvfLDrMy7iMPz1H76p/NNjJt1rRSFQYrX8F6OAAOgarWRhTWczIJK84PqASFVZqmRM5ItCRoiTfanUAHblEjkVMMX9FRlZJBddlq90u5lvphW0WOxY7eCp1pBhyUUjkSJCRZ7HgrdKRXADopBrycVU6kWUwiiaBrsTlCt45HioNKXq9KCk3YbbZCNQJknKQiKqrDFQyGe4KtcDLcVJjNFvJM5kJcnEjPjsLi91OiKcwrpK8AXSq+BTjbkKSA+jcFjk6Nf39uBkryG/rlAjg2jPBDr1h6SAuRgvS4QalA7kS9UJI3y4ZwP3YRPLNFioU9yYr10BCZg7FXHT4uThzPToOpVxGm0plHUCnbZVyXH4cQ47BRLniXjirlFyOeIFSLqNP/ars+P02VpudRhVKkZ6Vx+MXyWidlPRtHMZPv97AarPTsFIpbBYbp29GIZNKGdWlHjtP3iItW08JHze6NKjEyp3nsdntNKsRjKvaiW3HxEyXrnV5HJ3I5bsxyGRSJg9szomLj7kTHid45Axvw+HT97n1MBaFXMasT9pw5mIEF25EIZVKmDSsJfEvM9mwXQzZ61idapVKCB46JgsVyhVn+vi2LFpxjIjIRJxUCubP6ExKSg6zP9/v4OxM/bQdS5Yd4eYt4Slx4oS2VKzgz7ixW0hKysLNTcOiRb2wWm2MG72Z7Kx8fIu7sWR5H/R5RsYN/4mM9Dy8fZxZtKIfLi5qJo3aRNSTRJRKOZ/N60rDpuXZ8sM5tv0ojOUatazAlLldyc3JZ/Kwn4h8nIBCKWfinC40b1eFp08SmTt2KymJWehc1Mxc0YdqdcqQGJ/BvLFbiIlMQqGUM2FeN1p0CsNms7Ft7Sm2rhEW22r1gpn+VT+c3TQY8k18M/01P6dtn9qMmt0VpUougKDvzvLziuPY7XbKVSnBzLUDHSGehnwTa6bv5rTIJajftgoTV/RzjLVAHFuN30J2Rh4aZyc+XfEBDTuEFVozUuLT+WLMJodNf9NuNRmzrPDPeVUXD99k9eRtZKXlolDKGTitM91Ht35nNycnI5cfZu3mpNiR8/B1ZdTSfjTs/P5EcxCCOY///Dvblx50SMiDQv0ZPLcn9TpU+6+AHIPeyIvH8cQ8iuP5o3jSEzPJSsshOy2X7LQcctJzkcplaF3UaF01wr9uWoLK+xHWrCIV65V7a3TGf6M8RfWU2WgmKzXnX/Ypgtdgp0yVv549dv6VOWCXP4+rSIhJcYxA2/Zv8NZj7HY7v6wVOpIdPmz41u/ltZMPibwfi1qrosdbTAT3b/j9NfG4e2Hi8a2LT7jxezgyuZSPpxYe9R3efoX4mFTcPHX0GdHUsT0zPY/N4khs0NhWuIgjM6PBzLdLjwLQrX89SokPAGkp2fwkXv9DxrTEU/w7HP5FAEDqd2R7va/+0WBHKlG8Bjp2IQC0KNB5He4pR/kG0JE5gI5SIgActUxNjkVQWIESg9UquCCbDMKYymbHaqcA0FFisFqwAa5yLWlGPU4yJQazDYsdPJRaUgyCfNxul5JvLQx03OSC946bUk2mwVAI6MgkMlwVTqTm6/Fy0pBpMGCx2YsAnedZmTjJ5OjkKpLy8vDWaNHnmwVejqs7z7OEcVWopzePk1OQIBF4OYkCuHnF0ZECVX19RaAjKK1uxgodnZol/LkeI3B06pcKdACdxmVKcl5MLm9QJog/nsZistqoGuBLQno2qTl6AtxdcC3A12kaUsqRXN6peiin7kRiMFuoHOiL3Wbn1rMENCoFXWtVZOtZQb7cKqwsT+NSeZaUgZvWia71KrHxV8Gkqk3NEJLTcrgTlYBKIWdU53psOHKN3Hwj5Up406hSKdbuEZ6oOjWqiCHPxKHfBUXWuH5NOHc9kntPElAp5Uwb0pIdR/4g8nkKWrWSmSPb8PMvV4l8noJGrWTu2HbsPPAHdx8LQGj2+PZcvh7Nr+cE7sjIgY1x0aiYvUQgHterWZrhAxsxfd4+4l9m4uqiZum8Hly7Ec2mbcJNsX3rygwe0JBpM39xdG/mzOqKRq1k/Lgt5OQY8Pd3Z+nSPkRFJbFk4UHMJish5YuzcGlvHj+IZ8m8/QKJObgYi1b0IScrn7FDN5KanI2ru4YFy/tQppxvoeiHPoMaMPiTFjyLTGTOhO3CsW4a5n7Vj4pVA7n2ewRLp+0mX2/CP8iT+asGEFDSi4e3n7Ngwjay0vNw99Ix55v+hFYNxKA3sWL6L1w6IXSlunxYn2FT2yOTy0iKS2fBJ5t5+jgBmVzKqNld6PCB0F7PzzPy5ZSdXBI5Rm161+aT+d0c456EmBQ+H76RGDEh/aNpHelRILXZarGyafnrsVVw5QCmr/sIvzc4F5eP3+HrT7eSm6lHrVXxyZI+tOhVpwiIyM3Ss276Tk6LRNLSlQKYvHbIO8Md7XY7Fw78wbefbSczJQeJRELHj5syeFY3tG/xRnnb668cvc2G2buIi0wEoFiQFwNndadZ73r/Y0aAVouVp/decP9SBA8vPyH63nMSn6W8M9S5YOVm5BX6/9Ujt9i14ggKlYKK9coS1qwijXvU+VM+03+6lCoFap0T+bkG9Dn5fwvsPLoujNfLhpX8S8fHRr4URlgyKQ06Vv/TYw/9KIy7azSr8E6l173LkTz64xkKlZxuQ5sW2W+z2dj8pdB96Ty4Ea5v2Aukp2SzVxwpD5zYthDx2Gqxsn7JEQA69q+Pf4HrIz0lx/GAMnhCa7QFCPw/rfyN3BwDZcoXp10BY8NdG87zMjYdLx+XQvlX335xHH2ekZCK/rTvIQDApJeZ/CQqxwaOaMrRS/P/7FS9tf7RYMdktaFEjsUux4pEdE02oZCqyRW7Nq9ysWSoMNjMOEk1ZFtMhTo6r6TkhYGOAuN7gI6TTIneYsHOa6CjlqnQm61YRaCTahCCPK02CUab1QF0JAW8dTxUGtL0ghuyn8aFuNws5BIZznIV6aJ3Tppej81OIaATpHPleVYmGrkCtVRBql6Pr1ZHZp4Bo9VKGTd3ojOEluE7gY63Dw9eJiGVCNvvxichk0io5FuMO3EvkUkkhPkV54+YeGGMVWB01aRMKc4/eYYEaFK2JJcjn2Ox2akZ5E/0yzQy8w2U8nZHgZRHcck4O6moXTrAocDqVrMiR/8IF8ZTZQLIzM0nKjENF7WKNlXLseN3UQZdK5RbT+J4mZ6Dj5uOllXLsknMuepavyKPnyXxJC4VnVrF0Pa1+e7gZYwmC2HBfoSW8GHjEQEUfdCmOk+fp3L94QvkMimTP2zOnpN3iI5NxVmj4rMhLfluxwXik7PwcNUwbVhrVv58loQk4f+zx7Tj202/E/08BZ1GxfyJHdlz9BZXxbHU1NFtSE3N4Yu1guFW+xaV6NSmKpNm7CYjU49vMVeWzu/BL3tvcEwciwzqX5/mjUMZP3ErSUnZuLtpWLywF4mJWcybsxez2UpoBT8WLuzFmVMPWCd64NRrUJaZc7ry29G7fCua6NWqW4ZZC7rz6EEcC2fsQa83ERDoyaKv+qHVqpg2egsP7whqsPEzOtKmczWuno9gyYw9GPJNBJbyZsE3H+Dr787ezZf48avfsNvthNUuzcwv++LsoubU4dusnLsfs9lKmdDizFs1AG9fN5ITMpk/ejNPw18iV8gYM7crbcSF7t61aBaN3Up2Rh6uHlpmrRlIpVoCPychJpUFI3/i+ZMk5AoZo+Z2pf0HrzkGV07cZ8Wn29DnGHDz0jH928FUqRvs2J+elMWST37mwTXhJtVpcGOGzu5SiBdjMpj5ccE+Dm8UbgJlqwYy7bshbyUh37sUwYrRP5Ecl45UKqH3+Lb0n9IJhfLtS21qQgZrJm/j6nHhuxoYUpwJqwb/JWM5gCe3nrF+xk7uXRTAv6uXMwOmd6XdR03f+Tv/btntdmIexnH9+B3uXQzn0ZUnbw27dPNxoWSFAIJC/fEJ9MLVyxlnDx2uns64eOqwWm3os/TkZeeTm6knJyOX8OtR3D7zkNSEDO6ce8Sdc4/Y8vk+Og1vQf8ZXXHxfLvq6D9dr4Da3+mC2Ww2HlwR1qa3uWS/rU7uFPh9tVpU+tMRVm6Wnt+2C8d2G9H8ncdtF0nHbfvWK2J0CXDhyB2ePU5A6+JEj7f8nC1f/yZIxquWoGG7wpyg3365QcyTRHSuavqPaVlo38YVx8nPM1KucgCtCnSDHt15zm/7hDHd6JmdHMA7NiaFX34SDE9HftYejeg2ffV8BBfFsdaE2Z2RyaTY7XZWLz2KId9MxbBAWneq9s7P/2f1jwY7diSFgI7BakIpecXDeQ105CgLAR0h10roCBUFOlKwC/u1DqCjcAAdnQhQ1DIVeRYzdhAl53o0MhW5Jis2XgMdJ5kSsxjk+QroSBFiHzKMBjzFEZXDOyc3G4VUjkaqFLxz1DqS9XnY7RDk7E5MZgYSJARoXXiRnYVOoUSOTPDL0TqTmqfHbLUR7O5JVLrgF1EQ6FTy9uFBotDFqejtw4PEZORSKeU9vbiXkIRCJiXU25t78YnIpVIqF/Ph1osEZBIJNQP9uSICHaGjI5gCNitXit8jngk34TKBPHieSK7RRIivFyajhchUga9Tyb8YZx4ImU/da1bi4PWHWG12GoQEEZeaxYvUTDydNTQsV5I9l4Sn/F4NqnDudiRpOfmU8HajVnAAO84Knjr9mlXjkphz5eGsYUDL6qzZdxGr1UaDyqXw0GnYeUq4CQ3rUpdrd5/zIPolTko5kwc256f910hIycLLTcvED5vx1c9nSMvME1yRBzZj6XcnSM/S41fMlWnDW7Hs2xO8TM7C003LvE878v2W8zx88hKVUs68SR25cSuG/ceE9zagZx3CKpZg0sxd5OebCS7tw+czu7L6u1NcuRaNVCrh0zGtKV3Sm/GfbiU7x0CAvztLFvfm+tVo1q4V/HIaNCjHtOmd2PzTefaIdutdutVg5OiW/PzDOXaLC2j7ztUYO6ktp47f55tlR7BZ7VSpFsScJb3IydIzfsgGEmLT0epUzF7Wm2q1S7N/+xW+FwFNtTqlmbWsN05OSlZ9fojjogqqXY+ajJ7eEamsMBG5fosKTF3cCyeNkke3n/P52K1kpuXi5qlj9uoBVKgWhN1u58i2K3y38BA2q43giv7MWTcI7+JCUOcfv4ezbPw2IUvLx4VZ3w4ktHpJQJjvb/nyOLvWCD4hFWqWYsa3g/H0fX0DuHvpCcvGbCIjJQe1TsWnKz6gUcfCC2lcdBJLRmzg6QOhK9ljVEsGTe9cBEiYTRa2LD3EL6uF81G8lDdTvh3yzqBPQYJ+gfWzfkGfk49cIaPPxPb0+bT9XyIgp8Sns3HObs6Iijylk4LuY9rSe2KHt44u/m6ZDCbung/n2rFbXDt2xxFM+qq0rhoq1i9HpfohhNQqTclQf9x8it5k31cdh7XAbrcT++Qld84+5NKhm9w5+5AD357g1PaL9J/elU4jW/3HAdyb9e+AnZiH8ULXT6ci+C8EeVqtQjo9QKs3SMBv1q9bL2HQGylZ3o/q7zAdfHAtmnsiObjX6JZF9lstVrZ8JeRRdR/WrIgCKybiJSfENWLYzM6FzkFeTj6bRb+bAWNbFXrtg5sxnD50G4lEwiezOzssDKwWK6s/PwRAm+41qBAmnBO73c7aRUcwm63UaliWBi0qAJCvN7JGHGv1GFCP0uJY6+xvD7hxOQqFQsaEmZ2QSv/eOPYfDXYsdjkgQSZRCkBHJBz/WUdHLpFjsNkoaA6okanJFoGO3S7HZLMJPjomA0qpAqPFhg0E3o7RgEamcnB6hO5MPlq5E9lGM3YkDqCjlikxWm2YbXYH0JFJZGikKjJNRrxUr2MfXgEdlVSOSqogy2TAV+NMYq7grROkcyMmMwOpREpxtY64HEFpJbFJyDQaCNC5kJSTi8Vmp5yHJ0/ShEWtgqc3j14BHS8fHiYlI5NICPH04mFiMgqZlDLunjxMTEEllxHs4cH9hCRUchkhXl7ciUtEIZMR5u/LtZg4pBIJDUoFOUI8W4SU5sxjgQzauGxJbkTHYTBbqORfjMzcfOLTs/Fx0VLay4OL4THIpVK61KjA/msPsNuhWaUyhMcmkZiZS3F3Z6oGFueQKDUf0LQaR68+JivPQJninoT4e7H/kqhial2T41fDScrIpbinC13rV2TNvgvY7dC6VghWi40jFx8ilUgY27sRx84/JDouDRetEP+wevt50rP0BPi4MrJ3Q5auP0FOnpHgQG+G9qjHgtXHydUbCQ7yZkz/Riz45ijpmXr8fd2YOaYdX6w7QUxsGs46JxZ91pkDx+5w9mKEMBob1gJXnRPT5+/FYrFRIyyIKePasnDZIR4+TkCplDN3emckwOSpOwRycvniLJzfkz17rrNrp7CAdu5SneHDmrFi+VF+F0nAw0Y0o2uPmixfeJBzp4TzNHh4U/p9WJ+tG86zdaPwtNW8TSUmzuhE5OOXzJu0g+ysfIoVd2XB1x9QoqQX3y4/xkFRkdGuWw3GfNYBQ76J2WO2cPtqNBKJhGGT2tJtQD2M+Wa+mLqHS6cEL5E+Q5swaGxLpFIppw7cYuWcfVjMVkqXL87ctQPx8XPDbBLyrY6J0tOmncKYsLiXwz+nID8ntHoQM9cOxFN8ks3OyGPZ2M2OEM8uHzVm6KwuDkKnzWZj99pTbBH9dUqW92PmD0MIKF24U3NmzzVWT92JQW/ExUPHpFUDqd2yqDT4eUQCy0duIPq+wEdr078hIxb2fidBNTk2jW/Gb+KWmE9WvmZpJqwcRElRDfRnZTKY2LPyODu/POJQWLXoV5/Bc3viE/DXfV3+rKxWG3d/f8Tp7Ze4dPAP8nNfd2+UTgrCmlWkevNKVGlUnpKVSvzHxmQSiYTAED8CQ/zoPLIVN0/fZ/20HTx7EMv3n23nwv4bzN094W+Nl/5yvZrA/Y376V2xu1axTtn3euWAQERPfZmJs7uW2u9QVoEApA9uEBWbI1q8E4i96uq06l0H77e4N5/e9wfxT1NwcdfStUAo56v6cckRbDY7DdpWpmLNwunoO9aeJis9j4DS3o7xMQiAZt1CEdD0rElIAfPCA9uu8OxJIs6uaoZMeO18fPrIXe5cf4pSJeeT6a9JyZvWnSElKQtff3cGDGsKQGZGHt99KXyuD4Y2JrCk1/83Ffw7ZUWCSuThKN4KdJQYCwEdBQYx10pRoKOTbRE8c2x2GSabzUFGVkqVGCxW7IhAx2RAI3MixyKEezqLQEcndyLTKJgOvgI6GpmKfKsVSwGgI5fIUEmUZJmMeDtpScoTgE5xtQB0nGQK5MjINokmgQWBTlYmMokUHycdCbmCA7LFYifXZKSEsysJWdnY7BDi4UVEmuCXEyoCHSkSQr28eZgsdHGC3Tx4nJSCSiYjyNWdiKRU1Ao5Qa5uPEpMQa1QUNrdnfvxSTjJ5VTw9eHG83jkUil1AgO4GBkDQMvyZTj9SBgfNA8pzcWIGMxWG9UC/UhIyyI5Ow9/dxd8XXRci4pFKZfRMaw8+64KgKVN1XL8ERVLem6+kFzu7cFvt54gkcCgZjXYc/4eeqOZikHFKObqzPHrEUglEoa2r8Oes3fJyMmnpK8HzcJK891Bgf/SpWElklKzuSaOqib2bcKOX28Rnyx0cMb0bsRXm4T4h7KB3vRvX4OF637FaLJQJcSPXq3CmLvyGCazharl/RnQpRazvzxMnt5E2VI+TPy4BfO/PkJSSg7enjoWTu3Cj1su8Mfd58jlUmZ+2oGMtFw+Xy7Mxps3Ls/HHzbis9m7eRGbjrPOicXze/DieRpfr/wVm81OndplmDGtI6tXn+S0CCiGfNyETp3CmDltF/fuxiKXS5kyrSO165Rh+sQd3BfHUZOmd6Rpy4qsWHiYU8eF0Vi/wQ0ZPLwpF04/Yvnc/ZhNVsqF+jH/q36oNQrmT9rBNdGX5+Nxreg1sAFJ8ZnMGbuFF09TcFIrmba0F3WblictOZu5Y7YQ9TgBhULG+HndaNm5GlarjQ0rjrNHNC2s16ICU5b1Rq1VkZmWy6KxW3hw4xkSiYTBk9rSS5SOG/RGvpq6iwuihL1t3zqMmtvNoRiJehDHwhEbSYpNR+WkYPzyvjQrkAqdk6lnxYQtXBfPU8tetRm9uHchHxGD3sS6mbs4IabCV6lflqnffoSnr1uh9cNut3Pkp99ZP+cXTAYzLh5axn89kAYd3t5mt9vtHPv5PD/O2U1+rlGQoM/sStdRrd4LGOx2O1eO3OL76TtIjEkBoGK9soxa3p+y1Ur96Wv/aj17EMupbRc5u+sKaS9fK168/Nyp3b4addqFEda0QhGn3f+pqtGiMmFXK3Ji83nWT9/Bo6uRTG27mFXn5+Gk/ddyp/5KGfRGh6P023Kk3lfXTwjfyWrNKvyl449tEr77zXrW+dNu3rl9N0hNyMSjmCtNu7+dxPzgejS3LwhRC33GtCqy32gwsUVMGe89umURU8wb5x5z83yEIBmf2qHQvtjoZA5uFsQTw6Z3LKQCO7LzGk/DX6JzVTNoQmvH9uSXmWwRA0KHfNoGV3ctIJCVf1ghvI8PRjSleICg2Hp8P5YDO4QHm7HTOjqux3UrfiUrU0+pYB96ffh2UvZfrX802JGhwGAzv9HRoQDQsaB6K9ARUsk1Mg3ZFgNSZFjtUsw2O1oR6KikSvJFoKMVgY5WLgR/vgI6GcZ8dHI1mUahy/MK6GjlAm/HIiaWJ+lzRKAjeOv4iH45r4BOQl42arkSqV1CrtmEn9aFhBzBWydI505MVgYyiQwvlYbEvBzcVYLSSm82U9LFjReZWdjtCEqrVAHovOroyCRSQjw8eZycgkIqpaSrGxEpArjx07kQmZKGVqnEz9mZiORUdEolAS4uPHqZjEapINjLk1uxCShkMmoE+HE5+gUSoFm50g6g0zK0DOcePcVqs1OndABRCWmk5+VT0tsdF6WKW88SUCsVtKoUzP5rwk2qU41Qzj98Sna+kbLFvfDWaTl3/ylyqZQPm1Vn59nbGM1WapQNQCmVcfZOFHKZlOHt67Dlt1vk5hsJKeFN9WA/fhbNAz9oVZ2HUS+5FyWMqib1a8r6fVdIFUdTQzrXZenGUxhNFqqW86ddQyH+wWq1Ub9aaZrUCGb+6uPCaK16ado2CmX2F4cwma2EVQxgSK/6TF96gKzsfEr4uTNvYkdWrD1BeFQiaicFC6d35fbdF2wTW9vdO1enQ6sqTJi6ndS0XLy9nFm+sBcXLz7hJzHgs+NiD4gAACAASURBVG2byowY1owFCw5w66agBps0uR3VqpXk07FbeR6TikarYv7CHvj5uRWSls9d3JOQUD9mTdrB7RvPBF+dqR1o2ymMPVsv8+MqgbBbr0kI0z7vTl6ugclDfyIq4iVKlZypC7rTqGVFwu/FMm/8NjLT8/D0dmb+6gEEh/oR9TiBeWO2OEjOc1YOoGK1IPLzjCyfuourZ4RuU98RzfhwnNDpeRb+kvmjfiYpLgO1VsW0rz+gtph9lRSfzoIRP/P0kUhSntuVDv1fS2vP7PuDlZ/twmQ04xvoyZz1HzvckgGiHsSyaPhGEl+koVDJGb2wF23eGB/ERiayeNiPxIQnIJVK+GBie/p+2q4IGMlKy+GrcZsckvIazSsycdWgIoDoVSW9SOPrcT9z5/dXhoLBTFwzmIC/EEvwIiKBdVO2ckt02fXyc2fowj407VX331ZY5ecaOPfLVY5tOMuTm08d23XuWpr0rEOLvg2oUK/s/zW5ukwmpd1HTalYryyftVvC80fxrBr3M1N+HPEff0/piZmA0L36K8TwgpWXnc99MVftfV45AGkvM7n6q6AqbD+o8TuPs9ls/LJWGMV2HdbsnaBoqwhkWvWu+1bn5oMbzpP6MhMff3c6veGWbDFbWb9Y8MDpPKghfiVfk5/tdjvrFhzEYrZSu1kotZu+HqFlpOawZZXw3gZPaINbAbLzuiVHMOSbqFg9iDYFoiS+/+IY2Zl6SpUrRk/xfZhMFr6afxC73U6LDlWpWV/g1F3+PZxzJx4IytLZXVAoZORk5/PTd2feeb7+rP7RYMdgs+AsdXkD6EhEoGN1dHQKJpUrcCoKdGxSzHY7WrkwulJJBeIxSBzjrPcBHXfFa6CTZ7ZgteMAOgoxyDPHbC4EdF65IWvkSrBJyLOY8dcKmVcFgY5CKsNdqSZZn4uXkwa90eJQWsWkZwASynt4EZ76uqPzODkVuURKsLsH4SmpOMnlBOhciEpNR6tU4qPW8jQ1AxcnFd5qDVEpabg6qfDR6IhISkWnUhLo7sa9+ESc5HKqFC/GtaexyCQSGgWX5Gy4sLC2qVCWUw+iBFPAskE8eJ4oABhfT2R2KfdjhciHxiGlOHxDuFF0r1OJ325FoDeZqViiGGqZnCvhgm9O/8bV2HrqFhabjQYVSmIwWLgaIez7uG0dfjp2HYNIPg7ydnOYBw7tWIcLt5/y5EUKzhoVE/o0ZvWOC2TnGSgT4EnPFmEs3XASi9VGvaolqVUhkGXrhQu9TYNQQkr6sPR7gVjcrnEFwkL8mf+NMCZpVCuYTq2qMG2x4IpcPrgYk0e2Yv6Kw8TGZ+DqombJrO4c/fUux06IvjuDGlGlgj/jp24nL89IySAvli7oyY6dVzl8ROD19P+gPl07V2PqlNceOnPndcPby5lxn2wiNSUHL29nFi/rg91mZ9zwn0lPy8XTy5lFK/ri4qpm4shNPItORq1RMmthD6rXKs3a5cc4vEckcPepzfBP2/DiaQqzxm8lNSkbV3ct87/uR2jlElw4+YAvZu7FZLRQJsSX+as/xKuYC1fPPWbp1N0Ccbm0N/PXDKR4CQ9SXmYy7xOBiKxQyvl0UQ+adRTk3VdOPWT5pB2it44n874fTGCwoMa5fz2aRaM3k5WWh6unlllrB1GptpAhZLVY+XHRIQ5sEPhANZuFMnXlh4V4BSd3X2PN9N0OIDTzhyEEVyosDy44tnL3duGzdR9RtWFIkXXj9vnHfDFqI+lJWSiUcj6e24POw5q9NW7BbrdzYtslvp+xE32OAZVayeDZ3eg8/N2Ggo71Kc/I9uUH2bvqVyxmKwqVgp7j2tJnUkfU/2Ki9psVeesZRzec4dzuq44xlVwho067arT4oAG12lb9y+aF/40KLO/PjC1jmNp2Cae3X6JSgxDaDykqm/53Ku2lAHY8/dz/ZSD1x6n7WMxWAsr6/iUF2W/bL2Gz2qhQpwwly787D+36yQfERiaicXai/cC3h3nevxrF3UtPkCtk9B3Xusj+zLRcdolKw0FTOhTJUTu24wqxUcm4eGjp9wbx+NJvD7h9ORKFUs6ImZ0L7dv45a/k5RgIruBH216vVVZXzjziytnHyORSxs7u4rgu/rgUydlj95BKJUyY29XRIdqx4TwvnqXg5qFl5MS2AORk57N6icDf6TmgPuUqCOdo3Tcn+FU0af1X6x8NdpRSJxHoKMTRVUGgoy4CdOSoyLMWBDrS10BH9heBjkwAOs5yNRkFgE6aMQ+t3Ik8s1kAOioB6CilcqR2wUSwmPr1aKqYkzMv83LRyZVYbXby3wF0lDI5LnIVKfo8vNVacvJNGKwWSru68zRdICuX9ywAdDy8CU9ORS6VUsrFjSepaajlcny1zkSnpeOiUuGuciImPRN3tRoXpZKnaRm4q51wV6kF0KN2orizjkcvk9EqFYR4e3EjRhhj1S8VyO8RAjG5TYWynLgv+JU0CSnFzag48kxmKvj7YDRaiEpOwV2rpnapAI7dEvgXvetV4fCNRxjMFqqV8sNqtnIzOh6NSkGfBlXZfPImNrudFmHBJKXl8PB5ElonJQNb1eTHI9cwW6zUqxCEs5OSQ5ceIpHA6G4NOXzhIS8SM/Bw0TCqW32+3noOvcFMxTK+tKoTwhc/n8Zuh5Z1yhFU3J3VW4Uba882YbioVazeLPy/T/vq+LjrWPadqKhqVpE61Uoxa+lBzBYr1SsHMmJAI6Z/vp/U9FyKebuwZGZXNm69xKWrou/OmNa4uWqYPGM3ZrOVyhUDmDezC6tWn+DCRWFMN3Z0K2rWKMX4cVt5+TITN3cNS5b0Jl9vYsLYLeTlGgkq6cXi5X1IiEtn3rRf0OtNlCzlzaIv+5KXa2T8sJ9ITc7Gw1PHwi/7EhDoyYKpu7h6Qfgdwye0ofsHdbl1LZrPp+xCn2ekREkvPl/ZH19/d3756QIbvhE+Z+1G5Zi+XBgH7dt8ifUin6Za3TLM/LIfOhc1EfdimT96MxmpAhF5zpoPCQ0LLGIUGFY/mBkrBzjAytFtl1k3/wBWi43gSv7MXjfY4Z+TlZ7Lkk82ObKr+o1rTf9P2zqAhMlo5vu5+xw5QbVbVGTyG0DImG/iu1m/8Os24ZiwRiFMWTsYjzeIthazhc1LXpOQS5T1Zfr6YZSu9HZPlbTETFZNeG0oWKF2GSZ9O+S9N8NXI6t1U7c5CMG121Zl1PL++JX++1Jsq9XG1SO32LvyOA9F1RCAf7Av7T5qSqsBDf8Wufi/VZUblmfwvF5snL2L9dO206Rn3f8oGTs5VlgDvf083nNk0bp0RLC4qNcu7D1HCuD8+GZhhPVnXR273c7OlWKkw6DGb/2sdrudzV8IoKB1n7oUCyj63rev/A19joEylQJo2rWwvD0nU89W8Rr+cHxrdAV+h0Fv4gex49NzWBP8gl53jO5df8qpA8JnHj2ni+N60+cZWbtYGMH3HNyIkuLDSr7eyCqR29Plg3qEVBJsGKKfJLJLVGWN+ayDw4Pnu69+Iz0tl4AgTz4Us7KuXIjg1PF7/N2G3j8a7ORaLKglmiJAR/UOoKO3mgt1dCw2IfBTCPU04CQVFFYFgY5OribLbAAk6GRqMkxvBzo6uRM5JjM2RKCT/wroyNBbzEIXxwF0hERzIfbBhsFqIUDrSlyO4IYcKHJ0VDI5znIVafl6iml0ZOpfSco9iE5LLwJ0ynt4EZ6SikIqpYSLK1HpQhfHS6UmJj0DNycndAoVLzKy8dRoUMvkvMjIwlOrQSdX8CwtA3eNGi+NmvCkVJxVKkp7uHP7xUuUMhm1gwK4EBmDRAJtQsvymwh0WoSW4XJ4DAaLlSolfMnKM/AiNRNvZy2V/Itx4q7g3tunfhX2XXmI2WqlTtkSZOUYiIhPwVmtoludimw6KXQj2tcqz5PYFKIT0nDVOtGvaTXWHxKSy5uGlcFqsXHyjyfIZFLG9WjEjt9ukZSeg6+nM4Pa1eLLLWcxma3UqhBI9ZAAVorApmvzyqjkcjbuFcZMH3evR1a2np/2itbpvetjMphZKwKfvp1rEljcnQVfCR2eJvXK0rN9dabM20NOroFSgV7Mn9qJr9ac4O4DwXdnzmedycnJZ45oFtigbjATx7Vh4aKD3L0Xi0IhY8a0ThTzcWHc2M1kZeXj5+fG0mV9iI5MYsnCQ5jNVipWDuDzxb3441o0X4hOx1WqBTJvcS+iI5OYP203eblGAkt6seirfiiVcqaM3MSTRwniiKobjZpX4MSh23yz8BBWq40qNUoyZ0VfNBolqxce5pgYH9G5X11GTGkHdjtrFx3myCvics9ajJ7RCblCxvnj9/hy+i+YjBZKlvNl3rcDKebvjsloZtWsvZwWF85OA+ozYmYnZHIZFrOV7xYc4Og2gTvTpGMYE5a95tdEP4xjwbANJIsjr0lf96dB29dEz5SEDBYO28CTuy+QSCT0n9iWfuPbFOrAJMSksGjoep4+iEMikfDBxHb0m9i+SNcl8XkqS4b9QMStGOGzDWzEiIW938lfOb//BqsnbSUnI08wFJzRhe5j2ry3m5P4PIW1k7ZwXRxxFAv0YuTy/v+WKaAhz8Bvmy+wf82vjigEuUJGw261af9xM6o0Kv+/xlW518T2nNx6gdiIBE5tu0iXUUX5KX+3nooE86DQ9xPFC1Zelp6rx4W/V+Pu704hf1VXjt8hJT4DVy9nGnd+t5Hg7fPhRNyKQemkoOtbIh1AMMJ8cC0ahUr+1q5ObFQSR7cIIH7ozM5Fuo9bvv6VnEw9Jcv50q5f3UL7dnx7mhRx9NW7gPmgyWRh9bwDALTrXZvyVQMd+zatPklqUhbFAzzoVyDQc9Oa0yQnZFLMz41Bo1sAwvjsq3kHBPVr81AaiVEwV89HcOroXeHBb04XlCo52Vl6vhGVWl161ebM32ju/KPBzmsycmGgk/NvAh3NW4GOsM1FoSHdIHR5XgEdZ4WaLKMROxIH0FFJFWCToBcTy18BHR8nHYn6PFwUQtCn0SrEPsRmC0CnhNaN51lZOMnkaGUK0vIF75y0vHxBUu7mQdQroCOOriRAOXcvIlLSUMlk+OmceZaegbNSiZtSzYvMLDw0apwkCuIzs/HRaZEhIT4rm2LOOhR2KS/Ss/DSanBWqYhMScdN7USAiwv34hJRK+SE+RfnUtRzpBIJLcuXcQCdNhXLcvZhNGarjRol/UnMyCYhIwdfN2eCvT0491CIfOhVrwp7Lt/DarPTuEIp4pIzeZaUgbtOTduwELaeFm6W3epX4mZELLEpWXi5aulWrxI/HL6C3Q7t6pQnLSOXG+EC2Xl8z8ZsPHyN9Gw9Qb7u9GpWla+2nMVqs9OkRjBBxdz5Ya9AXP6wYy3SM3I5eFJ4Sh83oAkR0cmcuPgYiQQ+Hdycp89TOCTuH9G/ERK7nS/WCaOuzq2r0KhWMFPn78VgNFMxpDjTxrVjwbLDRD1NRqtRsmhOdx6HJ/CD6OfSrnVlPhrQkGnTdxP9NBmtRsWC+d0xmyxMmigkmZct68viJb05f+4xa1cJIZ0NG5Vj2qzOHN53kx9EkmCT5hWYOrszl86Fs0IERJXCApm3tDfZmXqmjtxEYkImLq5q5n3ZjwpVAtj6w1m2iAF9zdpWZuLcrljMVuaN38aNi5FIJBJGTGlH1/710OcZWTJ5JzcuPkEikTB0Ulu6DxQIhTvWnWGzONuv3SSEz77sh0arIiM1h88/2czj28+RygSjwI79BQ5NdkYei8ds5u4VQdk1aFJbeo9q7rgpnzt4k2+m7MRoMONX0os56z8mKKS449q+dzmSxaN+IistF52rhs/WDKTmG8TRy8fv8NX4LeRl5+PqqeOzdUOo1rh8kXXiwqGbfDNhM3nZ+ehcNUz45kMadqpR5DgQ/FDWTt7G2T0C4CtTJZAp6z5+r9LKYrawf+0JtizajzHfhFwho+f49vSb2ulvE4Kz03M5+O0JDnx7wmHip3PX0nFYCzqPaOlwDP7fVFKplC6jWrFmwiYOrTtBpxEt/mNp7VF3BKPT4LD3y8YL1qUjtzAZzASGFCe4SuB7jz8g5la1H9S4yEipYO34WuDhtBvQoEiXEYRO3U+LxW7JkCZvVWD9uPAgNquNuq0qEfaG98+zxwkc3S48uI2Y06WQgiw2Opl9G4Xu06jZnQsR+Hf/cI64Zym4ezkzZFJbx/bwe7EcEn/e2NldHK8JvxfLQXH7uNldcNII2/dsuURUxEt0LmrGfCaQonOy81kpGhd2/6AuFUQn6jVf/kpGeh5Bpbz4YHAjxk9952l7Z/2jwU6+1Y7iXwQ6MokMs1UAOq9UV04yFXnmP+/oCEBH7QA6bgrBW6cQ0BE5OiqpArtNisFqcSitQIKPSvfWfKvXQMeVF9lZaOQKnKRy0g2Cd05Krl7ItHL35ElqGhIkhHh4EZ6WilQiIdjNgyepaTjJ5fhqdMRkZOKqUqGTK4nLEkCM3C7lZXYOvs467FY7ibm5+Lk4I7HhAD1OchnP0jLw1KopptXxMEEYY1UqXoyrT2ORS6U0LVeKkw+iAGhfOYQT959gtdqpG1yCZ4npJGfnEeDhir+bM5fCn6OQyehZtxK7Lt3FbocWlYOJjEshNjULb1ctjUNLsUs0D+zbJIxzd6IEObmHC21rhPDjUeGm061RJaJjU7j/NBGNSsGYHg35bu9lcvRGygV607Z2eb7edk4ARQ1C0SiVbDkiPD6M6FmfyGfJnL0eiVQiYerQlly8Hs2lW0+RyaTMGNmaqzefcvqSIB2fPLwVCYmZbN8vvH5AjzoEB3kxY/F+LBYbtauVZPSQpkyfv5f4hEzc3TQsm9+T02cfsXuf8Jp+vevQoXUVPp20jZeJWbi7a1m2uDfPnqXwxfKjWK02atQoydx53di1/SrbtwqgrHPX6owa04ofvz3NPtEzo0efOgwb3YJ9O6+xXrRtb9w8lKlzuhIZ/lpaXtzfnYUr++Pr58aX8w9w8rB4Xoc0YtCo5mSk5jJnzBaiIxJROSn4bElP6jevQEpiFnPHbObpq+1Le1O/RQVMJgur5uzj9EGBY9RtUAM+niJ0TZ6Fv2TeiJ9ITshE56JmxqoBVGsgZFi9iEpi3rCNvHyehlqrYuo3H1C3hfDUZ7Xa+HnZEfaIJMWaTcszddVAx1jKbrdzYMM5fvxcWORLV/Rn9vqh+Aa+bsFbLVZ+XnKIPSLxs0Kt0kz7/uMiNwtjvokfZv/C0Z8F8BlaqzSffT8U38C3u9fevRjOipEbSYlPRyqT0ndie/pN7vheb5jwP6JZOfZnnt4XPKiqNCrP2G8GERjybi7Hn1V6Yib7Vh3nyPozDj6OX5lidB/bllYDGv6PKJn+m9Wyf0M2ztlNXGQiN089oNafyLb/atntdqLuCWCnzF/wyClYr7xymv8FwnjUvRc8uBqJTC6lw+B3j7DuXX7Cg6tRyJVyenzy9u7Vmb03iIl4ic5VQ+/RRY+5fSGC62ceCdEOb/Bt7HY7384/gM1qo0Hbyo78OMe+BQccpORX1x5A7NNkdv1wDoCRMzo6xl5ms4Vv5u4XSMadwqgukoxNJgvfzD+A3W6nZacwaojbXzxLYav4c0ZNboeHmM+17stfSU8VxlcDxW7S+dOPOHfyIVKZhCmzuxTJ6vqr9Y8GO3+Fo/Mm0DFZJVjtr1VX7wc6mrcCnXRjPi4KJzILdnT0OTjJFNiskiJAx1ulIyk/DzelE3kmC2ablUCdGy+yBTfkAK0rL7Kz0cgVKCVSMgz5+GldSM4VvXPeADoRaanIJBJKu3oQmZqOWi7HW63leWYm7k5OqCRyErJz8NFpwSohKTcPPxdnzGYrqXl6AlxdsJitJOXk4efqjBQJz9Oz8NZpcXdy4vFLIaE8xNuT68/iUMhkNAoO4rSYVt6hSgi/3X0iKJfKBREem0x6Xj6lvN3x0Ki5HhmHk0JOl1oV2HlRzEKqFsKdqHiSMnPx83ChZml/h2/OwBY1OH7tManZeoJ83GlQIYiffxWAQ9/mYdwKjyUyLhUXjYqRXRqwZvcF8o1mqpb1o25oEGt2CXPjHi2qotcb2Xf6LhIJTOjflCu3n3Lt3nMUchkzR7Tm4Mn73Hkch1IhZ964dhw+eY9rt2OQy6XMGtuem3efc+SUQDT+ZFATNE4KFqw4gt0OzRuVp1/XWkyauZu09DyK+7qybF4Ptu++xm9ikvmoYc2oXjWQ8Z9uJSNTj5+fG8uX9uXKpSd8K1qmt2hRgYkT27N29QmOi1lRHw1tQs/etQt56Awf05Ieferww+qT7BM9a7r1qcOIca24eiGCJSK5OKSiPwu+6odSJWf2+G3cuhaNVCZl7LQOtO9ek5jIJGaN3kxqUjZuHlrmrxpASOUAoh4nMHfMZtKSc3D31DFvzYeEVAogOyOPz8dt48Efz4SuzcxOdBTb5NfPPmbpp9vIzzPhX8qLed9/REApwXr+xrnHLB23DX2ugWIB7sxbP4SSYscmLzufZeO2cOOM8Nl6jWrBoKkdHKMhQ76JVVN3cna/MM5s1q0m45b3LfRUmp6cxZLhG3hwVQDcXYc35+PZ3YqEKsZGvmTx0PU8eyiYCfYe35aB0zojVxRdMk1GM5sXHWDvmhMOQ8Gp3w8l9B2Ggq9Kn5PPz/P3cuj7U9jtdpw9tAxb1JfWAxr9rbFSSlw6u1Yc5teff8dsNANQukogfad0pmG3Wv9jsRH/7VLrnGjRrz6Hvz/NtWO3/yNgJz4qiVxx5PivjLESn6dw57zgr9O0V533Hv/LKoGD07hLTbyKv72zZrfb2bRU4Mq06VfvrR0bQ76JTaI9RZ8xrYoYBFotVr6fvx+AjgMbFvGQOnvwFg+uP0XlpGD4G0Do3OE73LkchVIlZ+Ss1/tsNhur5gghurUah9CobWXHvt0/nicmKglXdw3Dp7zOzNr+wzliopJxddcyTOwCWS1Wvpx3QDAVbFCWFu2Fv9/l38M5LRKYJ8/tispJQXpaLqu+EOIt+n7YgHKhfv/fZ+fvVFGgoyTfJpCL3w10eD26KgB0NGL3piDQ0b6jo/MK6GQYhW0CkMnBSabEZgWD1VoI6HiptCQ7gI7ZEeT5Cuj4a1yJzc5Gp1Ais0vIMhoJ0LnwMicX6xtAp5yHJxFpgtIqyMWNqLR0tAoFHk5qYrOy8FRrkCMhKTcXX50Oi9lGml5PCVdX9EYj6XoDge5u5BtMpObqCXBzxWqzEZeVja+zDp1CSWRSGm5qJ0p5uHPzeQIquYx6pQI5+0hQYHWsUp5jd8Kx26FpaGnuPI0nS1RgqeUKbj0Vsq06VCvP7kvCWKhTzVCuPIohLSefkj7ulPfz4cg1QZ01pHUt9l+4T2aegWA/L6qWLs4OUWU1qE1Nzt+OJiYxHQ9nDUM61Gblzt8xWazUrhBISIA36/cLnJAPO9TkRUIG529GI5NKmDK4BcfPP+ReRAJOKjlzRrVjy4HrhEcnoVErWTC+A1v2XuN+eDwqpZz5Ezvy29lHnLvyRLhgR7YiK1PPlxvPAdClbVVaNQ5l4sxd5OYaKRXkxeI53Vjz3RkuXxPIyZ9NbI+vtwsTJ+0gT28kOLgYSxb1Yv/eP9gh+r706FGLj4Y0ZtHnB7hyKVJQN0xqR9NmocyZuptbfzwTfHVmdqZh0/IsnbefcycF2fKwMS3p1b8eR/f9wZplxwSfnoblmLG4B3m5RiYP2+jo3Mxc2ps6jcpx59pTFkzcjj7XSIlSXny+ZiC+Ae5cPx/B4sk7BcVVGR8WrB2Ir7878TGpzB35M/FiZ2bmNx9Qo6HQQj+4+RI/LDqEzWanar1gZq4egLOrRujIbLzAj0sOY7PZqVS7NDPXDsTNU5Czxj1NZsHQH4mNSkapUvDpir407fJ6lJQUl86Cj9fz9GE8UpmUYbO70uXjJoVAw8Pr0Swe9iPpSVmodU58+vUAGnUqmkd0ds81Vk7aiiHPiJu3M1O+HUKNZhWLHAfwPDyBZcPW8/SBwPdoN6gxwxf2fq9a6sbJe6wa97ODgNyib32GL+6H23tSr99WaS8z2fXFIY5tOIvZZAEgtE4wfad2pk67sP81fJx/pULrlOXw96d5Jp73f7fu/P5I/LnB/5IK7TeR+F6taeg7O36vKi4qifNiwnmvcW3fedyNUw94dD0apZOCvhPavfWY/evPkpaYhU+AB50/KtohOrbtMs+fJOLirqX/hMK/Kzc7nx9FEnG/MS0dZH+AnCy9g5Tc95MWFC/QET2x9yYPbsagUisYPaeL43sVE5nEjlddmumdHJ46kY/i2S2alI6Z2dGx/ZfNlwh/EIdW58T4mZ2QSCRkZuSxUnxPPQbUI7RyAHa7nW+WHiE7K58yZYvRf4jwObOz89957v6s/tFgx2i34iLVFejoFAQ6lj8FOmqZitw3OjrOcjWZBYBOlsmIq0JDmkHY5ioCHVeFmnSjsO2VYaBapsRiBWMRoKMjJT8Pd5Wa3AKJ5a+BjgtxOa+BTrZJADoJ2TnY7AIX50lqaqGOjlwqJVDnytP0DHRKJW5KJ+KysvHSaJDYIDkvD38XF/KNZjL0BoLc3cjWG4SsKg93cvQG0vLyCfJww2AyO7o7KomM6JR0PLRqAlxcuBP7ErVCTu2gAH4Pf4ZEAh0qh3D0tvAk1LJiMNcjX5BjMBHq74PUBvefC1LzlpWD2XNF6I70qFuJM7ejyNQbCC7uSUlPd07cFAwCP25Ti51n7pBrMFEhqBjBxTzY97vwuuEd63LsyiPiU7Io5q6jf8vqfLPzPFarjcZhZSjmqmXbcWHxGd69PnfD47n+4DlKhYzpH7di59GbPIlJxlmrYvbItny3/SLP4tJwc1Yzb1x71m05T+SzZHQaFZ9P7sSO/Te4cVfoAM2Z2IFH4QnsFEdZA3vXo3J5P6bM3iNwdkL9mD21E0tXHOXu/ViUSjnzZnTBbrMxdfouzGYrVauUYP7c7nz//Rl+zlAy/AAAIABJREFUFQ3/hg5tSoeOVZk+ZScP7sehVMqZObcrFSr4MXnsFiIjEnFSK5i7qCehlQKYNXEHd0T/ncmzO9O8dSU2rTvDdnERatulGuOmdSQ+No1ZY7eS9DITV3ctn6/sT0hFf04fucPXcw9gsVipXKMkc77uh7OrhmO/XGfNosPYrLZCiqsHfzxjwZgt5GTl41PcjfnfDaJkOV/hSXPRYQ6L47Y2vWoxZn535AqBiLx27j5+FTtPbfvU4ZP53Rzjn5vnw1n6ySZys/PxKu7GnPUfU7ZAqvS9y5EsGrmR7PQ8XD11zPjuI6rUK9yWP7ThHOvn7cVqsRFYrjizNw4nILiwsslkMLNuxk6ObxbOTdWGIXz2/dC3ZgzZ7XaObjzHD7N2YzKYcfXUMWHVYOq1/3M1TnZaLt9P384pMeHet6Q341YNpkbzos7M76vM5Cx2fXmUIz+cwmQQOjmVG4YwYFZ3qjYO/X8S5Lyq0pUFbsyzB7HY7fZ/+7O+AjthTf6aISAIHYqT4t+x3cB3j6Re1e7VgtqwTpsq7wyFtdlsjq5O5yFN8Cpe1LcpIyXbkWz+0bRORXg/2Rl5DgPBDye1K9L12fL1b2Sk5hBQ2pvuQws7KW/84hiZabmUKO1DjwIuy+kpOWxYIXRYBo1rTTERIFmtNr6euw+LxUrdpuVpInZ7TCYLX87eh81qo3HrSjRqJXy/n0UmOXiAoya3w7uYqyP7KjM9j8BS3gwUydi/Hr7D1YuRKBQyps4RfHauXY5i/sztf3aa31n/aLDjJHnX6MoiRkD8Z4FOxjuAjkamxPwG0JEgwVOldQCdHKMRi81OkM6N5yLQ8dO4EJeTg4tSBTbINhkpoXMlLjtbMAl0F0wCCwIdhVRKgM6FZxmZOCtVOCsUxGdn46PVYrPYSNXnE+DqSl6+SQA37u6k5+nJNhgp4+lBeo5e2O7pTq7BREpuHiXcXcEKMemZeOu0+Oi03I9PQqtUUq1Ecc5HxCCVSGhfuRxHbwsS8jaVy3LxcQx6k5lKJYphNloJf5mKq8aJxqGlOCBGPvRpUJVf/wgnW28kNMAHH52WM3ejkEulDGlTm62nbpJvNBNWxo9irjoOXxEIw590acDes3dIysjF39uVHo2q8M2u89jt0KZueZQSKXvPCDLGcX2b8PuNKO4+iUetUjBjaCs27LnC84R03F00zBzRmq83niUhOQtvDx2zR7flyx9OEZuQgYebhs8ndea7zed5EJGA2knB51M7c+5iBEdPCqBrzMfN8PbQMWPBPoGzU6MUn37SijkL9hMZnYRWo2Tx/J4kxGfw5dfHBRVW/bJ8NqUDy5cd5dIloVM04dO21KldhonjthHzLAWtTsXCxb3w9NQxYeQmEuIzcHPTsHBFX7x9XJg8ahPRkUmoNUrmLOlF1epBfL3wEL8dErpeA4Y1YcCwJjy884K5E3eQm53/f9h764CoEvbt/0N3NwgoKqKCit3d3a7d7dqdICh2rWt3t2t351prIiYh3cwwXb8/zkgs6Lr7PN/3+b3f573/k3NwYJiZ8zn3fd3XhZePE+Hr+uFRwoFD22+xS28s2LBlIFPDBTgpmHHVolNVJug9M26cfc6q2cdQqzT4B5Vgwa8DcHSxQSKWs2Tifp7cfoeBgQFDprWh2zCh6yLOlrJo7B5ePPgoREzM7kDnIcIYR9Df3BJEllodFaqVYs7mwTjqux86nY7TO2+zJfQkWo2WspW8mbdtWKG2v1yq5JfpB7h+TNAvNexYlYmr+2HxJ91K4udUFg3dzKdXXzAwMKD35Lb0nd6h2NFPToaYNeN38+C88DxWbxbI5F8HFwtFBevOb49ZP2kP2WkiDAwM6DymBYPmd8fc6u8JkGW5co6tOc/R1efyIiMq1C7LgPndqNK4wv9qyPlaJfw9MDYxQpIjJSUuHXdfl7/+pm+UVqvlpX4UVeUbuVPF1ZOrr0lPzMLW0ZrafwG5qfEZXNPnmP00qe03z7t9+hmf38RjaWNOj3FFt6tAMBCUSRT4V/ahYceibt17VpwXNqzKedCmT2HTzI9vEjir384aE9q1kJ7s9ZNoLh4W3ifjw7sV0sZsXnyGXJGcshW96Ngv///8bd993r2Kx9LajHFz8/O0DhYYX42Z1R4QdD0rFpwUwKhhOZq3F8wXb1x8xd3rbzEyMmT6QsENPSkhi01rhZX4gSMaU6qMG9lZElZGnEGmf83/3fqvhh2xRomlgdW/AXQsyVbJ+CboGH8HdIzNUKq1KDXaYkBHiqOZBaI/gY6B3lAwQQ86Oq2OXKUSbxs74nOKgk5ZB2F0ZWpkhKelbZ4A2dLIhCRxLm7W1qiVGjJlMnzs7RBJFOTIFfg5OpAmlpCrUFLW2YnUnFwBepwdyZbKyZBI8XWwR63WkJgtxs3WGkcLCyITU7ExMyXIw41772MxMjSgdWA+6LStXI4brz4iV2uo4uuBWKLgc0omjtaW1C7rzdknwniqT4MqnH4QiUShJMjXHWsTU+68icbE2IghLWuw+9JjFCoNNQO8sTI24fLj9xgZGjC2c132X3pGplhKKQ9HWtcM4Jejwt1654aBSHIVnHschZGhAZP7NeHsrTdERadgbWnGrKEt+HX/LZLSRLg6WjN9aAuWbr5MepYELzd7Zo5oweL1F0hJF+PmbEPo5Pas2HSVTzFpWFuZETGrMyfOPOPmfQFQpo1thVajJXTJaSHLq0E5hvZvwLQ5R0hIzMLB3pJl4T159kcMm7cI+TetWwUxakRT5s8/zovncZiYGDF3bidKlnRmwrg9pCTn4ORkTcTyn9BqtEwcvZusTAnunvZErOqDATBxxE6SE7Oxd7Bi0ereePs6EzrtMI/uCmOvn2e0o23Xaty7/paIOcdQKdUEBJYgdE0fbGzMC62Wd+1fl2GTW6FWa1k28yg39V2mfmOa0neUkJx8aPMNduv9Ouo2r8g0vedOWlI284fvIEY/Gpu24ifqtRLu/uI/pxEybDsJMelYWJkxY01faulDAVVKNRvmHeeifnTXomdNxi3qmfcBrFSo+HX2US4fFsShTbpUZ8KynzAroM9Jik0nfMgWPr+Jx9DIkKHzutBlZNMiMHD3zFNW/bwbaa4cOydrpm8a+s2x1fPbb1k+ajsZSdmYmBozJKQbnf5iIygnXcz6yXu4fUK4kPiU82TyxqGUr1nmm99TXGnUGi7tuc3esONkJucA4F/Nj4ELulGtedB/BeR8LRNTYxzc7EmLz0CULv6XYOfdk8/kZIixtLXAv5rfD3/fmW3C+7VFn7p/Ofo6vOYiGrWWyvXLUb568Y+hUqrZHSFsV3Uf0wLbAo7EXys6MoGLB4Tu6LB5nYu87t6/iOO8vns6emHXQhtWGo2WX+YcQ6vV0bB9lbyFAAClQs26OccBaN2zJoE18iNI7l99w+2LrzA0MmR8aJe8/zM+Jp3dvwgi/+FT2+Csh/0PkQkc1neOf57bAXtHYXx1cPttPr5LwsbOIm98lZqcw/plQseoz9CGlA3wQKPWsjT0N2RSJYFVfOjWuzY6nY7VS8+RlSnB29cJHn336S62/qth50e2rr6Kkf8l0FH+TdAxFUDHycySHIVcAB0be2JzvoKOLYm5YuxMzdBotEhUKuF4ttDxKQg6/g5OvM8UVsrdLW2Izc7G3twcMwMjkvW6HIVSTbZMTkkHezLFMsQKJWWcnUjJFpOrVOLv4kxylgixQklZFyfSc6VkSWWUcnJALleRLMrF084GaxNTopLSsLMwp7ybMw8+fcHYyJCW5ctwXg86HYIDuPz8PUqNlup+XqRlS4hLy8bF1orgkp5c0JsH9msYzPF7r5Ar1VQt7YWRDn5/F4e5iTEDm1dnx4VHqDVa6geWQqfWcvPFZ0yMjRjbuS67zj0iRyKnnI8rDQJLsemE8Obv1awKiSk53HsRjbGRIdMHNuPQhWdEJ2TgYGvB9EHNWbXzGunZEkq42zOxX2MW/XqRbLEMP29nJg5sTOias2RmS/HxdGT22FYsWnuB+KRsHO0tWTyzMzsO3OPxHzHCKGtqexISsti8U+iCdGxTma4dgpk08yDp6bm4udqyYnFPLl16zYFDwkW9V89a9OhWg+nTDvHhQzKWlqaEhXfH0sKUieP2kp0txauEI0tX/ERKcg7zZxxBKlHgV8aNiFW9yUgXM3vSAXKypHh6ObB4TR+src2ZOWYPb1/FY2ZmzOzF3andsBxnjj7i16Xn0el01G5UjlmLugOwcPJBfr8ldGFGTW9Lpz61EefIWDhxP6+eRGNkbMjEkC606FQVtUrD+tDfuKRPOe86qD5DpgrxCh/fxLNgxE4yU8U4uNgQsnkQ/vqgwBcPPhI+Zje5OTJcvQQhcqkAQYgsypIQPnIHrx4K6e7D5naicwH9TWZKDmHDtxP1LAZDQwOGzOlE1xFNCl3sn96MZMmoHeRmS7F3tmHWlqFUqlt49VatUrMz7CTHNwgf2BVrl2HW1uHFCkc1ag17I05xeLVglujt787MbSMoHfT9VeN7p5+wbsJustNEwobWlPb0ntHxb+lCdDodjy+9YOvsQ8S9TQDAw8+VoWG9qN+lxn8V5BSsr+nXWq3uL878ft3XGwLWbFnph1PVEz6l8OTaawwMDGg3pPF3z01LyOTS/rsA9J3W/pvnXdh7l+TYdBxcbekyommR4zqdji0LBf+t+u2qEFS7MCxrNFp+nXsMnU5Hky7VCo1yAS4cfMj7l1+wtDZn5NzCouTDm67z5XMqDi42DJme33kSZ0tZHyp46vQY2pAyFQXxtlYrjK+UCjXBtUvTWp/ZpVSqWTFXGF81ahVIfb13zvvIBA5+BaCZ7XF0tkGr1bFy4SkkuQrKVfSi92DBIfrwvntEvorH0tKU6XrDwvOnn3H/zntMTIyYPKsDe49O/u5zXlz9V8OOTKvBBOPvrpcXBzpfxcj/CuhYGZuh+BboyAXQyZbL0ej0HZ2voGNpS6JYjJ2pOWqNkG/la2tPbJYAOv5/6ugIoGOMm4WV4JdjYYExBqRKJHja2CCRKxHJFZRycCBNJEWiVOLv7ERitgiJUkWAqzPxGTlIlCrKuTqTIsolWyantLMjuTKFENZpb4uFkTEfUjNwsDSnjLMTv3+Kx9TYiKYBflx4Ibi1dqxanot/vEel0VK7rA8JqdnEZ4pwt7emgpcbV14Iq939GgZz+PYLlGoNtcv5oJCpeRotiJb7Na3G9gu/o9HqaFqlDOJcOU/exWNmYszYznXZcvoBEpmSID8Pgst4sf2MoAMZ0LYGbz8m8fRtPGYmRswY1JydJx8Sn5qDi4M1k/s3Ztm2K3lgM7pnPULWnUciUxJQ2o2Rveozb+UZxLlyIdBzWDMWrDhLaoYYdxdbwmd0ZO3ma7yO0o+yZnXi+fM49h8VHr9vj1o0rOfPhOmHEIlklPRxYklYDw4efMCZc8I4ZPjQxjRtUp5JE/cTH5+Jvb0lS5b2QiKWM3XifqRSJWX93Vm8rBeRr+JZtOAEKqWGoCo+hC3tyfu3SYTMPIJMqqSMvzuLVvdGpdQwefhOvsSkY21rTtjqPpQPKsHuDdc4oA/hbNtVSC3PFctZMH4/US+/CMaCi7tTv3lFUpOymTtqF3Gf07C0NmPuqj5UrVMGSa6cRRP288d9QVw9anYHOuh9cn6/HsmSSQeQS5WU9HcndOtgXPXjpctHH7FuzjE0ai3lq/oyb+MgHFyE1dO4D8mEDNlGUmw6FtZmzPxlADULrL5+eBlH6JCtZCTnYG1nwcwNg6hWYPSg0+k49usVdi0WRl/lgksyZ/vwIhstGcnZRAzbyuuHgt9Tt7EtGTy3c7HbVqlfMlgyfCuRvwsbXG0GNmTkol7fHT+JMnPZMHUfN44IEFuyQgmmbhlO2Solv/eRVKTiohLYNH0/T/UjURtHa/rO6kz7Ec1++ML8v7UM9LCj+1dh54ze/bh98d5JxdVZfQp5jRZBeJZy/e65h9cKcR9Bdf2pVK9o/AiANFfOgVVCh6Pf1HbFvrYeXHrF87vvMTEzZuicTkWOXzr4gPcv4rC0MWfYn45nponYpd9qGji1dd4oGCD2QzJHNgu/z+h5nbApkAu2OeIsWem5eJd2pc+YfAA7tf8Bb57FYm5hyoSQLnnAfWDzDWI/pWLvmD++UipULJ8vjJobtQykUUtBv3Pm6COeP47GzMyY6aFdMDI25P3bRPZuEz6Xxk5pjbuHPfFxGWxcK9yQDB7ZBL/S33++v1X/3e8WhPTyP2ddqf8CdHKUih8GHXtTi7yvfQ90DDHE0cwyr6OTDzoOxIqEWAcP/ejK3swclTo/yDOmAOi8T0/HEAPKODjyIVPwznExs+RLjggnCwsMMSBNIsWrAOj4OTqSmpMrAI2LM/GZ2UhVasq7uRCXlo1UpaKCuysJWTnkyBWUdXEiRyInTSzBx9EOI50Bn9IycbKypKSjPU+iEzAzNqKRvx+XXggXk87VKnDuWRRqjZZ65XyJTswkKVuMl6MtZdycuPFa2IDq16AqB279gVqjpUGFkmSLZLyJTcHawoyfGlZm2/mHgu6muj/JaWJefk7C0syEUR3rsPHkPaET5F+Csp7O7L0gdBuGd6rNo5exvPqYhKW5CdMHNmfTkbukZIjxcrVjbK8GLN58mVypgoBSbgzsWJP5a88hV6ipXN6Lfh1qMHf5KWRyFUHlPBnVryGzI34jWyTD18uRBZPbEbH2Ah+jhVHW0nnduHz9Daf1mo5RQxpR3t+DyTMPIZUqCfD3YNGCrvy68So3b0UJpoQTWxNUsQQTxu8lLU2Mq6sty5b/RGx0OosWCmualav4sHBxD25fj2TNMmGTql7DcswO6cKDO+9YtvAUKpWGKtVKsmBpT9KScpg9fh8ZaWKcXW1Z/Es/Svg4sjrsFJf03jf9Rzah7/BGpCRkM2fMbhJiM7C2tSB0XV8qBvvyKSqReWP2kKn/P8I2DqSUvztpyTnMH7mLmPfJmFmYMGtlb2rpAzsLblwF1yvLnF/6YWVjgVarZc/KixzeKHjkNGpfhcnLe+V1OZ7ejmLx6F1IxXLcvZ0I2TGskFHgrdPPWDVpP0qFCu+yboTsGIFnqfzxhVyiYPWkvdw+LVy8WvWpy5iIXkW6KC/vvSNi+FayUkVYWpszef0g6rcvupUF8OD8H6wcu5PcbCmWNhZMXDuAhl2+75L7+PILVo3eTmZKDoaGBvSY3I5+szr/rW6OOEvCvkUnOb3pClqNFhNTYzqPbclP0ztibW/1w//Pf0Nptdp//L2xbxOI/5CEsYnRD6+wS0QyLuujRToM+34+V1pCJpf2CV2dft/p6hz79Qo5Gbl4lXalZe+6RY4rZEq2LhRWybuNbFrINwqE/KudSwWH4QFT2hSCGYDNC08hEcspG1iiUHiuRqNljV5nV7tZBeoXWCd/dDOKa6f/wMDAgEnh3fJev/Ex6exa93V81Rp3vVg56uUXjuwUftdxc/K3snZtuE5cdBoOTtZ55oFx0Wls+0XQAw4b34ISvk7I5SqW6B2VGzQpT/M2lVCrNSxZeAq5XEWVaiXp1qsWubnibz/h36n/KOyEhIQQGhpa6Gtubm4kJyd/83tu3brF5MmTefPmDZ6enkyfPp1Ro0b9o8cvkl5uYIRGUyDr6m+MruxNLEn/F0DHQQ86zuaWZMkKdHT0oONuYUNCbq4AOioNUnVh0Pk6ujLEgNIOjnzIFLxznMysiBfpQUdnQLpUSglbW0RSOWKFktKOjiRn5yJVqSjv6kJsehYytZoKbq7EpGUiU6kJ9HAlNiMbsUJJOVdnMkSSvG0stHphso0VJWxteRaTiIWJMfXKlOTKq3zQOfv0reB+HFCKd/GppOZI8HG2x8fZntuRwlipb4NgDtz4A7VWS+NAP1IyxLyLT8POypxu9YLYfkEY1HaoXYHP8RlE6iFoePtabDhxF4VKQ60Kvng62nJEv3o+tlt9bjz6QFRMCjaWZkwb0Iy1+2+SmSPF18OB4V3rEr7xIjKFikrlPOneIpiQX86jVGmoVbkknZsFMW/lGZRKNdUr+TKgay1mLj5JrkSBv58bM8a2JGS5EOjpYGfJsvndOHLyMVdvCkLpyeNa4uxozfS5R1Eq1QRX9mHezI4sW36OR48/Y2xsyOyZHXB3s2PihH2IRDJ8fJ1YtuwnnjyKZvUKPdTU92f2vE6cPPaY7XpYaN2+ChOnteX86WesX3EBnQ4aNCnPjJDOvI9MFETHYjk+pVxY/Es/bGzNCZ16iN/vCHqin2e1p23X6nx8m8i8cXvJSs/F1cOO8A0D8PFz5dn9j4RPPoBUoqBkGTfCNg7Exd2OmPfJzBu5i/TkHBycbQjdNJCyFb3QaLRsW3KW33YJH3ite9ZkbIjgYaOQq1g59SB3zgt6n94/N6f/xFZ5d4Rn995l43yh/V2xhh9ztwzJWzvXarXsXXGeQ+sETVCNphWYsX5goayg5Nh0Fg7eTHRkAkbGhowK70m7gYX9anQ6HSc2XGH7QuFxSpb3ZO7O0UW2skC4G92+4BinNgu+RmWDSzJ7x0g8Sn5bGyKXKNgy+yDn9Hf93v4eTN08nIC/8NspWBqNlos7b7I79Bg56cKHep32VRmxtM+/lIv1v610Oh3ZaYLfir3L31/X/1pfO2/Vmgf9cM7W+Z03kYhklCjrTrVmxWu7vtaBFedQKdVCV6eYUFkQgOjEJv121exORTyfAI5uuEpyXAbOHvbFGghuX3SK3BwpfhW9aP+nVPOHV99w+9wLQXMT0aOQ6P70nntEPY/DwsqMMQs6571fckUy1i0Q4KrLwHqUryKMazUaLSvmHEMhVxFcuzRte9QEhEWA5XOOo9VoadK2Ut746vmjz5zQx71MnNsRW3tLVCoNS+efRKlQU612adp3F24etvxyhfi4DJycbZgwoy0GBgbs3naLd28TsbExZ/rcjhgaGpCe9n+pz07FihW5evVq3r+NjIr+ob9WdHQ0bdu2Zfjw4ezbt4979+4xZswYXFxc6Nat299+bIlahZ2lfX56uR508pyRDb+1dVW0o5NezNbVj4OOBenFgk42hgaGuJkLcREOZuYoVBpkahUlbR2IyRISywuBjr0jHzMzsTQ2wdHMkgSRsFKORke6TPDLyZEIupyyTk4kZomQqtRUcHUhOj0TuVpDoLsbn1MykKnVBHm6EZ2WRa5SSXk3F1JzcgXzP2cHNCotX7JycLOxxt3amudxSViYmlDXz4drepfkLtUqcPrJW7Q6HU0qlOZ1TBLpYimlXB1wt7Ph3tsYTIyM6F2/MvuuP0Or09G8chlikzL5lJSJg7UFXepUZKfeILBLvUAiPyfzPj4dOytzhrSpwfpjd4ROUCU/bC3M+O3WK2HLqmdDLtyJ5OOXdOxtLJjSrwkrd18nJ1dOGR9n+rerQdjGCyhVGmoG+dK6XnkWrr+ARqOlUc0yNK1VlgWrz6JWa6lfozSdW1bJSy4PCvBiwrCmzFn0GylpIlydbVg6vxvbdt/m/u+fMDIyZO7Udmi1OuaGnhCApU5ZpvzckpDQk7x+E4+5uQmh87tgbGzE1CkHkcmUBAR4sDiiJ5cuvGTLV6hpW5mJk1uzY/MNjh4UBLk/9avL4JGN2b/zTl7bt33Xaoyd3JrH9z6waPYxlAo1FSt7E7KyN+h0zBy9m7ev4jE1M2Z2RA/qNArg2cNPhE06gEyqpJS/G+G/DsDJ1Zarp/9g9YITaNRaKtUoxfw1fbG2teDF758I+3kfErEcbz8XwrYMxs3LAYVcxfIpB7l3WTBGHDy1DT1GNMbAwICsNDGhI3fy7nkcxiZGTIjoQXP9jF+j0bI17DdO6a3pm3WrwfglvfKEyDKJguXj9/JAH6bZfVQzBs0qvCX14u47Fo/YhihTgoOLLbO3DSOwVmE9gyxXzuoJe7h9Suj2Ne1Ri/Er+hU7LkiOTWPR4M18+CMGgK5jWzB4frfvjo2iHn9i2fDNJHxMEV6nY1syOKRHIcH0X1XU40+sn7ibD8+EoFzfCl6MWt6Pqv9gLf1/e4mzJMglCgCcvf5+cCcIwHTjqN79uGedvzhbKIVMyQm9xqvXpDbfFaYnfErhkn41fdCczt/UVu0I/w2FTEVg7TLULWarKzEmjSP61PIRC7pg8afX7KvfP3H12GMMDAz4eXGPQqJkiUjG+nmC8LjbsEZ5mhuAxNgMdq8WTA6HzWiHS4E19y1Lz5GRKsLL14kBE/K3wo7vukvUyy9YWpsxaWHXvN9p2+pLJMRl4Oxmmze+EotkLA8RXJXbdq1G7YYC7O3ZdIOPUYJQecr8ThgaGvDgznvOnhBsQKbO64itnSUvnsVwWC+2njSjHS6utty49obF4ce++Zx/r/7jsGNsbIy7u/sPnbtp0yZ8fHxYs2YNAOXLl+fJkyesWLHiu7CjUChQKBR5//7qwPh168oQIzQ6PegYW5Kl/HaoZ/afnJELjq7si/HRcTWzJkUvRv4KOp4WtsQXAh3ZX4KOfQHQKWXrQLQedPz/1NHJBx2LPNDRanRkyWT42NmRlSsjVymATkKmCJlaTUU3Vz6lZqDQaKjk4caH5HQhlNPTnY+pGUhVKiq6u5KUJSJLKqe0iyMKhYqEbDHutta4WFnxMj4ZKzNTapUswfU3nzAwgE5VK3DqSSQ6HbQIKsPTDwlkSWSUcXfCydqSh+/jMDMxomedSuy78QydDlpX9ed9bBoxqVk421nRtnoAOy8JF6geDSvxLCqez0mCQWD/FtX45dgdNFodzaqVxQhDzt9/i6GBAZN6N+Lk1ZfEJGXibG/Fz70asnTHVSQyJRVKu9OtaSXCN15ErdHSsHpp6lbxY9GGS2h1OlrWL0+NQG/C1glr4M3qBdC8XjnmLPkNpUpD9cq+DO9djxmhx8jMluLt5cCi2Z1Zu+Eqz17EYWpqTNicTqSkilizXsiratmsIiOV6TbRAAAgAElEQVQGN2Lm7CN8/JSKtbUZi8N7IMqWMW/uMVQqDcHBvoQu7Mqh/Q85uF94k/f8qTZDhjVi7YrzXDwrOCV/dUXeuPoSp/QbU/2GNqT/0IZcPfeCVeGn0Wr0ZoER3RFlS5kzbi9x0WlY21qwcE0fKlb24caFl6ycK3hkVK5Rivmr+2BpbcahbbfYpV/7bNSmElPCu2FqalxotbxitZIsWC+kh+dkSggdtYu3f8RibGLElKU9adxBWIn98imVeYO3khKfhbWdBfM2DaJSLaHTIc2Vs/TnvTy6JhgeDpzejl5jm+d9gKYlZhEyaAufIxMwNjViwrLeNO9eM+99rNPpOLvzNpvmHRVWzyv7MG/nyCL6nIRPKYQN2kjM20SMjA0ZuagXHYY0Lvbi8/DCc1aM3kFujhQbByumbhhCrdaVv/nZolapObD0NAeXC55Dzl6OTN00jOBvbHMVV6IMMTsXHOXCjpvodDqs7CwZOL8b7Uc0K3Th+n+VX2l6M0Z7V9u/BZQFK/L3jyTHpGFuZUbtdkVXuIurS/vukpUqwtXbiSbdv++YvCdCiCyp0TyQirWK37yLfPyJmyefCDlzYT2KvCZ1Oh2bF5xApVAT3LAc9dsVhiGVUs362UcBaN27NgHBJQsd37HsPBkpIjx9nelbAFq0Wi3r5h5DIVNRqZYfrXvlv6+e3HnHlRNPMTAwYOKi7pjpfXxiPqSwV+/vM2pGe1z1cPT47nvO6qNppoR1xUbfIVu/5CzpKSK8fJwYOVkwNnz5NIaj+tX3ibM74ORiQ0a6mFV6I8NuvWtTraYfohwpSxaeEq4J7avQoEl5kpKyWb3yIiql5rvP+7fqPw47Hz58wNPTEzMzM2rVqsXixYvx8yt+Ne/Bgwe0bFnYe6BVq1Zs374dlUqFiUnxM/GIiIgi4zIAsVqBqZm5ADpaHdbGVmQpZZgbmuaBjrWRAD/FZV0V7N4UDzpCqGfBravCoGNZpKPj8w3QUX4FHTsHojMLd3SMDAwpZeeQBzoOphYkiMS4WFqi0YOOr509GbmCALmskxPxmTn6Lo4rH1LSUWq0VPZ0511iGgqNhspe7rxPSUemUhPk4UZ8Rg7ZMjllXZ2QyJQk5YjxtLfFwcyM1/Ep2JibUs3HixuRn/NB57HgldOqkj+P3sWRLZXj7+GMrYUZjz58wdzUmO61g9h3Q9CPtK9RnlefEvmSloObvTXNq5Rl7xWB9vs0Cebey2jiUrNxsbeiV+MqrD9+B61OR+taAcjlKq4/+yCY5/VpwoHzT0hIzcHN0YbR3euydMdVZAoVwQFetK5bnogtl9FodbSoU47Asp4s3awP7GwWRFlvFyJ+vST8TM2CqBHky7zlZ9BohA5P7841mBZ6HHGunDKlXAiZ1pGIVeeJjErE0sKUiJCuvI1KYvP2mwB06ViVXl1rMnnaQeLjM4V18yW9+PwplWXLhET0evX8mTW7A5s3XOPsaeH5GDayCV271SB8/gnu3X6HoaEBk2a2o1nLIJaGnOSG3hV57OTWdOpRg6N777FN74vTol1lJs7tQEJcBrPH7SU9RYSzqy2L1venZGlXTuy9z5YVgvFYo1aBTAnvhpGRIRsjznJa3z3qNqg+QycJo6Zj22+zXX9+g9ZBTF3SA1MzExJj05k3dDuJeq3P/I0DCaopvH9fPvxI2CjBDNDD14mF24dRwk8YA6UlZRMyeAufIxMxNTNhyqo+NOyQf8GJehbDwqFbyUoTY+9sw/ztwyhfLX8dVqVUs2H2YS7qHWybdKvBhBV9i1z4fr/0kmWjtyMRyXBwtWXuzlHFXnjUKjW7wk5y7Bfh7x5Q3Y/ZO0bi6u1U5NyvlRSdypIhm4h6LESgNO1Vh7Er+/+wpkar1XJl7x22zTmEKCMXEHKfhi36CYe/8Oz5b6/ET0IHzdX7+67F36ur+g2peh2q/VDYqlKh4uhaoRPSY3zrYsXsX+vds2hu/SZAzOB5XYs9R6PRsnHOEQBa9q5DmSDvIuc8vPyKR9feYGxixJiw7kVg6Nim68R9SMbW0YrBMwtrgl49+sT5A8IIafzifGgBOH/wd148/ISZhQkTFvXI61DlimSsmXcCgE796xJYrSQgeOQsn30UlUpDrcYBtOgkvFdF2VJW6cddnfvWIVh/I3P9wktuXnqNoZEh08O6Ym5hilgkY+n8kwLAdAqmftPyaLU6loedJidbSumybgwe1QSdTseqJedITxNTwtuRMRNbolZrWLTwN6QSBQEVvbh1/5tP/TfrPwo7tWrVYs+ePfj7+5OSkkJ4eDh169blzZs3ODkV/ZBJTk7Gza3w3NrNzQ21Wk16ejoeHh5Fvgdg1qxZTJ6cv6omEonw9vbGAAO0OiM96Ag6GzNDU6RqYR29eNCxLAA6X9PLLcn4FugYmRYBHQMMcDTVi5H/xuiqlO23QedTViaWJiY4mFiQKBbjYmmFRq0hSy7H196edJEEqUqFv7MTcek5KDQagtzdeJ+Slgc6UYmpKDVaqnh58C45LW+M9SU9mxyZgnJuzoilCpJyxJRwsMXGxIzIRCEDK9jbg1tvozE0MKBj1fJ5oNOmij/3I2MRyRQEeLlgaWLC008JWJia0K1WIPv1oNOpVgWeRn0hMVOMp5MtDSuW4sB1vYi2WVVu/vGJ+LQc3B1t6NogkA0n76LTQYd6FcnKlnDvpbDuPa1PE3ad/p1kvfh4aKfaLNl+VdDzBPnSoIofS7ddQaeDdo0qUtLdkTU7BY1Fz7ZVcXWwYvV2QafRvW0w/iVdWbhGAJLmDQLo2KIS00OPI5UpqVjOg9kT2xAScZqPn1OxsTZneVh37j34yD79KnnfXrVp1TyQiVP2k5oqwtXVluVLf+LJo8+sXy8AVouWgUyc2JqVS89x43okBgYwYXJrmjaryJypB3n+LBYTUyPmhHalao1SLJh+mCcPhVHZtHkdadIykK1rL3Nsn/CY3fvVYdj4Frx9Fc/8ifsR58jwLunM4vX9cXG3Y/vqSxzV62o69anNyGltUKs0REw7zN0rwhhq5PS2dOlfD61Wy+aIs5zaK3y6dBlYj2HT22JoaMjbP2IJGbkLUZYEVy8HwrYNwUevf7n+21NWzziCWqWhfFVf5m8enKfB+fg6npDBW8lIycHe2ZoF24cVuiO9eeopqybvR6VQUzLAk5BdI3ArkT+qyE4TEz5sC29+FxLRB8/pRPexLQpdCLRaLQdXnWfvEsG3pELN0szZPhKnYhxp0xOzWDxkc962VedRzRka2v27Y6trh+6xftIepGI5VnaWjF8zkMY9an/z/D9X3LtE1o3bwau7gtWCbwUvfl47iKD6RVPX/6dKq9WS9DmV6NdxxLz+QmzkF3LSxchy5chy5UjFMhQSBfZudniX88InwBOfAC+8y3nhV9n3P7oN9u6pED1T5k+djB8tiUjGdb1ep/XARn9xtlBX9t8jLSETJw97WvWr/83zdDodW+YL3ZZmvWp/0y350oH7fHz5BUsbcwbO6ljkuFyqYNN8/QhqZFNKlC587Yv7kMyBdQKcjwrpik0ByFbIVaydqe/49KpF5Tr5gJ/8JZPtywQx8+ApbfD0zb/Wbgw/TUaKML4aODG/sbB/4w0+RSVha2/JBL22R6fTsS7sFFnpufj4uTB4vKAlSknK5hd9cnnfYQ0JCBSiH9ZGnCU9VYSntyOj9J2eE4ce8uzRZ8zMjJm1sAumpsacOfmUe7ffCXrG0C5YWJiydfMNoiITsbY2Z+q0tmze+s2n/5v1H4WdNm3ycz+CgoKoU6cOpUuXZvfu3YXgpGAV1+Yr7usFy8zMDDOzouSu0xmj1OaPrswMTZGpNegAayOhy1MQdGyMLclSCFlX+aBjRYZCqs+6KgZ0NLoioJO3Xm5uSbas8NbVn0FHWczoKsDBmagfBJ2S9vak6UGnnLMzsenZeaDzLjkNlVZLFU8P3iamFAGdSp7uxKZlIpIrCXBzJkeqIDlHTAkHO6xNTIhKSsPWwozKXh7ciYrByNCADlXyQaddlXLcfhNNrlxJRW83jA0M+SM6ESszUzpVr8D+mwLMdK0TyIPXMaRk51LC2Y66Ab4cvqkPt2xVg8u/vyMxQ4SXsy3t61Rg40nhwtutUSUSkrP5PTIOM1NjpvVtwtbj90nLkuDr4UD/tjVYsv0qKrWGesF+VC3nxcpdgg6ma4vKOFhbsOGA4P0wsEstTI0M2bBH0I7071oLV0drItbrOzzNg2hc25/pocdRKNUEB3kzeVQLZoeeJC4+E0cHK5aH9eDcxRec1G8DjRjSiFrVSjFp8n6ysqV4ezuyLKIXVy6/ZudO4XG6dK3OkCGNWLjgBI8efsLY2JAZczpStWpJpo3fx/uoJCwtTQld0pPSZd2YNX4/ka8Fv5z5ET2oWsOPlQtPc+WsIMgeNr45PfrX4/G9D4RNP4xCriIgsARha/tiaWXGynknuKpPMx8yoQU9BjdAmqsgdMI+Xj6OFvRDi7vTuE0lwfJ9xhFuXxTWnofPaEvXQYIXxsNrb1gy8QAKuYqygV6EbBmCo4sNOp2Og+uvsne18Lw1aFuJKSt6591VPrr2hoixu5FLlfj6uxNaAGR0Oh37Vl7gwBrh7rlm84rMWD8QywI5U9GR8YQM2ERqfCaWNubM2DiEms0La1qkYjkrxu3k/jnh9dVhaGNGhPUs9uL8/PZbIoZuISddjKWNBZN/HUT9Dt9eQZbkSPll0p48YWtgXX9mbB/13Q5QwVIqVBxZeZZDS0+jUqoxszSl/9yudBnX6rudgn9HqZRq3j58z9Orr3hx4zWfX8Xl6V6+V+IsCV+iErl/Kv9rzl6OdJ3QjnbDm/1lDtj/RL17IsBOwDcM+v6qrh28h1yiwNvfg6BvCIcLlkqp5pB+NbznxDZFIhoK1r1zf/Dm4UfMLEwYOLtzseeIs6XsjhCe0H7T2uNQjMj64NpLpCZk4VrCkZ8mtCp0TKvVsnb6YdRKDTWaVqBxp8LbhPvWXCIhJh0nN1uGzmpf6PtWzzqCXKokqKYfHfrnb2bdufSK62eeY2howJQlPfMCdCOfx3Fku+AVNn5+p7yE8mtnX3D3qpCqPk3fOdJotCyffwKpREH5oBL01udZXTn7gjtXIzEyMmRmWFcsLE15H5XEDr0ucdTEVviUdCH6cyqbvm56jWlG2XIePH0czWF9h2ry9La4/sOu5398jFWwrKysCAoK4sOHD8Ued3d3L7KplZqairGxcbGdoL8qpVaLvX50VRB0bIytyFTIsDI2zwMdW2NLMhWFQz0Lgk6h9HKZGAt9BIRSo9XHOhR2RnYysyRHXnjrytDAEHdzGxIKgI70B0DHysQUBxNzEooBnfS/AJ1gLw8iEwTQCS7hwdukVMHZ2Mud6FQBdMq7u5CVKyNFlIuPox0WRsa8S0rH3tKcQE837r6LwdjQkPbBAXmg0z44gJuvPiFRqAjyccdAp+NlbBLW5qZ0rFaeg7eFC26PepW4/eITaTkSSro5UL1MCY7e1udAta7J2ftvSckS4+NqT8vq5dhySm++17QKH+PSePZOiHiY1rcJG47cJTNHip+XEz+1qsqSHVfRaLQ0qVGWcj4urN8vAEafdtUwxIAdx4RxzYif6qGQqdh+TICo4b3rY25qzKot+g5Pu6pUC/Jm9qKTqNQaalUrxZhBjZg+/xjJKTm4udiyLLwHBw8/5NLV10Ja+tiW+Jd2Y9LUA+TmKihT2pUli3ty9OgjjhzWe/8MqE+37jWYO/MwL198wczMmAVh3fDzc2HK2D3ExqRja2fB4pW9cXG1ZdrYPXz+mIq1jTnhK3tTxt+d8FlHuX8zCkMjAybO7kCrjsFcv/CSFQtOotFoqVGvLHOX9gQdhE46wOM77zE0MmRSSGdadAwmI1XE3NG7iX6fjKWVGfPX9qVKrdJIxHIWjtvLy0efBR1ORHca6/UC5w8+5NcQwdysRqMAZq3ti4WVGWqVhl/mHufyUWF+331EYwbru0AAZ3bfYdMCQawdXN+fOZsG523AKOUqVk85wE19UGJxQuSHl16ybMxOZBIFnqVcCNkzGu+yhfV+idGphPbfQGxUIiamxoxb3odWfYvehet0Oo6uvciuMOHnKVWxBPP2jP7uxlPU408sHrSBlNh0DI0M6TerMz9NKz5Sorh6fe8da8ftIC4qEYCarSszbs0g3Hz/+SjmryozOZs7xx/y5PILXtyKLAI3JmYm+FYoQalAb0oF+eDobo+FjQUW1uZYWptjZmlGemImcW8T+BKVQFxUAtGv4khPyGTL9L0cXHKSUSsG0KL/X2dD/btKo9HmibjL/QPY0el0nNkqvLc7DG/2Q6aMl/VdHUd3u+/mYKmUanaECmOgrmNaFptYDrB32RlEmRJ8/D3oMLhoZyn2fRIn9I7qoxd2ywOPr3V2zz0in0ZjYWXGuEWFtT7vX37hhN5Da1xYN6wLbJmd3f+Al79/xtzSlEkR+eOrzDQx60ME88CewxvnbV/JpAqWzz6KVqujafsq1NdnXKUkZrNhidC96TeqCWXLewJwbO89Xj2LxcLSlOlh3TAyNiLhSyYb9CPw/iMbU66iFzKpkiULhPic+o0DaNspGIVCxeL5J1Eq1dSsU4YuPWuSlZnLksVCd7Z9x2AaNgr435F6rlAoePv2LQ0aNCj2eJ06dThz5kyhr12+fJnq1at/U6/zvbLSg46poQnyP4OOkTkilQA1tsZWZCqk2Bjng46jiRXpCgk2JhZ5oONmbkOyVAAdjT7rqjjQcfymM3K+j06xoOPoQlRaGoYYFAAdk++CjuQ7oFPVy4PXCSmo9KATmZiKQqMhuIQHn5IzECuUVPBwIUMkJVUswcfRHnNDI94nZ+BgZUEFd1fuvYsVQKdKPuh0qFqe6y8+IlWqqFzSA7VaQ+SXVGwszGhbpRwHbwtdm171K3P9jw9kiKT4uTtSuZQHx+8IXYRhbWpx6s5r0nMklHR3pEllP7afFeCkX6tqvHqfyMuPSViZmzKlT2PWH7pDtlhGWR8XujWpxLIdV/M0OT6uDmw+Img7hnStjVgs59hFAbbGD2hMSmoOR88J3ZhxAxujUKhYv/MmAH271KRsKRfmLTktBIjWKcvAnnWZMucIGZkSSng6sHRhd7btvMXNO4KuZuaUdrg4WTNl+kHkchUVK3gRvrAbO3bc5uwZodswenQzWrQIZPrkA7x/J4DGoiU9cXK0YtLo3SQn5eDsYsOSNX0xNTVi8shdJCZk4ehkTcSaPri62zN34n5ePInBxNSI2Yu7U7dRAL8dfMhG/QdL0zaVmLKgMzKpgvk/7+Ptiy+YmZswe3kvajUsR3xMOrNH7iQ1MRsHZ2vCNw6kdIAnGaki5o3YSfS7ZCyszJj3Sz+C65RBp9Oxd81lDm4QLhStetTgZ70lvUyiYPG4PTy5JTwHo0O60L6fcNeo0WjZvugUJ/V5Wq1+qs24RT3yVmyzM8QsHLKVt09jMDI25OeIXrTqnb8d89UocOeiU+h0OirXL8ecrcOwcSisjXl64w0Rw7aSmyPF0c2OebtHF2vNL8mRsnJsfuenee+6jFvR95u6Da1Wy/F1F9kZcgyNWoObrzMzd4ymwjdEp38uWa6c7XMPc2azoKdycLNj9Ir+NOxW83/E/VgqlnHvt8dcP3iXP669KuQwbO9qR3DTQKo2C6J87bJ4lXH/SxG0b4USVGue70GjVKi4uvc2R1aeIfFjMsuHbODDs8+MWNbvf7w7BfDhWTSyXDmWthZ4B3j99Tf8qZ5cfUVcVCIW1uY071PvL89XylUcXCFc2HtNavvdrs6Z7TdIjE7FwdWWHuNaFXvOx1dfOLdLgJFRBd4HX0uj0bJ22kHUKg21WgRSu2VQoeMp8ZnsWir8PINnti+UWq5UqFg57ZBg4Ne+CrWb5wvlE2LS2KE3FhwyrW1eorlOp2PtvOOIsqX4lfcoZB64aek5kr5k4uJux9jZHYSfT61h6ayjSHMVlK/sTU+98/G7Nwns3iB0akZPbYOntyMqlYYlc48jkyoJCval5wDh+f511UXi4zJxdrFh4sz2GBgYsHHtZWKi03B0smbqnA7odLBk8RmyMiWULOXM6HHNyczMZdPGK998/r9X/1HYmTp1Kh06dMDHx4fU1FTCw8MRiUQMHDgQELQ2CQkJ7NmzB4BRo0axfv16Jk+ezPDhw3nw4AHbt2/n4MGD/+jxs5UyLMysUWp0aMkHHUsjc0TqoqCTpVACBjiaWpEuF0BHpFAWAh1zIxM0GgPkGjUeFgLofE0vT5VJcPxzqKcedDwsbQsbBhbX0dGDTmkHJz5mZuhBx+IfgU5wAdCp6u3Jm4SUYkDHlQyRhFSxBF8ne0wx4kNKBo5WFgS4OXP/fSzGRoa0rxzAqScC6HSqVoErz98jU6oJLuWJUqkmMj4VO0tzWlUuy5G7ep+VhlW4+uQ9GWIpZTydqVDCld/uCYLbke1qc/zmSzJEUkp7OlE/sCS7LghbR4Pa1OBp5Bdef07GxtKMyT81Yu2BW4gkCsqXcqN9vQos23VN0OQ0qICTnRU7TgjdoFG96pOcKuLUVeFnmDq0GR+jUzl9Rfj3lOHNSU0Xs++40HkZ1qceLg7WhK0UNDstG1egR4dqTJ17hOwcKaV8nYkI6cbaX6/w8NEnTEyMmD+rIyZGRsyaI/jqVA32ZcH8zvyy9jLXrgl6nEmT21CrZmkmjd9LXGwGdnYWLFnRG2MjQyaN2UNmRi6eJRxYuqYvcpmSySP3kZEuxt3TniX6cdSMMbv58DYJSytTQlb2plJVXyHNXA8UnX+qxcgprclMy2XO6N3EfhI6QqG/9KNisC8f3iQwd8xucjIlePo4sXjzINxLOBIfncacYTv0AGRD2JZBlC7viVqlYd3c41w5IWzG9Rvfgj7jhM2pzDQRC4Zu5+PrBMFgcF3/vIwrhVzJ8gn7uKfP0/rzxlXch2QWDNxMclwG1nYWzNkylCr18mMdlAoVv0w7yNUjAui2G9iAUeE9C10gdDodJzZeZXuIkPsTUN2PeTtHFavPiYlMIGzABhI+pWBiasyoJb1pO6jhN6EjO03EipFbeXxZ+PkbdavFhHWDsLKzLPb8P9cfN96wevQ2UmLTAWg1sCHDI/oUAbV/tXQ6HS9vR3J+2zXun3qCQpYflli+Vlnqda5BteaVKFXJ57vr0j9SpmYmtB3WjFaDm7A//Dj7wo/z2/qLpCdkMu/wpP/x+Ionl4WbpapNA3+4q1awjq0RbgbaDGr0Q3/HsztukJ6YhYuXI20Gfrurk5MhZv9yAUIGzOqEpU3R8Z5Wq2XDrENCPlWnagQ3KKrROrfnLm+fxmBhbcbYRT0KHdPpdKyffQSZREGF6qVo178wrO1dfYm4Dyk4ONswJrRL3tc1Gi2rZhxBIVNRuU4Z2vXJ15ddPPqYR7feYWxixLQl+ePee9fecEm/lTV1cXes9L/PoW23iXweJ3wO6VfdJblyImYfEwwBm1ekpT6gdPfG67yPTMTa1pzpC7tgZGTItUuvuHzuhXBjGNIFWzsLbl59w7lTf2BgADPmdcTBwYoDe+/xVO+wPHeBYNGxKPw0T568++7f61v1H4Wd+Ph4evfuTXp6Oi4uLtSuXZuHDx/i6+sLQFJSEnFxcXnnlypVivPnzzNp0iR+/fVXPD09Wbdu3T/y2AEhG0ul0aHR6QqAjhliPejYGQtjqmJBx9gcsVKJFvJAx8zIBJ3GMA90EnIF0BHWz7+mlytRabWUtHEgJkcwDPS0tCNeLMLezBx1njNywY6OM1FpX52RnfiQmYGlsQn2BUFHo/1boPNGDzrVvD15XQB0PiZnkKtQUtHDlTSRhDSxhJJODphgyMdUAXTKubnw4EMcJkZGtKtcrhDoXP7jPXKVmmp+XkhkSt4lpmFvZU7LSmU5elfo2vRtFMylx+/IFEvx93KmrIczZx4KIDCqXR2OXH8hHCvhTK0AH/ZcFC6wQ9rV5MGLGKJiU7GzMmdir4as2ndTiIco40HzWuVYufcGOh10ahKEpakxe08JI5VxfRvxOSaNC7cjMTQwYMbIFrx484WLNyOFN92YVnz8nMpRfU7O2EGNsDAzYck6QT/SoWUl2jYPZMqcI4hz5fiXcSNsbmeWrbrAs+exmJoaEz6/C1KJkrCw31CrtdStU4aZ09uzdMlZ7t8XNsVmze5AuXIeTPx5L8lJ2Ti72LBsZW8kuQpmjN+HWCzHr4wrEav6kJYiYvakA4hFMnz9XFiypi8ajZYpw3cSH5uBnb0li9b1xc/fnfVLznFWv4Y+cHRTeg9tSEJsBrNH7yY1MRsnFxsWbRxIybJuPP/9E6Hj9wmxEuU9Cd84EHsna969/ML8kbsQZUvx8nUifNsQ3Es4Cl2b8ft4cvsdhkaG/LywC617Cmu3BVfL7ZysCN02lHKVhRZ4TmYuoUO38fZpDMamRkxZ2YfGnfL1MM/vvSd8uLAp5e7rxMLdo/AuYPCXk5FL2JDNvPn9E4ZGhowK60GHIYVb/kqFil+m7ufKQWEE2apvfcYu612sW/Ht356watxO5BIFriUcmbN7NOWqlipy3td6cfstS4duIiMpG1NzE0Yv70ebQY1+6GIuEcnYNvsg5/UGg24+zkzcOPTf7pkjyszl6t7bnN16lfh3iXlfL+HvQdM+9Wn6Uz08S/+YtcffLSMjQwYs6EHpKiVZ3Gctd08+4uLOG7QZUjTX6d9Zj/WeSzVa/ZjjccH68Ec0z29FYmhkSJexxXdeCpZULOewXqvTZ3r777pg71t2BolIhl9gCVp+o2N06cB93j4Rxk/DQ4pet1ITMtm1RJheDJndscgY7PqJJzy5GYWJmTGTlv9UCFwjn8ZwfKteW7O4O7YFgPr4tltEPovFwsqs0Pgq6UsmW/TOywMntqSkv/BayUgTsVY/1uo+qD6Vawgd0jd/xInAj6gAACAASURBVLJfHy3x89wOuJcQfr5fl54jKT4TNw97Js4VQj4f3//IUf1iw5R5nXB1tyPhSwbr9MGffYc0oFJVXxLjM1mt/xl6D6hH1Rp+vHoRxy6999bPE1tRspQLu3bd5vnzWMz+hhN5wfqPws6hQ4e+e3zXrl1FvtaoUSOePXv2b3l8lVaHgU6HrbEVGQqZ4JasXzn/CjrWxuZk60FHEBZLsDY2R6xSo9EVAB1DEwy0hkj/BDrC8VwczCzI/RPogEHemMvO1Dwv1LOgYWDB0dXXCIh8Hx1hvVyr0Qrr5QXEyAEuzsSk/TPQCfR0IzUnNw90jA0M+ZiSgZO1Jf4uzjz8CjpVyuWNrjpXzwed6qW9EEuUvE9Kw8HaguaBZfJAp1/jYM7/HkV2roxyJVzwc3Xk/KMoDA0MGN2hDgeu/CEc83ahWtkS7LssaDiGd6jNraef+PAlDQcbC8b3aMjKvTeQypUEl/OiYXBp1uy9CUD3FlUw0Oo4dF54nUwa0IRX7xK5dv8dRoYGzB3TmvtPPnHtnv7f49vy4k08py4Jd4yTRzZHrdSwUm8e1q19VRrX9WfqnKPCFlZ5T+bP6Ej4ktO8jkzAwsKUiNBupCTnsHyl4HjcpHF5Jo5vSWjoSZ49jcHU1JgFIV3wcLdn0s97yUjPxcvLgaUre5OcmM28GYeRy1RUCCxB+PJefP6Ywvxph5FJlQRU9CJ8ZW9E2VJmjt1DWooIFzdbItb3x93LnmXzjnPzkhBKOHZGWzr0qMmHt4nMHb2HnCwJXj5OLNo0EHcvB+5cfs2ymUeE+Imafsxf2xcra3Oe3n1P2Ph9KGSC4Hjh5kHYO1qTnZFLyIidvHspjMBmre1LraZC1+bNk2hCR+xEnC3F09eZsF3D8NTrTxJj0pk/cDMJem+f+duHEVQr30n4ytHfWTvtIBq1lgrVSzFv+zDsnWzyjn/5kMz8fhtIjk3HytaCWVuGUq1xhULv38yUHMIGbeTt488YGhowIrwnnYYXTTXXaLTsDjvBEf3acJVG5Zm1fQR2BR6vYGm1Wg4tP8PeRYIuydvfgzl7xlIqsOhqcHH17PprVo3cRlq84AXTYWQzhoT1wtLmxxx6f6SiX3/hxJpz3Dh8D6VcBYCFtTnN+tSn1aAm+Ff3+z8WEFqvUw0GhfVi64z9bJqyh7odq2Pn/M9djb9X2WmiPHFy9RZ/H3aO6rs6jbvX+iFR+fFfL+ljHNxoUUyMw9eKjozPG02NDOtZbMcpO03MjnABIPrP6IDznzqPOp2OX2YKXZuKNf1o268wMGWmitgcKqx595nQqtB2llyqYNW0Q+h0Opp1rVZofPX5bSJ79b5Zo+d1wk0/9tKoNayYKYiVA6uXostAQdum1WpZNe8EomwppQM8GPBzcwAkYjnLZgvd06btKtOkreA/dfXcC66df4mhkSEzFnXD2saCzPRcVugDRDv0qEHdxgEolWoWzT2BTKqkUrAvfQY1QKlUEz7/JFKpksBK3gwY0ojsbAmLwoRsu+YtA2nVphJPn0azT+/PM+7nFly5Ou/bf7Rv1P+vNDv/p0uj0+FYAHQkahU6wM7Eigy5VBAoK1ToMMDJ1Jo0ueCCnKtSo9Hp8kDH1NAYA50RUrWqWNCxNzUnV/H/sfeWgVHd39r2lUxm4q6EBHd3dwotEhyCW3EPTpCQQAheCoVCKRDctRQo7u4OwUPcZdyeD7/NkBSonf953nOevuvjzJ6BZLL3XHute923/hPQKSh1dFwUtphNJnJ1Ogq7uH0BdERHR0RAOPA+j2FgulpNYVdXixj5S6CTV6Pzd0DnZV7QefEOhY2MVpXygk55jt95hlpnoGbxALKUGmISUnF3sqd5+eLsuSRAp0+Tavx69TGZSg1lA30o5OXGsZvPLKCz9fhtspQayhbyoVKxAmw/KWBlWPu6nLoew4v3qXi4ODC6a0MWbzyNWqunetlA6lYswvJt4kIT/HU1tBodB08LF+WJA5pz8947zl6PwUZmTdjo1py6+JTz12KwsbEmbFwbrtx8xdHTj0QLdcTXZGSq+EnayurRsSY1qxRh8sw9aLR6qlQKJHRCa2ZF7OdZTCJOTrYsmNOVFy+S+F6KM2jdqjJDBjVhxow9PHwgnJLnRnbFydGW8WM2k5WlpkhRbxYs6cGLZwmET9+DXmekWo2izI7qyv07b5kTugedzkCV6kUIXxhMfGw6oWO2kJmuJKCwJ1E/9MHF1Z6ICTu4fikGGxsZk+Z0oknLCjy49YawMVtQ5WopXqYAkav64ubpxJHd11kx5xBms5kGLcozOUp45Zz+5Q5LQ0UwZ9V6JZi5vDf2jrYkxqYzY+DPxL1JxdnNgfCfBlC2qui6XjnxkPljtqDTGihdpRCz136Md3h65w2zB/5MVlouPgHuzNk4lEKSkNhsNrNt2TG2LBFfOo3aVWPC0l75dBB3zj8lctBa0fEp5En4lhEUKpXfVuLF/XeE91lJSlwGTq4OTPt5MNU/Y+SXk5FL1KC13D4tRqSdR33NwLBOX9SpZKXmsHDwGm5KwZstejdg1JK+fxj6+aE0Ki3rZ+zkoKQpKFDUh5DVg6jcqOyfvPKv16PLz9i56BBXD9+yPFasYiHaDm1Bs54N/qNA9Xeq09g2nNh0njePYrl86OZ/W3fn0sGbmM1mSlQp/Ledk2OfJ3B+nySeH9f6T44WMQ57pNXufjM6flGPZDKZWDFpKyajifptq1L5M6MpgDWzdpObqaJYhQDaDfxUlHxm/01unnlsMdDM27Uxm818P2UnOZkiEqLL0Py/3w2LjortKz9Xhs36uAGm0+pZOEHof+p+VZ6vOn3srO786ayl2zMhqosF0A5uvcKtSzEiDHh+N+RyG7FmPvcQSfGZ+BV0Z2So2PCKe5fGDx+EyoMbU75yIUwmMwvD9pOZrqRoSV+GSGaGa384yYvnibi42jN1dgdkMmtWrzhBzLMEnF3sCQ3viJW1FQsifyE1JYdChTwZG/INaWm5zIs8JKQJbarQpMk/O5/+1bDjYiP8ceysFagk0HGTO5GqUeIgsyNHa8gHOg4yW1R6owQ6LiSqslFY2yDDBuXvQMfP3pkEZS6uCjtUOgN6k5HCTm4W0AlwdCU2W4AOJsjR6YRYWcq6+gA6edPL7W1s8LJz5H1WNp72IgIiXXJGTstVi60r7z/X6PwV0Cnq5Y6MvKDjmQ90Dkmjq441y/PbbQE6tUoEkpGr4kVCGp7ODjQpV4y9l4VvS9+m1fjlymOylBrKFfIlwMOF47eeI7O2YkRQPTYdu0m2Skv5Ir6UL+TLrtNCQDyiY31+u/KUV3FpeLk5MqJjfRZGn0KrM1CrQmGqlw5g5Q6xPt6nbU0ys5QcPivAZeqgFly8+YqLN18it5ERPrY1R0495PKtVyjkMsInBHH6wlNOXniKzNqK0DGteB+XTrTkkdO/ez3KlvBj2uy9IlKielEmjv6a0LC9vHyVjKurPYsjg7l77y0/rpZW2jtUp0/v+kydsoNnzxJxdLRl/oJgMJmZGLIVZa6WUqULELUomLs33xAVLoLv6jUsxfTwTly+8IwFUhhe3YalmD6nMzFPE5g5Try2eCk/5q3ojVwuY/roLTy8I9q6MxcHU7NeSa6df0bkxB3otAYqVi/C7OVC45PXFblVl5qMmtEOmcyaA5susUbyxGjSpjLj5wl/mVdP4pnx7ToyUnLw8Xdj7vpBBEppw0e2X2XlzL2YTGZqNSvLtBV9LNsiV48/ZP6ojWg1ekpUCCA8eogllNCgN7J8yg5O7BKaqOBRLeg7uU2+i/rRLRf5YYoQWJarVZyZ64fg5pW/A3Px8G0WjViPVqWjYHFfwreO+my+1etH7wnv9QOJb1OxtVcQsqI/TTrX+uS4D/Xk+gsi+64k5X06tvYKRn3Xl5a9P78s8ft6euMliwat4f3zBADaDmnOoMju/5G1bLPZzI1jd9mx8CAPLz4FhNVGw8616TSmNWXrlPy/1sX5Uslk1jQJrkf0rJ1cOnDjvw12zkkblI27/HVPow+1c+lhzGYzdVpXoXjFQn96fPSc/WjVOsrXKUnD9l+2Izi54wqPr73EztGWYZHBnz3mxqlHnN1/E2trK8Yt6f0JbGem5bAmTGxx9QpplW+cC3Byz3VhLqiQMfG7Xvk0a3cvx3Boo/DNClnQLd/21YbFR3kbk4S7lxNj5na2/J08ufOWrZKYeNSs9vhJ9g+vniWwXrKNGDyxFYWlc/7U4bucO/ZAdG/md8XRyQ693kBU6B7RqalehO7SmvnuTZe4c/2VWIaI7IzC1oaLZ59ycLcYs0+e1R4vHxcunnvKAemxKTPb4e3jwo5tV7hx/RUKhQ0zZndEYWvD9Om7ycxUUby4DyNHfYVWq/7iZ/FH9a+GnXStBgeFMxqTERN5QccWpd6ACSRhcS72MgUaowmD2YyfnQsJqmzk1jbIsSFHr5eCOgXoFLB3IV6Zg6vCDo3eiM5kpLCzO28l0Al0dOVddjbOcgVWJsjWaSns4sa7zCw+anQE6JT28OJZWqpIL7dz/JhebobUPBEQSp2O0l5evEvNRGP4aBj4udHVo3gBOlXyanT+FHRiPwGdTjUrcOz2Uwl0AkjPUfEy8SPo7JNAp3+z6hy49FDATGFf/N1dOHE7Bhtra4YH1WXjsZvkqLRUKlaAUgHe7JY8dkZ1bsCRi495HZ+Ot5sjwzrUY9HGU2j1RupWKkLF4v6s3i1amwM61CYpOZujF4QmJ3RoS05ffs6VO69RyGVEjGvD/qN3uXFP0tdMaMeR0w84d0VoacLGt+FZTCLb9oo7v6H9GlGkoAcz5x4QPj11SjBmSHOmzNjFm3dpeLg7siQqmEuXYlgvta97dK9D5441mDhhO69eJePiYs+Chd1R5WqYEbobjVpPhYoBzJ3fjYvnnvLdfCF8btaiPJNmtOPEkfssm38YsxmatqzApJntuHfrDeEThV9O+cqBRHzXE4PByORh0bx4moCDoy1zvu9FhaqFOXP0Potn7MVoMFG7UWlCF4mMqZ+XHmOvZCLYfXAT+klt6Y3LjrNDmr+371OPIVMFeNy/9pLwYRtR5WooUtqPueu+xdPXVXRllp9giwRNLbvWYkxkZ8uF+8jWy6ycLtZUazQtS+iq/pYcH2WOmsih67kjOUGPnNctX5veZDKxYe4B9kgZQE0712Tckt75Oj5ms5md3x8jeq5o5VdrWo7Qn4fg9BmR6cVfbrF4+Ho0Si1+hb2YtXkkxT7jUPvhfQ+sOsHa6TswGowElPRjxuZRf2lsZdAb2Db/INsXHMJkNOFZwJ3xawb9oxHL5/5fd04/JHrWTp5eF4aHNnIZLfo0puuEtgSU8v8v/xv/yWrQoRbRs3Zy59QDlFmqvyzi/quVlpDJ/fMC9hr9SVTD7yvpXSqnpZuYHpM+NfD7fT27/ZpTO8XxQyK7fREms9Nz+Xm2yGrqPSkI7890mzRKLT9MEUs0HQY3o2TlT0Frzax9ZGcoKVauIF2GNc/3XHJcBqtni7/5PuNbUbTMx89dmaPhu8k7AWjdsy7VG370DLpzKcYSyjtuXldL51WZq2Hh5J2YjCaatKlM0yBhKaFR64iatNPiktw2WPyO496msXKeuCHqM7wpZSuJ8yJ65SlinsTj7GrP5DmdkMmseXw/lmjpxm/kpFYUKupNUkKmJQ6iS4861KpXksSETJZIN1lde9Shdr2SPLgfy/qfzwIwelxLihX3YcP6c9y79w57ewUzZ3VAqzWwcdPFz34Wf1b/athRWMvRmkwYzWbc5U6kaJTYy2xR6U0YzflBR2c0ozeZ8JVAx8ZKhi1ysvU6/OyFCSBY4W/vQpwyBxe5LVq9Aa0xP+gUcnLjbVYWTnIFMqzJ0mko5OxKbGYWZjOUdhdiZCusKOMpPHXsZDb45AEdGdakqJQEurqSqRRZV6W8PIlN+xgB8cEZuYq/H48l0KkR6M+jeOGj82HryiJGzgM6NuTV6HwEndaVPoqRO9csz9F8oKPmZWIaXs4ONCpb9LOgU6GwH75uTpyUQGdEu3qs//U6So2OysX9KVHAg70S6Izu3JBD5x/yLjEDH3cnBrevw8KNp9EbjDSsWozSgT6s3SvEb4M61SU2Pp3jl0SHZsawrzl2/gnX773FVmHDnHFt2PXLLW4/jMXO1obIye05cOQuF2+Ijk/EpCDu3H/H7kNiNDB6UDO83B2ZGXkQo9FEkwalGTqgERNCdxIXn4G3lzNLooI5ceIhW7dLXaC+Dfjm60qMD9lKbGw6Hh6OLFrUg6SkLMJn7kOnM1C9RlFmz+3Mb4fvsXKZuHtq3a4qYya24uDuG6yWIKJtx+qMmtiKq+efMS9U5GZVr1OcWQu7kZOtZtqITcS+ScXV3ZHIFb0pWdafw7uus3KeuHNt2roSEyI6YWUF34Xt5/h+8XMNmdSaTn3rYzSaWDXnIEd2CrDrN64lwVJo56XfHjA/ZBsGvZEKNYsStro/Ti724jWz9nFEipLoMeor+khREmazmc1Lj7L9AwQF12ZMVDcLBKXEZxDWbw2vn8Rj56Bg2o8DqJUnLVqr1rF49EYuHhar4L0ntaXn+Fb5vmB0Wj3Lx2/hpPQF1G5wM4bO6frJHbLJZGLrwl/YukBcXKs2KUvo+qE4uzt99hqgztXw3cj1nJM28Bp1qsW4Hwb+pQTsuJdJLOi/yqIhaRpcl5Hf9fuPbFo9vPiU6LCd3D//BABbB1uChn5Fp7Ft/nHw5X93FSpbkIDS/rx/Fs+dMw9p0OHLXbR/Uuf2XMVsNlO2Vgn8Cn85ff5ztWPRLxgNRqo2Lf+nKfRms5k1oQIgmgfX/UMR+/qIfWSnKylS1p8OQz/fzdq08BeS36fjE+BB78ltPnn+8rH7nD14S3R9FvfI17UxmUwsm7QdVY6GMtUK0/l3/8aP4ftJjs/EL9CDQXnMA3MyVSyZIqIoWveoQ62mH0c/qyIOkvg+Ax9/N0blSTpfs+BXYl+n4OHtzHgp5FOnMxA1ZZdYHa9RhG5S9+bGpRj2SOLj8TPb4+3rSnaWmvkz9mIymmn6dUVaBlXBYDASNWs/uTkaSpfzZ8DwZuj1RiJn7SM3R0PZ8gUZOKwpGRlKIiMOYDKaad6iPN+0rsy1ay/ZKmUEjp/QioIFPZgxaw8Xpa3dv1v/atjRm8yYzSYL6NjJFKj1Rgx5QMdOJhfmgCaTpMHJRmYlw97aliydFt+8oOPgSlxuNk5yBXqjCY3RKMGNAJ3CTu68ycrE0UaOHGsytRoCnV2Jy87BZMZiGGj1obuTmoqtTIafgxNvM7PwsLdHhhUpSiUBLi5kKzWW9PIPoZ4VfH14kZRmAZ0nUgREtQABOmqDgSoF/fKtl6fm2brKDzofNTqtK3/U6AjQEaOr2iUCSZM6Ot4ujjQsU5T9Vz4FnYpF/PBxdeL0nRfYyKwZGVSPdRLoVCnhT1Ffd/adFzqJMV0acvDsA94lZeLn6cy3QXVYLIFO42rFKVbQk3UHxJfu0C71ePk2hVNXnyOTWTNz2Df8euYhNx+8w95WzpyQtmzbf527j9/jYK9g3uT27Dx0k6u3XosOz+R2XLnxkgNHxNhs/LCvcLBTELHgF0wmMy2alqN/z3qMn7qTxKQs/HxdWTo/mIMHb7N7r2jBDhnclKaNyjA+ZCsJCZkiEmJxD968SmFu+H4MBhN165dkZlhH9u2+zjrJNbRzcG2Gjv6K7RsvEr3mLABde9Vl0MjmnDn2gEXh4uSv37QsU+d2IjUpm6kjNpIUn4mXrwtRK/tSqKg3O9adI1rKxAoKrs3wqa0x6I3Mn7KLy6fE5sm42R1p2aEaOp2BRZN3cvGDoHlWe9p0F3dwR3de44dZwmSvbovyTP2uJwpbuZj7j9vGpd8eYGVlxfCwDgRJfhlGg5EVobv5bYcEQWNb0icPqLx9lsCM3j+SmpCJu48L4dFDKFnp451tZmoO4f1W8/TWa2wUNoQs7UWz3921Z6XlENHvRx5dfYG1zJoRUd1pO7DJJ+ezOlfDouHruCxBU8fhXzEo4lMg+lDvYxKJ6Lmct0/ikNnIGDKvO+2Ht/jTkZDZbObk1ousDNmEOleDk5sDo5cP+FtxEV+ql/fesm76Nm5KYnm5rZy2Q76i+5T2uPt+ukr/P60CJdjJTP5nxm9fKrPZzNH1ogvZvNefe+PkrbiXSfy2WYy6e01t/6fHn917ncfXXmDroKD/zI5fPO7x9Zcc2yK6DKMW9vqspufp7dcckMwBRy/sgb1j/rFmZloOy6eIRZ3Ow5rnOzcAft18iTsXn2NrJ2fC0l75hM/nf73LqX0CkiYu6WHpoprNZpbP3EtaUhYFi3oxOE9m1pnDdy0uyZMXBVvWyc//9oCje0WW16R5XXGVgH3dd7/x4kk8Lm4OYs1cZk1KUhYLpfysdsG1qNe0LGazmSXhB0hKyMI/0IPRU9tgZWXFulWnefzwPY5OtoTO6YRcLmPld7/x9HE8zs52TI/oiJWVFVFzDpKakkNgIQ/Gjv+GpKQsoqKETqddu6o0a1aOLVsvc/XaSxT/0MvpXw07Bkx4SaBjay1HazBLoONMslpsWBmNVmhNRvzsnElQ5WBtZY2TTERD+No5kfA70HG0UWAygtpgoJCTG++yhQaniLM7rzMzcbCRY2ttQ4ZGTYCTKwnZORhN5nwanbKe3jxJTUEhk+Hv6MKbjEzc7eyQW1mTnKukoIsLuWod2VotJTw9ic/IQaWX0stTRHq5yLpKyeeMrDYYqCw5I38wDEzPEYaBRTzdUVjJiElKxcPRnlI+YuvqU9CpYOno1C4RSHpuXtApYgGdAc1rsP/iAwl0CuDr6sipz4BOtZIFKezrxoHzwnl4TJdG7D99n9jkTAp4ujCwbS0WRZ/CYDTRtEYJCvm6Ey2tk4/o1oCnLxM580F8PKIVB07c5/ajWBzs5ESODyJ691UePI3D0UFB1JQObNlzjRtSxydqWgfOXHzG4eP3sbKCyaO+wcoM85b8itkMrVtWpEfnmoRM2UFKag4BBd1ZPC+YnbuucVCKhBg9sgW1axZj3LgtJCdnU6CAG0uW9OTRw/fMnyfSxxs3LcvU6UFs23iJLRuki27/BvT9thEbVp9hxyYxius7uDG9BjTk6IHbLI8S46yv2lRm/Ix2vH+XytThm0hPzcE/0IP5P/bDx8+V9cuOs0t6zx6DG9N3ZHM0ah3hY7Zw99or5AobQhcFU7dZOdRKLXNGb+HOlRfYyGVMXhhMw28qYjab2bXmDNFLxLZSXrNAZbaa8KEbeHDtFTYKGVO+60WDVmJEo1FpmTdiIzdOi/X9kZFdad3r48bKg6sviPh2LblZagJL+DJn8zB882zAvH+RxMxeK0l8m4qTmwMz1w+hUr2PHjsA754nENZzBQlvxFbW9PVDqfa7rSyAxLcpzO75A28exyFX2DD6uz5fXP8FuHz4NouG/IQqW42HnxszNo+kfN1SXzz+Q+VmKlkxJpqzuwXcVWxQmsnrh//luIgvVWpcOhvDdnF80znMZjMyGxnfDGhKz9COeAf81977/2Y5SgJpVc4/01V8qR5eesa7p/HYOiho1v3vwc7GiL0YDUZqtqxExfp/HA2hUWpZFybGUsEhrT87lgIxvlw+cQsALXvVp0Ldkp8co9cZ+H78VrEh1aUWNZrlF9CbzWZ+mLqLrLRcipQuQO8JrfI9H/c6hXXS+GfAtCACivlYnkuJz2TFdJGbFTyiOeVrfOw+Hd9zk4vHHiCzsWbykh7YOQg9XeL7dH6QNqR6DG9G+WpFxONxGXwvPd7t20ZUrSM6X5dPP+bgNvF3PmFOJ7x8XTAajERN20N2looSZQoweJxY39+z5QpXLzxHrpAxI6orjk62XDz7lL1SJ3jSzPYU8Hfn7MlHHJAsMqbMao+vnxvR685x+9Yb7OzkhEV0xsZGRkT4fnKyNZQuXYDhI77i1u03bNgo5ALDhzbj1In/fxvrb5W7XKySK6zl6I1W6E0mvKW4B7m1DSazFZq8oIM1zjJ7MrQafOycSFDmYtmqys3CwUYBZitUBh2BTq4W0Cnq7M6rzEzsbWywt7YhXaOmoJMLSTm5GExmSufR6JTz8uZxSgpya2sCnVx4lZ6Jm50ddtY2JObm4u/sjFKjI0ujobiHB4mZOaj0esr5+vA6JR2NQYDO8wSRXl6lYAGeSllXlQv68TYlwxIBkZ4jIiAKe7pha23N80QBOmX9vLn8XKyXt86zddW5VgWO3pJAp2QgGTlqXiSI0ZUAHdFeHNi8Bvu+ADojfg86Ph9BZ2yXRuyTQMffy4UBbWqzaKMAnWY1S+Lv6cKmX8SJMqpHQx49T+Ds9RjkNjJmjWzFvqN3uftEdHAiQ4LYsOsyD5/F4+Roy/wpHdiw8wq3H7zD3k7OvKkdOH7mEcdOP8La2oppY1uhVetZ8oMYxbRvU4WObasRMmUnaem5FC7kyeJ5wWzafJFfj9zDygrGj2tFpQoBjBu3hbS0XAICPFi8pCe3b75m8QIBKy2+rsiESa3Z8NNZdkn5LgOHNqV7n3qsXnac/bsEuA0Z/RVdetZl37arrJEEgkFdajBiUmtePksgdORmsrNUFCnuQ9Sqvrh5OLJy3mEOS68fPP4bOverT06WipkjNvH0fiz2Dgpmr+hD5VrFyM5QMmtYNM/uv8fOQcHM5b2pVr8kJpOJdQt+Zd96AUzdhjal/4RvLGaBMwf8zKvH8dg72RK2ZoAlUDArPZewAWt5ducttnZypv7QjzotP3rIXDh8h4VjNmHQGSlXsxiz1w/ON955ePUF4f1Xk5upwq+QJxFbR34S/XD3/FPm9P8RZbaaAkW8CN82+pOtLICHV2KY02clWWm5uPu6MmvzCMp+YVRhNJrYPHcf2xeJL5EK9UoxffNIPP5C1+Tx1Rjm91tF0jsRF9F3Vme6TWj7aaur2AAAIABJREFUj4ztPpQqR83uJb+wZ+lhixFg4251GRAR/N/mj/PfWQ7S+E+VrfqPvu8H9+lm3ev9pRHjh4q5+4Zze6+JwNjwrn96/O7lx0iNz8An0JPOI1t+8bgDa07z5nEcLh6ODAr7vM/bjmXHePM0HldPJ4ZEdPnk+bMHbnHp6D1kNtZM+L53Pg8fo9HE0vHb0Kp1VK5XkqB+HyNPTCYTSyZtJzdbTenKgfQc3cLy3PvXKayeKzK3+o77mlKSTs1oMLJo8i5UuVrKVS1Mj2FNAbE0sGDKLpQ5GspUCqTPCKEXSk7IZGmYAKDOfetTu5GAxI0/nubRPWEoOH1+NxQKGx7di2X9SvH5DJ/wDcVL+5EQl8GSSBHz0KVHHeo1Kk3s2zSWzhd+Ot371KN2vZJcv/aSLdLNXsjEVhQp6s2y747x7Fkizi52hIV1JCtLxdx5B8UN6DeVaNHin3lV/athJ0Wjws7REaPJCl0e0LGxkmGNDSqjHl8JdKywknKxNHjbOZH4O9CxlymQma3J0eukTSshNi7q7MGrzAxsZTKcZApS1Sr8HZ1JzlWiN5lEermk0SnnKUDHxtqaws7uvExPx8XWFgeZnIScHAo4O6PR6slSayjm7k5SVi5KnZ5yPt68TU0XKeUFfIlJSBXQU9CP50mpqPUi1PNdikgvL+PnTaZSI0DHww17axueJabi7mhPWd+PoNO2ShkO3JBWdmtV4OitPFtXOWpiElIl0Cn6l0Hng0aneqkAAr1cOXBBypLq2pg9p+7yPjkLfy8X+reuZQGd5rVK4efhxNYjQnsytldj7j6O5fzNlyjkMsJGtmb3r7e59zQOR3sFkROCWLvtIk9iEnF2siNqSgfWbbvI3UfvsbeTs2B6Jw7/do8T554Ijc/4NmRlqfn+R3HCdmlfndYtKzJ+ynYyMlUUK+LNwsiurFt3jt9OPBQt4ImtKVnCj5CQrWRkKClSxItFi3tw6cJzvl8qOiRtgqowetw3/Pj9cQ5JzsPDx7akfecaLJv/K0cPiXHL6EmtaNuxOtvWnWfjatHy7tqnHt+O/orH92KZMWYLKqWWUuX8iVzRB0cnWxbP2MfpX+9hZWXF6BlBtO5Sk/TUHEKHbOBNTBLOrvbMXd2f0hUCSEvOZvq363n7Qjw+56cBlK4UiNFgZFnoHk5Kmp7B09rSSZrJJ7xLY3q/n0h4m4abpxNzogdToryw5k96n86MPqt5/zJZrKRvGEzZ6h/vLA+uO8ea2fswm83U+6YSk1f0xTZPts+FQ7dZOCoag85A6WpFmL1xOG7e+Teujm+7xPfjNwsfntrFCds04rO+OMe3XWL5uE0Y9EZKVilM2NZReH0hjyg3U8n8gastbsgdRrRkcGTwn0YcmEwmdi89QvTs3ZiMJgoU9WFq9HDK1PprcRFfes+Tm8+zbvp2MpKyAKhQvzSDF/SmbO1PuwT/W0om6U0+eP/8JyrpbSoXD4jzJ2jIV3/5dWazmZ+nC+1N0251/nQDK/51MrslE9FBEV3z/c3+/rjNCwRQDJrdBRePT/VgL+6/Y6f0XiPmBX9yTGpCJqtmiFTyHmO/psTvxPC7Vp4U2VdOtoQszr+Gvu/nc9y78hJbezmTlva0aHz0OgMLQrahUemoXKc4nQd9XG/f8sMpHt95i4OTLZMXBVtGu5tXneLJvXc4ONkydWEwNnIZBr2RqCm7BExVCKD/GPE7v3Ephp2S4DlkZnv8Az3IylQxL3QPJqOZJl9XoHXH6ui0BuaE7kGZq6VcxQAGjmiGWq0jYvoe1GodlaoWov+gJiQlZhE1VwBRUPtqNG9RgRPHH/DLL8JJOTS0HR6eToRM2EpWlpoSJXwZPaoFGs0/A+l/NezYWMnALENrNFpAR2YlQ24lJ9egt/jogBVuckfSNGq8bB1JlkAnwMGV2Nws7GRyFFYysnRaCjq68D5HgE4xFw9eZgjQcZXbkaJS4ufoRKpSjd5oopS7F88kjU55Lx8epSRjY21NURd3XqSl46xQ4CJXEJedg5+TE3qdgQy1hiLubqRkq1Dq9JTx8eJtWiYqvYEKfj68TEqTEst9eZmcjkqvp6K/L+/TMslUayjt60WOSkNiVg6BHq442Ij0cncHe8oX8OXSszfYyKwJqlKG/Z+Ajl7y0RGg4+nsQOOyxdgnja7yg47fF0dX1UsFEODlysGLnwEdb1f6t6rJ4k2nMRhNtKhdGm83J7blAZ3bD99x8bZYH589sjU7Dt/iwbN4nBxsiRwfxJot53n6MglXZ3uiprTnpy0Xuff4PY4OChZM78SBX+9w6sJTsYU1qS3JSdmsXCsgo3vnmjRvXJaQKTvIzlZTorgPC+d0ZdXq05w+I8Y1oVODCAzwYHzIVnFMCV8WLOzO6ZMPWbVCAFPHzjUYOqI53y86wrHDd0XnalJrvmlThcVzD3Hq2AOsra0YHxpEi9aV2LDyFDs3ijucPkOa0GtQI+7eeE1YiEgWr1C1MBHLeiJX2BA5cSeXzzxBZmPNxLmdadqqEolxGUwbvJ6E2HQ8vJ2Zt2YARUr6khCbTujAn0l8n4GnjwuRPw+kcElfdFo980O2ceXEIxEMGtWVrzqK9drXT+KZ3n8tGSk5+AV6ELlxCP5FhFngm2cJzOizmrTELLz93Zi7eVg+D5318w6x50cpZLFfQ4ZGdM7X+dj/02nWhu3FbDZTt1VlJq8cYGmzg4CATfMPWRKmG3esyYQV/T/JIzIaTWwI38ueFaIL1qB9dSauGvjFfKt3T+OZ3X0ZcS+SsLVXMG7lQJp1q/vZY/NWZnIWCwet4Zbku9Okax3G/EUB85fq+a1XrBy7gSfXROCxfwk/Bs3rSf0ONf8/XyH/r1Z6QgYAXv7/ORH1vuVHMRqMVGlanuKVC//l1107epe75x4jt5XTb9Yfu+ybzWZ+mLgVnUZPlcZlv7hqbjKZWDZuk4hdaFD6s0aDOq2eJWM2YTSYaNC2Kg3b5U8kN5vNfD9pO7lZakpWLkTwqPwdpKd33rDlOwmUIjrjG/Dxd/ni4Xs2SuPmoTPbU7DoR6F29NJjvHgUh7ObAxMWBlvOuzuXX7Dzp7MAjAnvZDEVvHkphl1SYOi42R3xkx7ftPIUT+7F4uhsx7QFwmcnr04nqGtNGrUoL/x0Zu0nNTmbgEKejJ0mMq5Wf3+cF88TcXVzYPpccf4viTpsyb2aHt4Jo8lERNg+crLVlCpdgOGjvuLVq2S+k37u3n3qU6tWcb5fcZzHT+JxcrJl9qyOxMZlsGDxgT/8LL9U/2rYscYGtdGIt60TSWqhx7G1VpCj1+GTB3Q8FU6WAM9UtQrzh/XxnCwU1jbYWcvJ1Grwd3QhTsrCKu7iwYuMdOTWMjwU9iQqc/F1cCJTqUFnNFLK3YvnEuiU8/LmUUoyMisrirt68Dw1TSSZ29oTm5WFj6MjRoOJNJVwSc7M1ZCr01Ha24v36Vmo9HrK+/nwJiUDtd5ARX9fXqdmkKvTUaGADwnp2WSoNJTy8UKp1hGfmUOAuwvOcluexCfj5mBHpYK+nH8q0svbVy3LvusCdDrWLM+x2x9BJ1ul5Xl8Kh5ODjQrV5w9l8WXwIBPQMfpD0Hn0GdAp6C3K/1b12TRRgE6LeuUxsvVie1HBeiM692YG/ffcfnOKxRyG8JHtWbrwRs8iknA2dGOeROCWLXpHM9eJuHmYs/8qR1ZFX2OB0/jcHKwZeGMTuw5dIszl55hY2NN+OR2xMams2aDsFjvHVyHhnVLMmHqTnJyNZQpVYCoiM58v/w45y88EwLo6e3w8XZh4oTt5OaKmfKChcEc+eUua6U17uCedRkwsBFLog5zUoKaidODaNK8PPNm7ePCmSfIZNZMnd2BRs3LsXrpbxzYIbaBhoxrSededbl24TlzJu9ErzNQvW4JZi0KBjPMHr2F21dfIlfYMH1RMHWalCH2VQrTBq8nNTkbv4LuzFs7AP9AT948T2T6oPWkS9AStf5b/AI8UOVqiBixiXtXXiBX2DDt+17UlRxXH954zexB61DmaChapgBzowdbfHIeXn9F+MC15GarKVTSj7lbhuEtucAa9EaWTdrOqT1irDZgahBd82RgmUwmfg7fx/41QpwdNKAxQ+d2zQdCOo2eJaOjObdfjCp7TGhDnylBn2Q5qXI0LBiylmvHhIi31+Qgen3muA915dfbLBy0BlWOBp9AT8J2jKXEX/jSvH/hCVF9V5GeKOIiRiztyzd/MS7ic5WdlsOGmTs58vMpzGYzdo629J7ZhY6jW1nyiP63V/I74RrtU+g/k+SelZrD0eizAARPbPvHB+cpg97A2ulC+NtxZMs/3d46u/c6t08/Qm5rw+glvb/4GR/deIH7l55j66Bg3LK+nz1u25IjlvHVyPndPznm6NbL3Dz7BLmtDROX9c63faXK1bBwzBYR5NmuKs0717Q8p1FpWTBuKwa9kXotK/BN8Ech/60LzyxJ5yFRXS3nZXpKDoum7MRsNtM6uBaNWwu9XVpyNotCd2M2m2nTrRaNvhZho9cvPLdoAENmd8AvwF10ekI/6nSGhAidzq6NF7l55YXwwpnfFQdHW07/9oDD+28Jg9bZHfD2ceHIoduW62BoeEc8PJ1Y/t0xnj1NwNnZjlnhHdHpDMyevQ+t1kDNmkXp06cBJ04+tGgjQ6cG4exkx8TQnbyLTfzDz/JL9f/GGfYPS2Uw4uvsRpI6F2uscbC2I0uvxdvOiSQJdLwUziSrlbgr7MlQazCZIdDRjXc5mcitZTjJbEnXqing4Ez870DHxlqGt50jCbk5eNk7kK3WojEaKeXumQd0fHickoy1lRWlpLVzB7kcb3t73mZm4e3ggLXJiiSlWDXPVmnJ0mgp6eVJQma2GGP5ehObmolSJ6DnXVqmECD7+ZCYmUuaUk0Jbw/UWh1xmdkUdHPBTWHHo/hkXO3tqBLgz7knrwToVC/HvmuiU9OxRnmO33mOSqunRvEAlBodz+OlCIiKxS0REL/fuvJzd+bkLbFePrJdfdYdvmbR6OQFnfHdmrDr5B0L6AxoU4uFkhj5z0Bnzpg2bN5/nUcxCbg42RE5PoiVG8/x/NUH0OnAyuizPHwqNDsLp3di54EbnL8inJPnTG3Pq9cp/LxRnNj9e9ajdo2iTJi2E6VSS/my/kSGdWbJsqNcuhQjQj5ndMDdzYHJk3aIY8oXZF5UNw7su0m0dKHp078BPXvXY8Gcg5w99RhrmRWhYR2p27AUc0J3c/WieK/pcztTp0Epls//lSP7xM84akprgrrU5MLJR5ZQvXpNyjAtqit6nYGw0Vt4ePstdvYKZn/fiyq1i/HyaTyhQ6PJSldSqLgP89b0x8vXlWcPYpk5eAM5WWqKlPQl8ueBePi4kJOpYuag9Ty79w57RwVhq/tTuY4Yx1w/84R5IzcJT58aRZn980CLQdnVEw+JGrERnVZPuepFmb1hEM5uQoOjUWmJHLqBm2ekza9FPWjR7eOF+MOd7vmD4uccML0DXUfl33rKyVAS3mcVD6/GILOxZuzSzwuMU96nE9ZjBa8exiK3tWHCyoFfNAo0mUxsX/gLm+aKO9JKDcowffNI3Lz/OMrAEhcRIYwTC5XxJ/Qv+u58rsxmMyc2n2fNpM3kpOcC0LR7fQbP7/U/do38n1bSOxF4+l8VbH+oQ6tPoFXpKFG1CFU/45D9pfr15zO8j0nE1cuZ7hP+GJJyMpWsCRVg1GNiWwoW/9SgEiD5fZrFU2fAjI4UKPIpQD29/Zrdku5v9MIenxhixr9JYW2E8MwZMDXI0hX9UKvD9pHwNhWfgu6Miuya7xxZM/cQ71+l4Onrwtioj89lpOaweJIY1wX1rme5cTEaTSyesouM1FyKlPJjiLSVZTSITc2sdCXFSvsxdLJwk05OyGTRdPHztetemwbS+0SvOsUjKfgzdL5wXb93641l5D5yUiuKlfTl7esUlkkZVz37N6RG7eLEPEvgB0mDOGBIEypXLcypEw85dEBAzNQZ7fDxdWV22D7i3mfg4+PCtNB2vHmTwtJlosvTp1c9atUsTmjYHuITMvH9k/P3S/Wvhh1PhSPJajGScrSxJ1OnEWMqlXjM29aZJJUSV7kdWVotRrPZAjoyKxkucnvS1Cr8HJxIkkZbxSTQkVlZ42vnRHxuNp52Dqi1BtQGAyXdPIlJTcs3urICynh48SRZmAf6OjjyJiMTT3t7bLAmMTeXABcXlBodmWoNxT09SM7OJUero4yPN/Hp2eRodZT19SYuM5ssjZYyvt6kZitJy1VRzMsdg97E+4xsCrg642Fvz8P3SbjY2VK9kD9nHr9CZm1Fh+rl2CuBTgcpvVyl1VOtWEHUGj1P3ifj7mhPy4of08v7NavOocuPyFJqqFDED38PF47ffC5Ap/1HjY4QI7tz4MKDT0DH/3eg06L2l0HHVmFDxOj8oDNvfBA/RJ/l+etkS0fnh/VnePQ8AWcnOxbN6MS2vde4cPUFchsZc6e1J+ZFEus2i/nzoL4NqVa5EJNCd6FU6ahQriBzZ3Vi0ZIjXLn6ArlcRsTsTjjYK5g8aQdqtY6KFQOJnNeF3TuuWQR2AwY1plv3OkTO2sel86J7NGNOZ2rUKsbsybu4ee2lyMia35VqNYuxJOIgJ38VYueQGe34ul1VTv56jyWzRSZTk68rMim8I2qVltDhm4h5FIejsx1zfuhDuSqFeHLvHTOHbyQ3R0OJsv5ErumPq7sjD268Jmz4RtRKLaUrBTBnzQCc3RxIT84mtP9a3sYk4ezmwJyfB1pCO88eusPiiSKrqmaTMoSu7GtxRT619wZLJ27HZDRRq3l5pq3qZ3kuO0PJrL6rLULl0DUD83noKLPVzBmwhnuXnmMjlxGyrA/Nfgcnie9SmRm8nNiYRBxd7JkRPYyqn4lYiLn7hrAeK0hPzMLdx4WwraMoU6PYZ89tjUrL4iFruXBAdInaDf2KofN7/Kk+Jzs9l0Xfrua61DVq0bsBo5b1w87xnzkhJ7xKYtmIn7lzStwYFK1QiJHLB1Cp4X8uQuJ/SmWmZFvGWAW+AAx/p5RZKg6sFF+UwRPa/uWOWnZaLpvmSSZ80zv+qbnhurA9ZKbkEFjKjy6jPx8OajabWRayWaSN1ypOu0FNPzlGoxJ+USaTmSadalK/TdV8zxv0RhaO3oRGpaNinRK0/zZ/ZMT5X+5wYvd1kTK+rHc+s8xzh+9ybIcQWk9Y3MMS8mkymVg0cQeZaQJovp3y0cdn19pz3LnyAlt7OdOW9sBWGgVv+fE0D26+xt5BwfQlIjRXrzcwb/IucrLUlCxfkEETvgHg8tmn7Jaub+NntadgoCdpKTlCp2My81WbynzdripKpZbwqcI4tUr1IvT+thHZWSoipCicOvVL0q1XPV6+SGLpIjGi7t23PrXrlGDbtstcuvQcuVxG2Gyxij5L6vLUqlmMvn0asHHrJa7ekJyVJwexb8f4P/xMP1f/athJ0SiROdjhKheJ5562jqSolYhcKxcSlLk4y23J1ekxmPKCjjUeCgdS1Ep87B1JUaowmZE0OulYW1lT0MGF2Jws3G3t0eqNKPV6irt58DI9HfKADkB5Tx8eJadgZ2NDQSdnXqVn4C5tYMVn5+Dv4oxWZyRDpaGohzvpuSqyNVpKeXuSlJlDlkZLaR8vErNzhS7Hx4vMXLUwCfR0x2Q08zY9Ez8XJ3wcHbkfm4iTrYIahQM48/gl1lZWdKpRgT1XxQW5ffVynLr3AqVWT9Wi/uh0Bh6/T8LN0Y6vq5Ri53nxRdCvaXV+uSKyrsoX9iXA3YXfbooIiFHt67P+yHVy1VqqlviwXv4BdBqz++RHjc63bWuxYMNH0PFx/6jRCenThBv33+YDnU37rvH4RaIAnQntWLHhDDGvk3F3dSBqSgcL6Lg42bFoZme27L7KxWsvUMhlRIZ25MmzeDZsESfwkP6NqFwhgEnTd6FS6ahcMZCIGR2IWnCY69LJNTeiM3IbGVOn7ESj0VOlSmHmzO3M1k2X2CmtVg4e1oyOnWoQHrqba5dfIFfICIvsQqWqhZkxcQf3br3B1k5OxKJgKlYpxPyZ+zh/8hHWMiumRIhMqyP7brJcMgb8pn01xkwPIjtTxbSh0byJScLFzYHI1f0oWdafezdeMXvUZtQqHeWqFGLOqn44OkuBnqO3oNXoqVy7GLNW9sXB0Zak9+lM67eWhHdpePg4My96MIWlu8rDWy6zKmw/ZrOZJu2qMmFRd0tr/eD6cxb31uadaxKyqLtF3Jgcl86MXj8S+0LAU/jGofmEyunJWczsuZJXD99j72THzPVDqNoof25QzL23zOqxgozkbLwLujNnxxiKlC34ybl65cgd5g9ei1alo3AZfyJ2jsW30Oe7Bylx6cwOXsaLu2+xkcsYvawf3/T7NIvo9/X81ivm9lxB0rtUFHZyRi3rx9d/4XWfK6PByP4VR9kYtgutWofCTk7f2d3oPLb1F31//rfXo8vPAChcPuCLJo5/pw7+eJzcTBWFyhakQceaf/4CqTbN3UduhpKi5QNoPaDJHx774NJzjm0S3d2x3/X9Yqr5b1svcfvMYxR2ckK+7/fZkWl01EHiXibj6efKiHmfxkZsW3aMZ3fe4uRqz6TlffK9R3JcBiumCRPA4FFf5QvNTYxNY3mo6Lh0G96MqvU/Cth3rTnLnUsxYiNyWS8L0Dy8+ZotK0RG28hZ7SkkxT7cuhzDDikZfezsjhSUgnvXLzvO0/uxODnbMX1hMAqFDfGx6SwOE+d+x551aPhVeQwGI5HTdovcqxI+jJ4q4GpJ5CHev0vDy9uZaRGdAIgKP0BiQhb+Bd2ZMrM9SqWG2TP3ilFVrWL06d+QmzdesX6d+P+MHtOSUqUKEDpjNwmJWRTwcyV0ahDXbr5i41ZxvZ445muKF/+4gv936l8NOyDWz1O1ajwUDqRKoONnJ+IeHG1sUeuN6E0mC+hYYYWnrSPJKiVedo5kqDUYzWYL6FhhRaCjC++ys3C1tcNkNJOr01HM1Z036RmYzVDBy4eHEuhU8PLlUVIyCpmMQGcXXqSl42pnh5ONgvdZ2fg5O2HUm0lVqijs5kaOSkOmWkMJLw/SslVkqoUWJzVXRYZKTQkvD3JUWpKycynk4YYMK16mZeDj7Ii/izN33ibgaKugTrFATj0UoNOlZgX2XBOgE1StDGfuvyBXq6Ny4QIYDUYexSbh6mBH66pl2H5OmO/1aVqNw1cfk5mrpmygD4W93Dl646kEOg3YcOQ6OSotlYv7U7yAB3vP3c+j0bkn1su9XRnUtjbzN5y0gI6vuzNbj4jNi5A+Tbh5/y2XbovRVcTo1l8EHQ83B6KmdGTFutNfBJ150zvy+Ek8G6QTZ+iAxlQoW5BJ03ejVuuoUqkQs0PbM3feIW7dFr4PcyM6gxmmTd2JVmugevUihEd0Jnrdefbulvx+Rn9Fm6CqzJq6i1tSrkv4/K6UrRDA9JBtPLwXi4ODgrlLe1CqrD9zp+7myjnR+Qmd14X6Tcuyf9sVVkvCw3bBtRg+sRVpKTlMHbyBuLdpuHs5EbWmP0VK+HLjwjPmhGxDpzVQpXZxZi/vjZ2DgssnHxE1XoT+1WpcmlDp4hf7Mplp/daSlpSFX4AH8zYOpkAhT+Gv8+NpoheLUM6gPvUYFtYBa2trzGYzW787xlbJ6bn9wEYMmdXBcoF+F5PI9J6rSE3IxNvfnblbh+dryce9SmZG9xUkvkvDzcuZOdtGUuJ3hmk3Tj4g8tuf0Ci1FC0fwJwdo/EqkH+Tymw2s2/VCX6eKfQF1ZqVZ/r6oV+8W3964yXh3b8nPSkLV09nZm0fQ4V6f+yfYzab+fXn06yeuAW9zkCBYj7M3Dbmb4lh89brB+9YPGg1MbeFs3KVpuUZu2owBUv871sl/zv16JKIcqhQ7/NBmH+nlNlq9krbTL2mtv+iHuv39erhO35dJ3Rhwxd9mkGVt3RaPd+HbAKgVb9GX/w7SYnP4KeZAkT6Tm3/iUUCwJ0LTzkoLTmMXdIbZ7f8f58Pr71k5wppvDU/GO88G4NGo4nFIVvE9lPVwvQa943lOYPeyPwxW1DlaihXvQi9x34UMz+88ZrN0vk5IqwDhUuKblpmei7zJ+7AZDLTvH1VWnQQYuu05GwWTvuo02ki+WVdPPmI/VuELcaEuZ3wC3BHq9Ezd8pOlLkaylUOZNAY8e+uW3GSR/dicXC0ZeaCbtjZydm99QoXzzzFxsaamfO64O7hSPRPZ7l57RW2tjaEzeuCg6MtM6btIiE+Ez8/V6bNbE9KSjZzI6WV8taVadOmCtEbL1huMsPDOpGdqyFyoYiV6BBUjWZNy3H23P0vfqZ/VP9q2PFQOJGqVeOmsCddowKsKGDnSpwyGweZAoPBjM5otIAOWOFr70yiMhcPWweyNVr0JpMFdMCKIi7uvMnMwEVhi7XJigythiJS7pXJDOXzgE5FL18eJkkbWK5uPE9Nw1mhwE1uy7tMIUy2NlmRkJtLgKsLKq2ONJWaYp7uZCk1pKvUFPfyIEulIU2poqinO2qNnoSsHALdXbGTyYhJSsPLyYFCbm7cehOHvUJOgxKFOH7/BVZWWEDHbIbWVUpz4dFrcjQ6Khbyw9oK7r5LwtnelqDqZdl6VqxK92pclWPXnpKRq6Z0gDfFfT349boEOu0asPHoDbKlrKvSAV7sPiM6QcJH5x7vkoSPzqCg2paOTvNapSjg4cLmX8XYYVxvAToXb3/U6HwAHVdnATrL1/9XQcefyTN2odHoqValMLOmtWNu5EFu33mLnZ2cqLld0euNzJwhEshr1y5O2OyO/LzmDPv3CiAbE/I1Lb+pxMzJO7lzUwDSnIXBlCztR+i4rTx5GIejky3zlvWieAlf5kzexfVLMcgVMmYtDKZW/ZLs3nSRn78Xd2Fd+9bn2zEtSIrPZOrgDSTGZeCrBpJ2AAAgAElEQVRTwJX5Pw3Av5AnF08+Yv6knRgMIr9m+uLuKGzlnDl8l8VTxWp0g68rMHlhsCXQM7T/WrLSlQQW92Fe9GC8/ETO1foFv7JH2tLIG/9gMplYM3s/h6KlgNUJregxpqVljPDszltm9V1NdoaSwJK+RG4dke/i/fzuW2b1Er43BYp4M3fHKPx/p284vu0Sy0I2YzKaqNakLNM3DLMY0n0oo9HEj1O2c3id+BJpM6AxIxb2/OIX2OldV1g6fB16rZ4i5QII3z3uT4WpWrWOFWM2cEJywq0XVJ0JPw3Gye3vRz4YDUZ2LfmFLRF70OsMOLk5MmRhb77u3+R//ZbVX6kP0RYVGvzXYefgqt/IzVASWNqfhp3/Wg6WyWTih5DNmExmGnao+adp8zuW/Mr7mETcfV35NvxTHxyQ3IjHbxZxDdWL0nH4p6vvORlKlo4V0NS6bwNqNs+vLcrNUrFozCbhyN6tNo2C8m9n7fzhBA+uvsTe0ZbJ3+cXLG9ccpRn92JxcrFn8rKPa+aZabnMD9kqgKZDNVp0rmH5HSyesou0pGwCinozcqZwjDYajMyfvPMTnU7c2zSWSt2bLv0bUFdKFF+18AgvnyXi6u7I9PndsJHLOH/yEfskk8FJ4R0oWMiT+7ffsk7avhw27mvKVgjgysXnbJWCScdNaUOxEr5sir7A9avSGH9OZ2xtbZg0cbtkHOjH6DEtuXQ5hk1Sx31CyDf4F3RnZMhmlEotFcoVZOSQZqxed4btUh7i361/NeykaFS4u7qRpdVgxooC9sIF2U4mx2y2Qm3UE+DoagGdgg4uxOXm4GZrh0qnR2cy5gOd4i4evMpMx1EuR44NaRoVgc6uxGcJl+RyeUZXlb39uJ+YhI21NSXdPXmakoKjXI6XnSNvMjLwcnRAYSUjLkuMsYwGk+juuLuhVOtIzVVRxMMNpVZHUo7wyzHqTcRn5eDv5oKjXC68cxzsKe7pwfVX77GT29CkZFGO3X8OQNdaFdl79SFmM3xTuRRXnrwlS6WlfKAvcmsZd17H4WSnoGPNcmw+I0Cne8PKnLj1nLQcFaUKelHa35tfrorwzZHt6rPx2A2ylBrKF/GlXGFfdp4SrxvbtREHpAiIAp4uDG5Xl/kbTqI3GGlWsyQB3m5s+kV0Ssb0bJRnvfyjGPlDRycqD+iI0dWnoLN511UuXf8IOo8exxG9TeSsDBvYmPJl/Jk8YzcajZ7qVQsza2o75kigY2+vYP68rmjUembOENlUdeuWYOasDvz042kOSr40IRNb0eyr8mJMJb0ucnF3ihTzZsqYLTx/IrYNopb3plARL8ImbOf2h7udJd2pXrs4W9eeZZMk9Os1uDF9hjYlITadKYM3kJKYRYFAD+b/NABffzfOHr3PwmkCaBp9XZHJUV2xkcs4tvsGy6UxVPP2VQmZK8I5n9x5y6xB68nNVlO8nD9z1w/CzdMJk8nEyln7OSKZHA4KbUvnQU0AcVH8buJ2Tn3wBYroTLv+H5O/71x4RsS3a9GodJSuUpiIzcMs+gGA2+eeMGfAT2hUWkpUCiRi60jc8wgKzWYzO747wsZ5wqfkq+C6jFvW5xMtjUalZcHgtVw5chcrKysGzelKpxGfj3Iwm81smrufbZL3SZ3WVZiybhgOzn+8Hp78LpWIHsuJuf0aa2srBs4JpktI638EJrHP4lk0cJUlsLNO2+qMXTUIzwKf9/z5f61S49J5fkvqZH3G4frvVGZKNruXCqFrr2kd/rJp47GN53l05Tl2jrYMmd/jD499+eAdO78THc3h83t8NkwW4Ej0eW6cfIjc1obxK/p/8n8xm80sn7SN1PhMChbzYfDvDAbNZjMrpu4kOS4Dv8Ke/4e9twyOKu3ato/uuLsQQoyEYMFl8MEdAgT3YSAECC4RggSSEAZ3d3cGGXRwdwiSECXu7unu78fVNDDIzH0/7/fjfeZdVVRRtffuTrLtvNY6hfGBX25/eT+S/Uq59cTFHl8sCh5df6tajExdMgArJZldLpezfPZhAWicLJio5LkAHNp0jSe3xVjLb9UQVYTEjtWXePUkVpCMlwmeTklxGYtnHhRGg/XsGDVJALmLp59y4fRTJBIJPkH9MLc05ENMOssDxf01YEQLmrepTkZaHouVWVjtu7jRs29DEhOyCF0k9uvdrxEdOrtx/14ke5QKrynTu+DsYkVo6FkiI1MxMtJh/oK+pKTmsiRU2cHp3YAO7WsxP+gUMbEZmJroscC/N1dvvuXoqSc/PK8/qn812NFX16KwrAy5Amx0jEgoyENTqo6aQu2TOaDSM8dWV2w31NSirFxGiawCR0MTFdBxNjQlKicLHXV1dKWapBcVUVnfkLR8YR4onJGVQMfSmpfJqUglElxNzXiTlo6OujqV9AyIyszCREcHXakm8Tm5WBvoI1FAcr7o7pSVVZCWX4idiTHlFTJS8gqoYmKEmkJCTLbg5Zhoa/EmKR1jHW1qWJpzLyoeLXU12levyvnnYq4+oKkbJx6EIVco6FTHhccR8eQUlVC9sgV6Gho8ikpAT0sTj5/c2H1VXGCDWtXl+rNIMnILca5kRi07a07dEcqqSb1asO/SE3ILS6hpb0W9qjYcuCwY95M9WnHm5mviUrKxMjVgXO9mhO4SQKdtYxccrE3YefoT0Hn5LpFbT4RhYKB3d/ad+kRG/gh0IpRAZ4nPD4COpjrB/u68fv0J6Ez49WdqVKukAjqNGjgQMKcngYtP8+y5ACyhwQMoKiplXsBxystlNG/hwty57mxcd5mzvwvDq+mzutPm5+r4zzjIK+WYKnjFYKrYmTHHe5/KZ2LJmqFUtjVl3rQDvHgci7aOBoErh1CngT27N1zlgFLFNWpiewb/0pr4mHR8xu4kMz0fWwdzlmwZjbmVIZdPP2WlMreqQ6/6TAsUKcO/77/LxsXCDbjH4J/wmisk2C/uR7LAcxclRWXUbOhA4NbR6BnoUFEuY8Xsw1xTPsy8g/rRdZDIdCorrSDUew93L7xEqiZlxoohtOvTSHW/3Dr7jKXewsCvfmtXArb+qnqYgtIscOJOKspl1GvlSsBOT3T1PxF7ZTI5m/0P8/s2pUR/aldG+bt/BS5yMvJZMHgt7x5Ho6GlzuzNv9KqdyO+VWUlZSz32q6Kb+g/rRujF/T/2xfki5tvCRq6ltyMfAzN9PHfN4l6P/9ztc/HksvlnFp7gR1zD1JWUo6ekS5eK0bScXjrf0U352PdPS06sjWbVcPsf+ixsz/4FEX5JTjXs6dN/3/W1clKzWF7gFAkjQzoi+UPIjbKyypY5rUDWYWMlr0aftdTJyEylS3zhfHfLwF9v+nefeXwfW6ffYaaupRZ60ehrfelz9OVow+5eUZs91k36ov7ISezgKXeohPVwaPxFzLzjJRcls0UCrGeI1rQooubatuxrTd4fDMcTS11/NYMU92Dz+5Gsm+d6LJMnN8bx2pi3Hb7ymuOK80Apy/uh62DufAVCjpDTEQqRiZ6+CkNBd+/TWKt0uV4hFdbGjStSlFhKYGzj1BSXE7dRg6MUoZ5LvY/Tk52IU7OlkyZ052SknIWfmYm6OndkcSELEKUjs693BvQuWsdTp54zOVLwpw1IMAdPX0tZnsfprCoFDc3WyaMb8/+w/e5eTsCdXUpgQHuZGQWsHyNGNkN7t+Eu1e+e3q/W/9qsFNSIUOuLlUBHQ2pGloSDXLLSrFREoxBgp2eMR/yRVK5XAZFFRU4GBgTnS0CPl2MzIjMzkRLTR1jDR2SCwqw1tMnq7CYMpmM6kpnZBBA50VyClIk1Da35FVqKlpqatgZGBORkYGRlhbGGtrEZudgqa+HBlIScvOoZGgAckjJK8DWWKyUE3PzsTEyQFuiRmR6Fhb6eljo6RGWKJRWbjbW3I6IRUNNjU61XDj7VMzU+zdx4+SD18jkCjrUduZ5VBKZBcW4VDLDWFebBxHx6GhqMKB5HXZdESv8AS3qcPNFNGm5hTham1LPyYbjSmXVxF4tOHDlKdn5xVS3s6Sxqy17LojjvPu14o87b4lJysTSRJ/xfZoTuvMKZeUy2jSsSlUbM7afFC8q78GtCYtI5sYjoZpa6N2dg78/IixC+OgEzejFWqXqSgAd92+Orj4HOm/eJP3HQKewsJT58wTQadGiGv5ze7Nh7SXOnRHmgLN8etCilSu+Mw7y5pUIuQtZMYRKNsbMnrSX6Mg0jE30CF07DCtrI/yn7Cfs2Qd09TRZtGootepWYfvayxxVmgiOndoJj+EtiI1MxXfcLrIzC7CvaknIllGYmhvwx7FHrAk8jUKhoGu/RnjPExyGY9tvsl3Jt+n3SyvGzBQBnI9vhrNowm7KSiuo39yFeRtHoq2rKYwEJ+/j3uXXwpBw+WB+7ikUIyVFpQSO3cGzW+FoaKnjt37UF/EPf+y/y1of4dfRumd9Zqz60t7+/J5brJtzCIVCQaueDZi5buQX28tKy/ltwg5unX6CRCLBM2gA7uPaf3VPJkWn4u+xiuSYdAxM9Ji/f9I3c4dAdAAWDl7Nm/uRqKmrMWXNKDqPaP3De16hUHBq/SW2+BxALpPjXM+eeYemYmX/n/vCZCRmsXT0ep5fE55UDTvWYfoWz/+rsqz+T9Wtk2Kx0rLP/yzpPD4imXPbBOdmbMjgf8zV2TznAAU5RTjXs6f3+I4/3PfgsrPEvE7AyEyfScuGfhOUVpRXsNRrO6VFZdRrXZ3e475ONE+KSWOjv+DyDJ/dA9f6Dl9sT4xOU7kkD5/ZDdf6nzhgcrmcFTMOkJmaSxVnSyYs+jRGk1XICJ2yj7ysQqrWqvxFmnnY4xh2r/zE03F0FQAsIzWX0Fni/uvcr5GKp5MQm8GKuSJDq9/Ilio5+fmjj7iiDAT1WzoAcytD8nKLVN5eTVpWY9DoViLgM/A08bEZmFkY4BfkgZq6lPW/nedNWAL6BtrMC+mPlpY6wfNPEhOVhompHgGL+lFRLmP+XCX4qVUZr0kdefHiAxs2CKQyzrMddevZM2/BceLjs7CwMGB+QB8ePYlluzIHa+rEjlS2MWHs5D2Ulcto1qQqwwY0w9vzh6f4m/WvBjsVchm2OuYkFOShJpGiJ9VWeeYkFgjPHHt9E+LyRICnmkJKbnkpdgbGxOSI0VY1YzMisjLRkqphrqVLYn4+lrp6FBSXUVJRgauZOe8yvgQ6EiTUtRL/15BKqWpsytu0dPQ1NbHQ0SMqMxszXV301DWIzcrBSl8fDYWU+JxcbIwM0JBKicnMwcpAH0MNLcJTMzDT08XWyJDn8cnoa2nSoIoNN97FoC6V0s2tGr8/EfN0j8a1Of3oDRVyOW1rVuV1XArpeYU4WZliaajP3XdxaGuoM7hlXRXQ6desNvdex5KSnY+dhTGNnG05dlOQxCb0aM7hq8/JzCvCtYoFzWraseu8WOVNcG/OpfvviEzIwNxYjwl9W6iATqv6VXG1s2TrcTFKmTCwFW8jk7n2IEIAnUndOHz2CS/DkzDQ0yJkZk/W776u8tEJ9e3D2s/k5cvm9WPf0QefcXTcv+DoeI35mRrVPnF0vgl0QgZQWPAJ6LRsWQ0//96sW32JP86JB8Msnx40b1kN32kHePs6UYypVg7B0sqI2ZP2EhstXEKXrhuGmbkh/pP38+ZlPHr6WgStGUb12pXZsvIiJ/Yrf+9ZXek96Ceiw5Px9dxFbnYRTq7WBG8ahbGpHr8fuMeGENHe7TWkGV5K9cP+9VfZt048NAZ7tWO4tzDwu3MpjCVK47Gm7Wrgt2aYqmUd6LmLZ7cjhAnY+hE0aSfGDQW5RcwftZU3T2LQ1tVk3rZfqd/yE1nz2MarbA8Sq7Nuw1owIehT50ShUHBo9QX2LBHdpW4jWjIhZNAXnZXC/GICh2/gxe1w1DXUmLXhF9p8Q10T/iSaeQPXkJtZgJWdOYuPTqHKN1bTIByRAzxWkBKbLkJE90+mXpsfczTKSstZ472Ty8oE7PaDWzBl/S/fjQX4Ud0++ZCVnpvJzy5ES1cLz6XD6D6uw7+qm/OxMhKzeHVT5Oe1cP+fgZ0tPgeQVcho2q3eP+60Pbr0guvHHiCVSpi67pcfkpIjnsWq3LknLhv2Xc+lg8vPE/EsFn0jXWasG/0V6Kool7F0wi6KC0txa+aCx19ytMpKygmZIDqrdZo54/EXrs+JLdd59OcbNLU08F0/6osO6Z4VFwl7JKIi/NYOVy0acjILWDJ1P3KZnHa9G9DJo7HqZwmZflDwcapXwmtuL0BI4RdPO0BRYSm1GzgwWklufvcyno2h4m8wekon6jZxQiaTs8T/OKlJOVSqbMLsRX2RSqUc3n2b23++FeTj0AEYm+px8exzzp4QxoE+C9yxsTXl6IF7XL/6BjU1KfMW98PMXJ9F808SG5OBmZk+8xf1IyurgMCFwlajfYdaeHg0Zvfe29y9J+w9Fs7vS0FBCYtDRdp57x716dzBjel+h0nPyMfO1pS5s3qQlp7x4wviO/WvBjtWOoYkFOQhRYqxui7pJUVY6nxKMhdAJxsttY9J5SXY6hvyIVd0fD4CHQ2JFGsdAz7k5WKmrUNJaQWF5eW4mJjxPlOcmM+BTn0ra54np6AuleJqas7r1DR0NTSorG9IRHomxjraGGtpE52ZhbmeAD0xSkWVroYmkemCdGymo8Pb5HRMdLVxMjXhcZwgIDd1sOVPpXdOj7rVOf1YPIj6NqrF2SdvKZfJaF3dkYiENFJyCrC3MKaKqRE338SgpaHGsNb12XH5kbjgmtbkcXg8iZl52Job0bKWAwf/FIosr57NOH7jJRm5hVS1MaOVmyPbzwonYM/ezbj+JIqID+mYGuri3b8VoTuuUFouo0VdR2o7WbNJSTTz7N+cyNg0rt6PQF1NyoKJXTl+4Tkv3grn4+Dpvdi496bKGTnUty/rdwrDQAN9bZYF9GX/sQfcuv9exdF5+zZZJS/3HN2Gmq6fgE7D+vZ/C3RatXLFz78Xa1d9Ajpz/HryU3OXL4DO0jXDMDM3YLb3XuKi0zEzN2DpumGYmhngP3kfb18loG+oTcja4bjUqMSm5Rc4pZSre/v2oIdHY96/FcaAHz0ugjeOwMBIl+O7b7P1Y+dmVEt+nS5UGrtXXVLZv4+c2olBnsLz4/rZ5/w28xBymZxWXeswe/lg1DXUKCooYf6vOwh7GI22riYLtv6iCvTMySxg7vBNRIUloG+oQ+AeT2oo05AVCgV7fjvHoTVCRTJgYgdG+fT8rivyoKldGDGn5xcv/Jz0PPwHrCbqVTy6+toE7PH6pofOo8uvWDxqozCQq2tH4OEpmFoZffO+fX7jLYFD1lCYW0QlRwsCj03HztXmh/d6VkoOgYNW8/ZBJFKphLFLhtBnUuf/GJwUF5SwcfpuLuwUoziXBk747JlElb/5/v/NdWbzZeRyBW6talDJ8b+TBQM8vPCch388R01djbEhQ/7RMcUFJayZshsQWWcu9Ry+u29ZSTnLvLYLzlufRrR2//Zo9M2jKA6uFGDAe9nQL8j3H2vfb2cJfxaLvpEOM9eO/Gpsum3xaaLCEjA00WPWmhFfbH/7JIZdSoWR53x3HGt8unYe/vmGI5vE/TRtyQBVTIusQsaSqfvJTM2jipMlkxZ+4unsWP4Hb56K3Cv/VUPQ0tYQXKJFp4mNTMXETB/fZWJMlZNVyOKZh6iokNG8XQ08Rgrjzn2br/HkXiRaWhoELBuEgaEOTx5EsWuDUtk2sys13GwJf5PEGqVPzvAxbWjS3IWnj6LZtlG535RO1K5rx4F9d7l5Qyi05gX2RV9fi6lT9pGTU4SzsxXTp3fl7r337Nmr9PCZ2gVbW1O8puyhsKgMt1q2TPJsz5rNV3n5WkT9LA7ow/U74Sxff+675/hH9a8GO8kF+Uh1dTDT1CO1uBAzbV3SiwpRIMFB34TYvGw0pGoYqGuRUVxEJT0DEvPyUSjA1dic8KwM1CQSbPWNiM3JwURLG7kM8svKcDI2ISY7C7niS6DTwLoSz5KSkUrEGOtFcgra6uo4GBnzNjUDAy0trPT0iUjLwERHBxMtHSLTMzHT08VEW4fwtAxMdXWobGDIy4QUDLS1cLWw4EFMPNoa6rRysufya6G0cq9XkxPKfCv3hjW58Cyc0goZLarZE5eaRVJ2PlXMjHC2NOPPsCg01NQY3roBu648RqGAno1r8Coqmfj0XGzMDGlX15m9lwV/x7P7T5y+9ZrU7AIcK5nSoYELW35XEl57NOXu8xjexqZirK/DtIFtCN11hZKyCn5ys6deNVs2HBar67H9mvEhMZvLd0VW1YJJXTl1+SVPX8ejq6NJyMxeqlBPQ31tQn37sHH3DV6+TURfT4vf5vbl4AnhjKyhLnx0wt+nsEOprvEc3YY6tYS8/CPQme/b6yugU1T4NdD5vKPzT4HOsg3DMTbR+wLoLFk/AmdXazb8dp7fD4t2/xT/nnTr24iI14n4ee6iIL+E6m62LN4wAn1DHQ5vu8HO1QJkDB73MyOU5MGtoec4qRx/jZvTnT6jRBrypWOPWOV3TJCU+zRkWrAHaupqFOQVM3fUVsKff0BXX5vFu35VgZnMlFx8h2wgPjIVY3N9gvZ54VRTeNzI5XI2zTvBmV2inTzapycDJn0aD8gqZKyavp8rRwRwGxfoQZ+/tPpTPmTg77GKxOg0jMwNWHx4Mi7fkHNfPniHld67kcvkNGxfi7m7vNDR/7aJ35+H77J8/DYqymXU/MmZ+Qen/K0jcuTzWBb0X0V6Qib6xrr47ZtEw/ZuPzzmm5/zLIagoatJfJ+CRCJhwKxejJjf/39N1MN/U6XFZZzbIjqM7pO6/M3e36/ysgo2zdoPQJ9Jnb/b0ftr7V50nLT4TKzszRkZ8OP8q91Bp/gQnoyJpSETfxv6zX2K8kv4bcIO5DI5bT2afrMD+fx2OEeUMvLJy4ZiafslR+n2ueeq+2bm6uGYK6MbQLg1L5kkcrNa96xP16GfsrVSE7P4bcZBAHqNbEmrbnVV2/auvsSL+1Fo62oyd/1wVSfo1oVXqufB9OD+2CjHseeOPOTPs8+RqknxWzYIMwtD0b3xOUJGah6V7c2YsagvEomEezfeqbiDU+f2omo1a1ISswnxFw7inXvVo3vfhmRnFbLQ9yjlZTKatarGkNGtSE7KZvE80a3p3L0uvfo25OH9KHZuuw7ApCmdqVmrMqGhZ4mISMHQUIeFgX1JTc0leIkAfH3dG9KxQ23mLjxBfEIW5ub6LJzrzvlLL/n9vKAOBMzuSV5+MSs2Xaa0rOKH5/l79e+9S4FP5oH5mGjpkFMi4iAcDEyIzc1GTaKGqaYuqUWFWOnok14gzAOrKYGOBLFvdHY2BppaqCMlo6QYeyNjEnLzqFAoqPMNoCMB6llZ8ywxGQ01KS6m5oQlp6KnqUEVQ0PepqZjqK2Ftb4+71IE0dhKX483KekY6WjjaGLC0w9J6GlqUtfGijuRIqX8ZxdHLr4S4YJ9G9RS5Vv1rF+DSy8iKC6voKlzFVIy8/iQkYuNiQG1bC25+FxEO4xs04DdV54gkyvo2tCV8Lg0YlOzsTLWp0sDV3ZeFOOpMV2bcO7uW5Iz87C3MqFrE1c2nhS8mFFdG/P4TTxh0SkY6WkzY8jPLN11laKSchrVrELjmnasOyiAzpg+P5GSlseFW29Qk0qYP6Er5/58zeNXH9DV1iBkRi+2H7pDWLiIfAj168Pmvbd48SYBfV0tfgvox5HTj7lxV4y+Fvu5ExWdpoqA8BzdRmUYWFxcppKXLwr6XSUvDw0eQElRmYqMLEZXvVi/5hLnz/4d0NFn9qQ9xMVkYG5hwG/rh2NkrIef9z7ehSViYKTDkvXDcXKxYn3oOc4cfYREImFaQC86925A+KsE/Lx2U5hfIowB1w9HT1+bA5uvsUc5oho+oT1DvdoJ8BF8ljPK8dfEgF70GCKCLM/uv8v6BSIcr9vgn5i4QPjh5GYV4j9yC1HKcMCg3eNwcbMFRHK57+ANJMdlYF7JmJADXtgqXW9Viqxjws11QpAHPUZ8UmSVlZazdMJO7pwTD9Ppq4bT/i9E0th3Sfh7rCIzJQfLKmaEHJv6lQ2/QqHg6OoL7FgoOAXtBzZj2tqR33Q5VigUHFp2ll0Lhblaqz6Nmb11HJraPx5B3TrxkN/Gbqa0qAxbF2sWHp+Orcs/e5F+/t1nNl5i86y9lJdVYF7ZlNm7Jv5XhOb/bfXnwdvkZeZjZW9O817f7pT8kzq17iKJkUIGPsTX/R8d8+5RFKc3CsuGyau/Jgd/XmH33nNivRKgrByBkZnBN/fbPPcIyTHpWNqaMjH0a0VXTno+v03cJYw/h7Wg1V9k5CkfMlk1SwAWD6/2NG73SZkml8tZPv0AaYnZVLI3Z/KSgaruTHlZBSHe+yjILaZanSqM8fnE07l/9TWHlYrNqcEe2DmL++hDVBorlfEOHr+0pkVHcT2+exnPJiXJ+JepnXBrJIw+96y/yvMH0WhpaxCwYjB6+tokfshUBXy6D2pKu251KCkpZ9Ec4aZcrYYNk2Z3RyaTExxwXBX6OXteb8rKKljod0yEeVavxOQZXUlKzCZ4kfDO6d6zHj161efEiUcqQvK8ee7o62sz23cPxcVl1K1ThfGe7di59xZ3H4hx1uKAvsQnZrF6kyBbjx3ZGidHCzxn7KWiQk7Lps7cu/DdU/3d+leDHSsdA5IL8zHU1KagVLgkfwQ6UokUS209kgsLMNfWJbu4hHK5XDm6EkDH2ciMyKwsdDU00JVqkFZYiK2BIWkFBZTJZYKA/BnQeaoEOg0r2fAkIQl1qZRa5la8SEpBR10dJxMTwpLT0NfUxN7ImLCkVAy0tbAzNuZlUgoGWpq4mpvzKDYBHQ11GtnZcDNChHd2quHM+RdCadWvYW1OKTs6XetW43pYFMVlFTRyrExOfjHRadlYGp+9yhQAACAASURBVOlT37Ey55+8QyqRMKptI3ZffUyFXE6nei7EJWURmZyJuaEuvZrWZNsfoiMxsmMjrj56T2JGLrYWRvRqXpN1x0UXZXjnRrx6n8SL90kY6Goxc2hblu3+k8LiMuq7VqZVvaqs2ncdgFG9mpCZVcDZ62FIJRLmenXh4s233H8ei7aWOsEze7H72D3RwdHVYqlvH7YfuMOzsHj0dDVZOrcvJ8485dptYc63yLc3cXEZqlDPsSNbU79OFWb6HqaoqIz6de1Y4N+bxUGfDAOXBA+gpLiMuUp5efMWLvj592bD2sucU5L3Zvv+COjs/Qro+E7aS8SbJAyMdAhdPwJHF0vWLjnH+eOPkUgkTJ/Xm0696vPmxQfmTthDUUEpterbs2j9cHR0Ndm74Sr7lS3hUZM7Mmjsz8I/ZOFp/jgiwMeUwD50Vs7rT+26zeag3wHoM7oVY5XJw1npefgP30JsRArGZvoE7xmnapcnxqTjO3g96Uk5WFcxY8mhCVgps4zKyyoInbSbO+dfKBVZQ2n3eRhhYSmBv2zm2Y13qGuq47dlDM26fFqBghgDzBu8loKcIuyr2xB0dMpXZoFyuZwt/kc4tUmAOg/vzvyyoN83CamyChnrpu3h/E5x7XhM6cqYRQN+SF5VKBQcDD3NbiWQatjRDb89E/9j/5zC3CJWeG7m1nExnm3WsyEztnlhaPo/dwj+v71kMjlHVyj5ZBM6/9fO0OkJWexTxjv8smjAP0qULy0u47dxWwX/Y1BzGnX4fqeuMK+YZV7bUSgUdBjcnGbd6n1zv5unHnNx/20R17B+9FdydLlczrLJu8lKzcWuWiU8A/t/sb28rIIQr50U5hVTo6EDI2d/mcl1bNOfPLgiwkb9No5Cz+BT93Jr8BnCn39A30gHv3XD0dQSr+akuAxV7lXvES1o01387EWFpSyevI/iojLqNnVi1DTBx8nOKGDxtANUVMho0aEW/UaKzu/tK685/DEodIE7Ds5WFBWWsmDGQYoKS6lVz46xUzuL8VfwWSLDhZo0YOkANLXU2bDyIi+exqGjq8mCUBH6GbLwFFHvUzE21mV+sAflFYKQXFBQQo2alZk4uRNPn8aycYMALZ6e7ahT1w6/uUdJSMjC0sKQeXPduXU3gr0HxSJu1pQuGBvrMm7KHmQyOe3aVKdvrwZ4+x4iK6cIZ0cLZkzoyG8Lv3u6v1v/arCTXFCAoaEhZeUyyuQyFdABCTa6hiTk52GipUNhaQWlMhkuRoKjI0F0dyIyM9FWV8dYXZvkggIq6euTXVxCcUUF1c3MeZOWDn8BOk1sKvMoPhGpREJdq0o8TUhCU02N6hbmPE9MQUdDAxczM54nJKOrqYGLhRlPPySho6GBm7UV96Lj0VRTo5mjHdfeRSOVSOhWuxpnngmlVZ8GtTj9+LWQlLu5cO9dnHBDtqtEcXE5EUkZmBno0ryaHacfvkEigdHtGrHv2hMqZHLaulUlJSOPdwki8LNfCze2nBMP+qHtGnDnZQxxqdlYmxrQv3UdVh8TN9DgDvWJiE3jaXgietqazB7WjhV7r5FfVEodFxs6NnHlt93iJT60W0MKC0s5/adQc/l7duba3QjuPhWREMHTe3Lg5COev05AV0eTUF939hy9z5OXH9DR1iDUry+/X3jBlZsiPTxwTm8SErLYuP06AGOGt6RRfXsR6qmMgFjg705wyBkeP4kRhoFBIlwz4KO8vLkLAQHubFj7SV4+27cnzVq44Df94Nejq290dD4CHUMjHZZsGIGjsyVrQ85y/oRQIM1Y4E7HHvV481wJdApLcWvoQOC6YWjraLJ77RUObVX+DtM60/+X1shkctbMO8mlEwIsTQvup1JaHNt2g+3K4L3+435mtFKNlZGSi8/QTSTGiNDAkH3jqaK0WI8LT8Z3yEay0/Oo4mxJ8IEJmFuLNntZSTlBnjt4ePU16ppq+G0cTbPOdVT3S0FuEfOGruft4xi0dbWYt9uT+q2+NJB7cu01gSMF96Z6IycWHfTGwORLgFFeVsGKiTu5dkyZ9B40gL4TviR4fqzighKCR27g4cUXSCQSvJYOpbfXj9U2ZaXlrJqwnasHRHvffWJnxi0Z/B+/jCMeRxE0dDXJ0Wmoa6gxJngIfaf8dz48/xvr9okHJIQnYWCiR7dfv1bW/dPaPHsfJYWl1PzJhQ5DW/6jY3bMP0rC+2RMrY0Zv/TbI6mPtWH2AVLiMrCyM8crZNA390mOTWeV0k154NQu1Gnh+tU+x9Zf5sm1NyJravMYtHW/7CpuDzpNxIsPGBjr4rNh1BfmgC/vvWf3UnGvei3sh3NtW9W2a6efckaZPzVz2WCslGOxkuIyFk/aKzq/DexVuVcKhYIVfseIV4aC+iwX13ZFuYygGQfJSMvDzsmCGYv7IZFIiH2fyrK5onvTZ1hzfu5aR2RqzTvBh+h0TM0NmBsqjAOP77/H1T9eIlWT4L+kP5bWRlw8+5xTR8Rid/a83tg5WHB4/12uXX6NmpqUgKB+mFsYMt//2GeE5L5kpOerCMkdO9amn0djNm25xqPH4hm8KLAvGZkFLFkuOEAD+jWmVctqTJp5gNy8Yqo5WzF7cheWrr1IRFQqRoY6BPn1obi46Ifn+3v1rwY72uqfzAPt9I1VQMde35i4vFzhqVMhp6iinKpGprzPFkDH1dic8MxMNNXUsNTSJz4vFwtdPQrLyiksL6OaqRlRGVkoFFDf2voroAPQyKYyjz4koi6V4mZlydOEZLTU1ahtacHjD0loq6vjVsmKB7EJaKmr0dDWhjuRcWhIpfzs4sjlN4KX08PNVQV03OvX5OzTt8jkCtrXrMqTyARyi0upZWuJQibnTaII8mxby4nj90Tg5y/tGnHw+nNKy2W0rOlATl4RYXGpGOlpM+Tn+mw8I8ZTA9vU5fHbeKKSMrEw1mNI+/qsPnIThQL6t63Lh6RsHr75gI6WBr4jOrBy/3VyC0qo6WRFj5Y1WbJDrOAHdK6PvELOsUtiFuszthN3nkRz67Hw1Qma0ZOj557y+GWcADY+fTh46jEPnomOT6h/X/64GsbFa69Rk0pYMKsnqam5rFdatY8a0pyfGjkx3Vckk9epbUvgXHdCl4qsq4/OyHKZQuWM/NEwcPOGq18AneYtXIS8PCxBBXTMLQyYpezomJkLoGNsoofvpH3fBTpSqYSZC/vQvltd3jz/gL/XbrEia+zIwjXD0NLRYOeqSxzZIYDj2Jld6TeyJTKZnJV+x7j6+zPxGaEDaNtDrOwOb/qTXcp4icET2zN8inA4TkvMxmfYJpLjMrG0MSZk/3jVHD/qdQJ+QzeSl1WIYw0bgvd7qVKZS4pKCRyzjWe3wkWbe/uvNPxM3ZSTno//oLVEv05A31iXRQcmUr3BpxwsgNtnnxI6bhvlZRU0bFeLgJ3jvxotlBSWsnjkRh5fDUNNXY2ZG36h7Xe8VHLS8wjwWEHEkxg0tTXw3elF857f9kT5WHmZ+QQOWs2r2+FI1aRMXDmCHmP/sxexQqHg3JYrbJy+m/KyCqwcLPDfP4XqTZz/o8/531xyuZwDym6Mu3dX9Ax/HLb5vXp08QW3Tj5CqibFe82ofyQ1f37jLac2iJHU9A2//LDL9ueR+1w9fE+Mo7f8+s2YkfKyCoJ/3UJRfgk1m1Zl+JxeX+3z+mEUu5WKQ6+gATjU+JKQfvvcc04rM55mrBqG5Wdp9lmpuSyZJByU2/drTJfBP6m2xYYns9pPyNMHTmhP0/Zi7KVQKFg//yQx75IxNtPHd/UwFTfs+I5b3LkUhrqGGv6rhmJsJn7/Lcv+IOxpLLr6WgSsGoqunhb5ecUsnHaAkuIy6jVx4ldlB+jg9pvcvf5OhG8uG4SpuQFPH0SzbY0YC3pO7Uzdhg68fZ3ImqXK4M4xrWnRpjoP7kayXdl9njitM3Xq2bNj23Xu3RXO8AuDPNBRhibn55dQvXolps/oyqXLYRw9pgRNM7tjZmbA+Mm7ReBnI0fGjW5D4NKzREanYWKsS1BAH46ffcrVW4LPucinN89ex7Nsw/8jKP/HpYE6BeVlVNEz4kOekJI7GpgSk5uNnoYmyCUUlJXiYGhCdHaWSCc3seBdRjrqEjVs9YyIyc7GRFuHCpmcvNJSqhqbEpeVQ4VcQV0ra54lpQigU1mAG4BmVapwPzYBqURCAxsbHn1IQEMqpUElG+7HxqOhpkbDKjbcif6AhlRKM3s7bkTEoCaV0KG6MxfChANyrzo1+P2pkJT3qleDC8/DqZDJaV3dkbAPKWQVFlPN2hxtqTpPY5Iw0NGiS71qHLot4htGt2vEkZsvKS4rp0m1KpQVV/AiOhl9HS1GtG/IhtN3USigb0s3XkenEJGQjqmBLqM6NWblkevIFQrcW9UmPbOAu69i0dJUx29kB9YeukF2XhGu9pZ4tKtL8LbLKBTQp10dtNTU2HdGcH9m/dKBp68+cO2+4NwsmtqD3y++UAGbJXPcOX7uKXceCZvxJX59uHrzLeevvEIqlTB3Rg+yswtZo5ztDh/YjJbNXJjhc4iCAmExviigL78tP8f9B1FoaakTtMgDCTDX/yilpRU0/akqAfPc2bb5GqdPPlH56LRs5Yqf0kdH30Cb0NVDMbcwYI73PuKi0zE111eRkf289xH+OvFLoLPk3FdA5/WzOOZO2PMJ6Kwdhpa2BjtWXuSo0mF0vE933Ic2R1YhY5nvUa6fFeMkn2WDaKU0Fjuw7gp7leTlYZM7MtRbdDpSE7LwGbqJlPgsrGxNCD3gpVolhr/4wNyhGynIK6ZaXTsW7/XEQDnSKcwvZsGoLYQ9EATIhbs9qfOZt016UjZ+A9aQEJmKiYUhQUe8cfxLWOeVw/dY4b1LWPX3bsjsjWO+Iu7m5xQyf+Aa3jyMQktHk4A9E2jUoTbfquSYNPz7LCMxMhVDU30Cj02jxt+AjcTIFAL6LCcxMgVdQx3m7vem4Q/GG9+q0uIy1kzcxuW9Ang2792YGVs9/48EW/5vqntnnhAT9gFdA53/mphcXFDC2sm7ANF9c3Kz+/EBiLHi8vFbAeg2+mcad6r73X2TY9NZN3MfAENm96Rm029fPzsXneT98zj0jXXx2fzrVx3AvKwCQr0Eafnnvo3pNLj5F9sTo9NYOfMAAB7j29P0s2taViEjZNIestPzcaheiUnB/VWdwcK8YhZ77aa0uJz6LasxfNqnxPXzB+9z5aR4fvisGoK5tVAmPr8fxc4VYpEz3q8nNeqJv9mVM8/4XemIPiu4P1UcLZDJ5IT6HCU5PgtLG2N8lw5ATV2N+zfDVa7t3n49qe5mS3JCNsH+Ism8Y4969B7YhMz0fBb6HBGd79auDPulNfFxmQQvOCk4Ob3r08O9Adf/fMOBvWJRPH1mN6q5VmL+vOPExYkuz8LAfkRGprJilfi5RwxrQfNmzszwPUxaej5VKpsS4NOL/UcecOMjLcHfnYjoNLbuE8/FqZ7tUVOXsmzjZYpLyr97zn9U/2qwk1degq2hpco80MnAlOjcbLTV1NFEnazSYuwMjIjPzQY+AR2pRIqjoQmRWVkYammhLpGQXlyEvZExybn5lMnkuFla8SrlE9B5+CERCdC8ih33YuMBaFrFlvux8ahJJDS1s+VO1AfUJBJ+crDlVmQcahIJras68Oe7aCQS6FKzGudfCl5Orzo1OPNMAJ1udVy5/PI9pRUymjnbEZ2cQVpeIY4WJpjo6PAwMh49LU3cG9Vk300R3zC8dX1O3HlFQUkZDZxs0EDKvcg4dLU0GNOpMRtO30WuUNDzp5pEJ2TwOlZ0e8Z2b8qKw9eRyRV0b1aDoqIybjyLQlNdDb+RHdh45Dbp2YVUtTVjSJcGLNpySezbqhZmhrpsV/rqzBjVjtcRyVy6LVB74NTuXLz+mtuPlB2e2e6cufyKG/eFyirYpze3H0Ty+4UXSCTgN7UbJUVlrFwvViKDPZrQrrUr03wOkZdfQs3qNgQt6MuKlX+ofBwWB3qgoa7GnNmHKCkpp3FjR+bP78PObTc4cUwAsOmzutOqTXX8Zx4iTOmPs0TpozPHey8xUWmYmunz27rhGJvo4z/5czLyZ0BHydH5O6CzfeVFjimBzgTfHvQa0kwAHZ+jXD/3AjV1Kb7LB9NCafC3b80l9q8VXbJRM7owcLxQQCXFZeA7dBNpSTlUsjcjdL8XFjZiPPX2SQxzR2wWK9eGjgTu8VTxBfJziggYtpHw53HoGeqwaO/4L5LLU+Iy8O2/mpQPmVhWNiX46GQqO30pLz699U82+gq3105DWzBlxfCvpLiZKTn4911J7NtE9I10CTw8+bsvn8gXcczts5zstFys7MwJOjXzb9U5YXfCWTBgFflZwqMn8MR0HGpV+eExf63k6FQCB6wk6kUsUqmEMSFD8JjW4/+Nrf5ScrmcPQtEN6LXhE7/NRDcPvcwqR/EeGlEQN9/dMzG2ftJi8/E2sGCscHfHkmBMAUMHbtV2a1xZvCM7t/c78HFl5xQkpxnrBn1lfOyXC5nmfdu0hOzqexkiffSwV9cDyXFZSwet4Oi/BJqNXFi5JwveTo7Q88S9iAKHX0t/DeNRlvp6SSXy1k+6xCJsRlY2hgzZ9VQ1T3z+kksmxYLHt6oGV2p+5O4T1ITswmZflAAkj4N6TZQeBq9f53ImoVCoDB0fFuatRUd2d3rrvBYmYg+f+UQjEz0+BCTTqjSZLDngCZ07lWf4qIyFsw8RH5uMa61KjPZpzvlZTIW+h4lK6MAeycLZs/rTVFhKfPmHBa+PXWqMHFaFyLfp/KbUlXVf2BTOnZ2Y/v2G9y9+x4NDTUCA/uhUCgIWHBCadLqwvBhLVi++gKvXiegp6dF0IK+PHkep1LQTp/YCV1dTWYuPIZCAe7d6tG0gSNjZ+2jvEJGy8ZVuf9fNHf+1WBHEJCFp05VZdyDplQdA3Ut0pRxDyn5+cgVn4DOR8fkiMxM9DQ00dPQJDk/n8oGhmTmF1NcUUFNcwvepqWhUIhxlQro2NlxL0YAnZYOdtyJ/oAEaOFgz63IWCRAq6oOXH8fgwTo4FqVS69F1k732tU590KMq3rWqc75F+9QKKBTLWduvo6mpFwQkJOz8khUSsqrmBhx620s2hrqePxUmz3XRXzD4Jb1OPfoHXlFpbjZW2Okrc2NV9Foa6gzrutPbPj9LhVyOV0auZKakceLKNHtmdC7OSsOXRcJ5Y2qIVFIuPxQeOP4juzAthP3SMnMx76SCaN7NSVw00VkMjmdmlfH3tqEjYfES33ysDZEx2Vw/rpyFOXdjWt3wrmuBDaLZ/Xi8o03XL0tfBoWz+7F0+dxHD8jfn6fyV1BruA3ZSpyf/dGdO1Qm6lzDpGbW4yrizUhC/uxes0lbt2OQENDjUUL+6Gtpc6c2YeFBL2hAwsW9mX3jlscU86jp83sStv2NQmYdYhXzz+gq6dF6KqhwhnZex/RkWlKw8DhX/noLFk/HEcXS9Z9BnRmBX4NdOo1cWLBGpFGvm3FBZWN+wS/nvQa/NNXQMd/1VCata+JQqFg35rLHFCqtMbM7obH2J8BQTieM3QTmSm5VHa0YMn+8aqVYNiDKOaN2kJxYSm1m1YlcNc4lWw1N6sAv8HriX6diKGJHkEHJuDs9gkgJESl4tt/NRlJOVRysCDk6GQVkRmUJOAV59kTIgwH+4zvwLhF/b8CB0kxafj1WUFKXAam1kYEHZuGYy1bvlXPrr0mcMgaivJLcHKzY/HJGZhZG39z34918/gDlo7ZTHlpOdUbV2XB0WmYfMej53v18MIzQkesIz+7ECMLQ/wPTPl/aqvv1I0j94gJ+4CekS4e03v+V5/x6vY7zmwW1/KUDb9812rg87rz+2Mu778thANbx/0w+2xf6BnePY5Gz1CHOVvGfpOvlZ6UzbJJOwHoPa7dN4nLR9Ze4tHV12hqa+C39dcv4h4UCgXrfA4T+y4JEwsDfDeM/oKnc+vsc45vFh2U6cuGYPvZIuHY5uvcuyy4cf4bRmJkKrqsmam5BHnvpaJcRquudfAY2wYQoCrQey952YU417Rh4rzeSCQScjILWDTtAGWlFTRt48pQL7H4uXnxFUd2KLsiC9ypWr0SBfnFLFQSkt0a2DN+ehcUCgXLFp4iVrmIm7d0ABqaaiwPOsM7JU9xYegAMdqefZiE+CwsrAyZF9SPgoIS5vkfo7S0gsZNnPjVsy3Xrr3hwH7R5ZkxoysOjhZMnb6f7OxCnBwt8JvTk+OnHnP+kujOz/ftRXFJOcHLBXrx6N2QZk2q4jlzH8Ul5TSsa8fYoS3xnneEnLxiXBwtmenVkWUL/uZi+Ub9q8FOVkkxCi0tqhqaEZWTibpEDTMtXZIKCrDS1SezsIhyuRxXE3MV0KlhasG79Ay01dQx1dYhPi8XKz09CkvKBF/HzIyojExkcgX1K1XiSbwAOs2qVOFuzAckSGjtaM+tqDgA2jg5cuN9DADtXaty5V0UAJ2ru3DxtZCR93BzVQGd7m6uXHz5Hplcwc/VnXj4Pp7CsnLq2lUit7CEuIwcrI0McLW24OrLSDTU1Bjcoi67rgl/nP7N3LjyLILsgmKq21pQ2diQS0/FGMmz+09sOnOX8goZ7es7U1BYyqPwBHS1NJjctyUrD1+nrEJGm3pVMdDW5uSNl6hJJfiMaM+eMw9JTMulsqUR4/u1YOGmC5RXyPi5sTO1HK1Ytec6AJ4DWpCSlsepKy8FOXlCFx48jebKxw7PjJ7cuh/JxetCjr5wRk/evU/m4EnReZk5oRPamuoEhp4RqL97fXp3r8e02QfJzi7EuaolSxZ5sG7DFa4rTa0WzOuDoYE2s2cdori4jHr17FkY2I/9e+5y5JDwiZkyvQsdOtUmYPZhnj+NQ1dXk5AVg7GpbMIc731Ev0/FxFSPpesEb8d/8n4V0AndMIKq1axZt+Qc5/4LoDPRvyc9B/1zoDPWtwd9fxGxCAnRacwZsomstDzsXKwI2eeJqdJ35sXd98wfvZXS4jLqtajG/O1j0NYVQCcnIx/fQeuJfZeEsbkBIYcm4lD9Ew8h9m0SfgPWCCKzizUhRyd/AToUCgU7Ak9wdK2wrh82uydDZ33dBYl9k4hfvxVkpeRSydGC4BPTqeTw7STymyceEjpmExXlMuq0qs6CQ1O+ybH4vE6s+YMtPgdRKBQ079mQObu8VL/jPymFQsGh0FPsmncEhUJB9SbOBBye9q+MfPgnVVFewe6FoqvTf0bP/0qVVlJUynJPMYrqMvrnf+R5lJWaw2rvXeJ7p3WjVrNq39335Z1wDitdkqesGoGV3dfnUlYhI3TcNvKzC3GuY8eY+V979Dy79Y69oYKnMyF4IE5/Aeh/7L/L1eOPxKhp/SjMrD8B7LiIFFYoR1v9PNvS8jPPnGe3I9i9XJiFTlzYl2p1xAKjrLSCIO99YuRVzZppIWLhoFAoWB1wgui3yRiZ6hGwdjha2hoqQnJacg6V7c2YFdwfqVRKdEQKy+cJPlW/kS1o27WOGGnNPUFCXCYWVkYqQvKB7TdVDslzQwdgbmnIySMPuXTuBVKpBP/F/bCxNWXrhqs8ui+oAAtD+qNvoMOsaftJT8vDtoop/vPciYxMZalSMDFgYFM6dKzNoqDTRLxPwchIh8WB/XjxKp5NSiGJ19i2VHWyxHPKHsHbaejImJGtmDnvKKnpedjamLBgVi9C1l8kKjYdU2Ndgnx6E5uQ+t1z/6P6V4OdCrkCF0NTonIykSChkq6hygW5sKSUUlkF1UzMCM/IACTUMrPkTVo6GlIpNgYGRGdnY6qjg6xcQW5JKU4mJiRm51Iml1PX2pqXickA/FSlCvdi45EgodVnQKdtVUeuRwig06m6M5feii5Ol8+ATvfarvyhTCnvXNOFq2GRlMtktHCxJywuWRCQK1tSUS4jMiUTcwNdGjjY8MfTcNSkEoa1rs8eJdBxb1KLO69jycgrwsnalGpW5px9+BY1qQSv7s3Yeu4BpeUyWtV2RCGDO2GxaGmoM9WjNWuO3RSmgDXtqWRiwOErgmA8e1g7jlx8RlxyNtZmBkwe1JrATRcoLaugRT1HmtayZ+l25djFvSlFRWUc/UOM0nw9OxH2NpHzH8nG07rz+EUcZ5WcnIBp3fkQn8muQ2L0NXlsO0yNdJkXfBq5XEH3znUY0Kcx0+YcICOzAEcHc35bPIAtW69z9U+ldflcd8zN9Jk546AgLNepwuIgD44efsBB5Qpk0pROdO5Sh/m+R3j2OBYdHRHqaWdvjs8UEeppbKLH0nXDsbQyYu6UA7x5GY++gTAMrFpNGAaePfZIpbpq362uSl7+I6AzaW4vegxs+kOgs3f1JQ6uF7ykcX496DNaAJ34qDR8hgqg41DNmpB9nirC8bNb4Swcs43SknIatqlOwNZf0FJ60mSl5uIzaB3x71MxtTJkyWFvqjh/8sCJfBWP/8A15GUV4lTLlqDD3qrPBaXhoN+nQM9xi/rT9xsKqfCnMcz1WEV+diEONSoTfHL6d12Rz22/xtqpu0W2Vp/GzN7m+UW21l9LLpezZc4BTq4TYKunZwe8ln89PvtRlRSVsnzsJm4cEddXj3EdGL9i5A+/999e57deJSkyBSMLQ/p4d/2vPmPX/KMkR6dhXtmUcSE/TicH5chn/DZyM/NxcrNjuP/3R165mfksHbcNhUJBp2Etaf0NU0CAPUt+J+z+e3T1tfHbNu6rc56RnMNSr53I5Qo6DW5G5yFf8nTCn8excZ7wuBnl05M6zT9x3Arzilk0bjslRWXUbe7C6M9GW6kJWSyZsk+Y8A1oQpeBn8j5mxad5u2zOPQNdQjYMELVgT2+89YXzwVL5Xh689JzqiTz+WuGoW+oQ252IQun7Ke0pJwGP1Xll8nivty94SoPlVEx85cPwthUn7s33rFbyd2ZNKc7tepW4cnDaDYrHdPHHtcQNgAAIABJREFUTupAgyZOXLn4iiNKf68Zfj1xrmbN8qXnCXuVgK6eFouC+1NSWs68gOOUlVXQpIkTv/76M3v23fliwVlcUk7gkt/Fs7tLHXp2rctUn8OkZxZgX8WMeXN6snLjFcLeCV+1JXP7cuj3x9z6GAHk487Zq6/Ycej6d8//j+pfDXYcDEyIyhGp5fb6JsTk5mCkqU2FTE6hUoEVkZEJSKhtZkVYWirqEimORqZEZGVgqKWFFuqkFBdgZ2RERn4hRRUV1LSw4E1KGnIFNLatzMO4BCRIaOFgx62oOCTAz58BnQ6uVVVAp3N1Fy69EUCnc00XLoW9R65Q0L56VW6Hx1JaIaOJoy3RyZkivNPKDE2pGs/jkzHW1aa5sz1nHr9FIoERbRqy7/pT5AoFXeu78iwykeTsfKqYG1HfoTIn7wjpt1eP5uy88Iji0nKaVLdDX0uTCw/D0VBXY3r/1mw4cZvC4jIaVLOlup0Fu8+JzKwZQ9py+loYkfEi+2r60LYs2nJRGAjWsqNtIxeCtyiTars1REMqZfdpITee+Wt7YuIyOHVJcHD8vbvyJjyZE+eFGsp3UhcyMvLZoswxGj+yNbbWJvgvOoFMJqdj25oMH/QT0+ccEiQ3W1OWBQ9k157bXFS2SOf69aKyjQnTp+2noKCE2rVtCQ4ZwKkTj9nzkRA8sQPde9Yn0P8Yjx8ItdbiZQNxcLLEb+p+It4mY2SsK0I9Kxkzb9oBXj2LQ1dPi+C1w3B2tWbzigv8fvihykenY496hL9K+IKj8xHo7Fx96T8DOqsucXDD10DnQ2QqPkM3qVaBIfvHq1QZT28KoFNWWk6TdjXx3zQaTW3xMM9IzsFn4DoSo9MwszYi9Ij3Fxyc8GexzB20Vpib1bNn8SFvDIw/dVdkMjlrpu9T+ZF4LxtKt5Ffh2++uhPB/MFiHOXa0JHFR6d8k9vxV7PA7mPaMnHFiB+ClrKSMkJHb+L2KaXJ5eKB9J/e/T/i1qTFZ7Cg7zIin8eipq7GxNWj6TGuw98f+C+urJQcdgQIbtbwAI9/NHr6a726/Y5TSnO/qet/+dvOHcDxtRd4fPkVmtoazNnu+V3HarlczlLPbWQkZVPZ2eq7MvN7fzzn8CrRWZmycjg2f+GglZdVEDx2KzkZ+TjVsmVC8MAvtudk5hM0bgcVZTKadXbDw+uT2k8YB+4nMTod80rG+KwboRqhlRSVEui5i7zsIlxq2zJhYR/VcecP3eePww+QSCTMXjFYpaB8cieCnUrVpadPD9waCz7dH8ceceaQ2H9WSH/snMSCd/HMQyLfqoqpipD85/mXHFY+c6YF9Malhg1RESmEKs0Ee/ZvTFf3BsTHZbDY/xhymYIOXevQd1BT3oQlsEKZzTdoeHPadqjFscMPuHBedH7mznPH0sqQaVP3k5GRj529Gf5ze3PrdgS794jvnDq5M/b25nhN2UOR0gpkyoSOhKw8z9uIZAwNtAlZ0JfTF16oVLaBc3rxOiKJfUp/q1kTOpGQksPuY/dRKL5/rfyo/vky6P+HCgkJoXHjxhgYGGBpaYm7uzvh4eE/PGbXrl1IJJKv/pWUlPzH3/9Rau5kYEpMbg56GhqoIyGvtBQHQ2NilKnmbuYC6EiR4GpqTkRWBnoaGhira5NSUEAlfQMKSsrILyvD1cycmIwsKmRy6leqxLP4ZBQKaGZfhbtKjk5rJwduKIFOu2pOXFWOrjq6VuXK2/coFNChelWuvY2iQi6ntYsDj6MSKCorp55dJVKy80nJLcDe3BgTHR2exyWjr61Jh1rOnHksSMujfm7IwVvPqJDLae/mTGRiBh/Sc7A2MaB1DUdO3nkFgFf3Zuy/8pSC4lLqVbXBxtiACw9FV2h6/9ZsOX2P3MIS3Jwq0biarQroTBnYmiv3wnkXm4qxgQ6zR7YneNslCopKqVutMr1a12LJ1ktCzdWhLubGemw7KlYHU0b+TEZGAYfPio7THK/OfEjI4tDp/4+9t46qMm/3/190d0iIhKIY2N3dgd3digEGII0oYLeiY3d3jDojdisWBkp3d++9f398tjiOMTPnPOd5zm+d77XWrDW3+773BvYd7891vUO898IZ3SguLmPzrjAAJo9qg0N1M7yXnaGiQkqndrWYNqE9i5ccJzklFwtzfdYED+fosYecvyAHS259sbMxYeHCQ+TlFVOrljnLg4Zx8Xw4O+W5UpOndcRpUBOW+Zziwd1IVFWVCVgxDPua5ni5HubtazGzDt4wGsuqhvgvPMKLJzFoaqmyfOMYatax4Jf1Vzl9SIzC5nv1o3v/RkRGJLJk5l6KCoSPjv8G4aOzf/NvHJMbe81a0k8AHYmUNUtO/A2g068S6MRGpuA+SgAdWwfzHwKdFl3r4hk6qRLopCdls3jIBhKj0jC1NGDlyXlfAZ23T6NZMmwDBbnF1Glmx/Ljc78GOhUSVs3axa9y3sTCzRO/C3QeXX2J55C1FOWX0KCdA0GnF/wQ6GxfcqQS6Ixa3J85677NGfpjFeQUsqTfCu6ceYyKqjIee2cxbME/IxG/ufce55aefAyPQc9Yh5CrXv8P6PyNCl20n6K8Ymo2saPPf+HvVVxQwuppO4T78MSONOvxYyXV53r35BO7fcX5MXPlGGzqfJ/rBXBkzSWe/vYGNQ3VH0aOJEWnsWr2F57O9+Igdi49zdsn0WjpauC5c+pXQbGSCgnBM/eQnpSNpa0JC9aO+ercO7r5OvevvkZZVQmv0ImVHVGZTMZa9+NEvU1C30gb720TKrtJb57GsDVA8N7Gu/agWQfhXZUUl0nwgiOiCzS4KX1HCcn6m+exbF4mxmvjnLtUEpK3rbjEqyei0+O3fjQ6epq8e53AmqXivYdPaEvnXvXJySrEb8ERSorLadTcjpmuPcnPK8Z38VGRUF6vKvPd+5Cemoev+3FBLG5fi4nTOvHwwUe2y7O7ps/qQrMWdqxYcZH375PR1dVgWeBQkpJyCFkpANKQwc3o1rUevoFnKu/V/l5OHD7xiN9vyqkLnk58jE5n+z5xb5w7rQsqqsqs2CpA8djBLbAw0yd4i1g4D/8L+4kf1X8U7Ny8eZPZs2fz4MEDrl27RkVFBd27d6ewsPCnx+nq6pKcnPzVf+rq/3yVAQrU0DXiU042akrKaCupklVSTFVtXRLzBDG5rrEpr1JTUUCBeiZViMhIR11JmSqaOsTn5WGiqYlEIiW7uBg7AwOSc/IoqZDgWKUKb5LTkEhlNLeqyuPYBEBOTP4YA0CHGraEfYhCBnSytyPsfTRSKbS3t+FeZCzlEimt7KoRkZBKXkkpdSxMKSwsJT4zFwt9HawM9HgcJdyU+zWqzckHwjtnbIfGHLv7UnjnONiQkplX6Ybcu1EtDoeJIM9pvVpw4uZLcgqKqV3NlJqWJpy9+wYFBXAZ2p69lx6RlV9ETSsTOjWqwfaz4qE+Y2BrHoTH8FLulLxkcjdCdl0XvjrVzRjRoxFLt14RKqwOdale1ZhNcinvtBFtKC0pZ99J8V4uU7qQnVPE3uNy7syUzigrKrJW7qw7ZkgLGjtWY0nAKcrKKmjTsgbO0zqz2Os48YlZVDHVZW3ISM6de86Jk3Jej2tvajtYsHDhYXKyRfBcyIrhXL/6im2bxfuOm9iOYcNbEux/lru33ovU3eCh1K5bFe+FR3gjV2IFbRiDlbUx/ouO8uxhFOoaKgSuH41DPUt2b/6NE3LJ5dwlfenp1IRP75LxmP4lAiJg0xjUNVU5uPV3DsnJijPc+tB/ZEukUinrvE7y+3kRu+CxZhSt5D4bBzZc+xPQEXENlUAnIx+72hYEHfgJ0Nk2sdKJNS0xi8VDNpAcm4FZNSNWnJyHuXz1CML12HP4RoryS6jXsgZLDzuj9QcC6GcvkhsnHwmF2C/T6DLsi1/I57pz7ikBYzZTVlJOix71CTg6F02db69NSYWENbN2cmqjfNUaMorxPoN/Cloyk3NY2H0Zr+68R1NXg2XnF9NxWKsf7v+9urb/Fou6BpCTloudYzU2PVhO/XY/T0v/fwXPb7zmxpG7KCoqMHfzlH80LvxcoW4HSY5Ow9TKiGnBfx30WZhbRNCErUgqJLQf1JxeEzr8cN/wW285ICfKz141+rsE+NLiMgInbqMwr5g6zaszxW/IN/vcPPOEs3LProUbx2PxJ37ZruXneHEvEg0tNbx3TvnK7flJ2Fv2y4N7nQOHUqvhlxy449tucOtCuFjQbBlfqZRMT85hmfM+KsoltO3pyDB5qG9xYSlLnfdTkFuMQwMrZskJyekpuZUOye2612OEXKRw8fhjLsgd1t2ChmJd3ZSMtDz8FxyhvKyClu1rMWF2F8rKKghYfJS0lFwsqxniGST+BoFeJ0mIy8LUTA/fkKFIKqR4ux0jJ7sQuxpVcPMeQFxsBsv8zyCVyujVpyGDhjRj//67hN0Q5q5+/oNQVVPG00eQlps3s2PalI6s33KNF6/i0dRUZZnvIJ6/jKtUXrnM7oamlhrL5MGrA3s3onkjWzyDz1JRIaVjq5r07uLIkpAzlFdIaN/CnolDvx4p/t36j46xrlz5OuBi9+7dmJqa8vTpU9q3/3bF+LkUFBQwMzP7259TWlpKaWlp5XZeXh4ANXSNiMzORFlRCWM1DZIK8jHT0iazoJhyiZQ6Ria8SU1DAQXqm5rxMlUklVvr6vMhIxN9dXVUFZRIKsjHSk+P7MJi8svKcDAxISo9i3KJlMaWFrxISEIildHS2oqHMQlIZdDGzpq7n2KRyqBddWsefIylQg5uwmOSKC6voEk1C2LSsirHVUjhY1oWxjqaOJibcuONkHwPaeHIgZuCBzOyTQPOPnxDUWk5zWpUpaiojIj4NPS11Bncsh475LEPE7o15eKDt6TnFlLDwojm9lbsuyo6LfOHtOfo9eeVIZ/929Rj9UG5aV+f5kR8TOFxhMiv8p7agzV7b5CVW4R9NRMm9W+B5/oLVEikdGlZk4Y1q7J8m0DkY52ao6GizMY9YQDMGtcBmUTGdrmXwoxx7THQ0SBgtVzK2L8J7VrUYIHnMYpLymnW2IaFc7rj5nWCmNgMjI20WRM8gqvXXnFQbjc+b053GjeyZv68A2Rk5GNjY0zIihHcvvmejevkwZqjWzN6bBtWLT/Pzd8jUFZWxHf5EOo3tMZn8VFePpcTlNeNxra6KYFux3hy/yNq6ioErhtN3QbVOLD9Bkflo7DZbr3pM7gZ0ZEpeEzfQ0FeMbUbWBG4ZRwammoc2RHGfjlwmbqwF05jWiOVSlnvfZrrZ54JH53VIyqzbQ5u/EJGFqMrAXTiP6XhMTqUnMwC7OpYELR/Orpyd+LvAZ3P7f7UhCzch20kJS4Tc2tjQo7P+SrJ+fWDj/iM3kxxYSkN2tTEb9/Mr8wAy0rLWTYxlIdXX6KiqozX7hm0+IOz8uf6/dgDkSotldFhUHMWbZv03Zyr8rIKQiZt4/YZYSbnumUy3f7COTfxYwoefUNIjc3AoIoey84uovp3QkV/VDKZjL1+xyqN8NoOas6inbP+S6OY/2tVVlLGRuedAPSb0Z2aTez+8XvcPfuEy7vChB3DL9P/MhJCJpOxdvYuUmLSqWJtzPyNE38IhDOTcwiesl3wa8a0pfuoNt99v02LDxH1OgE9Yx2W7Jz2zTgs5m0S61xFGOmwOd1p+adzPOzMU05tF/fBBWvHYP0HO4TE6HRCnPchk8noNaoVPUZ8WQg8uvGWPXIQNNPXiXryUVRpSTlLZ+0lO6MAWwdzXIOHoaCgINyN3Y4RE5mKgbEOXhvGoKqqTElxGf5zD5CdWYBtTTMWLBWLgxePo9kil39PmNOVFh1qiX0XHCYrIx+b6qa4yd2UNwRd5M0LsZDzWz0SHV0NNq++wvPH0ahrqOC/Yhh6+loEeJ4g6mMq+gZaLA0ZRllZBV4exykqKqN+w2rMdenBzZvv2LtH3APnze9BrVrmuCw4SGZmAdbWxnh59ufk2adcuCxGXj7u/SkprWC53DF5qFMTWjazY/qCA5SUltOskQ0TR7XGeckRcvOLcahRhXlTOzPf7zg5ecXUtKuC84QO/HL87k/PnR/V/yrOTm5uLgCGhoY/3a+goABra2skEgkNGzZk6dKlNGrU6If7BwUF4e//bZhGZHYmypqaWGrqEpeXg7GGJoUl5RTLiclv09JRQEGklqemoKigQE0DY96mpaOtqoq+qjqxOTmYaWtTWlpOTnEJ1Q0NScnOp6i8AkezKrxPSaNMIqVJVQtexCVRIZHS3Loqz2ITqZBKaWFjxfOYJEoqJDSpZkFkcjr5pWXUs6xCRl4RKbkFVDPSR1tFlfDYZPQ01WlmU5UrLz6gpKjAyFYN2H9TSLIHt6zHr88/kF9cSgNrc1QUFHkSnYCWmiqj2jci9KIABCM7NuRm+CeSMvOwMtGnU4Ma/HJBzEadndpw7vZrEtJzsTTWY0SXRqzYJ9qWI7o1IjElhzvhUaipKOEztQcbD94kNTMfawtDZgxtg/f6C5SVV9CmsR0dmtTAf6O4yIf0bISFsS4rQ4WnxaThrdHVUidkswBCE4e3opq5AT7BIkSuX4/69Opcl/nuIvKhoaMVSxb0xsv/NJGfUjHQ12R18Aju3Ytkt/yCmzGtE23b1MRl/gHS0vKoWtWQlatG8vRxFGtXiQtsyLDmTJzSng2rLnP9yisUlRTwWjqYxs3sCPA4zrNHonuzbO0o7GuZE+R1kge3BbEvYM1IHBtbc3T3bfaHhgEwfUFP+g9rQVxUGu5T95CXU0TNupYEbh6HppYax3ffZo/clXTS/B4MHt8WqVTKRr8zXD31RMhoVwynXQ+hSDm85TcOyPef7NancnSVEJUuODoZ+djVsSD4wIzKEdNfAR23oRtIjc/CwsaE4GPOXwGdV/cj8Rm9hZKiUhq2q4Xv3plf2eCXlZSzdMJWHl9/jaq6Cr77Z9Gk07eS7KsH77B2jiAYdx/dhnnrvz+OKispY+mYTTy68gIVVWWW7J31l67Ikc+i8XRaSW56PuZ2pgRdcMPc1vSnx/z5M1dN2UbYUdGFG+nuxHj/n2dr/U+XTCYj7m0Cbx9EoqaphomVEaZWRhhZGP6XM6b+p+rIirMkfEjG0NyACQHD//qAP1V6QhZrZwmwNGR+Lxq0/+tO2sWdN7h95jFKykos2TPrh9weSYWEoMmh5KTnY1u3KrNXfL9jdHnfba4dvoeiogIe26d+k9WWn12I/4RtldfBOLevJfVREYmsk6urhjt3o80f1FWF+SX4T/5FLHKa2DDD/4uyKyEqnRXzDwoQNLIlfeQp5zKZjHUex4l8nYiugSY+W8ZXEpL3bbjG/d8iUFFVxnvjGIxMdQUXyOskH98moWegie8G0TFOis9i2cIjSCqkdOzlyLBJ7UScRMBZuaO7Jn5rRqKppcaJA/e4Jg83XrJ8CNVsjDl/6gln5R5jbr5OVLc3Y+e237/qdusbauG24DApyTmYW+jj6z+ITx9TCZEDrMFDmtGrVwMCAs/wXp5sHhgwmPCX8WyTixhmTu2ErY0JM1z2C9f6ZnZMGN2W+V5HycgSBGVv1z74r7lIbGIWpkY6BC4ewPKNV4hJyMTYUJsA1774rr/Ei4jovzx/vlf/a8COTCbD1dWVtm3bUq/e911VARwcHNizZw+Ojo7k5eWxfv162rRpw4sXL7C3t//uMR4eHri6ulZu5+XlYWVlhXBMNiAqJws9NXUqKmTkl5VRXd+QqCzB1/kMdAAcjavwMiUVdWVlLLR0iMzMxEhTE2UUSCwsopq+HnlFpeSWllLLxJj4rByKyiuob27Gh+QMSiokNKpqztvkNIorKmhsZcGHpHQKy8qpb2lGYlYemYXF1KxiTGlpBXGZOZjr6WChq8NDuTFgRwc7zj0RmVZj2jTi4K3nAhw0qc3diBiyC4upZWGCkZYGN+TeORO7NCX04n3Bn2lTj2fvE4hJzcbMQIcBreqwWZ5YPqVPc64/+UBUUiamBtpM7t2c5ft+QyqTMaBdPYoKS/lN7qvjPbUnO07eJyEtFwsTPVzGdMR7/QWKS8tpVq8a/TrUw2vtBWFM2LkedWqYsWyDAByjBjTDykyfpevE9ogBTalrb86SZWeQSGX06FSHIX2b4OJxhPwCYRDo694f/+VniXiXhK6OOquWD+dFeBxbQwUQmzihHd27OeLqcpDExGzMzfVZtXokEa8TCQkSMvV+AxozbWZntm24zsWzIoLBw8eJlq3tWe5ziody3s7SVSNwqGvJav+z3P4tAhUVJXxWDKdhM1tOHbrPLnnXZdKcrgwa1YqkuEzcp+0hN7uQ6g7mLNs2Hi0ddc4cuMdOudvpOOeuDJvcHplMxtbA81w5/rgyAqJDb7GCPLrtd/atFeBv0qLeDJki2vZJMRm4j94qVFe1zFm+b3ol0Am/++HHQCc+E7dhG38KdLxHbaa0uIzGHWvjs3v6V/yEspJyAsZv4clvb1DTUMHvoDONvvOgurj7Jhtd9wPQZ2IHZq8a/V0gUVJYiu/wdYSHRQjgdGTeTwMcAcJvRuA3ZC3FBSXUaGhN4JlF/8hDJyc9D7/Bq4i4/wElZSXmb51Kjwkd//bx/8pK/JjMs+uveBH2mhdhEeSk5X6zj6KiAsZVjRjs0pdB875vhPfvrLh3iRwNEeOhWWvH/y1C8R9LIpGyYtJW8rMKqNnYlvF+Q//ymE8vY9nmJoDF5KXDcGhW/Yf77ll6mtf3I9HUUcdr78yvzt/P9f5ZdKXp5QSvgTRs/3Wem0QiJXjmLpGfZWWER+jkrwBnXnYhS6cIZWPTjrUZu6jPV8eumLuf+I+pGJnp4RU6qXJ0XJhXTMD03WKk3cSGmb5f0tyPbw8j7PNYa+NYzKzEAv/GhXCOyhdS85cOqnRIPrjtBrevvkZZWQnvtaMxszSgML8Ev7kHyMspwr6uJS5+A1FQUODA9jBuXn0t1KirhmNe1ZAHtz9URkFMm9+dpq1q8OxRFJvl96eJMzrRpoMD1y6/5MhnN2SPvtSua8nK4Au8ehmPppYagUFCeeUlj9pp0aI606d3ZtfuW9y6LdyPA/wGUVhYSmCwuO/279OQ3t3rM2fxIbKyC6lua4LXor4Eb7hcmXkV7DWQXw7d5ckLERMUtMSJ/ace8uiFcNMPcnMi9Ohd3kQmo6P57Xf8d+p/Ddhxdnbm5cuX3Llz56f7tWzZkpYtv7QI27RpQ+PGjdm4cSMbNmz47jFqamqoqX3rvWGva0hUThaayiqoKiiTXlJINV09EnLykEhlOJpWqQQ6jatY8DwpGRVFRarrGxCRlo6umhq6yqrEZIvuTnmZlIzCImwNDcgqKCK3pBQHU2MSs3IpKCujjpkpsZk5onNjXoXEzFxyikuoVcWYvMISUvMKqGaojwqKRKSmYaStSa0qxtx8G42ashK969fkxEPByxnTphGHb79AIpXRrb49L6KTSM0twMbEgOqmhlx++h5lJUWmdm9B6MX7SKQyejdz4FNCBh8SMzDU0WRUp0askwd5ju7amEdv4ngfl4aBjgazndoQtPe6MAVsUQsNVRWOXX2OooICnpO7c/DiE6ISMjEx0MJ9Uhd8N16ioKiU+rUsGNm7KR6rziGRSOnauhatG9rhs/qc8MXp0QDHWhZ4rxDbA3o0oHUTOxb7nxS+PK1rMn5YK+a7HyE7pwj76qYs83IiePVFXrySJ54vG8anT2ms2yCAwagRrRg4oAkLXA8RG5uBiYkOK1eNJDoqnUD/00glMrr3dGTO/B7s2RHG6eNilOfq3pf2neuwaulZbt94i4qKEn4hw6jfyJr1yy/w2+WXKCkpsiRoCM1a1+DiyceEypURY6Z1ZPiEdqQm5eA+bTdZ6fnY1DAlKHQCOroaXDz2iG1yz4mR0zoyanonQcgNvsiFww9EqOeyIZVZVyd2hFVmXU1Y0JOh0zoCkBKfifvobWSm5mFdU/jofDYge3k/Er+JO4Tqqst3Ojp/ADohx+dgbP7FJ+ePQKdJpzr47J5eSWQGwW8IGL+Vp7+/QU1TlYCDzjT4U+gnwJnQ62xzFw8Spxldmb58+HfHDYV5xXgPXs2b+5FoaKsTcNyF+t95vz/Wg4vPCBy9ifLSchp0qI3vMZe/lYj9uRI+JOHZL5jkqDS09bXwOe76bzcKlMlkvAh7w5GQMzy9+uKr11TVVajdsiZSiZT0+AwyErOoKJeQFpfBVpc9IINB8/9zgEcqlbJhtsg6a9G7Ee0GfT/D7Gd1dNV5Xt5+h7qWGu57Z/1QSfW5CnOLCBy7mfLSclr0asgg5x4/3Pf+pecclxuLum6aiGX1Kt/sk52Wx9LxWykvq6B174YMnfPt++1ZfpZnYW9R01DBZ8/0r7yDJBUSgmfvISUuEzNrIxZv+rpjuX/VJR799gZVNRV8dkzG0FR4XEkkUkLmHyT+k1A9em4ZV/m7P7rxtvJan+E1gPotBJh7/zKetZ7C3XjY1A507i+mFTevvOSgPItqrs8A6jWxER0tt2PERaVjbKqL37pRqKmrcPPqa/bLuYFzPPri2NiG6I+pBHudRCaDXk6NcRrRgriYDJbKlVddejoyYlwbXr+IY03wF+VV1x6OHD54j6vyDri330BMTHWZN/eAMAm0M8XLewDXf3vDIbk9yELXXpib6zNz3j5KSstp2tiG2dM64xt0jk/R6RgaaBHkO5hDpx5x674wkV22xIk7jz9xVq7M9XHpw/M38ZVKXd/5fbn15CO/3RPPNN+5vfj90OKfnkffq/8VYGfOnDmcO3eOW7duUbXqj9n23ytFRUWaNWtGZGTkP/7cjzlZaGhrYaCqQWJ+PhbaOmTmF1MmkVDH2IRXqcK8qImZBc8Sk1FUUKCOsSkvU1LQVFHBXEubD+mZGGpooKaoTFxuLpa6upSWlZNRWISdkQE5BSVkFRVTw9iIrMIisoqKsTfGtLItAAAgAElEQVQxIrewmLT8QmyNDJBJZMRmiS6OsaYGz2OT0dVQo0k1S669ikRZUZFBzepx5K64WY5s1YCT919TLpHQvrYtMalZgrRsoENjWwtO33+DooICM3u2ZOflhyLNvEF1snILeRmdgo6GGpN7NGPtcRHkOaidIx/j03kVlYyOphquwzoQvO834bnT0A4rYz12nxMAwW1CF87+/op30UKF5T2tJ4HbrpCTX4yDbRWmDG6Nx8qzlJVX0LaJHb3b18UjRN6x6VCHds1q4LFcvt2xDr061cXV5xilZRW0amrHjAkdcF0ivBdsqhkR4j+EtZuu8ehJNOpqKgQFDCU1JZcVqwSQGOjUhJEjWuDmdpSPH1PRN9Bk5cqRpKbk4ud1kooKKe07OrBgUR8O77/LYXm68JwFPeneuz7rQi5WjrM8AwfTpIUdW1df4fKZZ2LEFDCQ1h0cuHY+nA3L5Vyi8W0YM60j6am5uE/dRVpyLlVtjAnaPhFdfU2unn7KRrkCYsjEdoxz7opMJmP3ml85I//8eQED6erUGICze++wUx62N25+j8oIiNTELNxGbSM9OQer6qYE7f9CRhbOyDsoLSmnmVxe/vlmmp6Ujft/E+j4j90sHgCaqiw9POe7KdCntlxlu+cx8TeZ25NJft8nGOdlFeA5cBUfnkajra9J4KkFf5lz9fuRe6ycEopUIqV1vyZ47JuFqvrfX9G9e/QR7wEh5GaI0dfSs25Uc7D86wP/RSWVSrl39jFHQ87w7pGwlVBUUsSxXW0adKxLg451cWhh/5W/i1QqJTs1lwvbrnJg6QlOrDn/HwU7ZzZe4eWtt6hpqjF7/Y85Mz+qN/c+sH+pkDc7rxuPZY2f8yxlMhmrpu8g6VMqplZGLAyd+sPPjP+QzMoZYjQ2cGZX2vb/dhRaXlbBskmhZCTnYGVvxoLN3/4OYWeecEIeOeOyduw3xoE7l53l+a33qGmo4vPL1K/UiWFnn3JULniYt2I4NRt8yfbaFXKRx2HvhK9N6MRKo8/YyBSCXQ4hk8noPaIFfUcLgn16Si7+s/cLYNmpNuPni8DO968TWC2Pdxg8vi3dB4rfc8eaX79EQWwYjZGpLu/fJLLKT3DSBo1uRa+BTcjOLMDH5bCwwGhqg7Nbb/Jyi/FZeEQorxyr4uLRl+TEbHw9jlNRIaVdRwcmTuvErZvvKpWrs+d0o3ETG7y9TxAVlYaBgRaBy4YQGZnK6rWCqjB6VGvatavF3AXC98y6mhG+Swawfc8t7j8S+YbLvAfy5EUsB04I2sTiOT3IzS9h82ce5/gOoACb9so/d1xH8opK2HtK7O82vRvVLH5Oc/lR/UfBjkwmY86cOZw+fZqwsDBsbW3/+qDvvEd4eDiOjv8s8A9AWUERcw0dYnJzMdHQpLCkjKKKcmoafnZMFkDnaWISCijQyMycZ4lJqCopYadnwJvUNHTV1DBS1+RjRhamWlqoKCgQm1dAVT1dysukpOYXUM1Aj7KKClLyCrA21EcqkZGQnYeFng5aqiq8SUzDUEsDW0MD7n+MQ0NVhfY1bbn47B2KCgqMaFmfQ3eFgmpI83pcevpOhHfWsCKroKjSTLBT3eocuin2m9GzJXuvPaWkvIJWta2RSeDhu3g01FSY1a81647fQiKV0bO5A9m5hTx6KxLLF4/sxKqDN4RXTm0r6ttZsPW4nDk/uiNhjyJ58SERbU01/Gb0YsUv10jPKsCuqhFzx3TAfeU5caxjNUb0bsLioFOUV0jo0MKevp0dWRwoOjgdWtozvF8TXLyPUVxcTuP61XCd2Y2FXsdITsnF0lyfVYHD2LrjBrfviciHQN9BFBWWELhcGFP16lmfKZM64Ol5nLcRSSKZfMVI8vOK8fI4JmbDre3x8BrA2ZOP2SO/cKc5d6XfwCZsW3eVy/JxlrvfQFq1q8muTb9x9qi88+Pdn47d6xF29TVrAkT2jNOIFkye043szALcp+4mOSEbcytDgrdPxMBImxsXX7DWV9xwBoxuxWSXHigoKLB/4zWO/yJSkWf7DKDHECF5vXTkQWUOzshZXRg5W3h2ZKTk4j46lLTEbCxtjAk+OAMDEyFjffM4Cu/xoQKsdHDA6w+qq8yUXNyHbfqKjPwjoNO4Y228d037IdBR11Ij8Mhc6rX6djx8ctOv7PAWTrojFvRhvKfT94FOZgHu/UL49DIOXUNtgs4vpsZfEIvPb7/O5vmC7NllVBsWhH7f7v9H9eTqCwKGraGksJSaTexYes4NA9N/Fh/xXy2ZTMb9c0/4xeMg8e9E8K+qugo9J3VmyIJ+mNt+2334XIqKihiZGzDYpS8Hlp4gPSGTwtxCtPS0/i0/+x8r+lUcOz0PAzA1eDRmNn+fIwUC4AaN34JUIqXziNZ0/QsCOsCxtZe4d+GZIMEfcP6hO3NhbhH+YzZTlF+CY5uaTPb/VlUFsN37mDAO1FHHZ9+sr9SFAJ9ex7PORYxfhzp3p4NT069e//XIfU7vCANgwdrR2P4h6TzyZTxrF4qO5pAZnek88MuxV48/4pT8WnddOQJ7RwGgcjIL8Ju2h+LCUhyb2zHDewAAJUVlBMzeR3ZGPjb2VVi8cjiKiopkpObiP/cAZaUVNG9fi0nyoNCLxx9zRm7ytzBwEPa1LUhPzcXP9bDYt21NpszrTllpBf6LviivvIKHIZXK8Pc4TlJiNlXM9fENHkZZaQVei4+Sl1tMTQdzFnsPIPJDCiHLxH3JaVBTBgxsypYt13n4QICWwMAhlJVL8PE/JVRTHRwYN6YN/kFnifyUir6eJsEBQ7h2I4ITZ4XwxXNhH4pLy1klT6wfN6wVNtWMcPY8Utnlb1jPCmdvse3UvQH2dqa4LBNgb/ygFsiA8R77vvt9/1X9R8HO7NmzOXToEGfPnkVHR4eUFDEy0tPTQ0NDnJjjxo3D0tKSoKAgAPz9/WnZsiX29vbk5eWxYcMGwsPD2bx58z/+fGttfaJzc9FXUwcJ5JWWYadvQHR2FlIZNKpiXgl0mltY8jghESUFBeqamBKemIyGigpWunpEpKSjr66Ovro6kemZmGhpoa6ozKesLMx0tVFTUiYyPRMzXW20lFV5m5yGsbYmFro6PI1NQkddlYaW5tx4G4WqshK9HWty6tEbQHRxjt57KVJmGzkQ9uoTecWl1Lc2RyqV8iYuFT1Ndfo3rcPu68KnZmr35hwNCxfeOXYW6Guoc+XJe1SVlZjn1JaNJ++I2IcGdigpQFj4JxGQOaoz647cIq+wFMfq5nRqWJ3VB8IAmDa4NS/fJ/LgVSzqasoEzOzFhv1hlRERiyZ3xXP1efILS3CsZcHkIa1YvPwUJaUVtGhkw2inZizwP0lJaQXNG9kweUQbXHyOidDOmuYsmd+LJf6niIvPwsRYh9XLh7Hv4F2u3xBOyP6eTigqgK//aSQSKZ061mbO7G74+53iRXgcmpqqBIcMRyqR4uF2lJLicpo0tcXbbyDXLr9gq3xePX5KB4aObMnu0BuclmdiuS7pR8eudTm06xbH5J2XuR596Na3IfdvvmOF10kBrgY2YcbCXuTnFuMxbQ+JsZmYWugTsmMixlV0uXP9DSs9T4hV29BmzHATRndHQm9waIvcm8KjL31HijHs9dNP2fTZ1n1ye8bKV3NZ6XkivTwuE7NqRgQdnFHZHn/7LAbv8aGUFJXRqG1NvHd88dHJSsvDffhGkmLSMatm9A3QEaqrLT/l6PiP2/IF6BydS72WPwc6oxf3Y4x7/+8CnZz0PNz7rSD6dTz6JrqEXHT7qU8KwNGV59nlI7pF/Wd0Y+bqMf+ISPzboTusmizkyo27OuJzzPWnGUr/yvr0IoZtrnsIvyGuXS09TfrP6sHAeX3+EdjS1tfCyMKAzKRsYiMSqNPq267a/2SVlZQRPE6MD1v0bkS/Gd+6Y/+spFIpK6eEkp6QiWUNM+ZsmPCXXaHwsAj2yMNFZ60aQ60fKL6kUikrZ+4iITIFYwsDPHfP+K7i79eDdzi/U6i/3LZNwcr+665STkY+ARNCKS0up0mnOoz36P/V668ffWKThzgPx7j2ol3fLwKYrLQ8AqbupKxUdFUn/MEh+c2TaDbKOzEj53Slg3xMXVZawdLZ+0hJyMK8mhFem8aioqosgkbdj/ExIgldAy18twhhw2flVVZ6PtY1THELGYaSkiLhD6MqlVfjZnehXbd6lBSX4efyRXnlvmwwiooKrFh6tjLSJmDNKHR01VkVeI7X8ty/pauGo6OrjueCI8THZmJiqkNAyDDy84rxWXJcyMdbVGfm7K6cP/+ck3Iis7t7X8wtDZgzdx/5+SXUdrDAbVEfduy+yR15AGig70Bi4jLZGCq3z5jQHptqRsxyOyToDR1q07e7I9PdD1U+E0YNas4sz8Niu4ENg3o1ZKbvMaHsbV2LRnWscF1xitL/P6aeb926FYCOHTt+9e+7d+9mwoQJAMTFxX11s8vJyWHatGmkpKSgp6dHo0aNuHXrFs2bN//Hn/8pJxsdXR00FVVILiigqo4I/iyXSnE0qUJ4UjIKKNDCsiqP4oVPTmNzC57EJ6KipISDkTHhiSloqapgpafH6+RU9DXUMdXUJCIlHUNNDUw0NXmVnIahpgbm2tqEx6egq66Gg4kxdz/FoaGiTNvq1lx5GYmSogJOjepw/IEw/BvZsgEnH7yiQiqla70ahH9KJLOgmJrmxuhrqnE7IgZNNRVGtmlA6BXR5hvbqTEXH7wV2VdWptiZGXH6ziuUFBVwGdyObWfvU1RaTnMHK6roaXM87AVKigq4je7M9tP3ycorwt7KBKd2jizfJTd16t2U5NRcfn8kZqz+M3vzy4l7RCdmYmKojffMnvitv0R2bhE1bU2ZO64DbstPU1hURoPaVZk+qh0L/E8ITk9tS+ZP7swC3xNkZRdiZ22Mv3t//IPOE/kpDQN9TdYsH8bpc884f1nurry4L/q6Gix0O0J5uYTWrWqweGFvgoMu8OhRFGpqyixbPgwNdVVc5+6nsKCUeo5V8QsczJ1b71gnHxENG92K0RPacnT/XQ5/djFe2IvufRpw6tAD9m4Vs+7pLt3pM6gpTx98YpnbMSQSKV1612fukr4UFZTiOXMvsZ/SMDLRIXj7REzN9Xl06z3Bi44ilUjpNqAxzl4CAJzec4e9csn7pAU9cRonZLG3Lr1grbvIY+o3tjWT5cAoN6sQz7HbSYxOx9RCn+CD0zGRA5bIl/F4j9tGcUEpDVrb47NzSmUERE5mPh4jNpHwSRgGBh/9mowc8fgT3qM2U1JU+lMy8rMbEV86Ov8NoJOdmotb3xBi3yZiWEWPkIvuVPtD9tafSyaTsdf/BIdD5F0ut/6M9x3yj0YnJ9ddJHSRWKl3GtGGhTtn/iVH5F9R2Wm57PE6zJVdvyOVylBRU2GwS19GuDuhpfvPCL2fy7quFZlJ2cS8+feDnV1eR4h+HYeeiS6u26f/4/HV8dUXeXQ5HBU1FTwPOv8l2ExPzGL5hC0izXtMW3pN7PjDfQ+tvMCDy+GoqCnjvX8W+vLx0B/r7ZMoNi0SBOcxbv2+sUkQDsm/kJaQhbmNCW5bJ33Fw0mNzyRw6k4Rxtm3ISPnf+H5lJaUETB1JxnJOVStborbhi8RJamJWSyduYeKcgltejgyZp5YvMhkMjZ4nyTiaQxaOur4b59YaRmxb8M17l57g7KKEt4bx2BW1VAAIM8TREYI5ZX/xrFoaauTEJNBoFx51al3fUZO7SDPvDrJx/fJ6Blo4b9uFFra6hzYcZOwXwVJ2TtkGFWtjTiy7y7XLr0UzseBg7G2NWH9yss8eyJk5wEhw9HQVMVlzgEyMwuwsTXB09eJ589j2LBeLpyY1J5Wre1Z7H6UhMRsTE11Weo/iCvXXnPslBwMufZGTU2FhV7HRTREd0d6dqvHzEWHKCgspX4dS5wnd8LF73jlM8B9dg8WLT9FRlYBtlZGuEztgsvyk+QXllDX3pwxA5riHHgCiURK5+Y1eXLyp6fUd+s/Psb6qwoLC/tqe+3ataxdu/Zf8vkqSkoYq2kRlyvCPPNLSymqqKC2kQlv00TwZ3MLSx7GJ6AAtLSsysO4BBQVxEjrcVwiqkpK1DI24XlCEpqqKtgaGBAen4yOmiq2RgY8jUtCW02VmsbGPIyOR1NFhabVLLnxLgoVJUW617bn3HPhejykiSPHH74EYHCzupx/+pbSCgltaloTlZxJUnY+1Yz1sTU15Gr4B1SVlRjfsQnbLwugM6SNI7defCIlOx/bKoY0s6/KgevPUFCA+YPaseviY3ILS6hna0Zd6yrsuSxOzgUjOnHw8lOSM/OoVkWfsT2bsnTHr8hkMLBTfcrLJVy4JXhA3tO7c/TSU95GCc5OgHMflm+9KuTnloa4T+uGR/CZSl+EBVO7sGjpqcptD+ceuAeeJiUtl6oWBgR7D2LF2iu8fpuItrYaqwKHEXbrPcfkBoGL5vfC2soIlwUHRVp5Yxu8lgxg/bpfuXXrHSoqSgQEDMbYWBuXOfvJzS2mZi0zAoOH8fxJNCFL5VL2gU2YMrMz5048Yae8yzJ5Vmf6D27KpdNPCZWroMZO68igUa149TwWf9fDwj20c20W+DpRVlKBt/N++U1Ii6DtE7CwMuTFoygCXYXRV4de9ZnvPxBFRUUuHXvEdjlJeYxzV4bK1VX3r78hxPUwUqmMnsOaM0MOjPJzi/Acv52YDykYVdEl6MAMqliK+XT0uyQ8x2ylMK+Ees3t8Ns1BXU5WMnLLmTJiM3EfUjByEyPoKPOX6WTv38Wg9fIzZWy2m+ATqmQlz/5TU5GPuT8l6OrnwGdrNQc3HqHEPc+CSNzfUIuumP1B0+SP5dMJmOX9zGOyf2VpiwbwVDXv89Vkclk7PE5yuFgMWocOLcX01eO/R+XlstkMi7v/J3QhXspyisGoMOwVkwJHvOPxz5/rpJC4Qv2xxTtf0c9ufaCU+vF4mDBjukYVPl54vyfKzzsTWWHZvbacVSv//ORZVlpOUtHbyQ3I5/q9asxZ+34H4Kr+5fCORAswPCc1WOo1fhb2kNGcjYB47YIQnKfRox07f3V6zKZjC1LjvJKTpT33TvjKx5OcWEpfhN3kJtZQPV6VXFd80VZKJPJWLfoCO+fx6Ktp4nfrqmVhPmighL8puwmN7MQuzoWLFw9ovK449vD+O30U2Ecun4MVtXFuXH9zLNK5dW8gEHUa2IDwJ4N17hz7c0X5VVVQ3KzC/GZs5+CvGIcHKvi4ifGxjs3XOVemLgP+q4egZmFAb9ffsl++cje2a03DZvacuu3CHbJSc4z5/egacvqHD90n4tnxfPBw9cJWztTvD2P80nOfQwMGkpKSi7+/qcFEO1Wj5GjWhG84iIvX8WjpalGUOBQPnxMZf0Wub3GuHY4Olox02W/SC1vaM2sqZ1Y4HuClDRBT/Bb3I9lGy4TFZuBoYEWy92dCN76Kx9j0jHQ02Tpwv4EbLpMUmouFlX0cJ/RnYUrTgt3/lqWLJzUhRVuPz2tvlv/KwjK/6mqpqVHTG4uhuoaSCQycktLqW5gSFRmFhKpjMbm5jxKkKeWV7XiQWw8AC2rimBPJQUFmlha8CAmHlUlJepXMeNhTDzqyso4WphxLyoOdWVlmlW1JOxDNCpKSnSwt+HK60gUFRToX782p56IlvewZo6cevRajKsa1uK3lx8pLC2jsa0l2fnFRKdlU0VPm8a2lpx9JPJDpnRtxi9XHiOVyejT1IHXn5KJT8/F3FCXbo1qsuOScCWe3b8NR38LJyO3kBqWxrSvb8fW02JcM39oey7cfkNMchZVDHWYOagNAaFXkEik9GjlgJGuJjtPi/fxmNyVq3fe8fxtAloaqgTO68vaXb8Tn5yNmYkuvnN64bv6AulZBdhUNcR7Ti+WBJ8hLTMf66qG+C/sh2/IWeISsjA11mGl3xA2b7/Bk+cxaKirsCJgKC9fxbNrn/DNcZ7Rhfp1qzLP9SAFBaXUqWOJv+9AfvkljF9/ledfeQ3AxsaE+XP2k5lRgI2tMUErR/A+IolA71NIJTK69XTE2bUn1y69rJRajprQluFj2/D7lVdskGe/DB3bmtFT2vP+TSI+8w5SWlpOszb2eCwfgkQixW/+QSLC49DWUScodDzV7EyJCI/D13k/ZaUVtOzowKJlQ1BSUuT388/Z5CcevkMmt2fULEE6fnbnA8vnHhBchgGNcQ4YhKKiIoX5JXhP2MGnN4noG2kTdGAGFjbC4Tj+YypLRm0hP6eIWo2s8d8zrTLZuyC3CM9Rm4l+m4SBqS7Bx+Z85fr68WUcXiM3UlxQgmMre3z/JM8tKy0ncMI2Hl9/jZqGCgGHvk9GPrn56heg49aPse4DvntNZSZns7h3CAmRyRhbGrLikvt3VTKfSyaTscPjMCfXC5LjrNVjGTCr+w/3/3NJpVK2uu7j7GbxvU5aNpLhi74Pwv6VlZ6Qydpp23h8RXDk7BvbMmvdROq1/e+7MZcWl/LhsSA1O/4b3Z1zM/JYNXkbAH2nd6Nln39my5+RmMXycZuFud+49vT8ieMxiO9+4/y9vH8ShbaBFj6H5n5XOg4Q+y6JlTN+AaD/1M50/w4HqKSoFP8xW8hOy8OmtgULN038BvCe2xnGlQN3UVBQwH3bJKxrfQHhUqmUlXP3E/MuCQMTHXx3Ta28zgAOrf+VsLPPUFJWxCt0Ipa24jqTVEgInnuAmPfJGJjo4Ld9UuVxd6++ZrfcUHCGV3+atBNp7a+fRLPeR5C3h0/vWClW+PX0k8pImfkBA6nXxEa4HrscJikuiyoW+viuH42qmgoXTjzm5AG5TNzXiboNqvHqeSxrlgpAOHRsa3oPbELEqwRCPnMOhzVnwNBm3L7xlu3ycOHpzt1o1bYmG9f9yiN5snlgkEhF91xyTORZNaiG64Je7Dtwl+u/vUFRUQFfHyckMhn+QYJD2bNbPQYPaMJct8NkyAUmPu79CN5wpTIDK8RnMDsP3+PRcyEpD1nixIHTj3go3w52d2L7Z4m5ljrLF/RnWeivpGTkYWVmwNyxHVmx+7efnlc/qv/TYCcqOxtdPV3UlZVJys/HSleP1NxCyiRSHE2r8DI5pRLo3I+NRwFoZ23Nnag4gMpgTyUFBVpWq8rtj7GoKCrS0saKsMholBUV6VDdhqsRH1FUUKBXHXvOv3gHwKBGdTn5WMjIBzauw7knESLHqm51nnxMILe4lDqWpijJ4G1CGgZaGnSuV50jd4Qia2qX5uy59pRyiYROjtVJTs+rlJQPblOPzWfFRTC5Z3Mu339LYkYeVU30GNCmLmvkqbHT+rfk9vMo3sakoq+tgevwDiz95aqImWhoh4ONKRsOyi+8MR158jqOu8+iUFVRZtn8fuw4cpfI2HQM9TRZ5tKX5RuvkJiSg7mpHgEL+uG35gIJyTmYV9EjeMlAgtdfIjIqDQM9TVb7D2XfoXvcuvdByA99BpGQkMWGrfKE9DFtaNfannkuB8nOLqS6nSnBy4Zy9MgDTp8S3KTFi/tQz7EqrnMOkJKcg4WlASGrRxEfm4mfh8h0adfRgQUe/bgT9pY1y0WezMDhLRg/rSP3wt6x0u80Mhn0HdyUyXO6EvMxjSXO+ykqLKV+Exu8VwgTtcAFRwh/GIWGpiqBW8ZhV8ucj2+T8J61l5LiMhq3qsGSVSNQVlHi3vU3rPYQ3J2+I1syaUFPFBQUeP04moCZeyvb3K7BQ1FSUqSkqBS/KTt5/yIeHX1Nlu+fXrn6S4rJwGPkFnIyxEozcN90NOWuv8WFpfiM28bHVwnoGmoRdGQ2Vf+QdRUdkcCS4SLUs07z6vgf+NowsKK8gqAp23kkD1n0O+hMg7bfAp0zodfZ4SX4C6MX/wTopOSwuHcwCZEpmFoZseKS+0/N/2QyGdsWHeSM3FjSed14+k3/+5lLkgoJa6dv5+q+myKUdOMk+k7/Z/ySf1oymYzr+2+xed4uCnOLUFFTYWLgSAbN742S0r+mC/Pu4UcqyiUYWRhg9g/ME/87JZPJWDtjB1nJ2Vg5WDBtxZh/dHx5WQWBozeSm56PXf1qOK/7cYfmc53bdp2r+28Lk7s9MzH7UzTD58rPLsBv1MZKQvK0ZcO++/OvmbOXyBex6Blp43fA+ZuYkqc3ItguTyqf7DOQ5l2/9nPbG3KB+7++REVNGZ+dU78aA986/5wD8oXS7MChNPhDyvmO5ed5HPZOKKO2T6yMgvj4JoGVCwXJu9+Y1vQbIwwFk+OzWDrngLgPdK/HOHky+YtHUWyQZ2SNmt6Jrv0aie/F9zRvnseipaNOwKaxGBhp8/heJJvl4/nxMzvTuVd9EmIz8V90lPJyCW0712aSc1eSErLwXXyU8jIJLdvaM31uNyJeJxAs/5z+g5oyaHhzTh57xLkz8i6P1wCsbYyZP+8A6en5WFkZ4h8wiLCbb9m3XyySXeb1FOGe8/dRXFxGowbVmD+7O75BZ/kYJegIwf5DOHD84R8k5gO59SCSC9fFQtXXtS+PX8Zx/vpLFBTAz6UvNx5GEvZQ7L98QT92nrzP208p6Gmr4+vcC9+tl4iOT/npefWj+j8NdtSUlDHR0CQ6J4cqWloUlpRRWF6Gg7ExkekZSKQymlpY8kAOdNr+Aeh0qm5HWGQUAB3sbLnxIUqkmdvbce3dRxQQCeaXXolg0/71HTgrH1cNblyXM09FR6d3/VpcexFJaYWEVvbV+JiUQVpeIXamhhhpanLnneDlDGham71hwil5cpdmHL4VTnFZOS1qWlFRJiE8KgltDTXGd23ChlOCjzKyU0MevI4lKjkLE30txndvSvABgYpHdW1MxKdUnr0XXRr3cV0I3n2dopIymtS2okPj6iz/RbQmpw5uRXxSFlfviuC2pXP7cPTCU16+T0JHS42ghf1Z+8vvRMVlYGSgRYiHEys2XyUqVmyv8LMJ55oAACAASURBVBzE+tDfeBmRiLaWGqv8h3DuUjhXrr9GSVEBX/f+FBWVErJGXLyDnZrQv3dD5i84VOmEvCJ4OJcuvuCAfCUzd153WrW2Z5HLIeLiMoW3zppRZGcW4LnwCCUl5TRrWR0Pv4E8exxFsK9oxfbq34gZ87rx/FE0y5fIE377NGD24t4kxWfhMXufcEJ1rIr/2lEoqygR4n6cR7c/oKaugv/GMTjUtyIuKg1PuWFY3cbW+KwTq61ndyMJcj2MVCKlq1NjZnr1Q0FBgQ+v4vGZuksYk3WohduakSgpKwni4sy9vH4cjZaOOsv3TcPWQaw205Oy8Ri1mczUXGxqmbPswAy05aZupcVl+E/cztunMWjraRB0xPkr+/r4yBQ8hm4gP7uQWo1tCDg4Cw2tLzd/SYWEFTN2cf/yC1TUlPE7MPv7hoG7wip9dEYs6MMY9/7f7AOfR1dfgM7KKx6YWX//4QXi4bTZZR/nQ+XS3U0T6T258w/3/3OVl1UQPG4jt08+RFFJkYU7Z9J1dLu/ffx/pXIz8lg9ZSv3zwmw7dC8Bov2OP/LJe1PfhXdIsd2tf/HO1Sf69yWX7l39jHKKkp47JvzVUfj79R2t0O8ffgRLT1NvA//uEPzucJvvmWbu9w4MHA4Tbp8X01bUV7BsomhJEenU6WaMV57Z36XkHxw5QVunX2CsooSXrtnYPaH3DeAuA/JBE0XUSbdRrRi0IwuX71+7fhDjsll5PNXjsShsU3la+/DY1ntKn7WgVM60GvUlzy2C/vvclbO/1uwagS15PLz9OQc/KbvobS4nMZtazLdUzgy5+cW4ztzb6UR4MLgoSgqKhIflc7S+QflTsj1GStXZR7YdoMbl14K88FVI7CubkpUZArL3Y8LfmC/hoyc3J7cnCK8XQ6Rn1uMQz1LFvsPpCC/BK8FR8jNKaJGLTM8/AeRlpKLr5tQqrZoXYNZ87pz5/Z7QrfKuzwzu9CqjT0+3ieFlYe+JsuDhvEpKo1Va0SHauSIlnTq6MC8RYfJyCigmpUh/p5ObNl5gwePo1BVVSbIdzD3Hn/imDzc2WNeL9KzCgiVRwPNndyJkrIKQg/K4yYmdSYtu4BD58X+S2Z259bTj9x68hFVFSUC5/dj/cGbxKfkUMVQ57vnyl/VfzQI9D9d1XR1ic7JwUBdHQWpAtnFJdjqG5CYk0epREIDMzNeJCYB0NLKijtRsQB0qm5bCXS62lfnxgfx/z1q23PtnWg/96lTqxLoDKjvwPlw0dHpX9+Bi8/fIZHK6Fzbjocf4igsK6eRtQVZeUXEyf1y7E2NuPMuBlVlJUa3bVgJdMa0b8T5BxHkFZXiaG2GvroGdyNiUFdRZkbvlmw+e0+4Fresw6f4DCJiU9HTUmdm/9asPHxDvNa6Llk5hdx9GY2aihJeE7qx7mAYuQUl1LatglNHR0J2iQt/RM/GlJdWcOqaIAt7z+zJtdtveRAud7Zc2J9dR+8REZmMrrY6K5YMYtOuMN58SEZHW52V3oPZffguD59Fo6aqTIj3IO7e/1gpR1zs0gtNDRUC5K3QHl3rMX50G9w9j5OQkIWpqS6rQkQsRKjcLXnKlI707FkfnyXHifyQgr6+JivWjKK8rAIPl0MUFZbi2MAKn2VDeB+RSIDcP6JD1zrMXdybd68T8V8kyM5tOtXG1as/mel5eMzaR3ZmAXY1zVi6YQwamqpsDDzHrc/OpWtGUr+pLSmJ2SyZupvc7CLs61gQsGkc6pqqvH4aQ4DzfhHq16Me85eKEVXMhxS8Ju2kuLCU+i3s8NokDMYqyiUEzzvAs9sfUNdUZenuKdSoJ9RK2en5eIzaQlpCNpZ2Jiw7OBM9uRS3rLScwKk7RSChthqBB2ZhV+fLAzc5NgOPoesF78DRisA/hXpKpVLWzN1b+XD4/8g7y7go86+Nf+lGOhQExMbA7u4WCxO7CwulGwTs7sYA1ha7u1sURFBEQLqbeV78xnFdY+P576s9b9Zx7mE+uHdc55wr3HdNp3HHut9dH6f3XGPtgn2A8NH5mbw8MyWbxb2DSIhOwtBMrK7+HOjs5sTmC8JccePEvwV0igtL8B6ynOu/3RUy5YOO/zrQeX0vhulNnLh9XPybTfAfyaobfv9zoFOYX8SpreLaazf4+6DVf6Ne3HjNpoWC2D0xYCTVG/09C5Cze65xfJNojJy2T6VytZ+vLQGS41PxH7OOivIKugxvzeDZPX967GaXQzy5GoWapgpe+2dRSf/7B921Yw/YFyymtrNCRlG/dc1v3s9Oz8NzzEbycwqxaWHNrKDh35zHz27HsMZJCujndKfzoK9J6CkfM2QO5c0712Wi69ep5oOrr9noLdZD4xb2op00QqIgrwjPKTtJT8mhanVjXNaMQkFRQUy/5uwTRoPG2nhucEBVTZmsjHw8Zu4hL7eIOg2rMt93EHJyclw48YTQTUI0Mcu1H41bWpOemoP73FAK8otp2NSKua79KC0px3vhQT4liDWX17LhyMnL4eMczscP6Rgaa+MbMpyysnJcFx0kK6uA6jVNcPUeRHR0EoG+wuC1/8DGDBrajPXrznPnzlvhJv9FYu71VWI+zqEdXgG/l5gP5eTZZxw79UQ8Ixb1JT0rn7XbxP168uh2GBpqEbBGgKVh/ZpgbWGIvzRKyL5vE4yNtFmxXRw/ZXgbMnIKCDsj8h5dp/XkyMVnPIv+hKa6CoFzv43y+Kv1n57sxGRkoKWthbaiKh+ys6mspUVOYRF5JSXUMTQkJiWNsgoJzapU4cGHROSQo72VBVdiRDZH5+rVuPg6FoAetatz5pUwNuxdtyanX0SLP9eryenn0VRIJHSvW51LL2MpLiundfWqvPmYSkZ+IbVMDUEiITopDT1NdVpUM+fovVcoyMsxvlNTdlwQZF27FjZcfRZLak4+1U31qWGsz9HbL1GUl2dW/zZsPH6L0rJyOjW0Jj+/mPtvPqKmooTjkPYs239JvNe4OmpKipy8/hIFBXncxndnc8QtPmfkYVlZj/H9muO+PlIklrezwUhHg7XSVdbC8V148vIjF2+LyAi/ef04fPoJ96UW38EuduyNuCN7HeI2iCOnHnP5hrAR93cZyJvoZHaGSuXd07pQtYoe85cI4NG+TU3mzuiKs1s4b9+K/KuQoOFERX1i1UoxQh4+vCVDhzXHy+03nj0VFuaBIcNRUVHEcfpusrIKqFHLBN9gexI/pOO+8CDFxWU0a1UdJ4+BfIhLxW1uqJCmt7Rmid8gcnMLcZ6xh5SkLKpU1Sdg3Rg0tVTZvuocZw4/FOaCgUNo2qaGAEWTd5D2OYeq1kb4bRqHhpYqb18m4jltlzD5a18Lp2B7FBQVSIxPxWXsFsG3aVgVz03jUFFVEoDD6RC3z71ASVkRzy3jqSPtJnOzCnAdvZHEd6kYmekSuH+GTHpeVlrO0hm7eXAlChU1ZXz2TKNWo68k0LSkLFyGriY9ORuLWqb4H5wtmwaBlCexMJSLYXcEYXLbFJp3+76rPn/gJmscxQPQbka3nxoGZn3OYXFfQUb+wtH509XVwn2c2HwROTk55m+eRPcxPw/9/WMVFRTjaRfC40svUFFTxvO3BTTt1vDPP/gPSyKRELn1Auvn7KC0pIwqNUxxD5uPdUPLf+X7Tm0+T25GHpWtjWlj9/cVpn+30pMy8RuxivKycjoMa8Wgub3//EO/q5e3o1kzawcAY9zsaNmn8S+PL8wrwmv4anKk8RFzfxHweXL7ZU5su4ycnBxOmyf/MMk85sl7ls/aCYDdtK70HP0tl6ekuBTfCZtJfp+GSVV93LZP+cbIMfHd52+UV2MWfv3983MK8Rq/lczUXKzqVGbxOgeZ8ir+TRIBs/eKSdHgpgybLsB6eVk5gY6hxL1OQtdAE5+t49HQUkMikbDa/TDP7r1DTUMF383j0DfSprioFK/Ze0n6mIGpmR6ea0ajrKLE0/txrJJy/oaNb0evQU0pLCjGw3E/aSk5mFsa4B5ij4KCAkFeh2Xhnr4rR6Kjp0GIzzFZoLHfsuFoVVLDZf4BmcTcN9iezKx83J3DxZSnVXVmzu5ORMR9jn0hLbv0w9i4ErPm7iEvrxibulVYvKgPq9af496DOFRUFFnqM4So6CQ27xS+QrMmd8bQSIs5zgepqJDQt3sD2reuwXTnAzJ/tT5d6zPT/aDMf61Tm1rM9gmXRQuZm+ritkbwKGeNas+b+BRZTJHPjF48i0n85Tn2s/pPgx0lBQXMNCsRnZaOvpoaVEBGYSHVdHX5lJlDYVkZDUyMeZ6YIlLLq5pzO06ssTpUs+SqdKLTWbq6AuhWuzrnX72lQiKhS21rrkS9o7S8grbVLXgYm0h+SSm2VU35nJXHp6xczPUrYaChxq3oD2iqKtOzfg0OSHk5Ezo1Y8/lh5RVVNC9YQ1exiXzMT2HKvratK5pwb5L4qScPaAN2yPvCkl5LXM0VVU4eesVSooKLLLvyOqwq+K9OlWxNtFn+wmh3lri0IX9px/yITkTE30t5ti3x339KUpKy+nQxBrbmqYEbBEd21T7tnxOzeWYdL/qObs31+++5cptwbkJcBrAyQsvuCrdzwYsGci12zGcPCekjh4L+pKZWcDaLdIsq9FtaNLQgjkLhcqqsa0FSxb2xi/gOM+ff0RDXYWgQHtSkrMJ8D8mJIx9bJkwsQPBgSe4c1t0Hv6BQzE01GL+jD2kpuRgXlWfgOUjyMzIZ4ljqJCh21bFPWAIqSnZuMzaR15uEXUbmOMRPIzSkjLcZu8jIT4NA2Ntlm5wQFdfk4PbrxIhHU/P9RhA++71hFpq6i6SEjIwqaJLwOZxVNLVIOHdZ1wn76Qgr5h6Ta1wXT0KJWVFUpOycHbYSmZaHtVqm+K7fQLqmqpisuF+mMtSsqPregdspRyAwvxi3MduFoRjQ20C98+QcQfKyytY7rhPxivw3DGZes2/5gZlpebiMmw1yR/SqWxlSEDYHCrpfzVmk0gkbHI9xOk9giexeNNE2vT5PkD3csRdVszchUQiof/kzkzxG/bDB1J2Wi5L+gl5ub6pDsGRS37Z1UskErYsOcBRqanYvE1/D+gU5hfhMTCEp1deoqapit+JxdT/HxCCf1bFhcWsnbmds7tEd93GrjmLdsz410z+CvMKObhU+C4NX2L3P+MA/axKS8rwG76KjOQsLG3M/7bM/HNCOr4j1ohJ5sBmjHQe+MvjKyoqWD5tG3EvEtA1qoTHL9ZdT65FsWGx4LuMc7ejVW/b745JT8rCe8x6igtLadrFhkl/MBeUSCSsmr+Pl3dj0dBWw2vvDHQMvk6GcjPz8Ry3RUb8X7Dyq6dTWWk5ATN2Ef8mCT0jbbx3TpZx5TJTc/GctIPCvGLqt6jGbH9hkSCRSNjsf4IHV98I/s6mcRibCTXl/g0XuXj8MfIK8riuGolVLeGTFuISwetnCWhqq+GzwQEdPQ0+vPuM7zyh7mzX3YZxc7oKEOUSwdvXQmLuu3oUWtpq7Fh/kStfcrCC7bGoZsjuLVe+hhwHDMHS2ogg32M8lYIf/2UjUFZRZNH8UDHlqWGMm8dAbtyMZvMmqR/YtC40a1YNxwWhpKTkYFZFFz/fIYQfecCpM89kKebFpWUE/i7FvHXL6kxfFEpxifDOGT+iNbNcpRmHNU2ZOb4DczzDyM0rwqamKROHt2aWTzjFJWW0tLWkR/u6zFsqdOVDutuioqJEaKTYAjhP6sZvl55x9d6rX55nP6v/NNipoaPPm7R0NJWV0VJS4X1WFlW0tckrKianuJhaBgbEp2ZRXF5Oo8qmPPuYRFmFhJYW5tx594EKCbSpZsGN2HgqJNC+uiU3o+MpK6+gjXVVHrz7SGFpGU0sqhCXkkFGQSE1TQyoKK0gNiUDI20NahsbcuHFW1QUFRjSvB67L4t11biOTTh08ylFpWW0qW1BamYeMUnpGGir07dJHbZK5ebT+7TiwKXHZOUXYWNhTI3KBuy/IDKsnIZ3ZMuxW2TnF2FjZUJrG0tWHxJTmnnDO3D2ZhRv4kUW1uJxXfHeeFq4H9c1p1vLWniuFSfxiD5NUJKXZ8tRYcLnNLkb0bEpnLggTnqveX24/+Q9p2TEsz5Ev03mwGFx/MIZ3VFSkMdn5ZeLoindO9kwZ2EoOblF1Kltiq+7HatWn+OOVA0Q4D+EkpIyPD1E5EOHDrWZM7c7G9ae5+J5MZXy8BlENWsjFs3ZR4J0XLt05UhKSspYPGcf2ZliV+0bYk9eTiFLZu4lIz2PajWM8V01Ejk5OTzn7ScmSiolX++AkakOJ8PusWuNWCVMWdiLHnZNKCwoxn3GHuJjUtAz1CJw6wQMjCuRkpiJy8Qd5GTmU8OmCl4bHVBRVSIrPQ/nsVtITcqiipUBfjsnoSWdsOwIOkXkgTvIy8uxaMVIWnQRK6SSolK8J27jzeP3gqi8f7pMWSWRSFjvEsaVYw8FQNo8gUbtvpKJ87ILcB2xloSYFAyr6BIQNge9PwRm7vI/yjEp2Jy3Ziwd7Jrxx7od+ZiQaduFMeK4DkwPGvHjrKvsAlwGhhD38iN6JjoERzr/qepqu+tBDktH2XPXT6CHw98AOnlFuPUP4vn1KNS11PA/uQSb1v+e/8znhDS87IKJeRSHvLwcEwJGMexfVnnt8QonOy2XytVN6D6247/2PV9q88I9vLz1BnVtNTzD53/D6fqzKiooxtt+FZkp2VjVN2fh1il/KvXf43uY60cFL8g9dBaGVX5s+58Qk4zf2I1UlFfQaWgLhjn2+u6YwrwiPEauJS0pi6o1TXHeOvkbrxyA/StOc/m3++J62Tb5G+VVSXEpvpO3k/hO+FJ57pgsA14SiYT1bhE8ksZEeO/8SlYuKijGc9J2mbO524axMi+no7uuc2LfLeTk5Fi0fISMv3Ph6CP2rROcmJkeA2jSVqzZtq88y43zL4RsfPUozK0MyUjLxW3mXtGQ2VZloa+YqK4PieTu9WiUVRTxXjkCUzM9Ig8/5JC0IXN07YdtMyvOnHhC6E4pL2ZRb5q2sGbXlitcPPtC5Fv5DaaKmR5OC/aT8CEDI2Nt/JYKTk5ggFBx2dk1wc6uCe6eh4mJEbydwIBh3L3/jm27xPNj9rSuVKmix6yFoZSWldO+dU1GDWvJbJeDZGYXUN3KEJe5vVkSeEQmIfec1we3ZSdI+pyDmYkOzjN7sjjkmLAlsTJiyvC2zA2MoKS0nPZNrWlSryou0gnPlCGtefb2EzeevEP5H9ox/Kc5O1GpqagqKlJFU4v3WVnoq6ujIIHUvAIsdHTIzCskt6SEOkaGxKVlUFhWhm1lU15+TKGkvIKmVavwNCGJkvIKmluY8fxDMoWlIs08NjmdnKJi6lY2IjuvUExx9Cqhq6LG848paKup0Lq6BRdevEVBXo7RbRux94rYUQ5r3YBTD6LILSymoaUpchXwJC4JLTUVRrVvJAM6Y7s24fTd16Rk5mFpokc7m2rsvyB+xryh7Qk995CUzDysTPUY2KYea8LEiTqxXwuevP7Io6iPqKsq4z65B0E7Lsg4OyN7NcF34xkhae9gg1VlfdbvE5+dNrIt+XlFhH4BPlO7k5iUxYGjYtXmNL07ublFbNotjp8+vgNmpjp4BR4X8RRd6zF8cHMWuYbJ5ImB3kPYvvMqFy4KEOPpboemhiouzmEUFZXStKkVzi79Cd1zk2NHHiInB07O/WjU2AKPJWHEvBG8naCVo1BWUWTJnFBSU3Iwq6qH/4qRlJdLcJ61j5RPWVQ21yNg7WhUVZXwXxLG80fvUddQwX/taKpaGXI58inrpRlYI6d0ZNCY1pQUl+I9J1TWgQVsHo+puR6Zabm4TNhOWnI25tZG+G4dj4amKvm5hbhN2EZiXBpGlXUI3D0FXWlHGbbpEhFSD4w5/kNkDqtfOsmnt2LEmHvvNCx/d3PeGXiC06HSG+kaB1r8TklSmF+E+8j1vHvxEV1DbQLC5nzjswMQtuYMh1YJoDE7ZBTdhrf+7np4dOUVAeNFHlUX+1bMWj7qhw/3ovxi3Ies4O2T91Qy0CLo1GLMavw890gikbDLK4JwKdidvWYcvSd0+unxf6yC3EJc+gQKoKOtRmCky78KdOKev2dua1diHsVRyUCLwLPu2DsN+FeBzpv7bzm8Spx3M1aN/1vxGP+kzu25yvGNYsK2ePcsqtT4uQ/SH0sikbBi6lbePo6nkoEWXuHzUNP8NVA6H3qDAyGCVzNnzThsWtX84XFZabl4DFtNXlYBtZtVw3H196qu8vIKlk7ZRuzzBCoZaOG9f9Z35o2XD99nX4j495y5dDiNfpd0LpFIWL3oAM/vvBVcoF1T0f2dOWHEpkucOXBbyNPXOlC9vvnX750bSszzj2jrquO9faLMHPDGmedsDRSeWhMX96ZNd3F9Pr0bK5OYD53Ugd7DxGryxME7/CYFKvN8BlG/qRVFBSV4zgnl86csKlfVw1Ma7hmx9yYnI+4LN2i/wdSpb869mzGsDZZ6eE3uQPd+tjy4E8uqIPE7jxjbht4DGhN5/BGhu6Xf49SHxs2qERR4ghfPP6KhqUJAkD2FhSW4uQn1aus2NZg2vQtr1p3n7j3RePr7DOFzag7B0ut32OBmtG9bk8WeEWJiU7syTnN74L5U2IoYGmgR4GrH0g1niXqbTCUtNZa62LFy+0XexKago61GgNMAAjefIyEpE2MDLVxn9MB19Qly8oqoa23CsJ6N8dwQSYVEQv+O9ZCTl+Po5efCZHbiX7em+H39p8GOgpwctfQMiE5LR0tZGT0VVRKycjDR1KSiTELqDxLMP2ZkkVciUsvj0zLJKymhfmVjPqRlkVVYRB0TQzLzCknJzcdSXxcliRyxnzMw1NKguqEe994loKakSJ8GtTj2QIzjxrZrwt4rj6mQSOjbpDa3ouJJyy2gpqkBVSppczPqPSpKCkzq1oyNJ0QmypC29bn/OoH4lExMdLUY1Loem6XvTe3XijN3onifnImJnhbjejYnaN8lJBIY2sWWtIw8rj6MRVlJAe+pPVm7/5owBTTVZaZ9W9zXnpKh69a2VgRtFquskf2aoqelxoa9UiAzpj1ycrBxj3g9Y2wHtDRUZNknIwY1p0kDC1y8D1NSWk6bltWZPrEji93DSfyUiYlxJUIC7Dl69CFHpXviJU59saiqz2Kng+TmFlG3bhW8vAdx8tgj9kov2llze9CxUx38PY7w7LGIighYMQJ9A03cFhzg44d0DIy0WbpagBp3x1A+xKViYKRF4LoxVNJVZ4XPUVmn5LN6FDXqVObutTcscz8s1jfDWzBmRmfhobE4jCd3Y1FVU8Zv41gsaxiTm12I66QdfPqQjnEVXQK2T6CSrgZFhSV4TtlJ7KtPVNLTwH/XZJkDcuSBO+yUykUnu/Sjh71Ika6oqGD5gv3cvSDSk712TpZ1hQBh684TvkFMmuYE2dOh/1deRElRKT7jNvP6YRxauhr4h83G7A8TllO7rrLDR9xwJ3oMos/47/1PXt19i/eodZSWlNGmX2Pmrxv3w069pKgEr+GreXk7Bk0ddQJPOFG11s+dkQFCA49yMFh0jTNWONB3cpdfHv/7ys8pwKVPIC9vvUGjkjpLT7tS5wfOzv+renL5BY7t3ElLzMCirhnr7wfR+CdKof9VlZWWsWLyJioqJHQe2ZYWvX/Ne/n/VvSDWNbMFJ41o90H06rv3/PTORhygqsRd1FQVMD9wJxfktEBnl6LYpWU12O/sC89frK6LCkqxXvkOpLiUzGxMMArdNZ3ay6JRMJm10PcPfcMZVUlvENnYvoHyfrLe7GskPLNhszoSq8/8Hj2Lovk0uEHYqW0ecI3mVfXTz1hR6AAZVM9B9JSClokEgmbfY5y9+IrKcdugsxn59WjeEIWHhBWE6NaMWiC+P3ex6TIJObtezVg3DzxkL577TUbpd5eY2d3pXNfW8rLKwhcEkbMy0S0ddTxXedAJV0Nrpx7wbbV4v47ZX4P2nauS0zUJ/ydw4WHWF9bRk/uQGx08jcp5uOmduLe7beslnr8jB7fjp59bdm6+RJXL0ehqCiPt+9gKumo47wkjNycImrXNsXVdQBh4fc4KSUbu7n0R0VNCTefI5SVVdCpfW0cRrRhiddvJKdkU6WyDn7uQn37RW0b4jmYPRF3uf1QqsxyHkh45CNuS0UqAYsHsC3iNs+lat6ABf0J2HyOT9LoobkOnXBZe5Li0nLa2FrRoFYVNkVIJe8jO6Cq+s8WUv9psNPQ2IRnycmoKChgoa3D27QMdFVV0VZS4WN2DqZamlSUS/icl4+Frg55BcWk5xdibaBHdkEhafkFWBvokVdQTIo05FNeIkd8eibG2pqYaGry7GMK2qoqNLc048or4b0ztEUDDt4WTsmj29py6OZTSsvL6WhTjZjENBIzcqiip42tRWVOP3qDgrwc03u1YvPJO5RVVNCjSU0SUrKI+vAZHU01xvdoxprfxOhyRJdGPH6TwCupd87swe0I3HNBmAS2rI26oiInvrghT+rB7uP3iP+UgZGeJovHd8Fj7SkKCktoVMeMwd1s8Vl7WoCwTvVoWKsyIVLVxcgBzahqqkewFNiMtGtGbWtjfJadFPyabvXp27Uei9zCyS8owba+OUsce+Huc4RYaWruskB7btyIZs8+KWF5Vnca2Vqw2Okg6el5WFkZ4h8wlFs3olm/VnzvuAnt6T+wMSuCTnL7RjRKygr4BNtjYWWI95JwoqOS0K6kxtLVo9DR08B3cRivXySiVUmNgLVjMDatxOYVZ7kY+Uzc7JYOo34jC14+fk/AokMyK/ZpiwVRcbXPMW5dfCVGzWuE7LyooASv6buJe5OMroEWAdvFSqu0pIyA2ft4+SAedU1V/HZMwkx6Q7x26gnrpJk59jO6MEjqpiyRSNjkeZgrR6XrqU3jaNDyayL4qb032LlU3Hwnl4mEzgAAIABJREFUuQ+k58ivE5nysnKWTt/Bk+tvxDRo/0ys6nyrDrpy+J7MOn/4vF4MnfO98uXtsw+4D1tNcUEJTbrYsHjrj4M3y0rLCBi3kceXX4pIicMLsK5f9bvjfl/hK0/Jkq+nBo1kwPS/7oNTmF+Ee/8gXt2ORlNHg6AzrtT+k7T0/09dOnAD555+FOQUUr9dHVZe98X4Tx7k/4s6FHyMd8/eo62vxfSV4/7V70pPysRryHJKikTu1Wi3wX/r87eOP2C3l/CqmbXKgfpta//y+IToJHxGrRUEYLtmjPP48fdVVFSwbMZ2ou7HollJHZ9Dc34YBXF080WOfyEtb5xA7T9kaH2K+4zPuM2UlZTRpo8t492+5RGdPXibA9LogzlB9jTp8JXzFfUwjmWOoQD0H9eOARO+NgWHt1/lxF4xWXVaOZK6UrfjxPhUvKftoqS4jBad68jc0DM+5+AxdRf5uUXUbWTBgsAhyMvLE/MykcCFh4Txol0Thk/uKIBUcCR3r75BSVkRr9WjqGKhz/PH71kmnQoNHNGSQSNbkfwpC495BygqLKVxi2o4uvYlNSUH1wXSZPMmlsx36cfb6GR83X8TgKhXAxwmtufo4QeEHxRbgUVL+lKrTmXcXMNJSsrC1FQHP/+hXL/xhm07pGTjGd2oUcOExW7h5OcXU9/GjIWOPfEOOk70W6HECvYZQmjEPa5+8UtzGciNe7GcOC/lds7vw+NXCRyXvvaY25uLt6NlXjr+8/uxNeIWr+OEI7/nrN54bTxNdl4RdasZM7BzAwJ2iHv/qF5NiE3KYNHaE788535W/2mw8/hTEgpyctQzMuZlymfUpcGeMWkZ6KqpUklFlQ+ZWRhraqAip0Bidi6VK2khjxwJWSK1XFVegfj0LIy0NDDU1OBV0mcqqalSz8SIu+8SUFFUoEe9GkQ+ETL00W1sCb0uVk2Dm9cj8sEbCopLaWptRk5BEdFJaehrqdOjYU3CbwpANKNXK3advU9RaRmt61pQXlbBvTciwXxW/zasDLsq1FMt6/A5PYf7rxNQV1HCaWQngvdepLikjFb1LalpZsDeSKkh39jOnLr2kpexyWhrquI1rRe+G8+SmVNITUsjpg5rg+vyE2LC06w6PdrWxnPFScorJPTuXI+WjazwWn5CAJsu9ejUuhbOfkcoKS2nXcsajLNvxUK3cLKyC6hhbYS360CWLo/k+cuPaGioEOI/jDevk1i7XpzI48e2o0vnujgvOURiYiYmJpVYGmRP1KtEgqVdkN3gpowc05ot6y9yLvKZIOD5DKZeA3OWeh3h8YM41NSV8V8xkirmeoR4HuXhnVhUVJXwXTkSi2qGHNh+jaMHhCP0Qq+BtGxfi3fRyXjM3kdxUSnN29VkgdTVePvKs5w7ItRYS0LsadTSmrLScvwdQ3n1+D2a2qr4b59AZQsDoa5aEsb9q8JczHvreKrbCODx8NobQuaLzq/3yFaMXfAVcOxdcZoTu28gJyfHwlWjad7FRvbelaMPWe8iTRaf053BU7/KsysqKlg1P1Tmk+O5exq1Gll+c37fPfeMkBk7RMc5oSNjXb4nkCbEJOM6eKWQ5basgfueGd+oVX7/fcumbuP2yUcoqSjhfciROn8CPE5uvcg2FyHpHes1hEFzvude/KxKikrwGrSMFzelE50zrtRsav3nH/yHFb78BIGjVouH8pCWLD3rhpbuj1O3/5cV8+gd+3zE/+PpK8ehY/jvpbN/UbKlJWZgXrsyS/bM/luRGq/vx7J03EaR5za165/aBWSl5uA+eDl5mfnUaW7Noi0/5/Xs8j3CtSNSK4R9M344Lbx56jFbpC7eEz0H07bftxOprNRc3EasJycjjxoNqrJw7bfTyYdXoliz+BAAI+b2oMfwr345H999xmuCVGLexYYpnnay965HPmWbdLU9ybkvbXuJrK2s9DzcJ+4gJ7OAGvXNWLJSSMwL8otxn7aLz0lZVLE0wHP9GJRVlEhKyPjGhHSOu1iNRuy6wfEvIMR/MHVtq/IhLhUvaVxN6461mTKvBznZhbjNDSUjPQ+r6ka4LR1GYUEJrgsOkJGWh0U1QzwDh5KWmoPbIhGG3LipFfMW9+HG9TesXyMa0/GTOtCxc138fI/x+nUSWtqqBEq9dIKXSXmVQ5rTtasNi93DSU3Lpaq5Hn6edqzdfIl7D6VKLK/B3LgbS8QJQSB2cexFSlouW/dLhR2TOpOXX8yWL68ndCbxczbhp6WS8hk9OHMzittPxMTHb25flu+5zKdUMeGZbt8Oj02nKS+voFvLWqipK3Pk6nPk/+E6+T8NdgCaVzHj0cdPKMnLY2NoxPMkAXosdXR48zmNSqqqmGhqEZOaLoI9NTRkf66ipc2rpFS0VVWoY2TIw/hE1JQUaVfdkktR71CQl2Nwk3pE3BVOyaPb2HLw5lMqJBJ6NqzJ7aj3ZOYXUsfMCA1lJR6/+4SmqjL2rRt8k2Aefu2Z8NWxNMGkkhYXH79FUUGe+YPbszriOsWl5bSrb4WKogKXHon3XBy6svp3CeadG1Vn/SFx0s0Y2pbHUR+5K00w95vVh+W7LpGcJohjThNEgnl+YQmN6poxZkBzXIKPUVJaTttm1th1b4hz4FEBbFpUZ8SAZiz2/k1MhOqbM39aV5Z4HSb5cw5VKusQ7DOEzdsuc+uuUFAFeg8mIz2PpcFSEDOwCcOGNv9qZKWrTnDIcJKTsvDxOCyCOLvZMH1WN8L23yFCClYWLOlLq7Y1WBMSyY3LIh/Ga+kwatYxZV1wJNcuvERRUR7PEHvq1DfjRPg9dn/Jh1nYiy69G/IpIQPX6buFOWAjC1xC7FFUUiB8xzUipEQ/Ry872nSxEYDGNYIHXwwGN43DqqaJ6Mz8TnDlxBMxnVk3hnpNhVdJ1KN4WThg+762zPC2k3EQjmy7woHV4gY0028IHX+3nnpw+RXLHPeKB8vYdjgs+poVJZFI2OL5Gxek8nGXLZO+cz5+fisa/wmbKS+roPPQFsxYOvw77kPqxwxc7FaQnZZL9YZV8Tn4YzM5iUTCunl7uBx2GwVFBdz2zsT2B748v6+LB26ybu5uQKwuRi7+sevyj6q0pAxf+5U8vvQCNU1VAk46U/MnKdj/35JIJOxyP8iWRXsAsJvTG7eD81BW/bUp3v+iigqKCRwt1EztBregy7/oFVRRUUHw+PVEP3yHtr4Wvked0Kj010NKk+I+4zF4OcWFJTTr0YDpy37tsFxSVIL3iNUkxaViYmmI10HHnyqvTu++RpiUT+a4ZiwNfzAtinrwjuBp2wRwH9+BwTO/nRAW5RfjOWYDSfGpGJvr4/UHt/DYlx/xn7pDxLQMavqNxDwzNRf3MZvJycynZsOqOK//KjF/ce8dIfOFKqz/2LbYTRQrqqLCErym7iLpQzomZnp4bxmPqrqyaIbmhvIuKgkdfU18paGf2Zn5uE3fRVZGPta1TXFdMQJFJQUunnzCdmlQ8OQFPWnfvR5pn3NwmSlysOo0MGeJ/xDKSsvxWnBAqEaNtPFdNUrc7xaH8f5dKvoGWvivGEF5eQUu8w8IIUZ1Izz8B/M66hMB0ozAPv1sGTGqFatWnpF56fj7DaWopBRP7yOUl1fQqWMdxo9rh7vPEeLiRX5VsN8wfjv+iNPnhQjFa0l/Pn3OZsPOKwDMGN8RTS1Vlkrd0EfaNaOKqS5BG6WvBzZDW1uNdVLu52yHDrxPyuDUVbFl8J7Vm32RD2QTHpdJ3fDcdJqCohIa1zGjcR0zthwVNI25w/+6sOH39Z8GO1/yruSAFmbmPEgQoKehqQlPEpNRU1KkjqEBzxKT0VBWppaRAU8Tk1FXVqK+iTEP3ieiqqhIG6uqXIuJR1Fenj71a3NKaiA4vHlDDknXVUOa1+P4fRHs2ba2JbGf0knKysXCQAcrQz2uvYpDWVGB8Z2askWaYD6ivS2XHr3lc1YeViZ6NLGuwpGbL5CTg/mD27Pl+B3yCouxrV6ZGmYGHLkmCFzOo7uy/dhdPmfmYVVZH/sujQjeLdQAI3o2Ji0jj3O336CgII/PzN7siLjNu4Q09HU08JrZG881p8jILqCGhSFzx3bCOUgkmNvWNWPKiLYs9j9CQWEJtjZmzBrfESef38jMLqBGNSM8F/TFM/A47+JT0dPVYLnfMMKPPOD0OalSy7k/ivLyePmIC6tzp7pMm9IZP79jPH36AQ0NFZYutae4qAy3JeEUF5fRvIU1i5b05czJJ2yXgpUps7rSvXdDdm66zOljj5GXl8PZx45GzazYs+kykYelRGafQTRpac2Vcy9YHyS6lpGTOjBwREvSU3NxnbaLzLQ8rGoa471mFKpqypw5/IDt0mDQSQt60t2uiQAYS09x+QugWT2KulJ/m4MbL3FcaqO+IMieZh3EzTr+TRIeE7YLaWyHWixcNlx2E70QcY8t0rwah0W96TOmjey8jHoYh9+UHZSXVdBhQGOm+X7rcbN/eSTHtgo59PxVY2j5h1Tnt88+4DlqHSVFpbTs2ZD5a8Z+11Fnp+fiMngFqYkZmNUwwS9i3k8ffnt8D3Nqu3R1sHUKLXt/L1f/fd089oBlk7cI7tO0boz3+d7e/2dVXlZO0Nh13I18jLKqEr7HnP41js4XoBPqL9aLk5aOZvrKH3OV/o3vXj19CwmvE9Ez1cVx099PF/87tcvjEDcO30NRSQHPiPlUtv45ofyPlZORh9vAZWSn5lLd1gKXvbN+SaCuqKggePIWXt0Rjsq+EfPRMfp+JQXw4OILmXHlqMX96PoD4nxibApeo9ZRXFhKs671mB74LXAvLysncNp2op+8R0tXA78Ds9Az+johS/2UiafDZmHq2ao6jstGyj5fmF+M5/gtJCekY1JVH++dX/Ow3sck4z1lJ6UlZbTqXo8p0hVVeXkFwQsO8ObpB7R01PHdPgFdAy2Rbu51hEc3Y1BRU8J701hMzfUEj2/WXhLfp2NkqoPPegc0NFV5dPstKzyF1YDd6NYMdmhDfm4RbnP2kZqSjZmFAT5fXNzdhZeOppYq/qtHoW+oRZD3UZ4/+SAEFitHoF1JHXenQ3xMECor/2UjSEvLxcMlnNKSclq1qcEcx57s23uTyMinIlvQfQD6Bpo4u4ZTWFiCbcOqLFrQm+AVp3ny7ANqasoE+Q3lweN4du8X7vXzZnZDVU2ZAClheXC/xtjWN8c9+LiYwrSvQ4dWNXFfJkQpPdrXpWkDS/yk+XX2fZqgoa7MjsPSCfuELlx79I7bT+NRUVbEa3ovgnZfJD07n+rmBgzu0pDgfeK+P65Pc8xNvsZ4/J36T4Od29Jgzw5WVtyM+4Ac0MbSgjvxCSjKy9Pc3Iy78R9RUlCghYUZt+MSUFJQoH01S67FxKMgL0fPujU481KYCQ5tUk+WdzWsWX0i7j6nQiKhd8NaXH35jtyiYmwtTMnPL+FtcjoGWuq0rFmV049eIy8nx7TuLdl69q5YSTWtzct3ScSlZGCso0mfprXZfV6MC2cPaPtNsGdHW2t2nhLqKMehHThy5Zks2HPGoDb4bz8n1k9t6lJJXZXw88KO3nVyd05dfsHTN4loqqsQ4NiP4C3nZVJB95m9cAs5RkZWAdUtDXGa1h3nwKNCWmhpiNvc3rgFHCUpJZsqJjoEug9i+bpzPH/5UcRC+A3l+s1oDoRJR7SOPTGrrIuLW7iIc2hqhdPC3qxadYZbN2NQUlLA128IWpqqOC86SF5eETb1zPDwGcTdW29ZHSIuLvvRrRk6oiWHD97l4B4p38epN2071uFY2D327xATmdlL+tChmw2P7sYSIiUe9xvaDIdpncjLKcRtxm6SPmZiaq6H/8axaGqrceviK9ZIXVGHTWjPkHGi2z605QrH9kpD9wKG0Ky9mKREHrzDHikwmubWn079BRBISczAbdxW0Z01tsB1vYNMonrn/AtWLhLrHbtJHRg+62uX+j46Cc+xmykuLKFJh9rfeH+ACDLct0yoMKb5DaXL0BbfnNOJsSm42a8WOUKta+K8dfJ39voFuUW4D1tNQnQyBpV1Cfht3jf+I7+vw+vPsl9KLp610oGOQ3/t6vvw4nMCpO643R3aM3356L/8EK+oqGDl1C1ci7gjfSgvoEH7X0+Q/ml9ATr7AwQnYvqKcf+64ur3dXTtaS7svSZA+r45aP/AGfh/Ved2X+FgkMhCmrd56t/yJiopLsXHfhUfo5MwNNPH57cFqP/OjftHtdX1ENePCIm5x/45VK39YwJ7zNP3+I/bKFP/jV78fRRJVmoObvbCDbyGrQUu26Z8A7S+pJjfO/9C5LvtmYZZ9a8E/dysAtzHbCI9JRvzGsa4bZ0kuw7LSssJnLmbmGcJaOtq4Ld3muw6SE/JxmP8NvJyCqnbxJLFq0ahoCAvOHa+x7h9/iVKyop4bBwry6Pbt+4C56UmpC4rRlKznpng1Tkdkik5/TaNRd9Im9jXSfgtOEh5WQXtu9dj8oIeIvBz0UHiYlLQ1dfEf+1otCqpsXHZaW5Kk829lg3HwtqQTavPcV1KNPYKGoaFpSH+HoeJepmIlpYqAStGArBk0SEh9LCpgqvHQM6cfcZuqdBjztwe1KtvzmKXMDIy8qlmZYiP1yB27r3BpatRIhrIfSCpabmsWCemTw7DW2FTuzKuAUeEKWDrmtj1boST32EKi0pp2tAChyEtWRx4hMKiUpo3tGRIn8a4rDhOWXkFXVrVpLGNOcHbpRmIdi1Jyczj1HURbu05rSfbjt7mfVImxnpaTBvaBu/tZ8Xzq3Ud8oqLmbfm6J+fuD+o/zTYkQM6WFly9W08IKIfrr4V7sidrK24FhOPHNC1ljWXpNlXverU4KwU3AxsWJdjT0Te1dCm9Qm/9xyAfrZ1OP34DSVl5bSvZcmrhBTScguobqyPtooKT+LFumpA07qESXk5U7u3YNeFByKEs64l2TmFvHifgra6CmO6NGbDCfGgHd+jGRcfxPDhcxam+trYd2zImnAxGpzQuzl3X7zn5btkKmmo4jS6M/7bzlJcUkbrhlbUr27K5gjxcxxHd+DxywSuPRCqLP+5/dhy8CYx8SLYM3BBf/zXnZYBH98F/fBaflL2OsB5IP4rI3kbl4qejjrLvIewc+8NbtwRWSYBHoOIfZfKBukEYsqEDjRtZImT8yFycgXz38vDjr17b3LmtPDrcfcYiKWFAUsWCYKypZUhfkuHEv36E/6eh0Wybl9bJk7rxOVzL9gkXQGNn9qJ3gMac/X8SzZK1QcOUzvSZ1BTYqI+4bPwIGVl5bTvZsP0Rb0pLSnD23E/cdEp6BpoErBpLHoGWrx4GE+gkyAP9hjUhPGOQj1xOuweu6Wj5qnOfencTwCaG2ees17amdlP78yAsUL1kZWeh6vDVmEXX8MY720TZd3iy/vvCJyxW2RnDWnGJLevD9jPiRm4jdooMzlz2zpRdmMGuHbsIZvcBGdh9MI+DJj0rXw7PSkLl6GryErNxbq+OV77Zny3OigpLsVnzHqiH8WjradJwOF5GP1Bpv6lzu+/webFgtw81mMwfSf9mqMR/fAdPvZS3sug5jhumPi3piTbloRybs9VsZoLnUuzHt8byf0v6jugs3Icgxz7/MmnpPXgAXTuLP77D+ve6cdsmr8LgElBY7DtVO/XH/h/1MMLz1g5bSsAI5YMpNvfMHGsqKhg+eQtPL8hvHh8jyxAv/Kvu+rD689yeK3o4Bdsnoxthx8Dq+T3qXgMW01hXjG2HerguOZ7iXlRfjEeI9eRFJ+GiYUBPvtnfydxP7j6DJF7BOfNaf046jb7yusqKSrFZ+JW3r9JQt+4En77pqOlI6aXEomEtS5h3L/0ChVVoYD8oq7KzynEffw2Pn/KooqVIZ5bxqOiKnhsBzde4mSokKUvWjZctq4+dfAu+zeI6cNMz4E071hb+PUEnODOldeCeLx2NFWrGZGcmInbzD0i1qapJQv9BWl7uddRntwXvEPf1aMwqaLLoV03OBHxQDqltqN+YwvCQ29zNEw0t4s8BtCwsQVrlp/mzs0YlJUV8QkaJqY1TgdJ/ZyDmbkevoFDefw4XuZEP2pUa7p1q4ebewQJCRkYGmoR6D+U0+eec+g3qa3IvF6oqavgtfSrbUjvHvVZ6B1BfkEJDeqaMXNiJxb7HxaTfSsjFk7tyuKlR8jMLqCmlRGzxnVkcchRQXGoa4ZdD1vc10q5n+1t0NfVYNcx0QwvHNuZyJuveP42CS11FZzGd8Fn+zmKSspoWc8CcxMdwi+L2KJ/Uv9psNPC3IzrsSLvqnP1alx4I6IfetaqzgVpDERvm1qcfimiH/rXr/01tdy2LkcfCel4/4Z1OPkoivIKCV3qWnP7TTx5xSU0sjAlPbeA92lZVNbVopaJAdejRN7VmPaN2HlZ3DDHdmzM4ZsvhK+OlSlaKircinqPqpIiM/q2Zs2Rm0gkYNemHq/eJfPqvVBaTe/fkpADl8V77eqTnJbD7efxqCor4jGhByG7L5KTX0w9a1P6tKnDsl3iYhzbrzlZ2YWcvPJCui/tw7ELz3j0MgF1NWWCnAawbtcVYuJEQnmQsx3LNp6XvQ5xH8z67Zd58iIBDXVlQryGcOrscyK/rKqW9KeouFQW7DnUril9ezZksUuYLEU30G8oZ04/Y3+oFHzN60njxpa4LgmTjWGXhgwn7XMuHovDxBi2bU0cF/Xm4b13hPiKTnXgsOYMH9uGx/feEexxGIkE+g1txsiJ7UlMSMd19j4KC0qwbV6NRT6DAAhyjuD5w3jUNVXw3+CAqZke8TEpeM3eK0bWnerIyIO3LrxknXTSYz+1IwMdxLrp6Z23BM3fLwCYfXPGzusBiFwcjwnbSIxLxdBUB79dk2U32PfRyV9JkJ3r4hg8XAYGsjPycB25gbSkLMxrGOOzZ9o3/JmnN94QMnu34CyMa8/IBd/a+udm5eM6bBUpH9KpbGWE36G533mPlJdXEDx1G0+uRqGqoYJv+NyfysZvn3rEiunbxbk+qwcjFv06jyYxNgU3u2UU5Rdj28kGpx3TvjN5+1WFrzhBxEoxsVqwdRpt/6WohB8Cnbl/EegAHzds4PLly3zcsOEffX/ciw/4D18pzpvxnRgyv+8/+jl/paIfvsNn6ArKy8rpaN+asd5/fZ0IsM3lIFfC76CgqIDHwblY1TP/5fHXDt9jyxLBb5noO4zOw1r98Ljs9Fxch6wi83MO1eqZ475nxjegHsRqKmDSFqIfx6Otp4Hfobno/mEVdv7gbfZIlYrT/IZ+4wZeXl5B8Ow9vLgbi7qWKr77pmP0OxPDvctPc+7QXSE+WDdWFtVSWiKCeeNeJ6FrqIX/7skyL52z4fe/TnHd+9NOSlS+ef4lG6T3o5EzOsu8dPZvukxkuNQfJ2gY9RpbkpNVgPvMPWSm5WFZwxjPlSNRVlZk+5rzXDn7HAUFedyD7alRpzLnTz5hpxRATZvfk/Zdbbh49jnb1gtKwpQ53ejUrR6hu24QeVy6yvcaSM06lfFy+424d6no6WmwNGQ4iYmZ+PocFY1cj/o4jG2LX8AxXr5KRFNThaUBw3j24iPrpaajk8d3oHYtU5Z4RlBcXEaLptWYMr49i7x/Iz0jH6uqBngs7INH8HE+JmVhaqSNz6L+eK48SWJyFqZGlXCb2xuX5cdJy8ynmrkBM0a3x3nlcdF821rRupEVy/dI8w4HtSQqPoXrj9+hoqSA++QehOy7RFZeIXUsjWnf2JpNxwRnZ9bgf8Zt+0+DnUcJSUgk0M7Kgqtfgj1rWnM+Sgp66tSQAZ2+NrWIfCb+3KdeLSKfvaFCIqFbnepcffWOotIyWlqbE/spnfS8QmoY66Mir8irj5/RUVelfU0rIh+9QV5OjkldmrP9wgMBUlrYcO15HJ+z86hmoodNFSPOPhByc8eB7Vh/9KYs76qgsIR7r4UKa8GwDgSHXpblXWmoKnP69msU5OXwmNCdDeE3RN6Vqci78t18VmSPdLBBv5I6u48KNO00qSsPn3/g8h0hHQxc0J+wEw95+PyDyLtytmPnwVs8eiGAUIj7IMKOPeDal1gIVzuevfhIaJh0/zq7BwZ6mnj6HaW8vIKuneoywaEd7p6/ER+fhr6+JkGB9jx5/J71X5RY49vTo0d9fD2P8DrqE1raaiwNGU55eTnO8w+IyIcG5rj62BEbk/xNsOe0ud15+yYZH6dDlJVV0K5rXaYv6CnSz2fuJTszn+q1TfEIsUdJSYENgSe5+UVKvmoU1WqZ8jkpC7dpu4RraSMLlkhzrV48jCdooch46TG4KWPniklP7KtPeE/bTVlpOW2612OWtwjuKy0pw2/6bpnpmP+eKTKPndSkLNwdNpGXXUDtxhY4bxwnG8cX5hfjMWYTH2M/Y1hZF//QGbIbLEDsiwS8pXLatn0bMc3/2/iGooJiPEetIz7qE3rGlQiIcPzuwSCRSNiwKJQbxx6K8fu+mdRq/OPAx+c3XuPvsEGkKo9qy+SA78nNv6/MlGxc+wXLOB0eB+f+UNH1s7oQep2ti4Xkd3LQqL81ffi7dSDwyN8HOu/fw8OHbHFzo+rOnXQGLHbuZLuHBzx8KN7/C5WVmo1H/6UU5BbSoENd5myc/K+tzRLfJuPabymFeUU06lyPhdun/60pW8SqSH5bLaak8zdPolEnm18e//zmG4KlPK1+U7ow1PHHGVtFBcV4jlhL4tsUjMz08A2bi4b2t2sxiUTCOqf93Dv/XKymQmd9s5oCuHfhBasWiHNmyMxu9J/Y8ZvPb/b4jZunn6KorIDn9snfeOmc3HODA1Jl0kz/oTIvnS95dU9vv0VNQwWfHZNkcQ/3Lkexxl1qHTGtE/2lHLsXD+Jk94ieQ5sxelZXACLD77F3gwAlM1z60rarDUWFJXjM3kdCXBqGJpXwW++AprYah0NvEfFlRe45kCatqvPg9ltW+glimTJcAAAgAElEQVQgN9ShNQOHt+DhvXcs9xMr5cEjWjJkREsijz9m9zapVHx+T1q3q0VQwAmeSKMhAoKHU1JajotLmMgIbF6NefN7snrtOW59idzxHUJ6Rj6By0WzMXhAE7p3sWGRW7iYwtc0wXlBL9wCvzUNDNl0/qtpoOsgVmy7wGupaaC/U38CNp7lg9Q00G1mD9x+bxrYqzHem88gkcDATvWpkEg4dlU0366TurPl+G0+peVgZlSJET0as+yA2BCM6dEEo3+okvxPx0WUlVfQwqoKD95/pEICba0suB4dR4VEQsfqVlx8HUuFRCLWWFGxlFVU0LGGFTei4yguK6dVtaq8SEgmp6gYmyrG5OUX8z49C1MdLSz0dbj4IhY1JUUGNavHzktiijOpi8i7Ki0vp3N9a2IT04n/LIwBuzesyZZIARrmDGjL9jP3yCsqoVH1Khhra3LoylMU5OVZMqITq8OvkV9UQuOaZtS3NGVtuOCpLHboQti5J8QlpmOoq8n80R1xXXtKrMcaVaNp3ap4rxcTl6nD2pCZVcBvZ6VptbN6cvN+LBdviuDOAKcBnLn8kstSD4WAJQO5eTeW42ekCegL+4i8q83iop7k0I4GNmbMWrBPcHIaW7Jwbk/8A4/z/IWQnAcFDiPpUxaBgSeQSGDAgMaMHNWKkKWnuHc3FlVVJQKChqGjo47jtN2kp+ViaWWIT9Aw0j4LP4miwlIaNbNikfsAkj9l4jY3lIL8EmybWuHkbUdRYQluc/aRlJiJqZkefmtGo6GpSujmy5ySdlpOgUNo2MyKnCyRd/Ul2NN77WhUVJWIj07Ge8Zu4Z/RqQ6zvUTid3JCBu6TRIJ5/ebVcFoxAgUFeXGjXHSIxzdjUFVXxmfHJMytxS7/C28g9VMW5tWN8N45BVXpeqmstJyAqTuIlpId/UKny6zpAZLfp+E+cj2FeUXUb1WDRevGfTMxKS8rZ+mUbby6K/xJ/MPnYmJh8N25fmD5KU7tvCp+9y2TfphyDhD/6iNew1dTWlxKy962zFs/4ZcPyfycQtwGhpAU9xlTKyP8ji767uH1q7p/9gnLJ20CYLBjH4bO/2eJxn+lLoZeZ6ebmDxMXebw1yc6lpYkANMAifSvKoCpvr708PXFDEAi+dmnAZF75d5vKcnxqVS2NsYzYiFKyn8dEP6dykzJwqVPANmpOVS3tcQjfP7fAp8XD9xkq7P4d5rkP5yuI9v+8vj4l1/PmdZ9GzM95Mc8rfKycgInbuH1/Xdo6qjjF+GIvrQZ+H3tCzohy29z3jL5m9UUCAJ/wOStgusztAUT/uClE7b+PCd2XxerptVjaND6K8H9RuRTNkhBy+h5Pek9ShCiJRIJW/1PcOX4YxQU5XHbMFZmHRH1+D0Bc/aJ1bNdE8bOF9YR8dHJeM/cQ2lJGS0712GWh3QafPEV66SgZMSUjvQb3lL87k5hX7k7GxwwMNbmUuQzNq8Q06IJs7vStU9DXr9MxHdxmBBw9KzPhJldiY76JGvyOnazYfKsrty6Hi3jMY5waEPfgY1Zt/qczDTQU2oaOGf2HplpoKenHftCb3HqC0HZpT/KKko4uUcI08AOtRk7qg1zlxwkJTUHs8q6BHgMInjtOV6+/iQzDdwVfps7D4VkPNB5IKFH7nHvSTyqKooELB7I5oM3efVW2Jr4ze+L36azJKflUtVUl9mjO7BohVD3tmtsjbWFIcukE555ozty9PoLoj+koqetzqyh7fDYcUasvVrW4XN2PjtP3frl+fiz+k9PdmobGRDzOY2isnIam1Xm2e+iHx5+SKS0ooJWVuY8jEuksLSMphZVeJOUSk5RCfWrGJOWk09ydh5V9XXQUlbmZeJnKqmr0tK6KhdfxKIoL49Du8bskq6rRrWz5cidF+QXl9CkWhVKi8t4/j4ZbXUVRrRrKAM6k3u14Mj1F4KAXFmfFrXMOXRFhIM6De/IjlP3BFO9igG9mteWAZ0Zg9tw81Ecz2I+oaWugsfkHvhtOUdeQTH1a1RmcJcG+G86i0QCg7o1RE9bnS0HBcHXcVwnklOyiYgU2Vyus3rx+m0Kh09LnTQde5H4KZNdB6WM/Kld0VZXJWDZKTGh6tuIXl3rscg1jOzsQmrWMMHLdQAbNl3k5i1BPvbzHoykQoKHewSlpeW0a1+LmbO6sX3LFc6fFcF17t52WFUzwm3RIVneVcCKEZSVlePsuF+Wd+UZOJSCvGJcZu8Tcs6aJniE2CMnBz4LDxL7JhkdPQ3+j723jqpqX8O2LxoECVExAMVAxRZbUWzBQDEwMLATUVS6U1TExNomBha2Ym0bGztARUEEpKX7++O3XOoW3dtz3vO93xj7e8Y444y1nVNA5prrmc9z39ftv24CWtpqnDlyj92SkfBsx0GY9GshdUkkxKVSXUcDv42TqKpRhdSkLFxnbCf3cyHN2ujjuHIMcvJyZGfk4Tp1K5mpOdRvUgv30EnSD5Fty05x+YTkRhk6SUpALiosxmvqVt7HJKOto4HPrlnSqU1FRQWrl+4TCebKCnjtnIn+N7ELWWk5uI5dR+anzxgY1cVj5ywUlb9+aFVUVBDqtJ9bZwVrx3PPXAyMfkyGPrfnOrv8xCpu9rKxmFi0r/T9kPYxA1fLleRm5WPUuRHOO+f+0nVTXFSC95jVIjaiRlX8TixFS+efc2Je3X2Dj9UqykrL6DWmG9OXjf/H5/5uPY96xcppoQCMXjyUkb/TVIWF4SEjw1/bmTLgtawshIX98vSC3AJcBgfw8s5rqlZTw+eE0/9MkJyfU4DLkGUkvf1ELYOa+J5w/GGd+au6d/4xK2cIjY/l/IGMXPjrFPTkd6k4WSwXLJ1OjXD4yfqyvLycVbY7uX32kSAf75tf6Qr12JZL7Fkhic0IHPtDAGhCbDIe1huEw7GXEXbB3zdWkfui2BEoyVPyGE6PIV9xDo9vvWaZ7S7BuxrflXF2A6R/dnDjnxyVoCYWLrOinYmIs4h/nYLHjO0UFZbQvkcTFkhCP1MSM3GdLu4RRu3q4bhyrJgGP3hHoMNX3d/EeX3F+9z7OLevvhLZVmvGU69hTe5HvWaFp9D8DRvbmdGTupPwLg13u70UFpRg3Lkhi9wtSErMkEID27Y3YLHrUJ4/ScDPXegYBwxqjc0MU/aF3eRYhDCxODgPoUnT2jg5hvPp02d0davh5z+ac+efslsiHVgwvz8GBjVwdBNOrHZt6mE/fwBufkelbtrlPiPZEnadG3ck2BBXSyKvPOfsn0JQ7LV4CFfvxBJ59TlysjJ42w/h+MUnREVLaMn2Q1m/9xpvEtKorqmK88z+uK0/RY7kM6lvZ0NW7hb35akWnYiOTeTeiwSqKCuwdEJv/HdfEJy45vWoqqbM2TuvkPsP3ZL/6mYnK69QEgNRgw/p2eQUFdOidk3epWWSU1RMy9o6xKeKGIimtWqQlVNA8udcDKprIY8sr1PSqa5WhSY1q3P7dQLKCvIMadOMo3efAWDT05gdf94XOpL2zbj+PO5rDISmOtclMRCzBnRm/XFxAY42aU3U03e8/ySiHiy7tWTTcdEEzRnWlRM3nhGfIv7Mxryj1JI3pm9bkj5lcy1aEgMxy4xVuy+TmplL/TrVmDO6G25rTom1V8fGdGpRn6DNQhE/cVhHqqoosTFM4mKabEppSRmbJa9tp/RGUV6eYAk9eeLoLjRvUgcXH4kiv3sTbKy74+B+iOSUbOrU1mSZz0gOHbnHyVMPkZWVwcVpKDo66jg6hJOfX0yrVno4Ow/leMR9wr9wc5YMon37Bvh7REhdBQErx6KqqoTLon0kf8yiTl0t/ILHCkHzwr0kfchEp44mPqvHoVJFgRUeX0V+vmusqaNXjdtXXrHWRzxpjZnek6FjOkmetMJ58SgeNXUV/DZNpkYtTXKy8nGZvp30lM/oNayJV+gklFUURW7NjO3SvCufrVNRk0wwjm6/xuEtYpS8KMgKY0lAZ1lZOcvm7+bZ3beoqivjs3umdCwOsDPoFBcO3kFWThanjTY0M/66VirMK8JzQqgIKtSths/euT9MTMJXn+WkZFrjsGkaLSqxaN8595iQBYIhY7XQnKHTKxcZ530uwNUymNQPGeg2ro1X+MKfclFANFqrZm3l4ReacsTiXwaB/rUSY5NwHRpIYV4R7fq2/O01y+9UyvtUPIYvp6SohG7DOjA18Peaqh0lJWyvZHIjBzQ6eRLG//zv+9LoPLkqcr38Tzuj37TuT4//b6qkuBSvUcG8jo5Do4Y6AaedqVbrx8nJz+rVvbf4jF0jmk+rLkwPrDwE9ktlpmTjODRIpKYb6eJ9cOFPOU1b3Q9yYd9Nca3/MZPmlVyrfx6+Q6iTcClaLx3C4Cmm3/15WlIWrmPWkZOZR5O29XHZOh35b0Ihb5x5xBoHcf7ouX0ZNu3r+XEvPuI1dSulxWV0GdCSOb4jpT9bZPhtti//GuPSZ7iAFaYmZeFis1UYBlrp4bJ2AvIKcnzOzMNtxnbSJdNgz/Ui/Pfd6xQ85+0W02DTplLd3461Fzh37IGYVAWNpnnberx6loj3knDKysoxHdCSmYsGkJGWi4ttGNlZ+Rga1cFt2Wg+Z+d/95DnHjiKxA8ZuDkcoLi4lM7dGrNw6SDOnn7ENsk6a+78fnQzaYKb6yHi4lKFdCDIikeP41kjcVVNmtidbt0MWeJygMysfBo31MHT2YLAkDM8fCLRYvqM4uT5J5yWBDx7LhnCi9fJ7I2Q5CDOHUBCUib7jouHece5A3n4MpHTV0Qj5G03mAORD4h+8QFVFUW85pvjv/U8qZl5NNDVZuKQDvhsPScm/KYtyC4o4sLdGOTlZHGa1JfgA1ekIdatDXXZf0m4iJ2sf22U+Fn9q5ud5Jxc9DQ1KCoqITU3D4NqWuQVFfMpNw8DbS2Ki0v5mJ2DvpYGynJyvEnLoGZVVfQ0NXgYn4SakiI9GhtIwzzHdWnDnuuCDmndvS3h1x8LR5aRAXHJGcSnZVNHS51OjfQ4cfcFsjIyzB/UjQ0nblJaVk6/doYkpWfz7H0KGqrKTDfrRLAkvHNM7zY8iknkWZxwWtlbmeK/47w4r2MT1FWUOHZZMHjcpg1g94m7klWWKs7T+uG25pSABDbTZVT/tnisOSVs8abNadtMl4ANYpQ6dmh76tfVZtk3cKgmDXXwXC5oyeZ9W2LepzlL3Q8J1k5LPZbaDsDL/5iIgdCswnK/0dy4GcvOXcLiOH9eP1q30sPRIZyMjDwMDGrg4zuSWzdj2bBONFBTppvSf2BL1gafIep6jHAVBFlRV68avi6Hef0qGQ2tKvitGkdVdRX8nA4R8/wj6hoqgjtRvWqlIr+XjxPwlzis+lu0Y9LcPkIT4HeC25dfiietdROo17AmRYUleM7dRcKbT2jrqOO3xYaqmlVEY7Qg7BuuxlSq1xITjGunH7FZMrK2WWpO72HiRvklBiIq8gnyinK4b52GwTcW3JM7rxG+Vtx45geM/i7Y80sMxKvod1JuiPZfPrQuHIhih694Kpzlb0X3wT/mKb16EIefzUYxfh/Thcluw384BiSizPFriXuagFZNDfwi7FHX/vVefIfnIS7tvynNR/od6F922mdchi4TMMO2BrgfWPSDQPX/VOXnFOA6JICsT9k0bFMfh9+kBkdGRjJ9+nQABiIaHCT/vwnQ1fl5g1eQV4jrkEBpoxMY6UbTjv8bZlBZaRmBE9cSffEJyqpK+B13oG6jf87S+RCbhJulEJi37d0c+1/QjgFys/JwHraCpLef0KlXHf9ji1GvVvk1cyDkDEck+ryFayf9MK0BuHfpGSvmivysodN6MX7J98LtnKx83Mat41NiBnUb1sQrbA7Kql8bq8c3Y1k2b6eYdIzpzGTHr5O7lIR0XCdsJD+nkBYdG+CwdoJ0+hR1/ilrXET8xaiZvaQxLp8z83CZvFWE/DaoideWKShXURT6ulk7SXibSvVaGvhK7hFC97eT3JxCmrXWx0mi+zu29xbhf0hAem5D6WLajA/v03CzDaOwoJi2nRqw2GsY+XnFuNiGkZKUTV39aviEjKO8vPyHh7y8nEKcF+0T+sKWurh4W3Ln9htWSVyoY8d3ZehwY/z9jvP4cQKqqkoEBFqRnJKNf6CQDgwZ1IYRw9vj4HqQj0lZ1K6lQYD3CDbvvMq1m5IYB3dLop8mEHZI4pSa05/8wmLW77gMwKwJJsjLy7Jup3g9e0IPPucVEnZM0gjN6MeNh2+5cle4c71tB7Mu/LqwlGtXZcH4nnhsOkNJaRmmxo3QqaHOgYuimXGY0Jttp++QkpFDvVpamHVuRugxMQyYY9GV5Mycn16Xv6p/dbNTrYoKmopKvMsQcQ9qigrEpWdRU02VasrKxHxKR1u1CvW0NHmUkIyakiId6uly7dU7FOTksGhrRMQ9McWZ2L0du6+JFZCFsRHnomMEV6d+bcpKy3mWkIJGFWUsOhoRJkk3n2PehZ3n7pFfVEIHQz1U5OW5/vQdSgpy2A03ITj8CmXl5fRrb0h+QRE3nwrokvOEvgTuukh+YQntm+phbKjL1qNiOrLIuheX7sTw8FUiqiqK+MwdhN+mSNKz8mioV53543vgHCwU8V3aGjCsbytcVwgYVP8ezejVpQluy4XVsH9PIwaaNsfJ9wjFxaV0ad+AGRNMcPA4TEZmHg3q18DHZRir1p3jwcP3AkDlM4r4+HRCJPkz1uO7MrB/S1xdvrE4Bo7mzesUAnyPU1EBQ4e1Y+z4LuzZcZ1Tx6IFGNFzGM1b6hLsf5J7tyWRD8vHUEdXizUBJ7lzIxYlJXm8V41Dr351IvZGSUV+C90tMO7SiA/v0vCwFTEQ7bs1xtZNQMH2bvqTM4fuCifGMiuat61HWVk5y5eG8/zBe1SrKuO72YYatTVFY+QRwZ3LkhiIzTboS8SST+68kcZADJnQlVEzv1rBD4Ze5OQXS2zIhO/yrm6efcwGV3GDtbY3+y7v6gs35Pa5J1JuiN5fEsUfXHnOKltBJx4xtz8WlUxrkt6l4jFmDUX5xbTr3bxSa++Xrxcyb5s078rn8EJq1f91HtTpbX9Kgz3tNkyhfb9Wvzz+2youKsFrVDAfXyejU78Gvscd/pbb8p9WRUUFK6as593TBKrV0sTnuCMqav/8az148IARI0ZQWlrK+OHDOaWjw7vWrflz4ULetW7N1Fq1oGbNSs8tyC3AZZA/j688lzY6zTr9bxodYRHfxLXDt0VI5SH734rWSHmfhqP5MiEwb1sf9/0Lftl8FuYX4T4qhLdP4tGqqUHA8aVo167ckn5m51W2S0Jop/uOpt/Ybj8c8+LeW3wmhwqI5vAOzPK3+l6An1eEh/V6qQDfb998NL5pxl8/TcBzymZKikrpMqAV8wO/np+ZmoPz+FAyPn2mnmEt3LdOQ0lCx35y5w0B88PEg9CojtgsFSu7grwi3KdvJ+HtJ9HQbJ+KRjVVYUBYsIdXjxOoqqGC7xZxj8jKyMN5xnbSUrLRb1AD7/UTUFZR5NKpR4QuE6LfiXP7YGbZXkpHzs7Kp3GzOrgvH0N5WQUe9vuIe/2Jatpq+K+xpkoVJTyWHuBtbApa1VTxDxmHrKwsjgv3kpaaQ7361fEJsiL2VRI+nhGiyTNrhc20HqwOieTatVcoKMjh7TOC8opyXN0PU1JSRvduhsya2Rs3nwhi36SIh1N/K46desiJMxIt5tLBpGXmsnarBOA6wYTq2mr4S5ACo4YY06BeDfzWidejBxujXU2N1ZLGZ9bY7nxM+8yxi49FBuNsMw5EPuC5JJrIeVo/vDZHkldQTJsmdenQUp+NR8S9e/4oE47ffMbbj+nU1FJj0sAOBB8UE6vxfdty/XkcW07f/um1+av6VwuUG2ppEZ30iapKijTSrsbNuASqKinSTKcGV2PeUUVRgY71dDn7NAYFOTnMWxhy8I6ABo7t1Jqw66K5GdulNQejnlBaVk6v5g149j6Z1M95NNCphm41dU7df4Wygjw2vdqz9oTQyEzsZcypWy9Iz8mncd3qNNfXYee5e8jKyLB4lCnrI26IzKwmeuhX12Db6TvIysjgOqEfGw7fIONzPo31qmPZsxUeG8UIdtKQjsR/zOTy3dcoyMvhO38QG/ZdI/6j6Kbd5gzEZcUJsnMKadawFnPGmWDndVDAoFrVY5JlZ+a7hUvhUNPGdWOB834+5xTSzLA2TgvMcPGOIP5DBjVrVCXIeyR7D9zi4mUBoPJ2HUZZaTnevhKLY/+WTLTuhpdXBM+fJ6KmpkxgoBW5OYW4uwjdTncTQ+ba9ufsyYffuQq692zK9o2XuHBGZGC5+Y2gafO67Nr0J5HHxWrMyW8kzVrqcvX8M6nIz2ZuH/oNbkNmei6uc3aRnZlPY6M6uKwQMRCREffYvf6LS2IIXfsYCXHislPcOP9MgNDWTaC+oWgw9m+4xNkDd0RjFDKOZhJq8vvYZLxn7KCkuJSu/Vsw032Y9AZ7KeIe2yW6geluFpgM/vok++J+HMvmCgv5wHFdGWf3fTBn+JrIr9yQDTY/iDPfPk3Ad9JG6QfDVA/LH67rnMxc3EavlvJ2XHfM/gEs+KV2+UZwYe8NZOVkcd09l8ZtK3dofam75x6z1nYHAOOdh9H/N5xTFRUVhMzawtPrLwW35ejS31qz/G5FrD7NtcO3BaDwyBJq6FbOE6qs4uLiMDc3Jy8vjz59+rBt/35kKyrQVVREV0ZGCJKLi0Hpx7XNl2nStxOd/1WjU1FRwbr527gQdlWsiPbYYtz3nzef6UlZOJgHkPohHb0mdfA7uviXzWdpSSl+E9fzLCoGVY0q+B21/+n68tqxe6xdJNLHR9uZMWJu/x+OefciETdJU27cuzmL19t8N1EqLirBZ+pmXtyLQ01DBd99c9HR//p7THz7CTfrjRTkCjqy4/pJUp1ZbnY+rhNC+fguDR29aviGzZJiIN48T8RzmqAjd+7bHFu/EVJHpd/83dIpru+2adSsoyUaSqeD39CRJ1OvkY7IwZq9gw/vhMPKb9NkqmpU4c61GFZKQjyHjunE2Ok9xUpq7i5SkrKoo1cN3zXjUVSSx3vJAZ5Gx6OqpoTvmvHU0NHA2+Ugj6PfCzpy8Fg0tVRZYhv2nY4x9dNnXJ0PinVWl0YsXGzGtm1XOfVFOuBiQfXqVVmwMIz8fEFHdnIYTMCKU0Q/iqdKFfFwevveW3btF7buRXP7o6yiiKev+N5HDGlH65Z6LPI8KNy1Jk0x7WLIQm/xup9JM4xb1cNxhbDejzZvh7KKAqEHxFR/8ZQ+XIt+wy1JNJHHrIEESejIDXW1sejVEq+t4t490aw9D15/4PEbwdmZY9kd/7CLQpzcqRnvUrN49DYJtf8wyuVfPdm5F/8RBTk5OtfX5+a3dOQYEf1gZtSYs0+F3XyUcQtpozO+c2vCox5RUQGD2zblwuNYITo2qMvnnCLepGRQU12VLo31OXVf2M1nD+jMxjNRwv7d0YhHrxOFLkerKubtm7LznNh72g43Yc+5B6R/zqexbnVMWzdg22kBebIfY8rBiw+JT86klnZVZlt2w2eroEsOMmmOqpICh85LnFUzB3D0/GOexHykqqoS/nZDCQw9x8dP2dTV0cR1zgBcgo5JYVBLZvbDMSBCGvvgMt8MV/+jJH+SKPKdh7FibSRPXwguw3IfQUfef+grgKq2jgbObpKIhw4NWGQ3gLVrz39HR1ZVVcJ5aTh5uUU0b6mLk5sF926/IeQbV8FQy/acOHKPfTsl4mmHwXTs2pjTR+6zZ6tkJOwwiC49m/DkwTuC3A6L6crojljZmIgb0NzdJCdmUltXC+91E1CposTda69Y7SXelFbTejLYStCHI3Zel9KRFweOplVHsZK5EHGfXSHijTjb3YLOkpDOv9JVl0roqgDR12NYtVg4WSynmzL8G93Ax3epeNpspriohA69jZjnP+q7J9gLB26xM0BMTGb7jabbX8b9qR8zcR+7lvzcQlp1M8R+3Y/RBgIauIEPscnUqFsN7/AFVKn6PYjtS53fc529ErKu7epJdOjfutLjvtSbR+/xG79WrMXGd2eC64+N1q9qf9Ax6Yey6z476jf/Nbflv6m4J+/Z6iSsybOCJ2PU2fAfn5ueno6ZmRkpKSm0atWKw4cPo6ioKBqbL78vGZlKG52M5EwW9/L4f63R2eIQxsnNF0RzvH0O3Yf9cz5RdloOToMDhZi5fg0CTzmgWfPnAvOysnKWz9jCnS8i4wN2NGxVr9JjH/z5jKAZWykvr8BsUg9s3H+8Vj7GfcJ5ZAi5Wfk0bd8At+2zvpsolZWVs2LeTh5cfoGSiiLefxHgpydn4zJ+A1lpOTRsoYv7tulSAX9hQTGeU7by9vlHtGpUxX/PbKpLGuvEuFRcJ20hP7eQFh0McFxjjZy8nHBUOhzg/rUY0dBstqFeYx2xkvY7wZXTj0VQ6RprmrXRF++1BWHEPv+IhlYV/DfZUKOWJs+i3+O3WNCRe5m3YpaDOYUFxbjZ7iH+bSraNaoSsGEi6pqqBHsf5/b1GLFODx5Lg8Y6rAo8SdTVGBQU5fAOskLfoAYeTgeJeZmEuoYKgavGUVpajuOS/QLL0VIXN6/hRETcZ99e0bTYLRxIM6M6LHUKJzMrn0aNdPD2tGTD5ktcvRGDgoIcfh6WfPiYKXXTTrHuTqOGNXELPCYamx7NGNyvFQ5+ERQWldKxbX3GDuuAQ2AERcWldGpbH4v+rXELOSE2A92bYdS4NiG7hE182sguvEvKIPLmS+TkZHGfOZCNh27w4VM2taurM214F/y2n6e8ooKhJs1Jy8nn+uM4lBTksB9jyorwyxSVlNKtRX3KZSq4/jQOZQV5lk3/51ysb+tf3ezIIFg651++RgYJS0fS3Fi2NeKIBBo4pkMrKR3Zoq0RJx+8FFqcpgY8jxd05IY62miqKPMgLv4T0O4AACAASURBVBE1ZUWGd2zO3mtiBzlrQOfv6Mg5uYU8eZdMVRUlJvdrz7qj4kN9cv8O/Hk/lvcSAbJ133asChfTjimDOnH3WTxP3iShrqqE08S++G45J9ZRrepj3ESX0AOS6IRxPXn8MpGr98SEx99uCFvCb/Aq7hOa6ioELB6C//qzfEgWMCjfxUPwCj4phUMFOg4jYM0ZYt9KIIIeIwg7cEu6z/V3syQ+Pp21G4XAedrkHnQwNsDB+asTy8NtGAfCb3PyhFhLubhY0MCgBk5Lw0lNzUG/njY+/qN49zYVX7cjlJdV0M+sFTYzTIm69or1K8WIdOK0ngwc0obb12NYKxkJj5vaA3NLY96//SRNBu7WuxmzF5tRVlqO/5JwXr8QNyDfDZPQ0lYj9lkifvb7hV11SBsm24qIhmtnn7BFkpk1dYkZPc3FU3H0zVhCJInjI6ebMlhiUc3PLcRj2rZK6apxLz/iO3ObCP0c0papLl/x958z83CfuInPGXk0aqmLU6jNd06n6KsvCVkkXD0j5/RlyJSe312reTkFeIxbS1pSFvqGtXGvJJ28oqKCENudPLkRQ5WqyniH21Zq7QV4dPUFIfOERsLKfhBmk00rPe5LpSVm4DZ8JQW5hbQxNcJuw9TfYsRcO3Kb7a5CPDpn1WTa/01j9d9USXEJgRPWUlJUQqdB7Rg6Z8DfnySpgoIChgwZwqtXr9DT0+PMmTNoaPwzh9mHmI8s6OZK7IM4NGuoE3TB43/W6ADs9j4kBTHahU6n99hfW8S/rbzsfFwslvP+eSLV62ix7Iwj1b+B7v21KioqWGe3UwoZdA2bR8tuTSo99vnt13hZr6ekuJTuFsbMqyQyJC0pE+eRIWSkZFPfqC4+++d/p8ERrJ19XDvxQExbd8ykWfuvurDPmXm4jN9ASkIGtetVx2f3LFQlE6nSkjICZu+QGgN8d8+ijmQ1m5acjfPEzWSl59LAqA6eW6agpKwgiYE4zuWTIvvOdd1E6RR374aLnNh7CxkZGewDRmLc3VBkuDke5OHtt4J4HDoJvQY1eBuTjMd8sTrvaGKIvbclZWXl+CwJ5+XTD6ipq+C/fiI6tTXZHBLJRcnk2iVgFC3a6LNl7QXOnXqErJwMrr4jaN5aj0Cvozy8/w4VFUX8V45FVU0Zh8X7yMzIo0HDmvgGjObKlZdsDJUgQKaZ0qNHUxydD5CcnE3dOloE+o8m/PAd6arK1WEIpWXl+K386qbt0d2Qpd6HKSwqoUPb+tiM68YS38Pk5BbS3LA2821McQiIICe3kBZN6jBtbHccVxyjsKiUzm3qM8CkKT6hZ6iogBH92yArJ0t4pJBsOE7py8GLD4mJT0VLvQqLJvTCe/s5ikvLMG3XEDVVZU5FCUfX4rG9WBtxg5z8Ilo1qI2ujiZn7gqGnO3w7mw/d/cfX+ff1r+62TFvbsiJJ4KIPKyVEcceiubGsk1zIu5/Q0eOfilWVE0bcDsmns8FRbTWr01OXiFxqZnoaKjRRr82l568QV5OFpte7dl6QfxCJvZsx/Fbz8jKK6S5vg46VdW4+uQtivJy2Fp0Y/Xha6Kz7WJEXGI6j98moV5FCVvL7gSGXaS8ooLBXY3I/pzPleg3KMrL4TltICt2XSIrp4BmBjqM7N2GgD+EAHCsmTGlJWUcPicmPB5zzDh79QW3HwkGwrKlw9iy9wYvYsX+dJmzJWv++FP6ernbCLbuuc7d6HcoKykQ6G7JtZuxHDkuVnbOiwchKyuDb9BJobcZ1AbLoe1wcTtEUlIWtWtr4u83iuvXY9i2TUxh5s3rR+cujfByP8w7iTsgIGgMebmFuC4Jp7CwBOOODVjkOIiXzz/i7yYslWZD2zJ+igkxzz/i53SI8vIK+g1uw8SZpqSn5uA6P0wI9Vrr4eAzAllZGdYHnOTejVihr1ljTd162qR8zMR97i4hCOzcEDtJ8vjTe3EELQ0Xv2frLoywEWTOuFdJ+M7dLVZFg1pjs1ismspKywiYv5s3zxLR0FbFZ/s0qY08PTkb90mbRSZV54bYB4+XTl2KC0vwmrJFOKvqauG1YyYq39zY379KwnfqZvH1hrXH5i/ckLLSMgKmbebt0w9o1VTHe/981CoJ7QxbdpxLkiR0lx2zMWj+ow0dICEmCe/xa0Wsw/AOTPYY+cv3SVFBMV6jQ0hPykS/WV3c9tn+lqD4zaP3BNkI4rDF3IEMnf3jOuP/ZO0PPMrbx+/RrKGO/dbZ/7gpKysrY9y4cURFRaGpqcnZs2epU6dywvRf63nUKxZ0cyU57hN1GuoQcsOXJr+hm/ndCvM9TJiv4MXMXjkRs6n/3KFSkFuI67AVxD6IQ6NGVQJOO1KrfuXaIxCNx2bn/Zzeflmsc7fNotPAyqM8Xj+Ox230arGW6tOcpZum/WBFz07PwXlkCMnv06htUAP/g3ZU1fwK0ayoqGCbTwRn99xAVlYGh9AptPsmdiI/txA361BpDIT/vrlo1RAQzfLyclYu2sOdLzEQ22bQwEi437Iz8nCeuIlPiZnUrV8dvx3TpQ7H3SHnOBF2UzQ0y6xoL8m+O7b7BmHrRBMxy2UwpoPaiMBPn2PcuPBMwEnXWGPYXJePCRm4zBYiZaM2+jgvt0JGVoYgtyPcvyV0h75rxlO/YU32bb9GxD6hPbF3t6CziSEHwm5ySOJMXeQ0hM7dDVmz4gzXvuRiBY6irm41nJbsJ+ljFrXraBKwfAyPnySwPEg0vSNHdWTYcGNc3Q/xNk4QlIMCrbh4+Tm790mmPvP6U716VVx9jgq2jkkTRg3vwGKPg1LJgv2cfjj4HSE1PZf6etq42JrhFHSM1Ixc6utqYz+9L47Lj/E5t5DmjWtjbdERl9UnRf5VZ0MM9LSl0UQLxvXg2sM3PHjxgSrKijhN6YvfjvPCMNOkLs0a1GKPJPfRbnRPdp67T1p2Hg3raNO5RT32XxZDg3kW3dgaeYe7sR9+cXX/vP7VzU7k89cAmBsZcvrJKyoqYGDzxkQ+jaG0vJxeTQy4GfNOrKjq1eFDejYpn3OpX0MLLRVlHr5PoqqyEuatm3LkllhxzerXia0X7ogmpX0z7r5KIDH9M3rVNehiqE/ETeGYWji8BxuOR1FYUkpXo3ooyspz9bFoghzH9Wb53j8pLC6la4v66NXQ5MhlkWjuNrU/247eIvFTNnVqaDDPygSP0NPiIutkiKF+DTbsk1jGrU2JS0jj9GVhBfSxG0zk5WfcuPcGRUV5Ah2HceRkNDfvvRWvXYZz4coLzl6SMBQchvLxYxahf1wGYO70XjQyqIGL52GKi0vp1rkR82b2wS/gBK9eJaGursIy/9G8j0tlxXLx5htt1QmLYcasDDpF9AMhYvZbZoVKFUVc7PeTlZlHw8Y6uPuO4FNyNu5L9gvSZ5dG2C4xJyUpG/eFeykqFNwJO5fBgkRqt4dPydnU1dfGK3gcSsoKhG+7ypnD9yTC41E0baVH7ucC3ObsIjM9FwPDWriuGoeCgjwf4lLxnreb0pIyuvQxYobjYGRkZEhLzsZ92jbpiHvRMitkZUUA4Dr3I9y78ko0UlunUluiHSjIK8JjyhbSkrLQbVgTt81TUVQSzUB5eTkrF4bx/O5bVNVV8N41i2rfsGiyUnPwsN4gnCKdG7Fo9YTvVlMVFRWsd9jHvYvPUFJRwDNsHrX0f4QGXth/kz3LBHF1frA1xr0rJ95mp+XgNjJYcFE6NmTJ37huKioqCJ61lZgHcahrq+FzZBFq33ww/V19zsjFa9RKivKFxXzWign/+Nz/pN4/T2CvJMV8zuopaOn8M01QRUUFtra2HD16FCUlJY4fP46R0T8LIb157C5L+njxOT2HJh0aEnLDj7qNav/HP8PffZ+7vA6yy0tMHacFjGO47a9ZON9WYV4hbsNX8PxWLGqaVQg46fDTyJAvFeZ/VJp3Zbd+Cj0sK1+Vxb/6iItlMHmfC2jRpTFulUwf83IKcLVaQ/yrJKrX1iTg8MLv3g8A+0POcmiDmBrbrhhP98FfYyCKCorxstlMzKN41LVU8ds3h1qS92FFRQXrXQ5x+dgD5ORlcdlkQwvJSvpLjEvC609Ur62B3+4Z0tDPI9uusu8L7dhjmDTM9/zR+2z0F9o763l9GDq+q7DRrzxLpCTw03G5FW06NSQ9NQeXWTvITMvFwFAHbwmcdP2yU1w9/wx5eTk8VoyhWUs9Th6+x85QseqZbT+QvuatOXM8mj8kHLAZ8/vSf1Brtm3682sMhMcwjFro4up0gLdvPlGtmirLVo4l8UOGNAaiX/8WTJnSEy+fo99AXK14/OwD6zeJv3vKRBNatdDDwf2QmOC0q8/c6b1Z6n2I1PRc6ulp47lkCO7LT5DwMROdGlXxWTIUz9WnxOvqVXG3G4RryEnR+NStxvyJPXEKOU5BUQmdWtWjR8fGrNgpiSYa2pG3SRlcuf8GBXk5XKb1I3j/FYnmtAZ9OhiyIUJsJGYP68qJqBckfMqijrY6Q7oZsemUhD03qBMHrz8mPSefRrV/vP/9k/pXNzul5eX0bFSfG7HvKC4to2tDfe7HJZJfXEI7/Tq8/5RFem4BjWpqI1chK00qb6NXiysv4lCQk2N89zZSaOCU3u3Ze+2haFKa1CM9K4+XialoqakwqmtLtkWKac/cwd3Ye+kBWbkFNNWrScv6tTl89TEyMuA4rjehETdEJkg9Hfq0ayxVqttZ9eRC1Cuev01BQ00Z16n98Qo9IzrkpnUZbNIc/00SC7m5MWrKimw7JGHYTOvLu4R0jkaKMabHAnMePU/k2Dnx2t3OnHfv09gZLrp/+zn9UVGSJ2ClJN9qmDF9TY1wcJN0/01q4+owhNCNl4i69RU7XlJShofHEUH6NG3G9Om92LHtKhfOPUVWTgZ3b0v09bXxcDggFdv5Lh9DSUkZLov2SXkSrr4jyMsrwnXBHjGubayDS8AoZAB/x4O8fpmEhpYqvmusUdeswp+nH7FjjbhBzlpqThfTZpSUlOK7aC/xbz6hXbMq3usnoqqmTFZGLm4zd5CTXUCTVnosXW6FnJysWFFN3ya1m7pvmCRtWg6EXuLs/tuCabN6vBQaKFg6u3jz9AMa2mp475ghFUEC7Ag8ydUT0cgryOG6ZSr1mnz9ECwqKMZr8kZSEtKpY1ADt20zfvhwOLz+PKd3XkVGRgbHTdNpIsnw+bYeXX9JiMSdNdrODLOJlYuGiwuL8Rq7WmoX9txv90uWDsCBFSe5fCBKrC722v5yAvDXKisrJ8B6Dclxn6jdoCbOexb8ElL431Z5eTnB0zdSWlJG58HGmFp1/fuTJLVs2TI2bNiAjIwMYWFhmJj8ff5ORUUFB1ccx2vEcooLS+ho3pbllzzR+oXu5b+piooKdngckE50pi8bz+jFPyaF/6wK84vwGLlKGuzpd3zpTzU3X+rQmjOEBQgg5Zzl1gz4iSA9+X0qzparpOnkXvvm/8DcKSooxnP8emIfvkdDWw3/wwt/aNwjNl9il6Rpn+45ggHfOBVLS8oImLODx1GvUVFTwidsNvUMa0v/bbb5n+D0HjGdWRJiTYdeolktLirBZ9ZOYh4niBiXnTPQkazsIg/eZUuAaGgmLRrI4PEiz+vG+WeEuIh/52ETuzFuTh8A9m+5zGFJarid53C69WlOTnY+LrN2kPRBaAT9Qiehpq7Cjg0XOXX4ntBT+Vhi3KURl889Zd036/hhYzpx9dJzVkv+m9WErowc14WDe6PYL9ERLlhiRufuhni7H+Hpkw+oqikRuGIsublFuLoeEk7ZLo1YuHAgQStOcefuW5SU5AnwHUVSSvZ3GYV9exux2PUAObmFGDWtg5O9Oc7+ESQkZqJTQ50A1+EEro/k1ZsUNNRVCHQeTvDWC7z6EgOxxAL/jZEkSGIgnOcMwHXNSTHhaVSbkQPb4bMpUhoDUVZRznFJDITzlL5sPX6Lj6nZ6NbUwKp/W1buvwzA+H7G3H6ZwKuET2hVVcG6vzGrI8S/89hebfjz0Rvp0MBpzP/P2fntaqOrQ2xyOp8Li2lRR4fkzBzScvNpVFOb8rIK4tIyqaWhRgNtLe7GfUBFUQHzVk04dk8knU/t1Z5tF0SjM7xTcy4+iiUzt4BmujWpVkWFW6/iUVaUZ9aAzqyTQAPH9WrLlUdv+JCaTR1tdSy6NGfzCUlEhKUJEVcf8yE1m7rVNbAx60DgLvHEMX6AMR+SsqRBad6zzFi565IU0DR7dHfc156itKyc3p0Mad+iHss2SyCAwzuhpqxI6G6JuHdyL4qKSr9CA6f2RlFBnuBQcfzkMV1o0fQbaGA3Q2ysu+PieZikZAEN9PcawbET0Rw78QAZGXB2HIxOTXWcnQ6QlydEcw6Og4k884g9u0TnvtDeDOP2Biz3O87Txwmoqinhv2IsVasq47E0nMSEDGrW0sBnxRjk5GXxXhJOwrs0qtdUxydkHFVUFVkfdFpiO1fAe9U46uhV48n9dwS7C+bMcOuuDB3bWVBLPY9Kd+re6ydSo5YGRYUleM/dTXJCBrV0tfDcMBFlFUWxKrLbw9uXSWhqq+HzxxRp03L5RDQ7JByLWR4WdOn3lYmzxecoty88Q0FJHo+tU6n9TVRD5L4oDkqeUBcsH0ubbl9FsuXl5QTb7ebl/TjUNKvgtXvOD5ySG6ei2eopLOozfEZVyif5+DYFnwkbxEpqWPufsnQqKioImb+dZ1GxqGpUwefQIjT/kp/117p1OprtHmKCMHulNa17VJ5g/bPa5XmA++cfo6SiiPsB+59yWP5P1dk/LvE8KoYqVVWYv37aP15f7d69GycnJwBWrVrFyJG/XuuBcFz5WAWzeeluwZ+a1gfvow6oqFYuBv9vq6Kigm2u+9kXIK7zmcsn/Fa0RnFhMd5Wq3l4+Tkqasr4HVtC0w6/XrMd33SBLc5CZzXZYyQWs/tVelxqYgZOw4JJ+5iJftM6+B6yQ/Uva9biohJ8bTby5GYMVdSU8Q1fgL7h99OvyL032OwuQTIsGYzlrD7SPysrExPS2+efoqikgOf2GRhKHjgA9q87zyHJ9MI2cDQ9hwruVGlJGQHzw3h4MxYVVSV8tk+XoiOunXnMGgkCYsTUHljNEuiI6JuvCbTfJ6YllsZMdzBHRkaG43uj2LlWvJ9nLjWn/3BjqRni3etPQni8yYZq1atycNcN9m+TQFqdBtGzfwvu3IglyD1CGFtGtGfiTFPu3X5DoIewjptZtGXK7N6cORHNZoljdOqsXgwY1IYg/xPcuf0GJSV5/AJHo6Agh5NjOHl5RbRurY+rmwUbN/3JnxJnrJeHJSVl5Xj5HxPO2L4tsBrZkcWuB0hLz8WgXnV8XCzwWXmKV69FYxPkPoLQnVd58CUX0WU4f4R/zUUMcBzG2rArxEi0n94LBuETepbUjFwM6mozfXRX3NdLwLUdGlNHR4Pdp8Tno/2EXhy+8oQ3ielU11RlxvCuLJPINIZ0a86H9Gzux3xAVVmRWUO7EHzkqtiOdDLiecInYj+mUV29CgM7NmV26JFfXrc/q391s5NfUEpSdg71qmkiLyNDXFomOupq6Gqo8yherKhMGtfnvAQaOL5ra3ZfE4Irm57G7L36kJKyMkybN+DNx/Sv0MCGepy69xJZGRnshpiw/vgNKTTwY2o2T9+JiIgZ5p0JPiAEyOP6tuVRbCJP30qggWNM8d52jtKycvp2MERLVZnDlyRTmBkD2X3yHm8/CGigy7QBuK85RW5+Ea2b1GWMuTHuq05QVl7BAJNmdGypj99a8WFtNdiYxvVrECBhJIyxaE/LpnXxDBJsnYG9mzN0QGsc3A+Rm1tEi2Z1cVxohn/QSV68SkK9qjLLfEbx8GE8m7dIRrGz+tDe2AAX54N8+vQZPb1q+PiM5NHDeFatFF/XemI3zAa1YdumP7l88bnIbvEfiX796iz3OcZzyROLX/BYqmmrEex9nCcS66Xv6nFUr6nOod03pE9KDr4jaNpSl4R3qXjZ7RUi5T5GTLcXYtS9G//kwvFoZOVkcV4xhoZN61BeXs4KxwO8eBiPmroy3psmo6mtJmIXfI5LV1SemyZLScfP778jeInQ9Qyf0oOhE7+KQI9tv8oxiS5pcfD47wjID2/EsNZJnDfObiB9R34/+t8ddJKrx+4Ld8cfM34IOnz9OJ4gSer4kKmmDJvZh79WXnY+HmPXkpuVTxNjAxZv+HmO1ZF1kVyUEGxdw+ZRr9mvKb7vXySybPIGgdaf1pshM/r+8vi/1o1jd9kXKCYCCzfNoGHrX08Q/tsqLixmt7dozCZ5WVFT75+Nui9cuMCUKVMAsLe3Z8GCBX97zvsXH5jXyYlrh24hryCH7fpp2G2a+T+bWlVUVLDVaS/hQcI5Nzt4EiPs/rkjpbioBC+r1dy/IICDvkcXY1QJwfjbOrn1EuvthW3cyn4QYxZXns6enpSFo8VKkt6lUrt+DQKOLELjL1EYpSWlBEzbzN0LT1Gqooj3vvk0bvP99XD56D1W2+8FYMTsvoxbZPbdz7/OMZzLR+8jJy+L8yYbWnX5+v0f236VXV8IyG4WDBwrpjNlZeWsXLyfWxeeoagkj8dmGwxbCQfg3SsvCZI0NANHd2SqwyBkZGR4Ef0e7/m7pSG/C7yGIysry4Xj0WyQTIDGz+rF8AndhBvLbi8vn3ygqoYKfhsnUUtXi9NH7rF1tQCGTpnfl0EjOvDkwXtp3pXpgBbMXWrO8ycf8HIUeVc9ejfDdok51y6/JCRI/Cyjx3XByrora0Mi+fPSc+TkZPHwHkFNHQ2WLt1PVlY+jRvXwsd3JHv335I+eDo5DEZdQwUXL8HW6dalMbOn98LB4zCJH7OopaPBMq8RBG+8wIPH8aioKLDMbQT7jt/l6u1YFBVEDuLRc4+4dkdAAf2WDGX30TtEPxc0ZL9FQ1ix4xLxSZnUqq7OIpveuK0/LdhvRnp0aKnPeon9fPaoblx9/JbHr0WMkd2YngSGXRTi5DYNKQcuPxR61PkjuhMScU08ZLduSEZePg/ffqSqihKjTduwKfI2hSWlv7x2f1b/6mYnNlVAAw2qfYUGdq6vx5WXccjLyWLZzohDt4UWZ7KJMbuuiEZneAcjIh/EkFNQRKt6taGigifxooEZ2bkFOy8JsdW8QV3Zce4uuYXFtGtUFw0VJa5IdDmLR5myMvyKaGaMG1NaUsYVyS/cdVI/lu26KNZThnXp1tKADQclNuxxptyIfsv95yI/xHfeYJZtPUdKeg76dbSwt+mNy8rj5BeWYNxCn/FD2uMcdEyQKjs3ZlDvljgHHhPCtK6GWJq1xcH7MAWFJRi31mfu1F44eR2RWs593YaxeftVbtx6LeyKniPIzMwjMEi88S2Ht2e4hTE+3kd5/ToFTa0q+AeMJvXTZ3w8hMuqb/8WTJrSg1PHHhAeJkn3dRpMW2MDtm+8xNVLkuC6wNHUM6jBrk2X+fMLCXnZaAwa6XDtwjO2rhaTpxmLBtCtdzOyMvJwn7ub3M8FNG2lx1L/kcjKynLxxENp4vA8lyF0kMQ3bF8ZyfXIp6LBWDsBvQZiJXN0xzVO7Y0S4++VY6UrquSEdLxnCRZHl37Nmer09YZ/5+IzNnuJp2wbh8H0GPJVV/DhTQp+M/6grLQcUwtjrO2/3rhBWMz3h4hm03b5OFp1+94WnZGSjaf1egEE7GXELD+rH6YUZWXlBEzdTEJMMtXraOEeNvenK6n7F5+w1UU8oc8MGEu7v0mw/pyRi8fIYPJzCmll0pQ5K39PZ5Pw6iPLJYLk4bZmv+US+k/r9NaLpCVmUENPm8H/UAD98OFDLC0tKS0tZcyYMQQFBf3tOVcO3GReR0cSXiZSvW41Vl7xZsjsAf+z9PLy8nI2LNzJwZVitTNvtQ3D55v9zVlfq7ioBJ+xa7h37jFKVRTxPbqYFj9xUX2p09v+ZK2dWIuOXGCGjeeoSn++zE/ZOA5bQeKbFGrqaRN4bPEP7r+y0jKCZm0j6owkvy1sLi26fN9o3Yp8zIp5O0RjPdGEqe7DpV+voqKCTR5HOLsvCllZGZaunfgdbfz8wdts9BBP+tYLB2I5vZf0vHWuh6V5dS7rJ9K6iwB7Pr79Bt+5u4Rr0rwV87wtkZGR4e3LJNxn7aAwv5h23RqL9ba8HFGXnhMsYeYMs+6K9Zw+YhLscICHd8Tk2HfDROo30uHKuaeskeh8Rk/qjtVkE2JfJuG+aB/FRaV07N6YJZ7DiHuTgqv9PgE87dwQB8/hRN+LI0ACCDQf2pZpc3qz/Y8rnDwuHK2OrkMxbFqbpUv2SR8qA5dZcfrMI8KkeVcDaNiwJg5uB8nPL6Zta32WLBR8tNdvP0nyrkaxdc91rt8WjUyAy3Au3njJGYlW02PRYKKi33Jakn/luWgwZ6694Pr9tygqyOO7aAibD94g5t0ntNRVcJ01AK+NZ6SJ5oN6tmC5RLMz3tyY2MQ0op68Q1lRnqUTehO07xJ5hcUYN9GlVg0NTkY9R1ZGhgWjTAg9GSX4coa6KCrIceP5O8GoG9CB0DNCYjG62z/nSH1b/59odjZs2ICBgQHKysoYGxtz7dq1Xx5/+PBhjIyMUFJSwsjIiIiIiP/o66rIy9G9QT2uxLxDQU6Woa2acTxarKgmdGlL2HWhAh/bpTWHbj2hpKyMns0MeJmQSlJWDvWqa9K4ljZXngn9zsx+nQmVhHlam7Yl8u4rPmXlYlCrGp2b6HP4mhAZLxltSujRm+QWFNG6YR2a6dXk4J9iauM8sS9bjkbxKTOX+rWrMXFgewK3i9Hp2AHt+JxTwJnrL4TgeO4gth+5Rex7YefzmT8YzzWnScvMo4FedZZM64Nj4FFy84po2aQOcyeZ4uB3hNy8Ilo0rYPdtD44+hwhIzMPg3rV8VgylIAVp4h5nYKmRhWCfEZy7uIzjkqeGFyWDkZTowruHt/QX/eOvgAAIABJREFUOGf0Yu2ac9y5I/bEfr6jUFSQx8XxAPn5xbRuo4/90kHcu/OWNZIpz8SpPeg3sBWnjz0g/Av12GkwbYzrc+7EQ/ZK8OoLnAfTrlMDXj75QJDkZmNh1QnLcV3EU5UkG6u2rhaeq8ejpKzAk3txrJIcO8rGBPNRYqJyOvw2hyRTmIW+I6QsnZvnn7IlQOzLpzqY062/uJHmfS7AY9o2stPzaNi8LktXjZO6SuJefCRw3i4pmn7UnK9Tl+yMXNwnbiI3u4BmxvVZuHLcdx8UT2+/ZrW94L9Y2Q6g35gu312TxYUleE/cQNrHTHQb6eC8dUalE4Ntnoe4d/EpSiqKeOyZ+0OcxJdKfJOC/+RQQYmdYPLTVcSXKisrJ3DSBqmux2XP/N9yXuXnFOA1aiX5OQW0NGnG9N/MofpPqqy0jMPBohkY6zj8HyV8v3//HnNzc3JycjA1NWXHjh1/k+6eT/D0jfiOWUVhXhFtejVnw/2g3+L3/G6VlZWzasZmjq0/i4yMDLbrp/2Wjb64sBifsWu4c+ah4NQcsadl96a/POfsziuslkAjLecNYJrvj402iJBaR4uVJMQInlPQicXfwf5Asqq13cnVY/fEA8aO2bT9yyr0wZUX+E3fSllpOX1GdmTuN/TjiooKdgSe4Ng2Mf1eGDz+u2DPaycfErJENPGW002lwZ5fEszPht8Wbq6Q8XTsLfQ7rx7F4zlzu8iv6t2MJSvGIicny4e4VJyn/iGCPdvWw22NNYqK8kTfeoP/knDKy8rpZ9GOGUvMRC6c51Gi/nyJgqI8nmusadJCl7s3YglyOyKathHtmTK/L/Hv0nCZH0Z+XhEt29bDNWAUKUlZONvtFayxVnq4B4wi9lUSXs4iebxnbyNsF5tx6MAd9n7R7Swyo2Onhjg5hpOQkEHNmuoELR9L1K1YQiXru2lTetKhQwPsncO/IkCchuIbdOIbPtpIIk5HE/nnc6kJ5cmrjxw4IR7QHecN5F1iOuGS1w5zBnD/WQJnJUGfXrbmHIiM5uFLQej3nDeIgG0Xvsu78vvjnFhP9WhOXlEJ526/Qk5OFseJfVl7+BrZuYUY1dehXRM99l0UA4T5I7uz6/x9oVXVr4luTU3OPYhBXlaWGYM6E3o2SlD92xpSTf0/I67/X292wsPDsbOzw8XFhejoaExMTDAzMyM+Pr7S46OiorCysmLChAk8evSICRMmMHr0aG7f/n2E9KCWTTn+SDQ3Yzq0Yv9tkSw+rnNrwqMeU15RwcBWhlx7/pbPBUW01KtFSXEZLxNTqaZWhQGtDaUurPnmXdl4OorS8nIGtDXk9Yc06Z5xTI/WhJ4QXencod04fPkJyRk51NPRwqJbc9YdkWRIjTAh8uZLYhPSqKZehSXje+G1+ayYyrRvRIO62mw7Kn7OpTZ9uHI3ltuPJZZyewvW7rpCXEI61bXU8Fs0GK+QUySnfka3thYeCwfhvvy45LUmPouH4hN8krj4NLSrqRLkZsm23deIuiucWf4elsS+TiH0y6pqWi/atNTH0fmAECg3rYOz4xAOH7rLiS8sHVcL9Otp4+J4gLTUHPT1tfH0HUHC+zR8XQ9LWTrWNibcu/2GNZLRs/XUHvQzb83Du3GE+IkPrTE23RkwtC3JiZl4LNorbk4mhsy0HygcTm5HeP4wHrWqynivm4BmNVU+vEvDa8EeSkvL6N6vBTZ24gn/wY1Y1kuCQK3n9aW3xG0R+/QDQZK4B/OxnbGcIsSXZaVl+M/fTXxsCto66nhumSIVW2Z8+oyHzWYK8opo3bUx8/y+PvWWFJfiO/0Pkt4LYqv7H9O/SylPiU/Hx2YzpSVldB/clomO32suKioqWGW366uOZ8+8Si3m5/be4LAk0M9+wxQat6lf6fWdn1OAp1WI1Hk1P6TyyIhva7fPYe5feCKaqAN2aNb4ta7nr7Vu/jbiXySiXUcL130Lfkpu/j9ZDy4+IfldKhrVq9JvkunfHp+RkYGZmRlJSUm0aNGCiIgIlCoBBH77989oZc+ZPy4iIyOD1VILAiPd/mdCZBDXUoD1GiJ3XkZWTpYl2+cw+DdWiUUFxXhZrZY2Ol6HF9Gm56/dZZG7rxIybzsAw+b0Z0ZA5UGgnzNycRq2kvcvP6JdW5Nlx+2pVe/7iJHy8nLW2u/hogSF4LR1Bh37tfzumMc3YvCatJHS4lK6DWrDwpDvnYj7VkdyYL140JsfaPXdKvjW+acssxUPHAPHdGaaq4X0e90dEkmE5MHGbtloTMwF0+nti4+4TvmDgrxi2nRthPMaa+QV5Ej+kIGjzVayM/Jo2KwOXhsnoVxFkWfR7/G03S0o6X2MsPMUlPQNAae4cOKhQDwst6J1BwMe33+Hz5JwSkvLMB3QgnkOg0hJysZp7i5JNERtvILHkp2dj6OtMF00bKyDz4oxfIhPx2XxfgoLS+jQuSEO7hacPf2ITZLp9LSZvejbvwWuLgeJiUlGQ0OFoKAxPH/xkZWrJJENozoyoH8L7J32k5aWSz19bQK8RhC8/jx3HwiMyDKvkVyJiuXwSYERcVpgRnLaZ7bulfDZpvQir7CYzXvF55GtTS8+pmZz8IxoSJxmDeDinRhuRr9FSVEeH9tBrNl3hQ8pWdSuoc4cK5PvPq80Napw5LIw3iwZ35s/Tt8iJTMXg9rV6NehCZtPisHArCFdiLj+lOTMHOrXqkY7Q12pa3nW4C5sOXeHopIyTIzqk/w5h9DI/ywu4v96sxMcHMzUqVOZNm0azZo1IyQkBD09PUJDQys9PiQkhH79+uHk5ETTpk1xcnKiT58+hISE/PRrFBUV8fnz5+/+BxAhgQaObt+Sg7efCOFY66acexRDQXEJnRrq8SEti8TMHHSraVBfW4uomHiUFeSZ0KMtWy8KevD0vh3Zezma3MJijBvWRVFWljuvElBRVGDukG4EHxJvvFE9WhP9KlGqOJ/9/5B3llFVre/a/0lISYmIASpio6Ko2N0NiopiJ2Jg0Y20ndidmNhiYWwbCwMDFZSU7l7vh2e53Gxr7/ec/9lnjHOP4Yflmgsm8Mw5r+e+rxgmSFoAo3u2IjYhnbsvYlGurIDX9AH4b79Edl4RzY1qMqRLc4J2imMnDTMjM6uA09cEy33pvCGEXXpG5PM4VJUVCXYYzsY9N2QM+iBnc9ZsvUr0u2Q01VUIch3Btn03iXz6bV4bcesNYWel7sv2Q4TqSSofNx9qyvAhrXHzPCa8dGpo4uszknv3YtiyRQqGbPvQoX0DfL1PEiMdZ/kFj6GosBQ3+0Oiy9O6LgsdBwsjQZejlJdJ6D2gBROmdSPuwxfZTLt7X2Mm2fQiJ7sAd7v9ZKbn0aBxTZz9LZGXl2PPxqtcv/gceQU53FeOxcBQl5ysfDzn7iE3u4DGLfSxl4604mJS8F94QJgJDmvNOFvB5E9NysLbZhdFhSWYdmmErYe4WUokEkK8T/JI6qLqtXWqLPSzqLAYnxnb+ZKQSe36urhumiJLXZZIJGxwCeX5vRhUqijhvWuWTNoKQvrqNTGE7PRcGrQ0YPHaSd91EkLXXuDa0XviJrpj1g9t+F/ee8e6hYJLYe0wlG7mbX+45svLy1k2Ywtx0geS+/55v+143D33mINBXzOvpv1WqfPXunb4Npf33xRW9fvt/rbs+79azyJEPl3HoW1/mLr95yosLGT48OG8evUKfX19zp8/j5bWj8+zILeAtXO24djXh5S4VGoYVmfZVU+mB47/j6rKigqK8Rq5nBtH76JYWQG3QwvoY/17ddjXEqqrlbLRlc+JxbT+zejy4t4brLLdgUQiYdisPtgEjfsh0MnJzMNlxEo+vPiMtp4mgWFLqFW/4jqVSCRsdDzI+b1iLTiETKXz4NYVjnl+7x2eE0KEiq1PcxxDplb4nR7ddIW9y8VmaKanBYPGf8vUirwRjd/snWJMbN6GuQGjZed6eOMVDkpJxLZeFvQd2Q6ATzEpuEzeKlzPTetKlZaKpKVk4zx1O2nJIsHcd9sUqmio8PZlPO62uykqKKFN54Y4BY9BTl6Obasucib0vhh5+46gQ48mREd9xmPBfoqKSjDr0gh77xFkpOXiZLuH1JQc6hhWw2/teIqKSnCct4/kpCz061TFf/U40tNzcV54gNycQoxb6uPuO5Kb16NZLe2CjxnbgZGjzPDyOi4L9gwMsiIxOQv/wFNi5DXQhHFWHbF3FcGeNfQ0CfYdzdbdN7n+xxsRHeRuwcs3iTK17YJZvSkHVm8VXaEpYzqirq7Mqm3SZ4xlBySVkKl5F07pyfOYRC5J3ZC95gxi56n7vItLRUdTDfvJvfHecp78whLaNatDU6Ma7D4n1McLrLpz7MZT4pIzqamjgWXPVqw5LqY3E/qaci0qRqQJVFWnj2lD9l0VYGz6gPbsjXhEXlExpka1KZaU8/RjIlV+oyD9Wf2rYKe4uJjIyEj69as4Y+/Xrx+3b9/+4Wfu3Lnz3fH9+/f/6fEAAQEBaGpqyv4ZGAiSWrlEwoDmjbgc9Zai0jI6NajDy0/JpOUW0KhGNSrLyfPicwpaqsr0NjbiTOQrgTb7dWBz+F3hFNmhOdefxZCcmUt9vaq0MqzF2fuCnLzEsjtrj9+kuLSM7i3rU15axu0XH1FSVMB5bC8C918WTsytjKimqcapmy+Qq1QJz+kD2HLsDxJTs9GvrsmcMV3wCjknLLk7NaF+rapsOizQ98LJPXn7IYVz18V81WfBEM5fk3rpKMoT6GTBifNPuPVAvA5wMSfij9ecu/IcOblKeNkPIyk5i5DtUtAyrScNjarLvHQ6mBkxZ2YvgpadleZbKeHvO4qEhAwCA0QXxsKiDSNGtGXDunDu3xWKAd+A0WhpquLucJgvKTkY1NXB09+S7Kx83BYfJD+/mJat67LQeQhZGfm4LxAXfLOWBizxNKesrAxfh8PEffhCteoaeK8eh4qqEuFhjzi0VbS17TyGY2JWn5KSUnwWHCA+No3qtbTwWjsBJWVFsjLy8Jy9m7ycQpqZ1mX+UjGbLywoxttml7jBNdDDZa217EZ7avctzu4X/B3H1dY0aC6M+SQSCavtD/H6cSxVNFXx3llRYn5yewQXD90Vnhgbp1SQmJeVlRNsu5OP0SLI0GOXDcqqFS/YO+eesMtXEHpnB1h91+4HSE3IYOmkEEqKS+k81BRrx5+rcQ4EneL2mUcoVlbA48D8nwY1fq3EDyksm7YJgGE2fell9fdl2wApcamsnbMNgLHOFjT/zbjkv7Oe3RTd2eZdf60WKysrY/z48dy6dQtNTU3Onz+Pvv73xosSiYR75x4xq5U9p0OElcNQm35sebock+6/Bg3/1crLzsd1SAAPLkg7Mift/1EERGFeIR4jVvD4qgh29Quz/21H59zOCFbO3i4iV2b0xnb5947HIAU6Fit59zQOzWrqBJ5c/F1IrUQiYaPTQc7svE6lSpVYtG4yPf7iyxP96AMe1hspzC/CtEdTXLfNqDAqPbXzBtt9BRl7kuMQLGZ8C9h9dvcdS6dvp7S4jM4DTViy8tt4+cT2GzLV5FTHwQydKABSYlwazpO2kpWeRwPj2nhvnYqKmhKZ6bk4T91O0qd0atapiv+OaWhVrcLHd8m4ztpFfm4RLdrUw33VOCpXVmD/5msck0bYzPcYRs9BJsS8ScJ13l4K8otp1c4Q9+DR5OYW4jRnL4nxGdSsrU3A+gmCczN/H/Gf0tGroUng2vEUFpbgaLdfEI0b18BvmRWPH30k0F8EJA8dbsqU6d3x8wvjwf33KCsr4h8wmsKiEjy9hb1Hzx5NsZnZEyePo7z/+IWq2mos9x/NkZMPOX8pCjm5Sng4DiU5NZv10nv8jPFdqaajLhOpWA42xaieLgEbpK8HtaamnqYs2HPGmM6kZuVx4rLUfdmmHyeuPePZG0E4dp7eF99t4bKNebe2Rmw4Kp5PNhaduPr4HW8+fUFHQ5Upg81YEXpduDZ3bcGz2CSiP6VQVV0Vy24t2XpBdG0m9mnDyfsvyMgroKm+LppVlLn7RqibA8ZXzBP8u/Wvgp3U1FTKysrQ06u4M9DT0yMpKemHn0lKSvpHxwM4OzuTlZUl+/fp0ycA2tWrTfTnFDLyC2laU5eiolLhiKxRBeNa1bn1+iNKCvJYd27NngiBNmf0NmP3NRH90K2ZIYmp2bxNTENHXZWRHZuzU+qlM394F3ZdfCCck+vqYWygx/GbojXnMr43G07cks0ue7UyIuSYVJ49tjsXbr2Seel4zBiAd8gFmZfOsG7G+G0WIwyrQW1QV1Fma6gAeoun9eZTfDrHzouxkrvdIKLfJnHsrGhDutkNIjk5m237pD4RM3ujpaGC7zLhhjx8cCsG9m2Ok8dRkadiVB0P52Hs3nOLiOvRKCjI4eM1AkVFedz/5O8w27YPx0Lvc+qkVA3gNpyGjWrg73WCd2+S0NJSxW+5lUhkdjjMl+Rs9Ovo4BEwCkm5BK8lh0hKyKSmvjaey8egWFmedQFnePLgg5CNr7GmWnUNnt5/zxofcRO0mtGdfsNNhZupdxhRDz+gqqaEz/qJaFerQnFxKb7z9skk5u7rxAy+vLyc5faHefciHg1tNbw2T5bZzD+8Hs0WX9HZmOo0uILE/MCaizKzMvctU6ht+K1t//DaS7b5CKAy3cOcdr0qPlx2B5ziXngUikoKeOychW6tisDjY3QCwdKHzZCpPRg6tcd3a7i4sATfSSFkJGdRr2ntXyqv7l14wj5/cT7z1kz6rcS4uLAY33Fryc3Mp6lZA2YGjfvl8X+tsrJygiZvIC8rnyZmDbB2/WeZWf+VKioo4s0DYQ7a4hdgRyKRsGjRIlnO1cmTJ2nevPl3x8W+/ITrYH/chgSQ+D6Z6nWqERTuzvyNM/5RYvr/T2UkZ2Lf24dn0lytgHMutO3792M18nMKcDNfztPrr1BVV8b/lMNvOTpntl1lzTzp6Gp2X+asnPBLoPPVIycobAl1m1Q0I5RIJGxyPczp7RFUqlSJhWsn0WdMRU7a26dxuFmtpyC3EJPOjXDfMavCqPfcvj8IcRdycKv5/bCa921j+yryA56Tt4goht7GOK6bINuknNl3my1+0lH1gn6MmiUA0pfETJwnbSEtOYs6DfTw3TGdKhoq5GYX4DZ9J59iRLJ5wI7p6FTXICEuDecZO8jOzKdxC328NwhrimO7/2Cf1AjQxmEQA0e0Je7DF5xt98hc3L1WjqWoqBSXuftklhmBGyeioqaEy8IDfHz/harVqhC0brzoeNntlyWYB6wcR3R0Iks9T8hEHXPm92PlivPcvCESzL19RlK5sgIubiJ/sL2ZEYsWDMDT7yQvoxNQr6LM8oAxXI54xZGTQvLtYDeAUkk5yzZI/dcs2tG4oR5eK84IuXsvYzq2rY/XqrMicLOnMSbGBgRuFmIQqyFtUFCUY0+YmGIsmdKbiMgY7kXFoqKkiIdNf5bvvUpaVh4NDKph3rslKw5EAGA9oA1P3yfw5G08VVSUmD2iC8sPR1BWXs6Ado1JyszhSUwCVVSUmNS/LRtOi+eYZdeWXH0uGgiG1bUxrKXD1ecxKMrLM6G7KV6hl3+5pn9W/ytSz/96cUkkkl9yC/7p8UpKSj+cyRcVlhCblk1NLXUMtDS59PwdakqVGWTSmF3XI6lUCWb0MmNLuPhDj+rYgouP3wgAY6BHVVUVwqJeolxZAdsBHQg6EgGAdU9Trj15J/xydDSw6NwCv71SR9CRXTl5I0rW0ps2qD3OIVKTqX6mJKZkc/Ox6ML4zhnMyr3XSE7LoW5NbeaP7c6CwGNClteuAV1aG7LQT5BxrYe1paqGKq6bBRiwndgdRXl51u4QbUqbid3Q0VZjoVsoAGPM29KhTX1mL9ongjvbGGI7rScuXseIjUujWrUqBHhbcv36Kw5IE3GXLBpIAyM95s3dQ1ZWAQ0a6OHqNpy7d96xWZrLMmt2b7p0a0zImnDu/vGWypUV8A4ajV4NLXxdj/LmVSKaWqr4rrBCXUOZQLfjvIr6TBUNZZauGoeWthpH9tziYphwDnUJGIVRoxrEx6axdLEI1+vevzkTpeOoIztucinskZCYrxhLPWlw3zrPEzyP/IhqFSW8QiahJfV42bs6nD8uRgnC5IaJMhfkuHfJBMzbJ0jHo80YOf1bNtXNs0/Yt1Lseub6jaoge/30LpkA210ysrL5tB4V1tjVY/c5IuXXLFw14TtTwJzMPLwnbBAcoC6NsfEb/d06lUgkrLffT/TD91TRUsVj/xxUqvzYzyXxQwrB0zcL4DS9109N4P5cIUv28e5JLJrV1P8xIRngyIrTRN18hbKaEo675/6P8HS+Vmp8OqUlZShWVqBm/R+nbwOsWLGCtWvXArB792569OhR4f2s1Gz2eIVyZvMlysvKUVCUZ4TdYMa5jURN43ve1H93JcQk4TI4gISYZDR1NfA77USjNvV//0FpZafl4Dp8OW8i36OqoYL/KQeatm/wy8+EbbrExiUij23E3P4/5ejkZObhbL5CdHR0qhB0yp56zSpaF0gkEra4hRK2RdxvFqyeQL+xFbuD76I+4TJmLXnZBRi3N8Jrz+wKHc6Lh+6wzknYNVja9Gai/Td5/euncbhN3ExhfjGtuzTCNWSybJ1eDL3PBqkoYbRNL8bNEyT89JRsnCZsJvlzBrXq6hCwewaaVdVETM2MHcS8SkBLpwoBO6ahV1ub5IQMnKbvkLog18A3ZBKqakqcCb3PVun1P3leH8ytO5L4OR2n2bvJysijQZOaLF1jjUQC7gsOEPMmCa2qagRuEFxCl4UHePNKhHgGrR2PqpoSi+fuJSkhk1q1tQlcbc2nT2l4uh4Vwo+ujVjiMJhNIZe5eFF0Z9zczdGpVoWFiw8ISkBLA9xchuK/7AyRj2NRVlYkyHcUDx59ZOd+sXGeN7MXWlqquPifFNE+A0zo3L4Bi32OimdIx4YM7tOCxUulr9s3pEenxjgtCxMeNz2bo19Ti2U7pO7SVl148T6ZiAcic9FtVn/Wh94SEwg9LSYMaYf39ouUSySYd2tOYno2t58LFdaC0d1YcThCNAlaGlJCObelSquZg9uzJuwW5RIJA9s14UlsAnFfMqmprU7bRvqE3olCrlIlJvUyZcfVhxQV5P9yXf+s/lWwU61aNeTl5b/ryqSkpHzXvflaNWrU+EfH/6qi4lPQ0tSke8N6HL4bhbxcJSZ2bs3mK6KVNrlbG/Zdf0xJWRk9jevzLiGVuNRMamlr0KlRXbaF3xfRD8O6sjZMeOn0ad2QlIwcnr1PRF1FiTnDOuO9SzzsxvRsRfTHZBnSdRzXC6+tUkKXaQNqVdVg5f4IANxn9Cf0wmNeS+V9XrMH4rHuLNm5hTQ1qsHUER2Z531EZHZ1aETP9o2Y73lYOFf2M6F1MwPmuR0Si7xfS7qaNWCOwwFKSsvo2qEh40d1wM7hIOkZeRgZ6uLpNJS1IZd59ERcOAHelnz6lMZKaer3BOtO9OrZDGfnUOLi0tDVVcfPfxSfP6UTsDRM8J2GtWbkaDNOn4jkeKg0Dd19GM2a67Mj5Cq3pBkvnoGjqKVflX1bI4gIfy6TmBvUq8ad69Fslzohz1o0ALMujcjNLsBz/j4hMW+hzyKfEcjJyXH7ykt2Sv0sbBwH07azACFHtt3g8slHAiytGkddqYfN1bBHHAqRGo/5jqR5O+GLk52Rh9eMbxERc6RSVICYF59ZsUj4f5hP6y7z8ADIycjDa7LIwzI2q4+tX0WJ7tuncRWUVz1HtKuw/srKygmatY3ED1+obqCDy/aZPwQK53ZeJ3zfLTEi2z6LWoY/djEuKihmqfU6aYfGCJvg3yuhrh78g3Pbr4mx3a7Z6Or/PAzyR/Um8j27PQWAtl01mdoNavzmE/+9Vb1ONeQV5CkpLuXL57Qf+uscPHgQe3t7AJYvX46VlZXsvazUbMLWX+DE2nPkZuYB0Nm8HTOCJ/zHIh/+Wm8ffcB1aCCZKVnUMKxOwFlnajf8+987LTETl6FBfHzxGQ2dKviF2f8WKB3fcJHNjmJdj1owiGlLR/8Y6GTk4vyn0VVQ2JIfAp1tnkc5IU3Ptls5gf7WFe0G3kV9wnnUGrE22xrivc+2QvDnlaP3WSNVVg2f1p2prsNk5/P22SfcrENEpEp7Izy2TZN1g66efMQaZ+GvZD6lK5PtB1KpUiUy03JxmriFhNg09PS1Cdw7i6rVNSjIK8Jj1i5ePxPeOP7bp6JvqMuXpCycpu0gJTET/XrV8N88BXVNVcJPPmK9VDQxZlo3rKZ3JyUpC8fZu0n7kkNdo+r4r5+AoqIC7gsPyDZuAesnoFdLC0+Hwzx/EoeqmhIBa6zRqaaO/fx9xH1MRbe6OkFrrElPz8XVKVRkBLYzxNl9OLt23eTECbHhdnAcgqGhLnaL9pGdXUDjRjXw9hzBirXh/CF1rw/wHknMxy9s3Ca6T9MmdMHIqDr23sdEgnl3kWC+wCtUlmA+zqIdi5YeE69N6mE+oBUOwSeFMW2HRrQy1sd3kwB5E4a140tWPmdvCrqE64x+7D5zn48J6VSvWgUby854b78g84UrRcKVSBEcvciqB2uP3yK/qIQ2jfTR1FDh1J2XKMjLYTOsExvO3Ka0rJweJkZ8zsjiTXwqOuqq9G7dkL3XxURlUs827Il4RGl5OX1NGvLql6v7x/WvjrEqV65MmzZtuHTpUoX/v3TpEp06/Zgz0LFjx++ODw8P/+nxvyoFeTlGt2vO4bsi0Xxa97bsuh4pAEPbZlx+8pas/EKaG+ihKC/Pk4/CaHBcFxO2Sbs9cwZ1Yu/lSHIKijCpX5Na2hpcfvQWBXk5HMf0ZNmhCMHLaVkflcoKhN8XMjzPKf1YeSCCrLxCjOvXYGCHJqw+ILgotqO68PxNIrekbsn+84ewZk8En5MyqVFNA3eb/rjG4jjqAAAgAElEQVSuOE1Onghhm2XVGeegk7JFa21uhnOAeN3OpC5Tx3TCaelxsnIKaNKwBs52A1gadJoPsalU06lCoLclp8895dzFZ8jJVcLTeThKlRXw8jlBWVk5vXo2Y9LELqxbd4lHkR9RVlbE128UAO4uR8RF2taQuXb9ePTgA+ulCoHJM3vQvVczws8+5dBXF2XnITQ3qUNE+HP2bhE/7zynwbRqa0jMmyQCXY8hkUgYPLItw63aC2WU/WE+f0xFt4YmHqtFDtb714kEOx8RPAOr9gwb2wGAu1dfsmuVAGizXIbQpouQBr96HMtqF9EeHzWzB31HCGJvaUkZ/nP3kCi9KbpunCTbMWam5uAzfTtFBcW06d6E6X9KMS8rFdb1CR+/UF2/Km5bplUgAGd+yWHp1M0yAuaEH/BrdvuflGVeee6x/c6MDeDF3beEOB0EYIrHiJ9mXkkkEtYt3E3MM/FQct0797cdms9vE2UjjHHOw2nTu8Uvj/9rFeYXEThpPWWlZXSxMKP/b5LT/xOlWFkRfakT78fnn757/9q1a0yaNAkAOzs7Fi1aBEBK3Bc2LtjJ+Hq27PU5Qm5mHvVN6rLsiidexx3+x4DO46tRLOntTWZKFkYm9Vh9w+cfAZ2kjyks7r2Ujy8+o1NTm+WX3H4LdEJXnZUBnTFLhvyXgc5Wj6Mc2yjuyfNXjGfgxIpk6j8DnSZtDFl6cK5sdAwQERbJykX7RTdyUhdmeX3bbLx7/hkX6xByswswblcfn10zZST0m+eesmKJUFMOtu7ITDcBkHIy83GZvFU2ogrcMwvdmloUFhTjZbuHl49iqaKhjP/2aRg2rknal2ycZuwg8XM6NfWrErhtKtrVqnDt3FNWeYlxsLl1RybP60PalxycZu8mOSGTWgZVCdggxlQ+DqE8ffgRVbXK+K8dL0jJ7seIvPceJWVF/FaOpbZ+VVwWHxSjfW01gteMp6CgGMclh8jLLaJFSwO8fS05euQ+B6WhnXZ2/WnR0oDFDgdJT8+jvqEuAX6j2bTtGlevC38yHzdz0jLyWLFOOqqyNKOtaT2cfI+LDEOzBoy3bI+97zHy8osxaabPrPFdcfA/IWxJmtRmomV7nFecoqi4lI6tDenVuTH+0tgHy36tkFeUJzRc0CEcpvTm2NWnYiOuroLduB747bpEUUkZnVsaoqOlyuk/BP900ZjubDlzl6y8QprV1aO+vg6npL46c4d3ZuuFexQWl9KhSV3yS0p4+kE0CYZ2aCYDOuO7t+bw7WcUlZbRsXEd6uj+/wkf/vUx1qJFi5gwYQJt27alY8eObNmyhbi4OGxsbACYOHEitWvXJiAgABA3rG7duhEUFMTw4cMJCwvj8uXL3Lp16x9/b+v2rdgjdUQe06Elx+69oLCklC6N6/ExKZ3P6dnUrqpBq3q12H/jMQpycswZ0JFVYYJJbtW1FTefvSdBmtnRt1VDVkiVV4stu7PtzD2Rf1WnOp2M6xK0X3QVnK17c/DiIz6liFHWnBGdsV99SqSfd2+O0p8WlofNAMIuR/H0dTxVVJUIWjyM4C2XiZfK/bzmD8I1OIy0jDwMDXRwntMfB9/jpKbnYmigg9vCQXgEnOJzQgY1qmvg72rB5h3XZXLEAM8RREcnsFka9jl3Vm+aNa3F3Hl7yM0tolmz2jgsGcSJ4w858yeJub5+VRbN3yck5nV1cPeyIP5zBkvdhcS8z4AWjJvYmagncawOFCZbYyd3oc/AlkQ//8xyb3ETGWndkYHmpqSn5uC54ACFBcW0MquPrb2waN8UfJ5H0sRgrzXWVK2mTkZqLl7z9slSzG0cRbv7w5skgu0Pi5ufVXuGWQsA/CUxk6W2u2XmgJMXfyO4hXif5OmdGFTUlPDcMhUtHTHuKikuxc9mp0hINtTFcd3ECmqRrT4neXzzNcqqlfHaMaOC8qq0pAy/GVv5Ep9BbaPq2G+Y/F3y842wh4SuEaBw4ZpJGLUw+G59piVl4jtZZD11s2iL5fyfE/PO77rOJWn3x2WXLbq1f92hKS4qIWDiBgrzimjZrSnWLj+OmfhVbXc5yOfXCejU0mZByIz/mLHe76qusQGxLz/z7PoLzAZ+U/1ERUVhbm5OSUkJlpaWeLp4cev4PW6fesC1g39QVloGQENTQ8Y4WtBlhBny8v85ldVf6+rBW6yYvomS4lJMehjjdWzxPxqZxb6Kx3lwEGmJGdQ0rE7gOcffppfv8z8py7oa5ziciW4WP/y7Zabm4GKxkvfPPwmgc2oJ9Zr+eHT1taMzb5k1gyZVHJv+Fej4HqoIdG6eecyy+SJyY8C4Tsxeaik7nw+vEnAZt5HcrHyatqmHz+6ZqEi7QX9cjCLQbr+IdLBsh623+DlyswtwnbqND9GJaOuqE7BnJjUMqgpzxXn7eHb/vYiN2DKFBsa1yUzPw3nGTuI/plK9phaB26dSTU+TW5dfsMxNeOYMHtWOWfYDycrMx8l2N/FxaejV1CIoZBKa2qr4OR/l4Z13KCmLCJsGTWoS6HWCOzfeoFhZHp/gMRg1qoHrkoO8ehGPuoYKQavHQSVwWHyQnOwCmjSthW/gaM6eecwOqWzeZnZvOnVuxIJF+2UmgkGBY9h78DbnwqXjLcehlJWX47/8rIx32adnMxa4HaagoATTlnWYNbkbi7yOkJldQKP6eiyY0Qt7v+Oy17YTu2MfdIL8gmJMjQ0YOaAVTiuFo/7Ars3Q09Vg/SHxzFswvgdXHrzl2dsEqqgqYT+pNwF7LpNXWEzbJgY0qqfLjrOiEbBgVDf2XorkS6ZIMG/b1IDdlwSXyHZYJ3ZdfkhuQRGt6teksrI8EVHvUa6sgFV3E7ZcEl9jdKeWnImMJq+omNaGtcgsKGTbtTd/5/L4rv51sDNmzBjS0tLw8fGR+V6cO3eOunWF7DUuLq4CEbNTp04cOnQINzc33N3dMTIy4vDhw7Rv3/4ff+/jD55TKpGjt3ED7r/9RHpuPk1q6aIir8AfsUmoqygxon1z1p8TxKm5Azux5cI9YXPdvD6pGTlESaMfpvU3w3e/GL9MHWDGlYdviU3OQE9bncn92+K2TagEpg1pz8NXn3j8RpgyuU/ti/fmixQUCZvtrib1cVoj2qZzrLry8XM6F/8QeSd+dkM4eDqSp9FS4ONgzprtV3n38QvamqoEOlmwLOQS7z5+oaqWKkGuI9i08zrPXn5GTbUyQR4juXYjmlPnpbETjkMoL5fgt0yAEfOhpgwZaIK90yHiEzKoUUOTpV4jiIz8QMhXTo5Nbzp0aMBSr+O8eZ2IpqYKvoGjKSsrx93+kNQoS5+FjoNJjM/A2ymU0tJyuvZsyqQZPUhJysJr8SFKisto36UR0+b1EXb2iw/xJTkL/bo6uAWNRkFRntOH73H6sNRXyN8SoyY1pRbt+0lJzKR2XR1clo9FXkGezPRcvGbvpiC/GJMORti4iE5KYUExPrN3izl8k5rYL7OSracz+25zTuqc7LBqHIZNvoUKhngc4/n996iqK+O5fXoF5dXlo/dlRmf2aydi+Jfd7hbPozy/+w6VKsp47Jz1nVfOx1fxrJQGd46c0+87tQpIO0dTN8sIyYvWTfkpmIh5FivjXkz2tKRVj9+nde90D5XxdJx2zv4OjP2uou+/49RGsZNcvM0GjR90pf6nqk1fE24cucPh4DCuHrhFkw4NUdCqxIpQf7KzszGq1RCN17UZXWNGhc+17t0CK0dzWvdu8T8K1CQSCft8j7HXR3Qau45sj+OuOVRW/vuS2tcP3+NusZys1BzqNqtNwGlHdGr9XHEnkUjY5naYo2vEfWiKlyVWS36s5ktPzsLJfAVx0QloV9cg4OTiHwKdTa6HZRyd+SvG/xDouIwWxPfGpvXw/UtH5/qpRwTP2yMM+0a3Z17gaNm1+fF1Ik5jN5CTmU/jVnVYuscGVSlP7e7lFwTM2yvsJCzaYBcwCjk5OZGoPmUbb6M+o6GtRsDuGegb6lJcXIqf3X4e/fEWJRVFfDZPpolJHXKy8nGesUMWFBy4fSp6tbS5d/01AY6h4ryGtWaOyxBycwpxmbOHuPdf0NFVJ2jTJHSqaxDkfpzbEdEoVpbHa7kVxiZ1WOl/muuXpZE4AaMwNjHAwzGUZ4+l46yVY1FVU2LhvL0i5NioOv7BY7h27SUbpd46k6d0pV+/5ixYfEB2L14eZMWJU484FiYM/xwWDkRNTQlnr+PCcK+XMRZDTVngepjsnEKaNarJQps+2Pse50taLvUMdHCe3x/nwDCRWK6vw5KZfXBcFibcjxvUYIKFGU4rpY77Zg1p2qAGK/aI0dgsy848fv2Ze8+FPYrTlD4sO3CNrLxCmtevQTvjOmw8KTr4tuadOP7Hc+JTs9HX1aR324ayBPOZg9oTevMpGbkFNNbXpbqOBhcevUZRXp6JvduwVQp0hps149rL91JFVnUkcvAyLgXN39hL/Kz+dbADYGtri62t7Q/fi4iI+O7/LC0t/1ZY3+8qt7CYNo0Myc4t5OOXDPQ0q9CmXm0O3HyCgrwcs/q0Z80Z0TGa1KMNYXeFFK6ZQXUMdDTZf/UxCvJyLBnZnWWHI0S2VLvGpKTlyELNHKx64LXjImVl5fQ3a4ycBC7ejRZulDMGsO7gTb5k5FKvVlVmWHRi0bLjwn2ye3N0tdTw3iBuTvZTehP1OoGLN6XAZ9FQzlyO4nakMAEMdLLg2LnH3JG+9ne24OqtaC5cfYGcXCW8HYaRmJjJBqmvgpCY6zHbbq8gKLc1ZO6sXixfeZ6oqM+oqQqJeXp6Lr5STs7gIa2wtGzHzm3XuXldKAS8fC3R1dXA0W4fiQmZ1KilhZf/KEqKS/GwP0x2VgGNmtbE3mM4RYUleC46SEZ6HoYN9XDyHYGcXCWW+YQR/fwzVTRU8FltjbqGCo/uxhASJHw2pszvS+fezYT82+skr54KM0Hv9RNR11QRZn7z95OSkEmtOjq4rhqHgqK8MOlzPiJTXnlumizbGUbdj2GTVEE1afEAOvT5Nh46u+8PzktBkOO6iRj8Kbfq7bM41jl+y7zqNKCidXn4wTuclgIhhw2Tvws7zMvOZ+mkEOHC260JU38S3Llr6Qme33mLqroy7nsr8hv+XPk5BfhO2EBJUQntB7Zi1MJBv1v2PAh/xvF1oqu0aPOMXz4kf1RlpWWsnr0ViURCn/Hd/pFi6D9RA6f1IuFdIq8fxvDk6nMSjiTykAjyyEYNdfQTmhKXGA9APWMDWnZvRt+J3Wli9ut8qP9EFReVsGrmZq5IjdtGLR7KNP+xv3Rv/mtFXonCZ8waCvOKaGRqiN8p+1+CzfLycjYu3sfpreJBahNkjcWcH0dqpCZk4Dh8OfHvktGpqUVg2JKfysu/qq7mrxzPwAnfj65cRq8lJyOPxqb18Ds0DzWNnwMdu2XffgexrxNxstpAdnoeDVsa4LvXBjV1AXTuX32J35w9wmNnaGsWBo9BXl6OvJxC3KZu57U02Txg9wzqNqwhzBkXHuD+9ddUVlLAO2QSzdvUIze7AJeZO/nwJgltnSoEbptGLQMdIm+/w3fxQfH1B7ZggZc5BfnFuM7dS8xrcWzQpsno1dJmpU8Y1y+9QEFBDo/gMbQ2M2Td8vOEn32KnHwlXJaOwNSsPj6ux4iUSsf9lluhU02dBfP28kVqvBq0Yiz37sWwWjr+t7LqgLl5G5Y4HiI2NpVq1dRZHjyWC5efs08qFlk4tx81amji4CHIxd06NWLiuE4scD1ERlY+DetXx3XhIJwCTpKYnEXtGlp4LR6Cx4rTJKaI167zBuC66gxpmXk0qKuLzbguOK08RWFRKe1b1qOTqSF+W6Vh0kPaEZucTkSkICe7TOvHuiM3ScvKo6FBNXqbNWL1EdGRmjq4PZcfx/AhMR097SpYdGvB2pPS52jftpx7GE1yZi71qmvTuE51Tt4TPKCp/dqx7cp9yiUS+rdqxIOYz6Rk5VK/ujaaVZS58zYONaXKuA3tzNCgv3Gh/KX+V4Cdf6sMqmpSS0uD849fo6qkyMh2zQm5KNCnbf+ObAm/R2l5OQNaN+ZlbDIfUzKooa3OgNaNWX1CtPWWjOzOptN3yS0sppVRLQx1q7Lp9B3k5SrhNqEPqw5fJ7egiJZGtTBrUgffnWLx2I/vxemIF7yOFXNP9+n9cF13VhakNrBzUxYEHAPAekhblCsrsv2IWOj203vzKSGdo+fETNN9/kDevk/miNTi23X+AFJTc9i8Wyy++TN6UVVLjblL9gsi8YCWDBnQEjv7A6Sl52JYrxqezsM5HHqP8EvCf8fDbTga6srMsd1NYWEJpqb1mD+/H5fDn3Pga76V/SCat9BnRcAZop5+EqGdwWNQV1fBfckh4j6mUk1XHe+gMVSurMBSx1Dev01Gq6oa3iusUFVT4tCOG1y7EIWclKRcu44O8bFp+C85JHZuQ0wYPVXcSEO33+DqmScy5ZV+vWpCqeQdxovIj6ipK+MVMlHWhQndfI0bZ58iryCH2/oJ6NUWD/WU+AzZDbP7kFaMnt1Ltiae3X0ny9qZ4jREZjMPkJmWg++M7RQXlWDWxxjrRRXHSq8ffWSdo+DXjF8ymA79KwIhiUTCinm7iX+fgm5tbZy3zvihOd2dc084slYKRtZP+aG54Nevt2b+LhJiktHVr8qSTTN++9DMSM5i+YzNgPDT6TCo9S+P/1EdX3uO989iUa9ahZnB4//x5/+7q1KlSkwPHE9y7Bee343GztWWvJhs1FU0GN1yMi1Nm2PSw5iWPYz/o67Hv6vstBy8LFfw/FY0cvJyzF8/jUHTvw94/VVFhN5h2fTNlJaU0bqXMR6H7FBV/7kkvqysnNVzdxC+96YAJmsnM2hKjx8emxyXhtPw5SRKeWiBp5Z8R4YvLy9ng8NBzu4SPjoLVn9PRn77NA6X0WvIzSr4OdCZu1uMoMa0xy54rKyzGCvt6GSl5dKguT5++2bLOqORN16z1HY3pSVldB3UkiUrrJCXlyM/txCP6duJfhKHupYq/rtmUr9pLUpLyghcfIi7V18J24sNEzFpbyTUWLN38/ZlApraqgRsm4qBoS5P77/HZ+G3UOElS0dSXFSCu91+Xr+IR0NTlcCNE9Gvq8O6oLNc+gpq/C1p16kBW9Zd5sxxKanYfTgduzYm0Pskd259HWeNprZBVRbP30dSYiY1a2kRvHIcz57GERwk7D8sLNowzrojjs6hvH2bjJaWKsuDrLh1+w3bd4tnjs30HjRooMdi18MUFZXSoV19Zk/vwQK3UFkHx8thKO7LThMXn071aur4OgzDd915YuPTqa6jjufCwXitO0/Sl2wMamqzYHIPnFefJq+gmFZN9BnYrRneUnKyZV8TcouKOf+HiClymtKHLWG3SUzLpo6eFuY9WrDsoOj+WPc15eGbzzLj3HF9TVl1/Jup7o0X7/mUKlTKZs3qcuimMLKd0rcdu649pLSsnO7GhrxJTCU+PRv9qhoY6GkT8fI9yooKDGjVCNcj4X/3cqlQ/6fBTtfG9Qh9+Bq5SpWY3qMdIRcE0JnY3ZRjd6LIKSyilWEtFCvJ8fDdZ9SUKjOjrxlBh6WM9/5mnL37isT0bAx0tRjaoRm+e8Qoa+Go7hy6/Jj41Cxq62oyeWBbnDYIifnEQe34nJRZUWK+55vEfN7YbiwIOCZrJXY1NWL+UtHyth7WDr2q6jj4iwfyLOuuqKsq471cjKKmj+tM7RrazJOSWkcMbk33jo2wWbhXhH22qoudTR+8/cN4F5OCtpYqAd6WPHr8ke07xaKcN6cvJiZ1WLRQzIr19avi4WnOm+hEVkojHsaN70Tf/i04cvAuF88+FfNjnxHUNdQlZHU4D+8Jc0HvZWPQ0VVnV8hV0e5VlMcjeAx6NbW4HRHNzg1itznHYRCtzOqTl1OIl90+cnMKadLSADups/G969HsWiuA4mynwZhKQ/3C9t4m/PhD5OQq4bTCShbuee/qS3avFGOW2e7DaSHNwiosKGbp7F1kpeVRv1ktFgR9I2emxGfgZyOcWXtatMHS5hsIKistI3D2LhmHx35NRWv7zNQcfKdvobS4lI4DWjJ20fdhjUfXh3P77GPhirtz9g8JyUmxX1hhuwMAc5s+dBnW5qfr9+KeG0Qckdrx77JFQ8o3+llJJBJWzNpCZko2hs0NmBFg9cvjf1TJsV/Y4y3W4syg8f84TuI/WboGOmxxWM+LmOeoq6tz8+YNTEz+3a7T1/r0OgEPi2Di3yahqqGC++GFtOnzzwINwzaGE7JkHxKJhO6W7VmybdYvXbGLi0oInraZmycfiMiJLTPoNebHQo6E98k4ma8k5VMaNevpEhj2fdZVWVk56xbv48K+W1LDwEn0/Yv55OtHH3G1WkdedgFN2xqy9MDcCkAn4mQky6QxD33HtGfBXzs6YzeQmZqLUXN9/A/Mlm1cIm+8xnvmTmEm2L8FDquEEWhBXhEeM3ZISccq+O+ajlGzWiKA1OEwty+/QEFRHo/14zHt3JD8vCLcZ+8m+tkn1DVVCNg6lXoN9IiK/IjHvH3Cw6drI5yCRlFaWobHggO8kMbSBGycSF2j6oSsuMDZY1JQ421Bpx5N2BFylWMHpW7DzkPp3seYFf6nibgiHWf5jaJ+Az2WLNgvU7MuWzmON2+S8PMTTsgDBrZk6rQeuLof4eWrBNTVlVkWOIbHz+LYKI3tmTqhC6at67HQ+RAFBeJ+vnBOXxZ7HiEpJYvaNbXwdTFn6epzxEjpDAHO5izbcom3H1LQ1lTFZ8lQ/EIu8ikxgxq6GjjO6oP7WqH0NW5Qk1EDTfHYcJZyiYTBXZuhqKjAgQvi57Wf1Jv94ZEy6xTrgW0J2n9FGOx2b8nbhDSexgizwWmD27Pq2A1hkNihGVGxibxPSkdXU43epg3ZJQ3MntynLQdvPaGwpJT2DeuQlJXL+5R0qmuqYVyvBheevkFBXo5hbZtx+N4zGdfun9a/Hhfxb9bBP0QW1oxeZuy6FilyrUwa8eR9Agnp2ejraGJWX58zD14hV6kSC827subkLUrLyxnYtglxSek8l3J25g7rRPABsSDH9mrFi/eJPJMaJjlZ98ZnezglpWX0atuQ2joaHDgv/tBu0/pz7NJTmYng0jmD8dpwjsycApoY6jFrVGecV5wSrcp2DRjQtSkeK08L8lgPY7q2M8I9WJDJ+nVvxsCexjgvPU5hUQlmresxc0JXXH1OkPIlB4Pa2ng7D2fnvluyFHNfzxHk5BQQECTAkoV5G4YNbc3yZWd5Jb3g/PxHkZ9XjIeb8IHo3KURk6d1597tt2yVZtfMmteXdh2MOH/qMSekPBt7j+E0bFyTqxeiOLhD7ErsXIZgbGLA+7dJBLmJztXQUe0YYtlOhFA6H+HTB2HI5bFqLJWVFIl7n0KQY6ggC442Y6iVUF49uRvD1mABvqbZD6StNN087l0yQX/KvBo8TsjFJRIJa5yP8O55PBpV1fDYPBllqfV4cWEJvjN3kJ2eh1FzfeyCKgYg7vA/xdPbb1FWrYz7tukVeDhlZeUEzd5BakIm+g30WLzu+yiIp7des3OpAKg2/mO+89v5eg5+kzeRm5VPk7b1meb981FtXHTCN56Ox0iMO/x+JHNm6xUeXHyGopIiTrtt/xFH5GttXLSbovwiWnRtSr9J3X//gf/Bsre3JzQ0FEVFRU6cOPG/Bujcv/CY+Z3diH+bhF7daqy+4fOPgI5EImGX1xE2Lt4r1Iez+uC4y/aXQKcgtxDPUau4efIBipUVcN0z56dA5+PLeBYPCiblUxq1G+gRfMb+e6BTWsZy2x1ckJLgF2+Y/B3QefXwvcxHp5mZEb5/6ehcPfZABnT6jenwHdBxtPoGdAIOzEZdSw0QZp/eM3fKBAaOa6xRUPwGdF48FF1dv13TaWCsT1lpGcscQ7l5QeqntXY8bbs2pjC/GA/bPbJMPf8tU6jfuCYvHsfiPmcvRYUltOnUALcVVpSXSfBceIBnkR9RVVPCb90EjBrXYMvqcMIOC07JQrdh9Ozfgr3brssCjecuHkC/wSasDj7HpQtRovPjPYJmLWrjuPggH95/QUenCstWWxP3KQ0fqeK1dx9j5s7ti5fPCZ4++4SqamWCAsbwJiaZVVKfrnGjO9ClcyOWuIaSm1tEC2N9HBYMwHHpcT7FZ6Cnq0Gg+wiCNlzk1dskNKooE+hiwdqd13jxJhGNKsr4OQxnxfYrsgxF9zkD8N5wnvSsfBrU0WWieXu8Q85RWlZO7/aNqF5NnQMXxLNqwbgenLgRxbvPqVTTUmO6eQeCD1ylrFzC4A7NSM7K496rOFSUFJk1rANrTtwUUvE2jYhNzeTVpxS0qqgwtGMzGdCZ0NOUY3efk1soCMgFJSVEx39BW00Zs0Z1uPD0DXKVKmHZvjmH7z0DYGq3n28Af1X/pzs7AKPat+BcZDQ5BUW0qlcTiaScqDhBTh7XpRXLjgv+xdwhndh98YGUPV6LGlpV2BX+EAV5OZytehF8UEjMu7Y0RF1ViUOXH4sMkan9hcQ8t5Cm9fQY2qkZDmuE0+fMEZ14/ymVaw+EVN1//lA2HrzBx/h0dKtWwWvOQFxWnhasecPq2E3qwXzPUCEfbKrPzHFdmOd2mNx8IR+0m96TRe5HSE0XrUxP+6EsXxfOqzeJqFdRJtBrJLfvveNgqAAjjosGUVNPk9lzxaiqbRtDbG16c+DAHa5ceSkk8p4W6FStgt3cPWRm5GPUoDpOrsOI+5iKv+cJJBIYNKw1FqPa8exRLGul4GPijO5069WM1y/iWSV1JR41sRN9h7QiMyMPr4UHhfKqnSE2i0UXZNfaSzy4+YbKSgp4rhlH1Wrq5GYX4D1fmhrcph42TkJ5lRyfQYA086rX0FZYTBKt9LycAnxsd1OQV0TzdobYuH2Tix/bdp2IU49F9tT6CehJFUsSidMJhM8AACAASURBVIT1bkd4G/UJDW013LdMRelPQCAiLJLj0gywxavGV4iCANi37AxPbr5GWVUJt+0zK5AwQfigBM7cSnm5hD5WHb8jcn6tLa6HefskFnVtNVx2zPqpdLyooBj/SRsoKijGtJfx3+LpJH5IYZuL8DGZunQ09Zp9H5Pwu7pzJpI7px4iryDPvHVT/zX11Y9q9erVrFy5EoCdO3fSu/c/Gw/9J0oikXB01Rm2Ox+gvFyCcafGeBxZ9I9GaaUlpayZu5PwPaLrOslzJGMdh//yd5+dlou75UqiH8SgrKaE5yE7TH+SjfX60QfcLFeTk5GHobE+/scXfnd+JcWlBM7cyh9nHiOvIIfj5ul0G14xk+35vXd4jBPmmC06NsR732xU1L4ZX4YfvstqqUx8wNiOzAsa8x3Q+Tq68v8T0Ll/7RVLZ++itLiMjv2a47x2PIqVFWRA5/mDD6hWUcZv1wwatTCgrKycFS5HuX7uGQqK8riuscasRxMKC4rxmLuH548EMPLfOoWGzWrz6tkn3OfslSk7PVYJ93DvxQdlDu5+6yfQuHltdqy/wvEDontj5zKE/sNas3/nTfZJN3I2dv0YOrIta5ef58KZJ0IZ6WmBaTtDHBcf5N1bkRkYvHIcX1Ky8fQ4TklJGd26NWHRooEs9QvjYeQHlJUVCfQbTXxCBsGrBGdzpHkbBvRrjp3jIbKyC2jSqAbuDkNw8TvBh1hpmLPHCFZuucKzV1IBi6sFWw7e4olUoOLvOJz1+67z+kMKWhoqeNkNxG/zRVLSc6lbqyqzrLrgvv6skJC3rk+jetXZeERwbeaO6cqVyLe8+ig25XMsuxCw/4oARW0aUlhWys1nwipljkVn1oXdklmuZOUX8vS92PiP7m7CJukEZUxXE849jiYrvxDjOnrIK8jx6N1n1FWU6NmyAcfui5Dt0Z1ayOxhBpo0IvJTws8vmF/U/2mw06VxXWISUvmclkXtqhqY1K3JnohHKMjJMXdgJ1adFDcYq64m3Hr2gfi0bPSraTKgTWPZKGuJZQ+2n71Pek4+jQ106dW6AT47BRJ3GNuTo1ee8jExneraVVgwphv2q0UXZkCnpuhpV8F3qzjWZXo/Iu694d6zWFmK+VpZirkavguH4LPmHIkpWdTS08R74RC8Vp4hPimTmnqa+DoMY/n6cN7EJKOpoUKg+whOnnnMleuC0OzjOpzMrHyWS+XO46060q1zIxYuPsCXLzkYGFTFw204t/94y47tUv+beX0xaVUXL/djvI9JQbuqGj7+oyguLsXd8bA036oOcxcNICkxEx+XIyLIs08zrKd0Je1LDl5LDonE8i6NmGLbm5KSUnwdDpOcmElN/aq4SpVXV88+5cgucWEt8ragYbPaotPjcFhkXtXUwnXFWBQVFYTCau5esjPzaWhcm/lSE8Dy8nKCFx8i/kMqujW1cF03QQYYIm++ZmeQGCPOch9Gyw7f3GXP7bvNpdD7yMkJQrLen4z1PkYnsHqJGAmOntOHLoNbVVhD98KjOLRa/E7tVoz7DgiVlpTiN30zGSnZGBrrMzf4xwGLEcfuc2ZHhFg3m6dT3UDnu2O+1hbngyKIsbomDltn/ZanU15ezoqZW4TMvGsTzH9CTv1VFeQVsnGB8OSxXDiYesbfS+X/rTpy5IjMPycwMBBr69+bKf6nq7iwmNU2W7m8XzwIB0zpybz10/6RO3V+TgG+1uuIlGYczVs3hUFTe/7yM2mJGTgPW0bsq3jUq6rhe3wxTdr+OC7k2R+v8bRaS0FuEU3a1WdpqJ0MZHytooJifKds4sHl56JDtGMWHQaY/OXrvMFzQgiF+cIF3Gu3TQVC/fn9t1nrKID24IldsPW1rKi6+hnQufpScHSKy+jUrznO6yZU6OjIgM7O6TRuKYDOSucjXDv9BHkFOZxXjqVDz6YUFZbgNW8fzx6ISBm/TZNpZKzP6+efcZ29m/y8IkzaGeK5ehyV5Crhs+QQkXdjUFapjO/a8TRtoc+eTdcIlXqFzXUcxCCLNoTuu83uLREATJ/TG4sxZmxcE84ZaWyOg9swzDo2wMnhENGvEtDQVCF4xThycgtx+1PcjqPTEAKDz3BHahDot9SS9Mw8/KQxPkMHtWLk8DbMdzwkM4H1dh6OZ9Ap3r4Xo6llnpZs3HODR1FxqCgrEuRqwd4T93nwNBYVZUX8HYaz7cgdnr9JRF1NmaULBhO8/QrxKVnUrq7J/Andcd9wjoKiEsya16WtsYHM923GiE7cexUnM8NdMKY7wQeuUlRcSucW9VBSUuTs3VcoyMsxb0RXQk7fprC4lPZN61AukXDvdRwqlRWx7tWaTVJOrEXH5kS8fE9qTj4Na+qgqabMH9GxqFRWZKBpYw7fFV0cq04mHLkfRblEQm9jI269iyUjK+vXF85P6v802FFRUORuzGfUlZUY3bElq6XKq/mDhdmRiJU3JDe3kCdSZDprUAd89gruyOR+bbn59D0xCWlU01Rj1pAOOG8WD9Tx/drwNu4L916IDBHvGQPx3RZObn4RLRvWYkhXYxYGi7HG5OHtyS8o4mj4EwA85wwi/MYr7jz+QGVFBQKXDGfXkTtEfZWcO1uw7eAtnn6VlLtacPL8YyJuv0FBQQ4/F3PexaSwbY/UG8G2D7VqaDHbbg8lJWV07dSIKRO6ELTsLK+ipaMqH0uSkrIIDPwW7jl0mCk7tkZwW0qw8146Eh2dKjgu2C+yrGpp4elnSUlxKZ5/Ul4tcR1GSXEZXksOkZ6aS936ujguHYG8vBwbgs4S9ShW5FitHoeGpipvXsTLzLuspnejx0DR4t+1JpyHf7xFSVkRjzXWaOlUEYost2O8j05Es6oa7uvGoyR1U92/7jL3r72ispIC7hsnyjxzkj6lEThfREH0G2XG0AnfEpRfRX5gk5f4O0xyGIxpt8ay9/JyCvCdIUwFW3drzESHIRXWT1JsKsvn7QJg2LQe9LCo6JAMsMvvJC/vxQhV1U6bH6ZyJ378wtqFe8TPv3gw7fr+3Nzv9plHnNkmFHX222airff7LsHpTZeJuvUaZTUlFm/5PYn5R3Vs9VmSY1PRq1uNcf+D2Ve/qxs3bjB+/HgkEglz5szBwcHh3z4lUuPT8Rm9kuj775CTl8Nm+USGz+n/jzphaYmZuFssJ+ZpLEqqlXHZO/e3ZPLPb5NwMV9Gcmwq1Wpp4x9mT92/SMa/1v3wZ/hOEqnjrbo1wXP/3O8iSApyC/GesJEnN6OF8eXeOZj+xdbg4dUXLJ26heLCElp3b4LHzooht6d33WCjm+B4DZ/anVneFd3JXcaFkJ2R9x3QuXflJb5SMnLnAS1wWjP+G9CZvoPnDz+I0dXO6TQ2qSM6On8GOivG0qmPsQj9nb+PJ/diUFGtjO+mSTRpacCbF/G42uwm//+Rd5YBUa3r2//RLViIgQFiYyt2Y7dgd4CoKIiigCANdnejIIgd2B3YgYhJiShKSTfzfniW42Yb++zznv85H/b9ddYaZpj1rHU9931FdgFNWtbCY/14lJQV8VoYwoPbb1FTU8Fr3TiatKjFgR3XCJK6N7MW9GWQRRuOHLzLTolvONm6G5bj2rNj02WOh4psxPlOA+nYtQEui0J48fwD2trqLFs5hvyCIpwWh5CfX0SbNnVwWTKEFavCuHFTqFs93YeTl1+Ep5Ro3qdXE8aObIfd4oMkp2RRu2ZFfN2G473mDFFvPlFOR53l7hbsDrnD3cexqKkq4+c0lNCwxyIMWlUZ7wWDOXDyIY9fJKCpoYqX/UDWBFwj/mMaVSrq4DC1J0u3nJXnL3ZtU5fl+8R3mziwDS/ikuTPMfux3VgZco3cgiLaNDCkcoVyHLsp0gfmjujEjrNCrNOibjW0NFS5/PQdqspKTO7dmq3nRXj2gDYNeBj7gaSvWdSspEf1SrpcjYxBTVmJYe0aE3hbPAct25ly9GEkxSWldG5Qm8cJH8nML6BpjSr8O047/2jOzqWIdygpKmDT24xNZ4XSaULXlpy+/5LUrFzqVatEw+r6hD18jZKiAo4WXVkdel207lrUJT+/SJ5ivmRCL3wCvqeY6+tqc+RqBAoKsHR6H3YevUPilwyqVdbFflxXXDeeEVEPbUxoVq8aa/dJqeOjO5GRkUeIpLRym9OXJy8SOHctCiVFBbwWDOL+kzjOSKnlHg6DiIlNZq8kSVw4uw/qair4rBSga8TgVvTq1ggX9yPycE+nhQMICb3HpctClr7UdShaWmq4Ljks3JBb1cZmVi+uXon6rrxa0J9GTWqwed0F4RehqYrX8lFo62iwwuuEPOTO3X8kqmrKrPM7zZuoj+joauCxagxa2mqEHX3ImSMPUVBQYLGPBTXrVCY9NRtPuyCKCosx61KfibPF+OHa2QhC94gbjL3ncOo2FKGDR3bf5HpYBErKirisHUflqsJNM/zSC4I2Svlj3iMwkdLKC/KL8JkdQHZGHvWaGpaJgkhPzsJn5l5xQ+3XDEub76MPmUzGmvlBJMYmU7laeRZtnFTGi6YwvwifGTvIzsijQas6TF/6IwB4cOk5h6V5+/wNk6lm9KPhW3FRMctm7BCRE+1MmLB48A/HfKuvXzJZO0eQly3m9aNVjx+DLP9cH2M+s8tVSOWn+47+rencryozNYvDqwWna5rv2DLjif9lvXjxgiFDhlBYWMiwYcNYt27d/3y0FnEjilltnXh1/x065bXwC3Ni6Jy+f+tzvX+ViF1Xd6KfxaOnX44V513+Eui8ehjN/F7efI5PoZpxFVZddPkl0Ll25D4e4zZRmF+EWd9meIbM+wHoZH3NwcliLU9vvhImfMFzfwA6d84+xWPSVuESbt4E931ls66O7bwqBzrDrXuUATpvnr1n8ejNZKbnUK9ZTXyDZsmBTvjFSDnQ6dSvqRzo5Gbn4zp913egs3fGL4FOx95NhGOy7QGe3BVAx2vLJBo1r8WbF4k4We8VAZ7Na+K5cQJKKop4Ox7injRG91g7lqatahO064bc6d3KrjdDRplx7NB9tkliifHTujBmUid2bb1KqERQtnPsT7eejXF1OsSzp+Je6b9yNCWlpSyWOuLNm9fC1W0Ya9ef5+o10X13WzIUmQIs9TlOcXEpPbo2ZOrEzji4hJD0JZMa1crj5z4C/w3niIhKRFtLjRXuFhw8/oCb996hqqKE7+KhnL4SydXwN6goK+HpMIgjF55y71kc6mrKeNkNYEvwTaITUqiop8XiGeZ4bjsvyMnGBvTr3IgVAQLojDJvwfsv6dx6JsZTC8Z1Y/3hG5K6uCrGhpU5dvM5CgowZ3gn9l58KA++1q+gw+Wn71BWUmRaPzO2X7hPSamMXs3qEpX4RWRf6elQv0ZlrkbGoKykiEWHpnKgM7RNI049fUVBcQlmdQ159TmZtJw8TAwq0dro74/g4R/e2QEhMd956QFFJSX0MDUmLimNtx9FNodFe1P8DwkQYjesC3vPix+zYU19WhpXZ2WIWARLJvRk45GbpGXlUs+wMoPaN2LxJvFwsLXszN1ncTx5nYimuipeNv3w2nZBTkCePLgts70Oyd0qGxkZYC8prWaM7ICqsjJbD0gS8qk9KCkuZfM+8XdnT+6GjrY6LlLC9ZhhbWjbojbWdvsFQblVHWymdcPD7wTRscmUL6+Fr/sInjyJZ5fkBWM7xxzTJoYscAiSK69c3YYSE/2FlZLz8cjR7TDvY8qZE485JUkrFy8dSq06ldm/6zq3Jc+dpX6WVNIvx9Ggu1ySZJkuvhZUrVGeF0/fs0nyzZk8qwdmneuJkZZDMClfMjGsUwlHX9Hejnn9iTXfgv2mfu/0PLr9hj1SIN9M50GYStlWCdFfWLFAytWZ1ImeQwWBTSaTscntqJyQvGTzJFTVxCVfUlyC3+y9pH7OwLBuFeavKhuCeGzHVW6ffSbm/tumoluhrNJpm1so7yISKFdBG+ftP44nUj6ls3K2GPsMnt6dTgNb/vT6O+B/klcPY9Aqp8Gi7dN/KkX/9l3W2O4mIyWLOk0MmeQ24qfH/bFKS0tZY7OLgtxCmnZpyIDpPf7ynJ/VoZUnyc3Mw6hpLbpYtPu33uM/XYmJifTr14+vX7/SoUMHAgMD/6vux38umUzGkbVh7HQKpLSkFKOmtXA7ZE8147+XFRZx8yUeo9aRnZ5D9boG+JxcSNVfZKF9qwcXnuE1fiMFuYWYtKiN9xEH9PR/rpI7tfMqmx2DkMlkdBvRlgVbpv6Qx5b+JRNny7XEvviAtp4m3iFzafCnCIrrxx+yfPZeSktK6TyoJQs3TS6zBg5tvMgeqUs8ao45kxYNlK+vl4/jWDJhK7lZ+TRsVRuvfdZyIvPNsGcsswukpLiULgOasXD1WDnQKUtGniEfXf0a6Ozn6b0YqaMzmcYtvgOdHAnoeG+eiIqqEt6Oh7h7Q3jxuK8eS4u2RgTtvsG+rZLy1rYXI8a153jofbZIcTRjJndi/NTO7Nl+jRBpUzhnfl/M+zbF1TmUJ4/j0dBQxW/FaBSVFFi4IJicnAKaNjXE02sEm7Zc4uIlseF0dRmCuoYKTkuPCB5Pp3rMnNEdB5cQEj99paqBLsu9LFmz9RKPI96joaHCcrfhHAl7wuVbr1BWVsRj4SAu3X7JRcmLban9AMKuv+DWoxhUVZTxsh/EnuP3eBX7GT0dDVys++Cz8wLpmbnUq6XP8F7N8Nl1QcQldTMlPTePK5KvzsLxPdl0/DZfs/NoVLsKzerVIOC85IY8tANBV5+QmplLveqVMK5RiRPhIi5iej8zdl28T1FJCV2b1OF9WgYxn9OoXE6TVnVrcOqREP+M7tiMA3dEasDAlg25GPmOvMIiWtWpRsLXDL5k5lC7kh6KSgrsuv3oL1bRz+sfDXZGtGvC2Uev5A6N+jrahNx8hpqKEnMHdsQ/RIwLxnZrQfiLOGIl2dzEnq1w3S0eujZD2nPh/muiE1OpqKuFnWVXHDeK6IdBnRqjhAInr0eiqKCAx8x+7Dp2l9jEVCqX18LVqjeLVp0kJ6+QZvWrM2FwW2zcgikpKcW8YwO6tDFmpvPB7+GejWswy+kgpaUyBvYypWs7E6wXHKCwsJgObYyZNLoDDs4hJKdkUdOwAksXD2Zf4G1u3XkrlFduw8jJKcDX/5SwFh/UksEDW7Bm9TkiIz+gpaWGt7cFxUUluDmHCrNBM2OmWXXj+dP3bFglZV7N6Eb7TvW4ff0V+3dKQMyxPw2b1ODJ/Rh2rBfdjBlze9OirREpXzLxcgyhuLiEzr0aM2qK8M3ZtuIsL57Eo6mthtvasWjpqJP5NRfPeYFCGdHRhElzRYLxp4Q0/B2ChUTTog0DRgvH7JysfDkh2bStEdMXfU9KPhdyj4uHHwhZ+rrxVK72PVNl77IzPL8rYiJct0+Vu7MCRN6LZpePIFVbuw+nfotaZa6bq0cfEBYg5LeOmyf/EM0gAj53kZGajbGpIdPdf66qenbrFSESAXHeukm/5elc2H+Tu5Js3XGn1W+VON8qbNdVIm68RE1TFfst0/6t8VXqp3RObBI39yleo/6t9/hPV0ZGBv369SMhIYH69etz8uRJNDR+7TXzf125WXmssd7G9VCxs+81rjNzN0//6cjyd3XxwE3WztpFcVEJDc3q4nF4PrqVfu9MfTHoFmtm7aakuIRWPZvgGmj7Q5cGBBgLWnGa/X4nABg0vTs2y340M/zyIRWnEWtJjP4s3JOP2P/gnnwxOJy188VYuKdFW+zXTpCDdJlMxv6VYRxcJ66ZcfZ9GTe/nxzoRN6PwW3yNvKyC2jS1giPvVbytXft1BNWzD9IaUkp3Qa3YMHK0SgpK5GTlYfrtN28fBIvyMX7JDJycQmrnA//fwMdn0Wh34HOqjG0amfMwT032bdFknvP7snIiR05efgBmyU7i9ETOzLZqhsBu25wUOLyzLbrQ7+BzVm65DCPHsairqGC7/JRqKmrsMAhiOzsfJo0qYG3jyXbdlzl3LdEc+fB6OppsmhJqMiyalcX25m9WOgayvuENPQr67DCy5INu65w73Es6moq+C8ZwekrLzh/TQhJ3B0GEv44lrCrwqDPbV5/rt1/y7V7IozT064/QWce8vzNR3S01HC16cuyPZdITs/BqEZFxg5oheeO85SUyujfqRElyDh39xVKSoosHN+D7afDhYFgjUq0b1KbnWFCkWY1qB1Hb0fy5Ws2dQzK08ykGoduiInG9H5m7L3ykPyiYto3qEVKTi6vPyZTXkuDzo2MOHIvEgUFGNO5OUHhT5HJoHdTE26+iSW7oJCmNQ1Iyc0jMT2T6uXLoaWhRuTHz+hp/Hud5X802ElMySD6s9Dz921ej7UnBGdnwdCubDp5W3B2mtShpKSU8Kh41FWUcRzZHa+Ai5LcriFZ2fnciohFTUUJj6l98d17Ucw+61WnawtjefSD7eguPI5KIPxZnJirzh3Emr1X5RlXS2z64uh/TG7bbTO2M7ZuweTlF9GyiSFTLNsz2yVYHuQ2e3JX7F0PkZaeQ51alXCdP4A1my4S9Voor/yWjuD+wxi54+bCeX2pUb0Cs+bsIy+vkObNajJ7Vk9OHH/EmTNP5ZlXVQx0WWgvkZZrVsDZdQipyVl4uhwW5OMejRgzsSOx0V9Y7ilunENHtqXPwOZ8+pCOj/NhkY01oBnDxpiJeIcFwaSnZlOnbhUWuA9FQUGBc0cfcTrkvgAMPhYY1q4sCMmLQkhKTKdqjQosXjYSJSVF8vMK8Z57QJiUNTXExlUE/slkMlYvOsSHmGQqGejivF60uwFeP3vPZvdjAExy6EeLjt+l2XfOR3B4mwCy9ivHlHFITk/OxG/WHkpLSuk+rDUDJpY1TPsQ/Zn1C0SI4mi7vrT6STRD0MrTPL/zBg0tNZx2WMkTmv9YWenZrLDehUwmo/f4TnQZ2vqHY75VUlwyWxxFevpE1+EYNan5y2O/VerHdHYtEeOrKR4jqWb0c2PCv6pDK09SkFdIo3YmZXKn/ldVWFjI8OHDef78OQYGBpw7d46KFX8NEv+vKz7qA16j1/D+ZSLKKkrMXDWJQTPN/9bYqrS0lADPIxxcJgB2lxFmLNhhhZrGr60BZDIZh9aEsdtNJM73GNWe+Vum/5QAXVpaylanYE5K0Q7jFg1i/KLBP3zGD+8+4zRiNcmJ6egbVsT/iP0Po9cTO6+ydYlIGe8/sROz/b/Hr8hkMnZ5n+CItLamOA1i5Gxz+bnP7rzFfeoO8nMLadbBBPfd3wHh5WOPWL1QbGZ6jWiNnb9Y+9mZIgLidUQC2roa+OyZTj1TQ4qLhLz8xtmIskAnt5Cltvt5dl8AHZ9tk8uMrn4GdMKvv/oOdNrXJXjPTfZulr7DrB6MmtyJU0cfslHa7I2a0IEpM7tzYM9NDkijdpu55vQf0gJ31yM8kNySfZeNQktbDYf5QWRl5dOoUXV8/SzZufs6p88ItZbTooFUqKiD45JD5BcUYdbGCPs5vXFceliuslrhPZKt+25w577g4Pi6DOXKnVecuSTAkptdf568SODEBeF35mTbj7vP4rhwS4AV97n9OXLxGY+jBGfH1aYfq/ZfJUnydZsy1AyP7cLl39ysHuoaKhy+8gxFBQUcxnZj79n7fE7LopZBeXq2rseWk+KZMq1/W8IevOJjaiY19fVo37g2gVdFd2ZqnzYE3nhCbkERretWJ6+4iMj3n9HVVMe8uQkhdwQBeVTHZgTffUZJqYwejY14GJfI19x8GlbXJ6e4iLiUdKqU06KyrhZPEj6ho6aKTccWPPD85dL4Zf2jwc69twloaWtjZd6OZaECxc/o3ZZjtyNJycylbrWKtDUxZPUR0b1wGtuTjUdvkZVbQDPjqjQ3robvfsETWTKpN7tP3SUxWfByZg3viP2q45TKZAzp2gQtdRWCz0k8HOu+nL0RxaOoBDTVVVi2YAhrdl+RS8697QbhtS6MT18yqW6gx1K7AXiuPiOUV/rl8HIcxOotl3j97jO6Ohr4uQzj9PlnXLgiUL2n8xBycwpYtlqMjUZbtKVHt4Y4OoXwSWqJLnUbxvOIBDZJPjlWVj1o29aI1SvCeBH5AS1tNbx8LVFWUWKpUyhfv+ZibFIFB+eBZGXm477oEHm5hTRvVRsr217k5RbisTCYrIw86jWqxjwnQeZd73ea1y8S0dHVYOmq0ahrqPIyIoFNvgIEjrfpTrtuDQDYt+Eij++8Q01DEJJ1dDWFLNz9ODGvPqFXURuXdeNQlW7oR3Ze587FSJRVlFiycYKckJyRloPPrAC5XNVy5ncFy8e4FFY7CLAybHpXOv9BXVVSUspy2wDSPmdSq35V5v7Ja6cwvwg/q13k5xbQtIMJ4xZ87yJ9q2e3XnNwleBL2a4cT426P4IMmUzG2nkBpHxMp3rdKtj8xtyvtLSUVTN3kpedT+P29Rgx90ezwp/VloUHyM3Mo0EbYwbbmP/1CT+p9C8ZhEkRA+NdLf7nfJjS0lKmTJnClStX0NbWJiwsjNq1a//PPs+FgOtssN1NQW4BFauVZ8lBOxp3qP/XJ/6hCvIKWTljOzeOCDuI0Y6DmbR0xG87aCUlpWxZeIBT28VvYzGvH9O8Rv70nOKiYlbN3sPVUPH+NsvGMMTqR1l+9PMEXEau5WtyFjXqVsHv6Hwq/yFGRCaTEbz2HAHLJAGDdQ9muI+QXxOlpaVscT3M6X1iwzjTcwRDpn73YXpwNQpvqz0UFhTRskt9XHdMk3tcnT90n3VOoUKWPsoMWx/x/b+ll4u4F0189sygbuPqFBUWs2xhCLcviLXvtFqQkfNyC3CbFcBzyRvHe6vg6LyO/IDLzH3kZOXTuEUtvDZNKAN0VFS/A52QvbfYIwGdSTbdGT2lM6ePPWLDCtGBtRjbnqk2PQjad4uAXeK5YDWnF4OGt8bT7Sj37wozVW//keiU02CBQxCZmXnUr18VYNe9uAAAIABJREFUXz9Ldu+9yYmTQq210KG/2Fy6hAquZItaLJjXl0XuR4iOTaZCeS1W+Yxkz8Hb3LwrOjQ+TkO48yiG4+dEvqGzbV+iopM4HCZAxqKZvXn68gNnrolngevsvpy6Hsn954JgvHR2PzYcvCFXYc2w6IDn9nMUFZfQtZUxFcprcfCiCHyeP7YrBy8/JjElgxqVdRnQoRGbjotx3cQ+rbkS8Y6E5K9Uq1iOrs2MCbgsmQT2bk3onedk5RXQrE5VFJUVefI2AW11Vfq3akDQLcHLGdmxqcinlAjIkR+/kJqdS90qFSlVkPEuKZWK2hoYVi7Pg7gPaKgo06xWNXzPX//l2vhd/aPBDsD8QZ3ZcEoYBfZpUY+Yj6m8SvhCeW0NJvdqjXuAGMnYDGzPmTtRvJeSyif3aYPjFrHwpw8041FUAk9eJ6KlrorH9L54bDtHbn4hLRvUoHf7BtgtExyU6cPb8zUjl6OXxMXqPmcAZ69FEf5EMOn9Fw5h7+Fwnr2UlFZOwwgIvcvjyAQ01FXwdx5G2KVILt0Qc1kvpyEkfEhjq8TBmW3Vg9q1KmFtu4+CgmLM2hgxY0pXNm25xNOn79HQUMXb04KcrHw8PI8JJ1PzJliObMuJY484K7khu7gNpXqNCvi6H+PdmyT09DTx9B+JqooyHotD+ZSYTpWqerh4j0BJSRF/r6PEvhPydLflo1BVU+ZE8F0unpL8JvwsqVqjAmkpWXjPP0hRUQkdujdkzAxxQ7x5IZJD0s1jvudw6tQTXIczB+9yWfLGcVo9hsoGQn0UcS+aPSvFDWjmksHUbya6HSUlpSyzCyT501eq166Ew/LvgKUgvxAfmz3kZObTqFUdpjqVJQMHrz/P01tvUNdUxXnrlB/GENuXHibmxQd0K2rjuHnKD+GZX1OyWGa9U6i+xnagh+XPw2nP7b/J7VOPUVZRYvGOGT8dO3yr45svEHHrFepaaizYNv1fCux8eDGCm0eFlH7uxh8/579aR9eFUZBXSL1WRrQy/3tuv/8X5eTkRFBQEMrKyhw5coQWLf43naa8nHw2zd3DhQCx5lr0NGXxvtmUr6L3F2eWrfTPGXiMXMvL++9QVlFi3qap9J7wcw+mb5WfW4D/1K2EnxYbJ2v/MQyf0/enx+Zl5+M9eQuPLr9ASVkJh01T6DHyR87V8ztvWDpuI7lZ+RibGuITaofeH8ZnMpmMnR5HObpVAr4LBzL2D6OpkpJS1jsGcyHkLgoKCtj6j6LfuO+Gg7fPPsN/TgDFRWLzsXjTZDl37kzgHTa6invjgHHtmeUxDEVFRTLScnCetJ2YV58oV14L/wAr6jSoSqGUdXX3ykuxyVk3DrPuDcnNKWCJzT6ipLG4z9bJNGxWk5cRCUJenl0gBzrKKkp4LzrE3euvUVFVxmP1d6CzW1JYTZrZnbFTu3Dm+GO5d9iIMe2YMacnQQG32btD/PbTZ/VgqEUbPJceJfzOWxGL42eJnp4mDg5BfP2ai4mJAf7LRrJv/22OHRecxwXz+1HDsAILXQ6Rl1dIy+a1cFowAGePo7yLEc72q3xGsv/wPa7eeo2ysiJeiwfzKDKBUOm3d5zVm9gPqQSfFNyZBVa9iIr9zMnLz1FUUMDJpg8Xw18R/lQ8W9zn9GfLodu8T0rHoKIOs0Z3xnP7OeGr06wOhlXLE3BWvNfckV04fD1C7pQ8olsz1h4RXazRPVpw52UcMZ/S0NfTpk+b+uy+IFRoE3u14sT9KMFtNdRHU0OVO6+FpHxI28YcuClAmWUHU04+fklBcQntTGoSnZzG54xsalcqj5q6MpEfxLiqfjV9bkfHo6asRFtjQ669iUXp39x0/aPBzpSerQm+8YzM3AKa1DKgevly7L34EBVlJRwtuuF3UHKHNGtIcno2D14loKGmgtPYHrjvPkdxSSk9Wpmgo67Grpv3UFRQwNOqH9sO3+aj1OGxG9sNu+VHxLFtTWhqUo35/sI52GZ0ZzIy8wg+LRCx6+y+RL76yOnLoj3pbj+QiKgPHD0rxkxu9gP4/CWT7ZLBmJ1VTyrqaTHTfj+lpTIG9DZlYJ+mODgJ3o5hjQq4Lh7M2fMRHD8hFojz4oFUqVIO2zkBZGXm06BBVeY79OPZ0/ds3igUBtOtu9PWzJhDgeFcuyRmwq4+I9A30GXHxks8vh+DmroKHstHoqunSci+W9yUUn5dl4+kcpVyPH8SzzZpvj1trjktzYwpLirB2yGY1OQsahpVZoG0g4uP/sIqyU15xOROdJXCNV8+iWebv+iSTHXoS1Mp8iH1cwb+doGCMzC0Jf3HfL+BH9xwkSe33qCmocKSLZPKOLhudTtKzItEdCtq47RlknzkBfDs9hsCJfLzHN+R1PxT+OHNk485I2XTLNw4mYoGZR9sMpmM1bZ7SfucQc16VZnlN+an19zHmM9scxbjpUlLhmHSvPYvr8/3rz+ye6kUzeA75l8aRRUWFLFJkrEPmdUb46a1/uKMn1f21xxObRFAf5zL8P95V2fjxo0sX74cgJ07d9K799/3CvpPVNyLBHzGriM+6gOKigpMWGrJ6EVD/zagjH4Wz1KLNSR/SEW7vBZuwfNo1qXhb8/5+iUTt5FreP0wBhU1FRx3WNFleNufH5uShduodbx5HIeapipL9tr81NLg7rln+E4X0nHT9ia4B85Gq1xZd/CNjgc5Fyh4KdZeFgyd8Z3oXlRYzMp5+7lx6olwVl4znh4jvlswXDn2kFXzhflnl0EtWLj2+6j52K4bbJe4cUMmd8ZaGk+np2ThPHkHca+TKF9JG78AK2qZGFBYUIT33EAe3BAgxW2jcEbOycrHZeZeXkUkoK2jjs/2KdRvUoOop+9ZMitAbkjquXE8SspKeDuGyFVXf+zofAM6E627MXaaADrrJG+uYaPMsLLtJYCO5K0zbWZ3ho80w9v9GOG3JaDja0mFijo4OATy9WsudetWYdnyUQQGhXP0mAASDvb9qF2nMguchDKrRbOauCwciIvXMdGtL6fBKp+RBB9/wCXJJ8194SCev/nEweMCVCy0MScpOZMDxwR3xm5qd2I/pnHsgthEL7Y25+bjaG49FuRk9zn92XE0XOKLajN3XFe8dl4QfjhNamFSW5/dp0X3b45lZ06HR8mDPMeYt2R1qAB3I7qY8jQ2kbeJKVQqp8ngDo3ZcU6cN7ZHC8Iev5YrmSvraXE9SlA8LDqYEnBdPINGtGtC2LPXEgG5Oh8zMklMz6RGBV3Kl9PgcfxHdNRUMa1lwI23cSgrKtLRpDaXX0eLJAPzjlj5/3ap/LT+0WDnRWwSsZ/TqKKnzeDWDeXKqwXDu7Dt9F2y8gpoalSVhoZVWBVyDQUFcJ3Qiw2Hb5KelUf9mvr0M2vA4o1CtTR3VBfuPI3l8asPaKqr4j27P17bz5GemUe9WvpMGWLGbK9QSkpl9OnYkGb1q2PrIebfUy3aUU5LHQ9J4mszoQsaaiqsllrV08d0okbV8sxccECQi/s2o2eXhtjY7yc7p4AmDaszb1Yv1m++RGRUIlpaavi6jyAuLpn1G8RDa8rkznRob4KH+zHi4lKoWFEbD88RpKfl4LX0KKUlMnqaN8ZylBmP7sewa6to586y603T5rW4dukFoYESB2jJYIzqVuHR3Wj5fNtmQT8aN6tJanImPosOUVJSSrc+powYL3Z5O9ecJ+rpe0FIXjMWTS01crLz8bILFG7KZkZMnSceYukpWfjYBYnQv76mDJ8suDPFRSX4zgskPSWb2vUNmPMHKfmjm68J2iDJz30sqP0Hg7/LRx5wLljsPBetn0ClP4CV9ORMltkGIJOJvJ6eFmUfIJ/fp7JugeDMjLTtTavuP/J0wvbe4P7F56ioKbN4x4yfppSXlJSyctYe8nMKaNa5ASPm/PqBXVoqAhyLCopo1cuU/lO7/fLYP9ax9ef4GP2ZCga6THD9a8XWr+rs7ivkZuVRq3ENzAb8XEn236qjR48yd+5cALy9vZk0adJ//TPIZDLO7LjMtgUBFOQVUqFqeZwP2NK0y4/Xwl/VzWMPWDF9KwW5hdQwMcD98HwM61X97Tkf3iaxZPhKPsUmo1NBC/dgO5p0qPfTY5Pik3GRSMblKmjjGTKXBq2NfjjuUkg4q+fuo7SkFLM+TXHeWZYnVFRYzMo5e7lx8jGKigrMWzWe3mPay1/PzyvEx2o3D69GoayihOOGiXQe+L3bdjYonA1OIubF3LIt85aPloPC4E2X2bdKdGYtrbszxbE/CgoKpCRl4DRpOx9ikqmgr4N/gDWGxvoi0872AI8l362lmybSokNdkV5uvYc3kYlol9PAb/sUTBpXJ/JxPK6zA8jLLaRp6zp4bhiPopICXguCuX/7rZCXrxlLSzNjobqSyMiTZnZn7LQunD76iPVSDuDw0WZYzzUvA3SmWndnxOh2eLsf4/a3oE9fCyrp6+AwP4iv6QLoLF8xmqDgu4Qekfx37PpiZKyPg1OI4F+aGuKyaCBLvI/z8s0nOdA5dPIR5yRagpvDAN7EfuGANOq0m9GD1K857D0sCPG2k7vxKTWL0LOia+I4oxf3IuO5dl+MvpbO7sfu4/d4+z6ZCrqa2E/ohs/ui+TmF9KqoSFN6lVlxwnxXjbDO3Dh4WveJaZQUVeL8X3asDr0OjIZDO7QiNcfk3n5XsQ+jOjSlK1h4ryRXZpxOeIdXzKyqaNfnur6ulx5Ho2KkhKjOjZn33WxoR/cphEXIt+SnV9Is1oGpOXmEZ8iZOgGFXR4ECvGVS2Nq3PtdSxKigp0b2jEhZfvAOjZyJh118J/u1Z+Vf9osPPg3Qe0tLWZO7AjXoHiITmxZyuuPYshXko4H9e9BS47xaKcPbQjF+5LF0I5TexHdmXh+u/KKxVFRY5J3jqeM/sRcOI+796nUEFXEw+bvjivPUVWTj6NjA2YbtGema7B8rDPPp0aYeUUKNyVuzWim5kJMxwDKSkppUen+gzp05SZCwPJzSukeRNDZk/tjrvfCd5/SKNyJR28lgzl3IVIzpwTf99t8SA01FWwdzhGcXEpXTrXZ/zYDgQFhXPzpmiLLnUfho6OOnZz9pORkUddkyrYL+hP0qev+CwVI66+A5sxaFgrYt99ZpWPJCWd0IEuPRuRlJiO35IjwvxqcHMGDG9FUVExXo6H5IRke2m3du1sBMe/ASXvEfLE8jVux/gQl0KlKrosXi7UFyXFJSxbEEzql0wMjSpj5/2dG7B7RRhRj+LQ1FZnycYJ8rl/SlIGy+2D5HlYPYZ+z09JePeZDc4CVI6z60OLzt95FaWlpayYt5/0L4KnM8vbssw1UlJcwrJZu+XBhhMcB/1wHSW8TWK7RBSd6joco8Y/94E4tvkiUffeoamjzvyNU37LywjbfY0X4W9R11LDbsOUf6mzkpKYRtAyQRqf5jO6TFfr71RJcQknN4uu3PC5/f+nCqzbt28zbtw4ZDIZ1tbWODs7/9c/Q0ZKJquttxMujQtamTfFce/sv52gXlpaSpDfcfZ7H5PexxTngNlo/8m1+M/1IvwN7qPWkZmWjUHtyngfdfglOIp+/p4llutI/5yBvmFFfI7YY2jyo/z96JaLbHcVa6LX6PbYr51YxvYgP6cAr2nbeXxNjIsWbZlKpz8AmZysPNwnbyfyXjRq6iq47pxOq27fO1PHdl5ju6ewxBg4sRM2nsNRVFQUaq015zkoeWKNt+vNWFtB6P78IY3FE7eTlJCGfjU9/AKsqFarEnk5BbjPCiDifgzqmqp4bJlE07ZGZGXk4my1h7dRHymnp4nfjikYN6hGxMNY3OYckG+g3NeNE55kC4J5eOcdamoqeKyV5OW7vsvLJ8/qwZgpnTl19OF3js6Ydsz4U0dnqnV3LMaUBTpevpboV9Flvn0g6ek58o5OyKF7hB6WsrTm9cGkngEOTpIEvUkNliwehJvPCaJefURHW50VXpYcOfOEs5cjBedmwUBiP6SyT1L6zZvWg9z8InaFCO6MzYQupGflcVCaDiyY1pPHrz5wKfw1ykqKuNr0Zf/pB7yJ/0L5cposnNwT393C3LZ5/eq0blKTLUdF127GkHZcexbN6/cisXxy/7asCb1OqUxGf7OGxKd85XlsErpa6ozu3pytYeJ+PryjKbdexfEpPYualfWoW6MSF569RVlRkbFdmss7OgNa1efG61gy8wpobFiF3KJiYpLT0NfRoqa+HnejE1BXVqJ9vVpcfiW6OL0am3DuhbAQ7N24Ludfvfu3g0D/0WAHwHF4N9Ydl3I8TI0oLCrh7st41FWVcRzZDfe9F+TKq5zcAq4/jUZVWQnPaX3x23dJGCzVrUav1vVYsEYs7tkjOxMVncT1R9GoKCvhN28Qmw7eJC4xjUrltfG07Y/rmjMifK1WZeZP7Y6dx2GysvNpZFIV20ndmLc0lIzMPOoZVWGhTW/c/E+Q+OkrBvrl8Fw0mIDgcMIfxAh7cddhfEhMY/0WcQOZMaUrLZrVYv6CINLScqhTuzKLFg7g/r1o9kjcnrnz+tCoUXWW+Z7i7ZskdHU18PAWEml3p8NkZebRoFE1bOf3E4TkxaFCDm5mxGTr7uTnF+HpeEhOSJ7jOAAFBQW2rT7Py4gEtLTVcV05CnUNVeLefZY7JI+a1oX23cVN8WjAbW5djERZWQmXVaPRqyBu+gHrL/LsnrixLVk/Hk2pS3LzbATHJPWDw/KRVK9dGRDdHj/b/WSmiSRza7ch8t+3IL8Q31l7KcgTCpDRc8t2U0I2XuTJjdeoqavgtOV7MOi3ClwVxsuHscIHZ/PUMqMv8beLWW6zi4K8Ilp0bcgQq5972cS9TGSf9JCz9h39Q9DiHyvlYxq7JPA0ZanFbyXpf6xdS0LIzymgoVldeoz+eejjv1Lhpx7xOT6FchV16DGm01+f8H9Ur169YtCgQeTn5zNo0CA2btz4Xx+nPboUwYopm0lL+oqyihJTfcYwfN7fB4D5OfmstNrBzaPiwTdsTh9m+I35pa/St7pyKJzVM3dSVFhMvVZ18Dxk/0vX7CfXX+I1YRO5WfnUaVwD71A7Klb9cdy6x/sYh6TYmOE25kz3KEuIzkrPwW38Zl49ikVNQxXXPVZlVIcZadm4jt/C24gENHXU8dhnTZO2xvL3D1p3ngPSSHiEdXemOX9XT+70O83RneIeNG3xACyshHggMS6ZxRO2k5KUQdWaFfELsKJK9fLkZOXjZr2XqCfxaGip4bltMk1a1eZrWg5OM3YT+yYJ3Qpa+O+YSp16Bjy9F8PSuSK9vGU7Y5auE9Eh7vMP8uiuAGaea8fRvE0dDuy4zv5vAGZ2T7nq6u8CHU8fS6pU0WX+fAF0jI31WbZ8FIcOPyBYyiGcN7c39epXxcEpmOzsApo0qo7r4kG4+57kxUsBdFZ6W3Li/DPCJJXVEoeBxCemsSdEgIo5U7pRWFLCNimCxGpsJ3Lyiwg4LoGpyd15/u4jF24LFZbLzD4cPP+Yl5KvjuOUnvjtuUhmTgGmdavSobkRGw+L95oysC3hUfFESdlX0we3Z/Wh62IK0aYenzOzeCoFW4/t0YItYeGi29O+MfejE/iQmkGNiuVoUseAM49eoaSowNiuLdh/4zGlMhl9mtUj/F0C6Tl5NKhWmVKZjDdJKVTQ0qButUrcfhePqpIinRvW4ULUOxQUoE8TE8IkoGMuAR2Aqe1a4fLbVfPz+keDnSm92nD05nNSMnKoW60iHRrUkmdeOY/pyYajt8nKLcDUqCptGxjivlvsdp0n9uLAuUe8T0qnSgUd7Ed1xX7VUWEM2LEhBhV0cD0oWqBO08wJfxLL7ccxqKoo4T9/MDtCwnkV8xldHXV8HQazavtl4j6kUrG8Fj4LB7Ny6yWi45KpoKeJr9MQ9gXf4eHTeNTVVPB1GcbjZ+8JPCSQvuO8vpTX08Tadh8lJaV079qA0RZtWb3mHFEvP6KtrYanx3BSU7Px8TkpslYGtWDAgOYcO/yASxciUVRSwNV9GPpVyuHvcZyYd5/RK6+Fm48FSsqKLPM4LickO3kMQ1FRgfV+p4l+k4RueU1clwnX5EtnnnHqkFh4i7xHUN2wohhTzT9IQX4RLdoZyx2SIx/FsUsy57Jy7E9DiWB87+pLDknkPzuvEdQ0FtLXxLhk1jiJnailVTc6mH93D9636qy82+OycWIZD5pt7seIe/UJvUraOK6fUIZb8eJBDAdWit9plo8ltf60W468+44Q6aFgu3zMTwFK4MozvH0aj7aeJg4bJ/9aETNrN0WFxbQxN6X3uI4/HPPH2uzwXUk1yLrXb4/9VlF333Il+A4KCgrMWjXh/6sbc2aHAM0DZvT8rfz5/7I+ffpE3759SU9Px8zMjODgYJSV/3u3q8L8Qva4hnBkreBsGDaohvP+uRj/hmP1q/oU+wWPUWuJfZ6AsooSczdMoc9fJMbLZDIC/Y6zXzIM7TioFY67rH/p3XMpOJw1tnspKS7BtGM93APnoKWrWeaY4qJi1trv55JkRzF5yTBGzSvr7pzy6Ssuozbw/s0ndMpr4XFgFg1b1Sn7+rjNvH+TRLkKWvgEzqKuqaH8M+/0PsHRHdcAmLiwP6PniK5NSUkpm92OEia5DNu4D2WwZOsQ9yYJ50nbSU/JxtBIH7+AGVSsokvW11xcZuzmbWQi2uXU8d4xlfpNDUlNzsRp+m7exyRTvpI2/junUctYn4e33+JpH0RhQTGtO5rgunoMMpmMpfMP8lTiGXqvH49py1rs23qVIEkQMc22FyMnduR46H25j47F2PbMmNOTA3tuylVX34COl/ux7xE63hZUMRBAJy0tByMjfZavGM2h0PtyoDN3jjkNG1TDwSlEDnSWOg/B3e8kkS8T0dZWY6W3JacuRnD6QoQAOvYDSPz8ld3BooMza1JXZMBmiRQ/fUxHCktK2XtU/D/nTurG6/dfOHfrJUqKCiyx7sORy8+Iihbp54um9GLZ3ktkZOfTyKgKXduYsP6Q+F4T+rXm8btEnsd8opymGtZDOrA69IZICmhZl/TcfB6++YCmmgoTzVux5YwAOgPMGhIR/0m4IZfXoYVJDU4+iEJBAcZ1aUHgjSfCNblpXR6//0hqdi71DCqhrKLE84QkdDXUaFyrCjdex6GspEiPJnU5GynATd8m9eRAp1ejulyQgE53kzqciIz67dr5Vf2jwU5CUjpR7z+jp6XO9D5muO4VDzarAe24cP8NcUmCoGU9sB0LNonxwIQ+rXn7PoW7kfGoqSrjbd0fn10XyMwpoLGRARY9mzPHTzyUx/ZvhaqyIvuOi4ve2aoPT6M+cEG6IL3tB3HuaiQ3H0hW345DOXctimvhIuPKy3EIES8+EHJctM+d7fqBDJZJRnSjR7ShSwcTbBcEkf41F2MjfRzt+3HqzFPCzolF4+o8hPJ6msyZHUBOTgGNG1dn9hxznj2NZ8tmSXY+syfNW9bmSPA9rlx8IQjJ3sOprF+Ofduv8SD8HWpqyrj7W1JOV5OTh+5zOUy8v7OvBfoGukS//sQ6iWw4bkZXzDrXE6Rdt2MkxqdS2UCXRX6WKCkpkpaShe/CYGEe1q8pgySDwKQPaaxcLDoag8a1p2t/QVQuLCjCd26gPMl8kn0f+W94/0oUh6Vdl/2ykVSrXUn+2vWTjzkbFC68fNZNoMIfXGWzM3JZPmcfpaUyegxvjfnIssqp7IxcVszeK9Rqo9rR9Sc+OFEPoglZI8DS3FXjqVS1/A/HABxad04OiOzWTfptd+LO6cfcPvUIJWUl5m2Y/C8RX2UyGdsXCzl974mdqdfqR37Gv1qZadk8uSLShntP6vZvv8//T2VmZtK/f3/i4+MxMTHh1KlTaGpq/vWJ/6F68yiGFVM3Ex/1AYCBVr2wWjHhb5sEAjy69BzfiZvITs9BT78crkFzadLx9/L0woIi1s7ezWXpQfc7ablMJiNkdRh7pa5h12FtcNgy9QfTyfycAnymbePBpUgUlRSZt3o8fcb96CHlMmoDXz6kUdFAF59gW2o1qPb99ZgvuIzdLH/d9+BsOZG/pKSUjU6HOBcsHr4z3YfJpefFRSWsWhDMtVNPUFBQYJ6vBX1GifX27sUHXKbsJDM9lzoNquK7dwZ6FbX5mpqN87RdxL5Oolx5LXx3TcW4YTWSkzJYPH0XifGpVNIvh/+uadSoXYm7117hsyCYoqISzLrWx2XlaGGOahfI88fxIi5i/XiaNK/J7o2X5aGe0+eaYzmhA4cP3mW7FAFhOa4902b1YN/O6wRK4cTTZnZn+CgzPFyPcDf8XVmgI42ujIz0WbFyNCGh9wn5A9Bp1Kg6Dk4hZGXn07hhNZY6D8HD/zvQWeFpyelLzzl1Xrqn2vXnY3IGOwIlGf+EzigqKbBh7zUApli2pxTYfVjq+EzoQvSHFM5cFxwfZ+s+HLv6nOdvP6GjqcbiaeYs23dZ8Exr6dOrfQPWBgvQNKZ3SyLjkuQhnzbDOrHm8HVBr2hmTE5REfdevUdDTYXJfduw9Uw4pTIZfVvV51ViMjGST13bBjU5fv8FCgowvksLAm89pbi0lK6NjYhM/MyXzGyM9Cugrq7Cs/ef0FFXpYVRda6+ikFZUZHepiacef4agH6m34FOz4bGXHotgE7XurW5Hh1HUV7eb9fPr+ofDXauPHuHmromi0f2YHnIVYpLSjFvaUJBfhG3IwWL3HWiOV57Lwh5nmkdalepgLeUar50ah8Cwx4Sk5hKJT0tnKeas2D1CfILijEzrYW5WT1sPMXDe9zA1pTTUsdzg3g42k3uTnZ2vpxktnBmbzKz8tghtSjtZ/RETVWZZRvETmOCZTtamNbE2i6A/IIi2rSszYxJXVi+5ixv3iZRrpwG3m7DeffuMxsl75xpU7rSunUdPNyPER8vCMlL3YfzNT0HL/djckLyCMs2PHscx3YJ/My0Nadp81qE33xDoDRDQ4DlAAAgAElEQVQ2mrd4AMb1DIiKSGCb1JGZOqcXzVvXITsrD6+FIRQWFNOmownjrboBcHjfbW5fjhJjqhWj0KugJWIaFoaQlpxFrbr62LkPQ0FBgcLCYnztg8jOzKd+U0NmOPaX/07bfU8T8/IjuhW0WLxmrLz1n/zpKyu/xURM7kSnft/l0R/jUli3WKieRs3pVYanI5PJ2LA4hC+J6RjUqshs35FlAIhMJmPjomC+JKZhUKsSM31G/nDt5GXns2LWbqEIG9mOLkN+bgoYE5lA0HLBdZq1bOwPY4U/Vm5WHpsc9gNgMa/vv2QeCHDz6H1e3nuHmqYqk9x+7tb8r9bdUw9F3IFpTarX/XtRB/+JKiwsxMLCgqdPn6Kvr8+5c+eoXLnyf+VvFxUWc9DvGEF+xygtKUVPXxf7bVa0H9jqr0/+U8lkMg6tOsPepYcoLZVRv7URrgfnUblGhd+el5GShefY9UTeeYOikiK2ayfRf0q3nx5bUlzCpoVBhO0VDy4L2z5Mdf/RoycjNYulYzdKYykVnHdaY9anrJXA22fvcR27kYzUbKob6eMTbFumk/nueQJLxm/5/nrQLKpI36WosJhV8wO5flIosuYtH01vafNQWFCE75z93LschZKyIo5rxtJF8rZ68SgOt+m7yc3Ox8S0Bj67p6Ojp0nql0ycpu4iIfoL5Svp4Ld7GrVMqpCUmM7iabtISkxHv5oey3ZOo6phBW5deoHfokOUFJfSqVcjFvlbUphfjMvcA7yMSEBTSw3fTRNo0KQG29ac59hByXPIoS9DR5sRsv82uySRxZhJHZlk1Y29O67LnZGtZvdkyIg2uLse4f7daLnqqmJlHebPD+Rrei7GxqKj81dAx91lKB7LTvE86jvQCbsSyclvvjnz+pGUkikHOlbjO6OsoiQHOpMt2qGkosT2EPHZZo3rzPvPXzl9Tbj0L7bqzcnrkTx7I0KjF0/rxYqAyyISomZl+ndpxKog8V6jerXg7cdkHr/5gJa6KrOGdWTN4evCTNfUiCJK5Ga60/q2ZUtYOCWlMsxbmvDuSypvP6VQSUeTTk3qcOSu2CCN69qC4NsRwjunYW3efknh09csalXSQ09bg0dxiWipqtDWpCaXokQ2ZZ+m9Tj9/BUAff8AdHo0MOLK2xhkQCfjWtyKiadUJmOwaX3W/HYV/bz+0WAHYP6ILuw5/4D07Dzq16hMh4a18QwQCN95fC92nAznS3o2tQ0qMLZXC+zXSgTQwWbEJqZy43E0qipK+M0ZyKqAqySlZFKjih7zJ/bAzjeUgsJi2jWrzcCujbFaEizmnD1Nad6wOjOdDwIwcmArGptUxdoxUCitejeji5kJM+bvp7CwGLNWdZg4qj1O7kf4lJRBNQM93BYN4tipx1yQwjzdnYegrKyIu+dxoYLq2oDRo8wIPnj3B0Ly/LkHxAKtKwjJqSlZeLtJ4KdPE4ZYtCYxIY3lEsFwiGUbevVtyte0HHycQikuLqVzz0ZYjG8vCL5Lj4kxVzU9HL0EEfH5ozj2SDulmYv606CpaHXvXX+R5w9j0dBUZcnqsfLgwB3+Z3gbKcwHndeMlTvB3gh7xpkgidi8cjQVJb5CSXEJy+0Cyfqai0mTGkxd9D2RvLCgGP/Z+8jLLqBxGyPG25f1IbkUep8bp56gpKzI4o2Ty0RFAFw5fJ/rxx+iqKSI4+YpP7wOsN01lE+xyejXqMAs/5+bApYUl7B6zh6Ki0roMKAF3X/hu/Ot9nkdJSUxDYPalRm7aMhvj/1WxUXF7FkqjffsB1Cx2s+7S/9q3ZKkrR2H/VzS/H9ZMpmMGTNmcPHiRbS0tDhz5gxGRv9+l+rvVExEPCumbiH6WRwAXUe2Z866KehW+nnG1O8qLzufVdbf+Tl9J3dl9tpJfxnxERf1gaUj15IUl4yWriZLDsyhZffGv/wb/tO3c+98BAoKCtgsG8PgGT/yxZLep7Bk5Do+vPssxlJBc2jUxrjMMU9uvMJryjbycgowNjXEO2gOepW/++xE3HmL+9Tt5GUXUNe0Bl77beQ+PPl5hfjM3MPDq4LI7Lh+gtyoMy+nAA+rPTwLf4eqmjIumyfRVuLrPb71Bs9Z+yjIK6JJmzq4b5uClo46nxPTWTxlJ0kJaVQy0MV/z3Sq167Ex/epLJq2i+SkDKoaVmDZrmnoV9Xj2tkIlrsckbrEpiz0HkFubiHOc/bz5oWk0No0gboNqrFpxVlOSankcxb1Z5BFG4L23mTvtmsATJjehXFTOrNr61UOSWIKm7nmDBzaiqVLDvPgfgxqasJHp3wFbRzml5WX/xHozLPtTcOG1X4EOv4nBdDR+hHoOM3rR1JqlhzozBjXCTU1ZdbvkZRiFu1QVVdh60Gp4zOmEx9TMjlxOUIAnRnmnLkZxdPXiWhpqOI0vRerD1wjLSMXk5qVGdytCSuCxHtZ9mhG7OdUHrxMQFNNhVnDO7H2yE1pU18bBWW4FRGHmooS0weYsTXsrrBPaVaX+NSvvJHyI7s3r8shyQ15XNcWhN55TmFxCR3q1yI2NZ3EtEwMK+qir6fN/RihtOrYsDbnI9+ioAB9m9aXA51+piacjRJAp1v9Olx7F0upTEb7OjW5G5dAiUyGWW1DHiV++u06+lX9o8HO8A5NePo2kTcfkqmgo4nNoPYs3iZm9JP7tubRqwQiokUrcMlEc5y2nBbtvZbG1K1eCZeN4linKeZcCH/FE0ly7jd3IP7bL5CUkkXNquVZPN0cO58jZOcWYFq/GjNGdsDG5SB5+UW0Mq3JZIt2zHI+KF5vUJ3ZU7qx2Oson5NF0q2bw0B2Bdzk0dN4NNRV8HYdRkxsMlt2iAt3llUPmjSqzvwFQaKdWqcyCx368+hRHLslQvIc2940blyDNSvDePXyIzo66rhLhoCeLkf4mp6DUV197BwHUFBQjJdzKDnZBTQyrYGVrTklxaX4uRwh5UsWhrUrMV9SWR3ad0tuzuW6fBTldDVJT83G1zGE0pJSegxoxgBL4btx99pLeZL5fK8RGNYRO/brYRGclmb5C5ePQl/KsPoYn8JaZ+EzM8qmB63+0J0J3HCRyAexaGirsXjDeLlJGcC+5ad5+zyBcuW1WLSxrMrkY2wymyW7+/EO/X/Ivfr8PpVNTqIjNM6hfxm+wrd6eOUFZ/ffREFBAYeNU8r4kvyxjm6+yLtn79HW02TOqvG/HV9FR8RzcqsAh3PXTfqXRyYXD9ziY/Rn9PTLYWHX/69P+E0VFhTx+JK4cXUc0uYvjv7P15IlSwgICEBJSYnQ0FBat/51hMZ/qooKiwlZfoIg36MUF5VQrqIOthum0tWy/V+f/JOKf5mI15j1JLz+iLKKErNWT6T/tO5/Say+d+4p/lO2kJuVT9U6lfE4ZP/L1PKUj+ksHbOB6Ij3qKqrsHinFR0G/Giw+PZZPG5jNpD+JZPK1cvjE2pHzT/x0q4df8gqW5Ew3qxTfVz3WKGl813Fd+dcBP6z91JUUEzT9nVx2z1D/np2Ri5Lp+wg6mEsauoqLNk+ldaSIivray6uU3fy+ul7NLTUcN85laZmAmTduRiJ37xAiotKaN2lPi6SqvJDbDJOU3eRkpSBgWEF/PdMp0r18sS9/YyT1W7SU7KpUbsSy3ZNo6J+Oc4fe8Q6zxMiYmJwC+zdh5KVmYfz7ACiXydRTlcT/y0TqWNiwHq/05w9LpyL7VwG0WdwCwJ2XOPAbnE/mmzdjTGTOrFtwyWOhAjAMtu+D30HNsfVOVRkXamr4O1niY6uBg7zA4WCVZKXBx4M57AkL59n25v6DaoyXyIjN25YDfc/cXRWeFpy5vL/Y+8tw6Ja27jvH90YSEioCHZ317YVbMXAxi5MShREDGzdttsCO7bd3WIriiIoSnfnzDDvh2s5yjb3vvf9Ps9x3M/5zXFNMLOutf7Xef5DjK7U1MDTtRsJfwE6urpaKqAzrG9TdL4AOmOdWpCQmsWfkjmtm0tHzt4J5cnraAz0tPF06cSqPVdJTs/B3qYMPdvVYtmeKyiV0KdtLT4mp3P/lRhPTerbkrVHb1Igk9OsRnm0tTW58jQcbU0NXLo1ZfOZe8jkClrXsiU2I5PX0UmUMtSjQ71K7L/9DIAhrepy5N4L8mVyGleyITo9g6iUDKxKGWFpYsy9cKG0alXdVgV0utWpqgI6nWpW4tyrcJRKaF25ArfefUChVNLM1oaHUTHIi4poVN6KRzEx5Ofm/nAtfa/+p8FOSQM9Tlx9gaaGOl6D27M46AoFMgUta9liYqjPrjMPRIDn6C6sOXCd5PQcKlqZMLRLI6YGCBO8gZ3rI5crOHxR/Og+E7py4soLnr6ORl9PmyUzerJy+xU+SEosP1cH/NedIzYhAwtTY+a7dmfJ+vN8iE6lTGlD/Ob0YFvQTZ68EMm2izx78eDRew4cFQvJbXpXjAx1mOUhcmQ6/laDvj0bsGbdBRUh2denDxkZufgvFBeCLl1r4+BQl7Onn3H6pDAo9PDuSdmyJVm74iyhL2MwNNJlvn8/dHQ0CVhwnHeSG/LchX3R0tJg+/rLPJXC7byXDkDfQIdnD9+zUzLimji7K5WqWQoHY/dDpCVnU97OjKlzBShKjEtnuZf4znoOaUarToJgHPshmTVSwrnTuLY0ai0AjeDpBJGXU0CNhhUYOvWLjJ274ez/Xbzv1IX9sCz/mafz6MZrFUFy+vJBmH4xNpLLFARM2U1+biG1mtrTf2Jx8m9RURErpu0mLzufag1tcZramb9WTlYeq10l076xv1Gn5bf5F3GRSQQtERymsf5OlP6OggakdPaZIlixdZ/GNGj/tfnbt0ouk7NPkpo7zXL8oRPzr9TbR+8ozJdRwtQY21q/NkL7t2rTpk0sWrQIgC1bttC166/FYvwnFXrvLSvHb+bDS8HNaebYgGkbxlDa4u85IX+qK/vvsHqSSJk3KVsKrz2TqdHs2144n0qpVHJ47Vn+mCv8aGq3rMrcoMnfDQANf/6R+QPXkhKXTokyRvjsnUy1v3RqAB5ceoH/6C3k5xRgW8OaBfumFIt/ADi29QqbvcVmonWP+sxcV7z7dH7fXda6i01Ls861cV8/XJXzlpaUxdyhG3n3KhZDYz18doyhRqPPpp9zh28lMiweo5L6+O1wUTmcXzn+mBVuBylSFNGiU03mrByMto4m79/E4Tl6O+kp2dhUNGXR9tGUMS/B25cxeI7bQVZGHraVLVi0eSSlyhhyYt89NkiGo137NmTKXEfSUnJwn7iLj++SKFnagKUbh2NTwZQVC45zSXKGnzGvJx261Wb7xiscCBScKJdJ7ek3uBnrVp7j5FEh4Z46qysdutRirvtBnj75gK6eFv5LBqCnr8PMmXvJysyncmULlix1YneQcEYGobqqVMlC+OjkSGRkjx7MX/JZdbXMrz+nLj7npERG9vxGR+dLoDO0T5NiQMdlQHOS0rNVLvxuLh25cO81j0PFZtvTpSOr9l4jKS0HO2sTev1WWwV0erWpSXxaNvdeCsXx5L4tWffnbWEuWK0curpaXHkqks7HdG/C1nP3KJQraFnDluScXF5FJVLSQJfODSqz75a45w1sWYcjwS/JK5TTyM6axKxsPiSnY1HCkHJmpbjz9iPaGuq0rWnH2Reic9O9blVOPhdAp2N1ey6FhlOkVNLCvjx3IqOQFRXRpLw1j6NjkSkU1Lex5GlcPLKiIjpUqsiWH66qb9f/NNjZcf4BGtq6zO7flt3nHpKYLsZVfVvVYvYGcaOa2q8V1x6GE/IuHmMDHeaP6ozn76fIK5DRuEY52jW0Z8picRMf27c5mVl5HL4gsj98Jnbl6r0wbj6UJOizenD4zGOCP4WBuvXixIXn3LwvTq6Fbj159DSSQyfEwvFy7UZRkZKlqwVxenD/JrRoYs+0OZ8JyTOndub8hRecOCnyTDzde1DGxJBpU4OkTBYLpk3rzNuweNZKrzN8ZGsaN7Hj4tnnqsXtPq8nltalOXHkIZfPvUBdQw0vv76UMTPmzvXXHJCIetPn9qB8RVNSkrJY7HlYAC6HunTtLXgNezZd5WnwO3T1tPFa7oSuvrYwApy1n+zMPCrXtMJlphgrFRbKWTxjnyAeN6jA0Mmfwce2paeJeBUrujMrP/N00lOyWTZD+Ol0HtCYtj0+72jTU7JZMV0QdR2GtaTpF4otgD2rzvLm6QcMS+gx+y/KLIDj267x4u5bdPV1mPX7iG/KgrfNP0xybBplK5RhhGevb55XSqWSdTODhNy9VVU6DvqxDPz64fu8vBuGjp42YxZ9Pyfrr3V5720SPiRTyrwE3Ua3+/kTflIht8XFp2aLKv+/SryPHz/OpEmTAPDx8WHUqFH/1ffLy85nh/d+jq8/j1KppISpMRNXjaDtgGb/6O8uLJCxxW0PJzcLAF63XQ08dk6g5E98eAoLZKxz3cWFQNFd6DayLRNXDP1mmCfAvbNPWTJmK/k5BZSrUpYFB6ZiUf5rPtPZwJusm7WHIkUR9dpUY+7O8cW6NUqlkh3+xzn0u+Ae9hjdlnF+/YoFeu5fd4HdAQJMdHJqytSlTqr1kBCVgueQjcRGJlPK1Aj/oAnYVhNE5tgPyXhJXjkm5sb47xpLeSn65dSeu2zwPYZSqaRD7wa4LuqHhqYGb15EMXfMDrIz8qhYrSz+20ZRsrQhIY8jmTdpN7nZBVSpZc3CjcMxKqHPoR03+WO1+Oy9nZsxdlZXkuIzcJuwi9ioVEFc3jicstalWOJ9lBuXXqKuoYbbgj606ViDjasvcExSjY6f1oleAxqzOuA0Z6WNoOuc7rTtUB3POQd48TwKfX1t/Jc6oaWtwexZ+8jOzqdaNUsWLR7A9p03VNfe6a5dsK1gymxPYRhYq4Y189wdmbf4hMpHZ/nC/py88AXQce1GXFIG2/ZKXjd/GV0N7dMEHT0tNu+XgJBTc5IzcooBnYv3w3go5Sx6junIqr3XSUrLxtbKhN7t6xQDOokZOYKPqq3JlH6tWX/striXVbXBwECHy0/eoqmhztjuTdh2LpgCmYLm1SuQUZBPyIcEjPV16Nrwc76VU4vanHgYKtyQ7axIycvjfVIaZsYG2JU14VbYB7Q1NehQy57TzwUB2eELoNO+uh1Xwt6hUCppbleOB1HRyBQKGpW34llsPAVyBXWtyxKSmEChQkEdKwvCU1N/uK6+V//TYAfAqU0dQj8k8vydGFd5DG6H26ZTQkbetBqa6uqcvPUSdTU1/MZ2Y/3Bm8QlZ2JlVoLpQ9oydckRMdpqZE+jGuWY5CcIyS59m6GGGtsOit3DbJf2xCdmsFfiRHhO7kJichbb94uTfOa4DmhrqrNsvVjEQwcUJyQ3qFsel2GtWLPhIqGv4zA01MHPuzcfo1JYtUYQhocPbUmTxhVZvuwMb98K75z5Pn3IyyvEd95RZIUKmjWvxOChLYh4m8BqKfPFeWQrmjSvROjLGDatliIeJrSndv3yxEanslzyyOnl1Ji2nWoKkrHnIZVx4GR34bHz8PZb9kmy8WnzelBOSkzesfYCr59HYWCki+eygWhpidNu+/KzhEuGYHOWD1RdTG9fCOGktOuatcxJ1Z1RKpWsmnOAlIRMbOzNGP+Fn45SqWTNnP2kJWViY2+Oy9ziuVch9yM4sE4aEy0d+NUuN+ptPDsXiS6Jy/zeWFb4+iby+Porzu6WCORrhn/TJRng6qH7PL7yEi0dTaauGvrDG2h+bgFbpXRyp5kOmFn/mqeOQq5QpWT3c+32j5RCf62Q2+JiVKN51f/4tX617t27x6BBgygqKsLFxYV58+b9195LqVRy58RDNs7YReLHZAA6Dm3NuGVDMTb5diflZxX/IQn/Ib8T9ugdAIPde+I8t89PVXQp8en4DVlH6P1w1NXVGLdkMD0nfDstXalUcnzLZbZ4HqCoSEm9ttXw2jkBw79Iy5VKJYFLTrBXCqLt4NSMaauKgydZoZw1M/dwWQoGHeHZgwFTOhcL9Nw8/ygndghZstOUTgyXPLQAIt/EMXfoJlLiMzC3Kc2iPRNUa+X96zi8hm8hLSmLsuVNWLR7LBY2JoKsvfkqO6XUcEfn5oz37oG6ujrPg9/hM3E3eTkFVK1jg9+WkRga6/H4bji+04IoyJNRq0EFfNcPQ09fm8ANl9kjcWwGjWnDsEntiYtOw33CLhLi0jG3LEnAphGUNjXCz+0Q924IvqLnon40a1OVtQFnOH1MmNxNmd2Vbj3rs9z/BBfPCW+bWV6ONGtZGfdZ+3n1MgYDQx0WBwwENZgze79K0eq/aABbtl3l9JlnqlBPa5vSzJ57kFzJGXmumyPz/I/x6k2cCugcO/fZR8fTtRuxiRn8sU8iQju3QusvZGRNHU22SPeIsU4tSMnM4ehF8Z5zRktA5+VH9HW18HDpyOovgE7fDnVYvueqADqta5KSlcvtF0J4M6VfK9Yfu01OfiENKltjbKTLxccC6Ix3aMbW8/fJl8lpXr08ObJCnr2Pw0hPB4fG1dhz83OQ56nHr8kpKKSerSUZ+QVEJKRQxkifylam3HwTiZaGBp3rVObE01BAdHROhQig065qRa6HvUdeVETTiuV4HBNLgVxBPRtLQuISyZfLqWNtwevkJArkCmpbWvAqMYn8nJwfrq3v1f802Klnb0U5s1Is338NdTU1fEZ0YuWB62Rk51OtvDndmlRj+moh6ZwyoBUPQj7y8JXIx1o0yYHFf1wUoy1rEyYPbM3EBQfEbLOhHb81rcJYL9Fl6NOpDtXsLBjnISIHBvdqRJWK5oyRoh96dalDqyb2uEwPpKBQTpP6toxwao63/zFiYoWR4Dw3Ry5cDuHEabH78HZzxMBAh5mz9yKTKWja1A7nIS04c/oZ5yTZ+VzvXpQpY4SX+0ES4jOwsiqFm6cjebkFLPA6TGGhnEZN7Rg6qjWZGbks9DqMXF5Ey3ZV6Te4KYUFcvzdBXenWi1rXKQoh50brvDi8Qf0DXSYGzAAXT1tkhIyWOZ1GKVSSff+jWjXrQ4A96+/5ojUFZrh1wcLScFx59JLjkuAZubi/qqAz6S4dFZLbsf9XNrQqM3nG++JXbcIvhqKlrYmHmuci93gzwTd4d7FEDS1NXD/fRg6up/9YXKz81nuGihs6wc0KWZpDwI4rJi6m8J8GQ3aVafbsFZfnSt52fmsmS6UUo6j21L7O/LhrLRsNnsJ8DJ4lgNWdj/Oszqy9hzJMamYlytDv2m/Prq5fvg+ce8TKVHGCIdvEFP/Sb1/8RGAao3t/5XX+1mFhYXh4OBAXl4e3bp1Y+PGjf+1jlLUm1g2ztjFwwui9W5ewRTXjWNo0OGfB5zeOvaAleO3kZORi2EpA9y2j6dxl7o/fd7rBxH4DlpLanw6hiX18dw18bujS7lMzib3/Zzafg2ArsNbM2nZYDS1il+6CwtkrJq2m6uHpZyimd0Z6t6j2PeZk5WHv8tWnlx/LeTny4cUi38oLJCxwjWIGydF7MB43770HP3ZDygk+B2+o7aSnZlH+coWLAwar4pdefUokvmj/yA7Mw/bqmVZuGsMpU2NUSqVbA84w2HJSHDQxPYMde2Empoa96+GskjyxanTpCLz1w9Dz0CHu1desUiSkTdoUQnvVYPR0dVi64pzHJWuGSOndsRpdGs+vk/CbfwuUpOzsC5vwhKp++Mzcz+P7kWgpa3BvAAnGjS1Y+Wik1w4LYDCdA9HOnStxZIFx7h26RXqGmp4zOtFgyYVmTNjH2Fv4jAy0mXJ8kEUyuR4uIvAztq1bVjg15cNmy5z/oIALW6zu2NmLtLL8/IKqVu7HJ5zuousq7fxGBvpsmxhf46efsK5Ky8loNOV6Pg0lWHg+KGtUNNQ5/dd4nce2b+ZUF19AXS+HF3NGd2BS/ffqDo67qM7snb/DRXQ6dexDsuCrlKkVNKzVQ2Ss3K5+fwd2poaTO7bmg3H7qiATqmS+lx8FIamujrjHJqx7XywGGtVLUeOTMaTd7EY6eng2OQz0OnXrBZnnryRYh/Kki0r5G18MiaGelSzNlN553SpW0kFdLrWqcLpkNcoldC2qi03Iz6IcZWtDU9j48iTyaljZcGbxCTyZDJqWZkTlpxCnkxOTQszXicnUahQ0LpiBd79dJV9Xf/TYGdA69r4BEoE3t4tOH//DWFRgqw8e1A7Zq45LuIbmlaljJE+6/aK3c68sZ05duW5ysfAf4oDCzeeIyk1m/KWpZk5sgOufofIySukTlUrRvVvxgTPfeQXyGlUpzzD+jZhksd+snMLqFnVkknD2zJ38THiEzOwtCiB98zu7Dl4j7vBksxxbi8SEjNZ+SnjyrklDevb4uF1iISETCwtS+Lp5sjbt/Gsk44ZNboN9etXYPfOmzyUVATz/fpiYKiDr+dhYmPSMDM3xl3qjiz1PU5SQiZWNqWZ6SUukptWnSP8TTwlSurjtbg/WloaBN8K4+AuaaTl3RPr8mVQyBUscTtERloudlXLMm62uGkLno7gBPRybk6L9kJZkhCTxirp8b6jWtG4rQA0CkURATP3kZ2RR+XaNgz7wk/nfWgs25aI3LAxno6qtjnAx7fxbPUT3adR7o5UrF6c2Ll1wTESolIxtynN+AVf50Ud3nCRN08iMTDWY9qKId+84e7wP0bCxxTMbEwY5d3nu+fUHz5HyEjOolxVS/pN/XYa9adKiU/n4Cop6NS3/y8b+CmVSg5KGWq9JnVC1+A/4+qAAHzJMaI9bGH735d6x8fH06VLF1JSUmjUqBEHDx78r5gG5mXns3fRUY6sPo1cpkBLW5N+MxwY6N4LvX/4vRXmF7LVY7+KUF61kR0egZO+OVL6a50PvMG6abuQFcopX82K+funfRcQZ6Vl4z9yM0+vh6KmpsZo3370ndzpq/MzKy2HBcM28OLuWyFXXz6ErkOLA/aU+HTmOW/gXUg0uvo6eG51oVH7z2EMNPoAACAASURBVEqvnKw8Fo75g6e3wtDU0mDmamfa9vwsub93IYTFk3ZRWCCjegNbfHa4YCTFXDy4For/pN0U5Mmo3qACPttGYVRCX3jvzDvKOWlkNMbDgT6jRKr71VNPWeFxCIW8iCbtquGxchA6ulpcOvmEld5HKVIU0bx9ddwDnNDQUGet3wnOHhF+YxPcutNzcFMi3sThMSmQjLQcKtiZsWTjcHT1tJk3fS/PHkYKt+SVg6hZrxwBvse4elGMs+Z496TVb9Xxn/cnt66/RlNTHa8FfahVpxyzXPcSEZ5AiRJ6BKwcTGZWPnO9DpGfL6NevfL4+PZhzboLXL7ySoAWd0dKljLAbe4h8gtk1K9bHveZ3fDwEenlJYz1WL6wPwdPPOLCtVdoqKvhNaM7kV9EQAjDQKXKMHDkgGaoaair5OXjBrYgPjWLY5effwF0Po+uPFwE0ElM/dzR+QR0HFvVICU7j5vP36GjpcHkfq3YeFwAnfqVrDApZcD5h2/QVFdnjENT/jgfTF6hjMZVbCgsUvDkXSyGutr0aFqdoBsCBPdtVotzz8LIyiugVnkL8orkhMUJN+Sa5ctyLVR453StW0UFdLrVqcLZl2EoldCmii23Iz6KcVUFK57Hx5Mnk1HbypyIlFRyC2VUL2tGRGoquTIZ1c1NCU9NpUCuoGZZM95n/L8x1t+ugH1XURRB50ZVKCoq4uKDN2hoqOM3pgvLgq6Qnp1H1fJmOLWvy8Ql4uY8wrExmVn5HLv6QmRgTerGkQtPeSbJ/ZbM6MHq7Vc+R0O4OrBk/Xli4tNVhOTlGy/x7mMypUsZ4De7B4GH7hH8RPB4Fnr04mVoLDuklOGZkzthZmrMuCm7kMkUNG9ij/Og5uwOvMXDR+/R0dHEd34fFIoifH3+FMe0qMTAgU15EPyOwJ2ST86MrlS0M+Pw/nvcllq78/z7YVxCn307b/Hgbjja2pp4L+qHgYEOV8+/4PSRR2JxLeiNqbkxifEZLJsnOl09nBrTuqO4WAZuvMLLJx/QN9TBa5kT2jpayGUKlsw5IOIkaloxeoYALnKZgiUz96n8dIZP+xzfcGDjFaGwMtDGbeVn+XlBvoyA6XuRFypo3K4aDkM/c2AKC+QsnRooHJpbVaGndDH9VMGXX3Jur9gNzlg55CsZ+fvQGIKWCcAxzq//V+MtgJC7bzmxVfhwuK4e+l0icMidMM5JY66pK7/PvfhUu/2OiHiHxna06fdjWfqX9fDCc96/iELPUBfHcR1//oRfqJTYNIoURWhqaVDqHxJ0f7Wys7NxcHDg/fv32NnZcerUKQwMfpwP9XerqKiIy3tusX3uPlJi0wBo1KUuE1cOx6rSj0M3f1QxEQkscl5H+NMPAPSf3o0Rvv2/6rT8teQyOVs89nNcAkjNHeoze+tY9I2+nV8WHR7P/IHriIlIQM9QB7ctY2ja9euuUey7RLwHieP0jXSZu2M89dsWDyf9GBaH96D1JMakUrKMEb5BE6lc97MKMTUhA++hm3j3KgY9Ax28t7kU86U6v/+eICoXKWncvgYeG4arYlWuHHvMyjn7UciLaNimKl4bhqGrpy1CRGfv54ZkPjp1YT86S6rMU/vuscHvBEqlknaOdZnh3w9NLQ1O7r/Heil/r0OPekz37Y1SCQGeh7kujZmmzetJ594NePU8Cu+pQWRn5WNftSyL1w9DXUMdj8mBhL6IRt9AG7/VQ6hc3ZKFXke4I13zPBb0oUnzSvh4HCL4bjhaWhrM8+9H5aplmekaROT7ZEqW0mfZysEkp2Qzz/sIhYVyGja0Zd78XixfeY7rN6Q4Bo8eGBjq4D5PdMkbN7Rl5tTOuM0/wrvIJEqV1GeZX3/2/fmASzdEevm8md15G5lEoBTqOWlEW2RfRECMHNAMpRr8IdEfxg1qQVxyJsevvPiCjPyGR98BOn061Gb5HgF0HFpWJ+0LoDOlX2s2SECnnr0lpqUNOffwDRrqarh0b8KOCw9UQEemVPIoIgYDHW16Na9JoJRv1btJTS5IQKdmOXNkyiLexCZRSl+X2hXKcvUT0KlXHOicexVGkVJJq8oVuPv+I4UKBQ3KW/IyIZHcQhm1yprzPiWd7IJCqlmY8iEjnZxCAXTepaeTJ5dTw8KU1ylJFOT8PzXW36707Hyq29nQuWFlZkmE5NkD23LmdiivP4hkV++RnZiz5gQFhXKa1a5A89oVmLRIAJ/x/VuSmp7DkU+E5MnduBEcrkqbXTTTkZOXnnPnkZRhNacn56+94vItsVj8ZjkSGhZHoITw50zpLKTly8SuvbdDPTq2q477vMMkJGZiZVkKj9ndefDwHbuDBBiaIZHivDwPkpCQgaVlSdzcHEhKymLxwuPC1tuxLp261CLkeRTbJPOs8VM7UaWaJc8eR7JLUi9NntWVivbmREUms2aR+AyDRraiYTN7AVI8D5OZkYt91bKMcRXg5fHdcA78IRaq67yeWEpGZIEbLqsSzj0CPvN0Atdd5PUzwd/xWDlIBQhePopkj8SpmezbB8vyn7krOwJOExkWT0kTQ6YvLW4AGLjiDO9exmBcyoCZKwZ/lfGzZo7wMurl0pbazSoV+/3lMjG+kssUNOlUiw4DvgYchQUyVknqqy7OLanf5tsp1wq5gt+lZPSuw1tT8y/v9dd6HxLFeQkYjV08+G+Nbw6uFOCs2+h2GJX6d0DCJw6LiVXp/2rwp0wmo3///jx69IgyZcpw7tw5zMzM/tX3eHI1hK1zggh/GgmAha0ZE1YOp2n3+v/RmOzyvtv8Pm0nuVn5GJsYMnvbuF8aW6UmpOM/dD0hd4QSZahnLwa79/zu9/z42isWjdhEdkYuZtal8dk3hYo1bb467uX9cBYM20BGSjZm1qVZsG8KFf4iV39+Jwy/UVvITs/FqqIZfvsmU/YL9WJUeAJznTeSGJ1KKVMjfHeNo1JtoZxSKpUcXH+JnRJRueOAxkxb8pmo/Of2G2xZKK6b7XrWZ0aAE5paGuTlFOA3aTdPbr8V3jsrBtGqa22USiWHtl1nhxTJ4Di4KeO9HFFTU2P/tuvsXCMRpgc3Y7xbN2SFChbNPsD9G2/Q1NRgzuJ+tO5Uk6fB75g/Yx/5eYXUqFMOvzVDkMkVeEzYRfibeAyNdVm01pnydmb4uB3koTTO8vbvR50GFZg7Zz9PHkYKV/jF/Slva8qMaUFER6ViUsaQZSsHEx2TxgJfsXls1swed09Hliw7ze3bb4VnmXcv1DU08PQ5otqETp3YAbf5R3j/QWxkly0cQOChu1y9JTbRPrMdeBUez94/BW9zyqh25BYUsk3i7Ix2ak5hURG7PgGhIa34kJDGyavCMNDNpQPniwGdTqzZ95mj06dDbVbsuSaM91rVICU7l1vP36uAzsYTd8nJL6SuvSWmJkYqoDOme1N2XnxIXqGMRpWtUagpeRQu4iH6tKipCvLs3aQGl0PCyZSAjkJNSWh0IiX1dalb0YorryLQUFf7JtBRFClpWak8wZHRFMgV1C9nyZukZHIKZdQoa8aH9HSyCgqoYl6GqMxMsgsKqWpuSmRGOnkyGdXMyxCWmoJMUUTbira8/+mq+7r+p8GOsb4OMwe0YdZ6kRnVq1VN5PIiztyR4hzGd2Pd/hsqQrLr4LZMXnQIuaKIdo0q0aRmOcb5CAdfl77N0NLQULHmp4/6jYzMPLZL6bSzx3YgN7eAjbuksdmItpQqaYDbAqHk6ufYgNZNKzFx5h6yc4Q3w6Qxv7F77x0eSB2cBXN7kZOdz6IlYvfTw7EeHTvUJDDwFsHBAlD5+PZBR0cL99n7yczIo1JlCyZN6UR6Wg7+844Kw8EO1enRpwGpKdksnifSzTt2q00Xx7oU5Mvw9zhEXm4htRtUULkh79p4hZfPPqJvoIPXkgFoa2uSmpxFgKfg6XTr14jWnQXv4Mm9CA5KeTKuPr0payN4Ok/vRXBom/T4wr6YW4kuSnZmHgEz91FUpKRdj3r81rO+6jd6dOMNxz8pwQKcVGZmILKtjmwWqoVpAU6YWBRXv2zwPkxqQibWdmaM+MJ08FMd3nCRiBdRGJbUZ+qybwOOQ2vPExORQCkzY1x8v+9OfHrHdSJDYzAubcjIed8fc32q7T6HUCqVtOrdiOpNfp0j8z4kiuc3QlHXUKf35B+Pyf5OKRQiSfiTtPi/UZ+Sy8+dO4eenh6nTp3C3v7f4wd9DI1hq8ce7p8WF2d9Yz0Gufei95SuaOv+84yvnIxcfnfdxRUpvqFmiyq475z4UzdkgJf33rLQ+XdS49PRN9Jl9paxNHf8tiOzUqnk5NarbPIUUSrVGtkxf88kSpp+bWx49fB9Vk7bhaxATqW65fHdM/kre4MrR4JZ5RqIXKagagNbfHZPoISJ4efP9uAdviO3kJWei5WtKX5BE1RASKEoYrPPUU5KI+sBE9szws1BFei5a/lZDmwUG6eeI1oxdq4j6urqZKTmMH/Mdt48j0JHTwvv9cNp0KoyRUVF/LHsLEeltTxwXDuGTRNdye2rzqv8twaPa8fQSe3Jyy3Ed9oenj14j7aOJnNXDKJxq8rcu/GGhW4HkRXKqd/EjvkrBpKTXYD7pN18fJ9MydIGLP59KBaWJZk7Yx/Pn3xAR1cL36UDqFLDCs8Z+wh5HoWenjZ+y5wwtyjB9KlBxMelY2ZuzPJVQwiPSGCh33EUiiJata7C7NndWbjoBPeDI9DS0sB3fh9kCgXz/Y4Kg9XmlZk4th2zvQ/xMTqVMiaGLPfrz7a9t7l5T4Aj3zk9ePIqmkMnJWn7qHZk5uSz45Dg7Iwd3JKcAhmBUqjnJOfWvI9N4fR1IY5xG9uRs7dCJS83wdFZs0/Iy22tTOj9W20VGfmvQGfyFx2dOnZlMTMx4rwEdMZ2b8oOCeg0rGyNQg0evhVAp3fzz0CnV5MaXA6JICM3nxo2Aui8ik7EWE+Hel8Ane71qnJcAjpdalfm/Ku3KIqUNLMrx8OPMeTL5dQvZ0lYSgpZBYVUtzAjOj2DzPwCKpuVITY7S4AeMxOiMjLIKZRRxawMEWmpFCoU1LIw51Vy4k/X3bfqfxrseDl3YNneq2TlFlCzogUdGlTGdZUY00x1asODkA8Ev/yIrrYmiyc7sEQiJNtamTB1cGsmLjhIoUxBi/oV6dKyOqM9hQOy42+1aFjDBpc5QQD07lKXhrXLM3pmIIoiJZ3aVKdb+xpMnLOXnNxCale3YsKI1ixfd4Hwd4mULKGPr0dPHj+NZLckSZw5tQs21qWZ6hpEVlY+VauWZeL49jx8+J5dn0ZVrp2xszPn9zUXeP0qFkNDXeYt6IOGpjqLfY+RnJSFTXkTps/pTlGRksXz/yQ1JZsKFU2ZMlsY0m1Yfpb3kseO+0KhKnlw+62KpzNjXk8sbUoLfo3nYdJTc7CtbK7i6aSn5rDMU9zIu/ZtqAJAmWk5LHcTXiJd+jeipeSzo1Qq+X3eURHdYF2aST69Vb9Peko2K2YLMOk4rIXKfRWEimmFJEHv2L8xzf9if3/z1BOuHXskFBarh37Fh4l6G8/elUKNNt6v/zd9cGIiEti/WjrG3+kr9cunykzNZrcU2DjMsyfGpQ2/edynenHrNcHnnqGhqcHI+X8v3uHUViFvbu7Y4Jdutr9a+kbib8vN/Ge5M79SPj4+7NixA3V1dQ4ePEiTJr8+uvtRxUcmssf/KBcDb1CkKEJDUwOHcR0Z4tXnm0Dh79Sre29ZMmIDCR+SUddQx9mrNwNnO/40rVypVHJyy2U2ue1FIVdQrqol8/ZOxabyt0doskI562fvUY1B2zs1Y9rqYV+BT6VSSdDSk+xZLjqvzbvVZc6m0cXI+kqlkv2rz7F7qdgUtehej9m/Dy+2Bm6ffUbA5N0UFsioUq88vrvGUUI6bwvzZQRMC+L22Weoqakxdl4veklEZYVcwbq5Rzgv8XBGzOrKgAm/oaamRlJcOl4jthH1LhGjkvos2DqKqnXLoZArWO19lEuSCsplTjf6jmyFQlHEOr/jnJO4OGNmdaXv8JZkZeTiPSmQ1y+i0TfQwWftEGo3tOX6hRCWzj2CQlFEszZV8VzSn9TkbNwn7iYuJk1IztcPpZSJIR6uewgNiUFfX5uFKwdRztaUOVODCHsdh6GRLotWDMKohB7TpwSSlJSFpVUplq0cTMjLaJYsPiliYNpXZ5prF3wW/Mmjx6ITtHBBPzKz81i49JQIXm5dFZeRrZnpdZCYuHTMTI0I8OvHpp03uPtQhD8vcOvB/WcfOHpGcF6mj21PcloOu49IoajOrUjPyWfPCfE9TB0mhXrefIW6mhoeYztx8sZLnoVJzsijO7Bq72fft17ta7Ni79XP8vL0HFXc0eS+nzk6de0tfwh0itTg4RcdncDr4vP2alyDq5+AjrUZRV8AnYb21lx+GYG6WnGg07l2JS6GhiMvKqK5XTkeRwsCcl2bsrxNSSErv4Cq5mWIycwkI7+ASqYmxOdkC9BjakJ0VhbZhYVUMTMhMiONAoWCGhZmvExO/H/ZWP+kLjx4Q3hMMibG+swa+BszVv8pJOfNqmFWwoA1QdcA8B7TmTNf2HAvmurAkq0XRTSERUncXToya8mfZGbnU93egolDWjF13gFBQK5iyQTn1sz0PUxaRi52FUyZNb4DKzZc5N2HZEqX1MdnTg/OXX7JuUshqKurMd/NEbm8CP+AUyI+wqEendrXYNXqc6ocrPnevUhPF8aBSiV0716XLl1qc/XKK44dFYvGzdORsmVLErj9Bo8fCAfQeQv7oW+gw87NV3n2KFLENvj3Q1dXi0tnnnHuuPCMcPPrg0kZI5ISMgjwFqZ/PZwa06qD4Okc3H6Dp/dFkrBngBM6uloolUpWzD1MalIW5ezMGOfWHZBk4fP+JCUxE2tbU8a5f+6yXD3xhOunn4lohpWDMDDSVT1nrech0pKyKFfJnNHuxTszfyw6SdyHZEwtSzJufu9i/5eWlMnvnsICYMDkjl+5JBcVFbFm1h5kBXIa/laD3/p9HY2gVCpZ77YXWYGc+u2q0/obQaCfKmjJCbLTc6lQ3Yquw1t/97hPr7vdR6jNugxv/bfyp/Jz8rkitby7/0sKrE+lbyy4I/8tsLN161YWLFgAwMaNG3Fw+LrT9ncrJTaVfUuOcWbbZeQy0Zlq3rMRLosGYV3Z8ifP/nEp5Ar2LztJkL/IyTIvXwb3nROp3vTH40kQQHyd6y4uSRuVVr0bMXOjy3e5XmmJGfgN28grSYY+2rcffSZ9TUQuyCtk5ZSdXJeCgftP6cxI797FxmGyQjnrZu/l4gFxI+03sQMj5/YqdsyJHTfYNO8ISqWSpp1q4rZ+hIqDk5WeywKXbYQEv0NTW4PZq5xp7SjUi/l5hSydtod7l4SiaIp/P7pIgZ5REYl4jdxGUlw6ZSxK4L/DhXL25hTky1gycx/3rohupOvCPnTs1YDCQjkB7oe4dVFc86bO70WXPg1JScrCa/xOIsMTMSqhh//G4VSuYcW5Y49Y4y9ASLsutZjl05u4mDTcJwWSnJhJWatSLNkwDF09LeZMDiQ8LB4jI10WrR6CWdkSzJ4SyLvwRIxL6LF09RA0tTSYMSWQ1NQcypUzIWDVYB48eMeK5WdQKqFz51pMmNgeL+/DPH8Rha6uFosX9ichKZMlK88I1+Z21Rnm3IIZHgeIT8ykrEUJAnz7sWbbFR48iURbW5OFnj25dT+C4xckifqETkTHp7NH6uBMHt6GhLQcDpwWHZ/pI9oS8i6eC7dfo6Eusq6OXxOhnp+yrlYGXSMlQzgjO7ap+QXQqUV8WhZ3Xwr+55S+rVQdnfqVrChT2lAFdMZ0+0tHB3gUHo2Bjnax0VXPxtW5+jKC9Nx8qlubodRQ41V0AsZ6OjSqZMOlkHABdOp/AXRqVeJSaIQK6DyJiRMEZGsLIlJTyZSATkJ2Dhl5+dibmpCYl0NGfj52ZUoTm51NdsEnoJNOvlxODQszQpOTUCiVdK5kz+afrsKv6/8Y2ImMjMTPz48rV64QHx+PpaUlzs7OeHl5oa39/ZZz27ZtuX79erHHnJyc2L9//9/+DFcevUVbT58FLl0JCJRSYcuZMahDPSZIyeXO3RqiUBRx4LxAufPHd+H8rVCCX3xAV0eTxa6ObNp7i7D3iZQ01mPhdEfWbr9KxEcBZPxmOrJ1zy1C3sRiqK8jeDtXXqqY+T5zepCSks3ajSKE02VYK2pWt2LKzD1kZuVTtXJZJo39jQsXQzgpyc693B0xKW3IdNc9ZGbmUamSBZOndCQ6OpWVknfOwCHNaNaiEo8fvidwuxgdTZ3dlQoVTXkU/I59UqfG1a075SqUISoymXWSI6nzmDbUa1xRqKy8jnzF0wl5/IFAifsz2ctRFftwfM9dHtwMQ1tHE48AJ9UF9OyhB9y59BJNLQ3cljmp8rASYtJYL3n4DJ7UnmpfgJILB4O5e1E8Z44kPf1UT26+4dRuabS1bBAGxsVJnuu9DpGZmkPF6lYMdv161HNm9y1e3o9Az0CHyUsHfnN8df3PBzy+FoqWjiaTl36fU/PhdaxKFjx+8cCf7vgfXQ7h1b1wtHW1GOL+a/lXn+rmnw9EnEBFM+q2/TZ36J+WgdS1ysvOJy87/z92Y/6yTp8+zYQJEwARCTF27Nj/6PVS49M5vPIkJzZeoDBfBkC99rUY4TOAar8ARn5WMeHxLBu9mdBgkbb828DmTF49XPUd/aii38az0Hkd719Go66hzmi/AfSd0uW758/bp5H4DllPcmwaBsZ6ePwxjoYdan51XGpCBr5D1/PmcSSaWhpMXeFMp8Etih2TnZGLv8tWnt58g7q6GhMXO9H9C/BdVFTEH/4nOLpZrN1uzi2YuLCf6pxNjEnDe9hmPr6Nx8BYl3lbR6t4blnpufiM2c6rR5FoaWvivtaZ5lJ39vXTj8wfu53MtFysK5riv8MFM8tS5GTl4zNxNyEP36OlrYnnqkE0/a06ebkF+Lnu5bFEEHYLcKJlhxrERafiOW4ncdFpmJga4b9pOBXszTkceJutkolgtz4NmOzuwPvwBDynBJGRlks52zIsWT8MpVLJzAm7iPqQQslSBixZOwRDI11mTNhFdFQqpUobELDGGZlcwYxpQWRm5GFb0ZSAlYO5fi2UdRJn0MGxHqNHt8Hd8xChr2Mx0Ndh8aL+RH5MZsXa82Jz2aU2/fs0Yob7fpJSsrG2LMVi376s2HCRJy8+oqujxSKvXly69ZrTl0NQUwP3SZ0J/5jMwVOS2/KodnyMT+fIecH5nDHqN568jubK/TBBgB7XmUOXnvIqQhjazhnZgeWBV0nLzMXepgzdW9dgxb5rAPRqXYvY1Ezuv/rkjCx8dHILZNSvZEVpSXWlAjqXHpBfKKdRZWvkwKOIr4FOj8bVufryHRkS0EFDjZefgI59caBz4kug80YAnaZ2NjyJiSO3UEZta3Mi09JVQCcpJ4e03DzsypQmOS+H9DwBdBJzcsgqKKCyaWk+ZGaQL5dTzdyU1ynJKJRKaluYcyfq40/X4bfq/xjYef36tTCw2rwZe3t7QkJCGDNmDDk5OSxfvvyHzx0zZoxqlwigp/dtRcOv1PQBbbh4/w2hkQmUMNDFx6UzHuuEQ3LD6jZ0bFKFcX7CN2VEzyaghF3HBIHMc2xnQsLiOCPNVRe4OnDnUQTnbwggs2CGI89eRXNY4hDMde1GRmYua7eJi83Y4a2pWL4MY6buplCmoHkTOwb1a8KaDRdV/gw+Xj2JiUlj1RphyDVsaEsaNarIpo2XefUqBgMDHebN7wVK8Jt/VHhB1LFh5Kg2pKZks8T3GEoldHWsS8cutUlNyWapj3isW8/6tOtUk8ICOYu9jpCfJ6NuQ1sGSYqmfdtvEPLkA3r62ngu6Y+2tiZZmXkEeB6iqEjJb93r0FFyMI54HcsfK8VnHDOrK7aSa2rUu0S2LBYt9+HTOmFfQxAoFYoiVsw5QG52PtXqlWfghM+dioToVDZLxMdhM7pg94WUPCczj5WzBOm4+9AWxVQjALdOP+X2mWdoaKozc7XzV4qo5Lh0dvgLgDXcowfmNl+b+OVk5rJ5rugMDXTthmXF7xNot84V1vfNu9ejbutq3z3uU+2VjAC7j26HSdm/F9p5TSKydxjS8l8nEZcoY4SlnTmxEQk8OP+U1n2b/iuvGxwczIABA1AoFIwYMaLYuv27FRsRz+GVpzi/6zqyAgFyajSvwogFA6jT5tuBmX+nlEolp7ZcZqvnPgpyC9E31mPy6uG0H9Ti508GbhwNZtWkP8jNyqeUWQk8dk6gzg/OiSsH77F62i4K82VYV7Jg/p7J2FT6utMX8SIKH+ffSYpJw6iUAd47x3/l8xQbmYTP0A1EvU1Az0AH982jafwFaCrIK2S5axC3Tosb6wh3BwZM+mxi+D40Fu/hm0mJz8DEogR+u8dhW1V0xxJj0pg7citR4YkYGusxf8tIajYW0RDB10JZNFWY/1WubcOCraMoUdqA1KQsvMft4F1oHPqGOsxfP4zajSuSmZ6L98RdvHkRLWTia4ZQv5k9kW8T8Jywi9SkLMpal2LR5hFYWJVi54bL7JP4f/2Ht2D0lI5CieW6l5zsAuyrWOC/zpm83ELcpgYRH5tOGTNjlq4dgoaGOjMm7iYhPgNTc2MC1jiTkZGLx5wD5OYUUKVqWRYvG8jp00/ZJok0+vZrxODBzZjltp/w8ASMjHQJWOzEy9exqg1p7x71cehal+keB0hNy6FCORMWevdm6bpzPH8Vg76eNovn9ubkpRdcvBEqJOpTuhDyNo4/z4nvf7rLb4RHpXD8kpCTzxrdnuCXH7kWLIz9vMZ35sD5J4S+T8DYUJfZI9qzLPAK6Vl5VCpnSpeW1Vi1X2z6+7arzcekdIJDBeViUp+WKqDToLI1JY31VD46o7s1LgZ0ZCh5rFJd1VABHceGmBejqAAAIABJREFU1bgmAZ0aUkfnM9Cx5tLLT0DnMxm50yegoyiiaUUbnsXEC6WVlQA6GfkFVDETQCclJw9bk1Kk5OeSlpdPRZNSJOXmkFlQgH0ZE6KyMsiTyahqJojJ8qIialmY8ywxgaLCwl9aj3+t/2Ngp0uXLnTp8nnXXbFiRd68ecPGjRt/Cnb09fWxsPj19n9BQQEFBQWqf2dmZgLQqXEVdDQ0OH5DIO8FY7ux+cgdPsanYV7aCLcRHZgecFQkl9cqT5fmVXHxFkaBTl3rY2VWkgnzREdp3KCW6Gl/zjMZP7Q1JYz0mO0nCMhD+zahRuWyjJ6+G7m8iNbNKjGgR0O8/P4kPkEkmXvO7M6V66EcPyVGSV5ujpQw1sPd4yAFBXIaNrDFeXBz7tx+y6FDog06x80BS8tSrF5xlojwREqW1MdzXi9QgyULjpGWmkOFiqZMdO0scqt8jpGeloOtnRkTXIXse9u6i0SExVOilD5zFvRGQ0OdkCcf2CO5IU/1cMRKckJd53eCxDiRPDzZyxEQ7e0lcw4K5UK7ajhIrW1ZoZylsw5QkC+jblM7+oxsqfoN/tx+gxfB79Az0GbWss8dkaKiIla5HSAvp4DqDSrQx+WzqRnAJp+jJMelU7Z8GVy8irskZ6XnskHK+hkwqeNXfjsAG70OkJuVT5X6FXAY2ear/wfYveQEaYmZWFU0o/838rE+1cNLITy8HIKmlgYuC37OvXlx6zUv74ahpa1J/78Z2pmRnMXjyyEAtO3/7wCRL0tNTY0WvRpzaMVJbh8L/lfATnh4ON27dyc3N5fOnTuzZcuWf6SGingayYHlJ7hx6C5FRUoAqjetxJC5fWnYqc6/YkSYFJ3KqgnbeHTpBQB121Zn5uYxmJUr85NnivN8q+dnWXntllVx3zkBk+9I+BVyBdvmHeJP6ebZqGMt3LeO+Wbn6NbJRyybtIOC3EKs7c1ZsHfKV+D7ZXAEC0ZsJjM1G5OyJfENnIDdF+qtjNRsFowSgZ2a2hrMWDGEdr0/j2Wf3HyD37jt5GUXUK6SBQsDx6ksGCLfxDF35DYVCFq4w4UKVQTv6OKRh6z2OkyRooiGravgudYZPQMdYj+m4OWynfioVEqaGOK3ZST21S1Jis/Aa/xOPkYkYlxSH78Nw6hSy4bQ51F4TwokOzOPCpXM8d84nFImBqwPOMNJiRs0anIHnEa24uHdcBbMPkBBgZwadcvht2oQSYmZuE/bQ2pyNpbWpVm6dgj5+TJmTdlNako2ltalWLbGmeiYVOZ5HiY/X0btOjYsWNSfw4eDCdwtxo3OQ1vQo0c9ZszeR2RkMiVL6rNs6UAePHrPpj+uAeDUtzHt21Vjusd+MjLzsK9ohq9nD/xWniE0LA5DAx2WzO3NwdOPuX73LRoa6nhP68bDkA+cvCTk47PHduJFeCynr70UlIGxnbj9NIIbUqyQ1/jO7DnzkLAPSZQ00mPGsHYE7LpMZk4+VSuY075pZdYcEABwQPu6vJPSy/V0tJjYuwW/HxNZVw2rWGNkqMslKQLCpZuQl+fL5DSpYkO+5KNjoKNNz2affXR6Na7BlZdfcHTUUY2uGtpbc0ni6Dh8MbrqWNOey18AneexCSqg8zEjQwV0knNySMnNo6JJKVIL81VAJzkvl4z8AmmMlUGuTEZVU1PepgmgU9PcnOeJCShR0rNqFdb+dFV+Xf9XcXYyMjIoXfrnpMs9e/YQFBSEubk5Xbt2Zf78+RgZfd/uffHixfj6+n71uGPz6rhtFO3RCX1aEBaZwI3H4oRbNNmB1YHXiEnMwNK0BB6jOzEj4KgwCqxixVDHRrh47RWOyY3scWhXg9FzgpDLi2jbtBKO7Wsxzm0v+QVyGtQux4gBzXBfeJSk5CysLUvhMa0r+48EC+NALQ18vXqSmpbDcqmD4zywGY0b2LJ46Sk+RqVgYmKIp7sjyUlZBASITknfvo1o2bIyV6+84tQJAZDc5/agTBkjgnbc5MnDSHR1tZjr1xddXS327rzJEymh2GthH3R0tbhz/TXHD4gLyuz5vTAxNSIrM48lXkfEXLp7HX7rJsi/F48/4caFEDQ01XFf0h99KS5h24qzRL1PorSpEa6+vVU3n91rLhIRGitSgpf0V3Uj3oXGsmuVkJ+O8+pRTGZ+MvAOz+5GoKOnxcxlA4vZ7t+7EMKlww9E2vjKwV9FJGzzO0ZaooiLGDi1E3+t22eeckfq+kxbMeSblv7hzz9ycpsArJMCBhcLRvyyFHIFW7xF96fnuPZYVvyxUzLA3gDR1ek0tNXf7urcPv6AIkUR9nXLY/0f+MT8qFpKYOf+6ScUFsi++7f/SiUmJtKlSxeSk5OpX78+hw4dQkvr11+vsEDG7WMPOLX5Ii9uhqoeb9SlLk5zelKrZdV/BeQolUou77vNxpmBZKfnoq2rxeiFTvSY0PGXumfxH5JYPGIjrx9EAOA0y4Hhc/t8d5yZnpzF4lGbeXZTWOYPmuWAs3uPr85FpVLJ3uWnCZQ6gfXbVcdz29ivSPJXjgSzanoQ8kI5lWqXY/7u8cVAVuz7JOYN20TM+yQMS+jhvc2lmAXDpcPBrJZ8cmo1tcN7y2iMSor3eBEcwYKxO8nOzMPG3gz/nWMxtSwpJORbrrFj+VkA2vdugKvklRP+KhbvsTtIT8nGwqY0/ltHYlm+DFHvk/Aat5PEONF58d8ykvJ2Zjy+F8EC173k5xVStbYNfr87o6evw3KfY1w+LQjSk9y64di/MbeuhLJYcnlv2Mwe74ABfHyfhOf0vWIkZWfG4jVDSEnOwl16rEJFU5auHkLYmzh854vInIaNKzJ/QR9277rFwYOiS+/i0pb2HWowfdY+oqNTMTExZPnSgVy9+Zqdks3HsMHNadrYjumeB8jOLqCKvTnebo7MX3qSt+8TKWGkx2LvPgQdvc/tB+I+Mn9md24Eh3P+ujAhdJ/QiYevojl3QyIfT+jE5fth3H36Hm0tDeaO78LOE/eJiE6hdAl9pg9ty9Kdl8nKLaCGnQVtGtqz7pAgsTt1qEtYTDKPwwSpeHzvFqz78zYFMjmNq5VDT0+EempqqDOmWxO2S0CncdVy5CnkPFUZBtZgz00BdHo2qc6VL8jICnUIjZHIyHafych/BTpXwt4VAzo5hYXUlIBOel4+lUxNigGdtMJ80nJFdyc5L08FdOKyM8mRCQVWuAromPEiSQCdWhbmnAoP++m6/Fb9XwN2IiIiWLduHStWrPjhcUOGDMHW1hYLCwtCQkLw8PDg2bNnXLx48bvP8fDwYMaMGap/Z2ZmYmNjw8IdFymUK2hd146q5c2ZsVwosWYNbUdwyAfuPBOM9kVTHdi4/ybvopIxKWmA75RuLNxwnoTkLKwtSuIxvhM+q06RmJyFjWUp3Cd2JmDDBT7GpGJmYsT8GQ4EHb7Pw6cf0NXRYqFHT95GJLBNUl5Mm9ABG6tSTJgWSH6+cOEc4dyS02efcemyIAN6e/XEwECHuV6HVGqsMWPbEROdyqplgqczyLk5DRtV5NmTD595OrO6Ur5CGUKefWS3ZNk+ZVZXylUwJTE+gxULRB5U3yHNaNSiEkqlktULT5CUkIGlTWkmSSTj6MhkVcrw8EntqVLTGoB710I5JYGlWf79KCH5vjwPfscRSU7qurAvZSS1U2GBnGWz9iOXKWjWsQad+jVS/S7R75LYsVS8x2g3BywrfN5VZ6XnstZDgIs+Y9uqEpY/1ZObb7hw4B5qampMWzboqxt1bnY+G73E8/tN7Ihtta+7Pkqlkg0eQgLfplfDr8zZvqzzQbf4+DoW49KGDJr1c7Lt26eRPL7yEnUNdQZM7/7T4/9at44LUuq/NV76VlVpbEcZ69IkR6dycPkJnL2+dpv+lcrJycHBwYGIiAgqVKjA6dOnf7gZ+bLi3iVwZttlzu28RkaS6MCqq6vRun8znGb3xK5O+Z+8wq9Xckwqa6bsIPisGC1Urm/L7O3jKVfl18jNt44/ZNWkP8hOF3ERs7eM/abx36cKexKJ39ANJMWkomeow6yNo2nhUP+r4/JzClgxdSc3jwtuR+9x7XHx7VcMQCmVSoKWnVYpCpt3q8PsdSOK5bWFBEfgN3obmWk5mFmXxi9wPOWkMZlSqWTf2gsErhCApW3P+kxfLhLIAW6cfsqymfv4/9h7y7Cq1rX9+0c30kiDgKICKga2mBjY3d2xLAxQEBXsWEtddnd3d3dhiyIIAtJds/4f7iHqMpZr7/08+z2O570+MY85xpyTOUec93WdIS9WCFfktQMwMtFHqVSyJvwoh6VuSKfBfgwIbIGamhqPbr1l5qitFOQVUaa8DbNW98fM0ohXT+MJGbGZrIx87JwtiFjdD2tbU66cfsL8oP3I5Qp8aroSsqQHaupqzAzcxe2rr1HXUCcwrD2NWnhz+shDlkoE5XpNKjB5ZgdePIknJHAX+fnFlKtgS/jiHsS8S2b6pD1iTFXelojF3bl/N5q54UdRKJTUqVuWKdPasGrVBY5JsRgjRzXB19eN38Zv4+PHbKytjVkwrxvHTj5m1z5xbRvUrz5envZMCN5DfkExnuXtmDyuBcERh4iJS8PMRJ850zuwdsd17j4S5ORZE1tz+upzzl8XXJng0S24cu8tF269RkNdjaDhzTl57Rl3n75HR1uT4GH+rDt4i9iEdCxMDBjTswFzNp4jr6AYb3dbalV2Zvk+wVXs0cyHZ7FJPHqTgIGuNkPb1Wb5wWsUyRTUquiEprYGlx4LwDWwRQ3WnxGhnjU9pKyrGCnryrd8CdBp51uR80+Ej04Feyvho/MhhVJ6OlT9UnX1BdBp4unGhVfRUr7V10An7hPQsTInLS+fdAncZBQXkp5fgJOZCWkFBSXE5KS8HPJkMspamvM2Ix1ZCdBJFkDH2ponKR9RKpW/dH7+tf7jYGfGjBnf7aJ8WXfv3qVatc9t1ISEBJo3b07nzp0ZNGjQT/cdPHhwyd+enp64u7tTrVo1Hjx4gI/PtxcOAB0dHXR0vg1KTE7Pxdm+NCM61mHEnL3CjKmBJzYWpZi3QbSYA/s15llUIqevS947vwVw9PxTbkvJ5RET2rDv+APuPhaE5fDANpy69JyLNwTJLGxia95EJ7NZ8tuZMKIpJsb6TAjag1KpolmjirTy92buohPESGZU0ya35t27FJYtFwBuYP8GeHs58Oef53jxQkjKp4e0Q6VUMWvGQfLzi/HydqBvv/pkZuQxZ8Yh4Z3TwpumLbzJzipgTuhBlAoVjZt70bSlNwq5knkhB8jNLqRseVv6j2wMwMmD97l2/jmamhpMjRDKLZlMzrypeyksKKZSdRc69hXjqIzUXJaECoDYoU8dfGoJz5S83EIWTRXyc/+O1ajd5DOfYuvS0yUGgWNmdSxZnSsUShZP2iVGXrXdadXrc2YPwPqII2SkZGNXxpI+E74eARUWFPPHFDFODOhT9xsgBLBtwTHSEjMp7WRB93Hfz6C6evg+z2+/RUdfm0EzO393GxD8hx2S8WOPwIAfStK/rH2ShN2vky+lvxMy+rMqzC8i8oroBNRsVeVvtv7XS11dncFzejKn9zK2zz5ApQYV8Kr79zykL0sul9O1a1fu3r2Lubk5p06d+tuRc05GLlf33+b8jmtfdXEs7MxoPqAhLQY0wvIXA1J/pVQqFWe2XGH15B3kZeWjpa1Jz+D2dB7X8m+dkEGKiwjezZHV4hrhUd2VqZuG/zQu4vS2ayyfuA1ZkRw7N2tCto7EyeNbUJUcn0ZY7z95+yQOTS0NRi3oSfNedb/apjC/mCVjt3DliOBXdBrZlP7BX5sUXjhwlyUTheu4eyVHZmwYXGKvIJcpWB68l9O7BAes8/DG9JvcCnV1dVQqFQfXX2FthCRb9/ciUBIIFBfJWBi4m6snIwEYEtSa9v1FLMXVU0+YP2k3cpkC7xplCFneGwMjXR7ceMPMsdspLCjGvaIds/7si4mZAcf23GFFxDHhNdWsIoHhnSgukhE6ZidPH8airaNJ8Nwu1Kxfjr1bb7DuD3EtbN62CmOmBnDnxhtmT9uHrFhBparOhM3rwpPHcSWZf95VHJk5rysXzz/n98UnUamgUZOKjA9sweJFJzl//rnIyBrXggoV7fht/DbS0/Owtzdj/pyu7Np3m0PHBAgYNawxzk4WBE7fS1GRnCrejowb2ZQpsw8Qn5CBpbkhEcEdWLH5Eg+fxqGro8nsSW05dPYxV++8QVNTneljWnLm+kuu3nuLpoY600Y259CFSB6+iEdPR4vgYf6s2neduKRMrMwMGdm9HnM2niW/UEaVcnZUqeDAygPiHtLLvyqPohN4Ep2IoZ4OQ9rWYtmBaxTLFdTxdEalDlekHKyBLWqw7vQdiuVSenlhIU9ikzDS06FldQ92SFlX7X0rcvbJG3IKiqjgYI0CJS8TUoRhoIttCdD50jCw6ZdAx/UzR8fT1uoz0LH8GuhkSkDH2cyUjMJPQMeUpDwhNXe3MCc6MwOZUknFL4COp7U1T1I/iuO9fEUW/+1Z+m39x8HOqFGj6Nat20+3cXZ2Lvk7ISGBhg0bUqtWLdasWfOP38/HxwctLS2ioqJ+CHZ+VDramkQMb0X4ujNk5hRQztmK3i2rMThsl5B8N/TC2daM4WGCoDyyR30KCmRs3C+MoCYNaUpqei6b9onHgUObUVgoZ4WUWjuybwNKWxozYOxm4b/TzJsm9cszcdoe0jPycHGyYPyoppw6+4TTkuw8ZGobdLQ1CZt1SAR8+rrStYsv16+/Zv8+4bw5aXIrSpc2YdnS07yJEjkuwSHtUFNXY0H4UdJShZ/O6PHNhRw84khJ7tXoiWIVtmPDZZ4+fI++gTZTIzqipaVBbHQyqxaKMVr/UY0pK3Fetiw/T9RzMY4KDO+Ehoa4KC4O2U9Weh7O7tb0+yL2YfWcYyQnZGJtZ8qQqZ+7Hs/ux7BfIhuOmd0Rky8Mzg6uv8yLB7HoGeowbl6Xry7cD6+9Lrkwj53f/RvvkW0LT5AUm4alrSn9prb+5nd+9+IDh9dJv8mcrt/NoCoulLEuTPCrOo/y/25sxKc6tuESqQkZWNqZ0fIHvJ8vKyk2hSuSa2qnf8jVAYi88gJZkQwrB3Mcv3OD/E+WX9fa3Dhyl8t7bzHFP5wxKwbh38/vl/ZVqVSMGDGC48ePo6ury9GjRylX7vuBqfk5Bdw/G8mFnde4c+IhsmI5ILhDVZt6EzC0Kb4tq/ytuu2f1sfYVH4fvYH7ZwU3p1y1MoxfPRjnCva/tH98VBIRfVfwNlIoQjqPa0m/kI4/BEnFhTL+nLyjxD/Ht3klJq0a+F1+zpMbr5k9YDVZqTmUsjBi+qZheP5FXZaamMnMvquIinwvwNC87vj3+ByfolKp2LHkFNsWi45N7ebeBC7rU6KMzMsuIHz4Jh5Kiq3hszoS0FuAKYVCydrwoxyWfLva9qvL4GAxYsvJymfm8M08vftOZGfN74pfgOhiHdl+g1XhArjUaebJpPld0NbR4sqpJ8yfuhe5XEFlX1dCfu+Jnr4221ddZKtkSNiqc3VGTA0gKyOP4NHbiH6dhIGhLmFLe+BZ2ZH1y86xR+oide5Tm4GjmnD+9BMWzj6CUqGiVv2yBM/syI2rr5g7UxgB+tZ2Y/rsjhw+eJ810vsEtKnCsJFNCJ99mBs3BJdmytTW2NubMU5SvpZxsWRORBfWbbrC6XOCxzlhjD9mZoZMnbGfYpkC32plGDHIj8Cw/SQlZ1HaqhThQW1ZtPocz14noq+nTfjktuw8epfbD2PQ1tJgxtgADl2I5NYj8Xj6qBbsPvWAJ68TMNDTJniYP8t3XeVDchalLYwZ1rkOEevPUlgsx8fDHs+ytqw7Iq5//VrV4PbLWJ7HfMRYX4eBrWvyx4FryOQK6nq5IFcpufksFh0tDfo3r8Ha03fEc57OpOcV8PS92K95tXLsui5CcTv4VuRM5BtyCovwdLCmGBEBYaKvSyUXWy6+iBbOyJXLcfSxWHQ183Ln/EuhuqpVxoFHX5CRvxxdpeX/GOhkFgq+TlJebgnQicnOFEDHyoqnn4BOaSuepgigU87cgn0vn/3KqfpN/cfBjoWFBRYWf0/qA/jw4QMNGzakatWqJWZj/7SePXuGTCbDxuaf8xgCezXiyOWnPIsW0r6Zw1oQtuoUWbmFlHO2YkA7X4aE7BSOyTXc8avhTv/JIqm8fdNK+FSwZ8DErQIYNatELR8XBk7YilyupEEtd9q1qMy4aXvIzMrHzcWSMYMbsXnnDR48fo+erhYzprYlMTGLJVIHZ0CfelTycmB2xBE+JGRgZWnM5EkBpCRnM18a73TqXIM6dcpy9cpLDh8Ube7JQW2wsDRi365b3JEyrqbN7ICevjaH997l5pXXaGlpEDyrA/oGOjx5GMsOCXSMnhKArb0ZxUUy5gTto6hIRtVabnToKTorD2+/Ze8nB+MZ7bCwFiZtx/fc4e5VQbadMq8r2pLq6eb555w9cB81NTUmfsHrKcwvZvHk3ahUKpq0r0qtL7o9sVFJbFn8mcNjZfcZaBTmF/HHZAE2W/etW6IC+VRRke85uFZwbEbN6fJN9pVKpWLFFOFIW6dVFao1+r5q58CqcyTHpWFha0qnUd/yfT5VQW4he5aILk3Pya1/iddycPlplAolPo0q4url+Lfb/7XunhYr6Wr+/xky7s9KTU2N8WuGUVwk5+aReywavIp7Zx/TY0p7XP7ms8+ePZu1a9eirq7Ozp07qVXrc3dOIVfw+l40989H8uDcE17cikIhV5Q8X8bLkUY96uLXtTZWDr92/fgnpZArOPznGTaF7aMovxgtHS36hnSkw5jmvwSoVCoV53ZcZ8WErRTkFlLK3IjAtYOp3qzSD/dJik1hdt+VvHn8HjU1NfoEtaXr+JbfXOdUKhXHNl5mVZDgzrh6ORCyZcQ3SsHXj2KZ2W8VaUlZGJsZMG39ELy+4N8UF8n4Y9Iuzu+XgPWwxvQPal3yfskfMgjtt4aYV4no6GkzZXkfajYViq2iQhkLxu/g+ikBAgcFBdBhYIMSs8DpA9cTG/URfUNdQlb2oVJNN+GkvPQMu9dcAqBVN1+GTxPg6MiOm6yce1zq3HgSOKczmprqrJx7nCO7BE+m51A/eg1vRNKHDKaO3EpifDqm5oaEL++Ns6sVv0cc46RkRDhwdBO69KnD4b13WSGpPpu08GZCUGtOHX/E7wuEP06jphWZGNyabVuus10CSd161qJHr9pMn7aPBw9i0NLSYEZYBwwMdZgQuJO8/CI8PGyYFdaR5avOc/HKS9TV1Zg6sRWaWhpMm31IuCnXdqdfzzqMD9lLanoudjYmzJzclrkrTvM6+iNGhrqET27Dxr03eSB1eMLGt2bn8fs8eCYeh45uyeYjd3jxNgkjAx2ChvqzdNslktJysLMqxcAOtYjYcEaMnLyccHG0YNNxaZTWpiZXn0Tz8n0ypQx16dfSl9/3X0OhVNKgUhnyZTLuvIpDV1uT/v7VWXPqNnKFkvqeLiTn5vE8LplS+ro09SnL7uvimtKplhcnH4n0cm9HawoUCl4npWKqr4uXswj11FBXo2UVj69UV5+ATs0yDjz8IAV52lsTm/kt0Cnzxejqa6BjQlJ+LnnFxbhbCk+dYoWCClZWPE0VQMe7tDWREtDxsLDgZVoq2hr/Gmz5r3F2EhIS8PPzw9HRkYULF5KSklLy3Ke294cPH2jcuDFbtmyhRo0avH37lu3bt9OyZUssLCx4/vw5EyZMoEqVKtSp82vy0C9LpVCy/7xAtzOGtWDf2Uc8kzwNZo9uxZw1Z0hOz8XRxpRJg5oQOPcQ2bmFeLhaM6JnPcbP2kdWTgHlXK0Z1deP0IVHSUrJxt7GhCkjm7Nh+3Uin8ejr6dN2OS2RD77wJad0jhrdDOsLI0YNmZzSYhcjy41OX7iMRcvSaFx09pioK/NtKC95OYKns6gQX58TMpi0Txxw+3avSY1arry+mUi61d+yr1qShk3a969+cgaCUgNGtkYt3I25OYUMv9TRESrSjRqLhyON644z7uoj5QyNWDiDGFClpNdwKJpwlCwRcdq1G4kOCzxMamslciJA8Y2w9ldkHMz03L5PURs36F/XTyruZR81xsXniQhNg2L0qUYOu2zikqhULJEsn+v1sCDZl2+NvjbuugkSXFpWNqafBP5oFAoWSYFFPq1rUqNxt8CmYsH7vLs9lt09LQZEvZ9DkpGcja7JQDTf1r7b4jPX9bRdRfJSsvFtowVTbvX/uF2nyo/p4Az28RKudNv3x+f/V09vfEKAJ9G3/qv/E+UnqEuoXvHsz38AFtn7uPynptc3nMTp4r2NO/XEMfydjiUs8XK0aLkRrpx40ZCQkIAWDh/EWWtK3B87TnePXnPu6dxvH0c841hoa2rNfU6+NKoe92/BVL/Tr15FMPSkRuIeiASdbzqluO3FQN/6Gb818rNzGPZ2M1c2idu0t51PZiycdhPSeZ3zz5h3pC15GbmY2xmyOS1g6n6HaBdXCTjz8k7ObVNLCj8OtRg7NLe3xyDlw/dY/HYrRQXynAsa8OMrcO/yrjKTMth1qD1PL8bjbqGOqMiutCi5+fjMyoyjtD+a8lIycbMypiwjYNx83KQ9s0lbMhGXj6MRVNbgwkLuuEnGQm+e5nI9EHrSfuYjbm1MbPWD8SlnA1ymYLfQz67IvcZ05RuwxoCsPH3M+yW+IEBXX0ZPjUAhULJ3Ml7uXLmKWpqagyb1JK2PWoSHZVE8MitpKflUtrOlDkr+mBhbcycafu5ek6QekdPaUWLdj5s23CFLZJCtG3n6gwf68/enTdL8v4C2vkwclxzVq04V2KsOnCIHwFtqjB50m6eP/8gYiJmd0KuUDJ56h4KC2VU8nZg+rS2zFt8ktt3o0X21dS25OQVEfHJQNCvPF06VGd8yF4ys/JxdjB3l0p5AAAgAElEQVRn2oRWzFp6nHdxaZgY6xE+pR1/br3M01cJ6OtpM3NCAJsO3CZSehwyugXr9t0gKjaFUoa6TB7clEVbLpCSkYdjaVP6tKlOxIazohNT2QXb0iZsPyUWtEPb1+b8g9dExadiYqhH7+bVWHbgKgqlikZV3MgsKOR+lBiJ9W1WjTUnbyNXKvHzdiU+M4vXH1Ix0delURV39t4UQKdzbW+OP3hJXlEx3k6lyZPJePMxDVMDPSo6WnP55Ts01dXxr1z28+jKy41zL9+gUKq+cEYWhoFCXi6RkfPzyMgvpIyFGRlFBSVAJ10aXZUxNy0BOmUtLXiXlSEBHUueS0DH6wugU64E6GjQsIwjb3545v24/mtg58yZM7x584Y3b95gb/91C1mlEvJSmUzGq1evyM8XKafa2tqcP3+e33//ndzcXBwcHGjVqhWhoaFoaPzzdveibZcATQa2q0leXjH7zgrgEzqsBWeuvuB2ZKwYdY1rw6b9t3kWlYiRgQ7h41qzYfcNnr0WrpazJrRm//EH3Lwv7MFnBbbhyfN4tkuBbpNHN0dfV4vwhcIRuXWLSjRtWJE5C4/zPk5kqQQFBhATm8LyPyVzwYENqFDBjnXrLpX46Uyb3g51NTUiZh8W4KeCLf0HNSA/r4jwUJHTUreBBwHtfCgqlBERehBZsYIatd1o16WGcCWec4zkpCxs7E0ZIUU8PLwTzYHtYhQ3PqQtZlL+1J9zjpGanI2dozlDJ4ptFXIFC4L2Cm6NryttpQ6QSqVi2YxDJWOtPmM+p3FH3n7Lka1ilTU2ohOGX5gAHtl0jVeP3qNvqMuYiE5fdS5ePX7PofVSlljEt12bk9uuExUZh4GxHoP/4qIMgpS8fqbgFHUb2xyrH8QrbJt/lIK8ItwrO9HwO27Kn6ogt5B9y0QHqscvRAYAnN95g/ycQuzdbf4lsFKYV0jM0zgAytdw/cf7/6ulrq5O7+mdqBVQld0LDnNl323iXnxgdeDWkm109HWwcbHifdZbzsQI7yIXjfKcnHKLk9z65jUNTQyo3KgiPo29qdrEC5tfULD9O1WYV8jW2Qc5sOwUSoUSQxN9BkV0x79v/V/uIj+7+Zp5A1fz8b2Ii+gd3J6uEwK+q+QDAcC3zzvCzoWiq1HWx5lpm4Zj9R0/p7TETGYPWMWLu9Goq6sxIKQjHb/wvgFhxbBtwXF2LhGLi+qNKzJ51QAMvkhLj3mZwIz+a/gYl46BsR5Bq/rjU9+j5PlbZ54yd/QWigqKcfawIWzjkJLuaXx0CtMHrCPpfZpQa63qh7evOM4e3ohi9sit5OcW4uRuzaz1A7G0MaEgr4iIcTu4J5GIx4S1x79jNQGAwg5x9rAAQH1HN6HbYD/y84qYNW4nj+5Eo6mpwYTZHWjYwpvI+zGEjttBfl4RLu7WhC/rjZ6+NtPH7uDR3XfCcHBWB+o0LM/KpWc4JMnQew+qT8/+9Vi/6gJ7pOtWt9616TOwPgvnHuPcWTGCGj3Wn7r1yzF+3A6io5MxMtJl7tyuJKdmMzviCHK5khrVyxA4sSVhEUd4/CQOHR1NZk1vz/sPGSxbLaJZWreohH8TT8ZN30NuXhFlXa2ZPMafkAXHiE/MwMLMkFmTWrNk/QVevRUdnpkTAli58xov337EyECHkFEtWLbjCrEJ6ZiV0idwYBPmbTxPRnY+ZezN6dbCh4iN50R2YTU3TErps+us4AyN6FSHE7de8C4xHfNSBnRv4sPyg9dRqlT4Vy9LUlYuj94KonKvJj6sOXlLgKBKbsSkZfAmMQ1TQz0aeJdh/y3RuetS25sj919QUCyjiostmYWFRCenY26oh4e9FVdfxaCprk6zSu4cKxlduXHu5dsvgE4CBTI5lexLE52RIeVbmZOSl09GviAdp/8I6HxBRo7OFGTkClZWPE9NRikBnSdfjK5eSUDHwlCfE9Gvfunc/Wv918BOv3796Nev30+3cXZ2LgE+AA4ODt+4J/87VVwsp7aPK42ruzNICvTs19YXLQ111h+QeDkDmxD7IZ09J8QJPH1kC15Hf2S35IIZPLoFH1NyWLtDciQe3BgjQ13GThOjl44BPtSv5c6E4D1kZObj6mLJ6CGNvuLpTJ8ieDqzZh8WXZ7qZejcsQb37r1j107xOSZMaIGNjQkb11/mmZQZExzSDk1NDRbPPU5CfAaW1saMm9IKNTU11iw7R2x0CqZmBkwIboOamhpnjz/m8tlnqGuoMUUaaWVn5bNQIhm36liNmvUFx+LSyUgunogUiojwjiWux7vWXebVk3gMjHSZMLtDyU3jwpGHJS7JE+d1KRnvFOQVsWSqFI/QtQZVvzABTHyfxmZJDTJwagCWNp8ls7JiOUsDpXDQ9lWp0ehrZVRGSjab5klmhZNaYWb1bQbSziUnSf+YhY2zJR2GNf7uMRD7KoGTW6X08Zmdf3oTPLruItnpudi5Wv8UFH0qlUrF8fXSqnNQo39pBBX1MBalUoWFrSkWdv+5LKxfLbcqLgTvGEu/sEQeXXrG/XORxL1M4ENUIkX5RUQ+fcw9xUVUqLBRc8IV0Sk0tzXFxdMRZ08Hyng5ir+9HH8IEv6TpVKpuHHkPisnbiMlPg2ABp18GbagF2Y/8L75aynkCnbOP8L2uYdRKlXYuFgyef0wytf4cXBp+scs5g1eWyIrb9mvAcPmdvvuqPPprSjCB6wmIzkbw1L6TFk7+JsRa35uIQtHbeLmKbES7zCsMQOmt//qO7xz/hlzR26iILcIGycLwjYPxcHNuuR7OLzhCmtnCcGCT/1yBK3sXxLJ8vRONDOHbSInM5/SDmbM3DAIB1fh4XPu4H2WBu1FIVfiWd2FkJV9MSqlT0ZqDqHDNxP19AM6eloELe5BDT8PCvOLCZ+wk7vXBAD6LbQt/u2rkZ6aw/SRW3n7MlEAmSU98KnpynVJRi4rluPl48SMxd2Ry5VMGr6ZqBeJ6OppEbqgG95VnZg/8xAXTguPqeHj/GnTsRpL55/g5FFBrh00ohHtOlVnZshBbt6IQl1DjclTW1PRy56xv23jw4cMzMwMmDe/G69eJ7FoyUmhuKzvwagRTQgK3c+rqCQM9LWJCOtE5LP4EqVs1w7VqV3TlYkz9lJQIMPTw5axw5oSPPcQicnZlLY0ZsaEAOatOkP0+1RMjPWYMT6ApZsuER2XiomRHtNGNWfx5ot8+CjIx+P7NyJi3Vmycgsp62RJu8bezN14TuQm1iyHpo4mBy4Js8FRnetx8OoT4pIzsTY1pHOjyiw/dE0Yxfp6EJeWyZN3SRjq6dCtYWXWnLyNUqWiWdWyvE5KJTopHXMjPepUdOHgbcF16VLHm8N3n1Mok1O1jB1p+fm8S8nAwkgfd1sLrr2ORVNDnabe7hyPFMDC38udMy/eoFSpqO3myP33CRTK5VRyKM3b9IySrKuknNwSN+QvDQNTP6muzE1JyMshvwToZJQAnWepnzk6T77o6LxKS0VLQx0LQ30+5GZjpa9P3C+dxV/X/2ek5/+NsjQ1ZGr/JoxbcLDEMbltQ08GBotAzzYNvfAua0u/ySLQs2eb6rjYmzMgcAsA3dtUw7OsDf3Hb0GpVNHcrwLN/SrwW/BuEfXgVprh/RuwZecNHkZ+4um0ISk5m6XSeKlfr7pU8nJg4aITxL5Pw9zMkCmTAsjMzGfunKOoVMK+vIFfeR49jGWH1CEZN1GAnwtnnnL2ZKSYMYe0w9hYj5tXX3NUauMGhrTF1MyAxPgM/pQk6r0H++HhaS86PRGie2PvZMGQccJAL/VjNssjBJDoPqg+Ht6i3R31/AM7pJTxkUGtsZRuHKkfs1gZLtQbPUc2xrX8ZxLtxkUnSYpLx8rWhEFfjKFE9tU+igplVKrlSotuX4dC7lt9gZiXiRibGXyTfQWwPvwIedkFuHnZ07J33W+e/xCdzKE1AmgMndnph9yaDWEHhANyy8p41S773W1AyIH3Lxddne4TA36pq/Py7lvePYtHR0+bJj3++ZgV4PX9aADKVfvf6+p8r+zcbbBzt6HV4CaAAAO3Lt+hTacAFJlyateow5Z12zAxN0bfWP8/GjfxT+rD24+snLClhOdk7WTByCV98f2JJPx7r7Fg8Gpe3BHeOY2712bkoj7fxJJ8WY+vvWTuoLVkfMxC10CHMYt706jLtzYBKpWKo+svsnraHhRyJc7lbQnZPOIbo8DE2FTC+qwk9lUimtqa/LawB02+eD2VSsXh9ZdZO1OMpL1qujFt7UCMJesHhVzBqhkHS2JVmnevxcjZwgsH4NLRhywK3IW8WEG5Sg7MWDsAEwsjQXBefo5tkvqpQatKjJ/XFW0dTeLfpTB96CaS4tIxNjVg5qq+lPN2IDM9j9BRW3j1JF5k5S3shm8DDz7EpjFtxGYS4zMwMTNg1oreuFew48SBeyybcwylUkVtPw+mhHciI10QlOPfp1HKRJ9ZS3vg5GpF6KQ93L35Bg0NdSZOb0O9huUJDznA1UuCVzN2UkvqN6rA1Em7iXz0Hm1tTULC2lPa1pTfxmwjNTUHGxsT5s/vxs3bb1ixUnRrWraoRJ/edZgQtJuY2FRKldJj/qzOXL7+mu17RUe+f886eHjYEDhjP0XFcny8HRnStz6TZu8nLSMPexsTgse2ZNYfJ0s6PNN/a8mCted4n5iBhakBU4f7M3/9WZJSc7C1KsXoXg2YveYMOflFVChjTfN6FZi/+bwAL3UrIFcpOXZNOPKP6VqP3RcfkZCaja2FMW3rebHsoLj+t65dgajEVF68T8ZYX4fODSqx7vRt8TrVy/EsPpmY5AwsjQ3wLe/I4bvPAehWtxIHbj+lSK6gups9ybl5xKRkYGVsgIu1GTei3qOpoU4TLzdOSEDnU3q5UqWijrsTd2PjKZIrqOJgS1RaKjlFxXhYW5KYk0NWQSGulmakFuQL0GNuSopkGFjG3IyEvGzyZZ+TzAXQsfwMdKwFMRm+BjqWhgZ8yM3GTE8Pm5/ESf2s/k+DnZAh/qzae50YydcgZKg/IctOkJFdgLuTJSN71GP0zL3kFxRTycOO/h1rMipkN3n5xXh52DG4e12mzDlEWkYeTvZmjB/ahPU7rvP0ZQKGBjrMmNSap88+sPkLno61pbHw0ykSfjo9u9bk/IXnnDglkHzQ1NYYG+sxdcpuMjLycHa2YMSIxmRl5jNHCv1s3rISDRtVIPFDBr9LAKZnv7p4VXYkLTWHxZJstGP3mlTzdS2RmefnFVOxsiNd+wlwcP5EJFfPPUNDQ53Jszugq6eNUqlkccgBcrMLcK9oR/fBfoDogi0M3odCrqRuU08athLETJVKxR8hB8nLKaSctz2dB37O4nlyJ5qjW8X//lt4p5IVJcDZfXd5dCMKbR1NxoR3/qrrkRibyi7pYjs0tH1JGvOnenr7Lef33UFNTY1REV2/2y1YO2M/cpmCao0q4tvM67u//9NbUdw+I7pXA0J+7ilzYvNlstJysXGx/KWuDogRFkDdttUwkm5C/7QSosUKx7H8/6wK659WRmYG/Yf3JT0zncqVK3Py7AmMjf+9hPF/p4oKitmz6Bi7Fx5DViRDS1uTTuNa0m1Sm59ysL4slUrFiQ2XWD11R0lcxOilfWnUpdYP91EqlexZcpItEaJ74uRhy7TNw7/LByrML2LZxO2c3yNGfA3aVWPc732/8sYBeHTtFRGD15GTkYeplTHTNw6lfNXP/DdZsZw/p+3j1A5xfPl3q8nIiC4l0Sh52QXMGbmZ+5dfoqamxoCg1nQc0hA1NTWRiP7nebYsEiTf2s08CVzSA109beQyBctCDnBGUn12GuxH/4nNUVdX5/nDWMJGbCFb6gLNXtMfO2cL4ZY8bBOJcekYldIjbHkfKlR2FN46o7aRlZGHjb0p4av6YWNvyo51l9kscQubt/VhTFAAcTFpBI3ZRlpKDlalSxGxrBcmZgZMGbON50/i0dHRZHpEJzwrOTItcBcP7wmS8dTQdnhVcWTi2O1EvU5CX1+bWXM6o6unzbix28jOLsDJyYK587py8nQkmyXg17lTDdq2qcLYSTtJSMzEwtyQ+bO7cPD4Q46cEN2iEYP8sLIqRVD4QeRyJbWqlaFXZ18mzTpAVk4BZRwtCBzejNBFR/mYmkNpS2OCRjUnfOVpElOysbYwYtKQJkSsPk1qZh6OtqYM6VKHsFWnKCiS4V3WlgbV3Fi0VSwe2/l5kpFfyMX7Atj91rU+287c42NGLg5WJvj7evDnYfF7t6vrydP3SUR9EPyd9nU9WXdajPgCfMvzMCaBuNQsrE0M8XGz4+i9F6ipQbc6ldh76ykyhYKaZR2Jz8wiLi0L61KGOFqacOttHFoa6jTydOPkE2Hc19y7LKeev0algjruTtyJiadYoaCKow2vU1PJLSqmQmlLPmSJ9HI3SzOS8/NLvHOS80QEhAA6WRTI5JSztOBNRjryEqCT8hnopEpAx/zbjo6Znh5FKhmPU9J/4Wz+tv5Pg513H9I4fUOky84a1Yq9px/x+JXINgn/rTUrd1wjKiYFE2M9Zo5txaptV3gd/ZFSRnqEjQ9g99H73H0k/HZmBbYh8tkHduyXYhxG+6Onq8WsBYKn06qZF00bVmTRH6eJjknB1ESf4MAAkpKySnKvevesQ5XKTuzedYt7996Jk3x6O5GeG3aItNRcHBzNGDmmKQq5krkzD5OfX0xFb3t69q2HUqli4ewjZGXm4+puTX+JMLhz4xVeSKOvyVIcRFJCBiskhVevoX4lMvNju+/w4NZbdHS1mBTRsWQluG3FeWLfJGNiZsDo6W1KwMn5ww+5e+UVmloajAv/bHxWVChjaZA0vupSA5+6n7sm6SnZrJU6Qb3H+X9lHqhSqfgzZD/FRTIq1ylLw3ZVv/rNFHIFK4Kl1+1R65tEc4D7l55z+8wTNDTVf0hKVqlUbJwtxnfNe9XF3u3H/JHiIhn7lwun7S5jW/xSV0cuk3PlgDgWGnX7eyLzjyo5ToxhfiW24H+r8vPzad26NVFRUTg6OnL8+PH/GtBRqVRcO3iXtVN38vF9KgA+jT0ZuaTPP3KaTv+YyZIRG7hzWvD2KtUvz8TVg7/LtflUGclZLBi+gQcXxHigSbdajFrY6xvwApAUm8qsfit5+yROBISGdqTD8CZfgXyVSsWR9ZdYE7ofpUJJuSrOTN845CtH5My0HMKHbODp7beC5xPclg4SkAFIep9GaP+1vI9KQkdPm0l/9KK2v3BAlxXL+SN4H+f2i65v+wH1GThV8I/ycgqJGLONB9deC0l6SDsCJD7e9bPPmB+4i+IiOWW97Alb2RcTc0NePYkjZNRWstLzsLYzZfaffXEoY8nda6+ZPUF4ZrmVt2XWit4Ym+izYt5xju4VQKrHwPr0Gd6I55FxhIzfSW52IU5lLIlY1ksoOUds4d3bZAyNdJm1oBv2TuZM+m07r14koKenzYy5nbFzMGPc6K3EvU/HxESfOQu6kZdfxMQJO4TRYDkbwiM6s33HDQ4cErSDAf3qU7uOO2Mm7iA1LRdbGxPmzerMph3XOXdJgIIJo/1R11AnbKEwMWxUz4O2zSsROPsAefnFlHcrzeiBfgQvOExaZh4OtqZMGNKEGctOkpqRi31pE37r35CZf54iM6cAVwcL+rSrwcxVpyiSKaju6YhPBQf+2CVFPjSpTHx6Ftcev0NLU4PfutVnw/HbpGXn41zajAY+bqw9LrpNnRtW4l5UHNGJ6Zgb69OqZnk2nBHfaZtaFbn95j2J6TnYmhlR0bk0Jx6+EkCnbmX23IxErlBSp5wT0WkZJGRkY2tqhI2ZMXei49HWUKdBRVdOPRVAp4V3WU5KQKdeWWduvotDplDg42TLi+QU8otlVChtSXxWtsTXsSApL0cCPeYk5eaQU1SMm6UZ8TkC6HhYWRD1XaBjzdPULzg66YKjY26oR0JuDuZ6ehQoZeTLZXhblf7/x1j/tJbvvApqWgztXIfcvCK2HRUHzbSh/rx4m1QS0hY6uiXPXiVyQApxmzamBUkfs1gv8XTGDW6MkYEuY4IE76d9yyrUr1mWSSF7S4LixgxrwsUrLzh6QkounxSAsbEe00L2CVNAL3t696rDy5cJrJdIuSNHNsXZxZLDB+9z83qUkI+HtEdPT5vN6y7z/Gk8BoY6TA1th4amOgd33+b+7Wi0tTWZOrM92tqavHwaz/ZPMvPJLbG2MUGhULIg5CD5eUVUrORI137CGCzuXQrrpBiHgWOb4SCZ3z1/FMs+yXtjTEi7EpfktORsVs+RQMvoJjh9ARi2/X6GhNg0zK2NGTj5a8fgVWGHyM0uwM3TjvYD6n/13I1Tkdy7+AJNbQ1Gzu74Dc/l6KarxLxMwMhEn35TvvXUUcgVrA0VfjmtB/h9N1gR4P6FZzy79QYtHU16TPy5o/G5nTdIS8zEwtaUxl1/vMr/6vXPPyUrLQcTS2Oq/BsJ5cnSDfxnN93/zVIoFPTo0YNbt25hamrKqVOnsLX973Sd3kbGsipwO5FXhFLE0t6cIXO7U69DjX/Ej7p68C7Lxm4mKy0HLR0tBoR1ot2IZj/lbz268oJ5Q9aR8TELHT1ths/rjn+vut9939unI1kwYgO5WfmUsjAiaN0QKtX92n+oqKCYZZN2cl4aoTTuVIMxC3t+5Sn17oUgIifHp6NvpMuUFf2o/gWX7fm9d8wcvJ6stFzMrUsxY8OgEsVVTmY+s0dsJvLWW9Q11Bke2o6AXgKEpyRmEjpkI+9eJqKjp8XUpT3xlV73Sw+dGn4eTF3UHV19bW5feUnExF0UFchwLW/DrD/7YmZhxJlDD1g687CwWqjlxrRF3dDUVCd8yh6uX3iBmpoawyc2p223mty68orwoH0UF8kp72XPzCU9yM7KZ+pv2/mYlIWZhSFzlvTAwEiXcSNEmrlxKT0iFnVHV0+bsSO3kJKSg6WVMfMXded9XBqzZgp/ssqVnZgR1p4VK89z5qzg+4wa2YQK5e0YG7iD7JxCXJwtiAjtyB9rznPj9ls0NNSZNrEVqZl5LF8vOi4BzbxpUKcsk8IPUFgkp1IFewb1qMOUuYfJyinA1dGC0QMaErL0OJk5Bbg4mDOse11mLD9Bbn4R5V1L08m/MjNXn0auUFK7sgseLtas2iflcbWsxsu4ZO48f4+OlgZjujZg9dEbZOUW4mZnjq+nM5tOiftSzyZVuPoshtjkDKxMDGlarSybzwkQ16GuF1eevyM5KxcHi1KUc7DizOMo1NXU6Fq3EntuRCJXKqlb3pmoj6kkZeVib14Ky1IG3Hv3AV1NDeqUd+HMsyhAdHROPBOgp0E5F66/jUWmVFLVyZZnH5MpkMnxtLEiNiNLpJRbmZOQm0NOURFuFmYk5giTwLKW5sRmZ1Iol+Nh9TnrqqL1Zx+ditZWJUCnrLl5CdAxM/gW6DiVMiE6M+Nvzujv1/9psFMsV9CgRjka1yhH/2DBy+nS3AdXBwsGTBGP+3Woib21SQlPp2e7GpR3K82A8VtQKFU0rV8ef78KTAjdS1Z2Ae4uVowY4Meu/Xe4+yAGHR1NZkxtS0ZmHguXig5Oz661qObjwqo1F3j1WqSbT5vahuJiORHhR1AolNSv70HLVpWIeZfC6j/FnHnQ0Ia4uVvzNDKOHZsF0PotsCXWpU149zaZddJ2Q8Y0xdHZksKCYuZLzsl+zTxp1EKs8A5sv1mSZh4odXoUcgULpx2guEiOTy03ArqKUU1hQTGLpkk5WW2qULuxuAiqVCqWhx0iN7sQd087OkpOqgBRT+M5IMVVjArr8JX66tb5Z1yViM9j53b5qktSkFfEqhmi29J5eGPsXb/utmSm5rB1kSQRn9qmhJ/wZZ3dfYvYV4kYmRrQY/z3DfxUKhWb54iYjDYDG2LxEwmxUqlk/wrR1ek4qtkv50VdlmTKfp18/y1jvNQEcWL/N8jJfy2VSsXo0aM5fPgwOjo6HDlyhPLl/5nD8n+iMpOz2DL7ACfXX0SpVKGtq0WXCQF0Ht/ql0dWANlpuSwfv4XLkmqyjJcjk9cNxbnijw0GFXIFW+ceYffiE6hUYmw1dcNQnL8TP6JQKNk69zC7JCWVR7UyBK8fguVffsvk+HRmD1hDVOR71DXUGTyjA20HNfwKON04FcmCMVsozC/G1tmS0I2DS6IfAM7vv8vSyYKDU6aiHTM2DC4h/CfEpBIycD0f3qWgZ6hD0LLeVGsg1Fpvnn1gxtCNpH3MxtTSiBmr+1HWywGFQsn6BSc4uFnclFt2rcGIaW3Q0NTg5L67LJsliNtV67gTvKg7evra7FhziS0rxDWocUAlxs5oR1GhjKBR23nyIBYtLQ0mzepI/aYVOXX4Ab9HCN6Ob92yBM3pRGx0CtMm7CQrMx87BzMilvaguFjB2GGbSEnOwdLKiDlLelJQUMy4MVvJzirA0dGcuYu68+BBDIsWCpl4nTplmTS5FXPnH+PGzTeoq6sxObAVFpZGjJuyi4KCYsp72BAa1JY5i0/wKDIObW1NZga14VV0Mht2iP+5a7tqeJa3Y2rEIWRyBb5VnOnathqT5x4s6fAM7FaHoEVHyc0vwqOMNX061CB0+QkKimRU9rCjef0KhK89I9RRNdwpbWnM+sNijDmgrS/3XsXzKOoDejpajO5SjxUHr5NbUER5Jyu83GzZdlaS9vtX49zD13xIy8ba1JAGlVzZdkE816VBJc4+jiItJx8Xa1McrU05GxmFhroanWt7s+v6Y5QqFQ0quvAsIZmU7DycLE0pZaDLg5gEdLU0qVXOiXPP36CmJgEdqbvjV86Fq29jkSuVVHO240niRwrlcrxtrYlOzyC3qJhy1hbEZ2cLcGNlTnx2NnnFMspamROb9QnoWPA6PRWFSnJDlrKuKloLYjIIoPM6PQ0dDQ1MDXRJzMvBQk+PPKWMAgnoxORkoiz+HOr9T+r/NNixNrPw614AACAASURBVDUkeGBTJi8+TE5eIRVcSzO4c21Ghu4mv1CGT0UHerWrzujpEk+nnC2DutUmeN4RUtJycbA1ZeKwpmzde4uHT+LQ09NixiQRD7Fus+QUPLQxDvZm/DZxO3n5xXhWsKNf77rcu/+OPVJyeeDEllhaGrNg/nE+fMjAysqY8ROaI5MpiJglFFrVapShfcfq5OUVMU+60DT296Rhk4oUF8uZF3aoRGbeuoMY/az74ywf3qdjYWXEqMnixh/zNpnNEigaOr45NpIce9/m67x6KlRW48Pal6xqtyw/x4fYNMytjBj2RYfm0vHH3LrwAk0tDcZ/Mb5SyBX8HrxPqB1aVaJm488rz4K8Iv4MkeIlBtbH9S+p5DuWniY1MZPSDuZ0Hdnkm99r09yj5OcU4u7tgH/3b8mfhfnFbJNiHLqPa1ESaPjXunP2CVGPYtHR16bz6B+nmgM8vPSCD28+om+kh3+vej/d9lPJZXJuS13Aeu1/jd/zo1IqRA7MJz7Gf7Pmzp3LypUrUVNTY/v27dSt+y0x/H+yCvOLOLj8NHsWiuMAoH5HXwZHdPvHY74bxx7wx5hNZCRnoa6hTtfxreg5td1Pv+eU+HTmDl7Ls1vS6rdPPYbN6fZdgJWZks3coet4JMV8tBnUkMEzO3/z+pHXXxMxZB1ZabkYmxkwdc0gKn/R9VEqlez8/TTbJNVi5bplCVrZv4QDplQq2bLgBLtXCMuKWv5eBC4V6eMgFFezhm8iOyMfK1sTZqwbiIuHGO/dvvCcueN2UJhfjJO7NWFrB2BtZ0phQTELJu3hxjkxnus7thldh/gBsOmPs+xaewmApm19+C1UOLcvDz/KcWlE1aV/Pfr/1pTU5Gymjd5GzNtk9A10mLG4O95Vndmx4QqbV4rOSbPWlRkb1JpHD2IIm7KHwgIZ7h42zF7UnaTETIIn7iInuwAHJ3PmLulB3Pt0Qqfvo7BARjkPGyLmdeXM2aeskojHzZt7M3RYI0JmHODR4/doaWkQMq0dKjWYNG0vMpkCn8pOBI5rQWjEYV6+ThK0hZD2XL/7lr1HpHFXjzpYWxkTuvAoCqWKBjXdadG4IlPmHqKoWE7livZ0b1ud4MVHBQennC2dWlYhdPkJ4bTs7USdqq7M3XBOIh+XR0dXi+0nJd+cjrW59OgtL2I+Yqinw4hOdVi2/yr5RTK8XW0oY2fB7otipNq/ZXWO33nBx4xc7CyM8S3vxO4r4rkeDStz/MErMnILcLMxx8rMiEvPotHUUKdjLS923XgszBa9XHn0PpG03HxcLE3R19Pm8ftE9LW1qOZmz4UXb1FTA3+vL4CORxmuRL1DoVJRw8WeRwmJFMkVVLIrTVRqGvnFMjysLXifnUVesSAdv8/KKiEgv8tMp0ihoLy1Ja/Sfg503M0+Ax0TA10S83K/C3RARVMnVzb+8Cz9cf33r6D/xZo+1J8dx+/xNEr45cz+LYCV268SFSt4OqGjW7Jmu/BKMDbUZcb4APafeFTipxM2sTWv335k825JHj68GaYmBgRO3yuQfH0PWvl7s2HLVZ69SMDAQIfgSa3JzSlkrpRc3qZ1FerULsulSy84dUpSVU1tjZGRHqtWnCP6bTKlSukxaUoA6upqrFhymqSETErblGL0BOF9s2XtJaKjPlLKRJ/xQa1RU1Pj3s03HN0nZvMTQtphZKyHXKZgQcgBZDIFNeq407ydiNeIefORbZ8MCSe1LHFJfv4oloMSwXhMaLuSDk1Gag4rZ4s05u7DGuJc9vMK8+DGq7x9LsZMw6a3/er73rHsLCmJmVjZmdLzCx8egNhXiRxcfwmA4TM7oKP7NeP+zdM4zuwWK/BhMzt+d8RwZP1F0pKysHYwp1Xf7wMTlUrFdgkQBfT3w8Ty51yTI2vF99K0R230jX5NYfT0+mtyM8XIorzvj6XKv1Lq6mJ1r1Sq/mbL/9naunUrQUFBACxdupSOHf+1kNB/pRQKJRd2XmdT6N6STpe7jwtD5/XAq67H3+z9dWWn57Jq8vYS8rijhy2Ba4ZQ1sflp/tdO3KfpWM2k5uVj76RLmOW9MGv4/eB7PM7b4kYuJrUxEx09LUZu6QPDf+yrUql4tDai6yT1ICuXg5M3zDkK9fkgrwiFo3dxvWT4sbWul99hoS2L+HRFeQVsWDsNm6eFt4pXUc1pc/EFiXnxtl9d/kjeB9ymYKy3g6Eru2PmXS8H9l6ndWzj6BUqqhSx53gZb0wMNIjIzWHsJFbeBUZL2Ih5nTCr1VliovlLAk5wMXj4rP0HNaQXiMaU1QgY86UPdy+/EqMqCa3pE33msS8TWba6G2kfMzCzMKI8OW9cCpjxZ8LT3JkjwBF3frXpd/wRlw6+4wFsw4jlyupUt2F0DmdefY0nplB+ygslOFRwY7whV15+CCWObPFdj5VnQmd1YFdu26zY7v4Lbt08aVLV18mT93NK4mwHD6zE0kp2cyTzAHr1nZn2KCGTA7ZR2xcGqWM9Zg7oyOHTz/m5Hkx7ho9qBFqGmpELBOd+BaNKuLr40LwAuHNU7tqGVo28iR48VGKZQqqezvhX688M1acFF35am5ULGvDoi0C0LVv5E2BTMbBC5KcvGs9jt98wZv4VEoZ6jK0XW2W7rtCUbGcauXssTQz4uA14RU0KKAm+69FCv6OtSnebrbsvy5+756NfDh05xk5BUV42FtibKjL9ZcxaGtq0L6mZ0kcRNNK7tyJjiMzvxA3a3M0tdR5Gv8RI11tKrvYcvnVO9TV1Gji5cZJaXTVqLwrF19Ho1Sp8C1jz/34RGQKBZXtbXiVnEKBTE4FGyveZWSQL5PhYWXBu0zRxSlvZcGbzHRhEmhtxYu0FJQ/ATpuZmZEZXwGOkl5uVjo65OnKKJALv8K6DibmHIu/l+xFPw/DnZycgvZfkwAguBh/jyPSuKgZCwYMqolL98ksfe4aBUGjWpBekYeq7dJ45kBDbEyN2LATDHiadHYk6YNyjNz/lESk7IobV2KCaP9efwkjm27JMO+0c0obW1McMg+0tPzcHKyYNiQRnz8mMViaeXWvXstvCs5cv/uO/ZJJloTJwdgZm7I5QvPS2Tmk6eLFPTIB7HslYy1xk0V22VnFbB4lgAjbbvWwMdXRCzs2niFNy8TMTTWY6xEMlbIFSwOOYhMpsC3fjmatBYS3eIiGYunHxDxDm2q4PuFSdnK8KPkZBVQprwNXSS1FkBCbBpbfxcjn8FTAr7Kvop5lchBabQ1Muxrl+JPpGSFXEmtZp7fOCGrVCpWh4rP4te2KhWqfRv0mZ2ey55l4r37TPlxjMO98095/TAGHT0tOo38cSwECLv/O5KEOWBgw59u+2XdOCaOmZotq/zbvjLq0v6qfzHp9z9RZ8+eZcCAAQBMnDiRMWPG/K+8r0ql4u7px2wM3Uu0lEVl7WhBv7DO+HWp+Y/jZa4dvsfycVtEN0ddjc7jWtJraju0dX8sZS3MK2J18G5OSp3asj7OTFk7GNvvGCKqVCr2rzjLhlkCwNi7WTNt03Cc/5JnVpBXyO8TdnD5kLj2NOxYnTELepZ4WYFQJM4cuI6YlwkiAyuiC/7dP/PFkj9kEDZwLdHPE9DU1mDc/O406iDClZVKJZsWnGSvZBNRr6U34xd0Q1dPW+RfRXxOLW/epQYjZwgAFRedTMjQTSTFZ2BUSo+Q5b3xrOZCTlYBs8ZtJ/LuOzQ01RkTIjx0MtNyCR2znVdP49HW0WRSRCfqNqnIkwcxzBi/k9ycQuydLIhY0RtTM0MigvZx7YIgAQ+f0Jy2XX05uPs2q34/g0oFfk0rEji9LVcuPGeBlFJezbcMIbM7cfbME5YtPY1KBfX9PAicEsDKP89z/LjktTPIj4aNKzB2wnbi4tIpVUqPeXO68vhJHCskCwr/Jp5071qTCUG7SUrOxtLckDkzOrFp9w2u3hJjn0mj/fmYlsv6nVIeV4APri5WhC09LsjKtctRu7or038/LoBNdTd8qzgxe/UpVCpoWrscdqVN+XO3oBn0bFWVhNRsLtwVrz+upx+7LzwiNikD81IG9AuozuK9l5HJFdTydEZPV5sTt4VoZkjrWuy4+IDMvELc7SxwtbPg8M1nqKlB78ZV2XvjCXlFxXg5WaOlrcntqDh0tTRpU71CCdBpXrks197ECkBka4kCFS8SRJJ5RcfSXHkdg7o6NK7oymmJr9OkgivnXr1FpYJaro7cfR+PTKnEx8GW50nJFMrleNpa8yY9nQKZjPKlLYlOz6BQLqdCaUtep6ciUwhezvMSoGP1Q6Dz/9h7y+iosq0N9ymJe0I8JCQQAgQJEiy4u2vjDTTuLsHdGtfG3R0aCe6uAQLE3T2ppOT+WJtAGuvuc74x7h3nzl+Myq5dRVXttd815ysfUpIxVCoxNzYoADqZahW5GjXFLCwJKQA6loRlpPx/Ly7i/w21+I9LgIxOTXzwdLWl70ThDtu7XVWKOVvTb7zg6XRtXZmK3i6Fcq/aNinPtAUnSUjKxNXZmlG/NeT8pVdcuS5+qP4TW6HVapm/RKixmjUuS8N6ZThx8jH37n1ET0/B9Klt0NNTsGjhabKyRD5L7z61SEvLZolE/G3VpiI1/DxJTEhn1RLBV+nWqyZlK7iSlaVi6VxJjt7ah5qSIeC6pedISsjAxdWGX4eLcdD7N9Hs+0MCapNaYiPt8A7vvEXQ6yhMzQwZ+YXKas+GK0SGJmJta8agiZ/HV3cDArn550vkCjljvvDt0Ol0rJ0pOD8+NUvQqMNnFZVOp2Ot/zE0ai01m5T9yiDw+umnvLj7AQNDvW966ty98JJX9z+ib6BHv6lfk5IBDq25SFZ6Dh7eLtRrX+Wbx+h0OvavEJ9hy771sPqGEeGXdX7nTXQ6HZXql/ku0flb9eCiWGiqt/jPE8o/3YgzU7P/43P9m3r69CkdOnRArVbTrVs3Fi9e/H/+mjqdjicBr9g15yhvHwqvGxMLY7pPbEPboY1/CE6+Vclxqawbu5tbJwW4cPVyYuyG/j80CAT48CKcRQM2E/k+FplMRudRzeg9te03Qz8zUrJYNnw79yVwXLe9L6NW9PqqGxgVHM/cfpsIexeDQiln4KyOtOlfrxA/5+mtdywcvJ2M1GwhPd/Sv5D0/NX9j8wbvJ20pEwsi5gy44u/52SpWDpuP3cvii5F9xGN6DlKkK2zM3NZPGYfD66J0Vq/8c3p/Jt47RcPgpk7YjeZ6bk4FLVm7qa+uLjbEhedgv+QnYQHJwgj0xXdqVzTs5CHjpmFEbNX96SMjyvXL74q6B6XqVCU2St+QSaXMWXEbl49FWOlCbPbU7thGbasvVywUfsU/3Ds0H02rREjufqNvRk/tTX799xht8RRbNWmIoOGNmTRwtPckpRjo0c3w7ucCyNHC18dOztzFi/swqUrgQUbzc7tq9C4oTejJ+0nJTUbFycr5vu3Z9UfATx+Ho6eUsHMCa148TaKg59GWd1qYmJiwMJ1osPTulE5PD3smbtOpKg3qVUaT3dblmwVI7S2DcphYKjP9pOiAz2wYw1eBcdyR1JZje1Zj51/PiI6IQ17azO6NanI74euo9HqqFexOPlaHQFP3qNUyPmtdQ12Xn5EZo6KMq52OBax4Pyjt8hlMno1rsz+m89EUGhxZ9RoeRwchbGBHs0reXFQioNoWdmLq29CyFLl4e1iR45azcf4ZKxNjCjhVITbH8JQKGTUK+XBxUDRLWlUpgSX3op/1yzuyv3wSMHXcXXmRXQseRoN5Z0deJeYKIEbO94nJZGn0eDtYMfbpARBQHaw43VCPDoQsQ/xhYGOTAYelgLoGCmVmBrpE5eVia2xMelqFaq/Ah0LS8IyUtGXK6hoV4SPP7xyv13/02AnLUuFd0lXBnerxcg5R8jKyaO8lxN9O9Vg3JwjZEg5WIN71GHRugtExabiYGvOpGFNOXH+GbcffCi4SBKTMli9UVyk/XrVwruUEzPnnSAhMQMXZytGDm1MSEgCGzeL3daggfUp7mHHvn13ePEiAiMjfaZNa4tCIWfl8vMkJWXi6mrD4GGN0Ol0LFtwhoyMXDy9HOklKZg2/n6BuNg0HJwsGSyljt+4/JprF14hV8iYMKc9hoZ6wiNn5nERZtewDPWaitiC0Pdx7JVm54MntcRGuvm/D4ziiBT+OWJ6G8wsxPgqO0vFeml81bFfbUqU+bxjvXrqKU9vC9+cEXM6FFq8Lx97xOtHIRgY6TF4RrtC30Futoqt88U5uwxr9FX4oTpfw7b5gkzcYVB97L5B1E2MSeX0dqFg6zu17Xd3/C/vBBH44CN6Bko6Dmv8zWM+lUat4aJEVGzR9+fJ5p8qLjyRmOB45Ao5Fer85+Rdt9LOJEYlExoYSZm/JGD/X1doaCgtWrQgMzOT+vXrs2PHjn8V1vt3S6fT8fzGG3bNOcrrO6KdbmCkT5vBjegyrhXmNmb/+HyX991m4+R9ZKZkoVAq6DKmBb9MbvtDorlWq+XYukvsnHec/Dw1No6WTNjYH5/vfJ/vnoQwv/9m4iOS0DNQMnheV1r0rfOVMuvehRcsHb6D7IxcrOzMmbplAGW/GHPqdDqOb7nK1vmn0Gq0lKzgiv8fAyjyhbP4+X13We8vRlPFy7owY0v/guiHhOhUZv22jeDAaPT0lYxe1IUG0qg6PjqFWYN2EPI2Bn0DJeOXdqO2JFi4dPwxq2aIzUhpH1dmrOuFpbUp719HMWP4LlISMyliZ86c9b3x8HLkzYsIZo7YIzx3nK2Yu74XRYvZcmzvHTZJgb5+9UszaV5H0lKzmTZyL+EhAizNWt6NMuWLsnTuSQKk0NF+g+vTpWdNtqwP4Mh+Qd7t0KUqA4Y2ZN3qi5w5JWITevWtRcfOVZk27TDPnwngNG1aW4rYmjF6zB7SM3Jxc7Vh4YLO7D14n9OSZ86AvnUo5+3C6MkHyMrOo4SHHTMmtWbhqvMEBsUIi5DJbQm4/Y5zV6RRVr96ZOSoWL1drI9dW1XGysqEZRKwade4PFaWxqzdJzaQ3VpWJis3j4MXRFd3WLfa3HkRwpO3kRjoKxnTsx6bT94lMTULFzsL2tYtx6ojN9DpoGnVUiRn5fDgTTj6SgUDW1dn64UHggvk4YiFqSGXn71HKZfTs1El9lx/Sp5aQ9WSRUlXqXgTGY+pgT4NfTw5ck+8/za+pbn46gM5eflUcHMgOTuX8KRUipga42Zvxf3gCJQKObVLFePyWwEdGpUpXgB0/Eq4cic0Aq1Oh6+bM8+iYsnXCL5OYEICeRoNZR3teZuYQL5GS1lHOwIT4gUvx9Gel/Fx6EAEeUpAp4y9bQHQcbe04mNqMiZ6ehgZ6BGfnYW9iQkp+TnkaTQUs7AiJCMF0OFmYUlYZioGCiWGegruxv0b4fn/ONgxNtRj7shWbDt8V0qhNWTWqJbsPX6f52+kAM+xrQm49ZaL1wNRyGXMGNuS+IQM1m+7BsCQfnVxK2rD0LF7yMnNp2J5V37pVI0z559z43YQSqUc/8ltUCrkzF94qiAOon27ygQFxbBju5B0Dx/RGCdnKy7++YKb19+hUMiZPL0NhoZ6nDz6iMcPhKR88sy2KJUK7t58x4Wzz5HJYOKMthibGJCcmMmaRcI7p1ufWpTyFgTgPZuvEfoxHgsrE4ZPaVUwvlo+8/P4qmErYRKoztfw+wzRhq/TtBw1vujC7Fp1kcTYNByKWvPL0AYFj2ekZbNZMjLsPqwRTl8EFGakZbN1keDI9BjZBFunwnb9hzdcITEmFfui1nQc9PWo6Nye20SFJGBZxIzOQ78mLQPsW3GOvNx8vKsVp0qD78u8D6wUo8Kmv/gV8i75Vj24+IKUuDQsiphRrdn3k63/Ws8lGbRXZfcfOu7+3fIoV5THl18S8vLfXeD/tpKTk2nevDmxsbGUK1eO48ePY2Dw95VO/6R0Oh2PLr5g/+JTvL4rQI6+oR6tBjaky7hWWNlb/ONzRn2MY/WoHTy7JpxjS/i4MXZ9f4qX/9qX6cuKj0hi2dBtvLgl3GNrtqzI6NV9MP+LseWn931842W2zTmGOl+Do7st07YOokT5wqGmGrWG3UvOcHC1AALe1YozdfMArL/4f+Vmq1g14QDXToquQqPOVRmxsGuB9Fydr2HznOOcljocdVr5MGa5MAMEePMklLmDd5KSmIGljSkzNvWldKViALx7EcHswTtIScjAqogpMzf2xauCqyA3r77EwU3XxDmbl2fsgk4YGOpx9+obFk06iConn2Ke9sxd3wdbBwtuBwSyeMph8lRqPL2dmbOmJxZWxmxa8WdBvl6brlUZPK454SEJTB+1l8T4DGxszZi/ugf2jpbMmHCAx/eDkStkjJ3SmgZNy7J0/ikCpEiIgUMb0rZjFebPOcGtG8InZuSYZvjV9mLc2H18+BCHsbE+c+aKQM9xE/eTm5tP6VJOzJ7dgXVScrlMBmOGN8XW1ozx/ofJy1NT3tuFcSObMmPxKULCEzE3M2T+1PYcPP2Im/c/oJDLmDC0Ce9D4zlyToCs/t1qkpuvYf0+sVb3bOtLnkbDtmMCmA3oVIOQ6GQu3w9CLpMxulc9zt0O5E1IHCZG+oz8pS7rjtwiNTMHD2cbGlcrydpj4ntsW6ssofEpPPsQjZGBHv1a+LL53D3y1Bp8vVyQK+TceCU6Qz0aVmTX1SfCK6e0G7HpmXyITcLS2JBaZdw58UAQyttV8+bcs7eo1BoquTsTm55BVEo69hamOFqb8yg0CgOlgmqerlx5KxzaG5YpziUJ9NQpWYwbH0PRAdWKufA4Ihq1VotPUUdexsah1mop72TP63jRxSnnZMer+Hi0Oh3lHe15/h2gE5iYgFwGrpJ83ERPD0MDJQk5WTiYmJCcl4NKq8H9L0AnPDMVQ4UCAz0FaXm5FDe3/v99dv5pje3bgMiYVPZ/yrka2pTYuDR2HhE/4vGDGqPV6lixWerYdKuJp7sdv43dTV6+hhpVPOjYqhLr/7jK+4/xWJgbMW18SyKjU1grhcgN6FsHL08H1m24THBIApaWxkyc0BKV6rPMvHYdL5o2LUdsTCprJc5Ln1/rUNLLkcjwJLZISouBQxvi6laEtNRsfl8oQE3nHjUoW8FVOBkvOkN6Wg7FSzrwywDRjXj3OorDn2TqU1tjKak4Du+8xftvjK8Ob79B8LtYzCyMGDrlc7zDuxcRnNojFrMRM9sVLLIAO5adJy05C9cS9nTsX9g3Z9fyP0lLyqJoCTva9StMGo6PSuHIRjFPHzCt7Vek5Kz0HPauEACl57jmXwWBAkSHxHNBcpLtO7Xtd/1V3j8L48nVQOQKOZ2G/1iBBfCnlI3TuHvNf6SEenZd3FzL/xe6OkBBGvjH52H/lfP9ncrJyaFNmza8ffsWFxcXzp07h4XFPwccPyutVsvtk485sPQUH56GAqBnoEfzfvXoNqE1Nk7ftwT4XuXnqTmy6jz7Fp8kLzcffUM9ek5tT6eRzX5qAXD18H3Wjt9DVnoOhiYGDF7Y7bveOWlJGSwfvoMHl0R3olabSoxZ2RsT88IKwJSEdBYP3sbz2wLEtR1QjwEzP5t1guDnzB3wByFvooUR5swOtO5bu+B105IzWTh0J8/vCE5F7wkt6Db8c2BowPHHrJxyCHWeBvdSjszc0g97qQN68/wLlk88iCo3n2JeDsze3A87JytUufmsmHKYG1J3pfvg+vQc0Qi5XM6JvXfYtFhI6yv7eTJ1WTeMTQw4vucOm5f9KTx3apdk6pKuyBUyFkw5wk1JudV/ZGM69/bjxZMwZo8/QFamCld3W+av7oGevoIJw3fz/m0MBoZ6+C/oRLkKrvhPPMgjCfyMn9KaGrVLMnXSwYLuzRT/tpTwtGf0qN1ERaVgaWXMokVdiYxKYeHi06jVWqpUdmfyxJYsWHaWR09CUSrlTJvYiny1lmlzjqHR6qjh68HAvnWYOPsosfFpFLE2Zd7Udmzac5MnL8PR11PgP6Yltx594E8JJI/+tT6hMSkck0bTv3XzIyohjTPXpA5Qjzo8fhvJ7WchKBVyxvdtwMGLTwmOSsLSzIhhXWux4sB1snLyKOVmR7Xyxdh4Uhqt1a/Ay5BY3oTHY2pkQO+mldl09p4AM97FyFGrefA2HEM9JV3r+bAj4LGQkJdzJyQhlbCEFGxMjaha0pXTj8Umq0P1spx8Eohao8W3uAvhyanEpmXibG2OtbkxT8OF1LyyhzPXg0JABg1KeRR0d+p6uXPtQwgA1d2L8iAsEq1OR2VXJ57FxKLWaqng7MDL2Dg0Oh3lnex5ERcrwI2TA8+lf385uvoU8KmQyXCxsCA0LRVTfX309RQk5mTjaGpKoiqLPK0Wd0srQtI/AR0LwjNTMVIo0JOAjoOJKQkZGT+8jr9X/9Ngp7ynE8PmirTmTs0qikiIcSLnqnk9b+pXL8mQKftEx6ZsUXp2qMbKTZcJjUjC2sqEKaOa8/hZGIeOCy7ApNHNsLQwZtqso6hUaipXdKNLh6o8fhLK0U9ZVeNaYG1lwprVF4mISMbGxpQxY5qh08GShaeFI3I5F7p2ry5iHuaeQqVSU6mKO206Ci7KmqXnSE3Jws3Dlt4D6gFw5fxL7l5/h1IpZ/ysdujpKcjLU7N8trCxr9+sHH4NxA04IjSBvRuvATB4UouC8VVEcAL7Nn4aa30mGKvzNayeeRydTkeD1j5U8vs8Tnn3PJzzBwWRevjs9oWAwYfXUZzbJy7sYbM7fAUati8+Q54qn3LVi+MntdS/rMPrL5OekkXREvY06/5tM78DK0WidZUG3oVGAn+to+tF/ES9Dr44uP1YppyakM7Dy2Ixa9rr78nNP9W7R2KnVM7P6ydH/r36pOYKvPee2NB4HIrZ/eQZ/1lpNBp69uzJ7du3sbCw4M8//8TF5fu+M/+m8nLzuHLgDkdXnSf8bTQAhiYGtBzQgI6jWmDjVCnFdQAAIABJREFU+PfCOv9ar++9Z9WI7YS9iQKgYn1vRq7q800y8ZeVkZrF2nF7uS45Xpeq4sHETf2/+7yXd4JYPOgPEmNS0TNQ8tvcLrTqV/crUPTq3gcWDtpKclwahsYGjF7Rg7rtCvPJHl97w6JhQuVlWcSMaZt+pWy1zzlowYFRzBm4lbiIZIxMDJiwqic1pPgTjUbLjqXnOLL5GgA1mpRlwvLuGJkYfJVxVaWuF5N/74GJmSEpiRnMGb6bt88jUOopGDmnPY3bVUaj0bJ+4RlOSdds806+DJvaGplcxobF5zgljZhadanKkEktyMpUMWvsfl4/Dxdp5jPb0aBFea78+ZLls0+gVmvx9nFl1rJupKdlM37YLmKjU0X21bJu2DtaMG74bt6/i8HQUA//eR3x8LRn7Mg9BH+MF92b+Z0wNjVkxIhdpKZk4+BgweIl3XjwMJi16yVuT73SDBnUgKmzjvE2KAZDAz3mzmhPaEQSayVycpMG3nRoU4mxMw6TkpaNs6Mlsya2YfnGS7z5ECtGWRPacOLic24+FB2eSUOacv9lGJduiy7R6L4NePI2gmsPhFnfuH4NuHQ/iKfSqGpC3wZsP3WfyPg0bK1M6N++Bkv3XiU3T42PpxMl3e3YcU78xno0qcyd16EExyRjaWpE1wY+bDhzF61ORwOfEsSlZfAqLA4TQ33a1yrL9ivi/tHIx5PAqDiikkWnxtvNvsAluX21spx4/Fqkkpd05V1sIomZ2bjZWGJkrM+LiFiM9fUo7+bArQ9hyOVQt6QHAe/EmvUl0KnhXpR7oRHogCpuzjyJikaj0+Hj4sjzmFi0Oh0+zg48jY0BoIKTA88+AR17O2mMpaO0nS2BSfEoZTKczM0JS0vF3EAfuVJOUm42TqamxKuyyNdq8bC0IlgCOq4WFoRnpmGkVKJUyEnPU+FoYkZMTjra/NwfXs/fq/9psLN48yVSpRysoT1qM3vlWeKTMijqZMWYAQ3ZvPcm7yTZuf/oFtx5+JGTfwqEP31MC2QyGQslwmubFj74Vffkjx03CPoQh7mZIVPGtyQzs7DMvEb1Ejx8GMwJyb584sSWWFgYc/jgfV48j8DQSI9JU1qjUMjZt/MWbwOjMDE1YPy01sjlMq5dfs2NK29QKORMnNEWfQMlSYkZrJfUXD0G1MXDUyzSB7bdIOyjiHgYOkH47Gi1WlbNPkl+nhrfWp40bOVT8PhqyX20ip8nDVp9Ht0c33mL4LcxmFsaM3DyZ7KyRqNlrQSCGravTLmqn1VSOp2ODbNESGHdVj5UqFEYiLx9Gsq1E4+RyWT85t/uqxtFYkwqJ/64BkC/Ka2/uSuPDUsk4Ii0eIz/toEgQFJMKjdPSRb5g789Cvuyrh9/KOz6K7v/I2JyTmYuUR+EE6hnhWJ/+3k/KicPeyo3Ksfjyy85vSmAgQu7/1fO+63S6XSMGTOGY8eOoa+vz8mTJ/H29v75E/9mpSakc2ZLAKc3XSY1Ph0AU0tj2gxpQruhTbAo8s84OZ8qPSmTbTMPcX6H4G1Z2JgxaHF3GnSt+VMn5YeXXrJy1E6SYlKRK+T0mNiabmNbfPP3ptFoObDiHHuXihgBlxL2TP3jNzzKFi10nE6n49jGALbNO4FWo8W1pCPTtw4s9FvSarUcWneZXUvOotPp8PJxY9rmX7H9opt17dQTVo7fjyo3H0e3Isz4oz/FvIRHTlZGLkvG7OXBFbGj7zasIb3GNEUul6PKzef3yYe4LsnE2/erTf9JLVEo5IQExTJr8E7iY1IxtTDCf3VPylf1ICdbxaJJh7gvkZf7j21Gp761CknLAQaMbUrH3n7ERKYwfeQeosKTMDE1ZMayblSoUoyDO26xTTIWrN2oDBNntedDUCwzJhwgPS0HJ2cr5v/eHZ0ORg7aUQB+5i3tipGxASOH7iQ+Lh1raxMWLOlGWno2Y8fsJScnjxIl7Jm/oDMnTz1h734ByNq1rUTnTtUYM/kAEZHJmJsbsWhOR+7cD2a3ZAnSuV1l/Gp4MnbGIbKy8/B0t2PSyGbMWXmWsMhkLMyMmDuxNVsP3eHZ60j09RRMH9mCs9dfc/dpiKAUDGrMxTtvefAyDD2lgkkDGnHk8vOCUdX4vg1Zd+gmCSmZONla0KNlZZbsuYJao6V6WTfsbMw4GCA4RP1bVuPPR++ITEjD1tKENrXKsvGseK/NqpTiQ2wi76MTMTc2oFWNMuy6KnhALaqU4lFwJHFpmbjYmFPM3oaAlx9RyGW0rerNsUevhFqtlDsvImNJyc7Bw94auULOm+h4zAz1KeVsx93gCJRyGTU93bgS9DXQ8fNw5XaIUD/6FnPhYUQkOqCiiyNPo2PQAT4uDjyNkf79JdBxEHwd0OFlW4Q3SQnoyeXYm5oSnp6GhYEBOgWk5ObgZGZGXE4mal1hoFPU3IKIzDSM9fSQyyEj/zPQAR21HNzY/8Or+tv1Pw12ngRGYmpqyuzRLTl39RU3JcLx7DGteP0umgOSemPy8GbIkLFkjZR63d6XyhXcmDH/JIlJmbi6WDNsQH1evIpgr3SBjR3ZFBtrU+bOP0lSUiYuLtYM/q0BaWnZLF0iRlDt21emiq8HIcHxbJOMuoYMa4STsxUfgmLZ/UmqPaYptnbmJCdlsmapJFHvWwtPL8eC5PLM9FxKlHKkSx+Rrv0xKJYD28QoZtjElphLBnvnjz7m1ZMwDI30GT7t8/jqwvHHvHwsJNnD/T+Pg2Ijk9krLV4DJrbA8gvuwvkD9/jwOgoTM0P6TywMNq6dekqgdL7+X4zDQNwMtswRpONGnXwLLO2/rL2//4kqN58yvh5U/06Q56G1F4Utfb3SlPqBT8rZHdfRqLV4Vy+BZ4UfczYArkhBjd9Krf5RBb8MR6fTYeNoieVPlF7/pNoObcLjyy/5c8c1ek1vj6HJ/02i+LJly1izZg0Au3btom7dv0/M/lEFvwzn9OYALu+5SV5uPiAcodsNa0KL/g3+NbdJq9VyYdcNts04THpyJgBNe9dhwNyumNt8zbH5srIzctnif6hAUu5cwp4JG/pT6hu2BgAJUcksGbyVl3cleW63Ggxb1P2rdPfMtGxWjNrF3T+FIqZeB19GLu2O0RffWWZaNsvH7OGepJhq1r0GQ+Z1KiBNazRadiw+UzDirVy3FJPW9C4wyYwOTWTWb9uI+BCPvoEgItdvK4jISXFpzBm6i6AXESiUcobPbk+zLtUAeHDtLYvG7ScnOw9nNxtmbeiDi7stCbFpzBqxm48SeXnCgs7UblKWpIQMZo3ay/vXUejpK5kwvyN1mpTl7ctIZozZR1pKFnYOFsxd3ZOibkVYs/gsZ49K8QW/VGfgqCbcvfmOhTOOk5enxqu0E3OWdSMmOgX/iQdJT8vB0cmShb//QmpqNqNH7CYjPQeXotYsWtqNwDfRLF4kxlQVK7oxY2Z7Nm+5yjnps+3frw41a3oyYvweEhMzsbM1Y/G8zhw79YRTkjfRgD61cS9my4TZR8nLU1PB24Vhv9Zn6uITxCVkYGtjysyxrVi1/SpBwXEYG+kzY3QL9p56xPO3URjoK5k+rBkHzj/m1fsYjAz0mPxbE7afvE+INKoa1aMuv++9SlpmLsWcrGlTryxL91wVXZoqniiUck5KvjmD2tbk2M2XBQaB9St78sd5od5qU8ObZyHRhMWnYG1qRMPKJdlzTfCG2lYvw403oSRnZlPMzgp7KzNuvhGjs7ZVy3DkgfgtNShbnAfBkWTkqijpWIQ8rYaPcYlYGxtRzN6KB6GRKOVyqhUvyvX3gpfzJdCpVdyVW8EC6FQt5sL9iEgAqrg68zBS6pi6OPIkJvoroFPWwa4A6HjaSrEPcgW2piZEZqRjYWiAVqYjXaXCxdycmOx01DrdX4COOZFZAujIZDoy8/NxNDUjJlsAHSdTM27Hhf7w2v5e/U+DHYCx/RqgUWtZu+MaAEN61cGuiBkT5x0DoF2zCvj5Fmf8rMOkZeTg6WFH/561OHfpJTfuBIk8lQmtUGsKy8zr1S7F5YDXXLv+FoVCzrTJrTEwULJk8ZkCpdWAgfXJz9ewaP5pQRSuUYIWrYSB15J5wsDKr44XjZqWQ6fTsWrxWTLScyhR0oFfpOTyK+dfcu+mIEKPl8jLGrWGFbNPoNFo8WtQmtqNBGk3MS6drSsFYOs7ohH2Elk4JTGTrVIKcp/hjXGQ1B06nY51c06iys2nQjUPGknKDoDUpEx2SsqL3mOaYvXFrjw3W8VWKWS065CGBbb1n+rW2ecEPg7BwEifPhO+zqWKCo7n4kHJUn1qm2/uzhNjUrkkyUq7j2n+3e83P0/NuV3ihtZ2YIPvHvepooPjePc4BLlCTt32vj89/sv6KHnBFP8bgOqflG/T8jh62BETHM/R1X/SY0q7nz/pH9a+ffuYOHEiAMuXL6dr167/0flyMnO5fuQe57ZeLRjtgTAD7DiyObU7+H5Twv1368PzMNaO2cmbB4Jr4O7twvDf+1C2ZsmfPBNe3g5i+bBtxIaJ3LF2gxvR17/9d6Mmbp15wsrRu8hMzcbIxIBhS3+h0TeS0N89DWXhb1uJi0hCqa9k0OyOtPyLKiskMIq5A7cSE5aInoGSoXM70eyXz0GxGalZLB6xm8fXRYel85CG9JnYssCv6cnNIBaO3E1mWg429ub4S2RjEDEtswfvJCkuDTNLY6av7UX5asWFgeGu2/yxRBjrVajmwbSVPTCzNOb96yhmjthNckIGltYmzFzdk9IVXAl9H8eMEbuJj0nD3NKYWat6UMbHldtX3rB4+lFUqnxKeDkyZ1UPTEwNmD3hIPdvBSGTweCxzWjXrRqnjjxk/e8XRCSEnydT53bg+ZMw5vmLMX/JUo7MW9qVN2+imTfrBHl5akqVcWL+wi5cvvyK9ZLTe716pRk1uilLlp0tiH8YM6oZbsVsGDl+HxmZQoU1f2YHNm2/wY074n2MHdYEpb4C/4UnxGinanF+6VCV8fOOkpaeQ1EnK6YMb8qC9ReIiE7B0tyIGaNbsm7vDd6HJmBqbID/8GZsPnyHD+EJmJkYMGlAY9YcuElsYjq2VqYM6VqLJbuukJ2bRxkPe2pXLsHKg2K9aeVXhtScXG4+fI9CIWdIOz/2XH5MSkYObvZWVPV2ZbeUbdW1XgWuvwomJjkDe0tTqpctxsFbArB18ivHhedBpOeoKOloi6mxPveCwjFQKmhRpVQB0GlcvgS3gsLIzsvH28WOVJWKyOQ0ipgZ42RtzuPwaAyUCioWc+bWxzBkMkFGvl4AdNy4FSy4gV8CHV9XZx58A+hUdHbkaazo7pS1FyRlmQyKFxFuyIYKBVbGxkRlpGNlaEi+TENGXh6uFuZEZqWj+QLoyNDhbC4eN9XTQyPTka3Ox9nUnKjsNEAnujvZGZgo/5n1xKf6nwY79ap50sivFL9N3ktevobqFd3p1KIi0xafIiklCzcXa4b1rceR04959CwMA30l/uNaEZ+QwZqN4kLs36sWXp4OLFx2lrj4dBwdLBg5pBFx8Wms+mRy19MPLy9HAgJec10CP5OntMbQUI9tf1zj44c4zC2MGDdBjMb2bL9JyMd4LCyNGTVRPHb5zxfclUDNBP82KJUKkhMzC42v3KUgziO77xSYBw6f1BKZTCaAy8LTZGeqKFXOhdbdqhV8DpuXniMzI5cSpZ1o+8vnbsbdgEAe3QwSpmYzC4+adiw/T2Z6Dh6lnWj5S+GF/+iW6yTFpmHnbEWHAYW7A/l5arYvFmO9zoMbYOPwNfF1n8TDqdrQG2/fb++0j28KQJ2voWz1Ej/k6tw5+5TUhAxsHCyp2cLnu8d9Pl60mivU9vqpu/Jf61NCuXPxH3NE/mnJ5XJ6TmvP0v6b2DPvGN41S+JT99+Hi/61AgIC6Nu3LwCjR49m7Nix/+o8Op2Otw8+cnHPTa4dvFMQ6aBQKqjRqhLthjWhrJ/XPwrp/GulJ2Wyc+5Rzm0TuVhGpob0mtaetoMb/RQ85Wap2DHvOCc3BaDT6bBzsWbc+l+pUPvbLsy5WSo2TT/E+d2iQ+rp48aUzQNx8ijMm/qUVv7HbKHKcnC1YeqWgXhWKKzKunL0IasniTRwO2crpm3uT8kvjgkOjGLuwG3ERiRhYKjH6GXdqdemUsFrnNh2kz8WihFaqYpu+G/og7XUQbx25hm/Tz5EnkpN0eJ2zNrUDyc3G9T5GjbMP8U5iVfXtGMVhs1oi56+kjsBgSyecghVTj5uJeyYvbY3Ds5WPLr9ngUTDpKdpcLZzYa5a3vhWNSao3vusGXlRXQ6Hb5+nkxb1Jns7DzGD9rB+zeiKzRpTgdq1itVyEOnRdtKjBjfnPNnnrJm+Z9otTp8qxfHf25HAi6/YvUnQFSjBFP927J71y0OS1E67dtXpkevWkz1P0JgYBT6+kr8p7UBmYyxkw+Sl6emTCknpk9uzeKV53n2IgI9pYLpE1sRHZfKxo0CeDRvWJYGdUozfu5RcnLz8SpuLwI8V5whITkT+yJmTBnejKV/BBARk4K1hTFThjTh951XiYpPw8bShDF96rN891WS07JxsbekdxtfFm2/hCpfQ8VSzpT3cmbDMcmMsKEPwTFJPHoXgYGegsHt/Pjj3AMyc1SUdLHFq5gth64LMNOzUSXOP35HYloWRW0t8HZ35PhdAWC61q7AqceBZKvyKetqj0wu43FwFEb6ShpV8OTYQ0EMb1ahJFfefBRxDm4OxGVkEZOWgaOlGZamRjyPjMVIT4l3UQfuBocjl0ON4m5c/xAKiNHVJ6BTzb0o98KF3qmKmzMPIqLQoaOSi1MB0Kng5FAAdMrY2/IqIR6FXIablSXvk5MwVuphZmhAzKcgT10+WXn5BaRjLUJ+/gnoOJqbEZWVjpmePmo05HwD6MTmZGCip4edvpI3P7zSv13/02BndN/6bNp7k+DwRKwsjJk6vBlnLr/k1oMPKJVyZo5tRVR0CpukVvfw/vVxcbRkxARBWvYpV5RuHaty7cZbLlx+hVwuY+qEVhga6jN95lGyslSUKe3EL91rkJCQwWpJadWzlwA/b99Ec0AiA44a0wxrG1PevYnm4B6hLho1vjlWViYkJWawQeqi9OxfpwDUrFt6ToyvvBwKxlcRoYnslgiLg8c2w1rquNwOCOTu1bcolHJGzWz7ead45wNXzz1HLpcxcmbbAq5Cbk4emxYIUNLx19q4uNsWfG7vnodzQcrBGTarXSGX4MTYNA5LXkL9J7fEwLCwn8nZ3beJCUvEytacDr99LTWP/BjHNYnP1GPstzs2GanZnN8tFGZdfpJtdU767pr28PtbnYR75wXYqd7858Dor/UpysDmB8Gi/7Yadvfj2dXXXNpzi0V91rP29pz/Sjjoixcv6NChA/n5+XTp0oXly5f/43NEfYzj6oHbBOy/Q/THuILHnYrb07xfPRr3rP2v5ONflkat4dy2a+yYe5TMlCxAhKz+trD73/q8X94OYsWI7cSEJADQpGctBs3v+t0R2vvnYSwZvJWIT4aCI5vSa1Kbr0j2mWnZrBy7l9tnxbjBr2VFRq/oganFZ1VWniqfzbOPc3aX+M1WrluKiWv7FAqyvXL8EasnCdWUQ1Ebpm/uR3EpkDRPlc/qaUcIOCaui8adfBk+tyP6BkohH195kYNS3Itv3VJM+r07JmZGpKdksWDMPp7fD0Ymk9F/QnM6SB3hIztusnXFBWGaWbME05Z1x8TMkLOHH7Ju4Rm0Gi3lqhRjxoruGJsYsHbRWc4cEdd8q06+DJ3QnIiwJPxH7yM+Ng0LS2NmLe9GCS9HFs44xvUAoWbqN6g+XXvXZMeW6+yXXJubtqzAqAnN2b3zFvukOJrmLSswdHhjVqw4z5Ur4rkDBtajfv3SjBm7l/CIJExNDZg/txNhEcmsWCMAUo1qxRk+qCH+807wITgeYyN95k5rx4PnoRw4Lt5v9/a+lPJyZMqC4+SrNVQq50rvztWZukQklxdzsWFU/wbMWXuexJQsHG3NGdu/AQu3XCIpNQtnOwuGdK/Nwm2XycxW4elqS7uG5Vm0IwCNRkstHw/sbc3ZfkYAtL4tfbn/NpzAUEEwHtC6OhtP3yU3T02F4o7YFzHn1N1AZDLo28SXo3dekpaVSwlHG4o6WHHusSBEd6/rw5F7LwWY8nAiS5XHu4hETA31qVXGnVNPxC2/VaVSnH8ZhFqjpYqHMyHJqSRmZOFiZY6RkT6BMfGYGejj6WjLw9BIlAoZvu5FC8BNTYmjo0MosO6FC2Jy1S+ATuWiTjyO/gx0nsfFAggCckICSrkMZ0tzyTtHHxN9PWESaGJChlpVkG8VlpmCDj53dGTgYGpGTFYG5gYGqLRqVJp8XEwtiJSAjoMEdEz19FGjJiQj/ccX+3fqfxrsvHkf8zkOYlgzMrNUrN4qmf71rI2rkxW/jdtDvlpDzarFadOsAtv33ibwXQymJgZMHdeS5JQslkv+Gb90qU45bxeOHHvIs2fhGBrqMWWSIBYvX3aWzMxcvLwc6dGjJnkqNUsWnkar0VG/QRnq1i9NXp6apVJeTb1GZahdvzQ6nY41S8+TkSGBmp6i5X0zIJBbElF5rL8YX2m1Wn6fK8jHlWuUoJFEMs5Mz2HdQgFcuvSrjbtElMxT5bNWMvRr1a06Jb9Iez60+RrxManYOVrS7QtQotVqWTdbKNgata9MGcnL41PtWHYOVU4+ZSoXo3aLwv40Wek57F8tAb6xzQrCCr+svb+LnV+1xmUL7Xq/rDM7rpOTpcK9jPMPfXUiP8Tx/NY75HIZzXr9PLQyPTmTwPvCVKt6s38OdpJjUwH+lWT6ZyWTyRi+qi/vn4YS+jqSUXVn479vBKV+4gL8owoPD6d58+akp6dTp04ddu7c+bdMA3U6HRFBMdw/+5Tbpx7x5v7nrBpDEwP82lahaZ+6lK9d6j/q4nyq5zfesGHCHkJei7a6u7cLQ5f1ovx3OjJfVm6Wim1zjnJKUuUUcbJi9Ko+VGlU9pvHazQi5X7XwpOo8zXYOFgyfn0/Kn7DSuDtkxAWDdomxlZ6CgbM7PCVG3JcRBLzB2/n/XMx4uw+qik9xjYv2CCo8zX8Mf8kJyV+nuDn9MLMUgChhJhU5g7ewfuXkSIRfWpr2vYVcvjszFyWjj/APQlYdBpYj77jmqFQyAn/GM+soTuJCU/GyFifiUu7Ur1BGfLz1aydd4oLEnBq1bUaQya3BJmMLSv+5KiUct6otQ+jZrYlP0/DzLH7eXj7PTKZjIGjm9ChRw2ePw5lzoSDZGWqcHa1Zt6qHpiaGTF51B5ePY9AqZQzdlpr6jb0Zun801yWJO69fq1N995+/L7sPBelx3r3q02HTr74+x/h6dMwFAo5Eya0oLinPSNG7yEpKRNbWzMWzu/Mrbsf2CbZQrRoUo6unasxbvohYmLTsLYyYf7MDpw495Q/r4iOx5C+dTExNWDWcpGwXreGJ80blGXyouPk5OZT2tOB/l39mP77aTKyVHgULcJv3f2Yvf48GVkqSrja0rONL3M2X0CVp6Z8SSfqVCnB0l0BwkW5RinkChmHr4hN0uAONbnw8B3B0UlYmBrSp3lV1p28I1LTS7uib6DkwqN3KOQy+jXzZe/Vp2Sr8vF2s8fC3IiAFx9QyuV0q1uB/befo9ZoqeZZlLj0TELiU7AyMaRSCRfOPxeE8TZVynDm2RshrS9RlMC4BFKzc3G3tUInh6C4RKyMDSlaxIrH4VHoK+RUcHPiTkg4MhnUcHflTgHQcSkAOr6uX3R0vgA65Z3seR4Xi0wGXra2vElMQE8hx8HclNC0VMz09TFQKiWTQFNS8rNRaTS4W1oSkiGAzqeOjlwGdiYmxGZnYGlgSLYmjzytGhczCyKzPgEdU+JyMjDX0ydXl49ap6GCjROhP73yv67/abCzbLOQZXZsXpEq5d0YPHkfqjw1lcu70qV1FdZuvUpIeCLWlsZMGt6UwHcx7P6UczW8CXa2ZkycfpiMzFxKejrQt6cfYWGJbJFUREMGNcDZ2YozZ57y8GGIMAWUlFZbN18jPCwJa2sTho8W7se7t90gLDQRK2sTRoxtBsD1gEDu3BCS8gnTxfgqPS2HtVJ0RNc+fhT3EuDl/PHHvH4WjqGRPqOmtS5YdLetukRKYiYuxYrQfeDnsdLBrTeIDheJ5n1GfFYpRYclcnirWHx/m9yyUGbP5WOPef8yEmNTQ/pNKExKfv8ysmD3+dv0r7k2x7Zck6TkdjTtWo2/VuTHOK6fFOCz53e6Onm5+ZySPt9Owxr/8GZ6Ya/YSVdpWBY7F5vvHvepnlwNRKvVUayMM/auPz/+r5USnwaA1T8cf/3dMjQ2YPaRMUxru4zIoBhG1Z1Nw+5+9J3dGbui/+z9pqSk0Lx5c6Kjo/H29ubEiRMYGn6f+JybreL13SAenH/O/fNPiQmOL/ibXC6jYsOyNOzuh1+byv81AnXk+1i2zTjE7dPiN2VqZUJf/460+LXeTz1zAJ7deMOqUbuICRXdnGa9azNwTmdMLIy/eXycZCj4iYTs16oiI5f3xOIvzs1arZZjGwLYsfAkGrUWB7ciTN74K14VixU67kHAa5aO3E1mWjZmlsZMWN0b3y/AeXJ8OguH7eTVfcE76jaiMT2/AEIvH3xkwbDdpCZlYmZpzJTVPalYS3CSosOSmDNkB2Hv44Rb8oJONJBIyo9uvmPh2P1kZ6qwd7Zi5vreuJd0ID01m7lj9vHyUQhyuYzfJrSgbY8a5ObksWTqEe5eFTyh3sMa0n1gXRLj05kxeh/BQbEYGOgxaV5H/BqU5tKZZ/w+T2RXefu4MmtpV7KyVIz+bTuR4UmYmBowc1EXPL0cmDZ+P08fhSJXyBg9oQV1G5Zh+uTDPH4UglwhY8y4FvhW82DM6L0EB8djZKTPrNkdUOrJGTV6L1nZKooVK8KCeZ04cPgBJ87Bqq6zAAAgAElEQVSIDlrPbjXwq+nJKCn+wcnBknkz2rFp103uPQoW5oDDmxKfnMn6DWKdb9OkPOXLuDBtqQgTrVqhGG2alGfK8lOo8tSU83Kic4uKzFhzVgAbLyda1ivLnM0X0Gi0VC/vRpnijqw5INbG9vXLkZCezY1nQhE1vHNtDl97TlRiGnZWpnSu78OaY7eEN04FDzLz8rj3Mhh9pYLeTaqwK+ARqnwNlUo4g0LGrUAR4tm5dnn23nyGVqejdml3PsYnEZWcjp2FCaWK2nH51QfkMhmtKpfm1NNAdDqo5eXGs8gYMnLz8HIsQrY6n/DENIqYGmNnYcrzyBiM9JSUcrbjQVgkCpmMym7O3An5REZ25l64UF1VcXXiYaQAOj4ujjyJFvYQZR3teBEXh0Iuw8PGmjeJCRgoFBQxMy5QWinkchJzsnEwNSVJlU2eVoOHlRXB6ckFQCckPQWlXIa1sRFxOZlYGxqSoVaRr9UUAjr2xqbE5WRirm9ArjYPtU6Do4kZL5Mjf3rtf6v+p8FOSloOnh7ODO1Vh60HbhMULGTm00Y258mLMI5Ii+ykkc0xMtRnwTIRBteoXmka1i3NybNPefhYgJhpEwQ3ZtHSsyJV3NeDVi19iI1NZaPUYu7fvy6urjYEvo7iyCHBwB89vjkWFsYEvY3hkDTSGjm+OeYWxqSlZrNuhSAOd+9bq2B89cfqi6QmZ+HqXoTukolfUkIGW1cL34m+QxtgL5GC37yI4JzUfh4xvU2B4iMqLJFDfwip7qCJLTGRVCU6nY6NC86gztdQyc+Tmo0/S49zslTs+PR+hjXE2vbzTUCn07FlgegS1W9bqYA0+anSkjM5LoGU3uNbfvNmdWC14ANUb1L2mwotgKvHHpKamIGtsxV12lT+5jEgxh4Bkqrq73R1gALX3Ir1/h0fRqsRYZ3Kf2BC+E/LoZgdK6/NZMP43QTsu03A/tvcPP6AjqOa07hXHZw87H7aTcnNzaVdu3YEBgbi5OTE+fPnsbIq3I3KSs8h8G4QL2+95eWtdwQ9Dkadryn4u56+kvJ1S1OtmQ+12lf9194436q0xAz2LT7J6S1X0Kg1yOUyWvxanz7+HX+qsgJB8t3if5iLewTYtXOxZtSqPlRu8G0ZvU6n4+qRB6yduJfsjFyMTAwYvKArTX7x++qzTE3IYPnInTy6KropddpUYuSyHoXGYRq1ht3Lz3NQ4ux5+bgxZWM/7F0+jx1fPQhm4dAdJMenY2RqwPjfe1CzafmC93Nm9x02zRNgyqO0E/4b++AgAdqnt9+zYNQeMtNysLYzw39dH0r5uH5FRPauXIzpq3pgaWNKeHA8M4fvJiYiGWMTAyYv6UrVOl4kxKUxa8QePr6LRU9fydjZ7ajfogLv30QzY/Q+khMFcXnOyh6ULOPErk1X2Stl7NVt7M34me34+CGOmRMOkpqSha29OfOWd8fE1IAxQ3cR8lEAGP95HXEvYceYEXv4+CEOQyM9ZszqgL2jBSNH7CYuLg0rKxMWLOxCdEwKCxefIT9fQ7lyLvhPbcfqDZe4cVsQj0cMaYSLszVjJh8gJzcfz+J2TBvfksVrLhAYFIO+vpKZ41vx6EUYx6SxdO9O1bGyMmbemnPodNDQrxTVKrkXBHpW9ylG/RolC5LLa/i441vejYVbL6HTQaNqJbGyNGbrSbGm9GxZhdehcTx+G4G+UsGILrXZ/udDktKyKGpnSdNqpVh7QhrbVfUiMimNV6GxGBno8UuDimy/+BC1VkuN0q6kqfJ4FRKLkb4ebWt4s+eGAHQNy5fgeVgMCelZOFub42JrwfU3ISjlcppVLMnJJ+I3WM/bg3vBEeTk5ePtbE9STjYxaRnYm5tibmzI6xgRJ1Hc3oYnEdHoyeVUcHHkQVgkMhlUdHXiQYQgIFdyceRRZDSgo7yzA89iYpDJoJS9La/i49GTyylqZUlQUhJGSiWWJoZEZqRjZWSIVqcjOTcHJ3NJUq7V4GFlXQB0illaEpKegp5cjqWRAQk5WdgYGpGWn4ta9xnoyNBha2xCfG4mlgYGZGny0EhAJy43HaXs30XW/E+DHT2lgpmjW/H2Yxz7jot568ShTTA00GPhKkH8bdfchxpVPFi54TKR0SnY2pgyekhjoqJT2LBFjLwG9quDm2sR9uy9w7t3MZiaGjBubHNhFLjkLDk5eZQrV5QOHX1RqfJZukiQDBs1KUtNv5Lk52tYOv8UWo2Oeg3LUKuuaM+v//0CaSnZuBe3o1tvccN++iCYC6eeCZOraW3Ql26sG5efJyszl5JlnGgjdU00ag1rpCyrxm0qUsFXyLN1Oh3rFggFWGU/T2o3+dzSv3/tLQ9vvEOpp2DIF90hgMObr5GSkIGjqw1tevkV+izvBwTy8n4w+gZK+o7/uitzZMMVcrJUFC/r8k0DweiQBK5KXJ3uo5p98/vS6XQcl5yp2/SvV8iF9q/15FogyXFpmFub4Nvo29L1v9bLOwLslP8PDQH/G6ObH5WZlQkTtw6m3dAmbJq0j1e337F/8Sn2Lz6FXVEbKjbwpmL9spSvUxore/NCoymtVkufPn24ceMG5ubmHNp3BE06XDt8j7DASEJfRxIaGElMcDw6na7Q69o4WlGlSTmqNa9IpYZlv5Jd/6eVl5vHyU2X2b/kNFlpIvi0arMKDJjbFbfSzn/rHLdOPWbdxH2kxIkuW+sB9enr3+G73Jz05EzWTtjHDclmorSvBxPW/4qT+9fmjU9vvmXpsB2kxKejb6jH4HmdadajMCBKik1j8fCdvLwnRnut+9ZhgP/nLC6dTsfJbTf4Y74AMq6eDvhv7oeLRGrPU+Wz1v8Yl6QNSr3WFRm1qDOGRvoCzOy4yR+LxKbLq3xRpq/rTREHC/Ly1KydfYJLUme1SYcqDJ8piMiP77xnwfgDZGXk4uBsxay1vShWwp53ryKZPXofyQkZWFiZMHPlL5TxceXO1Tcsmn4UVW4+bsXtmLPyF6yLmLHY/zhXL4jRU9c+fvQd2pA7N96yaKZQUhX3tGfe8u6kpGQx8rcdJCVmYG1jyvxl3YR5oeShY2llzPxFXVHlqRk5YjeZmbm4uFizaHFXbt0JYoMkua9dqyQjhjdm9oKTvHwdKbKwJrRCla9h8qyjaDRaKvu4MWJQA/wXnSI8KhkzU0PmTmnLyQvPuXJbmO2N+LU+6Zm5rNwqztuxeUUcHSyZt15s3JrUKoVXcXsWbBbgtHFNL1wcrVi1V2wGOzQsT3ZePocuCeA0qFNNrj39yJvQOIwN9Rja0Y+Np+6Ska2ihLMNvt7F2HJWbGY71C7H89AYPkQnYmFiSPva5dh68QE6HdSvUJywpFQ+xCRhZqRP08pe7L8lXqNF5VLcCQojJTMHdzsrLMyMuPchAn2FnEYVPDn9VHThGpUrwfWgEPLUGnzcHIlITSMxMxsXKwuUSjlB8YlYGhniaG3Os6gYDJUKSjnY8igiCqVcRlkXBx5HRiOXQTlnB55ExyCXQRlHe17ExqKQyyhha0NgQgL6cjlOlhZ8TEnGVF8fY0M9ojMzKGJsTK5GTWZeHkUtLIjOSket01DcypqPn4COhSWh6anoKxSYGeiRmJuNrZExyXnZaHTaz0BHBjaGxiTkZmFlYEiGOhctWhxNTAXQkcspbmlL0N9aDQrX/zTY6d+tJo525vQbsxOdDpo38KZujZLMWX6GhKRMXJysGNKvLg+fhHL8tBivTBrTAmNjfabMPEJubj4+5V3p2LYKHz7EsUvaSY4c3gTbImYcP/aI5xJ3Z+LElsjlMnZsu0FEuHBOHjZShFHu3XGT0GARJTFsjCDc3r0ZxNWLgvQ8dmpr9PQU5Obms0oiDbfq5It3BdH9eHAriBuXXiNXyBk1rU1BG/zk/vsEv4vF1NyI/mM+E3lvXXrNkzsf0NNXCodUabHOU+WzScq4at+nViFScnx0Cke3iou//6SW6Bt8/ulo1JqC/Kv2v9YpCCb8VMlxaZzeKebsvce3+CYYOLj2knBCrl/mu1ydJ9feEPYuBiMTA5r3/HG35pJkOla/U7W/FfeQHJdGRJAgo5at+e8CN/8KDv6vq2RlD5ZdmsatE484teEigffeEx+RxIWdN7ggEbNlMhlGZoaYmBtjamnMrdCLvP5/2HvL8KjOtuv/N5NJZibJxF2IkBDc3d3dnbYUaHGX4looLhVKKe7u7u5uCRbinkwyGZ/9/7A3AQrU7vt9n+M9nv/5KUz27BGyr72uda5zrfRbyJBTxFCZGU1/+uz5/cN9KFWzKKVqRlGyRhT+YX/NGv2bslqsHN94gY3f7yM9IROA8FKF6D+nK+Xq/T1Tw4ykbH4cu4nLUpsjuIgfw5f2ocSfhKdeP/GAxcPWkZWqFQ0FR7ek64hmH7GOZpOF9fMOsOunkwiCQKEi/kxY2ZfQYgEfHHf7/FN+GLKenIw81E5Khv7Qlbpt3rGPep2RpeO2ck4KtqzbpjxD53Yp0K6lJmQxe5DokSOXy/hqfAva9xWdmY0GM8sn7+LUXnEdatS+IoNntMNBaU9mWi6zh23i8Z1Y5HJRiNyuj3h97Nt0hZXzD2Oz2ihRPoTJi3vg5uHEhRMPWTBpdwGgmb68J74BbuxYf4nVy06IURHVIpj4fSesVhsTBoup5XZ2coZ915LGrcqya8tVVq04iSBA5eoRfDejPY8exDNz0i70ehOhYd7MWtCFpKQcpk7aiS7PSHAhD2bP60J0dDJzvxc3XMWLBzJjZge2brvKjl0iyGvbpjwdO1Rm9IRtvH6TgZOTkllT2vE0JplffhfXoYZ1i9G5fSVGTd1JemYePl4aZo5vw6+bL3LzXiwKhZwJg5tx72k8+6S4h75dqmO0Wlm2/iwAHZuWxdFRybKN4jk7NSmLDRm/7xXByhdtKvM8Pp0Ld8TW2JCutdl9/gGvkzJxdVbxdZuqLN99EYPJQqlwfwoHebH5pNSKb1Sesw9eEpeWjZerE00qRbHmuPj5mlaM4kFcMnHpOXhq1NQoEcaOKyKQbFu5OCcePCfPYKJIgBd2Cjl3XieidlBQu3g4h+6Km7KmZYpw4vFzMZU8LIjotHRy9AbCvdwxCTZeZWTh6eyIh8aRx8mpODnYE+blwd2EZBzs5ET5e3MnIQmFXEZRPx/uJiajkMso4uvFg5QUFHZyQj3deZqejlqhwEvjxKvsLFyUDjg42JGiy8PX0Ylci4l8s5lQNzGw0ybYKOzhwYscEeiEuLrxOjcblZ0CtYMdmUY9vo5OpBl02HgHdOQycFepyTDm46FSk2POR0CQgE4u9nI59nZynuQk/8Vq8On6Xw122jYuy9LVp0lK1eLv48KwvvU5deEpJ889wU4uY9KI5ljMNuYtFvUx7VqWo1L5ULbuuMbDxwk4OjowbmRzrFYbc+cfxGKxUatmERrUL05iQha/SW2b/gPqERDozuOH8ezaLjJII0Y3Q6NR8yImha3SRMLgkU1xc3dCl2dg+XzxNdt3rUqUlC6+adU5khKy8PJx4cuBDQBxamqFFP7ZtmsVIoqKDqvpKVo2SD4VfYc3xs1DFDwa8k38Kp2705e1CHhPm7J77UWS47Pw9HWh2zcfTkqtXXgUk9FCqcrhH7S2AE7sukn8yzRcPJzo9M3HXjbbfzqF0WCmWIVQKtX7WOiZlpjF6d3iItB9+Oenq94mmzfuXv1Pjej0eQauHhMXt0/5oXyqnkpeMCHFAgrEof+03t4kTUbzv3r+vymZTEatdpWo1a4SBp2Bh5ejuXP6EXfPPuL53VgEQSBfqydfq+fm64s8s4g7/5L21fCQi1ovZzdHgosEEFIiiLASQYSWCCK0eBBuPv/9PKz3y2azcWHPDdbP2k18jLiAeQV60Gdyexp0q/HBlN/nymq1cXD1GdbN2kN+rkFMNh/ejG6jWhSEaP6x8nMNrJqyo2CkvFARf0b/+CVF/qC5AdHzad63vxcIjJv3rkm/aR0/0LFZrTY2LTpS0IYNLx7IhF++JOi9EfU3McnMGrCGuOcp2Cnk9JvUhtZfvvPguXMphrnDNqLN1KFxc2T80p6UryXqc9KSspk5aH2BSLn/hJa07i0ySjGPEpgxeAPpyTk4u6gYv7AbFWoWwWy28NPsAxzZJcUMtC7H0KlijMymlWfY8JM0vVUzkvHzOqNU2rN09gGO7BH/Plp1qsS3o5uRlJDN5BGbSYzLxMlZyeR5nSldPpTlC45wUGKRWrWvyMARTTh2+C5LFxzBZhUoWyGUqbM7cu3qc+bPFdfGEqWCmD6rAydOPOKXn8W1qWbNIowe05zFS49xVvIW6v91XSpWCmPo6E2kZ+Th5eXM3BmdOHryATsk9rdL+0pUrVyYEZO3k6czElbIi+9GNGfeT8eIeZmKWmXPtFEtOXj6IeevxYihoH3r8yw2jQNSsnm/LjVIztCyY58IbL7uWI3XyVmcuCIyQoO71ubC3RfceZaAg70dw7rXYe3hG6Rk5uLj7ky3JuVZsuO86JJcIgSNk4o9knngl80rs//KI9JydPh7aKhWMpSNp0UQ1K5GSS48eU1qTh4BHhpKhvmz74YkMq9WigO3nmAwWygd4kee2cSzhHRc1EoqFA7i6H2R02hapghHH0UjCFAtshD34pPQmcxE+XmRbTCQrM3DV+OEWu1AdGo6riol/m4uPExKQa1QEOrjwf2kFBzs5IR7e/IgWfw5zNudR6mpKO3sCHB3ISYjA0d7e9wc1bzJycFNpUKmgLR8MdMqy2jAYLEQ5u7OK20mAoLI6EhAJ9jVldjcbNQKBfYKOdlSvlWKPhcBoQDo2MlkuCiVZBrz8VKryTTlw3tARym3Q24HequJKFdv3jl3/f36Xw12rtx6yZHTj5DJYNKw5uTrTSySxGw9O1WleFQAs+aLLE9woDvffFWXV6/TWC1NAwwe0AB/P1dWrznPy5dpuLqqGT60CYIA8+cfEpmfsiG0alUek9HCgnmHCtpXVatHYrXYWPi9KPSrUTuK2lJ21eqfT5OelktAoDu9JUHxi2fJ7NwkgqIh45rj5CzuBjeuOktKUjY+fq70fg+g/LrgCPp8E0VLB9Ok3TszwG2rz5GWnINPgBtd3vPAyUzVsk0aWf9q1IeTUs/ux3Fm/x0x2uG7lh/s7k1GM5ukCauu3zbASfNhayM9OZvDUlBnr1GfZnX2rDqDxWylVNUIilX4tBNyWkJmQV5Vyz61P3nM27p2/D4mg5mAMB8iPsMS/bHeGgJGlv33hoBeAe68eZpIhjSC/n+7VE4qKjYqTcVGYpvQZDSTn5NPXk4+O3bsYOTEjQAM/2YUw4YMx9VTg8bD6T8y9/s3JQgC14/dY/2s3Ty/K46/ung403VMK1r1q4+D6u+ZhsXci2XZiA3ESCGiRSuGM3Rxr4/iG96v+5eesWjoOpJj05HJZLQd0IAvJrZFqf7wNQVB4OT2a/w0YRuGfCPObo4MX9iDGi3KfXBcRnIOPwxZx/0rYtuqec8a9J/a7oPzndl7i2Xjt2HIN+Hp68qEn/oU+EcJgsCuVWdZI+lsCpcIZPLPfQr0PfevvWDO0I3kZOpwcXdkwtKelJWiV84eusviibtEb51wb6b+2JvAUC9ysnTMGrGZB7deI5PJ+GpEEzp+UROT0cLc8Ts4J01Btelelf6jmqLTGZk4ZAN3b0jC5RFNaNutKg9uxzJj3HZyc/T4+rsyY3F3fPxcmTZuO9cuiwCi3+CGtOtShbWrzhZs2ho1LcXwcS3Yue0av0u6wNp1izJmXEt+//0cu6WcwHbtKtCzV00mT93N/QfiBNfY0S3w8HRm2OjN6PJNhIZ4MWtKO35bf4EzF0RGY+DXdfHxcWXMtJ2YLVZKFQtkSL/6TJ6/n6SUHNxc1Ewf3Yrft1/m7uN47BV2fDe4KSevPOPCzRfIZTJGflWPG4/f5VwN612XS/dece2BOA02qnc9dp+5T8ybNJzUDgzpVpufdl0iO09PiJ87LWoWZ+nO86L+p0IkerOF4zejsZPL6NuyClvP3iVHZyDcz4Oiob7suih+513rluXI7Wdk6fSE+boT5OPGsbtiWnqHaqXYff2hOEJeOIiU3FzeZOTg6awmKsiH04/F9964dCRHHoqgp3ZUGNdi4zCYLZQM9CVRm0uGTmxjIUdkd5zUuDmqeZqShrODA/4eGh6npOJoryDQw5UnqWmoFQoCPDQ8TUtHbW+Pt4sTL7NEFketdCAhV4uXoxoTNnL0BgI1LqTrdRitVsI93HmRkwkIBYwOQJCLC3G5OTg7OCCTC+SajQQ4OZOozwUEAjWiW7K9XI6Tgz3ZJj1eakcyTToKJrEMuajsFCATMFjN+KideJn1bjjin9T/arCz5Ddxd9G9XWVKFQtkzLSd5OYZiIrwpU+Xapy9+IwTZx6L/jmjWqBQyPl+gShArlq5MM0al+LZsyS2SBNaw4c2wd3dib17bnL/fhwqlT2jxzRHLpexcf1F3rwRp68GDhHbV7u2XSPmWTLOGhVDRjVFJpPx8N6bgh3T8AktUanssVptLJkjjqnXalCcqrVFTcnLmGR2SUnkg8a1QC05wN6+8pzzUgtsyMRWBZqNpLhMdq4VW239Rzf7wANn7dLjGPJNFC0TTL2W78auBUFg1fdia6tB2/JElPgwFPLQpiukJ+Xg5e9Ki54fsyjbfzyJ2WihZOVwytb4uKWQl5PPUUmY3Wng53Orjm+5gs0mULp6JEERf27ad2G/+P3Vblvhb7ddnr91Py7998DRp+rtRFSyNP3zP10OSnscfFy5+/gO46ePAWDw4MEsWjb//7iu6FMlCAI3Tz5gw+w9Ba7KjhoVHYY0pd3gpn87NkKn1bNx7j72rTyFzSbg5KLmyyntafZFnc+yQQadkd9n7WH/KpHR8An2ZPSKLz6pz8rNzmfF2M2c3y/uxEtVi2TMj198kFsFcOP0YxaO2PiubTWvK3XbvmtbmYwWfp2xh0MbRKFqmeqRjFveG3dJ2J+fZ2DJ+O1cOCzGHzTqUJFBMzugVNmLRoXrL/Gr5HkTXiyAKT/1xjfIA6vVxrolx9khAYlKtaMYt6ArThoVr2NSmDZkA8kJWTg6KRn3Q2eq1C5KRlou04dtIvpRAnYKOYMmtKR5x0rEx6YzZfhmEt5koHZ0YPzsjlStHcWx/XdY9r3IyBQtGci0BV2xWG2M/HYdL2NSUCoVjJvWlsrVIpk7fS9npfH3t6PlyxYf54hk0NmpaxV69anF3LkHuHhRvEkP+KY+tWtHMWLUJmLfZODkqGT6tHZkZuczdtJ2LBYbpUsGMWFUC75ffJh7D+NRKOSMH9Ecrc7AtPn7EQSoVTWSzm0rMHqm6Ioc6OfGd0ObsvDXk7x4k46TowOThzVn04Gb3HsiMjQTvmnM/rMPuf1YNCAc27chu0/f4/HLFFRKBaN612PNgeskpObg4epI/w7VWbLtHPkGs5hcXiqEH/eI/6eta5bkdWoW954norS348sWlVl7/CZ6o5niIb74emg4dP0JMhn0bFCBnZcfoDOaKBbkg7OTkvOPxciH9lVLsuPKA2yCQM2ioUSnppOSk4efm4ZATxcuRcdiZyejQcmIAqBTr3g455+/xmK1UbZQAC8zMsnRGwjzciffaiY5W2R3VPb2vEjPxE2twkPjSHRaBs5KB7w1TkSnZeDk4ICXi5rnGZlolA64OKqIzc7GTaXCTiEnOS8PX2cn8qwm8kwmQlxdScjLxWIT21XPczIAgXAJ6Mhl4OusIT5Pi4uDA1aZDZ3ZTKCzhgQp9iFQ40KCTou93A61lGju4+hEujEPEeg4kWrIRa1QYMWG2WbBVy3+/t8uXf+rwY4210DRyGD6dq3BviN3uX7ntThZNaIF2lwDi1aIjEWPTlUpXjSAtRsvEv08BY2zijHDmmI2W5knTWjVq1uMOrWLkpSUzSop56r/gHr4+7vxPCaFrZKGZOiIpri4qEmIz2Td22moIQ3x9NJgMllYIrWkmrQsS9kKoQAc3HmD6MeJODkr+XaUKN612Wwsm30Am9VGzfcAkMlkKfDUadW1CoWlthaITslmk4WyVQpTo+G7VtTzRwmc3CMu7AMmfMjcXD7xiEc3X6NU2dNn5IfCYb3OyDaJju4xtHGBCPNtpSVlc0T63D1HNvvkDfbwxkvodUZCo/yp+IkWF4htgqObxcWl2V9MVhl0Rm6eEhmgmq0+P631x3rL7ESU+vdg521KduLLlL848v9ePXz4kLZt22IymWjfvj1Lliz5vw50BEHg9umHbJizt8CTR6l2oFX/BnQa3vxvO1ULgsCZHdf4beoOMpNFAXKd9pUZMKcLHn9iWvjgcjSLhq0rMBRs1qsWX8/oiJPmY3B17+IzFgxdR3qiGAzac3QLOg9t8gGIMpssrJt3kF0rReAUXjyQCT9/USAyBkh+k8GcgWuJuS860XYb2pgeI5oWnCc2JpnZA9cT9yIVhb0d30xpQ/Pu1T6pz6nXuhxDZ3VApXYgN0fPD2O2cvOCeMPr2Lc2X4wQ39+V04/5YcIO9Pkm/IM8mLq8J6ERvsQ8SWT60E2kp2rRuKqZtKArZSqHc/f6S2aO206eVo+PnyvTl3QntLAvq5efZLtkAFi7YQlGT21D7Ot0pozZSmZ6Hu4eTkz/oQv+ge6MHb6RR/fjsbOTM2JcC2rWLcqkCTu4JbFEA4c0om794owdu4UnjxOxt7dj7LiWBAV7MHjYBjIzdXh5aZgzqyM3br9m5eqzANStFUXfL+owYcZuXsWKoGXGd225+SCWzbtEKUDb5mWpWjGcMTN3F7giD/26HjOWHCY5TYunmxPfDW3Gig3nROCjdmDiwCb8vucqMbFpOKodGPd1Q1bvuUpsUhauziqG9azL8m3nyczJJ9DHle7NKrBg0xlMFisVooIIDfJk7RGx5d61YTluRccTHZ+Os1pJz8YV+O3INcwWK5WigpDbySKhy/MAACAASURBVDl97zkKOzk96pdj84W7GM1WyoYFYJXZuP48DpWDgpYVi7Htsgh465cszO03iWTp9IR4ueHipOLmqwSUCjtqFgvl2EMpm61kBKeevsAmCFQKC+JRUgo6k5kivp6k6/Vk6PIJdNUgALFZ2Xg5O+KocuBFhgh6XNQqXmZm4apS4uyo5HVWNm5qFUoHBfFaLV5OjlgEgfT8fAJdNGSa9AW6nDhtDhbBRhFPT6Kz3wGdlzmZ0ki5E4m6XNxUokmgocAN+UOgo5TbYa+Qk2s24ufoRKoEdHydxEksR4U9ZsGCRbAWAB2FTEaYizdP/3q5+Kj+V4Mde4Udk4c3Jy0jl5+lxOQBvWsTEuTB5Nl7ydHqiQj3oU/36jx/mcoG6cY9bFAjPD2dWb3mPK9fp+Pm5sjQwY0QBIFFC49gMJgpU6YQrVqVx2qxsWDeQWxWgdp1i1KzdhSCILDkh8OYTBbKVQyliWS+t33jZd68TsfN3Yl+g0WWIyMtl7XS6PpXgxviKe0KTxy4y5MH8agdHfj2vemnPRsukxCbgbunM70lXQ+ITslXzjxBbifnm/EtCm54giCw6ofDCIJA3ZZlKPpe28dqsbJWiqNo/1VtvP4Q7bBv7UVyMnQEhHjRsH3Fj77fXStPYzFZKVmlMGU+Ifq1WqwcWCu2BNt/U/+zN+G7F56SnpiNxt3pLyMf7l16hlFvxreQJ4U/M77+xzLkGwvcj0P+IDr9JxUusUL3zj/BZrP9LYO+/5MVHx9Ps2bNyMnJoUaNGmzcuBE7u7/2p/lvlc1m4+qhO2xdeLCAyXFQ2dOyXwM6D2/+j1yVXz9O4Mcxm3hwWbzJ+4d5M2h+Dyo2+LQ5IIjAd83sPexfdQZBEPAOdGf4kt5U+ITo2WQ0s2HeAXb9LEZJBIR5M/bHL4n6g2lmUmw68wat45nUfmvVpxZfT277gT7o6vGHLBy5iTytXvTXWdqTSvXe2RmcPXCHpRN2iG0tP1cmruhFMel1UuIzmTV4A88fJSC3k/P1uBa0lUwEY2NSmDF4A4lvpDiJWR2o26IMgiCw6ZfTbJACe0tXCmPSou64uDly/vhDFk4WhcjBYV5MX9aTgEKeHN59kxVzxbHrYqWCmLqwG2onJbPG7+DSGdGZt/tXteg1oB5XL0bz/dQ9opg53JtZC7piNlsZ2n8NiQlZoq/OnI4EBXsyfPB6Xr1MQ6WyZ+KUtgQV8mDI4HUkJmaj0aiYMbMjeoOJ4SM3YTCYCQv1ZvasDmzdeYO90hBIx3YVadqoFCPGbyEtIw8vT2dmT27HzoO3OX5WZJD69ayFp5cz383dh9Vqo1KZEHp0qMyEuaIrcpCfG6P6N2TOyuOkpOfi6ebEuP4NWbzhLIkSYzPyi/os2XSOtKw8fD01DOhUgwUbTqPTm4gI9qJpzWLM3yQGetYuF45KZc/Os5LQuWUVjt4Qk8s9XRxpV7sUKw9dET11SoeTqdNzPyYelb2CTnXKsP7sbTGfq2ghUvPyiUlKx1npQIMyEQXC5KblinAh+rUoTPbzQpDD/bhknBzsKV84iJOPRT+mhiUjOPFE3DRUjwjh5pt4jBYrJQJ8iMvJIcdgJNTDDZ3ZTFqeDn9XDchF0OPpqMbBQUFstvizvYOc+JwcvJwcEeQUsDj5Vgtao5FgVxdS9DqMVgvh7u68ys7ChvAB0Al1d+dlTib2cjtc1SpS8vPwUKnRWY2YbBaCNa7ESd45Ac4i0FErFMjkoLMY8XNyJtUgAh1vR0fSDHk42ztgsJmwCjZ83gIduRwHuYzo3P+/jfWPq3enKoQGezFsoujXULZkMB1alufk2SdcuCyGt00Y2RyZDOYuFBeGmtUjaVC3GNExyQXtq2FDGuPq6sihQ3e5ffs1SqWCUaObIZfL2Lr1Ks9jUtBoVAwZJpoHHjt8j7u3xOOGS3lY8W8y2LJObDF9O7wxLq7irnPl4mPk60wULRlI83YiU5Gr1bN6magt6jWgHl5SPk56ipYtq6SJqRFNCvQzFrOVX+a9Y3tC32sDXTvzhPvXxZHxL0d8yNyc3HNLFB67O9LhDxlXeVo9uyQGq+fwxh+Ngedk5nF0i+hJ0W1I409+/5eP3ic9KRs3Lw11Wpf/5DEAJ6VQ0LptK37EHv2xbknOqRXrl/zbDMbbTCtHjRrnfylOBihTuxiOGhUZSdlE33pF0UqF//W5/tPKycmhefPmxMfHU7RoUfbv349a/e/Sxf9pWS1Wzu68ytYFB3nzVDQkc1DZ06JvPTqPbIGH79/35NHl5LPxhwNiy8pqQ6l2oOvI5nQY3OSzAmSAu+efsnTkepJei2GfTXvWpN+Mjji5fGwoGPs0kR8Gr+Xlw3jp2Br0n97hg6RygHP7b7Ns3Fbycw04u6oZvqA7NZq9cwk3myysnXeQ3dJ1EVUuhO9++qJgOtFssrB67kH2Sa3kMtUiGL+0B25SpMutC9HMG7mZ3Ox8XNyd+G5ZD8pUFfU5l08+YsG47ejzTfgEuDFlRS8KFwtAn29k4aTdXDwhspmtu1Wl/5jmyO1krP/xFJslHV7FGpFMmNcZldqen+cfZu9WUZRbv1lpRkxuTa7WwJj+a4l+IrIvwye1okGz0uzaeo1Vy0WvmQpVwpk0qwMvnqcwbcJOcrV6/PxdmbWgG2azlcHfriUjPQ8PDydmze2MyWxlyJD15GoN+Pu7Mef7zjx4GM/ipaJLevlyIYwf35IlK05wUdIADexXn8LhPgwdK2l2CnkybUIblv92mpv3YgvMAtOzdXy/XBwdb1S7GHWrFWHsnD0YTRaKRfjxVZfqTF56CG2egUL+7gzuXYc5vx4jS6sn0NeNb7rWZO7vJ8nNNxIW6EmXpuX4fs0JTGYrZYsEULZYEMu2ixuxFjWKk5mXz7nrz7Czk/NNm+psOX2HDG0+AZ4a6lcswiopubxp5ShiEtN5npiBRq2kVfXirDsjttUblCnMs+R04tJz8HBWUykymL2SMLl1peIcexCNwWyhVLAvOUYjsanZuDmqiAry5nz0K2QyaFDiHdCpXSSUSy/fYLHZKBvsR3R6BjqTmUhvT9J1OrL0BoLdXdFbLaRpdfhqnLDJIFGbi6/GCYvMRlJuHr7OzhgFC1n5BgJdNGQZDejMZkLd3YjLy8FisxHp4UlMVgYCApHvAZ0QNzdea7PESSulPWl6HV7qd9457wMdPycNiflanBT22GQ29Baz5J0jani8HR3JMOpwsVeisxmxCbYCRsdeLkchl2GwmYnQePLss1f+5+t/Ndjp0Lw8uw7e5t6jeNRqe8YPbUpWto5lv4jmfL27VSMi3If1my7x/EUqLhoVIwY3xmKx8YPUvqpdK4o6tYuSlqZlpeQP8cWXtQkM9CA+PpP1a8QL5ptBDXH3cCYrM49fl4vn79W3NgFBHgiCwLIfDmM2WalQJZy60rTTrWsvOHfikai9GS+OrgOs++kUOdn5hBT2oc17TsSrlxzDoDdRvGwhGrR8twgf3HaNNy/TcHFzpOe379gei9nKb/NF5qZdn5r4BLy7CZmMZjZKgKrrt/U/Eh7vWX2ePK2eQpG+1G75Mduyb815jHoTkaWCKVfr00nU+9dIIX09qn8WxOi0ei4fEXdTDTp/7Lr8x3oLdir8SYzEHyvljQh2/EK8/qMWj4PSnkqNy3Bu1zUuH7z1PwZ2jEYj7dq148GDB/j5+XHkyBE8PP7zHK2/qvxcPcfWX2DPT8dIkRLFHV3UtOrfgPYDm+Dm8/edpW02G8c3XWLtzN1kp+UCUL1lOQbM7vqn7tY6bT6/TdvFEWmIwCvAneGLe32SAbLZbOxZeZp1c/djNlpw8XBm+KIeVGv6YcyJXmfk58k7OSEZgRavGMbYFX0+MAlMic/k+0HreHZHZHza96vLF+NaFtgepCVlM3foRh7feg1Al4EN6CW1n2w2G9tXnmX9YjGrKrJUEJNW9MInwB2bzcamH0+xWZqeKl05nAmLu+Hm4UxyQhbTh27kVXQyCoUdgya1olmHSujzjcwfu4vLp0WGpn2v6vQd0QR9vpHJwzZx66rIEPQZWJ9uX9Xm+dMkpo7aSkZaLi6uaqYu6ErRkoEsnXeYw5Kject2FRg0simnTz5k8VxRt1i0eCAz5nUiOjqZWdP2SuPmXsye24UnTxMLRsujovyZOasje/ffZpM0rNC4UUn6flWHyTP28ORpUoGHjtlqZcyUHaJmp0QQo4Y0ZsbCgzx/lYZaZc/UMa24cvsle4+Ka0KPdpUJ8Hdl0kIxZqda+TCaNyjJd4sOYDRZKB7hR7fWFZm64hD5BjNFQn3o0qw8M1cexWi2UirSn7qVI5m39pTIypQvjKenM79LOVc9mlTg/qtE7r9IQumgoH/ravx+5AZ5eiOFAzwpHRlQkFzesXZprjyNJV4aJ69bLoKNZ0WbgeYVo7j+Ip40rQ5/dw1FArw5elc0SWxbuQT7bz8RR8jDg4jLyiFZMgUM8HLh6os4FHZyakWFFgCdukXDOBv9Sox2CA3iXlISRouVYn7exGXnkGc0EeblTpZBT5beQJCbCzqzmUy9nkBXDXkWE9kGA0GuLmSbDGIauZsryTqRxSnsITodWwWJxcl8B3RiJKBTyE2ctHJUKLC3V5Bp0OPr5EyGMQ+rYPsA6Pg4OZOsz0Vj74BJsGCyWj4AOp5qNRlGHa4OSnItBgSEAqCjlNuBXMBoM+OtUvM65/9ndv5xJaVk8+t68YY78Mu6+Pu6MmnmHrS5BiIL+9Czc1Vevkpj/RbxAh06sBGeHs6s33CRly/TcHFRM2xIYwRBYOmSY+h0RooW9adDh0rYbAKL5outqgoVw2jcVDS2+3nZCXJzDRSO9KVjFzFh/NTRB9y9JeqFhkpMj8loYcU8cUS8dadKRESJ2pvnT5M4JI2TDhrbvIBReXQnljOH7yOTyfj2vTaVNjufjdIIep8hjdC4vtvdH9l+nYTX6bh6ONGp34fMzaHNV0hPzsHb3+2jVPPcnHz2SECl1/AmH4lC9TojB6Tda6eBDT4JIF48iufhtRfYKeQ071njo9+/rQsHbmMymClUxJ8ifzEplfwmnYSXqdgp5J9Nsv5UvWV2/mnkwqeqesvynNt1jbM7rtHzu3Z/yUT9t8tms/Hll19y5swZnJ2dOXLkCKGhof9HXzM5No19P5/g6Prz5Gv1ALh6aWg/uAmt+jX4bDzD5+rR1Rh+mbCVGKlVFBjhy7ffd/tsntXbunbsPstHbyQ9Scwoa/llHb6c0v6T2pyUNxksHLa+IBqiUoMSDF/cE48/jNvH3H/DvEHrSHiVhkwmo+tb7c17XjxXjj9g0cjN5Gn1OLuoGbmoO9UavzOyvH0hmnkjNqHN1OGkUTF6YTeqSpo5Xa6ehWO3c+WklF7dpTLfSiaEeVo988du4/o5cR/bpld1vh4jXvN3r71gzuitaLPzcfd0ZvKS7hQvG0JyQhbThm3idUwK9vZ2DJncmsZtyhMfm87UEZuJjxVbYGNntqdm/eJcOPWY+VP3YDRaKBTmzYxF3XB2UTFxxBbu3BTZhH5DGtGuc2U2rD7PJol9rlW3KOOmtOHo4Xv8uOwENptAufIhTJnenoMH7xbYblSvEcmYMc1Z/uNJTkkBnz17VKdhgxIMG7OZxKRsNM4qZk1tx4PHiayS/KHq1oyiR5eqjJ62k9T0XDzcHJkxvg1b9t3k4vXnBWaBeflGfvhF3JS1qF+SElEBTFlyCKtNKHBFnrrisGhAWKIQtStFMGvVcWyCQPWyYRQJ9WHZFvE1W9UuQb7ZzM7TIpDq37YaJ25F8zIxA42jkj7NKrPywBWMZiulw/3x89KwW5qy6tWwPIdvPiVdm0+gpwtlIgPZcUn8XftqJTn58Dk5+QbCfD3wcXXm7OOXKORyWlUuxp6bjxAEqBEVwuPEVDJ1eoI9XNE4q7gdm4hKYUfFiCBOPxNbwfWKhnM6Wvy5euFCXH8Tj9lmo3SgH9Fp6RjMFqJ8vYjP1Yqgx9Od9Px8tEYjhdzdyDDoRKGxuxupeh35ZjNh7u7E5eZgttmI9PKQWBwo4ulFdGY6AgIRnh7EZGcgl4G/iwtvcnNwtncAOWQbDQQ4a0jWaxEQCoCOTAZeaidS9Xm4OijJt4qxD+KxucgQcFeryDLl46YUvXVAwEftSLoxD5WdHTZsWGxWvFVqssw6FP9SHvA/CnZCQ0OJjY394LFx48Yxd+7czz5HEASmT5/Or7/+SlZWFlWqVOHHH3+kRIm/Zz72fi38+QRGk4WKZUNo3aQMJ88+5uJVMfF8wsjmIJMxd9FhLBYbNapG0KBuMV69SmOjtDsZMqgh7u5OnDnzmCtXxOeNHtMCOzs5Rw7d5b5kKDh8tCjOvXH1BWckpmbEuBbYKeRoc/SsXC5erD2+qoW/RHlvX3+JxLhMPLyc6S1519hsNlZI4+t1GpekTMWwgsd/kbKymravQOR7upMtK8+Ql2sgrIgfTTu809Xk64xskkBQz0ENCuIiQBIe/yK6Q/cY0vCjG/a+NRfQ5xkJK+pP9SYf34COb79GXk4+AaFeVG/6sVsywGFpQqVGszJ4/UnUwLm9IrCr16HSX7IuD6+KN67IMiGfvMF9rnKzRbfevxNF8FdVtXk5PPzcSHmTzr5fTtBpWPO/ftJ/scaPH8+WLVtQKBTs3r2bsmX/eaDp3ylBEHhw8Rn7fjnB5QO3sNlEQ8WgSD/aDmxMox41UTl+HPT6Z5UWn8nv03dxZqfIoDhq1PQY25LW/Rv8qTFkVqqWXyZu45yUch0Q5sPwJb0+OWklCAIntl7ll8k70OcZUDkq6Te9A816fuiEbLPZ2LPqLGvnHsBituLl78aYZb0oXe2d9sxktPD79/sLQjyjyhZiwo998JVAs9VqY8vyE2xeflLy3wlg4o+9CQjxAuDVsyRmD95Awut07B0UDJzahqYSe/k6OpmZQzaS+CYDB6WCIdPa0bBtedFFfMMlVi08is1qI7J4AFOW9sTbz5X7N18xe/RWcrIkALS4G8XLFOLW1RfMGb+dvFwD3r6uTFvUjcJRfmxefZ510nVesVoE383pQHZWPsP6iRlXKrU9E6a3p3zlsA8mrrr0rE6fr+uw6pfT7Jacnps0K83gYY356ceTHD4sgoX27SvSo2cNpk7fw737cWJo8fAmBBfyZPCoTWi1evz9XJkzrQO7D95h/2Fxeqtzu4pUrxrB8EnbyNMZCQ50Z8qolixZfZqHTxPFiaqhTbn1II4DJ0Vhb+8OVVA4KJgr5R02rV2c8EKeBa7IDaoWISTIk0UbxM/bolZxHJQK1uwX/9Z6NK/Is7hUrj8WjRMHdajBtjN3Sc7MxcvViU71y/DTvkui7qZkCMhlHLsljpr3blyR7Rfuk6c3EuHvSaCvGwdviBNYXWqVYe+Nx+hNZooH+6Cws+NqzBsc7OQ0qRDF7hsiyK1XojA3XsWRazAR4euJIIdHCSk4Kx0oHuzDhZhYZDJx1Pwt0KkZGcLFl7EIQPlgfx4kpWC22igR4MPzzEwMZguR3p7Ea7Xkm80U9vQgQZeD3myhsKcHcbk5GK1WIjw9eJktsjhR3l48zRSF/CKjIwKdcA8PnmdnYi+X4+msJiFPi6tSiUmwkW82E6R5N2n1FujYyWS4qVQFbshaiwGbYCPA2YVkvRa5DFyUSrJNejyUarIkoOOtEttZokDZjFWwFQAdB7kcT7Uz9z67Gny+/seZnRkzZtCvX7+Cfzs7//kN54cffmDRokWsXbuWIkWKMGvWLBo1asSzZ8/QaDR/+tw/1pPoZFxcXBg3pCmZWTqWSpNFvbtWp3CYD5u2XiE6JhlnZyUjhzTBZhOYL4GfalUjqF+vODk5+axYIV5g3btXJyzMm6zMPFZKtHOfr2rj7++GwWBmmST2bduxElESIFn98ylysvIJCfOio8SgJMZnslUS7g4Y0aTAU+fU4fs8uR+HSu1Av+HvdDAn998l5nEijs5K+gx616ZKjMvggNSb7zeq2QcMzK7fz5OTqSMwxJOmnSp/8L3sW3+JnEwdASGeNGz34USTTqsv0Bx0G9zwIxGu1WpjrzRl1u7rup8cBdbl6gtMBFv8yXRVVpqW+5dEQWqdth8LoP9YjySvkz9zzf1UGXQGgE+msP/TUjkp+WJqBxZ9u5rN8/bTqHvNvz1t9J/WsmXLmD9/PgCrV6+mUaNG//XX0Gn1nNpyiQOrThXocQDK1y9B+8FNqNCw1D8WZufnGti+9Ai7fzyOyWBGJpPRpFdN+kxsi/ufGBsKgsDxzZdYNXUnedn5yOUy2n3biF7jWn0SaGWm5rBs9GauHRd33MUrF2bUst4EhHp/cFx6UjaLRm7ijuTrUqNZGYb90BWN+zs9V+LrNL4fuI7nks6n3dd1+HJ8qwJQlp2eyw8jNnPnkgjAm3WryjdT3sVGnN53m2VSJINPgBsTV/SiiCSov3D0AYsm7sQg6XMmL+tJRIlAjAYzS6fv5fRBERQ0aFWWoVPa4qBUsH/rNVbOP4zVYiOiWABTl3bHy8eFvVuusnLxMWySEHnKgq44a9QfRD+061aFfkMb8+h+HNMn7CBXq8fb14UZ87vg4enMmCEbefIoATs7OcPHNadOveLMmLKbK5fFz/ZVv7q0alOOaVN3c1MKGR00qCFVqkYwfOQm3sRl4OjowLQp7dDpTYwYt1VsgxXxZ8qE1iz/9RSXr70Qjfz6N8DD04kx03ZiMlspWTSAYf0bMH3xIeISs3B2UjJ9dCt2Hr7N5VsvkctlDPuyHs/jM9gnAZ9ebSphstn4cYu4hnZsUg6rILB6j6j969GiIglp2Ry89BiZDL7pVJPTt2J48joFtdKebzvU4LdDV8nJM1DI1536FSP5aZ+oz2xUqQjJ2bncf5mE0t6Ong0rsOH0LbElFuqHSm3PmQcvUMjldK5dmm2X72Ox2qgQHkiOwcCjeDGnqmaJUPbfEtuMTcsW4eyTl+jNFkoE+ZBtNBKfnoOHk5pgbzeuvYpHIZdTpXAwZ6NfAVCrSAjnX4hEQeWQIG7FJWAVBMoE+fMoVQQ9xf28icnIxGS1EuXjyYvsTMxWG1E+XjzPysRisxHl7cWzjHRsCBTz9uZJAdARGR1RgOzGy5xMHOzscFUrSda9FSCbMVgtFHJxKWhXvQU69nI5zg4OZBjz8VKJ3jkCQgH7o5DLcLRXoDXr8VQ5FXjreKnUZJp0OCkcMNpM2LDhJQEdpZ0dyKwk67I/uyb8Wf2Pgx2NRoOfn9/fOlYQBJYsWcLEiRNp3749AOvWrcPX15fNmzczYMCATz7PaDRiNBoL/q3Vagt+Hty3Hj5eGibN3COml0f40qNzFWLfpLN2k8g+DB7QAE9PZ3bsus7Tp0k4OSoZPqwJMpmMlb+cJjsrn5AQL7pJYOWn5SfJyzMQWcSP9h0qAWIkRHJiNt4+GvpIYt/HD+I5sk/s6Q4d2wJ7ezsEQeDnBUcxm6yUrRRGnUZv6W5DgSi5R786eEuTLLo8A2vePt6/Hm7vsRNrlhzHYhHzr8pXjyh4PDMtl12SluiLkU0/EBfnafXsksBKz6GNP7LOP7DhMnlaPcERPtRo+nHm1OWj90mOy8DF3YmGfwBRb+vM7psY8k0ER/hSqlrEJ48BuHjgDjabQJGyIfhLu+E/q0fSWHPJKp8/56fKkG8C+MdMxOeqUY+a7P/lJM/vxbJ+1m6GLv3iv3LeP6tdu3YxfPhwAGbPnk3v3r3/a+cWBIHo2684tv48p7ZexqATryWVk5L6navR5ptGhP7Bf+nvlNVq4/jGi6yfs5esVPGaLFktkgFzuhBZNvRPn5vwIoWlIzcUgOHCpYIZvqQ3kWU+bnUKgsC5vTf56bvt5GbpUDgo6DWmJR0GNvwIjF86fI+lY7eQm52PUmVP/2ntadaj+gesz9l9t1g2YTv6PCMu7k6MXNidKu9ZOTy8/pK5wzeRkZyDUm3P0NkdqS/575iMFn6dc4BDkrdU+ZpFGLuwG64eTlgtVtYsPsau38Vrs2zVwoxf1A1XdydSk7KZMWwTz58kii7Ko5vRpkc1zGYrS2fs46jkzVWveWmGTWmDnULOkln7OSqNrzdsUYZhE1uRm2tg9IC1PJPAy6CxzWjRviLHDt5l6bxDWCw2oooHMP2HLmhz9Aztv4bkpBw0GhVTZnckqJAnI4Zu4HlMCvYOdoyb0IpiJQIZMWLTuymsSW1w93Bi8ND1ZGXn4+0tjpbfvBPLL7+dQRCgepUIBn1Tn2lz9/MsJhkHBwWTxrQgMTWHaT+Ivl61qkbSpW1FxszaTVZOPr7eGiYNb86P687x5Ln4nImDm3Ls0lMu3hTB0rDedXn0Kpnjl8Th5AFdavIsNpUzN0QB9LddanL53ivuPEvAXmHH0G612XryDnGp2bg5q+nbpgorpPiHYiE+lCjszxpp1Lx97VLcfZXIi8QMnNVKOtUpzZoTN7DaBKoVK4TWZOJadBwqewXtqpdk88W7YnuqWCiv07KIzxCFyWXDAzhyT/y7bVG+KEfvR2Ox2SgfFsCbrBzScnX4u2lw06i5GyfmWZUJCeDii1iQiYzOW6BTLSyYK69Fe4MKhQK5nZiITRAoHeDHo9RULDYbJfx8eJKeilUQKO7rw+P0VASguI83j9LTEBAo5uPNk4wPgY5cBoGurrzWZuNor0DloCBNr8Pb0Ykskx6zzUohV1fi8kSgE6gRQY+D3A6lvR1ZJj3e6nfeOW9bV/Z2cpQKOXkWA14qJzLeAzpZpnyc7R3QW40ICAWMjtrODisWbIKNKI3v/5vMzrx585g5cybBwcF06tSJMWPG4ODwaQfVV69ekZycTOPG71gNpVJJnTp1uHz58mfBzvfff8/06dM/erxi2RBaNCrF6fNPC9pX40c0Qy6XM3/JUcxmK1UqhdOkYUmSkrJZ85ZtGVAPby8Nt2+/5tixB8hkMGp0OHJo3wAAIABJREFUMxwcFNy4/pIzp0UjwpFjmmOnkBP7Ko0dm8VdxeCRTXF0UmK12goiIZq0KEOpsuLY8rUL0Vy/FINCIWfw2HeOw5t+O0dWRh5BIZ6061614DNsW32erIw8Agt50rr7OwHvk3tvuHD8ITKZjL5/mLLauvIMRr2ZqNLB1PhD9MPu30XhcWgRP+q0/FCoaTSY2btWpOy7DmzwyR38W1anRa8aqNSf/n88IrUBm/f8OFX6/bogjaLWbvPXfjl5Ofm8iU4CoFjlfyYMNhnEeAd75X/ncpDL5QyY250xzb7n0OozlK5VjLod/1pc/W/rwoUL9OjRA0EQ+Pbbb5kwYcJ/5bypcRmc3naZk5svESd9twDBRfxp1a8BDbvX+Md6HHhrLviQ1dN28vqxmLYcEO5D3+kdqd6i3J/+TZiMZnYsP8bWxYcxGy0o1fb0Ht+GtgMafATMQUwpXzF+K5cOiZuKiNLBjFra56NcK73OyC9TdnFcmvyLLB3M2OW9P/DOMeQb+Xnqbo5vE9nSklUKM3ZZL7ylNqzNZmPHL2dYLzEpwRE+TPyxNyGR4mYuJSGLOUM3En0/DplMRrdBDeg+WARcWem5zB21lfvXxRZFx69q88UIcbNx7/pL5ozeQk5WPq7ujny3oBtlKoeTkZbLrFFbeHJPytIa3pgOvWuQnalj5phtPLr3RszKGtqIDj2r8/xpEtNGbyU9NRdnFxWT53amVPkQfl12gp3S5GSdBsUZPak1d2/HMmfqbvLzTQQEujNrflcMRjODvllDRnoebm6OzJjTCbmdjEED15GVpcPT05lZszuRnJLNiFGbMZksRBT2Ycb0DmzZcY19Um5Z21blad2iLCMnbCM5VYuri5pZk9ty6sIz9hwWj+nQqjwVyoQwasZODEYLkWE+DO9Xn1nLj5CYkoOrRs2koc35fdcVHsUk4WCvYMI3jTh4/hE3H4qtqJFf1OfE1afceSoCm+E967Lr9F1exGfgqHJgaLda/LL3CpnafAK8XelYvwyLd5wXR9mLFcLD1ZEdZyW2qFF5Ttx9TlKmtiDn6ncp56phuUiep2bwMjkTZ5UDjSsUYbMU6NmoTCR3XieSptUR4K4hxM+dU49EJ+Tm5aI4eO+pCP6KhPAwMYUcvYFQL3fkChmPE1PRKB0o7OfJ1Vdx2MllVClciAsS0KkeFsxlCehUCg0sSC4vF+TPncQkBKBUgA8PUlIQgJL+vjxIFX8u4evDo7RUBASKvgd0Ijw8iM5MRyGX4a1x4k1uDhqlErlcKBAgpxnysQpWQlzdeJOXDQgEaN6NlMvlMnLNRnyl5HIx9kEEOio7MfYh32LEW+VMukn8vadS1O242CvJsxoQwY+KLLMOR4UCs2BGwIaHgyPPs/8fzMYaNmwY5cuXx93dnevXrzNhwgRevXrFb7/99snjk5PFD+nr+6GDrq+v70fan/drwoQJjBw5suDfWq2W4OBghvVvQI5Wz9KfpemoLtUoHObDnv23efg4AbXagZFDxKymxUuPif45pYNp3rQMRqOZJYvF0cfWrctTokSQGNS5SHysXYdKRBbxEyetFh7BarVRtUYk1WuJOoJDe27xIiYFZ42KvlLryWSy8MviYwC0716N4FCRzYiPTWevtBh9M6oZ9pK9f3JCFnskB+V+o5oWPC4IAr9J76NR2/KER71jzlISsjgi5XN9MaLJBzeW3Ox89q0T2aweQxp9BGZO7LhOToYO3yB36nxiAiv63hse33qFwt6Olr0+LTp+/jCOl48SUDjY0UBivT5V2sy8Aqamxl946wC8eiS2E7wD3QtGef9uKaWcI6PE8Pw3qnStorQf3ITdK46xYMAqnFxUVGpc5q+f+A/ryZMntGnTBqPRSJs2bVi+fPl/NFGWk57LpQO3OLvjKvcvPC0IN3VQ2VO9ZXmafVGXMnWK/evXeHbrJaun7eL+RbFF5OzmSI+xrWjZt95fBrbeu/CU5WM2Ef9cNG0sX684Qxf0xO8TrJ8gCFzYf5sfJ2xDm5mHnUJOtxHN6TK0yUc2CU9uvWL+0A0kSRESnQY2oOeo5h+8n+cP4pg7ZD0JL0Whcrehjek+7B3zmZ2Rx4JRW7h1Xvxc9duWZ/DMDgWt0RvnnjJ/9FZys/NF750FXalURxTRP7n7htnDN5GRokXt6MCIOR2p1aSUGCWx7iKrJfBUuJg/U5b0wDfAnWcP4pk5cgvpqVqcNSrGz+tMxRqRooHgqK2kpeTg5KxiwpyOVKoRydnjD1k0Y58kRPZi2sJuuHk4MW2sGP0A0LNvbXp+VYu9O26wcsVJ0bG8XCGmzu7Ig/txfD9rPwaDmZBQL2bN7UxMjBjmaTRaCAv3Ztasjpw9/4xVEntTpXJhRo9syvwlR7l646XIrHxdj8hIP4aM3UxenpHAADdmTmrHbxsvcum6eL0P+qouakcHJs7bh80mUKlsKD3aV+K7H/aRrdXj7+PK2G8as+D3U8QlZaFxUvHdwMas3nVFNAtU2TOmb0PWH7zBy/gMnNQOjOhVj193XyYlMxdPVye+bl+VpdsvoDOYiAz2pk75wizdKW7k6leIRG+ycPT6M+zkMr5sUZkd5++Tnacn2NuVikWDC3KuWlcrwdWYNyRn5eLl4kjlooXYdVW0AWhVqRhnH71EqzcS7uuBxknJ5eg32NvJaVg6kgN3RfapbvFwrr6KQy9lW+WaTSSkafFwUuPnpuFOXBIOdnLKhARw6aV4n6sqAR0BqBIaxLU4cf0rHxzArQSxvVw60Jd7yckIQGl/X+5/Euh48TQjDZkMQt3ceZ4ltqvcHFUk5uXirlJhwkquyUSAxoVEnShAfh/o+DlrSNRpcba3x4INncWEn5OGFCkW4m3sg1qhQJBZMVgt+KidSZMYH3elkmyzHjcHFVqLHhDwVKnINufjpLDHKBjF4xxEAbNG8e8Y+P862Jk2bdonWZT368aNG1SsWJERI0YUPFa6dGnc3d3p2LEj8+bNw9Pz85Mxf1xoBUH408VXqVSiVH78BXl7ali28jQ5Wj1hIV706FyVlFQtv0qBk/2/rIOvjwsnTj7k5q1X2NvbMXKE6J+zaeNlEhKy8PR0pu/XdQHYtP4SyUnZeHtr+OIrMb/p1PGH3L/zBqVSUZBonpWpY81KUSj3xYB6uElagD2br5IUn4WHlzPdvqpV8D5XLT2O1Wqjco1IKr0XubBm6XHREblyOFXqvBNjXj37lEe3Y1Gq7On1nrEgwJafT2MxWylTtTBlq37IgOxZc4H8PIMoPG78IeNjtVjZtVpcDNp/XeeTu+i3o+S1Wpb9rKPtCWlXXK1xqQ80EH+sG6ceYbMJhBYL+OTN7I/16rF4sYeX+HtGgu+XozRWr88z/OPn/ll9PbsrSa/TuHLwNpM7LObLaR3pPLLFfwRG3q/ExESaNm1KVlYWVatWZfPmzf/KNFCbmceVg7c5t+sad84+xma1FfyudK2iNOxeg5ptKv3tOIdPVfzzZNbO2sPFfWK7xV6poHW/BnQd2QyN+5/r9LLTtKyaupNT20XA7+7jQv+Znanb/tOi9czUHH6asI1LUlxBaLEARi3rQ8QfTCbNJgublxxl+wpxmsgn0J3RS3tRquq7NqjNZmPv6nOsmXsQi9mKp58rY5f2/ECo/OD6C+YNE8GKUmXPt9Pa0biT+N6sFisblp1gm2QMGlkqiInLe+Eb6I4gCBzacpWVcw9hMVsJDvdm8vKeBIf7YMg3sXjaHs4dEZmFt/ocpcqeY3tusWK2ONZdKNybqUt6EBjiKQKaaXsxGs0EhXgybVF3Agt5su6XM2yWrt3KNSIZP6s92hw9w/uvIfZlGg4OCsZMbk2NukVZtuAoh6Rx82atyjJ4ZFP27LzBb7+KAKZCpTAmTW3LoUP3WPWruIZVrhzOhO9a8dvv5zkofedtWpena5eqjJ+yi5gXYrzEpLGtMJjMjJbiIEoWC2TMsCZ8v+z/Y+8sw6O6263/G5e4G0lIIEgI7u5Q3J0KtJQWdwq0eKG0SHmowdNSWtwprkVb3N1D3G0yLvv9sDcDKVA7PXad9/7ElUwmk5D577XXvWQ/t++lo1YpmDa2PfcTs/niB/EMbt8igfq1Yt0ZOuXLhDCkfyNmfrGX/EIToUHejBvcgkWrjpCRY3CHBS5dd5ysvGKC/Dx4r08jPl97nCKjhahQP3q0qspna4+KWprypYiNDODfu8W/rR7NqnA3OZvrjzPQqJQMal+bHw5dwGS1UyEyiFLBfmz7RQQzfZpVZf+le+QbzUQF+VImIoA9F0UA83yhZ6XIYOyCiytP0tGrVTSsEM3eqyIoblO5LD/ffYzd6aRKZAipRQZyik2E+Xii12m4mS62lZcNC+TckxQUMhk1osI5IwGd2qUjOJucggDUigrnQkoaAoLI7qRL7M4rgE65oADu5OaglMkI9/bmcUG+uK7SqMg0FROg12N0WLE4HUR6+5AkraueAh2ZDIL0HmSYDHirNVhddqwuh5vFES3nIrvjoVLhwIHd9QzoyAEvtZoiuxk/tZ5ChyhQDtBqRFCjUmN2iSyPr0pHkd2Mp1KFYP975/Q/DnZGjBhB3759f/cxr7LC1qsnrmcePHjwUrDzVNuTkZFBWNizGoSsrKwX2J4/M+cvPnJ3X00e0w6lUs6SLw5iNttIiI+gS8fqFBaa+OobUbj8+oCGRJbyJ/FxNhslunvkyDZ4eGh4kpjNpg3Sqmp0G3R6NcUGC8ulTJ2BgxoTKtHdK786grHYStlyoXToKobp5WYbWCe5Ot4Z2Rq9dEd46exDzhwXw6yGjH3WCH7rahLHD4hrqncnvOY+9J0OJysldqjrwAYEPZd6nJqYwyFph//GqJLiVUOhiR2SrbT/8BeFx78cuE5GUi7efnravESLk59t4PgukYLuMrjpC58H8eJyTGotbt273ksf83RO7xcP+d9mnrxqngbCxST8de2IXnKiGQ3mv/y1vzcKhZypPwzj6wlr2Pv9MVbO2Mytcw94/9MBhEYH/fET/M4UFRXRvn17kpKSiIuLY9euXej1f26lJAgCj64nceHQdS4cvs7N0/dxOpzuz5etGk2T7nVo1qseIVF/DDR/bzKScli/cDeH1v2Ky+lCJpPRql99Xv+gyx9a/Z1OF/t+OMGqeTsoLjAhk8noMKgpb03riudL1meCIHB06zm++WgLhnwjCqWcPqNeo8/oti84Cp/cS2fh6NU8uC7+3bToXov35/Qs8bz52QYWj1/LhWPiBax+mwTGfNYPbwmkO50uNn39M2s+P4DLJRBZJpipX7xOaSkmIi+riAXj1nHtrLia6jSwAe980BG1RonFZOOLWTs4slN8zzRqm8DYj3ui99CQlpTL7DGifVyhlDN0Ugc69a2Lw+Hki3m72L1RZGYbNK/I+Lnd0erUrFx2iI2ScaBWg7JMmdcTuVzOnMmb+FV6/T0H1mfwiFbcvJbMnKlbKCww4R/oyawFfQgr5cfU8eu5fCERmQzeHdGKzt1r8a8lB9gvuas6d63Bu++15MsvD7kdV9261eSNNxvz8fydnJes6sPea0mVqlGMGLeG7BwDvj56Pp7ZnYtXnvDdavE1Nm1Untf71mPynG2kZxbi7aVl9uTO7D5yg0MnROHuW73r4+uj46NFYg9W/RoxtGuRwNRFO7FYHZSLCWZQz3rM/no/BqMYHjikd0N3WGDpcH/6ta/Jgu8PY7U7qVQmlAbVYlm0/pj4f14zDoVazqaj4s8yqEMdjl55yOP0PLz1Gvq0qs6/950VQVFcBGq1kkOXRQfWgJY12HjqGmabnYqlgvHy1PCzJEzuXj+BLWeu43QJ1C5bigxDMUk5BfjptSREh3LwhshgvVatHAdu3MclCNQpU4rbGdkUWayUDvDFicCDrFx89VrC/Ly4kpKORqGgUngI55NSkcmgRlQ455NTEYCakc+ATrXngE5CWLB7dRUfEsTN7CzkMijt78+9vFw0CgWBHh4kFRXirdEgU0Cu2USIhyd5NiM2l4toH1+eGEQWJ8rHh6TiApRy0WmVZRadVgaHFYfgJMLTmzTJlRWk15NjMeKtVmN22XAKTjfQUchkeKgUFDss+Gv0FEhOLH8J6PiotRidIsvjq9JhcJjwUmmwuMw4nM/0t39l/nGwExgYSGDg3zsgL18W3/jPA5nnJyYmhtDQUA4dOkT16mL7sM1m4/jx4yxYsOAvf79lK8S7rZ5dalKxfBhHjt3izLmHqFQKJo55DblcxtfLf6aw0ExM6SD69K6LyyWwZMl+HA4XDRrE0ahxOTFnZ/F+nE4X9RvG0VBaVX2/4hgF+UYiowPo0Ve8uN++kcKBPeKba/j4Z105331xGIvZTsXKpWjRThT+Op0uViwWgUunXrWJihEvkIIg8N0S0VLZukt1Yss/+30d2nmZ5MdigGDvwSXbwdd9JabQ1m5SnvjqJYWcu9ecljqqQl9gdQRBYIuUxNrpFVqcAxvP4LA7qVAjmvKvaBq/fPIuRflG/IK9qdH01Tk4TqeLKyfFA7pu6xdF0C+b5AfiijO6/F+ve/CR1l656X9P5f97o9aoGL1sEGWrlearCas5s+cyFw/foMfI1+j0bgsCw/962J/NZqNHjx5cvXqV4OBg9u/f/7vvOUEQSH2Qyc3T97h26g6XjtwgL7OwxGNiEiJp2qMuTbrVJqLsnzMM/N5kp+SxYfEeDqw5hcMuAqk6baoweEYPSsdH/OHX3zz7gK8+WM/D66ImoUzlSEYtGkj5GjEv/35p+XwxeT3npCThMpUjGbtkIGV+04DucrnYufIEK+eLQYJevnpGftKHxh1LtpmfP3qLJRPWk59tQK1R8e70rrQf+EyonJtZyGfj1nH1tBjQ17JbTYbP7u5eW10984AFY9eRn1OMzkPN6I970rSDuI5NeZzNx1IWjlwhZ9C4tvQY1BiZTMbZ43f4bMpmig0W/AI9+XBxfypVjyYvx8DHEzZy8/ITZDIZA99vTr8hTTEZrcwYu47zkuur15sNGTS8FVnphcwYv54nj7JRqRSMntqR1h2rsWfHJb5YKK7V4yqEMWtBb0xmGyOHrCQtJR+dTs2UmV2JTyjFBxPWc03SA70/ohUtWycwbdpmrlx5IvZeDWtFvfplGT1uLU+e5Iji5CmdUCgVjJqwDrPZRlSkP3Ond2ft5rPsPywxIt1rU79uGcZ8uAlDsYXwUB9mTOjEVz8e58pNsWdrwtBWPEnLY8l34pq+c+sqxMWGMP3zPSI4qBpN2ybxTF+2R3RtxYXRqUVlZi/fj83upHJcOM3qlOWT7w+LmTpVShMR5sfyHaJesHuzKqTkFnL2ithyPrRzfTYdv0p2gZEQP0/a1q3Aij1ScnvVMmQXGbnwMBWtSknvZlVZc/yyCILKRmBxODh7XxQmt69Zwd1z1TQ+hlvpWWQVGQn19aJUoA8n7iYil0OrynHsuy6KlBuXj+b8k1TMdgflQwPJM5vJMoiJxx56DbcyxLby0oF+XEpJQ6mQEx8WzMWUNOQyqBwRKq2uBKqEh3AlXdIuhgRxI0sEN2UCA7iVnY1KISfMx4uHBXl4qFR4So3mfjodNsFBsdVGuJe4gnIIAqV9fEmUgE6kJEZWyRV4aJTkWEwEaHUU2M04BZcb6IjZOTpyrSZ8NRqKHRZcuNxARyWXoVHIMTqsBGj15NtEoOOrUVFkN+Gr1lIsAR0flRaDQ9TymF3ix8p4BXPuD0+QF+e/TbNz+vRpzpw5Q/PmzfHx8eH8+fOMHTuWzp07ExX17GJZoUIF5s+fT7du3ZDJZIwZM4Z58+YRFxdHXFwc8+bNQ6/X079//7/8GrJziomKDGXw640oLDKzTLKeD+xbn+ioQC5dSuTgoRuiAHnsa6hUCvbsucKNGylotSpGjmqDTCbj4P5rXLsqtpyPGCWKp+/fTWe3xGKMGt8OlUqB0+nii0WilqZNh6pUqiIexLevp3BEaj4eNuFZYebBnZd5/CATT28dA95t5n7dZ4/f5eblJ6g1yhL9VzarnTWS5b3vkGYlUo+TH2VxTAJZr/+G1bGYbW5Wp8/Q5i+wOjcvJHL/egpqjfKlWhyXy8UBSVPUfsCrAwJPSMxP4w7VXtlODaL+xlhkRu+lpWyVP7eWehoM+Hvpuq+a6AoiQEq8lfqHK9G/Ox3ebk583bJ8M3kdV47fYsPCXWxYuIv4emVp3K0OjbvWJijij4GPIAi88847HD58GA8PD/bu3UtsbGyJx+RnFvL4VgoPrz3h1un73Dxzn8IcQ4nHaD00VG1SkVqtKlOzVWUiyvx1ZvRlk5OWz6bP97HvhxPYbQ4AqjeryOsfdCH+T7jk8jILWTl7G4c3ihc5Tx89b0ztQoc3m7x0depyudj74ylWzt2BudiCUq2k/7h29Br+YoVJZnIui8et5ZoUUVCrWUXGLOxPwHPsp9ViY+W8XeyUzAilK4TxwbI3iH7uhuL8sdssmriBwlwjWr2aYbO60VrSnzmdLjZ+/TNrl4mrsdLlQpm2bCClYoMBOHngOkumbcVstOIX6MUHi/pSpU4sTqeLNV8dZr10U1GxahQfLu5HQLA3t68l8/H4DeRkFaH31DB5Xi/qNi1P0uNsZo5bT2pSLhqNirHTu9D8tcpcOf+YuVM2Yyg04x/gyfTP+hBXMYwvF+3nJykXp2mreMZP68z1K0l8PGMbxmIrIaE+zF7QG4VSzoj3V5GeVoBer+bDGd0Ii/BlxIgfSE3JFz/2YRc8vXUMH/UjBQUmAgI8+Xh2T27eSWPZN6Lep3rVKCaNbc+nS/dxSRJLj36/FR6eGibM2ILd4aRS+TDGvtea2Z/v4UlKHnqdmhnjOnDgxC2O/CKuet7t3wizzcFn34oseftmlYiJDGDO1/sQBGhSqwwJ5SOY/51Ya9GkRizRpQKehQU2jsfsdLLxsHj+DO5Ul19uPOZOUhY6jYp3OtVzpyLHhPpRo0IkPxwS870614/n2pMMHmeIbE/HevGs+lk81xtXiiE5r4DHWfl46dQ0TSjD1rMioGtTLY7TD5IoMlspHeSLh07D+UcpLxR6togvw/EHj3E4XVSJDOVJXgEFUs2DSy7wMCcPP72OQE89N9Iz0SmVRAf5cTU9A5VcTlxIIFfSMlDKZcSFBHItMxOFXEaZwABu52SjksuJ9PPhXm4uWqUSf08dTwoL8FFrUCjlZBqNBHnoMTismB0OyV1VgAuI8fXlcZEIdEp5e5NSXIhOqUSpkFNgtRCk05NtFZ1UT4GOQibDS8rOCZCcVGJIoAh0tHIFMrmA2WkjQOtBvs2IDAEvtZJihwU/jcjigICXUkOxw4yPSoNJAjoeShWJhv9lAmWNRsPGjRuZNWsWVquV6OhohgwZwqRJk0o87u7duxQWPrsLnTRpEmazmWHDhrlDBQ8ePPiXM3aezsRRbdFp1Xz+xR4KCk2Ujg6kf+96WK12liwVWZXOnWoQHx9BQYHJvaceNKgJwcHeGAxmVkj7+IFvNiIk1AeXS2DZIrH/pXnrSu728gO7r3D/Tjp6Dw1vD3saFCjw1UIxf6dNp2qUixcvvCajlR+k5x0wpCneEr3udDhZuVRkdboOqE9gyLMMl72bz5OTWUhgiA8d+5RcNa376mcxTr1lPHGVSt5ZH9h8nqJ8I6GR/jRu92II4LbvxP15y+61Sljbn86VU/fJSM7Fw1tL45cIl0EEYqcPiICucafqL33M07kq2YkT6pV96QXut+OwO9ysTEipvw52osqHI5fLKMorJi+zkIDQP9/d9FcmJiGST3ZP4vTuS2z51z5unr7PrTMPuHXmAcsnr6N8rVhiEyIJiw0hPDaY8NhgAsP9UT4nlJ05azqrV69GoVDwyYcLKbhvYfPJvWSn5JF4K4XEWykvABsAlUZF+ZoxVKofR43mCcTXj/tH050zk3LZvHQfB9accoOcyg3L8caUrlRu+PK6kOfHbnOw898/s/az3ZiKLWLWzoCGvPVht1cKzpPvZ7B0wlpunhXZlfI1SjN28UA3eH06giCwf91p/j17O2ajFY1OzTsfdaHD641KANtHt1L5dNRqntwTD9Mug5owaEpHNFq1+zX+sGgfW6X+udiK4Ux5Dsjk5xj4bPwGLkuC39bdazFsZle0OjUOu5OVi/axXTIAJNSKYcqivvgHe1OYb2TBB5u49KsIwjr3q8eQie1QKhXs2Xyerz/Zg8Mh6nOmL+lPqdKB/HrsDp9N34bJaCU41IcZi8SgwJ82nuWbJQdwOQXKxYcz47M+qDVKpo5ZxxWpquKtoc3o+0bDEkLkhCqRTJ/Xk/v3Mpg7awcmo5XQMF/mzu9Ffr6RkSN+xGCwEBLiw9yPe/I4MYfps7djtzspWzaE2bO6s3nrebZKmqx2bSrTr3c9Js/YwpPkXHQ6FTMmd+ZBYjaLl4ugpWmDcvTuUpOJH28jL99IUIAn08d2YMX6U1y7nYpSKWfS0Dacv5nEgZPSaqt7XUw2O1+sk/SDrauiVCn4coNUKNyyClaHkx93i6DujY61uZmYwfnbye6wwC3Hr5GaU4ifl47+bWry9c7T2B1OqpYJIyTQmy0nxXOqf4tqHLrygKyCYoJ9PGhQOYY1x5/WP1TgwqMUMgvFzyVEh7HrgvgaO9euyIHr97HYHcSXCsbicHAjJRMvrZoqpcNKFHoevvMAQYDaMaW4kZ6JyWanbHAABVYL2UVGQr08UasU3M/OxVurIcjHk9tZ2ehVSiL8fLiZmYVGoSAq0IdbWdloFAoi/Ly5m5uDTqkk0MuDh/n5eKpV6LUiixOg1WHHRZ7ZTLiX6K6yuZyU9vUl0ZCPAJSWgI4MgVAvT1KNRXioVAgyQWwpl+ofQCBc6rxSyeXoVEqK7BYCdXryJKdVkM6DbGsxOoUSASc2l4NAKVtHIQOdSoHJacVfo6fIIYIjT6Uak9OCn1pLsdOEDNAplVj0gcWjAAAgAElEQVRcVkrp/H7/MHnF/LeBnRo1anDmzJk/fNxTN8jTkclkzJw5k5kzZ/6HX0PblpWoUS2aS1eecOCwyOBMHC0yOCtX/UJqmiRAltZBy5f/jMFgoWzZELpJLd8r/32cggIT0aUD6SFpWQ7uu8rtm6Kb693hYnu5ocjMSgm8vDmkKX7+Img4svcq926lofdQM+g5lmbzD6fIzy0mPNKfTr2euZYO77pC0qNsvHx09B70TMRsMdnYIBUQ9h/arMSF7MmDTI5LzNFAqU396TjsTjeY6fkS4XHakxzOHBJTPrs+9/2enwNSIWqLbrVeaTe/fPIuJoOFgBAf4mu9fBXxdK5JzdZVGvzxRRLEEDiXS0ClVuIX8tcD/DQ6NeFlQki5n8Gj68n/aWAHxL/fBp1q0qBTTXLS8ji14wIntp/n1pn73L3wyN0O/rJJst/hjk0kcCso6rJr7ml2cfql3yO8TDCl4yOpWKcMleqXo2y16P+U6oq0x1lsXLKXw+tPu3U/CfXjGPhBZ6o2rvCHLJkgCJw7eJ0VH20i9ZHYeRNXLZoRn/Z/5crKYXey+cuDrF+yD7vVgVav4a2pnek4qOkLjGFOegFLJ23gwlEx/bdSnVjGLRpAeMwzzZTL5eKnlSdY+ckuHDYnfkFejFvUn1rNKj77ORNz+GT0Gu5LGp9Orzfgnamd3L/Tq2cesGCcuPbS6FQMn9mN1tIZkZ1ewPxx67l9JQmAnm834a0xopPr3s0U5o5dT1Z6ARqtitEzutKiYzVsVjtLZu7goKSxa9gynnGzu6HTq/nh659ZJ0U8VK4RzYcLeqP31LJk7k4O7JQCB9tXYczUTqSl5jFz2CbSUvPR6lR8MLMbteuX5fNP97Jvl/jYth2qMnL8a+zddYWvvxTBT+Uqkcyc04NTp+6xdOkBnE4X8fERzJrdnd17rrDqR5EJbtggjrGj27Jw6QF+ldyTQ95qQtWqUYyatE7M2QnwZO5H3dix/yp7D4tBhn271aZyfATjZonW8tjoQMYPbcX8rw6I4YF6DdNGtWPj3ktcuimlLw9qzvmbSRw9J4LJoX0acT85myNnxfNiSI8GXHuQxpnrichlMob1bsS+s7e5n5yDXqvive4N+W7PWQqKzUQE+dC+fkW+3PELggCNq8Riczk4cEF0YL3euhZbTl3DYLYSE+JHmcggtp0WWZueDatw8No9Ck0WooP8CPXz4sj1B8hlMjrXqcjOS7dxugRqxZYirbCI1PwiAj31RIf4cer+E+RyaFYx1t1z1SgumjOJKdidJZvLo/x9sDmcJOWLreRarYoHOSLo8fPQcS8nFw+1miBvPfdyctGrVAR46XmYn4+XRo2HRk1SYSF+Wi0oIdNYTIiHBwa7DZPdTqSPD6nGQpyCixg/fx4X5SEAMb5iL5ZCJiPAQ0+GqRgfjQaLy4FVKu9Ml4DO039rFQqUChnFDgvB+mfZOoE6D3KsRjyUKuyCTUpDFrN1lHIZGgVYnDYCNHoKHUbkgFahwuy04qfRUuwwIQfUCjlWlw1flZbMopzfPVNeNf/tOTv/nfP2642x2RwsWSYyJV06VKdSfARJyblseCpAHt4KTw8t168nc1DK1Bkt9UHdv5fB7p3iYTRyTFtUKgXGYgvffS2yP68PbkxgkHhXumblSYoKzUTHBNJJqm2wmG18L62d+g1ugn+gCIBysorYKlnK3xnVxm0pt1rsrJYAU9+3m+L5nDtm18azFOQZCSvlT5uuJXNpNq44hiAINGxdidgKJfVQJ/ZeJSutAN8AT1r3eDGleM+aXxEEgVpNyxNV9sVVh6HAxGlJJ9Gmz6tFx2ektNYG7ar+bsKuIAjcke5AK9X9c3k5hnwjAN7+nn85vffpxNctS8r9DM4dvEbtP6kT+o9OYLg/XYe1oeuwNuSm53P52C3SHmaS/jiLtEdZpD/Kwm53YCoyk+VIcgOdMqqqlA+qgn+IL/6hvviH+hAQ7kdU+XBiKpUisnz4PxaQ+Kp5dD2ZTUv3cWLHBbd7q1rTivSf2PGlNQ0vmyd301j+4SYuSUDEL9ibt6Z1pXW/Bq/8f7x94RH/mrCORCm9uVbzeEZ82s9d0fB0BEHg563n+WbGVooLzag0St6a3JEub5dM9c5Oy2fRuHVcldiYuq0qMeazfm4GUxAEjmy/yFczRFbI00fHmE9607DtM13dhq+OsE5iSKLjQpiydCDRceJ75cLJu3w2aRNFBSY8vLSMm9eTBq0qIQgC+7ac56v5u7HbHIRHBfDh4v7Elg8lK72AOeM3cP9mKnK5jDdHtKL34MYYiy3MGLuec6fEi3uXPnV5d2xbCgtMTBy6ijs3xMe/PbIVPQbU59cTd/l09k+YTTZCwnyZ/WlvfAM8mTRqDTeuiVqcIcNb0rl7Lb5YepC9UjJz23ZVGDmmLSu/O87WrSJD0rJlPKNGt2XpsoPujqtePevQtUsNJn64mYePslCpFEyZ0AGAsR9swGZ3UjY2mA8ndmTpv49w6Zq4yho1pAUuAaYt+AlBgDrVS9Ov6zNreUigF5OHtWXpj8d4nJyLXqtiyvtt2bj/EtfvpaFSKhg/qAX7frnNlbupKBVyxrzejJ0nbnA3MQuNWsnIvo35cf8FMnIN+HvreatjHb7cLoYFVogKpkpcBCt2i87Qjg3ieZiRy60nmWhVSvq3qsHqIxexOcRUZA8PDQcv30Muk9GnSVW2nb2Bxe6gYqlgFAq5WP+gVPBajfJsvyD+bhpXKM311EzyjWYi/Lzx8dRyITEVtUJOvbgojtwRb2qaVYjh+P1EXIJA9ahwbmdlY7bbiQsOIMdoIt8kFnfacZFcUEiAhx61SkFivih41mlUPM7Px0enQatWkVRYiL9OBwoZ6cXFBHnoMbvsGMw2Iry8yTYbsTmdlPYT28oFBGL8/NxAJ9rHh8dF+agVCrykFnN/rQ6Dw4Ld5ST8OQFyiMTu6FUqBFyYnDZC9J5kW0Ug5K992mIusjQCgjtEUK2QoZAJWF0OArR6Cu1GFDIZarkIavw1olZHIQOlXIZdsOOr1mJ0mFDL/x5s+T8Ndry8tKzbdIbk1Dz8/Tx4Z1BTUWz8r4M4HC7q1I6lcaPyOJ0ulkorrfbtqxEfHyGuqj4/gCBA85bxVJMEv2tWnaIg30ipSH+6SkxPSlIuO6Vd+dDRbVBK7MnWtafJzTYQEu5L1+fay1d/cxSr1U6lqlE0aP5MyLt74zlyMosICvWhU99nayqT0cpmycnV/73mJbQKaUm5HJe0On2ljq2nIwiC207e+Y2GL9z5W8w2Dkqvu9MrcnNO7rmC3eqgdIUwylR6ufDU5XJxVhIn1m/7+0AiKznPnYsSG//nnFVPLeM6z79/gW/cuSYH15zi1M6LvPdJv9/VFP1nTECYH636vfg7ttsc/PrLL7zWXgyGHDx4MF9/9c1/ecEoiH8v107dZdPSfVw8ctP98dqtEug3sRPxfzLMsSDHwNrPdrFn1QlcThcqtZJu77Wiz9h2r+w0Ky408f3HP7Fv9SkEQcDb35Ohs3vQvEedF9ij3IxC/vXBBs5J5ZpxVaOY8PlAouJKCq+P/XSRL6dtobjIjEanZsiHXUqIkI1FZr6Yvo1jkmOqct1YJi7u7w4RzM0s5LMJG7gqtYi36Vmb96d3QatT43Q4WfPFETZIERNl48OZ+vkAwiL9sZhtfDF3J4el563XrAITPu6Jp7eOy2cf8snkTRTmm/Dy0TFlQW9q1C/Lk0dZzBq/gVSpK2vU1E607liNW9eSmTNpE3m5xXh6a5k6ryfVa8eyduVJfpTYn6o1S/Ph3B5kZxUx4u3vyMosQu+hYdqsbpSvGO4WIstkMOS9FrTrUJWZM7dxXgo4fGtQY9q3r8rkKZu4fScNhULO6FFtKFsmhOFj15CXb8TPV8+c6d24fC2Zb6XG+QZ1y/DOm034aMFPJKXkodOpmD6+ExevP2Hzbimnpk0ValaJYtL87dhsDsrFhjB0YGPmfrWfnHwjgX6eTHy3FcvWHCc5Ix8vDw0TBrfiu+2neZIuMkBjBzbj3ztOk55ThJ+XjqE9G7Jsy0kMJitRoX50bFyJzzcfF8tBK0Xj7alj41ER2PVvVZ0TNx6TnF2Ar4eWLo0S+P7geVyCQP2K0RRarfx65wkalYLuDSqz8derbpdVbrGJh6l57vqHny6KQKd1lThO3UsUV1IhAThlAjfTxJqISpEhHL+fCDJoVj6Go1L9Q73YSM4np+JwuUgIC+FxXh5Gm52YAD/yrWJzeYSPNxaXg7QiAyFeHjhlAqlFRQR56nEikFFcTIinB2ang0KTlXBvL/KsJswOB9E+vqQairALTsr4+/OwMA8QiPXz41FRPgClvL15YhB1ORqVnDyrmSC9nlyLCReiADnV7bQSyz291GqsLjsOwUmohydZFrHc00cjpiH7qjUYpOycp6srrUKBIHNgF5xuoKOSyZHLBGwuuxvoqORyZDIXDsGBr0qD0WFCq5CjVJbc9vzZ+T8NdlJS81grMTgj3muJp4eGIz/f5PKVJ2ID+UhRgLx923keP8rGy1vL21LVw+GD17klraqGvi+un5Kf5LJdCux7f3QbVBLoWLHsEE6ni7oN4qglsRV5OcVs+lHc3w8e3hK1lN6b+DCLg5KQ950xbZ4dvAYLG6R10+vvtyhxsdu5/gxFBSYiogNo0aGkVXvzt8fFYK4m5SkbX1LLcOXXBzy6nYZGp6JDvxdZmRO7r1BcaCY00p+ar3BPHXl65/c7RZ33riSRn21A76Ul4Q/YmntXxdCsmPgI1No/d0E3S/UFuufKTP/qVGtaEU9fPflZRdw8c/9PsxP/2fPo8UO69+yOxWKhY8eOLF++HKXyv/Zt67A7OLXzEtu+Osi9S4kAyOUyGnetTa/Rr1G2ysvdd78dm8XOTyuOsH7JXkwGEaDWb1eVIbN6ES7pXn47giBwatdlvv5wk7tSonXf+rwzvRve/p4vPPbwlnOsmLmN4kIzSrWCAWPb0fO9liVuAAwFJr78cDPHJbBRvpoIhko99xpuX0rk07HryEjOQ66QM3BMG3q/18INgs8fv8PCiRspyhdFyiNmdaOlxKjmZRv4dOIGrkqW8w596/LuBx1Qa1SkJOYwd+w6Eh9kIpfLeGtUG3oOEvvhNnx3nB+/OILLJVC2YjgfLupLaIQfJ4/cYtHM7ZhNNoJDfZi+sC9xFcPZt+MSX0gVD6XLBDNzYV98/T2YO20LpyS7eZdetRk6qjW/nrzHZ1IoYESkP7MX9MbhcDF86PdkZBSK4Gd6FyIjAxg1ajVJT3LRaJRM/qATpSL9GT5yNVnZRXh5aZk5vRuFBjOjJ63DanUQWzqIWR92ZfXG0xyQQHCvrjVp2qg8Yz/aREGhuMqaPbkza3ec56S07hr6emMUSjkzluwWU4RrxorW8oU7MVvtxEYG8m7fBsxbfoACg5nQQG+GD2jC4tVHySs0ERLgxdBeDVmy9hhFRgulQnzp3bY6C9cdxeZwkhAbSrXyEXy5TVy5tatbgdxiMwfOi6uqwe3rsuXUNfIMJsL8vWhUOZZVkjC5Tc1y3E7L5okkPm5T41kqcvOEMtxKzSKjwECgl5746JBn9Q/Vy7P/xn1RcBwVSpbRSHqBgQBPPREB3px5nIxSLqN+2Wg30ClZ6BnOjfRMbE4nFUKDSC4spNhWsrk80tebQruFQouVCB9vCu1WDFYrpXy8ybWYMdntRPv6kmoUW8xjff14XJiPC4Gy/gE8KMwFidF5JK2rgjw8SSkuwkutRpALFNpK6nIivMSVl1wGvlodOVK5p8Eplns+BTpyGXioRPu4/3Mt5gFSP5aYhmxDEFwEaHUU2o1o5ApcOHEILjfQUcsVCDhwCi4R6DjNUmWEDdP/FOv5/6b5csXP2O1OateMoXmTChQbLXy9XBIF969PeJgvubnF/PCDeKcy5J3m+PjoKS628G/pjm3gm43cq6qv/3XQnZRcR+p8unz+MWdO3RdzckY+08usXnEUi9lOhYQId/8VwPcSHd6wRUXin3Mibf3xFwyFZqJig2j5XI2DyWhlq+Qc6T+0RQnNTW5WEYelnX+foc1e+Pm3SWxQ25513Nkhz89eqb+nXb96L2U6MpJyuSUV/zX/nUqHp6xOrWYV/zAl98E1Udfwso6jV83T5ONX6YX+zKjUShp0rMHBNac4sPrU/wiwk5GRwWuvvUZeXh516tRhw4YN/6VApyDHwL5Vx9m98phbAK7WqmgzoBE9RrQhrPSfywoSBIHj28/z/dztZCaJrrkylSN5d3YvqjZ+dQRB2uMsvpq6iYvSmiuiTDCjPu1PlZcInrPT8ln2wUbOSyuWclWjGLd4QAkXFcDFE3dYMmE9uRmFyBVyBoxpS5/hrdzvG6fDyfovDrP+SzGmIaSUH5M/H0DFGqUBkWlbtXg/2yRGNLZiOFOWDqCUpAG6/OsDPp20kYLcYrR6NaNnd6OZZDk/efAGSyRRsV+AJx981oeqtWMpLjKz8KNtnJEASpuuNRg+pSNKpZxv/3WQzZKouUrN0kxb0Bu9h4al83axd7v43m7UoiITZnSlIN/ImHe/5/HDLJRKOSMntqdtx2r8+N1x1koZPDXrxDJtVjeuXUvmk7k7MZvFOog583qSX2Bi2PBVGIosBAZ6MWduD3Jyixk5ejUWi51SpfyZO7sHJ365x7dSbUy92rGMHt6a+Yv3cvVGCgq5jFHvt8LbR8fY6Zux2RzExQYzaWRbPvv6EHcfZqJWKZg8oi3X76axfb8IILq9Vo3oyAA+WrIblyBQu3IU7ZpX4qNle7HZHVSICaF3uxrM/fcBsT4iKojuraow//tD2NwZOjEsWieGHzaqGouXp4bVB0XBdP/W1blwL5W7ydlo1UoGtavDqkPnMVntlIsIJCYigE0npbb2Rgkcv/mY7CIjIb6e1IwrxRYpFbljzQqcvJNIgclCZKAPIX5eHL/9GIVcRrvq5dl9Rax/qFs2krtZOeQbzYT7euGp13A1JQOdSkmVqDBOPEhEABrHRXNSSkWuU7oUF5JSxW6riFBuZ2djczopFxzIk4ICLA6xrTzNKLaYx/j7kmYsxuJwEOPnR7JBBDdlAvx5VJiHSxAo6ye2lQsIxAUEcL9ABDrRvr48LspHJVfgrdOQbhLTks0uO1a7vcS6KsLTm1Sp3FOvUpFvNUuWcxOClJCcZTGglMvRKsXsnACN7ll2jsTyeKlU7pBAEeiY0MqVOASHWAUhAR2NQoFTsCMgSEDHhF6hwoGYpByl+3sZZf+nwc7V68no9Z6MGd4amUzG96tOkpdnpFQpf/r0EtdKy5f/jMlko0KFMNq1F0HG6lWnyM8zEhnlT/eeonj47K8POH/mIUqlnKEjRWu30+li+b9EPVDH7jWJkuofkh5ns18qAB0y+hl7c/NqEmdO3BWzN4Y/A0ZFBSZ2rBWBxxvDS3YA7Vp/BkOhmYjSgTRrX9JJtePHX3DYnVSqWZpK0mH9dJIfZnHhxF1kMhld33qxefzx7TTuXk1GoZTTpufLax2eWsmr1I8rYd/97Vw6Lh7itVrEv/IxTydJcsLEVPzjLJano5Du2p3PJf/+nekwqCkH15zi6OYz9B3XnshyL897+q8Yg8FAhw4dSExMpEyZMuzatQsPj1cnTv+Tc+9yIru+/ZljW89ht4rOKr9gb9oPakqnt5v/pRb3qyfv8N3sbdy7nAhAYJgvb07rSsve9V6py7GabWz+4iCbvjiI3epAqVbSZ2Qbeo96MRzQ5XKxf91pvp27A3OxFaVawevj2tPjvZLA32y08u3HP7F3jZizEhEbxMSlr5fIhEpPyuWzceu4fUm8+DTvUoPhs7q5k6PTnuSyYNw67l0Ts386v96Qtyd3QK1R4nQ4WfvlETYsF/VxpcuFMnVJPyJjg7HbHXy3+AA7pO+dUKM0Uxb2ISDIm0f3Mpgzbj3pyXmoVAqGTelIux61KMg3Mn/qFq5Iq6QeAxvw9shW5OcZmfTeD9y+noJMBm+815x+gxpz8dwj5n+0DYPBgp+/B9Pn9xLZnimbOS1pfHr0qcs777dg04YzfP/dcQQBqlWP5qNZ3Thx4i7LpJu18uXDmD2nB4d/vuWufqheLZqpH3Tim++Ocehnkb3p0aUmHdpVZfy0TaSmF+ChVzN9cifuPspyO64a1CnDwF71mPrJT2TlGPDx1jF9bAc277nI6UtSCOHrTckpMrJ4pXij2aFZJWKiApj9lWgtb1gjllqVo5mz4oCYsZMQRY34SBb8cEQENtViCQnyZvkO8Yzs2jSBjHwDe8/cRi6T8U6neuw6fYu0XHHN1bNZFVbsPSOWb0phgfsv3EUuk9GvRTW2n7lJscVGbKg/4YE+7Lkknl/d6yWw59IdLHYHFcKDQClz28mbJZRh12XxcU3jYzn3ONm9xrI4HdzNzMFHp6F0kL+756pObKQb6Dxf6FkjKpzLaem4BIFKocHcycnB4XJRISSQB/m52J0uygUG8LAwH4fLRVxgAA/yRXBTLjCAu/migDfOP4D7+bkICJQJ8Od+QS4yGUR4e/PEUCCtq5TkmE0E6fUU2MxiMKDE4oBAmKcXqaYiNHIFKqWcIruFYJ2Hu9NK7L8yoJYrUCjA6LASqNWTL5V7+mq0FNjN+KjV7pBAfwno6BUqrC4bTysjDA4TOoUSmyB+zEelxug04alUYxNEkKRXKEk1Zf3OifPq+T8NdgBe71efiHA/7t3P4CdJbDx6ZBvUaiVXryZx5PBNtyhZLpfxJDGbHdtEqnPYSHFVZbc7+UYCNd1716VUpJiXcnDPVR49yMLLS8vrbz8L+PtOoqobNKtAglQAKggCq74Uc37adKzm7sUCkdUxGa2UKR9KgxbPHCJmk5WtUj5Ov3dLCi+NBgt7pWqGXm+XDBcE+ElaodVrFU/YS7JpDmw+J32+0iutv8elYr+mnV9tJTfkG7kvXRyqN/pjtuRpOGCpuD+f+6KVuq0spr9Hbz6d8jViqNeuGmf2XeFfY1ezYNeEvy14/o+M3W6nV69eXLp0iaCgIPbv309w8MvXPP/UWIxWjm07x56Vx7h/5VnPXPmaMXR5tyWNu9b6Q1bu+Xl0M4Xv52zjvMTq6Tw09BzZlh7DWv+uePrc4Rt8PW0TGU/EA7tGs4oMm9eHiJesudIeZ/P5xPVcPyOuRSrUKM2Yhf2I/g1IvXHuEYvGrSVDYpU6vdWYwR90dL+O34qQ9Z5aRszpTvMuNdzP8fNPl/hixjbMRhuePjrGfdKb+lLTeW5WEZ+M38CNC+Jaol3vOgyd0hGNVkVmWj7zJmzgruTi6jmoMYNGtUahVHB412WWzd2F1WInONyXDxf2pVylCO7eTGXOxI1kZxai1akZN70LTdskcONKEnMnbyI/zyj2Yc3pTq0GZdm89jQrvxajJcrHhzN9fi+sVgej3v2epMQcVGoFYya2p0mLeD6Zt5NjP4sW6U5dajB0WAtWLD/KT1JFRPPmFRk9ti1ffXWEA5LxoFOHagwc0IDpc7dz83aamJczrDUREX6MnLiOYqOV0BAfZk/twpbdFzkgMXG9u9SkRpVoxs3cjNliJyrCn8nD2rL4u8M8SMxGo1YyZfhrHD13n6NnRED2Tp8G5BtMLFsrMkfdWlZBq1fz+ZpjAHRoHI9Gq+LrLeL51a15ZfKNFjb/LDJEz2foaNVKhnSqz6oD5ykyWSkV5EOTamVYsVc8F1tUL0tmgYGLD1PRqBT0aVaNtcevYHc6qVo6DJQyTt5+jEqhoGvdeLaevYHTJVCzTATZxUaeZBbgrdNQPTaC/dfE19+mShxH7jyUcnNCSDcUiwGB3p74eGjFJGSlgoTIUH59LLLY9Z4DOs8XelaLCOPKc0nIN7OzcAkCFUOCuJ2TjQBiiafUXC72XInvm3IBAdzLE4FOjL8fDwvyUMnlBHjopHWVBpdMIN9qIdRDzMBxCS5KefmQIgGdEA9P0k0G9EolgkzA6LBKAmQR6ATr9WRbi9ErVTgEsfMqSOtBnq1Yys7RSFUQWgxOkeXx02gososAxuyUOq80aoodJjyUGiwS8+OtUmFymvFSqbFKH9PJFdhcNsK0/8us5/8TplSEH3161MHlEkXJLpdA82YVqVmjNA6Hk2VPWZmO1SlXLgxBEPjyX6L+pkGjctSuI4a5/bT1PCnJefj6edBfYklMRiurpFXXgMFN3Dk51y8/kdgbGYOGP7OaXzrzkGsXE1GpFAwY8qxuoTDfyE4psG/g+y1KXHx3bzhLUYGJ8KgAmv8mH2ffpnOYiq1ElQmmdtOSIMNQaOLwdhGwdX3zRVbHZnXws7T+atv7xWoIgJSHmTy6mYpCKafhS7J5ns6VX+4hCAJR5UIJDPt9S7fd5iA9UXyzRv6FFF+N7p8r8nxvfh+unLjN9V/vsXPFz3R9r9Uff9E/OIIg8O6773LgwAH0ej27d++mbNk/DuP7u9/r0Y1kDqw5xZENpzEWiXUZKrWSxl1r0XlICyrUiv2DZyk5GUk5rFmwiyObziAIAgqlnPZvNqH/+I74Bb+aEUp/ksO/Z2xx14QEhPkydHZPGnV8sQXd6XCy/dtjrP5sLzarHY1OzVuTO9JpUJMSgN9msbN60T62rjiKIAgEhfsydmF/qjd6tgYryjfyxUdbOSlFMyTUjmHC4n6ESAGPRoOFr2bt4GcJDCTUimHior4Eh4sH7oWTd1n4wWYK84zo9GpGPbe2OnviDp9NEQXQnt46Jnzcg3rNKmKz2vli3m72bRXfgzUblGXy/F54++rZt/0iX366F7vNQURUANMX9iU6Noidm87xzWLRAh5TNpjpn/XBP9CL+TO2c0yKhmjbsRojJ7Tj2pUnfDxjO8UGCwGBXsyc3xP/QC/GjlzN/XsZKBRyRo5pQ5NmFfnow61cknRYg99uymvtqjB12hZu3hKdXcPfb9guQ8AAACAASURBVEWVKpGMGL+WzKwiPD01zJzalbSMAiZ9tBmnSyChYgSTxrTlsy8Pce2WuMoaM7QVLgSmfLIDl0ugRkIkb/VtwIwlu8jOK8bPR8+0ke34bovYWq5SKpjwTktOXnrIyYui4Hto74bcT8lh2zHRyTmoa10epORw4hcRTA3pXp8zt55w9b6YKjy8ZyM2Hr1CusTg9G9dk292ncbmcFKpdAgxEQGslQo8ezSqzLn7ySRlF+DjoaVdnQrusMBG8aVJKzTwMDkXD42KNtXLs+m0+BqaVorhRmoWOQYjIT6eRAX5cuz2I+QyGW2qPktFrlMmklsZWRgsVqIDfHHJ4G5mDt5aDdFBflxISkUpk1Et8lnPVR0J6AhArchwLqRK9Q8RYVzJSH+h0DM+OIhbEtCp+FxzeZxUBSGTQaSPD48L89EqlHjqVGSYivHX6jA67VgcDiK8vNzrqqdARyaDAJ2eTHMx3moNFpcdu1PsvMq0iBqeQL2OHKsRT5Uai0u0lAfrPMiVqiC0SqVUBaFzZ+f4aNQYHGa8lbpnVRBqNcUOM15KDSYJ1HgplZidFryleggZoJHLsQt2fFQaci3/33r+l2f4uy1Rq5Xs23+N23fS0OnUvDdUdCzt2nmZx49FUfLgt0XwcfrX+1y6mIhKreA9CagUFZpY872omRk8tBkeUlz85rWnyc8zEl7K3201FwSB76SurNe61HCvtQRBYNVXIqvTsVdtgp8DBVt//AWzyUbZiuHUa/ZM32C12EuyOs9R9nabgx0Sc9NjcOMX2InD2y5iNdspXT6UynVevJidPXITQ4GJwDAfajR+ORtzUurGqd6oHF6+r16vPLX0/hlWJyslD5fThVav+d212G9HLzl4DAXGP/01r5rQ6CAGz+jBV5PWsWLaRvyCvWna/eWA7z9jZsyYwapVq5DL5WzcuJE6df75752bXsDRLWc5vOFXEm+luj8eFhNE+7ea0mZAQ3wC/lpIZ3ZaPhsW7+XA2mf1EE261OKtaV1fKT4GMR9q07IDbPnqEHarA7lCTtd3mjNgYgd3Z9nz8+B6MksnrXd3WlVrVI5RC/oS9puy2LtXnrBo3DqSpYb01r3qMHRGtxJlphdP3GXxpI3kZRWhUMoZMLqkCPnu1SQ+eSpSlsvoP6IVfYe1RKGQY7c5+HHpIbZIurfYCmFMWdyPUjFBOOxOflh2iM3SuVAuIYKpC/sRGuFHekoec8dv4OGddLH24b3m9B3SFIfdyeLZOzggrbfrNS3PpFndUaoULJz1E4clR2XT1pUY91Fn8vNEfc6j+5koFHLeH9uWjt1qsHXDWb6VWJ6KlSKYMa8n6ekFDHt3JQX5Jnx8dMyY0wNvHz3Dh60iLa0ArVbF1GmdCQ31YfjIH8nKKsLDQ8OMj7piszsZMX4tZrONUhF+zJ3ejd0HrrH5acdd83j69KzDB3O2k5ohrrJmTuzMmcuP2bJHBBbtWyTQoHYsk+Ztw2yxU7qUP6PfbsGCFYdJyyrEy0PLlPda88NP57jzWNT0jB/Ukl0nbnJdAjKjBzRl36+3ufkoA7VKwci+Tdj48xWSMvLx1GkY2r0+K3aepshkJTLYl9Z1yvPlT2KGTqPKpRHkMnaduYVMBgNb1WT3udvkGUyE+nlRq0Ik606IzFC7WuW59DiVjIJiAr301ChTim1SKvJr1ctx8l6iuOIK9kOjUXHuUQpqhZymlco8V/8Qw9nEJKwOJxXDgsg2mcg2GAny0uPjoeNaWgY6pZKyIQFcSE5FLoNqUeFuoFMjMswNdKpGhD4DOuEhXMt8EehUeA7oxPj5cT8/D5VCToCHniRDIZ5qNQqlzL2uyreJNvIobx+SJRYnwsubFEmX46lWk2Mx4afRUuQQBcjhHl5kSE4rP52WPKvYX2VwmBEQ3EBHJZejkMswO20EanUU2I3IAE+1CqPDgo9KR7HkzvJWKzE6zXirxB4sGQJ6pQKLy4qPVA8hB1RycAgOvFVqzC4TOvnf02b+nwY7VStHUmy08O13xwB48/WGBAV6UVhocouS3x7cFG9vHXa7k+VSJk7PXnUJl+7s1nx/CmOxldiyIbSRND25OQa2SGzM28NauF1Zp4/f5fb1FDRaFQOfY29OH7vDvVtpaHVq+j4X3FdUYGLXBpFyHfBesxJ3uId3XqIgz0hwmC/N25d0YJ3cf53crCL8g7xo/ptEY0EQ2Cc9Z4d+9V/qoDqyXTzIWnat+UoL9mkpN6dhu98v6rx1XtQcVHoJqPrt5GaIItiAMJ+/VNkQKpVVFuUZMRQYfxd8/Znp+HYzHlxL4uCaUyx491sUSgWNOr9agP1PzfLly5kzZw4A33zzDR07dvzHnttYaOL0visc3XKWy0dv4XKJ9k2VWknd16ry2huNqdE8/i+v7fKziti4dB97Vh1363uqN63IW9O6vjIUECSX1e7LfDtzG1mpeQBUa1ye9+b2fkFUDOKKcs2ifWz/9hgupwtPHx3vfNiVNn3rlfhbsVnsrFmyn63LxQu+X5AXI+f3pn6bZ5EHFrONlZ/sZtdqUUMTWSaYiYv7E1dZjDpwOl1s+fcxVi89iNPhIjjcl0mL+1NJSkJPT85jwYT13L0mBQz2r8c7k9qj1qjIzihg/sSN3JICBDv3r8+QCa+hUik5few2iz7cRrHBgo+fnknzelGzQVkRAE3axIO76WKuzvst6P1WIzLTCpkzeRMP72Ugl8sYPKIVPQfW5+LZR8yfLupzfP08+GheT+IqhPHJ7J84KrE8r3Wsysjx7Th04DrLPj+Aw+GiTNlgZn/ci0ePs5g2bTMmk43QUB/mzO1Jalo+I8esEYXIEX7Mmd2D02cfsnzlMVGzUzWKyePas/jLQ5yVgi/ffr0RFSqEMXrqBnGVFezDzEkd+X7Tac5cFFd6QwY0EhvPF4plnrWqRNOjfXWmLd5NsclKRIgvo99q5m4t9/XSMX5QS77Z8gspmQV46jWMGdiUb3ecIT2nCG8PLcN6N+Lr7b+QbzATGuBFn9bVWbrlJHaHk4SYUCqUDuG7veIavmP9eB5l5nLzSSYalYIBrWqy7uhlzDY7ZcMDCQ/2Yec5kSnq2bAy+6/ew2C2EhXkS6lAHw5cvYdMBp1qV2TvlXvYnU4qR4VQZLFxKzVLSkUO5+DNZ/UPR+89wiUIVIsK42FOHkVSQKBTJriTkEN9vLielolGoSAuLNDdc5UQHsql1HRAFClfzchwr7GeAp0KwYHcyslGJoOyAQHcyc1GKZMR9rS5XKlEr1WTbjTgp9NidTkottoJ8/Qiwyyuq542l4NAuKc3qcYitAoFKqWCfJuZQK2eXEl3EyYBHYVMhqdGRYHNLIqOJQFykFZPrrUYjUKBgEtKSBaBjkImQ6eUY3ZapUJPkanxUCkwO634qMQeLDkCWoUcm8uGr1qDyWlGKZMhw4VTcOGtUmNxmdHKVdj5H9J6/r9tfvjxFPkFJiIj/enWVWRgflh1EoPBQmxsMO0lSvqn7RdJTcnD109Pv4H1AUhJzmOnpN8ZOqKlGxis+e4EVoudigkRNJLYGKfTxfcSe9OtX10CJB2M0+ly10J07VcX3+fstNvW/IrZZKNM+VDqPWf9djpdbJHcFd3faFjCVisIAtukz3UaUP8FncWN849JfpSFVq+m+Uu0NgU5Bi5IguIW3V5+gc9OL+D+tWRkMhl1WyW88ndrLDKTeEcspatU+4/BTp5kLfYP/vOsDoDeS4t/iA95mYWkPcr63Yvsnxm5XM6YpW/gcjg5vOE0899ewYc/vEf99r9fc/EfmV27djFs2DAApk+fzpAhQ/7Dz2kxWjmz/yontp/n/KHr7hoHgPg6ZWjZtwFNutX6W+AwP6uILV8eZPf3x9zrw4R6cbwxpfMfOtke3khmxfQtXJNYv+AIf4bM6kHDDtVeCnIvHrvNsikbyUwWQVGTzjUYOrM7/r9Zi929msTicetIui/qvpp3q8n7s7qX+PnuXk1i4fj1pDwS74Q7v9mIQZPau518WWn5fDZhAzfOixfrJu2rMHLO/2PvPQObqv/2/1d2M7o3HbSFAi2bsvfee+NAURQFERS+skEFFHFvXIAisreATNl7byirQFu6V5qdnN+Dz2koy3V/7/v/wP/7UWlC0qbJOde53tfo5w3w3LP5DJ9OX43FbMfk58PYWf1pJrspD+++xAdTVlJSZMVg0vHaW31p0bEGLqeb7z/e4v3MJtWOYfLcQYRG+HNoz2Xen14GgIxMeqc/dRsmcHR/KnOmr8ZcLIDR5Hf6UzsljqU/7WfhN0I0XKbPcbs9jH1pIddkluelVzvQtWddvvp8G7/K9vqWrasxfkI31qw5zoL5Qpxcq1YM02f04deNp1ggX9yl1Itj0oTufDN/N1tkvVWPrnUY0Lc+E2as5OYtYUmf9HpXCkusTHhrFW6PRM2kKMa82I7Zn23m+q1cocd5tTOnLtzxOq56tK9FcpUIJn+0AbfbQ62qFRjYrR5vfrmJUquD2AqBDO/flLk/7qDYbCMixI/h/ZrwyeJdlFjsRIf5M7hLCh8u3YXd4aJqbCgt6lbikxWCXWtZOwGVWsWK3WIl+XTHFHacvkp6bhH+Rh/6NK/Bwm1HRbpxYjQuhcQuual8QItarDx0Vqy8YsJRqhTsv5SGRqWia/2qrDt+AUmCxokxXM3Ol5kaIzGh/uxLFeWebZIqsf2SWME1rhTDidsZ2F1uqoSHkGu1kFdqIdzXiI9Gw5XsXHx1WsIDfTmbmYVWpaRSaDCnM+Weq7AQzty9i1IBiWEhnMvORqVUEB8UxKXcXDQqJRX8fUktEJ1XgXofbpdrLs+xlhJmNFDotOFwu4nx8+eWWbA45YFOuNFEhkVUQXiQKHHaiDCYyLIJXU7Z6kqjUqJTKShx2giW83JEdo5eWMpVGhySEw8eQuVOLLVSgUYFNo+DQK2BYqcICdSpFdg9Dvy1PphdVlQKwd6I4EABdDQKJeBCkvU7No8VvUqL02PHJTn/8PjyuPlXg520W3mskenYV0Z2QKNRceNGDhtkl9HIUe1RqZQUFVn4WV4ZDXu+FQZZ2Dh/3k7cbg8NGleinnwyv52Wy+aynJxR7b0H752bz3DrRi6+/noGlAvo27PtPDevZWM0+dC/3PdLiq2s/0WwQ0+MaHPfSWD/9vNk3s7H119P5773px6fPXqDaxcz0Plo6PoIvc1mWbTcunud+4pCy2b3r6dwuzwk1ox+ZGIywGFZuJiUEkdg6OPXHZdO3kSSJCJigwkK/3MAUyA3cf+RtuNxE105nPysIm5fvfs/BjsgAM9rXwzD7fLw+8rDzH52HkP+051+IzviY/zvphMfPnyYQYMG4fF4eO655/5HVSg56fkc3XaWo9vOcmLXhft0TDFVImjVtyFtBzSiQsI/K/7Mu1vIyi+2sunH3dit4qBTtV4cz0zuTd1WSX/IyBXmlPDje+vZslikcmt9NPQf2YEBr3T0iszLT35WEd++vYbdsl4mLCqQUe8MpGG76vfdz25zsPjjLaz69nc8bg+Bob688s4Amna6pyVzOYWlfOlXwlIeHO7Ha3MHkVJuTbt74ym+mL4Gc7EVvVHLy9N6075vCgqFApvFwTfv/spvcshmct2KvPH+IMKjAnE53Sz4bCurZDCTmFyBSR8MpkJMMDlZRbz7xnIv09P7ySY8/1pHlEolC7/awRLZwl6tRjRT5w4kONSPxd/vZtG3glGpWj2Kae8NxGjSMXPyvfycLj3rMmpcZ86duc3s6aspLrISEGBg2ux+xMQGM2HcEs6eEUGBw55vRZ/+Dfjgg03s+l0WJ/eoy/PDW/HRJ1vYvUd2G/VOYdCgxkyftZZzsmZn9EvtiY8P4ZXxv1BUbCUk2MTMKb3Ztuciq+RgwE5tqtOtY03Gz1xFQZGFoEAj01/ryi/rjnL45E0UCnjpqZaUWO28+802ANo3rUqtpCimf74Rt0eiTrVoOrVM4u1vtuB0uUlOCKdLi2Tenb8Nl9tDzcqRNK2bwPuLd4pMnppxhIX48t2v4hjZp2VNrt3N5/RVsfYa1rUBy3efprDURoUgX5rXSmCBnKHTrm5lrucUcC0zD4NOQ/dGySzZfwpJgiZVYsksMnMjW4QFtqgRz1o5FbltjUocuX6bEpuDuJAAdD4ajqdloFOraJQY6wU6LavEs/eaSEWuHRPB1bx8zHYHFYP8sTpdpBUUEmzUY/DRkpqTh0mnJczPxIXsHPRqNRWC/LiQU9Zz5c+l3Fx0KhXhfr6k5uehV6sJMPpws6gQP60WrVpNptlMsF6PVXJSancS5evLXbm5vKJ/AGlyc3msvz+3zIWoFAoC9Pr7dDkOj9DllGXrhBtNZNlK0KvVoBAJyaE+RnJloBPs40OBQxYbe+xISF6go1OpUCjcOD1ugrQGipwWNAoFapUHp8dFgFYvBwcqUOIWeToy0NEp1bhlR5avRoPNY8Og0uLw2FEiEap9uJ/xr8y/Gux89/3vItOmaSIN6scjSRJfyd0wLVpUpW5ZKvKP+zCbbSRUCqOzvDK6cO4Oe3dd8kaul83Cb3bhcUs0bp5ITdlp5XK5+VkuDxz0TDNMMshwuz0slvus+j/dFN9yeoL1vxzCUmonrnIYTcqlKEuS5NXqdB/U6KGTxDqZmm/Xq95D2TklRRb2/SbWT53LJTaXn11yX067x7A6gDfLpFH76o+9D+B1YVWrG/eH9/P+fIUWgEdm/vzZxCVHc2b/FS4euU77gU3+9v9/1KhUSsZ//Rwej8Tu1UdY9M46fv1hF0+90YNOTzdHrfmff3xSU1Pp3r07VquVzp07M2/evL+1wnPYnFw8eo2Tuy5wZOtZrp+7fd/tkXGhtOrbgJZ9GhBfPfofN7rnZBSw8ostbP5pLw6bADnVUuIZMq4bDTvU/MPHddidrP9hF0s+3uwNE2zZK4XnpvZ+qOYBxOdi40/7+HHur1hKbCiVCnoMa8kzb3RH/wDQPHf4Gp9MWEq6zNS07lWPl9/ud997KO3KXT4Yv4Sr54Q+qVX3Oox6uy++AcI0UFpi4+uZ67zr26q1Y3njw8FUkHVAVy9k8N74pdy5kYNCoWDgC6146pX2qDUq7qYXMOeNZVyS3+u9nmzC8693RqtVc2x/Ku9PWUlRgQWDScfrb/WhefvqFOSZmTNlJadk9qjHwIaMeL0TVouTGa8v4ch+wXh165fCS693JiuzkEljF3PrZi5qtZJR47rQtVddVi49zPdfCWdnlWqRzHinP4WFFka+uICcnBIMRh2Tp/UiPiGUsWN+5upVwfyMHt2Bho0rMe6NpVy9moVarWTM6E5UqRLBqNcWkZ1T4hUiZ+UWM27KclwuD1UrhzPlP934/PvfOSJHCbw4tCUR4X6Me2ulqIeIC+W1Ee14f942btzOe6Tjamifhjjcbj5cKBjtTs2TiI4MZM4PQs/YMqUSlWJD+GCRMHi0qV+ZwEAjX68WOsSeLWqQW1LKmj2ivueZLg3ZefIqaVlCv/NUx3rM33IEu9NNUmwYMeEBLNsjZ+g0q8GeizfJLjIT7KunSXIcy/aL2zrWSeTEjQxyiksJ9TOSFBPGplOieb1znSpsP39N9FdFh1Fst3MpMwc/Hx1Vo0LZfeUGKKBllTh2p4q/a8P4aE6mZ+Jwu6kaFkJmSQnFNjtRAX44JDe3CosINujx0Wm4lpePn06Hr1HL1bw8TFotAUY91wryMWm1mHx0oq3cR4daoyTDXEKwXo9T8pBrtRBhMpHnsOBwu72ARgLi/AO4KQOdGD8/bpuL0CpVGLRq8mwW2QZuxS3rcso6r0INBnJsZkwaLQ7JgcvjJlTuuVIg4a/VUego0+2UZef4UOAsRa9W45KcSJKHQBnoaFVKFLhwSR4CtHKejlKFhAOPLFS2uC34KDW4JAcKJIwaNXaPDaNKi91jR4WEWumh0HWvGPzvzL8a7Jw6fQu93sjLLwmwcvDAVU6cEI6oEXK1wp3beayXnUkjZHGiJEl8+6X4YHbsWpt4WYB55WIGe3+/KK6mylUzbF1/irsZhQQGGekx4B7bsnfHBW7fzMXkp6fX4Hvgw2qxs1YO9Bs8vNV9OooLp25x+ewdNFo1PYfcf1LPuVvEIRmI9Hzy4RP+7l9P43S4iKsaQZWaD1cxZKXnc+lkGgqFghZdH63FcTndnJVbpuu1fHwgHODtL4p/ILn5cVO2ZvknVQgprZNZ/91Oju08hyRJ//ik/uCo1ComfDecJl3r8OOsNWTezOHzcT+z+uttPDu1D0271f1LzeyPmuzsbLp06UJubi4pKSmsWLECjeaPf3e71cGVEzc5ve8SZ/Zd5uLRa16tDIgS0Gr1E2jQsSYNO9aiUs2Y/9FrkX4tixWfb2H7soNe4XFSgwSe/E8PUtok/+Fjl6Ufz5+91mslT6wVy4sz+1Oj0aMdZldO3+KLScu8QLlK7VhGzxlE5Zox993PYrax8L1f2SAD/+Bwf16ZPYDGHe+tVd1uD2vm7+GnD3/D6XDhG2DglZl9adntno7t3NEbfPDGUrLuFKBUKhj0clueGCWAjCRJrP1pP/M//A2X001wmB//mTuQ2nIK+L5t5/h4xhpKS2yYfH14bWZfmrWrLlbTX2xn6fd7kCSJStUimfL+ICrEBnP2ZBrvTFxBfm4JPnotY6f2pE3nmqRezGDmxBVkZRSi1akZPaEbHXvUYd+ui3wwcz0Wi4PgEF+mv9ufuEphvPPmGnZtF5/1jl1rMWZ8V3bvusjHH2zG4XARExvE27MHiKDAkQu94uQ33+yLQqVg5KgfKSi0EBBg4M3pfcgvLGX0uMXY7E5iooOYOa1MiCzYkDYtqvL0kKZMeVdUP/joNEwa24Xrt3J566ONADRrUIl+3eox+T3RcRUcaGTyqM58t+IAF67eRa1SMv75dhw8e5NdcpnnsL6NySow8/1qcbwb1LkuxaU25q8TDPTgTnW5nVvEyp0CkDzXoxEHzt/gYlo2Oo2K4T2bsHj7CQpKrIQH+tKlSVXmbTwoWJrkijg9HrYcF71Wg9vUYe1hkaETHxZIxcggb1N570bV2Xo6lVK7g/jQQAL9Dey+JMICO9epysbTIiywYaUYrubmkWe2EO5vIsTPyJGbd1ArlTSuFCOqIIBmiRXZL6ci146K4HJ2rggFDAki21oqQI9c/3CnSFQ+oIQ7RcUEGwwoVHC7WO65UkKmuYQQgwE7LnItFiJNvhTarVhdLmL8heZGFHqKEk/RcyWAjkIBESZf7pQWY9BoUCig0GEjTG8g2y5YmgomXzItJd6E5Dy7hQCdDrPLhgcPYXphOVcpFBg0akpcVgJ1Bm9CcpCPSE0W7iwBfgK1eoqdFm/ysQfJK2rWq1S4yvJ0tFosbquXvSkTKjs8dkwqYUdXK0CpcIsQQ13QY485fzT/arADMLB/QypEBuBwuJg3T2hq+g9oSKTsiPp23u8iFblJZVLktu4De69w/swddDo1zwy/l2Ezf564EmnXqSbxlQQAcjhc/CI7NgY92xwfuQLB4/F4m4v7DGmMsZzzZNOKYyIoMDaYFh3v18SUsTrtetQhMOR+Om/z8iN4PBK1GiZ4iwjLz1a52qHjY6od9sqOj5qNEh7SQ5TN5VNpWEvt+AUZSfgTEHPjogx2/mJAYBnY0ej+/tuydvOqaLRqsm7lcefqXWIS/3uBgEqlktb9GtKsRz02LdzNL3M3kH41i9nPzsM30EijTrVo2r0edVsl/eXKitLSUrp37861a9eIj49n48aNmEz3/z0dNid3Uu9y+eQNrpy4yZUTN7hxId1bvFk2wZEB1GpelfrtalC/fY2/7aR61Fw/d5tln/7G3nXHvGLmmk0SGTK+G3Vb/vG6CuDi8Rt8/+Yqr0A9KNyfZyb2pP2gRo8UQZcUWlj0/kY2LtqHxyNh9NPz7MTudHmy2UMi+WO7LvL5pOVkp4tOn86DG/P8lJ6Y5HgHgDvXc/h4wjIuyKWyDdskMebdAd73tdPh4ufPtrFCLskNjw5k/PuDqSF/xgtyS/ho8kqO7RVsRJN2yYyd2Re/QCN2m5Nv39/ERrkaplqtGCbOHUREVKDI3Jm0grPHxPN2H9iQF8d3RqNVs+Kn/cz/Yjset4fY+FCmvT+I2PhQNq89wZfvb8LpcBMZFci09wYSVymMH77awTKZqa1ZJ5Yps/phszoYM2IhN65lC33O6A50612Xb7/eyRrZyt64SWUmTOnBzp0X+PKL7bjdHipVCmPmzP4cPXGDzz4X3X+VEsJ4682+bNl+lh8Xi+dpUC+O18d05qMvtnJEFhk/+0RTatWMYcyUpRSX2AgNNjHjjZ6s2niCnfsF8zGkdwMSKobwxjurcbrcVIkP46WhrXh33hayckvwM/kw8aWO/LT+CBev3UWjVvH6s23Zdvgyxy/cFi3lg1uw/8x1TlwU9vWXBjRj+7FULt7MQqtW8XL/ZizbKazlASY9T3Wuz7cbDmF3uqgSHUr1hHAWbBGvQdeG1biSmUtqei4+WjUDWtVm8e6TIv8mLhKVWsHv54Rep3fj6qw5ch6X20PtipFY3E6O30jHR6OmZXI8v56SwwKT4jly8w4Wh5OE0EA8SjiXkYVRqyEpKoy919JAAc0qi/oHgIYVozl+Ox23JJEcGca1/HxsLhcJIUFkmc2YHQ6iA/wodtopKrUR6etLqdshuq18fSl2Oiix2ony8yVP7rmK9fMno7QEl8dDXKBIQi6rfygPdNJKCtEolQToddy1lNzXXB5Rbl0VaRRAR6NUoteqKXRYZZZGFiDrjeTITiutCiwuO8E+Bgoc4vYAnZZip2B5vJZyjZ5ipxWjWuMNBPTT6ESejkqDQ7JTlqdjdVsxqnTYPTYUSOjVSpySwwt0tEoF4AQk9Co1uZacPzz2PG7+1WAnONjEEzI7snbtcdLTCwgKMvLEE+J7p0+lcWDfFZQqEMyRJwAAIABJREFUBS++LJgat8vDD7KguN/gRoTIabInj93gxJHrqNVKni7ntNq89gQ5WcWEhPnSrZy+5sCuS6Rdy8Zg1NF7yD1Wx+FwsWqRoGsHPtfivgN9xu08DsqBYH2H3l8a6XK6+W2FADPdH9FzdeNyJqln76DWqB4pTAbYI4Odlt0e77A6tV8c/Os0TfxD547D7uTONZF0GVftrwGPMobi74TXlY2PUUeNJomc3H2RQ5tP/1fBTtlotGp6vdiO9oObsuqLLWycv4uiPDPblx5k+9KDqNQqIuJCqFovnvDYEMJjgwmLCSa0QiBqrRqVSolSpcQjeXjymSEcPXqUAP8A3p30Mae3p1KYc4LMmzlkXBet57kZBUjSw6V3gWF+1GxWhdrNq1G7ZTWiKoX/V5gsSZI4/vsFVn+9zdtEDtCwQ00Gje1C9cewMeUnMy2Xhe+sY886sRLS6bX0H9mefiPbozc+DAQ9Hg/bVxxh/jvrKcozA9C6VwovzOjzEOAuzDPzzVtr2CXr7MJjghgzZxB1y+luPB4P6xbuY+H7m3DYXehNOkZM6UnHgfcKQ9NSs3h//BKuXRBgvEPf+oyY2tOrYTuy+xIfT1lFYZ4ZrU7NCxO60W1wIxQKBbeuZ/PO+KXcTBWW9oHPtWSovNISa6tVFBWIzJ0x03vRukstSoqtzJ60gkO7BTBo26UWr07ujlKp5KOZ69iyXqyOG7eown/e6oPT6WbS2MWckoFavyGNeX5kW44fucGct9dillOSp83sR3TFYCaMX8oZWRP01NBmDH6yKV9+sY1NcjxE6zZJjB3bifkL93qDU1u1rMboUe35+Itt7D0gPtMD+zaga5favDFtBbfu5HuFyCWldsa/uRK320NSlUjGvdyB9+dt5ZK8Ahs3oj13c4qZ9flmAFo0rEynVslM/nA9FquDmMhARg9txQcLdpCVV4K/yYdxw9rxvVzmafDRMPap1vy8+Zj8by2jB7dgwaYj3JXv/0KvJsxbf4AS2VresWFVvlizT1QzJMWi89Gwer/QEj7Rti7bT6WSVWgmyKSnff0q/Chn6LRIjiNdztAxaDV0qleFFXKGTvNqcVzLzSejoJhAo57k2HC2nBUMVPmwwJrREWSVmskqNhNiMhDmb+JommhfT6lYwQt0mibEeoMD68REcibzLm5JIikijGt5edjdbiqHBHG7pAiby0VcUACZcv1DXEAAGRYzdpeLuMAAbpuLcHk8JAQGcaMwHw/SfYWeZUAHIMq3LCFZJRKSbRaC9QaK5ITk8lUQZaDHR6VGqZIwO22E6o3kyQnJIfLqSq9SIyGCA8sKPZWASavG7LISoBWuqjJQU+Ky4FuO5fHViARlX7X4ngIJk0aNzWPDV63D6rahQkKrBpfklIGOFR+lCg+CAfJRqXBKdoK1f8/AUjb/arDz7NAW6PVaioosLJaj3J+TBciSJPGtDGq696hLrLy/37LpFLdv5eEfYGDgk00BOSdHDhDs1juFSNmW7rC7WCaLFgc/28Jb9ilJEkvnC/dDr8GNMJVret616Qz5OSWEhPnRtvv9oGP9LyKorUHzKsQ+kF1yZPclCnJLCAwx0aTdw7UMO+X8jgatqxEQ/LDAKy+riNSzd1AoFDTt+Phm8vOyzqBm4z8+8eWkF+Bxe9DptX8aJlg2Gq1YBzmdrj+556OnZa/6nNx9kQ0LdtN3ZId/vF76szH66Rk6uTdPvtGDC4evcWDTSQ5uPMndtFyyb+WRLme7PGokSeK8dR/pjisoUVHV3ZwFb2z4w+eqXLsiVevFUaVePFXrxRMSFfhfW9OBWI3tXHmYNfO2c+uycM8plQpa9Exh4JguVHpghfSoKcwpYcknm9n0015cTjcKhYL2gxrzzMQeBEc8+u9/9dxtvpqygovyST0mMZxRswZQ+4HuK0mS2LHqKN/NXEdxQSlKpYKew1oydHzX+zQ8GTdz+XjCMq+Tqm6zRMbMGeANCPR4PKz/6QALPhBAyDfAwJhZ/WjWSbzf7TYnP3ywmQ1yNUtcYjgTPhhMXJUIEdmw6ijz5mzEbnMSEGTkP+8OIKVpIm6Xm/mfbmW5/JlOqBrBlPcHE1UxmMvn05k9cTlZGYViPT6uM937NyDjdj6zJq7geqooBB36UhsGPdOcyxfSmTllFbnZxfjoNbw+uQct2ybzy4/7+EmueEiuEc20Wf3IyzMz8oX5Qp9j0DJhcg+qJlVg/PhfuHhBJB0/P7w1nTrVZPqbqzktrwaHPduC9u2qM37ycq7fzEGjUfH66I6EhPgxatzPmM12QkN8mTm1N1t3X2DVBgGQ2rdMok+3Okx8dw05eWb8ffVMf60r63ecZddBAZiG9KpPcJAvU+WOq7rJ0fTpVJsZX2zEYnMSGxnI8/2b8sFPOyky2wgP9uXFAU35bMkeCkushAWZGNarEZ+t2CscWuEB9GxVg49W7Mbt9lAzIZLKMaF8L1vLuzVOIi23kENXbqFRq3i6fT2W7TmN2eagYlgASXERLJU7r7rWr8aRa7fJKS4VGTqVo1l9WA5krFOFA1fTKLbaiQ72J9jXwL7LN1EpFbSrWZkt5wToaVwphnNyWGBMkD9KlYLzmdkYtRoSI0M4lCZqPBrFRXPgxi0REFgximN3hF6sdlQEZ+5miSTkiFCu5IkqiCqhIVwrzPfWP1wryMctSVQKDuRqoXAhPlj/cK1QAJ0ydketVBBkMJJeKhd6KjwUOWxypYMZSbaZZ1iKUSARYjCSZS3BpNHgkoFMuMHoTUgO8jGQZy/FpBG1Dh7J4wU6agX4qJVY3HYCdUJsDBImtVbk6chiY5AwqjVY5JBAq5ynY1QrsXvsXqCjVoBKKeGWPF6go1eqcSPWWjqVEpfkwFelwezK+9Pj0aPmXw12Wsmak8U/H8BsthGfEEpH+US/Z9clLl/KRK/X8vSzIvvGbneySD6gPTG0mTdA8NC+VC6eS0enUzOkXM/U5rXHycspITTcj0697rEpxw9eI1V2TPUpx8JIksRqmdXp9URjNOUEsKVmG1tlAWWvp5o+9LuUsTrte6fcZ0UHcZD/XbagtisXgV9+jsoujyq1oh/rsHK7PVyShYnJ9f/Y8VS2YgiL/usn5rJwwDIR69+dtgMasfCdtWTfzmPfhhO06vPoTq//1qjUKmo2q0LNZlUYMXsQd2/lcuPcHW5fyST7dh5Zt3LJup1HXmYhLpcbj9vD5ZJjpDuuAAoahXWmalQN/IJM+AUa8Qv2JSIuhArxYUTGh1EhIQz/YNN/FdiUn5yMAjYu3M3mH/d4WRW9UUfnp5rT68V2RDwQ1PeosZhtrJm3g1Vfb/e2z6e0Sea5qb1JqP6wLgxEavGiDzayadF+PB4JvVHHE691pvfzrR9672am5fL55BWc3CtYkYTkCrz63uD7Oq08Hg8bftrPgvc3Ybc60Rt1DJ/UnS5D7mXwZKUX8PHE5Zw+JPRmKS2q8PqcgV726PqlTN4bv5RbMhvZe2gzhr0uurhKiqx8+tZa9skuxLqNK/GfdwcQFOJLdmYhcyau8Lqtug9qyIvjxNpq7ZJDfPfJVlwusZ6a8t5AEpMqsG/nRT58ex2WUjsBQUYmzepH7fpxbFh1jHmfihVTdGwwM+YMICjYxIyJyzkki5Z79Enh5TEd2bn9PJ98tBmnw01MbBBvzuyPudTGyJcXkpdnxmTyYeq0XgQGGhk5+keysooxGLRMmtADo0nHS2N+oqjISmCgkZlTe3PpahbvTxeJyNWTKjBhbBc+/W4Hx+TqkOFPNSc6KpDX3lyJ3eGiYrSofvhkwU4uXxMMz+vD23H5Zg6Lf9olfta2NYiPDWHG55vwSBIpyTG0b1aNmd8Kx1VSfDjdW1dnzoLtOJxuqsWF075JFeb+vFM4tBIrUL1yJJ+vEheMbVMScXo8rN4rmJinO6aw88xV7uQU4WfQ0bdlLX7cfhyXx0Ot+Ej0ei2bjl9CoYD+zWux8fglockJCyQ80Jctp0SGTs8GyWw6fRmHy01yVBh2j5tTtzLx0ahpUiXWC3RaJyWw/3oaDpebapEh5FmsZBeWEmIyEORr4OSdTLQqJTWiIjh08w4Sov7hqBwWmBITyfF0cTFRq0I4p7NEREL1iDDO5WQjAUmhIVzMyxVhgaEhXMqXtW7BwaTK9Q8Jcv1DWc/VzeJCfFRqfLQasixmgnx8sHgc2F2u+1icsq9VCgV+Oh9ybaVCl+O239dcrkDCTyecVgFaHSVyCGCZ5VynUqJUeLB5HATr9BS5LKgUCnRKkZ0TqPXB7LagAHzKhQRa3MJmrlUpcEhOfNU+WN1WsaZSCJu5USXydIwqDU5JMEBalQKX5MRXrcHhsaJX/jWpwIPzrwY7SqWCjPQC1smU+0sjRHqqy+VmvuySGji4EYGys2P9qmPk5pQQFu5Hd9mt5PFI/Cjft/fAhgTJrInd5mRpGaszrAXacquZpQuEhqdbv/r4l3ONHD9wlZtXs9EbtHTpd7+lfNvaE1hK7cQmhJLS9H5WJSezkONy2V+nB/4fwNkj18nLKsLkp6dB66SHbgc4IltSG/5BWeetK3exmu3ojbpHBr+Vn+w74mqk7Kr6r0xZYu4/BTs6vZaez7dh0XvrWfnFVlr2rv+/BhQeNRGxIUTEhtCka51H3v7DDz8wfPg3AHz55RfeXJ3/y5EkiXMHU1n3/U4ObDzl1f+ERQfR68V2dH6qGUY/w588itATbVq0l2WfbqEwtwSAxNqxPDetD3Uek5btdnvYvHg/P83d6HXetexZjxem9X6I/XM53az+9ncWf7IFh92JRqfmqbGd6ftim/sA0YPanNpNKvHae4MIjw7y/r7b1xxn3sz1WMw2dHoNwyd0p9sTAgh5PB7W/rSfBR9tweV0Exjiy7h3+5MiV0qcP5nGexOWk51ZiEqt5NnRHej3bHOUSiUHf7/Ih7JV3WDSMXZGb1p2rEFpiY2501azd4dYBTZrm8S46b3R6TV88/EWVsuREtXrxDLlnf4YjDrmvLmW37cKMNWiTRKvT+nB3YxCRj3/A5kZhWi0Kl4d34V2HWvy1efb2CDb8Zs0TWTClB7s2nWRzz8TQKlixRBmzurH5St3mf7Waux2F1EVAnn7rb6cOnObL2avxe32UCUxghmTerJ4+SE2bpVdmu1rMKBPfSbNXsOdjAJZiNyZm3fymfHBrwA0qhvHk30bMe2jDeTmC4ZnyuguLN10nGNnb6FQwMtPtORuXhGfLtoFQPfW1QkN9mXO/PKOq1Dm/ijY8+Z1EoiKDOCz5eJismOjqkgK+FluLR/cri5nbmRyXtbvDOvSgCW7TwmdS5m1fKu44GtTuxIZhSWcupyGTqOiT9OarDhwBpfHQ+24SBxuNwev3EKrVtEl5V6GTqPKMdzMK+RuUQlBRj2VK4Sw89J1FApom1yZHZevIklQr2IFruTkCXYn0B9JBZezc/HTaYkO8ufE7QzUSgU1oiK8QKeuDHQkJOpGR3JS7ryqGRnOWbn+oXp4KOdz7qUiX5JTkSsHCaBTxuJcLypAo1ISZJB7rjQ6JKVEgd1KuNFInr0Ut+R5qNAzw1KMVqlEp1YJXY5e79XdhBtFoadaocBHo6HYKYIDywTIwXK5p0Gtxo0Dp+QhxMdAobMUtUKBSqHA7nF6m8tVClArFTg8TgI0PpS6LWgUoFLKIYFqHyxuKz6qe2sqo0qD3WPDpNbg8NhQIslsjxuTWi2AjkqNDcsfHpseN/9qsAPwww+7cbk81K8fT305K2fTr6dITy8gINBA/4FCT1NaamepvOp6+vmWXvCyf/clrqdmYTDqGFDOAfXbuhPk55oFq1NOI3P+9C3OnkhDo1HR7wGGZo38+J37pnhDzECm3+VE5l5PPpx6vG3NcTweiZoN4omKe/hqvIzVad6lpneVVn6cDhen5CvHhm0eDYZAiE4Bqtap+Nhk5bLJyRDMTmjUXy9tM/j9z2sfuj/XiuWfbSb1dBo7Vxym3cCH9Uv/X8ymTZsYMWIEAJMnT/4/BzrmIgs7Vx5m04977quIqNm0Cj2Ht6Fp1zp/ae3ndLjYtvQgv3y8mbxMkXhdIT6UZyf1onmPh3usyubsoavMm76K6/Jzx1WrwMtv96NW08SH7nvh2A0+n7Scm/JKrXbTREa/O5Co+FDvfdwuN2vm72HRx1uENseo4/mJ3egy5F6bekFuCZ9PX81BOVU4uV5Fxs0d5LWU52QW8uHklV62p1GbJMbO6ktAkAm328PSb3exeJ5IYo6MCWLi3EFUrRGNw+7k+482sV5OIk+sHsWk9wZSISaIKxfSeWfiCjLTC1CrVbwwtiO9BjciJ6uYqWN/4YK8ShrwdFOeHdmWjDsFTBzzM2k3clGplLzwSnv6DGrI9i1n+XTuJux2FxGR/kyf3Z/AIBOvv/ozFy+kC8v1sJb0H9SIr77czsaNQvfTomVVxo3rwi9LD7Fsufj5GjZI4I3xXfn+x71s2iIC99q3Seb5Z1ow6/2NnLsoMnVefr41sbHBvConIoeH+vHmGz1YvuG4V4g8qGcK1RIjGT97FXaHi7joYMY+35YP5u/gVkYBep2GCSM6sGnveQ6fSUOhgBcHNudaei7z14qfZ1DnuhSabcxfJ45pAzvUJauohCVbBYAb2qU+Z25kcjI1HZVKyfDujVh34AKZecX4G30Y2LYOP2w9KvJ4KoYTFerPctla3qdZDQ5euUVGfjEBBh/a1qnMkn3itWmZHM/VrDzS84vx0+tomlTxXoZO9UocuXHHu57yNek4fP02apWSFlXj2H5JlM02rRzL0bR0YSePCCHHYiGvWIQFGnRaLtzNwaDREBsSwMmMTNRKBVUjwjgppyLXjorwAp0akWFeoJMcdg/oVAkVqcgKhbCOXy3IQ6NUEupr5GZxIQaNaCvPspgJ1hswuxzYnC6iTL5kWAWLE+N7rwoi7IFCT/NDhZ5GcmxmdEoVikc0lwfqBCgS6ywbEhLBckKyVqlCwo1LcnuBjlqpQKmQcEkuAjQ6St0WdEolKJx4kEQPllu0nrsQQmW9Uo3dY/cCHZUCFAoPIGFSqXF6bBhUatySWGv9k/lXg50rVzLZtUtYxV8c0QYAq9XhDRB8+pnm6OUcmzXLj1BcZCUmNpgOcliZxyOxWHZa9RnY0Fv26XS6Wf6TAC6Dnm3urYsAWC6zPe261SaknAAz7Vo2xw9cRalU0OsBS/mZozfIuJWHwaij7SPqH7bLV3mPYnXcLjcHt4uDfcvH2Mkvn7qFtdSOf/AfO6yuySeqyo+wrT845iJRKukX9NcDoMr6jTJv/jO1PYB/sC8DRnfm57kb+GzcIuKrRz92nfJ/NceOHWPAgAG43W6GDh3KrFmz/k+eV5Ikzh+6yuZFe9m7/rg3H0dn0NK2fyN6Dm9DfPJfe23cLje/rz7K4g82etvDQyoEMGRsFzoOafrQ+qlssu7kM3/2OvbIQZsmfwNPj+9Kt6ebPQSuSgotLHzvVzbJziC/ICMvTO1FuwfcgzcuZfLJxOVckYFDvRZVGPPOAMLKAeu9m8/wxYzVFBdYUGtUPD2mI/2Gt/KC9F0bT/Pl22sxFwu258UJ3egii5jvphfw/uQVnD8hVjjtetRh1JSeGIw6bt/M4d03lnP9slhB9BvajGdfbY9arWLNLwf5/tNtuFxuwisEMPndAVSrEc3R/anMnbGG4iIrRpOO8TN607R1NfbsuMCH72zAanEQFGJi6qx+VE2O4vOPfmPDasFo1G+UwKQZvUm7mcvLL84XjecmHyZO7UnlxHCvPkehgGHPtaJ79zq8PWsdx+Vyz8GDGtO7Vz2mzRSN5QoFvPhca+rWjmX0G0vIyS3BZNQxfUIPbt7JY+LM1cLRmSwSkd/7auu9NdWL7cktMPPmx4LhaVw3nt6d6zDl418pKRX6m9eHt+PLX/aQlpGPj07N68+2Y/3us5xNzUSlUvLK4BbsOnGVU5fTZcdVc3aeSOX8deHQeqlvU9bsPcvt7EKMei3DujZiwW9HMVtFa3mrupX4dpMASc1rxGF1uth64goqZZm1/AIlVjsxIf5UiQljldxr1S2lGvsu3aTQYqNCoC9xEUFsPi3Y8K51q7L13FWcbjdJFUIxu5ycT8/GV6clOTacnZeFo7BV1Xh2p95AAurERnIlJ5dSh5O44ACsThc38goINPjgZ/DhYnYOBo2aqCB/zt3NQq1SUjk0iNMPpCIrFVApJJgLuTmolApiAwO4ki/ATYTJxI2iQm/9Q7q5GH+dDpfCQ4HdKq+dLLglNzF+ftwpLSv09ON2aREqhQJ/Hx+yrWb8tTqsHgdOt1v+fwLohBoM5NrNsmvKhcvtfqi5vMhpwV+r8zqtgnQ+FDktGFRqHB4nEqLNvMRlQadS4ZacuCVJBjpWr/VcABetcF+ptd41lU6pwik58FULMKVRKpBwCW2PSoVTsmFUaXBJNlQKBWr1P4Mt/2qws0BeJ7XvUINKlYRVe82qY+TnlxIRGUDX7oKRKSm2snKp+IA9/XxLVGpxwDyw5zLXr2ZjMGjpUy6kb+fmM+RmFxMUYqJTj3uszs2rWRzacxmFQsGAB9xU62Rqu3HrakRE38+GbJL1OG261UZvuD9U7fyJNDJv5aM3aGnW4eHqhnPHblBcYMEv0ECtx/RTnZRZnTpN/thhVWYlr1T9z63kZrlBuzxD9WcTLdv1M27k4HK6H3sC/bMZMq4bF49d5/jO88x85is+2zYF338QVPjfmOvXr9OtWzcsFgsdOnTgu++++19freVkFPD7ysNsW3KA23J1AkBcUgU6P9WCdoMa/+WKCLfLze61x/jl482ky3qWwFA/Bo3pRJenmqP1eXQukLXUzvIvt7Hqm5047S4UCgVdnmzK0De64f8AAC4TIH8/+54jq+OgRjw/ued94YAOu4tlX+1g2dc7cLs8GH19eHFqTzr0vweGivJL+erttV5nYUK1SMbNHURCkgDx5mIrX85cx65fxe1Va0Uzfs5AomXW6PeNp/l81josZjsGo45RU3rSrkcdJEli67oTfPXuRmxWB/6BBsbP6keD5lUoKbby0VsrOCDr3pq1TeL16b3Q63XM/2I7y34UOrzEpEimvDOAkHA/vvzoN9bJn+tadSsyeWZfXC43r4/8iUvyRcVTw1rw5LPNWb/2ON98JdLa4xNCeWtWf/Lyzbz80gLyZfAzZWpPQkJ9GTn6JzIzRbnnG+O7Eh7hz8jXFpGba8Zo1DF9Uk9KzDZenbAEu91FbHQQb07qybJ1x/htp7go6tahJp3b1mD8rNXkF5Ti76dnxmvdWL/9DL/LQuSB3VOIigxg0ofrcbs9VE+M5KneDZg97zeKzDZCg0yMebo1ny/dy93cYnwNOsY+1Zr56w9xJ7sIo17LK4NbsmDjYeG4MvowvHdjb5lnhRA/ejSvwVfrDuD2eKiVEElUuD8/7xAXdr2aVufMzUyu383HoNPQt0VNftlzSrilKoaj1WnYfiYVpUJB3yY1WH/0AnaXm6pRoag1SvZfSfNm6JRZyxtWiuZabj65ZgthfibCAowcun4blVJB08oV2SWHBTZKiOHY7XRcHg/JEWHcKSqi2Gangr8fLoWHmwWFBOp9MOl1XMkRrq9wPyMXc3LwUauICPC7LxX5Sl4eOpWKEF8D1wsLMGo0GLVabpcU46fTgUoix1pKqMFAscuG3eWWAY0AN+XrHyLlPB2dSoVWrSLfbiXYRzAzUrn6h7JCzzx7KX4aHaVuu8jT8RFOrPuby30odpXZzHUUuyyY1DqsbsHKBOp0mF1ixeQoy87RaCl1WzCqNThlm7lRJdKQfTVa2WYOWuU9PY7dY0WrVOHBKbJ2VAqckh2TSoNTsqJRqgAXds+9VPi/M/9qsHPu7B30eiPDhomsnOJiK8uWCCfGs8+19DIyK5ceotRsJy4hlFaypkWS7rE6vQY2xM9fnNTdbg/LZGao35NN7lsbrZCbyJu1TSK6nPizpMjCjl8F1dr7gTDAwjwzB+Tdf9cBDwtut8ui5eadaz4ycn+/rANo3K76Y9cUp+SOojrNHl4plI3H4/lbuTmlxWKvavwbYCc4MgAfgw6bxc7dtFyiH1NX8WejUimZ+M1wRrefTebNXOaM+J4Zi0b+o7DC/8nk5OTQuXNnsrOzqVOnDqtWrUKr/WeNvX82lhIb+zeeYMfyQ5zee9lrWfcx6mjVuwGdn25OtZT4vwy03C43u9YcY8kn90COb6CRAaM60GNYq8dWZng8HnasOsrCORvIzxJdZ7WaVGbEW/1ISH74fZN2OZMvp63krLxKiqkczivvDKDWA26/iydu8vHE5dy+Kn6Wxu2rM+rtvoRE3LOhHtx+ns+nraIg14xSpWTQS20YMrKdN8rgxP5UPpqykrysYpQqJUNeasPgEUIDVFpi48t3NrBT/hwm14nljXcHEBEdRGmJjc9nr2fXZqFrqd0gnjfe6U9wmB8XztxmzuSVZGUKt9ULr3Wi58CG5OWUMGPcUs6dFMLlHgMa8OLYjhTkmRn38o9cOi8AzaCnm/Lsi204deIm77wp2B+Trw8Tp/eiVp2KvDd7A7/LQaFt2iXz2vgubPntLF9/vUOAn/hQ3n67H5dT7/Lmq4uw2ZxERvjz9lv9uHL1Lq+O/wWn003F2GBmTuvNxq3nWLpKOJkaN0hg1AtteeeTTVy4kolKqWDkc20wmXS89uYKnC43CRVDGP9SBz7+YSdXrt8TIl+9nceH84XepmPzJOokRzH1019xuT0kVYpgUJd6zP5+Gxabg+jwAIb1bsTHcsdVZIgfT/dowGfL91BqcxAbEUjPFtX5ZMUeXG4P1ePDqVmpAvPWi2Nx25TKlFjtbDpyCaVCwVPt6/HrkYvklVgI8TPQuk5lfvpdgKCW1ePIKCrhzLUsfDRquqZUY+WhsyIQsHI0mSVmbt0txKTT0rhqrBfotElfWzCrAAAgAElEQVRO4OCN21gdTuJDA5GUcDY9C4NWQ82YCPZcvYkENE+8l6FTLyaSc5nZONxuEkODuWsxy6DHF7vnXkKyRqviekEBfj46jD5abhQU4KvTYtBpvanIGo2KOyXFBPj4IAHZllLCjEaKXXasD9Y/+AWQJoObMqCjUECIwUimpeS+nqswg4mcB3qu1EoFBo0o9AzU6SksX+jpMKNVKlEqwep2EOyjp8gp1ll+Wi1mlxU/jZ5SWbTsr9Vgdt2rjCjLzrG4rV5QAxIGlVhT+WmE00qlABXCfVUGdHRKoQdS4EEvi5LLgI5WqUbCiRIPgZp/duH6rwY7AH361Cdc7m1aXgZq4kNpI9u3iwotrFkursCeGd4KpVKcLA7tS+VaahZ6g5Z+5dKPD+y6RPqtfEx+Pvfl6uTlFPO7XNUw8Jl7ji2A39acwG5zklA1gppys3LZ7Pj1FC6Xmyo1oqhU7f4Vk8PuZK/cPt7+ES4rSZI4JKesNu3w6GoHm9XB5dNyFkTTx9vJs+8UYLM4UGtVRCeEPvZ+ZWMtFej7wXj/PxqlUklslQiunErjyum0fwx2QJyYp//4Mq91mcPxneeZ8cQXTFv4MoZH9IH9b4zFYqFHjx6kpqZSsWJFNm3ahK/v/zzsr/zYSu0c2X6WveuPc2Tb2ft6sGo2SaTtwMa07F0fo+9fB5wup5vfVx1h2WdbSL8ugIVfkJF+L7en+7BWXhH5o+bU/it8P3Mt186JNvCIisEMn9qbpp1rPQSyrKV2fvl0C2u+34Xb5UHno+GJsZ3oM7z1fTlLFrONHz/8jQ0/7UeSJAKCTYx8qw/Nu9x7zOKCUubNWu/VpsVWDmfc3IFUkS3zNouD+R9uZoPMnkZVDGbcnIEkyXUu50+mMXfSCrLSRYryEy+1YcgLrVGpVVw4fYv35GRjpUrJ0JFtGTCsBQoFLJ2/hx/niT6uyOggpswZQGJSBY4fusZ701eLmgijlrFTetKqQ3WOHLzKe2+upaTYiq+vD/+Z3ouGTRNZvHAvi+bvQZIgsWoE02b1w+Xy8MrLC0m7KbQ8L41sR+dutfn449/YIa+l27RJYuxrnVm0+AArVgoAk1IvjokTurNoyUHWypbx5k0TeWVEOz4sFxT45MDGNG1UibFTl5Gbb8bX5MOM8d05eiaNzxaIGI2WjRLp260OU99fT15hKQF+eiaP7sLyzSc4clqc8F8Y1IwSq4335KqHto0SSUqM5K15vwnrebUoWtavzOz524R1vHIkzeolMHfRTuHQqhpN1fgwPl8tLhDb1KsMSgVLdgrQOahtHY5euc21zDz0Og2D29Thl99PYnO6qFwhmLjIIJbvFzqkHg2TOZiaRk5xKUEmPQ0SY7xrrPa1Ezl24w4FpVbC/U3EhQey7ZzQ4XSslcj2i1dxeyRqxUaQWVxCdkkpwSYDkYG+HLoh2J0G8dFeoNM4LobDabeFyDgqnMu5udhd7vvCAqP8/Sh128ktsRBmMuLEQ0aJSEJ24uGu2Uyo0YBNcpFjKSXcaKLYYcPqchHt50emtQSXx02sDGgeVf9wyyyCA006LTnWUgJ0PpS67Tg9biKMvmTJwYERcs+VTqVCpZIwu2yE+Bi9zeZlhZ56lRoXbhwe9wPN5Sosbpu3uVyAHzUWtw1fjQ6L2yZbytVYZZu5zSMaznVK0WZe1lyuUSiRcOFBwqRWY/dY0asEA6TEg04JbskltDqSFZ1SgwcHSjxoFRKW/78u4u+PwaBjiBwgmJ9nZq2cQPrcC/d2+yuWHMJqdVC5SgTNWgqXiSRJ/LJQuAZ69qvv1epIksRymb3pOaChV+8D8OuKo4LurRNL1XJrILfb401i7VXOKlv2eFtk5qZTn4f1OEf3XMFithMS4U+N+nEP3Z6WmkVOpoifr/MIISiIeH63SxQjljlYHjWZctx/ZGzw/1p+DUCtZlW4ciqNE7su0rbfw0Wmf2cSasQwY9Eo3n7ma07uvsiEPh8ybeFLhEU/3Mf03xyXy8WQIUM4fPgwgYGBbN68mcjI/07IoaXExrEd59iz/hhHt5+7D+BEJYTRdmBj2g1o/Jds4+XHbnWwdclBVn65jex04aT7qyAn7Uom82ev58gOcRLWm3QMHt2R3sNbP8SmSZLE3l9P8d2sdeTKAucmHWsw4s2+D73/Du04z1fT15Aj369Dv/q8MKWnt9MK4MC2c3wxfbVgc5QK+j7fiqfHdPA+78VTt/hw4nLS04TOqMcTjXluXBd8DFpcTjc/f72T5T/sxuORCI8KZMKcASTXqYjb7WHJd7tY9LUAM+EVAsRttWPJzy1h7vTVnDwstBytO9Xg1ck98PHRMv/LHd5srYTEcKbOGUBEhUAWzNvJEnmdVSUpkqmz+2MwaJn6n6UclVmtrj3rMmpsJw4fvsr77/4qKiKCTUx7qw9BwSbGvLqIa9eyUSoVjBjRlvYdqjPjrTWclO3hgwc1pm+fFN5+dz2nz8qZOk83p3nTKrw+ZRnpGYXodGomju2Cw+1m7NRlOJxu4mKCmfJaV75fsp9DJwQYemZAY6IiA/nP7NU4nG4qxYYw+rk2fPD9Dm5lFuCjU/PGCx3YdugyB06K1+GZ3g0pMNv4Yok4NnZrkYzRqOOTX0RSfIfGVTEZdXy1SrwO3ZomYXW5WLxNgLLB7epy9uZdzt0Q1RLPdGnAmv1nySsWDE7nhtVYsO2oYGmqxuCUPGw9lYpKqWBA81qsO3YBi93ptZb/dkqs3Ho2SGbL2SvYnC4SI0JQqZUcuirEx62TE9hyXjDbTSvHcjrjrlzaGYBCreBsehZ6jZqqFUI5eFO8po3jYzgkf51SsQIn0jPxSBLJEWFcycvF6fZQOSSIO+YirE4XsYH+5FgtWJxOov39yLNZvV9nW0uxu13E+PmT+RdSkcvqH8JNJm/9g1IJBXYrIXqRiyOVq38o0+Vk28yYNKKZ3OZ2E6o3kVuWpyPbzH01WixuUegZ4hUgK1EpJWweBwFaAyVyc7mPWonVbcdPI1KTlUj4qER2jr9Gh9VjRa1QoEQIlcuAjij5dHr1OI6ykk9JhApqlBISHkyyVsdHqcGNAzUSKrkuIlD713LbHpx/Ndjp178BfvKaZcniA9hsTqolVaCJDAwKCkpZJ1csDH2+pReInDh6g8sXMtDp1PQdfM/tc/r4Ta5cyECrU9Nr0L0TtcPuZKMMpPo8kG58bF8qd9MLMPnpadX5/jC/K+fucOtaNlqdmtZdavHg7JIdGK261nqk1qbMTl67cWV0j9FWnJctu8kpcX+44rgHdv7aSbSMAfN4PH9yz/snpU0yK7/cxondF/8rHVf1Wifz3ppxTB/yGamn0nip+Vs8/2Y/ugxt8Yf6pH86kiTxyiuvsH79enQ6HRs2bCAp6fEOt78yWbfzOLzlNIe2nOHs/iveWg2AiIohtOiZQvMeKVSpW/Fvv16lJVY2/biXNd/spCBHrJ0CQ/3o+1I7uj3b4pGpx2WTn1XEzx9tZsuSg3g8Eiq1kq5PNeeJ1zoR8IjKilupd/l6+mpvCnd4TBAvvdmXxg9ozfKzi/n6rbXs2yyu2CNighg9qz/1WtwLGyzKL2XezHXsktdOMZXCeH3OQKrJbI3D4eKXr3aw4jsBZILD/Xh9dn/qyava2zdymDtpBanyOql9z7q8PKk7RpMPOXeLmDt5JWflz0brLjUZPUUkLB87cJX3Z6ymML8UnU7DqAld6dizLjlZxUwb+wvnT4uTYLd+KYwY2wlziY03Ri/irJzD06NvfUaM6cC11CzGjfqJ7KxitFo1r47vQvtONfnhu10sl/WBtWrHMHVGH1JT7zJ16kpKSmwEBBqYPr0Per2Wl18R+TlCn9ONiEh/Xh6ziJxcETI45T/d8UgwavzPWK1OIsL8eGtyL7bvvchyOW6jeaPKDB3UhLc+3sjtjAJ0WjUTX+nElRvZzP5CJCI3b1CJrm1rMvnDDZgtdsKDfRn3Qju+XrKX63fy0GrUjBvWhq0HL3Psgmhaf7F/U85du8uv+wWzPLRHAy7dymbLUeHqeq5HIw5dTOO8DGyG92jM2v3nycwrxs+g44kOKSzYckQAlKgQqsaGsWinAEWd61fjYkY2N7KEXqdHo2SWHzyD2yNRN74CNpfLay3vXK8q608Ia3lKQhR3i0u4k12Mr4+WWnGRbLsg2J22yQnsTr2Jy+MhKTKMHEspOYWC3Qn1M3Ly/7H3lvFRHGz79jGzvnE3ohAsQHCX4O5QV1oKbSltoaW4tL3rLXWntFCkxSnu7hY0eEhISCCerMu8H2ayJCRQ6H0/8v6e//UpZC0JuzPnnNcp12+gFkWSa4RzIF1mdFrG1eBQpsxiNq4RwYls2WVVPzyE856wwCAuFxXidLupGRhIekmRnIQcGEB6SaEcHBggBwRKd6QiJwQEcqWkAAmo4SunImtVKnz1WnLNsujY6nZgdjirrX+Q83R05NvM+Ol0mJSeq3KgoxLAW6Ol2GHGX2ugxJOno6fIYVKExU4cSqFniUNuKVeLbuxuJ35aPWVOCxpBQCVKOCSHp7m8IntTDnQqlnwaVSJ2yYaXWl51aZTuK3nlJSclG1RanJINtSChUgTLOpX4/0IF/8kMGCCvfm7eLGGNQoE/+3wnzwlj6cIDWC0OateNoHUFPcvCufKVS59BzQgIvL0/XKI4sHr2b4x/BWHl9g2nKC4yExruR9uUyuWZq5UDW8/BTdEbKus5ylmddt2SPFH25WM22TikCCJT7uKyOrxTEd51vnth5zkP2Ll3SGB2Odipxtpe7ZSfcx/QJVi/RQI6g5bCmyVcOXOdmg3+Pr3376ZO0zhmr5/Ixy//wrnDV/jqjQVs/fMAz0wZRKN21WfC/NN57733+OGHHxAEgYULF9KuXbu/f9AdYyoxc3r/JVL3nOf4rnNcPXO90u2R8aG079+UDgOaUSs55h8BwltZBaz6eQfrf9/jyTUKrRHI8DE96PFIm7sKj0G2sS/9fhsrf96BzSIzS217NeLZyQOocUeyN8irqEVfbGLFHHllpdGpeejFrgx/qSs6/e33vNvtZsPig/zy4VpMpVZElciQ5zry+Ks9PJ8NSZLYs+EU385aSVG+zOYMfyGFx8Z087A5l89l8+mkJVxVHFOd+zfmxSkD8PEzIEkSa/88xE+frMdmdeDta+DVGYM8HXS7Np3my7dXUVZqxWDU8tKkfnTr3xin08XPX2zy6O7ia4Ux+YPhxMSHcHDPBT6euZLSYkultdXRQ1f4YOYKeZ1l1PLapH506lqfVUuP8MPXm3E63UTWCGD6u8PkROZxCzipgKVhD7Xk2ec7sWjRfuYrr1mvfiQzZgzm6LF0Zn+xEYfDJefnzBxC2sUbvDJ+AQ6Hi+ioQN6ePphtu84xT9EgNm4UzfgxPZn9w2aOKmvrpx5qQ/06Ebw2409MZjuhwT5MfbUPC1Ye4sBxmeF5amgrfH2NTP50NW5JomGdSB4f0Jx3v5OFyMH+Xrz2TBe+X7KHzJwijHoNrz6Rwp+bj3MpMw+dRsXLD3dk2c6TXM3OR69VM3pIOxZtPUZOgSxMfrpPC35eewiT1U6NED86N0vk+7X7kCRoXS8WSZD46+BZBAEe7pTMhuMXKSgzE+LrRev6sSxWWss7N6hJWvYtsgtla3nrujGsOqronZISOHYt2+PGCvH3Zs/Fa4gipNSrydY0mV1rGV+DMzk3KbPZiQn0wy3Cudxb+Oi0RAf6czQzG5UokBwdwaHM65XCAiXFWp6aUzUssG5IMGnVhQVWTEWuAHTiAvy5UlKAShAI9vLielkJXhoNKpVAvtVMsEHupnJJbqK8fcny1D94k2MpVQTKIsUORaBcoecqzybrcjQqQREgGz26nfJCTy+1BpsiLC4v9NSrRNxKc3k50NGJMqhxSW4P0NGJsiNLronQYHVbMIpa7JINATd6lYBDsitAR34OPKJkEacH6FjRCgKCAnS0ooBLcuCv+X91EQ885aWcixfsw+Fw0ahxjKfss6TYzOoVMhtTkdU5k5rJqRMZaDQqhj92m6VJv3STI/tl6/iQCiJjSZJY9YecLzHg4ZaVVkC52UUc2y9/yPoOr7yysdsc7FI0Pj0GNavysx/dfQG7zUlkTBA1q7GLW0w2zh2X6e1mHao/oUuSxAWF7q7bJKba+5RPfo68Jw29z9yc8pOTxWy7r/uXj1anoVnneuxbl8rmxfup+e6/D3YAIhNC+WTNBFb/tI1f/7WCs4cuM2HgpzTuUJeej7ejVc/kf1vP89tvvzF16lQAvvzyS4YMGXJfj8vPKeL8saucPXSZ1D3nuXwyw1O+CTJLltSqFq16JtOqZyOiE8P/8c946VQmy7/fwq5VR3E5ZdYtOjGc4WN60HlIi3s64GwWO3/9tps/v97sCQWs1yyOEZMH0kBpAq84slj5CHM/WONhjVp1S2LUjMGemIHyuZp2g6+mLuWcYvdObFiDV98fTs0Koub83GK+mbXSk5sTmxjG6x88RJ1G8nvE6XDxx487WPT9NlxON74BXrwycxDtFSCTf6uEz6ev4LASwNmkdU3GvzuU4DA/zCYb332wls3KRU+dBjV46/1hRMYEkZWZzweTl3JB6dLqO7Q5o8b1QlSJ/Pj5JpYp9RK16kYw5f1hhEX489uPO1j4624kSV5nTfvXUPwDvXl3+nJ2Kf12HVLqMn5SPy5dymXihMUUFpgwGrW8MbEfyY1jmDF9GYeV6osBA5vy3POd+OmnHfylMLqtW9fkzXF9mPv7HlYr32vXuhZjX+rO7G83s/+QfGwZOqAZPbsl8easpdzILcag1zDx1V5k5xYz8f0VSBI0qhfF6Kc68v43G8nILkCnVTPhxR4cO3udX1fKa/Y+nZKoXzucKeVC5IQwHu7TjPfnbKbMbCM8yIeRw9ry1eJdFJZaCPQzMnJIW75bvpeiMgsh/l481bcF367Yi9nmICbMn16t6/H1ir1yYnKtSCJCfJm3WT7u9mtdj7Trt7iYnYdeo+ahlGQW7T6BzeEiMTKYsEAfVh+WwcyAFvXZduayXJoZ6EuNEH82npTXU32a1GHzmUvYnS5qRwRjl24nJDdNiPIAnY514tl7+ZrC7oSQU1ZGgdlCqLcXRp2Gszk3MWjUxIcGcvR6NqIADSLDqwCdO8MC64WGcC6valhgRaCTEBjA5eICRAEiK6QiG3Qacsxl+Ov12DwsjreHxSkHOgISQQYjuZYyvDQaXLgwOW2EGrzIU3qugvTGCj1XTqwuF0F6L0+ejp9OU02hp14p9FTfLu/U3nZfOZXvyc3lZoyiBrvC3nhpVNjcVk/Jp4iEVtHjeCmiZL2oQqokSrZjVMm2dJ0gAvJzaUSQcGJUiZhceXc9Rt1r/k+DHYBbN0tYr9hUn1JqIQCW/3kIq8VBYp1wWra5LdxdrNQ5dOvdqFJOzrKF8gGvbUpdIitoD86ezOTy+Ry0OjU97xARb1p1DEmSaNwygcjoynqFQ7svUFZqJTjUl0YtqrIu+xR9RJtu9au9sj91+Aoup5vwGoFExFSvUcnPLaE434SoEomve+8G86I82RJc3Xqiuim3F5dbiR9k+jzZQQY7fxzg6UkD7rlKeZBRqUQGj+5Gh4HNWDx7PRvm7+bE7jRO7E5Do1PTvEsSHQY0p1WvRg8k6gXYtGkTzz//PAATJkxgzJgxVe4jSRL5OUVcS8vm6pks0o5d4fzRq9xSqjUqTmR8KMnt69CofR2ada7/QHlFd47L5ebQ5lOs/HEbJxXnHUCjtokMfbEbzbsm3XOl53S42PznQRZ+vsGjs4mpHc4zb/WjdY+G1b7/0o6n8/2M5ZxX1jeRccGMmjGYll0rC+WtZhsLvtzM8jm7cLvcGLx0PDWuF/2fut12LkkSG5cc4ucPZMZHpRZ5eHQXHh7dxeN2TL+Qw2eTl3rWUu26JzFmxiBPD9yuDaf46t1VlBZb0GjVjHitBwMfb4Moipw7mclHk5dyI7MAURR4+LmOPK64tLasTeXrD9ZgMdvx9jUwbtpA2nWpR/b1At6fvIwLikNx4MMteX5sd0qLLUwc+zupCmjrM7ApL77Wg6zrBbz83ByyMgtQqUReGNONQcOas+SPQ8z5aTtul0RcfAgz3xmC2WLnxdG/kptbjE6n5vVxvWncOIa3Jv7JuTQ5K+fpJ9vTq1cjpr2zgtNKyOCzT7SnQ/s6jJ/yB5lZhWi1at54pSc6vZpXJi3GanMQGe7H9Df6s2TNUbbslpnfgT2SadMigTffW06ZyUZokA+TxvTil6X7SU3LQhQERj/WgdzCEj7+ZSsgC5HrJ0Z6hMgNEyPp3rYO78/dIreex4TQp2MSnyzcjsPpok5MCB2b1eKzP3biliSa1o4iNiKQH/6Sme3uLWpTUGb2OK4e79qUdUfSyCsxEeRjoFuz2vyqlHm2qhNDqc3G7nNXUatEBrVMYsVhubU8KToUlwAHLmWgFkV6JCeyNlVenTVPiCK9oIhbpbKAOSbYn72X5ODDjnXi2XFBBpbN4yI5nXMTi8NJfHAAZTY76QVFBHoZ8DXqOZNzE71aRWxQAKk3clCJArXDQioxOreBTrAH6NQJCfYAnYSAAC4W5qMSBSJ8fblSXIhOpcLPoON6WQm+Wh0uQaLAaiHU6EWBXc7TqcjiRCpfq0UBb628rgrQ6Sl1WXFL7ko9V/46AwV2s8y0uOy4uaPnSqPC5LRW6rnyVctVEVUKPZ0WvNVaT0u5j0ZdpbncqJZFyeXN5WplTeVGwqjk6ZSHBIq4PSDIqNREGEQVbsnmSVEGNwaViEuy4a36Z0aP//NgZ/HC/TKrkxxN4yaxgJyWvErR2Dz6ZDvPwfzq5Zsc3HsRQYCHnrjN3uTnlbJN0RcMuyMV+S9FfNy5V0OPkBnkE9Dm8jDAwVWdVNuUELbOfZOrpBU7HS4OKw3K1ZV+AqTul3fR93JYlafZRtcMuaump3yKC2TQ4hd8fyddv2D5DVkOkh5kmnSqS2R8CNlXb7Fx4T4GjezywM9xrwmOCGDMR48xbEwPNvy+h92rjpJ1OZf961PZvz4VlVqkRq1w4upFEV8/irh6UUTEh+Ab4I3RR49Wr6l0gj927BhDhw7F6XTy0PCHGfXUGI5sO0P+jULybhRxM7OAjAvZZJy/gUnJH6o4giAQWzeCOk0TaNgukeT2dQmJvP/k6buNqdTCpkX7WT1nBznKGlJUiXQc0JQho7uRmHxvNs/lcrNz5VF+/2y9R7MVEhnAk2/0ocvQFtWmaOfnFPPrR2vYslTWuhm8dDw6tgcDR3Sqkt59cOtZvp25wtOj1q5nQ0ZNH0hIheqI7Gv5fDltmef9XLtRNK+9N4x4pa7E5XSxZM4uFnyzFafDhbefgZemDiClbzKCIFBabOHb9/5iu9IAXqteJG++P5zYmqG4nC7m/7CNRT/txO1yExrhx4T3htGgaRymMiufzlrp+Vw3bBrLhHeGEhrux45Np/nivb8wm+x4++oZP30gbTvV5ciBy3z49kqKC83oDRpefasvXXo0YP1fJ/hm9kbsdichYb5MfXsI0bFBzJi6jP1KxlW3Hg0Y+3pPtm87x1dfbcLhcBEZ6c/MWUMpKbUw+qVfKSwy4+2tY8okOeBw9Nh5FBSa8PLSMe2t/jicbl4a9ztmi53QEB/enjyQ3Qcv8ftSmVlunhzLSyM68d5XG7l49SYqlcirz3XGYncy6cOVcgp7nUhGPNKO977bSG5+KV4GLW+90J3VO05x+LQMXJ8b2oZbxSa+WiRHb/RuX49Afy8+nS+7uDo1rUlUhD+fLdrh+bevt54fFSt579Z1KTRZWb5bdko90aMpu05f5VqunMD8aJcmLNh+DKvdSc2IQGrWCGaRUubZu3ldTlzLJltJQU5pWJMlB2QGvF3dWK7kFXrWWM1qRnmATpekBPZfycRsdxAb7I9ao+J45g10ahXN4qI8QKd9rVj2pWfgkiQaRIRytaAIk91OlL8vdsnF1YJC/A1ycGDarTyMGjXh/j6cvXkTjUokNjCAM7duohYFYgMCOJeXh1oUqBHgz/mCPDSCSLivD1eKCtGr1fgadGSWFuOj0yGq4KbFRJDBSInDht3tIsrHx9NtVcPHj+tKKnKYlzfZ5hL0KjVqlUCx3UqwwUiBwtKEecmpyCpBwKDRUOwwy+so5+36B0/PlejG6rITqJNvFwCjWoPJVX2hZ8Xmci+N3H3lo9JhcZc3lws4PM3lVnSigIS81jKo1NjdFUICK4iSyx1Z5UBHBYiiW159iQIuyYZRVGN2F93zuHW3+T8NdvLzS1mn0L9PVmB1/lpxlLJSK9GxQbTrdFvvslRhb9ql1CUq+jZbsmbJYZxON/UbRVOvQrpwYX4ZuxXrd/871lSph65w80Yx3j562t7RR1VabOHQLplq71ohlLB8Th25iqnUil+gF3XvcsI6oazHktvcHexcVq5KE+4jN6cctNwZCHe3Kb+iLl9fPMiIosjQF7vx1YRF/PHFRlIGt8A/+D9r2wa5y+qZyYN4etJA0s9lsXvVUXavPkrmxRyupWVzLS2bnSsOV/35VCJGbz06g5YiUx5bM/7A5jYTqI6kcKsXL2175+6/m0okKiGUmDoR1G4SR92m8SQ2jvuPWuKvnr3Ounl72Lr0EJYyWY/j7W+k9xPt6f9sR0L+pq9MkiT2rktl/qfryLggX636B/vw0Jhu9L1LkKDVYmfZD9tY8t02j46n27AWPPtWPwLDKu/Yc68X8MM7qzzrqNCoAF6aOZhWFYC7y+li+S+7WfDVZmxWBzq9hqde78nAp9t7QNbVCznMrsDmtEypy9hZgwlSGNej+y4ye9py8m7KuTqPPN+JR0eloNGoyc7I56PJS0k7JeuhOvdpxMuT+uHta+BMagYfTVtOTlYhokrkyRdSePjZDjjsTj57ZxUbV8vHjKTGMUx8ZwhBwT7M+TYHXHsAACAASURBVHYrf8yXNXsJiWFMfXcoQcE+fPjOKrZulE/qLdvU4q1pA8jJKebF538hJ6cYjUbFS690p1uPBnz55SY2KVESbdsmMuGtvqxdl8rPv8gi65oJocyYPohDR67yzY9KyGBcMLOmDmLj1jP8/ofMkjRuFM0br/Tkix+3ckgp7n1oYHNaN0/gtZlLKS6x4O9rYNrrfdiw8yybdslrtX5dG9KkYTQTPlqJze4kJiKAV57uxOfzd3A9pwiDTsP4EV1Ys+ssx9Pkdu8XhrbjXHoO69bJz/F472Zk3Cri9w0yC/No96ZcyL7FjtTLCAI807slO09e4XJ2PjqNmmf7tGDR9uMUmayE+nvRvXkdftl0SHZc1Y7GKUhsOHYBURAY3r4ha4+dlysdgvxIiAhilbLG6tWkNnsuXvOsscIDfNh2Vu616plcm01nLuJySzSsEUauyURuYREBRj3Rwf7svSL3ebWrFctuxVrePCaSE1k5ssg4NIjsslJKbXYi/Xywu11cKywi0KBHp1NzuaAAH50WPy8DFwvyMWo0BHgZuFRYgFGjwc+o42rFsMCSYvx0OiQV5JrLCDYaMLkcWGwOwr19yLWU4ZbcxPj6k2mSbeZRPr5cNxUjChCgl9dVvlotNrcTk9NZbf2DVlQhilXrHwKV+gejWo1TsuNwu5U8HTNqQUAjilhddk+hpwjo7iz0REKnFrC77Z5CT7UgKN1XLryVQk+DeDs9Wa8SK4QEVhYll6/EjKIKl2RFI4ggOBWgA24ceCm36f5fEeiDz/Klh3HYXTRoWMPD6thtTpYrGptHnmjrcRXl55V6ivqGP36bvbHbnaxVhMRDHqvstNq0+jhOp4t6DWuQWK/ymqhcG5DSu1EVVmX/trM4nS7iaoURl1g1a+bIbhkItehYp9qra1Op1dMr1LCaFVj5XFfC4uJq/70GxGZ9sNycSCWRtvw1HnS6P9KGVT/vIOPCDb58cyHTfnnhvyx5WBAE4uvXIL5+DZ6cOIC87EKuns0i/VwWV89mcfXsdUryyyjIlXVLbpebsmIzBYUFHCpejc1txlsVSGOf7oiCCp8AL4LC/QiODCAoPIDgSH9iakcQUyeCqJph/yXhhjaLnd1/HWPdvN2cO3LV8/3oxHAGjexMl6Et7xoEWD6SJLF/4ykWzF7PFQVAePsZGPZiVwY826na/3u32832FUeZ++Eaj66rbtNYRs0YTN0mcZXua7c5WPbTThZ/swW7zYlKLTJ4REceH9sdfYVk8AunMvliyjKuKGA8uU0txr4zlMhY+QLD6XCx5OedLPxum4fNGT2pH10GyN1cFrONOZ9tYM0fMqsaFRvEm+8Np26jaCRJYv3yI/zw0XqsFjtePnrGTOlP596NcDld/P7jdhb8vOu23fzdoSQlx3Dp/A3en7KM69fyEQR4dERHnni+E/l5pbzx8jzOKNUV/YY0Y/TYHmRlFfDy83PIvJaPqBJ4dmQKwx9rw9q/jvPd11twOFyER/gzfdZgjF46xr4ynytXZFv5iBGd6Nu/CR9/uo49inOtR/cGjH6hC1//sJUt25U+p071GP18Ch9/udGTnzNs4G19TnZOMTqtmjfH9KDEZOONt5fickvUTghj3KiufPbzVs5fzkUlCrzyTAr5pRZmfSU7sFolx9GvSxIzvl6HyWInPNiXsU924qtFu8m+VYxRr+W1J1P4Y9MxLmXmoVGreOnh9qzZe5aLmbfQqlWMGtKWlXtOkZFbhFGn4fn+rZm/+RgFpWaC/bwY3LEBP60/iNPlpm50CHERgfyuOK56t6jDmes3Sb9ZiEGrYUDr+izdfwqn203DmHAQBXacuYJKFOjbvB5rj6fJicZRodjdLo5czUKnVtGhfjzrT8l/w9a1ojmVnUuZzU50oB8ajYrU6zno1SoaRId7gE6ruBocvCaD4OQaEZy5meuxk99QMnQifX0wu+1kl5YS4m3ELUBmcTEBBgOiSuB6SQkBBj2CCrLLSgnUG3Dh5qbZRIiXkVKnHYvNQaSPDG6ckptoXz8yy2TmJsbPn0wlODDc24csJRVZp1aRbzMTqDdQ7LDgltyesECQCDIYKtU/2Ny36x9kbY2OIocFX40Ws7ty/YNOVCHhxu52EKDTU+Y0KwBGwu52eICOXOgJTsmJj1qHxWVBpxKRkKsjypOSjQqAqa65vKIoWadS4ZTseIkqnJJVSUp2KOstCQmXAoJs6AQVJunBtwXwPwh2duzYQefOnau97dChQ7RoUTUtGCAlJYWdO3dW+t7DDz/M4sWLH/hn2Lj+JKDmiafbe06kmzecpLDAREiYL50rWGJXLzuC0+kmqVE09Srk5OzecpbiQjPBoT60rcACud1u1i6XV2F9h1b+XcwmG/sUkWK3/lUbsncpV3cd77Cil8+RXcoO+i7C4/OpssA1rEYAQWF3V65nXZX3x5H34bByOVwAqNX3Z9eOV8Bd5qUcHHZnpaC4+xmNVs2Eb5/htd4fsX99KpsW7aPnYw/ubHrQEQSBkKhAQqICadm98t/f7XZjMdmwlFkpzCvkkacewnSimMjIKDau2URsfCw6g/a/Nan58ulMNi3az7ZlhyhTRMMqtUjb3o3p/VR7Grev87cgUZIkDmw6xYLZGzyBgAYvHYOeT2HIC53x9qu+Bf3kgUv8/O4qLion+tAaAYyY2J+O1RSCHtmZxnczV3pcfcltavLizMHEVhBbW0w25n+xiVW/7cHtlvDxNzJyYj+6DWnmeb5LZ7OZPXUpV87JYL51l3q8MmMQgQqbc/poOp9OXcaN63JW0IBHWzPitZ7ojVoK88v4fNZKDior4EbN43nj3SGERviTk1XIh9OWcVZxQ3Xt04iXJ/TF6K1j+cID/KIAlKAQHya8PZjGzePZsyON2e/9RWmpFaOXjnGT+tGhSz02rk3l6882YLM5CQ7xYfLMwdSsHcYH/1rNdiUNvW372rw5sS8njmfw8cdrMZls+AcYmTp1EP7+Rsa88hvXswrRaFSMeakbTZrEMm7iYq6k35JLO0d2pnGjGF59azHZOXJ+zptje6LWyPoci9VBeKgfM9/sx8pNqaxXqiB6dKpP7871mfjBSgqLzfj7Gpg0phertp5izxGZDX60XzN8/QxM+2otkgTJdaIY0LUh7/y4EbPVQVSoH88PbcMXC3d6hMgvDGnL9yv3UVBiJtDXyIj+rfhh9T5KzDbCA30Y0qkR367eL+t5agSTXDuKH9fJF5WdGiVQarOz/sh5REHg4ZRk1h07T2GZhVA/L1rVu+246lg/nqu3CsnIK8JLp6FTw5oex1Xb2rFcvJnHzRITgV4GatcIYfOZcmt5TXZevCoDoshQbplMZBQVE2A0EB7gw+GMLFSCQLPYKA5ek11WLeKiOJwpg/4GEWGcu3ULp7tqhk6exYzJ4SDS14diu40ys50IHx+KHBbMFgeR3j7kW83YXC5q+PmSbSrFJbmI9ZOTkKuGBfqRWVaEShAIMBjIMZfio9HiwEXJXVKRRQF8dToK7XKPValTLuwMNXiRbyuvf9BQ6rTKuh5lnRWg01PitGBUaZQahvL6Bxn8uBT3VXnPlV4BNeWFnhaXHAjoUgo9y5OSvVUa7NJdmstFuem8osOqHOjoRLUnQFAjugE3BlHELdnk2yQrGuH/Z91Ybdu25caNG5W+N23aNLZs2ULz5lUD9CrOyJEjefvttz3/NhgeTExaPnabk6QG0R4Hlsvl5k/FWTHskdaeugir1cEapZhv6KOtKj3H6iXy1WPfoc09nVkARw9cJje7CG8fPR3vSC/es+UMNquDqNgg6txRqllabOb4QfmgU26HrTg3s4vIUILFmt5Fj1PuwqrfNO6uv7skSWRdlU881TWl3zmOcrCjub+3THCEP16+BkwlFq5fyiW+mqqAv5uaDaJ5euIA5ryzgu+nLqVB60SiqrE2/3eNKIp4+RjQG7W88PJzHDtxFH9/fzZt2khSUvXaqf+KKS0ys2P5YTYu2sdlxU0HsnW895Pt6fFoGwJD/96e6Xa7ObDpNIu+2MClU7dBzoARnRjyQudKvVQVJ+NiDr+8/xcHt1QIERzTnUEjOlVZceVk5vPjv/5iv8KKBob6MnJKfzr1a1wJEB3YeoZvZ63yBAim9G/MqCkDPOtQu83Bwu+2sURhXXz8DIye3J/O/eXnsdsc/PbVFpYrScuhEf68/vYQmrSWXWL7tp3li7dXU1xoQqNR8dSYbgx9qi2CILBlbSrffLgWs0nuw3plUj+69G5EUYGJ6a8v4pCiq2nTqQ7jpg5Ab9Dy9SfrWa3o+urUi2TyO0Pw8zfy4dur2Kr8rs1bJfDWtIEUFJh46YW5XM8sQFQJjBzVhUFDmvHzzztZqhw/GjaMZuq0gZxIzWDK9KVYrQ5CQ3yZMX0QhcVmRo2dh8lkIyDAi5mTB3Izr4SX31iAzeYkItyPWZMGsn3feRYqVRCyPieFD7/dSNqlXERRYPSTHdHrNYz/13JcLje14kJ45dnOfDpnK+lZBWg1KsY915VjZzNZuF4+3g3o0pDQYB/e/mGj/Lz1o+nUvBbv/rwJp8tN7ZgQ+ipCZLvTRWJ0CN1a1eazP3fgcks0iA+nQa1Ivlklr/g6NIpHUAn8uVMGL8M7NuLghUyuKQzOsI6NWLT7BHalxyrY38vjuBrUsj7bzlyh2Gwlwt+HWlFBrD0ui6x7JCey+3w6ZruDuGB/jEYt+y9loFIJdKwbX8lafvpGLia7g+gAP1AJnM25iVGjoVZoIIcURqcc6MjW8kiOZsksY1K47KxySRKJIcFcKSrw5OZklBTjUEIBM8uKcbrdxPsHcK2kCJfk9gQE3pmh4wkLRCLCx4frpmL0KhU6jZo8620Wx6WwOOVOrLAKqcgaFZQ4LATpjBRUrH+wyessQZSwuGyV6h/8tFpKnWZ81HrMLlmA7K/VUuY0Y1BpqvRcGdUaj/vKW6WpttDT7rZ7msvVggDKmspbparUXC4ioRZBwoWXKOKUrOiVugg1EirRhYCEQRBwS3Z0ogq3ZJWt7kJV3eP9zP8Y2NFqtYSH376qczgcrF69mjFjxvztlajRaKz02L8bm82GzXbbAl1ScltH8sRTt1mdPTvTyM4qxMfXQO8KjMuW9ScpLbEQHulPmwpsysVz2aSdzkKjUdHnDnv4egUcdevXuMqaaptSQtitf+Mqv+vBnedxOd3E1QojOr5qLcMx5cBbNzmmUpJsxUlTHDD1lNVcdVNWbPGUdf5ddo4kSbhdsk1ZrGZtVt0IgkB8vUhOH7zMuWPp/wjsAAwe3ZXDW09zct9Fpj/+DR+vHFdFA/LfOZIk8eqrr7JixQq0Wi0rV64kKan6Ko7/5NitDg5vO8OO5Yc5uPkUDpscLKjWqmnbqxHdH2lDk071ql1r3jlOh4udq47y57dbPJocvVHLwBGdGDKqy11BTkFuMb/P3sDGxQdwuyVElUjvx9rw+Gu9CAiprKmyWuz8+f02lv6wA4fdiagSGfRMex4b26NSZtStG0V8V0G/E1YjgDGzhtC84+3P2dnj1/h86jIyr8hMZIdeDXlxSn8CFB3XudQMPpu2nEyFqew5pBkvvNkHL289pjIr33+4zrM2jq8dxpv/GkZC7XBKis189f4adimvnZQcw4R3hxAeGcDRA5f5ZOZKCvLL0GhVjHqtJ/2GNSfzWj7vvTKfK0pH1/DH2/DMqM5cu3qLSeMXkaUAmvK11cb1J/n6i03Y7TLLM3XGIELD/Bj3+kLOKgaB4cNb8tTT7fnx5x2sVowJzZrGMWliP5avOsbvi+ULsKR6kUx5qz9/rjjCCqUKomWzeMa+2JXZ323hiFLh8MjgFrRsFs/rM5dQVGLB11vPtNf6sPPQRf7aIrPGXdvVoUv7ukz6ZDVlZhshgd68ObI7c5btI+1qrtxQ/lhHzlzJ4adl8usP6ZqMRiPyye+yEDmleS0iQv34VBEid0hOICjQi29XyI7V7i3qYHe5WLRV/p2GpyRzMv0GaZk30ahVPNGtKcv2nqLYZCXUz4v2jRL4bbt83GxbL5YCs4U9aeloVCoGt05i+cEzOFwu6kaGoNKK7EpL9ziu1p+8gFuSSI4NJ89s4UzWTbx1WhrGhrMtTU547lg7jj2Xr+GSJOpFhpJTWkpBiYVgLyO+Bh0ns3PRqVQkhgd7GJ2mCtC501reQMnQAahbwVqeGCzbyQESAwO5WFhdWGBANWGBIr56HTfMpfhqdThwUWy3EqLob8rdVzcUsXKQwcAtJRXZiROzy1mp/iFIqX8wquTUZLfbXaX+weSy4qcxUFah/sHkssgln4r76m49V1a37QEKPWWtjpey1lIJAqLgBiQMooBTsqFXaRStjoAoOOXaCEHAjUMBOjb0ogjYEPlncob/NZqd1atXk5eXxzPPPPO3912wYAG///47YWFh9O7dmxkzZtyzd+j9999n1qxZVb4fFx9Ca4UdkSSJJUp3zsChzTFUCDFbpVx9DRrestLJZI1yZde+S338K4QLFhWaOKCsmnoPquy0yr9VSqqSndG5mjDAA0pQYJsu1afupiqsT+M2VXNNyn/eS4reIrFBjWrvA3JKLYCPv7FKmOGdIwgCOr0Gm9XhEZ/ezzTvXI/TBy+zd30qfZ74ZysolUpkwrfPMr7/p2RfvcXkh77kvSVj74u5+K+Yjz76iG+++QaA+fPn06lTp/+y13I5XZzcf5Edyw+zd+2JSk6u+PpR9Hi0DV2GtrxvW7rNYmfzkoMs/W4ruZnymsfL10C/pzsweGTKXcXnplIry37cxoqfdmBV6ina9GzIiIn9qFGzsqZMkiT2rD/JT//6y8PSNG6byOjpA4mtoA1zOV2snr+P+V9sxGKyo1KLDBnRkcfGdPO8H80mG/O+2MTq3/cjSRIBwT68PG0A7RTG025zMO+brSxX1l4Bwd68NnMwrZR1curhq3w6fTk3s4sQBIFhT7fjyZe7otWqOX7oCp/MWOERLz8xshOPPNsBl1vih9kbWa4cC2LiQ5j83lDiaoayaW0qX3+6AZvVgV+AkTenDaRF65r8teIo33+1GYfdRUioD5NnDaFmrTA+fn8NWzbLLE+LlglMnDKA8xduMOqFXygpseDlpWPCW/2olRjG+AmLOa/o7J58vC0DBjTlXx+t4ajC0g4e0JSHhrTk3Y/XcPqc/Pl+6pE2tGldi3HTlpB7qwS9TsOEV3pSVGLhjVmyPqdWXAjjR3fjq193cObCDURR4IXH2oMgMPnT1UgSNKwTyRODWvD+TxspKDbj563njee6MX/NYc6ny66tMY90YP+pdA6eln+eJ/u14Ep2Pgs2KkLkHk25nJ3Hil0ymHq6dwsOnsvgXMZN1CqRZ/u0YPne0+QVm/D3NjCofQPmbT0q5/XEhBIa6MPSffJjB7Sqx8FL18kpKsXfqKdjgwT+2Ce74trUjiGjsJjrucV467S0qRPrcVx1qBtH6vUcii1Wwv18CPI1su9yBqII7RPj2HkxXf6/iIviVE4uFoeTuCB/zHYHV/Jll1Wgj5FTObloRJHaYcEcy8oGJBpGhlXI0Anl1E05LDApNIQzngwdOTgQqs/QAYkYfz+ulBSiEUUCjMZqwwKL7BackktOQq6UiizbzL20WgrtFvx1crCfnIrsRZ7NhAj4anUU2c34anSUKYxNsJKKLJd8yvUP5anIAuClUVWqf5B7rlT36LmSv6cWBATcSqGnuppCTxGnZK/SXH7bYWXHoDizZB2PXQE6slZHp6ywDKIKCStqQcQlOO52iLvn/K8BO3PmzKFnz55ER987RO7xxx8nPj6e8PBwTp8+zaRJk0hNTWXz5s13fcykSZMYN26c598lJSVER0czdHhLD7Ny8kQG589lo9WqGTj09hrt2OGrXLuah8GopWe/2+DEVGZlh0JX9x1amdXZseEULpebxHqRxN1RZrl702kkSaJecjThdwT0ORxOjik5KK1TqqYeS5JEqtLHk1xNiBvIIKY8WTauzt3Zr4JbpQBVrsjvNgZvHTarA4vp/kMC2/VpzK8frCF17wVKi8x3ZaL+boLC/XlvyVjeHPgZ187fYGyPD5j6ywvUbXrv1Of/9CxYsICJEycCMHv2bB566KH/+Gs4HS5O7rvAnjXH2bfuRKWcouBIf1IGNafT4BbUbFDjvgXbpYUm1szfw+pfdlGUJ/+/+wV5M2RkZ/o+1f6uzfR2m5O18/ew+KvNlBSaAFl8/NzkgTRomVDl/pfPZvHDO6s4pbxHQ6MCeGHKANr2bFDpZz13/Bpfz1jhESDXbxrLmLeHeOzkAId3nefrmSu5Wd6LNbgZI9/qi4+f/LPeyeZ07d+Y0W/1xcfPiM3qYO6Xm1mprKTDowJ4492hNGgai93m4IfPNrBcua1GbBAT3hlKnaQorl25xQdTl3HlYi4A/YY2Z+RrPXA5Xbw/YwU7FAaocbM43poxCK1OzTtTl7FbuUBp3S6RN6f0Jz+/jJdHzyWjXJz8XCeGPdSK3+fvYcECORm4Vq0wZswcTEZmAaNenEtpqRVfHz2TJvbHx9fAi6/O4+atUvQ6DW+81ouQYB9eGv87BYUmvL10TH6jLyVlVsZOWoTd4SIqwp8Zb/Rj2brjbNghr326d6xH324NmPLxavLLH/dyL7bsP8+WfTJAGNC1IYnxoUye/RdOl5taMSE8M6QVn/y2ncISM/4+Bl59ohO/rDpIRk4heq2aMY90ZNmOVC5n5aNVq3hxaDtW7DnFNeX2kf1bs3DbCQ+webhLY+ZuOoTN4SI+PIAmiVHM3SS7HDs1TCDPZGb7qcuoRZFhHRqx8tAZLHYHMSH+xIUGeBxXvZvWYc+FdEosNiL8fYgO8WfTafl42aNRItvSruBwuagdHozF5eB0ttxa3qBGuAfotKsVy96r12R2JjKUq/m3reVO3FzOL8BXryPI28jp3JtoVSLxwQGcys1FFKB2aDCnbpYzOsEeoFM7JMgDdGoqGTqCADH+/lwplsFNkLeRjNJijGo1Go2aXHMZgXo9Zrcds8NVKSww0tvXYzkPNXqRYynFoFIjqOQ284o283KgoxEFdCqRUqeFAJ2RYke5zVxHkaPcfeXAKbkJ0MipyBpBQK2SsLntnlRklSAzNTa3HX+NDvNdeq60gpyoLCHhrZYDBKsWejoqFHqqcSvCY50g4ZacigvLil4UkbCjwo1GYX10ygqrHOhoBFm4LOGq9nj1d/MfBzszZ86slkWpOIcPH66ky7l+/TobN27kzz///NvnHzlypOfrBg0akJiYSPPmzTl27BhNm1bNqwHQ6XTodFWdJO0rUOVLFFt5jz6NKlU9rFQcHT36JuNVoQxx2/pTWC0OYuJDaNC4sv1781+yNbV7NeLjHUpuR0qvql1Xpw6nYzbZCAj2JjGp6trn+tVbFOaVotWpqZtcPSgst5PXSAi9J2NTqICdwBDfu96n4hi99RTllWFWrMz3MzUSQomrE0H6+Rsc2HyK7sNb/f2D7jKRcSF8tOJ1Zj39PZkXc3hz0GyemzaI/iNS7mt18+/O1q1befbZZwEYN24cr7322n/suU2lFk7sPs/BTac4sPEkpQqwALm9vUP/JqQMbkFSq5oP1Od1M6uAFT/tYMPCfR5GJjQqgKGju9LjkdZ3fX+4XG62rzjC/M/Wc/O6nIFTo2Yoz0zoW22DeVFeKfNmb2TjHwdxuyW0OjXDR3Vm2KjOlV6jtMjM3E/Ws+HPQ0iShLefgWff6E2vh1p6fq+igjJ+/GAt25XPUFhUAGNnDfZ0WlktduZ/s5UV8/d62JxXZwyidYrMhKadzOSTacu5ni6feHoPbc7I8b0weum4fCGHj6YuI11xCPYd2pwXXu+JTq9hzbIj/DB7I3abEz9/I+OmDaB1xzqcPXWd92esIPdGEaJK4OmRKTz0RFvOn8vmvRkryM0pRq0Wee7FLgx5qCUb1t1eWwUFezN1+iCiogOZ+NYfnFAKO/v3b8Ko0V1YuPgACxbKWpY6dSKYPnUgBw9fYcrby3E63URHBTJr6kCOnLjGe5+uxeWWiI8NZsbEAaxYd5yV6+W/UdsWNXn+ifa89/UGLl65iUoUePHpTuh0asa/uwyn0018dBCvP9+VL37bwcVrt1CpRF55shPpNwr4ZG55UGBtGtevwYxv1+N0uUmMCeGR3k35ZP52T0LyiEGt+XrpHorKLAT7e/FMvxZ8v2o/pWYbYYE+DEtJ5oc1B7A5XCREBNIqKZbv18rH1jb1Y1GpRZbtlS8Sh7ZvyO60dHIKS/ExaOnVvC6L955AkqBpfCQ2l4udZ6+iFkX6t6zH6mPncLpkx5VDcnPwciYalUhKUk1PmWfLhBpcuJVPodlCmK83gT5GDqbLreWtEqLZc1X+P2gZG8Wx6zc81vIbZWWU2GxE+HrjQuJKQSG+eh2+Rh1peXkY1GrC/H04l5eHVhSpEeBPWl4eGpVIpJ8PFwry0Ygi4T4+XC4qRKtSEeCl51pJEUaNBp1GRY6plAC9HqvbRZHNSriXF7dsJtySu1KGToS3nK2jEgT8dHpuWU34arVY3Q6cLhehRi9PiacnFVmtRpKcWFz2SqnI/jq5+8pXo8OsrKH8NXIPll6lQkIGP34aGehoRRGhXJSsZOyUgxq3staqtufKbfMUeqoFUAt3FHqqNLgkGcyoBTdu3OiVtZYsWLaiRkAtyLk6GmWFZVSJuCUrWkGNhI1/x/rxHwc7Y8aM4ZFHHrnnfeLi4ir9e+7cuQQFBTFgwIAHfr2mTZui0Wi4ePHiXcHO3ab8JHk9I5+D+y4hCDC0QrHnjaxCDu2XP0SDht92VEmSxDrFbt63glMEIP1SLpfO30CtVtG5Z2U3T252EWmnriOKAh16VNV5lMfYt+hQp9qT2ukj6QDUaxxzV8fPtQvyVWlC3Xu3bJdfqfsGVq/PuHPKHTnl4YL3Ox36NyH9hsFo4gAAIABJREFU/A3W/LqbbsNa/lv28aiEUD5fP4FPx/7GvnWp/DBtKduXHWbsJ4/9Rzq07japqakMHjwYh8PBww8/zMcff/xvPZ8kSVxLu8GRbWc4su0Mpw9e8lQ3gMy6tOvbmPb9mtKwTeI9Kxyqm/MnrrHypx3sXnvc87wJ9aMY9mJXOvRrctfnc7vd7F1/kvmfrifzkvw+Cgr344nXe9F9eMsqbfcOu5O/5u1lwZebPSC4Y7/GjHirD2EVsnzcbjdbVxzj5w/Xet533QY347m3+noEyJIksXXVcX76cC0lRWZEUWDQU+148pXu6I0yYDp15CqzZ6wgO0PWRFRkcxwOJwu+386fv+zG7ZYIDPHh9ZmDaNG+Ni6Xmz/m7mbe99txOl34B3rx+rSBtO5Yh6ICE+9NXsZB5bPXrHVNxs8YiH+AFwt/3c28n3fidkmER/ozadZg6tSP4o/f9/HrzztwuyQiowKYPGsw0bFBvP/ubbdVi5YJvDWlP1eu3OKFkb9QWGhCr9cwbnxvmjSJZcq0pZxQOqoG9m/KM0+356vvb9vKO7avzSuju/H1j9vYsUdmYbp2qsczT7TlvdnrOXvhhpyk/HBbkupG8ur0Pykps+Lva2Dqa33YceCCR5+T0qY2vVKSmPzZX5SUWQnwM/LWqO4sWnuEE2ly+vJzw9qSX2zm03myHqdLi0QS40J59+dNshamdhTtmibw/vytuFxu6saG0qFpTT5dLCciN0wIJ6lmJF+vlPU67RrEodNrWLhd1usMateAMxk5XMjKQ6tW8XCnZJbsP4XZ5iA62I96sWH8qayquicncjozl+xCubCzQ1I8yw8rifGJMVy+VUBuSRn+Rj1JMWFsUoBO5/oJ7L18DZvTRc2QQKxuJ2dvyNqdxIhg9l6V/95t4qM9DebJNcI5c/Omx1qeYyqj1GYn3Ncbu+Ty2Mm1WhVXCwvx0Wnx0uu4XFiAl1aDt15LenER3lotBo3Gk6GDCnJMZQQZDFjcDgptFsK9vLllM+N0u6jhczsJuSLQCfXy5oa51BMWWGiv3G1VHhYoAL46PQV2M74aLRaXrVIqskoAg0ZFmdOCv1ZPmRIM6KeRnViyNV2pf9DoKHNZMCgWcInb9Q8VQY23Ri1byqvpuTKqtdjdVrSigKAECJZrdSoXero8dnOXZMOokrNztIKAqKy3NAKAE6OywvIAHQFUOLFxuwj5QeY/DnaCg4MJDr7Pskjkg9zcuXN56qmn0GgeHLedOXMGh8NBRMS9T+73mvK05FZtE6lRobZh7cqjSBI0b1WzUojgpbQbXLmYi0arossdbeTbFdt483a18L1jbbNvm3wgS2oaS2A1IXnHFGDVvELpaMU5pxwc6zW+u/A4K12m9WskVBU3V5xy7c3f6XXKJzw6kAupGeRkPFjjbJ8n2/Hn15u5kJrB8d3nadrx7qWk9zNGbz1Tfh7J+vl7+OXdlVw4cY2xPT6gda9GDHyuMw3bJv5H83gyMjLo06cPpaWldOrUid9+++2B29IlSeLGtTxO7r1A6p7zpO69QOHNymGLUQmhNO9Sn7a9G5PUutYDs1Uup4t9G06y8ucdnK2Qs5PcrjbDRnehWUq9u/5dJEni8LazzPt0vcd67u1n5KGXutL/mQ5V3iOSJLFv02l++WCtx0peq0EUo6ZWXW9dPpvNt7NWcFapT4hNDOPlmYNpWOF+2dfy+GrmSk4ckPVocbXDee2dIZ7OK7PJxi+zN7JGyb8KDvXllekDPdqci+ey+XTactKV9VPnPo14aaIMgm5cL+Dj6Ss4o3x22qbU5dUp/fEP9Obgngt89s5qigpkh9aIMV0Z9Ehr8m6VMGHM7abyzt2TGDuhDzabk0mvL+SY8vft3D2JV9/sQ3ZWIS8+/wtZWYWIKoERz6cwdHhLFi7Yx/z5e5AkiE8IYcb0weQXljFy9FwKC00YDFrGv96LmjVDGfvmQq5l5COKAqOeS6Fl83jGTfmDjMwC1GqRl0d2ITYmiDETF1NUbMbbS8fUcX25nJHHm+8uQ5KgXq1wXnuhK5/P2cbZizIYGvloezRaNRM/XoVbkqhbM4znhrfh41+2ehKSx4/oyuodpzieJmuBRgxuRebNYr5fJgOX/h2SEDUiXy+RC5C7t6iNTq++nYjcqh4mu72CELkRpzNyOXtOFhA/0b0pqw+cJb/UTIC3gZ4t6jB/53HckkSThChEtcDGExcQBBjSugHrj1/AZLMTFehLbFgAa0/IYK9Xcm12nr8qpyAH+ePtpfOUeXauX5Mt5+T3T5OYSC7nF1BssRLm642PUcexzGw0okhyjQj2K63lLWKjOHxd/p0bRoRxVrGW1wwOILusFLPDQZSfL6UOGzllFsK8vbC6XdwoLSXYaMSOixxTGcFGIzaXk1tmE6FeXhQ7rVhtTiJ8fLhlLcPhvjND5/bX5WGBalHAR6fnpqUMX60Om9tRTVigkVvWMtSiiE4lUuKwEKgzVFhXVUhFFiqnIoOEt1pLmdNSKRXZW6NVRMkV6x8Up5VKi81tU+ofVNjctgfouRIr9VxVLfS0e4COXijP3HGjFiTAJdvNsaET1LixKWDIjqi4vv7J/I9rdrZt28bVq1d57rnnqtyWlZVF165dmTdvHi1btuTy5cssWLCAPn36EBwczNmzZxk/fjxNmjT5R+3SIFdDbFKi5AcNu83e2G1ONihUev87NDkbVskf6nad6+Hrd1vvIEkS25Xyzs7VrKn2KGnK7btWZXXycou5dukmgiB47LJ3jsdl1fjuMf/ldvLI2HsDTptVFnnpDPcHMMuLG29cezCw4x/kQ6/H27Jqzk4WfbHx3wY7IFvA+z7dkTa9kvlh2hJ2rT7GvnWp7FuXSly9SAY+35mUwS08jMA/ncLCQnr16kV2djZJSUmsXLmy2nXonWO3Orh8OpO0Y+mcP5bOucNXuJlVUOk+Wr2GRm1r07xLfVp0TSIy/p9Z6ovyS9m0+ABr5+3x1C6oNSpSBjVj4HOdqHUPxkuSJI7tPs/vn60nTQEjBm8dg59LYcjIlGq1PBdPXefHf63m9CFZlxMQ7MPT43vRbVjl+ojSYjPzP9/E2oX7cbsl9EYtj4/pxqBnOniYJYfdybK5u1n03TbsNidanZrHX+7KkAr3ObL3Il/Ouq3d6T20Oc+P742Xjx6Hw8nin3ayeM4uXE43fgFGxkzpT4fuDWT2dfkRfpy9EYvZjtFLx4tv9KZ7/8bYbE6++mCtx2AQVzOUt94ZQkJiGLu2nuXzD9d6Ws9fHteL7n0acWj/ZT7512qKiszodGrGjOtFjz6NWL3yGD98uxWHw0VIqC9TZwwiItKfSRP/4LgiLu7TJ5mXXu7G8hVHmPubzDzFx4UwY/ogLl7OZdTYeVitDoKDvJk+aSB5+aW8+PrvWKwOQoK8mTFpAKfTshk/Ywlut0RifCiTXuvN3D/2s+ugfIHUr1tDurSvw8QPVlBQZMbHW8/kl3uy9cAFNu2RNUV9UpJoVDeKyZ//hd3hIiYigNGPtOfzBTvJzS+VgwKfSGHZtlTS0mVH1uihbdl7Op1j5+XE5Gf6teT4xSyOH5M7s57p05Jdp65w8bocLPhs7xYs33uKW8Um/L30DO3YiHlbj2J3uqgVGURCVDALd8nH1R5NE0nLzuPaLdl23qdZHZYfPKO4qiKwuZ3svXANlSjQq3Ed1qWel2+LCSfPYuF0Vi5eWg2N4yM9QKd9YiwH069jd7lIDA2i2G7j4q18fPU6agT4ciQzC1GAxjGRHL4uW8ubRkcqQmRIigjl3K2birU8iPTiIuwuF7H+ftwwmbC5nET7+ZJrUb729SXXbMLuchHjJzM0LslNrL8/10qLPNbya+UZOgrQEQQIMXqTZSrBoFajUgkU2mQWp8gui44rhgUGGwzKukou+TS77JVSkQOUVGS5sNOOS7qdiqwSBLSiLEAuT0UGCaNa7REgW8pFyRoVVrcVb7UOq0sGNTq1zN6U1z9oBBDu0XNVrtUpBzp6QVRAkFzo6VYKPV2SFYOgQsKGCKgEt+fxbuxKro5NAUNKfYTgxib9L2F2HnTmzJlD27ZtqVevqvvI4XBw/vx5zGY5LE2r1bJ161a++OILysrKiI6Opm/fvsyYMQOV6p+hvc3rTmI224mODaJphbThXdvPUlJsITTcj5ZtbzMtVquDbQqg6X1HsefZk5nkZhdhMGpp3aF2pdsK8ko5q4CVttU4rcrbz2s3iMKnmhC30mKLx3pb5y56HYDsDAXs/I2dvJzZ+btOrPIpBzvZCnP0IDN0VBfWztvD6YOXObH3Ao3b1f77B93HBIb5MenH53ls/A1Wz9nB1iUHST+XzRfjF/DF+AU075JEUquaJLWsSe3GcuDf/Y7VamXgwIGcO3eOqKgo1q9fj7+/f6X7SJJEXnYh187fIONCDhkXbnD1bBZXzlzH6agsolNrVNRtFk+jtrVJblebus3iq61duJ+RJIm0Y+msnbeHnX8dw2mXX8svyJu+T7an71PtPSF7d3v8sV1pLPh8I+eOpgPy+6D/Mx0YNrpLta6sW9lF/PbZerYqkQpanZqhI1MY9kIKxgpaNrfbzZblR/nl43UUF8grq459k3n+rb6VOq/OHEvnqxkruaasy5q0rcWYGf8fe+cZGGW5dutr3umT3nuFEBIIJfQOofeADSsgCoiIShFQEd1ue++4lSaKiIXekd47oRN6QgjpPdPf8+N5Z0ggFP085/z49vOHMpMhzGRm1tz3WtdKJ1wprS0rqeI/H6xmoxIZD4nw4/mZ6aQq9ScXzlzjwxl/cOGMiM537NmI8dMH4BvgKdrN31zu5uOkpMYw+Y0hhIb7kXkqh/deW0KW4ukZ+khbRo7rjsPh5KN/L2edUgqcmBzOtNeHEBTizazPN/CH0nEXXz+Yl98Yiq+fiddn/MEuZf3VrkMCU6YNIDMzt9ba6oUX+9CqVTxvvLmUffuFQOzdK4VnxqYxZ/52lq4U/7/UZjFMndSPRb/v44/lIlae2jSayRN68828rWxTpr69uzXivoGpzPxoJVeuFqHVqHn+qTQsNjuT//07DqdMvZggnn+yWy1/zrOPdeJaQRnvfLcegA6p8XRqWZ/Xv1mDxeYgKtSXUUPa8enPWykuE4msZx/qxJyVe8kpKMPDoGPs0Pb8uOEguUViIjRqQFt+WH+A4vJqArxN3N+tKXPXCSNyfKg/qYmRfL9O3G8dkmOptNlYe0iAA+/vmMKaw2coq7YQ4uNJ07hwftsjvDzdGtfjZM51cksr8DbqaVkvkpVHhGDr1DCWI9nX3CblQB8Pdihlnp0axLE1U0zdmkeFcbawkAqLlQgfLyS1xMncfExaLTFBvhzMFoWqTcNDOaREy5tHhnH42jWRsgoN5oQSLU8MCuRsUSFOWaZ+gIiQO2URIb9YUozzpmi5i6dTExaoQibcy4vsilJ0khqTTkNedQU+Oj3VThvVNjHFybsJFqhWqfDUa8W6Sqen0i7WVUHKFEcCPHV6Sm0CJuhqK3cJHZ2kRpYdWJ02/BWYoFoFGklyG5ArHYopWS3qH7w1Bqoc1WhU3AACqkX6Si8JqGDtnislUo7ouXK6e65uLvQUxmOTWvRcGVUaJWElpj5C6CgpLJW6ltBxXUeNA6P6771u/n8XOwsXLrztZbGxsciy7P5zVFTULfTk/8mRZZnlS8Snu8H3tao15l+jTG/6DGxW6xPr7q2nqaq0EBLuS5MWsbVuz8XraNel4S2j/wM7MpFlmYTkcIJCb41NZygvhLeb6riMx6FR/vjchoNitzkoyhPG45CIOxdJ1rhb7+lEK7Hhc8ezkWX5L62KgsL96PtIe1bM385nL/3MNxum1aoH+J+emMQwnnv/YUa8PJgNi3azYs4WSgsr3J4YEGIjvlEkoTGBBEf4ERjuR3CkP/4hPugMWrRaDRqtGrVWDciMHDWc7du34+nhybuvfsbpXVfZkXOc/Jxi8q8WU5BTzPWswtum03wCPElMjaVhizgapsaR1CLurnUNdzuV5dVsWXqQNT/tcq+bABKaRjPgiY50HdzijgJKlmUObDnFT5+u44wyddDptfR9tB0PjutRp0CqKKtm8TebWDZvO1aF7ZOWnsqIyf0ICq8t/s4cvcI3/1rGGYWoHFUvmHEz02lWo5+trLiSOR+tZZ0yVfH282DMtP5uOKAsy2xde4xv3l1JaVElKpWKwY+2Y/hzPTCa9Nhsdn6ZvY2fv9uKw+7E29fE+JcH0Ll3inuy+uV7q6goE+3mI5/tTvrDbUGGhbO38eN3W3E4nPgHejL59XRatKnH6RNXeff1peRkF6FSwbAnOvD4U13IuVrMhNFzOa+sx9Lvb8XT47pz+nQO0yb/TH5+OVqtmtFj0xiYnsoP83ewcKFIW8XFBTHjtXTKyqsZ/cxcCgrK0ek0PP9cT5o2jWHyy4s5mymE2mPD2tGvdxNef3sZJ5X4+aMPtiWtc0OmvPE72TnFaDQSE55Kw9PLwIQZv1BtthEc4MUrL/RjxcYMNmwXRPaenZJI65DI9I9WUF4pPDzTxvTil7WHOHRSPC7D09tgtTt4Z7ZIsLZvGkerlGje/H6dSGRFBZKe1oQPF27GbLUTGezDA92b8eWSHZitdqKCfenXLpmvlu4UYMHIIFIbRjJr5Q0jsqSW+HW78OCkt2/E/vPZZBWUYtJrGdg2md92ieqH5KhgjHod646KNdaAlklsOH5OpLECfAnwMfHnSdGr1atJAzaeOofd4SQxLJAqu42M7FyMWg1NosPcQqd9/Rj2KGWeSSFB5JaXU1xmJtDDhNGg5eT1fIwaDTGBfhy5lotKJQjJLqHjYujIQHJwECdd0fKgQE4X3Rotryl0Yn1d4EDB0LlUg6GTU1WOp1aHU+WkRCnuLLRUIivixpXECvbwcMMCNWoot5nx15vcvp1ARehoJQmNpKLCbsZfb3Cvq/z0QvzcTEUut1ehkyRkHNhlh1vo6CQVKpVDiY+LFZdeUiGrRNLKw9VzpUxvhOemZs9VtcLHqbvnysXVqRk3N7lpyGKFpa5BTBaGaCtGlaR4dUQkXaOS0aic2OSq277G3en8fxc7/z9PxpHLZF0uxGjU0aNGNcPVrEKOHbmCJKnoPaB2omrjKvEE7tGvibs3C8Qn2u0KUfZmYjLAfqXjpnWnuqcaGYoPIKVl3XHqi6fFi2B84u29SSVKTFlSS3j73Tnm7WqgtlnvLcZXv3EkOr2WsqJKss5dJzrh3qGOAMOnDWDPhuPkXi5k7jsreObN+//S19/L8fI1MXRsd9JHd+PSqRyO7c7k5L7zHN97nqLrpZw9cpmzSiLmdkeWZU5X7ORy1TFUSCTp0vjp9T9ve321RiIiPoToBqFENwgjJjGMhGYxhEYH/CPeIdcUZ+3C3Wxdfsg9kdPqNXQd3IL+T3Qk8Q4eLlBIyRuOs+iLDe5qB71BS7/H2nP/mLQ6IY1Wi51VP+7i5682Uq7UUDRuHc9T0weQeFP5bHFBOXM/XMMGRcAYPXQ8Mr4n6cM7utdRsiyzYclBZn+whjLl9vrc34qRE3u7IYb5uSV8+e/l7jqH2PohvPDGEBoq3p3MUzl8/NofXFRM+O27JfHcjEH4BXhSWlzJF++ucj8HE5LCmfKvIcTEB3M1q4gPZi7hlEKJ7tQ9mQnT+uPhaeDHOdv4cc42nA6ZoBBvps5MJ6VZNGtWHOGbz9ZjNtvw8TUx+eWBtGpbj4ULdrJA4fpERPrz6sx0fP1MTJ70M8cUmvWAgc0ZOzaNJcsOMmfuNpxOmeioAGbOSOdqbglPj59HZaUFb28jr0zpDyoVY174gbJys2g1n9Sfimor46YuxGyxERzoxcwpA9my+yyLvxOTtdSUaMY83on3vl7H+SsFYnrzRBfMNjvTP1yOU5ZJrh/Kkw+044M5G8ktKMdk0DJpZHfW7DrlbjB/bEBLyqssfLpQfIjs1rI+4aG+vP/jJgBaJ0fTIDaIjxeLy9skRxMe5MusFULYdG1WD4dK5mfFiDy0Y2MyLuWSmSPWWsO6NuX33cepMFsJ8/MiNSGCRTuU6odGcVzOL+FEdh4GrZreqYksO3hSVFTEhFFqNnPoUg4GjZqOSXGsPS5eQ9vUi+L09XxKqs0Ee3kQ6O3BnotZSBK0jRfRchBlnseuXcdidxAX4EeJ1cyVklICTEZMBh2n8oToifT35th10RFWPyigBiww0C10GtQQOvX9/d1CJ05h6KhUEOHtzaXyYrSSGl+jQTB0dFrUkmDoiDbzamwOB6E1xI1L6IiSTyMF5kq8tFosso1qh4Mgo+eN9JXeQLG1EpNagw0HFqfdTUVWAV46LeX2arw1BirvgYpsVAsmjoyMl0ZHtaNadFop5Z2i/kG0lLtIyVqJWj1XN7w6dfVcSaBMbXQSyDUKPXXKCkuDjEYhJmtVKsBWQ+iowWVOVjnEZEf6e/aE/9ViZ43iyenRJwWPGp+6XV6dlm3rEVTj025RQQWHFKhf95uMyacysinML8fkoafFTdMZh93hXlO17Hir2LmeU0xeTgmSWiL5Nn6c86eVhvI7pKyKFYaKX6DnXU20WpfYsdwboEmr05DYPJpje85zYv/Fvyx2PLyMPP/+MF597BuWz91Gq7RkWnb7v1OxIEkS8Y0iiW8UyeCnuiHLMtevFJKZcYWCnGLyrorpTP7VIorzy7BbHdhsduxWB2eK9nO5SmmejhlAo+iWGD31eHgbCQzzJSjcjyDXZCjCn7DYoL+clrqXU5RXxpalB9iweB+XlMceIKp+CL0fbkfPB9vclnTsOg6Hk+0rD/PLlxvdxbB6g5b+T3TkvtHd6pzkOBxOtq44woJP1pKrgAej6gczauoAWqfVNjnbrHZW/LiLn77Y6E5jdR/Sgicn961125czr/PlG0s5rqzMYhNCGP96Oo2UOhOHw8mKRXuY//kGqqusaLVqho3uyoOjOqPVarBa7Sz8djOL5+7A6RDTnHHT+tOlTwoqlYqdm07x+TsrKCmqRK2WeOQpAQhUayRW/3GQWZ+sw2K2YfLQM/6lfqT1TSH3WgmvvfQLJxUB1KVHMhOm9EOGWuycZi1imTpjMLIsM2XiQjKUVXTP3ik890IvMjKyeOmlRZSVVWMy6Zg4qS+pqbG11lY9ujfiuWd78OOiPfyi1DkkNwxnxvSBrNlwnB9+FtOgxPohvDplAL+vOsyS1UI8tGoey/hR3fjo240cPSm+10eHtqZRw3AmvvkbFZUW/H1NvDK+L8s2HWOL4uEZmJZCcoNQpn+yHKvNQVSoH+Me7sTnP28jJ78Ug17DC492ZdXOk2RkipXOk4PbcjorjwVrhGh9oHszrpeUs0ABB97ftSmX84r5Y7t4fjzSozn7zmaRebXATUT+Y9dxSiqq8fc00qdNEgu2CCNyk9hQDAYtKw+K+zW9TTKbjovqh2AfDxrHhrH0gPA0dkuO53DWNYorqwnyMhEXGsCGk+fcl20/dxmbw0H9YH+qHXZOXMvDpNPSMDzILXRqJq4ah4eQWViI2W4nxs+XMpuFKyWl+JuMGPQazhaKpvIgbw9OK9HyCF8fd7Q80tebs0UFaFQqwr29OVdchFYtEeTpwcXSYvRqNd5GPdkVZXhqdajUKvKqKwkwGqmwW6iy2WsBAiM8bySxQkyCraNXq9FpJIqtVfjpjZQqU5pgozAoS4CXTqeUeNaEBQoqskZSoVOrqHJY8NUaKb8HKrKnRkTFQZR3VjvM7r+7U/2DjIyn2tVzJQzEdfVc6SQNsgIJ1Ll7rpRCT2W95RIxKmQ0SgrLoFIhY3GLIZ1KhaSyijWZyolVvoHm+Cvnf7XY2bsrE0mlZ+DQGwZkh93JBoWF0+cmTs6W9cdxOmWSUiKJiA6oddn2P10rrMRbYuGnMrKpLDfj7WuiQR38nOMHxRM0ITkc423WOxcVrP+9iB1XnPdOx/U9Wu5R7AA0bl2PY3vOc3TXWfo+0u6ev851WnRNot/jHVi9YCdvjZnDa3OepnnHustM/8mjUqkIjQkk9C6m7UWLFvHww58C8MEHHzB58uT/699bzWOutrJn3TH+/G0fh7adxukUu0adXkungc3p80g7GrWKv+vEyGq2sWnJAX6btcld9mr01DNoRGfSR3Wp8+dDlmX2bjrJ/A/XuoWRf7A3j7/Ym573tawVO3dd9/t3V3FV8b4kpETyzIzBtSpKKivMLPzqT5Yu2IXT4URv1PLYsz1If6KDWyBeOHONT19fwtnjIhWT3DyG52emE1NPGLZPZ2Tx8cwlXHFVRfRqxLPThDenrKSKrz9Y7Q4FxNQLZsobQ0hICqcwv5xP/r2c/bvEm2TTlrFMnplOUIg3G1Zn8PXHa6lSjMvjJ/ehe+8Ujh66zHtvLqMgvxyNRmLk6G7c/3Bbdu88y4fvr6a8rBqjUcdzL/Sma1oS33+3hd9/F3C8hIRQZrw2mILCCp4aM4fCwgp0Og0TxvckNTWWaa/9xgllFf3g0FbcP6QV736ymoPKpHFQv2Y8MKQlb32ymlNnxf0/Ylg7mqdE88Lrv1JUXInJqGP6+D6cu5zH9HeXAtA4MZyxj3Xive82cvlqERq1xPPDu3LxWhHvfifWVB1S4+ncqj4zZ63BYrUTEezD6Afa88Wi7eQXV+Bp0jN+WCd+3nCIizlFblDg8l0nuJBTiFaj5ukBbVm2+wTZ+aUY9VqG92nJz1uOUFIh/DqD2jdyE5ETI4OIDffnxy3Ce9SjaQLn8go4mpWLQathQKskluw9gd3pJCkiGL1BzZ/HzyGpVPRtnsi6Y5lCzIQEoNKo2HshC41aqtVxlRoTwbmCAkqrLYR4eeDlYeBgVg4aSSI1OrxW4uqAYkROCg3iQlExZrso8Cy1mrlaVkaghwkkuFRSgo9ej0Gv5UJJsTtafqGkGA+tFg+djitlpXjpdGi1ElcryvDR63HfgSh6AAAgAElEQVSqnORXVxJoNFFmt2CxOgjz9OR6dTnyTeImXPm9pAJfg5E8c4VS8mmn0m4hyOhBodJQHmj0IN9SgVaS0ElQYTffBAsUVGSjWoNDZcPqVGCBChjQoJFuoSKbbqEiyxgkkbRy1T9IgEZ1t/qHml4dkCTB1bldzxW4eq5uFHrqJBWSAhlUq2Sx5lKpkLG6hY5eklC5pj8qhwIkvOER/Cvnf7XYcTpkmqRGEVejXPLg/gsUFVTg42uizU1G2m3KiLzrTQWdsiyzS/kk2DHt1mmFq9izeZv4OiPFZ5Txd/Jt1hGyLJOjpKCi7hApd/lHanYP3e74KHydkoJ75+a0Skvm58/Xs3fjCcxVlr/luxnz+lCuXS7g8LYzvPbELKZ9OYIOddRm/L8+W7ZsYfjw4QBMmDCBSZMm/T/5d21WO4e3nxGJsnUZVFfc8AA1TI2l+32t6DK4xT3RpytKq1j94y6WztlGcf6NOpDBT3Zm0IjOt72NjL3nmf/hGk4qkxcPLwP3j+5G+siOtzzGF09f49u3V3B0txARvgGejJjUh573tXRPE2VZZuvqDL57b5Wb1N2uezJjpg9we8nM1VYWztrMb/PFtMbkqWfUi73pe38rJEnCXGVl/ld/svQnURXh6+/B+FcG0rGHWBHv3nqaz99aQZFCC39geEceG90VnU7DlvXH+eK9VVSUmdHq1Iwc150hD7elvKyaN1/5jR2bxXO1cdMoXpqZTkCgF7NnbWaxQjeOjPJn+utDiIkL5PNP1rJSMUk3SAzl5dfSAZjw3AIyFc/N0KEteXJUF377Yz/zfxArrqgof2bOSCc3r4zR4+dRVm7Gw0PPtIn98PY2MvbFHygsqsSg1zLpuV54+xgZ99JPlJWb8fI08MqL/biSU8SLr/8qYIJRAUwd35vZv+xi3xHxOA3t04wmyZFMfncJVWYbQf6eTB3dkx+W7+PoGVeMvC3VNjtvfy+ET5uUGDqmxvPv79djtTmIDfNnWJ9UPlu8jcpqK8F+ngzv34pZy0RjeYCPB4/0TOX7VXupstgID/CmX7skvlu9F7tTCJuGMSHMUYjInVPiKDVbWHNQGJHv65DCuqNnKa0yE+RtolVCFL/uFuK0Y8NYLhUVczK3FKNOQ+fkeLcRuVW9SC4VFpNXUImv0UBiRJBb6HRqEMuuC1dEA3mwP2VWqztxFeXnw77LIjnWQklcATSLDONIjvDkNAwJ5EJxERaHg2hfXwrMlVSabYR5eVFht5JbUUGQhwmLbBesHJMRq8NJXlUlQR4mKh1WyswWgj08KLFWY3U6CPfy4lpVBU5ZxMxd3JybGTo5VWVKcafkTl+V2kT6KsTk4Y6Z+xmMFFoq8dBosck2zE7HTbBALaW2Sry0ysRGvgEL1KklJJUDq9MuYIEOQUDWSmB1WvHR6qlWqMhqFdhkm0JFFh4aWQEIeir1DwZJrLXqrH9QqUEl+DhGSbrHnitzrZ4rtUpWriPWXDplheW6jouvIyGjRsb5X8/O3zv9b+qu2qDE0Lv1auxuPQe4fq2EU8fEk6hT99qC5kLmda7nlKDXa0mtw2B8RMHnN7tNxcNpRezc3IDuOqVFlZirrKhUKoLvYDw2V4kpzb2wcwJDhbm0MLf0rtd1nYbNYwiLCeTa5QJ2rz9Ot5vKT+/l6PRaXp87mg8mLGDHqiO8PXYOE94bRu+H//qk6J86x44dIz09HavVyn333cfHH3/8j7J6bj4Ou4OMPefYtuwQO1YfpaL0xpM3NDqAtKGtSBva8p4b3vNzilk6ZxtrftrlFryBYb4MeaoLfR9pj/E2xugzR6/ww8drObRdeCH0Bi2DhnfkgTHdbhFGxQXlLPh0Pet+3YfTKaPVaRgyshMPjulWS1xfPnedb95awVGFmRMW7c8zrwyiVQ1a+YEdZ/ny38vJVaLyHXs24plpAwhQVl9H9l7gs38t5ZpCb+4+oCljpvTD29dEWWkVsz5cw5+rxfQ1KjaQyW8MoWHjSEpLqvhg5lL3h5KEpDCmvD6EmPgg9u0+x8eKOFKrJZ54qgsPPt6eq9lFPD9mLplKqqvfoOaMndCTazklPDtmLpcUlMODw9oy8qkubN16ik8/WUd1tRVvbyNTXupPw4ZhzJj5O4cU03fvno0Z90z3WmurxIRQZkwbxLZdZ/n+nWU4nDIxUQG8Pn0gm3ac5YdPVwPQMCGUaRP6MGfRLrbuESupnp2TGNynKTM/Xklufhl6nYbJo3twMaeI1z5bBUBqoyiGDWzJO99voECZ1kx+Mo0V205y4IRYvT3arwVmm50PFwhwYMdm8STEBfHOgo2iI6teGG2bxPLhoi3C8xMbQsukaL5YIlhBzRMiiAzx5bs1gnfUrWk9yi1Wlu4WKaoHOjVh++lL5BSV4WnQMbBtMot3ZogJTmQQnkYDqw4JP9aAlklsOXWecrOVMF8vYkL8WJshfg57NK7PjnOXqLbZiQ7wxWjQsueioCB3SIh1G5FbxIRzKi+fSquNCF9vJEnFidw8jFoN8cEBHMgWk7TmUWEcunqNmmWeIDw5mcWitbyevx+XldbyaF8fcqvKsTgcRHn7cL2qAqvDQZSPD1cry3DIDqJ9fMmqKMFJ7Wi56+9dJGTB0JHw1OnIq67AS6fH6rRRabfcxNARQkejUmHQaimxVuGrM7jXUS6ho1GBQaOmwm6uAxZYrUTPLTjkG7BAkaASVGQfnfDl6BRRI66nU5JWGhzyjemNtUb9g1rx6ty+/oHb9lzpbttzpUKFQ7mOy5wsJjsuoePi66hBETtOjOr/enb+8vH0MtCpRgdVeVk1u5QCz579antytitk1JTmMQTc1Ce1W5nqNG8bf4vQqK6yuMVMsza39glZrXYunBZPvsTbFHdeU0B+QaE+6HS3f8jMrjj5PYidgFDxxlLwF8SOSqWiW3oLFn62jk1LDvwtsQNC8Ez7egRfTl/M2oW7+HTKz5QUlvPAuB5/Gdj3Pz3Z2dn07duX0tJSOnbsyI8//vi3MQZ3OuZqK4e2nmb3ugz2bjjuNv2C6Cfr2L85nQc1J7ll3D3fB6cPX2LJ91vZsfqou5U+NjGM+8em0WVQ6m29RBdO5bDgk3XsUUSBWiPR56E2PPJcz1t8POZqK0vmbufX/2ymulL8fHXq24Qnp/QjtAaAs7LczE9fbWT5T7tx2J3o9BoeGt2V+0d1dq9MC/PL+Pa91WxTwJtBoT6Me3kg7boJFENFWTXff7KOtUq8PSjUhwkzBtFK8bnt2nyKz99ZSbEyzRn6aDuGP5OGTq9lz/azfFZDzDwyqhPDRnbCZnPw+QerWancZnRsIFNfT6d+g1BWLj3Et19swGKx4+Vt5MWp/enYJZGlvx/gP99uwmZ14OfvwdSXB5LcKIKPPlrNBqUPr0mTKF5+ZRCXLhfy9Jg5FJdUYTBoef65XjRrFlNrbXVfegsefqANH36xnt37hAjs2S2ZUU905P0v13FQAR4O6decvj0b8+r7y8lSEljPPdkNjUbixTd+FR1Yob5MfaY3c//Yw0HFZDysfyphIb5M/3gZdoeT+MgAnn6wA5/+uIXcwnKMei3PP9qFNbtPcUSZ+IwY1JpLucXMXi6ES3qXxpjtDjcosE+bhljsDuavU9KqHRpxpbCE5btPiMRat2ZsP3GJrPwSDDoND3Vpxi87j1JlsREZ4E3TeuEs3C68j52S48gqLOHk1Sz0GjV9WiSy4tApHE6ZRpEh2GQHuzOvoFar6N6oPutPZgqTcnQo18oruJxbgrdBT2J4kFvodKgfw65LV3DKMkmhQVwrK6ek2kyQpwkPo57juaLBvF5wAIeuXgNkmtRoLW8SFkJG3nWx3goK5FRhATIyiYGBnC0uQAbq+flzvqSu1nJ/d2u5K1p+g6FTglqlws9o5FpVOR4aLbIkU+IiIVur3OkrN0PHZKTAUoFBrUFWOam0W2oxdPz14vcGtZiimJ11wwK9tTq3L8dLSVqZFLECslvoGCUtNoWK7KXViKSV++/E9KYmFVmrwp20qqv+QVur/sGsGJZdqyen8PPcpudKjQNtjYoIsGGUxGRHrxIrLDWCriwElxPLfyc7f/107dEIfQ1/zfbNp7BZHcTEB1G/QW0DrkvsdO5xa9Jq73YhkNp3uRWYd+LwFRx2J8HhvoRF+t9y+aXMXOx2B96+JkIj657aXM8Rn3BDbnO567jMxq6k1Z2Oi3lSUVZNeWlVnWyfuk63IULsHNp6mqsX84mIuzOp+XZHrZaY8N5DePuZWPzVRua9u5LtK4/w9Ix0mv5DHJ67nZKSEvr27cvVq1dJSkpi2bJlGAx/bx9c17meVcjBrafZv+kEh7aewVrDH+Xt50GHfk3pPCiVlL9ATBak5GMsmb3FzcgBaNo+gaGju9Gq2+1JyZfP5vLT5+vZrkxFJElF9yEtePi5noTd5EFzOJxsWnqI+Z+so/C6EMQNmkTx9PQBNK6RGHQ6nfy57DBzP15LsbISbdc9mdHT+hOq/Lw7HE5WLd7HvM/XU1VhQVJLpD/ajsef7Y7RpBdN6RtP8PW7q9y3MfChNox8vicmDz2lxZV8/cFqtqwTQiMqNpBJr6eTlBJFRbmZz99ZxQaFjxMdF8RLb6STkBTO6RNXef9fS8m+IozWQx5szZPPpFFVbeW1qYvZo3B4UlvGMeXVgajVEq9MXcw+Ze3cum09pkwbQF5eGWPHzBWEZEnFY491YNjDbZm/YCeLfhHt6PFxQbz2ajpZV4t4atxcyivE2mrqi33xD/DkmYk/kpdfjk6r5vlnehAZ6ce4qQspLKrEaNAy+dle2B1Oxr+8CIvVTnCgF6++0I81W06wepP4f3doWY/7+zfnX1+tJq+wAqNey6SnunPgxBV+ni/SU93bNqBF42he+3o1VpuDyBBfnr6vPV/8so384go8jDqeG9aZxZuOcC67AI1aYsyQ9mw6nMnJSyKRNKJfa7ZmCFCgRi0xok9LVu0/TU6h4O080r05CzcfpsJsJdTPi85N45m3+YDotKoXgaRW3TAit27EphPnlTWWB03jw91G5M5JcZzMySO/vBIfo57GMaHujqvOiXHsv5JNldVGpJ8PRoOWfZey0ahVtIyLdHdctYqJ4MjVa9gcTuID/SixWrhYVIyf0YCXycCJ63no1Wpig3zJyBUx8+SQILfQqRktTwoO4lSh8IbVjJbXD/DnXMkNho5L6Lii5RpJRYDJRHaFKPlUqyUKzFX4G4yU283Y7A5CTZ5cr4Oh46XXUWRRGDoOC06nkyCDB0WKb8dHZ6DEVoWXVovZaUaWZbfQEaspAQv01RmoVGCBHhphQPbSiNWUq+rhViqyVCcV2S7bMClJKzGhqenVubX+AWQMSv2Dq+dKTGQcbhEjYxP1D9zoubohhpw3zMmSMCe7+TpIqLApfVsKdFD19xAe/6vFTq++tb0im5VPbT2UlIfrFOSVcfq46JBp3622oCktriTzlDAUtmx/a82DCySYklq3H8dtPE4Mve2bVHG+eAPwv0tDuaS8YToczjteD0TtQmiUP7lZRZw/cZVmdXzvdZ3I+GBapSWzf9NJ5r67gle/ffKevq6uo1KpGDl9EMGR/sx5eznnj2cz7aEvadOzMaNeGUzUTY3x/+SxWCwMGTKE48ePExYWxpo1a/D3v1WM/pVTXWnh+N7zHNx6ioNbTpGtFE66Tmh0AG17pdCudwqNWsXf0jV1p1NSWMG6n3ez6sed5OcImrBGp6broFTSR3WhXqO6p4IgRM7CLzeyfdVRNyOpc/+mPPZCLyLrWJUd2nGW2e+t4oKCOwiO8GPkpD507t+01tTpzLEsZr21gtNHxeQyIjaQsS8PoGWnGyursyey+eLN5WSeEBOFxJRInpsxmPpJ4QDk55by1Tsr2aNMRyNiAnhhZjopLQRja9uGE3z53ipKiyuRJBX3P96Bx8d0RafXsn/XOT59azkFeeWi1+7Rdgwfm4ZKUjHv280sWrATp0MmINCLyTMG0aJ1PHt2ZvLROyspKRYVEaPGpjHkwdbs33eeD95dSUlxFVqdmjHPdGfg4FR+/20/s2dvwW53EhzszfSXBxEU5MXEyT9zSknJDRzQnKdHdWHeTzv5TeF2NWwQxqtTB7JjTyavv7cCh8NJRLgvM6cOYv/Ry3z46mKcTpnYqABendiPJWuPslLpsmrdPJZRD3fg/VnrOXcpH0lS8dSwDnh4GJj0zhLsDifR4X68MKIbXy/aLsCBkooxD3bkWlE57ynFnh2ax9NG4efY7MKf83C/VD5fvJ1yxY8zalAbvluxh6JyARIc3rc189bup7TSTIC3iQe6icZys9VORKA3XZvV57u1e8XkJS4MXx8Ti7YLodm3RSLHs69zpUBMewa0vGFEbhgRhMGgZcOxTFQq6NcskY0nz2O22YkN9MVkqlH9kFSPP8+cF6u1iBByKyrIul6Kt0FPTLAfuy+Kn7eaiasmEaGcKShwm48rbDYuF5fgZzRgMuo4nS/KPMN8vTmRL+6vOH9/Thbko1JB/YAAt9CJV1rLQSbWz5dzJUVIKgj39uZimWgw9zUaRbRcq0WjEekrP72BSoeVKpuVENONyU0tho5JMHQMajWSWlYqH24wdAQs8EYlhGgwFzBAMeURPB3hfRGwQD+9gQoFFqiVJMxOCz5awctRI6NXRI2XRk+1w4wa0GmEV+cGFVmFSmV3U5GtTrM7aSVgf6pa9Q96lQpuU/8gJjI31z+olNqHmj1XDuU6Nxg8YHULHS1qwKoktoRnR4OM+b+Tnb9+YuJupHPy88rIUHbuXW+a3uxWuB8NG0cScFOn1eF9F5BlmbiEkFvWWwAnlNts1LxusXNJYYbE3iHKXeSOlN9Z7LjePJ33IHZAsHNys4rIPJZ9z2IH4MnpAzm45RQ712SQseccTdrWv/sX3eH0f7wjHfo1ZeHHa1n14072bjjO/k0n6ftoewY/2eUfFz1Op5Phw4ezZcsWvLy8WL16NTExd2bV1HWqKy2c3H+BjN2ZZOw+R2bGlVqFnpJaIqlFLC26JNG2VwqxDcP+shcoMyOL5fO2sXXFYWwK1M/b34P+j3dgwON3JiXfLHIAOvRO4dHnexFXR6rv3ImrzPlgNYeViYeHl4Fhz6Qx6IkOtRKGRXllzPt0PRuUMlyjSccj47oz+PH2aJU1a3lpNfO/2MAqpeHcw8vAiAk96fdAa9RqyT3tmavEzTUaNQ8+2YlhT4m1V2F+OV++u9Jt/I+pF8ykmekkNoqgssLC1x+uYM1SkfaJiPZn0mvpNGoaxcXzeXzwr2WcUz5EdOvZiGcn9UWrVfPp+6tYpcBC4+oFM31mOuGRfnz9xQaW/qFUR8QF8cprg/HxNfHy9MUcUPhXnTonMmlSXw4euswrM36jssqCp6eeyRP7Uq9eCJOm/8IZxbD84NBWPHhfaz78Yp17bZXWuSGjR3bmk2//ZM8BhaTcLZlhQ1vx1mdrybyYJ+LfwzoQFxPIxH/9RkWVBV9vI68815eNu86wZpuYiHRtk0DPjg157cvVlFea8fM2MvnJHvy89hDHMoUAGzm4DYXlVXz04xbx/TePp35sEG/PF/6cxvGhdEqtx4e/bMHhcJIQGUjX1AS+XLIDh1MmKTqYpg0i+GalaGVvlRiJl4eBHzeJ+7xvy0TO5RVx+Nh5NJLEA52asOLAKcrNFkJ9PWkWF+E2IndKjuNCfhGncvMx6jR0bVSPlUfFa2pqbDjXyiu4qFQ/NI+LYKNiRG5fP5pDWdeottmI9PNGrZHIuJqLXq2mcUSIO3HVOjaC/VmuxFUwF4qKMNvtRPmJXqvsUsHW0WjVnC8uwlOnw9toILOoEINGQ6CXicziQvRqNUEeHlyo0Vp+qawEo0aDh0FLdkUZXlpR8umKllc6rFRZ7YR4eJKnpK/CPb3JUdJXLqGjkVR46fQUWESDebXTgtXhJMjoQYFFrKsCDEaKrEq6CofSYC4YOiDjo9dRZq/CQ6PH7BCrKT+9nooasEBbDVigVlKhVjmVVJUQOjUBgp4KLNAgqXEqXB2jWq1QkYX35gYV2aGsxIS5WFZWXloJZBzu+geDSggUCRl1DRFTs/5Br1KhwlqrIkInyYBdEVE3hI6IndtQA2qXZ0f672Tnf3S2bDghXgSaRRMSVpsMu1N5we3Q7dY11UHFiHkzWwfEyuG0wvG4HT/nYqZL7Nz+Dd0FC/QLvHOkXKMRn7rttnsTOwmNI9mxJoNzNWi893JiE8Po+2h7Vi3YybdvLOGz5RP/x6wZ3wAvxr31AIOe7Mzst5axZ/1xVv2wg1U/7CCxeQwd+zejY79mhN60bvk756WXXuKXX35Bo9Hw+++/06xZs7t+jc1q59LpHDIzssg8eoWzGVe4dPraLcIyONKfFl0a0qJLEs06NqizX+pup6rCzNblh1mzcJcbAgiQ0CSKQSM60XlA8zuSks8dz2bR13+ya93xWiLnkQk9iVcmKjXP9ewi5n+yjs1K6kijVTPg0XYMe6a7O7UHwl+2dP5OFs3aRHWV8O90H9yckRP7uM3Fsizz58ojfP/hGkqUuoi0Ac14alIfd/nthTPX+PzN5e7nRlLTKJ5/bTCx9UOQZZn1yw/z7cdrqSg3o1ZLDHuyE8Oe7IxOp+HA7nN8+tYK8q+XoVJB+rA2jBjXHa1Wza8/7Wbet5ux2Rx4eRt5/qV+dO6ezMnj2bz35jJysovFBGhYW0Y+3ZUrVwoZN3oul5X4fPrQlowem8bBQxeZPPlndw/Ws8/2pFtaEt98u4lVSoAhOTmCV6cP5NTZa4weP4/KKiveXgamTe6Pt5eRZyYucK+tnhvTnbi4IJ6bvog8haT8wujueHkZGP/yL1RUWfDxNjLjhX4cPH6FV95fBkBKYjhjH+/Mh7P/FOBAScXYRzpRbbXxymcrkGVIrhfKY4Na8cH8TRSVVuFp0vPCY135Y/NRTpwXa5uRg9pw/lqh258zqFMjnMh8vUQUfXZvmYBOq+E/K8VKrlerBlRabW5QYHqHxpzKymNfZjYaSWJYt2asPHiaovIqfD0M9G6RyKKdR0X7eXQoGq2aNUp558BWSWw6eV5ABX29iA/1Z7UidNIa1WPPxSwqLVbCfb3w9zax/dwlVCromhjP5rMXkIHGESFcLSujqKyaAA8jAR4mDmbloJZUNIsOZ58idFIjwzisJK4SQwK56Epc+flQZDFTUFFNsKcHVqeDq+Vl+BsNoFYpTeUGNGoV2eVl+Bj0yJJoLfc3GrDKDgqqqwg0mSi1WrBaHYR7ismNU3YS4eXN1cob0fKcqjJUyASaPMitLsek0YAkU2qrFvRjRby4hI5aBZ5aHSXWKry0OioVIeNm6KhAr1FTaTfjozVSoZiWfXRaKuxVmDRiNVUXLNCJjKda8erUAAh6qMVarCYsUKd2dWDVpiLLCCqyzbWmUgzLkiSD4vFxyBY3Fbmm8VjUP9hFoectPVcONzlZhUMROla30BGxcysaxbMj1l7yfz07/9OzTfHkdLuJflxZYSZD8UbU5ck5ohQiptaRtLp0Lg+L2YaHl4Ho20TGs5UXWhdXpK7jIs56+94ZIud6A3QZle92GjYXAixjz3kcDudfatp+bGJfti47xIUTV5nzznJGvzbknr/2TieyXggz54wmY1cmf3y3mf2bTnLm8GXOHL7M7H8vc4uJ+ilRNGgaTUximHuacC/ns88+46OPPgJgzpw59OzZs9bl5ioLuVcKyTp3nSuZuVzJvM6Vs7lkX7ju7qCqeUKjA0hpW5+UdvVp0rY+IVF/T4zJskxmRhZrFFKyK1Wl0arpNKAZg0Z0omHz2DvexvF9F/jlmz85oEwi4c4ip6SwgkXfbGLVwt3uLq+uA5sx/MU+tczHsiyza+NJZn+4mmuK/yWxSSRjXx5Iwxo05Qtncvn67RUcP3QJgKi4IMa/OoimSsO5ucrKglmbWPLjbhE399AzYkJPBjwo4ua5OcV8/tYK9weIhKRwJs4cTHxCKJUVZr56f7W7hDcswo+JMwbRpEUsV7OK+PDfyzmhCMM27RN4YXp/fHxNzPvPFn5esBOnUxCSX3plEE2ax/Db4r3M/X4rNpswIU+ZOoCmzaOZNetPli0T04t69YJ5+ZXBOBwOxo3/gStZhcKc+1BbHn6oLd98v5lVa4X/qXFyBK9OHcimbaf5fv42HE6ZyHA/Xps6kEPHrzDh5UU4HE7xd5P6s2H7aRavEJOxxg3Def6pNL6ct4UjCjjwgf6ppCRFMPndJVRWW/H3MTFtbE9+33CUPUfF/TukexPCw3x59ctVohMrKpDHB7Ry91t5ewh+zk/rD3Mxp9Dtz9l85BwnLua6izx3n7rMyUvXkVQqnujdgs0Z57l0vRidRs3jPVvwx67jQth4GhnYLpmfth7G7nCSEB5IdIgfi3YKAdi9SX1O5+STXViKQauhj0JEdsoyTaJDMTvs7FCKPXukJLDuxFnxATMyhKLqao5dvY5Jp6VpdBibzorX1bbxURzMzsHqcBAX6EeV1cbZ/EK89DoiA3w4kCXsBc0iwjiUU1fiKojM4kLsTiexfr7kVFRgcdiJ9PGmwFxJtdVOmKcnJRYzpVY7YV6eFFqqsNhEnDxPaS2P8PIip1JMbqK9fciqI1oeokTLtZKEUauhwFyJr154cRyO2tHyAIOJAkslekmNWpKVdJWIjtdk6OjValQqBxanDT+tiTJ7FSrAQ6umymHGS6unSgEMemk0dcICzU6zEmEXgsiocHVcsEDRW6V0YGk02JzVSrN4bSqyq/5Bq5JA5VCmNty1/kGvUuPE4qYia1RCxLiu40psgd0tdAySQk52eXYQnh01oPuvZ+fvn7zcUs6cEhTRjl1rC5pDey+IF6nogFtAgrk5xeTllqJWSzSqY3KTeVKMlBOSwutM2FitdgrzBA+lLvOy67gayg2mOxeguWBxpeb7ow4AACAASURBVEX3xs5JbhGHh5eBksIKzhy5QvJNXV93+7de/Ohh3nx6Dku+30pSahydBtx9QnKvp0n7BJq0T6Doeik71xxl55oMju3OpDi/jDU/7XJfT6NTE50QSmCoL/7B3vgFe+MX5IVPgCdqtRpJrUJSS0iSxMat63jlTcHPeWTwKJzX/Pjy5cXk5xRTkFNCfk5xrZTUzcfTx0RC0ygaNI0hISWKBs2iCQq/s2n8bqeksILNSw6w4dd9XDx1g5QcER9En4fb0eP+1neERMqyzP4tp/l11iaO7xcrF0lS0WVgcx4c243YOupFKsur+X32NpbM3Y5ZmdA0b5/Aky/1pf5N3p9zJ3P47r1VZCii3j/Ii5ET+5A2qJn7Z7qy3MyCr/9k+c97BDzQoOXhMd24b3gHtFrxErN32xm+emcleYrfqGPPRoyd0o/AEG8cDid//LSLeV9vwmK2odNreHxMN+57tB1qjZp9OzP57O0Vbm/O4IfaMHKcSGEt/20/3331JxazDaNJx5gJPek7qDlXLhUw46Vf3JHy7r0aM35iH6qrrUydtJDDSst7uw4JTHqpH0VFlYx7Zh6XlA8f993filGjurBq9VG+/U5MiwL8PZk+bQC+vh6Mn/gjl64I8fPYsHYMGtCc9z9dy76D4jHo3iWJp0d04rP/bGLXfmWV1akhwx9qx3tfreOEAg4cNrglrZvF8tLbf1BUUoXJqGPK2J6cuZjHq5+sBKBpwwieGNqG92dvJLdARM9fHN6NAyez+PLn7QD0bJdIQkww//puLQ6nTEJ0EPf1aMonvwh+TqCvB08OrOHP8TAwsn9r5q876P7zoz1Tmb/xIBXVFoJ9PenfNol5Gw+4hU2D6CDmbxICrVNyLIVV1WzMyEQtqRjSpjGrD5+h0iImOIlRQSw5INJ+3ZLjOXb1OvnllfiaDKTEhLqrHzolxnA46xrlFithPp74eZrYdeGK8EfWj2HHBfE4NY0M5Vx+IZVWG+E+XqBWcfJ6Piathih/Xw7n1JG4Cg8h47qSuAoO4nRBPjJQP1CkrJyyTJyvH5fLSnDITuJ8/bhUXoyMXKu1vGbiKsbHlyt1RMu99DquV1fgqdVhlx2U28wEmTwoVFZULqGjAnz0BoqsVXhqdVidFixO500MHR2ltko8tTrMTgvIMn46I2W2KrSSCo0kY3Fa3QwdCRmDWnh17gYL1EoqbG5Y4A0qsjtp5TRjVIspjKiGuJmKrEZW4uY6pbTTpLBzblf/INfZc+USL053GkuYka2KKVqsslRY0apUqLGjRqV4gOruI7zb+a/YAXZudUHGovG7qfF57w7hX2jd8VZPyzGFfNwgObxOts055c2rfvKtn6oB8q+VIMsyeqO21rrg5uN6Q9Ib7hwpd70plhTeG05bo1XTqlsSW5YfZveG439J7AC0792E+8em8dusTXwy5WdiG4b94/4a/xAfBo7ozMARnSktquDUgYucPHCRc8eyyMy4QkVpNRdOXOWCYoC93SmyXOVAwTLxycwjhcL9RhYdWF/ndT28jUTWCxZ9V/VDxa8JoYRE+f8j/B2H3cHBradZv3gvezeecE9VtHoNHfs1pc/D7UhpU++O/5bd5mDbqiP8+u0WN/FYo1PT675W3De6K+F10KItZhsrf9rFL7M2u0VdQkokIyf1pXmH2j/fRXllzPtsPRuXHEKWZXR6DUNHdOKBp7tgUrg9sizz54ojzP54LcXKqrVjz0aMntKPYGUVnJ9byqz3V7NTmZwGh/nw7PSBtOkiTMwXMnP55M3lnFUev5TUGF54dRCRMYGUlVbzn0/WuZNW4VH+TJwxiJTmMVy/VsJHb63giDJ1bdoilkmvDCQ4xIc/ftnHbCU67uVlYMLkvnTt0YhNG0/w+SfrqKgwYzBoeWZ8D/r0a8rSpQf57j9C0Pj5eTB12gASEkJ5499L2aNMmdq1rc+USX3ZtjOTaTN/x2q14+/nwatTB6KSVIx5XkAC9XoNz4/tQXR0wI21lVbNc0+nERToxfhXFlFWYcbTQ8+08X24fLWQSW/9jlNpK5/4dHe+XbSTI6fEhOfhAS2ICvdj2sfLRPQ8xJcJj3Vh1m87uZBdiFotMfaB9py5nM9Xi4Xw6dU2kZAgb96ev1HcN/XDBT+nhj8nrWUDPv9jJw6nk4SIQNo2juHrlQKq2CQ+jKhgXzcosGuTeErMFlbsF2Wj93dMYcuJC+SXVeJl1NGraQN+23tMfG1MKHZkNp+8gKRS0S9VEJGtdgdxwX6YjDq2nRWrqu7J9fjzzAXB9AkPorjazIlreXjotDSMCHYLnbZxUey7nI1TlkkMCSSnopyyCgtBnh7otGq3+TjC39uduEoKCXYLneSQIE7mu8o8gzhdJIzIDQICOFt0a5lnzdbymBpCJ9LbmysVJWglCR+Dvla03AUILLEKQGCox40G82CTiXxLBTpJQqOWKLVV46831iAhm25i6FTfwtAps1Vj0ogJi10WKa0Ku/DlSCoZm2zDV6dX2spVSNQNC3TIYgJkcXF1lOmNK2l1w6uDe01lUqjIgqsjJjIaFxVZYee46h90CkjwRsLKUUf9A0gqe43YuYwGUGFz83l0bs+OhIQNDRJq92Tnv5ydv312uOjHN011nE6ZA7sUsdOhDrFz+BIAKUrHz82n5mSnruOCqoVG+N3xjc012dHfwacBtSc7Tqfznngt7Xo2Ysvyw+xad5wnp/b/y2/mI17qz5kjlzm25zz/eno2by8c5461/9PHx9+Ttr1SaNtLlLbKsuxeORVdL6U4v5yivFKKrpdRVlyJ0+HE4XBSUJrL5t1rcOIgITyFR3o9i6e3CZOXEU+fGp1X4eLXv+OzudtxOp2cOniJLcsOsX3VEUoLb0zfElKi6PVQG7oMSr0rKbm60sK6xftYMnure0pi9NDT9+G2DHmyM4GhdZV62ljzyz4Wf7uJojxhdo+qF8zwF3vTvlfjWo+5ucrK73O389ucbW6R3bV/U0ZO7ENwjZbzsyey+eadVZxSGDERsYGMmz6AForR3W5zsGzhHhZ8swlztRVJLTHk0XY8/kwaBpMOq8XGT99v5df5O3E4nHh4Gnjq+Z70SU9FkiR2bDrFV++vpqiwopY3R6/XsHrZIf7z+Qaqqqzo9RpGPdudQfe1Iu96KVMmLCDjsPieWrWtx8RpA9AbNLz95jI2KVyhxIZhTH91EAajrpYJuU3bekyZ0p/zF/J4asxsiopEYmvs6DTS0pL46LN1bFMKfdu0imfKC31YvuYoCxbtFsmq6ABmvDSQfYcv1lpbzZjUn627M/nwWyE+GtYPYdLYnnz/8072HBb/dr+0xnRr34BXPl5BUaky4XmqO/tPXGHhbPF1HVPj6da2Aa/PWkuVWUxrnnu0C/OW7+XCVSF8xgxtz6HMbNauFkLlvm5NqLBYmbVMTEN7tWqARqthlsLTSWteH6dK5oeNYmLTr3VDsgtLWbnvFCoVPNSlKZtPXOBaUTkeeh1D2jfil10ZbvESHezHb3tFirV7Sn2OXc3lemkFXgYdHRrGsuLwDSJydkkpF7JFDUNqfAQbahiRj2Rfo9JqI8zHCw+jjgNXrqJRqUiNiWCPkrhKjQ7n6LVc7E4n8YH+FFRVkldaSYCHCa1WIrOwEKNWS6iPJyfz89BIKmL9/TmZnw/IJAQGuIVOgv8NoROvlHm60lcXy4qRVBDi6cXl8hJ0ajU+Bh1XK0X6SiXhjpaX2czY7Y5aiSuX0BGVEAYKLK4pjY1qh7VWtNxPL9g7RrUa5z0ydLy1eqXYU4NdtuKUBUOnylHlBgM6qQkLFEwcFTIeGjWWGrDAmkkrFyxQK6kRSSsnRkmF4xYqsvDjGBR2jkvouDw2d65/UCk+nBqxc0ClfB81hY5e5ZrsqJFwoEZSbvfeK45qnv/1YqestMq962/fuXZP08XM6xQXVWIwamlcR5rqpBK5rWuF5XQ6uXROmI/jE+tOWrlQ+gF3SNQAyEpHknQXT41foBdqjYTd5qAgt5Tge1ixtOzSEKOnnpzLBRzacZYWnf5aV5Vao2bal8N5fuDHZJ/P4/kBHzPjuydJuo0A/CePSqUiLCaQsDt0XuXk5NCuXTss9mratWvHn3/+idH4z4uZuo4sy5w/ns3WFYfZtuIweYq4BZGoShvSkl4PtiHuNmK45sm/VsLy+TtYu2gvFWXVgBC3g0d0ov9j7erkJNmsdtb/tp9F32xywyODI/x4dHwPuqen1oq+O+wO1v9xkAVfbHR3rCU2iWLM9AEk1fj5LimsYO7n61mvTHwMRh0Pj+7KkCc6uIGXJ49c4Yu3lrvbyZObRTP+lYHEK+yqI/su8NnbK8hRikY7dEvi2an9CAjypriwgq8+WOPmWkXFBjJxxiCSm0SRl1vKx++s5JCyUktOiWTKjEGER/qzduURZikCyGDUMva5nvQb1JzDhy7xwTsryc8vR1KrePSxDjz6RAf27D7HRx+toaysGp1OwzPPdKd3nxTmzN3Gr0rfVUxMIK++PIiKSgtPjZtHfoHozHpqRGe6dmrIG++uIOOEmMD07ZnC8Efb8fHXG9l7SAiYtE4NGTGsHe99vZ7jSkx9aL/mdGmXwMvvLSOvUJiVXxyVRlFZNVPeXYpTlomPCuS54V34auE2Mi/nI6lUPHV/e8qrLfzr23UANG8YQf/OjXlv3kYqq60E+HjwzAMdmL1yL1fzS9FrRb/Vqj2nOJslotYj+7Vm54nLnLws/DmP92rB9pMXOa/4eR7v0YKV+0+RV1KBp1HP/Z2asHD7YcxWO1GBPjSrF8GCbcIz1SYhitJqM1tOXEAjSQxsncTqI2cw2+zEBPgS7O/FGoWI3DOlPjvOXabKanMbkbdlXgLFiLw186Iy3Qkmr7LiluoHgFaxEezLUqZ/4SGczMvH7nQS5+9LvrmKgnILwZ4eyBJcKC5WElf6WxJXOklNiJcnmcWF7jLPC6UifeVvEukrg0aDUaclp7IcL50OJJmCmq3lttqt5eEe3lyrFgblIJMHeeYKpRICQULWi0oIUezpQaFS7Omh01Nqq8Jbq6fKWQ2yrAioOzN0Km9i6HhptUpbuViLubg6AhaowyZb3LBAq9OCSa3FKluUVZJIWgmhY0YvaXEqgkWvknHI9hpUZAH9c13mrEFFdhGP1YhJ0w1ysv029Q9CMKmR3Y3oKuyKR0eII/GrBhV2NCo1krLq0qn+Xhjmf73Y2bf7HE6nTHz94FtSWIeU2GiTFrG1qiNA0JazlP1+Uh01D3nXSrGYbWg0asKj6vbjuNIqfncp7lRrXPycWw2yNY9GqyY8JpCs83lczrx+T2LH5Gmg1/2tWTZvO0vnbP/LYgdEYeSHvz3H66O+59Lpa7z04BdMeOchej7Q+i/f1j95SktL6du3L1euXKFBgwasWLHi/7rQkWWZs0evsGPVUXasPkpuVqH7MqOnnva9m9B1cCrNOjS4pwTb2YwslszZxvbVR92x9vCYQIY+1Zke97X6P+y9Z2BUdfq+f50zfdJ7JQESCCTU0HsJ0ouiWFARFVCagAiiuOvud3V33XVtCIoKUgSUqvTeJfTee0JCEtLbzGTa+b/4nEwSCEV39/9mf5830WTOJBmSzD3Pc9/XXeu0z2F3sn3NMX78aqdHYAWH+/HcuBQee7J1DUO3oigc2XOJeR9vIl3lAoVHBzBySl+69G3imQ46HS7WLjvID1/twKL2d/UY0JxXp/QhOExMk4oKyvn+i21sUSPpPn4mXp3ch96Pt0SWZUqKLHzz2Ra2rRNk3cBgH8a/3Z/OPRNRFIXtG0/x9SdbKC22Imsknh7Riedf7YZOr6kxzdHrtYx8vQdPPN2WwoJy3pv2E4fVrq6kZtFMnzmYoBAfvpq9ndUrhHCJig5kxsxB1K0XwmefbWGTmqqKjw/j3ZmDAZg4aTFX1cdgyKBkRo/qxk+rjrB42QHcboWoyAD++M5gcvNKGf3GQkpKbZhNeqZO7E1wsA/jpy8jr0AUgE4a3ZOgQG/GvyvWVl5mPW+P70NOXilT/m+lmPpEBPD22N78sPYIqZUTnu5JtG9Rl5mfraPcaifA18xbr6SwcvtJjqurrWf7JqPVyfzlOyF8mjeMolf7hny0ZCcVdieRwb680L81X/98gOJyG/7eJl4Z0Jb5m49QWGrFz8vIC72TWbjtGKXWCoJ9zQzp1IRFO45hd7qoGxpAy4Ro5u8Qj13rBtEgw1oVBjikbSL7L94kr9SCn9lA58R6rD4ipmat6kVRYLFw+NotdBqZnk3i2HJOEJGbRoeTb7XUMCLvqmZEPpGZJTg5gX4oCqL6QaslLjzIk7hqVSeSY5lCOCZFhHIxr1L0BJBtKcPicBDu7Y3F5SCztJQgswlFVqolrmRulRTjazCg0UqeMk9khWxLGQFGE1a3kwKblVCzF4V2C06XiwhvH7IsqripFi0P9/Ihy1riiZbnq9Fym9uOxeUi2OhFvurFCTaayK8oQy9rkGUod9o83Bwx5TFS4rBgkrU4FSd2t4NAlbEjGDqaGgydSjCgzW3DW2vA5hLix3QXLLCy6qEKFmjzwAKFiVkUewpRo66pJBduBCzQqdhUWGAVCBAU0XdVjYosjMfOGj6cSs/Og+ofdLKYAumQxCpLqlxhCaGjk7RIuNCiQSOJ1drvOf/zYqfSk9OuljXVcbXTqmWbe2seKj0GEdGB+AXc67e5pbZNR9cNui88rrhQiJ3arq9+KlNS1Rku9zv1GkVw69odblzMok0t6bHazuCXOrF24X6O7rlI+tUcYn6H7yasThCfrJnMx1OWcGDzaT6ZupSbl7J4ZcbA3wTP+0+dyp6r06dPExYWxubNmwkK+vdj67V+LpuDM4eucmjHeQ5tO1tjgmMw6mjdI5Fug1vSNiXxob4rEGLl1y1nWLfoV085J0Cz9nE88WpX2vZoXOuK0mF3sm3VUX76eqdnxRUY6sMzr/ek79Nta7ByAC6eSmf+vzZzRjU2+/iZeG5sTwY8194zpVEUhcP7LvHtPzd5koMNEiMZ+85AT3Gty+Vm86qjfD9ru2fq1HtIMq9O6Y1fgJfw9mw8xdx/baa4yIIkSQx8qjUvj++Fl4+R7NtFfPG39Z4UVlzDcN7842DiEyLIySri079vqDHNeeu9wUTVCWTXtnN8+clmSkvVws/R3Rn6TDuuXsnhvXdWkK7WrAwc3JLXxqVw/fodxoyex+3bRWJF80x7XhrZhc1bzvDV3B1UVDjx8zPx1pv9iY8P4+0/rOSMOrnp06sJY0d3Z+GyVFavFWmthAbh/GH6AHbsu8QHn23E7VaIiQ7kD1MHsvPXi/zja1G+mRAXxrSxvVmwIpV9R4QoS+nUiCG9m/F/szeRk1eKXqdlysvduZVTxB9mib6rZgmRPDegNR8v3EleUTlmo47JL3Zna+oljpwXq7qnejXHhcI/l4i+q3ZJMSTGRfCPpTtRFGgcG0rn5nF8tmofLrdCw2jhz5m9TvhzmtQNp35UEN9tER1eHRJjcaGw6oBg5Axpn8TR6xkiYaXXMrhNIqsPncPhchEXFkiwvzfr1VVV72YNOHjtFsVWG8HeZhKiQ9h8Vvx97daoHkfSMtRVVU0jcucGddl7TfycN40MI62wSBRt+nhhMuo4k5WDTpZpFBHKsczbKCii2DNLeNWSwkM5n5eLWxHem/TSYtFl5e/LHWs5tgonUT4+FNhsFNtthHt7U2i3YrM5Cff2pqDCgt0pBE2OtQyX4ibax49My72JqwhvH26rreWBRjM51lJMWi2SGi0PMpqqAIEmb/IqypBQ8DMYKFRNyTaXHafb7YmWS4CPXk+p04KP1uhJVwUYDJTWYOg4qhg6Emg1qGZjI1aXVUxqZAWnBxZoRS9LgKtWWKCY9ogVlqAiC/KxhEuFBco1YIEPoiLrVIFS2U4ubgPgxKRSke9X/yAmNhISTvU2dlXgONFJOo/gEZMgDdr/J3Z++3E6XRxV0fB3N5w7HC7OqfTj5Lb3ip2LKpumUZOoWu87/boQOw9qKS8ueESxo616df2wUy8hgr0bTnH1IYbd6icyNpj2vRJJ3XaO5V/t5K1/PffI11Y/Ji8DM78eyQ+fbmbZ51tZ/c0uzqRe5eV3BtGiU4P/arlm9eN2u3nllVfYsWMHXl5ebNiwgXr16j38wt9wcrOKOL7nIod2nOPEvksefwuIx6FtSiKd+7egdfdGj9wOX3CnhE3LDrJx2UEK1JSeRivTfVBLHn+lK/FJtf+s2SvEumr53F3kZgmRExDiw7DR3en/XPt7pj+3rt9hwadbOaB6WHR6LUNe6MjTY7rj41c1+bp5NYdv/rmR4wfEE7RfoBcj33iM3o+38gjwS2cz+PKv6z2E5PoJ4Yx/Z6AHopmRlsesv2/wIBrqxoUy6T2xlnK53KxeepAFX4kUlk6v4YVR3XjqxY7IsszaVUeZN2cHVnWa8/LrPXj86baUlFj5y3ur2Kd67Ro2imC6KoCWLP6VHxbtF+TkIG+mTh9Acuu6LF60n6VLhbcmNNSXt2cMJDY2mD//5WdSD4rvr1VyXWZMH8ips7d4Zex8yssrMJv1vDmxD/FxYUyduYKr18Xk55mhbXh8YEs+mrWZE2r3Xb+UJjw3tA0fzd7K2UtqL9aAlvTolMDMf/5Cdm4JOq2GiSO743C7mfzhKpwuN9Hh/kx9NYXv1xz0tJU/0y+ZoABvZs5aL1rPo4J4+Yl2zPpxL3cKRFXE+Ge7sCn1AmeuiSf9F/u1Ij23iPkbBE9nYMdEKpwuDz/nsdYNsLvdLNwmJm/92jYiq7CEX1LFz8Gwrs04cCmdW3lFGHVanurcjFWHzmCpcBAR4EPzepH8dEBE7TsmxHK7pISDV9PRaWT6tGjIxlOXcLkVEiKCUWRqJSInRYaRZyn3GJEbR4V6hE77enU4kpaBS1FoGBrEHYuFnIIiAsxG/M0mTmdlo9XINAwN4mSW4OlU77iqXv3QMLiy7kEQkW8Wq4mrgABulojEVV1/YT5WgFhff9LKKss8/bhVJsRNlI8vGeXFSBIEm7zIspRi1GjRaSTyKyyCbuyy4b4rWh5s8iJPNSXrNBKlDisBejPFzkpTsoiW62UZjUbB4roPQ0ejp0KpydAxaoRRWJiNDVhdFowaDW6EV8dLhQWaZA2ue2CBWpyeYk8RN69cUxklGUU1LOtkcOPwCJ1KWOCjU5HFbUT9g/2B9Q/aylWWJCY7ekkLNYSOTvXsCMEj8//WWL/5XLmQRXlZBT6+JhLuSkxdvZglXun5m4mNu1ewXFMjrQ3vk7TKUV/dRz6Au1IJZrtfK3Xl8VYNs5Wvmh90mrQRT+qnDl79TeycZ8f3InXbOXasOUa/59qT1Pr3iQNZlhkxtT/1GkXyxYzlXDlzi3eHzyGxdT2en9yXll0a/tdFz7vvvsuSJUvQarWsXLmSVq1+X2Fp9VNeYuX0wauc2HeJE/sv31MFERTmR5ueibRLSaJl14aPNMEBMTk5c+gaG5Ye5MCWMx5BGxDiw4DhHej3XPv7UpJtFjubfjrIqnl7yc8pUb8OX4aN7k7fZ9rdI3Jys4tZOnsHW1cfxe1WRDfWkGRemNCrhvm4uLCcxbN3sHHlEdwuNzqdhiEvdOS50d09DefFheUsmLWdzauPoSgKZm8DI8alMOiZtmi0GuwVDn5asJ+fvt+Hw+FCb9AyfFQ3hr3YCa1Ow42rOXz24TounhVP7k1axjD53UHUqRtM5q18Pvnres6oLzaSmtVh6sxBRMcEsWfneWapEyKNRuaFl7vw7Isdycwo5I1xi7isJtO69WjMG1P6UFJs5Y2Ji7ik/r726pXExDd6c/ZcJqPGzKOwyIJOp2HUq93o16cZX87dweZtwnDbuFEE700fxInT6YyZtJCKCif+fmbeebMfCvDa1B8oLrViMup4c+xjmM0Gxr37I6VlNrzNBqaP782d/FLeeH85LpebyDA/Zozrw8rNJ9l9WEw8erRvSJ+ujfnznI0UlljxMul56+UUdh+/yo9bhT/msQ4JNKofxp/nbsbpchMbEcCLA9vw5cr9FJRY8DYZGPtkR37ceZL0nEJ0Wg2jBrVj69ErXM0UMMIRfVqz+8w1rmcVoNNqeKFXMhsOXyCnqAwvo55hXZvz4/6THmHToXEsi/eKCVaLeuJv3KYTKiiwdSN2X7xBibWCEB8zTWIjPEbkzgmxXMjJI6+0HF+jgaSYMA8RuVN8LMczbnu8O2ajniPpmWgkidbVjMgtYyI4m30Hu8tFbIA/pQ471wsK8TUa8Pcycu7OHXQamfrBgZy+I3xhjasJnUahwVzMF1PI6omr+MBArj6szNPXl1tlxcgSBJu9yCwvwaDRoNdqyLWV428wYnHZKXM6CTVX0Y/DvLzItYloua/BSH5FOd46HXa3HZvLrSauKtdVeoodFry0OuyKHYfbTYDeTIlDrKuMWvmRGTpWl7UGQ8es0VLxG2GBzmqwQMHccav3JeFSbJhUc7EAAbo9pmY3dgELpDoVWalGRQZwYLyLiqyTJDSSQyUiVwodkHCpXh0hcMCJXtILzw46JFzoJB066eEv+ms7/9Ni54SawkhuW+8eUXBOTZk0blan1ifn65WdVvepechR1whhkfdPJlUWQxqMD/5nqJz8lBQ+nBzZqHkMZm8jJYUWrp7LJKFZnYdeA6LksfewtmxdcZhPpv3E7A1THnkiUdvpMqAFSW3qs3z2djYuPcD5ozeY+cJXNG5Vl+GT+pDcNeG/0nA+e/ZsPvroIwC+/fZb+vbt+7vupyivlHNHrnP28HXOHb7OtXMZuFWjOAiWTYPmMbTtmUjblCTikqJ+k4grLbKwffVRNi5NJUOdAgIktqrLoBGd6NSn6X1hiWUlVtb9cICfF+ynRF2FBoX58fRr3WtdVxUVlLHi2z2sW3oQh11UTrTv2ZiRk/sQW43cD0ppnQAAIABJREFUbbc7Wbs0lWXf7Ka81AZAx5RERk3t6xHtLqeLDSuPsmj2Do/47jmgOaPe7OMhJB87eI0v/77eY0Bu3TGe8dMHEFknkAqbg8Xf7mbFogO4VLDg6DdECktRFFYuTWXB3N3Y7U6MJh2vjk1h0JOtKSm28Jc/rGLvThF/rh8fyrSZg6kXF8qalUeY993uqqj5lD5065HI2rXH+WbuTtFq7mNk8pS+tG8fz9xvd/GLuoqqVzeEd98ZhN3hZMzEhdzOKhJln8924InByXw6Zzt79osn+VYtYpk+qS8r1x9j+S9iOtKgfigzJ/dn3fYzrNwg7rNxg3Deer0X85ensl9l7HTv0JAn+7Xkw6+3cDunGK1GZsKLXSmz2pnxyS8oCjSIDWH00534YukebmUXodXIjH+2C+dvZPPFsr0A9GgdT3zdED5csE3wdOoEM6hLErNW78da4SAswJvhvVvx7YZDov/K18yzKS1ZsPUIZTY7IX5eDOqYxGLVnxMb6k/rRjEef06L+pEYDVpWqQmr/skJHL95m6zCUkx6Lb1bNmTtsQvCUBwViqSR2Hn+GrIk0bt5A3ZcuCZ8P8EBGI1aDlxLR5aha8N67L58AwVIigwlu6yMTNWIHBPoz6G0DBSgXd1oDt0SU/MmkWFczs2jwuUi2t+XcqedtKIi/E1GzEY9F/PyMGo0hPv5ciFPmLBjAwK4mJ+HJInW8uqJq0qhE+vvz/WSAiQJonxEmadOlgkwG8koL8Gk1aLXarhjLcdPb8DmdlDqsBFq8vZMbqq3loeYzeTahBdHo5HUvqvq0XKvqmi5TkOp04qf3ki5Gi331wlTskEjI0ku7G5nrQwdP50B630YOhJgkGXsbrsHFqiRQJZUWKCatBKN5JWwQBmnYvcwdLSS+PyVFQ8uFSToVipUKrLzLiqy8PHUpCJXCp3aqch6WfZ4dirrH3SSgoyCTpJVQVO5wrpb6OiRcSP9v+j5bz+VjI5Wbe+lH3uSVs3vFQvlZTay1MlN/Yb3EztqU/kDTMJVkfIH/+P5BoikTeXa60FHq9PQvEMcqdvOcXzf5UcWOwCjZw7i+P5L3E7L47u/rWfCX5585GtrO4Ghvrz+56EMG5vCiq93sGlJKheO3eQPI+YSFO5H5/7NaderCU3a1v9NFOT7nTVr1jBx4kQA/vKXvzBy5MhHuq6s2MK1c5lcPZvBtXMZXD6VTmY1AVJ5ouNCadm5IS06N6RZ+3i8H7EpvvK43W5OH7zGtpVH2L/pNHa168po1tNzSDL9hne476oKRHrvl4X7Wb8kFUuZECPhdQJ55vUe9BzS6p62+/JSG6sX7GPNgv2eKWKTVnUZ+WYfkqql5RRFYd/Ws8z/dIsHh1A/IZwx0/rTohoZ/OzxNOb8fT3XL1WV146bMZAmasltfm4J33y6xdNOHhjsw9i3+tGlVyKSJHHyyA0+/1uVCOrUvRHjpvUjONSXG1dz+ORv67mk4hpatq7H5HcGEBEZwN5dF5j18SaKiizIGonnXuzE8yO7kHunhLcmL+GMmqZs07Y+U6cPQEFhxts/cqzy97tVXaZNH0hhUTmvj1tAumoaH/pEa159uSurfjnG94v3C8ptqC8zpw9EkiRem7SYnNwSNBqZ0S91oVP7Bvzho1+4pKYsnxrUikF9m/HBZ5u4fF2879khrencNp53/7HWs7Ya/1I3JFli8oercDhdRIT4Mn3MYyzbeJRDpwVLZnCPpiTEhfHerPVUOFyEB/kwYXhXvvv5IDcy89HIEqOf6MiFWznMXSNi433bN8LXx8i/ftoDQOuEaBLrR/Dpyr3Cj1MvnGbxkXy5VtRCNKsfQUxYAPOq+XMUCVb8KlZTg9o25nR6NjfTBD35ifZN+OXIOax2J1GBvjSICvY0lndLrMeF27nklJThbdDTPiGGTWdE+qpVvSjSC4u4kVWIr1FPo8gwdl0WLyw7xsVwNCOTCqeLmEA/3IrC2awcjFoNDSNCOHRLiJ7WMVEczRBTv0ZhIVwvzKfC5aKOnx/FDhuZJSUEmU3IGpkbRYV463V4mwxcKyrApNUSaDZztbAAvUZDkLeJ68WFGDQa/M1G0kpF35VJrxd9V3o9kgy51nICjSbKnRUU2+2Emr3JtZWhoNwTLa/eWp5fUY6PzoDVXYHD5VbLPMXEJ1Bl6Bg1gjpsc9WMlvtohS/HWxUtKGq03CX8NhLuhzJ0hBBx41RcKizQil4Way0PLFCxYdZocanTG60MLsX5AFig0yN0RGy8kngs+Dp6ScZdDRaoVcs/NbiqUZEBHOgR11fVP1Syc0T9gxA6qD4fjWeCI4SOEDx6yYCEC42kR/v/oue//Vy9lIUsG2jV7l5PzgXVk5NYi1i4qa4wgkN98b0PFyVXXSuEhN8/Vu5QVxYPS+X4B4lXzPm5JQ+8XeVp3TWB1G3n2L/5NM+O6/nIEwdvXxNvfvQM7474hg1LUqnbMJyBL3Z6pGsfdILC/Xj9T0N5emwKK77eybYVh8jPLuaX+Xv5Zf5eTN4GWnRqSIOmdaifGEX9xEiCI/x/06TkwIEDDB8+HEVRGDNmDDNnzqzxcUVRKMorI+P6HTKu3fG8Tb+cXSMxVXkkSSI2IZwmbeNIalOPpLZxv5sflJNRwPZVR9m26gg5GVXm5XqNIhjwfAe6D072rIdqOxnX77Bq3l62rznmWXPFxIfxzOs96Dag+T0GcJvFztolqayct4fSYjF9iU+MZOSUPiTf5Z06fzKdbz/e5OHlBIb4MHLiY6QMbumZduZmFzPvsy3s3iRMq96+Jl6akEL/p9qg0QjUwS8/HWLx3F1YLXZkWWLQsLa8NK4nXt5GkcL6fBvb1osUVlCID+On9aNTj8bY7U4WzN3FT4sPqLwdA2MmPkbfQS0oKqo5zakXF8q0mYOIbxjO+rUnmPvVDmxWByaTntfHp9BvQHN27brAF59vpazMhsGgZcyYHgwY2JLlKw6xYJEQNEGB3kyfNoA6dQJ5+w8rOK3+rvfo2ohJ4x9j9brjHnZOVIQ/700fSHpmAaPfXITV5hAdWG/0w2Kz89r0JVhtDvx8TMyY2If0zALe+JNYW0WF+zNjvFhb7ToohEDn1nEM6dWMD+ZuIa+wDINey+QRPThzNYt/qG3lHZrXpXubBnzw3VasFQ6C/b0YO6wz3284RHpOETqthtee6MD+MzfYdESsj57r1ZK0O0Us3CIKTQd3SuJOSRlL1OLOwR2SuHmngHWHhFh5umtzfr2Uxq28Igw6DcM6N2fN4bOU2eyE+nnRrmGMpwaiVVwUZXY7u85fRyNL9E9uxJbTl4VgCfIj2M+LbeeE76lnYn32X0ujwukiNtAfnV7DoZu30MgSHeJj2HdNiLtmUeHcyC+ktELAAb1Mek7dzkYryyRGhHI0I1MYkaPCOalWPySEhnC1svrB358cazkWm4Mwby/KXQ6yykoJNplx4SaztAR/oxG3rHC7rBR/oxGX5CbHUkaQyYzF5SDfZiHEbKZYjZNXCpq7yzwjvXzIspYKU7LJzB1bGSatFiT3fVrLy5El8NIZKLKX46vTY1GFjCj2tKCRJAyyqHzw1xs8Ux7RjWVVSzcrUKhi6BhlLU6VoeOj06kMHcHVEUweDRVuK0aNDqdSZUB2KBWeFZZGkpHVNJWXCgs0qnDBWmGB6vRGNI9XUZHB8chUZDxpLHsVFRkJjeRCA2glkAGtJCPj9qSvNOiQcaJThY5WfYv0+6j1/9Nix+1WqBMbSMhdnoj83FIK8sqQZYn4WtqhM9PEk2N03dr5Lk6Hy7MGeJD5WCOLJ52HtZRHxYoVQqaahnnY6dK3GV//ZS3XL2Zx+UzGb5rutOzckBen9GHxp1uY86efCQj1pVOfpo98/YNOYJgfr73/BC/PGMSxPRdI3XqGo7suUJhbSuqWM6RuOeO5rY+/mdiG4aICIsQX/xAfAoJ98Akw31MDcTPtGiPHPofNZqNNi450S3yCeX9dS352MXnZxeRlFZGfU+xpDa/thNUJJL5JNHFJ0cQ1iaZxct2HAv4edMpLbezfdJqdPx/jtJoyAhH17z6oBY8Na0NC85j7CjpFUTh/PI1V8/ZwcPt5T6FnYnIsT47qRvuUxHvWgBU2Bxt+PMjyb/d4poB16ofw4huP0fkueGBmWh7ff76V/duEOdVg0jHs5S489VIXjGa95/5WLtjP8u/3UWFzIEkSfYe2YuTEXp6f67Mn0vjy7xu4oU47GjWJZsKMATRoHImiKGzbcIpvP9uqprBgwNDWvDIhBS9vI+dO3eKTv63jlvr71LFrAhPf6kdgsDe7tp9j9qdbKFFj6M++0JEXXu5KQX4Zb09dxnF1atOsRQzTZgzEbNbzwV9+YY9KQ09IiOCddwah0Wl4862lnDsvpgRduyQwZXJfDh+9zp/G/ky5xY7JpGfSuF40axLNu/+3mnMq+bxPShKjXurC1wv3sn2PEFwtmtRh6rjeLFlziE07xWPXPDGaSaN6MnfJPg8kMKVTAkP6tODDr8TaSqORGTu8M063m7f/9TMut0JsZCATnu/GVyv2c+1WHrIk8crQ9hSVWvnrfJHkatW4Dt3bxvP3H3ZQYXcSHuTDyIFt+WbdQfKLy/Ey6RkzuAM/7TpFZp7g64zs15Z1B8+RmV+CQSf6rdakniOvuBxvk4FhXZuxbJ/w54T7e9OpST2PP6dpTDgGg5a1R8X32z85gYPXbpFfZsHXZKBDQixrj4uPtaofRXZpGcfSbmPQaujQMJYdl9QEa0wE6UXF5BVZ8DMZqB8a5BE61Y3IDUKDyLNauFFQiL/JSICXiVNZ2WhkiUbhoZysrH6oZkRuHBrCpfw8wSQKDCCttAin202Mnx/Z5WXYXS4ifX3ItZZjVzuucj0dV75kWUrVxJUvmaqgqZ64ql7mGWL2Istaqvp2ZAoqLGpKyoZbcXsSV9Vby0WflXJPtDzQYKTYYVHFhVP0XRmMlKl9V0atED++OgNWNVrurdMKX45GlH1KKHjphC+niqtTnaEjPD3VDciVKyy9rEXB4VlTOe8DC6yMlFfBAoVxuIqK7FTNzNWpyBKyZK8mdB6FiiyhkRRV6EjqhEejiiStOuG5S+jIUUiBnwG/vZrof1rsADRLvhcWeFkdpcfWD8FYC8ckQ4201omt3XxcqnoZJEnymItrO5WvyB8WKY+uJwzSGTdyURTloRMPH38znfs2ZdfaE2z+6dBvEjsAz03oRV52MZuWHeSjSUv46+LXPMbn/8TRG7R06N2UDr2b4na7uXImgzOpV7l+IZMb52+TfjWH0iILZ9UEz4NOhaucgznLsbpK8NOH4ZfbgsX/2lzrbSVJIiw6kOi4EKLqhxIdF0p0/VDikqLweUjJ6qMcp8PF8X2X2PHzcQ5uO+tZUwG06NiA3sPa0LFP0weSsF1OF/u3nGHN/H1cqtZ43qFXEk+O6kZSLZUe9goHm1Yc4ae5uz1AwPA6gQwf15OeA1vUmPwUFZSz9OudbFhxGJfTjSxL9BqSzEsTetVoLt+37RzffbKZO1kCRtgkOZbXp/cnXgUgFuaX8d3nW9muVjn4+Jl4ZUIvDwH51s08Zn20gVNHbwIihfXGOwNJal6H8vIKvvx4E+tWH0VRICDQi/FT+9KlR2MK8sv40zsrOLBPTELqx4fy1rtimrNx/UnmztlRRU4e053Hh7bhYOpVPvlkE4WF5Wg0Mi+O6MRzz3Vg67azzP5qB1arHbNZzxsTHqND+3g+n7Od7bvEhCOpcSQzpw/i3MXbjJq4kHKLHS+znqkT+xAR7scb7/7I7exiAeUb3om2yfV49+8/k55ZgCxLjHy6A80So5j219VVjJ2Xe2B3uZiirq3CQ3x5e8xjLN9yggMnxM90386NadMslj/O2YjFJoo+p7zQnWVbj3PumphkPN+/NaW2Cv75gxorT4yheUIU/1i6UxR/RgXRr0Mis3/+lQqHi6hgXwZ3bsL8zYexOZxEBvrQp20jvt8m+q3qhwfSvEEk87YLf05yXBQGg5aVqeJFRr/kBE6nZ5NxSxR59mvViLXHz4trQwPx9zGx2QMKbMCv19Ior7AT5udNVJAvu1Sh0y2hHgeup2N3uagb5I8iw/GM2+hkmZYxkTWIyKezs3G43MQE+FHudHC9oBA/o4FAbxNnc3LQyhLxIcFViavq1Q/VjMgNAgO5UljA3dUPdT19V3d3XPmRflfiChRC1TJPvVrmmWsTvh2r206500GIyYt8lX4coiauaraWG7C6KnAr90bLS2qJlpc5LehkGUlyY3c7PAwdDQoGrSQKOzUGbGphp1ErYX8gQ8eKXha8G2FiFisso6zDpcIC9ZIbt+JWzck2jxiphAUqtcACZY8wcWOQ4FGoyDIu9HcJnSoqsqxGySU0EuqER1ZFkkas2iS9SGFJeiF0tA2QAuYhlf++F6H/82KnRS2k3ysq7TS+Ue1Jq0xV7NxdDFp5KlvKvX2ND0xDaSsj5c4Hu8sjYoOQZQlLWQUFuaUPJS4D9HumHbvWnmD3+pOMmjEAL59Hh+lJksT4Pz9BYW4pB7ef48+j5/Pu7BH39Cf9J44syyQ0jyGhWnu23eYg/Uo2GdfvUJhbSlFeKYV5pRTllVFaVI7L6cbtVrBVWPnlyAqsrhL8vYIZ2W8qwUHBmH2MePkYCQr3Jyjcj+Bwf4LD/QgM87vH1/LvHqfDxanUq+zbeIoDW8/WKBKtEx9KyuOt6DEkmdCoB49ey0utbF5+mLWLfvUwcnR6LSmPJzP0la7UiQu955oKm4NNyw+zct5eT6FsaKQ/w8f2JGVIco31qNVSwepFv7JqwX4saqN6my4NeXVKX+pWMylfPpfJNx9v4qxalBkS7seoKX3o2kdMhlxOF2uXH2bR17s899N3SDKvqNMee4WTnxbu5acF+3E4XBgMWp4f3Y0nn++AVqshdd8lZv1zE3kqPbz3gOaMmfgYPr5Gtm06zVdfbKOs1IZWKzP8pc48+2InCgrKmDHtR46pPKCkptFMmzEQf38zH/9zA1vUiWBMbBAzZgwiJNSX9/+8xhMpb9o0mnemDyQrp5hXx33PndxSZFnipec7MWRgS2bN3cH23WJa0TQxinem9mfXfsHOcbnchIf68t6bA7h84w7j312G3eEiJMib9yb14+SFTKb830rcboXYqEDeHteHH9cf86SturSO4/Hezfnbt1vJyRc9WZNe7M7VjPwaNOQhPZryj0U7KSm3qW3lXVm1+zQXbuYgSTCiX2vScouYq9Y89G7TELPZyKzV+wHokBRLWLAvc9aJWoh2jWLw8zF5+q26Na1PucPBqgPCTzWkfRInb97m5k3hzxnavgm/HD0v0lj+PiTFhrH6iLhtx4YxpBcUc+xGJkathh5N4th0Vm0sjwqlxG7nWNpt9BqZ9vGx7L4i/p1axkRyraCAYquNIC8zoT5etRORI8K4lFdlRLa4HFwvFOkrX7ORC3m56GSZ2MAAT/VDw5CgKqETFMSVysRVUCBXi+7tuLo7cZXuSVx5exJXRp2WO9YyfPQG7G4HJQ5bzcRVLa3lRo0GSXJT5rQRaDBT5Lh/tNxfZ6L0rmi5SSMSWSiKh6Fj0MiAU/XgGLC6bMK/IwlfThVDR9yuJkNHg1uNiJs0skhaqQwdrRoNh0pYoJrCwuZpFa8JC6zux3F6hBK476Ei6yWQcaqgwOpUZAc6dZVVJXS0KmdH1D+Igk/hRdIgq5MerZrs0iPhBl0yUsDXSLI/8Gh2jrvP/7zYaVpL1cM1FXMff5+ah2zVd3G/pvJy1Tzq5X1/HwaAQS0PtVZjtNR29HotUXWDuXU9l8tnMuiQkvjA24OIoMfEh5F+NYdV8/YyYnKfh15T/Wi0Gt7+/HlmjviG88duMnPENzz9eg9emNznkci//87RG3XEN61DfNP7T6QcDgcDBw4kr/Q2ISEhpKamEhd3r9H8v3HsFQ5OHrjKr5vPkLqtpsDxD/Km26CWpDzRivgmD09opV3JYd0PB9jx8zEPq8c/yJuBz3dgwPAOtTae2yx2Nvx0iFXz91KYJzq2gsP9ePa1HvQe2qqG2dtud7JpxRGWfbPLQ+yObxzJqKl9a5iPc3OKWThrO9tVurHBqOOpkZ0ZNrKzp+T21NEbzPnHRo9nrWFiJOOnD6CRShA/dugaX3600WNAbtMxngnT+xMeFUB+XimzP9nM/l1izRQZFcCktwfQsk09srOK+Ouf1nBMneQ1SIhg2sxB1K0fwqYNp/h6zg4s5RXo9VpeGdWNJ55qw6lT6Ux7axl37pQgSTDs6Xa8/HJXDh66xoyZyykutqLTaXh5ZFeGDG7J94v3s2L1ERQFIiP8mTl9IE6XmzFvLCInt0SIn+c60rtXEn//fDMnz4rpQ4/OCYx+oQuzvt/FgaPi6+vUJo7Rwzvz6fwdnFShg/17JNG3RxJ/nrWRrNwStBqZcc93weF2M+2fa3C5FeqEBzBpRDe+WZXKpZviMXxxQBvQwPtzxTSycb0whqY04/Pleykpr8DP28jYoZ1Ysv046TmFaDUyowa1Z+/p65w7dgVJguG9kjl9I4sD+4Xoe7pbc07euM3By+nIksSzPVqw48xVsgpKMeq1DOvcjFUHz1JeIfw57RNiWab6c1rUjcShuNh29iqSBP1bNmLn+WtY7A7C/X2oGxrARtWI3LVRXY6n36a0wk6IjxcRAT7sUYVO14Z1+fVGOk63m/iQQMrsdi7k5GLW6agXGughIreuE8XRTCF6GoeHcK1AGJGj/Hwpc9q5VVyMv9GIUa/lSkE+Jq2WIB8zlwvy0ckykb6+XCkQBu5IP1+uFhUgSxDp68uNkkK0skSIlzc3S4vQa0SBZ0Z5CWadDq1G4o61zJO4KrZbCTF5k19RZUquTFxVlnlqZRmTVkOBXa15cFlRFIVgo5fHlOxv0D0wWm5S11XVo+W+Oh3lLkuNGLm3Ro/VZcWkEZ4ahWoMHdVsfH+GDrgUB2aNXtRAqL4aAQuUaoEFOmuBBVZ4YIEaFHRSFVAQqsRQZexcwAJVz44sVllVVGR1wuOpf9AiV6Miy0hiyoOEVtIgARpJK4SOoTuS/+dI0r9Hv/+fFjshYX4E1zIlSVPBYXVreTUNkHun0nx8b+kigMOutljrHywKKs3NJUUPT1k1bVOfW9dzOXXo2iOJHUmSGDG5Nx9MWMzq+XsZ+HxHAkN8Hnpd9WM06flw0Ri+/WAtG5cd5KevdnLq4DXe/mw44Q/gB/23j6IojBo1iq1bt2I2m9mwYcN/XeiUFls4susiqdvOcmzvJazqVAOEOOnYpyld+jejabu4h7KNXC43h3ddYO3iXzmpAvtAmI6feLkzPYck3xMfB+EDWr/sIKurRc7DogJ4ekx3ej2e7KEeV36OXRtPsXj2Dg/zKaJOICMm9KJb36Yev4/NYmfFwv2sXLDfkw5MGdickRMf8/x838kuZt4XWz0pK18/My9PSKHPkGQ0Gpn83FK+/mQLe1VIYWCwN6+/2ZeuvRJRFFi/5hjz5uygvKwCWSMxbHgHnn+lKzqdhtXLD/P9N7uwWR3o9VpefLUrw55tT15eKTPe+pFjKh4iMSmKaTMGEhziw5dfbmPtL8JjEhnpz/S3B1KvfgiffLaZrSojJ65+KO/MGAhITJjyA9dUovmgfs0Z/Uo3flp9hKUrDuF2K0SG+zNz2gDyC8sZPWUxpWU2TEYdk8akEBriw4T3fiS/sBy9TsO4kd0IC/Fl4vs/UaLebuqYXhQUW5j0wSoPT2f66F78uOk4qSfF1/9Yx0Z0Sq7P+19tpswiRMyUET34Zc8ZTw3E0J7NMJn1/OV74ddpUj+c3u0T+HTFHmx2J2EB3rzQtzXfrj9EcbkNX7OBEX1bs2TnCQpKBW9neEpLlu0+QYmlAn9vE493SmLJnhNUOFxEB/nSplEMi/ao/Jy6keh0Gn45IlZ6/ZITOHI9g9zScrwNerom1WP9SSFOm8VEUOaoIPVaOhqNRI/GcWy/eBVFgUYRwZTaHZzKyMao1dCybhR7VFBgq5hIzmfnYnU4iPTzQdbKnM3OQa+RaRgWwtHMSiNyBCezBSOpUWgwVwsLcKg+nPwKK4VlZQSbzTglt6f6QaeRSSsuwluvx6jXkl5SjJdOh1GvJaOsBG+dHo1W5nZ5KX56Ay7JLTqujCZKnBVY7M77Jq4i1MRV9TJPL60OBy7KnBUEqymryilPgb0cnSyh10iUOW01WsvvjpZXuO01ouUmrYzVZfOkqyp5OaIGQvRYVcXNazJ0dDIPZOg4KqsePCkssaYya+QasEBR3immNiZV6NwfFujEqAqde2GBSjVYIJ74uYTjAVRk2TPVESZlCY2kARQwPoHk9wGS9OAS7Ec5/9Nip2HiveZjm83hid/WJnbsFQ5PzcPdxubKU8kyeVicutLk+SiR8hYd4tj40yFOpl576G0rT8feTUhoHsOlU+ks/XI7E/78xCNfW3mMJj0TP3yKFp0a8MW7K7l4Io3xAz5l4odP0m1gi//fqMjVzx/+8AcWLVqERqNh+fLltGnT5j/+ORRF4cbFLI7uucjRPRc5f+xmDW9VULgf7VMS6dK/OU3a1n8keGPBnRK2rDjCpp8OeUjHsizRPiWJwSM60qxdXK2PZ1FBGb8sOsC6pake43tETCDPvtaDnoNa1pi0KYrCrzvOs+jL7Z6uq8AQH55/vQd9nmjtua3L5WbbLydYNGeHp5A2qWUsY97qS0ITMamxVzhY+cMBfpxfZVDuP7QVI8el4OtvxuV08/OPh1j49U4s5SKFNfjptox4rQde3gZuXLvD5x9t4PwZ8WSe0DiSye8MIK5BOGk3cvnk7xs4ryahmraI4c23BxAZHcj6tcf59utdWK0qOXlUN4Y+1YazZzN4553lZKmP3eDBLRnzWk/OX7jNqNHzuaNOaJ59uj3PD+/A2o0n+W7BXhzgP4l4AAAgAElEQVQOF/5+ZqZP6Ued6EDeem8Fl64IX0zfXk14bWRX5i39lXVbRQS7UXw470zpz9Y95/n7nC0oCsRGBzJzUn+27j3Pp/N2AtCwfhhTR6cwf9VBT7dVSoeG9O/RhA/mbiG3oAy9TssbL3QjLbuA97/aJL7XBpEM69OCT5fsFg3nRh0Tn+3KlsOXOH5JPB5Pdm+GE7cnVt62cQyN64Xxr+V7hMCICaFD07rMWXcAl1shPjKIto1j+GbTQRQFEmPCqBcZyPztIp3VPiEGl6Sw+qAQgwNaNeLkzdtkFJRg1Gnp37oRa49dwOFyUS8kgBB/bzacFHyhnklxHE3LpNhqI9DLREJUCNsuCJHeqUEMJ26JxvIwHy8Cfc0cuCGSfZ3qx/Cr+t+JEaHcKi6mpKyCILMJb5OBM9k5aDUyjcKCOZl9LxG5UUgwVwrycSkK9QL8ySwvocIlDMeFNivFdidh3l6UOCrItZYT6mWm1Gkn32ZRe61s2CvshHt5kVdhwaWIxFWWKmiivKsMypVCR0IhyGwmx1aGSaNBVss8AwwmitQyz+rRcn+DkUK7BS+tFid2KtxuggwmDym5tmi5n95ImbPKW2N3V0XLNZIw69rddnx1Yl1VaeAV1RA6KtxiJYXkxo1yH4aOBqfKyXEpNjSSpKaw3Bg1Mi6lArOsxa1URdcFQ4dHhAVWUZGrYIF4biOoyIoKC3Q+lIosJjwSMjIaSf1b6jUayfut/9hzzP+02GnU+F6mya0buSgK+Pmb8Q+817Sarz4xGAy6Gmj96sfhUMWO7sEPb+X9Fz2C2GmuVlakXc0h/07JI/l2JEnilWn9ePuFuWz66RB9hrWhQZN7S0sf5XTp35yGzevwj8lLOX/sJh9NWsLP8/cy7LWetH8s6ZFJzf/umTt3Lh9++KHnvwcMGPAfu++87GLOHLrGiV+vcGzvJU9lQ+WJbRhGh8ea0L5XEg2aRj8SFNHtdnPq4DU2LjtI6vZzHsHkG2Cmz7C2DBjegbD7+Hlys4pY9f0+Nq844pm6xMSF8syY7nTr36yG8VhRFI7uv8zCWdu5qqaJvH2MPP1qNwYPb+9ZRQEc/fUK332ymZtX1eLPqABendKbzr2SkCQJRVFI3XOJuZ9s9gj/pBYxjJvW35NOPHcqnS8/2sj1K5UprCgmzhhAfEIENpuDeXN2sHLpQVwuNyaznpGv9WDwk61xudws/G4PPy7+FafTjdmsZ/T4FPoPTiY7u4jpby7l5AnhF2rSNJq33h5AULAPX83Zzhq1YDQ01Jdp0wfQuHEk33y32wMIjIz0Z8a0gQQF+zDjjys5pdY4dGgXx1uT+rI/9Qp//mgdtgoHPt5G3nqjD2Fhvkx490cybheKldDQdvTpmcRfZ23igiqIBvduxpA+zfnbnC1cuaHWRQxsRduWdXnnX2vJKywXoual7hSXW3nrH2twKwoxkQFMeqE7365O5cIN8Tg91y8Zk0nP+19tEl1O0UE83781X6zYR0GJED7jnuzM+tTzXEgTfp0XerfmWlY+CzYL4TKoQyKlFRXM3yz8OI8lN6DMbmfJLkFc7tcmgfT8YtYdET6kpzo15cDlNDJVYfN4uyb8fOQsVruTyAAfkmLDWXVYiKD2DWK4XVzCIbXIs1ezBmw+cxm3opAQHoxLUjhwLR2NLNE1oR67Ll0XxuGIEPKsVs5n5+Kl19EoPIRfb6SjAG3rRnEs4zYuRSEuOJB8q5WbhQIO6Gc2cKYWI3LTsFDO5N4RRuSQEC4WiMlcXEAg14sKcKuenLTSItyKmxg/f26VFeEGYnyrzMd1fKtSVlE+vmSWq3FyVehIKASbvci2lmKslrjyMxgoV2sghBG5qsyzwF6OVpbQa7SUOKz46w2eKU6gKnR0koxWlkQNhCpkKqPlogZCi0MRqyl/NVqulzW4FScuRVGnPBb0kga36svx0WqpcFsxyBpcOJBQMKslnjUZOhIuxXEfhg64PbBAmxobd3hWTwruR4QF1hQ6Io3luAsWKNg5j0JFFl4fDbIqbCSfGUher9T6d/H3nv9psdOgtli56jeIvk/SqlilGPsHet1XcUqI91fGhe93QiLEmqASQPig4xvgRWLLWM6fSGP3hlM8+XKXh14D0KxdHJ16N+HXrWf5YPwivlgzCb9aRNyjnLCoQP6xbCxLZ21nxdxdXDp1iw/GLSSqXghPju5GyhOtal2//CdORkYGCxYs4I9//CMA77//Pq+++urvvj9FUbhzu5DzR29y+tA1zhy8dk+032DS0bxDPK27NqJVtwQiY2tHDdR28rKL2b7mGFtWHCZb/ZkCER0fMLwDnfs2ve9jdfNyNivn72X3hqqm8wZJUTzzWg86pNxbAnrq8HUWfrmd86pIMJn1PPFiJ4aO6FQjDXj9UhbffbqV42pDuLePkeGv9WDgM209K7CbV3P4+pPNnFBLcINDfRk1qTfdVYNyYX4Z383a7klhefsaeWV8Cv0eb4UsSxxJvcqsjzeRrZqsO3ZNYPzUvoSE+nL2VDqffLTBEzVv36kBE6f2JSjYhzWrjvD9d3uw2RwYjTpeHd2dIUNbe6Y5t9X7GzCgBa+93pMbN3MZ8/r3ZKq/O5Ut5Xv2X2L6H1dgsdgxGnVMeK0nHdrF88/PN5N6RHxPrVrEMm1yX7bvvsCf/7Uel8tNSJA3707uz538UsZM/wGrzYG3l4FpYx/DYnUw7r1l2Cqc+PuamD62Nxev3+HNv60WU5+oQKa+msKiXw5x5KyYZPTt3Jh2LeryhzkbKbfa8fU2MuXFHmzcf47D58RtBnROJDzUl/+bv1UIn6ggnurVgjmr91OirrpGD+rAD9uPk6XGyF/u35aNhy+Sdkf4d17olcy2E1fIyCtGr9XwXI+WrD1ynvxSCz4mA493SGL5gdMinRXgQ3JcNMt+Fb6sVvUjsblcbD1zxePP2XXhukhY+XrRICqEjafFdKdzw1jOZuVQaLHhbzLSICKYnWr6qmN8DMczbmN1OIn280Wv03Ds1m20skTzmEiPEblFVARncnJwut3EBvhT7LBys6gIP5MBb6OBC3m56GWZmMAAzuTeARQSQoI9Qqd69UODoCCuFOXzICNypQDyiJtyUeAZZPLitkWYkg1aDXm2cvz1RizuCsqcDkJMZk9TeSU1WQZ81TJP4cVxYHPZVW5O5ZTHQIkqZOxuJ3a329NaLgOGymi5Vo/VbfNEyy0ua7UYuXif6LbS4VDsHlFT4RbN5A6lQkxh1BLPyhWWICCL6Y1ZZegYZNGjpUHxMHTMatKqMk2lVT8mGDo1YYGVDJ1KMVQFC6yiIlfBAoX3pyYsULqLiqyjNiqyRhU8oEXy+xuSaUitfxv/nfM/LXbu7sMCPK9k72c+Li0VsXJv3/ubjyvXVw9LWUWpT54ZN/MeKVKeMqQl50+ksf3n4wwd2fmRx3uT/zaMG5eyuJ2Wz98mL+HD+a/+7iZyjVbDi1P6MPCFjqxdtJ/1iw+QeSOXL95dyaJ/baZj7yZ07NOUZu3jHrjGczgc2Gw2rFbrQ99u27aNhQsXesRj586def/993/T120tr+DauUwunkzjwvE0Lp5Mv2dyI8sScUlRNGsfR6suCSS1qfebxJvD7uTInotsWX6Yo3sveeolTF4GUh5Ppv+z7alXi8AGIb7OHr3Jynl7OLznkuf9TdvU45nXupPc8d4i1bPHbrJo9nZOqyklvUHLoGfbM+yVrjWmkjm3i1j45XZ2bTyNoihotRoGP9eO50Z3w0elQBcXlrPo611sVHuzdHotT77QgWdf7oLJbMDldLNu5WEWqiksSRIprJfHp+DnbybvTglff77VAwAMDvVlwtS+dOyaQHmZjc//uZH1P4sJTECgF+On9KFrj8akp+UxecJiLqgcnOYtYpg6fQABgV7Mmb3NM80JCfHhrbf606x5DN8v3MeKlYdxuxVCQnyYNrU/cXGh/PXjDew/IFJQTRKjeOetAdxIy+Plcd9TXGJFr9MwemRXOndowIefbOT0eRUm2CmB117qytwl+9ipVkO0SIpmypgUFqw4yM4Dal1E0xhef6ELny/czWm16HNQzyZ0aRPPH2dtoLDEgtGgZfKInlzNyOVPXwnTcdMGkTzbN5lPluwir6gco17LhGe7su/0ddalCr9M/06J+PsY+fsPAiyYVC+Mri3i+WzVPhxOF9EhfgzunMS8zYc9/p3BHZNYuP0oFQ4XEYE+9GzZgEW7j4kaiYggGtYJ9fhz2sbXweF2se6Y+PcZ0Erwc/JKLfgY9XRJrPLnNK0ThtXlZN/lm8gypCTGs/PSdZxuN3GhQSiSwuGbGWg1Eu3jqkCBTSPDuFVUTFGJjQCziVA/L47eykSSoGWdSI5liMcsKSKUS/m5InLu70eR3UZGSQmBJhM6ncZjRA72MXOpIA+dJBPt58vlgnwkCeoGBHiETqy/PzdKCmtUP8gShHn7cKtM1ED4Gg3ctogaCK1GrtFxJWogvMiz35u4CjQKU7JBltHIqGWeJorVRFWwmrjSSmDQailzWvHVGSl31t5abndXtZZrJDBo1Gi51oDNJcSPSStT4a7wcHVkFAwa4csxa/XY1RWWVlJQqjF0hKhxeKLhrnsYOiJNZZRklaEjVlh69WPCj1MJC5RUoaMBKtBJYoX1YFig6tmhEixYCQtU1DRXJRXZ5RE61anIMm6QTEj+s5AMXWv9G/nvnv+q2Pnwww/ZsGEDJ0+eRK/XU1RUdM9t0tPTGT9+PDt37sRkMjF8+HA+/vhj9Pr7VygUFhbyxhtvsHbtWgAGDx7MrFmz8Pf/bYTb2sRCZQ1ERFTt91VJpPW+T5Q7IyODE6cPY7OX4LA/eBIQGVMVKS/ML/N0C93vdOnbjK//up6bl7O5fjGLuMa1R+PvPt6+Jv741UtMfupLTqVe5fuPNzFqxkAURflNoqO2t+GdS7lyLp0r59Kx3LGw87wT96cukN2YvHXojBKK5MbhtNe4zuX6fWVuAKmpqWRmZhIdfe9KzmF3kpNRSMb1O1y/cJvrF25z40IWWen590zaNFqZ+o0jadoujmbt4mjSph5eD+Ai1XYUReHymQx2/HyMPetPeYzDAEmt69JnWFu69G3mAfXdfZwOF/u3nmXNwv1cVr0tkiTRqXcST73StVZG0vmT6SyevZ0TKqxQp9PQZ2hrnh3djeCwKtN8abGFH7/by9plBz207m59mjDyjcc8Yt7pcLF2xWGWfLObMtUP1DklkdGTehOurtfOHE9j9j83ckNdezVoHMGE6f1p1CQal9PNmuWHWTh3FxaLHVkj8cTT7Xjx1a6YzHr27brAl59uoSBfpMb6DmzBmPEpmMx6lv5wgB8Wioi62axnzNgU+g9swenT6Uyf/qPHm9Ovf3Nef70nGZmFvDb2e9JU9EPvx5owYVwvjp9MY+Rr8ygutqLVyrz8YhcG92/BV/N2sWGrSCjF1QvhvWkDuZaWy6gpiygrr8Bk0jF5TC8iI/yY9MflZOeWoJElXnmuE80To5n+1zXifRqZ0c91IioigMkfrqa03IbZpOetV1O4cTuf6f/6GUWBuDrBjH++K18t/5XLaeKxGj6gFWajnvfmbMCtiPbyEYPaMnvlPu4UlmHQaRg7tBO7T11jw0EhfJ7s1oxSm505v4gYebfmcfj7mpi9Vvx/24Q6hAb68M0m0W7erlEMRqOOxbuFsOnZPI7c0nLWq8LmiXZJHLicRnZRGSa9ln7JjfjFw88JIMivpj/neHqmZ4LTNDacrao/p129aC7eyaPIKsRMTLC/R+h0rB/D4bQMnG439YMCKHXauXgnDy+9jjqB/hzLuI2CQnJ0JMezhOhpHBbC5QJBRI719yfXWk5+mZVQLy/suEgvKcbPYECv1XCjuAizToe3Uc+N4kJMWi0+Jj1ppUUYtVrMavWDl06HXieTbSnFV2/AiYt8m4VAo4lSpw2rw06Y2Zs7tns7rqonroxaDYV2C756PVZXBU6329NxJdZVBoocFpGKkhxUuO2exJWEgo9eS5nTgpdWj81dvbW8erTc7YmW6yQJWXbjVBwero5OkpAksdaqZOgYZDFNodoKS0TLKzxixM39GTpuHCos0FaNoYOaiBJm4uoMHb0sIeOolsZ6OCxQJKruhgVWpyLXAgv8/9h77/Ao63yN+/M802fSewNCCCWBJHQIEHoHQYqAhSIqKIIi1t09W9yzblPXAoJiQwVsKAii9A4JHYRQQmiBkN7LZOrz/vF7ZpJAArjr7nnf857fdXEFJpmSScjc+X7v+3NLgUiBy5H0KU3+nPwlzr9V7Njtdu677z5SU1P58MMPb3m/y+VizJgxhIaGsm/fPkpKSpg5cyaKorB48eJmb/eBBx7g+vXrbNokfnOaM2cO06dPZ8OGDf/yY87P9RR4Nu2j8MTKfZrA+3/44YfMmTMHt9sNSNi1k4Gnm70vvV5LeHQgN3JKyMrMIaFzzB3FhTGyhEsnr/DCM7+j95D2P0uclJVWUlxQyvbfLGH+7xUcTrv6WP9N585WJAAMBgMmkwmj0XjLW6vVyvHjxxt9vMvlYv2X24iLSaCsqIrivHLyckrIyymhMLesUWFnwxMc7keHzq3o0KUlHbrEEt8pupGX5eec/Gul7NxwnB3fHWtU5BkY4sOQCd0ZMbk7MXFNp/lAiOZNXx9i/ap0ivMFuE+n1zJsQlcmzkojugk69+mjV1j93k7vGkqr1TB8QlemPTaQsAZVFnVWO9+tzuDrj/d6BUznnnHMXjicdmr3lseX88FbW7zcqLh2ETz+7EhS1Mb7ooJKPnh7K7u2CD+Hr7+JWU8MZtS9IoV1LjOXt1/9gWy1K6tDx2iefmE0bdpFUJhfwV9eXkfGfjFpiW4RxMLnR9O5Wyznzt7gH6/+wCXVQN0rNZ6Fi0bi42tkyeItfKcmrcLC/Fj07ChSUlry6Wf7+eKrDNxuhcBAC4sWjiQ5qQVvLd3GVpVkHBcbyq+eH4O1zsFjT39CXn4FkgRTJ/ZgysQeLPlgJ9v3iulFx/aRvPT0KLbuOctfl24Wqaxwf37z9GiOnLrKgt9/idutEBnmz6/nj2TbgfMs/VwwbRLaRPDk9P4s+2Ivpy+IBNG9Q5Lp2C6S3yz+nto6B/4+RhZNH8j3+85411aj+yUSExHAHz/cJAjKEYE8OLIby9YdoLSqFotRz5zxqazbd5pLeaVoZImZI3uQcf4qu04LYTttYGdOXrnBwYPXROQ+LYWDF3K4fKEMrSwztX8KP544L9ZYRgNjunfgm4OnsTtdtAwJoE1UMN+o/Jy+7VqSU1bBIdWfMyy5LZtOZ4nJUHgwslZmz4UrSBIMbB/H7guXcSkK8WHB1LmcnMjNQ6+R6doy2mtK7tIikjOFRdQ5nUT7++GSFM4WFmHSaokNCeBY3g3hyYkM55QHFBgWytniIhQgLiiAa9WV2F0uon19Ka2ro6LWRpjFQrXLLuoezCbq3A4Ka2sINpmpcQlTcojZTJWjjlqbnTCzhRJbDS7FTaTFjzxrYyNyQ6Hj6bjyJq4UJzVNJK48ZZ4mnYZKpxo9V03HHqGjkyS0GrC6bGLK4yEhN9Fa3nS0XKeusLS4aBwtr/fliNZxp2L3Rst1koD43R1DR7xPwWNOdqnrKdGJVc/Q8ZR4iqoIkZxqDhbomezI6hQI1XCMWvApTMjNU5E/QtL+cuDaps6/Vey8/PLLAKxYsaLJ92/ZsoUzZ85w7do1oqLElOL1119n1qxZvPLKK/j53WrCPXv2LJs2bSIjI4NevXoBot06NTWV8+fP0759+1uuY7PZsNnqo8KVlc1DiUpLhAG52aSVwxMrb/zUXb9+vYHQAVBIP/01w4YNQ5KkZkVIVWU1DqedLQP/0uxjaupk5sO3m3/WVRqfJtA+TYmNf+atXq+nrKCGS5n55F4soSi3EpdDQpY0aCQtsqRV32qQJS2SJKHVacQfrXir0QnWQpm9hOOcABoKGImv30rHqD3d5KdmMOmIahVC6w6RxCVGEdchitYJUU0ya37OKc6vYO+PP7F740nOq11SIJg0qUM7MmRCN7r0ib/tivDapUI2rEpn67pjjbk69/dmzLRetzxGRVE4eegSq97dySk1hi1rZIaN78L9cwZ5py8gjPGbvj3K6uW7vPyd2LbhPLJwON0bdGJdOHuD5W9s5ie1ciEgyMLMJwZ7o+R2m5NvVqfzuZrCkmWJ0RO6MfPxQfgFmKmsqOWjZTv5cf0xFEUI/9lPDGb0+K4oboU1X2TwyQe7qbM60Gplpj7Uhwdm9MPldrNsyTbWfnMYt1vBz9/EkwuGMXhoR44euczrr/9IobpaHDO2M3PnDiY3t4wnnvyEy1eEoBw8KJEF84dxPiuPh5/4kGK11mXa5F48MLUXK7/M4ItvDqEoEBHmx6+eHY3LrTDn2ZUUFVehkSVmTE1lUFoHXnm73oQ8clBHpo3vzmvLt3HqnFipjeifyISRKfxl+VYuq/1pD47rQbu4MF58/Tuqa234mA0smjWIY+eu86flWwABCZw0tDP/WLWLkgp1bTU1jQOZV/l+rZjODO/Vnqgwf/6ycjtuRaFtTAij+3Rk2fp00Yflb+HBYV35eMthb8z8/sFd+Hz3CSpq6vC3GJmUlszqPceptTkI8TMzrEs7Pt9/QtCVI4KJiwjy8nN6t29JaY2VHZmioXxM1w5sy8ym1u4g3N+HtpEhbFT9OX3atuRcQTElNbX4GfUkxoSzI0v4c3rFxXA6v5Bqm51QHzMhPhYvEblng8byxIgwrpSXeVNaGq3MmaIiDBoNLYMDOFUoDNsdw8PIVI3ICWGhnC0RX+f4oCAult1sRFZo4e/HjZpKnIpCC18/rtdUoqAQ4+dPrmpEblj90DBxFWHxId8qxE2A0UhBXRVmrQ5kF5UOK4ENoIBhJgsl6jrLk7gyazW4cGK9qczTT2ek0lGDWavFqdhxNkhcaSTQy1ITreWeaLkQPw2bzH00Ou9leo3UIFouhItGFiksk3qZqG5omqHjESGSahgWBZ8yburUNZVa3qlWPOjUyU49LFBC9qSx+CVggR6PjoeK3B4p8AMkTT3Y9N91/kc9O+np6XTq1MkrdABGjBiBzWbj6NGjDBo0qMnr+Pv7e4UOQO/evfH39+fAgQNNip2//OUvXuF1p1OqvkgENvPC6DGMarSNTaIXLlxockqybdu2u7rfhsdkMt1WTFw+V0h1uY2WcRF06d3+Z4uRbd8cZ+Oqg8iSllFT+vDEb+7Fx7d5w/W/elwuN3lXS7h8TqyVci8XUVZURVlRFaXFVVirbTgdLm/JZeOjpVPIME4Xb0UIHolecfeQ1DGBwFBfAkN9CQr3I7JFMJGtQohqFUxgqO8v9rkU51eQvi2TvT/+xOnDl72rMFmWSOrVhsHjutB3RNJtizzdbjdH9maxfuUBju674L08tl0EE2f1Y8CYlEaMHBAi5/DeLL54fxdnTghhpdVqGHZvV6Y+0p+IBp4yt9vNrh9P8dnS7eSpwMuI6ECmzxvMwFHJ9YWeBRWseGc721Xvjt6gZeKDqUyZ2Q+LjxFFUTiw6xzL39ziXed27NySJ58bRZv2EbjdCj+uP86HS7dTqa5zh45M4rEFQwkM8uHcmVzeevVHsrOEgOiU3IKFL4ymVetQDh+6xFuv/0i+OsUaMqwjT8wfikYj89qrP7Bpk4h9R0T48+xzo+nUKYbPVh3gc7WQMyDAzMKnhtO9W2uWfbCLDT8Ik21MdCC/enYMRpOOp1743MvTGTUsibkP92f1t4f4cp1IMUVHBvBfz4zmyvVS5jxfb0J+4YnhuBSFef/1OTW1dswmPc8+NoTqOgfz//g1doeL4AALL84dxoETl/nd4o3iuYmP5JHJqby9eg+Xc4WfZNb4XkiSxG+X/eBdW80a15Mla/ZRUFqFXqth7sQ+ZJy5yuYfhLgY2ycRWSPz5po9APRoH0PbVmG8tW4vigIJLcPoHB/Fe95YeRjtWoTxwVbRXt4lLgo/HyOr94nnZGCnNuSXV7HlpDAej+/ZkZ1nLlJeW0eA2Sj6rY6LFVdyy0hqnXb2XhD+nKEd49l+TvhzWocECur1pWvIMvSLj2XPxSsiFh4eQkmtlbMFRfjo9bQOC/Q2lvdQG8sVoF1oMNerK6mptRNiMaPRymSVCE9OhL8vmUWFyBLEh4R4hU5zRuS4wCAuVZYKI3JAAFcqPdUPAeSoRuSGQifC4ktubSVaWcLPYKTAWo1Zp0OSFMrstQQaTVQ5rGriqr7jKtRopsRWjU6W0WnkWxJXjcs8tdQ4raLmwS3e76czUO0UUXA3DpyKu4nWcruXqyPqEm6Olgtisktx4aPV4nBb1bWRQ42WC4CgiJYLkKAsu1HU9dbPY+i4G/VemWTh2alPY90OFuhZYd0MC5TRSHhhgbIKCxQRdhUWqOuBFLgMSb5zsviXOP+jYic/P5/w8MaKLjAwEL1eT77adNvUdcLCbl0PhIWFNXudX/3qVyxatMj778rKSlq0uNULYbc5vWP/oJCmxY6ntFN7k9hp27YtsizfInh++5uXadchrlnxUVlax0uPrECvN/DVnt/i5+9zxxfqU4cv88KM5WjdGl7+7bPNRpebO127diWudTwf/f0Hdn77EwVXKnj+tfuJaNG0KftfPRqNTExcKDFxoaSNvnUnW1dro6rcitPp8ooel9OFoogpjcGko6S0mOt5OSQktG/ya/dLnhtXizmw5TT7t5zm3ImcRu9L7BbLgDEp9BuZfEdIY1V5LdvWHWPjFxne8lhJkug9OIF7Hkylc+9buToul5v9WzP58sPdXDwnViQ6vZZRk7pz3+w0QiPq11Ueps7KZTu8MfLAYB/unzOQUZO6edEHNVV1fLliL2s/z/D2dQ0elczDTw7xrr+uZBey7B+bOKGanYNDfXl0wVAGjUxCkiSyz+ex5LVNXgvsWlEAACAASURBVC5Oq7hQFjw3iuQuraipruPt13/k+7VHURTw9TXy6LzBjBzbhcrKWv76ynq2qauwsHA/Fi4aRc/ebdi/P4u33txMSUk1kgT3TujOI48MICenpNE0Z+CADjw1fziXrxYz+4mPyS8QgmnCuK48MjON7zae4KOV+3A63fj7mXj+qZFERPix8LdfcfmqSNiNG5nCQ5N7sfijXew5KARn104tWDhnCKvWHWLTLuGX6dQ+ioWPDOajbzLYd0SsjlK7tObB8T14/ePtXLouvo4P3dODiDA/XnpzPTaHi2B/C89MH8g3O096IYFj+iUSExnIHz7cjMvlpmV4ANNH92DZdwe8E5854/qw+ch5zuUUIknw4NCunL9RxKrt9W3l+eVVrN4lhMzYXgnklJR7eTn39u7Iiat5HLt6A60sMym1E5tOZFFeW4e/2cCg5Hi+O3JGRMcjQ7GYdPxwUoisoZ3iOXTlOhXWOgLNRpJaRrL5jFiR9mwdQ1ZRCWW1VvxNBuLDg72gwNTWLTh67QZ2l4uYAH8UWeGnPAEK7BARxmG1sbxrTBTH1bVVm+AgbtRUUVvnIMxiwSUpXCorw0evI8BiEkZklYicVVqCLEGLgACv0IkNDOBSpUg1tvTz50pludeUnFNdjkaSCDZbuF5TgV7WYNHryLdW4aPT48ZFmc1KkNFIpbMOt9vdyIjsEToaCXz1BkrtNSoXx06dy+ntuPIkrioctZhkLU6cwqvToMzTrNVSo66rbCogsL61XIdTsePGEy2vby13q6uuhtFy0W0l43DXYVbXWg2nN55ouU6SQaUbG2Xprhk6Ymrj8Iohz3qsIUOnOVigjAu9yuD5ObBAWdIgoYBhJFLAq0iS4XY/Qn/R87PFzh/+8Ic7TkkOHz5M9+7d7+r2mnphv1My6edex2AwYDDc+UmtULH/Go3cpCfHcz9NnZiYGJYvX87cuXNxuVxISCTGjGba5FkkNlFJ0fD2YlpEU5RfQebRa/S5CzpyUo/WpPRuw8mMiyz/60Z+u/ihO17n5jP50QG0bBPG35/9nDPHrvLE2H8w+/nRjHmg913xY37JYzQbMJpv//UJjw4iMandv+X+nQ4XmUcvc3jXOQ7tOsc11UviOYldW9FneCfSRiUT1oyXy3MUReHciRw2fnmQvZtOecWFxdfIiEndGftAKpFNiEqHw8n2DSf4+qM9XmFkNOkZM6UnE2f2JTjUr9F9HNqbxWdLd3iZOhZfI/c93I9770/1mqEdDicb1xxh1fu7qawQ39udurRizjMjaK96dyrLa/l0+S42fuNJYWmY/FAfps7sh8msp7LCyorlO/lh3THcbgWTWc/0R/pz75SeaDQyO7dl8u7bW70G5KEjk5gzfygBAWa2bDrFu0u3U1VpFWJmYndmPzoQa52D//7jOnapfVQtWgTx3PNjaNcuorE3J8DM008Np0ePON7/aA/frhfJrIhwf15cNIqQYF+e/+0azqhddn17x/PMk8PYvPMMv39tPU6nm0B/My8sGIFGIzP3pdWUltWg1co8+kA/OnWI4oU/ryWvsAJZlpgxsRedEqJ54e/rKC6rQafV8MQD/dDptTzz12+xO5wE+Zt5bvYQtmac57MfVGBfciyj0xJ59bMdlFdZMRl0zJ+Wxr6fLrPhWyGihvdsR4vIIP782TbR1h0VzIT+Sby7IYNqq6AdzxrVg5Xbj1KkCqGZw7qzNv00BeXVGHVapg3uwrqDmYKWbNQzqW8SX6X/RK3NQaifmQEd2/BV+ikhbKJCCPa3sPaw8DMN7BjHubwizhUUqf1W8Ww6neUVQciw+8Jl4c/pEMfuLOHPaRMahBM3R64JMdUzNsbrz0mKDudiaRk1djG1sRj1nMzLRytLJEaGN/DnhHG6sNAreq5VVWJzOon09aXaZeNapaiE0Mj1RGSzQcuVynLMWi0+Jj1XKssxarT4GPXkVFdg0mox67Xk1ghTsiRTX/2gOCmz1xJitFBmr8WNmwhLvSk5wmKhsK4aCYUAo4liWzUmjRYkl0hcGcxUqOssj9DRSmD0JK60RmqaKPOUJTd1bru3zFM0lGuabC1vKlpuvylablSj5RbVbKyRxH0ouLHcFC33MHDE+zRqCuvnMnQEHdkgSTSGBUpoJNF7pfWssiTpDrBAtcyzKVig+UEk3/9Ckv69tUM3n58tdubPn8+0adNu+zGxsbF3dVsREREcPHiw0WVlZWU4HI5bJj4Nr1NQUHDL5UVFRc1e526Pp9jQ7GNoVjjp1cbqho3WnvPII48wYsQIsrOzWfPBcbJPlXL1UuFtxY4kSaQN78S3n+5n5w8n70rsAMz91VgWTFrMgW2Z7Pz+BIPG/vzK+56DEnh77dO88dJXnD5ymaUvr2PPxpM88uIYOtzmMf9vOAW5ZRzfn8XRvVkc23eBWtV4DsITk9KrDX2Gd6TPsE4E3QXAsbrSys4NJ/jx60NcPl8/YYxLiGT0lF4MvqczJsutgq6muo4fvj7MupX7KSkUfjFffxPjH0xl/AOp3mg4CJFzPOMiny7dwTm1Ed1k1nPvg6lMasDUcbvd7Nl2hhXvbCfvuvhtuEVsCI88NYze/dsjSRIOh4sNXx9m1Qe761NYgxN47KlhREQH4nK52bjuGB+/u8O7showNJE5C4YRGubH9ZwSFv9jE8fUSVBMiyCeen4UXbq15vq1El55eZ0XDtgmPoxnnhtN+w6RbNlyimVLt1NVVYcsS0yZ0ouZs9LIzi5olLQaNDCBp+YP4+q1Uh6dt8LL07lndGfmzh7Alp1nePEP32CzObGY9Tz1+FCSOkbzh79v4NRZ4blJ6x3PgkcH8/m6w3z7o5iMxLYI5jdPjWL/0Yss+J3HhOzHS/NGkHHyCov+/C0g2DnPPzqULzcdY88RMe1I7dyaScM78+onO8gvFimtuZP7UF5t5bfLfgCgbctQHhzdnSUN0lZzJ/bl4JmrbP4+A4DRvRMwmw289pWgIyfHRdAtoQVvr9uLy60QGx7IwC7xfLD5EE63m5ahAfRLjmPF9iO4FYX4yGASW4WzYpcQf11aR2E0aPk6QyTPhibHk1VQzP6sq+g0GkZ3ac+PP53H5nQRHeRHi5AAfjglpjv927fmpxv5lNVa8TMa6BgT7uXn9Gwdw5mCIqpsNoItZiL8fTigggJ7tY7hUI5YW7UNDaawpsYLCgy0GDmZn48sQYfwME6pQqdTeBini9REX0gwl8pLcSpuWvr5U1Bbjc3lIsLHhwpHHQW1NYSYTVhVI3KQyYTV5aTIWkuIyUS1y06pzUqo2UyZzYrT5SLc4ktBA/PxzUZkUAgxmyisq0Yva9BqJMrttaLawXlrx1WgQU+5o8abuKpz2wnUmeu9OmqZp1krhIxbUbxCRyeLlnC72+5NXGkA/U2t5TIKellRo+U67G51tSQpYoWlVj7oZS2K6r0xyhLOBtFy4eMR5mSTLOjIHlEjbsvD0JHukqHjqIcFyjIy9ptggULw6NSC0FthgVrVkKxVV3QNYIE+z4Dl8f8R8v7PFjshISGEhNw9XO12JzU1lVdeeYW8vDwiIwV/ZMuWLRgMBrp169bsdSoqKjh06BA9e/YE4ODBg1RUVNCnT59/6fFYa1Wx00xMGMCgtmZ7iLY3n5iYGGJiYjh/uJbsU+nkXCxq8uMankFjUvj20/0c3H2Omuq6OxaIArRuF8G0uYNY9c52Fv9+Le06xTSZ4LnTiWoVzN9WzeX7Vel89OoPnD5ymWfuW0L3Ae15cP6w/zWip7KshlOHL3N8/wVOHLhwC0DQP8hC9wEd6DmwA136tm0kMpo7HjbO5jWH2bu5fopjMOroPzqZMVN70S4ppsn/2CVFlXy3Mp3vvzpIbbX4vgsO82XijH6Mvq8HpgaTLkVROH7wEiuX7fD6dwxGHeOm9WLyrH7e2hGA44cu8eHbW7mgTnwCg32YPncgI8d3RaPVoCgKGXuzeP/NLVxXhUXrtuE8/swIOvcQaYizp6+z5PVNXFDXaK3iQpn/7EhSusZiszlY8f4uvlqVjsPhQqfXcP/0vkx9SPzfW/nJPlat3I/DLhrPZ8xKY9KUnqLr6sUvOaKarOPjw3n2udG0bBnMhx/tZo1a0hkYaOHpBcPp2SOO91fs5tvvxGosNMTXW/fw21fWcUw1iHfr3IoXnh7J4RNXmL3wE6xWB2aTnqfnDKF1qxCe++M3XM0Vgu++sV25Z1gSf122hcws8bmN6J/I5DFd+fv7Wzmv0pEnDEshrUcbXl76A4Wl1Wg1Mk9MS8PucvHCG9/hcitEh/mz4IH+fLrxMJkXhbidOCSZAD8zf/hgE25FpK2mj+7OsnUHKK6owaDXMndcKtuOZZN5RVxn6qAUcksrvTTkod3a4nK7+VhtKx+U3Aab4mKlGisf1jme/Koab5/VuB6JHL2Uy/VSARUc3zORDcfPYbU7CPOzkBwbybpj4mO7x0VTVFPr7bcakhjPtnPZom4iNAhJI3HgUg6SBP3axrJX9ee0Cwuhsq6OzLxCTFotHaLCOKgKnW4tIjlxIx+XohAbFEC53eptLA+0mMgsKkQjS8SHBHNaNSInhoVypgl/TpwXDij4OdeqK3ApoqU8t6YKt+Kmha8/12s95mN/cmtvNSJHqZUQHjpyQV0Veo2MUaUj++kN1LpsWF3uRtUPno4rrSxh1MhUOa3460WiqmHiSiuJDiyrqw5fndFLR/bT6ah11WLW6HBiU6nHBqwuKwaNoBi7FOW2reWeygfvCksR0x6nYvcmptyKU72sTl07efg6ksrQEV1YBlnympOFH8d1C0On4XpK3wxDR4uIlN8KC3Sja0BHbhIWiBZZAtAg+f0JyTypyZ+l/4nzb/Xs5OTkUFpaSk5ODi6XixMnxG9X8fHx+Pj4MHz4cBITE5k+fTqvvvoqpaWlPPfcczz22GPeJNahQ4eYMWMG27dvJzo6moSEBEaOHMljjz3Ge++9B4jo+dixY5s0J/+cU1sj0jGm26xUDEYhhJoTO57TUo0dX71pJdLUiU+IIiY2hOtXitm/NZPhE5oWejef+58YzE+HLnHq8GVeWbiKVz+be1ujbHNHlmXGTe9Lr0EJrFqyje3rjnFk93mO7D5PSmo89zyYSvcBHTAY/z105F/6KIpC/rVSzhy7QuaRK2QevUJOduNpoKyRaZ/cgi5929JjQAfaJd9d/QOIGoed359g69pjXL9cL2Zj20UwcnJ3Bo/r2myVyOWsfNauPMDO7094k30tWody38NpDBqb0qhiRFEUThy6xMplO8lUpyR6g5Yx9/XgvofTGnGZLpy9wUeLt3HsoPCZmMx6Jk/vy6SHUr3fz5ezC1j+5haOqXTkgCALMx8fxIhxXbyFnh8u3c62TWJCYLYYmPnYAO6Z1B2tVsPBA9kseWOTl47cvVcc8xeNJDomiJMnrvLW65vIUQVUtx6teXrRSMLD/Vn77RE+/ngPdXWi7HPGzH7cd19PMjNzeXTuh1468vBhnZj3+BCu5BTzyLx6OvLo4Uk8/tgg9uzP4nd//o5aqx2jQcfc2QPol9qW15ZuIUNtJE/pGMOLC0ayff85/rZsCy6Xm+BAC79aMJKi0mrm/Go11joHFrOeRY8NxWp38uTLX1Jnc+LnY+SFx4Zy/mohi/4u6MgtIwN5ZuYgVm48wpEzYpo2tHd7eie34o/vb6bGasfXbOCp+/uz6dB51uwSRuvRqQmEh/ryyqdibdU6MohJA1N4d0M6VbU2/MwGZo/uyRe7T5JXWoleq2Hm8O5sOnqenKJytBqZBwZ1YetPF8gtqUSn0TCtfwrfHztHabVYY43rmcia9FPYnC6iAn3p3CaKrw6Kr13n2Ejsrvr28hHJ7dhz4YpoOve10DYqhM1nhHepd5sWnC0oEj4fk4H4iBD2NPDnHL+eR53TSaS/L3q9lmO5go6cFB3B0VwhGpOjwsksKhSTqAB/Kh02QUc2CjryueJidBqZloH+XqHTNqhe6MQHB5Ot+nPaBAVxsUI1IjcgIsf6B3C1CSNypI8wInvoyHkNqh9KbDX46/VY3XaqnQ5CjJYGdGSRuJIBH72gI/totTiwU+d2N5G4Eoksp+LAobgbJa4MGk+ZpxAyqDFyq8vaqMncrEbLzarBuKnW8obRcsHQUTk8jaLldarZ2NNILszJBpWOXM/QkVSGjvs2DB23N42l9RiPvbBAT9JKQoOrCVigG72kg9vBAjGK1nLjrYGj/+T5t4qd3/3ud3zyySfef3fp0gWAnTt3MnDgQDQaDRs3bmTevHn07du3EVTQc2prazl//jwOR724WLVqFU899RTDhw8HBFRwyZIl//Lj9XRa3ZyMaXgsPuKFo6rSetvbimsfAUBWZi5ut/u2L6SSJDF0fFdWvLWFtSsPMOzernc15tNoZF54dSoLJi3h8vl8/vDEJ/z3+w//0+yY8JggFv11CtOeGMIXy7azfd0xTqZnczI9G6NZT7e09vQZ1pEeAzvc1eTjP3EURaE4v4ILp69z4dR1sjNzyTp1vRHcz3Ni4kLp0qctXfq2JblXHJZmwJBNHWuNjf1bM9n+3TFOHrzk9W4ZzXoGjk5h5H09mp3iuN1uDu/NYu1nBzhxsL7INbFLK+57OI1eA9o3+v5QFIWjB7JZvbw+iaXT14uc4AbG6OtXi/n03Z3sVg3AWq2GsZO7c/8j/QkIEib7kqIqPnl3B1s2nEBRBIRwwv29mfZwGhYfA3a7k69XpfP5J/uwqnH4EWNSePiJwQQF+5CfV867b29l/x6x+ggJ9WXe08PpN7ADlRVWXv3L92xW01SBQRaeeHIog4Ykkp1dwPwnPyFLTWclJ7dg0bOjCAryYfE729jwveAnhYb6Cm5Ocgs++Fh4czzTnOcWjqR1bCj//ffvOXRUTIWSEqN5adFozmfn8/BTK6iqrhN05OlppHZvw5/e+sE7uRmY2o7HHuzHspV72HtIrKM6J8awYNZAPvomg72qCbl7UkseuS+Vt1bu5qw6qRk7sBO9O8fy+2U/UlFdh9Gg5ekHBnDmSgH//YGImSfFRzJxaApvfbmH0spajHotT07ux56fLrHxkEor7p2I2azn1S93AdAxNpzUpFgWr9+P0+UmOsSPMb0SWbHtMDaHi/AAH0b27MCq3cexO11EBfnSv1McK/ce966x2kQEs2qv+OWxZ3wMVpeTjcfF12dk53ZkXLxGWY0VX6OePh1i+fFUFgCdYsKpdTrYl30VWYaB7duwM+uSqKsIDcKBmyM5uWgliZ6tW3j9OR2jwsgpr6CyuopAs5Egi5ljuXlIEqRER3JcBQUmhodxvrRYiB5/f0ptHjqyEY1WJrusFJNWS5DZzIWyEnSyTISfD9nl9abkixVqZY+fICJLEkT5+nG1WtCRQ1Qjsk7W4GvQkVdbhUmrRSNLFNfVEGgwUuPyVD9YKLE3NiKLKY6REls1BlmDJCtUO+sIVKsdBD1ZNJWLxJWm2cSVQZZRcOJw1yeuZEAvCxKyr1oAKqmX2RtEy0WPVVOt5fXRcucdouV6VQSJKYtU33tFnSpGnF4xo+BuwNDxdFvVl3dqUFvKVZPyzbBArVc4NYQFalQqsrZpho4UgBT4/r8VFni3R1LuVOD0v/BUVlbi7+9PRUVFI5ZPxt4sfr/oc9olRrH4k8eavG7WmVwWTF9OSJgfq358ttn7cDldTE77M9ZaO+98OY82zdQEeE5VhZUZw/+OtdbOy+9Mp1f/Dnf9+WSfucFLs96npqqO7mnt+N2S6XdsXL+bU5BbxsbV6excf9wLvgMxFenYLZYOnVvStlMMbTvFEB4T+G/dw7qcLooLKrlxtZicCwVcvVDA1ewCcrILqK64VXhqdRriO0bTsVssHbu3JqFLq5/N2XE6XBw7cIFdG09yYFsmNmu94E7q0Zoh47qQNioZcxNeHBAesG3rj/Pd6nTv2kyWJfoO7ciE6X1v8XIpisLB3edZvXwXWZnCd+JJYk2dndao/LUwv4JV7+9iy4YT3oTg4FHJzHh8kJeObK21s2blAb7+7IB3Epk2NJFHnhxKZEygWGnty+K9t7ZyQ42aJ3aKYd6iEbRLiMJuc/L15+ms/mQ/drsTWSMxcUovpj+chtGkZ/OPP/H+e8LTI0kw5p4uPDpnEFqdhk8+2cuar0Wlg8ViYO7cwYwancLBQxd58+3NFKmFumNGpzB3ziAuZBfw6pubuKFSk8eMTObxRwexPyObxe9tp7rGhl6n4dGZaQwb1JG3P9jBDhUQ2K5NOL9ZOIqTZ3N5Z8Uu6mxOfMwGnpkzBF8fI39dupmScmFMfuz+fsS1CuXPy9TLNDJz7+9HgL+Zf6zYTm2dA1+LgUWzBnPmUgFfbRGCrF2rMB6blMo7X+/zxsxnjOmBE4WVm46gKBAfE8LUYV1Ytm4/JarwmTsula3HLpB5RUwW7xuQTGFlDbt+EiJrYHIcBqOOTUeEUElNaIWPxcDm40Kc9EloBTLsPycme0NT4rlWUsG53CIRK++RyJ7zVyiprsVi0DEkKZ4Nx88JURQRjK/ZwLGrQogM6diGg1euU1VnI8hsom1kCBmXxbSqV1wMmfmFVNnsXn9OZp7w2vRuHcOha7lCEIUEUVpnpbTWiq9BT7i/DxdKxDQvOSqCkwX5eECB50qKcSsKsYH+5NdWY3U6Cbf4UOdyUGGzEWA0ImmgtM6Kj16PUa+h2FqLWavFqNdTUleLRafDoNNQZrNi0emQZYkqhw1/vRGb4qDO5VSj4FZciptws483ZRVh9qHQpnp1jGZK7MJIbNBIWF12FfpXh9LAiOxJXFU7BcTP4Xbixu1NXIGCRaulzm2/JXFldam1DYoDxZu48hiFXSi41Wi5FZ0qkiQULKov5+bWcpfi8EbLZRQ0soKEG5PaWu6Jlos1lfo+b7Rc3JZYPdWLIXCqU5vbMXRcKkPH0YCho1GNx5Lqw0EVU6iwQNRVlrte6GhikAI//MVhgc29ft/p/P+6G+uWo+q+271oe1YHpSXVuFzuZtu+NVoNHbu04sj+C5w6euWOYsfX38SYqb1Y8/Fevnx/Nz3T2t+1eIhPjOLld2fym0c+4sjeLF598StefHXqP91/5Tnh0YHMfn40Dz83iuzMXNK3ZpK+LZMrWfmcOnSJU4cu1T/+ADNxHSIJiwokJMLf+ycw1BeDUYfeoENv0KI36tBoZJwOFw67E4f61mZ1UFFaTUVpjfqnmtKiKgpyyyi4VkpRfrmXcXTzkTUysW3DiVeFV9ukGFq3j/inSkndbjdnjuew6/sT7N10iko1oQcQ3SqYIeO7Mnhcl9vG/W/klLD+8wy2rDvq9eOYfQyMmtSDcQ/0voXO7XK52b/9DF9+sJuLqrnZYNQxenIPJs/s20jklJfV8OXHe9nw9WEcdjGJ7JXWjllPDiGurZgmupxuNq8/zmfLd3lTUglJMcxZOJxEtX7icnYB7761leOqhyYoxIdH5w1h8IgkUeiZcZElb2zihsrtSe7SkvmLRtI6LoxLFwt5641NZKr1FnFtwlj47CgSO0Zz+PAl3npzs7fqYeDABOY9KXg6f/7rBnbsFP6RqKgAnn1mFO3bRfDuh7tYv1FMKcJCfXnu6ZHEtQ7llVe/95Z3dmgXwa8WjSE3v4zZCz+htKwGjSwxfUoqo4d24rV3t3Lw+BUAuia15NnHh7Jm4zG+3aQak2OCeWneCLaln+ed1XvFZdFBPD9nGGu3nmBrutqJ1SGGhyf25q3Vu7l4TQjUqSO6EBXmz6/f+V4wd/wtPP1Af77cfoJTF8UEacLAJCxmA698tlVUR0QHM6F/MsvWp1NtFWurR8b04svdJ8gtqUSrkZk5rBu7Tl0iO68EWZKYNrAz6Vk5XMy6ikaWmJKWwq4zl7ihrrkmpSbx/dGzVFpt+JkMDOvclrVHMnG5FeLCAgkP9OO7Y2Ka1D+hNecLirlQVIJRq6F/Qhxbzl5AUaBDZCg2l4uMy9fQyBJ941t5+Tntw0KoaODPSYgOIyNHfJ27xkRxMj8fp9tNiwA/rG4nF0pKMOt0RAX6cbJAfO82AgWGhnJWLfKMCwwkp6ICp+Imxs+Pgrpq7A5hSi53WCm22gg1m6l0CCJyqNlMlbOOMpudMJOFUnutMCKrdQ/KzUZkn3qDcpjZTKGtCq0sY9JqKbHX4qvTYXPbsbrcBBvMlKmJq2C140ony+g1UO204q8zUa12YDVMXEm3TVwZ1CmOgq+auPLEzQVFWYPNbcWo0eFUbN4UVsPWcgkF3U2t5TpZiKU7R8sl3NhuipY7vWIIXBj/JYaORo2eS146cj0sUKsydDywwAQVFhja7M/J//T5P7HTxLndsCtQbTt3u9yUl9Y0WincfJK7x3Jk/wWOH7zIvQ+m3vF+J0zvw3er0jlzIofj6Rfp2if+rh9zx66x/HbxQ/xh3qfs3XSK0qIqnv/blJ/N4GnqSJLkneDMeGYEN64WczLjItmnr3Ph9HUun8+nqryWkxkX73xj/8LR6jSERwfSMj6clm3DaRUfTqu24cTEhf5Lbesup4vTR6+wf8tpDmw7Q0mDgtDAEB/6j0pmwOgUOqS0aFaAulxujh24wIYvDnJ4b5b3eyg6NoRx03oz7N6ut0yA7HY1br5iLzdyxOjeZNZzz9ReTJzep9EkqrK8ljWf7ee7Lw9RZxWrpuRuscx6cggdU8SEyFMB8dE727mmTpIiowN5ZMFQ+g1OQJIkystq+PT93fzw3TFv1HzStN5Mm9EXs8VAXm4Z7y7eyoG9YrIQFOzD3AVDGTS0I3VWB+8t3c43aw7hdikYTTpmPtyfCZO6U1lp5U//vY6dO8WLbViYH089PZzevePZui2Tpe9up7LSiixL3De5JzOn9+Pk6WvMmvshheqUZ9yYzsx5eAD7Dmbz8hMfUV1tQ6fV8PBDfRkzMpmlH+1ik1oN0apFML9eOIrcnV+Q6AAAIABJREFU/ApmP/uZd5U156E0OnWI5sW/rOWa6vmZPLoLw9IS+PN7W7wk5InDU+jXow0vv/MDBSWCrDx7Yiq+vkae/8c6bA4XgX5mFk0fyOaM83yxVUx4+qS0ZkD3eP762Q6qrTZ8TAbm39ePHw6e5WS2mKCMT+uETqfxrq06tY6gj7q2cjhdRAX7Ma5PR1ZsPYLVLujH4/t2YuWu4+LfvmZG9ejA5/tO4nCJBFXPdi290MDEmDAC/cysOSRWl/0TWnO5uIwDF66i1ciMSG7H5swLOFwuYgL9CA/09fpz+rdrzbFruVTZ7ARZTLQKCfDyc3q3bsHx6zeEByjAF71Oy9HrN9DIEinRkRzNFZ9fUlQY54uLsblcRPv7YnO7vKInzNfHCwpsG1oPCuwQEsK5kmLhzwkKIruilJsby1v6+ZNTLXw4Lf38uXYHInKUjx956t/DLRYKrFXoZAmLXq1+0OlxuB1UO+sINpi9kxtPx5UM+Bp0VDhq8dHqsCl2bG73TR1XjRNXKIq3zFMnS2hlT+LKiNVlRUbBqJXUMk+P+BExcrvbJtrNlTo0agqrudbypqPlos7BrHZbeaLlDWPnt0bLFW+03CADODDeFC0XxaJ3Yuho1XWVRl1lCVigRoUFSlAPC9SnIgW8gyT/a8T6X/r83xqrwRjs6MGL/Hr+SlrHh/Hu5080e/2Z494kP7eMv783y9sj1NS5lJXPvPveQafX8sWOF+/KPPzu3zaybuUBWrQOZek38xsZVu/mHNx5lr89/yXWGhsWXyNPvTyB/qOSf9Zt/Nxjtzm5eiGfnOwCivMrKMqroDi/nKK8CipKa7DbHOJPnbORkJQkCZ1eg06vxWDS4RdowT/IB/9AM/5BPgQE+xAeE0h4dBDhMYEEhfk1O0n7ucdW5+BEejbp28+QvuNsI4+P2cdAn6EdGTS2Mym94m47ISsvqWbz2qP8sOYwBeoqCKBHv3aMf6gPXVPb3OLXqq2x8eOaI3z72X5K1Bd6Hz8T4+/vxfgHUvELqPdDVVVa+XblAdZ+nuH107RLjGLmE0PolloPJcw8eY0P3t7KGTWS7udv4v7Z/Rk7uTt6vRa73cn6NYdZ9fFeatRpU79BHXhs/lAiowKxWu188dl+vv48A4fdhUYjc+99PZg+uz9ms569e86zbPFW7/qpX//2zFswjJAQXzZuPMH7y3dSU2NDliUmTOjOrIfTqKiw8sZbmzmiem3i4kJ5ftFoIqMCeOe9HWzeJl6sIyP8eX7hKFq2COK1xVtIPyREc/u2Efxq0WiKSqv42+LNFBVXia6re3sweVw33vl4Fzv2i4lM+zbhvDh/BHsOXuDTNRm43AohQT689MQILl4v5r3P9+F0uQnyN/PinGFkXsrn0+8OoigQHR7Acw8P4ZvtJ9l7TNx376RWjB+SzOuf7aSorBqdVsPcSX24VlzO2l3CBJzUJpJ7+ndkyTf7qKipw2LSM3dcHzYePMu5HBFMmDoohfzyau/aqn9Sa3wsRq+fp3t8DKHBPmw8IlZy3eKjCfQ1sfUn4S/q26EVdU4nRy6qFRZd2nEmt5CcEmFiHtOlA5tPZWF1OAn3s5DQIpyd58Q0rEdcDLkVleSWV6LTyKS1i2W7GitvHxFCtcPO9fJKdLJMj0b8nAiulpdRUWcj0GQi2NfMhWJhHu5yU5HnxbJSbC4XUb6+WN1OSq1iveVrMpBbVSkaywP8uVxeBijEBQdxsVwInbigIC41YURuTEQWlRCeyU1ebZVqRDZTXFeDXiNj0mmpctjw1euxKw4cbidBDSY3DasfAg1i5WXUaJBkFw63k0CDyevVCdCZqHJa0atCxqE4vR1XnsSV1VWHWavzGow90XK9LCNJThTcDco8QZbECsuTuNLLngoHBYtGg0OxNW4tlyXciqM+Wi6BRhIrL5MsN0pcaQGt7FSj5TIKDm+0XKuycOqnNi6VodMgWi5JyJJDjZU3ZOi47oKhI9g5wgSt/ow0jkPy/zOS9M/5Ru/m/LNrrP8TOw2erLOnrrNw9oeERwXw6XfNF3j+/pnVZOw5z7wXRjN+aq9mP05RFOZOXEzOpSIW/XECw8d3veNjq6608ug9b1BeWsPURwfw8NPDf94nB+RdK+Vvz33BefWFb/jE7jz+67FNcl7+k0dRFJWO7Bb9V1r5P8pbKCuu4tCuc2TsPMvxA9mNEnV+AWZ6D06k7/COdE6Nv61JXVEUfjpymR++Psz+rZk4nSJV5eNnYti4Loyd1ovoVrdiAEqKqvhudTobvz5Mjcq2CQnzY+KMvoya1K1RCrC6ysq6zzP4dlWGt3y2TfsIZjw+mF5p7bzP25WLhaxYtoP03eJF32DQMuGB3kyZ0ddbAbF/9zk+WLLd68tp0zacJxaOILlrKxRFYff2Myx/ZxtFKuena4/WzFs4glaxIVy/XsriNzdzVOXpREQGsGDhcHr1jufSpULe+McmzpwRL8Tt2kXwzKJRtGkTxjffHmbFp/uoq3Og02mY8VBfpk7pxf6MbN58ZytlZTVIEkwc341HZqaxa28W77y/g+qa+mnO2FEpLP90Dxs2C/NzdGQAv356FFW1Nv62dIt3lTVzSioDUtvyl3c2czZbrFKG9O3A9Ik9efOTXRzLFP8P0rq34aEJPXljxQ7OXhIemrEDO9Gvexte/Xg7xeUCJPj4lL5UVNfx6UbRsdUqMpC5k/qyfH06l1S/zoMjulPndPD1TtE9lRgbzsjeCby7Pp2aOjv+FqOatjrBDXVtNWNYd3afvkT2jWIkCab178zRK7mcuy78N5P7JnH4Ui6XC0QJ6KTUJHaevkhhZQ0mvY57uifw3bEz1DmchPv7kBIbyeZTKg06Nopqh53z+cXIksSwpHh2ZV2mziFSVBGBvhzLUeGLbVtx9NoNrA4HYT4WQnzNnMkvUv05LTh07boAHwYHUmG3UVxTi0WvJzrQl/PFxShA5+gITqjE+vahIWSXleJ0u4nx96PcbqXKbifQJECBxbW1mHVa/ExG8mqq0Gs0hFrM5NaIKocwi6/376EWC/m1VehkmQCTkSJrjSAiG3SU2ayYtVpkWaLGaSdAb8CqiptQk7lByqretxNiNFFmr0UrSxg0GqwuO/56g1e8eKofJMBHq6PWZcOi1WFXhUyjxJUsKh08XhxP4srmtjVKXHkuM8kaXGqM3KTR4lBsmDRa3IqtgffGcUtrueJtLbfd1FoOCi6v0PGkqcSaSggUo5eh0zBaXl/0CS6v0DHIMhJ2tEhqp5WiMnQUb3nnrQwdndeQLOogGsACLY8h+TyLJP0yv5A2d/5P7PyM09yTdeViIXOnLcPP38TX215o9vofLdnGlx/vZfSk7jz963tue1+r3tvJZ0t30DU1nj+/O/OuHt++bZn86ZnVyLLE3z9+lE5dY+/qeg2P0+Fi9dLtfPHeLhRFIaplMI++MJpegzr8xwnJ/1PHYXdy9kQOxw5c4Nj+C2Rn3mg0WQqN9Kf3oAT6DOtEUvfYO3qcSooq2fbdcTavPcoNNWIN0CG5BaPv68mAkUlNxvOvXSnim0/2s31Dfdw8ulUw981KY/DYxr1Y1VVW1q7OYO3qepET2yaM6Y8Pos/A+q9dQV45ny3fzfYfTuJ2K8iyxPB7OjN9zkBCVI9P1tkbvPv2Vk6ria6gYB9mzhnI8DEpaDQy2Vn5LH1zM6dOCjEQEenP408Np09aO2w2J6tX7ufrLw4Kno5Ow9T7e3P/Q31wuxU+/WQfa9YIA7LJpGf2I/0ZP74bFy8V8o83NpGlFmx2TmnJMwtHYjbpeWvpVvbsF+uxVi2DeWHhKEJCfHlt8WZv0iqhXSQvPjOKkrJq/rZ4MwVFYqU4aWxXHpzckw9W72fjdjERahUTxK8XjOJMdh7LPtuDze7Ex2Jg0aNDcAOvf7idGqsdk0HH07MG4lIU3l4pDMy+FiPPzR7M2cuFfP6jgPPFRgWx4P7+fLg+w8vOGZuWSHyrMN5Zs9dbCzFvUl++2HGcrGtiRTNtSBdq7A7W7xcrts7xUfRIbMlHmw7hdLmJCfHnnj6JrNh6hFqbgyBfM5PSkli56zg1NjuBFhPjenfkiwMnqLM7CfUzMygpnjUZpwRkMCyQ9jGhbDopnrturaOxOp1k5grBNjKlPfsvXqHSaiPAZKRz6yh2qhOcLi2jKKiuJre8Er1Gpleblt5YecfIMAqqqimuqcWs09E+MpRj6qqqa4tITuYV4HS7ifb3w644KawRZZcxwQFe0ZMU4YEGKnQIDSWrTJiSW/kHkF9Tjc3lJNzHQrXTTrXDTpDJiAs3FXYb/gYDigQVdjGVkWSoctjwMxhw46baYSfAYMTqdmBzOQkxmSm3W3EprsZGZIsPhR5ooEm0nWslCbNOS43T5q1+cCluVdwIURRkNFLpsKKXRYWBU3ESoDdS4xJTHl+dgVpXHUaNRjUd1yeuNBLoJAmn4myQuFIwyCKa7qNOcTxlni7F6S3z1KB4icae1nIxTfH0XmlwKfabWstF7NygTnbqo+X1aSoRLXfUR8slkCVno6JPT/1DfbTc01buWWUp6CRUw7HGK3ikBtHyWxk6EpLvb5AsM5r92flLnv8TOz/jNPdkFRVU8tDYN9BoZL4/8F/IctNThx0//sTf/usb2neM5u1P59z2vm7klDD7njeRZYmPvn+mUUv17c5rv1nDtvXHCQzx4Y2Vj9/19W4+Px26xKsvfuVNU8W2i2DqnAGkjUj6lw3M/287Lpeby+fzOXX4EicyLvLToUveZnHPadspmt6DEug9OJHW7SPuOFlyOlwc3nueLeuOcXDPeW/yyWwxMGBUMmOm9CQ+IeqW6ymKwk+HL/PtygMc2lPv4UlIacGUJuLmVZVW1q5OZ+3qDC/Ju1WbMB58dABpQxO9H1teVsMXH+/l+zVHvMKp76AEZj0xiJathRmwIK+cFct3sV3l5RgMWiY/kMqUh/pgMuspK6vh4/d2sul7EUU3GLRMfagPUx5MRa/XcmBfFkuXbKNA/Z7p0TOO+U8PJyo6kP37L/DOkq3edvK0tPY8OX8oPj5GPv5kL9+uFbUTPj4GHp8zmJEjkti09TRL399BdbUNjUbmwam9eWBKbzZvP82yj3ZhtTrQ6zTMnt6PMSPFNGf9JjExiQz356WnRuJyK/xlySYKPauscd0ZNzyZ15Zv4+gpIeZ6pLTiyZkDWfFNBjsyhDDo2DaShbMG8vG6g+w/JgRAt44tmTWhF2+t2s2FHCFYJg5JoX3rMN5cvYvaOgc+Kjtn30+X2KWutvokxZKa0pp3vt2H1eYg0NfE3PF9+GrXSS7eKPF2W10pLGPvaSHeBnVug9mk5/uDYm3VNT6a6DB/vjsojNrJsZFEhfjxoxob794mBoNey75zVwBR85BXWcW5G2L6M6ZLB/ZduOqNlfdtECvvEBWKJEucyRMrtCEJcey7mEOd00mEnw/BfhZO5wmB1K9NKzKuXBPTmAB/NFqJK2XlaGWJlJhIjlwXoqdTZBhZJcKfE+nri0tWKKiuxqTVEunvx8UysZJKCA/lTLF4LtsHh3C+VPhz4gKDuFJVhltRaOnvT25NJS7FTaSPL4V1NTjdbiJ9fCiuq8GpuIi0+FJYV41LcRPRwHzc0J/TkIgcZrZQbKsW4kavo8phw0erw6k4cShinVV+U/WDRpIw6zRYXTZ8tAasLjGRCVKj5zJg0GpUL079FMdfp8PqrvP2WXGHxJVWkkAVKR4ScsMyT6NGtKSbVJ+NhBudLKHgahAtl73TG9FI7sQke9ZUIlrecGqjV2PqYmpja5TGEgwdlxdEqG+4ysLZgKHjSVop6irLfRuGjh4p4DUk48hbfgb+u87/iZ2fcZp7spxOF2P7/AlFgS82Pdts83lBXjkzxr6BrJH5ZudLzUaPPedXc1dwPOMi4x/ozRMvjrmrx1hbY+PZGcu5nJVPy7hQXv90brOgujud6koraz7cw/pV6VjVF9LIlkFMnt2f/qOSvTUD/187druTi2dukHnsCqcOXybz6BXveshz/IMsdOkTT7e+7ejaJ/6uqh8ALp67wdbvjrPzh5NUlNb7eRI7t2TExG70H5HUJHzSbneye9Mp1q48wKUGtRG9BrRnysNpdOzSqtHHl5fV8O3KA2z4+rBX5MS2CePBxwbSb0iCV+TUVNexZmV6I+9OSvdYZj85hA6dYgCorqrj80/2se7rQzjsQggNGZnEw48PIizcH4fDxbo1h1n58V7vfQ0cmshj84YQFu7PtZwS3lm8lSNqyi40zI95C4bSL609BQUVLFm8lfR04SWJjAxgwYJh9Oodz4H0C7y9eCuF6hRm0MAE5j0+BKvNwetvbeK4Sjtu1zaCF54ZhdGo49W3N3FCXbN2SojmxWdGUlhcxd+XbCZfFVITRndhxtTerPgqnXWq+ImOCOCl+SPIK6rkzQ+3U1Nrx6DXMm/GAKIjAvjzu5spLqtBo5GZPTmVuFYh/O39rZRV1grfzZS+6A06lny+G5vDRYCviWemD2L/yUtsThe+mZR20UweJtg5hapf57F7U8nOLWbzIfEx3dvHkJrUmvc2pIuJj5+ZWaN68Nn2oxSo15kxrBu7frpIdp4QQlP7p3D8ah5nrwkxMqlPEj9dyyNLXWtN7N2J9KwccksFRPDeXon8+FMWVVYb/iYDaYlxfH/iLIoC7SJD8DEbOHpFrBAHJcRx/PoNymrr8DXo6RwbxZ4LVwBIjokgr7qKwqoaTDotyTERHLwiEladYyK5UFpCtc1OkNlIkI+lSX9Oh7AQLleUU+cUkxqHolBiFROhEF8zVysEAycuMIjs/6e9M49r6tr2+C9zAEOYCgFBiANQBRyigrSII2qd2vqcaqm1Squ3jtfe1g7vYr36av18al+ftrW2XFq1r2qdrq0+FXoFrSCiIlocqoIoICqKjEJIst4fJ0QDSSAgEeL+fj75fMg+a5+sdVb2YWWftfYuvYeGO5abWyjw0fwcP9nDpOTOMjkK9X/Xr4j8MLip0icii1BeVwMnoRh10KBOpzFKRG649UOFpgYOQiEIGmhIa8jPAQguYjGqtDXcIyJw5eYuIm6Whw+Cg5CPOqozqrhyEgmh1tUa7XHlJBRAreNycLR4uO+VhtRGFVdiPh86fbKxlmq46ib9tg4OAm4tHQd9+Ti3UWd9aTm35UP9ruXGpeVczo7UUFoO/Uafj5aWc3k8hkdZ+tJyLv+GW2unvtJKpN+0s377h8Zr6MjBc/0KPPGARvfBtoQFO1Zg6WJNH/MZ7pVUYt0PcQjs2fgXez31Scor/+dVDHiuh8XPO51+BR/M/QESqQibD75jlIBqiTvFZVgyYwNKbpcjVBWAVRtnWcwlaYqKsgf49X/TsWfTMUNJtVAkQP+oQES/EIbwIc8+8bwec+h0OhTfuIfLOUW4mH0dF7Ov48r5Imj0sxv1ODhJ0KufP8IGdkXfyB7oGqxo/srIxWVIPXAWv/1yBnl/PgxUXN07YejY3hj1cn/4d/M02fdeSQX278jEvu2ZKNWXe0ukIoyc0BcTZ0TAL8C4BPPunXLs2JyGfTtOoraWyx1SdvfCjLhoPDfsYZBT80CNf20/ge2bjqGynAvkugd74423h6NfeFfDPle/7jqJLf88aljssrcqAHHzRyAw2BtEhLSjf2Ljl8mGUvIeQd74y6KRCOndBQ+q1diy+Rh2bs+ARqODSCTA5KnhmP5qJAQCPn7enoEtW9KgVmsgFPIxZWoEZsyIRGVlDdZ/lYwjR7lZCYVCjkULYqBSKfHzrkwkbv4darUGEokQs2Kfx0sTVNjz62kkbP4dtbUaSCUixM2MwshhvbjcnENcbo63lxzvLRgNHp+HT9YfwE39Lucvj+mDqRP7Y11iCo5mckFXr0BvvPPmSPzrt7PYdYgLiPw7u+G9N0fi4LEL2PMbd86ufh5Y8tpQ/Ph/J5GefQ0Al4T88sg+WLvlMG6WlEPA52HWxHDUarXYtJ/bvsJf4YpZ48OxcW86CkvKuByhMQNx7VYpfjutX4G4ZxcEBXhic9IpaHUEf09XvBAejH8mZaJGrYG7zBGTBofhx9QsVDyohYuTFC9FhmDrsWxU19bBxUmKF1TB2J52DnVabjVkVQ9f7D3FzQb16uwFRwcRTuRyAcrQXl1x/uZtFJdVQiIUIPrZrki6cIVbW+cZNwhFAlzQ5+AMCVLiWN51rjLLxRlSsQhX7nDBV7jSD+n5XMDZ4xl3lFRX494Dbs0bH6P8HG+cKeZK7Ht4uONa2X2otVp4yzqhWluH+7U1cBaL4SgWo7iqEmKBAJ4yJ9yoKNMvFChHfjm3FEEXuQvy9YFOF7kcNyrrgxtnFFaVg8cDPB2dcOtBJYR8HlwkUtytreZWRBYJUFlXC2exGLVNJCLXz+iIBTwI+YBaV8ftgaXP1amvuBLwAAchH7U6NTfLY5jFEaNaq5+J0ScdP9zjiiARco+wHq24chDwoaE6Q8UVH6TfaVxjqLgS6BcN5IHgqC8tF/O5rSQe7kyuaVBarjEcI2ga7Vr+6Do7XGm5GhIeN7PDlZZr9UnKnAxXWq6B2LCGjlA/s8OHgEfNW0OH7wOe23fgCZtfMfy4YMGOFZSVlcHFxQU3btxodLHenfcDLl8ownsrXkbEYPPbT6xf/St+238WL04Px8x5wy1+HhHhnde/Rd7l23ht/nC8+ErTZej1XLtyCx++lYgHVWpMjYvG1NnRze5rjgdVtUjecxrJe4y3OxBLRVj57Sx0M/FY5knyry1p2L4xpdEjKYBb3ycozA/P9u2CEFUAlIGKFj2e27/9BBI+P2h43CQUCTAgKhBDx/ZG3/BuFs/55x8F+PAvm6HVJyq7PyPD6En9ETOxr8mVpotu3MOi1781BGrdgxSYPPN59I/s3mgl5UWzvjOUkfv6u+OVN6IRMTjQ6PHb3/+2DWdPXwMA+AW4Y2bcUKj0gRAA7NiWgc3fcZtOurg64dU3ojA8hltPh4iwdNEWXLnMPd5Q9Vdiztyh6NyZW5hw5T/2IEO/6nNIqC/mzRuBLl3cUV1di9lv/hMVFVw5+UsTVZg2NQIO+tyc+kqrPmF+WDB3BLwVLvg64TD27s82tC98azgUXnIs+Wg7LuoTi8fHhGHWK88hN/8Olq7YCQDw9OiEJW+OQNizvpj9t024ebscQiEfsS+FY/I4Ff7+37/ixFlu0b0XR4Qhbmok4tfvR+Yf3IzSf8T0wWsTwzH3H9tQeIfbQypu0iD0CfLFmyu3gYig8HDGh7NHIinzEvakcrq/EPksJg3rg7g126DV6uDlJsN/zozBxl/TkX31JgR8Pt4cH44HdRokHuT2sopRBUIV6Iv/2vZv7nr26IxxA3sifmsSACDU3wvjw3th1Q7ueB+lNwb3VOKL/WkAgME9lfBy7YTt+k09p0SEIqfwFv4ovA2JUIC5Iwbiy3+fQJ1Wiy5ucgwOVmJzBleSPj4sCGcKi3G9tAzOEjEm9umJTZncsSE9lPjzTgmKyirg4iDB0KCu2HVOv8Jzz0Ac+PMKtDodurm7AULgSsldOIqEeE7pj0NXOf+P7N4Nh3K5v8M7d8bJW0XQ6HQIdHPH7QeVuF9TCy8nJ/BFPBRVVEAukcDdyRG5ZffgJBLDRybDn/fvwkEoQmfnTrhadg8OAiG8OnXCtYpSOAlEcJKKcftBJVxFDtDxdShX18DLsRNK66qh0WnhL5PjRjUXsHd1dkduJTc2uspckV91F0I+H3KxFKXqariKHVCprQKB4OvoguJa7pGbl0SGktoKOArE0KAGOhC8pDKUqLnAy1XMLSDoLHJAjY774eIuluF+XTmkAi7QAAA3USeUa8q5GRCeGgSCi8gRlZoKfR4QJycXOeCBthISvkjfl9CJL9Svr+OAOuI+Q8zXcMcEEmh01RDzRdDRA30ukBaADlKeFFpUQwIxAC6xWsjj+jnwefqZHTGIqiDkicDTL0go0m8UKga3sKCUJwJQCxFPCh4eQMATQ4A68MGHSH9r4fbIAsQ8ETfDY1hDJxA8l3XgCUz/8GtrysvL4efnh/v370Mulze731MZ7BQUFMDPz+9Jq8FgMBgMBqMF3LhxA76+vs2WfyqDHZ1Oh6KiIshkssde+lwfdZqaNbIHmH0dH3u3kdnX8bF3G+3dPqDtbCQiVFRUwMfHx6rK4qdyBWU+n29VRNgSnJ2d7fZLDDD77AF7t5HZ1/Gxdxvt3T6gbWy05vFVPU/HgisMBoPBYDCeWliww2AwGAwGw64RLF++fPmTVsLeEAgEGDJkCIRC+3xKyOzr+Ni7jcy+jo+922jv9gHty8anMkGZwWAwGAzG0wN7jMVgMBgMBsOuYcEOg8FgMBgMu4YFOwwGg8FgMOwaFuwwGAwGg8Gwa1iww2AwGAwGw65hwY6VrFq1CpGRkXB0dISLi4tJmevXr2P8+PFwcnKCh4cHFi5cCLW68SaWj1JaWorY2FjI5XLI5XLExsbi/v37bWGCVaSkpIDH45l8ZWZmmu03ZMiQRvLTpk2zoebNJyAgoJGuy5Yts9iHiLB8+XL4+PjAwcEBQ4YMQU5Ojo00bj7Xrl3D7NmzoVQq4eDggG7duiE+Pr7J72N7999XX30FpVIJqVQKlUqFo0ePWpTfuXMnevbsCYlEgp49e2L37t020tQ6PvnkEwwYMAAymQyenp548cUXcenSJYt9vv/+e5Pjs6amxkZaW8fy5csb6apQKCz2SU1NhUqlglQqRdeuXbFhwwYbaWs9pu4nPB4Pb7/9tkn5juC/I0eOYPz48fDx8QGPx8OePXuMjrf0fmjtOG4NLNixErVajcmTJ2PevHkmj2u1WowdOxZVVVX4/fffsXXrVuzcuRNLly61eN5XXnkFZ86cwYEDB3DgwAGcOXMGsbGxbWGCVURGRuLmzZtGrzlz5iAgIAD9+/e32DcuLs6o3zeLR4rkAAAKkklEQVTffGMjra1nxYoVRrp+9NFHFuXXrFmDtWvXYv369cjMzIRCocDIkSNRUVFhI42bx8WLF6HT6fDNN98gJycHn3/+OTZs2IAPPvigyb7t1X/btm3D4sWL8eGHHyIrKwtRUVEYM2YMrl+/blI+PT0dU6dORWxsLLKzsxEbG4spU6YgIyPDxpo3TWpqKt5++20cP34cSUlJ0Gg0iImJQVVVlcV+zs7OjcapVCq1kdbW06tXLyNdz507Z1Y2Ly8PL7zwAqKiopCVlYUPPvgACxcuxM6dO22ocfPJzMw0si0pidvxfvLkyWb7tHf/VVVVoXfv3li/fr3J4y25H1o7jlsNMVpEYmIiyeXyRu379+8nPp9PhYWFhraffvqJJBIJlZWVmTzX+fPnCQAdP37c0Jaenk4A6OLFi49f+VagVqvJ09OTVqxYYVEuOjqaFi1aZCOtWoe/vz99/vnnzZbX6XSkUCho9erVhraamhqSy+W0YcOGtlDxsbJmzRpSKpUWZdqz/wYOHEhz5841agsODqZly5aZlJ8yZQqNHj3aqG3UqFE0bdq0NtPxcXH79m0CQKmpqWZlzN2L2ivx8fHUu3fvZsu/++67FBwcbNT21ltvUURExONWrU1YtGgRdevWjXQ6ncnjHc1/AGj37t2G9y29H1o7jlsLm9l5zKSnpyMkJAQ+Pj6GtlGjRqG2thanTp0y20culyM8PNzQFhERAblcjrS0tDbX2Rr27t2LkpISvP76603K/vjjj/Dw8ECvXr3wzjvvtLtZj0f59NNP4e7ujj59+mDVqlUWH/Pk5eWhuLgYMTExhjaJRILo6Oh25y9TlJWVwc3NrUm59ug/tVqNU6dOGV17AIiJiTF77dPT0xvJjxo1qsP4CkCT/qqsrIS/vz98fX0xbtw4ZGVl2UK9FnP58mX4+PhAqVRi2rRpyM3NNStrzn8nT55EXV1dW6vaKtRqNbZs2YI33ngDPB7PrFxH89+jtOR+2JJx3Fqe/BrOdkZxcTG8vLyM2lxdXSEWi1FcXGy2j6enZ6N2T09Ps32eFAkJCRg1ahT8/Pwsys2YMQNKpRIKhQJ//PEH3n//fWRnZxumdNsTixYtQr9+/eDq6ooTJ07g/fffR15eHr777juT8vU+aehnLy8v5Ofnt7m+reHq1atYt24dPvvsM4ty7dV/JSUl0Gq1Jq+9pfFljXx7gYjw17/+Fc8//zxCQkLMygUHB+P7779HaGgoysvL8cUXX+C5555DdnY2evToYUONm0d4eDg2bdqEwMBA3Lp1CytXrkRkZCRycnLg7u7eSN6c/zQaDUpKSuDt7W0r1a1mz549uH//vsUfhx3Nfw1pyf2wJeO4tbCZHZhOmGv4OnnyZLPPZyqCJyKLkX1L+rSGlthcUFCAgwcPYvbs2U2ePy4uDiNGjEBISAimTZuGHTt2IDk5GadPn24TexpijX1LlixBdHQ0wsLCMGfOHGzYsAEJCQm4e/euxc9o6Ju29FdDWuK/oqIijB49GpMnT8acOXMsnv9J+68prL32T9JXLWX+/Pk4e/YsfvrpJ4tyERERePXVV9G7d29ERUVh+/btCAwMxLp162ykqXWMGTMGkyZNQmhoKEaMGIF9+/YBAH744QezfUz5z1R7eyMhIQFjxowxmulvSEfznzlaMsZsOS7ZzA64m0pTlSYBAQHNOpdCoWiU+FhaWoq6urpGUeyjfW7dutWo/c6dO2b7tJaW2JyYmAh3d3dMmDDB6s/r168fRCIRLl++jH79+lnd31pa49OIiAgAwJUrV0z+0qyvHCkuLjb6VXn79u0281dDrLWvqKgIQ4cOxaBBg7Bx40arP8/W/jOHh4cHBAJBo19/lq69QqGwSr49sGDBAuzduxdHjhyBr6+vVX35fD4GDBiAy5cvt5F2jxcnJyeEhoaa1dec/4RCocnx2V7Iz89HcnIydu3aZVW/jua/ltwPWzKOWwsLdsBdeA8Pj8dyrkGDBmHVqlW4efOmwfGHDh2CRCKBSqUy26esrAwnTpzAwIEDAQAZGRkoKytDZGTkY9GrIdbaTERITEzEa6+9BpFIZPXn5eTkoK6uzmZTzq3xaf3zcnO61j/eSUpKQt++fQFwz6BTU1Px6aeftkxhK7HGvsLCQgwdOhQqlQqJiYng862f0LW1/8whFouhUqmQlJSEl156ydCelJSEiRMnmuwzaNAgJCUlYcmSJYa2Q4cOtdnYag1EhAULFmD37t1ISUmBUqls0TnOnDmD0NDQNtDw8VNbW4sLFy4gKirK5PFBgwbhl19+MWo7dOgQ+vfv36J7ka1ITEyEp6cnxo4da1W/jua/ltwPWzKOW02bpD3bMfn5+ZSVlUUff/wxderUibKysigrK4sqKiqIiEij0VBISAgNHz6cTp8+TcnJyeTr60vz5883nCMjI4OCgoKooKDA0DZ69GgKCwuj9PR0Sk9Pp9DQUBo3bpzN7TNHcnIyAaDz5883OlZQUEBBQUGUkZFBRERXrlyhjz/+mDIzMykvL4/27dtHwcHB1LdvX9JoNLZW3SJpaWm0du1aysrKotzcXNq2bRv5+PjQhAkTjOSCgoJo165dhverV68muVxOu3btonPnztH06dPJ29ubysvLbW2CRQoLC6l79+40bNgwKigooJs3bxpe9XQ0/23dupVEIhElJCTQ+fPnafHixeTk5ETXrl0jIqLY2Fijio5jx46RQCCg1atX04ULF2j16tUkFAqNqh/bC/PmzSO5XE4pKSlGvqqurjbINLRv+fLldODAAbp69SplZWXRrFmzSCgUGvzZ3li6dCmlpKRQbm4uHT9+nMaNG0cymczgv2XLllFsbKxBPjc3lxwdHWnJkiV0/vx5SkhIIJFIRDt27HhSJjSJVqulLl260HvvvdfoWEf0X0VFheF/HQDDPTM/P5+Imnc/HDZsGK1bt87wvqlx/LhhwY6VzJw5kwA0eh0+fNggk5+fT2PHjiUHBwdyc3Oj+fPnU01NjeH44cOHCQDl5eUZ2u7evUszZswgmUxGMpmMZsyYQaWlpTa0zDLTp0+nyMhIk8fy8vKMrsH169dp8ODB5ObmRmKxmLp160YLFy6ku3fv2lDj5nHq1CkKDw8nuVxOUqmUgoKCKD4+nqqqqozkAFBiYqLhvU6no/j4eFIoFCSRSGjw4MF07tw5G2vfNImJiSa/r4/+zumI/vvyyy/J39+fxGIx9evXz6g0Ozo6mmbOnGkk//PPP1NQUBCJRCIKDg6mnTt32ljj5mHOV49+9xrat3jxYurSpQuJxWJ65plnKCYmhtLS0myvfDOZOnUqeXt7k0gkIh8fH3r55ZcpJyfHcHzmzJkUHR1t1CclJYX69u1LYrGYAgIC6Ouvv7ax1tZx8OBBAkCXLl1qdKwj+q/+f1bDV70dzbkf+vv7U3x8vFGbpXH8uOER6TO9GAwGg8FgMOwQVo3FYDAYDAbDrmHBDoPBYDAYDLuGBTsMBoPBYDDsGhbsMBgMBoPBsGtYsMNgMBgMBsOuYcEOg8FgMBgMu4YFOwwGg8FgMOwaFuwwGAwGg8Gwa1iww2AwGAwGw65hwQ6DwWAwGAy7hgU7DAaDwWAw7Jr/B+njUfleJaYsAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,u'convergence of 2x2 conjugate-gradient')" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "θ = 0.9 # chosen to make a nice-looking plot\n", - "Q = [cos(θ) sin(θ); -sin(θ) cos(θ)] # 2x2 rotation by θ\n", - "A = Q * diagm([10,1]) * Q' # a 2x2 matrix with eigenvalues 10,1\n", - "b = A * [1,1] # right-hand side for solution (1,1)\n", - "x1 = linspace(-11,11,100)\n", - "contour(x1', x1, [dot([x1,x2], A*[x1,x2]) - 2*(x1*b[1]+x2*b[2]) for x1 in x1, x2 in x1], levels=linspace(1,2000,100))\n", - "plot(1,1, \"r*\")\n", - "x1s = Float64[]\n", - "x2s = Float64[]\n", - "for i = 0:2\n", - " x, = CG(A, b, [-10.,-10.], maxiters=i)\n", - " push!(x1s, x[1])\n", - " push!(x2s, x[2])\n", - "end\n", - "plot(x2s, x1s, \"k.-\")\n", - "\n", - "title(\"convergence of 2x2 conjugate-gradient\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## You don't have to write your own iterative solvers\n", - "\n", - "There are several packages out there with iterative solvers that you can use, e.g. the [IterativeSolvers](https://github.com/JuliaMath/IterativeSolvers.jl) package:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: using IterativeSolvers.rnorm in module Main conflicts with an existing identifier.\n" - ] - } - ], - "source": [ - "# do this if you haven't installed it yet: Pkg.add(\"IterativeSolvers\")\n", - "using IterativeSolvers" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "5.738523667399757e-9" - ], - "text/plain": [ - "5.738523667399757e-9" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = rand(100,100); A = A'*A # a random SPD matrix\n", - "b = rand(100)\n", - "x, ch = cg(A, b, maxiter=300, log=true)\n", - "norm(A*x - b) / norm(b)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHFCAYAAAANLdYJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd8FNX6/z/bN8luNtn03iChdwigCAEFQVFRRLEAiuWKVy+o93uv4hVBkZ9exY7YwGujqFxU4IJ0kN57TQ/pvW89vz9mZ3ZmN5vMLIEUzvv14qU7mdk5O+185nk+5zkyQggBhUKhUCgUCsUNeVs3gEKhUCgUCqW9QoUShUKhUCgUigeoUKJQKBQKhULxABVKFAqFQqFQKB6gQolCoVAoFArFA1QoUSgUCoVCoXiACiUKhUKhUCgUD1ChRKFQKBQKheIBKpQoFAqFQqFQPECFEoVC6bC8+uqriI2NhVKpREBAQFs3x41Ro0Zh1KhRbd0MjiVLluCbb75p62ZcE7KysiCTyQS/7/XXX4dMJrum+62vr8frr7+OHTt2XNP9UNoOZVs3gEKhULzh119/xcKFCzF37lyMHz8eGo2mrZvkxpIlS9q6CQKWLFmC4OBgzJgxo62bcl144okncPvtt1/TfdTX12P+/PkA0K5EMaX1oEKJQukg1NfXw9fXt62b0W44ffo0AOD5559HaGhoG7emaXr06NHWTWj3WCwWyGQyKJWt3x1FR0cjOjq61b+XcmNBU2+UTsf58+cxdepUhIWFQaPRIDY2FtOmTYPJZOLWOX36NO6++24EBgZCq9WiX79++M9//iP4nh07dkAmk2HFihWYO3cuIiMj4e/vj1tvvRUXLlzg1ps9ezb8/PxQXV3t1pYHHngAYWFhsFgs3LJVq1Zh2LBh8PPzg06nw7hx43Ds2DHBdjNmzIBOp8OpU6cwduxY6PV6jBkzBgBACMFbb72FuLg4aLVaDBo0CJs3b24yzVNdXY2XXnoJCQkJUKvViIqKwuzZs1FXVydYTyaT4a9//Su+++47dO/eHb6+vujbty/WrVvn1fEtLCzE008/jejoaKjVaiQkJGD+/PmwWq2eThuH3W7HO++8g27dukGj0SA0NBTTpk1DXl4et058fDxeffVVAEBYWBhkMhlef/31Zr/3wIEDmDhxIoKCgqDVapGUlITZs2cL1vnzzz8xZswY6PV6+Pr6Yvjw4Vi/fr1gnW+++QYymQzbt2/HM888g+DgYAQFBeHee+9Ffn6+YF3Xc8JeU65pmqbSRgDw5ZdfIjk5GRqNBj169MCPP/6IGTNmID4+XrDe/PnzkZqaCqPRCH9/fwwYMABff/01+HOex8fH48yZM9i5cydkMhlkMpnge8ReK00h9ppkf/93332HF198EVFRUdBoNLh8+TJKSkowa9Ys9OjRAzqdDqGhoRg9ejR2797ttr/8/HxMmTIFer0eBoMBDzzwAAoLC93W85R6k3IPXr58GRMmTIBOp0NMTAxefPFF7lrPyspCSEgIdw7Y43qjROxuGAiF0ok4fvw40el0JD4+nixdupRs3bqVfP/992TKlCmkurqaEELI+fPniV6vJ0lJSeTbb78l69evJ1OnTiUAyNtvv8191/bt2wkAEh8fTx5++GGyfv16smLFChIbG0u6du1KrFYrIYSQEydOEADkyy+/FLSloqKCaDQa8sILL3DLFi5cSGQyGXn88cfJunXryJo1a8iwYcOIn58fOXPmDLfe9OnTiUqlIvHx8WTRokVk69atZNOmTYQQQl5++WUCgDz11FNk48aN5MsvvySxsbEkIiKCjBw5kvuOuro60q9fPxIcHEwWL15MtmzZQj788ENiMBjI6NGjid1u59Zlf+eQIUPI6tWryYYNG8ioUaOIUqkk6enpko5vQUEBiYmJIXFxceTzzz8nW7ZsIW+88QbRaDRkxowZLZ7Dp556igAgf/3rX8nGjRvJ0qVLSUhICImJiSElJSWEEEKOHj1KZs6cSQCQjRs3kn379pHc3FyP37lx40aiUqlInz59yDfffEO2bdtGli1bRh588EFunR07dhCVSkUGDhxIVq1aRdauXUvGjh1LZDIZWblyJbfe8uXLCQCSmJhInnvuObJp0yby1VdfkcDAQJKWlibY78iRIwXnhL2mtm/fLlgvMzOTACDLly/nln3++ecEALnvvvvIunXryA8//ECSk5NJXFwciYuLE2w/Y8YM8vXXX5PNmzeTzZs3kzfeeIP4+PiQ+fPnc+scPXqUJCYmkv79+5N9+/aRffv2kaNHjxJCpF0rTSH2mmR/f1RUFJk8eTL57bffyLp160hZWRk5f/48eeaZZ8jKlSvJjh07yLp168jMmTOJXC4XHK/6+nrSvXt3YjAYyMcff0w2bdpEnn/+eRIbG+t2DOfNm0dcuzkp96BarSbdu3cn7777LtmyZQt57bXXiEwm445rY2Mj2bhxIwFAZs6cyR3Xy5cvN3u8KB0LKpQonYrRo0eTgIAAUlxc7HGdBx98kGg0GpKTkyNYPn78eOLr60sqKysJIc6H+oQJEwTrrV69mgAg+/bt45YNGDCADB8+XLDekiVLCABy6tQpQgghOTk5RKlUkueee06wXk1NDQkPDydTpkzhlk2fPp0AIMuWLROsW15eTjQaDXnggQcEy/ft20cACDqlRYsWEblcTg4dOiRY9+effyYAyIYNG7hlAEhYWBgndgghpLCwkMjlcrJo0SJumZjj+/TTTxOdTkeys7MFy999910CQNAZuXLu3DkCgMyaNUuw/MCBAwQAeeWVV7hlbCfIiqfmSEpKIklJSaShocHjOkOHDiWhoaGkpqaGW2a1WkmvXr1IdHQ0JxZYoeTaxnfeeYcAIAUFBdwyb4WSzWYj4eHhJDU1VbBednY2UalUbkKJj81mIxaLhSxYsIAEBQUJRE7Pnj0F7WGRcq24IuWaZH//Lbfc4vH7WKxWK7FYLGTMmDFk0qRJ3PLPPvuMACC//vqrYP0nn3yyRaHkzT24evVqwboTJkwgKSkp3OeSkhICgMybN6/F30TpmNDUG6XTUF9fj507d2LKlClcOLwptm3bhjFjxiAmJkawfMaMGaivr8e+ffsEy++66y7B5z59+gAAsrOzuWWPPfYY9u7dK0jJLV++HIMHD0avXr0AAJs2bYLVasW0adNgtVq5f1qtFiNHjmxy1Mx9990n+Lx//36YTCZMmTJFsHzo0KFu6Zh169ahV69e6Nevn2B/48aNazL9k5aWBr1ez30OCwtDaGgo9zvFHt9169YhLS0NkZGRgv2OHz8eALBz506P227fvh0A3FIXQ4YMQffu3bF161aP23ri4sWLSE9Px8yZM6HVaptcp66uDgcOHMDkyZOh0+m45QqFAo8++ijy8vIE5xYQd114y4ULF1BYWOh2nmNjY3HTTTe5rb9t2zbceuutMBgMUCgUUKlUeO2111BWVobi4uIW9yf1WuEj5Zpkcb2uWZYuXYoBAwZAq9VCqVRCpVJh69atOHfuHLfO9u3bodfr3Y7/Qw891OLvlHoPymQyTJw4UbCsT58+rXKOKR0HKpQonYaKigrYbLYWzZtlZWWIiIhwWx4ZGcn9nU9QUJDgMzu6qqGhgVv28MMPQ6PRcB6Ts2fP4tChQ3jssce4dYqKigAAgwcPhkqlEvxbtWoVSktLBfvx9fWFv7+/W9sBRsS44rqsqKgIJ0+edNuXXq8HIcRtf66/k/2t7O8Ue3yLiorw+++/u+23Z8+eAOC236Z+n6fz43puxFBSUgIAzba7oqIChJBWvy68Rcp5PnjwIMaOHQuA8TTt2bMHhw4dwty5c0W3R+q14m1bWZo6zosXL8YzzzyD1NRU/PLLL9i/fz8OHTqE22+/XfAbysrKmvze8PBwUb8TkHYPuoprjUaDxsbGFvdF6TzQUW+UToPRaIRCoRCYfpsiKCgIBQUFbstZI25wcLDkfQcGBuLuu+/Gt99+izfffBPLly+HVqvF1KlTuXXY7/35558RFxfX4nc2ZUJlO2f2gc+nsLBQ8AYfHBwMHx8fLFu2rMnvl/o7xR7f4OBg9OnTBwsXLmzy76zwaAr29xUUFLgJm/z8fK/ODRv9aq7dgYGBkMvlrX5duMJ2unzjO+AuHls6z3xWrlwJlUqFdevWCTr1tWvXim7X1VwrUq5Jlqau7e+//x6jRo3CZ599JlheU1Pjtr+DBw82ua+WkHoPUigAjShROhE+Pj4YOXIkfvrpp2bfgMeMGYNt27a5jVD69ttv4evri6FDh3q1/8ceewz5+fnYsGEDvv/+e0yaNElQBHHcuHFQKpVIT0/HoEGDmvzXEqmpqdBoNFi1apVg+f79+93SAXfeeSfS09MRFBTU5L48pUU8Ifb43nnnnTh9+jSSkpKa3G9zQmn06NEAmE6Tz6FDh3Du3Dlu5J8UkpOTkZSUhGXLlrkJFBY/Pz+kpqZizZo1guiF3W7H999/j+joaCQnJ0vetyvsMT958qRg+W+//Sb4nJKSgvDwcKxevVqwPCcnB3v37hUsY4fWKxQKbllDQwO+++47t/3zI4R8ruZakXJNNodMJnOrhXXy5Em3VHhaWhpqamrcjtmPP/7Y4j5a4x50pTUjiZT2CY0oUToVixcvxs0334zU1FT885//RJcuXVBUVITffvsNn3/+OfR6PebNm8f5aF577TUYjUb88MMPWL9+Pd555x0YDAav9j127FhER0dj1qxZKCwsFKTdAKaTXLBgAebOnYuMjAzcfvvtCAwMRFFREQ4ePAg/Pz+ucJ0njEYjXnjhBSxatAiBgYGYNGkS8vLyMH/+fEREREAud777zJ49G7/88gtuueUWzJkzB3369IHdbkdOTg7++OMPvPjii0hNTZX0G8Uc3wULFmDz5s0YPnw4nn/+eaSkpKCxsRFZWVnYsGEDli5d6jENlpKSgqeeegoff/wx5HI5xo8fj6ysLPzrX/9CTEwM5syZI6m9LJ9++ikmTpyIoUOHYs6cOYiNjUVOTg42bdqEH374AQCwaNEi3HbbbUhLS8NLL70EtVqNJUuW4PTp01ixYkWrVHgODw/Hrbfeyp2/uLg4bN26FWvWrBGsJ5fLMX/+fDz99NOYPHkyHn/8cVRWVjZ5nu+44w4sXrwYDz30EJ566imUlZXh3XffbbIAZ+/evbFy5UqsWrUKiYmJ0Gq16N2791VdK1Kuyea488478cYbb2DevHkYOXIkLly4gAULFiAhIUFQVmLatGl4//33MW3aNCxcuBBdu3bFhg0bsGnTphb30Rr3oCt6vR5xcXH49ddfMWbMGBiNRgQHB0t+EaG0Y9rYTE6htDpnz54l999/PwkKCiJqtZrExsaSGTNmkMbGRm6dU6dOkYkTJxKDwUDUajXp27evYLQMIc4ROj/99JNgeVNDuVleeeUVAoDExMQQm83WZPvWrl1L0tLSiL+/P9FoNCQuLo5MnjyZbNmyhVtn+vTpxM/Pr8nt7XY7efPNN0l0dDRRq9WkT58+ZN26daRv376C0UGEEFJbW0teffVVkpKSQtRqNTEYDKR3795kzpw5pLCwkFsPAHn22Wfd9hUXF0emT58uWCbm+JaUlJDnn3+eJCQkEJVKRYxGIxk4cCCZO3cuqa2tbfJ3sdhsNvL222+T5ORkolKpSHBwMHnkkUfchv9LGfVGCDMKa/z48cRgMBCNRkOSkpLInDlzBOvs3r2bjB49mvj5+REfHx8ydOhQ8vvvvwvWYUe9uY4Qa2pE28iRI8moUaME6xUUFJDJkycTo9FIDAYDeeSRR8jhw4ebvKa++OIL0qVLF6JWq0lycjJZtmwZufvuu0n//v0F6y1btoykpKQQjUZDEhMTyaJFi8jXX39NAJDMzExuvaysLDJ27Fii1+sJAMHoObHXSlOIvSY93VOEEGIymchLL71EoqKiiFarJQMGDCBr164l06dPdxvll5eXR+677z6i0+mIXq8n9913H9m7d6+o8gCEXN092NR3btmyhfTv359oNBoCwO2eoXRsZITwKpJRKJQOSWZmJrp164Z58+bhlVdeaevmUBz0798fSUlJ+Pnnn1vl+yorK5GcnIx77rkHX3zxRat857WCXpOUzgJNvVEoHYwTJ05gxYoVGD58OPz9/XHhwgW888478Pf3x8yZM9u6eRQwJQl2796NU6dO4ZFHHvHqOwoLC7Fw4UKkpaUhKCgI2dnZeP/991FTU4O//e1vrdziq4Nek5TODBVKFEoHw8/PD4cPH8bXX3+NyspKGAwGjBo1CgsXLvQ4HJtyfVm0aBF+//13TJs2DbNmzfLqOzQaDbKysjBr1iyUl5dzAw2WLl3KlVpoL9BrktKZoak3CoVCoVAoFA/Q8gAUCoVCoVAoHqBCiUKhUCgUCsUDVChRKBQKhUKheICauSVit9uRn58PvV7fKgXoKBQKhUKhXHsIIaipqUFkZKToQqgAFUqSyc/Pd5t1nkKhUCgUSscgNze3xcm9+VChJBG9Xg+AOdCuM7tTKBQKhUJpn1RXVyMmJobrx8VChZJE2HSbv78/FUoUCoVCoXQwpNpmqJmbQqFQKBQKxQNUKFEoFAqFQqF4gAolCoVCoVAoFA9QoUShUCgUCoXiASqUKBQKhUKhUDxAhRKFQqFQKBSKB6hQolAoFAqFQvEAFUoUCoVCoVAoHqBCiUKhUCgUCsUDVChRKBQKhUKheIAKJQqFQqFQKBQPUKFEoVAoFAqF4oEbTijl5uZi1KhR6NGjB/r06YOffvqprZtEoVAolBuQBrOtrZtAEcENJ5SUSiU++OADnD17Flu2bMGcOXNQV1fX1s2iUCgUyg3E2xvPo8/8TTiVV9XWTaG0wA0nlCIiItCvXz8AQGhoKIxGI8rLy9u4VRQKhUK5kdhxoQQWG8HRnIq2bgqlBTqcUNq1axcmTpyIyMhIyGQyrF271m2dJUuWICEhAVqtFgMHDsTu3bub/K7Dhw/DbrcjJibmWjebQqFQKBQAgN1OkFXKZDLKak1t3BpKS3Q4oVRXV4e+ffvik08+afLvq1atwuzZszF37lwcO3YMI0aMwPjx45GTkyNYr6ysDNOmTcMXX3xxPZpNoVAoFAoAoKimEQ0Wxp9UUmtu49ZQWkLZ1g2Qyvjx4zF+/HiPf1+8eDFmzpyJJ554AgDwwQcfYNOmTfjss8+waNEiAIDJZMKkSZPw8ssvY/jw4c3uz2QywWRyKv7q6upW+BUUCoVCuVHJLHH6YktpRKnd0+EiSs1hNptx5MgRjB07VrB87Nix2Lt3LwCAEIIZM2Zg9OjRePTRR1v8zkWLFsFgMHD/aJqOQqFQKFdDZplTKNHUW/unUwml0tJS2Gw2hIWFCZaHhYWhsLAQALBnzx6sWrUKa9euRb9+/dCvXz+cOnXK43e+/PLLqKqq4v7l5uZe099AoVAolM6NMKJEU2/tnQ6XehODTCYTfCaEcMtuvvlm2O120d+l0Wig0WhatX0UCoVCuXHJLKURpY5Ep4ooBQcHQ6FQcNEjluLiYrcoE4VCoVAobQFfKNWZbbTwZDunUwkltVqNgQMHYvPmzYLlmzdvbtG0TaFQKBTKtcZqsyOnvF6wjBq62zcdLvVWW1uLy5cvc58zMzNx/PhxGI1GxMbG4oUXXsCjjz6KQYMGYdiwYfjiiy+Qk5ODv/zlL23YagqFQqFQgLyKBljtBFqVHEZfNfKrGlFaa0KM0betm0bxQIcTSocPH0ZaWhr3+YUXXgAATJ8+Hd988w0eeOABlJWVYcGCBSgoKECvXr2wYcMGxMXFtVWTKRQKhUIB4Ey7xQf5QaOUI7+qEWXU0N2u6XBCadSoUSCENLvOrFmzMGvWrOvUIgqFQqFQxJHhEEoJwX4wWZmBRTT11r7pVB4lCoVCoVDaM5mltQAYoRSsUwOgQqm9Q4UShUKhXGMazDYsXH8Wh7PoBNw3OlmljJE7IdgPQTqm9AytpdS+oUKJQqFQRPLR1ksY/e4OyRGA7ReK8eXuTLz7x4Vr1DJKR4H1KCWG+CGYE0o0otSeoUKJQqFQRPLbiXxklNbhUKa0yBDbERbX0A7xRqbRYsOVygYAQEKwjku9UTN3+4YKJQqFQhFJZb0FgPQIALtdeR3tEG9kssuYtJteq0Sgr4pGlDoIVChRKJSrZs3RPIz693ZcKqpp66ZcMwghqG5ghZI0wcMKpcp6C6w28VMoUToX2WXO0gAymQxBbETJRUBfLq7BfZ/txf6MsuveRoo7VChRKJSrZt3JAmSV1WP3pdK2bso1o9Fih9nm3XDuygZnR1jhEE2UGw+2IndsEFNcko0oVdSbBQL6+/05OJJdgWV/Zl7/RlLcoEKJQqFcNWykpabR2sYtuXZUNTgFjlShVMUTR9cr/WazE+y8WCJoN6VtYVNvcY4q3IG+ashlACHC6+JsfjUA4Fxh9fVvJMUNKpQoFMpVU8UJpc7bKQuFksTUG2/bsrrr40f540whpi87iP/3v3PXZX+UluEiSg6hpJDLYPRjaykx15TdTnC2gBFIueUNnfqe6ihQoUShUK6aasfDvLoTP9T5QqlMakSp4fpHlLIdnbLrBKyUtsM19QYAQX5CQ3duRT1qTc7I7PnCzuv76yhQoUShUK6a6gbmwX7jpN68M3MD108ose1lzw2lbbHZCfIqHKm3ID9uebCeNXQzQolNu7Gcc0SXVh/ORepbW3CBCqfrDhVKFArlqjBb7Wiw2ADcOEKp1mRFo+M3twQhBFU8M7fUmjkmq82r4eOcUOrEUb6ORH5lAyw2ArVCjnB/LbeciyjVMNcFm3ZjYYXS0p3pKKo2YceF4uvUYgoLFUoUCuWq4HsoOrOfwtUUXSKyeGS92QaLzTmRt9SI0hP/OYzhi7ahsKpR0nbOiFLnPScdCTbtFm30gUIu45ZztZQcEaUzjojSkHgjAOBsQQ2yy+qQUcKUFqik5/O6Q4UShUK5Kqp5UaQbJaIEuNe+8YRrxyZVKJ2+UgWzzS55BFQ1F1GyghDSwtqUa43riDcWtpYSF1FyCKXJA6MBABcKq7H1nDOKVEnLS1x3qFCiUChXBT9iUd2JhZJrZKZUZESpsl4ojKSMerPZCSe0Sqqlpd/Y9trsBPVmcWlCyrWDjSjx/UkAEMKrzl1Wa0JhNRM5HNcrHFqVHI0WO77dl8Wtz0/jUq4PVChRKJSrovoqU2/bLxQjvaS2NZt0TXCNKIn1DVXVex9RqmqwgA0GFdd4l3oDqE+pPZBTzqTOYl0iSuwIuP0ZZVh/qgAAEB/kC4OPCilhegBAVplz5CKNKF1/qFCiUCgceRX1bhGQluCPqjJZ7TBZxUcvMkpq8djyQ3j2h6OS9snsy8bNxH49YIWH0uEvESuU2IiQTqMEIE0oVfDOhVhPFAtfKElNib614RymLTvo1XQrNjtN8zUFm3pzFUqpCUaM6BoMk9WOBb+fBQD0iPQHAHSP8Hf7HiqUrj9UKFEoFABMimjMezsx5fN9krZzjbRI6ZTzK5koSV5Fg6R9AsDc/55G2rs7cCS7XPK23sD+TjYCILZEANuxJYYwKZeKegvsIsVEBU9UFUsQSoQQQRpUqqH7231Z2HWxBBeLpEX69qaXovfrm7DyYI6k7To7hBDksB6lIKFQkslk+H/39YFOo4TVcV30jDQAEAqlvjEBANzvN8q1hwolCuUaUF5n5mqmdBRyyxtgstpxqbhWUlTANa0jRSixD/1akxVmq7ToBTs66FzB9akrw7Y1KUQHQEpEiRE7CcGMULLZiejOjj8vnBShVGe2Cc6hlNRbo8WGRgtzLqRGF/dnlKPebMPuy513zj9vqKi3oMZRRDLGJaIEAFEBPph7R3fuc48I94jSpH6Rju+iHqXrDRVKFAEbTxfiq90Zbd2MDs/kz/bitsW7OtTbH/sAJkRaB+karZDiU+J34JUSTaqsUPGmxpA3sOeSjQxJ9SiF6DTQa5n0m9gRc8KIkniPkut1J6XoJP98lktOwzLbShVYnZ3sMiZFHO6vhValaHKdBwfHYPLAaPSJNmBIAlMaoEekPww+KgTr1BjfOwIAU27CNb1dUWfGi6tP4POd6fTYXwOUbd0ASuux5WwRdl8qwdw7ekCt9E4D/+OXk6hqsGBsj3BBmf0biZN5lTiRV4VHUmMhk8la3sAFs9WODId3Jre8HoYoQ2s38ZrAH8ZeXmdGkGM0TktcTUSJ3ylX1VsQqtc2s7YTu51wXh+pBRy9xT2iJC31FuCrQpCfGjWNVtE+Jb5QKa42gRAi6pp0NZBLiSjxRVaFRD8Mu215Xcd5QbgeNDV1iSsymQzv3t9XsEynUeL3v94MhUKGEJ0GMscEulUNFoTqnYLrx4M5+OVoHgDg/S0XMWN4Av45vts1+CU3JjSi1Il4Z9N5/GdfNvZllHm1faPFxj3oiiSOsOlMvLzmFP619jSO5VZ6tT3/jU5s5KA9wG+3FMOxa7TC24iSlE65ot7MpZauxySzjRYblxpkhZLY+d7YSJnBV81NgFouss38NIvJahddfsE9oiT+2PIFc4XE65e9hmhUQ4inGkpiiA3yRVSAD+RyGQw+KgDuQpit3q3XKtFosTuqeN+4z/DWhgqlTgRbubewSroxFmi9+aheXXsKb6w76/X2bY3zOHr3oKkQHMfrkxZqDbw9/67RCim1lITRC/H75EdzpM67RgjBxtOFnLlWDGw7FXIZZ8atqLfAImJUGLutwUfFCSVvUm8AUCLyBeaqzslVPAfY30p9NEIuFDE+ukSHyPaWAIdQci1iys7/9tHU/ogO9AFAJ0NuTahQ6iSYrDbuYVgssTAdC/+hKPVNkqW01oTv9+fg6z8zUWfqeMUHCXEW+PP2Yc8/jtcrLdQaCISSFx4lrUou+CxuW+c1IiUKwfcHiY3ssBzOrsBfvj+CF1YfF70NKwD8tUoYfdXcFBRihASXeuMJpXKR14VrCkvsvX01ESVvxSt/20aLXfRceDcC5xwDD3pGug/3l4LBl7l++PeqyWrjUv3dwvVc+YFcKpRaDSqUOgn8t2pv02atkTLiC6zrNUt6a1JrsnIpHW/FYkUbp97K68z4+Uge6s3ShKog9SauOQYRAAAgAElEQVRB4LECPSqAeZOV5FHyMvUmEEoSj/EJR0r1YpH40XJsx2TwUUEul3GCR0xtI1Y8BPiqYHRMgCp6+hMXoVIiUhS6CiMpHqXKq/IoOc89jSox1JmsyHSYuXtcpVDiIkq8Y5teXAebncBfq0S4v5YTSjSi1HpQodRJ4D+wvY4o1V99RIkvjjpiYTR+m6V2Eiz8YyBFcLQWH265iJd+OoGVB3MlbVfp5WgntlOOCmQe0N6UBwCkXS/8671SZAqMhU1TVDdaRY9K5KfPACBIQgrNGVFSc9tJNXOzs81LjSjpHUUupYx6q/LSo0QIEQi0CmroBgCcL6wGIUCYv4abANdbAnwdHiXecb5QxESruoX7QyaTceUHqFBqPahQ6iQIhJLECr4srRENqvAyfdNeEAqlq4+qtUVE6ZxDCGSUSisW6K2Zm31oOyNKUlJvfKHknUcJkNahX+BFksTWuuJSbw6hFKJ3zM/Vwr3WaLGhwZGCMvjyUm8SPUrJ4cxUFmJLBLDtjXZ0mlIiSoLyABKOa6PFDjNPsFJDN8MZLu129aNfnREl5zk677jfUxzXCCuU8sq986pS3KFCqZPAT0UUeznaoTVEDl9cdMQHZUUrRNX4x/F6jMhyJcvhVyiolHYdeGPmbrTYYHKMBmNNpNJSb96lalxrGIlNSdntRJByyxXZmTjTZ4zQCeZNZNocrOiQy5jojlEnPhLFL0yZEsaYgMW+BLH7jXGcE0mj3ry8h13rYHkbke1snLnSOv4kgOdR4h3rCy5CiabeWh8qlDoJ/IhSSS1Tb0UqrWHmrvAyKtFeuBp/hnO7tjsGdSYr15nmSxy151pHSQysKJLJgAgDkx6qMXkXvfDWowSIN83nlNdzVacB6RElgw+Tygp2CJ6WhFIlL2Unl8t4qbeWBU91gwVsce1kx+SoUlNvbHTB23Rondkm2pTtmsa8UTxKpbWmZgeunHUM3e/RxLxtUmkqosQKpW5sRMkhjgurG6mhvpWgQqmTwBdKFhvxqpNvDRNyRSuIrbbE27dpPm3pUcrmDXkvkFAmwm4ngt8r9tyxKR2dRsn5d8R2yvxoFODdqDe29qLYyN0FFwO32Dnmql08SmxEqSWB5iw2yQgkfuqtpZcZNqqr1yi5tKbU1BsXUWq0iH55chU8Yr1jrrV9OmJEWSpXKhsw6t878NjyQ4Ll7LG22OyckGmV1JuLR6mq3oICxwsRm541+qnhp1Zw7aNcPVQodRJcR994U2yML65aI+3UEUPvrVFLii84a0xWt+kGriVZjtE1APNbGszi9l1jsoI/vVuZiI4ccAoIf60Keq1KsKzFbRu965ABoLTGMX9aEDOdiNiIEttpKR3D+6VHlJjfGOUQIBeLmx85x4oFpwmcEVgWG+Hm/mpp20A/NUL9me3Ept44j5LDYG+xEUEkrdn9upw/sfeBq8DqjNW5c8vrkVHi9P5tOFmAWpMVB7PKud9/qagG/d/YjHc2nkd6SS3MNjv0GiWXmr4aWKHE3ius8I8K8IG/4/6jhu7WhwqlToJrCsAbQzdfHEkJuXv6jo5u5q5utMIqYTQVi2vHItUY/cGWi14Xu8wsrRN8zhcZVWKjAWx9IJPVzpmQm4P1GPn7qODvSEuJjSi5jsSqrBcX9SCEcBEk1pchtugk27EMTQwCIN2jxAqegXGBAICz+dXNmtcrOW8Ts52PWgFfx9t+S+KOFRqBfmqEOKZ2qWm0irov2fMSEaDlzqlYQzffVwWIjwy5R6I63v3fHBabHZOW7MWdH//J3Z+bzhRyfz9zpQoAsO5kASrrLViyIx1f7c4EAHSP9IdcLn06JFcMPkKP0oVCJq3H3gcsMbSWUqtChVIngTWz6hzDgb2LKLmaMaU/6FrDDN2WuD7cXd+uxX2HcBspRSe/3p2BD7Zcwj9+OSl5v4DTyM0i1tDNPnhD9RpunkAx7XZGlJRcREmsUGI7Vta3Y7bZUS8iAlbVYIHFxggq1rsjtugkG1Ea0z0UABNREiPOXIVShMEHsUZf2AlTwJL9rgW/nxUMpmAFKLsd4DTbphc3PyqRvZcCfVXw1yqhcZwXKbWbDD7MtoC4SB8hTgM5GzUT+8LT2T1Kl4pqUVprQr3ZhhUHc1BSY8KRnAru7ycdQukob9nPR5j511rDnwS4R5RcR7yx0KKTrQsVSp0E9uHJ3pBiHqauuAobb1JPHT71dpVvxSarDbWOlEqkw9ws5Tgez2MetjsvluByC2mdpmA9Sqx3R2xEqYLnpWGFi5iOjo1SGHxU0Ds6ZLNNXFVmdtswfy3UCrnofbLRU3+tEpEBzDEW46kzWW1cxG10N0Yo1Zltoq5T1/IAAJDqmOH9YGY5AGDh+nNYticTi/53nluHFaABvO26O+7R845ogCfY+9Hoq4ZMJuOl35oXv/x56Zjz4kiJiogo1ZttnAiNd6Q1xb7wsMeIrfnUEe//5jidX8X9/4qDOdh4phB8jX3qShXsdoLjjoKmbA0roHVGvAHO66jGEe12NXKz0JFvrQsVSp2AOpOVexNnK79KLRFgstpQ5/iOCC86eJaOHlFyj6pJe9hX8lJY8cEO/4xIozEhBKevOB/Gy/ZkSdo3AK4CcPdw5joQHVGqd3bogb7ih7Cz6TN/HxV0aiUn0MRElfgGadc35eYocfiTgvUazvPT0ugzQFjBONboi1BHLSQxPiXXiBIADOEJpaoGC7aeKwYArD9VwJsc1rGd45gCzk6NrXfliXKeRwkAQhwG8pZGvlXxUmc6jZJLiYopOsluq1LIOAO52HuA3ZadC6+zpd7O8O7N4hoT3vvjAgBgmCONeyqvCpdLalHTaIWvWoGPHurPrd8aRm5AeP2V15u5Gk2uEasYIzvfGzVztwZUKHUC2E7CV61AgqNzLpJYnZvfwbMPOqlCiV/3BWBEhzdlCtoSNlXCdvhSjwG7foCPCkEiR0axFFQ1Cva35mieJLFZa7JykcRhSUGO75RaJ0iFIJ34+ciqeGZuuVwGnZr1KbXcufKFUmATc1h5gr3eg3Uarq1ijrGnCsZifEpNCaXUBOYYn8yrxJqjeVyxRbPVjl+OXhFsx48odXN0ahdaEEqVrEfJISJDHT6llvyH/OiXTCbjTL5iIkpNTeAr1czNPoPaa0SJjfrw/Yff7svCoDc346vdGR6fWacdoiQxhPl97LX6wthkAEz0Zvt5Riz3iTYgLSUUb9zTC38b0xXdI/RNfKN0lAo5F6k6lFmBBosNOo0SSS6T7cZyRSfFpZYpzUOFUieA7RxD9BruLVnsMGIW9mEY6Kvi3tK9mTmcf0+KNQS3J9iIEvs2LfWtmBU2gX7Sp6s45Xhj7RauR89IfzRa7PjxYI7ofbP+JKOfmvMsiK2lxE43EeCr5kSLlNQbG7Vg02+iIkqcEVwJg0MMSEm9heg0gsKPLXUIFwoZT1ByONOpsKOQWooouaayWGKMPgj318JiI/hgyyXmux2FIX88kI06k5WrocNGzABnRCmjpLbZFKVrREls6s21lIG/hNGIbOfvzxOvYr1GzogSIySqGy3cvIntiZWHcnHPp3vw4k8nAACFVY14a8M5lNaa8eb6c3jy2yNuEUqbneCsQyi9PrEnZ3RPCPbDoLhATph8fyAbADAgljH7Pzo0DnNuS4ZMdvVGbhb2Xtl50SnKXI3i7GjHGpO1Q04l1d6gQqkTwAklnQah/uLeOl1hO/gAXzX3Jik1dcYKAr1WyXlOrnfBxepGC45kl3u1rZ0XEfP2rZhd38jz+oiNKLGh/d5RBjx+UwIA5k1X7Mg71p8UH+SLSAMjAgpE1lHhvDS8aTbEpd6cESUAkvww/G0DudSbeKEUrFNzESWT1c6ljgEmuvbV7gzOzFpc3Yg1RxljLZsGiXF0JrkuQqmy3iwwh7PXhEIu4wZLAMwwbDb9xq7zyUMD4KtWIL2kDvd8ugcZJXUw+KhwU5dgbrtQvQaBvirYCXC5GUM336MEMF4uAMhvIZ3qGv3iUm8ixCs/AhboZUSJjUgT4m7wbo5Gi03S9Dfesv5UPgDg1+P52Hi6AO/9cQGNFjtijb5QK+TYcq4IQxZuwd2f7sGyPzNBCEFmaS0aLDb4qBS4qUswbusRBgAY1zMcMpkMvaOYa4qNTrJC6VrAiu4dF0oAAP1iAtzW0aoU3EtzrsgBCxTPUKHUCSjhpSK4iFK1tOrc/A6ee0BKjKawnZzRT41AP/Gek9bktbWncd9n+7D1XJHkbWsanbWEOKEkVSxyUQCVpOkqAGdov1eUARP7RiLQV4WiahP2ppeJ2p6toRQf7IcIh8m5QGREiT1PgTyhJOa388sDAFIjSk1FL0Sk3liPkk4DX7USPip2uL1T3Lz+2xm8uf4cJn7yJ3ZfKsEzPxxFcY0JKWF63N0vEgA/ouQUk3sul2L4/9uGtHd3cMZvVij4a5VukQFWKAHA0EQjksP0uKsv8/2Ximvhq1bgm8cGcyIHYARWN4eH7FyBZ0M3G8lhi1WyhuDDLbwIuAklCRGlakHqTdo9zO7X6Kfm0kNio1F2O8GED3cj7d2d17SadJ3JikOZzlFp/1xzCj87BPSHD/bDmlnD0SvKH3YCnMitxIJ1Z/HbiXycdkxD0iPSHwq5DG9N6o25E7rjudFdAAC9o4UepP6x7uKltQhwlAhgX4abEkqAM/320k8n0GveJrzkiKBRpEOFUieAn3pjJ+s02+yS3uYEHbzjjcVrfw4vfXM9I0qEEOy8yLxlsf+VAhtV8VUruI5N6hBnLgrgp+alMMVF99jUW68oA9RKOe7sw3S4a49dEbU927EnBPlxEaVak1VUdMdp5lZ7GVFyTb1J88MEeONRclzrwXp2OhGmvQVVDfj1+BXu+x79+iCOZFdAr1Vi6aMD4evwUbnWmtl0phCPLT+EerMN1Y1W/PXHo6g1WbHg97MAwJnz+aTyhNKk/lEAgIdT4wAAaqUcX00fhP5NRBfY1GhzPiXu5cVxPgbFG6GQy5Bb3tBsxWXXEXrsf0VdBw3OApkBEu9hfimEAD/xEUKAmcA5o7QOpbWmazqkfW96Gcw2O6ICfNA1VOeo3QXc2ScC/WMD0SvKgHXPjcC+l0dj6pBYAMCyPzOd96ZDrAbpNHjylkT4OQQhG1ECmJcs1p94LTDw0rgA0M+DKGNToBeLalFntuG3E/mwt8NUaEeACqVOAOfZ0GugVSm40KyU9Fsl51FSw6jzzqNUyUWlpPsb+NjtBO9uuoDfTuRL2i6ztI7rXPi1TMTCTTfBG4UltbowXywGSYgoFVc3oqTGBLnMOYLlnv6MUNp0phD15pYjNNm8iJKP2nkdiBn5xs1JJjmi1HSnLG7Um9OjFOBV6o25TllBykaUlu/JgsVGMCguEHf2ieC2++CBflykEHCm3vIqGvDBlouY9cNRmG12jOkWikBfFc7kV+O2xTuxL6MMOo0Sb03q7daWLqE69Iz0R6RBi9t7MfvqHW3Afx4fgjXPDMfwpGC3bQBw5t7zHoQSf0oZNjqr0yjRy9EhH8jwHGWsckmHOusoSUi9+aq5lJ+Ye5hffynAV8VtK/b+OZZTyf3/tZx2Y8cFxtczulso/n1/X8hlgFohx/+N6yZYL8LggxfHJkOtkONEXhV+Pc48i3pFNT16rRdvVNu1jCYBwoEBUQE+nMnflWdGJeKBQTGYO6E7lHIZzFY7iiR6VykMVCh1AvgRJQBc+k1K0Um+cdToZTSI+46r8DkBwIHMcnyy/TJeWXNK0hvQUd7D9lxBjShxwYef6jByEQ6JESU2/cjzKIkZPca+sXYJ1cHHUbl5QGwgYow+qDPbsPlsy6nEzFLWo8SIgQhHVElMLSVn6k0tabQT2/kaXFJv1Y1WVDVY3ApgCrZtdHbogZLM3GzqTS34b2mtGVUNFvx4gDHAP5vWBR9P7Y/FU/ri6+mDMKZ7mOB7IgK0kMsYf9MHWy7BZieYPDAanz86EO9N6QuASV0q5DJ8+vAArv4RH5lMhv/OugnbXholMHqPTA7x2KkC4FJvnmopVTc6J8RlUy0AMNQRwTqQ4Tn95npO+BGlw1nlmPrFfo+RLIGZ23Ed1Iuo0l9vtsHqaDA/GiX2RYmtPQS07MHyFkII5+sZlRKCfjEB+PmZ4fj5mWGIdfiq+ATrNLjLkaZlxbmnc2rwVXHerGvpTwKEAwM8pd0AoEuoHm9P7oMnb0nkiofy54KkiIcKpU4A38wNOE2fYmcaB4TGUWdHKdXI7BRb7FtwuRceJdaMXWuyip60FBBGkWx2ghO5Vc2s7Q7/jVjqg56FjWgF8lJvYuZ7Yz0Q/DdTmUyGe/ox6Rz2jdYT+zPKUFprglIuQ4Jj+DJb8FJURIkTiSqnwJM06k1o5q6oM2PK0n24dfFOQSfIh58iChDpUSKECDx5gDCi9MOBbNSarEgJ02NUSghkMhnuHRDtJpIAQKWQc6ODgnUafDy1P/49uQ+UCjlGdwvDnFuT4adWYNGk3hiZHOKxTWqlHFqHT0osyWF6yGSMuGuqOCw3MEKj5CqlA86pV/ZnukeUCqsaUW+2unmU+HPwvbr2NPZllOHL3RncdsdzK7H4jwswW+2Cbf21Sm76k5ZSovz6Sz4qhSRzPtsGFimTOUshvaQWVyoboFbIufIZA2ID0Sfas9h47KZ47v/VSjm6hOo8rvu3MV2RlhKCiY6U+bWCL5ybE0p8uAKUVCh5hbLlVSjtHfZBy3o22MiSlDCrszIzL/XiqIMkdmhrBa/EgMnKdBzeFJ07ku0UPGcLqpt822uKo47t/LVKVDdacTSngnsgisE58o9/DCSKRc6jxMx9ppTLYLUTVNRZEG7w3Jny/Ul87u4XhY+3XcbOiyUoqzU16X2w2wneXM/4aB4cEsONzHIaupvvePij/QJ8VNxQ48p6C6w2O5SKpt+n+MPmXT1Ka47mcaPQPt56CV/PGOy2Pd84zI47aMlXV2Oycvtkr3M2xfnH2SKkOyYsfXpkoqjrduGkXjiaXYkZw+PdvB9/u7Urnk1L8vj7rwYftQLxQX7ILK3DhcIa7recK6jGd/uzuTQqG9VhGRQfCLmMiQwUVDUgwuADs9WOD7dexGc70mH003DnwGnmZj6fzq/mhuvvuVzK3dsv/XQCl4trERXoI7gOZDIZAn1VKK01o7zOjHCDMMVDCMHqw7noHxvIfa/BsV1TwrfOZMXc/57CkIQgPJQayy1vMNsEKUipqbecsnp8tO0Snk3rIkitusJGk1ITjZxPrSV6RhqQmmDEgcxydA/XQ9XMtXDvgGjcOyBaUtu9gX+d9hUplOKCfLH7EpBd7jnCS/EMjSi1E8pqmUqvFpFDwU1WG87mV8NuJ1wqwpl68yKi1MSINZudiPI1OL/DGU3x1sxttxNBCq2laR5Yak1WXHRMePqQw0zLF1xiqOT5M/hvxFLSf3yPkkwm4wSXp8rRdSYr3tpwDtsd3glXodQlVIfeUQbY7ARfOibYdGXt8Ss4faUaeo0Ss29N5pZzqbcWIkr80X4GX5Wjk2Q+NzfX3bI9THt0GiX81KxQYo4bf6j+1vPFOJMvjO4RQpwj5iSk3tiUkV6r5KI4rHg8daUK9WYbbkkOwcS+4t7qR3QNwd9u7eomkliuhUhi4Sp0O0a+2ewEz604hh8P5GDPZSZixBY3ZNFrVTyfUjkySmpx32d78en2dNgJc52xpn7X1Bu/plFBVSPSS+qQUVLLlSjYm17mFo0KbCYFve18Mf7xyyk8v+KYm4G8qe1+OJCNtcfzsWjDOUFbTudXCT7nSxRKC9adxc9H8vCuo1I2n7JaEx78Yh9Gv7cDHzpqXTUXHWyKObclQ6uSi76mrjWsR0khlwlM5M0RZ2SuI5p68w4aUWoH2O0Ek5fuQ2ZpHQJ91Xj85oRm199zuRSvrj2NzNI69I8N4CoCs16NKEck4ZejeUgJ12Ni30jsTy9DXkU9JvSO4Got8eF38BqlAjqNErUmK8rrzR47EVcqeIZwNtUkNXWVUVoriCo0N3yaz4ncStgJY268vVc4lu5Mx9GcCkkRMaGZmzmWdsKkl9jPLcH3KAGM8CyuMTUpGC8X12Da1we5opD39IvEoDh3f8OzaV3wl++P4PNd6UhLCUFqYhCKqxtxNKcSFpsd72xkOohZaV24dBQAbh60rLI65FXUI1inaTJFxB/tp1Eyfzf4qFBZb0F5nVnwnSzbzxfj35uY/f5zfDcuCsVGLwCmEF6M0RfrTxZgyfZ0/OvOHvhw60X4+6jw3OiuXOfo76OE3KFHqhqYIoUKDzOtL3eIs9t7hnPLWE8ewKRK5k7ofk0FTmvRNyYA/ztdiB8OZOPRYXHYdKYQl4tr4a9V4u/jUhDop8aILu6demqCESfzqrBsTyYySupQa7LC4KPCgrt74mJRDZbuzIDNTriIIn9+OoVchi4hOlwoqsGfl0pgsjpfzPaml8HX4Y9j73nuhaeJ+3i/w1B+vrCGi+RxAsuPTcEy95TFZsdyx5Q8NSYrzuZXc0PqjztejIL81CirM4suaQEwIxa3nmf8ezvOF6PRYhNc49/vz8F+np9LpZBhbI9wt+9pjqGJQTg7/3a3oo5tRaKjCvfAuEDOz9gSrH+KCiXvoEKpHSCXy/DULYl4ec0pvL/lIu7uF9lkisVis+Nfa09j5aFcbhk7WsTgo+I6uXv6R+GnI3k4mVeFl9ecwiv/PcWlNj7edhnvTemLUSmhgu+udBmKbPRTM0KpztRsOJtPBc/nYnak3iok+pzYKJCPSoEGi83jqCBP2w2IC0SPCH9olHJU1luQUVrnVt7fE5U8M7paKefEYkW9OKHUaLFxc+6xKRNuOhAXoVRQ1cCJpBijD+bf1ROju7n7aADg9l7huH9gNH46kocXVp/ApP5R+OrPDDRanJ1cVICPwE8BOCNKR7IrcPPb2xHgq8KX0wZhcLxRsB7fyM1i9FNzQsmV9JJaPL/iGAgBHkqNxSND47i/sSOtAOD1u3rCV63A+pMF2HC6ALsulqDGMWEw67VhPS1Kh1IihEnJuaacACbFsvF0IQDgyVsSueVp3UIxZVA0buoSjLsdnq6OwMOpsVj2ZyayyuqxZEc61p1kfGhPjkjEo8PiPW6XmhCEL3dn4qRjAuUhCUZ89GB/LjV2V98opJfUor8jLcMXr3f2iUC3cH+8vfE8/rxcKkiNldSYuEiiq+A5kVuJU1eq0DVUj8kDmfTSYV7EdtMZRqyw0Q5Xj9+GUwUCAXQgs8wplBz+pHG9wvHjgRwUVDbCbieihMn3+7O5Z1ud2YZ96WVIc0x4bLcT/HSEeVa+NDYZg+ONiAzw4cpCSKG9iCSAiTJvmn0LwvzFlyBgSwWwKV2KNNr/a9cNwpRBMegZ6Y+aRive23zR7e82O8ELq09g5aFcyGTAtGFx+N/fRmBUCvPGyQ/R67UqrHlmOF69ozt8VAoQwky3kBjih7I6M2YsP4RFG85xaT6z1c7NeM9GQgK9MHTz677wfU5SYAUPWxQwu6yea1tzsEbuAbEBUCvl6ON4CB+VkH7jD5EHnKNLxP4Gdj2FXMZ1Tk1N2lpVb8H0ZYxISgzxw2/P3uxRJLHMu6snYo2+uFLZgE+2X0ajxY6uoToMTTQiLSUEi6f0dYsW9YsJwLDEIBj91FArGOH4zPdHUejyxs62mz9qi70OLhUJhWp1owVPfnsYNSYrBscH4vWJPQV/HxQfiH4xAZh9a1cMiA1Et3B/3NYjDIQwkQQ2UvSrozaUv5bxtLDClG1PUynoZXsyYSdM6iQ5zDl3lk6jxDuT+3YokQQw9+m/7uwBAPho6yVklNQhwFeFGS6C15XBCUZoHAbvp29JxI9PpAr8QynhekzoHcFFUv3USs639OSIRIzoypQs2HO5jLtvujpMyoQbacdcC+x9/OXuTHy+MwP/9/MJlNWa0GixCSZw3nu5FAA/ZecsVkkIwVeOtDE7wGA/r7wBK5Ru7xkOuYypAVcqovZYg9nGvTQmOZ5/m84Ucn/fl1GGvIoG6LVKPDEiEamJQV6JpPZISrhedJQbcJq5qxutnW6y4usBjSi1ExRyGeZN7Ikpn+/DioM5GBAbCLudoMFiQ4CvCtvPF+P3E/lQKWT47OGBuNVRQn/5jME4kl3B3QgsSoUcT4xIxP2DYlDdYEF0oA9MVjve2nAO3+7Lxue7MnAgsxwfT+3PPXTlMqcZly06KXZ4v6Dui6+aM9x6K5Ru6xGGbeeLUVxjwoXCGgxsIiXF3zcbWWOH5g6IC8ShrAoczqrA/YNiRO27wiWyEuirRl5Fg+hjUFHn3J7tpNi01Ve7MxGkU6POZMPH2y6hqNqEMH8Nvn18SJPRE1d0GiU+eLAfHvnqAIJ1Grw8vhtu7xXebFpRq1JgxVNDAQD1ZivuXbIX5wtr8MwPR7DyqaFcBJI/2o8lrVsoDmdX4N+bLmB09zBEBfjAZieYvfI4MkrqEGHQYsnDAwUjsgCm81/77E2CZf+6owcIIbjZMY3H67+fxR+Ocgf8tFCArwq1JiumfrkfRdUmTB0Si7cm9YJMJkNlvRmrHJ3ikyMS0Vm4s08EVh/Oxe5LjNB4ckQi5/PyhMFHhRVPDQUhBAPjjM2uCzDRkGUzBqPOZEWvKAPsdgKjn5qLFvaOMuD2XuFcKhVwnhc2Kgk4o7xbzxUjIcQPFpvTV8QvDQA476GyOjM2nCrEqStV0CjleOve3pix/BAOZJbDZicorzPjSmUDZDKm/lCoXovC6kbkVzY2WR8os7QOU7/Yj6hApmBkVYMFMUYfzJvYE9OWHcTms0VYOIlJ3bLXy939IiWPSuxs+KiZKU2Ka0zILquXJLIoVCi1K4YkGDGxbyR+P5HfZLl5hVyGj6f250QSwAwhHxTv+WFp8FFxDy+tSoEFd/fC8KQg/N/PJ3E8txITPtyNmSMYT1Sgr5oLMRvZIdciRYKg7ouvioFuDQIAACAASURBVHuINlrsaDDbROXSK+rMSC9hQsP9YwPRPcIfxTUlOFdQ3axQ2nyuCFUNFvioFFytm6EJQfh8ZwZ+PpqHW5JDcAev8KAnqnipQ8AZVWtp5Nu+9DLsvFjCzckWyBMc9w+Kxh9nC5FX0YA5q5znNCrAB1/PGMQNTxfDgNhAHJp7K3xUCsmpAF+1Ep8/OhATP/4Tx3Iq8eS3R7Do3t6ICvBpMvX21C2J2Hy2CMdzKzFn1XG8cXcvfL4rHdvOF0OjlOOLRwdxgwdaIjbIF19NZ0a95ZbX4/Xfz3IpSn5aKCrAB3kVDShyDEJYcTAHRj8Vnh6ZhH/8chINFhu6R/jjpi7iRzK2d2QyGRbc3Qt3fLQbeq0S04fHi9pOaq0efrpVLpdheFIQ1p0sAACM7REmGB2q4ZU7mD4sHnqtEjd3Ccb/Thdi8eaL+ONsISfQhiUG4UBmmXMwgI8wGltaa8KzPx4FANw3MBojuoZAr1GiptGKcwXV3ITEXUN10GtViAxghFJBZQP6RBmwePNFdAnV4R5H1fO1x66gsLoRhdWN3EvVo0PjMCwpCAYfFcrqzDiSXYGUMD02OqJLDwxyjrC7kYkL8mWEUnm96NFyFAYqlNoZcyd0R055PUwWG8L8tfBVK1BZb4HFZseTtyRiXE9pRsSmuL1XBHpFGfD8imM4mlPJzXzOjyiwxvAvd2fA4KPCA4NjPBpsAaeY8HMYgtUKArVCDrPNjvJ6M6LUPh63ZTmWyzz4EkP8YPRTo1uEHjsvljQ78q3e7Jxi4rGb4rkIx8jkENw7IAprjl7B8yuPAUCLYskZUXJNH5iRX9kAk9Uu8GsRQvDFrgz8v43nwZ9Wjx8h6h7hjy0vjMSyPZn4dNtl+GqU+GtaFzw4JIaL6EjBT+P9LRsX5IePpvbHk98exq6LJbht8U7cOyAKpxxeF75pX6WQ48MH+2HCh7txMLMc4z7Yxf3tncl93Oa2EkuM0RddQnXcSCt+ROmte3tj18USJIXokFlah3m/ncGn29Ox8mAuyurMUMhl+Pu41p2JvT2QEOyHrS+OhEohF0y6ey0Z0TWYE0q39QxDUogOfmoF6sw2wXPA4KvCY44Jmm2EYPHmi9h1qZQTuqO7haLWZOXKW7DnM0Sv4aJWeq0So7uF4v/GpUAhl2FwghHbzhdj16USbnqemx2m9cgAHxzNqcSVygbszyzDJ9svQ6OU4/Ze4dCqFDiUxRizb0kOwcXCGigVMkwZFAOVQo4x3UKx5tgVfLsvCzqNEmarHd0j/NEryr1Q6I1IXJAfDmVVIIf6lCRDhVI7I9ygxa8uqYtrQXSgL1Y9PQzvb76Iz3amgxCnHwEApgyOwZZzRUgvqcMr/z2FpTvTMbFvBO7sE9lkhWI2jM+KBKaWigrFNSZU1JkRFdC8ULLbCf57jDGzDnS8LbNTeZwr8Gzo/njbZVypbEBUgA+eG92VWy6Xy/DvyUx15TVHr+C5FUdRUd9LYDzmY7MTrniiwceZegOA1Ydz8c7GCzDb7BgcH4h7+keh0WLHgYwyLoU0plsoakxWZJbWcZOismhVCswa1QWPDU+AUiFrthbLtWZUSig2PD8Cr/z3FA5lVeD7/Tnc32JcoltxQX6Yf3cvvPTTCSjlMoxKCcUjQ2PdBgJIJS0lpEmhlBSi44z3tySHoLLegve3XERZnRnRgT74aGr/a171uK3gp7iuB2kpodBrlUgM9kNKmB4ymQxDEozYfqFE4FXjkxKmR1yQL7LL6rmJmgfGB6Kk1sQJJXZbjVKBX5+9CWV1ZvSK9BeMQhyayAilj7ZeQqPFjiA/NTe5LPucyK9s5CKdJqsdh7MqkJpo5FLsr97RXeBTA4CxPcOw5tgVTgACwIODYzqdsPaWOIc9I4uOfJMMFUo3MCqFHP93ezcMSwrCu39cxIODnSHqpBAdNs6+Bd/ty8YHWy4ip7wen25Px6fb0zGiazBm35osSIfx/Uks7ND4vIoGnCuoRo9If/SMdI9E2O0Ec9eexu8n8iGTgTPlstM8XCisaXIUzKWiGny5i6kw/PpdPd3SewqHWFLKZVh9OA+vrj2Ny8W1CDdosftSCcpqzVAp5AjwVeHRoXFOI6vL0OiLRUynLpMBh7IqcCjLaRCXy8D4I4bFtfhAFjuU91rTNUyPVU8Nw28n8nG2oBoGHxVC9RpuEl4+kwdGo1eUP4J1mibLBHhDWrdQriaUfzN+nOfHdIFWJUdprQnPjena7LoUaYT6a7Hr72lQK+XcdTs8KRjbL5QIKj/zkclkGNsjjDt3aqUcPSP9UVVvwReO+5DvfYkx+jZpnmZHPLKjNl+b2IN7wYpwmL3zKxtQzCuYu+tSCXRaJefZ7NLESNZRKaHoE21AQVUj+sUEIDXByE1sSwFXuJdW55YOFUoUjOgaghFd3eu1qBRyPH5zAh4YHIOt54ux/mQ+tp4rxu5Lpdh9qRTh/lpEBmgRF+THmTn5aSdWaMz64QjshPE+fDFtEEYmh6DebMX6kwVIL6nDybxK7E0vg1wGvHt/X9zsGJWTGOIHtULOTWXCr9BdXNOIJ749DKudYEy3UNzWo+lRYwq5DG/f1wcxgb54b/NFfLM3q8n1WDOtTqPkIj7xwcz+jH5qzJvYA0MTg7DqUC72XC5FsE6D6EAfjO0Z3qx/qr0il8twT/8ozvvRHKxgbS0GxRm50gv+Pp4fQTKZDE+PTGrVfVOcuA4iuHdAFPaml+KBwZ4HP4ztGc4Jpb7RBmiUCgxOMEIhl8FmJx6jUXx6RPhz539kcoggAhvpiChdKq4RRD52XSzhpmgaFGds0qOnVSnw219vbnH/NypciQBanVsyVChRWsRPo8RdfSNxV99I5JTV49Ptl/HL0TzOVMmvpM03MrM1hOwE3IPxyf8cxrRhcVh7/ApXURxgIjPvP9BPMMRbpZAjOVyH01eqsfFMAZ66hek0qxstmLHsELLL6hFj9MGie91ndecjk8nw3JiuiA3yxXt/MObQkckhSArRwWK3Y/3JAvx8JA+AcIj8nX0iEeSnQc9If65TeX5MVzw/pmuT+6GIQ62UY2RyCNafKkCYh5nPKdefIJ0Gyx8b0uw6A2IDEaxTo7TWzBm6dRol7hsQhb3pZegWoW92e4AZkfvkiET8cbYQCx2jGllYocQO6gjWaVBaa8L5whqsP8Wk1IYkdLwXk/YAm3orqja5FeakNI+MEL4NldIS1dXVMBgMqKqqgr//jWsSrKq3IKusDlcqG3CpqBbHciuQW16PV+/sgTSHh+VYTgW+2ZuFCb0jMDI5BHNWHcf/TjvrnMQafZGWEoIYoy+GJgY1OTP3yoM5+OeaU/BVK7DlhZEw+Kjw2PJDOJhVjmCdBj//ZRjiRRbEbI7/nSrAG+vO4o4+EZh7R4+r/j5K8xRXN+Lno3mYPiz+qgzqlOvPp9sv47Md6Vj99DD0iHQ+A6VUwfdEeZ0ZA97YzH2eOiQGp65UcZNGA8B/Zw1H/07qVbuWEELQd/4fqG604o85t7h5vG4EvO2/b0ihtG7dOrz44ouw2+34xz/+gSeeeEL0tlQoeY/VZsfrv5/BgYxyPHZTAu4fFN2isdluJ5jy+T4czq7A6G6hqGm04FBWBfQaJVY8NbRJcUWhUDomhBB0f20j51/6aGp/nCuoxmc70gEAWpUcJ+eNc6vfRRHHnR/vxukr1fh6+iCM6d58kdvOiLf99w33Kme1WvHCCy9g+/bt8Pf3x4ABA3DvvffCaGy5cBvl6lAq5HjznubTZK7I5TIsnNQbd3y0G9vOMxPH6rVKfDczlYokCqWTIZPJEBnggwxH6m1YYhCCdWpOKPWPCaQi6SpgfV5ltbQ6txRuuCvu4MGD6NmzJ6KioqDX6zFhwgRs2rSprZtFaYaUcD2ecFRj9tcq8cMTqehHC6ZRKJ2SSEephOQwHUL0GmbyV4efZnACfaG9GqQWEqYwdDihtGvXLkycOBGRkZGQyWRYu3at2zpLlixBQkICtFotBg4ciN27d3N/y8/PR1SU0zAcHR2NK1euXJe2U7znxbHJePf+vvjtrzejTzQVSRRKZyXGyAil4UnM6FeNUoG7+0VCpZDh9lYouHsjY3RMclwuYi49ipMOJ5Tq6urQt29ffPLJJ03+fdWqVZg9ezbmzp2LY8eOYcSIERg/fjxycpjCek1ZsmhBsvaPSiHH5IHRrWLcplAo7ZenbknCI0Nj8WxaF27ZG/f0wuFXbxOYxynSoREl7+hwHqXx48dj/PjxHv++ePFizJw5kzNof/DBB9i0aRM+++wzLFq0CFFRUYIIUl5eHlJTUz1+n8lkgsnkVN/V1Z6n06BQKBTK1ZEQ7OfmZVQp5DD4dLj3+nZHkKPMSTkVSpLoVFee2WzGkSNHMHbsWMHysWPHYu/evQCAIUOG4PTp07hy5QpqamqwYcMGjBs3zuN3Llq0CAaDgfsXEyNuJnoKhUKhUNoTRiqUvKJTCaXS0lLYbDaEhQmHPYaFhaGwkKnfo1Qq8d577yEtLQ39+/fH3//+dwQFeZ6N/OWXX0ZVVRX3Lzc395r+BgqFQqFQrgVGHRVK3tDhUm9icPUcuRZCu+uuu3DXXXeJ+i6NRgONpnXmuKJQKBQKpa2gqTfv6FQRpeDgYCgUCi56xFJcXOwWZaJQKBQK5UaCnYqp3mxDo8XWxq3pOHQqoaRWqzFw4EBs3rxZsHzz5s0YPnx4G7WKQqFQKJS2R69RQqVgsit05Jt4Olzqrba2FpcvX+Y+Z2Zm4vjx4zAa/3979x4dZXXvf/wzud9D7pdCQkTRarhIUAQFgf6KRAEr6sGjInjQUw4iIrKqLMULB6XWihx/HFCqLdrjOrBqlXYt+YmxRQHBKoEol4qAkaAEIoHcIRky+/dHmIExDGQmkzyTzPu1VtaaeeaZme92B/mw9372k6ycnBzNmTNHkydP1uDBgzV06FCtWLFCZWVlmj59uoVVAwBgLZvNpuTYCB2padSxuib95PRNiHF+XS4obd26VaNGjXI9nzNnjiRpypQpWrlypSZNmqTKykotWLBA5eXlys/P19q1a5Wbm2tVyQAABITk2EgdqWlUJZtOtlmXC0ojR44856aRZ5sxY4ZmzJjRSRUBANA1OBd0H29g6q2tutUaJQAA4JlzLyVujNt2BCUAAIIEm056j6AEAECQICh5j6AEAECQcE29EZTajKAEAECQYHdu7xGUAAAIEky9eY+gBABAkEjhxrheIygBABAkkmJaglL1CbvszQ6Lq+kaCEoAAASJHjERsrXc7o1NJ9uIoAQAQJAIDbG5RpWYfmsbghIAAEHEtaCb3bnbhKAEAEAQYS8l7xCUAAAIItwY1zsEJQAAgkgSN8b1CkEJAIAgwu7c3iEoAQAQRNid2zsEJQAAgkhWYrQkaf8PdRZX0jUQlAAACCJX5vSQJO05Uqvak3aLqwl8BCUAAIJIRkKUeiZFyxhpe1mV1eUEPIISAABBZnBukiSp+MBxiysJfAQlAACCTEHvZEkEpbYgKAEAEGQKclpGlLaXHVezw1hcTWAjKAEAEGQuzYxXXGSY6pua9dXhGqvLCWgEJQAAgkxoiM119ds2pt/Oi6AEAEAQKji9oHsrQem8CEoAAAShwbks6G4LghIAAEFoYE4Phdik746f0A+1jVaXE7AISgAABKG4yDClxUdKko7UnLS4msBFUAIAIEilxLYEpUpukOsRQQkAgCCVEhchSaqsY+rNE4ISAABBKiXWGZQYUfKEoAQAQJBKiWuZejtaz4iSJwQlAACC1JmpN0aUPCEoAQAQpFKdi7lZo+QRQQkAgCDlGlHiqjePCEoAAAQp5xolpt48IygBABCknFe9Ha1rlDFGjaeaNe7/btRDq7ZbXFngICgBABCknFNvjaccqm9q1lfltdr5fY3e+7JcxhiLqwsMBCUAAIJUTESYYiJCJUnH6pp04FiDJOmUw6i28ZSVpQUMghIAAEEs2Tn9Vt+ossp61/GqertVJQUUghIAAEHs7AXdZadHlCTpWAMLvCWCEgAAQS019sz93g5UnglKxwlKkghKAAAEtbP3Ujp7RKmKoCSJoAQAQFBzTr19X3VCh2tOuo4fZ42SJIISAABBzbmX0hcHq3T2jgCMKLUgKAEAEMRST48ofXW41u04i7lbEJQAAAhizjVKzQ73DSaPNzD1JhGUAAAIaimxkW7P0+JbnjP11oKgBABAEHOOKDkN6NlDEou5nQhKAAAEsaQY96A0sFeiJEaUnAhKAAAEsYiwECVGh7ueD+jVMqLEYu4WBCUAAIKcc/otNMSmK7JbRpRO2h06aW+2sqyAQFACACDIpZ5e0J3dI0pJMeEKC7FJ4jYmkhTmzcllZWU+fUmPHj2UkJDg03sBAEDHco4o5STHyGazqUdMhI7WNep4vV1ZidEWV2ctr4JS7969vf4Cm82mp556Sk8++aTX7wUAAB3vTFCKlSQlxYTraF0jC7rlZVByOBwdVQcAALDIjflZ2ry/UuMHZEk6cyUcC7q9DEp5eXmy2Wxef8ns2bM1a9Ysr9/XEQ4ePKjJkyeroqJCYWFhmj9/vm6//XarywIAwDLDLk7V3x8Z6XreI6blKjh25/YyKK1cudKnL/Flyq6jhIWFacmSJRo4cKAqKio0aNAg3XjjjYqNjbW6NAAAAkLy6RvlVtUzouRVULr++us7qo5Ok5WVpayslqHF9PR0JScn69ixYwQlAABO63F66o0RpQDcHmDDhg0aP368srOzZbPZtGbNmlbnLFu2THl5eYqKilJBQYE2btzo03dt3bpVDodDvXr1am/ZAAB0G0mnp95YzO3liNKcOXPafO7ixYu9LkaS6uvrNWDAAN1777269dZbW72+evVqzZ49W8uWLdO1116rV199VYWFhdq9e7dycnIkSQUFBWpsbGz13g8++EDZ2dmSpMrKSt1zzz167bXXfKoTAIDuisXcZ3gVlLZv396m83xZ8O1UWFiowsJCj68vXrxY06ZN03333SdJWrJkidatW6fly5dr0aJFkqTi4uLzfkdjY6NuueUWzZs3T8OGDbvguWeHrpqamrY2BQCALikplqk3J6+C0vr16zuqjjZpampScXGxHnvsMbfjY8aM0ebNm9v0GcYYTZ06VaNHj9bkyZMveP6iRYv0zDPP+FQvAABdEVNvZwTcGqXzOXr0qJqbm5WRkeF2PCMjQ4cPH27TZ3zyySdavXq11qxZo4EDB2rgwIHasWOHx/PnzZun6upq18/Bgwfb1QYAAAKdazE3V715N6J0Lrt371ZZWZmamtz/Y06YMKG9H+3Rj6f2jDFtnu677rrrvNo4MzIyUpGRkV7VBwBAV+YcUao5eUqnmh0KC+1S4yp+5XNQ+uabb3TLLbdox44dstlsMsZIOhNimpv9f8fh1NRUhYaGtho9qqioaDXKBAAAfJMYHe56XHXCrtS44B0w8DkiPvTQQ8rLy9ORI0cUExOjXbt2acOGDRo8eLA++ugjP5Z4RkREhAoKClRUVOR2vKio6IKLsgEAQNuEhYa4wlKwr1PyeURpy5Yt+vvf/660tDSFhIQoJCRE1113nRYtWqRZs2a1+Qq5H6urq9O+fftcz0tLS1VSUqLk5GTl5ORozpw5mjx5sgYPHqyhQ4dqxYoVKisr0/Tp031tCgAA+JGkmHBVn7AH/ZVvPgel5uZmxcXFSWqZEjt06JAuvfRS5ebmas+ePT4XtHXrVo0aNcr13Ll305QpU7Ry5UpNmjRJlZWVWrBggcrLy5Wfn6+1a9cqNzfX5+8EAADuesRESJUNQb+g2+eglJ+fry+//FIXXXSRhgwZot/85jeKiIjQihUrdNFFF/lc0MiRI13rnTyZMWOGZsyY4fN3AACA83Pe7+0YQck3TzzxhOrr6yVJCxcu1Lhx4zR8+HClpKRo1apVfisQAAB0PmdQqiQo+eaGG25wPb7ooou0e/duHTt2TElJSe3amRsAAFgvJY4RJakdQWnBggXnff3JJ5/09aMBAIDFUph6k9SOoPTuu++6Pbfb7SotLVVYWJj69OlDUAIAoAtLjm3ZO+loXeubzAcTn4PSuS7/r6mp0dSpU3XLLbe0qygAAGAtpt5a+HVP8oSEBC1YsEDz58/358cCAIBO5px6q6wjKPlVVVWVqqur/f2xAACgE6Wcvm3JsfqmC27b0535PPX28ssvuz03xqi8vFx//OMfNXbs2HYXBgAArOMcUWpqdqiu8ZTio8Iv8I7uyeeg9NJLL7k9DwkJUVpamqZMmaJ58+a1uzAAAGCdqPBQxUSEqqGpWZV1TQQlb5WWlvqzDgAAEGBS4iLUcOyEKuub1Ds11upyLOH3NUoAAKB7cG4RUBnEWwR4NaLkvEFtWyxevNjrYgAAQOBIZdNJ74LSj/dOKi4uVnNzsy699FJJ0tdff63Q0FAVFBT4r0IAAGAJ7vfmZVBav3696/HixYsVHx+vN954Q0lJSZKk48eP695779Xw4cP9WyUAAOh0yXHspeTzGqUXX3xRixYtcoUkSUpKStLChQv14osv+qU4AABgndRY515KwbtGyeegVFNToyNHjrQ6XlFRodra2nYVBQAArMfUWzuC0i233KJ7771Xb7/9tr777jt99913evvttzVt2jRNnDjRnzUCAAALMPXWjn2UXnnlFc2dO1d333237HZ7y4eFhWnatGl64YUX/FYgAACwxpmpN4KS12JiYrRs2TK98MIL2r9/v4wxuvjiixUbG5wbUgEA0N24RpTqG2WMkc1ms7iizudzUHKKjY1V//79/VELAAAIIM77vdmbjWobTykhCG9j4vWGk//5n/+p2NjYC24+yYaTAAB0bVHhoYqNCFV9U7OO1TURlC5k+/btrvVIP9588mzBODQHAEB3lBwXofpjJ1RZ3xiU93vzecPJsx8DAIDuKSU2UgePnQjaK9983h7gxIkTamhocD0/cOCAlixZog8++MAvhQEAAOulBPleSj4HpZtvvllvvvmmJKmqqkpXX321XnzxRd18881avny53woEAADWSYkL7hvj+hyUtm3b5rqn29tvv63MzEwdOHBAb775pl5++WW/FQgAAKyTfHovJabevNTQ0KD4+HhJ0gcffKCJEycqJCRE11xzjQ4cOOC3AgEAgHXOTL0F5/3efA5KF198sdasWaODBw9q3bp1GjNmjKSWe70lJCT4rUAAAGCdlCC/jYnPQenJJ5/U3Llz1bt3bw0ZMkRDhw6V1DK6dOWVV/qtQAAAYJ2UuJapt6N1wTmi5PPO3Lfddpuuu+46lZeXa8CAAa7jP/vZz3TLLbf4pTgAAGCt9PiWoPRDLUHJa5mZmcrMzHQ7dvXVV7erIAAAEDjSTgelyvom2ZsdCg/1eTKqS2pXazdu3Ki7775bQ4cO1ffffy9J+uMf/6hNmzb5pTgAAGCt5JgIhYW03HEjGNcp+RyU/vznP+uGG25QdHS0tm/frsbGliG52tpaPffcc34rEAAAWCckxKbU0+uUKmpPWlxN5/M5KC1cuFCvvPKKfve73yk8/MxN8oYNG6Zt27b5pTgAAGA95/RbRU3wrVPyOSjt2bNHI0aMaHU8ISFBVVVV7SoKAAAEDteC7iC88s3noJSVlaV9+/a1Or5p0yZddNFF7SoKAAAEjvQERpS89stf/lIPPfSQ/vGPf8hms+nQoUN66623NHfuXM2YMcOfNQIAAAulBfEaJZ+3B/jVr36l6upqjRo1SidPntSIESMUGRmpuXPnaubMmf6sEQAAWCgtIUpScO6l1K59lJ599lk9/vjj2r17txwOhy6//HLFxcX5qzYAABAAnGuUKoIwKPk09Wa32zVq1Ch9/fXXiomJ0eDBg3X11VcTkgAA6IbSgnh3bp+CUnh4uHbu3CmbzebvegAAQIA5+zYmxhiLq+lcPi/mvueee/T666/7sxYAABCAnBtONjU7VH3CbnE1ncvnNUpNTU167bXXVFRUpMGDBys2Ntbt9cWLF7e7OAAAYL2o8FAlRoer+oRdFbWN6hETYXVJncbnoLRz504NGjRIkvT111+7vcaUHAAA3Ut6fKSqT9j1Q22j+mbEW11Op/E5KK1fv96fdQAAgACWFh+pvRV1QbeXkldBqayszKcv6dGjhxISEnx6LwAAsF56kN7vzaug1Lt3b6+/wGaz6amnntKTTz7p9XsBAEBgSA/STSe9CkoOh6Oj6gAAAAHszG1MCEoe5eXl+bRQe/bs2Zo1a5bX7wMAAIHBdWNc1ih5tnLlSp++xJcpOwAAEDicI0pMvZ3H9ddf31F1AACAAHZmRCm4gpLPO3MDAIDgkRbfspi79uQpnbQ3W1xN5yEoAQCAC0qIClNEWEtsCKYtAghKAADggmw2m7ITW0aVvjveYHE1nYegBAAA2qRPWpwkaf8PdRZX0nkISgAAoE36pDuDUr3FlXSeoA1KDQ0Nys3N1dy5c60uBQCALqFPWqwkRpSCwrPPPqshQ4ZYXQYAAF2Gc+rtG0aUure9e/fqq6++0o033mh1KQAAdBnOoPR91Qk1NJ2yuJrOEXBBacOGDRo/fryys7Nls9m0Zs2aVucsW7ZMeXl5ioqKUkFBgTZu3OjVd8ydO1eLFi3yV8kAAASFpNgIJcWESwqeUaWAC0r19fUaMGCAli5des7XV69erdmzZ+vxxx/X9u3bNXz4cBUWFqqsrMx1TkFBgfLz81v9HDp0SH/5y1/Ut29f9e3bt7OaBABAt+GafjsaHEHJq1uYdIbCwkIVFhZ6fH3x4sWaNm2a7rvvPknSkiVLtG7dOi1fvtw1SlRcXOzx/Z9++qlWrVqlP/3pT6qrq5PdbldCQoKefPLJc57f2NioxsYzG2vV1NT40iwAALqFPmlx2nrguPZXBMeC7oAbUTqfpqYmFRcXa8yYMW7Hx4wZo82bN7fpMxYtWqSDBw/qjK5YQQAAG+FJREFU22+/1W9/+1vdf//9HkOS8/zExETXT69evdrVBgAAurI+6cF15VuXCkpHjx5Vc3OzMjIy3I5nZGTo8OHDHfKd8+bNU3V1tevn4MGDHfI9AAB0BWc2nWTqLWDZbDa358aYVsfaYurUqRc8JzIyUpGRkV5/NgAA3ZEzKJUerZPDYRQS4v3fv11JlxpRSk1NVWhoaKvRo4qKilajTAAAwP96JkUrPNSmk3aHDlWfsLqcDtelglJERIQKCgpUVFTkdryoqEjDhg2zqCoAAIJHWGiIeqc41yl1/+m3gJt6q6ur0759+1zPS0tLVVJSouTkZOXk5GjOnDmaPHmyBg8erKFDh2rFihUqKyvT9OnTLawaAIDg0SctTnsr6rS/ok7X902zupwOFXBBaevWrRo1apTr+Zw5cyRJU6ZM0cqVKzVp0iRVVlZqwYIFKi8vV35+vtauXavc3FyrSgYAIKhcnB4n7ZI276/Uv12XZ3U5HcpmjDFWF9GV1NTUKDExUdXV1UpISLC6HAAAOt3eI7W6YckGOYy05oFrNbBXD6tLuiBf//7uUmuUAACA9S7JiNfEQT0lSc//v6/UncdcCEoAAMBrs//PJYoIDdGWbyq1ce9Rq8vpMAQlAADgtZ5JMbr7mpb1wc+//5WaHd1zVImgBAAAfPLAqD6KjwzTrkM1WrHhG6vL6RAEJQAA4JOUuEjNH3+5JOmloq+153CtxRX5H0EJAAD47PaCnvrZZelqanZo7p++kL3ZYXVJfkVQAgAAPrPZbHpuYj8lRodrx/fVWruj3OqS/IqgBAAA2iUjIUo39c+SJO2vqLO4Gv8iKAEAgHbLToySJJVXn7S4Ev8iKAEAgHbLTIyWJB2uISgBAAC4YUQJAADAg0xnUKo60a1uaUJQAgAA7eYMSvVNzaptPGVxNf5DUAIAAO0WExGmxOhwSdLhbjT9RlACAAB+kdUN1ykRlAAAgF84p98OV5+wuBL/ISgBAAC/YEQJAADAg6zTeymVVxGUAAAA3Li2COhGm04SlAAAgF9ksUYJAADg3FijBAAA4IHzfm+1J0+prptsOklQAgAAfhEXGab4yDBJ3WfTSYISAADwmzN7KRGUAAAA3GT1aJl+O9RNFnQTlAAAgN9kJTCiBAAAcE6Z3ezKN4ISAADwm+62lxJBCQAA+I1zROlQN7mNCUEJAAD4Ta/kGEnSd8cbZIyxuJr2IygBAAC/+UmPaNlsUn1Ts47VN1ldTrsRlAAAgN9EhYcq8/SVb2XHGiyupv0ISgAAwK+c028EJQAAgB/JOR2UDhKUAAAA3OUwogQAAHBuBCUAAAAPermm3rr+ppMEJQAA4FfOEaVD1SfUdMphcTXtQ1ACAAB+lRoXoejwUBkjfV/VtUeVCEoAAMCvbDZbt1mnRFACAAB+1132UiIoAQAAv+sueykRlAAAgN/lJEdLksoqCUoAAABuclKYegMAADins6fejDEWV+M7ghIAAPC7nkktQam28ZSqGuwWV+M7ghIAAPC7qPBQZSRESpL2VtRZXI3vCEoAAKBDDMlLkSS99+UhiyvxHUEJAAB0iNsKekqS/vLFITWeara4Gt8QlAAAQIe49uJUZSZEqarBrr/9s8LqcnxCUAIAAB0iNMSmiYN+Ikl6u/g7t9camk5p096jsjcH9k1zCUoAAKDD3Hp6+u3jr39QRc1J1/GX/7ZPd7/+D/35RwEq0BCUAABAh+mTFqdBOT3U7DBaU/K96/i+01fCHTwe2BtSEpQAAECHuql/tiRp67fHXcd+qGuUJNU3BvYib4ISAADoUD2TWu77VlHb6Dp29PTjusZTltTUVgQlAADQodLjWzaedK5RMsboB2dQOklQCjilpaUaNWqULr/8cvXr10/19fVWlwQAQLeVkRAlqWW6zRijmhOn1HT6arf6psAOSmFWF2CFqVOnauHChRo+fLiOHTumyMhIq0sCAKDbSo1r+XvW3mx0vMGuY/VnpuBqGVEKLLt27VJ4eLiGDx8uSUpOTlZYWFDmRQAAOkVEWIhSYiMkSUdqTrqtVapnjZJ3NmzYoPHjxys7O1s2m01r1qxpdc6yZcuUl5enqKgoFRQUaOPGjW3+/L179youLk4TJkzQoEGD9Nxzz/mzfAAAcA5pznVKtY2u9UlS4C/mDrihlPr6eg0YMED33nuvbr311lavr169WrNnz9ayZct07bXX6tVXX1VhYaF2796tnJwcSVJBQYEaGxtbvfeDDz6Q3W7Xxo0bVVJSovT0dI0dO1ZXXXWVfv7zn3d42wAACFbpCVH66nCtjtScVM0Ju+s4QclLhYWFKiws9Pj64sWLNW3aNN13332SpCVLlmjdunVavny5Fi1aJEkqLi72+P6ePXvqqquuUq9evSRJN954o0pKSjwGpcbGRrfQVVNT43WbAAAIdhmnR5R+qG1UzckzQam+8ZSMMbLZbFaVdl4BN/V2Pk1NTSouLtaYMWPcjo8ZM0abN29u02dcddVVOnLkiI4fPy6Hw6ENGzbopz/9qcfzFy1apMTERNePM2ABAIC2S084s0XA0dom13GHkU7YA3fTyS4VlI4eParm5mZlZGS4Hc/IyNDhw4fb9BlhYWF67rnnNGLECPXv31+XXHKJxo0b5/H8efPmqbq62vVz8ODBdrUBAIBg5Nwi4EhNo2tXbqdAnn4LuKm3tvjx8Jy3Q3YXmt47W2RkJNsHAADQTq5NJ2tP6oTd4fZa3clTSo+3oqoL61JBKTU1VaGhoa1GjyoqKlqNMgEAgMCRFn9mRKnxlHtQCuT7vXWpqbeIiAgVFBSoqKjI7XhRUZGGDRtmUVUAAOBCMhLOLOZ2bjiZGB0uSapttHt8n9UCbkSprq5O+/btcz0vLS1VSUmJkpOTlZOTozlz5mjy5MkaPHiwhg4dqhUrVqisrEzTp0+3sGoAAHA+zn2UnLcuCbFJOckx2vF9dUCPKAVcUNq6datGjRrlej5nzhxJ0pQpU7Ry5UpNmjRJlZWVWrBggcrLy5Wfn6+1a9cqNzfXqpIBAMAFRIaFKikmXMcbWkaPkmMjXSNKgbw7d8AFpZEjR8oYc95zZsyYoRkzZnRSRQAAwB/S46NcQSktPlKxkaGSpNoADkpdao0SAADoupx7KUktQSkuMvBHlAhKAACgU6SfvvJNktLiIhV3ekSp7mTgBqWAm3oDAADd09kjSqnxEQo9vQciG04CAICg57zfm9QyouS8Ai6QgxJTbwAAoFOkJ5w19RYfqbjIlvGaQF6jxIgSAADoFOnx7ou5mx0tV7kzogQAAIJexlkjSunxkYo9PaJEUAIAAEEvLT5SEaEhCg2xKT0hSvFMvQEAALSICg/V0juv1CmHUUJU+JkRJbYHAAAAkMZckel6HBfF1BsAAMA5xZ21RulCty+zCkEJAABYwjn15jDSSbvD4mrOjaAEAAAsERMeqtObc6u20W5tMR4QlAAAgCVCQmyKjXBe+dZscTXnRlACAACWCfTduQlKAADAMrGRoZKk2gDdIoCgBAAALBMXFS6JESUAAIBW4k6PKAXqXkoEJQAAYBnnYm6CEgAAwI8E+u7cBCUAAGAZrnoDAADw4OzbmAQighIAALCM8zYmdWwPAAAA4C7+9Bql+iaCEgAAgBvnVW9sOAkAAPAjsSzmBgAAOLd4tgcAAAA4N2dQqj5ht7iScyMoAQAAy/RMipEkHalp1El7s8XVtEZQAgAAlkmKCVdidMuNcb+trLe4mtYISgAAwDI2m015qbGSpNIfCEoAAABunEHpm6MEJQAAADfOoPQtQQkAAMCda+qNoAQAAOCOoAQAAOCBMyhV1jepuiGw9lMiKAEAAEvFRoYpPT5SklQaYFsEEJQAAIDlAnVBN0EJAABY7qK0wNwigKAEAAAsF6gLuglKAADAcr1TnEGpzuJK3BGUAACA5ZxTb6U/1MsYY3E1ZxCUAACA5XolxyjEJtU3NeuH2kary3EhKAEAAMtFhoWqZ1KMpMBap0RQAgAAASEvNVbxkWE6HkCbToZZXQAAAIAkvXJ3gaLCQ2Sz2awuxYWgBAAAAkJ0RKjVJbTC1BsAAIAHBCUAAAAPCEoAAAAeEJQAAAA8ICgBAAB4QFACAADwgKAEAADgAUEJAADAA4ISAACABwQlAAAADwhKAAAAHhCUAAAAPCAoAQAAeBBmdQFdjTFGklRTU2NxJQAAoK2cf287/x5vK4KSl2prayVJvXr1srgSAADgrdraWiUmJrb5fJvxNloFOYfDoUOHDik+Pl42m81vn1tTU6NevXrp4MGDSkhI8NvnBrJgazPt7d6Crb1S8LWZ9nZtxhjV1tYqOztbISFtX3nEiJKXQkJC1LNnzw77/ISEhG7xC+mNYGsz7e3egq29UvC1mfZ2Xd6MJDmxmBsAAMADghIAAIAHoU8//fTTVheBFqGhoRo5cqTCwoJnRjTY2kx7u7dga68UfG2mvcGHxdwAAAAeMPUGAADgAUEJAADAA4ISAACABwQlAAAADwhKAWLZsmXKy8tTVFSUCgoKtHHjRqtL8otFixbpqquuUnx8vNLT0/WLX/xCe/bscTtn5MiRstlsbj933HGHRRW3z9NPP92qLZmZma7XjTF6+umnlZ2drejoaI0cOVK7du2ysOL26927d6s222w2PfDAA5K6fv9u2LBB48ePV3Z2tmw2m9asWeP2elv69Pjx45o8ebISExOVmJioyZMnq6qqqjOb0Wbna6/dbtejjz6qfv36KTY2VtnZ2brnnnt06NAht8841+/EY4891tlNaZML9e/UqVNbteWaa65xO6exsVEPPvigUlNTFRsbqwkTJui7777rzGZ45UJtPtefZ5vNphdeeMF1Tlfq4/YiKAWA1atXa/bs2Xr88ce1fft2DR8+XIWFhSorK7O6tHb7+OOP9cADD+jTTz9VUVGRTp06pTFjxqi+vt7tvPvvv1/l5eWun1dffdWiitvviiuucGvLjh07XK/95je/0eLFi7V06VJ9/vnnyszM1M9//nPXPQS7os8//9ytvUVFRZKk22+/3XVOV+7f+vp6DRgwQEuXLj3n623p0zvvvFMlJSV6//339f7776ukpESTJ0/urCZ45XztbWho0LZt2zR//nxt27ZN77zzjr7++mtNmDCh1bkLFixw6/MnnniiM8r32oX6V5LGjh3r1pa1a9e6vT579my9++67WrVqlTZt2qS6ujqNGzdOzc3NHV2+Ty7U5rPbWl5ert///vey2Wy69dZb3c7rKn3cbgaWu/rqq8306dPdjl122WXmscces6iijlNRUWEkmY8//th17PrrrzcPPfSQhVX5z1NPPWUGDBhwztccDofJzMw0v/71r13HTp48aRITE80rr7zSWSV2uIceesj06dPHOBwOY0z36l9J5t1333U9b0uf7t6920gyn376qeucLVu2GEnmq6++6rziffDj9p7LZ599ZiSZAwcOuI7l5uaal156qaPL87tztXfKlCnm5ptv9vieqqoqEx4eblatWuU69v3335uQkBDz/vvvd1it/tKWPr755pvN6NGj3Y511T72BSNKFmtqalJxcbHGjBnjdnzMmDHavHmzRVV1nOrqaklScnKy2/G33npLqampuuKKKzR37twuPcKyd+9eZWdnKy8vT3fccYe++eYbSVJpaakOHz7s1teRkZG6/vrru01fNzU16X/+53/0b//2b243je5O/Xu2tvTpli1blJiYqCFDhrjOueaaa5SYmNgt+r26ulo2m009evRwO/78888rJSVFAwcO1LPPPqumpiaLKmy/jz76SOnp6erbt6/uv/9+VVRUuF4rLi6W3W53+x3Izs5Wfn5+t+jfI0eO6L333tO0adNavdad+vh8gnerzQBx9OhRNTc3KyMjw+14RkaGDh8+bFFVHcMYozlz5ui6665Tfn6+6/hdd92lvLw8ZWZmaufOnZo3b56++OIL1xROVzJkyBC9+eab6tu3r44cOaKFCxdq2LBh2rVrl6s/z9XXBw4csKJcv1uzZo2qqqo0depU17Hu1L8/1pY+PXz4sNLT01u9Nz09vcv/GT958qQee+wx3XnnnW43TX3ooYc0aNAgJSUl6bPPPtO8efNUWlqq1157zcJqfVNYWKjbb79dubm5Ki0t1fz58zV69GgVFxcrMjJShw8fVkREhJKSktze113+H/7GG28oPj5eEydOdDvenfr4QghKAeLsf31LLaHix8e6upkzZ+rLL7/Upk2b3I7ff//9rsf5+fm65JJLNHjwYG3btk2DBg3q7DLbpbCw0PW4X79+Gjp0qPr06aM33njDtQC0O/f166+/rsLCQmVnZ7uOdaf+9eRCfXqu/u3q/W6323XHHXfI4XBo2bJlbq89/PDDrsf9+/dXUlKSbrvtNtcIRFcyadIk1+P8/HwNHjxYubm5eu+991qFh7N19f51+v3vf6+77rpLUVFRbse7Ux9fCFNvFktNTVVoaGirf3lUVFS0+ldqV/bggw/qr3/9q9avX6+ePXue99xBgwYpPDxce/fu7aTqOk5sbKz69eunvXv3uq5+6659feDAAX344Ye67777znted+rftvRpZmamjhw50uq9P/zwQ5ftd7vdrn/5l39RaWmpioqK3EaTzsX5j4R9+/Z1RnkdKisrS7m5ua7f38zMTDU1Nen48eNu53WHP9cbN27Unj17LvhnWupeffxjBCWLRUREqKCgoNU0RFFRkYYNG2ZRVf5jjNHMmTP1zjvv6O9//7vy8vIu+J5du3bJbrcrKyurEyrsWI2NjfrnP/+prKws1/TT2X3d1NSkjz/+uFv09R/+8Aelp6frpptuOu953al/29KnQ4cOVXV1tT777DPXOf/4xz9UXV3dJfvdGZL27t2rDz/8sE2jB9u3b5ekbtHnlZWVOnjwoKstBQUFCg8Pd/sdKC8v186dO7tk/57t9ddfV0FBgQYMGHDBc7tTH7di4UJynLZq1SoTHh5uXn/9dbN7924ze/ZsExsba7799lurS2u3//iP/zCJiYnmo48+MuXl5a6fhoYGY4wx+/btM88884z5/PPPTWlpqXnvvffMZZddZq688kpz6tQpi6v33iOPPGI++ugj880335hPP/3UjBs3zsTHx7v68te//rVJTEw077zzjtmxY4f513/9V5OVlWVqamosrrx9mpubTU5Ojnn00UfdjneH/q2trTXbt28327dvN5LM4sWLzfbt211XebWlT8eOHWv69+9vtmzZYrZs2WL69etnxo0bZ1WTzut87bXb7WbChAmmZ8+epqSkxO3PdGNjozHGmM2bN7ve880335jVq1eb7OxsM2HCBItbdm7na29tba155JFHzObNm01paalZv369GTp0qPnJT37i1r/Tp083PXv2NB9++KHZtm2bGT16tBkwYEDA/o5f6HfaGGOqq6tNTEyMWb58eav3d7U+bi+CUoD47//+b5Obm2siIiLMoEGD3C6f78oknfPnD3/4gzHGmLKyMjNixAiTnJxsIiIiTJ8+fcysWbNMZWWltYX7aNKkSSYrK8uEh4eb7OxsM3HiRLNr1y7X6w6Hwzz11FMmMzPTREZGmhEjRpgdO3ZYWLF/rFu3zkgye/bscTveHfp3/fr15/wdnjJlijGmbX1aWVlp7rrrLhMfH2/i4+PNXXfdZY4fP25Bay7sfO0tLS31+Gd6/fr1xhhjiouLzZAhQ0xiYqKJiooyl156qXnqqadMfX29tQ3z4HztbWhoMGPGjDFpaWkmPDzc5OTkmClTppiysjK3zzhx4oSZOXOmSU5ONtHR0WbcuHGtzgkkF/qdNsaYV1991URHR5uqqqpW7+9qfdxeNmOM6dAhKwAAgC6KNUoAAAAeEJQAAAA8ICgBAAB4QFACAADwgKAEAADgAUEJAADAA4ISAACABwQlAAFt5MiRmj17ttVluLHZbFqzZo3VZQDoBGw4CSCgHTt2TOHh4YqPj1fv3r01e/bsTgtOTz/9tNasWaOSkhK344cPH1ZSUpIiIyM7pQ4A1gmzugAAOJ/k5GS/f2ZTU5MiIiJ8fn9mZqYfqwEQyJh6AxDQnFNvI0eO1IEDB/Twww/LZrPJZrO5ztm8ebNGjBih6Oho9erVS7NmzVJ9fb3r9d69e2vhwoWaOnWqEhMTdf/990uSHn30UfXt21cxMTG66KKLNH/+fNntdknSypUr9cwzz+iLL75wfd/KlSsltZ5627Fjh0aPHq3o6GilpKTo3//931VXV+d6ferUqfrFL36h3/72t8rKylJKSooeeOAB13cBCFwEJQBdwjvvvKOePXtqwYIFKi8vV3l5uaSWkHLDDTdo4sSJ+vLLL7V69Wpt2rRJM2fOdHv/Cy+8oPz8fBUXF2v+/PmSpPj4eK1cuVK7d+/Wf/3Xf+l3v/udXnrpJUnSpEmT9Mgjj+iKK65wfd+kSZNa1dXQ0KCxY8cqKSlJn3/+uf70pz/pww8/bPX969ev1/79+7V+/Xq98cYbWrlypSt4AQhcTL0B6BKSk5MVGhqq+Ph4t6mvF154QXfeeadr3dIll1yil19+Wddff72WL1+uqKgoSdLo0aM1d+5ct8984oknXI979+6tRx55RKtXr9avfvUrRUdHKy4uTmFhYeedanvrrbd04sQJvfnmm4qNjZUkLV26VOPHj9fzzz+vjIwMSVJSUpKWLl2q0NBQXXbZZbrpppv0t7/9zTW6BSAwEZQAdGnFxcXat2+f3nrrLdcxY4wcDodKS0v105/+VJI0ePDgVu99++23tWTJEu3bt091dXU6deqUEhISvPr+f/7znxowYIArJEnStddeK4fDoT179riC0hVXXKHQ0FDXOVlZWdqxY4dX3wWg8xGUAHRpDodDv/zlLzVr1qxWr+Xk5Lgenx1kJOnTTz/VHXfcoWeeeUY33HCDEhMTtWrVKr344otefb8xxm291NnOPh4eHt7qNYfD4dV3Aeh8BCUAXUZERISam5vdjg0aNEi7du3SxRdf7NVnffLJJ8rNzdXjjz/uOnbgwIELft+PXX755XrjjTdUX1/vCmOffPKJQkJC1LdvX69qAhB4WMwNoMvo3bu3NmzYoO+//15Hjx6V1HLl2pYtW/TAAw+opKREe/fu1V//+lc9+OCD5/2siy++WGVlZVq1apX279+vl19+We+++26r7ystLVVJSYmOHj2qxsbGVp9z1113KSoqSlOmTNHOnTu1fv16Pfjgg5o8ebJr2g1A10VQAtBlLFiwQN9++6369OmjtLQ0SVL//v318ccfa+/evRo+fLiuvPJKzZ8/X1lZWef9rJtvvlkPP/ywZs6cqYEDB2rz5s2uq+Gcbr31Vo0dO1ajRo1SWlqa/vd//7fV58TExGjdunU6duyYrrrqKt1222362c9+pqVLl/qv4QAsw87cAAAAHjCiBAAA4AFBCQAAwAOCEgAAgAcEJQAAAA8ISgAAAB4QlAAAADwgKAEAAHhAUAIAAPCAoAQAAOABQQkAAMADghIAAIAHBCUAAAAP/j/lJYW9odHoYAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,u'convergence of conjugate gradient')" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(ch[:resnorm])\n", - "xlabel(\"iteration\")\n", - "ylabel(L\"\\Vert \\mathrm{residual} \\Vert\")\n", - "title(\"convergence of conjugate gradient\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### PETSc\n", - "\n", - "[PETSc.jl](https://github.com/JuliaParallel/PETSc.jl) provides a Julia interface to the PETSc library: large-scale iterative and sparse solvers for distributed-memory parallel systems. It is a bit harder to use, because it expects you to set up its own kind of sparse matrix that works on distributed-memory systems." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Preconditioners\n", - "\n", - "Most iterative solvers are *greatly accelerated* if you can provide a *preconditioner* $P$: roughly, an *approximate inverse* of $A$ that is *easy to compute*. The preconditioner is applied at *every step* of the iteration in order to speed up convergence. (For example, you could solve $PAx = Pb$ instead of $Ax=b$; this is called a \"left\" preconditioner.)\n", - "\n", - "For example, let's consider a problem where the matrix $A = L + S$ is a sum of the symmetric-tridiagonal discrete Laplacian $L$ (from above) and a *small, sparse* perturbation $S$. As our preconditioner, we'll simply use $P = L^{-1}$, since this is a good approximation for $A$ and `L \\ b` is fast (linear time):" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "300×300 SparseMatrixCSC{Float64,Int64} with 940 stored entries:\n", - " [1 , 1] = 2.00312\n", - " [2 , 1] = -1.0\n", - " [1 , 2] = -1.0\n", - " [2 , 2] = 2.0\n", - " [3 , 2] = -1.0\n", - " [2 , 3] = -1.0\n", - " [3 , 3] = 2.0\n", - " [4 , 3] = -1.0\n", - " [3 , 4] = -1.0\n", - " [4 , 4] = 2.0\n", - " ⋮\n", - " [296, 297] = -1.0\n", - " [297, 297] = 2.0\n", - " [298, 297] = -1.0\n", - " [297, 298] = -1.0\n", - " [298, 298] = 2.0\n", - " [299, 298] = -1.0\n", - " [298, 299] = -1.0\n", - " [299, 299] = 2.0\n", - " [300, 299] = -1.0\n", - " [299, 300] = -1.0\n", - " [300, 300] = 2.0" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 300\n", - "L = SymTridiagonal(fill(2.0,n), fill(-1.0, n-1))\n", - "b = rand(n)\n", - "\n", - "S = sprand(n,n,0.001) * 0.1 # a small random, sparse perturbation\n", - "S = S'*S # needs to be symmetric positive-definite\n", - "\n", - "A = sparse(L + S)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our home-brewed `CG` function above does not accept a preconditioner, but the IterativeSolvers package `cg` function does, and it makes a *huge* difference in the convergence:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG0CAYAAADATXgqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlYVGX7B/DvsIssigiKgGhqiSjKUi65oIWhuWVlZS64lFn5IyvL7C0zE3O3UtMsNd9Ks9LSTMUVzXxVFJMwt1BcUERlVUHh/P64GxAQhxlnODPD93NdcwFnZs7cQ+Z8fZ7n3I9GURQFRERERFQhG7ULICIiIjJ3DExEREREOjAwEREREenAwERERESkAwMTERERkQ4MTEREREQ6MDARERER6cDARERERKQDAxMRERGRDgxMRERERDowMBERERHpYKd2AZaqqKgI58+fh6urKzQajdrlEBERUSUoioKcnBz4+PjAxqby40YMTAY6f/48/Pz81C6DiIiIDHDmzBn4+vpW+vEMTAZydXUFIL9wNzc3lashIiKiysjOzoafn1/x53hlMTAZSDsN5+bmxsBERERkYfRdTsNF30REREQ6MDARERER6cDARERERKQDAxMRERGRDgxMRERERDowMBERERHpwMBEREREpAMDExEREZEODExEREREOjAwEREREenAwERERESkAwMTERERkQ7cfNdC3LoFnD8PaDRA/fqAHf/LERERVRl+7JqxtDRg5UrgyBFgzRogPV2Ou7kBnToBERFA375A48bq1klERGTtNIqiKGoXYYmys7Ph7u6OrKwsuLm5Gf38ly4BISHA2bMlx7SjSrdulRzTaIAePYC5c4H77jN6GURERFbF0M9vrmEyQ4WFwMCBEpYaNQLeegtYvx64dg24cQNISACmTwe6dQMUBfj1V6B1a2DqVOD0abWrJyIisj4cYTKQKUeYfv5ZptqcnYG9e4EWLSp+7PHjwIgRQHx8ybF27YBnngGefBLw8TFqaURERBaNI0xWZONG+Tps2N3DEgA0bQps3QosXgx06SJTdH/8Afzf/wENGsg0XYsWcps9G8jJMXn5REREVocjTAYy5QhTs2YycvTzz0Dv3vo99/x54IcfgBUrJDiVZWMDtGwJ9OwJREcDTZoYp2YiIiJLYOjnNwOTgUwVmFJTgYYNAVtb4PJlwN3d8HNlZgIHDsj3J0/Kuqfjx0vur1kTWLJEpu40mnurm4iIyBJwSs5KbNkiXx988N7CEgDUqgV07Sq3kSOBY8eAc+eA//4XePhhIC8PePppwM8PGD1aFpPn5d37eyAiIrI2DExmZvNm+dqtm2nO7+MjV+Bt2waMGwc4OEiIWrAACAsDXFxkym7ePODMGeDTT4Hu3YHly0u3MyAiIqpOOCVnIFNMySmKdPG+eBHYvh3o3Nkop72ra9eAnTtl0bi2dUFFgoOBb77RvRCdiIjIXHENUxUzVWA6uPkyTi3bgZ4Le8OxZtU2YlcU4MoVCUX//S+wbx9Qty4wYADw7bdyn4ODTOe1aweEhwP16smVeJ6eVVoqERGRQRiYqphJFn0XFUlCuXJFGjCFhxvnvAbKypJeUPb2Muo1bJiMQt1JYKCsgwoLA/78U47Z2QGOjtLeICBAvnIPPCIiUpOhn9/8+DInNjZAx47ST2DrVtUD0+2Lzr29gXXrgKQkaVewZw9w6JBs4XLmDJCcDLzyyt3P5+AA9OkDxMQA7dubtnYiIiJj4giTgUzWh+mTT6TrZGRkSQdLM3f5svR9mjkTyM6WUSYnJ+DmTeD6dQlUp0/Lz1pDhgAzZnAqj4iIqhan5KqYyQJTUpJcplajhjRScnAw3rlVVFQkI1KffgosXSrrpTw8gMmTgeefB06dkh5U164Bf/8tU3eRkdKTqlYtTuUREZFxMDBVMZMFJkWRldTp6bJBXMeOxju3mdizB3jxxZK1TrrY2QGNG8sU4f33A5MmyabERERE+uIaJmuh0UinyRUrpIulFQamtm2B/ful99Nnn0n38Zo1JQw5Ocl2LVlZ0lohK0v6Px07Js/dtw/48UdZ3tWgQcnN31+e/8AD0iWdiIjImBiYzJE2MO3YoXYlJmNvD4wZA7z6qkzF+fjIsbJu3QLS0mRrl6wsYM4cCVLx8Xc+r7c38Oij0urgySeBoCCTvg0iIqomOCVnIFNuvotDh4DWrWUO6upVbvR2G0WRUaZ//pEO5drbqVNypV5ubsljNRrpUu7hIaNWbdrIzcND2iVwJIqIqPrhGqYqZtLAVFAge5TcvClJoGFD457fShUUyOjTvn3SxuqXXyp+rJsbMGKEjEbZ2EgACwuTGwCcPSvn8PSU6UJvb8DXt0reBhERmRADUxUzaWACZB+SP/+Unky9exv//NXAwYPA7t3S2iA5GThwAPjrr7vvide2rayFWrECyM8vfd/IkcCUKWyFQERkybjo29q0aiWB6dAhBiYDaafgbldYKEFoxw7giy9kbVRBgSwc37FDruDbs0ceGxgog3zXrsm03xdfyLYxw4cDY8dK93IiIqoebNQugCoQHCxfDx1Stw4rY2sr65eiooCffpJf75EjwObNQEqKbEL85pvAmjXSEuvYMZmei48HQkIkPH36qayJevXV8qNQWkVFVfu+iIjItDglZyCTT8nFxUnnxqZNS66pJ1UpinR6mDZN/vMAsubpm2+AZs3k55QU4OWX5f6GDaUHacuWMlrVrZtsFUhEROrhGqYqZvLAlJ4uK401GiAnR1Yek9nYsAEYOFD2SXZyAjp3lg2K//yz4tGlOnWA776TheZERKQOQz+/OSVnrry8pOO3ogCHD6tdDZXx2GOyqPyRR4AbN2Tbv8RECUtdu8qVelu2ALNny5qnZs1kz73u3eU5X38tYeuvv4C8PN2vl5YmU4jXrpn+vRERUXlc9G3OAgOBCxdkSq5tW7WroTL8/YFNmyQsXbggrQratpUmnFpdu8rXGzekUecXX0iQ2rKl5DF16gDLlgHt28vmxenp8jUnR4LSjh3A6tWyOL1pUwlhjzwCODpW7fslIqrOGJjMWePGwNatcikXmSWNRkabdHFyAhYtAsaPB5Yvl4D0zz+yt/Lly8Djj+s+h7OzbCPz+OPSpuvdd4HXX+fGxEREVaFaT8mtW7cO999/P5o2bYrFixerXU55990nX//5R906yGgaNQLeew84cUKm5LKyZJG4dlsYR0fAzw9o0UJGq6Ki5PH/+59crffqqzJTm5sLvP028OCDsp6KKxGJiEyr2i76vnXrFgIDA7Ft2za4ubkhJCQE//vf/+Dh4VGp55t80TcArFoFPP000K6ddGAkq6Uo0lDTzk73TjhFRbIGKiZGAhcgIatLFxmUbNxY/sg0bVr+uRcvAn/8ATz0EFC/vqyf4vUERFSdsHGlnvbu3YsWLVqgQYMGAIAePXpg48aNePbZZ1Wu7DbaESZOyVk9jebOmw/fiY0NMHQo0LMnEBsrU31nzshU3+3n69cPuHRJ1kJ5eMio1IEDJcHMyws4f14WpD/9tASwOnVM8vaIiCyexU7JxcfHo1evXvDx8YFGo8GaNWvKPWb+/Plo1KgRnJycEBoaip07dxbfd/78+eKwBAC+vr44d+5cldReadrAlJ4un3pEt6lbF5g1S0LRunWybcvIkUDHjjJi9dNPwM6dcvXe1q2yN96tW9If6tYtCUuAXFMwebKMTH36KZtuEhHdicWOMOXl5SE4OBjR0dHo379/uftXrlyJmJgYzJ8/Hx06dMDChQsRFRWF5ORk+Pv7404zkRpdcyFVzd1d/sl/+bKsY9J2/ya6TY0aMtrUs2fJsX375Mq6++6Tq/auXJGpt+bNZa+8I0fkj9V998lVeFOnStfzMWOky/maNYCrq3rviYjI3FhsYIqKikJUVFSF98+aNQvDhw/HiBEjAABz5szBxo0bsWDBAsTGxqJBgwalRpTOnj2Lhx56qMLz5efnI/+2fTCys7ON8C4qoXFjBibSW3i43CrSvHnJ9888I1Nyn38u28Js3SrTefPmAbVqSW53cip5fFGR7MlX2SlEIiJrYLFTcndTUFCAhIQEREZGljoeGRmJ3f8unn7wwQeRlJSEc+fOIScnB+vXr0f37t0rPGdsbCzc3d2Lb35+fiZ9D8W4jomqgI0NMHo0sG2bjERt2QI88IBckVejhgSmevUkv9esKe0QvL3lKr7YWOD332Waj4jIWlnsCNPdZGRkoLCwEN7e3qWOe3t748KFCwAAOzs7zJw5ExERESgqKsK4ceNQ5y4rXsePH4+xY8cW/5ydnV01oYmBiarQgw/KeqhXX5WF5NnZsh4qP1+usLtderq0NNiwQX5u0AAYMkS2QPTwkNttywSJiCyaVQYmrbJrkhRFKXWsd+/e6N27d6XO5ejoCEc1WiszMFEV69KlZDeeoiK53iAzU1oY5ORIOwIXF+D0aWlREB8vI1PnzsnC8ylTSs4VESEL0QMCZE2VmxsQEiLHa9RQ490RERnGKgOTp6cnbG1ti0eTtNLT08uNOpk9f3/5am5X8FG1YGMja5jc3cvf5+Ul66TGjJERqJ9+An75Rabn8vPl6r1t2+RWVo0awIgRwIcfSogyt+stiIjKsso1TA4ODggNDUVcXFyp43FxcWjfvr1KVRlIG/DKhD8ic+LoCDz7LPDdd0BqqkzfpaRIl3Jf35L7Bw2SfwNcvy4tDOrUkVDm4SEjT8OGSb/W266vICIyCxY7wpSbm4sTJ04U/5ySkoLExER4eHjA398fY8eOxaBBgxAWFoZ27dph0aJFSE1NxahRo1Ss2gD16snXK1eAmzd5aRJZjIYNgQ8+ACZOlHVQNv/+80xRgM2bZUuY48fl2NWrcjt4EFiyRP6dsGKFTA8SEZkDi90aZfv27YiIiCh3fMiQIVi6dCkAaVw5bdo0pKWlISgoCLNnz0anTp2M8vpVsjUKIItIHBzkOu6zZ7mKlqxGYaHMNNvby78Hjh2TNVHffCNNNe3tgcWLgcGD1a6UiKyJoZ/fFhuY1FZlgQmQzoNpaUBCgsxbEFmx69flartVq+Tnt94CeveW/fMOHwZ69AA6dJD/HWbMAG7cAJo0kcad0dEyskVEVBEGpipWpYGpTRvZ3+LXX+XTgsjKFRUB774rPZ704eICzJ8va6WIiO7E0M9vq1z0bXW0C7/LNsIhslI2NtKe4JtvZDSpbl3p7/TJJ8Cjj0pTzVatgC+/BJKSgGXLgHbtZIPhwYMlMHH7RSIyJotd9F2taBd+MzBRNfPcc3K73auvln9cixbAwIESsiZOBP77X1lY/tZbwCuvAHYm+JuuqEhaKMTFyfUYrVrJ/nv16wMtW8rSQyKyHgxMloAjTEQ62doC//kP0LWrjDClpACvvQasXw98/73si6eP9HTZkLhePQlAgDTwTE6WRepTpsgi9TtxdJQWCe++K0sQicjycUrOEjAwEVVahw7A338DCxfKvndxcbIo/I03pFu5LmfOAE89Jf/bRUbKyFFQkDTdr11bzt+rl4SlmjWlv9QLLwAdOwKhodJTKj8fWLBAOpwPGADs32/yt01EJsZF3waq0kXf33wDPP+87CexdatpX4vIiiQmAv37A//8Iz+3bCkjTr6+pR+Xny8NN1evBiZNAvLypPv4fffJFjA3b5Y81s9POp+HhQGTJ5fv9KEowI4d0rRz586S4506AQ89JBsWP/ywTBOywzlR1eNVclWsSgPT5s2y0jUwEPjrL9O+FpGVKSyUC0xffFEa5nt5ySLxxx6T+3/+WbZpycgoeU6HDnK1XatWMrC7c6eMOD3wgCxAr6zERGDmTODbb2XN0+3s7SU8vfoq8Mgj9/4+iahyGJiqWJUGpqQk+adxnTql/1Ynoko7fVr6Of35p/zcvLmM8mg3GnZ2Bho1kqm7wYNLOpMbw8mTsqfe779LQLt6tfT9ffrIeqv27dnMn8jUGJiqWJUGpkuX5J/FAFBQwL9RiQx0/TowbpysLyoslGMaDTB2rCziroor227dksXjaWnAokXA55/LMUAWiM+fLwGKiEyDgamKVWlg4vYoREZ19SqwfbuMMIWFSSsAtSQnAx9/LGurtAPIzz4rPac8PdWri8haMTBVsSoNTID8jX7hArdHIbJS169LD6kZM+TfSM7OcuWdra1cjdezp1y95+ysdqVElo2dvq2dtnnlhQvq1kFEJlGjhow07dkjSxavXQM2bpSRp1WrgKFDgQcfBI4fV7tSouqJjSstRf36cslNWpralRCRCYWHS8PMw4dlkbijo7Q8WLhQLpINDwc2bADatlW7UqLqhYHJUmjbBZ8/r24dRGRyGo20NGjVquTYiy9KT6k//pCGmr/9Ju0PiKhqcErOUmgXejMwEVVL9etL1/KICNlYuHt3ID5e7aqIqg8GJkvBESaiaq9mTWDdOml0mZcHdOsGPPMMMH26rHXiJTxEpsPAZCkYmIgIcpXcL78A/fpJ/6aVK6W3VM+eMm13+zYuRGQ8XMNkKRiYiOhfNWoAP/0EHDgAfPedbBi8ahXwxRey0e9LLwEpKTJ99+ijaldLZB3Yh8lAVd6HKS1NQpONjewUasesS0Qlfv1V9ujOzCx9/NlnJUjVrKlOXUTmhn2YrJ2Xl4SloiIgPV3taojIzPTsCRw9CowaJVfPPfWU/JXx3XfA44/LmiciMhwDk6WwtS1pXslpOSK6Ay8v2Sdv1y7g+++BHTsAV1fZBubpp+XfW0RkGAYmS8J1TESkh4cfBjZtApyc5Cq62Fi1KyKyXAxMloSBiYj01LYtMG+efP/uu8CTT8qGv0SkH64ctiQMTERkgGHDJCTNnAn8+KO0JRg6VDqKN2gge9e5usp9J08CH34IPPSQ2lUTmRcGJkvCwEREBpoxA4iOBsaPB9aulSvnKrJli4xGvf++LBwnIgYmy8LARET3oEUL4Oef5bZ9O1CrFvDPP8DffwNXrgChoXJ9yXffAZMmAZs3S/fwiAgJTxqNbAh84ABw7Rrg4ABcuCDdxxs0AMaMAXr3lnMQWRv2YTJQlfdhAmS3zR49gOBgIDGxal6TiKqdr78GRowo3TXczw+4fFmC0t00bgxMnAgMGmTSEokMZujnN0eYLImnp3y9fFndOojIqg0eLOuaNm2SrVjee0+6iQPSuqBzZ8DdXQKVjY38O+7gQeDzz2XEavBgGcF67jnAxUVGnEJCOL1Hlo0jTAZSZYQpJUX++ebkJP/M02iq5nWJqFpLSwP+9z/g/vvlVlHwuXZN1kpNnFh+I+BmzYCYGAlT7DpOajL085uByUCqBKacHED7Wrm5/FuHiMzSli3Ap58CR44ABQUyKJ6TI/fVrAn4+0v38Y8+Auzt1a2Vqh9OyVUHLi6yyrKgAMjIYGAiIrPUrZvctHJygKVLgblzpW3BkSNy+/NP4NtvAQ8P1UolqjTOKFsSjaZkHVNGhrq1EBFVkqsr8OqrstddUpKEJ2dnYONG4IEHgOXLy0/hEZkbjjBZGk9PaSvAwEREFsbWVlobtGgBBAXJeqbkZPm6eDHQty+QnQ2cPi0Ly/v2lcXlROaAgcnScISJiKxAaKhcWTdrlvR8io+Xm9aSJUDt2rLOafhwWY1ApCYGJkvDwEREVsLBAXj7bWDAAOn9dPgwUKOGNMFcs0am8EaPlq7jXbtKS4PMTKB1a+CNN3ihMFUtBiZLw15MRGRlGjWSTuK3mzxZ+jpNmSJtDX74oeQ+7ULx4cOrtk6q3hiYLA1HmIioGrCzA155BXjpJWmCmZQEXLoEnD0LLFsm94WFycYHRFWBgcnSMDARUTVia1u6TUFRkQSn9eull9OePTKFR2RqbCtgaRiYiKgas7EB/vtfaUdw9qyEJm1TTCJTYmCyNAxMRFTN1a4tI0xeXrIP+YABwK1baldF1o6BydIwMBERoVEjYO1auarut9+kMSabX5IpVdvAlJOTg/DwcLRu3RotW7bEF198oXZJlXN7YOLfDkRUjT34oFwxp9HIFXXTp6tdEVmzarv5bmFhIfLz8+Hs7Ixr164hKCgI+/btQ506dSr1fFU23wVkO3DtHnJZWSWb8RIRVVNz5gCvvSbBaf164LHH1K6IzJmhn9/VdoTJ1tYWzs7OAIAbN26gsLAQFpEdnZ1lDBrgtBwREYD/+z/ghRdk0P2554BTp9SuiKyR2Qam+Ph49OrVCz4+PtBoNFizZk25x8yfPx+NGjWCk5MTQkNDsXPnTr1eIzMzE8HBwfD19cW4cePgqZ3uMndsXklEVEyjAT75BAgPB65eBQYOBAoL1a6KrI3ZBqa8vDwEBwfjs88+u+P9K1euRExMDCZMmICDBw+iY8eOiIqKQmpqavFjQkNDERQUVO52/vx5AECtWrVw6NAhpKSk4Ntvv8XFixer5L3dM21gunRJ3TqIiMyEoyPw/feAqyuwezcwbZraFZG1sYg1TBqNBqtXr0bfvn2Ljz300EMICQnBggULio81b94cffv2RWxsrN6v8dJLL6Fr16546qmn7nh/fn4+8vPzi3/Ozs6Gn59f1a9hAoBHHgG2bJFmJAMHVu1rExGZsWXLgKFDpVP43r1AmzZqV0TmplqtYSooKEBCQgIiIyNLHY+MjMTu3bsrdY6LFy8iOzsbgPzy4uPjcf/991f4+NjYWLi7uxff/Pz8DH8D96pWLfmamaleDUREZmjwYOCJJ6Qv0/PPA7m5xjnvb78Bn34K3LgBFBQA27bJKNaOHbxgubqwyK1RMjIyUFhYCG9v71LHvb29ceHChUqd4+zZsxg+fDgURYGiKHjllVfQqlWrCh8/fvx4jB07tvhn7QiTKmrXlq9Xr6rz+kREZkqjARYulGm55GT567JdO2DYMFkQ7uBQ+vGKIs8pe+zKFXnuzZvA1KnAxIly3+zZcoHylSslj2/bFhg3DvD1lQuX7/Jvb7JgFhmYtDRl/pQrilLuWEVCQ0ORmJhY6ddydHSEo6OjXvWZDEeYiIgq5OkJrFgBDBoEnDkD7Nwpt//+F/jyS+DQIaBFC+nhNH06EB0NzJwpC8Xffx/45hvZdkU7W/PvZATc3YGUFPney0s2/92yRfaze+KJktePjgb8/WXfu5dfBsr8254slEUGJk9PT9ja2pYbTUpPTy836mSVOMJERHRXnTsDp09LwFm5EpgyRcJNQED5x37yCRAfL4Hp8OGS49qgVL8+MHky0K8f8OOPco6ICNkY+OJFYO5cYOlSGak6fx5YsqTkHHPnym3oUNO9V6oaFrmGycHBAaGhoYiLiyt1PC4uDu3bt1epqirEESYiIp00GqBxY2D8eGDz5pK/Ou+7T8KOszPw5pvyNTFRwlLt2jI6lZUFHDwI7N8vo03Dhsl9I0bIdTe2tnIub28JY+fPA+fOyUhWr15yPU5oqISu6GiZsuNaJ8tmtiNMubm5OHHiRPHPKSkpSExMhIeHB/z9/TF27FgMGjQIYWFhaNeuHRYtWoTU1FSMGjVKxaqrCEeYiIj08tBDwNGjQE6OBKbMTJky8/AARo+WxdvZ2UDfvoB2eWrr1vq/zsMPyw2QEasPPwQ++ECm/lq2lGlCskxmG5j279+PiIiI4p+1C66HDBmCpUuXYsCAAbh8+TImTZqEtLQ0BAUFYf369WjYsKFaJVcdjjAREenNy0tuQMlfo4BMsd1pqu5e2drKYnEbG1kb9c47QP/+MqJFlsci+jCZI9X2kgNkhWG7drJd9z//VO1rExGRXm7cAB54QNZUvf9+yRV3gIxy/f470KQJcP26bPMSECB74zVurFbF1s3Qz28GJgOpGpj+/hto3lz+icRpOSIis7dyJfDMM9JQc9cuwMcH2LQJmDdP1ko5Ock2odq/0u3sZG1UdLQ8/scfZcQqLAwYPrxkS1HSHwNTFVM1MF24IJdtaDTSnc3GItfuExFVG4oCDBgArFolvaAKCkrus7OTv8oB6Uxep44sUq9IUJAEsMBA09ZsrapVp+9qTzv5rigl170SEZHZ0miAL76QlRQFBfLv3HbtgEmTgLQ0YO1aIDZWrrLbtAlYtAioWVOe27Ah8PrrMpXn5QUkJcnC8kOHVH1L1Q5HmAyk6ggTIOOxN25IkxFTrFYkIiKju3BBWhi0bVt64fmd5OfLv4udnEqOXbwoV/Lt2SMNOvfskav+qPI4wlTdsLUAEZHFqVcPeOwx3WEJABwdS4clQPo+/fYbEBICZGQAI0eyv1NVYWCyVGwtQERULdWqJWuhatSQTYBffRVYvlyusiPTYWCyVBxhIiKqtho3lqaYgFxpN3iwtC7YsEHduqyZ2TauJB04wkREVK393/8BeXnA8ePSqTw1Vfa7279fNhcm4+IIk6XiCBMRUbVmZwe8955Mx/39NxAZKdcCDRwoC8bJuBiYLBVHmIiI6F/OzsCyZXLl3KFDwAsvcDG4sTEwWSqOMBER0W3q1QO++UY6gn/9texdx9BkPAxMloojTEREVEZkJLBggXw/dSrw7LPAtWvq1mQtGJgsFUeYiIjoDkaOBD7/XNY4rVwpXcFPn1a7KsvHwGSpOMJEREQVePFFYOtWoG5d2dw3KEg28y0sVLsyy8XAZKm0I0yXL6tbBxERmaWOHaXFQLt2QG4uMGECMG2a2lVZLgYmS+XlJV8vXVK3DiIiMlv+/sCuXcD06fLz9OlAVpa6NVkqBiZLpQ1MV64At26pWwsREZktGxvgtdeA5s1l2evcuWpXZJkYmCyVhweg0cj3GRnq1kJERGbN1hZ4/335fvZs6RBO+mFgslS2ttKhDOC0HBER6fTUU7IHXWYm8N13aldjeRiYLFnduvI1PV3dOoiIyOzZ2AAvvSTfz5vHppb6YmCyZNp1TAxMRERUCdHRgJMTkJgI/PGH2tVYFgYmS6YdYeKUHBERVUKdOtL9Gyi5co4qh4HJknGEiYiI9PTmm3LN0Jo1QFKS2tVYDgYmS8ZeTEREpKfmzYEnnpDvY2PVrcWSMDBZMi76JiIiA0yYIF9XrABOnFC3FktxT4EpNzcX2dnZpW5UhTjCREREBmjTBujRAygqAqZOVbsay6B3YEpJSUHPnj1Rs2ZNuLu7o3bt2qhduzZq1aqF2trN/ExUAAAgAElEQVT9zahqcISJiIgMpB1l+vpr4MwZdWuxBHb6PmHgwIEAgK+++gre3t7QaLtNU9XjCBMRERmofXugSxdg+3bgk0/0u2ouKUn6OgUGmqo686NRFP1aV7m4uCAhIQH333+/qWqyCNnZ2XB3d0dWVhbc3NzUKeLy5ZJu3/n5gIODOnUQEZFF+uUXoE8faTdw7hzg6CjH09KA5cvlY+XRR4EWLUqe89VXwMiRsuHEnj1ASIg6tRvK0M9vvUeYwsPDcebMmWofmMxC7dryJ7awUPaT8/FRuyIiIrIgPXoAvr7A2bNATAyQnQ307g288w7wzz/yGAcHYONGGY2aMUPaEgCy/unJJ4GaNSVs+foCfn7Aww8DY8eWhC9rofcI08mTJzFq1Cg8//zzCAoKgr29fan7W7VqZdQCzZVZjDABQP36wIULwMGDQOvW6tVBREQW6cMPgffeK3+8YUP5iNmzB3B3lyD0669y36uvAj/9JEHpToKDgR9/BO67z3R1G6rKRpguXbqEkydPIjo6uviYRqOBoijQaDQoLCzU95R0L+rWlcDEhd9ERGSA4cOBmTOBGzeAxx8H1q2TKbotW4AGDWRKbteukrA0dSrw1lvA889L0IqMlMecPw8cPSoB7NAhGanau1dGoKyB3oFp2LBhaNOmDb777jsu+jYH7PZNRET3wMcH+OsvwN5ePlKysmS1h4uL3L9xI/DDDxKIwsOBbt3k+IMPAhs2lJynZUuge3egf38gLAxITgYGDQLefVeeW6+eHLdUegem06dP45dffkGTJk1MUQ/py9tbvl68qG4dRERksRo0KPne3b30fc7OwODB+p1rxQqga1dg9Wq5ARLITp6UdU6WSO8+TF27dsWhQ4dMUQsZol49+Xrhgrp1EBER/atzZ+C332RReY0acrt5U0aqLJXeI0y9evXCa6+9hsOHD6Nly5blFn337t3baMVRJXCEiYiIzFBkpNwA4NNPgTFjgFWrgNdeU7cuQ+l9lZyNTcWDUtVp0bfZXCW3bBkwdKj8qdy4Ub06iIiIKnD+vLQdUBQgNVXdaTlDP7/1npIrKiqq8FZdwpJZ4ZQcERGZOR8foEMH+f7779WtxVB6BaabN28iIiICx44dM1U9pC9OyRERkQX4d2c1TJ4sjTLvJD8fOHFCmmKaG70Ck729PZKSkthKwJxoA9OlS9Lxm4iIyAyNGCGtCDIzgejo0qFIUaTTeI0aQNOmwKRJ6tVZEb2n5AYPHowvv/zSFLVUqZSUFERERCAwMBAtW7ZEXl6e2iUZpm5dQKORP3kZGWpXQ0REdEd2dsDXX0so2rwZmDev5L7Vq4G5cyU4AdLDydzofZVcQUEBFi9ejLi4OISFhaFmmRaes2bNMlpxpjR06FBMnjwZHTt2xJUrV+BoqZve2NnJBryXLsm0nHbEiYiIyMzcfz8wbZpsrTJuHBARIVuwxMTI/bVqyQiUOU7J6R2YkpKSEPLv1sRl1zJZylTdX3/9BXt7e3Ts2BEA4OHhoXJF98jbuyQwERERmbHRo4FffgHi4oC2bQEPD+DMGSAgQFoPjB1rnoFJ7ym5bdu2VXjbunWrUYqKj49Hr1694OPjA41GgzVr1pR7zPz589GoUSM4OTkhNDQUO3furPT5jx8/DhcXF/Tu3RshISGYMmWKUepWjXZUiVfKERGRmbOxAZYvBzp1AvLyJCz5+wPffVeyHYs5Bia9R5hud/bsWWg0GjS4vae6EeTl5SE4OBjR0dHo379/uftXrlyJmJgYzJ8/Hx06dMDChQsRFRWF5ORk+Pv7AwBCQ0ORn59f7rmbNm3CzZs3sXPnTiQmJsLLywuPPfYYwsPD8eijjxr1fVQZbWsBjjAREZEF8PYGtm2T4HTxIvDyy7JJb1KS3G8VgamoqAiTJ0/GzJkzkZubCwBwdXXF66+/jgkTJty1sWVlRUVFISoqqsL7Z82aheHDh2PEiBEAgDlz5mDjxo1YsGABYmNjAQAJCQkVPt/X1xfh4eHw+7dzVo8ePZCYmHjXwJSfn18qgGVnZ+v1nkyKrQWIiMjC2NgAQ4aUPwaYZ2DSO91MmDABn332GaZOnYqDBw/iwIEDmDJlCj799FP85z//MUWNpRQUFCAhIQGR2n7r/4qMjMTu3bsrdY7w8HBcvHgRV69eRVFREeLj49G8efO7Pic2Nhbu7u7FNz9z2j2QU3JERGQFtIFJvz1IqobeI0zLli3D4sWLS+0ZFxwcjAYNGmD06NH46KOPjFpgWRkZGSgsLIR3mavBvL29caGSgcHOzg5TpkxBp06doCgKIiMj8fjjj9/1OePHj8fYsWOLf87Ozjaf0MQpOSIisgLmPMKkd2C6cuUKHnjggXLHH3jgAVy5csUoRVVG2SvyFEXR6yo9XdN+ZTk6Oppv6wFteExLU7cOIiKie2DOgUnvKbng4GB89tln5Y5/9tlnCA4ONkpRd+Pp6QlbW9tyo0np6enlRp2qjUaN5Os//5jnnzIiIqJKMOfApPcI07Rp09CzZ09s3rwZ7dq1g0ajwe7du3HmzBmsX7/eFDWW4uDggNDQUMTFxaFfv37Fx+Pi4tCnTx+Tv75ZatQIsLUFrl0r2RKaiIjIwphzYNJ7hKlz5844duwY+vXrh8zMTFy5cgVPPPEEjh49WtwI8l7l5uYiMTERiYmJAGQbk8TERKSmpgIAxo4di8WLF+Orr77CkSNH8NprryE1NRWjRo0yyutbHHt7oHFj+f74cXVrISIiMpA5ByaD+jD5+PiYdHH3/v37ERERUfyzdrH1kCFDsHTpUgwYMACXL1/GpEmTkJaWhqCgIKxfvx4NGzY0WU1mr1kzCUvHjkmveSIiIgtjdYEpMzMTe/fuRXp6OorKvKvBgwffc1FdunSBouOawtGjR2P06NH3/FpWo2lT+VpmuxoiIiJLYVWBae3atRg4cCDy8vLg6upa6so0jUZjlMBEBmjWTL5ySo6IiCyUOQcmvdcwvf766xg2bBhycnKQmZmJq1evFt+qsq0AlaENTBxhIiIiC2VVgencuXMYM2YMnJ2dTVEPGUo7JXfyJHDrlrq1EBERGcCqAlP37t2xf/9+U9RC98LXF3BykrB0+rTa1RAREenNnAOT3muYevbsiTfffBPJyclo2bIl7O3tS91/+5YpVIVsbGSU6fBhmZa77z61KyIiItKLdlm0VQSmkSNHAgAmTZpU7j6NRoPCwsJ7r4oM06CBBKb0dLUrISIi0ptVjTCVbSNAZsTNTb5mZ6tbBxERkQG0gUlHZyFV6L2GicwYAxMREVkwcx5hYmCyJgxMRERkwRiYqGowMBERkQVjYKKqwcBEREQWjIGJqgYDExERWTBzDkyVukouW48PYDfthzZVPQYmIiKyYBYfmGrVqlVqk907URSFfZjUxsBEREQWzOID07Zt20xdBxmDNjBlZalbBxERkQEsPjB17tzZ1HWQMXCEiYiILJjFB6Y7uXbtGlJTU1FQUFDqeKtWre65KDKQu7t8zc6WNqk6plGJiIjMiVUFpkuXLiE6Ohq//fbbHe/nGiYVaUeYbt4E8vMBJyd16yEiItKDOQcmvdsKxMTE4OrVq9izZw9q1KiBDRs2YNmyZWjatCl++eUXU9RIleXiUvI9p+WIiMjCaCdGzDEw6T3CtHXrVvz8888IDw+HjY0NGjZsiEcffRRubm6IjY1Fz549TVEnVYaNDeDqCuTkSGDy8lK7IiIiokqzqhGmvLw8eP37Qezh4YFLly4BAFq2bIkDBw4YtzrSHxd+ExGRhdIGJkVRt4470Tsw3X///Th69CgAoHXr1li4cCHOnTuHzz//HPXr1zd6gaQnBiYiIrJQ5jzCpPeUXExMDNLS0gAA77//Prp3745vvvkGDg4OWLp0qbHrI30xMBERkYWyqsA0cODA4u/btGmDU6dO4e+//4a/vz88PT2NWhwZgIGJiIgslFUFprKcnZ0REhJijFrIGBiYiIjIQllVYBo2bNhd7//qq68MLoaMgIGJiIgslFUFpqtXr5b6+ebNm0hKSkJmZia6du1qtMLIQAxMRERkoawqMK1evbrcsaKiIowePRqNGzc2SlF0DxiYiIjIQplzYNK7rcAdT2Jjg9deew2zZ882xunoXjAwERGRhbL6wAQAJ0+exK1bt4x1OjIUAxMREVkocw5Mek/JjR07ttTPiqIgLS0Nv/76K4YMGWK0wshADExERGShrCowHTx4sNTPNjY2qFu3LmbOnKnzCjqqAgxMRERkoWxum/dSlJLNeM2B3oFp27ZtpqiDjMXdXb4yMBERkYW5PSAVFQG2turVUtY9N64kM3PffcD06UC9empXQkREpJfbR5gsMjC1adMGmkqOix04cOCeCqJ7VK8e8MYbaldBRESkt7JTcuakUoGpb9++xd/fuHED8+fPR2BgINq1awcA2LNnD/766y+MHj3aNFUSERGR1Ss7wmROKhWY3n///eLvR4wYgTFjxuDDDz8s95gzZ84YtzoiIiKqNsw5MGkURb9BL3d3d+zfvx9NmzYtdfz48eMICwtDVlaWUQs0V9nZ2XB3d0dWVhbctFemERERkcGuXwecneX7nBzAxcX4r2Ho57fejStr1KiBXbt2lTu+a9cuODk56Xs6IiIiIgDmPcKk91VyMTExeOmll5CQkIC2bdsCkDVMX331Fd577z2jF0hERETVg1UFprfffhuNGzfG3Llz8e233wIAmjdvjqVLl+Lpp582eoGmMmPGDCxZsgQajQZvv/02nn/+ebVLIiIiqtbMOTDpvYbJGhw+fBhDhgzB7t27AQDdunXDr7/+ilq1alX6HFzDREREZFyKUhKaLl0CPD2N/xpVtobJGhw5cgTt27eHk5MTnJyc0Lp1a2zYsEHtsoiIiKq1sp2+zUmlApOHhwcyMjIAALVr14aHh0eFN2OIj49Hr1694OPjA41GgzVr1pR7zPz589GoUSM4OTkhNDQUO3furPT5g4KCsG3bNmRmZiIzMxNbt27FuXPnjFI7ERERGc5cN+Ct1Bqm2bNnw9XVtfj7ynb9NlReXh6Cg4MRHR2N/v37l7t/5cqViImJwfz589GhQwcsXLgQUVFRSE5Ohr+/PwAgNDQU+fn55Z67adMmBAYGYsyYMejatSvc3d0RHh4OOzvuEkNERKQ2GxsJS+YWmMx+DZNGo8Hq1atLdRt/6KGHEBISggULFhQfa968Ofr27YvY2Fi9X2PEiBHo168fevbsWeFj8vPzSwWw7Oxs+Pn5cQ0TERGRETk6AgUFwJkzgK+v8c9fZWuYDhw4gMOHDxf//PPPP6Nv37545513UFBQoO/p9FZQUICEhARERkaWOh4ZGVm8iLsy0tPTAQBHjx7F3r170b1797s+PjY2Fu7u7sU3Pz8//YsnIiKiu9JOYpnbCJPegenFF1/EsWPHAAD//PMPBgwYAGdnZ6xatQrjxo0zeoFlZWRkoLCwEN7e3qWOe3t748KFC5U+T9++fREYGIjnn38eS5Ys0TklN378eGRlZRXfuA0MERGR8Vn0GqbbHTt2DK1btwYArFq1Cp07d8a3336L33//Hc888wzmzJlj9CLvpOw6KkVR9Fpbpc9oFAA4OjrC0dFRr+cQERGRfrSBydwWDOk9wqQoCor+jX2bN29Gjx49AAB+fn7FV9KZkqenJ2xtbcuNJqWnp5cbdSIiIiLLYq4jTHoHprCwMEyePBnLly/Hjh07ihdKp6SkVElgcXBwQGhoKOLi4kodj4uLQ/v27U3++kRERGQ65hqY9J6SmzNnDgYOHIg1a9ZgwoQJaNKkCQDghx9+MFpgyc3NxYkTJ4p/TklJQWJiIjw8PODv74+xY8di0KBBCAsLQ7t27bBo0SKkpqZi1KhRRnl9IiIiUoe5BiajtRW4ceMGbG1tYW9vf8/n2r59OyIiIsodHzJkCJYuXQpAGldOmzYNaWlpCAoKwuzZs9GpU6d7fu3K4tYoRERExufpCVy+DCQnA82bG//8hn5+GxSYMjMz8cMPP+DkyZN488034eHhgQMHDsDb2xsNGjTQ93QWiYGJiIjI+Ly8ZB+5pCSgRQvjn9/Qz2+9p+T+/PNPdOvWDbVq1cKpU6cwcuRIeHh4YPXq1Th9+jS+/vprfU9JREREBMB8p+T0XvQ9duxYREdH4/jx43Bycio+HhUVhfj4eKMWR0RERNWL1QSmffv24cUXXyx3vEGDBno1jiQiIiIqy2oCk5OTE7Kzs8sdP3r0KOrWrWuUooiIiKh6sprA1KdPH0yaNAk3b94EIB23U1NT8fbbb6N///5GL5CIiIiqD6sJTDNmzMClS5fg5eWF69evo3PnzmjSpAlcXV3x0UcfmaJGIiIiqibMNTDpfZWcm5sbdu3aha1bt+LAgQMoKipCSEgIHnnkEVPUR0RERNWIVQSmmzdvIjIyEgsXLkTXrl3RtWtXU9VFRERE1ZBGI1/NLTDpNSVnb2+PpKQkaLTvhoiIiMiItCNMxtmHxHj0XsM0ePBgfPnll6aohYiIiKo5q5iSA4CCggIsXrwYcXFxCAsLQ82aNUvdP2vWLKMVR0RERNWL1QSmpKQkhISEAACOHTtW6j5O1REREdG9sJrAtG3bNlPUQURERGS2gUnvNUxEREREpsLARERERKQDAxMRERGRDgxMRERERDowMBERERHpwMBEREREpAMDExEREZEODExEREREOjAwEREREemg3TSEgYmIiIioAtoRJkVRt46yGJiIiIjIbHBKjoiIiEgHBiYiIiIiHRiYiIiIiHRgYCIiIiLSgYGJiIiISAcGJiIiIiIdGJiIiIiIdGBgIiIiItKBgYmIiIhIBwYmIiIiIh0YmIiIiIh0YGAiIiIi0kGjka8MTEREREQV0I4wKYq6dZTFwERERERmg1NyRERERDowMBERERHpwMBEREREpAMDk4r69euH2rVr48knnyx1/MyZM+jSpQsCAwPRqlUrrFq1SqUKiYiICGBgUtWYMWPw9ddflztuZ2eHOXPmIDk5GZs3b8Zrr72GvLw8FSokIiIigIFJVREREXB1dS13vH79+mjdujUAwMvLCx4eHrhy5UpVl0dERET/YmCqQHx8PHr16gUfHx9oNBqsWbOm3GPmz5+PRo0awcnJCaGhodi5c6fR69i/fz+Kiorg5+dn9HMTERFR5ZhrYLJTu4C8vDwEBwcjOjoa/fv3L3f/ypUrERMTg/nz56NDhw5YuHAhoqKikJycDH9/fwBAaGgo8vPzyz1306ZN8PHx0VnD5cuXMXjwYCxevLjCx+Tn55d6jezs7Mq8PSIiItIDA1MFoqKiEBUVVeH9s2bNwvDhwzFixAgAwJw5c7Bx40YsWLAAsbGxAICEhASDXz8/Px/9+vXD+PHj0b59+wofFxsbiw8++MDg1yEiIiLdzDUwqT4ldzcFBQVISEhAZGRkqeORkZHYvXv3PZ9fURQMHToUXbt2xaBBg+762PHjxyMrK6v4dubMmXt+fSIiIirNXAOT6iNMd5ORkYHCwkJ4e3uXOu7t7Y0LFy5U+jzdu3fHgQMHkJeXB19fX6xevRrh4eH4/fffsXLlSrRq1ap47dTy5cvRsmXLcudwdHSEo6Pjvb0hIiIiuisGpnug0W5d/C9FUcodu5uNGzfe8fjDDz+MInP7L0JERFSNaT/eze3j2ayn5Dw9PWFra1tuNCk9Pb3cqBMRERFZPu0Ik6KoW0dZZh2YHBwcEBoairi4uFLH4+Li7rpAm4iIiCwTp+QqkJubixMnThT/nJKSgsTERHh4eMDf3x9jx47FoEGDEBYWhnbt2mHRokVITU3FqFGjVKyaiIiITIGBqQL79+9HRERE8c9jx44FAAwZMgRLly7FgAEDcPnyZUyaNAlpaWkICgrC+vXr0bBhQ7VKJiIiIhNhYKpAly5doOiYqBw9ejRGjx5dRRURERGRWsw1MJn1GiYiIiKqXhiYiIiIiHRgYCIiIiLSgYGJiIiISAcGJiIiIiIdGJiIiIiIdGBgIiIiItKBgYmIiIhIBwYmIiIiIh00GvnKwERERERUAe0Ik45NQKocAxMRERGZDU7JEREREenAwERERESkAwMTERERkQ4MTEREREQ6MDARERER6cDARERERKQDAxMRERGRDgxMRERERDowMBERERHpwMBEREREpAMDExEREZEODExEREREOmg08pWBiYiIiKgC2hEmRVG3jrIYmIiIiMhscEqOiIiISAcGJiIiIiIdGJiIiIiIdGBgIiIiItKBgYmIiIhIBwYmIiIiIh0YmIiIiIh0YGAiIiIi0oGBiYiIiEgHBiYiIiIiHRiYiIiIiHRgYCIiIiLSQaORrwxMRERERBXQjjApirp1lMXARERERGaDU3JEREREOphrYLJTu4Cq0K9fP2zfvh3dunXDDz/8UOo+Ozs7BAUFAQDCwsKwePFiNUokIjJ7hYWFuHnzptplkJXTaICGDQFvb+DGDf2fb29vD1tbW+PXpSjmNktofNu2bUNubi6WLVtWLjB5enoiIyND73NmZ2fD3d0dWVlZcHNzM1apRERmR1EUXLhwAZmZmWqXQtVAQQGQlgbY2gK+voado1atWqhXrx402hXktzH087tajDBFRERg+/btapdBRGSRtGHJy8sLzs7Od/wQIjKW69eBmzcBOzugUSP9nqsoCq5du4b09HQAQP369Y1Wl+qBKT4+HtOnT0dCQgLS0tKwevVq9O3bt9Rj5s+fj+nTpyMtLQ0tWrTAnDlz0LFjR6O8fnZ2NkJDQ1GjRg189NFH6Ny5s1HOS0RkDQoLC4vDUp06ddQuh6qB2+e9nJz0f36NGjUAAOnp6fDy8jLa9JzqgSkvLw/BwcGIjo5G//79y92/cuVKxMTEYP78+ejQoQMWLlyIqKgoJCcnw9/fHwAQGhqK/Pz8cs/dtGkTfHx87vr6p06dgo+PD5KSktCzZ08cPnyYU2xERP/SrllydnZWuRKiytP+eb1586b1BKaoqChERUVVeP+sWbMwfPhwjBgxAgAwZ84cbNy4EQsWLEBsbCwAICEhweDX1waqoKAgBAYG4tixYwgLCyv3uPz8/FKhLDs72+DXJCKyNJyGo6qi/aN2LyusTfHn1azbChQUFCAhIQGRkZGljkdGRmL37t33fP6rV68Wh6CzZ88iOTkZjRs3vuNjY2Nj4e7uXnzz8/O759cnIiIiy2DWgSkjIwOFhYXw9vYuddzb2xsXLlyo9Hm6d++Op556CuvXr4evry/27dsHADhy5AjCwsIQHByMxx9/HHPnzoWHh8cdzzF+/HhkZWUV386cOWP4GyMiIjITp06dgkajQWJiIgBg+/bt0Gg0Oq+KDAgIwJw5c0xWl7ldw6/6lFxllB1aUxRFr+G2jRs33vF4+/btcfjw4Uqdw9HREY6OjpV+TSIiIkvUvn17pKWlwd3dHQCwdOlSxMTElAtQ+/btQ82aNY3++uY6+2vWgcnT0xO2trblRpPS09PLjToRERGZI0VRUFhYCDs7s/7ILebg4IB69erpfFzdunWroJq7q8rfrVlPyTk4OCA0NBRxcXGljsfFxaF9+/YqVUVEVL0pCpCXp85Nn2maLl26YMyYMRg3bhw8PDxQr149TJw4sdRjUlNT0adPH7i4uMDNzQ1PP/00Ll68WOE5tdNXK1asQPv27eHk5IQWLVqU6vWnndLauHEjwsLC4OjoiJ07dwIA1q5di9DQUDg5OaFx48b44IMPcOvWreLnZmZm4oUXXoC3tzecnJwQFBSEdevWFd//448/okWLFnB0dERAQABmzpxZqr6AgABMmTIFw4YNg6urK/z9/bFo0aJSj9m7dy/atGkDJycnhIWF4eDBg6Xuv31Kbvv27YiOjkZWVhY0Gg00Gk3x77DslJyu3+XEiRPRunVrLF++HAEBAXB3d8czzzyDnJyc4scoioKZM6ehT5/GaN++BoKDg0s1nL7b79bkFJXl5OQoBw8eVA4ePKgAUGbNmqUcPHhQOX36tKIoirJixQrF3t5e+fLLL5Xk5GQlJiZGqVmzpnLq1ClV687KylIAKFlZWarWQURkStevX1eSk5OV69evFx/LzVUUiS5Vf8vNrXztnTt3Vtzc3JSJEycqx44dU5YtW6ZoNBpl06ZNiqIoSlFRkdKmTRvl4YcfVvbv36/s2bNHCQkJUTp37lzhOVNSUhQAiq+vr/LDDz8oycnJyogRIxRXV1clIyNDURRF2bZtmwJAadWqlbJp0yblxIkTSkZGhrJhwwbFzc1NWbp0qXLy5Ell06ZNSkBAgDJx4kRFURSlsLBQadu2rdKiRQtl06ZNysmTJ5W1a9cq69evVxRFUfbv36/Y2NgokyZNUo4ePaosWbJEqVGjhrJkyZLi+ho2bKh4eHgo8+bNU44fP67ExsYqNjY2ypEjR/79b5er1K1bVxkwYICSlJSkrF27VmncuLECQDl48GCp+q9evark5+crc+bMUdzc3JS0tDQlLS1NycnJKX6t2bNnV/p3+f777ysuLi7KE088oRw+fFiJj49X6tWrp7zzzjvFj3nnnXeU++9/QPnkkw3KmjUnlSVLliiOjo7K9u3b7/q7LetOf261DP38Vj0wad982duQIUOKHzNv3jylYcOGioODgxISEqLs2LFDvYL/xcBERNWBpQemhx9+uNSx8PBw5a233lIURVE2bdqk2NraKqmpqcX3//XXXwoAZe/evXc8pzYwTZ06tfjYzZs3FV9fX+Xjjz9WFKXkc23NmjWlntuxY0dlypQppY4tX75cqV+/vqIoirJx40bFxsZGOXr06B1f+7nnnlMeffTRUsfefPNNJTAwsPjnhg0bKs8//3zxz0VFRYqXl5eyYMECRVEUZeHChYqHh4eSl5dX/JgFCxZUGJgURVGWLFmiuLu7l6vn9sBUmd/l+++/rzg7OyvZ2VtX+Q4AABwSSURBVNml6n/ooYcURZEw5+TkpOzYsVvZt09R9u+XxwwfPlx59tlnS9VW9ndblikCk+oTql26dIGiY4x19OjRGD16dBVVREREd+PsDOTmqvfa+mjVqlWpn+vXr1+8bcaRI0fg5+dXqk1MYGAgatWqhSNHjiA8PLzC87Zr1674ezs7O4SFheHIkSOlHlO2p19CQgL27duHjz76qPhYYWEhbty4gWvXriExMRG+vr5o1qzZHV/zyJEj6NOnT6ljHTp0wJw5c1BYWFjcoPH296zRaFCvXr1S7zk4OLhUI9Lb34uhKvu7DAgIgKura/Fjbv/vkZycjBs3bqBHj0dRVCT329hIi6E2bdqUer079Us0NdUDExERWRaNBjDBxVEmYW9vX+pnjUaDon8/jZUKrriu6LguZZ9T9gqyoqIifPDBB3jiiSfKPdfJyal4S4+K3KmuOw046HrPplDZ3+XdatN+/fnnX5Gd3QAA0LKlPK7sVeqmuDpPF7Ne9E1ERGQqgYGBSE1NLdVXLzk5GVlZWWjevPldn7tnz57i72/duoWEhAQ88MADd31OSEgIjh49iiZNmpS72djYoFWrVjh79iyOHTtWYb27du0qdWz37t1o1qxZpbf/CAwMxKFDh3D9+vU7vpc7cXBwQGFhoc7zGvq7vP0cjo6OSE1NhZ9fE/j5NcF998nvxxyaRTMwERFRtfTII4+gVatWGDhwIA4cOIC9e/di8ODB6Ny5s84pn3nz5mH16tX4+++/8fLLL+Pq1asYNmzYXZ/z3nvv4euvv8bEiRPx119/4ciRI1i5ciXeffddAEDnzp3RqVMn9O/fH3FxcUhJScFvv/2GDRs2AABef/11bNmyBR9++CGOHTuGZcuW4bPPPsMbb7xR6ff83HPPwcbGBsOHD0dycjLWr1+PGTNm3PU5AQEByM3NxZYtW5CRkYFr166Ve8y9/C61XF1d8cYbb+DNN1/DunXLcPbsSRw8eBDz5s3DsmXLKv0eTYWBiYiIqiWNRoM1a9agdu3a6NSpEx555BE0btwYK1eu1PncqVOn4uOPP0ZwcDB27tyJn3/+GZ6ennd9Tvfu3bFu3TrExcUhPDwcbdu2xaxZs9CwYcPix/z4448IDw/Hs88+i8DAQIwbN654dCckJATff/89VqxYgaCgILz33nuYNGkShg4dWun37OLigrVr1yI5ORlt2rTBhAkT8PHHH9/1Oe3bt8eoUaMwYMAA1K1bF9OmTSv3mHv5Xd7uww8/xIQJ72Hp0lg89VRzPPZYd6xduxaNGjXS6zymoFFMNaFp5bKzs+Hu7o6srCy4ubmpXQ4RkUncuHEDKSkpaNSoEZycnNQuR3WnTp1Co0aNcPDgQbRu3VrtcqxSYSGgbQ0VEiILv/V1tz+3hn5+c4SJiIiISAcGJiIiIjJL5jQHxrYCRERElRQQEGCyS/NJmOvmuxxhIiIiIrNkTtmUgYmIiIjMBkeYiIiIiCwUAxMRERGZJU7JEREREd0Bp+SIiIiILBQDExERkQXo0qULYmJiin8OCAjAnDlz7vqciRMnWmRHcu0oE6fkiIiI6J7s27cPL7zwQvHP2v3cbvfGG29gy5YtVV2aVWLjSiIiIgAFBQVwcHBQu4xKq1u3rs7HuLi4wMXFpQqquTtDf7ccYSIiIsulKEBenjo3PT5Bu3TpgldeeQWvvPIKatWqhTp16uDdd98t7tQdEBCAyZMnY+jQoXB3d8fIkSMBAOfOncOAAQNQu3Zt1KlTB3369MGpU6dKnfurr75CixYt4OjoiPr16+OVV14pvi81NRV9+vSBi4sL3Nzc8PTTT+PixYvF92unyZYvX46AgAC4u7vjmWeeQU5OTvFj8vLyMHjwYLi4uKB+/fqYOXNmufd3+5RcQEAAAKBfv37QaDTFP5edkisqKsKkSZPg6+sLR0dHtG7dGhs2bCi+/9SpU9BoNPjpp58QEREBZ2dnBAcH448//ij12rt370anTp1Qo0YN+Pn5YcyYMcjLyytV251+t5Vljgu/GZiIiEg/164BLi7q3K5d06vUZcuWwc7ODv/73//wySefYPbs2Vi8eHHx/dOnT0dQUBASEhLwn//8B9euXUNERARcXFwQHx+PXbt2wcXFBY899hgKCgoAAAsWLMDLL7+MF154AYcPH8Yvv/yCJk2aAAAURUHfvn1x5coV7NixA3FxcTh58iQGDBhQqq6TJ09izZo1WLduHdatW4cdO3Zg6tSpxfe/+eab2LZtG1avXo1NmzZh+/btSEhIqPB97tu3DwCwZMkSpKWlFf9c1ty5czFz5kzMmDEDf/75J7p3747evXvj+PHjpR43YcIEvPHGG0hMTESzZs3w7LPP4tatWwCAw4cPo3v37njiiSfw559/YuXKldi1a1ep0Hin363FU8ggWVlZCgAlKytL7VKIiEzm+vXrSnJysnL9+v+3d/dBUZ1nG8CvXbIgkGWBILIrBI34jZAARokVKBiDExOtNaMtQ3Da0aSVr0gckzIW46QTm9TYGJumTTLVzDjgtIrjxNSoDaIEqAqsAlKKZgNGIVSDfCmfe79/+HLqCrqLFXaF6zezM+zzPOec+9zznNmbc86evfHfxrY2kZvneob/1dZmc+zR0dEyffp0MZvNStuGDRtk+vTpIiISGBgoS5cutVjmk08+kalTp1os09nZKa6urvLFF1+IiIjBYJDMzMwBt3n48GFxcnKSuro6pa2yslIAyMmTJ0VEJCsrS9zc3KSlpUUZs379epkzZ46IiLS2toqzs7Pk5OQo/VevXhVXV1dJS0tT2gIDA2Xbtm3KewCSm5trEU9WVpaEhoYq7w0Gg/zmN7+xGDN79mz55S9/KSIiJpNJAMjHH3/cL/6qqioREUlMTJQ1a9ZYrOPEiROiVquVeTJQbgejtFTk1CmRW6fdYAw4b//fvX5+8x4mIiIaHDc3oK3NftsehLlz50J1y/WdyMhIbN26Fb29vQCAiIgIi/ElJSU4f/48tFqtRXtHRwcuXLiAxsZGXL58GXFxcQNur6qqCgEBAQgICFDaZsyYAU9PT1RVVWH27NkAbl6yunUber0ejY2NAG6eferq6kJkZKTS7+3tjalTpw5q32/X0tKCy5cvY968eRbt8+bNw5kzZyzaQkJCLGIDgMbGRkybNk3J0e7du5UxIgKz2QyTyYTp06cD6J/bBx0LJiIiGhyVCnB3t3cU94X7bfthNpsRHh5uUQz0GTt2LNTqu9/JIiIWBdqd2jUajUW/SqWC2WxWxg6l2+MbKOZb4+vr64vPbDbjpZdeQmpqar91P/roo8rft+d2cDH2xXbPq7jveA8TERGNWMXFxf3eT548GU5OTgOODwsLQ01NDXx9fREUFGTx0ul00Gq1mDBhwh2/qj9jxgzU1dXh4sWLStu5c+fQ3NysnHmxJigoCBqNxiL2pqYm/Pvf/77rchqNRjlzNhAPDw8YDAYUFBRYtBcWFtocG3AzR5WVlf3yExQU9EB9y3CwWDAREdGIdfHiRaxbtw7V1dXIzs7G+++/j7S0tDuOT0hIgI+PD5YsWYITJ07AZDIhPz8faWlp+PbbbwHc/ObZ1q1bsX37dtTU1KC0tBTvv/8+AGDBggUICQlBQkICSktLcfLkSbz44ouIjo62+RLVww8/jJ///OdYv349/vGPf6CiogKrVq2yenarr5BraGhAU1PTgGPWr1+P3/72t9izZw+qq6vx2muvwWg03jUnt9uwYQOKioqwdu1aGI1G1NTU4MCBA0hJSbF5Hdao1TdfjoSX5IiIaMR68cUXcePGDTz55JNwcnJCSkqKxcMeb+fm5objx49jw4YNWLZsGVpbWzF+/HjExcXBw8MDAJCUlISOjg5s27YNr776Knx8fLB8+XIA/314ZEpKCqKioqBWqxEfH68UVLZ655130NbWhueffx5arRYZGRlobm6+6zJbt27FunXr8NFHH2H8+PH9HoUAAKmpqWhpaUFGRgYaGxsxY8YMHDhwAJMnT7Y5tpCQEOTn5yMzMxPz58+HiGDSpEn9vgn4v7jlFiqHoZKhvlg6QrW0tECn06G5uVk5iIiIRpqOjg6YTCZMnDgRY8aMsXc4gxITE4PHH3/c6s+H0Mhzt3l7r5/fDnbCi4iIiMjxsGAiIiIisoL3MBER0Yh07Ngxe4dAIwjPMBERERFZwYKJiIis4veD6EEyFPOVBRMREd1R3xOfrw/yR2+J7Klvvt7+RPX/Be9hIiKiO3JycoKnp6fyO2dubm4D/vQHkSMQEVy/fh2NjY3w9PS84xPd7wULJiIiuis/Pz8AUIomIkfn6empzNv7hQUTERHdlUqlgl6vh6+vL7q7u+0dDtFdaTSa+3pmqQ8LJiIisomTk9OQfBARPQh40zcRERGRFSyYiIiIiKxgwURERERkBe9hukd9D8VqaWmxcyRERERkq77P7cE+3JIF0z1qbW0FAAQEBNg5EiIiIhqs1tZW6HQ6m8erhM+7vydmsxmXL1+GVqu9rw9xa2lpQUBAAC5evAgPD4/7tt6RivmyHXNlO+ZqcJgv2zFXgzMU+RIRtLa2wmAwQK22/c4knmG6R2q1Gv7+/kO2fg8PDx5Mg8B82Y65sh1zNTjMl+2Yq8G53/kazJmlPrzpm4iIiMgKFkxEREREVjht2rRpk72DIEtOTk6IiYnBQw/xiqktmC/bMVe2Y64Gh/myHXM1OI6SL970TURERGQFL8kRERERWcGCiYiIiMgKFkxEREREVrBgIiIiIrKCBZOD+eCDDzBx4kSMGTMG4eHhOHHihL1DsrtNmzZBpVJZvPz8/JR+EcGmTZtgMBjg6uqKmJgYVFZW2jHi4XP8+HE899xzMBgMUKlU2L9/v0W/LblpampCYmIidDoddDodEhMTce3ateHcjWFjLV+rVq3qN9fmzp1rMaazsxMpKSnw8fGBu7s7nn/+eXz77bfDuRvD4q233sLs2bOh1Wrh6+uLpUuXorq62mKMLbmoq6vDc889B3d3d/j4+CA1NRVdXV3DuStDzpZcxcTE9JtbK1eutBgzWo7FP/7xjwgJCVEeRhkZGYm///3vSr+jzisWTA5kz549SE9PR2ZmJsrKyjB//nwsWrQIdXV19g7N7mbOnIn6+nrlVV5ervS9/fbbePfdd7Fjxw6cOnUKfn5+ePrpp5Xf+xvJ2tvbERoaih07dgzYb0tufvrTn8JoNOLQoUM4dOgQjEYjEhMTh2sXhpW1fAFAfHy8xVz7/PPPLfrT09ORm5uLnJwcFBQUoK2tDYsXL0Zvb+9Qhz+s8vPzsXbtWhQXF+PIkSPo6enBwoUL0d7eroyxlove3l48++yzaG9vR0FBAXJycrB3715kZGTYa7eGhC25AoDVq1dbzK0//elPFv2j5Vj09/fHli1bcPr0aZw+fRqxsbFYsmSJ8s+cw84rIYfx5JNPyssvv2zRNm3aNHnttdfsFJFjyMrKktDQ0AH7zGaz+Pn5yZYtW5S2jo4O0el08uGHHw5XiA4BgOTm5irvbcnNuXPnBIAUFxcrY4qKigSA/Otf/xq+4O3g9nyJiCQlJcmSJUvuuMy1a9dEo9FITk6O0nbp0iVRq9Vy6NChIYvVETQ2NgoAyc/PFxHbcvH555+LWq2WS5cuKWOys7PFxcVFmpubh3cHhtHtuRIRiY6OlrS0tDsuM5qPRRERLy8v+fjjjx16XvEMk4Po6upCSUkJFi5caNG+cOFCFBYW2ikqx1FTUwODwYCJEydi5cqV+PrrrwEAJpMJDQ0NFnlzcXFBdHT0qM+bLbkpKiqCTqfDnDlzlDFz586FTqcbtfk7duwYfH19MWXKFKxevRqNjY1KX0lJCbq7uy1yajAYEBwcPOLz1dzcDADw9vYGYFsuioqKEBwcDIPBoIx55pln0NnZiZKSkmGMfnjdnqs+u3fvho+PD2bOnIlXX33V4kzvaD0We3t7kZOTg/b2dkRGRjr0vOJjRh3ElStX0Nvbi3Hjxlm0jxs3Dg0NDXaKyjHMmTMHn376KaZMmYLvvvsOb775Jp566ilUVlYquRkob7W1tfYI12HYkpuGhgb4+vr2W9bX13dUzrtFixbhhRdeQGBgIEwmEzZu3IjY2FiUlJTAxcUFDQ0NcHZ2hpeXl8VyI/04FRGsW7cOP/jBDxAcHAwANuWioaGh3/zz8vKCs7PziM3XQLkCgISEBEycOBF+fn6oqKjA66+/jjNnzuDIkSMARt+xWF5ejsjISHR0dODhhx9Gbm4uZsyYAaPR6LDzigWTg1GpVBbvRaRf22izaNEi5e9Zs2YhMjISkyZNwq5du5Qbcpm3O7OWm4HyNFrzt2LFCuXv4OBgREREIDAwEAcPHsSyZcvuuNxIz1dycjLOnj2LgoICq2NH+/y6U65Wr16t/B0cHIzJkycjIiICpaWlCAsLAzC6cjV16lQYjUZcu3YNe/fuRVJSEvLz8+843hHmFS/JOQgfHx84OTn1q44bGxv7VdKjnbu7O2bNmoWamhrl23LMW3+25MbPzw/fffddv2X/85//jPr8AYBer0dgYCBqamoA3MxXV1cXmpqaLMaN5PmWkpKCAwcOIC8vD/7+/kq7Lbnw8/PrN/+amprQ3d09IvN1p1wNJCwsDBqNxmJujaZj0dnZGUFBQYiIiMBbb72F0NBQvPfeew49r1gwOQhnZ2eEh4crp2f7HDlyBE899ZSdonJMnZ2dqKqqgl6vV05x35q3rq4u5Ofnj/q82ZKbyMhINDc34+TJk8qYf/7zn2hubh71+QOAq1ev4uLFi9Dr9QCA8PBwaDQai5zW19ejoqJixOVLRJCcnIx9+/bhyy+/xMSJEy36bclFZGQkKioqUF9fr4w5fPgwXFxcEB4ePjw7Mgys5WoglZWV6O7uVubWaD8WRQSdnZ2OPa+G7HZyGrScnBzRaDTyySefyLlz5yQ9PV3c3d3lm2++sXdodpWRkSHHjh2Tr7/+WoqLi2Xx4sWi1WqVvGzZskV0Op3s27dPysvL5Sc/+Yno9XppaWmxc+RDr7W1VcrKyqSsrEwAyLvvvitlZWVSW1srIrblJj4+XkJCQqSoqEiKiopk1qxZsnjxYnvt0pC6W75aW1slIyNDCgsLxWQySV5enkRGRsr48eMt8vXyyy+Lv7+/HD16VEpLSyU2NlZCQ0Olp6fHjnt2//3iF78QnU4nx44dk/r6euV1/fp1ZYy1XPT09EhwcLDExcVJaWmpHD16VPz9/SU5OdleuzUkrOXq/Pnz8sYbb8ipU6fEZDLJwYMHZdq0afLEE09YzJvRciy+/vrrcvz4cTGZTHL27Fn51a9+JWq1Wg4fPiwijjuvWDA5mD/84Q8SGBgozs7OEhYWZvG11NFqxYoVotfrRaPRiMFgkGXLlkllZaXSbzabJSsrS/z8/MTFxUWioqKkvLzcjhEPn7y8PAHQ75WUlCQituXm6tWrkpCQIFqtVrRarSQkJEhTU5Md9mbo3S1f169fl4ULF8rYsWNFo9HIo48+KklJSVJXV2exjhs3bkhycrJ4e3uLq6urLF68uN+YkWCgPAGQv/zlL8oYW3JRW1srzz77rLi6uoq3t7ckJydLR0fHMO/N0LKWq7q6OomKihJvb29xdnaWSZMmSWpqqly9etViPaPlWPzZz36mfM6NHTtW4uLilGJJxHHnlUpEZOjOXxERERE9+HgPExEREZEVLJiIiIiIrGDBRERERGQFCyYiIiIiK1gwEREREVnBgomIiIjIChZMRERERFawYCIihxQTE4P09HR7h2FBpVJh//799g6DiOyAD64kIof0/fffQ6PRQKvVYsKECUhPTx+2AmrTpk3Yv38/jEajRXtDQwO8vLzg4uIyLHEQkeN4yN4BEBENxNvb+76vs6urC87Ozve8vJ+f332MhogeJLwkR0QOqe+SXExMDGpra/HKK69ApVJBpVIpYwoLCxEVFQVXV1cEBAQgNTUV7e3tSv+ECRPw5ptvYtWqVdDpdFi9ejUAYMOGDZgyZQrc3Nzw2GOPYePGjeju7gYA7Ny5E2+88QbOnDmjbG/nzp0A+l+SKy8vR2xsLFxdXfHII49gzZo1aGtrU/pXrVqFpUuX4ne/+x30ej0eeeQRrF27VtkWAHzwwQeYPHkyxowZg3HjxmH58uVDkk8i+t+wYCIih7Zv3z74+/tj8+bNqK+vR319PYCbxcozzzyDZcuW4ezZs9izZw8KCgqQnJxssfw777yD4OBglJSUYOPGjQAArVaLnTt34ty5c3jvvffw0UcfYdu2bQCAFStWICMjAzNnzlS2t2LFin5xXb9+HfHx8fDy8sKpU6fw17/+FUePHu23/by8PFy4cAF5eXnYtWsXdu7cqRRgp0+fRmpqKjZv3ozq6mocOnQIUVFR9zuFRHQ/DOlP+xIR3aPo6GhJS0sTEZHAwEDZtm2bRX9iYqKsWbPGou3EiROiVqvlxo0bynJLly61uq23335bwsPDlfdZWVkSGhrabxwAyc3NFRGRP//5z+Ll5SVtbW1K/8GDB0WtVktDQ4OIiCQlJUlgYKD09PQoY1544QVZsWKFiIjs3btXPDw8pKWlxWqMRGRfvIeJiB5IJSUlOH/+PHbv3q20iQjMZjNMJhOmT58OAIiIiOi37N/+9jf8/ve/x/nz59HW1oaenh54eHgMavtVVVUIDQ2Fu7u70jZv3jyYzWZUV1dj3LhxAICZM2fCyclJGaPX61FeXg4AePrppxEYGIjHHnsM8fHxiI+Px49+9CO4ubkNKhYiGnq8JEdEDySz2YyXXnoJRqNReZ05cwY1NTWYNGmSMu7WggYAiouLsXLlSixatAifffYZysrKkJmZia6urkFtX0Qs7qe61a3tGo2mX5/ZbAZw89JgaWkpsrOzodfr8etf/xqhoaG4du3aoGIhoqHHM0xE5PCcnZ3R29tr0RYWFobKykoEBQUNal1fffUVAgMDkZmZqbTV1tZa3d7tZsyYgV27dqG9vV0pyr766iuo1WpMmTLF5ngeeughLFiwAAsWLEBWVhY8PT3x5ZdfYtmyZYPYKyIaajzDREQOb8KECTh+/DguXbqEK1euALj5TbeioiKsXbsWRqMRNTU1OHDgAFJSUu66rqCgINTV1SEnJwcXLlzA9u3bkZub2297JpMJRqMRV65cQWdnZ7/1JCQkYMyYMUhKSkJFRQXy8vKQkpKCxMRE5XKcNZ999hm2b98Oo9GI2tpafPrppzCbzZg6daqNmSGi4cKCiYgc3ubNm/HNN99g0qRJGDt2LAAgJCQE+fn5qKmpwfz58/HEE09g48aN0Ov1d13XkiVL8MorryA5ORmPP/44CgsLlW/P9fnxj3+M+Ph4/PCHP8TYsWORnZ3dbz1ubm744osv8P3332P27NlYvnw54uLisGPHDpv3y9PTE/v27UNsbCymT5+ODz/8ENnZ2Zg5c6bN6yCi4cEnfRMRERFZwTNMRERERFawYCIiIiKyggUTERERkRUsmIiIiIisYMFEREREZAULJiIiIiIrWDARERERWcGCiYiIiMgKFkxEREREVrBgIiIiIrKCBRMRERGRFSyYiIiIiKz4P3N1kQgRFKF4AAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x, ch = cg(A, b, maxiter=300, log=true)\n", - "x′, ch′ = cg(A, b, Pl=ldltfact(L), maxiter=300, log=true)\n", - "semilogy(ch[:resnorm], \"b-\")\n", - "semilogy(ch′[:resnorm], \"r-\")\n", - "xlabel(\"iterations\")\n", - "ylabel(\"residual norm\")\n", - "legend([\"no preconditioner\", \"preconditioner\"], loc=\"lower right\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "If you can find a good preconditioner, you can often speed things up by orders of magnitude. Unfortunately, finding preconditioners is hard and problem-dependent. There are some general \"recipes\" for things to try, but there are many problems (like the scalar-Helmholtz problem above) where good preconditioners are still an open research problem.\n", - "\n", - "What makes a good preconditioner matrix $P$ for a matrix $A$? For the \"ideal\" preconditioner $P = A^{-1}$, you would have $PA = I$, but of course this is impractical: if you could compute $A^{-1}$ quickly, you wouldn't need an iterative solver. So, what you want is for $PA$ to be \"like\" $I$ in some sense. The eigenvalues of $I$ are all 1, and it turns out that a good preconditioner makes $PA$ have eigenvalues that are mostly *clustered* together.\n", - "\n", - "Let's see how the eigenvalues of $A$ and $PA = L^{-1} A$ compare in this case." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG4CAYAAAC6kcgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X1clHW+//H3gIAogqIpEIq6uK1EaYIpZoZ2wvWUZe12rFazXbZ0F9cbRF2z2tY6mbZmbaGpy3Z3cmtPZo89J3+pdfAuzVRkS2lLE29QzGITEBUUrt8fLJMjDMwMc3PN8Ho+HvNw5pprrusz32aaD9/v9/p8LYZhGAIAAEAjQb4OAAAAwKxIlAAAAOwgUQIAALCDRAkAAMAOEiUAAAA7SJQAAADsIFECAACwg0QJAADADhIlAAAAO0iUAAAA7CBRAgAAsKOdrwPwN3V1dTpx4oQ6deoki8Xi63AAAIADDMNQZWWl4uLiFBTkeD8RiZKTTpw4oZ49e/o6DAAA4IJjx44pPj7e4f1JlJzUqVMnSfUNHRkZ6eNoAACAIyoqKtSzZ0/r77ijSJSc1DDcFhkZSaIEAICfcXbaDJO5AQAA7CBRAgAAsINECQAAwA7mKHlAXV2dampqfB0G4FUhISEKDg72dRgA4FYkSm5WU1Oj4uJi1dXV+ToUwOs6d+6smJgYaowBCBgkSm5kGIZKS0sVHBysnj17OlXQCvBnhmHo7NmzOnXqlCQpNjbWxxEBgHuQKLnRxYsXdfbsWcXFxalDhw6+DgfwqvDwcEnSqVOn1L17d4bhAAQEujzcqLa2VpIUGhrq40gA32j4A+HChQs+jgQA3INEyQOYn4G2is8+gEBDogQAAGAHiRIAAIAdJEoAAMAcSkqk/Pz6f02CRAloRnp6umbMmGH3sSOv8SUzxQIAzcrLkxISpFGj6v/Ny/N1RJLaaKJ05513qkuXLvrpT3/q61DgZ9555x098cQT1sdNJSKX7+Mv9u7dq5CQEN14442+DgVAW1NSIj30kNRQrLmuTpo82RQ9S20yUZo2bZpee+01X4cBye+WeomOjlanTp1avY8ZTZs2TTk5Ofr73/8uwzB8HQ6AtuTAge+TpAa1tdLBg76J5xJtMlEaOXKk6X/IvD1M27t3bz333HM22wYOHKjHH39cUn3PybRp0zRnzhxFR0crJibG+lyD9PR0TZ06VVOnTlXnzp3VtWtXPfLIIzY/ug37ZGdnq1u3brrlllsk1Vd2Xrx4sfr27avw8HANGDBAb7/9tvV1dXV1WrRokRITExUWFqZevXrpP//zP63PV1dXa9q0aerevbvat2+v4cOHa9euXTbnbSn+qqoq3X///YqIiFBsbKyWLFnSqJ0u7UF64IEHtHnzZj3//POyWCyyWCw6fPhwo16mlmJzJL6W2sfR+O1ZvXq1unTpoqysLFVWVurQoUMOvxYAWq1fP+ny1SyCg6XERN/Ecwm/S5S2bNmisWPHKi4uThaLRe+++26jfZYtW6Y+ffqoffv2SklJ0datW30QqetMOkyrV199VR07dtTOnTu1ePFiLViwQBs3bmy0T7t27bRz50798Y9/1NKlS/WnP/2pyX0++ugjrVixQpL0yCOP6OWXX9by5cu1f/9+zZw5UxMmTNDmzZslSfPmzdOiRYv06KOPqqioSKtXr1aPHj2sx5wzZ47WrFmjV199VQUFBUpMTNTo0aP1z3/+0+H4Z8+erfz8fK1du1YbNmzQpk2btGfPHrvt8fzzzystLU0PPvigSktLVVpaqp49ezbaz5HYWoqvpfZxJf4GVVVVevjhh7Vo0SLFx8crKipKhYWFLb4OANwmPl5aubI+OZLq/12xon67rxl+Zt26dcb8+fONNWvWGJKMtWvX2jz/5ptvGiEhIcaqVauMoqIiY/r06UbHjh2NI0eO2OyXn59v/OQnP3H6/OXl5YYko7y8vNFz586dM4qKioxz5845fdwGx44ZRlCQYUjf34KD67d7UkJCgrF06VKbbQMGDDB+97vfGYZhGDfddJMxfPhwm+cHDx5szJ071/r4pptuMvr372/U1dVZt82dO9fo37+/zT4DBw60Oc6ZM2eM9u3bG9u3b7fZnpmZadx7771GRUWFERYWZqxatarJ2M+cOWOEhIQYb7zxhnVbTU2NERcXZyxevNih+CsrK43Q0FDjzTfftD5fVlZmhIeHG9OnT7eJv7nHl29zJLaW4mupfZyJvynz5s0zJk+ebH2clpZmPPLII82+xh53fAcAtGHHjhlGfr5HfvSa+/1ujt+t9TZmzBiNGTPG7vPPPvusMjMz9ctf/lKS9Nxzz2n9+vVavny5Fi5c6PT5qqurVV1dbX1cUVHhfNBOaG6Y1teJ9bXXXmvzODY21roIaoOhQ4faVGdOS0vTkiVLVFtba137KzU11eY1RUVFOn/+vHUYrkFNTY2uu+46ff7556qurtbNN9/cZFxfffWVLly4oBtuuMG6LSQkRNdff70+//xzh+L/6quvVFNTo7S0NOvz0dHRuuqqq5puDAc5Gltz8bXUPq2J/9ChQ1q5cqX27dtn3ZacnEyPEgDfiI/3/Y/dZfwuUWpOTU2N9uzZo9/+9rc22zMyMrR9+3aXjrlw4UL9/ve/d0d4DmkYpr00WfLGMG1QUFCjCbyXr9cVEhJi89hisaju8qzOAR07drR53HCM9957T1deeaXNc2FhYTp9+nSzx2uI+/LlMwzDsNnWXPyXv3d3cTS25uJrqX0uPY+zZs6cqbKyMsVf8j+murq6RucBgLbK7+YoNefbb79VbW2tzdwVSerRo4dOnjxpfTx69GjdfffdWrduneLj4xtNrL3UvHnzVF5ebr0dO3bMY/FLvhumveKKK1RaWmp9XFFRoeLiYqeP8/HHHzd63K9fv2ZXkk9KSlJYWJiOHj2qxMREm1vPnj3Vr18/hYeH68MPP2zy9YmJiQoNDdW2bdus2y5cuKDdu3erf//+DsWdmJiokJAQm/i/++47ffnll82+LjQ01LoYsqdia6l9XI1/48aN+uijj7R3714VFhZab3l5eSopKVFZWZlD8QFAIAuoHqUGLf31vn79eoePFRYWZv2r3VsyM6XRo+uH2xITvdMLOWrUKL3yyisaO3asunTpokcffbTZ5MaeY8eOKTs7W5MnT1ZBQYFeeOGFFq++6tSpk3JycjRz5kzV1dVp+PDhqqio0Pbt2xUREaFJkyZp7ty5mjNnjkJDQ3XDDTfom2++0f79+5WZmamOHTvqV7/6lWbPnq3o6Gj16tVLixcv1tmzZ5WZmelQ3BEREcrMzNTs2bPVtWtX9ejRQ/Pnz1fQ5VdhXKZ3797auXOnDh8+rIiICEVHR9s8747YHGkfZ+O/ePGipk+frtmzZ2vgwIE2z0VGRkqSCgsL7Q53AkBbEVCJUrdu3RQcHGzTeyRJp06datTLZHbeHqadN2+eDh06pNtuu01RUVF64oknXOpRuv/++3Xu3Dldf/31Cg4O1m9+8xs99NBDLb7uiSeeUPfu3bVw4UIdOnRInTt31qBBg/Twww9Lkh599FG1a9dOjz32mE6cOKHY2FhNmTLF+vqnn35adXV1mjhxoiorK5Wamqr169erS5cuDsf+zDPP6MyZM7r99tvVqVMnzZo1S+Xl5c2+JicnR5MmTVJSUpLOnTvXZJu5I7aW2sfZ+F944QWVlZVp6tSpjZ7r2bOnOnToQKIEAJIshqcmZ3iBxWLR2rVrNW7cOOu2IUOGKCUlRcuWLbNuS0pK0h133OHSZO4Gubm5ys3NVW1trb788kuVl5db//JucP78eRUXF1tLE7Q16enpGjhwYKN6TGg72vp3AIB5VVRUKCoqqsnf7+b4XY/SmTNndPCSSp3FxcUqLCy0DmtkZ2dr4sSJSk1NVVpamlauXKmjR4/a9D64IisrS1lZWdaGBgAAgc/vEqXdu3dr5MiR1sfZ2dmSpEmTJumVV17R+PHjVVZWpgULFqi0tFTJyclat26dEhISfBUyAADwU3499OYLzXXdMeyAto7vAACzcnXoLaDKA3hSbm6ukpKSNHjwYF+HAgAAvIREyUFZWVkqKipqtuYSAAAILCRKAAAAdpAoAQAA2EGiBAAAYAeJkoOYzA0AQNtDouQgJnMDAND2kCgBAADYQaIEAABgB4kSAACAHSRKDmIyNwLNnXfeqS5duuinP/2pr0MBANMiUXIQk7kRaKZNm6bXXnvN12EAgKmRKCFgpaena8aMGY3uO/oaX/JGHCNHjlSnTp08eg4A8HftfB0A4A3vvPOOQkJCrI/T09M1cOBAPffcc83uZ3bDhg1TcnKyVq5c6bFz7N27V9dff72GDh2qrVu3euw8AGBGJEpwSU1NjUJDQ30dhsOio6Pdup8Z1NXV6dNPP9X999/f5PMpKSmqrq5utH3Dhg2Ki4tz+DzTpk1TTk6OcnNzZRiGLBaLyzEDgL9h6M2sSkqk/Pz6f70gPT1dU6dO1dSpU9W5c2d17dpVjzzyiAzDsHk+Oztb3bp10y233CJJMgxDixcvVt++fRUeHq4BAwbo7bfftjl2XV2dFi1apMTERIWFhalXr176z//8T0lSdXW1pk2bpu7du6t9+/YaPnx4o3lg6enpmjZtmubMmaPo6GjFxMTo8ccft9mnqqpK999/vyIiIhQbG6slS5Y0OkbDUNYDDzygzZs36/nnn5fFYpHFYtHhw4cb7eeu2Fpqo5Zit+cf//iHqqqqNGjQoCaf37Nnj/bt29fo5kyStHr1anXp0kVZWVmqrKzUoUOHHH4tAAQCEiUzysuTEhKkUaPq/83L88ppX331VbVr1047d+7UH//4Ry1dulR/+tOfGj3/0UcfacWKFZKkRx55RC+//LKWL1+u/fv3a+bMmZowYYI2b95sfd28efO0aNEiPfrooyoqKtLq1avVo0cPSdKcOXO0Zs0avfrqqyooKFBiYqJGjx6tf/7zn41i69ixo3bu3KnFixdrwYIF2rhxo/X52bNnKz8/X2vXrtWGDRu0adMm7dmzp8n3+fzzzystLU0PPvigSktLVVpaqp49ezbaz12xtdRGzsR+qYKCArVr107XXntti/u6oqqqSg8//LAWLVqk+Ph4RUVFqbCw0CPnAgDTMuCQF1980ejfv7/xwx/+0JBklJeXN9rn3LlzRlFRkXHu3DnXT3TsmGEEBRmG9P0tOLh+uwfddNNNRv/+/Y26ujrrtrlz5xr9+/e3Pj9w4ECb15w5c8Zo3769sX37dpvtmZmZxr333msYhmFUVFQYYWFhxqpVqxqd88yZM0ZISIjxxhtvWLfV1NQYcXFxxuLFi21iGz58uM1rBw8ebMydO9cwDMOorKw0QkNDjTfffNP6fFlZmREeHm5Mnz7deoyG+009vny7u2JrqY0cid2emTNnGtdee22z+zQnIyPD6NatmxEeHm5ceeWVxieffGLz/Lx584zJkydbH6elpRmPPPJIs8d0y3cAADygvLzc7u93c5ij5KCsrCxlZWWpoqJCUVFRnjvRgQNSXZ3tttpa6eBBKT7ec+eVNHToUJv5J2lpaVqyZIlqa2slSampqTb7FxUV6fz589ZhuAY1NTW67rrrJEmff/65qqurdfPNNzc631dffaULFy7ohhtusG4LCQnR9ddfr88//9xm38t7TWJjY3Xq1CnrcWpqapSWlmZ9Pjo6WldddZXD791TsbXURq2JvaCgwO6wmyPWr19v97lDhw5p5cqV2rdvn3VbcnIyPUoA2hwSJbPp108KCrJNloKDpcRE38X0Lx07drR5XPevGN977z1deeWVNs+FhYVJksLDw+0ez/jX/KfLJwcbTUwYvvxKNIvFYj1/w3HcyV2xtdRGZWVlLsdXWFjosWKRM2fOVFlZmeIvSc7r6uoavQcACHTMUTKb+Hhp5cr65Eiq/3fFCo/3JknSxx9/3Ohxv379FNwQy2WSkpIUFhamo0ePKjEx0ebWMOenX79+Cg8P14cfftjo9YmJiQoNDdW2bdus2y5cuKDdu3erf//+DsedmJiokJAQm/i/++47ffnll3ZfExoaau0ps3dMd8TWUhu5ErtU3+NVXl7eqh4lezZu3KiPPvpIe/fuVWFhofWWl5enkpISl5M7APBH9CiZUWamNHp0/XBbYqJXkiRJOnbsmLKzszV58mQVFBTohRdeaPYKrE6dOiknJ0czZ85UXV2dhg8froqKCm3fvl0RERGaNGmS2rdvr7lz52rOnDkKDQ3VDTfcoG+++Ub79+9XZmamfvWrX2n27NmKjo5Wr169tHjxYp09e1aZmZkOxx0REaHMzEzNnj1bXbt2VY8ePTR//nwFBdn/O6B3797auXOnDh8+rIiICEVHR9vs37FjR7fE5kgbORu7VD/sJknBwcE2w2MhISGtGnK8ePGipk+frtmzZ2vgwIE2z0VGRkqSCgsLmxxKBYBARKJkVvHxXkuQGtx///06d+6crr/+egUHB+s3v/mNHnrooWZf88QTT6h79+5auHChDh06pM6dO2vQoEF6+OGHrfs8+uijateunR577DGdOHFCsbGxmjJliiTp6aefVl1dnSZOnKjKykqlpqZq/fr16tKli1OxP/PMMzpz5oxuv/12derUSbNmzVJ5ebnd/XNycjRp0iQlJSXp3LlzKi4uVu/evW32cVdsLbWRs7FL9UUgpfp5ZZcaOnSoduzY4VR8l3rhhRdUVlamqVOnNnquZ8+e6tChA4kSgEZKSqTt2+vv9+kjFRd/f//MGSkiwnZbS/eHDfP6T6BdFsMTEzwCWMNk7vLycutf2A3Onz+v4uJi9enTR+3bt/dRhK6xV6kacIY/fwcAf1ZSUn8tkLMJiTvu/9//1c8YcWc2YbFIq1bVD7C4S3O/382hRwkAAB9xR4Lz6afSwoWNL5j2Z4YhTZ5cPwvF1z1LJEoOys3NVW5ubrMTgAEAbY+ryU4gJjju5KXKOC1i6M1JgTr0BrgD3wEEAmcSH5IdzwkOlg4fdl+ixNAbAADNaG7CMYmPuQQFea0yTotIlAAAfs2RHqC//lVassS9E47xPYtFeugh6eabpd6963uCpPr7VVVSx46221q6n5ZmjiRJIlECAJhYS0kQPUDfCwqSfvtbqaEEmiMJibvuX57YDB7cOL5LtzV5v6REg88cqF+hwixZkpij5DTmKAH28R2AK+wNibWVJMgdCU5VlVfrE7tfXl59l1RdXX2DrFzp3toAcn2OEomSk0iUAPv4DuByLc0L8kQNHl9wNdnx+wTHHUpKpISExmucunMmt5jMbSrknmir+Oy3XU0lRP6cBDmT+NhLdlocakK9AwcadxuapTaASJTcqmHx2JqaGoWHh/s4GsD7zp49K6l+zTkElubmCvlLQhQUJD34YNMTjluT+KCV+vWr/49zeY9SYqLvYroEiZIbtWvXTh06dNA333yjkJCQFhc2BQKFYRg6e/asTp06pc6dO1v/aID/aSoh8oe5Qi31ADWV/JD4mER8fH2mPXlyfU9ScLB5agOIOUpOa2mMs6amRsXFxaoz8/9RAA/p3LmzYmJiZLFYfB0KWuBPCZErSRD8UElJ/XCbh/5jMkfJwxxdwiQ0NFT9+vVTTU2NlyIDzCEkJISeJBPyh4SopRo8LQ2DIUDEx5sy26VHyUmuZqQA4ElmTYiaS4LMWFwQgYseJQBoQy69yszMCVFzhQjpFYI/IFECABMz02X3zc0VcqQyM+CPSJQAwCQuHz4zU0LEXCG0VSRKAOAjvh4+cyYhAtoqEiUA8ILLh9C8uZo9CRHgOhIlAHAzXw2hkRAB7keiBACt5IshtMuvMiMhAjyDRAkAnODt3iJHL7sH/FbDl6pfP1N+qEmUAKAZ3u4tunz4jMvuEdDy8ur/Eqirq//wr1wpZWb6OiobVOZ2EpW5gcDl7d6iy1ezZ/gMbUpJiZSQYPuXR3Bwfbcpa70BgDk0JEcffujZ3iLmFAGXOXCg8ReutrZ+YVwTfTFIlAC0Kd4aSmtpCA1o8/r1q/+iXN6jlJjou5iaQKIEIOA1JEeeGkqjtwhwQXx8/Rdy8uT6nqTgYGnFCtN9cUiUHJSbm6vc3FzV1tb6OhQAzfDGPCN6iwA3ycyURo+uH24z6V8XTOZ2EpO5AfPx5DwjeouAwMBkbgBtiqeSI3qLAFyKRAmA3/B0cnTLLfQWAbBFogTAtDxxhRpDaQCcQaIEwFQ8cYXapckRQ2mAiZh8+RKJRAmACbg7OWKeEeAH/GD5Eomr3pzGVW+Ae3gqOWKeEeAHvLx8icRVbwD8AMkRAEl+s3yJRKIEwMNIjgA04ifLl0gkSgA8wF3JEVeoAQEsO1tautTUy5dIJEoA3MQTyRGTsIEAdOkkbotFysmRpk837ZedydxOYjI3YKukRHr+eWnJEpIjAC3wwSTuBkzmBuA1l1bIfuop1xIkkiOgDfKjSdwNSJQAOMQdy4eQHAFt3O7djbeZdBJ3AxIlAHaRHAFwm5KS+ktWL/f006b+HwOJEoAm/eEP0ty5JEcA3GT79qb/h5Ka6v1YnECiBMCq4cq1v/1NeuMN518/YYJ0++0kRwAu84c/SHPmNN5u8mE3iUQJaPPccVl/UFB97/ns2e6PD4AfKymRnnyyvkbS5UxcO+lSbTJR+t///V/NmjVLdXV1mjt3rn75y1/6OiTA61p7WT8VsgE0ydG/vv7yF+nuu70bmwvaXKJ08eJFZWdnKz8/X5GRkRo0aJDuuusuRUdH+zo0wONa23tEcgTAquF/KJLUp49UXOz4/1yCgurH6P1Am0uUPvnkE1199dW68sorJUn//u//rvXr1+vee+/1cWSA57Sm94jkCAhwDZe3RkTUJzvS94mPvfutLcG/aJHf/M/E7xKlLVu26JlnntGePXtUWlqqtWvXaty4cTb7LFu2TM8884xKS0t19dVX67nnntONN94oSTpx4oQ1SZKk+Ph4HT9+3KvvoUmufFAD8f6ZM7SBm+6X7S5Waam0paSPNr1cvz1FfdRbxbJIKlYfReiMzijCZtul96fdVqx//3epa+q/jn3KPO/P7+/zWae9zXD/009dr/3hioYJjTk53jmfG/hdolRVVaUBAwbo5z//uX7yk580ev6tt97SjBkztGzZMt1www1asWKFxowZo6KiIvXq1UtNrdhisVi8Ebp9l657A7iBIanrv25XS/r1Jdstl91vapv1/v9K+l8vBAwgsAUF1S+Ca+I13ezxu0RpzJgxGjNmjN3nn332WWVmZlonaD/33HNav369li9froULF+rKK6+06UEqKSnRkCFD7B6vurpa1dXV1scVFRVueBeXKCkhSYLbWZy478i+AOASi0WaNcsvE6QGQb4OwJ1qamq0Z88eZWRk2GzPyMjQ9n9NOLv++uu1b98+HT9+XJWVlVq3bp1Gjx5t95gLFy5UVFSU9dazZ0/3Bt3UujcAAPgri0WaPFn661+lo0elZ57x2yRJ8sMepeZ8++23qq2tVY8ePWy29+jRQydPnpQktWvXTkuWLNHIkSNVV1enOXPmqGvXrnaPOW/ePGVnZ1sfV1RUuDdZ6tevvkuSZAkA4E8uLcHfu7d0+HD99gCrOBtQiVKDy+ccGYZhs+3222/X7bff7tCxwsLCFBYW5tb4bMTH1185MHly/QrKQAuanVPkxH0AsGq4vHXgwPrHlyY+9u5fnhANHuyNSL0uoBKlbt26KTg42Np71ODUqVONeplMJTNTGj1aOnhQ6tix5Q9nIN+vqqIN7Nwv23NYa9ZIqz7ord6q335Yzd+3SEp/oLduSjismBipa0pv2tss92l72tss96uqmq79cWniY+9+G2AxmroMzE9YLJZG5QGGDBmilJQULVu2zLotKSlJd9xxhxYuXOjyuXJzc5Wbm6va2lp9+eWXKi8vV2RkZKviB1rSUDXiww+lp55yvGSJxeL38ycBwK0qKioUFRXl9O+33/UonTlzRgcPHrQ+Li4uVmFhoaKjo9WrVy9lZ2dr4sSJSk1NVVpamlauXKmjR49qypQprTpvVlaWsrKyrA0NeNof/iDNnevc9DUWpQUA9/K7RGn37t0aOXKk9XHDROtJkybplVde0fjx41VWVqYFCxaotLRUycnJWrdunRISEnwVMuCU5taQtIdFaQHAM/x66M0XXO26A5rjyhAbS4sAgOPazNCbr1w6RwlwJ1eG2KZMkebPJzkCAE+jR8lJ9CjBXRhiAwDvoUcJ8CN/+IM0Zw5DbABgdiRKgBc524vEEBsA+BaJEuBhrk7UZogNAHyPRMlBTOaGK5yZqM0QGwCYD5O5ncRkbjiCITYAMBcmcwMm4exEbYbYAMC8gnwdABAoSkrqe4Zmz3YsSZoyRTpyhCQJAMyMHiXADehFAoDARKIEtIKjc5GYqA0A/olEyUFc9YbLOdqLxERtAPBfXPXmJK56gzO9SAyxAYA5cNUb4AX0IgFA20KiBDiAXiQAaJtIlIAW0IsEAG0XiRJgB71IAAAKTjooNzdXSUlJGjx4sK9DgRf84Q9Sr14tJ0kUjQSAwMZVb07iqrfARi8SAAQmrnoDWom5SACAy5Eooc2jFwkAYI/b5ii9/PLL7joU4DXMRQIANMdtidI777yj/Px86+Nz587pZz/7mbsOD7hVSUl98jN7dvNDbUFB0uLF0vLlDLUBQFvktkTpv/7rvzR//nz94x//0IEDB3TjjTcqPT3dXYcH3IZeJACAo1o9Ryk7O1sDBw7UwIED9ec//1n33XefDMPQn//8Z1133XXuiBFwC+YiAQCc1epE6aabbtKnn36q//mf/9E//vEPnThxQkOHDtWGDRt04sQJ3Xrrre6IE2iVvDzpwQe5og0A4By311E6d+6c9u3bp08//VT79u3T0qVL3Xl4n8nNzVVubq5qa2v15ZdfUkfJj5SUSAkJUl2d/X3oRQKAwOZqHSUKTjqJgpP+paREmjVL+utf7e9DLxIABD6fFpy8ePGivvjiC+3bt896W7t2rTsODbispQKS9CIBAFridKJ06NAhffbZZzZJ0ZdffqmLFy8qNDRU/fv31zXXXOOJWAGHODJp+z/+Q1qyhF4kAEDznEpR7EygAAAgAElEQVSUJkyYoL/85S+yWCzq0KGDqqqqdOutt+qxxx7TNddco379+ik4ONhTsQItcmTSdlAQSRIAwDFO1VF6++239cILL+jMmTM6ceKEpk6dqg0bNmjXrl1KSEggSYJPlZRIDz3UfJIUHCytXEmSBABwjFOJ0uzZs3X//ferffv2ioiI0PPPP6+PPvpI+fn5SkpK0vvvv++pOIFmNUzabu7KtilTpMOHpcxMr4UFAPBzTiVKTzzxhCIiImy2paSk6JNPPtGMGTM0fvx43Xffffrmm2/cGiTQnIZK2/aubGMZEgCAq9yyhInFYtH06dNVVFSk6upq/ehHP3LHYYEWPfNM8+u1/cd/sAwJAMB1Hqmj9N577wVsRW7qKJnHrl3SkCHNX/5/5Ai9SAAA13+/3bYo7qUCMUnKzc1VUlKSBg8e7OtQoPrhtuaSJCZtAwDcgcrcTqJHybccqZFEpW0AwOV8Wpkb8IaWaiRZLNKiRcxHAgC4D4kS/EJLNZIsFmnnTomRUQCAO7k8R+ncuXM6e/as9fGRI0f03HPPacOGDW4JDGjgSI2kxYtJkgAA7udyonTHHXfotddekySdPn1aQ4YM0ZIlS3THHXdo+fLlbgsQbVtenmM1knJyvBsXAKBtcDlRKigo0I033iipfmmTHj166MiRI3rttdf0xz/+0W0Bou1qabiNGkkAAE9zOVE6e/asOnXqJEnasGGD7rrrLgUFBWno0KE6cuSI2wJE29TScBsL2wIAvMHlRCkxMVHvvvuujh07pvXr1ysjI0OSdOrUKS6bR6u0NNxGjSQAgLe4nCg99thjysnJUe/evTVkyBClpaVJqu9duu6669wWINoWR4bbWNgWAOAtrSo4efLkSZWWlmrAgAEKCqrPuT755BNFRkYG7HpvFJz0nIbhtuYmbrMkCQDAFT4pOBkTE6OYmBibbddff31rDok2qqViksHB9dW4SZIAAN7UqrXetm7dqgkTJigtLU3Hjx+XJL3++uvatm2bW4JD27BrF8NtAABzcjlRWrNmjUaPHq3w8HDt3btX1dXVkqTKyko99dRTbgsQgS0vr35xW65uAwCYkcuJ0pNPPqmXXnpJq1atUkhIiHX7sGHDVFBQ4JbgENhamrjN1W0AAF9zOVH64osvNGLEiEbbIyMjdfr06VYFZUa5ublKSkrSYNbJcJvnn2+6J8liqa+0zXAbAMDXXE6UYmNjdfDgwUbbt23bpr59+7YqKDPKyspSUVGRdu3a5etQAsKuXfVDapcLCqpf3PaZZ+hJAgD4nsuJ0uTJkzV9+nTt3LlTFotFJ06c0BtvvKGcnBz9+te/dmeMCDB/+EP9vKSmhtyys1ncFgBgHi6XB5gzZ47Ky8s1cuRInT9/XiNGjFBYWJhycnI0depUd8aIAPLMM9KcOU0/FxQkTZ/u3XgAAGhOqwpOSvVrvhUVFamurk5JSUmKiIhwV2ymRMFJ1+3aZb8nKSiofuI2c5IAAJ7g9YKTCxYsaLTt/ffft95/7LHHXD00AlBzBSUtFunjjxlyAwCYj8uJ0tq1a20eX7hwQcXFxWrXrp1+8IMfkCjBqqUyAIsXkyQBAMzJ5URp7969jbZVVFTogQce0J133tmqoBBYmisDsGhRfSkAAADMqNVzlC63b98+3XbbbTp8+LA7D2sazFFyjr15SUFBDLcBALzH1d/vVq311pTTp0+rvLzc3YeFH2pYnoQyAAAAf+Xy0Nsf//hHm8eGYai0tFSvv/66fvzjH7c6MPi35uYlUQYAAOAvXE6Uli5davM4KChIV1xxhSZNmqR58+a1OjD4N3vzkhrKAFB1GwDgD1xOlIqLi90ZBwJIc8uTMC8JAOBP3D5HCW0b85IAAIHEqR6l7Oxsh/d99tlnnQ4G/o15SQCAQONUotRU7aSmWCwWl4KBf2NeEgAg0DiVKOXn53sqDvg55iUBAAIRc5TQasxLAgAEKpevemtQVFSko0ePqqamxmb77bff3tpDww8wLwkAEMhcTpQOHTqkO++8U5999pksFosaVkJpmJ9UW1vrnghhasxLAgAEMpeH3qZPn64+ffro66+/VocOHbR//35t2bJFqamp2rRpkxtDdL8777xTXbp00U9/+lNfh+LXSkqan5eUmen9mAAAcCeXE6UdO3ZowYIFuuKKKxQUFKSgoCANHz5cCxcu1LRp09wZo9tNmzZNr732mq/D8HvbtzMvCQAQ2FxOlGpraxURESFJ6tatm06cOCFJSkhI0BdffOGe6Dxk5MiR6tSpk6/D8Gt5edI99zTezrwkAEAgcTlRSk5O1qeffipJGjJkiBYvXqyPPvpICxYsUN++fV0OaMuWLRo7dqzi4uJksVj07rvvNtpn2bJl6tOnj9q3b6+UlBRt3brV5fPBefYmcAcHMy8JABBYXJ7M/cgjj6iqqkqS9OSTT+q2227TjTfeqK5du+qtt95yOaCqqioNGDBAP//5z/WTn/yk0fNvvfWWZsyYoWXLlumGG27QihUrNGbMGBUVFalXr16SpJSUFFVXVzd67YYNGxQXF+dUPNXV1TbHqqiocPIdBR57E7j/8hfp7ru9Hw8AAJ5iMYymZpm45p///Ke6dOnitsrcFotFa9eu1bhx46zbhgwZokGDBmn58uXWbf3799e4ceO0cOFCh4+9adMmvfjii3r77beb3e/xxx/X73//+0bby8vLFRkZ6fD5AsWuXU3XTAoOlg4fpjcJAGBOFRUVioqKcvr32+Wht5///Of68MMPdWmeFR0d7dHlS2pqarRnzx5lZGTYbM/IyND27ds9cs558+apvLzcejt27JhHzuMPmissOXMmSRIAIPC4PPRWVlamW2+9VV27dtU999yjCRMm6LrrrnNnbI18++23qq2tVY8ePWy29+jRQydPnnT4OKNHj1ZBQYGqqqoUHx+vtWvXarCdy7TCwsIUFhbWqrgDAYUlAQBtkcuJ0t/+9jedPn1af/3rX7V69Wo999xzuuqqqzRhwgTdd9996t27txvDtHV5r5VhGE71ZK1fv97dIQW8AwcoLAkAaHtatdZb586d9dBDD2nTpk06cuSIfv7zn+v1119XYmKiu+Kz0a1bNwUHBzfqPTp16lSjXiZ3y83NVVJSkt2ep0C3e3fjbRSWBAAEOrcsinvhwgXt3r1bO3fu1OHDhz2WtISGhiolJUUbN2602b5x40YNGzbMI+dskJWVpaKiIu3atcuj5zGjkhLpt79tvH3RIgpLAgACW6sWxc3Pz9fq1au1Zs0a1dbW6q677tL//M//aNSoUS4f88yZMzp48KD1cXFxsQoLCxUdHa1evXopOztbEydOVGpqqtLS0rRy5UodPXpUU6ZMac1bQTO2b2962C011fuxAADgTS4nSvHx8SorK9Po0aO1YsUKjR07Vu3bt291QLt379bIkSOtj7OzsyVJkyZN0iuvvKLx48errKxMCxYsUGlpqZKTk7Vu3TolJCS0+txoLC9PevDBxtuDgyUPjbACAGAaLtdRWrlype6++2516dLF3TGZmqt1GPxRSYmUkNC4Nyk4WFqxgrlJAAD/4ervt8s9Sg899JCrL/VLubm5ys3NVW1tra9D8RoqcAMA2rpWVeb+8MMP9eGHH+rUqVOqu+wX9c9//nOrgzOjttKjVFIi9epFBW4AQGDweo/S73//ey1YsECpqamKjY31aEVueN/27VTgBgDA5UTppZde0iuvvKKJEye6Mx6YgL0J3FTgBgC0NS7XUaqpqfF47SIzaSsFJ+0tVRIcTAVuAEDb43Ki9Mtf/lKrV692Zyym1lYKTtpbquQvf+EqNwBA2+Py0Nv58+e1cuVKffDBB7r22msVEhJi8/yzzz7b6uDgfU0tVRIcLKWleT8WAAB8zeVE6dNPP9XAgQMlSfv27bN5jond/sneUiVPP82QGwCgbXI5UcrPz3dnHDABlioBAMBWqxbF3bp1qyZMmKBhw4bp+PHjkqTXX39d27Ztc0tw8J68POmeexpvZ6kSAEBb5nKitGbNGo0ePVrh4eEqKChQdXW1JKmyslJPPfWU2wI0i0C+6q25K91WrGDYDQDQdrmcKD355JN66aWXtGrVKpuJ3MOGDVNBQYFbgjOTQL7qjSvdAABomsuJ0hdffKERI0Y02h4ZGanTp0+3Kih4F1e6AQDQNJcTpdjYWB08eLDR9m3btqlv376tCgrew5VuAADY53KiNHnyZE2fPl07d+6UxWLRiRMn9MYbbygnJ0e//vWv3RkjPIgr3QAAsM/l8gBz5sxReXm5Ro4cqfPnz2vEiBEKCwtTTk6Opk6d6s4Y4SH21nTjSjcAAOpZDKOpNeIdd/bsWRUVFamurk5JSUmKiIhwV2ymVFFRoaioKJWXlysyMtLX4bispERKSGjcm9RwpRuTuAEAgcTV32+Xe5QadOjQQaltYJwmNzdXubm5qq2t9XUobtHclW533+39eAAAMCOXe5Sys7ObPqDFovbt2ysxMVF33HGHoqOjWxWg2QRyj1JwsHT4MJO4AQCBx+s9Snv37lVBQYFqa2t11VVXyTAMHThwQMHBwfrRj36kZcuWadasWdq2bZuSkpJcPQ08ZP162wKTQUEUlwQA4HIuX/V2xx136N/+7d904sQJ7dmzRwUFBTp+/LhuueUW3XvvvTp+/LhGjBihmTNnujNeuIG9StyjR/smHgAAzMrlobcrr7xSGzdubNRbtH//fmVkZOj48eMqKChQRkaGvv32W7cEawaBMPSWny+NGtX09vR0r4cDAIDHufr77XKPUnl5uU6dOtVo+zfffKOKigpJUufOnVVTU+PqKeAhERH1Q22XoiQAAACNtWro7Re/+IXWrl2rkpISHT9+XGvXrlVmZqbGjRsnSfrkk0/0wx/+0G3BovXy8qShQxtP4mZ+EgAAjbk89HbmzBnNnDlTr732mi5evChJateunSZNmqSlS5eqY8eOKiwslCQNHDjQfRH7mD8PvTV1pVtQkPTxx9Lgwb6LCwAAT/P6VW8RERFatWqVli5dqkOHDskwDP3gBz+wKTgZSAlSINRRaqp2Ul2dVFXlm3gAADC7VlfmbmsCrUeJ2kkAgLbAKz1K2dnZeuKJJ9SxY0e7BScbPPvss84cGl5A7SQAAJzjVKK0d+9eXbhwwXrfHovF0rqo4HbUTgIAwHlOJUr5+flN3of52ZufdPAgPUoAANjjcnkASdq6dasmTJigYcOG6fjx45Kk119/Xdu2bXNLcHAfaicBAOA8lxOlNWvWaPTo0QoPD1dBQYGqq6slSZWVlXrqqafcFiBaj9pJAAC4xuVE6cknn9RLL72kVatWKSQkxLp92LBhKigocEtwaL2GuUmX107asUPKzPRdXAAA+AOXE6UvvvhCI0aMaLQ9MjJSp0+fblVQcB9qJwEA4DqXE6XY2FgdPHiw0fZt27apb9++rQoK7tOvH3OTAABwlcuJ0uTJkzV9+nTt3LlTFotFJ06c0BtvvKGcnBz9+te/dmeMppCbm6ukpCQN9rO1PqidBACA61pVmXv+/PlaunSpzp8/L0kKCwtTTk6OnnjiCbcFaDb+VJnb3tpuR46QKAEA2hZXf79bvYTJ2bNnVVRUpLq6OiUlJdms9RaI/ClRys+XRo1qent6utfDAQDAZ7y+KG6DDh06KDU1tbWHgQc01E66vCwA85MAAHBMqwpOwryonQQAQOu1ukcJ5tNc7SQ/m4sOAIBP0aMUgKidBACAe5AoBSBqJwEA4B4kSgEoPl5atOj7ZIm5SQAAuIZEKQDl5Ulz59YPt1ks0sKFrOsGAIArSJQCzOUTuQ1DmjevfjsAAHAOiVKAaWoid22t1MSyfAAAoAUkSgGGidwAALgPiVIAys6uT44kJnIDANAaFJwMIHl5389PsliknBxp+nSSJAAAXEWPkoNyc3OVlJSkwSYtbd3UJO6lS30bEwAA/o5EyUFZWVkqKirSrl27fB1Kk5jEDQCA+5EoBQgmcQMA4H4kSgEiPl5auZJJ3AAAuBOTuQPI6NHS6tX1E7nT0kiSAABoLXqUAkRenpSQII0fL91zj7R+va8jAgDA/5EoBYDLr3irq5MmT2bZEgAAWotEKQBwxRsAAJ5BohQAuOINAADPIFEKAFzxBgCAZ3DVWwAoKZH69pV27JCqqup7kkiSAABoPXqU/FzD1W6jRklDh0pffUWSBACAu5Ao+TGudgMAwLNIlPwYV7sBAOBZJEp+jKvdAADwLBIlP8bVbgAAeBZXvfk51ncDAMBz6FHyY6zvBgCAZ5Eo+SmueAMAwPNIlPwUV7wBAOB5bS5ROnbsmNLT05WUlKRrr71W//3f/+3rkFzCFW8AAHhem0uU2rVrp+eee05FRUX64IMPNHPmTFVVVfk6LKdxxRsAAJ7X5q56i42NVWxsrCSpe/fuio6O1j//+U917NjRx5E5LzOz/qq3gwdZ3w0AAE8wXY/Sli1bNHbsWMXFxclisejdd99ttM+yZcvUp08ftW/fXikpKdq6datL59q9e7fq6urUs2fP1obtM/HxUno6SRIAAJ5gukSpqqpKAwYM0Isvvtjk82+99ZZmzJih+fPna+/evbrxxhs1ZswYHT161LpPSkqKkpOTG91OnDhh3aesrEz333+/Vq5c6fH35AklJVJ+Ple5AQDgSRbDMAxfB2GPxWLR2rVrNW7cOOu2IUOGaNCgQVq+fLl1W//+/TVu3DgtXLjQoeNWV1frlltu0YMPPqiJEye2uG91dbX1cUVFhXr27Kny8nJFRkY6+Y7cIy/v+9IAQUH1c5UyM30SCgAAfqGiokJRUVFO/36brkepOTU1NdqzZ48yMjJstmdkZGj79u0OHcMwDD3wwAMaNWpUi0mSJC1cuFBRUVHWm6+H6aifBACA9/hVovTtt9+qtrZWPXr0sNneo0cPnTx50qFjfPTRR3rrrbf07rvvauDAgRo4cKA+++wzu/vPmzdP5eXl1tuxY8da9R5ai/pJAAB4j19e9WaxWGweG4bRaJs9w4cPV93lmUYzwsLCFBYW5lR8ntRQP+nSt0D9JAAAPMOvepS6deum4ODgRr1Hp06datTL5G65ublKSkrS4MGDPXqellA/CQAA7/GrRCk0NFQpKSnauHGjzfaNGzdq2LBhHj13VlaWioqKtGvXLo+exxGZmdLhw/VXvR0+zERuAAA8xXRDb2fOnNHBSybcFBcXq7CwUNHR0erVq5eys7M1ceJEpaamKi0tTStXrtTRo0c1ZcoUH0btXSUl9XOV+vWjJwkAAE8yXaK0e/dujRw50vo4OztbkjRp0iS98sorGj9+vMrKyrRgwQKVlpYqOTlZ69atU0JCgq9C9ipKAwAA4D2mrqNkRq7WYXCHkhIpIaHxRO7Dh+lZAgCgOW2ijpIvmWEyN6UBAADwLnqUnESPEgAA/ocepTaA0gAAAHiX6SZzo3mZmdLo0fXDbYmJJEkAAHgSiZIfio8nQQIAwBsYenOQGSZzl5TUF5lkAVwAALyDydxO8tVkbuonAQDgOiZzB7CSku+TJKn+38mT6VkCAMDTSJT8APWTAADwDRIlP9CvX/1w26WCg+uvegMAAJ5DouQgX07mpn4SAAC+wWRuJ/m6Mjf1kwAAcJ6rv9/UUfIj1E8CAMC7GHrzE9RQAgDA+0iU/EBeXv1iuKNG1f+bl+friAAAaBtIlEyOGkoAAPgOiZLJUUMJAADfIVFykK/KA1BDCQAA3yFRclBWVpaKioq0a9cur56XGkoAAPgO5QH8QGamNHo0NZQAAPA2EiU/QQ0lAAC8j6E3AAAAO0iUAAAA7CBRAgAAsINECQAAwA4SJQf5qo4Sa7wBAOA7FsMwDF8H4U8qKioUFRWl8vJyRUZGevRceXnfL18SFFRfTykz06OnBAAgILn6+02PkkmxxhsAAL5HomRSrPEGAIDvkSiZFGu8AQDgeyRKJsUabwAA+B5LmJgYa7wBAOBbJEomxxpvAAD4DkNvAAAAdpAoAQAA2EGiZGJU5QYAwLdIlBzk7SVM8vKkhARp1Kj6f/PyvHJaAABwCZYwcZI3ljApKalPji4tOBkcLB0+zMRuAABcwRImAYSq3AAAmAOJkglRlRsAAHMgUTIhqnIDAGAOFJw0KapyAwDgeyRKJkZVbgAAfIuhNwAAADtIlAAAAOwgUQIAALCDRAkAAMAOEiUTYo03AADMgUTJZFjjDQAA8yBRMpGSEumhh75fvqSuTpo8mZ4lAAB8hUTJRFjjDQAAcyFRclBubq6SkpI0ePBgj52DNd4AADAXEiUHZWVlqaioSLt27fLYOVjjDQAAc2EJE5NhjTcAAMyDRMmEWOMNAABzYOgNAADADhIlAAAAO0iUAAAA7CBRAgAAsINECQAAwA4SJZNhQVwAAMyDRMlEWBAXAABzIVEyCRbEBQDAfEiUTIIFcQEAMB8SJZNgQVwAAMyHRMkkWBAXAADzYa03E2FBXAAAzIVEySRKSurnKfXrJ6Wn+zoaAAAgMfRmCpQFAADAnEiUfIyyAAAAmFebS5QqKys1ePBgDRw4UNdcc41WrVrl03goCwAAgHm1uTlKHTp00ObNm9WhQwedPXtWycnJuuuuu9S1a1efxNNQFuDSZImyAAAAmEOb61EKDg5Whw4dJEnnz59XbW2tDMPwWTyUBQAAwLxMlyht2bJFY8eOVVxcnCwWi959991G+yxbtkx9+vRR+/btlZKSoq1btzp1jtOnT2vAgAGKj4/XnDlz1K1bN3eF75LMTOnw4frFcA8frn8MAAB8z3SJUlVVlQYMGKAXX3yxyeffeustzZgxQ/Pnz9fevXt14403asyYMTp69Kh1n5SUFCUnJze6nThxQpLUuXNn/f3vf1dxcbFWr16tr7/+2ivvrTnx8fVlAehJAgDAPCyGL8edWmCxWLR27VqNGzfOum3IkCEaNGiQli9fbt3Wv39/jRs3TgsXLnT6HL/61a80atQo3X333U0+X11drerqauvjiooK9ezZU+Xl5YqMjHT6fAAAwPsqKioUFRXl9O+36XqUmlNTU6M9e/YoIyPDZntGRoa2b9/u0DG+/vprVVRUSKpvtC1btuiqq66yu//ChQsVFRVlvfXs2dP1NwAAAPyKXyVK3377rWpra9WjRw+b7T169NDJkycdOkZJSYlGjBihAQMGaPjw4Zo6daquvfZau/vPmzdP5eXl1tuxY8da9R4AAID/8MvyABaLxeaxYRiNttmTkpKiwsJCh88VFhamsLAwp+IDAACBwa96lLp166bg4OBGvUenTp1q1MsEAADQWn6VKIWGhiolJUUbN2602b5x40YNGzbMo+fOzc1VUlKSBg8e7NHzAAAA8zDd0NuZM2d08JL1O4qLi1VYWKjo6Gj16tVL2dnZmjhxolJTU5WWlqaVK1fq6NGjmjJlikfjysrKUlZWlnXWPAAACHymS5R2796tkSNHWh9nZ2dLkiZNmqRXXnlF48ePV1lZmRYsWKDS0lIlJydr3bp1SkhI8FXIAAAgQJm6jpIZuVqHAQAA+E6bqKPkS8xRAgCg7aFHyUn0KAEA4H9c/f023Rwls2vIKxuqewMAAPNr+N12tn+IRMlJlZWVksRSJgAA+KHKykqnrl5n6M1JdXV1OnHihDp16uRwNXBHNCy2e+zYMYb0HEB7OY62chxt5Rzay3G0lXM80V6GYaiyslJxcXEKCnJ8ijY9Sk4KCgpSfHy8x44fGRnJl8gJtJfjaCvH0VbOob0cR1s5x93t5UodRK56AwAAsINECQAAwI7gxx9//HFfB4F6wcHBSk9PV7t2jIg6gvZyHG3lONrKObSX42gr55ilvZjMDQAAYAdDbwAAAHaQKAEAANhBogQAAGAHiRIAAIAdJEomsWzZMvXp00ft27dXSkqKtm7d6uuQfO7xxx+XxWKxucXExFifNwxDjz/+uOLi4hQeHq709HTt37/fhxF7z5YtWzR27FjFxcXJYrHo3XfftXnekbb57rvvNHHiREVFRSkqKkoTJ07U6dOnvfk2vKal9nrggQcafdaGDh1qs091dbV+85vfqFu3burYsaNuv/12lZSUePNteMXChQs1ePBgderUSd27d9e4ceP0xRdf2OzjSFscPXpUY8eOVceOHdWtWzdNmzZNNTU13nwrHudIW6Wnpzf6bN1zzz02+7SV7+Ly5ct17bXXWotIpqWl6f/9v/9nfd6snysSJRN46623NGPGDM2fP1979+7VjTfeqDFjxujo0aO+Ds3nrr76apWWllpvn332mfW5xYsX69lnn9WLL76oXbt2KSYmRrfccot1Pb5AVlVVpQEDBujFF19s8nlH2ua+++5TYWGh3n//fb3//vsqLCzUxIkTvfUWvKql9pKkH//4xzaftXXr1tk8P2PGDK1du1Zvvvmmtm3bpjNnzui2225TbW2tp8P3qs2bNysrK0sff/yxNm7cqIsXLyojI0NVVVXWfVpqi9raWt16662qqqrStm3b9Oabb2rNmjWaNWuWr96WRzjSVpL04IMP2ny2VqxYYfN8W/kuxsfH6+mnn9bu3bu1e/dujRo1SnfccYf1jzjTfq4M+Nz1119vTJkyxWbbj370I+O3v/2tjyIyh9/97nfGgAEDmnyurq7OiImJMZ5++mnrtvPnzxtRUVHGSy+95K0QTUGSsXbtWutjR9qmqKjIkGR8/PHH1n127NhhSDL+8Y9/eC94H7i8vQzDMCZNmmTccccddl9z+vRpIyQkxHjzzTet244fP24EBQUZ77//vsdiNYNTp04ZkozNmzcbhuFYW6xbt84ICgoyjh8/bt3nL3/5ixEWFmaUl5d79w140eVtZRiGcdNNNxnTp0+3+5q2/F00DMPo0qWL8ac//cnUnyt6lHyspqZGe/bsUUZGhs32jIwMbd++3UdRmceBAwcUFxenPn366J577tGhQ7xYcXoAABBYSURBVIckScXFxTp58qRNu4WFhemmm25q8+3mSNvs2LFDUVFRGjJkiHWfoUOHKioqqs2236ZNm9S9e3f98Ic/1IMPPqhTp05Zn9uzZ48uXLhg06ZxcXFKTk4O+PYqLy+XJEVHR0tyrC127Nih5ORkxcXFWfcZPXq0qqurtWfPHi9G712Xt1WDN954Q926ddPVV1+tnJwcm57dtvpdrK2t1ZtvvqmqqiqlpaWZ+nNFeVAf+/bbb1VbW6sePXrYbO/Ro4dOnjzpo6jMYciQIXrttdf0wx/+UF9//bWefPJJDRs2TPv377e2TVPtduTIEV+EaxqOtM3JkyfVvXv3Rq/t3r17m/zcjRkzRnfffbcSEhJUXFysRx99VKNGjdKePXsUFhamkydPKjQ0VF26dLF5XaB/Tw3DUHZ2toYPH67k5GRJcqgtTp482ejz16VLF4WGhgZsezXVVpL0s5/9TH369FFMTIz27dunefPm6e9//7s2btwoqe19Fz/77DOlpaXp/PnzioiI0Nq1a5WUlKTCwkLTfq5IlEzCYrHYPDYMo9G2tmbMmDHW+9dcc43S0tL0gx/8QK+++qp1oi3tZl9LbdNUO7XV9hs/frz1fnJyslJTU5WQkKD33ntPd911l93XBXp7TZ06VZ9++qm2bdvW4r5t/fNlr60efPBB6/3k5GT169dPqampKigo0KBBgyS1rba66qqrVFhYqNOnT2vNmjWaNGmSNm/ebHd/M3yuGHrzsW7duik4OLhRNnzq1KlGmXNb17FjR11zzTU6cOCA9eo32q0xR9omJiZGX3/9daPXfvPNN22+/SQpNjZWCQkJOnDggKT69qqpqdF3331ns18gf95+85vf6G9/+5vy8/MVHx9v3e5IW8TExDT6/H333Xe6cOFCQLaXvbZqyqBBgxQSEmLz2WpL38XQ0FAlJiYqNTVVCxcu1IABA/T888+b+nNFouRjoaGhSklJsXbDNti4caOGDRvmo6jMqbq6Wp9//rliY2OtXdmXtltNTY02b97c5tvNkbZJS0tTeXm5PvnkE+s+O3fuVHl5eZtvP0kqKyvTsWPHFBsbK0lKSUlRSEiITZuWlpZq3759AddehmFo6tSpeuedd/R///d/6tOnj83zjrRFWlqa9u3bp9LSUus+GzZsUFhYmFJSUrzzRrygpbZqyv79+3XhwgXrZ6utfxcNw1B1dbW5P1cemyYOh7355ptGSEiIkZeXZxQVFRkzZswwOnbsaBw+fNjXofnUrFmzjE2bNhmHDh0yPv74Y+O2224zOnXqZG2Xp59+2oiKijLeeecd47PPPjPuvfdeIzY21qioqPBx5J5XWVlp7N2719i7d68hyXj22WeNvXv3GkeOHDEMw7G2+fGPf2xce+21xo4dO4wdO3YY11xzjXHbbbf56i15VHPtVVlZacyaNcvYvn27UVxcbOTn5xtpaWnGlVdeadNeU6ZMMeLj440PPvjAKCgoMEaNGmUMGDDAuHjxog/fmfv96le/MqKiooxNmzYZpaWl1tvZs2et+7TUFhcvXjSSk5ONm2++2SgoKDA++OADIz4+3pg6daqv3pZHtNRWBw8eNH7/+98bu3btMoqLi4333nvP+NGPfmRcd911Np+btvJdnDdvnrFlyxajuLjY+PTTT42HH37YCAoKMjZs2GAYhnk/VyRKJpGbm2skJCQYoaGhxqBBg2wuL22rxo8fb8TGxhohISFGXFyccddddxn79++3Pl9XV2f87ne/M2JiYoywsDBjxIgRxmeffebDiL0nPz/fkNToNmnSJMMwHGubsrIy42c/+5nRqVMno1OnTsbPfvYz47vvvvPBu/G85trr7NmzRkZGhnHFFVcYISEhRq9evYxJkyYZR48etTnGuXPnjKlTpxrR0dFGeHi4cdtttzXaJxA01U6SjJdfftm6jyNtceTIEePWW281wsPDjejoaGPq1KnG+fPnvfxuPKultjp69KgxYsQIIzo62ggNDTV+8IMfGNOmTTPKyspsjtNWvou/+MUvrL9zV1xxhXHzzTdbkyTDMO/nymIYhuG5/ioAAAD/xRwlAAAAO0iUAAAA7CBRAgAAsINECQAAwA4SJQAAADtIlAAAAOwgUQIAALCDRAkAAMAOEiUAAAA7SJSAAJCenq4ZM2b4/BiOmDVrlsaOHeu24xmGoYceekjR0dGyWCwqLCx06Tjeev+e4K3YH3nkEYWFhem+++7z+LkAs2jn6wAAtN4777yjkJAQX4fhkMLCQreuiv7+++/rlVde0aZNm9S3b19169bNpeP4Uxv6ypw5cxQbG6upU6dqwYIFSkxM9HVIgMfRowQEgOjoaHXq1MnXYTjk73//u6677jq3He+rr75SbGyshg0bppiYGLVr59rff/7Uhr4SGRmpX/ziFwoKCtJnn33m63AAryBRAgLApUMv6enpmjZtmubMmaPo6GjFxMTo8ccft9m/qqpK999/vyIiIhQbG6slS5Y0OqZhGFq8eLH69u2r8PBwDRgwQG+//bb1+W+++UYxMTF66qmnrNt27typ0NBQbdiwock4jx07prKyMg0cOFD/v517DYmq6+IA/h9rZsz7hTS1UsjSbMzK7GoXoqLIMTSoZAqjMUsxK8ouhhT6obuKQWUFFTEUXQhCK0UqKiRU0mY003KkCRU0Sx2zHG3W8+Gh8zbqOKPvA93W75Ozzz7rrL33Bxfn7HMAoK2tDXK5HPPmzUNTU9OA53R3dyM5ORkeHh6wtbVFeHg4SktLAQCbNm3C9u3bodPpIBKJ4OfnN2AMS2PpO4cAoNfroVAoYG9vDy8vL2RlZfXrYymupbXIzc2Fj48PjEajSS6RkZGIjY0F8O8ds/DwcLi4uMDd3R0RERGoq6sbcJzf+fn5ITs726Rt2rRpwrWtmQ9zent7YWdnh8rKSqv6M/bbI8bYb2/RokW0Y8cO4W8nJyc6fPgw1dbW0pUrV0gkElFhYaHQPyEhgcaOHUuFhYWkVqspIiKCHBwchBhERKmpqRQYGEgPHjyguro6unTpEkmlUnr8+LHQJz8/n8RiMZWWlpJeryd/f3+TGH3dvXuXnJ2dyWg0klqtJn9/f9qyZQt1d3ebPSc5OZm8vb3p3r17VFVVRbGxseTq6kqtra3U1tZG6enpNHbsWGpqaqLm5uYBY1gzlh/nkIgoLi6OfH19qaioiDQaDUVFRZGjo+OQ5sjSWrS2tpJEIqGioiIh5sePH0kikVBBQQEREd26dYtu375NtbW1VF5eTnK5nIKDg+nbt29mc/f19aWsrCyTOQgJCaFDhw5ZPR+DrQcAWrt2rcW+jP0JuFBi7A/Qt1AKDw83OR4WFkb79u0jIiK9Xk8SiYSuX78uHG9tbaVRo0YJMTo7O8nW1paKi4tN4iiVSoqJiTFpS0xMpEmTJpFCoSCZTEZfvnwxm2d6ejotXLiQVCoVubi40Llz5wYdV2dnJ4nFYlKpVEKbwWAgb29vOn78OBERZWVlka+v76AxrBnLj3PY0dFBYrGYbt68KRxva2sjOzu7Ic2RpbUgIoqMjKTNmzcLv3Nzc2nMmDHU29s74Hiam5sJAGk0mgFzJxq8UBrK2vZVVlZGEomEVq1aRUFBQf2O37lzh3bu3DloDMZ+N7yZm7E/0NSpU01+e3l5obm5GcC/e3oMBgPmzp0rHHdzc0NAQIDw+9WrV/j69SuWLVtmEsdgMPTbX3Ty5EnIZDLcuHEDZWVlsLW1NZtXRUUFNBoNkpKSkJ+fb3FTd11dHXp6ejB//nyhTSwWY9asWaiurh703OGM5TutVouenh7MmjVLaHN2dh7WHA22FgCgUCgQHx+PM2fOQCqVQqVSYf369RgxYoQwB2lpaXj+/Dk+fPggPKbT6XSQyWRWzcGPhjMfAGA0GrF161YkJSVh9uzZUCgUMBgMkEgkQh+1Wo2QkJAh58TYr4wLJcb+QH3f3hKJRMI/WCKyeP73vvn5+fDx8TE5JpVKTX5rtVo0NjbCaDTi3bt3/QqDH1VUVGDNmjVQqVRoa2uzmMf3XEUiUb/2vm3/xVisue5Q4w62FgAgl8thNBqRn5+PsLAwPH36FJmZmSbHx40bhwsXLsDb2xtGoxEymQwGg8HsmG1sbPqtc09Pz5Dy7uv06dNoaWlBeno6dDodent7UVNTg+DgYKGPWq1GZGQk2tvboVAoEBUVBaVSaTYmY78DLpQY+8v4+/tDLBbj+fPnGD9+PADg06dPqK2txaJFiwAAQUFBkEql0Ol0QttADAYDFAoF1q1bh8DAQCiVSmg0Gnh6evbrq9frUV9fj8TERMyfPx8xMTEoLi7GlClTBs1VIpHg2bNnwrd7enp6UFZWZvV3g6wdy48mTJgAsViMkpISjBs3DgDQ0dGBN2/eDHmOLBk1ahSio6OhUqnw9u1bTJo0CaGhoQCA1tZWVFdXIzc3FwsWLAAAPHv2zGLM0aNHm2yO7+joQH19/bDzbmhoQFpaGq5duwZ7e3tMnDgRUqkUlZWVJoXS69evIZVKsWLFCmRkZGDp0qVWzwNjvyoulBj7yzg4OECpVCIlJQXu7u7w9PTEwYMHYWPzv5dgHR0dsWfPHuzatQtGoxHh4eHo6OhAcXExHBwchDeyDh48iPb2duTk5MDBwQH379+HUqlEXl5ev+tWVFRgxIgRCAoKwvTp01FVVQW5XI6SkhKz3z6yt7dHQkICUlJS4ObmhvHjx+P48ePo6uqy+k6FtWPpe05sbKxwXQ8PDxw6dAg2NjbCXabhxDVHoVBALpejqqoKGzZsENpdXV3h7u6O8+fPw8vLCzqdDvv377cYb8mSJbh8+TLkcjlcXV2RlpYmPMobTt7JyclYuXIlVq1aBQAYOXIkJk+ebPLmW1dXFxobGxETEwOVSjVoAczY74QLJcb+QidOnEBnZyciIyPh6OiI3bt3o7293aRPRkYGPDw8cOTIEWi1Wri4uGDGjBlITU0FADx+/BjZ2dl49OgRnJycAABXr17F1KlTcfbsWSQkJJjEe/nyJQIDA4XHO8eOHUN1dTWio6NRVFRkstflR0ePHoXRaMTGjRuh1+sxc+ZMFBQUwNXV1erxWhrLQDIzM7Ft2zZERETAyckJe/fuxfv37032YA0n7kCWLFkCNzc31NTUmHz12sbGBtevX0dycjJkMhkCAgKQk5ODxYsXDxrvwIED0Gq1iIiIgLOzMzIyMoQ7SkPNOy8vDw8fPuy3Jyw4ONikUKqsrMScOXPQ0NDAH+5kfxQRWbNhgTHG/nKfP3+Gj48PTp06xftuBnDx4kW0tLRg+fLliI+Px5MnT2Bvb/+z02Ls/8YfnGSMsQGUl5fj2rVrqKurw4sXL6BQKAAAq1ev/smZ/Zo0Gg1kMhlCQ0MRHx+PuLi4n50SY/8JvqPEGGMDKC8vR1xcHGpqaiCRSBAaGorMzEyTzcuMsT8fF0qMMcYYY2bwozfGGGOMMTO4UGKMMcYYM4MLJcYYY4wxM7hQYowxxhgzgwslxhhjjDEzuFBijDHGGDODCyXGGGOMMTO4UGKMMcYYM4MLJcYYY4wxM7hQYowxxhgzgwslxhhjjDEz/gG5VfdMpCv0QAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(sort!(eigvals(Matrix{Float64}(A))), \"b.\")\n", - "semilogy(sort!(eigvals(Matrix{Float64}(A),Matrix{Float64}(L))), \"r.\")\n", - "xlabel(L\"index $k$ of eigenvalue $\\lambda_k$\")\n", - "ylabel(L\"eigenvalues $\\lambda_k$\")\n", - "legend([L\"unpreconditioned $A$\", L\"preconditioned $L^{-1} A$\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can see from the plot that $A$ has eigenvalues all over the map (from $10^{-3}$ to 10), but $L^{-1} A$ has eigenvalues that are mostly 1 (like $I$) with a handful of outliers." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Key points\n", - "\n", - "* Large matrix problems ($> 10^4 \\times 10^4$) almost have a matrix $A$ with a **special structure** that allows you to **multiply Ax quickly**. Most commonly, $A$ is **sparse** (mostly zero).\n", - "\n", - "* Many specialized methods are available to **take advantage** of this special structure in order to solve problems **much faster than the n³ time and n² memory of \"dense\" solvers**.\n", - "\n", - " - For sparse matrices, `A \\ b` can actually be solved *directly* by ordinary Gaussian elimination, cleverly re-ordering the unknowns so that the **LU factors remain sparse**. These \"sparse direct\" methods are easy to use and widely available.\n", - " \n", - " - For the very largest matrices, for eigenproblems, or non-sparse matrices with a fast Ax, the alternative is an **iterative method**: start with guess for the solution, and do some clever operations that rapidly improve the guess *using only matrix-times-vector*.\n", - " \n", - " - In many problems, you can speed up iterative solvers by orders of magnitude if you have an *approximate* solution for Ax=b, even a *very \"bad\" approximation* that only uses *part* of th matrix. Finding such **preconditioners** is often more of an art than a science.\n", - " \n", - "* Fully understanding the methods for large sparse problems goes far beyond the scope of 18.06. Better coverage is given in 18.335. But **it is important to know that such methods are out there**, even if you don't understand the detail, so that you **know where to begin looking if you encounter a huge matrix in practice**." - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.0", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Determinants.ipynb b/lectures/Determinants.ipynb deleted file mode 100644 index d9932e49..00000000 --- a/lectures/Determinants.ipynb +++ /dev/null @@ -1,1844 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Determinants\n", - "\n", - "One of the first things that most students learn about in linear algebra is the [determinant](https://en.wikipedia.org/wiki/Determinant) of a matrix. Lots of useful formulas for 2×2 and 3×3 matrices can be expressed in terms of determinants, and determinants played a central role in linear algebra 100 years ago when most matrices were tiny.\n", - "\n", - "Nowadays, determinants are much less useful as a practical tool, although they still occasionally show up. Determinant-related formulas are also useful in proving theorems in linear algebra. The basic computational problem, however, is that the determinant formulas don't scale — for a big matrix, there is almost always a better way of computing something than using explicit determinants, cofactors, [Cramer's rule](https://en.wikipedia.org/wiki/Cramer's_rule), and other tricks useful for small matrices.\n", - "\n", - "Still, it is important to know what determinants are, and their basic properties. In 18.06, we mainly use determinants as a *conceptual* tool to help us understand eigenvalues via the [characteristic polynomial](https://en.wikipedia.org/wiki/Characteristic_polynomial) — although, again, this is not a practical *computational* tool for eigenvalues, which are nowadays computed by very different methods." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Big Formula for Determinants: (never written on bboards, but computer will spit it out)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "using SymPy" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\begin{bmatrix}a_{11}&a_{12}&a_{13}\\\\a_{21}&a_{22}&a_{23}\\\\a_{31}&a_{32}&a_{33}\\end{bmatrix}" - ], - "text/plain": [ - "3×3 Array{SymPy.Sym,2}:\n", - " a11 a12 a13\n", - " a21 a22 a23\n", - " a31 a32 a33" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Amatrix(n) = [ Sym(\"a$i$j\") for i=1:n, j=1:n]\n", - "Amatrix(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "D (generic function with 1 method)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "D(n) = sympy\"det\"(Amatrix(n))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} a_{22} - a_{12} a_{21}$$" - ], - "text/plain": [ - "a₁₁⋅a₂₂ - a₁₂⋅a₂₁" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "D(2)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}$$" - ], - "text/plain": [ - "a₁₁⋅a₂₂⋅a₃₃ - a₁₁⋅a₂₃⋅a₃₂ - a₁₂⋅a₂₁⋅a₃₃ + a₁₂⋅a₂₃⋅a₃₁ + a₁₃⋅a₂₁⋅a₃₂ - a₁₃⋅a₂₂⋅\n", - "a₃₁" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "D(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} a_{22} a_{33} a_{44} - a_{11} a_{22} a_{34} a_{43} - a_{11} a_{23} a_{32} a_{44} + a_{11} a_{23} a_{34} a_{42} + a_{11} a_{24} a_{32} a_{43} - a_{11} a_{24} a_{33} a_{42} - a_{12} a_{21} a_{33} a_{44} + a_{12} a_{21} a_{34} a_{43} + a_{12} a_{23} a_{31} a_{44} - a_{12} a_{23} a_{34} a_{41} - a_{12} a_{24} a_{31} a_{43} + a_{12} a_{24} a_{33} a_{41} + a_{13} a_{21} a_{32} a_{44} - a_{13} a_{21} a_{34} a_{42} - a_{13} a_{22} a_{31} a_{44} + a_{13} a_{22} a_{34} a_{41} + a_{13} a_{24} a_{31} a_{42} - a_{13} a_{24} a_{32} a_{41} - a_{14} a_{21} a_{32} a_{43} + a_{14} a_{21} a_{33} a_{42} + a_{14} a_{22} a_{31} a_{43} - a_{14} a_{22} a_{33} a_{41} - a_{14} a_{23} a_{31} a_{42} + a_{14} a_{23} a_{32} a_{41}$$" - ], - "text/plain": [ - "a₁₁⋅a₂₂⋅a₃₃⋅a₄₄ - a₁₁⋅a₂₂⋅a₃₄⋅a₄₃ - a₁₁⋅a₂₃⋅a₃₂⋅a₄₄ + a₁₁⋅a₂₃⋅a₃₄⋅a₄₂ + a₁₁⋅a₂\n", - "₄⋅a₃₂⋅a₄₃ - a₁₁⋅a₂₄⋅a₃₃⋅a₄₂ - a₁₂⋅a₂₁⋅a₃₃⋅a₄₄ + a₁₂⋅a₂₁⋅a₃₄⋅a₄₃ + a₁₂⋅a₂₃⋅a₃₁⋅\n", - "a₄₄ - a₁₂⋅a₂₃⋅a₃₄⋅a₄₁ - a₁₂⋅a₂₄⋅a₃₁⋅a₄₃ + a₁₂⋅a₂₄⋅a₃₃⋅a₄₁ + a₁₃⋅a₂₁⋅a₃₂⋅a₄₄ - \n", - "a₁₃⋅a₂₁⋅a₃₄⋅a₄₂ - a₁₃⋅a₂₂⋅a₃₁⋅a₄₄ + a₁₃⋅a₂₂⋅a₃₄⋅a₄₁ + a₁₃⋅a₂₄⋅a₃₁⋅a₄₂ - a₁₃⋅a₂\n", - "₄⋅a₃₂⋅a₄₁ - a₁₄⋅a₂₁⋅a₃₂⋅a₄₃ + a₁₄⋅a₂₁⋅a₃₃⋅a₄₂ + a₁₄⋅a₂₂⋅a₃₁⋅a₄₃ - a₁₄⋅a₂₂⋅a₃₃⋅\n", - "a₄₁ - a₁₄⋅a₂₃⋅a₃₁⋅a₄₂ + a₁₄⋅a₂₃⋅a₃₂⋅a₄₁" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "D(4)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} a_{22} a_{33} a_{44} a_{55} - a_{11} a_{22} a_{33} a_{45} a_{54} - a_{11} a_{22} a_{34} a_{43} a_{55} + a_{11} a_{22} a_{34} a_{45} a_{53} + a_{11} a_{22} a_{35} a_{43} a_{54} - a_{11} a_{22} a_{35} a_{44} a_{53} - a_{11} a_{23} a_{32} a_{44} a_{55} + a_{11} a_{23} a_{32} a_{45} a_{54} + a_{11} a_{23} a_{34} a_{42} a_{55} - a_{11} a_{23} a_{34} a_{45} a_{52} - a_{11} a_{23} a_{35} a_{42} a_{54} + a_{11} a_{23} a_{35} a_{44} a_{52} + a_{11} a_{24} a_{32} a_{43} a_{55} - a_{11} a_{24} a_{32} a_{45} a_{53} - a_{11} a_{24} a_{33} a_{42} a_{55} + a_{11} a_{24} a_{33} a_{45} a_{52} + a_{11} a_{24} a_{35} a_{42} a_{53} - a_{11} a_{24} a_{35} a_{43} a_{52} - a_{11} a_{25} a_{32} a_{43} a_{54} + a_{11} a_{25} a_{32} a_{44} a_{53} + a_{11} a_{25} a_{33} a_{42} a_{54} - a_{11} a_{25} a_{33} a_{44} a_{52} - a_{11} a_{25} a_{34} a_{42} a_{53} + a_{11} a_{25} a_{34} a_{43} a_{52} - a_{12} a_{21} a_{33} a_{44} a_{55} + a_{12} a_{21} a_{33} a_{45} a_{54} + a_{12} a_{21} a_{34} a_{43} a_{55} - a_{12} a_{21} a_{34} a_{45} a_{53} - a_{12} a_{21} a_{35} a_{43} a_{54} + a_{12} a_{21} a_{35} a_{44} a_{53} + a_{12} a_{23} a_{31} a_{44} a_{55} - a_{12} a_{23} a_{31} a_{45} a_{54} - a_{12} a_{23} a_{34} a_{41} a_{55} + a_{12} a_{23} a_{34} a_{45} a_{51} + a_{12} a_{23} a_{35} a_{41} a_{54} - a_{12} a_{23} a_{35} a_{44} a_{51} - a_{12} a_{24} a_{31} a_{43} a_{55} + a_{12} a_{24} a_{31} a_{45} a_{53} + a_{12} a_{24} a_{33} a_{41} a_{55} - a_{12} a_{24} a_{33} a_{45} a_{51} - a_{12} a_{24} a_{35} a_{41} a_{53} + a_{12} a_{24} a_{35} a_{43} a_{51} + a_{12} a_{25} a_{31} a_{43} a_{54} - a_{12} a_{25} a_{31} a_{44} a_{53} - a_{12} a_{25} a_{33} a_{41} a_{54} + a_{12} a_{25} a_{33} a_{44} a_{51} + a_{12} a_{25} a_{34} a_{41} a_{53} - a_{12} a_{25} a_{34} a_{43} a_{51} + a_{13} a_{21} a_{32} a_{44} a_{55} - a_{13} a_{21} a_{32} a_{45} a_{54} - a_{13} a_{21} a_{34} a_{42} a_{55} + a_{13} a_{21} a_{34} a_{45} a_{52} + a_{13} a_{21} a_{35} a_{42} a_{54} - a_{13} a_{21} a_{35} a_{44} a_{52} - a_{13} a_{22} a_{31} a_{44} a_{55} + a_{13} a_{22} a_{31} a_{45} a_{54} + a_{13} a_{22} a_{34} a_{41} a_{55} - a_{13} a_{22} a_{34} a_{45} a_{51} - a_{13} a_{22} a_{35} a_{41} a_{54} + a_{13} a_{22} a_{35} a_{44} a_{51} + a_{13} a_{24} a_{31} a_{42} a_{55} - a_{13} a_{24} a_{31} a_{45} a_{52} - a_{13} a_{24} a_{32} a_{41} a_{55} + a_{13} a_{24} a_{32} a_{45} a_{51} + a_{13} a_{24} a_{35} a_{41} a_{52} - a_{13} a_{24} a_{35} a_{42} a_{51} - a_{13} a_{25} a_{31} a_{42} a_{54} + a_{13} a_{25} a_{31} a_{44} a_{52} + a_{13} a_{25} a_{32} a_{41} a_{54} - a_{13} a_{25} a_{32} a_{44} a_{51} - a_{13} a_{25} a_{34} a_{41} a_{52} + a_{13} a_{25} a_{34} a_{42} a_{51} - a_{14} a_{21} a_{32} a_{43} a_{55} + a_{14} a_{21} a_{32} a_{45} a_{53} + a_{14} a_{21} a_{33} a_{42} a_{55} - a_{14} a_{21} a_{33} a_{45} a_{52} - a_{14} a_{21} a_{35} a_{42} a_{53} + a_{14} a_{21} a_{35} a_{43} a_{52} + a_{14} a_{22} a_{31} a_{43} a_{55} - a_{14} a_{22} a_{31} a_{45} a_{53} - a_{14} a_{22} a_{33} a_{41} a_{55} + a_{14} a_{22} a_{33} a_{45} a_{51} + a_{14} a_{22} a_{35} a_{41} a_{53} - a_{14} a_{22} a_{35} a_{43} a_{51} - a_{14} a_{23} a_{31} a_{42} a_{55} + a_{14} a_{23} a_{31} a_{45} a_{52} + a_{14} a_{23} a_{32} a_{41} a_{55} - a_{14} a_{23} a_{32} a_{45} a_{51} - a_{14} a_{23} a_{35} a_{41} a_{52} + a_{14} a_{23} a_{35} a_{42} a_{51} + a_{14} a_{25} a_{31} a_{42} a_{53} - a_{14} a_{25} a_{31} a_{43} a_{52} - a_{14} a_{25} a_{32} a_{41} a_{53} + a_{14} a_{25} a_{32} a_{43} a_{51} + a_{14} a_{25} a_{33} a_{41} a_{52} - a_{14} a_{25} a_{33} a_{42} a_{51} + a_{15} a_{21} a_{32} a_{43} a_{54} - a_{15} a_{21} a_{32} a_{44} a_{53} - a_{15} a_{21} a_{33} a_{42} a_{54} + a_{15} a_{21} a_{33} a_{44} a_{52} + a_{15} a_{21} a_{34} a_{42} a_{53} - a_{15} a_{21} a_{34} a_{43} a_{52} - a_{15} a_{22} a_{31} a_{43} a_{54} + a_{15} a_{22} a_{31} a_{44} a_{53} + a_{15} a_{22} a_{33} a_{41} a_{54} - a_{15} a_{22} a_{33} a_{44} a_{51} - a_{15} a_{22} a_{34} a_{41} a_{53} + a_{15} a_{22} a_{34} a_{43} a_{51} + a_{15} a_{23} a_{31} a_{42} a_{54} - a_{15} a_{23} a_{31} a_{44} a_{52} - a_{15} a_{23} a_{32} a_{41} a_{54} + a_{15} a_{23} a_{32} a_{44} a_{51} + a_{15} a_{23} a_{34} a_{41} a_{52} - a_{15} a_{23} a_{34} a_{42} a_{51} - a_{15} a_{24} a_{31} a_{42} a_{53} + a_{15} a_{24} a_{31} a_{43} a_{52} + a_{15} a_{24} a_{32} a_{41} a_{53} - a_{15} a_{24} a_{32} a_{43} a_{51} - a_{15} a_{24} a_{33} a_{41} a_{52} + a_{15} a_{24} a_{33} a_{42} a_{51}$$" - ], - "text/plain": [ - "a₁₁⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₅ - a₁₁⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₄ - a₁₁⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₅ + a₁₁⋅a₂₂⋅a₃₄⋅\n", - "a₄₅⋅a₅₃ + a₁₁⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₄ - a₁₁⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₃ - a₁₁⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₅ + a₁\n", - "₁⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₄ + a₁₁⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₅ - a₁₁⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₂ - a₁₁⋅a₂₃⋅a₃₅⋅a₄\n", - "₂⋅a₅₄ + a₁₁⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₂ + a₁₁⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₅ - a₁₁⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₃ - a₁₁⋅\n", - "a₂₄⋅a₃₃⋅a₄₂⋅a₅₅ + a₁₁⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₂ + a₁₁⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₃ - a₁₁⋅a₂₄⋅a₃₅⋅a₄₃⋅\n", - "a₅₂ - a₁₁⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₄ + a₁₁⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₃ + a₁₁⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₄ - a₁₁⋅a₂\n", - "₅⋅a₃₃⋅a₄₄⋅a₅₂ - a₁₁⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₃ + a₁₁⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₂ - a₁₂⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅\n", - "₅ + a₁₂⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₄ + a₁₂⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₅ - a₁₂⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₃ - a₁₂⋅a₂₁⋅\n", - "a₃₅⋅a₄₃⋅a₅₄ + a₁₂⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₃ + a₁₂⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₅ - a₁₂⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₄ \n", - "- a₁₂⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₅ + a₁₂⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₁ + a₁₂⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₄ - a₁₂⋅a₂₃⋅a₃\n", - "₅⋅a₄₄⋅a₅₁ - a₁₂⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₅ + a₁₂⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₃ + a₁₂⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₅ - \n", - "a₁₂⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₁ - a₁₂⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₃ + a₁₂⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₁ + a₁₂⋅a₂₅⋅a₃₁⋅\n", - "a₄₃⋅a₅₄ - a₁₂⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₃ - a₁₂⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₄ + a₁₂⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₁ + a₁\n", - "₂⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₃ - a₁₂⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₁ + a₁₃⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₅ - a₁₃⋅a₂₁⋅a₃₂⋅a₄\n", - "₅⋅a₅₄ - a₁₃⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₅ + a₁₃⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₂ + a₁₃⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₄ - a₁₃⋅\n", - "a₂₁⋅a₃₅⋅a₄₄⋅a₅₂ - a₁₃⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₅ + a₁₃⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₄ + a₁₃⋅a₂₂⋅a₃₄⋅a₄₁⋅\n", - "a₅₅ - a₁₃⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₁ - a₁₃⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₄ + a₁₃⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₁ + a₁₃⋅a₂\n", - "₄⋅a₃₁⋅a₄₂⋅a₅₅ - a₁₃⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₂ - a₁₃⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₅ + a₁₃⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅\n", - "₁ + a₁₃⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₂ - a₁₃⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₁ - a₁₃⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₄ + a₁₃⋅a₂₅⋅\n", - "a₃₁⋅a₄₄⋅a₅₂ + a₁₃⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₄ - a₁₃⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₁ - a₁₃⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₂ \n", - "+ a₁₃⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₁ - a₁₄⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₅ + a₁₄⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₃ + a₁₄⋅a₂₁⋅a₃\n", - "₃⋅a₄₂⋅a₅₅ - a₁₄⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₂ - a₁₄⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₃ + a₁₄⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₂ + \n", - "a₁₄⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₅ - a₁₄⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₃ - a₁₄⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₅ + a₁₄⋅a₂₂⋅a₃₃⋅\n", - "a₄₅⋅a₅₁ + a₁₄⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₃ - a₁₄⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₁ - a₁₄⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₅ + a₁\n", - "₄⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₂ + a₁₄⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₅ - a₁₄⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₁ - a₁₄⋅a₂₃⋅a₃₅⋅a₄\n", - "₁⋅a₅₂ + a₁₄⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₁ + a₁₄⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₃ - a₁₄⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₂ - a₁₄⋅\n", - "a₂₅⋅a₃₂⋅a₄₁⋅a₅₃ + a₁₄⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₁ + a₁₄⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₂ - a₁₄⋅a₂₅⋅a₃₃⋅a₄₂⋅\n", - "a₅₁ + a₁₅⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₄ - a₁₅⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₃ - a₁₅⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₄ + a₁₅⋅a₂\n", - "₁⋅a₃₃⋅a₄₄⋅a₅₂ + a₁₅⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₃ - a₁₅⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₂ - a₁₅⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅\n", - "₄ + a₁₅⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₃ + a₁₅⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₄ - a₁₅⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₁ - a₁₅⋅a₂₂⋅\n", - "a₃₄⋅a₄₁⋅a₅₃ + a₁₅⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₁ + a₁₅⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₄ - a₁₅⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₂ \n", - "- a₁₅⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₄ + a₁₅⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₁ + a₁₅⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₂ - a₁₅⋅a₂₃⋅a₃\n", - "₄⋅a₄₂⋅a₅₁ - a₁₅⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₃ + a₁₅⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₂ + a₁₅⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₃ - \n", - "a₁₅⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₁ - a₁₅⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₂ + a₁₅⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₁" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "D(5) # Takes a little while" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} \\left(a_{22} - \\frac{a_{12} a_{21}}{a_{11}}\\right)$$" - ], - "text/plain": [ - " ⎛ a₁₂⋅a₂₁⎞\n", - "a₁₁⋅⎜a₂₂ - ───────⎟\n", - " ⎝ a₁₁ ⎠" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(Amatrix(2)) # This is the product of the pivots formula" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} \\left(a_{22} - \\frac{a_{12} a_{21}}{a_{11}}\\right) \\left(a_{33} - \\frac{\\left(a_{23} - \\frac{a_{13} a_{21}}{a_{11}}\\right) \\left(a_{32} - \\frac{a_{12} a_{31}}{a_{11}}\\right)}{a_{22} - \\frac{a_{12} a_{21}}{a_{11}}} - \\frac{a_{13} a_{31}}{a_{11}}\\right)$$" - ], - "text/plain": [ - " ⎛ ⎛ a₁₃⋅a₂₁⎞ ⎛ a₁₂⋅a₃₁⎞ ⎞\n", - " ⎜ ⎜a₂₃ - ───────⎟⋅⎜a₃₂ - ───────⎟ ⎟\n", - " ⎛ a₁₂⋅a₂₁⎞ ⎜ ⎝ a₁₁ ⎠ ⎝ a₁₁ ⎠ a₁₃⋅a₃₁⎟\n", - "a₁₁⋅⎜a₂₂ - ───────⎟⋅⎜a₃₃ - ─────────────────────────────── - ───────⎟\n", - " ⎝ a₁₁ ⎠ ⎜ a₁₂⋅a₂₁ a₁₁ ⎟\n", - " ⎜ a₂₂ - ─────── ⎟\n", - " ⎝ a₁₁ ⎠" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(Amatrix(3))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$a_{11} a_{22} a_{33} a_{44} a_{55} a_{66} - a_{11} a_{22} a_{33} a_{44} a_{56} a_{65} - a_{11} a_{22} a_{33} a_{45} a_{54} a_{66} + a_{11} a_{22} a_{33} a_{45} a_{56} a_{64} + a_{11} a_{22} a_{33} a_{46} a_{54} a_{65} - a_{11} a_{22} a_{33} a_{46} a_{55} a_{64} - a_{11} a_{22} a_{34} a_{43} a_{55} a_{66} + a_{11} a_{22} a_{34} a_{43} a_{56} a_{65} + a_{11} a_{22} a_{34} a_{45} a_{53} a_{66} - a_{11} a_{22} a_{34} a_{45} a_{56} a_{63} - a_{11} a_{22} a_{34} a_{46} a_{53} a_{65} + a_{11} a_{22} a_{34} a_{46} a_{55} a_{63} + a_{11} a_{22} a_{35} a_{43} a_{54} a_{66} - a_{11} a_{22} a_{35} a_{43} a_{56} a_{64} - a_{11} a_{22} a_{35} a_{44} a_{53} a_{66} + a_{11} a_{22} a_{35} a_{44} a_{56} a_{63} + a_{11} a_{22} a_{35} a_{46} a_{53} a_{64} - a_{11} a_{22} a_{35} a_{46} a_{54} a_{63} - a_{11} a_{22} a_{36} a_{43} a_{54} a_{65} + a_{11} a_{22} a_{36} a_{43} a_{55} a_{64} + a_{11} a_{22} a_{36} a_{44} a_{53} a_{65} - a_{11} a_{22} a_{36} a_{44} a_{55} a_{63} - a_{11} a_{22} a_{36} a_{45} a_{53} a_{64} + a_{11} a_{22} a_{36} a_{45} a_{54} a_{63} - a_{11} a_{23} a_{32} a_{44} a_{55} a_{66} + a_{11} a_{23} a_{32} a_{44} a_{56} a_{65} + a_{11} a_{23} a_{32} a_{45} a_{54} a_{66} - a_{11} a_{23} a_{32} a_{45} a_{56} a_{64} - a_{11} a_{23} a_{32} a_{46} a_{54} a_{65} + a_{11} a_{23} a_{32} a_{46} a_{55} a_{64} + a_{11} a_{23} a_{34} a_{42} a_{55} a_{66} - a_{11} a_{23} a_{34} a_{42} a_{56} a_{65} - a_{11} a_{23} a_{34} a_{45} a_{52} a_{66} + a_{11} a_{23} a_{34} a_{45} a_{56} a_{62} + a_{11} a_{23} a_{34} a_{46} a_{52} a_{65} - a_{11} a_{23} a_{34} a_{46} a_{55} a_{62} - a_{11} a_{23} a_{35} a_{42} a_{54} a_{66} + a_{11} a_{23} a_{35} a_{42} a_{56} a_{64} + a_{11} a_{23} a_{35} a_{44} a_{52} a_{66} - a_{11} a_{23} a_{35} a_{44} a_{56} a_{62} - a_{11} a_{23} a_{35} a_{46} a_{52} a_{64} + a_{11} a_{23} a_{35} a_{46} a_{54} a_{62} + a_{11} a_{23} a_{36} a_{42} a_{54} a_{65} - a_{11} a_{23} a_{36} a_{42} a_{55} a_{64} - a_{11} a_{23} a_{36} a_{44} a_{52} a_{65} + a_{11} a_{23} a_{36} a_{44} a_{55} a_{62} + a_{11} a_{23} a_{36} a_{45} a_{52} a_{64} - a_{11} a_{23} a_{36} a_{45} a_{54} a_{62} + a_{11} a_{24} a_{32} a_{43} a_{55} a_{66} - a_{11} a_{24} a_{32} a_{43} a_{56} a_{65} - a_{11} a_{24} a_{32} a_{45} a_{53} a_{66} + a_{11} a_{24} a_{32} a_{45} a_{56} a_{63} + a_{11} a_{24} a_{32} a_{46} a_{53} a_{65} - a_{11} a_{24} a_{32} a_{46} a_{55} a_{63} - a_{11} a_{24} a_{33} a_{42} a_{55} a_{66} + a_{11} a_{24} a_{33} a_{42} a_{56} a_{65} + a_{11} a_{24} a_{33} a_{45} a_{52} a_{66} - a_{11} a_{24} a_{33} a_{45} a_{56} a_{62} - a_{11} a_{24} a_{33} a_{46} a_{52} a_{65} + a_{11} a_{24} a_{33} a_{46} a_{55} a_{62} + a_{11} a_{24} a_{35} a_{42} a_{53} a_{66} - a_{11} a_{24} a_{35} a_{42} a_{56} a_{63} - a_{11} a_{24} a_{35} a_{43} a_{52} a_{66} + a_{11} a_{24} a_{35} a_{43} a_{56} a_{62} + a_{11} a_{24} a_{35} a_{46} a_{52} a_{63} - a_{11} a_{24} a_{35} a_{46} a_{53} a_{62} - a_{11} a_{24} a_{36} a_{42} a_{53} a_{65} + a_{11} a_{24} a_{36} a_{42} a_{55} a_{63} + a_{11} a_{24} a_{36} a_{43} a_{52} a_{65} - a_{11} a_{24} a_{36} a_{43} a_{55} a_{62} - a_{11} a_{24} a_{36} a_{45} a_{52} a_{63} + a_{11} a_{24} a_{36} a_{45} a_{53} a_{62} - a_{11} a_{25} a_{32} a_{43} a_{54} a_{66} + a_{11} a_{25} a_{32} a_{43} a_{56} a_{64} + a_{11} a_{25} a_{32} a_{44} a_{53} a_{66} - a_{11} a_{25} a_{32} a_{44} a_{56} a_{63} - a_{11} a_{25} a_{32} a_{46} a_{53} a_{64} + a_{11} a_{25} a_{32} a_{46} a_{54} a_{63} + a_{11} a_{25} a_{33} a_{42} a_{54} a_{66} - a_{11} a_{25} a_{33} a_{42} a_{56} a_{64} - a_{11} a_{25} a_{33} a_{44} a_{52} a_{66} + a_{11} a_{25} a_{33} a_{44} a_{56} a_{62} + a_{11} a_{25} a_{33} a_{46} a_{52} a_{64} - a_{11} a_{25} a_{33} a_{46} a_{54} a_{62} - a_{11} a_{25} a_{34} a_{42} a_{53} a_{66} + a_{11} a_{25} a_{34} a_{42} a_{56} a_{63} + a_{11} a_{25} a_{34} a_{43} a_{52} a_{66} - a_{11} a_{25} a_{34} a_{43} a_{56} a_{62} - a_{11} a_{25} a_{34} a_{46} a_{52} a_{63} + a_{11} a_{25} a_{34} a_{46} a_{53} a_{62} + a_{11} a_{25} a_{36} a_{42} a_{53} a_{64} - a_{11} a_{25} a_{36} a_{42} a_{54} a_{63} - a_{11} a_{25} a_{36} a_{43} a_{52} a_{64} + a_{11} a_{25} a_{36} a_{43} a_{54} a_{62} + a_{11} a_{25} a_{36} a_{44} a_{52} a_{63} - a_{11} a_{25} a_{36} a_{44} a_{53} a_{62} + a_{11} a_{26} a_{32} a_{43} a_{54} a_{65} - a_{11} a_{26} a_{32} a_{43} a_{55} a_{64} - a_{11} a_{26} a_{32} a_{44} a_{53} a_{65} + a_{11} a_{26} a_{32} a_{44} a_{55} a_{63} + a_{11} a_{26} a_{32} a_{45} a_{53} a_{64} - a_{11} a_{26} a_{32} a_{45} a_{54} a_{63} - a_{11} a_{26} a_{33} a_{42} a_{54} a_{65} + a_{11} a_{26} a_{33} a_{42} a_{55} a_{64} + a_{11} a_{26} a_{33} a_{44} a_{52} a_{65} - a_{11} a_{26} a_{33} a_{44} a_{55} a_{62} - a_{11} a_{26} a_{33} a_{45} a_{52} a_{64} + a_{11} a_{26} a_{33} a_{45} a_{54} a_{62} + a_{11} a_{26} a_{34} a_{42} a_{53} a_{65} - a_{11} a_{26} a_{34} a_{42} a_{55} a_{63} - a_{11} a_{26} a_{34} a_{43} a_{52} a_{65} + a_{11} a_{26} a_{34} a_{43} a_{55} a_{62} + a_{11} a_{26} a_{34} a_{45} a_{52} a_{63} - a_{11} a_{26} a_{34} a_{45} a_{53} a_{62} - a_{11} a_{26} a_{35} a_{42} a_{53} a_{64} + a_{11} a_{26} a_{35} a_{42} a_{54} a_{63} + a_{11} a_{26} a_{35} a_{43} a_{52} a_{64} - a_{11} a_{26} a_{35} a_{43} a_{54} a_{62} - a_{11} a_{26} a_{35} a_{44} a_{52} a_{63} + a_{11} a_{26} a_{35} a_{44} a_{53} a_{62} - a_{12} a_{21} a_{33} a_{44} a_{55} a_{66} + a_{12} a_{21} a_{33} a_{44} a_{56} a_{65} + a_{12} a_{21} a_{33} a_{45} a_{54} a_{66} - a_{12} a_{21} a_{33} a_{45} a_{56} a_{64} - a_{12} a_{21} a_{33} a_{46} a_{54} a_{65} + a_{12} a_{21} a_{33} a_{46} a_{55} a_{64} + a_{12} a_{21} a_{34} a_{43} a_{55} a_{66} - a_{12} a_{21} a_{34} a_{43} a_{56} a_{65} - a_{12} a_{21} a_{34} a_{45} a_{53} a_{66} + a_{12} a_{21} a_{34} a_{45} a_{56} a_{63} + a_{12} a_{21} a_{34} a_{46} a_{53} a_{65} - a_{12} a_{21} a_{34} a_{46} a_{55} a_{63} - a_{12} a_{21} a_{35} a_{43} a_{54} a_{66} + a_{12} a_{21} a_{35} a_{43} a_{56} a_{64} + a_{12} a_{21} a_{35} a_{44} a_{53} a_{66} - a_{12} a_{21} a_{35} a_{44} a_{56} a_{63} - a_{12} a_{21} a_{35} a_{46} a_{53} a_{64} + a_{12} a_{21} a_{35} a_{46} a_{54} a_{63} + a_{12} a_{21} a_{36} a_{43} a_{54} a_{65} - a_{12} a_{21} a_{36} a_{43} a_{55} a_{64} - a_{12} a_{21} a_{36} a_{44} a_{53} a_{65} + a_{12} a_{21} a_{36} a_{44} a_{55} a_{63} + a_{12} a_{21} a_{36} a_{45} a_{53} a_{64} - a_{12} a_{21} a_{36} a_{45} a_{54} a_{63} + a_{12} a_{23} a_{31} a_{44} a_{55} a_{66} - a_{12} a_{23} a_{31} a_{44} a_{56} a_{65} - a_{12} a_{23} a_{31} a_{45} a_{54} a_{66} + a_{12} a_{23} a_{31} a_{45} a_{56} a_{64} + a_{12} a_{23} a_{31} a_{46} a_{54} a_{65} - a_{12} a_{23} a_{31} a_{46} a_{55} a_{64} - a_{12} a_{23} a_{34} a_{41} a_{55} a_{66} + a_{12} a_{23} a_{34} a_{41} a_{56} a_{65} + a_{12} a_{23} a_{34} a_{45} a_{51} a_{66} - a_{12} a_{23} a_{34} a_{45} a_{56} a_{61} - a_{12} a_{23} a_{34} a_{46} a_{51} a_{65} + a_{12} a_{23} a_{34} a_{46} a_{55} a_{61} + a_{12} a_{23} a_{35} a_{41} a_{54} a_{66} - a_{12} a_{23} a_{35} a_{41} a_{56} a_{64} - a_{12} a_{23} a_{35} a_{44} a_{51} a_{66} + a_{12} a_{23} a_{35} a_{44} a_{56} a_{61} + a_{12} a_{23} a_{35} a_{46} a_{51} a_{64} - a_{12} a_{23} a_{35} a_{46} a_{54} a_{61} - a_{12} a_{23} a_{36} a_{41} a_{54} a_{65} + a_{12} a_{23} a_{36} a_{41} a_{55} a_{64} + a_{12} a_{23} a_{36} a_{44} a_{51} a_{65} - a_{12} a_{23} a_{36} a_{44} a_{55} a_{61} - a_{12} a_{23} a_{36} a_{45} a_{51} a_{64} + a_{12} a_{23} a_{36} a_{45} a_{54} a_{61} - a_{12} a_{24} a_{31} a_{43} a_{55} a_{66} + a_{12} a_{24} a_{31} a_{43} a_{56} a_{65} + a_{12} a_{24} a_{31} a_{45} a_{53} a_{66} - a_{12} a_{24} a_{31} a_{45} a_{56} a_{63} - a_{12} a_{24} a_{31} a_{46} a_{53} a_{65} + a_{12} a_{24} a_{31} a_{46} a_{55} a_{63} + a_{12} a_{24} a_{33} a_{41} a_{55} a_{66} - a_{12} a_{24} a_{33} a_{41} a_{56} a_{65} - a_{12} a_{24} a_{33} a_{45} a_{51} a_{66} + a_{12} a_{24} a_{33} a_{45} a_{56} a_{61} + a_{12} a_{24} a_{33} a_{46} a_{51} a_{65} - a_{12} a_{24} a_{33} a_{46} a_{55} a_{61} - a_{12} a_{24} a_{35} a_{41} a_{53} a_{66} + a_{12} a_{24} a_{35} a_{41} a_{56} a_{63} + a_{12} a_{24} a_{35} a_{43} a_{51} a_{66} - a_{12} a_{24} a_{35} a_{43} a_{56} a_{61} - a_{12} a_{24} a_{35} a_{46} a_{51} a_{63} + a_{12} a_{24} a_{35} a_{46} a_{53} a_{61} + a_{12} a_{24} a_{36} a_{41} a_{53} a_{65} - a_{12} a_{24} a_{36} a_{41} a_{55} a_{63} - a_{12} a_{24} a_{36} a_{43} a_{51} a_{65} + a_{12} a_{24} a_{36} a_{43} a_{55} a_{61} + a_{12} a_{24} a_{36} a_{45} a_{51} a_{63} - a_{12} a_{24} a_{36} a_{45} a_{53} a_{61} + a_{12} a_{25} a_{31} a_{43} a_{54} a_{66} - a_{12} a_{25} a_{31} a_{43} a_{56} a_{64} - a_{12} a_{25} a_{31} a_{44} a_{53} a_{66} + a_{12} a_{25} a_{31} a_{44} a_{56} a_{63} + a_{12} a_{25} a_{31} a_{46} a_{53} a_{64} - a_{12} a_{25} a_{31} a_{46} a_{54} a_{63} - a_{12} a_{25} a_{33} a_{41} a_{54} a_{66} + a_{12} a_{25} a_{33} a_{41} a_{56} a_{64} + a_{12} a_{25} a_{33} a_{44} a_{51} a_{66} - a_{12} a_{25} a_{33} a_{44} a_{56} a_{61} - a_{12} a_{25} a_{33} a_{46} a_{51} a_{64} + a_{12} a_{25} a_{33} a_{46} a_{54} a_{61} + a_{12} a_{25} a_{34} a_{41} a_{53} a_{66} - a_{12} a_{25} a_{34} a_{41} a_{56} a_{63} - a_{12} a_{25} a_{34} a_{43} a_{51} a_{66} + a_{12} a_{25} a_{34} a_{43} a_{56} a_{61} + a_{12} a_{25} a_{34} a_{46} a_{51} a_{63} - a_{12} a_{25} a_{34} a_{46} a_{53} a_{61} - a_{12} a_{25} a_{36} a_{41} a_{53} a_{64} + a_{12} a_{25} a_{36} a_{41} a_{54} a_{63} + a_{12} a_{25} a_{36} a_{43} a_{51} a_{64} - a_{12} a_{25} a_{36} a_{43} a_{54} a_{61} - a_{12} a_{25} a_{36} a_{44} a_{51} a_{63} + a_{12} a_{25} a_{36} a_{44} a_{53} a_{61} - a_{12} a_{26} a_{31} a_{43} a_{54} a_{65} + a_{12} a_{26} a_{31} a_{43} a_{55} a_{64} + a_{12} a_{26} a_{31} a_{44} a_{53} a_{65} - a_{12} a_{26} a_{31} a_{44} a_{55} a_{63} - a_{12} a_{26} a_{31} a_{45} a_{53} a_{64} + a_{12} a_{26} a_{31} a_{45} a_{54} a_{63} + a_{12} a_{26} a_{33} a_{41} a_{54} a_{65} - a_{12} a_{26} a_{33} a_{41} a_{55} a_{64} - a_{12} a_{26} a_{33} a_{44} a_{51} a_{65} + a_{12} a_{26} a_{33} a_{44} a_{55} a_{61} + a_{12} a_{26} a_{33} a_{45} a_{51} a_{64} - a_{12} a_{26} a_{33} a_{45} a_{54} a_{61} - a_{12} a_{26} a_{34} a_{41} a_{53} a_{65} + a_{12} a_{26} a_{34} a_{41} a_{55} a_{63} + a_{12} a_{26} a_{34} a_{43} a_{51} a_{65} - a_{12} a_{26} a_{34} a_{43} a_{55} a_{61} - a_{12} a_{26} a_{34} a_{45} a_{51} a_{63} + a_{12} a_{26} a_{34} a_{45} a_{53} a_{61} + a_{12} a_{26} a_{35} a_{41} a_{53} a_{64} - a_{12} a_{26} a_{35} a_{41} a_{54} a_{63} - a_{12} a_{26} a_{35} a_{43} a_{51} a_{64} + a_{12} a_{26} a_{35} a_{43} a_{54} a_{61} + a_{12} a_{26} a_{35} a_{44} a_{51} a_{63} - a_{12} a_{26} a_{35} a_{44} a_{53} a_{61} + a_{13} a_{21} a_{32} a_{44} a_{55} a_{66} - a_{13} a_{21} a_{32} a_{44} a_{56} a_{65} - a_{13} a_{21} a_{32} a_{45} a_{54} a_{66} + a_{13} a_{21} a_{32} a_{45} a_{56} a_{64} + a_{13} a_{21} a_{32} a_{46} a_{54} a_{65} - a_{13} a_{21} a_{32} a_{46} a_{55} a_{64} - a_{13} a_{21} a_{34} a_{42} a_{55} a_{66} + a_{13} a_{21} a_{34} a_{42} a_{56} a_{65} + a_{13} a_{21} a_{34} a_{45} a_{52} a_{66} - a_{13} a_{21} a_{34} a_{45} a_{56} a_{62} - a_{13} a_{21} a_{34} a_{46} a_{52} a_{65} + a_{13} a_{21} a_{34} a_{46} a_{55} a_{62} + a_{13} a_{21} a_{35} a_{42} a_{54} a_{66} - a_{13} a_{21} a_{35} a_{42} a_{56} a_{64} - a_{13} a_{21} a_{35} a_{44} a_{52} a_{66} + a_{13} a_{21} a_{35} a_{44} a_{56} a_{62} + a_{13} a_{21} a_{35} a_{46} a_{52} a_{64} - a_{13} a_{21} a_{35} a_{46} a_{54} a_{62} - a_{13} a_{21} a_{36} a_{42} a_{54} a_{65} + a_{13} a_{21} a_{36} a_{42} a_{55} a_{64} + a_{13} a_{21} a_{36} a_{44} a_{52} a_{65} - a_{13} a_{21} a_{36} a_{44} a_{55} a_{62} - a_{13} a_{21} a_{36} a_{45} a_{52} a_{64} + a_{13} a_{21} a_{36} a_{45} a_{54} a_{62} - a_{13} a_{22} a_{31} a_{44} a_{55} a_{66} + a_{13} a_{22} a_{31} a_{44} a_{56} a_{65} + a_{13} a_{22} a_{31} a_{45} a_{54} a_{66} - a_{13} a_{22} a_{31} a_{45} a_{56} a_{64} - a_{13} a_{22} a_{31} a_{46} a_{54} a_{65} + a_{13} a_{22} a_{31} a_{46} a_{55} a_{64} + a_{13} a_{22} a_{34} a_{41} a_{55} a_{66} - a_{13} a_{22} a_{34} a_{41} a_{56} a_{65} - a_{13} a_{22} a_{34} a_{45} a_{51} a_{66} + a_{13} a_{22} a_{34} a_{45} a_{56} a_{61} + a_{13} a_{22} a_{34} a_{46} a_{51} a_{65} - a_{13} a_{22} a_{34} a_{46} a_{55} a_{61} - a_{13} a_{22} a_{35} a_{41} a_{54} a_{66} + a_{13} a_{22} a_{35} a_{41} a_{56} a_{64} + a_{13} a_{22} a_{35} a_{44} a_{51} a_{66} - a_{13} a_{22} a_{35} a_{44} a_{56} a_{61} - a_{13} a_{22} a_{35} a_{46} a_{51} a_{64} + a_{13} a_{22} a_{35} a_{46} a_{54} a_{61} + a_{13} a_{22} a_{36} a_{41} a_{54} a_{65} - a_{13} a_{22} a_{36} a_{41} a_{55} a_{64} - a_{13} a_{22} a_{36} a_{44} a_{51} a_{65} + a_{13} a_{22} a_{36} a_{44} a_{55} a_{61} + a_{13} a_{22} a_{36} a_{45} a_{51} a_{64} - a_{13} a_{22} a_{36} a_{45} a_{54} a_{61} + a_{13} a_{24} a_{31} a_{42} a_{55} a_{66} - a_{13} a_{24} a_{31} a_{42} a_{56} a_{65} - a_{13} a_{24} a_{31} a_{45} a_{52} a_{66} + a_{13} a_{24} a_{31} a_{45} a_{56} a_{62} + a_{13} a_{24} a_{31} a_{46} a_{52} a_{65} - a_{13} a_{24} a_{31} a_{46} a_{55} a_{62} - a_{13} a_{24} a_{32} a_{41} a_{55} a_{66} + a_{13} a_{24} a_{32} a_{41} a_{56} a_{65} + a_{13} a_{24} a_{32} a_{45} a_{51} a_{66} - a_{13} a_{24} a_{32} a_{45} a_{56} a_{61} - a_{13} a_{24} a_{32} a_{46} a_{51} a_{65} + a_{13} a_{24} a_{32} a_{46} a_{55} a_{61} + a_{13} a_{24} a_{35} a_{41} a_{52} a_{66} - a_{13} a_{24} a_{35} a_{41} a_{56} a_{62} - a_{13} a_{24} a_{35} a_{42} a_{51} a_{66} + a_{13} a_{24} a_{35} a_{42} a_{56} a_{61} + a_{13} a_{24} a_{35} a_{46} a_{51} a_{62} - a_{13} a_{24} a_{35} a_{46} a_{52} a_{61} - a_{13} a_{24} a_{36} a_{41} a_{52} a_{65} + a_{13} a_{24} a_{36} a_{41} a_{55} a_{62} + a_{13} a_{24} a_{36} a_{42} a_{51} a_{65} - a_{13} a_{24} a_{36} a_{42} a_{55} a_{61} - a_{13} a_{24} a_{36} a_{45} a_{51} a_{62} + a_{13} a_{24} a_{36} a_{45} a_{52} a_{61} - a_{13} a_{25} a_{31} a_{42} a_{54} a_{66} + a_{13} a_{25} a_{31} a_{42} a_{56} a_{64} + a_{13} a_{25} a_{31} a_{44} a_{52} a_{66} - a_{13} a_{25} a_{31} a_{44} a_{56} a_{62} - a_{13} a_{25} a_{31} a_{46} a_{52} a_{64} + a_{13} a_{25} a_{31} a_{46} a_{54} a_{62} + a_{13} a_{25} a_{32} a_{41} a_{54} a_{66} - a_{13} a_{25} a_{32} a_{41} a_{56} a_{64} - a_{13} a_{25} a_{32} a_{44} a_{51} a_{66} + a_{13} a_{25} a_{32} a_{44} a_{56} a_{61} + a_{13} a_{25} a_{32} a_{46} a_{51} a_{64} - a_{13} a_{25} a_{32} a_{46} a_{54} a_{61} - a_{13} a_{25} a_{34} a_{41} a_{52} a_{66} + a_{13} a_{25} a_{34} a_{41} a_{56} a_{62} + a_{13} a_{25} a_{34} a_{42} a_{51} a_{66} - a_{13} a_{25} a_{34} a_{42} a_{56} a_{61} - a_{13} a_{25} a_{34} a_{46} a_{51} a_{62} + a_{13} a_{25} a_{34} a_{46} a_{52} a_{61} + a_{13} a_{25} a_{36} a_{41} a_{52} a_{64} - a_{13} a_{25} a_{36} a_{41} a_{54} a_{62} - a_{13} a_{25} a_{36} a_{42} a_{51} a_{64} + a_{13} a_{25} a_{36} a_{42} a_{54} a_{61} + a_{13} a_{25} a_{36} a_{44} a_{51} a_{62} - a_{13} a_{25} a_{36} a_{44} a_{52} a_{61} + a_{13} a_{26} a_{31} a_{42} a_{54} a_{65} - a_{13} a_{26} a_{31} a_{42} a_{55} a_{64} - a_{13} a_{26} a_{31} a_{44} a_{52} a_{65} + a_{13} a_{26} a_{31} a_{44} a_{55} a_{62} + a_{13} a_{26} a_{31} a_{45} a_{52} a_{64} - a_{13} a_{26} a_{31} a_{45} a_{54} a_{62} - a_{13} a_{26} a_{32} a_{41} a_{54} a_{65} + a_{13} a_{26} a_{32} a_{41} a_{55} a_{64} + a_{13} a_{26} a_{32} a_{44} a_{51} a_{65} - a_{13} a_{26} a_{32} a_{44} a_{55} a_{61} - a_{13} a_{26} a_{32} a_{45} a_{51} a_{64} + a_{13} a_{26} a_{32} a_{45} a_{54} a_{61} + a_{13} a_{26} a_{34} a_{41} a_{52} a_{65} - a_{13} a_{26} a_{34} a_{41} a_{55} a_{62} - a_{13} a_{26} a_{34} a_{42} a_{51} a_{65} + a_{13} a_{26} a_{34} a_{42} a_{55} a_{61} + a_{13} a_{26} a_{34} a_{45} a_{51} a_{62} - a_{13} a_{26} a_{34} a_{45} a_{52} a_{61} - a_{13} a_{26} a_{35} a_{41} a_{52} a_{64} + a_{13} a_{26} a_{35} a_{41} a_{54} a_{62} + a_{13} a_{26} a_{35} a_{42} a_{51} a_{64} - a_{13} a_{26} a_{35} a_{42} a_{54} a_{61} - a_{13} a_{26} a_{35} a_{44} a_{51} a_{62} + a_{13} a_{26} a_{35} a_{44} a_{52} a_{61} - a_{14} a_{21} a_{32} a_{43} a_{55} a_{66} + a_{14} a_{21} a_{32} a_{43} a_{56} a_{65} + a_{14} a_{21} a_{32} a_{45} a_{53} a_{66} - a_{14} a_{21} a_{32} a_{45} a_{56} a_{63} - a_{14} a_{21} a_{32} a_{46} a_{53} a_{65} + a_{14} a_{21} a_{32} a_{46} a_{55} a_{63} + a_{14} a_{21} a_{33} a_{42} a_{55} a_{66} - a_{14} a_{21} a_{33} a_{42} a_{56} a_{65} - a_{14} a_{21} a_{33} a_{45} a_{52} a_{66} + a_{14} a_{21} a_{33} a_{45} a_{56} a_{62} + a_{14} a_{21} a_{33} a_{46} a_{52} a_{65} - a_{14} a_{21} a_{33} a_{46} a_{55} a_{62} - a_{14} a_{21} a_{35} a_{42} a_{53} a_{66} + a_{14} a_{21} a_{35} a_{42} a_{56} a_{63} + a_{14} a_{21} a_{35} a_{43} a_{52} a_{66} - a_{14} a_{21} a_{35} a_{43} a_{56} a_{62} - a_{14} a_{21} a_{35} a_{46} a_{52} a_{63} + a_{14} a_{21} a_{35} a_{46} a_{53} a_{62} + a_{14} a_{21} a_{36} a_{42} a_{53} a_{65} - a_{14} a_{21} a_{36} a_{42} a_{55} a_{63} - a_{14} a_{21} a_{36} a_{43} a_{52} a_{65} + a_{14} a_{21} a_{36} a_{43} a_{55} a_{62} + a_{14} a_{21} a_{36} a_{45} a_{52} a_{63} - a_{14} a_{21} a_{36} a_{45} a_{53} a_{62} + a_{14} a_{22} a_{31} a_{43} a_{55} a_{66} - a_{14} a_{22} a_{31} a_{43} a_{56} a_{65} - a_{14} a_{22} a_{31} a_{45} a_{53} a_{66} + a_{14} a_{22} a_{31} a_{45} a_{56} a_{63} + a_{14} a_{22} a_{31} a_{46} a_{53} a_{65} - a_{14} a_{22} a_{31} a_{46} a_{55} a_{63} - a_{14} a_{22} a_{33} a_{41} a_{55} a_{66} + a_{14} a_{22} a_{33} a_{41} a_{56} a_{65} + a_{14} a_{22} a_{33} a_{45} a_{51} a_{66} - a_{14} a_{22} a_{33} a_{45} a_{56} a_{61} - a_{14} a_{22} a_{33} a_{46} a_{51} a_{65} + a_{14} a_{22} a_{33} a_{46} a_{55} a_{61} + a_{14} a_{22} a_{35} a_{41} a_{53} a_{66} - a_{14} a_{22} a_{35} a_{41} a_{56} a_{63} - a_{14} a_{22} a_{35} a_{43} a_{51} a_{66} + a_{14} a_{22} a_{35} a_{43} a_{56} a_{61} + a_{14} a_{22} a_{35} a_{46} a_{51} a_{63} - a_{14} a_{22} a_{35} a_{46} a_{53} a_{61} - a_{14} a_{22} a_{36} a_{41} a_{53} a_{65} + a_{14} a_{22} a_{36} a_{41} a_{55} a_{63} + a_{14} a_{22} a_{36} a_{43} a_{51} a_{65} - a_{14} a_{22} a_{36} a_{43} a_{55} a_{61} - a_{14} a_{22} a_{36} a_{45} a_{51} a_{63} + a_{14} a_{22} a_{36} a_{45} a_{53} a_{61} - a_{14} a_{23} a_{31} a_{42} a_{55} a_{66} + a_{14} a_{23} a_{31} a_{42} a_{56} a_{65} + a_{14} a_{23} a_{31} a_{45} a_{52} a_{66} - a_{14} a_{23} a_{31} a_{45} a_{56} a_{62} - a_{14} a_{23} a_{31} a_{46} a_{52} a_{65} + a_{14} a_{23} a_{31} a_{46} a_{55} a_{62} + a_{14} a_{23} a_{32} a_{41} a_{55} a_{66} - a_{14} a_{23} a_{32} a_{41} a_{56} a_{65} - a_{14} a_{23} a_{32} a_{45} a_{51} a_{66} + a_{14} a_{23} a_{32} a_{45} a_{56} a_{61} + a_{14} a_{23} a_{32} a_{46} a_{51} a_{65} - a_{14} a_{23} a_{32} a_{46} a_{55} a_{61} - a_{14} a_{23} a_{35} a_{41} a_{52} a_{66} + a_{14} a_{23} a_{35} a_{41} a_{56} a_{62} + a_{14} a_{23} a_{35} a_{42} a_{51} a_{66} - a_{14} a_{23} a_{35} a_{42} a_{56} a_{61} - a_{14} a_{23} a_{35} a_{46} a_{51} a_{62} + a_{14} a_{23} a_{35} a_{46} a_{52} a_{61} + a_{14} a_{23} a_{36} a_{41} a_{52} a_{65} - a_{14} a_{23} a_{36} a_{41} a_{55} a_{62} - a_{14} a_{23} a_{36} a_{42} a_{51} a_{65} + a_{14} a_{23} a_{36} a_{42} a_{55} a_{61} + a_{14} a_{23} a_{36} a_{45} a_{51} a_{62} - a_{14} a_{23} a_{36} a_{45} a_{52} a_{61} + a_{14} a_{25} a_{31} a_{42} a_{53} a_{66} - a_{14} a_{25} a_{31} a_{42} a_{56} a_{63} - a_{14} a_{25} a_{31} a_{43} a_{52} a_{66} + a_{14} a_{25} a_{31} a_{43} a_{56} a_{62} + a_{14} a_{25} a_{31} a_{46} a_{52} a_{63} - a_{14} a_{25} a_{31} a_{46} a_{53} a_{62} - a_{14} a_{25} a_{32} a_{41} a_{53} a_{66} + a_{14} a_{25} a_{32} a_{41} a_{56} a_{63} + a_{14} a_{25} a_{32} a_{43} a_{51} a_{66} - a_{14} a_{25} a_{32} a_{43} a_{56} a_{61} - a_{14} a_{25} a_{32} a_{46} a_{51} a_{63} + a_{14} a_{25} a_{32} a_{46} a_{53} a_{61} + a_{14} a_{25} a_{33} a_{41} a_{52} a_{66} - a_{14} a_{25} a_{33} a_{41} a_{56} a_{62} - a_{14} a_{25} a_{33} a_{42} a_{51} a_{66} + a_{14} a_{25} a_{33} a_{42} a_{56} a_{61} + a_{14} a_{25} a_{33} a_{46} a_{51} a_{62} - a_{14} a_{25} a_{33} a_{46} a_{52} a_{61} - a_{14} a_{25} a_{36} a_{41} a_{52} a_{63} + a_{14} a_{25} a_{36} a_{41} a_{53} a_{62} + a_{14} a_{25} a_{36} a_{42} a_{51} a_{63} - a_{14} a_{25} a_{36} a_{42} a_{53} a_{61} - a_{14} a_{25} a_{36} a_{43} a_{51} a_{62} + a_{14} a_{25} a_{36} a_{43} a_{52} a_{61} - a_{14} a_{26} a_{31} a_{42} a_{53} a_{65} + a_{14} a_{26} a_{31} a_{42} a_{55} a_{63} + a_{14} a_{26} a_{31} a_{43} a_{52} a_{65} - a_{14} a_{26} a_{31} a_{43} a_{55} a_{62} - a_{14} a_{26} a_{31} a_{45} a_{52} a_{63} + a_{14} a_{26} a_{31} a_{45} a_{53} a_{62} + a_{14} a_{26} a_{32} a_{41} a_{53} a_{65} - a_{14} a_{26} a_{32} a_{41} a_{55} a_{63} - a_{14} a_{26} a_{32} a_{43} a_{51} a_{65} + a_{14} a_{26} a_{32} a_{43} a_{55} a_{61} + a_{14} a_{26} a_{32} a_{45} a_{51} a_{63} - a_{14} a_{26} a_{32} a_{45} a_{53} a_{61} - a_{14} a_{26} a_{33} a_{41} a_{52} a_{65} + a_{14} a_{26} a_{33} a_{41} a_{55} a_{62} + a_{14} a_{26} a_{33} a_{42} a_{51} a_{65} - a_{14} a_{26} a_{33} a_{42} a_{55} a_{61} - a_{14} a_{26} a_{33} a_{45} a_{51} a_{62} + a_{14} a_{26} a_{33} a_{45} a_{52} a_{61} + a_{14} a_{26} a_{35} a_{41} a_{52} a_{63} - a_{14} a_{26} a_{35} a_{41} a_{53} a_{62} - a_{14} a_{26} a_{35} a_{42} a_{51} a_{63} + a_{14} a_{26} a_{35} a_{42} a_{53} a_{61} + a_{14} a_{26} a_{35} a_{43} a_{51} a_{62} - a_{14} a_{26} a_{35} a_{43} a_{52} a_{61} + a_{15} a_{21} a_{32} a_{43} a_{54} a_{66} - a_{15} a_{21} a_{32} a_{43} a_{56} a_{64} - a_{15} a_{21} a_{32} a_{44} a_{53} a_{66} + a_{15} a_{21} a_{32} a_{44} a_{56} a_{63} + a_{15} a_{21} a_{32} a_{46} a_{53} a_{64} - a_{15} a_{21} a_{32} a_{46} a_{54} a_{63} - a_{15} a_{21} a_{33} a_{42} a_{54} a_{66} + a_{15} a_{21} a_{33} a_{42} a_{56} a_{64} + a_{15} a_{21} a_{33} a_{44} a_{52} a_{66} - a_{15} a_{21} a_{33} a_{44} a_{56} a_{62} - a_{15} a_{21} a_{33} a_{46} a_{52} a_{64} + a_{15} a_{21} a_{33} a_{46} a_{54} a_{62} + a_{15} a_{21} a_{34} a_{42} a_{53} a_{66} - a_{15} a_{21} a_{34} a_{42} a_{56} a_{63} - a_{15} a_{21} a_{34} a_{43} a_{52} a_{66} + a_{15} a_{21} a_{34} a_{43} a_{56} a_{62} + a_{15} a_{21} a_{34} a_{46} a_{52} a_{63} - a_{15} a_{21} a_{34} a_{46} a_{53} a_{62} - a_{15} a_{21} a_{36} a_{42} a_{53} a_{64} + a_{15} a_{21} a_{36} a_{42} a_{54} a_{63} + a_{15} a_{21} a_{36} a_{43} a_{52} a_{64} - a_{15} a_{21} a_{36} a_{43} a_{54} a_{62} - a_{15} a_{21} a_{36} a_{44} a_{52} a_{63} + a_{15} a_{21} a_{36} a_{44} a_{53} a_{62} - a_{15} a_{22} a_{31} a_{43} a_{54} a_{66} + a_{15} a_{22} a_{31} a_{43} a_{56} a_{64} + a_{15} a_{22} a_{31} a_{44} a_{53} a_{66} - a_{15} a_{22} a_{31} a_{44} a_{56} a_{63} - a_{15} a_{22} a_{31} a_{46} a_{53} a_{64} + a_{15} a_{22} a_{31} a_{46} a_{54} a_{63} + a_{15} a_{22} a_{33} a_{41} a_{54} a_{66} - a_{15} a_{22} a_{33} a_{41} a_{56} a_{64} - a_{15} a_{22} a_{33} a_{44} a_{51} a_{66} + a_{15} a_{22} a_{33} a_{44} a_{56} a_{61} + a_{15} a_{22} a_{33} a_{46} a_{51} a_{64} - a_{15} a_{22} a_{33} a_{46} a_{54} a_{61} - a_{15} a_{22} a_{34} a_{41} a_{53} a_{66} + a_{15} a_{22} a_{34} a_{41} a_{56} a_{63} + a_{15} a_{22} a_{34} a_{43} a_{51} a_{66} - a_{15} a_{22} a_{34} a_{43} a_{56} a_{61} - a_{15} a_{22} a_{34} a_{46} a_{51} a_{63} + a_{15} a_{22} a_{34} a_{46} a_{53} a_{61} + a_{15} a_{22} a_{36} a_{41} a_{53} a_{64} - a_{15} a_{22} a_{36} a_{41} a_{54} a_{63} - a_{15} a_{22} a_{36} a_{43} a_{51} a_{64} + a_{15} a_{22} a_{36} a_{43} a_{54} a_{61} + a_{15} a_{22} a_{36} a_{44} a_{51} a_{63} - a_{15} a_{22} a_{36} a_{44} a_{53} a_{61} + a_{15} a_{23} a_{31} a_{42} a_{54} a_{66} - a_{15} a_{23} a_{31} a_{42} a_{56} a_{64} - a_{15} a_{23} a_{31} a_{44} a_{52} a_{66} + a_{15} a_{23} a_{31} a_{44} a_{56} a_{62} + a_{15} a_{23} a_{31} a_{46} a_{52} a_{64} - a_{15} a_{23} a_{31} a_{46} a_{54} a_{62} - a_{15} a_{23} a_{32} a_{41} a_{54} a_{66} + a_{15} a_{23} a_{32} a_{41} a_{56} a_{64} + a_{15} a_{23} a_{32} a_{44} a_{51} a_{66} - a_{15} a_{23} a_{32} a_{44} a_{56} a_{61} - a_{15} a_{23} a_{32} a_{46} a_{51} a_{64} + a_{15} a_{23} a_{32} a_{46} a_{54} a_{61} + a_{15} a_{23} a_{34} a_{41} a_{52} a_{66} - a_{15} a_{23} a_{34} a_{41} a_{56} a_{62} - a_{15} a_{23} a_{34} a_{42} a_{51} a_{66} + a_{15} a_{23} a_{34} a_{42} a_{56} a_{61} + a_{15} a_{23} a_{34} a_{46} a_{51} a_{62} - a_{15} a_{23} a_{34} a_{46} a_{52} a_{61} - a_{15} a_{23} a_{36} a_{41} a_{52} a_{64} + a_{15} a_{23} a_{36} a_{41} a_{54} a_{62} + a_{15} a_{23} a_{36} a_{42} a_{51} a_{64} - a_{15} a_{23} a_{36} a_{42} a_{54} a_{61} - a_{15} a_{23} a_{36} a_{44} a_{51} a_{62} + a_{15} a_{23} a_{36} a_{44} a_{52} a_{61} - a_{15} a_{24} a_{31} a_{42} a_{53} a_{66} + a_{15} a_{24} a_{31} a_{42} a_{56} a_{63} + a_{15} a_{24} a_{31} a_{43} a_{52} a_{66} - a_{15} a_{24} a_{31} a_{43} a_{56} a_{62} - a_{15} a_{24} a_{31} a_{46} a_{52} a_{63} + a_{15} a_{24} a_{31} a_{46} a_{53} a_{62} + a_{15} a_{24} a_{32} a_{41} a_{53} a_{66} - a_{15} a_{24} a_{32} a_{41} a_{56} a_{63} - a_{15} a_{24} a_{32} a_{43} a_{51} a_{66} + a_{15} a_{24} a_{32} a_{43} a_{56} a_{61} + a_{15} a_{24} a_{32} a_{46} a_{51} a_{63} - a_{15} a_{24} a_{32} a_{46} a_{53} a_{61} - a_{15} a_{24} a_{33} a_{41} a_{52} a_{66} + a_{15} a_{24} a_{33} a_{41} a_{56} a_{62} + a_{15} a_{24} a_{33} a_{42} a_{51} a_{66} - a_{15} a_{24} a_{33} a_{42} a_{56} a_{61} - a_{15} a_{24} a_{33} a_{46} a_{51} a_{62} + a_{15} a_{24} a_{33} a_{46} a_{52} a_{61} + a_{15} a_{24} a_{36} a_{41} a_{52} a_{63} - a_{15} a_{24} a_{36} a_{41} a_{53} a_{62} - a_{15} a_{24} a_{36} a_{42} a_{51} a_{63} + a_{15} a_{24} a_{36} a_{42} a_{53} a_{61} + a_{15} a_{24} a_{36} a_{43} a_{51} a_{62} - a_{15} a_{24} a_{36} a_{43} a_{52} a_{61} + a_{15} a_{26} a_{31} a_{42} a_{53} a_{64} - a_{15} a_{26} a_{31} a_{42} a_{54} a_{63} - a_{15} a_{26} a_{31} a_{43} a_{52} a_{64} + a_{15} a_{26} a_{31} a_{43} a_{54} a_{62} + a_{15} a_{26} a_{31} a_{44} a_{52} a_{63} - a_{15} a_{26} a_{31} a_{44} a_{53} a_{62} - a_{15} a_{26} a_{32} a_{41} a_{53} a_{64} + a_{15} a_{26} a_{32} a_{41} a_{54} a_{63} + a_{15} a_{26} a_{32} a_{43} a_{51} a_{64} - a_{15} a_{26} a_{32} a_{43} a_{54} a_{61} - a_{15} a_{26} a_{32} a_{44} a_{51} a_{63} + a_{15} a_{26} a_{32} a_{44} a_{53} a_{61} + a_{15} a_{26} a_{33} a_{41} a_{52} a_{64} - a_{15} a_{26} a_{33} a_{41} a_{54} a_{62} - a_{15} a_{26} a_{33} a_{42} a_{51} a_{64} + a_{15} a_{26} a_{33} a_{42} a_{54} a_{61} + a_{15} a_{26} a_{33} a_{44} a_{51} a_{62} - a_{15} a_{26} a_{33} a_{44} a_{52} a_{61} - a_{15} a_{26} a_{34} a_{41} a_{52} a_{63} + a_{15} a_{26} a_{34} a_{41} a_{53} a_{62} + a_{15} a_{26} a_{34} a_{42} a_{51} a_{63} - a_{15} a_{26} a_{34} a_{42} a_{53} a_{61} - a_{15} a_{26} a_{34} a_{43} a_{51} a_{62} + a_{15} a_{26} a_{34} a_{43} a_{52} a_{61} - a_{16} a_{21} a_{32} a_{43} a_{54} a_{65} + a_{16} a_{21} a_{32} a_{43} a_{55} a_{64} + a_{16} a_{21} a_{32} a_{44} a_{53} a_{65} - a_{16} a_{21} a_{32} a_{44} a_{55} a_{63} - a_{16} a_{21} a_{32} a_{45} a_{53} a_{64} + a_{16} a_{21} a_{32} a_{45} a_{54} a_{63} + a_{16} a_{21} a_{33} a_{42} a_{54} a_{65} - a_{16} a_{21} a_{33} a_{42} a_{55} a_{64} - a_{16} a_{21} a_{33} a_{44} a_{52} a_{65} + a_{16} a_{21} a_{33} a_{44} a_{55} a_{62} + a_{16} a_{21} a_{33} a_{45} a_{52} a_{64} - a_{16} a_{21} a_{33} a_{45} a_{54} a_{62} - a_{16} a_{21} a_{34} a_{42} a_{53} a_{65} + a_{16} a_{21} a_{34} a_{42} a_{55} a_{63} + a_{16} a_{21} a_{34} a_{43} a_{52} a_{65} - a_{16} a_{21} a_{34} a_{43} a_{55} a_{62} - a_{16} a_{21} a_{34} a_{45} a_{52} a_{63} + a_{16} a_{21} a_{34} a_{45} a_{53} a_{62} + a_{16} a_{21} a_{35} a_{42} a_{53} a_{64} - a_{16} a_{21} a_{35} a_{42} a_{54} a_{63} - a_{16} a_{21} a_{35} a_{43} a_{52} a_{64} + a_{16} a_{21} a_{35} a_{43} a_{54} a_{62} + a_{16} a_{21} a_{35} a_{44} a_{52} a_{63} - a_{16} a_{21} a_{35} a_{44} a_{53} a_{62} + a_{16} a_{22} a_{31} a_{43} a_{54} a_{65} - a_{16} a_{22} a_{31} a_{43} a_{55} a_{64} - a_{16} a_{22} a_{31} a_{44} a_{53} a_{65} + a_{16} a_{22} a_{31} a_{44} a_{55} a_{63} + a_{16} a_{22} a_{31} a_{45} a_{53} a_{64} - a_{16} a_{22} a_{31} a_{45} a_{54} a_{63} - a_{16} a_{22} a_{33} a_{41} a_{54} a_{65} + a_{16} a_{22} a_{33} a_{41} a_{55} a_{64} + a_{16} a_{22} a_{33} a_{44} a_{51} a_{65} - a_{16} a_{22} a_{33} a_{44} a_{55} a_{61} - a_{16} a_{22} a_{33} a_{45} a_{51} a_{64} + a_{16} a_{22} a_{33} a_{45} a_{54} a_{61} + a_{16} a_{22} a_{34} a_{41} a_{53} a_{65} - a_{16} a_{22} a_{34} a_{41} a_{55} a_{63} - a_{16} a_{22} a_{34} a_{43} a_{51} a_{65} + a_{16} a_{22} a_{34} a_{43} a_{55} a_{61} + a_{16} a_{22} a_{34} a_{45} a_{51} a_{63} - a_{16} a_{22} a_{34} a_{45} a_{53} a_{61} - a_{16} a_{22} a_{35} a_{41} a_{53} a_{64} + a_{16} a_{22} a_{35} a_{41} a_{54} a_{63} + a_{16} a_{22} a_{35} a_{43} a_{51} a_{64} - a_{16} a_{22} a_{35} a_{43} a_{54} a_{61} - a_{16} a_{22} a_{35} a_{44} a_{51} a_{63} + a_{16} a_{22} a_{35} a_{44} a_{53} a_{61} - a_{16} a_{23} a_{31} a_{42} a_{54} a_{65} + a_{16} a_{23} a_{31} a_{42} a_{55} a_{64} + a_{16} a_{23} a_{31} a_{44} a_{52} a_{65} - a_{16} a_{23} a_{31} a_{44} a_{55} a_{62} - a_{16} a_{23} a_{31} a_{45} a_{52} a_{64} + a_{16} a_{23} a_{31} a_{45} a_{54} a_{62} + a_{16} a_{23} a_{32} a_{41} a_{54} a_{65} - a_{16} a_{23} a_{32} a_{41} a_{55} a_{64} - a_{16} a_{23} a_{32} a_{44} a_{51} a_{65} + a_{16} a_{23} a_{32} a_{44} a_{55} a_{61} + a_{16} a_{23} a_{32} a_{45} a_{51} a_{64} - a_{16} a_{23} a_{32} a_{45} a_{54} a_{61} - a_{16} a_{23} a_{34} a_{41} a_{52} a_{65} + a_{16} a_{23} a_{34} a_{41} a_{55} a_{62} + a_{16} a_{23} a_{34} a_{42} a_{51} a_{65} - a_{16} a_{23} a_{34} a_{42} a_{55} a_{61} - a_{16} a_{23} a_{34} a_{45} a_{51} a_{62} + a_{16} a_{23} a_{34} a_{45} a_{52} a_{61} + a_{16} a_{23} a_{35} a_{41} a_{52} a_{64} - a_{16} a_{23} a_{35} a_{41} a_{54} a_{62} - a_{16} a_{23} a_{35} a_{42} a_{51} a_{64} + a_{16} a_{23} a_{35} a_{42} a_{54} a_{61} + a_{16} a_{23} a_{35} a_{44} a_{51} a_{62} - a_{16} a_{23} a_{35} a_{44} a_{52} a_{61} + a_{16} a_{24} a_{31} a_{42} a_{53} a_{65} - a_{16} a_{24} a_{31} a_{42} a_{55} a_{63} - a_{16} a_{24} a_{31} a_{43} a_{52} a_{65} + a_{16} a_{24} a_{31} a_{43} a_{55} a_{62} + a_{16} a_{24} a_{31} a_{45} a_{52} a_{63} - a_{16} a_{24} a_{31} a_{45} a_{53} a_{62} - a_{16} a_{24} a_{32} a_{41} a_{53} a_{65} + a_{16} a_{24} a_{32} a_{41} a_{55} a_{63} + a_{16} a_{24} a_{32} a_{43} a_{51} a_{65} - a_{16} a_{24} a_{32} a_{43} a_{55} a_{61} - a_{16} a_{24} a_{32} a_{45} a_{51} a_{63} + a_{16} a_{24} a_{32} a_{45} a_{53} a_{61} + a_{16} a_{24} a_{33} a_{41} a_{52} a_{65} - a_{16} a_{24} a_{33} a_{41} a_{55} a_{62} - a_{16} a_{24} a_{33} a_{42} a_{51} a_{65} + a_{16} a_{24} a_{33} a_{42} a_{55} a_{61} + a_{16} a_{24} a_{33} a_{45} a_{51} a_{62} - a_{16} a_{24} a_{33} a_{45} a_{52} a_{61} - a_{16} a_{24} a_{35} a_{41} a_{52} a_{63} + a_{16} a_{24} a_{35} a_{41} a_{53} a_{62} + a_{16} a_{24} a_{35} a_{42} a_{51} a_{63} - a_{16} a_{24} a_{35} a_{42} a_{53} a_{61} - a_{16} a_{24} a_{35} a_{43} a_{51} a_{62} + a_{16} a_{24} a_{35} a_{43} a_{52} a_{61} - a_{16} a_{25} a_{31} a_{42} a_{53} a_{64} + a_{16} a_{25} a_{31} a_{42} a_{54} a_{63} + a_{16} a_{25} a_{31} a_{43} a_{52} a_{64} - a_{16} a_{25} a_{31} a_{43} a_{54} a_{62} - a_{16} a_{25} a_{31} a_{44} a_{52} a_{63} + a_{16} a_{25} a_{31} a_{44} a_{53} a_{62} + a_{16} a_{25} a_{32} a_{41} a_{53} a_{64} - a_{16} a_{25} a_{32} a_{41} a_{54} a_{63} - a_{16} a_{25} a_{32} a_{43} a_{51} a_{64} + a_{16} a_{25} a_{32} a_{43} a_{54} a_{61} + a_{16} a_{25} a_{32} a_{44} a_{51} a_{63} - a_{16} a_{25} a_{32} a_{44} a_{53} a_{61} - a_{16} a_{25} a_{33} a_{41} a_{52} a_{64} + a_{16} a_{25} a_{33} a_{41} a_{54} a_{62} + a_{16} a_{25} a_{33} a_{42} a_{51} a_{64} - a_{16} a_{25} a_{33} a_{42} a_{54} a_{61} - a_{16} a_{25} a_{33} a_{44} a_{51} a_{62} + a_{16} a_{25} a_{33} a_{44} a_{52} a_{61} + a_{16} a_{25} a_{34} a_{41} a_{52} a_{63} - a_{16} a_{25} a_{34} a_{41} a_{53} a_{62} - a_{16} a_{25} a_{34} a_{42} a_{51} a_{63} + a_{16} a_{25} a_{34} a_{42} a_{53} a_{61} + a_{16} a_{25} a_{34} a_{43} a_{51} a_{62} - a_{16} a_{25} a_{34} a_{43} a_{52} a_{61}$$" - ], - "text/plain": [ - "a₁₁⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₅⋅a₆₆ - a₁₁⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₆⋅a₆₅ - a₁₁⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₄⋅a₆₆ + \n", - "a₁₁⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₆⋅a₆₄ + a₁₁⋅a₂₂⋅a₃₃⋅a₄₆⋅a₅₄⋅a₆₅ - a₁₁⋅a₂₂⋅a₃₃⋅a₄₆⋅a₅₅⋅a₆₄ - \n", - "a₁₁⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₅⋅a₆₆ + a₁₁⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₆⋅a₆₅ + a₁₁⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₃⋅a₆₆ - \n", - "a₁₁⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₆⋅a₆₃ - a₁₁⋅a₂₂⋅a₃₄⋅a₄₆⋅a₅₃⋅a₆₅ + a₁₁⋅a₂₂⋅a₃₄⋅a₄₆⋅a₅₅⋅a₆₃ + \n", - "a₁₁⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₄⋅a₆₆ - a₁₁⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₆⋅a₆₄ - a₁₁⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₃⋅a₆₆ + \n", - "a₁₁⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₆⋅a₆₃ + a₁₁⋅a₂₂⋅a₃₅⋅a₄₆⋅a₅₃⋅a₆₄ - a₁₁⋅a₂₂⋅a₃₅⋅a₄₆⋅a₅₄⋅a₆₃ - \n", - "a₁₁⋅a₂₂⋅a₃₆⋅a₄₃⋅a₅₄⋅a₆₅ + a₁₁⋅a₂₂⋅a₃₆⋅a₄₃⋅a₅₅⋅a₆₄ + a₁₁⋅a₂₂⋅a₃₆⋅a₄₄⋅a₅₃⋅a₆₅ - \n", - "a₁₁⋅a₂₂⋅a₃₆⋅a₄₄⋅a₅₅⋅a₆₃ - a₁₁⋅a₂₂⋅a₃₆⋅a₄₅⋅a₅₃⋅a₆₄ + a₁₁⋅a₂₂⋅a₃₆⋅a₄₅⋅a₅₄⋅a₆₃ - \n", - "a₁₁⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₅⋅a₆₆ + a₁₁⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₆⋅a₆₅ + a₁₁⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₄⋅a₆₆ - \n", - "a₁₁⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₆⋅a₆₄ - a₁₁⋅a₂₃⋅a₃₂⋅a₄₆⋅a₅₄⋅a₆₅ + a₁₁⋅a₂₃⋅a₃₂⋅a₄₆⋅a₅₅⋅a₆₄ + \n", - "a₁₁⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₅⋅a₆₆ - a₁₁⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₆⋅a₆₅ - a₁₁⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₂⋅a₆₆ + \n", - "a₁₁⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₆⋅a₆₂ + a₁₁⋅a₂₃⋅a₃₄⋅a₄₆⋅a₅₂⋅a₆₅ - a₁₁⋅a₂₃⋅a₃₄⋅a₄₆⋅a₅₅⋅a₆₂ - \n", - "a₁₁⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₄⋅a₆₆ + a₁₁⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₆⋅a₆₄ + a₁₁⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₂⋅a₆₆ - \n", - "a₁₁⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₆⋅a₆₂ - a₁₁⋅a₂₃⋅a₃₅⋅a₄₆⋅a₅₂⋅a₆₄ + a₁₁⋅a₂₃⋅a₃₅⋅a₄₆⋅a₅₄⋅a₆₂ + \n", - "a₁₁⋅a₂₃⋅a₃₆⋅a₄₂⋅a₅₄⋅a₆₅ - a₁₁⋅a₂₃⋅a₃₆⋅a₄₂⋅a₅₅⋅a₆₄ - a₁₁⋅a₂₃⋅a₃₆⋅a₄₄⋅a₅₂⋅a₆₅ + \n", - "a₁₁⋅a₂₃⋅a₃₆⋅a₄₄⋅a₅₅⋅a₆₂ + a₁₁⋅a₂₃⋅a₃₆⋅a₄₅⋅a₅₂⋅a₆₄ - a₁₁⋅a₂₃⋅a₃₆⋅a₄₅⋅a₅₄⋅a₆₂ + \n", - "a₁₁⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₅⋅a₆₆ - a₁₁⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₆⋅a₆₅ - a₁₁⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₃⋅a₆₆ + \n", - "a₁₁⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₆⋅a₆₃ + a₁₁⋅a₂₄⋅a₃₂⋅a₄₆⋅a₅₃⋅a₆₅ - a₁₁⋅a₂₄⋅a₃₂⋅a₄₆⋅a₅₅⋅a₆₃ - \n", - "a₁₁⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₅⋅a₆₆ + a₁₁⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₆⋅a₆₅ + a₁₁⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₂⋅a₆₆ - \n", - "a₁₁⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₆⋅a₆₂ - a₁₁⋅a₂₄⋅a₃₃⋅a₄₆⋅a₅₂⋅a₆₅ + a₁₁⋅a₂₄⋅a₃₃⋅a₄₆⋅a₅₅⋅a₆₂ + \n", - "a₁₁⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₃⋅a₆₆ - a₁₁⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₆⋅a₆₃ - a₁₁⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₂⋅a₆₆ + \n", - "a₁₁⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₆⋅a₆₂ + a₁₁⋅a₂₄⋅a₃₅⋅a₄₆⋅a₅₂⋅a₆₃ - a₁₁⋅a₂₄⋅a₃₅⋅a₄₆⋅a₅₃⋅a₆₂ - \n", - "a₁₁⋅a₂₄⋅a₃₆⋅a₄₂⋅a₅₃⋅a₆₅ + a₁₁⋅a₂₄⋅a₃₆⋅a₄₂⋅a₅₅⋅a₆₃ + a₁₁⋅a₂₄⋅a₃₆⋅a₄₃⋅a₅₂⋅a₆₅ - \n", - "a₁₁⋅a₂₄⋅a₃₆⋅a₄₃⋅a₅₅⋅a₆₂ - a₁₁⋅a₂₄⋅a₃₆⋅a₄₅⋅a₅₂⋅a₆₃ + a₁₁⋅a₂₄⋅a₃₆⋅a₄₅⋅a₅₃⋅a₆₂ - \n", - "a₁₁⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₄⋅a₆₆ + a₁₁⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₆⋅a₆₄ + a₁₁⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₃⋅a₆₆ - \n", - "a₁₁⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₆⋅a₆₃ - a₁₁⋅a₂₅⋅a₃₂⋅a₄₆⋅a₅₃⋅a₆₄ + a₁₁⋅a₂₅⋅a₃₂⋅a₄₆⋅a₅₄⋅a₆₃ + \n", - "a₁₁⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₄⋅a₆₆ - a₁₁⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₆⋅a₆₄ - a₁₁⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₂⋅a₆₆ + \n", - "a₁₁⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₆⋅a₆₂ + a₁₁⋅a₂₅⋅a₃₃⋅a₄₆⋅a₅₂⋅a₆₄ - a₁₁⋅a₂₅⋅a₃₃⋅a₄₆⋅a₅₄⋅a₆₂ - \n", - "a₁₁⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₃⋅a₆₆ + a₁₁⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₆⋅a₆₃ + a₁₁⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₂⋅a₆₆ - \n", - "a₁₁⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₆⋅a₆₂ - a₁₁⋅a₂₅⋅a₃₄⋅a₄₆⋅a₅₂⋅a₆₃ + a₁₁⋅a₂₅⋅a₃₄⋅a₄₆⋅a₅₃⋅a₆₂ + \n", - "a₁₁⋅a₂₅⋅a₃₆⋅a₄₂⋅a₅₃⋅a₆₄ - a₁₁⋅a₂₅⋅a₃₆⋅a₄₂⋅a₅₄⋅a₆₃ - a₁₁⋅a₂₅⋅a₃₆⋅a₄₃⋅a₅₂⋅a₆₄ + \n", - "a₁₁⋅a₂₅⋅a₃₆⋅a₄₃⋅a₅₄⋅a₆₂ + a₁₁⋅a₂₅⋅a₃₆⋅a₄₄⋅a₅₂⋅a₆₃ - a₁₁⋅a₂₅⋅a₃₆⋅a₄₄⋅a₅₃⋅a₆₂ + \n", - "a₁₁⋅a₂₆⋅a₃₂⋅a₄₃⋅a₅₄⋅a₆₅ - a₁₁⋅a₂₆⋅a₃₂⋅a₄₃⋅a₅₅⋅a₆₄ - a₁₁⋅a₂₆⋅a₃₂⋅a₄₄⋅a₅₃⋅a₆₅ + \n", - "a₁₁⋅a₂₆⋅a₃₂⋅a₄₄⋅a₅₅⋅a₆₃ + a₁₁⋅a₂₆⋅a₃₂⋅a₄₅⋅a₅₃⋅a₆₄ - a₁₁⋅a₂₆⋅a₃₂⋅a₄₅⋅a₅₄⋅a₆₃ - \n", - "a₁₁⋅a₂₆⋅a₃₃⋅a₄₂⋅a₅₄⋅a₆₅ + a₁₁⋅a₂₆⋅a₃₃⋅a₄₂⋅a₅₅⋅a₆₄ + a₁₁⋅a₂₆⋅a₃₃⋅a₄₄⋅a₅₂⋅a₆₅ - \n", - "a₁₁⋅a₂₆⋅a₃₃⋅a₄₄⋅a₅₅⋅a₆₂ - a₁₁⋅a₂₆⋅a₃₃⋅a₄₅⋅a₅₂⋅a₆₄ + a₁₁⋅a₂₆⋅a₃₃⋅a₄₅⋅a₅₄⋅a₆₂ + \n", - "a₁₁⋅a₂₆⋅a₃₄⋅a₄₂⋅a₅₃⋅a₆₅ - a₁₁⋅a₂₆⋅a₃₄⋅a₄₂⋅a₅₅⋅a₆₃ - a₁₁⋅a₂₆⋅a₃₄⋅a₄₃⋅a₅₂⋅a₆₅ + \n", - "a₁₁⋅a₂₆⋅a₃₄⋅a₄₃⋅a₅₅⋅a₆₂ + a₁₁⋅a₂₆⋅a₃₄⋅a₄₅⋅a₅₂⋅a₆₃ - a₁₁⋅a₂₆⋅a₃₄⋅a₄₅⋅a₅₃⋅a₆₂ - \n", - "a₁₁⋅a₂₆⋅a₃₅⋅a₄₂⋅a₅₃⋅a₆₄ + a₁₁⋅a₂₆⋅a₃₅⋅a₄₂⋅a₅₄⋅a₆₃ + a₁₁⋅a₂₆⋅a₃₅⋅a₄₃⋅a₅₂⋅a₆₄ - \n", - "a₁₁⋅a₂₆⋅a₃₅⋅a₄₃⋅a₅₄⋅a₆₂ - a₁₁⋅a₂₆⋅a₃₅⋅a₄₄⋅a₅₂⋅a₆₃ + a₁₁⋅a₂₆⋅a₃₅⋅a₄₄⋅a₅₃⋅a₆₂ - \n", - "a₁₂⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅₅⋅a₆₆ + a₁₂⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅₆⋅a₆₅ + a₁₂⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₄⋅a₆₆ - \n", - "a₁₂⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₆⋅a₆₄ - a₁₂⋅a₂₁⋅a₃₃⋅a₄₆⋅a₅₄⋅a₆₅ + a₁₂⋅a₂₁⋅a₃₃⋅a₄₆⋅a₅₅⋅a₆₄ + \n", - "a₁₂⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₅⋅a₆₆ - a₁₂⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₆⋅a₆₅ - a₁₂⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₃⋅a₆₆ + \n", - "a₁₂⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₆⋅a₆₃ + a₁₂⋅a₂₁⋅a₃₄⋅a₄₆⋅a₅₃⋅a₆₅ - a₁₂⋅a₂₁⋅a₃₄⋅a₄₆⋅a₅₅⋅a₆₃ - \n", - "a₁₂⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₄⋅a₆₆ + a₁₂⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₆⋅a₆₄ + a₁₂⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₃⋅a₆₆ - \n", - "a₁₂⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₆⋅a₆₃ - a₁₂⋅a₂₁⋅a₃₅⋅a₄₆⋅a₅₃⋅a₆₄ + a₁₂⋅a₂₁⋅a₃₅⋅a₄₆⋅a₅₄⋅a₆₃ + \n", - "a₁₂⋅a₂₁⋅a₃₆⋅a₄₃⋅a₅₄⋅a₆₅ - a₁₂⋅a₂₁⋅a₃₆⋅a₄₃⋅a₅₅⋅a₆₄ - a₁₂⋅a₂₁⋅a₃₆⋅a₄₄⋅a₅₃⋅a₆₅ + \n", - "a₁₂⋅a₂₁⋅a₃₆⋅a₄₄⋅a₅₅⋅a₆₃ + a₁₂⋅a₂₁⋅a₃₆⋅a₄₅⋅a₅₃⋅a₆₄ - a₁₂⋅a₂₁⋅a₃₆⋅a₄₅⋅a₅₄⋅a₆₃ + \n", - "a₁₂⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₅⋅a₆₆ - a₁₂⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₆⋅a₆₅ - a₁₂⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₄⋅a₆₆ + \n", - "a₁₂⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₆⋅a₆₄ + a₁₂⋅a₂₃⋅a₃₁⋅a₄₆⋅a₅₄⋅a₆₅ - a₁₂⋅a₂₃⋅a₃₁⋅a₄₆⋅a₅₅⋅a₆₄ - \n", - "a₁₂⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₅⋅a₆₆ + a₁₂⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₆⋅a₆₅ + a₁₂⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₁⋅a₆₆ - \n", - "a₁₂⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₆⋅a₆₁ - a₁₂⋅a₂₃⋅a₃₄⋅a₄₆⋅a₅₁⋅a₆₅ + a₁₂⋅a₂₃⋅a₃₄⋅a₄₆⋅a₅₅⋅a₆₁ + \n", - "a₁₂⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₄⋅a₆₆ - a₁₂⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₆⋅a₆₄ - a₁₂⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₁⋅a₆₆ + \n", - "a₁₂⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₆⋅a₆₁ + a₁₂⋅a₂₃⋅a₃₅⋅a₄₆⋅a₅₁⋅a₆₄ - a₁₂⋅a₂₃⋅a₃₅⋅a₄₆⋅a₅₄⋅a₆₁ - \n", - "a₁₂⋅a₂₃⋅a₃₆⋅a₄₁⋅a₅₄⋅a₆₅ + a₁₂⋅a₂₃⋅a₃₆⋅a₄₁⋅a₅₅⋅a₆₄ + a₁₂⋅a₂₃⋅a₃₆⋅a₄₄⋅a₅₁⋅a₆₅ - \n", - "a₁₂⋅a₂₃⋅a₃₆⋅a₄₄⋅a₅₅⋅a₆₁ - a₁₂⋅a₂₃⋅a₃₆⋅a₄₅⋅a₅₁⋅a₆₄ + a₁₂⋅a₂₃⋅a₃₆⋅a₄₅⋅a₅₄⋅a₆₁ - \n", - "a₁₂⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₅⋅a₆₆ + a₁₂⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₆⋅a₆₅ + a₁₂⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₃⋅a₆₆ - \n", - "a₁₂⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₆⋅a₆₃ - a₁₂⋅a₂₄⋅a₃₁⋅a₄₆⋅a₅₃⋅a₆₅ + a₁₂⋅a₂₄⋅a₃₁⋅a₄₆⋅a₅₅⋅a₆₃ + \n", - "a₁₂⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₅⋅a₆₆ - a₁₂⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₆⋅a₆₅ - a₁₂⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₁⋅a₆₆ + \n", - "a₁₂⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₆⋅a₆₁ + a₁₂⋅a₂₄⋅a₃₃⋅a₄₆⋅a₅₁⋅a₆₅ - a₁₂⋅a₂₄⋅a₃₃⋅a₄₆⋅a₅₅⋅a₆₁ - \n", - "a₁₂⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₃⋅a₆₆ + a₁₂⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₆⋅a₆₃ + a₁₂⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₁⋅a₆₆ - \n", - "a₁₂⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₆⋅a₆₁ - a₁₂⋅a₂₄⋅a₃₅⋅a₄₆⋅a₅₁⋅a₆₃ + a₁₂⋅a₂₄⋅a₃₅⋅a₄₆⋅a₅₃⋅a₆₁ + \n", - "a₁₂⋅a₂₄⋅a₃₆⋅a₄₁⋅a₅₃⋅a₆₅ - a₁₂⋅a₂₄⋅a₃₆⋅a₄₁⋅a₅₅⋅a₆₃ - a₁₂⋅a₂₄⋅a₃₆⋅a₄₃⋅a₅₁⋅a₆₅ + \n", - "a₁₂⋅a₂₄⋅a₃₆⋅a₄₃⋅a₅₅⋅a₆₁ + a₁₂⋅a₂₄⋅a₃₆⋅a₄₅⋅a₅₁⋅a₆₃ - a₁₂⋅a₂₄⋅a₃₆⋅a₄₅⋅a₅₃⋅a₆₁ + \n", - "a₁₂⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₄⋅a₆₆ - a₁₂⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₆⋅a₆₄ - a₁₂⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₃⋅a₆₆ + \n", - "a₁₂⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₆⋅a₆₃ + a₁₂⋅a₂₅⋅a₃₁⋅a₄₆⋅a₅₃⋅a₆₄ - a₁₂⋅a₂₅⋅a₃₁⋅a₄₆⋅a₅₄⋅a₆₃ - \n", - "a₁₂⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₄⋅a₆₆ + a₁₂⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₆⋅a₆₄ + a₁₂⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₁⋅a₆₆ - \n", - "a₁₂⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₆⋅a₆₁ - a₁₂⋅a₂₅⋅a₃₃⋅a₄₆⋅a₅₁⋅a₆₄ + a₁₂⋅a₂₅⋅a₃₃⋅a₄₆⋅a₅₄⋅a₆₁ + \n", - "a₁₂⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₃⋅a₆₆ - a₁₂⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₆⋅a₆₃ - a₁₂⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₁⋅a₆₆ + \n", - "a₁₂⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₆⋅a₆₁ + a₁₂⋅a₂₅⋅a₃₄⋅a₄₆⋅a₅₁⋅a₆₃ - a₁₂⋅a₂₅⋅a₃₄⋅a₄₆⋅a₅₃⋅a₆₁ - \n", - "a₁₂⋅a₂₅⋅a₃₆⋅a₄₁⋅a₅₃⋅a₆₄ + a₁₂⋅a₂₅⋅a₃₆⋅a₄₁⋅a₅₄⋅a₆₃ + a₁₂⋅a₂₅⋅a₃₆⋅a₄₃⋅a₅₁⋅a₆₄ - \n", - "a₁₂⋅a₂₅⋅a₃₆⋅a₄₃⋅a₅₄⋅a₆₁ - a₁₂⋅a₂₅⋅a₃₆⋅a₄₄⋅a₅₁⋅a₆₃ + a₁₂⋅a₂₅⋅a₃₆⋅a₄₄⋅a₅₃⋅a₆₁ - \n", - "a₁₂⋅a₂₆⋅a₃₁⋅a₄₃⋅a₅₄⋅a₆₅ + a₁₂⋅a₂₆⋅a₃₁⋅a₄₃⋅a₅₅⋅a₆₄ + a₁₂⋅a₂₆⋅a₃₁⋅a₄₄⋅a₅₃⋅a₆₅ - \n", - "a₁₂⋅a₂₆⋅a₃₁⋅a₄₄⋅a₅₅⋅a₆₃ - a₁₂⋅a₂₆⋅a₃₁⋅a₄₅⋅a₅₃⋅a₆₄ + a₁₂⋅a₂₆⋅a₃₁⋅a₄₅⋅a₅₄⋅a₆₃ + \n", - "a₁₂⋅a₂₆⋅a₃₃⋅a₄₁⋅a₅₄⋅a₆₅ - a₁₂⋅a₂₆⋅a₃₃⋅a₄₁⋅a₅₅⋅a₆₄ - a₁₂⋅a₂₆⋅a₃₃⋅a₄₄⋅a₅₁⋅a₆₅ + \n", - "a₁₂⋅a₂₆⋅a₃₃⋅a₄₄⋅a₅₅⋅a₆₁ + a₁₂⋅a₂₆⋅a₃₃⋅a₄₅⋅a₅₁⋅a₆₄ - a₁₂⋅a₂₆⋅a₃₃⋅a₄₅⋅a₅₄⋅a₆₁ - \n", - "a₁₂⋅a₂₆⋅a₃₄⋅a₄₁⋅a₅₃⋅a₆₅ + a₁₂⋅a₂₆⋅a₃₄⋅a₄₁⋅a₅₅⋅a₆₃ + a₁₂⋅a₂₆⋅a₃₄⋅a₄₃⋅a₅₁⋅a₆₅ - \n", - "a₁₂⋅a₂₆⋅a₃₄⋅a₄₃⋅a₅₅⋅a₆₁ - a₁₂⋅a₂₆⋅a₃₄⋅a₄₅⋅a₅₁⋅a₆₃ + a₁₂⋅a₂₆⋅a₃₄⋅a₄₅⋅a₅₃⋅a₆₁ + \n", - "a₁₂⋅a₂₆⋅a₃₅⋅a₄₁⋅a₅₃⋅a₆₄ - a₁₂⋅a₂₆⋅a₃₅⋅a₄₁⋅a₅₄⋅a₆₃ - a₁₂⋅a₂₆⋅a₃₅⋅a₄₃⋅a₅₁⋅a₆₄ + \n", - "a₁₂⋅a₂₆⋅a₃₅⋅a₄₃⋅a₅₄⋅a₆₁ + a₁₂⋅a₂₆⋅a₃₅⋅a₄₄⋅a₅₁⋅a₆₃ - a₁₂⋅a₂₆⋅a₃₅⋅a₄₄⋅a₅₃⋅a₆₁ + \n", - "a₁₃⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₅⋅a₆₆ - a₁₃⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₆⋅a₆₅ - a₁₃⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₄⋅a₆₆ + \n", - "a₁₃⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₆⋅a₆₄ + a₁₃⋅a₂₁⋅a₃₂⋅a₄₆⋅a₅₄⋅a₆₅ - a₁₃⋅a₂₁⋅a₃₂⋅a₄₆⋅a₅₅⋅a₆₄ - \n", - "a₁₃⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₅⋅a₆₆ + a₁₃⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₆⋅a₆₅ + a₁₃⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₂⋅a₆₆ - \n", - "a₁₃⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₆⋅a₆₂ - a₁₃⋅a₂₁⋅a₃₄⋅a₄₆⋅a₅₂⋅a₆₅ + a₁₃⋅a₂₁⋅a₃₄⋅a₄₆⋅a₅₅⋅a₆₂ + \n", - "a₁₃⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₄⋅a₆₆ - a₁₃⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₆⋅a₆₄ - a₁₃⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₂⋅a₆₆ + \n", - "a₁₃⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₆⋅a₆₂ + a₁₃⋅a₂₁⋅a₃₅⋅a₄₆⋅a₅₂⋅a₆₄ - a₁₃⋅a₂₁⋅a₃₅⋅a₄₆⋅a₅₄⋅a₆₂ - \n", - "a₁₃⋅a₂₁⋅a₃₆⋅a₄₂⋅a₅₄⋅a₆₅ + a₁₃⋅a₂₁⋅a₃₆⋅a₄₂⋅a₅₅⋅a₆₄ + a₁₃⋅a₂₁⋅a₃₆⋅a₄₄⋅a₅₂⋅a₆₅ - \n", - "a₁₃⋅a₂₁⋅a₃₆⋅a₄₄⋅a₅₅⋅a₆₂ - a₁₃⋅a₂₁⋅a₃₆⋅a₄₅⋅a₅₂⋅a₆₄ + a₁₃⋅a₂₁⋅a₃₆⋅a₄₅⋅a₅₄⋅a₆₂ - \n", - "a₁₃⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₅⋅a₆₆ + a₁₃⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₆⋅a₆₅ + a₁₃⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₄⋅a₆₆ - \n", - "a₁₃⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₆⋅a₆₄ - a₁₃⋅a₂₂⋅a₃₁⋅a₄₆⋅a₅₄⋅a₆₅ + a₁₃⋅a₂₂⋅a₃₁⋅a₄₆⋅a₅₅⋅a₆₄ + \n", - "a₁₃⋅a₂₂⋅a₃₄⋅a₄₁⋅a₅₅⋅a₆₆ - a₁₃⋅a₂₂⋅a₃₄⋅a₄₁⋅a₅₆⋅a₆₅ - a₁₃⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₁⋅a₆₆ + \n", - "a₁₃⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₆⋅a₆₁ + a₁₃⋅a₂₂⋅a₃₄⋅a₄₆⋅a₅₁⋅a₆₅ - a₁₃⋅a₂₂⋅a₃₄⋅a₄₆⋅a₅₅⋅a₆₁ - \n", - "a₁₃⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₄⋅a₆₆ + a₁₃⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₆⋅a₆₄ + a₁₃⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₁⋅a₆₆ - \n", - "a₁₃⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₆⋅a₆₁ - a₁₃⋅a₂₂⋅a₃₅⋅a₄₆⋅a₅₁⋅a₆₄ + a₁₃⋅a₂₂⋅a₃₅⋅a₄₆⋅a₅₄⋅a₆₁ + \n", - "a₁₃⋅a₂₂⋅a₃₆⋅a₄₁⋅a₅₄⋅a₆₅ - a₁₃⋅a₂₂⋅a₃₆⋅a₄₁⋅a₅₅⋅a₆₄ - a₁₃⋅a₂₂⋅a₃₆⋅a₄₄⋅a₅₁⋅a₆₅ + \n", - "a₁₃⋅a₂₂⋅a₃₆⋅a₄₄⋅a₅₅⋅a₆₁ + a₁₃⋅a₂₂⋅a₃₆⋅a₄₅⋅a₅₁⋅a₆₄ - a₁₃⋅a₂₂⋅a₃₆⋅a₄₅⋅a₅₄⋅a₆₁ + \n", - "a₁₃⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₅⋅a₆₆ - a₁₃⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₆⋅a₆₅ - a₁₃⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₂⋅a₆₆ + \n", - "a₁₃⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₆⋅a₆₂ + a₁₃⋅a₂₄⋅a₃₁⋅a₄₆⋅a₅₂⋅a₆₅ - a₁₃⋅a₂₄⋅a₃₁⋅a₄₆⋅a₅₅⋅a₆₂ - \n", - "a₁₃⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₅⋅a₆₆ + a₁₃⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₆⋅a₆₅ + a₁₃⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₁⋅a₆₆ - \n", - "a₁₃⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₆⋅a₆₁ - a₁₃⋅a₂₄⋅a₃₂⋅a₄₆⋅a₅₁⋅a₆₅ + a₁₃⋅a₂₄⋅a₃₂⋅a₄₆⋅a₅₅⋅a₆₁ + \n", - "a₁₃⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₂⋅a₆₆ - a₁₃⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₆⋅a₆₂ - a₁₃⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₁⋅a₆₆ + \n", - "a₁₃⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₆⋅a₆₁ + a₁₃⋅a₂₄⋅a₃₅⋅a₄₆⋅a₅₁⋅a₆₂ - a₁₃⋅a₂₄⋅a₃₅⋅a₄₆⋅a₅₂⋅a₆₁ - \n", - "a₁₃⋅a₂₄⋅a₃₆⋅a₄₁⋅a₅₂⋅a₆₅ + a₁₃⋅a₂₄⋅a₃₆⋅a₄₁⋅a₅₅⋅a₆₂ + a₁₃⋅a₂₄⋅a₃₆⋅a₄₂⋅a₅₁⋅a₆₅ - \n", - "a₁₃⋅a₂₄⋅a₃₆⋅a₄₂⋅a₅₅⋅a₆₁ - a₁₃⋅a₂₄⋅a₃₆⋅a₄₅⋅a₅₁⋅a₆₂ + a₁₃⋅a₂₄⋅a₃₆⋅a₄₅⋅a₅₂⋅a₆₁ - \n", - "a₁₃⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₄⋅a₆₆ + a₁₃⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₆⋅a₆₄ + a₁₃⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₂⋅a₆₆ - \n", - "a₁₃⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₆⋅a₆₂ - a₁₃⋅a₂₅⋅a₃₁⋅a₄₆⋅a₅₂⋅a₆₄ + a₁₃⋅a₂₅⋅a₃₁⋅a₄₆⋅a₅₄⋅a₆₂ + \n", - "a₁₃⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₄⋅a₆₆ - a₁₃⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₆⋅a₆₄ - a₁₃⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₁⋅a₆₆ + \n", - "a₁₃⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₆⋅a₆₁ + a₁₃⋅a₂₅⋅a₃₂⋅a₄₆⋅a₅₁⋅a₆₄ - a₁₃⋅a₂₅⋅a₃₂⋅a₄₆⋅a₅₄⋅a₆₁ - \n", - "a₁₃⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₂⋅a₆₆ + a₁₃⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₆⋅a₆₂ + a₁₃⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₁⋅a₆₆ - \n", - "a₁₃⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₆⋅a₆₁ - a₁₃⋅a₂₅⋅a₃₄⋅a₄₆⋅a₅₁⋅a₆₂ + a₁₃⋅a₂₅⋅a₃₄⋅a₄₆⋅a₅₂⋅a₆₁ + \n", - "a₁₃⋅a₂₅⋅a₃₆⋅a₄₁⋅a₅₂⋅a₆₄ - a₁₃⋅a₂₅⋅a₃₆⋅a₄₁⋅a₅₄⋅a₆₂ - a₁₃⋅a₂₅⋅a₃₆⋅a₄₂⋅a₅₁⋅a₆₄ + \n", - "a₁₃⋅a₂₅⋅a₃₆⋅a₄₂⋅a₅₄⋅a₆₁ + a₁₃⋅a₂₅⋅a₃₆⋅a₄₄⋅a₅₁⋅a₆₂ - a₁₃⋅a₂₅⋅a₃₆⋅a₄₄⋅a₅₂⋅a₆₁ + \n", - "a₁₃⋅a₂₆⋅a₃₁⋅a₄₂⋅a₅₄⋅a₆₅ - a₁₃⋅a₂₆⋅a₃₁⋅a₄₂⋅a₅₅⋅a₆₄ - a₁₃⋅a₂₆⋅a₃₁⋅a₄₄⋅a₅₂⋅a₆₅ + \n", - "a₁₃⋅a₂₆⋅a₃₁⋅a₄₄⋅a₅₅⋅a₆₂ + a₁₃⋅a₂₆⋅a₃₁⋅a₄₅⋅a₅₂⋅a₆₄ - a₁₃⋅a₂₆⋅a₃₁⋅a₄₅⋅a₅₄⋅a₆₂ - \n", - "a₁₃⋅a₂₆⋅a₃₂⋅a₄₁⋅a₅₄⋅a₆₅ + a₁₃⋅a₂₆⋅a₃₂⋅a₄₁⋅a₅₅⋅a₆₄ + a₁₃⋅a₂₆⋅a₃₂⋅a₄₄⋅a₅₁⋅a₆₅ - \n", - "a₁₃⋅a₂₆⋅a₃₂⋅a₄₄⋅a₅₅⋅a₆₁ - a₁₃⋅a₂₆⋅a₃₂⋅a₄₅⋅a₅₁⋅a₆₄ + a₁₃⋅a₂₆⋅a₃₂⋅a₄₅⋅a₅₄⋅a₆₁ + \n", - "a₁₃⋅a₂₆⋅a₃₄⋅a₄₁⋅a₅₂⋅a₆₅ - a₁₃⋅a₂₆⋅a₃₄⋅a₄₁⋅a₅₅⋅a₆₂ - a₁₃⋅a₂₆⋅a₃₄⋅a₄₂⋅a₅₁⋅a₆₅ + \n", - "a₁₃⋅a₂₆⋅a₃₄⋅a₄₂⋅a₅₅⋅a₆₁ + a₁₃⋅a₂₆⋅a₃₄⋅a₄₅⋅a₅₁⋅a₆₂ - a₁₃⋅a₂₆⋅a₃₄⋅a₄₅⋅a₅₂⋅a₆₁ - \n", - "a₁₃⋅a₂₆⋅a₃₅⋅a₄₁⋅a₅₂⋅a₆₄ + a₁₃⋅a₂₆⋅a₃₅⋅a₄₁⋅a₅₄⋅a₆₂ + a₁₃⋅a₂₆⋅a₃₅⋅a₄₂⋅a₅₁⋅a₆₄ - \n", - "a₁₃⋅a₂₆⋅a₃₅⋅a₄₂⋅a₅₄⋅a₆₁ - a₁₃⋅a₂₆⋅a₃₅⋅a₄₄⋅a₅₁⋅a₆₂ + a₁₃⋅a₂₆⋅a₃₅⋅a₄₄⋅a₅₂⋅a₆₁ - \n", - "a₁₄⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₅⋅a₆₆ + a₁₄⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₆⋅a₆₅ + a₁₄⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₃⋅a₆₆ - \n", - "a₁₄⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₆⋅a₆₃ - a₁₄⋅a₂₁⋅a₃₂⋅a₄₆⋅a₅₃⋅a₆₅ + a₁₄⋅a₂₁⋅a₃₂⋅a₄₆⋅a₅₅⋅a₆₃ + \n", - "a₁₄⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₅⋅a₆₆ - a₁₄⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₆⋅a₆₅ - a₁₄⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₂⋅a₆₆ + \n", - "a₁₄⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₆⋅a₆₂ + a₁₄⋅a₂₁⋅a₃₃⋅a₄₆⋅a₅₂⋅a₆₅ - a₁₄⋅a₂₁⋅a₃₃⋅a₄₆⋅a₅₅⋅a₆₂ - \n", - "a₁₄⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₃⋅a₆₆ + a₁₄⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₆⋅a₆₃ + a₁₄⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₂⋅a₆₆ - \n", - "a₁₄⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₆⋅a₆₂ - a₁₄⋅a₂₁⋅a₃₅⋅a₄₆⋅a₅₂⋅a₆₃ + a₁₄⋅a₂₁⋅a₃₅⋅a₄₆⋅a₅₃⋅a₆₂ + \n", - "a₁₄⋅a₂₁⋅a₃₆⋅a₄₂⋅a₅₃⋅a₆₅ - a₁₄⋅a₂₁⋅a₃₆⋅a₄₂⋅a₅₅⋅a₆₃ - a₁₄⋅a₂₁⋅a₃₆⋅a₄₃⋅a₅₂⋅a₆₅ + \n", - "a₁₄⋅a₂₁⋅a₃₆⋅a₄₃⋅a₅₅⋅a₆₂ + a₁₄⋅a₂₁⋅a₃₆⋅a₄₅⋅a₅₂⋅a₆₃ - a₁₄⋅a₂₁⋅a₃₆⋅a₄₅⋅a₅₃⋅a₆₂ + \n", - "a₁₄⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₅⋅a₆₆ - a₁₄⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₆⋅a₆₅ - a₁₄⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₃⋅a₆₆ + \n", - "a₁₄⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₆⋅a₆₃ + a₁₄⋅a₂₂⋅a₃₁⋅a₄₆⋅a₅₃⋅a₆₅ - a₁₄⋅a₂₂⋅a₃₁⋅a₄₆⋅a₅₅⋅a₆₃ - \n", - "a₁₄⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₅⋅a₆₆ + a₁₄⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₆⋅a₆₅ + a₁₄⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₁⋅a₆₆ - \n", - "a₁₄⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₆⋅a₆₁ - a₁₄⋅a₂₂⋅a₃₃⋅a₄₆⋅a₅₁⋅a₆₅ + a₁₄⋅a₂₂⋅a₃₃⋅a₄₆⋅a₅₅⋅a₆₁ + \n", - "a₁₄⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₃⋅a₆₆ - a₁₄⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₆⋅a₆₃ - a₁₄⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₁⋅a₆₆ + \n", - "a₁₄⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₆⋅a₆₁ + a₁₄⋅a₂₂⋅a₃₅⋅a₄₆⋅a₅₁⋅a₆₃ - a₁₄⋅a₂₂⋅a₃₅⋅a₄₆⋅a₅₃⋅a₆₁ - \n", - "a₁₄⋅a₂₂⋅a₃₆⋅a₄₁⋅a₅₃⋅a₆₅ + a₁₄⋅a₂₂⋅a₃₆⋅a₄₁⋅a₅₅⋅a₆₃ + a₁₄⋅a₂₂⋅a₃₆⋅a₄₃⋅a₅₁⋅a₆₅ - \n", - "a₁₄⋅a₂₂⋅a₃₆⋅a₄₃⋅a₅₅⋅a₆₁ - a₁₄⋅a₂₂⋅a₃₆⋅a₄₅⋅a₅₁⋅a₆₃ + a₁₄⋅a₂₂⋅a₃₆⋅a₄₅⋅a₅₃⋅a₆₁ - \n", - "a₁₄⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₅⋅a₆₆ + a₁₄⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₆⋅a₆₅ + a₁₄⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₂⋅a₆₆ - \n", - "a₁₄⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₆⋅a₆₂ - a₁₄⋅a₂₃⋅a₃₁⋅a₄₆⋅a₅₂⋅a₆₅ + a₁₄⋅a₂₃⋅a₃₁⋅a₄₆⋅a₅₅⋅a₆₂ + \n", - "a₁₄⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₅⋅a₆₆ - a₁₄⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₆⋅a₆₅ - a₁₄⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₁⋅a₆₆ + \n", - "a₁₄⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₆⋅a₆₁ + a₁₄⋅a₂₃⋅a₃₂⋅a₄₆⋅a₅₁⋅a₆₅ - a₁₄⋅a₂₃⋅a₃₂⋅a₄₆⋅a₅₅⋅a₆₁ - \n", - "a₁₄⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₂⋅a₆₆ + a₁₄⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₆⋅a₆₂ + a₁₄⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₁⋅a₆₆ - \n", - "a₁₄⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₆⋅a₆₁ - a₁₄⋅a₂₃⋅a₃₅⋅a₄₆⋅a₅₁⋅a₆₂ + a₁₄⋅a₂₃⋅a₃₅⋅a₄₆⋅a₅₂⋅a₆₁ + \n", - "a₁₄⋅a₂₃⋅a₃₆⋅a₄₁⋅a₅₂⋅a₆₅ - a₁₄⋅a₂₃⋅a₃₆⋅a₄₁⋅a₅₅⋅a₆₂ - a₁₄⋅a₂₃⋅a₃₆⋅a₄₂⋅a₅₁⋅a₆₅ + \n", - "a₁₄⋅a₂₃⋅a₃₆⋅a₄₂⋅a₅₅⋅a₆₁ + a₁₄⋅a₂₃⋅a₃₆⋅a₄₅⋅a₅₁⋅a₆₂ - a₁₄⋅a₂₃⋅a₃₆⋅a₄₅⋅a₅₂⋅a₆₁ + \n", - "a₁₄⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₃⋅a₆₆ - a₁₄⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₆⋅a₆₃ - a₁₄⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₂⋅a₆₆ + \n", - "a₁₄⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₆⋅a₆₂ + a₁₄⋅a₂₅⋅a₃₁⋅a₄₆⋅a₅₂⋅a₆₃ - a₁₄⋅a₂₅⋅a₃₁⋅a₄₆⋅a₅₃⋅a₆₂ - \n", - "a₁₄⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₃⋅a₆₆ + a₁₄⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₆⋅a₆₃ + a₁₄⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₁⋅a₆₆ - \n", - "a₁₄⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₆⋅a₆₁ - a₁₄⋅a₂₅⋅a₃₂⋅a₄₆⋅a₅₁⋅a₆₃ + a₁₄⋅a₂₅⋅a₃₂⋅a₄₆⋅a₅₃⋅a₆₁ + \n", - "a₁₄⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₂⋅a₆₆ - a₁₄⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₆⋅a₆₂ - a₁₄⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₁⋅a₆₆ + \n", - "a₁₄⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₆⋅a₆₁ + a₁₄⋅a₂₅⋅a₃₃⋅a₄₆⋅a₅₁⋅a₆₂ - a₁₄⋅a₂₅⋅a₃₃⋅a₄₆⋅a₅₂⋅a₆₁ - \n", - "a₁₄⋅a₂₅⋅a₃₆⋅a₄₁⋅a₅₂⋅a₆₃ + a₁₄⋅a₂₅⋅a₃₆⋅a₄₁⋅a₅₃⋅a₆₂ + a₁₄⋅a₂₅⋅a₃₆⋅a₄₂⋅a₅₁⋅a₆₃ - \n", - "a₁₄⋅a₂₅⋅a₃₆⋅a₄₂⋅a₅₃⋅a₆₁ - a₁₄⋅a₂₅⋅a₃₆⋅a₄₃⋅a₅₁⋅a₆₂ + a₁₄⋅a₂₅⋅a₃₆⋅a₄₃⋅a₅₂⋅a₆₁ - \n", - "a₁₄⋅a₂₆⋅a₃₁⋅a₄₂⋅a₅₃⋅a₆₅ + a₁₄⋅a₂₆⋅a₃₁⋅a₄₂⋅a₅₅⋅a₆₃ + a₁₄⋅a₂₆⋅a₃₁⋅a₄₃⋅a₅₂⋅a₆₅ - \n", - "a₁₄⋅a₂₆⋅a₃₁⋅a₄₃⋅a₅₅⋅a₆₂ - a₁₄⋅a₂₆⋅a₃₁⋅a₄₅⋅a₅₂⋅a₆₃ + a₁₄⋅a₂₆⋅a₃₁⋅a₄₅⋅a₅₃⋅a₆₂ + \n", - "a₁₄⋅a₂₆⋅a₃₂⋅a₄₁⋅a₅₃⋅a₆₅ - a₁₄⋅a₂₆⋅a₃₂⋅a₄₁⋅a₅₅⋅a₆₃ - a₁₄⋅a₂₆⋅a₃₂⋅a₄₃⋅a₅₁⋅a₆₅ + \n", - "a₁₄⋅a₂₆⋅a₃₂⋅a₄₃⋅a₅₅⋅a₆₁ + a₁₄⋅a₂₆⋅a₃₂⋅a₄₅⋅a₅₁⋅a₆₃ - a₁₄⋅a₂₆⋅a₃₂⋅a₄₅⋅a₅₃⋅a₆₁ - \n", - "a₁₄⋅a₂₆⋅a₃₃⋅a₄₁⋅a₅₂⋅a₆₅ + a₁₄⋅a₂₆⋅a₃₃⋅a₄₁⋅a₅₅⋅a₆₂ + a₁₄⋅a₂₆⋅a₃₃⋅a₄₂⋅a₅₁⋅a₆₅ - \n", - "a₁₄⋅a₂₆⋅a₃₃⋅a₄₂⋅a₅₅⋅a₆₁ - a₁₄⋅a₂₆⋅a₃₃⋅a₄₅⋅a₅₁⋅a₆₂ + a₁₄⋅a₂₆⋅a₃₃⋅a₄₅⋅a₅₂⋅a₆₁ + \n", - "a₁₄⋅a₂₆⋅a₃₅⋅a₄₁⋅a₅₂⋅a₆₃ - a₁₄⋅a₂₆⋅a₃₅⋅a₄₁⋅a₅₃⋅a₆₂ - a₁₄⋅a₂₆⋅a₃₅⋅a₄₂⋅a₅₁⋅a₆₃ + \n", - "a₁₄⋅a₂₆⋅a₃₅⋅a₄₂⋅a₅₃⋅a₆₁ + a₁₄⋅a₂₆⋅a₃₅⋅a₄₃⋅a₅₁⋅a₆₂ - a₁₄⋅a₂₆⋅a₃₅⋅a₄₃⋅a₅₂⋅a₆₁ + \n", - "a₁₅⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₄⋅a₆₆ - a₁₅⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₆⋅a₆₄ - a₁₅⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₃⋅a₆₆ + \n", - "a₁₅⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₆⋅a₆₃ + a₁₅⋅a₂₁⋅a₃₂⋅a₄₆⋅a₅₃⋅a₆₄ - a₁₅⋅a₂₁⋅a₃₂⋅a₄₆⋅a₅₄⋅a₆₃ - \n", - "a₁₅⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₄⋅a₆₆ + a₁₅⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₆⋅a₆₄ + a₁₅⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅₂⋅a₆₆ - \n", - "a₁₅⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅₆⋅a₆₂ - a₁₅⋅a₂₁⋅a₃₃⋅a₄₆⋅a₅₂⋅a₆₄ + a₁₅⋅a₂₁⋅a₃₃⋅a₄₆⋅a₅₄⋅a₆₂ + \n", - "a₁₅⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₃⋅a₆₆ - a₁₅⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₆⋅a₆₃ - a₁₅⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₂⋅a₆₆ + \n", - "a₁₅⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₆⋅a₆₂ + a₁₅⋅a₂₁⋅a₃₄⋅a₄₆⋅a₅₂⋅a₆₃ - a₁₅⋅a₂₁⋅a₃₄⋅a₄₆⋅a₅₃⋅a₆₂ - \n", - "a₁₅⋅a₂₁⋅a₃₆⋅a₄₂⋅a₅₃⋅a₆₄ + a₁₅⋅a₂₁⋅a₃₆⋅a₄₂⋅a₅₄⋅a₆₃ + a₁₅⋅a₂₁⋅a₃₆⋅a₄₃⋅a₅₂⋅a₆₄ - \n", - "a₁₅⋅a₂₁⋅a₃₆⋅a₄₃⋅a₅₄⋅a₆₂ - a₁₅⋅a₂₁⋅a₃₆⋅a₄₄⋅a₅₂⋅a₆₃ + a₁₅⋅a₂₁⋅a₃₆⋅a₄₄⋅a₅₃⋅a₆₂ - \n", - "a₁₅⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₄⋅a₆₆ + a₁₅⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₆⋅a₆₄ + a₁₅⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₃⋅a₆₆ - \n", - "a₁₅⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₆⋅a₆₃ - a₁₅⋅a₂₂⋅a₃₁⋅a₄₆⋅a₅₃⋅a₆₄ + a₁₅⋅a₂₂⋅a₃₁⋅a₄₆⋅a₅₄⋅a₆₃ + \n", - "a₁₅⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₄⋅a₆₆ - a₁₅⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₆⋅a₆₄ - a₁₅⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₁⋅a₆₆ + \n", - "a₁₅⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₆⋅a₆₁ + a₁₅⋅a₂₂⋅a₃₃⋅a₄₆⋅a₅₁⋅a₆₄ - a₁₅⋅a₂₂⋅a₃₃⋅a₄₆⋅a₅₄⋅a₆₁ - \n", - "a₁₅⋅a₂₂⋅a₃₄⋅a₄₁⋅a₅₃⋅a₆₆ + a₁₅⋅a₂₂⋅a₃₄⋅a₄₁⋅a₅₆⋅a₆₃ + a₁₅⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₁⋅a₆₆ - \n", - "a₁₅⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₆⋅a₆₁ - a₁₅⋅a₂₂⋅a₃₄⋅a₄₆⋅a₅₁⋅a₆₃ + a₁₅⋅a₂₂⋅a₃₄⋅a₄₆⋅a₅₃⋅a₆₁ + \n", - "a₁₅⋅a₂₂⋅a₃₆⋅a₄₁⋅a₅₃⋅a₆₄ - a₁₅⋅a₂₂⋅a₃₆⋅a₄₁⋅a₅₄⋅a₆₃ - a₁₅⋅a₂₂⋅a₃₆⋅a₄₃⋅a₅₁⋅a₆₄ + \n", - "a₁₅⋅a₂₂⋅a₃₆⋅a₄₃⋅a₅₄⋅a₆₁ + a₁₅⋅a₂₂⋅a₃₆⋅a₄₄⋅a₅₁⋅a₆₃ - a₁₅⋅a₂₂⋅a₃₆⋅a₄₄⋅a₅₃⋅a₆₁ + \n", - "a₁₅⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₄⋅a₆₆ - a₁₅⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₆⋅a₆₄ - a₁₅⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₂⋅a₆₆ + \n", - "a₁₅⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₆⋅a₆₂ + a₁₅⋅a₂₃⋅a₃₁⋅a₄₆⋅a₅₂⋅a₆₄ - a₁₅⋅a₂₃⋅a₃₁⋅a₄₆⋅a₅₄⋅a₆₂ - \n", - "a₁₅⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₄⋅a₆₆ + a₁₅⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₆⋅a₆₄ + a₁₅⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₁⋅a₆₆ - \n", - "a₁₅⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₆⋅a₆₁ - a₁₅⋅a₂₃⋅a₃₂⋅a₄₆⋅a₅₁⋅a₆₄ + a₁₅⋅a₂₃⋅a₃₂⋅a₄₆⋅a₅₄⋅a₆₁ + \n", - "a₁₅⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₂⋅a₆₆ - a₁₅⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₆⋅a₆₂ - a₁₅⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₁⋅a₆₆ + \n", - "a₁₅⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₆⋅a₆₁ + a₁₅⋅a₂₃⋅a₃₄⋅a₄₆⋅a₅₁⋅a₆₂ - a₁₅⋅a₂₃⋅a₃₄⋅a₄₆⋅a₅₂⋅a₆₁ - \n", - "a₁₅⋅a₂₃⋅a₃₆⋅a₄₁⋅a₅₂⋅a₆₄ + a₁₅⋅a₂₃⋅a₃₆⋅a₄₁⋅a₅₄⋅a₆₂ + a₁₅⋅a₂₃⋅a₃₆⋅a₄₂⋅a₅₁⋅a₆₄ - \n", - "a₁₅⋅a₂₃⋅a₃₆⋅a₄₂⋅a₅₄⋅a₆₁ - a₁₅⋅a₂₃⋅a₃₆⋅a₄₄⋅a₅₁⋅a₆₂ + a₁₅⋅a₂₃⋅a₃₆⋅a₄₄⋅a₅₂⋅a₆₁ - \n", - "a₁₅⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₃⋅a₆₆ + a₁₅⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₆⋅a₆₃ + a₁₅⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₂⋅a₆₆ - \n", - "a₁₅⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₆⋅a₆₂ - a₁₅⋅a₂₄⋅a₃₁⋅a₄₆⋅a₅₂⋅a₆₃ + a₁₅⋅a₂₄⋅a₃₁⋅a₄₆⋅a₅₃⋅a₆₂ + \n", - "a₁₅⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₃⋅a₆₆ - a₁₅⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₆⋅a₆₃ - a₁₅⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₁⋅a₆₆ + \n", - "a₁₅⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₆⋅a₆₁ + a₁₅⋅a₂₄⋅a₃₂⋅a₄₆⋅a₅₁⋅a₆₃ - a₁₅⋅a₂₄⋅a₃₂⋅a₄₆⋅a₅₃⋅a₆₁ - \n", - "a₁₅⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₂⋅a₆₆ + a₁₅⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₆⋅a₆₂ + a₁₅⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₁⋅a₆₆ - \n", - "a₁₅⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₆⋅a₆₁ - a₁₅⋅a₂₄⋅a₃₃⋅a₄₆⋅a₅₁⋅a₆₂ + a₁₅⋅a₂₄⋅a₃₃⋅a₄₆⋅a₅₂⋅a₆₁ + \n", - "a₁₅⋅a₂₄⋅a₃₆⋅a₄₁⋅a₅₂⋅a₆₃ - a₁₅⋅a₂₄⋅a₃₆⋅a₄₁⋅a₅₃⋅a₆₂ - a₁₅⋅a₂₄⋅a₃₆⋅a₄₂⋅a₅₁⋅a₆₃ + \n", - "a₁₅⋅a₂₄⋅a₃₆⋅a₄₂⋅a₅₃⋅a₆₁ + a₁₅⋅a₂₄⋅a₃₆⋅a₄₃⋅a₅₁⋅a₆₂ - a₁₅⋅a₂₄⋅a₃₆⋅a₄₃⋅a₅₂⋅a₆₁ + \n", - "a₁₅⋅a₂₆⋅a₃₁⋅a₄₂⋅a₅₃⋅a₆₄ - a₁₅⋅a₂₆⋅a₃₁⋅a₄₂⋅a₅₄⋅a₆₃ - a₁₅⋅a₂₆⋅a₃₁⋅a₄₃⋅a₅₂⋅a₆₄ + \n", - "a₁₅⋅a₂₆⋅a₃₁⋅a₄₃⋅a₅₄⋅a₆₂ + a₁₅⋅a₂₆⋅a₃₁⋅a₄₄⋅a₅₂⋅a₆₃ - a₁₅⋅a₂₆⋅a₃₁⋅a₄₄⋅a₅₃⋅a₆₂ - \n", - "a₁₅⋅a₂₆⋅a₃₂⋅a₄₁⋅a₅₃⋅a₆₄ + a₁₅⋅a₂₆⋅a₃₂⋅a₄₁⋅a₅₄⋅a₆₃ + a₁₅⋅a₂₆⋅a₃₂⋅a₄₃⋅a₅₁⋅a₆₄ - \n", - "a₁₅⋅a₂₆⋅a₃₂⋅a₄₃⋅a₅₄⋅a₆₁ - a₁₅⋅a₂₆⋅a₃₂⋅a₄₄⋅a₅₁⋅a₆₃ + a₁₅⋅a₂₆⋅a₃₂⋅a₄₄⋅a₅₃⋅a₆₁ + \n", - "a₁₅⋅a₂₆⋅a₃₃⋅a₄₁⋅a₅₂⋅a₆₄ - a₁₅⋅a₂₆⋅a₃₃⋅a₄₁⋅a₅₄⋅a₆₂ - a₁₅⋅a₂₆⋅a₃₃⋅a₄₂⋅a₅₁⋅a₆₄ + \n", - "a₁₅⋅a₂₆⋅a₃₃⋅a₄₂⋅a₅₄⋅a₆₁ + a₁₅⋅a₂₆⋅a₃₃⋅a₄₄⋅a₅₁⋅a₆₂ - a₁₅⋅a₂₆⋅a₃₃⋅a₄₄⋅a₅₂⋅a₆₁ - \n", - "a₁₅⋅a₂₆⋅a₃₄⋅a₄₁⋅a₅₂⋅a₆₃ + a₁₅⋅a₂₆⋅a₃₄⋅a₄₁⋅a₅₃⋅a₆₂ + a₁₅⋅a₂₆⋅a₃₄⋅a₄₂⋅a₅₁⋅a₆₃ - \n", - "a₁₅⋅a₂₆⋅a₃₄⋅a₄₂⋅a₅₃⋅a₆₁ - a₁₅⋅a₂₆⋅a₃₄⋅a₄₃⋅a₅₁⋅a₆₂ + a₁₅⋅a₂₆⋅a₃₄⋅a₄₃⋅a₅₂⋅a₆₁ - \n", - "a₁₆⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₄⋅a₆₅ + a₁₆⋅a₂₁⋅a₃₂⋅a₄₃⋅a₅₅⋅a₆₄ + a₁₆⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₃⋅a₆₅ - \n", - "a₁₆⋅a₂₁⋅a₃₂⋅a₄₄⋅a₅₅⋅a₆₃ - a₁₆⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₃⋅a₆₄ + a₁₆⋅a₂₁⋅a₃₂⋅a₄₅⋅a₅₄⋅a₆₃ + \n", - "a₁₆⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₄⋅a₆₅ - a₁₆⋅a₂₁⋅a₃₃⋅a₄₂⋅a₅₅⋅a₆₄ - a₁₆⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅₂⋅a₆₅ + \n", - "a₁₆⋅a₂₁⋅a₃₃⋅a₄₄⋅a₅₅⋅a₆₂ + a₁₆⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₂⋅a₆₄ - a₁₆⋅a₂₁⋅a₃₃⋅a₄₅⋅a₅₄⋅a₆₂ - \n", - "a₁₆⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₃⋅a₆₅ + a₁₆⋅a₂₁⋅a₃₄⋅a₄₂⋅a₅₅⋅a₆₃ + a₁₆⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₂⋅a₆₅ - \n", - "a₁₆⋅a₂₁⋅a₃₄⋅a₄₃⋅a₅₅⋅a₆₂ - a₁₆⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₂⋅a₆₃ + a₁₆⋅a₂₁⋅a₃₄⋅a₄₅⋅a₅₃⋅a₆₂ + \n", - "a₁₆⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₃⋅a₆₄ - a₁₆⋅a₂₁⋅a₃₅⋅a₄₂⋅a₅₄⋅a₆₃ - a₁₆⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₂⋅a₆₄ + \n", - "a₁₆⋅a₂₁⋅a₃₅⋅a₄₃⋅a₅₄⋅a₆₂ + a₁₆⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₂⋅a₆₃ - a₁₆⋅a₂₁⋅a₃₅⋅a₄₄⋅a₅₃⋅a₆₂ + \n", - "a₁₆⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₄⋅a₆₅ - a₁₆⋅a₂₂⋅a₃₁⋅a₄₃⋅a₅₅⋅a₆₄ - a₁₆⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₃⋅a₆₅ + \n", - "a₁₆⋅a₂₂⋅a₃₁⋅a₄₄⋅a₅₅⋅a₆₃ + a₁₆⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₃⋅a₆₄ - a₁₆⋅a₂₂⋅a₃₁⋅a₄₅⋅a₅₄⋅a₆₃ - \n", - "a₁₆⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₄⋅a₆₅ + a₁₆⋅a₂₂⋅a₃₃⋅a₄₁⋅a₅₅⋅a₆₄ + a₁₆⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₁⋅a₆₅ - \n", - "a₁₆⋅a₂₂⋅a₃₃⋅a₄₄⋅a₅₅⋅a₆₁ - a₁₆⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₁⋅a₆₄ + a₁₆⋅a₂₂⋅a₃₃⋅a₄₅⋅a₅₄⋅a₆₁ + \n", - "a₁₆⋅a₂₂⋅a₃₄⋅a₄₁⋅a₅₃⋅a₆₅ - a₁₆⋅a₂₂⋅a₃₄⋅a₄₁⋅a₅₅⋅a₆₃ - a₁₆⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₁⋅a₆₅ + \n", - "a₁₆⋅a₂₂⋅a₃₄⋅a₄₃⋅a₅₅⋅a₆₁ + a₁₆⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₁⋅a₆₃ - a₁₆⋅a₂₂⋅a₃₄⋅a₄₅⋅a₅₃⋅a₆₁ - \n", - "a₁₆⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₃⋅a₆₄ + a₁₆⋅a₂₂⋅a₃₅⋅a₄₁⋅a₅₄⋅a₆₃ + a₁₆⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₁⋅a₆₄ - \n", - "a₁₆⋅a₂₂⋅a₃₅⋅a₄₃⋅a₅₄⋅a₆₁ - a₁₆⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₁⋅a₆₃ + a₁₆⋅a₂₂⋅a₃₅⋅a₄₄⋅a₅₃⋅a₆₁ - \n", - "a₁₆⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₄⋅a₆₅ + a₁₆⋅a₂₃⋅a₃₁⋅a₄₂⋅a₅₅⋅a₆₄ + a₁₆⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₂⋅a₆₅ - \n", - "a₁₆⋅a₂₃⋅a₃₁⋅a₄₄⋅a₅₅⋅a₆₂ - a₁₆⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₂⋅a₆₄ + a₁₆⋅a₂₃⋅a₃₁⋅a₄₅⋅a₅₄⋅a₆₂ + \n", - "a₁₆⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₄⋅a₆₅ - a₁₆⋅a₂₃⋅a₃₂⋅a₄₁⋅a₅₅⋅a₆₄ - a₁₆⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₁⋅a₆₅ + \n", - "a₁₆⋅a₂₃⋅a₃₂⋅a₄₄⋅a₅₅⋅a₆₁ + a₁₆⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₁⋅a₆₄ - a₁₆⋅a₂₃⋅a₃₂⋅a₄₅⋅a₅₄⋅a₆₁ - \n", - "a₁₆⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₂⋅a₆₅ + a₁₆⋅a₂₃⋅a₃₄⋅a₄₁⋅a₅₅⋅a₆₂ + a₁₆⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₁⋅a₆₅ - \n", - "a₁₆⋅a₂₃⋅a₃₄⋅a₄₂⋅a₅₅⋅a₆₁ - a₁₆⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₁⋅a₆₂ + a₁₆⋅a₂₃⋅a₃₄⋅a₄₅⋅a₅₂⋅a₆₁ + \n", - "a₁₆⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₂⋅a₆₄ - a₁₆⋅a₂₃⋅a₃₅⋅a₄₁⋅a₅₄⋅a₆₂ - a₁₆⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₁⋅a₆₄ + \n", - "a₁₆⋅a₂₃⋅a₃₅⋅a₄₂⋅a₅₄⋅a₆₁ + a₁₆⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₁⋅a₆₂ - a₁₆⋅a₂₃⋅a₃₅⋅a₄₄⋅a₅₂⋅a₆₁ + \n", - "a₁₆⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₃⋅a₆₅ - a₁₆⋅a₂₄⋅a₃₁⋅a₄₂⋅a₅₅⋅a₆₃ - a₁₆⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₂⋅a₆₅ + \n", - "a₁₆⋅a₂₄⋅a₃₁⋅a₄₃⋅a₅₅⋅a₆₂ + a₁₆⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₂⋅a₆₃ - a₁₆⋅a₂₄⋅a₃₁⋅a₄₅⋅a₅₃⋅a₆₂ - \n", - "a₁₆⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₃⋅a₆₅ + a₁₆⋅a₂₄⋅a₃₂⋅a₄₁⋅a₅₅⋅a₆₃ + a₁₆⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₁⋅a₆₅ - \n", - "a₁₆⋅a₂₄⋅a₃₂⋅a₄₃⋅a₅₅⋅a₆₁ - a₁₆⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₁⋅a₆₃ + a₁₆⋅a₂₄⋅a₃₂⋅a₄₅⋅a₅₃⋅a₆₁ + \n", - "a₁₆⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₂⋅a₆₅ - a₁₆⋅a₂₄⋅a₃₃⋅a₄₁⋅a₅₅⋅a₆₂ - a₁₆⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₁⋅a₆₅ + \n", - "a₁₆⋅a₂₄⋅a₃₃⋅a₄₂⋅a₅₅⋅a₆₁ + a₁₆⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₁⋅a₆₂ - a₁₆⋅a₂₄⋅a₃₃⋅a₄₅⋅a₅₂⋅a₆₁ - \n", - "a₁₆⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₂⋅a₆₃ + a₁₆⋅a₂₄⋅a₃₅⋅a₄₁⋅a₅₃⋅a₆₂ + a₁₆⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₁⋅a₆₃ - \n", - "a₁₆⋅a₂₄⋅a₃₅⋅a₄₂⋅a₅₃⋅a₆₁ - a₁₆⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₁⋅a₆₂ + a₁₆⋅a₂₄⋅a₃₅⋅a₄₃⋅a₅₂⋅a₆₁ - \n", - "a₁₆⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₃⋅a₆₄ + a₁₆⋅a₂₅⋅a₃₁⋅a₄₂⋅a₅₄⋅a₆₃ + a₁₆⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₂⋅a₆₄ - \n", - "a₁₆⋅a₂₅⋅a₃₁⋅a₄₃⋅a₅₄⋅a₆₂ - a₁₆⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₂⋅a₆₃ + a₁₆⋅a₂₅⋅a₃₁⋅a₄₄⋅a₅₃⋅a₆₂ + \n", - "a₁₆⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₃⋅a₆₄ - a₁₆⋅a₂₅⋅a₃₂⋅a₄₁⋅a₅₄⋅a₆₃ - a₁₆⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₁⋅a₆₄ + \n", - "a₁₆⋅a₂₅⋅a₃₂⋅a₄₃⋅a₅₄⋅a₆₁ + a₁₆⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₁⋅a₆₃ - a₁₆⋅a₂₅⋅a₃₂⋅a₄₄⋅a₅₃⋅a₆₁ - \n", - "a₁₆⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₂⋅a₆₄ + a₁₆⋅a₂₅⋅a₃₃⋅a₄₁⋅a₅₄⋅a₆₂ + a₁₆⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₁⋅a₆₄ - \n", - "a₁₆⋅a₂₅⋅a₃₃⋅a₄₂⋅a₅₄⋅a₆₁ - a₁₆⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₁⋅a₆₂ + a₁₆⋅a₂₅⋅a₃₃⋅a₄₄⋅a₅₂⋅a₆₁ + \n", - "a₁₆⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₂⋅a₆₃ - a₁₆⋅a₂₅⋅a₃₄⋅a₄₁⋅a₅₃⋅a₆₂ - a₁₆⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₁⋅a₆₃ + \n", - "a₁₆⋅a₂₅⋅a₃₄⋅a₄₂⋅a₅₃⋅a₆₁ + a₁₆⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₁⋅a₆₂ - a₁₆⋅a₂₅⋅a₃₄⋅a₄₃⋅a₅₂⋅a₆₁" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# to get n=6 requires the explicit formula for determinants and some patience\n", - "using Combinatorics, SymPy\n", - "n = 6\n", - "Base.mimewritable(::MIME\"text/html\", ::Sym) = false\n", - "sum(prod(((i,j)->Sym(\"a$i$j\")).(1:n,σ))*(-1)^parity(σ) for σ in permutations(1:n))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Expectation: Singular = Zero determinant\n", - "\n", - "The property that most students learn about determinants of 2×2 and 3×3 is this: **given a square matrix A, the determinant det(A) is some number that is zero if and only if the matrix is singular**.\n", - "\n", - "For example, the following matrix is not singular, and its determinant (`det(A)` in Julia) is nonzero:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "-2.0" - ], - "text/plain": [ - "-2.0" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 3\n", - " 2 4]\n", - "det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(You may even remember the formula for the 2×2 determinant: $1 \\times 4 - 3 \\times 2 = -2$.\n", - "\n", - "But this matrix is singular (the second column is twice the first), and so its determinant is zero:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "0.0" - ], - "text/plain": [ - "0.0" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 2\n", - " 2 4]\n", - "det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* By the way, many authors, including Strang's book, use the abbreviated notation $|A| = \\det A$. I won't use this notation here, mainly because I don't think the determinant is important enough anymore to deserve its own punctuation. Anyway, $|A|$ looks too much like an absolute value, even though the determinant can have any sign. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A lucky guess for the determinant\n", - "\n", - "In 18.06, we know have another way to check whether a matrix is zero: perform Gaussian elimination, and then **check whether any pivots (diagonal entries of U) are zero**.\n", - "\n", - "But this gives us an obvious way to construct a single determinant-like number: **just multiply the pivots together**, and the result will be zero if and only if the matrix is singular.\n", - "\n", - "In fact, this intuition turns out to be *almost* exactly the right guess:\n", - "\n", - "* The **determinant is ± the product of the pivots**, with a minus sign if elimination involved an *odd* number of row swaps and a plus sign if there were an *even* number of swaps (including zero swaps).\n", - "\n", - "We can check this for a random matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "-5.036604698357918" - ], - "text/plain": [ - "-5.036604698357918" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = randn(5,5)\n", - "det(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -0.872585 1.07155 -1.36778 -0.693682 1.06642\n", - " 0.0 2.24715 -2.71437 -1.42436 0.97702\n", - " 0.0 0.0 1.65045 1.20357 2.08601\n", - " 0.0 0.0 0.0 -0.19399 3.89948\n", - " 0.0 0.0 0.0 0.0 -8.02259" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "L,U = lu(A, Val{false}) # LU without row swaps\n", - "U" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "-5.036604698357916" - ], - "text/plain": [ - "-5.036604698357916" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "prod(diag(U)) # the product of the diagonal elements of U" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that this matches `det(A)` (up to roundoff errors in the last few digits)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This immediately gives you a hint of why the determinant is not such a useful computational tool as you might have thought:\n", - "\n", - "* The most efficient way to compute a determinant, in general, is to do Gaussian elimination and then multiply the pivots together.\n", - "\n", - "* Once you have done elimination, you *already* know whether the matrix is singular and you can *already* solve $Ax=b$ efficiently, so the determinant is mostly superfluous.\n", - "\n", - "We'll discuss some actual determinant applications later.\n", - "\n", - "Although we *could* use the \"product of the pivots\" as the definition of the determinant (at least for matrices), it is more typical to **build up the definition of the determinant from more basic properties**, and to get the product of the pivots as a *consequence*. We will do that now." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Defining properties of the determinant\n", - "\n", - "The following three properties are actually sufficient to *uniquely define* the determinant of any matrix, and are taken from [Strang's Introduction to Linear Algebra](http://math.mit.edu/~gs/linearalgebra/), section 5.1.\n", - "\n", - "Therefore, we don't *derive* these properties: they are [axioms](https://en.wikipedia.org/wiki/Axiom) that serve to define the determinant operation." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. det(I) = 1\n", - "\n", - "It is clear that the identity matrix $I$ is not singular, and all its pivots are 1. A reasonable starting point for defining determinants, therefore, is to require:\n", - "\n", - "* $\\det I = 1$ for any $m \\times m$ identity matrix I (any $m$).\n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 0.0 0.0 0.0 0.0\n", - " 0.0 1.0 0.0 0.0 0.0\n", - " 0.0 0.0 1.0 0.0 0.0\n", - " 0.0 0.0 0.0 1.0 0.0\n", - " 0.0 0.0 0.0 0.0 1.0" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eye(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "1.0" - ], - "text/plain": [ - "1.0" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(eye(5))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Sign flips under row exchange\n", - "\n", - "The second key property is:\n", - "\n", - "* If you **swap two rows** in a matrix, the **determinant flips sign**.\n", - "\n", - "For example, with a random $5 \\times 5$ matrix $A$:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 3 -1 0 -3\n", - " 3 -3 1 -2 0\n", - " -2 3 1 2 2\n", - " 3 -3 2 0 2\n", - " 0 3 -1 3 -1" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = rand(-3:3, 5,5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Swapping the first two rows gives the matrix $B$:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 3 -3 1 -2 0\n", - " 1 3 -1 0 -3\n", - " -2 3 1 2 2\n", - " 3 -3 2 0 2\n", - " 0 3 -1 3 -1" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = copy(A)\n", - "B[1,:] = A[2,:]\n", - "B[2,:] = A[1,:]\n", - "B" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hence the determinants are equal and opposite:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-15.000000000000004, 15.000000000000014)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A), det(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Up to roundoff errors, of course.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Linearity in any individual row\n", - "\n", - "The determinant will *not* be a linear operation on the whole matrix: $\\det(A+B) \\ne \\det A + \\det B$!! But, we *would* like it to be linear with respect to **operations on individual rows**.\n", - "\n", - "This means two things:\n", - "\n", - "### Scaling rows\n", - "\n", - "* If we **multiply a row by a scalar α**, then the **determinant multiplies by α**.\n", - "\n", - "This axiom actually makes a lot of sense if you think about the example of the identity matrix. Multiplying the first row of $I$ by $\\alpha$ leads to the matrix:\n", - "\n", - "$$\n", - "\\begin{pmatrix}\n", - "\\alpha & 0 & 0 & 0 & \\cdots \\\\\n", - " 0 & 1 & 0 & 0 & \\cdots \\\\\n", - " 0 & 0 & 1 & 0 & \\cdots \\\\\n", - " 0 & 0 & 0 & 1 & \\cdots \\\\\n", - " \\vdots & \\vdots & \\vdots & \\vdots & \\ddots \\\\\n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "The determinant of this matrix is exactly $\\alpha$! As $\\alpha \\to 0$, this matrix becomes singular, and the determinant goes to zero at the same rate. It is also consistent with our \"product of the pivots\" intuitive guess above, because the pivots here are $(\\alpha, 1, 1, \\cdots)$.\n", - "\n", - "We can also try this with our random matrix $A$ from above. Let's multiply the second row by 2:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 3 -1 0 -3\n", - " 6 -6 2 -4 0\n", - " -2 3 1 2 2\n", - " 3 -3 2 0 2\n", - " 0 3 -1 3 -1" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "C = copy(A)\n", - "C[2,:] = 2*A[2,:]\n", - "C" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-15.000000000000004, -30.000000000000007)" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A), det(C)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As expected, the determinant doubles.\n", - "\n", - "As a consequence of this, if you multiply an *entire* $m\\times m$ matrix $A$ by $\\alpha$, we obtain:\n", - "\n", - "* $\\det(\\alpha A) = \\alpha^m \\det A$\n", - "\n", - "This is *not* an axiom, it is a *consequence* of the axiom above: we pick up a factor of $\\alpha$ for each row that we scale.\n", - "\n", - "For our $5 \\times 5$ matrix $A$, this means that $\\det(2A) = 2^5 \\det A = 32 \\det A$:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "32.0" - ], - "text/plain": [ - "32.0" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(2A) / det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Adding a row vector to a row\n", - "\n", - "There is a second property of linearity, corresponding to vector addition:\n", - "\n", - "* If we **add a row vector $r$** to a row of $A$, then the determinant becomes $\\det(A) + \\det(A')$, where $A'$ is the matrix with that row **replaced by** $r$ (with **other rows unchanged**).\n", - "\n", - "This is easier to explain with an example:\n", - "\n", - "$$\n", - "\\det \\begin{pmatrix} a + a' & b + b' \\\\ c & d \\end{pmatrix} =\n", - "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} +\n", - "\\det \\begin{pmatrix} a' & b' \\\\ c & d \\end{pmatrix} \\; .\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or, in terms of our matrix $A$ from above, let's add $(1,2,3,4,5)$ to the first row:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 3 -1 0 -3\n", - " 3 -3 1 -2 0\n", - " -2 3 1 2 2\n", - " 3 -3 2 0 2\n", - " 0 3 -1 3 -1" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 2 3 4 5\n", - " 0 0 0 0 0\n", - " 0 0 0 0 0\n", - " 0 0 0 0 0\n", - " 0 0 0 0 0" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[1,0,0,0,0] * [1 2 3 4 5] # = column * row = outer product" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "18.000000000000007" - ], - "text/plain": [ - "18.000000000000007" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A + [1,0,0,0,0] * [1 2 3 4 5])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This should be the same as $\\det A$ plus the determinant of $A$ with the first row replaced by $(1,2,3,4,5)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 2 3 4 5\n", - " 3 -3 1 -2 0\n", - " -2 3 1 2 2\n", - " 3 -3 2 0 2\n", - " 0 3 -1 3 -1" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A′ = copy(A)\n", - "A′[1,:] = [1,2,3,4,5] # replace first row\n", - "A′" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "17.999999999999954" - ], - "text/plain": [ - "17.999999999999954" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A) + det(A′)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, it matches (up to roundoff errors, of course)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Additional properties of determinants\n", - "\n", - "The following properties can be **derived from the above 3**, and are quite useful to know. Again, the numbering follows Strang, section 5.1:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. If two rows are equal, det = 0\n", - "\n", - "It's easy to see why this **follows from property 2**: if we swap two equal rows, the matrix doesn't change, but the determinant must flip sign. But this means:\n", - "\n", - "$$\\det A = -\\det A \\implies \\det A = 0$$\n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "0.0" - ], - "text/plain": [ - "0.0" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det([ 1 2 3 \n", - " 4 5 6\n", - " 1 2 3 ])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This property also makes sense if our expectation is that the determinant is zero for singular matrices: if two rows are equal, the matrix is singular." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Subtracting a multiple of one row from another doesn’t change det\n", - "\n", - "Suppose we take a matrix $A$, and subtract (or add) a multiple of one row from another. For example:\n", - "\n", - "$$\n", - "\\det \\begin{pmatrix} a & b \\\\ c - \\alpha a & d - \\alpha b \\end{pmatrix} =\n", - "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} -\n", - "\\alpha \\det \\begin{pmatrix} a & b \\\\ a & b \\end{pmatrix} =\n", - "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} + 0\n", - "$$\n", - "\n", - "Here, we applied axiom 3 (linearity), and then property 4 (repeated rows).\n", - "\n", - "The same thing happens for *any* size of matrix.\n", - "\n", - "But this is *precisely* the kind of operation that we perform during Gaussian elimination. It has the crucial implications:\n", - "\n", - "* **Elimination operations** on rows **don't change the determinant**.\n", - "\n", - "* **Gaussian elimination without row swaps doesn't change the determinant**.\n", - "\n", - "And, by axiom 2:\n", - "\n", - "* **Gaussian elimination with row swaps** gives the **same determinant** but with **flipped sign for each row swap**.\n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 3.0 -1.0 0.0 -3.0 \n", - " 0.0 -12.0 4.0 -2.0 9.0 \n", - " 0.0 0.0 2.0 0.5 2.75 \n", - " 0.0 0.0 0.0 1.75 0.625 \n", - " 0.0 0.0 0.0 0.0 0.357143" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "L, U = lu(A, Val{false}) # elimination without row swaps\n", - "U" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-15.000000000000004, -15.000000000000004)" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A), det(U)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. A matrix with a row of zeros has det = 0\n", - "\n", - "This is easy to see from axiom 3 (linearity): if we multiply the row of zeros by zero, it doesn't change the matrix but multiplies the determinant by zero, hence:\n", - "\n", - "$$\n", - "0 \\times \\det A = \\det A \\implies \\det A = 0\n", - "$$\n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "0.0" - ], - "text/plain": [ - "0.0" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det([1 2 3\n", - " 4 5 6\n", - " 0 0 0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7. If A is triangular then det(A) is the product of the diagonal entries\n", - "\n", - "This is another incredibly useful property. To see this, suppose we have an upper-triangular matrix $U$. Then:\n", - "\n", - "1. Eliminate \"upward\" above the pivots to get a diagonal matrix $D$. This doesn't change the determinant by property 5.\n", - "\n", - "2. Pull out each diagonal element by axiom 3 (linearity) until you get the identity matrix $I$ whose determinant is 1 by axiom 1:\n", - "$$\n", - "\\det \\begin{pmatrix} \\alpha_1 & & & \\\\ & \\alpha_2 & & \\\\ & & \\alpha_3 & \\\\ & & & \\ddots \\end{pmatrix} =\n", - "\\alpha_1 \\det \\begin{pmatrix} 1 & & & \\\\ & \\alpha_2 & & \\\\ & & \\alpha_3 & \\\\ & & & \\ddots \\end{pmatrix} = \\cdots = \\alpha_1 \\alpha_2 \\alpha_3 \\cdots \\det I = \\alpha_1 \\alpha_2 \\alpha_3 \\cdots\n", - "$$\n", - "which is precisely the product of the diagonals.\n", - "\n", - "If we have a zero diagonal entry, we can't eliminate upward above it (we can't divide by the diagonal \"pivot\"). But in that case we end up with a row of zeros after eliminating above the *other* diagonals, and by property 6 we get a zero determinant. So it still matches the product of the diagonal entries.\n", - "\n", - "Similarly for a lower triangular matrix, except that we eliminate \"downward\".\n", - "\n", - "We already saw an example of this earlier, but let's do it again. We got our $U$ matrix from elimination on $A$:" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 3.0 -1.0 0.0 -3.0 \n", - " 0.0 -12.0 4.0 -2.0 9.0 \n", - " 0.0 0.0 2.0 0.5 2.75 \n", - " 0.0 0.0 0.0 1.75 0.625 \n", - " 0.0 0.0 0.0 0.0 0.357143" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Its diagonal entries are:" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 1.0 \n", - " -12.0 \n", - " 2.0 \n", - " 1.75 \n", - " 0.357143" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diag(U)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The product of these is:" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "-15.000000000000004" - ], - "text/plain": [ - "-15.000000000000004" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "prod(diag(U))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "which matches $\\det U$ (and $\\det A$):" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-15.000000000000004, -15.000000000000004)" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(U), det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we *do* need to compute the determinant, this gives us a very practical way to do it: **compute det(A) by taking the product of the pivots after elimination, with a sign flip for every row swap**.\n", - "\n", - "This is, in fact *exactly* what the Julia `det` function does, as you can check by looking at the source code:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "det{T}(A::AbstractArray{T,2}) at linalg/generic.jl:1222" - ], - "text/plain": [ - "det(A::AbstractArray{T,2}) where T in Base.LinAlg at linalg/generic.jl:1222" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@which det(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "det(A::UpperTriangular) at linalg/triangular.jl:2186" - ], - "text/plain": [ - "det(A::UpperTriangular) in Base.LinAlg at linalg/triangular.jl:2186" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@which det(UpperTriangular(U))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the source code, this calls `det(lufact(A))`, which calls:" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "det{T}(A::Base.LinAlg.LU{T,S} where S<:(AbstractArray{T,2} where T)) at linalg/lu.jl:276" - ], - "text/plain": [ - "det(A::Base.LinAlg.LU{T,S} where S<:(AbstractArray{T,2} where T)) where T in Base.LinAlg at linalg/lu.jl:276" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@which det(lufact(A))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 8. det(A) = 0 if and only if A is singular\n", - "\n", - "This follows from property 7. Since the determinant is ± the product of the pivots, we get zero if and only if there is a zero pivot, corresponding to a singular matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 9. det(AB) = det(A) det(B)\n", - "\n", - "This is an amazing property of determinants, and probably the least obvious.\n", - "\n", - "A nice way to show this (from Strang's book) is simply to check that $$\\det(AB)/\\det(B)$$ **satisfies axioms 1,2,3 for A**. If it does, then it must be $\\det A$, and we are done! Let's check:\n", - "\n", - "1. Identity: If $A=I$, then $\\det(AB)/\\det(B) = \\det(B)/\\det(B) = 1$. ✓\n", - "2. Swaps: If we swap two rows of $A$, we also swap the *same* two rows of $AB$, hence $\\det(AB)/\\det(B)$ flips sign. ✓\n", - "3. Linearity:\n", - " - Scaling a row of $A$ by $\\alpha$ scales a row of $AB$ by $\\alpha$, which scales $\\det(AB)/\\det(B)$ by $\\alpha$. ✓\n", - " - Adding a row of $A$ to a row of $A'$ (with other rows the same) adds the same rows of $AB$ and $A'B$, so it adds $\\det(AB)/\\det(B)$ and $\\det(A'B)/\\det(B)$. ✓\n", - "\n", - "Let's try it:" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 0 -1 -2 3 -1\n", - " -3 1 -1 -2 2\n", - " 2 -1 -2 0 2\n", - " 2 -1 -3 0 -2\n", - " 0 3 0 -3 -2" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = rand(-3:3, 5,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-15.000000000000004, 343.0)" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A), det(B)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-5145.000000000022, -5145.000000000001)" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A*B), det(A)*det(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Matrix inverses\n", - "\n", - "This rule has important consequences for matrix inverses. First:\n", - "\n", - "$$\\det (A^{-1}) = 1 / \\det(A)$$\n", - "\n", - "Proof: $1 = \\det(I) = \\det(A A^{-1}) = \\det(A) \\det(A^{-1})$.\n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-0.06666666666666675, -0.06666666666666665)" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(inv(A)), 1/det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recall from last lecture that $X A X^{-1}$ corresponds simply to a **change of basis** from $A$. (We will later call this a **similar matrix** to $A$). Now we know:\n", - "\n", - "$$\n", - "\\det(X A X^{-1}) = \\det(X) \\det(A) \\det(X^{-1}) = \\det(A) \\; .\n", - "$$\n", - "\n", - "That is, a **change of basis doesn't change the determinant**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 10. det(Aᵀ) = det(A)\n", - "\n", - "This is another non-obvious, but very important, property of determinants. It is relatively easy to see from properties 7 and 9, however.\n", - "\n", - "In particular, factorize $PA = LU$, or $A = P^T L U$. Then, from property 9:\n", - "\n", - "$$\n", - "\\det(A) = \\det(P^T) \\det(L) \\det(U) = \\det(P^T) \\det(U) = \\det(P^T) \\times \\mbox{(product of pivots)} \\; ,\n", - "$$\n", - "\n", - "where we have used the fact that $\\det L = 1$ since the diagonal entries of $L$ are all 1's. But we also have:\n", - "\n", - "$$\n", - "\\det(A^T) = \\det(U^T L^T P) = \\det(U^T) \\det(L^T) \\det(P) = \\det(P) \\times \\mbox{(product of pivots)}\n", - "$$\n", - "\n", - "where we have used the fact that $U$ and $U^T$ have the same diagonal entries and hence the same determionant ($U$ is upper triangular so $U^T$ is lower triangular), similarly for $L$.\n", - "\n", - "So the only difference is $\\det P$ vs $\\det P^T$. But recall that $P$ is a permutation matrix: just a re-ordering of the rows of $I$, so by axioms 1 and 2 we must have $$\\det P = \\pm 1$$ (depending on how many row swaps there were). Furthermore, recall that $P^T P = I$ (the permution $P$ is *orthogonal* since its rows/columns are orthogonal (a re-ordering of the rows/columns of $I$). By property 9, this means that\n", - "$$\n", - "1 = \\det I = \\det (P^T P) = \\det(P^T) \\det(P)\n", - "$$\n", - "Since $\\det P = \\pm 1$, this means that $\\det(P^T) = \\det(P)$.\n", - "\n", - "It follows that\n", - "\n", - "$$\n", - "\\det A = \\det A^T = \\pm \\mbox{(product of pivots)}\n", - "$$\n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-15.000000000000004, -15.000000000000004)" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(A), det(A')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Useful applications of determinants\n", - "\n", - "Ignoring formulas (e.g. Cramer's rule, a formula for $A^{-1}$ — see Strang, section 5.3) that are mainly useful for tiny matrices, here are some examples of real usages of determinants **even for large matrices**:\n", - "\n", - "* Understanding **eigenvalues**: determinants will turn eigenvalues into polynomial roots, and since we know about polynomial roots, that tells us a lot about eigenvalues. (This is *not* how eigenvalues are *computed* in practice, however!)\n", - "\n", - " - There is also something called a [nonlinear eigenproblem](https://en.wikipedia.org/wiki/Nonlinear_eigenproblem), arising in many science and engineering problems, in which the determinant plays a basic conceptual role. Again, however, computational methods typically avoid computing determinants explicitly except for tiny matrices.\n", - "\n", - "* Proofs: Determinants show up in a lot of proofs in matrix theory, because they reduce matrices to numbers that have nice properties and are easy to reason about. One also often sees things like the [adjugate matrix](https://en.wikipedia.org/wiki/Adjugate_matrix) and the [Cayley–Hamilton theorem](https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem), both related to determinants.\n", - "\n", - " - That is, we often use determinants to help use understand and derive things in linear algebra, even if the final result doesn't require us to *compute* the determinant for any practical purpose.\n", - "\n", - "* [Jacobian factors](https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant): in multivariable calculus, a factor of $|\\det J|$ arises when you perform a *change of variables* in integration, where $J$ is a Jacobian matrix.\n", - "\n", - " - The reason a determinant arises here is that, more generally, **det(A) is the volume of a parallelepiped** (\"box\") whose edges are given by the columns of $A$.\n", - " \n", - " - Integration may sound like something that only happens in a few dimensions (= tiny matrices J), but extremely high dimensional (even infinite-dimensional) integrals appear in statistics, quantum field theory, bioinformatics, and other fields.\n", - "\n", - "* High-dimensional [Gaussian integrals](https://en.wikipedia.org/wiki/Gaussian_integral) often arise in **statistics** and related areas of science (e.g. [quantum field theory](https://en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory)), and the inverse of the square root of a determinant appears in the answer. Often, one wants the logarithm of the result, in which case what arises is the **log determinant** $\\log \\det A$, an important matrix function.\n", - "\n", - "This is no doubt an incomplete list. Nevertheless, although determinants are a much more marginal topic in modern linear algebra than they were in the 19th century, they have hardly disappeared." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# A “Simple” But Horrible Formula\n", - "\n", - "You probably learned a neat formula for the determinant of a $2\\times2$ matrix at some point:\n", - "\n", - "$$\n", - "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} = ad - bc \\;\n", - "$$\n", - "\n", - "You might have even learned a formula for $3\\times3$ matrices. You might be hoping, therefore, that there would be an extension of this \"nice\" formula (which seems a lot easier than doing elimination to get pivots) to arbitrary matrices. There is!\n", - "\n", - "Here it is (see Strang, section 5.2):\n", - "\n", - "$$\n", - "\\det A = \\sum_{\\mbox{permutations }p} \\operatorname{sign}(p) \\times (\\mbox{product of diagonals of }A\\mbox{ with columns permuted by }p)\n", - "$$\n", - "\n", - "The important thing to know is that you have to consider **all permutations (re-orderings)** of $(1,2,3,\\ldots,n)$. (The [sign of the permutation](https://en.wikipedia.org/wiki/Parity_of_a_permutation) corresponds to the number of swaps it involves.) There are $n! = n (n-1)(n-2)\\cdots 1$ (*n factorial*) re-orderings.\n", - "\n", - "That means that this formula requires $\\sim n \\times n!$ scalar operations, which is **worse than exponential** in $n$. This is **far more expensive than elimination** ($\\sim n^3$), making this formula **computationally useless** for $n > 3$.\n", - "\n", - "(There is also *another* computationally useless formula involving [minors and cofactors](https://en.wikipedia.org/wiki/Minor_(linear_algebra)); see Strang, section 5.2.)\n", - "\n", - "The permutation formula is still sometimes useful *conceptually*, however." - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/lectures/Eigenvalue-Polynomials.ipynb b/lectures/Eigenvalue-Polynomials.ipynb deleted file mode 100644 index 8b359b83..00000000 --- a/lectures/Eigenvalue-Polynomials.ipynb +++ /dev/null @@ -1,1433 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using Polynomials, PyPlot, Interact\n", - "# force IJulia to display as LaTeX rather than HTML\n", - "Base.mimewritable(::MIME\"text/html\", ::Poly) = false" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Eigenvalues: The Key Idea\n", - "\n", - "If we can find a solution $x \\ne 0$ to\n", - "\n", - "$$\n", - "Ax = \\lambda x\n", - "$$\n", - "\n", - "then, for this vector, the matrix $A$ **acts like a scalar**. $x$ is called an **eigenvector** of $A$, and $\\lambda$ is called an **eigenvalue**.\n", - "\n", - "In fact, for an $m \\times m$ matrix $A$, we typically find $m$ linearly independendent eigenvectors $x_1,x_2,\\ldots,x_m$ and $m$ corresponding eigenvalues $\\lambda_1, \\lambda_2, \\ldots, \\lambda_m$. Such a matrix is called **diagonalizable**. Most matrices are diagonalizable; we will deal with the rare \"defective\" (non-diagonalizable) case later.\n", - "\n", - "Given such a **basis of eigenvectors**, the key idea for using them is:\n", - "\n", - "1. Take any vector $x$ and expand it in this basis: $x = c_1 x_1 + \\cdots c_m x_n$, or $x = Xc$ or $c = X^{-1}x$ where $X$ is the matrix whose *columns are the eigenvectors*.\n", - "\n", - "2. For each eigenvector $x_k$, the matrix $A$ acts like a scalar $\\lambda_k$. Multiplication or division corresponds to multiplying/dividing $x_k$ by $\\lambda_k$. **Solve your problem for each eigenvector by treating A as the scalar λ**.\n", - "\n", - "3. Add up the solution to your problem (sum the basis of the eigenvectors). That is, multiply the new coefficients by $X$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The characteristic polynomial\n", - "\n", - "To *find* the eigenvalues, one approach is to realize that $Ax = \\lambda x$ means:\n", - "\n", - "$$\n", - "(A - \\lambda I) x = 0 \\, ,\n", - "$$\n", - "\n", - "so the matrix $A - \\lambda I$ is **singular for any eigenvalue λ**. This corresponds to the determinant being zero:\n", - "\n", - "$$\n", - "p(\\lambda) = \\det(A - \\lambda I) = 0\n", - "$$\n", - "\n", - "where $p(\\lambda)$ is the **characteristic polynomial of A: a polynomial of degree m** if $A$ is $m \\times m$. The **roots of this polynomial are the eigenvalues λ**.\n", - "\n", - "A polynomial of degree $m$ has at most $m$ roots (possibly complex), and typically has $m$ distinct roots. **This is why most matrices have $m$ distinct eigenvalues/eigenvectors**, and are therefore **diagonalizable**.\n", - "\n", - "For example, let's plot the $\\det(A - \\lambda I)$ for a 4×4 matrix $A$. The result is a *quartic* curve whose roots are the four eigenvalues (computed by the built-in `eigvals` function):" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " 0.1\n", - " 0.2\n", - " 0.4\n", - " 0.5" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# some \"random\" matrix:\n", - "A = [ 0.325 -0.075 0.075 -0.075\n", - " 0.025 0.225 -0.025 -0.275\n", - " 0.15 -0.05 0.25 -0.05 \n", - " -0.1 -0.1 0.1 0.4 ]\n", - "\n", - "λ = eigvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(I admit it: $A$ was not chosen at random to have such special eigenvalues.)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHGCAYAAACCUgTdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVPX+P/DXsA37JgriiogJWpqiBLmgJuJS2iZmopV6NfVe+Xq9pplLVpCWVldTq2vWLVNL7Go39YK5pIK4Ia65oqiICyLgAgic3x+f3xmcWGRghnNmeD0fj3mc4+HM4T04cF7z+XzO52gkSZJARERERI9kpXQBREREROaCwYmIiIiomhiciIiIiKqJwYmIiIiomhiciIiIiKqJwYmIiIiomhiciIiIiKqJwYmIiIiomhiciIiIiKqJwYlI5b755htoNBocOHBA6VIMduLECcydOxcXLlwwyfHnzp0LjUZj0HPu3buHuXPnYseOHeW+Jv+sTVVvbdXk9aqZRqPB3Llz6/y5RLXB4EREJnPixAm8++67JgsiY8aMQXJyskHPuXfvHt59990Kg9PAgQORnJyMxo0bG6lCqkpycjLGjBmjdBlEBrFRugAiUod79+7B0dFR6TKqRa61adOmaNq0qdGO27BhQzRs2NBox6OqPfXUU0qXQGQwtjgRKeyPP/7AK6+8Am9vb2i1WjRv3hwjR45EYWGh3n75+fl488034eXlhQYNGuCFF15AZmam3j5r165FREQEGjduDAcHBwQGBmL69Om4e/eu3n6vvfYanJ2dcfToUURERMDFxQV9+vQBACQmJmLw4MFo2rQp7O3t0bp1a4wbNw43b940qPZvvvkGL7/8MgCgV69e0Gg00Gg0+Oabb3TP37p1K/r06QNXV1c4Ojri6aefxm+//ab3PeTuqUOHDuGll16Ch4cH/P399b72sG3btiE8PBwNGjSAg4MDmjdvjhdffBH37t3DhQsXdMHo3Xff1dX02muvAai8q27Lli3o06cP3Nzc4OjoiMDAQMTFxVX2X6p3rMTERLz++uvw9PSEk5MTnn32WZw/f77c/l9//TU6dOgAe3t7eHp64vnnn8fJkyer/B6jR4+Gp6cn7t27V+5rvXv3Rrt27XT/1mg0mDRpEr777jsEBgbC0dERHTp0wH//+99yz929ezf69OkDFxcXODo6IiwsDL/++muFr2/btm0YO3YsGjRoAFdXV4wcORJ3795FVlYWhg4dCnd3dzRu3BhTp07FgwcP9I7x5+62GzduYMKECQgKCoKzszMaNWqE3r17Y9euXVX+HIjqEoMTkYLS0tLQpUsX7N27F/PmzcPmzZsRFxeHwsJCFBUV6e07ZswY2Nra4ocffsCCBQuwY8cOjBgxQm+fM2fOYMCAAVixYgW2bNmCmJgY/Pjjj3j22WfLfe+ioiI899xz6N27NzZs2IB3330XAHDu3DmEhoZi2bJlSEhIwOzZs5GSkoJu3brpnfgeVfvAgQMRGxsLAPj888+RnJyM5ORkDBw4EADw/fffIyIiAq6urvj222/x448/wtPTE/369SsXngDghRdeQOvWrfHTTz9h+fLlFf48L1y4gIEDB8LOzg5ff/01tmzZgg8//BBOTk4oKipC48aNsWXLFgAidMg1zZo1q9L/oxUrVmDAgAEoLS3F8uXL8csvv+Bvf/sbLl++XOlzHjZ69GhYWVnhhx9+wKeffop9+/YhPDwct2/f1u0TFxeH0aNHo127dli/fj0+++wzHDlyBKGhoThz5kylx548eTJycnLwww8/6G0/ceIEtm/fjokTJ+pt//XXX7FkyRLMmzcP8fHxuoD2cJDbuXMnevfujdzcXKxYsQKrV6+Gi4sLnn32Waxdu7ZcDWPGjIGbmxvWrFmDd955Bz/88APGjh2LgQMHokOHDli3bh1GjRqFhQsXYvHixVX+rG7dugUAmDNnDn799VesXLkSrVq1Qnh4eIVdq0SKkIhIMb1795bc3d2l69evV7rPypUrJQDShAkT9LYvWLBAAiBdvXq1wueVlpZKDx48kHbu3CkBkNLS0nRfGzVqlARA+vrrr6usTz7GxYsXJQDShg0bDKr9p59+kgBI27dv19t+9+5dydPTU3r22Wf1tpeUlEgdOnSQunbtqts2Z84cCYA0e/bscseXvyZbt26dBEA6fPhwpTXduHFDAiDNmTOn3Nfkn3V6erokSZKUn58vubq6St26dZNKS0srPWZF5GM9//zzetv37NkjAZDef/99SZIkKScnR3JwcJAGDBigt19GRoak1Wql4cOHV/p6JUmSevbsKXXs2FFv25tvvim5urpK+fn5um0AJG9vbykvL0+3LSsrS7KyspLi4uJ025566impUaNGes8tLi6W2rdvLzVt2lT3c5Bf31//+le97z1kyBAJgLRo0SK97R07dpQ6deqkt62y/4eHv++DBw+kPn36lPs5Puq5RKbCFicihdy7dw87d+7E0KFDqzWu5rnnntP79xNPPAEAuHjxom7b+fPnMXz4cPj4+MDa2hq2trbo2bMnAFTY7fPiiy+W23b9+nWMHz8ezZo1g42NDWxtbdGiRQu9Yxha+58lJSXh1q1bGDVqFIqLi3WP0tJSREZGYv/+/eW6Fyuq9c86duwIOzs7/OUvf8G3335bYZeYoXXm5eVhwoQJNb6a7dVXX9X7d1hYGFq0aIHt27cDEAOk79+/r+sulDVr1gy9e/eusPXtYZMnT8bhw4exZ88eAEBeXh6+++47jBo1Cs7Oznr79urVCy4uLrp/e3t7o1GjRrr30N27d5GSkoKXXnpJ77nW1taIjo7G5cuXcerUKb1jDho0SO/fgYGBAKBrWXx4+8Pv1cosX74cnTp1gr29ve7999tvvz2y25KorjA4ESkkJycHJSUl1R7c3KBBA71/a7VaAMD9+/cBAHfu3EH37t2RkpKC999/Hzt27MD+/fuxfv16vf1kjo6OcHV11dtWWlqKiIgIrF+/HtOmTcNvv/2Gffv2Ye/evXrHMLT2P7t27RoA4KWXXoKtra3eY/78+ZAkSddtI6vOlW7+/v7YunUrGjVqhIkTJ8Lf3x/+/v747LPPalTnjRs3AKBWA9B9fHwq3JadnQ0AumVFr8/X11f39coMHjwYLVu2xOeffw5AjD26e/duuW46oPx7CBDvo4f/XyVJqrSWh+uVeXp66v3bzs6u0u0FBQVVvpZFixbhzTffREhICOLj47F3717s378fkZGR5d6/RErhVXVECvH09IS1tXW1x8o8yrZt25CZmYkdO3boWpkA6I2leVhFLSjHjh1DWloavvnmG4waNUq3/ezZs0at3cvLCwCwePHiSq+s8vb2fmS9FenevTu6d++OkpISHDhwAIsXL0ZMTAy8vb0xbNgwg+qUW9Nq83+UlZVV4bbWrVsDKAszV69eLbdfZmam7mdVGSsrK0ycOBFvv/02Fi5ciKVLl6JPnz547LHHDK7Vw8MDVlZWldYC4JH11Mb333+P8PBwLFu2TG97fn6+yb4nkaHY4kSkEAcHB/Ts2RM//fRThVesGUoOFnJLlOyLL74w+jGqW/ufW8VkTz/9NNzd3XHixAkEBwdX+JBbLmrK2toaISEhupaYQ4cOVVlTRcLCwuDm5obly5dDkqQa1bFq1Sq9fyclJeHixYsIDw8HAISGhsLBwQHff/+93n6XL1/Gtm3bdFc7VmXMmDGws7PDq6++ilOnTmHSpEk1qtXJyQkhISFYv3693s+ntLQU33//PZo2bYo2bdrU6NjVodFoyr33jhw5YvBcXUSmxBYnIgUtWrQI3bp1Q0hICKZPn47WrVvj2rVr2LhxI7744gu98SiPEhYWBg8PD4wfPx5z5syBra0tVq1ahbS0tGofo23btvD398f06dMhSRI8PT3xyy+/IDExsUa1t2/fHgDw5ZdfwsXFBfb29vDz80ODBg2wePFijBo1Crdu3cJLL72ERo0a4caNG0hLS8ONGzfKtTpUx/Lly7Ft2zYMHDgQzZs3R0FBAb7++msAwDPPPAMAcHFxQYsWLbBhwwb06dMHnp6e8PLyQsuWLcsdz9nZGQsXLsSYMWPwzDPPYOzYsfD29sbZs2eRlpaGJUuWPLKmAwcOYMyYMXj55Zdx6dIlzJw5E02aNMGECRMAAO7u7pg1axbefvttjBw5Eq+88gqys7Px7rvvwt7eHnPmzHnk93B3d8fIkSOxbNkytGjRosKrKKsrLi4Offv2Ra9evTB16lTY2dlh6dKlOHbsGFavXm3SmcsHDRqE9957D3PmzEHPnj1x6tQpzJs3D35+figuLjbZ9yUyBFuciBTUoUMH7Nu3D507d8aMGTMQGRmJt956C1qt1uAWlwYNGuDXX3+Fo6MjRowYgTfeeAPOzs4VXkJeGVtbW/zyyy9o06YNxo0bh1deeQXXr1/H1q1ba1S7n58fPv30U6SlpSE8PBxdunTBL7/8AgAYMWIEtm/fjjt37mDcuHF45plnMHnyZBw6dKharSwV6dixI4qLizFnzhz0798f0dHRuHHjBjZu3IiIiAjdfitWrICjoyOee+45dOnSpcpbd4wePRqbNm1CSUkJxowZg0GDBuHTTz9F8+bNq1XTihUrUFRUhGHDhuFvf/sbgoODsWPHDr0xQDNmzMC//vUvpKWlYciQIZg0aRLatWuHpKQkBAQEVOv7REVFAQDefPNNWFnV/E97z549sW3bNjg5OeG1117DsGHDkJubi40bN+q+h6nMnDkTf//737FixQoMHDgQ//rXv7B8+XJ069bNpN+XyBAaqabtz0REVKlvvvkGr7/+Ovbv34/g4GCTf7+///3vWLZsGS5dulThIHAiMg521RERmbG9e/fi9OnTWLp0KcaNG8fQRGRiDE5ERGYsNDQUjo6OGDRoEN5//32lyyGyeOyqIyIiIqomDg4nIiIiqiYGJyIiIqJqYnAiIiIiqiYODq+l0tJSZGZmwsXFxaQTwxEREZHxSJKE/Px8+Pr6GjT3GYNTLWVmZqJZs2ZKl0FEREQ1cOnSJYNu5M3gVEvyLTEuXbpU7k7zREREpE55eXlo1qyZQbe2Ahicak3unnN1dWVwIiIiMjOGDrPh4HAiIiKiamJwIiIiIqomBiciIiKiamJwIiIiIqomBiciIiKiamJwIiIiIqomBiciIiKiamJwIiIiIqomBiciIiKiamJwIiIiIqomVQWnpUuXws/PD/b29ujcuTN27dpV5f7x8fEICgqCVqtFUFAQfv75Z72vS5KEuXPnwtfXFw4ODggPD8fx48crPFZhYSE6duwIjUaDw4cPG+01ERERkeVQTXBau3YtYmJiMHPmTKSmpqJ79+7o378/MjIyKtw/OTkZUVFRiI6ORlpaGqKjozF06FCkpKTo9lmwYAEWLVqEJUuWYP/+/fDx8UHfvn2Rn59f7njTpk2Dr6+vyV4fERERmT+NJEmS0kUAQEhICDp16oRly5bptgUGBmLIkCGIi4srt39UVBTy8vKwefNm3bbIyEh4eHhg9erVkCQJvr6+iImJwVtvvQVAtCp5e3tj/vz5GDdunO55mzdvxpQpUxAfH4927dohNTUVHTt2rFbdeXl5cHNzQ25urnFv8ltQAFy8CPj4AG5uxjsuERGRuTh7FnByEudCA2/G+yg1PX+rosWpqKgIBw8eREREhN72iIgIJCUlVfic5OTkcvv369dPt396ejqysrL09tFqtejZs6feMa9du4axY8fiu+++g6Oj4yNrLSwsRF5ent7DJMLDgbZtgd9+M83xiYiI1G7UKMDXF1i3TulKdFQRnG7evImSkhJ4e3vrbff29kZWVlaFz8nKyqpyf3lZ1T6SJOG1117D+PHjERwcXK1a4+Li4Obmpns0a9asWs8zWMuWYnnhgmmOT0REpHbyOVA+J6qAKoKTTPOnZjhJksptM3T/qvZZvHgx8vLyMGPGjGrXOGPGDOTm5uoely5dqvZzDcLgRERE9VlhIZCZKdYZnPR5eXnB2tq6XOvS9evXy7UYyXx8fKrc38fHBwCq3Gfbtm3Yu3cvtFotbGxs0Lp1awBAcHAwRo0aVeH31Wq1cHV11XuYBIMTERHVZ/LFYY6OgJeXsrU8RBXByc7ODp07d0ZiYqLe9sTERISFhVX4nNDQ0HL7JyQk6Pb38/ODj4+P3j5FRUXYuXOnbp9//vOfSEtLw+HDh3H48GFs2rQJgLjC74MPPjDa66sRPz+xZHAiIqL6SD7/+fkZfWB4bdgoXYBsypQpiI6ORnBwMEJDQ/Hll18iIyMD48ePBwCMHDkSTZo00V1hN3nyZPTo0QPz58/H4MGDsWHDBmzduhW7d+8GILroYmJiEBsbi4CAAAQEBCA2NhaOjo4YPnw4AKB58+Z6NTg7OwMA/P390bRp07p66RWTW5zS0wFJUtWbhoiIyOTS08VSRd10gIqCU1RUFLKzszFv3jxcvXoV7du3x6ZNm9CiRQsAQEZGBqysyhrIwsLCsGbNGrzzzjuYNWsW/P39sXbtWoSEhOj2mTZtGu7fv48JEyYgJycHISEhSEhIgIuLS52/PoPJoe7OHeDWLaBBA2XrISIiqksqHBgOqGgeJ3NlsnmcAKBxYyArCzhwAOjc2bjHJiIiUrPhw4HVq4GPPgKmTjX64c16HieqBMc5ERFRffXwGCcVYXBSM15ZR0RE9ZVKu+oYnNTs4QHiRERE9cX9+8DVq2KdwYmqjS1ORERUH8lzODk7A56eytbyJwxOasbgRERE9dHD3XQqm46HwUnNHh4czosfiYiovlDpwHCAwUnd5Lmc7t4Fbt5UthYiIqK6otLJLwEGJ3XTagFfX7HO7joiIqovVHpFHcDgpH4c50RERPUNgxPVGIMTERHVNwxOVGOcPZyIiOqT+/eBa9fEOgeHk8E4CSYREdUnckOBqyvg7q5oKRVhcFI7dtUREVF9ouI5nAAGJ/V7ODhxLiciIrJ0Kh7fBDA4qV+zZiJx378P3LihdDVERESmxeBEtaLVAk2aiHV21xERkaVT8azhAIOTeeAAcSIiqi9UPGs4wOBkHjhAnIiI6gt21VGtMTgREVF9cPdu2XheBieqMQYnIiKqDy5eFEs3N1XO4QQwOJkHeYAcxzgREZElk89zKh0YDjA4mQe5xeniRc7lRERElkvl45sABifz0LQpYGUFFBSU3b+HiIjI0jA4kVHY2XEuJyIisnwMTmQ0cn8vgxMREVkqlU9+CTA4mQ9OgklERJZO5ZNfAgxO5oNTEhARkSXLzweys8V6ixbK1lIFBidzweBERESWTJ7DycNDzOOkUgxO5oJddUREZMnMYGA4wOBkPuSBchcvAiUlytZCRERkbOfPi6WKB4YDDE7mo1kzwNYWKCoCrlxRuhoiIiLjOndOLP39la3jERiczIW1dVnzpfzmIiIishQMTmR08puJwYmIiCyNfG5r1UrZOh6BwcmcyG8mBiciIrIkpaVlFz+xxYmMhi1ORERkia5cAQoLARsboHlzpaupEoOTOZGDk3zlARERkSWQz2stWojwpGIMTuaELU5ERGSJzGRgOMDgZF7kMU63bwO3bilbCxERkbEwOJFJODoCjRuLdbY6ERGRpWBwIpNhdx0REVkaM5mKAGBwMj8MTkREZGnY4kQmw7mciIjIkuTkiAfAFicyAU5JQERElkQ+n3l7A87OytZSDQxO5oZddUREZEnMqJsOYHAyP/Ib68oVoKBA2VqIiIhqi8GJTMrLC3BxASSp7L4+RERE5sqMrqgDGJzMj0bD7joiIrIcbHEik2NwIiIiS8HgRCbHKQmIiMgSFBYCly+LdQYnMhm2OBERkSVITxdjdp2cgEaNlK6mWhiczBHnciIiIksgn8f8/cUYXjPA4GSO5OCUng6UlipbCxERUU2Z2RV1AIOTeWrWDLCxEX3DV64oXQ0REVHNmNnAcIDByTzZ2AAtW4p1jnMiIiJzxeBEdYYDxImIyNwxOFGdYXAiIiJzVlqqPzjcTDA4mSvO5UREROYsM1OM1bW2Bpo3V7qaamNwMleckoCIiMyZfP5q0QKwtVW2FgMwOJkrdtUREZE5M8OpCAAGJ/Mlv9FycsSDiIjInJjhwHCAwcl8OTkBPj5ina1ORERkbhicqM6xu46IiMwVgxPVOQYnIiIyVwxOVOcCAsTyzBll6yAiIjJEdjZw65ZYZ3CiOtOmjViePq1sHURERIaQP/A3aQI4Oytbi4EYnMwZgxMREZkj+bwln8fMCIOTOWvdWixv3ixr8iQiIlI7BidShLMz4Osr1jnOiYiIzAWDk3EsXboUfn5+sLe3R+fOnbFr164q94+Pj0dQUBC0Wi2CgoLw888/631dkiTMnTsXvr6+cHBwQHh4OI4fP663z3PPPYfmzZvD3t4ejRs3RnR0NDIzM43+2kxGftMxOBERkbmQz1nyRU5mRDXBae3atYiJicHMmTORmpqK7t27o3///sjIyKhw/+TkZERFRSE6OhppaWmIjo7G0KFDkZKSottnwYIFWLRoEZYsWYL9+/fDx8cHffv2RX5+vm6fXr164ccff8SpU6cQHx+Pc+fO4aWXXjL56zUajnMiIiJzIklm3eKkkSRJUroIAAgJCUGnTp2wbNky3bbAwEAMGTIEcXFx5faPiopCXl4eNm/erNsWGRkJDw8PrF69GpIkwdfXFzExMXjrrbcAAIWFhfD29sb8+fMxbty4CuvYuHEjhgwZgsLCQthW46aDeXl5cHNzQ25uLlxdXQ192bW3cCEwdSoQFQWsWVP335+IiMgQV64ATZsC1tbAvXuAnZ0iZdT0/K2KFqeioiIcPHgQERERetsjIiKQlJRU4XOSk5PL7d+vXz/d/unp6cjKytLbR6vVomfPnpUe89atW1i1ahXCwsIqDU2FhYXIy8vTeyiKLU5ERGRO5POVn59ioak2VBGcbt68iZKSEnh7e+tt9/b2RlZWVoXPycrKqnJ/eVmdY7711ltwcnJCgwYNkJGRgQ0bNlRaa1xcHNzc3HSPZs2aVe9FmorcP3z6tGj+JCIiUjMz7qYDVBKcZBqNRu/fkiSV22bo/tXZ5x//+AdSU1ORkJAAa2trjBw5EpX1YM6YMQO5ubm6x6VLlx75ukyqVSvAygq4exeoJGQSERGphjww3EyDk43SBQCAl5cXrK2ty7UEXb9+vVyLkczHx6fK/X18fACIlqfGjRtXeUwvLy94eXmhTZs2CAwMRLNmzbB3716EhoaW+75arRZardbwF2kqdnaiufPcOZHiH3qtREREqiO3OJnhFXWASlqc7Ozs0LlzZyQmJuptT0xMRFhYWIXPCQ0NLbd/QkKCbn8/Pz/4+Pjo7VNUVISdO3dWekwAupamwsLCGr0WRXCcExERmQsz76pTRYsTAEyZMgXR0dEIDg5GaGgovvzyS2RkZGD8+PEAgJEjR6JJkya6K+wmT56MHj16YP78+Rg8eDA2bNiArVu3Yvfu3QBEF11MTAxiY2MREBCAgIAAxMbGwtHREcOHDwcA7Nu3D/v27UO3bt3g4eGB8+fPY/bs2fD396+wtUm12rQBNm9mcCIiInUrLhY9JACDU21FRUUhOzsb8+bNw9WrV9G+fXts2rQJLVq0AABkZGTAyqqsgSwsLAxr1qzBO++8g1mzZsHf3x9r165FSEiIbp9p06bh/v37mDBhAnJychASEoKEhAS4uLgAABwcHLB+/XrMmTMHd+/eRePGjREZGYk1a9aoqzvuUR4eIE5ERKRWFy6I8GRvL6YkMEOqmcfJXCk+jxMAJCYCERFAYCBw4oQyNRARET3K5s3AgAHA448DR44oWopZz+NEtSQ3d549C5SUKFsLERFRZcx8YDjA4GQZmjUDtFrgwQPg4kWlqyEiIqqYmQ8MBxicLIOVFcc5ERGR+jE4kWowOBERkdoxOJFqyG9CeUZWIiIiNbl/H5DvtsHgRIrjJJhERKRm586Je6q6uwNeXkpXU2MMTpaCwYmIiNTs4SvqqrgPrdoxOFkKeYzTxYtAQYGytRAREf2ZBYxvAhicLEejRoCrq2gGPX9e6WqIiIj0yWNwGZxIFTQadtcREZF6scWJVIfBiYiI1IrBiVSHwYmIiNTo9m3g+nWxbsa3WwEYnCwLJ8EkIiI1ksc3+fgALi7K1lJLDE6WhJNgEhGRGlnIwHCAwcmyyG/IrCwgN1fZWoiIiGSnToklgxOpiqsr4Osr1k+eVLYWIiIi2YkTYhkYqGwdRsDgZGnkNyWDExERqYV8TmJwItVhcCIiIjUpLi67aInBiVSHwYmIiNTk/HngwQPA0RFo3lzpamqNwcnSMDgREZGayOejxx4DrMw/dpj/KyB9cnBKT+fNfomISHkWNL4JYHCyPN7egIcHUFrKiTCJiEh5DE6kahpN2ZtTvvyTiIhIKQxOpHoc50RERGogSWXnoqAgZWsxEgYnS8TgREREanD5MnDnDmBjA7RurXQ1RsHgZIkYnIiISA3k81Dr1oCtrbK1GAmDkyWSg9Pp02LiMSIiIiVY2PgmgMHJMrVoATg4AEVFYloCIiIiJTA4kVmwsgLathXrvLKOiIiUwuBEZoPjnIiISGkMTmQ2GJyIiEhJ2dnAjRtiXe4FsQAMTpaKwYmIiJQkn3+aNwecnJStxYgYnCyVHJz++ENMQEZERFSX5DG2FjLxpYzByVK1bg1YWwP5+cCVK0pXQ0RE9Y0Fjm8CGJwsl50dEBAg1tldR0REdY3BicwOb/ZLRERKYXAis8MB4kREpIQ7d4CMDLHO4ERmg8GJiIiUcOqUWDZsCDRooGwtRsbgZMkYnIiISAkW2k0HMDhZNnnCsRs3xERkREREdYHBicySk5OYeAxgqxMREdUdBicyW/LEY7yyjoiI6oqFTn4JMDhZPo5zIiKiulRUBJw7J9bZ4kRmp107sTx2TNk6iIiofjh1CiguBtzcgCZNlK7G6BicLN3jj4vl0aPK1kFERPWDfL5p3x7QaJStxQQYnCxdu3bijXvtmri6joiIyJTk4CR/cLcwDE6WzskJaNVKrLPViYiITI3BqXIPHjzApUuXcOrUKdy6dctYNZGxtW8vlgweaBRZAAAgAElEQVRORERkagxO+u7cuYMvvvgC4eHhcHNzQ8uWLREUFISGDRuiRYsWGDt2LPbv32+KWqmmOM6JiIjqQm5u2T3q5A/tFsag4PTJJ5+gZcuW+Oqrr9C7d2+sX78ehw8fxqlTp5CcnIw5c+aguLgYffv2RWRkJM6cOWOquskQDE5ERFQX5Cu4mzQBPDyUrcVEbAzZOSkpCdu3b8fjlTS/de3aFW+88QaWL1+OFStWYOfOnQgICDBKoVQL8v/X8eNAaSlgxaFtRERkAhbeTQcYGJx++umnau2n1WoxYcKEGhVEJhAQAGi1wN27wIULZYPFiYiIjKkeBCc2PdQHNjZls7eyu46IiEyFwam8MWPGYNmyZUhJSUFBQYEpaiJT4DgnIiIyJUmqF8HJoK46ADh9+jR++ukn5Ofnw8bGBm3btkWnTp3QqVMndO7cGR07doSTk5MpaqXaYHAiIiJTyswEbt8GrK0t8h51MoOD0++//w4AOHPmDA4ePIhDhw7h4MGD2LhxI27fvg0rKyu0adMGJ+Q7I5M6cC4nIiIyJfn80qaNGFdroQwOTrKAgAAEBARg2LBhum3p6ek4cOAAUlNTjVIcGZHc4nT6NFBYaNFvaiIiUkA96KYDahGcKuLn5wc/Pz+8/PLLxjwsGUOTJoC7u2hGPXkS6NhR6YqIiMiSMDhVX3FxMU6dOoVjx47pHj///LMxDk3GotGIN/OuXeLNzeBERETGxOBUsfPnz+Po0aN6Ien06dMoLi6GnZ0dAgMDK50gkxQmByd5ZlciIiJjKC4WvRmAxd5qRWZQcBoxYgRWr14NjUYDR0dH3L17FwMHDsTs2bPx+OOPIyAgANbW1qaqlWqLV9YREZEpnDkjxs86OQF+fkpXY1IGzeO0bt06LF68GHfu3EFmZiYmTZqEhIQE7N+/Hy1atGBoUjsGJyIiMgX5vNKuncXf1sugV/ePf/wDI0eOhL29PZydnfHZZ59hz5492L59O4KCgrBlyxZT1UnG0K6dWF6+DOTkKFsLERFZjnoyvgkwMDi99957cHZ21tvWuXNn7Nu3DzExMYiKisLw4cNx48YNoxZJRuLuDjRrJtY5zomIiIyFwckwGo0GkydPxokTJ1BYWIi2bdsa47BkCuyuIyIiY2NwqpkmTZogPj4e//73v415WDImBiciIjKmO3eA8+fFOoNTzQwcONAUhyVjYHAiIiJjOn5cLL29gYYNla2lDlj20HcqTw5Ox46JO1kTERHVhjxmth60NgFGCk6HDh1CUVGRMQ5Fpta2LWBjA+TmApcuKV0NERGZu3o0vgkwUnDq0qULLly4UOvjLF26FH5+frC3t0fnzp2xa9euKvePj49HUFAQtFotgoKCyt3mRZIkzJ07F76+vnBwcEB4eDiOy02KAC5cuIDRo0fDz88PDg4O8Pf3x5w5cyw7BNrZAYGBYv3wYWVrISIi85eaKpYdOihbRx0xSnCSjNDls3btWsTExGDmzJlITU1F9+7d0b9/f2RkZFS4f3JyMqKiohAdHY20tDRER0dj6NChSElJ0e2zYMECLFq0CEuWLMH+/fvh4+ODvn37Ij8/HwDwxx9/oLS0FF988QWOHz+OTz75BMuXL8fbb79d69ejak8+KZaHDilbBxERmbfS0rLgJJ9bLJ1kBBqNRjp16lStjtG1a1dp/Pjxetvatm0rTZ8+vcL9hw4dKkVGRupt69evnzRs2DBJkiSptLRU8vHxkT788EPd1wsKCiQ3Nzdp+fLlldaxYMECyc/Pr9p15+bmSgCk3Nzcaj9HcZ98IkmAJD33nNKVEBGROTtzRpxPtFpJKipSuhqD1PT8rYrB4UVFRTh48CAiIiL0tkdERCApKanC5yQnJ5fbv1+/frr909PTkZWVpbePVqtFz549Kz0mAOTm5sLT07PSrxcWFiIvL0/vYXY6dRJL+VMCERFRTcjnkccfB2xtla2ljqgiON28eRMlJSXw9vbW2+7t7Y2srKwKn5OVlVXl/vLSkGOeO3cOixcvxvjx4yutNS4uDm5ubrpHM3kmbnPSsaNYXroEZGcrWwsREZmv+tZNB5UEJ5lGo9H7tyRJ5bYZun91j5mZmYnIyEi8/PLLGDNmTKXfc8aMGcjNzdU9LpnjlWmuroC/v1hnqxMREdUUg5MyvLy8YG1tXa4l6Pr16+VajGQ+Pj5V7u/j4wMA1TpmZmYmevXqhdDQUHz55ZdV1qrVauHq6qr3MEvym5zBiYiIakKSyi4yYnCqW3Z2dujcuTMSExP1ticmJiIsLKzC54SGhpbbPyEhQbe/n58ffHx89PYpKirCzp079Y555coVhIeHo1OnTli5ciWsrFTxIzE9XllHRES1cfUqcP06YGUFPPGE0tXUGRtjHGTOnDnw8vKq1TGmTJmC6OhoBAcH61p+MjIydOONRo4ciSZNmiAuLg4AMHnyZPTo0QPz58/H4MGDsWHDBmzduhW7d+8GILroYmJiEBsbi4CAAAQEBCA2NhaOjo4YPnw4ANHSFB4ejubNm+Pjjz/GjRs3dPXILVYWiy1ORERUG/L547HHAEdHZWupQ0YLTrUVFRWF7OxszJs3D1evXkX79u2xadMmtGjRAgCQkZGh1xoUFhaGNWvW4J133sGsWbPg7++PtWvXIiQkRLfPtGnTcP/+fUyYMAE5OTkICQlBQkICXFxcAIgWqrNnz+Ls2bNo2rSpXj2Spd+ORL6y7vRpcYNGZ2dl6yEiIvMiByf5fFJPaCSLTwimlZeXBzc3N+Tm5prfeCdfX9HUumcPUEmXKBERUYVefBFYvx74+GPg739XuhqD1fT8XU8G9FCF2F1HREQ1VQ+vqAMYnOo3BiciIqqJnBwgPV2sy3MD1hNGDU45OTnYvn07PvnkE2MelkyFV9YREVFNyDeJb9ECqOJuG5aoxoPD09PTcfjwYb3H5cuXIUkSnJyc8H//93/GrJNMQQ5Ox44BRUWAnZ2y9RARkXmop910QA1anHr27Al3d3f4+/vjjTfewNatW+Hj44MrV65gxYoVuHjxIvLz801RKxmbnx/g5gY8eACcOKF0NUREZC7q6RV1QA2CU3JyMiZOnIhLly4hJycHe/bswRdffAGNRoOuXbua573b6iuNhuOciIjIcGxxqr6UlBTs2rULEydOxOnTp01RE9UlBiciIjLE/fvAH3+IdQanR3vyySfx+++/Y+jQoejXrx8mTpyI69evm6I2qgsMTkREZIijR4GSEqBhQzEfYD1T46vqhg8fjuPHj8Pd3R3t2rVDaWkpSkpKjFkb1QU5OB0+DJSWKlsLERGp38M39tVolK1FAbWajsDR0REffPABUlJSMGjQIPTp0wcff/wx7t+/b6z6yNTatgXs7cVtV86eVboaIiJSu3o8vgkw0jxOrVq1woYNG7Bq1SqsXLkSrVq1MsZhqS7Y2JTd1ZrddURE9Cj1+Io6wMgTYPbt2xdHjhzBW2+9ZczDkqlxnBMREVVHcbEY4wSwxak6MjIyHrmPtbU1YmJiAABXrlypWVVUt+RPDQcPKlsHERGp28mTQEEB4OIC+PsrXY0iDApOXbp0wdixY7Fv375K98nNzcVXX32F9u3bY/369bUukOpAly5ieeAAB4gTEVHl5PN/cDBgVT9vd2vQLVdOnjyJ2NhYREZGwtbWFsHBwfD19YW9vT1ycnJw4sQJHD9+HMHBwfjoo4/Qv39/U9VNxtS+vRggfvu2GCDepo3SFRERkRrJwalrV2XrUJBBcdHT0xMff/wxMjMzsWzZMrRp0wY3b97EmTNnAACvvvoqDh48iD179jA0mRNb27LuuipaE4mIqJ5jcKrZTX7t7e0RHByMIUOGwOpPTXWSJCEjIwPNmzc3SoFUR7p2BZKSxC/FiBFKV0NERGpz717ZwPB6HJxq3EHp5+eHmzdvltt+69Yt+Pn51aooUoD8S8AWJyIiqkhqqpgxvHFjoEkTpatRTI2DkyRJFW6/c+cO7O3ta1wQKUQOTqmpQFGRsrUQEZH6PNxNVw9nDJcZ3FU3ZcoUAIBGo8Hs2bPh6Oio+1pJSQlSUlLQsWNH41VIdaNVK8DTE7h1C0hLK7vSjoiICABSUsSyHnfTATUITqn/f5JESZJw9OhR2NnZ6b5mZ2eHDh06YOrUqcarkOqGRiN+GbZsEZ8qGJyIiOhhHBgOoAbBafv27QCA119/HZ999hlcXV2NXhQp5OHgNHGi0tUQEZFa3LgBpKeL9eBgZWtRWI2uqgOAlStXGrMOUgMOECcioors3y+Wjz0GuLsrW4vCajXt565duzBixAiEhobqbq/y3XffYffu3UYpjuqY3D33xx9Abq6ytRARkXqwm06nxsEpPj4e/fr1g4ODA1JTU1FYWAgAyM/PR2xsrNEKpDrUqBHQsqVYP3BA0VKIiEhFGJx0ahyc3n//fSxfvhxfffUVbG1tddvDwsJw6NAhoxRHCmB3HRERPUySGJweUuPgdOrUKfTo0aPcdldXV9y+fbtWRZGCGJyIiOhh6elAdra4PVeHDkpXo7gaB6fGjRvj7Nmz5bbv3r0brVq1qlVRpCAGJyIieph8PujYEdBqla1FBWocnMaNG4fJkycjJSUFGo0GmZmZWLVqFaZOnYoJEyYYs0aqS506AdbWQGYm8P8H/BMRUT0mB6eQEGXrUIkaT0cwbdo05ObmolevXigoKECPHj2g1WoxdepUTJo0yZg1Ul1ycgLatxezh+/bBzz/vNIVERGRkji+SU+tpiP44IMPcPPmTezbtw979+7FjRs38N577xmrNlIKu+uIiAgAHjwA5Au+GJwAGNjiJN+nrjoWLVpkcDGkEl27Al99xeBERFTfHT8O3L8PuLkBAQFKV6MKBgUn+T51soMHD6KkpASPPfYYAOD06dOwtrZG586djVch1T35U8X+/UBpKWBVq4ZJIiIyV/IH6C5deC74/wwKTvJ96gDRouTi4oJvv/0WHh4eAICcnBy8/vrr6N69u3GrpLoVFAQ4OgL5+WIW8aAgpSsiIiIlpKSIJbvpdGocHxcuXIi4uDhdaAIADw8PvP/++1i4cKFRiiOF2NiU3cQxKUnZWoiISDnyOYBX1OnUODjl5eXh2rVr5bZfv34d+fn5tSqKVKBbN7Hcs0fZOoiISBk3b4peBwAIC1O2FhWpcXB6/vnn8frrr2PdunW4fPkyLl++jHXr1mH06NF44YUXjFkjKUEOTrxhMxFR/SS3NgUGAl5eytaiIjWex2n58uWYOnUqRowYgQcPHoiD2dhg9OjR+Oijj4xWICkkNBTQaICzZ4Fr1wBvb6UrIiKiuiR/cH76aWXrUJkatzg5Ojpi6dKlyM7ORmpqKg4dOoRbt25h6dKlcHJyMmaNpAR3dzERJsDuOiKi+kj+2y/3QBCAWk6ACQBOTk544okn0KFDBwYmS8PuOiKi+qmgADhwQKwzOOnhpAxUOQYnIqL66cABoKhIDNNo1UrpalSFwYkqJ/drHzoE3L2rbC1ERFR35A/M3bqJ8a6kw+BElWveHGjaFCgp4e1XiIjqk4eDE+lhcKLKaTTsriMiqm9KS8umIuAVdeUwOFHV5F8aBiciovrh5EkgJ0fceqtjR6WrUR0GJ6qa3OKUnCy67IiIyLLJH5SfegqwtVW2FhVicKKqPf444OIibvh79KjS1RARkanJ8zexm65CDE5UNWvrsnsUsbuOiMjycWB4lRic6NHkTx2cQZyIyLJlZgLp6YCVleiqo3IYnOjR5E8du3YBkqRsLUREZDryB+QnngBcXZWtRaUYnOjRunYFbGyAK1eAjAylqyEiIlNhN90jMTjRozk5AU8+KdY5zomIyHIxOD0SgxNVj/xLxHFORESWKT8fOHxYrPOKukoxOFH1yMHp99+VrYOIiEwjOVnMGi7fbosqxOBE1dOjh1gePw5cu6ZsLUREZHzbtollr17K1qFyDE5UPV5eQIcOYn37dmVrISIi45ODU+/eytahcgxOVH19+oil/MtFRESW4fZt4OBBsc7gVCUGJ6o++ZeJwYmIyLL8/rsY39SmDcc3PQKDE1Vf9+7iFiznzgEXLypdDRERGctvv4klW5seicGJqs/VFejSRaxznBMRkeXg+KZqY3Aiw8i/VPKnEyIiMm/XrgHHjol1XlH3SAxOZJiHxznxvnVEROZvxw6x7NBBXEFNVWJwIsOEhQFarbiD9unTSldDRES1xfFNBmFwIsM4OIjwBPDqOiIiS8DxTQZhcCLDcVoCIiLLcPGiuFLa2rrsDhFUJQYnMpwcnLZvF/N+EBGReZKvkO7SRVw5TY/E4ESG69IFcHYGsrOBI0eUroaIiGqK45sMxuBEhrO1LWvSZXcdEZF5kiSOb6oB1QSnpUuXws/PD/b29ujcuTN27dpV5f7x8fEICgqCVqtFUFAQfv75Z72vS5KEuXPnwtfXFw4ODggPD8fx48f19vnggw8QFhYGR0dHuLu7G/01WTSOcyIiMm+nT4srpLXasot+6JFUEZzWrl2LmJgYzJw5E6mpqejevTv69++PjIyMCvdPTk5GVFQUoqOjkZaWhujoaAwdOhQpKSm6fRYsWIBFixZhyZIl2L9/P3x8fNC3b1/k5+fr9ikqKsLLL7+MN9980+Sv0eLIwWnnTuDBA2VrISIiw8kffMPCxBXTVD2SCnTt2lUaP3683ra2bdtK06dPr3D/oUOHSpGRkXrb+vXrJw0bNkySJEkqLS2VfHx8pA8//FD39YKCAsnNzU1avnx5ueOtXLlScnNzq1Htubm5EgApNze3Rs83WyUlkuThIUmAJCUlKV0NEREZ6sUXxd/w995TuhJF1PT8rXiLU1FREQ4ePIiIiAi97REREUhKSqrwOcnJyeX279evn27/9PR0ZGVl6e2j1WrRs2fPSo9JBrKyKmt1SkhQthYiIjJMcXHZwPA+fZStxcwoHpxu3ryJkpISeHt762339vZGVlZWhc/Jysqqcn95acgxq6uwsBB5eXl6j3prwACx3LRJ2TqIiMgwe/cCt28Dnp5A165KV2NWFA9OMo1Go/dvSZLKbTN0f0OPWR1xcXFwc3PTPZo1a1ar45m1yEix3L8fuH5d2VqIiKj65A+8kZFi8kuqNsWDk5eXF6ytrcu1BF2/fr1ci5HMx8enyv19fHwAwKBjVteMGTOQm5ure1y6dKlWxzNrvr7Ak0+KS1r/9z+lqyEiouqSg1P//srWYYYUD052dnbo3LkzEhMT9bYnJiYirJLLI0NDQ8vtn5CQoNvfz88PPj4+evsUFRVh586dlR6zurRaLVxdXfUe9Zr8S8fuOiIi83DlCpCWBmg0QL9+SldjdmyULgAApkyZgujoaAQHByM0NBRffvklMjIyMH78eADAyJEj0aRJE8TFxQEAJk+ejB49emD+/PkYPHgwNmzYgK1bt2L37t0ARBddTEwMYmNjERAQgICAAMTGxsLR0RHDhw/Xfd+MjAzcunULGRkZKCkpweHDhwEArVu3hrOzcx3/FMzUgAFAbKxocSouBmxU8ZYiIqLKbNkill27Ag0bKluLGVLFWS4qKgrZ2dmYN28erl69ivbt22PTpk1o0aIFABFwrKzKGsfCwsKwZs0avPPOO5g1axb8/f2xdu1ahISE6PaZNm0a7t+/jwkTJiAnJwchISFISEiAi4uLbp/Zs2fj22+/1f37ySefBABs374d4eHhJn7VFiIkBPDwAHJygJQU4Omnla6IiIiqIvcQyBf4kEE0kiRJShdhzvLy8uDm5obc3Nz62233yivAmjXA228DH3ygdDVERFSZoiLAywvIzxcX9gQHK12RYmp6/lZ8jBNZAPlTy+bNytZBRERV27NHhKZGjYBOnZSuxiwxOFHt9esnBhmmpor7HhERkTo9PA2BFSNATfCnRrXXqBHQpYtYlwcdEhGR+sg9AxzfVGMMTmQcnEWciEjdLl4Ejh8XLU1/um0ZVR+DExmHHJwSEoAHD5SthYiIypNbm8LCxNXQVCMMTmQcnTuL+UDy88XgQyIiUhdOQ2AUDE5kHFZWZfeuY3cdEZG6FBQAv/0m1hmcaoXBiYxH/mX89Vdl6yAiIn2//w7cuyfuMfrEE0pXY9YYnMh4+vUTt1w5cQI4fVrpaoiISLZ+vVgOHCimj6EaY3Ai4/HwAHr3FuvyLykRESmrpAT4z3/E+osvKluLBWBwIuOSfynj45Wtg4iIhKQk4No1wN0d6NVL6WrMHoMTGdfgwaIZ+MABMWcIEREpS/4g+9xzgJ2dsrVYAAYnMi5vb6B7d7HO7joiImVJUtnfYnbTGQWDExkfu+uIiNRh/37g0iXAyQno21fpaiwCgxMZ3wsviGVSEnD1qrK1EBHVZ/IH2IEDAQcHZWuxEAxOZHxNmwIhIaKJWL6Sg4iI6pYklQUndtMZDYMTmYbc6sTuOiIiZRw5Apw7B9jbc7ZwI2JwItOQP93s2AFkZytaChFRvSR/cO3XD3B2VrYWC8LgRKbh7w906CAmXtuwQelqiIjqH3bTmQSDE5kOr64jIlLGH3+I21/Z2ACDBildjUVhcCLTkYNTYiKQm6tsLURE9Yk8d1OfPuJ2WGQ0DE5kOoGBwGOPAQ8eAP/9r9LVEBHVH+vWiSW76YyOwYlMR6MBhg4V66tWKVsLEVF9cfIkkJoquumGDFG6GovD4ESmNWKEWCYkAFlZytZCRFQffPedWPbvDzRsqGwtFojBiUyrTRsxGWZJCbB6tdLVEBFZttLSsuAUHa1sLRaKwYlMb+RIsfz3v5Wtg4jI0u3YAVy+DLi5Ac8+q3Q1FonBiUwvKgqwtQUOHwaOHlW6GiIiyyW3Ng0dKmYMJ6NjcCLTa9BA3GASKPulJiIi47p3r+xqOrmln4yOwYnqhvxLvGqVGO9ERETG9Z//AHfuAH5+wNNPK12NxWJworoxYICYhC0zE9i2TelqiIgsjzyONDpaTAdDJsHgRHVDqwWGDRPrHCRORGRcV6+KuzQAvJrOxBicqO7I3XXr14vmZCIiMo4ffhBTEYSFAa1bK12NRWNworoTEgIEBIgBjPJ9lIiIqPYe7qYjk2Jworqj0ZT9UvPqOiIi40hLA44cAezsym5zRSbD4ER1S74Fy2+/AefPK1sLEZElWLFCLAcNAjw9la2lHmBworrl5wdERACSBHzxhdLVEBGZtzt3gG+/FevjxilbSz3B4ER1b8IEsVyxAigoULYWIiJztmoVkJcnBoQ/84zS1dQLDE5U9wYNApo3B7KzgR9/VLoaIiLzJEnA0qVifcIEwIqn9LrAnzLVPWtrYPx4sf7558rWQkRkrvbsEYPCHRyA115Tupp6g8GJlDF6tLgCZN8+4MABpashIjI/8gfP4cPFnRmoTtgoXQDVU40aAS+/LPrnly4Fvv5a6YqoPikoAC5eBNLTgQsXgOvXgZwc4PZtsczLE90gD7OzA9zdxQnK3V1cvdS0qbjgwc8P8PbmbS6o7mRlAfHxYl0eN0p1gsGJlDNhgghOq1cDH30ENGigdEVkaUpKgDNngMOHgdRUsTx2TNwz0djs7QF/f6BjR+DJJ8uWvDycTOFf/wIePACeegro1EnpauoVjST9+WMVGSIvLw9ubm7Izc2Fq6ur0uWYF0kSv/CHDwMffwz8/e9KV0TmrrhYBKQdO8Rj1y4gP7/ifZ2dRUtRy5ZA48ZlLUkeHoCLixiL97CCAtEiJT+ys4GMDNFqdfmyuN1FRdq0AcLDgV69gJ49xfciqo3iYvHevXxZTCYsz49HBqnp+ZvBqZYYnGrpX/8Cxo4Vn9RPn+ZVIWS47Gzgv/8FNm4Etm4V3WwPc3QEnniirBWoQwfxfmvQwHhda0VFwKVLwB9/lLVspaZWPMlr27bAs88CgweL1oI/BzSiR/n5Z+CFFwAvLxGetFqlKzJLDE4KYXCqpbt3gSZNgNxcYNMmoH9/pSsic3D1KrB2LfCf/4hWpYdbe9zcRMtOeLh4PPGEcuEkJwfYvRvYvl20gB0+rD92qmFDEaJeegno2xew4egJqoZnnhF3X5g+HYiLU7oas8XgpBAGJyP4v/8DPv0U6NNHtBgQVeTuXRGUvvsOSEzUD0tPPCFacJ59VnT/qrUVJydH1L5hA/Drr+IDg8zbG3jlFWDkSNEyxoHmVJHDh0XrqZUVcO6c6GqmGmFwUgiDkxFcvChmvS0uBvbuBUJClK6I1OTQIXHl5dq14vYSstBQICoKeO45Md7D3Dx4APz+u+h2WbsWuHmz7Gvt2wN/+YsIUW5uytVI6hMVJSYOHjZMXFhDNcbgpBAGJyN5/XXgm2/ESXDDBqWrIaUVFAA//SQC0969ZdtbtQKio8Vg2NatlavP2B48ALZsEa1pGzcChYViu5OTeK0TJwKPP65sjaS806fFGDlJAtLSREsr1RiDk0IYnIzk1CkgMFD8QThyhCeJ+io7G1iyRDzkFhhbWzEG6M03gW7dLL8L6/btsvnNTpwo296zJzBtmhgHaOk/A6rYG28AK1eKLumNG5WuxuwxOCmEwcmIhg4VrQyvvAL88IPS1VBdungRWLRIXGV5757Y1rSpuDXPmDFi/E99I0nAzp0iQK1fL+akAsSHimnTRJeNra2yNVLdycgQV4MWFwPJyeKKTKqVmp6/ee03qcfbb4vl2rXA2bPK1kJ14+xZYNQocUL45z9FaHrySWDNGjE/0syZ9TM0AaJVKTxcjGe5cEHMc+bsDBw9KrorW7cGli8XUyGQ5fvoIxGaevdmaFIYgxOpR8eOwIAB4mqp+fOVroZMKT1d3K+wbVvg3/8WrSl9+gAJCcDBg6I1hZfml2naVEwSm5EBfPCBuGVRRobovmzTBlixQoyTIst07ZpojQXEhwlSFIMTqYv8R+Hbb8WEgmRZLl8Gxo0TJ/uvvxaBacAAcbPnrVvFXEYcv1M5Dw/RMnvhAvDZZ4CPj+jmHDNGP36EeRcAAB3aSURBVISSZfnkE3HBREiImIGeFMXgROoSFiYGwT54ACxcqHQ1ZCy5ueKEHxAAfPml6HKIiBBjNX79FejSRekKzYuDA/C3v4mZyRctEi1Q58+Lbs9OnYD//a/8TYrJPOXkiHFugPhgyQ8WimNwIvWRW52+/FLMEE3mq6hIjF3y9xczHBcUAE8/LeYv+t//OFajthwcxASy588DH34o5nw6cgSIjBTBNDVV6Qqptj77TNxv8fHHgYEDla6GwOBEavTMM2Jyw/v3gdmzla6GakKSxOXSQUHA5MlimoHHHiu7RUr37kpXaFmcnIC33hIzSU+ZAtjZia7PTp2A117jBxBzdfWqGNsGALNm8V6eKsH/BVIfjabsj8XXX4uriMh8nDgB9OsnboFy7py4Ku6LL4Bjx8Q2djWYToMGoov7jz+A4cPFtm+/FWPK5s8vm1iTzMPs2eJWQ089JeYyI1VgcCJ1CgsTfyhKS8WcNaR+OTmidemJJ8T92OzsxE1Iz5wRtw/hVXJ1x89PTKK5dy/Qtau4Vc306UC7dqIlkOOf1O/oUfHBERBhmB84VIPBidQrLk5M8Ldli7hMndRJkkSrxmOPifFMJSXAkCGi5SkuDnBxUbrC+iskRAzA//e/gcaNRQugfDPk8+eVro6qMnWq+OD40kvigySpBoMTqVfr1uIeXYD4I8LLrNXn6FGgRw8xjubGDXFJfGKiuHGtv7/S1REgxsVER4vbGk2fLj6M/PqraH2aN08M2Cd1+d//xIdFW1sx6J9UhcGJ1G3WLMDdXZygv/lG6WpIdueOCLNPPgns3g04Ooo/8GlpYnA/qY+Li2gBPHJEzD5dUADMmSOu1mKLrnqUlIjfLQCYNIkfQFSIwYnUzdNThCdALO/cUbYeAn75RVwtt3Ch+CP/wgvAyZPiqi47O6Wro0dp21Zccbd6tei+O3tWDOZ/9VUxQzUpa+VKcSGFhwfwzjtKV0MVYHAi9Zs4EWjVSlyay1uxKOfKFTHe4rnnxKzuLVuKLp/4eKB5c6WrI0NoNMCwYeLqu8mTRXfeDz+IUPXVV2JsDdW93NyyD4qzZ4sPjqQ6DE6kflotsGCBWJ8/n9MT1LXSUuDzz4HAQBGSrK3FlY7Hj4vbpZD5cnUFPv0USEkR3a63b4srIHv2FK2IVLemTQOyssT4zgkTlK6GKsHgRObhhRfE1UAPHgBvvCFu2UGmd+KEmKxy0iQxe3FICHDokAiwjo5KV0fGEhws7he4aJGYTHP3bnHT7XnzxOzvZHq//SbulgCIG/qy21u1GJzIPGg04n5N7u7AgQPiDzyZTmEhMHeuOHkmJQHOzsDixcCePWKeJrI8Njbi9i0nToiWxKIiMXi8UycxpQGZzp07wNixYn3CBNHiR6rF4ETmw9dX3CUcEP3/p04pW4+lSkoS3Tbvvita+AYNEifTSZNENx1ZtubNgf/+Vwweb9hQdMk+/TTw17+KVkcyvpkzgfR08bPn9AOqx+BE5mXUKHEFUGGh6LLj3E7Gk58vTo7duonxLY0aAWvXipmmmzVTujqqS/Lg8ZMnxRxdkgQsWSLmftq0SenqLMvu3aI1FxAD8zlhrOppJIlz79dGXl4e3NzckJubC1dXV6XLqR8yMsQf8Dt3UPLJP7Gr419x9aq4srp7dzaKVKWkRNxjt9zPa9MmYPx4cbUcALz+urhfIK/qIUBMX/CXv4hWEUDcB+/TT0WLFKp4X1E5ej8rz0J0/2tHWJ/5Q3wQXLFC6fLqlRqfvyUV+fzzz6WWLVtKWq1W6tSpk/T7779Xuf+6deukwMBAyc7OTgoMDJTWr1+v9/XS0lJpzpw5UuPGjSV7e3upZ8+e0rFjx/T2uXXrljRixAjJ1dVVcnV1lUaMGCHl5ORUu+bc3FwJgJSbm1v9F0q1t2yZFI/npaaaS5L4OCweTZtKUny80sWpU3y8+Pno/bx8i6X47ovKNvj5SVJiotKlkhrduSNJU6ZIkpWVeK94eUnS999L8etKy7+v+HtYoQp/B5Ehxbu/IUkGnHfIOGp6/lZNcFqzZo1ka2srffXVV9KJEyekyZMnS05OTtLFixcr3D8pKUmytraWYmNjpZMnT0qxsbGSjY2NtHfvXt0+H374oeTi4iLFx8dLR48elaKioqTGjRtLeXl5un0iIyOl9u3bS0lJSVJSUpLUvn17adCgQdWum8FJGfE/lUgalEpAid4fIY1GPPhHW198vPi5PPyzAiRJgxJJgxIpXvOiOCneuaN0qaR2+/ZJ0uOPSxIgxeP5//97WMrfw0eo+newlD8rBdT0/K2arrqQkBB06tQJy5Yt020LDAzEkCFDEBcXV27/qKgo5OXlYfPmzbptkZGR8PDwwOrVqyFJEnx9fRETE4O33noLAFBYWAhvb2/Mnz8f48aNw8mTJxEUFIS9e/ciJCQEALB3716E/r/27j4qqjr/A/h7HphBCMlCHgRCzQfEtWNKKpKgrWJpa7XrtmuucVq33Vbd8njcjTbLsiSzMs2yPZlr5lauj3vKdUkzNRM3dg1cVCIkKJX42cORB1EeP78/vjEyMoz3AjN3GN6vc+Ygw2fgw8d7L5/53u/93qQkfPbZZxg8ePAV8/bkqbrz58+3+TWLxYLAwEBNsWazGT169GhXbE1NDdraREwmE4JaXJKuJ/bChQtocrPIXnBwcJuxjY1AQkIPnDljAtD6juEmkyA6WnD8+IVWpwtaft+LFy+i0c0cqaCgIJh+uCN5bW0tGtwsgaAntkePHjCb1fTCuro61NfXd0psYGAgLD/8wi1jr1gvNCE6vA7Hixpdnl6x2+2wWq0AgPr6etS5uTy9ZWxDQwNqa2vbjLXZbAgICNAd29jYiItu7q8WEBAA2w+XcuuJbWpqwoULFzol1mq1wm63AwBEBDU1NZ0Sq2e/9+gxwmpF47PPo+9js3AafeBqumzzflhaanZsV946RriLvdJ+74ljRGMjMHRoEE6fbr3/Aa2PWd4+RlwpVs9+76ljhCd06VN1tbW1YrFYWp1qe/DBByUlJcXla2JjY2XFihVOz61YsUKuu+46EREpLi4WAPLpp586xUybNk3uvfdeERFZt26dhIaGtvreoaGh8te//tXlz7148aJUVFQ4HqdOnfLYiBOANh9Tpkxxig0KCmozNjU11Sk2LCyszdjExESn2Li4uDZjExISnGITEhLajI2Li3OKTUxMbDM2LCzMKTY1NfWymNRW79pcPy5/nfPmPn36dLc1rm4x+pKenu429uzZs47YOXPmuI0tKSlxxC5cuNBtbMtTy4sXL3Ybm5OT44hdvnx5p9QLgOzcudPxfdevX+82h82bNztiN2/e7DZ2/fr1jtidO3e6jX355Zcdsfv27XMbu3z5ckdsTk6O29jFixc7Yo8dO+Y2duHChY7YkpISt7Fz5sxxxJ49e9ZtbHp6uiO2urrabez06dOdtmF3sZ4+Ruzbp2WbUnHNvHeMuPQICgpyip0yZYrburXUeccIffug948RrR/7WvzHvfzyy25jvXGM8IT2jjj5xFV13377LRobGxEREeH0fEREBMrLy12+pry83G1888crxYSHh7f63uHh4W3+3GeeeQahoaGORyyvNjJAVCfH+TvWizrf1193bpx/4z7oT3ziVF1ZWRmio6ORnZ2NpKQkx/NLly7Fxo0b8dlnn7V6jc1mw4YNGzBjxgzHc2+99RZmz56NixcvIjs7G8nJySgrK0NU1KWN8f7778epU6eQlZWFzMxMbNiwAYWXrQc0cOBAzJ49GxkZGa1+bm1trdPQYmVlJWJjY3mqTmdsR4bhP/rIjClTerh6mZNduy4gJcX5Z3S7U3VVVfjot29jynsL2nxdM1f1Aniqrj2xfn+qrkcP7N8PTJjQZpjDvn3A+PHq3931VJ3eYxZP1Sm+eqrO6rGMdAgLC4PFYmk1ynP27NlWI0bNIiMj3cZHRkYCUKNKLRuny2P+z8XdwL/55ps2f67dbncc5Dyt5Q5sVGyQjttq6IlteZDWG5uWBsTEqHvOujoGm9CEmGhBWloPt5dEt/yjciV6/t/1xNpsNscf406NDQiA7R//ABYsQNqZrxGDn+MMoiEu56Koel6pXoBqHrQeyKxWq+MA2ZmxFotF8zasJ9ZsNnsk1mQyeSQWMPYYMW6chv0QpzFu9ULg+heA2FivHSPc0bPfd9YxIi0NiLmmBme+D9S9D3rsGKEjVs9+76ljhC/xiVN1NpsNI0eOxJ49e5ye37NnD8aOHevyNUlJSa3id+/e7Yjv168fIiMjnWLq6upw4MABR0xSUhIqKiqQk5PjiPnkk09QUVHR5s8l41kswKpV6t+my+ZamqDeda4MfASW6govZ+YjCgvVkfoXvwDOnIHl+n5Y9fj3gMncul4/fL5yJdfdIX3c7ocmAWDCSvMCWLZvUTeIXr682973zvLuDqw6dy8AwATnLpP7YBfU2ZOt2qt5OYJ169bJiRMnZP78+RIcHCylpaUiIjJr1izJyMhwxB86dEgsFossW7ZMCgoKZNmyZS6XIwgNDZXt27dLfn6+zJgxw+VyBDfccIMcPnxYDh8+LMOGDeNyBF2EqzVRYiNrZVtIuvpk7FiRqiqj0/Se6mqRRx4RCQhQv7/dLvLkkyIXLohIG/WK5SXj1DFut6ujR0VuvvnSF4YMEdm71+iUvWvXLsc+uS11lcTENHEf9BFdfh0nEbUAZlxcnNhsNhkxYoQcOHDA8bXU1FSnq09ERLZs2SKDBw+WgIAAiY+Pl22XbX3NC2BGRkaK3W6XlJQUyc/Pd4r57rvvZObMmRISEiIhISEyc+ZMLoDZhTQ0qKt23n5bfWxoEJHcXJGrr1ZHpQkTRGpqDM7SwxobRd58U6RPn0tH46lTRYqLW4W6rBdRB7ndrpqaRDZsEAkPv7R93nWXy+3T7+zdKxIYqH7nn/9cpL6e+6AP6fLrOHVVvOWKj8rJASZOVPdfmzwZ2LED0DEPoss4fBiYP1/9vgDQr5+6EfK0aa3PnxAZ6dw5dXPuNWvUwkY2m9p2H30U8Mdj58GDwK23AjU1an/cuhXw4ERn0q+9f799Yo4TUacbNUrdfy0oCHj/fSA1Vc1i9RfFxcCMGcDYsappuuoqdVf1EyeAO+5g00S+5+qrgZdeAo4eVXPw6urUvKeBA4FXXwXcXOHV5bz5JjBpkmqaJk8GNm9m0+RH2DiR/7r5ZuBf/1I3qv3Pf4Cbbro0MtNVlZUBv/89EB8PbNqkGqTZs4GiIuDhhwEdVwERGWLoUCArC9i5Exg0CDh7FpgzR23Tb78NuFlWwOc1NgJ//COQng7U1qo3Mdu3A166Epu8g40T+beUFNU0DR2qVuJLSQH+9jejs9Lvu++AjAxgwADgL38BGhqA224DPv0UeP114IflN4i6BJMJmDoVyM8HVq8GIiKAL74AZs4EbrwReO8912sc+LJz54Dbbweef159/thjqmnSsQQDdQ1snMj/9e+v5gJNm6beBc6aBTz0EFBdbXRmV3bmDLBgARAXBzz7LHDhgjo9d+CAOhU5fLjRGRK1n80GzJunTj0vXQqEhgL/+5/aV2+8UY2qulmA0mfk5ACjR6uRtB49gL//HViyBDDzT6w/4v8qdQ8hIWqC+KOPqs9fekmNQr33nrF5taWoCLj//kuTvc+fv/RO/OOP1cgZkb8IDgb+/Gc16vTww2rO3tGjah5ffDywdq160+NrKiqAuXOBMWOAzz8HYmOBQ4eAu+82OjPyIDZO1H2YzcDTT6uRmr59ga++Uu9sf/pT4NQpo7NTp9927FCTSQcNUqfg6utVk5SVBRw5ok4FcOI3+atrrlEXOXz5JfDkk8C11wInTwK//a1aWvtPf1KfG01EjSrFx6urBEXUSPaRI+oNDvk1LkfQQVyOoIuqqVFD6S+8oBqW4GDgd78D/vAH1VR5U0kJsGGDelddVqaea54D8sgj6tQcUXd0/rzaL1ascH5zM2mS2l+nTPHuMiONjcA//6mOGx99pJ4bNEhdFXjLLd7LgzpFe/9+s3HqIDZOXVx+PvDAA0B2tvrcbAbuukutL5Oc7LnRnaIita7L1q1qgnez3r3VVXL336/mZhGRenOza5e6MCIr69LE8auuUqOw06eriyU8NRG7qgpYv16d4i8uVs/ZbOr0YkYGr5rrotg4GYSNkx9oalJrPb34ItDy/ocJCWoBu7Q0dbqsI+9sz5xRc5MOHgT27weOH7/0NbNZ3Wb+N79RTRsPwkRtKykBXnsNeOst51GooCBg/Hi1DMm4cUBiYseW5ygtBXbvvvSoqlLP9+qlRrvmzlWnD6nLYuNkEDZOfubYMXXn0o0bnSej2u3qgJyQoK5w69tXfbz2WjV839SkPtbXq4N5SYma6FpSoia5lpQ4/xyLBfjxj9U75TvvVCNNRKSdiFpqZOtWYMsW1ei0ZLcDI0aoU2n9+qlH//5qHpXZrPZBi0Xtt6dOqXlVpaXqcfiwGhVuafBgNRI9a5Y6tU9dHhsng7Bx8lPffw988IF6p/n++8Dp0x37fmazWjrg5pvV45ZbVNNFRB0not6gHDigRnUPHlQLa3aExQIkJakR57Q0tYAulxfwK2ycDMLGqRsQAQoL1WTQkpJL70xLStTlyM3vXC0WwGoF+vRxfoc7aJBa44XbB5F3iKir7/77X+fR35ISoLLy0ghx8xpRMTFqFLl5JHnoUHXaj/usX2vv32+rB3Mi8g8mk7rsOD7e6EyISAuTSd0Db+BAozMhP8RxRyIiIiKN2DgRERERacTGiYiIiEgjNk5EREREGrFxIiIiItKIjRMRERGRRmyciIiIiDRi40RERESkERsnIiIiIo3YOBERERFpxMaJiIiISCM2TkREREQasXEiIiIi0oiNExEREZFGVqMT6OpEBABQWVlpcCZERESkVfPf7ea/41qxceqgqqoqAEBsbKzBmRAREZFeVVVVCA0N1RxvEr2tFjlpampCWVkZQkJCYDKZOu37VlZWIjY2FqdOnULPnj077fv6I9ZKH9ZLO9ZKO9ZKO9ZKO0/WSkRQVVWFPn36wGzWPnOJI04dZDabERMT47Hv37NnT+5YGrFW+rBe2rFW2rFW2rFW2nmqVnpGmppxcjgRERGRRmyciIiIiDSyPPHEE08YnQS5ZrFYMH78eFitPKN6JayVPqyXdqyVdqyVdqyVdr5WK04OJyIiItKIp+qIiIiINGLjRERERKQRGyciIiIijdg4EREREWnExslAa9asQb9+/RAYGIiRI0fi4MGDbuO3bduGhIQE2O12JCQkYMeOHV7K1Hh6anX8+HH87Gc/Q9++fWEymbBy5UovZuob9NRr7dq1GDduHHr16oVevXph4sSJyMnJ8WK2xtJTq+3btyMxMRFXX301goODMXz4cGzcuNGL2RpL7zGr2aZNm2AymXDnnXd6OEPfoadWb7zxBkwmU6vHxYsXvZixcfRuV+fOncPcuXMRFRWFwMBADBkyBLt27fJStgCEDLFp0yYJCAiQtWvXyokTJ+Shhx6S4OBg+fLLL13GZ2dni8VikczMTCkoKJDMzEyxWq3y73//28uZe5/eWuXk5MjChQvlnXfekcjISHnxxRe9nLGx9NbrnnvukVdeeUVyc3OloKBA7rvvPgkNDZXTp097OXPv01urffv2yfbt2+XEiRNy8uRJWblypVgsFsnKyvJy5t6nt1bNSktLJTo6WsaNGyd33HGHl7I1lt5arV+/Xnr27Clff/2106M70Fur2tpaSUxMlClTpsjHH38spaWlcvDgQcnLy/NazmycDDJq1Ch54IEHnJ6Lj4+XjIwMl/F333233HrrrU7PTZ48WX75y196LEdfobdWLcXFxXW7xqkj9RIRaWhokJCQENmwYYMn0vMpHa2ViMiNN94oixYt6uzUfE57atXQ0CDJycny+uuvS3p6erdpnPTWav369RIaGuqN1HyO3lq9+uqr0r9/f6mrq/NGei7xVJ0B6urqcOTIEaSlpTk9n5aWhuzsbJevOXz4cKv4yZMntxnvL9pTq+6sM+pVU1OD+vp6XHPNNZ5I0Wd0tFYigr1796KwsBApKSmeStMntLdWS5YsQe/evTF79mxPp+gz2lur6upqxMXFISYmBrfffjtyc3M9narh2lOrd999F0lJSZg7dy4iIiLwox/9CJmZmWhsbPRGygB4k19DfPvtt2hsbERERITT8xERESgvL3f5mvLycl3x/qI9terOOqNeGRkZiI6OxsSJEz2Ros9ob60qKioQHR2N2tpaWCwWrFmzBpMmTfJ0uoZqT60OHTqEdevWIS8vzxsp+oz21Co+Ph5vvPEGhg0bhsrKSqxatQrJyck4evQoBg4c6I20DdGeWn3xxRf48MMPMXPmTOzatQtFRUWYO3cuGhoa8Pjjj3sjbTZORjKZTE6fi0ir5zoS70+68+/eHu2t1/Lly/HOO+9g//79CAwM9FR6PkVvrUJCQpCXl4fq6mrs3bsXCxYsQP/+/TF+/HgPZ2o8rbWqqqrCr371K6xduxZhYWHeSs+n6NmuxowZgzFjxjg+T05OxogRI7B69Wq89NJLHs3TF+ipVVNTE8LDw/Haa6/BYrFg5MiRKCsrw3PPPcfGyZ+FhYXBYrG06qjPnj3bqvNuFhkZqSveX7SnVt1ZR+r1/PPPIzMzEx988AFuuOEGT6bpE9pbK7PZjAEDBgAAhg8fjoKCAjzzzDN+3TjprVVxcTFKS0vxk5/8xPFcU1MTAMBqtaKwsBDXX3+9Z5M2SGccs8xmM2666SYUFRV5IkWf0Z5aRUVFISAgABaLxfHckCFDUF5ejrq6OthsNo/mDHA5AkPYbDaMHDkSe/bscXp+z549GDt2rMvXJCUltYrfvXt3m/H+oj216s7aW6/nnnsOTz31FLKyspCYmOjpNH1CZ21bIoLa2trOTs+n6K1VfHw88vPzkZeX53hMmzYNEyZMQF5eHmJjY72Vutd1xnYlIsjLy0NUVJQnUvQZ7alVcnIyTp486WjEAeDzzz9HVFSUV5omAFyOwCjNl2CuW7dOTpw4IfPnz5fg4GApLS0VEZFZs2Y5XVVw6NAhsVgssmzZMikoKJBly5Z1u+UItNaqtrZWcnNzJTc3V6KiomThwoWSm5srRUVFRv0KXqW3Xs8++6zYbDbZunWr06XQVVVVRv0KXqO3VpmZmbJ7924pLi6WgoICeeGFF8RqtcratWuN+hW8Rm+tLtedrqrTW6snnnhCsrKypLi4WHJzc+W+++4Tq9Uqn3zyiVG/gtfordVXX30lV111lcybN08KCwtl586dEh4eLk8//bTXcmbjZKBXXnlF4uLixGazyYgRI+TAgQOOr6Wmpkp6erpT/JYtW2Tw4MESEBAg8fHxsm3bNi9nbBw9tSopKREArR6pqaneT9wgeuoVFxfnsl6LFy/2fuIG0FOrRx99VAYMGCCBgYHSq1cvSUpKkk2bNhmQtTH0HrNa6k6Nk4i+Ws2fP1+uu+46sdls0rt3b0lLS5Ps7GwDsjaG3u0qOztbRo8eLXa7Xfr37y9Lly6VhoYGr+VrEhHxztgWERERUdfGOU5EREREGrFxIiIiItKIjRMRERGRRmyciIiIiDRi40RERESkERsnIiIiIo3YOBERERFpxMaJiIiISCM2TkRELixatAh2ux333HOP0akQkQ/hyuFERC5UVlZi48aNmDdvHoqKijBgwACjUyIiH8ARJyIiF3r27Ilf//rXMJvNyM/PNzodIvIRbJyIiNrQ0NCAoKAgHDt2zOhUiMhHsHEiImrDokWLUF1dzcaJiBw4x4mIyIUjR45g7NixmDRpEkpKSnD8+HGjUyIiH8DGiYjoMk1NTRg1ahRSU1MxevRozJw5E+fPn4fNZjM6NSIyGE/VERFdZvXq1fjmm2+wZMkSDBs2DA0NDSgsLDQ6LSLyAWyciIhaOHPmDB577DGsWbMGwcHBGDhwIOx2O+c5EREANk5ERE4efPBB3HbbbZg6dSoAwGq1YsiQIWyciAgAYDU6ASIiX7Fz5058+OGHKCgocHp+2LBhbJyICAAnhxMRERFpxlN1RERERBqxcSIiIiLSiI0TERERkUZsnIiIiIg0YuNEREREpBEbJyIiIiKN2DgRERERacTGiYiIiEgjNk5EREREGrFxIiIiItKIjRMRERGRRmyciIiIiDT6fwUQGLb+M2IwAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'characteristic polynomial')" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ξ = linspace(0,0.6,100)\n", - "plot(ξ, [det(A - λ*I) for λ in ξ], \"r-\")\n", - "plot(ξ, zeros(ξ), \"k--\")\n", - "plot(λ, zeros(λ), \"bo\")\n", - "xlabel(L\"\\lambda\")\n", - "ylabel(L\"\\det(A - \\lambda I)\")\n", - "title(\"characteristic polynomial\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Eigenvalue example:\n", - "\n", - "For example, consider the matrix\n", - "\n", - "$$\n", - "A = \\begin{pmatrix} 1 & 1 \\\\ -2 & 4 \\end{pmatrix}\n", - "$$\n", - "\n", - "whose eigenvalues are $\\lambda = \\{2,3\\}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Int64,2}:\n", - " 1 1\n", - " -2 4" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ 1 1\n", - " -2 4 ]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 2.0\n", - " 3.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The characteristic polynomial is\n", - "\n", - "$$\n", - "\\det(A - \\lambda I) = \\det \\begin{pmatrix} 1 - \\lambda & 1 \\\\ -2 & 4 - \\lambda \\end{pmatrix} = (1 - \\lambda)(4 - \\lambda) - (1)(-2) = \\lambda^2 - 5\\lambda + 6 = (\\lambda - 2) (\\lambda - 3)\n", - "$$\n", - "\n", - "where we have used high-school algebra to factor the polynomial. Hence its roots are $\\lambda = \\{2, 3\\}$, as computed above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Eigenvectors\n", - "\n", - "Once we have the eigenvalues, finding the eigenvectors is (in principle) easy: **the eigenvectors are just (a basis for) the nullspace**\n", - "\n", - "$$\n", - "N(A - \\lambda I)\n", - "$$\n", - "\n", - "when $\\lambda$ is an eigenvalue.\n", - "\n", - "For example, with the matrix above, let's take the eigenvalue $\\lambda_1 = 2$:\n", - "\n", - "$$\n", - "A - 2I = \\begin{pmatrix} -1 & 1 \\\\ -2 & 2 \\end{pmatrix}\n", - "$$\n", - "\n", - "We could go through Gaussian elimination to find the nullspace, but we can see by inspection that the second column is minus the first, hence $x_1 = (1, 1)$ is a basis for the nullspace:\n", - "\n", - "$$\n", - "(A - 2I) x_1 = \\begin{pmatrix} -1 & 1 \\\\ -2 & 2 \\end{pmatrix} \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} = \\begin{pmatrix} 0 \\\\ 0 \\end{pmatrix}\n", - "$$\n", - "\n", - "or\n", - "\n", - "$$\n", - "A x_1 = 2 x_1\n", - "$$\n", - "\n", - "as desired. $x_1 = (1, 1)$ is an eigenvector! Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Int64,1}:\n", - " 2\n", - " 2" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A * [1, 1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the other eigenvalue, $\\lambda = 3$, we get:\n", - "\n", - "$$\n", - "A - 3I = \\begin{pmatrix} -2 & 1 \\\\ -2 & 1 \\end{pmatrix}\n", - "$$\n", - "\n", - "from which it is obvious that a basis for the nullspace is $x_2 = (1, 2)$. Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Int64,1}:\n", - " 3\n", - " 6" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A * [1, 2]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, $A x_2 = 3 x_2$!\n", - "\n", - "For more complicated cases, of course, we might have to go through elimination to find the nullspace. In practice, though, we alway just let the computer do it. The `eig` function in Julia will return the eigenvalues and eigenvectors:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "([2.0, 3.0], [-0.707107 -0.447214; -0.707107 -0.894427])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 2.0\n", - " 3.0" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " -0.707107 -0.447214\n", - " -0.707107 -0.894427" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The columns of `X` are indeed the eigenvectors from above, but they are scaled differently (they are normalized to unit length). If we divide each one by its first element, though, we should recover our scaling from above:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.0\n", - " 1.0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X[:,1] / X[1,1] # first column, with first entry scaled to 1" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.0\n", - " 2.0" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X[:,2] / X[1,2] # second column, with second entry scaled to 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In practice, computing eigenvalues by hand, especially by this method, is even more pointless than doing Gaussian elimination by hand, for reasons explained below, so I will **focus more on the properties of eigenvalues and how to use them than how to compute them.** The computer will give us their values." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "0.4472135954999579" - ], - "text/plain": [ - "0.4472135954999579" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "1/sqrt(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Matrix powers: A first look\n", - "\n", - "If you multiply an eigenvector by $A^n$, it just multiplies the vector by $\\lambda^n$. We will explore this more later, but for now let's try a couple of quick examples:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Int64,1}:\n", - " 32\n", - " 32" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A^5 * [1,1] # gives 2⁵ * [1,1] = [32, 32]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What if we multiply some *other* vector $y$ by $A^n$? To understand what happens, we **expand *y* in the basis of eigenvectors**. A simple example is:\n", - "$$\n", - "A^n \\begin{pmatrix} 2 \\\\ 3 \\end{pmatrix} = A^n \\left[ \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} + \\begin{pmatrix} 1 \\\\ 2 \\end{pmatrix} \\right]\n", - "= 2^n \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} + 3^n \\begin{pmatrix} 1 \\\\ 2 \\end{pmatrix} \\approx 3^n \\begin{pmatrix} 1 \\\\ 2 \\end{pmatrix} \\mbox{ for } n \\gg 1.\n", - "$$\n", - "In this basis **each eigenvector is multiplied by λⁿ**. Furthermore the **term with the biggest |λ| grows fastest** so for large *n* the result is approximately in the corresponding eigenvector direction." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 5.15378e47\n", - " 1.03076e48" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y = A^100.0 * [2,3]" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 5.15378e47\n", - " 1.03076e48" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2^100.0 * [1,1] + 3^100.0 * [1,2] # same, but computed with eigenvectors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The result is approximately a multiple of $(1,2)$, so the second component should be nearly double the first component:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "1.9999999999999993" - ], - "text/plain": [ - "1.9999999999999993" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y[2] / y[1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The same reasoning shows that for *any* vector $z$ that is not a multiple of $(1,1)$, $A^{100}z$ will blow up proportional to $3^{100}$ and will be approximately parallel to $(1,2)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " -1.13383e49\n", - " -2.26766e49" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "z = A^100.0 * [17,-5]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "2.0000000000000013" - ], - "text/plain": [ - "2.0000000000000013" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "z[2]/z[1] # approximately 2 since z is nearly parallel to (1,2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Transpose: Same eigenvalues!\n", - "\n", - "One of the properties of determinant is that $\\det A^T = \\det A$. It follows that\n", - "$$\\det(A-\\lambda I) = \\det\\left[ (A -\\lambda I)^T \\right] = \\det (A^T - \\lambda I)$$\n", - "and therefore $A$ and $A^T$ have the **same eigenvalues!** (They have the **same characteristic polynomial**.)\n", - "\n", - "Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 2.0\n", - " 3.0" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, same eigenvalues (2 and 3) as for $A$.\n", - "\n", - "However, $A$ and $A^T$ in general have **different eigenvectors**, because the **left and right nullspaces are not usually the same**. $N(A - \\lambda I) \\ne N(A^T - \\lambda I)$ in general. Here, the eigenvectors are:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.0 1.0\n", - " -0.5 -1.0" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y = eigvecs(A')\n", - "Y ./ Y[1,:]' # normalize so that the first components are 1, for easier comparison" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that these are different from the (1,1) and (1,2) that we got above.\n", - "\n", - "As you might guess, the eigenvectors of $A^T$ are sometimes called its **left eigenvectors**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Complex eigenvalues\n", - "\n", - "If we change the matrix to:\n", - "$$\n", - "\\begin{pmatrix} 1 & 3 \\\\ -2 & 4 \\end{pmatrix}\n", - "$$\n", - "we get a characteristic polynomial:\n", - "$$\n", - "\\det \\begin{pmatrix} 1 - \\lambda & 3 \\\\ -2 & 4 - \\lambda \\end{pmatrix} = (1 - \\lambda)(4 - \\lambda) - (3)(-2) = \\lambda^2 - 5\\lambda + 10\n", - "$$\n", - "whose roots, from the quadratic formula, are:\n", - "$$\n", - "\\lambda = \\frac{5 \\pm \\sqrt{5^2 - 40}}{2} = \\frac{5 \\pm \\sqrt{-15}}{2}\n", - "$$\n", - "which are complex! Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Complex{Float64},1}:\n", - " 2.5+1.93649im\n", - " 2.5-1.93649im" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals([1 3\n", - " -2 4])" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "2.5 + 1.9364916731037085im" - ], - "text/plain": [ - "2.5 + 1.9364916731037085im" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(5 + sqrt(15)*im) / 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, it matches our formula.\n", - "\n", - "**Eigenvalues may be complex numbers, even for real matrices**. We can't avoid complex numbers for any longer in 18.06!\n", - "\n", - "(But, for real matrices, they are the [roots of a real polynomial](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem) and hence come in [complex conjugate pairs](https://en.wikipedia.org/wiki/Complex_conjugate).)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The perils of polynomial roots\n", - "\n", - "You might think that finding roots of polynomials is we must inevitably find eigenvalues. In fact, although we use the characteristic polynomial to *think* about eigenvalues, in practice they are not used to *compute* them except for tiny matrices.\n", - "\n", - "In fact, working with the characteristic polynomial is a computational disaster in general, because **roots of polynomials are exponentially sensitive to their coefficients**. Any tiny roundoff error leads to disaster.\n", - "\n", - "For example, consider the polynomial\n", - "\n", - "$$\n", - "w(x) = (x - 1) (x - 2) (x - 3) \\cdots (x - 10)\n", - "$$\n", - "whose roots are, obviously, ${1,2,\\ldots,10}$. What happens if we actually multiply this polynomial together and compute the roots from the coefficients?" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$3.6288e6 - 1.062864e7\\cdot x + 1.2753576e7\\cdot x^{2} - 8.4095e6\\cdot x^{3} + 3.41693e6\\cdot x^{4} - 902055.0\\cdot x^{5} + 157773.0\\cdot x^{6} - 18150.0\\cdot x^{7} + 1320.0\\cdot x^{8} - 55.0\\cdot x^{9} + 1.0\\cdot x^{10}$" - ], - "text/plain": [ - "Poly(3.6288e6 - 1.062864e7*x + 1.2753576e7*x^2 - 8.4095e6*x^3 + 3.41693e6*x^4 - 902055.0*x^5 + 157773.0*x^6 - 18150.0*x^7 + 1320.0*x^8 - 55.0*x^9 + 1.0*x^10)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w = prod([Poly([-n, 1.0]) for n = 1:10])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Already, this seems hard: how do we find roots of a high-degree polynomial? More on this below.\n", - "\n", - "For the moment, we will just use a \"black box\" function `roots` provided by the Polynomials package to \"magically\" get the roots of $w$ from its coefficients:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Float64,1}:\n", - " 10.0\n", - " 9.0\n", - " 8.0\n", - " 7.0\n", - " 6.0\n", - " 5.0\n", - " 4.0\n", - " 3.0\n", - " 2.0\n", - " 1.0" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "roots(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looks good! The roots are what they should be.\n", - "\n", - "Howevever, suppose we make a *tiny error* in computing the coefficients. Let's multiply each coefficient by $1 + \\epsilon$, where $\\epsilon$ is a *random small number* of root-mean-square value $R$.\n", - "\n", - "The following code plots the roots in the [complex plane](https://en.wikipedia.org/wiki/Complex_plane) for 100 random perturbations, and lets us vary the magnitude $R$ of the pertubation:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":-6.5}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":-6.5}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["logR"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":-1.0,"min":-12.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-22e84a9d-460c-48b5-9440-7011ba7ef010","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_06","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", -6.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", -6.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_01\", -6.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_01\", -6.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_01\", -6.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"logR\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, -1.0),Pair{Symbol,Any}(:min, -12.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", -6.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":-6.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-49c4814b-48b2-4671-a688-f13752e3c5d2\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_05\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "N = 10\n", - "w = prod([Poly([-n, 1.0]) for n = 1:N])\n", - "fig = figure()\n", - "@manipulate for logR in -12:0.1:-1\n", - " withfig(fig) do\n", - " plot(1:N, zeros(10), \"r*\")\n", - " R = exp10(logR)\n", - " for i = 1:100\n", - " r = roots(Poly(coeffs(w) .* (1 .+ R .* randn(N+1))))\n", - " plot(real(r), imag(r), \"b.\")\n", - " end\n", - " xlabel(\"real part of roots\")\n", - " ylabel(\"imaginary part of roots\")\n", - " title(\"roots of \\$(x-1)\\\\cdots(x-10)\\$ with coeffs perturbed by R=$R\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl4FFXW/7/VTUgggQAaNpt9EbeIL4RdZVGDo4gyBkTBgBFQxwFBQBx/Cm7sgozLDJCIIiOSCCgogggBRXaQ90VQJ8iWZhchQCAhSd/fH9fqrq6uqq7qVPV6Ps/TT9LVtZy6VXXvqXPPIjDGGAiCIAiCIKIMW6gFIAiCIAiCsAJScgiCIAiCiEpIySEIgiAIIiohJYcgCIIgiKiElByCIAiCIKISUnIIgiAIgohKSMkhCIIgCCIqISWHIAiCIIiohJQcgiAIgiCiElJyCIIgCIKISkjJIQiCIAgiKiElx0I2b96MSZMm4fz580E/9pIlS3DTTTehWrVqEAQBe/bs8bvNa6+9hhtvvBEulysIEqpz8eJFjB8/Hvfccw9SUlIgCAImTZqkuG5OTg6uu+46FBcXWyZPuLQLYKxtAODSpUt47rnn0LBhQyQkJKBt27b49NNPvdYJRhsCwIcffghBEHD48GEA2s/HpEmTIAgCfv/9d0tlMhu15y6Q5zFcsLofC9a1Fo8TLvKIz4P4qVKlCho0aIBHHnkEBQUFph3HaJ+hhJ5+pLJs2LDBqz2kn61btwa8X1JyLGTz5s149dVXg67knDlzBoMHD0aLFi2wevVqbNmyBa1bt9bc5vjx45g+fTpee+012GyhvS3Onj2LefPmobS0FA8++KDmupmZmUhMTMT06dMtkSWc2gUw1jYA0K9fP3z00UeYOHEivv76a6SlpWHgwIH45JNP3OtY3YYi9913H7Zs2YIGDRoACN3zYRVqz10gz2M4EW3XKdxYsGABtmzZgm+//RbPPvssVqxYgW7duuHcuXOm7N9on6GEnn7ELCZPnowtW7Z4fW6++eaA91fFRNkilsuXL6N69eqhFsM0/vvf/6KsrAyDBg3CnXfeqWubOXPmoFatWujXr5/F0vmnSZMmOHfunPttKjs7W3XdKlWqYMSIEXj99dfxwgsvmH4dw6ldAGNts2rVKqxduxaffPIJBg4cCADo0aMHjhw5gnHjxmHAgAGw2+2Wt6FISkoKUlJSLNl3OKD23P3444+Gn8dwwOp+Mdr63UC5+eab0b59ewBA9+7dUVFRgYkTJ+Lzzz/H0KFDK71/I32GEnr7EbNo1aoVOnXqZNr+Qv9qGmREU+Tu3bvx8MMPo3bt2mjRogUAYNOmTejVqxdq1KiB6tWro0uXLvjqq68U9+Nv3UmTJmHcuHEAgGbNmrnNbhs2bMCZM2cwfPhwNGrUCPHx8UhJSUHXrl3x7bff+pXf33GHDBmCbt26AQAGDBgAQRDQvXt3zX1evXoVOTk5ePTRR72sFSdOnEBSUhIeeeQRr/W//PJLxMXF4aWXXvIrbyCIbaWXxx57DBcuXDDdfKrWLkBktM3y5cuRlJSEjIwMr+VDhw7F8ePHsW3bNvcyvW24b98+CIKAvLw897Jdu3ZBEATcdNNNXus+8MADaNeunfu7dLpK6/mQcurUKQwcOBDJycmoV68ennjiCRQVFek6/19++QUDBw5EvXr1EB8fj8aNG+Pxxx9HaWmpex29z3xBQQEeffRR1K1bF/Hx8bjhhhvw3nvvuX9Xe+60nsdA+wGxD/vxxx/Rr18/1KxZE8nJyRg0aBDOnDljWHbpPuX9otZ1GjJkCJo2baoqn579SyksLPR7PnrOBQC++uortG3bFvHx8WjWrBlmzpyp2aZK+JPn+++/hyAIWLx4sc+2CxcuhCAI2LFjh+HjigrPqVOnDG+rhNH+VI6RfkTv9QkqLMaYOHEiA8CaNGnCXnjhBbZ27Vr2+eefsw0bNrC4uDjWrl07tmTJEvb555+ze+65hwmCwD799FOvfehZt7CwkP39739nANiyZcvYli1b2JYtW1hRURFLT09nKSkpbN68eWzDhg3s888/Z6+88orPceToOe6BAwfYe++9xwCwyZMnsy1btrB9+/Zp7ve7775jANiqVat8fnv11VeZIAhs586djDHG8vPzWUJCAvv73/+uu80rw5kzZxgANnHiRM31brjhBtavXz9Tj63VLoyFf9t06tSJpaWl+Sz/6aefGAA2d+5cr+V627BBgwZs+PDh7u9Tp05l1apVYwDYsWPHGGOMlZWVsZo1a7Lx48e711uwYAEDwA4dOqT5fDDmeU6vv/569sorr7C1a9eyWbNmsfj4eDZ06FC/Mu7Zs4clJSWxpk2bsn//+99s3bp1bNGiRax///7swoULjDF9zxNjjO3bt48lJyezW265hS1cuJB988037Pnnn2c2m41NmjSJMab+3Gk9j4H2A9I+bNy4cWzNmjVs1qxZLDExkd12223s6tWrhmSX71PaL2pdp8zMTNakSRNV+dRklu7fyPnoPZdvv/2W2e121q1bN7Zs2TKWl5fH0tLSWOPGjX3kqmz73nbbbaxr164++0hLS1N89qSIz8OOHTu8lr/77rsMAFu6dKnXcpfLxcrKynR91NDbn0rR24/ovT5q5OfnMwCsbt26zG63sxo1arB77rmHff/997plVSJmlZxXXnnFa3mnTp1Y3bp12cWLF93LysvL2c0338wcDgdzuVyG150xY4a7U5eSlJTEnnvuOcOy6z2ueLPk5eXp2u+0adMYAHby5Emf34qLi1nDhg1Zr1692Pbt21mNGjXY0KFDvdrDSvQ+lI899hirV6+e1zKXy8XOnTvHiouLvZZfuXKFnTt3jpWXl3stLyoqcg+AjGm3C2Ph3zatWrVi6enpPsuPHz/uHnSlKLWhEoMGDWLNmzd3f7/rrrvYsGHDWO3atdlHH33EGGPshx9+YADYN998415PquQwpv58MOZ5TqdPn+61/JlnnmEJCQl+27hnz56sVq1a7PTp06rr6H2e0tPTmcPhcCtgIs8++yxLSEhgf/zxB2NM/blTWx5oPyC2zejRo72W/+c//2EA2KJFi9zL9Mqu1i8ypn6dAlFylPav93z0nkvHjh1Zw4YN2ZUrV9zrXLhwgdWpU8eQkqOnfcV7+scff3Qv2759OwPgfhbUELfdunUrKysrYxcvXmSrV69m9evXZ3fccYePsiLeR3o+Ss8UY4EpOXr7Eb3XR43du3ezUaNGseXLl7PvvvuOffDBB+yGG25gdrudrV69Wre8cmJuukrkr3/9q/v/4uJibNu2DQ8//DCSkpLcy+12OwYPHgyn04lff/3V8LpqdOjQAR9++CHeeOMNbN26FWVlZX7lNeO4ahw/fhyCIODaa6/1+a169ep44403sG7dOvTo0QP33nsv5s+fr2r+1PKQl3/MjDCpW7cuTp8+jfLycveyU6dOoXbt2njmmWe81p06dSpq167tY0pu3bo1br/9dvd3rXYBIqNttMzU8t+U2lCJXr164eDBgzh06BBKSkqwadMm9O7dGz169MDatWsBAN9++y3i4+PdUzWB8sADD3h9T01NRUlJCU6fPq26zeXLl7Fx40b0799f1QdI7/NUUlKCdevW4aGHHkL16tVRXl7u/vzlL39BSUlJwJEfgfQDUh577DGv7/3790eVKlWQn58PAAHJLu0XrUBr/1rno/dciouLsWPHDvTr1w8JCQnufdWoUQN9+vQxJKu/9gWAgQMHom7dul5TMu+88w5SUlIwYMAAXcfp1KkT4uLiUKNGDfTu3Ru1a9fGF198gSpVvF1m27Vrhx07duj6NGzY0NC5+sNfP2LkXpP+Vl5eDsYYAOC2227D22+/jQcffBC33347hg4dis2bN6NBgwYYP358wLLHrOOxGOEBAOfOnQNjzGuZiHiznD171vC6aixZsgRvvPEGsrOz8fLLLyMpKQkPPfQQpk+fjvr16ytuY8Zx1bhy5Qri4uJUncfESBBBEPDhhx9qOpldf/31mD9/vq7jNm7c2LiwKiQkJIAxhpKSEq9BqzL4axcgvNvmmmuuUbwn/vjjDwBAnTp1vJbrbcO77roLAFdkmjVrhrKyMvTs2ROnTp3C66+/7v6ta9euqFatWqXPQUp8fDwAfm3UOHfuHCoqKuBwODTX0fM81ahRA+Xl5XjnnXfwzjvvKO4r0FDjQPoBKfJ1qlSp4nXNz549a1h2pfYwE639a52P3nM5d+4cXC6XYvvpaVO98ojEx8djxIgReOuttzBjxgyUlZUhNzcXY8aMcd+r/li4cCFuuOEGXLx4EUuWLMHcuXMxcOBAfP31117rJSUloW3btrr2KVeQKoOefkTv9Tl8+DCaNWvmtTw/P1/Vb7RWrVq4//778e9//xtXrlwJqD+JWSVHqpnWrl0bNpsNJ06c8Fnv+PHjAOB+mzeyrhrXXnst3n77bbz99ts4evQoVqxYgQkTJuD06dNYvXq14jZmHFdLnqtXr6K4uBiJiYlev+3Zswf3338/unbtih9++AEffPAB/va3v6nuq0GDBnjyyScDkqMy/PHHH4iPj/canOvXr+9+S5AyadIkxTwRJ0+e9Pqu1S5A+LfNLbfcgsWLF6O8vNyr09u7dy8A+IRlKrWhEg6HA61bt8a3336Lpk2bon379qhVqxZ69eqFZ555Btu2bcPWrVvx6quvmn9SOqhTpw7sdjucTqfqOnqfp9q1a7utO2rXVt5p6yWQfkDKyZMncd1117m/l5eX4+zZs27FMBDZjTioJiQkeDlxi2gpfVr71zofveeSkJAAQRB8nmVx/0bw174iTz/9NKZOnYoPPvgAJSUlKC8vx1NPPaX7ODfccIPb2bhHjx6oqKhAdnY2PvvsMzz88MPu9TZu3IgePXro2uehQ4cUncIDQU8/ovf61KhRw8eCfv3112seX+zDA3WejlklR0piYiI6duyIZcuWYebMmW5t0eVyYdGiRe5O3ei6et46GzdujGeffRbr1q3DDz/8YIqMRmnTpg0A4LfffkNqaqp7+a+//or09HR07twZX3zxBTIyMjBp0iQMGjQIycnJAR3LKg4ePIgbb7zR1H2qtQsQGW3z0EMPYf78+Vi6dKmX6fyjjz5Cw4YN0bFjR6/1jbThXXfdhdzcXDRq1Aj33XcfAG7Vaty4MV555RWUlZW5LT5q6Hk+AqFatWq48847kZeXhzfffFNR+df7PAmCgB49euDHH39EamoqqlataqqsInr7ASn/+c9/vKLXcnNzUV5e7n4rrl69uimyq12npk2b4vTp0zh16hTq1asHgEckrlmzJqDjaJ2PkXPp0KEDli1bhhkzZrinrC5evIiVK1eaJo+UBg0aICMjA++//z6uXr2KPn36VMoSO336dCxduhSvvPIK+vXr547sFKer9GDmdJWefsRut+u+PqJCp4dz587hyy+/RNu2bb2mHw0RsDdPhCI6lZ05c8ZruRhp0bFjR5aXl8e++OILlp6erhld5W9d0VFsxIgRbPPmzWzHjh3s/Pnz7LbbbmMzZsxgK1euZBs2bGAzZsxgCQkJ7NFHH9WU3ehx9ToeHz161Cfa5tChQ8zhcLDbb7+dXb58mTHG2M8//8zsdrtXxIxVrFq1iuXl5bEPPviAAWAZGRksLy+P5eXl+TgSV1RUsOTkZDZmzBhTZVBqF8Yiq23uvvtuVrt2bTZv3jy2fv16NmzYMB/nScaMt+HSpUvdTo4bN250Lx86dCgDwGrXrs0qKiq8tpE7His9H6Ljt9pzKt+HGmJ0VfPmzd3nvnjxYjZw4ECf6Cp/z9O+fftY7dq1WYcOHdiCBQtYfn4+W7FiBZs1axbr0aOHez0jjseV6Qfk0T/ffPMNmz17NktKSmK33norKy0tNSy7WntL5Zdfp4MHD7K4uDjWvXt39tVXX7GlS5eyO++8kzVr1kzV8Vhp/3rPR++5fPPNN8xms7Fu3bqx5cuXs88++4ylpaWxRo0aBRRdpdW+Itu2bXM/D99++63fYzCmHl3FGGPTp09nANjHH3+sa1/+0NNnbNiwgdntdvbqq6/6bK+nH9F7fdQYOHAge+GFF1heXh7Lz89n8+bNY9dffz2rUqUKW7t2bcDnTkqOhO+//5717NmTJSYmsmrVqrFOnTqxlStXKu5H77ovvvgia9iwIbPZbAwAW716NXvqqadYamoqq1mzJqtWrRq7/vrr2cSJE30GqECPa1TJYYyx22+/nf3lL39hjHGv+RYtWrD/+Z//8fGUHzZsGIuPj/c7yFSWJk2a6I4cWLduHQPAdu3aZboc0nZhLPLa5uLFi2zkyJGsfv36rGrVqiw1NZUtXrzYZ59G2/DcuXPMZrOxxMREr5BaMQJFKRRdSUGRPx/5+fmMscorOYwxtn//fpaRkcGuueYaVrVqVda4cWM2ZMgQVlJS4l5H73N86NAh9sQTT7DrrruOxcXFsZSUFNalSxf2xhtvuNcxouSUlJQE3A+IbbNr1y7Wp08flpSUxGrUqMEGDhzITp06FZDsWv0iY+rXadWqVaxt27asWrVqrHnz5uzdd9/VjK7SUnL0nI+ec2GMsRUrVrDU1FT3dZ86daqiXGa0r0jTpk3ZDTfc4Hf/IlpKzpUrV1jjxo1Zq1atfKJAA0FPnyHep0qRV3r7Eb3XR4kpU6awtm3bsuTkZGa321lKSgp76KGH2Pbt2yt17gJjCk4LRMwhmiKPHDniNQ8dCQwePBgHDx7UbeY3QiS3ixGsbEPCXCZNmoRXX30VZ86cCdgPjzCX//u//8Ott96K9957zyeakwgtMRtCTnjTr18/pKWlYcqUKaEWxRC//fYblixZgmnTplmy/0htFyNY3YYEEa389ttvWL9+PYYPH44GDRpgyJAhoRaJkEFKDgGAe67Pnz8fDRs2DItq23o5evQo3n333UrnY1EjUtvFCFa3IUFEK6+//jruvvtuXLp0CXl5eVSLKwyh6SqCIAiCIKISsuQQBEEQBBGVkJJDEARBEERUQkoOQRAEQRBRSUxlPHa5XDh+/Dhq1KgRcIpogiAIgiCCC2MMFy9eRMOGDd1ZoPUQU0rO8ePH0ahRo1CLQRAEQRBEABQWFmoW35UTU0pOjRo1APBGqlmzZoilIQiCIAhCDxcuXECjRo3c47heYkrJEaeoatasSUoOQRAEQUQYRl1NIsbx+F//+hdSU1PdCkrnzp3x9ddfh1osgiAIgiDClIhRchwOB6ZOnYqdO3di586d6NmzJ/r27Yt9+/aFWjSCIAiCIMKQiM54XKdOHcyYMQNZWVm61r9w4QKSk5NRVFRE01UEQRAEESEEOn5HpE9ORUUF8vLyUFxcjM6dO6uuV1paitLSUvf3CxcuBEM8giAIgiDCgIiZrgKAvXv3IikpCfHx8XjqqaewfPly3HjjjarrT5kyBcnJye4PhY8TBEEQROwQUdNVV69exdGjR3H+/HksXboU2dnZ2Lhxo6qio2TJadSoEU1XEQRBEEQEEeh0VUQpOXLuuusutGjRAnPnztW1PvnkEARBEETkEej4HVHTVXIYY16WGoIgCIIgCJGIcTz+xz/+gXvvvReNGjXCxYsX8emnn2LDhg1YvXp1qEUjCIIgCCIMiRgl59SpUxg8eDBOnDiB5ORkpKamYvXq1bj77rtDLRpBEARBEGFIxCg5OTk5oRaBIAiCIIgIIqJ9cgiCICIJpxPIz+d/CYKwHlJyCIIggkBODtCkCdCzJ/9LxmmCsB5ScgiCICzG6QSGDwdcLv7d5QJGjCCLjhHICkYEAik5BEEQFiAdlAsKPAqOSEUFcOBAaGSLNJSsYKT0EHqIGMdjgiCISCEnx2O5sdmAadP4X6miY7cDLVsGtn+nE9i8mf/fpQvgcFRe5nBFyQo2fDjAGP/YbMC8eYDOOs1EjEGWHIIgCBNRGpQnTAD69fNeb9CgwJSTnBygcWNgwAD+adw4uv17lKxgLhdXcMT/aeqPUIOUHIIgCBNRm5pautR72aJFxgdmpxMYNswzwAP8/2ge5Fu1AgRBex2a+iPUICWHIAjCRFq14lMocuRVAisqgC1bjO27oMB3P+K+YnmQr8zUHxHdkJJDEARhIg4H98HRw4ABxqaa1Kwa0TzIqyl2oiJptwNz50a3XxIROKTkEARBmEy7dsrL5RYeo1NNDgcwf763omOzRecgL0ZPJSX5tpvdDrz7LpCbCxw+TE7HhDqk5BAEQZiM0pSVODDLqagA5szRv++sLODoUT7A5+YCR45E3yAvDRnv1AkYPJi3H+CJUnvmGeCRR4A1a0IrKxHeCIwpGQKjkwsXLiA5ORlFRUWoWbNmqMUhCCKKycnhVpqKCs+USno6H7zljsk2G1dWos0aEwhOp28b2e3cf+nwYT7FJx217Ha+nNouugl0/CZLDkEQhAVkZfHBNz/fM6XicABjxviu63LFtuOwFLXotOJi4NprlR24qe0INUjJIQiCsAiHA+je3dvKMGqU73qCEL2Ow0ZRi07buZN/5ESz0zVReUjJIQiCsBB5+YETJ3wjpPzlgYklHA5g6lTf5RMmAC+84Lt86lSaqiLUISWHIAjCIuQ1l4YMATp29J1yoekqb9q3911WUaEcSq60LkGIkJJDEARhAUrlHT76SD3nC025eFCLTpNbvGiqivAHKTkEQRAWoORAq0bsxLjqw+HgRTfFsHExOm3+fN9lNFVFaEFVyAmCCAucTq4YtGoVHQOXaI3Qo+gwxqerouG8zSIri4fcHzjArTVi20iXAdzfKVruGcJ8yJJDEETIkfuuRENVbSVrhBo07aKMUnSauGzNmui7ZwjzoWSABEFYjpaVRi35W7QkeHM6ueXh9GmeyE6OzcaVoWjLWmwUI5a8aL9nCF8oGSBBEGGJPyuNWvK3aIk2Ei0PXbr4OtPabMDWraTgGLXkRfs9Q5gHKTkEQViGUoSRvCClWiRNtE3fKE1fzZsHpKWFVq5Qo+cekecaipV7hqg8pOQQBGEZet641SJponHaQanUQ6yjdY84ncC4cUDjxt5WHvk9Y7MBo0cHX3Yi/CGfHIIgLMOI74TouyKNpIlVoi3STAule8RmA4YN4yHjcgXIbgc++YRP/wG8gvusWXw98m+KXsgnhyCIsEPJSqP2xu1wcAWnoMB7qiJSkU+x6CUaI820kN8jgsAVlrlzlcPvKyq4A3eTJsDixR4FB1Ce6iJiG1JyCIKwFHGKZuxYPgjNnKk8eEfT4D5jhu8UixQ1BUiPf0o0It4jubn663i5XLyeFTkgE1qQkkMQRFB46y1PZl/54K00uA8fDuzYERpZK8PMmcD48ernqqXMxXLUkMMBXHut/izRgGeKSgo5IBNSSMkhCMJy5szxLV1QUQHk5Xn8T+SDm8sFdOoUWRYdp1O5UrbUkVbLUrNzp++2sTRoK0VNaSH67sSC0zoRGKTkEARhKU4n95tQYswYbs3YuVN5cIu06Rq1elViAU41S82cOfwcJ0zw3XbChNgZtNes8VaGBQHo3199fanvztixFLFG+EJKDkEQluKvUKXLBbz4IjBtmrKiE0nTNWqWiKlTuaKi9vusWcDmzcrtNHlyZFmzAkW0csmVnLFj/Vt3GANmz7ZWPiIyISWHIAhLSUryv05FBdC+Pc/+K3c8Fa0gkYBS/pYZM3iuF/H3MWN8t3O5+HkrOd0yxgf/SLFmBYralGVxMW9Tf4pOJCnDRPAgJYcgCMtwOoHvv/e/nt0OJCYChw75/sYYcOKE+bJZhTTh35Ej3BIhZdQoX2XGbgeaNvX1WxJxuYAtW6yQNnzQymKclcWtfVrEku8SoR9ScgiCsAQxiuj5531/k1ot7HZg0CDuZDxggO9Az1jkOSArVc+W/jZ/vq+zbG6u//0GmnsnEtDKfO10AlOm+G4jvYfI4ZhQgjIeEwRhOkpZbOXYbHzqpn9/rsT4Cx2OtirT0gzPgHZ7CQIwfTqP3Ir2zL5Kma/z83nIvZzcXCAlhbJkxwKU8ZggiLDBn7MxwH+fPZtPUenJjRJtPhdSa49We9ls3ClbVHAA41FnobQAGT22UuZrtamszp3VLWYEAZCSQxCEBSgNSmqRU4KgLzdKJDkgG0WtvXJzuV9P+/aBJwkMZSbpQI6ttI3DwSPUxDai6SlCL6TkEARhOkr+FdOmKTvcdu7sva4ajPE8KtGIUnvNmwdkZPDvZ84Eltk3lGUiAjm22jYzZ3pKONhsXOGJxqk6wnxIySEIwhKkUUaHDwO1a3v/Lgiet3Fp7SI1qw5jkZUYUAv5FI7TCTRvziOoxPbKyvJYNUSHbKOWjFCWidB7bGlbqG0zfry34jNhQnTcB4T1kJJDEIRliH4nAE+/Lw9zSE/3XjcjQ9uqEw1+OfLpmCFDPN87dQJ++80TUSS1aohtl5urP7OvVli21eg5trwtdu1SVnKVSoJE+n1ABAdScgiCsJzNm5VDw5Vyv2RlqeeEifRcKErTMR99pDylo5QB2eXi0UR6fVG0wrKtxt+xldpiwgRv3xs1Iv0+IIJHlVALQBBE9CJOQZw9a2w7paSAALcGRaqzqdPJrTD+IsnEWlZvveX7WyCDe1YWt5jJw7KDgdax1aamTp9WT4oIkNMxYQxScgiCsIScHM+butKbuSBwp2MjKOVKiQSkbeEPu50rOPKBvjKDu8MROqVA7djidJa0TQRB+dwBvu6nn/J7hhQcQi80XUUQhOkoTUXYbJ7oKpuNZ/1VG6y6dPGNxApEKQomavlg5G2hhHRKZ/Ro5UF+8WJlP5xIyoIslVU+nQXw81ZTcMRoM1JwCCOQkkMQhOmoFVtcssRT00nLcVYsfSBagPwpRaFGKx+MnsSIixd7oqpGjVJPfGfkuOGGkqyi/5WWD47Nxgu3Usg4EQhU1oEgCNNRKusQSFkGpRT/gchSUMCnR6xQkvydq78SF0rtkpPDHZArKjzTVPJB3qw2DgZashYUqE9DystXiNcyKQm4dMm6a0qEH1TWgSBihEiYntAT1aPnPLQKXeohGJYOf/lg5G0hnbZT87OR5xhSsmKEMgeOUbRkVQo1V0J6LTt0iAzrFRF6yJJDEBGE3Jk33IsAeCgsAAAgAElEQVQ0qlli9J5HZawwwbJ06D2OvCCnmoVK7zlHiyXH4fC2XMmx2/mUlloR13A9Z8JcAh6/WYQwefJk1r59e5aUlMRSUlJY37592S+//GJoH0VFRQwAKyoqskhKgrCOwkLGbDbRNZN/7Ha+PJLQex7Z2Z71bDb+3Qjr13sfQ/zk5+uTcf16/W2bnc3PQTwXo7JK92PknM06bjDwJ2thIWOzZilfM7XlRq4pEdkEOn5HjCWnd+/eeOSRR5CWloby8nK89NJL2Lt3L/bv34/ExERd+yBLDhHJ5Ocr+y7k53uyCocLWtYIPedh1EqhdLxALR2BWssq6z8UqLxm+C0FC3+yKrWB6HhMlpzYJuotOXJOnz7NALCNGzfq3oYsOUQkEymWHH/WiOnTfd/E7XbGtm/3WE+MWGG0jmfU0hHKNq6M5SmayM5mTBA85y8IfJn0WkqvTThbrwjzCHT8jthkgEVFRQCAOnXqhFgSgggODgcweDAvAyAyaJD5/iWViURSqyKdnu6JNJowwXe73r09b+pilWl5ojilbL/+jmc026+Wg2wgPkFG2lIpOV4sli9ITfX+LhZmPXyYfw4cABITgeLiyLBeEaElIqOrGGMYM2YMunXrhptvvll1vdLSUly4cMHrQxCRitMJfPyx97JFi8yLsjIjEslfxI9SPSYA+Oorb0XlxReBadO8I5KmTvUd0PREGBmJ0DKroGUgbRnMOlPhGqGXkwN07KhekFO8lmlplYu6I2IIawxL1vLMM8+wJk2asEI/NuSJEycyAD4fmq4iIhErpzPMmqbR2o98GsLfJz+fT22J2yhNfSkdz2bjU1+Bkpnpvb/MzMq3gRGZCgv5uVs1RVZZh26rUGo3tXvRqGM4EfkEOl0VcUrOs88+yxwOBzt48KDfdUtKSlhRUZH7U1hYSEoOEbFY6S9ipgKl5AejNoCpDWqCwJUCvVFYcl+NQAdvM9pYrS3DQaEIZ78uve0WrkoaYS2BKjkRM13FGMOzzz6LZcuWYf369WjWrJnfbeLj41GzZk2vD0FEKlZOZ5g1TQMoJ7JTK23w3nu+NapEDh3Sl+wuKwt44QXvZaJvjtHpGLXpr7w8/ftSS24XqExmEqwEgoFMh7VqpVyvTFrSwenklejlPljhNu1GhA8Ro+T87W9/w6JFi/DJJ5+gRo0aOHnyJE6ePIkrV66EWjSCCBp6MuEGgtkKlNwPRk2Juv9+4PnnfbdnjA9wehQvpxOYMsV3H4EM3moKypgxxn1rlPajRyYr/WXMVGbVMDvLdIMGnv/nzFH31yEIRawxLJkPFHxrALAFCxbo3geFkBOENlb6g6iFc/vz4/EXAq41zRHIeShNfwUytaN3uk1+bPlUjNn+J1YmEKzMdJi/KVOtKc9wmG4jrCVmfHIqAyk5BBFa1JQoNT+e9eu5sqCleKkNfjNmVE5OtSy7RvyUjCgUSuchCNb4n1ilzBrx7ZIrb/4UJLV9jx1r7jkQ4QkpOTogJYcgwhfpwFuZ8gY2G4/KMkMesyLO9CgUaoN4ODoJq1HZkh1aSmE4O00T1hP1ZR3MgMo6EET4o5baf/FioEsXdT8hK8obSAtHin5KlfWDUksSqHTeSoRjGQ8p/tpMrXzFJ5/w6wuoX0crrkc0UtmknuFIoOM3KTkEQYQVarWtgNBUXjdTefJXF0s6iNtsHpuFSKTUadJqM3/Xd9o0oF079QE6kmp1hYIZM3i0IWOheV6sgpQcHZCSQxDhjz+Lhs0GHDkSeQOc3gKc0kF8zZrALBfh/Cav12IVTQN0sJg5Exg3zntZpCjG/gh0/I6YEHKCIAIjXFP4qyEPZ5fjcvFQ4khDb44aMfweAJo3B7ZsMZYywOwQbrPxd31FKAeOMZxO33xRAIXYk5JDEBGKkvIiXxbuAx6gfB5iPqDcXOVkgbNnKw9+4azQGclRI71unToBv/2m701crWBpuLWHv+srEusDtF6cTt6WStYxmy32irx6YboLdBhD0VVEtKAUnSKv8zR9evhHo+iJoho7Vl9YciSk+9cTUm5lrplgYSS3j1l5iWIV6X2v9DEj0jAcoBByHZCSQ0Q6hYWMLVniW+hSqfClWscX7AFPDb2DeWGh7/nJE8BFUnixv5Dyyigq4dAOgSibYptMn25dosJoROnZkD4jlckVFW4EOn5XCa0diSAIvUgjc+QohQ+IETxyR9dwMV1r+aj4m5qRnq+aqV7vvoKNw6EtkzitFch1E/1d5M7KwWoDtemy9HRtGcQ26d4dGDiQoqf0snmz8rMv1vxKSwu+TOEG+eQQRAQgHzz0IAjAiy9aU9DTDHbu9F2mNJgXFPh25IzxgVD0XVGqf+VPMQhX/53K1hGzqr6ZHswoACqve0ZwjNyvjAHFxdbLFAmQkkMQEYBaFW+AD4JKzpuMAZMn8+KVoRjwtHA6gQkTfJdPneo7uKk57CYmqit+/hSDcHfINkNRCUVykGAUAI0F9AYQiMkT5VCbeyAlhyAiAKXBw2bjSswnn/AEakohuYzxsNJwM/2rKW3t2/suU7NsXLqkvI/Zs7UVg0iJQArUohFKBc6MavbhamELFvLrN3Om+v3qcADZ2d4vOTZbeFlsQw0lAySICEGaDVeOmCn24kXgtdd8f8/NBTIyrJdRL3oT48m3kfpqBLIPQD3jbriXS9BDoG1ihRyB+NX4ywgd7aiVNFFS5qX3q9PJ8ykBQOfO0angUDJAgohysrJ4R6Y0NeVy8emf+vWDL1cgBPLGL7dsBGo1iOYpFTN8YswgECtUpFjYrETp+rlcvs+8/H51OPhLTEZGdCo4lYGUHIKIIC5dUve1qKgArr3Wt0O02fjbXbhhht9JIPswY0olXIlkBS5cFLRQonb9/vEPz3KbDRg9GjhxIran9fRCSg5BRBBJSeoZYu12oFo1/jYnrmO38wE9XAdwMyJpAtlHKCOQrCSSFbikJOXliYnBlSOUKF2/QYN48ICoADLG/XQ6dAhfx/lwgnxyCCJC0MqTY7cDHTvyvBkid94JLFoUGQMcYS6RVKlbLCZ65gwwYIDv79HgK2UU8folJvKyHv5SR0RLEU4tAh2/KRkgQUQASnlybDbgiy/4G/ClS0CfPt7bbNwI/PvfwBtvBFdWIvT4SzgYLkgVd0HgH+lrd6RMtZmNeP3y8/XlxgrXxJfhAE1XEUQEoOaQmJTE33L/+1/l7SZPtm7OPtZDfYnKIVfcReUmEqfarELJR0eJWFUG9UBKDkFEAP4cSm+/XXk7MTOwGUiVmnBPpqcGKWbhg5LizhiweHH0+UoFiuijo6XoUF4cbUjJIYgIwJ9DaVoa0K6d73ZmveFJlZrGjYFhwyIv1DdSFbNoRU1x79yZyjpIycridaiUFJ0RI4AjR0gZ1IKUHIKIEMSIoNxcnuU4Pd3zm9MJ/Pij7zbSMglGrBjSdZWmFeThCuEe6ms0BwtZfKwnkiPBrEZ+/6WlebeVzQbMmMF97qi9tCHHY4KIINas8c4IO20at+CcOaNdJsFIJln5umPG6IvusMInQIy8adWqcp25kYrnsZ51N5hkZXFlPVIiwYKB0v2Xng40b86TgRYXU1sZgULICSJCUEr5LmKz+VpYxLBSQDlV/JEjvh2lWlp5wHuZIPDlFRWeN3CzFQEzlQ295Q7CpSwCEZuoPX/isx3LSjeVdSCIKEerErkYgisqJFLTv1pk1pw5+o7hcnFrjnRaYf58a5PpmZ3iX+/UCGXdJaxGaypU7fkTX14ixf8tnCBLDkFECFqWHJHcXCAlxduc7XRyZ2H5k27UkgEEb1rBqiKa/pLkkSWHsBJ5XqDp04GxYz2/63nGgdhMkEiWHIKIArTe8uTWCDlqkSkOB/D8877rK1kotCwelS3BYMSZ16oaTP7OgZxhCatwOr2jEhkDxo3jDsQi8vtPqYQL5cQxBik5BBEm+Atxdjo9zof5+cDDD3v/ftddnvXkysSoUfqVBivqOhkN3w6lshGtda2I0LJ5s3Jx3QkTvJ9VaRSlEtKIScI/NF1FEGGA2jTJli28ZMPOnbwzFJ1wp071fJcjpsaXOynm5PD5fCudhY2cm54pIKtqMJkVtUUQesnNVa7NBShPP1k1ZRupBDp+k5JDEGGAWocmr+Xjb7kcuTIRisKN4dZZU4h48CGlkrdBo0a+y6UvM2Idulat+G/kH+aBfHIIIoJRq1GjpsjofTWR+91U1q8mEKzyrwkEs6O2CP9QpmmOwwFkZ3svs9mAQYN4pfGePYEOHTzt9Omn5B9mBqTkEEQYIPdB0VOUTw/h4KRopX+N0czEFCIeXEip9CYrCygs5FNXubnAF18ACxcqh42PGwf88Qf5h1UWUnIIIkyQOryq1apRon9/z7o2myciI5ze/MLBmRkIL6tSLGBEqYyVUhoOB5CRwZNxPvCAtlV2wgT+l2p5BU6lfXIqKiqwd+9eNGnSBLVr1zZLLksgnxwikhgyBPjoI8/3++4Dvv7afw4b6f/R2jFWxpk5VA7YsYje6xQrflKib9K6dcCbb+rbJlYdjeUEPH4zg4waNYplZ2czxhgrLy9nXbt2ZYIgsMTERJafn290d0GlqKiIAWBFRUWhFoUgNCksZMxmE5O584/dztiMGfyv+P3PRzHmWL/eu23Ej94uqLCQr1tYaKWUBGP8HtW6Z9Xu9Wi7NtnZvufp7xON7RAogY7fhgt0fvbZZxg0aBAAYOXKlTh06BB++eUXLFy4EC+99BJ++OEHo7skCEKGmpm/fXv+Fhyopcbp5Pk6AKBLF2Pbh1OEjDjtJLcQ6J12EpMbEtbjrwinkeKpkYrcN0kP4TTdHMkY9sn5/fffUb9+fQDAqlWrkJGRgdatWyMrKwt79+41XUCCCBWh9BHQ8h3xFyGlJndODi/vMGAA/zRqpD/SJdwiZCgzcWShdc/Ggp+UVt05JWbPJkdjszCs5NSrVw/79+9HRUUFVq9ejbv+TLN6+fJl2NXyzRNEhBHsQV2umCgN4lOm8M5SS+lSk1t8k5R74D35pH8lLlwjZCgzcXQQCwqrWooIJex2ns3c4YgdZ2xLMTovNnHiRJacnMzatGnDGjduzEpKShhjjOXk5LBOnToZ3V1QIZ8cQovCQu7rsX17cH0EpHP1Npu3z4LoOzJjhvo60nXV5FbzYQEYy83Vlq+y/i8EoYdo95OS+ibZbIwNH86fvenTlX2WtPqFWCTQ8Tug6KrPPvsMhYWFyMjIgONPdfujjz5CrVq10LdvX5PVMPOg6CpCDXl1YKWnYtYsoFs3T0ZSs/K8+Is+0RuhopVZuGVL5UrkAM/XkZFRORkJgvCP0wnMmcP7ErGvef55ngaiuNgzHU3PnC9By3i8cOFC9OnTB6NHj3YrOAAwcOBAFBUVGd0dQYQc+XSMmto/Zox3RlIzprD05BHRm2vEnx/P9Om+x7fZeOVyLWJhOoEggsGJEx4FB+B9zcyZPOPxb795nilKWmkehpWcoUOHKiozFy9exNChQ00RiiCCiVGnQMA8vxQ9Tpd6HTP9KSNjx/pWLh88WJ+yQv4vRLgQSX4qUllzcvhLklJfI+9PYsEZO1gYVnIYYxDElKoSnE4nkpOTTRGKIIKJEadAKRUV3PRcGfRYSbTWkXf4WsrIjh3AsmXex1+0SP9gEYq6VwQhJdRRfk6npySDv+dGLuuTT2qvL7XUOBz8BUTKoEH07AWCbp+c2267DYIg4H//939x0003oUoVT4qdiooKHDp0CL1790Zubq5lwlYW8skh1JBmwTWCzcbTs1e289FTHVy+jpEssTk5wLBhylNxlFGViARC7acif4YEAZg/X/mZU5LVH9JzCfW5hiOBjt+6kwE++OCDAIA9e/YgPT0dSUlJ7t+qVq2Kpk2b4q9//asBkQkifBATlm3ZwnPI6HXHd7nMSVqmJzmddB21sO70dN/9qIWPA2QCJyKHUCYNdDp9XxIYU3/mjE6B22zeFtxYSJAYLHQrORMnTgQANG3aFAMGDEBCQoJlQhFEKBAL5124oG71kBMqJUFvJyia15U6XHnHShDhTGWzXFeGggLl/kBN8VCS1R/p6drb0wtJYBj2RMjMzERCQgJ27dqFRYsW4T//+Q9+/PFHK2QjiJCQlQWsWOF/vVBGGelxTBR9Ap5/3nd7m41XOicHYiJSCGWUX6tWfHpKjprioSRrZqbnuxzRIqy1Pb2QBIjRhDynTp1iPXr0YIIgsNq1a7NatWoxQRBYz5492enTp43uLqhQMkDCCA8/rJwETxB4Ei8xaZmYbE/tu1VoFT5USgwoTRAY64nFiMglVEkDs7P5sy8+R3oS9MllLSzkfYd0P1rJRqM9QaIRAh2/DVty/v73v+PChQvYt28f/vjjD5w7dw4//fQTLly4gJEjR5qvhUn47rvv0KdPHzRs2BCCIODzzz+39HhE7OJ0qkdcPf88n9YSnX+lERRDhhiL/qhMOKxWJJWaTwDVxCEinVBF+WVlAdu2Aa+8AkyeDCxe7D3FpIRcVoeD56UaPtxjGdKy0lBEowkY1aZq1qzJtm/f7rN827ZtLDk52ejuDLFq1Sr20ksvsaVLlzIAbPny5Ya2J0sOoQf5G5v0Y7N5v5WpWUv0lIOwMm27VokHgjCbYFkvQ4n0edVjzVFqE6W+Zfr04Mgf6QTNkuNyuRAXF+ezPC4uDi6jGdUMcu+99+KNN95Av379LD0OEbtoRSIBPOuxVgSEnIoKHrGldhytopeVsfLQnD4RLEKduyYYyJ9XEbWkoEptota3TJgQGYkNIxXDSk7Pnj0xatQoHD9+3L3s2LFjGD16NHr16mWqcAQRbPwpLs2ba2clVeKRR3w7fn9p280YONSmsyIpYywR3oRrhXqz0eoX5OUW1NrkjTfUsx1TuQbrMKzkvPvuu7h48SKaNm2KFi1aoGXLlmjWrBkuXryId955xwoZA6a0tBQXLlzw+hCEGk4ncOaMchSFyDPPeJQOJWtJerrv9kodv1Z0lJkDh3xOPxbeuongESs1lrReaOQRVmptMm+e8vY2G4WGW4lhJadRo0bYvXs3vvrqKzz33HMYOXIkVq1ahV27dnkV7AwHpkyZguTkZPenUaNGoRaJCFPEwX/AAP5dS9FxubgSsmOHx1oydixfvmaN8jbyjl9JQRo9mv9v1cARK2/dRPCIlRpL8udVRGkaWKlNbDblKXBB4PsNs6EzurDIR8hyoMPxuKSkhBUVFbk/hYWF5HhM+KDmpDtihCdEW+0zYgRjK1eqOyrrCREdO9azvc3GHRGtcBpev15Ztvz8yu2XiG20UhmEGrMdosWQ7u3btUO75W2i9EwLAt8PoY9AHY8DUnI2bNjA7r//ftaiRQvWsmVL1qdPH/bdd98FsquA0aPkyKHoKkIJrcFfLa+Fno/YqWl1/GoK1owZ5g8cFHFFWEU45nOxMnpRD/I2CWdlMBIIdPzWXdZBZNGiRRg6dCj69euHkSNHgjGGzZs3o1evXvjwww/x6KOPmmtqknDp0iUckNjsDx06hD179qBOnTpo3LixZcclohutFOqBlHoQt9+yBSgu1i66qTY11b49nwbzV7TTCKLJXSxEShFXhFnoqb0WTIzUdrMKeZuI9fHMfKYJHRjVptq0acNmzZrls/ytt95ibdq0Mbo7Q+Tn5zMAPp/MzExd25Mlh1BDz1vW++/rt+I8/LC+44bCuhKOb90EYSahmJqNhVxBoSTQ8VtgTO+7KSc+Ph779u1DS5ln2YEDB3DzzTejpKTEHO3LAgIt1U7EBk6n9luW0wk0bqzPmiMIPDtqWpr/dXNyfK0rlJGYIDhOJ7d4tmql3/rhdPJAArl19vBhaywoOTkey5HNxi2m9AybS6Djd0DRVevWrfNZvm7dOopeIiIafynUHQ5g/nztyCsRxoCOHfWFaGuVZyCIWCbQlAfBTIZJUYvhjWFLzr/+9S8899xzeOKJJ9ClSxcIgoBNmzbhww8/xJw5czBixAirZK00ZMkhAkH+Jul0cn+bs2f5708/rb6tlW+PBBHNmGGN8WedNYP8fK6EKS3v3t2aY8YigY7fhh2Pn376adSvXx9vvfUWcnNzAQA33HADlixZgr59+xrdHUGENTNnAi+84GuGzsjwrBMXBzz5pPL2YlkH6foEQfhHK1+UXoUlGA7RWoELROgxpORUVFRg06ZN6N69Ox566CGrZCKIsGDGDGD8eM93rQgNeScn5ZFHeHQWTUMRhH4iRXmgqMXwxvB0VUJCAn7++Wc0a9bMKpksg6arCL1oORlLzdA7dnDfG39PEU1bEYRxIskpPxhTY7FM0KarbrnlFhw8eDAilRyC0EtBgbLiIq0zI0ZU6HlNMGpmJwgi/HPLyP31wk0+IoDoqjfffBNjx47Fl19+iRMnTlABTCKqECt0JyUpR1FNm8b/5uby5IBaFculhKOZnSAiAX9Rj6GCit1GBoYtOb179wYAPPDAAxAkowBjDIIgoKKiwjzpCCKIyHNdqFlo5BEfaoj+BDRHTxDRhVrYeGoqcOmSsZw+hLUYVnLy8/OtkIMgQopSp6WEGGnlD71lHQiCiDzUIr9E/zxKCBg+GFZy7rzzTivkIIiQotRpydGKoJIzZYq+bMcEQUQeSpFfgMf6G4paWYQyhn1yCMIqRH+YUGQKFTstKTabZ5ndDkydqryOEqTgEET0IoaNqz3/gCfYgAgtpOQQYYHciW/cuOAqO0pp4OfNA44c8ZRbGDfOdx0lxYecjAki+klP146spH4gPDCcJyeSoTw54YlS+naARzdNmwa0bx88Rz49uS7k66jl8giksCBBEJGBWjkHIPxz+kQigY7fupScFStW4N5770VcXFylhAw1pOSEJ1qdhUi4O/IpKT5UlZggohe12lqLFwOdO9OLjdlYquTY7XacPHkSKSkpsNvtOHHiBOrWrVspgUMBKTnhiZolR06osgYbtciYUViQIIjwR27FHT0aGDWKnnMrCHT81uWTk5KSgq1btwLw5MMhCLOQ+8OoEQpHPrWEX1pO0lqFBQmCiB6ysvjLy9ix/JmfOZMSA4YbupScp556Cn379oXdbocgCKhfvz7sdrvihyACQdpZqEUs2Gw80dasWbxmlNWoJfwSOzK1TKdK2ZLJCZEgopdZs3zDx0MRJUr4otvx+JdffsGBAwfwwAMPYMGCBahVq5bien379jVVQDOh6arIQPRv2bmTVwFXu0MzMoCnn7bOsVfNV0ipMrI4FSX1xZH+Tk6IBBGdqPUT0kK+ROWxvEBnmzZt0KZNG0ycOBEZGRmoXr16QIIShD/EQneJidohmnl5/GOVY69Swi+lBGDSqahhw7xlttl45mPKm0MQ0YlSP0GW2/DBcJ6ciRMnonr16jhz5gw2bdqEH374AWfOnLFCNiLG+f57fetZZR5Wyp2jlRdnzhxfpczl4qUdCIKITpT6CapVFz4YLutw+fJlPPvss/j444/dxTjtdjsef/xxvPPOO2ThIUyjdWv964rWFLM7lqwsnvRLGh5ep45vXhyAz8vLsdnojY4goh2lfoIIDwxbckaPHo2NGzdixYoVOH/+PM6fP48vvvgCGzduxPPPP2+FjESMkpiof10rzcMOB59bFzsu0Uk6P59PRTVvDmzerBwCP2aMZ7tQlq0gCMJa5P0EER4Yznh87bXX4rPPPkN3mUdVfn4++vfvH9ZTV+R4HFmo5c/p0we45RaeDVmeZTiYSJ2MxWgq6dOk5pBMyQEJgiCMYWmeHCmXL19GvXr1fJbXrVsXly9fNro7glBFrQje7bcDb77psaYcPhx8hUEeXi4qN0rz8mqh6GTRIQiCsBbDPjmdO3fGxIkTsXDhQiQkJAAArly5gldffRWdO3c2XUAitklP97XkjB/PLSdjx4bONKyU8I8xntI9JcV7Xl4rOSCZtgmCIKzDsJIzZ84c9O7dGw6HA7feeisEQcCePXuQkJCANWvWWCEjEcNs3qy8/IUXgEceCZ2SoBY2qlSzhkJMCYIgQoPh6aqbb74ZBQUFmDJlCtq2bYvU1FRMnToVBQUFuOmmm6yQkSB8cLm402+oMBI2SiGmBEEQocGw43EkQ47HkYfTCTRqpP772LGegnhGC2maJZ/esFEj6xIEQRAeLK1CHi2QkhOZjBvH60WpYbMBd98NfPMN94uh6CWCIIjogpQcHZCSE5k4nUDjxtolHuRIw7cJgiCIyCZoIeQEEWwcDmD+fGPbSOtJEQRBELEJKTlEVBKM6KVgZDCmLMkEQRCBY1jJad68Oc6ePeuz/Pz582jevLkpQhGEFDGZnhGsjl7KyeHZmHv25H9zciLzGARBENGMYSXn8OHD7sKcUkpLS3Hs2DFThCIIKUrJ9PyRmmqNLEBwMhhTlmSCIIjKozsZ4IoVK9z/r1mzBsnJye7vFRUVWLduHZo2bWqqcAQBKCfT88cPPwBpacaPpScMPRgZjClLMkEQROXRreQ8+OCD7v8zMzO9fouLi0PTpk3x1ltvmScZQfyJmExvxAg+0AuC/0irrl2NH0dvEc1gZDCmLMkEERxCkV+LCB66p6tcLhdcLheaNGmCM2fOuL+7XC6Ulpbi119/xf3332+lrEQMk5XlKci5bZtv0U4pmZnGrThGpoeCkcGYsiQThPWQ31v0YyhPTllZGe655x7MnTsXrVu3tlIuS6A8OdFDTo7HsmO381pWKSncgiNXcPS8qeXn845OaXn37srbBCODMWVJJghrcDq5YiO3llJ+rfAk0PHbUIHOuLg4/PTTTxAEwbCABGEmWVm8Qrk/BcDKKSiHw/rOMBjHIIhYhPzeYgPD0VWPP/44csimR4QY0TqjpeCE2xQUQRDhg/hiI4X83qIPQ5YcALh69Sqys7Oxdu1atG/fHomJiV6/z5o1yzThCEIJvdYZo29qeq1DBEFEPvKABnqxiU4M167q0aOH+s4EAevXr7CpzWUAACAASURBVK+0UFZBPjmRj5F5dJpzJwjCH+T3FhkExScHAPLz841uQhCmoWadmT8fGDbMu5OiNzWCIPxBfm/RDVUhJyIKJeuMlLFjgVGjvDstelMjCIKIbAIdvwNScnbs2IG8vDwcPXoUV69e9fpt2bJlRncXNEjJiQ5ycrjVRu3O1fLTIQiCICKPQMdvw9FVn376Kbp27Yr9+/dj+fLlKCsrw/79+7F+/XqvUg8EYRXp6doZj6nOE0EQBAEEoORMnjwZs2fPxpdffomqVatizpw5+Pnnn9G/f380btzYChkJwouCAv/rVFQAc+ZYLwtBEAQRvhhWcn777Tfcd999AID4+HgUFxdDEASMHj0a8+bNM11AgpCjlN9CiVmzyJpDEAQRyxhWcurUqYOLFy8CAK677jr89NNPAIDz58/j8uXL5kpHEArIE/cJApCa6ruey8UdjgmCIIjYxLCSc/vtt2Pt2rUAgP79+2PUqFEYNmwYBg4ciF69epkuoJz3338fzZo1Q0JCAtq1a4fvv//e8mP6ZedOXvho585QS+KfSJHVj5zSgp1HjwJffcWVHSlByV4aJe0ZVkSKrCSnuUSKnEBkyRrjGM6T8+6776KkpAQA8OKLLyIuLg6bNm1Cv3798PLLL5suoJQlS5bgueeew/vvv4+uXbti7ty5uPfee7F///6Q+gMJaTcBWAukXdV0iA0lt98ObNoEALeBy8qnfF56CXjtNfOOI5ZbSEoCDh3ilpStW4GffgIuXQKqVOHKR5UqQFkZcPky0KABUK0a/79VK/7b/37bCDUvTEGnIcWoehdw9SpXaho04Ofyxx9A69aAmHDb4eC5cqSZkEePBr79Fti+HfjLX4D77/eW9csvgVWr+G/16gHff8/3nZYG7NgBrFzJj9enj29Iurvg58KFQH4+nO+vQMHg9u4ioE4nsHkzX79LF88ytUKheoqI6mn7lSuBEyeADh1427j396ec+PhjOOu3dx8L8JUzWCids9MJFEzeglb5/4Xj44+B9u1VtwlEdj3tLF3nxAnv+8ILlWsfLOTnonpuJsopfb4vXQr8flWUVXKPSq+73mMqPXOVlkkNledJazt/95Uo/9mzwLlzwOnTwPXX8/5Hun6DBr7PeXEx8N//8t9PnQIWLADi4oA77+TbA55txO//+Q//27YtcPAgUFoKHDnCj1ulClCjBjB0qG+/Kcoq3V+DBlz2AweAkhK+zOd5CRUsgujQoQN76qmnvJa1adOGTZgwQdf2RUVFDAArKiqqvDCHDzO2cycDKhjgYjzex8WACsZ27uS/hwneMso/LpaUWG7KcbKzGbPZlI5h7cdm48f2d/wuXTyydumivl6LFr7LsrOl5+j687gull3jOZaNJ5gN5e5lmX+9yATBs60gMJaZ6ZFNlFep3eS/GWl75bZxseyXDzNWty5jAMuu8ZxbfkHwvicEIbBjB4LPOU/7nWX/v0OetkU5y67xHGO7drmfJ+k20vbVK7uedta6hzIzmfu5Z7t2MVa3rs+1z572uxXN5fdcfO6vab+bLqdS2wRyv3rL7mLZ/++QW04G8L9/Xvfsab/rOmZ2NvN55ozIpesZlF17+fNks7lUj+nvvpLLH04fab8pnoue7TIz9be/HgIdvxHIwcrLy1leXh577bXX2Ouvv84+++wzVlZWFsiudFNaWsrsdjtbtmyZ1/KRI0eyO+64Q3GbkpISVlRU5P4UFhYG1EiKAAy4zHyVBxcDLvMvYUC3bkxBRvnHxV5+uXLHKSwMjYIjfux2fZ3EypX8Y3T/Nhtj27crdPIocw8e3veAf3kLC5XbTfzNSNtrHgtlrBAOVojrFGSt3LEDQfGcUcYEmWxc7usYA7jsfu4vLdn1tLOee3g72ru/FMLh0552lIWk/ZSv+XWmyal1TCP3jNq1L8R1ngf4z79a96v0mGqy2Wz65NL9DEpXEARF+ZS2C3XfaMZn5UrPuRjZbvt2ffeFHgJVcgz75Pz0009o3bo1MjMzsXz5cixbtgyZmZlo1aoV9u7da7ahyc3vv/+OiooK1KtXz2t5vXr1cPLkScVtpkyZguTkZPenUaNG5gm0aBGAqgBkjiAQ+PJFi8w7ViXYtg3wlVGOgOXLK3ccpXILwaSigj9W/li9mk9RGcXl4tN98nN0oQpcsMvW9tfenkKhWkVE9eIvpL4CVXAALVCAVgqyVu7YgaB4zqgCJpONy90SqFIFBf/40O/9pSW7nnbWcw//8Ni/uC0fQAFa+rRnBaqEpP3kVKAKDtiu5+ubIKfWMY3cM2rX/gBaeh7gP/8W2Nqo3q/SY6rJpjfwQPczuGiR+9qDMcXnSWm7UPeNZrB6Nf+rJ32HlB9+MF8WoxhWcp588kncdNNNcDqd2L17N3bv3o3CwkKkpqZi+PDhVsjohSDzLmWM+SwTefHFF1FUVOT+FBYWmifIY48BuApAPrIyvvyxx8w7ViXo2FHfeg89VLnj6A3rtgq73dfxWInevbkPjlFsNqBbN99ztKEcNlQY3p/oFK3UbkYdpkX/FNVjoRwtcQCtUOBX1mA4a6udsyB4P0ui3Ni2Da2evsvv/aUlu5521nMPdx3VXnxzUGzPULWfHLsdaPnl23x9E+TUOqaRfSleBxvj11m+7pezdR1TTTabTZ9cup/Bxx5zX3tAf7uGum80g969+V9/fY2crl3Nl8UwRk1GCQkJ7KeffvJZvnfvXpaQkGB0d7oJZLpKjqk+OYwxtmsXU/TJ2bXLnP2bhEc2JZOiiyUlmXOc7Gxurg22KdVu58fOzNReL1CfHOn8vvQc7Shj2cKTLBtPMDvK+DKbi2Vmek+diT4T7u3svj45ar8ZaXvFtrG5WDaecNvLs4Un3bKa4V8RKErnnP3yYU87/tm2DHA/T9JtApFdTztr3cNuH4Ndu9wHlV/7ULWf4v1lspxKbRPI/epzHV4+7H1Rxb+7duk+ptznJRCfHF3PoKRN5c+T1nb+7ivyyfFPoOO34dpVbdu2xaxZs9CzZ0+v5evXr8eoUaMsnbLq2LEj2rVrh/fff9+97MYbb0Tfvn0xZcoUv9ubXrvK6QTS0iCcPAg+dXUVrH5zHpoTZpUgb+9wGZt2xHsts6EcL426gtfermXaccRimImJPBrqAH8Rx969wMWL3NorRljJo6uuXAFaOS7DvuFb/C9LRXL9eHQs+Q4Jl86h5OFHceRsTTRsyN8Ozp/nb0xJSZ43J3nhTpsNmDGDRw707q0cXbV6Nf+tXj1uWu3a1RNd9dVXQP36fDufgp9bzqDl39LhaFoFyMqC818rceBoVbRc8x4caQ3gdAJbtvD1O3f2RL+oFQo1o4io08nP6eRJHpySlAS0TDwBxwP/AzRqxOPuc3LgPFyOA++tQcvOKQB85QwWPufsdML5Pw/gQJ0OaDmkGxzL/gkUFno9T9JtApFdTztL1zlxwvu+cK+QluZuU/m1Dxbyc1FqT7PllD7fxcWB369essJbTuTkeF13vcdUeuYClkltW6evrNLnyV90ldZ9JcovRledOcMjSO+/33v9Bg18n/NLl/i+u3bl0VUffcSjq+64w9Pvidv8mcsXixfzv6mpvK8uKeHpOE6d4v1zcjKQmakeXSXdX4MGXPYDB3iU1n33mR9dFbQCnatWrcL48eMxadIkdOrUCQCwdetWvPbaa5g6dSq6devmXtfsIphLlizB4MGD8e9//xudO3fGvHnzMH/+fOzbtw9NmjTxu70lBTpLS4GqVflcCWM81jk+3v92oSBSZNUppzQks6CAp62Qk58PdO8eWjlDTqTICUSOrCSnuUSKnEBkyRpFBE3JsUkmF0VfGHEX0u+CIKCiwrivgj/ef/99TJ8+HSdOnMDNN9+M2bNn44477tC1LVUhjx5ycjw5cQDueySZLgfA30YOHw47oxpBEARhkKApORs3btS97p133mlk15ZDSk504HT6Tk0pMX06MG5ccGQiCIIgrCPQ8dtwxuNwU1yI2ENvSGbYZNwkCIIgQkKEB7YRsYieMMag1K0iCIIgwhpScoiIY80a7Zw4djswdy754hAEQcQ6pOQQEYXTyR2OlTzJBAEYO5Y7G2dleW+Tn8//EgRBELEDKTlERKHmjzNxIs/xMGOGtwUnJ4c7Kffsyf/m5ARPVoIgCCK0GFZyJk2ahCNHjlghC0H4RS0F+5NPKifYk4aZu1zAiBFk0SEIwgNZeqMbw0rOypUr0aJFC/Tq1QuffPIJSkpKrJCLIBRxOIB587hiA2j73wRS/JI6PIKIHcjSG/0YVnJ27dqF3bt3IzU1FaNHj0aDBg3w9NNPY8eOHVbIRxA+ZGVxv5v8fF//GylGi19Sh0cQsQNZemODgHxyUlNTMXv2bBw7dgwffPABjh07hq5du+KWW27BnDlzUFRUZLacBOGFw8GVlYIC9U7JiNWHOjyCiC0CsfQSkUelHI9dLheuXr2K0tJSMMZQp04d/Otf/0KjRo2wZMkSs2QkCADeU0lyq8tLLwGzZvGaflL0Wn3CdWqLps8IwhqMWnqJCCWQkuc7d+5kf/vb31idOnVYgwYN2AsvvMAKCgrcv8+cOZPVrVs3kF1bSqCl2onQk53NmM3GGMD/CgL/X+mTmWl8/4WFnv2LH7udL9cjT3Z2pU4vZMcgiFgmO5s/5+LzTs9Y+BLo+G24dlVqaip+/vln3HPPPRg2bBj69OkDuzgf8CdnzpxBvXr14NKTez+IUO2qyERvrSop27cbL+uQk8OnqCoqPFNbSpYfJXnMLgYajGMQBMGftQMHuAWHnq3wJWi1qzIyMvDEE0/guuuuU10nJSUl7BQcInLRW6tKyg8/GFdysrKA9HT/HZ7W1JZZnWQwjkEQBH+e6JmKXgz55JSVlWHBggXkWEwEFaW5c3907RrYsRwOoHt37U4vGHP55C9AEARReQwNHXFxcSgtLYWgVTiIIExGjJIyouj83/9ZL4+eqK1wPgZBEES0Y9gnZ+rUqfjll1+QnZ2NKlUMz3aFFPLJiWwmT+ZRVHoIhv9KMObyyV+AIAgiiD4527Ztw7p16/DNN9/glltuQWJiotfvy5YtM7pLgvBLTo5+BQcIjv9KMObyyV+AIAgicAwrObVq1cJf//pXK2QhCEWcTmDYMGPbkP8KQRAEYVjJWbBggRVyEIQqc+bwzDVq2GzA3XcDa9fyiCTyXyEIgiCAAJQcgggmTicwc6byb4IAPP88MGoUV2hC4b/idPJw71at/B/TyLoEQRBE5QlIyfnss8+Qm5uLo0eP4urVq16/7d692xTBCAIANm9W/23JEiAjw/M92P4rOTmeelc2G4+GUisbYWRdgiAIwhwM16765z//iaFDh6Ju3br48ccf0aFDB1xzzTU4ePAg7r33XitkJAgfbDagc+fQHV+toOeOHb61pqj4J0EQRGgwrOS8//77mDdvHt59911UrVoV48ePx9q1azFy5EhKEkiYTpcuysunTQvtlI9aRuJOnTxFQ3NytNelascEQRDWYljJOXr0KLr8OfJUq1YNFy9eBAAMHjwYixcvNlc6IuZZs4b73kgZMQJ45JHQVuhWy8KsZK2h7MUEQRChwbCSU79+fZw9exYA0KRJE2zduhUAcOjQIRjMK0gQmojTPPLbau5coHFj/pFbTYKFPCOxksIjzdVD2YsJgiCCj2Elp2fPnli5ciUAICsrC6NHj8bdd9+NAQMG4KGHHjJdQCJ20SrMyZhH+QmFj4vTCTRvDmzZwq1JW7cqKzo7dvC/WVk8A3N+Pv9LTscEQRDWY7isg8vlgsvlcpd0yM3NxaZNm9CyZUs89dRTqFq1qiWCmgGVdYgsvvwS6NNH//r5+by4ptnIQ7/VIqVmzgTGjfPeNhjlJQiCCD2UIsJaglbWwWazwSZ5Ze3fvz/69+9vdDcE4Zf//lf/ulb5uMgVmqlTgQkTfH1v0tOBdu18tw9GeQmCIEILpYgIXwLKk3P+/Hls374dp0+fhks2n/D444+bIhgRu4hvRK1b61vfKh8XpdBvqYIjIioyooOx9HebDZCVdyMIIopQSxGRnk4vN+GAYSVn5cqVeOyxx1BcXIwaNWpAkIS+CIJASg5RKaRvRPKoKik2Gw8jb9/eugzHSj5B4puadLloRRIdjEeM4IqPuH6nTvRmRxDRilaKCFJyQo9hn5zWrVvjL3/5CyZPnozq1atbJZclkE9OeLNjB9Cxo3qdKpuNO/gWFwendIPTySO35AqNOGVVUeGxIkkVGKXzIN8cgohO1PoJet7NJdDx23B01bFjxzBy5MiIU3CI8CYnh1s8tFRul4srON27B6fzUAv9HjtWO1Lq0iXf86DkfwQRvYwZ44mupBQR4YXh6ar09HTs3LkTzZs3t0IeIgaRz2mrEYoEellZfG5dXvhTq06Wkm8OJf8jiOhD7nA8dqynYDARHhhWcu677z6MGzcO+/fvxy233IK4uDiv3x944AHThCNiA618OKKyEMq3Iz2FP+Xho1LfHHqzI4joQ8nhePZsIC2Nl6Oh5z08MOyTY1PKeCbuTBBQIXpchiHkkxOeKM1pi/43DRr4WlGslsVfrgu9eXOczuDKThBE8MjP5xnXlaAwcvMJdPw2rOREMqTkhC85Ob6Wj2B3EErKSnq6tkLz4ovAlCnkdEgQsYbTyUvLqI2g1A+YCyk5OiAlJ7wJpeVDzZoklo9QSgSohVXZlwmCCA9ycoBhw7SDJagfMA9LMx7/85//xPDhw5GQkIB//vOfmuuOHDlS98EJQooe3xerUMuJI/1fr4ID8DBy6twIIjpRKx4shYINwgNdlpxmzZph586duOaaa9CsWTP1nQkCDh48aKqAZkKWHEINJUuOEvKoKTXsdl6889IlqmVDENGGmj+OPFCCfHLMw1JLzqFDhxT/J4hoQR4RpabMvPgin7by519fUeFJCEhOiAQRXailidiyJXjJSgl9GE4GSBDRSlaWJ8nf4sXK65SWetaZPt2TKFAJ0UYq1rJxOs2WmCCIUKCWKDQtLXjJSgl9GHY8HjNmjPKOBAEJCQlo2bIl+vbtizp16pgioJnQdBWhF7XICXnERG4uMGCAvn2SEyJBGEdPWodQQWkigkfQoqt69OiB3bt3o6KiAtdffz0YYygoKIDdbkebNm3w66+/QhAEbNq0CTfeeKPhE7ESUnIII4wbB8yc6btcqqzo9eWhcFKCMI5aDqpwJJyVsWggaLWr+vbti7vuugvHjx/Hrl27sHv3bhw7dgx33303Bg4ciGPHjuGOO+7A6NGjje6aIMKKUaM89WhE5BETcrO1EpTxmCCMo5RROFynfXNy+MtOz578b05OqCUiRAwrOTNmzMDrr7/upUnVrFkTkyZNwvTp01G9enW88sor2LVrl6mCEkSwUZt3V1JWtByRFy8O37dPgghXlNI6hGOh20hSxmIRw7WrioqKcPr0aZ+pqDNnzuDChQsAgFq1auHq1avmSEgQIUSpQOeOHcDKlUBCAlC7NvDMM+rb2+1A587Bk5cgogUzCt0GYwpJSxkj623oMazk9O3bF0888QTeeustpKWlQRAEbN++HWPHjsWDDz4IANi+fTtat25turAEEQqkSQqHDAE++kjfdjab/mkqms8nCG8qW+g2WP48ZihjhHUYdjy+dOkSRo8ejYULF6K8vBwAUKVKFWRmZmL27NlITEzEnj17AABt27Y1X+JKQI7HhBb+FI0dO4AOHfTtSxCAbdt4SKk/Ism5kiCCTSARTEoBAVY6/4dD7b1oJ+i1qy5duoSDBw+CMYYWLVogKSkpkN3o5s0338RXX32FPXv2oGrVqjh//rzhfZCSQ6ihR9F45RXg9df17e/hh4G8PP/rBbszFo9JViMimlHLSGxlGgcKJ7eWoEVXiSQlJSE1NRW33nqr5QoOAFy9ehUZGRl4+umnLT8WEVvocRzMydGv4ADA8uXc8pOfr+2AqDWf73T6394oFAVCxALiFJIUq6eQHA7/iQCteKYJbQz75ADAjh07kJeXh6NHj/o4GC9btswUweS8+uqrAIAPP/zQkv0TsYuaopGXB3TrBhw6xKsNG6GiAujUyf8UlNp8/s6dQK9e5k5hqSlz6en05klUjnCzDlbWn8cM5G1C09KhwbAl59NPP0XXrl2xf/9+LF++HGVlZdi/fz/Wr1+P5ORkK2QMmNLSUly4cMHrQxBylN76AGDMGO6DM2CAcrXhJ5/kGY9XruQ+OHL0hpSOGeM5vt2O/9/evUdHVd17AP/ODBogkbe8OmBAguWRPgQvEriaFm16xQD18pLLSxBhXShICIKtBbQXAgmCLLlFA1lgSwXTihWtFJHkyrWBJuFV23ILYogZgYVRGx5WxMy+f5x1kpkz58ycM5mZ85jvZ61ZkMmZM/ucmcz5zd6//dsoKACWLYv9lFS7TMkle7Fq72DgMi3nzsUmoJB7YiL10irPSVFR6BeMOXOk/VCcCYMyMzPF5s2bhRBCpKWlibNnzwq/3y/mzJkjVqxYYXR3hm3fvl20b99e17YrV64UAEJuDQ0NcW4l2c22bUJ4PEJI4Uzkm8cjRF2d9Ni6OiHy84Vwu6Xfyf8qb+Xloc8Z+Jj8fGlfZWX6Hm9UXV1o2wKPg8ioZHpPBf69yje3W7o/kNo50fpMAEIfT+oaGhqiun4b7sk5e/YsRo8eDQBISUnBtWvX4HK5sHjxYhQXFxva16pVq+ByucLeqqurjTaxyZNPPomGhoamW11dXdT7ImeTv/Vt2BB528Cub/kbm7z8Q06O+hIPynwAtaGjjRul/8crn8BIcUMiPZKld1D59ypT62VVOyd+v3pvLyDtlzk68WM4J6dTp064cuUKAOAb3/gG/vKXvyAzMxP/+Mc/8MUXXxja14IFCzB58uSw26SnpxttYpOUlBSkpKRE/XhKLl4vMGECkJ+vvRbVli3Agw9K26oFKvv3hz5GLZgId3HIzo5dPoEyL0CtuCFRtJKlRoza36tMWfhP65w8+qj0d6zk97NwYDwZDnL+9V//FQcOHEBmZiYmTpyIRYsWoaysDAcOHMCoUaMM7atLly7o0qWL0SYQxY3c26H2rQ0ATp4E5s2T/h/ugy/Qrl1S8BQo0sUhFsGIVqJjYHFDopawQoJvIqj9vcq01rNTnpOcHGDr1tB9uN3OCwotxei42Keffio+/vhjIYQQjY2NYt26dSI3N1csXrxYfPbZZ0Z3p1ttba04fvy4ePrpp0VaWpo4fvy4OH78uLhy5YrufUQ7pkfJp7JSCJdLfQy9sFDaRm3sPVzujlJgHpDHE9ux+WTKlSDz1dVJOWNOfn+p5e2F+7tVOyfKvB6Xq/nzhMKL9voddTHARJs5cyZeUqmnX15ejmyd1Z1YDJCMWLq0OdcmkNsN1NY25+QEfmObOhXYuVN/5dOWFhDTmrqrVQxtwwapV8lp37SJEqGqCnjzTSAlRfqbGz7c2N+SzwdUVEgzMn/9aynU4XRyfRJe8fjSpUu4dOkS/Iq+t29961vR7C4hGOSQERMmAL/9rfrvAoMFZaCSqMqn4epuqFVSlvFDlezMrJo8JSXStG/5iulyScNPkb7EyG3dv197GFyryrnV6g+ZKerrt9Euo+rqajFo0CDhdruFy+UKurndbqO7SygOV5Feb7wReRq52vTRRNEzHBVuWrzbLQ3JEdmJsuxCov7+6urUh68jDUfLbXW5tIe/9ZaYSPap5gmbQv7II4+gf//+qKiowIcffoiampqm24cffmh0d0SWU1IC5OZG3i5WRfqioWfqbrhp8X6/VJHZKoXbiCLRs/xKvJw5o14QVGu6vLKtciijRZl8bOaxOo3hIKempgaFhYUYNmwY0tPTcdtttwXdiOzK55MqGBtZwsGsmiB6a+nI0+LVKjrzg5PsxMyaPBkZ6nVutKbL6515KRMiuPxEstQfSgTDQc6oUaNw8uTJeLSFyDRyUT+tJRy0xGr6p56F+wK3MVLYT95WLdDhByfZhRmLbsq8Xin/JjDQcbu1/+a0lorRIkTwFw4zj9VpDCce19fXY8aMGfiXf/kXDB48GDfddFPQ78eMGRPTBsYSE49JTbgk3Ujy86V1aVpCz8J9WtuoJTlrJStWVTUvGirTSngksiLlbMZIsxdjzecDDh+W/h9pZpWyrX5/5C9Q5eVSMVAAmDkTCJxQPGMGkMzrUydsdtXevXsxbdq0pqrHQTtzudDY2GhkdwnFIIfUaE23jiQWAYJagKXcr55tZJECJuWMMSMfnJzpQVaQqNmLsRDY1nCzq4Dgv2kjf/PJItrrt+HhqoULF2LatGm4cOEC/H5/0M3KAQ6RFqNdy0DsKrvqGXvXOz4fKVlx/frQKfG/+pW+nByrrjRNycfrlXo77HCxD2zr7NnAkSPqnzXKzxPm5MSO4SDn008/xeLFi9GtW7d4tIco4ZT5LVoBz8aNQGWl1PNz7lxsusn1jL3rHZ8P98Ho8wFPPBH6/H5/c/e7Fs70oETQk5dmdz16AHl5wZ81+fnS32DfvszJiQfDQc5DDz2E8vLyeLSFyDTydOvycvVvWx4PMH48cNddsf0WGSmBWB4iWrcucpJxuA9GrSmwelj5W2UyXBiTQTL0FMrHuH598xeFXbuArl2lXLnAYzcysYDCM5yTs3r1ajz33HMYPXo0MjMzQxKPFy5cGNMGxhJzckivRCc4quUZKPNr1q6VgqxwuQha7Q6XXF1XF/7D06r5AXoStsn6rPr+iiUjkxuUuTl2yT+Kt4QlHvfp00d7Zy6XpQsCMsghI8z8gGnJB79WuwODAkBfWfrAx5o5q0UpGS6MyUIr8T9wppHdGZ3cwDXmQiV87So7YpBDdhHug18efopmlpORKbBqj7XKt8pkuDA6SbiZeckQsEZTpoK9k8ESNruKiOJPK7+murpluQtyBeRoviVaaVZLSxMzmcuTOJHybZIhhYVQeQAAIABJREFU/0R5jHowwT82dPXk5OXl4ec//zlSU1ORl5cXdtsNagvlWAR7cshOlMXARo8G9u1T/8YLNH9TDvy/ky4UStEOoTGXJ3GM9NJYqacwXuRjfOcdYPVqfY9h76Qk2ut3Kz0bHT9+HDdu3Gj6vxaX2uIeRKSb3K2flibVsAn0+9+Hbt/YCCxZAvzmN9LsKflPUAjrXcBjXUxw9mwgJ8fYhVFrOnxOjnMvrGYKNzNPeb69Xue/BvIxZmcDHTpIZR2MLNxJxjEnh8gilD0M0SwzoWSV3Aar9J4wlyexkiHfxiifD6iokP7fti0wZox2oFNYCDz8cHL0zEbCnBwiG1PrYYgFK9SzsVIxQRZZS6xkyLcxoqQE6NVLWgh40iQpwJk+PTRXx+2W1sTr1Mn59YPiTddwFRHFl1q3PqDdo+Ny6Svup7yAm7H+lJEhi3iTL7rKXJ5kvegmQjTDik7k8wGPPhp8nxDAzp3SjMdr14DUVOlf+W82sBeMQ6vRYU8OkQVo9TAcOSINpRQWBn8bXrdOffkJl6s5L0d5ATerqmxLek/iMQsqsLp1rJbnoPCsNDPPLPIQlVJjoxTYZGc3V1QHgNJS61YatxMGOUQWoNWtL3/oLV3afGE+fBgYOhR46KHgfeTkAB99JN2UF3CjQ0axDC6iHbKIZ1AW6aLLKeaUKMrkYvl9v2SJ+vbV1Ylpl2OIJNLQ0CAAiIaGBrObQqSqrk6I8nLpXzXbtgnhdgshdXQH3zwe7cfl56s/prw8/HO43dLPiTg25bbK4wx3fLEUr+On5FZXJ4TLFfo3WFgYvI3W33ei/w6sJtrrN2dXEdmEnqqppaVAly7BOTc+H9C7d2gOj9osl3CzYYDE5fPEaxZUpJwkzgaieAqs7eR2S8PO+fnNv9e7/EMyzgbk7Coih9NKTpa53dKMDeXwjtYK5IsXh164tZKEN20KHTqK55BOPGZB6Rn+svKK62R/gflgtbXBAQ6g/r5X4mxAY9iTQ2QT4XpyPB7p/sC/5sAeGOXj3G7pQ1bPOkLyh27gfXKCczzr3sRyUVC9PTTsySGzKd/3U6dKM7CssjiuWdiTQ+Rwagm8RUXSt8KXXw7trQmcpq18XHGx+kVbbdu8vNDASoj4172J5SwovT00rOuSeEzyDqZ83+/YETzpoG9fnisj2JNDZCNytVSXK3gVca1enqKi5i5xI2sDBW4L6FtB2cp5AkZ7aJJhHSUrsEolbDtQnitlPo/TRXv9ZpBDZBORLghDhwJHjwY/JlZDLcqESXmuR6yfJ55iOfxFLacVeB4+DFy9ymUMAlVVAXffHfpFY+5c4KmnkuM8cbiKyMEi1bmpqgoNcIDYJc0qEya3brXfkA6LAFqL1hDi3XdzGYNAJSXAsGHqPakvvijNnOR50saeHCIbiDSlesMG9eJhLpdUHDAeAQiHdKgl9JREsEMPYTzpOUdAcpwn9uQQOZja1FK3W+rWLy8H+vdXf9xPfhK/Dz6W6qeWUCZ5q02dTvbp+5HKRsiS/TyFwyCHyAaUFwRA+vDLzZV6eMaOBbKygh9zzz3AvHmJbSdZg11mLAUOIR450rzumky55EGykF+/tLTIdXMA1s4Jh0EOkU3Mni0lZSovBIAU8PzpT8AbbwATJ0rbHDrEvIZw7BIIGGXWQqzRknsEe/QI/V3yJFM0C3z97r4bmDat+ctN4AK8MrvkxJmFQQ6RjVy9qv3B39gI/POfwG9+07yN3y8lLFv1Qh6LQCOafdgtENDL6EKsVqJWmVuI5BqGUXv9du4Eli9vntUISFPHKyuZRK8HgxwiG0lLU+/JAaRvdPX1oRcKv1/qAbIao4GGWjATTbBi50AgEjsvSxGPpTzsRuv1W7Om+X4hgI0bpZ4v5sRFxiCHyCZKSqTua7WeHI8HWLsWuHAh8e2KhtFAQy2YUdvHY49Ji5SGC1jsHAhEYpVAIZreNVab1p5goFXNXObzSe/7SO/9pBTTtdAtLtql2onMVlcnhNstl+ALvrlcQowfH/73dXVmH0GwsjL1tpaXh26rduwejxCvvKK+D0Dafts29efW2p/VzlFdnXSejLZr2zbpeOTj0joP8bJtW/P5Dfc6aKmrk94HVns9EkX5+hUVhX+/btsW+vee6Nc8EaK9frMnh8gGwk0lFQL47W/Vfy+Xfz9zxlrf8LRWW66uDr1Pq+fF5dKeeRKuZ8gOPQYtyRkys+hhLIYCk700gfL1y8/Xfr/6fMCjjwY/XgjnDL/GAoMcIhvQCgrCcbmAJ5+UkhatlmDr9UrDa0rLl4d+OGdkhOYhyWt3KafVBwo3BGXl6sexyhkyY2aSk4cCE0kZ6Gm9Xysq1B/Pc96MQQ6RDajVyYlECKCgwLoJtkOHht6n98NZDnrkD//SUuO5KFbtMWhpoGDmzLFY5AQ5dWp/Sxl5v7pcQGpq3JtkCwxyiGwi8NtcYWFw9/WECaHbu93W/lat94K4aZP6jDH5OLxe6fitPgQli3QRb0mgYPbMsWiHAuVzUlTkzKn98ZKVpT7bUghpksL69Ylvk+XEKUfIkph4TE6iTNAsLGxOUPR4gn+2aoJtpCTZujopkVKZWKx1HFZPWtWblBtt8rCRhO54MvI6BJ4Tva8zNQt8r6jdCgvNbmFsRHv95gKdRA6iXDSzpET6Jt/Y2Pyt2kr5J4D2Qp/ytFi1hUfz86Vv/XaitthiuIUVo1kA1ehzmMnnk3JKJk8Onz8kL0JL2nw+qQhoXl7o79xuoLbWeq+/UdFevxnkEDmcHVcLLykJHnYJZNcP7UgryWvx+aQ8nYwMfcdsh8A23OsbyKoBmhWFW7HcCYEiVyEnIlVWTbDVoswrCeTxSDkfdjmWQHpzbQJzdqJJIrbCzLFweUfhXt9AVs6rsiKvVyoXoZRsVaOVGOQQkaVo1QTauDH8RTtes3JitV89SbmBQU3v3sCcOdElEZsZ2EYKzMLVfPJ4pGHIcAEaZ19py8+XJiXIwTQDRQ5XEZHFRJNXEjj84XZLwUQsejDisd9wOUhaww2BrDz0oOe109pm1y6p9hGgPTwXr9fZaew4RB0Jh6uIyNbkb+iAsWnIWmtYtfSbfqymYyt7HrR6WcL1cMisPvSgp8aPVo/WhAnA/v3avUBmT4+3E7sNUccTgxwiShitoQblEAfQnFdy+DDQt6/2xUztwur3S/V1WtLO0tKW1xkyklOjlrPjcsWn9k+8hnz05h2p5Q1FCmK0AqiWvM6UBGI+mT0OampqxKxZs0R6erpo3bq16Nu3r1ixYoW4fv26of2wTg45QbQLN5q9b60aMeEWzNRTV8ZoLR0j7WzJPisrjdcpUquPE+vaPy1dQFPP/uNR40drkVq3m7V0kkG0129bBDn79u0TM2fOFPv37xdnz54Vr7/+uujatatYsmSJof0wyCG7i+cFKp77DhfI5OerX9xKS/UHCVr7MFoEL9xq70Yu2Nu2qQdeetoUz4KGiVqBPZpj0ApWKyubt4nV60z24+ggR01hYaHo06ePoccwyCE7i+cFKtb7VvYIaX1L37JF/cLmcgnxyiv6L2iVlaH7iab9Wu3cuFH/viIFSmb2OlilIrIarSBH2esXi9eZ7Cfa67dtc3IaGhrQqVOnsNtcv34dly9fDroR2VU8V3iO5b7V8lC0VlH/z//Urnbbp4++/I6SEmmdnsD9RJu/opVTMn68/n1pJRC73eZP543FAprxcuaM+nshMDfH6wW2brXHGmVkDbYMcs6ePYvnn38e8+bNC7tdQUEB2rdv33Tr1atXglpIFHvxvEDFat9ayaOANKNG+RxaAY4QwLVrwNq14Wt+qBWWc7ulZOVophZ7vcC0acH3TZ1q7CKqdi7dbuDIEX1timcdmGgX0EwErUAYCA64rVDskGwkTj1LuqxcuVIACHurqqoKeszHH38s+vXrJ2bPnh1x/19++aVoaGhoutXV1XG4imxtxozgrvoZM2K372gTRgNFGg7RGoJSG9YpKgrOESoqMv58RsVq2C7acxnvpGCZVRcy1Ur65pAU2XKBzvr6etTX14fdJj09Ha1btwYAnD9/Ht/73vcwbNgw7NixA26tsF8DiwGSnSVi8cWWFhGL1EatgnejRwP79kn3ezxAQQGwfHnkY9VbfE7v2k/Rri+lxui5tNPimvG0fj3wxBPNvXyBRf/k1zItDbh6Vf96XmR/UV+/4xJyxYHP5xMZGRli8uTJ4uuvv45qH0w8JjuzctJooEi9GIWF6t/UKyubexeMHGu45zPaM9KSnpyWTr+3y+sbT2rnX54irtbLE8/eLrIWRycenz9/HtnZ2ejVqxfWr1+PTz75BBcvXsTFixfNbhpRwlg5aTRQpJyJoUNDH9PYKOXgyFVajRyr1vNFUyE32pyVaBbSVIr29bXTWk6R2qpV2PHwYfVFPVn1mCKxRZDz9ttv44MPPkBZWRm8Xi969OjRdCNKFlZOGlUKV1Zez8Xc6LGqPV+0M8aMJrbGarmBaF7fWARXiRKprT4f8Mkn6u8NIbSXvIjVDENyJi7QSWQzdlp8TysfpqRECgQaG5sv5lorTkd7rInKcdGbxxN4LgDtPCG9x2ynHJ5IbQ1ceNPlkn4vRPN7IydHe/FSqx4zxRYX6CRKEnZZfC/cN3e9vSUtOdZE9Xzp6ZkKPBe9e0s3rR4N+ZgB40M7Vu3VCNdWZU+YnHEDNN+nfC1lVu7NJGtgTw4RxZzWN/fDh43NijEyMyrcPuLd8xWuZ0prRplM7bwE9mwEzi5SHpcTenLOnFHvCVNuJ8/O++ADIDVVyuGyQ28mxYbjZ1fFAmdXESWG1kyhwGUbIs2KCVz/Sc/2ZtOqPRPpXMizhALrAemd4RWL2kaJotVWtYVMlbfSUnPbTuazZZ2cRGNPDlFiROq9AKTci48+Uv8m7vNJQzrKT6e6Ovt9c9dzLgK53erblpYCEyao799OOVqBbQ3ssQrH5ZKWc2B14+TFnBwisgxlDoWcTBpICGmYRk1FhfqSD6tXx66NiaKVT6IlMPk20OTJ6rOn7JKjBQS3VWtJjp/+NPRcCSFtW1rK6eJkDIMcIoqLwOTi//7v2OyzuNieFzn5XGzYEHlbjwdYty40mbklNWHMrKWj9dxaNXHuuw94/vnQ/fj9wKRJ1p8qT9bCIIeI4kb+5p6bG9o74XYDw4erP65PH/X7/X5rzh7Sw+uVhpvUFu9ULkK6dCmwa1foPqKZPWVmLZ1wz601K62qCliwQHufLABIRjDIIaK483qlnAp5GMLtlnor1IZYSkqAu+9W348VKzwboTatvbgYqK0NnU6flaUeEF26pP8CH6tChdGI9Nxq52Lt2tA1y9RYdao8WQ+DHCKKm8ChitmzpYU3XS7pIrZsWfA3e59PyrnQSkR1Sk0UtRpBarVx1PKahDA2ZGNmLR09z608F0OGqL/2yl5Auwe7lEBxmetlUZxCTpQ4ysUxw02NVlt8UXkrLDT7iOJLazHRujppCnU0C4e2ZMHRlormubUeU1TUPP1cfi9RcnH0Ap1EZC9qQxXLlql/s9dafFHpySedm4ehdr7k2UQA0KVLdD0yZq53Fs1zaz0mPz98LyCRllZmN4CInEdr5oxSpMUXA8kXdbsPV6nROl+TJkkXdnm2lbJisJ4hm9mzpbWfzKilE81z5+QAL78sHffw4c3TzZcvD17uYe5caVsnvh8odtiTQ0QxpzZzRsnjARYvlmZSRdpW3t5JeRiB+UrhzpcQUs/FunXR98iYWUvHyHPLs7EmTZLqAu3fL92vld9z+LB5U+PJHhjkEFHM6SmA19gIrF8vzaSaNi38tm63vZKOI9WlUU6t3r8fyMvT3p8Q0nZ6FjW1q3CzsbSCwEmTzJkaT/bBIIeI4kKeObNiRfjt/H5g507pW3lpaehMGpcLOHLEPhf1SHVpfD5gzpzQi/m990bet52qGxsVbjaW1yvlZCkph6/Yo0NKDHKIKG68XmDQoMjbNTZKq0qnp4f+zuUCevSIedPiQk9dmk2bQpesaGyULvJawhVOdAqt4oD9+kmB4po14R/P2jmkhkEOEcVVVpb6WkyBPB6guhoYNiw0ALBTlWOt3ohNm6T/+3zqSzu43cDIkepDMm63NPTnxN6bQMohTrdbykWqqJB6viItJe20nC2KDQY5RBRXXi9QWKj9e49Hmh68bJn6hcxOFy+t3JENG6QARy0IAqR8nLvuki7yyoBw7Vr7DNW11OzZ0vHKM8nWrJHybrQCHPlcud1SEjuREoMcIoq7IUPU79+4UcrbGTpU/eJvt4Rjr1c9gVjujdIaklm0SPp/Tk5okOPk+kBKPp96PSUtLhcwb570//XrmYBMoRjkEFHcaV3cx4+XAgO137vd9ko4li1apL0MQaQCeWYuw2AFWj1dWvx+6XyasTYX2QODHCJKiLy80NW25Yu71sKVd91lTltbQrkYqfJY1daukoVLvnU6nw/45BN9NZNkygKJQHIFhRSZS4hI6VzOcfnyZbRv3x4NDQ1o166d2c0hSgolJc0zjtxuKdhZtEh9CMrnM6cybzxEeywlJVJvRGNjc4Bkt94sowLfIy5X8/IN4ci5XMpVyz0eKXi0+/uHgkV7/WaQQ0Rx4/NJeRJ6LkJyYm5GBi9QTgr2IlF7j7jdwO7dQJs2wJgxwYnHHg+wa1fzlPpNm6TcrmQKCpNRtNdvDlcRUdzozTGJVEDPSSJVQwacXfRPSWvdrltvBR58UH3ob8IEqUr0bbdJCcd+v7SIpxMrQVPLsCeHiOJGT0+Okd4eu1MO3RUX86Ks9z0S2LOVTO8ZkrAnh4gsJ9JsIiB5ZhSpVUN+7DGgqsrcdplNz3tE2bOVLO8ZarlWZjeAiJxt9myp/otWjok8o0j5rdwpM4rkXKNPPlEflhk2TBqSSeYenUjvESWnv2codtiTQ0RxFy7HRM83ebsKzDV6+GH1bYRgbRfAWB6Sk98zFFvMySEiS3DajCK1vJFwysulizw1U5txF3gf4Kz3DGmL9vrN4SoisgSv11kXKqPVe1NT49cWO1JL0gaYuE3GsCeHiCgO2JMTPa3ZU35/aM0czqhKDpxdRURkIWp5IzNmqC9bwKTZYFqzp5RfyTmjiiJhkENEFCfKdap27ABqa6WZRIGmTmVvRKDq6tD7PJ7QhU+1tiWScbiKiChOtBJne/fmsIsWrWG+oiLpnD3xRPD9PHfJgcNVREQWorVUxaZNHHYJRythe+hQ6abEc0fhMMghIooxterGc+dK1Y03bAjd3u1mTo5MLvQXyOORZp998knokBXzmSgcTiEnIooxrcTZN99U76XIyzM23OLzARUV0v+zspw1VCMnbM+d27yy+NSpwN13S+fO5ZJuQrAIIEXGnBwiohhTy7uRL87KIMdoTklJCTBnTvO+XS5nLgshF4dMTW0OcGQeD7B5M9Cpk/OCPFLHnBwiIovYvz/4Z3mIRRnguN3GeiJ8vuAAB3DushDyMg9Xr6r3is2fD0yaFJzvRKTEIIeIKIbkfBxlL45an/nu3cZ6YM6cUd+Pk5Nv09LU71fmOzktyKPYYJBDRBRDavk4ci5JII8HGD7c2L4zMtRrxTg5+fbq1cjbODnIo5ZhkENEFENas4P+/d+D74umAKDXK+XfBAY6Roe87EbtfCo5OcijlmGQQ0QUQ2rLOaxdC+zZE7zdzp3RDbHMng189BFQWirdamudl3QcSGt5jMCfnRzkUctwdhURURzIs4P69ZOGsL7//dBtuCinfoHn0+sN/ZmcLdrrN+vkEBHFgdcbfPF1u0OnQXOIRT/l+VT+TKSGw1VERHGmNuTCIRai+GNPDhFRAsyeLa0+ziEWosRhkENElCAcYiFKLNsMV40ZMwa9e/dG69at0aNHD0ybNg3nz583u1lERERkUbYJcr73ve+htLQUf//73/Hqq6/i7NmzGD9+vNnNIiIiIouy7RTyvXv3Yty4cbh+/TpuuukmXY/hFHIiIiL7Saop5J999hl+/etfIysrK2yAc/36dVy/fr3p58uXLyeieURERGQBthmuAoBly5YhNTUVnTt3xkcffYTXX3897PYFBQVo3759061Xr14JaikRERGZzdQgZ9WqVXC5XGFv1dXVTdsvXboUx48fx9tvvw2Px4Pp06cj3Gjbk08+iYaGhqZbXV1dIg6LiIiILMDUnJz6+nrU19eH3SY9PR2tW7cOud/n86FXr16oqKjAcJ1L+TInh4iIyH5smZPTpUsXdOnSJarHyrFZYM4NERERkcwWiceVlZWorKzEyJEj0bFjR3z44YdYsWIFbr/9dt29OERERJRcbJF43KZNG+zZswejRo3CHXfcgVmzZmHw4MF49913kZKSYnbziIiIyIJs0ZOTmZmJsrIys5tBRERENmKLICdW5Dwe1sshIiKyD/m6bXSuVFIFOVeuXAEA1sshIiKyoStXrqB9+/a6t7ftsg7R8Pv9OH/+PG655Ra4XC6zm2OKy5cvo1evXqirq+M0+hjg+Yw9ntPY4vmMPZ7T2NJzPoUQuHLlCnr27Am3W386cVL15Ljdbni9XrObYQnt2rXjH2cM8XzGHs9pbPF8xh7PaWxFOp9GenBktphdRURERGQUgxwiIiJyJM+qVatWmd0ISiyPx4Ps7Gy0apVUo5Vxw/MZezynscXzGXs8p7EVr/OZVInHRERElDw4XEVERESOxCCHiIiIHIlBDhERETkSgxwiIiJyJAY5SaCgoAB33XUXbrnlFnTt2hXjxo3D3//+d7Ob5RgFBQVwuVx4/PHHzW6KrX388ceYOnUqOnfujLZt2+I73/kOjh49anazbOvrr7/GU089hT59+qBNmzbo27cvnnnmGfj9frObZguHDh1Cbm4uevbsCZfLhd/97ndBvxdCYNWqVejZsyfatGmD7Oxs/PWvfzWptfYQ7pzeuHEDy5YtQ2ZmJlJTU9GzZ09Mnz4d58+fb9FzMshJAu+++y7mz5+PI0eO4MCBA/j666/xgx/8ANeuXTO7abZXVVWF4uJifOtb3zK7Kbb2+eefY8SIEbjpppuwb98+/O1vf8Ozzz6LDh06mN0021q3bh1eeOEFbN68GadOnUJhYSGKiorw/PPPm900W7h27Rq+/e1vY/Pmzaq/LywsxIYNG7B582ZUVVWhe/fuuP/++5vWSKRQ4c7pF198gWPHjuFnP/sZjh07hj179uD06dMYM2ZMy55UUNK5dOmSACDeffdds5tia1euXBEZGRniwIED4t577xWLFi0yu0m2tWzZMjFy5Eizm+Eoo0ePFrNmzQq676GHHhJTp041qUX2BUC89tprTT/7/X7RvXt3sXbt2qb7vvzyS9G+fXvxwgsvmNFE21GeUzWVlZUCgKitrY36ediTk4QaGhoAAJ06dTK5JfY2f/58jB49Gvfdd5/ZTbG9vXv3YujQoZgwYQK6du2K7373u9i6davZzbK1kSNH4uDBgzh9+jQA4OTJk3jvvffwwAMPmNwy+6upqcHFixfxgx/8oOm+lJQU3HvvvaioqDCxZc7S0NAAl8vVoh5dlmpMMkII5OXlYeTIkRg8eLDZzbGt3bt349ixY6iqqjK7KY7w4YcfYsuWLcjLy8NPfvITVFZWYuHChUhJScH06dPNbp4tLVu2DA0NDfjmN78Jj8eDxsZGrF69Gg8//LDZTbO9ixcvAgC6desWdH+3bt1QW1trRpMc58svv8Ty5csxZcqUFi2CyiAnySxYsAB//vOf8d5775ndFNuqq6vDokWL8Pbbb6N169ZmN8cR/H4/hg4dijVr1gAAvvvd7+Kvf/0rtmzZwiAnSq+88gp27tyJl19+GYMGDcKJEyfw+OOPo2fPnpgxY4bZzXMEl8sV9LMQIuQ+Mu7GjRuYPHky/H4/fvGLX7RoXwxyksiPf/xj7N27F4cOHYLX6zW7ObZ19OhRXLp0CUOGDGm6r7GxEYcOHcLmzZtx/fp1eDweE1toPz169MDAgQOD7hswYABeffVVk1pkf0uXLsXy5csxefJkAEBmZiZqa2tRUFDAIKeFunfvDkDq0enRo0fT/ZcuXQrp3SFjbty4gYkTJ6KmpgZlZWUt6sUBOLsqKQghsGDBAuzZswdlZWXo06eP2U2ytVGjRuH999/HiRMnmm5Dhw7Ff/zHf+DEiRMMcKIwYsSIkLIGp0+fxm233WZSi+zviy++gNsd/BHv8Xg4hTwG+vTpg+7du+PAgQNN93311Vd49913kZWVZWLL7E0OcM6cOYN33nkHnTt3bvE+2ZOTBObPn4+XX34Zr7/+Om655Zam8eT27dujTZs2JrfOfm655ZaQfKbU1FR07tyZeU5RWrx4MbKysrBmzRpMnDgRlZWVKC4uRnFxsdlNs63c3FysXr0avXv3xqBBg3D8+HFs2LABs2bNMrtptnD16lV88MEHTT/X1NTgxIkT6NSpE3r37o3HH38ca9asQUZGBjIyMrBmzRq0bdsWU6ZMMbHV1hbunPbs2RPjx4/HsWPH8Oabb6KxsbHpWtWpUyfcfPPN0T1p1POyyDYAqN62b99udtMcg1PIW+6NN94QgwcPFikpKeKb3/ymKC4uNrtJtnb58mWxaNEi0bt3b9G6dWvRt29f8dOf/lRcv37d7KbZQnl5uern5owZM4QQ0jTylStXiu7du4uUlBRxzz33iPfff9/cRltcuHNaU1Ojea0qLy+P+jldQggRXXhEREREZF3MySEiIiJHYpBDREREjsQgh4iIiByJQQ4RERE5EoMcIiIiciQGOURERORIDHKIiIjIkRjkEFGLpKen47nnnjO7GS128eJF3H///UhNTUWHDh3Mbg4RxQCDHCKyrR07dsQsINm4cSMuXLiAEydO4PTp0zHZpxFOCRaJrIRrVxEloa+++ir6tWAs4saNGzHd39mzZzFkyBBkZGTofowTziORk7EnhygJZGdnY8GQBe/MAAAHtklEQVSCBcjLy0OXLl1w//33AwAaGhrw2GOPoWvXrmjXrh2+//3v4+TJk02PO3v2LMaOHYtu3bohLS0Nd911F9555x1Dzz1z5kyMGzcOTz/9dNPzzJ07F1999VXTNn/4wx8wcuRIdOjQAZ07d8aDDz6Is2fPNv3+3LlzcLlcKC0tRXZ2Nlq3bo2dO3fikUceQUNDA1wuF1wuF1atWqXZji1btuD222/HzTffjDvuuAO/+tWvmn6Xnp6OV199Fb/85S/hcrkwc+bMsMdSUFCAnj17on///gCAzz//HNOnT0fHjh3Rtm1b/Nu//RvOnDkT9NhXX30VgwYNQkpKCtLT0/Hss882/S47Oxu1tbVYvHhx07EAQG1tLXJzc9GxY0ekpqZi0KBBeOutt3Sfe6JkxyCHKEm89NJLaNWqFf74xz/ixRdfhBACo0ePxsWLF/HWW2/h6NGjuPPOOzFq1Ch89tlnAKRVgx944AG88847OH78OHJycpCbm4uPPvrI0HMfPHgQp06dQnl5OXbt2oXXXnsNTz/9dNPvr127hry8PFRVVeHgwYNwu9340Y9+BL/fH7SfZcuWYeHChTh16hRGjRqF5557Du3atcOFCxdw4cIF5Ofnqz7/a6+9hkWLFmHJkiX4y1/+grlz5+KRRx5BeXk5AKCqqgo//OEPMXHiRFy4cAGbNm2KeCwHDhzAm2++CUAKfqqrq7F3714cPnwYQgg88MADTb1NR48excSJEzF58mS8//77WLVqFX72s59hx44dAIA9e/bA6/XimWeeaToWAJg/fz6uX7+OQ4cO4f3338e6deuQlpZm6NwTJbXYrC1KRFZ27733iu985ztB9x08eFC0a9dOfPnll0H333777eLFF1/U3NfAgQPF888/3/TzbbfdJjZu3Ki5/YwZM0SnTp3EtWvXmu7bsmWLSEtLE42NjaqPuXTpkgDQtKqzvELxc889F7Td9u3bRfv27TWfW5aVlSXmzJkTdN+ECRPEAw880PTz2LFjm1aYDncs3bp1C1rJ+/Tp0wKA+OMf/9h0X319vWjTpo0oLS0VQggxZcoUcf/99wfta+nSpWLgwIFNP6udx8zMTLFq1aqIx0dE6tiTQ5Qkhg4dGvTz0aNHcfXqVXTu3BlpaWlNt5qamqahomvXruGJJ57AwIED0aFDB6SlpeH//u//DPfkfPvb30bbtm2bfh4+fDiuXr2Kuro6ANKw2JQpU9C3b1+0a9cOffr0AYCQ51Eeg16nTp3CiBEjgu4bMWIETp06ZXhfmZmZQXk4p06dQqtWrTBs2LCm+zp37ow77rijaf9az3/mzBk0NjZqPtfChQvxX//1XxgxYgRWrlyJP//5z4bbS5TMmHhMlCRSU1ODfvb7/ejRowf+53/+J2RbecbS0qVLsX//fqxfvx79+vVDmzZtMH78+KB8mpaQc09yc3PRq1cvbN26FT179oTf78fgwYNDnkd5DNE8l0wIEXKfHso2CCFUtwvcv9pzaT0u0KOPPoqcnBz8/ve/x9tvv42CggI8++yz+PGPf2y43UTJiD05REnqzjvvxMWLF9GqVSv069cv6NalSxcAwP/+7/9i5syZ+NGPfoTMzEx0794d586dM/xcJ0+exD//+c+mn48cOYK0tDR4vV58+umnOHXqFJ566imMGjUKAwYMwOeff65rvzfffHPYnhDZgAED8N577wXdV1FRgQEDBhg7EBUDBw7E119/jT/96U9N93366ac4ffp00/4HDhyo+vz9+/eHx+MBoH0svXr1wrx587Bnzx4sWbIEW7dubXGbiZIFgxyiJHXfffdh+PDhGDduHPbv349z586hoqICTz31FKqrqwEA/fr1w549e3DixAmcPHkSU6ZMCUkG1uOrr77C7Nmz8be//Q379u3DypUrsWDBArjdbnTs2BGdO3dGcXExPvjgA5SVlSEvL0/XftPT03H16lUcPHgQ9fX1+OKLL1S3W7p0KXbs2IEXXngBZ86cwYYNG7Bnzx7NRGUjMjIyMHbsWMyZMwfvvfceTp48ialTp+Ib3/gGxo4dCwBYsmQJDh48iJ///Oc4ffo0XnrpJWzevDno+dPT03Ho0CF8/PHHqK+vBwA8/vjj2L9/P2pqanDs2DGUlZXFJDAjShYMcoiSlMvlwltvvYV77rkHs2bNQv/+/TF58mScO3cO3bp1AyAVyOvYsSOysrKQm5uLnJwc3HnnnYafa9SoUcjIyMA999yDiRMnIjc3t2m6t9vtxu7du3H06FEMHjwYixcvRlFRka79ZmVlYd68eZg0aRJuvfVWFBYWqm43btw4bNq0CUVFRRg0aBBefPFFbN++HdnZ2YaPRc327dsxZMgQPPjggxg+fDiEEHjrrbdw0003AZB6zUpLS7F7924MHjwYK1aswDPPPBM0Vf2ZZ57BuXPncPvtt+PWW28FADQ2NmL+/PkYMGAAfvjDH+KOO+7AL37xi5i0mSgZuISegWEioijNnDkT//jHP/C73/3O7KYQUZJhTw4RERE5EoMcIiIiciQOVxEREZEjsSeHiIiIHIlBDhERETkSgxwiIiJyJAY5RERE5EgMcoiIiMiRGOQQERGRIzHIISIiIkdikENERESOxCCHiIiIHOn/AZC1zcfiTip1AAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'roots of $(x-1)\\\\cdots(x-10)$ with coeffs perturbed by R=1.0e-5')" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w = prod([Poly([-n, 1.0]) for n = 1:N])\n", - "logR = -5\n", - "plot(1:N, zeros(10), \"r*\")\n", - "R = exp10(logR)\n", - "for i = 1:100\n", - " r = roots(Poly(coeffs(w) .* (1 .+ R .* randn(N+1))))\n", - " plot(real(r), imag(r), \"b.\")\n", - "end\n", - "xlabel(\"real part of roots\")\n", - "ylabel(\"imaginary part of roots\")\n", - "title(\"roots of \\$(x-1)\\\\cdots(x-10)\\$ with coeffs perturbed by R=$R\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Even a **tiny error** causes the roots to be **complete garbage**. This gets exponentially worse as the degree of the polynomials increases.\n", - "\n", - "Because computers inevitably use a finite precision (usually about 15 significant digits), the tiny roundoff errors mean that characteristic polynomials are a computational disaster if they are actually computed explicitly." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Companion matrices\n", - "\n", - "Finding **roots of polynomials is *equivalent* to finding eigenvalues**. Not only can you find eigenvalues by solving for the roots of the characteristic polynomial, but you can conversely find roots of *any* polynomial by turning into a matrix and finding the eigenvalues.\n", - "\n", - "Given the degree-$n$ polynomial:\n", - "\n", - "$$\n", - "p(z)=c_0 + c_1 z + \\cdots + c_{n-1}z^{n-1} + z^n \\;,\n", - "$$\n", - "\n", - "(notice that the $z^n$ coefficient is 1), we define the $n \\times n$ **companion matrix**\n", - "\n", - "$$\n", - "C=\\begin{pmatrix}\n", - "0 & 1 & 0 & \\dots & 0 \\\\\n", - "0 & 0 & 1 & \\dots & 0 \\\\\n", - "0 & \\ddots & \\ddots & \\ddots & \\vdots \\\\\n", - "\\vdots & \\vdots & \\ddots & 0 & 1 \\\\\n", - "-c_0 & -c_1 & \\dots & -c_{n-2} & -c_{n-1}\n", - "\\end{pmatrix}.\n", - "$$\n", - "\n", - "The amazing fact is that the *characteristic polynomial* $\\det (C - \\lambda I) = p(\\lambda)$, and so the **eigenvalues of C are the roots of p**.\n", - "\n", - "## Proof\n", - "\n", - "Suppose $z$ is an root of $p(z) = 0$. We can now show that this is an eigenvalue of $C$, with eigenvector $= (1,z,z^2,\\ldots,z^{n-1})$:\n", - "\n", - "$$\n", - "C \\begin{pmatrix} 1 \\\\ z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\end{pmatrix}\n", - "= \\begin{pmatrix} z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\\\ -c_0 - c_1 z - \\cdots - c_{n-1} z^{m-1} \\end{pmatrix}\n", - "= \\begin{pmatrix} z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\\\ z^n \\end{pmatrix}\n", - "= z \\begin{pmatrix} 1 \\\\ z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\end{pmatrix}\n", - "$$\n", - "\n", - "where in the last row we used the fact that $p(z) = 0$ so $z^n = -c_0 - c_1 z - \\cdots - c_{n-1} z^{m-1}$.\n", - "\n", - "Hence $z$ is an eigenvalue. The **eigenvalues of C are the roots of p** and vice versa.\n", - "\n", - "## Conclusion\n", - "\n", - "If you have a polynomial whose leading coefficient is *not* 1, you can just divide the polynomial by that coefficient to get it in this form, without changing its roots. Hence the **roots of any polynomial can be found by computing the eigenvalues of a companion matrix.**" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "companion (generic function with 1 method)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function companion(p::Poly)\n", - " c = coeffs(p)\n", - " n = degree(p)\n", - " c = c[1:n] / c[end]\n", - " C = [ [ zeros(n-1)'; eye(n-1,n-1) ] -c ]'\n", - " return C\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$6 - 5\\cdot x + x^{2}$" - ], - "text/plain": [ - "Poly(6 - 5*x + x^2)" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = Poly([-2, 1]) * Poly([-3, 1]) # (x - 2) * (x - 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.0 1.0\n", - " -6.0 5.0" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "C = companion(p)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 2.0\n", - " 3.0" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(C)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$-24 + 2\\cdot x + 17\\cdot x^{2} - 8\\cdot x^{3} + x^{4}$" - ], - "text/plain": [ - "Poly(-24 + 2*x + 17*x^2 - 8*x^3 + x^4)" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - " # (x - 2) * (x - 3) * (x - 4) * (x + 1)\n", - "p = Poly([-2, 1]) * Poly([-3, 1]) * Poly([-4, 1]) * Poly([1, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 0.0 1.0 0.0 0.0\n", - " 0.0 0.0 1.0 0.0\n", - " 0.0 0.0 0.0 1.0\n", - " 24.0 -2.0 -17.0 8.0" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "C = companion(p)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -1.0\n", - " 4.0\n", - " 3.0\n", - " 2.0" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(C)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In fact, **this is the most common method to find roots of polynomials of degree ≥ 5**: you find the companion matrix, and compute its eigenvalues. This is precisely how the Polynomials package does it (albeit with some extra cleverness to check for leading and trailing zero coefficients):" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "roots{T}(p::Polynomials.Poly{T}) at /Users/stevenj/.julia/v0.6/Polynomials/src/Polynomials.jl:630" - ], - "text/plain": [ - "roots(p::Polynomials.Poly{T}) where T in Polynomials at /Users/stevenj/.julia/v0.6/Polynomials/src/Polynomials.jl:630" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@which roots(p)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This would seem rather circular if eigenvalues were computed, in turn, by finding roots of polynomials. But they aren't: **practical computer eigenvalue solvers never compute the characteristic polynomial, and don't resemble generic root-finding algorithms (like Newton's method)**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Computing eigenvalues = polynomial roots = hard\n", - "\n", - "* Everyone learns the [quadratic formula](https://en.wikipedia.org/wiki/Quadratic_formula) to find roots of a quadratic (degree-2) polynomial.\n", - "\n", - "* There is a (horrible) [cubic formula](https://en.wikipedia.org/wiki/Cubic_function) to find the roots of any cubic (degree-3) polynomial.\n", - "\n", - "* There is a (terrifying) [quartic formula](https://en.wikipedia.org/wiki/Quartic_function) to find the roots of any quartic (degree-4) polynomial.\n", - "\n", - "* There is **no formula** (in terms of a *finite number* of ±,×,÷,ⁿ√) for the roots of an **arbitrary quintic** polynomial or **any degree ≥ 5**. This is the [Abel–Ruffini theorem](https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem), proved in the 19th century.\n", - "\n", - "This does **not mean** that you can't compute roots (or eigenvalues) in practice! But it means that **root-finding/eigenvalue algorithms are necessarily *iterative***: they **converge toward the solution** but **never reach it exactly**. You can get the solution to *any desired accuracy*.\n", - "\n", - "For example we've already seen one such algorithm! [Newton's method](https://en.wikipedia.org/wiki/Newton%27s_method) is an algorithm that could be used to find the roots of an arbitrary polynomial (given enough starting guesses), and converges *very* quickly without ever exactly *reaching* the root.\n", - "\n", - "The most common algorithm to find eigenvalues (and hence polynomial roots, via companion matrices) is the [QR algorithm](https://en.wikipedia.org/wiki/QR_algorithm). As you might guess, it is *related* to the $A=QR$ factorization. Explaining *how* and *why* this algorithm works, however, is outside the scope of 18.06. (It takes me a week+ in 18.335: graduate numerical methods.)\n", - "\n", - "This means that the textbook characteristic-polynomial method we use to find eigenvalues of $2\\times 2$ matrices is something of a fraud: unlike Gaussian elimination, it bears no resemblance whatsoever to how eigenvalues are really computed. In 18.06, therefore, we will mostly assume that the computer hands us the eigenvalues and eigenvectors, and **we will focus on what eigensolutions *mean*, how they are *used*, and what their *properties* are.**" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "One thing that it is useful to know, however, is that the computer algorithm to compute eigenvalues/eigenvectors of an $m \\times m$ matrix requires $\\sim m^3$ operations, just like Gaussian elimination. However, the \"constant\" coefficient in front of $m^3$ is significantly worse:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0.037040 seconds (107 allocations: 7.644 MiB, 28.83% gc time)\n", - " 0.136025 seconds (19.23 k allocations: 9.247 MiB)\n", - " 1.795111 seconds (25 allocations: 7.936 MiB, 1.88% gc time)\n", - " 3.510496 seconds (6.35 k allocations: 31.892 MiB, 3.49% gc time)\n" - ] - } - ], - "source": [ - "A1000 = rand(1000,1000)\n", - "@time lufact(A1000)\n", - "@time qrfact(A1000)\n", - "@time eigvals(A1000)\n", - "@time eig(A1000);" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "164.89250315453947" - ], - "text/plain": [ - "164.89250315453947" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@elapsed(eig(A1000)) / @elapsed(lufact(A1000))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finding eigenvalues and/or eigenvectors is not so cheap, but it is often worth it!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - }, - "widgets": { - "state": { - "1df4718a-d6a4-4ee1-9281-dbdb7f019e2d": { - "views": [ - { - "cell_index": 27 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Fibonacci.ipynb b/lectures/Fibonacci.ipynb deleted file mode 100644 index 09dcc23d..00000000 --- a/lectures/Fibonacci.ipynb +++ /dev/null @@ -1,551 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fibonacci recurrence\n", - "\n", - "The [Fibonacci numbers](https://en.wikipedia.org/wiki/Fibonacci_number) are:\n", - "\n", - "$$\n", - "1,1,2,3,5,8,13,21,34,\\ldots\n", - "$$\n", - "\n", - "Each number $f_n$ in the sequence is the sum of the previous two, defining the [recurrence relation](https://en.wikipedia.org/wiki/Recurrence_relation):\n", - "\n", - "$$\n", - "f_n = f_{n-1} + f_{n-2}\n", - "$$\n", - "\n", - "Perhaps the most obvious way to implement this in a programming language is via [recursion](https://en.wikipedia.org/wiki/Recursion_(computer_science)):" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "slowfib (generic function with 1 method)" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function slowfib(n)\n", - " if n < 2\n", - " return BigInt(1) # use bigint type to support huge integers\n", - " else\n", - " return slowfib(n-1) + slowfib(n-2)\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that there is a slight catch: we have to make sure to do our computations with the `BigInt` integer type, which implements [arbitrary precision arithmetic](https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic). The Fibonacci numbers quickly get so big that they [overflow](https://en.wikipedia.org/wiki/Integer_overflow) the maximum representable integer using the default (fast, fixed numbrer of binary digits) hardware integer type." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{BigInt,1}:\n", - " 1\n", - " 2\n", - " 3\n", - " 5\n", - " 8\n", - " 13\n", - " 21\n", - " 34\n", - " 55\n", - " 89" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[slowfib(n) for n = 1:10]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Not that it matters for toy calculations like this, but there are much faster ways to compute Fibonacci numbers than the [recursive](https://en.wikipedia.org/wiki/Recursion) function defined above. The [GMP library](https://en.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library) used internally by Julia for `BigInt` arithmetic actually provides an [optimized Fibonacci-calculating function `mpz_fib_ui`](https://gmplib.org/manual/Number-Theoretic-Functions.html) that we can call if we want to using the low-level [`ccall` technique](https://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code.html):" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "fastfib (generic function with 1 method)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function fastfib(n)\n", - " z = BigInt()\n", - " ccall((:__gmpz_fib_ui, :libgmp), Void, (Ptr{BigInt}, Culong), &z, n)\n", - " return z\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "100-element Array{BigInt,1}:\n", - " 1\n", - " 1\n", - " 2\n", - " 3\n", - " 5\n", - " 8\n", - " 13\n", - " 21\n", - " 34\n", - " 55\n", - " 89\n", - " 144\n", - " 233\n", - " ⋮\n", - " 1779979416004714189\n", - " 2880067194370816120\n", - " 4660046610375530309\n", - " 7540113804746346429\n", - " 12200160415121876738\n", - " 19740274219868223167\n", - " 31940434634990099905\n", - " 51680708854858323072\n", - " 83621143489848422977\n", - " 135301852344706746049\n", - " 218922995834555169026\n", - " 354224848179261915075" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[fastfib(i) for i = 1:100]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's about 1000x faster even for the 20th Fibonacci number. It turns out that the recursive algorithm is pretty terrible — the [time increases exponentially with `n`](https://www.youtube.com/watch?v=pqivnzmSbq4)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0.002989 seconds (113 allocations: 8.068 KiB)\n", - " 0.000003 seconds (6 allocations: 216 bytes)\n", - " 0.000002 seconds (6 allocations: 216 bytes)\n", - " 0.003147 seconds (54.73 k allocations: 1.253 MiB)\n", - " 0.003234 seconds (54.73 k allocations: 1.253 MiB)\n", - " 0.003109 seconds (54.73 k allocations: 1.253 MiB)\n" - ] - }, - { - "data": { - "text/plain": [ - "10946" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "@time fastfib(20)\n", - "@time fastfib(20)\n", - "@time fastfib(20)\n", - "@time slowfib(20)\n", - "@time slowfib(20)\n", - "@time slowfib(20)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fibonacci as matrices" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can represent the Fibonacci recurrence as repeated multiplication by a $2 \\times 2$ matrix, since:\n", - "\n", - "$$\n", - "\\begin{pmatrix} f_{n+1} \\\\ f_n \\end{pmatrix} = \n", - "\\underbrace{\\begin{pmatrix} 1 & 1 \\\\ 1 & 0 \\end{pmatrix}}_F\n", - "\\begin{pmatrix} f_{n} \\\\ f_{n-1} \\end{pmatrix}\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Int64,2}:\n", - " 1 1\n", - " 1 0" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F = [1 1\n", - " 1 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Int64,1}:\n", - " 34\n", - " 21" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F^7 * [1,1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, plugging in $f_1 = 1, f_2 = 1$, then\n", - "\n", - "$$\n", - "\\begin{pmatrix} f_{n+2} \\\\ f_{n+1} \\end{pmatrix} = \n", - "F^n\n", - "\\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix}\n", - "$$\n", - "\n", - "and the key to understanding $F^n$ is the eigenvalues of $F$:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " -0.618034\n", - " 1.61803 " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(F)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Analytically, we can easily solve this $2 \\times 2$ eigenproblem to show that the eigenvalues are $(1 \\pm \\sqrt{5})/2$ (just the roots of the quadratic characteristic polynomial $\\det (F-\\lambda I) = \\lambda^2 - \\lambda - 1$):" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.618033988749895" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(1 + √5)/2" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.6180339887498949" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(1 - √5)/2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For example, to compute $f_{100}$, we can multiply $F^{98}$ by $(1,1)$ (again converting to `BigInt` using `big` first to avoid overflow):" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{BigInt,1}:\n", - " 354224848179261915075\n", - " 218922995834555169026" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "big.(F)^98 * [1, 1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This matches our `fastfib` function from above:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "354224848179261915075" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fastfib(100)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An important thing about $F^n$ is that, for large $n$, the behavior is dominated by the biggest $|\\lambda|$. That is, for large $n$, we must have $(f_{n}, f_{n-1})$ approximately parallel to the corresponding eigenvector, and hence:\n", - "\n", - "$$\n", - "\\begin{pmatrix} f_{n+1} \\\\ f_{n} \\end{pmatrix} =\n", - "F \\begin{pmatrix} f_{n} \\\\ f_{n-1} \\end{pmatrix}\n", - "\\approx \n", - "\\lambda_1\n", - "\\begin{pmatrix} f_{n} \\\\ f_{n-1} \\end{pmatrix}\n", - "$$\n", - "\n", - "where $\\lambda_1 = (1 + \\sqrt{5})/2$ is the so-called [golden ratio](https://en.wikipedia.org/wiki/Golden_ratio).\n", - "\n", - "Let's compute the ratios of $f_{n+1}/f_{n}$ and show that they approach the golden ratio:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.61803398874989484820458683436563811772030917980576286213544862270526046281891" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(1 + √big(5))/2 # golden ratio computed to many digits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also plot the ratio vs. $n$:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.618033988749894848204586834365638117720312743963795685753591851088290198698868" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fastfib(101) / fastfib(100)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAG0CAYAAAAy8S2PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9//H3JCEbkCBrEhJIKFQFFCi4ACLggkXFevlRtbSC1T4qV1AoYhHxVrsoSq/bFTd6W7hVVKwCLtVWKEJQQRQIKG5FAwEEkS2BAAmZfH9/fJkwgSRkmZlzzszr+XjMY05OvjPzyULmzXc5X58xxggAACAGxDldAAAAQKQQfAAAQMwg+AAAgJhB8AEAADGD4AMAAGIGwQcAAMQMgg8AAIgZBB8AABAzCD4AACBmEHwAAEDMIPgAAICYkeB0AU6rrKzUN998o5YtW8rn8zldDgAAqAdjjA4cOKCsrCzFxdW/Hyfmg88333yjnJwcp8sAAACNsHXrVmVnZ9e7fcwHn5YtW0qy37i0tDSHqwEAAPVRUlKinJycqvfx+or54BMY3kpLSyP4AADgMQ2dpsLkZgAAEDMIPgAAIGYQfAAAQMwg+AAAgJhB8AEAADGD4AMAAGIGwQcAAMQMgg8AAIgZBB8AABAzYv7KzfA4v19asULasUPKzJQGDZLi452uCgDgUq7p8ZkxY4bOOecctWzZUu3bt9fVV1+tL7744pSPe+WVV9S9e3clJSWpe/fuWrhwYQSqhSssWCDl5kpDh0qjR9v73Fx7HgCAGrgm+Cxfvlzjx4/XqlWrtHjxYlVUVGjYsGEqLS2t9TErV67Utddeq+uvv17r16/X9ddfr2uuuUYffPBBBCuHIxYskEaNkrZtq35++3Z7nvADAKiBzxhjnC6iJt99953at2+v5cuX68ILL6yxzbXXXquSkhK99dZbVed++MMf6rTTTtMLL7xQr9cpKSlRenq6iouL2aTUK/x+27NzYugJ8Pmk7GypsJBhLwCIUo19/3ZNj8+JiouLJUmtW7eutc3KlSs1bNiwaucuu+wyvf/++7U+pqysTCUlJdVu8JgVK2oPPZJkjLR1q20HAEAQVwYfY4wmT56sCy64QD179qy13c6dO9WhQ4dq5zp06KCdO3fW+pgZM2YoPT296paTkxOyuhEhO3aEth0AIGa4MvhMmDBBGzZsqNdwlc/nq/axMeakc8GmTZum4uLiqtvWrVubXC8iLDMztO0AADHDdcvZb731Vr322mvKz89XdnZ2nW0zMjJO6t3ZtWvXSb1AwZKSkpSUlBSSWuGQQYPsHJ7t2+2w1okCc3wGDYp8bQAAV3NNj48xRhMmTNCCBQu0dOlS5eXlnfIx/fv31+LFi6ude/vttzVgwIBwlQk3iI+XHnus5s8FevsefZSJzQCAk7gm+IwfP17PPfecnn/+ebVs2VI7d+7Uzp07dfjw4ao2Y8aM0bRp06o+njhxot5++209+OCD+vzzz/Xggw9qyZIlmjRpkhNfAiJp5Ejp8cdPPp+dLb38sv08AAAncE3weeqpp1RcXKwhQ4YoMzOz6jZ//vyqNkVFRdoRNGF1wIABevHFFzVnzhydffbZmjt3rubPn6/zzjvPiS8Bkdatm71v2/Z4T8+KFYQeAECtXDPHpz6XE1q2bNlJ50aNGqVRo0aFoSK43tdf2/v+/aVvv5VWr5aWLZPGjnW0LACAe7mmxwdosK++svddukiXXGKPT5jzBQBAMIIPvCvQ49Oli3TppfZ4yZKaV3oBACCCD7wsEHy+9z073JWaaoe8PvnE2boAAK5F8IE3GVN9qCspSRo82H7McBcAoBYEH3jTnj3SgQP2ODfX3jPPBwBwCgQfeFNgmKtjRyklxR4H5vksXy6VlTlTFwDA1Qg+8KbgYa6Anj2lDh2kw4ellSudqQsA4GoEH3hT8IquAJ+P4S4AQJ0IPvCmQI/P975X/XxguIvgAwCoAcEH3lRTj490vMfno4+kffsiWxMAwPUIPvCm4Gv4BOvYUTrzTLvcfenSyNcFAHA1gg+8p6xM2rbNHp/Y4yMx3AUAqBXBB96zebPt0WneXGrX7uTPE3wAALUg+MB7goe5fL6TPz94sJSQYNsF2gIAIIIPvKima/gEa9lSOv98e7xkSWRqAgB4AsEH3lPbiq5gDHcBAGpA8IH31LaiK1gg+CxdKvn94a8JAOAJBB94z6mGuiTpnHOktDRp715p3brI1AUAcD2CD7zFmPoNdSUkSEOH2mOGuwAAxxB84C27dkmHDtnVXLm5dbdlng8A4AQEH3hLYJgrJ0dKTKy7bSD4vPeeDUsAgJhH8IG31GeYK6BbNxuQysulFSvCWxcAwBMIPvCW+qzoCvD5GO4CAFRD8IG31GdFV7BA8OFChgAAEXzgNQ0Z6pKkiy6y9+vXS99+G56aAACeQfCBtwR6fOoz1CVJ7dtLvXvb43/9Kzw1AQA8g+AD7zh0SNqxwx7Xt8dHYrgLAFCF4APv2LzZ3qenS61b1/9xwROcjQl5WQAA7yD4wDuCJzb7fPV/3AUXSElJ0rZt0hdfhKc2AIAnEHzgHQ2d2ByQkmLDj8SydgCIcQQfeEdDruFzIub5AABE8IGXNPQaPsEuucTev/OOdPRo6GoCAHgKwQfe0dihLknq00dq00Y6cEBavTq0dQEAPIPgA2+orJQKC+1xY4a64uKkiy+2xwx3AUDMIvjAG3bskI4ckeLj7cajjREY7mKCMwDELIIPvCEwzNWpk9SsWeOeIzDBedUqqaQkNHUBADyF4ANvaMqKroDcXKlrV8nvl5YtC0VVAACPIfjAG5qyoisYy9oBIKYRfOANTVnRFYx5PgAQ0wg+8IZQDHVJ0kUX2RVen39ut7AAAMQUgg+8IVRDXa1aSeecY48Z7gKAmEPwgfsdPCjt2mWPm9rjIzHcBQAxjOAD9wsMc7VuLaWnN/35gic4V1Y2/fkAAJ5B8IH7hWpic0D//lLz5rYX6eOPQ/OcAABPIPjA/UI1sTkgMVEaPNgeM88HAGIKwQfuF6qJzcGY5wMAMYngA/cL9VCXdHyeT36+3QMMABATCD5wv1APdUlSjx5SRoZ0+LC0cmXonhcA4GoEH7ib3y8VFtrjUPb4+HwMdwFADCL4wN22b5eOHrU7smdnh/a5A8NdBB8AiBkEH7hbYJgrN1eKjw/tcwd6fNaskfbuDe1zAwBcieADdwvHiq6ArCw718cYaenS0D8/AMB1CD5wt3Cs6ArGPB8AiCkEH7hbOFZ0BWOeDwDEFIIP3C2cQ12SvYJzQoJdORYIWQCAqEXwgbuFu8enRQu7d5dErw8AxABXBZ/8/HyNGDFCWVlZ8vl8WrRo0SkfM2/ePPXq1UupqanKzMzUz3/+c+3ZsycC1SLsioulwM8yLy98r8NwFwDEDFcFn9LSUvXq1UuzZs2qV/t3331XY8aM0U033aSNGzfqb3/7mz788EP94he/CHOliIhAb0+7dlLLluF7nUDwWbrUXjARABC1EpwuINjw4cM1fPjwerdftWqVcnNzddttt0mS8vLydPPNN2vmzJnhKhGRFO5hroB+/aT0dGnfPmntWumcc8L7egAAx7iqx6ehBgwYoG3btunNN9+UMUbffvutXn75ZV1xxRW1PqasrEwlJSXVbnCpcE9sDkhIkIYOtccMdwFAVPN88Jk3b56uvfZaJSYmKiMjQ61atdLjjz9e62NmzJih9PT0qltOTk4EK0aDhPsaPsGY5wMAMcHTwefTTz/Vbbfdpt/85jdas2aN/vGPf6iwsFDjxo2r9THTpk1TcXFx1W3r1q0RrBgNEqmhLul48Hn/fam0NPyvBwBwhKvm+DTUjBkzNHDgQN1xxx2SpLPPPlvNmzfXoEGD9Ic//EGZmZknPSYpKUlJSUmRLhWNEamhLknq2lXq1EkqKpJWrJB++MPwvyYAIOI83eNz6NAhxcVV/xLij21kaYxxoiSESkWFtGWLPY5E8PH5GO4CgBjgquBz8OBBFRQUqKCgQJJUWFiogoICFRUVSbLDVGPGjKlqP2LECC1YsEBPPfWUvv76a7333nu67bbbdO655yorK8uRrwEhsnWrXVqelGQ3E42EQPBZsiQyrwcAiDhXDXV99NFHGhpYXSNp8uTJkqSxY8dq7ty52rFjR1UIkqQbbrhBBw4c0KxZs3T77berVatWuuiii/Tggw9GvHaEWGCYKy9PiotQPr/oInu/YYP07bdShw6ReV0AQMT4TIyPCZWUlCg9PV3FxcVKS0tzuhwEzJ4t3XyzdPnl0t//HrnX/cEPpHXrpOeek37608i9LgCgQRr7/u2qoS6gSiRXdAVjng8ARDWCD9wpkiu6ggXP84ntzlAAiEoEH7hTJC9eGGzgQDuhevt26fPPI/vaAICwI/jAnZwa6kpJkQYNsscMdwFA1CH4wH327pX277fHeXmRf32WtQNA1CL4wH0CvT2ZmVJqauRf/5JL7P2yZdLRo5F/fQBA2BB84D5Oze8J6N1battWOnBA+uADZ2oAAIQFwQfu49SKroC4OOnii+0x83wAIKoQfOA+Tk1sDhYY7mKeDwBEFYIP3MfpHh/p+ATnDz6QioudqwMAEFIEH7iP03N8JKlzZ6lbN7tR6rJlztUBAAgpgg/cpbzc7swuOTvUJbGsHQCiEMEH7rJli1RZaS8k6PTu6IF5PkxwBoCoQfCBuwQPc/l8ztYydKhd4fXFF8d7oQAAnkbwgbu4YUVXQKtW0rnn2mOGuwAgKhB84C5uWNEVjOEuAIgqBB+4ixtWdAULnuBcWelsLQCAJiP4wF3cNNQlSeefLzVvLn33nbRhg9PVAACaiOAD9zDGfUNdiYnSkCH2mHk+AOB5BB+4x+7d0sGDdjVXbq7T1RzHPB8AiBoEH7hHYJirY0cpOdnZWoIF5vnk50tHjjhbCwCgSQg+cA+3DXMFdO8uZWba0PP++05XAwBoAoIP3MNtE5sDfD6GuwAgShB84B5uW8oeLDDcRfABAE8j+MA93DrUJR3v8Vm7Vtqzx9laAACNRvCBe7h1qEuyc3x69rRL7pcudboaAEAjEXzgDkeOSNu322M39vhIzPMBgChA8IE7bN5se1NatJDatnW6mpoFz/MxxtlaAACNQvCBOwQPc/l8ztZSmwsvlJo1syEtUC8AwFMIPnAHN09sDmjRQurf3x4z3AUAnkTwgTu4eSl7MJa1A4CnEXzgDm5e0RUsEHyWLpX8fmdrAQA0GMEH7uCFoS5J6ttXSk+X9u+X1qxxuhoAQAMRfOA8Y7zT45OQIF10kT2OpeEuv19atkx64QV7T28XAI8i+MB5334rHT4sxcVJnTo5Xc2pxdo8nwULpNxcaehQafRoe5+ba88DgMcQfOC8wDBXTo6UmOhsLfURCD7vvy+VljpbS7gtWCCNGiVt21b9/Pbt9jzhB4DHEHzgPK8McwV873tS587S0aNSfr7T1YSP3y9NnFjzxRoD5yZNYtgLgKcQfOA8ryxlD/D5YmO4a8WKk3t6ghkjbd1q2wGARxB84DyvrOgKFgg+S5Y4W0c47dgR2nYA4AIEHzjPa0Ndkl3Z5fNJH38s7dzpdDXhkZlZv3YbNkgVFeGtBQBChOAD53ltqEuyG6n26WOPo7XXZ+BAKTn51O0eeEA680xp7lwCEADXI/jAWYcOHR8q8VLwkaJ/ns/vfy8dOVLz53w+e/vZz2wI3LRJ+vnPpdNPl/7yFzvxGwBciOADZxUW2vtWraTWrZ2tpaGC5/nUtPLJyxYssMFHkm69VcrOrv757Gzp5ZelZ5+1P8OZM6V27Wzv3U032QD05z8TgAC4DsEHzvLixOaAwFDQN99In33mdDWh88kn0pgx9njSJOl//kfavFl65x3p+eftfWGhNHKkbdOihXTHHfbcf/+31L69Pf7FL6Tvf1/605+k8nLHvhwACEbwgbO8OL8nIDlZGjTIHkfLcNe+fdLVV9sLM150kfTHP9rz8fHSkCHST35i7+PjT35s8+bS7bfb0PPQQ1KHDjYw/fKXUrdu0jPPEIAAOI7gA2d5cUVXsGha1u7322Dz1Vd2S4r58+3eZA2VmipNnmx/to88ImVkSEVF0rhxUteu0tNPS2VlIS8fAOqD4ANneXmoS5IuucTeL1vm/fks06dL//ynlJIiLVpkJy03RWqqHSr7+mvpscfs8vitW6X//E8bgJ58kgAEIOIIPnCWl4e6JKlXLzup9+BBadUqp6tpvBdflB580B7PmWO/rlBJSZFuu83+rP/nf6SsLHtF6PHjbU/frFm1rx6LNX6/DdEvvGDv2Q4ECDmCD5xTWXl8VZdXh7ri4qSLL7bHXp3nU1Ag3XijPZ46Vbr22vC8TnKyXSH21Vc27HTsaDc7vfVW+/N//PHYDkALFtghxqFDpdGj7X1uLhvBAiFG8IFzvvnGDnUkJNid2b3Ky/N8du+2k5kPH5Yuu0y6777wv2Zysu3t+eorO9yVnW1/F267zfb8PfaYrSeWLFhgd7s/cW+07dvtecJPaHmxZ42aQ8fEuOLiYiPJFBcXO11K7Fm+3BjJmO99z+lKmmbLFvt1xMcbs3+/09XU39GjxgwdevxnsHevM3UcOWLMU08Z06mTrUUyJiPDmEceMebQIWdqiqSKCmOys49/7SfefD5jcnJsOzeqqDDmnXeMef55e+/WOgNeeeXk73d2tj3vVtRco8a+f/uMibYrrzVMSUmJ0tPTVVxcrLS0NKfLiS1z59qr/V56qfT2205X0zSnny59+aW0cKHtQfGCX/1KevRRex2eVaukHj2crae83P5O3H+/tGWLPdehg/TrX9sVYampjpYXcoGh3nnzpHvuOXX7fv3spPDWraU2barfBx+3atW41XiNsWCBNHFi9Z6q7Gzbaxe4zpObBHrWTnzb8/ns/csvu69uaq5VY9+/CT5hDD6lpaW1fi4+Pl7JQfsg1dU2Li5OKSkpjWp76NAh1fYj9vl8Sg16M2lI28OHD6uysrLWOpo3b37qtr/7nTRzpprffLNd4izpyJEj8tfRHRr8vKdqm5qaKt+xf2hlZWWqqGMfqYa0TUlJUVycHSUuLy/X0aNH7fLt2bPtNWsefrjutrVITk5W/LHr4zSk7dGjR1Vex/VxkpKSlHDsjbCq7fPP21ole3zVVSe1raioUFkdq64SExPVrFmzBrf1+/06UsdcnmbGKPHFF6X77pN/82YdkewE8kmT7EURg34HmjVrpsTERElSZWWlDtcxRNaQtgkJCUpKSpIkGWN06NChprU9fFj67DPFf/KJkjdulNavl9avV+mBA7U+b7yk4J3Sav9Xb+cspAR9XJqeLp12mr0FgtGx47jWrZWSkVEVlA6lpMicdpoNTCdcn6nOvxGvvir99KfH20pKtQ+yX/K8eao89ntVk3r9jaihbaP/RlRU2D3lAlvkHKv32FuxyiRVZGZKK1dKzZrZ70V8vJ3HFx+v1JYt5Tv2b7lRfyMa09bvtzV/840k+/sQ+AmVSzoq2blyn3560s+uyX8j6tG2xn/3QTUnSmp24hP4fDYcFxbWfD2wBmj0+3fI+pw8KpxDXZJqvV1++eXV2qamptbadvDgwdXatm3btta2/fr1q9a2c+fOtbbt3r17tbbdu3evtW3nzp2rte3Xr1+tbdu2bVut7eDBg2ttmyoZM3NmVdvLL7+8zu9bsFGjRtXZ9uDBg1Vtx44dW2fbXbt2VbW95ZZb6mxbWFhY1XbKlCl1tv3kk0+q2t5zzz11tl29enVV25kzZ9bZ9p133qlqO2vWrDrbvvHGG1Vt58yZU2fbl156qartSy+9VGfbOXPmVLV944036mw7a9asqrbvvPNOnW1nBn4fysvN6unT62x7zz33VD3vJ598UmfbKVOmVLUtLCyss+0tt9xS1XbXrl11th07dmxV24MHD9bZ9tj/gatudbW9/IS2qc2a1dp2cFKSMWlpVW3b1vG8/U543s51tO2enm7MhAnG/OY3xjz2mOnesWOtbTsHP6/PZ/rVUW/bVq2MWbHCmCVLjPn7383gHj1qbZvarJkxv/61MRMnGjNunLk8O7vO75s580xjunQxpmNHMyoxsc62B4NqHnuKn8euY1+XiY83t8TF1dm2sEMHO3Sbl2empKfX2faTXr2MueACYy680NyTm1tn29VB9c48Rb3v9O9vzJVXGnPFFWZWHX/bJZk3zj7bDnsPGWLmnH56nW1f6trVmHPPNeacc8xLXbrU2XbOCb9r1W5Bf8Maq7Hv3xHqDwXq4NWl7F5UXOx0BfXXrJn0ox/VPeHaDVeCLiyUpk2zq+PWrau7bfv20vXXS71729tZZ536+QP/Q96zp/ZrRZ1//vFrSe3bJ51xhr2vyWmnSX37Snv32tuWLap1r7niYrsCr6GMqfu6Vvv3H7/q+akcPWr3gquvcG4fY0z9Juh++239n3P9+sbXU5eVK+vfdsOG+rfdtKnhtdQkqOct0hjqYqirUW1DMtSVmyvt3q3ma9dKffpI8vBQl2S3eFi9WnriCWns2Lrb1iDsQ13l5To6dKjK33/f7qG1bJl0wu+8K4a6goakqrWtqLBXk37ggarLIDRr3VqJU6ZIEyaosnnz6sNXfr/03nvSzp1SRoaaDRmixGP/Nho81LVrl7Rxo32D2LBB+vhju6fZkSNKkJR07HFG0iHJzsU56yzp7LPt7ayzpMxMxSck1Pzv/oRhI+nYUFfQnIjSyy6rtd4m/40oL7dBae9ee3/s2Ldvn1IPHrSha+9eHfruO5k9e+xqsz17qj1v1VDXMYclVftXn5R0/JaYqOYpKVUfH05IUOWx8ye2U1KSmrdoUXXuSFyc/M2a1dhOSUlqnp5+vK0kf0KC/Xjt2pO+xycNdUnSa69JAwbY35/KSnvv9ys1OVm+Yx+XHT6sivLyk9qoslKqrFRKQoJdMu33q7ysTEfLyqq3PdZOfr9S4uOrty0vP97us8/sfKljahzqkqRbbrHbwvh8dmjO51NyYqL9G+Hz6ajfr/LKSvv5wE2qOk5KTLT/7gNt/f7qbYNuwW0rKitVVlFRvc0nn0h33y1JNQ91Bbzzjt3+pgmiYqhr+fLl5sorrzSZmZlGklm4cOEpH3PkyBFz1113mU6dOpnExETTpUsX8+c//7ner8mqLoeUlBzv8vTSSqi6/Nd/2a/nuuucrqRm//mftr60NGM+/9zpahrv6FFj/u//jOnW7fjvUOvWxtx3nzGBf8eNXVFSWWnMtm3GvPGGMX/4gzE//rF9HZ+v5u76lBRjzjvPmJtvNubJJ415/31jDhxo3NdVU805Oe5cufPOO7UPYQTf3nzTmPJy+311WmD1XG0/SzeunqPmOjX2/dtVwefNN98006dPN6+88kq9g89VV11lzjvvPLN48WJTWFhoPvjgA/Pee+/V+zUJPg5Zv97+I2jTxulKQic/335Nbdsa4/c7XU11s2cf/6MTNOfH044eNebZZ435/veP/1E97TQbPGv6o+vz2VsgSJSXG7Nhg32O22835uKL7c+utjfxzExjhg835s47jXnxRRseQ/2G45Wl4V58QzbG/uwDvwd1/W64CTXXKiqCT7D6BJ+33nrLpKenmz179jT6dQg+DlmwwP5DOOccpysJnfJyY1q0sF/X2rVOV3Pce+8Z06yZresPf3C6mtCrqDBm3jxjTj+9fr0QzZsb06ePMYmJNX8+Pt6YHj2MGT3aTrx/+21jvv3W6a/Sfbz4hmyMt3rWAqi5RlF3HR+fz6eFCxfq6jquiXLLLbfoyy+/VL9+/fTss8+qefPmuuqqq/T73/++2hh2sLKysmpzEUpKSpSTk8N1fCLtoYekKVOk666zV/WMFiNGSG+8YSdj3nGH09XYZbB9+9p5Lv/v/0l/+9vx8f1o4/dL994r/eEP9X9My5Z2X7LevY/f9+hh9xfDqdV0HZ+cHHt9KLddWyaY3y+tWGEn2GZm2onWTVxaHXbUfJLGzvHx9Kqur7/+Wu+++66Sk5O1cOFC7d69W7fccov27t2rv/zlLzU+ZsaMGfrtb38b4UpxEq/vyl6bSy6xwWfxYueDz5Ej9s1n506pZ097ccBoDT2S/YPavXv92k6aZPcIy821k0HROCNH2pV3XntDjo9v8sTaiKPmkPF08KmsrJTP59O8efOUnp4uSXr44Yc1atQoPfHEEzX2+kybNk2TJ0+u+jjQ44MI8/qu7LUJ7Nu1YoUNHsnJdbcPF2PsflgffGCXLy9aZK/QHO0yM+vX7kc/ir7fPae49M0NqI2n/6uTmZmpjh07VoUeSTrzzDNljNG2Ezf7OyYpKUlpaWnVbnBAIPh4dVf22px5ppSVZUPPe+85V8eTT0p/+YvtzXjxxej7Ptdm0CB7zZvaerZ8PjsUU99ryACIOp4OPgMHDtQ333yjgwcPVp378ssvFRcXp+zsbAcrQ538fmnzZnscbf/r9vnscJdkh7ucsHy5HcqRpAcflIYNc6YOJ8THH7/uyYnhJ/Dxo4+6fygGQNi4KvgcPHhQBQUFKigokCQVFhaqoKBARUVFkuww1ZgxY6rajx49Wm3atNHPf/5zffrpp8rPz9cdd9yhG2+8sdbJzXCBbdvs1VgTE+0+M9EmMNzlRPApKpJ+/GN7sb+f/ES6/fbI1+C0kSPtJogn/m5lZ7tzQ0cAEeWqOT4fffSRhg4dWvVxYC7O2LFjNXfuXO3YsaMqBElSixYttHjxYt16663q16+f2rRpo2uuuUZ/aMiqDkReYJgrNzc6/+cd6PFZt07avVtq2zYyr3v4sPQf/yF9951dnfS//xvdk5nr4tVJtwDCzlXBZ8iQIbVumSBJc+fOPencGWecocVODSmgcaJ1RVdARobdouDjj6WlS6Vrrgn/axpjd1tfu9YGrUWLpNTUUz8umjHpFkANXDXUhRgRrRObg0V6ns8jj0jPPWff7P/2N6lz58i8LgB4DMEHkRetS9mDBc/zCfc1QpcsOX7NoEceoZcDAOpA8EHkRftQlyRdeKHUrJm0Zcvxrzccvv5auvZau5vzDTdIEyaE77UAIAoQfBB5sTDU1by5NGCAPQ7XcFdpqXT11dLVIb8cAAAdt0lEQVTevdI550hPPRW7k5kBoJ4IPois/fvtG7Uk5eU5W0u4hXNZuzHSz39uJ1B36GD3THLqKtEA4CEEH0RWoLenffvo30IhEHyWLrXX1QmlBx+0k5ibNZNeecVeowYAcEohWc7++eef6/XXX1erVq3Uo0cP9ezZk60gULNYGOYK6NtXatXK9nKtWSOdd15onvett6S77rLHjz8uDRwYmucFgBgQkh6f4cOHq7y8XPv379czzzyjIUOG6PTTTw/FUyPaxMKKroD4eOmii+xxqIa7vvzSXpE5cN2em28OzfMCQIwISY9PRkaGpk+fXu2c3+8PxVMj2sTCiq5gl15q598sXizdfXfTnqukxE5mLi62vTyPPx6aGgEghoSkx+eyyy7Ts88+W+1cPJeGR01iaahLOj7PZ+VKKWgz3QarrJTGjJE++8zu/v7yy3avMwBAg9Q7+EydOlVHjhyp8XOrV6/W9OnT1bVrV40ePVozZszQG2+8EbIiEUVircenSxe7J9nRo1J+fuOf5/e/l1591YadhQvtthgAgAard/B55JFHVFxcLMluGlpaWlr1uTfffFNFRUVau3atJkyYoDZt2mjJkiWhrxbedvSo3T1cip0eH5+v6cvaX31Vuvdee/z009K554akNACIRfUOPh07dtS6deskSc8991y14BOQlpamAQMG6Je//KUeffTR0FWJ6LB1q+T32+vNxFKPRVOCz6efSj/7mT2+9VZ77R4AQKPVO/hMmTJFV111lQYcuxrtvHnztHr1ah0+fDhsxSHKBIa58vKkuBi6hNRFF9men40bpR076v+4/fvtZOaDB6XBg6WHHgpfjQAQI+r97jN+/HitW7dOV155pYwxeuKJJzRgwAClpaXpzDPP1HXXXacHHnhAb731VjjrhZfF2sTmgDZtpB/8wB7XdwjY75dGj5b+/W+pU6fjFysEADRJg/7b3aNHD911113q0qWLVq1apQMHDujdd9/VpEmTdNppp+nVV1/VNddcE65a4XWxdA2fEzV0uOu//steqDAlRVq0SGrXLny1AUAMadR1fDZt2lR1fN555+m8oCvSGmOaXhWiU6yt6Ap26aXSAw/YHh9j6t5M9KWXpBkz7PH//q/Up09kagSAGNCgHp+77rpLq1evrrONj92hUZtYHeqS7E7tycl2js+nn9bebsOG4xOYp0yxw10AgJBpUPDZsWOHrrzySmVmZuqXv/yl/v73v6usrCxctSGaGBPbPT7JydKFF9rj2oa79uyxk5kPHbI9RIFeHwBAyDQo+MyZM0fffvutXnrpJbVq1Uq333672rZtq5EjR2ru3LnavXt3uOqE1+3da7dckOyqrlhU1zyfigrpuuukwkIbDF98UUoIyY4yAIAgDV5T7PP5NGjQIM2cOVOff/65Vq9erfPPP19/+tOf1LFjR1144YX67//+b23fvj0c9cKrAsNcWVl2wm4suuQSe798uVReXv1zU6fa+T+pqXYyc+vWka8PAGJAky+mcuaZZ+rXv/613nvvPW3btk1jx47VihUr9MILL4SiPkSLWF7RFXD22XZ1VmmptGrV8fPPPSc9/LA9/r//k846y5n6ACAGhLQvvV27drrpppt00003hfJpEQ1ieX5PQFyc7fV54QXpT3+Stm+3w38TJ9rP33WXNGqUszUCQJQL2ySCNWvWqG/fvuF6enhNLK/oChYYwnruOXsL+MEPpN/9zpmaACCGhG3fgP/4j/8I11PDixjqkhYskJ58subPrVtnNyMFAIRVk3p8artKszFGe/fubcpTI9rE+lCX32+HtOq6wOekSdKPfiTFx0euLgCIMU0KPkuWLNGzzz6rFi1aVDtvjFF+fn6TCkMUKS+3O7NLsTvUtWKFtG1b7Z83xn6PVqyQhgyJWFkAEGuaFHyGDBmiFi1aaPDgwSd9rg+X2UfA5s32jb15c6l9e6ercUZ9d2VvyO7tAIAGa1LwWbBgQa2f+8c//tGUp0Y0CZ7fE6tbmmRmhrYdAKBRwja5GajCxGZp0CApO7v24OfzSTk5th0AIGwIPgi/WJ/YLNkJy489Zo9PDD+Bjx99lInNABBmIQ0+pq4VK4hdXMPHGjlSevllqWPH6uezs+35kSOdqQsAYkhIL2DYt29frV27NpRPiWjAUNdxI0faJesrVtiJzJmZdniLnh4AiIiQBh96fHASYxjqOlF8PEvWAcAhTQ4+f/3rXyXZ0LNv376qjyVpzJgxTX16eN1339lNOX0+KTfX6WoAADGuycEnuJcncEzPD6oEhrmys6WkJGdrAQDEvCYHn7Fjx1YdP/bYY/TyoDqGuQAALsKqLoQXK7oAAC4S0uCzZs2aUD4dogErugAALhLS4BMXx/UQcQKGugAALkJSQXgx1AUAcJGQXMfn888/1+uvv65WrVqpR48e6tmzp9LS0kLx1PCyI0ek7dvtMT0+AAAXCEmPz/Dhw1VeXq79+/frmWee0ZAhQ3T66aeH4qnhZYWF9j4tTWrTxtlaAABQiHp8MjIyNH369Grn/H5/KJ4aXhY8sbm2XckBAIigevf4TJ06VUeOHKnxc5dddpmeffbZaufi2XsITGwGALhMvYPPI488ouLiYkn2ooWlpaVVn1u9erWmT5+url27avTo0ZoxY4beeOON0FcLb2FiMwDAZeodfDp27Kh169ZJkp577rlqwefNN99UUVGR1q5dqwkTJqhNmzZasmRJ6KuFt3ANHwCAy9R7js+UKVN01VVXqV+/fpKkefPmaeDAgTrrrLOUkpIiSUpLS9OAAQM0YMCA8FQLb2GoCwDgMj7TgH0mNm7cqFdffVV33323unTpos2bN8vn86lr167q1auXevfurd69e+uHP/xhOGsOqZKSEqWnp6u4uJgl+KFkjJSaape0b9rEcBcAIKQa+/7doOAT0LVrV61atUrNmzfXhg0bVFBQUHX75JNPdODAgYY+pWMIPmGyY4eUlSXFxdnw06yZ0xUBAKJIY9+/G7WcfdOmTVXH5513ns4777yqj9moFJKOD3N16kToAQC4Rsi3rPBxvRZIrOgCALgSe3UhPFjRBQBwIYIPwoMVXQAAFyL4IDwY6gIAuBDBB+HBUBcAwIVcFXzy8/M1YsQIZWVlyefzadGiRfV+7HvvvaeEhAT17t07jBWiXkpLpZ077TE9PgAAF3FV8CktLVWvXr00a9asBj2uuLhYY8aM0cUXXxymytAghYX2/rTTpFatnK0FAIAgjbqOT7gMHz5cw4cPb/Djbr75Zo0ePVrx8fEN6iVCmDDMBQBwKVf1+DTGnDlz9NVXX+mee+5xuhQEBFZ0McwFAHAZV/X4NNS///1v3XnnnVqxYoUSEur3pZSVlamsrKzq45KSknCVF7vo8QEAuJRne3z8fr9Gjx6t3/72t/r+979f78fNmDFD6enpVbecnJwwVhmjuIYPAMClGrVJaST4fD4tXLhQV199dY2f379/v0477TTFx8dXnausrJQxRvHx8Xr77bd10UUXnfS4mnp8cnJy2KQ0lM44Q/riC+lf/5Jq+BkAANBUEd2k1A3S0tL08ccfVzv35JNPaunSpXr55ZeVl5dX4+OSkpKUlJQUiRJjU2Xl8VVd9PgAAFzGVcHn4MGD1XZ+LywsVEFBgVq3bq1OnTpp2rRp2r59u/76178qLi5OPXv2rPb49u3bKzk5+aTziKDt26XycikhQcrOdroaAACqcVXw+eijjzR06NCqjydPnixJGjt2rObOnasdO3aoqKjIqfJQH4GJzbm5NvwAAOAirp3jEymNHSNELebMkW68URo2TPrnP52uBgAQpRr7/u3ZVV1wKVZ0AQBcjOCD0GJXdgCAixF8EFpcvBAA4GIEH4QWQ10AABcj+CB0Skqk3bvtMcEHAOBCBB+ETuDChW3bSqyQAwC4EMEHocOu7AAAlyP4IHSY2AwAcDmCD0KH4AMAcDmCD0KHoS4AgMsRfBA69PgAAFyO4IPQqKiQNm+2xwQfAIBLEXwQGtu22fCTmCh17Oh0NQAA1Ijgg9AIDHPl5Ulx/FoBANyJdyiEBltVAAA8gOCD0GBXdgCABxB8EBqs6AIAeADBB6HBUBcAwAMIPggNhroAAB5A8EHT7dtnb5Jd1QUAgEsRfNB0gd6ejAypeXNnawEAoA4EHzQdE5sBAB5B8EHTEXwAAB5B8EHTsSs7AMAjCD5oOnp8AAAeQfBB0xF8AAAeQfBB0xw9KhUV2WOGugAALkfwQdMUFUl+v5ScbJezAwDgYgQfNE3wVhU+n7O1AABwCgQfNA1bVQAAPITgg6ZhYjMAwEMIPmgadmUHAHgIwQdNw1AXAMBDCD5oPGMY6gIAeArBB423Z49UUmKP8/KcrQUAgHog+KDxAr09HTva6/gAAOByBB80HsNcAACPIfig8diVHQDgMQQfNB49PgAAjyH4oPEIPgAAjyH4oPEY6gIAeAzBB41TViZt22aP6fEBAHgEwQeNs2WLvYBh8+ZSu3ZOVwMAQL0QfNA4wcNcPp+ztQAAUE8EHzQOE5sBAB5E8EHjsCs7AMCDCD5oHHZlBwB4EMEHjcNQFwDAgwg+aDhjCD4AAE8i+KDhdu2SSkvtaq7cXKerAQCg3gg+aLhAb09OjpSY6GwtAAA0AMEHDcdWFQAAjyL4oOGY3wMA8CiCDxqO4AMA8CiCDxqOoS4AgEcRfNBw9PgAADyK4IOGOXxY+uYbe0zwAQB4jKuCT35+vkaMGKGsrCz5fD4tWrSozvYLFizQpZdeqnbt2iktLU39+/fXP//5zwhVG6MKC+19errUurWztQAA0ECuCj6lpaXq1auXZs2aVa/2+fn5uvTSS/Xmm29qzZo1Gjp0qEaMGKF169aFudIYFjzM5fM5WwsAAA2U4HQBwYYPH67hw4fXu/2jjz5a7eP7779fr776ql5//XX16dMn1OVBYn4PAMDTXBV8mqqyslIHDhxQ6zqGYMrKylRWVlb1cUlJSSRKix6s6AIAeJirhrqa6qGHHlJpaamuueaaWtvMmDFD6enpVbecnJwIVhgF6PEBAHhY1ASfF154Qffee6/mz5+v9u3b19pu2rRpKi4urrpt3bo1glVGgUCPD8EHAOBBUTHUNX/+fN10003629/+pksuuaTOtklJSUpKSopQZVGmsvL4qi6GugAAHuT5Hp8XXnhBN9xwg55//nldccUVTpcT3XbulI4ckeLj7c7sAAB4jKt6fA4ePKhNmzZVfVxYWKiCggK1bt1anTp10rRp07R9+3b99a9/lWRDz5gxY/TYY4/p/PPP186dOyVJKSkpSk9Pd+RriGqBYa7OnaVmzZytBQCARnBVj89HH32kPn36VC1Fnzx5svr06aPf/OY3kqQdO3aoqKioqv0zzzyjiooKjR8/XpmZmVW3iRMnOlJ/1GNiMwDA41zV4zNkyBAZY2r9/Ny5c6t9vGzZsvAWhOoIPgAAj3NVjw9cjmv4AAA8juCD+qPHBwDgcQQf1B/BBwDgcQQf1M/Bg9K339pjhroAAB5F8EH9BC5c2Lq1xKUCAAAeRfBB/TDMBQCIAgQf1A8rugAAUYDgg/qhxwcAEAUIPqgfgg8AIAoQfFA/DHUBAKIAwQen5vdLmzfbY3p8AAAeRvDBqW3fLpWX2x3Zs7OdrgYAgEYj+ODUAvN7cnOl+HhHSwEAoCkIPjg1JjYDAKIEwQenxsRmAECUIPjg1OjxAQBECYIPTo3gAwCIEgQfnBpDXQCAKEHwQd2Ki6U9e+xxXp6ztQAA0EQEH9StsNDet2sntWzpbC0AADQRwQd1Y5gLABBFCD6oGxObAQBRhOCDuhF8AABRhOCDujHUBQCIIgQf1I0eHwBAFCH4oHYVFdKWLfaY4AMAiAIEH9Ru61YbfpKSpKwsp6sBAKDJCD6oXWCYKy9PiuNXBQDgfbyboXZMbAYARBmCD2rHxGYAQJQh+KB2BB8AQJQh+KB2DHUBAKIMwQe1o8cHABBlCD6o2b590v799jgvz9laAAAIEYIPahYY5srMlFJTna0FAIAQIfigZgxzAQCiEMEHNSP4AACiEMEHNWNFFwAgChF8UDN6fAAAUYjgg5oRfAAAUYjgg5OVl0tFRfaYoS4AQBQh+OBkRUVSZaVdxt6hg9PVAAAQMgQfnCx4mMvnc7YWAABCiOCDkwVWdDG/BwAQZQg+OBkTmwEAUYrgg5NxDR8AQJQi+OBk9PgAAKIUwQfVGUPwAQBELYIPqtu9WzpwwK7mys11uhoAAEKK4IPqAr09HTtKycnO1gIAQIgRfFAdw1wAgChG8EF1rOgCAEQxgg+qo8cHABDFCD6ojuADAIhiBB9Ux1AXACCKJThdAFzC75f+9S9p2zb7cefOztYDAEAYuKrHJz8/XyNGjFBWVpZ8Pp8WLVp0yscsX75cffv2VXJysrp06aKnn346ApVGmQUL7DV7Lrvs+LlzzrHnAQCIIq4KPqWlperVq5dmzZpVr/aFhYW6/PLLNWjQIK1bt0533XWXbrvtNr3yyithrjSKLFggjRp1vKcnYPt2e57wAwCIIj5jjHG6iJr4fD4tXLhQV199da1tpk6dqtdee02fffZZ1blx48Zp/fr1WrlyZb1ep6SkROnp6SouLlZaWlqT6/YUv9/29JwYegJ8Pik7WyoslOLjI1oaAAB1aez7t6t6fBpq5cqVGjZsWLVzl112mT766CMdPXq0xseUlZWppKSk2i1mrVhRe+iR7L5dW7fadgAARAFPB5+dO3eqQ4cO1c516NBBFRUV2r17d42PmTFjhtLT06tuOTk5kSjVnXbsCG07AABcztPBR7JDYsECI3cnng+YNm2aiouLq25bt24Ne42ulZkZ2nYAALicp5ezZ2RkaOfOndXO7dq1SwkJCWrTpk2Nj0lKSlJSUlIkynO/QYPsHJ7t2+2w1okCc3wGDYp8bQAAhIGne3z69++vxYsXVzv39ttvq1+/fmrWrJlDVXlIfLz02GP2+MQessDHjz7KxGYAQNRwVfA5ePCgCgoKVFBQIMkuVy8oKFBRUZEkO0w1ZsyYqvbjxo3Tli1bNHnyZH322Wf6y1/+oj//+c+aMmWKI/V70siR0ssvSx07Vj+fnW3PjxzpTF0AAISBq5azL1u2TEOHDj3p/NixYzV37lzdcMMN2rx5s5YtW1b1ueXLl+tXv/qVNm7cqKysLE2dOlXjxo2r92vG9HL2YH6/Xb21Y4ed0zNoED09AADXauz7t6uCjxMIPgAAeE9MXscHAACgIQg+AAAgZhB8AABAzCD4AACAmEHwAQAAMYPgAwAAYgbBBwAAxAyCDwAAiBkEHwAAEDM8vTt7KAQuXF1SUuJwJQAAoL4C79sN3YAi5oPPgQMHJEk5OTkOVwIAABrqwIEDSk9Pr3f7mN+rq7KyUt98841atmwpn88XsuctKSlRTk6Otm7dyh5gYcb3OjL4PkcG3+fI4PscGeH8PhtjdODAAWVlZSkurv4zd2K+xycuLk7Z2dlhe/60tDT+UUUI3+vI4PscGXyfI4Pvc2SE6/vckJ6eACY3AwCAmEHwAQAAMSP+3nvvvdfpIqJVfHy8hgwZooSEmB9RDDu+15HB9zky+D5HBt/nyHDb9znmJzcDAIDYwVAXAACIGQQfAAAQMwg+AAAgZhB8AABAzCD4hMmTTz6pvLw8JScnq2/fvlqxYoXTJUWVGTNm6JxzzlHLli3Vvn17XX311friiy+cLivqzZgxQz6fT5MmTXK6lKizfft2/exnP1ObNm2Umpqq3r17a82aNU6XFXUqKip09913Ky8vTykpKerSpYt+97vfqbKy0unSPC0/P18jRoxQVlaWfD6fFi1aVO3zxhjde++9ysrKUkpKioYMGaKNGzc6UivBJwzmz5+vSZMmafr06Vq3bp0GDRqk4cOHq6ioyOnSosby5cs1fvx4rVq1SosXL1ZFRYWGDRum0tJSp0uLWh9++KFmz56ts88+2+lSos6+ffs0cOBANWvWTG+99ZY+/fRTPfTQQ2rVqpXTpUWdBx98UE8//bRmzZqlzz77TDNnztQf//hHPf74406X5mmlpaXq1auXZs2aVePnZ86cqYcfflizZs3Shx9+qIyMDF166aVV+2VGlEHInXvuuWbcuHHVzp1xxhnmzjvvdKii6Ldr1y4jySxfvtzpUqLSgQMHTLdu3czixYvN4MGDzcSJE50uKapMnTrVXHDBBU6XEROuuOIKc+ONN1Y7N3LkSPOzn/3MoYqijySzcOHCqo8rKytNRkaGeeCBB6rOHTlyxKSnp5unn3464vXR4xNi5eXlWrNmjYYNG1bt/LBhw/T+++87VFX0Ky4uliS1bt3a4Uqi0/jx43XFFVfokksucbqUqPTaa6+pX79++vGPf6z27durT58++tOf/uR0WVHpggsu0L/+9S99+eWXkqT169fr3Xff1eWXX+5wZdGrsLBQO3furPa+mJSUpMGDBzvyvuiOyyhGkd27d8vv96tDhw7Vznfo0EE7d+50qKroZozR5MmTdcEFF6hnz55OlxN1XnzxRa1du1Yffvih06VEra+//lpPPfWUJk+erLvuukurV6/WbbfdpqSkJI0ZM8bp8qLK1KlTVVxcrDPOOEPx8fHy+/2677779JOf/MTp0qJW4L2vpvfFLVu2RLwegk+Y+Hy+ah8bY046h9CYMGGCNmzYoHfffdfpUqLO1q1bNXHiRL399ttKTk52upyoVVlZqX79+un++++XJPXp00cbN27UU089RfAJsfnz5+u5557T888/rx49eqigoECTJk1SVlaWxo4d63R5Uc0t74sEnxBr27at4uPjT+rd2bVr10lpF01366236rXXXlN+fr6ys7OdLifqrFmzRrt27VLfvn2rzvn9fuXn52vWrFkqKytTfHy8gxVGh8zMTHXv3r3auTPPPFOvvPKKQxVFrzvuuEN33nmnrrvuOknSWWedpS1btmjGjBkEnzDJyMiQZHt+MjMzq8479b7IHJ8QS0xMVN++fbV48eJq5xcvXqwBAwY4VFX0McZowoQJWrBggZYuXaq8vDynS4pKF198sT7++GMVFBRU3fr166ef/vSnKigoIPSEyMCBA0+6HMOXX36pzp07O1RR9Dp06JDi4qq/9cXHx7OcPYzy8vKUkZFR7X2xvLxcy5cvd+R9kR6fMJg8ebKuv/569evXT/3799fs2bNVVFSkcePGOV1a1Bg/fryef/55vfrqq2rZsmVVD1t6erpSUlIcri56tGzZ8qR5U82bN1ebNm2YTxVCv/rVrzRgwADdf//9uuaaa7R69WrNnj1bs2fPdrq0qDNixAjdd9996tSpk3r06KF169bp4Ycf1o033uh0aZ528OBBbdq0qerjwsJCFRQUqHXr1urUqZMmTZqk+++/X926dVO3bt10//33KzU1VaNHj458sRFfRxYjnnjiCdO5c2eTmJhofvCDH7DMOsQk1XibM2eO06VFPZazh8frr79uevbsaZKSkswZZ5xhZs+e7XRJUamkpMRMnDjRdOrUySQnJ5suXbqY6dOnm7KyMqdL87R33nmnxr/JY8eONcbYJe333HOPycjIMElJSebCCy80H3/8sSO1+owxJvJxCwAAIPKY4wMAAGIGwQcAAMQMgg8AAIgZBB8AABAzCD4AACBmEHwAAEDMIPgAAICYQfABAAAxg+ADAABiBsEHAADEDIIPgKizadMm+Xw+/f3vf9fFF1+s1NRUnX766frggw+cLg2Awwg+AKLO+vXr5fP59NBDD+nuu+/W+vXr1alTJ915551OlwbAYQQfAFFn/fr1Sk9P1/z58zV06FB169ZNV199tb777junSwPgMIIPgKizfv16jRgxQu3atas69/XXX6tr164OVgXADQg+AKLO+vXr1b9//2rn1q1bp969eztUEQC3IPgAiCrFxcXasmWL+vTpU+18QUEBwQcAwQdAdFm/fr3i4+PVq1evqnNbtmzRvn37CD4ACD4Aosv69et1xhlnKCUlpercunXr1KpVK+Xm5jpXGABX8BljjNNFAAAARAI9PgAAIGYQfAAAQMwg+AAAgJhB8AEAADGD4AMAAGIGwQcAAMQMgg8AAIgZBB8AABAzCD4AACBmEHwAAEDMIPgAAICYQfABAAAx4/8D28DBIaRc++AAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(27.4,0.5,'$f_{n+1}/f_n$')" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using PyPlot\n", - "plot(1:10, [fastfib(n+1)/fastfib(n) for n=1:10], \"ro-\")\n", - "plot([0,10], (1+√5)/2 * [1,1], \"k--\")\n", - "xlabel(L\"n\")\n", - "ylabel(L\"f_{n+1}/f_n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Clearly, it converges rapidly as expected!\n", - "\n", - "(In fact, it converges exponentially rapidly, with the error going exponentially to zero with $n$. We will discuss this in more detail later when discussing the **power method**.)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - }, - "widgets": { - "state": { - "8e329874-d1fc-4e80-ad8d-1dbbd5b2474b": { - "views": [ - { - "cell_index": 13 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Gauss-Jordan.ipynb b/lectures/Gauss-Jordan.ipynb deleted file mode 100644 index b73f7c97..00000000 --- a/lectures/Gauss-Jordan.ipynb +++ /dev/null @@ -1,212 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Gauss–Jordan and computing A⁻¹\n", - "\n", - "The Gauss–Jordan algorithm is a technique for hand-calculation of the inverse. Nowadays, you should hardly ever compute a matrix inverse, even on a computer, but Gauss–Jordan is still useful to go over:\n", - "\n", - "* It helps us to understand when and why an inverse matrix exists.\n", - "\n", - "* It gives us yet another example to help us understand the *structure* of elimination operations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The Gauss–Jordan algorithm.\n", - "\n", - "The Gauss–Jordan idea, in a nutshell is: **if we do some row operations on A to obtain I, then doing the *same* row operations on I gives A⁻¹**. Why?\n", - "\n", - "* Row operations correspond to multiplying $A$ by a some matrix $E=\\cdots E_2 E_1$ on the *left*.\n", - "\n", - "* So, doing row operations that turn $A$ into $I$ means that $EA = I$, and hence $E = A^{-1}$.\n", - "\n", - "* Doing the *same* row operations on $I$ is equivalent to multiplying $I$ on the *left* by the *same* matrix $E$, giving $EI$. But $EI = E$, and $E = A^{-1}$, so this gives $A^{-1}$!\n", - "\n", - "As usual for Gaussian elimination, to do the *same* row operations on both $A$ and $I$ we **augment A** with $I$. That is, we do:\n", - "\n", - "$$\n", - "\\boxed{\n", - "\\left(\\begin{array}{c|c}A & I\\end{array}\\right) \\underset{\\mbox{row ops}}{\\longrightarrow} \\left(\\begin{array}{c|c}I & A^{-1}\\end{array}\\right)\n", - "}\n", - "$$\n", - "\n", - "### Elimination $A \\to I$\n", - "\n", - "How do we do row operations to turn $A$ into $I$? Simple:\n", - "\n", - "1. First, do ordinary Gaussian elimination \"downwards\" to turn $A$ into $U$ (an **upper-triangular** matrix).\n", - "\n", - "2. Then, do Gaussian elimination \"upwards\" on $U$ to eliminate entries *above* the diagonal, turning $U$ into a **diagonal** matrix $D$\n", - "\n", - "3. Finally, divide each row of $D$ by the diagonal entry to turn it into $I$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Gauss–Jordan example\n", - "\n", - "Let's perform these $A \\to I$ elimination steps on $3 \\times 3$ matrix $A$: first eliminate down to make $U$, then eliminate up to make $D$, then divide by the diagonals to make $I$:\n", - "\n", - "$$\n", - "\\underbrace{\\begin{pmatrix} \\boxed{1} & 4 & 1 \\\\ 1 & 2 & -1 \\\\ 3 & 14 & 6 \\end{pmatrix}}_A\n", - "\\longrightarrow\n", - "\\begin{pmatrix} \\boxed{1} & 4 & 1 \\\\ 0 & \\boxed{-2} & -2 \\\\ 0 & 2 & 3 \\end{pmatrix}\n", - "\\longrightarrow\n", - "\\underbrace{\\begin{pmatrix} \\boxed{1} & 4 & 1 \\\\ 0 & \\boxed{-2} & -2 \\\\ 0 & 0 & \\boxed{1} \\end{pmatrix}}_U\n", - "\\\\\n", - "\\longrightarrow\n", - "\\begin{pmatrix} 1 & 0 & -3 \\\\ 0 & \\boxed{-2} & -2 \\\\ 0 & 0 & 1 \\end{pmatrix}\n", - "\\longrightarrow\n", - "\\underbrace{\\begin{pmatrix} 1 & 0 & 0 \\\\ 0 & -2 & 0 \\\\ 0 & 0 & \\boxed{1} \\end{pmatrix}}_D\n", - "\\longrightarrow\n", - "\\underbrace{\\begin{pmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\end{pmatrix}}_I\n", - "$$\n", - "\n", - "No problem! It is easy to see that this will work **whenever A has all of its pivots** (i.e. it is non-singular)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To get the inverse, we needed to augment this with $I$ so that we perform the same elimination steps on both.\n", - "\n", - "$$\n", - "\\left(\\begin{array}{rrr|rrr}\n", - " \\boxed{1} & 4 & 1 & 1 & 0 & 0 \\\\\n", - " 1 & 2 & -1 & 0 & 1 & 0 \\\\\n", - " 3 & 14 & 6 & 0 & 0 & 1 \\end{array}\\right)\n", - "\\longrightarrow\n", - "\\left(\\begin{array}{rrr|rrr}\n", - " \\boxed{1} & 4 & 1 & 1 & 0 & 0 \\\\\n", - " 0 & \\boxed{-2} & -2 & -1 & 1 & 0 \\\\\n", - " 0 & 2 & 3 & -3 & 0 & 1 \\end{array}\\right) \\\\\n", - "\\longrightarrow\n", - "\\left(\\begin{array}{rrr|rrr}\n", - " \\boxed{1} & 4 & 1 & 1 & 0 & 0 \\\\\n", - " 0 & \\boxed{-2} & -2 & -1 & 1 & 0 \\\\\n", - " 0 & 0 & \\boxed{1} & -4 & 1 & 1 \\end{array}\\right)\n", - "\\longrightarrow\n", - "\\left(\\begin{array}{rrr|rrr}\n", - " 1 & 0 & -3 & -1 & 2 & 0 \\\\\n", - " 0 & \\boxed{-2} & -2 & -1 & 1 & 0 \\\\\n", - " 0 & 0 & 1 & -4 & 1 & 1 \\end{array}\\right) \\\\\n", - "\\longrightarrow\n", - "\\left(\\begin{array}{rrr|rrr}\n", - " 1 & 0 & 0 & -13 & 5 & 3 \\\\\n", - " 0 & -2 & 0 & -9 & 3 & 2 \\\\\n", - " 0 & 0 & \\boxed{1} & -4 & 1 & 1 \\end{array}\\right)\n", - "\\longrightarrow\n", - "\\left(\\begin{array}{rrr|rrr}\n", - " 1 & 0 & 0 & -13 & 5 & 3 \\\\\n", - " 0 & 1 & 0 & 4.5 & -1.5 & -1 \\\\\n", - " 0 & 0 & 1 & -4 & 1 & 1 \\end{array}\\right)\n", - "$$\n", - "\n", - "Whew, this was a lot of work! Did we get the right answer?" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 4 1\n", - " 1 2 -1\n", - " 3 14 6" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 4 1\n", - " 1 2 -1\n", - " 3 14 6]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -13.0 5.0 3.0\n", - " 4.5 -1.5 -1.0\n", - " -4.0 1.0 1.0" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "inv(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hooray!\n", - "\n", - "(It is *really* easy to make a mistake during this process.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# (Almost) Never Compute Inverses!\n", - "\n", - "Matrix inverses are funny, however:\n", - "\n", - "* Inverse matrices are very convenient in *analytical* manipulations, because they allow you to move matrices from one side to the other of equations easily.\n", - "\n", - "* Inverse matrices are **almost never computed** in \"serious\" numerical calculations. Whenever you see $A^{-1} B$ (or $A^{-1} b$), when you go to *implement* it on a computer you should *read* $A^{-1} B$ as \"solve $AX = B$ by some method.\" e.g. solve it by `A \\ B` or by first computing the LU factorization of $A$ and then using it to solve $AX = B$.\n", - "\n", - "One reason that you don't usually compute inverse matrices is that it is wasteful: once you have $A=LU$ (later we will generalize this to \"$PA = LU$\"), you can solve $AX=B$ directly without bothering to find $A^{-1}$, and computing $A^{-1}$ requires much more work if you only have to solve a few right-hand sides.\n", - "\n", - "Another reason is that for many special matrices, there are ways to solve $AX=B$ *much* more quickly than you can find $A^{-1}$. For example, many large matrices in practice are [sparse](https://en.wikipedia.org/wiki/Sparse_matrix) (mostly zero), and often for sparse matrices you can arrange for $L$ and $U$ to be sparse too. Sparse matrices are much more efficient to work with than general \"dense\" matrices because you don't have to multiply (or even store) the zeros. Even if $A$ is sparse, however, $A^{-1}$ is usually non-sparse, so you lose the special efficiency of sparsity if you compute the inverse matrix. \n", - "\n", - "For example:\n", - "\n", - "* If you see $U^{-1} b$ where $U$ is *upper* triangular, don't compute $U^{-1} explicitly! Just solve $Ux = b$ by *back-substitution* (from the bottom row up).\n", - "\n", - "* If you see $L^{-1} b$ where $L$ is *lower* triangular, don't compute $L^{-1} explicitly! Just solve $Lx = b$ by *forward-substitution* (from the top row down)." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Gaussian-elimination.ipynb b/lectures/Gaussian-elimination.ipynb deleted file mode 100644 index de84e08a..00000000 --- a/lectures/Gaussian-elimination.ipynb +++ /dev/null @@ -1,1146 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Gaussian elimination\n", - "\n", - "This Julia notebook allows us to interactively visualize the process of Gaussian elimination.\n", - "\n", - "Recall that the process of [Gaussian elimination](https://en.wikipedia.org/wiki/Gaussian_elimination) involves subtracting rows to turn a matrix $A$ into an [upper triangular matrix](https://en.wikipedia.org/wiki/Triangular_matrix) $U$. Often we *augment* the matrix with an additional column, representing the right-hand side $b$ of a system of equations $Ax=b$ that we want to solve: by doing the same row operations to both $A$ and $b$, we arrive at an equivalent equation $Ux=c$ that is easy to solve by *backsubstitution* (solving for one variable at a time, working from the last row to the top row).\n", - "\n", - "For example, suppose we are solving:\n", - "\n", - "$$\n", - "Ax = \n", - "\\begin{pmatrix}\n", - "1 & 3 & 1 \\\\\n", - "1 & 1 & -1 \\\\\n", - "3 & 11 & 6 \n", - "\\end{pmatrix} x = \n", - "\\begin{pmatrix}\n", - "9 \\\\\n", - "1 \\\\\n", - "35\n", - "\\end{pmatrix} = b\n", - "$$\n", - "\n", - "We would perform the following elimination process.\n", - "\n", - "$$\n", - "\\left[\\begin{array}{rrr|r}\n", - "\\boxed{1} & 3 & 1 & 9 \\\\\n", - "1 & 1 & -1 & 1 \\\\\n", - "3 & 11 & 6 & 35\n", - "\\end{array}\\right]\\to\n", - "\\left[\\begin{array}{rrr|r}\n", - "\\boxed{1} & 3 & 1 & 9 \\\\\n", - "0 & \\boxed{-2} & -2 & -8 \\\\\n", - "0 & 2 & 3 & 8\n", - "\\end{array}\\right]\\to\n", - "\\left[\\begin{array}{rrr|r}\n", - "\\boxed{1} & 3 & 1 & 9 \\\\\n", - "0 & \\boxed{-2} & -2 & -8 \\\\\n", - "0 & 0 & \\boxed{1} & 0\n", - "\\end{array}\\right]\n", - "$$\n", - "\n", - "The boxed values are known as the **pivots**. Now we do **backsubstitution**, working from the bottom up. The last row is a single equation in a single unknown:\n", - "\n", - "$$\n", - "1 x_3 = 0 \\implies x_3 = 0 .\n", - "$$\n", - "\n", - "Now that we know $x_3$, the second row gives:\n", - "\n", - "$$\n", - "-2x_2 - 2x_3 = -8 \\implies -2x_2 - 0 = -8 \\implies x_2 = 4 .\n", - "$$\n", - "\n", - "Finally, now that we know $x_2$ and $x_3$, the first row gives:\n", - "\n", - "$$\n", - "1 x_1 + 3 x_2 + 1x_3 = 9 \\implies x_1 + 12 + 0 = 9 \\implies x_1 = -3.\n", - "$$\n", - "\n", - "It is much more fun to let the computer do the arithmetic than to crunch through it ourselves on the blackboard, but usually the computer does things *too* quickly (and it often does some re-ordering of the rows that makes it harder to follow what is going on). For example, in Julia, we can solve the above system of equations by simply:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 3 1\n", - " 1 1 -1\n", - " 3 11 6" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 3 1\n", - " 1 1 -1\n", - " 3 11 6]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Int64,1}:\n", - " 9\n", - " 1\n", - " 35" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = [9, 1, 35]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -3.0\n", - " 4.0\n", - " 0.0" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = A \\ b # solves Ax = b by (essentially) Gaussian elimination" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -3.0\n", - " 4.0\n", - " 0.0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "inv(A) * b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Row swaps\n", - "\n", - "Occasionally, we may encounter a zero in the pivot position. Sometimes this means that the equations are **singular** (may have no solutions) — we will talk more about this later. However, as long as there is a nonzero value *below* the pivot, we can fix the problem by **swapping rows** (which just corresponds to re-ordering the equations).\n", - "\n", - "For example:\n", - "\n", - "\n", - "$$\n", - "\\left[\\begin{array}{rrr|r}\n", - "\\boxed{1} & 3 & 1 & 9 \\\\\n", - "1 & 3 & -1 & 1 \\\\\n", - "3 & 11 & 6 & 35\n", - "\\end{array}\\right]\\to\n", - "\\left[\\begin{array}{rrr|r}\n", - "\\boxed{1} & 3 & 1 & 9 \\\\\n", - "0 & 0 & -2 & -8 \\\\\n", - "0 & 2 & 3 & 8\n", - "\\end{array}\\right]\\to\n", - "\\left[\\begin{array}{rrr|r}\n", - "\\boxed{1} & 3 & 1 & 9 \\\\\n", - "0 & \\boxed{2} & 3 & 8 \\\\\n", - "0 & 0 & \\boxed{-2} & -8\n", - "\\end{array}\\right]\n", - "$$\n", - "\n", - "where in the second step we swapped the second and third rows to get a nonzero pivot in the second row.\n", - "\n", - "At this point we can again solve bottom-up by backsubstitution:\n", - "\n", - "$$\n", - "-2x_3 = 8 \\implies x_3 = 4 \\\\\n", - "2x_2 + 3x_3 = 8 = 2x_2 + 12 \\implies x_2 = -2 \\\\\n", - "x_1 + 3x_2 + x_3 = 9 = x_1 -6 + 4 \\implies x_3 = 11\n", - "$$\n", - "\n", - "Of course, the computer can get the answer much more quickly and easily:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 11.000000000000005 \n", - " -2.0000000000000013\n", - " 4.0 " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[ 1 3 1\n", - " 1 3 -1\n", - " 3 11 6 ] \\\n", - "[9\n", - " 1\n", - " 35]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## “Big” matrices on the computer\n", - "\n", - "Of course, the computer can solve *much bigger problems* easily. It can solve 1000 equations in 1000 unknowns in a fraction of a second — nowadays, that is no longer considered a \"big\" system of equations." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000×1000 Array{Float64,2}:\n", - " 0.718972 0.140503 0.520404 … 0.658315 0.999525 0.177865 \n", - " 0.919885 0.765866 0.7029 0.63438 0.129155 0.927831 \n", - " 0.284132 0.805546 0.527945 0.943892 0.348865 0.946451 \n", - " 0.480407 0.470364 0.0873344 0.861388 0.69152 0.876429 \n", - " 0.00758989 0.995027 0.147018 0.780868 0.470045 0.0439708\n", - " 0.774955 0.669862 0.292654 … 0.449939 0.766875 0.984244 \n", - " 0.842654 0.612545 0.675971 0.391198 0.880004 0.313298 \n", - " 0.967773 0.361279 0.659904 0.00195501 0.650641 0.23636 \n", - " 0.365095 0.324545 0.407895 0.418601 0.0853106 0.98914 \n", - " 0.18348 0.755246 0.790206 0.596313 0.702847 0.0258582\n", - " 0.874712 0.896904 0.479581 … 0.458387 0.0418343 0.0631042\n", - " 0.568411 0.462533 0.955932 0.851549 0.734647 0.414383 \n", - " 0.152554 0.986943 0.399207 0.0767178 0.732767 0.177725 \n", - " ⋮ ⋱ \n", - " 0.593954 0.0898184 0.477264 0.876844 0.64202 0.799091 \n", - " 0.723083 0.160527 0.728466 0.463367 0.229544 0.496598 \n", - " 0.323125 0.685872 0.559906 … 0.777784 0.637334 0.832904 \n", - " 0.689145 0.227528 0.965211 0.143711 0.190082 0.431516 \n", - " 0.500634 0.691431 0.318173 0.813146 0.439161 0.841561 \n", - " 0.504651 0.0714085 0.244494 0.154919 0.088866 0.436349 \n", - " 0.489627 0.574801 0.683796 0.763065 0.125414 0.373272 \n", - " 0.180221 0.677691 0.106615 … 0.522919 0.806497 0.0244369\n", - " 0.266255 0.627255 0.49211 0.245794 0.763767 0.811376 \n", - " 0.0716915 0.519078 0.728303 0.551109 0.802806 0.523302 \n", - " 0.527654 0.0607165 0.876334 0.941848 0.432056 0.989352 \n", - " 0.0851414 0.564139 0.159705 0.44019 0.576825 0.798529 " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Ahuge = rand(1000,1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000-element Array{Float64,1}:\n", - " 0.6947008745488135 \n", - " 0.02907693143384571 \n", - " 0.6808031917756658 \n", - " 0.6797220372334325 \n", - " 0.04149007181696063 \n", - " 0.15830532178707624 \n", - " 0.7999386237582489 \n", - " 0.8678568303930079 \n", - " 0.8738968663151687 \n", - " 0.6607160300582191 \n", - " 0.4415052374333508 \n", - " 0.6940512427954679 \n", - " 0.1282229952506071 \n", - " ⋮ \n", - " 0.6673214254361928 \n", - " 0.5361377908811744 \n", - " 0.4338347783847909 \n", - " 0.7509831650807932 \n", - " 0.3598000850600003 \n", - " 0.21909301088668065 \n", - " 0.12945174868090792 \n", - " 0.14916463826062887 \n", - " 0.32653976529545203 \n", - " 0.032372096029287034\n", - " 0.9018150599248427 \n", - " 0.08765371766791352 " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bhuge = rand(1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1000-element Array{Float64,1}:\n", - " -0.37648770418396826\n", - " -1.3068468914014373 \n", - " 0.11962522245678789\n", - " -1.0861490234754185 \n", - " 0.628740044885442 \n", - " 0.16579612396033241\n", - " 0.2727948060025797 \n", - " -0.23499444808130604\n", - " 1.0919633377886957 \n", - " 0.08584531629934318\n", - " -0.06989642386366839\n", - " -0.1560520275127202 \n", - " -0.18611442253007374\n", - " ⋮ \n", - " -0.3122411495483876 \n", - " 0.28428476202012354\n", - " 0.1050277851973511 \n", - " 0.8377469332750523 \n", - " 0.06629827643718815\n", - " 0.21235633174976165\n", - " -0.2779912834140716 \n", - " -0.34309348992370897\n", - " -0.44716945387330015\n", - " 0.5866183097623838 \n", - " -0.2947538694258765 \n", - " -0.2588849564264055 " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Ahuge \\ bhuge" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0.034279 seconds (9 allocations: 7.645 MiB)\n", - " 0.035363 seconds (9 allocations: 7.645 MiB, 13.31% gc time)\n", - " 0.029018 seconds (9 allocations: 7.645 MiB)\n" - ] - } - ], - "source": [ - "@time Ahuge \\ bhuge;\n", - "@time Ahuge \\ bhuge;\n", - "@time Ahuge \\ bhuge;" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we want to see the matrix $U$ from above, we use the fact (covered soon in 18.06) that Gaussian elimination is really \"LU\" factorization, performed by the function `lufact` in the built-in `LinearAlgebra` package. By default, however, \"serious\" computer implementations of this process automatically re-order the rows to reduce the effect of roundoff errors, so we need to pass an extra option that tells Julia not to do this. (You should *not* normally do this, except for learning exercises.)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Float64,2}:\n", - " 1.0 3.0 1.0 9.0\n", - " 0.0 -2.0 -2.0 -8.0\n", - " 0.0 0.0 1.0 0.0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# LU factorization (Gaussian elimination) of the augumented matrix [A b], \n", - "# passing the somewhat obscure Val(false) option to prevent row re-ordering\n", - "F = lu([A b], Val(false)) # a \"factorization\" object storing both L and U\n", - "F.U # just show U" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, it would be nice to show the individual steps of this process. This requires some programming." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Code to interactively visualize Gaussian elimination\n", - "\n", - "The following is some slightly tricky code that lets us visualize the process of Gaussian elimination in Julia. It takes advantage of the [Interact](https://github.com/JuliaGizmos/Interact.jl) package in Julia, which allows us to easily create interactive displays using sliders, pushbuttons, and other widgets.\n", - "\n", - "Implementing this is **not really a beginner exercise** for new Julia programmers, though it is fairly straightforward for people who are used to Julia. It involves defining our own type to control display, our own implementation of Gaussian elimination that allows us to stop partway through, and using the Interact package to create interactive widgets.\n", - "\n", - "You can skip this part if you aren't ready for the programming details." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "naive_gauss (generic function with 2 methods)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", - " naive_gauss(A, [step])\n", - "\n", - "Given a matrix `A`, performs Gaussian elimination to convert\n", - "`A` into an upper-triangular matrix `U`.\n", - "\n", - "This implementation is \"naive\" because it *never re-orders the rows*.\n", - "(It will obviously fail if a zero pivot is encountered.)\n", - "\n", - "If the optional `step` argument is supplied, only performs `step`\n", - "steps of Gaussian elimination.\n", - "\n", - "Returns `(U, row, col, factor)`, where `row` and `col` are the\n", - "row and column of the last step performed, while `factor`\n", - "is the last factor multiplying the pivot row.\n", - "\"\"\"\n", - "function naive_gauss(A, step=typemax(Int))\n", - " m = size(A,1) # number of rows\n", - " factor = A[1,1]/A[1,1]\n", - " step ≤ 0 && return (A, 1, 1, factor)\n", - " U = copyto!(similar(A, typeof(factor)), A)\n", - " for j = 1:m # loop over m columns\n", - " for i = j+1:m # loop over rows below the pivot row j\n", - " # subtract a multiple of the pivot row (j)\n", - " # from the current row (i) to cancel U[i,j] = Uᵢⱼ:\n", - " factor = -U[i,j]/U[j,j]\n", - " U[i,:] = U[i,:] + U[j,:] * factor\n", - " step -= 1\n", - " step ≤ 0 && return (U, i, j, factor)\n", - " end\n", - " end\n", - " return U, m, m, factor\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "visualize_gauss (generic function with 1 method)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using Interact\n", - "\n", - "# For display, I only want to show 3 decimal places of floating-point values,\n", - "# but I want to show integers and similar types exactly, so I define a little\n", - "# function to do this rounding\n", - "shorten(x::AbstractFloat) = round(x, 3)\n", - "shorten(x) = x # leave non floating-point values as-is\n", - "\n", - "# create an interactive widget to visualize the Gaussian-elimination process for the matrix A.\n", - "function visualize_gauss(A)\n", - " m = size(A, 1)\n", - " @manipulate for step in slider(1:(m*(m-1))÷2, value=1, label=\"gauss step\")\n", - " Uprev, = naive_gauss(A, step-1)\n", - " U, row, col, factor = naive_gauss(A, step)\n", - " pivot = U[col,col]\n", - " vbox(\n", - " node(:pre, \"Gaussian elimination for column $col with pivot $pivot: add $(shorten(factor)) * (row $col) to (row $row)\"),\n", - " hbox(shorten.(Uprev),\n", - " hskip(1em), \"⟶\", hskip(1em),\n", - " shorten.(U)\n", - " )(alignitems(:center))\n", - " )(alignitems(:center))\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Gaussian elimination examples\n", - "\n", - "Now, let's use this machinery to interact with some examples, starting with our $3 \\times 3$ matrix from above:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "┌ Warning: `round(x::Number, digits)` is deprecated, use `round(x; digits=digits)` instead.\n", - "│ caller = _broadcast_getindex at In[13]:6 [inlined]\n", - "└ @ Core ./In[13]:6\n", - "┌ Warning: `round(x::Number, digits)` is deprecated, use `round(x; digits=digits)` instead.\n", - "│ caller = shorten(::Float64) at In[13]:6\n", - "└ @ Main ./In[13]:6\n" - ] - }, - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js"},{"name":null,"type":"css","url":"/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css"},{"name":null,"type":"css","url":"/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css"}],"type":"async_block"},"id":"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["gauss step"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":3,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-cabefe86-5487-4136-ba14-cfeb7116cc8c","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_05","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\\\\n 1 3 1 9 1.0 3.0 1.0 9.0\\\\n 1 1 -1 1 ---&gt; 0.0 -2.0 -2.0 -8.0\\\\n 3 11 6 35 3.0 11.0 6.0 35.0&lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\\\\n 1 3 1 9 1.0 3.0 1.0 9.0\\\\n 1 1 -1 1 ---&gt; 0.0 -2.0 -2.0 -8.0\\\\n 3 11 6 35 3.0 11.0 6.0 35.0&lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:step=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_01\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([1 3 1 9; 1 1 -1 1; 3 11 6 35]), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_01\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([1 3 1 9; 1 1 -1 1; 3 11 6 35]), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_01\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([1 3 1 9; 1 1 -1 1; 3 11 6 35]), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"changes\")))]),:value=>Observable{Int64}(\"ob_01\", 1, Any[SyncCallback(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([1 3 1 9; 1 1 -1 1; 3 11 6 35]), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))])), Observable{Int64}(\"ob_01\", 1, Any[SyncCallback(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([1 3 1 9; 1 1 -1 1; 3 11 6 35]), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), Scope(\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_02\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(\"ob_01\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([1 3 1 9; 1 1 -1 1; 3 11 6 35]), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-c25f921d-ae26-42ce-88d9-d69f70376bc8\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#14{##dom#12#13{Dict{Any,Any},DOM}},typeof(scope)}(#dom#14{##dom#12#13{Dict{Any,Any},DOM}}(##dom#12#13{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[]), nothing, getfield(Main, Symbol(\"##6#8\")){Observable{Any}}(Observable{Any}(\"ob_03\", TwoMatrices([1 3 1 9; 1 1 -1 1; 3 11 6 35], [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0], \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\"), Any[])))" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "visualize_gauss([A b])" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js"},{"name":null,"type":"css","url":"/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css"},{"name":null,"type":"css","url":"/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css"}],"type":"async_block"},"id":"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db","id":"ob_07","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db","id":"ob_06","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_07","value":0},"value":{"sync":true,"id":"ob_06","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["gauss step"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":10,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-7f105461-1b3b-49f9-8ea6-60f18eada1cf","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_10","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\\\\n -7 1 -1 1 3 -7.0 1.0 -1.0 1.0 3.0 \\\\n -4 -3 3 -5 -6 0.0 -3.571 3.571 -5.571 -7.714\\\\n -9 -3 8 -1 -7 ---&gt; -9.0 -3.0 8.0 -1.0 -7.0 \\\\n -8 6 -3 -6 -3 -8.0 6.0 -3.0 -6.0 -3.0 \\\\n 7 -9 5 -4 4 7.0 -9.0 5.0 -4.0 4.0 &lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\\\\n -7 1 -1 1 3 -7.0 1.0 -1.0 1.0 3.0 \\\\n -4 -3 3 -5 -6 0.0 -3.571 3.571 -5.571 -7.714\\\\n -9 -3 8 -1 -7 ---&gt; -9.0 -3.0 8.0 -1.0 -7.0 \\\\n -8 6 -3 -6 -3 -8.0 6.0 -3.0 -6.0 -3.0 \\\\n 7 -9 5 -4 4 7.0 -9.0 5.0 -4.0 4.0 &lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:step=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_06\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4]), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_06\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4]), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_06\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4]), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"changes\")))]),:value=>Observable{Int64}(\"ob_06\", 1, Any[SyncCallback(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4]), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))])), Observable{Int64}(\"ob_06\", 1, Any[SyncCallback(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4]), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), Scope(\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_07\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(\"ob_06\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4]), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-693e2814-1d5d-4d64-895c-a436a049f6db\\\",\\\"id\\\":\\\"ob_06\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#14{##dom#12#13{Dict{Any,Any},DOM}},typeof(scope)}(#dom#14{##dom#12#13{Dict{Any,Any},DOM}}(##dom#12#13{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[]), nothing, getfield(Main, Symbol(\"##6#8\")){Observable{Any}}(Observable{Any}(\"ob_08\", TwoMatrices([-7 1 … 1 3; -4 -3 … -5 -6; … ; -8 6 … -6 -3; 7 -9 … -4 4], [-7.0 1.0 … 1.0 3.0; 0.0 -3.571 … -5.571 -7.714; … ; -8.0 6.0 … -6.0 -3.0; 7.0 -9.0 … -4.0 4.0], \"Gaussian elimination for column 1 with pivot -7.0: add -0.571 * (row 1) to (row 2)\"), Any[])))" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "visualize_gauss(rand(-9:9,5,5))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Of course, because we are not re-ordering the rows, this process can go horribly wrong, most obviously if a zero pivot is encountered:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js"},{"name":null,"type":"css","url":"/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css"},{"name":null,"type":"css","url":"/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css"}],"type":"async_block"},"id":"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac","id":"ob_12","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac","id":"ob_11","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_12","value":0},"value":{"sync":true,"id":"ob_11","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["gauss step"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":10,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-fdccb919-5110-4b80-91df-33c153476bf5","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_15","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\\\\n -3 5 5 3 -7 -3.0 5.0 5.0 3.0 -7.0\\\\n 3 -5 8 -8 -6 0.0 0.0 13.0 -5.0 -13.0\\\\n 8 2 8 2 -8 ---&gt; 8.0 2.0 8.0 2.0 -8.0\\\\n -6 -2 6 4 -8 -6.0 -2.0 6.0 4.0 -8.0\\\\n -8 4 -6 -1 8 -8.0 4.0 -6.0 -1.0 8.0&lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\\\\n -3 5 5 3 -7 -3.0 5.0 5.0 3.0 -7.0\\\\n 3 -5 8 -8 -6 0.0 0.0 13.0 -5.0 -13.0\\\\n 8 2 8 2 -8 ---&gt; 8.0 2.0 8.0 2.0 -8.0\\\\n -6 -2 6 4 -8 -6.0 -2.0 6.0 4.0 -8.0\\\\n -8 4 -6 -1 8 -8.0 4.0 -6.0 -1.0 8.0&lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:step=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_11\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_11\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_11\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"changes\")))]),:value=>Observable{Int64}(\"ob_11\", 1, Any[SyncCallback(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))])), Observable{Int64}(\"ob_11\", 1, Any[SyncCallback(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), Scope(\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_12\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(\"ob_11\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_12\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-d69decbc-1f98-4079-b2fb-2da13b6ed7ac\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#14{##dom#12#13{Dict{Any,Any},DOM}},typeof(scope)}(#dom#14{##dom#12#13{Dict{Any,Any},DOM}}(##dom#12#13{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[]), nothing, getfield(Main, Symbol(\"##6#8\")){Observable{Any}}(Observable{Any}(\"ob_13\", TwoMatrices([-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8], [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0], \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\"), Any[])))" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Abad = [-3 5 5 3 -7\n", - " 3 -5 8 -8 -6\n", - " 8 2 8 2 -8\n", - " -6 -2 6 4 -8\n", - " -8 4 -6 -1 8]\n", - "visualize_gauss(Abad)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But this matrix is not actually singular:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "19211.999999999996" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "det(Abad)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So we can fix the problem just by re-ordering the rows, e.g. swapping the first and last rows:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js"},{"name":null,"type":"css","url":"/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css"},{"name":null,"type":"css","url":"/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css"}],"type":"async_block"},"id":"knockout-component-739ec56f-7122-40da-8001-48ee3f369735","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-739ec56f-7122-40da-8001-48ee3f369735","id":"ob_17","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-739ec56f-7122-40da-8001-48ee3f369735","id":"ob_16","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_17","value":0},"value":{"sync":true,"id":"ob_16","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["gauss step"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":10,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-b9e9413f-5a50-49c1-8098-a7712a511496","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_20","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\\\\n -8 4 -6 -1 8 -8.0 4.0 -6.0 -1.0 8.0\\\\n 3 -5 8 -8 -6 0.0 -3.5 5.75 -8.375 -3.0\\\\n 8 2 8 2 -8 ---&gt; 8.0 2.0 8.0 2.0 -8.0\\\\n -6 -2 6 4 -8 -6.0 -2.0 6.0 4.0 -8.0\\\\n -3 5 5 3 -7 -3.0 5.0 5.0 3.0 -7.0&lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\\\\n -8 4 -6 -1 8 -8.0 4.0 -6.0 -1.0 8.0\\\\n 3 -5 8 -8 -6 0.0 -3.5 5.75 -8.375 -3.0\\\\n 8 2 8 2 -8 ---&gt; 8.0 2.0 8.0 2.0 -8.0\\\\n -6 -2 6 4 -8 -6.0 -2.0 6.0 4.0 -8.0\\\\n -3 5 5 3 -7 -3.0 5.0 5.0 3.0 -7.0&lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:step=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_16\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_16\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_16\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"changes\")))]),:value=>Observable{Int64}(\"ob_16\", 1, Any[SyncCallback(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))])), Observable{Int64}(\"ob_16\", 1, Any[SyncCallback(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), Scope(\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_17\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(\"ob_16\", 1, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##5#7{Array{Int64,2}},Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##5#7{Array{Int64,2}},Observable{Any}}(##5#7{Array{Int64,2}}([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-739ec56f-7122-40da-8001-48ee3f369735\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#14{##dom#12#13{Dict{Any,Any},DOM}},typeof(scope)}(#dom#14{##dom#12#13{Dict{Any,Any},DOM}}(##dom#12#13{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[]), nothing, getfield(Main, Symbol(\"##6#8\")){Observable{Any}}(Observable{Any}(\"ob_18\", TwoMatrices([-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7], [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0], \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\"), Any[])))" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Aok = [-8 4 -6 -1 8\n", - " 3 -5 8 -8 -6\n", - " 8 2 8 2 -8\n", - " -6 -2 6 4 -8\n", - " -3 5 5 3 -7]\n", - "visualize_gauss(Aok)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A bigger example\n", - "\n", - "We quickly run out of space for displaying matrices as text, but we can visualize the process for larger matrices by using images, with the PyPlot package (a wrapper around the Python Matplotlib library):" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "using PyPlot" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js"},{"name":null,"type":"css","url":"/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css"},{"name":null,"type":"css","url":"/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css"}],"type":"async_block"},"id":"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":2}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e","id":"ob_32","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e","id":"ob_31","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_32","value":0},"value":{"sync":true,"id":"ob_31","value":2}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["gauss step"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":4950,"min":0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":50,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-5c4b0d06-6c05-4659-b2b0-54627b509967","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_35","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:step=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_31\", 2, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##21#24,Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##21#24,Observable{Any}}(##21#24(), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_31\", 2, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##21#24,Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##21#24,Observable{Any}}(##21#24(), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing),\"value\"=>(Observable{Int64}(\"ob_31\", 2, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##21#24,Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##21#24,Observable{Any}}(##21#24(), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"changes\")))]),:value=>Observable{Int64}(\"ob_31\", 2, Any[SyncCallback(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##21#24,Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##21#24,Observable{Any}}(##21#24(), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))])), Observable{Int64}(\"ob_31\", 2, Any[SyncCallback(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-6 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), SyncCallback(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-7 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##39#41{Scope,String}(Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(#= circular reference @-8 =#), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), \"value\"))), #g#15{##16#17{##21#24,Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##21#24,Observable{Any}}(##21#24(), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), Scope(\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"gauss step\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>4950,:min=>0,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>50,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64}(\"ob_32\", 0, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"changes\")))]), nothing),\"value\"=>(Observable{Int64}(\"ob_31\", 2, Any[SyncCallback(Scope(#= circular reference @-6 =#), SyncCallback(Scope(#= circular reference @-7 =#), ##39#41{Scope,String}(Scope(#= circular reference @-8 =#), \"value\"))), #g#15{##16#17{##21#24,Observable{Any}},Tuple{Observable{Int64}}}(##16#17{##21#24,Observable{Any}}(##21#24(), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])), (Observable{Int64}(#= circular reference @-4 =#),))]), nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4cba7ef9-876d-473a-982e-19af37d8e48e\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#14{##dom#12#13{Dict{Any,Any},DOM}},typeof(scope)}(#dom#14{##dom#12#13{Dict{Any,Any},DOM}}(##dom#12#13{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[]), nothing, getfield(Main, Symbol(\"##23#26\")){Observable{Any}}(Observable{Any}(\"ob_33\", Figure(PyObject
    ), Any[])))" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m = 100\n", - "Abig = randn(m,m)\n", - "fig = figure()\n", - "nsteps = (m*(m-1))÷2\n", - "@manipulate for step in slider(0:50:nsteps, value=2, label=\"gauss step\")\n", - " withfig(fig) do\n", - " U, row, col = naive_gauss(Abig, step)\n", - " # I had to experiment a little to find a nice way to plot this\n", - " V = log10.(abs.(U) .+ 500)\n", - " V[abs.(U) .< 0.001] .= 0 # color small entries black\n", - " imshow(V, cmap=\"hot\", vmin=0, vmax=3)\n", - " title(\"step $step: column $col, row $row\")\n", - " colorbar(label=L\"\\log_{10}(|U_{i,j}| + 500)\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that it takes a *lot* more steps of Gaussian elimination for a $100 \\times 100$ matrix (4950 steps) than for a $5 \\times 5$ matrix (10 steps). Later on in 18.06, we will analyze the computational cost of Gaussian elimination and how it scales with the size of the matrix (in computer science, this is known as the [complexity](https://en.wikipedia.org/wiki/Computational_complexity_theory) of the algorithm)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another interesting example can be found in the [Machine Learning with Gaussian Elimination notebook](http://nbviewer.jupyter.org/github/stevengj/1806/blob/master/lectures/Machine-Learning-with-Gaussian-elimination.ipynb)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.7.0", - "language": "julia", - "name": "julia-0.7" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.7.0" - }, - "widgets": { - "state": { - "294167a6-1234-43dc-aef6-951949f1fac6": { - "views": [ - { - "cell_index": 26 - } - ] - }, - "41f7367b-0ad3-43e3-bd43-c6e4a1618e8d": { - "views": [ - { - "cell_index": 19 - } - ] - }, - "6e3620ec-4915-4734-8d3a-3332fdc63970": { - "views": [ - { - "cell_index": 16 - } - ] - }, - "ce72699c-d8cc-4a03-902b-a490178223e5": { - "views": [ - { - "cell_index": 17 - } - ] - }, - "db2d9825-08d3-4028-8072-1e865d1a0c4f": { - "views": [ - { - "cell_index": 23 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Graphs-Networks.ipynb b/lectures/Graphs-Networks.ipynb deleted file mode 100644 index 5d998bbf..00000000 --- a/lectures/Graphs-Networks.ipynb +++ /dev/null @@ -1,7721 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Graphs and Networks in Linear Algebra\n", - "\n", - "This notebook is based on section 10.1 of Strang's *Linear Algebra* textbook.\n", - "\n", - "One interesting source of large matrices in linear algebra is a [graph](https://en.wikipedia.org/wiki/Graph_(discrete_mathematics), a collection of *nodes* (vertices) and *edges* (arrows from one vertex to another). Graphs are used in many applications to represent *relationships* and *connectivity*, such as:\n", - "\n", - "* For computer networks, nodes could represent web pages, and edges could represent links.\n", - "* For circuits, edges could represent wires (or resistors) and nodes junctions.\n", - "* For transportation, nodes could represent cities and edges roads.\n", - "* In bioinformatics, graphs can represent gene regulatory networks.\n", - "* In sociology, nodes could represent people and edges relationships.\n", - "* ... and many, many other applications ...\n", - "\n", - "In this notebook, we explain how a graph can be represented by a *matrix*, and how linear algebra can tell us properties of the graph and can help us do computations on graph-based problems. There is a particularly beautiful connection to Kirchhoff's laws of circuit theory." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Packages for this notebook\n", - "\n", - "To run the code in this notebook, you'll need to install a few Julia packages used below. To do so, uncomment the following line and run it:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Pkg.add.([\"LightGraphs\", \"MetaGraphs\", \"GraphPlot\", \"NamedColors\", \"RowEchelon\", Interact\", \"SymPy\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "...and then run this cell to import the packages:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - " \n", - " Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\n", - " \n", - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n \\n Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\\n \\n \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using Interact, RowEchelon, LightGraphs, MetaGraphs, GraphPlot, NamedColors, LinearAlgebra\n", - "import SymPy\n", - "using SymPy: Sym" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Julia Graph-visualization code\n", - "\n", - "There are several Julia packages for manipulating graphs, e.g. [LightGraphs](https://github.com/JuliaGraphs/LightGraphs.jl), along with several packages for visualizing graphs, e.g. [GraphViz](https://github.com/Keno/GraphViz.jl). LightGraphs is oriented towards fast and sophisticated graph computations, however, and here I just want to do some simple and pretty visualizations with simple algorithms based on those in Strang's 18.06 textbook.\n", - "\n", - "So, here I define a simple `MyGraph` wrapper around LightGraphs directed graphs, with metadata attached via the MetaGraphs package, for basic plotting via the GraphPlots package." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "labels (generic function with 1 method)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "struct MyGraph\n", - " g::MetaDiGraph\n", - "end\n", - "Base.copy(mg::MyGraph) = MyGraph(copy(mg.g))\n", - "function MyGraph(edges::Pair{<:Integer,<:Integer}...)\n", - " g = SimpleDiGraphFromIterator(Edge(e) for e in edges)\n", - " MyGraph(MetaDiGraph(g))\n", - "end\n", - "\n", - "using Random\n", - "function deterministic_spring_layout(g::AbstractGraph; seed::Integer=0, kws...)\n", - " rng = MersenneTwister(seed)\n", - " spring_layout(g, 2 .* rand(rng, nv(g)) .- 1.0, 2 .* rand(rng,nv(g)) .- 1.0; kws...)\n", - "end\n", - "function Base.show(io::IO, m::MIME\"image/svg+xml\", mg::MyGraph)\n", - " show(io, m, \n", - " gplot(mg.g, layout=deterministic_spring_layout,\n", - " nodelabel=map(v -> get(MetaGraphs.props(mg.g, v), :label, v), vertices(mg.g)),\n", - " nodefillc=map(v -> get(MetaGraphs.props(mg.g, v), :color, \"gray\"), vertices(mg.g)),\n", - " edgelabel=map(ie -> get(MetaGraphs.props(mg.g, ie[2]), :label, ie[1]), enumerate(edges(mg.g))),\n", - " edgestrokec=map(e -> get(MetaGraphs.props(mg.g, e), :color, \"lightgray\"), edges(mg.g)),\n", - " ))\n", - "end\n", - "\n", - "function nodecolors!(g::MyGraph, nodes::AbstractVector{<:Integer}, color::String=\"red\")\n", - " for n in nodes\n", - " set_prop!(g.g, n, :color, color)\n", - " end\n", - " g\n", - "end\n", - "nodecolors(g, nodes, color) = nodecolors!(copy(g), nodes, color)\n", - "edgearr(g, e) = e\n", - "edgearr(g, e::AbstractVector{<:Integer}) = collect(edges(g))[e]\n", - "edgearr(g, e::AbstractVector{<:Pair}) = Edge.(e)\n", - "function edgecolors!(g::MyGraph, edges::AbstractVector, color::String=\"red\")\n", - " for e in edgearr(g.g, edges)\n", - " set_prop!(g.g, e, :color, color)\n", - " end\n", - " g\n", - "end\n", - "edgecolors(g::MyGraph, edges::AbstractVector, color::String=\"red\") = edgecolors!(copy(g), edges, color)\n", - "\n", - "# A little code so that we can label graph nodes/edges with SymPy expressions.\n", - "# convert strings like \"v_2 - v_0\" from SymPy to nicer Unicode strings like \"v₂ - v₀\"\n", - "subchar(d::Integer) = Char(UInt32('₀')+d)\n", - "subchar(c::Char) = subchar(UInt32(c)-UInt32('0'))\n", - "subchar(s::String) = replace(s, r\"_[0-9]\" => s -> subchar(s[2]))\n", - "labelstring(s::SymPy.Sym) = subchar(repr(\"text/plain\", s))\n", - "labelstring(x) = x\n", - "\n", - "function labels!(g::MyGraph; edges=nothing, nodes=nothing)\n", - " if edges !== nothing\n", - " for (e,E) in zip(MetaGraphs.edges(g.g), edges)\n", - " set_prop!(g.g, e, :label, labelstring(E))\n", - " end\n", - " end\n", - " if nodes !== nothing\n", - " for (n,N) in zip(vertices(g.g), nodes)\n", - " set_prop!(g.g, n, :label, labelstring(N))\n", - " end\n", - " end\n", - " g\n", - "end\n", - "labels(g::MyGraph; kws...) = labels!(copy(g); kws...)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "randgraph (generic function with 1 method)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# generate a random graph with a given average #edges per node\n", - "function randgraph(numnodes::Integer, edgespernode::Real)\n", - " p = edgespernode/numnodes # probability of each edge\n", - " e = Vector{Pair{Int,Int}}()\n", - " for i = 1:numnodes, j = 1:numnodes\n", - " if i != j && rand() < p\n", - " push!(e, i=>j)\n", - " end\n", - " end\n", - " return MyGraph(e...)\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "incidence (generic function with 1 method)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# returns the incidence matrix for g\n", - "function incidence(g::MyGraph)\n", - " A = zeros(Int, ne(g.g), nv(g.g))\n", - " for (i,e) in enumerate(edges(g.g))\n", - " A[i,e.src] = -1\n", - " A[i,e.dst] = +1\n", - " end\n", - " return A\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "leftnullspace (generic function with 1 method)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Find the loops in g by the simplest \"textbook\" manner:\n", - "# get a basis for the left nullspace incidence matrix.\n", - "# We do this via the rref form, rather than nullspace(A'), because\n", - "# we want a \"nice\" basis of ±1 and 0 entries.\n", - "function leftnullspace(g::MyGraph)\n", - " A = incidence(g)\n", - " R = rref(Matrix(A'))\n", - " m, n = size(R)\n", - " pivots = Int[]\n", - " for i = 1:m\n", - " j = findfirst(!iszero, R[i,:])\n", - " j !== nothing && push!(pivots, j)\n", - " end\n", - " r = length(pivots) # rank\n", - " free = Int[j for j=1:n if j ∉ pivots]\n", - " N = zeros(Int, n, n-r)\n", - " k = 0\n", - " for (k,j) in enumerate(free)\n", - " N[pivots, k] = -R[1:r, j]\n", - " N[j, k] = 1\n", - " end\n", - " return N\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "tree (generic function with 1 method)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# color the edges of a spanning tree of g, by the textbook\n", - "# method of finding the pivot rows of the incidence matrix\n", - "function pivotrows(g::MyGraph)\n", - " A = incidence(g)\n", - " R = rref(Matrix(A'))\n", - " m, n = size(R)\n", - " pivots = Int[]\n", - " for i = 1:m\n", - " j = findfirst(!iszero, R[i,:])\n", - " j !== nothing && push!(pivots, j)\n", - " end\n", - " return pivots\n", - "end\n", - "colortree(g::MyGraph, color::String=\"red\") = edgecolors(g, pivotrows(g), color)\n", - "tree(g::MyGraph) = MyGraph(MetaDiGraph(SimpleDiGraphFromIterator(edgearr(g.g, pivotrows(g)))))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Graphs and incidence matrices\n", - "\n", - "Let's start by looking at an example graph with 6 nodes 8 edges. Computers are pretty good at drawing graphs for us:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "g = MyGraph(1=>4, 4=>5, 5=>6, 6=>3, 3=>2, 2=>1, 2=>6, 4=>6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A key way to represent a graph in linear algebra is the [incidence matrix](https://en.wikipedia.org/wiki/Incidence_matrix). As defined in Strang's textbook, this is a matrix where the **rows correspond to edges** and the **columns correspond to nodes**. (Some authors use the transpose of this instead.)\n", - "\n", - "In particular, in the row for each edge going **from node N to node M**, there is a **-1 in column N** and a **+1 in column N**.\n", - "\n", - "For example, the incidence matrix of the graph above is:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8×6 Array{Int64,2}:\n", - " -1 0 0 1 0 0\n", - " 1 -1 0 0 0 0\n", - " 0 -1 0 0 0 1\n", - " 0 1 -1 0 0 0\n", - " 0 0 0 -1 1 0\n", - " 0 0 0 -1 0 1\n", - " 0 0 0 0 -1 1\n", - " 0 0 1 0 0 -1" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = incidence(g)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There is an interesting structure if you think about *loops* in the graph. For example, in the graph above there is a loop among nodes 6, 3, 2, via edges 4,3,8. Let's look at the rows of $A$ corresponding to those edges:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×6 Array{Int64,2}:\n", - " 0 1 -1 0 0 0\n", - " 0 -1 0 0 0 1\n", - " 0 0 1 0 0 -1" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A[[4,3,8],:]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we **add these rows** we get **zero**:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×6 Adjoint{Int64,Array{Int64,1}}:\n", - " 0 0 0 0 0 0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A[4,:]' + A[3,:]' + A[8,:]'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In general, it is easy to see that **any loop in the graph** corresponds to **dependent rows**: if we sum the rows going around the loop (with a minus sign for arrows in the wrong direction), we get zero.\n", - "\n", - "The reason is simple: we get a -1 in a column when we *leave* a node, and a +1 in the column when we *enter* a node. When we go around the loop, we leave and enter each node, so the sum is zero.\n", - "\n", - "But dependent rows correspond to **elements of the left nullspace**:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×6 Array{Int64,2}:\n", - " 0 0 0 0 0 0" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[0 0 1 1 0 0 0 1] * A" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That means that the number of \"independent\" (primitive) loops in a graph is related to the **rank** of the incidence matrix, and the **independent rows of A have no loops**.\n", - "\n", - "Let's look at the row-reduced echelon (rref) form of $A^T$:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×8 Array{Int64,2}:\n", - " 1 0 0 0 0 -1 -1 0\n", - " 0 1 0 0 0 -1 -1 0\n", - " 0 0 1 0 0 1 1 -1\n", - " 0 0 0 1 0 0 0 -1\n", - " 0 0 0 0 1 0 -1 0\n", - " 0 0 0 0 0 0 0 0" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Matrix{Int}(rref(Matrix(A')))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the rank of $A$ is 5:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rank(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This means that there are **five loop-free (independent) edges**, and there are **three** (8 - 5) primitive loops. Using the rref form of $A^T$, we can read off a basis for the left nullspace from the free columns (6,7,8):" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8×3 Array{Int64,2}:\n", - " 1 1 0\n", - " 1 1 0\n", - " -1 -1 1\n", - " 0 0 1\n", - " 0 1 0\n", - " 1 0 0\n", - " 0 1 0\n", - " 0 0 1" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "N = leftnullspace(g)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×3 Array{Int64,2}:\n", - " 0 0 0\n", - " 0 0 0\n", - " 0 0 0\n", - " 0 0 0\n", - " 0 0 0\n", - " 0 0 0" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A' * N" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's visualize these loops by plotting the edges in a different color (red) one by one,\n", - "with help from the Interact package to give us an interactive widget:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "animloops (generic function with 1 method)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "colorloop(g::MyGraph, n::Vector) = edgecolors!(edgecolors(g, findall(n .> 0), \"red\"), findall(n .< 0), \"blue\")\n", - "function animloops(g::MyGraph)\n", - " L = leftnullspace(g)\n", - " @manipulate for loop in 1:size(L,2)\n", - " colorloop(g, L[:,loop])\n", - " end\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "loop" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 3, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"changes\\\":0,\\\"value\\\":2}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-5e5894c4-4d5a-4120-94d2-9404bbe983c5\",\"id\":\"ob_02\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"value\"].subscribe((function (val){!(this.valueFromJulia[\"value\"]) ? (_webIOScope.setObservableValue({\"name\":\"value\",\"scope\":\"knockout-component-5e5894c4-4d5a-4120-94d2-9404bbe983c5\",\"id\":\"ob_01\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"value\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "value": [ - "(function (val){return (val!=this.model[\"value\"]()) ? (this.valueFromJulia[\"value\"]=true, this.model[\"value\"](val)) : undefined})" - ] - }, - "id": "knockout-component-5e5894c4-4d5a-4120-94d2-9404bbe983c5", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_02", - "sync": false, - "value": 0 - }, - "value": { - "id": "ob_01", - "sync": true, - "value": 2 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_07", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-48d3cb39-301d-48b2-bf09-1d8d82dd38c9", - "imports": { - "data": [], - "type": "async_block" - }, - "observables": { - "obs-node": { - "id": "ob_07", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "\n\n\n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n \n \n 7\n \n \n \n \n 8\n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n\n\n" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:loop=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "2), Observable{Int64} with 2 listeners. Value:\n", - "2, Scope(\"knockout-component-5e5894c4-4d5a-4120-94d2-9404bbe983c5\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"loop\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>3,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "2, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5e5894c4-4d5a-4120-94d2-9404bbe983c5\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5e5894c4-4d5a-4120-94d2-9404bbe983c5\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0)), nothing, getfield(Main, Symbol(\"##21#23\")){Observable{Any}}(Observable{Any} with 0 listeners. Value:\n", - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))))" - ] - }, - "execution_count": 18, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ce8f9bc2-a3f5-447e-9f03-bf67c5c9ae34" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "animloops(g)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These three loops are **not the only loops** in the graph, but the **other loops can be made from combinations of these loops**. (Similarly, the columns of $N$ are not the *whole* left nullspace, they are just a **basis** for the n nullspace.\n", - "\n", - "For example, the loop between nodes 1-4-5-6-3-2 can be made by starting with 1-4-5-6-2 and \"adding\" the 6-3-2 loop.\n", - "\n", - "In this sense, a basis for the left nullspace of $A$ is a \"basis\" for the other loops in the graph: we say that they are \"primitive\" loops." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "colorloop(g, N[:,2] + N[:,3]) # add two loops to make another loop" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is fun to do the same thing for bigger graphs, chosen at random:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "loop" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 9, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"changes\\\":0,\\\"value\\\":5}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-445c54a5-22cf-48aa-bc7e-a2492035de0f\",\"id\":\"ob_09\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"value\"].subscribe((function (val){!(this.valueFromJulia[\"value\"]) ? (_webIOScope.setObservableValue({\"name\":\"value\",\"scope\":\"knockout-component-445c54a5-22cf-48aa-bc7e-a2492035de0f\",\"id\":\"ob_08\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"value\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "value": [ - "(function (val){return (val!=this.model[\"value\"]()) ? (this.valueFromJulia[\"value\"]=true, this.model[\"value\"](val)) : undefined})" - ] - }, - "id": "knockout-component-445c54a5-22cf-48aa-bc7e-a2492035de0f", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_09", - "sync": false, - "value": 0 - }, - "value": { - "id": "ob_08", - "sync": true, - "value": 5 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_14", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-ba6b7f48-6ba2-4e49-9d45-a33625603f5e", - "imports": { - "data": [], - "type": "async_block" - }, - "observables": { - "obs-node": { - "id": "ob_14", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "\n\n\n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n \n \n 7\n \n \n \n \n 8\n \n \n \n \n 9\n \n \n \n \n 10\n \n \n \n \n 11\n \n \n \n \n 12\n \n \n \n \n 13\n \n \n \n \n 14\n \n \n \n \n 15\n \n \n \n \n 16\n \n \n \n \n 17\n \n \n \n \n 18\n \n \n \n \n 19\n \n \n \n \n 20\n \n \n \n \n 21\n \n \n \n \n 22\n \n \n \n \n 23\n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n \n \n 7\n \n \n \n \n 8\n \n \n \n \n 9\n \n \n \n \n 10\n \n \n \n \n 11\n \n \n \n \n 12\n \n \n \n \n 13\n \n \n \n \n 14\n \n \n \n \n 15\n \n \n\n\n" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:loop=>Widget{:slider,Int64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:value=>Observable{Int64} with 2 listeners. Value:\n", - "5), Observable{Int64} with 2 listeners. Value:\n", - "5, Scope(\"knockout-component-445c54a5-22cf-48aa-bc7e-a2492035de0f\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"loop\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>9,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"value\"=>(Observable{Int64} with 2 listeners. Value:\n", - "5, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-445c54a5-22cf-48aa-bc7e-a2492035de0f\\\",\\\"id\\\":\\\"ob_09\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-445c54a5-22cf-48aa-bc7e-a2492035de0f\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "MyGraph({15, 23} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0)), nothing, getfield(Main, Symbol(\"##21#23\")){Observable{Any}}(Observable{Any} with 0 listeners. Value:\n", - "MyGraph({15, 23} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))))" - ] - }, - "execution_count": 20, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ce8f9bc2-a3f5-447e-9f03-bf67c5c9ae34" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "gbig = randgraph(15, 2)\n", - "animloops(gbig)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Conversely, the *independent* rows of $A$ (corresponding to the **pivot columns** of the rref form of $A^T$) form a **maximal set of edges with no loops**. A graph with no loops is called a [tree](https://en.wikipedia.org/wiki/Tree_(graph_theory)), and this particular tree is called a [spanning tree](https://en.wikipedia.org/wiki/Spanning_tree) because it touches all of (\"spans\") the nodes (assuming the graph is connected).\n", - "\n", - "Let's color the spanning tree (loop-free edges) of our example graph red:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "colortree(g)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also discard all of the edges that are *not* in the spanning tree, and we are left with a more boring graph of *just* the spanning tree:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 5} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tree(g)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can do the same thing for our bigger random example:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " \n", - " \n", - " \n", - " \n", - " 10\n", - " \n", - " \n", - " \n", - " \n", - " 11\n", - " \n", - " \n", - " \n", - " \n", - " 12\n", - " \n", - " \n", - " \n", - " \n", - " 13\n", - " \n", - " \n", - " \n", - " \n", - " 14\n", - " \n", - " \n", - " \n", - " \n", - " 15\n", - " \n", - " \n", - " \n", - " \n", - " 16\n", - " \n", - " \n", - " \n", - " \n", - " 17\n", - " \n", - " \n", - " \n", - " \n", - " 18\n", - " \n", - " \n", - " \n", - " \n", - " 19\n", - " \n", - " \n", - " \n", - " \n", - " 20\n", - " \n", - " \n", - " \n", - " \n", - " 21\n", - " \n", - " \n", - " \n", - " \n", - " 22\n", - " \n", - " \n", - " \n", - " \n", - " 23\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " \n", - " \n", - " \n", - " \n", - " 10\n", - " \n", - " \n", - " \n", - " \n", - " 11\n", - " \n", - " \n", - " \n", - " \n", - " 12\n", - " \n", - " \n", - " \n", - " \n", - " 13\n", - " \n", - " \n", - " \n", - " \n", - " 14\n", - " \n", - " \n", - " \n", - " \n", - " 15\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({15, 23} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "colortree(gbig)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " \n", - " \n", - " \n", - " \n", - " 10\n", - " \n", - " \n", - " \n", - " \n", - " 11\n", - " \n", - " \n", - " \n", - " \n", - " 12\n", - " \n", - " \n", - " \n", - " \n", - " 13\n", - " \n", - " \n", - " \n", - " \n", - " 14\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " \n", - " \n", - " \n", - " \n", - " 10\n", - " \n", - " \n", - " \n", - " \n", - " 11\n", - " \n", - " \n", - " \n", - " \n", - " 12\n", - " \n", - " \n", - " \n", - " \n", - " 13\n", - " \n", - " \n", - " \n", - " \n", - " 14\n", - " \n", - " \n", - " \n", - " \n", - " 15\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({15, 14} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tree(gbig)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can make trees from even larger graphs, for fun:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " \n", - " \n", - " \n", - " \n", - " 10\n", - " \n", - " \n", - " \n", - " \n", - " 11\n", - " \n", - " \n", - " \n", - " \n", - " 12\n", - " \n", - " \n", - " \n", - " \n", - " 13\n", - " \n", - " \n", - " \n", - " \n", - " 14\n", - " \n", - " \n", - " \n", - " \n", - " 15\n", - " \n", - " \n", - " \n", - " \n", - " 16\n", - " \n", - " \n", - " \n", - " \n", - " 17\n", - " \n", - " \n", - " \n", - " \n", - " 18\n", - " \n", - " \n", - " \n", - " \n", - " 19\n", - " \n", - " \n", - " \n", - " \n", - " 20\n", - " \n", - " \n", - " \n", - " \n", - " 21\n", - " \n", - " \n", - " \n", - " \n", - " 22\n", - " \n", - " \n", - " \n", - " \n", - " 23\n", - " \n", - " \n", - " \n", - " \n", - " 24\n", - " \n", - " \n", - " \n", - " \n", - " 25\n", - " \n", - " \n", - " \n", - " \n", - " 26\n", - " \n", - " \n", - " \n", - " \n", - " 27\n", - " \n", - " \n", - " \n", - " \n", - " 28\n", - " \n", - " \n", - " \n", - " \n", - " 29\n", - " \n", - " \n", - " \n", - " \n", - " 30\n", - " \n", - " \n", - " \n", - " \n", - " 31\n", - " \n", - " \n", - " \n", - " \n", - " 32\n", - " \n", - " \n", - " \n", - " \n", - " 33\n", - " \n", - " \n", - " \n", - " \n", - " 34\n", - " \n", - " \n", - " \n", - " \n", - " 35\n", - " \n", - " \n", - " \n", - " \n", - " 36\n", - " \n", - " \n", - " \n", - " \n", - " 37\n", - " \n", - " \n", - " \n", - " \n", - " 38\n", - " \n", - " \n", - " \n", - " \n", - " 39\n", - " \n", - " \n", - " \n", - " \n", - " 40\n", - " \n", - " \n", - " \n", - " \n", - " 41\n", - " \n", - " \n", - " \n", - " \n", - " 42\n", - " \n", - " \n", - " \n", - " \n", - " 43\n", - " \n", - " \n", - " \n", - " \n", - " 44\n", - " \n", - " \n", - " \n", - " \n", - " 45\n", - " \n", - " \n", - " \n", - " \n", - " 46\n", - " \n", - " \n", - " \n", - " \n", - " 47\n", - " \n", - " \n", - " \n", - " \n", - " 48\n", - " \n", - " \n", - " \n", - " \n", - " 49\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " \n", - " \n", - " \n", - " \n", - " 10\n", - " \n", - " \n", - " \n", - " \n", - " 11\n", - " \n", - " \n", - " \n", - " \n", - " 12\n", - " \n", - " \n", - " \n", - " \n", - " 13\n", - " \n", - " \n", - " \n", - " \n", - " 14\n", - " \n", - " \n", - " \n", - " \n", - " 15\n", - " \n", - " \n", - " \n", - " \n", - " 16\n", - " \n", - " \n", - " \n", - " \n", - " 17\n", - " \n", - " \n", - " \n", - " \n", - " 18\n", - " \n", - " \n", - " \n", - " \n", - " 19\n", - " \n", - " \n", - " \n", - " \n", - " 20\n", - " \n", - " \n", - " \n", - " \n", - " 21\n", - " \n", - " \n", - " \n", - " \n", - " 22\n", - " \n", - " \n", - " \n", - " \n", - " 23\n", - " \n", - " \n", - " \n", - " \n", - " 24\n", - " \n", - " \n", - " \n", - " \n", - " 25\n", - " \n", - " \n", - " \n", - " \n", - " 26\n", - " \n", - " \n", - " \n", - " \n", - " 27\n", - " \n", - " \n", - " \n", - " \n", - " 28\n", - " \n", - " \n", - " \n", - " \n", - " 29\n", - " \n", - " \n", - " \n", - " \n", - " 30\n", - " \n", - " \n", - " \n", - " \n", - " 31\n", - " \n", - " \n", - " \n", - " \n", - " 32\n", - " \n", - " \n", - " \n", - " \n", - " 33\n", - " \n", - " \n", - " \n", - " \n", - " 34\n", - " \n", - " \n", - " \n", - " \n", - " 35\n", - " \n", - " \n", - " \n", - " \n", - " 36\n", - " \n", - " \n", - " \n", - " \n", - " 37\n", - " \n", - " \n", - " \n", - " \n", - " 38\n", - " \n", - " \n", - " \n", - " \n", - " 39\n", - " \n", - " \n", - " \n", - " \n", - " 40\n", - " \n", - " \n", - " \n", - " \n", - " 41\n", - " \n", - " \n", - " \n", - " \n", - " 42\n", - " \n", - " \n", - " \n", - " \n", - " 43\n", - " \n", - " \n", - " \n", - " \n", - " 44\n", - " \n", - " \n", - " \n", - " \n", - " 45\n", - " \n", - " \n", - " \n", - " \n", - " 46\n", - " \n", - " \n", - " \n", - " \n", - " 47\n", - " \n", - " \n", - " \n", - " \n", - " 48\n", - " \n", - " \n", - " \n", - " \n", - " 49\n", - " \n", - " \n", - " \n", - " \n", - " 50\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({50, 49} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tree(randgraph(50, 8))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Graphs and Kirchhoff's circuit laws\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An elegant application of the incidence matrix and its subspaces arises if we think of the graph as representing an **electrical circuit**:\n", - "\n", - "* Each edge represents a wire/resistor, with an unknown current $i$. The *direction* of the edge indicates the *sign convention* ($i>0$ indicates current flowing in the direction of the arrow).\n", - "* Each node represents a junction, with an unknown voltage $v$.\n", - "\n", - "Let's visualize this by re-labeling our graph from above. We'll use the [SymPy](https://github.com/JuliaPy/SymPy.jl) package to allow us to do *symbolic* (not numeric) calculations with the incidence matrix." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " i₁\n", - " \n", - " \n", - " \n", - " \n", - " i₂\n", - " \n", - " \n", - " \n", - " \n", - " i₃\n", - " \n", - " \n", - " \n", - " \n", - " i₄\n", - " \n", - " \n", - " \n", - " \n", - " i₅\n", - " \n", - " \n", - " \n", - " \n", - " i₆\n", - " \n", - " \n", - " \n", - " \n", - " i₇\n", - " \n", - " \n", - " \n", - " \n", - " i₈\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " v₁\n", - " \n", - " \n", - " \n", - " \n", - " v₂\n", - " \n", - " \n", - " \n", - " \n", - " v₃\n", - " \n", - " \n", - " \n", - " \n", - " v₄\n", - " \n", - " \n", - " \n", - " \n", - " v₅\n", - " \n", - " \n", - " \n", - " \n", - " v₆\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "labels(g, edges=[Sym(\"i_$i\") for i = 1:size(A,1)], nodes=[Sym(\"v_$i\") for i = 1:size(A,2)])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Kirchhoff's voltage law (KVL)\n", - "\n", - "Let's start doing some linear algebra. What happens if we *multiply* our incidence matrix $A$ by a vector of voltages, one per node?" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[ \\left[ \\begin{array}{r}v_{1}\\\\v_{2}\\\\v_{3}\\\\v_{4}\\\\v_{5}\\\\v_{6}\\end{array} \\right] \\]" - ], - "text/plain": [ - "6-element Array{Sym,1}:\n", - " v_1\n", - " v_2\n", - " v_3\n", - " v_4\n", - " v_5\n", - " v_6" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v = [Sym(\"v_$i\") for i = 1:size(A,2)]" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8×6 Array{Int64,2}:\n", - " -1 0 0 1 0 0\n", - " 1 -1 0 0 0 0\n", - " 0 -1 0 0 0 1\n", - " 0 1 -1 0 0 0\n", - " 0 0 0 -1 1 0\n", - " 0 0 0 -1 0 1\n", - " 0 0 0 0 -1 1\n", - " 0 0 1 0 0 -1" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[ \\left[ \\begin{array}{r}- v_{1} + v_{4}\\\\v_{1} - v_{2}\\\\- v_{2} + v_{6}\\\\v_{2} - v_{3}\\\\- v_{4} + v_{5}\\\\- v_{4} + v_{6}\\\\- v_{5} + v_{6}\\\\v_{3} - v_{6}\\end{array} \\right] \\]" - ], - "text/plain": [ - "8-element Array{Sym,1}:\n", - " -v_1 + v_4\n", - " v_1 - v_2\n", - " -v_2 + v_6\n", - " v_2 - v_3\n", - " -v_4 + v_5\n", - " -v_4 + v_6\n", - " -v_5 + v_6\n", - " v_3 - v_6" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A * v" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What we get are the **voltage difference** (and in particular, the **voltage rise**) across each edge. It is easier to see this if we use the elements of $Av$ to directly label the edges of our graph:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " -v₁ + v₄\n", - " \n", - " \n", - " \n", - " \n", - " v₁ - v₂\n", - " \n", - " \n", - " \n", - " \n", - " -v₂ + v₆\n", - " \n", - " \n", - " \n", - " \n", - " v₂ - v₃\n", - " \n", - " \n", - " \n", - " \n", - " -v₄ + v₅\n", - " \n", - " \n", - " \n", - " \n", - " -v₄ + v₆\n", - " \n", - " \n", - " \n", - " \n", - " -v₅ + v₆\n", - " \n", - " \n", - " \n", - " \n", - " v₃ - v₆\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " v₁\n", - " \n", - " \n", - " \n", - " \n", - " v₂\n", - " \n", - " \n", - " \n", - " \n", - " v₃\n", - " \n", - " \n", - " \n", - " \n", - " v₄\n", - " \n", - " \n", - " \n", - " \n", - " v₅\n", - " \n", - " \n", - " \n", - " \n", - " v₆\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "labels(g, edges=A*v, nodes=v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let's ask the inverse question: **what voltage differences $d=Av$** can possibly arise? i.e. what $d$ are in $C(A)$? \n", - "\n", - "Remember, $A$ is **not full rank**: its rank is 5, but there are 8 rows (8 edges). So, $C(A)$ is 5-dimensional (\"missing\" three dimensions). Equivalently $C(A)$ is **orthogonal to the left nullspace**, which has three rows. What does this mean?\n", - "\n", - "Let's visualize the differences d:" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " d₁\n", - " \n", - " \n", - " \n", - " \n", - " d₂\n", - " \n", - " \n", - " \n", - " \n", - " d₃\n", - " \n", - " \n", - " \n", - " \n", - " d₄\n", - " \n", - " \n", - " \n", - " \n", - " d₅\n", - " \n", - " \n", - " \n", - " \n", - " d₆\n", - " \n", - " \n", - " \n", - " \n", - " d₇\n", - " \n", - " \n", - " \n", - " \n", - " d₈\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " v₁\n", - " \n", - " \n", - " \n", - " \n", - " v₂\n", - " \n", - " \n", - " \n", - " \n", - " v₃\n", - " \n", - " \n", - " \n", - " \n", - " v₄\n", - " \n", - " \n", - " \n", - " \n", - " v₅\n", - " \n", - " \n", - " \n", - " \n", - " v₆\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d = [Sym(\"d_$j\") for j = 1:size(A,1)]\n", - "labels(g, edges=d, nodes=v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If $N$ is a basis for the left nullspace, we must have $N^T d = 0$, or:" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[ \\left[ \\begin{array}{r}d_{1} + d_{2} - d_{3} + d_{6}\\\\d_{1} + d_{2} - d_{3} + d_{5} + d_{7}\\\\d_{3} + d_{4} + d_{8}\\end{array} \\right] \\]" - ], - "text/plain": [ - "3-element Array{Sym,1}:\n", - " d_1 + d_2 - d_3 + d_6\n", - " d_1 + d_2 - d_3 + d_5 + d_7\n", - " d_3 + d_4 + d_8" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "N' * d" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But what is this? Remember, each element of the left nullspace corresponded to a **loop in the graph**. Saying $N^T d = 0$, or $d \\perp N(A^T)$, is equivalent to saying that the **sum of the voltage rises around each loop = 0**.\n", - "\n", - "But this is precisely [Kirchhoff's voltage law](https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws) from circuit theory!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Kirchhoff's current law (KCL)\n", - "\n", - "To actually solve circuit problems, we need three additional ingredients:\n", - "\n", - "* The voltage difference $d$ must be divided by a resistance $R$ to get the *current* $i$ through that edge: $i = -d/R = -Yd$ (where $Y=1/R$ is the \"admittance\"), by [Ohm's law](https://en.wikipedia.org/wiki/Ohm's_law). Note that we need a minus sign to get the current in the direction of the arrow, since $d$ was the the voltage *rise* across the edge.\n", - "\n", - "* The sum of the currents $i$ entering each node must be zero, by Kirchhoff's current law (KCL).\n", - "\n", - "* To get a nontrivial solution, we need some kind of *source*: a battery or current source, to start currents flowing.\n", - "\n", - "How do we represent each one of these steps by linear-algebra operations?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Ohm's law\n", - "\n", - "To represent Ohm's law, we need to multiply the voltage differences $d=Av$ by a *diagonal matrix* of admittances:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[\\left[ \\begin{array}{rrrrrrrr}Y_{1}&0&0&0&0&0&0&0\\\\0&Y_{2}&0&0&0&0&0&0\\\\0&0&Y_{3}&0&0&0&0&0\\\\0&0&0&Y_{4}&0&0&0&0\\\\0&0&0&0&Y_{5}&0&0&0\\\\0&0&0&0&0&Y_{6}&0&0\\\\0&0&0&0&0&0&Y_{7}&0\\\\0&0&0&0&0&0&0&Y_{8}\\end{array}\\right]\\]" - ], - "text/plain": [ - "8×8 Array{Sym,2}:\n", - " Y_1 0 0 0 0 0 0 0\n", - " 0 Y_2 0 0 0 0 0 0\n", - " 0 0 Y_3 0 0 0 0 0\n", - " 0 0 0 Y_4 0 0 0 0\n", - " 0 0 0 0 Y_5 0 0 0\n", - " 0 0 0 0 0 Y_6 0 0\n", - " 0 0 0 0 0 0 Y_7 0\n", - " 0 0 0 0 0 0 0 Y_8" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y = diagm(0=>[Sym(\"Y_$i\") for i = 1:size(A,1)])" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[ \\left[ \\begin{array}{r}Y_{1} d_{1}\\\\Y_{2} d_{2}\\\\Y_{3} d_{3}\\\\Y_{4} d_{4}\\\\Y_{5} d_{5}\\\\Y_{6} d_{6}\\\\Y_{7} d_{7}\\\\Y_{8} d_{8}\\end{array} \\right] \\]" - ], - "text/plain": [ - "8-element Array{Sym,1}:\n", - " Y_1*d_1\n", - " Y_2*d_2\n", - " Y_3*d_3\n", - " Y_4*d_4\n", - " Y_5*d_5\n", - " Y_6*d_6\n", - " Y_7*d_7\n", - " Y_8*d_8" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y*d" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[ \\left[ \\begin{array}{r}- Y_{1} v_{1} + Y_{1} v_{4}\\\\Y_{2} v_{1} - Y_{2} v_{2}\\\\- Y_{3} v_{2} + Y_{3} v_{6}\\\\Y_{4} v_{2} - Y_{4} v_{3}\\\\- Y_{5} v_{4} + Y_{5} v_{5}\\\\- Y_{6} v_{4} + Y_{6} v_{6}\\\\- Y_{7} v_{5} + Y_{7} v_{6}\\\\Y_{8} v_{3} - Y_{8} v_{6}\\end{array} \\right] \\]" - ], - "text/plain": [ - "8-element Array{Sym,1}:\n", - " -Y_1*v_1 + Y_1*v_4\n", - " Y_2*v_1 - Y_2*v_2\n", - " -Y_3*v_2 + Y_3*v_6\n", - " Y_4*v_2 - Y_4*v_3\n", - " -Y_5*v_4 + Y_5*v_5\n", - " -Y_6*v_4 + Y_6*v_6\n", - " -Y_7*v_5 + Y_7*v_6\n", - " Y_8*v_3 - Y_8*v_6" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y*A*v" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Net current into each node\n", - "\n", - "Given the currents $i$, a little thought shows that the net current flowing into each node is precisely $A^T i$:" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[ \\left[ \\begin{array}{r}- i_{1} + i_{2}\\\\- i_{2} - i_{3} + i_{4}\\\\- i_{4} + i_{8}\\\\i_{1} - i_{5} - i_{6}\\\\i_{5} - i_{7}\\\\i_{3} + i_{6} + i_{7} - i_{8}\\end{array} \\right] \\]" - ], - "text/plain": [ - "6-element Array{Sym,1}:\n", - " -i_1 + i_2\n", - " -i_2 - i_3 + i_4\n", - " -i_4 + i_8\n", - " i_1 - i_5 - i_6\n", - " i_5 - i_7\n", - " i_3 + i_6 + i_7 - i_8" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "i = [Sym(\"i_$j\") for j=1:size(A,1)]\n", - "A'*i" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " i₁\n", - " \n", - " \n", - " \n", - " \n", - " i₂\n", - " \n", - " \n", - " \n", - " \n", - " i₃\n", - " \n", - " \n", - " \n", - " \n", - " i₄\n", - " \n", - " \n", - " \n", - " \n", - " i₅\n", - " \n", - " \n", - " \n", - " \n", - " i₆\n", - " \n", - " \n", - " \n", - " \n", - " i₇\n", - " \n", - " \n", - " \n", - " \n", - " i₈\n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "\n", - " \n", - " \n", - " -i₁ + i₂\n", - " \n", - " \n", - " \n", - " \n", - " -i₂ - i₃ + i₄\n", - " \n", - " \n", - " \n", - " \n", - " -i₄ + i₈\n", - " \n", - " \n", - " \n", - " \n", - " i₁ - i₅ - i₆\n", - " \n", - " \n", - " \n", - " \n", - " i₅ - i₇\n", - " \n", - " \n", - " \n", - " \n", - " i₃ + i₆ + i₇ - i₈\n", - " \n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "labels(g, edges=i, nodes=A'*i)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Why is this? The reason is that each row $A^T$ corresponds to a node, and has $\\pm 1$ for each edge going into or out of the node, exactly the right sign to sum the net currents flowing in:" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×8 Adjoint{Int64,Array{Int64,2}}:\n", - " -1 1 0 0 0 0 0 0\n", - " 0 -1 -1 1 0 0 0 0\n", - " 0 0 0 -1 0 0 0 1\n", - " 1 0 0 0 -1 -1 0 0\n", - " 0 0 0 0 1 0 -1 0\n", - " 0 0 1 0 0 1 1 -1" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Putting it together, given voltages $v$, the net current flowing **out of** each node is\n", - "\n", - "$$\n", - "A^T Y A v\n", - "$$\n", - "\n", - "The matrix $A^T Y A$ is a very special and important kind of matrix. It is obviously **symmetric**, and later on in the course we will see that any matrix of this form is necessarily **positive semidefinite** (all pivots are ≥ 0). Many important matrices in science, engineering, statistics, and other fields take on this special form.\n", - "\n", - "If we multiply $A^T Y A$ together, not all of its specialness is apparent. It is often better to leave it in \"factored\" form:" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[\\left[ \\begin{array}{rrrrrr}Y_{1} + Y_{2}&- Y_{2}&0&- Y_{1}&0&0\\\\- Y_{2}&Y_{2} + Y_{3} + Y_{4}&- Y_{4}&0&0&- Y_{3}\\\\0&- Y_{4}&Y_{4} + Y_{8}&0&0&- Y_{8}\\\\- Y_{1}&0&0&Y_{1} + Y_{5} + Y_{6}&- Y_{5}&- Y_{6}\\\\0&0&0&- Y_{5}&Y_{5} + Y_{7}&- Y_{7}\\\\0&- Y_{3}&- Y_{8}&- Y_{6}&- Y_{7}&Y_{3} + Y_{6} + Y_{7} + Y_{8}\\end{array}\\right]\\]" - ], - "text/plain": [ - "6×6 Array{Sym,2}:\n", - " Y_1 + Y_2 -Y_2 0 … 0 0\n", - " -Y_2 Y_2 + Y_3 + Y_4 -Y_4 0 -Y_3\n", - " 0 -Y_4 Y_4 + Y_8 0 -Y_8\n", - " -Y_1 0 0 -Y_5 -Y_6\n", - " 0 0 0 Y_5 + Y_7 -Y_7\n", - " 0 -Y_3 -Y_8 … -Y_7 Y_3 + Y_6 + Y_7 + Y_8" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A' * Y * A" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Null space\n", - "\n", - "If we just say that the net current flowing out of each node is zero, we get the equation:\n", - "$$\n", - "A^T Y A v = 0\n", - "$$\n", - "or $v \\in N(A^T Y A) = N(A)$.\n", - "\n", - "It is an amazing and important fact that $N(A^T Y A) = N(A)$!! (You saw a version of this in homework.) Why is this? Clearly, if $Ax = 0$ then $A^T Y Ax=0$. But what about the converse? Here is a trick: if $A^T Y Ax =0$, then $x^T A^T Y A x=0 = (Ax)^T Y (Ax)$. Let $y=Ax$. It is easy to see that $y^T Y y = \\sum_i Y_i y_i^2 = 0$ only if $y=0$, since all of the admittances $Y_i$ are positive. (We will later say that $Y$ is a \"positive-definite matrix\".) This means that $A^T Y Ax =0$ implies that $y=Ax=0$, which implies that $x \\in N(A)$.\n", - "\n", - "What is $N(A)$? The rank of $A$ is 5, so $N(A)$ must be **1-dimensional**. A basis for it is:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×1 Array{Float64,2}:\n", - " -0.4082482904638629 \n", - " -0.408248290463863 \n", - " -0.4082482904638628 \n", - " -0.40824829046386313\n", - " -0.4082482904638631 \n", - " -0.4082482904638629 " - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nullspace(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "But this is, of course, just the space of vectors where **all voltages are equal**. In hindsight, this should be obvious: if all the voltages are equal, then their difference are zero, and the currents are zero, and KCL is satisfied." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Current sources\n", - "\n", - "Of course, it is much more interesting to think about circuits when the currents are nonzero!\n", - "\n", - "To do this, we must consider a **source term** in the equations, and in particular we could try to solve\n", - "\n", - "$$\n", - "A^T Y A v = s\n", - "$$\n", - "\n", - "for some $s\\ne 0$. What does $s$ represent? It is precisely an **external source of current** flowing **out of each node**.\n", - "\n", - "For this to have a solution, however, we must have $s \\in C(A^T Y A) = N((A^T Y A)^T)^\\perp = N(A^T Y A)^\\perp = N(A)^\\perp$ (since $A^T Y A$ is symmetric, the left and right nullspaces are equal). We know a basis for $N(A)$ from above, so this boils down to:\n", - "\n", - "$$\n", - "\\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\end{pmatrix} s = 0 = \\sum_{i=1}^6 s_i\n", - "$$\n", - "\n", - "That is, to have a solution, **all current that flows in must flow out**, so that the net current flowing into the circuit is zero. This makes a lot of physical sense!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just for fun, let's solve this circuit problem when the current is flowing **into node 2** and **out through node 1**, with slider controls for the 8 admittances, and label the edges with the currents." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "twodigits (generic function with 1 method)" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "twodigits(x) = round(x, digits=2)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₁" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_17\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_19\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_18\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_16\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_18\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_17\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\",\"id\":\"ob_16\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_19", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_17", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_18", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_16", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₂" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_22\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_24\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_23\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_21\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_23\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_22\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\",\"id\":\"ob_21\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_24", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_22", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_23", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_21", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₃" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_27\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_29\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_28\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_26\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_28\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_27\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\",\"id\":\"ob_26\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_29", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_27", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_28", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_26", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₄" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_32\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_34\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_33\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_31\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_33\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_32\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\",\"id\":\"ob_31\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_34", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_32", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_33", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_31", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₅" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_37\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_39\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_38\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_36\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_38\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_37\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\",\"id\":\"ob_36\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_39", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_37", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_38", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_36", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₆" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_42\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_44\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_43\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_41\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_43\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_42\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\",\"id\":\"ob_41\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-b277606f-985c-419d-b02e-511a141aa06b", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_44", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_42", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_43", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_41", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₇" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_47\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_49\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_48\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_46\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_48\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_47\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\",\"id\":\"ob_46\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_49", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_47", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_48", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_46", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "Y₈" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "text-align:right;width:18%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "flex-grow:1; margin: 0 2%" - } - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_value" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "width:18%" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "_promises": { - "importsLoaded": [ - "function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = JSON.parse(\"{\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":0,\\\"formatted_value\\\":\\\"5.0\\\",\\\"index\\\":50}\");\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n \n [this[\"formatted_vals\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_vals\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_52\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_vals\"]=false}),self),this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (_webIOScope.setObservableValue({\"name\":\"changes\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_54\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"formatted_value\"].subscribe((function (val){!(this.valueFromJulia[\"formatted_value\"]) ? (_webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_53\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"formatted_value\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (_webIOScope.setObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_51\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n" - ] - }, - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "formatted_vals": [ - "(function (val){return (val!=this.model[\"formatted_vals\"]()) ? (this.valueFromJulia[\"formatted_vals\"]=true, this.model[\"formatted_vals\"](val)) : undefined})" - ], - "formatted_value": [ - "(function (val){return (val!=this.model[\"formatted_value\"]()) ? (this.valueFromJulia[\"formatted_value\"]=true, this.model[\"formatted_value\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})", - "(function (val){return _webIOScope.setObservableValue({\"name\":\"formatted_value\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_53\",\"type\":\"observable\"},_webIOScope.getObservableValue({\"name\":\"formatted_vals\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_52\",\"type\":\"observable\"})[(_webIOScope.getObservableValue({\"name\":\"index\",\"scope\":\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\",\"id\":\"ob_51\",\"type\":\"observable\"})-1)])})" - ] - }, - "id": "knockout-component-358c62c2-31f6-4004-a037-4c6f56220441", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/429ea4842967203db7a2e10862642c116542d0e4-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/9998dbb29ca780269e6886a8c8c4b78bb9a73c26-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/6ee7ce3a8d8fbffe6a5785768ec923478100c144-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/255cc2d911924b0ffa0f74016aac5f640f90a396-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/66a9780e4509d09169a66d890937410d69e4da42-main.css" - } - ], - "type": "async_block" - }, - "observables": { - "changes": { - "id": "ob_54", - "sync": false, - "value": 0 - }, - "formatted_vals": { - "id": "ob_52", - "sync": false, - "value": [ - "0.1", - "0.2", - "0.3", - "0.4", - "0.5", - "0.6", - "0.7", - "0.8", - "0.9", - "1.0", - "1.1", - "1.2", - "1.3", - "1.4", - "1.5", - "1.6", - "1.7", - "1.8", - "1.9", - "2.0", - "2.1", - "2.2", - "2.3", - "2.4", - "2.5", - "2.6", - "2.7", - "2.8", - "2.9", - "3.0", - "3.1", - "3.2", - "3.3", - "3.4", - "3.5", - "3.6", - "3.7", - "3.8", - "3.9", - "4.0", - "4.1", - "4.2", - "4.3", - "4.4", - "4.5", - "4.6", - "4.7", - "4.8", - "4.9", - "5.0", - "5.1", - "5.2", - "5.3", - "5.4", - "5.5", - "5.6", - "5.7", - "5.8", - "5.9", - "6.0", - "6.1", - "6.2", - "6.3", - "6.4", - "6.5", - "6.6", - "6.7", - "6.8", - "6.9", - "7.0", - "7.1", - "7.2", - "7.3", - "7.4", - "7.5", - "7.6", - "7.7", - "7.8", - "7.9", - "8.0", - "8.1", - "8.2", - "8.3", - "8.4", - "8.5", - "8.6", - "8.7", - "8.8", - "8.9", - "9.0", - "9.1", - "9.2", - "9.3", - "9.4", - "9.5", - "9.6", - "9.7", - "9.8", - "9.9", - "10.0" - ] - }, - "formatted_value": { - "id": "ob_53", - "sync": false, - "value": "5.0" - }, - "index": { - "id": "ob_51", - "sync": true, - "value": 50 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_59", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-0838b45e-2781-4a3e-9d5e-0aac5d2c7882", - "imports": { - "data": [], - "type": "async_block" - }, - "observables": { - "obs-node": { - "id": "ob_59", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "\n\n\n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n i₁ = -0.3\n \n \n \n \n i₂ = 0.7\n \n \n \n \n i₃ = 0.2\n \n \n \n \n i₄ = -0.1\n \n \n \n \n i₅ = -0.1\n \n \n \n \n i₆ = -0.2\n \n \n \n \n i₇ = -0.1\n \n \n \n \n i₈ = -0.1\n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n\n\n" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "style": "display:flex; justify-content:center; align-items:center;" - } - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Widget{:manipulate,Any}(OrderedDict{Symbol,Any}(:Y₁=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₁\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_18\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_18\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-37f6044d-c8f8-407d-8d44-d8198f960e0e\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₂=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₂\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_24\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_21\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-876c57af-f54e-4b21-9d4b-c1c8f06b3d49\\\",\\\"id\\\":\\\"ob_21\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₃=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₃\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_27\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_29\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_28\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_26\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_28\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_27\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-357cabbd-89fe-4f9b-9166-4c2fd4599e49\\\",\\\"id\\\":\\\"ob_26\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₄=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₄\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_34\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_33\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_33\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-70a9c1c0-2a3e-435f-bea7-89ddfc755348\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₅=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₅\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_37\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_39\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_38\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_36\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_38\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_37\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-6c9c0868-bb9e-4e26-9a7a-857b4f61a1ce\\\",\\\"id\\\":\\\"ob_36\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₆=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₆\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_42\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_44\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_43\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_41\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_43\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_42\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-b277606f-985c-419d-b02e-511a141aa06b\\\",\\\"id\\\":\\\"ob_41\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₇=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₇\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_49\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_48\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_48\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-942adce0-9fe1-400b-80b6-82aa2544a456\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope)),:Y₈=>Widget{:slider,Float64}(OrderedDict{Symbol,Any}(:changes=>Observable{Int64} with 1 listeners. Value:\n", - "0,:index=>Observable{Any} with 2 listeners. Value:\n", - "50,:formatted_vals=>Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"],:formatted_value=>Observable{String} with 1 listeners. Value:\n", - "\"5.0\",:value=>Observable{Float64} with 2 listeners. Value:\n", - "5.0), Observable{Float64} with 2 listeners. Value:\n", - "5.0, Scope(\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"Y₈\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"text-align:right;width:18%\")), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\")), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_value\")), 0)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"width:18%\")), 1)], Dict{Symbol,Any}(:attributes=>Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\")), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"formatted_vals\"=>(Observable{Any} with 1 listeners. Value:\n", - "[\"0.1\", \"0.2\", \"0.3\", \"0.4\", \"0.5\", \"0.6\", \"0.7\", \"0.8\", \"0.9\", \"1.0\" … \"9.1\", \"9.2\", \"9.3\", \"9.4\", \"9.5\", \"9.6\", \"9.7\", \"9.8\", \"9.9\", \"10.0\"], nothing),\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"formatted_value\"=>(Observable{String} with 1 listeners. Value:\n", - "\"5.0\", nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "50, nothing)), Set(String[]), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/packages/Knockout/JIqpG/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/all.js\", \"/Users/stevenj/.julia/packages/InteractBase/Q4IkI/src/../assets/style.css\", \"/Users/stevenj/.julia/packages/InteractBulma/Ohu5Y/src/../assets/main.css\"], Dict{Any,Any}(\"formatted_vals\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_vals\\\"]()) ? (this.valueFromJulia[\\\"formatted_vals\\\"]=true, this.model[\\\"formatted_vals\\\"](val)) : undefined})\")],\"_promises\"=>Dict{Any,Any}(\"importsLoaded\"=>Any[JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"formatted_vals\\\\\\\":[\\\\\\\"0.1\\\\\\\",\\\\\\\"0.2\\\\\\\",\\\\\\\"0.3\\\\\\\",\\\\\\\"0.4\\\\\\\",\\\\\\\"0.5\\\\\\\",\\\\\\\"0.6\\\\\\\",\\\\\\\"0.7\\\\\\\",\\\\\\\"0.8\\\\\\\",\\\\\\\"0.9\\\\\\\",\\\\\\\"1.0\\\\\\\",\\\\\\\"1.1\\\\\\\",\\\\\\\"1.2\\\\\\\",\\\\\\\"1.3\\\\\\\",\\\\\\\"1.4\\\\\\\",\\\\\\\"1.5\\\\\\\",\\\\\\\"1.6\\\\\\\",\\\\\\\"1.7\\\\\\\",\\\\\\\"1.8\\\\\\\",\\\\\\\"1.9\\\\\\\",\\\\\\\"2.0\\\\\\\",\\\\\\\"2.1\\\\\\\",\\\\\\\"2.2\\\\\\\",\\\\\\\"2.3\\\\\\\",\\\\\\\"2.4\\\\\\\",\\\\\\\"2.5\\\\\\\",\\\\\\\"2.6\\\\\\\",\\\\\\\"2.7\\\\\\\",\\\\\\\"2.8\\\\\\\",\\\\\\\"2.9\\\\\\\",\\\\\\\"3.0\\\\\\\",\\\\\\\"3.1\\\\\\\",\\\\\\\"3.2\\\\\\\",\\\\\\\"3.3\\\\\\\",\\\\\\\"3.4\\\\\\\",\\\\\\\"3.5\\\\\\\",\\\\\\\"3.6\\\\\\\",\\\\\\\"3.7\\\\\\\",\\\\\\\"3.8\\\\\\\",\\\\\\\"3.9\\\\\\\",\\\\\\\"4.0\\\\\\\",\\\\\\\"4.1\\\\\\\",\\\\\\\"4.2\\\\\\\",\\\\\\\"4.3\\\\\\\",\\\\\\\"4.4\\\\\\\",\\\\\\\"4.5\\\\\\\",\\\\\\\"4.6\\\\\\\",\\\\\\\"4.7\\\\\\\",\\\\\\\"4.8\\\\\\\",\\\\\\\"4.9\\\\\\\",\\\\\\\"5.0\\\\\\\",\\\\\\\"5.1\\\\\\\",\\\\\\\"5.2\\\\\\\",\\\\\\\"5.3\\\\\\\",\\\\\\\"5.4\\\\\\\",\\\\\\\"5.5\\\\\\\",\\\\\\\"5.6\\\\\\\",\\\\\\\"5.7\\\\\\\",\\\\\\\"5.8\\\\\\\",\\\\\\\"5.9\\\\\\\",\\\\\\\"6.0\\\\\\\",\\\\\\\"6.1\\\\\\\",\\\\\\\"6.2\\\\\\\",\\\\\\\"6.3\\\\\\\",\\\\\\\"6.4\\\\\\\",\\\\\\\"6.5\\\\\\\",\\\\\\\"6.6\\\\\\\",\\\\\\\"6.7\\\\\\\",\\\\\\\"6.8\\\\\\\",\\\\\\\"6.9\\\\\\\",\\\\\\\"7.0\\\\\\\",\\\\\\\"7.1\\\\\\\",\\\\\\\"7.2\\\\\\\",\\\\\\\"7.3\\\\\\\",\\\\\\\"7.4\\\\\\\",\\\\\\\"7.5\\\\\\\",\\\\\\\"7.6\\\\\\\",\\\\\\\"7.7\\\\\\\",\\\\\\\"7.8\\\\\\\",\\\\\\\"7.9\\\\\\\",\\\\\\\"8.0\\\\\\\",\\\\\\\"8.1\\\\\\\",\\\\\\\"8.2\\\\\\\",\\\\\\\"8.3\\\\\\\",\\\\\\\"8.4\\\\\\\",\\\\\\\"8.5\\\\\\\",\\\\\\\"8.6\\\\\\\",\\\\\\\"8.7\\\\\\\",\\\\\\\"8.8\\\\\\\",\\\\\\\"8.9\\\\\\\",\\\\\\\"9.0\\\\\\\",\\\\\\\"9.1\\\\\\\",\\\\\\\"9.2\\\\\\\",\\\\\\\"9.3\\\\\\\",\\\\\\\"9.4\\\\\\\",\\\\\\\"9.5\\\\\\\",\\\\\\\"9.6\\\\\\\",\\\\\\\"9.7\\\\\\\",\\\\\\\"9.8\\\\\\\",\\\\\\\"9.9\\\\\\\",\\\\\\\"10.0\\\\\\\"],\\\\\\\"changes\\\\\\\":0,\\\\\\\"formatted_value\\\\\\\":\\\\\\\"5.0\\\\\\\",\\\\\\\"index\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"formatted_vals\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_vals\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_52\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_vals\\\"]=false}),self),this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_54\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"formatted_value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"formatted_value\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_53\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"formatted_value\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (_webIOScope.setObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_51\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]),\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"formatted_value\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"formatted_value\\\"]()) ? (this.valueFromJulia[\\\"formatted_value\\\"]=true, this.model[\\\"formatted_value\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\"), JSString(\"(function (val){return _webIOScope.setObservableValue({\\\"name\\\":\\\"formatted_value\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_53\\\",\\\"type\\\":\\\"observable\\\"},_webIOScope.getObservableValue({\\\"name\\\":\\\"formatted_vals\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_52\\\",\\\"type\\\":\\\"observable\\\"})[(_webIOScope.getObservableValue({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-358c62c2-31f6-4004-a037-4c6f56220441\\\",\\\"id\\\":\\\"ob_51\\\",\\\"type\\\":\\\"observable\\\"})-1)])})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0))), ##52#53{#dom#13{##dom#11#12{Dict{Any,Any},DOM}},typeof(scope)}(#dom#13{##dom#11#12{Dict{Any,Any},DOM}}(##dom#11#12{Dict{Any,Any},DOM}(Dict{Any,Any}(:className=>\"field\"), DOM(:html, :div))), scope))), Observable{Any} with 0 listeners. Value:\n", - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0)), nothing, getfield(Main, Symbol(\"##38#41\")){Observable{Any}}(Observable{Any} with 0 listeners. Value:\n", - "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))))" - ] - }, - "execution_count": 42, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ce8f9bc2-a3f5-447e-9f03-bf67c5c9ae34" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for Y₁=0.1:0.1:10,\n", - " Y₂=0.1:0.1:10,\n", - " Y₃=0.1:0.1:10,\n", - " Y₄=0.1:0.1:10,\n", - " Y₅=0.1:0.1:10,\n", - " Y₆=0.1:0.1:10,\n", - " Y₇=0.1:0.1:10,\n", - " Y₈=0.1:0.1:10\n", - " s = [1,-1,0,0,0,0]\n", - " Y = diagm(0=>[Y₁,Y₂,Y₃,Y₄,Y₅,Y₆,Y₇,Y₈])\n", - " nodecolors!(labels(g, edges=[subchar(\"i_$j = $i\") for (j,i) in enumerate(twodigits.(Y*A*(pinv(A'*Y*A) * s)))]),\n", - " [1,2])\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that if we make the admittance $Y_2$ really large compared to all of the other admittances, then nearly all of the current should flow just over that one edge. Conversely, if we make $Y_2$ really *small*, it is almost like \"cutting\" that wire: almost all of the current should flow through the *other* edges.\n", - "\n", - "Hooray, math (and physics) works!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sparsity\n", - "\n", - "The case of matrices arising from graphs illustrates another point that I've made many times: **really large matrices are often sparse (mostly 0)** in practice.\n", - "\n", - "For example, imagine a circuit with a million nodes. For the most part, there will only be *wires between nearby nodes*. Or imagine a graph where the nodes are websites and the edges are links: there are billions of sites, but *each site only links to a few other sites* (a few hundred at most, usually). In such cases, the **incidence matrix is mostly zero**, and similarly for $A^T Y A$ etcetetera.\n", - "\n", - "This is hugely important, because solving $Ax=b$ and most other matrix equations scale as $\\sim n^3$ for $n \\times n$ matrices. $1000 \\times 1000$ matrices are easy (< 1 second), but $n=10^6$ would require supercomputers, and $n=10^9$ would be impossibly hard. What saves us is that there are **much faster algorithms for sparse matrices**. We won't learn much about such algorithms in 18.06, but the key point is to know that they exist.\n", - "\n", - "If you encounter a large sparse matrix problem in the future, go read about sparse matrix algorithms!" - ] - } - ], - "metadata": { - "@webio": { - "lastCommId": "9339f69e893548cd885be5bb190b5104", - "lastKernelId": "ce8f9bc2-a3f5-447e-9f03-bf67c5c9ae34" - }, - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 1.0.1", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/lectures/Least-Square Fitting.ipynb b/lectures/Least-Square Fitting.ipynb deleted file mode 100644 index cc1c4482..00000000 --- a/lectures/Least-Square Fitting.ipynb +++ /dev/null @@ -1,1071 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using PyPlot, Interact" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fitting a nonlinear-resistance model\n", - "\n", - "[Ohm's law](https://en.wikipedia.org/wiki/Ohm%27s_law) says that voltage drop $d$ across a resistor is proportional to the current $i$ via $d = iR$, where $R$ is the [resistance](https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance). Normally, we treat $R$ as a constant (the relationship is *linear*), but in fact this is not exactly true.\n", - "\n", - "A real resistance actually *changes* as you increase the voltage drop $d$. (For example, this happens as the resistor heats up; eventually it melts!)\n", - "One simple model of a nonlinear resistance is:\n", - "$$\n", - "R = x_1 + x_2 d^2 .\n", - "$$\n", - "Here, the resistance is constant plus a \"small\" correction that grows as we increase $d$. (We won't have any term proportional to $d$ if the current flows equally well in both directions, so that $R$ doesn't depend on the *sign* of $d$.)\n", - "\n", - "One would normally get these coefficients $x_1$ and $x_2$ by experimental measurements. Such \"fitting\" processes lead directly into the next major topic in 18.06:\n", - "\n", - "## Exact fits\n", - "\n", - "Suppose we put two voltage differences $d_1$ and $d_2$ across our resistor, and measure two resistances $R_1$ and $R_2$. This leads to the following $2 \\times 2$ system of equations for the unknown coefficients $x_1$ and $x_2$:\n", - "\n", - "$$\n", - "\\begin{pmatrix} x_1 + x_2 d_1^2 \\\\ x_1 + x_2 d_2^2 \\end{pmatrix} =\n", - "\\underbrace{\\begin{pmatrix} 1 & d_1^2 \\\\ 1 & d_2^2 \\end{pmatrix}}_A\n", - "\\underbrace{\\begin{pmatrix} x_1 \\\\ x_2 \\end{pmatrix}}_x =\n", - "\\underbrace{\\begin{pmatrix} R_1 \\\\ R_2 \\end{pmatrix}}_b \\; ,\n", - "$$\n", - "\n", - "i.e. a system $Ax = b$. As long as $|d_1| \\ne |d_2|$, the matrix $A$ is non-singular, and this has a unique solution: an **interpolating polynomial** going through the two data points:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":0.5}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":0.5}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["d₁"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":1.0,"min":0.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1.5}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5","id":"ob_05","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5","id":"ob_04","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_05","value":0},"value":{"sync":true,"id":"ob_04","value":1.5}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["d₂"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":2.0,"min":1.1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1.5}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb","id":"ob_08","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb","id":"ob_07","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_08","value":0},"value":{"sync":true,"id":"ob_07","value":1.5}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["R₁"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":2.0,"min":1.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1.5}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01","id":"ob_11","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01","id":"ob_10","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_11","value":0},"value":{"sync":true,"id":"ob_10","value":1.5}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["R₂"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":2.0,"min":1.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-8ba79d2f-d41f-4155-8cd3-97d9ad60a9a7","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_15","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", 0.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", 0.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_01\", 0.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_01\", 0.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_01\", 0.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", 0.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-0cf5cfe1-7e9d-4a20-8c8b-db9df1b51f66\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_04\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_04\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_04\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_04\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_04\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_05\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_04\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_05\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-b0bed2ab-1d48-49a8-997c-219899632bc5\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_07\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_07\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_07\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_07\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_07\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₁\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_07\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4bc40530-b438-4573-8ac5-5cf57d5692eb\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_10\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_10\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_10\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_10\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_10\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"R₂\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 2.0),Pair{Symbol,Any}(:min, 1.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_11\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_10\", 1.5, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1.5}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_11\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-5137bf59-0985-47e6-959f-c119b7f57f01\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_14\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "let fig = figure(), d = linspace(0,3,100)\n", - " @manipulate for d₁=0:0.1:1, d₂=1.1:0.1:2, R₁=1:0.1:2, R₂=1:0.1:2\n", - " withfig(fig) do\n", - " x = [1 d₁^2; 1 d₂^2] \\ [R₁, R₂]\n", - " plot([d₁, d₂], [R₁, R₂], \"ro\")\n", - " plot(d, x[1] + x[2]*d.^2, \"k-\")\n", - " xlim(0,3)\n", - " ylim(0,3)\n", - " title(\"fit \\$x\\$ = $x\")\n", - " xlabel(L\"d\")\n", - " ylabel(L\"R\")\n", - " end\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In general, if you have $m$ points you can interpolate them in this way by a degree $m-1$ polynomial (called the [Lagrange interpolating polynomial](https://en.wikipedia.org/wiki/Lagrange_polynomial)) in this way: you set up an $m \\times m$ matrix system for the coefficients.\n", - "\n", - "Note, however, that this is neither the most efficient nor the most accurate (given roundoff errors) method to compute an exact interpolating polynomial. There is a much better method called [barycentric interpolation](https://people.maths.ox.ac.uk/trefethen/barycentric.pdf) that is outside the scope of 18.06." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Inexact fits\n", - "\n", - "Suppose we do more than just the bare minimum number of measurements, however. Suppose that we do $m > 2$ measurements. This gives the following system of equations:\n", - "\n", - "\n", - "\n", - "$$\n", - "\\underbrace{\\begin{pmatrix} 1 & d_1^2 \\\\ 1 & d_2^2 \\\\\n", - " \\vdots & \\vdots \\\\ 1 & d_m^2 \\end{pmatrix}}_A\n", - "\\underbrace{\\begin{pmatrix} x_1 \\\\ x_2 \\end{pmatrix}}_x =\n", - "\\underbrace{\\begin{pmatrix} R_1 \\\\ R_2 \\\\ \\vdots \\\\ R_m \\end{pmatrix}}_b \\; ,\n", - "$$\n", - "\n", - "Now, $A$ is $m \\times 2$, and full column rank (assuming distinct voltages $|d_k|$), but of course it is not invertible for $m > 2$.\n", - "\n", - "It will still have a solution (a unique solution!) if all of the $R_k$ measurements fall *exactly* on a quadratic curve $x_1 + x_2 d^2$, but in a real experiment there would be some *measurement noise* that would spoil this.\n", - "\n", - "For example, let's suppose $x = (1,2)$ and we do $m=200$ measurements for $d \\in [0,2]$, but that each measurement has a random uncertainty $\\approx R \\pm 0.1$." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHLCAYAAAAEHKhwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4VNXZ9/HfTDhDQJAgYCCgIgiIWokEREFU4olqbRVoRbSpRasVRahgW8HHVlAOSj1UQ1NReUSpYh99taKtAbQEQUDFE4ICOhUKWiUQBCFZ7x+7O5nZs/dkJoeZ2cn3c125QvbsmVk7MzA3a933vQLGGCMAAIA0F0z1AAAAAOJB0AIAAHyBoAUAAPgCQQsAAPAFghYAAOALBC0AAMAXCFoAAIAvELQAAABfIGgBAAC+QNACAAB8gaAFAAD4AkELAKBBOXjwoK6++mp169ZNbdu2VV5enlatWpXqYaEOELQAABqUw4cPq2fPnvrnP/+pb775Rtddd52+//3va//+/akeGmopwC7PAICGrkOHDiouLtZJJ52U6qGgFphpQVpbuHChAoGAtm3blvTnlKTly5cn/flRP1atWqUZM2bom2++Sfi+9f2eePrpp9WvXz+1bNlSgUBAb7/9tue5L730kgKBQOVXkyZN1KNHD02aNEn79u2rszG52bt3r371q19p5MiRysrKUiAQ0IwZM+r1OeNRUVGhNm3a6JZbbnG9/aOPPtK3336rY489NskjQ10jaEFau/DCC1VSUqIuXbqkeijwuVWrVumOO+6oUdBSn3bv3q1x48bp2GOP1csvv6ySkhIdf/zxnuevX79ekvTss8+qpKREy5Yt04gRI3TvvffqxhtvrNexfvXVVyosLNTBgwd1ySWX1OtzJeL9999XWVmZcnNzo27bv3+/xo0bp9/85jdq06ZNCkaHutQk1QMAYsnKylJWVlaqh9Go7d+/X61atUr1MBqsjz/+WIcOHdIVV1yhYcOGVXv++vXr1aJFC1188cXKyMiQJJ111lkqLi7WCy+8UK9jzcnJ0ddff61AIKAvv/xSf/rTn2r8WMOHD1ePHj20cOHCWo9rzZo1khQVtBw6dEiXX365+vbtq9tuu63Wz4PUY6YFdWrGjBkKBAJ6//33NXbsWLVr105HHXWUfvrTn2rPnj0R577xxhs6++yzlZmZqVatWmnIkCF68cUXI85xWx7avXu3fv7zn6tbt25q3ry5srKydPrpp+vvf/+7JOn1119XIBDQ4sWLo8b3+OOPKxAIaO3atbW6vnfffVeXXXaZ2rVrpw4dOmjSpEk6fPiwNm3apPPOO0+ZmZnq0aOH7rnnHtfH2bx5s3784x+rU6dOat68uU444QQ9+OCDEeds2bJFV199tXr16qVWrVrp6KOP1qhRo7Rx48aI86r7fUjSVVddpR49enhej/Pn9evX60c/+pHat28fMaUez7iT+TuK9/02Y8YMTZkyRZLUs2fPyqWV5cuXx/X7q6nq3uNXXXWVhg4dKkkaPXq0AoGAhg8fHvMx161bpxNOOKEyYJGkYDCorKwsNWlSv/8PtX9vqbRgwQKdeOKJatGihfr3769ly5ZpzZo1Ue/ViooKXXnllcrIyFBRUVHKx426wUwL6sUPf/hDjR49WgUFBdq4caOmTZsmSfrzn/8sSVqxYoXOPfdcDRgwQEVFRWrevLkeeughjRo1SosXL9bo0aM9H3vcuHFav369fv/73+v444/XN998o/Xr1+urr76SJJ1xxhk65ZRT9OCDD2rs2LER933ggQeUm5vrOo1su+qqq3TVVVdJsv436Jarfvnll+uKK67QhAkT9Oqrr+qee+7RoUOH9Pe//12/+MUvNHnyZD355JO69dZbddxxx+nSSy+tvO8HH3ygIUOGqHv37po7d646d+6sZcuW6cYbb9SXX36p6dOnS5K++OILHXnkkZo1a5aysrL0n//8R4899pgGDRqkDRs2qHfv3nH9Pmri0ksv1ZgxY3TttdeqrKwsoXEn83dkq+799rOf/Uz/+c9/dP/992vp0qWVy419+/bV5ZdfXu3vL573hFM87/Hf/va3Ou2003T99dfrrrvu0llnnaW2bdt6PuZXX32lzz77LCqw+fe//633339fBQUFnvc1xqi8vLzacUuq9+Cnpm666SY98sgjmjx5skaMGKGPPvpI48ePV7NmzTRw4MCIcydMmKAdO3bo5ZdfTtvrQQ0YoA5Nnz7dSDL33HNPxPFf/OIXpkWLFqaiosIYY0xeXp7p1KmT2bt3b+U5hw8fNv379zfZ2dmV5z366KNGktm6dWvleW3atDE33XRTzHHY99uwYUPlsTVr1hhJ5rHHHqv19c2dOzfi+Mknn2wkmaVLl1YeO3TokMnKyjKXXnppxLn5+fkmOzvb7NmzJ+L4DTfcYFq0aGH+85//uD734cOHzXfffWd69eplbr755srj8fw+xo8fb3Jycjyvx/nz7bffHnVuvONO5u8o3vebMcbMnj076r1kTHy/v5qI9z1eXFxsJJm//OUv1T7mK6+8YiSZWbNmmUOHDpn9+/eb1atXm0GDBpkf/OAHEc/lZD9PPF/O35Gb3bt3G0lm+vTp1Z5bUVFhDh06FPF15plnmiuvvDLquJdnnnnGSDJPPfVUxPG77rrLSDK33XZb5bFt27YZSaZFixamdevWlV8rV66sdqxIbywPoV58//vfj/h5wIABOnDggHbt2qWysjK9+eab+tGPfhSRGJeRkaFx48YpFApp06ZNno992mmnaeHChfrd736n1atX69ChQ1HnjB07Vp06dYpYTrj//vuVlZUVcxYnXhdddFHEzyeccIICgYDOP//8ymNNmjTRcccdp+3bt1ceO3DggP7xj3/oBz/4gVq1aqXDhw9Xfl1wwQU6cOCAVq9eLcnqNXHXXXepb9++atasmZo0aaJmzZpp8+bN+vDDDxP6fSTqhz/8YcTPiYw7mb8jW6z3W3Xq4/dX2/e4l3Xr1kmSpk6dqqZNm6pVq1bKy8tT27Zt9fTTT8dMND311FO1du3auL66du2a+EXHsGLFCjVt2jTia+XKlXr88cejjntVZd15553Kzc2N+vvbt29fSYqYacnJyZExRt9++6327dtX+XXGGWfU6XUh+QhaUC+OPPLIiJ+bN28uSfr222/19ddfyxjjWhFk/2MZa2nj6aef1vjx4/WnP/1JgwcPVocOHXTllVdq586dEc83YcIEPfnkk/rmm2+0e/duLVmyRD/72c8qx1IbHTp0iPi5WbNmatWqlVq0aBF1/MCBA5U/f/XVVzp8+LDuv//+qH+sL7jgAknSl19+KUmaNGmSfvvb3+qSSy7RCy+8oDfffFNr167VSSedpG+//Tah30einK9NIuNO5u/IFuv9Vp36+P3V9j3uZf369crIyNCqVau0du1avfzyyxoxYoReffVVLViwIOZ927Rpo5NPPjmur2bNmiU8tljcAqbvfe97uuiii+IKmHbu3Kl33nlHP/7xj6NuC4VCkqKTcNEwsdCHpGvfvr2CwaB27NgRddsXX3whSerYsaPn/Tt27Kj77rtP9913nz777DM9//zzmjp1qnbt2qWXX3658rzrrrtOs2bN0p///GcdOHBAhw8f1rXXXlv3F5SA9u3bV/5v+/rrr3c9p2fPnpKkRYsW6corr9Rdd90VcfuXX36pI444ovLneH4fLVq00MGDB6Oey/nhb3MmLSYy7tpK5nNJ8b+fElHb97iX9evXq2/fvho8eHDlsUGDBik7O1t/+tOf9Itf/MLzvitWrNBZZ50V1/Ns3brVNXG7pjIzM6NyTjIzM3XkkUdGHXdjByZuQeCTTz6pzp07Kzs7u24Gi7RG0IKka926tQYNGqSlS5dqzpw5atmypSQr23/RokXKzs6O2aciXPfu3XXDDTfoH//4h/75z39G3NalSxdddtlleuihh/Tdd99p1KhR6t69e51fTyJatWqls846Sxs2bNCAAQNi/o82EAhEzQq9+OKL+te//qXjjjvO9T5ev48ePXpo165d+ve//62jjjpKkvTdd99p2bJldT7u2qqv54pn9iXW+ykRdfket+3Zs0effvqprr766ojjRxxxhC699FI98cQT+vTTT3XMMce43t+e7YhHXS8P1Zbd9uC9996LWB565plntGrVqqilSDRcBC1IiZkzZ+rcc8/VWWedpcmTJ6tZs2Z66KGH9N5772nx4sWe5Yl79uzRWWedpR//+Mfq06ePMjMzK6fJw6tPbBMnTtSgQYMkSY8++mi9XlO85s+fr6FDh+qMM87Qddddpx49emjv3r3asmWLXnjhBb322muSrJyQhQsXqk+fPhowYIDWrVun2bNnR/yPMt7fx+jRo3X77bdrzJgxmjJlig4cOKA//OEPcVeTJDLuZP6OEnHiiSdWPvb48ePVtGlT9erVK6H3UyJq+h73sn79ehljdNppp0Xd9qMf/UhPPPGEnnvuOc+usG6zHTXxt7/9TWVlZdq7d68kq9LrmWeekSRdcMEF9dLTp3v37srNzdW9996rrKwsDRgwQCtXrtT8+fMlsTTUqKQ2DxgNjV3NsXv37ojjblVAr7/+uhkxYoRp3bq1admypcnLyzMvvPBCzPsdOHDAXHvttWbAgAGmbdu2pmXLlqZ3795m+vTppqyszHVMPXr0MCeccEK9Xt/48eNN69ato84fNmyY6devX9TxrVu3mp/+9Kfm6KOPNk2bNjVZWVlmyJAh5ne/+13lOV9//bUpKCgwnTp1Mq1atTJDhw41r7/+uhk2bJgZNmyYMSax38dLL71kTj75ZNOyZUtzzDHHmAceeMCzesh5fYmMO5m/o0Teb8YYM23aNNO1a1cTDAaNJPPyyy8n/H5KRDzv8Xirh+bMmWMkmXXr1kXdduDAAZOZmWmGDh1a6zFXJycnp1ZVR7Zhw4aZ8ePHx33+1q1bzXnnnWfatGljjjjiCDNq1ChTVFRkJJkXX3wx8QuBL7FhIhq0d999VyeddJIefPDBmOv9AID0R9CCBumTTz7R9u3bddttt+mzzz7Tli1baEUPAD5HyTMapDvvvFPnnnuu9u3bp7/85S8ELADQADDTAgAAfIGZFgAA4AsELQAAwBcIWgAAgC/4urlcRUWFvvjiC2VmZibcqAkAAKSGMUZ79+5V165dFQzGP3/i66Dliy++ULdu3VI9DAAAUAOff/55QvtG+TpoyczMlGRddNu2bVM8GgAAEI/S0lJ169at8nM8Xr4OWuwlobZt2xK0AADgM4mmdpCICwAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHyBoAUAAPgCQQsAAPAFghYAAOAuFJKKi63vaYCgBQAARCsqknJypBEjrO9FRakeEUELAABwCIWkn/9cqqiwfq6okCZMSPmMC0ELAACItHlzVcBiKy+XtmxJzXj+i6AFAABE6tVLCjpChIwM6bjjUjOe/yJoAQAAVUIha6bl7rutQEWyvj/yiJSdndKhNUnpswMAgPQQCknz50vz5llLQ8GgNGuWlJtrzbCkOGCRCFoAAGjc7GBl7lzJmKrjFRXStGnStm1pEbBIBC0AADReRUXSNddEBivh7OTbNAlayGkBAKAxssuavQIWKS2Sb8MRtAAA0Bi5lTWHS5Pk23AELQAANEZuZc2SdWzyZCuXpaAg6cOKhaAFAIDGKDtbKiysKmu2g5Xt26XZs9NqhsVGIi4AAI1VQYGUn28l26ZJWXMsBC0AADRm2dlpH6zYWB4CAAC+QNACAEBjFApJxcUp37k5EQQtAAA0NkVFUk6ONGKE9b2oKNUjigtBCwAAjYndVM7u0VJRIU2Y4IsZF4IWAAAaE7emcna7/jRH0AIAQGPi1lQuzdr1eyFoAQCgMXE2lUvDdv1e6NMCAEBDFwpZy0Jt2kj79lkN5bZt801TORtBCwAADVlRUWTirWQtDxUWpt3eQtVheQgAgIbKWSlk81HFUDiCFgAAGiq3SiGbTyqGwhG0AADQULlVCtl8UjEUjqAFAICGwK0tv7NSyOajiqFwJOICAOB34cm24Um2oZB0zDFSSYlUVia1bm1991HFUDiCFgAA/MyrLf/XX0u33hodyPgYy0MAAPiZV1t+O2CRfFst5ETQAgCAn7kl2waDvt1fKBaCFgAA/MyZbBsMStdc49v9hWIhaAEAwM/Ck20nT7aOPfKIZExV4OLTaiEnEnEBAPCr8KqhQMA6ZkzV90BAWrJEGjzY9wGLRNACAIA/OauG7GAlXEWFlJXVIAIWieUhAAD8KVaLflsDyGMJR9ACAIAfuVUNBQJVCbkNJI8lHEELAADpyq01v81ZNZSRIS1YIG3bZt1n2zbfN5NzIqcFAIB05NWaP1xBgZSfb/VfCW/N34BmV8IFjHHL3PGH0tJStWvXTnv27FHbtm1TPRwAAOpGKCTl5ETmrGRkWLMndkASCll5Lb16+S5IqennN8tDAACkG6/W/HZH26IiK6gZMcL6XlSU/DGmAEELAADpxi3J1q4E8tog0ef7CsUjpUHL4cOH9Zvf/EY9e/ZUy5Ytdcwxx+h//ud/VFFdCRcAAA2ZW5KtXQlU3SxMA5bSRNy7775bDz/8sB577DH169dPb731lq6++mq1a9dOEydOTOXQAABILa8kW3sWxpnv0oD6sXhJadBSUlKiiy++WBdeeKEkqUePHlq8eLHeeuutVA4LAID0kJ0dnWRrz8JMmGDNsDTAfixeUhq0DB06VA8//LA+/vhjHX/88XrnnXf0xhtv6L777nM9/+DBgzp48GDlz6WlpckaKgAAqWdXDOXnW5VEzlmYBi6lQcutt96qPXv2qE+fPsrIyFB5ebl+//vfa+zYsa7nz5w5U3fccUeSRwkAQBqIp29LA5fSPi1PPfWUpkyZotmzZ6tfv356++23ddNNN2nevHkaP3581PluMy3dunWjTwsAoGGLp2+Lj9S0T0tKZ1qmTJmiqVOnasyYMZKkE088Udu3b9fMmTNdg5bmzZurefPmyR4mAACpFatiyIdBS02ltOR5//79Cjrq0DMyMih5BgAgXJs23n1bGpGUzrSMGjVKv//979W9e3f169dPGzZs0Lx58/TTn/40lcMCACB9hOey2BpRxVC4lOa07N27V7/97W/13HPPadeuXeratavGjh2r22+/Xc2aNav2/uw9BABo0NxyWYJBafVqKTc3deOqJV/mtGRmZuq+++7zLHEGAKBRc8tlqaiQyspSM54US2nQAgAAXNj9WOxclkbY/dYNGyYCAJBKoZBUXFy14WH4Ds55edK4ce57EDVCzLQAAJAqzoZxs2ZJU6dG7uC8aJFUUmItCTWi7rduCFoAAEiFtWsjq4IqKiIDFlt5uRWwDB+e9CGmG5aHAABItqIiadAg9yRb+rF4ImgBACCZQiFrhsWt40gwKE2bRg6LB5aHAABIJrcyZltFhTRzppXbkpvb6HNYnAhaAABIJrcy5nAVFdZsi083Q6xPLA8BAJAsRUVWGbOzw62TvRkiIhC0AACQDHYuizNg+b//I/k2TgQtAAAkg1dL/jZtpMJCkm/jQE4LAADJ0KuXd0v+4cOl/HxrSYjkW0/MtAAAUBec7fidsrNjz6hkZ1vBCwGLJ4IWAABqK3y/oJwc62c3BQVWVVBxsfW9oCCZo/S9gDFu3W38obS0VO3atdOePXvUtm3bVA8HANAYhUJWoOJc9qFk2VNNP7+ZaQEAoDbcEmwpWa4XBC0AANSGnWAbjpLlekHQAgBAbVSXYIs6Q8kzAAC1VVDgXrIcClnLR23aSPv2WbMyBDM1RtACAEBdyM6ODFbmz5fmzYvugFtYSNVQDbE8BABAXSoqkrp3l+bMce+AO2GCdy8XxETQAgBAXbH3F4rVTYTKohojaAEAoK64lT87UVlUYwQtAADUFbfy53BUFtUKQQsAANWJta9Q+G3O8udgUJo8WVqzhtb9dYDqIQAAYikqsvJUKiqiq3+8bmPH5nrB3kMAAHiJta/Qjh1SXh57DtUAew8BAFDXvPYVmj9fGjSIPYeSjOUhAACcwjvZBoORwUkgIM2d617WTGVQvWKmBQCAcEVF1pLQiBHW8s+4cVWJtYGAFay4BSzBIJVB9YyZFgAAbHZzOHtmpaJCWrRIKimxclXGjPEOWFavlnJzkzrcxoaZFgAAbF45LGVlUseO7o3j7KohApZ6x0wLAAA2uzmcsyLIzlNx3sYMS1Ix0wIAgM3ZHC68g63bbcywJBV9WgAAcAqFvJvDxboNcanp5zfLQwAAONkzK4nehnrF8hAAAPAFghYAAOALBC0AAHiJtbszko6gBQAAW3iQEt4ZNyfH+hkpRSIuAACSFZTY3XADAeuYXWBbUSFNmCDl55OEm0LMtAAA4Gzf77a/EDs4pxxBCwAAbu37ndjBOeUIWgAAjYtbcq3dvj9cIODeGRcpQ9ACAGg8vJJr3Vr0L1hg7excXGx9LyhI1ajxX7TxBwA0DqGQFag4N0Pctq1qBoUW/UlBG38AAGJxy1spL5dKSqSOHa0lIlr0pzWWhwAAjYNX3sqYMfRi8QmCFgBA4+DMW7EDGHv2xe7FQvfbtEXQAgBoPAoKqpJrH3iAXiw+Q9ACAGhcsrOlTz6Rrr8++jZ6saQ1EnEBAI1DKGQl47ZpY3W/dc6y0Isl7RG0AAAaPue+Qm7dPhYvli67LPljQ9xYHgIANGxu+wo5ZWRIgwcnd1xIGEELAKBh89pXyK4eYlnIN1geAgA0XKGQtHu3FaA4O+GWlEhlZXS/9RGCFgBAw+TMY7EDF3tmJTc31SNEgghaAAD+Z1cG2a34166NzmMJBKQlS6zcFWZWfImcFgCAvzl3br7qKmnQoOg8looKKSuLgMXHmGkBAPiXszKookJ67DH3c2kc53vMtAAA/MurMsgpGKRCqAFgpgUA4F/2zs2xApdgUFq9msTbBoCZFgCAfzl3bs7IkMaPj/y5sJCApYEIGOPWGtAfSktL1a5dO+3Zs0dt27ZN9XAAAKkSClm7M7duLe3bZ+0vRA+WtFXTz29mWgAA/mfv3JyXZ1UR5eVZPxOwNCjMtAAA0o+z70p150hWubOz6+22bQQuaYiZFgBAw+Dsu1JUFHl7KCRNmRJ5zvz50cm45eXWkhEaDGZaAADpIxTynjGRrOBk7tzonZrtzQ+ZafEFZloAAP7n1nelvNwKVrp3l+bMiQ5YJOs+kyZFVg3Rl6XBYaYFAJA+3GZa3GZRnMJnY7ZsoWoozTHTAgDwP7e+K5MmVR+w2LMq2dnS8OEELA1UyoOWf/3rX7riiit05JFHqlWrVjr55JO1bt26VA8LAJAqBQXWrElxsfV94sSq2ZZwwaA0ebJ1TkFBkgeJVEhp0PL111/r9NNPV9OmTfW3v/1NH3zwgebOnasjjjgilcMCAKSaPWMiWXkud99dNftiByvbt0uzZzOr0oikdO+hu+++W926ddOjjz5aeaxHjx6pGxAAIH0UFVXt4BwMSrNmWe34yVdptFI60/L8889r4MCBuuyyy9SpUyedcsopWrBggef5Bw8eVGlpacQXAKABCoWqAhbJ+j5tGgFLI5fSoOXTTz/VH//4R/Xq1UvLli3TtddeqxtvvFGPP/646/kzZ85Uu3btKr+6deuW5BEDAJLCq/SZZnGNWkpLnps1a6aBAwdq1apVlcduvPFGrV27ViUlJVHnHzx4UAcPHqz8ubS0VN26daPkGQAaCrs1f5s21v5BNItrkHxZ8tylSxf17ds34tgJJ5ygzz77zPX85s2bq23bthFfAIAGIrx9f16eNG4czeIQIaWJuKeffro2bdoUcezjjz9WTk5OikYEAEgJtxyWRYukkhKprIxcFkhKcdBy8803a8iQIbrrrrt0+eWXa82aNSosLFRhYWEqhwUASDavHJaysqrSZzR6KV0eys3N1XPPPafFixerf//+uvPOO3XffffpJz/5SSqHBQBItl69ohvIZWRYMyzAf6V0pkWSLrroIl100UWpHgYAINUmTZLuvdeaYSGHBS5SHrQAABq58CZygYDV7XbiRAIWREn53kMAgEYqFJKWLIlMwDXGmm0BXBC0AACSzy5vHj2aJnKIG0ELACC5nOXNTiTgwgNBCwAgudzKm20k4CIGEnEBAHUnvA3/vn1WKbMzAGnTxipvDg9cgkHpqaekwYMJWOCJoAUAUDfCq4BswaBUWCgVFFgBzfz50rx50XsKPfKIdNllyR8zfIWgBQBQe155KhUV0oQJ0tdfS7/6lVUdFC4YtFr15+Ymb6zwLXJaAAC1FytPpbxcuvXW6IBFsu5TVla/Y0ODQdACAKg9tzb8Nmf+SjgqhZAAghYAQO1lZ1u5KxkZkcczMqRZs9wDGiqFkCByWgAAdaOgQMrPtxrDtW5tLfscd5wVlHToYOW2lJdbAcykSbTqR8IIWgAAdSc7OzoQCYWkY46xEm7DAxkgQSwPAQDqj92uf8QIKS9P+uQTAhbUGEELAKB+OMug7fLnUCi144JvEbQAAOqHWxk0myGiFghaAAA1FwpJxcXusyduZdCUOKMWCFoAADUTnq/Svbs0ZUpk8OIsg6bEGbUUMMatRaE/lJaWql27dtqzZ4/atm2b6uEAQOMRClkBi3P5J3yvofBzt2yhagiVavr5zUwLACBxXm373ZJts7Ol4cMJWFBrBC0AgPiE56/EattPsi3qCUELAKB64fkrOTnSsmXWMpBXe36SbVEPCFoAALF59VvJz5e2b5cmTybZFklB0AIAiM2r30pJiRWczJ4tbdtmLR1t2xaZhAvUIfYeAgDEZuevOAOXMWOk0lIrSHHbcwioY8y0AABis/utOPNXaMuPJCNoAQBUr6BAWrw4+jiVQkgighYAQDS39vxDhtCWHylF0AIAiOQsb5492wpgJNryI6VIxAUAVFm7Nrq8+Ve/sv5st+jfto22/EgJZloAAJaiImnQIPf2/FJV4q1EW36kBEELAKCqgVx1e+iSeIsUSmh5aPv27dq0aZNOPPFEdenSJer2L774Ql27dq2zwQEA6lkoZDWP272ea9emAAAgAElEQVTbe4YlHIm3SKG4Z1oWL16s4447Tuedd56OPfZYPfHEE5KsQGbWrFkaNGiQunfvXm8DBQDUsfCE2zFjpEAg8vZgUPr1r0m8RdqIO2i588479ctf/lIbN27Uueeeq+uuu06//vWvdeyxx2rhwoU67bTTtHTp0vocKwCgrjj3E7KXhcIDlMJC6Xe/o0U/0kbcy0OffPKJJk6cqJycHD344IPq3r27SkpKtHHjRp1wwgn1OUYAQF0KhaQlS6KXg4yxGshlZUVWBtGiH2ki7qDl0KFDatmypSQpOztbLVu21Jw5cwhYAMBPiooiZ1jCBYNSjx5Sbm7ShwXEI6HqoSeffFIfffSRdcdgUO3bt6+XQQEA6oFzScipokLKy7MCGyANxR20DB06VNOnT1e/fv3UsWNHHThwQPPnz9eSJUv0wQcf6PDhw/U5TgBAbW3e7B6whCfgsgki0ljcy0MrV66UJG3evFnr1q3T+vXrtW7dOj3++OP65ptv1LRpU/Xu3VvvvvtuvQ0WAFANu4S5V6/oPJRevawloPDAxfmzVNWLhTwWpJmE2/j36tVLvXr10pgxYyqPbd26VW+99ZY2bNhQp4MDACQgPF/FbrkfXu2TnW0dmzDBCkwyMqSZM6WpUyMDF3qxIE0FjKmu/WH6Ki0tVbt27bRnzx61bds21cMBgNQJhayeK87gY9u26BmTUChy76CioshA5pFHKG1Gvarp5zcbJgJAQ+CWr+Jc5glfOho+vOq8ggIpP59NEJH2CFoAoCHwylfZtcsKVpYtq37piGAFaY7lIQBoKMKXeeyKIGMi/2zzWjoCkqCmn9/s8gwADUVBgRWILFliBSp2kGJM9O7N7NYMHyJoAYCGJDtb6tix+h2bqRCCDxG0AEBDY+e3hAsE2K0ZvkfQAgANjd2PJTxIWbCA3Zrhe1QPAUBD5FXGzOwKfIygBQD8yO650qaNtG+fe9t+ypjRwBC0AIDfhLfrt7n1XrHF2o8I8BFyWgDAT0Kh6IBF8t6duajIau8/YoT1vagoeWMF6hhBCwD4iVu7fpuz94ozwPEKbACfIGgBgHQQClmVPdUFFG7lzDZn75VY+xEBPkTQAgCplsgSjrOc2RYMSjffHHnMLcChqRx8jKAFAFLJbQnn5z+X1q71vo/drr+4WFqzRpo82To+Z05k0OPWr4WmcvAxNkwEgFQqLrZmWJxiVQOFC4WsQCV8Gci5GWIoFN2vBUghNkwEAD/yylFxS5p1y3uJJ28lO1saPpyABb5H0AIAqWQv4bgFLuHBh1feC3kraEQIWgAg1QoKpNWro4OPYFDatcvKb/EqXSZvBY0IOS0AkC6KiqxgpLzc2pVZkoyx/uz2T3VxsbXsI5G3Al8hpwUA/M6uClqyJDJQcQtYnEtA5K2gESBoAYBkiaeBXHa21LGje9dbe/mIJSA0UmyYCADJEL7JYXXlzHZyrbOMuaREKitjCQiNFjMtAFDfEt0DyCu5NjeXJSA0asy0AEB9i9VLxSsAKSiQ8vOtc1q3lvbtq6oWAhopZloAoK45c1fceqnY5czV5bd88omUlxffvkRAA0fQAgB1ya0JnHO5x64MGj06diCS6LIS0MARtABAXYkVZHiVM8faIDGeFv1AI0LQAgB1xSvIKCmxlosk93LmigprCcg540KLfiBC2gQtM2fOVCAQ0E033ZTqoQBAzbgFGYGANGZM1XLRW2/Fv0EiLfqBCGkRtKxdu1aFhYUaMGBAqocCADXnDDIkaxkofLlo2jTp7rur3yDRZi8rFRdb3716uwCNQMqDln379uknP/mJFixYoPbt26d6OABQOwUF1nKQW1AiWYHJwIHuGyR6Lf3Qoh+QlAZBy/XXX68LL7xQ55xzTrXnHjx4UKWlpRFfAJB29u1zb8MvVQUmubks/QAJSmlzuaeeekrr16/XWreseRczZ87UHXfcUc+jAoBacmvDL0UHJuEN5GjND1QrZTMtn3/+uSZOnKhFixapRYsWcd1n2rRp2rNnT+XX559/Xs+jBADFt9FhOGduSzAoTZ7snpPC0g8Qt4Axbnue17+//vWv+sEPfqCMsIS18vJyBQIBBYNBHTx4MOI2N6WlpWrXrp327Nmjtm3b1veQATRGXhsdhkJWiXOvXt4BRyjELArgoqaf3ylbHjr77LO1cePGiGNXX321+vTpo1tvvbXagAUA6p1Xs7ivv5ZuvbX6HZuzswlWgDqUsqAlMzNT/fv3jzjWunVrHXnkkVHHASAlvJrF2QGLVBXI5OcToAD1LOXVQwCQtrw2OqS1PpASaRW0LF++XPfdd1+qhwEAFreOtLNm0VofSJGUljwDQNpzK0vu0MFaEiovp78KkEQpqx6qC1QPAUgZuzKodWurmVysKiIAEWr6+Z1Wy0MA4BvZ2dInn1i7M9ubITp3aQZQp5hpAYBE2P1Z2rSxApbwpNyMDKuBHDMuQEzMtABAXXN2wi0qsmZURoyQBg1yryIqKUn+OIFGgqAFANyEByg5OdLs2ZGN5rwmqceMYZkIqCcsDwGAUyhkBSrhMylu/VkkKRCIDmBYJgJiYnkIAOrKqlXRAYrdsj9cRob04IPR96fZHFAvCFoAIFxRkbXE45SRId19d2SjuUcekUaNotkckCQELQBgszdIdFvueeQRafJka9mnuNj6XlDg3jWXZnNAvaAjLgDY3DZIlKTFi6XLLrP+7LZzs1vXXAB1jqAFAGz2BonO3iuDB1d/X7dgBkCdYnkIAGws9QBpjZkWAA2X3b02kX2BWOoB0hYzLQAapvDmcN27S1OmVHW2laK73YbLzpaGDydgAdIMzeUA+FOsWRS35nCSla9SWGj92e5uax8rKEjOuAHQXA5AI+Jsse9sm+9VBVRRYQUr4e34KyqkCRPcZ1wApBVyWgD4i91LxRl05OdbP9s7MHu13Xc7Vl4u/b//J/XunVj+C4CkYqYFgL+4zaKUl0vz51fNvuTlSePGRXeqlaxjbsevu8575gZAWiBoAeAvdi+VcMGgNG9e5OzLokXS6tVWF9vwEubCQuvLLXCx78tyEZCWCFoA+ItbL5VJk9xnX8rKpNmzI1vv5+dLxxwjPfCA93Ow4SGQlqgeApA+EumrEgpV9VKRoquFMjKsICX8cYqKqvJhAgHrmNs/gW73BVBnqB4C4G/VVQQ5hfdSiaeTrTOB1w5W7PvY6IILpC1mWgCknltflZrMdoTPvjjvV1xsBUROS5ZIWVlS69bWchJdcIF6V9PPb0qeAaSeV0XQli2JBRCxNi2MtRkiQQrgCywPAUg9t4qgjIyqfJW6wGaIgO8RtABIvWQFFAUFkZVEtO4HfIWcFgDpI1ZOSqKPk+juzgCShuohAP5XF7srJ1qFBMA3mGkB4A/27EmbNtK+ffHv7kzPFSDtUD0EwJ/iWcoJbwpnCwatPJjwvJS6qkICkJZYHgKQOvEs5Tibwtnc9ghKRhUSgJQhaAGQGs5gxGujQrfZE1t5uVRSYlUDhUKUNQMNHMtDAFIjnqWcUEjavTu6KZwtEJDGjLFuC18uys+vmyokAGmFoAVAanh1qLWXcpybGzrPDQat/YOcMzX5+bE74wLwLZaHAKRGrKWctWvdNzdcskRas8ZaDlq8OHqHZnumBkCDxEwLgNRxW8opKpKuuSY6IKmosDY2zM21fg6FYs/UAGhwmGkBUPdCoark2OqEN5Szk3Pd2kc5AxKSboFGh6AFQN2qTUdar0qhYNA9IGEvIaBRoSMugLrj1pE2GJRWr65a1qnP+wPwBfYeApB6bjMlFRVSXl7VjIu9dLR2bfQSktuST2EhAQsASSTiAqhLbmXMUlU58tdfS7feGrsdP31WAHhgeQhA3XLbJ8jm1SSOTQ2BRoXlIQDpoaDAykFx7gEUCMRux09/FQDVIGgBUHvOEufc3MjclEDAvYzZRn8VAHEgaAFQO14lznY58pIlVtDihf4qAOJEIi6AmnPbqfnnP5cGDLBmW7KzpY4d3ZeF/vhHqU8fkm0BxI2ZFgCJdbANF0+Js11RFC4jQ7rooqpOuAAQB4IWoLELX97p3l2aMiW+4CUUknbvjg5IpKoS51CIdvsA6gwlz0Bj5taBVoruneIUXtZs56u4/VNSXGzNptjPRe8VAKLkGUBNeO31Ez5T4uTMY7GDFWeyrdsGhywHAagFghagMXPLN7F59U5xC3SMkW65hSUgAPWKoAVobMKTbu18E7fAxat3ildi7cSJ7LgMoF4RtACNiVtPlYICaft2afLk+GZKYiXWsgQEoB6RiAs0Fm5Jt8Gg1XLf3kXZLVk2FLKWhNq0kfbti/xeVkZiLYCE1fTzm+ZyQGMRq6eKXSlkz5bYqtv8sLCwqjoIAOoZy0NAY+GVdOtWKRQKWe33vQIWr/sBQD0iaAEai1hJt+GVQnbey+jR3gGL2/0AoJ4RtACNSUGBlcPiVv1z3HHRPViqw+7MAJKIoAVobHJzvat/vJrNuaEXC4AkIxEXaEjsSp9evaKDifDbCgqk/PzoSiE778VZYfTUU1KPHla1UOvWVA0BSAmCFsDPwgORZcuqlnaceweFVwGF3+YMOuy8lwkTrHwVezblssuSf20A4ECfFsCvqtu0MCPD6ky7Y4dV1hw+e2Lf5jVTwuaGAOoRGyYCjYnbpoXO/3+Ul0vz50uDBkXnqVRX9UNnWwBpiKAF8KN4EmaDQWnevOhgRqLqB4AvEbQAfhRrd2bJCkomTfLuZEvVDwAfImgB/ChWo7hgUCopsXZddt5u7zXEDswAfIigBfCrggJp8eLo4xUVVpLt5s3S3XdH9mMpLKzaHBEAfIaSZ8BvwsuchwyJ7qsSCEhjxlSVN8+aZQUqVAIB8DlmWgC/CIWkKVOsfYFGjLC+L1sW2d3WXg6yg5iKCmnaNAIWAA0CMy2AHxQVSddcE1kJZO+yvG2b9bVli7Rrl7XRYTi7vJmgBYDPpXSmZebMmcrNzVVmZqY6deqkSy65RJs2bUrlkID0Y/dkcStdDg9Ihg+vWi4KR3kzgAYipUHLihUrdP3112v16tV69dVXdfjwYY0cOVJlZWWpHBaQXlat8u7J4gxI7Koit80QAcDn0qqN/+7du9WpUyetWLFCZ555ZrXn08YfDZ7bspDNDkjcypdpww8gjdX08zutclr27NkjSerQoYPr7QcPHtTBgwcrfy4tLU3KuICU8FoWCgatxnETJ3oHJNnZBCsAGpy0CVqMMZo0aZKGDh2q/v37u54zc+ZM3XHHHUkeGVBD4aXJ2dmRP0vut7VpI+3bZx33atX/1FPsugygUUqboOWGG27Qu+++qzfeeMPznGnTpmnSpEmVP5eWlqpbt27JGB6QmPAdmINBadw46Yknondkdt5ms/urOHuwZGRIgwcn91oAIE2kRU7LL3/5S/31r3/VypUr1bNnz7jvR04L0lIoZPVQqW5Dw+oEg1Y+y5/+ZFUJxcphAQAfqennd0qrh4wxuuGGG7R06VK99tprCQUsQNKEQlJxsfU9HvHswByPigorSKmokCZPtnqxELAAaMRSGrRcf/31WrRokZ588kllZmZq586d2rlzp7799ttUDguoUlQU2YG2qKj6+1S3A3OijJHuvbfuHg8AfCqlQcsf//hH7dmzR8OHD1eXLl0qv55++ulUDguw2NU74S3xJ0yIPeNiJ9Q6NyocP77q50CgKqhx3ubFbiIHAI1YShNx0yCdBvDmtswTqyW+M/nWuVHh735X1TtFsv7curVVLXT99VJZmfXztm1VGx7a6GoLAGyYCHhyW+bxCh7cZmXsjQolKydGslrt2z1UPvlEysuzlp7y8qyfc3Otcma62gJAlLSoHqopqodQ74qKrCUhZ/WOs6/K7t3RGxVKVgLtvHlVsy+FhVX3d1YYZWRYsyx2cEJXWwANVE0/vwlagOo4g4fwZSBbeO8Vmz1L4xaYbN5szbA4FRdbszEA0ID5suQZSEvOEmd7B2W7c60zYJGqgpXwJZ1Jk7xzYhJZegIASCJoQWPl1XuluhLnWD1YjJEWL7Yed9s2a28gr8CE3ZgBIGEsD6HxcVb5JJpn4tXt1nmu/VxuOTE28lYANELktBC0wMm5YaF9zCswiTfPJDwQCX8Mrxb7BCYAEKGmn99ps2EiUKe8ZlNi9V6x80ycGxe2bh15fkGBlJ9f1WfF7q+yb58VoDgDE7vEGQBQK+S0wJ9i7QcUq5NtrARYZ56Jfd+8vOjcFjs5Nzc3st9KvK3+AQAJI2iB/9QkWba8XCopqT4BtqDAOi88sInVvr8mrf4BADXC8hDSh1sOits5bkFCfn7VfdyWeSSrNX5pafTyzr590tq11vdevazvXkFPx46R40u01T8AoMaYaUF6iHc35VhBgs2eTXEuA4XPgjjb6J92WtVzv/VW9H0DASvocY6PfisAkDQELUi9RJZY3IIEr2TZxYuj728HOF5N4uw9g8J3aXZ2tnUGP/RbAYCkIGhB7cRKiI1XPLMntkSSZYcM8Z4FidUkrrxcGjjQKoMuLraCH2dngPDxFRRUnbttm3vZMwCg1ghaUHPxLulUp7olFmdgFG+ybKxZELfndD63XSEUK/gJfy671T8AoF4QtKBmalo14zYzEyu48AqMYiXLhj+HcxYkP9/6sxQ9Y+N87njGBwBIGjriomaKixPfpdir4ZvN2Tk2Vvdayb2dfvhuy87ncHt+Z5O4WF1r6WwLAHWCNv4ELckVzz49tTlfqj4wCg9CvMQKcqp7fgBAvajp5zfLQ0iMvfQieS+ZuC0BxWr45sWrUmjXrqqlH7cKIedzbNmSWLIvACAtEbSgSnWVQOH5Jd27Sx99ZAUd4VUzXjkoXomvY8ZEJ/Da49ixQ5o0qSowCgSsZZ/Ro6se2y1JNpydMEs/FQDwPYIWWKqrBHIm3hojzZljlRp/8knVDItXcm48Dd+c4zjtNOs57HPsoCX8flLkjE8gUPUc4bM/JNMCgO+R0wLvfJOSkqrW9qtWWTMcbuzcEK9zioureqN89JH0i194n+OWXCu5t+W37zd8eGSSrOSdMEsyLQCkXE0/v9l7CN75Hnl51vHwGQ435eXS/PnS3LnRt2VkWG3xzz676rGcjxdPwze74scZWNlBij2bYvMKSJznAQB8g+WhdFQXXWYT4ZVvEr4UFEswKM2bF31eRoY0c6Z0663Rj1WThm/hrfVZ3gGARoegJd3URZfZWEFPPM3d7F4nsYTnjUya5D5D8sAD1u3O24yxqn6Ki60lqGOOcd/Hx2YHKJMn0y4fABoxclrSSU16mTjFauAWT3M3e5kn1tvCznexm7FJ0eO2l4Hcghn7mpYtcx+PnXcST8M3AIDv0FyuvoKWUMjKtejVq+4/OJ2PXZMus+HWrq3KQ7HF01xNssbRpk30/aXIAMSe9XDOchQVWdU85eVWAGKMe+Bj3z8/n2ZvANBI0VyuPtTnUo3bY8fqJRJPD5VBg7wbqHkl2/7+91XjcLu/JD39tLR9e+xlmfA9ftx2RZake++tuj/N3gAACWKmxUt9LtXEKjFessT6cC8vr5qVkKoeJxCQbrlFmjixahxuj+ccs+R9Tiw1mf2I53dXF79fAIAvMdNS1+KZCagu4dWr0VqsEmO7mZqddJqf797UrXt3acoU78eTrEDJ2VwtVvfY8PtJNa/QiaeRG83eAAAJYqbFi9tMQDAorV4t5eZWn9QaKz8lVhM1mz3rsHmz++OEj2nWLGnqVO+xhluyxLtJnP284Um2tQki4mnkRrM3AGh0mGmpD+H73khWUJCXJ82e7T2LYouVn+JV2hvOntWJ1bvEfu6pU6VrromctSgsjA5YpNh79dizHbm5VuJvbYOI7OzqHyeecwAAEEGLOztJds4cK3gI71tiBwnVLR1Vt/xRUGDNaMQKIOxy4kmTqg9cHnkkclnJq4eJ27juuYfeJwCAtMfykFOspNZwzpbyzuUYO9ekTRtrqaV166p9fOzAxWsJyV5ukiITcEeOlF59Nb5lpepmLliWAQCkCHsP1ZVY+9/YMjKq8kjKy61j9tKRM9gIBqVx46Qnnoiu/rGXftyCny5dIoMnY6S//926LbzCyMme8akuEGEPHgCAz7A85OSWQxIIVC2nBIPSzTdLY8ZEL+9UVFjBijPf5bHHoqt/cnKsjrDOpRo7F8WrwqiszMqp2bbNCl688mZsyd7HCACAekLQ4uSW87FggRUkTJ5sHbODjiVLogOLior4eqHYybv5+e776cRK5LXHedllsfNmwhvYhZdIAwDgQ+S0eHHmfHiVQEuJN2wLF6tFf3hrfK/2+W5jtY+55ea4lWcDAJBElDzXNWcprttyTUVF9ZU9GRnS+PHu5ziXcpzCW+NXVxHkLBv2ys1xK88GAMAHCFri5bVcM3GitdeOG3uvnYULrb17Jk9OvANsTfuYxOrvwh4/AAAfImiJV6y+K24N2zIypB/9qCrYyM6uSqBNRk+UWG37q5vhAQAgDRG0JMJruSaRfXSS2QG2oKDmMzwAAKQZEnHrUjo3bEvnsQEAGhWay6WDdG7Yls5jAwAgDiwPAQAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF8gaAEAAL5A0AIAAHzB13sP2Xs9lpaWpngkAAAgXvbndqJ7Nvs6aNm7d68kqVu3bikeCQAASNTevXvVrl27uM8PmETDnDRSUVGhL774QpmZmQoEAnX62KWlperWrZs+//zzhLbN9guuz/8a+jU29OuTGv41cn3+V1/XaIzR3r171bVrVwWD8Weq+HqmJRgMKjs7u16fo23btg32zShxfQ1BQ7/Ghn59UsO/Rq7P/+rjGhOZYbGRiAsAAHyBoAUAAPhCxowZM2akehDpKiMjQ8OHD1eTJr5eRfPE9flfQ7/Ghn59UsO/Rq7P/9LpGn2diAsAABoPlocAAIAvELQAAABfIGgBAAC+QNACAAB8odEELQ899JB69uypFi1a6NRTT9Xrr78e8/xnn31Wffv2VfPmzdW3b18999xzEbcbYzRjxgx17dpVLVu21PDhw/X+++/X5yVUK5FrXLBggc444wy1b99e7du31znnnKM1a9ZEnHPVVVcpEAhEfOXl5dX3ZXhK5PoWLlwYNfZAIKADBw7U+DHrWyJjGT58uOv1XXjhhZXnpNPrt3LlSo0aNUpdu3ZVIBDQX//612rvs2LFCp166qlq0aKFjjnmGD388MNR56TT65foNS5dulTnnnuusrKy1LZtWw0ePFjLli2LOGfGjBlRr2Hnzp3r8zI8JXp9y5cvd32PfvTRRxHnVfdvbbIken1uf78CgYD69etXeU46vX4zZ85Ubm6uMjMz1alTJ11yySXatGlTtfdLt8/CRhG0PP3007rpppv061//Whs2bNAZZ5yh888/X5999pnr+SUlJRo9erTGjRund955R+PGjdPll1+uN998s/Kce+65R/PmzdMDDzygtWvXqnPnzjr33HMr90NKtkSvcfny5Ro7dqyKi4tVUlKi7t27a+TIkfrXv/4Vcd55552nHTt2VH699NJLybicKIlen2R1cAwf+44dO9SiRYtaPWZ9SXQsS5cujbiu9957TxkZGbrssssizkuX16+srEwnnXSSHnjggbjO37p1qy644AKdccYZ2rBhg2677TbdeOONevbZZyvPSafXT0r8GleuXKlzzz1XL730ktatW6ezzjpLo0aN0oYNGyLO69evX8RruHHjxvoYfrUSvT7bpk2bIsbfq1evytvi+bc2WRK9vvnz50dc1+eff64OHTpE/R1Ml9dvxYoVuv7667V69Wq9+uqrOnz4sEaOHKmysjLP+6TlZ6FpBE477TRz7bXXRhzr06ePmTp1quv5l19+uTnvvPMijuXn55sxY8YYY4ypqKgwnTt3NrNmzaq8/cCBA6Zdu3bm4YcfruPRxyfRa3Q6fPiwyczMNI899ljlsfHjx5uLL764TsdZU4le36OPPmratWtXp49Zn2o7lnvvvddkZmaaffv2VR5Lp9cvnCTz3HPPxTznV7/6lenTp0/EsQkTJpi8vLzKn9Pp9XOK5xrd9O3b19xxxx2VP0+fPt2cdNJJdTm0OhHP9RUXFxtJ5uuvv/Y8p7p/a1OlJq/fc889ZwKBgNm2bVvlsXR9/YwxZteuXUaSWbFihec56fhZ2OBnWr777jutW7dOI0eOjDg+cuRIrVq1yvU+JSUlUefn5+dXnr9161bt3Lkz4pzmzZtr2LBhno9Zn2pyjU779+/XoUOH1KFDh4jjy5cvV6dOnXT88cfrmmuu0a5du+ps3PGq6fXt27dPOTk5ys7O1kUXXRTxP9i6+J3VlboYS1FRkcaMGaPWrVtHHE+H168mvP4OvvXWWzp06FBavX51paKiQnv37o36O7h582Z17dpVPXv21JgxY/Tpp5+maIQ1c8opp6hLly46++yzVVxcHHFbdf/W+klRUZHOOecc5eTkRBxP19dvz549khT1fguXjp+FDT5o+fLLL1VeXq6jjjoq4vhRRx2lnTt3ut5n586dMc+3vyfymPWpJtfoNHXqVB199NE655xzKo+df/75+t///V+99tprmjt3rtauXasRI0bo4MGDdTr+6tTk+vr06aOFCxfq+eef1+LFi9WiRQudfvrp2rx5c40fs77Udixr1qzRe++9p5/97GcRx9Pl9asJr7+Dhw8f1pdffplWr19dmTt3rsrKynT55ZdXHhs0aJAef/xxLVu2TAsWLNDOnTs1ZMgQffXVVykcaXy6dOmiwsJCPfvss1q6dKl69+6ts88+WytXrqw8p7p/a/1ix44d+tvf/hb1dzBdXz9jjCZNmqShQ4eqf//+nuel42dh6nvyJkkgEIj42RgTdSzR8xN9zPpW0/Hcc889Wrx4sZYvXx6R8zF69OjKPwf6fhYAAAceSURBVPfv318DBw5UTk6OXnzxRV166aV1N/A4JXJ9eXl5EUmnp59+ur73ve/p/vvv1x/+8IcaPWZ9q+lYioqK1L9/f5122mkRx9Pt9UuU2+/DPh7+Z+c5qfw7WFOLFy/WjBkz9H//93/q1KlT5fHzzz+/8s8nnniiBg8erGOPPVaPPfaYJk2alIqhxq13797q3bt35c+DBw/W559/rjlz5ujMM8+sPN4QXsOFCxfqiCOO0CWXXBJxPF1fvxtuuEHvvvuu3njjjWrPTbfPwgY/09KxY0dlZGRERX27du2Kig5tnTt3jnm+nf2dyGPWp5pco23OnDm666679Morr2jAgAExz+3SpYtycnIqZyuSpTbXZwsGg8rNza0ce108Zl2pzVj279+vp556Kup/eG5S9frVhNffwSZNmujII49Mq9evtp5++mkVFBRoyZIlETOdblq3bq0TTzzRF6+hm7y8vIixV/dvrR8YY/TnP/9Z48aNU7NmzWKemw6v3y9/+Us9//zzKi4uVnZ2dsxz0/GzsMEHLc2aNdOpp56qV199NeL4q6++qiFDhrjeZ/DgwVHnv/LKK5Xn9+zZU507d44457vvvtOKFSs8H7M+1eQaJWn27Nm688479fLLL2vgwIHVPs9XX32lzz//XF26dKn1mBNR0+sLZ4zR22+/XTn2unjMulKbsSxZskQHDx7UFVdcUe3zpOr1qwmvv4MDBw5U06ZN0+r1q43Fixfrqquu0pNPPhlRru7l4MGD+vDDD33xGrrZsGFDxNir+7fWD1asWKEtW7aooKCg2nNT+foZY3TDDTdo6dKleu2119SzZ89q75OWn4X1kt6bZp566inTtGlTU1RUZD744ANz0003mdatW1dmeY8bNy6i4uCf//ynycjIMLNmzTIffvihmTVrlmnSpIlZvXp15TmzZs0y7dq1M0uXLjUbN240Y8eONV26dDGlpaVJvz5jEr/Gu+++2zRr1sw888wzZseOHZVfe/fuNcYYs3fvXnPLLbeYVatWma1bt5ri4mIzePBgc/TRR6fkGhO9vhkzZpiXX37ZfPLJJ2bDhg3m6quvNk2aNDFvvvlm3I+ZztdnGzp0qBk9enTU8XR7/fbu3Ws2bNhgNmzYYCSZefPmmQ0bNpjt27cbY4yZOnWqGTduXOX5n376qWnVqpW5+eabzQcffGCKiopM06ZNzTPPPFN5Tjq9fsYkfo1PPvmkadKkiXnwwQcj/g5+8803lefccsstZvny5ebTTz81q1evNhdddJHJzMxMyTUmen333nuvee6558zHH39s3nvvPTN16lQjyTz77LOV58Tzb226Xp/tiiuuMIMGDXJ9zHR6/a677jrTrl07s3z58oj32/79+yvP8cNnYaMIWowx5sEHHzQ5OTmmWbNm5nvf+15EmdewYcPM+PHjI87/y1/+Ynr37m2aNm1q+vTpE/EXzRir1Gv69Ommc+fOpnnz5ubMM880GzduTMaleErkGnNycoykqK/p06cbY4zZv3+/GTlypMnKyjJNmzY13bt3N+PHjzefffZZkq+qSiLXd9NNN5nu3bubZs2amaysLDNy5EizatWqhB4z2RJ9j27atMlIMq+88krUY6Xb62eXvzq/7GsaP368GTZsWMR9li9fbk455RTTrFkz06NHD/PHP/4x6nHT6fVL9BqHDRsW83xjjBk9erTp0qWLadq0qenatau59NJLzfvvv5/cC/uvRK/v7rvvNscee6xp0aKFad++vRk6dKh58cUXox63un9rk6Um79FvvvnGtGzZ0hQWFro+Zjq9fm7XJsk8+uijlef44bMw8N+LAQAASGsNPqcFAAA0DAQtAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQB8YdasWRo8eHCqhwEghQhaAPjCO++8o5NOOinVwwCQQgQtAHzhnXfe0cknn5zqYQBIIYIWAGnnww8/1PDhw9WyZUudcsopeuutt/Txxx8z0wI0cgQtANLKRx99pEGDBmngwIF67733dPvtt+viiy+WMUYDBgxI9fAApFDAGGNSPQgAsJ199tnq2rWrnnjiicpjY8eO1fr167Vp06YUjgxAqjVJ9QAAwLZ9+3a99tprWr9+fcTxpk2bsjQEgOUhAOnj7bffVpMmTXTiiSdGHF+/fj1JuAAIWgCkj2AwqIqKCn333XeVx1566SW9//77BC0ACFoApI9TTz1VTZs21eTJk/Xpp5/q+eef1zXXXCNJLA8BIBEXQHpZtGiRpk2bprKyMp1yyikaNGiQFixYoN27d6d6aABSjKAFAAD4AstDAADAFwhaAACALxC0AAAAXyBoAQAAvkDQAgAAfIGgBQAA+AJBCwAA8AWCFgAA4AsELQAAwBcIWgAAgC8QtAAAAF/4/zd/jBDnNzbxAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'noisy \"measurements\" of $R = 1 + d^2$')" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d = linspace(0,2,200) # 20 points from 1 to 4\n", - "b = 1 + 2*d.^2 + randn(200)*0.1 # measurements with Gaussian random noise\n", - "plot(d, b, \"r.\")\n", - "xlabel(L\"d\")\n", - "ylabel(L\"R\")\n", - "title(\"noisy \\\"measurements\\\" of \\$R = 1 + d^2\\$\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The corresponding matrix $A$ is:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "200-element Array{Float64,1}:\n", - " 0.0 \n", - " 0.0100503\n", - " 0.0201005\n", - " 0.0301508\n", - " 0.040201 \n", - " 0.0502513\n", - " 0.0603015\n", - " 0.0703518\n", - " 0.080402 \n", - " 0.0904523\n", - " 0.100503 \n", - " 0.110553 \n", - " 0.120603 \n", - " ⋮ \n", - " 1.88945 \n", - " 1.8995 \n", - " 1.90955 \n", - " 1.9196 \n", - " 1.92965 \n", - " 1.9397 \n", - " 1.94975 \n", - " 1.9598 \n", - " 1.96985 \n", - " 1.9799 \n", - " 1.98995 \n", - " 2.0 " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "collect(d)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "200×2 Array{Float64,2}:\n", - " 1.0 0.0 \n", - " 1.0 0.000101008\n", - " 1.0 0.00040403 \n", - " 1.0 0.000909068\n", - " 1.0 0.00161612 \n", - " 1.0 0.00252519 \n", - " 1.0 0.00363627 \n", - " 1.0 0.00494937 \n", - " 1.0 0.00646448 \n", - " 1.0 0.00818161 \n", - " 1.0 0.0101008 \n", - " 1.0 0.0122219 \n", - " 1.0 0.0145451 \n", - " ⋮ \n", - " 1.0 3.57001 \n", - " 1.0 3.60809 \n", - " 1.0 3.64637 \n", - " 1.0 3.68486 \n", - " 1.0 3.72354 \n", - " 1.0 3.76243 \n", - " 1.0 3.80152 \n", - " 1.0 3.84081 \n", - " 1.0 3.88031 \n", - " 1.0 3.92 \n", - " 1.0 3.9599 \n", - " 1.0 4.0 " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ones(d) d.^2]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rank(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$A$ doesn't have an inverse, of course:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "ename": "LoadError", - "evalue": "\u001b[91mDimensionMismatch(\"matrix is not square: dimensions are (200, 2)\")\u001b[39m", - "output_type": "error", - "traceback": [ - "\u001b[91mDimensionMismatch(\"matrix is not square: dimensions are (200, 2)\")\u001b[39m", - "", - "Stacktrace:", - " [1] \u001b[1mchecksquare\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Array{Float64,2}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./linalg/linalg.jl:217\u001b[22m\u001b[22m", - " [2] \u001b[1minv\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Array{Float64,2}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./linalg/dense.jl:651\u001b[22m\u001b[22m", - " [3] \u001b[1minclude_string\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::String, ::String\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./loading.jl:522\u001b[22m\u001b[22m", - " [4] \u001b[1mexecute_request\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m/Users/stevenj/.julia/v0.6/IJulia/src/execute_request.jl:193\u001b[22m\u001b[22m", - " [5] \u001b[1m(::Compat.#inner#14{Array{Any,1},IJulia.#execute_request,Tuple{ZMQ.Socket,IJulia.Msg}})\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m/Users/stevenj/.julia/v0.6/Compat/src/Compat.jl:332\u001b[22m\u001b[22m", - " [6] \u001b[1meventloop\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m/Users/stevenj/.julia/v0.6/IJulia/src/eventloop.jl:8\u001b[22m\u001b[22m", - " [7] \u001b[1m(::IJulia.##13#16)\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./task.jl:335\u001b[22m\u001b[22m" - ] - } - ], - "source": [ - "inv(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, if we blindly do `A \\ b`, it seems to give us quite a reasonable $x$, very close to the exact $x = (1,2)$ of the underlying data:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.00025\n", - " 2.00414" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x̂ = A \\ b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What is it doing? Let's plot the curve from the coefficients `A \\ b`:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHLCAYAAAAEHKhwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xlc1NX+x/HXdwbFBSU17VYomnJdsu0aamY3tUWvplnuZZKS2KJZpqktpi1qZpqVLeqU4Zo/0/ayjdJS07TF7FZYblOZ1s2VROF7fn98Z5CBQQGBYeD9fDzmgfP9nu/MYRyYD+d8zudYxhiDiIiISCnnCnUHRERERPJDQYuIiIiEBQUtIiIiEhYUtIiIiEhYUNAiIiIiYUFBi4iIiIQFBS0iIiISFhS0iIiISFhQ0CIiIiJhQUGLiIiIhAUFLSIiIhIWFLSIiIiUsPT0dAYOHEjdunWpXr06rVu3ZvXq1aHuVqmnoEVERKSEZWRk0KBBAz777DP27t3LLbfcQrdu3UhLSwt110o1S7s8i4iIhF7NmjVJSUnhvPPOC3VXSi2NtISZuXPnYllW0NvIkSMD2mzbti3rutWrVzN+/Hj27t1b4Od88sknsSyL5s2b5zrXrFkz7rrrrqDXjR8/Hsuy+OOPPwr8nCfT35IW7PUuqecE+Pjjj0v8+aXonex7vrjfEy+//DJnn302lStXxrIsvvrqqzzbvv322wG/myIiIqhfvz4jRozg4MGDRdanYA4cOMDdd9/NlVdeSe3atbEsi/Hjxxfrc+aHbdtERUXl+fvy+++/5++//6Zhw4Yl3LPwoqAlTL344ousWbMm4Hb77bcD0KVLF9asWcPpp5+e1X716tVMmDChUL8QX3jhBQA2b97M559/HnCuR48eLFu27CS+k+BOpr8lLdjrLVJQpfk9v2fPHm644QYaNmzIu+++y5o1a/jnP/+ZZ/uNGzcC8Morr7BmzRpWrFhBhw4dmD59etbvqeLy559/MmvWLNLT0+nevXuxPldBbN68mUOHDhEfH5/rXFpaGjfccAP33XcfUVFRIehd+IgIdQekcJo3b86FF14Y9Fzt2rWpXbt2kTzPF198wddff02XLl1466238Hg8tGrVKut8jx49ePjhh9mwYQMtWrQokucMN0X5ekvhpKWlUaVKlVB3o8z68ccfOXr0KP379+fSSy89YfuNGzdSqVIlrr76atxuNwDt27cnJSWFN954o1j7Ghsby19//ZU1yjtnzpxCP1a7du2oX78+c+fOPel+rVu3DiBX0HL06FF69+5Ns2bNuOeee076eco6jbSUQTmnK8aPH8+oUaMAaNCgQdaQ7ccff3zCx/J4PABMnjyZNm3asHjx4oBEsfPPP5+GDRvyyiuv5PkYO3fu5Nprr6V69epER0fTv39/9uzZk2f7/PT3008/5bLLLqNatWpUqVKFNm3a8NZbb53w+/FPWW3evJl+/foRHR3NaaedxqBBg9i3b1+u9vl5nmDTQ3v27CEpKYm6desSGRlJ7dq1ufjii/nggw8AWLVqFZZlsWjRolzPmZycjGVZrF+//oTfz/G+x2+++YZevXoRHR1NzZo1GTFiBBkZGfzwww906tSJatWqUb9+faZMmRL0cVJTU7nuuuuoU6cOkZGRNG3alJkzZwa02bJlCwMHDiQuLo4qVapw5pln0rVrVzZt2hTQ7kSvB8CNN95I/fr18/x+ct7fuHEjPXv2pEaNGgFD6vnpd0m+Rvl5z53oPZ+f16+wTvQev/HGG2nbti0Affr0wbIs2rVrd9zH3LBhA02bNs0KWABcLhe1a9cmIqJ4/1b2v3ahNHv2bM455xwqVapE8+bNWbFiBevWrcv1XrVtmwEDBuB2u/F4PCHvd1gwElZefPFFA5i1a9eao0ePBtxyttm6dasxxpidO3eaYcOGGcAsW7bMrFmzxqxZs8bs27fvuM+VlpZmoqOjTXx8vDHGmDlz5hjAzJ07N6Dd3Xffbf75z3/muv6BBx4wgImNjTWjRo0yK1asMNOmTTNVq1Y1F1xwgTly5EjQ5z1Rfz/++GNToUIF06JFC/Pyyy+bV1991Vx55ZXGsiyzePHi435P/j41btzYjBs3zrz//vtm2rRpJjIy0gwcODCgbX6fJ+frbYwxHTt2NLVr1zazZs0yH3/8sXn11VfNuHHjAq674IILzMUXX5yrj/Hx8VmveWFk/x4feugh8/7775u7777bAGbo0KGmSZMm5sknnzTvv/++GThwoAHMK6+8EvAYmzdvNtHR0eacc84xycnJ5r333jN33XWXcblcZvz48VntPvnkE3PXXXeZpUuXmk8++cQsX77cdO/e3VSuXNl8//33BXo9EhISTGxsbJ7fT877sbGxZvTo0eb99983r776aoH6XZKvUX7ecyd6z+fn9SuM/LzHt2zZYmbOnGkAM3HiRLNmzRqzefPmPB/zjz/+MIAZMGBAwPFdu3aZKlWqmGHDhuV5rW3buX6v5XXLjz179hjAPPDAA/lqn9Oll15qEhISCnTN8OHDTaVKlcx9991nPvroI/PMM8+Y0047zdStW9dcccUVAW1vuukmc+mll5q///67UP0rjxS0hBn/B2Swm/8HOdiH6GOPPZbr2IkkJycbwDz33HPGGGMOHDhgoqKizCWXXBLQ7vPPPzeA2bRpU8Bx/y/rO++8M+D4ggULDGDmz5+f53Mfr7+tW7c2derUMQcOHMg6lpGRYZo3b25iYmKMbdt5Pq6/T1OmTAk4fuutt5pKlSoFXJvf5wn2ekdFRZk77rgjz35kv+7LL7/MOrZu3ToDmJdeeum41x6P/3t8/PHHA46ff/75WR+KfkePHjW1a9c21157bUDbjh07mpiYmFyB7dChQ02lSpXM//73v6DPnZGRYY4cOWLi4uIC/t/z83oUNGgZN25crrb57XdJvkb5fc8d7z2fn9evMPL7Hk9JSTGA+b//+78TPuZ7771nADN58mRz9OhRk5aWZtauXWtatWplrrnmmoDnysn/PPm55ed3WUGClmAB07///W8zYMCAfAdMS5cuNUCuYHLixIkGMPfcc0/WsW3bthnAVKpUyVStWjXrtnLlyhP2tTzT9FCYSk5OZv369QG3oh529Xg8VK5cmb59+wIQFRVFr169WLVqFampqVntWrZsSb169fKcIrr++usD7vfu3ZuIiAhSUlIK3KdDhw7x+eef07Nnz4CENbfbzQ033IDX6+WHH3444eN069Yt4P65557L4cOH2b17d5E8T8uWLZk7dy4PP/wwa9eu5ejRo7na9OvXjzp16gRMJzz11FPUrl2bPn36nPB7OJGrrroq4H7Tpk2xLIv//Oc/WcciIiJo1KgR27dvzzp2+PBhPvzwQ6655hqqVKlCRkZG1q1z584cPnyYtWvXAk6tiYkTJ9KsWTMqVqxIREQEFStWJDU1lf/+978Fej0KqkePHgH3C9LvknyN/E70njue4nj9iupnKacNGzYAMGbMGCpUqECVKlVo3bo11atX5+WXXz5uommLFi1y/V7L63bGGWcU/Js+jk8++YQKFSoE3FauXElycnKu43mtynrooYeIj4/P9fPbrFkzgIA8xNjYWIwx/P333xw8eDDrdskllxTp91XWKGgJU02bNuXCCy8MuBWlLVu2sHLlSrp06YIxhr1797J371569uwJHFtR5HfttdfmGbT84x//CLgfERFBrVq1+PPPPwvcr7/++gtjTNCVOv5fYvl53Fq1agXcj4yMBODvv/8ukud5+eWXSUhIYM6cOVx00UXUrFmTAQMGsGvXroDnHDJkCAsXLmTv3r3s2bOHJUuWcNNNN2X152TUrFkz4H7FihWpUqUKlSpVynX88OHDWff//PNPMjIyeOqpp3L9su7cuTNA1jL2ESNGcP/999O9e3feeOMNPv/8c9avX895552X9Vrm9/UoqJz/NwXpd0m+Rn4nes8dT3G8fkX1s5TTxo0bcbvdrF69mvXr1/Puu+/SoUMH3n//fWbPnn3ca6Oiojj//PPzdatYsWKB+3Y8wQKmf/3rX1x11VX5Cph27drF119/zXXXXZfrnNfrBXIn4UrBafWQBPXCCy9gjGHp0qUsXbo01/mXXnqJhx9+OCvRrmfPnjzxxBOkpqYSFxcX0HbXrl2ceeaZWfczMjL4888/c/0Sz48aNWrgcrn47bffcp379ddfATj11FML/LhF/TynnnoqTzzxBE888QQ7duzg9ddfZ8yYMezevZt33303q90tt9zC5MmTeeGFFzh8+DAZGRncfPPNJ93/k1GjRo2sv7Zvu+22oG0aNGgAwPz58xkwYAATJ04MOP/HH39wyimnZN3Pz+tRqVIl0tPTcz1XXnV+ciYtFqTfJ6sknwvy/34qiOL6Wdq4cSPNmjXjoosuyjrWqlUrYmJimDNnDrfeemue137yySe0b98+X8+zdevWoInbhVWtWrVcf/xVq1aNWrVq5euPQn9gEiwIXLhwIf/4xz+IiYkpms6WYwpayomC/FWXmZnJSy+9RMOGDYMuF3zzzTd5/PHHeeedd7KG19u0acPpp5/OK6+8wpgxYwLaL1iwIGA59JIlS8jIyDjuCoS8+lu1alVatWrFsmXLmDp1KpUrVwacLPz58+cTExNz3PoR+VWUz1OvXj2GDh3Khx9+yGeffRZw7vTTT6dXr14888wzHDlyhK5du1KvXr2T7v/JqFKlCu3bt+fLL7/k3HPPPe5ftJZl5RoVeuutt/jll19o1KhR0Gvyej3q16/P7t27+f333znttNMAOHLkCCtWrCjyfp+s4niu/P6MHu/9VBDF8bO0b98+fv75ZwYOHBhw/JRTTuHaa69l3rx5/Pzzz5x11llBr/ePduRHUU8PnSx/2YNvv/02YHpo6dKlrF69OtdUpBSOgpZy4pxzzgFgxowZJCQkUKFCBRo3bky1atVytX3nnXf49ddfefTRR4MGFs2bN+fpp5/G4/Fk/SBalsU111wTNGhZtmwZERERXHHFFWzevJn777+f8847j969exeqv5MmTeKKK66gffv2jBw5kooVK/LMM8/w7bffsmjRoiJbNljY59m3bx/t27fnuuuuo0mTJlSrVi1rmPzaa6/N1X748OFZtW9efPHFIun7yZoxYwZt27blkksu4ZZbbqF+/focOHCALVu28MYbb/DRRx8BTk7I3LlzadKkCeeeey4bNmzgscceC/iLMr+vR58+fRg3bhx9+/Zl1KhRHD58mCeffJLMzMwi73dJvkb5ldd73rbtAr2fCqKof5Y2btyIMYaWLVvmOtezZ0/mzZvH8uXL86wKG2y0ozDeeecdDh06xIEDBwD47rvvskaMO3fuXCw1ferVq0d8fDzTp0+ndu3anHvuuaxcuZIZM2YAmhoqMiFMApZC8K84Wb9+/Qnb5MyuHzt2rDnjjDOMy+UygElJSQl6fffu3U3FihXN7t2783yOvn37moiICLNr166sYx999JEBzLZt24wxx1ZNbNiwwXTt2tVERUWZatWqmX79+pnff//9hN/r8fq7atUq06FDB1O1alVTuXJl07p1a/PGG2+c8DH9fdqzZ0/A8bxes/w8T85rDx8+bG6++WZz7rnnmurVq5vKlSubxo0bmwceeMAcOnQoaL/q169vmjZtesL+50de32NCQoKpWrVqrvaXXnqpOfvss3Md37p1qxk0aJA588wzTYUKFUzt2rVNmzZtzMMPP5zV5q+//jKJiYmmTp06pkqVKqZt27Zm1apV5tJLLzWXXnqpMaZgr8fbb79tzj//fFO5cmVz1llnmaeffjrP1UM5v7+C9LskX6OCvOeCvecL834qiPy8x/O7emjq1KlZP/M5HT582FSrVs20bdv2pPt8IrGxsSe16sivoEuet27dajp16mSioqLMKaecYrp27Wo8Ho8BzFtvvVXwb0Ry0YaJUmQyMzM5/fTTGTNmDCNGjAh1d8LGN998w3nnncfMmTOPO98vIlLeKWgRCZGffvqJ7du3c88997Bjxw62bNmiUvQiIsehJc8iIfLQQw9xxRVXcPDgQf7v//5PAYuIyAlopEVERETCgkZaREREJCwoaBEREZGwoKBFREREwkJYF5ezbZtff/2VatWqFVlBMRERESlexhgOHDjAGWecgcuV//GTsA5afv31V+rWrRvqboiIiEgh7Ny5s0B7MoV10OIvQb9z506qV68e4t6IiIhIfuzfv5+6desG3UrmeMI6aPFPCVWvXl1Bi4iISJgpaGqHEnFFREQkLChoERERkbCgoEVERETCgoIWERERCQsKWkRERCQsKGgRERGRsKCgRURERMKCghYREREJCwpaREREJCwoaBEREZGwoKBFREREwoKCFhEREQnO64WUFOdrKaCgRURERHIxc+bwZr162B06QGwseDyh7pKCFhEREcnB62VeUhJdjaEbYGwbhgwJ+YiLghYREREJsG3VKoYaA8DFgAWQmQlbtoSyWwpaRERE5JjMzEwSZszgANAGuNt/wu2GRo1C1zEUtIiIiEg206dPZ+Xnn1M1MpJklws3OAHL889DTExI+xYR0mcXERGRUuObb77h3nvvBeCJp5+mYadOzpRQo0YhD1hAQYuIiIgA6T/9RP9rruHIkSN07dqVxMREsKxSEaz4aXpIRESkPPN6YdQo7m/UiE0//0xtYHa7dliWFeqe5aKgRUREpLzyeKBePT6eOpWpvkOzgNNGjYL160PZs6AUtIiIiJRHXi8kJfGXMdwAGCAR6A5g29C6dakoKJedghYREZHyKDUVY9vcAniBRsAT2c+XkoJy2SloERERKY/i4phvWbwMuIH5QFTONqWgoFx2ClpERETKoa1Hj3JbZCQADwCtLMtZLZRdKSgol52CFhERkXImIyODG264gQOHD9PmwgsZ+8EHsGMHzJ7tBCpQagrKZac6LSIiIuXM5MmT+eyzz6hWpQrzZ8wgok0b50RiInTsWKoKymWnkRYREZFyZN26dYx/4AEAnk5Lo8EllwSuEoqJgXbtSl3AAgpaREREyo2DBw9yfZ8+ZNo2vYEboFSuEsqLghYREZFy4s4772TLtm3EAM8BWWm3pWyVUF4UtIiIiJQDy5cvZ86cOViWRbJlUSP7yVK2SigvSsQVEREpq7xeSE3l12rVGDx4MAAje/em/YUXwpgxzghLKVwllBfLGGNC3YnC2r9/P9HR0ezbt4/q1auHujsiIiKlh8cDSUnYts1/gPeA84G1QKTLBZMnQ3x8SFYJFfbzWyMtIiIiZY1vXyFsm6dwApZKwEIgEpzk27FjYdu2sBhh8VNOi4iISFmTmgq2zSZgtO/QVKBp9jZhknybnYIWERGRsiYujsOWxfVAOtAZuDVnmzBJvs1OQYuIiEhZExPD6A4d2ATUBl5wubASEkp1if78UE6LiIhIGfPmm2/y5IcfAvDixImcdsMNToDy8MOltkR/fihoERERKQv8y5v//puB/fsDMHz4cLqMHXusTUxMWAYrfgpaREREwp1veXOmbXMD8AfO8uZHmzQJcceKlnJaREREwlm25c2PAR8BVYBFQOTQoWGxp1B+aaRFREQknPmWN38O3O879BTQBAKXNaemQlxcWE8PaaRFREQknMXFsc+y6AdkAL2Bgf5zbjd88QXExkKHDs5XjydkXT1ZClpERETCmDnzTG6Jj2crEAs8j2/3ZrcbJk2C0aOdCrjgfB0yJGynjDQ9JCIiEsaSk5NZtG4dbrebhU88wSmtWsGhQ86yZt/UUQD/lFEYThMpaBEREQlHXi8/fvQRt93q1LqdMGECbYYOzd3O5QoMXMKwEq6fpodERETCjcfDkXr16JeQwKG0NNo1bsyYMWNyt4uJgVmzwr4Srp9ljDGh7kRhFXZraxERkbDl9UJsLCNtm8eBmsDXLhcx27fnHYx4vaWqEm5hP781PSQiIhJOUlNZ4QtYAF4AYmz7+HkqYV4J10/TQyIiImHk91NOYYDv37cCV0NY56kUhEZaRERESivffkJERcHBg9gNG5Iwdiy7gebAVHASbe+8M7T9LCEhHWnJyMjgvvvuo0GDBlSuXJmzzjqLBx98EDvn8iwREZHyxuM5VhSuZUvo0IHp9euzYsUKKlWqxOIPPqDyyJFO26lTw75wXH6EdKTl0Ucf5bnnnuOll17i7LPP5osvvmDgwIFER0czfPjwUHZNREQkdLLtJ+S3FhjjWzszffhwzm7cGK68MnfhuI4dy0T+SjAhDVrWrFnD1VdfTZcuXQCoX78+ixYt4osvvghlt0REREJr9eqAgOUvoC9Omf5ewJApU5wicWWocFx+hHR6qG3btnz44Yf8+OOPAHz99dd8+umndO7cOWj79PR09u/fH3ATEREpUzwe6Ns3664BBgHbgbOA2YBlDEyb5uSzZFfGE3JDGrSMHj2afv360aRJEypUqMAFF1zAHXfcQb9+/YK2nzRpEtHR0Vm3unXrlnCPRUREipF/WihbCbWngFeBisASINp/wrZhxIgyUzguP0JaXG7x4sWMGjWKxx57jLPPPpuvvvqKO+64g2nTppGQkJCrfXp6Ounp6Vn39+/fT926dVVcTkREyoaUFCfx1ucLoA1wFHjSshiW/SPb7YZt25x/l6LCcfkRlsXlRo0axZgxY+jrGwY755xz2L59O5MmTQoatERGRhIZGVnS3RQRESkZcXFZewXtA/rgBCzXdOrE0B494OabnbyVnKMqYRKsnKyQBi1paWm4cszHud1uLXkWEZHyybdXkElK4ibb5meg/qmn4lm4EKtGDejUKexGVYpSSIOWrl278sgjj1CvXj3OPvtsvvzyS6ZNm8agQYNC2S0REZHQSUzkud9/Z+m99xIREcHiN9+kRo0azrkyUo6/sEKa03LgwAHuv/9+li9fzu7duznjjDPo168f48aNo2LFiie8XhsmiohIWfPVV1/RunVr0tPTefzxxxkxYkSou1TkCvv5rV2eRURESokDBw7QokULUlNT6dq1K6+99hqWZYW6W0WusJ/f2jBRRESkFDA7dzKke3dSU1OpW7cuc+fOLZMBy8lQ0CIiIhJqHg9zYmNZ9NFHuIHF119PzZo1Q92rUkdBi4iISCh5vWwaPJjbfdkaE4E2jz3mFJqTAApaREREQujgN9/Q2xgOA/8BRsKxPYQkgIIWERGREDHGcNvMmXwPnAG8hO+DuYzvIVRYClpERERCxHPjjSS//TYuYBFQG8rFHkKFFdLiciIiIuXVl+++y9DkZAAeAf4NTgn/NWsgPj6UXSu1NNIiIiJSwvbu3UvPQYNIB64C7vafsG04dCh0HSvlFLSIiIiUIGMMN954Iz//9hv1gWSyfRgrl+W4FLSIiIiUoKlTp/Laa69RsWJFlt53HzXcbueEcllOSDktIiIiJWTlypWMHTsWgCcnTKDFmDEwZEi53rm5IBS0iIiIlIBdu3bRp1s3MjMz6Q8k3XMP1K4NiYkKVvJJ00MiIiLFLCMjg+t69GDXvn2cDTwHWMZAUhKsXx/q7oUNBS0iIiLFbNwdd5CyejVVgaVAVf8J24bWrcHjCV3nwoiCFhERkWL05u23M2nmTADmAE1yNrBtJ69Few2dkIIWERGRYrJ19WpueOopAIYCffNqqL2G8kWJuCIiIkXN6yV982Z6JSWxF2gFPJ79vGWBb1dnQPVZ8kkjLSIiIkXJ44HYWO7s1IkNO3ZQE1gCVPSfd7thyhTnq/++6rPki0ZaREREiorXC0lJLLBtngUsYAFQz3/eH6AkJkLfvqrPUkAKWkRERIpKaiqbbZsk3937gE7Zzy9aBL16Of+OiVGwUkCaHhIRESkKXi/7tm/nGiANuAx4IPt5txsuuigkXSsrNNIiIiJysjwe7MGDGWAMqTjTQYsAt/+88laKhIIWERGRk7F+PSQlMdEYXgcigVcsi9ovvwz168OhQ8pbKSIKWkRERArL44HBg3nHGMb5Dj0DXGiMs69QfHwoe1fmKKdFRESkMHwrhX42husAAwwBBoHqrhQTBS0iIiKFkZpKmm1zLWQVkJsB4HIpf6WYaHpIRESkEEyjRiQBXwO1cTZCjHS5YO1aTQsVE420iIiInIjXCykpAZsaPv3qqyzAWSG0BIhxu2HWLAUsxUgjLSIiIsfj8UBSkrMbs8sFs2bxaePGjBgxAoDHxo2jXfv2WiFUAixjsu/YFF72799PdHQ0+/bto3r16qHujoiIlDVeL8TGOgGLz68uFy1OPZVdu3fTp08fFi1ahGVZIexk+Cns57emh0RERPKSmhoQsBwBetk2u3bvpnnz5ng8HgUsJUhBi4iISF7i4pwpIZ8RwGogukoVlo0fT9V16wLyXKR4KWgRERE5nhEjwO0mGZjpOzQ/LY24nj2hQwdn+sjjCWUPyw0FLSIiIsF4PE5AMnUqX2ZmMsTt7CQ0DrgqezvbhiFDNOJSAhS0iIiI5OSrdottswfoDhzOzKQzOXZu9svMhC1bSrSL5ZGCFhERkZx8CbhHgV7ADqARMN+ygn9wqmx/iVDQIiIikpMvAfdO4BOgGvCay0WNKVOcACU7t1tl+0uIisuJiIgEMefyy5n53ntYwAKXi2azZkFiIvTt60wFVa0Khw6pqFwJUtAiIiKSncfD6sGDudVXe/XBiy+m6+LFxwKTmBgFKSGi6SERERE/rxfv4MFcawxHgZ7AvWvWhLpX4qOgRURExOfvb7/lGmP4HTgXeBGwbFsrg0oJBS0iIiKAMYak2bP5AqgFvApEgVYGlSIKWkRERIDp06czf9ky3JbFEpeLBqCVQaWMEnFFRKR883p5f9EiRo0eDcB0Y+gAMHIkDB+ugKUU0UiLiIiUXx4PW+rVo8/dd2Mbw0BgKIAxMH16iDsnOWmkRUREyhev16l4GxXFgcGDudoY/gJaA88Clr+dvzS/RlpKDQUtIiJSfng8WXsK2cAA4DvgDGAZEJm9rRJwSx1ND4mISPmQbRNEgAdxVghFAsuB07O3VQJuqaSRFhERKR9Wr84KWJYAE3yHn7csWhrjBCqTJkF8vErzl1IKWkREpOzzeGDwYADWAwm+wyMsi4TPP9ceQmFCQYuX/tK9AAAgAElEQVSIiJRt/mkhY/gFuBo4DHQBpjz/vDOyImFBOS0iIlJ2eb2wZAnYNmlAN+A3oDmwcNo03I0aOW0kLGikRUREyqYcK4USgI1AbeANoPrIkU6Oi8sFs2ZBYmJIuysnppEWEREpe3KsFBoPLAUqAsssi/qWlXUO24YhQzTiEgYUtIiISNmTmpoVlCwEHvIdntWvH20XL3Yq3mbnLyQnpZqmh0REpOyJiwOXi7W2zSDfodGWRcKUKc4dl+vYSAuokFyY0EiLiIiUPTEx7Jg0ie5AOs6KoYn+YnExMU4Oi9vttFUhubChkRYRESlzDh48SLeFC/kdOK9hQ+a/9Rauxo2PNUhMhI4dnSkh1WcJGwpaREQk/Pk3QYyLwz7jDPr378/XX39NnTp1eP2jj4iqVy/3Nf5RFwkbClpERCS8ZVvajMvFvR078to77xBZoQKvzppFvWABi4Ql5bSIiEj4yrG0Odm2mfzOOwB4jh7lomuvdYIaKRMUtIiISPjKtrT5U2Cw7/C9wPWgGixljIIWEREJX76lzak4K4SOAD2AB7O3UQ2WMkNBi4iIhK+YGP54/HE6A/8DWgLJ5PhwUw2WMkNBi4iIhK3Dhw/TfelStgD1gdeBKtkbqAZLmaKgRUREwpJt2wwcOJDPPvuM6Oho3nrwQU7zF4xzuWDkSNi2TRshliFa8iwiImFp3B13sHjxYiIiIli2bBnNOnSAgQNVMK4MU9AiIiJh54WBA3lk7lwAZmdm0mHrVueECsaVaZoeEhGRsPLBokUM8QUs9wE3GqNlzeWEghYREQkPXi+bX3iBHoMGkQFcR7alzVrWXC5oekhEREo/j4ddgwfTxRj2A5cALwCW/7yWNZcLIR9p+eWXX+jfvz+1atWiSpUqnH/++WzYsCHU3RIRkdLC6yVt8GC6GcN2IA5YDkT6z2tZc7kR0pGWv/76i4svvpj27dvzzjvvUKdOHX766SdOOeWUUHZLRERKkczvv+d6Y1gP1ALe9n3NsmgR9OoVkr5JyQpp0PLoo49St25dXnzxxaxj9evXD12HRESkdPB6nX2FoqK4+4kneBVnZOU1IGASyO2Giy4KSRel5IV0euj111/nwgsvpFevXtSpU4cLLriA2bNn59k+PT2d/fv3B9xERKSM8XggNhY6dGBmy5ZMe+stAOZaFhdnb6dpoXInpEHLzz//zLPPPktcXBwrVqzg5ptv5vbbbyc5OTlo+0mTJhEdHZ11q1u3bgn3WEREipXXC0lJYNssB4b5Dj8C9LUsWLIE1q2DlBRVuy2HLGOMCdWTV6xYkQsvvJDVq1dnHbv99ttZv349a9asydU+PT2d9PT0rPv79++nbt267Nu3j+rVq5dIn0VEpBilpECHDnwKXA6kA0OAZ/GtFEpJgXbtQtc/KRL79+8nOjq6wJ/fIR1pOf3002nWrFnAsaZNm7Jjx46g7SMjI6levXrATUREypC4OP5rWXTDCVi6AU/jC1i0rLncC2nQcvHFF/PDDz8EHPvxxx+JjY0NUY9ERCSUfnW56FSjBn8BrYFF+FaMKH9FCPHqoTvvvJM2bdowceJEevfuzbp165g1axazZs0KZbdERCQE9u/fT+fOndnxv//xz7PO4o1p06hyxhlw6JA2QBQgxDktAG+++SZjx44lNTWVBg0aMGLECAYPHpyvaws7JyYiIqXLkSNH6Ny5Mx9++CGn1ajBmjffpEGbNqHulhSTwn5+hzxoORkKWkREwp9t2wwYMIAFCxYQBXwC/MvlglmztDqojArLRFwREZGxY8eyYMECIoBXgH8B2LZ2bpZcFLSIiEjIPPXUU0yZMgUAD3Bl9pPauVlyUNAiIiLFy+t16qvkGDV55ZVXGD58OAATR49mgCvHR5KWOEsOClpERKT4ZCvJT2yscx9YtWoV119/PcYYbr31VsZMmuTksLjdznVa4ixBKBFXRESKh9frBCq2feyYy8V3Cxdy8c03s3fvXrp3787SpUtx+4MVr9eZEtIS5zKtsJ/fIa3TIiIiZVhqamDAAuy0bTr17cteoM2FF7JwyBDcv/12LECJiVGwInnS9JCIiBSPuDjIlqfyJ9AR2Ak0AV7fsIHK//lPwLSRyPEoaBERkeIRE+PkqbhcHAQ6A/8FYoD3gFr+7ATbdnZ2XrJES5zluBS0iIhI8UlM5MiqVfQA1gG1cAKWujnb2Tb06aNRFzkuBS0iIlJsbNsm4amneA+oCrwNND3+BSoqJ3lS0CIiIsXCGMPtt9/O4sWLqVChAsuefJKWOWuxBKOicpIHBS0iIlL0vF4eHDiQmTNnYlkW8+bN48phwwJrsbhczqiKispJPmnJs4iIFC2Ph2cGD2a8L9H2qX796NOnj3MuMRE6dgysxRIf7wQvmZkqKifHpeJyIiJSdLxeltSrR19jMMADwHi3G7ZtO34goqJy5YqKy4mISMi9t3Ah/X0By604QUtWjsrxghEVlZN8UE6LiIgUiTVr1nDthAkcBfoATwIWKEdFioyCFhEROWlfv/cena+8kkNpaVzRrBkvuVy4QTkqUqQ0PSQiIiflx0ce4cr77mMvcDGw/PLLiZw7Fw4dUo6KFCmNtIiISKHteOMNLr/vPnYD5wNvAlWffBJat4afflLAIkVKQYuIiBTK79OmcXm3blkbIL4HnOI/qcq2UgwUtIiISIH99e23XHnXXaQCscD7QO2cjVTZVoqYclpEROQYrxdSUyEuLvfUju/cgdNP5z+9e/MN8A/gA5ydm3PRqiEpYhppERERh8fj7LLcoUPu3ZZ95w536ED3pk35/L//pSbOCEtWWGJZx0rya9WQFANVxBUREWcUJTbWyUXx81eyBYiN5aht0wN4A4gCPrr9duJnzgwsv5+zRL9IEKqIKyIihZeaGhiwwLGcFGPItG1uxAlYKvm+xl9zDYwalTtIUbAixURBi4iIODksLlfukZZGjbBtmyRgIc6HxlKgncsFVauq/L6UKOW0iIiIE3jMmuUEKpA13WPOPJNh99/PCzgfGAuBLuAEN61bB+a9iBQz5bSIiMgx/t2Wq1bFHDjAXePHM33VKiwgGehvWZD9YyM/OziL5KCcFhEROXkxMbBiBWbwYO41hum+w7OB/hAYsED+dnAWKSKaHhIRkWO8XkhK4mFjmOQ7NBNIzKu9arFICdJIi4iIHCsqt2cPU2ybcb7DjwO3Zm/nr8WSfZmzRlmkhChoEREp7zweSEoC2+ZJYLTv8CPAiOztVItFQkxBi4hIeeabDsK2eR4Y7jt8v2VxjzFOoDJpEsTHqxaLhJyCFhGR8sxXVO4l4GbfoVHAhMWLoU4djaZIqaKgRUSkPIuLY75lMdC3KmgY8KjLhdWmjYIVKXUKtHpo+/btvPfee/z2229Bz//6669F0ikRESkZCz75hATAAEnADJcLa9YsBSxSKuU7aFm0aBGNGjWiU6dONGzYkHnz5gFOIDN58mRatWpFvXr1iq2jIiJykrxeSElxvgILFixgwIAB2MYw+LrrePbDD7G2b4fEPBc4i4RUvoOWhx56iGHDhrFp0yauuOIKbrnlFu69914aNmzI3LlzadmyJcuWLSvOvoqISGF5PM4uzh06QGwsC5OSnIDFtrnpppt4bt48XB06aIRFSrV8l/GPjIzkxx9/JDY2Fq/XS7169WjXrh0zZ86kadOmxd3PoFTGX0QkH7xeJ2DxbYa4ELgBsIGbbrqJ559/HpdLtUal5BT28zvf79KjR49SuXJlAGJiYqhcuTJTp04NWcAiIiL55FshBLCIYwFLIvB8y5YKWCRsFOidunDhQr7//nvnQpeLGjVqFEunRESkCEVFgcvFYpz9g2xgEDALcN18MyxZkpXnIlKa5Ttoadu2LQ888ABnn302p556KocPH2bGjBksWbKE7777joyMjOLsp4iIFIbHA61b87Jtcz3HApbZ+D4AbBv69HGmjzyeUPZU5ITyndPil5qayoYNG9i4cSMbNmzgyy+/ZO/evVSoUIHGjRvzzTffFFdfc1FOi4jIcfhyWZbYNtcBmcBAYA55/MXqdsO2bUrGlWJX2M/vAheXi4uLIy4ujr59+2Yd27p1K1988QVffvllQR9ORESKS2oqi22b/jgBy434AhaXKyvHJUBmprOnkIIWKaWKpCJugwYNaNCgAb169SqKhxMRkcLy79YcF0fy118zEGdK6EZ8AYvbDWvWOCMqffsGBi9ut1O2X6SUUhl/EZGyIttuzR7LYjBOpdvBlsVzxjgBy/PPO5sfxsfD/v0wZIgzwuI/p1EWKcUKnNNSmiinRUTKPf/ISlQUtG4Nts0zwG2+07clJPDkgw/i+vnn4Jsfer3OlJA2RpQSVGI5LSIiUkpkG1nBssAYngDu9J0eAUxNSMCqVw/y2mYlJkbBioQNVRQSEQlHXu+xgAXAGKZwLGAZA0x1ubDi4kLUQZGip6BFRCQcZatyC/AQMNr37weAiS4X1uTJTjsVjpMyQtNDIiLhKC4OXC6MbTMOeNh3+JFbbuGe3r3hiy9g9GgnsHG5YNYs7d4sYU8jLSIi4SgmBvP884yxrKyA5bFevbjnmWecpFp/wALO1yFDNOIiYU9Bi4hIGLJtm2FffcUU3wLQGRMmMHLJEudkjqkj4FjhOJEwpukhEZEwk5GRQWJiIsnJyViWxbPPPsuQLl0gJcWZNvJNHalwnJQ1GmkREQkXXi/pK1bQp1s3kpOTcbvdzJs3jyEREc6Ghx06OF9XrHByWNxu5zoVjpMyQiMtIiKlVfbCcUuWkPb441xrDCuAihERLFm6lKtbtHAClZz5K9u2OTcVjpMyREGLiEhplL1wHLAPuAr4FKgCvGbbXN6ixfHzV9q1U7AiZYqCFhGR0iZH4bg/gI7ARiAaeBtoY9tOYKL8FSlHlNMiIlLaZBs9+RW4FCdgORVIAdqAE6js3u20V/6KlBMaaRERKW18oydbbZvLgZ+BM4EPgCaQtc8QffocKxyn/BUpBzTSIiJS2sTE8N348VyCE7CcBawCmrhcTpKtP2iBY4m3oBwWKfMUtIiIhJLX69RXyVatdu3atbSdPp1fgGaxsax66y0apKTA9u3O6IoKx0k5pekhEZFQyb5CyDfN8+6ZZ9KjRw/S0tJo1aoVb731FrVq1Qq8Tom3Uk5ppEVEJBRyrBDCtlk0eDBdu3YlLS2NK6+8kg8++CB3wBITo8RbKbc00iIiEgo56qs8BQw3BpORQd/27Xnp2WepGBUV/NrEROjYUYm3Uu5opEVEJBSiosDlwgDjgNsBAwwFFqSkUDEuzpk+yktMjBJvpdxR0CIiUtI8Hmjdmkzb5lbgId/hB4En8f1i9q8KypagK1LeKWgRESlJvlyWdNumH/AcYAHPAPf7/p1Fq4JEAiinRUSkpHi9sGQJB2yba3GKxVUA5gO9g7XXqiCRAApaRERKgm9582+2TRfgS6Aq8CpwebD2WhUkkkupmR6aNGkSlmVxxx13hLorIiJFyzcl9L1tcxFOwFIbZx+hy91uSEg4toTZ5YKRI52y/ImJIeuySGlUKkZa1q9fz6xZszj33HND3RURkaKXmspntk034H9AI+BdoOH06dCzpzOa8vDDWsIscgIhH2k5ePAg119/PbNnz6ZGjRqh7o6ISJFbvmULl+MELK2A1UBDt/tYwAJawiySDyEPWm677Ta6dOnC5ZcHndUNkJ6ezv79+wNuIiKlTrb9hJ5++ml6DBnCYaAr8BFQW/kqIoUS0umhxYsXs3HjRtavX5+v9pMmTWLChAnF3CsRkZPgS7i1bZt7gEd9h4d07crTY8cSkZ6uKSCRQgrZSMvOnTsZPnw48+fPp1KlSvm6ZuzYsezbty/rtnPnzmLupYhIDkF2Zc46vmQJJCVxxLYZwLGA5WHg2TfeIKJtW/jpJwUsIoVkGWNMKJ741Vdf5ZprrsHtz5gHMjMzsSwLl8tFenp6wLlg9u/fT3R0NPv27aN69erF3WURKe+C7MpMYmLA8X1AD+BDnKHs2cCN2R/D7XZWBilwkXKssJ/fIZseuuyyy9i0aVPAsYEDB9KkSRNGjx59woBFRKTYeb3OxoZxcc79HLsyM2QInHZa1vHtQBdgMxAFLAU65nxMf5VbBS0iBRayoKVatWo0b9484FjVqlWpVatWruMiIiUu56jKiBEBuzIDTgDStSsA63ESbX8HTgfeBP4V7HFV5Vak0EK+ekhEpNTxFYMLGFWZNs0JXoJYBlyKE7CcC3xuWfzr5puPFYzz06ohkZNSKorL+X388ceh7oKIiDMllHNUxbadSrXTpmWdM8DjwN2+f/8HeNmyqDZ7tpPrcu+9zlRQ1apw6JBWDYmcpFIVtIiIlApxcc6oSvbAxe2G4cMhPh769CEDGAo87zt9KzDDsoj4/HOnDTgBioIUkSKj6SERkZxiYpyVQf7pnezTOm3asN+yuAonYLGA6cDTLhcRs2cfC1hEpMhppEVEJJjEROjYMdd+QDtsmy5nnMG3v/xCFWChZXH1XXc5ozAaVREpVgpaRETykmN6Z/369XTr1o1du3bxjzp1ePPBB2nRpYuCFZESoqBFRMq37LVYjhN8LFq0iEGDBnH48GHOOecc3nzzTerVq1eCHRUR5bSISPnl8UBsLHTo4Hz1eHI1sW2b+++/n+uuu47Dhw9z1VVX8emnnypgEQmBkJXxLwoq4y8iheb1OoFKzhVC27Y5/05N5eAZZzBg7FiWL18OwN233MLEp55SxW6RkxR2ZfxFREIqWC2WzEyYMQOmTWOHbdMN+BqoCMwCEp5/Hlq0cJJ0RaTEaXpIRMonfy2W7FwumDaN1bZNPE7AUgdIARLg2H5DOXd4FpESoaBFRMqnYLVYRowg2bZpD+wGzsPZU6hN9uv8Gx6KSIlT0CIi5VdiopPDkpJC5k8/MfrQIRKAI8A1wKdArnRbbXgoEjIKWkSkfIuJYe/559Nt0CCmPPssAPdZFkuBKLcbEhKCV8YVkRKnRFwRKdc2b95M9w4d2LJ7N5WAFyyLfo8+6pTj91fCffjhXJVxRaTkKWgRkXLrlVdeIWHAAA6lpRELLAcuMAbGjnWmjfwBijY+FCkVND0kIuWL10vmBx9w77Bh9OzZk0NpaXQAvgAu8LdRsq1IqaSRFhEpPzwe9g4ezHXG8I7v0J39+jFl8WIistfZVLKtSKmkkRYRKR+8XjYPHky8L2CpBMwHpr38MhEDBijZViQMaKRFRMqFVzweEozhEBzLXwGnYNz8+bBmDRw6pGRbkVJMQYuIlGkZGRncf//9TJ48GYAOwMvAqdkbZWY6AUu7diXfQRHJN00PiUh48nohJSWwpH6OY7///jtXXnllVsBy5xVXsMKyAgMWUA6LSJjQSIuIhB+PB5KSnKkdl8spxw8Bxz4dNYreycn89ttvREVFMWfOHPr06eMENDNmwPTpzgiLclhEwoZlTPaU+fBS2K2tRSSMeb0QGxu4Q7N/40PbxgBPAKOATKBZbCyvzJ1Lk5xTP16vCsaJhEhhP781PSQi4SU1NTBgAee+bbMf6A2MwAlY+gGfb99Ok8suc0ZnsouJcXJYFLCIhA0FLSISXuLijo2s+LlcfGtZxANLgQrA08ACIAqcoGbIkMD8FxEJOwpaRCS8xMQ4OSzZ6qrMHziQVhUq8CNQF1gF3AZY2a9TlVuRsKegRUTCT2IibNvG3+++y839+nGDx0PakSNc2aoVGy2LVsGucbmgatWS7qmIFCEFLSJSegRbxpyH7w8epNWoUTw/fz6WZTFu3Dje/uwzTp09+9goTHa2Da1b585tEZGwoaBFREoHj8dZFdShg/P1OMFFcnIyLVq0YNOmTdSpU4cVK1YwYcIE3G531igMKSnwxhuB+S/KbREJawpaRCT0vN5jNVYgz+Di4MGDJCQkkJCQQFpaGpdddhlfv/MOV0REBLb1rwyqWjX3SiPltoiELRWXE5HQ8Hqd5ctxccGXMWdmOvsBnXoqxMXxzf/+R+/evfnhhx9wuVw8eNddjImLwx0fH1hkLjHx2GP4Vxplf2xVvxUJWyouJyIlL3tFW8ty/j17dmBwYVlgWRjbZpZlMdztJj0jgzOBhcC/Ld/aoOy/wtxuZ2ooe+0Vj8cZtcle/TZ7YCMiJa6wn98KWkSkZAWraAtZQUrWqIkx7DOGJGCJr0ln4CXIvXdQdikpuTc+VPVbkVKlsJ/fmh4SkZIVbCoInBETy4IlS8AYVvfpw/XANpxfVJOBOzlBIl5eUz8xMQpWRMoAJeKKSMkKVtHWz7bJqFmT8WvXcglOwFIf+BS4iyC/sCwroMicNj4UKds00iIiJctf0Tb7aiGfn10u+o8ezZoNGwC4wbJ42hiCDh77g5SOHTX1I1JOaKRFREpeYiJs3w4jR4LbjQHmWRbnV6zImg0bqF69OgsXLiR5xw6qp6TAY48dG1FxuZzrtm1zHkcbH4qUG0rEFZGQ2rt5M7fefjuLPvoIgLZt2zJv3jzq168f2FDJtCJlhhJxRSTsrFq1iv79+7Njxw7cbjcPPPAAY8eOJSIiyK8mJdOKlHsKWkSk+GQvIJct4Dhy5AgPPvggkyZNwrZtzjrrLBYsWEDr1q1D2FkRKe2U0yIixSOPvYQ2bdpEq1ateOSRR7Btm4SEBL788svAgKUAGyeKSPmhoEVEil6QvYQyk5J49J57aNGiBV999RW1atViyZIlzJ07N3BOuwAbJ4pI+aJEXBEpeikpTtDhswVIAFb77l911VXMnj2bf/zjH4HXBauWG6w0v4iEtcJ+fmukRUSKnq+AnA3MBM7DCViqAR7L4vWrr84dsEDeGydqV2YRQUGLiBSHmBh2Tp5MR2AokAa0AzYBg4zBGjIE1q/PfV2warnalVlEfBS0iEiRMsaQ/MQTnDNhAh8AlSIimAF8CMT6G9k2tG6dO1/FXy1XpflFJAjltIhIkdm5bh1D+vblna1bAWgJJI8cSeNp04JvkphXvooKyYmUacppEZGQsW2b5wcM4OxWrXhn61YqAo8AnwGNp0+HRx8NvkliXvkqKs0vIkGouJyI5I+/UFxUFBw8mFUw7qeffmLwgAGkrHbWBl0EeICm/usyM+HCC2HtWmdKKOfKIOWriEg+KWgRkRPzeHLtypxpWTzVuzf3vP46f//9N5WBicAwwJ39Wn9g4s9XGTLECWSUryIiBaScFhE5viC1U/4LJAJrfPfbA7OBhjmv9QcmiYmBj6d8FZFyTRsmikjxyFY75QgwFZjg+3c13/2byJEg53LBiBEwfHjuwEQbH4pIISloEZFjgm1w6Kud8pltMwTY7GvaGXgOqBvscRYvhl69SqLHIlKOaPWQiDjy2PPnr6pVGdK2LW1xApbawDzgTfIIWNxuuOiikuq1iJQjClpEJOgGhyYpiUVPP02Tf/6TWStXAnBTly58/9hj9AesYI+j5FoRKUYKWkQk154/PwGdbJvrhg1j9x9/0AT4xLKYfc011OzbN3fNFZcLlixxCsVlT7oVESlCClpEJCtv5QgwCWgOvAdEAg8BXwH/NsZZrgy5S+3PmuXksGiERUSKkYIWkfLC64WUFOdrEB/37Mm/gHuAw8BlOBsc3ocTvADHKtgmJjqjKikpGl0RkRKj1UMi5UH24nAulzMy0rEjpKbyy0cfMfLhh1nsa3oqMB24niB5K9kr2GrpsoiUMAUtIqVBsKXGRfnYOZJsGTyYI8ATxvAgcAhn2PUW4EGgZrDHUZKtiISYpodEQi2PpcZFJkeSLcD7xnCuMYzGCVjaAF8ATxMkYFGSrYiUEgpaREIp2CjIkCF55p1kXZNXbkqwc74kW4AdQE/gSuAHoA4wF1gFXOBvb1lKshWRUklBi0goBRkFyUp2DeZ4ozLZz9WrB6NGOcFLTAx/P/00j1gWTYBXcDY0HI4TuCSQ7ReB2w2zZyvJVkRKJW2YKBJKQTYjxO12goWcIxvB2rpcsGgRNGgArVvnCoCMZfFyv36M/uADduzeDcAlONNA52Z/vkmTID5emxiKSInQhoki4Sgmxpl+GTLEGWE5XrJrsFEZ24Y+fZwpnRx/f6wD7jSG1QsXOk8FPHrJJfT77DMs/yqivDY1FBEphTTSIlIaeL3OlNDxRjqCjbQEsRMYCyzw3a8CjAHuAqq43bBmDRw6pFEVEQkZjbSIhLP81DzJOSqTw0FgCjAV+Nt37EbgEeAMf6PMTCdgadeuSLotIlKSlIgrEk78lWiXLMlaEZQJvAQ0xim5/zdO3soXwItkC1ggsDiciEiYUdAiEm5iYqBXL8zzz/OWy8X5OCMqvwINgKW33MInO3bQIiUFHnsscPmyisOJSBhTTotIaXK8yrjZzq31ehk9ejQrV64E4BScPYNuByJzrj7KT76MiEgJUk6LSLgLtj+Qv0aK79z3ts29wDLfJZEVKjD86FHGADX8j+Ov8+IPULRHkIiUEZoeEikNjlcZ1+vll8GDSbJtmuMELC5gUJ8+pH76KY+6XMcCFlDeioiUWSENWiZNmkR8fDzVqlWjTp06dO/enR9++CGUXRIJjTwq4/5v40bGDh1KnDHMxkm6vRrYBHhuvpm6LVs6IzLKWxGRciCkOS2dOnWib9++xMfHk5GRwb333sumTZv47rvvqFq16gmvV06LlBk5arDsBaYD0ytU4MDRowBcDDzq+5qraq7yVkQkjBT287tUJeLu2bOHOnXq8Mknn/Dvf/871/n09HTS09Oz7u/fv5+6desqaJHwlT3xdsUK9icl8aRt8zhO4AJwHvAg0BWw4NhoivYEEpEwVdigpVTltOzbtw+AmjVrBj0/adIkoqOjs25169Ytye6JFK1sGxwerFePyW+/TYPq1bkfJ2A5G1gKbAS64QtYwNlrSAGLiJRDpWakxRjD1VdfzV9//cWqVauCttFIi5QZvumgNNvmWZxpnz2+U43r1mX8zp30JiJMF5sAABvPSURBVMhfFXltpigiEkbCfsnz0KFD+eabb/j000/zbBMZGUlkZGQJ9kqkCASpvXLg6695zjcN9LuvWSPggXvuoV9SEu6zzsqdmKskWxEp50pF0DJs2DBef/11Vq5cSYx+IUtZkqP2yv+mTeOpvXuZMX06f/ma1AfGATe4XETcckvuPYa0G7OICBDi6SFjDMOGDWP58uV8/PHHxMXFFeh6rR6SUm39emjdGmyb34FpwDM4GxsC/PO00xi7ezfXGUPFYMm1WhEkImVUWE4P3XbbbSxcuJDXXnuNatWqsWvXLgCio6OpXLlyKLsmcnI8Hhg8mB3GMAXwAId9p85r2JB7Jk6kR48euH/7Le/ARJVsRUQChHSkxbKsoMdffPFFbrzxxhNer5EWKVY5c1GOty9Qjuu+q1ePqcYwD8jwHW7N/7d371FVlXkfwL/7HMALIqlpQChexjSvmaBgKpSKWpnVKi9vssyXLGdljaM1Ua03bWaa0LyMZVOvxmhjeUHFyV4dL2sEHFPKC5qYooYmJo5loyKUiuf3/rHdh3O/eQ7nbPh+1joL2ec5z3keNof987n8NvC6ouChoiIo/frVQQeIiEKTLrc8i4jDhycBC5FfnTkD5OerXwGr7cho1w4YMaL2+4QE9XkbIoLtq1fjwWHD0F0ES6EGLEMAbAewC8DDIlBSUhy+noiIXAuZLc++4EgLecTdCIntjQqzsoDsbPvdO5Ysth5fv34dubm5mPvqqzhQXg5AzanyGICXoY6w2DEY1HwrAwZwCoiIGpx6kRHXWwxayC1Xd04G7NLne+PS559jcVER3l28GGd+ULOsNAUwCcA0qFuYAajv66x+R20iIqrnGLQwaCFbjgIS2+RsubnA2LFeVVsGYJGi4KOICFTeTHZ4B4AXAEwB0Mqy8IIFwH33mXcROcSEcUTUwOhyTQtRQDm5czJOnFD/nZMDjBvnUVUmAFug3v/nVwAWiKDy6lV0g7oz6DsAr8MmYDEagSeeAJKSrO/EbMuyTURE5BSDFqq/OndWp18sGY3q9uIzZ9RpIzcDjRcBLFQUdAUwAsD/ARAAw5OSsAlACYD/BmDO06y9n2322sxMdTQlN9d5m4iIyCUGLVR/aZlltREOy0DC0SgMAEyZAhiNOARgiqIgvlEjTBPBcQDNo6Iwbdo0lJaWYnNeHkYaDLDatG80AkVF6i6kU6fs16nExwNPPum8TURE5FJIpPEnCpjMTGD4cPsEbtoojEXg8ovBgPXdu+N/k5JQWFSkjsJcvYoePXpg6tSpeOqpp9CsWbPaui1T7WvBR1KS720iIiKXuBCXGhZt+3OzZupUzYIFOHzjBpYoCpY3bYqfqqoAAEajEY899himTp2KwYMHO02EyFT7RETe02Uaf6I6ZbH9+QqAXABLABQB6qhKVRXatm2LSZMmYfLkyZ7dvFNLta8lp3OXLZeIiHzGoIUahjNnIJMnY58IlgBYCaDy5lNhAEaNGIHJL76I9PR0GJ3t8rGpz5ywbssW17lgiIjILxi0kD55eh8gAOXl5fj097/HchF8Y3H8VwCeATARQMwrrwBpaZ69t2XCOm3aSJtlNZnUdS7Dh3PEhYjIzxi0kP7YBg0zZgC/+Y1VkHD58mWsW7cOy5cvR0FBAbSlW40APAE1WEmFmm7fqy3H2lZpbQGvoyVhWt4VBi1ERH7FoIVCl6PRFEdBw9y5wPz5qPngA2yNj8fy5cvx2Wef4eeffzZXlZqaioz27fHE8uWIts2Q682WY2dbpS0x7woRUUAwaKHQc+YMsHAhMH++/ToRm6DhBoAvAOSaTFjz3HM4b1FNl06dkDFpEp566im0b99ePfjHP6qjIJGRQFWV97t+HGyVhqKoxyy3PnOUhYjI7xi0UGjJyQEmT7aedrFcJ9KsGW4oCr4QwRoAawGcs3j57U2aYPzPPyMDQGJZGZSYGEALWIDa3T6+0hLW2eZnYd4VIqKAY54WqluuFtC6uOOyCcAX48ZhzapVWAugwuK5aACPAXhSUTAMQLjlr3SgbkbI/CxERD7jDRMp9OXkqEHJAw8A7doBL7+sXvw1NlM/V6HepPB5AG0BDF61Cu9BDViioe762agoOA9gqdGIB2fMsA5YgMDdjDA+Xt1txICFiKjOcKSF6oazURTL3T8AfmrXDhtFsAHAZgBXLIpGAxgNYAyAobh5k8LcXKB1a3WNysmTwPjx1u8RqJEWIiLyGTPiUnB4mi/F2a4bEZyYOxcb5s3Dhs6dsVNRcMMijo6NjMQj6ekYddddGDpnDhrZTv2kpFgnd9MWxZpMXBRLRFTPMGgh31nmS3GUCdYyoLHYdXMFQAHUqZ+tAI4B6sLbY8cAAL3uvhuPJCbikTFj0LeiAoYpU5wHJID9FmhFUUdgUlIYsBAR1SOcHqJa7hbJWj7naLrHcirGIqAxKQoO/s//YEtJCbbk5eELANctqg6DmujtEQCjVqxAh/Hja9/T9j0MBmDVqtqAJD9fXSNjKz9fXSTrYdZcIiKqO5we0iNnQYIXKeo9qs8TrrLMOhpR6djRfrrn5qJXEcGpyZNRIIJ/AtgmgvO//71V0Q4Aht983A91vQqMRmDQoNpCjqaUTCZ1DYvWP0d5U4xGYO9eYMgQ3g+IiKg+ER27dOmSAJBLly4Fuyne++gjEYNBBFC/fvSR6+O+1ueJ8vLa11o+FEXkuefsnzMaRT7/3HzcBMhxQJYoikwYNEjatmghAKwekYCMAmSRosixt94S0+nTIi+9pNal1WnbZkftMhrV47Z9t6xnzhzPXkdEREHh6/Wb00PB4GxqZfduIDnZ+90vzqZRioqApCT37XE2xeKECcBRRcFOERQAKARw1qZMGIB+UKd90gEMABChPWnZJ3f5TnJy7BO5ORoxsazn+HHnU0ae3hSRiIgChtNDeuJo2uPGDWDnTqdTLl7vzDGZ1ADIk2kRR1MsFn4E8CWAopuPrwBctol1wwH0B5AGNVBJARDp7P0s++QuQ21mpmfZZm3rcTRlxPsBERHpGoMWf/J0TYmzdRgDB/p2sXUWdFimv7e84aBtG7XU9M8+i2qTCYcA7EVtkOIoNVtTAElQA5Q0AMkAmjhrn6JYp+V31idnPz9vU+87S7XPxbhERLrGjLj+YpntNSFB/d4Z7aJqNKrfaxfVpCTHx20X6ebnW2eS1eozODidN24Aa9ao5W3a+MOf/4xt27bhnXfewX/985/o1qkTohQFyQCmAvgEtQFLVwBPA/gAQDGAS1C3Lb8J4H6DAU0cvbfWhzlzXPfJ25+fJzIz1Smo/Hz1KxfhEhHpHte0+IO77b+uXudo2sPRcVd3PtZGKKqqgNGj7UZcKgEcBXDk5uMQgAMAvnfSrDa3346+UVFIPnUK/UXQz2BAi+nTgblz7Qtr7QBqRzYsfwbaGhRXa1d8/fkREZEucU1LMDlbo+JoLYrtFIiji7LtcWd3Pn72WTV1/dtvQ0wm/FtRUJqejiNbt+KIiDlIOWNbv4XOsbG4p29f9ImJwT2DB6PPsGGIiYmpbasWaAC1AZPGdrGvtvYkMlINoCwDFFdTPN78/IiIqMHiSIu3HK278HSkwF0GWWfvd7PuSgAnbz7KbL6eBPCzi2raALj75qM7gD4AegGIUhS1gIj7Nnm6k8dbHGkhImpQfL1+M2jxhrOgQ5u6WbDA+QXdxYX52rVr+PeePTjbtCnO1tTg7NmztY+SEpzduxdnAfzkpnkGAAkA7u7fH3f37o27lyzB3SLoCqAloC6IBaxHbGy5CxbcbVH2VaACIiIiCjkMWgIdtOzZY5dDRQwGXHvrLVS99hqqRFAFoGrCBFSNHo0rTZuiqqoKVVVVuHjxIi7s24cLn3yCnwBcAMxfL4SH48r1647f04GWADpCzShr+7UdgAjbVPq260w8Eax8JoEKiIiIKKQwaPFj0PL5559j+vTpqKmpwY0bN1Bz+TJqLl1CDYAbAGosHo4zm3gvDEAsgDgAcSNGIK5TJ8TFxamPr7/GnQsXIt5kQrSr0RJHIxQOgi2XOC1DREQBxoW4flRdXY0TJxxlJ3EuHGoytUgAkW3bolnr1oiMjERkZCRuu+02tGzZEq1On0bLjRvRSgStDAa0HDcOrVasQEsALWCx//yVV+xHOqZPrx2F2LLFeirl7bfVxbCORiiuXHEcsGh5XRRFfVjeOZkBCxERhSAGLQ48UFGBnYqCMBGEAeaH0eLf2vdNoAYq4dqLjUZg1y77ZG7NmqkBxBtv1O6sAdQ7FrtKJme58FcLZDzNEgs4T2S3e7d1OzgtQ0REIY5Bi60zZ9B6xgy0djVrZpvhVWMwWI9UWC7ctSyzeHFtAOIqc6ur3UaeZol1lh3W9p5EDFaIiCjEcU2LLWc3D9RGK7TpmKws1zlLHO0W0tiuG3GWTM6f24C5yJWIiEKEr9dvpvG3pU2n2BIBXnpJDRpeftk+3f7ixdajF44Spmm0xGma+PjakRctRb+rhGu+0N6DAQsREekUgxZbzu7jI6LmYdG4u7eNs+AHcHzDQNt77+zda/963qmYiIgaMAYtjmRmAitX2h93NkLiLBW/5WiMxtlNEC3XvphMwKuvArNnu7/RIBERUQPBhbjODBjgeNeNpyMdZ84AHTvW7tJxdD8ejbOpoMREdRSHa1GIiIg40uKU7UiJNyMdllM9ycnAt9+q612cjco4mkrSAiSuRSEiIgLA3UPuebvrxtddP7z3DhERNRDMiBsonuZD0bja9eOqHm8SxhERETVADFr8zVkGWk/WwngbIBERETUgXNPib7eyFoaIiIic4khLIHCqh4iIyO8YtAQKp3qIiIj8itNDREREpAsMWoiIiEgXGLQQERGRLjBoISIiIl1g0EJERES6wKCFiIiIdIFBCxEREekCgxYiIiLSBQYtREREpAsMWoiIiEgXGLQQERGRLuj63kMiAgC4fPlykFtCREREntKu29p13FO6DloqKysBAG3btg1yS4iIiMhblZWViI6O9ri8It6GOSHEZDLh7NmziIqKgqIofq378uXLaNu2LcrLy9G8eXO/1h0K2D/9q+99rO/9A+p/H9k//QtUH0UElZWViIuLg8Hg+UoVXY+0GAwGxMfHB/Q9mjdvXm9/GQH2rz6o732s7/0D6n8f2T/9C0QfvRlh0XAhLhEREekCgxYiIiLSBeOsWbNmBbsRocpoNCItLQ1hYbqeRXOK/dO/+t7H+t4/oP73kf3Tv1Dqo64X4hIREVHDwekhIiIi0gUGLURERKQLDFqIiIhIFxi0EBERkS40mKDlL3/5Czp06IDGjRujb9+++Ne//uWy/Lp169CtWzc0atQI3bp1w/r1662eFxHMmjULcXFxaNKkCdLS0nD48OFAdsEtb/q4ZMkSDBo0CC1atECLFi0wdOhQfPXVV1Zlnn76aSiKYvVITk4OdDec8qZ/y5Yts2u7oij45ZdffK4z0LxpS1pamsP+PfTQQ+YyoXT+duzYgVGjRiEuLg6KouDvf/+729cUFhaib9++aNy4MTp27IgPP/zQrkwonT9v+5iXl4dhw4ahdevWaN68OVJSUrBlyxarMrNmzbI7hzExMYHshlPe9q+goMDh7+jRo0etyrn7W1tXvO2fo8+Xoijo3r27uUwonb+3334bSUlJiIqKQps2bfDoo4+itLTU7etC7VrYIIKW1atXY9q0aXj99ddRXFyMQYMGYeTIkTh9+rTD8rt378bYsWORkZGBgwcPIiMjA2PGjMGXX35pLjNnzhzMnz8fixYtwp49exATE4Nhw4aZ74dU17ztY0FBAcaPH4/8/Hzs3r0b7dq1Q3p6Or7//nurciNGjEBFRYX5sWnTprrojh1v+weoGRwt215RUYHGjRvfUp2B4m1b8vLyrPpVUlICo9GIJ5980qpcqJy/qqoq9O7dG4sWLfKo/MmTJ/Hggw9i0KBBKC4uxmuvvYYXX3wR69atM5cJpfMHeN/HHTt2YNiwYdi0aRP27duH+++/H6NGjUJxcbFVue7du1udw0OHDgWi+W552z9NaWmpVfs7d+5sfs6Tv7V1xdv+LVy40Kpf5eXlaNmypd1nMFTOX2FhIZ5//nkUFRVh27ZtqKmpQXp6Oqqqqpy+JiSvhdIA9OvXT6ZMmWJ1rGvXrpKVleWw/JgxY2TEiBFWx4YPHy7jxo0TERGTySQxMTGSnZ1tfv6XX36R6Oho+fDDD/3ces9420dbNTU1EhUVJR9//LH52MSJE2X06NF+baevvO3f0qVLJTo62q91BtKttmXBggUSFRUlV65cMR8LpfNnCYCsX7/eZZnf/e530rVrV6tjzz33nCQnJ5u/D6XzZ8uTPjrSrVs3efPNN83fz5w5U3r37u3PpvmFJ/3Lz88XAPKf//zHaRl3f2uDxZfzt379elEURU6dOmU+FqrnT0Tk/PnzAkAKCwudlgnFa2G9H2m5du0a9u3bh/T0dKvj6enp2LVrl8PX7N6926788OHDzeVPnjyJc+fOWZVp1KgRUlNTndYZSL700VZ1dTWuX7+Oli1bWh0vKChAmzZtcNddd2Hy5Mk4f/6839rtKV/7d+XKFSQkJCA+Ph4PP/yw1f9g/fEz8xd/tCUnJwfjxo1DZGSk1fFQOH++cPYZ3Lt3L65fvx5S589fTCYTKisr7T6Dx48fR1xcHDp06IBx48ahrKwsSC30TZ8+fRAbG4shQ4YgPz/f6jl3f2v1JCcnB0OHDkVCQoLV8VA9f5cuXQIAu983S6F4Laz3QcuPP/6IGzdu4I477rA6fscdd+DcuXMOX3Pu3DmX5bWv3tQZSL700VZWVhbuvPNODB061Hxs5MiR+PTTT7F9+3bMmzcPe/bswQMPPICrV6/6tf3u+NK/rl27YtmyZdiwYQNWrlyJxo0b47777sPx48d9rjNQbrUtX331FUpKSvDMM89YHQ+V8+cLZ5/Bmpoa/PjjjyF1/vxl3rx5qKqqwpgxY8zH+vfvj7/97W/YsmULlixZgnPnzmHAgAG4cOFCEFvqmdjYWCxevBjr1q1DXl4eunTpgiFDhmDHjh3mMu7+1upFRUUF/vGPf9h9BkP1/IkIpk+fjoEDB6JHjx5Oy4XitTD4OXnriKIoVt+LiN0xb8t7W2eg+dqeOXPmYOXKlSgoKLBa8zF27Fjzv3v06IHExEQkJCRg48aNePzxx/3XcA9507/k5GSrRaf33Xcf7r33Xrz33nt49913faoz0HxtS05ODnr06IF+/fpZHQ+18+ctRz8P7bjlv23LBPMz6KuVK1di1qxZ+Oyzz9CmTRvz8ZEjR5r/3bNnT6SkpKBTp074+OOPMX369GA01WNdunRBly5dzN+npKSgvLwcc+fOxeDBg83H68M5XLZsGW677TY8+uijVsdD9fxNnToVX3/9NXbu3Om2bKhdC+v9SMvtt98Oo9FoF/WdP3/eLjrUxMTEuCyvrf72ps5A8qWPmrlz5+JPf/oTtm7dil69erksGxsbi4SEBPNoRV25lf5pDAYDkpKSzG33R53+cittqa6uxqpVq+z+h+dIsM6fL5x9BsPCwtCqVauQOn+3avXq1cjMzERubq7VSKcjkZGR6Nmzpy7OoSPJyclWbXf3t1YPRAR//etfkZGRgYiICJdlQ+H8vfDCC9iwYQPy8/MRHx/vsmwoXgvrfdASERGBvn37Ytu2bVbHt23bhgEDBjh8TUpKil35rVu3mst36NABMTExVmWuXbuGwsJCp3UGki99BIB33nkHf/jDH7B582YkJia6fZ8LFy6gvLwcsbGxt9xmb/jaP0siggMHDpjb7o86/eVW2pKbm4urV69iwoQJbt8nWOfPF84+g4mJiQgPDw+p83crVq5ciaeffhorVqyw2q7uzNWrV3HkyBFdnENHiouLrdru7m+tHhQWFuLEiRPIzMx0WzaY509EMHXqVOTl5WH79u3o0KGD29eE5LUwIMt7Q8yqVaskPDxccnJy5JtvvpFp06ZJZGSkeZV3RkaG1Y6DL774QoxGo2RnZ8uRI0ckOztbwsLCpKioyFwmOztboqOjJS8vTw4dOiTjx4+X2NhYuXz5cp33T8T7Ps6ePVsiIiJk7dq1UlFRYX5UVlaKiEhlZaXMmDFDdu3aJSdPnpT8/HxJSUmRO++8Myh99LZ/s2bNks2bN8u3334rxcXFMmnSJAkLC5Mvv/zS4zpDuX+agQMHytixY+2Oh9r5q6yslOLiYikuLhYAMn/+fCkuLpbvvvtORESysrIkIyPDXL6srEyaNm0qv/3tb+Wbb76RnJwcCQ8Pl7Vr15rLhNL5E/G+jytWrJCwsDB5//33rT6DFy9eNJeZMWOGFBQUSFlZmRQVFcnDDz8sUVFRQemjt/1bsGCBrF+/Xo4dOyYlJSWSlZUlAGTdunXmMp78rQ3V/mkmTJgg/fv3d1hnKJ2/X//61xIdHS0FBQVWv2/V1dXmMnq4FjaIoEVE5P3335eEhASJiIiQe++912qbV2pqqkycONGq/Jo1a6RLly4SHh4uXbt2tfqgiahbvWbOnCkxMTHSqFEjGTx4sBw6dKguuuKUN31MSEgQAHaPmTNniohIdXW1pKenS+vWrSU8PFzatWsnEydOlNOnT9dxr2p5079p06ZJu3btJCIiQlq3bi3p6emya9cur+qsa97+jpaWlgoA2bp1q11doXb+tO2vtg+tTxMnTpTU1FSr1xQUFEifPn0kIiJC2rdvLx988IFdvaF0/rztY2pqqsvyIiJjx46V2NhYCQ8Pl7i4OHn88cfl8OHDdduxm7zt3+zZs6VTp07SuHFjadGihQwcOFA2btxoV6+7v7V1xZff0YsXL0qTJk1k8eLFDusMpfPnqG8AZOnSpeYyergWKjc7Q0RERBTS6v2aFiIiIqofGLQQERGRLjBoISIiIl1g0EJERES6wKCFiIiIdIFBCxEREekCgxYiIiLSBQYtREREpAsMWoiIiEgXGLQQkS5kZ2cjJSUl2M0goiBi0EJEunDw4EH07t072M0goiBi0EJEunDw4EHcc889wW4GEQURgxYiCjlHjhxBWloamjRpgj59+mDv3r04duwYR1qIGjgGLUQUUo4ePYr+/fsjMTERJSUleOONNzB69GiICHr16hXs5hFRECkiIsFuBBGRZsiQIYiLi8Py5cvNx8aPH4/9+/ejtLQ0iC0jomALC3YDiIg03333HbZv3479+/dbHQ8PD+fUEBFxeoiIQseBAwcQFhaGnj17Wh3fv38/F+ESEYMWIgodBoMBJpMJ165dMx/btGkTDh8+zKCFiBi0EFHo6Nu3L8LDw/HSSy+hrKwMGzZswOTJkwGA00NExIW4RBRaPvnkE7z66quoqqpCnz590L9/fyxZsgQ//PBDsJtGREHGoIWIiIh0gdNDREREpAsMWoiIiEgXGLQQERGRLjBoISIiIl1g0EJERES6wKCFiIiIdIFBCxEREekCgxYiIiLSBQYtREREpAsMWoiIiEgXGLQQERGRLvw/xf0u/pg1rN4AAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'Fit A\\\\b to noisy \"measurements\" of $R = 1 + d^2$')" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d = linspace(0,2,200) # 20 points from 1 to 4\n", - "b = 1 + 2*d.^2 + randn(200)*0.1 # measurements with Gaussian random noise\n", - "plot(d, b, \"r.\")\n", - "plot(d, x̂[1] + x̂[2] * d.^2, \"k-\")\n", - "xlabel(L\"d\")\n", - "ylabel(L\"R\")\n", - "title(\"Fit A\\\\b to noisy \\\"measurements\\\" of \\$R = 1 + d^2\\$\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.022611552416199256" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "norm(b - A*x̂) / norm(b) # the length of the \"residual\" b - Ax̂ is not zero!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This $\\hat{x}$ is *not* an exact solution: $A\\hat{x} \\ne b$: the \"residual\" (the \"error\") $b - A\\hat{x}$ is not zero, as we can see by checking its norm $\\Vert b - A\\hat{x}\\Vert$ above.\n", - "\n", - "In the plot above, correspondingly, the black \"fit\" curve does *not* exactly match the data points. But it is pretty close!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Least-square fits\n", - "\n", - "What `A \\ b` is doing in Julia, for a non-square \"tall\" matrix $A$ as above, is computing a **least-square fit** that **minimizes the sum of the square of the errors**. This is an extremely important thing to do in many areas of linear algebra, statistics, engineering, science, finance, etcetera.\n", - "\n", - "Above, we have a bunch of measurements $(d_k, R_k)$, and we are trying to *fit* it to a function $R(x,d) = x_1 + x_2 d^2$. There is no exact fit, so instead we minimize the sum of the squares of the errors:\n", - "\n", - "$$\n", - "\\min_{x \\in \\mathbb{R}^2} \\sum_{k=1}^m (R_k - R(x, d_k))^2 \\;.\n", - "$$\n", - "\n", - "Let's write this in terms of linear-algebra operations. We have our $m \\times 2$ matrix $A$ above, and in terms of this we have $R(x, d_k) = (Ax)_k$: the \"fit\" function at $d_k$ is the $k$-th row of $Ax$. But then $R_k - R(x,d_k)$ is the $k$-th row of the **residual vector**\n", - "\n", - "$$\n", - "\\mbox{residual} = b - Ax\n", - "$$\n", - "\n", - "and we can see that our sum above is precisely the **sum of the squares of the residual components**, which is the **square of the length of the residual**:\n", - "\n", - "$$\n", - "\\sum_{k=1}^m (R_k - R(x, d_k))^2 = \\Vert b - Ax \\Vert^2 \\; .\n", - "$$\n", - "\n", - "Here, $\\Vert y \\Vert = \\sqrt{y^T y}$ is the *length* of a vector, also called the **norm of the vector**: the square root of the dot product with itself. (More specifically, this is the [Euclidean norm](https://en.wikipedia.org/wiki/Euclidean_distance), also called the $L^2$ norm. There are other ways to define a vector norm, but I think this is the only one we will use in 18.06.)\n", - "\n", - "So, what we are *really* doing is **minimizing the norm of the residual**:\n", - "\n", - "$$\n", - "\\boxed{\n", - "\\min_{x \\in \\mathbb{R}^2} \\Vert b - Ax \\Vert\n", - "}\n", - "$$\n", - "\n", - "(Note that minimizing the norm and minimizing the squared norm will give the same solution $x$; which one we write is a matter of convenience.)\n", - "\n", - "This is exactly what `A \\ b` does in Julia (and Matlab) for a non-square matrix $A$, which is why it gives us a good fit above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Least-squares fits and the normal equations\n", - "\n", - "As derived in section 4.3 of the Strang textbook, minimizing $\\Vert b - Ax\\Vert$ or (equivalently) $\\Vert b - Ax\\Vert^2$ leads to the so-called **\"normal equations\"** for the minimizer $\\hat{x}$:\n", - "\n", - "$$\n", - "\\boxed{ A^T A \\hat{x} = A^T b }\n", - "$$\n", - "\n", - "These *always* have a solution. If $A$ is an $m \\times n$ matrix, then $A^T A$ is $n \\times n$, and:\n", - "\n", - "* Usually in fitting problems, $A$ is a \"tall\" matrix with full column rank $n$, in which case $\\operatorname{rank}(A^T A) = \\operatorname{rank}(A) = n$ and $A^T A$ is *invertible*: the solution $\\hat{x}$ exists and is unique.\n", - "\n", - "* Even if $\\operatorname{rank}(A) < n$, we still have a (non-unique) solution, because $A^T b \\in C(A^T) = N(A)^\\perp = N(A^T A)^\\perp = C(A^T A)$.\n", - "\n", - "Now (on the blackboard), I will show that we can derive the normal equations directly by 18.02. If we just take the partial derivatives of $f(x) = \\Vert b - Ax \\Vert^2$ and set them to zero, we find that $0 = \\nabla_x f = 2A^T Ax - 2A^T b$ and the normal equations follow." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# More polynomial fitting examples.\n", - "\n", - "Suppose we are fitting m points $(a_k,b_k)$ to a degree-(n+1) polynomial of the form\n", - "\n", - "$$\n", - "p(a) = x_1 + x_2 a + x_3 a^2 + \\cdots + x_n a^{n-1} \\; ,\n", - "$$\n", - "\n", - "which leads to the $m \\times n$ matrix\n", - "\n", - "$$\n", - "A = \\begin{pmatrix}\n", - " 1 & a_1 & a_1^2 & \\cdots a_1^{n-1} \\\\\n", - " 1 & a_2 & a_2^2 & \\cdots a_2^{n-1} \\\\\n", - " 1 & a_3 & a_3^2 & \\cdots a_3^{n-1} \\\\\n", - " \\vdots & \\vdots & \\vdots & \\vdots \\\\\n", - " 1 & a_m & a_m^2 & \\cdots a_m^{n-1} \\\\\n", - " \\end{pmatrix}\n", - "$$\n", - "\n", - "and hence to the normal equations for the fit coefficients $\\hat{x}$.\n", - "\n", - "Let's generate 50 data points from a degree-3 polynomial $1 + 2a + 3a^2 + 4a^3$ plus noise, and see what happens as we change the fitting degree $n$." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":2}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234","id":"ob_17","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234","id":"ob_16","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_17","value":0},"value":{"sync":true,"id":"ob_16","value":2}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":40,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-90474be0-fd4c-4735-868b-cea810a9a0a3","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_21","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_16\", 2, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_16\", 2, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_16\", 2, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_16\", 2, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_16\", 2, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_17\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_16\", 2, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-4d45f160-e4f4-4015-bf32-6b826bc80234\\\",\\\"id\\\":\\\"ob_16\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_20\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "let a = linspace(0,1.5,50),\n", - " afine = linspace(0,1.5,1000),\n", - " b = 1 + 2a + 3a.^2 + 4a.^3 + randn(length(a)),\n", - " fig = figure()\n", - " @manipulate for n=slider(1:40, value=2)\n", - " withfig(fig) do\n", - " plot(a, b, \"r.\")\n", - " A = a .^ (0:n-1)'\n", - " x̂ = A \\ b\n", - " plot(afine, (afine .^ (0:n-1)') * x̂, \"k-\")\n", - " xlabel(L\"a\")\n", - " ylabel(L\"b\")\n", - " xlim(0,1.6)\n", - " ylim(-5,30)\n", - " title(\"noisy cubic: least-square fit of degree $(n-1)\")\n", - " end\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Increasing the degree of the fit at first seems to improve things, up to about degree 6, but then it becomes more and more wiggly. It is still reducing the residual, but clearly it is \"fitting noise\" and the error actually becomes worse compared to the \"real\" underlying cubic model. This problem is called [overfitting](https://en.wikipedia.org/wiki/Overfitting).\n", - "\n", - "In between the fitted points, especially near the edges, the wiggles can actually diverge as we increase the degree, an effect related to what is known as a [Runge phenomenon](https://en.wikipedia.org/wiki/Runge's_phenomenon). Even if there is *no noise*, fitting *equally spaced points* to high-degree polynomials can lead to disaster if the underlying data is not exactly polynomial. Let's demonstrate this by fitting the *smooth* function $b(a) = 1/(1+25a^2)$ to polynomials at 50 points:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":3}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9","id":"ob_23","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9","id":"ob_22","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_23","value":0},"value":{"sync":true,"id":"ob_22","value":3}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":50,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-174dcfcb-5dff-441d-aa81-00f390c494db","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_27","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_22\", 3, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_22\", 3, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_22\", 3, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_22\", 3, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_22\", 3, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 50),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_23\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_22\", 3, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":3}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_23\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dbb006a5-2225-4948-861e-c4a45df06ec9\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_26\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "let a = linspace(-1,1,50),\n", - " afine = linspace(-1,1,1000),\n", - " b = 1 ./ (1 + 25 * a.^2),\n", - " fig = figure()\n", - " @manipulate for n=slider(1:50, value=3)\n", - " withfig(fig) do\n", - " plot(a, b, \"r.\")\n", - " A = a .^ (0:n-1)'\n", - " x̂ = A \\ b\n", - " plot(afine, (afine .^ (0:n-1)') * x̂, \"k-\")\n", - " xlabel(L\"a\")\n", - " ylabel(L\"b\")\n", - " xlim(-1,1)\n", - " ylim(0,1)\n", - " title(\"smooth function: polynomial fit of degree $(n-1)\")\n", - " end\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Be careful not to draw the wrong lesson from this. You have to be *especially careful* when fitting to high-degree polynomials, but this does *not* mean that you should never do it.\n", - "\n", - "In particular, fitting smooth functions to high-degree polynomials can be a *great* thing to do, as **long as you choose the correct points**. (Separately, as mentioned above, the construction of the interpolating polynomial should technically not be done by this matrix method once you go to high degrees — you run into roundoff-error problems — but there are better methods like the barycentric formula.)\n", - "\n", - "For example, here we fit the same $1/(1+25a^2)$ function as above to a degree-50 polynomial, with no Runge problems at all, by choosing the points to be [Chebyshev nodes](https://en.wikipedia.org/wiki/Chebyshev_nodes) (which cluster together at the edges of the domain):" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHFCAYAAAAudofcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlYVOX/PvB7GJYB2QQE2QTckAQEcd8QcUXJrcXdTPu6tbn0K9MyU7P6lK1qmnvmVpmlooBrLpiguFuhiYiK4AaCgCzP7w88k8MAAg6cgblf18VVHM/ynjNzztw8z3POUQghBIiIiIhIZ4zkLoCIiIiotmHAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAqqDr16/jgw8+wMmTJ7X+7aWXXoKlpWWl1/3w4UNMmDABzs7OUCqVCAgIeJpSn9rixYuxevVqremJiYlQKBQl/pucCgsL8cMPP6B79+5wcHCAiYkJHB0d0a9fP2zbtg2FhYUAgP3790OhUODnn3/W2bY/+OADKBQK3Lp1S2frfJKqeB36RtqvtYVCocAHH3xQpcs+zTZKO+b1lXQM7N+/v8LLnj9/Hh988AESExO1/u2ll16Cp6fnU9dXle7cuYMhQ4bA0dERCoUCAwYMqPA6PD098dJLL+m+OD3TtWtXKBQKrZ/evXtrzZuZmYk333wTLi4uUKlUCAgIwMaNGyu1XeOnLdzQXL9+HXPmzIGnp6fOA9CSJUuwdOlSfPPNNwgKCnqqsKYLixcvhoODg9YB6OzsjJiYGDRq1EiewkqQk5ODAQMGICoqCkOGDMGSJUtQv359pKWlYdeuXXj++eexadMm9O/fX+5SyYDFxMTAzc1Nb7dR2jFfG50/fx5z5sxB165dtcLUe++9hzfeeEOewspp7ty5+PXXX7Fy5Uo0atQIdnZ2cpek1xo2bIgff/xRY5qtra3WfIMGDUJsbCw+/vhjNG3aFOvXr8fQoUNRWFiIYcOGVWibDFh65OzZszA3N8err74qdyllMjMzQ7t27eQuQ8PUqVMRGRmJNWvWYNSoURr/NmjQILz11lvIzs6WqTqiItVx3OjbsSmEQE5ODszNzeUupdz06Y/H0pw9exaNGjXC8OHD5S6lwh48eAALC4tq3aa5ufkTj42IiAhER0erQxUAhISE4MqVK3jrrbfw4osvQqlUlnubsnYRpqWl4f/+7//g7u4OMzMz1KtXDx07dsTu3bvV83Tt2hW+vr6IiYlBhw4dYG5uDk9PT6xatQoAsGPHDrRs2RIWFhbw8/PDrl27tLZz6NAhhIaGwsrKChYWFujQoQN27NihNd/Zs2fRv39/1K1bV900uGbNGvW/79+/H61btwYAjBkzRt3MWLw5/uLFiwgLC4OlpSXc3d0xbdo05ObmlrkvFAoFli9fjuzsbPV6V69eXWZ3XPFtS90p586dw9ChQ2FjYwMnJye8/PLLSE9P11i2sLAQ33zzDQICAmBubg5bW1u0a9cOv//+O4CipuNz587hwIED6nqkv/JKq6k8+3n16tVQKBTYt28fJk6cCAcHB9jb22PQoEG4fv16mfuoNCkpKVi+fDl69eqlFa4kTZo0gb+/v8a0vLw8zJw5Ey4uLrC2tkb37t3x999/ay27e/duhIaGwtraGhYWFujYsSP27NlT4nauXr2KQYMGwdraGjY2NhgxYgTS0tLU/z527FjY2dnhwYMHWst269YNzZs3V//+008/oW3btrCxsYGFhQUaNmyIl19+WWs5Xb2OrVu3QqFQlPjalixZAoVCgdOnT5f4uoH/3tvo6GiMGTMGdnZ2qFOnDsLDw/Hvv/9qzb9y5Uq0aNECKpUKdnZ2GDhwIC5cuFDq+oGK7T+FQoFXX30VP/zwA3x8fGBhYYEWLVpg+/btWstW5LO7d+9evPLKK7C3t4e1tTVGjRqFrKwspKSk4IUXXoCtrS2cnZ0xffp05OXlaayj+DGblpaGSZMm4ZlnnoGlpSUcHR3RrVs3HDx4sMz9UJbi2yjvMVfWMQ8AGRkZmD59Ory8vGBqagpXV1e8+eabyMrK0tr+q6++iu+++w4+Pj4wMzPDmjVr1OeNTz/9FPPnz0eDBg2gUqnQqlWrEj9z5T1vFxcXF4chQ4bA09NT/X0xdOhQXLlyRWOfPP/88wCKvkAfP+cCJXcR5uTkYMaMGRqvf/Lkybh3757GfJ6enujXrx927dqFli1bwtzcHM2aNcPKlSufWDtQ1PU3adIkuLq6wtTUFA0bNsTMmTPV3yHSfty9ezcuXLigrr2sbtK8vDz8v//3/1C/fn1YWFigU6dOOHbsWInzpqSkYPz48XBzc4OpqSm8vLwwZ84c5Ofna8yXnJyM5557DlZWVrC1tcXw4cMRGxur9d0gDZ05c+YMevbsCSsrK4SGhqr/vbzn14SEBAwbNgyOjo4wMzODj48PFi1aVK59Wl6//vorLC0t1Z8NyZgxY3D9+nX8+eefFVuhkFGvXr1EvXr1xLJly8T+/fvF1q1bxfvvvy82btyonic4OFjY29sLb29vsWLFChEZGSn69esnAIg5c+YIPz8/sWHDBhERESHatWsnzMzMxLVr19TL79+/X5iYmIigoCCxadMmsXXrVtGzZ0+hUCg0tvPXX38JKysr0ahRI7F27VqxY8cOMXToUAFAfPLJJ0IIIdLT08WqVasEADFr1iwRExMjYmJixNWrV4UQQowePVqYmpoKHx8f8dlnn4ndu3eL999/XygUCjFnzpwy90VMTIwICwsT5ubm6vWmpqaKy5cvCwBi1apVWssAELNnz1b/Pnv2bAFAeHt7i/fff19ER0eLhQsXCjMzMzFmzBiNZUeOHCkUCoUYN26c+O2338TOnTvF/PnzxVdffSWEEOLEiROiYcOGIjAwUF3PiRMnhBCixJrKu5+l/dewYUPx2muvicjISLF8+XJRt25dERISolGjNG9Jr/1x69evFwDEkiVLypxPsm/fPgFAeHp6iuHDh4sdO3aIDRs2iAYNGogmTZqI/Px89bw//PCDUCgUYsCAAWLLli1i27Ztol+/fkKpVIrdu3dr7XsPDw/x1ltvicjISLFw4UJRp04dERgYKB4+fCiEEOLUqVMCgPj+++81ajp37pwAIBYtWiSEEOLIkSNCoVCIIUOGiIiICLF3716xatUqMXLkyCp7HXl5ecLR0VEMHz5ca5+1adNGtGzZssz9Kr1f7u7u4uWXXxY7d+4Uy5YtE46OjsLd3V3cvXtXPe9HH30kAIihQ4eKHTt2iLVr14qGDRsKGxsb8c8//2jtV0l5958QQr1v2rRpIzZv3iwiIiJE165dhbGxsbh06ZJ6vop+dr28vMS0adNEVFSU+OSTT4RSqRRDhw4VLVu2FPPmzRPR0dHi7bffFgDE559/rlFn8WP2r7/+EhMnThQbN24U+/fvF9u3bxdjx44VRkZGYt++fWUuW5ri85X3mCvrmM/KyhIBAQHCwcFBLFy4UOzevVt89dVXwsbGRnTr1k0UFhZqbN/V1VX4+/uL9evXi71794qzZ8+qzxvu7u6iU6dO4pdffhE//fSTaN26tTAxMRFHjhyp8HsiHQOP76uffvpJvP/+++LXX38VBw4cEBs3bhTBwcGiXr16Ii0tTQghRGpqqvozuGjRIo1zrhBF53IPDw/1OgsLC0WvXr2EsbGxeO+990RUVJT47LPP1Md3Tk6Oel4PDw/h5uYmnnnmGbF27VoRGRkpnn/+eQFAHDhwoMz3Ljs7W/j7+4s6deqIzz77TERFRYn33ntPGBsbi7CwMCGEEDk5OSImJkYEBgaKhg0bqmtPT08vdb2jR48WCoVCvPXWWyIqKkosXLhQuLq6CmtrazF69Gj1fDdu3BDu7u7Cw8NDLF26VOzevVvMnTtXmJmZiZdeekk9X2ZmpmjcuLGws7MTixYtEpGRkWLKlCnCy8tL65w9evRoYWJiIjw9PcWCBQvEnj17RGRkpBCi/OfXc+fOCRsbG+Hn5yfWrl0roqKixLRp04SRkZH44IMPytynQhTlCJVKJerWrSuUSqVo2LChePfdd8WDBw805mvXrp1o3bq11vJnz54VAMTSpUufuK3HyRqwLC0txZtvvlnmPMHBwQKAiIuLU0+7ffu2UCqVwtzcXCNMnTx5UgAQX3/9tXpau3bthKOjo7h//756Wn5+vvD19RVubm7qE8OQIUOEmZmZSEpK0th+nz59hIWFhbh3754QQojY2NhSv/RHjx4tAIjNmzdrTA8LCxPe3t5P2BtFy9epU0djWmUC1qeffqox36RJk4RKpVK/1j/++EMAEDNnziyznubNm4vg4GCt6SXVVN79LJ3sJ02apLHOTz/9VAAQN27cUE9bs2aNUCqVYs2aNWXW+fHHHwsAYteuXWXOJ5FOytIJS7J582YBQMTExAghir5U7OzsRHh4uMZ8BQUFokWLFqJNmzbqadK+nzJlisa8P/74owAg1q1bp54WHBwsAgICNOabOHGisLa2Vu+/zz77TABQf+6q63VMnTpVmJuba2z3/PnzAoD45ptvSq1FiP/e24EDB2pMP3z4sAAg5s2bJ4QQ4u7du8Lc3Fyr7qSkJGFmZiaGDRumnlY8YAlRvv0nRNHx4eTkJDIyMtTTUlJShJGRkViwYIF6WkU/u6+99prGtgcMGCAAiIULF2pMDwgI0AqlTwpJ+fn5Ii8vT4SGhmrtx6cNWOU55ko75hcsWCCMjIxEbGysxvSff/5ZABAREREa27exsRF37tzRmFc6b7i4uIjs7Gz19IyMDGFnZye6d++unlbe96SkgFVcfn6+yMzMFHXq1FH/ASlEURArbdniAWvXrl0lnls3bdokAIhly5app3l4eAiVSiWuXLminpadnS3s7OzE+PHjS61TCCG+++67Er9DPvnkEwFAREVFqacFBweL5s2bl7k+IYS4cOFCmeemxwPW+PHjhaWlpUbtQvx3Pjp37pwQQohFixYJAGLnzp0a840fP77EgAVArFy5UmPeipyXevXqJdzc3LRC5KuvvipUKpXWZ624mTNnisWLF4u9e/eKHTt2iFdffVUYGxuLLl26iIKCAvV8TZo0Eb169dJa/vr16wKA+Oijj8rcTnGydhG2adMGq1evxrx583D06FGt5nSJs7MzgoKC1L/b2dnB0dERAQEBcHFxUU/38fEBAHVTcFZWFv78808899xzGgPGlUolRo4cieTkZHVXyt69exEaGgp3d3eNbb/00kt48OABYmJiyvWaFAoFwsPDNab5+/trNE9XtWeffVZr+zk5OUhNTQUA7Ny5EwAwefJknWyvIvu5rBoBaOynUaNGIT8/v9Ruv6f1pBqOHDmCO3fuYPTo0cjPz1f/FBYWonfv3oiNjdXqHik+HuKFF16AsbEx9u3bp572xhtv4OTJkzh8+DCAoq6XH374AaNHj1bvP6kr+oUXXsDmzZtx7dq1ankdL7/8MrKzs7Fp0yb1+latWgUzM7NyD/Asvg86dOgADw8P9T6IiYlBdna21kBqd3d3dOvWrdTuV0l59p8kJCQEVlZW6t+dnJzg6OhYqXOEpF+/fhq/S+edvn37ak0vz3H/3XffoWXLllCpVDA2NoaJiQn27NnzxO7SiirPMVea7du3w9fXFwEBARqfoV69epXYPdWtWzfUrVu3xHUNGjQIKpVK/buVlRXCw8Pxxx9/oKCgoFLvyeMyMzPx9ttvo3HjxjA2NoaxsTEsLS2RlZVV6X26d+9eAND6zD7//POoU6eO1mc2ICAADRo0UP+uUqnQtGnTJ+7rvXv3ok6dOnjuuec0pkvbfdKxURLpuCvt3PS47du3IyQkBC4uLhrvc58+fQAABw4cUP/XyspK6yo8adxSSQYPHqzxe3nPSzk5OdizZw8GDhwICwsLjXnDwsKQk5ODo0ePlrkP5s2bh4kTJyIkJARhYWH45ptv8PHHH+OPP/7Ab7/9pjFvWVctV/SKZlkD1qZNmzB69GgsX74c7du3h52dHUaNGoWUlBSN+Uq6OsLU1FRruqmpKYCivnIAuHv3LoQQcHZ21lpeCma3b99W/7c88z2JhYWFxskDKBoULtVUHezt7bW2D0A9yDstLQ1KpRL169fXyfYqsp/LW2NFSCeyy5cvV2i5J9Vw8+ZNAMBzzz0HExMTjZ9PPvkEQgjcuXNHYx3F96mxsTHs7e01Xn///v3h6empHj+wevVqZGVlaQTeLl26YOvWreqA6ebmBl9fX2zYsKFKX0fz5s3RunVr9RjHgoICrFu3Dv379y/3VUolfa7q16+vcawBKPXz8qRjrTz7T1J83wBF+0faN5X57JZ23ilp+pOO+4ULF2LixIlo27YtfvnlFxw9ehSxsbHo3bu3zi/KeJpj7ubNmzh9+rTW58fKygpCCK3bk5S0PyWlfT4ePnyIzMzMSr0njxs2bBi+/fZbjBs3DpGRkTh27BhiY2NRr169Su/T27dvw9jYGPXq1dOYrlAoND7bkid97sraTv369bW+yB0dHWFsbFzu76Hi6wRKPzc97ubNm9i2bZvW+yyNbZTe59u3b8PJyUlrWyVNA4q+F62trbW2BTz5vHT79m3k5+fjm2++0ZovLCxMo66KGDFiBABohLPi52qJdH6s6JWasl5F6ODggC+//BJffvklkpKS8Pvvv+Odd95BampqiYPVK6pu3bowMjLCjRs3tP5NGtzp4OAAoGjHlme+6iaFteKD5CtzoEnq1auHgoICpKSklHkiLK+K7OeqEBISAhMTE2zduhUTJkzQ2Xqlmr/55ptSrz4pfkJJSUmBq6ur+vf8/Hzcvn1b40RmZGSEyZMn491338Xnn3+OxYsXIzQ0FN7e3hrr6t+/P/r374/c3FwcPXoUCxYswLBhw+Dp6Yn27dtX2esYM2YMJk2ahAsXLuDff//FjRs3MGbMmHJvr/gfSNK0xo0bA/jvy6e0z8uTPivl3X/lIfdnd926dejatSuWLFmiMf3+/ftVts3KcHBwgLm5eakDtYvvo7L+0i/t82FqagpLS0sYGxtX+j1JT0/H9u3bMXv2bLzzzjvq6bm5uVp/DFWEvb098vPzkZaWphGyhBBISUlRtzg/LXt7e/z5558QQmjsw9TUVOTn51fqsygdb6Wdmx7n4OAAf39/zJ8/v8R1SQHX3t6+xEHyJb23QMmfh/Kel/Lz89Wtl6X1unh5eZU4vTyMjP5rZ/Lz88OGDRuQn5+v0bp35swZAICvr2/F1l3pqnSsQYMGePXVV9GjRw+cOHFCJ+usU6cO2rZtiy1btmj85VBYWIh169bBzc0NTZs2BQCEhoZi7969WleyrV27FhYWFuoPwNO0tFSGk5MTVCqV1tVbxZs1K0Jq7i1+Ui+uPH9xARXbz1Whfv366r9W165dW+I8ly5dKvMKuJJ07NgRtra2OH/+PFq1alXij9R6ISl+n5XNmzcjPz8fXbt21Zg+btw4mJqaYvjw4fj777/LvDWHmZkZgoOD8cknnwAA4uPjq/R1DB06FCqVCqtXr8bq1avh6uqKnj17lnt7xffBkSNHcOXKFfU+aN++PczNzbFu3TqN+ZKTk9Vd9U9Skf1XFrk/uwqFQn1OkZw+fbrcQxJ0rbRjvl+/frh06RLs7e1L/PxU5KacW7Zs0WjZu3//PrZt24bOnTtDqVQ+1XuiUCgghNDap8uXL0dBQYHWawXKdy6XPpPFP7O//PILsrKyyvWZLY/Q0FBkZmZi69atGtOl81pltiMdd6Wdmx7Xr18/9e0fSnqfpYAVHByM+/fvq4ebSCpyQ87ynpcsLCwQEhKC+Ph4+Pv7lzhfSS2GTyLdIeDxcDdw4EBkZmbil19+0ZrXxcUFbdu2rdA2ZGvBSk9PR0hICIYNG4ZmzZrBysoKsbGx2LVrFwYNGqSz7SxYsAA9evRASEgIpk+fDlNTUyxevBhnz57Fhg0b1Ml69uzZ6v7n999/H3Z2dvjxxx+xY8cOfPrpp7CxsQFQdH8Uc3Nz/Pjjj/Dx8YGlpSVcXFw0xoLpkkKhwIgRI9Q3k2vRogWOHTuG9evXV3qdnTt3xsiRIzFv3jzcvHkT/fr1g5mZGeLj42FhYYHXXnsNQFGa37hxIzZt2oSGDRtCpVLBz8+vxHWWdz9XxNq1a/Hyyy9j5cqVTxyHtXDhQvz777946aWXEBkZiYEDB8LJyQm3bt1CdHQ0Vq1ahY0bN2rdqqEslpaW+OabbzB69GjcuXMHzz33HBwdHZGWloZTp04hLS1NK6Ru2bIFxsbG6NGjB86dO4f33nsPLVq0wAsvvKAxn62tLUaNGoUlS5bAw8NDa9ze+++/j+TkZISGhsLNzQ337t3DV199BRMTEwQHB5f7NVTmddja2mLgwIFYvXo17t27h+nTp2v8lfckcXFxGDduHJ5//nlcvXoVM2fOhKurKyZNmqRe/3vvvYd3330Xo0aNwtChQ3H79m3MmTMHKpUKs2fPfuI2nrT/KqIqPrvl1a9fP8ydOxezZ89GcHAw/v77b3z44Yfw8vLS+vKrDqUd82+++SZ++eUXdOnSBVOmTIG/vz8KCwuRlJSEqKgoTJs2rdxfPkqlEj169MDUqVNRWFiITz75BBkZGZgzZ456nsq+J9bW1ujSpQv+97//wcHBAZ6enjhw4ABWrFihdVNJqTVi2bJlsLKygkqlgpeXV4lf1j169ECvXr3w9ttvIyMjAx07dsTp06cxe/ZsBAYGYuTIkeXdxWUaNWoUFi1ahNGjRyMxMRF+fn44dOgQPvroI4SFhaF79+4VXqePjw9GjBiBL7/8EiYmJujevTvOnj2Lzz77TKvb7sMPP0R0dDQ6dOiA119/Hd7e3sjJyUFiYiIiIiLw3Xffwc3NDaNHj8YXX3yBESNGYN68eWjcuDF27tyJyMhIACjX+aIi56WvvvoKnTp1QufOnTFx4kR4enri/v37uHjxIrZt26YeI1eSgwcPYv78+Rg4cCAaNmyInJwc7Ny5E8uWLUO3bt00zh19+vRBjx49MHHiRGRkZKBx48bYsGEDdu3ahXXr1lXoHlgA5LtNQ05OjpgwYYLw9/cX1tbWwtzcXHh7e4vZs2eLrKws9XylXSnh4eEh+vbtqzUdgJg8ebLGtIMHD4pu3bqJOnXqCHNzc9GuXTuxbds2rWXPnDkjwsPDhY2NjTA1NRUtWrQo8eq9DRs2iGbNmgkTExONK3ZKugpQiJKvhCpJacunp6eLcePGCScnJ1GnTh0RHh4uEhMTS72KULoUWSJdRXT58mX1tIKCAvHFF18IX19fYWpqKmxsbET79u019ktiYqLo2bOnsLKyUt+CQIjSr2wsz36Wail+NVJJVwOV9zYNkvz8fLFmzRrRrVs3YWdnJ4yNjUW9evVEnz59xPr169VXi0jb+umnnzSWL+11HThwQPTt21fY2dkJExMT4erqKvr27auxvLTvjx8/LsLDw4WlpaWwsrISQ4cOFTdv3iyx3v379wsA4uOPP9b6t+3bt4s+ffoIV1dXYWpqKhwdHUVYWJg4ePCg1j7T5euQREVFCQACgMZtE8oivV9RUVFi5MiRwtbWVn21YEJCgtb8y5cvF/7+/urPX//+/dVXKUnKOnbK2n9ClHwuEKLo3PH4lVNCPN1nt7TjrqTjufgxm5ubK6ZPny5cXV2FSqUSLVu2FFu3btW6iq2kZUtTfL6KHHOlHfNCFF2aP2vWLOHt7a1+z/z8/MSUKVNESkqKxvZL2u/S5/KTTz4Rc+bMEW5ubsLU1FQEBgaqL9t/XHnek5JeQ3Jyshg8eLCoW7eusLKyEr179xZnz54t8X3/8ssvhZeXl1AqlRrHTEn7Pzs7W7z99tvCw8NDmJiYCGdnZzFx4kSN248IUfp3U3BwcIlXaBZ3+/ZtMWHCBOHs7CyMjY2Fh4eHmDFjhsatIKT1lecqQiGKPmfTpk0Tjo6OQqVSiXbt2omYmJgS90laWpp4/fXXhZeXlzAxMRF2dnYiKChIzJw5U2RmZqrnS0pKEoMGDVKf6wYPHiwiIiIEAPHbb7+p5yvte01S3vPS5cuXxcsvvyxcXV2FiYmJqFevnujQoYP66uTSJCQkiLCwMOHq6irMzMyESqUSfn5+Yv78+Vr7VAgh7t+/L15//XVRv359YWpqKvz9/cWGDRvK3EZpFEIIUbFIRkS6MG3aNCxZsgRXr16tVBO3vlm9ejXGjBmD2NhYtGrVqsq3V9v2X22XmJgILy8v/O9//8P06dPlLoeqwEcffYRZs2YhKSmpyh8JVRPwUTlE1ezo0aP4559/sHjxYowfP57hoIK4/4jk9+233wIAmjVrhry8POzduxdff/01RowYwXD1CAMWUTVr3749LCws0K9fP8ybN0/ucmoc7j8i+VlYWOCLL75AYmIicnNz0aBBA7z99tuYNWuW3KXpDXYREhEREemY7Ldp+OOPPxAeHg4XFxcoFAqty1NLcuDAAQQFBUGlUqFhw4b47rvvqqFSIiIiovKRPWBlZWWhRYsW6v7cJ7l8+TLCwsLQuXNnxMfH491338Xrr7+udd8KIiIiIrnoVRehQqHAr7/+igEDBpQ6z9tvv43ff/9d45lSEyZMwKlTp2S7OR8RERHR42rcIPeYmBitu0r36tULK1asQF5eHkxMTLSWyc3N1XjUTGFhIe7cuQN7e/sqvYkgERER6Y4QAvfv34eLi0uFboAshxoXsFJSUrSe/yY9r+jWrVslPltvwYIFGncJJiIioprr6tWren87iBoXsADtB0dKvZyltUbNmDEDU6dOVf+enp6OBg0a4OrVq1qPCiCimmXu3Ln47LPPAACjALwKQAVgPYD/AShA0SMwfvzxx4o/6oKI9EpGRgbc3d1hZWUldylPVOMCVv369bWe2J2amgpjY+NSbzhoZmam9fBPoOi5VQxYRDXXli1b1OHq22+/xWSVChg/HigowAKlEqFvvIHwxYuxc+dOLFy4EHPnzpW5YiLShZowvEe/OzBL0L59e0RHR2tMi4qKQqtWrUocf0VEtVNaWhrGjh0LAHjrrbcwefJkYOxYIDER2LdpvsUBAAAgAElEQVQPSExE988/x/LlywEA8+fP54UwRFRtZA9YmZmZOHnyJE6ePAmg6DYMJ0+eRFJSEoCi7r1Ro0ap558wYQKuXLmCqVOn4sKFC1i5ciVWrFjBZ1sRGZgZM2bg3r17CAgIwPz58//7Bzc3oGvXov8CGD58OEaPHg0hBF555RXk5+fLUzARGRTZA1ZcXBwCAwMRGBgIAJg6dSoCAwPx/vvvAwBu3LihDlsA4OXlhYiICOzfvx8BAQGYO3cuvv76awwePFiW+omo+sXFxWHlypUAiroGn9R6/fnnn8Pe3h7nzp3DmjVrqqNEIjJwenUfrOqSkZEBGxsbpKencwwWUQ3Ut29fREREYMSIEfjhhx/KtcwXX3yBqVOnws3NDQkJCVCpVFVcJRHpWk36/pa9BYuIqCJOnjyJiIgIGBkZYfbs2eVebuLEiXB3d0dycjKWLl1ahRUSETFgEVENs2DBAgDAiy++iMaNG5d7OZVKhZkzZwIAvvrqKxQUFFRJfUREAAMWEdUgV69exc8//wwAeOeddyq8/KhRo2Bvb4/Lly/jt99+03V5RERqDFhEVGOsWLEChYWFCA4Ohr+/f4WXNzc3x4QJEwAUjckiIqoqDFhEVCPk5+er72k1fvz4Sq9n0qRJMDY2xqFDh3D+/HldlUdEpIEBi4hqhJ07d+LatWtwcHDAoEGDKr0eFxcX9O3bFwCwatUqXZVHRKSBAYuIaoR169YBAEaOHFnio68qYsyYMQCAH374AXl5eU9dGxFRcQxYRKT3MjMzsW3bNgDAsGHDnnp9YWFhcHR0xM2bN7Fr166nXh8RUXEMWESk97Zt24bs7Gw0btwYQUFBT70+ExMTDB8+HACwfv36p14fEVFxDFhEpPc2btwIABgyZAgUCoVO1vnCCy8AALZv347s7GydrJOISMKARUR67e7du9i5cyeAooClK23btoW7uzsyMzMRGRmps/USEQEMWESk53777Tfk5eXB19cXzZs319l6FQoFnnvuOQDATz/9pLP1EhEBDFhEpOd+//13AMDgwYN1vu7nn38eQNEYr5ycHJ2vn4gMFwMWEemt3NxcREVFAQDCw8N1vv62bdvCzc0N9+/fZzchEekUAxYR6a0DBw4gKysLLi4uaNmypc7Xb2RkpG4Zk1rKiIh0gQGLiPSWdO+rvn376uzqweL69esHAIiIiEBhYWGVbIOIDA8DFhHpJSEEtm/fDuC/EFQVunTpAktLS6SkpCA+Pr7KtkNEhoUBi4j00vnz55GYmAiVSoXu3btX2XZMTU3Ro0cPAMCOHTuqbDtEZFgYsIhIL0VERAAAQkJCYGFhUaXbkh7+zIBFRLrCgEVEeik6OhoA0Lt37yrfVp8+fQAAsbGxSE1NrfLtEVHtx4BFRHonJycHBw8eBIAq7R6UuLi4IDAwEEII9V3jiYieBgMWEemdI0eOICcnB87OzvDx8amWbYaFhQH4r+WMiOhpMGARkd6J3rIFANC9Q4cquz1DcaGhoQCAPdHREHv3AsnJ1bJdIqqdGLCISL+sWIHdixYBAHps2QKsWFEtm23fvj1UJiZISU3FhdBQwMOj2rZNRLUPAxYR6Y/kZNx55RUcf/RrqBDA+PHV0pqkunULnfLyAAC7AaCwsNq2TUS1DwMWEemPhATsEwICwDMAXACgoAC4eLFath366H/3SNOqa9tEVOswYBGR/mjSBPsf/W83aZpSCTRuXC3b7v5ovNd+APnVuW0iqnUYsIhIf7i54Q83NwBAMFAUcJYuBR5Nq+ptBy5dClsAGQDijIyqb9tEVOswYBGR3rhz5w7OXLsGAOj8yy9AYiIwdmy1bV/5yisIeXRj0z3TplXrtomodmHAIiK9cfjwYQgh4O3tDadBg2RpPQp99GDpPXFx1b5tIqo9GLCISG8cOHAAANClSxfZapDuhyXd7JSIqDIYsIhIb/zxxx8A5A1Y3t7ecHR0RG5uLmJjY2Wrg4hqNgYsItIL9+/fx4kTJwAAwcHBstWhUCjUAU8KfEREFcWARUR6ISYmBgUFBfD09IS7u7ustUgBS3rgNBFRRTFgEZFe0IfuQUnnzp0BFA26z8/Pl7kaIqqJGLCISC/owwB3iZ+fH2xsbJCZmYlTp07JXQ4R1UAMWEQku4cPH6oHlHfq1EnmagClUqmug+OwiKgyGLCISHbx8fHIzc2Fvb09mjZtKnc5AP7rJuQ4LCKqDAYsIpLdkSNHAADt27eH4tHzAOX2+EB3IYTM1RBRTcOARUSyi4mJAVAUsPRFUFAQzM3NcevWLfz1119yl0NENQwDFhHJTgpYHTp0kLmS/5iamqJdu3YAOA6LiCqOAYuIZHX16lUkJydDqVSidevWcpejQRroLgVAIqLyYsAiIllJ4cXf3x916tSRuRpNUpelNEaMiKi8GLCISFb62D0okboIExIScOvWLZmrIaKahAGLiGSljwPcJXXr1oWPjw8AdhMSUcUwYBGRbHJyctQPeNbHgAX8VxcDFhFVBAMWEcnm+PHjyMvLg6OjI7y8vOQup0QMWERUGQxYRCSbx8df6csNRouTxoYdO3aMD34monJjwCIi2ejz+CtJs2bNYGtriwcPHuD06dNyl0NENQQDFhHJ5ujRowD0O2AZGRmhbdu2ANhNSETlx4BFRLK4fv06rl+/DiMjI7Rs2VLucsokdRPyflhEVF4MWEQki9jYWABA8+bN9e4Go8VxoDsRVRQDFhHJQgpY+vZ4nJK0bdsWCoUCly9fRkpKitzlEFENwIBFRLKoSQHL2toavr6+ANiKRUTlw4BFRNVOCIG4uDgANSNgAewmJKKKYcAiomr377//4s6dOzA1NYWfn5/c5ZQLAxYRVQQDFhFVO6l7MCAgAKampjJXUz5SwIqLi0NeXp7M1RCRvmPAIqJqV5PGX0maNGkCW1tb5OTk4OzZs3KXQ0R6jgGLiKpdTQxYRkZG6nqPHTsmczVEpO8YsIioWhUUFODEiRMAalbAAoA2bdoAAP7880+ZKyEifceARUTV6sKFC8jKyoKlpSW8vb3lLqdCpEfmsAWLiJ6EAYuIqpXUPRgUFASlUilzNRUjtbidP38e9+/fl7kaItJnDFhEVK2k1p+a1j0IAPXr10eDBg0ghMDx48flLoeI9JheBKzFixfDy8sLKpUKQUFBOHjwYJnzf/nll/D29oa5uTnc3d0xZcoU5OTkVFO1RPQ0auIA98dJ47DYTUhEZZE9YG3atAlvvvkmZs6cifj4eHTu3Bl9+vRBUlJSifP/+OOPeOeddzB79mxcuHABK1aswKZNmzBjxoxqrpyIKio3NxenT58GUPMDFge6E1FZZA9YCxcuxNixYzFu3Dj4+Pjgyy+/hLu7O5YsWVLi/DExMejYsSOGDRsGT09P9OzZE0OHDlU/doOI9NepU6eQl5cHe3t7eHp6yl1OpXCgOxGVh6wB6+HDhzh+/Dh69uypMb1nz544cuRIict06tQJx48fV5/c/v33X0RERKBv376lbic3NxcZGRkaP0RU/R7vHlQoFDJXUzktW7aEkZERkpOTcf36dbnLISI9JWvAunXrFgoKCuDk5KQx3cnJCSkpKSUuM2TIEMydOxedOnWCiYkJGjVqhJCQELzzzjulbmfBggWwsbFR/7i7u+v0dRBR+dT08VcAYGlpiebNmwP47/UQERUnexchAK2/ZIUQpf51u3//fsyfPx+LFy/GiRMnsGXLFmzfvh1z584tdf0zZsxAenq6+ufq1as6rZ+Iyqc2BCyAA92J6MmM5dy4g4MDlEqlVmtVamqqVquW5L333sPIkSMxbtw4AICfnx+ysrLwf//3f5g5cyaMjLQzo5mZGczMzHT/Aoio3O7fv48LFy4AqB0Ba8WKFRzoTkSlkrUFy9TUFEFBQYiOjtaYHh0djQ4dOpS4zIMHD7RClFKphBACQogqq5WIns6JEycghICbmxvq168vdzlPRWrBio2NRWFhoczVEJE+krUFCwCmTp2KkSNHolWrVmjfvj2WLVuGpKQkTJgwAQAwatQouLq6YsGCBQCA8PBwLFy4EIGBgWjbti0uXryI9957D88++2yNuys0kSGpLd2DAODr6wtzc3NkZGTgn3/+QbNmzeQuiYj0jOwB68UXX8Tt27fx4Ycf4saNG/D19UVERAQ8PDwAAElJSRotVrNmzYJCocCsWbNw7do11KtXD+Hh4Zg/f75cL4GIyqE2BSxjY2MEBQXh0KFDOHbsGAMWEWlRCAPsV8vIyICNjQ3S09NhbW0tdzlEBqFhw4a4fPkyoqOj0b17d7nLeWrTpk3DwoULMXnyZHz77bdyl0NkEGrS97deXEVIRLXbrVu3cPnyZQBAq1atZK5GN3hHdyIqCwMWEVU56UkLTZo0ga2trczV6IYUsE6dOsVnoRKRFgYsIqpytWn8lcTT0xP16tVDXl4eTp06JXc5RKRnGLCIqMrVxoClUCh4w1EiKhUDFhFVKSFErQxYAO/oTkSlY8Aioip17do1pKSkQKlUIjAwUO5ydIoD3YmoNAxYRFSlpNar5s2bw8LCQuZqdEtqkUtISMDdu3dlroaI9AkDFhFVqdraPQgA9vb2aNSoEYD/rpQkIgIYsIioitXmgAVwHBYRlYwBi4iqjBBC3bLDgEVEhoQBi4iqzMWLF3Hv3j2YmZnBz89P7nKqxOMD3Q3wyWNEVAoGLCKqMlL3YEBAAExMTGSupmoEBgZCqVTi5s2bSE5OlrscItITDFhEVGWkgCW18tRG5ubm8Pf3B8BuQiL6DwMWEVWZ2j7AXcJxWERUHAMWEVWJ/Px8nDhxAgADFhEZHgYsIqoS58+fR3Z2NqytrdG0aVO5y6lSUsCKi4tDQUGBzNUQkT5gwCKiKiF1DwYFBcHIqHafanx8fFCnTh1kZmbir7/+krscItIDtfusR0Syid2/HwDQulkzeQupBkqlEq1atQIAHFuzBuDVhEQGjwGLiHRvxQrErlsHAGj93XfAihUyF1T12qhUAIBj//sf4OFhEK+ZiEqnEAZ4Z7yMjAzY2NggPT0d1tbWcpdDVLskJyOnQQNYCYF8AIkAPJRKIDERcHOTt7aqkpyMnxs0wPNCoCWA4wBQ218zkQxq0vc3W7CISLcSEnDyUbhyBNAAAAoKgIsX5a2rKiUkoM2jv1VPA8gGav9rJqIyMWARkW41aYJYhQIA0BqAAihqzWncWM6qqlaTJnBXKOAEIB/ASaD2v2YiKhMDFhHplpsbjrVtC6AoYEGpBJYurd1dZW5uUHz/PaT71R9TKGr/ayaiMjFgEZHOxd69CwBo8/HHReOQxo6Vt6DqMHYs2kyfDgA41r+/YbxmIioVAxYR6VR6ejr+/vtvAEDrsWMNqhWnTY8eAIBjZ8/KXAkRyY0Bi4h0Ki4uDgDg5eUFBwcHmaupXtK9sC5evIg7d+7IXA0RyYkBi4h0ylAe8FwSOzs7NGnSBMB/+4GIDBMDFhHplPTAY+n5fIaGD34mIoABi4h0zJBbsAAGLCIqwoBFRDpz48YNJCcnw8jICC1btpS7HFk8HrAM8EEZRPQIAxYR6YzUevXMM8/A0tJS5mrkERAQAGNjY6SmpiIpKUnucohIJgxYRKQzht49CAAqlQotWrQAwG5CIkPGgEVEOmPoA9wlHIdFRAxYRKQTQgi2YD3CgEVEDFhEpBOXLl3C3bt3YWZmBj8/P7nLkZUUsOLi4pCfny9zNUQkBwYsItIJqfUqICAApqamMlcjL29vb1hZWeHBgwe4cOGC3OUQkQwYsIhIJzj+6j9KpVL92Bx2ExIZJgYsItIJjr/SxHFYRIaNAYuInlp+fj5OnDgBgAFLwoBFZNgYsIjoqZ07dw7Z2dmwtrZG06ZN5S5HL0gB68yZM3jw4IHM1RBRdWPAIqKnJnUPtmrVCkZGPK0AgKurK5ydnVFQUID4+Hi5yyGiasYzIRE9NQ5w16ZQKNT7QwqgRGQ4GLCI6KlJAYvjrzRxHBaR4WLAIqKnkpmZiTNnzgAA2rVrJ3M1+oUBi8hwMWAR0VOJi4tDYWEh3N3d4eLiInc5ekW6F9alS5dw+/ZtmashourEgEVET+Xo0aMA2HpVEltbW/VVlRyHRWRYGLCI6KnExMQAANq3by9zJfqJ3YREhokBi4gqTQjBFqwnYMAiMkwMWERUaYmJiUhNTYWJiQkCAwPlLkcvPR6whBAyV0NE1YUBi4gqTWq9CgwMhEqlkrka/dSiRQuYmJggLS0NV65ckbscIqomDFhEVGnS+Ct2D5ZOpVKhRYsWAP4LpERU+zFgEVGlcfxV+UgXAEiBlIhqPwYsIqqU7Oxs9TP2eAVh2RiwiAwPAxYRVUp8fDzy8/Ph5OQEDw8PucvRa1LAio+PR3Z2tszVEFF1YMAiokp5fPyVQqGQuRr95uHhgfr16yM/Px/Hjx+XuxwiqgYMWERUKRx/VX4KhULdinXkyBGZqyGi6sCARUSVwoBVMR06dADAcVhEhoIBi4gqLDk5GcnJyTAyMkLr1q3lLqdGeHygO284SlT7MWARUYX9+eefAAB/f3/UqVNH5mpqhqCgIJiYmODmzZtITEyUuxwiqmIMWERUYbzBaMWpVCr144TYTUhU+zFgEVGFSQGhbdu2MldSs3CgO5HhYMAiogrJyclBXFwcAKBTp04yV1OzcKA7keFgwCKiComLi8PDhw/h6OiIRo0ayV1OjSK1YJ06dQpZWVkyV0NEVUkvAtbixYvh5eUFlUqFoKAgHDx4sMz57927h8mTJ8PZ2RkqlQo+Pj6IiIiopmqJDNvhw4cBAB07duQNRivI3d0drq6uKCgoULcCElHtJHvA2rRpE958803MnDkT8fHx6Ny5M/r06YOkpKQS53/48CF69OiBxMRE/Pzzz/j777/x/fffw9XVtZorJzJMhw4dAsDuwcriOCwiwyB7wFq4cCHGjh2LcePGwcfHB19++SXc3d2xZMmSEudfuXIl7ty5g61bt6Jjx47w8PBAp06d0KJFi2qunMjwFBYWqoNBx44dZa6mZuI4LCLDIGvAevjwIY4fP46ePXtqTO/Zs2epf939/vvvaN++PSZPngwnJyf4+vrio48+QkFBQanbyc3NRUZGhsYPEVXc33//jTt37sDc3Fx9ywGqGN5wlMgwyBqwbt26hYKCAjg5OWlMd3JyQkpKSonL/Pvvv/j5559RUFCAiIgIzJo1C59//jnmz59f6nYWLFgAGxsb9Y+7u7tOXweRoZC6B9u0aQNTU1OZq6mZAgMDYWpqilu3buHSpUtyl0NEVUT2LkIAWgNlhRClDp4tLCyEo6Mjli1bhqCgIAwZMgQzZ84stUsRAGbMmIH09HT1z9WrV3VaP5GhkAa4c/xV5ZmZmSEoKAgAx2ER1WayBiwHBwcolUqt1qrU1FStVi2Js7MzmjZtCqVSqZ7m4+ODlJQUPHz4sMRlzMzMYG1trfFDRBUntWBx/NXTebybkIhqJ1kDlqmpKYKCghAdHa0xPTo6Wj0QtLiOHTvi4sWLKCwsVE/7559/4OzszC4LoiqUkpKCS5cuQaFQqAMCVY50fmMLFlHtJXsX4dSpU7F8+XKsXLkSFy5cwJQpU5CUlIQJEyYAAEaNGoUZM2ao5584cSJu376NN954A//88w927NiBjz76CJMnT5brJRAZBKl70NfXF7a2tjJXU7NJXaxnzpzBvXv3ZK6GiKqCsdwFvPjii7h9+zY+/PBD3LhxA76+voiIiICHhwcAICkpCUZG/+VAd3d3REVFYcqUKfD394erqyveeOMNvP3223K9BCKDwPFXuuPk5IQmTZogISEBhw8fRt++feUuiYh0TPaABQCTJk3CpEmTSvy3/fv3a01r3749jh49WsVVEdHjOP5Ktzp37oyEhAQcPHiQAYuoFpK9i5CI9F9WVhbi4+MBsAVLV6T9+KRHgxFRzcSARURP9OeffyI/Px+urq5o0KCB3OXUCp07dwYAxMbGIjs7W+ZqiEjXGLCI6IkOHDgAAOjSpQsf8KwjjRo1Qv369ZGXl4djx47JXQ4R6RgDFhE9kRSwgoODZa6k9lAoFOpWLGl8GxHVHgxYRFSmnJwc9UUlDFi6JQUsjsMiqn0YsIioTMeOHUNubi6cnJzg7e0tdzm1ihSwjhw5UuYD64mo5mHAIqIycfxV1fHz84O1tTXu37+PU6dOyV0OEekQAxYRlYnjr6qOUqlU31eM3YREtQsDFhGV6uHDh+rn5TFgVQ2OwyKqnRiwiKhUcXFxyM7Ohr29PZ555hm5y6mVHg9YQgiZqyEiXWHAIqJSPT7+6vFngpLutG7dGmZmZkhNTUVCQoLc5RCRjvCMSUSlOhAZCQAIbtFC5kpqLzMzM7Ru3RoAcPD774HkZJkrIiJdYMAiohLlL1uGw9IA9zlzgBUrZK6o9upsbQ0AOPjZZ4CHB/c1US2gEAbY6Z+RkQEbGxukp6fD+tGJjYgek5yMYw0aoK0QsAVwC0VXvCExEXBzk7m4WiY5GbsaNEAfIeAJ4DIAcF8TlagmfX+zBYuItCUk4MCjv706A1ACQEEBcPGinFXVTgkJ6CQEjAEkPvrhviaq+RiwiEhbkybY/+h/1TdnUCqBxo3lqac2a9IElkZGaP3o130A9zVRLcCARURa8pyc8IeZGQCgG1D0hb90KbusqoKbG7BsGUIe3SV/n0LBfU1UCzBgEZGWY8eOITM3F/Z166LFnj1F44HGjpW7rNpr7FiE/PgjAGCvkxPEyy/LXBARPS0GLCLSsmfPHgBASGgojLp1Y2tKNejQvz9MTExwLSUFFzn+iqjGY8AiIi1SwAoNDZW5EsNhYWGBdu3aAQD27dsnczVE9LQYsIhIQ1ZWFmJiYgAwYFW3kJAQAAxYRLUBAxYRaTh06BDy8vLQoEEDNOaVbNXq8YBlgLcoJKpVGLCISMPj3YOKR1e2UfVo164dVCoVbt68ib/++kvucojoKTBgEZEGjr+Sj0qlQocOHQCwm5CopmPAIiK1O3fuID4+HgDQrVs3masxTByHRVQ7MGARkZo09ueZZ56Bs7Oz3OUYJClg7d+/H4WFhTJXQ0SV9VQBKzU1FSkpKbqqhYhktnv3bgDsHpRT69atYWFhgVu3buHs2bNyl0NElVSpgHX69Gk0b94czs7OcHV1haurK2bNmoWsrCxd10dE1Yjjr+RnamqKLl26AACio6NlroaIKqtSAWvs2LFwcnLCoUOHEB8fj3nz5mHnzp1o1aoV7t69q+saiagaXL16FQkJCTAyMkJwcPCTF6Aq07NnTwAMWEQ1WaUC1vnz57F48WK0b98e/v7+GDNmDOLi4tC8eXO89tpruq6RiKpBZGQkAKBNmzawtbWVuRrDJgWsAwcOICcnR+ZqiKgyKhWwSmqpUigU+Oijj/Dbb7/ppDAiql5SwOrVq5fMldAzzzwDFxcX5OTk4NChQ3KXQ0SVUO6A1bdvX7z77rvYvHkzJkyYgClTpuDmzZsa86Snp6Nu3bo6L5KIqlZ+fr66O6p3794yV0MKhQI9evQAAERFRclcDRFVhnF5Z/Tz88OJEyewatUqdbBq2LAhXnjhBQQEBKCgoACrVq3CF198UWXFElHVOHbsmPoPpNatW8tdDqGom3DNmjUch0VUQ5U7YH388cfq/7958ybi4+Nx8uRJnDx5EkuWLMHFixehVCoxZ84cDB48uEqKJaKqIXUP9ujRA0qlUuZqCAC6d+8OADh58iRu3rwJJycnmSsiooood8B6nJOTE3r37q3RlZCdnY1Tp07h1KlTOiuOiKrHrl27AHD8lT5xdHREYGAg4uPjsXv3bgwfPlzukoioAnR2J3dzc3O0a9cO48eP19Uqiaga3L59G7GxsQAYsPSNdDUhx2ER1Tx8VA6RgYuOjoYQAr6+vnB1dZW7HHqMNNBdeo+IqOZgwCIycLw9g/7q2LEjzM3NcePGDZw7d07ucoioAhiwiAyYEEIdsHh7Bv2jUqnUd9VnNyFRzcKARWTAzpw5gxs3bsDc3BydOnWSuxwqgTQOS7oQgYhqBgYsIgMmtV6FhIRApVLJXA2VpE+fPgCKHpuTmZkpczVEVF4MWEQGLCIiAgDHX+kzb29vNGzYEA8fPsTu3bvlLoeIyokBi8hA3bt3DwcPHgRQ9Cgs0k8KhQL9+vUDAOzYsUPmaoiovBiwiAxUZGQkCgoK4OPjg0aNGsldDpVBCsA7duzg7RqIaggGLCIDtX37dgBQt46Q/goODkadOnVw48YNxMfHy10OEZUDAxaRASooKFCPvwoPD5e5GnoSMzMz9U1H2U1IVDMwYBEZoKNHj+LOnTuoW7cu2rdvL3c5VA6PdxMSkf5jwCIyQFL3YJ8+fWBsXKlnvlM1CwsLAwAcO3YMqampMldDRE/CgEVkgLZt2waA469qEhcXFwQGBkIIgZ07d8pdDhE9AQMWkYG5fPkyzp07B6VSyftf1TC8XQNRzcGARWRgpC/njh07ws7OTuZqqCKkcViRkZHIy8uTuRoiKgsDFpGB4e0Zaq7WrVvD0dERGRkZ+OOPP+Quh4jKwIBFZEAyMzOxb98+AAxYNZGRkZH6thq//vqrzNUQUVkYsIgMyM6dO/Hw4UM0atQIzZo1k7scqoSBAwcCALZu3YrCwkKZqyGi0jBgERkQqdVj0KBBUCgUMldDlREaGgpLS0tcu3YNsbGxcpdDRKVgwCIyELm5ueoB7lIrCNU8KpVKfU8sdhMS6S8GLCIDsXfvXmRkZMDZ2Rlt27aVuxx6ClJA/vXXX/nwZyI9xYBFZCCk1o4BAwbAyIiHfk0WFhYGU1NT/PPPP7hw4YLc5RBRCXiWJTIABQUF2Lp1K4Ci8VdUs1lbW6N79+4A2E1IpK8YsIgMwJEjR5CWloa6desiODhY7nJIBx7vJiQi/cOARWQAtmzZAgAIDw+HiYmJzNWQLjz77PFeLEYAACAASURBVLMwMjLC8ePHceXKFbnLIaJiGLCIajkhhLqVg1cP1h6Ojo7o3LkzAGDz5s0yV0NExTFgEdVyJ0+exJUrV2BhYYGePXvKXQ7p0IsvvggA2LRpk8yVEFFxehOwFi9eDC8vL6hUKgQFBeHgwYPlWm7jxo1QKBQYMGBAFVdIVDNtWb0aANA7OBgWFhbyFkM6NXjwYHU34cV164DkZLlLIqJH9CJgbdq0CW+++SZmzpyJ+Ph4dO7cGX369EFSUlKZy125cgXTp09XN5MTkSaxfDk2ff01AGDwrl3AihUyV0S65OjoiG7e3gCAzSNHAh4efI+J9IRC6MFd6tq2bYuWLVtiyZIl6mk+Pj4YMGAAFixYUOIyBQUFCA4OxpgxY3Dw4EHcu3dPfRn6k2RkZMDGxgbp6emwtrbWyWsg0jvJyYhv0AAthYA5gFQAlkolkJgIuLnJXBzpRHIyljdogFeEgD+AUwDA95hqsZr0/S17C9bDhw9x/PhxrbEhPXv2xJEjR0pd7sMPP0S9evUwduzYJ24jNzcXGRkZGj9EtV5CAjY++vupLwBLACgoAC5elLMq0qWEBAwSAsYATgP4C+B7TKQnZA9Yt27dQkFBAZycnDSmOzk5ISUlpcRlDh8+jBUrVuD7778v1zYWLFgAGxsb9Y+7u/tT102k70TjxpCGPg+RJiqVQOPGMlVEOtekCeyMjCD9eboJ4HtMpCdkD1gShUKh8bsQQmsaANy/fx8jRozA999/DwcHh3Kte8aMGUhPT1f/XL16VSc1E+mzP69dwxUUtVyFAUVfvEuXsuuoNnFzA5Ytw4uPzpWbAIjvvuN7TKQHjOUuwMHBAUqlUqu1KjU1VatVCwAuXbqExMREhIeHq6cVFhYCAIyNjfH333+jUaNGGsuYmZnBzMysCqon0l8bN24EAPQfOBDmr79e1KrBL97aZ+xY9G/fHqYBAbiQl4fTrVujhdw1EZH8LVimpqYICgpCdHS0xvTo6Gh06NBBa/5mzZrhzJkzOHnypPrn2WefRUhICE6ePMnuPyIUXQQi3XzyxTFjgK5dGa5qMZtnnkH4s88CAH744QeZqyEiQA8CFgBMnToVy5cvx8qVK3HhwgVMmTIFSUlJmDBhAgBg1KhRmDFjBgBApVLB19dX48fW1hZWVlbw9fWFqampnC+FSC8cOnQIN27cgK2tLW8uaiBGjhwJAFi/fj0KCgpkroaIZO8iBIruRnz79m18+OGHuHHjBnx9fREREQEPDw8AQFJSEoyM9CILEtUIUvfgwIED2T1uIPr06QN7e3vcuHEDe/bsYbAmkple3AerutWk+2gQVVReXh5cXV2RlpaGyMhIftEakFdffRWLFi3C8OHDsW7dOrnLIdK5mvT9zWYholomKioKaWlpqFevHrp16yZ3OVSNpG7CX3/9FZmZmTJXQ2TYGLCIapm1a9cCAIYNGwZjY70YBUDVpE2bNmjatCkePHiALVu2yF0OkUFjwCKqRe7du4fffvsNQNHFIWRYFAqFuhVLCtpEJA8GLKJa5KeffkJubi58fX0RGBgodzkkgxEjRgAA9u7di6SkJJmrITJcDFhEtciaNWsAFLVelfQkBKr9PD09ERISAiEEVq1aJXc5RAaLAYuolrh06RIOHz4MIyMjDB8+XO5ySEbjxo0DAKxYsYL3xCKSCQMWUS0h3cG7R48ecHFxkbkaktOgQYNgZ2eHq1evIioqSu5yiAwSAxZRLfD/27vzuKir/Y/jr2FkURHUXFNBr6lJWOaWS6WV172yLDGTzJTUMrey9Gq5lUv1M83SXEivLS6pmNessMTyprnFNbtYYalkuUEqosk25/cHMFcEFXTkOwPv5+MxD+E7Z77zOZ75zvlwvud7vg6HwzmpWZPbxc/PzznZfeHChRZHI1IyKcESKQY2bdrE/v37KVeuHN27d7c6HHEDOacJ165dy9GjRy2ORqTkUYIlUgwsWLAAyLqCrEyZMhZHI+4gNDSUli1bkpGRweLFi60OR6TEUYIl4uGOHz/uXFQyIiLC4mjEneR8HhYuXEgJvCuaiKWUYIl4uCVLlpCWlkazZs209pXk0rNnT/z9/dm3bx9fffWV1eGIlChKsEQ8mDHGeXpQo1dyIX9/f3r37g3AO++8Y3E0IiWLEiwRD7Z582Z++uknypYtyyOPPGJ1OOKGBg8eDMCqVav4448/LI5GpORQgiXiwebPnw/AI488Qrly5SyORtxR48aNuf3228nIyNAolkgRUoIl4qESExNZuXIlAE8++aTF0Yg7e+aZZwCYN28eqampFkcjUjIowRLxUAsWLCA1NZWmTZvSrFkzq8MRN/bAAw9Qo0YNjh07xkcffWR1OCIlghIsEQ+Unp7O22+/DcCwYcN0Y2e5JG9vb+dcrNmzZ1scjUjJoARLxANFRUXx+++/U6VKFXr27Gl1OOIBIiIi8PHxYfv27Wzfvt3qcESKPSVYIh7ozTffBGDQoEH4+vpaHI14gipVqtCrVy9Ao1giRUEJloiH2bVrF9988w2lSpVi0KBBVocjHiRnsvvy5cu1ZIPINaYES8TD5Ixe9ezZk+rVq1scjXiSZs2acfvtt5Oenu78HInItaEES8SD/PHHHyxbtgzImtwuUljPP/88AHPnziU5OdniaESKLyVYIh5k5syZpKWl0aZNG1q0aGF1OOKBunbtSsOGDUlOTnYuVCsirqcES8RDnDhxgrlz5wIwevRoi6MRT+Xl5cWoUaMAeOONN0hLS7M4IpHiSQmWiIeYO3cuKSkphIaG0qVLF6vDEQ/Wu3dvrr/+ev744w8++OADq8MRKZaUYIl4gL/i45n52msAvPDCC3h56dCVK+fr68vw4cMBeG3iRBwJCRZHJFL86FtaxN1FRrKoQQOOnzxJMBB25ozVEUkx8KSfHwHA3oMHWVe7NkRGWh2SSLFiM8YYq4MoasnJyQQGBnLq1CkCAgKsDkfk4g4dIj0oiPrGcACYDQyx2+HAAahZ09rYxHMdOgTBwbzgcPAq0BzY5uWF7eBBfa7ErXlS/60RLBF3Fh/P4uzkqgrwBEBmJuzbZ2lY4uHi48Hh4FmgNLAD+NTh0OdKxIWUYIm4sdSgIF7O/nk0UAbAbocbbrAuKPF89eqBlxdVgKezN00ATN261sUkUswowRJxY5Gff04CUB0YBFnJ1bx5Oo0jV6dmTZg/H+x2RnHeKNaePRYHJlJ8KMEScVPnzp3jlVdeAeAfkydTOiYma+5V//7WBibFQ//+cOAAVWJieHrgQAAmTpxICZyWK3JNaJK7m0+Sk5Jr1qxZDB8+nFq1ahEfH4+vr6/VIUkxdfToUerUqcNff/3F+vXr6dy5s9UhieTLk/pvjWCJuKGUlBSmTp0KwLhx45RcyTVVtWpVnnrqKQDGjx+vUSwRF1CCJeKGXnvtNY4ePUrdunV5/PHHrQ5HSoBRo0ZRpkwZduzYQVRUlNXhiHg8JVgibub333/ntexV26dPn46Pj4/FEUlJULVqVUaMGAHAmDFjyMjIsDgiEc+mBEvEzbz00kv89ddftG7dmgcffNDqcKQEef7556lUqRI///wzkVrZXeSqKMEScSPff/89ixYtAuD111/HZrNZHJGUJAEBAbz44osATJgwgTO6LZPIFVOCJeImjDGMGjUKYwwPP/wwrVq1sjokKYEGDRrE3/72N44cOcKMGTOsDkfEYynBEnETH3/8MdHR0Xh7ezuvIBQpaj4+Ps7111599VWOHz9ucUQinkkJlogbOHv2LMOGDQOyruaqq1uWiIV69uxJ06ZNSUlJ4aWXXrI6HBGPpARLxA1MmTKFhIQEgoKC+Mc//mF1OFLCeXl5OU8Pzps3j9jYWIsjEvE8SrBELBYfH+9clmHmzJmULVvW4ohE4M4776RXr14YY3jmmWe0+KhIISnBErFQTueVlpZGp06d6N69u9UhiTi99tprlClThm+++YYPPvjA6nBEPIoSLBELrV69ms8//xwfHx/efPNNLcsgbqVmzZqMGzcOyFoj6/Tp0xZHJOI5lGCJWOTEiRM8/fTTQFbnVa9ePYsjEslr5MiR1K1bl8OHDzN58mSrwxHxGEqwRCzy7LPPcvToUW688UbGjh1rdTgi+fL19WXmzJkAvPHGG3z//fcWRyTiGZRgiVjgiy++YNGiRdhsNhYuXIifn5/VIYlcVLdu3XjggQfIyMhgwIABZGZmWh2SiNtTgiVSxM6cOUNERAQAQ4YMoU2bNhZHJHJ5b731FoGBgezYsYM333zT6nBE3J4SLJEiNm7cOA4cOEBQUBBTpkyxOhyRArn++uudy4mMGzeO/fv3WxyRiHtTgiVShDZ99BGzZs0CshZw9Pf3tzgikYIbMGAA7dq14+zZszzZty9m40Y4dMjqsETckhIskSJyavZs+vbsiTGGCKDT779bHZJIodhsNubPn4+ftzdfbN7Mu/fcA8HBEBlpdWgibkcJlkhROHSIYUOHkgD8DZgBMHCg/voXj1OvdGkmZWQAMBz41eHQZ1kkH0qwRIrA6shI/knWAbcE8AfIzIR9+yyNS6TQ4uMZaQx3AilAOJChz7JIHkqwRK6xI0eO8GT2vKsXAOc1g3Y73HCDVWGJXJl69bB7ebEECAC2ANNtNn2WRS6gBEvkGjLG0L9/f5JOnKBxrVpM8Mo+5Ox2mDcPata0NkCRwqpZE+bPJ9hu563sTRO8vNh55IilYYm4GyVYItfQzJkzWb9+Pb6+vry3fj0+Bw9CTAwcOAD9+1sdnsiV6d8fDhygz8aNPNytGxmZmfTu3Vv3KhQ5j80YY6wOoqglJycTGBjIqVOnCAgIsDocKaZ27txJ69atSU9PZ86cOQwePNjqkERc7s8//+SWW27h0KFD9OrViw8//FA3LZdrxpP6b41giVwDp06dIiwsjPT0dHr06MGgQYOsDknkmqhYsSLLly+nVKlSLFu2jLlz51odkohbUIIl4mLGGAYOHMivv/5KcHAwCxYs0F/0Uqy1bt2a6dOnAzBixAh27txpcUQi1lOCJeJikZGRLF++HLvdztKlS6lQoYLVIYlccyNGjKB79+6kpaXx8MMPc+LECatDErGUEiwRF/ruu+8YMmQIAK+88gqtWrWyOCKRomGz2Vi0aBF16tThwIED9OrVi4zsBUlFSiK3SbDmzJlDnTp18PPzo2nTpmzevPmiZRcsWMAdd9xBhQoVqFChAu3bt2f79u1FGK1IXklJSTz44IOkpqbStWtXRo0aZXVIIkWqfPnyrF69mjJlyhAdHc0LL7xgdUgilnGLBGv58uUMHz6csWPHEhsbyx133EHnzp1JSEjIt/ymTZt45JFHiImJYevWrQQFBdGhQwd+173dxCKZmZk88sgjHDx4kLp16/Lee+/h5eUWh5dIkWrcuDGLFy8GYMaMGc6fRUoat1im4bbbbqNJkya5rj5p2LAh3bt3Z+rUqZd9fWZmJhUqVOCtt97iscceu2x5T7rMUzzD2LFjmTJlCqVLl+bbb7/l5ptvtjokEUu99NJLTJ48GR8fHzZt2qTT5eISntR/W/4ndlpaGrt27aJDhw65tnfo0IEtW7YUaB9nz54lPT2dihUr5vt8amoqycnJuR4irrJmzRqmTJkCwMKFC5VciQATJkxwTnp/4IEH+O2336wOSaRIWZ5gJSYmkpmZSdWqVXNtr1q1KkcKeOuF0aNHU6NGDdq3b5/v81OnTiUwMND5qFWr1lXHLQKwe/du+vTpA8DQoUPp3bu3xRGJuAcvLy/ee+89GjVqxNGjR+nSpQsnT560OiyRImN5gpXjwnWCjDEFWjvo1VdfZenSpaxevRo/P798y4wZM4ZTp045H/pLSlzh8OHD3HvvvZw5c4a7776b119/3eqQRNyKv78///rXv6hWrRo//PADDz74IGlpaVaHJVIkLE+wKlWqhN1uzzNadezYsTyjWhd6/fXXmTJlCtHR0Zc8LePr60tAQECuh8jV+Cs+nvvvuovffvuN+vXrs3LlSry9va0OS8TtBAcHs379evz9/YmJieGJXr0wGzfCoUNWhyZyTVmeYPn4+NC0aVM2bNiQa/uGDRto3br1RV/32muvMXnyZD777DOaNWt2rcMUcXIsWEDf+vXZ8dNPVAQ+6dtXi4mKXMKtt97KypUrsXt58UFUFGPvuQeCgyEy0urQRK4ZyxMsgJEjR7Jw4ULeffdd9u7dy4gRI0hISHDev+2xxx5jzJgxzvKvvvoq48aN491336V27docOXKEI0eOkJKSYlUVpIQwv/3Gc08+yUeAN7AauOGll/TXuMhldLzpJhZkX7Q+FZjrcMDAgTp2pNgqZXUAAGFhYSQlJTFp0iQOHz5MaGgo69evJzg4GICEhIRcawrNmTOHtLQ0HnrooVz7GT9+PBMmTCjK0KWEmT5pEm9k/xwJtAXIzIR9+6BmTesCE3F38fH0M4YEYALwNFAhM5NeOnakmHKLdbCKmietoyHuY+HChURERAAwAxiR84TdDgcOqJMQuZRDhyA4GONw8BTwDll/4a9ZvJiufftaHJx4Ck/qv93iFKGIu1u9ejUDBw4EYEyXLoyw27OesNth3jwlVyKXU7MmzJ+PzW7nbaC3zUYG8NCgQWzatMni4ERcTwmWyGVERUURFhaGw+FgwIABvLJuXdaIVUxM1r/9+1sdoohn6N8fDhzAKyaGxb/8wn333ce5c+e499572bFjh9XRibiUThG6+RCjWGvVqlX06tWLjIwMevfuzT//+U9KlXKLqYsiHu/cuXN07dqVjRs3UrFiRTZu3Mgtt9xidVjixjyp/9YIlshFrFy5krCwMDIyMujTpw9LlixRciXiQn5+fnz88cfcdttt/Pnnn9xzzz385z//sTosEZdQgiWSj8WLF9OrVy8yMzMJDw9n8eLF2HPmXYmIy/j7+/PZZ5/RokULkpKSuOeee4iNjbU6LJGrpgRL5DzGGKZOnUq/fv3IzMzk8ccfZ9GiRUquRK6h8uXLEx0dnWska9euXVaHJXJVlGCJZMvMzGTYsGH84x//AOCFF17g3XffVXIlUgQCAwOJjo6mVatWnDhxgvbt22viu3g0JVgiQEpKCg8//DCzZ88GYObMmUybNq1ANxwXEdcICAjgs88+o3Xr1pw8eZK7776bL7/80uqwRK6IEiwp2Q4dYv+HH9K6eXOioqLw8fFh6dKlDBs2zOrIREqknCTrrrvuIiUlhS5duvDRRx9lLVQaE6Nb64jHUIIlJVdkJJuCgmj+6KPs+fFHqgYEsGnTJnr16mV1ZCIlWrly5Vi/fj09evQgLS2NsLAw5gQFwd136ybR4jGUYEmJZH77jTcjIvi7MSQBTYGdKSm0qlXL6tBEhKwlHJYvX86gPn0wxvC0MfwDcOgm0eIhlGBJiXPy5EkeevRRhhlDBtAb2AzUdDiybtosIm7Bbrczp18/xmf/PhXoAaTk3GBdxI0pwZISZfv27dx6662s3rwZb2AW8D5QGrLuK3jDDZbGJyK52erXZ4KXF4sBH2AN0BrY7+NjaVwil6MES0oEYwwzZ87k9ttv58CBA9SpU4ct48Yx1G7HBrpps4i7yr5JdF+7na+AasAeoPl997F+/XqLgxO5ON2L0M3vZSRX7+jRowwYMIB169YB0KNHDxYuXEj58uWz5nHs25c1cqXkSsR9ZR+rh8qWpfvgwc6FSEeMGMHUqVPx9fW1OEApCp7UfyvBcvMGkqvz8ccfM2DAABITE/Hx8eH//u//ePrpp7W+lYgHS01N5fnnn+fNN98EoEmTJnz44Yc0aNDA4sjkWvOk/lunCKVYOn36NAMGDKB79+4kJiZy8803s3PnToYMGaLkSsTD+fr6MmvWLNauXct1113Hd999xy233MKUKVNIT0+3OjwRQAmWFCfZCxFuWbOGxo0bExkZic1mY9SoUWzfvp1GjRpZHaGIuNC9997L7t276dixI6mpqYwdO5amTZuyffv2rAJanFQspFOEbj7EKAUUGUl6RAQTjWEq4ACCgoJYsmQJbdu2tTo6EbmGjDF88MEHDB8+nKSkJGw2G4+1asUrW7dSwxjw8oL586F/f6tDlavkSf23Eiw3byApgEOHiA0Kop8x7M7eFG6zMfuHHwgMCbE0NBEpOsePH+fZZ5/lvffeA6AMMAp4DvC32+HAAV3M4uE8qf/WKULxaKmpqYwbPZrm2cnVdcAKYIkxBB47ZnF0IlKUKleuzJIlS9j29tu0Ac4CE4HawPTMTFL27LE0PilZlGCJx9q2bRtNmjThlQ8+IBN4GIjL/leLhoqUXC3uu4/NNhsfAfWAJGA0UPvRR5k+fTopKSnWBiglghIs8TgpKSk8++yztG7dmri4OKpUqcLKwYNZYbdTBbRoqEhJV7MmtgULeMhuJw5YYrNRr2pVkk6cYPTo0dSuXZtXXnmFU6dOWR2pFGOag+Xm53Dlf4wxrFy5khEjRvD7778DEB4ezhtvvMF1112nRUNFJLfzvhMyqlVj6dKlTJ48mfj4eADKly/P0KFDGTZsGBUrVrQ4WCkIT+q/lWC5eQOVWIcOQXw81KsHNWvy888/88wzzxAdHQ1AnTp1eOutt+jSpYvFgYqIJ8nIyGDFihW88sorxMXFAeDv78/TTz/NyJEjqZKWluu7R9yLJ/XfSrDcvIFKpMhIePJJcDg4brMx+a67mPv112RkZODr68sLL7zA6NGjKV26tNWRioiHcjgcrF69mpdffpndu7OuPy7t48PAtDRGAddraQe35En9txIsN2+gEufQIQgOJsXhYBYwHTid/VSXLl2YNWsWN2jyuoi4iDGGdevWMfnFF9mRnWj5Av2B5728CD54UCNZbsST+m9Nche38ueuXUx0OAgGxpGVXDUFvvy//+OTTz5RciUiLmWz2bj33nvZNmMGnwO3A6nAHOAGh4MBAwfyyy+/WBukeCQlWOIW4uPjGTlyJMGPPsoE4E+gPvABsN3Li7t79rQ0PhEp3mz169PBy4uvgRjgHiADiFy/nvr16xMeHs6PP/5obZDiUZRgiWVSU1NZtWoVf//736lfvz5vvPEGKWfOcEutWiy32YgDetvteM2fryF6Ebm2ataE+fOx2e20A76w29kyZgydO3fG4XDw/vvvExISQlhYGHu0YKkUgOZgufk53GIj+6rAtOBgNuzdy4oVK1izZg3JyclA1jB9ly5dePrpp+nUqRO233/XkgsiUvTyWe5l165dvPzyy6xZs8ZZ7IEHHuDFF1/k1sqVddVhEfKk/lsJlps3UHGQNm8eXw4ezApjWAOcPO+56tWr07dvX5588knq1KljVYgiIpf1/fff8/LLL7Ny5Upyus6uwD+AVjYbtgULdNXhNeZJ/bcSLDdvIE+Vnp7Ol19+yYpFi1izYgUnznuuGvBwv3483K8fbdq0wctLZ6pFxHPExcUxZdw4lkZF4cje1hQYYrMR9tNPlK5Xz8rwijVP6r+VYLl5A3mSzMxMNm/ezLJly1i5ciVJSUnO56oBPYCeQBvAHhMD7dpZE6iIyNWKiSH+7ruZRtbFOKnZm68LCODxiAj69OnDLbfcgs1mszDI4seT+m8lWG7eQG7rvJXWfzh5ksjISJYvX87hw4edRapUqcJDnTrR8733uN0Y7DlP2O1w4IDmK4iI58pesw+Hg0QgkqylHRLOKxISEkLv3r3p3r07ISEhWXNLNV/rqnhS/60Ey80byC1FRvJXRAQrjWEe8M15T5UvX54ePXrQq1cv2rVrR6lSpbJWZh84EDIz/3cjZs1TEBFPd8F3W8acOXxStSrvvfce69atIzU11Vm0TqVKdEtMpBvQ1mbDV/O1rogn9d9KsNy8gdzNT199xbx27fgnWWtVAdiB+zt35vHBg+nYsSM+Pj55X6gbMYtIcXSR77ZTp06xatUqVq5cycaNG3MlW2WBu4FOL79M5969dYFPIXhS/60Ey80bqEhdcIPlHOfOnSMqKor58+ezadMm5/YgIAJ4Arhec6pERPJ1Zv16vuzalXXAOuDwBc83aNCAzp0707lzZ+688078/Pwu+n1c0nlS/60Ey80bqMicd4Nlsm9y+t+WLVm4cCFLlizhzz+zxqu8vLzo6nAwEOhE1uiV5lSJiFzCefO1DLAb+NRm49PmzdmyaxeZmZnOomXKlOGuG26g0549dDaGurrpdC6e1H8rwXLzBioS2Qd/psPBbiAKWA3EnVekVq1a9O/fnyeeeIJa0dGaUyUiUhgXmYt68uRJvvjiCz799FM+++wz/vjjj1wvqwd0stlov3AhbXv0IDAw0Jr43YQn9d9KsNy8gVwie6jZUbcuSaVLc/jwYefjyJEjHN6xg59Xr2YLkHzey7xLlaJrt25ERETQsWNH7HZ77n1qTpWISMFd5nvTGMOeyEg+jYjgU7IuIMo473kvLy+aN2/OPffcQ6tWrWjcuDE1atQoUVcnelL/rQTLzRuosFJSUti5cyd79+7ll19+4deNGzkUG8th4CiQfpnXlyPrJqc9bDa67dlD+ZtuuuYxi4hItvNOJyYDXwDRNhtfBgez78CBPMUr+ftzS0oKIUBDm42Q556j4XPPUbly5WK5Bpcn9d9KsNy8gS7p0CEyf/yRb0+fZu233xIdHc3333+Pw+G45MsqVaxI9Ro1qF69uvMR9NtvtFq6lEYOR9ZIlU77iYhY4yKnExMSEti4cSMxMTF899137N27N9f8rfNVrFiRkJAQGjZsmPVvpUo0Ll2aqrfd5tGjXJ7UfyvBcvMGys/Zs2eJfv55Pn77bdYBiRc8HxQUxC233EJdHx/+tmoVQUD17EdVwOdiV/zptJ+IiHsowPfxuc8/57+dOvE9sJesebN7gf02Gxfr2psD93XvTvfJk7nppps8bpTLk/pvJVju3EDZc6fMDTeQ4HDw1VdfERUVxeeffcZf5845VtGZfAAAFUBJREFUi5UHutpsdJs9mzu6d6dGjRr/e332ULOTrvgTESkeLvIdf3bvXn4+c4a4uDj2bttG3JtvEgf8eMHLGzZsSFhYGD179qRhw4YesTSEx/TfKMGytoEu8mE+efIkOydPZtsbb7DNGLaTNX/qfMFA9+xHG8AbIL+RKa2iLiJSfF3uOz4mBu6+G8haf+sT4GMg2tubtPT/zcptVKMGPf/4gzBjqHexpSHcIAFzm/67AJRgXcsGutSHMXvdqUyHgzibjS19+rDVy4tt27bx448X/p0BpYBbGjWiS/fuPNC6NY27dMF2ftNdamRKp/5ERIqvS33HX2SU69T33/Pxzp2sWLGC6Oho0s9LtmqQdSqx/uDB1G7UiFq1alFjxw6unzyZysbglV8CVkTJlxIsN+fyBsrvg5XPwp30748xhvjNm9nQrh3RxrCJ3Esj5KgD3Jb9aAHcCpQ+f4RKI1MiIlIQl+kvTqxdy5r772c5WVct5j9tPkspsubzNgBuHzmSu+6/n9Y//kipwYPz9HdOLky+lGC5uQsbKCMjgxMnTlC5cuXcBS/8UJz3++nAQL799lsOvv8+p997jzRj8LbZCHzsMa67/XYqPvkkgcZwGkgCfrHZiH3gAb7euZOEhIRcb1MWaAm0Cg+nZVgYLWrWpHKTJpefO6WRKRERKYgCjnKdAXYB39ls7O/XjwOJiRzau5ff4+M5BuSXMFQAOgPdyLrDR4Xz+6vISFIjIthmDB8Dx1u1IrBpU8p7edHm+utpHxZGqdq1/xfHZRIxJVhuLqeBfpszh/m7djE5MhKAqpUrUy0ggNcmTeLvf/2VewQqPJxjS5awzRjmAhtLlSI1I+PSb3QR3t7e3J6ezt+BvwONgVIXJlAaoRIRkaJyqT4nOwFLdzg4AvwO/Mdm4+v77iM6Joak5P+dh7EDrYEbOnUirXRpDkZFsQv46yJvGwSM6t2bR1q0wG/ECMoaw4c2Gx+EhvLL2bMcP36coWFhvBgWhldAAMn//S+B/fopwXJXOQnWU8Cci5S5CagElAYCgJ/Iun/U+YIrVyb0+HECAF8gDTgF/Fm/Pn/+/DMnyVq48zqyzmk3fvZZmrdvzx133EHZZcsun0BphEpERIrKpfqciyRgmQcP8m2dOvzLGNYB/73IrqsAdwM3A2eA/WTd+Pr8KTJeZJ3ROZ3P6xcA/YHPgC6gBMtd5SRYPmQlRZB1/72zwMtkrSNyMQFAP+AJIHTZMrx6987/VN7nnyuBEhGR4uNifdZ5ydevXl583bcvv9eti/fZswRPncpNxnATYIOsM0LZfeY5YBEwHTh43tvYgAFkDXJMzd5WDgjnf4MiSrDcVE6ClWM+EHHe878D64FVwA1AIFAXuI+s0SgbFCyRUgIlIiIlQQGSL+x2mDYNXngh18BEhpcXRx0O5pI1wf5Jsi70gqwliuqT92IwJVhu6vwEqzrwH7KGL3Px8sr61+HI+lD06QPvv69ESkREpDAu7CPzO90Iubc5HJCdnqwF7s/eVWOy+mwlWG4qJ8EaBIwFakJWQmVM1iOnwTt2zP2hUCIlIiJy9fLrT8/fdv7ZIWAh8D4wFwhBCZbbcl7muXgxASEhcOZMVoOCEigRERF3kJNwlS2b1U+XLUtyXByBjz+uBMtdedI6GiIiIpLFk/pvL6sDEBERESlulGCJiIiIuJgSLBEREREXU4IlIiIi4mJKsERERERczG0SrDlz5lCnTh38/Pxo2rQpmzdvvmT5VatWERISgq+vLyEhIURFRRVRpCIiIiKX5hYJ1vLlyxk+fDhjx44lNjaWO+64g86dO5OQkJBv+a1btxIWFkZ4eDi7d+8mPDycnj17sm3btiKOXERERCQvt1gH67bbbqNJkybMnTvXua1hw4Z0796dqVOn5ikfFhZGcnIyn376qXNbp06dqFChAkuXLr3s+3nSOhoiIiKSxZP6b8tHsNLS0ti1axcdOnTItb1Dhw5s2bIl39ds3bo1T/mOHTtetLyIiIhIUSpldQCJiYlkZmZStWrVXNurVq3KkSNH8n3NkSNHClU+NTWV1NRU5++nTp0CsjJhERER8Qw5/bYbnHy7LMsTrBw2my3X78aYPNuutPzUqVOZOHFinu21atW6gkhFRETESklJSQQGBlodxiVZnmBVqlQJu92eZ/Tp2LFjeUapclSrVq1Q5ceMGcPIkSOdv588eZLg4GASEhLcvoFcKTk5mVq1avHbb7+5/blrV1K9Ve+SQPVWvUuCU6dOERQURMWKFa0O5bIsT7B8fHxo2rQpGzZs4IEHHnBu37BhA/fff3++r2nVqhUbNmxgxIgRzm3R0dG0bt063/K+vr74+vrm2R4YGFiiPpg5AgICVO8SRPUuWVTvkqWk1tvLy/Ip5JdleYIFMHLkSMLDw2nWrBmtWrVi/vz5JCQkMGjQIAAee+wxatSo4byicNiwYdx5551Mnz6d+++/n48//pgvvviCf//731ZWQ0RERARwkwQrLCyMpKQkJk2axOHDhwkNDWX9+vUEBwcDkJCQkCtbbd26NcuWLWPcuHG8+OKL1K1bl+XLl3PbbbdZVQURERERJ7dIsACeeuopnnrqqXyf27RpU55tDz30EA899NAVvZevry/jx4/P97RhcaZ6q94lgeqtepcEqrf719stFhoVERERKU7cf5aYiIiIiIdRgiUiIiLiYkqwRERERFxMCZaIiIiIixXbBOuVV16hdevWlClThvLlyxfoNcYYJkyYwPXXX0/p0qVp164d//3vf3OVOXHiBOHh4QQGBhIYGEh4eDgnT568FlW4IoWN78CBA9hstnwfH330kbNcfs+/8847RVGlArmSdmnXrl2eOvXq1euq91uUChvfn3/+yTPPPEODBg0oU6YMQUFBDB061Hl/zhzu1t5z5syhTp06+Pn50bRpUzZv3nzJ8qtWrSIkJARfX19CQkKIiorK9XxBjnV3UJh6L1iwgDvuuIMKFSpQoUIF2rdvz/bt23OVefzxx/O0a8uWLa91NQqtMPVevHhxvp/Xc+fOXfE+rVKYGPP7/rLZbHTt2tVZxt3b++uvv+bee+/l+uuvx2azsWbNmsu+5quvvqJp06b4+fnxt7/9Ld/vJbdpa1NMvfTSS2bGjBlm5MiRJjAwsECvmTZtmilXrpxZtWqV2bNnjwkLCzPVq1c3ycnJzjKdOnUyoaGhZsuWLWbLli0mNDTUdOvW7VpVo9AKG19GRoY5fPhwrsfEiRNN2bJlzenTp53lALNo0aJc5c6ePVsUVSqQK2mXtm3bmoiIiFx1Onny5FXvtygVNr49e/aYBx980Kxdu9bs27fPfPnll6ZevXqmR48eucq5U3svW7bMeHt7mwULFpi4uDgzbNgwU7ZsWXPw4MF8y2/ZssXY7XYzZcoUs3fvXjNlyhRTqlQp8+233zrLFORYt1ph6927d2/z9ttvm9jYWLN3717Tr18/ExgYaA4dOuQs07dvX9OpU6dc7ZqUlFRUVSqQwtZ70aJFJiAgIM/32NXs0wqFjTEpKSlXfX/44Qdjt9vNokWLnGXcvb3Xr19vxo4da1atWmUAExUVdcnyv/76qylTpowZNmyYiYuLMwsWLDDe3t5m5cqVzjLu1NbFNsHKsWjRogIlWA6Hw1SrVs1MmzbNue3cuXMmMDDQvPPOO8YYY+Li4gyQ64t669atBjA//vij64MvJFfF17hxY/PEE0/k2laQD79VrrTebdu2NcOGDXP5fouKq+JbsWKF8fHxMenp6c5t7tTeLVq0MIMGDcq17cYbbzSjR4/Ot3zPnj1Np06dcm3r2LGj6dWrlzGmYMe6OyhsvS+UkZFhypUrZ/75z386t/Xt29fcf//9Lo3T1Qpb74J8x1/t/2VRuNoY33jjDVOuXDmTkpLi3OYJ7Z2jIN85zz//vLnxxhtzbRs4cKBp2bKl83d3autie4qwsPbv38+RI0fo0KGDc5uvry9t27Zly5YtAGzdupXAwMBcK8a3bNmSwMBAZxkruSK+Xbt28Z///If+/fvneW7IkCFUqlSJ5s2b88477+BwOFwW+9W4mnp/8MEHVKpUiZtuuonnnnuO06dPu2S/RcFV8Z06dYqAgABKlcq97rA7tHdaWhq7du3KdVwCdOjQ4aJ13Lp1a57yHTt2dJYvyLFutSup94XOnj1Lenp6npvibtq0iSpVqlC/fn0iIiI4duyYy+K+Wlda75SUFIKDg6lZsybdunUjNjb2qvdZlFwRY2RkJL169aJs2bK5trtzexfWxY7tnTt3kp6e7nZt7TYruVvtyJEjAFStWjXX9qpVq3Lw4EFnmSpVquR5bZUqVZyvt5Ir4ouMjKRhw4Z5bpw9efJk7rnnHkqXLs2XX37Js88+S2JiIuPGjXNJ7FfjSuv96KOPUqdOHapVq8YPP/zAmDFj2L17Nxs2bLiq/RYVV8SXlJTE5MmTGThwYK7t7tLeiYmJZGZm5ntcXqyOR44cuWT5ghzrVruSel9o9OjR1KhRg/bt2zu3de7cmYcffpjg4GD279/Piy++yN13382uXbvcYmXsK6n3jTfeyOLFi2nUqBHJycnMmjWLNm3asHv3burVq+eS/8tr7Wpj3L59Oz/88AORkZG5trt7exfWxY7tjIwMEhMTMca4VVt7VII1YcIEJk6ceMkyO3bsoFmzZlf8HjabLdfvxphc2y58Pr8yrlbQesPVxffXX3/x4Ycf8uKLL+Z57vyOtXHjxgBMmjTpmna417reERERzp9DQ0OpV68ezZo147vvvqNJkyZXvN+rVVTtnZycTNeuXQkJCWH8+PG5nrOivS/lcsfllZQv7D6tcKUxvvrqqyxdupRNmzbh5+fn3B4WFub8OTQ0lGbNmhEcHMwnn3zCgw8+6LrAr1Jh6t2yZctcE7fbtGlDkyZNmD17Nm+++eYV7dMqVxpjZGQkoaGhtGjRItd2T2nvwsjv/yhn+/k/X1jGirb2qARryJAhea7yulDt2rWvaN/VqlUDsjLk6tWrO7cfO3bMmQ1Xq1aNo0eP5nnt8ePH82TMrlTQen///fdXFd/KlSs5e/Ysjz322GXLtmzZkuTkZI4ePXrN6l5U9c7RpEkTvL29iY+Pp0mTJsW6vU+fPk2nTp3w9/cnKioKb2/vS5YvivbOT6VKlbDb7Xn++jz/uLxQtWrVLlm+IMe61a6k3jlef/11pkyZwhdffMHNN998ybLVq1cnODiY+Pj4q47ZFa6m3jm8vLxo3ry5s06u2Oe1djUxnj17lmXLljFp0qTLvo+7tXdhXezYLlWqFNdddx3GGPdq66Ke9FXUCjvJffr06c5tqamp+U5y37Ztm7PMt99+63aTnq80vrZt2+a5muxiZs+ebfz8/My5c+euOF5XcVW77NmzxwDmq6++cul+r5Urje/UqVOmZcuWpm3btubMmTMFei8r27tFixZm8ODBubY1bNjwkpPcO3funGtbp06d8kxyv9Sx7g4KW29jjHn11VdNQECA2bp1a4HeIzEx0fj6+uaaCG+1K6n3+RwOh2nWrJnp16+fy/ZZFK40xkWLFhlfX1+TmJh42fdwx/bOQQEnuTds2DDXtkGDBuWZ5O4ubV1sE6yDBw+a2NhYM3HiROPv729iY2NNbGxsrqUHGjRoYFavXu38fdq0aSYwMNCsXr3a7NmzxzzyyCP5LtNw8803m61bt5qtW7eaRo0aud1l+5eK79ChQ6ZBgwa5OmVjjImPjzc2m818+umnefa5du1aM3/+fLNnzx6zb98+s2DBAhMQEGCGDh16zetTUIWt9759+8zEiRPNjh07zP79+80nn3xibrzxRnPrrbeajIyMAu/XaoWtd3JysrnttttMo0aNzL59+3Jdvp1Tb3dr75zLriMjI01cXJwZPny4KVu2rDlw4IAxxpjw8PBcX57ffPONsdvtZtq0aWbv3r1m2rRp+S7TcLlj3WqFrff06dONj4+PWblyZa52zfnOO336tHn22WfNli1bzP79+01MTIxp1aqVqVGjhkfXe8KECeazzz4zv/zyi4mNjTX9+vUzpUqVyvUdd7l9uoPC1jvH7bffbsLCwvJs94T2Pn36tLNvBsyMGTNMbGysc0mF0aNHm/DwcGf5nGUaRowYYeLi4kxkZORFl2lwh7YutglW3759DZDnERMT4yxD9lo/ORwOhxk/frypVq2a8fX1NXfeeafZs2dPrv0mJSWZRx991JQrV86UK1fOPProo+bEiRNFVKvLu1x8+/fvz/P/YIwxY8aMMTVr1jSZmZl59vnpp5+axo0bG39/f1OmTBkTGhpqZs6cmeuyfqsVtt4JCQnmzjvvNBUrVjQ+Pj6mbt26ZujQoXnWiClu7R0TE5PvcQGY/fv3G2Pcs73ffvttExwcbHx8fEyTJk2co4zGZI289u3bN1f5jz76yDRo0MB4e3ubG2+80axatSrX8wU51t1BYeodHBycb7uOHz/eGGPM2bNnTYcOHUzlypWNt7e3CQoKMn379jUJCQlFXKvLK0y9hw8fboKCgoyPj4+pXLmy6dChg9myZUuh9ukuCvs5/+mnnwxgoqOj8+zLE9r7Yt9HOfXs27evadu2ba7XbNq0ydx6663Gx8fH1K5d28ydOzfPft2lrW3GZM8KExERERGX0DpYIiIiIi6mBEtERETExZRgiYiIiLiYEiwRERERF1OCJSIiIuJiSrBEREREXEwJloiIiIiLKcESERERcTElWCIiIiIupgRLRERExMWUYIlIsTFp0iQaNWpE2bJlqVq1KoMHDyY9Pd3qsESkBCpldQAiIq5gjCEzM5N58+ZRo0YN4uLieOyxx7j55psZPHiw1eGJSAmjmz2LSLHVu3dvKleuzKxZs6wORURKGJ0iFJFi4eDBgwwZMoTQ0FAqVKiAv78/K1asoGbNmlaHJiIlkBIsEfF4iYmJtGjRgsTERGbMmMG///1vtm7dit1up3HjxlaHJyIlkOZgiYjHW79+PRkZGSxduhSbzQbA22+/TVpamhIsEbGEEiwR8XgVK1YkOTmZtWvXEhISwr/+9S+mTp1KjRo1qFy5stXhiUgJpEnuIuLxjDEMHjyYDz/8kNKlS9OnTx/OnTvHwYMHWbdundXhiUgJpARLRERExMU0yV1ERETExZRgiYiIiLiYEiwRERERF1OCJSIiIuJiSrBEREREXEwJloiIiIiLKcESERERcTElWCIiIiIupgRLRERExMWUYImIiIi4mBIsERERERdTgiUiIiLiYv8P83jal1LOANkAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'smooth function: Chebyshev polynomial interpolation of degree 50')" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 51\n", - "a = @. cos(((1:n)-0.5) * pi/n) # = Chebyshev nodes of order n\n", - "afine = linspace(-1,1,1000)\n", - "b = 1 ./ (1 + 25 * a.^2)\n", - "plot(a, b, \"r.\")\n", - "A = a .^ (0:n-1)'\n", - "x̂ = A \\ b\n", - "plot(afine, (afine .^ (0:n-1)') * x̂, \"k-\")\n", - "xlabel(L\"a\")\n", - "ylabel(L\"b\")\n", - "xlim(-1,1)\n", - "ylim(0,1)\n", - "title(\"smooth function: Chebyshev polynomial interpolation of degree $(n-1)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "How this works goes far outside the bounds of 18.06, but is beautiful and fascinating mathematics. See, for example, [this book](https://people.maths.ox.ac.uk/trefethen/ATAP/) and [these video lectures](https://people.maths.ox.ac.uk/trefethen/atapvideos.html) by [Nick Trefethen](https://people.maths.ox.ac.uk/trefethen/).\n", - "\n", - "The great thing about fitting complicated functions to polynomials is that polynomials are usually easier to work with — finding roots, derivatives, and integrals of polynomials is easy, for example. A pioneering software package encapsulating this idea is [chebfun](http://www.chebfun.org/), and a Julia implementation of similar ideas is [ApproxFun](https://github.com/JuliaApproximation/ApproxFun.jl)." - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - }, - "widgets": { - "state": { - "0830e586-a8c8-4ed4-93ee-ac3243f41542": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "27349d0c-9119-4fdb-be2c-04717452ec18": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "34d7b83b-e4fe-43fa-8919-b70077d8263e": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "36d1ded7-edb8-4e09-91b6-dfbd46ffdbeb": { - "views": [ - { - "cell_index": 19 - } - ] - }, - "58a292a0-1cde-4194-b267-e87802fdf709": { - "views": [ - { - "cell_index": 21 - } - ] - }, - "8c46751f-88fc-4e50-a563-f4fcb4e4acb3": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "8f459522-861e-4949-88ff-b2f73d719ef0": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "9c01dcd5-b682-4df6-82b0-05e1cc7c6dce": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "cde5b1cb-7a8f-48fb-97e4-7d1e3287b502": { - "views": [ - { - "cell_index": 2 - } - ] - }, - "d011e795-82d1-48db-93d6-7af4d3adbbd7": { - "views": [ - { - "cell_index": 2 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Matrix-Exponentials.ipynb b/lectures/Matrix-Exponentials.ipynb deleted file mode 100644 index 75d35c81..00000000 --- a/lectures/Matrix-Exponentials.ipynb +++ /dev/null @@ -1,959 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "using PyPlot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Review: Solving ODEs via eigenvectors\n", - "\n", - "If we have a simple scalar ODE:\n", - "\n", - "$$\n", - "\\frac{dx}{dt} = a x\n", - "$$\n", - "\n", - "then the solution is\n", - "\n", - "$$\n", - "x(t) = e^{at} x(0)\n", - "$$\n", - "\n", - "where $x(0)$ is the initial condition.\n", - "\n", - "If we have an $m\\times m$ system of ODEs\n", - "\n", - "$$\n", - "\\frac{d\\vec{x}}{dt} = A\\vec{x}\n", - "$$\n", - "\n", - "we know that if $A = X \\Lambda X^{-1}$ is diagonalizable with eigensolutions $A\\vec{x}_k = \\lambda_k \\vec{x}_k$ ($k=1,2,\\ldots,m$), then we can write the solution as:\n", - "\n", - "$$\n", - "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2 + \\cdots\n", - "$$\n", - "\n", - "where the $\\vec{c}$ coefficients are determined from the initial conditions\n", - "\n", - "$$\n", - "\\vec{x}(0) = c_1 \\vec{x}_1 + c_2 \\vec{x}_2 + \\cdots\n", - "$$\n", - "\n", - "i.e. $\\vec{c} = X^{-1} \\vec{x}(0)$ where $X$ is the matrix whose columns are the eigenvectors and $\\vec{c} = (c_1, c_2, \\ldots, c_m)$.\n", - "\n", - "## Matrix exponential, first guess:\n", - "\n", - "It sure would be nice to have a formula as simple as $e^{at} x(0)$ from the scalar case. Can we **define the exponential of a matrix** so that \n", - "\n", - "$$\n", - "\\vec{x}(t) = \\underbrace{e^{At}}_\\mbox{???} \\vec{x}(0) \\, ?\n", - "$$\n", - "\n", - "But what is the exponential of a matrix? \n", - "\n", - "We can guess at least one case. For **eigenvectors, the matrix A acts like a scalar λ**, so we should have $e^{At} \\vec{x}_k = e^{\\lambda_k t} \\vec{x}_k$! \n", - "\n", - "This turns out to be exactly correct, but let's take it a bit more slowly." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Writing ODE solution in matrix form\n", - "\n", - "Another way of saying this is that we'd like to write the solution $x(t)$ as $\\mbox{(some matrix)} \\times \\vec{x}(0)$. This will help us to understand the solution as a *linear operation on the initial condition* and manipulate it algebraically, in much the same way as writing the solution to $Ax=b$ as $x = A^{-1} b$ helps us work with matrix equations (even though we rarely compute matrix inverses explicitly in practice).\n", - "\n", - "To do so, let's break down\n", - "\n", - "$$\n", - "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2 + \\cdots\n", - "$$\n", - "\n", - "into steps.\n", - "\n", - "1. Compute $\\vec{c} = X^{-1} \\vec{x}(0)$. That is, write the initial condition in the basis of eigenvectors. (In practice, we would solve $X \\vec{c} = \\vec{x}(0)$ by elimination, rather than computing $X^{-1}$ explicitly!)\n", - "\n", - "2. Multiply each component of $\\vec{c}$ by $e^{\\lambda t}$.\n", - "\n", - "3. Multiply by $X$: i.e. multiply each coefficient $c_k e^{\\lambda_k t}$ by $\\vec{x}_k$ and add them up.\n", - "\n", - "In matrix form, this becomes:\n", - "\n", - "$$\n", - "\\vec{x}(t) = X \\underbrace{\\begin{pmatrix} e^{\\lambda_1 t} & & & \\\\\n", - " & e^{\\lambda_2 t} & & \\\\\n", - " & & \\ddots & \\\\\n", - " & & & e^{\\lambda_m t} \\end{pmatrix}}_{e^{\\Lambda t}} \\underbrace{X^{-1} \\vec{x}(0)}_\\vec{c}\n", - "= \\boxed{ e^{At} \\vec{x}(0) }\n", - "$$\n", - "\n", - "where we have *defined* the \"matrix exponential\" of a diagonalizable matrix as:\n", - "\n", - "$$\n", - "e^{At} = X e^{\\Lambda t} X^{-1}\n", - "$$\n", - "\n", - "Note that we have defined the exponential $e^{\\Lambda t}$ of a *diagonal matrix* $\\Lambda$ to be the diagonal matrix of the $e^{\\lambda t}$ values.\n", - "\n", - "* Equivalently, $e^{At}$ is the matrix with the **same eigenvectors as A but with eigenvalues λ replaced by** $e^{\\lambda t}$.\n", - "\n", - "* Equivalently, **for eigenvectors, A acts like a number λ**, so $e^{At} \\vec{x}_k = e^{\\lambda_k t} \\vec{x}_k$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example\n", - "\n", - "For example, the matrix\n", - "\n", - "$$\n", - "A = \\begin{pmatrix}\n", - "0 & 1 \\\\\n", - "1 & 0\n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "has two eigenvalues $\\lambda_1 = +1$ and $\\lambda_2 = -1$ (corresponding to exponentially *growing* and *decaying* solutions to $d\\vec{x}/dt = A\\vec{x}$, respectively). The corresponding eigenvectors are:\n", - "\n", - "$$\n", - "\\vec{x}_1 = \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} , \\; \\vec{x}_2 = \\begin{pmatrix} 1 \\\\ -1 \\end{pmatrix} .\n", - "$$\n", - "\n", - "Hence, the matrix exponential should be:\n", - "\n", - "$$\n", - "e^{At} = \\underbrace{\\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}}_X\n", - " \\underbrace{\\begin{pmatrix} e^t & \\\\ & e^{-t} \\end{pmatrix}}_{e^{\\Lambda t}}\n", - " \\underbrace{\\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}^{-1}}_{X^{-1}}\n", - " = \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}\n", - " \\begin{pmatrix} e^t & \\\\ & e^{-t} \\end{pmatrix}\n", - " \\left[ \\frac{1}{2} \\begin{pmatrix} 1 & 1 \\\\ 1 & -1\\end{pmatrix} \\right]\n", - " = \\frac{1}{2} \n", - " \\begin{pmatrix} e^t & e^{-t} \\\\ e^t & -e^{-t} \\end{pmatrix}\n", - " \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}\n", - " = \\frac{1}{2} \n", - " \\begin{pmatrix} e^t + e^{-t} & e^t - e^{-t} \\\\ e^t - e^{-t} & e^t + e^{-t}\\end{pmatrix}\n", - " = \\begin{pmatrix} \\cosh(t) & \\sinh(t) \\\\ \\sinh(t) & \\cosh(t) \\end{pmatrix}\n", - "$$\n", - "\n", - "In this example, $e^{At}$ turns out to have a very nice form! In general, no one ever, ever, calculates matrix exponentials analytically like this except for toy $2\\times 2$ problems or *very* special matrices. (I will never ask you to go through this tedious algebra on an exam.)\n", - "\n", - "The computer is pretty good at computing matrix exponentials, however, and in Julia this is calculated by the `expm(A*t)` function. (There is a famous paper: [19 dubious ways to compute the exponential of a matrix](http://www.cs.cornell.edu/cv/researchpdf/19ways+.pdf) on techniques for this tricky problem.) Let's try it:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.54308 1.1752 \n", - " 1.1752 1.54308" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t = 1\n", - "[cosh(t) sinh(t)\n", - " sinh(t) cosh(t)]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.54308 1.1752 \n", - " 1.1752 1.54308" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm([0 1; 1 0]*t)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, it matches for $t=1$.\n", - "\n", - "What happens for larger $t$, say $t=20$?" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 2.42583e8 2.42583e8\n", - " 2.42583e8 2.42583e8" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t = 20\n", - "[cosh(t) sinh(t); sinh(t) cosh(t)]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 2.42583e8 2.42583e8\n", - " 2.42583e8 2.42583e8" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm([0 1; 1 0]*20)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For large $t$, the $e^t$ exponentially growing term takes over, and $\\cosh(t) \\approx \\sinh(t) \\approx e^t/2$:\n", - "\n", - "$$\n", - "e^{At} = \\begin{pmatrix} \\cosh(t) & \\sinh(t) \\\\ \\sinh(t) & \\cosh(t) \\end{pmatrix}\n", - "\\approx \\frac{e^t}{2} \\begin{pmatrix} 1 & 1 \\\\ 1 & 1 \\end{pmatrix}\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 2.42583e8 2.42583e8\n", - " 2.42583e8 2.42583e8" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "exp(20)/2 * [1 1; 1 1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But we could have seen this from our eigenvector expansion too:\n", - "\n", - "$$\n", - "\\vec{x}(t) = c_1 e^t \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} + c_2 e^{-t} \\begin{pmatrix} 1 \\\\ -1 \\end{pmatrix} \\approx c_1 e^t \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix}\n", - "$$\n", - "\n", - "where $c_1$ is the coefficient of the initial condition: (nearly) every initial condition should give $\\vec{x}(t)$ proportional to $(1,1)$ for large $t$, except in the very special case where $c_1 = 0$.\n", - "\n", - "In fact, since **these** two eigenvectors are an **orthogonal basis** (not by chance: we will see later that it happens because $A^T = A$), we can get $c_1$ just by a dot product:\n", - "\n", - "$$\n", - "c_1 = \\frac{\\vec{x}_1 ^T \\vec{x}(0)}{\\vec{x}_1 ^T \\vec{x}_1} = \\frac{\\vec{x}_1 ^T \\vec{x}(0)}{2}\n", - "$$\n", - "\n", - "and hence\n", - "\n", - "$$\n", - "\\vec{x}(t) \\approx c_1 e^t \\vec{x}_1 = \\frac{e^t}{2} \\vec{x}_1 \\vec{x}_1^T \\vec{x}(0) = \\frac{e^t}{2} \\begin{pmatrix} 1 & 1 \\\\ 1 & 1 \\end{pmatrix} \\vec{x}(0) \n", - "$$\n", - "\n", - "which is the same as our approximation for $e^{At}$ above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Series definition of a matrix exponential\n", - "\n", - "Just plugging in $t=1$ above, we see that we have defined the [matrix exponential](https://en.wikipedia.org/wiki/Matrix_exponential) by\n", - "\n", - "$$\n", - "e^{A} = X e^{\\Lambda} X^{-1}\n", - "$$\n", - "\n", - "This works (for a diagonalizable matrix $A$, at least), but it is a bit odd. It doesn't *look* much like any definition of $e^x$ for scalar $x$, and it's not clear how you would extend it to non-diagonalizable (defective) matrices.\n", - "\n", - "Instead, we can **equivalently** define matrix exponentials by starting with the **Taylor series** of $e^x$:\n", - "\n", - "$$\n", - "e^x = 1 + x + \\frac{x^2}{2!} + \\frac{x^3}{3!} + \\cdots + \\frac{x^n}{n!} + \\cdots\n", - "$$\n", - "\n", - "It is quite natural to define $e^A$ (for **any square** matrix $A$) by the **same series**:\n", - "\n", - "$$\n", - "e^A = I + A + \\frac{A^2}{2!} + \\frac{A^3}{3!} + \\cdots + \\frac{A^n}{n!} + \\cdots\n", - "$$\n", - "\n", - "This involves only familiar matrix multiplication and addition, so it is completely unambiguous, and it converges because the $n!$ denominator grows faster than $A^n \\sim \\lambda^n$ for the biggest $|\\lambda|$.\n", - "\n", - "Let's try summing up 100 terms of this series for a random $A$ and comparing it to both Julia's `expm` and to our formula in terms of eigenvectors:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.01443 0.177316 -0.396083 -0.247802 -1.37415 \n", - " 0.346655 1.78857 0.764516 -0.72246 1.37608 \n", - " 0.310727 -0.744581 0.831868 1.30593 -3.84946 \n", - " -2.37921 -2.51767 -3.18863 0.298747 0.765365\n", - " 1.36838 1.43755 0.478554 -0.330148 -0.929847" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = randn(5,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 2.47277 0.511146 -0.1485 -0.613896 -1.06134\n", - " 2.84151 5.75252 4.07823 -0.482641 -2.83171\n", - " -6.73843 -9.0214 -4.86201 2.50582 2.06533\n", - " 0.420618 2.37196 -1.60708 -1.14324 4.9231 \n", - " 2.13169 2.21291 1.57121 -0.297329 -1.46333" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 2.47277 0.511146 -0.1485 -0.613896 -1.06134\n", - " 2.84151 5.75252 4.07823 -0.482641 -2.83171\n", - " -6.73843 -9.0214 -4.86201 2.50582 2.06533\n", - " 0.420618 2.37196 -1.60708 -1.14324 4.9231 \n", - " 2.13169 2.21291 1.57121 -0.297329 -1.46333" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "series = I + A # first two terms\n", - "term = A\n", - "for n = 2:100\n", - " term = term*A / n # compute Aⁿ / n! from the previous term Aⁿ⁻¹/(n-1)!\n", - " series = series + term\n", - "end\n", - "series" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Complex{Float64},2}:\n", - " 2.47277+4.17935e-17im 0.511146+2.65442e-16im … -1.06134+6.10343e-17im\n", - " 2.84151-1.46885e-15im 5.75252-1.91472e-15im -2.83171+3.1472e-16im \n", - " -6.73843+2.55795e-15im -9.0214+1.74692e-15im 2.06533-1.03261e-15im\n", - " 0.420618-1.09905e-15im 2.37196+8.41017e-16im 4.9231+1.23692e-15im\n", - " 2.13169-5.66756e-16im 2.21291-6.71792e-16im -1.46333+4.17809e-17im" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(A)\n", - "X * diagm(exp.(λ)) * inv(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 2.47277 0.511146 -0.1485 -0.613896 -1.06134\n", - " 2.84151 5.75252 4.07823 -0.482641 -2.83171\n", - " -6.73843 -9.0214 -4.86201 2.50582 2.06533\n", - " 0.420618 2.37196 -1.60708 -1.14324 4.9231 \n", - " 2.13169 2.21291 1.57121 -0.297329 -1.46333" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "real(X * diagm(exp.(λ)) * inv(X)) # get rid of tiny imaginary parts" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hurray, they all match, up to roundoff errors! (Though the eigenvector method doesn't realize that the result is real, and we see tiny imaginary parts due to roundoff errors.)\n", - "\n", - "But why does the eigenvector definition match the series definition? They look quite different, but they are not! We can see this simply by looking at what the series does to an eigenvector:\n", - "\n", - "## Series definition for eigenvectors\n", - "\n", - "Even simpler, the key fact is that the eigenvalues of $e^A$ are $e^\\lambda$. We can see this from the series definition:\n", - "\n", - "If $Ax = \\lambda x$, thend\n", - "$$\n", - "e^A x = \\left(I + A + \\frac{A^2}{2!} + \\cdots\\right)x = \\left(1 + \\lambda + \\frac{\\lambda^2}{2!} + \\cdots\\right) x = e^\\lambda x\n", - "$$\n", - "from the series definition of $e^\\lambda$.\n", - "\n", - "It follows that $e^A$ has the same eigenvectors as $A$ and the eigenvalues become $e^\\lambda$.\n", - "\n", - "If $A$ is diagonalizable, this means $e^A = X e^\\Lambda X^{-1}$: we get the same result as before!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Matrix exponentials and derivatives\n", - "\n", - "In first-year calculus, we learn that $\\frac{d}{dt} e^{at} = a e^{at}$. The same thing works for matrices!\n", - "\n", - "$$\n", - "\\boxed{\\frac{d}{dt} e^{At} = A e^{At}}\n", - "$$\n", - "\n", - "You can derive this in various ways. For example, you can plug $e^{At}$ into the series definition and take the derivative term-by-term.\n", - "\n", - "This is why $\\vec{x}(t) = e^{At} \\vec{x}(0)$ solves our ODE:\n", - "\n", - "1. It satisfies $d\\vec{x}/dt = A\\vec{x}$, since $\\frac{d}{dt} e^{At} \\vec{x}(0) = A e^{At} \\vec{x}(0)$\n", - "\n", - "2. It satisfies the initial condition: $e^{A\\times0} \\vec{x}(0) = \\vec{x}(0)$, since from the series definition we can see that $e^{A\\times0}=I$.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Products of matrix exponentials\n", - "\n", - "In high school, you learn that $e^x e^y = e^{x+y}$. (In fact, exponentials $a^x$ are essentially the *only* functions that have this property.)\n", - "\n", - "However, this is **not** in general true for matrices:\n", - "\n", - "$$\n", - "\\boxed{e^A e^B \\ne e^{A + B} }\n", - "$$\n", - "\n", - "unless $AB = BA$ (unless they **commute**).\n", - "\n", - "This can be seen from the series definition: if you multiply together the series for $e^A$ and $e^B$, you can only re-arrange this into the series for $e^{A + B}$ if you are allowed to re-order products of $A$ and $B$. For example, the $(A+B)^2=(A+B)(A+B)$ term gives $A^2 +AB+BA +B^2$ (not $A^2 +2AB +B^2$!), which requires both orders $BA$ and $AB$.\n", - "\n", - "Let's try it:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 6.17598 19.6728 -1.66702 2.51091 8.7367\n", - " 20.5522 102.073 -7.27974 16.7237 30.2402\n", - " -62.3322 -254.756 29.1714 -33.7915 -94.9602\n", - " 61.743 223.815 -38.5368 20.8227 96.4689\n", - " 8.20601 38.3868 -2.31351 6.6087 12.1611" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = randn(5,5)\n", - "expm(A) * expm(B)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 5.03837 12.9698 1.94154 0.468425 2.79803\n", - " 108.889 295.162 21.2169 -4.5088 93.6245 \n", - " -105.044 -274.169 -21.6401 5.25907 -86.0411 \n", - " 7.25132 13.8611 -1.25912 -2.67275 8.10598\n", - " 57.0939 148.673 10.9999 -2.85229 47.6897 " - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(A + B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "They are not even close!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, since $A$ and $2A$ commute ($A\\times2A=2A^2 = 2A \\times A$), we *do* have $e^{A}e^{2A}=e^{3A}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -4.89008 -18.3628 -9.74324 2.87295 -4.66528\n", - " -66.354 -60.0132 -61.3167 4.45378 85.6283 \n", - " 139.462 162.786 121.314 -30.7473 -101.742 \n", - " -59.3594 -83.5661 -14.1441 45.7616 -71.4801 \n", - " -21.6007 -23.7546 -24.5253 0.283899 31.2687 " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(A) * expm(2A)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -4.89008 -18.3628 -9.74324 2.87295 -4.66528\n", - " -66.354 -60.0132 -61.3167 4.45378 85.6283 \n", - " 139.462 162.786 121.314 -30.7473 -101.742 \n", - " -59.3594 -83.5661 -14.1441 45.7616 -71.4801 \n", - " -21.6007 -23.7546 -24.5253 0.283899 31.2687 " - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(3A)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -4.89008 -18.3628 -9.74324 2.87295 -4.66528\n", - " -66.354 -60.0132 -61.3167 4.45378 85.6283 \n", - " 139.462 162.786 121.314 -30.7473 -101.742 \n", - " -59.3594 -83.5661 -14.1441 45.7616 -71.4801 \n", - " -21.6007 -23.7546 -24.5253 0.283899 31.2687 " - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(2A) * expm(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Inverses of matrix exponentials\n", - "\n", - "As a special case of the above, since $A$ and $-A$ commute, we have $e^A e^{-A} = e^{A-A} = I$, so:\n", - "\n", - "$$\n", - "\\boxed{\\left(e^A\\right)^{-1} = e^{-A}}\n", - "$$\n", - "\n", - "For example" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -0.404814 -0.696514 0.0379446 0.0820087 1.9709 \n", - " 0.820519 1.052 0.383089 0.265898 -1.1956 \n", - " -1.62211 -1.38588 -0.576234 -0.31939 1.97051\n", - " -0.460109 -0.0277296 0.899845 0.493523 3.31778\n", - " -0.997102 -0.906185 -0.166956 0.0783529 1.82135" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "inv(expm(A))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -0.404814 -0.696514 0.0379446 0.0820087 1.9709 \n", - " 0.820519 1.052 0.383089 0.265898 -1.1956 \n", - " -1.62211 -1.38588 -0.576234 -0.31939 1.97051\n", - " -0.460109 -0.0277296 0.899845 0.493523 3.31778\n", - " -0.997102 -0.906185 -0.166956 0.0783529 1.82135" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expm(-A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Matrix exponentials as propagators\n", - "\n", - "From above, we had $\\vec{x}(t) = e^{At} \\vec{x}(0)$ solving $d\\vec{x}/dt = A\\vec{x}$ given the initial condition at $t=0$.\n", - "\n", - "However, there is nothing that special about $t=0$. We could instead have given $\\vec{x}(t)$ and asked for $\\vec{x}(t+\\Delta t)$ and the result would have been similar:\n", - "\n", - "$$\n", - "\\boxed{ \\vec{x}(t+\\Delta t) = e^{A\\Delta t} \\vec{x(t)} } = e^{A\\Delta t} e^{A t} \\vec{x}(0) = \n", - "e^{A(t + \\Delta t)} \\vec{x}(0)\\, .\n", - "$$\n", - "\n", - "Viewed in this way, the matrix $T = e^{A\\Delta t}$ can be thought of as a \"propagator\" matrix: it takes the solution at any time $t$ and \"propagates\" it forwards in time by $\\Delta t$.\n", - "\n", - "The *inverse* of this propagator matrix is simply $T^{-1} = e^{-A\\Delta t}$, which propagates *backwards* in time by $\\Delta t$. \n", - "\n", - "If we multiply by this propagator matrix repeatedly, we can get $\\vec{x}$ at a whole sequence of time points:\n", - "\n", - "$$\n", - "\\vec{x}(0), \\vec{x}(\\Delta t), \\vec{x}(2\\Delta t), \\ldots =\n", - "\\vec{x}(0), T \\vec{x}(0), T^2 \\vec{x}(0), \\ldots\n", - "$$\n", - "\n", - "which is nice for plotting the solutions as a function of time! Let's try it for our [two masses and springs example](ODEs.ipynb):" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG1CAYAAAD9WC4XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl4FEX6x789B4EAATHcE0g4BOVeQVdRQV2O9ZYVxWNVGG5WFNZ7d1V0NaKQ4O5KFBnR9eeBB6irrhJdPBBBwCCoXHKm5QxHAsSEZKZ/f1QqPUlmkp6ePqpn3s/z5KnuIekuarqrv/3We0iKoiggCIIgCIJIYFx2d4AgCIIgCMJsSPAQBEEQBJHwkOAhCIIgCCLhIcFDEARBEETCQ4KHIAiCIIiEhwQPQRAEQRAJDwkegiAIgiASHhI8BEEQBEEkPCR4CIIgCIJIeEjwEARBEASR8JDgIQiCIAgi4fHY3QG7CIVC2Lt3L5o3bw5JkuzuDkEQBEEQGlAUBcePH0eHDh3gcmm32ySt4Nm7dy8yMjLs7gZBEARBEDooLCyEz+fT/PtJK3iaN28OgA1YWlqaoceuqKjAsmXLMHz4cHi9XkOPnWjQWGmHxko7NFbaobHSDo1VbJg1XiUlJcjIyKh+jmslaQUPX8ZKS0szRfCkpqYiLS2NbooGoLHSDo2VdmistENjpR0aq9gwe7xidUchp2WCIAiCIBIeEjwEQRAEQSQ8JHgIgiAIgkh4SPAQBEEQBJHwOFbwVFZW4q9//SuysrLQpEkTdOnSBY8++ihCoZDdXSMIgiAIQjAcG6U1e/ZsPPfcc3j55ZfRq1cvrF27FmPHjkWLFi1w55132t09giAIgiAEwrGC55tvvsHVV1+Nyy+/HACQmZmJ119/HWvXrrW5ZwRBEARBiIZjBc8FF1yA5557Dlu3bsUZZ5yB77//HitWrMC8efMi/n55eTnKy8ur90tKSgCwPAEVFRWG9o0fz+jjJiI0VtqhsdIOjZV2aKy0Q2MVG2aNl97jSYqiKIb2xCIURcGDDz6I2bNnw+12IxgM4vHHH8cDDzwQ8fcfeeQRzJo1q87nr732GlJTU83uLkEQBEEQBlBaWoqbbroJxcXFMSUOdqzgeeONN3DPPffg6aefRq9evbB+/XrcddddyMnJwW233Vbn9yNZeDIyMlBUVGRKpuX8/HwMGzaMsnE2AI2VdmistENjpR0aK+3QWMWGWeNVUlKC9PT0mAWPY5e07rnnHtx///0YM2YMAKBPnz7YvXs3srOzIwqelJQUpKSk1Pnc6/WaduGaeexEg8ZKOzRW2qGx0g6NlXZorGLD6PHSeyzHCp7S0tI6ZeHdbjeFpRPmI8vAypVs+/zzgRiq9RIEQRD24FjBc+WVV+Lxxx9Hp06d0KtXLxQUFCAnJwfjxo2zu2tEIhMIABMmAHwlWJKAF14A/H57+0UQBEHUi2MFzz//+U/87W9/w9SpU3Hw4EF06NABkyZNwkMPPWR314hERZZrih2AbU+aBIwYQZYegiD0QVZjS3Cs4GnevDnmzZsXNQydIAxn5cqaYocTDALffAOMHm19nwiCcDZkNbYMx5aWIAhLCQSAKgf5iIwZw36HIAhCK/VZjWXZvn4lKCR4CKIhZBmYODGydYcTCtEkRRBEbHz1Vf1WY8JQSPAQRENs28YETUMEg8DPP5vfH4IgnE8gANx0U/R/J6ux4ZDgIYiG6N4dqJUCAS5X3c/cbqBbN+v6RRCEM+FW4/ogq7HhkOAhiIbw+YDrr1f33W5gwQL2I0nq588/T9EVBEE0DFmNbcGxUVoEYRmBALB4sbqfna1GUGRlAZdeCni9wJAh9vSPIAhn0b07e1kK99/hFuNwIURWY0MhCw9B1Eckh+UHHlDNzDt2sLaiAujRg9bcCYJoGJ8POPNMdZ9bjZ9/Xv3M5SKrscGQ4CGI+ohkeuZmZllma+wcWnMnCEILZWXA9u1se+5cYNcuZjUePx649lr2+VVXsYSmhGGQ4BERWQaWLwfWrGEtPUDtg5uew+Fm5vrEEEEQRDT++legvJxt33MP8Mkn6r+1bMnad98FOncmq7GBkOARjUCAXeSXXAKccw5r6aK3D58PuOIKdd/tVs3MkaK3aM2dIIj6kGUgJ0fdD7cMyzLw8suR/42IGxI8IsH9RWpbDUIh9jld9PbgdrN22jTV9Aww0bNggfrvAPCPf9CaO0EQ0dm2rW6yQW4ZJquxqZDgEYlnnokeqhgKsX8nrGf9etb+4Q91xYzfz0QQN0MPGmRp1wiCcBjdu9f9jFuGyWpsKiR4REGWmfNafeTmkpXHaoqLmaABgH79Iv+OzwecfTbb3rjRkm4RBOFQmjevuR++TM6txtxvUJIoUstASPCIQiQzZ23ItGk9n37K2vbtgVatov9enz6s/egjEqUEQUTnhx9Y264dC0oJXyYH2DYPT+/Vi6qmGwgJHlGIZOasDZk2rSUQAEaPZtv79tXvOH7sGGvfeYeczAmCiM6GDawdMAAYOjSy9ebSS1m7dSvL8UUYAgkeUWjXDmjSRN13u4Hbbqu5njtlivX9SlYiJRyMFi0hy8C//63uU2QFQRDR4FXQMzOj/05mJpCWBpw6xeYWmksMgQSPKHzwAfDrr+wi//RTZuZ86SVg927gtNPY7/zrX2Q9sIpYoiUosoIgCC0EAsArr7Dt556LPpe7XEDbtmx7/Hia9w2CBI8IBALAqFFsu6SEiZ1wMydfLgHIemAVsURLUGQFQRANUbtCuqLUbzUOf2Gied8QSPDYTUNLJ/XlbCDMw+djFjVOeCRFpN9dsEDdpxo4BEHUJlarMc37hkOCx24augnIemAfF13E2qZNgZ0764+W8PvVGjj33kuRFQRB1ISsxrZDgsduGrqwyXpgH9u2sbZnTyAjo+Hf79uXtYcPm9cngiCcic/HAlE4DVmNs7O1/S6hGRI8duPz1VzXjXRhh1sPZs4k64FVhFvZtNClC2t5FWSCIIhw+IvT5ZfXzb9Tm7vvBho1YttffEHzvgGQ4BGB9HTWXnZZ9JuAL69wqwNhPnystZqRueDZscOc/hAE4Wz4y9CFFzZsrXG51LnnxAlz+5UkkOARge+/Z+3IkdFvgoEDWfv11+SpbxU8I+rpp2v7/a5dWbtnDyULIwiiLlzw8LmiIc44g7X0omsIJHhEYN061rZvH/13uCgqKqKcDFYQCAArV7LtP/9Z23i3awekpDAn9FWrzO0fQRDOgwsebg1uCL6cvnWrOf1JMkjw2M0//gHs3cu2b7gh8oNVloHp09V9yslgLrXzZWgd7xdfBMrL2fbQoSRKCYJQOX4cOHSIbWu18HDBs2oVzfcGQILHTmQZmDFD3Y/2YKVMvtaiZ7z1iiSCIJID7tuXlsbEjxa4ZWfNGrLsGwAJHjvR+mClnAzWome8SZQSBFEfvAJ6SYk28SLLQE6Ouk8vUXFDgsdOuncHJKnmZ5EerDwXT/hDmHIymIfPB9xyi7qvJQcGiVKCIKIhy6x2FkeLeKGXKMMhwWMnPh8wYIC6X9+D1e8HPv6YbaelAePGWdPHZKVTJ9ZeeWXD+TIAEqUEQURHT6kIeokyHBI8dhMMsvaJJxp+sF54IbsBSkqAAwcs6V7SsmcPa88/X7to8fuBt99m2xkZlCiMIAhGpOSlDYkXyrJvOCR47ERRVIU/alTDF3LjxkBWFtvetMncviU7u3ezllt6tHL22azdv7+uOZogiOTE56s5l2gtFeH3AzfeyLanT6eXqDhxtOD55ZdfcMstt+D0009Hamoq+vfvj3U8p40TOHAAOHmSKffMTG1/c+aZrH3vPXJeMxMueDp3ju3v2rdnflkVFWoIKkEQxK+/svaFF7Qtk3N692bt0aOmdCuZcKzgOXr0KAYPHgyv14v//ve/+OmnnzB37ly0bNnS7q5ph1t3OnViCeu0wDP4PvMMhSmaRTCoislYLTxeL0tACJAgJQiCUVamvgBde21sy1L8pYu/hBG68djdAb3Mnj0bGRkZWLRoUfVnmVqtJKIQa5pxWQaWLVP3uaf/iBG0rmsk+/YBlZWAxwN06BD732dksGPIsrrERRBE8vLLL6xt3Bho1Sq2vyXBYxiOFTzvv/8+RowYgdGjR+OLL75Ax44dMXXqVEyYMCHi75eXl6OcZ8EFUFJSAgCoqKhAhcF1j/jxGjqua80auAEE27RBSEMfpE2b4Ing6V+5eTOUtm31dtdWtI6VlUg7dsADQPH5UBkKxeyL4+7QAS4AwV27NH2vWhFxrESFxko7NFba0TtW0q5d6pxSWRnbSTt0gBeAUliIyrIy5v/jEMy6tvQez7GCZ8eOHcjLy8PMmTPx4IMP4ttvv8X06dORkpKCW2+9tc7vZ2dnY9asWXU+X7ZsGVJTU03pY35+ftR/65Sfj/7PPgsAcL3xBja0aoU9w4bVe7zGRUUYLkmQwkRPyOXCZ7t3o+yjj4zptE3UN1ZWk/nhh+gH4GijRvhKx7j2rqxEVwA7vvwSP5lgdRRprESHxko7NFbaiXWsfJ9/jrMBFDVpgpWxzinBIK50u+GqrMT//u//UNa6dWx/LwBGX1ulpaW6/k5SlNomA2fQqFEjDBw4ECt5gUcA06dPx5o1a/DNN9/U+f1IFp6MjAwUFRUhLS3N0L5VVFQgPz8fw4YNg9frrfsLsgxPt26QwiwHituNym3bGlyakl58Ee7JkyEBUFwuBPPyoIwda2j/raTBsbIYadEiNr6KAgVA8PnnYx5fV04O3Pffj9CNNyL48suG9U20sRIZGivt0FhpR+9YuZ56Cu6//hWhW25B8MUXYz6vp0cPSDt3IpiTg9A11zjGhcGsa6ukpATp6ekoLi6O6fntWAtP+/btcdZZZ9X47Mwzz8Q777wT8fdTUlKQEsEx2Ov1mnaTRz32rl11lkmkYBDe3bvVsPNoTJoE5OYCW7ZAevlleMIzAjsYM78HzcgyMGVKdYIwCYBn6lTgsst0ORm6fvwRrgMHDJ+chBgrh0BjpR0aK+3EPFZVBaJdnTvDpWeMGzUCALhnzoT77rtZfh4HhagbfW3pPZZjo7QGDx6MLVu21Phs69at6BxrGLEdxJtBs2dP1lb5IREGYVQq9/XrWbthA0XSEQShRmzqefmRZbWIKEA1teLAsYJnxowZWLVqFZ544gn8/PPPeO2117BgwQJMmzbN7q41jM8HPP64uq81CRWnSxfW8uq7hDEYkcpdloGnn1b3aXIiCILP1U2axP63espSEBFxrOAZNGgQli5ditdffx29e/fGY489hnnz5uHmm2+2u2vaOO881nbsGFsSKkANY+dh7YQxGJHKnQr+EQQRTiAA/PAD2x43LnaLr9Yi00SDOFbwAMAVV1yBjRs3oqysDJs2bYoaki4khYWs7dEjdjMnWXjM47bb1MllzZrY18mp4B9BEBxZBiZOVPf1WHx9PlZWghPrigBRjaMFj6PhgicjI/a/5YJn61b1OIQx7N/PzMduN9C/f+x/TwX/CILgGGXxHTeOtWlpsa8IENWQ4LGLeATP8uWsLStjNbjIKdY4qqIp0L59XUuNVvx+4IIL2HZuLk1OBJGsGGXx7diRtSUlQHq6MX1LQkjw2MWePayNVfDIMhDumE1OscbCU8DzCUYvPOFgWO4ngiCSDJ+Ppbrg6F2OatWKlaUA1JcyImZI8NiFXgsPOcWai1GChxcQ3b8/vuMQsSPLkN56Cx1WrKAXAcJ+evVi7eDB+pejJEmdk/gcRcQMCR670Ct4yCnWXIwSPO3bs3bfvviOQ2hHloGZM4GMDHhuvhmD5syBp2tXWvIl7IW/9PTpE58vH/9bEvG6IcFjBydPAkePsu1YC8Fxp1geSSRJ5BRrJNxcrKdKejhk4bGWQADo1In5TIUhKQqLklmzxqaOEUkPf+nhL0F6IQtP3JDgsYPwSbl379jfQP1+4Mkn2fbQoeQUayRGW3hI8JgPD/2NVhYwFAJ++1uy9BD2wOcA/hKkFz4nkYVHNyR4rEaWgYcfVvf1Oh3zkOlDh4zrG8HW2IHq2jW64ZMbLWmZTyS/ttqQcz9hF0ZZeLgVnyw8uiHBYzVGOR136sTa3bujv9kSsREIqNmrb7opPosAFzzHjrH0AYR5RMpEGwly7ifswGgLz48/knDXCQkeqzEqTTgXPMePA8XFxvQtmTEiI2o4LVsCKSlsm5a1zOWTT2qKfklC8MYbodS+z1wucu4nrCUUUu//eC08333H2k2bqCixTkjwWI3PB1xyibqvNy9DaqqagGr3buP6l6wYHe4vSeS4bAW1hSoASBJCjz+O9VOnoobtU1GYOEpGZBl48032Q9YB6zhyBKisZNtt2ug/jiyrfpsALdHqhASPHbRqxdpp0+JLE965M2t5EkNCP2aE+/PvmRcOJIwnklANhSBt346DAwbU/E4VJTkfEjyC7YYb2E+nTmQdsAruv5OeHp9fIOVfMwQSPHbAb4KLLoovnDzcj4eID58PmDxZ3Y+3QF8gABQUsO2JE+kBYxbdu9f9zO2G0rUrmu3bBynZHxJr1gDjx9dc8qNQfevg1t1mzeIT2pR/zRBI8NiBUV773MJDGWWNoW9f1saTERWou8ySrJYFK6gdsRImVE+0bw8lmR8SgQBw7rmR/41C9a3hjTdYu2tXfH43VJTYEEjwWI2iGCd4eJK8xYvJic0IDhxg7VlnxTeRkPnZGgIB4Lzz1P27764hVMvS0xHMy6v5ZpwsD4mGchMB5AdiNrIMLFqk7sc73n4/y7sGAE89RfnXdECCx2qOHwdKS9l2PIJHloG33lL3afKKn4MHWRuPcyFA5mcriPRAr5VlGQCUsWOB1avZjiQB119vUQdtRktuIgAIBiHxVAyEsWzbVldwxvviw4sSnzql/xhJDAkeq+HWnebNgaZN9R/HjJsp2eEWnrZt4zsONz8no2XBKmKxog0cyB4UisK+h2R4KYiWmyjSZ2vXmt+fZCSKf1lcLz4U+RkXJHisxqjlLLIiGI9RFh6AmZsXL2bbWVlkfjaaWK9/LmLvuSc5ln9r5yZyuYCFC4HZs+v8qvuvf0XjoiILO5ck+HxseZwTbyAEQBnc44QEj9UYmWb8uefUfSNupmTHSMEDsDppgFooljAOn4+FWHPqu/5lGfj2W3U/0Zd/I+UmAoARI5i1qxZSMIim9AA1B6+XtbNnxxcIwaEafXFBgsdqjBI8ADBhgqr4ly4lK0K8GLWkxeHC6dgxWnM3g2CQtePG1f8wSbbl3yi5ifDzzxEtY4rbjZNGzEdEXfhL1LBhxryM0pJWXJDgsZqtW1nbrJkxx+Oh6TybJ6GPU6dUS4xRFp6WLQGPh21TkVdjURTgiy/Y9siR9T9Mkm35t77yNRH8y0KRrEFE/IRC6n1v1JxCgicuSPBYSSDAzO582wg/Al5Qjiroxgf3YXC71QzJ8eJyAa1bs23+pkcYw+zZqkVuzJj676Vky2Hi89UsVFl7uc/vZ8lKq0rTuPPyMHzCBEjhIdRE/Bw7pr6I8nkgXrgl7vhx4ORJY46ZRJDgsQqzktFxwZOo/ghWwR+erVvXtQbEA3+zI8FjHLIMPPiguq/FJyc8h8kTTyT28u/336tL5+++G3257/Dh6k1JUeCeOpXmESPh93yLFvGVlQinWTNWRxEgK48OSPBYhVnJ6PhbG1l44uPHH1nbsqWxxyXBYzx6fXLOPpu1PGFnIhIIAAMGqPtFRZEtWRHGUEpkvyY7MHo5C6CixHFCgscqzPIjoCWt+AkEgFtvZdubNxsbsswnO/LhMQ69+U141NxXXyWmJSNSMsZolq8ozssJ69dkB0ZHfXK44Pn008S8jk2EBI9V+HxAXp66b1QYOS1pxUcsDwk9kA+P8bRrp4b7AtrvJW69KChIzFw8sViRuV9TlXOzIkkIzp+fuH5NdmCW4CkrY+0jjyTmdWwiJHis5Oqr1e2ffzbGjyB8Sau+ujlEZMyue0VLWsazaRNQUcF8GT77TFt+E1kGsrPV/UTMxROrFdnvB2bNAgCUZGRAGTbM5A4mGWYIHllmgp2TiNexiZDgsRJ+A6SnqzVR4oVbeEpLgZ9+MuaYyYTZIcskeIxn2TLW9u0LXHKJNqtEMhR09fmAxx5T97VYvqpeklrs2QNPt25kLTASMwRPsuWUMhgSPFbCI4GMvAFee03d7tuXJqxYMTtkmX/XP/9Mb2FGEAiw8hAAKwqq9XpPllw8PXqw9owzGrZ8yXK1hQcAJLIWGIsZgqe+HEtEg5DgsRJ+AxiVybd2qDtNWPrw+1WH1kWLjA1ZXrWKtVu20Hp7vNT2t4oltUMtnxVIUmLm4tmwgbUXXNDw/y0ZrF52Yobg8fmAO+5Q96mkUEyQ4LESo28AmrCMg2dZDi/2Fy+yDDz5pLpPgjQ+4r3e/X41f8+VVyZmLh4uePr2bfh3k8XqZRc8cjZShfp44BGlp59uTH2uJIIEj5UYLXhowjIGRTFvvZ0EqXEYcb3zXDyJWizzu+9Yq6U2VpXVS6kaUwVgBYnJWhA/gQCwfTvbbigTeKzwsPRjx4AOHYw7bhKQEIInOzsbkiThrrvusrsr9WP0QzVZzPRmc+wYi/oBjF9vJ0FqHD5fzSVcPeb8rl1Zyx9GicSzzwJ79rDtG2/U9pD1+1G5aROCHg8kALjoIjN7mByY7WrQpg2b64PBGtmyiYZxvOBZs2YNFixYgL5aTLh2Y4YVwe9Xl00uvpjMm3rg30taGtC4sXHHTbYaTlZQVf8Jl12mz5zfpQtrjxxhQjdRkGVg+nR1P5aHbFYWjvFkjoEALbnGi9mWXa9XvQ8S1VJpEo4WPCdOnMDNN9+MF154Aaeddprd3WkYHqVllNMyhzvcHjli7HGTBaOdycPx+4Ezz2Tb//43CdJ44T4qDVVIj0azZur3nEhWnjgfspUpKWzjqafIuT5erLDsUnkJXXjs7kA8TJs2DZdffjl+97vf4e9//3u9v1teXo7y8vLq/ZKSEgBARUUFKvhyhkHw49U+rufgQUgAKlu1gmLkOdu0gReAIsuoNPj/YjbRxspKpF9+gQdAqHVrBE3oh7tdO7g2bUJlMBjX9y7CWNmN57vv2D3UunW9Y1nfWLm7dIHrwAFUbtkCxQmWYS1kZsIjSZDCcrQobjcqO3dWl2ujULlrF9p8/736QSgEZdIkVGrNcZREaLoH27aF66674M7JAcC+h+D8+VDatm3wu9CKu21buDZuRKUsG/ssMRiz5iy9x3Os4HnjjTfw3XffYc2aNZp+Pzs7G7PCck5wli1bhlRefdZg8vPza+xfvm8fPACW//gjSg20xnhLSnAZAKmoCB+/9x5C4Wn3HULtsbKSzOXL0Q/A/lAIaz76yPDjDzx1Ch0BbPrqK+xo0SLu49k5VnaS9eGH6Fu13OK+6SasnzoVexrIDhxprH6TkoIMAPKiRdjy668o48sDDufCrl3RqsqiE3K58P3kydizYYNqFYtC+saNGByhkOjqV1/F4T59TOuvk2noHmzv8eAcAMWdOmHVQw+xa8zAuWVAMIhOALZ88QV+Pv10w45rFkbPWaWlpbr+TlIU59UjKCwsxMCBA7Fs2TL069cPADB06FD0798f8+bNi/g3kSw8GRkZKCoqQlpamqH9q6ioQH5+PoYNGwYvFx8nT8JbtexWcfgw0Ly5cSdUFHjS0iCVl6NiyxYgK8u4Y5tMxLGyGNejj8L9978jOHEiQv/6l/HHnz4d7ueeQ/Avf0Ho4Yd1H0eEsbINWYanWzeWHK8Kxe1G5bZtEa0Q9Y2Ve9QouD74gB3D5UIwLw/K2LHm9t8CPOeeC6mgAMFHHkHo1ls1W2cqd+1C4x496lqHooxtMqP1HnQtWAD3n/6E0FVXIfj224b3w/XAA3DPnYvg9OkIzZlj+PGNwqw5q6SkBOnp6SguLo7p+e1IC8+6detw8OBBnM1DTAEEg0F8+eWX+Ne//oXy8nK43e4af5OSkoIUvk4dhtfrNe3hUePYPM+L1wvvyZNAq1bGnqxjR2DHDngPHGBZVh2Gmd9DgxQVAWBLT24z+lBVQNR99Kghx7d1rOxi1646PipSMAjv7t31Cvw6YyXLwIcfqscIheCZOpU5QTv54a4o1f467tGj4Y7lpSczE+unTkX/+fOZ6JEkSM8/D6+DXpyspsF7sGq+d7VpA5cZ92pVSSH3wYPmzFkGY/ScpfdYjnRavvTSS7Fx40asX7+++mfgwIG4+eabsX79+jpiRwgWLmRtRQWro2W0U2B4EVEiNsyqaszhSyZVworQgVEp9RO1FtHBg8Dx42yMeCRaDOwZNgyhO+9kO9dcQ8718cLv9aqXHcMhp2VdOFLwNG/eHL17967x07RpU5x++unozSOWRMKKSs28iCgJntjhuUs8Jhk8+Ro75czQj8+n5tAB9KfUT9TcSNu2sbZTJ92pFZSLL2Yba9dSaHq8HDrEWrP8w3hiye3b6buKAUcKHsdhxVslFzzffEM3QCwEAmyCB4CpU80JxyULT/woiprW4cUX9afU9/mA+fPV/USpRfTtt6yN5/+xdStrCwspND1e+L1uluBZsYK19F3FRMIIns8//zyqw7LtWFHhtrCQte+8QzeAVqwqvkqCJ35272ZLNl4vcMst8T3YJ01Sly/ff9/5yzeBAHD33Wx75Upd937joiK477tP/YDqvsWHmYJHloHw4Af6rjSTMIJHaHw+YMQIdd/ot0pZBt58U92nG0AbVtW6Cl/Scl5QpBjw0OqzzmKiJ14yM1l76lT8x7KTeCrIh9Fs374aEXAAEsO3yS7MFDxUo083JHisgi85jRtnfIXbRHXENBur/Dn4pFdWBujMH5H0fPUVa8P9eOKhUyfWcv8tp2LQw+9E+/bVRUSrSQTfJrswU/Akqh+aBZDgsQp+AwwaZLy/AN0A+vD5gAcfVPfN8udo2hTgKRFoWSt2AgGA5xpZutSY5dqMDNbypWCnYtC9X5aejmBeXs1jJYJvkx2UlqovNmYIHqrRpxsSPFZhpuJPVEdMKzjvPNZ262a85Y0jSRSppZfaflY6l2zqwAWP0y08Ph8QniwzjntfGTsWWL9e/WDUKAM6mIRvOHcjAAAgAElEQVTwub5RI2MTzIbj9wOXXMK2s7Od74dmESR4rII/6Mzy2p80SU1m+NFHdANohefg6drVXIHIs4Fu2mTeORIRs/wV+JKW0y08AMDDyZs0AXbujO/e79NHTeT43Xfx9y0ZCX+5rR2sYiTcD03gWlqiQYLHKvhNYGbdEz6JV1aad45Ew6wK9uEEAsDmzWz7j3+kCLpYMGu5NlGWtAAWwQYw0c7/X/EwcCBrFy+mwAc9mB2SzuFzFp/DiAYhwWMFoRDAi4WaeRN06MDavXvNO0eiYXaWZbOWZJIFnw+49VZ136jlWi4MfvmFLWU6GS54Onc25njcovbCC5TiQg9btrC2WTNzz0OCJ2ZI8FjBsWPqJGKmhYcET+xwwWOWhYdCSOOnZUvW/uEPxvlZVRUPhaIwy4iTH+pc8HALbzzIMnMM51CKi9gIBABeokNnTiTN8Jc0PocRDUKCxwq4ibN5c+bIZhZUXiJ2+NuRWRYeiqCLH56D5/LLjfGzkmVg8mR13+kPde54bYSFhwS6fmrnRALMva7IwhMzJHiswGyHZQ5ZeGLH7CUtHkLKnRcliSLoYkFRVOdZo6xwifZQN3JJiwS6fqy+rkjwxAwJHiuwwmEZUAUPWXi0Y/aSFsCWYHjZk/PPpwi6WMjJYUvCAHDllcYsESTaQ91IwUMCXT9WX1d8zjpyhCK1NEKCxwqs8trnS1pk4dFGKGS+hYdzxhmsPXHC3PMkErIM3HOPum/U0lMiPdQrK9XxMKLkBsAE+V//yrZHjCCBrhWrEwK2asUEFUB+PBohwWMFVi9pHTxIil8LR48ykzMAtG5t7rn4d0+JB7VjZskUvx+4/362fe21zn2o5+Soyyjnnmuck+yll7J23Trn+jbZgd8P9OrFtl96ydzryuVS5y0SPJogwWMFVi1ptW7NFL+iAAUF5p4rEeBr36edZq4zOUAV0/XQvXvdz4xcIjjzTNYWFxtzPKuRZeCBB9R9I52vN25k7aFDFJoeK8ePs5Zbdc2E/HhiggSPFfAoCqNMztFYtEi1WJx3Hk1SDfHjj6w97TTzz8XFLhUQ1Y7Pp1otAeNLpvBj79tnzPGsxiwnWVlWQ6sB50exWQ234pr9gguogufzz+n70QAJHrMJBIDXX2fbc+eaJ0JqJ7ijSap+AgHghhvY9o4d5ovDZs1UKxJZebRRXq6a6t94w/haZ06PauzevW7pAiMsYIkWxWYl5eXAyZNs2wrBU1LC2tmzyRKnARI8ZmJlll2apLRjdb4MgD2YaFkrNjZtYk65LVsC119vvPNn+/asPXYM+PVXY49tBT4f8LvfqftGWcASLYrNSnhGfZcLaNHC3HPJMrB6tbpPL7kNQoLHRKSff7ZOhNAkpR27xCFVTI8NnnCwb19zijC2aMEKbgLOXdbiy7HTphlnAePRRuHziVOj2KyG39unnVZ3PjYaM536ExQSPCaidOtmnQhJpFBbs7FLHJKFJzZWrGBt167mHF+SnL+sxXNuDRli7L3u9wM//aTOJ5ddZtyxExlu4bFiOcusJc0EhgSPmfh8wHPPqftGO13Wxu9nYaoAMHiwc0Ntzaa2ODQ7XwaHBI92AgFWvBJg4b1m+SbwZS2nCh7eb56Dy0h69ADOOottr1tn/PETEW7hadXK/HP5fDWdy81+viQAJHjM5rrr1O0tW8wXIb17s5a/aRCR8fuBAQPY9nPPWSMOaUlLG1b6vjk5UktRVMETHs1mJAMHsvatt8g3RAtWRmgBwG23sfa004x36k9ASPCYDX+bb9bMPNN8OFRAVDu8ZAF/izUbsvBow0ofKy4UvvnGeQ/0w4dZVBBgnuA5dYq1//43RQFpwWrBw8PSi4tVayURFRI8ZmNVlmUOn/iKi9XwSCIyVpWV4PBJkARP/Vjpm1BYyNrFi533QOcvNa1bm5M4U5bZuHAoCqhhrPThAdTnSihElmMNkOAxG6vqaHHS0oCmTdm2E830VlFaqta1MrNwaDhUXkIbPh/whz+o+2b5JsgysGSJuu+0BzoXPGb47wCU6kIPVvrwACyZLRdXVF6iQUjwmI1VZSU44ZEntKwVHT45pKQAzZtbc05a0tJOSgprx40zzzfB6WG9ZgseSnURO1YvaQFUXiIGSPCYjdVLWoDzQ22tIHw5y4wcL5Hgk6AsO8eKYBc8B8+115oXdeL0B/qmTaw1K8EdpbqIHauXtAASPDFAgsdsrF7SAshxWQtc8Fi1nAUAn33G2qIi5/mLWEl5OcsBA5hbxd7nA+bMUfedFNYbCADz5rHt118371ry+4FnnmHbXboAI0aYc55EYf9+1vKahlZAgkczJHjMxuolLYAsPFrgk4NVDsuyDPzlL+q+0/xFrCQ7W31gnH++ucJw+nTVgrF6tTPCemuXRjEzbB9Qgx+2byehXh+BALB1K9u+5RbrxonPYSR4GoQEj9nYsaTFLTwFBfRAjYbVFh5yANWGLAOPPqrumy0M3W71geF2m3MOo7HyWiKhrg07izfzOYyclhuEBI/Z2GHh2byZtZ9/Tm9k0bDawuN0fxGrsMOR2GlLAlZeSyTUtWHnODnt+rUREjxmY7WFR5bVlPwAvZFFw+ocPNwBlGNVOQun0b173c/MFob8gcH9L0THypI1JNS1Yec4keDRDAkes7HaaZneyLRhh9Oy3w8MGsS25893hr+I1bRvXzOJnhWOxE58YFx9tbr988/mXUuRKqfn5ZFQr43PV3Ppz0oHeH797t5NL7YN4FjBk52djUGDBqF58+Zo06YNrrnmGmzZssXubtVEUazPy0BvZNrgE4NVIekcSv9eP5s3s3IGTZoAn35qTX2gdu1Y6yTBw61RbdoAmZnmnsvvZy9SXIief76553MqF13E2sxMa+taLV/OWor+bBDHCp4vvvgC06ZNw6pVq5Cfn4/KykoMHz4cJ0Uqp1BcrEabWCV4aOmkYQIBVsgVAP74R2snCH4dUHHXyOTns7Z3b+DSS619Q3ai4OFizWy6dAEuuIBtL1xIloRI8JfbTp2sm29lGXjgAXWfXBjqxbGC5+OPP8btt9+OXr16oV+/fli0aBH27NmDdevW2d01Fb6c1bixtdl1/X6gZ0+2/fLLtHQSjp3RFABVTK+PQACYOZNtr11rnRAlwaMNXrJm3jyyJETCjizL5MIQEx67O2AUxcXFAIBWUWqYlJeXo5xXFgZQUlICAKioqEBFRYWhfak+3osvsrasDErnzgjm5UEZO9bQc0XD3akTXJs3o7KsDIrB/z8j4WNl9HcQDWnTJngiTBCVmzdDscCfx9WiBdwAQocOIRjj/9nqsbIUWYZn4kRIYblllEmTUHnJJbrelmMZK+n00+EBoOzfj0qHjK3rl1/YddSmTczXUW00jZUsw/Phh6heAA6F4vp+nEp9Y+U6dIh9J6edFvd3opnMTHhcLkhhc5ridqOyc2dAgGvZrDlL7/ESQvAoioKZM2figgsuQO/evSP+TnZ2NmbNmlXn82XLliE1NdXwPjUuKoJn7tzqfSkUgmvKFOS73SizwIG5fzCIzgC2ff45tpqZrdYg8vlShsk0LirCcElSH6wAQi4XPtu9G2UffWT6+Tvv3Yv+AA5s3oxvdZ7PqrGykvSNGzG4lhCVgkGsfvVVHO7TR/dxtYxV2s6duBhAeWEhPrHgGjCCXqtWoRuA7SdP4ieD+lzfWJn1/TiVSGPVe906dAWw/ehRw74TLXSaMgX9n30WEgBFkrB+8mTs2bBBLc8iAEbPWaWlpbr+TlKU2kkvtFFRUYH9+/ejtLQUrVu3jmpZsYJp06bhww8/xIoVK+CL8rYRycKTkZGBoqIipKWlGdqfiooKFOTkYPDf/lbn3yrz86EMGWLo+SLhevhhuLOzEZw0CaF//tP08+mloqIC+fn5GDZsGLxeryXndN17L9xVafkVtxvB+fMts7xJ77wDz403InT++Qh+/nlMf2vHWFmGLMPTrVvdN9Vt23RbeDSP1f798HbqBAVA5dat5jsBG4D7j3+Ea/FiBJ9+GqE774zrWJrGyuDvx6nUN1busWPhevVVBJ94AqG777a0X+4rr4Trk08QfOQRhB580NJz14dZc1ZJSQnS09NRXFwc0/M7JgvPiRMn8Oqrr+L111/Ht99+W0NA+Hw+DB8+HBMnTsQgHnprAXfccQfef/99fPnll1HFDgCkpKQghVdgDsPr9Zry8DjRvj2UWpYEuN3w9OwJWPGwyshgp9y/H24HPBzN+h4ics45rO3XD9IHH8Bj5YRdtWzmOnoULp3/X0vHyiqysoAxY4DXXmP7bjek55+HNysrrsNqGquPPwYASAC8PXsyp3/R/d6q0iq4O3Y07P6ud6yysti4TJhQnRhSys6O+/txKhHH6tgxAIC7TRvr59wuXdi5g0Eh53uj5yy9x9LstJybm4vMzEy88MILuOSSS7BkyRKsX78eW7ZswTfffIOHH34YlZWVGDZsGEaOHIlt27bp6pBWFEXBn/70JyxZsgT/+9//kCXYjVeWng7l979XP7C6MCEvL0H1tOrCc/D07Gn92ym3hJLTcnRuu826sF5ZBiZPVvedEuWybx9rrXRa9vuBu+5S9++/nxyXw7HDaZnjRMd7G9Bs4Vm5ciWWL1+OPlHWa8855xyMGzcOzz33HAKBAL744gt0j5Q11SCmTZuG1157De+99x6aN2+O/VVRCy1atECTJk1MO28sKJ07s41bbmEFEa18uPIColQxvS5Wl5UIJzwsXVGszwMkMitWsHbYMOvulfqiXEReqrEjSkuW1crpgCoOR4wQe6ysggseO9w7SPBoQrPgeeuttzT9XkpKCqZOnaq7Q1rJy8sDAAwdOrTG54sWLcLtt99u+vm1IPFcK7/5jfUTArfw7N/PJnCnFEa0AqvLSoTDJ8PKSuD4ccBg/zHHkpsL7NnDtm+9FSgrs8bCwxN1hose0RN1lpVVL59U5/myAqeKQ6sgC4/w6MrDc95551WHdduFoigRf0QROwCAo0dZa4fib9OGWQ9CIVY1nVCxo6wEJzWV5WUCaFmLI8vAn/+s7lu5rMQTdXJLmySJn6jzH/9Qt/v1s25ZibK4RycUUud7OwQPf3kjwVMvugTP6tWrUVZWVufzkpIS3HPPPXF3KmHgFh47BM9LL6lVp889l9baw7FzSQugbMu1saNCejh+P7MqAcAdd4jtsGxnZl0uDsOtxWPGmH9eJ3DsmHoN27mkxV/miIjEJHhGjRqFJ598EpIk4WCEgT158iRycnIM65zTkeyy8NidTVh07LTwAOS4XBs7KqTXhgc9hEWeCondmXX9fuZQ3qMH23/1Vcq6DKj3crNmNYvfWgWfy06eZD9ERGIKS+/cuTM++OADKIqCfv364fTTT0e/fv3Qr18/9O3bFxs2bEB7Ko6owt/grTZx0lp7dBTFfgsPT9G/bRswfLg9fRCJ2ok/rY5oBACeDPTQIevOqYfu3dmyW610F5YvK23dqm6T87J9cz2nWTNWcPfXX9n8VhWmTtQkJsGTm5sLgDkmr1ixAnv37kVBQQHWr1+PpUuXIhQK4amnnjKlo44jGFQdC6228DjREdMqTp5kkwJgj+AJBIBVq9j2HXcwfx6Rl1Cs4J13WNu5M1uK7dbN+gcnz0YuuuDx+YBRo9Qxs0Mc1rcEmayCx06HZYCJ4LZtmfWNBE9UdJWWOHnyJDwe9qdXX321oR1KFLwnT6pJB087zdqT87V2niTMCY6YVsGXs1JT2VuRldRealQUejMOBNgYACxKa/t2oFbkpSU4RfAA6sNs9GggJ8f6ayfSC5XLldwvVDzvnAllijTTpo0qeIiIaPbh2cNDRoFqsVMfvyR5/pdGJ06wjebNrcmsXBu/H3j6abZ90UVkReDYuZxlt/+FaHABGFYw1DZfMy54ioqsP3escFE2YIA9Qrl2ZBvAvrtPPrG+LyIQCAAzZrDtFSvs82fifjxffUX+mlHQLHgGDRqECRMm4Ntvv436O8XFxXjhhRfQu3dvLFmyxJAOOpVqwWNjjTHwJJEUDaRiZw4eCuutiUgCkPvwHD5sbW4bPXBRZmdR4BEj6gqeiROBNWvs65Md1BbtgH2inbtQ5OSQI3kUNC9pbdq0CU888QRGjhwJr9eLgQMHokOHDmjcuDGOHj2Kn376CT/++CMGDhyIp59+Gr8PL6uQhHiPH2cbdgoeyrZcly1bWGtHwj/+ZjxxovqgT+alRlEccAHV90JR2AuCnWKiIbjg4SLNDiKJ1VAI+O1vnVGLzChECRCRZTVTOUCO5FHQbOFp1aoV5syZg7179yIvLw9nnHEGioqKqmtm3XzzzVi3bh2+/vrrpBc7gCAWHp5t+cgRlp012QkEWP0fAPjsM3vegPx+JnIAoH//5HkwRMLnqylu7HDA5Xi9qq+d6H48vH92irJI1kqAPWgnTkyeJRVRrLZ257JyCDE7LTdu3BijRo3CqFGjzOhPwiCEhadlSxYFVFbGig0KVmDVUqL5i9jxBsRzmCR7vox//Ut19pQkVm/OTgHYujXLliu6H48IFp5I1kpOKMRqbnEfQo4sAytXsu2sLODECSYYnGyB4OMwfjzbd7nsEe0iWUsFRlemZaJhhLDwSBIta3FE8hehxIPs4Td9urqvKCyDsJ2WASfk4jl1CiguZtt2L7v5/SzFQqQCuHPnAnl5zKfnzTdZRfpOnYAbbmA/55wDXHIJ+6y2MHIafr/qLxkI2CPafb6a5VnstJYKjGmCZ926dWYd2hF4RRA8gLqstXevvf2wG1FMz4DqL3L0aF0RliyIaIJ3Qmg6F8luN7Pg2s2gQTUftBxFAaZOZcLmhhvYw7f2981/7957mSBy8jIYn++59dYOxo1jbdOmLDw9mZfLo2Ca4Ln22mvNOrQjaMLNznZXKecWnmQXPNz0zLHL9AyoIlhR1MiKZCNSCQe7TfBc8KxeLe7Dl4ux00+P7ENjB3feGX9fnn/e2ZFFdtZN5ISXl7Db+icouhIPcq6//vqInyuKgiNJHAotLVqE9jyb7uOPA5mZ9qltbuH55hvguuuS28Tp9wN3381ExiefAL/7nT39aNSIJT08cYJNlHZbAa0mEGBJMcMRwQTPXwpeegn497/FjDYSwX+nNvX588QCd3h2WmRRZaW6zGjnvXzaaYDHw/pz8CCQkWFfXwQlLsHz6aef4pVXXkGzWhlrFUXBl19+GVfHHIsswz1lCqpXte3OpltYyNo33wTeflvMSdwqKitVi0rfvvb2pVUrJngOH04ux8JIeUtcLibIBw2yt1///a+6L2pYL7fwiCR4ADan9O0LnHtu5KUrrURzeBYZXiQasD6rfjiSxPKL7d3LEqyS4KlDXHbIoUOHolmzZhgyZEiNn6FDh2LAgAFG9dFZbNsGSRTnWFlmIoeT7FXT+duxy2VfzRsOP3+yWUKj5W+xO2JNRJ+iSPCoNl6AViQGDQJeeCGyEzPAPp80ib18/eUv0X8vN9dZcxS/h1u0YBYWO+HLWjzBKlEDXd/O8ePH0bx583qzKX/88ce6O+VouneH4nLVFD12+SZQkb+a8LIS6en2+1ZxwZNskVqRMvHa7bsDOCOsNxAAHnqIbX/8sX0RQfXh9zOr2DffsP3MTOZACwDnnafOO6NHM0flP/+ZCaBwgkH296NHW9Xr+BDBf4fDBQ/V04qILgvPhRdeiP379xvdl8TA50Pw2WdRPW3a6ZsgUmSSCPC3Hj4p2EkyhqavWaMmfgznySftF+A+H7M6cETwKQpHpLpjDeHzMbEyejSz+vDt2mPp87Hw9UgOz2PGOMeB2e5K6eGQ4KkXXYJn4MCBOPfcc7F58+YanxcUFOCyyy4zpGNORvnDH1Qfns2b7XsL8/mA+fPVfdEmcauxs3BobZJtSSsQiO7fMXCg9f2JBHek9niAnTvFsp6IlEfKSLjDc23R46Tld7LwOAZdgmfhwoUYN24cLrjgAqxYsQJbt27F9ddfj4EDByIlJcXoPjqPqhtASU2135oyaZIaovif/4g1iVuNnYVDa5NoFh5ZBpYvVxPNvfkm+0yW2XZtR2WOSBZH7ghcWcn8MUQika21fj/w+ut1P3eKoBNJ8PC5jQRPRHR7WD388MNo1KgRhg0bhmAwiBEjRmDNmjX4zW9+Y2T/HInEvfZFuAEAto5+6FDk3CfJhEhLWolk4ZkzB7jvvsghybX9YsKxMxdSJFJT2U9pKbtf7CgwGw1RShiYxfnns/+TCL6PsSLikhY5LUdEl4Vn3759mD59Oh577DGcddZZ8Hq9GDNmDIkdjkiKH2Dp2wE1RD1ZEWlJKxEsPLLMloHuuSd6/pX6xM6qVeJZHEXOtuz3q9fuhx+KN3bxwAVdeORWdrYzBJ1I8z0tadWLLsHTpUsXfPXVV3jrrbewbt06LFmyBFOnTsXs2bON7p8z4UtaItwAgJqPIdkFD1l4jGPOHHZdLVyo7+9nzrQ37040RBY8iqLmfOnVy96+mIHfz8Qz5/77neG4LKLgKSx0hv+TxegSPIsWLUJBQQEuv/xyAMCIESOwfPlyPPPMM5g6daqhHXQiEr8B7ExCFQ4JHoaIPjzcz8VJPP10zQdTrLhcrByBiHA/HhErppeUABUVbFu0xINGIMtMSHOc4rgs0pLWZ5+xtrjY2aU6TEKX4BkzZkydz37zm99g5cqV+Pzzz+Ptk/MRSfEDJHg4vGJ8PJlgjWL5ctbu3++siUmWmb+OXtxutnQh6lKFyBYeLsKaNgWaNLG3L2bg1Eg0UeZ7WWalczhOEYwWYmj1uczMTHz99ddGHtKZVJmdFbLwiMPChcC+fWz7mmvsFRiyrCaQA5w1MX39df1+OQ8+yKKyJk9Wkzvyz5cvF7+Ks8iCR9SyEkbh1Eg0bjmurLS3H04VjBZieLnd00R5yNuIJIri53Cn5V9+YTdAsiHLTFBw7BYYTp2YAgGWEC4SkycDu3ezYrmjRwN5eUzcLF+ufj50qLiWHY7IgodbeBK1EjZ3XA7Pgh7tehOFQEB9kRw1yt4XKacKRgsxXPAQEM9puW1bduEHg8B339ndG+sRTWA4cWLimX5r43IBTz3FBE6kTLpOEDnhcOuJyIInUS08ALP+7dql3guvvirukm/te8LuFykuGDmJlrrAAEjwmAGPpBDF2vXSS6pl57e/FXPyMBPRBIYTJ6ZIohEA3ngjPgdm0eDWExGdlrkIS1QLTzjbt6vbdguJaIj2IgUwwcitYjNmiL18bAMkeExAqCUt0d5C7MDnU8sGAGKU2PD7gX792PbCheJPTGvX1v3M7WYFIRMJJyxpJbKFB3BO5XrRXqQ43buztrTU3n4IiO5My5999hk+++wzHDx4EKFaKvfFF1+Mu2OORiSn5freQkS2KBjNWWexdsgQ4P/+T4z/e7t2wPff10y2JiKyLG7RT6MRWfAki4WHCwnRsy77fMC997L7ABDjRQoA2rdn7d699vZDQHRZeGbNmoXhw4fjs88+Q1FREY4ePVrjJ6lRFDVMUYS8DKK+hVjN/v2s7dvX/gmJ45Tkg9GWs0Qp+mkkXEycOCGeRSFZLDy1sy5LkhhCIhKDB7P2jDPEiUDs0IG1PCqVqEaX4Hnuuefw0ksvYfXq1Xj33XexdOnSGj9WMn/+fGRlZaFx48Y4++yz8dVXX1l6/jqcOAGJhyeKsKQVqRqxqJOHmXDB066dvf0Ihwse0ctLRBLHiSqa335b3e7RQyx/t2Sx8ABMOPCcMldeKYaQiAS/dzMzxZlTycITFV2C59SpUzj//PON7kvMLF68GHfddRf+8pe/oKCgABdeeCF+//vfY8+ePfZ1quoGCHo84jzI/H62jAOwh5Sok4eZiCh4nFJP64cfau6LYro3GtHSF9QmWSw8nBEjWLt6tTjfQW1EsuZzuODZvz96jbskRZfgGT9+PF577TWj+xIzOTk58Pv9GD9+PM4880zMmzcPGRkZyMvLs69TVf5L7spKeLp1E+cNkdct+uUXMTINW42IgscJS1qBAFBVQgYAe+sWxXRvNCJG3YTDC0LaneDOKjZtYu2BA+KGposUoMLhc1xlpZjRhjaiy2m5rKwMCxYswKeffoq+ffvC6/XW+PecnBxDOlcfp06dwrp163B/LWfK4cOHY+XKlXV+v7y8HOXl5dX7JSUlAICKigpU8Po08SLL8Pz97+AuqFIoBGXSJFRecon9b8Pt2sEjSZB+/RUV+/YJYxbnY2/YdxAFz/79kABUpKer9YhsRkpLgwdAqKgIQQ19smqsqpFleCZOhBQmkJXcXFROnSrMGEZD11hlZsLjckEKEz2K243Kzp1t//9KCxfCc/w469OllyKYlwdl7FhDjm35daUFWYbnzjur51IIMpfWHivXoUNwAwi2aIGQQOPnad0a0qFDqNizx9b0KGZdW3qPp0vwbNiwAf379wcA/FDL3C1ZFHFSVFSEYDCItrUqX7dt2xb7+dt8GNnZ2Zg1a1adz5ctW4bU1FRD+pS+cSMG17KeSMEgVr/6Kg736WPIOeJheKtWaHL4MFa+9hqO8dBFQcjPzzfv4MEgrjxwABKA//34I8oEceZrs2MHzgNQsmsXvvjoI81/Z+pYhZG+cSMG17J4iHQ9ayHWseo0ZQr6P/ssJACKJGH95MnYs2EDsGGDOR3UQOOiIgyfNq16XwqF4JoyBfluN8oMXN6y6rrSgujXHh+rs3/8ET4APx04gB0x3MNmM7RpU7Q4dAhr//MfHOQ1BG3E6GurVGfIvaQozlzf2Lt3Lzp27IiVK1fivLBcII8//jheeeUVbN68ucbvR7LwZGRkoKioCGlpacZ0Spbh6dat7hvitm32W3gAuIcOhWvlSlS+9hqU666zuzsAmFLPz8/HsGHD6lgKDePgQXh9PiiShMqTJwGP7mwMhiKtWQPP4MFQMjJQGZ5oLQqWjFU4sgxP1641LTwCXWkKOhoAACAASURBVM/1Ec9YuW6/He7XXkPwjjsQmjvXpB5qR/r8c3iGD6/zeWV+PpQhQ+I+vuXXlRYEnUtrj5X7ssvg+vRTVL74IpRbbrGtX7VxX3klXJ98guDMmQj96U+2jZlZ11ZJSQnS09NRXFwc0/NbjJlfB+np6XC73XWsOQcPHqxj9QGAlJQUpKSk1Pnc6/Ua90VkZQELFkCZNAlSMAjF7Yb0/PPwZmUZc/x4ycoCVq6ER5YBUSa2Kgz9HmpT5RQstW4Nr0hVpquuU+nIkZj+76aOVThZWSyxIF8iFu161oCuserSBQDgDoXgFuE+OfPMiHlpPD17GnofW3ZdaaFqLsXEidX/b5GuveqxqvLh8bRpI9acevIkAMCdkwP3vHlsLG30uzP62tJ7LN2Zlo8dO4a5c+di/PjxmDBhAnJyclBcXKz3cDHTqFEjnH322XVMZfn5+fZGkPn9qNy2DSsee4y9jYjk3JmZydqvvxY36sEMRHRYBlRHx5MngTDrozAoCrBzJ9v+y18S11m5NnyZSBSHTxEzhVuB318zQvDaa+3rSzREjNKSZTbHc0SLNrQRXYJn7dq16Nq1K3Jzc3HkyBEUFRUhNzcXXbt2xXcWFqecOXMmFi5ciBdffBGbNm3CjBkzsGfPHkyePNmyPkTE52PrzKJNSLyq73vviRv1YAaiCp4WLdT8SCKGpj/5pJq8LDsb+OQTe/tjFfzhJYrgAVjCTAC48MLkEZ4As25VWdzw/ff29iUSIkZpOaU0hw3oEjwzZszAVVddhV27dmHJkiVYunQpdu7ciSuuuAJ33XWX0X2Myg033IB58+bh0UcfRf/+/fHll1/io48+QufOnS3rg2OQZTUXD5Bcqp/7czVvbm8/auNyqROlaKHpssysOpxkul5Es/AAatLBs84S70XKbHjNubfeEuv6q6gAqqJ9hRI83bvXLVeTqIlCY0S3hee+++6DJ8z50+Px4N5778XaSEUGTWTq1KnYtWsXysvLsW7dOlx00UWWnt8xiJ5jxCwCAbXWzZIl4lm1RE0+mMxviVzwiPSdJFvSwXCCQdbm5YllmQ4voyRC3USOz1ez9l2yLIFqQJfgSUtLi5jNuLCwEM1Fe4smGMlYU4tXiucPbkURz0ohavLBSGkLEv164YRbeEQJYk2mshLhyDLwn/+o+yJZGvk927IluzdEgrt1uN3MDy9ZlkAbQJfgueGGG+D3+7F48WIUFhZClmW88cYbGD9+PG688Uaj+0gYAa+pxXG5El/1O8GqxS08ojmS135xSaa3RC5Cy8oAnfk+DCdZLTwiWxpF9N/hcH/FYBAQKTLVZnSFpc+ZMweSJOHWW29FZVWac6/XiylTpuBJvnxAiIffD7zyCvDFF2yZJ9FVP7dq1QrnFcpKwSfNuXOB3Fzbw0erWbOGtT4fu2a6dUsOsQMAzZoBjRoBp04xodG0qd09Sl7BI/I9zJc8RYrQ4jRqxK6VoiIWeJBs100UdFl4GjVqhGeeeQZHjx7F+vXrUVBQgCNHjiA3NzdirhtCIHr3Zq1oSyhmILpVS5aBVavUfZHM9cuWsXbAAGDoUHHGzAokSTw/nmRd0hL5HhbZwgNQ1fQI6M7DAwCpqano06cP+vbta1h5BsJkunZlrYbMvgnBzTer299/L4b1hCOquT4QAJ5+mm1/8IE4TqJWIlJouqIkr4UHYPcsz8Fz993i3MM7drC2cWN7+xENLngEKaUjApqXtGbOnInHHnsMTZs2xcyZM+v9XSuKhxI64aZgux+qVsErTDdqBPTqZW9fasPDR8NFj93meu7ozeGO3iNGiPFWbRUihaYfP86W14DkFDwAMGgQsHQpIEBdKACQFi0CHnuM7bz/PnspEEWIcTp0YC1ZeKrRLHgKCgqqK5QWFBRE/T2riocSOuEWns2bWSLCjAx7+2M24UkHRbs2eQZdbrIXwTG4PkfvZBQ8IixpcdGVmsp+kpEzz2TtTz/Z2w+wYq7uKVPqRn+K9lJAFp46aBY8y5cvr95++eWX4fP54KoV5qwoCgp5Nl9CTL78krW//spKTYjiJGsWomZZ5owezb6DzEzgq6/snzBFtDrZgUgWnmT13wnnrLNYu3kzE+S1U2xYSLN9+2oUNQUg5ksBWXjqoOuqycrKQlGEieDIkSPIEqS4GxEBWQamTVP3RXKSNQvRBQ93eCwvF2Oy9Plq1iwSwepkB9yH5/vv7b8/ktl/h9OlCyvO+euvNR39beBE+/ZQnJDTjCw8ddAleJQoybhOnDiBxqI6cBHOyEtjNKILnvDEg6IkuWvUiLUTJiRX3aZw+D0hQt05svAAL7/MSjkAwAUX2Pp9lKWnI5iXp34gUuRYOFzw7Nhhv2gXhJjy8HBnZUmS8NBDD9WIzAoGg1i9ejX69+9vbA8J4xA5p4VZ8LcbfvOLRriFp7RUjJwv69ez9tprxZvErUCWgcWL1X1uCbXLR4OLr2RNICegI70ydixzWpZl5kx91VW29KNevvqKtQcOMNGe6O4LGojJwlNQUICCggIoioKNGzdW7xcUFGDz5s3o168fXnrpJZO6SsQNz2nBnXclScw3EyMR3cLTrBkz1QNi5EYqLQW2bGHbbdrY2xe7ECldQCAAPPEE23733eRMESCqZbq4mLXcoVokZBl48EF1PxncFzQQk4WHOy6PHTsWzzzzDNLS0kzpFGEifj97U7z5ZiArK/EVv+iCR5KYlefAARYRZHfU3BNPqA/7c85JzrdCUSyh0WrBiRYNZDaifB/hVFSwdAGAmIkHKdoyIrp8eBYtWkRix8nwivK7d6v5PRIV/kZjY1RHg3A/HrtDoGVZtSYAyftW6PPVHAe7HLdFtWxYDbdMh9/DdlumeaV0SWLFQ0UjGYtFa0BXLa1HH3203n9/6KGHdHWGsIiOHVlxyOPH2eTJQz4TjYUL1URl114rrrVClIrp9S3lJNtb4bRpwP33s+2ffgLOOMP6Poho2bALv59ZHPv2ZftjxtjbH/5yImKldEAViRMmsHtaVMdqi9EleJYuXVpjv6KiAjt37oTH40HXrl1J8IiOJAE9e7ICkZs2JabgkWVmneDY7XhaH9wkbreFp3v3up8l6wO2aVMgJYU5k9tVH5A/tMaPZ/vJ/tDq04fdK0eOMBHer59tXZG4hUfE5SyO388cl19+GZgyRcyXPYvRZecPd1YuKCjADz/8gH379uHSSy/FjBkzjO4jYQY9e7L2ww8Tc8nCScsBolh4fD6gRQt1P1lz8ADspUCEelp+P8DdBz77jB5aXJRv22ZvP0QvHMrhDtXcwTrJMcyxIS0tDY8++ij+9re/GXVIwkxOnmTtokX25xkxAyetYYti4Tl2TJ0Y//Of5M3BwxEh23JFBVBSwrZ797avH6LAlxZJ8GiDB0FQBQQABgoeADh27BiKSUmKD88dwUlE51SfD7jtNnVfZGuFKBaeTZtY27EjcMUVYo6VlYhQT4uf2+UCTjvNvn6IArfwfPGFrfOVxO9Vfu+KCgmeGujy4fnHP/5RY19RFOzbtw+vvPIKRo4caUjHCBNJFufULl1YO3Ik8MIL4v7fRLHw8MKMiejTpQcRLDz83K1aiekcazVc5Hzyib3J9Jxm4ZFl22uQiYAuwZObm1tj3+VyoXXr1rjtttvwwAMPGNIxwkSSJfqDR2gNGiSu2AHEsfCsXs1au3MBiYIIPjxUVkJFllnkJcfOQASnCJ6OHZk/2qlT7Fpq29buHtmKLsGzc+dOo/tBWEmyRH9wwdOxo739aAg+ae7ZwyZ1O76HQIBZwQDm13X++cntvwOIZeFJ5sKhHIGS6TlmScvrZWV19u5ly1pJLniS276VzPj9wNixbHvcuMR8uHHzt+iC54svWFtYaI8DebRaRYnk06UHEXx4SPCoiBSI4ISwdA632H70UdLf05otPLxwqBZycnJ0dYawmAsvZG/zIoZqGwG38IhsuZJlVoSQY4eZXqA3Z6EQwcJDS1oqAlmmJS6CnSB4KitZ+/DDwKxZ4iZgtQDNgqegoEDT70m8MCUhPgMGsHbNGmZdSCTfjVOngIMH2bbIFh4RxEay+HTFigg+PGThqYnfzyJMP/wQ+Nvf7HtwcyEaDNpzfq3IMvDdd+q+yAlYLUCz4OGFQ4kEgjupnjwJZGYmlvLft4+1jRqJ/bAQQWz4fCwF/fPPq+dPRJ+uWCELj5j06sUED19WsphO+fmq9fiaa8SeN5MlIlcjun14jh07hrlz52L8+PGYMGECcnNzKQePk5BlYOpUdT/RcvGE+++IbHXkZnqOXWZ6bgUbMYISDnLCfXhqPzSsgiw8deHpJnbssP7csoz+8+ejekYRfd7s3r3u/JfE1ltdgmft2rXo2rUrcnNzceTIERQVFSEnJwddu3bFd+HmM0JcnFR6QQ8bNrDWCQ8Kv18tirhwoT1iY+tW1g4ZkpRvfhHhS1rl5WpmcqshC09dsrJYa0O0sPTzz5CiWUxExOcDwmtbJrn1VpfgmTFjBq666irs2rULS5YswdKlS7Fz505cccUVuOuuu4zuI2EGIkU8GE0gwKpdA8w/yQllM7iFxS5LwpYtrO3Rw57zi0jTpmxJFAA2brSnD2ThqQu38Ozcafn9onTrBsVpFpPwgKMffkhq661uC899990Hj0d1AfJ4PLj33nuxdu1awzpHmAhfSgnP3vrPfzpf+fMQ6/CJUGSTM4e/wdvhL6IoqoWH1yoigBdfZM7vAHDBBdYLZ0VRHe95pA0BdOrE2tJSYP16a8/t8+Hnq69W951gMUlLU6PJ+PWcpOgSPGlpadizZ0+dzwsLC9G8efO4O0VYhN/P3pLCTfeiC4OGcOpSHX+D50sYVnLwoFo0tHFj688vIrVzE9nhqzF/PiseCrBEkE6wVFrBK6+o2wMHWj4uR/lLQe/ezvF3s3EZUCR0CZ4bbrgBfr8fixcvRmFhIWRZxhtvvIHx48fjxhtvNLqPhJlkZKg3w4wZzq+c7tSlOm7hsUPwhOfN6tHD2d+/UdgtnGUZmD5d3RfdOdYqBBCiKfzloFs3sS074ZDgAaBT8MyZMwejRo3CrbfeiszMTHTu3Bm33347rrvuOsyePdvoPtZh165d8Pv9yMrKQpMmTdC1a1c8/PDDOJXk5jpdyDKwbp26H+8EIsvAm2+ynzVrgOXLrZ2kRYl6ihW7lrRkGXj6aXWfHqwMu4Wz3YJLVAQYl0YlJWzDSY7kXPDs2mVrN+xGVy2tRo0a4ZlnnkF2dja2b98ORVHQrVs3pKamGt2/iGzevBmhUAjPP/88unXrhh9++AETJkzAyZMnMWfOHEv6kDAYladBloFnngHmzq17PJfL2lwVN9+sZmMtKFAjoETGriUtytMRGS6cJ0xg4yNJ1gpnHk4c/t04wVJpNgLkrWp0/DjbcJIjOVl4AOi08Pz6668oLS1Famoq+vTpgxYtWmDBggVYtmyZ0f2LyMiRI7Fo0SIMHz4cXbp0wVVXXYW7774bS5YsseT8CYURb7Jz5jBHwjlzIkdNhELMDG2V1aCwkLWpqUCfPtacM17sWtLq3r3uZ/RgZfj9wJ13su1bbrHWV8PnA26/Xd13gnOsFXAhGj5nWTwu1RYeJwqejRuT2nqry8Jz9dVXY9SoUZg8eTKOHTuGc889F16vtzofz5QpU4zuZ4MUFxejVT11TcrLy1FeXl69X1J10VZUVKCCOwYaBD+e0cc1hbZtIeXlwT15MiRFgQIg+PjjUNq2VR0m60HKyYH7/vvRYGq/UAjB3FyEnnyyxsdmjJW0Ywc8AJSMDFQ6JbqlZUt4AShFRaiMMhamXFdt28LTqROkqiAExe1GcP58zd+/qBg1Vq5OneAGECotRdDi8XD17MnOfcklCC5cyB7qJvTBUfMVANx6K6QWLeAZPRpKx46ovPVWy67VioqKah+eypYtoThkzKRvv2UP+507oXTujGBeHhRePNpEKnftQvrGjag86yyWzd8g9F6rugTPd999h9zcXADA22+/jbZt26KgoADvvPMOHnroIcsFz/bt2/HPf/4Tc+fOjfo72dnZmDVrVp3Ply1bZtpSXH5+vinHNZy2bdHvd79DZn4+JADuBx7A+sJC7Bk2rN4/a7F1K4ZoETtVuHJz8VW7diiOEPps5Fh1+vRTDABwMDUVqz76yLDjmon3xAlcBkA6fhwfv/ceQl5v1N819LpSFFxWVAQvgO/uuAOH+vVDWXo6q6ycAMQ7Vh0LCzEQwOGtW7HS4jE5a/VqdAews2lT/LBhg5pM0yQcM18BSDl+HCMBYN8+/Pf996F4dD3KdDGkaklrza5dOOiA+6RxURGGP/JI9b4UCsE1ZQry3W52r5t0zi4ffIBu772HwYoC5aGHsH7q1AafKVopLS3V9XeSosSeuSk1NRWbN29Gp06dcP3116NXr154+OGHUVhYiB49eujuzCOPPBJRlISzZs0aDBw4sHp/7969GDJkCIYMGYKFCxdG/btIFp6MjAwUFRUhLS1NV3+jUVFRgfz8fAwbNgzeeh5cwiDL8HTrBilsXVxxu1G5bVtUU7G0aFG1VSgWFJerxtuFGWPlmjUL7scfR3D8eITmzzfkmKajKPA0bQqpshIVO3ZEHHdTrqsjR+Bt144d/9gxtgyYABg1VlJ+PjyXXw6lTx9Uhjv3W4B70iS4Fi1CcNYshB54wLTzOG6+Atj90qIFpLIyVGzaBHTtaslpKyoqgM6dkVpUhMqVK6GEPYtERfr8c3iGD6/zeWV+PpQhQ4w/39y5cD/wQJ0X4YaeKbFQUlKC9PR0FBcXx/T81iWLu3XrhnfffRfXXnstPvnkE8yYMQMAcPDgwbjEw5/+9CeMGTOm3t/JDDOL7d27FxdffDHOO+88LAiPzIlASkoKUlJS6nzu9XpNu8nNPLah7NpVJ/JBCgbh3b1bXfsNR5aBKVOiZzm95RZg8GCW7bj2cUMheKZMAS67rMaFb+hYVa1Ru7Oy4HbC+HPS04H9++E9dizyuFdh6FjxfFrt28PbooUxxxSIuMeqSgxKhw9bfy8fPgwAcLdrZ8l17Jj5ipOVBWzaBG9hIdCzp2WnlarcITzt2gFOGK8zz4zo6O3p2dP4/j/9NBBFnNf7TIkRvdepLsHz0EMP4aabbsKMGTNw6aWX4rzzzgPAlocGDBigqyMAkJ6ejnSNJrZffvkFF198Mc4++2wsWrQIrtqOt4R2IkU+uFwstX4knnmmbmgowKJKZs8G7rmH7Xu9zFm59u+GQuwY4eHQRrJ7N2s7dzbn+GZRJXgsDU3fvp21Fr0hOw6elLOoSI3WsgoqK1E/XboAmzZZG3l08iQ8PP2JU74XqyIOZRm4777o/y5AMIQulXDddddhz549WLt2LT7++OPqzy+99NJq3x4z2bt3L4YOHYqMjAzMmTMHhw4dwv79+7F//37Tz52QRCozEQoBv/1t3SR0a9awaKzauFzA6tWq2AFYVMuqVZEfErm55kUL8CrKTssabEekFh8rXp+IqAl/qJ06BZw4Ye25qXBo/XBLgZVV06tEqJKSAjRrZt1548XvBx5+mG2PHGlOxOGKFVGt/oogUYa6zSLt2rXDgAEDalhWzjnnHPS0wLS4bNky/Pzzz/jf//4Hn8+H9u3bV/8QOvH7gW++qSlOaoeTz5kDnHNO5L+fORMYNKju54MGAX/+c93PzUoW9sIL6jLN9dc7K2swf7CtXGld6KiTqsrbQWqqKpyrlpgsgyw89cNF+urV1t0v/BpIT7fW2mcEfO7maTuMJBAAIlRZUADsHDGC+e4IUILDketAt99+OxRFifhDxMGJE3UVeijE/HVuuaWm9SYcl0vNVxKJO++sm+unviUzvcgyMHmyuu+0rMH8jf7ZZ60p8REIAIsXs+3cXGeJQ6uQJFVwWLnUWFkJHD3KtknwRIYvx37+uWUlcSR+DfClTifRowdrI2Wrjofa5T44LheCTz6JDVOm2G7Z4ThS8BAmwbO71uaDD4BXX438NzyLcn0XdD1LZtKiRfH1ORwB0s7rRpbZxM0xW6zVnqQUxVni0ErC/XisglsSJEmtdE2oyDKQl6fuW/VyU/VSojhRhHbuDDRqxIpERyj+rZtoPp1vvAFl5kzjzmMAJHgIFZ8v8vJTNCSJ+ehoMVVGWTJzT52KxkY9SCIJNgEc5TRRX4kHs87nVHFoNXZYePi5WrWq+aJAMGy6fiVuVXJi+obwufDNN40Rh7LMyglFOldVMJNIkOAhahJp+SkaTz0V2W8nGhGWzKRgEE337Yuhg/Xg8wG//726L4ijnCasFmt2F8d0ElzwWOnDQw7L9WPH9RsIwPX44wAA6cMPnbkE3KgRa++7z5hlwEgvagAwY4aQ8y4JHqImkWrV1MblYmLn7rtjO3aESUpxuXDSSGdzHjkxZQrLLySAo5wmfD7m+M0xW6z5fMAdd1h3Pidjx5IWOSzXD5+nOC6Xuddv1RIwT7QqOXEJWJaB779X941YBozkAtGQT6eNkOAh6uL3s1w2d99d84KWJPbZ7t3RHZjrg09S4cdUFLQpKIi/zxxu0h450nkP79tuY21amjVijb8NDx7sLHFoNXYsaZGFp2H8fnafA8CsWeZev4mwBGz0snkgAFxySc3P3O6GfTpthAQPERmfjyUG3LOHrfe++Sbbfvrp+C7mESNqCB5JUdAvL8+YNyVFcXYiPf5wO3ECsCLFAh+r3/5W2AlKCLjg+ekn697oycKjDZ4Gpaqgp2kkwhKwkf8HHvQQLqBcLuanKfCLEwkeon58PmD0aPZjxEMxwpuSKxRSnQHj4fBhdeJzYiI9vnQSCqkhyWbCE7Y5URxaycaNrP3yS8vCn6uzB/9/e/ceHkV97w/8vbvZrAGSlLiQCwtJhCB3gqRgqEoOLUQLauXUilAKGPGAhYrF+pPac4Tqc6AWbfUoCDX1QE8F+3i3KBIfLha5GLlL5KZgWEjAcEtISNhkv78/JrObTTZkdndmdnf2/XqePDOz2Zl895uZ2c98r36mw6EW5KmGTpzQ9u80l07LX+9C6yo0LTgc0pAXslCqsf2VeLndQG1taGnUGAMe0pefpwy32QyhxpeuXDTboweQkBD68fRmtQLf+560rsdoy3KQGY3BoV6cTt8AR4/uz8XFgDxcw8svR2fjWL3oFfAAUslF80NJ4wcfRHRJRrtmzfKOx/Pqq8F/hpyctq9FQYkXAx7Sl58xeU6r1X3x88+lZc+e6hwvHORqLa3biwjBEh4l9G67wfGRAiMHPPL8eVpyu4GLF6X1QYO0/3takWd4P306+GO8/bbvdpSUeDHgIf0VFUlPZAMHAgAcn32GuD59QnuSLS4G5s2T1nfujN6nYrnNhtYlPJWVwJUrUnsqTrzbPr3bbhihcaye5AmCv/tO++qUixdhamqS1qNxpGXZkCHSsqQkuEDa6fTea1sqLAwtXTrgnY7Cp6zMs2oKpaqgdQO6aH4q1msC0RdflJZCSF/q0Rogas3hAF56ybutdfd9IzSO1dP3vgckJkrrO3dq+7eaS11dnTp5x7OJRvK4Z8FOyXHkiP8piKIgKGfAQ+GhZhdJIz0V61Gl5XQCf/iDdzva5hzT2+zZ3sbDn36qbdsNh0MKqGQcH+naiouBmhpp/Uc/0jZwb74mr8oBVjRyOr0PO0Bw176/90ZJUM6Ah8LD35Os2RzcRWOkp2I9qrT0nsbCCORA1GrV/m9NmuRdLyuLzsaxetC7vVPzNdmQnKzN8fUQ6sNhcTEwfbrva1EUlDPgofCQu3m2GoQQH38c3LGeftq7HUUXYBt6VGlFaQ+LsNJzegn5f5+QAPTtq/3fi1Z6l+zKJTxJSdocXw+hPBxG6dg7LTHgofBpNQhhSE9oAwZIyz59onvUYD2qtBwO367o0Rwg6kXP0ZY56KAyepfsGqFKq/Vo9yaT8ms/SsfeaYkBD4XP0aNSY+WWgn1CO3hQWkb7qMF6NVqWb1IrVkR3gKgXPefT4rQSyvib90/LwN0IJTyAdK2//760npQEzJihbL8vvmj7WpSVDDPgofDJyZFGLG0p2AuotFRaRnOwA3if6k+e1K4twuXLwJkz0vrPfhb9eaYHlvBEpqIiYN06ad1u1zZwN0IbHllhIdCpkzQy/apVHd9rnE7giSfavr5kSVTdPxjwUPg4HGhavtw36HnggcCPU1wMvPeetP6HP0R3F+uNG6VlVZV20xjI0xakpHhHdqZr07MNjxzwsIRHmREjpGVVlTS2lFaMUKUls1q9A7Q+8EDH9xp/1VmAdxDDKMGAh8JKzJiBDStXwi0/JfzlL4F90RtpZFqnE/jtb73bWnUX55QSgdOzhEeu0mIJjzJdu3rH4tFyxGWjVGkB0j3lyBHvdkf3mri4tq9FWXUWwICHIoTp1CnvRiBf9EYag0evz8IpJQKnZxseVmkFxmTSZ4qJykpp2XpIh2gUyNAUxcXA6NG+r0VpRwcGPBR2XSoqYAp2XJicHN+eXkBUPnkA0K/Xyb590pJfqMqFo4SHVVrKyVNMaDWJaHGxJ5ga8Yc/wCRP7hqtlI6DZoCu6C0x4KGwu5yeHnzjZYfD9+kjSp88AHh7nci0mJCvuBhYvVpaX7Ysuts76SkcbXgYkCqn5azprarNTULA8vDD0VltLmt9rwH8j4NmgK7oLTHgobCrt9vRtHy5b0nN4sXKv+irq6XlU09FfxfroiLg9tul9UWL1P0sRmrvpLeWVVpaV2mwhCdwcsCzc6f657OfL31TtFabt6RkHDS592tL0VqCDgY8FCHEjBnAo496X3jiCWWlD1euAPv3S+sPPBCdJTutZWdLy6tX1T2ukdo76U0ubXG5vHM3aYUlPIGTG+Jv2qR+70Y/1T8iir/0Pdprx7N9u7ReWmqIrugtMeChyOB0An/+s3dbacPljz8GGhulLwe5m2W0S0uTlnIjSbUYac4xvXXqNhEV6AAAIABJREFUBFx3nbR+4IB2f6exETh/XlpnCY8yTqfvhKtq9250OIC5c72HN5vRtGxZ1H7pe/i7HwDSXG7TpwMjR/ovzYyyrugtMeChiGA6dizw0ofiYmDiRGm9qgr461+1S6CetAp4HA7fUrRobu+kt+JioL5eWr/tNu3aPsnBDgDU1WnzN4xGj5LL3FwAgDsvDyUrV0ol0tHO30jVgJSXq1b5D3ai/AGJAQ9FBNGnj/9eA507+9/BX+8Bo7RHSU2VlvJoyGrq109ajhgR/e2d9NK67ZNW4yMBwCuveNdvuIGNypXQo+RSvhb79UO9kaoai4qANWuUvVeLThQ6Y8BDkUF+2rBYvK+53dLcWP5u+kZuj6JVCQ/gbevw/e9H9Y1LV3qda06n1FBdpmVgZSR69G5sDnhE9+7qHTNSjBrVdmiP1sxmYMeOqH9AYsBDkaOoSGow1/Lia++mb+T2KC0DHrV7BHHQwcDpda4ZOYjXWlER8G//Jq0vXqz+F7NcwiOXvhqJwwHMn3/t9/z619JDUpRjwEOR5fJlZSOAOhzArbd6t43UHkW+qV69Kk3upyZOKxE4uQRBDsRNJm3ONSMNohkO/ftLS7WvGcDYJTwA8Mgj/hswA9Lrjzyib3o0woCHIovSEUCLi4EtW7zbWjzVhct11wHyjMxqV2vJAQ9LeAJTVATMmyetT56szbnmcAATJni3jRTE60HLwQeNXMID+G9SAEjbK1ca5hxkwEORpfXTNNB2BNDWjUgBYMECY7V10KIdz4ULwMWL0jpLeAIn55ncW0sL8hfLL37BRuWB0nI+LaOX8ADSuXbihDSW0eefS0uDnYNRH/A0NDQgNzcXJpMJe/fuDXdySA3+RgB96CHvqJ/bthm/rYP8JLlxo3qBnFy607Wrb/dnUkaP6SXOnpWWI0YY5qlaN1rNp9XY6B0M0qglPDKHAygokNrrFBQY7hyM+oDn8ccfR0ZGRriTQWpqb/6Wm2+WBsSaNKntPkZr6yCPwfL00+qNHPvqq9LywgX1R6ONBXpMICoHPEYuSdCKXMJz+rS6o5R/95300GU2c/TrKBfVAc9HH32EDRs2YOnSpeFOCqmpvRFA2xsQy2htHZxOYNcu77Ya3ZOdTt+uu+zyHLiW82lphQFP8Lp1AxISpPvDyZPqHVduv2O3t23jQlElagOeM2fOYObMmfjb3/6GTp06hTs5pKb2RgBtz5o1hqpnbm+OG5NcJaXiMQ1VDai1liU8Wk0gyoAneCYTIJf2+5v0MlhGb7AcQ+LCnYBgCCEwffp0zJo1C3l5eTihoM62oaEBDQ0Nnu3q5hm2XS4XXC6XqumTj6f2cY2o3bz6xS+A/v0Rd8stMF3jy0VYLGjMy5MmdTSKrCzEmUw+n1tYLHBlZgJlZcGdV1lZiAPQstOzsFjQmJlprLxrpsk1mJQEKwA0NsJ1/jyQlKTesQHg6lVYL1wAALi6dtXt/2KU+5Xptddg+fprmACIyZPRVF2tyhQQpgMHEAfAnZRkmLzSi1b5FezxIirgWbhwIRa1HGnUj9LSUmzbtg3V1dVYsGCB4mMvXrzY77E3bNigWQlRSUmJJsc1ovbyasBddyHnvffa3e/YnXeibP9+74zpBtHyc7vNZuybNQvlZWUAgj+vftypE6zNbYM8xzRg3rWk9jU43mZDXEMDNr/5JurknnQque78eRRC+t98uH278hJOlUTz/eq6qiqMmzXLE9CbhIB59myUWCwhTQXRq6QEucuWScf87DMcfvxxYOzYqM6rcFA7v+qCnGfOJIRWZbOBq6qqQlUH9eNZWVmYNGkSPvjgA5ha9ORpamqCxWLBlClTsGrVqjb7+Svh6dmzJ6qqqpCk8pOay+VCSUkJxo4dC6vVquqxjabDvHI6EdenD0ytGzEDEGYzGo8dM07bnZYOHYJ1yBCIhAQ0HjwIOByhnVeXL8OakgIAaHz7bYjcXGPmWzOtrsG43r1hOnkSjZ99BqH2yLN798I6YgREWhoay8vVPfY1GOF+Zdq8GXHjxrV5vbGkBGL06OAO6ufeIywWbFixArfef3/U5pWetDq3qqurYbfbcenSpYC+vyOqhMdut8OuIBp/8cUX8cwzz3i2T58+jcLCQrzxxhsYOXKk331sNhtsNlub161Wq2YnrpbHNpp28yo7W2rP8x//IbU5kVksMK1YAWt2tn6J1FNzjxPTlSuw2u1Ai7wJ6rySv0Cvvx5x99yjUiIjn+rXoN0OnDyJuIsXff4nqmiuzjJ17x6W+0ZU36/695dKxFo+GFksiOvXL/j/04kTbXqLmpqa0LmiIrrzKgzUzq9gjxVRAY9SvXr18tnu0qULAKB3795wGPipNWYVFUlj8xw7Js2eXlsrdUE38v86MVH6qamRutneeGNoxzt6VFrm5ISetlim5Vg8bLAcPLmjw0MPeYOUUHtuyr1FW5Xw1Kanh5hYCpeo7aVFMcbgA2L51aOHtDx1KvRjyb2xjDRWUTho2TWdAU9oioq8vbNMJqnjQyj8zMLetGxZSG2CKLwMEfBkZWVBCIHc3NxwJ4VIPQx4Io+Wgw8y4AndsGHSXHRCqDPGVFERIHdq2bxZlV5fFD6GCHiIDEnNgOfLL6Vlc8NlCpIc8Ozfr/6gjcePS0s/bQ1JIZMJkJs8qDHFRE2Nd9TzYcNCPx6FFQMeokilVsBTXAzs3Cmtz5vHKSVCceSItPznP9WdnqO4GPjHP6T1Z5/l/ygUas6afvq0tExKAprbilL0YsBDFKnkUWNDCXhazyzPKSWC53RKo3rL1MrL1v8jIfg/CoWaAY987XG+RkNgwEMUqeQSnq++Cv7Lz99ErJxSIjhaTc/B/5G65IBnx47Qg0a5hIcBjyEw4CGKVPIEoocOAZmZML32WuDHyMmR2jW0ZLSZ5fXib1JbNfJSq+PGKrkt1IYNoVc7ygGP/PBBUY0BD1EkcjqBxYu92243LA8/jOsC7R3kcAATJ3q3jTazvJ4cDuC557zbauWlwwG8+KL6x41FTqdvgBNqtSNLeAyFAQ9RJPJTzSGP8hqw731PWk6bJrVrMNLM8nqbO9dbYrZjh3p5eccd0jI+Xiqh4P8oOGpXDzLgMRQGPESRyE81R9CjvMo3+7FjWWoQKovFO05OnIoD1ctj8KSnAz17qnfcWKN29SADHkNhwEMUidQc5ZXTSqhLDnjkIEUNHHRQHX6um5CqB+U56NQMbilsGPAQRaqiIuCnP5XWH3ssuFFea2u9T6lsBKuO1FRpeeaMesdkwKOeoiKpNBMAFi0Kvnrw1VeBkyel9X//d46NZAAMeIgi2cCB0rJ5Ju2Aff21tExM9I4YS6FhCU/kGzxYWp4/H9z+TqfU2FnG8asMgQEPUSSTxxT59tvg9n/lFWlZU6PuyMCxjCU8ka93b2kpB/yBaqfxsynY41FEYMBDFMkyM6VlMKPGOp3egAfgU6paWMIT+eTq22B7Z7UzfpWQAymKSgx4iCJZyxKe1k+cHdFqZOBYxxKeyCcHJt98E/h1A0iNnO+7z7vNsZEMgQEPUSRzOKSeJg0NgZco+OuVxRF8Q8cSnsjXq5d03dTXe0csD5TcFf1nP+P4VQbBgIcoklmtnqdK8zvvBDbSco8egM3m3eZTqjpYwhP5Vq/2luzcfHNwbdfkdnM/+AGvGYPg4AJEka45aLE88gjGmUxoamrynV27PU6nVDJksQDr1wP9+vHGrYaWJTxCtG3rESi3G/juO99jU/Bazz4vt10rLAzs/JcDHrkdHUU9lvAQRTKn0ztwIACTELA8/LCyhsdlZdKyb1/gRz9isKMWOShxubx5HIrz572lEfX1oR8v1qk1vYQ86CADHsNgwEMUyVoEOzKT0pu3/GU8YIDKiYpxf/+7d33IkNC7+i9f7l3PyeHQAaFSY3qJK1e81YwMeAyDAQ9RJPPTPVYovXmXlkpLluyop73qkmC7+judwMKF6h2PvNNLtAx6Am27JpfudOninXyXoh4DHqJI5nAATz7p2XQ3z6nV4c27uBhYs0Zaf/FFlhqoRe3ZuNU+HkmKioDPPpPW4+KAadMC21/u2ZWREXobLYoYDHiIIt1vfuNZ3fSnP3U8p1brUgghWGqgFrVn425ngDsOHaCCESOAhASgsRE4flz5fsXFwM9/Lq0fOcKHBQNhwEMU6ZKSgPR0AIC1oaHj97PUQDtydYkcpJhMoXX1dziAceO82xw6QD1ms9RgHwAOHVK2j/yw0HLATj4sGAYDHqJo0K8fAKDLqVMdv5elBtoqKgL+3/+T1idODH1AOrtdWj70EAe4U1vzdYPDh5W9nw8LhsaAhyga3HgjAIUBj8MBTJjg3WapgfrkL9Lq6tCPVVEhLW+9lf8jtcn/p40blZXSqF1lSRGFAQ9RNGgOeFLKypTduOUSnl/+kqUGWmiuYvQEK6GQjyEfk9Rz+rS0/OgjqXt5R+1xHA7p4UBmNvNhwUAY8BBFg+bZ0u1lZYjr06fjG/eePdLyZz/jzVoLDHgin9Ppe50o7fJ/113e9cOH+bBgIAx4iCKd0wn8z/94Nk0d3bjPnQNOnpTWu3XTIYExSA5Ozp0Drl4N/jhXrgAXL/oek9QRbHucI0ekZVYWq7IMhgEPUaQL9Mb93//tXR80iN1qtZCSIk3sCgCVlcEfR97XZuMAd2oLtj2OHPDIPbzIMBjwEEW6QG7cTifwpz95tzlyrzbMZu+s6aFUa8ltTDjAnfqCHUKAAY9hMeAhinTNN27RfOMW17pxHz3qO4YIwG61WlGjHQ/b72irqAiYP19av+ceZe1x9u2TlqwONhwGPETRoKgITc89BwAQubnt37h79277GrvVaoMBT3S49VZpqSToLy4G1q+X1hcuZHWwwTDgIYoSYuxYAIDpq6+k4fL9aT0uDMfg0Y4cpGzfHnyVoTwgXmKiOmmitoYMkZYHDwLffNP++zgli+FFbcCzbt06jBw5EgkJCbDb7Zg4cWK4k0SkrZwcuDp1gqm+Hvjf//V/I37/fWmZlwds2sQxeLQkl8787W/KxnhprbgYWLZMWl+1iqUJWvnkE2nZ1CS1h2svnznKsuFFZcDz1ltvYerUqZgxYwb27duHzz77DJMnTw53soi0ZTajvmtXaX3mzLZfssXF3pnVd+0Cvv6aJTtacTqBDz7wbgfaOLz1nE0sTdCG0ynlq+xa/ydOyWJ4URfwNDY24pFHHsEf//hHzJo1C3379sWNN96In/70p+FOGpG2nE7fqSVa3rxZHK+vUBuHszRBH4Hks8MBFBZ6t1kdbDhx4U5AoHbv3o1Tp07BbDZj2LBhqKysRG5uLpYuXYqBAwe2u19DQwMaWsw0Xd3c1sHlcsHlcqmaRvl4ah/XiJhXyjUdOgRrmxeb0HjoECAE4vzc2BsPHYKQu0/HEM3Pq6wsxJnN0iCQzYTFgsbMTEDJ3wx1fxUZ+hoMMJ8tjY0wA2h69FG4586Vgp0W7zN0XmlAq/wK9ngmIVo/pkS2tWvX4v7770evXr3w/PPPIysrC8899xw2bNiAI0eOICUlxe9+CxcuxKJFi9q8/vrrr6NTp05aJ5soZNdVVWHczJkwtbhk3SYTSv7yFwDAuAcfRMsCebfZjJKVK1Evz8ZNqsr+4AMMaa5SdJvN2Dd7NsqbG5Yr2v/DDzFk5cqg9ydlepWUIHf5cpjcbggA+x96CCd+/OO2bxQCt//iF7DV1GDz0qW4xKqsiFVXV4fJkyfj0qVLSEpKUrxfxAQ87QUkLZWWluLIkSOYMmUKVqxYgYeai/AbGhrgcDjwzDPP4D9a1te24K+Ep2fPnqiqqgoow5RwuVwoKSnB2LFjYbW2eSanFphXyrlcLhx+/HHkvvyyJ7ARJhOaXnkFcLthmT3b+7rZjKblyyFmzAhXcsNKl/NKCMQlJ8NUXw/Xxo3ALbcEtn9ZGay5uRCdO6PxwIGwVZ3ExDV48iTiRo6EqaoKjRs2QBQUtH3Pzp2w3nqrVAJ08aI0+nUrMZFXKtIqv6qrq2G32wMOeCKmSmvOnDmYNGnSNd+TlZWFmpoaAMCAAQM8r9tsNtxwww0oLy9vd1+bzQabnxPYarVqduJqeWyjYV4pc3bYMKlhZfNzikkIxM2e3aY9iQlA3I9/7J3+IEZpfl716gUcOQKryRR4XjdPK2HKzoY1O1uDxAXG0NfgDTcAY8YA//gH4tauBfr39w0wi4uljgAATE1NsL7xxjV7Nxo6rzSgdn4Fe6yICXjsdjvsCorehw8fDpvNhsOHD+OW5icql8uFEydOIDMzU+tkEoVVl4oKnyotAG0bZcqvHTvGBpdaczikqQjkyVoDITco79lT3TSRf/L0LH/9qzSsw8qVUlDTusccIDX4Lyzk9WMwUddLKykpCbNmzcJTTz2FDRs24PDhw5g9ezYA4N577w1z6oi0dTk9HaL1vFr+sDutPuRgJZiAR96HAY/2nE7gH//wbrfs4cgeczEjYkp4AvHHP/4RcXFxmDp1Kq5cuYKRI0di48aN6CqPUUJkUPV2O5qWL5eqsfyV7ADsTqsnOVgJpvs/Ax79XCuokSfnbfl7PjAYUtSV8ABS/d3SpUtx5swZVFdXo6Sk5Jpd0omMRMyYAaxZ0/4b1qzh6Mp6YQlPdJCDmpbMZimocTiAluO48YHBsKIy4CGKeaNGtR0VFpBu1vn5+qcnVslfigx4IpvDIbXZaXnNCAF8/LHUYLllddfixXxgMCgGPETRyOEA/vIX3xu42cwnU70FW6UlBAMevRUWtg14HnrId4RyAFiwgCOUG1RUtuEhIkhPoYWF0mzdgFSyw2BHX3Kwcu6c1E4kJ0fZfhcvArW12qWL2vLXjsdfOzi5bQ+vJcNhCQ9RNHM4gHvvlX54g9bfm2961/v1Uz7j+QsvBLcfBc9fOx5/2GDZsBjwEBEFI5CZuFvv9/vfB74fhUZux3OtoIcNlg2NAQ8RUTCCHb8l1JnWKXhFRezhGMMY8BARBcNfFYmS6pCcnLY97FiNoh/2cIxZDHiIiILRuquzyaSsOsThAAYN8m6zGkVf7OEYs9hLi4goWEVF0pflAw8AAwcqrw5xuaTl0qXAfffxi1Zv7OEYkxjwEBGFYsQIaXnypNQ2x191SUtuN3D8uLQ+cSK/aMNF7uFIMYNVWkREobjhBml56RJw/nzH7z99GmhoAOLiOOggkY4Y8BARhSIhAcjIkNa//rrj98vvycyUgh4i0gUDHiKiUPXuLS2/+abj98oBj7wPEemCAQ8RUajkaq2Sko4HENyzR1qmpmqbJiLywYCHiChUFy9Ky7/+Vaqqam+qiOJi4KWXpPX/+z9OKUGkIwY8REShcDqB99/3brc3VYTT6TsztxCcUoJIRwx4iIhCoXSqiGCnoiAiVTDgISIKhdIpJoKdioKIVMGAh4goFPIUE7L2pilwOHxnV+eUEkS6YsBDRBSqoiJg/HhpfcGC9qeY6N5dWhYWAidOcGZuIh0x4CEiUsPIkdKyvLz99xw4IC3HjWPJDpHOGPAQEalh8GBpuW1b+z2vdu+Wlmlp+qSJiDwY8BARqeGrr6Tl11/7H4tn+XKpGgsApk7lGDxEOmPAQ0QUKqcT+N3vvNutx+JxOoE5c9r/PRFpjgEPEVGoOhpjh2PwEIUdAx4iolB1NMZOTk7bfTgGD5GuGPAQEYVKHounZdDzyivenljp6UBCgvd3HIOHSHcMeIiI1FBUBBw6BFit0rbV6m2js349cOUK0Lkz8MknHIOHKAwY8BARqSUnB+jdW1qfPl3qrTV9OnDnndJrtbVSsMOSHSLdMeAhIlKL0wkcPuzddruBVat8Jxdl7yyisGDAQ0SkFn8zp7fG3llEYcGAh4hILf56a7XG3llEYRGVAc+RI0dw9913w263IykpCT/4wQ+wadOmcCeLiGKdwwEsWXLt9yxZwjY8RGEQlQHP+PHj0djYiI0bN2LXrl3Izc3FhAkTUFlZGe6kEVGsy8sL7fdEpImoC3iqqqpw7NgxPPHEExgyZAhycnKwZMkS1NXV4eDBg+FOHhHFumtVa7E6iyhs4sKdgEBdf/316N+/P1avXo2bbroJNpsNK1asQGpqKoYPH97ufg0NDWhoaPBsV1dXAwBcLhdcLpeqaZSPp/ZxjYh5pRzzSrmw5lVqKkzLl8Py8MMwNTVBADABEBYLmpYtg0hNBSLof8jzSjnmVWC0yq9gj2cSoqMuBZHn1KlTuPvuu7F7926YzWakpqZi3bp1yM3NbXefhQsXYtGiRW1ef/3119GpUyctk0tEMei6qip0rqhAo82GuIYG1Kano95uD3eyiKJeXV0dJk+ejEuXLiEpKUnxfhET8LQXkLRUWlqK4cOH4yc/+QlcLheefPJJJCQk4NVXX8X777+P0tJSpKen+93XXwlPz549UVVVFVCGKeFyuVBSUoKxY8fCKo+6Sn4xr5RjXinHvFKOeaUc8yowWuVXdXU17HZ7wAFPxFRpzZkzB5MmTbrme7KysrBx40b885//xIULFzwfdNmyZSgpKcGqVavwxBNP+N3XZrPBZrO1ed1qtWp24mp5bKNhXinHvFKOeaUc80o55lVg1M6vYI8VMQGP3W6HXUFxb11dHQDA3KpRoNlshtvt1iRtREREFN2irpdWfn4+unbtimnTpmHfvn04cuQIfvOb3+D48eMYP358uJNHREREESjqAh673Y7169fj8uXLGDNmDPLy8rB161a89957GDp0aLiTR0RERBEoYqq0ApGXl4ePP/443MkgIiKiKBF1JTxEREREgWLAQ0RERIbHgIeIiIgMjwEPERERGR4DHiIiIjI8BjxERERkeFHZLV0N8hRi8qzpanK5XKirq0N1dTWHH+8A80o55pVyzCvlmFfKMa8Co1V+yd/bgU4FGrMBT01NDQCgZ8+eYU4JERERBaqmpgbJycmK3x8xs6Xrze124/Tp00hMTITJZFL12PJM7CdPnlR9JnajYV4px7xSjnmlHPNKOeZVYLTKLyEEampqkJGR0WZezWuJ2RIes9kMh8Oh6d9ISkriRaEQ80o55pVyzCvlmFfKMa8Co0V+BVKyI2OjZSIiIjI8BjxERERkeJaFCxcuDHcijMhisaCgoABxcTFba6gY80o55pVyzCvlmFfKMa8CE0n5FbONlomIiCh2sEqLiIiIDI8BDxERERkeAx4iIiIyPAY8REREZHgMeFS2bNkyZGdn47rrrsPw4cPxr3/9K9xJCruFCxfCZDL5/KSlpXl+L4TAwoULkZGRgYSEBBQUFODgwYNhTLF+Pv30U9x5553IyMiAyWTCu+++6/N7JXlz4cIFTJ06FcnJyUhOTsbUqVNx8eJFPT+GLjrKq+nTp7c5z26++Waf9zQ0NGDu3Lmw2+3o3Lkz7rrrLjidTj0/hi4WL16M73//+0hMTET37t3xk5/8BIcPH/Z5j5K8KC8vx5133onOnTvDbrfjV7/6Fa5evarnR9GckrwqKChoc25NmjTJ5z2xch0uX74cQ4YM8QwmmJ+fj48++sjz+0g+rxjwqOiNN97AvHnz8OSTT2LPnj249dZbcccdd6C8vDzcSQu7gQMHoqKiwvNz4MABz++effZZPP/883jppZdQWlqKtLQ0jB071jPfmZHV1tZi6NCheOmll/z+XkneTJ48GXv37sX69euxfv167N27F1OnTtXrI+imo7wCgNtvv93nPPvwww99fj9v3jy88847WLt2LbZu3YrLly9jwoQJaGpq0jr5utqyZQt++ctfYseOHSgpKUFjYyPGjRuH2tpaz3s6youmpiaMHz8etbW12Lp1K9auXYu33noL8+fPD9fH0oSSvAKAmTNn+pxbK1as8Pl9rFyHDocDS5YswRdffIEvvvgCY8aMwd133+15EIvo80qQakaMGCFmzZrl81q/fv3EE088EaYURYannnpKDB061O/v3G63SEtLE0uWLPG8Vl9fL5KTk8Urr7yiVxIjAgDxzjvveLaV5E1ZWZkAIHbs2OF5z/bt2wUAcejQIf0Sr7PWeSWEENOmTRN33313u/tcvHhRWK1WsXbtWs9rp06dEmazWaxfv16ztEaCs2fPCgBiy5YtQghlefHhhx8Ks9ksTp065XnPmjVrhM1mE5cuXdL3A+iodV4JIcTo0aPFI4880u4+sXodyrp27SpeffXViD+vWMKjkqtXr2LXrl0YN26cz+vjxo3Dtm3bwpSqyHH06FFkZGQgOzsbkyZNwjfffAMAOH78OCorK33yzWazYfTo0TGfb0ryZvv27UhOTsbIkSM977n55puRnJwck/m3efNmdO/eHX379sXMmTNx9uxZz+927doFl8vlk58ZGRkYNGiQ4fPq0qVLAICUlBQAyvJi+/btGDRoEDIyMjzvKSwsRENDA3bt2qVj6vXVOq9kf//732G32zFw4EA89thjPqWssXodNjU1Ye3ataitrUV+fn7En1fhH/rQIKqqqtDU1ITU1FSf11NTU1FZWRmmVEWGkSNHYvXq1ejbty/OnDmDZ555BqNGjcLBgwc9eeMv37799ttwJDdiKMmbyspKdO/evc2+3bt3j7nz7o477sC9996LzMxMHD9+HP/5n/+JMWPGYNeuXbDZbKisrER8fDy6du3qs5/Rr1EhBH7961/jlltuwaBBgwBAUV5UVla2Ofe6du2K+Ph4w+aXv7wCgClTpiA7OxtpaWn48ssvsWDBAuzbtw8lJSUAYu86PHDgAPLz81FfX48uXbrgnXfewYABA7B3796IPq8Y8KjMZDL5bAsh2rwWa+644w7P+uDBg5Gfn4/evXtj1apVnkalzLf2dZQ3/vIpFvPvvvvu86wPGjQIeXl5yMzMxLp16zBx4sR29zN6Xs2ZMwf79+/H1q1bO3xvrJ9b7eXVzJkzPeuDBg1CTk4O8vLysHv3btx0000AYiuvbrzxRuzduxcXL14p8GRMAAAHY0lEQVTEW2+9hWnTpmHLli3tvj9SzitWaanEbrfDYrG0iVDPnj3bJpqNdZ07d8bgwYNx9OhRT28t5ltbSvImLS0NZ86cabPvd999F/P5l56ejszMTBw9ehSAlFdXr17FhQsXfN5n5HNt7ty5eP/997Fp0yY4HA7P60ryIi0trc25d+HCBbhcLkPmV3t55c9NN90Eq9Xqc27F0nUYHx+PPn36IC8vD4sXL8bQoUPxwgsvRPx5xYBHJfHx8Rg+fLiniFNWUlKCUaNGhSlVkamhoQFfffUV0tPTPcXELfPt6tWr2LJlS8znm5K8yc/Px6VLl/D555973rNz505cunQp5vPv3LlzOHnyJNLT0wEAw4cPh9Vq9cnPiooKfPnll4bLKyEE5syZg7fffhsbN25Edna2z++V5EV+fj6+/PJLVFRUeN6zYcMG2Gw2DB8+XJ8PooOO8sqfgwcPwuVyec6tWL8OhRBoaGiI/PNK0ybRMWbt2rXCarWK4uJiUVZWJubNmyc6d+4sTpw4Ee6khdX8+fPF5s2bxTfffCN27NghJkyYIBITEz35smTJEpGcnCzefvttceDAAXH//feL9PR0UV1dHeaUa6+mpkbs2bNH7NmzRwAQzz//vNizZ4/49ttvhRDK8ub2228XQ4YMEdu3bxfbt28XgwcPFhMmTAjXR9LMtfKqpqZGzJ8/X2zbtk0cP35cbNq0SeTn54sePXr45NWsWbOEw+EQn3zyidi9e7cYM2aMGDp0qGhsbAzjJ1Pf7NmzRXJysti8ebOoqKjw/NTV1Xne01FeNDY2ikGDBokf/vCHYvfu3eKTTz4RDodDzJkzJ1wfSxMd5dWxY8fEokWLRGlpqTh+/LhYt26d6Nevnxg2bJjPeRMr1+GCBQvEp59+Ko4fPy72798vfvvb3wqz2Sw2bNgghIjs84oBj8pefvllkZmZKeLj48VNN93k07UxVt13330iPT1dWK1WkZGRISZOnCgOHjzo+b3b7RZPPfWUSEtLEzabTdx2223iwIEDYUyxfjZt2iQAtPmZNm2aEEJZ3pw7d05MmTJFJCYmisTERDFlyhRx4cKFMHwabV0rr+rq6sS4ceNEt27dhNVqFb169RLTpk0T5eXlPse4cuWKmDNnjkhJSREJCQliwoQJbd5jBP7yCYB47bXXPO9RkhfffvutGD9+vEhISBApKSlizpw5or6+XudPo62O8qq8vFzcdtttIiUlRcTHx4vevXuLX/3qV+LcuXM+x4mV6/CBBx7wfMd169ZN/PCHP/QEO0JE9nllEkIIbcuQiIiIiMKLbXiIiIjI8BjwEBERkeEx4CEiIiLDY8BDREREhseAh4iIiAyPAQ8REREZHgMeIiIiMjwGPERERGR4DHiIKGIVFBRg3rx54U4GERkAR1omoohQUFCA3Nxc/PnPf/a8dv78eVitViQmJuqennnz5uHEiRN49913df/bRKQ+lvAQUcRKSUkJS7ADAKWlpRgxYkRY/jYRqY8BDxGF3fTp07Flyxa88MILMJlMMJlMOHHiRJsqrYKCAsydOxfz5s1D165dkZqaipUrV6K2thYzZsxAYmIievfujY8++sizjxACzz77LG644QYkJCRg6NChePPNN9tNi8vlQnx8PLZt24Ynn3wSJpMJI0eO1PTzE5H2GPAQUdi98MILyM/Px8yZM1FRUYGKigr07NnT73tXrVoFu92Ozz//HHPnzsXs2bNx7733YtSoUdi9ezcKCwsxdepU1NXVAQB+97vf4bXXXsPy5ctx8OBBPProo/j5z3+OLVu2+D2+xWLB1q1bAQB79+5FRUUFPv74Y20+OBHphm14iCgi+GvD0/q1goICNDU14V//+hcAoKmpCcnJyZg4cSJWr14NAKisrER6ejq2b9+OwYMHw263Y+PGjcjPz/cc98EHH0RdXR1ef/11v2l599138eCDD6Kqqkqrj0tEOosLdwKIiAIxZMgQz7rFYsH111+PwYMHe15LTU0FAJw9exZlZWWor6/H2LFjfY5x9epVDBs2rN2/sWfPHgwdOlTllBNRODHgIaKoYrVafbZNJpPPayaTCQDgdrvhdrsBAOvWrUOPHj189rPZbO3+jb179zLgITIYBjxEFBHi4+PR1NSk6jEHDBgAm82G8vJyjB49WvF+Bw4cwD333KNqWogovBjwEFFEyMrKws6dO3HixAl06dIFKSkpIR8zMTERjz32GB599FG43W7ccsstqK6uxrZt29ClSxdMmzbN735utxv79+/H6dOn0blzZyQnJ4ecFiIKL/bSIqKI8Nhjj8FisWDAgAHo1q0bysvLVTnu008/jf/6r//C4sWL0b9/fxQWFuKDDz5AdnZ2u/s888wzeOONN9CjRw/8/ve/VyUdRBRe7KVFREREhscSHiIiIjI8BjxERERkeAx4iIiIyPAY8BAREZHhMeAhIiIiw2PAQ0RERIbHgIeIiIgMjwEPERERGR4DHiIiIjI8BjxERERkeAx4iIiIyPAY8BAREZHh/X9bNQWkfIUrJAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "C = [ 0 0 1 0\n", - " 0 0 0 1\n", - " -0.02 0.01 0 0\n", - " 0.01 -0.02 0 0 ]\n", - "Δt = 1.0\n", - "T = expm(C*Δt) # propagator matrix\n", - "\n", - "x₀ = [0.0,0,1,0] # initial condition\n", - "\n", - "# loop over 300 timesteps and keep track of x₁(t)\n", - "x = x₀\n", - "x₁ = [ x₀[1] ]\n", - "for i = 1:300\n", - " x = T*x # repeatedly multiply by T\n", - " push!(x₁, x[1]) # & store current x₁(t) in the array x₁\n", - "end\n", - "\n", - "plot((0:300)*Δt, x₁, \"r.-\")\n", - "xlabel(\"time \\$t\\$\")\n", - "ylabel(\"solution \\$x_1(t)\\$\")\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(This is **not** an approximate solution. It is the *exact* solution, up to the computer's roundoff errors, at the times $t=0,\\Delta t, 2\\Delta t, \\ldots$. Don't confuse it with approximations like [Euler's method](https://en.wikipedia.org/wiki/Euler_method).)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Stability of solutions in eᴬ vs. Aⁿ\n", - "\n", - "It is important to compare and contrast the two cases we have studied:\n", - "\n", - "* Multiplying by $A^n$ (e.g. in **linear recurrence** equations $x_{n+1} = Ax_n$) corresponds to multiplying each eigenvector by $\\lambda^n$, which:\n", - " - blows up if $|\\lambda| > 1$\n", - " - decays if $|\\lambda| < 1$\n", - " - oscillates if $|\\lambda|=1$\n", - " - If $\\lambda = 1$ you have a steady-state vector (a stable \"attractor\" if the other eigenvalue have $|\\lambda| < 1$).\n", - " - large-$n$ behavior dominated by biggest $|\\lambda|$\n", - "\n", - "versus\n", - "\n", - "* Multiplying by $e^{At}$ (e.g. **linear differential** equations $dx/dt=Ax$ ), corresponds to multiplying each eigenvector by $e^{\\lambda t}$, which\n", - " - blows up if $\\operatorname{Re}(\\lambda) > 0$\n", - " - decays if $\\operatorname{Re}(\\lambda) < 0$\n", - " - oscillates if $\\operatorname{Re}(\\lambda) = 0$ (purely imaginary λ)\n", - " - If $\\lambda = 0$ you have a steady-state solution (a stable \"attractor\" if the other eigenvalue have $\\operatorname{Re}(\\lambda) < 0$). \n", - " - large-$t$ behavior dominated by biggest $\\operatorname{Re}(\\lambda)$. (Note: not biggest magnitude! Remember, $0 > -1 > -2$.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Relating eᴬᵗ and Aⁿ\n", - "\n", - "These two cases are **related by the propagator matrix** $T = e^{A\\Delta t}$! Solving the ODE for long time, or multiplying by $e^{At}$ for large $t$, corresponds to **repeatedly multiplying** by $T$!\n", - "\n", - "What are the eigenvalues of $T$ for a diagonalizable $A = X \\Lambda X^{-1}$? Well, since \n", - "\n", - "$$\n", - "T = e^{A \\Delta t} = X e^{\\Lambda \\Delta t} X^{-1} = \n", - "\\begin{pmatrix} e^{\\lambda_1 \\Delta t} & & & \\\\\n", - " & e^{\\lambda_2 \\Delta t} & & \\\\\n", - " & & \\ddots & \\\\\n", - " & & & e^{\\lambda_m \\Delta t} \\end{pmatrix} X^{-1}\n", - "$$\n", - "\n", - "the eigenvalues of $T$ are just $e^{\\lambda \\Delta t}$ (the equation above is precisely the diagonalization of $T$).\n", - "\n", - "Equivalently, for an eigenvector $\\vec{x}_k$ of $A$, $T\\vec{x}_k = e^{\\lambda_k \\Delta t} \\vec{x}_k$, so $\\vec{x}_k$ is **also an eigenvector** of $T$ with eigenvalue $e^{\\lambda_k \\Delta t}$. Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Complex{Float64},1}:\n", - " -1.22329+4.15894im \n", - " -1.22329-4.15894im \n", - " 2.19697+0.0im \n", - " 0.503162+0.484909im\n", - " 0.503162-0.484909im" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(expm(A*Δt))" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Complex{Float64},1}:\n", - " -1.22329+4.15894im \n", - " -1.22329-4.15894im \n", - " 0.503162+0.484909im\n", - " 0.503162-0.484909im\n", - " 2.19697+0.0im " - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ = eigvals(A)\n", - "exp.(λ * Δt)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, they match (although the order is different: Julia gives the eigenvalues in a somewhat \"random\" order)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What does this mean for stability of the solutions?\n", - "\n", - "For example, if $A$ has an real eigenvalue with $\\lambda < 0$, a decaying solution, then $T$ has an eigenvalue $e^{\\lambda \\Delta t} < 1$, which is also decaying when you multiply by $T$ repeatedly!\n", - "\n", - "It is easy to verify that going from $\\lambda \\to e^\\lambda$ turns the **conditions for growing/decaying ODE (eᴬᵗ) solutions into the rules for growing/decaying Aⁿ solutions!**." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/ODEs.ipynb b/lectures/ODEs.ipynb deleted file mode 100644 index fca2d111..00000000 --- a/lectures/ODEs.ipynb +++ /dev/null @@ -1,1393 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using Interact, PyPlot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Review: An easy scalar ODE\n", - "\n", - "Suppose we have the first-order (first-derivative only) [ordinary differential equation (ODE)](https://en.wikipedia.org/wiki/Ordinary_differential_equation):\n", - "\n", - "$$\n", - "\\frac{dx}{dt} = a x\n", - "$$\n", - "\n", - "where $x$ and $a$ are *scalars*. Even if you haven't taken 18.03, you should be able to solve this by inspection, using only elementary calculus: the **only functions whose derivatives are a multiple of themselves are exponentials**:\n", - "\n", - "$$\n", - "x(t) = e^{at} c\n", - "$$\n", - "\n", - "for *any* constant $c$. To get $c$, we need to supply some more information, typically an [initial condition](https://en.wikipedia.org/wiki/Initial_value_problem): we tell you what $x(0)$ is. By inspection, $c = x(0)$, so\n", - "\n", - "$$\n", - "x(t) = e^{at} x(0)\n", - "$$\n", - "\n", - "## Generalization to matrices?\n", - "\n", - "Now, we would like to generalize this to a **system of ODEs**, where **x is a vector** and $a$ is **replaced by a matrix A**: how do we solve:\n", - "\n", - "$$\n", - "\\frac{d\\vec{x}}{dt} = A\\vec{x}\n", - "$$\n", - "\n", - "given $\\vec{x}(0)$? The trick will be to **use eigenvectors**, for which the matrix **becomes a single number λ** and the problem turns back into the simple scalar problem above.\n", - "\n", - "As you might already guess, **each eigenvector** will be multiplied by $e^{\\lambda t}$, so the eigenvalues will tell us whether the solutions are exponentially growing or decaying … or oscillating if λ is complex." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exponential growth and decay\n", - "\n", - "Consider the following system of two coupled first-order ordinary differential equations (ODEs): $$d\\vec{x}/dt = A\\vec{x}$$ for the 2×2 matrix:\n", - "\n", - "$$\n", - "A = \\begin{pmatrix}\n", - "0.1 & -0.1 \\\\\n", - "0.5 & -1\n", - "\\end{pmatrix}\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.1 -0.1\n", - " 0.5 -1.0" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ 0.1 -0.1\n", - " 0.5 -1 ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To start with, let's \"blindly\" just plot the \"brute-force\" solutions for an initial condition $\\vec{x}(0) = (1,10)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHGCAYAAAB5BfECAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4E9X+BvA3pGnSFehGW2hpC4gtOxYUqVLEgqyiF66ClF1l32QREWhBVmUR9IciV8AFwQUQrrLJKrJIKYgCgkILla2ytZRuaXN+f+QmELvQppNMMn0/z9MnyWRy5nvSlLycOTOjEkIIEBERESlIFbkLICIiIpIaAw4REREpDgMOERERKQ4DDhERESkOAw4REREpDgMOERERKQ4DDhERESkOAw4REREpDgMOERERKQ4DDpGNJCQkQKVSWfXaU6dOISEhAampqUWe69+/P8LCwipWnI3dvHkTL774IgICAqBSqdC9e/di1yssLMTChQvxzDPPoFatWnB3d0dkZCRef/113L59285V20ZFPgclKc9nQK/XY9myZWjVqhWqVq0KNzc383t848aNIuvHxsZCpVJBpVKhSpUq8PLyQt26ddGzZ098/fXXMBgMRV4TFhZmfs0/f2JjYyvYWyLruMhdABEVderUKSQmJiI2NrbIF9nUqVMxevRoeQoro5kzZ2LDhg34+OOPUadOHfj4+BS7Xk5ODhISEtCrVy8MHjwYfn5+SE5OxltvvYXNmzcjKSkJbm5udq5eObKzs9GpUyfs378fr7zyCqZOnQo3NzccPHgQ77zzDtasWYMdO3agfv36Fq+LiIjA559/DgC4e/cuUlJSsHHjRvTs2RNPPPEENm/ejKpVq1q8pnXr1njnnXeK1ODt7W27DhKVggGHyMnUqVNH7hIe6LfffkOdOnXw0ksvlbqem5sbUlJS4Ovra14WGxuL0NBQ9OzZE9988w369Olj63IVa+zYsdi7dy/Wrl2LF154wby8bdu26NGjB1q2bIl//etf+OWXX6BWq83Pu7m54bHHHrNoa/DgwVi5ciUGDhyIV155BevWrbN4vlq1akVeQyQn7qIius/ff/+NV155BSEhIdBqtfD390fr1q3xww8/WKz38ccfo0mTJtDpdPDx8cFzzz2H06dPP7B9lUqFhISEIsvDwsLQv39/AMCqVavQs2dPAMYvItNQ/6pVqwAUv3siNzcXkydPRnh4OFxdXVGzZk0MHz68yG6esLAwdOnSBVu3bkXz5s3h5uaGhx9+GB9//HGZ3p+bN29i2LBhqFmzJlxdXREREYEpU6YgLy8PAJCamgqVSoUffvgBp0+fNte+Z8+eYttTq9UW4cakZcuWAIC0tLQH1mQwGLB06VI0bdoUbm5u5i/aTZs2Wawzf/58PPzww9BqtQgICEDfvn3x119/FXl/TL+H+8XGxlrsatmzZw9UKhU+++wzjBs3DoGBgXBzc0ObNm1w7NixB9YMAOvWrUOrVq3g4eEBT09PdOjQodjXrlq1CvXr14dWq0VkZCQ++eSTMrV/9epVfPzxx+jQoYNFuDF56KGHMGnSJJw8eRIbN24sU5sDBgxAp06d8NVXX+HChQtles39yvr3RSQFBhyi+8THx2Pjxo2YNm0atm/fjhUrVuDpp5+2mKswZ84cDBo0CA0aNMD69evx7rvv4sSJE2jVqhX++OOPCtfQuXNnzJ49GwDw/vvv4+DBgzh48CA6d+5c7PpCCHTv3h3vvPMO4uPj8d1332HcuHFYvXo1nnrqKXP4MPnll1/w2muvYezYsfj222/RuHFjDBo0CPv27Su1rtzcXLRt2xaffPIJxo0bh++++w59+vTB/Pnz8fzzzwMAgoKCcPDgQTRr1gwRERHm2ps3b16u92DXrl0AgAYNGjxw3f79+2P06NFo0aIF1q1bh7Vr16Jbt24W85eGDh2KSZMmIS4uDps2bcLMmTOxdetWPP7447h+/Xq5arvfG2+8gfPnz2PFihVYsWIFLl++jNjYWJw/f77U182ePRu9evVCVFQUvvzyS3z66ae4c+cOnnjiCZw6dcq83qpVqzBgwABERkbim2++wZtvvomZM2ea35/S7N69GwUFBSXOfwJgfm7Hjh1l7DHQrVs3CCHw448/WiwXQqCgoKDIjxDCvE5Z/r6IJCOIyMzT01OMGTOmxOdv3bol3NzcRKdOnSyWX7x4UWi1WtG7d2/zsunTp4t//okBENOnTy/Sbu3atUW/fv3Mj7/66isBQOzevbvIuv369RO1a9c2P966dasAIObPn2+x3rp16wQAsXz5covt6HQ6ceHCBfOynJwc4ePjI1599dUS+y2EEB988IEAIL788kuL5fPmzRMAxPbt283L2rRpIxo0aFBqeyX566+/RI0aNUR0dLQoLCwsdd19+/YJAGLKlCklrnP69GkBQAwbNsxi+eHDhwUA8cYbb5iX/fP3YNKmTRvRpk0b8+Pdu3cLAKJ58+bCYDCYl6empgqNRiMGDx5sXvbPz8HFixeFi4uLGDlypMU27ty5IwIDA8W///1vIYQQhYWFIjg4uMRt3P8ZKM7cuXMFALF169YS18nJyREARMeOHS36WtrvbsuWLQKAmDdvnnlZ7dq1BYBif2bOnGle70F/X0RS4ggO0X1atmyJVatW4a233sKhQ4eg1+stnj948CBycnKK7MYICQnBU089hZ07d9qxWiPT/+b/WVPPnj3h4eFRpKamTZsiNDTU/Fin0+Ghhx564C6HXbt2wcPDAz169LBYbtquFH2/efMmOnXqBCEE1q1bhypVSv8nasuWLQCA4cOHl7jO7t27Leo0admyJSIjIytUd+/evS2OkKpduzYef/xx8zaLs23bNhQUFKBv374WIx06nQ5t2rQx7847c+YMLl++XOI2pFSeo7zEfSMy94uJicGRI0eK/AwaNMi8zoP+voikxIBDdJ9169ahX79+WLFiBVq1agUfHx/07dsXV69eBQDzUHpQUFCR1wYHB8sy1H7jxg24uLjA39/fYrlKpUJgYGCRmoqb86LVapGTk/PA7QQGBhb5MgwICICLi0uF+37r1i3ExcXh0qVL2LFjByIiIh74mr///htqtRqBgYGl1g3Y5ndW3HaLe8/vd+3aNQBAixYtoNFoLH7WrVtn3mVmaqOkbTyIKcSmpKSUuI7puZCQkAe2Z2IKwsHBwRbLq1atiujo6CI/97/vD/r7IpISAw7Rffz8/LB48WKkpqbiwoULmDNnDtavX2/+378pHFy5cqXIay9fvgw/P79S29dqtUXmxACo0Jesr68vCgoK8Pfff1ssF0Lg6tWrD6ypPNu5du1akf/Bp6eno6CgoELbuXXrFp5++mmkpKRgx44daNy4cZle5+/vj8LCwlK/IMvzO9PpdMX+fkqap1Pcdq9evVpsiDQxbe/rr78udsTj8OHDFnWXtI0Hadu2LVxcXEqdQGx6Li4u7oHtmWzatAkqlQpPPvlkmV9j8qC/LyIpMeAQlSA0NBQjRoxAXFwckpOTAQCtWrWCm5sbPvvsM4t1//rrL+zatQvt2rUrtc2wsDCcOHHCYtmuXbuQlZVlsUyr1QLAA0dVAJi3+c+avvnmG9y9e/eBNZVVu3btkJWVVeQL03RUj7XbMYWb8+fPY/v27WjWrFmZX9uxY0cAwLJly0pc56mnngJQ9P05cuQITp8+bVF3cb+fs2fP4syZM8W2/cUXX1gEvgsXLuDAgQOlntyuQ4cOcHFxwblz54od8YiOjgYA1K9fH0FBQSVu40ECAwMxcOBAbNu2rcgh3aZ+zZs3Dw0aNCh1IvL9Vq5ciS1btqBXr14WuzmtUdzfF5GUeB4cov/JyMhA27Zt0bt3bzz88MPw8vLCkSNHsHXrVvNRQtWqVcPUqVPxxhtvoG/fvujVqxdu3LiBxMRE6HQ6TJ8+vdRtxMfHY+rUqZg2bRratGmDU6dO4b333ity0rSGDRsCAJYvXw4vLy/odDqEh4cXOzIQFxeHDh06YNKkScjMzETr1q1x4sQJTJ8+Hc2aNUN8fLwk70/fvn3x/vvvo1+/fkhNTUWjRo2wf/9+zJ49G506dcLTTz9d7jZzcnLMh0cvXrwYBQUFOHTokPl5f3//Us/788QTTyA+Ph5vvfUWrl27hi5dukCr1eLYsWNwd3fHyJEjUb9+fbzyyitYunQpqlSpgo4dOyI1NRVTp05FSEgIxo4da24vPj4effr0wbBhw/Cvf/0LFy5cwPz584vs/jNJT0/Hc889h5dffhkZGRmYPn06dDodJk+eXGLNYWFhmDFjBqZMmYLz58/jmWeeQfXq1XHt2jX8/PPP8PDwQGJiIqpUqYKZM2di8ODB5m3cvn0bCQkJZdpFBQALFy7EmTNn0KdPH+zbtw9du3aFVqvFoUOH8M4778DLywvffPONxTlwTL8X0+8hJycH58+fx8aNG/Hf//4Xbdq0wQcffFBkW7dv37b43ZlotVo0a9asTH9fRJKSc4YzkSPJzc0VQ4YMEY0bNxbe3t7Czc1N1K9fX0yfPl3cvXvXYt0VK1aIxo0bC1dXV1G1alXx7LPPipMnT1qsU9xRVHl5eWLixIkiJCREuLm5iTZt2ojjx48Xe/TO4sWLRXh4uFCr1QKAWLlypRCi6FFUQhiPhpk0aZKoXbu20Gg0IigoSAwdOlTcunXLYr3atWuLzp07F+n7P48SKsmNGzfEkCFDRFBQkHBxcRG1a9cWkydPFrm5uUXaK8tRVCkpKSUefQOg2COa/qmwsFAsWrRINGzY0Pz7aNWqldi8ebPFOvPmzRMPPfSQ0Gg0ws/PT/Tp00ekpaVZtGUwGMT8+fNFRESE0Ol0Ijo6WuzatavEo6g+/fRTMWrUKOHv7y+0Wq144oknRFJSkkWbxX0OhBBi48aNom3btsLb21totVpRu3Zt0aNHD/HDDz9YrLdixQpRr1494erqKh566CHx8ccfF/sZKEl+fr54//33xaOPPio8PT2FVqsV9evXFxMnThTXr18vsn6bNm0sfgceHh4iIiJC9OjRQ3z11VfFHtlW2lFUNWvWFEKU7++LSAoqIUqYEk9ERMXas2cP2rZti6+++qrIUWVE5Bg4B4eIiIgUhwGHiIiIFIe7qIiIiEhxOIJDREREisOAQ0RERIrDgENERESKU2lO9GcwGHD58mV4eXmV68JyREREJB8hBO7cuYPg4OAHXoD3fpUm4Fy+fLlcF5QjIiIix5GWloZatWqVef1KE3C8vLwAGN8gb29vydrV6/XYvn072rdvD41GI1m7jkTpfVR6/wDl95H9c35K7yP7Z73MzEyEhISYv8fLqtIEHNNuKW9vb8kDjru7O7y9vRX5oQWU30el9w9Qfh/ZP+en9D6yfxVX3uklnGRMREREisOAQ0RERIrDgENERESKU2nm4BARVTaFhYXQ6/Vyl1Emer0eLi4uyM3NRWFhodzlSI79K5lGo4FarZa8JgYcIiKFEULg6tWruH37ttyllJkQAoGBgUhLS1PkucrYv9JVq1YNgYGBkr43DDhERApjCjcBAQFwd3d3ii9Ug8GArKwseHp6lutkbs6C/SueEALZ2dlIT08HAAQFBUlWEwMOEZGCFBYWmsONr6+v3OWUmcFgQH5+PnQ6nWIDAPtXPDc3NwBAeno6AgICJNtdpbx3mYioEjPNuXF3d5e5EqKyM31epZwzxoBDRKRAzrBbisjEFp9XBhwiIiJSHIcIOPv27UPXrl0RHBwMlUqFjRs3WjwvhEBCQgKCg4Ph5uaG2NhYnDx5UqZqiYiIyNE5RMC5e/cumjRpgvfee6/Y5+fPn4+FCxfivffew5EjRxAYGIi4uDjcuXPHzpUSERGRM3CIgNOxY0e89dZbeP7554s8J4TA4sWLMWXKFDz//PNo2LAhVq9ejezsbKxZs0aGai1lZQHXrrnjxg25KyEicn4PGtF/kNjYWIwZM8ZG1VFpunTpgrFjx8pdhpnDHyaekpKCq1evon379uZlWq0Wbdq0wYEDB/Dqq68W+7q8vDzk5eWZH2dmZgIwztCWcpb28OEqfPFFHNLT8zFpknOcMbS8TO+Xs5wRtbyU3j9A+X1k/yzXFULAYDDAYDDYujTJCCEAAFlZWWjcuDH69euHnj17WtUPU/8dial/jlibFEz9A2BV/wwGA4QQ0Ov1RQ4Tt/bv2uEDztWrVwEANWrUsFheo0YNXLhwocTXzZkzB4mJiUWWb9++XdLDJ7OyGgKog+TkC/j++1OSteuIduzYIXcJNqX0/gHK7yP7B7i4uCAwMBBZWVnIz8+3Q1XSiomJQUxMjPlxTk6O+T+oAPDtt99i3rx5SElJgZubGxo3bozPP/8cHh4eGDZsGPbu3Yu9e/diyZIlAIBffvkFoaGhFtv4+uuvMWLECCQnJyM4OBgAMGrUKBw9ehTff/89qlatWqQug8GAJUuW4JNPPsGlS5fg7++P/v37Y/z48QCM/6meNm0a1q9fjzt37qBp06aYPXs2mjdvDsA4uhEVFQW1Wo0vvvgCrq6ueOONN9CzZ09MnDgRmzZtgp+fH+bPn4+4uDjzdrt06YLIyEgAwJdffgm1Wo2BAwdiypQp5iOPyrLtBg0aQKvV4tNPP4WrqysGDBiA119/3bwdIQSWLFmClStX4tq1a6hTpw4mTJiAZ599tkxtDBs2DD/99BN++umnUt/7kuTn5yMnJwf79u1DQUGBxXPZ2dllauOfHD7gmPzzEDIhRKmHlU2ePBnjxo0zP87MzERISAjat28Pb29vyepKThbYvBnw9g5Hp05hkrXrSPR6PXbs2IG4uDhoNBq5y5Gc0vsHKL+P7N89ubm5SEtLg6enJ3Q6nXGhEICVXxIV5u4OlOEQYCEE7ty5Ay8vL4t/293c3Mz/Zl+5cgWDBw/GvHnz0L17d9y5cwf79++Hl5cXPD098f777yM1NRUNGjQw/wfX39+/yIjAgAEDsHTpUrz//vtYunQpZsyYgd27d+PAgQOoWbNmsfW9/vrrWLFiBRYsWICYmBhcuXIFv//+u7m2MWPG4L///S9WrVqF2rVr4+2330aPHj1w9uxZ+Pj4QK1WY+3atRg/fjwOHz6ML7/8Eq+99hq2bduG7t27Y9q0aVi8eDGGDh2K1NRU83/EXVxcsHbtWgwcOBCHDh1CUlIShgwZgnr16uHll18u07ZNbYwdOxaHDh3CwYMHMXDgQLRt29Ycpt58801s2LABy5YtQ7169bBv3z68+uqrCA0NRZs2bR7YxnvvvYc///wTTZo0KfW9L0lubi7c3Nzw5JNP3vvc/s/9AbdchIMBIDZs2GB+fO7cOQFAJCcnW6zXrVs30bdv3zK3m5GRIQCIjIwMyWoVQoilSwsEIES3boWStutI8vPzxcaNG0V+fr7cpdiE0vsnhPL7yP7dk5OTI06dOiVycnLuLczKEsIYc+z/k5VVpj4WFhaKW7duicLCe/+W/vP74OjRowKASE1NLbGdNm3aiNGjRz9we5s3bxZarVbMmjVLVK9eXfz2228lrpuZmSm0Wq346KOPin0+KytLaDQa8fnnn5uX5efni+DgYDF//nxzXY899pi5fwUFBcLDw0PEx8ebX3PlyhUBQBw8eNCiP5GRkcJgMJiXTZo0SURGRpZr2zExMRY1t2jRQkyaNMnchk6nEwcOHLBYZ9CgQaJXr15laqOwsFC0bt1ajBo1qvg38QGK/dz+j7Xf3w4xybg04eHhCAwMtBiazc/Px969e/H444/LWJmRj49xv+OtWzIXQkSkcE2aNEG7du3QqFEj9OzZEx999BFuWfmPr2mXUWJiIjZs2IAGDRqUuO7p06eRl5eHdu3aFfv8uXPnoNfr0bp1a/MyjUaDli1b4vTp0+Zl929DrVbD19cXjRo1Mi8zTcUwXZfJ5LHHHrMY1WrVqhX++OMPFBYWlnnbjRs3tmgzKCjIvJ1Tp04hNzcXcXFx8PT0NP988sknOHfuXJnacEQOsYsqKysLf/75p/lxSkoKjh8/Dh8fH4SGhmLMmDGYPXs26tWrh3r16mH27Nlwd3dH7969ZazayHSplxs3eNZQInJQ7u7GQz7l2rZE1Go1duzYgQMHDmD79u1YunQppkyZgsOHDyM8PLxcbW3btg2///47CgsLi8zx/CfTtZJKIv43wfZBUyn+uXtRpVJZLDOtW55JuhXZtmk7ptvvvvuuyC46rVZbpjYckUOM4CQlJaFZs2Zo1qwZAGDcuHFo1qwZpk2bBgCYOHEixowZg2HDhiE6OhqXLl3C9u3b4eXlJWfZAO6N4Ny8KXMhREQlUakADw95fiQ+Bb9KpULr1q2RmJiIY8eOwdXVFRs2bDA/7+rqisLCwlLbSE5ORs+ePfHhhx+iQ4cOmDp1aqnr16tXD25ubti5c2exz9etWxeurq7Yv3+/eZler0dSUpJ5gnBFHDp0qMjjevXqQa1WS7LtqKgoaLVaXLx4EXXr1rX4CQkJKXOdZXnv7ckhRnBiY2MtDjH7J5VKhYSEBCQkJNivqDK6N4Jj3OHMy78QEVkvKysL58+fNz++f0T/ypUr2LlzJ9q3b4+AgAAcPnwYf//9t8UXeVhYGA4fPozU1FR4enrCx8fH4urWqamp6Ny5M15//XXEx8cjKioKLVq0wNGjR/HII48UW5NOp8OkSZMwceJEuLq6onXr1vj7779x8uRJDBo0CB4eHhg6dCgmTJhg3vMwf/58ZGdnY9CgQRV+T9LS0jBu3Di8+uqrSE5OxtKlS7FgwQIAkGTbXl5eGD9+PMaOHQuDwYCYmBhkZmbiwIED8PT0RL9+/crUTmhoKH7++ecS33t7c4iA48x8fIy3er0KWVmAAwwqERE5raSkJIu5LqajYfv164dJkyZh3759WLx4MTIzM1G7dm0sWLAAHTt2NK8/fvx49OvXD1FRUcjJyUFKSgrCwsIAADdv3kTHjh3RrVs3vPHGGwCARx55BF27dsWUKVOwdevWEuuaOnUqXFxcMG3aNFy+fBlBQUEYMmSI+fm5c+fCYDAgPj4ed+7cQXR0NLZt24bq1atX+D3p27cvcnJy0LJlS6jVaowcORKvvPKKpNueOXMmAgICMGfOHJw/fx7VqlVD8+bNze9TWYwYMQIjR44s9r2Xg0qUNnSiIJmZmahatSoyMjIkPUw8P18PT88q0OvVSEkBZPxd2oxer8f333+PTp06KfYQXCX3D1B+H9m/e3Jzc5GSkoLw8PAih9s6MoPBgMzMTHh7e8v6v35bsbZ/sbGxaNq0KRYvXmzD6iquor+/0j631n5/K+9TZGcqFeDlZTyZFi/XQERE5BgYcCTAgENERORYOAdHAqaAwyOpiIhISnv27JG7BKfFERwJeHkZLwTGERwiIiLHwIAjAe6iIiIiciwMOBJgwCEiInIsDDgSYMAhIiJyLAw4EuAcHCIiIsfCgCMBjuAQERE5FgYcCTDgEBERORYGHAnwPDhERESOhQFHAqaAc/s2UFAgczFERETEgCMFT0+9+f6tWzIWQkRERAAYcCShVgtUq2a8KDvn4RAROZ7Y2FiMGTNG7jLIjhhwJOLra7xlwCEist7cuXPRokULeHl5ISAgAN27d8eZM2fkLousJGewZMCRiI8PR3CIiCpq7969GD58OA4dOoQdO3agoKAA7du3x927d+UujZwMA45EOIJDRFRxW7ZsQf/+/dGgQQM0adIEK1euxMWLF3H06FEAxhGBUaNGYeLEifDx8UFgYCASEhIs2rh79y769u0LT09PBAUFYcGCBQ/c7hdffAGdTodLly6Zlw0ePBiNGzdGRkZGsa8xGAyYN28e6tatC61Wi9DQUMyaNcv8fF5eHkaNGoWAgAC4u7vjmWeewZEjR8zPx8bGYuTIkRgzZgyqV6+OGjVqYPny5bh79y4GDBgALy8v1KlTB1u2bLHYbmxsLEaMGIERI0agWrVq8PX1xZtvvgkhRJHt6nQ6xMTEWGy3rO+jEALz589HREQE3Nzc0KRJE3z99dfFtuHn54f69esjMTHR/Hz//v2xd+9evPvuu1CpVFCpVEhNTX3g70IqDDgSqV7deMtDxYnI0QgB3L0rz8//vnOtZgoXPj4+5mWrV6+Gh4cHDh8+jPnz52PGjBnYsWOH+fkJEyZg9+7d2LBhA7Zv3449e/aYA1JJXnzxRdSvXx9z5swBACQmJmLbtm3YsmULqlatWuxrJk+ejHnz5mHq1Kk4deoU1qxZgxo1apifnzhxIr755husXr0aSUlJiIiIQMeOHXHzvi+K1atXw8/PDz///DNGjhyJoUOHomfPnnj88ceRnJyMDh06ID4+HtnZ2RbbXr16NVxcXHD48GEsWbIEixYtwooVK4psNzk5GXXr1kWHDh0stluW9/HNN9/EypUrsWzZMpw8eRJjx45Fnz59sHfv3iJtHDx4EImJiZg5c6a5jXfffRetWrXCyy+/jCtXruDKlSsICQkp9fcgKVFJZGRkCAAiIyND0nbz8/PFxo0bxYgRBQIQYvJkSZt3CKY+5ufny12KTSi9f0Iov4/s3z05OTni1KlTIicnx7wsK0sIY9Sw/09WVtn6WFhYKG7duiUKCwvNywwGg+jatauIiYkxL2vTpo3FYyGEaNGihZg0aZIQQog7d+4IV1dXsXbtWvPzN27cEG5ubmL06NGl1rB582ah1WrFrFmzRPXq1cVvv/1W4rqZmZlCq9WKjz76qNjns7KyhEajEZ9//rm5f+np6SI4OFjMnz+/2L4UFBQIDw8PER8fb1525coVAUAcPHjQ4j2IjIwUBoPBvGzSpEkiMjKyyHaFMH5+7t9ucdsWwvJ9zMrKEjqdThw4cMBinUGDBolevXoVacP0+7u/DdM6D3rfhSj+c2ti7fe3i/2ilLKZ/nPBXVRERNIYMWIETpw4gf3791ssb9y4scXjoKAgpKenAwDOnTuH/Px8tGrVyvy8j48P6tev/8DtdenSBVFRUUhMTMT27dvRoEGDEtc9ffo08vLy0K5du2KfP3fuHPR6PVq3bm1eptFo0KJFC5w+fbrYvqjVavj6+qJRo0bmZaYRIVP/TB577DGoVCrz41atWmHBggX4888/i90bOSTQAAAgAElEQVRuy5YtLbb7z20Dlu/jqVOnkJubi7i4OIt18vPz0axZsxLbCAwMLFKrXBhwJMI5OETkqNzdgaws+bZtjZEjR2LTpk3Yt28fatWqZfGcRqOxeKxSqWAwGADAPA/FGtu2bcPvv/+OwsJCi11NxXFzcyv1eVMd94cQ0/L7lxXXl/uXmdY19a+sHrTdkrZt2o7p9rvvvkPNmjUt1tNqtWVqQ26cgyMR01FU16/LXAgR0T+oVICHhzw///hOfSAhBEaMGIH169dj165dCA8PL9fr69atC41Gg0OHDpmX3bp1C2fPni31dcnJyejZsyc+/PBDdOjQAVOnTi11/Xr16sHNzQ07d+4ssQ5XV1eL0Se9Xo+jR48iMjKyHD0q3v39Mz2uV69eidtNSkoq13ajoqKg1Wpx8eJF1K1b1+KnPPNoXF1dUVhYWOb1pcQRHIn4+xtvGXCIiKw3YsQIfPHFF/j222/h5eWFq1evAgCqVq36wFETAPD09MSgQYMwYcIE+Pr6okaNGpgyZQqqVCn5//Opqano3LkzXn/9dcTHxyMqKgotWrTA0aNH8cgjjxT7Gp1Oh0mTJmHixIlwdXVF69at8ffff+PkyZMYNGgQPDw8MHToUEyYMAE+Pj6oVasWZs+ejezsbAwaNMi6N+c+aWlpGDduHF599VUkJydj6dKlWLBgQZHthoaGYv78+eXerpeXF8aPH4+xY8fCYDAgJiYGmZmZOHDgADw9PdGvX78ytRMWFobDhw8jNTUVnp6e8PHxKfV3ISUGHIn4+hpHcP7+W+ZCiIic2AcffADAeAjy/VauXIn+/fuXqY23334bWVlZ6NatG7y8vPDaa6+VeKj3zZs30bFjR3Tr1g1vvPEGAOCRRx5B165dMWXKFGzdurXE7UydOhUuLi6YNm0aLl++jKCgIAwZMsT8/Ny5c2EwGBAfH487d+6gadOm2LJlC6qbDrutgL59+yInJwctW7aEWq3GyJEj8corrxS73ejoaGzbtq3c2505cyYCAgIwZ84cnD9/HtWqVUPz5s3N71NZjB8/Hv369UNUVBRycnKQkpKCsLCwctVhLZWoyA5LJ5KZmYmqVasiIyMD3t7ekrWr1+vx/fffo2nTTggL00CtBvLzATsFVLsw9bFTp05F9rcqgdL7Byi/j+zfPbm5uUhJSUF4eDh0Op2dKqw4g8GAzMxMeHt72+1/+PYkZf9iY2PRtGlTLF68WKLqKq6i/Svtc2vt97fyPkUy8fMz3hYWGq8qTkRERPJhwJGIqytgOhcUd1MRERHJi3NwJOTvD2RkGANOGU65QEREVG579uyRuwSnwBEcCZl2U3EEh4iISF4MOBLioeJERESOgQFHQqaAwxEcIiIieTHgSIgBh4gcRSU5AwgphC0+rww4EuIcHCKSm+k8OdnZ2TJXQlR2ps+rlOex4lFUEuIcHCKSm1qtRrVq1cxXdHZ3dy9ykUVHZDAYkJ+fj9zcXMWe6I/9K0oIgezsbKSnp6NatWpQq9WS1cSAIyHuoiIiRxAYGAgA5pDjDIQQyMnJgZubm1MEsvJi/0pXrVo18+dWKgw4EmLAISJHoFKpEBQUhICAAOj1ernLKRO9Xo99+/bhySefVOzlNti/4mk0GklHbkwYcCR0/xwcIQAFhnQiciJqtdomXxy2oFarUVBQAJ1Op8gAwP7Zn/J2BMrINIKTmwvcvStvLURERJUZA46EPDwA00VQOdGYiIhIPgw4ElKpOA+HiIjIETDgSIwBh4iISH4MOBLjyf6IiIjkx4AjMZ7sj4iISH4MOBLjLioiIiL5MeBIjAGHiIhIfgw4EuMcHCIiIvkx4EiMIzhERETyY8CRGCcZExERyY8BR2IcwSEiIpIfA47ETAEnIwPIz5e3FiIiosqKAUdi1aoBLv+7Rnt6ury1EBERVVYMOBKrUgUICDDev3ZN3lqIiIgqKwYcG6hRw3jLgENERCQPBhwbYMAhIiKSl1MEnIKCArz55psIDw+Hm5sbIiIiMGPGDBgMBrlLKxYDDhERkbxc5C6gLObNm4cPPvgAq1evRoMGDZCUlIQBAwagatWqGD16tNzlFWGag8NJxkRERPJwioBz8OBBPPvss+jcuTMAICwsDF988QWSkpJkrqx4HMEhIiKSl1MEnJiYGHzwwQc4e/YsHnroIfzyyy/Yv38/Fi9eXOJr8vLykJeXZ36cmZkJANDr9dDr9ZLVZmrr/jZ9fVUAXHD1qgF6faFk25JLcX1UEqX3D1B+H9k/56f0PrJ/FW+7vFRCCCFxLZITQuCNN97AvHnzoFarUVhYiFmzZmHy5MklviYhIQGJiYlFlq9Zswbu7u62LBfHj/sjIeFxhIZmYsmS3TbdFhERkZJlZ2ejd+/eyMjIgLe3d5lf5xQBZ+3atZgwYQLefvttNGjQAMePH8eYMWOwcOFC9OvXr9jXFDeCExISguvXr5frDXoQvV6PHTt2IC4uDhqNBgBw4gQQHa2Bv7/ApUsFkm1LLsX1UUmU3j9A+X1k/5yf0vvI/lkvMzMTfn5+5Q44TrGLasKECXj99dfx4osvAgAaNWqECxcuYM6cOSUGHK1WC61WW2S5RqOxyYfr/nZr1TIuu35dhSpVNFCrJd+cLGz13jkKpfcPUH4f2T/np/Q+sn/WtWkNpzhMPDs7G1WqWJaqVqsd9jBxX19ApQKE4FXFiYiI5OAUIzhdu3bFrFmzEBoaigYNGuDYsWNYuHAhBg4cKHdpxXJxAfz8jFcUv3bt3lFVREREZB9OEXCWLl2KqVOnYtiwYUhPT0dwcDBeffVVTJs2Te7SSlSjxr2AQ0RERPblFAHHy8sLixcvLvWwcEdTowbw228MOERERHJwijk4zogn+yMiIpIPA46N8HINRERE8mHAsRGO4BAREcmHAcdGGHCIiIjkw4BjIww4RERE8mHAsREGHCIiIvkw4NjI/ZOMHfSEy0RERIrFgGMjpoBTUADcvi1vLURERJUNA46NaLVAtWrG+9xNRUREZF8MODZkmodz9aq8dRAREVU2DDg2FBhovGXAISIisi8GHBsKDjbeXrkibx1ERESVDQOODQUFGW8ZcIiIiOyLAceGTAHn8mV56yAiIqpsGHBsiCM4RERE8mDAsSEGHCIiInkw4NgQAw4REZE8GHBsyBRwMjKAnBx5ayEiIqpMGHBsqGpVQKcz3ucoDhERkf0w4NiQSnXvXDg8koqIiMh+GHBsjPNwiIiI7I8Bx8YYcIiIiOyPAcfGGHCIiIjsjwHHxhhwiIiI7I8Bx8YYcIiIiOyPAcfGGHCIiIjsjwHHxnjBTSIiIvtjwLEx03lwbtwA8vPlrYWIiKiyYMCxMV9fQKMx3r96Vd5aiIiIKgsGHBtTqYDAQON9zsMhIiKyDwYcO+BEYyIiIvtiwLEDBhwiIiL7YsCxA15wk4iIyL4YcOygZk3j7aVL8tZBRERUWTDg2AEDDhERkX0x4NhBrVrG27/+krcOIiKiyoIBxw4YcIiIiOyLAccOTLuoMjOBO3fkrYWIiKgyYMCxAy8vwNvbeJ/zcIiIiGyPAcdOTKM43E1FRERkeww4dmKah8MRHCIiIttjwLETTjQmIiKyHwYcO+G5cIiIiOyHAcdOOIJDRERkPww4dsKAQ0REZD8MOHbCXVRERET2w4BjJ6YRnPR0IC9P3lqIiIiUjgHHTnx9Aa3WeP/yZXlrISIiUjoGHDtRqbibioiIyF4YcOyIE42JiIjsgwHHjng2YyIiIvtgwLEjXo+KiIjIPhhw7Ii7qIiIiOzDpSIv1uv1uHr1KrKzs+Hv7w8fHx+p6lIkBhwiIiL7KPcITlZWFj788EPExsaiatWqCAsLQ1RUFPz9/VG7dm28/PLLOHLkiC1qdXohIcbbixflrYOIiEjpyhVwFi1ahLCwMHz00Ud46qmnsH79ehw/fhxnzpzBwYMHMX36dBQUFCAuLg7PPPMM/vjjD1vV7ZRq1zbeXrkC5OfLWwsREZGSlWsX1YEDB7B79240atSo2OdbtmyJgQMHYtmyZfj444+xd+9e1KtXT5JClcDfH9DpgNxc426qiAi5KyIiIlKmco3gfPXVV+Zw06pVK2RmZha7nk6nw7BhwzB48OCKV/g/ly5dQp8+feDr6wt3d3c0bdoUR48elax9e1CpgNBQ433upiIiIrIdq4+iOnz4MHJzc4ssz8zMxIQJEypU1D/dunULrVu3hkajwZYtW3Dq1CksWLAA1apVk3Q79mAKOBcuyFsHERGRkpX7KKrnn38eLVu2hEqlQnp6OgICAiyev3v3LhYuXIi3335bsiLnzZuHkJAQrFy50rwsLCxMsvbtyTQPhyM4REREtlPugFO7dm3897//hRACTZo0ga+vL5o0aYImTZqgcePGOHHiBIKCgiQtctOmTejQoQN69uyJvXv3ombNmhg2bBhefvnlEl+Tl5eHvPsu223anabX66HX6yWrzdRWWdusWbMKADVSUgzQ6wslq8OWyttHZ6P0/gHK7yP75/yU3kf2r+Jtl5dKCCGseaFWq8X+/ftx+fJlHDt2DMePH8evv/4Kg8GAWbNmoXfv3lYVVBydTgcAGDduHHr27Imff/4ZY8aMwYcffoi+ffsW+5qEhAQkJiYWWb5mzRq4u7tLVlt57doVgiVLmqNJk3QkJh6UrQ4iIiJnkJ2djd69eyMjIwPe3t5lfp3VAaegoAAuLhU6T2CZubq6Ijo6GgcOHDAvGzVqFI4cOYKDB4sPCcWN4ISEhOD69evleoMeRK/XY8eOHYiLi4NGo3ng+nv2qNC+vQvq1RM4ebJAsjpsqbx9dDZK7x+g/D6yf85P6X1k/6yXmZkJPz+/cgccqxOKvcINAAQFBSEqKspiWWRkJL755psSX6PVaqHVaoss12g0NvlwlbXdOnWMt2lpKri4aKBSSV6KzdjqvXMUSu8foPw+sn/OT+l9ZP+sa9Ma5TqK6mI5Z8Zekuiy2a1bt8aZM2cslp09exa1TTN2nUitWsbDxXNzgevX5a6GiIhImcoVcFq0aIGXX34ZP//8c4nrZGRk4KOPPkLDhg2xfv36ChcIAGPHjsWhQ4cwe/Zs/Pnnn1izZg2WL1+O4cOHS9K+Pbm6AqY52DxUnIiIyDbKtZ/p9OnTmD17Np555hloNBpER0cjODgYOp0Ot27dwqlTp3Dy5ElER0fj7bffRseOHSUpskWLFtiwYQMmT56MGTNmIDw8HIsXL8ZLL70kSfv2FhoKXL5sPFQ8OlruaoiIiJSnXAHHx8cH77zzDt566y18//33+PHHH5GamoqcnBz4+fnhpZdeQocOHdCwYUPJC+3SpQu6dOkiebtyCA0FDh3iCA4REZGtWDVTWKfTIS4uDs8//7zU9VQKPNkfERGRbVl9qYYnnngCV69elbKWSoOXayAiIrItqwNOdHQ0Hn30Ufz+++8Wy48dO4ZOnTpVuDAl4wgOERGRbVkdcFasWIGBAwciJiYG+/fvx9mzZ/Hvf/8b0dHRxZ5/hu7hCA4REZFtVehsfdOnT4erqyvi4uJQWFiIDh064MiRI2jevLlU9SmSaQTn+nXg7l3Aw0PeeoiIiJTG6hGcK1euYNSoUZg5cyaioqKg0Wjw4osvMtyUQbVqxh8ASE2VtRQiIiJFsjrgRERE4Mcff8RXX32Fo0ePYv369Rg2bBjmzZsnZX2KFR5uvE1JkbcOIiIiJbJ6F9XKlSvx4osvmh936NABu3fvRpcuXXDhwgX83//9nyQFKlVEBHDsGHD+vNyVEBERKY/VIzj3hxuT5s2b48CBA9izZ09FaqoUOIJDRERkO1YHnJKEhYXhp59+krpZxTEFHI7gEBERSU/ygAMA1atXt0WzihIRYbzlCA4REZH0bBJw6MHu30UlhLy1EBERKQ0Djkxq1wZUKiAry3g+HCIiIpIOA45MdDogONh4n7upiIiIpFWhMxnv3LkTO3fuRHp6OgwGg8VzH3/8cYUKqwwiIoBLl4wTjVu2lLsaIiIi5bB6BCcxMRHt27fHzp07cf36ddy6dcvihx6Mh4oTERHZhtUjOB988AFWrVqF+Ph4KeupVExHUvFQcSIiImlZPYKTn5+Pxx9/XMpaKh2O4BAREdmG1QFn8ODBWLNmjZS1VDocwSEiIrINq3dR5ebmYvny5fjhhx/QuHFjaDQai+cXLlxY4eKUzjSCc/EiUFAAuFRoyjcRERGZWP2VeuLECTRt2hQA8Ntvv1k8p1KpKlZVJREUBGi1QF4e8NdfQFiY3BUREREpg9UBZ/fu3VLWUSlVqWIMNWfOGHdTMeAQERFJgyf6k1mdOsbbP/+Utw4iIiIlqdCsj9u3b+M///kPTp8+DZVKhcjISAwaNAhVq1aVqj7Fq1fPePvHH/LWQUREpCRWj+AkJSWhTp06WLRoEW7evInr169j0aJFqFOnDpKTk6WsUdEYcIiIiKRn9QjO2LFj0a1bN3z00Udw+d/hPwUFBRg8eDDGjBmDffv2SVakktWta7xlwCEiIpKO1QEnKSnJItwAgIuLCyZOnIjo6GhJiqsMTCM4584BBoNx4jERERFVjNVfp97e3rh48WKR5WlpafDy8qpQUZVJaCig0dw7VJyIiIgqzuqA88ILL2DQoEFYt24d0tLS8Ndff2Ht2rUYPHgwevXqJWWNiubicu+MxtxNRUREJA2rd1G98847UKlU6Nu3LwoKCgAAGo0GQ4cOxdy5cyUrsDKoV894Lpw//gDatZO7GiIiIudndcBxdXXFu+++izlz5uDcuXMQQqBu3bpwd3eXsr5KgRONiYiIpFXhqx+5u7ujUaNGUtRSaZkmGvNkf0RERNIoV8AZN24cZs6cCQ8PD4wbN67UdXmxzbLjuXCIiIikVa6Ac+zYMej1evP9kvBim+Vz/6HihYWAWi1vPURERM6uXAHn/gtsrl69GrVq1UKVf5y4RQiBtLQ0aaqrJEJCAFdXID8fSEvjRTeJiIgqyurDxMPDw3H9+vUiy2/evInw8PAKFVXZqNX3DhXnPBwiIqKKszrgCCGKXZ6VlQWdTmd1QZUV5+EQERFJp9xHUZkmF6tUKkybNs3isPDCwkIcPnwYTZs2la7CSsIUcM6elbcOIiIiJSh3wDFNLhZC4Ndff4Wrq6v5OVdXVzRp0gTjx4+XrsJK4uGHjbe//y5vHUREREpQ7oBjmmg8YMAAvPvuu/D29pa8qMooMtJ4y4BDRERUcVaf6G/lypVS1lHpmUZwLlwAsrMBnhCaiIjIelYHnBkzZpT6/LRp06xtulLy8wN8fYEbN4zzcDiNiYiIyHpWB5wNGzZYPNbr9UhJSYGLiwvq1KnDgGOFyEhg/37g9GkGHCIiooqwOuAUdybjzMxM9O/fH88991yFiqqsHn7YGHA4D4eIiKhirD4PTnG8vb0xY8YMTJ06VcpmKw3TROPTp+Wtg4iIyNlJGnAA4Pbt28jIyJC62UqBh4oTERFJw+pdVEuWLLF4LITAlStX8Omnn+KZZ56pcGGVkWkE5+xZXnSTiIioIqwOOIsWLbJ4XKVKFfj7+6Nfv36YPHlyhQurjEJDAZ0OyM0FUlOBOnXkroiIiMg5WR1wUlJSpKyDYByxqV8f+OUX4zwcBhwiIiLrSD4HhyqG83CIiIgqrlwjOKYLbZbFwoULy10M8UgqIiIiKZQr4BR37pviqFQqq4qheyM4DDhERETWK1fAMV1ok2ynQQPj7cmTgBAAsyIREVH5WT3JGDCe8+Y///kPTp8+DZVKhaioKAwcOBBVq1aVqr5K56GHABcXIDMTSEszHllFRERE5WP1JOOkpCTUqVMHixYtws2bN3H9+nUsXLgQderUQXJyspQ1Viqurvd2U/36q7y1EBEROSurA87YsWPRrVs3pKamYv369diwYQNSUlLQpUsXjBkzRsoaK51GjYy3v/0mbx1ERETOqkIjOJMmTYKLy729XC4uLpg4cSKSkpIkKa4kc+bMgUqlUmyQatjQeMsRHCIiIutYHXC8vb1x8eLFIsvT0tLg5eVVoaJKc+TIESxfvhyNGze22TbkxhEcIiKiirE64LzwwgsYNGgQ1q1bh7S0NPz1119Yu3YtBg8ejF69eklZo1lWVhZeeuklfPTRR6hevbpNtuEITCM4p08Der28tRARETkjq4+ieuedd6BSqdC3b18UFBQAADQaDYYOHYq5c+dKVuD9hg8fjs6dO+Ppp5/GW2+9Veq6eXl5yMvLMz/OzMwEAOj1euglTA2mtqRsMzgY8PR0QVaWCqdP680n/5OLLfroSJTeP0D5fWT/nJ/S+8j+Vbzt8lIJIURFNpydnY1z585BCIG6devC3d29Is2VaO3atZg1axaOHDkCnU6H2NhYNG3aFIsXLy52/YSEBCQmJhZZvmbNGpvVKKWJE5/A2bM+GD/+CGJiLstdDhERkSyys7PRu3dvZGRkwNvbu8yvs3oEJycnB0IIuLu7o1GjRrhw4QKWL1+OqKgotG/f3tpmi5WWlobRo0dj+/bt0Ol0ZXrN5MmTLS4tkZmZiZCQELRv375cb9CD6PV67NixA3FxcdBoNJK1u2mTGmfPAq6uzdGpU1PJ2rWGrfroKJTeP0D5fWT/nJ/S+8j+Wc+0B6a8rA44zz77LJ5//nkMGTIEt2/fxqOPPgqNRmM+H87QoUOtbbqIo0ePIj09HY888oh5WWFhIfbt24f33nsPeXl5UKvVFq/RarXQarVF2tJoNDb5cEndbpMmxttTp9TQaNSlr2wntnrvHIXS+wcov4/sn/NTeh/ZP+vatIbVk4yTk5PxxBNPAAC+/vpr1KhRAxcuXMAnn3yCJUuWWNtssdq1a4dff/0Vx48fN/9ER0fjpZdewvHjx4uEGyUwTTTmkVRERETlZ/UITnZ2tvlw8O3bt+P5559HlSpV8Nhjj+HChQuSFQgAXl5eaGj6xv8fDw8P+Pr6FlmuFKZDxc+dA+7eBTw85K2HiIjImVg9glO3bl1s3LgRaWlp2LZtm3neTXp6uqRzXCorf38gKMh4wc0TJ+SuhoiIyLlYHXCmTZuG8ePHIywsDI8++ihatWoFwDia06xZM8kKLMmePXtKPIJKKUxv47Fj8tZBRETkbKzeRdWjRw/ExMTgypUraGKaEQvjfJnnnntOkuIqu2bNgO+/Z8AhIiIqL6sDDgAEBgYiMDDQYlnLli0rVBDd0/R/R4cz4BAREZWP1buoyPZMu6h+/ZWXbCAiIioPBhwHFh4OeHsD+fnG61IRERFR2TDgOLAqVbibioiIyBoMOA6OR1IRERGVHwOOg2PAISIiKj8GHAdnCjjHjwMGg7y1EBEROQsGHAcXGQlotUBmJpCSInc1REREzoEBx8FpNPcuvJmcLG8tREREzoIBxwm0aGG8PXJE3jqIiIicBQOOEzCdHPrnn+Wtg4iIyFkw4DgBU8BJSgIKC+WthYiIyBkw4DiBhx8GPD2Bu3d5RmMiIqKyYMBxAmo1EB1tvM/dVERERA/GgOMkOA+HiIio7BhwnAQDDhERUdkx4DgJU8A5cQLIyZG3FiIiIkfHgOMkatUCAgONR1HxulRERESlY8BxEirVvRP+cTcVERFR6RhwnMijjxpvDx6Utw4iIiJHx4DjRFq3Nt7+9BMghLy1EBEROTIGHCfSsiXg4gJcugRcvCh3NURERI6LAceJuLsDzZoZ7+/fL28tREREjowBx8ncv5uKiIiIiseA42RiYoy3DDhEREQlY8BxMqYRnF9/BW7flrcWIiIiR8WA42QCA4GICONRVIcOyV0NERGRY2LAcULcTUVERFQ6BhwnZNpNxSOpiIiIiseA44SeeMJ4e/AgkJsrby1ERESOiAHHCT38sHEuTl4e5+EQEREVhwHHCalUQGys8f7u3bKWQkRE5JAYcJxU27bGWwYcIiKiohhwnNRTTxlvDx0CsrPlrYWIiMjRMOA4qTp1gFq1AL2eh4sTERH9EwOOk1KpuJuKiIioJAw4TowBh4iIqHgMOE7MFHCOHAEyM+WthYiIyJEw4DixsDDjXJzCQo7iEBER3Y8Bx8k984zxdutWeesgIiJyJAw4Tu7+gCOEvLUQERE5CgYcJxcbC7i6AqmpwNmzcldDRETkGBhwnJyn572Lb27bJm8tREREjoIBRwE6dDDech4OERGREQOOApjm4ezZA+TkyFoKERGRQ2DAUYCGDYHgYGO42bdP7mqIiIjkx4CjACoV0KmT8f7mzfLWQkRE5AgYcBTi2WeNt5s28XBxIiIiBhyFaNcOcHcH0tKAY8fkroaIiEheDDgK4eZ272iqb7+VtxYiIiK5MeAoyP27qYiIiCozBhwF6dwZqFIFOH4cuHBB7mqIiIjkw4CjIH5+QEyM8T5HcYiIqDJjwFGY7t2Nt19/LW8dREREcmLAUZgePYy3P/4IXL4sby1ERERyYcBRmJAQ4PHHjefC+eoruashIiKSh1MEnDlz5qBFixbw8vJCQEAAunfvjjNnzshdlsN64QXj7bp18tZBREQkF6cIOHv37sXw4cNx6NAh7NixAwUFBWjfvj3u3r0rd2kOqUcP4+UbDh4ELl6UuxoiIiL7c5G7gLLYunWrxeOVK1ciICAAR48exZNPPilTVY4rOBh48klg717gyy+B8ePlroiIiMi+nCLg/FNGRgYAwMfHp8R18vLykJeXZ36cmZkJANDr9dDr9ZLVYmpLyjal8K9/VcHevWp88YUBo0cXVqgtR+2jVJTeP0D5fWT/nJ/S+8j+Vbzt8lIJ4VyXZhRC4Nlnn8WtW7fw448/lrheQkICEhMTiyxfs2YN3N3dbVmiQ8jIcMXAgR1QWFgFS5fuQkjIHblLIiIiKrfs7Gz07t0bGRkZ8Pb2LvPrnC7gDB8+HN999x3279+PWrVqlbhecSM4ISEhuH79erneoAfR6/XYsWMH4uLioNFoJGtXCv/6l/CI4qEAAB/kSURBVBqbN1fBa68VYs4cg9XtOHIfpaD0/gHK7yP75/yU3kf2z3qZmZnw8/Mrd8Bxql1UI0eOxKZNm7Bv375Sww0AaLVaaLXaIss1Go1NPly2arciBgwANm8G1qxRY+5cNVwq+Nt2xD5KSen9A5TfR/bP+Sm9j+yfdW1awymOohJCYMSIEVi/fj127dqF8PBwuUtyCp07A76+wJUrwA8/yF0NERGR/ThFwBk+fDg+++wzrFmzBl5eXrh69SquXr2KnJwcuUtzaK6uQO/exvurV8tbCxERkT05RcBZtmwZMjIyEBsbi6CgIPPPOp7J7oH69zfebtgA3LolaylERER24xQBRwhR7E9/07c3lahZM6BJEyAvj6M4RERUeThFwCHrqVTAkCHG+x98YLxGFRERkdIx4FQCL70EeHoCZ84Au3fLXQ0REZHtMeBUAl5eQHy88f6yZfLWQkREZA8MOJXE0KHG2w0bgMuX5a2FiIjI1hhwKolGjYCYGKCwkKM4RESkfAw4lciYMcbb//s/4O5deWshIiKyJQacSqR7dyAiArh5k4eMExGRsjHgVCJqNTB2rPH+woXG3VVERERKxIBTyQwYAFSvDpw7B3z7rdzVEBER2QYDTiXj4QEMG2a8P3s2T/xHRETKxIBTCY0eDbi7A0ePAt9/L3c1RERE0mPAqYT8/YHhw433ExM5ikNERMrDgFNJjR9vHMU5cgTYskXuaoiIiKTFgFNJBQTcO7vx9OkcxSEiImVhwKnEJkwwTjpOSgK+/FLuaoiIiKTDgFOJ1ahhDDkAMHkykJcnbz1ERERSYcCp5MaPB4KCgJQU4yUciIiIlIABp5Lz8ABmzDDenzkTuHVL3nqIiIikwIBDGDAAaNDAGG5MYYeIiMiZMeAQ1GrjtakAYMkS4NgxeeshIiKqKAYcAgC0bw/8+9+AwQAMGcILcRIRkXNjwCGzRYsAb2/g55+B5cvlroaIiMh6DDhkFhwMzJplvD95MnD5srz1EBERWYsBhywMHQq0aAFkZACDB/MMx0RE5JwYcMiCWg2sWgVotcZrVH34odwVERERlR8DTkVduYLmixYBt2/LXYlkoqKAuXON9197DfjjD3nrISIiKi8GnIoQAuoXXkDI3r1Q9+9vPARJIUaNAp56CsjOBvr3V0OvV8ldEhERUZkx4FSESoXCd99FoUaDKt9/D7z1ltwVSaZKFWDlSqBaNeDIkSpYtaqh3CURERGVGQNORTVrhl+GDDHeT0gwTlxRiNBQ4JNPjPe/+y4Ca9dyFIeIiJwDA44E0tq1Q+ErrxgPOerdGzhzRu6SJNO1K/D668az/g0ZosZvv8lcEBERURkw4EjEsGAB0KqVcbJxx47AtWtylySZ6dMNaNIkHdnZKnTtqqiuERGRQjHgSEWrBTZuBOrUAVJSgC5dgLt35a5KEmo18NprSahbVyA11Tiqo5CuERGRQjHgSCkgwDgHx88PSEoCevQA8vLkrkoS3t56bNpUAF9f4MgRoFcvXq+KiIgcFwOO1OrVAzZvBtzcgK1bgZ49gfx8uauSRN26wKZNxsGqzZuBQYMUdWQ8EREpCAOOLTz2mDEB6HTG23//WzEh5/HHgS++MO62Wr0aePVVhhwiInI8DDi20q4d8O23xuGOb78FundXzMSV554DPvvMeK6cFSuAESMYcoiIyLEw4NhS+/bGcOPmZpyb064dcP263FVJ4sUXjSM4KhWwbBnQrx+g18tdFRERkREDjq116ADs3An4+ACHDwMxMcCff8pdlST69AE+/RRwcTGO6HTrpphBKiIicnIMOPbQqhWwfz8QEmI8CWCLFsYJyArw0kvGicemOdWxscBff8ldFRERVXYMOPYSGWkcwTGdDLBTJ2DOHEVMXunYEdi1C/D1NR4dH/3/7d17dFNVvgfw70ma9EWflL7og4ILa2mtUhAKIh3uooiD6OASmEcFFe+gghZkjYw6go9ZsHQNg6LgYxDxzjBwlcfVCyOWS6lgeQ0tWkErI4Uy0lJAaQulTZrs+8duStMmaZOmeRy+n7X2ysnJPjt7d5+d8+t5jgBKS71dKyIiup4xwPGkhASguBiYM0c+1uGZZ4CJE1Wxy2P0aHl/nKwseafjvDxg1SrZTCIiIk9jgONpgYHAO+/Iy49CQuSuj5tvBj76yNs167W0NLnn5r775AnHTzwh73p8/ry3a0ZERNcbBjjeoCjyLnnl5fJ4zk8/yRsC3nsvcOaMt2vXK/36AR9+CLz+uozltm+Xe3X+93+9XTMiIrqeMMDxpqFD5S6P556TlyL9z//Ic3VWrPDrGwMqCjB/vjxkNWyYPGR1993yfoc1Nd6uHRERXQ8Y4HibTge89JLcmzN2rLzO+qmngIwM4L//269PYsnKkkHOokXyzscffgikp8tzc3jPHCIi6ksMcHxFZibw+efAu+/Kh3Z+/z0wYwYwapQ8zuOngU5wMPDqq/LqqpEjgYYGeW7OsGHA5s1+2ywiIvJxDHB8iUYjr7D617+ApUuB0FC5C2TKFCA7G9iwAWht9XYtXXLLLcD+/fKux7GxwIkT8mHro0fL++io4Gp5IiLyIQxwfFFYGLBkidyLs2iRPHO3okLeVW/IEOCPf/TLk1m0WmDuXBm/Pf+8vIjs0CHgnnv8Pn4jIiIfwwDHl8XFyeM71dXAyy8DAwbI6eeeA1JS5PXYn3wCtLR4u6ZOCQsDXngBOHkSWLxYvv/6axm/pabK2E4FtwYiIiIvYoDjD6KigGefBU6fBj74QJ6M3NoKbNkiHwAVFwc89BCwc6dfnb0bFydv5myJ32JjgbNngRdflIHO1KnApk1AU5O3a0pERP6GAY4/CQ4GCgrkc60qKoAFC4DERKC+Hli3DrjzTiAmRu7Z+ctf/GY3SGSkjN/OnAE2bpR3QTab5c6pmTNl4GN55hWDHSIi6gkGOP4qM1PeL+fMGaCkBHjsMRkJNDTIPTuPPCIf7pmZKT/bsEHuKvFher28cKy4GDh+XD7JIi1NXjm/YYM8Vyc6Wj77atUqeYoSERGRLQxw/J1GA9xxB/Dmm/LE40OH5Akuubnys2PH5KVLlhNcUlLk5UsvvywvPz971iev1b7pJnku9fffAwcOAE8+Kave0iKfWv7EE8ANN8gA6IEH5NMvvvnGJ5tCREReEODtCpAbaTTyZjMjR8rLlC5elHt3vvhCHtYqK5N7fM6ckTehsYiNlTemGToUuPHGa6+DBsk7LHuRoshbAY0aBfz5zzKI2bFDpr17gVOnZPqv/5L5+/cHhg+3ToMHyz8NERFdPxjgqFn//sC0aTIB8ljPoUMy0Ckvl+nbb4G6OpmKi62X1+mApCRok5MxXKOBZv9+ucskOVme+xMbK6/s0uk80hxFkTd4zsiQV883Nsp76+zdK9PBgzKmKyqSyaJfPxmvpafLZJm+4QZ5WhMRUY8IAZhM8iRBZ1+bm9HvzBl5yahW63o5PXm1pM7vbSU35dGaTBh7/jwUIeRzFX0AA5zrSWgo8LOfyWTR1CQH3LffAt99B1RWynTiBNDcDFRVQVNVhWQA2LPHdrlRUTLQiY29FvRERgIREY5TaGivgqOwMCA/XyZAHr768strsVtZGfDVV8Dly8CRIzJ1FhsLJCdrodePRHGxBoMGyUNh8fHys7g4GSApisvVpOudEDKZza4ngwEhNTVyXGq1rpXR2zrYKseNG2VtaytuOX0aWsstzp1Zvq8Chc6vvaAD8B/uWaN8kgZADADT2bPerko7RQj/OWth9erVePXVV1FTU4Nhw4Zh5cqVGDduXI+WbWhoQEREBOrr6xEeHu62OhmNRuzYsQN33XUXdB7ak+ERZrO8Cqu6Gq0nT6Ly//4P6SEh0P7wgzxZubYWOH++97cg1mrlHf+Cg2WyN63TuZSMZi1OnI9E5blIVNZG4NuacFTWhOPbs+G4dEXfoyoG6U2IizIiNsqAuCgjYiKMiOxnRESoCZH9WhER2orIUKN8bXsfHtKK0CATgvRmaJROQ6zzkOvJ+44blo4bzB7OazUaUfHll8jKykKARtOzZV38LrfNc2KjazaZcP7cOQzo31+eWOjOjXhvy/Gfn1hyB0WRx8Q1Gvn71vYqNBoYzWboAgOhdJjvltfO8zonO/OFRguzJgBCG2A9rWjktGWeRms9rdXCrFjPN5rMqDj+Lcb+5/2IGj7UrX9SV7fffrMHZ9OmTSgsLMTq1asxduxYvP3225g8eTKOHz+OlJQUb1dPfTQauSsjJQVi1Cj8KyICQ++6C9qOQZzZDPz4owx0LIe5LNP19Y6T5eaEJpM81tTY2CfN0AHIaEsdCQCXEInTSEU1UlCNlPbpM0jGOcShDrG4jDA0G7Q4fU6L0+eCXKpDMJoQ4iAFoRl6GKCDEXoYejwdgFZoYIYGZmhh6tHrIfzT5nwNzFBwbUNsmbY1ryfTzi4noLS/dp529Fnn6XOodSK/FgIBTpXfl9PtSdFCKBoIjewhodHArGjRahbQBOgAjaY9j9mSty2/6Pi+LZkVbVu5GrvpWjkKBDp/rsh6WJXROV9bno6fK5oOeeR7MzrMs5TX9moWwI/1DYiIjAI02rZ8lr/Lte80W95Dsf7c8l4obd+jOExmyLzW86/1h1l0/LxtvmibFpY8uDYPSls8q7THtdbxukBjYyNCQ8Pk2t/pcyEAYYTVsjbz2PnM1v8Kjv6H6Curs1vx6PC+K98ZfhPgrFixAg8//DDmzJkDAFi5ciV27tyJNWvWYNmyZV6u3XVKo5H33YmJkZc9OaOlBbh6VR4i6/hqb57R6Fqy89+4YjYjymxGlBC42XQel36sRGR4ODSdfgWaWvWoM0TinCEKdab+OGeKwQVTJOpNYag3h+GSOQyXTOEdpuX8K+aQ9qZeRQiuIgQX3fznJ5USbcnWRsh/7uNJXSgA3Hf0wFcoimWnVVuY50OH8/0iwDEYDDhy5AgWL15sNT8/Px+lpaU2l2lpaUFLh0cYNDQ0AJCHlIxuvNuvpSx3lulr+qSNGo08Byc01H1lushoNGJvUREmTpzY5TCjDsDAtuQMk8nYHqNZ0tWritV7mRS0tMhYzGCQyTJtidEMBqXLfIPB+vw/26cMKB3eCzQ0NCE4OARms2IzP2B9NMXWtLvnWaYtP5KWH0dnpwHAaGxBYGBgr8qyV3Zvlu86LRwuf22D0TGPwE8//Yjo6GhotYrNPPbqYC+Po+9znEe4VE7ndnbOJ4QZJ09+jxtuGAytVutknXpXb0vd3Pt91slkakVZ2RGMGJEDnS7AibKEVR3tfY9l2tY8Zz53Nu+18WdEUdvvqNHo3sOyrm57/CLAuXDhAkwmE+Li4qzmx8XFoba21uYyy5YtwwsvvNBl/meffYaQkBAbS/ROUcfLdlRK7W30ZPsCA2WKivLYVxL5vFGjAKDS29XoFcuFVrbcfDNgMOyEweDZOnlSX/yONrl4C3u/CHAslI7hIgAhRJd5Fr///e+xcOHC9vcNDQ1ITk5Gfn6+208yLrLz379aqL2Nam8foP42sn3+T+1tZPtcZzkC4yy/CHBiYmKg1Wq77K2pq6vrslfHIjAwEIGBgV3m63S6Plm5+qpcX6L2Nqq9fYD628j2+T+1t5Htc61MV/jF/V31ej1ycnK67PoqKirCmDFjvFQrIiIi8lV+sQcHABYuXIiCggKMGDECubm5eOedd1BdXY25c+d6u2pERETkY/wmwJkxYwYuXryIF198ETU1NcjMzMSOHTuQmprq7aoRERGRj/GbAAcAHnvsMTz22GPergYRERH5OL84B4eIiIjIGQxwiIiISHUY4BAREZHqMMAhIiIi1WGAQ0RERKrDAIeIiIhUhwEOERERqQ4DHCIiIlIdv7rRX28IIQC4/lRSe4xGI5qamtDQ0KDaB6ipvY1qbx+g/jayff5P7W1k+1xn2W5btuM9dd0EOI2NjQCA5ORkL9eEiIiInNXY2IiIiIge51eEsyGRnzKbzTh79izCwsKgKIrbym1oaEBycjLOnDmD8PBwt5XrS9TeRrW3D1B/G9k+/6f2NrJ9rhNCoLGxEYmJidBoen5mzXWzB0ej0SApKanPyg8PD1flStuR2tuo9vYB6m8j2+f/1N5Gts81zuy5seBJxkRERKQ6DHCIiIhIdbRLly5d6u1K+DutVou8vDwEBKj3iJ/a26j29gHqbyPb5//U3ka2z7Oum5OMiYiI6PrBQ1RERESkOgxwiIiISHUY4BAREZHqMMAhIiIi1WGA0wOrV69GWloagoKCkJOTg7179zrMv3nzZmRkZCAwMBAZGRnYunWrh2rqvGXLlmHkyJEICwtDbGws7r33XlRWVjpc5v3334eiKF1Sc3Ozh2rdc0uXLu1Sz/j4eIfLlJSUICcnB0FBQRg8eDDeeustD9XWNYMGDbLZH48//rjN/L7ef59//jnuvvtuJCYmQlEUbNu2zepzIQSWLl2KxMREBAcHIy8vD8eOHeu2XGfHcV9x1D6j0Yinn34aWVlZCA0NRWJiIh544AGcPXvWYZmurOd9qbs+nD17dpf6jh49uttyfeW3tbv22RpfiqLg1VdftVumL/VhT7YLLS0tmD9/PmJiYhAaGoqpU6fi3//+t8NyXR27rmKA041NmzahsLAQzz77LMrLyzFu3DhMnjwZ1dXVNvPv378fM2bMQEFBAb788ksUFBRg+vTpOHjwoIdr3jMlJSV4/PHHceDAARQVFaG1tRX5+fm4cuWKw+XCw8NRU1NjlYKCgjxUa+cMGzbMqp4VFRV281ZVVeGuu+7CuHHjUF5ejmeeeQZPPPEENm/e7MEaO+fw4cNW7SsqKgIA3H///XaX8eX+u3LlCrKzs/HGG2/Y/PyVV17BihUr8MYbb+Dw4cOIj4/HxIkT2583Z4uz47gvOWpfU1MTysrK8Ic//AFlZWXYsmULvvvuO0ydOrXbcp1Zz/tad30IAHfeeadVfXfs2OGwTF/6be2ufZ3H1nvvvQdFUXDfffc5LNdX+rAn24XCwkJs3boVGzduxL59+3D58mVMmTIFJpPJbrmujN1eEeTQbbfdJubOnWs1Lz09XSxevNhm/unTp4s777zTat6kSZPEzJkz+6yO7lRXVycAiJKSErt51q1bJyIiIjxYK9ctWbJEZGdn9zj/7373O5Genm4177e//a0YPXq0u6vWZ5588kkxZMgQYTabbX7uT/0HQGzdurX9vdlsFvHx8WL58uXt85qbm0VERIR466237Jbj7Dj2lM7ts+XQoUMCgDh9+rTdPM6u555kq42zZs0S99xzj1Pl+Opva0/68J577hETJkxwmMeX+7DzduHSpUtCp9OJjRs3tuf54YcfhEajEZ9++qnNMlwdu73BPTgOGAwGHDlyBPn5+Vbz8/PzUVpaanOZ/fv3d8k/adIku/l9TX19PQAgOjraYb7Lly8jNTUVSUlJmDJlCsrLyz1RPZecOHECiYmJSEtLw8yZM3Hy5Em7ee313z//+U8Yjca+rmqvGQwG/PWvf8VDDz3k8KGy/tR/HVVVVaG2ttaqjwIDAzF+/Hi7Y8yVcexL6uvroSgKIiMjHeZzZj33BXv27EFsbCyGDh2KRx55BHV1dQ7z++tv67lz57B9+3Y8/PDD3eb11T7svF04cuQIjEajVX8kJiYiMzPTbn+4MnZ7iwGOAxcuXIDJZEJcXJzV/Li4ONTW1tpcpra21qn8vkQIgYULF+L2229HZmam3Xzp6el4//338fHHH+Pvf/87goKCMHbsWJw4ccKDte2ZUaNG4YMPPsDOnTvx7rvvora2FmPGjMHFixdt5rfXf62trbhw4YInqtwr27Ztw6VLlzB79my7efyp/zqzjCNnxpgr49hXNDc3Y/HixfjVr37l8AGGzq7n3jZ58mT87W9/w+7du/GnP/0Jhw8fxoQJE9DS0mJ3GX/9bV2/fj3CwsIwbdo0h/l8tQ9tbRdqa2uh1+sRFRVllbe7baMlT0+X6S3fuJ+yj+v8n7AQwuF/x87m9xXz5s3DV199hX379jnMN3r0aKsTAseOHYvhw4dj1apVeP311/u6mk6ZPHly+3RWVhZyc3MxZMgQrF+/HgsXLrS5jK3+szXfF61duxaTJ09GYmKi3Tz+1H/2uDLG/G1cGo1GzJw5E2azGatXr3aY15X13JtmzJjRPp2ZmYkRI0YgNTUV27dvdxgI+FsfAsB7772HX//6192e4+arfdjT7QLge+OQe3AciImJgVar7RJd1tXVdYlCLeLj453K7yvmz5+Pjz/+GMXFxUhKSnJqWY1Gg5EjR/rFHoDQ0FBkZWXZrau9/gsICED//v09UUWXnT59Grt27cKcOXOcWs6f+s9yVYkzY8yVcextRqMR06dPR1VVFYqKihzuvbGlu/Xc1yQkJCA1NdVhff3xt3Xv3r2orKx0ekwCvtGH9rYL8fHxMBgM+Omnn6zyd7dtBJwbu73FAMcBvV6PnJyc9qtSLIqKijBmzBiby+Tm5nbJ/9lnn9nN721CCMybNw9btmzB7t27kZaW5lIZR48eRUJCQh/U0L1aWlrwzTff2K2rvf4bMWIEdDqdJ6rosnXr1iE2NhY///nPnVrOn/ovLS0N8fHxVn1kMBhQUlJid4y5Mo69yRLcnDhxArt27XIpsO5uPfc1Fy9exJkzZxzW199+WwG5RzUnJwfZ2dlOL+vNPuxuu5CTkwOdTmfVHzU1Nfj666/t9ocrY9cdDSEHNm7cKHQ6nVi7dq04fvy4KCwsFKGhoeLUqVNCCCEKCgqsrsT44osvhFarFcuXLxfffPONWL58uQgICBAHDhzwVhMcevTRR0VERITYs2ePqKmpaU9NTU3teTq3cenSpeLTTz8V33//vSgvLxcPPvigCAgIEAcPHvRGExx66qmnxJ49e8TJkyfFgQMHxJQpU0RYWFh7/y1evFgUFBS05z958qQICQkRCxYsEMePHxdr164VOp1OfPTRR95qQo+YTCaRkpIinn766S6f+Vv/NTY2ivLyclFeXi4AiBUrVojy8vL2q4iWL18uIiIixJYtW0RFRYX45S9/KRISEkRDQ0N7GRMmTBCrVq1qf9/dOPaV9hmNRjF16lSRlJQkjh49ajUmW1pa7Lavu/Xc0xy1sbGxUTz11FOitLRUVFVVieLiYpGbmysGDhxo1Ye+/Nva3ToqhBD19fUiJCRErFmzxmYZvtyHPdkuzJ07VyQlJYldu3aJsrIyMWHCBJGdnS1aW1vb89x4441iy5Yt7e97MnbdiQFOD7z55psiNTVV6PV6MXz4cKtLqMePHy9mzZpllf/DDz8UN954o9DpdCI9PV1s3rzZwzXuOQA207p169rzdG5jYWGhSElJEXq9XgwYMEDk5+eL0tJSz1e+B2bMmCESEhKETqcTiYmJYtq0aeLYsWPtn8+aNUuMHz/eapk9e/aIW2+9Vej1ejFo0CC7P1C+ZOfOnQKAqKys7PKZv/VfcXGxzXXS0gaz2SyWLFki4uPjRWBgoLjjjjtERUWFVRmpqaliyZIlVvMcjWNPctS+qqoqu2OyuLi4vYzO7etuPfc0R21samoS+fn5YsCAAUKn04mUlBQxa9YsUV1dbVWGL/+2dreOCiHE22+/LYKDg8WlS5dsluHLfdiT7cLVq1fFvHnzRHR0tAgODhZTpkzp0oedl+nJ2HUnpa0SRERERKrBc3CIiIhIdRjgEBERkeowwCEiIiLVYYBDREREqsMAh4iIiFSHAQ4RERGpDgMcIiIiUh0GOERERKQ6DHCIyGfk5eWhsLDQ29UgIhXgnYyJyCvy8vJwyy23YOXKle3zfvzxR+h0OoSFhXm8PoWFhTh16hS2bdvm8e8mIvfjHhwi8hnR0dFeCW4A4PDhw7jtttu88t1E5H4McIjI42bPno2SkhK89tprUBQFiqLg1KlTXQ5R5eXlYf78+SgsLERUVBTi4uLwzjvv4MqVK3jwwQcRFhaGIUOG4B//+Ef7MkIIvPLKKxg8eDCCg4ORnZ2Njz76yG5djEYj9Ho9SktL8eyzz0JRFIwaNapP209EfY8BDhF53GuvvYbc3Fw88sgjqKmpQU1NDZKTk23mXb9+PWJiYnDo0CHMnz8fjz76KO6//36MGTMGZWVlmDRpEgoKCtDU1AQAeO6557Bu3TqsWbMGx44dw4IFC/Cb3/wGJSUlNsvXarXYt28fAODo0aOoqanBzp07+6bhROQxPAeHiLzC1jk4nefl5eXBZDJh7969AACTyYSIiAhMmzYNH3zwAQCgtrYWCQkJ2L9/P7KyshATE4Pdu3cjNze3vdw5c+agqakJGzZssFmXbdu2Yc6cObhw4UJfNZeIPCzA2xUgInLk5ptvbp/WarXo378/srKy2ufFxcUBAOrq6nD8+HE0Nzdj4sSJVmUYDAbceuutdr+jvLwc2dnZbq45EXkTAxwi8mk6nc7qvaIoVvMURQEAmM1mmM1mAMD27dsxcOBAq+UCAwPtfsfRo0cZ4BCpDAMcIvIKvV4Pk8nk1jIzMjIQGBiI6upqjB8/vsfLVVRU4Be/+IVb60JE3sUAh4i8YtCgQTh48CBOnTqFfv36ITo6utdlhoWFYdGiRViwYAHMZjNuv/12NDQ0oLS0FP369cOsWbNsLmc2m/HVV1/h7NmzCA0NRURERK/rQkTexauoiMgrFi1aBK1Wi4yMDAwYMADV1dVuKfell17C888/j2XLluGmm27CpEmT8MknnyAtLc3uMi+//DI2bdqEgQMH4sUXX3RLPYjIu3gVFREREakO9+AQERGR6jDAISIiItVhgENERESqwwCHiIiIVIcBDhEREakOAxwiIiJSHQY4REREpDoMcIiIiEh1GOAQERGR6jDAISIiItVhgENERESqwwCHiIiIVOf/AWU2NrTCss/CAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = linspace(0, 20, 1000)\n", - "# find solution by the brute-force eᴬᵗ [1,10]:\n", - "x = [expm(A*t)*[1,10] for t in t]\n", - "plot(t, [x[1] for x in x], \"r-\")\n", - "plot(t, [x[2] for x in x], \"b-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "legend([L\"1st $x$ component\", L\"2nd $x$ component\"])\n", - "title(\"solution of 2 coupled ODEs\")\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At first, it looks like the solutions are decaying, but then they start to grow. If we plot it for a longer time, we can see that it eventually grows exponentially:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHGCAYAAAB5BfECAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4U+XbB/Bv2qbpLpTVVktbhkiRaUERlCIWZIiA9KcgLVP2rEIZspdsBBUVZKkMmW6GTHkZUoYDEBQoVCiW2VK60uR5/zgmNHSnJzlJ8/1cV6+cnJw8586TtLn7rKMSQggQERERlSFOSgdAREREJDcmOERERFTmMMEhIiKiMocJDhEREZU5THCIiIiozGGCQ0RERGUOExwiIiIqc5jgEBERUZnDBIeIiIjKHCY4RBYyZcoUqFQqs5579uxZTJkyBQkJCXke69WrF0JCQkoXnIXduXMHb7zxBipXrgyVSoVOnTrle5xOp8PChQvx8ssv4/HHH4eHhwdq166NsWPH4t69e1aO2jJK8zkoSEk+A1qtFsuWLUPTpk3h6+sLd3d3Yx3fvn07z/ERERFQqVRQqVRwcnKCt7c3atSogaioKGzevBl6vT7Pc0JCQozPefQnIiKilK+WyDwuSgdARHmdPXsWU6dORURERJ4vsokTJ2LEiBHKBFZM06dPx7Zt27By5UpUr14dfn5++R6XkZGBKVOmoFu3bujXrx8qVqyIkydPYsaMGfj2228RHx8Pd3d3K0dfdqSnp6Ndu3Y4dOgQ+vfvj4kTJ8Ld3R1HjhzB/PnzsW7dOuzevRu1atUyeV61atXw5ZdfAgAePHiAy5cvY/v27YiKisLzzz+Pb7/9Fr6+vibPadasGebPn58nBh8fH8u9QKJCMMEhsjPVq1dXOoQi/fHHH6hevTrefPPNQo9zd3fH5cuXUaFCBeO+iIgIVK1aFVFRUdiyZQt69Ohh6XDLrFGjRuHAgQPYsGEDXn/9deP+li1bomvXrmjSpAlee+01/Prrr3B2djY+7u7ujmeffdakrH79+mHVqlXo06cP+vfvj40bN5o8Xq5cuTzPIVISu6iIcrl58yb69++PoKAgaDQaVKpUCc2aNcNPP/1kctzKlStRv359uLm5wc/PD507d8a5c+eKLF+lUmHKlCl59oeEhKBXr14AgNWrVyMqKgqA9EVkaOpfvXo1gPy7JzIzMzFu3DiEhobC1dUVjz32GIYMGZKnmyckJAQdOnTAjh070KhRI7i7u+PJJ5/EypUri1U/d+7cweDBg/HYY4/B1dUV1apVw4QJE5CVlQUASEhIgEqlwk8//YRz584ZY9+/f3++5Tk7O5skNwZNmjQBACQmJhYZk16vx9KlS9GgQQO4u7sbv2i/+eYbk2Pmzp2LJ598EhqNBpUrV0ZMTAz++eefPPVjeB9yi4iIMOlq2b9/P1QqFb744gvExsbC398f7u7uaNGiBU6dOlVkzACwceNGNG3aFJ6envDy8kKbNm3yfe7q1atRq1YtaDQa1K5dG2vXri1W+Tdu3MDKlSvRpk0bk+TG4IknnkBcXBzOnDmD7du3F6vM3r17o127dti0aROuXLlSrOfkVtzfLyI5MMEhyiU6Ohrbt2/HpEmTsGvXLqxYsQIvvfSSyViF2bNno2/fvqhTpw62bt2K999/H7/99huaNm2Kv/76q9QxtG/fHrNmzQIAfPjhhzhy5AiOHDmC9u3b53u8EAKdOnXC/PnzER0dje+//x6xsbFYs2YNXnzxRWPyYfDrr7/i7bffxqhRo/D111+jXr166Nu3Lw4ePFhoXJmZmWjZsiXWrl2L2NhYfP/99+jRowfmzp2LLl26AAACAgJw5MgRNGzYENWqVTPG3qhRoxLVwd69ewEAderUKfLYXr16YcSIEWjcuDE2btyIDRs2oGPHjibjlwYNGoS4uDhERkbim2++wfTp07Fjxw4899xzuHXrVoliy238+PG4dOkSVqxYgRUrVuD69euIiIjApUuXCn3erFmz0K1bN4SFheGrr77C559/jvv37+P555/H2bNnjcetXr0avXv3Ru3atbFlyxa8++67mD59urF+CrNv3z7k5OQUOP4JgPGx3bt3F/MVAx07doQQAj///LPJfiEEcnJy8vwIIYzHFOf3i0g2goiMvLy8xMiRIwt8/O7du8Ld3V20a9fOZP/Vq1eFRqMR3bt3N+6bPHmyePRXDICYPHlynnKDg4NFz549jfc3bdokAIh9+/blObZnz54iODjYeH/Hjh0CgJg7d67JcRs3bhQAxKeffmpyHjc3N3HlyhXjvoyMDOHn5ycGDBhQ4OsWQoiPP/5YABBfffWVyf45c+YIAGLXrl3GfS1atBB16tQptLyC/PPPP6JKlSoiPDxc6HS6Qo89ePCgACAmTJhQ4DHnzp0TAMTgwYNN9h87dkwAEOPHjzfue/R9MGjRooVo0aKF8f6+ffsEANGoUSOh1+uN+xMSEoRarRb9+vUz7nv0c3D16lXh4uIihg0bZnKO+/fvC39/f/G///1PCCGETqcTgYGBBZ4j92cgP++9954AIHbs2FHgMRkZGQKAaNu2rclrLey9+/HHHwUAMWfOHOO+4OBgASDfn+nTpxuPK+r3i0hObMEhyqVJkyZYvXo1ZsyYgaNHj0Kr1Zo8fuTIEWRkZOTpxggKCsKLL76IPXv2WDFaieG/+UdjioqKgqenZ56YGjRogKpVqxrvu7m54Yknniiyy2Hv3r3w9PRE165dTfYbzivHa79z5w7atWsHIQQ2btwIJ6fC/0T9+OOPAIAhQ4YUeMy+fftM4jRo0qQJateuXaq4u3fvbjJDKjg4GM8995zxnPnZuXMncnJyEBMTY9LS4ebmhhYtWhi7886fP4/r168XeA45lWSWl8jVIpNb8+bNcfz48Tw/ffv2NR5T1O8XkZyY4BDlsnHjRvTs2RMrVqxA06ZN4efnh5iYGNy4cQMAjE3pAQEBeZ4bGBioSFP77du34eLigkqVKpnsV6lU8Pf3zxNTfmNeNBoNMjIyijyPv79/ni/DypUrw8XFpdSv/e7du4iMjMS1a9ewe/duVKtWrcjn3Lx5E87OzvD39y80bsAy71l+582vznP7999/AQCNGzeGWq02+dm4caOxy8xQRkHnKIohib18+XKBxxgeCwoKKrI8A0MiHBgYaLLf19cX4eHheX5y13tRv19EcmKCQ5RLxYoVsXjxYiQkJODKlSuYPXs2tm7davzv35AcJCUl5Xnu9evXUbFixULL12g0ecbEACjVl2yFChWQk5ODmzdvmuwXQuDGjRtFxlSS8/z77795/oNPTk5GTk5Oqc5z9+5dvPTSS7h8+TJ2796NevXqFet5lSpVgk6nK/QLsiTvmZubW77vT0HjdPI7740bN/JNIg0M59u8eXO+LR7Hjh0zibugcxSlZcuWcHFxKXQAseGxyMjIIssz+Oabb6BSqfDCCy8U+zkGRf1+EcmJCQ5RAapWrYqhQ4ciMjISJ0+eBAA0bdoU7u7u+OKLL0yO/eeff7B37160atWq0DJDQkLw22+/mezbu3cv0tLSTPZpNBoAKLJVBYDxnI/GtGXLFjx48KDImIqrVatWSEtLy/OFaZjVY+55DMnNpUuXsGvXLjRs2LDYz23bti0AYNmyZQUe8+KLLwLIWz/Hjx/HuXPnTOLO7/25cOECzp8/n2/Z69evN0n4rly5gsOHDxe6uF2bNm3g4uKCixcv5tviER4eDgCoVasWAgICCjxHUfz9/dGnTx/s3Lkzz5Ruw+uaM2cO6tSpU+hA5NxWrVqFH3/8Ed26dTPp5jRHfr9fRHLiOjhE/0lJSUHLli3RvXt3PPnkk/D29sbx48exY8cO4yyhcuXKYeLEiRg/fjxiYmLQrVs33L59G1OnToWbmxsmT55c6Dmio6MxceJETJo0CS1atMDZs2fxwQcf5Fk07amnngIAfPrpp/D29oabmxtCQ0PzbRmIjIxEmzZtEBcXh9TUVDRr1gy//fYbJk+ejIYNGyI6OlqW+omJicGHH36Inj17IiEhAXXr1sWhQ4cwa9YstGvXDi+99FKJy8zIyDBOj168eDFycnJw9OhR4+OVKlUqdN2f559/HtHR0ZgxYwb+/fdfdOjQARqNBqdOnYKHhweGDRuGWrVqoX///li6dCmcnJzQtm1bJCQkYOLEiQgKCsKoUaOM5UVHR6NHjx4YPHgwXnvtNVy5cgVz587N0/1nkJycjM6dO+Ott95CSkoKJk+eDDc3N4wbN67AmENCQjBt2jRMmDABly5dwssvv4zy5cvj33//xS+//AJPT09MnToVTk5OmD59Ovr162c8x7179zBlypRidVEBwMKFC3H+/Hn06NEDBw8exCuvvAKNRoOjR49i/vz58Pb2xpYtW0zWwDG8L4b3ISMjA5cuXcL27dvx3XffoUWLFvj444/znOvevXsm752BRqNBw4YNi/X7RSQrJUc4E9mSzMxMMXDgQFGvXj3h4+Mj3N3dRa1atcTkyZPFgwcPTI5dsWKFqFevnnB1dRW+vr7i1VdfFWfOnDE5Jr9ZVFlZWWLMmDEiKChIuLu7ixYtWojTp0/nO3tn8eLFIjQ0VDg7OwsAYtWqVUKIvLOohJBmw8TFxYng4GChVqtFQECAGDRokLh7967JccHBwaJ9+/Z5Xvujs4QKcvv2bTFw4EAREBAgXFxcRHBwsBg3bpzIzMzMU15xZlFdvny5wNk3APKd0fQonU4nFi1aJJ566inj+9G0aVPx7bffmhwzZ84c8cQTTwi1Wi0qVqwoevToIRITE03K0uv1Yu7cuaJatWrCzc1NhIeHi7179xY4i+rzzz8Xw4cPF5UqVRIajUY8//zzIj4+3qTM/D4HQgixfft20bJlS+Hj4yM0Go0IDg4WXbt2FT/99JPJcStWrBA1a9YUrq6u4oknnhArV67M9zNQkOzsbPHhhx+KZ555Rnh5eQmNRiNq1aolxowZI27dupXn+BYtWpi8B56enqJatWqia9euYtOmTfnObCtsFtVjjz0mhCjZ7xeRHFRCFDAknoiI8rV//360bNkSmzZtyjOrjIhsA8fgEBERUZnDBIeIiIjKHHZRERERUZnDFhwiIiIqc5jgEBERUZnDBIeIiIjKHIdZ6E+v1+P69evw9vYu0YXliIiISDlCCNy/fx+BgYFFXoA3N4dJcK5fv16iC8oRERGR7UhMTMTjjz9e7OMdJsHx9vYGIFWQj4+PbOVqtVrs2rULrVu3hlqtlq1cyot1bR2sZ+tgPVsH69k6LFnPqampCAoKMn6PF5fDJDiGbikfHx/ZExwPDw/4+Pjwl8fCWNfWwXq2DtazdbCercMa9VzS4SUcZExERERlDhMcIiIiKnOY4BAREVGZ4zBjcIhsiU6ng1arVTqMfGm1Wri4uCAzMxM6nU7pcMose6hntVoNZ2dnpcMgMgsTHCIrEkLgxo0buHfvntKhFEgIAX9/fyQmJnLNKAuyl3ouV64c/P39bTpGovwwwSGyIkNyU7lyZXh4eNjkl4Zer0daWhq8vLxKtKgWlYyt17MQAunp6UhOTgYABAQEKBwRUckwwSGyEp1OZ0xuKlSooHQ4BdLr9cjOzoabm5tNfvGWFfZQz+7u7gCA5ORkVK5cmd1VZFds87eKqAwyjLnx8PBQOBKi4jN8Xm11zBhRQZjgEFmZLXZLERWEn1eyV0xwiIiIqMyxiQTn4MGDeOWVVxAYGAiVSoXt27ebPC6EwJQpUxAYGAh3d3dERETgzJkzCkVLREREts4mEpwHDx6gfv36+OCDD/J9fO7cuVi4cCE++OADHD9+HP7+/oiMjMT9+/etHCkRERHZA5tIcNq2bYsZM2agS5cueR4TQmDx4sWYMGECunTpgqeeegpr1qxBeno61q1bp0C0pu7eBZKT3XH3rtKREFlOUa2sRYmIiMDIkSMtFB0VhnVPjsrmp4lfvnwZN27cQOvWrY37NBoNWrRogcOHD2PAgAH5Pi8rKwtZWVnG+6mpqQCkmQByzgYYO1aFVata49q1bEyYwFkGlmR43+x1NodWq4UQAnq9Hnq9XulwCiSEMN4a4rx//z7q1auHnj17IioqyqzXkLs8yr+eLXkuc8+h1+shhIBWq7XLaeL2/nfDXliyns0t0+YTnBs3bgAAqlSpYrK/SpUquHLlSoHPmz17NqZOnZpn/65du2SdppuUVA9AKM6fv4QffjgvW7lUsN27dysdgllcXFzg7++PtLQ0ZGdnKx1OkXJ3ATdr1gzNmjUz3s/IyDD+0wAAX3/9NebMmYPLly/D3d0d9erVw5dffglPT08MHjwYBw4cwIEDB7BkyRIAwK+//oqqVauanG/z5s0YOnQoTp48icDAQADA8OHDceLECfzwww/w9fXNE6Ner8eSJUuwdu1aXLt2DZUqVUKvXr3wzjvvAJD+0Zk0aRK2bt2K+/fvo0GDBpg1axYaNWoEAOjQoQPCwsLg7OyM9evXw9XVFePHj0dUVBTGjBmDb775BhUrVsTcuXMRGRlpPG+HDh1Qu3ZtAMBXX30FZ2dn9OnTBxMmTDDOOirOuevUqQONRoPPP/8crq6u6N27N8aOHWs8jxACS5YswapVq/Dvv/+ievXqGD16NF599dVilVHcui9MdnY2MjIycPDgQeTk5BT7ebbGXv9u2IuKv/+Ox+/cwcF795BVrpysZaenp5v1PJtPcAwenaoohCh0+uK4ceMQGxtrvJ+amoqgoCC0bt0aPj4+ssW1c6d0GxxcHe3aVZetXMpLq9Vi9+7diIyMhFqtVjqcEsvMzERiYiK8vLzg5uYm7RQCMPOXt1Q8PIACfn+EELh//z68vb0L/B1zd3c3/h4lJSWhX79+mDNnDjp16oT79+/j0KFD8Pb2hpeXFz788EMkJCSgTp06xn86KlWqlKc1oHfv3li6dCk+/PBDLF26FNOmTcO+fftw+PBhPPbYY/nGMXbsWKxYsQILFixA8+bNkZSUhD///NMY28iRI/Hdd99h9erVCA4Oxrx589C1a1dcuHABfn5+cHFxwYYNGzB69GgcO3YMX331Fd5++23s3LkTnTp1wqRJk7B48WIMGjQICQkJxn+ODM/r06cPjh49ivj4eAwcOBA1a9bEW2+9VaxzG5KqUaNG4ejRozhy5Aj69OmDli1bGpOpd999F9u2bcOyZctQs2ZNHDx4EAMGDEDVqlXRokULYxwFlVHcui9MZmYm3N3d8cILLzz83NoRe/+7YS9Uq1fDZft2ZE+ZAtX48bKWnfufqRIRNgaA2LZtm/H+xYsXBQBx8uRJk+M6duwoYmJiil1uSkqKACBSUlJki1UIIUaMyBGAEKNH58haLuWVnZ0ttm/fLrKzs5UOxSwZGRni7NmzIiMj4+HOtDQhpDTHuj9paQXGqdPpxN27d4VOp8v38Ud/R0+cOCEAiISEhALLbNGihRgxYkSRdfTtt98KjUYjZs6cKcqXLy/++OOPAo9NTU0VGo1GLF++PN/H09LShFqtFl9++aVxX3Z2tggMDBRz5841xtW8eXPj4zk5OcLT01NER0cb9yUlJQkA4siRIyavp3bt2kKv1xv3xcXFidq1a5fo3M8++6xJPTdu3FjExcUZy3BzcxOHDx82eV19+/YV3bp1yzf+R8swHFOcui9Ivp9bO2Lvfzfsgk4n9H5+QgBC+/PPshdv7ve3TQwyLkxoaCj8/f1Nmhezs7Nx4MABPPfccwpGJjH8I2SjFwMmsrj69eujVatWqFu3LqKiorB8+XLcNXPUvaHLaOrUqdi2bRvq1KlT4LHnzp1DVlYWWrVqle/jFy9ehFarNelaU6vVaNKkCc6dO2fcV69ePeO2s7MzKlSogLp16xr3GbrHDddkMnj22WdNWriaNm2Kv/76CzqdrtjnfvT1BQQEGM9z9uxZZGZmIjIyEl5eXsaftWvX4uLFi/nG/2gZRFbx669Q3bkDrbs7xNNPKx2NkU10UaWlpeHvv/823r98+TJOnz4NPz8/VK1aFSNHjsSsWbNQs2ZN1KxZE7NmzYKHhwe6d++uYNQSl/9q0I67pklJHh5AWpoy55WJs7Mzdu/ejcOHD2PXrl1YunQpJkyYgGPHjiE0NLREZe3cuRN//vkndDpdnnF3jzJcJ6kg4r9BvEV1bz/abaFSqUz2GY4tySDd0pzbcB7D7ffff5+ni06j0RSrDCKr2LsXAHC7Th1UcLGJtAKAjUwTj4+PR8OGDdGwYUMAQGxsLBo2bIhJkyYBAMaMGYORI0di8ODBCA8Px7Vr17Br1y54e3srGTYAJjhUSioV4Olp/R+Zl99XqVRo1qwZpk6dilOnTsHV1RXbtm0zPu7q6gpdEc2cJ0+eRFRUFD755BO0adMGEydOLPT4mjVrwt3dHXv27Mn38Ro1asDV1RWHDh0y7tNqtYiPjzcOEC6No0eP5rlfs2ZNODs7y3LusLAwaDQaXL16FTVq1DD5CQoKKnacxal7olL5L8G5lavl0xbYRKoVERFh/I8nPyqVClOmTMGUKVOsF1QxMcEhR1BYK2tSUhL27NmD1q1bo3Llyjh27Bhu3rxp8kUeEhKCY8eOISEhAV5eXvDz8zO5gnZCQgLat2+PsWPHIjo6GmFhYWjcuDFOnDiBpwto8nZzc0NcXBzGjBkDV1dXNGvWDDdv3sSZM2fQt29feHp6YtCgQRg9erSxNXju3LlIT09H3759S10niYmJiI2NxYABA3Dy5EksXboUCxYsAABZzu3t7Y133nkHo0aNgl6vR/PmzZGamorDhw/Dy8sLPXv2LFY5RdU9UalotcDBgwCAm3XropbC4eRmEwmOPTOMwcnJ4QXpqOyKj49Hy5YtjfcNMxR79uyJuLg4HDx4EIsXL0ZqaiqCg4OxYMECtG3b1nj8O++8g549eyIsLAwZGRm4fPkyQkJCAAB37txB27Zt0bFjR4z/b/bF008/jVdeeQUTJkzAjh07Coxr4sSJcHFxwaRJk3D9+nUEBARg4MCBxsffe+896PV6REdH4/79+wgPD8fOnTtRvnz5UtdJTEwMMjIy0KRJEzg7O2PYsGHo37+/rOeePn06KleujNmzZ+PSpUsoV64cGjVqZKyn4iis7olK7fhxIC0NokIFpNrY50olCms6KUNSU1Ph6+uLlJQUWaeJz5qlw4QJzoiJ0WPNGv5XZElarRY//PAD2rVrZ5fTPTMzM3H58mWEhoba9HRbvV6P1NRU+Pj48D/9AkRERKBBgwZYvHix2WXYSz3by+e2IPb+d8PmTZ8OTJoEfefO+LZnT4vUs7nf37b7W2Un2EVFREQO66efAACigNmMSmKCU0pMcIiIyCGlpQFHjgAA9DaY4HAMTikZEhxOUiByHPv371c6BCLlHTwoDTIOCQGqVQPO29blitiCU0pswSEiIodkWIA3MlL2pSfkwASnlFxcpDHaTHCIiMih5E5wbBATnFLipRqIiMjhJCUBZ85ILTcvvqh0NPliglNK7KIiIiKH89/sKTRqBFSooGwsBWCCU0pMcIiIyOHYePcUwASn1JjgEBGRQxHiYQvOSy8pG0shmOCUEhMcIiJyKGfPSmNw3NyAZs2UjqZATHBKiQkOERE5FEP31AsvSEmOjWKCU0oPExzbWwOAiIhIdnbQPQUwwSk1tuAQEZHDyM4GDCt52/AAY4AJTqkxwSEyX0REBEaOHKl0GERUXMeOAQ8eAJUqAfXqKR1NoZjglBITHHIEs2fPRuPGjeHt7Y3KlSujU6dOOG9j152h4mNiSWYzjL9p1Qpwsu0UwrajswO82CY5ggMHDmDIkCE4evQodu/ejZycHLRu3RoPHjxQOjQisiY7WP/GgAlOKfFaVOQIduzYgV69eqFOnTqoX78+Vq1ahatXr+LEiRMApBaB4cOHY8yYMfDz84O/vz+mTJliUsaDBw8QExMDLy8vBAQEYMGCBUWed/369XBzc8O1a9eM+/r164d69eohJSUl3+fo9XrMmTMHNWrUgEajQdWqVTFz5kzj41lZWRg+fDgqV64MNzc3NG/eHMePHzc+HhERgWHDhmHkyJEoX748qlSpgk8//RQPHjxA79694e3tjerVq+PHH380OW9ERASGDh2KoUOHoly5cqhQoQLeffddCCHyPe8LL7yAkydP5imjqHoUQmDu3LmoVq0a3N3dUb9+fWzevLnYZfTq1QsHDhzA+++/D5VKBZVKhYSEhCLfCyLcuwf88ou0beMDjAEmOKVmuBYVExwyhxBSd7a1f/77zjWbIbnw8/Mz7luzZg08PT1x7NgxzJ07F9OmTcNuw397AEaPHo19+/Zh27Zt2LVrF/bv329MkAryxhtvoFatWpg9ezYAYOrUqdi5cyd+/PFH+Pr65vuccePGYc6cOZg4cSLOnj2LdevWoUqVKsbHx4wZgy1btmDNmjU4efIkatSogTZt2uDOnTsmr6VixYr45ZdfMGzYMAwaNAhRUVF47rnncPLkSbRp0wbR0dFIT083OfeaNWvg4uKCY8eOYcmSJVi0aBFWrFiR73mrV6+O1157zeS8xanHd999F6tWrcKyZctw5swZjBo1Cj169MCBAweKVcb777+Ppk2b4q233kJSUhKSkpIQFBRU6PtABEBqvdHrgdq1gapVlY6maMJBpKSkCAAiJSVF1nJPncoWgBCVKullLZfyys7OFtu3bxfZ2dlKh2KWjIwMcfbsWZGRkWHcl5YmhJRuWPcnLa3gOHU6nbh7967Q6XT5Pq7X68Urr7wimjdvbtzXokULk/tCCNG4cWMRFxcnhBDi/v37wtXVVWzYsMH4+O3bt4W7u7sYMWJEofX27bffCo1GI2bOnCnKly8v/vjjjwKPTU1NFRqNRixfvjzfx9PS0oRarRZffvmlcV92drYIDAwUc+fOzfe15OTkCE9PTxEdHW3cl5SUJACII0eOmNRB7dq1hV7/8G9BXFycqF27dr7nzczMFAEBAWLOnDkmZRRWj2lpacLNzU0cPnzY5Ji+ffuKbt26FasMwzFF1btBfp9be2LvfzdsSp8+0h+Q2Ng8D1myns39/nZROL+ye2zBIUczdOhQ/Pbbbzh06JDfe6OHAAAgAElEQVTJ/nqPzKgICAhAcnIyAODixYvIzs5G06ZNjY/7+fmhVq1aRZ6vQ4cOCAsLw9SpU7Fr1y7UqVOnwGPPnTuHrKwstGrVKt/HL168CK1Wi2a5Vl9Vq9Vo0qQJzp07l+9rcXZ2RoUKFVC3bl3jPkOLkOH1GTz77LNQqR6uidW0aVMsWLAAf//9d77nbdSokcl5Hz03YFqPZ8+eRWZmJiIfGf+QnZ2Nhg0bFqsMIrMIAezYIW2//LKysRQTE5xS4iwqKg0PDyAtTZnzmmPYsGH45ptvcPDgQTz++OMmj6nVapP7KpUKer0eAIzjUMyxc+dO/Pnnn9DpdCZdTflxd3cv9HFDHLmTEMP+3Pvyey259xmONby+4irqvAWd23Aew+3333+Pxx57zOQ4jUZTrDKIzPL778D169Ifj+efVzqaYuEYnFJigkOloVIBnp7W/1GVcOFtIQSGDh2KrVu3Yu/evQgNDS3R82vUqAG1Wo2jR48a9929excXLlwo9HknT55EVFQUPvnkE7Rp0wYTJ04s9PiaNWvC3d0de/bsKTAOV1dXk9YnrVaL+Ph41K5duwSvKH+5X5/hfs2aNQs87+nTp0t03rCwMGg0Gly9ehU1atQw+SnJOBpXV1foOPWTSsLQetOypU1fniE3tuCUEhMccgRDhgzBunXr8PXXX8Pb2xs3btwAAPj6+hbZagIAXl5e6Nu3L0aPHo0KFSqgSpUqmDBhApwKWUcjISEB7du3x9ixYxEdHY2wsDA0btwYJ06cwNNPP53vc9zc3BAXF4cxY8bA1dUVzZo1w82bN3HmzBn07dsXnp6eGDRoEEaPHg0/Pz9UrVoVc+fORXp6Ovr27Wte5eSSmJiI2NhYDBgwACdPnsTSpUuxYMGCfM87Z84cpKeno0+fPsUu39vbG++88w5GjRoFvV6P5s2bIzU1FYcPH4aXlxd69uxZrHJCQkJw7NgxJCQkwMvLC35+foW+F0QwzBq0k+4pgAlOqXEdHHIEy5YtAyBNQc5t1apV6NWrV7HKmDdvHtLS0tCxY0d4e3vj7bffLnCq9507d9C2bVt07NgR48ePBwA8/fTTeOWVVzBhwgTsMPw3mY+JEyfCxcUFkyZNwvXr1xEQEICBAwcaH3/vvfeg1+sRHR2N+/fvIzw8HDt37kT58uWL9ToKExMTg4yMDDRp0gTOzs4YNmwY+vfvX+B5t2zZUuLzTp8+HZUrV8bs2bNx6dIllCtXDo0aNTLWU3G888476NmzJ8LCwpCRkYHLly8jJCSkRHGQA7l/HzC0PrZtq2wsJaASpekctyOpqanw9fVFSkoKfHx8ZCs3KUmLwECpv1uns/mFHe2aVqvFDz/8gHbt2uUZY2APMjMzcfnyZYSGhsLNhpt49Xo9UlNT4ePjw//qSyAiIgINGjTA4sWLi3W8vdSzvXxuC2LvfzdswvbtQOfOQI0awF9/5XuIJevZ3O9v2/2tshMuudrA2IpDRERljqHF1I5abwAmOKWWO8HhOBwiIipThLDL8TcAx+CUGhMcIgKA/fv3Kx0Ckfz+/BO4ehXQaIBHxuDZOrbglBITHCIiKrMM3VMtWpi/gJZCmOCUkmElY4AJDhERlTF22j0FMMEpNZUKcHKSVghlgkNERGXGgweA4SKudjbAGGCCIwtnZ2mmPRMcKg4HWZmBygh+Xh3Y/v1AdjYQHAwU47pxtoYJjgyY4FBxGNaGSE9PVzgSouIzfF65howDyt09VdLru9gAzqKSgZMTExwqmrOzM8qVK2e8qrOHh0eeCy3aAr1ej+zsbGRmZtr0AnT2ztbrWQiB9PR0JCcno1y5cnDOPeCQyj4hgG+/lbY7dFA2FjMxwZGBszPH4FDx+Pv7A4AxybFFQghkZGTA3d3dJhOwssJe6rlcuXLGzy05kD/+kKaHu7kBL76odDRmYYIjA3ZRUXGpVCoEBASgcuXK0Gq1SoeTL61Wi4MHD+KFF15gt4QF2UM9q9Vqttw4qu++k25btbK76eEGTHBkwASHSsrZ2dlmvzicnZ2Rk5MDNzc3m/3iLQtYz2TTDAnOK68oG0cp2F7Hrx3iGBwiIiozbt4EjhyRttu3VzaWUmCCIwOOwSEiojLjxx+lQcYNGgCPP650NGZjgiMDwwQIJjhERGT3DN1Tdjp7yoAJjgzYgkNERGVCdjawc6e0bcfjbwAmOLLgIGMiIioTfv4ZSE0FKlcGwsOVjqZUmODIgIOMiYioTDB0T7Vv/3D8hZ2y7+hthKEFR6dTOBAiIiJzlYHVi3NjgiMDjsEhIiK7d+ECcPEi4OoKREYqHU2pMcGRAcfgEBGR3TO03kREAN7eioYiByY4MuAYHCIisntlZHq4ARMcGbAFh4iI7NqdO8ChQ9K2Ha9enBsTHBlwDA4REdm177+XZsrUrQtUq6Z0NLJggiMDQwuOjV4cmoiIqHDbtkm3nTopG4eMmODIgAkOERHZrfR0YMcOabtzZ2VjkRETHBmwi4qIiOzW7t1ARgYQHCxdYLOMYIIjA7bgEBGR3dq+Xbrt1AlQqZSNRUZMcGTg4iK14DDBISIiu5KT83D9mzI0/gawkwQnJycH7777LkJDQ+Hu7o5q1aph2rRp0Ov1SocGgC04RERkpw4dAm7fBipUAJo3VzoaWbkoHUBxzJkzBx9//DHWrFmDOnXqID4+Hr1794avry9GjBihdHhMcIiIyD4ZuqdeeQVwsYuUoNjs4tUcOXIEr776Ktr/t/hQSEgI1q9fj/j4eIUjk3CQMRER2R0hHk4PL0OzpwzsIsFp3rw5Pv74Y1y4cAFPPPEEfv31Vxw6dAiLFy8u8DlZWVnIysoy3k9NTQUAaLVaaGVsatFqtcYxOFlZOmi1ttFtVhYZ3jc53z/Ki/VsHaxn62A9F+LUKaivXoXw8EBORESpuiEsWc/mlmkXCU5cXBxSUlLw5JNPwtnZGTqdDjNnzkS3bt0KfM7s2bMxderUPPt37doFDw8PWeNzdq4NALhwIQE//PCHrGVTXrt371Y6BIfAerYO1rN1sJ7zqrV+PZ4EkFSvHo7v2ydLmZao5/T0dLOeZxcJzsaNG/HFF19g3bp1qFOnDk6fPo2RI0ciMDAQPXv2zPc548aNQ2xsrPF+amoqgoKC0Lp1a/j4+MgWm1arxfr1VwEAjz8egnbtqspWNpnSarXYvXs3IiMjoVarlQ6nzGI9Wwfr2TpYzwVzefddAEDl/v3Rrl27UpVlyXo29MCUlF0kOKNHj8bYsWPxxhtvAADq1q2LK1euYPbs2QUmOBqNBhqNJs9+tVote+Ubriau0zlDrXaWtWzKyxLvIeXFerYO1rN1sJ4fcfEi8McfgLMzXF59FZCpbixRz+aWZxfTxNPT0+HkZBqqs7OzzUwTd3Hh1cSJiMiOGGZPRUQAfn6KhmIpdtGC88orr2DmzJmoWrUq6tSpg1OnTmHhwoXo06eP0qEBeDiLimPYiIjILmzeLN2WwdlTBnaR4CxduhQTJ07E4MGDkZycjMDAQAwYMACTJk1SOjQAD1twmOAQEZHNS0wEjh6VLsvQpYvS0ViMXSQ43t7eWLx4caHTwpXEFhwiIrIbW7ZIt82bAwEBysZiQXYxBsfWcSVjIiKyG5s2SbdRUcrGYWFMcGTAlYyJiMgu/PMPcPiw1D312mtKR2NRTHBkwDE4RERkFwzdU82aAYGBysZiYUxwZMAxOEREZBcM3VNduyobhxUwwZEBx+AQEZHNu3YN+L//k7bLePcUwARHFmzBISIim7d1q3T73HPA448rG4sVMMGRAVcyJiIim+cgs6cMmODIgC04RERk05KSgEOHpG0H6J4CmODIgrOoiIjIpm3ZAggBPPssEBSkdDRWwQRHBmzBISIim+Zg3VMAExxZcBYVERHZrKQk4OefpW0HmB5uwARHBlzJmIiIbNbGjVL3VNOmQNWqSkdjNUxwZMAxOEREZLPWr5duu3VTNg4rY4IjA47BISIim3TxIvDLL4CTE/C//ykdjVUxwZEBx+AQEZFNMrTetGoFVKmibCxWxgRHBmzBISIimyOEw3ZPAUxwZJF7DI4QCgdDREQEAL//Dpw9C2g0QJcuSkdjdUxwZGBowQEAvb6QA4mIiKxl3Trptl07wNdX2VgUwARHBoYxOAC7qYiIyAYIAWzYIG07YPcUwARHFoYuKoAJDhER2YAjR4ArVwAvL6BDB6WjUQQTHBnk7qJigkNERIozDC7u3Blwd1c2FoUwwZEBu6iIiMhm5OQAX30lbTto9xTABEcWKtXDbiperoGIiBS1dy+QnAxUrAi89JLS0SiGCY5MXFykW7bgEBGRor78UrqNigLUamVjURATHJkYPkNMcIiISDFpacCWLdJ2jx7KxqIwJjgyYYJDRESK27YNePAAqFFDunq4A2OCIxMmOEREpLi1a6XbmBhpgKgDY4IjE8MYHA4yJiIiRfzzD7Bnj7Tt4N1TABMc2bAFh4iIFPXll9IKxi+8AISGKh2N4pjgyISzqIiISDFCmHZPERMcubAFh4iIFHPihHTlcDc3oGtXpaOxCUxwZMIEh4iIFGNovenUySGvHJ4fJjgyUaullYyZ4BARkVVlZz+89lTPnsrGYkOY4MiELThERKSIHTuAW7cAf3+HvjTDo5jgyMTVVbrNzlY2DiIicjCG7qk333w444WY4MjFkOCwBYeIiKzm9m3g22+lbc6eMsEERyZswSEiIqv78kvpi6dBA6BePaWjsSlMcGRiGIPDBIeIiKxCCOCzz6Ttfv2UjcUGMcGRCRMcIiKyqhMngN9+AzQaoHt3paOxOUxwZMIuKiIisqoVK6Tb114DypdXNhYbxARHJhxkTEREVpOe/nDtm759lY3FRjHBkYmrq7TQH1twiIjI4jZvBlJTpYtqRkQoHY1NYoIjE47BISIiqzEMLu7bF3DiV3l+WCsy4RgcIiKyir/+Ag4elBKbXr2UjsZmMcGRCVtwiIjIKlaulG5ffhl47DFlY7FhTHBkwkHGRERkcTk5wOrV0jYHFxeKCY5M2EVFREQW98MPwI0bQKVKQIcOSkdj05jgyIRdVEREZHHLl0u3MTEP/7OmfDHBkQlbcIiIyKKuXAG+/17a7t9f2VjsABMcmXAMDhERWdTy5dL1p1q1Ap54QulobB4THJlwoT8iIrKY7OyHl2YYNEjZWOwEExyZcAwOERFZzNdfA//+CwQEAB07Kh2NXWCCIxMmOEREZDHLlkm3/fo9/MKhQrmU5slarRY3btxAeno6KlWqBD8/P7nisjscZExERBbx55/Avn3SysVvvaV0NHajxC04aWlp+OSTTxAREQFfX1+EhIQgLCwMlSpVQnBwMN566y0cP37cErHaNA4yJiIii/jkE+m2QwcgKEjZWOxIiRKcRYsWISQkBMuXL8eLL76IrVu34vTp0zh//jyOHDmCyZMnIycnB5GRkXj55Zfx119/WSpum8MWHCIikl16+sOViwcOVDQUe1OiLqrDhw9j3759qFu3br6PN2nSBH369MGyZcuwcuVKHDhwADVr1pQlUFvHMThERCS7r74C7t0DQkKANm2UjsaulKgFZ9OmTcbkpmnTpkhNTc33ODc3NwwePBj9+vUrfYT/uXbtGnr06IEKFSrAw8MDDRo0wIkTJ2Qrv7TYgkNERLIzDC4eMEAag0PFZnZtHTt2DJmZmXn2p6amYvTo0aUK6lF3795Fs2bNoFar8eOPP+Ls2bNYsGABypUrJ+t5SoMJDhERySo+HvjlF6mLoE8fpaOxOyWeRdWlSxc0adIEKpUKycnJqFy5ssnjDx48wMKFCzFv3jzZgpwzZw6CgoKwatUq476QkBDZypeDWi0t9MdBxkREJIslS6Tb118HHvmupaKVOMEJDg7Gd999ByEE6tevjwoVKqB+/fqoX78+6tWrh99++w0BAQGyBvnNN9+gTZs2iIqKwoEDB/DYY49h8ODBeKuQ6XJZWVnIysoy3jd0p2m1WmhlzEIMZTk55QBQIztbQKvNka18eshQ13K+f5QX69k6WM/WYbf1fOMGXDZsgApAzuDBEDYevyXr2dwyVUIIYc4TNRoNDh06hOvXr+PUqVM4ffo0fv/9d+j1esycORPdu3c3K6D8uLm5AQBiY2MRFRWFX375BSNHjsQnn3yCmJiYfJ8zZcoUTJ06Nc/+devWwcPDQ7bYDJKSPDFo0Etwc8vBhg3fy14+ERE5jic2bkTt9etxp1Yt/DxnjtLhKCo9PR3du3dHSkoKfHx8iv08sxOcnJwcuLiUap3AYnN1dUV4eDgOHz5s3Dd8+HAcP34cR44cyfc5+bXgBAUF4datWyWqoKJotVrs3r0bTz7ZGk8+6Q5XV4G0NLbgWIKhriMjI6HmSp4Ww3q2DtazddhlPWdnw6VGDahu3EDO559DvP660hEVyZL1nJqaiooVK5Y4wTE7Q7FWcgMAAQEBCAsLM9lXu3ZtbNmypcDnaDQaaDSaPPvVarVFPuQeHlJ9ZGer4OKihkol+ynoP5Z6D8kU69k6WM/WYVf1/NVXwI0bQGAgXF5/3a4uzWCJeja3vBLNorp69WqJCr927VqJji9Is2bNcP78eZN9Fy5cQHBwsCzly8EwiwoAdDrl4iAiIjtnGFw8aJBdJTe2pkQJTuPGjfHWW2/hl19+KfCYlJQULF++HE899RS2bt1a6gABYNSoUTh69ChmzZqFv//+G+vWrcOnn36KIUOGyFK+HHInOJwqTkREZjl2TJoa7uoK9O+vdDR2rUT9TOfOncOsWbPw8ssvQ61WIzw8HIGBgXBzc8Pdu3dx9uxZnDlzBuHh4Zg3bx7atm0rS5CNGzfGtm3bMG7cOEybNg2hoaFYvHgx3nzzTVnKl0PuJDs7G7DAOGYiIirrDK033btzangplSjB8fPzw/z58zFjxgz88MMP+Pnnn5GQkICMjAxUrFgRb775Jtq0aYOnnnpK9kA7dOiADh06yF6uXB5NcIiIiErk+nVp/A0ADBumbCxlgFkjhd3c3BAZGYkuXbrIHY/dcnICXFyAnBwu9kdERGb4+GPpS6R5c6BRI6WjsXtmX6rh+eefx40bN+SMxe7xcg1ERGSW9HTgo4+k7REjlI2ljDA7wQkPD8czzzyDP//802T/qVOn0K5du1IHZo+Y4BARkVnWrAFu3wZCQ4HOnZWOpkwwO8FZsWIF+vTpg+bNm+PQoUO4cOEC/ve//yE8PDzf9WccgWEcDhMcIiIqNp0OWLBA2o6NBZydlY2njCjVan2TJ0+Gq6srIiMjodPp0KZNGxw/fhyNHLTv0NCCk2sBZSIiosJ9/TVw8SJQvjzQu7fS0ZQZZrfgJCUlYfjw4Zg+fTrCwsKgVqvxxhtvOGxyAwCGhiu24BARUbHNny/dDh4MeHoqG0sZYnaCU61aNfz888/YtGkTTpw4ga1bt2Lw4MGY48AXBTMkOGzBISKiYjl8GDhyROoCGDpU6WjKFLO7qFatWoU33njDeL9NmzbYt28fOnTogCtXruAjw2hwB8IEh4iISmTePOk2Ohrw91c2ljLG7Bac3MmNQaNGjXD48GHs37+/NDHZLSY4RERUbBcuSONvAGlwMcnK7ASnICEhIfi///s/uYu1C0xwiIio2BYtAoQA2rcHwsKUjqbMkT3BAYDy5ctbolibxwSHiIiKJTkZWL1a2h49WtFQyiqLJDiOigkOEREVy+LFQGYmEB4OvPCC0tGUSUxwZMQEh4iIinTvHvDhh9L2hAmASqVsPGUUExwZMcEhIqIiffQRkJoqjbvp2FHpaMqsUq1kvGfPHuzZswfJycnQ6/Umj61cubJUgdkjJjhERFSoBw+kwcUAMG4c4MR2BksxO8GZOnUqpk2bhvDwcAQEBEDFJjYmOEREVLgVK4Bbt6SLauaz3ArJx+wE5+OPP8bq1asRHR0tZzx2jQkOEREVKDv74cJ+cXGAS6k6UagIZreNZWdn47nnnpMzFrvHBIeIiAq0di1w7RoQEAD06qV0NGWe2QlOv379sG7dOjljsXtMcIiIKF85OcB770nb77zz8AuDLMbs9rHMzEx8+umn+Omnn1CvXj2o1WqTxxcuXFjq4OwNExwiIsrXpk3AxYtAhQpA//5KR+MQzE5wfvvtNzRo0AAA8Mcff5g85qgDjpngEBFRHjodMGOGtD1iBODlpWw8DsLsBGffvn1yxlEmMMEhIqI8Nm0Czp4FypUDhg9XOhqHwQn4MmKCQ0REJnQ6YOpUaTs2FvD1VTYeB1KqOWr37t3DZ599hnPnzkGlUqF27dro27cvfB30DWSCQ0REJjZuBP78EyhfXuqeIqsxuwUnPj4e1atXx6JFi3Dnzh3cunULixYtQvXq1XHy5Ek5Y7QbTHCIiMhIpwOmTZO2334b8PFRNh4HY3YLzqhRo9CxY0csX74cLv8tVpSTk4N+/fph5MiROHjwoGxB2gsmOEREZLR+PXD+PODnBwwbpnQ0DsfsBCc+Pt4kuQEAFxcXjBkzBuHh4bIEZ2+Y4BAREQBp3RtD680777D1RgFmd1H5+Pjg6tWrefYnJibC29u7VEHZKzc36ZYJDhGRg/vyS+Cvv6R1b4YOVToah2R2gvP666+jb9++2LhxIxITE/HPP/9gw4YN6NevH7p16yZnjHaDLThERIScHGD6dGl79GjAQf/pV5rZXVTz58+HSqVCTEwMcnJyAABqtRqDBg3Ce4blqB0MExwiIsKqVdKqxRUrAkOGKB2NwzI7wXF1dcX777+P2bNn4+LFixBCoEaNGvDw8JAzPrvCBIeIyMFlZABTpkjbEyZw1WIFlfpa7R4eHqhbt64csdg9JjhERA7ugw+A69eBqlWBgQOVjsahlSjBiY2NxfTp0+Hp6YnY2NhCj+XFNomIyKHcuwfMni1tT536cOYJKaJECc6pU6eg1WqN2wXhxTYBIQAHrQYiIsc0bx5w9y4QFgZERysdjcMrUYKT+wKba9asweOPPw4nJ9OJWEIIJCYmyhOdnTEkOEJIg+jVamXjISIiK0lKAhYvlrZnzgScnZWNx8oSE4GzZ/3Qrp3SkTxk9jTx0NBQ3Lp1K8/+O3fuIDQ0tFRB2StDggOwm4qIyKHMmAGkpwPPPAO8+qrS0Vjd5MnOGD/+eUybZjvX8DY7EiFEvvvT0tLg5qD9jkxwiIgc0MWLwKefStvvvedw4xN+/RX48kvpNbdtm39uoIQSz6IyDC5WqVSYNGmSybRwnU6HY8eOoUGDBvJFaEecnaUfnQ7IzFQ6GiIisop335XGJbRpA0REKB2N1Y0dCwihQrNm19C4cWWlwzEqcYJjGFwshMDvv/8OV1dX42Ourq6oX78+3nnnHfkitDPu7kBaGhMcIiKHcOwYsGGD1GpjmEHlQHbvBnbsAFxcBHr0OAfAjhMcw0Dj3r174/3334cPLyBmws2NCQ4RkUMQAjAsmRITAzRsqGw8VqbTAW+/LW0PGqRHQMADZQN6hNljcFatWsXkJh/u7tJtRoaycRARkYVt2QIcPiz94Z85U+lorG7VKuD334Hy5YEJE/RKh5OH2SsZTzNcBr4AkyZNMrdou2YYX80WHCKiMiwrC4iLk7ZHjwYee0zZeKzs/n1p6BEATJoE+PkpG09+zE5wtm3bZnJfq9Xi8uXLcHFxQfXq1R0+wWELDhFRGfbBB8ClS4C/v5TgOJg5c4B//wVq1AAGD1Y6mvyZneDkt5JxamoqevXqhc6dO5cqKHtm6KJiCw4RURl1+7a07g0gdU052AU1ExOBBQuk7XnzAFdX4L+LHNgUWVfk8fHxwbRp0zBx4kQ5i7UrbMEhIirjpk2TrjtVrx7Qs6fS0Vjd+PHSP/EtWtj2moayLzl47949pKSkyF2s3WALDhFRGXb+PPDRR9L2ggUOd0mG48eBL76QthcssO01Dc3uolqyZInJfSEEkpKS8Pnnn+Pll18udWD2ioOMiYjKKCGA4cOlRf06dABeeknpiKxKr5dePiBdS/Tpp5WNpyhmJziLFi0yue/k5IRKlSqhZ8+eGDduXKkDs1ecJk5EVEZ9/TWwa5c06OSR70BH8PnnwNGj0pCj995TOpqimZ3gXL58Wc44ygy24BARlUEZGcCoUdL2229L04ccSEoKMGaMtD1pEhAYqGw8xWE7l/0sI9iCQ0RUBs2bByQkSOvdjB+vdDRWN3UqkJwM1KoFjBihdDTFU6IWHMOFNotj4cKFJQ6mLGALDhFRGXPlysPrTM2f73DTws+cAQzDbpcskXro7EGJEpz81r7Jj8qWh1VbGFtwiIjKmLfffjgv+vXXlY7GqgzjqnU6oFMnoHVrpSMqvhIlOIYLbVLB2IJDRFSG7NkjXXPK2VlqvnCwf+A3bwb27pW+2+ytY8bsQcaAtObNZ599hnPnzkGlUiEsLAx9+vSBr6+vXPHZHbbgEBGVEVlZwJAh0vbgwdLCfg4kLe3h1cLj4oDQUGXjKSmzBxnHx8ejevXqWLRoEe7cuYNbt25h4cKFqF69Ok6ePClnjHaFLThERGXE3LnSwn5VqkirFzuYKVOkyzKEhDy8rqg9MbsFZ9SoUejYsSOWL18OFxepmJycHPTr1w8jR47EwYMHZQvSnrAFh4ioDPjrL+k6U4C05k25csrGY2WnTgGLF0vbH3308LvNnpSqBScuLs6Y3ACAi4sLxowZg/j4eFmCK8js2bOhUqkwcuRIi57HHGzBISKyc0IAgwZJXVSRkcAbbygdkVXpdMCAAdLt//4HtG2rdETmMTvB8fHxwdWrV/PsT0xMhLe3d6mCKszx48fx6aefop6N9oWyBYeIyM6tWycNLnZzA5Ytc7iBxcuWSdec8vF52Ipjj8xOcF5//XX07dsXGzduRGJiIv755x9s2LAB/fr1Q7du3eSM0SgtLQ1vvvkmli9fjvLly1vkHKXFFhwiIjt25w5gWPPt3XeB6ipi1SgAACAASURBVNWVjcfKrl9/uI7h7NlAQICy8ZSG2WNw5s+fD5VKhZiYGOTk5AAA1Go1Bg0ahPcsdJGKIUOGoH379njppZcwY8aMQo/NyspCVlaW8X5qaioAQKvVQqvVyhaToSzDrVqtAuCC9HQBrTZHtvNQ3romy2A9Wwfr2TpKWs/OY8bAKTkZ4sknkTNyJOBg78+wYc64f98JTZro0aePrtgv35KfZ3PLVAkhRGlOnJ6ejosXL0IIgRo1asDDw6M0xRVow4YNmDlzJo4fPw43NzdERESgQYMGWFxA+9mUKVMwderUPPvXrVtnsRgB4M8/y2Ps2BdQpcoDfPLJTxY7DxERycvvzBk8P2ECAODQzJm4XaeOwhFZV3x8FcyY8SycnPRYsOAAQkNTlQ4JgJRndO/eHSkpKfDx8Sn288xOcDIyMiCEMCYLV65cwbZt2xAWFobWMi91mJiYiPDwcOzatQv169cHgCITnPxacIKCgnDr1q0SVVBRtFotdu/ejcjISKjVapw+DTRpokZAgMCVK2zBkdOjdU2WwXq2DtazdRS7ntPT4RIeDtXff0Pfuzd0n3xivSBtQEoK0KCBC65dUyE2Vof33tOX6PmW/DynpqaiYsWKJU5wzO6ievXVV9GlSxcMHDgQ9+7dwzPPPAO1Wm1cD2fQoEHmFp3HiRMnkJycjKefftq4T6fT4eDBg/jggw+QlZUFZ2dnk+doNBpoNJo8ZanVaov8MTGUaxhfnZmp4h8tC7HUe0imWM/WwXq2jiLrecYM4O+/gcBAOC1cCCcHe0/GjQOuXZMukj59ujPUauein5QPS3yezS3P7EHGJ0+exPPPPw8A2Lx5M6pUqYIrV65g7dq1WGK4KpdMWrVqhd9//x2nT582/oSHh+PNN9/E6dOn8yQ3SuIsKiIiO3Ps2MPrEHzyicOtebN7N7BihbT92WeABUdxWJXZLTjp6enG6eC7du1Cly5d4OTkhGeffRZXrlyRLUAA8Pb2xlNPPWWyz9PTExUqVMizX2m5Z1EJ4XCzC4mI7EtWFtCnD6DXA2++CXTooHREVnX/PvDWW9L20KHACy8oG4+czG7BqVGjBrZv347ExETs3LnTOO4mOTlZ1jEu9iZ35sup4kRENm76dODsWaByZeD995WOxurGjgWuXJGuMzV7ttLRyMvsFpxJkyahe/fuGDVqFFq1aoWmTZsCkFpzGjZsKFuABdm/f7/Fz2GO3MtZp6fb5/LWREQO4dQpwLCsyUcfARUqKBuPle3fL71sAFi+HPDyUjQc2Zmd4HTt2hXNmzdHUlKScWYTII2X6dy5syzB2SMXF8DVFcjOlhIcB/t9ISKyD1ot0Lu3dD2Crl2B115TOiKrevAA6NtX2u7fH2jVStl4LMHsBAcA/P394e/vb7KvSZMmpQqoLPD0lBKcBw+UjoSIiPI1dSrw66+Anx/wwQdKR2N148YBly4BQUHAvHlKR2MZZo/BoYIZxuGkpysbBxER5ePw4YcDTj7+GKhSRdl4rGzXLmDpUml7xQrpmlNlERMcC2CCQ0Rko9LSgOhoadZUdDQQFaV0RFZ1+zbQq5e0PXQoIPO6vDaFCY4FGBIcdlEREdmY2Fipb6Zq1YfNGA5CCGDgQCApCXjySWDOHKUjsiwmOBbg6SndsgWHiMiGfPONNF1IpQLWrAF8fZWOyKo+/xzYvFmaDPPFF2VnQb+CMMGxAHZRERHZmORkoF8/aTs2FoiIUDQca0tIkLqkAGDKFCDXlY/KLCY4FsAEh4jIhggB54EDgZs3gbp1gZkzlY7IqnQ6ICZGWrX4ueeAuDilI7IOJjgWwDE4RES2I+THH+H03XfSImVffAHkcyHmsmzuXODnn6WF/D7/XOqicgRMcCyAY3CIiGzE6dN4atUqafu994B69ZSNx8r+7/+AiROl7SVLgGrVlI3HmpjgWAC7qIiIbEBaGlzefBPOWi307doBI0cqHZFV3bkDdOsmdVF17/5werijYIJjAUxwiIhswJAhUP31FzIqVIBuxQpp9pSDEEK6EkViIlCjhrSeoQO9fABMcCzC0EXFMThERApZuxZYuxbCyQnxsbFAxYpKR2RVS5ZIs+JdXYGvvgK8vZWOyPqY4FgAW3CIiBR0/jwweDAAQD9xIu7UqaNwQNYVHw+MHi1tL1gANGyobDxKYYJjAUxwiIgUkpEBvP661IT+4ovQjx2rdERWlZoKvPGGdLH0zp2BIUOUjkg5THAsgAkOEZEChJBabn79FahUSZoT7eysdFRWYxh3c/EiEBwMfPaZ4427yY0JjgVwDA4RkQKWLwdWrwacnID164HAQKUjsqp584CtWwG1Gti4EShfXumIlMUExwLYgkNEZGW//AIMGyZtz5oFtGqlbDxWtmcPMG6ctL1kCfDMM8rGYwuY4FgAExwiIiu6eRPo2hXIzpYGnowZo3REVnX1qjTuRq+X1roZMEDpiGwDExwLYIJDRGQlOp20ml1iIvDEE8CqVQ418CQrS8rtbt0CGjUCPvrIoV5+oZjgWIBhDE5amrJxEBGVeRMnSv0zHh7SABRfX6Ujsqrhw4HjxwE/P2DLFsDdXemIbAcTHAvw8pJumeAQEVnQxo3A7NnS9mefAQ623s3y5cCnn0otNuvWASEhSkdkW5jgWIBhxcisLGktAiIikll8/MOLK/1/e3ceF1W5/wH8MwwMICIuKCqi4lLuS265ZC5XzaU0b5aWppZ23UVv2y1vmWlY996u1S1LK9PrmuWaS5EaarhdFTUxl58oLiCpyCICA/P8/vg6wCgIyMw5zMzn/Xqd18ycOUzPecI5H57zLH/9q3RCcSORkblzGeLdd4E+ffQtT1nEgOMA1hYcgK04RER2d/kyMHAgkJEB9O0LvP++3iXS1NmzwJ//DGRnS6574w29S1Q2MeA4gMkkG8CAQ0RkV7duAYMGSchp3Fjmu3GjyfxSUoDHHweuXQPatgW+/pqdigvDgOMg1lac1FR9y0FE5DKUAsaMyetVu2GDW3Uqtg4Yi4mROQzXr2en4nthwHEQdjQmIrKzuXOlN62nJ/Ddd0CDBnqXSFOvvQZs3gz4+Ei4cbOJmkuMAcdBrB2NGXCIiOxg1aq8ziaffAJ0765veTT25ZeyMjggq1G0batrcZwCA46D8BYVEZGd7NoFPP+8PJ8yBRg3Tt/yaGzLlrxTfvttWSydisaA4yBswSEisoMTJ2TElHUZhg8/1LtEmjp4EBgyRPrfjBwpAYeKhwHHQdiCQ0RUSgkJMgw8KQl4+GFg2TK3GjEVGwv07w/cvAn06pU3qR8VDwOOg7CTMRFRKaSlydX9/HnpTLxhg1sNGbp+XbLdlStAy5bSp9o6/QgVDwOOg1hvUbEFh4iohMxm6Why6BAQGCidUKpW1btUmsnIkLtyJ08CISHApk1AhQp6l8r5MOA4CFtwiIjug8UCjB4t46F9fYEffnCr4eDWbLd7t0zxs2ULEBysd6mcEwOOg7CTMRFRCSkFTJ0qfW08PYHVq4EOHfQulWYsFuCFF+RunHWuGzdbP9SuGHAchJ2MiYhK6O23gf/8R3rSLlkifXDchFJAWBiwdKn0o169Gnj0Ub1L5dwYcByELThERCXw73/LstgA8OmnsiaBG5k5U+YvNBiAxYuBAQP0LpHzY8BxELbgEBEV0zffANOny/PZs4Hx43UtjtbmzQNmzZLn//kP8Nxz+pbHVTDgOAgDDhFRMaxYAbz4ojyfPj1vOQY3sXAhMG2aPJ89G5gwQd/yuBIGHAexDulLSdG3HEREZda33wLDh0vv2jFjgH/+061msvvqK+Cll+T5yy+7XbZzOAYcBwkIkMfkZH3LQURUJn3/PfDssxJuRo0CvvjCrcLNN98AY8fK86lTgQ8+cKvT1wQDjoMw4BARFWL9emDoUFlgacQIWSrbw30uR0uWyHBwpYBJk6R/NcON/bnPb5TGrAEnM1M2IiKCTNw3ZAiQnS0tOIsWudX6UsuWSYOVUtKX+uOPGW4chQHHQfJPq81WHCIiAGvWAIMH503Xu3ixW4WbJUuA55+XcPPSS3lT/pBjMOA4iNGYN5KKAYeI3N7SpcDTT0u4efpp4L//ldmK3cT8+cDIkdLlaOxYee1Gd+V0wep1IPbDISICsGCBNF3k5Mj9meXLAS8vvUulmX/+M2/495QpwOefM9xogVXsQAw4ROT25s0D/vIXuS8zcaKMjXaT21JKyQzFr7wir998U6qD4UYbrGYHYsAhIrc2Z07eLHavviprEbjJ1V0pmdvmnXfk9XvvyUR+7HOjHfe5AaoDBhwicksWizRbfPihvJ41C5gxw22u7tnZMkLqyy/l9ccfA5Mn61smd8SA40AMOETkdjIzgdGjZQkGQEKOtRXHDaSnyxQ/GzdKY9XChTLnDWmPAceBGHCIyK2kpMgw8G3bpBPxokVutXLk1avA448De/cCPj6S8QYN0rtU7osBx4EYcIjIbSQkAH37AtHRMkfGmjVAr156l0ozsbHAY48Bp04BlSpJC07nznqXyr0x4DgQAw4RuYVTp+TqHhsLVKsGbNkCPPSQ3qXSzOHDQL9+kvFq1wa2bgUaN9a7VOQe3dl1woBDRC7vl1+Ahx+WcNOgARAV5VbhZtMmoGtXCTctWsjpM9yUDQw4DlSpkjwmJelbDiIih/jqK7kNlZQEdOgA/PorUL++3qXShFKySOYTTwBpaUD37sDOnUBwsN4lIysGHAeqXFkeGXCIyKXk5MgkL2PGyJjooUOBHTvk9pQbMJtl7sLp02VE/JgxclvK2mpPZQP74DiQNeBcv65vOYiI7CYtTVYB37hRXr/9tmxuMsfN9evAU09JnjMYgH/9CwgLc5vTdypO0YITHh6Odu3awd/fH9WqVcOgQYNw8uRJvYtVJAYcInIpsbEyNGjjRsDbW9aUmjnTba7uv/8u3Y127JCBYhs2yBQ/bnL6TscpAk5kZCQmTpyIvXv3IiIiAtnZ2ejduzdu3rypd9HuyRpwUlOBrCx9y0JEVCo//QS0aQMcPSq3on75BRg2TO9SaWbtWqB9e+D0aRkp9euvwIABepeK7sUpblFt3brV5vWiRYtQrVo1HDx4EF27dtWpVEWrWFGSvVLSDycoSO8SERGVkFLA3LmyUqRSQLt2wPffAyEhepdMEzk5wN//DoSHy+uuXYFvv+X3uTNwioBzp+Tb464rW5tICpCZmYnMzMzc1ykpKQAAs9kMs9lst7JYP6uwz6xY0RNJSQZcuWLGPYpLxVBUXZN9sJ614RT1nJoK4wsvwGP9egCAZfRo5Hz0kUzTW5bLnU9p6vnaNWDECCN+/lludkyZkoPwcAu8vJzm9DXjyN/n+/1Mg1JK2bksDqWUwsCBA5GUlIRdu3YVetzMmTPxjnUZ13yWL1+OcuXKObKINsaN64mEhPIID9+Fxo3ZGYeInEP5CxfQ/v334X/xIiyenjg6dizO9+7tNh1Ozp4NwNy57ZCY6AeTKRuTJkWja9dLehfLLaWnp+PZZ59FcnIyKlSoUOyfc7qAM3HiRGzatAm7d+9GrVq1Cj2uoBackJAQXL16tUQVVBSz2YyIiAj06tULXl5ed73fqZMR//ufB9asycaAAU5V1WVOUXVN9sF61kZZrmfDkiUwTpkCQ3o6VM2ayFm1CqpDB72LdV9KWs9KAV984YFXXvFAZqYB9esrrFqVjRYtNCisE3Pk73NKSgoCAwNLHHCc6hbV5MmTsWHDBuzcufOe4QYAvL294e3tfdd+Ly8vh3yZFPa5gYHymJLiiTL2Hea0HPX/kGyxnrVRpuo5LQ2YMAH473/ldY8eMCxbBs/q1fUtlx0Up56TkmROmzVr5PWAAcCSJQZUqlRG/v84AUf8Pt/v5znFKCqlFCZNmoQ1a9Zg+/btCA0N1btIxcah4kTkFI4cAdq2lXDj4QG8+66MnHKBcFMce/cCrVtLuPHyklmKN2zIm5GenI9TtOBMnDgRy5cvx/r16+Hv74+EhAQAQEBAAHx9fXUu3b0x4BBRmSb3ZGS2usxMWWtg+XIZLuQGLBbgn/+UQWLZ2UC9esCqVZL1yLk5RQvO/PnzkZycjG7duqFGjRq526pVq/QuWpGsAefaNX3LQUR0l8RE4MkngfHjJdz07w9ER7tNuLl0SRZBf+01CTfPPAMcOsRw4yqcogXHyfpB26haVR6vXtW3HERENtavB8aOBf74Q+7JhIfLtLweTvF3b6koBaxcKd2NbtyQUe+ffAK8+KLbDBJzC04RcJyZde25xER9y0FEBABISZEg8/XX8rp5c+l307KlvuXSyLVrEmy+/VZet2sHLFkCNGqkb7nI/lw/quuMAYeIyoxduyTIfP21NFW88gpw4IDbhJstWyTPffstYDQC77wDREUx3LgqtuA4GAMOEekuLU160X7yidyfqVNHmi3cpK9NWponxo0z5jZaNWokjVbsa+PaGHAczBpwrl2Tqb3LynQXROQmfvoJeOkl4Px5eT16NDBvHmDHCU/LsnXrDJg8uSeSkuSGxdSp0t2ojA/AJTvgLSoHq1w5r88eOxoTkWauXwdGjQL69JFwU6cOsHWr3J5yg3CTkAA89RTw9NOeSEryQcOGCpGRku0YbtwDA46DeXjkjaTibSoicjilpJNJ48bA4sXS12bqVOC33yTsuDilJMM1biyLnhuNCk89dQoHD2a7yx05uo23qDRQtSpw5QoDDhE52OnTwOTJwI8/yusmTYAvvwQ6dtS3XBo5dgyYOFH6UgNAmzbA559n49KlE/DxcZ4Z8Mk+2IKjAXY0JiKHSk8H/v53oFkzCTcmE/D22zJrnRuEm5QUYPp0WWph1y65BfWPf8jyC24yQIwKwBYcDTDgEJFDKCULJk2dmteJ+LHHZLRUgwb6lk0DSgErVgB//av0uQGAwYNlHanateW12axf+UhfDDgaCAqSR+s/QCKiUvv9d7myb94sr0NCgI8+AgYNcovpeI8ckVwXGSmvGzSQXPfYY/qWi8oO3qLSQM2a8nj5sr7lICIXcPUqMGmS3I7avFnmnvjb34ATJ2RdKRcPN/HxsqRC69YSbnx9gdmzpQ81ww3lxxYcDTDgEFGpZWZKE8Xs2UBysux74gnggw+ABx/Ut2wauHkT+Ne/5HRv3pR9Tz8NvP8+ULeurkWjMooBRwPBwfJ46ZK+5SAiJ6SUjHd+9VUgNlb2tWoFfPgh0L27vmXTgMUCLF0KvPFG3nfoww/L6btB/2kqBd6i0gADDhGVmFJARATQvj0wZIiEmxo1gEWLgP/9z+XDjVLAxo3AQw8BI0fK92fdurIKeFQUww0VjS04GrDeokpLk+GMbjCJKBGVRlSUrB31yy/y2s8PePllWRzTz0/Xomlh+3Y5/b175XWFCsCMGTLFj4+PvmUj58GAo4Hy5eUfaEqK9MNhwCGiAkVHy5V80yZ5bTIBEyZIJ2LrfBMubM8eOf3t2+W1r6+MlHrlFVn2hqgkGHA0EhwsAefSJVnJlogoV3Q0MGcO8N138tpoBF54QSbvCwnRt2wa2LtX+k7nz3V/+Yv0u6leXd+ykfNiwNFIcLCM4mQ/HCKyqnTyJIwLFuTNZQMAw4YB77wDNGyoX8E0oJQM8549G9i2TfYZjdLf5q23ZG1QotJgwNFIrVryeOGCvuUgIp3dvrIb330XXa33Yjw8gKFDpcmiaVN9y+dgSsmi5rNnS1cjAPD0BEaMAF5/HXjgAX3LR66DAUcjobfXeTt3TtdiEJFeLBbghx9kIpdff4UHAIvRCIwYAY833nD5FpvsbGDtWmDuXFkiCwC8vWXSvldfZYsN2R8DjkasE1FZp7EgIjeRng4sXiwLJJ0+Lfu8vZEzejS2PfQQuo8aBQ8vL33L6EApKcDXX8sqEtY/8MqVA8aPl5UmatTQtXjkwhhwNGINOGzBIXIT8fHAp58C8+cD16/LvooVgZdeAqZOhaVqVdzK3/fGxcTFAR9/DCxcKCEHAKpUkUFhU6YAgYH6lo9cHwOORqwBJy4OyMmRznRE5IIOHJBgs2IFkJUl++rVA8LCgNGjZd4IwCWXuVZKhnp/8gmwerV81wGyksT06dLPxtdX3zKS+2DA0UhwsHSkM5vlDztrp2MicgHp6cCqVcBnn8ksw1adOsl9mIEDXfqvmtRUYNkyaaw6ejRvf48eEmz69pV+1ERaYsDRiNEI1K4NnD0rt6kYcIhcwKlTwOefy/IJN27IPpNJllaYNEkWTXJhx45JqFm6VEIOIDMNDx0qE/S1aqVv+ci9MeCUkmHnTjywejUMVavKX2v3EBoqAefMGaBLF40KSET2lZEBrF8PfPkl8PPPefvr1gXGjZMJ+qpW1a14jpaeLmt/LlgA7N6dt/+BB+T0R47krMNUNjDglJLHkiVovGwZcho0KDLgPPigTGh18qRGhSMi+1AKOHhQWmpWrACSkmS/wQD06yc9Z/v0cdnbUErJnDXffCN34qytNUYjMGiQjIjq0UOqg6isYMApJXV73QXDiRNFHvvgg/LIgEPkJBIT5f7LokXAb7/l7Q8JAZ5/XiZxsU5y5YIuXQKWLJFgc+pU3v569YBRo+T0rYsJE5U1DDilpBo3BgAYfv+9yGMZcIicQFqa3IJasQL48UeZoQ6QWekGD5aRUD16uGxrTXKyTMi3YoXcgbNYZL+fn3QtGjUKeOQRdhqmso8Bp5SsAQcnTxY5/tsacM6c4VBxojIlMxPYskWu6hs3Ardu5b3Xvr2EmqFDZR4bF5SeLpMsr1wpy2JlZua998gjcvpPPQX4++tXRqKSYsAprTp1kGMywZiZKdMUN2hQ6KG1a8sIg4wMGUlVv752xSSiO5jNwC+/SKhZs0aaLqwaNJBFL4cNA6x/xLiYrCzgp58k1KxfLw1XVk2a5J0+v6fIWTHglJbRiNTgYFSMjQViYu4ZcDw8pBXnyBHg+HF+cRBpLj1drupr1kiThbWzMCCTVT3zjFzV27RxyR6zaWnSULV2LbBpU94Mw4AMAhs2TBqqmjd3ydMnN8OAYweptWtLwDl6FHjiiXse27KlBJzo6CIPJSJ7SEqSMLN2rSxjnf/2U2Ag8Oc/y5XdRTuW/PGH3HVbuxaIiLC9/VSjBvD00xJqOnRgqCHXwoBjBzfq10dIZKQMIy1Cy5byeOSIgwtF5M7OnJHOJD/8AOzYkddRGJBlq598UrbOnV2uM5xSwO+/S0vN+vUyV421ozAgjczW0+/QwSUzHREABhy7SK5XT54w4BDpIyMD2LlTQs3mzXmrdls1bSpX9MGDZXpdF2uquHkT2L5dQs3mzcD587bvt26dF2qaNnW50ycqEAOOHeQGnAsXpD34HrOYWgPO//2fTJbFUQlE90Ep+UcUESFX9O3bpX+NlZeX3HLq21fWgWrYUL+yOoBSMi+NNdBERuat6wnIahHduskchAMH5i32S+ROGHDsILtcOagGDWA4c0YW2uvbt9BjAwNlNFVcnBzavbuGBSVyZgkJMhW4dYuLs30/OFj+7fXrB/TsCVSooE85HeTiRclx27bJ48WLtu/XrZt3+t27y7w1RO6MAcdO1MMPS8DZvfueAQeQ9ffi4oA9exhwiAqVnCzDuK2BJibG9n0vL6Bjx7yruosN/bl6VboPWUPNnXfdTCZppOrXT6qgUSOXOn2iUmPAsRPLI4/AY+lSYNeuIo/t1An49ltZ24WIbrt8Wf797N4tj0ePyr0YK4NBOpP07Clbly4u1UwRFyen/uuvcvrHjtm+7+EBtG0rkyj36CH9o8uV06esRM6AAcdOVOfO8mT/funw6ONT6LEdO8rjnj3y/c2/usjtKCWzf+cPNLGxdx/XsGFeoOneHahSRfuyOkBOjuS3zZvrYsUKI6KipAvfnZo1kzDTsyfQtavLTqRM5BAMOPbSsCEQFARcuVLkvadWreQvr+vX5a+0Fi00LCeRHq5eBQ4ckD8A9u2Tx2vXbI/x8JBe+F26yL2Xzp1dZiXHK1fyTn//fmDvXiA52QtAy9xjjEZpoOrSJW8LCtKvzETOjgHHXgwGoE8fWXp3y5Z7BhzrCIfNm2VSVQYccim3bgGHD+ddzfftA86evfs4Hx+ZiOWRR+Rq3rGjS3QMTkuTGSP2788LNXcO2waA8uUV6tf/AwMHVkHXrkZ06ACUL699eYlcFQOOPfXrJwFn82bggw/ueWivXnJYRATw8ssalY/I3m7ckGm5o6Ml1ERHS2fg/BPrWT34oCxc2b69BJuWLSXtO7Fr1/JmJo+OBg4dAk6csJ1YD5C/fxo1sj39Jk2y8dNPe9CvXz94ebnWZINEZQEDjj317i3tzMePy0yq91iXqndveYyM5Hw45ASUknHJ1hBjDTTnzhV8fFCQXMWtV/R27Zy6A4nFIqdqPXXrVlC/GQAICZFTtp5+mzZ3N06ZzQ4vNpFbY8Cxp0qVpDegdYneGTMKPbRxY+m2c/q0LHo3dKiG5SQqjFJAfDwCjxyBx9mzMud/TIyE9vwLU+ZXp450HmnVKu8xJMQpe88rJYO5jh/PO+2YGOC332wXpsyvXj05ZevWtq2s8URE+mLAsbdnn5WAs2wZ8OabhX7JGwzAU08B4eHAd98x4JDGbgcZnDhhezU/fhxeSUnoXNDPGI1Akya2YaZlSwn2TkYp4NKlu4NMTIxMv1MQk0lGNeUPMy1aAAEB2padiIqHAcfennwSmDBB/vLduRN49NFCD336aQk4GzfKIJPAQA3LSe7h2jWZ0//UKWkutD6ePi0LGBVAeXjgZvXqKNe2LTyaNZPFi5o2lT4095j+oKxRCkhMzDvdO7f8KzvkZzTK3eUmTeS0rY+NG8vcgkTkHBhw7K1CBWD4cGDBAuDjj+8ZcFq1Ah56SDom/ve/wLRpGpaTXIPFIksYxMZKJ5GzZ23DTGG3lQC5koeG5gWY21fz7Hr1sG3HDvTr1w8eAwIjLAAAFGBJREFUZfyKnpMjDVHnzkkVWMPLqVPSDa6w20oA4Okpt4mbNLENMw88AHh7a3YKROQgDDiOMHmyBJy1a2WIRcuWhR760kvAuHGShSZOdPpBJWRvSknznjXAxMbaPj9/HsjMvPdnhITIlfyBB2wfQ0ML/oUrQ71fLRaZQ8Z6ytbTtj4/f/7exTUYZO23hg3zNuvp163Lf29ErowBxxGaNQOeeQZYtQp4/XWZF6cQI0YAb78tX9aLFwNjx2pXTNKZUtLCcvFi4VtcXKG3knIZjRJiQkPlqp0/yNSvX2bn81dKJrvMf7qXLuU9P3++ePnNaJQQU7eu3FrKH2Tq1XOqu2pEZEcMOI4yZw7w/ffA1q3AunXAoEEFHlaunGSgadOA2bPl7pavr8ZlJftLT5dbRwkJ0gQRH2979bZuhXUEyc9gkBl9rQEmNNT2ea1acr+lDLGefkGnbn1+6ZKsalIUDw/Jb9bTrVs3bwsNlaopY6dPRGUAvxYcpX594K9/Bd5/H3jxRRk7WqtWgYf+5S/Av/4lf6zPmCHPqQzKzAT++EOu2tbwkn/Lvz81tfifW7Wq/G4UtIWESPNEGegUkpGRd4pFPaalFf9zq1XLO93gYNtTDw2VfWW8KxARlUEMOI40axbw888yb3v//sCOHUDlyncd5usLfPGFHPLvf8uEyD176lBed5KTI/dHrl4tePvjj7v3lSS0API/tnp12YKCCg4vNWvqcg/FbJYBVlev5j3mnboHjhx5CJ9/brQ55l4ddgtiPf38p54/wNSqJfPFlIHsRkQuiAHHkUwm4NtvZdHAo0dlfaq1a6VjwB369ZOGnq++AgYPlhHm9+ibTICElORk6cdy40bxHpOS5IqdlCSdQErKaJQrtjW4FLYFBcn01A6c7M5sltPKv1lPtaDX1jx37Vrhc73cPkkAIQW+YzLlnX7+arhznwanT0R0Tww4jlavHrBtm4Sbo0dlXPjs2XJf6o529//8R4a47twpi3GuXg386U/6FNuhsrOlNcS6paQU/Tw1FcakJHSLi4PnlClyxS5pk0JBKlWSCYiKu1WsKJ1CSiEry/b0C6uK/FtBoaWovsdFMRikQdF6alWqyGOlSjm4evV3dO78IIKCPG1Ov1IlhhYicg4MOFpo0gT43/9kZr+9e2UY+XvvAS+8AAwcKKHHaISPD7B+vdyqioqS9aomTADeekv6KWjKYpGeotbt5s2SP968WfCV+9at+yqSB4ACJ43185Mrb8WKhT/mf161qlytK1cutHdqTo7t6aSnA+ln7nh9x/v5n98ruGRl3dfpF8rf/+5TvPO59fWdWc1YwBqPZrMFmzefQb9+D7DvCxE5LacKOJ999hn+8Y9/ID4+Hk2bNsW8efPwyCOP6F2s4gkJAXbtAhYuBN55R4aWzJkjm79/7lSpFWvUwLZB1THJqy++imyATz8FvlyQg2E9EzGk+zV0b3kdvsYsuQJnZ+c9ZmdLJ9iMjPvb7gwnxRneUlomk0yM6O8v2x3PLeUrIKtcRWT4VkKGdwDSvPxx4MxFPNCuC7L9KiPDqwIyPMsjM8fzrtOxqYoLQOaZgk/71q2CQ4q9Q0hBfHzyTreorbDgEhDAEURERAVxmq/GVatWISwsDJ999hk6d+6ML774An379kVMTAxq166td/GKx9MTGD9eOtusXw8sXw5s3y5/3u/dKxsAHwBfAhiGHvgbwnHA3B7fbK2Bb7bWgCfMaIwTaIGjqI041MJFVEMiyiMNfriJ8kiDDzJggIIHLDBA5T4HgBwYkQMjsuF5x2MlZKNqge+ZTX4we5dHlld5mE1+yPKSzezliyxjOWR5+sLs4YMsoy+yPLxh9vBGFryRZfCG2WBClsGELJhgVl7IUp7IsnjCbDEiy+yBrCzpS5J1A8hKvP08SwKKFiGjKAaDDOW3bn5+Rb/29b13WKlQAShfniODiIgcyWkCzocffogXX3wRY8aMAQDMmzcPP/74I+bPn4/w8HCdS1dCJhMwZIhs2dmybtXx48DJk7J4zu0RPD0zMrAvaxKibjTBsqt9sDGtGy5m18AxtMAxtNCuvFm3Nx0ZDICPj4LRaIa/vxe8vQ3w8UHu5u0Nm9cF7SvodVGhxceHfU6IiJyRUwScrKwsHDx4EK+//rrN/t69eyMqKqrAn8nMzERmvilQU253SDWbzTDbcSp662eV6jMffFC2QrS/vc1TwMWLZkRHG3DihAGXLwMXLxpw/TqQlmbI7faSkSEDhJSSrjTW50pJnwtPz7sfPT2l76zteyr3tckkm5eXbPlfm0wKJpP8jO1+22MK/tn8n6tyn98ZRjw9gexsMyIiItCrVy94adT8kZ2tyX+mTLHL7zQVifWsDdazNhxZz/f7mQal7mesrLYuX76M4OBg/Prrr+jUqVPu/vfeew+LFy/GyZMn7/qZmTNn4p133rlr//Lly1GujE5dT0RERLbS09Px7LPPIjk5GRUqVCj2zzlFC46V4Y57BUqpu/ZZ/e1vf8P06dNzX6ekpCAkJAS9e/cuUQUVxWzWvlXBXbGutcF61gbrWRusZ204sp5T7nNKEKcIOIGBgTAajUhISLDZn5iYiKCgoAJ/xtvbG94FTJHq5eXlkF9yR30u3Y11rQ3WszZYz9pgPWvDEfV8v59XuhnLNGIymdCmTRtERETY7I+IiLC5ZUVEREQEOEkLDgBMnz4dI0aMQNu2bdGxY0csWLAAcXFxGDdunN5FIyIiojLGaQLOM888g2vXrmHWrFmIj49Hs2bNsHnzZtSpU0fvohEREVEZ4zQBBwAmTJiACRMm6F0MIiIiKuOcog8OERERUUkw4BAREZHLYcAhIiIil8OAQ0RERC6HAYeIiIhcDgMOERERuRwGHCIiInI5DDhERETkcpxqor/SUEoBuP9VSQtjNpuRnp6OlJQULuTmYKxrbbCetcF61gbrWRuOrGfrddt6HS8utwk4qampAICQkBCdS0JEREQllZqaioCAgGIfb1AljUROymKx4PLly/D394fBYLDb56akpCAkJAQXLlxAhQoV7Pa5dDfWtTZYz9pgPWuD9awNR9azUgqpqamoWbMmPDyK37PGbVpwPDw8UKtWLYd9foUKFfiPRyOsa22wnrXBetYG61kbjqrnkrTcWLGTMREREbkcBhwiIiJyOcaZM2fO1LsQzs5oNKJbt27w9HSbO366YV1rg/WsDdazNljP2ihr9ew2nYyJiIjIffAWFREREbkcBhwiIiJyOQw4RERE5HIYcIiIiMjlMOCU0meffYbQ0FD4+PigTZs22LVrl95Fcmrh4eFo164d/P39Ua1aNQwaNAgnT560OSYzMxOTJ09GYGAg/Pz88MQTT+DixYs6ldg1hIeHw2AwICwsLHcf69k+Ll26hOHDh6NKlSooV64cWrVqhYMHD+a+r5TCzJkzUbNmTfj6+qJbt244fvy4jiV2PtnZ2ZgxYwZCQ0Ph6+uLevXqYdasWbBYLLnHsJ7vz86dO/H444+jZs2aMBgMWLdunc37xanXpKQkjBgxAgEBAQgICMCIESNw48YNxxde0X1buXKl8vLyUgsXLlQxMTFq6tSpys/PT50/f17vojmtPn36qEWLFqnffvtNRUdHq/79+6vatWurtLS03GPGjRungoODVUREhDp06JDq3r27atmypcrOztax5M5r//79qm7duqpFixZq6tSpuftZz6V3/fp1VadOHTVq1Ci1b98+FRsbq37++Wd15syZ3GPmzp2r/P391ffff6+OHTumnnnmGVWjRg2VkpKiY8mdy+zZs1WVKlXUDz/8oGJjY9Xq1atV+fLl1bx583KPYT3fn82bN6s333xTff/99wqAWrt2rc37xanXxx57TDVr1kxFRUWpqKgo1axZMzVgwACHl50BpxTat2+vxo0bZ7OvUaNG6vXXX9epRK4nMTFRAVCRkZFKKaVu3LihvLy81MqVK3OPuXTpkvLw8FBbt27Vq5hOKzU1VTVs2FBFRESoRx99NDfgsJ7t47XXXlNdunQp9H2LxaKqV6+u5s6dm7svIyNDBQQEqM8//1yLIrqE/v37qxdeeMFm3+DBg9Xw4cOVUqxne7kz4BSnXmNiYhQAtXfv3txj9uzZowCo33//3aHl5S2q+5SVlYWDBw+id+/eNvt79+6NqKgonUrlepKTkwEAlStXBgAcPHgQZrPZpt5r1qyJZs2asd7vw8SJE9G/f3/86U9/stnPeraPDRs2oG3bthgyZAiqVauG1q1bY+HChbnvx8bGIiEhwaaevb298eijj7KeS6BLly7Ytm0bTp06BQA4cuQIdu/ejX79+gFgPTtKcep1z549CAgIQIcOHXKPefjhhxEQEODwui8b0w06oatXryInJwdBQUE2+4OCgpCQkKBTqVyLUgrTp09Hly5d0KxZMwBAQkICTCYTKlWqZHMs673kVq5ciUOHDuHAgQN3vcd6to+zZ89i/vz5mD59Ot544w3s378fU6ZMgbe3N55//vncuizoe+T8+fN6FNkpvfbaa0hOTkajRo1gNBqRk5ODOXPmYNiwYQDAenaQ4tRrQkICqlWrdtfPVqtWzeHfJQw4pWQwGGxeK6Xu2kf3Z9KkSTh69Ch2795d5LGs95K5cOECpk6dip9++gk+Pj7F/jnWc8lYLBa0bdsW7733HgCgdevWOH78OObPn4/nn38+9zh+j5TOqlWrsHTpUixfvhxNmzZFdHQ0wsLCULNmTYwcOTL3ONazYxRVrwXVsRZ1z1tU9ykwMBBGo/GuBJqYmHhXmqWSmzx5MjZs2IAdO3agVq1aufurV6+OrKwsJCUl2RzPei+ZgwcPIjExEW3atIGnpyc8PT0RGRmJjz/+GJ6enggKCmI920GNGjXQpEkTm32NGzdGXFwcAPl9BsDvkVJ65ZVX8Prrr2Po0KFo3rw5RowYgWnTpiE8PBwA69lRilOv1atXx5UrV+762T/++MPhdc+Ac59MJhPatGmDiIgIm/0RERHo1KmTTqVyfkopTJo0CWvWrMH27dsRGhpq836bNm3g5eVlU+/x8fH47bffWO8l0LNnTxw7dgzR0dG5W9u2bfHcc8/lPmc9l17nzp3vmubg1KlTqFOnDgAgNDQU1atXt6nnrKwsREZGsp5LID09HR4etpczo9GYO0yc9ewYxanXjh07Ijk5Gfv37889Zt++fUhOTnZ83Tu0C7OLsw4T/+qrr1RMTIwKCwtTfn5+6ty5c3oXzWmNHz9eBQQEqF9++UXFx8fnbunp6bnHjBs3TtWqVUv9/PPP6tChQ6pHjx4cvmwH+UdRKcV6tof9+/crT09PNWfOHHX69Gm1bNkyVa5cObV06dLcY+bOnasCAgLUmjVr1LFjx9SwYcM4fLmERo4cqYKDg3OHia9Zs0YFBgaqV199NfcY1vP9SU1NVYcPH1aHDx9WANSHH36oDh8+nDsdSnHq9bHHHlMtWrRQe/bsUXv27FHNmzfnMHFn8Omnn6o6deook8mkHnroodzhzHR/ABS4LVq0KPeYW7duqUmTJqnKlSsrX19fNWDAABUXF6dfoV3EnQGH9WwfGzduVM2aNVPe3t6qUaNGasGCBTbvWywW9fbbb6vq1asrb29v1bVrV3Xs2DGdSuucUlJS1NSpU1Xt2rWVj4+PqlevnnrzzTdVZmZm7jGs5/uzY8eOAr+TR44cqZQqXr1eu3ZNPffcc8rf31/5+/ur5557TiUlJTm87AallHJsGxERERGRttgHh4iIiFwOAw4RERG5HAYcIiIicjkMOERERORyGHCIiIjI5TDgEBERkcthwCEiIiKXw4BDRERELocBh4jKjG7duiEsLEzvYhCRC+BMxkSki27duqFVq1aYN29e7r7r16/Dy8sL/v7+mpcnLCwM586dw7p16zT/bxOR/bEFh4jKjMqVK+sSbgDgwIEDaN++vS7/bSKyPwYcItLcqFGjEBkZiY8++ggGgwEGgwHnzp276xZVt27dMHnyZISFhaFSpUoICgrCggULcPPmTYwePRr+/v6oX78+tmzZkvszSil88MEHqFevHnx9fdGyZUt89913hZbFbDbDZDIhKioKb775JgwGAzp06ODQ8ycix2PAISLNffTRR+jYsSPGjh2L+Ph4xMfHIyQkpMBjFy9ejMDAQOzfvx+TJ0/G+PHjMWTIEHTq1AmHDh1Cnz59MGLECKSnpwMAZsyYgUWLFmH+/Pk4fvw4pk2bhuHDhyMyMrLAzzcajdi9ezcAIDo6GvHx8fjxxx8dc+JEpBn2wSEiXRTUB+fOfd26dUNOTg527doFAMjJyUFAQAAGDx6MJUuWAAASEhJQo0YN7NmzB82bN0dgYCC2b9+Ojh075n7umDFjkJ6ejuXLlxdYlnXr1mHMmDG4evWqo06XiDTmqXcBiIjupUWLFrnPjUYjqlSpgubNm+fuCwoKAgAkJiYiJiYGGRkZ6NWrl81nZGVloXXr1oX+Nw4fPoyWLVvaueREpCcGHCIq07y8vGxeGwwGm30GgwEAYLFYYLFYAACbNm1CcHCwzc95e3sX+t+Ijo5mwCFyMQw4RKQLk8mEnJwcu35mkyZN4O3tjbi4ODz66KPF/rljx47hySeftGtZiEhfDDhEpIu6deti3759OHfuHMqXL4/KlSuX+jP9/f3x8ssvY9q0abBYLOjSpQtSUlIQFRWF8uXLY+TIkQX+nMViwdGjR3H58mX4+fkhICCg1GUhIn1xFBUR6eLll1+G0WhEkyZNULVqVcTFxdnlc99991289dZbCA8PR+PGjdGnTx9s3LgRoaGhhf7M7NmzsWrVKgQHB2PWrFl2KQcR6YujqIiIiMjlsAWHiIiIXA4DDhEREbkcBhwiIiJyOQw4RERE5HIYcIiIiMjlMOAQERGRy2HAISIiIpfDgENEREQuhwGHiIiIXA4DDhEREbkcBhwiIiJyOQw4RERE5HL+H3V2+nm6stTGAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = linspace(0, 100, 1000)\n", - "# find solution by the brute-force eᴬᵗ [1,10]:\n", - "x = [expm(A*t)*[1,10] for t in t]\n", - "plot(t, [x[1] for x in x], \"r-\")\n", - "plot(t, [x[2] for x in x], \"b-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "legend([L\"1st $x$ component\", L\"2nd $x$ component\"])\n", - "title(\"solution of 2 coupled ODEs\")\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To understand this problem, we need only look at the eigenvalues and eigenvectors of $A$. \n", - "\n", - "Since this is $2\\times2$, we could solve for them analytically via a quadratic equation, but let's just do it numerically. (Partly because I am lazy, partly because the details of solving for the eigenvalues are unininteresting, and partly because in larger problems we will have no choice but to do it numerically anyway.)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.0524938\n", - " -0.952494 " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(A)\n", - "λ" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.903256 0.0945865\n", - " 0.429103 0.995517 " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are two eigenvalues, $\\lambda_1 \\approx 0.05$ and $\\lambda_2 \\approx -0.95$. We can expand *any* solution in the basis of the eigenvectors $\\vec{x}_1$ and $\\vec{x}_2$ as:\n", - "\n", - "$$\n", - "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{v}_1 + c_2 e^{\\lambda_2 t} \\vec{v}_2\n", - "$$\n", - "\n", - "where the coefficients $c_1$ and $c_2$ are typically determined by suppling an initial condition $\\vec{x}(0)$: $\\vec{c} = X^{-1} \\vec{x}(0)$.\n", - "\n", - "(It is easy to verify that this solves $d\\vec{x}/dt = A\\vec{x}$ just by plugging it in to the ODE.)\n", - "\n", - "From the eigenvalues, we can easily see that the $\\vec{x}_1$ solution is *slowly exponentially growing* and the $\\vec{x}_2$ solution is *quickly exponentially decaying*. That's why, when we plot the solution, we see a rapid exponential decay followed by a slow exponential growth.\n", - "\n", - "Furthermore, we can solve for the coefficients when $\\vec{x}(0) = (1,10)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.0578278\n", - " 10.0201 " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "c = X \\ [1, 10]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that this initial condition \"happens\" to almost entirely consist of the $\\vec{x}_2$ eigenvector, with only a small $\\vec{x}_1$ component. This means that it takes an especially long time for the $e^{\\lambda_1 t}$ exponential growth to amplify the $\\vec{x}_1$ component to the point where it becomes obvious on the plot of the solution." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Key points\n", - "\n", - "* **Negative real λ** correspond to *exponentially decaying solutions*.\n", - "* **Positive real λ** correspond to *exponentially growing solutions*.\n", - "* **Zero real λ** correspond to *steady solutions* (neither decaying nor growing).\n", - "* The **initial conditions** determine the coefficients of each eigenvector in the solution." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# A mass and spring\n", - "\n", - "Let's consider the motion of a mass $m$ sliding without friction and attached to a spring:\n", - "\n", - "\n", - "\n", - "Newton's law for the position $x(t)$ gives the 2nd-order (has up to 2nd derivatives) ordinary differential equation (ODE):\n", - "\n", - "$$\n", - "m \\frac{d^2 x}{dt^2} = -kx\n", - "$$\n", - "\n", - "where $k$ is the spring constant. We can instead write this in terms of a *system* of first-order (1st derivatives only) ODEs by adding a variable $v = dx/dt$ (the velocity):\n", - "\n", - "$$\n", - "\\frac{d x}{dt} = v \\\\\n", - "\\frac{d v}{dt} = -\\frac{k}{m}x\n", - "$$\n", - "\n", - "which can be written in matrix form as $d\\vec{x}/dt = Ax$:\n", - "\n", - "$$\n", - "\\frac{d}{dt} \\underbrace{\\begin{pmatrix} x \\\\ v \\end{pmatrix}}_\\vec{x} =\n", - "\\underbrace{\\begin{pmatrix} 0 & 1 \\\\ -k/m & 0 \\end{pmatrix}}_A \\vec{x}\n", - "$$\n", - "\n", - "Let's choose $k/m = 1/100$. Then we have" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.0 1.0\n", - " -0.01 0.0" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ 0 1 \n", - " -0.01 0 ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we have an initial position $x(0)=0$ and an initial velocity $v(0)=1$, so that $\\vec{x}(0) = (0,1)$, the solutions $x(t)$ look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHGCAYAAABU9964AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4VFX6x793SiY9kE4ghN4kFKmCUmTp4LLIuqIroLgWLAusuyu6ClEX1gbYgJ8F0XVVdEUssEBQikpEQBARpIdQElJIgYQkM5nz++PmTEmfye3zfp4nTyY3t7z3nXPe873vKVdgjDEQBEEQBEEQPmFS2wCCIAiCIAg9QiKKIAiCIAjCD0hEEQRBEARB+AGJKIIgCIIgCD8gEUUQBEEQBOEHJKIIgiAIgiD8gEQUQRAEQRCEH5CIIgiCIAiC8AMSUQRBEARBEH5AIooIOMrKyrBo0SJs37691v/WrFkDQRCQmZmpuF2+8I9//ANt27aFxWJBixYtZLtOZmYmJk6ciOjoaAiCgLlz5za4//bt2yEIQp2+bYhdu3Zh0aJFKCoqqvW/ESNGYMSIET6dz1f08r0T+keJ8kwoh0VtAwhCacrKypCWlgYAtYLZxIkTkZGRgVatWqlgWdP47LPP8M9//hOPP/44xo8fD5vNJtu15s2bh927d2P16tVITExs1C/XXnstMjIy0KNHD5+us2vXLqSlpWHWrFm1ROGKFSt8tpsgtAqVZ2NBIoogPIiLi0NcXJzaZjTIoUOHAAAPP/ww4uPjZb/WwIEDMWXKlAb3s9vtEAQBkZGRGDx4sKQ2+CrICEKLlJWVITQ0lMqzwaDuPEIzLFq0CIIg4ODBg/j973+PqKgoREdHY/78+XA4HDh69CjGjRuHiIgItGvXDs8991ytc2RlZeGPf/wj4uPjYbPZ0L17d7z44otwOp0AxO4pLpLS0tIgCAIEQcCsWbMA1N+ts3r1avTu3RvBwcGIjo7G7373Oxw5csRrn1mzZiE8PBwnTpzAhAkTEB4ejuTkZPzlL39BRUVFo/fvdDrx3HPPoVu3brDZbIiPj8eMGTNw7tw51z7t2rXDP/7xDwBAQkICBEHAokWL6j3n3r17ceutt6Jdu3YICQlBu3btMH36dJw5c6ZBW3i33IkTJ/C///3P5afMzEzX//7973/jL3/5C1q3bg2bzYYTJ07U2523e/duTJ48GTExMQgODkbHjh1dXYOLFi3CX//6VwBA+/btXdfi56ir++PSpUuYM2cOWrdujaCgIHTo0AGPP/54LT8LgoAHH3wQ//73v9G9e3eEhoaid+/e+PLLLxu8f87WrVsxatQoREZGIjQ0FEOHDsVXX33ltU9eXh7uueceJCcnw2azIS4uDkOHDsXWrVtd++zfvx+TJk1ylcukpCRMnDjR67utixEjRqBnz57IyMjAkCFDXN/h22+/DQDYsGEDrr32WoSGhiI1NRWbNm3yOv7EiRO488470blzZ4SGhqJ169aYPHkyfv75Z6/9nE4nnnnmGXTt2hUhISFo0aIFevXqhZdeesmn+6yPb7/9FqNGjUJERARCQ0MxZMgQbNiwwWsfXve2bduG+++/H7GxsYiJicHUqVNx4cKFRq/hb1nnrFy5Er1790Z4eDgiIiLQrVs3PPbYY7XsS09Px5133ono6GiEhYVh8uTJOHXqlNe5+Pe2c+dODBkyBKGhobjrrrtc//Msz5mZmRAEAS+88AKWLl2K9u3bIzw8HNdddx2+//77Wna+8cYb6NKlC2w2G3r06IH3338fs2bNQrt27Zp0n4TEMILQCAsXLmQAWNeuXdnTTz/N0tPT2d/+9jcGgD344IOsW7du7OWXX2bp6enszjvvZADYJ5984jo+NzeXtW7dmsXFxbFVq1axTZs2sQcffJABYPfffz9jjLHy8nK2adMmBoDNnj2bZWRksIyMDHbixAnGGGNvv/02A8BOnz7tOu/ixYsZADZ9+nS2YcMG9u6777IOHTqwqKgoduzYMdd+M2fOZEFBQax79+7shRdeYFu3bmVPPvkkEwSBpaWlNXr/99xzj+teN23axFatWsXi4uJYcnIyy8vLY4wx9uOPP7LZs2czAGzTpk0sIyODnT17tt5zfvzxx+zJJ59kn376KduxYwf78MMP2fDhw1lcXJzrnHVRXFzMMjIyWGJiIhs6dKjLT+Xl5Wzbtm0MAGvdujWbNm0a+/zzz9mXX37JCgoKXP/btm2b61ybNm1iVquV9erVi61Zs4Z9/fXXbPXq1ezWW29ljDF29uxZ9tBDDzEAbN26da5rFRcXM8YYGz58OBs+fLjrfFevXmW9evViYWFh7IUXXmBbtmxhTzzxBLNYLGzChAle9wGAtWvXjg0cOJB99NFHbOPGjWzEiBHMYrGwkydPuvar63v/97//zQRBYFOmTGHr1q1jX3zxBZs0aRIzm81s69atrv3Gjh3L4uLi2Ouvv862b9/O1q9fz5588kn24YcfMsYYu3LlCouJiWH9+/dnH330EduxYwdbu3Ytu++++9jhw4fr/Q74vcfExLCuXbuyt956i23evJlNmjSJAWBpaWksNTWVffDBB2zjxo1s8ODBzGazsfPnz7uO37FjB/vLX/7C/vvf/7IdO3awTz/9lE2ZMoWFhISwX3/91bXfkiVLmNlsZgsXLmRfffUV27RpE1u+fDlbtGhRk++zPrZv386sVivr168fW7t2LVu/fj0bM2YMEwTB61j+HXTo0IE99NBDbPPmzezNN99kLVu2ZCNHjmzwGoz5X9YZY+yDDz5gANhDDz3EtmzZwrZu3cpWrVrFHn744Vr2JScns7vuuov973//Y6+//jqLj49nycnJrLCw0Ot7i46OZsnJyeyVV15h27ZtYzt27HD9z7M8nz592lVOx40bx9avX8/Wr1/PUlNTWcuWLVlRUZFr3//7v/9jANjNN9/MvvzyS/af//yHdenShaWkpLCUlJRGfURID4koQjNwEfXiiy96be/Tp4+rgeXY7XYWFxfHpk6d6tr26KOPMgBs9+7dXsfff//9TBAEdvToUcYYY3l5eQwAW7hwYS0bajamhYWFLCQkpFbjnJWVxWw2G7vttttc22bOnMkAsI8++shr3wkTJrCuXbs2eO9HjhxhANicOXO8tu/evZsBYI899phrG/dTYw1DXTgcDnblyhUWFhbGXnrppUb3T0lJYRMnTvTaxoXSsGHDau1fl4jq2LEj69ixI7t69Wq913n++edriRhOzUZn1apVdfr52WefZQDYli1bXNsAsISEBFZSUuLalpOTw0wmE1uyZIlrW83vvbS0lEVHR7PJkyd7XaOqqor17t2bDRw40LUtPDyczZ07t95727t3LwPA1q9fX+8+9TF8+HAGgO3du9e1raCggJnNZhYSEuIlmA4cOMAAsJdffrne8zkcDlZZWck6d+7M5s2b59o+adIk1qdPnwZtaew+62Pw4MEsPj6eXb582cuOnj17sjZt2jCn08kYc38HNevAc889xwCw7Oxsn67rS1l/8MEHWYsWLRrch9v3u9/9zmv7d999xwCwZ555xrWNf29fffVVrfPUJ6JSU1OZw+Fwbf/hhx8YAPbBBx8wxsSyl5iYyAYNGuR1vjNnzjCr1UoiSiWoO4/QHJMmTfL6u3v37hAEAePHj3dts1gs6NSpk1eq/uuvv0aPHj0wcOBAr+NnzZoFxhi+/vprn23JyMjA1atXXd19nOTkZNx44421unYEQcDkyZO9tvXq1avRLoVt27a5bPVk4MCB6N69e63rNJUrV67g73//Ozp16gSLxQKLxYLw8HCUlpbW6o70lZtvvrnRfY4dO4aTJ09i9uzZCA4Obtb1OF9//TXCwsIwbdo0r+3cdzV9NXLkSERERLj+TkhIQHx8fIPfya5du3Dp0iXMnDkTDofD9eN0OjFu3Djs2bMHpaWlAMTvaM2aNXjmmWfw/fffw263e52rU6dOaNmyJf7+979j1apVOHz4sE/326pVK/Tr18/1d3R0NOLj49GnTx8kJSW5tnfv3h0AvO7L4XBg8eLF6NGjB4KCgmCxWBAUFITjx497ff8DBw7ETz/9hDlz5mDz5s0oKSmpZUdj91kXpaWl2L17N6ZNm4bw8HDXdrPZjDvuuAPnzp3D0aNHvY656aabvP7u1atXrfuqi+aU9YEDB6KoqAjTp0/HZ599hvz8/Hr3vf32273+HjJkCFJSUlx1mNOyZUvceOONDV7Xk4kTJ8JsNrv+rnnfR48eRU5ODm655Rav49q2bYuhQ4c2+TqEtJCIIjRHdHS0199BQUEIDQ2t1QgHBQWhvLzc9XdBQUGds8d4Q1NQUOCzLfyY+s5b85x12Wmz2bzslOI6TeW2227Dq6++irvvvhubN2/GDz/8gD179iAuLg5Xr17165ycpsxgzMvLAwC0adOmWdfypKCgAImJiRAEwWt7fHw8LBZLLV/FxMTUOofNZmvw/i9evAgAmDZtGqxWq9fPs88+C8YYLl26BABYu3YtZs6ciTfffBPXXXcdoqOjMWPGDOTk5AAAoqKisGPHDvTp0wePPfYYrrnmGiQlJWHhwoVNEiI16wMglv266gkAr7I2f/58PPHEE5gyZQq++OIL7N69G3v27EHv3r297n/BggV44YUX8P3332P8+PGIiYnBqFGjsHfvXtc+jd1nXRQWFoIx5lO9rPl98dmnjZXX5pT1O+64A6tXr8aZM2dw8803Iz4+HoMGDUJ6enqtfRMTE+vcVvM+fJ3h29h98/MnJCTUOraubYQy0Ow8wjDExMQgOzu71nY+KDU2NtavcwKo97z+nLOx69QUHP5ep7i4GF9++SUWLlyIRx991LW9oqLCJQCaQ00RUxd8EH9jA6h9ISYmBrt37wZjzMuG3NxcOBwOSb4Tfo5XXnml3tmGvOGKjY3F8uXLsXz5cmRlZeHzzz/Ho48+itzcXNdA79TUVHz44YdgjOHgwYNYs2YNnnrqKYSEhHh9N1Lz3nvvYcaMGVi8eLHX9vz8fK+lJCwWC+bPn4/58+ejqKgIW7duxWOPPYaxY8fi7NmzCA0NbdJ91qRly5YwmUyS18uaSFHW77zzTtx5550oLS3Fzp07sXDhQkyaNAnHjh1DSkqKa7+6RGNOTg46derkta0p9cMXeIzgAr/m9Ql1oEwUYRhGjRqFw4cP48cff/Ta/u6770IQBIwcORJA059sAeC6665DSEgI3nvvPa/t586dw9dff41Ro0ZJYjtP+9e8zp49e3DkyBG/riMIAhhjtdaRevPNN1FVVeW/sT7QpUsXdOzYEatXr25whqIv38moUaNw5coVrF+/3mv7u+++6/p/cxk6dChatGiBw4cPo3///nX+8MyPJ23btsWDDz6I0aNH1yqHgPid9O7dG8uWLUOLFi3q3EdKBEGo9f1v2LAB58+fr/eYFi1aYNq0aXjggQdw6dKlOhcgbew+OWFhYRg0aBDWrVvn9d06nU689957aNOmDbp06eL7jdVAyrIeFhaG8ePH4/HHH0dlZSV++eUXr///5z//8fp7165dOHPmjOwLaHbt2hWJiYn46KOPvLZnZWVh165dsl6bqB/KRBGGYd68eXj33XcxceJEPPXUU0hJScGGDRuwYsUK3H///a5gHRERgZSUFHz22WcYNWoUoqOjERsbW+cU4RYtWuCJJ57AY489hhkzZmD69OkoKChAWloagoODsXDhQkls79q1K+655x688sorMJlMGD9+PDIzM/HEE08gOTkZ8+bN8/mckZGRGDZsGJ5//nnX/e3YsQNvvfWWrKuc1+S1117D5MmTMXjwYMybNw9t27ZFVlYWNm/e7GqQUlNTAQAvvfQSZs6cCavViq5du3qNZeLMmDEDr732GmbOnInMzEykpqbi22+/xeLFizFhwgT85je/abbN4eHheOWVVzBz5kxcunQJ06ZNQ3x8PPLy8vDTTz8hLy8PK1euRHFxMUaOHInbbrsN3bp1Q0REBPbs2YNNmzZh6tSpAIAvv/wSK1aswJQpU9ChQwcwxrBu3ToUFRVh9OjRzba1ISZNmoQ1a9agW7du6NWrF/bt24fnn3++VrZz8uTJ6NmzJ/r374+4uDicOXMGy5cvR0pKCjp37tyk+6yPJUuWYPTo0Rg5ciQeeeQRBAUFYcWKFTh06BA++OADSTI2zS3rf/rTnxASEoKhQ4eiVatWyMnJwZIlSxAVFYUBAwZ47bt3717cfffd+P3vf4+zZ8/i8ccfR+vWrTFnzpxm30dDmEwmpKWl4d5778W0adNw1113oaioCGlpaWjVqhVMJsqJqIJ6Y9oJwpv6Zp3NnDmThYWF1dp/+PDh7JprrvHadubMGXbbbbexmJgYZrVaWdeuXdnzzz/PqqqqvPbbunUr69u3L7PZbAwAmzlzJmOs7qnujDH25ptvsl69erGgoCAWFRXFfvvb37JffvmlSXby+2qMqqoq9uyzz7IuXbowq9XKYmNj2R//+MdaSxj4Mjvv3Llz7Oabb2YtW7ZkERERbNy4cezQoUMsJSXFdc8N0dDsvI8//rjW/nXNzmOMsYyMDDZ+/HgWFRXFbDYb69ixo9fsMMYYW7BgAUtKSmImk8nrHDVnMzEmzlC77777WKtWrZjFYmEpKSlswYIFrLy83Gs/AOyBBx6o874877++733Hjh1s4sSJLDo6mlmtVta6dWs2ceJE172Xl5ez++67j/Xq1YtFRkaykJAQ1rVrV7Zw4UJWWlrKGGPs119/ZdOnT2cdO3ZkISEhLCoqig0cOJCtWbOmll01qauMc/trfi913W9hYSGbPXs2i4+PZ6Ghoez6669n33zzTS2fvvjii2zIkCEsNjaWBQUFsbZt27LZs2ezzMzMJt9nQ3zzzTfsxhtvZGFhYSwkJIQNHjyYffHFF1778O9gz549XtvrK1M1aU5Zf+edd9jIkSNZQkICCwoKYklJSeyWW25hBw8erGXfli1b2B133MFatGjhmrl7/Phxr/PV973x/9U1O+/555+vtS/qmEX8+uuvs06dOrGgoCDWpUsXtnr1avbb3/6W9e3bt8F7JORBYIwx5aUbQRAEQeiHNWvW4M4778SePXvQv39/tc1xUVRUhC5dumDKlCl4/fXX1TYn4KDuPIIgCILQATk5OfjnP/+JkSNHIiYmBmfOnMGyZctw+fJl/PnPf1bbvICERBRBEARB6ACbzYbMzEzMmTMHly5dQmhoKAYPHoxVq1bhmmuuUdu8gIS68wiCIAiCIPyAhvMTBEEQBEH4AYkogiAIgiAIPyARRRAEQRAE4Qc0sFxCnE4nLly4gIiICMmX/CcIgiAIQh4YY7h8+TKSkpJ8WriURJSEXLhwAcnJyWqbQRAEQRCEH5w9e9anF6aTiJIQ/oqKs2fPIjIyUrLz2u12bNmyBWPGjIHVapXsvEaB/NMw5J/6Id80DPmnYcg/DaMn/5SUlCA5ObnOV001BIkoCeFdeJGRkZKLqNDQUERGRmq+IKoB+adhyD/1Q75pGPJPw5B/GkaP/vF1KA4NLCcIgiAIgvADElEEQRAEQRB+QCKKIAiCIAjCD0hEEQRBEARB+AGJKIIgCIIgCD8gEUUQBEEQBOEHJKIIgiAIgiD8gEQUQRAEQRCEH5CIIgiCIAiC8AMSUQRBEARBEH6gSxG1c+dOTJ48GUlJSRAEAevXr/f6P2MMixYtQlJSEkJCQjBixAj88ssvjZ53xYoVaN++PYKDg9GvXz988803ct0CQRAEQRA6R5ciqrS0FL1798arr75a5/+fe+45LF26FK+++ir27NmDxMREjB49GpcvX673nGvXrsXcuXPx+OOPY//+/bjhhhswfvx4ZGVlyXUbBEEQBEHoGF2KqPHjx+OZZ57B1KlTa/2PMYbly5fj8ccfx9SpU9GzZ0+88847KCsrw/vvv1/vOZcuXYrZs2fj7rvvRvfu3bF8+XIkJydj5cqVct6K+hQUAJWValthfIqLgdJSta0wPmVloq8JeamsBPLz1bbC+DidQG4uwJjalhD1YFHbAKk5ffo0cnJyMGbMGNc2m82G4cOHY9euXbj33ntrHVNZWYl9+/bh0Ucf9do+ZswY7Nq1q95rVVRUoKKiwvV3SUkJAPHN1Xa7vbm34oKfS8pzIi8P5hkzYPrqK7CoKFQtXQp2xx3SnV9BZPGPVFRUwPzggxDefRewWOD861/hXLgQ8PFN4c1B0/6RCsZg+te/YFq8GKisBLv1VlStWgWEhDR4WED4phnU5R9h7VqYH34YQmEhnDfcgKr33gNatVLLRFWRs/wIe/fCfPvtEE6fBuvSBY733gP69JH8OnKip/rlr42GE1E5OTkAgISEBK/tCQkJOHPmTJ3H5Ofno6qqqs5j+PnqYsmSJUhLS6u1fcuWLQgNDfXV9EZJT0+X5kROJ4Y+8QRiq8eJCcXFsMyeje8uXEB+aqo011AByfwjIalvvIEOGzaIf9jtMC9ejMMXL+LU5MmK26JF/0hF2/R09H3tNdffwgcf4FxODvb/+c9NOt7IvpEC7p/oX37B9U88AcHpBACYvvkGhePG4bunnwazGK45aTJSl5+Q3FwMf+QRWKofzIVjx+AYNw7bli+HPTJS0mspgR7qV1lZmV/HGbbUCzWe9BljtbY195gFCxZg/vz5rr9LSkqQnJyMMWPGIFLCgm6325Geno7Ro0fDarU2+3ym11+H+ZdfwMLC4PjmG5iXL4fp3Xcx5K234Pj5Z8Bmk8Bq5ZDaP1Ih7NoFS7WAcvz3vxBOn4b5r39Fzw8+QLcFC4C2bRWxQ6v+kYzcXFhuuw0AULVoEdigQTBPmIC227YhacECsBEj6j3U8L5pJl7+AWB59FEITiect96KqkcfhWXYMMQcOYKJmZlwPvyw2uYqjlzlxzx9OkwlJWB9+sDx8cewTJyIkGPHMC49HVVvvSXZdeRGT/WL9yT5iuFEVGJiIgAxI9XKI8Wcm5tbK9PEiY2NhdlsrpV1augYQOwmtNUhOKxWqywFRpLz2u3Ac88BAITFi2Ht2xd49VUgPR1CZias//0vMGtW841VAbn87jfPPiv+vusuWG6+WRzf8NlnEL79FtZXXwWWLVPUHM35RypeflkcC9W/P8xPPAGYTMC99wKrVsGyeDEwenSjpzCsbyTCarXC+vHHwK+/AnFxML32GkzR0WIsue8+mJcuhfmBB4DgYLVNVQVJy8+BA8AnnwCCAOHdd2Ht1Al45x3guutgev99mJ56CmjXTpprKYQe6pe/9ulyYHlDtG/fHomJiV7pw8rKSuzYsQNDhgyp85igoCD069evVsoxPT293mN0y7p1QFYWEBcH/OlP4raICGDuXPHz0qU0iFEKfv0V+N//xAb9scfEbSYT8I9/iJ/fegvw88mH8KC8HPi//xM/P/mk6GNA9LnZDGzfDvz8s2rmGYqXXxZ/P/QQEB0tfp41C2jTBrhwAfj4Y9VMMxSrVom/b7kF4MMrBg8GfvMboKoKeOUV9WwjaqFLEXXlyhUcOHAABw4cACAOJj9w4ACysrIgCALmzp2LxYsX49NPP8WhQ4cwa9YshIaG4rbqlD8AjBo1ymuJhPnz5+PNN9/E6tWrceTIEcybNw9ZWVm47777FL8/WXnvPfH3Pfd4D7q95x6xG+/nn4GDB9WxzUhwP0+YAHTs6N4+ZgzQtStw+TLw6afq2GYkvvhCnI3Xti0wcaJ7e3IyMGWK+FlH3R+a5fBhYPduwGoVs3wcm02MHYC7zBP+U1YGfPCB+LnmJCjeXfr++6KYIjSBLkXU3r170bdvX/Tt2xeAKID69u2LJ598EgDwt7/9DXPnzsWcOXPQv39/nD9/Hlu2bEFERITrHCdPnkS+xxTdP/zhD1i+fDmeeuop9OnTBzt37sTGjRuRkpKi7M3JyaVLwObN4mcPQQkAaNFCbPABYO1aZe0yGoyJgQ4Abr/d+3+CAEyfLn7+6CNl7TIivOG+/XZ3ForDZ5uuW0fZ1WZiWrdO/DB2LBAf7/1PXsa3bgWys5U1zGhs3ChmqNu1A4YP9/7f2LFAy5ZATg6wY4cq5hG10aWIGjFiBBhjtX7WrFkDQBwgvmjRImRnZ6O8vBw7duxAz549vc6RmZmJRYsWeW2bM2cOMjMzUVFRgX379mHYsGEK3ZFCfPGFOCYqNRXo0aP2/2+9VfxNafnmcfAgcPo0EBoK3HRT7f///vfi7/R0oKhIWduMxNWrog8Bd9n1ZMwYIDwcOHsW2LNHWdsMhktETZtW+58dOgCDBolj/vhMVMI/vvhC/D11au2HgqAgt/8/+URZu4h60aWIIvxk0ybxd10NOwCMGwdYLMCJE8DJk8rZZTS4n2+8URRSNenRQ+zSs9uBr79W1jYjsX27KKTatHGPHfEkJMSdXaXG3W+C8/IgHDokNur1Lc3B/fy//ylnmNGoqhIzUUD9fp40SfzNexQI1SERFShUVbmf2seOrXufyEiAD6TXwboemoU3JOPG1b8PXwyW/Ow/vMGZMKH+xUu5n7duVcYmAxLPx0gOGOAeUF6T8ePF3+np9AYEf/nxR3EV+KgoYOjQuvcZOVIcl3bypPiwS6gOiahA4cAB8RUvERHiTI/64I0OPen4R1kZ8N134ueGRBSfdk8iyn+2bxd/e7ydoBa/+Y34e/dumg3pJ7E//SR+aGipiH79gNhYccLE3r3KGGY0+Avvb7hBFEp1ERHhFlgUOzQBiahAgTfs119ffwUFxC4oAPj2WxqM6w979wIOB5CUJI4VqY8RI8Qp+CdPAufOKWaeYSgqAqpX3Mf119e/X0oK0KmTmInduVMZ24wEY4jjS0SMGlX/fiaT2PgDbjFA+IaniGoIPuC8gVeSEcpBIipQ4BWusXWvrr1WHMCYn0/jovzB088NrZAfEeEex7N7t/x2GY2MDFHkd+oENLAgLgC3yPr+e/ntMhpnzyK4sFB8pcvAgQ3vSyLKfxhruojiMZxElCYgERUoZGSIv6+7ruH9bDZRSHkeQzSdpopVwN2tSo277/DMan1jRzwZNEj8TWLVZwTus9TUuidJeMIb/+++E2fqEU3nyBFxuEVIiNg12hCDBomcQo47AAAgAElEQVQPaKdOARcvKmMfUS8kogKB8+fFVcpNpsafJgG30KLG3TcYIxGlFP6IqB9+oMbdR4QffgAAOLkPG6JPH1EEFBUBx4/LbJnB4FmoQYPEnoCGiIoC+JI99KCrOiSiAgFe0VJTxW6kxuAiiiqobxw/Lj5NBgcD1QvBNggXUXv3issdEE3DbndnlZoiolJTxca9pAQ4elRe2wwGF1GsKQ9fFgvQu7f4ed8+Ga0yIHwds6a+ZozHaOrSUx0SUYEAz3Q01pXH4fsdPAiUlspjkxHhDXu/fo0/TQJA587iCsTl5fSqHV/49VdxfaiICKBbt8b3t1iA/v3Fz5T1azqVlRB+/BFAE0UU4O6Kqj6OaCL794u/+VCKxuBii8qz6pCICgR4BR0woGn7t2kDtGolzmiixr3pVL/LscmB0GSi8Tr+wP3cp0/tVZ3rg/zsOwcPQqioQGV4uCj4mwIXUZSJajqVlcChQ+LnpmSwAXeM+eknmkWtMiSijA5jYkUD3Kn2psD35ccSjcN91adP04/hQZNPIycax1NENRWeieLHEo1TXZ6LO3RoeKapJ56ZKBp/1jQOHxaFVFQU0L59047p1k3MdpeUAJmZsppHNAyJKKNz4YI4Tsdkqvt9efXBRRRlopqGv2K1Vy/xN/m56fgjorifDx2ixr2pVAv74nbtmn5M9+7iDN+SEloipanwnoK+fZsuVq1W4JprxM/0oKsqJKKMDm+cu3YVB9c2Fd7oUAVtGhcuiGtrmc3u4NYUuJ9//pka96bAmH8iqnNnsXEvLRVfDk00TnXsKElJafoxVisNLvcVTxHlC9RboAlIRBkdf7IjnvtT4940uJ+7dRNn5zWVLl3EtPzly8CZM/LYZiTOnQMuXRIHi/uSWfXcn7pOG4cxt4jyJRMFuGMHH+dDNAyJKF1DIsro+CuiunZ1N+7U5944/vrZYnFnrqhLr3F4Fqp7d9/EKkBdp76QnQ0UFICZTLicnOzbsbw889fyEPXDmFvU+/ugSyJKVUhEGR1q3JXBXz8D1Lj7Am9wuM98gb9mhzJRjcN91LkznE1ZrsMTHjcOH5bWJiOSkwMUF4tjVrt29e1YHmtOnaKXa6sIiSgjU1kJHDsmfuYNiC/Q4PKmc+SI+JuvJOwLNP6s6fz6q/i7e3ffjyWx2nSqfcT8iRu82/TECXENNKJ+uNDs2FEcs+cL0dHii84Bd70gFIdElJE5eVJc6yk8HGjd2vfjeUNFqzw3TFWV20dNWfyxJlx40ZN743Cx6o+I4oLg+HFxsU6ifqrHMzF/HgpatQJatBDHUlLsaJjmlGfAHW9IRKkGiSgjwytWt25NnzrrCVXQpnHmDFBRIT5J+jKTicPT+CdOAA6HtLYZCcaal4lKSBAbd8ZEXxP1Uy1+mK9dTIAYa3g2ih4MGob7x5dJEp7wGM3FGKE4JKKMjKeI8gceQH/9lWboNQT3c5cu4hIHvpKcLC4/YbfTIP6GOH8euHJF9HHHjr4fLwjuMk0ZkvphzC2iunTx7xw0uLxpcBFFmSjdQiLKyDRXRHXoIA4wLysTGzCibpqbkjeZRAEGUDBsCO7nTp2a9m7CuiAR1Th5eUBRkSg6O3Xy7xw8s0IiqmF4mW5uJorihmqQiDIyzRVRVqs7iFKjUz/N9TNAjXtTaE5XHof83DjcNykpvi3Q6wn/jvjEFqI2BQVAbq742d/YwY87cULMZBOKQyLKqHiOH5GicacnnfohPytDczN+gDvjRyKqfrhv/BkPxeEvLD55koYC1Aev68nJ4uQff2jdGggLE8dSnjolnW1EkyERZVRycsS1Q0wm/1PyAKWLmwJv3Jsjovix1LjXj9QZP8aab5MRkUJEtW0rZrIrKoCzZ6Wxy2jwyQ1ccPqD5/pSFKNVgUSUUeEVqkMH39cf8YREVMNcuiSm5QF3lsMfqJupcaRodDp1Esf6FBe7u1IIb3hdb46IsljE2AOIS0oQteEvaG7OQy5AMVplSEQZFSkaHMAtDGhsQ93wQNiqlZhW9xfeYOXmAoWFzbfLaFRUiO/NA/ybmccJCXEvQ0Flum6kyEQB7thDIqpueIxuTnkG3CKMxyJCUUhEGRXeP97cCsqPP3dOXAGd8Ib7mT91+0t4OJCYKH6mYFib06fF7rfwcCAurnnn4uKARFRtHA7R10DzMquAu3EnEVU3UmWieIymMVGqQCLKqPAK2tzGPT4eCA0VGzBaw6g23M/NFauA+7uiYFgbTz/7s3CsJ9To1M+5c6KQCgry7y0HnlAmqmGkih08btDDlyqQiDIqUmVIBIEa94YgEaUMUmVWAfJzQ3CftG8vDlpuDiSi6qeoyD2WUqregqwsWuZABUhEGRUpGx16cq8fqcSq5znIz7WRUqy2by/+5t1WhBvuE+6j5sBF1KlT9DqjmvDynJDg//IGnMREcayf0ym+gopQFBJRRqSw0D04WYpgSI17/VAmShmk6p72PAf5uTZSPhQkJ4vdgnY7LXNQEz6ovLnjoQDqLVAZQ4qodu3aQRCEWj8PPPBAnfuvWbOmzv3Ly8sVtlwieEVKSGjejDEO9bnXjVQzxjgUCOtHjkxUXh5w+XLzz2ckpBRRZrN7JiRlSLyRsjwDFKNVxKK2AXKwZ88eVFVVuf4+dOgQRo8ejd///vf1HhMZGYmjNdboCQ4Ols1GWZG6glJ3Xt1kZooD7sPCmj9jDHAHQj62wWpt/jmNgNMpbfd0VBQQEyOOSaEuPW+kFFEA0K6dOCbq9GlgxAhpzmkEpMxEARSjVcSQIiquRoP2r3/9Cx07dsTw4cPrPUYQBCTyKeZ6R+pA6JkhYaz5s6OMgpQzxgBxrSmbzb3Ks1Tfn965cEH0icUiroQtBe3bAwUFEDIzxfMSIlLHDp71o5m93lAmyjAYPnpUVlbivffew/z58yE00NBduXIFKSkpqKqqQp8+ffD000+jb9++DZ67oqICFRUVrr9LSkoAAHa7HXYJZ0nwczX1nOYTJ2ACUJWSAqcUdiQlwSIIEK5cgT07W5qsi4T46h+pMB07BjMAZ/v2qJLo2pZ27SAcPQrHsWNgycmSnFMt/0iFcPQoLABYSgocjEkyA8ncrh1Me/fCeeIE0K2bbn0jKSUlsObnAwDsbdoAHnHMX/+YkpPFOnLqlGR1REv46x/LiRMQADjatQOTwC9CSopYR06ehENDftZT7PHXRsOLqPXr16OoqAizZs2qd59u3bphzZo1SE1NRUlJCV566SUMHToUP/30Ezo3sOL3kiVLkJaWVmv7li1bEBoaKoX5XqSnpzdpvyE//IA4AD9duYKzGzdKcu0x0dEIKShAxnvvobC5KxnLRFP9IxU9v/4aHQGcAvCLRH4eFB6ORACHPv8cZzwEuhQo7R+paLt1K/oCyIuIQIZEfu7OGLoAOLdzJ9Ctm259IyWRp09jJICKyEhs+vZbr//565/WhYXoD+DSjz/iO4m+Oy3ii39MFRWYfOGCeNzJk6jMy2v29cPPncMoAFXHjmHjhg2a6y3QQ/0qKyvz6ziBMWO/hXPs2LEICgrCF1980eRjnE4nrr32WgwbNgwvv/xyvfvVlYlKTk5Gfn4+IiMjm2W3J3a7Henp6Rg9ejSsTRgnY+nSBUJmJhzbtoENHSqJDebf/AamnTvheOcdsOnTJTmnVPjqH6kw/+53MG3YgKpXXoHz3nslOadp7lyYV6xA1SOPwLl4sSTnVMs/UmF64gmYn30WVffeC+crr0hyTuGtt2C5/35UjR2LL++/X7e+kRJh/XpYbrkFzgEDUPXddwCaX3aE3bthueEGsORkOAzY1eSXf44ehTU1FSwsDI5Ll6QRPOXlsERFQWAM9vPnNdNboKfYU1JSgtjYWBQXF/vUfhs6E3XmzBls3boV69at8+k4k8mEAQMG4Hgji8TZbDbY6ni5r9VqlaXANOm8lZXiwGSIYkqywckdOwI7d8KSlaXZAc9y+b1eqsd5mDt3hlmq61YPNDWfOSPdOatR3D9SUT0D0tyhg+R+NlXPGtOtb6SkehkCU8eOMNXwhd/+qfazcO4crIyJSx4YEJ/8k50NQOyCs0rlD6tVXGH+3DlYs7KApCRpzisReqhf/tpnyCUOOG+//Tbi4+MxceJEn45jjOHAgQNo1aqVTJbJyNmz4mym4GBxoLJU0MBFbxhzT9tu106689IyB7XhfubT5aWA+zkzU6wvhPdq5VKRkCDGIsZorSiOHOUZoEH8KmFYEeV0OvH2229j5syZsNSYfTNjxgwsWLDA9XdaWho2b96MU6dO4cCBA5g9ezYOHDiA++67T2mzm091Fgpt20rbL86FAj9/oFNUBFy5In6WasYY4A6EJKLc8DInZaOTnAyYzRDKyxFcVCTdefWMHCJKENyxgxp3EblEFD8fxWhFMWx33tatW5GVlYW77rqr1v+ysrJg8ngvVFFREe655x7k5OQgKioKffv2xc6dOzFw4EAlTZYGTxElJfx8VEFFuB/i4sRXLkgFD4SFhUBpqTSLpeoZhwM4f178LGWZtlpFIZWZidCLF6U7r57hjbuUIgoQRdSvv9KaXBy5RBTFaFUwrIgaM2YM6hszv337dq+/ly1bhmXLlilglQLILaJ4d2FzX06qd+Tyc1QUEBkJlJSIvu7WTdrz640LF4CqKlH0SL2OW7WICqme1h/QMCZfmaZuJm+4iKIHXUMQ4C2hAZErELZuLabmKyrE12UEOnIFQkBs3AEKhoDbB8nJ0gv36u+ORBSA4mJ393SbNtKem7rzvJGjexogEaUSJKKMhlwiymp1D1SnSipfIAQoGHoip1jlIooeCtxlLTYWkHqNOy6iqDtPzKry922SiDIEJKKMhlwiyvOcVEnJz0ohp1itzvhRJgrylmfqznNz4YI4zs9ikXb2NOD+7goL6cXaCkIiykjIOa7B85zUuCvjZ5oSrkwmikSUu6xJ9KohL/g5s7MleWWPruHluXp2qKRERAAtW4qfKUYrBokoI3HpEsCXrpd6XANAIsoTBRp38jMU6Tal7jzI+1AQHy8OB2DMtdBkwCLXzDwOxQ7FIRFlJHjFiY+Xdto9hzIkIpWV7sZAxm4mCoSQt3Gv9rPt8mX3w0egIqefTSb3Q12gxw45/ex5XoodikEiykhQBVWG8+fFp2qbTZ53VHmKVWO/2rJhPFeFl6NMR0WBRUSIn6lxF3/LFTtIRIlQJspwkIgyEiSilEGuVeE5tJyEiFyrwnMEwZWNEgK9cZdzTJTnefnMtECFRJThIBFlJJQSURcvAuXl8lxDD8iZHQHEl7TSchJuP0u9KrwHjBp372n3lImSF3rQNRwkooyEnINwASA62r2GTCA3OnIHQs9zB3IwlLs8wy2ihED2c3a2KKQsFulXhedwsRroIorHTbkyfryu8AcQQnZIRBkJuRt3QaDGHVCkcafB5ZC/iwlwZUiEQH4o4H5u3Vr6afccyviJXdMlJeLn1q3luQaPz+fOicKYkB0SUUbC8xUZckEiyt0QyLGMBIdmQrpfPCxXgwOP7rxA9rMSmVXqznOX54gI8UcOEhNFIVxVBeTkyHMNwgsSUUbB4XBXGjkbdwqGijTurgYtkNPyCvo5oLvzlBBRXKxevCguERKIKFGezWb3eEp+PUJWSEQZhYsXAadTrETx8fJdhweAQK6gSgRDLlbJz/Jmorifz50L3OUklOg2jYsTJ0wwJr76JBBRIoMNUIxWGBJRRoFXmFat5BvXAFAFLS8HCgrEz3KKqED3M6CMWK0+t3D1qrikQiCihJ8FgbLYSvjZ8/yBHDsUhESUUVC6ggbq0yS/7+Bg93uq5CApSfydnS1mGAMRJcp0cDAq+fiUQG10eJnmZU4uAn1wOYkoQ0IiyigoFQj5+QO1gvL7TkqSZ6FNTmKieH6HIzAX3Lx82f0mepkbnavR0eKHQH0wUKpxD/RB/Er5mcfoQC3PCkMiyigo/ZSTmxuYb2RXys9WK5CQIH4OxGDI/RwZCYSHy3qpci6iAvHBwOl0vwdS7gcwz/FngQi/b8pEGQoSUUZBqcY9Ls79RvZAnEKrlJ+BwM76Kejn8kDOROXlidlOQZBvoU0OZaLE3zSw3FCQiDIKSjU6JlNgT6HlDa0SIiqQg6EaIioQ/czLc3y8+HAkJ4E8ntLhEGdQA5SJMhgkooyCko07ZUiUFVGB2OgoKaJiYsQP5Gd5CeSxOjk5YtepxSLvEjSA28+e4woJ2SARZRQ8BzzLTSA/6VB3njJQJkoZlJqQ4nmNQJxxysdDtWolZvPlxHNF9EAs0wpDIsoIKPFOJk8oQ0J+lhsF/RzQs/OULM8JCeLYq6qqwJtxqtR4KE4gxw6FIRFlBJR4J5MngZqJ8lxtmTJR8qJGJionRxy7EkgoWZ4tlsCdcaqkWPW8TiDGDoUhEWUElAyEQOA27gUFQEWF+JkPrpeTQH6aVLDRqYiKAjObxS6m3FzZr6cplBwGALjrDV9WIVBQankDDokoxSARZQTUesoJtMad+zk2FrDZ5L8e93N+vlu8BQKeL9NWokybze7p/YHW6Kj1ABaosYNElOEgEWUElH6aDNQKqnQgbNnSLdYCqdFR6mXaHrBAb9yVih2B7melxkQFam+BCpCIMgJKN+68gnoOaA8ElH5qF4TAzPop9TJtTwJx7bOKCjHLCVAmSm4oE2VYSEQZAaUb9/Bw8XUcQGBVUqUDoee1yM+yEpCZKD4uyWYD+OB6uQlEPzOm3pioQPKzSpCIMgJqNu6BVEnV8HMgNjpq+jkQxarcL9P2hGf8Aqk8FxYC5eXiZ6WHXGRni0tKELJBIsoIUIZEGcjPykCZKGVQcqFNjueCm4ECnyTRsiUQEqLMNRMSxEU9q6oCb8apwhhSRC1atAiCIHj9JDbycs0dO3agX79+CA4ORocOHbBq1SqFrG0mSr6F3ZNAfnKnDIm8KD3Y2fNagehnNcpzTk7gZEh4fJb7Bc+eWCyBO+NUYQwpogDgmmuuQXZ2tuvn559/rnff06dPY8KECbjhhhuwf/9+PPbYY3j44YfxySefKGixn+TmilPCTSZlK2kgduep8eQeiH7mT+4K+pkFYjeTGuU5Pl6MVYG0Jhcvz0qsLedJID4YqIBFbQPkwmKxNJp94qxatQpt27bF8uXLAQDdu3fH3r178cILL+Dmm2+W08zmw59y4uPFpw+lCLRuJrvdPZNJyWAYaH4G1Hly534uLASuXlWu20VN1MhE8TW5LlwQf5QWFmqgRnkGvLN+hGwYVkQdP34cSUlJsNlsGDRoEBYvXowOHTrUuW9GRgbGjBnjtW3s2LF46623YLfbYbVa6zyuoqICFR6LIJZUT/e32+2w2+0S3Qlc56rrnMLZs7AAYImJcEh4zcYQ4uJgAeDMzkaVgteti4b8Ixnnz8PKGJjZDEdUlCiqlCAuDlYA7Px5OCor/RoArIh/JMSSkwMBgD02VnY/u3wTGgpLSAiEq1dhP3MG6NhR1utqAfP58zABcMTHg9XjZznKjrlVK5guXIAjKwusVy/JzqsGTfGP6cIFmAFUJSTAqWAdNMXHi9c9d07R63qip9jjr42GFFGDBg3Cu+++iy5duuDixYt45plnMGTIEPzyyy+IiYmptX9OTg4S+DudqklISIDD4UB+fj5a1fO0tGTJEqSlpdXavmXLFoSGhkpzMx6kp6fX2tZ261b0BXDRbMbujRslv2Z9tDx9GsMAXD11ClsVvG5D1OUfqYg6cQIjAJRHRWHLpk2yXacm5ooKTAIgXL2KLZ98AkczypWc/pEKweHATdUZv62HDqHy7FlFrpu+dStGtWiB8KtXsXvdOhRcc40i11WTG0+cQASA3VlZyG+kDktZdgaaTGgF4FB6Os6YjDGipCH/XLtvH5IBHCksxEkFY2XXy5fRDUDWnj04qHKM1kPsKSsr8+s4Q4qo8ePHuz6npqbiuuuuQ8eOHfHOO+9g/vz5dR4j1HjCZ4zVud2TBQsWeJ2vpKQEycnJGDNmDCL5OkoSYLfbkZ6ejtGjR9fKipkOHgQAxKemYsKECZJds1G6dwcefRShJSWYMH68clOk66Ah/0iFUB2EglNSlPUzABYZCaGkBGN69QK6dPH5eCX8IxnV6+kwiwW/+cMfxPEzMuLpm+AOHYDsbAxu3x5M4e9YDSxXrgAABv72t0C3bnXuI0fZMW3YAOzZg9SYGFyjcz83xT/ml14CAHQbMQJdFbxf07lzwNq1SAkKQhuV/Kyn2FPi58LRhhRRNQkLC0NqaiqOHz9e5/8TExORU6PfODc3FxaLpc7MFcdms8FWxzvUrFarLAWmzvPm5QEATElJMClZSKtfXyCUl8N69SoQFaXctetBLr8DcI2HElq1Uj4YJCYCJSWwFhQAzbi2rP6RioICAICQkACrEu8nrMZqtcJUnXG25Oc3y8+64OpVoLgYAGBt27bR+5W07FTHDvPFizAbxM8N+qe6bbG0aaNsuaoe62bKzVW2bagDPcQef+0zRi61ESoqKnDkyJF6u+Wuu+66WunGLVu2oH///pr/4l2DBpUetBga6l61PBAGLqo1ONTzmoHgZ7XKM+Ae5BxIfg4OdtdjpQi0NbnUmp0XSHFDRQwpoh555BHs2LEDp0+fxu7duzFt2jSUlJRg5syZAMRuuBkzZrj2v++++3DmzBnMnz8fR44cwerVq/HWW2/hkUceUesWmg417sqgViAEAsvPVJ6VwVOsKt0VH0giqrxcnPEJKF+meazKzhZfPUPIgiFF1Llz5zB9+nR07doVU6dORVBQEL7//nukpKQAALKzs5GVleXav3379ti4cSO2b9+OPn364Omnn8bLL7+s/eUNAGrclULNDEkg+pnKs7xoIeMXCCLq4kXxd1CQuGK5kvDJUpWVQFGRstcOIAw5JurDDz9s8P9r1qyptW348OH48ccfZbJIRrQQDAPhFQ6UIVEGEqvKoKafeSaKLxSs5Pp2SuMZN5TO+AUHAy1aiAIqJ0d5ERcgGDITFTBcuSL+ANToyA1lSJSBxKoyqCmiYmPFWZeMuRewNSpqxg0gsMq0SpCI0jO8YoSFAeHhyl8/UCooY5QhUQotiNWLF8XXkhgZNcuz2QzExXnbYVTUfCgAAqu3QCVIROkZNQOh53WNHgivXAH4Qmw1FmVVBO7nQAiEapbpuDixy6WqyrXUgmGh2KEMlIkyPCSi9AxVUGXg4iU8XN2MX26u2MAbFcbUfXK3WsWuJsD4glVtEcUfRvjAa6PCyxHFaMNCIkrPqB0IA6WCqi1W4+PFMSROp7HHkJSUiFPCASrTckOxQxnIz4aHRJSe0Up/e16esTMkagfCQBlDwu8tMlJczFUNAqHRUXuMn+d1jexnQP1MFI2Jkh0SUXpG7UDIZ9k4nWJXk1FR28+e1zZyo6N2gwMEhp+LisS1gwB1xvh5Xtfo3Xlqx45AKM8qQyJKz6hdQc1msavJ0xYjQo27Mqhdnj2vHQh+btFCXEtIDQLBz06n+kMBAsHPKkMiSs+oXUGBwKik1LgrA/lZGcjPynDpkriYKOB+2FQa7uf8fMBuV8cGg0MiSs9QMFQG8rMyUMZPGbRQngOhO4+X59hY8bUvahAT414R3si+VhESUXqlqspdKahxlxctNDqBsFaUlvwcCOVZC2L10iWgokI9O+REC+XZZHILViOXaRUhEaVXCgpEISUI7plbasADsZErKGVIlEELjQ75WRlatnRnSIw6KUULcQMIjDKtIiSi9AqvELGx4iKBamH0DElVlbiEA0CNu9xoodHhfi4spAyJnHhmSIzazaQFP3te38ixQ0VIROkVLaTkAeNX0Lw8cZaNyaRuxs/ofga00ei0bOl+KKHGXV6MXqa18FAAGN/PKkMiSq+ovdAmx+gVlPs5Pl5c0kEteCAuLgauXlXPDrmw292rsatZpgUhcMq02rHD6GN1tCJWacFNWSERpVe0UkGN3uBoxc+Rke41fYyYIcnNFVfSNpvd769TCyrTysCvb8TyDFAmKkAgEaVXtBYIL18GSkvVtUUOtOJno2dI+D0lJIhdp2piZD9rJePneX0j+hlwi0O1VoXnGN3PKkMiSq9oZUxURIT7PWdGfKLUiojytMGIwZD8rAx5ee6MX0yMurYYvTuPzzokEWVoSETpFa00Op4ZEiP2uWslJQ8Y289aeWoHjN3o8HtSe4wfYOzuPLtdXAMLUG+1co7nmCjG1LXFgJCI0itaGRzqaYMRGx0e4NUOhEBg+JlElLxo5eHL0wYj+pkvi2IyAdHR6trC/Xz1qjjsgpAUElF6hRodZdBKSh4IDD+TWJUXLYkoI3fn8fIcF6f+GL/QUCAsTPxs1IVNVYRElB6prASKisTPWmjcuQ1GrKAkopSB/KwMWhJRnpNSysrUtUVqtFSeAeMvbKoiJKL0CE8VWyxAixbq2gK4swdGrKBaypAEgljVgp89RZTRxpBoKYNt5GU7tDQMAHDbYcTYoTIkovQIr6BaSBUDxq2gDof4jkJAG8HQyGJVS40OFxhXrxpv2Q4tZUgEwbhdelp6KAAoEyUjGmiBCZ/RUiAEjFtB8/PFTITJpP50cMC4YhXQVpkOCzPush1aa9yNOkNPS+UZMHbsUBkSUXpEa4HQqBWU309srPrTwQF3QC4tNVaGxOl0d1FTmZYXLWX8AOOOP9NajDbqg64GIBGlR7QWCI1aQbUWCMPD3WNIjNS4FxSIQgpQ/5UvHKOOP9NahsSo3Xlai9FGfSjQACSi9IjWGndux+XLxno5rtYCoecYEiMFQ34v0dGA1aquLRwjjj+rqnK/8kUrZdro3Xla8bNRH3Q1AIkoPaK1p8moKCAoSPxsxMZdK4EQMGbjrrXyDBhTrPIxfoKgjTF+gHEzUVor05SJkg0SUXpEixkSI1ZSrQVCwJiNO4lVZeB+jokRl0fRAkYsz4xpr0xTJko2SETpEQZZ/pgAACAASURBVK1VUMCYwVCLfjZi4661hwLA2OVZSw8FRnz4KikBKirEz3Fx6trC4X4uKhIXayYkw5AiasmSJRgwYAAiIiIQHx+PKVOm4OjRow0es2bNGgiCUOunvLxcIat9QMvBkBp3eTFio0NiVRnIz8rA/Rwe7l4qQ21atnRnH40UOzSAIUXUjh078MADD+D7779Heno6HA4HxowZg9JGpoVHRkYiOzvb6yeYz4bSClpMFQPGfnInP8uLlh8KjORnLT8UGGlSihbLs8nkzooZqUxrAI10jEvLpk2bvP5+++23ER8fj3379mHYsGH1HicIAhK18E6phigqAux28bNWUsWAsZ8otRQMjexnLTXuRharWvJzixbijEy7XVwrrG1btS1qPloUq4BYprOzjRU7NIAhRVRNiouLAQDR0dEN7nflyhWkpKSgqqoKffr0wdNPP42+ffvWu39FRQUqeN83gJKSEgCA3W6HnQsdCeDnstvtwPnzsAJgUVFwmM1uQaUyppgYmAE4c3JQpbBNXv6RCsZgyc2FAMDesqVm/CzExMACgF28CEcTbZLFPxJizsmBCYAjOhpMK2WnZUtYAaCgAPayMu0svdAMuJ+rYmPh1FDZscTHQzh/Ho4LF8BatZLtOnJQl39M2dliLIyNVTwWNoQ5Lk6sZxcuKFbPtB57PPHXRsOLKMYY5s+fj+uvvx49e/asd79u3bphzZo1SE1NRUlJCV566SUMHToUP/30Ezp37lznMUuWLEFaWlqt7Vu2bEGoDH3h6enpiP7lF9wAoDQsDF9t3Cj5NfylTXY2+gEoOHwYu1SyKz09XbJzWa5excTq7oXN+/ej6sgRyc7dHCIyM3EjgMpz57DJRz9L6R8p+U1mJsIAZJw8iUtaKTtOJ24ymSA4nfhq7VpUNPIApgcG/fwzEgH8fPEizmio7Ay32dACwJ4NG5Cr0yyJp3+6fPcdugPIqqjATxqK0dfa7UgGcHTnTpxQeFFbrcYeT8rKyvw6TmDM/9eU2+125OTkoKysDHFxcY1metTggQcewIYNG/Dtt9+iTZs2TT7O6XTi2muvxbBhw/Dyyy/XuU9dmajk5GTk5+cjMjKy2bZz7HY70tPTMXr0aAR9/jks06fDOWQIqrZvl+wazUVIT4dl4kSwnj3h+PFHRa/t6R+rVBmDkydh7d4dLDQUjqIiac4pBRcvwpqcDCYIcJSWNmmquiz+kRBLdDSEK1dgP3wY6NRJ0Ws35BtLcjKEixdh/+EHoE8fRe2SA/PQoTDt2QPHf/8LdtNNTTpGibJjnjQJpi1b4HjjDbCZM2W5hlzU5R/Tn/8M88qVqFqwAM46HrLVwvT3v8O8bBmq5s2D89lnFbmm1mOPJyUlJYiNjUVxcbFP7bfPmagrV67gP//5Dz744AP88MMPXiKiTZs2GDNmDO655x4MGDDA11NLzkMPPYTPP/8cO3fu9ElAAYDJZMKAAQNw/Pjxevex2Wyw2Wy1tlutVlkKjNVqheXSJdG+xESYtFQoW7cGAAi5uapVFkn9XlgIABASErRV+Vu1AgQBAmOwlpT4NF5LrnLZLMrKgCtXAADW1q1V6zar0zfx8aJoLSw0RHcefz+hJSnJ5/uRtexUl2FLQYFu/ezln2o/m1u1gllL91PdVWrOy1PcLk3Gnhr4a59Ps/OWLVuGdu3a4Y033sCNN96IdevW4cCBAzh69CgyMjKwcOFCOBwOjB49GuPGjWtQgMgJYwwPPvgg1q1bh6+//hrt27f36xwHDhxAK6310WtxcCjgtic/X3y9hN7Rqp/NZvf75XTa9eEF97PNBkREqGtLTYw2uFyLEyUA4/pZa7HDiDNONYBPmahdu3Zh27ZtSE1NrfP/AwcOxF133YWVK1di9erV2LFjR73jieTkgQcewPvvv4/PPvsMERERyKl+pUBUVBRCQkIAADNmzEDr1q2xZMkSAEBaWhoGDx6Mzp07o6SkBC+//DIOHDiA1157TXH7G0SrMz/4TEGnU3yhrNbs8xWt+hkQG528PGMEQ8+GXRDUtaUmRpoJeeWKmPUDtFemjda4a12sGqE8awifRNTHH3/s+nzddddh8+bNdfYdBgcHY86cOc23zk9WrlwJABgxYoTX9rfffhuzZs0CAGRlZcFkcifiioqKcM899yAnJwdRUVHo27cvdu7ciYEDBypldtPQagW1WMTXSRQUiDZqLVD7ilafJgFjNe5a9rORMiT8HkJCgLAwdW2piVFFlNbKtNH8rBH8np23e/dulJeX1xJRJSUlePrpp/H888832zh/acpY+e01BmUvW7YMy5Ytk8kiCdFqBQXERqegQGzcG5gJqQu0KlYBYzbuWizPRhSrlPGTF7sdqB63qrky7Rk3nE5xAU6i2fjsxalTp+Jf//oXBEFAbh1BvLS0FEuXLpXEOKIOtNzNZKQnHWrclYHKszKQn5WhelA5zGZAa7PV+ZCLqirXxBmi+ficiUpJScGXX34Jxhh69+6NmJgY9O7dG71790avXr1w8OBB7Q3GNhLUuCsDNTrKQBk/ZdBy3OB+zsvTf4aE+zkuTnv3ERQkrhBfVCTGt5gYtS0yBD6LKN7lZbPZ8O233+LChQvYv38/Dhw4gE8//RROpxPPPfec5IYSEN8MXr36OjU6MqOHRof8LC9GeijQsp95hsThEBt4rWVwfEHLD1+AGDuKisTy0KOH2tYYAr/HRJWWlsJSvdDfb3/7W8kMIhqAp4otFvGJQmsYsdHRolg1kp+13Oh4ilXGtDeWyBe0XJ5tNiAqSnxAzM3Vt4jSslgFRLuOHjVG7NAIfucbLU1YKZmQGM8KqsWAbpQMicMhDpAHtBkMjeJnQNuNDrepstKdAdYrWhargHG6qLUsVgFjxQ6N4JOIysrK8unk58+f92l/omEErVdQowTCggJ35kGL4wY8M1H+v7VJG2i5TAcHA3z2sd7LtJbFKmCc7Cr5OeDwSUQNGDAAf/rTn/DDDz/Uu09xcTHeeOMN9OzZE+vWrWu2gYQHWq+gRlnMjdsfGyvOstEa/PuvqAAuX1bXlubgdLq7qLVapo3S6OglduhdrGo942cUP2sIn/rkjhw5gsWLF2PcuHGwWq3o378/kpKSEBwcjMLCQhw+fBi//PIL+vfvj+effx7jx4+Xy+6ARNB6IPTMROl5DImWsyMAEBoKhIeLq1Dn5rqzJXqjoEAUUoD7VTZaIz4eOHFC/40Ob9y1WqaNksXWS4zW+0OBhvApExUdHY0XXngBFy5cwMqVK9GlSxfk5+e73pF3++23Y9++ffjuu+9IQMkBf2rXaiDkdl296nqprC7ReiAEjBEMuZ+jo7X74lkjPLlrfYwfYDwRpfUYrXc/awi/RocHBwdj9OjRmDp1qtT2EA2g+UxUWJiYJSkrEyup1l4o21S07mdADIanTuk7GGq9wQGMIVa1PsYPMJ6I0mrsMEJ51hh+z8674YYbXC/2JRRC6xUUMMa4KK2PawCMEQz1VJ713Lhz22NixOVRtIgRyjNj2o8dRijPGsNvEdW/f38MGjQIv/76q9f2/fv3Y8KECc02jKiN5mfnAcZ4otSDn40QDLXe4ADGaNy1Ph4KMEZ5LikRl8MAtFumuV2lpeIP0Wz8FlFvvvkm7rrrLlx//fX49ttvcezYMdxyyy3o378/bDablDYSHK3PZAKM0ejoIUNCYlUZjORnKs/ywm2PiABCQtS1pT4iIsSlOwB9+1pDNCu3u3DhQgQFBWH06NGoqqrC2LFjsWfPHlx77bVS2UdwnE59BEMjPFHqwc8kVpWByrMycNuKi8WlO/T4IK6HzKogiPZlZYn2tm+vtkW6x+9MVHZ2Nh5++GE8/fTT6NGjB6xWK2699VYSUDJhLS2F4HCIf2i5khqhcddDMKTGXRmMVJ61nPFr0cI9Xotn3PWGHsozYIzYoSH8FlEdOnTAN998g48//hj79u3DunXrMGfOHDz77LNS2kdUY+OvnWjRQnwbt1bRewVlTF/dTEZo3LXc6PAywDMkekQPjbvJ5H4RsV7LtB7iBmCM2KEh/O7Oe/vtt3Hrrbe6/h47diy2bduGSZMm4cyZM1ixYoUkBhIitqIi8YOWAyGg/wpaWiqucwVo29d6F6uAPhodniFxOER7k5PVtsh39CCiALEcZGfrt0zryc+Afv2sMfzORHkKKM61116LXbt2Yfv27c2xiagDVyaKKqi8cLtDQ8V1r7QKLweFhe4ZQXpDD40OH0MC6L9Ma9nPgP79rIfMKqD/B12N4beIqo927drhu+++k/q0AY9LRGn5qR3QfwXVSyBs2VLfY0jKytyr2mvd13p/MNDDmChA/yJKD5lVwBhr+WkIyUUUALRs2VKO0wY0QXrLROk1Q6KXQOg5hkSPjQ632WbT/sr2en4w8Bzjp/XYYRQRpRc/6/HhS4PIIqII6dHNmKjoaLGBB4D8fHVt8Qe9BEJA3427p1jV+ouq9ZyJ0ssYP0Df5RnQT+zQu581BokonaCb7jyjZEi0HggBfTfuevKznhsd7ueQEG2P8QP0XZ4B/QwF0LufNQaJKJ2gm4HlgL4bHb0EQkDf3R968rOeGx3P8VBaz/jpuTxXVopDGADtP+hyPxcUiLNOiWbRrBXLv/rqK3z11VfIzc2F0+n0+t/q1aubZRjhjW668wAxiPz8sz6DoV7GRAH6bnT0mIkiP8uLnv3Mhy6YzeKkDy0TEyMKasZEuxMT1bZI1/idiUpLS8OYMWPw1VdfIT8/H4WFhV4/hLTopjsP0Hcw1GOjo8eMH4lVZdBjec7NFRt4PcHrYFyce0yoVrFYgNhY8bMey7TG8DsTtWrVKqxZswZ33HGHlPYQdVFeDmtZmfhZb8FQb+ip0dFzN5Oe/KxnsaqX5Q0At5/tdqCoSPsZHQ8EPbwc3pP4eHF2nh5jh8bwWzJXVlZiyJAhUtpC1Ed1QWdBQUBUlMrGNAE9iyg9jdUhPysDFyB5eeKLwPWEnsRqcDAQGSl+1luZ1lNmFdB37NAYfouou+++G++//76UthD14PWUo/XBoYB+F3NzOMTBloA+gqGeMyR6anT4bFOHQ8yQ6Ak9iShAt427LjNRgD5jh8bwuzuvvLwcr7/+OrZu3YpevXrBarV6/X/p0qXNNo6ohgcUHsy1jk4DIQoKxLEYgiAOvtQ6nt153G69oKfGPShIfIdeUZFod3S02hY1HT35GRDtPHFCf7FDT5lVQN9DATSG3yLq4MGD6NOnDwDg0KFDXv8T9BTM9QDvzouPhy48q1cRxe2NjRVn2WgdLqrtdqC4WGzo9YDT6V4tWS+NTny8KKIuXgS6dVPbmqajpzFRgG5jhysTRX4OOPwWUdu2bZPSDqIBBD1novSUIdHb0yQfQ1JSIvpaLyKqoMA9tojPEtI6CQnAsWP6a3T0mIkC9NfNpMeHAkB/ftYgGp+L2TxWrFiB9u3bIzg4GP369cM333zT4P6ffPIJevToAZvNhh49euDTTz9VyNJGqK6gTG8VtKJCbOD1gp7G6XD0GAy5n2NigBrDADSLHp/cPcf46SV26LWbSW9iVa9+1iDNElFFRUV48cUXcffdd+NPf/oTli5dimK+npHKrF27FnPnzsXjjz+O/fv344YbbsD48eORlZVV5/4ZGRn4wx/+gDvuuAM//fQT7rjjDtxyyy3YvXu3wpbXRtBbBQ0NBcLDxc96qqR68zOgz2CoRz/rUUTl5+trjB+gTz9DhzFap37WIn6LqL1796Jjx45YtmwZLl26hPz8fCxbtgwdO3bEjz/+KKWNfrF06VLMnj0bd999N7p3747ly5cjOTkZK1eurHP/5cuXY/To0ViwYAG6deuGBQsWYNSoUVi+fLnCltcBHxOll+48QJ+VVG+BENCnn/XWbQroO+MXGysusKgH9OhnxvSXxdbrwqbHjwM5OUBVldqWuPC7Zs2bNw833XQT3njjDViqK6jD4cDdd9+NuXPnYufOnZIZ6SuVlZXYt28fHn30Ua/tY8aMwa5du+o8JiMjA/PmzfPaNnbs2AZFVEVFBSoqKlx/l1R3Xdntdtjtdn/Nr4W5OqA4YmLAJDyvnJjj4mA6dQqOCxdkt5n7urk+N2dnwwSgKiYGTp342RQbCzOAquzsem2Wyj9SYcrOhhmAMzYWVSrb1FTfcD87c3JUt7mpCBcuwALx4cvhp81Klx0hOlq0+eJFv21WErvdDktZGYTKSvHvFi3EiR5aJzoaVgC4ehX2wkIgIkKWy0hdfizDhkHIyYH9hx+A6oltUuGvjX6LqL1793oJKACwWCz429/+hv79+/t7WknIz89HVVUVEmo8FSQkJCAnJ6fOY3JycnzaHwCWLFmCtLS0Wtu3bNmC0NBQPyyvmxGXLyPSZML3p06heONGyc4rJwP/v70zj4+qSPf+r7vT3ZCQhCRNVkJAUBBZZFEILuBCQMWNqwOjF2FU3lEHFZeZO4wLiDOD+rox4x1HP+MwOuqg7yhcHVETXOJwAVmDLIosgUAWEkJISAJJp1PvH5XT3SFb9+mzVJ1+vp9PPqfTffqcOk/X8qunnqpiDBkAdn/5JQ65XIbcs6CgIKLvT9i1C+kAvqusRIkkdh5WW4uhAEo2b8Z3PaQ5UvtoxbANGzAUwKHTp7FTEDv3ZJuMI0dwMYCaH3/EOkHS3BNZhYUYD+C4w4H1EabZqLzT58gRXAXAW1aGTyWxc1zb2mHe3r2xRqIJV9e53YhpasLX77+PxowMXe+lSf5pbcX1lZWwAfhy1y6cKSuL/JpBNCq7goSJahGVkJCAkpISDDtruu+RI0cQr5OqDZezl1pgjHW7/EK45y9atAgPP/yw//+6ujpkZ2cjLy8PCcrKuxrgnToVH332Gabm5cHpdmt2XT1xfPwxsGkTRqSmYvi11+p6L6/Xi4KCAkydOrXDemXh4Pjd7wAAI6+8EiN0TrNW2A8fBt5/Hzm9e6N/F2nWyj5a4fj4YwBAzkUXIdtkO4dqG1tCAvDcc0j2enGtLHlj3z4AQMqwYarTbHjeqa4G7r8froYGXHv11XyNLoHxer3Yunw5ACAmK0uavAEAjowM4NAhXHHBBWATJ+pyD03zT3U17G2zeq/8yU80zxt1KidBqRZRs2bNwl133YXnn38ekyZNgs1mw7p16/DLX/4SP/3pT9VeVhM8Hg8cDkcHL1JlZWUHb5NCenp6WOcDgNvthrsTUeN0OrWvcBwOON1uIRrBkGjbGdxRXQ2HQWmO2O5tsyBjMjPlmTXW1oO0Hz8Oew9p1iVfqqHNzo6MDMPyRk/0aJvMTAA8gFgIG4ZC28w8e3p6j3mjJwzLO6mpfI02nw/OkyeBrCz97xkhyubwttRUefIGwG196BBiqqt1r+80yT81NfyYlARnXFzkiToLtelTHVj+/PPPY+bMmbjjjjswcOBA5OTkYN68ebjlllvw7LPPqr2sJrhcLowbN66DC7GgoKDL/f5yc3M7nJ+fn0/7A6pFtoBnxuQOeJbFzoCcAfxKZ6quDjhzxty0hIpswc4AYLcH1sOTJLhcEVFS5WdAvpm9gq6XqNoT5XK5sHz5cixbtgwHDhwAYwxDhgzRNBYoEh5++GHMmTMH48ePR25uLl5//XWUlJTgnnvuAQDccccdyMrKwrJlywAADz74IC6//HI8++yzuPHGG/E///M/WLt2LdatW2fmY8iLbI17QwNw+jR/LVOjI+NsJhkb98RE3lv3erknLTvb7BT1jIxiFeD5oqJCmrrDreynKJudZaujBc3PEc97jY2NxciRI7VIi6bMmjUL1dXVWLp0KcrLyzFixAisWbMGOTk5AICSkhLY7QFH3KRJk7By5Uo8/vjjeOKJJzB48GC89957mDBhglmPIDeybUKsFNDYWEAHV7FuKHY+eRJobhY+hgSAsJVht9hsPL2lpTxPk4jSD8kad78nSqZOASCdnUXNz2GJqIcffhhPP/004uLi2gVUd4YIGxDfd999uO+++zr97Ouvv+7w3i233IJbbrlF51RFCVRAjaFvX74GUEsL95CIHkPS2AjU1/PXstlaEVGy5GnZ9s1TkMy76pJ9OE8SO4taR4clorZv3+5fS2H79u1dnkcbEBP+jH7iBB8CET3gUsZ4KCAQQ1JezisZ0UWUUhH26qXb2jS6IVMMSfACkLLlack6YNLGRElmZ1H3JwxLRAVvOvzmm2+if//+7YbEAL4swJEjR7RJHSEvycm8gW9t5dtP6LwOScTIGKejkJrKRZQMPcrghl22zpZMjU5wjJ9gjU6PyCRWQTFRhiFop0D17LxBgwbh+PHjHd4/ceIEBg0aFFGiCAvgcMg1y0bQAhoSMjU6MttZpmEmxc69e8sV4wdI17hLHxMlQ34GhK07VIso1sV+O/X19ejVq5fqBBEWQqbKUNACGhIy2VnWYVNAXrEqq8dPhsa9uRkuWWP8lPxcXc1jKkVH0Do67Nl5SkC5zWbDk08+2W5JA5/Ph2+//RYXarynDSEp1Lgbg0x2ln3YFJDDzrIGlQNyidW2OB3mcMCWlGRyYsIkJYULbMZ4yEXbAsnCYpV1opSAcsYYdu7cCVfQlGqXy4XRo0fj0Ucf1S6FhLzI1OhYoXGXoecuaG8yJGTMz7LbmTGxPWnBdrarHtgxB4cD8Hi4EKysFFtENTcHViwXLE+HLaKU4PKf/exnWL58uaZ7xBEWQ6YepcyNjkx2VoSeYL3JkCCxagxK3vB6gdpavoyHoNiUGWMy5meA1x1VVeLnaSX+2m7nk5YEQrV0XrFiBQkoontkbHRkrAxl9JDI6PFT0lxVxWediozMIqp378DyF6LXHW12ZjLaGZCn7giunwXz+KlesXzp0qXdfv7kk0+qvTRhFWQpoC0tgZ6OjI27LHYG5BZRisBuaeErxAvWI26HzCIK4Pnj1Cn+HEOHmp2aLrHJ3PkC5Kk7BLazahG1atWqdv97vV4UFxcjJiYGgwcPJhFFyFNAq6sDsRcej9mpCR+ZYkhkDuB3ufjQ0smT3NYiiyiZA8sBnj/27xe/7pDdEyXLquUC52fVIqqzFcvr6uowb9483HzzzRElirAIsogopYB6PDzYUjYUOzc3ix1D4vPJ7fEDuK1PnuR5Ztgws1PTNbJ7oiQJBbBZxc6i19ECe7A1HVxMSEjA0qVL8cQTT2h5WUJWgns5XawrJgQCF9CQ6NULUOITRa4Mq6sDsUQyevwAeYL4ZW/cZbGzssSBrHaWRUQJ7MHWPELr5MmTqFVWcCWiG2X8uqmJxzeIisAFNGRk6LkrFXVKCt80WUZkaHSCPX6y5mkZ7AzAJnvdIYmdRe7oqq7J/vCHP7T7nzGG8vJy/P3vf8f06dMjThhhAeLi+F9DAy8Eos7mlL3XDsgRQyJwXEPIyCBWZY/xA+Rp3BVPlKx5WpaYKIHraNUi6qWXXmr3v91uR79+/TB37lwsWrQo4oQRFiE1FSgu5oVgyBCzU9M5AvdyQkaG4Q+BK8KQkaFxVxpEK3j8RG7cGRN61lhIyDIpReAOmOoSVlxcrGU6CKuSlhYQUaIiu0sekKNxJ7FqDFYQqzLY+eRJ2Lxe/lpWWyvpPnMGqK8PrM8lGgLnabFWrSKshww9Sis07jLYmcSqMQjc4ISMDHZuy8/e2FjA7TY5MSpRQi4AceuOYI+fgHk6LE+UsvlwKLz44othJ4awIBJVhiIW0JCRwc4CV4QhI4NYtZKdT57kE1NEFCltdm7q2xcCpi50RA+5qK3ly7cAQubpsERUZ2tDdYZN1HFVwnhkatxl9kTJMPwhcFxDyMiUnwVscEImKYmv2ebz8eDt/v3NTlFH2vJzU2KidUSUiCj1Rnw83xJIMMISUcrmwwQRMqI37oyRJ8oorNC4K/m5ro7HkfTqZW56OsMKnQK7neeT8nL+PCKKqCBPlNSIXkcLnp8jmrpx8uRJvPHGG/j+++9hs9kwfPhw3HnnnUhMTNQqfYTsiD78ceoUHy4A5G7cRbczYA1PVGIi4HQCXi/3kGRnm52ijlihUwC0F1EiEuSJkhrR6w7B87PqwPItW7Zg8ODBeOmll3DixAkcP34cL774IgYPHoxt27ZpmUZCZkT3kCjp6tMHiI01Ny2REBxDosQPiITgwaEhY7OJ3+hYwc6ANHaW3hMlSx0taOdLtYh66KGHcMMNN+DQoUP48MMPsWrVKhQXF2PGjBlYuHChlmkkZEb0Aip4LydkkpICawK1LQAoFA0NwOnT/LXsthY9T1tFRIk+zGQ1T5TgdhY1P0fkifqv//ovxAQt5hYTE4Nf/epX2LJliyaJIyyAUhFWVwMtLeampTME7+WEjN0eWPBPxMpQqQhjY7nXT2ZEb9ytkqdFb9yt4okSfdVywfOzahGVkJCAkpKSDu8fOXIE8aIu2EUYT3Iyb+CBwH5eIiF4LycsRB7+sIp3BBC7cW9o4H+A/LYW2c4AeaKMQvA6WrWImjVrFu666y689957OHLkCI4ePYqVK1fi7rvvxk9/+lMt00jIjMMR2L9L5MZd0F5OWIhcGVohqFxBBrHaq5f8Hj+R7QxYxxMlcr0BCF9Hq56d9/zzz8Nms+GOO+5AS9swjdPpxL333otnnnlGswQSFiA1lRcEEQup4L2csBB5mMlKnihZ7Cz7en0i2/n0aT6zFxbwRJ0dciHafouC19GqreVyubB8+XIsW7YMBw4cAGMMQ4YMQazMM5wIfRC5p2Olxl1kOwteEYaFyHam/GwMbWlibjdaZG/zlJCL1lY+KSUjw+wUtUdwT5Tq4bzTp0+jsbERsbGxGDlyJBITE/H6668jPz9fy/QRVkDkHqXgBTQsRB7+sKKdKT/rS7CdGTM3LWcT3CmQ3eMXHHIhWp4+c4YvbAsI2zFQLaJuvPFGvPXWWwD4opsTJkzACy+8gBtvvBGvvvqqZgkkLIDIjTt5SIzBih4SEfOzFe3s9fL1ROn7CwAAIABJREFUz0RC8URZwc6AuB1dJT1OJyBo7JlqEbVt2zZcdtllAIB//vOfSEtLw+HDh/HWW2/hD3/4g2YJJCyADI27FXruolaEgLUCy5VnqKriQyAiYaVOQa9eQEICfy1anraSnQFxOwYSxPipFlGNjY3+pQzy8/Mxc+ZM2O12TJw4EYcPH9YsgeFy6NAh3HXXXRg0aBB69+6NwYMHY/HixWjuYRXnKVOmwGaztfubPXu2Qam2OKKKqOZmoKaGv7ZCZSiqnQFreUiU9bhaWoT1kFjCzoC4edqqIkpUOwvc+VItooYMGYLVq1fjyJEj+Pzzz5GXlwcAqKysRILSezCBH374Aa2trXjttdewe/duvPTSS/jzn/+M3/zmNz1+d/78+SgvL/f/vfbaawakOAoQ1UOirOwdE8NX/JYdWWJIZMflCgwtiNxztwKCe0iYIqhlR1QRJUF+Vj0778knn8Rtt92Ghx56CFdddRVyc3MBcK/UmDFjNEtguEyfPh3Tp0/3/3/OOedg7969ePXVV/H88893+93Y2Fikp6frncToQ9QCqlTM/foFFgSVGcXOzc1Aba04MQReL3DiBH8tcI8yLFJTuReqshI4/3yzUxPASsPTgLgdMAk8JGFBdlaNahF1yy234NJLL0V5eTlGjx7tf/+qq67CzTffrEnitKK2thbJyck9nvfOO+/g7bffRlpaGq655hosXry429XXm5qa0NTU5P+/rm0WgdfrhdfrjTzhbSjX0vKahpKUBCcAduwYWpqbNR/bVmsfW1kZYsB7ky2y2jYYhwMxCQmw1dXBW1oKxMUBECD/lJXx399uR0t8PBdVgqDWNo7UVNh//BEtZWVgAj1PTGUlbAC8SUma2NnsvGP3eOAA4CsvR6tAdnYcOwY7gJa2dkXaurkNW0oKYgC0VlTAJ1DbZa+o4L9/Soruv7/aNEa0qlZ6enoHz83FF18cySU158CBA/jjH/+IF154odvzbr/9dgwaNAjp6enYtWsXFi1ahB07dqCgoKDL7yxbtgxPPfVUh/fz8/N1WS+ru7SIjOPMGcwAYDtzBvkffoiW3r11uU+49sn+6iuMBVBlt2PDmjW6pMloroqLQ5+6Omz86COcGD683Wdm5Z+EgwdxBYCmhAR8/vnnpqShJ8K1zUU+HzIB7Pn6axSLsk5QaytuaBui/mLnTjSVlmp2abPyzrDaWgwFULJlC74TqIxeceAAEgBsPXoUSEmRtm5WSDt8GBMB1O7bh290sLNa+4zdvh3ZAL4/cQIHdP79GxsbVX3PxphowROds2TJkk4FSzCbN2/G+PHj/f+XlZVh8uTJmDx5Mv7yl7+Edb+tW7di/Pjx2Lp1K8aOHdvpOZ15orKzs3H8+HFN48K8Xi8KCgowdepUOJ1Oza5rJDFJSbA1NMD7/ffA4MGaXlutfewvvADHokVove02+P72N03TZBaOyZNh37ABLStXgs2cCcD8/GMrKEDMddeBjRiBlm3bDL9/d6jOO/ffD8drr8H3m9+gdckS/RIYDlVVcGZlAQC8DQ18WniEmJ137H/6ExwLF6L1ppvge/99w+/fFTFZWbBVVeH0xo3Ir6iQum4GANvmzYi55BKwAQPQsn+/ZteNNP84rrkG9i++QMtf/wr2n/+pWbo6o66uDh6PB7W1tWG134Kt7941CxYs6HG23MCBA/2vy8rKcMUVVyA3Nxevv/562PcbO3YsnE4n9u3b16WIcrvdcLvdHd53Op26FCi9rmsIqalAcTGcNTWaVO6dEbZ9qqsBAPaMDNhltevZtMUOxJw40cHOpuWfNjvb0tKEzb9h26bNA++oroZDlGdSZpomJ8OpsXfMtLyTmQkAsB8/Lk4ZbWnxb6Yek5UFVFTIXTcDfjvbjh2DMyZG85AL1fZpi9GKycrSrd1QUPv7SSOiPB4PPMqqqj1QWlqKK664AuPGjcOKFStgVxE0vHv3bni9XmSItgS+rLSJKKFm2VhpxpiCiAGiVgt2BsjORiHipJTqaj771WYDUlLMTo02KLMMm5r4noAmzrBvhwSz8ywwJak9ZWVlmDJlCrKzs/H888+jqqoKFRUVqKio8J9TWlqKYcOGYdOmTQB43NTSpUuxZcsWHDp0CGvWrMGtt96KMWPG4JJLLjHrUayFiJUhNTrGYEWxKqKdJWhwwkbEJQ6UtHg84m3Wq5a4OP9EFGHytM8XWIZG4DraIjkgQH5+Pvbv34/9+/ejf//+7T5Twr+8Xi/27t3rDyRzuVz44osvsHz5ctTX1yM7OxvXXXcdFi9eDIfDYfgzWBIRe+5WbtxFanSsLFZFtLOV8rOSZ2pruZekk/AJw7GinQFu64MH+fMNGWJ2aviyKMqOACGOQpmB5UTUvHnzMG/evG7PGThwIILj6bOzs1FYWKhzyqIc6rkbg4hi1Yp2FjE/B697ZhX69uXenpYW7pU4q2NsChKsXaSK1FQuokTpGCjpSEnRPR4qEiw3nEcIimg9d8as7SERsXG3kohS8kxdHd9pXgQUO1tpwWC7PSAKRcnTVuwUAOLVHZLYmUQUYQyiFdCaGt67BazVcxdNrALWFKuJiYHesRK3YTZK3KeVRBQgXp62qidKNC+2JPUGiSjCGEQTUUo6+vYVI85CKxQ7nzzJt38xm2CPn+A9yrCw2cRt3K0moqhxNwZR87Pg9QaJKMIYRKsIJSmgYZOUFJgxJIKHpLY2IOasZmvROgaKJ8qqjbsodrZq3SGanSURqySiCGNQCmh1dWAYzUwkKaBhI1oMidLgxMcDOm33YxoidQwYs64nSjQPiVXrDpHyMyCNWCURRRhDSgofAmHMv9qvqUhSQFUhUqNjxaE8BZF67sHDt1Zr3EWyM2DdukM0O0tSd5CIIozB4Qis9SFCIZWkgKpCpMrQqt4RQCyxqgzlWS3GDwiIQhHsbNVZvYBY+RmQJoCfRBRhHCK5i606kwkQy87l5fxIdtYXK+dn5ZmCdp0wjbo6vugnYL0OmPI8J04AXq+5aQGk6eiSiCKMQykMIlSGVm50RPJEkZ2NwcoeP5FElGLnPn2sF+OXksJjKgHzQy4Yk6buIBFFGIdSGERwF0tSQFVBYtUYRBJRVraz8kxVVeZPSrGyWA2elGJ2HR28iC0N5xFEGyL1KKOh0TG7IgSsbWelchcpPwve4KiiXz/ewDNm/rIdVs7PgDgdA8XOCQlAbKy5aekBElGEcWRk8KPZjU6wq1hJk5VQnkmJRzITKzc6yjNVVvId583Eyh4ShyPgITG77lDKlBXrDUCcOD+J6mcSUYRxKBW82Y17TU0gcFLwoEVVkMfPGPr148t2tLaaH0NiZTsD4nTArG5nUUIBJJqQQiKKMA5RGnfl/snJ1psODgTsfPy4ubNsWlut7SGJiQk0OmZ3DKw8nAeIV3dYMT8DZGcVkIgijEOU3qREvRxVeDx8CCR4TRszqK4ODHNR464vVhargDh2lqhxV4UodbREdiYRRRiHUiCqq83dHFeiAqoKu12MoGfl3h4P4HSalw49EWGI2ucLiGWr5mlRRJTVY6JEiaeUqI4mEUUYR1JSoDE1c+aYRAVUNSI0OtFgZxF67orHz2YLBGBbDRHyc/D9rZqnRbOzBGKVRBRhHKJ5SKxaEQJi9Cijwc4iNDpKh8Tj4XFaVoQ8fsYgQr0RfH8J7EwiijAWEXruEvVyVCNC4x4NIkqERica7CxCfq6q4pMl7HZrzuoFAnauqQlsb2MGEuVpElGEsYhQGUpUQFVDdjYGsrMxiGTnfv34xA0rkpQEuFz8tVm2bmkJLKoqQZ4mEUUYiwhu+WhqdMjO+iKCnSXZ7T4iFI/fqVNAQ4M5aYiG/GyzmZ+nq6r4zGK7nQ9RCw6JKMJYROhRSjTerhqRhk3JzvoSDXaOjw9s+GvWpJRosDNgfp5W6ue0NCk8fiSiCGMxu4A2N/PZTIC1K0MSq8agPFt9Pf8zg2ho3IM9JGY37laOpQTM90RJlp9JRBHGYnZFqMyuiYnhK5ZbleCKkDFz0iBZZaiK+HggLo6/NitPW321cgWz645oyM+A+R1dyexMIoowFpF6OXYLZ3/FzqdP8zgSo2lq4jN8gtNiVcxu3K2+WrmC2XaWrHFXjUh1tARYuBUhhCS4IjTDQyJZAVVNXBz3kgDmNDpKw+50WtvjB5i/zEG05GmzRVQ0DE8D5IkKExJRhLEoBePMGaCuzvj7S1ZAI6LtGW1mBOIG29lmM/7+RmJm4+718o2mgegZzjNbrFJMlL5IFntGIoowlt69gcRE/tqMRieaRJSZHpJosrOZjY6yno7DAaSkGH9/IzHbExUteZo8UWFBIoowHjMbHckKaESI4omyOmY2OsFB5VaO8QPMtXNDQyC20Op5OlistrYaf3/J6g6LlzpCSMysDKMlrgEwt+cuWUUYEWZ2Cig/G4Nyz969A7GGVkUZFm5pCSwHYySS1R0kogjjEaEylGS8PSLantFGIkpfROgUZGYaf2+jUfLSsWPGe0iC6w2rx/i5XIGVwo3O08HrrUlSd1hSRA0cOBA2m63d369//etuv8MYw5IlS5CZmYnevXtjypQp2L17t0EpjjJEEFGSFNCICG50jCYa7WxGfi4r48doEFHKpr9eb2D5DKOIpvwMmOddVewcGwv06WPsvVViSREFAEuXLkV5ebn/7/HHH+/2/Oeeew4vvvgiXnnlFWzevBnp6emYOnUqTpmxxo7VMauAMhZdlaESE0ViVV+UZ6ysBHw+Y+8dTSLK7Q4sl2F0no6mYVPAPO+qhB4/y4qo+Ph4pKen+//6dKNqGWN4+eWX8dhjj2HmzJkYMWIE3nzzTTQ2NuLdd981MNVRglkFtL4eaGzkr60+HRwgj59RpKbyoO7W1sBsOaOIJhEFmJenoykMADDfEyVRvRFjdgL04tlnn8XTTz+N7Oxs3HrrrfjlL38Jl8vV6bnFxcWoqKhAXl6e/z23243Jkydj/fr1+PnPf97p95qamtDU1OT/v65t3SOv1wuv16vZsyjX0vKaZmLzeBADgJWXo0WDZwrZPkeOwAmAxcejxeXiwwJWxuOBEwCqqmDz+YzLP4whpqICNgDelBSh7axV2Yrp1w+2Y8fgLSkxdKkBR2kp7ABaUlPBdLCzaHWPIy0N9j170HL0qC7P2+V9y8pgB+Dr1w+tQfcVzT5aYU9NhQOAr6ys3fOGS7j2sZeWwgGgNTUVPoNtqvY3tKSIevDBBzF27FgkJSVh06ZNWLRoEYqLi/GXv/yl0/Mr2tRv2lneibS0NBw+fLjL+yxbtgxPPfVUh/fz8/MRGxsbwRN0TkFBgebXNIOEQ4dwBYCmkhJ8vmaNZtftyT4pu3fjUgAN8fH4QsP7CovPhxvsdthaW+GqrTUs/zjr63Ht6dMAgM927EDrDz8Yct9IiNQ2k2Nj0RfAln/9C5UG9t6nFRejF4B1Bw+iVsc8LUrdM7a1FdkA9n71Ffb37WvYfSfs3Il0AN9VVaGkEzuLYh+tOKemBiMBlG/bhq0a5KtQ7TPsf/8XQwEcamrCToPr6EZllCJMpBFRS5Ys6VSwBLN582aMHz8eDz30kP+9UaNGISkpCbfccgueffZZpHTTS7SdNQbLGOvwXjCLFi3Cww8/7P+/rq4O2dnZyMvLQ0JCQk+PFDJerxcFBQWYOnUqnE6nZtc1jcpKYOFCuOvqcO3UqXxrkAgI1T62tvi22CFDcO2110Z0T2lITQUqKtCrpgaXz5plTP5pm5DBkpIw/eab9b9fBGhVthyvvgoUF+Oi7Gwwo/JWSwtiamsBAJfccosuQyCi1T32b74BCgsxLDER5xlYhmPa2p6RV1+NEUH3Fc0+WmE7dQr461+RabcjLQI7h2sfx+rVAICciy9GtsF1dJ3KHTSkEVELFizA7Nmzuz1n4MCBnb4/ceJEAMD+/fs7FVHpbZVPRUUFMoLGvCsrKzt4p4Jxu91wu90d3nc6nboUKL2uazgZGUBMDGwtLXCeOAH076/JZXu0T9ssNXv//rBbwY6hkJHhF1GG5Z/KSgCALStLmvwasW3a6o2YqqqIOwUhU1XF47AcDjgzM/mq5TohTN0zYAAAwFFeDoeR6WkbrYjp37/T31cY+2hFW51sr6jQpK4M2T5tXlzHgAHG/r6A6t9PGhHl8XjgUdauCJPt27cDQDuBFMygQYOQnp6OgoICjBkzBgDQ3NyMwsJCPPvss+oSTHSN3c4bnSNHgNJSzURUj5SW8mNWljH3E4GMDGD7dvQ6ccK4e0ZbsDNgzhY7ip3T03UVUEKhlF2lLBtBS0tgmZBoqTvMmvyj/K4S1R2Wm523YcMGvPTSSygqKkJxcTHef/99/PznP8cNN9yAAW29GAAYNmwYVq1aBYAP4y1cuBC///3vsWrVKuzatQvz5s1DbGwsbrvtNrMexdqYURlGY+PeZmdDRVQ0ilUlTyl5zAiiMT+bYWdlcU+HI7BWldVRhobr6gIzmo1AwrpDGk9UqLjdbrz33nt46qmn0NTUhJycHMyfPx+/+tWv2p23d+9e1LbFEwDAr371K5w+fRr33XcfampqMGHCBOTn5yPe6kv8m4VSSIysDCUsoBGjiCgjt29QftMotLOhnYJoWq1cIbjeYMyYtYSU3zQjI3o8fgkJfIub06d5Phs8WP97nj4dWERVorrDciJq7Nix2LhxY4/nMcba/W+z2bBkyRIsWbJEp5QR7TCj0ZHQVRwxZnqiotDO5FnVGWWYqbmZ7+umMsQjLKKx82Wz8efdv58/vxEiSsnPvXsDBs68jBTLDecRkmB0o8NYVHtIehvpiYrGRkd51vJy41Ytj0YR5XIB/frx10bVHdGYnwHj6+hgO0uyWjlAIoowC6XiN6qAnjgBKAujRsuqw4A5nqhobNzT0viECZ/PPztRd6LRzoDxcVHRLqKOHjXmfpLamUQUYQ5m9XI8Hr4HV7TQZmd3XV1AROpJS0tgRo9klWFExMQEgnGNanSiVUSZVXdEm52VWdNk524hEUWYg5mu4mgiORlMEY1G9NwrK6NvJpOC0Xla+T2jybMKUN1hFGblZ8nsTCKKMAeloNTX82m0eiNpAY0YJUAUgM0IEaVUuNG0dpGCkY2O1xsYNpSs5x4xNJxnDDScFxIkoghziIsDEhP5ayMb92hrcAAwI+PPonWICTBWRClDpk6noRseCwF5SIyBPH4hQSKKMA8jC6mkBVQT2gSNoZ6oaLSzkfk5eCjPHmXVuJGeqFOn+B8QfXlaiYkqL+dD9Hojad0RZaWPEAozPCSSFVAtYEY2OuSJIo+f3pjR+UpIAPr00f9+IpGezgV6S4v+M06Dl6CRLE+TiCLMw4zKULICqgmKJ4o8fvpCIsoYFDtXVvLYMD2J5vwcE8OX7gD0j4uqruYLqALS5WkSUYR50HCeIZAnyiDMGs6LNlJSeCwYoP+Gz1FcbwAwbpkD5fr9+vEFVSWCRBRhHkY1OsEzmaKxMjRjdl4U27ldHI1eHDnCj9nZ+t5HROx240IBojk/A8bV0RLbmUQUYR5GFVCltxqNM5lwlifqrD0jNSeKY88QH89jZwD983Q0iyjAuODyaA4DAIxb5oBEFEGoIHhHdj0JrgijbSYTEIiJamri29/oRfAu7NHe6OgtopRGTRluiTaMsnM0dwoA44fzJKw3orBFIYRBKTAVFfpu2hrtFaHbjSYjPCSKnWNjA2uARRtGNO6MBURUtHqijO6ARWvdQWK1R0hEEeaRlsZXtfb5gGPH9LuPxL0crTiTnMxf6FkZBttZol3YNcWIRuf4ceDMmfb3izYoJsoYaDivR0hEEebhcAQ2bdWzMlQqAAkLqFacVmLB9LRzSQk/Dhig3z1ExwgRpcRDpaVJN5NJMxQPnGILPfD5onMz7WCMHs6T0M4koghzMaKno1S0Udy4G+KJUkRUtA4xAcaIqGgfygOMEVHHjnEh5XAE1kuKNoza41Tiji6JKMJcFGGjZ2VIHhKc9nj4Cz3tTGLVWE9UNIuo4HpDry1JFDtnZETfZtoKwXuc6pWnGxr4YpsAkJOjzz10hEQUYS5KZagIHT0gEWWMiCI7B4Y/jBCr0TozDwjMtPV69YunVPKzhA27pij5TK/RAiU/JyRIOSGFRBRhLnqLKK83MPMjihv30/368RckVvVFaXArKoCmJn3uQZ4oviWJ4vXTK09TfuboHXIhuZ1JRBHmoreIKivj7n6XC0hN1eceEuAXUYcP67fgJjXufDHX3r35a728URQTxdG77jh8uP19ohW97UwiiiAiQO8CGjz0EY0LbbbhH847fToQf6AltbX8D4juxt1mC3ijjMjT0YzeweU0nMdR6mhFVGoNiSiCiACl4JSX6zP8IXkB1YpWpxNMWU5Cj8ZdaciSk4E+fbS/vkzo2ei0tpInSoE8JMagiEgSUZ1CIoowF48nMPyhx+wPyQuoljCl0dWjMiQ7B9Cz0ams5HF+NltULx4LgESUUejtWZXcziSiCHOx2fStDCUvoJqip50pHiqAnnZWvFAZGXxD7WhGTzsHT7uP9rojWETpsZyE5HU0iSjCfPQc/pC8gGoJI7FqDHp6oigeKoAR+TkxUcpp95qSlcXjSZubtV9OorVV+vXlSEQR5mOEh0TSAqopJFaNQc/8fOgQPw4cqP21ZUPxelZV8QkTWkL5OYDTGVjmQOu6o7KSizO7XdrhaRJRhPkY0aOkYaZATBQN5+mLnsMfxcX8OGiQtteVkaQkvqI2oP0aRiSi2qOXd1Wxc2amtMPTJKII89FLRNXVASdP8tfUuOsroqjRCRA8/FFZqe21yRMVQM94Slojqj16iyiJ7UwiijAfvSpCxTuSlATEx2t7bRlRKsJjx4AzZ7S7bvC0e4krQ81wOgNDE1o3OuSJao9edQetEdUeElFdQiKKMJ/gilDL1bRpKK89wcMfWi5QWFbGp93HxPBZY4Q+08IZI0/U2egV52eBxl1TSER1ieVE1Ndffw2bzdbp3+bNm7v83pQpUzqcP3v2bANTHsUoM40aG7VdTZt67e3Ra/jj4EF+zMnhQorQp3E/cQKor+evyUPCOeccflTKulZYoHHXFL3EqgWGTS0noiZNmoTy8vJ2f3fffTcGDhyI8ePHd/vd+fPnt/vea6+9ZlCqo5xevQIeDC0rQ6VxVypaItD4Kh4NLSA7d0QPT5RSNjIyeJkhAnlOyYNa0NIS8NSSWOUEe6K0HC2wQN1huW6jy+VCurK9BQCv14uPPvoICxYsgM1m6/a7sbGx7b5LGMjgwXzrl4MHgYsu0uaaBw4Erk1wFK+clo0Oefw6ojQ6WnYKaCivI3rk5yNHuJByu6Wddq85iqfo1Cm+R2bfvpFfk7FAHU0iSlw++ugjHD9+HPPmzevx3HfeeQdvv/020tLScM0112Dx4sWI7yYguampCU1B+73V1dUB4MLN6/VGnHYF5VpaXlM0HAMHwr5uHXw//ojWMJ+zK/vEHDgAG4CWAQPALGy7ngi2j33gQDgAtO7bB59GNnHs3w87AF9OTti/ndnoVbZsAwYgBgDbvx8tGl3bvn8//+1ycjT77XpC+LonOxtOACgrg7euLrCFVATY9u7lv93AgWjx+QCfr8tzhbePVrhciPF4YDt+HN59+4ALLwzpa93ap7ISzoYGMJsNLVlZPK7SRNT+hpYXUW+88QamTZuG7B6Ci2+//XYMGjQI6enp2LVrFxYtWoQdO3agoKCgy+8sW7YMTz31VIf38/PzERsbG3Haz6a7tMjOeT4fzgdwtLAQRaNGqbpGO/swhuv27UMMgMIjR1C/Zo0m6ZSZgoICpNfUYAKA2u3b8Y1GNrl02zakANh28iTKJLWz1mUrtrwcUwG0HjiANf/6F1/yIEJGffMNBgHY39KC7w22s7B1D2O4NjYWzsZGfPPWW6jXYBJJzuef40IAx+Lj8W2IdhbWPhpyWXIyko8fx/YPPkB5WVlY3+3MPkl79+JyAKdTUlDwxRcapVI9jY2Nqr5nY0zLAU79WLJkSaeCJZjNmze3i3s6evQocnJy8P777+M//uM/wrrf1q1bMX78eGzduhVjx47t9JzOPFHZ2dk4fvw4EhISwrpfd3i9XhQUFGDq1KlwSrogWU/Y3nkHMT/7GVonT4YvzAqpU/tUVcGZlcV7ObW1UR1D0s4+P/wA57hxYElJaNFoC4eYAQNgq6iAd+NGoIuyIiq6lS2vFzEJCbD5fPAePKjJNi2OG2+E/dNP0fLnP4PdeacGiewZGeqemIsugm3HDrSsXg127bURX8++aBEcL7wA3y9+gdaXXur2XBnsoxWOO+6AfeVK+H7/e7Q++mhI3+nOPrZ330XMvHlovfxy+Nau1SPJYVFXVwePx4Pa2tqw2m9pPFELFizocbbcwLNiBVasWIGUlBTccMMNYd9v7NixcDqd2LdvX5ciyu12w+12d3jf6XTqUqD0uq4QDB0KALAfPAi7ymdsZ5+2wFBbVhactEYUgDb7nHceAMBWUwNnfT1f9iASGhuBigp+/fPOk3bVYc3LltPJ46IOHoSzpESbeLG2mKiYwYMNt7PQdc/gwcCOHYgpKdHGLm12dpx7LhwhXk9o+2hFW93hKC4O2S4KndqnbdKFfcgQ1XW+lqj9/aQRUR6PBx6PJ+TzGWNYsWIF7rjjDlXG2b17N7xeLzJo3RtjUAILjx4Fmpp4UGckWGDWhy706QOkpfEFNw8eBMaNi+x6SrBzYmLkgsxqDBnCbXzgADB5cmTXCl4jigL426P1DD2akNI5ij0U+0SKBYLKAQsucaDw5Zdfori4GHfddVeHz0pLSzFs2DBs2rQJAHDgwAEsXboUW7ZswaFDh7BmzRrceuutGDNmDC655BKjkx6dpKbyhSCDG4tIIBHVNVpWhmTnrtHSzpWVfJNdm40Wjz0bLUUUY5Snu2LIEH7cv1+b61nEzpYVUW8vzuaGAAAfFElEQVS88QYmTZqE888/v8NnXq8Xe/fu9QeSuVwufPHFF5g2bRqGDh2KBx54AHl5eVi7di0cDofRSY9ObDZtK0OL9HJ0gUSUMWhpZ6XhGjAAcLkiv56V0LLeqK7me24C5PE7G0VEHTnCRwsiRfm9JPf4STOcFy7vvvtul58NHDgQwfH02dnZKCwsNCJZRHcMHgzs3Klt4y55AdUFpdEhEaUvWoqoffv48dxzI7+W1QgWUYzxDplalN8qK0uT5RIsRb9+PBygvp6vfzZsmPprnT4NlJby15LXHZb1RBESojQ6WvQoqXHvGrKzMWgpon78kR9JRHUkJ4cLp8ZGPuwZCZSfu8ZmC3ijIs3TSshGQgKQkhLZtUyGRBQhDlp5SJqaeIB68DWJAHoM59HQR0eUvFdTw/8igTxRXeNyBeLEIs3TFFTePYpdIo2LCg63iMRzKAAkoghx0MpDUlzM3fpxcdwFTbRHsXOksQ0+X6AybZv+TAQRFwco20hF2riTiOoeJU8rdlILiaju0Sq43EIePxJRhDgE93JaW9Vf54cf+HHYMOl7Obqg1UzIw4cDy1FIvAu7rmjh9WMs0GiRiOocJT5n797IrkMTUrpHq+E8ZXhauZ7EkIgixGHgQO6aP3PGvxCbKpSKtG0BT+IsbLZAYxxJo6N899xzAZrF2jla9NzLy4GGBr51DA2bdo5S1iMVUcEdMKIjWg3nKXbuZPa8bJCIIsQhJibQuCuFTA1UEfaMUnlFYmcSqz2j2Ob779VfQxmiUjoZREeUsh5Jfq6uBqqq+Gsanu4cpVNQXAy0tKi/joXqaBJRhFgohSqSRoca957Rws5KRUh27hpFrGohomgor2uUPLh/P4/VU4NSb2Rn86n8REeysngoQEuL+iG9U6cCyxtYoO4gEUWIRaQ9SsYs1cvRDS09UWTnrgm2s9o4P+U3Iu9I1wwYwDcZb25WH+enCF3Kz11jtwfss2ePumso9UZamiW2iiIRRYhFpI17VRWfTh4c90N0JNgTFbTwbFiQx69nzjmHb4rb2BhYdiNcdu/mxwsu0C5dVsNuD4hMtXWHheJ0dGX4cH5UK6Is1sklEUWIRaSeKKVhz8mhFYe749xzecNTW8s3Iw6Xujoe8AyQiOoOpzMQR6J2SI9EVGhEGlxuscZdNxQRpTY/W8zOJKIIsVAqwspK4MSJ8L9vsQKqG716BWZ6qRGsynfS0oDERO3SZUUiiYuqq+PreQEkonoi0iB+qjtCgzxR7SARRYhFnz5A//78tZrGXem1k0u+ZyJp3Hfu5MeRI7VLj1WJxM5KQ5WRYYn4EV0ZMYIflTogHJqaAgtAWqRx143g/KwmiF8pBxbxYJOIIsRD6XErDXU47NjBj6NGaZceq6JUhmoane++40eyc88odlbTc6ehvNBR8uLOneEH8X//Pf9O376BVeaJzhk0iC+we+YMX3A3HM6cCQy3WqQDRiKKEI/Ro/lREUShwligcVeuQXSNWjsD5IkKB8VDsnNn+EH8JKJC59xzeeNeXx/+DD2lDIweTbsc9ERMTMCLFG4HbM8e7r1KTubLJVgAElGEeCiNe1FReN8rK+NxVA4HDeeFQrCICqfnHixWyRPVM+efzwPMa2vDb9xJRIVOTEzATkr+DBWlrrnwQm3TZFWUjkG4dragWCURRYiH0rh/911YjbtN8Y4MHcoDp4nuGTqU99xPnQqvcS8v56s72+2BIFOia1yuQKMTbsdAaaRIRIWGIurD9a4GN+5Ez4wdy4/btoX3PQvamUQUIR5K497QEAj2DAEbeUfCw+lU17iTWA0fxcMRjp3LyoCKCi5WyUMSGkrZD8dDwligcSc7h8aYMfy4fXt43yMRRRAGEOyWD6NH6fdEWaiA6o6aoVOlgaJ4qNBRGudwGp0tW/hx+HAgNlb7NFkRNSLq6FEeBhATQ57VUFFEVHExX9w4FILFqoU6uiSiCDFRGp1wRJQFC6juqLCzv3GnXnvoKI1OOGJ161Z+HDdO+/RYFaXs79/PY9BCQcn755/PPeBEzyQl8Q2xgdDz9NGjXHA5HJYSqySiCDFRGp3Nm0M6Paa+HjZlXamLLtIpURZEEULhxDZs3MiPEydqnx6rojTuR47weLJQIBEVPv36BRaR3bQptO8odiYPdngodXSodYfye1xwgaXCAEhEEWKiNNAbN4YUXJ6k7HQ/eDCvSInQGDOG9wyPHg2sjN0d5eVASQmfWTN+vP7pswqJiYG9HMNt3ElEhUdw3REKGzbwY26uPumxKuEGl1vUziSiCDEZPZrvfXfyZEh7YSUr51isgOpOnz6BHvj69T2f/+23/DhiBBAfr1+6rMgll/DjunU9n0tB5eoJR0T5fIHGfdIk/dJkRRSPfyj1BmBZO5OIIsTE6QQuvpi/DqGQJikiioaYwkdp3P/3f3s+l4by1BOOnZVzRo6koPJwCRZRPS1uumcP35+wT5/ATFUiNCZN4iL/0KGevdhNTYFYSot1dElEEeKiFLaeRFRrK5J+/JG/psY9fNSIqAkT9EuPVbn0Un789lugubn7c//9b3687DJ902RFLryQB4ifOMEDzLtDqVsmTOCz84jQiY8PxEUp+bULbEVFPM97PMCQIQYkzjhIRBHiorh9e2rcv/8eroYGsN69aWaeGhQ779jBt8zoiqamQDwPidXwGToUSEnh+4f1tNTBN9/wI4mo8HG5AnFkPTTufhFlsSEmw7j8cn7sSUQpna/cXMusVK5AIooQF6XA7d3LY0S6wP7llwAAdsklfBiQCI/sbP7n83Xv9Vu/Hjh9mm/QaqEpyoZhswW8ft01OjU1gXWOSESp44or+HHt2q7PYQz4+mv+mkSUOhQRpYj+LrB99RV/oXhjLQSJKEJcPJ5AjzI/v8vTbF98AQBgV11lRKqsydVX8+Nnn3V9jtIgXX215XqThjFlCj9+/nnX5+Tn8wZ++HAgI8OQZFmOqVP5ce3armf3/vADn2nqdgfEABEeiijas4dPhOgEu9cLmyJW8/KMSZeBkIgixGb6dH7sqtFpaoKtsBAA0KoIASJ8rr2WHz/9tOtzlN+A7Kye667jx8JCvmdhZ6xZ0/5cInxyc4G4OKCqquvFIJW8PnkyBe+rxeMJLHXyySednpL8/fewNTYCaWmWDLcgEUWIjSKiPv2Ux+ScTX4+bA0NOJ2cTNuQRMLVV/P1on74ofNg3EOH+LpFdjtwzTWGJ88ynHsuX8vM6wUKCjp+3tISaNwVYUuEj8sV8EZ9+GHn53z8MT8qdQyhjhtu4MePPur04wxlWZRp03j9YTGs90SEtZg4EcjM5Fs4dDbU9P77AIAyZbotoY6+fQFlOPQf/+j4+Qcf8OPkyUBqqnHpsho2G3Djjfx1Z3b+4gvuPUlJCcRPEeq49VZ+/H//r+NSB6Wl3BsIADNnGpsuq6GIqPz8jlvt+HzIVCYG/eQnxqbLIKjVIcTG4QBmzeKv33mn/Wd1dcDq1QCAUgsGLBrO7bfz49tvt290GAPefJO/vuUW49NlNebM4cePPuLT8IP5+9/5cfZsmiQRKddfz7cX+fHHjqvEv/suz9eXXgrk5JiTPqswahSP3ztzpkPHwPbll+h18iRYcnLAM2gxpBNRv/vd7zBp0iTExsaib9++nZ5TUlKC66+/HnFxcfB4PHjggQfQ3MO6LDU1NZgzZw4SExORmJiIOXPm4OTJk3o8AhEuc+fy44cf8mElhb/+FaivBxs2DDXnnWdK0izFzTfzOJIff2zv9SssBHbu5HEjt91mXvqswoUX8oanuRl4/fXA+6Wl3GsCBIQWoZ74+ID3Y/nywPteL/DKK/w12TlybDbg7rv561dfbRfIb//DHwAArbNn8yFWCyKdiGpubsatt96Ke++9t9PPfT4frrvuOjQ0NGDdunVYuXIlPvjgAzzyyCPdXve2225DUVERPvvsM3z22WcoKirCHCpgYjB6NO/F+HzA00/z92prgf/7fwEAvgcfpKE8LYiPB+65h79esoTbu7UVePxx/t7cuXzYj4gcpT56/vnAEMjvf8+F1WWXBVbrJyLjwQf58f33+TpoAO98lZTwQGeq47Xhjjt4/fHdd/4QC2zYAPvnn4PZ7Wh94AFz06cnTFJWrFjBEhMTO7y/Zs0aZrfbWWlpqf+9f/zjH8ztdrPa2tpOr7Vnzx4GgG3cuNH/3oYNGxgA9sMPP4ScptraWgagy/uopbm5ma1evZo1Nzdrel2p+Pe/GeMOeMZee42xWbP468GDWXNtLdmnG8LKP2VljMXFcds+8ghjTzzBX8fFMVZSon9iDca0suX1Mnbeedy211/P2BtvBPL32rXGpqUbLFH3zJzJ7Tp6NGP/+lcgf7/4YsSXtoR9tGLpUm7X5GTGPv6YsSFDGAPY4SuvlMI+attvy61zv2HDBowYMQKZmZn+96ZNm4ampiZs3boVVyiLsJ31ncTEREwI2spi4sSJSExMxPr16zF06NBO79XU1ISmoBljdXV1AACv1wuv16vVI/mvpeU1pWPCBNgXLoTj5ZeBn/8cAMDsdvheew3etu0aoto+3RBW/vF4YPvjHxFz553ACy/43/b9/vdoTU/nQyEWwsyyZVuxAo4rroDt44/9M8V8v/gFWi+/XBg7W6LuefFFxBQWwrZjBzBjBgCg9fLL4bv33ojtbAn7aMWDD8Lx8cewb97M49EAtGZlYeedd8IjgX3U/oaWE1EVFRVIS0tr915SUhJcLhcqulgMrKKiAqmdzDhKTU3t8jsAsGzZMjz11FMd3s/Pz0esDuuOFHQ2JTqKsF12GYYdPYoBa9eiOT4ee+bOxbH6ev9U8Wi3T0+EbJ/kZOTcdx/O/ec/YWMM+2+6CcUDBgTWL7IgZuWdfosWYcSKFXDV1uLIFVfg+yuuABPQzrKXrfgnn8So115DQkkJjo0di53/5//A292Cp2Eiu320wnX//Rj9pz/Bs2sXas85BzvuvRctffpIYZ/GxkZV3xNCRC1ZsqRTMRLM5s2bMV5Z1KsHbJ2spswY6/T9SL6zaNEiPPzww/7/6+rqkJ2djby8PCQkJISU1lDwer0oKCjA1KlT4Yz2GTttPZzeANrWMif79IAq+1x7LfDyywCA89v+rIjpeefaa4HHHgMADGz7EwnT7aMlbXG06W1/WmAp+2jF7NkAgL4AJklkH2UkKVyEEFELFizA7DbDd8XAgQNDulZ6ejq+VRb3aqOmpgZer7eDhyr4O8eOHevwflVVVZffAQC32w23293hfafTqUuG0eu6VoHs0z1kn64h23QP2ad7yD7dI4N91KZPCBHl8Xjg8Xg0uVZubi5+97vfoby8HBlt+07l5+fD7XZjnLIPWyffqa2txaZNm3Bx26yYb7/9FrW1tZhEG1MSBEEQBNEJ0s0LLykpQVFREUpKSuDz+VBUVISioiLU19cDAPLy8jB8+HDMmTMH27dvxxdffIFHH30U8+fP9w+xbdq0CcOGDUNpaSkA4Pzzz8f06dMxf/58bNy4ERs3bsT8+fMxY8aMLoPKCYIgCIKIbqQTUU8++STGjBmDxYsXo76+HmPGjMGYMWOwZcsWAIDD4cAnn3yCXr164ZJLLsFPfvIT3HTTTXj++ef912hsbMTevXvbReO/8847GDlyJPLy8pCXl4dRo0bh78rqwQRBEARBEGchxHBeOPztb3/D3/72t27PGTBgAP71r391+fmUKVPAztpLKTk5GW+//bYWSSQIgiAIIgqQzhNFEARBEAQhAiSiCIIgCIIgVEAiiiAIgiAIQgUkogiCIAiCIFRAIoogCIIgCEIFJKIIgiAIgiBUQCKKIAiCIAhCBSSiCIIgCIIgVEAiiiAIgiAIQgXSrVguMsoq6HV1dZpe1+v1orGxEXV1dcLvhG0GZJ/uIft0Ddmme8g+3UP26R6Z7KO022fvZtITJKI05NSpUwCA7Oxsk1NCEARBEES4nDp1ComJiSGfb2Phyi6iS1pbW1FWVob4+HjYbDbNrltXV4fs7GwcOXIECQkJml3XKpB9uofs0zVkm+4h+3QP2ad7ZLIPYwynTp1CZmYm7PbQI53IE6Uhdrsd/fv31+36CQkJwmdEMyH7dA/Zp2vINt1D9ukesk/3yGKfcDxQChRYThAEQRAEoQISUQRBEARBECpwLFmyZInZiSB6xuFwYMqUKYiJoRHYziD7dA/Zp2vINt1D9ukesk/3WN0+FFhOEARBEAShAhrOIwiCIAiCUAGJKIIgCIIgCBWQiCIIgiAIglABiSiCIAiCIAgVkIiSgD/96U8YNGgQevXqhXHjxuHf//632UkynCVLlsBms7X7S09P93/OGMOSJUuQmZmJ3r17Y8qUKdi9e7eJKdaXb775Btdffz0yMzNhs9mwevXqdp+HYo+amhrMmTMHiYmJSExMxJw5c3Dy5EkjH0M3erLPvHnzOuSniRMntjunqakJ999/PzweD+Li4nDDDTfg6NGjRj6GLixbtgwXXXQR4uPjkZqaiptuugl79+5td04oz15SUoLrr78ecXFx8Hg8eOCBB9Dc3Gzko+hCKPaZMmVKh/wze/bsdudYtXy9+uqrGDVqlH8BzdzcXHz66af+z6Mt75CIEpz33nsPCxcuxGOPPYbt27fjsssuwzXXXIOSkhKzk2Y4F1xwAcrLy/1/O3fu9H/23HPP4cUXX8Qrr7yCzZs3Iz09HVOnTvXvZ2g1GhoaMHr0aLzyyiudfh6KPW677TYUFRXhs88+w2effYaioiLMmTPHqEfQlZ7sAwDTp09vl5/WrFnT7vOFCxdi1apVWLlyJdatW4f6+nrMmDEDPp9P7+TrSmFhIX7xi19g48aNKCgoQEtLC/Ly8tDQ0OA/p6dn9/l8uO6669DQ0IB169Zh5cqV+OCDD/DII4+Y9ViaEYp9AGD+/Pnt8s9rr73W7nOrlq/+/fvjmWeewZYtW7BlyxZceeWVuPHGG/2dtKjLO4wQmosvvpjdc8897d4bNmwY+/Wvf21Sisxh8eLFbPTo0Z1+1traytLT09kzzzzjf+/MmTMsMTGR/fnPfzYqiaYBgK1atcr/fyj22LNnDwPANm7c6D9nw4YNDAD74YcfjEu8AZxtH8YYmzt3Lrvxxhu7/M7JkyeZ0+lkK1eu9L9XWlrK7HY7++yzz3RLqxlUVlYyAKywsJAxFtqzr1mzhtntdlZaWuo/5x//+Adzu92strbW2AfQmbPtwxhjkydPZg8++GCX34mm8sUYY0lJSewvf/lLVOYd8kQJTHNzM7Zu3Yq8vLx27+fl5WH9+vUmpco89u3bh8zMTAwaNAizZ8/GwYMHAQDFxcWoqKhoZye3243JkydHpZ1CsceGDRuQmJiICRMm+M+ZOHEiEhMTo8ZmX3/9NVJTU3Heeedh/vz5qKys9H+2detWeL3edjbMzMzEiBEjLGef2tpaAEBycjKA0J59w4YNGDFiBDIzM/3nTJs2DU1NTdi6dauBqdefs+2j8M4778Dj8eCCCy7Ao48+2s7LGy3ly+fzYeXKlWhoaEBubm5U5h1rLiFqEY4fPw6fz4e0tLR276elpaGiosKkVJnDhAkT8NZbb+G8887DsWPH8Nvf/haTJk3C7t27/bbozE6HDx82I7mmEoo9KioqkJqa2uG7qampUZG3rrnmGtx6663IyclBcXExnnjiCVx55ZXYunUr3G43Kioq4HK5kJSU1O57Vit7jDE8/PDDuPTSSzFixAgACOnZKyoqOuSvpKQkuFwuy9sHAG6//XYMGjQI6enp2LVrFxYtWoQdO3agoKAAgPXL186dO5Gbm4szZ86gT58+WLVqFYYPH46ioqKoyzskoiTAZrO1+58x1uE9q3PNNdf4X48cORK5ubkYPHgw3nzzTX9AMNmpPT3ZozPbRIvNZs2a5X89YsQIjB8/Hjk5Ofjkk08wc+bMLr9nNfssWLAA3333HdatW9fjudGYf7qyz/z58/2vR4wYgXPPPRfjx4/Htm3bMHbsWADWts/QoUNRVFSEkydP4oMPPsDcuXNRWFjY5flWzjs0nCcwHo8HDoejgzqvrKzsoOSjjbi4OIwcORL79u3zz9IjO3FCsUd6ejqOHTvW4btVVVVRabOMjAzk5ORg3759ALh9mpubUVNT0+48K+Wp+++/Hx999BG++uor9O/f3/9+KM+enp7eIX/V1NTA6/Va3j6dMXbsWDidznb5x8rly+VyYciQIRg/fjyWLVuG0aNHY/ny5VGZd0hECYzL5cK4ceP8LmKFgoICTJo0yaRUiUFTUxO+//57ZGRk+N3qwXZqbm5GYWFhVNopFHvk5uaitrYWmzZt8p/z7bffora2NiptVl1djSNHjiAjIwMAMG7cODidznY2LC8vx65du6S3D2MMCxYswIcffogvv/wSgwYNavd5KM+em5uLXbt2oby83H9Ofn4+3G43xo0bZ8yD6ERP9umM3bt3w+v1+vNPtJUvxhiampqiM++YEMxOhMHKlSuZ0+lkb7zxBtuzZw9buHAhi4uLY4cOHTI7aYbyyCOPsK+//podPHiQbdy4kc2YMYPFx8f77fDMM8+wxMRE9uGHH7KdO3eyn/70pywjI4PV1dWZnHJ9OHXqFNu+fTvbvn07A8BefPFFtn37dnb48GHGWGj2mD59Ohs1ahTbsGED27BhAxs5ciSbMWOGWY+kKd3Z59SpU+yRRx5h69evZ8XFxeyrr75iubm5LCsrq5197rnnHta/f3+2du1atm3bNnbllVey0aNHs5aWFhOfLHLuvfdelpiYyL7++mtWXl7u/2tsbPSf09Ozt7S0sBEjRrCrrrqKbdu2ja1du5b179+fLViwwKzH0oye7LN//3721FNPsc2bN7Pi4mL2ySefsGHDhrExY8a0yxtWLV+LFi1i33zzDSsuLmbfffcd+81vfsPsdjvLz89njEVf3iERJQH//d//zXJycpjL5WJjx45tN9U2Wpg1axbLyMhgTqeTZWZmspkzZ7Ldu3f7P29tbWWLFy9m6enpzO12s8svv5zt3LnTxBTry1dffcUAdPibO3cuYyw0e1RXV7Pbb7+dxcfHs/j4eHb77bezmpoaE55Ge7qzT2NjI8vLy2P9+vVjTqeTDRgwgM2dO5eVlJS0u8bp06fZggULWHJyMuvduzebMWNGh3NkpDO7AGArVqzwnxPKsx8+fJhdd911rHfv3iw5OZktWLCAnTlzxuCn0Z6e7FNSUsIuv/xylpyczFwuFxs8eDB74IEHWHV1dbvrWLV83Xnnnf72qF+/fuyqq67yCyjGoi/v2BhjzDi/F0EQBEEQhDWgmCiCIAiCIAgVkIgiCIIgCIJQAYkogiAIgiAIFZCIIgiCIAiCUAGJKIIgCIIgCBWQiCIIgiAIglABiSiCIAiCIAgVkIgiCIIgCIJQAYkogiCiiilTpmDhwoVmJ4MgCAtAK5YTBGFZpkyZggsvvBAvv/yy/70TJ07A6XQiPj7e8PQsXLgQhw4dwurVqw2/N0EQ2kOeKIIgoork5GRTBBQAbN68GRdffLEp9yYIQntIRBEEYUnmzZuHwsJCLF++HDabDTabDYcOHeownDdlyhTcf//9WLhwIZKSkpCWlobXX38dDQ0N+NnPfob4+HgMHjwYn376qf87jDE899xzOOecc9C7d2+MHj0a//znP7tMi9frhcvlwvr16/HYY4/BZrNhwoQJuj4/QRD6QyKKIAhLsnz5cuTm5mL+/PkoLy9HeXk5srOzOz33zTffhMfjwaZNm3D//ffj3nvvxa233opJkyZh27ZtmDZtGubMmYPGxkYAwOOPP44VK1bg1Vdfxe7du/HQQw/hP//zP1FYWNjp9R0OB9atWwcAKCoqQnl5OT7//HN9HpwgCMOgmCiCICxLZzFRZ783ZcoU+Hw+/Pvf/wYA+Hw+JCYmYubMmXjrrbcAABUVFcjIyMCGDRswcuRIeDwefPnll8jNzfVf9+6770ZjYyPefffdTtOyevVq3H333Th+/Lhej0sQhMHEmJ0AgiAIsxk1apT/tcPhQEpKCkaOHOl/Ly0tDQBQWVmJPXv24MyZM5g6dWq7azQ3N2PMmDFd3mP79u0YPXq0xiknCMJMSEQRBBH1OJ3Odv/bbLZ279lsNgBAa2srWltbAQCffPIJsrKy2n3P7XZ3eY+ioiISUQRhMUhEEQRhWVwuF3w+n6bXHD58ONxuN0pKSjB58uSQv7dz507cfPPNmqaFIAhzIRFFEIRlGThwIL799lscOnQIffr0QXJycsTXjI+Px6OPPoqHHnoIra2tuPTSS1FXV4f169ejT58+mDt3bqffa21txXfffYeysjLExcUhMTEx4rQQBGEuNDuPIAjL8uijj8LhcGD48OHo168fSkpKNLnu008/jSeffBLLli3D+eefj2nTpuHjjz/GoEGDuvzOb3/7W7z33nvIysrC0qVLNUkHQRDmQrPzCIIgCIIgVECeKIIgCIIgCBWQiCIIgiAIglABiSiCIAiCIAgVkIgiCIIgCIJQAYkogiAIgiAIFZCIIgiCIAiCUAGJKIIgCIIgCBWQiCIIgiAIglABiSiCIAiCIAgVkIgiCIIgCIJQAYkogiAIgiAIFZCIIgiCIAiCUMH/Bzn+MNZFTTqdAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = linspace(0, 20π*5, 1000)\n", - "# find solution by the brute-force eᴬᵗ [0,1]:\n", - "plot(t, [(expm(A*t)*[0,1])[1] for t in t], \"r-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "title(\"motion of a frictionless mass on a spring\")\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The key to understanding this behavior is to look at the eigenvalues of $A$, because each eigenvector has time dependence $e^{\\lambda t}$.\n", - "\n", - "$A$ has eigenvalues $\\lambda_1 = 0.1i$, $\\lambda_2 = -0.1i$, which can easily be computed by hand or via computer:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Complex{Float64},1}:\n", - " 0.0+0.1im\n", - " 0.0-0.1im" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(A)\n", - "λ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The correpsonding eigenvectors are complex as well, but come in a **complex conjugate pair** since $A$ is real:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Complex{Float64},2}:\n", - " 0.995037+0.0im 0.995037-0.0im \n", - " 0.0+0.0995037im 0.0-0.0995037im" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we expand our initial condition in this basis, we have:\n", - "\n", - "$$\n", - "\\vec{x}(0) = \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix} = c_1 \\vec{x}_1 + c_2 \\vec{x}_2 = X \\vec{c}\n", - "$$\n", - "\n", - "where $\\vec{c} = X^{-1} \\vec{x}(0)$ is:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Complex{Float64},1}:\n", - " 0.0-5.02494im\n", - " 0.0+5.02494im" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "c = X \\ [0, 1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that the coefficients are complex conjugates as well!\n", - "\n", - "In fact, this *must* happen in order to get a real vector from the sum of our two complex-conjugate eigenvectors. Adding two complex conjugates cancels the imaginary parts and gives us twice the real part:\n", - "\n", - "$$\n", - "\\vec{x}(0) = c_1 \\vec{x}_1 + \\overline{c_1 \\vec{x}_1 } = 2\\operatorname{Re}[c_1 \\vec{x}_1]\n", - "$$\n", - "\n", - "which is real. Any coefficient $c_2 \\ne \\overline{c_1}$ would not have summed to a real vector. Let's check this formula (`real` computes the real part in Julia):" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.0\n", - " 1.0" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2*real(c[1]*X[:,1])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, for the eigenvectors, the matrix $A$ acts just like a scalar $\\lambda$, and the solution of the scalar ODE $dc/dt = \\lambda c$ is just $e^{\\lambda t} c(0)$.\n", - "\n", - "So, we just multiply each eigenvector component of $\\vec{x}(0)$ by $e^{\\lambda t}$ and sum to get the solution:\n", - "\n", - "\n", - "$$\n", - "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2 = c_1 e^{\\lambda_1 t} \\vec{x}_1 + \\overline{c_1 e^{\\lambda_1 t} \\vec{x}_1 } = 2\\operatorname{Re}\\left[c_1 e^{\\lambda_1 t} \\vec{x}_1\\right]\n", - "$$\n", - "\n", - "where we have used the fact that the eigenvalues are complex conjugates.\n", - "\n", - "Now, let's try to write this in some more comprehensible form. The position $x(t)$ is just the first component of this result, i.e. it is some value of the form:\n", - "\n", - "$$\n", - "x(t) = \\operatorname{Re} \\left[ \\xi e^{\\lambda_1 t} \\right]\n", - "$$\n", - "\n", - "where $\\xi = 2c_1 (1,0)^T x_1$ is the first component of the coefficient vector. If we write $\\xi = r e^{i\\phi}$ in polar form, this simplifies even more:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0 - 10.000000000000002im" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ξ = 2 * c[1] * X[1,1]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(10.000000000000002, -0.5)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# polar form of α:\n", - "r = abs(ξ)\n", - "ϕ = angle(ξ)\n", - "r, ϕ/π" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In terms of this, we have:\n", - "\n", - "$$\n", - "x(t) = \\operatorname{Re} \\left[ r e^{i(0.1t + \\phi)} \\right] = r \\cos(0.1t + \\phi)\n", - "$$\n", - "\n", - "using Euler's identity $e^{i\\theta} = \\cos \\theta + i \\sin \\theta$. Let's check this by plotting it along with the numerical solution:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHGCAYAAABU9964AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4VFXawH8zmfRKeiEJJEBCSUKvKiCC1BUBXXFdAbFi+RB3VbAArgtrR3GVdQGxK6uICggEkIiCGHqvaZAQIIEQ0suc74/ciZn0TO5Mkpnze548MHfOfc97z71z73vPeYtGCCGQSCQSiUQikTQJbUsrIJFIJBKJRNIWkUaURCKRSCQSiQlII0oikUgkEonEBKQRJZFIJBKJRGIC0oiSSCQSiUQiMQFpREkkEolEIpGYgDSiJBKJRCKRSExAGlESiUQikUgkJiCNKIlEIpFIJBITkEaUxOYoKChgwYIFbN++vcZ3q1atQqPRkJKSYnG9msLzzz9PWFgYOp0OLy8vs/WTkpLCuHHj8Pb2RqPRMHv27Hrbb9++HY1GU+vY1sfOnTtZsGABOTk5Nb4bNmwYw4YNa5K8ptJWzruk7WOJ61liOXQtrYBEYmkKCgpYuHAhQI2b2bhx49i1axdBQUEtoFnj+O677/jnP//Jc889x5gxY3B0dDRbX08++SS7d+9m5cqVBAYGNjguvXv3ZteuXXTr1q1J/ezcuZOFCxcyffr0Gkbhe++912S9JZLWiryerQtpREkkVfDz88PPz6+l1aiXI0eOAPDEE0/g7+9v9r769+/PxIkT621XWlqKRqPBw8ODgQMHqqpDUw0yiaQ1UlBQgIuLi7yerQy5nCdpNSxYsACNRsOhQ4e444478PT0xNvbmzlz5lBWVsbJkycZPXo07u7udOjQgVdffbWGjLS0NO655x78/f1xdHSka9euvPHGG+j1eqBiecpgJC1cuBCNRoNGo2H69OlA3cs6K1euJC4uDicnJ7y9vbn99ts5fvy4UZvp06fj5ubGmTNnGDt2LG5uboSGhvLUU09RXFzc4PHr9XpeffVVoqOjcXR0xN/fn3vvvZfz589XtunQoQPPP/88AAEBAWg0GhYsWFCnzD179nDXXXfRoUMHnJ2d6dChA1OnTiU1NbVeXQzLcmfOnOHHH3+sHKeUlJTK7z755BOeeuopQkJCcHR05MyZM3Uu5+3evZsJEybg4+ODk5MTkZGRlUuDCxYs4O9//zsAHTt2rOzLIKO25Y8rV64wa9YsQkJCcHBwICIigueee67GOGs0Gh577DE++eQTunbtiouLC3Fxcaxbt67e4zewZcsWRowYgYeHBy4uLgwZMoStW7catbl8+TIPPvggoaGhODo64ufnx5AhQ9iyZUtlm/379zN+/PjK6zI4OJhx48YZndvaGDZsGD169GDXrl0MHjy48hx++OGHAKxfv57evXvj4uJCTEwMGzduNNr/zJkzzJgxg86dO+Pi4kJISAgTJkzg8OHDRu30ej0vv/wyUVFRODs74+XlRWxsLG+//XaTjrMufvnlF0aMGIG7uzsuLi4MHjyY9evXG7Ux/PZ++uknHnnkEXx9ffHx8WHSpElkZGQ02Iep17qB999/n7i4ONzc3HB3dyc6Opp58+bV0C8+Pp4ZM2bg7e2Nq6srEyZMICkpyUiW4bz9/PPPDB48GBcXF+67777K76pezykpKWg0Gl5//XXefPNNOnbsiJubG4MGDeK3336roed///tfunTpgqOjI926dePzzz9n+vTpdOjQoVHHKVEZIZG0EubPny8AERUVJf7xj3+I+Ph48fTTTwtAPPbYYyI6Olq88847Ij4+XsyYMUMA4ptvvqnc/9KlSyIkJET4+fmJZcuWiY0bN4rHHntMAOKRRx4RQghRVFQkNm7cKAAxc+ZMsWvXLrFr1y5x5swZIYQQH374oQBEcnJypdxFixYJQEydOlWsX79efPzxxyIiIkJ4enqKU6dOVbabNm2acHBwEF27dhWvv/662LJli3jxxReFRqMRCxcubPD4H3zwwcpj3bhxo1i2bJnw8/MToaGh4vLly0IIIfbt2ydmzpwpALFx40axa9cuce7cuTpl/u9//xMvvvii+Pbbb0VCQoL48ssvxdChQ4Wfn1+lzNq4du2a2LVrlwgMDBRDhgypHKeioiLx008/CUCEhISIKVOmiO+//16sW7dOZGdnV373008/VcrauHGjsLe3F7GxsWLVqlVi27ZtYuXKleKuu+4SQghx7tw58fjjjwtArFmzprKva9euCSGEGDp0qBg6dGilvMLCQhEbGytcXV3F66+/LjZv3ixeeOEFodPpxNixY42OAxAdOnQQ/fv3F6tXrxYbNmwQw4YNEzqdTpw9e7ayXW3n/ZNPPhEajUZMnDhRrFmzRvzwww9i/Pjxws7OTmzZsqWy3a233ir8/PzEBx98ILZv3y7Wrl0rXnzxRfHll18KIYTIy8sTPj4+om/fvmL16tUiISFBfPXVV+Lhhx8Wx44dq/McGI7dx8dHREVFiRUrVohNmzaJ8ePHC0AsXLhQxMTEiC+++EJs2LBBDBw4UDg6Oor09PTK/RMSEsRTTz0lvv76a5GQkCC+/fZbMXHiROHs7CxOnDhR2W7x4sXCzs5OzJ8/X2zdulVs3LhRLFmyRCxYsKDRx1kX27dvF/b29qJPnz7iq6++EmvXrhWjRo0SGo3GaF/DOYiIiBCPP/642LRpk1i+fLlo166dGD58eL19CGH6tS6EEF988YUAxOOPPy42b94stmzZIpYtWyaeeOKJGvqFhoaK++67T/z444/igw8+EP7+/iI0NFRcvXrV6Lx5e3uL0NBQsXTpUvHTTz+JhISEyu+qXs/JycmV1+no0aPF2rVrxdq1a0VMTIxo166dyMnJqWz7n//8RwBi8uTJYt26deKzzz4TXbp0EeHh4SI8PLzBMZKojzSiJK0GgxH1xhtvGG3v2bNn5QPWQGlpqfDz8xOTJk2q3Pbss88KQOzevdto/0ceeURoNBpx8uRJIYQQly9fFoCYP39+DR2qP0yvXr0qnJ2dazyc09LShKOjo7j77rsrt02bNk0AYvXq1UZtx44dK6Kiouo99uPHjwtAzJo1y2j77t27BSDmzZtXuc0wTg09GGqjrKxM5OXlCVdXV/H222832D48PFyMGzfOaJvBULrppptqtK/NiIqMjBSRkZGisLCwzn5ee+21GkaMgeoPnWXLltU6zq+88ooAxObNmyu3ASIgIEDk5uZWbsvMzBRarVYsXry4clv1856fny+8vb3FhAkTjPooLy8XcXFxon///pXb3NzcxOzZs+s8tj179ghArF27ts42dTF06FABiD179lRuy87OFnZ2dsLZ2dnIYDpw4IAAxDvvvFOnvLKyMlFSUiI6d+4snnzyycrt48ePFz179qxXl4aOsy4GDhwo/P39xfXr14306NGjh2jfvr3Q6/VCiD/OQfXfwKuvvioAceHChSb125Rr/bHHHhNeXl71tjHod/vttxtt//XXXwUgXn755cpthvO2devWGnLqMqJiYmJEWVlZ5fbff/9dAOKLL74QQlRce4GBgWLAgAFG8lJTU4W9vb00oloIuZwnaXWMHz/e6HPXrl3RaDSMGTOmcptOp6NTp05GU/Xbtm2jW7du9O/f32j/6dOnI4Rg27ZtTdZl165dFBYWVi73GQgNDeXmm2+usbSj0WiYMGGC0bbY2NgGlxR++umnSl2r0r9/f7p27Vqjn8aSl5fHM888Q6dOndDpdOh0Otzc3MjPz6+xHNlUJk+e3GCbU6dOcfbsWWbOnImTk1Oz+jOwbds2XF1dmTJlitF2w9hVH6vhw4fj7u5e+TkgIAB/f/96z8nOnTu5cuUK06ZNo6ysrPJPr9czevRoEhMTyc/PByrO0apVq3j55Zf57bffKC0tNZLVqVMn2rVrxzPPPMOyZcs4duxYk443KCiIPn36VH729vbG39+fnj17EhwcXLm9a9euAEbHVVZWxqJFi+jWrRsODg7odDocHBw4ffq00fnv378/Bw8eZNasWWzatInc3NwaejR0nLWRn5/P7t27mTJlCm5ubpXb7ezs+Otf/8r58+c5efKk0T5/+tOfjD7HxsbWOK7aaM613r9/f3Jycpg6dSrfffcdWVlZdbb9y1/+YvR58ODBhIeHV/6GDbRr146bb7653n6rMm7cOOzs7Co/Vz/ukydPkpmZyZ133mm0X1hYGEOGDGl0PxJ1kUaUpNXh7e1t9NnBwQEXF5caD2EHBweKiooqP2dnZ9caPWZ40GRnZzdZF8M+dcmtLrM2PR0dHY30VKOfxnL33Xfz7rvvcv/997Np0yZ+//13EhMT8fPzo7Cw0CSZBhoTwXj58mUA2rdv36y+qpKdnU1gYCAajcZou7+/PzqdrsZY+fj41JDh6OhY7/FfvHgRgClTpmBvb2/098orryCE4MqVKwB89dVXTJs2jeXLlzNo0CC8vb259957yczMBMDT05OEhAR69uzJvHnz6N69O8HBwcyfP79Rhkj13wNUXPu1/U4Ao2ttzpw5vPDCC0ycOJEffviB3bt3k5iYSFxcnNHxz507l9dff53ffvuNMWPG4OPjw4gRI9izZ09lm4aOszauXr2KEKJJv8vq58sQfdrQ9dqca/2vf/0rK1euJDU1lcmTJ+Pv78+AAQOIj4+v0TYwMLDWbdWPo6kRvg0dt0F+QEBAjX1r2yaxDDI6T2I1+Pj4cOHChRrbDU6pvr6+JskE6pRrisyG+qlucJjaz7Vr11i3bh3z58/n2WefrdxeXFxcaQA0h+pGTG0YnPgbcqBuCj4+PuzevRshhJEOly5doqysTJVzYpCxdOnSOqMNDQ8uX19flixZwpIlS0hLS+P777/n2Wef5dKlS5WO3jExMXz55ZcIITh06BCrVq3ipZdewtnZ2ejcqM2nn37Kvffey6JFi4y2Z2VlGaWS0Ol0zJkzhzlz5pCTk8OWLVuYN28et956K+fOncPFxaVRx1mddu3aodVqVf9dVkeNa33GjBnMmDGD/Px8fv75Z+bPn8/48eM5deoU4eHhle1qMxozMzPp1KmT0bbG/D6aguEeYTDwq/cvaRnkTJTEahgxYgTHjh1j3759Rts//vhjNBoNw4cPBxr/ZgswaNAgnJ2d+fTTT422nz9/nm3btjFixAhVdDdM+1fvJzExkePHj5vUj0ajQQhRI4/U8uXLKS8vN13ZJtClSxciIyNZuXJlvRGKTTknI0aMIC8vj7Vr1xpt//jjjyu/by5DhgzBy8uLY8eO0bdv31r/DDM/VQkLC+Oxxx5j5MiRNa5DqDgncXFxvPXWW3h5edXaRk00Gk2N879+/XrS09Pr3MfLy4spU6bw6KOPcuXKlVoTkDZ0nAZcXV0ZMGAAa9asMTq3er2eTz/9lPbt29OlS5emH1g11LzWXV1dGTNmDM899xwlJSUcPXrU6PvPPvvM6PPOnTtJTU01ewLNqKgoAgMDWb16tdH2tLQ0du7cada+JXUjZ6IkVsOTTz7Jxx9/zLhx43jppZcIDw9n/fr1vPfeezzyyCOVN2t3d3fCw8P57rvvGDFiBN7e3vj6+tYaIuzl5cULL7zAvHnzuPfee5k6dSrZ2dksXLgQJycn5s+fr4ruUVFRPPjggyxduhStVsuYMWNISUnhhRdeIDQ0lCeffLLJMj08PLjpppt47bXXKo8vISGBFStWmDXLeXX+/e9/M2HCBAYOHMiTTz5JWFgYaWlpbNq0qfKBFBMTA8Dbb7/NtGnTsLe3JyoqysiXycC9997Lv//9b6ZNm0ZKSgoxMTH88ssvLFq0iLFjx3LLLbc0W2c3NzeWLl3KtGnTuHLlClOmTMHf35/Lly9z8OBBLl++zPvvv8+1a9cYPnw4d999N9HR0bi7u5OYmMjGjRuZNGkSAOvWreO9995j4sSJREREIIRgzZo15OTkMHLkyGbrWh/jx49n1apVREdHExsby969e3nttddqzHZOmDCBHj160LdvX/z8/EhNTWXJkiWEh4fTuXPnRh1nXSxevJiRI0cyfPhw/va3v+Hg4MB7773HkSNH+OKLL1SZsWnutf7AAw/g7OzMkCFDCAoKIjMzk8WLF+Pp6Um/fv2M2u7Zs4f777+fO+64g3PnzvHcc88REhLCrFmzmn0c9aHValm4cCEPPfQQU6ZM4b777iMnJ4eFCxcSFBSEVivnRFqElvNpl0iMqSvqbNq0acLV1bVG+6FDh4ru3bsbbUtNTRV333238PHxEfb29iIqKkq89tprory83Kjdli1bRK9evYSjo6MAxLRp04QQtYe6CyHE8uXLRWxsrHBwcBCenp7itttuE0ePHm2Unobjaojy8nLxyiuviC5dugh7e3vh6+sr7rnnnhopDJoSnXf+/HkxefJk0a5dO+Hu7i5Gjx4tjhw5IsLDwyuPuT7qi8773//+V6N9bdF5Qgixa9cuMWbMGOHp6SkcHR1FZGSkUXSYEELMnTtXBAcHC61WaySjejSTEBURag8//LAICgoSOp1OhIeHi7lz54qioiKjdoB49NFHaz2uqsdf13lPSEgQ48aNE97e3sLe3l6EhISIcePGVR57UVGRePjhh0VsbKzw8PAQzs7OIioqSsyfP1/k5+cLIYQ4ceKEmDp1qoiMjBTOzs7C09NT9O/fX6xataqGXtWp7Ro36F/9vNR2vFevXhUzZ84U/v7+wsXFRdxwww1ix44dNcb0jTfeEIMHDxa+vr7CwcFBhIWFiZkzZ4qUlJRGH2d97NixQ9x8883C1dVVODs7i4EDB4offvjBqI3hHCQmJhptr+uaqk5zrvWPPvpIDB8+XAQEBAgHBwcRHBws7rzzTnHo0KEa+m3evFn89a9/FV5eXpWRu6dPnzaSV9d5M3xXW3Tea6+9VqMttUQRf/DBB6JTp07CwcFBdOnSRaxcuVLcdtttolevXvUeo8Q8aIQQwvKmm0QikUgkbYdVq1YxY8YMEhMT6du3b0urU0lOTg5dunRh4sSJfPDBBy2tjs0hl/MkEolEImkDZGZm8s9//pPhw4fj4+NDamoqb731FtevX+f//u//Wlo9m0QaURKJRCKRtAEcHR1JSUlh1qxZXLlyBRcXFwYOHMiyZcvo3r17S6tnk8jlPIlEIpFIJBITkO78EolEIpFIJCYgjSiJRCKRSCQSE5BGlEQikUgkEokJSMdyFdHr9WRkZODu7q56yn+JRCKRSCTmQQjB9evXCQ4OblLiUmlEqUhGRgahoaEtrYZEIpFIJBITOHfuXJMKpksjSkUMJSrOnTuHh4eHanJLS0vZvHkzo0aNwt7eXjW51oIcn/qR41M3cmzqR45P/cjxqZ+2ND65ubmEhobWWmqqPqQRpSKGJTwPDw/VjSgXFxc8PDxa/YXYEsjxqR85PnUjx6Z+5PjUjxyf+mmL49NUVxzpWC6RSCQSiURiAtKIkkgkEolEIjEBaURJJBKJRCKRmIA0oiQSiUQikUhMQBpREolEIpFIJCYgjSiJRCKRSCQSE5BGlEQikUgkEokJSCNKIpFIJBKJxASkESWRSCQSiURiAtKIkkgkEolEIjGBNmlE/fzzz0yYMIHg4GA0Gg1r1641+l4IwYIFCwgODsbZ2Zlhw4Zx9OjRBuW+9957dOzYEScnJ/r06cOOHTvMdQgSiUQikUjaOG3SiMrPzycuLo5333231u9fffVV3nzzTd59910SExMJDAxk5MiRXL9+vU6ZX331FbNnz+a5555j//793HjjjYwZM4a0tDRzHYZEIpFIJJI2TJs0osaMGcPLL7/MpEmTanwnhGDJkiU899xzTJo0iR49evDRRx9RUFDA559/XqfMN998k5kzZ3L//ffTtWtXlixZQmhoKO+//745D6XFyT59mpK8vJZWw+q5lpZG/qVLLa2G1VOQlcU1+eJjfkpKICurpbWwekR5OVy6BEK0tCqSOtC1tAJqk5ycTGZmJqNGjarc5ujoyNChQ9m5cycPPfRQjX1KSkrYu3cvzz77rNH2UaNGsXPnzjr7Ki4upri4uPJzbm4uUFG5urS0tLmHUolBlpoyL584wb3DhrH1yhU8gbdmzuSeNmowmmN81KI4N5fHBw7kozNn0AFPDxnCi1u3otFa7v2lNY+PagjBzkce4daVKykBpoaH8/7u3Th7e9e7m02MTTOobXw0X32F3RNPoLl6le2xsUQsX05Qz54tpWKLYs7rZ8/HH/P4rFn8XlKCpksXyj79FNrYOLel35epOlqdEZWZmQlAQECA0faAgABSU1Nr3ScrK4vy8vJa9zHIq43FixezcOHCGts3b96Mi4tLU1VvkPj4eFXk6MvKeP3ee9lZUADANeC+FSvI0+sJu+02VfpoCdQaHzVZM3s2H6ekAFAK/PPXXykdOpTBc+daXJfWOD5qERYfz40rVzIM2AR8nppKSc+e3LNsWaP2t+axUQPD+Djt28eol19Go9dzBrj90CGihg7l6Q8/xM7JqWWVbEHUvn5yjx9nzrx5ZAnBUSDm1CnKRo/mpyVLKPXwULUvS9AWfl8FyvOwqVidEWVAo9EYfRZC1NjW3H3mzp3LnDlzKj/n5uYSGhrKqFGj8FDxQi8tLSU+Pp6RI0dib2/fbHn//etf2VlQgCuwY/Vq3p47l4tnzzIxPp7Ad94BR8fmK21B1B4ftcjfsoW3FAPqm6efJvn4cf72ww+8u3s3D3p7EzZwoEX0aK3joxqXLqG7+240wJrnn2eHiwtj5s3j68xMHjp1iqGzZ9e5q9WPTTOpOj6UltL3zjvpo9fz5u23Uzx9OvrbbmN3YSEpn3/O419/3dLqWhxzXT93P/ooWULQy9mZ4F9/Rdx1F4dOneK311/nhT17VOvH3LSl35dhJampWJ0RFRgYCFTMSAUFBVVuv3TpUo2ZJgO+vr7Y2dnVmHWqbx+oWCZ0rMXgsLe3N8sFo4bc0oICXlFudosmTaLXHXfwn+HDcYiJQXP+PHz9NUyfroK2lsdc424qXkuXsh04PXkynV95BX1ZGWt9fPglN5d//9//8ea+fRbVp7WNj1oceeEFuhUUoOnbF5eFC7lVq+WhTz9l2bFj/HPRIm75+98blGGtY6MW9vb2/O/vf+d4SQlZGg2611+ne0QEr959Nw9//jlvrFvHrPx8nLy8WlrVFkHN6+fAV1/xdXo6GuCjTz7Bp1cv0l97jSG33QaHDnHf7t10uOEGVfqyFG3h92Wqfm3Ssbw+OnbsSGBgoNH0YUlJCQkJCQwePLjWfRwcHOjTp0+NKcf4+Pg692mrFK1ezaTyciK0Wh74738BcPT1RfPkkxUN3nxTOjGqwYkT8OOPoNXS+ZVXANDqdLz8/PO8Ajx/+jSY+OYj+YOinBxu+PBDYoALjz0Giq/ZvJUrsQO25+Rw+JtvWlRHa+Gdjz4C4PHhw2kXEQHA9Pffp72dHRl6Pf+r5lMqMY1liovInaGhxEyeDEDIn/7EcG9vyoGl9cysSixPmzSi8vLyOHDgAAcOHAAqnMkPHDhAWloaGo2G2bNns2jRIr799luOHDnC9OnTcXFx4e67766UMWLECKMUCXPmzGH58uWsXLmS48eP8+STT5KWlsbDDz9s8eMzJ+7ffMNbwMlnnjF2un3wQfbZ2/O3w4c5smZNi+lnLSS++irZAGPHQmRk5fahf/sbT0dF4Z2XB99+22L6WQs/vPQS14A8OzsC/vKXyu2hAwYwMSQEgM//9a8W0s56OPbDD+zOz8ceeOiddyq3O3p48ODQoQB8aoPLeWpTkJXFF8ePA/BQNWPpiVmzAPh8/37KS0osrpukdtqkEbVnzx569epFr169gAoDqFevXrz44osAPP3008yePZtZs2bRt29f0tPT2bx5M+7u7pUyzp49S1aVEN0///nPLFmyhJdeeomePXvy888/s2HDBsLDwy17cObkyhXYtAkA3T33GH/n5cXLvr68AXz2xhuW182KEHo9f/7kEwKBBOUarUSjgalTK/6/erXFdbM2Pv3iCwD+0r8/Wp2xd8KLf/87CcDLmZlydrWZfKsYTrf6++PfvbvRd3954QUAtmRnc0F5sZWYxo//+he5QAedjqFPPGH03a3PPEM7jYZMvZ6EpUtbRkFJDdqkETVs2DCEEDX+Vq1aBVQ4iC9YsIALFy5QVFREQkICPXr0MJKRkpLCggULjLbNmjWLlJQUiouL2bt3LzfddJOFjsgy7H/3XX4tLaWsRw/o1q3G93f9+c8AfN2GHBdbI4e+/prksjIcgH7VboQA+smT+S8w5scfyakjYlTSMIVXrhCv+DHeVSXAw0Dsgw9yk5sbdufPQ2KipdWzKtb89hsAU/70pxrfRQwbxgBXVwTw2wcfWFgz6yL8+HGmA/cPGFDjpcDBzY0pUVEAfKM86yQtT5s0oiSm8dqKFdwA/KMO58/RTz2FDjhTWsrZbdssqps1sfHDDwG42d8fF1/fGt9re/TgDQcHNgrBtn//29LqWQ3b332XQqC9nR0xtSTexdm5YjkVYP16i+pmTVw/eZLDxcVogQl1+D0tnzaNS8DtFy9aVDerorycvr//zofAcy+/XGuT8cp1vunECQsqJqkPaUTZCOUlJWw+dw6AW5QZp+p4tG/PYE9PAOKXL7eYbtbGj7t2ATBa8RWpjVHR0QDEy4e7yWxQfHDGdu5cZ/LS5F69eAT4y3vvWVAz6yL49GleB54IDMS7in9fVXpMn44vQHx8RTZzSdPZt68iC7ynJwwZUmuT4Y8+ig4oKCsjW86utgqkEWUjHFi9mmwhcAcG3ndfne1G9esHwKbt2y2jmJVRkJXFr9euATC6nqCEkcqySPypUxbRyxrZrozdqPHj62yjvfFGlgFfZWWRe/68hTSzLjqfOsVTwFv33193oz59wNcXrl8H6Q5gEns//5w9QNmQIVBHuL17cDAnBwwgHfCR49wqkEaUjfCrEgl2g58f9vVkU7/5jjsA+CUzE6HXW0Q3a2LPF19QBgRrtUQMG1Znu2GPPIIdcLasjPPyjbLp5OTwr+JingFunDatzmbhQ4bQyd6ecuBn6a+odoBAAAAgAElEQVTTdITA7/Dhiv+PGFF3O62WLzp0YCjw9uLFFlHN2vjHl1/SD1jSQLuI0aPRANRTkkxiOaQRZSPsVB7Ug2Nj623X+667cADKhCBTcSaVNJ6dyvLc4KCgeuvjuQcHE+PsDMBuGaXXdHbtYhzwr06d8K8WNFKdG5QI29+kn1+TuXzgAGuuXiXJzg7696+37YXgYH4G4n//3TLKWRH68nJ+UfzJhjRUekvJXSh+/dXcakkagTSibIRdGRkADLr11nrbOXp4cLJnT7KBoLNnLaCZdTG1rIyVwIP1LDEZGNixIwC/yaXTpmN4gNThO1KVAcoS9W4l/46k8fz82Wf8BbjDwQEaqAd6o+L0/Ovly+jLyiygnfVwYv16soXAGehTJZ9hbej79eNOICQ5mYtHjlhEP0ndSCPKBkjfs4e08nK0QP8qCQnrosPw4RUXhpyJahpCEH7gADOAkTNmNNh84ODB2APXFId/SeNZ+fXXbAIK+vZtsO1Axf/s9ytX5MO9iezesQOAAUqG8vro9ec/4wzkCMHpNlBwtjWx46uvABjg5YWDm1u9bbXt2nHCyYkLwK7PPrOAdpL6kEaUDeB3+jS/AstDQ3EPDm54h0GDKv5VoswkjeT0acjOBicnqJ5ksxbufOwxcoEPrl2D0lLz62cllBYU8NjJk4wGUsLCGmzfY+JEXIBc4MSPP5pbPavi9zNnAOhvuCfUg87JiTjFANi7bp1Z9bI2EhUn8cG15O+rjUEdOgCwc+tWc6kkaSTSiLIBHPbuZTAwY9y4RrUv6tWLqUCn/fvJk3lfGs2uTz9lKXAwOhocHBps7xwTg1O7dlBUBIcOmV9BK+Hkxo0UAu5AtCEPVD3onJzo6+FBJ+Cy9CNpNCV5eey9fh2AfhMnNmqfPsoS9d7du82mlzWyX5mN7t3IWq2DlQLEv508aTadJI1DGlG2wP79Ff8qviEN4dSpEwlaLWeBw999Zz69rIyvN2zgCWB5Y6MatVoYMKDi//Kh02gObN4MQE8PjxpZnesifuZMTgNDc3LMqJl1cfjbbykG2gGdb7mlUfv0VpZX9yozWJKGKc3P50hhIQC9Gvmi23v0aAAO5ubKKOoWRhpRVo7Q63l2504+BAqUkgGNIU4pTnxQOj03moNJSQD07N270ft87exMH2D2smVm0sr6OKAsffRUljQag4PBWJW13RrNAWWpqIebW72RplXpM2YMvoB/fj7Ih3uj0Bw/zgbgDScnOjay1Fj0mDE4ULFEnfLLL+ZUT9IA0oiycjL27eOVoiLuBzRduzZ6v1glM/EhuczUKIRezwFllqNnffl0qlHWvj37gN9TUsyjmBVywARjFSW1hzh8GFFebg61rI7DBw8C0Mnfv9H7xN52G5ccHFhdVgYyurdR6A4fZgQwZ+DARhur9i4udFNSpByUfn4tijSirJyDGzYAEOXggLMyu9QY4vr0qdg/Lc0selkbGfv2kS0EdkD3RqQ3MBCrLJMcvn5dRo41AiNjtZFLTACiUydu1WjwLiggKSHBXOpZFX9zduZbYGQD+aGqonFwQNOzZ8WHvXvNo5i1YXC3aEQwSlUGh4czENDJIuYtijSirJxDSlbbuMDAJu0XN2pUxf7y4d4oDipJNqMdHXGqo8BzbXQZNQoHIA9IkU7PDZK+Zw/ZQqADujXSfwRAY2/PZScncoDDMvy+YYSg/alTTASCGulLWUlcHABlcha7Uby3YQNfAjldujRpv38/9BC7gPFFRWbRS9I4pBFl5RxUEgzGNWEpD6o93OWae4McMNFY1Tk50V2Zlj+0caPqelkbgRkZHAT+FxbWJGMVIFZJ73FIOvE3zIULkJ2N0Gq5HhrapF2/LS8nFPjzqlVmUc2aEHo9886eZSqQ5uvbtJ0VYxVl2VXSMkgjyso5mJkJQFwjQ2cN2Ds709vFhV5AjpyWb5BDBmO1kXleqmJ4uB+W5TIaRHfsGLHAxBtvbPK+McqLxGFZ9LlBDqxdyz+B7SEh6BuRrqMqbl26cB44kpVlFt2sicxDh7hGxYM4Spn9bzSKEVWSlETZlSuq6yZpHNKIsmJK8vI4VVICQMyYMU3ef+cdd7AP6J2fr7Jm1sf77u78Ctx1551N3je2e3cADsqcLw1z4kTFv02cWQWIVUrEHLp0SU2NrJL49et5HnhfiCbv233kSADOlJZSJFNK1MsxZWk50t4eRw+Ppu3s7c1NDg64AHvXrlVfOUmjkEaUFXN2+3bKATcgRHEUbwoaw6yKfLjXT3k57c6eZTAQ1sgQ5arEDR5MNBBSUKC6atbGom3bWAJcDApq8r4xSmLO06WlFMo393o5ohirPTp3bvK+QT174gnogVPS/6xejiuzz918fEza397VlXLghCzR1WJII8qKiS4pIR3YGh3d6NBZYwHRAAhZuLV+UlOhuBgcHSE8vMm7j7jrLo4Db+flgXTirxOh1/Ov9HSeBK40IezeQECPHnhpNAjgzE8/qa6fNXFSqVQQZfC7aQIarZbu7u4AHP35Z1X1sjaOKffWrk3IeVaV6JAQAE4cPqyWSpImIo0oK0Zz8iTBQP9GFGmtjQvt2hEL+O3fLyP06uH3777jSeCbgACws2u6gNBQcHauqJ8n80XVSfrevVwHdECn4cObvL9Gq2W4lxejgHIl15SkJkKv56QyK9p54ECTZHRXHu5HDeH7klo5fv48AN2UPGZNJVpJoHxCpjloMaQRZc0Y/EeUGaWm4tunD8eBbCoeYJLa2aEsMa02wX8EqCj/0qULAig9ckRN1ayKE9u2ARDp4IC9q6tJMtZMmMAmoKfiKyipyeXjx8kRAg3Qadgwk2R0U+45R6WxWi/HcnMB6Kr46zWVaOUF+UR2tmo6SZqGNKKsmKc3b2YekGrqeruLC5FKZM4JWf6lTk6cPg1AtFJ81RSeKynBC3hnxQqVtLI+jicmAtDVxOsZAEPpI+nnVycnlaXOcJ2uSQl6q9J7yBBuAuJKS1XUzMrIzmanEPwAdDch8AcgWpmRPVNSQqn0qWwRpBFlpQi9nv9kZrIYyDPBCddAtHITPaHUK5PU5MSFCwBEmzglD2Dn60sufxhkkpocV2ZWTfUfAUBJaJh/7JgKGlknJxVjNcrT02QZN02aRAKw4Pp1WUOvLk6cIBIYHxqKs5+fSSJC+vTBFSgDmYm/hZBGlJWSeegQuVScYFP8RwxEK47SJ+Wbe50cv34dgOgm5uKqSnRMDAAnFYNMUpMT6ekARPfoYbKMZFdXAoCQvXsR8uFeK/d4e3MYeKWpeYuqEhYG9vYVARfnzqmmm1Vx5kzFvyZEQBrQ6nTc7u3NPYAmOVkdvSRNQhpRVorBfyTClPwjVTA8sE4oDpASY66cPUu24gvVpQmFh6sTNWgQACcVg0xSkzPK2HQ2MVACIHDAAC4D14BLcjaqVpzOnKEHEHfDDaYL0ekgIoJCIF+Wf6mVNevW8Q/g92bcnwE+GT2aT4Au8t7RIkgjyko5c+AAAJ2bWBqjOl2UulmnFAdIiTFnlZI4QVotriaE3RuIUorpXhKCq/KNsibFxRwsL2cPf9R1NAVnb2/CdToATkk/v9oxzDob/MdM5L6CAlyBjz//vPk6WSFfJybyIrC9uLh5gjp1qvj37Nlm6yRpOtKIslKSFN+ayCbWcqtOpyFDiAX6lZcjmvtjt0KS9u0DIMLEaDEDboGBBCm5vM7u2NFsvayO5GTaAX3c3HAxIRdXVQy+Pqekn18NyoqKePjMGV4Bips5zl6+vgjgtCyzUytnlbI4kUrFApOJjKQMyJT5/FoEaURZKUnK8ltERESz5Ph3785BFxe+ATQyF0kN7vT3JxNY1YylPAMGQyxZ5tapieEtOzISNJpmiYpUAi2SpBN/Dc7v2cN/hOBFwL45DvxAJ8WJ/7R0BaiVM0o0XSdltt9U9pSU4AwMklnLWwRpRFkpaVevAhBhQkFcIzQaMBhiMudLDTRJSQQAnXr1arasG8PCGAt4yaXTGvzw3Xc8Dqx3cWm2rAjFOEiSD/caJO3eDUBHBwe0yrKnqXTu2ROA07J+Xg2upqRwRfGljDChmHZVQvr2pQxIKyuTaQ5aAGlEWSm/2NuTBoyYOLH5wiIjEUCxjNCricGwbOaMH8DiyZNZD4w0Jeu5lbMlMZF3gQQVMucbXiySZYLCGiQpTuARzXR2BuisOKYnlZRQVlTUbHnWhGHJPkCrxb0ZKWgAAmNjcaaiVmHqrl3NV07SJKQRZY1cvYpdTg6hgFtz19uBV7KzcQOe++STZsuyNh5ITORvwKV27ZovTM741cnZjAwAIpsRDm4gesAAbgFukikOapCshN13bKYvJUBo//44AKXAOaXQrqSCs4o/XmQzfSmhopxRhKMjAElynC2OVRpRHTp0QKPR1Ph79NFHa22/atWqWtsXtdW3J8NDOCAAVPiRugYGUsAfDzJJBcW5uazIz+cNgGb6jwCVRlSuIX+MpJKzypJQhJJPqzl0HTGCeODVwkKQYeFGVPpSqnA92zk4EG5vD0CqEoAhqeCMkl6jk4lJNqsToURhn5XpJCyOVRpRiYmJXLhwofIvPj4egDvuuKPOfTw8PIz2uXDhAk5OTpZSWVW2rl3LXcAHKhhQAJHKgytJ8bOSVJDy668IwA3w69q12fIue3rSDvBOTZW+DVXQl5WRrNS6izSxIK4Rnp5gKB0j00kYkaQscTbbl1LhtuBgpgFe166pIs9a+FtwMMeB5ydMUEVeZHAwAEnyBcziWKUR5efnR2BgYOXfunXriIyMZOjQoXXuo9FojPYJVGE6u6VITEzkK2CHqQVxqxGhRI8kFRXJLM9VOKtMnUc4OaHRNv+n5NOtG4VAOXL5oyoZ+/dTDOiAMDWMKICOHckH8mRYuBFJivEe0aePKvJeu/VWVgE95X3DCMeUFKKBzv37qyLPEIV9VsnqL7EczQu/aAOUlJTw6aefMmfOHDT1hEbn5eURHh5OeXk5PXv25B//+Ae9Goi4Ki4uprhK7qRcJaqqtLSUUhULbxpkNVbm2ZQUADqEhKiiR3DfvmiAPODC0aP4KRXaWwtNHR+1OGNwwm3XTrW+Ozo4cKKkhNO7dhFqYmX36rTU+KjFKcUJN1ynQ9jZqXIcj2RnswJ45csviXrggTY7NqqSm0uSECQDETfcYHQfM3V8tKGh2AH6pCTKrXCMTR0f3ZkzaICyDh0QKoxLXL9+3PXNNwzRaFrVtdyW7j2m6mj1RtTatWvJyclh+vTpdbaJjo5m1apVxMTEkJuby9tvv82QIUM4ePAgnetxZF28eDELFy6ssX3z5s24qBCKXR3DsmRDnFT8GuxdXNiwYYMqfQdrtaTr9Xz/n/8QNHKkKjLVprHjoxb7lXxOPq6uqo1ziJMTJ0pK+GXTJopUWlIxYOnxUYuDytiGOjurNs52Dg4AHDlyhCja7tioiUdyMsOBKA8PNipFiA2YOj4hV68SA5zcvZtklc5da6Qp41N6/TrrMzLoBMSdOkX55cvN7t/NzY0vgLIrV1i/fn2zc6mpTVv4fRWY6EJh9UbUihUrGDNmDMHKmnFtDBw4kIFVlgmGDBlC7969Wbp0Ke+8806d+82dO5c5c+ZUfs7NzSU0NJRRo0bhoUKIsIHS0lLi4+MZOXIk9oqjZn3MVmbHbho/niFjx6qiQyd3d9KvXcOtvJyxKslUi6aOj1osf/BBAHr17q3amMSHh7P18GGKCwtVk9lS46MW43bu5NGtW7k2YQKhKo3Jhf/9D06eJCs/H6DNjo2aaNauBcA+Kqry2mvutbP38mWcgfZJSZxtZfcNNTBlfE5t2sQdgCtwZepUVVwBKCpCPP44uqIixvbvDyo5rDeXtnTvyTUxP59VG1Gpqals2bKFNWvWNGk/rVZLv379ON1ARmNHR0ccldDSqtjb25vlgmmM3JK8PNKUXDpdhgxRTY9hHTvideAAAYWFrfbHYK5xr4t05UfXKTZWtX4jIyLg8GFSMjJUPxZLj49qpKfjA/jExYFK+neKjYXPPiNZOYdtdmxU5Jv169kCjHVyYkK1sTB1fDr0748A0pWyUQ5ubuoo28poyvhkHDkCQLijIw61PD9MVIDy4GDOpafT7tgxPJVanK2FtvD7MlU/q3QsN/Dhhx/i7+/PuHHjmrSfEIIDBw4Q1MwkaC3Bud9/Rw84AUFKxmA1WDB5MmuBka1smrjFEII9dnZkUjHjpxaGqKikK1dUk9nmMZQbamYtt6pEKA69KSUl6FVI4GkNbNu7l2XALhXHI6BHD5yoSAQpgyUqSFWCGcJVXK0AuCUvj47Axh9+UFWupH6s1ojS6/V8+OGHTJs2DV218gX33nsvc+fOrfy8cOFCNm3aRFJSEgcOHGDmzJkcOHCAhx9+2NJqN5uLR49WRDHZ26szTWzAkDcmLU09mW2ZnBy0+fkEAM5KjTA16DpwIOOAEeXlqsls68zcv5/HgQsqpeyAikSQdkARUChrQgKQfPEiAB07dVJNpkarpYPif5ayd69qctsyqUoev3CVl9zae3tXyJc1IS2K1S7nbdmyhbS0NO67774a36WlpaGtYmDk5OTw4IMPkpmZiaenJ7169eLnn3+mv0rhp5ZksIcHRUDOoEHqCg4LQwDXkpPxUldy28RgTPr5gbOzamK7DB3KOoDiYsjPVyVZalumrKiIVfn56IG59fg1NhV7FxdCdTpSysrIkQ8dAFKVpc2OPXqoKreDhwcnsrJIUZaxbJ00JWlxeGioqnLDgoIgOZk0WRPSolitETVq1ChEHXmStm/fbvT5rbfe4q233rKAVhYgLQ07wEfFt0mAdAcHugDlyckUlpejsfH6bjt+/JG3gRscHZmtpmBPT/DwgNxcOHcOWlk6CUuTsX8/esCeihphajI5IICc9HR8CgtVldsWEXo9aUpASlhcnKqyO/j7Q1YWyWfPqiq3rZKqJDQNV/keHdahA+zcSdqlS6rKldSP1S7n2SyGGZKwMFXF+sfGUggUA5dlgkIO7t3LN8DP5lh2Cw0lF8g/dUp92W0MQ7mQUJ0OrU7dd77Xhw1jOaDuvEvb5Nq5c+Qp/2+vUqJNAx0VX7YUmQgSgDQlIjRMhbqmVQmLiqqQL7PDWxRpRFkZc+LjuQvYo/LD3d7FhSBlCTRN+jaQpvjRhAUEqC57SlYWnsAX33yjuuy2RtrRowCEmyOqS3nRcFYhT09bJ03JC+Wr0eDi66uq7H59+3IvcLONz14DUF7OESE4DvRWOYLOMIOYViUBtMT8SCPKyth44QJfAdfc3VWXHaYkEE2Tvg2kZWYCEKbyjB+Ar+IgmibrupGmLAGFGWrdqUloKPlAjiyszXnlNx1mhnqhwydM4CPgPrlsChkZuJSXE63T4ayUalGLMKU811UhuC6vaYshjSgrQuj1pCmFWsNUTG9gIKxdOwDSpCMuaUox5nAVI/MMhLVvD8C5CxdUl93WMDjJhqnoVG5g4+XLuAEzjh1TXXZbY2xAADnAtzfcoL5wgwP1hQvQBsp/mBVDJGhoKKg8M+ceHMxMBweeBcplxKnFkEaUFXE1KYl85f9q+zXAH0tXaTLNAWlKiYAwlSOZAMIiIyv6UBxQbZkLWVkAhKv81g4QovikZNj6gx0gLQ1PIMwcgQz+/hTrdJwVgkIbn1396ccfuR/4RK0km9VY3rUriwGvnByzyJfURBpRVkTanj0A+Gs0OCtLQmoSpjiI2nr0R0leHhlKVfowcxirXbsCkJaX10BL6+dbX1+ygDtvv1112aF9+wKQJQQFirFms5gpIAUArZauQCdg39at6stvQ/y2Zw8rgC3KioHqGM6ffNG1GNKIsiJSDx0CIEzFvEVVie3Vi9uAQWom8WyDXDx4EHvAEfBTDB41CVWWYs+VlqK35aSbQqBJS8MHcDfDDIlnaCgGz8FzyguIrfJMQgIPA8fN9Ntur/hTnrPxyN7Uc+cACA8JMYv8svbtSQNSDx82i3xJTWz7aWhlpCkh8WFe5kmHOXTsWNYCT5nrLaqNEFpWRiFwrmNHtGaIOArp3RsNMp0EOTlgmI0zwwyJRqslVFlWSbfxh85XmZn8B8gxU227UMWf8rySrdtWSVUiQc2xPA3wRkoK4cDzGzaYRb6kJtKIsiJyL16sKPlihrB74I8H2cWLUFRknj7aAqmpaAE/M90IHdzcuNvZmYcBYcPZh08mJHAb8IKLi6pZ4asSqkSxpp08aRb5bYHykhLOKzOeYb17m6WP9so96ZwNX88AadevA2byPeOPBJ5psvamxZBGlBXxXHAwRcA/77rLPB14eyOcnckGimw5+7A5/UcUPo2L430gUHFgt0VOJibyPfCjGfsIVVInnLNhh+cLBw9STkX5CrWzwhsIVX4r5208J9d5JYdT+5gYs8g3BLpIf0rLIY0oa0Ip+eKicjmBSjQa+uj1+AI7N240Tx9tgH99/z1TgE3mjOoyhIXbsIPoOSWVRpinp9n6GNajB/cDfZQiubbIuf37AQixs8POTOMQ2rlzRV82nE07LzOTXOX/IWZIQQMQ1qsXAOfLyym3cbcLSyGNKGvC8MBVubBlVfwUn4k0G/bV+TklhW+A8+bMwBwWxjXg4okT5uujlZOuLP2EqJxBuyp/HjuW/wITzNZD68eQFT7MjMWu23frBsA5G064mXHgAABugIeZHMuD4uKwA8qATCXQSGJepBFlJZQVFXFTRgZ/BvIUJ05z0F5JnWDLyx/pil9DiLlm/ID3UlPxAh5dt85sfbR20i9eBCDEDIk2K1GWmTQ2POOXduYMAGFmSItioGO/fkwDHtTrETZalqSLgwN5wGEz+VIC2Dk4EKS83Nl6sISlkEaUlXDxyBF2AN8Azmb01QkJDAQg3YazaacrD4EQM6Q3MBDYsWNFXza8/JGuZIUP6dDBbH2I9u3JA06mpSGU3F+2RqZSIiRU+W2bA+8uXVjl4MBCQGOr947z53EFOpjRiAIIUUr3pNvwLLYlkUaUlWB46wgyo18DQIiyVJhho9EfRTk5ZAsBmM+vASBEqciebsPLH+lKtfsQxZ/GHBT7+uIOdC0uJsdGS2W8ERFBLvCMGRKaVqLRgFLOCCVXks2Rnl7xr5mW8gxMjYzkGSDSxvP5WQo5ylZChhKiHWKGAqJVCVFKkqTn5jbQ0jox+DU4Au2U2SJzEKxE2VwoL0dfVma2flozVxTH/RDFn8YcOHp64qPRAJCunFubIyMDd8DLjMvTAEUhIZwBLik+WLbG+5s2cT+w1cwO3/83dCj/AswTZympjjSirIR0JYldiBkjmQBClPwmGTbq15CuVLsP0enQmPFNLzAmBg0VDqKXbXFa/vp1MoUgG+g0eLBZuwrQ6QDIsMVxBovNkDxw/jydgVXff2/Wflorm0+dYgVw0tzLxgYfQmWZVmJepBFlJRgimYKVvDfmIqxXLyYCd+j1CBsMob2akoIDEKKUsTAX9i4u+CtGWrotRtmkp6MBvD08sDPzi0GAwYdESalgS+jLyrjt/HkeAq57eJi1L0PCzfMGo83GMPg3tldm881FWWAgqcAxG04ga0mkEWUlWCSSCfCJiuJbe3veATRKn7bEn4KCKAI2jBxp9r5ClJIkNjlDYqHZEfgjbUeGDfrqXD5xgu+F4L+Ak1Jg3FyEKvLP2WjCzfNKlQdzBqQAJGRl0QGYrOT/kpgXaURZCaX5+egwbyQTAFotBAVV/N8W3ygzMtAAbuYeZ+D2sDAeBoJtsAjxhg0bmAi8a4GIOR+l1qQtRpxmKAEp/lot9maeXQ1RotIybNCfsqyoiIvKtRxipqzwBkK6dwcg3QZXCloCaURZCZ97e1MM3DVpktn7EkFBZAO5Nrj8YckZkueHD+d9oLfis2NLHDxyhO+APRZwqvdWknlmZGebva/WRrqSNNcw62lOgpWI0wwbrLuZefgweipK6/ibMVACICQuDoDrwHXpF2V2pBFlLaSnowXszZgjysDU9HR8gVVr15q9r9bGIwkJTAb2W+Itz7A0a4MzfoZZoRBzFdOuQseICB4AxlvAkGhtZCgBKcFKIWZzEqzMkNhixKnBrzHYzg6tmV+K3IODMZzNjIMHzdqXRBpR1kFeHhimyC0wQxKgOK9n2ODDfVNWFmuAfAs8dERwMDlAmg0We07PygL+yEtmTiJjYvgAuN+ctRBbKemKH1iImQNSAAJ69EADlGN7EacXTp0CIMTZ2SL9hSi5AtOPHbNIf7aMNKKsgKTffuMG4D6dDizxRqnMkKRfumT2vloTQq8nQ3mDDjFTFfaqxGdm0g6Y8NtvZu+rtWHIQxZi5uzOAEWGcieZmWBjMyQZhoAUg5+jGdE5OfGEiwvPA3Y2du+YGBJCHrBm2DCL9Bei1EG0xYhTSyONKCsg9dAhfgV2WShDbYgSZWMoy2ErZJ8+jSE7VrDid2BOgpScXOk2mJPLkKndkJfMnBR7enJdq+WkXk+RjdXQy87JASDYAjN+AEuiovgH4GtrflFKyZdAM6c3MBCi1E/NsNEs/JZEGlFWgOFtI8SMVdirYijDkVFQYJH+Wgvpin+Br0aDo5lz6sAfZWWyhaDYhiKayoqKyLRQJBMAdnZ002iIBg7v2GH+/loRawIDyQWmTpxomQ5tNRGkBQNSAMbHxvIsMMhCy4e2jDSirID0lBQAgpW3D3NjqyG0hnxNlohkgoqyMoaeMmyoJEn2iRM4AnaYP5LJQLCScDPD1hIUpqfjDrhYYNkUoNDfnzNAmo356jyzYwf3A4ctVOT6jhEjWAzcZJHebBtpRFkB6cpbXYi/v0X6Myxl5QG5SqZ0WyBdcfAOsYDfGYBGqyVEieQxlJuxBQJKSsgHsoKDzVpMuypByjk1lE+yCYqLQXHgt9QMyStJSXQGFm3caJH+WgtrMjNZAVw1cy6uSgzn0waDfyyNNKKsAEN+mxBDlXQz4xYYyN06HZGY3vcAACAASURBVI8BZTaU5Tnv4kUcgGCDI7IFCFZuuhm25CCqlHzxspCfDvwRnZZhSy8F+/czHnjCzg4sdE0HK/eojCtXLNJfa0Do9aQbimkrs/jmpjwwkBQgUVmlkJgPaURZAYaaTJaIZDLwWefOLAW8bcgvanZYGEXA0ilTLNanoaB0enKyxfpscSzsPwIQFBhY0bUNlTJKPXCA9cA6jQY0Gov0GWzIWn79ukX6aw1cTU6mUPl/sOLnaG4y7e3pCAy6dIlyG3O7sDTSiLICNCUl6PgjI7BFsMXpYmWGxMkCJV8MjOralUeAGAsta7UG3vvhB24DVlvQQA9WktRm2FDEabqSuyjYgs7Htpi1PPPoUQDaaTQ4W2jGL6BHD7RU5OS6ZGP+Z5bGKo2oBQsWoNFojP4ClTfNukhISKBPnz44OTkRERHBsmXLLKRtM9Hr2anXUwz0u+UWi3VrKP2SpdyIbYIWmCG5b9Qo3gNusaHSL7+dOcP3QJIQFuszWAk9T8/Ls1ifLY1hdjNEqR1oCYKU5ayLer3NzJBcUIIVAu3tLdanzsmJACXljSFbusQ8WKURBdC9e3cuXLhQ+XdYKbRZG8nJyYwdO5Ybb7yR/fv3M2/ePJ544gm++eYbC2psIpcuQVkZWq0WrSF82AK8cPYsvsDC77+3WJ8tzehjx5gEZFjSoDEYbDYUEp5pyF1kgRJGBjr16sUDwHQL5VprDRgqDgQrtQMtgX+3bmgBPbYzQ5KpGKtBFkpBYyBEiThNt7Hs8JbGal9vdTpdg7NPBpYtW0ZYWBhLliwBoGvXruzZs4fXX3+dyZMnm1PN5mOoPO/vDxZ8uAcpD3dDeQ5rp7SggM2lpQhgmQWNVREczDXgcnIynS3Wa8tyIT8fgMCOHS3WZ3i/fnwAUFhY8WcD+XUMFQdCLHg92zk4EKjVkqHXk3HkCEEW8hFqSbIUYzVI8W+0FMEeHlBQQKZMuGlWrNaIOn36NMHBwTg6OjJgwAAWLVpERB2O17t27WLUqFFG22699VZWrFhBaWkp9nVMwxYXF1NcJZt0rpIQsbS0lFIV63AZZNUmc8ePP/IiMEivZ5EFa3/5K5FTmdevq3qsplDf+KhF+qFDCCpyF3lGRFjsmJOKi4kGnNPSyCkuRmPCTIklxkdNMpVlHl8LjHPl2Li4oHN2RlNYSGlqKlgos3RLkqHM+AWEhtY5zua4dh4KDKQsIwPP/Pw2c03WRWPG57HISB4ACsaMsejxBnh5QWYmGefPt9g4t6V7j6k6WqURNWDAAD7++GO6dOnCxYsXefnllxk8eDBHjx7Fp5ZCm5mZmQRUqxYfEBBAWVkZWVlZBNVRV2rx4sUsXLiwxvbNmzfjYoZ8IPHx8TW27du6lV8Bx6IiNmzYoHqfdXFZKcuRUVBg0X7ro7bxUYvM7dsB8Ndo2Lh5s9n6qU6pEnlZCHz32Wc4NKNQrDnHRy3Ki4rIUnyhTl2+zDkLXVvxW7bQz8OD64WFJH/+OcV9+lik35bkquK4n1NS0uBvWM1r54GQEIIyMjhw8GCruXc0l/rGp/fevYQCSYWF/GrB43WwswPgdFJSi49zW7j3FJgYyGKVRtSYMWMq/x8TE8OgQYOIjIzko48+Ys6cObXuo6kW4iuUG3n17VWZO3eukbzc3FxCQ0MZNWoUHiqWBSktLSU+Pp6RI0fWmBU7vHQpAGH+/owdO1a1Phsi2c0N3n+fi3o9Y0aPNmmGRC3qGx+1+HHPHgCCnJwsOs4A7tOmcR3oFhBAl2ozpo3BEuOjFucTE4GKG9PtM2eiNfMSddWxubWwkF+AL65dY7KFz3FL8CcXF/KvXUP76KPY11FQ2xzXjnb9ekhMJMbHh+5tfJwbMz52b78NQPSwYURZ8Hhdt23D4+hRBgUHM7qFxrkt3XtyTSytZZVGVHVcXV2JiYnhdB0JCwMDA8nMzDTadunSJXQ6Xa0zVwYcHR1xrKUEiL29vVkumNrkXrp8GYAgf3+LXqTtlazlRUDhxYt4WtAJuC7MNe4Al5WkooFubha/GQTa23O9tJTspKRm9W3O8VGL66mpOAPeWi2OFvRLsre3J9DdHXJzuZye3urHqdkUFsK1a7hBxdJlA8er5rVTFBBAMiBOnaKzlYxzfePz0P79lALPa7VE/D97Zx4eVXn24Xsyk33fzkwQhBD2fV9EFBdwqXup26e4oFYptkgplroCbdGqoNiKO2g/q9aK1q9lVxABd8EFCGtIWCYzZN+TWc73R94TEkhCMpnMec8w93VxQcIsz7w5Oec5z/s8v18AP+/FF1zAxUuX1muA6bzORjj3+BrfGTGKUltby+7du1vclhs/fvwp5cZ169YxatQo6X/wdqH829Jn6yxi0tLQam2aDkowYxdK1rYAjoNr2EQykX8GWJIMiY+nEtgTCOPhk7CJG6Z8bVgjmNFuGqOiIABm2o3537w8egMPiC3yYOe90lKWAzUBbixHG6w6qUAQwr8EZRI1Z84cPv30U3Jycvjyyy+ZOnUqZWVl3HbbbUD9Nty0adMaHn/vvfeSm5vL7Nmz2b17N6+//jqvvfYac+bM0esjtJl8UYK06VAJmpaUxK+A6DNAfbi2tJRI6it+gcYmLnL5eXkBf++AY7djAmIDqMWlYRM/23xR3Q1mftiyhSuAP0RGBkytXONMUi2vKSmhWLSG2AJk+aLhtVo5CGw7ehQ1QMbHZyJBmUQdOXKEm266ib59+3LdddcRERHBF198Qffu3QGw2+3kNbogZWZmsmrVKjZt2sSwYcNYuHAhS5culV/eAMgXDd42HaaJnh8yhL8CZwdQFFEvFnbvTjXw2C9+EfD3PiMrJAGurAJkCF83TacqmDnw00/8F9jo8QT8vTP69AHgWKPJ5mDFIar0EUByACU7AOqSk8kCJrjdlJ4JN2A6EZQ9Ue+8806r/79ixYpTvnf++efz3XffdVJEnUe42004YAuk5YuGdqE7Ey7uokISrkOF5PyBA/F8/z3jAuUAryNPrV7NFmB6WRlXBfi9bcLOJ/8MUC3Xqpq2+PiAv3cX0cTu9Hpx19RgEaKQwYh9924AbGZzwIdvopKSSDaZKFZV7D/9RFIA7arOJIKyEnXGUFHBLlWlFug1dmzA395rtVIAOA4cCPh7BxwdKyQ/v/hi/gZcdQb4531+6BAfAUd0eG9br14A2M+ACkm+UMC3JScH/L3T+vQhDFAJftuofHFuzNApUdSsZvKDfJ31JJREGRlxYTfFxmLS4Y7yL3v2kA48uHp1wN87kKheL5MOHeJaoLCZacxO5wxqEM0XfTI2sfUeSM4eOpR7gRmqCkHeQ5Iv1MptOvT4mSMiSBdVmXxRqQlW7IcOAfpU/ABsonptPxNudHUilEQZGe2i2kZ7G39jO0N6SMrtdj71evkQiBJK7YFEtVopAvYImYVgxl5TA0CGqAoFkrS+fVlmMvGwqkJhYcDfP5Bov7O2AFq+NMYmqqr5LcjOBAuF4hydkZKiy/vbxERg/hE9artnBqEkysCsWb2aCcDDOrmhN/SQCK+zYCX/p58AiAdiT1K2D8j7h4WRCgwsKAhq53vV6yXf7QZ06vELDwfNjDfI+/z0rPgB3N69O48APYSqdrDycO/eVAFPXH21Lu9/Rg2l6EQoiTIw+/fuZRuQrdPWg613vSVufhBf2OFEP4FNJ82w9P79MQEegruHpPTwYWrEv22DBukTQ3o62UBxkFdIykXflx5TvQCzxo5lAdBPR6eDgJCfTzSQqFNTd4bYpbCfIUbxehDkR3Bw09AcqlepeMAAAI57vUFdIdFELm0BVNBujCUy8kQPya5dusQQCLTPlghEd8AjsCP8Ij+f/sD/rV2ry/sHBFVlV1gYFcDISZP0ieFM6fPTKkA6DKQATBg5kj8AU3XqyToTCCVRBsauWb7osMUEkN63L2GAFzgexA2i9txc4ITopR6cCT0kxQcPEs2Jz6oHmiJ9UPeQlJRAXR2xgEUHyQ6AmpQU9gHZQXw8A9yyaxd3AEd1qridM3EifwKuDvJBCT0JJVEGpqE5VKcToTkiAuUMmLLR+gkydKqOANhiY+tjEdM+wcj41FQqge1jxugWQ0MPicOhWwydjlb9SUqqt33RgZV5efQBZmzdqsv7BwKv2827VVWsAFQdpiCBM6fipyOhJMrAaKKANh1F1G5JTeV+IL6qSrcYOhtXeTmRgE2nih+cIRWS/HxMQLRONwUANrHtkh/E03nffPopPwMe0bGp2yasX/KD+LxRuH8/bvFvpX9/XWJQrVYOAFsLCnALd4sQ/iWURBmYfK05VDR468FTI0eyFMgKsP9WIHm6Wzeqgd/pYPmiYRNTY0FdIdG5fwQayXaUluoWQ2ezb+dOVgFbdLB80WgYSnG5dIuhs9GM2dNMJiLi4nSJQU1JoR9wLuAQU8Yh/EsoiTIoqttNlNdLBJCh010OcGaUi0WFRK/+EYCJgwfzK+C8ILZ+WbB2LVcBa3RMYM6ECkm+0BvLEBpCemAV56xiVaVWmKgHG3ZtqlfHHr8wiwWraLmwB3HLhZ6EkiiDYioq4gBQA2ToNA4O4LXZOE6QK+JKUCG54qKL+CtwrSUo7S4B2HrkCP8HOPTcZjoTKiTieLbp2OOXnJmJJhjiDNKLe35ODgAZop9RL2yi7y1//35d4whWQkmUUdEsX9LTMel4p/PXvXtRgN8E6Ui4p66O8Q4H1wDlOpXkgTOi4mcXoq0ZohqkB2cNGcJ9wCxVRa2pOe3jjYimGaRnj1+YxdIwlOLYs0e3ODoTu+hf1PoZ9cImzlv5Yso4hH8J3tvaYEdHQ9zG2M4+G4D8IC3JO3fv5gvq7zZixGfVA836xXH0KAN0i6JzkaHHL7F7d14IDweXC5xO0PFn3llo/V5a/5de2KKiOFpVFbQVkmJNgkZTwdcJW1ISOJ3kHz2qaxzBSqgSZVA+/M9/OAeYr7PlSkMPSZBOfmgCkEpYGGYdK36lMTGkAQMrKqguKtItjs7CVVVFgaoCYNOzx89kCvqqn2bTZMvM1DWO23v04FEgSycngM7miV69qAIevuYaXePIEPIK9mAeStGRUBJlUPbs28fnwAFx4dGLDOFxFqw9JJq4pS0yUtc4Ert1Q4vAEYSq5c5du1ABM/VGwHpSmpZGNsFrsVMp3AX0rPgBzBw3jvlA/2C1frHbiQbidU5WG2Q7gvDmSwaC9OgNfrRRd91LxQMHAlAOVDqdusbSGWjiljadm0NNYWHYRMN1fna2rrF0BtpnsoaFEaZz8/ytx47RH1i5Zo2ucXQKLhcHVJVKYOCECfrGEuQVP7TKj469ZwDjRo3iIeDmkPVLpxBKogyKJgZo07knKi4jA23oXtNFCSa0PoIMnZtD4YR3X34QTkKW5uURg/4VPwBbcjJwwpsyqDh+HFSVGLMZs14q2oLq5GT2ALuDtOJ3/cGD3A44db4pGDlhAn8Efh6kuwV6E0qiDIrWyG3r1k3XOExhYdjESSIYKyR2cZdsS0/XORLIEHeSwWj9cqHNRiWwdeJEvUNp+FnnB2FltaHqoyigo5QEwH+OHqUfcM8XX+gaR2fgqqrivbo63gDCdE5WG4aP7HbQuf0jGAklUQbFLsQAM7KydI4EbrbZ+DWQGoR3Op7KSqIAq84leThRIbEHY4VEbH1EdemicyBgEzEEYw/J1k8+4XJggQQXU6sYSnEE4VDKcXFDaQZS9D5H22zsB7ZWV1Mr5C1C+I9QEmVQHCJhUfT+BQUWjhnDc0A/ne9sO4O/detGFTBz6lS9Q8Em7miDskKifSa979ppJNtRXq5zJP5nz86drAa+0NHyRSOYhU2dYiAlXYIeP2JiGE699cvhH37QN5YgJJREGRB3VRUJqkokJ+wTdEWr0gTpxd0EmHXuPQOYMHQoM4GLdG5y7wwe3bCBK4B1JSV6h4JN3JjkB6HYptbjp7cAJIB1QL3iWTlQFWQVEufBgwAoOsqiNEYRiZwjSPvP9CSURBkQS3ExuUC12UyKzuOzAJ60NJyAXZw4ggqJKiQXT5rE88D1Qairs+3YMf4LOCUYd7dpsh1uN6rXq3M0/sUhjmerjpYvGglduxIl/h1ssh1OoQ6uSOJ1aRXWL84g7KfUG/3PWCHaj+gfMSkKJgm20F7euxcr8KuPP9Y7FL/irqlhfEEBVwEVMlR/tEQuCEXznKLHT5FAIdw2cCAzgN8D3iDb0nMWFwNg1eQFdKSxbEewWb84RMVPkURWQBHWLw5hPh3Cf4RsX4yIVh2RoNkZQBETgo6KCp0j8S8Fe/c2WL5En3WW3uGgpqdTADjz8xmodzB+xikEIK0S9PjFpKfzt5gYqKqCggJITNQ7JL/hEFO9igQN/FBfITlUWUl+kFWxS4QEjQwVPwBrUhLk5+MMVk0uHQlVogzIh6tXMx54TBK/OqV7dwCcQdZD4hT9A2kmk66WLxrlMTEowKDq6qASNvW63RwX22ZKnz46RyPQqn5BtM4ATjEJp/3O6s1tWVk8BvQOsi3qhX37UgMsuOoqvUMBQBGizA7h5xfCf4SSKAOyb/9+vgAOSNKvYRVTNo4gm7JxCFFLWZpD4zMyGnpInEGkyVW4bx/akZwmSRJVkprKLqAgyMxxqySa6gW4b9w4HgcGStAL51ccDiKBOJ11/DS07VttOzeE/wiyI/fMwClRcyiA0q8fUD9lE0zmuLI1h5rCwlBED4k2Qh0MaBW/VJOJcEnW+rYjRxgIrFy7Vu9Q/IfHw0FVpQoYOH683tHUo/VmBVufn0QDKQDjRozgEeCmhAS9Qwk6QkmUAXGKREWR5Bc0sVs3tFqNc/duXWPxJ04hailLcyicmLJxBFEPSdnhw8QBikRbOoqQAHDY7TpH4kcKCkBViTaZdLd80ahKTiYb2BVko/e37t7NbYAsbdyjxo9nAXCdJLsXwUQoiTIgTtELZZWkObRJhSSItj+c4u5YSUnROZITKGJK0HnkiM6R+I/x6emUAzvGjtU7lAYUUeV1BlMPiVYdSU0FvQUgBauPHqU/cPfXX+sdit9QvV7eq6riTcArXAZ0RxtCCraKnwSEkigD4qisBE5MxcnALenp/BpIFlNWwYC7ooJoTjRlyoBVTIo5gsn6RZzYIyQYu9do6CGRQPzTX3y1eTOXAw/rHUgjrD16AME1lFJ25Ai14t9aq4PeqOnp7AO2lJTgFnIiIfxDUCZRixYtYvTo0cTHx6MoCtdccw17TqNDsmLFCkwm0yl/aiT85XbW1v+KKsJ7SgYWDR/Oc0AvCXSr/MVT3btTBfz+F7/QO5QGgrpCIskWE4AiJC0ckkzA+oP9u3ezGtjmdusdSgNag7sziIZSnOJaEw9ES9K3qiYlMQCYCDh27tQ7nKAiKJOoTz/9lF/96ld88cUXrF+/HrfbzZQpU6gUFZyWSEhIwG63N/kTFRXV6nMCjer1EuP11pviSjLJBASn9Yv4LGaJKiQTBw/mfmCSRH1aHWXRunVcAXwk0eSQVZPtCCJzXKdkApBwolJTBtRI9PPvCFpLgyLJlilAmMVCupiADFm/+Bd5fsp+ZM2aNU2+Xr58OYqi8O2333Leeee1+DyTyYRNogtmc5hKS9kLqABDhugczQk8aWkUAN6DB9HfZc5PSCZqCnD5pElc/sorIFETdkf54vBh/gtcqXcgjVB69QKCS7bDofX4ydKnAySefTYRQB31sh1nyzI12AE0axVFshtwa2Qk9urqBl+/EP4hKJOokyktLQUg5TQNwhUVFXTv3h2Px8OwYcNYuHAhw4cPb/HxtbW11NbWNnxdJkr/LpcLlx9PvtpruVwuOHqUcIDERNwWC0hykn9u925+B9y0bh1vBDimJuvjJ1Svl4sOHyYJeFlVSZNknU2pqVgA1eHA3caYOmN9/IlTKN2ndukS8BhbWhulTx9+BdhUlbrKSkySaIV1BIcw+U1PS2vzOgfi2FHMZo54PBzLziZj1KhOe5/OoLn1sQtplPTYWKl+59JjYqC6mmM5OQGLS/ZzT2N8jTHokyhVVZk9ezbnnnsugwYNavFx/fr1Y8WKFQwePJiysjKee+45JkyYwPfff09vISZ5MosWLWL+/PmnfH/dunXEdILezfr160nZuZOJQGVsLB+vWuX39/CVatFncaSwkFU6xbV+/Xq/vVZdURFbxDjw1j17CJdkqiX24EGGUH+iPtTOdfbn+vgTh9gyc1ZUyHPseL08HxaGyetlzT//Sa1EE5q+ckRUVl1eb7vXuTOPnVSRRG1dtw6HQde58frsF0K4seHhuh3PzREvthd3fv99wOOS9dzTmCofG+47lES5XC7y8/OpqqoiPT39tJUePZg5cyY//PADW7ZsafVx48aNY9y4cQ1fT5gwgREjRvD888+zdOnSZp8zb948Zs+e3fB1WVkZ3bp1Y8qUKST4UdTM5XKxfv16Jk+ezKYvvmAccL7JxB8vv9xv79FRIn78EdaupcTl4vIAx9V4fcL9tM11YONGAGKAq2++2S+v6Q8cP/2EFTBVVlJ54YVY2rBl0Bnr409u8XgAuODqq+l10UUBfe9W1yY9HRwOLho0CIYNC2hcncGfxY3OsDFj2vw7Gohj53DPnhRmZ3PJgAH0leic1haaW58r1q5l0fffU3399cRK9Hk+7doVHA5Ukylg52jZzz2NKfNxiKTdSVRFRQVvvfUWb7/9Nl999VWT7ayuXbsyZcoU7rnnHkaPHu1TQP7k/vvv56OPPmLz5s107dq1Xc8NCwtj9OjR7GtFGToyMpLIyMhTvh8eHt4pB0x4eDiHcnL4EuiiqlIdlF1Ek7ujrk63uPy57sVaX4PFItU6ZwwciIn6nriy3FysrVRXT6azjsuOUFVQgGZbfdagQVIdO0UpKdgdDjJyc0mR4HzWUaqE/EhGVla717kzj52Zo0dDdjZERBi216/J+hw/jhmI7NFDqs+TIXo7C4qKAv57JuO552R8ja9d03lLliyhR48evPLKK1x44YWsXLmSHTt2sGfPHj7//HMee+wx3G43kydP5tJLL201AelMVFVl5syZrFy5kk8++YTMzEyfXmPHjh1kZMjVJq25cFuForIsaMaxBaqKJwi0orTmUGszSbKemCMiSDOZAHAEgX+e5gEYBcRLIh6rcYPDwSDgvxs26B2KX/gxPJxqYPSkSXqH0pRgm+yVULID4Fxh/fILoTUXwj+0qxK1bds2Nm7cyODBg5v9/zFjxnDnnXeybNkyXn/9dT799NMW+4k6k1/96lf84x//4N///jfx8fHki8QjMTGR6OhoAKZNm8ZZZ53FokWLAJg/fz7jxo2jd+/elJWVsXTpUnbs2MHf/va3gMffGpoLt0wCkABpffsC4KXeUFYZOFDfgDqI83C9YYMSF6dzJKeiRERwvLY2KKZsSg8dIh5INpsxSWZCq8THQ1ERDiENYGgqKqCqqt7AWrJktSopiTzAtG8fffUOxg/c/f331AKPud3IYfNcz/gJExgPoKp6hxJUtCuJeu+99xr+PX78eNauXdts709UVBQzZszoeHQ+smzZMgAmnXTHtXz5cm6//XYA8vLyCGt00i4pKeGee+4hPz+fxMREhg8fzubNmxkzZkygwm4TmoKyIpkUQ3h0NKkmE4WqinPvXuMnUcIzTZHwrs0aE8PO2locolpmZIYmJVEG1A0dqncop6CkpEBuboPht6HRPkN0NAjrIFl479AhbgembNtGMNg9rywrowj4vUR6XMCJylgwHM8S4XNj+ZdffklNTc0pSVRZWRkLFy7kqaee6nBwvqK2IdPetGlTk6+XLFnCkiVLOiki/6GNgyvt7PEKBLcnJ+MuKiI+CAQKXeXlxCJfxQ9EhaS4uMEg2dCIE7pMli8aVnHRcRYW6hxJx/lh2zYeBAaFh/OU2A6WBc2+ynkaMWQj4Kqqokhcf5S+ctXVvOnp7KfeE/Qct5swicRAjUy76+fXXXcdTzzxBCaTqdk7tMrKShYvXuyX4EKcijYOrnlOycTTQ4bwLNBdspO0LzyemUkFsHDqVL1DOQXNENkhtqkNjSYdIVn/CIAi+iEdQmfOyOTs2sUaYLOYhJQJq7B+cQRBL+Vx0eNnBlKyZNrMA3dyMn2BiV4vxTk5eocTNLQ7Fe3evTv/+c9/UFWVoUOHkpqaytChQxk6dChDhgzhhx9+kK4ZO5iI9njqTXEl+wUFTlwIJdFU6hDiM8hk+aJxwcCBsGMHEyTs12ovS9asYQNwe3Ex8jgU1tNg/RIEhq3OI0cAUCTbyoMTQynHvV68Bq+QOMUwVXpYmHSfIyIujmSTiWJVxbF7N6k69CsHI+3+KWtbXpGRkWzZsoVjx46xfft2duzYwQcffIDX6+Uvf/mL3wMNAdTW8r0QgFQbaVrJgjs9nQLAlJODPEYpPiLphA3ANRdcwDVvvQWS2Ur4wte5uawCLpKw2VURU72ORjIuRsUhtn5l7PFLF9tebqAkN1e6Ck57cB44ANQPf8iIEh5OcV0dzoMHGaB3MEGCz6lyZWUlFpFpX3311X4LKEQriMk8LBZMEvlfaTyZnc3DwPQ1a3hV72A6yJR9+4gAXgLO0juYkwmiip9TCNwpkk2MAXQfPJiZQFeon2gy8Da1U1i+WCXs8YtMSCARKAWce/YYOoly5OUBoHSCY4U/sEZFsaeuDkdoO89v+JxEWSQrVZ4RNK6OSHhC1y6EDjFBaFTcNTVscLlQgXAJt/O8ouJXdPQo/fQOpoM4tR6/s8/WOZJTUQYM4HkAjwdKS0Eybbb24CwqAkCRyEy7MdbwcEpdLpwHDhj6mC4RNzZWPzpW+BMlPh7KynAGg2yHJLSrsTxPZNlt5WjoB+VXPvvkE8YCsyQ1c9QmBo0+ZVO4fz8qYAIp+wby3G6swDC7HVVs7xoVp2gmlrLHLyoKtIuhwcfCneXlgJwVP4B7zjqLx5Gw6ttO7u/Tkk+RDgAAIABJREFUh1rgBYnsXhpjFTsYQTGUIgntSqJGjx7N3XffzVdffdXiY0pLS3nllVcYNGgQK1eu7HCAIU6Qs28fXwG7Jb1wWnv2BMBRU6NzJB1DUwJPM5kwS9jboPSrv1evBcoNLHPgcbk4Lo5lrblYNgpTU/kJKNm/X+9QOkSV6OtSRLO8bPx2xAgeA7IkE1xtNw4HEUCCkG2QDSU9HQCH2N4N0XHatSe3e/du/vznP3PppZcSHh7OqFGj6NKlC1FRURQXF7Nr1y527tzJqFGjeOqpp7jssss6K+4zkuNCANIqYXMogNKrFwBOjwfV65VOgbqtaErgVgkTKICYtDTigArqe0gSJNQMawtF+/ej3Q6kSZpEXV1QwFbgXxs38nNJqwtt4YvYWGqrqwm7+GK9Q2meYBGClHggBWDS8OE8unEjYw28NS0b7brKpaSk8PTTT3Ps2DGWLVtGnz59KCgoaPDI+5//+R++/fZbtm7dGkqgOgGnZvkidIJkQ+nfH4BqoMLA5WJnbi4gb3Mo1BsjAzj27tU5Et8pPniQeCDVZCJc0rXWbH8cwgbIkLjdUFhIJBB+lpwbZhVJSewG9hn4eAaY+c033ArsllTz6rxzz2U+cLmEPbVGxafu8KioKCZPnsx1113n73hCtMJx0RxqlfQuJ85qJQaoot5YVjZD2baiKYErstk2NMIaFcXBiooGo2Qj0icmhjKgVtIqFICSlAR2e4PxtyEpLDwxXZiaqnc0zfLGgQPMBK7bvJn39Q6mA3xUVMRh4NfCo1U6gmiyVxZ83m+ZOHFig7FviMDgkHgcXGN6QgKzgCjRyGpE6kpKiAMUCWUkNIKiQiK2PiIlnIDUsIoeEqeBe0j2ff01lwL3R0aCpFPVDUMpwtbKiKheLw6hCK+1NsiGJy2NPcBnojUkRMfx+Tdq1KhRjB07lrVr19Kv34mh1O3bt/PQQw+xatUqvwQY4gTHxdSbIuE4uMbS/v3hyy8N7RQ+t2dP5m7ahEdCyxcNJSkJ8vONXSGR2PJFQ5MEcBQX6xyJ7+Tu2sVa4IjEv5NWTdhUIt9Nj8eD6zST0C6XC4vFQk1NDTXHj5MhGvcTs7KokXDApjIqiktEjN8dPUpMJ1cmG6+PR2fLofDwcMxms99f1+ck6tVXX2X+/Pmce+65fPjhhyiKwsMPP8z777/PVVdd5c8YQwiiPB5iOTEFJyXBUC4WFRIZLV80Jg8YQEx2NmMNbP2ybPVq/g+4uaSEW/QOpgWsmjmugSskDT1+sm4xcULiwimBfIuqquTn51PSBr07VVWx2WwcPnwYd00NL774IibAXlwMMibeqspLL76IChx1OrGI3Y3Oe7sT62OSoA8rKSkJm83m11g6VNt97LHHiIiIYPLkyXg8Hi655BK+/vprRowY4a/4Qmh4vWxTVUyAet55ekfTIu70dI4D5oMHkbe+cBokn7AB+MWkSfxi5UqIjNQ7FJ/5LieH1cB4CU1xNRRh9C1ThaS9OIRen8w9foqwfikFasvKiNRRrFJLoBRFISYmptULrtfrpaKigri4OKqLi6nzeokwmcgUlTUZqauqwgV0sVqJ7eQhpcbrE6bjtLaqqlRVVeEU53Z/+vv6nETZ7XYWLVrEq6++yoABA8jOzubGG28MJVCdRHhlJSa3GwCTpKrDAI9nZ/MnYObq1Tz/5JN6h+MTV/34Ix7geZcLaWt+2jFg4JFwZ2kpAIrEFb+egwdzP9C9E7YBAoVTU9GWdKoXIKl7dyzU++cd37OHrqNH6xKHx+NpSKBS27DV5fV6qaurIyoqilqxXRpuMhElsa9lRFgYLq8Xs6p2epyN10fPJAogWlRinU4niqL4bWvP50/Vs2dPPvvsM9577z2+/fZbVq5cyYwZM3jSoBdO2YkUFxySkkBS/SI4cUE0ag+J6vWyobqaVYBJNBXLiDctDQewx8CN5doWmVVSYUKArkOHshT4bU0NGNSI2FlYCJwQWpSRMIsFRVxknTrKHGg9UDE+SG64haxBuOQJt0Wss0tSGYbORPu5nq7XrT34XIlavnw5N954Y8PXl1xyCRs3buSKK64gNzeXF154wS8BhqjnwE8/MQ8Yoaq8qHcwraAIHRqnQafzKp1OtI0bpZ+8Ll7ZlZUMBJIPHaJI72B8xCkabxWJtz5ISqqfaHO766t+Eid8LdFQ8fPjFkZnMNNqxWW3ky7B9q4vPTPpUVGkAqqkvnka4WYzuN24Jeg/CzSd0ZflcyWqcQKlMWLECLZt28amTZs6ElOIZig8doyvgZ0ST9gAWA3eQ+LYvRuAGCBW4p4oq0jwilWVOoM2PTvE9rSs4+AAmEwUCOuXMqFkbzSqtGRVcmX7eYMH8yjQTfJzXIu4XISBlFZRjbEImQt/VmPOZPy+SdmjRw+2bt3q75c94ykXJXmrxM2hcGLKxmHQX1CnUN9XJNXT0UjOzETbNDguvP6MROXx42g21VpTsaxMKStjMLD100/1DsUnPk5Opha4XHbbGqNbv4ibAsLD9Y3jNCTExNAFSNJ52/Hxxx9n2LBhfnu9FStWkKSDnU2ndHolSyxSaFRKxbitIrnnkdErJJoCuCL51FuTHhKR+BmJ4v37SQCiQHple83+x5GXp3MkPqCq4HQSAYRLvs7lSUnsAg4Y1PrlcEUFB4EqSQ3iNRLi4ugCJOgsOTBnzhw+/vhjXWPwB8Z0iD0DKdHUytPSdI6kdVKyshoOqgIDngydR44AJxTBZUYR2waOAwd0jqT9dDWbKQVKunWT3qhaM/zW7IAMRWUlaFvrEm9PAyw7cICBwIJPPtE7FJ8odbspAjwS6CG1ilYp02m3QFVV3G43cXFxbZqAlB25z14hGigWVR2Zx8GhvkLyy+hoHgAsbRCrk43a4mLiAUVcOGXGGhsLgNOIFRLN8kViuQ4NzfDbYcBtpsM7dnAJcI/ZDOJ4kRXNzsrZyQKQnYVL9HJZdKpiT5o0iV//+tfMnTuXlJQUbDYbjz/+OACHDh3CZDKxY8cOVIuFauBIUREmk6mhh3nTpk2YTCbWrl3L8OHDiY6O5sILL8TpdLJ69Wr69+9PQkICN910E1VVVQ3vq6oqf/nLX+jZsyfR0dEMHTqUf/3rXw3/v2XLFsxmM2vXrmXUqFFERkby2WefNbud9/rrrzNw4EAiIyPJyMhg5syZDf+3ePFiBg8eTGxsLN26dWPGjBlUSLDbIXfjR4gGikRzqMzj4Bov9OoFP/6o251OR5iZmclMwHPttXqHclqUhAQoLDRmhcQAli8amvWLs8h4c5BHdu1iHdDDZKo3IJYYRZzbHJWVp3lkgFFVaJQ0NMHrhcpKVJMJtbqaMCDc46mvAPqDmJh2/dzeeOMNZs+ezZdffsnnn3/O7bffzoQJE+jdu3fDY9wmEzuB8hamIB9//HH++te/EhMTw/XXX8/1119PZGQk//jHP6ioqODaa6/l+eef58EHHwTg4YcfZuXKlSxbtozevXuzefNmbrnlFtLT05k4cWLD686dO5enn36anj17kpSUxKcn9RguW7aM2bNn88QTT3DZZZdRWlrapL86LCyMpUuX0qNHD3JycpgxYwZz587VXQmgQ0nUxx9/zMcff4zT6cR70j7w66+/3qHAQjQlyuOpN8UVvkdSY7XWJ1EGvHNvsHyRfBwc4JK+fUnNyWGE5BWG5lixejXvAj8vKeEuvYM5DVYDV0iM0uMHJ+ysnLLpcVVVQQvb+2GA1qXaKTLTFRXtqiAOGTKExx57DIDevXvz17/+lY8//rhJEnW6Stkf//hHJkyYAMD06dOZN28eBw4coKf4+UydOpWNGzfy4IMPUllZyeLFi/nkk08YP348UK8huWXLFl566aUmSdSCBQuYPHlyq+/729/+lt/85jcN3xvdSHR11qxZDf/OzMxk4cKF3HfffcZNoubPn8+CBQsYNWoUGRkZUvjiBDPrLRbC6+pQWzkIZcGVlsZxIPzgQeSV92sBA1i+aNwyaRK3rFkDEqsjt8SOAwdYAwyVQBPodGiG39JVSNpAQ4+fARJtRVzonV4vqtcrfa+cjAwZMqTJ1xkZGQ1WJxqmsLBWL/yNX8NqtRITE9OQQGnf++qrrwDYtWsXNTU1pyRHdXV1DB8+vMn3Ro0a1eJ7Op1Ojh07xkUXXdTiYzZu3Mif//xndu3aRVlZGW63m5qaGiorK4nV8fj2OYl68cUXWbFiBbfeeqs/4wnRHDU1hItyssyWLxoP7tnDEmDuqlU8Ke6KjML1335LBfB0dTUD9A7mdBjY+sUpFO0VAxzPfYYM4TdAluT6P82hbfVaJZ/qBUgXk70uoDQvjyShOac7MTH1FaFm8Hq9lJWVQXU1B+12okwmBpyUPHT4vdtB+EnyCiaTCa/X22C5ojaypnFrkgytvIbJZGrxNYGGv//73/9ylhBa1og8qeLVWqITfRpz7NzcXC6//HLuvfdeFi5cSEpKClu2bGH69Om66135nETV1dVxzjnn+DOWEC0hLpJqRAQmAzQ8K6KKY8Qeko3l5RQATxpgnT2pqRwHyvPy6H3aR8uFtjVmlXzsHqDnyJE8C/XbOl4vGKhC4iwoAEAxwBRUVFISCUAZ4MzOlieJMpla3lLzesHjweN2442OrheylLDqly4sf+x2O8OHD8cSFsZeP0xPDxgwgMjISPLy8jj//PNP+f+T23xaIj4+nh49evDxxx9zwQUXnPL/33zzDW63m2eeeaYhIfznP//ZseD9hM9J1F133cU//vEPHnnkEX/GE6IZfvz8c34JDLRYWGGAbVPNXkKzmzAK7poaCsWdmuwCkADbi4sZDXTdswejOeg5xdi9IXr8NM85txtKSkBiI9+TMVLFD+CB5GTMxcUkiEEao5ASGUky4JVUDDk6Oppx48bxxBNP0KNHD37YsYNly5Z1+HXj4+OZM2cODzzwAF6vl3PPPZeysjK2bdtGXFxcu3aqHn/8ce69914UReGyyy6jvLycrVu3cv/995OVlYXb7eb555/nyiuvZOvWrbz4ohwGaD4nUTU1Nbz88sts2LCBIUOGnFLyW7x4cYeDC1HPkb17+QbwGMQOQdopm9NQuH8/KmACUnvLX9tR+vQBwOnxGK6HxCHMT5VGvRbSEhHB8YQE8svKyMzJIc5ASZQ2iq4YoOIH8Hj//rBtGxigV64JwvIlTOIt39dff50777yTUaNGkdm9OzNmzmwiIeArCxcuRFEUFi1axMGDB0lKSmLEiBH84Q9/aNfr3HbbbdTU1LBkyRLmzJlDWloaU6dOBWDYsGEsXryYJ598knnz5nHeeeexaNEipk2b1uH4O4pJVX27MjdXcmt4UZOJTwwqmNYRysrKSExMpLS0lAQ/mlC+escd3L1iBZekpbHm+HG/vW5n8fWKFYy54w66mc3ktbDv7k9cLherVq3i8ssvPyWZbw8/vv8+Q6ZOJd1kwim56jBATUkJ0cIdoPjQIZJaqOr4a338hcflIiIiAi9wbPt2Mvxo/dBe2ro2fSMi2OtysenZZzm/0fSQ9AwcSN2uXbB6NRGXXtrupwf82Ln2WvjwQ3jhBbjvvs5/v5OoqakhJyeHzMxMotowsKH1RCUWF2MqLISzzgIDTPaW5uRQWVhIfGIi8Z14w6itT0JCQsM2nJ609vP19frtcyVq48aNvj41RDs5brcDQhfIAGiGskarkDiF8rci8d1kY07pITHC1hj1J/B46uNON8C2KYASHc1elwtnbq7eobQPYfnCSU2/slKalMQRIHbPHnroHUw7OFpRQR2geL3I73UAiXFxJAo/1hAdwxhXNx954YUXGjLOkSNH8tlnn7X6+Pfff7+hUW7AgAF88MEHAYq0dZyi+qQYZBtBm7KpBcqPHtU3mHagKX8rp5kUkQlFVAec+/frHEnbSXG5KAGqU1KwGGStNRsgh5AMMARuN2gXSgNIdgA8c+AAg4C/bNigdyjtoszlooh6IUtDoFUVA7BTEOx0KIkqKSnhmWee4a677uLuu+9m8eLFlErSTPzuu+8ya9YsHnroIbZv387EiRO57LLLyGvBIuPzzz/nhhtu4NZbb+X777/n1ltv5frrr+fLL78McOSnok25KQY5EcakpXGnxcJswGug8fuawkISME7FD0ARJWmHEFU0BAayfNHQjL+d+fk6R9J2CvbsYYqqMg1QDXID1qAObzDLKLfY/g83SBXbazZTDVSI3sQQvuNzEvXNN9+QlZXFkiVLKCoqoqCggCVLlpCVlcV3333nzxh9YvHixUyfPp277rqL/v378+yzz9KtW7cWJxKeffZZJk+ezLx58+jXrx/z5s3joosu4tlnnw1w5KeijYOnG2CvXeO1s8/mGSDJQFM2d2RmUgq8ddVVeofSZqyiQuI0UoXEQJYvGlYxoadJBhgBe3Y264E1JhMmCXrh2oLStSsAjvJynSNpO6qqoikVWQwifOsCdgJ7XS58bIvWh5qaejsxiWL2uSfqgQce4KqrruKVV16p18YA3G43d911F7NmzWLz5s1+C7K91NXV8e233/L73/++yfenTJnCtm3bmn3O559/zgMPPNDke5dcckmrSVRtbS21jSwKykSy43K5/CoAFulyEQ+kde2qu7BYWzGnpxN28CDuY8dQOzlmbU06ujZmu73+riI93TDrfHnv3nS32+kfGdlizP5aH3/x3qpVvAlcUVrKL3WOqa1rkyYSPkdJiTTreDqOCR0gJSLC55gDfeykiiTqeHW1LuvsEkmF1+ttk8aRqqqobjfaJd0SGdlmbSQ9MQshTC/gqasjrJOSbC1B09a0o7iys7G43Zj69wcfWgG8Xm990utyYTabm762j8ebz0nUN9980ySBArBYLMydO7dVefdAUFBQgMfjwXrSdoHVaiW/hXJ8fn5+ux4PsGjRIubPn3/K99etW0dMO5VmW+Ot1FQSKivZlJDAqlWr/Pa6nckwjwcLsH/VKkoCVOJev359h54/9qefsAE/OJ3kGWSdJ9ps3AXkOBynPTY6uj7+4rNvvmEtoBQX002SdT7d2pSLbY9jJSWG+R38UfSAJlssHY45UMdOodC1coipwEBjsViw2WxUVFRQ18atLq94XBhQbiBZlzDqk6iSwkIsfrxeNUe5HyqLqqpyUCSsmeXlmH1Ieurq6qiurmbz5s2nKLZXtWQyfRp8TqISEhLIy8ujn2gi1jh8+DDxkgiOneznp6pqqx5/7X38vHnzmD17dsPXZWVldOvWjSlTpvhV4sA1eTIfrVnD5ClTCDeAkSjAjAcf5FXgsZwcHrr88k59L5fLxfr165k8eXKHxrCnT5/OcWB+jx5c3skx+4uw3Fz45z/pHh1N1xZi9tf6+Iv/mzsXgKzMTN3Xua1rk1VSgvPf/6ZvXJzuMbeV/a+9BkCXlBSfYw70sVPYuzf86U+UABefdx4RLRj/dhY1NTUcPnyYuLi4NkkcqKpKoejfCjeZ/Hre72wsJhN1qkqkxUJsJ8Wtqirl5eXEx8d33F/X42EE4KZ+pwMfXq+mpobo6GjOO++8ZiUOfMHnJOqGG25g+vTpPP3005xzzjmYTCa2bNnC7373O2666SZfX9YvpKWlYTabT6kiOZ3OU6pNGjabrV2Ph3pvoJP9gaDee8jvJxyzmfDISCkugm3BmpYGe/ZQUFQUsJg7uu6flZZyCHgsKckw6+xWFOxA5eHD9DpNzJ1yXPrAcXGysnXpIkU8cPq1GTRuHEsAamtPTDZJToGY6rUmJ3d4nQN17Ch9+mCh/kJZcuAAZwV4V8Pj8WAymQgLC2uTrpHX68UrKhrh4nlGIVwkUZ66uk6LW9vCM/ljbUTrTLjZDCdtxbWVsLCwBj/Ak49nX49vn5Oop59+GpPJxLRp0xrKYuHh4dx333088cQTvr6sX4iIiGDkyJGsX7+ea6+9tuH769ev5+qrr272OePHj2f9+vVN+qLWrVsX8gf0kYYpG1Gelx5VxSmOY03nyghsdTiYBPT94Qey9Q6mjTiFmavWRGwItJupsrL65lYDNBA7hbyB1UAN/GEWC3NjY4murCTKx8pAoEkID2ck4JFkB6atWMxm8HpxGWVCT9t+k+wmxufUMCIigueee47i4mJ27NjB9u3bKSoqYsmSJc1WZwLN7NmzefXVV3n99dfZvXs3DzzwAHl5edx7770ATJs2jXnz5jU8/je/+Q3r1q3jySefJDs7myeffJINGzYwa9YsvT6CoVGEuJ/TIFM2FQ4H2o640r+/rrG0ByUrC6jvITEKDjGxaTWC5YtGYiIOi4UfgOrDxnAqrBL9OYqBpnoB/tSrFw8DqQa5uJs8HkyAxSDyBhrhoprT3obqSZMmdfi6eOjQIUwmEzt27Gjzc8rLyzkAOFqYzDOZTHz44YcdissXfK5EacTExDB48GB/xOJXbrjhBgoLC1mwYAF2u51BgwaxatUqugtV57y8vCblxXPOOYd33nmHhx9+mEceeYSsrCzeffddxo4dq9dHMDRW4cCuGc3KjjO7vo4TA8QZSL/IKhK+ElWlrqIi4D0kvmDEih8mEyO9Xo4CX3/+OaMM4K34dteuvHnsGF4DSXYAJ6QvDKIxF6b5/Fk6fDkNKEnR0UTU1JDQyXHPmDGDyspK/v3vfzd8r1u3btjtdtLS0tr8OtXV1RQDqteLTGfodq3e7NmzWbhwIbGxsU0aqptDBgPiGTNmMGPGjGb/b9OmTad8b+rUqQ2GhyE6hlYhcRqkQqIpfitGOxF2797QQ3I8OzvgPSTtpaaoCK0YrxjE8kVDiYzkaHU1zpwcvUNpGw5H/VobadsUKBHWLwnZ2ZytdzBtwFldjQtI93gw0oZeUlwcSTq1W5jNZmw2W7ueo1XMwn3sh+os2rWdt3379oYPsn379hb/tKdEFyI4Ufr0AaBQVXH5ODoaSLQLoyLBVnR7CLNYSBcVVee+fTpHc3qiysooBmojI4nv0kXvcNqFEhsLgKMF1wOpUNUTlRwD9UQBLDxwgMHAXw1i/VLhdlMEuCSwfFmzZg3nnnsuSUlJpKamcsUVV3BAeIJqW2grV67kggsuICYzk6E338znX3/d8PzCwkJuuukmunbt2rDL9Pbbb7f4fgsWLGh2J2rkyJE8+uijzJ8/n7fffpuPPvoIk8mEyWRi06ZNzW7n7dy5k5/97GckJCQQHx/PxIkTG2L/+uuvufGOO7j44osZPH48559/vhSi3tDOSlRj0+E33niDrl27ntJxr6oqhw3SMxCi80jJyuJWQAFcdjvhojIlK9XHj5PICY80I6FERGCvqcEhTjhSIy7sEVYrGGiSCYQdUEEBTmEILjOVTifXVFejACuSk5GrFbd1NHsrh2QGuZXNaEB5vV7Kqqpwm0xNLF+ae6xGWFgY0Y2EIlt6bKxI2tsb4+zZsxk8eDCVlZU8+uijXHvttU2SlYceeoinn36aLJuNPzz4IDf+9rccmDoVi8VCTU0NI0eO5MEHHyQhIYH//ve/3HrrrfTs2bPZ1pY777yT+fPn8/XXXzN69GgAfvjhB7Zv3857771HWloaP/74I1VVVaxYsQKAlJQUjh071uR1jh49ynnnncekSZP45JNPSEhIYOvWrQ1Da+Xl5Vxz5ZX8evZsMhISWPHee1x++eXs27dPd0kln/cuMjMzsdvtp/i5FRUVkZmZiUfbJw5xRmKOiOBNq7Xe4sMAzeU3dO/ODYDHIBpAjbHGxkJNTYOBstQYtDoCYE1JgYMHcRqgV8exezcbqO/xCxe+f0bBKiqUTsmm8+JaucGaMGEC6//zn4avFUVpUbzx/PPPb9JO0qNHDwqasRPyxY7l5z//eZOvX3vtNRRFYdeuXQ3xz5kzh5/97GdUFxdz4z338MENN7B//3769evHWWedxZw5cxqef//997NmzRree++9ZpOorl27cskll7B8+fKGJGr58uWcf/759OzZE6/XS1RUFB6Pp9Xtu7/97W8kJibyzjvvNEgN9BG7GQAXXnghXZKTqfB46Gm18tJLL5GcnMynn37KFVdc0e518ic+3wq29AOuqKhok0hZiDMAIzWIihjN7dynl4FrsrJ4AOhrgN+7f69ZwyXAM0LmwEg0yHYIQ3CZaejxM5t9EiXUE6VbNwCcBlL/BgiX4PfvwIED3HzzzfTs2ZOEhAQyMzOB+kEqjSFDhgD1Pn9aY7dDaCR6PB7+9Kc/MWTIEFJTU4mLi2PdunVNnn8yd999N2+//TY1NTW4XC7eeust7rzzznbFvWPHDiZOnNiiVpPT6eTRP/6Rn//852QOHEhiYiIVFRWtxhUo2l2J0hrKTSYTjz76aBN7E4/Hw5dffsmwYcP8F2EIw1KXloYTiM3JIVnvYE6HAU1xNe4791z46itDaBft2rePdUCXkywXjIAiKiQOySokzeE4eBAAxQDHxMkoQvrCKZnEQUUziX9tRQU79+4lLCyswY8OaLVaeXILzKFDh/wW45VXXkm3bt145ZVX6NKlC16vl0GDBjWxsNESFUtkZIOKuEvIjjzzzDMsWbKEZ599lsGDBxMbG8usWbNatcC58soriYyM5IMPPiAyMpLa2tpTKmKnI/o0Pni33347uYcOMXv2bM4dM4bE9HTGjx/fZmuezqTdSdT27duB+krUjz/+SESjfeCIiAiGDh3apBwY4szljoMH+QfwzKpVzP7lL/UOp1Xu/eyzerXy0lLG6x1Me9ESPy0RlBinpqKdmqpzJO1n6NChzAIGd7LPmD9wHjkCnGiGNxKKkI9wejyoXi8mSXrnmu1Rqq4mOjqacJrahrWnn8mX3qfmKCwsZPfu3bz00ktMnDgRgC1btrT4eFNYWEMC4BbJyGeffcbVV1/NLbfcAtT3fO3bt4/+rWjnWSwWbrvtNpYvX05kZCQ33nhjk+JKRETEaS1VhgwZwhtvvIHL5Wq2GvXZZ5/xt9/9jpsmTMAydChH8vNW9fMFAAAgAElEQVSb3QLVg3YnUVpz+R133MFzzz1nKK+gEIFFSUmB3FycBri4byksZCfwOwNcIE/GLSp+NYcOIbt8pUNshaWnp+scSfsZNn48w+CEcrLEaM3vSmKizpG0H0X4sdYBpYcPkyS0/WTELabVLRJsmSYnJ5OamsrLL79MRkYGeXl5/P73v2/1OVrcHvE5evXqxfvvv8+2bdtITk5m8eLF5Ofnt5pEAdx1110Nj9m6dWuT/+vWrRsbN25kz549pKamktjMMTlz5kyef/55brzxRubNm0diYiJffPEFY8aMoW/fvvTKyuJ/V61idP/+lLnd/G7u3NNWrwKFzyn+8uXLQwlUiFZRxIXSKdmUTXNoWwfpoofASKw7coSzgF80GlWWFa1Z2Gow7SLghPXL8eMgPMFkRav4KQas+EUlJzMnPJw/AmGSVBtaQrN86SvBVG9YWBjvvPMO3377LYMGDeKBBx7gqaeeavU5FlHl05LBRx55hBEjRnDJJZcwadIkbDYb11xzzWnfu3fv3pxzzjn07dv3lAb02267jT59+jBq1CjS09NPSbIAUlNT+eSTT6ioqOD8889n5MiRvPLKKw1VqddfeIHisjKG33ILt06bxq9//etThtr0wufpvAULFrT6/48++qivLx0iSNDsJhylpTpH0jrumhoKxKCEVdwFGwlFJH4OCfoDToemYG+VuLrQIunp5AMOt5t+DgeREtupVIqJWMVA6vuNeap7d9i/H2TXmHO5MAFmSfzcLr74Ynbt2tXke42HwE4eCEtNSuLrr7+mm5jgTElJOa11SnNC1aqq4nA4+GUzbRtpaWmsXbu2WTmkxgwZMoS1a9c2+559srJ45803iQkPJ2PoUIBThLF9mWb0Bz4nUR988EGTr10uFzk5OVgsFrKyskJJVAisZ9frDcs+ZVO4fz8qYALSGo3VGgVZe0iawyGc2BUj+eZpRETQ32SiRFXZ9d139P/Zz/SOqEVe7d6dFw8exNPIgN1QKEp9EiX7ZK+2tWswpwON5OhoourqiO2ACrjT6eTvf/87R48e5Y477vBjdCeoqamhGHB7vch26+LzT15rMG9MWVkZt99+O9ca9Rc3hF9RNP88ceGUFYfwzUszmTAbzEQUThgmu5C7h8TrcuE1cMUP6m2BSlwunPv3I7VNtdOJBbAII3CjUSysX1L27EHmT5BfXk41kOr1YrzuM0iOiyO5tLRDMhhWq5W0tDRefvllkpM7Zw7bJarsslm+QAd6opojISGBBQsW8Mgjj/jzZUMYFM36RauQyIpTGwc3YAIFEJWUhNadqBkpy0hYcTHHgVpOGCcbDUU0szr8OJbeKRhY1BRgXk4OQ4BX163TO5RWKa+rowio02krqcNoFbQOeJyqqsrx48e5+eab/RTUqWjK5eESVvz8XvcvKSmhVPIemBCBwdqvH9OAmYCnpETvcFqkKj+fJMBqwMk8DUX0ZDhk9s/TLF9SUzFJ0kPSXjRbIOfRozpH0jKeujomHz/OzUCFASUOABRNBFLyxnK3uDkMN+gNmNdsphqolHy3wCWSKIuESZTPES1durTJ16qqYrfb+fvf/86ll17a4cBCGJ/otDTeiI2FykooKoKUFL1DaparunWjGPBMnqx3KD6jREWx3+XCmZurdygto0ldGLTZGcCanAzHjuEUCs8yUrhvHxuo7/F706DbeVbhHODU6earrU3KLpFEWQxmXK5R5fGQDUTU1DBE72BawSVs5FpSNG8rndF87nMStWTJkiZfh4WFkZ6ezm233ca8efM6HFiIIEFRICenvgrRq5fe0TSPZvki8bTV6fhFjx6M+/FHekpc4Vmzfj2LgUnV1fxB72B8RKuQOCWukDj37AEg1WTCYkDFcgBFJH/OAPtuahfpqqqq0+oQqaqKphgWbtAkSrOqcVH/eUwS6F01h9tPyarmZ9jRZKwxPidROTk5fgsiRPBSm56OMyeH+Jwcks45R+9wmsfAli8as845B378ESQ+mWfv2cN6INkAYpUtoYgKiUPi7WnHgQOAcXv8oNFQipDECBRms5mkpKQG25aYmJgWEwt3XR1aXcMNqMI6xUh4xN8qUFVe7vfBGq/XS11dHTU1NadIHLQHreLnNZmo8WGdVVWlqqoKp9NJUlISZj82qMu3wRgiqLg+L4+PgBdXreKX//M/eofTLL/ZuJFs4A8lJZyvdzC+YgDrF0253tpJEzyBYNSwYTzw7ruMkEBcsSWcwpRVkUTR2ReUrCygXpMr0Ni0rcTTyCu4qqspKCjABOS2kmzJTmFBASpwwGz2u4myqqpUC2ucjqxPeEEBZiA/IgJTB25gkpKSGn6+/qJdSZRmPtwWFi9e3O5gQgQfSmIi5OdL3UOyzenkG2CmxFWc0+FKTcUJ1OXkIKvmukMo1ysGtHzRGDNhAmMAJJ7G0prelfh4nSPxHU0Co0RVqSsvJyKAn8VkMpGRkYGiKLhamVr77q23uG/hQrqZzfx3xw6/bhEFkruvvJIjbjdvz5/P8Btu8Otru1wuNm/ezHnnnef7+pSVwWWX1f97xw6fjdbDw8P9WoHSaFcS1Zw2VHMYNSMP4X802wnNhkJGNB0rxYCWLxofHDrEDcDEbdvYrHcwLaA1CVu7dNE5kg6gVfwkFoHUKn6KUKE2Ikk9evAbkwlFVXHn5wc0idIwm82tXnTPSUhgf24uh/r0ISoqyrBJlDs/n9zKShzZ2UT5uRJlNptxu90dW5/c3Po/8fEg4THdriRKMx8OEaKtaLYTjuJinSNpHtXrxSEmP6wGVCvXUITApiPAPSTtQVOuV4zomydQFQU79R6AgyoqsEi4rVdRWooJY1f8wiwWnrXZwG6HADeXtxmnEzMQbUB/wsYocXFQWYnj8GG9Q2mWHz7/nIXA4PBwZPRB6VBPVElJCa+99hq7d+/GZDIxYMAA7rzzzmZdmkOcmWhGs4Gesmkr5ceOoSmkpPftq2ssHcEqJh+dEjdtO0RDqNWIli8aiYn0oH6aKfennzh73DidAzqV53r25JmdO3Ffd53eoXQMRalPomSt+omKX63Br3c3DRjAGIeD0ZJu/+776Sf+BdhdLimTKJ/b5b/55huysrJYsmQJRUVFFBQUsHjxYrKysvjuu+/8GWMIA6NVSAI9ZdNWNMuXWCDWwHfuikgAS1SVuooKnaNpBlXFIyZsFFmlLtqAKSwMRUwZOffu1TmaFhCWL1EG1YjSKExK4gfALiQbZOPZDRu4EVgvu0nyabhp/HgeBkZIKGQJ4DhyBDghdCsbPidRDzzwAFdddRWHDh1i5cqVfPDBB+Tk5HDFFVcwa9Ysf8YYwsBoRrPODtgKdCZOofBtlfQE0laSMzPRujeOy2j9UlnJYVWlFugxYoTe0XQIRQwgOIRdkHQY3PJFY1ZeHkOBt9av1zuUZvn00CHeBXIltrRqE5L3+TntdkDeqd4OVaIefPDBJjLsFouFuXPn8s033/gluBDG56xBg5gGTFdVVAkTqcr8fJIBq0FFCTXCLBbSRYXEIWOFRGx9RMTEEJaQcJoHy40irFSckvaQXJ6Xx01AoYF1ogAU4XDgkFS2wykqvglCgNWoVCcnsxPYvn+/3qE0i2b9o0i6zj4nUQkJCeQJPZLGHD58mHhJ91ZDBJ7knj15IyyMJwGTGHGXiSkZGRQBn114od6hdBiruGg6ZayQBEl1BMAqkkDtDlkmKp1OVns8vANEGHkKErCKY8VZVKRzJM2jDXHEGfyY/vz4cQYB//PTT3qH0izaUJLVz/pO/sLnJOqGG25g+vTpvPvuuxw+fJgjR47wzjvvcNddd3HTTTf5M8YQRsZsBu0OQsY7Ss3yRdJf0PZwc7du/Bbo2gFl4M5i08cfMxl4XMJqZHvRKiSnE2PUA6fYyo0C4gx+TCvChslZVqZzJM2jDXHEGjxZlb7lQlT8ZJ3q9bkR5Omnn8ZkMjFt2jTc4mAKDw/nvvvu44knnvBbgCGMT21aGk6nk8ScHBKGDtU7nKYEgeWLxtyxY2HfPpBwG2dvdjYbgGiJpwfbSoNsh4SVVa3HTzGbMUmYTLcH5eyzgRPSGDJRXVSENm8cY/AGfm0opVBVcVVXEy6Z0n2hNtUrrIBkw+ffsoiICJ577jmKi4vZsWMH27dvp6ioiCVLlhBpYOXnEP7nZ3Y7ZwP/t26d3qGcwtwNG7gEWCfhBbHdSNwg2tAcavBxcIBxQ4cyG7hKwt4u56FDAFiD4Bysid86amtP88jA49i1C4BIIMLgOlGpvXo1JAIFEk5C7oyKohAYO2mS3qE0i89JVHV1NVVVVcTExDB48GASExN5+eWXWSfhhTKEvihaD8mxYzpHcipfOhysA0qC4KJTl5LCESBXGNDKhEMo1svaHNoeJk6cyDPA9RJWerRmd1nHwduDJn7r9HpRJZuAKzp4kDCCo+JnjoggTbiMSCfbUVNDWHk5KUCEpNt5Pv/0r776at58802gXnRz7NixPPPMM1x99dUsW7bMbwGGMD6KGE11StgTpTWHanpWRuatAwfoBty3WT7jF83yRdsKMzQSmz1rFT8lCCp+Sv/+zALmA24xoSULI1JSqAO2Dxqkdyh+QZF1KEWrqoeHS2n5Ah1Ior777jsmTpwIwL/+9S+sViu5ubm8+eabLF261G8BhjA+mv2ElD0kopnSamABSA2th8QhYQ+J1hxslfRusj2oisJRYLvTiVeyHq+K4uJ6yxfR/G5kIhMTWZKQwDwgXDbbKIcDM5Bs8KZyDSUmBgBHbq7OkTRl95dfMhV4OCoKJPXk9TmJqqqqapAyWLduHddddx1hYWGMGzeOXB1/EIcOHWL69OlkZmYSHR1NVlYWjz32GHV1da0+b9KkSZhMpiZ/brzxxgBFHdxYtSmb0lKdI2lKXUUFxaoKnGiuNDKanYrzNMe6HgRTxc+VlERXYITHQ7HoQZKFP/XqhQt4/Npr9Q7FP8ja5xdEAykA0/r04Y/AUMm2gQ/u3Mn7wGrJblYa43MS1atXLz788EMOHz7M2rVrmTJlClA/9pugY8NldnY2Xq+Xl156iZ07d7JkyRJefPFF/vCHP5z2uXfffTd2u73hz0svvRSAiIMfWadsNGVvM/WK30ZH6d0bAKfHI10PiTbBa83K0jmSjhMRF0eS1kMimzq8MMU1uuWLRkFyMt8DDskanv+2fj03AB9JdmPoK7eNG8dDwGCz+bSPDSQOoUWpCdzKiM9J1KOPPsqcOXPo0aMHY8eOZfz48UB9VWr48OF+C7C9XHrppSxfvpwpU6bQs2dPrrrqKubMmcPKlStP+9yYmBhsNlvDn5CRsn9QxGiqU4yqyoLWRKmEhRFmcNsXgPR+/QCoA8pkUtN2udjr9VIH9BfnCaOjiOPFIZvKs1axCYbeM+CeI0cYBqzcsEHvUJqw5eBB/gnsl7hC0i6040Wyip82jCTzVK/PV46pU6dy7rnnYrfbGdpI++eiiy7iWslKyaWlpaS0oUfgrbfe4n//93+xWq1cdtllPPbYY62qr9fW1lLbaPy2TPR9uFwuXH4ULtNey5+vGUgy+vblNqAb4Kqr8/vetq/rU3r4cL3lS0SEYde2MZa4OOKBcuDITz8RI/o1dD9+jh0jHLCEheFOTMQj0Vr7ujZKdDR7XS7sOTlSHTs37N1LBPCk200XP8Sl97GTnpgIdjv2Y8ekWmetxy9NtCrIFJsvVMXFcRhw7d3LIImuXfkiqUtLTu70Nfb19Tt0+61VbBozZsyYjryk3/l/9s48Pqry3OPfmawEkhgIySQhCRBiWMKOCCirEjdc6lYulitWqV2ode2VWhXtVatV21pve7W1tLUutbV4FZHNBUX2JcgaExKyTDIJCZCQhGyTc//IewII2SZnmzPv9/PhQ5iced93Hs6Z85znfZ7fc/jwYX73u9/xwgsvdHrcbbfdxpAhQ3C5XOzbt4+lS5eyZ88e1nXS/PKZZ57hiSeeOOf1tWvXEiES9bSks7VYmaCGBv4C4PXy4b//TYtOYm49tU9yWRnHgLKMDFatWqXLmowmLiiIk14vn73//jlPyWadP1H5+cwGGqOiWLNmjSlr6Iqe2iZKRKK+2rGDCIucO97mZv6vsZFW4LqcHPpqmBtn1rkTLOQD8o8csdQ1WiZSE040NhKD/343q3z9xRf8FBi/YweP62BnX+1TWFICgAN0//+vr6/36X1+s4exbNmy8zosZ7J9+3YmTZrU/u/S0lKuvPJKbrnlFu66665O37t48eL2nzMzM0lPT2fSpEns2rWLCR10nV+6dCn3339/+79rampITk4mKytL07yw5uZm1q1bx9y5cwkJCdFsXCNR+vbFUVdH1rhxoHFejK/2cR48CED8qFFcffXVmq7JLPYkJnKyuJjZw4eTLj6T2efPlpde4nJgUnAwv7CYnX21zWqXC44dI8jhsMy5c/TQIdRMuG9997sEa/CwYva5U/T663DgAKe8XsvYGeAu8YAybe5cysCvv5sBYisq4J//pKqlRVM79/b8+Z3XC8CoceN0//+v8bG9kN84UUuWLOmyWm7wGbLwpaWlzJ49m6lTp/Lqq6/2eL4JEyYQEhJCbm5uh05UWFjYedXZQ0JCdLmg9BrXCBpiY6moq6O/200/kbujNT22j5BccCYk4PRTu36TxyZOhOJiCA9v01Y5A7POnyO5uXwM4PVa9vztqW3ihWzH0WPHLPOZjguNnwEOB300Lu4x69xxiaKUo7W1lrFzS0MDVaKqN2HkSMqKi/36uxkgUXwnl3u9BOsgIOqrfY6J6FDi0KG629fX8f3GiYqNjSW2m2rHbreb2bNnM3HiRJYvX47ThxNi//79NDc3kyD2vCW9Y3ZVFVuAFevXc8Nll5m9HAAeXbOGrcA9VVXMM3sxWmHBBNEKtxuAeAu2SfGV6WPH8sCGDVxioc9UIZTq4/z4Zv5NVEkMVSLDClTm5qLQtsUUm57e9tDi56gSL43AydJSoiyi57YzKorjDQ1EzJlj9lI6xL/16s9DaWkps2bNIjk5meeff56jR4/i8XjweDztx7jdboYPH862bduAtrypJ598kh07dnBE7L3fcsstjB8/nksuucSsj2Ir1BLVCgt94WwvLWUdUGWDyjyVpgEDKAaKLdT6pVxo6thBAFLlshkzeB74loXOnQqhzxdnsQayvUEVwa2wUOJ2VW4uQbRF/ILDw81ejib0jYtDFRGosIqchNeLo7KS/kC4iEhaEet8A2jE2rVrycvLIy8vj0Hf8KYVEYJtbm4mJyenPZEsNDSUjz/+mN/+9rfU1taSnJzMNddcw+OPP06QxXQz/JW4Cy6A8nIqznBmzaZc/P/HJSebvBLtePXrr/kxcPMnn/BPsxcjqDh2DIB4mwgTApZs/aJG/OI6qSj2NxJHjeI+IA5QGhpwWMBpGRUVRRNQbQOB3jOJDw4mv6WFirw8hllht+DYMVD17izcc9N2TtSiRYtYtGhRp8cMHjy43aECSE5OZsOGDTqvLLCJE53O1Ua0VqBCyFPYQQBSJU48OJSfPGnySk6jloPH2WhrvDU2llLgaFkZ5qninU1tVRVOYKBFe4z5QlRKCi8GB0NLC1RWghW2mcrLcdLW8sU68bHeExceTn5tLeUW6Z+Xv2MHDwHDwsN51sJb1LbbzpNYE7XxbIVFemC1er1UiKecONEt3g7EW1DYtLy2FoB4C4fke0pNRATJwIS6Ok5Z5JxeOmwYTcCvbrjB7KVoh9MJIonfMnl+6jrsFFkF7kxL4ylguEW2g48cOMC/gQ8s1n3hm0gnSmIIcaINRYVFIiQnjhxBVVEaaKOwfJyIqlkph6SlpQUHp3v72YHo5GTUZ+OjVskh8XgIAiJs5KwCVMTEkA1Uig4DZvPHNWu4FXjXx5J4q3LX5Mn8DBhhkRSWctGX0uo5ftKJkhhCe/88i1TZqMmTFzgchFmowqq3qFU2xxWFJhEBMhVFYY/DQRMwfvp0s1ejGQ6nkzhR9WuZvm5qftY3BJD9nYXl5YwHPvz4Y7OXAsDm/Hz+CeTYpeWLisXy/Pylqlc6URJDGDp6NIuA+RZ5yjlZXMwAwGXhvXZfiBkyBNXCR63QHLe6GpqaCAaCbJQTBRAnNOIqCgpMXkkbt+7bx3yg6Ix8TzsQJ26iah81syk/cQKAeJudz7XR0ewF9ubmmr0UACrUqt6YGJNX0jnSiZIYwpAJE1gOPHrqVFuSqMlc1L8/lcA+i7Up6i3O4OD2CEmFFb4M1afayEiweFi+p8RbSLZDaW3lvVOn+AecziGyCao0RoVFcqIqRMuXOJttm35YUsIY4Mdbt5q9FADKKyuB08K2VkU6URJjGDCgrfGworRV2ZiNuLkH2aTb/ZncGRvLQ0CMhr3TfGXXF19wGfCAxgrIVqA9QlJWZvJK4PiRI+2VYvGjRpm6Fq1RpTHKhVSG2ZSrVb1Dhpi8Em1RhU0tk3JRXQ1AnMW3p+33zSaxJkFBnBowgEKgXogCmopNK2wAfjF2LM8Bgx0Os5dC/sGDfAJstXiFjS+oEZJyC+SQlB84AECMzXL8AOISEwEoFzdVM1FaW6kQ/dzi0tNNXo22qEUp5RYpSqkSET+rV/VKJ0piGJNPnmQwsMkCmlxPrlrFXGCFRcrTNcVCrV88RUUAuGx2YweYPWYMDwCXWeCzeUTlWrzNcvwAXEK2o1zcVM2kpqSERvFz/MiRpq5Fa1Spl2OKQrMQIjaTjQMGcAzIysoyeymdIp0oiWHERUQA4LFAIu6OkhLWA0ctkuiuJY39+1MElFig9YtHJAO7bNTyReXqmTN5HrgmNNTspbRfUy5xjdkJl4j4lDU2dnGk/lTl5hIM9AP62OycHpCe3u4QmC4noSg4ysuJAfqIbUarIp0oiWGo0YjykhKTVwIeUf7vsvgF6gu/+fprUoGfrV1r9lIoEwr1Lhtum7ZvBVsh4ieS2+0Y8UsdO5b7gIcUxfSilKGhoTQCR2yWDwVtRSkD1aIUs2U7ampAFQy2eN6qdKIkhpEg+h95LNA/zyMuUJdocGonXGrrFwvkkHhEObhLiK3aidaBAykBsi1QnVd37BhOIN5m0RGAmPR0XnQ6eRDA7LZRHg9OYIANz2eAOBFVNbv1S+HOndwIPBQaChaPrkonSmIYLlFl4amqMnUdSmsrHpEcmmCzvAaABKEM7rFADoka8UsQeS12oiI4mGRgYlUVXpMrIX+elkYT8MyNN5q6Dl0ICjot22D2A5haiWkzjSiV76em8jRtETczKfjqK1YAH5i6iu4hnSiJYbiSkwEoE9EJsziWn99eDh43YoSpa9EDK+WQeJubcWDPiN/A4cNxAq1YIIdEtHzpI64xu1ERG8tuzG+x88fVq7kF+JcVugHowA8nTmQpMMxkwVaPiIS5/EBbTjpREsNIEHkEHpMrPzyiHLy/DcvBAVzCMaw0u8qmtZVsRaEJGDdjhnnr0ImgsLD2HJKy/fvNXYwaobF4/oiv3F5ezgRgpcl5fpvz8vgX8LUFBIN1QdVkMjni5085ftKJkhhG2rhxLAIWmCy8eLKwkFgg0QJVVXoQm5FBEKAARw8eNG8hVVXg9ba1fBFaP3YjQZxDHpPV4W88eJBvA24bipoCuC64AACP6KdmFnbO8QOo7d+fr4C9Zn5vAB6xbeoaMMDUdXQHe15xEksyeOJElgM/O3UKTMwhmdK/P0eB7GnTTFuDnjiDg4kXN1OPmf3z1KfZ2FiwoX4RgKtfPwDKTEzE9TY18X5jI+8ADjtWQQIutSjFZGHTMjXHz4bVeQD/53YzFrhv82ZT11EmulokWFytHKQTJTGSmJjTN1MzvwzFzd1uDXHP5M64OH4KxKhlwiaw+ZNPmAM8bNoK9McKEZKq3Fy8gIO2PC07kiCuVY/JrV88Is/QZTO1chWXcA7LzE65UCN+otLYykgnSmIcTien4uIoAGrNLKFVIyR+8JTjK09OnMizwBATE0TzDh7kU2CnDVu+qCSIqrEyEx8K1GhjrMNBiB8k4vqCS7T+8Jgo2+FtaqJCnMsuGxakACRkZABQZnK1aZVw4lx+UNUrnSiJocw8cYKhwKfr15u2hqUffcTlwIcmVwnqigUSRNuTQ6OjTVuD3swaN44HgSyxrWcG5SIfK96mOX4ALiHbUWZic9zKnBxaERE/mzpRLtG8+rii0FhTY9o6tvfrx3FglsVbvoB0oiQG055DcuSIaWvYXlbGx8BxG990GmNjKQQKTSy9V/NX/CE51FeyZs3iV8A8ExO6PeJacvXta9oa9MYl+rp5TGyOW/n11wQDcU4nwWFhpq1DT2KGDEH9VvTs3WvOIlpacFRWcgEQZvHmwyCdKInBuGJiAHNzSFQRSpdNk0MB/nj4MIOBBz7+2LQ1eERyqMvG26btET9VhNEEPKKNkp0jfoljxnA/8CjQevKkKWsY1bcvjcAhGwr0qjicTlyin6hpRSlHj4KigNPZVpRicaQTJTEUl8gh8ZjYb8wj9vvtmhwKpxXCy0y64QB4xHaAy6YCkACt8fGUADtMfCioO3aMIOwd8euXkMALffrwEOA0q/WLaPlygU3lDVQSwsMBKMvLM2X+nM2b+Rbwsz592tTqLY50oiSG4hJ6QWZV2TTV1lIlkq1dNn6iVHNIPCbmkARCxK8+Kopk4KJTp6g1Kf9s2dChNAG/uOkmU+Y3BIfD/Dw/m7d8UbkrPZ1ngBEmbVke3ruX94DVflKQIp0oiaEkpKYC5kVIKoSIXDDQPy3NlDUYgUtU2XhaWlBM+jJSWlraWr6IfBY70i8hATUTyWOWarmIkIT7QTl4b6gYMIBdgMckIciXVq/mZuB9E6O7RnDXlCk8DGSYVNnbnuNnYrFGT5BOlMRQXMJx8ZikX6R+AccHBeEMDjZlDUbgyswEoB44aUa+TmMjB1pbaQJG2FTUVMUlzqMys3JIVHkFO+8LRwIAACAASURBVOeeAd93u5kI/HvdOlPm/7KggHeBAj+JkPiMyXl+ar6sqsFmdaQTJTGUwWPHcgdwB7QlDxpMrdvNQCDRptU1Kn3j4ogUP5sSIRE39uCQEJx+kBzaGxIiIgDwHD5syvzX5uRwK1DmB/kjvcHVvz8AntJSU+YvExpVCX5QMdYb6vr3Zw+wy6SHAlVzTdVgszrSiZIYSsKYMfwZeKylBUzQIZk1cCAVwJbZsw2f22hcQh2+3AyZgzMFTR0O4+c3EFdkm7vqKSoyfO7m+npWNjfzTyDY5pGoBNHSxqyiFDW/0GXjNACAjz0exgHf37nTlPk9VVUAuPwk90w6URJj6dMH1FJsMxJExZxOP7lAe8MdSUk8DLi8XsPn/mzdOmYDP7drt/szSBBVcWUmREjUHL8gYICNq03hdNNfj0kiuapGlZ1z/AASxOcrEy1ujMYjcs5cfhLxk06UxHDq4+LIB6qF0rKhBEDLF5WlkyfzDJBhghBk7qFDfAbssXv+COCKjwdO62IZSbnYcol3Om2d4wenW4CYUZRSV1GBOquq6m1XXKL/osfrpdWEh6BjIl9WrTC2OtKJkhjONUePkgasWrPG8LnvW7OGy4C1x48bPrfhmFgSXiaSQxOEuKqduXT8eB4CrjWhmqhMPIi4bJ7jB+AaNgw43QTYSDz79gHQB4gUMi12JV44iS3AMRO0ovaFhHACuNhPUi6kEyUxHFdUFHC6t5qRbCsv5xPgpE0btZ5J48CBHAHyTYj4qXkrLj9JDu0NM2bN4jngWyYUSpSKRt6JkZFdHOn/qBGSchMiJMfy8wkBEoKDcZjY4scIQvv1Y4DIYywzuiilthZHXR3RQKjczjOPwYMH43A4zvrz8MMPd/oeRVFYtmwZiYmJ9OnTh1mzZrHfLN0Xm6MqK3tMiJAESnIowFtHjjAEWPLFF4bPrYqpumz+1A6YGvErFQ8iiaJyzc7EjxzJA8DTgNfgrdOLYmJoAHZPmGDovGaRIPqKlhldlKJeQxERIHWizOXJJ5+krKys/c/Pf/7zTo9/7rnnePHFF3n55ZfZvn07LpeLuXPnctLmwmpm0J5DYnD7BqW1FY94gk0QT7V2JkEohavK4Ubib8mhvUGJj6eYtiinV7QUMoq648cJAhLENWVnQiMjeb5/fx4EQkQFl2GUleEEomwuaKqSIJpZewoKDJ13z8aNXA88FhbmN1W9tnWiIiMjcblc7X/6deLVKorCb37zGx555BFuvPFGMjMz+etf/0p9fT1vvvmmgasODBJELzVVd8Uoaj0e6sXP8TZu+aJiag6JmhwaABG/1thYBgMXKwpHDdbWeS4lhSZg6a23GjqvaZgV9VPnC4CqXoDbR4zgl8D4vn27PFZLcvfu5X3gEz+q6rVtOcezzz7LL37xC5KTk7nlllt46KGHCBUhym9SUFCAx+MhKyur/bWwsDBmzpzJpk2buPvuu8/7vsbGRhrPuEHVCN2j5uZmmkU5rBaoY2k5ppkMFNEJT12dJp+pu/Yp3rMHgEggNCbGNvbsiAGiVPmootDa1GTc51UUnF4vTmBAWpql7azJteVwMNDppLy1laI9exgwYoRGq+uaILcbJxCUlKSLna323VMVE4MbiN27l8QZMwyb94XVq9kB3HHiBFln2MJq9tGK+VOmEPTll3hbW3v12Xpqn9LCQgDiIyMNt6mv89nSifrJT37ChAkTiImJYdu2bSxdupSCggL+9Kc/nfd4NTcn/hsh8fj4eArFf+r5eOaZZ3jiiSfOeX3t2rVECBVjLVlnUrsDrTkqtno8jY2sWrVKs3G7sk/xypUAxAUFaTqvVfE2NeEEWoFTJSWGnT8htbXkKQotwIeVlRzyA1v31jZxwcGUNzWx8aOPKBOFE0ZwRUEB4cDG/HyqdbSzVb57/pqbywrg/r//nRkGNrb+OC+P9cDI0lJazmNnq9hHK4YeP85ooGzXLnZqcF511z4HDxwAoG9IiOHf0fX19V0fdB78xolatmzZeR2WM9m+fTuTJk3ivvvua39tzJgxxMTEcPPNN/Pss88yQCQ1nw/HN/ZgFUU557UzWbp0Kffff3/7v2tqakhOTiYrK4soDb9Im5ubWbduHXPnziVEqFD7M8eHDWPzc8/hUhSuuvxyHB1ECLtLd+2z9ssviQNS+vXj6quv7tWc/kK800lZayu1xcXccPfdxpw/oiAjKCaGq2+6Sf/5eoFW19YfoqLYW1lJZEiIYedWS0MDc48fJwF45aqr6KfD1qnVvnu+SEmBigpavF5Dr+EnRa7bpGnTuOqMea1mH604VVnJ7j//mYba2l7Zuaf2+b+HHgJg2NChhn9H1/jYQcNvnKglS5Ywf/78To8ZLMTYvsmUKVMAyMvLO68T5RL77B6Ph4Qz9rwrKirOiU6dSVhYGGHn0WcJCQnR5YLSa1yjiRsxgteCg6GlBY4fB42SNbuyzzXx8ZQDrVdfjdMGduwOrrAwyk6d4mRpqXHnj5A3cCQl+c352lvbJFxwAVRWcrSszLDPfHTvXjbSplb+1tChBOk4r1W+e5KTk2HHDsoqKw1dj6renXjhheed1yr20YovT55kNnDh/v3kaPC5umufUlHVmzx4sOH29HU+v3GiYmNjifWxkenu3bsBznKQzmTIkCG4XC7WrVvH+PHjAWhqamLDhg08++yzvi1Y0jFOZ1uCZnExuN2aOVFdIgQgnQFSYQPwndRUrjx0iMEGVrqs+OADfgNc3djIfxk2q7kkDBwIeXmUGZjwXCoEIF1OJ0G9jOb6C4liC89tYFFKS0MD5UJ5P2nMGMPmNZOEjAzgdKsbo3DX1gKQ6EcFKbarztu8eTO//vWvyc7OpqCggHfeeYe7776b6667jpQzyq2HDx/OihUrgLZtvHvvvZenn36aFStWsG/fPhYtWkRERAQLFiww66PYmlMJCRwGqoysZlJ7mwWCdpHg/unTeRowslHFwUOH+BzIMXBOs0kUfd1KDSy9L81ps3BiAAjHqiSJYolSofdmBJ69e2mlLeIXFwBVvXC6tU0NUG+gJtcJsW2a5Ed2tp0TFRYWxj/+8Q9mzZrFyJEjeeyxx1i8eDFvvfXWWcfl5ORQfcbTzE9/+lPuvfdefvjDHzJp0iTcbjdr164lMgCUgM1godvNMOAtkextBN/55BPmAFt9TCD0S8TNPdzAm7tbRGMS4+IMm9NspkyezE+B+ToUlHRE6ZEjQGColaskZWYCUNrSgmJQX0b33r0AJAQFBUzEL2rQIFTXvOyrr4yZ9NQpihSF48DwSy81Zk4N8JvtvO4yYcIEtmzZ0uVxyjdaNDgcDpYtW8ayZct0WpnkTJJiY8Htxl1SYticm44fpwBoCYB+birN8fGUAEVuN0kGzekWT65JQg8sEJg0cyaTAIQ+lhG0q5V3UixjNxLGjgWgCajKzSVWbDvpyfGCAkKBpPBw3eeyCg6nk6SQEPKam3Hv30/anDn6T1paigO4oE8f8DF1xwxsF4mS+AeJYkvNLZKQ9UZpbaVUCLgljR5tyJxWYH1FBUOBJQb2zysVVS6JftKFXRNExI+yMvB6DZmyTFw7iaoAZQAQ2q8fj0RE8DwQYlDHgyvj42kA1l92mSHzWYUkEVV1G9X6ReSskpTkN2rlIJ0oiUkkpaYC4D5+3JD5jh0+jCqLmhAgyaFwOrfAY6ACsFtEY5IMiBJYhvh4ShwOtni91IttNr1pqq0lGEgMoIgfwH+np/MAEG1USy63GwfQT3xnBQqDRMS+RDS51pu1H33EdcCvTWjk3RukEyUxhaT0dADcBvV1cwu18liHgzADxRDNJklsf1QqCo0+6qD0BG9jIx6Rq5IYQBE/goO52OFgKnBg40ZDpvzrwIE0AgstrsWlOWrUT41c6I06TwAVpADcOn48zwKzDfq+3LtvHx8AO/yo5QtIJ0piEkmi+sNtUMNWt1DCTTqPrped6Z+WhvqJS7OzdZ/veG4u8UAIED/KyJpA80kSVXJuoypOS0txAiEBFok6NmAA24Ec8WCkNz/+9FNuBLab0IPSTK6bNYufApMMcmrcono6ceBAQ+bTCulESUwhSehx1QI1BiSXl4qQdFIAVTKBSBANbqsfKRWOpJ7EnjpFKXAqMTFgKplUksQTu9uI7Y/m5nZR00CLkLxUVMRk4MX16w2Zb11FBSuAk500sbclasTPoOIft8hxS/IzHT/pRElMoW9cHD8IDeXngFJWpvt83mPHiAcGBVAlk4qaIFpqRIKoeJoMSjKqFtA6JImKohJRNacnpdnZXArc5nBAgJ3TSULvzy3UrfXG7YfaRVrQFBdHNrD+8GFD5nOfOAFAkoE9EbXAdhIHEv/h98OGwYEDYECuzvcSEvgeoNx6q+5zWY3E6GioqWnXFdKVMytsAoykhATYuxd3ebnucxV/9RVfAkVOZ1sHgABCrfp0G5BYXuN2Uyt+VqPngUJFeDjjgeCjR2lsacEZrK+74BYCqolCUNVfCKyrT2It1G0IIxJERYTE4WehYi24LjOTpcBkA4Qgf/Pee8wA/mxgWw6rYGTFqRpVTAogtXKVpBEjACg1QJOrVORdRQH9AkhKAsA1ejROoAWo0DkV4CwJGiGo6i9IJ0piGqfi48kDivfv13+yAK2wAfj27Nk8DVxqQOnwnoICvgA8Oj+1WhEjK05LCwoASAygSlMVteqzQlFo0tnWbvHdlBRg+X0AweHhuESUs0TnopQT+fnt22KJ48bpOpfWSCdKYhq/KCggHXj2o490n+uSffuYDRT6kYibViiq46j2DtSRUhGFSTyjT2WgMFy0frnPgHOsVDwUJARYPhRA7IUXEiJ+9ujcksQtRGqTAi2pXGBUxWlMXR21QPWAAYT6ma2lEyUxDbUKw61zg8vm+no2NzfzGdBn8GBd57IiXpeLAmCHiF7oidqFPWnYMN3nshpJEybwLPC9xkbQOV+nWPQnTA7A3DNncDCJQUHA6b52enHS4yEMSAygVlFnMsioilMhaBrlh3Id0omSmEaSmiCqc2J52Z49KLRpF8X6WdKiFhQ5HAwFZpSW6t60tVRUMiUGWCUTAJGRoG6v6ZznVywq05IDqbXOGTyQnMyLwCCdt6h/lJLCKeCVG2/UdR6r0l5xWlSk70R+XJAinSiJaSQNHw5AqajK0IvSffsASAwK0r3CxIqoOQaNQFVenm7znDp2jOPipqYqpQcapXFxbAYqxDmnG42NBAODxDUUaPx40iTuA5L1FsAUTXHDA6zli0qS2uNU54rTP77/PtcCb9TX6zqPHkgnSmIaaiNgT2srXh2Vy9UGmokGVKdZkdDISAaKPJ1SHXNIVEX0CCDaD8PyWnD7sWNMA1avXavfJIrCp4pCI3DJVVfpN4+VUSMWeuf5+XGERAsumzqV54Dbo6N1nWd7Xh4rgTw/65sH0omSmEh8ZiZBgBco1/HJXd3PTwrASiaVeBGBc+tYqlyTn08SkBwSgiPAtItUkkTujLuwUL9JKiuhoQEnEBSACfwA1TExbAd26pxYfu1XX3EjUByAEWyAi6ZP5yFgjs4RIndVFXBaSNWfCMxvOoklCAoNbS+h1TNBVFWQTvKznkxaEq9W2eioPjw+PJwS4MCll+o2h9VJio8HwK2nCr+qiB4fDwFYeg+wqrKSycADmzbpNoe3qYmPGhpYAQQHaCQKVVdP5xw/VTg1KS1N13n0QDpRElO5OyGBx4A4HYXzQurqiAdS/fApRysGip6Bbj0TRMXYzgC2c5LYxtSz4nT9ypVMBX4WgHIdKilCcLNYR52o8n378AJBQFyANdNuJymJ3cAHtbU0qL0adaBE5Lb5Y2sd6URJTOXRqVN5AkjVMUH0qQsuwAPc+53v6DaH1Ynt3x+AYj1zSNQISSA7UQZUnObs28cW4GAAO1HJogVLcUsLrULpWmuKd+8GICEoKOCaabfTty+zgeuAgm3bdJmirqKCKpELlTp5si5z6Il0oiTmot5wDYiQOAK0wgZgbHo6S4Fv9e2r2xx3rlzJDOBTP6yw0YpB4km6WMeK02JxPicH8PZ04vjxOIFm9MunLBJq5akBWpCiMigsDIASnexcvGMH0NZaJ9oPH8CkEyUxlabERPKAfXrlRDU3n67g8cMLVCtGjBvH08A1Ot7ctx09yhdAk4h6BSKpF10EtFWcNuoUjSoR5ebJAdgHUiU4PJwkIbhZtHOnLnMUCbXylAA+n+G0WnuJqHLWmqqcHPoBKcJZ8zekEyUxlQ8rKkgH7vryS13GL96xg2GtrVzlcEBcnC5z+AOn1KhFYSHoVEZcJLZkU8aM0WV8f2BAejr/FRzM7wCvThV6xaK1TrIfJuFqSYqIEBXrVHFaJLanUxMSdBnfX0gRgptFOnU8uCQykhpg66xZuoyvN9KJkphKitCKKtIpQlK4ezeHgdygIAjQsnuAU7GxFAKfnzpFvZq7pCHVRUWocZfkSZM0H99fcDid/HLYMJYAEUeP6jKHmkwdqEKbKilCTqJIJwHZpupqwoCUAGwVdSYpojKxUK8KvaIiHEDEkCH6jK8zgXtXkViClIkTASjTaftDzWtI9rOmllrTGhLCVKeTmcChL77QfPxisaUS43DQz+XSfHy/Qt021iES1drSQolIpE4OUFV4lQWTJvEiMEena/sPMTGcAu6aP1+X8f2FVBHxLNSr4lTNh/XTdAvpRElMJTYjg3Dxc4kOuQ1FQhcp0PMaAFKEVlShDgKFxSKnzV/zGrSkKj6eTcC+7ds1H7s6L48kaGuKKyrUApV5c+ZwHzBOrzw/ESEJCdD+hCqpQt6hUDQX15rvrV3LtcD25mZdxtcb6URJTMXhdJISEgJAkWgboiVFJSUApIgeUIFM8gUXAKcTZrWkKCcHgBSd20P4A38oLeUS4MX16zUfO6a2lgKgPiGBkACvGtO1sreuDoSKtr9GSLRi5KWX8izwS0UBHRqYf3L0KCuBBj990JVOlMR0UoQQZJEOCaJFIi8lxU/327UkWWyzFelw01GOHSMJGBzAyfsqqcOGAVCkx/aHyGdzBmhvwjNpTkhgO/C+Dg8FuZ9/zkXAopAQCPAHg4FjxvBTp5ObW1pA40bErS0tFIvt6RQ/jaxKJ0piOqlq9YfocaclRSLPKjkjQ/Ox/Q1Vsb3I49F87O/HxlIC/Pa22zQf299Q1bR12f44cqTt7wBPdgY4GRPDZOD6mhpOHTum6dj5u3axA9glZBQCmpCQ0w2YNc7zqzhwgCbaHBF/3Z6WTpTEdK6dOJHHgFk6bE/Et7Tg4nQVYCCTnJ4OQOGJE9oPLiIkjgDf+gBIFcUSxc3NmqtpP/7WW0wF3tJR78tfiBkyBFU6Vut8yvbt6QBuWn4meXFxvA/kbtmi6biqxldiUJDfbk9LJ0piOtdnZfEEML2pSduBa2pY19JCGTBy9mxtx/ZDBmVmAjrJSfh5hY2WJE2YgBNopO1JW0t2FxWxBagO8GpTEPmUoh2L1vmUalQ8NYBV4c9kWVUV1wMr1q7VdNwioYKe4qcOFEgnSmIF9EoQVfWQYmJA5F0FMkOnTGEp8GRrK4qGjlRrSwvpBQXMAI7LJ3dCIiJIVNW0RUsLrSgQUcQhgdoQ9xu051MePKjpuIVlZW3jy9wzAFJFYU6hxhpzqsZXqtD88kekEyUxndZBg8gDPikoQNGy+kN1yuQXIQDRqak83bcv3wMcompRC0p37yYP2AxEii3DQEd9si7UsN+Y0trKEaEKP3jCBM3G9WdSRKSoUON8yiJRmZciigQCnVRRmFNYUaHpuI2VlW0tX/xYFd52TtRnn32Gw+E475/tnei2zJo165zj5we4yJpRNMfHkw5c1thIlYaVNq++/jrDgGXixhPwOBy6RP3yRZ5EanAwweHhXRwdGPwoM5PfAePFdpMWHDt8GDVVPXXqVM3G9WeGiKbiBVpHSIQqfIpoKB3opKrFEtXVmo67NC6OGuAXCxZoOq6R2M6JmjZtGmVlZWf9ueuuuxg8eDCTumhHsXjx4rPe98orrxi06sAmLDqaBNGSpUDDxMWcr7/mMFDTt2+XxwYKFS4XnwO5W7dqNmbBnj0ADJVbee0smDmTJcCw+nrNxizYvBmABKeTcKH5FegMFa1v8jWUk1Cam+nX0kIokBrALYzOJHXcOAAKGxu13S3Iz28TNPXjCLbtnKjQ0FBcLlf7nwEDBvD+++/z3e9+F4fD0el7IyIiznpvdIDrgxhJmkiUzd+1S7Mx80tLARga4I1az2RZRQUzgb98+KFmY+aL6OHQ+HjNxvR7RIQEDZu2HhHO6mA/TsLVmotnz+YF4OfBwZqN6Sgp4SvgVGgoSXLbFIDkiy4C4CRQrVXUT1FAdJTAj1XhtTvzLMr7779PZWUlixYt6vLYN954g7///e/Ex8dz1VVX8fjjjxPZSUJyY2MjjWdsFdUITaLm5maaNZSwV8fSckyrMSQ2lo01NeTu39/jz9mRffJFt/vBI0fa2nZdcaZ9hgweDPv3k1dcrJlNDoutwdSUFL+zs17XVqPLxT6gYvdurtJo7KbSUgYDw2JjDbOz1b97ki6+mPsBjh2juaYGRGuj3uDIySEYcAwZQktra6cq3Va3j1aExsQQ63BQqSjkbtzIuG52gOjMPhUHDnBlXR3DgLcTEnCabENf/w9t70S99tprXHHFFSR3kVx82223MWTIEFwuF/v27WPp0qXs2bOHdevWdfieZ555hieeeOKc19euXUuEDk+Lna3F34kWW257Dxxg1apVPo1xpn2U1lbyGxoAqFQUn8e0E+vWrUMRve1yKyo0s0muqmIcFua3dtb62jqxdy+LgHC3mzfffx+nBpGSqdXVFAA5EycabmfLfvcoCldHRBBSX8/nf/sbtRoUkaSuWcM4oDwykq3dtLNl7aMhj8XFEVdezolt21jVQ4mN89nHvXYt+4ATTierP/1Uo1X6Tr2PW+9+40QtW7bsvA7LmWzfvv2svKeSkhLWrFnDO++80+X4ixcvbv85MzOT9PR0Jk2axK5du5jQQUh36dKl3H///e3/rqmpITk5maysLKI0zA9pbm5m3bp1zJ07lxDRZ85unPjwQ9i7l4r6eq6++uoevfd89jl66BC1gAO4acmSgM4hOdM+gxoa4N//prCpqcd27oi/traSCMy58UYmaDSmUeh1bTXPmsWdjz1GAzA+MZEkDXJrgkSOZtrcuQw1yM7+8N2Tl5zMgZwcMoODNbHLM7/6FXcBP4iK4j+7GM8f7KMVQbNn43z7bbwuF63dtHNn9nlLOKhpkZGafRf1BnUnqaf4jRO1ZMmSLqvlBn+jFcLy5csZMGAA1113XY/nmzBhAiEhIeTm5nboRIWFhRF2nq71ISEhulxQeo1rBS6cNAn++EcO19b6/BnPtE/Rtm0AJAUFESkF84A2+2TMnAnAMUWhzu3mgt62D6mv59/qlvZ117W1iPBDtL62QqKjSQ0OJr+lhaLt2xmsRTWdaPkSnJZmuJ2t/N3z85Mn+Tfw0vr1/Pj73+/1eF8dOcJOoDY6utuf2cr20YwLLwQgqKCAoB5+1vPZ54jIpUyLi7OE7Xxdg984UbGxscSKHmvdQVEUli9fzn/+53/6ZJz9IjcnwY/1K/yJjBkz+DkwzOuFxkY4j3PaE7zFxUwGEgI4AnU++rlcxDudlLe2cnjjRib21olSe7lFR7eJmkraSYuOJr+qisPZ2czo5VhKayvDDh0iHngvKgrZ5vk0QxMTobSUfI20og6LPnxpQuFf0sZxl4uNQOPmzdyswXj5IpdyqFqE4afYrjpP5ZNPPqGgoIA777zznN+53W6GDx/ONhGtOHz4ME8++SQ7duzgyJEjrFq1iltuuYXx48dzySWXGL30gKR/Rga/6NuX2+H0jbkXXBISwlbgvWuv7fVYdiNN5J8d1qLfmHrj8uPqGr1IE9WKh0Uftt5QceAA+YrCFuACqV10FkOFIGa+UBnvDUprK/lCzX+olDc4i4NOJ9cBD2ikDp9/9ChwWqbCX7GtE/Xaa68xbdo0RgiRsDNpbm4mJyenPZEsNDSUjz/+mCuuuIKMjAzuuecesrKyWL9+PUGyi7cxOBynb8RaPFHaoHRWL348diz/C1ykQbLz//z1rwwGHhdJ/JLTpIlz77AG6vB5X3wBQEpQEKGyb95ZDBURI7UatzdU5eaiZsYMufTSXo9nJ9JEQKHY66XRx/yhMzlc2yYdm+bnMhJ+s53XU958880Ofzd48GAURWn/d3JyMhs2bDBiWZJO8CQlsX/vXlwbNzLqqqt6NZZy+DAOAKkRdQ7zL7sMNm4EDW46uXl5FAKn5I39HNJGjYKVKzmsgRBkrogapkvtunMYOnkyAPlCCNLh9D02kP/llwAkOZ306d9fk/XZhbiRI+kH1AIFGzcyvBfJ4C0nTxLb2ko1MHTaNK2WaAq2jURJ/I9fHT3K5cBrq1f3eqz0TZtIpy0ELfkGqmOpQcRP3UIZKnuMncNFl13Gb4GnNTgHc8UWSrrM0TyH1KlTcQD1tG179obDu3cDMFQ+FJyDw+lkmNDhyutlx4PgkhL2ACcjIxngx2rlIJ0oiYVIEzfiw0Jp3Fcaa2rIb2khDxgwerQGK7MXjcnJbATe+eqrXo+Vf+IEAENGjer1WHZj0LRp3ANcXlvb66jf14WFAKRLZ/UcQvv1I1mkXRwWkSSfKS/nQmCEy9X7hdmQNBGdO7x3b+8GEukWjrS0XkUOrYB/r15iK4YKh6e3uQ0FGzeiAH2BgefJiQt0jg8YwHRgflVVr3IbvE1N5Al5gwunT9dodTaib19Qb8Zqjp6P5FZVAXDh2LG9XZUteSYjgxXACK+3V+P8R9++5ACvLFyoybrsxrBBgwDIy8vr3UA2KkiRTpTEMgybMgWAvMZGWltafB7nkEjCHR4R4fdPOXoQP2oUfQEFONKLJ/fCTZtoBMKA7BF6lwAAIABJREFUFPF/JzmbAwkJvAXs/+wz3wdRFAY3N5MCXOjn+SN6sWDmTG4AYnqbxC8LUjolTWhFHfZ4ejXOg8uXMwZ444y2af6KvMNILMPgSy4hFGgAirZs8XmcnOxsADKkyOZ5cTidpIvchpyNG30eJ+fzzwFIDwsjKDRUk7XZjedqalgAvLdmje+DlJXxntdLodNJ+uzZmq3NVmRktP3dSzkJRS3f9/Oye724/MoreQt4tpc9CrMLC9kLNNtg21Q6URLLEBweTroQ2TzYi15Kh0SoebiszOuQEXFtco2HRCKtLwSXlXEJMEUmO3dIhjgHD/Zm+0MoOzN4MEhn9bycTElhBfDq5s0+j1GVm0v/ykqmAc1Dhmi2NjsxZPp05gOjS0uhN7sF1dUADLdBBFs6URJLMVyo0h/qhRBkjgg1Z4wZo8ma7MhwsV1xUL1B+8BcRWEj8McFCzRalf0YITRwDlVU+DxGqxpd8fMqJj2pGjiQG4ElZWW0+LhFlPPJJ5wASoKCCJHq++cnKakt16+lxec8v5OlpbhbWwHIuOwyLVdnCtKJkliKxdOn8xowLzzctwEUhXHNzUwERkqxvA4ZLhKUD/Umt0G9ucutjw4ZMaOt4cuh+nqf8/x++uqrJAC/9bHLfCCQMmUK4UAzcMTHLeqDIoo1XGpxdYzTydbkZH4L7PrgA5+GyFm/HoB4p5MYG0T8pBMlsRRXzJvHd4F0X1s4HD3K7xsb2eFwkGmBzuBWZYRwMA/V1qKIp8Ke0njoUNsPaj6K5ByGzpxJMFAHlGzf7tMY+wsL8QDhyclaLs1WOIODuVA8eOWIwpKecmj/fgCGSzt3yv80NXEv8JGPeX6HVGc1MlLDVZmHdKIk1kKNaqg36J6iRkdSU6GXyY92Jv2yy3jZ4eBfgOJDNKqmpIQIj4c04FRKiubrswshERGkizymg5984tMY+4XkxyjZx7NTMkQqQI6PeX6HREPc87UKk5xmpNhWPuBjnt8hoTE1PDFRszWZiXSiJNYiI4MvgFcqKqjxoRFxbXY2LSC3mLog/IIL+NHQoVwGOL/+usfvP7RuHa1AndNJHxtU2OjJCHFzP7hjR4/fW1NSQrHQPuptKyS7kzF4MAAHfazQOySc1eEXXaTVkmzJyIkTAThYXu7T+y+oqWEUMNomjbSlEyWxFv36sSAoiO8D+3wIF//8z3+mL/DLkyc1X5rtUJ+4fejKvlf0mhx9wQVarsiW3Hf55XwAzPehlcgB0QIpwSb5I3qSKZL497vdPX5vY00N+c3NAAyfM0fTddmNEbNmAXDw1Cm8TU09fv+DXi/7gB/deae2CzMJ6URJLMcocWPeK3SIesKeI0doAlwyEtUlJYMG8Tfg3++/3+P37t2zB4Ax8sbeJZdmZTEPcPkQWT0gxFBHSWe1S8bMnQvA3traHifxn9i+nauAUU4nLlnV2ylDpk8njDY9v8JNm3r25oaG0ykXNmnJJZ0oieUYK7R19ogbdXdRWlv5SuiPjLVB6azefAbcDvy6p1+EwFfCIRg9bpyWS7InmZltf+/dC4rSo7fuF/0NR8m8sy5Jv/xy3gwOZivgEL0Gu0t8SQkrgX3Tp8suB10QHB5Ohkji3//xxz16b9OePXi9Xujfv00uwQbIs0ViOcZOmgTAHpHo2V1Kd+/mmKIQBIyQ+SNdMi4rC4A9NTU9enI/01kdIxW0u2bECFYGBbGsuprSrVt79Na0+npmAZNFHoqkY4LDw/mPMWMYCTh62iBXdDlAPhR0i8z4eAC+6mFniTdeeYUoYEmfPuBw6LAy45FOlMRyjBU3969OnuzRzX2fyB/JCAsjXG5/dEnGFVcQBpwECnpQFl6WnU2VouAERl5zjV7Lsw+hoTwaGsoTwNYVK3r01h+eOMGnwILvfleXpdkOdSuuh1HsE2rSv2zw3C1+etNNbAHui4jo0fv27N5NPRAiOibYAelESSyHenOvBQpEAnN3+EpsS40RT0mSzgmJiGCU+BLc89FH3X5f8759LAK+FRkpndVuMn7QIACye/LkXloKHg84nTJC0k2ODBrEC8DveuCsKq2tDP3yS+KBwwMG6LY2OzH2mmu4GIjoYcRvj0gDGDN+vPaLMgnpREksR3B4OKOExtMeEV3qDntFwuJYqfPSbcaJvISe3NxTy8tZDvxLbpl2m3EiiTa7B+X3xz79lBqAkSOhh0/8gcrhqCgeBF46cKDb7ynZvp3jisIxYJCoPJN0geoEFRSAkIboCqW1lT1qzqqNKiClEyWxJM/OmMEGICsoqNvvyWpq4lvAFPlF2G3Gie2P7J5oRalbHzI60m3Gi9yx3ZWV3X7Pb199lWjgpz1MRg9kxsybB0BeczPV3cyp3PPhhwCMCA8nLCpKt7XZipgY/jlwID8Edr7zTrfeojqrQdgrDUA6URJLcvm8ecwA+nUztyG4tpY7PB7+Dcyyif6IEYwTDmdPbu7Zn39OM4ANOrAbxZjrrgOg2OulqptNn3cK1f5kKdfRbQaOGMGQ4GAAtr/1Vrfes1PkA45NSNBtXXbk7ZAQ/gBsEE5oV2z7178AGBUebqs0AOlESayJeoPesgW60dstRr0xpaXBwIE6LsxeTLz1Vt5zOtnp9UJxcZfHl2VnM97jIQZoUEv3JV0SnZJCekgIANu6e3MXju1EoX8k6R5TxBb15rVru3X8ZpHXM3XyZN3WZEfGi7SJnUKGoyu2fPYZAFNtpi0nnSiJNRk7ln+HhvLjEyc4vG5dl4dXbt1KPqDI6EiPiIiL4/px44gD6IZe1NZ//AOAoeHhhEtntUdME1pPW7txPpfu2oWntRUnMO6mm3Remb2YKiRStnQj6dnb1MTmqioApn3rW7quy25cJLaoN3VTIX5sdTXzgMttpuEnnSiJNQkJ4aU+fXgZ+KwbT+6/+fJL0oA/ij5jkh6gNrYV6tidseXTTwGYIvqUSbrP0kWLOAg83g0xxy///ncARoeHEyF670m6xxSRF7WlshKliyj2gQ8+oAboB2Ref73+i7MR0+64AydwpKWF4q70zxob+U5hIR8AN99zjxHLMwzpREksy1QRLt7URYSktaWF3aJX3iTxBSrpPp5Ro1gG/KgbzuoWkadz8cUX67soG5Jx880MBxzbtkEXPce+EErQ09PTDViZvRh7882EATWKQnEX+md9Dx7kfuCOQYMIFircku4RmZjIeFE1+sXf/tbpsY7s7LZzPjYWhg0zYnmGIZ0oiWWZdvnlAHzZRQuHg6tWcQLoA4yWIfke0zxuHE8Ar1RWUuvxdHhcY00N20SJ8hRp556TkQEDBrT1D9u9u9NDvxDVkjNstvVhBKH9+rFt7FhqgJTDhzs9dmhuLi8AL91xhyFrsxszRNHD5yLfqSNyP/iAEoCpU22jVK4inSiJZZn6ne/gAHKamijdtavD4z59/XUALunfnxCpp9Njki++mOSgILzApuXLOzxu05/+xCnA5XQy8tprDVufbXA4WDVsGPOB1154oePjjh/nxw0NLASmL1pk0OLsxZh58+gDsH59xwcpCqg3/2nTDFiV/ZghukuUdCEn8eDy5SQDL9uwL6H9PpHENsRmZDBROEVrf//7Do9bL7b7LpdbTD5z+dChAKwWZcjnY/2777Ydm5oqm7T6SI7LxT+Atztr3Lp2Ld8F/jZyJC7ZhsQ31IrG9es7rO51b9jAmqIiToWGwowZBi7OPmT94Ad4gJW1tW3q+ufBW1/PZ0ePAnDpf/yHgaszBvlNKLE0V06YAMCaDiqaGmtq2CAu0Mu+8x3D1mU3rhaRpY/27evwmPknTvDfwEJZLeYz1/zgBwBsOHaMk6Wl5z9o1SpxsH0ECQ1n6lQeDQlh9NGj7H777fMe8o9f/5orgZujoqQivI9EpKQQL6oh6UAvqmTtWuqBeKeTMTb87pBOlMTSXLlgAQAetxuloeGc36/91a+oAxIcDpkP1Qsuv+cegoBDTU3knS9KcuQIow8c4BGnk6yHHjJ8fXYhfe5c0oKDaQbW/eY35/y+paGB37z7LgcARbbV8Z3QUPbFxrIPeLeDKPYHn38OwOVqdarEN4SQbNN775331zvFlukVgwfjFEKodkI6URJLM+XOO9k/cCCfer041qw55/dzDx/mPeD+sWNteYEaxQWpqcwRzVffevrpcw8QW3nMnAk26sBuNA6nk+vFFt1bb755zu8/fuEF7qurY4bDQYvcnu4Vt4iHqn9u23aO1IF7xw42nDgBwI3yoaBXVM+ezdVA/MqV57Ta8TY1sUYUBt26cKEJq9Mf6URJLE1QaCgj1W26N944+5c1NYR/8AHXA5Pnzzd8bXbjOzfeSCTQkp3dlnQrUFpb+d5TT/F/gPfGG01bn11YKG7a77vdHPtG9djrf/oTAPMzM2WRRC+59pFHCAe+bm5m2zcKJt58/HEU4NKoKFJlJKpXRE2bRmFYGCeAtx5++KzfffrrX1OuKPR3OJj74IPmLFBn/M6Jeuqpp5g2bRoRERFc0EH/naKiIq699lr69u1LbGws99xzD01d6LIcP36chQsXEh0dTXR0NAsXLuSEeFKRmMzttwNQ8e67VKjNbwHltdegthZl+HCOX3ihWauzDbc+9RTlERE8cewYrF7d/vqGl17ij8ePswCokTpcvWbct7/NmPBwmoBXf/Sj9tfdO3bwzyNHAFj4k5+YszgbEZmYyK2iYOK3v/hF++vN9fW8LKLaC2WVaa9xOJ3cdeWVAPxhxQpaW1raf/e62Er9j8xMQvv1M2V9euN3TlRTUxO33HILPxAJmt/E6/VyzTXXUFdXx8aNG3n77bd59913eeCBBzodd8GCBWRnZ7N69WpWr15NdnY2C20afvQ7xo7lD8OHk9raylKRI1VdVMTE//ovlgEn7r4bZLVYrwkfOJA+6nW1bBl4vbS2tPDzxx4D4PZRo4iRSuWa8MDChYwCRm3aBEJ76+k77qAJmB4VxWSpW6QJP3nySQDeKSxkzzvvAPDnxYsp8nqJdzpZ+NJLZi7PNvznr35FJPBVQwPv3H9/24ubN7O8rIzXHA7u+fWvTV2frih+yvLly5Xo6OhzXl+1apXidDoVt9vd/tpbb72lhIWFKdXV1ecd68CBAwqgbNmypf21zZs3K4By6NChbq+purpaATqcx1eampqU9957T2lqatJ0XH/ii//5HwVQAOWV225Tvp2crABKWnCwUu3xBLx9OqNH509pqaL07ausBGXZ1KnKo9OnK4DSF5SiM64Pu2DWtdXS0KB409MVBRTl2muVvy9e3H5+r3/uOUPX0hl2+O65MTFRAZSbo6MVZeVK5b7gYAVQXrz++l6PbQf7aMWTc+YogNLf4VC2vfCCogwbpiigFM6Z4xf28fX+bbtM3M2bN5OZmUliYmL7a1dccQWNjY3s3LmT2aJp4jffEx0dfVYriylTphAdHc2mTZvIyMg471yNjY00Nja2/7umpgaA5uZmmpubtfpI7WNpOaa/cfHixdz72mv8Ztcu7ha5UU7g1WefJTgyEghs+3RGj86f2Fh2P/gg8554AjZvbn/5mZtvxjVhgu1sbNq15XTi+MtfcMyejeODD1gqXl4yejQz7r3XMna2w3fPiytWcPSSS3ipuhrmzeNF4MrRo5nxxhu9/lx2sI9W/OTNN1mZlsa2ujrmPfAAh4GIpCT2fve7xPqBfXz9P7SdE+XxeIiPjz/rtZiYGEJDQ/F0IAbm8XiIO0/FUVxcXIfvAXjmmWd44oknznl97dq1ROiQFLquG93f7cyMhx+m4bHHWJGTQ0xQEHfddBMn09La7RLo9umKbttn/HgenTWLv33+Oa3AbVOmkLxgAatU/SIbYta5M3DpUjKXL8fldpM1ZAizH3nEknb292vr8eefJ+TVV2kqKqJ8wgRavvc91nSmZt5D/N0+WnHfc8/x+qOPsvnYMf6WnMyFP/sZLf36+YV96uvrfXqfJZyoZcuWndcZOZPt27czSRX16gLHeXrzKIpy3td7856lS5dyv7r/S1skKjk5maysLKKiorq11u7Q3NzMunXrmDt3LiEhIZqN64/Mu+EGvpnFIO3TOb7Y5+qrr+ZRnddlBUw/d66+Gh55hC+Nn7lbmG4fLfnhDwFwiT9aYCv7aMRNixe3/+xP9lF3knqKJZyoJUuWML+LEvXB3UxodblcbN269azXjh8/TnNz8zkRqjPfU15efs7rR48e7fA9AGFhYYSFhZ3zekhIiC4njF7j2gVpn86R9ukYaZvOkfbpHGmfzvEH+/i6Pks4UbGxscTGxmoy1tSpU3nqqacoKysjISEBaNteCwsLY+LEiR2+p7q6mm3btjF58mQAtm7dSnV1NdNkY0qJRCKRSCTnwe/qwouKisjOzqaoqAiv10t2djbZ2dnU1tYCkJWVxciRI1m4cCG7d+/m448/5sEHH2Tx4sXtW2zbtm1j+PDhuN1uAEaMGMGVV17J4sWL2bJlC1u2bGHx4sXMmzevw6RyiUQikUgkgY3fOVGPPfYY48eP5/HHH6e2tpbx48czfvx4dggRxqCgID788EPCw8O55JJLuPXWW7nhhht4/vnn28eor68nJyfnrGz8N954g9GjR5OVlUVWVhZjxozh9ddfN/zzSSQSiUQi8Q8ssZ3XE/7yl7/wl7/8pdNjUlJSWLlyZYe/nzVrFsoZbS0A+vfvz9///nctliiRSCQSiSQA8LtIlEQikUgkEokVkE6URCKRSCQSiQ9IJ0oikUgkEonEB6QTJZFIJBKJROID0omSSCQSiUQi8QHpREkkEolEIpH4gHSiJBKJRCKRSHxAOlESiUQikUgkPiCdKIlEIpFIJBIf8DvFciujqqDX1NRoOm5zczP19fXU1NRYvhO2GUj7dI60T8dI23SOtE/nSPt0jj/ZR71vf7ObSVdIJ0pDTp48CUBycrLJK5FIJBKJRNJTTp48SXR0dLePdyg9dbskHdLa2kppaSmRkZE4HA7Nxq2pqSE5OZni4mKioqI0G9cuSPt0jrRPx0jbdI60T+dI+3SOP9lHURROnjxJYmIiTmf3M51kJEpDnE4ngwYN0m38qKgoy5+IZiLt0znSPh0jbdM50j6dI+3TOf5in55EoFRkYrlEIpFIJBKJD0gnSiKRSCQSicQHgpYtW7bM7EVIuiYoKIhZs2YRHCx3YM+HtE/nSPt0jLRN50j7dI60T+fY3T4ysVwikUgkEonEB+R2nkQikUgkEokPSCdKIpFIJBKJxAekEyWRSCQSiUTiA9KJkkgkEolEIvEB6UT5Ab///e8ZMmQI4eHhTJw4kS+++MLsJRnOsmXLcDgcZ/1xuVztv1cUhWXLlpGYmEifPn2YNWsW+/fvN3HF+vL5559z7bXXkpiYiMPh4L333jvr992xx/Hjx1m4cCHR0dFER0ezcOFCTpw4YeTH0I2u7LNo0aJzzqcpU6acdUxjYyM//vGPiY2NpW/fvlx33XWUlJQY+TF04ZlnnuGiiy4iMjKSuLg4brjhBnJycs46pjufvaioiGuvvZa+ffsSGxvLPffcQ1NTk5EfRRe6Y59Zs2adc/7Mnz//rGPsen394Q9/YMyYMe0CmlOnTuWjjz5q/32gnTvSibI4//jHP7j33nt55JFH2L17N9OnT+eqq66iqKjI7KUZzqhRoygrK2v/s3fv3vbfPffcc7z44ou8/PLLbN++HZfLxdy5c9v7GdqNuro6xo4dy8svv3ze33fHHgsWLCA7O5vVq1ezevVqsrOzWbhwoVEfQVe6sg/AlVdeedb5tGrVqrN+f++997JixQrefvttNm7cSG1tLfPmzcPr9eq9fF3ZsGEDP/rRj9iyZQvr1q2jpaWFrKws6urq2o/p6rN7vV6uueYa6urq2LhxI2+//TbvvvsuDzzwgFkfSzO6Yx+AxYsXn3X+vPLKK2f93q7X16BBg/jlL3/Jjh072LFjB3PmzOH6669vf0gLuHNHkViayZMnK9///vfPem348OHKww8/bNKKzOHxxx9Xxo4de97ftba2Ki6XS/nlL3/Z/lpDQ4MSHR2t/O///q9RSzQNQFmxYkX7v7tjjwMHDiiAsmXLlvZjNm/erADKoUOHjFu8AXzTPoqiKLfffrty/fXXd/ieEydOKCEhIcrbb7/d/prb7VacTqeyevVq3dZqBhUVFQqgbNiwQVGU7n32VatWKU6nU3G73e3HvPXWW0pYWJhSXV1t7AfQmW/aR1EUZebMmcpPfvKTDt8TSNeXoihKTEyM8qc//Skgzx0ZibIwTU1N7Ny5k6ysrLNez8rKYtOmTSatyjxyc3NJTExkyJAhzJ8/n/z8fAAKCgrweDxn2SksLIyZM2cGpJ26Y4/NmzcTHR3NxRdf3H7MlClTiI6ODhibffbZZ8TFxXHhhReyePFiKioq2n+3c+dOmpubz7JhYmIimZmZtrNPdXU1AP379we699k3b95MZmYmiYmJ7cdcccUVNDY2snPnTgNXrz/ftI/KG2+8QWxsLKNGjeLBBx88K8obKNeX1+vl7bffpq6ujqlTpwbkuWNPCVGbUFlZidfrJT4+/qzX4+Pj8Xg8Jq3KHC6++GL+9re/ceGFF1JeXs5///d/M23aNPbv399ui/PZqbCw0Izlmkp37OHxeIiLizvnvXFxcQFxbl111VXccsstpKamUlBQwKOPPsqcOXPYuXMnYWFheDweQkNDiYmJOet9drv2FEXh/vvv59JLLyUzMxOgW5/d4/Gcc37FxMQQGhpqe/sA3HbbbQwZMgSXy8W+fftYunQpe/bsYd26dYD9r6+9e/cydepUGhoa6NevHytWrGDkyJFkZ2cH3LkjnSg/wOFwnPVvRVHOec3uXHXVVe0/jx49mqlTp5KWlsZf//rX9oRgaaez6coe57NNoNjs29/+dvvPmZmZTJo0idTUVD788ENuvPHGDt9nN/ssWbKEr776io0bN3Z5bCCePx3ZZ/Hixe0/Z2Zmkp6ezqRJk9i1axcTJkwA7G2fjIwMsrOzOXHiBO+++y633347GzZs6PB4O587cjvPwsTGxhIUFHSOd15RUXGOJx9o/H87dxcSVbeHAfyZPHsG0WFoUnTSMrOLksZJjWIkbEjKIG8SIsLCCoOEMUb0pg+KPsDoIvIigiCkLqIgRAqJTPyo0FRwxK8ujBwnaPoyUWnyc/7n4uUMZ4725tmp8zbz/GBAt2utvdaftfFhu7dRUVEwm80YGBjwv6XHOv1lIfWIj4/Hp0+f5vT98uVLWNbMZDIhKSkJAwMDAP6qz9TUFEZGRgLahdKeKikpwePHj9HY2IjExET/8YWsPT4+fs7+GhkZwfT0dMjXZz4ZGRlQFCVg/4Ty9aXVarFhwwZs3boVFRUVsFgsqKysDMu9wxD1D6bVapGZmem/Rfwfz58/R1ZWVpBm9c8wOTmJN2/ewGQy+W+r/3edpqam0NzcHJZ1Wkg9rFYrRkdH0d7e7m/T1taG0dHRsKzZ8PAw3r9/D5PJBADIzMyEoigBNfR4POjt7f3j6yMisNvtqK6uRkNDA5KTkwN+vpC1W61W9Pb2wuPx+NvU1dVBp9MhMzNzeRayRH5Vn/n09fVhenrav3/C7foSEUxOTobn3gnCw+z0f3jw4IEoiiJ37tyR/v5+cTgcEhUVJS6XK9hTW1ZlZWXS1NQk7969k9evX0teXp7o9Xp/Ha5evSoGg0Gqq6ulp6dHDh06JCaTScbGxoI886UxPj4uTqdTnE6nAJDr16+L0+mUoaEhEVlYPfbu3StpaWnS2toqra2tYjabJS8vL1hLWlR/V5/x8XEpKyuTlpYWGRwclMbGRrFarZKQkBBQn5MnT0piYqLU19dLZ2en7Nq1SywWi8zMzARxZb+vuLhYDAaDNDU1icfj8X+8Xq+/za/WPjMzI5s3b5acnBzp7OyU+vp6SUxMFLvdHqxlLZpf1eft27dy8eJF6ejokMHBQamtrZWNGzdKenp6wN4I1evr9OnT8uLFCxkcHJTu7m45c+aMrFixQurq6kQk/PYOQ9Qf4ObNm5KUlCRarVYyMjICXrUNFwcPHhSTySSKosjq1aslPz9f+vr6/D/3+Xxy4cIFiY+PF51OJ9nZ2dLT0xPEGS+txsZGATDnU1hYKCILq8fw8LAUFBSIXq8XvV4vBQUFMjIyEoTVLL6/q4/X65U9e/ZIbGysKIoia9eulcLCQnG73QFj/PjxQ+x2uxiNRomMjJS8vLw5bf5E89UFgFRVVfnbLGTtQ0NDsm/fPomMjBSj0Sh2u10mJiaWeTWL71f1cbvdkp2dLUajUbRaraSkpMipU6dkeHg4YJxQvb6OHz/u/30UGxsrOTk5/gAlEn57RyMisnz3vYiIiIhCA5+JIiIiIlKBIYqIiIhIBYYoIiIiIhUYooiIiIhUYIgiIiIiUoEhioiIiEgFhigiIiIiFRiiiIiIiFRgiCKisGKz2eBwOII9DSIKAfyP5UQUsmw2G7Zs2YIbN274j3379g2KokCv1y/7fBwOB1wuF2pqapb93ES0+HgniojCitFoDEqAAoCOjg5s27YtKOcmosXHEEVEIeno0aNobm5GZWUlNBoNNBoNXC7XnD/n2Ww2lJSUwOFwYOXKlYiLi8Pt27fx/ft3HDt2DHq9HikpKXj69Km/j4jg2rVrWL9+PSIjI2GxWPDo0aOfzmV6ehparRYtLS04e/YsNBoNtm/fvqTrJ6KlxxBFRCGpsrISVqsVJ06cgMfjgcfjwZo1a+Zte/fuXcTExKC9vR0lJSUoLi7GgQMHkJWVhc7OTuTm5uLIkSPwer0AgHPnzqGqqgq3bt1CX18fSktLcfjwYTQ3N887fkREBF69egUA6OrqgsfjwbNnz5Zm4US0bPhMFBGFrPmeifrfYzabDbOzs3j58iUAYHZ2FgaDAfn5+bh37x4A4OPHjzCZTGhtbYXZbEZMTAwaGhpgtVqowgS8AAABtklEQVT94xYVFcHr9eL+/fvzzqWmpgZFRUX4+vXrUi2XiJbZv4I9ASKiYEtLS/N/HRERgVWrVsFsNvuPxcXFAQA+f/6M/v5+TExMYPfu3QFjTE1NIT09/afncDqdsFgsizxzIgomhigiCnuKogR8r9FoAo5pNBoAgM/ng8/nAwDU1tYiISEhoJ9Op/vpObq6uhiiiEIMQxQRhSytVovZ2dlFHTM1NRU6nQ5utxs7d+5ccL+enh7s379/UedCRMHFEEVEIWvdunVoa2uDy+VCdHQ0jEbjb4+p1+tRXl6O0tJS+Hw+7NixA2NjY2hpaUF0dDQKCwvn7efz+dDd3Y0PHz4gKioKBoPht+dCRMHFt/OIKGSVl5cjIiICqampiI2NhdvtXpRxL1++jPPnz6OiogKbNm1Cbm4unjx5guTk5J/2uXLlCh4+fIiEhARcunRpUeZBRMHFt/OIiIiIVOCdKCIiIiIVGKKIiIiIVGCIIiIiIlKBIYqIiIhIBYYoIiIiIhUYooiIiIhUYIgiIiIiUoEhioiIiEgFhigiIiIiFRiiiIiIiFRgiCIiIiJSgSGKiIiISIV/A8xKQZRw6j3/AAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t = linspace(0, 20π*5, 1000)\n", - "# find solution by the brute-force eᴬᵗ [0,1]:\n", - "plot(t, [(expm(A*t)*[0,1])[1] for t in t], \"r-\")\n", - "plot(t, [r*cos(0.1*t + ϕ) for t in t], \"k--\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "title(\"motion of a frictionless mass on a spring\")\n", - "grid()\n", - "legend([\"numerical\", \"analytical\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, they fall right on top of one another!\n", - "\n", - "### Key points:\n", - "\n", - "* **A purely imaginary λ corresponds to an *oscillating* ODE solution**, and $\\omega = \\operatorname{Im} \\lambda$ is the **angular frequency**.\n", - "\n", - "* The amplitude and phase of the oscillations are determined by the **initial conditions**.\n", - "\n", - "* For **real A**, the eigensolutions come in **complex-conjugate pairs**, so that **real initial conditions lead to real solutions**.\n", - "\n", - "Given an angular frequency $\\omega$, corresponding to time dependence $e^{i\\omega t}$ or $\\cos(\\omega t + \\phi)$, the **period** of the oscillation (the time to repeat) is $2\\pi /\\omega$:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "62.83185307179586" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2π/0.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, it repeats every 62 time units, which matches the graph above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Mass and spring with damping\n", - "\n", - "We can also add some *damping* or *friction* to the problem. For example, a [simple model of air resistance](https://en.wikipedia.org/wiki/Stokes%27_law) is a drag force that is *proportional to velocity* and *opposite in sign*.\n", - "\n", - "This changes our equations to:\n", - "\n", - "$$\n", - "\\frac{d x}{dt} = v \\\\\n", - "\\frac{d v}{dt} = -\\frac{k}{m}x - d v\n", - "$$\n", - "\n", - "where $d$ is the drag coefficient, which can again be written in matrix form as $d\\vec{x}/dt = Bx$:\n", - "\n", - "$$\n", - "\\frac{d}{dt} \\underbrace{\\begin{pmatrix} x \\\\ v \\end{pmatrix}}_\\vec{x} =\n", - "\\underbrace{\\begin{pmatrix} 0 & 1 \\\\ -k/m & -d \\end{pmatrix}}_B \\vec{x}\n", - "$$\n", - "\n", - "Let's try it out for a drag coefficent $d = 0.02$:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.0 1.0 \n", - " -0.01 -0.02" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = [ 0 1 \n", - " -0.01 -0.02 ]" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHGCAYAAACSMkoBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYU2f7B/BvEkIQGcpSRIZi3auKe9firrPuvmrV2qqtr6PDtirOWre2Wq27ffuzWiuOqlVRcS9UcI86EBwICIKKQgjP74+nB4xAICHJOSfcn+vyOuGYnHPzEODmfpaCMcZACCGEEGKjlGIHQAghhBBiSZTsEEIIIcSmUbJDCCGEEJtGyQ4hhBBCbBolO4QQQgixaZTsEEIIIcSmUbJDCCGEEJtGyQ4hhBBCbBolO4QQQgixaZTsEJuWlpaGqVOn4tChQ7n+b/369VAoFIiOjrZ6XMaYNGkS/Pz8YGdnh1KlSokdDpGJ6OhoKBQKrF+/XuxQLMLWPz9iXnZiB0CIJaWlpWHatGkAgNatW+v9X+fOnXHy5El4e3uLEFnhbN++HbNmzcK3336Ljh07QqPRiB0SkQlvb2+cPHkSgYGBYodCiOgo2SHFlqenJzw9PcUOw6DLly8DAMaMGQMvLy+RoyFyoNPpkJmZCY1Gg8aNG4sdTrapU6di/fr1Vq+kpqWlwdHR0ar3JNJD3VhEFFOnToVCocDFixfRu3dvuLq6ws3NDePHj0dmZiZu3LiBDh06wNnZGQEBAZg7d26ua8TExOCDDz6Al5cXNBoNqlWrhgULFiArKwsAL3MLycy0adOgUCigUCgwZMgQAPl3Y61duxZ16tSBg4MD3Nzc0KNHD1y7dk3vOUOGDIGTkxNu3bqFTp06wcnJCb6+vpgwYQLS09ML/PyzsrIwd+5cVK1aFRqNBl5eXhg0aBDu37+f/ZyAgABMmjQJAFCmTBkoFApMnTo132uePXsW/fr1Q0BAAEqUKIGAgAD0798f9+7dKzAeoUtg3rx5mDNnTvY1WrdujZs3b0Kr1WLixIkoV64cXF1d0aNHD8THx+tdY9OmTWjXrh28vb1RokQJVKtWDRMnTsSLFy/0nnfnzh3069cP5cqVg0ajQZkyZdC2bVtERUVlP+fgwYNo3bo13N3dUaJECfj5+aFXr15IS0srcrsCvMpXs2ZNREREoEWLFnB0dETFihXx/fffZ79/DFm2bBlatmwJLy8vlCxZErVq1cLcuXOh1WoLfG1CQgJGjBgBX19faDQaeHp6olmzZti/f3+u+I4ePYrGjRujRIkS8PHxweTJk6HT6bKfJ3zd5s6di5kzZ6JChQrQaDQIDw/Ps5tH+L67cuUK+vfvD1dXV5QpUwZDhw5FSkqKXpxPnz7FsGHD4ObmBicnJ3Tu3Bl37twp8H1oCQ8fPkSfPn3g7OwMV1dX9O3bF3FxcbmeJ3xfXrp0Ce3atYOzszPatm0LAAgLC0O3bt1Qvnx5ODg4oFKlSvj444+RmJiY6zrbt29H7dq1odFoULFiRSxZsiS77Yg8UWWHiKpPnz744IMP8PHHHyMsLCz7F8b+/fsxatQofP7559iwYQO++uorVKpUCT179gTAf2E0bdoUGRkZmDFjBgICArBz5058/vnnuH37Nn766Sd4e3tjz5496NChA4YNG4bhw4cDgMFqzuzZs/HNN9+gf//+mD17Np48eYKpU6eiSZMmiIiIwFtvvZX9XK1Wi65du2LYsGGYMGECjhw5ghkzZsDV1RVTpkwx+HmPHDkSK1euxKeffoouXbogOjoakydPxqFDh3D+/Hl4eHhg69atWLZsGdasWYM9e/bA1dUV5cuXz/ea0dHRqFKlCvr16wc3Nzc8evQIy5cvR4MGDXD16lV4eHgU+PVYtmwZateujWXLluHp06eYMGEC3nvvPTRq1AhqtRpr167FvXv38Pnnn2P48OHYsWNH9mv/+ecfdOrUCWPHjkXJkiVx/fp1zJkzB2fOnMHBgwezn9epUyfodDrMnTsXfn5+SExMxIkTJ/D06dPsz6Nz585o0aIF1q5di1KlSuHBgwfYs2cPMjIyDP6VXph2FcTFxWHgwIGYMGECQkJCsHXrVnz99dcoV64cBg0aZLCdbt++jQEDBqBChQqwt7fHhQsXMGvWLFy/fh1r1641+Nr//Oc/OH/+PGbNmoXKlSvj6dOnOH/+PJ48eaL3vLi4OPTr1w8TJ07E9OnTsWvXLsycORPJyclYunSp3nN/+OEHVK5cGfPnz4eLi4ve+zQvvXr1Qt++fTFs2DBcunQJX3/9NQBkx56VlYX33nsPZ8+exdSpU1GvXj2cPHkSHTp0MHhdS3j58iXeffddPHz4ELNnz0blypWxa9cu9O3bN8/nZ2RkoGvXrvj4448xceJEZGZmAuBfsyZNmmD48OFwdXVFdHQ0Fi5ciObNm+PSpUtQq9UAgD179qBnz55o2bIlNm3ahMzMTMyfPx+PHz+22udMLIARIoKQkBAGgC1YsEDvfN26dRkAFhoamn1Oq9UyT09P1rNnz+xzEydOZADY6dOn9V4/cuRIplAo2I0bNxhjjCUkJDAALCQkJFcM69atYwDY3bt3GWOMJScnsxIlSrBOnTrpPS8mJoZpNBo2YMCA7HODBw9mANgff/yh99xOnTqxKlWqGPzcr127xgCwUaNG6Z0/ffo0A8C++eab7HNCOyUkJBi8Zl4yMzPZ8+fPWcmSJdmSJUsMPvfu3bsMAKtTpw7T6XTZ5xcvXswAsK5du+o9f+zYsQwAS0lJyfN6WVlZTKvVssOHDzMA7MKFC4wxxhITExkAtnjx4nxj+fPPPxkAFhUVVdhPlTFmXLu2atUqz/dP9erVWfv27Y26r06nY1qtlv36669MpVKxpKQkg893cnJiY8eONfgcIb7t27frnf/oo4+YUqlk9+7dY4zlfN0CAwNZRkaG3nOF/1u3bl32OeH9NHfuXL3njho1ijk4OLCsrCzGGGO7du1iANjy5cv1njd79ux8v5/epNVq9f5NnjyZ+fv75zov3DM/y5cvz7ct3vz8hO/LtWvXGrym8P68d+9erms3aNCA+fr6svT09Oxzz549Y+7u7ox+ZcoXdWMRUXXp0kXv42rVqkGhUKBjx47Z5+zs7FCpUiW97piDBw+ievXqaNiwod7rhwwZAsaYXiWhsE6ePImXL19md3MJfH198c477+DAgQN65xUKBd577z29c7Vr1y6w2yg8PDw71tc1bNgQ1apVy3Wfwnr+/Hl2BczOzg52dnZwcnLCixcvcnXD5adTp05QKnN+LFSrVg0AH8z9OuF8TExM9rk7d+5gwIABKFu2LFQqFdRqNVq1agUA2fd3c3NDYGAg5s2bh4ULFyIyMjJXt1HdunVhb2+PESNG4JdffsGdO3cKFbux7Vq2bNlc75/CfP0AIDIyEl27doW7u3v25zpo0CDodDrcvHnT4GsbNmyI9evXY+bMmTh16lS+XV/Ozs7o2rWr3rkBAwYgKysLR44c0TvftWvX7MpEYbx53dq1a+PVq1fZXZOHDx8GwCuvr+vfv3+h76FWq/X+zZgxA/fu3ct1/pdffjF4nfDw8HzbIj+9evXKdS4+Ph6ffPIJfH19YWdnB7VaDX9/fwA5788XL17g7Nmz6N69O+zt7bNf6+TklOt7ncgLJTtEVG5ubnof29vbw9HREQ4ODrnOv3r1KvvjJ0+e5DmLqly5ctn/byzhNfld981r5hWnRqPRi9Mc9ymsAQMGYOnSpRg+fDj27t2LM2fOICIiAp6ennj58mWhrpHX18PQeeFzff78OVq0aIHTp09j5syZOHToECIiIhAaGgoA2fdXKBQ4cOAA2rdvj7lz56JevXrw9PTEmDFj8OzZMwBAYGAg9u/fDy8vL4wePRqBgYEIDAzEkiVLDMZubLu6u7vnep5GoymwrWJiYtCiRQs8ePAAS5YswdGjRxEREYFly5bpfa752bRpEwYPHozVq1ejSZMmcHNzw6BBg3KNQSlTpkyu15YtWxZA7ve3sTMK3/zchVl+QuxPnjyBnZ1drq97XjHlJyIiQu/fRx99BG9v71znC0oinjx5YrAt3uTo6AgXFxe9c1lZWWjXrh1CQ0Px5Zdf4sCBAzhz5gxOnTql93knJyeDMZbn/Yz53In00JgdIkvu7u549OhRrvMPHz4EgEKNT8nrmgDyva4p1yzoPm+OwTH1PikpKdi5cydCQkIwceLE7PPp6elISkoqWsCFcPDgQTx8+BCHDh3KruYAyB6H8zp/f3+sWbMGAHDz5k388ccfmDp1KjIyMrBixQoAQIsWLdCiRQvodDqcPXsWP/74I8aOHYsyZcqgX79+ecZgiXbNy7Zt2/DixQuEhoZmVwYA6A2wNsTDwwOLFy/G4sWLERMTgx07dmDixImIj4/Hnj17sp+X1xgRISF6M1kx98BZd3d3ZGZmIikpSS/hyWtQcH6CgoL0Pt65cyfs7e1znS9MLGfOnMl1Pr9Y8mqLy5cv48KFC1i/fj0GDx6cff7WrVt6zytdujQUCoXBtifyRJUdIktt27bF1atXcf78eb3zv/76KxQKBdq0aQMg91+shjRp0gQlSpTAb7/9pnf+/v37OHjwYPasjqJ65513ACDXfSIiInDt2jWT7qNQKMAYy7UOz+rVq/Vm71iK8Avmzfv//PPPBl9XuXJlTJo0CbVq1cr1tQQAlUqFRo0aZVdN8nqOwBLtmpe8PlfGGFatWmX0tfz8/PDpp58iODg41+f27NkzvQHgALBhwwYolUq0bNnShMgLT0hYN23apHd+48aNFr1vXtq0aZNvWxRWYd+fJUuWRFBQELZt24aMjIzs88+fP8fOnTuNDZ1ICFV2iCyNGzcOv/76Kzp37ozp06fD398fu3btwk8//YSRI0eicuXKAPi4B39/f2zfvh1t27aFm5sbPDw8EBAQkOuapUqVwuTJk/HNN99g0KBB6N+/P548eYJp06bBwcEBISEhZom9SpUqGDFiBH788UcolUp07Ngxe9aQr68vxo0bZ/Q1XVxc0LJlS8ybNy/78zt8+DDWrFljlVWXmzZtitKlS+OTTz5BSEgI1Go1/u///g8XLlzQe97Fixfx6aefonfv3njrrbdgb2+PgwcP4uLFi9kVqRUrVuDgwYPo3Lkz/Pz88OrVq+xZQu+++26+MViiXfMSHBwMe3t79O/fH19++SVevXqF5cuXIzk5ucDXpqSkoE2bNhgwYACqVq0KZ2dnREREZM8Aep27uztGjhyJmJgYVK5cGbt378aqVaswcuRI+Pn5meVzyU+HDh3QrFkzTJgwAampqahfvz5OnjyJX3/9FQD0xnVZ2qBBg7Bo0SIMGjQIs2bNwltvvYXdu3dj7969hb5G1apVERgYiIkTJ4IxBjc3N/z1118ICwvL9dzp06ejc+fOaN++Pf773/9Cp9Nh3rx5cHJyskqVlFiIqMOjSbGV3yyjwYMHs5IlS+Z6fqtWrViNGjX0zt27d48NGDCAubu7M7VazapUqcLmzZunN5uIMcb279/P3n77babRaBgANnjwYMZY7tlYgtWrV7PatWsze3t75urqyrp168auXLlSqDiFz6sgOp2OzZkzh1WuXJmp1Wrm4eHBPvjgAxYbG5vn9QozG+v+/fusV69erHTp0szZ2Zl16NCBXb58mfn7+2d/zvkRZu7MmzdP73x4eDgDwDZv3qx3Xmi7iIiI7HMnTpxgTZo0YY6OjszT05MNHz6cnT9/Xm/GzOPHj9mQIUNY1apVWcmSJZmTkxOrXbs2W7RoEcvMzGSMMXby5EnWo0cP5u/vzzQaDXN3d2etWrViO3bsKLANCtuueb2fGONfV39//wLv89dff7E6deowBwcH5uPjw7744gv2999/MwAsPDw839e9evWKffLJJ6x27drMxcWFlShRglWpUoWFhISwFy9e5Irv0KFDLCgoiGk0Gubt7c2++eYbptVqs5+X39ft9f/LazbWm++nvL4XkpKS2IcffshKlSrFHB0dWXBwMDt16hQDUODsvryEhIQUqm3zIry3nZycmLOzM+vVqxc7ceJEnrOx8vq+ZIyxq1evsuDgYObs7MxKly7NevfuzWJiYvKcXbZ161ZWq1YtZm9vz/z8/Nj333/PxowZw0qXLm1S/ER8CsYYs3qGRQghJF+tW7dGYmJi9graUrFhwwYMHDgQx48fR9OmTcUOx2q0Wi3q1q0LHx8f7Nu3T+xwiAmoG4sQQkguv//+Ox48eIBatWpBqVTi1KlTmDdvHlq2bGnzic6wYcMQHBwMb29vxMXFYcWKFbh27VqBMwKJdFGyQwghJBdnZ2ds3LgRM2fOxIsXL+Dt7Y0hQ4Zg5syZYodmcc+ePcPnn3+OhIQEqNVq1KtXD7t37zY4ZoxIG3VjEUIIIcSm0dRzQgghhNg0SnYIIYQQYtMo2SGEEEKITSuWA5SzsrLw8OFDODs7m32ZdUIIIYRYBmMMz549Q7ly5Yxa3LJYJjsPHz6Er6+v2GEQQgghxASxsbG59sAzpFgmO87OzgB4Y725O25RaLVa7Nu3D+3atYNarTbbdW0FtY9h1D6GUfvkj9rGMGofw+TUPqmpqfD19c3+PV5YxTLZEbquXFxczJ7sODo6wsXFRfJvGDFQ+xhG7WMYtU/+qG0Mo/YxTI7tY+wQFBqgTAghhBCbRskOIYQQQmwaJTuEEEIIsWmU7BBCCCHEplGyQwghhBCbRskOIYQQQmwaJTuEEEIIsWmU7BBCCCHEplGyQwghhBCbRskOIYQQQmwaJTuEEEIIsWmU7BBCCCHEplGyI3WMAQkJQFaW2JEQQgghskTJjpRFRwN16wJeXkC1asDFi2JHRAghhMgOJTtS9eoV0LNnToJz8ybQuTPw/Lm4cRFCCCEyQ8mOVK1YAURGAh4e/FihAnD/PjBzptiREUIIIbJCyY4UabXAwoX88cyZvCtr8WL+8bJlwLNn4sVGCCGEyAwlO1K0Zw8QG8vH6gwezM+99x5QpQrvxvr9d3HjI4QQQmSEkh0p+vNPfuzbF3Bw4I8VCmDECP74l1/EiYsQQgiRIUp2pCYjA9i+nT/u3Vv///r04ceTJ4H4eOvGRQghhMgUJTtSc+oUkJLCu7CaNdP/v/LlgXr1+No7O3eKEx8hhBAiM5TsSM3Bg/z4zjuAMo8vT9eu/Lh7t/ViIoQQQmSMkh2peT3ZyUvbtvx45Aiv8BBCCCHEIEp2pOTlS96NBQBt2uT9nAYN+KDlhATg2jXrxUYIIYTIlOySnczMTEyaNAkVKlRAiRIlULFiRUyfPh1ZtrB3VFQUX2PHywsIDMz7ORoN0KQJf3z4sPViI4QQQmRKdsnOnDlzsGLFCixduhTXrl3D3LlzMW/ePPz4449ih1Z0Z87wY8OGfKp5flq04EehCkQIIYSQfNmJHYCxTp48iW7duqFz584AgICAAPz+++84e/asyJGZQUQEPzZsaPh5DRrwoy18zoQQQoiFyS7Zad68OVasWIGbN2+icuXKuHDhAo4dO4bFwnYKeUhPT0d6enr2x6mpqQAArVYLrVZrttiEa5l6TbvTp6EAkFmvHpiha9SuDTUAdv06MpOTAScnk+5nbUVtH1tH7WMYtU/+qG0Mo/YxTE7tY2qMCsbkNaWHMYZvvvkGc+bMgUqlgk6nw6xZs/D111/n+5qpU6di2rRpuc5v2LABjo6Olgy30FSvXqFz//5QMIa/169HRqlSBp/fbuhQlEhKwtHvvkNS9epWipIQQggRT1paGgYMGICUlBS4uLgU+nWyS3Y2btyIL774AvPmzUONGjUQFRWFsWPHYuHChRgs7CP1hrwqO76+vkhMTDSqsQqi1WoRFhaG4OBgqNVqo16rOHcOdk2agHl5IfP+/QKfr+rRA8pdu6BbsABZn31mashWVZT2KQ6ofQyj9skftY1h1D6Gyal9UlNT4eHhYXSyI7turC+++AITJ05Ev379AAC1atXCvXv3MHv27HyTHY1GA41Gk+u8Wq22yBfWpOtevw4AUNSsWbjXNmgA7NoFVVQUVBJ/c77JUu1uK6h9DKP2yR+1jWHUPobJoX1MjU92s7HS0tKgfGNlYZVKJf+p55cv82PNmoV7flAQP9IgZUIIIcQg2VV23nvvPcyaNQt+fn6oUaMGIiMjsXDhQgwdOlTs0IrG2GSnbl1+vHkTSE/n6+8QQgghJBfZJTs//vgjJk+ejFGjRiE+Ph7lypXDxx9/jClTpogdWtEYm+yUKwe4uACpqcA//xT+dYQQQkgxI7tkx9nZGYsXLzY41Vx2kpOBBw/44xo1CvcahYI/9+RJ4MoVSnYIIYSQfMhuzI5NunKFH319ebWmsIQp51evmj8mQgghxEZQsiMFN2/yY7Vqxr2Okh1CCCGkQJTsSMGtW/xYqZJxrxO6vITKECGEEEJyoWRHCoRk5623jHudUNn55x8gI8O8MRFCCCE2gpIdKfjnH340trJTvjzg7AxkZuZcgxBCCCF6KNkRG2Omd2MpFEDVqvyxMO6HEEIIIXoo2RFbfDzw/DlPXCpUMP71QtcXVXYIIYSQPFGyIzahquPnZ9oqyEI1SLgOIYQQQvRQsiM2oSJj7OBkAVV2CCGEEIMo2RGbqeN1BFTZIYQQQgyiZEdst2/zY2Cgaa8XKjv37wNpaeaJiRBCCLEhlOyI7d49fgwIMO31bm5AqVL88Z07ZgmJEEIIsSWU7IhNSHb8/U17vUJB43YIIYQQAyjZEVNGBvDoEX9sarID5IzboWSHEEIIyYWSHTHFxvJFBR0cAE9P068jVHZokDIhhBCSCyU7YoqJ4Uc/P94dZSphMcLo6CKHRAghhNgaSnbEVNTxOgLh9cL1CCGEEJKNkh0xmSvZEWZy3bsHZGUV7VqEEEKIjaFkR0zmSnbKlweUSiA9HXj8uOhxEUIIITaEkh0xmSvZUat5wgPQuB1CCCHkDZTsiMlcyQ6g35VFCCGEkGyU7IglK4tPPQf4bKyiEhImquwQQggheijZEcuTJ3xRQQAoV67o1xMqO5TsEEIIIXoo2RHLgwf86OUF2NsX/XqU7BBCCCF5omRHLA8f8qOPj3muR8kOIYQQkidKdsQiVHbM0YUF6C8syJh5rkkIIYTYAEp2xCIkO+aq7Pj68i0nXr0C4uPNc01CCCHEBlCyIxahG8tclR17+5zEibqyCCGEkGyU7IjF3JUdgMbtEEIIIXmgZEcs5h6gDNCGoIQQQkgeKNkRi7kHKAM5W0YI1yaEEEIIJTuiyMgAEhL4Y3NWdoRk5/59812TEEIIkTlKdsTw6BE/2tsD7u7muy4lO4QQQkgulOyI4fUuLIXCfNelZIcQQgjJRZbJzoMHD/DBBx/A3d0djo6OqFu3Ls6dOyd2WIVn7mnnAiHZefQI0GrNe21CCCFEpuzEDsBYycnJaNasGdq0aYO///4bXl5euH37NkqVKiV2aIVniWnnAN9nS63miU5cHF9okBBCCCnmZJfszJkzB76+vli3bl32uQBhfRm5sMS0cwBQKvk1o6N5VxYlO4QQQoj8kp0dO3agffv26N27Nw4fPgwfHx+MGjUKH330Ub6vSU9PR3p6evbHqampAACtVgutGbt7hGsVdE1VbCyUAHRlyiDLzN1NKh8fKKOjkRkdDRYUZNZrF1Vh26e4ovYxjNonf9Q2hlH7GCan9jE1RgVj8to10sHBAQAwfvx49O7dG2fOnMHYsWPx888/Y9CgQXm+ZurUqZg2bVqu8xs2bICjo6NF481L00mT4Hn5Ms6OG4cHrVqZ9dr1FyxA+aNHcWnoUNzp2tWs1yaEEELElJaWhgEDBiAlJQUuLi6Ffp3skh17e3sEBQXhxIkT2efGjBmDiIgInDx5Ms/X5FXZ8fX1RWJiolGNVRCtVouwsDAEBwdDrVbn+zy7WrWguHEDmfv2gbVubbb7A4By4kSoFi6E7r//Rda8eWa9dlEVtn2KK2ofw6h98kdtYxi1j2Fyap/U1FR4eHgYnezIrhvL29sb1atX1ztXrVo1bNmyJd/XaDQaaDSaXOfVarVFvrAFXvffXcntfHz4gGJz8vMDAKgePoRKom9aS7W7raD2MYzaJ3/UNoZR+xgmh/YxNT7ZTT1v1qwZbty4oXfu5s2b8Bf2hZK69HQgOZk/LlPG/NentXYIIYQQPbJLdsaNG4dTp07hu+++w61bt7BhwwasXLkSo0ePFju0wvm3qgM7O6B0afNfn5IdQgghRI/skp0GDRpg69at+P3331GzZk3MmDEDixcvxsCBA8UOrXAeP+ZHLy8+VdzchOnmDx8COp35r08IIYTIjOzG7ABAly5d0KVLF7HDMI2Q7FiiC0u4rkrFE53Hj82/SjMhhBAiM7Kr7MiekOyULWuZ66tUOQlObKxl7kEIIYTICCU71mbpyg6Qk+wIu6sTQgghxRglO9ZmjWTH25sfKdkhhBBCKNmxOmsmO8IeXIQQQkgxRsmOtVE3FiGEEGJVlOxYG3VjEUIIIVZFyY61xcXxI3VjEUIIIVZByY41abVAUhJ/TN1YhBBCiFVQsmNNwlYRKhXg7m65+wiVnfh4IDPTcvchhBBCZICSHWuy9FYRAk9PnlAxlnNPQgghpJiiZMearDE4GeCJlLBCM3VlEUIIKeYo2bEmayU7AA1SJoQQQv5FyY41WTPZoUHKhBBCCABKdqyLKjuEEEKI1VGyY03CbCwvL8vfiyo7hBBCCABKdqwrMZEfPT0tfy9aRZkQQggBQMmOdQnJjoeH5e9F3ViEEEIIAEp2rCshgR+tUdmhbixCCCEEACU71iVGZefxY0Cns/z9CCGEEImiZMda0tL4P8A6lR1hleasrJyB0YQQQkgxRMmOtQhVHXt7wMnJ8vdTqXKmuNO4HUIIIcUYJTvW8vp4HYXCOvekGVmEEEIIJTtWY83xOgIapEwIIYRQsmM1QmXHmskOTT83zsuXNL6JEEJsECU71mLNBQUFwpgdYZsKkrenT4EPPwScnXmbvf02cPas2FERQggxE0p2rEWMyk7ZsvxIyU7+XrwA2rcH1q/PmaIfFQU0bw4cPy5qaIQQQsyDkh1rocqONI09qlZyAAAgAElEQVQfD5w5A7i5AUeP8rbq0AFITwd69Mj5uhFCCJEtSnasRYzKjpDsxMVZ755ycvw4sHIlf/znn7ya4+UFbNkC1KzJv2ZffCFujIQQQoqMkh1rEaOyQ91Yhk2Zwo9DhwJt2uScd3QEVq/mj3/5BbhyxfqxEUIIMRtKdqxFjKnnQmXn+XM+NoXkOHUKOHgQUKuBkJDc/9+oEfD++wBjwPTp1o+PEEKI2VCyYy3W3ARU4OwMODjwx1Td0bdqFT/27w/4+eX9nEmT+HHLFlqriBBCZIySHWvQ6YCkJP7YmpUdhYK6svLy7BmwaRN/PHx4/s+rUwdo2pR//dautU5shBBCzI6SHWtITuYbcgKAu7t1702DlHPbvJl36731Fh+UbMiIEfy4alXO15AQQoisULJjDcJ4nVKl+BgRa6LKTm4bNvDjhx8WvE9Znz7863bvHnDkiOVjI4QQYnayT3Zmz54NhUKBsWPHih1K/sSYdi6gyo6+p0+Bw4f54/ffL/j5JUoA3bvzx1u2WC4uQgghFiPrZCciIgIrV65E7dq1xQ7FMDGmnQtoYUF9e/YAmZlAtWq8G6swhKQoNJS6sgghRIZkm+w8f/4cAwcOxKpVq1C6dGmxwzFMzMoOdWPp27GDH7t2Lfxr3n0XcHHhG6qeOmWZuAghhFiMndgBmGr06NHo3Lkz3n33XcycOdPgc9PT05Genp79cWpqKgBAq9VCq9WaLSbhWm9eU/n4MVQAstzdoTPj/QpD4e4OOwBZjx5Z/d5vyq99rCYzE3Z//w0FgMxOncAKG4dSCVWnTlBu3Ajdli3IatDAIuGJ3j4SR+2TP2obw6h9DJNT+5gaoyyTnY0bN+L8+fOIiIgo1PNnz56NadOm5Tq/b98+ODo6mjs8hIWF6X1cMyICgQBup6Tg6u7dZr+fIW537qAFgJd372K/le+dnzfbx1pK3byJVk+fQuvoiN2JiYAR7eFTrhyCADzfsgWHWra0XJAQr33kgtonf9Q2hlH7GCaH9klLSzPpdQrGGDNzLBYVGxuLoKAg7Nu3D3Xq1AEAtG7dGnXr1sXixYvzfE1elR1fX18kJibCxcXFbLFptVqEhYUhODgY6tdmXamGDIFywwboZs9G1oQJZrtfody6BXX16mAlSyIzOdm6935Dfu1jLcp586D69ltkvfcedMYONk5MhJ2PDxSMQRsdDZQrZ/b4xG4fqaP2yR+1jWHUPobJqX1SU1Ph4eGBlJQUo35/y66yc+7cOcTHx6N+/frZ53Q6HY4cOYKlS5ciPT0dKpVK7zUajQYajSbXtdRqtUW+sLmu++QJAEBVtixU1n4jlS8PAFC8eAF1ejrg5GTd++fBUu1eoH+njivbtoXS2Pt7ewNBQUBEBNTh4cCQIeaP71+itY9MUPvkj9rGMGofw+TQPqbGJ7sBym3btsWlS5cQFRWV/S8oKAgDBw5EVFRUrkRHEsTYF0vg5MQ3tgSK9yBlrRY4dow/fn3TT2O0b8+Pe/eaJyZCCCFWIbvKjrOzM2rWrKl3rmTJknB3d891XjLETHYUCj79/O5dvtZOYKD1Y5CCs2f5qsnu7oCp75P27YGZM4EDB/gGoQUtSEgIIUQSZFfZkSVhXyxrbxUhoLV2cqo6LVsCShPf9g0b8o1VExKAGzfMFxshhBCLkl1lJy+HDh0SO4T8abV840kAcHMTJwZaawc4c4YfGzc2/Rr29vz1hw7x8T9Vq5olNEIIIZZFlR1LE6o6CgXfY0kMtGUEcPo0PzZsWLTrCNPOjx4t2nUIIYRYDSU7liYkO6VKAWINni7u3ViPHgGxsbz7KiioaNdq0YIfaVNQQgiRDUp2LE1IdsTqwgJyurGKa2VHqOrUqFH0qfdNmgB2dkBMDN8JnRBCiORRsmNpUkh2intlx1xdWABQsiRQrx5/TF1ZhBAiC5TsWNq/CwqKNhMLoGRHGJzcqJF5rkfjdgghRFYo2bE0KVR2Xu/GktfuIEWn0wHCHmrmSnaaNeNH2gGdEEJkgZIdS5NCsiNUdl6+BJ4/Fy8OMdy8yaf+OzoC1aub55pCd9jly3yhQkIIIZJGyY6lSaEby8mJjzUBit8g5agofqxdmw8sNody5QAfHyArCzh/3jzXJIQQYjGU7FiaFCo7QE51Jz5e3Dis7cIFfqxTx7zXFao7wnggQgghkkXJjqVJJdnx8uLH4pbsXLzIj5TsEEJIsUXJjqUJ3ViU7IiDKjuEEFLsUbJjaWJvAioojslOYiLw8CF/XKuWea9dvz7fAiQ6uni1KSGEyBAlO5ZG3VjiEbqwKlYEnJ3Ne21X15yNQKm6QwghkkbJjiVJYcdzQXFMdizVhSUQurKEdXwIIYRIEiU7liSFHc8FQrJTnFZRtnSyI2wbIUxvJ4QQIkmU7FiSFHY8FxTnyk7t2pa5/ttv82NkpGWuTwghxCyKtMqaVqtFXFwc0tLS4OnpCTexu2qkRirjdYDit85OZiZw9Sp/bKlkR6gYxcbyWXdiD0InhBCSJ6MrO8+fP8fPP/+M1q1bw9XVFQEBAahevTo8PT3h7++Pjz76CBE0hoGTwurJAqGy8+QJTwRs3Z07QEYGUKIEUKGCZe7h4gIEBvLH1JVFCCGSZVSys2jRIgQEBGDVqlV45513EBoaiqioKNy4cQMnT55ESEgIMjMzERwcjA4dOuCff/6xVNzyIKXKjrs7HzsE8CnZtu7aNX6sWhVQWrC3tm5dfqSuLEIIkSyjurFOnDiB8PBw1MpnzZKGDRti6NChWL58OdauXYvDhw/jrbfeMkugsiSlZEelAjw8gIQE3pUl7IRuq4Rkp1o1y97n7beBLVuoskMIIRJmVLKzefPm7MdNmjTB3r174eLikut5Dg4OGDVqVNGjkzspdWMBvCtLSHZsnbWSHarsEEKI5Jlc3z99+jRevXqV63xqaiq++OKLIgVlM6RU2QGK14wsa1Z2AOD6dSAtzbL3IoQQYhKjk52ePXvi+++/h0KhQHwevzRfvHiBhQsXmiU42aNkRxyM5SQ71atb9l7e3oCnJ5CVBVy+bNl7EUIIMYnRU8/9/f2xc+dOMMZQp04duLu7o06dOqhTpw5q166Nixcvwtvb2xKxyg8lO+K4fx94/hywswMqVbLsvRQKXt3Zt493ZQmrKhNCCJEMo5OdRYsWAQA0Gg2OHTuGhw8fIjIyElFRUdi6dSuysrIwd+5cswcqS1IcswPY/irKQlWnUiVArbb8/YRkhwYpE0KIJJm8qOCLFy9gZ8df3q1bN7MFZFOosiMOa3VhCYRBypTsEEKIJJk8QFlIdIgBUkt2issqysLKyZYenCwQlmK4fJmPFyKEECIpRiU7MTExRl38wYMHRj3fpmRk5Ox4LrVuLFtPdq5f50drJTuVK/PusufPASO/R4qdCxeAceOAdu2A7t2BRYuA5GSxoyKE2Dijkp0GDRrgo48+wpkzZ/J9TkpKClatWoWaNWsiNDS0yAHKlvADXKEAXF3FjUVQXJKdmzf5sUoV69xPreYrNQPApUvWuafcaLU8yXn7bWDxYiAsDNi+HRg/nieL27eLHSEhxIYZ1Rd17do1fPfdd+jQoQPUajWCgoJQrlw5ODg4IDk5GVevXsWVK1cQFBSEefPmoWPHjpaKW/qktOO5QEh20tKAFy+AkiXFjccSnj0D4uL4Y0vPxHpdzZo80bl8GejSxXr3lYPMTKBPH2DbNv5xr168jZKSgNWr+RirHj2A5cuBjz8WN1ZCiE0yqrLj5uaG+fPn4+HDh1i+fDkqV66MxMTE7D2wBg4ciHPnzuH48ePFO9EBpDcTCwCcnAAHB/7YVqs7t27xo4cHTzStRRi3Q5Wd3MaM4YmORgNs3Qr8+ScwZAiv6kRFAaNG8bFOo0ZRhYcQYhEmjTJ2cHBAcHAwevbsae54bIfUBicDvEvNy4uPK4mPt9xu4GISNp+19p5sNWvyIy0sqG/LFl6xUSiADRv4OJ3X2dsDS5fyMW6rVwMDB/JxPcJu8oQQYgYmz8Zq0aIF4oTuApKbFJMdwPbH7Yid7Fy/zsenEL4P2yef8McTJwL5/XGkUPCEqFUr3r06eDCg01kvTkKIzTM52QkKCkKjRo1wXZj58q/IyEh06tSpyIHJnpDsSKkbC6Bkx1L8/Xk3YUZGTgzFXUgIkJjIu/hCQgw/184O+OUXwNkZOH4cWLHCOjESQooFk5Od1atXY+jQoWjevDmOHTuGmzdvok+fPggKCoJGozFnjHpmz56NBg0awNnZGV5eXujevTtu3LhhsfuZTBizI9XKjq2uoixWsqNUAjVq8MfUlQXcuAGsXMkfL13Kx+sUxN8f+P57/njKlJw/GAghpIhMTnYAICQkBBMmTEBwcDBq1qyJly9fIiIiAlu3bjVXfLkcPnwYo0ePxqlTpxAWFobMzEy0a9cOL168sNg9TSL8oC5dWtw43mTrlR1hgLK1kx2ABim/bsoU3hX13ntAy5aFf92IEbxLMCkJmDHDcvERQooVk5OdR48eYcyYMZgxYwaqV68OtVqNfv36oV69euaML5c9e/ZgyJAhqFGjBurUqYN169YhJiYG586ds+h9jfb0KT9KLdmx5VWUU1NzPi8xkh0apMzdvs1nXAHArFnGvdbODpg/nz9esSJnGQFCCCkCk/d8qFixIqpWrYrNmzejc+fO2Lt3L/r06YP79+/jq6++MmeMBqWkpADg0+Lzk56ejvT09OyPU1NTAQBarRZaMw4mFa6l1WqhSkqCEkCmszOYhAasKtzcYAcg6/Fj6Kwc1+vtYxHXrkENgJUpg0wHB6sPFFZUqwY7AOzyZWSacG+Lt4+VKOfPhyorC1kdOkBXtarxX4c2baBq2BDKM2egmzcPWf92bdlK+1gCtY1h1D6Gyal9TI3R5GRn3bp16NevX/bH7du3R3h4OLp06YJ79+7hp59+MvXShcYYw/jx49G8eXPUFP6qzsPs2bMxbdq0XOf37dsHR0dHs8cVFhaGlnfvojSAc3fuIG73brPfw1Se0dFoCuDZ7ds4JFJcYWFhFrmuz9GjCAKQ5OaGYyJ8bvZPn6IjANy+jb2hodAJaxoZyVLtYw3qZ8/Qfu1aAMDJZs2QaOLXoUxwMBqfOQP2008Iq1sXWheX7P+Tc/tYGrWNYdQ+hsmhfdLS0kx6nYIx8+5cGB0djU6dOuGqsBmjBY0ePRq7du3CsWPHUL58+Xyfl1dlx9fXF4mJiXB57YdoUWm1WoSFhSE4OBgl6tSB4tYtZB48CNa8udnuUWRRUVA3bMirH7GxVr316+2jVqvNfn3lrFlQTZuGrMGDoVu1yuzXLww7Hx8oEhKQefIkWP36Rr3W0u1jDcply6AaNw6sZk1knjvHp5WbgjHYNWwIxYUL0E2ejKzJk22ifSyF2sYwah/D5NQ+qamp8PDwQEpKilG/v82+dXlAQACOHz9u7svm8tlnn2HHjh04cuSIwUQHADQaTZ4zxNRqtUW+sGq1Gop/x+zYeXryvZOkwscHAKBISIBapeKziKzMUu2OO3cAAMoqVaAUq81r1QIOHoTdtWtA48YmXcJi7WNpjAHr1wMAFCNGQG1vX7TrffUVMGAAVKtXQzV5cvb3kWzbxwqobQyj9jFMDu1janwW+U1X2oKDchlj+PTTTxEaGoqDBw+ighRXAWYsZyNQa25ZUBgeHvyYlWV7U3uFaefW3BPrTcL0cytUNiXn/Hm++rFGw1dCLqpevfiA+keP+DYThBBiIuv/WV9Eo0ePxm+//YYNGzbA2dkZcXFxiIuLw8uXL8UOLceLFzkrwEptNpa9fU5MtjYjS6w1dl5XvTo/FsdkZ80afuzRwzzrS9nb86noALBsWdGvRwgptmSX7CxfvhwpKSlo3bo1vL29s/9t2rRJ7NByCFUdtRqwwADoIrPFtXaePs1ZyFHMyk5xTXYyMoDff+ePhw0z33U//hhQqYAjR2hKPyHEZLJLdhhjef4bMmSI2KHlEJKd0qVNH6BpSba4ivLdu/zo5cW3bRBLtWr8eO8er/AVF/v384SzbFmgTRvzXdfHB+jaFQCg/PVX812XEFKsFGmA8oEDB3DgwAHEx8cjKytL7//W/jv9tDhSSHVBQYEtVnb+HZws+k7unp58XFRiIt8ywcKLbErGH3/w4/vv80qMOQ0ZAmzdCuXvv0PRooV5r00IKRZMruxMmzYN7dq1w4EDB5CYmIjk5GS9f8WaVAcnC2xxFWWhslOxorhxAMWvKysjA9i2jT/u3dv81+/YEfD0hOLxY3hFRpr/+oQQm2dyZWfFihVYv349/vOf/5gzHtvw76rOVNmxIiHZEbuyA/Bk58gR4No1sSOxjrAw/p739gaaNTP/9dVqYMAAYMkS+IaH8323CCHECCZXdjIyMtC0aVNzxmIzFK+P2ZEiW0x2hG4sKVR2hHE7xaWyI+yD1auX+buwBIMHAwDKnjmTUzklhJBCMjnZGT58ODZs2GDOWGwHJTvWJ7XKDlA8kh2dDti1iz/u2dNy96lbF6xmTai0WiiF5IoQQgrJ5G6sV69eYeXKldi/fz9q166da1XDhQsXFjk42aIBytaVlSXNMTu3bwPp6XyRPVsVEQEkJACuroAlt0VRKJD1wQdQTZwIxR9/AKNGWe5ehBCbY3Kyc/HiRdStWxcAcPmN9S8UUpxubUXUjWVljx7xQbIqFVDA1iFW4e0NuLgAqal8oUMDm9TK3s6d/Nihg8W3Rcnq1YsnO0eOAHFxfJo7IYQUgsnJTnh4uDnjsC1CZUeqs7GEZCc1FXj1CjBxd27JEMbr+PsDdmbf7s14CgWv7pw6xbuyikOy06WL5e/l74+kypXhdvMmEBpK1Z3CYIx3NUrh+4IQEcluUUFZkHo3VqlSOT/8EhLEjcUcpDReRyB0ZdnyjKz79/leWAoFr+xYwUNhUoSwrg/JLTER+P57oEkTXmFUq/mxTRtg0aKcn0+EFCNFSnaePn2KBQsWYPjw4fjoo4+wcOFCpAjTrosxyXdjKRS2tYqylGZiCYrDjCxhYHKTJjkbzFpYdrIjdGWRHDodlHPn8qT/6695ZfH5c/5/z54Bhw4B48cDvr7A/PmAVitquIRYk8nJztmzZxEYGIhFixYhKSkJiYmJWLRoEQIDA3H+/Hlzxig/Uq/sALa1sKCUKzu2nOzs28ePnTpZ7ZYvvbyQ1agR757ZssVq95W8hAQ0mzwZqkmTeILz9tvAzz/zymJ8PHDpEvDjj7xL9flz4IsvgFatgAcPxI6cEKswOdkZN24cunbtiujoaISGhmLr1q24e/cuunTpgrFjx5ozRvmRemUHsK1BylKs7AjJzs2bQGamuLFYgk4HHDzIHwcHW/XWrFcv/mDzZqveV7Lu3YNdq1bwuHoVzNkZWLcOOHeO7xhftSrfwqRmTeDTT3m349q1vCv75EkgKIg2WCXFQpEqO1999RXsXhv4Zmdnhy+//BJnz541S3BypExPhyI9nX9AyY51SLGy4+fHd7zPyMhJxmzJuXO8gunqCtSvb9VbZwnr+Rw5wmfiFWeJiUBwMBS3biHN0xOZx4/zvcTymxGrVAIffgicPcsToLg4oHVroLhX44nNMznZcXFxQUxMTK7zsbGxcHZ2LlJQcmYv7HStVIq7+3ZBbCXZefUqpxQvpWRHqeR/VQO22ZW1fz8/vvOO5VZNzo+fH9C4Me/K2r7duveWkrQ0Pgvun3/A/PxwdPbsnPdcQQIDgcOHgQYNgCdPgPbtgVu3LBsvISIyOdnp27cvhg0bhk2bNiE2Nhb379/Hxo0bMXz4cPTv39+cMcqKWkh2SpXiv/CkylaSnXv3+NHJyWqDZAvNlmdkhYXx47vvinP/7t35sTgnO//9L3D6NFC6NDL/+guvjH3/u7nxpDUoiFeIOnbkR0JskMmLL8yfPx8KhQKDBg1C5r9jEtRqNUaOHInvv//ebAHKjVqY/SDlLizAdpIdoYuoQoX8S/disdUZWS9eACdO8MdWHq+TrVs3YOJE4MABvl6Ui4s4cYhl40Zg9Wr+nv/zT/5eE7pzjeHiAvz1F6+U3boF9OnDE1lrV+sIsTCTSw/29vZYsmQJkpOTERUVhcjISCQlJWHRokXQ2PLy+AWgZMfKpLRNxJtsdUbWsWN8LJKfH1CpkjgxVK0KVKnCp0///bc4MYglNhb4+GP+eNIk3pVYFGXLArt3AyVLAuHhwIwZRY+REIkpcj+Lo6MjatWqhdq1a8PR0dEcMckaJTtW9nplR2qEZOf6db5/l614vQtLzGpat278WJy6shjjK0enpvL1jaZMMc91q1fnU9UBYPr0nJl2hNgIo7qxxo8fjxkzZqBkyZIYP368wecW141A7V8fsyNlryc7jEmvC6iwpFzZqVgRsLfnA0ljYoCAALEjMg/hF2HbtuLG0b07MHcuX9wwI4O3ta3bsoVv0aFWA2vWmHcbiIEDeWVnzRr++MoVPq6HEBtg1HdKZGQktP+uuhkZGZnv84rzRqB2QrIjl8qOVsunEEs93vxER/OjFBMJOzugcmW+jsnVq9KM0VgpKUBUFH/curWooaBRI7445uPHfGaRWOOHrOX5c2DMGP74m29yxoSZ0w8/AMeP82rk2LHAr7+a/x6EiMCoZOf1zT9/+eUXlC9fHso3ZhwxxhAbG2ue6GTIXi7dWA4OOTtzP34s/XjzI8zG8vcXN478VK/Ok51r16y60rDFHD/OK4GVKgHlyokbi1IJvPceH6i7bZvtJzvz5/N1hSpW5NtBWIKjI1+UsFkz4H//A3r35m1MiMyZPGanQoUKSMxjmmJSUhIqSHH8hJXIZswOIP9xOy9e8DVCAGknO4DtDFI+coQfW7YUNw7B61PQGRM3Fkt69AiYN48//v57wJKTQBo3BiZM4I9HjKCNQw1hjH9tjhwBQkP5zLiDB/lYQlsap2cDTE52WD4/WJ4/fw4HBweTA5I7tVy6sQD5JztCVcfVlf+TIlubfn74MD+2aiVuHIK2bfksogcP+KrOtmrKFD72q3Fj4P33LX+/6dP5bLe4OD7ji+RgjG+yOnIkr7KVK8e/H3r14pWwtm35oo1eXvzjzZsBYVV9IhqjR7cJA5MVCgWmTJmiNwNLp9Ph9OnTqFu3rvkilBlZVXaEzUDluvO51LuwAP3KjpwHggO8kiZsBSOVyo6DA9ChAx+4u307XyDP1ly7xvezAoAFC6zzHnJwAJYv59Paly8Hhg4F6tWz/H2ljDFgzx5g8mT9xFqp5OPxypbljxMS+FjCJ094pefPPwF3d77j/GefAcV4hwExGV3ZiYyMRGRkJBhjuHTpUvbHkZGRuH79OurUqYP169dbIFR5yB6zI/XZWID8dz4Xtivx8xM3DkPeeosv0JaaKv99nE6d4pua+vpKK8EUpqBv2yZuHJYycybvEunWDWja1Hr3bdMG6N+f33vkyOLdLRMTw1eY7tSJJzoaDTB4MJ8Zl5oK3L7Nx7MdPcoHdz97xj/++mvAx4cnPt9+y5OiZcv4RrrEqoyu7AiDlD/88EMsWbIELsVt5dICyLIbiyo7lqPR8MG8N27wqbxiD+otitfH60ipQtW5M08oL1/mYyWkuAyBqf75h6+WDJhvTR1jLFjAf6GfOcMHgo8YYf0YxLZhA1/bKCWFL2/w2WfAV1/x3eTzo1bzxLRpU75I48aNvGvw5k2++/z//gesWgXUqmW9z6OYM3nMzrp16yjRyYOskh25V3bkkOwAtjNIWWqDkwVubkCLFvyxrS0w+N13vKLSubM43Uje3jkrKk+cWLz2zsrMBEaP5msOpaTwpQ4uX+az4gwlOm9Sqfg1rl4Fli7l3VinT/NNWFessO2B9RJi8opU06dPN/j/U8T4K0RsWi3sXr3ij+WU7FBlx7Jq1AC2bpV3spOezruxAOkMTn5dt27AoUM82Rk3TuxozOPuXV4BAPg4EbGMHs2no1+4wLtihJWWbVlKCtC3L7B3L69iTpnCB2oXZRFHlYq3ZffuvEK2ezfvHjx4kFd5pDrJwkaY/JXbunWr3sdarRZ3796FnZ0dAgMDi2eyk5yc81gOb1zqxrIOW6jsnD0LvHrF3zOVK4sdTW7duvEk59gxPj7C3V3siIru++/52I527XhVQSx2drwi0aIF/6U8YgRQv7548VhaUhJfs+n8eb7u0P/9X84SB+bg48M3X128mHeHbd7Mu7h37pTmtjc2wuRurNcHJkdGRuLy5ct49OgR2rZti3G28peVsf5Ndpirqzx2DZZzN5ZWCzx8yB/LJdm5ckW+JWuhC6tFC2mN1xFUqMDHP+h0/C9muYuPB4SJHmJWdQTNm/OuGMb4mBVbHayclMT3fDt/nndVHTli3kRHoFTy2VnHj/NxfFev8oT2xAnz34sAMMNGoK9zcXHB9OnTMVkK35wiUAiLb8lhJhaQU9l59gx4+VLcWIz14AH/gWtvn/N5SFXlyvyHW3KyPBNLIOeHcPPm4sZhiC1tDLpyJd/vq2FD6bT5nDl8TaOTJ4HffhM7GvMTEp3ISP4zJTzc8hWshg354O969fiU9TZtgN9/t+w9iymzJjsA8PTpU6SkpJj7svIgt2TH1TVn80S5/RIWurD8/HgiIWUlSuTMELpyRdxYTMEY/wUHWHfqs7GEZGfPHt7lJldaLV/bBsjZC0sKfHxyqkxffcWnXNuKV6/4++f1RKdGDevc28eHV5B69uQJ7oABwI8/WufexYjJY3Z++OEHvY8ZY3j06BH+97//oUOHDkUOTJaEbqzSpSHBQn9uCgXvyoqN5eN2pN4d9Dq5jNcRVK8O3LrFy9XvvCN2NMb55x8+DsbBAZDygqH16vEugYcP+aBPue5FtnUr/xzKlOEr8ErJ2LF8V/R//uGztIQtLOQsKwv44AM+3svVFThwIKfr2VpKluRjd8aN45uxjhnDKz3Tpkmz21iGTE52Fi1apF0GLoIAACAASURBVPexUqmEp6cnBg8ejK8ttUmdxMmuGwvgf8UIyY6cyC3ZqVED2LFDnoOUhapOUFBOJVCKlEqga1c+nXf7dvkmO8Ifkh9/LL321mj4wNrOnflx2DCgalWxoyqaCRP4Ctz29nxhypo1xYlDqeRt6unJK2gzZvCEZ+lSeYwBlTiT6/93797V+3f79m2cOnUK3333HZytsBz2Tz/9hAoVKsDBwQH169fH0aNHLX7PAgmzseQw7Vwg10HKckt25DwjSxiv06SJuHEUhtCVtWOHPAfRRkbyQat2djzZkaJOnYAuXfg6NP/9r3wH3QO8u2jxYv74l1+A1q1FDQcKBZ/i/tNP/PGKFbxbi/bWKjKJD3bI26ZNmzB27Fh8++23iIyMRIsWLdCxY0fECNsHiOXfyg6TW2UHoMqOpdlCsiPl8TqCNm34om1xcUBEhNjRGE8Yq9G7t7RX2160iFdC9u3jiaUcHTqUsybTnDlAv36ihqNn5Ei+6rJaDfzxB08unz0TOypZM6obS9gEtDAWLlxodDDGXHvYsGEYPnw4AGDx4sXYu3cvli9fjtmzZ1vsvgWRZTeWXCs7ctgX63VVq/K/1BIS+D9jVmAVU0pKzqBqOVR2NBq+MejmzfyXsJjr0xgrIYFvTQDw6d1SVqkS8PnnfIXnceP4WkAlSogdVeHFxAB9+vClCgYOBL74QuyIcuvTh/cS9OgB7N/PE/ndu6U/+1SijEp2IiMjC/U8hQUHVGVkZODcuXOYOHGi3vl27drhRD5rFKSnpyP9tTJg6r+zCLRaLbRardliUyQlQQlA5+KCLDNe15KUHh5QAch69Ag6C8cstHWR25wx2MXEQAFAW64cn70idWo17AICoLh7F5kXL4LlseWC2drHjBTHj8OOMbCKFZHp5iZqWxe2fRSdO8Nu82awbduQOXWqFSIzD+XPP0OVno6sevWgq1/fqLYW5b3z+eew++UXKO7ehW7OHGR9+6317m0kvfZ5+RKqHj2gTEgAq1MHmcuW8S45KWrdGoqwMKi6doXi3DmwZs2QuWuX2RcflOLPnvyYGqNRyY6wCaiYEhMTodPpUEaoSPyrTJkyiIuLy/M1s2fPxrRp03Kd37dvHxwdHc0WW9M7d+AJ4GJsLB7IZGGz8g8foj6AJ9eu4YSVYg4LCyvS6zVPn6LDq1dgCgX+vnQJ7Pp1M0VmWY3c3VH27l1c2bwZ0c+f5/u8oraPOVXZuBFVAdz39cV5ibynC2oftZ0dOiiVUF69ikNr1iDN29tKkZlOodPh3SVL4AggqnlzxP79t0nXsfZ7x6dfPwQtWAA2ezbCfXzwUuJVh7B9+/D2Dz/A7/x5pDs74/CoUXh56JDYYRWo5LRpaDp1Khxv3YKucWOcnDIFqRZYbdlc7x/7p0/hc+IE7lpgkkBaWppJryvCRh98TZ01a9bg2rVrUCgUqF69OoYOHQpXK2yV8Gb1iDGWb0Xp66+/1uuCS01Nha+vL9q1a2fWzUwzy5bFyZ07UXfIENSRSfeKQqMBFi2Ch06HThaevaLVahEWFobg4GCo1WqTr6MQxmKUK4eOwoBUGVAePQqcPYuaKhWq59HW5mofc1ItWwYAKNerF8qKPLvJqPZZswYID8c7z54ha9gw6wRYBIrQUNglJoJ5eqLWzJmo5eBg1OtFe+907IisM2dgd/Qo3t2zBzphh3aJEdqn4927sA8PB1Mqodq8GW3ktAxE585gXbrA4fJltA4JgS40NM8KsSnM+f5RbN0K1eefQ5GYiOrBwWBm/hmdauL6TiYnO2fPnkX79u1RokQJNGzYEIwxLFy4ELNmzcK+fftQz0I79Hp4eEClUuWq4sTHx+eq9gg0Gg00Gk2u82q12rw/GOrVQ3xcHOz8/CTzy6pA/w6CVMTHWy3mIrf7gwcAAIW/v3zaGeDbGQBQXb8OlYG4zf6+NFVWFt+dGYCqRQuDMVtTodqne3cgPByqnTuhkuJ4jDf99BMAQDFiBNRFmM0qynvnxx+BevWgDA3lCb1EEwj3K1egDgkBACjmzoVd+/YiR2Qkf3/g6FGga1cojh6FXadOfLbWhx+a7RZFev8kJfHZecLq2rVqwa5SJT7I2oxMjc/k2Vjjxo1D165dER0djdDQUGzduhV3795Fly5dMHbsWFMvWyB7e3vUr18/V7ktLCwMTeUwW0RqhATxyRPp9lu/6fXVk+VEbjOyrl7lq+SWLCne2iOm6tqVH48dAxITxY2lIBcv8hV0VSrgk0/EjsZ4derw2UMAXwxPiuM+7t9H0Ny5UGRm8llXRky2kZRSpfhO7L168dWWhw7lCz2K/bN7yxb+8+233/h6Qd98w2dDSmgRUpOTnbNnz+Krr76C3Wtb3tvZ2eHLL7/E2bNnzRJcfsaPH4/Vq1dj7dq1uHbtGsaNG4eYmBh8IscfFGLz8OCzhBiT/i8FgdymnQuExdfi4vhfQVInDPhv1Iiv+yInAQFA7dq8OrVrl9jRGCZMN+/ZEyhfXtxYTDV9Ot9p/sqV7CqVZLx6BVXfvnBISQGrVQtYvVreqxKXKMGno/9bpcKSJUDHjuLMqI2LA95/n/97/BioVo2vEzVrFp8ZKSEmJzsuLi55rmsTGxtr8UUF+/bti8WLF2P69OmoW7cujhw5gt27d8Nfbr/8pECl4gkPIJ+1doT3ndy+3s7OOdUoOVR3hJWT5TDlPC9y2Bj0yZOcsr+U9sEylpsb/wUH8F/CUlnKgjFg9GgoIyKQ4eSEzM2beaVS7pRKYOpU4M8/+eezfz/vJjdxYLvRdDrg5595NWfLFv7H0KRJfFHMxo2tE4ORTE52+vbti2HDhmHTpk2IjY3F/fv3sXHjRgwfPhz9+/c3Z4x5GjVqFKKjo5Geno5z586hpZkGahVLcltrR66VHSBnc0E5JDtyWkwwL0Kys3evdDcGXbOGx1a3LtCsmdjRFM3w4Xx/spQU3o0hBStWAGvXgimVOPv55zkb8tqKXr2AU6d4N3N8PF/d+tNPLbtJ6+HDfDf4Tz7huwbUq8e7rGbMkFw153UmJzvz589Hz549MWjQIAQEBMDf3x9DhgzB+++/jzlz5pgzRmJpcltFWc7JjlzG7SQmAjdv8scS/UutQPXq8W6htDSe8EiNTpfT5fPZZ/LuWgF4lVjoklu7lo9DEtOxY9nVsqyZM5EgofEjZlWzJnDmTM5ClMuWAVWq8AUqzbllyrlz/A+I1q2BCxf4+KElS/gkBhm0rcnJjr29PZYsWYLk5GRERUUhMjISSUlJWLRoUZ4zn4iEyamyk5qavS2H7AYoA/JJdk6d4seqVXkXhRwpFHwsAcBXVJaav/7iibu7O2CFarhVNG3KNwdlDBg82LIVBkMePOBf+8xMoE8fZE2YIE4c1lKiBN9ANiwMeOstPpZm4EA+eHzzZtMHMGdl8T8UOnfmGwHv2MG70D75hO98P2aMbMbzmZzsvHz5EmlpaXB0dEStWrXg6uqKlStXYt++feaMj1iDkOzIobIjVHVKl+ZjYORGLsmO3LuwBH368OP27cDLl+LG8iZhd/OPPpLXVgsFWbiQDxCPjs7Ze8qaXr7kg70fP+bjWNaulX/VrLDefRe4dAmYORNwcQEuX+bfA35+wFdf8SpMQYlPZiYfZDxxIhAYyLdf2b2bJzn/+Q8fhL58ec5YT5kwOSXr1q0bevbsiU8++QRPnz5Fo0aNoFarkZiYiIULF2KkMBWRSJ/QjSWHyo6cu7AAPlsB4H95pqQAVliA0yRyH5wsaNQI8PUFYmP5X6jdu4sdEXf5MhAezn+B2NrPSheXnB3E167lywBYa/HPrCzggw94t07p0sDWrXwArxSnw1uKRgN8+y0wahTvZlq2DHj0CJg7l/9zduZVmkqVeMLi4ADl06d4OyoKqu++48nS638YlCoFDBrEu8kqVRLv8yoikys758+fR4sWLQAAf/75J8qUKYN79+7h119/xQ/CXyxEHuRU2ZHrTCyBqyvg48MfX7smbiz50Wr5LwtA/pUdpZLvIA7w6bpSsXQpP3bvLs/u2IK0bMk3CgV4t5bwR4qlffklEBrKd2Tfto1XJoqr0qX5jK0HD/iMqZ49eeLy7BlPtFetAmbPBkJCoFq0CH7h4VCeOcMTndKlgQEDgN9/Bx4+5EmTjBMdoAiVnbS0tOwp5vv27UPPnj2hVCrRuHFj3LPWG5uYh5wGKMu9sgPwGVkPHvBysBQH/168yAf1liqVszaQnPXpw7tWduzgP8jF7jJKTgb+9z/+WOq7mxfFjBnAwYN8YGvPnnzAsCXb/scfgQUL+ON163jCRXji17Mn/6fT8e/vy5eB27f5+MeXL6FzcsKN+HhU7tABdg0a8CRRpRI7crMyOdmpVKkStm3b9v/t3XtYVGXiB/DvAMOICASOCggoYuoqiAqJdINyvZS2bT5Zlrnaz7W0xbJy27WburmP/crcdbMsu231q9WeLLfWS+CapHnJG97KO4jKTU0BIXFg3t8frzMDAuMA58yZOfP9PA/POQxnznnn7RBf3/c974t77rkH33zzDZ680jdbVlam6HpT5AbeNEBZD2Gnb18gO1v+D8cT2bqw0tJky4i3GzxY3i8nTgBr1wL33KNted5/X4bJpCQgI0PbsqjJZJKtLCkpwK5dclDrP/+pzviZ9993zFP00kuyVYIa8/cHBg6UX/VYLRYcWb0a1995p+LLO3iKVv+f7MUXX8TMmTPRvXt3pKWlIf1K3352djYGXlWR5OHqhx0htC3Ltegh7PTvL7f79mlbjuboZXCyjcHgGKisdVdWba3j8ezHH9f/wNm4OGD5chmaP/oImDtX+Wt8+qmc4weQSyc895zy1yCv1+qwc++996KwsBA7duzA2rVr7a8PHToUf/vb3xQpHLmJrRvr8mU5aNaTeeu6WPXZws6ePZ4ZLm0tO3oJO4Aj7Hz1lRyzoJWvvnI8bj5+vHblcKfbb3eMUZo71xH2lPDmm3JAshCy5WjhQv0HSGqVNrVRR0ZGYuDAgfCr19Q9ePBg9NFDP78vaddOPkEBePa4nZoa+VQB4N0tO337yn/pnj3refVdXCwfGTYYZPePXqSkyInWqqvlYE2t/P3vcvvoo9qPHXKnadPkYFlAtmi98krbzme1Ai+8APzhD46g88YbDDrULB10yJMivGGQ8qlTchsUBHTqpG1Z2iIoSE78BXheV5atVScx0RGA9cBgkI/PAvKxaC3s2gVs3CgnYXvsMW3KoKUXX5RzvQByO326bE1uqZ9/lo+yz5snv587V7bw6GF8GamGdwdJ3jBI2daFFRvr/f+CS0qS2717tS3H1fTYhWXz0EPyvtmwQbZeuduiRXJ7332O6Qd8icEAvPyyo1Vn8WK5HpirE2wKIWcDTkoC/vMfOQD6/fdliPL2/x+Q6hh2SPKGuXa8fY6d+mzjdjw17Hj7ZIJNiYsDbrtN7tse/XaXkhJg2TK5/8QT7r22p/njH+XYpfBwYMcO+bswbZpjLbar1dbKOXNuuUUGxaIi2TK6dSvw8MPuLTt5LYYdkrxhFmU9PIll44lPZF2+LP/4APoMO4BcrwmQTwa5c3D4kiWyftPT9TUWqrXuugvIy5PdUXV1cnXy3r1lq83kyXLV9Keflj/v3FlOF/D993LOmBdflIP7vWDxSfIc3rGCF6nPm1p2vPlJLBtbN9aBA/Jfrp6wmN7u3XIQeMeOjjFFejNmjBwvc/SoXJXbHfPcXLzoeAJJi7WiPFVcnGyxyc0FXn0VWLNGzj3V1PxTZrNcQywrC4iOdn9Zyet5wP9hySN4U9jRQ8tO9+5Ahw7yD+Hhw44FQrVUvwtLr2MgOnSQE869845sbXFH2Fm6VM6a3KuXDFvUUEaG/DpzRgafn36S+yaT/F0fNEhOcKmzGX3JvRh2SPKmbiw9tOz4+cknnrZulV1ZnhB29DaZYHMee0yGnS++kGNpIiPVu1ZNjWMJg2ee4R9sZzp1Au69V+tSkE5xzA5Jnt6yI4S+urEAzxukrOfByfUNGCA/o8UCvPeeutf6+GM5oLZrV2DCBHWvRUTNYtghydNbdsrK5L+SDQYgJkbr0ijDk8LOyZNyHiN/f+CGG7Qujfps89y89ZYMPWqwWOSq0oAcbBsYqM51iOiaGHZIsrXsVFbKlaE9ja1VJypKP380bIOUPeGJLFurTnIyEBysbVnc4d575T1/6pTjkXClvfcecPy4vM4jj6hzDSJyCcMOSaGhckAg4JmtO3rrwgIcYefECe3XJPOVLiybdu3kopEA8L//K5cfUFJ1NfCXv8j955/3jQBJ5MEYdkgyGBxdWSUl2palKXqaY8cmPFzOBg3IeUO0pOeZk5szdSoQEiIf/1+9WtlzL14s1xnr1k0+Mk1EmmLYIYeoKLn1xLCjx5YdQD5WC8g5brRy6ZJctwnwnZYdALjuOjlzLwC89JJykwz+/LNcFgGQ6zbZWkyJSDMMO+RgewTXk8OOnlp2AEfY2blTuzLs3CkH03bpIuf/8SVPPim7mH74QbnV0J97Ts6rk5go1+MiIs0x7JCDrWWnuFjbcjRFT3Ps1GcLO7aWFS3Un19Hr5MJNicyUj4pBQCzZrVuFe76duwA3n5b7r/xBufVIfIQDDvk4A0tO3oNOz/9JAe1amHjRrm96SZtrq+1mTPleLWjR+Wsyq1lschxQELIFp1bb1WujETUJgw75OCpLTvV1cDZs3Jfb91YUVGy+8hqhUGLR9CtVmDTJrl/yy3uv74nCAlp+OSULVi31Ny5skvwuuuAV15RrnxE1GYMO+Rga9nxtLBj++MTEgKEhWlbFqUZDPbWHYMWg5R//FGOL2nfHhg40P3X9xRTpsiWrYsX5Zw4LX0UfdMmxwSCS5c6/uFARB6BYYccPPVprPpdWHocU5KSAgAwaDFux9aFlZ4OGI3uv76n8PMD3n1XPjn1zTeO4OKKwkI5SaHVCkycCIwdq145iahVGHbIoX7YUeoxXCXo9UksGy1bdr77Tm59tQurvj595KBiAHjhBeDzz6/9nrIy4M475Zpy/fsDr7+ubhmJqFUYdsjBtmSExSLnCvEUen0Sy8Y2SPnAAfiptU5TU4RwtOxwMK00ebJjkPEDDwD/+lfzxx47BmRkyEkJIyOBr7+WXa1E5HEYdsghMBDo2FHue9K4Hb237MTFARERMNTWIsQW7NyhoAA4fVp2X6Wlue+6nm7xYmD8eKC2FnjwQRmATp50/Ly6Gli0SK6efvCgnAU7N1e/YZxIBxh2qCFPfPxcr4+d29QbpHzdsWPuu66tVSclRQ5QJsnfH/jnP4Fnn5Xfv/++nGxx4EA5tqlzZ7mu1sWLsvtv82agVy8tS0xE18CwQw154uPneu/GAoAbbgAAhB8+7L5rcrxO8wICgL/+VbbYZGbKwcd5ecDWrUBVFdCjB/DWW8C33wIxMVqXloiuwavCTkFBASZPnoz4+HgEBQUhISEBs2fPxuW2znpKDp7WslNXB5w6Jff12o0FAEOGAHBz2LG17DDsNO/WW2WgOXFCjslZsUIu2nrkCPDoo5whmchLBGhdgJY4ePAgrFYr3n77bfTs2RP79+/HlClTUFVVhQULFmhdPH3wtJad0lI5YNrfX99zl1wZMxNy6hRqy8sBs1nd65WWArZg5aszJ7dEXJy+WxaJdM6rws7IkSMxcuRI+/c9evTAoUOHsGTJEoYdpXjaXDu2LqyuXWXXgl516QIRHw9Dfj4MO3YA9e5zVWzYILdJSUBEhLrXIiLSmNf/9SgvL0fENf5nXVNTg5qaGvv3FRUVAACLxQKLgo/62s6l5DndzWA2IwCAtagIdQp/jtbUj+H4cVmeuDjFy+NpDKmpCMjPh3XLFliGDlX1Wv45OfADUHfbbbB6Sb3q4fdLLawb51g/znlT/bS2jF4ddo4dO4bXX38dr732mtPj5s+fj7lz5zZ6PTs7G+1VeAolJydH8XO6S8cTJ3AzgKqjR7F+9WpVrtGS+umZnY1+AE77+2OXSuXxFD3CwpAE4OfVq7HNNveOSn79n/8gGMD20FCUelm9evPvl9pYN86xfpzzhvqpbuWCyQYhtJ8qd86cOU2Gkfq2b9+O1NRU+/dFRUXIyMhARkYG3n33XafvbaplJzY2FmfPnkVoaGjbCl+PxWJBTk4Ohg0bBqO3Tr1/8CCM/ftDhIWh9swZRU/dmvrxe+IJ+C9Zgro//QnWl15StDyepm7LFrTLyIDo2BG1RUXqLY2Rnw9j794QAQGoLS31monwdPH7pRLWjXOsH+e8qX4qKipgNptRXl7eor/fHtGyk5WVhXHjxjk9pnv37vb9oqIi3HbbbUhPT8fSpUuveX6TyQSTydTodaPRqMp/WLXO6xZXBmEaysthrK0FgoIUv0SL6ufKk1j+8fHw99Y6dVVKCuqMRvifOwfjiRPA9derc50rj5wbBg+G0QvH63j175fKWDfOsX6c84b6aW35PCLsmM1mmF18+uT06dO47bbbkJKSgg8++AB+fl719LznCw0F2rUDLl2Sg5Tj47Utjy/MsWMTGIgLCQnoePCgXEVbrbDz3//KrcrjgoiIPIVXJYWioiJkZmYiNjYWCxYswJkzZ1BSUoIST3lySA8MBs96/FzvS0Vc5Vy/fnInN1edCwgBrF8v9xl2iMhHeETLjquys7Nx9OhRHD16FDFXzVrqAUOP9CMyEsjP1/7x84oK4MIFuR8bq21Z3ORsYiJ6rVihXtjZv1+u1N2+vX0iQyIivfOqlp1JkyZBCNHkFynIU1p2bK064eFeM4i2rc736QPh7y8X6VRjUdB16+T2lluAJsaxERHpkVeFHXITT5lY0Me6sACgNigIwvbYuRqtO7bHzIcPV/7cREQeimGHGrOtj+UpLTu+MDi5HmFbq0rpsFNZ6TjnqFHKnpuIyIMx7FBjntKyY+vG8aGWHQAQt94qd5QOO+vWyXXGEhKAXr2UPTcRkQdj2KHG2LKjKXHTTYCfH3DsmLLjdlatkttRo9SbsJCIyAMx7FBjnjJA2Zfm2KkvLAxIT5f7a9Yoc04hHON12IVFRD6GYYcai46W29JSoLZWu3IUFMhtvdmzfcadd8qtUutW7d4tw2twMJCRocw5iYi8BMMONda5MxAQAFit2o3bqakBiorkvi+Hnf/+V85m3Vaffy63I0bwkXMi8jkMO9SYn5+jK+v0aW3KcPKk7Hpp3x7o1EmbMmgpOVn+N6iuBjZubNu5hAA++0zu33df28tGRORlGHaoabYZqrUKO/W7sHxxMK3BoFxXVl6eHOzcrh3H6xCRT2LYoaZ17Sq3nhB2fNUdd8jt11/L1pnWsrXqjBoFdOjQ9nIREXkZhh1qmtZhJz9fbn057IwYIVtjjh2TA4xbg11YREQMO9QMW9g5dUqb67NlR7bCjB4t95cvb905tmwBjh+XY5/YhUVEPophh5qmdcsOw450//1y+9lnrevKeu89ub3vPvnYORGRD2LYoaZ5StiJj9fm+p7izjtlSCkoAL7/vmXvrax0tAhNnqx40YiIvAXDDjWt/tNYbRkc2xq+PsdOfe3bO8baLF3asvd+8glQVQX07g3cdJPyZSMi8hIMO9Q02yzK1dVAebl7r21bJiI4GOjY0b3X9kTTpsntZ58B58659p66OmDhQsf7ffHxfSKiKxh2qGlBQUBEhNx39yBlX59j52qpqcCgQbLFyzYG51r+/W/gyBEgPJxdWETk8xh2qHlajdvh4OSGDAYgK0vuv/aa7JpyxmoF/vpXuf/YY5xbh4h8HsMONU/rsOPrg5Pre+ghoEcPoKwMeOMN58d+/DGwaxcQEgI8/rh7ykdE5MEYdqh5Wocdtuw4GI3A7Nlyf/785hdoLS8HZs2S+y+8IBd1JSLycQw71Dytwg5nT27a+PFy7M6FC8Ajj8juqvqEAKZOBYqLgYQEtuoQEV3BsEPNsz1+ruUAZXLw9wfefx8IDJTrZT31lCPwWK3AH/8ILFsmj/u//wNMJm3LS0TkIQK0LgB5MC1adn75xdFFw7DTWHIy8M47wMSJwKJFwNatwK9/DaxbB2zbJo956y1gyBBty0lE5EEYdqh5WoSdwkK57dDB8eg7NfS738kntB59VAYcW8gJCpJB53e/07Z8REQehmGHmmcLO2fOyDle3NEtYhuvEx/POXacmTBBtuh89JFcFT0hQYacqCitS0ZE5HEYdqh5HTvKgGNbvsEdj4JzvI7roqKAP/1J61IQEXk8DlCm5hkM7h+kfPy43DLsEBGRQhh2yLm4OLm1rVeltmPH5DYhwT3XIyIi3WPYIee6dZNb28BhtTHsEBGRwhh2yDl3tuwI4Qg7PXuqfz0iIvIJDDvknDtbds6cAS5elGOFuC4WEREphGGHnHNny46tVScmhrP/EhGRYhh2yLn6LTtCqHstjtchIiIVMOyQc7ZHz6uqgPPn1b0Www4REanAa8NOTU0NBgwYAIPBgLy8PK2Lo19BQUDnznJf7a6so0fllmGHiIgU5LVh55lnnkF0dLTWxfAN7hqkzJYdIiJSgVeGnTVr1iA7OxsLFizQuii+wV2DlBl2iIhIBV63NlZpaSmmTJmClStXon379i69p6amBjU1NfbvKyoqAAAWiwUWi0WxstnOpeQ5PYFfbCz8AdQVFMDahs/mtH4qK2EsK5M/j4sDdFaHrtDr/aMU1k/zWDfOsX6c86b6aW0ZvSrsCCEwadIkTJ06FampqSiwLRp5DfPnz8fcuXMbvZ6dne1yYGqJnJwcxc+ppR6VlUgCULJtG3asXt3m8zVVP6H5+bgNQE1ICNZu3tzma3gzvd0/SmP9NI914xzrxzlvqJ/q6upWvc8jws6cOXOaDCP1bd++HZs3b0ZFRQVmzZrVovPPmjULTz31lP37iooKxMbGYvjw4QgNDW1VmZtisViQk5ODYcOGwWg0KnZerRksK+tu3AAAFfZJREFUFuC99xBlseDOO+9s9Xmc1Y/hyy8BAMY+fdp0DW+m1/tHKayf5rFunGP9OOdN9WPrmWkpjwg7WVlZGDdunNNjunfvjnnz5mHr1q0wXTXhXGpqKsaPH48PP/ywyfeaTKZG7wEAo9Goyn9Ytc6rmR49AAB+J0/CT4HP1WT9XBkP5NezpyLX8Ga6u38UxvppHuvGOdaPc95QP60tn0eEHbPZDLPZfM3j/vGPf2DevHn274uKijBixAgsX74caWlpahbRt9mexiopAaqrARW6/jg4mYiI1OIRYcdVcbangq7o0KEDACAhIQExtsnvSHkREUBYGFBeDhQUAH37Kn8NzrFDREQq8cpHz8nNDAZ7V5a9BUZphw7Jba9e6pyfiIh8lle17Fyte/fuEGqv10RSQgKwezdw/Ljy566qAk6dkvu9eyt/fiIi8mls2SHXqNmyc/iw3HbsKL+IiIgUxLBDrrGNpVGjZcfWhcVWHSIiUgHDDrlGzZYdhh0iIlIRww65xtayk58PWK3Knpthh4iIVMSwQ66JjQUCAoCaGqCoSNlzM+wQEZGKGHbINQEBjskFlRy3I4RjgDLDDhERqYBhh1ynxridoiLg4kXA358TChIRkSoYdsh1tjCiZNixdWHFxwOBgcqdl4iI6AqGHXKdrWVHyW4sjtchIiKVMeyQ62wtO7Z1rJRw8KDcMuwQEZFKGHbIdbZ1qw4dkgOLlbB/v9wmJipzPiIioqsw7JDrevYE/PyAigqgtFSZczLsEBGRyhh2yHXt2smBxICj+6ktysrkFwD07dv28xERETWBYYdapk8fuVUi7Bw4ILc9egDBwW0/HxERURMYdqhllAw7ti6spKS2n4uIiKgZDDvUMranpmyPjLfFvn1yy/E6RESkIoYdahk1WnYYdoiISEUMO9QytrBz4gRQXd368wjBsENERG7BsEMtYzYDEREyrLSldefkSaCyUi4wapu/h4iISAUMO9QyBgPQv7/ct425aQ3be3v35ppYRESkKoYdajlb2Nm7t/Xn2L1bbpOT214eIiIiJxh2qOWUaNnZuVNuU1LaXh4iIiInGHao5ZRo2WHYISIiN2HYoZbr10+O3Sktbd0aWWfOyAHKADBwoLJlIyIiugrDDrVc+/ZyUVCgVV1Zhl275E6vXkBoqIIFIyIiaoxhh1rH1pW1Z0+L32oPO+zCIiIiN2DYodYZNEhut29v8VsNHK9DRERuxLBDrZOWJrfbtrXsfULAsHWr3B8yRNkyERERNYFhh1onNVUOUi4oAMrKXH5bcHExDGVlgMkkz0FERKQyhh1qnbAwxzpZP/zg8tsifvpJ7qSmysBDRESkMoYdar1WdGVF2NbTuvlmFQpERETUGMMOtV4rwk5HW8vOTTepUCAiIqLGGHao9dLT5XbzZsBiufbxpaUIOXVK7t94o3rlIiIiqodhh1ovKQkwm4GqKpdadwzZ2QAAMXAg0LGj2qUjIiIC4KVhZ9WqVUhLS0NQUBDMZjPGjBmjdZF8k58fMHSo3M/Jufbh33wDALCOGKFmqYiIiBrwurCzYsUKTJgwAQ8//DD27NmD77//Hg8++KDWxfJdw4bJ7bp1zo+rq4PhyjGCYYeIiNwoQOsCtERtbS2eeOIJvPrqq5g8ebL99d69e2tYKh/361/L7bZtQEVF82tdbd8Ow88/w9K+vWNgMxERkRt4VdjZtWsXTp8+DT8/PwwcOBAlJSUYMGAAFixYgH79+jX7vpqaGtTU1Ni/r6ioAABYLBZYXBlY6yLbuZQ8p8eLjkbA9dfDcOQIar/+GuK++5o8zO/zz+EPoGzAAIQL4dqAZh/jk/dPC7B+mse6cY7145w31U9ry2gQQgiFy6KaZcuW4YEHHkBcXBwWLlyI7t2747XXXkN2djYOHz6MiIiIJt83Z84czJ07t9Hrn376Kdq3b692sXXvVx9/jF4rVqBoyBBs//OfGx9gtWLYI4+g/dmz+OGZZ1DMJ7GIiKgVqqur8eCDD6K8vByhzfUkNMEjwk5zYaS+7du34/Dhwxg/fjzefvttPPLIIwBkq01MTAzmzZuHRx99tMn3NtWyExsbi7Nnz7aosq7FYrEgJycHw4YNg9FoVOy8Hm/PHhhvuAHCZELtyZPAddc1+LEhNxcBw4ZBhIbiP++8g6GjR/tW/bjIZ+8fF7F+mse6cY7145w31U9FRQXMZnOLw45HdGNlZWVh3LhxTo/p3r07KisrAQB9+/a1v24ymdCjRw8UFhY2+16TyQRTE0sTGI1GVf7DqnVej5WSAiQmwrB/P4yffALMmNHw52++CQAQY8fCajL5Xv20EOvHOdZP81g3zrF+nPOG+mlt+Twi7JjNZpjN5msel5KSApPJhEOHDuHmK8sNWCwWFBQUoFu3bmoXk5pjMADTpwOPPgr84x/AY48BgYHyZ4cOAf/+NwCgbvp0uXAoERGRG3nVo+ehoaGYOnUqZs+ejezsbBw6dAjTpk0DAIwdO1bj0vm4hx4COncG8vOB11+XrwkhW3msVmD0aKBeixwREZG7eETLTku8+uqrCAgIwIQJE/DLL78gLS0N69evR3h4uNZF823t2wPz5wOTJwPPPgvExQE7dgBr1wJGI/Daa1qXkIiIfJTXhR2j0YgFCxZgwYIFWheFrjZpErB6NbBiBVD/EfTXXwd69eLj5kREpAmvCzvkwfz8gE8+Abp2lduwMOD554GHH9a6ZERE5MMYdkhZJhOwaJH8IiIi8gBeNUCZiIiIqKUYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjXArQugBaEEACAiooKRc9rsVhQXV2NiooKGI1GRc+tB6wf51g/zrF+mse6cY7145w31Y/t77bt77irfDLsVFZWAgBiY2M1LgkRERG1VGVlJcLCwlw+3iBaGo90wGq1oqioCCEhITAYDIqdt6KiArGxsTh58iRCQ0MVO69esH6cY/04x/ppHuvGOdaPc95UP0IIVFZWIjo6Gn5+ro/E8cmWHT8/P8TExKh2/tDQUI+/YbTE+nGO9eMc66d5rBvnWD/OeUv9tKRFx4YDlImIiEjXGHaIiIhI1/znzJkzR+tC6Im/vz8yMzMREOCTPYTXxPpxjvXjHOuneawb51g/zum9fnxygDIRERH5DnZjERERka4x7BAREZGuMewQERGRrjHsEBERka4x7CjozTffRHx8PNq1a4eUlBRs3LhR6yK53Zw5c2AwGBp8RUZG2n8uhMCcOXMQHR2NoKAgZGZm4sCBAxqWWF3fffcd7rrrLkRHR8NgMGDlypUNfu5KfZw/fx4TJkxAWFgYwsLCMGHCBFy4cMGdH0M116qfSZMmNbqfhgwZ0uCYmpoaTJ8+HWazGcHBwfjNb36DU6dOufNjqGL+/Pm44YYbEBISgs6dO+O3v/0tDh061OAYVz57YWEh7rrrLgQHB8NsNuPxxx/H5cuX3flRVOFK/WRmZja6f8aNG9fgGL3+fi1ZsgT9+/e3TxSYnp6ONWvW2H/ua/cOw45Cli9fjhkzZuC5557D7t27ccstt+COO+5AYWGh1kVzu379+qG4uNj+tW/fPvvPXnnlFSxcuBCLFy/G9u3bERkZiWHDhtnXK9ObqqoqJCcnY/HixU3+3JX6ePDBB5GXl4e1a9di7dq1yMvLw4QJE9z1EVR1rfoBgJEjRza4n1avXt3g5zNmzMCXX36JZcuWYdOmTbh48SJGjx6Nuro6tYuvqtzcXPzhD3/A1q1bkZOTg9raWgwfPhxVVVX2Y6712evq6jBq1ChUVVVh06ZNWLZsGVasWIGnn35aq4+lGFfqBwCmTJnS4P55++23G/xcr79fMTExePnll7Fjxw7s2LEDt99+O+6++277P6Z87t4RpIjBgweLqVOnNnitT58+4s9//rNGJdLG7NmzRXJycpM/s1qtIjIyUrz88sv21y5duiTCwsLEW2+95a4iagaA+PLLL+3fu1IfP/74owAgtm7daj9my5YtAoA4ePCg+wrvBlfXjxBCTJw4Udx9993NvufChQvCaDSKZcuW2V87ffq08PPzE2vXrlWtrFooKysTAERubq4QwrXPvnr1auHn5ydOnz5tP+Zf//qXMJlMory83L0fQGVX148QQmRkZIgnnnii2ff40u+XEEKEh4eLd9991yfvHbbsKODy5cvYuXMnhg8f3uD14cOHY/PmzRqVSjtHjhxBdHQ04uPjMW7cOBw/fhwAkJ+fj5KSkgb1ZDKZkJGR4ZP15Ep9bNmyBWFhYUhLS7MfM2TIEISFhflMnW3YsAGdO3dGr169MGXKFJSVldl/tnPnTlgslgZ1GB0djcTERN3VT3l5OQAgIiICgGuffcuWLUhMTER0dLT9mBEjRqCmpgY7d+50Y+nVd3X92HzyyScwm83o168fZs6c2aDV1Fd+v+rq6rBs2TJUVVUhPT3dJ+8dfU6V6GZnz55FXV0dunTp0uD1Ll26oKSkRKNSaSMtLQ0fffQRevXqhdLSUsybNw833ngjDhw4YK+LpurpxIkTWhRXU67UR0lJCTp37tzovZ07d/aJe+uOO+7A2LFj0a1bN+Tn5+OFF17A7bffjp07d8JkMqGkpASBgYEIDw9v8D69/e4JIfDUU0/h5ptvRmJiIgC49NlLSkoa3V/h4eEIDAzUff0AwPjx4xEfH4/IyEjs378fs2bNwp49e5CTkwNA/79f+/btQ3p6Oi5duoQOHTrgyy+/RN++fZGXl+dz9w7DjoIMBkOD74UQjV7TuzvuuMO+n5SUhPT0dCQkJODDDz+0DyxlPTV0rfpoqm58pc7uv/9++35iYiJSU1PRrVs3rFq1CmPGjGn2fXqrn6ysLOzduxebNm265rG+eP80Vz9Tpkyx7ycmJuL6669Hamoqdu3ahUGDBgHQd/307t0beXl5uHDhAlasWIGJEyciNze32eP1fO+wG0sBZrMZ/v7+jdJuWVlZo2Tsa4KDg5GUlIQjR47Yn8piPUmu1EdkZCRKS0sbvffMmTM+WWdRUVHo1q0bjhw5AkDWz+XLl3H+/PkGx+npnpo+fTq++uorfPvtt4iJibG/7spnj4yMbHR/nT9/HhaLRff105RBgwbBaDQ2uH/0/PsVGBiInj17IjU1FfPnz0dycjIWLVrkk/cOw44CAgMDkZKSYm8atcnJycGNN96oUak8Q01NDX766SdERUXZm5Pr19Ply5eRm5vrk/XkSn2kp6ejvLwcP/zwg/2Ybdu2oby83Cfr7Ny5czh58iSioqIAACkpKTAajQ3qsLi4GPv37/f6+hFCICsrC1988QXWr1+P+Pj4Bj935bOnp6dj//79KC4uth+TnZ0Nk8mElJQU93wQlVyrfppy4MABWCwW+/3ja79fQgjU1NT45r2jwaBoXVq2bJkwGo3ivffeEz/++KOYMWOGCA4OFgUFBVoXza2efvppsWHDBnH8+HGxdetWMXr0aBESEmKvh5dfflmEhYWJL774Quzbt0888MADIioqSlRUVGhccnVUVlaK3bt3i927dwsAYuHChWL37t3ixIkTQgjX6mPkyJGif//+YsuWLWLLli0iKSlJjB49WquPpChn9VNZWSmefvppsXnzZpGfny++/fZbkZ6eLrp27dqgfqZOnSpiYmLEunXrxK5du8Ttt98ukpOTRW1trYafrO2mTZsmwsLCxIYNG0RxcbH9q7q62n7MtT57bW2tSExMFEOHDhW7du0S69atEzExMSIrK0urj6WYa9XP0aNHxdy5c8X27dtFfn6+WLVqlejTp48YOHBgg3tDr79fs2bNEt99953Iz88Xe/fuFc8++6zw8/MT2dnZQgjfu3cYdhT0xhtviG7duonAwEAxaNCgBo9A+or7779fREVFCaPRKKKjo8WYMWPEgQMH7D+3Wq1i9uzZIjIyUphMJnHrrbeKffv2aVhidX377bcCQKOviRMnCiFcq49z586J8ePHi5CQEBESEiLGjx8vzp8/r8GnUZ6z+qmurhbDhw8XnTp1EkajUcTFxYmJEyeKwsLCBuf45ZdfRFZWloiIiBBBQUFi9OjRjY7xRk3VCwDxwQcf2I9x5bOfOHFCjBo1SgQFBYmIiAiRlZUlLl265OZPo7xr1U9hYaG49dZbRUREhAgMDBQJCQni8ccfF+fOnWtwHr3+fv3P//yP/e9Rp06dxNChQ+1BRwjfu3cMQgjhvnYkIiIiIvfimB0iIiLSNYYdIiIi0jWGHSIiItI1hh0iIiLSNYYdIiIi0jWGHSIiItI1hh0iIiLSNYYdIiIi0jWGHSLySJmZmZgxY4bWxSAiHeAMykSkuczMTAwYMAB///vf7a/9/PPPMBqNCAkJcXt5ZsyYgYKCAqxcudLt1yYi5bFlh4g8UkREhCZBBwC2b9+OwYMHa3JtIlIeww4RaWrSpEnIzc3FokWLYDAYYDAYUFBQ0KgbKzMzE9OnT8eMGTMQHh6OLl26YOnSpaiqqsLDDz+MkJAQJCQkYM2aNfb3CCHwyiuvoEePHggKCkJycjI+//zzZstisVgQGBiIzZs347nnnoPBYEBaWpqqn5+I1MewQ0SaWrRoEdLT0zFlyhQUFxejuLgYsbGxTR774Ycfwmw244cffsD06dMxbdo0jB07FjfeeCN27dqFESNGYMKECaiurgYAPP/88/jggw+wZMkSHDhwAE8++SQeeugh5ObmNnl+f39/bNq0CQCQl5eH4uJifPPNN+p8cCJyG47ZISLNNTVm5+rXMjMzUVdXh40bNwIA6urqEBYWhjFjxuCjjz4CAJSUlCAqKgpbtmxBUlISzGYz1q9fj/T0dPt5f//736O6uhqffvppk2VZuXIlfv/73+Ps2bNqfVwicrMArQtAROSq/v372/f9/f3RsWNHJCUl2V/r0qULAKCsrAw//vgjLl26hGHDhjU4x+XLlzFw4MBmr7F7924kJycrXHIi0hLDDhF5DaPR2OB7g8HQ4DWDwQAAsFqtsFqtAIBVq1aha9euDd5nMpmavUZeXh7DDpHOMOwQkeYCAwNRV1en6Dn79u0Lk8mEwsJCZGRkuPy+ffv24Z577lG0LESkLYYdItJc9+7dsW3bNhQUFKBDhw6IiIho8zlDQkIwc+ZMPPnkk7Barbj55ptRUVGBzZs3o0OHDpg4cWKT77Nardi7dy+KiooQHByMsLCwNpeFiLTFp7GISHMzZ86Ev78/+vbti06dOqGwsFCR87700kt48cUXMX/+fPzqV7/CiBEj8PXXXyM+Pr7Z98ybNw/Lly9H165d8Ze//EWRchCRtvg0FhEREekaW3aIiIhI1xh2iIiISNcYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjXGHaIiIhI1xh2iIiISNcYdoiIiEjX/h97kdt9pkANowAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = linspace(0, 20π*5, 1000)\n", - "# find solution by the brute-force eᴬᵗ [0,1]:\n", - "plot(t, [(expm(B*t)*[0,1])[1] for t in t], \"r-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "title(\"motion of a mass on a spring + drag\")\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As you might expect, adding drag causes the mass to slow down more and more.\n", - "\n", - "How is this reflected in the eigenvalues?" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Complex{Float64},1}:\n", - " -0.01+0.0994987im\n", - " -0.01-0.0994987im" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The eigenvalues are $\\approx -0.01 \\pm 0.0994987i$.\n", - "\n", - "Again, for this $2\\times2$ matrix problem we could easily calculate the eigenvalues analytically. (In 18.03 you do this over and over again.) Skipping the simple algebra (just a quadratic equation), they are:\n", - "\n", - "$$\n", - "-\\frac{d}{2} \\pm i \\sqrt{0.01 - \\left(\\frac{d}{2}\\right)^2} = -\\alpha \\pm i\\omega\n", - "$$\n", - "\n", - "where I've defined $\\alpha = -\\operatorname{Re} \\lambda$ and $\\omega = |\\operatorname{Im} \\lambda|$." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.099498743710662" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sqrt(0.01 - (0.02/2)^2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What will this do to the solutions?\n", - "\n", - "Well, the basic solution process will be the same. We will still get a solution of the form:\n", - "\n", - "$$\n", - "\\vec{x}(t) = 2\\operatorname{Re}\\left[c_1 e^{\\lambda_1 t} \\vec{x}_1\\right]\n", - "$$\n", - "\n", - "where $\\vec{x}_1$ is the first eigenvector of $B$ and $c_1$ is an expansion coefficient for the initial condition.\n", - "\n", - "But now we have $\\lambda_1 = -\\alpha + i\\omega$ and, similar to before, we get:\n", - "\n", - "$$\n", - "x(t) =\\operatorname{Re} \\left[r e^{-\\alpha t + i\\omega t + i\\phi} \\right]\n", - "= r e^{-\\alpha t} \\cos(\\omega t + \\phi)\n", - "$$\n", - "\n", - "So, $\\alpha = -\\operatorname{Re} \\lambda$ is an **exponential decay** rate and $\\omega = |\\operatorname{Im} \\lambda|$ is still a frequency (with a value slightly changed from the frictionless case). It is nice to plot this $e^{-\\alpha t}$ factor on top of our solution:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHGCAYAAACSMkoBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYU+fbB/BvgCTsKQhYhqgoynCPokJVHDiqpW6LWhzVWusWN24Fd23dVv21Vn2tuHBgRbDKEOsedYCAFRUVZI+QPO8faVJjIDJCBt6f6/JKcnLOc+48SczNsw6HMcZACCGEEFJL6ag7AEIIIYSQmkTJDiGEEEJqNUp2CCGEEFKrUbJDCCGEkFqNkh1CCCGE1GqU7BBCCCGkVqNkhxBCCCG1GiU7hBBCCKnVKNkhhBBCSK1GyQ6p1QoKChASEoLo6Gi55/bs2QMOh4OUlBSVx1UZ8+fPh6OjI/T09GBubq7ucIiWSElJAYfDwZ49e9QdSo2o7a+PKJeeugMgpCYVFBRg8eLFAABfX1+Z53r37o24uDjY2dmpIbKKOXbsGJYvX4558+ahV69e4PP56g6JaAk7OzvExcWhQYMG6g6FELWjZId8tKytrWFtba3uMBS6c+cOAGDy5MmwsbFRczREGwiFQpSWloLP56N9+/bqDkcqJCQEe/bsUXlLakFBAQwNDVV6TqJ5qBuLqEVISAg4HA5u3bqFgQMHwszMDJaWlpg2bRpKS0vx4MED9OzZEyYmJnB2dkZoaKhcGWlpaRgxYgRsbGzA5/Ph5uaGtWvXQiQSARA3c0uSmcWLF4PD4YDD4WDUqFEAyu/G2r17N7y8vKCvrw9LS0sMGDAA9+/fl9ln1KhRMDY2xuPHj+Hv7w9jY2M4ODhg+vTpKC4u/uDrF4lECA0NRZMmTcDn82FjY4PAwED8888/0n2cnZ0xf/58AEDdunXB4XAQEhJSbplXr17FkCFD4OzsDAMDAzg7O2Po0KFITU39YDySLoGwsDCsXr1aWoavry8ePnwIgUCA4OBg2Nvbw8zMDAMGDEBGRoZMGQcPHkT37t1hZ2cHAwMDuLm5ITg4GPn5+TL7JScnY8iQIbC3twefz0fdunXRtWtX3LhxQ7pPVFQUfH19YWVlBQMDAzg6OiIgIAAFBQXVrldA3Mrn7u6OxMREdOrUCYaGhnBxccGqVauknx9FfvzxR3Tu3Bk2NjYwMjKCh4cHQkNDIRAIPnjsq1evMG7cODg4OIDP58Pa2hre3t74448/5OL7888/0b59exgYGKBevXpYsGABhEKhdD/J+xYaGoply5ahfv364PP5uHDhQpndPJLv3d27dzF06FCYmZmhbt26+Prrr5GdnS0T59u3bxEUFARLS0sYGxujd+/eSE5O/uDnsCakp6dj0KBBMDExgZmZGQYPHowXL17I7Sf5Xt6+fRvdu3eHiYkJunbtCgA4d+4cPv/8c3zyySfQ19dHw4YNMX78eLx+/VqunGPHjsHT0xN8Ph8uLi7YuHGjtO6IdqKWHaJWgwYNwogRIzB+/HicO3dO+oPxxx9/YOLEiZgxYwb279+P2bNno2HDhvjiiy8AiH8wPv30U5SUlGDp0qVwdnbGyZMnMWPGDCQlJeGnn36CnZ0dzpw5g549eyIoKAhjxowBAIWtOStXrsTcuXMxdOhQrFy5Em/evEFISAg6dOiAxMRENGrUSLqvQCBAv379EBQUhOnTp+PixYtYunQpzMzMsHDhQoWve8KECdi+fTsmTZqEPn36ICUlBQsWLEB0dDSuXbuGOnXqIDw8HD/++CN27dqFM2fOwMzMDJ988km5ZaakpKBx48YYMmQILC0t8fz5c2zZsgVt2rTBvXv3UKdOnQ++Hz/++CM8PT3x448/4u3bt5g+fTr69u2Ldu3agcvlYvfu3UhNTcWMGTMwZswYHD9+XHrso0eP4O/vjylTpsDIyAh///03Vq9ejStXriAqKkq6n7+/P4RCIUJDQ+Ho6IjXr18jNjYWb9++lb6O3r17o1OnTti9ezfMzc3x7NkznDlzBiUlJQr/Sq9IvUq8ePECw4cPx/Tp07Fo0SKEh4djzpw5sLe3R2BgoMJ6SkpKwrBhw1C/fn3weDzcvHkTy5cvx99//43du3crPParr77CtWvXsHz5cri6uuLt27e4du0a3rx5I7PfixcvMGTIEAQHB2PJkiWIiIjAsmXLkJWVhc2bN8vsu2nTJri6umLNmjUwNTWV+ZyWJSAgAIMHD0ZQUBBu376NOXPmAIA0dpFIhL59++Lq1asICQlBy5YtERcXh549eyostyYUFhaiW7duSE9Px8qVK+Hq6oqIiAgMHjy4zP1LSkrQr18/jB8/HsHBwSgtLQUgfs86dOiAMWPGwMzMDCkpKVi3bh06duyI27dvg8vlAgDOnDmDL774Ap07d8bBgwdRWlqKNWvW4OXLlyp7zaQGMELUYNGiRQwAW7t2rcz25s2bMwDsyJEj0m0CgYBZW1uzL774QrotODiYAWAJCQkyx0+YMIFxOBz24MEDxhhjr169YgDYokWL5GL4+eefGQD25MkTxhhjWVlZzMDAgPn7+8vsl5aWxvh8Phs2bJh028iRIxkAdujQIZl9/f39WePGjRW+9vv37zMAbOLEiTLbExISGAA2d+5c6TZJPb169UphmWUpLS1leXl5zMjIiG3cuFHhvk+ePGEAmJeXFxMKhdLtGzZsYABYv379ZPafMmUKA8Cys7PLLE8kEjGBQMBiYmIYAHbz5k3GGGOvX79mANiGDRvKjeXw4cMMALtx40ZFXypjrHL16uPjU+bnp2nTpqxHjx6VOq9QKGQCgYDt27eP6erqsszMTIX7GxsbsylTpijcRxLfsWPHZLaPHTuW6ejosNTUVMbYf+9bgwYNWElJicy+kud+/vln6TbJ5yk0NFRm34kTJzJ9fX0mEokYY4xFREQwAGzLli0y+61cubLc79P7BAKBzL8FCxYwJycnue2Sc5Zny5Yt5dbF+69P8r3cvXu3wjIln8/U1FS5stu0acMcHBxYcXGxdFtubi6zsrJi9JOpvagbi6hVnz59ZB67ubmBw+GgV69e0m16enpo2LChTHdMVFQUmjZtirZt28ocP2rUKDDGZFoSKiouLg6FhYXSbi4JBwcHdOnSBefPn5fZzuFw0LdvX5ltnp6eH+w2unDhgjTWd7Vt2xZubm5y56movLw8aQuYnp4e9PT0YGxsjPz8fLluuPL4+/tDR+e//xbc3NwAiAdzv0uyPS0tTbotOTkZw4YNg62tLXR1dcHlcuHj4wMA0vNbWlqiQYMGCAsLw7p163D9+nW5bqPmzZuDx+Nh3Lhx2Lt3L5KTkysUe2Xr1dbWVu7zU5H3DwCuX7+Ofv36wcrKSvpaAwMDIRQK8fDhQ4XHtm3bFnv27MGyZcsQHx9fbteXiYkJ+vXrJ7Nt2LBhEIlEuHjxosz2fv36SVsmKuL9cj09PVFUVCTtmoyJiQEgbnl919ChQyt8Di6XK/Nv6dKlSE1Nldu+d+9eheVcuHCh3LooT0BAgNy2jIwMfPPNN3BwcICenh64XC6cnJwA/Pf5zM/Px9WrV9G/f3/weDzpscbGxnLfdaJdKNkhamVpaSnzmMfjwdDQEPr6+nLbi4qKpI/fvHlT5iwqe3t76fOVJTmmvHLfL7OsOPl8vkycyjhPRQ0bNgybN2/GmDFjcPbsWVy5cgWJiYmwtrZGYWFhhcoo6/1QtF3yWvPy8tCpUyckJCRg2bJliI6ORmJiIo4cOQIA0vNzOBycP38ePXr0QGhoKFq2bAlra2tMnjwZubm5AIAGDRrgjz/+gI2NDb799ls0aNAADRo0wMaNGxXGXtl6tbKyktuPz+d/sK7S0tLQqVMnPHv2DBs3bsSff/6JxMRE/PjjjzKvtTwHDx7EyJEjsXPnTnTo0AGWlpYIDAyUG4NSt25duWNtbW0ByH++Kzuj8P3XLpnlJ4n9zZs30NPTk3vfy4qpPImJiTL/xo4dCzs7O7ntH0oi3rx5o7Au3mdoaAhTU1OZbSKRCN27d8eRI0cwa9YsnD9/HleuXEF8fLzM687KygJjrMzzVea1E81DY3aIVrKyssLz58/ltqenpwNAhcanlFUmgHLLrUqZHzrP+2Nwqnqe7OxsnDx5EosWLUJwcLB0e3FxMTIzM6sXcAVERUUhPT0d0dHR0tYcANJxOO9ycnLCrl27AAAPHz7EoUOHEBISgpKSEmzduhUA0KlTJ3Tq1AlCoRBXr17FDz/8gClTpqBu3boYMmRImTHURL2W5ejRo8jPz8eRI0ekLQMAZAZYK1KnTh1s2LABGzZsQFpaGo4fP47g4GBkZGTgzJkz0v3KGiMiSYjeT1aUPXDWysoKpaWlyMzMlEl4yhoUXJ7WrVvLPD558iR4PJ7c9orEcuXKFbnt5cVSVl3cuXMHN2/exJ49ezBy5Ejp9sePH8vsZ2FhAQ6Ho7DuiXailh2ilbp27Yp79+7h2rVrMtv37dsHDoeDzz77DID8X6yKdOjQAQYGBvjll19ktv/zzz+IioqSzuqori5dugCA3HkSExNx//79Kp2Hw+GAMSa3Ds/OnTtlZu/UFMkPzPvn37Ztm8LjXF1dMX/+fHh4eMi9lwCgq6uLdu3aSVtNytpHoibqtSxlvVbGGHbs2FHpshwdHTFp0iT4+fnJvbbc3FyZAeAAsH//fujo6KBz585ViLziJAnrwYMHZbYfOHCgRs9bls8++6zcuqioin4+jYyM0Lp1axw9ehQlJSXS7Xl5eTh58mRlQycahFp2iFaaOnUq9u3bh969e2PJkiVwcnJCREQEfvrpJ0yYMAGurq4AxOMenJyccOzYMXTt2hWWlpaoU6cOnJ2d5co0NzfHggULMHfuXAQGBmLo0KF48+YNFi9eDH19fSxatEgpsTdu3Bjjxo3DDz/8AB0dHfTq1Us6a8jBwQFTp06tdJmmpqbo3LkzwsLCpK8vJiYGu3btUsmqy59++iksLCzwzTffYNGiReByufj1119x8+ZNmf1u3bqFSZMmYeDAgWjUqBF4PB6ioqJw69YtaYvU1q1bERUVhd69e8PR0RFFRUXSWULdunUrN4aaqNey+Pn5gcfjYejQoZg1axaKioqwZcsWZGVlffDY7OxsfPbZZxg2bBiaNGkCExMTJCYmSmcAvcvKygoTJkxAWloaXF1dcerUKezYsQMTJkyAo6OjUl5LeXr27Alvb29Mnz4dOTk5aNWqFeLi4rBv3z4AkBnXVdMCAwOxfv16BAYGYvny5WjUqBFOnTqFs2fPVriMJk2aoEGDBggODgZjDJaWljhx4gTOnTsnt++SJUvQu3dv9OjRA99//z2EQiHCwsJgbGysklZSUkPUOjyafLTKm2U0cuRIZmRkJLe/j48Pa9asmcy21NRUNmzYMGZlZcW4XC5r3LgxCwsLk5lNxBhjf/zxB2vRogXj8/kMABs5ciRjTH42lsTOnTuZp6cn4/F4zMzMjH3++efs7t27FYpT8ro+RCgUstWrVzNXV1fG5XJZnTp12IgRI9jTp0/LLK8is7H++ecfFhAQwCwsLJiJiQnr2bMnu3PnDnNycpK+5vJIZu6EhYXJbL9w4QIDwP7v//5PZruk7hITE6XbYmNjWYcOHZihoSGztrZmY8aMYdeuXZOZMfPy5Us2atQo1qRJE2ZkZMSMjY2Zp6cnW79+PSstLWWMMRYXF8cGDBjAnJycGJ/PZ1ZWVszHx4cdP378g3VQ0Xot6/PEmPh9dXJy+uB5Tpw4wby8vJi+vj6rV68emzlzJjt9+jQDwC5cuFDucUVFReybb75hnp6ezNTUlBkYGLDGjRuzRYsWsfz8fLn4oqOjWevWrRmfz2d2dnZs7ty5TCAQSPcr731797myZmO9/3kq67uQmZnJRo8ezczNzZmhoSHz8/Nj8fHxDMAHZ/eVZdGiRRWq27JIPtvGxsbMxMSEBQQEsNjY2DJnY5X1vWSMsXv37jE/Pz9mYmLCLCws2MCBA1laWlqZs8vCw8OZh4cH4/F4zNHRka1atYpNnjyZWVhYVCl+on4cxhhTeYZFCCGkXL6+vnj9+rV0BW1NsX//fgwfPhyXL1/Gp59+qu5wVEYgEKB58+aoV68eIiMj1R0OqQLqxiKEECLnt99+w7Nnz+Dh4QEdHR3Ex8cjLCwMnTt3rvWJTlBQEPz8/GBnZ4cXL15g69atuH///gdnBBLNRckOIYQQOSYmJjhw4ACWLVuG/Px82NnZYdSoUVi2bJm6Q6txubm5mDFjBl69egUul4uWLVvi1KlTCseMEc1G3ViEEEIIqdVo6jkhhBBCajVKdgghhBBSq1GyQwghhJBa7aMcoCwSiZCeng4TExOlL7NOCCGEkJrBGENubi7s7e0rtbjlR5nspKenw8HBQd1hEEIIIaQKnj59KncNPEU+ymTHxMQEgLiy3r86bnUIBAJERkaie/fu4HK5Siu3tqD6UYzqRzGqn/JR3ShG9aOYNtVPTk4OHBwcpL/jFfVRJjuSritTU1OlJzuGhoYwNTXV+A+MOlD9KEb1oxjVT/mobhSj+lFMG+unskNQaIAyIYQQQmo1SnYIIYQQUqtRskMIIYSQWu2jHLNDCCE1QSQSoaSkROXnFQgE0NPTQ1FREYRCocrPr+mofhTTpPrhcrnQ1dVVermU7BBCiBKUlJTgyZMnEIlEKj83Ywy2trZ4+vQprR1WBqofxTStfszNzWFra6vUWCjZIYSQamKM4fnz59DV1YWDg0OlFjtTBpFIhLy8PBgbG6v83NqA6kcxTakfxhgKCgqQkZEBALCzs1Na2ZTsEEJINZWWlqKgoAD29vYwNDRU+fkl3Wf6+vr0Y14Gqh/FNKl+DAwMAAAZGRmwsbFRWpcWveuEEFJNknEOPB5PzZEQov0kfzAIBAKllUnJDiGEKIkmjHcgRNvVxPeIkh1CCCGE1Goal+xcvHgRffv2hb29PTgcDo4ePSrzPGMMISEhsLe3h4GBAXx9fXH37l01RUsIIYQQTadxyU5+fj68vLywefPmMp8PDQ3FunXrsHnzZiQmJsLW1hZ+fn7Izc1VcaSEEEII0QYal+z06tULy5YtwxdffCH3HGMMGzZswLx58/DFF1/A3d0de/fuRUFBAfbv36+GaAkh5OPl6+uLKVOmaEw5yvDmzRvY2NggJSVF4X5ffvkl1q1bp5qgSLVp1dTzJ0+e4MWLF+jevbt0G5/Ph4+PD2JjYzF+/PgyjysuLkZxcbH0cU5ODgDxSG9ljvYWCAT4+++/weFw0KtXL6WVW1tI6lqZdV6bUP0opsn1IxAIwBiDSCRS26KCkltVn7+y5+zSpQu8vLywfv166bbDhw+Dy+XWWOyVqZ8VK1agT58+cHR0lNl36tSpSElJQXh4OABg/vz56Nq1K77++muYmprWSNyqos7PT1lEIhEYYxAIBHJTz6v6/deqZOfFixcAgLp168psr1u3LlJTU8s9buXKlVi8eLHc9sjISKWuiXHjxg0sWbIExsbG2LhxIywsLJRWdm1y7tw5dYeg0ah+FNPE+tHT04OtrS3y8vLUcrkICVV355eWlqKkpET6B2RVj9HT0wNjrFLlVMWH6qewsBC7du3CoUOH5GKJj49H9+7dpdudnZ3h4OCAXbt2ISgoqMZiViVNGQ5SUlKCwsJCXLx4EaWlpTLPFRQUVKlMrUp2JN6flsYYUzhVbc6cOZg2bZr0cU5ODhwcHNC9e3elZuSdO3fGnj17kJKSgt9++w3Hjx9X+wJNmkQgEODcuXPw8/MDl8tVdzgah+pHMU2un6KiIjx9+hTGxsbQ19cHGAOq+J9yVTDGkJubCxMTE3CMjIBKTN09fPgwli5disePH8PQ0BAtWrRAeHg4jIyMUFxcjFmzZuHgwYPIyclB69atsXbtWrRp0waAOEnh8XjS/0ddXFzw/fff4/vvv5eW37JlS3z++edYtGgRRo8ejcuXL+Py5cvYunUrACApKQlff/21TGvPh84LiFuIPDw8oK+vj127doHH42H8+PFYtGhRufUTERGBoKAgPHr0CPXq1QMAjB07FomJiYiJicHly5fB5XLRrVs36bECgQAmJiYQCAS4cuUKli1bhrZt2yIuLg79+/fHsWPHMHXq1ArXtyaS+fxowPIJRUVFMDAwQOfOncXfp3dUNSHWqmTH1tYWgLiF591lpDMyMuRae97F5/PB5/PltnO5XKX+p2lsbIzp06dj5syZiIyMxNatW2W+9ERM2fVe21D9KKaJ9SMUCsHhcKCjoyP+Ayc/H1Bx14a55E5eHmBkVKFjnj9/juHDhyM0NBQDBgxAbm4u/vzzT+lrCQ4OxpEjR7B37144OTkhNDQUvXr1wuPHj2FpaQkA0n0l3n/87rZNmzbh0aNHcHd3x5IlSwAA1tbWcsdV5LwAsG/fPkybNg0JCQmIi4vDqFGj0LFjR/j5+cmcX9I1M2TIEISGhmL16tXYvHkzFi9ejMjISMTHx8PCwgKXLl1C69atZeLncrm4dOkS2rVrhxs3bqBu3brSlYbbtWuHVatWQSAQlPkboy0k9VPWe6cOOjo64HA4ZX7Xq/rdV/+rqoT69evD1tZWphm7pKQEMTEx+PTTT9UY2X8cHBwQGhoKAJg1axZu3bql5ogIIaRsz58/R2lpKb744gs4OzvDw8MDEydOhLGxMfLz87FlyxaEhYWhV69eaNq0KXbs2AEDAwPs2rWrSuczMzMDj8eDoaEhbG1tYWtrKzcmozLn9fT0xKJFi9CoUSMEBgaidevWOH/+fLnn53A4WL58OXbu3IkVK1Zg48aNOHPmjLSVJyUlBfb29jLH6OjoID09HVZWVvDy8oKtrS3MzcWpZb169VBcXCwdYkE0l8a17OTl5eHx48fSx0+ePMGNGzdgaWkJR0dHTJkyBStWrECjRo3QqFEjrFixAoaGhhg2bJgao5Y1fvx4nD17FhERERg+fDiuXLkivd4HIeQjYGgobmFREZFIhJycHJiamkKnEuMQvby80LVrV3h4eKBHjx7o3r07vvzyS1hYWCApKQkCgQDe3t7S/blcLtq2bYv79+/XxMsAgEqd19PTU+axnZ2d9CKS5enTpw+aNm0qbdVp1qyZ9LnCwkK5bhMAuH79Ory8vOS2S/5fr+o4EqI6GpfsXL16FZ999pn0sWSszciRI7Fnzx7MmjULhYWFmDhxIrKystCuXTtERkbCxMREXSHL4XA42L17Nzw8PHDnzh3s27ev3JlihJBaiMOpcFeSUohEgFAoPmclxlzo6uri3LlziI2NRWRkJH744QfMmzcPCQkJ0hk6lRkjqaOjIz1OorKzZypz3ve7NDgczgdnE509exZ///03hEKh3PCHOnXqICsrS+6YGzdulJnsZGZmAvivK45oLo3rxvL19QVjTO7fnj17AIg/zCEhIXj+/DmKiooQExMDd3d39QZdBhsbG+zduxc//fQTxo0bp+5wCCGkTBwOB97e3li8eDGuX78OHo+H8PBwNGzYEDweD5cuXZLuKxAIcPXqVbi5uZVZlrW1NZ4/fy59nJOTgydPnsjsw+PxpBdOLUtVzltR165dw8CBA7Ft2zb06NEDCxYskHm+RYsWuHfvntxxt2/flmtFAoA7d+7gk08+QZ06daoVF6l5GteyU5v07NlT3SEQQki5EhIScP78eXTv3h02NjZISEjAq1ev4ObmBiMjI0yYMAEzZ86UDiMIDQ1FQUFBuVOtu3Tpgj179qBv376wsLDAggUL5MbkODs7IyEhASkpKTA2NpYZcAygSuetiLS0NPTt2xfBwcH46quv0LRpU7Rp0wZ//fUXWrVqBQDo0aMH5syZg6ysLJmlQ0QiEW7duoX09HQYGRnBzMwMAPDnn3/KrPtGNJfGtezUVtnZ2QgNDdWIBZsIIQQATE1NcfHiRfj7+8PV1RXz58/H2rVrpYuirlq1CgEBAfjqq6/QsmVLPH78GGfPni13DbE5c+agc+fO6NOnD/z9/dG/f380aNBAZp8ZM2ZAV1cXTZs2hbW1NdLS0uTKqex5PyQzMxMDBw5E3759MXfuXABAq1at0LdvX8ybN0+6n4eHB1q3bo1Dhw7JHL9s2TIcPHgQ9erVk84iKyoqQnh4OMaOHVulmIiKsY9QdnY2A8Cys7OVWm5JSQk7evQoKykpkdkuEAiYu7s7A8DCwsKUek5tUl79EDGqH8U0uX4KCwvZvXv3WGFhoVrOLxQKWVZWFhMKhWo5v6arTP1EREQwNze3D+67efNm5ufnp6wQ1UrTPj+Kvk9V/f2mlh0V0NPTw3fffQdA/JdPfHy8miMihBBSFn9/f4wfPx7Pnj1TuB+Xy8UPP/ygoqhIdVGyoyJjx47F4MGDUVpaisGDB5c54p8QQoj6ff/993BwcFC4z7hx49C4cWMVRUSqi5IdFeFwONi+fTsaNGiAtLQ0fP3113JTNAkhhBCifJTsqJCpqSkOHToEHo+Ho0ePYvPmzeoOiRBCCKn1KNlRsZYtW2LNmjUAgPXr16O4uFjNERFCCCG1G62zowaTJk1Cfn4+goKCtPricYQQQog2oGRHDTgcDoKDg9UdBiGEEPJRoG4sDbB3715s2bJF3WEQQgghtRK17KhZVFQURo0aBT09PXh6espc6ZcQQggh1UctO2r22WefSdffGTRoEF6+fKnukAghhJAakZycjBMnTqj8vJTsqBmHw8HOnTvh5uaG9PR0DBkyBKWlpeoOixBCCFG606dP4++//1b5eSnZ0QDGxsY4cuQIjI2NER0dLXNhOkIIIUSbXL9+Hb6+vmjYsCH27t2LAQMGIDMzEzExMZg/fz527NiBFi1aoLCwUGUxUbKjIZo0aYLdu3cDAEJDQxEeHq7miAgh5OPg6+uLKVOmaOQx2iY/Px9Dhw7F7t27ER0djQULFqBBgwawtLSEj48P3N3dcf78eVy/fh0GBgYqi4sGKGuQgQMHYurUqVi/fr1amvkIIaS28/X1RfPmzbFhwwbptiNHjoDL5aoxKu3SqlWrMhfEjYyMRHx8PHx8fODi4oLS0lK8fPkSU6dOle7zzz//fPC6YzWBkh017YTbAAAgAElEQVQNs3r1avTv3x+dO3dWdyiEEPJRsLS0VHcIWuWvv/4q97mbN2+iRYsWAIB79+7B29sb9erVAyBOdCT3VY26sTQMl8uVSXSKiorogqGEkBrDGENoaChcXFxgYGAALy8vHD58GADw6tUr2NraYsWKFdL9ExISwOPxEBkZCUDcUjJp0iRMmjQJ5ubmsLKywvz582X+3youLsbkyZNhY2MDfX19dOzYEYmJiTJx+Pr6YvLkyZg1axYsLS1ha2uLkJCQCsVZ0TJGjx6NmJgYbNy4ERwOBxwOBykpKXLdS2fOnEHHjh2lr6dPnz5ISkqqVL3m5+cjMDAQxsbGsLOzw9q1aytV9wAgEomwevVqNGzYEHw+H46Ojli+fHmF4ty3bx+srKzkWmACAgIQGBioMPanT59i+PDhsLCwgIWFBYYNG4asrKwKvW4ul4unT59CJBJhwYIFKCkpkT735MkT2NvbV6gcZaNkR4OlpaXh008/lfmPhhBClGn+/Pn4+eefsWXLFty9exdTp07FiBEjEBMTA2tra+zevRshISG4evUq8vLyMGLECEycOBHdu3eXlrF3717o6ekhISEBmzZtwvr167Fz507p87NmzcLvv/+OvXv34tq1a2jYsCF69OiBzMxMmVj27t0LIyMjJCQkIDQ0FEuWLMG5c+c+GGdFy9iwYQM6dOiAsWPH4vnz53j+/HmZXSr5+fmYNm0aEhMTcf78eejo6GDAgAEQiUQVrteZM2fiwoULCA8PR2RkJKKjo+VaRD70mubMmYPVq1djwYIFuHfvHvbv34+6detWKM6BAwdCKBTi+PHj0v1fv36NkydPYvTo0eXG/fjxY7Rq1QoNGjRAXFwc/vjjDyQlJWHmzJkVet0jRozAyZMn4ebmhoEDBwIAfvrpJwCAu7s7Hj16BA8PD9UP1WAfoezsbAaAZWdnK7XckpISdvToUVZSUqKU8nZv384AMA7AjgcEMJaXp5Ry1UXZ9VPbUP0opsn1U1hYyO7du8cKCwtltufl5ZX7rzL7FhQUKNw3JyeH/fPPP0woFFYq7ry8PKavr89iY2NltgcFBbGhQ4dKH0+cOJG5urqy4cOHM3d3d5nYfXx8mJubGxOJRNJts2fPZm5ubtJzcLlc9uuvv0qfLykpYfb29iw0NFSmnI4dO8rE0aZNGzZ79uwKx1leGbNmzWJZWVlMKBQyHx8f9v3338vsU9a2d2VkZDAA7Pbt2xU6Jjc3l/F4PHbgwAHptjdv3jADAwPpMR96TTk5OYzP57MdO3aUG9eH4pwwYQLr1auX9PkNGzYwFxcXmfeKMcaEQqG0frp27coWLlwo8/zhw4dZ/fr1KxxHdZX3fWKs6r/fNGZHUzGG0Rcv4iqAnwAM//13JDx9CrfYWEBXV93REUIqwNjYuNzn/P39ERERIX1sY2ODgoKCMvf18fFBdHS09LGzszNev34tt59QKKxUfPfu3UNRURH8/PxktpeUlEjHXQDAmjVr4O7ujkOHDuHq1avQ19eX2b99+/bgcDjSxx06dMDatWshFAqRlJQEgUAgszo8l8tF27Ztcf/+fZlyPD09ZR7b2dkhIyOjwnEqKqMykpKSsGDBAsTHx+P169fSFp20tDS4u7tX6PiSkhJ06NBBus3S0hKNGzeWPv7Qa7p//z6Ki4vRtWvXKsc5duxYtGnTBs+ePUO9evXw888/Y9SoUTLv1btSU1Nx/vx5xMbGynS7CYVCtQwqViZKdjTVwYPAL79gg44O7nzyCS6mpeHzK1eQEBYGC7qIKCFECSQ/jhEREXIDR/l8vvR+cnIy0tPTIRKJkJqaKpdQKML+Hbvz/g8sY0xu2/szojgcDkQiUYXjVFRGZfTt2xcODg7YsWMH7O3tIRKJ4O7uLjP+RBFWgXGWH3pNb9++rXacLVq0gJeXF/bt24cePXrg9u3bClcvvnnzJiwtLZGQkCD3nCqnidcESnY0kVAI/DuojrtwIQ5PnIjWTZrgUWYmhi1ciJPffgtdExP1xkgI+aC8vLxyn9N9r4VWUeuDjo7s8MqUlBSZxyKRCDk5OZWOr2nTpuDz+UhLS4OPj0+Z+5SUlGD48OEYPHgwmjRpgqCgINy+fVtm7Eh8fLzMMfHx8WjUqBF0dXXRsGFD8Hg8XLp0CcOGDQMACAQCXL16tcJrzlQkzori8XgKW8DevHmD+/fvY9u2bejUqRMA4NKlS5U6R8OGDcHlchEfHw9HR0cAQFZWFh4+fCiN/0OvydraGgYGBjh//jzGjBlT5TjHjBmD9evX49mzZ+jWrZvCFhoul4vc3FzY2dnByMioUq9Z01Gyo4lOnwYePAAsLYFp02BtYoKjZ8/Cu21bnBEIsHTYMISo4doihJDKqcwPRnX2FYlEle7CAgATExPMmDEDU6dOhUgkQseOHZGTk4PY2FgYGxtj5MiRmDdvHrKzs7Fp0yYYGxvj9OnTCAoKwsmTJ6XlPH36FNOmTcP48eNx7do1/PDDD9JuECMjI0yYMAEzZ86EpaUlHB0dERoaioKCAgQFBSktzopydnZGQkICUlJSYGxsLDft3MLCAlZWVti+fTvs7OyQlpaG4Eq2phsbGyMoKAgzZ86ElZUV6tati3nz5skkrRV5TbNnz8asWbPA4/Hg7e2NV69e4e7duwgKCqpwnMOHD8eMGTOwY8cO7Nu3T2Hc7dq1g6mpKb766issXLgQxsbGePz4MU6fPo2NGzdWqg40DSU7muiXX8S3gYHAvy04LVq3xs8jRmD1//6H0e/9VUcIIVW1dOlS2NjYYOXKlUhOToa5uTlatmyJuXPnIjo6Ghs2bMCFCxdgamoKAPjf//4HT09PbNmyBRMmTAAABAYGorCwEG3btoWuri6+++47jBs3TnqOVatWQSQS4auvvkJubi5at26Ns2fPwsLCQilxVsaMGTMwcuRING3aFIWFhXjy5InM8zo6Ojhw4AAmT54Md3d3NG7cGJs2bYKvr2+lzhMWFoa8vDz069cPJiYmmD59OrKzsyv1mhYsWAA9PT0sXLgQ6enpsLOzwzfffFOpOE1NTREQEICIiAj0799fYcyWlpY4deoUZs+eDR8fHzDG0LBhQ3z11VeVeu2aiMMq0rlYy+Tk5MDMzAzZ2dnSL7AyCAQCnDp1Cv7+/lVfjTM3F7CxAYqKgKtXgVat/nsuIwOltrbQYwxISgJcXJQTuIoopX5qMaofxTS5foqKivDkyRPUr19fbvCuKki6sUxNTeW6vGpaWSsSaxp11o8m8PPzg5ubGzZt2lTm85pWP4q+T1X9/Vb/qyKyoqLEiU6DBkDLlrLP2dhA77PPxPcPH8bRo0eRnJys+hgJIYRovMzMTBw4cABRUVH49ttv1R2OWlE3lqY5c0Z86+8PlDU9MCAAiIrC3l27MOrhQ7i5uSE2Nhbm5uaqjZMQQohGa9myJbKysrB69WqZae8fI0p2NAlj/yU7PXuWvU+PHgCAbklJqGdvj/v372PQoEGIiIjQuKZ9Qkjt9+76P0SzvD9r72Omdd1YpaWlmD9/PurXrw8DAwO4uLhgyZIllV5HQSOlpQEpKYCeHlDe9MoGDYD69VFPKMSJWbNgaGiIc+fO4bvvvqNraBFCCCFl0LpkZ/Xq1di6dSs2b96M+/fvIzQ0FGFhYfjhhx/UHVr1Xb4svm3ZElA0DfXfFTdbpKbit99+A4fDwbZt2zR6gCAhhBCiLlqX7MTFxeHzzz9H79694ezsjC+//BLdu3fH1atX1R1a9UmSnXeWVS9Tx47i2/h49OvXD2FhYQCA6dOnK1wdkxBCCPkYad2YnY4dO2Lr1q14+PAhXF1dcfPmTVy6dElhq0ZxcbHMZe4lK40KBAIIBAKlxSYpq6pl6l26BA6A0rZtwRSV0aoVuADYtWsozcvDd999h/v372PXrl2Ij49Hz/LG+6hZdeuntqP6UUyT60cgEIAxJnNpA1WSdGFLYiCyqH4U07T6EYlEYIxBIBDIrTRe1e+/1q2zwxjD3LlzsXr1aujq6kIoFGL58uWYM2dOuceEhIRg8eLFctv3798PQ0PDmgy3wnSKi9F76FDoiEQ4u3MniurUKX9nxtAzMBD83FzEhIbirasrSktLkZiYKHPhOUKIaujp6cHW1hYODg7g8XjqDocQrVZSUoKnT5/ixYsXKC0tlXmuoKAAw4YNq/Q6O1qX7Bw4cAAzZ85EWFgYmjVrhhs3bmDKlClYt25duUuGl9Wy4+DggNevXyt9UcFz587Bz8+v0jOjOH/9Bb0OHcDq1EHps2dlTzt/h27//tA5dQrCdesgmjRJ7vmioiIUFBTILYWuTtWpn48B1Y9imlw/xcXFSEtLg5OTk1oumMgYQ25uLkxMTMq9ovXHjOpHMU2rn8LCQqSmpsLR0VHuQq85OTmoU6dOpZMdrevGmjlzJoKDgzFkyBAAgIeHB1JTU7Fy5cpykx0+ny9XYYD4omc18Z9mlcq9cwcAwGneHNyK/GXYoQNw6hR0ExOh+965srKy0L9/fxQXFyMqKkpjWq8kaqreawuqH8U0tX44HA5KS0vVsgKtpOuBw+FoxAq4mobqRzFNq5+ioiJwOBwYGBjIdWNV9buvdclOQUGB3Juhq6urEf2M1XLjhvi2RYuK7d++vfj2vasNA+KrJ9+5cweZmZkYOnQofv/9d+jpad1bTYjW0NPTg6GhIV69egUul6vyHwyRSISSkhIUFRVpxI+VpqH6UUxT6ocxhoKCAmRkZMDc3Fwu0akOrfsF7Nu3L5YvXw5HR0c0a9YM169fx7p16/D111+rO7TqkSQ7zZtXbH/JpSSePAGyswEzM+lTjRs3xvHjx9GtWzccP34ckyZNwpYtWzSieZKQ2ojD4cDOzg5PnjxBamqqys/PGENhYSEMDAzoe14Gqh/FNK1+zM3NYWtrq9QytS7Z+eGHH7BgwQJMnDgRGRkZsLe3x/jx47Fw4UJ1h1Z1IhFw86b4fkWTHUtL4JNPgH/+EXeBvTdd3dvbG/v370dAQAC2bdsGBwcHzJs3T8mBE0IkeDweGjVqhJKSEpWfWyAQ4OLFi+jcubNGdvGpG9WPYppUP1wuV6ktOhJal+yYmJhgw4YNtWsBvaQkIC8P0NcHXF0rfpyXlzjZuXmzzLV5BgwYgE2bNuG7777D/PnzYW9vj9GjRysxcELIu3R0dNRy1XNdXV2UlpZCX19f7T9WmojqR7GPoX6o81IT3L4tvm3WTHypiIry9BTf3rpV7i6TJk3C7NmzAQDBwcHIzc2tapSEEEKIVtK6lp1a6cED8a2bW+WOq0CyAwArV66ESCTCyJEjYWJiUoUACSGEEO1FyY4m+Ptv8W3jxpU77t1kRyQCyhlFz+FwEBoaKrOtpKSEFj8jhBDyUaBuLE0gadlp0qRyx7m6Anw+kJ8vnpVVQRcuXEDjxo1x7969yp2PEEII0UKU7KgbY1Vv2dHTA5o2Fd//d1HCD5+OYfHixUhJSYGfnx+eVCJJIoQQQrQRJTvqlpEhXieHwwEaNar88ZLWIEnr0AdwOBz8/vvvaNasGdLT0+Hn54cXL15U/ryEEEKIlqBkR90krTrOzuKp55UlSXYk5VSAlZUVIiMj4ezsjKSkJHTv3h1ZWVmVPzchhBCiBSjZUbeqjteRqEKyAwD29vb4448/YGtri9u3b6Nnz57IycmpWgyEEEKIBqNkR92qOl5H4t1kp5IXsG/QoAEiIyNhZWWFK1euICwsrGoxEEIIIRqMkh11e/xYfFuV8TqS4zgcICsLeP260od7eHjg3LlzCAoK0u5LbhBCCCHloGRH3SSzoRo0qNrxBgbi8T5ApbuyJFq0aIGdO3dKlwlnjKG4uLhq8RBCCCEahpIddWIMSE4W33dxqXo5ki6wKiY77xKJRJg4cSL69+9PCQ8hhJBagZIddcrIAAoKxN1QTk5VL6eKg5TL8vDhQ+zbtw9nzpzBwIED1XIFZ0IIIUSZKNlRJ0mrziefANW5dIPkSumS8T/V0KRJE5w4cQL6+vo4ceIEhg4dCoFAUO1yCSGEEHWhZEedlNGF9e7xkvKqqUuXLjh69Ch4PB6OHDmCwYMHUwsPIYQQrUXJjjpJBidXN9mRDG5OTq709PPy9OjRA+Hh4eDz+QgPD0dAQACN4SGEEKKVKNlRJ2W17Dg5ia94XlAAKPHSD/7+/jh+/Dj09fVx5swZXLlyRWllE0IIIaqip+4APmqSZKd+/eqVw+UCjo5ASgqQlATY2VU7NInu3bsjIiICmZmZ6NSpk9LKJYQQQlSFkh11UlbLDiDuykpJEZfZsWP1y3tHly5dZB4/ffoUFhYWMDY2Vup5CCGEkJpA3VjqIhAA//wjvi9ZFLA6JON2kpKqX5YCT58+hY+PD11LixBCiNagZEddnj0TDybmcoG6datfnqR1qIaTnYyMDGRlZeHy5cvo3r07MjMza/R8hBBCSHVRsqMuT5+Kbz/5RDy4uLrenZFVg1q1aoXz58/D0tISCQkJ8PHxwfPnz2v0nIQQQkh1ULKjLpJkx8FBOeWpqBsLAFq2bImYmBjY2dnhzp076NixI55IptETQgghGoaSHXVRdrIj6cbKyAByc5VTpgLu7u64dOkSXFxckJycDG9vb/ythMtVEEIIIcpGyY66SJIdR0fllGdmBlhZie+rqJXFxcUFly5dgru7OywsLGBtba2S8xJCCCGVQVPP1UUyE0tZLTuAuHXnzRtxV5anp/LKVcDOzg4xMTEoKiqClSTZIoQQQjQIteyoi7K7sQClXyOroiwtLWFvby99vG3bNoSHh6s0BkIIIaQ8lOyoS00kO05O4tu0NOWVWUkxMTGYMGECvvzyS2zdulVtcRBCCCESlOyoQ1ER8OqV+H5NJDupqcors5K8vb0RFBQEkUiECRMmYP78+WBKujgpIYQQUhWU7KiDZLyOoSFgYaG8cjUg2dHT08P27dsREhICAFi+fDlGjx4NgUCgtpgIIYR83LQy2Xn27BlGjBgBKysrGBoaonnz5vjrr7/UHVbFvduFxeEor1wN6MYCAA6Hg0WLFmHHjh3Q1dXF3r170bdvX+SqYEo8IYQQ8j6tS3aysrLg7e0NLpeL06dP4969e1i7di3Mzc3VHVrF1cR4HeC/aeyZmUBennLLroIxY8bg2LFjMDQ0xNmzZ2nQMiGEELXQuqnnq1evhoODA37++WfpNmdlXEhTlWoq2TE1BczNgbdvxV1ZzZopt/wq6N27Ny5cuIBTp07hq6++wunTp9UdEiGEkI+M1iU7x48fR48ePTBw4EDExMSgXr16mDhxIsaOHVvuMcXFxSguLpY+llytWyAQKHUsiaSsD5Wpk5oKXQBCe3uIlDyWRc/REZy3b1GalATm6qrUsquqRYsWaNGihbReXr16hYcPH8Lb21vNkWmWin5+PlZUP+WjulGM6kcxbaqfqsaodclOcnIytmzZgmnTpmHu3Lm4cuUKJk+eDD6fj8DAwDKPWblyJRYvXiy3PTIyEoaGhkqP8dy5cwqfb3ftGmwB3Hr7FmmnTin13G35fNgBuHv6NFI0cBZUaWkp/P39cefOHXzzzTfw8/NTd0ga50Ofn48d1U/5qG4Uo/pRTBvqp6CgoErHcZiWzQvm8Xho3bo1YmNjpdsmT56MxMRExMXFlXlMWS07Dg4OeP36NUxNTZUWm0AgwLlz5+Dn5wcul1vufnqtWoFz+zZKT5wA69FDaecHAJ0pU6D7008QzpwJ0fLlSi27ugQCASIiInDo0CEcPnwYADBt2jSsWLECOsq48ruWq+jn52NF9VM+qhvFqH4U06b6ycnJQZ06dZCdnV2p32+ta9mxs7ND06ZNZba5ubnh999/L/cYPp8PPp8vt53L5dbIG/vBcl+8ACDucoKyz1+/PgBA959/oKuBH1oej4dff/0VzZo1w+LFi7Fu3TokJyfjl19+gZGRkbrD0wg19bmsLah+ykd1oxjVj2LaUD9VjU/r/pz29vbGgwcPZLY9fPgQTpJp15pOIPhvQUE7O+WXrwFr7XwIh8NBSEgIfv31V/B4PBw9ehSdO3fGs2fP1B0aIYSQWkjrkp2pU6ciPj4eK1aswOPHj7F//35s374d3377rbpDq5h/W3Wgp/ffVcqVSTL9XM1r7VTEsGHDcOHCBVhbW+PatWsYNGgQrbZMCCFE6bQu2WnTpg3Cw8Px22+/wd3dHUuXLsWGDRswfPhwdYdWMc+fi2/t7ICaGKciadlJTxe3Imm4Tz/9FAkJCWjfvj22bdsGjjIXWSSEEEKghWN2AKBPnz7o06ePusOomneTnZpgYwPw+UBxsfiyFP+O4dFk9evXR2xsrEyiEx8fjzZt2kBXV1eNkRFCCKkNtK5lR+ulp4tvayrZ0dH5b7FCLejKkng30bl8+TI6d+4Mf39/ZGZmqjEqQgghtQElO6pW0y07APDJJ+JbLR3w++rVK3C5XERGRqJt27a4c+eOukMihBCixSjZUTVJsmNvX3PnkCQ7kqura5n+/fsjNjYWzs7OSEpKQvv27XHkyBF1h0UIIURLUbKjaqps2dHSZAcAvLy8cPXqVXTp0gX5+fkICAjA/PnzIRQK1R0aIYQQLUPJjqrV9JgdAKhXT3yrpd1YElZWVjh79iymTp0KAFi+fLl05WVCCCGkorRyNpZWo5adStHT08O6devQqlUrnDlzBoMGDVJ3SIQQQrQMteyoklAIZGSI79OYnUoZPnw4/ve//0lnbeXm5mLnzp20CCEhhJAPomRHlTIyAJFIPD3c2rrmziNJdl68AEpLa+48asIYw7hx4zB27FgMHDgQOTk56g6JEEKIBqNkR5Uk43Xq1gVqcrE8Gxvx5ShEov8uT1HLeHt7g8vl4vfff0fr1q1x69YtdYdECCFEQ1Gyo0qqmHYOiFuOJOeoRV1ZEhwOB5MmTcKff/4JBwcHPHr0CO3atcP27dupW4sQQogcSnZUSRWDkyVq4bid97Vr1w7Xr19Hr169UFRUhPHjx2PgwIHIyspSd2iEEEI0CCU7qqSKaecSkunntTjZAcTT00+ePIk1a9aAy+Xi8uXLEGjBBVAJIYSoDk09VyXJ+BlVtuxo+Vo7FaGjo4Pp06fDx8cHBQUFsLGxkT4nEomgUxNXlyeEEKI16FdAlV6+FN/WrVvz5/oIurHe17p1a3Tu3Fn6+Ndff0XXrl3x7CNI+AghhJSPkh1VkqyxQ8lOjSsuLsbMmTMRHR0NT09PurYWIYR8xCjZUSVJy8473Sw1ppZcMqKq+Hw+oqOj0bJlS2RmZiIgIAAjR45Edna2ukMjhBCiYpTsqJKkZUcVyc67Y3ZEopo/nwZydXVFXFwcgoODoaOjg3379sHT0xPR0dHqDo0QQogKUbKjKkVFgGSlX1V0Y9nZARwOUFICvH5d8+fTUDweDytXrsTFixfh4uKCtLQ0dO3aFcnJyeoOjRBCiIrQbCxVkbTqcLmAmVnNn4/HEydVL16Ix+2oojVJg3l7e+PGjRuYPn06jI2N4eLiou6QCCGEqAi17KjKu11Y/17MssZ95ON23mdiYoLt27djzZo10m1JSUlYtWoVSmvhNcQIIYSIUbKjKqqciSXxkc/IKo9k3R2hUIjAwEDMmTMH7du3p+trEUJILUXJjqqociaWxEeyinJV6ejoYPz48TA3N8dff/2FVi1bIsTfHyU3b6o7NEIIIUpEyY6qqHImloTkYqCSa3IRGRwOB4GBgbi3eTP6c7koFQqx+PRptGreHFcHDwaoa4sQQmoFSnZURR3dWJLLUlCyU76LF2E3ahSOCAQ4aGeHOlwu7gBod+gQzn/+ubqjI4QQogSU7KiKOrqxJC07kguQEllv3wL/tuBwAgIwKCUF9549w1Bvb3gA6HzqFPC//6k7SkIIIdVEyY6qqKMbi1p2FFu4UDw1v3FjYN8+gMeDtbU19l+6hD/nzQMXAKZNQ/Hz51iwYAEyMzPVHTEhhJAqoGRHVVR5EVAJScvOq1fixQXJf9LTgW3bxPc3bwYMDWWeNlm0CGjWDHj9GmFDhmDZsmVo0qQJ/ve//4ExpoaACSGEVBUlO6qijpYdKytA7991IyXJFhHbtEmcAHp7A926yT/P5QIrVgAAfBMT0bRxY7x69QqBgYHo1q0bHj58qOKACSGEVBUlO6ogEolbVwDVJjs6Ov91ZdG4nf/k5ABbtojvz55d/n59+wLNm6NjYSGujxyJFStWQF9fH1FRUfDw8EBISAiKiopUEzMhhJAqo2RHFTIzAaFQfN/aWrXnpnE78g4fFic8rq5A797l78fhAJMmAQB4u3ZhzuzZuHv3Lnr27ImSkhIsXrwY3333nYqCJoQQUlVan+ysXLkSHA4HU6ZMUXco5ZN0YVlYiK9ZpUo0I0ver7+Kb0eOFLd+KTJkCGBqCiQlAefPw8XFBadOncLBgwdRv359zFbUMkQIIUQjaHWyk5iYiO3bt8PT01PdoSimjvE6EtSyI+vZM+DCBfH9YcM+vL+RERAYKL6/axcA8WKEgwYNwqNHj9CwYUPprpMnT8bChQtRUFCg7KgJIYRUg9YmO3l5eRg+fDh27NgBCwsLdYejmDpmYklQy46sAwcAxoBOnQBn54odI0l2TpwA3klkdHV1pffv3buHzZs3Y+nSpXBzc8Phw4dp1hYhhGgIrU12vv32W/Tu3RvdyppJo2moZUdzHDsmvh08uOLHtG4tTowKCoBTp8rcxc3NDYcOHYKjoyPS0tIwcOBAdOvWDXfv3q1+zIQQQqpFT90BVMWBAwdw7do1JCYmVmj/4uJiFBcXSx/n5OQAAAQCAQQCgdLikpT1fpk6z59DF4CwTh2IlHi+iuDY2EAPAHv2DKUqPvf7yqsflcnMhF5sLDgABD16AJWIQycgALpr10L0228QlnMZic8//xx+fn4ICwvDmjVrEBUVBS8vL4wbNw6LFy+GucQlWIgAACAASURBVLm5wnOovX40HNVP+ahuFKP6UUyb6qeqMWpdsvP06VN8//33iIyMhL6+foWOWblyJRYvXiy3PTIyEobvLSanDOfOnZN57HX1KpwBPHr7Fg/KaRmoKabJyfgMQHFqKs6q+Nzleb9+VKXexYtoLRQix9ERF+7eBSrR6mJmZwdfAKKTJ3EmPBwiPr/cfdu0aYNNmzbh559/Rnx8PH755Rd07NgRRkZGFTqXuupHW1D9lI/qRjGqH8W0oX6qOiaSw7RsYMHRo0cxYMAAmfESQqEQHA4HOjo6KC4ulnkOKLtlx8HBAa9fv4apqanSYhMIBDh37hz8/PzA5XKl23UDAqBz4gSEmzdDNG6c0s5XIRkZ4H7yiTi+/HzxYnlqUl79qIruyJHQ+e03CKdPh2jlysodzBj0XFzAefYMpSdOgPXoUaHDoqOj8ebNGwQEBPxbDMOZM2fQo0cP6Lw3E0zd9aPpqH7KR3WjGNWPYtpUPzk5OahTpw6ys7Mr9futdS07Xbt2xe3bt2W2jR49Gk2aNMHs2bPlEh0A4PP54JfxlziXy62RN1au3NevAQC6dnbQVfUHyc5OvIpyaSm4mZnAv4mPOtVUvSskEgH//tWi269f1d4Hf39gxw7oRUYCffpU6BA/Pz+Zx7///ju+/PJLtGnTBmvWrEHnzp3ljlFL/WgRqp/yUd0oRvWjmDbUT1Xjq9YAZYFAgKdPn+LBgwcqu0iiiYkJ3N3dZf4ZGRnBysoK7u7uKomh0tQ5QFlHB7C1Fd//mGdk3b0rTjoNDYEOHapWhr+/+DYiQjyjqwqysrJgYmKCxMRE+Pj4YMCAAXjw4EHV4iGEEFIhlU528vLysG3bNvj6+sLMzAzOzs5o2rQprK2t4eTkhLFjx1Z44PBH49+WHZWvnixBM7KA6GjxbceOVe/K69ZNfGxyMlDFBGXMmDF49OgRvvnmG+jq6uLo0aNo2rQpgoKCkJaWVrW4CCGEKFSpZGf9+vVwdnbGjh070KVLFxw5cgQ3btzAgwcPEBcXh0WLFqG0tBR+fn7o2bMnHj16VFNxy4iOjsaGDRtUcq5KEwiA7Gzx/Tp11BMDrbXzX7Lj61v1MoyNAUm30x9/VLmYunXrYsuWLbh16xb69esHkUiE3bt3Y/jw4VWPjRBCSLkqNWYnNjYWFy5cgIeHR5nPt23bFl9//TW2bNmC3bt3IyYmBo0aNVJKoFrrzRvxrY4O8IGpxzXmY2/ZEYmAmBjx/eokOwDQpQtw/rx4FeZ/r5tVVU2bNsWxY8cQFxeHuXPnYtq0aRCJRADEMw4EAgHMzMyqFy8hhJDKtez83//9nzTR6dChg3S9mvfp6+tj4sSJGDNmTPUj1HaSLixLS6CMwdMq8bG37Ny9K046DQ3FCwRWx2efiW+jo8VJlBJ06NABUVFR6PHODK8NGzagfv36CA0NpctPEEJINVV5gHJCQgKKiorktufk5GDmzJnVCqpWkSQ76urCAv5Ldj7Wlp24OPFt+/bVn3rfurX4elmZmcB7swKrg8PhgMPhABBPT4+IiEBWVhZmz54NFxcXrF27Fvn5+Uo7HyGEfEwqnex88cUXWLVqFTgcDjIks4zekZ+fj3Xr1ikluFpBE5IdSTfWx9qyk5Agvm3fvvplcbniQc7Af+OAlIzD4eDixYvYu3cvnJ2d8fLlS8yYMQMuLi4ICwujpIcQQiqp0smOk5MTTp48CcYYvLy8YGNjAz8/P8yYMQP79u3D2rVrYSf5cSWakex87C07kmSnXTvllCfpypJcPb0G6OrqIjAwEA8fPsTOnTtRv359ZGRkYNasWZg+fXqNnZcQQmqjSi8quH79egDihfouXbqE9PR0XL9+HTdu3EB4eDhEIhFCQ0OVHqjW0oRkR5J8ZmQApaXiRQY/Fjk5wL174vvKTnZiYgChsEbHYnG5XAQFBSEwMBC//PILVq1ahalTp0qff/nyJQwNDWFiYlJjMRBCiLar8q9efn4+9P790fy8nAsjEmhGsmNtLf5BFgqBly+BevXUF4uqXb0qXgDQyQmoW1c5ZbZsCZiYAG/fAnfuAF5eyilXAS6Xi9GjR2PUqFHSsT3/z959h0dVbQ0c/s2kEUooCUUg9N47SBGkC4qAqJSLIuW7FlAQ7FeEi4pKUVBEEQUviKCABSkmNJEmhF6lSSeQBJIQEtJmvj82Z5JACMlkyjkz632ePGeSTM7ZszPJrNl77bUBxo0bx6pVqxg1ahQjR44kxJ3PMyGE0Cm7E5R9vWl0ID/0EOx4cxVlR09hgRoZ086nJT+7SOZAJzk5md27d3P16lUmTpxIxYoVeemll6Q4oRBC3CZPwU5e/4leuHAhT/f3SHoIdiAj2Ll82b3tcDVnBDsArVur49atjj1vHgQEBLB//36WLFlC48aNSUxMZObMmVStWpWnnnqKQ3nY1V0IITxZnoKd5s2bM2LECHbs2HHX+8TFxfHVV19Rr149li9fnu8GGp7egp3ISPe2w5WsVucFO9r+Wi4e2bmdj48PTzzxBLt27SIsLIyOHTuSlpbGggULWLFihVvbJoQQepGnuagjR47w/vvv0717d/z8/GjWrBlly5alQIECXLt2jcOHD3Po0CGaNWvGlClTeOihh5zVbuPQS7DjjVWUL15UwZ2Pj8qzcSQteDpxQiV+u2OT10xMJhNdunShS5cu7Ny5kxkzZvDss8/avr9u3TquXbtG7969ZQpaCOF18jSyU6JECaZOncrFixeZPXs2NWrUIDo62rYH1qBBg9i1axdbtmyRQEejl2DHG0d29u5Vx9q1ITDQsecuXhzq1FG3t2937LnzqXnz5ixcuJBimbYneeutt3j88cepVq0a06ZNI07br00IIbyAXW/xChQoQJcuXejbt6+j2+NZkpJAKwAnwY7r7dunjs5aLXX//WpZ+9at0KuXc67hANrmvCdPnuTMmTOMGzeOCRMm8Mwzz/Diiy9SrVo1dzdRCCGcyu7VWO3atSPSm1447aFtAurrC0FB7m2LNwY72shOo0bOOb+WpOzmvJ178fX1ZdKkSZw9e5avvvqKunXrkpCQwKeffkqNGjV4++233d1EIYRwKruDnWbNmtGyZUuOHj2a5et79uyhR48e+W6YR8g8hZVpybBbSLDjeFqS8s6dqlijzgUGBjJ8+HAOHDhAWFgYPXr0wGq10rhxY9t94uPjuX79uhtbKYQQjmd3sDN37lyGDh1K27Zt2bx5M8eOHeOJJ56gWbNmBAQEOLKNxqWXfB3IGuxYre5tiytcv66Sh8F501g1a0Lhwmq68sgR51zDCbRk5pUrV3L06NEsRUFnzpxJuXLlGDlypCxdF0J4DLuDHYB33nmHsWPH0qVLF+rVq0dSUhI7d+7kp59+clT7jE2PwU5iIiQkuLctrnDggArqypZVFaSdwWyGpk3V7YgI51zDyWrWrIlPpu0uNmzYwPXr15k1axb16tWjffv2LFmyhJSUFDe2Uggh8sfuYOfSpUu8+OKLTJo0iTp16uDn50f//v1p4uglvkamp2CnUCG1xQF4x/JzLTnZWVNYmmbN1NGgwc7twsPDCQ8Pp0+fPvj4+LBp0yb69+9PhQoVeO+999zdPCGEsIvdwU6VKlX4888/+fHHH9m1axfLly/n+eef58MPP3Rk+4xNT8EOeFfejrPzdTQeFuyYzWY6d+7M8uXLOX36NOPHj+e+++7j8uXLnDx50nY/q9Uqoz1CCMOwO9iZN28ee/bsoWfPngB069aNDRs2MGPGDJ5//nmHNdDQJNhxH1cHO/v2gYe9+JcvX56JEydy5swZfvzxR8aOHWv73q5duyhbtiyjR4/mwIEDbmylEELcm93BTv/+/e/4WpMmTdi6dSsbN27MT5s8hwQ77mGxgJZcW7++c69VtSoULQrJyRnX9DB+fn7069ePunXr2r62ZMkSYmJimDFjBg0aNKBFixZ8+eWXxMfHu7GlQgiRvXwlKGenUqVKbNmyxdGnNSYJdtzj7FlVzNHPD5xdMM9k8riprNyYPHkyv/32G3369MHX15edO3fy7LPPUqZMGZ5++mliY2Pd3UQhhLBxeLADULx4cWec1ngk2HGPw4fVsWZNVdDR2bww2PH19aVnz54sX76c8+fPM2XKFGrVqkVSUhJr166liJYMD0RrfwdCCOEmTgl2xC0S7LiHFuxkmnZxKi8MdjIrXbo048aN4/Dhw2zZsoWZM2falrOnpaVRr149GjduzPTp07nkDSsBhRC6I9sfO4vVqr9gx1t2PteCHW2jTmfTgp0DB+DmTShQwDXX1RmTyURrbQuNW/bv38/Vq1e5fPkye/fu5ZVXXqFzx44M7taN3o88QuEaNdxfXVwI4fFkZMdZbtxQSaugn2DH20Z2XBXsVKwIwcGQmqoCHmHTpEkTLl26xKxZs7i/aVMsFgtha9cy+JVXKFWrFgtKloRp0zxuJZsQQl/yNbKzbt061q1bx5UrV7BYLFm+98033+SrYYanjeoUKAAFC7q3LRot2LlyBdLTIVPlXI9htbo+2DGZoHFjWLtWLXlv3tw11zWI4OBgnq9eneePHeME8B2w0GTihNVK7ZgYGDcOFi1iz+TJnE1Kolu3bhTw0tExIYRz2D2yM3HiRLp27cq6deuIjo7m2rVrWT68np42AdWULKnaYrFktM/TnD+v9sXy9XX+SqzMtHo+Wn0fkWHFCujZE65fp1qrVryzbRvH0tLYvWULTefMgRIlYPduZj72GL1796Z06dI89dRTrFy5UgoXCiEcwu6RnS+++IL58+czePBgR7bHc+gtXwdUAFCypBrZiYyE0qXd3SLH00Z1qlcHf3/XXVcLdrRtKoRy6BAMHKim+J54Av73PwgIwAQ0bt0aWreGTp2gSxcqnjpFOV9fLsTHs2DBAhYsWECxYsV49NFH6dOnDw899JC7H40QwqDsHtlJSUm5IxlRZKLHYAc8P2/H1VNYmszBzm1Tul7r5k147DG18WzHjvDddxAQcOf9qlSBP/5gQpkynE1LY3PHjowaOZIyZcoQGxvLt99+y5tvvokp0whpUlKSCx+IEMLo7A52hg8fzqJFixzZFs8iwY57uHrZuaZmTfVCnpAAp0659tp69e678PffahXgkiU51zwqXx6WL8fs60ub9euZ2bYt58+fZ+PGjbz00kuMGDHCdtekpCTuu+8+OnfuzKxZs7hw4YILHowQwsjsnsa6efMmc+bMYe3atTRo0AA/P78s358+fXq+G5edyZMns3z5co4ePUpgYCCtW7fmww8/pGbNmk65nt0k2HEPd43s+PqqrSkiIlTejivzhfToyBHQNgX+7LPc/R3cfz+89RZMnAgjR+LTqRPt27enffv2AKSmpgKwdetW4uLibAskRo4cSYsWLejduzcPP/ww9erVyzIKJIQQdo/s7N+/n0aNGmE2mzl48CB79uyxfex1YpLmH3/8wQsvvMD27dsJDw8nLS2Nrl27cuPGDadd0y4xMepYooR723E7T661Y7Vm7E/l6mAHJEk5s7fegrQ0eOQR6Ns39z/35psqaIyOhnfeyfYunTp14vjx40yZMoXWrVtjMpnYsWMHb775Jg0aNODzzz930IMQQngKu0d2NmzY4Mh25NqaNWuyfD5v3jxKlSrFrl27eOCBB9zSpmxdvaqOwcHubcftPHlk59IliIsDsxlq1HD99SVJWdmxA376Sa38++CDvP2svz/MnAkPPghffgkvvJBt4FqtWjXGjRvHuHHjiIyM5JdffmHFihWsX7+eTp062e63ePFivv32W3r27EnPnj2pXLlyfh+dEMKADF9BOS4uDoASOYygJCcnk6wV+APbzsypqam2oXFH0M6VmpqKT3Q0ZiCtaFGsDrxGfplCQvAFLJcuke7idmXuH2cwHT6ML2CtUoU0s1mtAHIhU7166vp795Jmx7Wd3T+u4jNxImbAMmgQ6dWr5/330KYNPr16Yf71VyxvvEH60qXA3fsnODiYoUOHMnToUJKSkihQoIDtPkuXLmXNmjWsWbOGUaNGUatWLXr06EH37t1p3bo1/q5csedEnvLccRbpn5wZqX/sbaPJarVa7b1obGwsX3/9NUeOHMFkMlG7dm2GDRtG0aJF7T1lnlitVh599FGuXbvGn3/+edf7TZgwgYkTJ97x9UWLFlHQSQX/2r/8MsVOnWLb229zpWlTp1zDHsEHDtD27be5Xq4c62fNcndzHKri77/TaPZsIps25a+333b59X2Tkug5YAAAq//3P1KCglzeBncrfOECnV54AYC1s2Zxo1w5+85z7hwdX3wRk9XKhk8+Ib5SJbvOc+7cOXbu3MmuXbs4cuRIluKngYGBzJs3TwoYCmEgiYmJDBw4kLi4OILy8D/W7mAnIiKCbt26ERgYSIsWLbBarURERJCUlERYWBhNmjSx57R58sILL7By5Uo2b95M+fLl73q/7EZ2QkNDiY6OzlNn3Utqairh4eF06dKFwDp1MJ05Q9rmzVhbtHDYNfLt6FH8GjTAWrQoaVFRLr105v65PaHdEcyvvYbPxx+T/uKLWKZOdfj5c8O3Th1MJ06QtmYN1o4d8/Szzu4fVzCPGoXPl19i6dmT9J9+yte5fAYMwLxsGZZ+/UhftCjf/RMbG0t4eDirV68mPDyc0NBQtm7davv+oEGDKFCgAJ07d6ZTp06UKlUqX+13JU947jiT9E/OjNQ/8fHxhISE5DnYsXsaa8yYMfTq1YuvvvoK31tLStPS0hg+fDijR49m06ZN9p46V0aNGsWvv/7Kpk2bcgx0AAICAgjIpr6Hn5+fU36xfn5+mG4lKPuWLg16evKEhgJgiovDLy0NAgNd3gRn9TsnTgDgU6sWPu7q80aN4MQJfA8ehG7d7DqF0/rH2WJiVNFAwDx2LOb8Pobx42HZMszLlmE+ccK2ws3e/ilZsiQDBw5k4MCBWK1WoqOjbee5fv06P/30E2lpaSxYsACARo0a0bVrVzp37kzr1q0pVKhQ/h6PCxj2ueMi0j85M0L/2Ns+u1djRURE8Nprr9kCHQBfX19effVVIiIi7D3tPVmtVkaOHMny5ctZv369PhMOU1JUvRXQ32qsokUzCrtdvuzetjjasWPq6I7kZE3DhurojSuy5s2DpCQV8HXokP/zNWgAvXurVXYff5z/82ViMpkoWbKk7fMCBQqwevVqXnnlFRre+h3u3buXjz76iK5du/L000/b7mu1WklMTHRoe4QQzmV3sBMUFMTZs2fv+Pq5c+coUqRIvhqVkxdeeIGFCxeyaNEiihQpQmRkJJGRkfqqqKqtxDKZVHChJyaTZy4/T02FkyfVbXcGO966/NxqVcEOwHPPOW4/uJdfVseFCzPKOTiBn58fnTt35qOPPmLv3r1ERkaycOFCnn76aUJDQ221fgBOnTpFsWLFaNeuHW+//Tbr16/X1/8fIcQd7J7GevLJJxk2bBhTp0611brYvHkzr7zyCgNuJWk6w+zZswHocNs7x3nz5jFkyBCnXTdPtGCneHF97ixepgycPu1Zy89Pn1Z1XQIDwc6kWIfQRnaOHlUjfB6y2ueedu5UBR0DA+HJJx133rZtVQC5dy/mb75xWWXs0qVLM2jQIAYNGoTVaiU9Pd32va1bt5KamsrmzZvZvHkz7777Lv7+/rRq1Yr27dszaNAg/RU5FcLL2R3sTJ06FZPJxFNPPUVaWhqg3h0999xzfJDX2hp5kI/FYy5j0nZ919sUlsYTa+1oU1jVq6s6O+5SvjwUKwaxsSrgadDAfW1xpfnz1bFvX8eOZppM8NJL8MwzmL/4AtMnnzju3LluginLdP2//vUvWrduzcaNG9mwYQMbNmzg4sWLbNq0iU2bNtG8eXNbsHPo0CH2799PmzZtqFChgsvbLoRQ7A52/P39mTFjBpMnT+bkyZNYrVaqVavmtKXchqLX6skaTw523P2O2mRSFYD//BP27/eOYOfmTfj+e3X7mWccf/7+/eHVVzGdO0fpiAhVldmNTCYTVatWpWrVqgwbNgyr1crJkyfZsGEDmzZtyrJB8pIlS5g0aRIAoaGhtGnThrZt29KmTRvq16+Pjx5HfoXwQPl+C1ywYEHq169PgwYNJNDRaCM7equerPHkYMed+Tqa+vXV8cAB97bDVVauVCNZoaGq8rGjFSgAtxKEK6xd6/jz55PJZKJatWqMGDGCBQsWEJzp7/6+++6jWbNm+Pj4cO7cORYvXszIkSNp3LgxxYsXz5L3mJKS4o7mC+EV8jSy8/LLLzNp0iQKFSrEy1ri4F04ayNQIzBpOTsysuM6egp2tNEcbwl2fvxRHfv3d94U4rBhMHUqpXftIv3iRahY0TnXcbDnnnuO5557joSEBHbs2MHmzZvZsmUL27Ztw2QyZSmbMWTIELZu3UrLli1p0aIFLVu2pEmTJvImUggHyFOws2fPHlup5j179tz1fl6/47A2jSUjO66jp2BHG9nZv9+97XCFpCT47Td1+/HHnXedWrWwtG6NeetWrAsWwH/+47xrOUHhwoXp2LEjHW8VmkxPT+f06dOYMwWHO3fu5MyZM5w5c4YffvgBAB8fH+rXr0+bNm349NNP5X+rEHbKU7CTefPPb7/9lvLly2f5YwWVQHzu3DnHtM6o9J6g7GlLz2/cgPPn1W09BDv16qnjhQvquVC8uHvb40yrV6v+r1QJmjVz6qUszzyDeetWzN9+q3ZVN/ALv4+PD1WrVs3ytYiICHbt2sVff/1l+4iMjGTvrTIGmQOdoUOHEhgYSJMmTWjSpAk19PC8F0LH7E5Qrly5MpcuXbqjpPrVq1epXLlylqWa3sZQ01hWq6FfNABb5WSCg/XR50FB6sX/9Gk1lfXAA+5ukfNoU1j9+jn9eWR97DHSRo3C98QJ2LQJMtW+8QRFixbNMvpjtVo5f/48O3bsyHK/1NRUvvvuuyw5Pv7+/pQvX54VK1bQuXNn+vfv79K2C6F3dgc7d1sCnpCQIBvracGOXqexSpdWx9RUNfKghwAhP/Q0haWpX18FO/v3e26wc/Oma6awNIULc75dOyqFh6ttKTws2LmdyWQiNDSU0FtbvGgsFgvz589n9+7dto/Y2FhOnTrFqVOniIuLo3/btrBuHZb9+/m/lSupVbYsDZo3p/7gwZSpW1emw4TXyXOwoyUmm0wmxo8fnyV5Lj09nb/++otGWhVZL6X7kZ2AADW1cu2aGt3RaztzS6ucfGvvJF2oXx9WrPDsJOUNG9S2KOXLQ/PmLrnk+fbtVbCzdCnMmqVWanmZgIAABgwYYCvearVaOXbsGN988w1ERdFk/36VwG2xcAb4GuDvv9Xv66OPCPH3p0GjRjRo3ZqePXvSuXNndz4cIVwiz8GOlphstVo5cOAA/pkqxPr7+9OwYUPGjRvnuBYakd5zdkBNZWnBTp067m5N/pw6pY5Vqri3HZlpK7I8OUlZG9V5+GGXTYXG1KmDNTQU07lzasn7Y4+55Lp6ZjKZqFKhAsNOnqT6Tz9hsljUN1q2JLB+fSadOsX+M2fYf/48x5OTiU5JYf2OHazfsYPAW9tkAFy5coUXXniBhg0bUr9+ferUqUPlypWzFFQUwqjy/CzWkpSfeeYZZsyYkact1r2G3ldjgQp2jhzxjBVZegx2tBVZBw+CxeLeqs7OYLVmDXZcxWzG8sQT+EybBt99J8EOQFwcPo8+So0//lCf9+sHkyZBrVqUATKvW0vauZPDr7/O/vXr2Q90WbECXnwRypdn3759LF26lKVLl9ru7+/vT82aNalduzbDhw+nS5curnxkQjiM3SH7PG3TP5GFOTUV040b6hO9j+yAZwQ7//yjjpUru7cdmVWvrvbFSkiAM2f01TZHOHgQzp5Ve2HdSqh1FcuAASrYWbnS81e73cvVq9CtG+aICFIDAzF98w2+OSQnBzZvTtN162j622/w1FNqS5MWLWDdOqpXr87UqVPZv38/Bw4c4OjRoyQlJXHgwAEOHDhAt27dbOfZsmULQ4cOpU6dOtSuXZs6depQp04datasSaFChVzxyIXIE7uDnf/+9785fn/8+PH2ntrQ/K5fVzfMZv3teJ6ZpwQ7aWkqmAB9jez4+anpwb171VSWpwU72qhOp04q4HGlBg3U8v6DB2HZMhg+3LXX14sbN6BrV9i1C2tICJvffJO2uR3pevhhiIiAXr3g0CHo0IFKa9cyduxY210sFgtnzpzhyJEjHD58mHbt2tm+d/DgQY4dO8axY8f4+eefs5y6XLlyzJ49m0dubesRExNDVFQUVapUyZL2IIQr2R3s/PTTT1k+T01N5Z9//sHX15eqVat6bbDjn5CgbhQvru+pC0+ptXPuHKSnq6Rr7THpRf36Ktg5cAAefdTdrXGsFSvU0ZVTWJkNGgRvvKGmsrwx2LFY1MjMrl0QEkJaeDjxWtCfW1WqwMaNKmDas0cdt21TZRMAs9lM5cqVqVy5Mj169Mjyo/369aNq1aocPnzYFgwdPnyY6OhoLly4kCW94eeff2b48OG281WvXp0aNWrYji1atKBYsWL57BAhcmZ3sJNdBeX4+HiGDBlCnz598tUoI7ON7Oh5Cgs8Z2RHy9epVEl/waWnbhsRFQXbt6vbPXu6pw0DB6pg548/VEHJTNsueIWJE2H5cjVV+vPPULduxghnXoSEwLp10KGDGoF86CHYsuWe/7+Cg4Pp3LnzHSu5YmJiOH78OPW0wprA9evXKVSoEDdu3ODkyZOcPHmSNWvW2L6/du1aOnXqBEB4eDgrVqygSpUqto/KlSvL1JjIN4em2QcFBfHf//6Xhx9+mMGDBzvy1IbhL8GOa2n5OnqawtJ46rYRv/+uEpQbNnRfkFGhArRtC5s3q2Xoo0e7px3u8McfKgEZYO5caNNG1cyyV/HisGoVtGqlcniefBLWrAE7dmQPDg7OshEqCddGagAAIABJREFUwOjRo3nppZe4dOkSx48ft01/abczV3/euHEjn3766R3nLVWqFFWqVGHu3LnUrVsXgMuXL5OcnEy5cuVk93hxTw5fUxgbG0tcXJyjT2sYtmksPa/EAs8JdvS4EkujBTvHjqkCfJ5SEyY8XB27d3dvO554QgU7P/7oPcHOtWvwr3+pYHPoUHDUm8py5TICnrVr4Z134N13HXNu1PL4smXLUrZsWdrnUAyyY8eOpKen2woknjp1imvXrnHlyhWuXLmSpa7brFmzmDRpEv7+/lSsWJGKFStSoUIF27F3794yPSZs7A52Zs6cmeVzq9XKpUuXWLBgAd3d/U/Qjfy0YMcoIzvR0epdoZ+fe9tjLz0HO/fdp4LemBg4fBiaNHF3i/LPas0Idty9DPmxx+Cll2DrVpW7dVulYY/08stq2q56dZgxw7Hnrl8fvvpK5UO99x60bAm3koxdpVOnTrYpLU1sbCz//PMPp06dylJNOiEhAV9fX1JSUjh+/DjHjx/P8nPt27e3BTvTp0/nm2++YcGCBVSqVMkWEGnBUfHixaWqtIezO9j5+OOPs3xuNpspWbIkTz/9NG+88Ua+G2ZUtmksvY/sBAerYer0dLh82bg5D3pcdq4xmdQLyMaNKm/HE4Kdw4dVUnuBAmr6xJ3KllVTWX/+qaayxoxxb3uc7Y8/YP589bz69lsoXNjx1xg4UCUpf/YZDBmiVry5OfG/WLFiNG7cmMaNG2f5+vTp05kyZQrnz5/nn3/+4ezZs5w5c4azZ89y9uxZypUrZ7vvgQMHbNNn2Tl58iRVbr1h+uGHH9i9ezflypXL8lGmTBkpsGhgdv/m/tFeZEQWhsnZMZvVHlkXL6qpLKMGO3oe2YGswY4nWLtWHdu108e03OOPq2Dnxx89O9hJToZnn1W3//1vuP9+511r2jQ1WrZ7t5oqW7VKt5sF+/j42KawcvL6668TGhpKyZIluXDhQpbAKCoqivKZ/v+tWLGChQsX3nEOs9lM6dKl2b17N2VujYxv3LhRBVZlylC2WDHKli5NUNmymIw6Uu7BJEx1MMNMY4F6x3bxonGXn1+/rqbhQJ8jO+B520boZQpLo01lbdvm2VNZU6eq5OFSpeD99517LX9/WLAAmjZVicpffAHPPefcazpZzZo1adWqFT169MDvtkAkOTk5S/2fnj17Urx4cS5cuGD7uHTpEunp6Vy6dIkSJUqo/zu//MLXkyax8LZVcAWAMj4+lC5ShFUvvUSJAQOgZk22b99OZGQkZcqUoUyZMpQuXZpAV9eo8mJ5Cna0TUBzY/r06XlujCcwzDQWZAxPGzVJWRtdDA4GvW5boiUpe8LITkqKGqUC/QQ73jCVdelSRoAzfbprKkbXqQMffqgCybFjVZXsmjWdf103CAgIyPJ5//796X9bFer09HSuXLlC5MaN+D/1FPz0E6SkUB/oDFy49REP3AROp6dzOjaWwhMnqjIBTZowq0ABFm7dmuW8QUFBtuDnl19+seUY7dixg8uXL1OyZEnbR5EiRSSvKB/yFOxkV1snO978CzHMNBYYv7Cg3qewQNU/ARVQRkVByZLubU9+bN+uqvaWLJkxYqUHTzyhgp0ffvDMYOeddyAxUa2UGjjQddcdOVIVj1y7VhVu/OMP/dWychGfS5e4b8wY7su0bxiNG/PqI4/wart2UKMGlCpFYnIyl//+m8i9e4nesQP/CxfUaOju3VQBWvr7E1mkCJEJCSQnJxMfH098fDzHjh3LUktoxowZLFq0KEsb/P39KVmyJCEhIWzcuNEWGIWFhfHPP/9kCYxKlixJ8eLFMXvp7ys7eQp2tE1Axd0ZahpLW5ElwY7zFC4MVavCyZNqdMfF+0g5lDaF1bmzvl70HntMbWa5fbvar6tCBXe3yHEOH4avv1a3p051be6M2ayuXbeuWuL/5ZeGn87KM4tFTeO9/rqaNjeZYMAAGDcObkuYBihYoACVW7SgcosW8H//p74YHQ1z5zJxxgwmRkZCTAzWhg2J++ADIitVIjIykpiYmCzTa5UqVaJZs2ZERUURFRVFYmIiKSkptmm1wpmS0+fPn8/3339/R1vMZjPBwcEcOXLEVvvou+++Y+/evZQoUcL2ERwcTJEiRYiKiiI9Pf2OaT5Pka+cndjYWL7++muOHDmCyWSiTp06DB06lKJ63hPKyQw5jWX0YEev+Tqa+vU9K9jRyxSW5r77VML0pk1qKisP0+2699pr6gW3Tx/3rH6rUAEmT4ZRo1RbHnnEuIsZ8uraNVXHaOVK9XmrVirgy+uoZkiICpbGjIHPP4eJEzHt20exHj0o9vLL1Jo06Y795d577z3ee+892+eJiYm2wOfatWtZVoU1b96cGzdu2L4fFRVFXFwcFouFqKioLK/HK1euzDYw0vTs2ZP7br0uvPfee6xZsyZLYKQFRyVKlODhhx+21T1KSkrC19dX14GS3cFOREQE3bp1IzAwkBYtWmC1Wpk+fTrvvfceYWFhNPGEZbZ5dfMmvsnJ6rYRRnY8JWdHzyM7oIKdn382dpJyXBzs3Klu37ZFgC48/rgKdn780XOCnW3b1IarPj4q4HCX556DRYtUe55/Hn75Rbersxxm/34VYJ46pfbd++gjeOEFu6pK2wQEqIDnX/+CV19VZQSmTVPB1PffQ6NGd/3RggUL3nXV2ZgxYxhz2/RtSkoK0dHRxMTEZAmMevXqRdmyZbl69artIyYmxnbMXITx4MGDbN68+a5tioqKsgU7Y8eOZfbs2RQuXJhixYpRrFgx5s6dS8uWLXPbO05nd7AzZswYevXqxVdffWXrzLS0NIYPH87o0aPZtGmTwxppGFevAmA1mzHpNWE2M5nGcg1P2CNryxY1wlCtmj5XPGWeyjpzBu6xFNkQJk5UxyFD3Jsc7OOjig02bqxyeH78UeVJeaqNG9XGvfHxas+9ZcscWyOrZEmYN089Z0eMUKvs7r9fjfo884xDLuHv72+rWJ1ZdsnXoDbyXrlyZZbA6LXXXuOxxx7LEhhlDo4yB0axsbGAKvSYkJDA+fPnHfI4HClfIzuZAx0AX19fXn31VZo1a+aQxhnOrWCHEiX0ldNwN5lHdqxWY71bs1j0XVAwM21F1qFDqoijEffx+eMPdcyh1L9b3T6VNXasu1uUP9u2qT3IfH3hzTfd3RqVt/PmmyoAGzVKje4ZYfQ6r5YvV0ngycnwwANq1ZWzHufDD6uijU8/rUZ3hg5Vbyo+/fSOaS1XuH1hUaNGjWiUw2hTZv/73//49NNPiY2N5dq1a8TGxlK7dm1nNNNudr8iBwUFcfbs2Tu+fu7cOYoUKZKvRhmV6do1dcMVS0MdQRvZSUlR89NGEhmp/iH5+OhzpCGzatVUAb7ExIzRKKPRe7ADGaMNP/zg3nY4gjaq8/TT+hm5fOMNqF0brlyBV15xd2scb+FCNR2anAy9e6tg09kBXXAw/Pqr2p5DSwhv395wo+2+vr4EBwdTtWpVmjVrRufOnQnS2eyG3cHOk08+ybBhw1iyZAnnzp3j/PnzLF68mOHDhzNgwABHttE4YmIAsBohORnUHLL2x2ywPy5b0FChgv739fLxyViCbsS8nYQEiIhQt/Uc7Dz2mHrB2LEDTp92d2vsp7dRHU1AgJrOAvjmG/Ck1bk//qgCS4sFhg1Tn7uqQrjZrH7PWnC1cye0aAF797rm+l7C7mBn6tSp9O3bl6eeesq2sdqQIUPo168fH374oSPbaBza6IiRhneNmrdjlJVYGiNXUt66VU2/Vayo72XdZcpkBGNGHt3573/VUU+jOpo2bbJuW5GU5N72OMKvv6qpK4tFTSXNmaMCTVfr3FkF6rVqqc1e27ZVyeDCIewOdvz9/ZkxYwbXrl1j79697Nmzh6tXr/Lxxx/fUZHSGT7//HMqV65MgQIFaNq0KX/++afTr3kvJi1nxyjTWGDcFVlGWYmladhQHY0Y7BhhCkvz5JPquGSJe9thr/371RYNZrOaNtKjDz5Q/zeOH1fTL0a2dq2aukpLUwHPnDnuzbesWlWN7HXpogp49umjVoJZre5rk4ew+7ealJREYmIiBQsWpH79+hQtWpQ5c+YQFhbmyPZla8mSJYwePZq33nqLPXv20K5dOx566KFsc4hcymjTWGDcWjtGWYml0UZ29u1zbzvsYaRgp29fNW24ezecOOHu1uTdlCnq+Pjj6oVPj4oWVbuig9pS4uBB97bHXvv3q+dLSoo6fvutPhYPFCumEpafe04FOa+9pkactLImwi52BzuPPvoo//vf/wC17Kxly5ZMmzaNRx99lNmzZzusgdmZPn06w4YNY/jw4dSuXZtPPvmE0NBQp1/3XgyXoAzGn8YySrCjjez8849a0moUiYlqaB2MEeyULJlRuNFoU1lnzqh6K6D/BOC+fVUSb1qaWj6dnu7uFuXN+fPQo4eqity+vaoj5I6pq7vx84NZs2DGDDXSNH++mua6csXdLTMsu3+7u3fv5uOPPwZg6dKllC5dmj179rBs2TLGjx/Pc04qK56SksKuXbt4/fXXs3y9a9eubL1tkzVNcnIyyZmi4vhbLzapqamkpqY6rG2mmBjMQHrRolgceF5nMpcqhQ9guXiRdCe3WetrR/S576lTmIC00FCsRujrIkXwLV8e0/nzpO3Zg7V16zvu4sj+cRTT5s34pqZiLVeOtNBQcGPbcts/pn798A0Px7p4MWl6DxoyMU+bhk96OpaOHUlv0CBPfe2W58706fiuW4dp+3bSZ83CouOtJLL0T3w8vj16YLpwAWutWqT98IMKKHT0d2fz3HOYqlTBZ9AgTJs3Y23RgrTlyzPKWTiIHv/33I29bbQ72ElMTLQtMQ8LC6Nv376YzWZatWrFmdu2vHek6Oho0tPTKV26dJavly5dmsi75J1MnjyZidpSzkzCwsJsFSAdofWJE5QE9l+4wIVVqxx2XmcqFxlJMyDm0CG2uqjN4dq2A3Yyp6TwyMWL6lwnT5ISFeWIZjldy9KlKXP+PIcWLeL0rSJc2clv/zhSze+/pxZwvmpVdq9e7e7mAPfuH7+CBenu44P5wAE2zZlDggG2N/CLj6frnDkAbG/Xjig7/xZd/dypPGAADebMwfL666wvVIibISEuvX5erV29mlaTJlHqwAFuFi/OppdfJmnbNnc3654Kv/ceLd97j8JnzmBq04ZdL79MZIsWDr+Oo54/RU+epNLvv7Pv2WcdngOVmJho18/ZHexUq1aNn3/+mT59+vD777/bylVfuXLFJevrby+AZLVa77rb+htvvMHLmUrIx8fHExoaSteuXR3a1rQqVfhzxQqaDhxIw3LlHHZeZzIVKgTTpxOSkkKPHj2ceq3U1FTCw8Pp0qVL/vZQOXoUAGuRInR+8knDFEM0b90Ku3ZRz2KhTjZ97bD+cSCf6dMBuK9/f6c/P+4lT/3z3XewZg0drlzBom3IqGPm99/HJzkZa8OGNH/zzTw/p9323OneHcv+/fht306Xn38mfdkyXf49pqamEh4WRo9ffsF33z6sBQvis3o1DxppW6N+/bAMGIDvxo20mDwZy6RJWF55xSH97bDnT3w85gkTMH/+OSaLhfK9e2MdPjzf7ct6CfvSAOwOdsaPH8/AgQMZM2YMnTp14v777wfUaEnjbHaDdZSQkBB8fHzuGMW5cuXKHaM9moCAgGxXiPn5+Tn2H0OtWlw9dQq/cuV082J1T7fe9ZoiI13W5nz3+7lzAJgqV8bP399BrXKBW/9YfQ4exCeHx+/w56W9bt6Ev/4CwLdjR93UM8pV//TvD2vW4LN0KT7ZjOrqSlKSys8ATK+9lq/ntFueO199BU2aYP7tN8y//abyeXSoxg8/4Pv992A2Y/rhB/x0tG9TrpQpA2Fh8OKLmL74Ap///Aefv/5S+TwOKndi9/PHalXbarz0EtwadWfAAHz79HH4/w17n992jy/169ePs2fPEhERwZo1a2xf79Spky2Xxxn8/f1p2rTpHcNt4eHhtM4mD0Lcg7YaKz5eJaMagdGWnWsy75Flsbi3LbmxY4daAVK6NNSo4e7W5E3v3uDvD4cP63+10LffQlSUqmP0+OPubk3e1aunVgwBjBwJOUzRuotpwQJqa8nfn38OPXu6t0H28vNT7Z89Wz2/V6xQe5a5cyru8GHo2lU9dy9eVBXjw8JU0re2AEYH8jWZVqZMGRo3bow505xcixYtqFWrVr4blpOXX36ZuXPn8s0333DkyBHGjBnD2bNneVYrdiVyLygoYx8Wo9TaMdpKLE316qoq640bcPKku1tzb5mXnOtwaiJHRYtC9+7qtp5XZaWnw9Sp6vbYsfpaEZQXb72lAuJLl9SGrHqyYQM+t14b0seOVcUQjcxkUoUdt29XgcXZs2pfuP/8x7XL02NjYfRo9SZu7VoVfL39tnoz16WL69qRSwbYrfJOTz75JJ988gn//e9/adSoEZs2bWLVqlVU9ISdjl3NZDLe8nOjVU/W+Pqqd8FgjOKCRqqvkx1tr6wlS/RblG35chX4liihaqkYVYECaidvsxkWLNBPUcfDh6FPH0ypqVxo0waL0YsgZta4MezaBQMGqKD5vffU1+6yKtlhkpLgk0/Um7cZM9S1e/eGI0dU9W9XbbORR4YMdgCef/55Tp8+TXJyMrt27eKBBx5wd5OMy2hVlI06jQXGKS6YkpLxT9OowU6vXuof77Fj+txnyGpVRflATf8UKuTe9uRX69ZqhAfUyMP58+5tT2SkqqUTF4fl/vvZ/dJL7q2O7AxBQWq6aNkyNd185Ija0uOJJxxfVPPmTVVMsmpVGDMGoqPVxrBhYWp3eJ3/P/aw37ywi5GqKFutxp3GgozignoPdiIi1Du44GD1D82IihSBRx5RtxcscG9bsrNxo3pnXqCACnY8wdtvQ/Pmaorj6afdV2wwMVEFu2fOQLVqpC9bhsVIixnyqm9fNYo1bJgarf/xR/V3+8wz+Q/0T5+G119Xi1lGjVKvExUqqMT0fft0OWWVHQl2hLGCnZgYVfUUoFIltzbFLkbZI0ubwnrgAWO/G37qKXX87jtV7VdPPvpIHYcNU5WfPYGfHyxcCAULwvr14I6VcCkp0K+f2j08OBhWrQKd1/9xiBIlYO5cFYA89JB6vs+fr6a2WrWCadPUfmb3mtK1WFRS/yefqM1IK1dWI5AxMSrI+fxzdZ7hw3WzQjM3DJoNJxxKy9kxwjSWNqpTtqxu54ZzpE1jnT4NcXEqkVaPjJ6vo+nWTQUSV66o4XY31wqy2bcvY8PPTDXAPEKNGvDllzB4MEyaBC1awMMPu+ba6enquqtXq4UXv/6qcksMUBnYYerXVwHetm0qp2bpUlVC4q+/YNw4FQA2aQKhoWrqy2zGfPMmjXfvxmfaNJVgfPuKuk6d1KjOww/rY/8wO0iwI4w1smPkfB1Q+6aFhqpaQfv3q1UUepOWBlu2qNtGD3b8/NRu1jNmwP/+p59gJ/OGn0Z9LufkX/9Sq4VmzVLBx19/Ob98gdWqcoV++EH93n/6SeUReav771cfly6pRPhly9TfdUwM3Fa6xQeokPkLBQuqn+3VS02RGaAK+b1IsCOMFewYOV9H06CBvoOdPXsgIUHtvuzgPXjc4qmnVLDz88/qHWuxYu5tz5kzsHixuv3qq+5tizNNn652n9+2TZUB2LZNjSQ4g9WqlkHPnatGyxYtUqN6Qv1/f+EF9ZGcrP7v7N+v/t9fvgxAuo8Pf0dHU6NbN3zr1FH/oww0RZUbEuwIYy09N+qy88waNoSVK/WbpKxNYbVrZ9gh6ywaN4a6deHQITWk7+Dy9Xn28cdquqVzZ1tVbY/k768CzNat1fL6nj1VUnbhwo69Tnq6qp3z9dfq86++Ujk74k4BASqBvHnzLF+2pKZyfNUqqvfo4XFBjsbAmYfCYbSRnago962eyC2jT2OB/pOUPSVfR2MyZSQqf/ute9sSE6NejMGzR3U0pUqp3KSSJdXKsx49MhYYOEJSkqoz8/XXakRn/nxj1ysSTiPBjlD/iMxmlYV/5Yq7W5MzT5jGyhzs6C24TE+HP/9Utz0l2AEYNEg9xzdvVrVI3OXzz9Wy6EaN1MiON6hWTY1kBgWp51bnziroy6+LF9VqwR9/VAU7Fy9Wy92FyIYEO0JNVWhz6XqeykpLU6XRwdjTWNWrq6H8pCTbDu66sX+/WiVWpIh6QfYU5cplrAiaM8c9bUhKgpkz1e1XXzXeFhz50by5WopeooTac61Zs/xN44aHq3NERKhzhocbc18x4TIS7AjFCMvPz51TIw8BARlTb0ZkNmcEErt3u7ctt9OmsNq2Ne4+TXej7Z03f74KPFxtzhxVdbZSJe98YW7aVI3sVKmiSi+0aqX2BctL/aPoaHj+ebXx5KVLUKeOCp46dHBWq4WHkGBHKEZYkZU5OdnIhe5A/eMHlcegJ56Wr5NZ164q0IiNVVMfrpSUBB98oG6/8YbnBZK5VaeOKvbXvbvafuCVV1QC+fff5xz0XLyoChRWq6Z2/Aa1umjnTrV9gRD34KV/ceIORgt2jE5bhaOnkR2LBTZtUrc9Mdjx8YERI9T+TV98kZG07ApffaVGTStUgCFDXHddPSpRQhW9mzdP7fR+8KCqhTRypAqCGjdWeYQpKWpBwqZNqmaPlt/WsKFa0fbgg+59HMJQJNgRihGmsTwhOVmjjezs2aOCDD2MVB08CFevqg0ptfZ5mqFD4Z13VM2X3btds/T75s2MDT/feEMtyfZ2JpP6XfTurZK2Z85Uq0EXLVIf2WnbVo3mPP64Z5REEC4lwY5QjDCy4wnLzjU1a6py9gkJap+ZmjXd3aKMKazWrT221gZlyqgdoRctUvkid3thdaS5c9U0TGio2phRZChRAv7zH7XR5LZtsHat2qU+NlYFNOXKqe0mOnb0jBFd4TYS7AjFCMGOJ01j+fqqJOVt21Tejp6CHU+cwsrslVdUkPPDDzB5MlSs6LxrJSaqa4Aa1QkIcN61jMzXVxWx1GNFceERdDB2LnRBC3ZkGst1tCkUPSQpW60Z+TqevrJFq3GTnq5yP5zpk0/UqE7FilLsTgg3kmBHKJm3jLBa3duW7MTHZxQi84SRHcjIi9FDkvKRIypnIjDwjlLyHumVV9Txq69UnpIzREVlrMB6/30Z1RHCjSTYEYo2snPzpioqpzdavk5IiKrE6gkyBzsWi3vbok1h3X+/dyTQdumiVvUkJqpNQp1h0iS1NUKTJtC/v3OuIYTIFQl2hFKgQMZu0HrM2/GkfB1N7drq3X58fMbjcxdvydfRmEwqMRbU7txRUY49/9GjGfVgpkzRx2o7IbyY/AWKDHpOUvaklVgaP7+MfbLcmbdjtardqMF7gh2Axx5To2sJCWqayVGsVnjuOVUkr2dPtZJICOFWEuyIDOXKqeOFC+5tR3Y8LTlZo4ck5WPH4PJlNcrUsqX72uFqJlNGkPP5544bXfvuOxU8FigAn37qmHMKIfJFgh2RwQjBjidNY4HazBBU2Xt30aawWrZUL9DepEsX6NRJVesdOTL/yfmXL8PLL6vb48d73vNVCIOSYEdkKFtWHfUY7HjiNBaozRBBBTt52RDRkbwtXyczkwlmzVJJ2atXw9Kl9p/LalXLy6OioH59tRWCEEIXJNgRGfQ6smOxeG6wU7u2Wl124wYcOuT661utGcGOp9fXuZuaNeHNN9XtF1+EK1fsO8+sWWrPp4AAVbTQG1a1CWEQEuyIDFqwc/Gie9txu0uXIDlZlY8PDXV3axzLbFbl8AHzjh2uv/6xYyq49ffPGGXyRq+/rnbkjoyEwYPzXgpg06aM6auPPoJ69RzfRiGE3STYERn0OrKj5etUqKDKynuaW0GG6a+/XH/ttWvVsW1bKFjQ9dfXi4AAtX1EYCCEhcFrr+X+Zw8ehL59ITVV7bs1apTz2imEsIsEOyKDFuxcuqRK6euFp05hadwZ7Kxbp46dOrn+2npTt66qqAxqk9BJk+6dsLx3r1paHhOjKk/Pm6fygIQQuiLBjshQqpSaVklPtz9vwRk8dSWW5tZyb9Pff+OXkOC666anw/r16nbnzq67rp4NGqSmoUCtpho6NPuK4haLCmxat1YJyY0bw5o13j06JoSOSbAjMvj6ZuyRpaepLE+tsaMJCYFq1QAodvy46667a5d6IS9aNGPrCqH2zZo5UwX+8+dDrVowYYKqnbNtG3zxhQpQhw6FpCTo1k2NkJUo4eaGCyHuRoIdkZUe83Y8fRoLbFNZJf7+23XX1KawOnZUyd8iw6hREB4O1aurpOWJE+HBB9VIznPPQUQEFCoEkyfDypVQvLi7WyyEyIGhgp3Tp08zbNgwKleuTGBgIFWrVuWdd94hJSXF3U3zHHpckeXpIztgC3aKuzLY0ZKTJV8nex07woEDsHAhPPKIGn0LDYUHHlBTXSdOqFVcEigKoXuGWtpy9OhRLBYLX375JdWqVePgwYOMGDGCGzduMHXqVHc3zzPorbBgUlJG4OWpOTuQdWQnPV3tm+VMSUmwZYu6Lfk6dxcQoPJ4Bg1yd0uEEPlgqGCne/fudO/e3fZ5lSpV+Pvvv5k9e7YEO46it2msM2fUsUgRCA52b1ucqWFDrEWK4Hf9Oqn799tq7zjNli2qdlH58lCjhnOvJYQQbmaoYCc7cXFxlLhHYmBycjLJycm2z+Pj4wFITU0lNTXVYW3RzuXIc7qaqXRpfAHL+fOkO/hx2NM/pmPH8AWslSuT5q7tFFzE3KoVPuHhWDduJLVxY+de6/ff8QEsHTuSbpB+9YS/L2eRvsmZ9E/OjNQ/9rbR0MHOyZMn+fTTT5k2bVqO95s8eTITJ0684+thYWEUdMJS0fDwcIef01VKXrhAayDh77/ZsGqVU66Rl/6pvHIlDYDIwEB2OKk9elG9TBnqANE//cR4PmM0AAAefUlEQVTOmjWdeq0OS5dSFNgTHMx5g/Wrkf++nE36JmfSPzkzQv8kJiba9XMmqzW/2/zm34QJE7INRjLbuXMnzbQdooGLFy/Svn172rdvz9y5c3P82exGdkJDQ4mOjiYoKCh/jc8kNTWV8PBwunTpgp+zcy6c5cgR/Bo2xFqsGGkOrrVjT/+YX3kFnxkzSB89GotW/8RDpW/eTIGOHbEGB5N24YJa+uwM587hV7UqVrNZXccg04Me8fflJNI3OZP+yZmR+ic+Pp6QkBDi4uLy9Pqti5GdkSNH0r9//xzvU6lSJdvtixcv8uCDD3L//fczZ86ce54/ICCAgICAO77u5+fnlF+ss87rEhUrAmCKjcUvNdUpRdLy1D+3cnZ8qlXDx6h9mlstW5IWEIBvTAx+x487b3+lW+/eTK1a4afVVTIQQ/99OZn0Tc6kf3JmhP6xt326CHZCQkIICQnJ1X0vXLjAgw8+SNOmTZk3bx5mZ7379VZBQap+yI0bKkm5enX3tsfTqydn5ufH1Vq1KLVvn9qJ3FnBzsqV6tizp3POL4QQOmOoSOHixYt06NCB0NBQpk6dSlRUFJGRkURGRrq7aZ7DZNLPiiyr1Ttq7GQSU6eOurFxo3MucPNmRjFBCXaEEF5CFyM7uRUWFsaJEyc4ceIE5cuXz/I9HaQeeY5y5eDYMfcHO1FRkJCgArBM05ieLKphQ2p//70KSNLTHV+wbuNGSExUS84bNHDsuYUQQqcMNbIzZMgQrFZrth/CgfRSRfnkSXUsVw4KFHBvW1wktnp1rMWKwbVrsHOn4y+gTWH16CG7cwshvIahgh3hInqpoqxNYVWt6t52uJDVxwdrx47qkzVrHHxyq+TrCCG8kgQ74k56ydnRRna8KNgBsHTrpm78/rtjT7xnj9pUNTBQ9sMSQngVCXbEnfQS7HhZcrLG2qWLurFjB1y96rgTL12qjj17qhV3QgjhJSTYEXfSS7DjpSM7lC8PdeuCxWKriZNvViv8+KO63a+fY84phBAGIcGOuJO20u3iRbUiyF28dGQHAG3D219/dcz59u+HEydUonePHo45pxBCGIQEO+JO992nljynpYG7ahglJWWsBvO2kR2Axx5TxxUrVG2c/NKmsLp3VzvICyGEF5FgR9zJxydjKuvsWfe0QRvVKVoU7rGrvUdq2VL9Dq5fz/9UlsUC332nbj/+eP7bJoQQBiPBjshehQrqeO6ce66feQrLG+vBmM0ZozvaqIy9Nm1Sq7CKFIHevfPfNiGEMBgJdkT2tGDHXSM73pqcnJmWSPzLL5CcbP955s1Tx/79nbKxqxBC6J0EOyJ7oaHq6O5pLG9MTta0aaPyp+Li7K+5c/16xsjQM884rm1CCGEgEuyI7Ll7GktGdtRUVv/+6vY339h3jiVL1F5YtWpBq1aOa5sQQhiIBDsiezKNpQ8jRqjjb7/BpUt5+1mrFWbMULeHDfPO3CchhECCHXE37pzGslhUQi149zQWQO3aajorPT0j9ya3wsPh4EEoXBiGD3dO+4QQwgAk2BHZ00Z2oqPVNIgrXbgAKSng65sRdHmzf/9bHT/7LG81d6ZOVcdhw6BYMce3SwghDEKCHZG9YsXUiADA+fOuvbaWnFyxogp4vN2TT6qg79IlmD8/dz/zxx9qZMfXF156yanNE0IIvZNgR2TPZHLfVJbk62Tl7w/jxqnbH35479EdqxVee03dHjECKld2bvuEEELnJNgRd+euJGVtZEeCnQzDh6tl6KdPw5QpOd/322/hr79UTZ3x413SPCGE0DMJdsTduWv5uTay4+3JyZkVLAjTpqnb778Px49nf7/z5zOmrcaPhzJlXNM+IYTQMQl2xN3JNJa+9O8PnTqpaazHHoP4+KzfT0iAPn3U11u1ypj6EkIILyfBjrg7d09jychOViaTmqIqXRoOHIAHH4SjR9X3jhxRn0dEQHAwLFigNnQVQgiBLHURd+eOaazYWIiJUbcl2LlTuXKwejV07Qq7d6s6PCVLQlSU+n5wMKxaBdWqubedQgihIzKyI+4u8zSW1eqaa2q5KPfdp3bpFndq3FiN4PTqpUZ7oqLU8dFHYedOaNHC3S0UQghdkZEdcXfly6tjUpIabQkJcf41jx1Tx+rVnX8tI6tYUe2GHhWlkpIrVFCjOkIIIe4gwY64uwIFVH7I5ctw5oxrgh1tZKdGDedfyxOULKk+hBBC3JVMY4mcaQXptL2qnE0b2ZFgRwghhINIsCNy5q5gR6axhBBCOIgEOyJnrgx2rFaZxhJCCOFwEuyInLky2LlyRRXEM5mkoKAQQgiHkWBH5EyrdaMV+nMmbQqrYkUICHD+9YQQQngFCXZEzrSRndOnwWJx7rVkCksIIYQTGDbYSU5OplGjRphMJvbu3evu5niu0FC17UBKCly65NxrSXKyEEIIJzBssPPqq69StmxZdzfD8/n6ZlRSdnbejozsCCGEcAJDBjurV68mLCyMqVOnursp3kHL23F2sCM1doQQQjiB4SooX758mREjRvDzzz9TsGBBdzfHO7hiRZbFAidOqNsyjSWEEMKBDBXsWK1WhgwZwrPPPkuzZs04ffp0rn4uOTmZ5ORk2+fx8fEApKamkpqa6rD2aedy5Dn1wFyhAj6A5cQJ0vPx2HLsn7Nn8bt5E6ufH2lly4KH9WFueOrzx1Gkf+5O+iZn0j85M1L/2NtGXQQ7EyZMYOLEiTneZ+fOnWzdupX4+HjeeOONPJ1/8uTJ2Z4/LCzMKaND4eHhDj+nO5WLjaUZcHX3brasWpXv82XXPyX37aM1kFCqFOvDwvJ9DSPztOePo0n/3J30Tc6kf3JmhP5JTEy06+dMVqvV6uC25Fl0dDTR0dE53qdSpUr079+fFStWYDKZbF9PT0/Hx8eHQYMG8e2332b7s9mN7ISGhhIdHU1QUJBjHgQq4gwPD6dLly74+fk57LzuZtq+Hd8HHsAaGkrayZN2nyen/jHPmoXPmDFYevUifenS/DbZkDz1+eMo0j93J32TM+mfnBmpf+Lj4wkJCSEuLi5Pr9+6GNkJCQkhJBc7as+cOZN3333X9vnFixfp1q0bS5YsoWXLlnf9uYCAAAKyKVLn5+fnlF+ss87rNrcShk3nz+OXnq52Q8+HbPvn778BMNeti9mT+s4OHvf8cTDpn7uTvsmZ9E/OjNA/9rZPF8FOblWoUCHL54ULFwagatWqlC9f3h1N8g6lSkFQkNrK4dQpqFPH8dc4ckQdnXFuIYQQXs2QS8+Fi5lMGcvBteXhjnb4sDrWru2c8wshhPBahhrZuV2lSpXQQcqRd6heHSIinBPsREdDVJS6XauW488vhBDCq8nIjsgdbWRHq3LsSNoUVsWKUKiQ488vhBDCq0mwI3LHmdNYWrAjU1hCCCGcQIIdkTvODHa0fB1JThZCCOEEEuyI3NG2cIiMVKuyHElGdoQQQjiRBDsid4oWVUvQwfF5OzKyI4QQwokk2BG554wk5fh4OH9e3ZaRHSGEEE4gwY7IPWfk7Rw8qI5ly0Lx4o47rxBCCHGLBDsi95wR7Ozbp44NGzrunEIIIUQmEuyI3NOCnaNHHXfO/fvVsUEDx51TCCGEyESCHZF7Wk7NkSNgsTjmnDKyI4QQwskk2BG5V60a+PtDYiKcOZP/81ksGSM7EuwIIYRwEgl2RO75+mbsXaUlFufHP//AjRsQEJAxRSaEEEI4mAQ7Im/q1VPHQ4fyfy5tCqtuXRVICSGEEE4gwY7Im7p11dERwY4kJwshhHABCXZE3mjBjiOmsSQ5WQghhAtIsCPyRpvGOnoU0tPzdy4t2JGRHSGEEE4kwY7Im8qVoWBBuHkTTpyw/zzR0SpBGaBxY8e0TQghhMiGBDsib8zmjJGYPXvsP09EhDpWry7bRAghhHAqCXZE3jVpoo67d9t/jp071bF58/y3RwghhMiBBDsi7xwZ7LRokf/2CCGEEDmQYEfkXeZgx2rN+89brTKyI4QQwmUk2BF5V7eu2jbi2jX7to24cAEiI8HHBxo1cnz7hBBCiEwk2BF55+8P9eur27t25fnHTdu3qxv166uVXUIIIYQTSbAj7KNNZWnTUXlg2rxZ3WjXzoENEkIIIbInwY6wT+vW6rhlS55/1KwFOw884MAGCSGEENmTYEfYp00bddyxQxUYzCXfhAQ4cEB9IiM7QgghXECCHWGfatWgVClISclT3k7w0aOYrFaoUQNKl3ZiA4UQQghFgh1hH5MJ2rZVt7VpqVwI1nZLl1EdIYQQLiLBjrCfHcFOKW2LiQcfdEKDhBBCiDtJsCPsp43ObNoEqan3vv+FCxQ9fRqryQTdujm3bUIIIcQtEuwI+zVpAiVLQnx8rkZ3TL//DoC1RQsICXF264QQQgjAoMHOypUradmyJYGBgYSEhNC3b193N8k7mc3w0EPq9qpV9777mjUAWLt3d2arhBBCiCwMF+wsW7aMwYMH88wzz7Bv3z62bNnCwIED3d0s79WzpzquXJnz/ZKSMK1dC0iwI4QQwrV83d2AvEhLS+Oll15iypQpDBs2zPb1mjVrurFVXq5rV7XH1ZEjcPIkVK2a/f1WrsSUkEBiyZL4NW7s2jYKIYTwaoYKdnbv3s2FCxcwm800btyYyMhIGjVqxNSpU6lbt+5dfy45OZnk5GTb5/Hx8QCkpqaSmpvE2lzSzuXIc+peoUL4dOiAed060hcswPLWW9nezWfhQszAhXbtKJeenruEZi/jlc+fPJD+uTvpm5xJ/+TMSP1jbxtNVqvV6uC2OM3ixYsZMGAAFSpUYPr06VSqVIlp06YRFhbGsWPHKFGiRLY/N2HCBCZOnHjH1xctWkRB2Ygy38pv2EDTGTNIKFOGdbNnqxo8mRS4epUuI0ZgTk9n/SefcL1SJfc0VAghhKElJiYycOBA4uLiCAoKyvXP6SLYuVswktnOnTs5duwYgwYN4ssvv+T//u//ADVqU758ed59913+/e9/Z/uz2Y3shIaGEh0dnafOupfU1FTCw8Pp0qULfn5+Djuv7t24gW9oKKaEBNJWrMB627Jy84QJ+Lz/PumtW/Pbq696X//kktc+f3JJ+ufupG9yJv2TMyP1T3x8PCEhIXkOdnQxjTVy5Ej69++f430qVarE9evXAahTp47t6wEBAVSpUoWzZ8/e9WcDAgIICAi44+t+fn5O+cU667y6VawY/N//wfTp+H70kUpa1kZ3YmJg1iwArCNHAl7YP3kk/ZMz6Z+7k77JmfRPzozQP/a2TxfBTkhICCG5qLvStGlTAgIC+Pvvv2l7q3pvamoqp0+fpmLFis5upsjJmDHw2Wfw55+weDEMGKC+/vrrEBcHjRph7dsXbi0/F0IIIVxFF8FObgUFBfHss8/yzjvvEBoaSsWKFZkyZQoAjz/+uJtb5+XKl4f//AfGj4d//xuCgtQGoXPnqlGejz9WdXmEEEIIFzNUsAMwZcoUfH19GTx4MElJSbRs2ZL169dTvHhxdzdNvPYabNigPh5+OOPrEydChw6yAksIIYRbGO6ttp+fH1OnTuXy5cvEx8cTHh6e47Jz4UL+/vDbb/Dss1CiBFSqBN98o0Z8hBBCCDcx3MiO0LmCBWH2bPUhhBBC6IDhRnaEEEIIIfJCgh0hhBBCeDQJdoQQQgjh0STYEUIIIYRHk2BHCCGEEB5Ngh0hhBBCeDQJdoQQQgjh0STYEUIIIYRHk2BHCCGEEB5Ngh0hhBBCeDQJdoQQQgjh0STYEUIIIYRHk2BHCCGEEB5Ngh0hhBBCeDRfdzfAHaxWKwDx8fEOPW9qaiqJiYnEx8fj5+fn0HN7AumfnEn/5Ez65+6kb3Im/ZMzI/WP9rqtvY7nllcGO9evXwcgNDTUzS0RQgghRF5dv36dokWL5vr+JmtewyMPYLFYuHjxIkWKFMFkMjnsvPHx8YSGhnLu3DmCgoIcdl5PIf2TM+mfnEn/3J30Tc6kf3JmpP6xWq1cv36dsmXLYjbnPhPHK0d2zGYz5cuXd9r5g4KCdP+EcSfpn5xJ/+RM+ufupG9yJv2TM6P0T15GdDSSoCyEEEIIjybBjhBCCCE8ms+ECRMmuLsRnsTHx4cOHTrg6+uVM4T3JP2TM+mfnEn/3J30Tc6kf3Lm6f3jlQnKQgghhPAeMo0lhBBCCI8mwY4QQgghPJoEO0IIIYTwaBLsCCGEEMKjSbDjQJ9//jmVK1emQIECNG3alD///NPdTXK5CRMmYDKZsnyUKVPG9n2r1cqECRMoW7YsgYGBdOjQgUOHDrmxxc61adMmHnnkEcqWLYvJZOLnn3/O8v3c9Me1a9cYPHgwRYsWpWjRogwePJjY2FhXPgynuVf/DBky5I7nU6tWrbLcJzk5mVGjRhESEkKhQoXo1asX58+fd+XDcIrJkyfTvHlzihQpQqlSpejduzd///13lvvk5rGfPXuWRx55hEKFChESEsKLL75ISkqKKx+KU+Smfzp06HDH86d///5Z7uOpf1+zZ8+mQYMGtkKB999/P6tXr7Z939ueOxLsOMiSJUsYPXo0b731Fnv27KFdu3Y89NBDnD171t1Nc7m6dety6dIl28eBAwds3/voo4+YPn06n332GTt37qRMmTJ06dLFtl+Zp7lx4wYNGzbks88+y/b7uemPgQMHsnfvXtasWcOaNWvYu3cvgwcPdtVDcKp79Q9A9+7dszyfVq1aleX7o0eP5qeffmLx4sVs3ryZhIQEHn74YdLT053dfKf6448/eOGFF9i+fTvh4eGkpaXRtWtXbty4YbvPvR57eno6PXv25MaNG2zevJnFixezbNkyxo4d666H5TC56R+AESNGZHn+fPnll1m+76l/X+XLl+eDDz4gIiKCiIgIOnbsyKOPPmp7M+V1zx2rcIgWLVr8fzv3GtpW+ccB/JvWJJQ2hGa9JG211uo2u2RxbbGmjLVs2DosyApjjirRscIGqXauL5y3oQ42fCH2hSiijA3UCu6CUucurI2OZhd6sTeFytJWZrK62nVjtZclv/8L8fDP2rqAaY6efD9QSE6e5+T3fHkO/XGaVHbs2BFxbOXKlfLyyy+rVJE69u7dK06nc8HXwuGwWK1WOXDggHJsenpazGazfPjhh/EqUTUA5NixY8rzaPIYHBwUAHL+/HlljM/nEwDy008/xa/4OLgzHxERt9stTz311KJzrl+/Lnq9XlpaWpRjV65ckaSkJPn222+XrFY1jI2NCQDxer0iEt3av/nmG0lKSpIrV64oYz7//HMxGo0yOTkZ3wUssTvzERGpqKiQF198cdE5iXR9iYikp6fLxx9/nJB7h3d2YmB2dhadnZ2oqqqKOF5VVYWOjg6VqlLP0NAQcnJyUFBQgKeffhqXL18GAPj9fgSDwYicjEYjKioqEjKnaPLw+Xwwm80oKytTxjz22GMwm80Jk1l7ezuysrKwfPly1NfXY2xsTHmts7MTc3NzERnm5OTAbrdrLp/JyUkAgMViARDd2n0+H+x2O3JycpQx1dXVmJmZQWdnZxyrX3p35vOXTz/9FBkZGVi1ahWampoi7pomyvUVCoXQ0tKCW7duweVyJeTe0ea/Soyza9euIRQKITs7O+J4dnY2gsGgSlWpo6ysDIcPH8by5ctx9epV7Nu3D+Xl5RgYGFCyWCinkZERNcpVVTR5BINBZGVlzZublZWVEHtr48aN2Lx5M/Lz8+H3+/H6669j/fr16OzshNFoRDAYhMFgQHp6esQ8rV17IoKXXnoJa9euhd1uB4Co1h4MBuftr/T0dBgMBs3nAwB1dXUoKCiA1WpFf38/9uzZgx9++AGnT58GoP3rq6+vDy6XC9PT00hLS8OxY8dQVFSEnp6ehNs7bHZiSKfTRTwXkXnHtG7jxo3KY4fDAZfLhcLCQhw6dEj5YClzinS3PBbKJlEy27Jli/LYbrejtLQU+fn5aG1tRW1t7aLztJaPx+NBb28vzp07d9exibh/Fsunvr5eeWy32/HQQw+htLQUXV1dKC4uBqDtfFasWIGenh5cv34dR44cgdvthtfrXXS8lvcO/4wVAxkZGUhOTp7X7Y6Njc3rjBNNamoqHA4HhoaGlG9lMac/RZOH1WrF1atX58397bffEjIzm82G/Px8DA0NAfgzn9nZWUxMTESM09KeamhowFdffYW2tjbk5eUpx6NZu9Vqnbe/JiYmMDc3p/l8FlJcXAy9Xh+xf7R8fRkMBjz44IMoLS3F/v374XQ60dzcnJB7h81ODBgMBpSUlCi3Rv9y+vRplJeXq1TVv8PMzAx+/PFH2Gw25Xby/+c0OzsLr9ebkDlFk4fL5cLk5CQuXryojLlw4QImJycTMrPx8XH88ssvsNlsAICSkhLo9fqIDAOBAPr7+//z+YgIPB4Pjh49irNnz6KgoCDi9WjW7nK50N/fj0AgoIw5deoUjEYjSkpK4rOQJXK3fBYyMDCAubk5Zf8k2vUlIpiZmUnMvaPCh6I1qaWlRfR6vXzyyScyODgojY2NkpqaKsPDw2qXFle7d++W9vZ2uXz5spw/f15qamrEZDIpORw4cEDMZrMcPXpU+vr6ZOvWrWKz2eTGjRsqV740bt68Kd3d3dLd3S0A5N1335Xu7m4ZGRkRkejyeOKJJ2T16tXi8/nE5/OJw+GQmpoatZYUU3+Xz82bN2X37t3S0dEhfr9f2traxOVySW5ubkQ+O3bskLy8PDlz5ox0dXXJ+vXrxel0yu3bt1Vc2T+3c+dOMZvN0t7eLoFAQPmZmppSxtxt7bdv3xa73S4bNmyQrq4uOXPmjOTl5YnH41FrWTFzt3x+/vlnefPNN+XSpUvi9/ultbVVVq5cKWvWrInYG1q9vvbs2SPfffed+P1+6e3tlVdeeUWSkpLk1KlTIpJ4e4fNTgy9//77kp+fLwaDQYqLiyO+ApkotmzZIjabTfR6veTk5Ehtba0MDAwor4fDYdm7d69YrVYxGo2ybt066evrU7HipdXW1iYA5v243W4RiS6P8fFxqaurE5PJJCaTSerq6mRiYkKF1cTe3+UzNTUlVVVVkpmZKXq9Xu677z5xu90yOjoacY4//vhDPB6PWCwWSUlJkZqamnlj/osWygWAHDx4UBkTzdpHRkbkySeflJSUFLFYLOLxeGR6ejrOq4m9u+UzOjoq69atE4vFIgaDQQoLC+WFF16Q8fHxiPNo9fratm2b8vsoMzNTNmzYoDQ6Iom3d3QiIvG7j0REREQUX/zMDhEREWkamx0iIiLSNDY7REREpGlsdoiIiEjT2OwQERGRprHZISIiIk1js0NERESaxmaHiIiINI3NDhH9K1VWVqKxsVHtMohIA/gflIlIdZWVlXjkkUfw3nvvKcd+//136PV6mEymuNfT2NiI4eFhHD9+PO7vTUSxxzs7RPSvZLFYVGl0AODSpUt49NFHVXlvIoo9NjtEpKrnnnsOXq8Xzc3N0Ol00Ol0GB4envdnrMrKSjQ0NKCxsRHp6enIzs7GRx99hFu3buH555+HyWRCYWEhTpw4ocwREbzzzjt44IEHkJKSAqfTiS+//HLRWubm5mAwGNDR0YFXX30VOp0OZWVlS7p+Ilp6bHaISFXNzc1wuVyor69HIBBAIBDAvffeu+DYQ4cOISMjAxcvXkRDQwN27tyJzZs3o7y8HF1dXaiursazzz6LqakpAMBrr72GgwcP4oMPPsDAwAB27dqFZ555Bl6vd8HzJycn49y5cwCAnp4eBAIBnDx5cmkWTkRxw8/sEJHqFvrMzp3HKisrEQqF8P333wMAQqEQzGYzamtrcfjwYQBAMBiEzWaDz+eDw+FARkYGzp49C5fLpZx3+/btmJqawmeffbZgLcePH8f27dtx7dq1pVouEcXZPWoXQEQUrdWrVyuPk5OTsWzZMjgcDuVYdnY2AGBsbAyDg4OYnp7G448/HnGO2dlZrFmzZtH36O7uhtPpjHHlRKQmNjtE9J+h1+sjnut0uohjOp0OABAOhxEOhwEAra2tyM3NjZhnNBoXfY+enh42O0Qaw2aHiFRnMBgQCoVies6ioiIYjUaMjo6ioqIi6nl9fX3YtGlTTGshInWx2SEi1d1///24cOEChoeHkZaWBovF8o/PaTKZ0NTUhF27diEcDmPt2rW4ceMGOjo6kJaWBrfbveC8cDiM3t5e/Prrr0hNTYXZbP7HtRCRuvhtLCJSXVNTE5KTk1FUVITMzEyMjo7G5Lxvv/023njjDezfvx8PP/wwqqur8fXXX6OgoGDROfv27cMXX3yB3NxcvPXWWzGpg4jUxW9jERERkabxzg4RERFpGpsdIiIi0jQ2O0RERKRpbHaIiIhI09jsEBERkaax2SEiIiJNY7NDREREmsZmh4iIiDSNzQ4RERFpGpsdIiIi0jQ2O0RERKRpbHaIiIhI0/4HUXu50zbrcTYAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = linspace(0, 20π*5, 1000)\n", - "# find solution by the brute-force eᴬᵗ [0,1]:\n", - "plot(t, [(expm(B*t)*[0,1])[1] for t in t], \"r-\")\n", - "plot(t, 10*exp.(-0.01 * t), \"k--\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "title(\"motion of a mass on a spring + drag\")\n", - "legend([\"solution \\$x(t)\\$\", \"exponential decay \\$e^{-\\\\alpha t}\\$\"])\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Key points:\n", - "\n", - "* For complex λ, **Re(λ) is an exponential growth rate (> 0) or decay rate (< 0)**.\n", - "\n", - "* **Im(λ) is an angular frequency**\n", - "\n", - "* If **all λ have Re(λ) < 0**, the solution decays to zero.\n", - "\n", - "* If **any λ have Re(λ) > 0**, the solution blows up.\n", - "\n", - "* A **λ = 0 solution corresponds to a *steady state* **. If only the real part is zero, it is a solution that oscillates forever without growing or decaying." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overdamping:\n", - "\n", - "From the formula above for the eigenvalues of the damped-spring system:\n", - "\n", - "$$\n", - "-\\frac{d}{2} \\pm i \\sqrt{0.01 - \\left(\\frac{d}{2}\\right)^2}\n", - "$$\n", - "\n", - "you might notice something: if $d$ gets large enough, then the eigenvalues become *purely real* and negative. In particular, if $(d/2)^2 > 0.01$, or equivalently if $d > 0.2$, then the eigenvalues are\n", - "\n", - "$$\n", - "-\\frac{d}{2} \\pm \\sqrt{\\left(\\frac{d}{2}\\right)^2 - 0.01}\n", - "$$\n", - "\n", - "which are real and negative. The solutions don't oscillate at all, they just decay! This is called **overdamping**. Let's check this for $d = 0.3$:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " -0.0381966\n", - " -0.261803 " - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals([ 0 1 \n", - " -0.01 -0.3 ])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, two negative eigenvalues, as predicted. It is interesting to plot the solutions for different values of $d$ to compare them:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHGCAYAAACSMkoBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xlc1NX+P/DXZ5gZZth3kJ0wFRUEQblYKGVSqH25LlkZpT+zRCi/adxvmWVohktmejPxmmbbNbObVhZqCDe1XBLZxFRyAdwQhn2fYeb8/hhmcpxhGGBgAN/Px4MHzplzzpzPZwZ4e1aOMcZACCGEEDJA8UzdAEIIIYSQnkTBDiGEEEIGNAp2CCGEEDKgUbBDCCGEkAGNgh1CCCGEDGgU7BBCCCFkQKNghxBCCCEDGgU7hBBCCBnQKNghhBBCyIBGwQ4hxOiSk5PBcZzJXv/DDz/E4MGDIRQKwXEcqqure70Nuu6Br68v5s6dq5GWk5ODCRMmwNbWFhzHYePGjQCAjIwMhIWFwdLSEhzH4bvvvuutpndaWloakpOTu11PVFQUoqKiul0PIXfjm7oBhJCBZ/78+XjsscdM8tq5ublYtGgR5s+fjzlz5oDP58Pa2tokbbnbvn37YGNjo5E2b948NDQ0YPfu3bC3t4evry8YY5g1axaGDBmCH374AZaWlhg6dKiJWt2xtLQ0fPTRR0YJeAjpCRTsEEKMprGxERYWFvD09ISnp6dJ2nDu3DkAwAsvvICxY8capU7VdXVXSEiIVlpBQQFeeOEFxMTEqNNu3LiByspKTJs2DRMnTuz26wKATCYDx3Hg8/v3r/2Bch2kd9EwFjE5VXd/fn4+nnjiCdja2sLBwQFLlixBa2srLl68iMceewzW1tbw9fXFunXrNMo3Nzfj1VdfRXBwsLpsREQEvv/+e63X+uabbxAeHg5bW1tYWFjgvvvuw7x589TPKxQKrFq1CkOHDoVYLIadnR2CgoKwadOmDq+jpKQEcXFxcHFxgbm5OQICAvD+++9DoVCo8xQVFYHjOKxfvx4bNmyAn58frKysEBERgZMnT3b4GuXl5UhISMDw4cNhZWUFFxcXPPzwwzh27FiHZQEgMzMTUVFRcHR0hFgshre3N2bMmIHGxkaN9q1btw7vvvsuvL29IRKJEBYWhoyMDI26VO9bdnY2Zs6cCXt7e/j7+2s8dydfX19MnToVBw8exOjRoyEWizFs2DB88sknWu389ddfERERAZFIBA8PD7z11lvYvn07OI5DUVFRu9cXFRWFuLg4AEB4eDg4jtMYNvrkk08watQoiEQiODg4YNq0aTh//rxGHXPnzoWVlRXOnj2L6OhoWFtbdxhw/PTTTwgODoa5uTn8/Pywfv16nfnuHMb69NNPwXEcWltbkZqaCo7jwHEckpOT1YHia6+9Bo7j4Ovrq67jzz//xOzZszU+Zx999JHG6/zyyy/gOA5ffPEFXn31VXh4eMDc3ByXLl0CAJSWlmLBggXw9PSEUCiEn58fVqxYgdbWVnUdhn5W586dq3591TV09D4xxrBu3Tr4+PhAJBJh9OjROHDggFY+fdfRmZ+F69evY+bMmbC2toadnR2eeeYZnD59GhzH4dNPP1Xnu3LlCp566im4u7vD3Nwcrq6umDhxInJzc9u9FtI/UGhM+oxZs2YhLi4OCxYsQHp6OtatWweZTIbDhw8jISEBSUlJ2LVrF1577TUMHjwY06dPBwC0tLSgsrISSUlJ8PDwgFQqxeHDhzF9+nTs3LkTzz33HADgxIkTePLJJ/Hkk08iOTkZIpEIxcXFyMzMVLdh3bp1SE5Oxptvvonx48dDJpPhwoULHc75KC8vx7hx4yCVSvHOO+/A19cXP/74I5KSknD58mVs2bJFI/9HH32EYcOGqednvPXWW5g8eTKuXr0KW1vbdl+nsrISAPD222/Dzc0N9fX12LdvH6KiopCRkaF3vkNRURGmTJmCyMhIfPLJJ7Czs8ONGzdw8OBBSKVSjZ6LzZs3w8fHBxs3boRCocC6desQExODI0eOICIiQqPe6dOn46mnnkJ8fDwaGhr03qe8vDy8+uqreP311+Hq6ort27fj+eefx+DBgzF+/HgAQH5+PiZNmoQhQ4bgs88+g4WFBbZu3Yovv/xSb90AsGXLFnz11VdYtWoVdu7ciWHDhsHZ2RkAsHr1arzxxht4+umnsXr1alRUVCA5ORkRERE4ffo07r//fnU9UqkU//M//4MFCxbg9ddf1wgC7paRkYHY2FhERERg9+7dkMvlWLduHW7fvq23rVOmTMGJEycQERGBmTNn4tVXXwUAeHp6YtSoUZg+fTpefvllzJ49G+bm5gCAP/74A+PGjYO3tzfef/99uLm54dChQ1i0aBEkEgnefvttjddYunQpIiIisHXrVvB4PLi4uKC0tBRjx44Fj8fD8uXL4e/vjxMnTmDVqlUoKirCzp07Nero6LP61ltvoaGhAf/5z39w4sQJdblBgwa1e+0rVqzAihUr8Pzzz2PmzJm4du0aXnjhBcjlcp3Ddbquo7y8HEDHPwsNDQ146KGHUFlZibVr12Lw4ME4ePAgnnzySa3XmTx5svr98/b2hkQiwfHjx00y54sYGSPExN5++20GgL3//vsa6cHBwQwA27t3rzpNJpMxZ2dnNn369Hbra21tZTKZjD3//PMsJCREnb5+/XoGgFVXV7dbdurUqSw4OLjT1/D6668zAOzUqVMa6QsXLmQcx7GLFy8yxhi7evUqA8ACAwNZa2urOt/vv//OALCvvvqqU6+rutaJEyeyadOm6c37n//8hwFgubm57eZRtc/d3Z01NTWp02tra5mDgwN75JFH1Gmq92358uVa9aieu5OPjw8TiUSsuLhYndbU1MQcHBzYggUL1GlPPPEEs7S0ZOXl5eo0uVzOhg8fzgCwq1ev6r3OnTt3MgDs9OnT6rSqqiomFovZ5MmTNfKWlJQwc3NzNnv2bHXanDlzGAD2ySef6H0dlfDw8Hbvl657MGfOHI00ACwxMVEjTfU+vPfeexrpjz76KPP09GQ1NTUa6S+99BITiUSssrKSMcbYf//7XwaAjR8/Xqu9CxYsYFZWVhrvA2N//XycO3dOow2GfFYTExO1rrU9VVVVTCQSaX1ef/vtNwaATZgwQZ2m7zru1t7PwkcffcQAsAMHDmjkX7BgAQPAdu7cyRhjTCKRMABs48aNBl0H6V9oGIv0GVOnTtV4HBAQAI7jNOYy8Pl8DB48GMXFxRp5v/nmGzzwwAOwsrICn8+HQCDAjh07NIYoxowZA0DZg7Rnzx7cuHFDqw1jx45FXl4eEhIScOjQIdTW1hrU9szMTAwfPlxrjsjcuXPBGNPoPQKU/6s3MzNTPw4KCgIArevSZevWrRg9ejREIpH6WjMyMrSGY+4WHBwMoVCIF198EZ999hmuXLnSbt7p06dDJBKpH1tbW+Pxxx/H0aNHIZfLNfLOmDGjwzbf2QZvb2/1Y5FIhCFDhmhc95EjR/Dwww/DyclJncbj8TBr1iyDX+duJ06cQFNTk9ZKKC8vLzz88MNaQ3SAYdfV0NCA06dPt3u/jKm5uRkZGRmYNm0aLCws0Nraqv6aPHkympubtYZCdV3Djz/+iIceegju7u4adah+zo4cOaKRvzufVV1OnDiB5uZmPPPMMxrp48aNg4+Pj84y7b0XhvwsHDlyBNbW1loT5p9++mmNxw4ODvD398d7772HDRs2ICcnR2MImvRvFOyQPsPBwUHjsVAohIWFhcYfEVV6c3Oz+vHevXsxa9YseHh44Msvv8SJEydw+vRpzJs3TyPf+PHj8d1336G1tRXPPfccPD09MXLkSHz11VfqPEuXLsX69etx8uRJxMTEwNHRERMnTkRWVpbetldUVOjstnd3d1c/fydHR0eNx6phiqamJr2vs2HDBixcuBDh4eH49ttvcfLkSZw+fRqPPfZYh2X9/f1x+PBhuLi4IDExEf7+/vD399c5H8nNzU1nmlQqRX19vUa6vuGKu9193YDy2u9se0VFBVxdXbXy6UozlOr+t/ce3f3+WFhYaK2a0qWqqgoKhaLd+2VMFRUVaG1txYcffgiBQKDxNXnyZACARCLRKKPrem/fvo39+/dr1TFixAiddXT1s6rvOoD2P2O66LoOQ38WDP08cRyHjIwMPProo1i3bh1Gjx4NZ2dnLFq0CHV1dZ26RtL30Jwd0u99+eWX8PPzw9dff60xKbalpUUrb2xsLGJjY9HS0oKTJ09i9erVmD17Nnx9fREREQE+n48lS5ZgyZIlqK6uxuHDh/HGG2/g0UcfxbVr19pdkePo6Ihbt25ppd+8eRMANHopunutUVFRSE1N1Ug39JdxZGQkIiMjIZfLkZWVhQ8//BCvvPIKXF1d8dRTT6nzlZaWapUtLS2FUCiElZWVRrqx99NxdHTUOd9FV5s6UyeAdt+ju98fQ6/J3t4eHMe1e7+Myd7eHmZmZnj22WeRmJioM4+fn5/GY13X4eTkhKCgILz77rs661AF6D1F9V60d8/unIytous6DP1ZcHR0xO+//67zte7m4+ODHTt2AAAKCwuxZ88eJCcnQyqVYuvWre1fFOnzqGeH9Hscx6k3j1MpLS3VuRpLxdzcHBMmTMDatWsBKDd2u5udnR1mzpyJxMREVFZW6l1dMnHiRPzxxx/Izs7WSP/888/BcRweeuihTl6VbhzHqf9nrZKfn68xMdQQZmZmCA8PV6+iubvde/fu1egVq6urw/79+xEZGakxpNETJkyYgMzMTI0eBoVCgW+++abLdUZEREAsFmtNcr5+/ToyMzO7vLzb0tISY8eObfd+GZOFhQUeeugh5OTkICgoCGFhYVpfunrO7jZ16lQUFBTA399fZx1dCXY609vzt7/9DSKRCP/+97810o8fP96poTFDfxYmTJiAuro6rdVeu3fv1lv/kCFD8OabbyIwMFDr54P0P9SzQ/q9qVOnYu/evUhISFCv7HjnnXcwaNAg/Pnnn+p8y5cvx/Xr1zFx4kR4enqiuroamzZtgkAgwIQJEwAAjz/+OEaOHImwsDA4OzujuLgYGzduhI+Pj8ZqnbstXrwYn3/+OaZMmYKVK1fCx8cHP/30E7Zs2YKFCxdiyJAhRrvWd955B2+//TYmTJiAixcvYuXKlfDz89O7YghQzm/IzMzElClT4O3tjebmZvWy70ceeUQjr5mZGSZNmoQlS5ZAoVBg7dq1qK2txYoVK4xyHfosW7YM+/fvx8SJE7Fs2TKIxWJs3bpVvdKLx+v8/9Hs7Ozw1ltv4Y033sBzzz2Hp59+GhUVFVixYgVEIpHWKqbOeOedd/DYY49h0qRJePXVVyGXy7F27VpYWlqqV88Zy6ZNm/Dggw8iMjISCxcuhK+vL+rq6nDp0iXs379fa26YLitXrkR6ejrGjRuHRYsWYejQoWhubkZRURHS0tKwdevWTu+RFBgYCABYu3YtYmJiYGZmhqCgIAiFQq289vb2SEpKwqpVqzB//nw88cQTuHbtGpKTkzs19Gfoz8KcOXPwwQcfIC4uDqtWrcLgwYNx4MABHDp0CMBfn6f8/Hy89NJLeOKJJ3D//fdDKBQiMzMT+fn5eP311zt1P0gfZOoZ0oSoVu7cufqGMeWqGEtLS638EyZMYCNGjNBIW7NmDfP19WXm5uYsICCAffzxx1orgn788UcWExPDPDw8mFAoZC4uLmzy5Mns2LFj6jzvv/8+GzduHHNycmJCoZB5e3uz559/nhUVFXV4HcXFxWz27NnM0dGRCQQCNnToUPbee+8xuVyuztPeKhvGlKty3n77bb2v0dLSwpKSkpiHhwcTiURs9OjR7LvvvmNz5sxhPj4+esueOHGCTZs2jfn4+DBzc3Pm6OjIJkyYwH744Qet9q1du5atWLGCeXp6MqFQyEJCQtihQ4c06mvvfbvzuTv5+PiwKVOmaOWdMGGCxgocxhg7duwYCw8PZ+bm5szNzY394x//YGvXru1wNR1juldjqWzfvp0FBQUxoVDIbG1tWWxsrHr1kUp7nzt9fvjhB3W93t7ebM2aNe3eg+6sxlI9N2/ePObh4cEEAgFzdnZm48aNY6tWrVLnUa1i+uabb3S2t7y8nC1atIj5+fkxgUDAHBwcWGhoKFu2bBmrr6/vsA13f1ZbWlrY/PnzmbOzM+M4rsNVcwqFgq1evZp5eXkxoVDIgoKC2P79+7U+C/quozM/CyUlJWz69OnMysqKWVtbsxkzZrC0tDQGgH3//feMMcZu377N5s6dy4YNG8YsLS2ZlZUVCwoKYh988IHGajTSP3GMMdbbARYhpG8qKiqCn58f3nvvPSQlJZm6ORqio6NRVFSEwsJCUzeFDAApKSl48803UVJSYrLdvknvoWEsQkifs2TJEoSEhMDLywuVlZX497//jfT0dPXkUUI6Y/PmzQCAYcOGQSaTITMzE//85z8RFxdHgc49goIdQkifI5fLsXz5cpSWloLjOAwfPhxffPGF+igIQjrDwsICH3zwAYqKitDS0gJvb2+89tprePPNN03dNNJLaBiLEEIIIQMaLT0nhBBCyIBGwQ4hhBBCBjQKdgghhBAyoN2TE5QVCgVu3rwJa2tro291TwghhJCewRhDXV0d3N3dO7XB6D0Z7Ny8eRNeXl6mbgYhhBBCuuDatWud2jbgngx2rK2tAShvliEnGxtKJpPh559/RnR0NAQCgdHqHSjo/uhH90c/uj/to3ujH90f/frT/amtrYWXl5f677ih7slgRzV0ZWNjY/Rgx8LCAjY2Nn3+A2MKdH/0o/ujH92f9tG90Y/uj3798f50dgoKTVAmhBBCyIBGwQ4hhBBCBjQKdgghhBAyoN2Tc3YIIYTcm+RyOWQymamb0afIZDLw+Xw0NzdDLpebtC0CgQBmZmZGr5eCHUIIIfeE27dvo66uztTN6HMYY3Bzc8O1a9f6xN5zdnZ2cHNzM2pbKNghhBAy4FlbW6O2thaurq6wsLDoE3/U+wqFQoH6+npYWVl1aqM+Y2OMobGxEWVlZQCAQYMGGa1uCnYIIYQMaHK5HNbW1nB2doajo6Opm9PnKBQKSKVSiEQikwY7ACAWiwEAZWVlcHFxMdqQFk1QJoQQMqC1traCx+PBwsLC1E0hBlC9T8acW0XBDiGEkAGNMQag8xvREdPoifeJgh1CCCGEDGgU7BBCCCFkQKNghxBCCOmH1qxZg4iICFM3o1+gYKePY4yhor4FCgUzdVMIIYT0IXl5eRg1apTR6ktNTYWfnx9EIhFCQ0Nx7Ngxg8pt2bKl3XKrV6/GmDFjYG1tDRcXF/z973/HxYsXjdZmQ1Gw04ddq2xEzKZjCF11GI9sOILzt2pN3SRCCCF9RF5eHoKDg41S1969e7F48WIsW7YMOTk5iIyMRExMDEpKSvSW+/rrr/HKK6+0W+7IkSNITEzEyZMnkZ6ejtbWVkRHR6OhocEo7TYUBTt9VLNMjvgvz+BCqXK3zyuSBsz79DQaWlpN3DJCCCG97fz584iKioJYLEZISAiysrJQWFhotJ6dLVu2YN68eZg/fz4CAgKwceNGeHl5ITU1VW+5DRs24Pnnn2+33MGDBzF37lyMGDECo0aNws6dO1FSUoIzZ84Ypd2GomCnj/r3qRKcu1kLB0shflr0ILwcxLhV04wPMy+ZummEENLvMcbQKG01yZdqKbyhLly4gPDwcISFhaGgoADLly9HbGwsGGMICgrSyJuSkgIrKyu9X3cPT0mlUuTm5mLSpEka6dHR0Th+/Hi77ZJKpThz5gyio6MNLldTUwMAcHBwMPj6jYF2UO6DZHIFdhy7AgB4NXoIRrjbYvnUEXjh8yx8caIILz08GFbm9NYRQkhXNcnkGL78kEle+4+Vj8JCaPjv8MTERMTGxmL9+vUAAH9/f+zZswfZ2dmwtLTUyBsfH49Zs2bprc/Dw0PjsUQigVwuh6urq0a6q6srSktL262ns+UYY1iyZAkefPBBjBw5Um8bjY3+YvZBRy6W42ZNM5yshJgx2hMA8EiAC+5ztsSV8gb8kHsTs8O9TdxKQgghPa24uBiZmZnIzs7WSBcIBDqHsBwcHLrca3L3Zn6MMYM2+DO03EsvvYT8/Hz8+uuvXWpfd1Cw0welFdwCAEwNcodIoDwXhOM4zB7rjVU/nce32dcp2CGEkG4QC8zwx8pHTfbahsrNzQWfz0dgYKBGenZ2NmbPnq2VPyUlBSkpKXrrPHDgACIjI9WPnZycYGZmptUbU1ZWptVrc6fOlHv55Zfxww8/4OjRo/D09NTbvp5AwU4fI21VIP2P2wCAyYGaJ75OCRqEVT+dR3ZJFST1LXCyMjdFEwkhpN/jOK5TQ0mmwuPx1Ad18vnK9qalpeHcuXM6V2J1ZRhLKBQiODgYhw8fxowZM9Tp6enpiI2NbbceoVCI0NBQpKenY9q0aTrLMcbw8ssvY9++ffjll1/g5+fX8UX3gL7/Tt9jckqqUNfcCicrIcJ87DWeG2QrxkgPGxTcqEXm+TLMGuNlolYSQgjpDaGhoRAIBEhKSkJSUhIKCgqwcOFCADDqMFZCQgLi4+MxZswYREREYNu2bSgpKUF8fLw6z+bNm7Fv3z5kZGSo05YsWYJnn30WYWFhOsslJiZi165d+P7772Ftba3uBbK1tVWfcN4bKNjpY45frgAARPg7gcfTHvN8JMAVBTdq8d+LFOwQQshA5+7uju3bt2Pp0qXYvXs3QkJCMGfOHHz88cdaPTTdMX36dDQ1NWHlypW4desWRo4cibS0NPj4+KjzSCQSXL58WaPck08+iYqKinbLqZagR0VFaZTbuXMn5s6da7T2d4SCnT7mRFuwM87fUefzDwx2wsbDf+L3q5UGTx4jhBDSf8XFxSEuLk4jraN5OV2xcOFCJCYmtvt8cnIykpOTtdITEhKQkJCgs0xnl9n3FNpnpw9plsmRc60KABBxn+5gJ8jTFuZ8HioapLhUVt+bzSOEEEL6pX4X7LS2tuLNN9+En58fxGIx7rvvPqxcuRIKhcLUTeu2czdrIZMzOFkJ4eNooTOPOd8Mo72Vc3lOXq3szeYRQggh/VK/C3bWrl2LrVu3YvPmzTh//jzWrVuH9957Dx9++KGpm9ZtedeqAQCjPO30Dk+N8VNOPsspqeqVdhFCCCH9Wb+bs3PixAnExsZiypQpAABfX1989dVXyMrKMnHLui//eluw42WnN98oT1sAwNnrNT3eJkIIIaS/63fBzoMPPoitW7eisLAQQ4YMQV5eHn799Vds3Lix3TItLS1oaWlRP66tVZ4eLpPJIJPJjNY2VV1drTO3rWdn5CArvXUMc1VuD365vB7V9U2w7CdHR3T3/gx0dH/0o/vTPro3+rW2Kg9QZowNiCkPxqaaRNxX7o9CoQBjDDKZDGZmmhswdvUzzrG+MlXaQIwxvPHGG1i7di3MzMwgl8vx7rvvYunSpe2WSU5OxooVK7TSd+3aBQsL3XNjeluLHHjtdzMwcFgV1gprgf78y7PMUCPjsGhEK/xteqeNhBDSH/H5fLi5ucHLywtCodDUzSEdkEqluHbtGkpLS9WBqkpjYyNmz56Nmpoa2NgY/sevf3QJ3OHrr7/Gl19+iV27dmHEiBHIzc3FK6+8And3d8yZM0dnmaVLl2LJkiXqx7W1tfDy8kJ0dHSnblZHZDIZ0tPTMWnSJAgEHUQrdzl7owbs91NwtBTiydjoDvN/X5mDzIvlsPYZgckRPh3m7wu6c3/uBXR/9KP70z66N/rV19fjypUrsLS07NWN7PoLxhjq6upgbW3dJ7YzaW5uhlgsxvjx4yESiTSeU43MdFa/C3b+8Y9/4PXXX8dTTz0FAAgMDERxcTFWr17dbrBjbm4Oc3PtoxUEAkGP/GLoSr2XJU0AgKFu1gaVDfKyQ+bFcpy/Vd/vfrn11H0fKOj+6Ef3p310b3RTHbPAcRx4vH63LqfHqYau+sr94fF44DhO5+e5q59v019VJzU2Nmq9GWZmZn1inLE7Cm/XAQCGuFoblD+obZJy/g2apEwIIYTo0+96dh5//HG8++678Pb2xogRI5CTk4MNGzZg3rx5pm5at1y8rdwgcKibYcHO8EHKYOeqpAEtrXKY8w0/RZcQQgi5l/S7np0PP/wQM2fOREJCAgICApCUlIQFCxbgnXfeMXXTuqWwtHM9O6425rA250OuYCiSNPZk0wghhPRBa9asQUREhKmb0S/0u2DH2toaGzduRHFxMZqamnD58mWsWrWqX8+wr2mUobS2GQAwxNXKoDIcx+H+tryqITBCCCH3jry8PJ0nn3dVamoq/Pz8IBKJEBoaimPHjhlUbsuWLe2WS05OBsdxGl9ubm5Ga7Oh+l2wMxAVlimDFXdbEaxFhk++ut9F2Qv0J52RRQgh95y8vDwEBwcbpa69e/di8eLFWLZsGXJychAZGYmYmBiUlJToLff111/jlVde0VtuxIgRuHXrlvrr7NmzRmlzZ1Cw0wdcLW8AAPi7GNaro6Lq2blURj07hBAykJ0/fx5RUVEQi8UICQlBVlYWCgsLjdazs2XLFsybNw/z589HQEAANm7cCC8vL6Smpuott2HDBjz//PN6y6n2OVJ9OTs7G6XNnUHBTh9QVKEMdnwdLTtV7v62+T2Ft6lnhxBCOoUxQNpgmq9O7uV74cIFhIeHIywsDAUFBVi+fDliY2PBGENQUJBG3pSUFFhZWen9unt4SiqVIjc3F5MmTdJIj46OxvHjx9ttl1QqxZkzZxAdrbk33N3l/vzzT7i7u8PPzw9PPfUUrly50qnrN4Z+txprICquUE4w9nXqZLDT1hNUJGmAtFUBIZ9iV0IIMYisEUhxN81rv3ETEBr++z4xMRGxsbFYv349AMDf3x979uxBdnY2LC0164mPj8esWbP01ufh4aHxWCKRQC6Xw9XVVSPd1dUVpaWl7dZjSLnw8HB8/vnnGDJkCG7fvo1Vq1Zh3LhxOHfuHBwdHfVfuBFRsNMHXJWoenY6d3TFIFsRrMz5qG9pRVFFg8EruQghhPQPxcXFyMzMRHZ2tka6QCDQOYTl4OAABwfDHdd4AAAgAElEQVSHLr3W3bsnM8YM2lFZX7mYmBh1emBgICIiIuDv74/PPvtM42SDnkbBjokxxlDcNozl08lhLI7j4O9sibzrNbhSTsEOIYQYTGCh7GEx1WsbKDc3F3w+H4GBgRrp2dnZmD17tlb+lJQUpKSk6K3zwIEDiIyMVD92cnKCmZmZVi9OWVmZVq/NnbpSztLSEoGBgfjzzz/1ttHYKNgxMUm9FA1SOTgO8HLo/Jktvk7KYEc174cQQogBOK5TQ0mmwuPxoFAoIJVK1cdepKWl4dy5czpXYnVlGEsoFCI4OBiHDx/GjBkz1Onp6emIjY1ttx6hUIjQ0FCkp6dj2rRpBpVraWnB+fPnNYKt3kDBjompenXcbcVd2gVZ1RtUTMEOIYQMOKGhoRAIBEhKSkJSUhIKCgqwcOFCADDqMFZCQgLi4+MxZswYREREYNu2bSgpKUF8fLw6z+bNm7Fv3z5kZGSo05YsWYJnn30WYWFhOsslJSXh8ccfh7e3N8rKyrBq1SrU1ta2e5ZlT6Fgx8RU83X8Ojk5WcXPyUKjHkIIIQOHu7s7tm/fjqVLl2L37t0ICQnBnDlz8PHHH2v10HTH9OnT0dTUhJUrV+LWrVsYOXIk0tLS4OPjo84jkUhw+fJljXJPPvkkKioq2i13/fp1PP3005BIJHB2dsbf/vY3nDx5UqPe3kDBjompVmL5dHJysspfPTt0ZAQhhAxEcXFxiIuL00jraF5OVyxcuBCJiYntPp+cnIzk5GSt9ISEBCQkJOgss3v3bmM1r1torbKJFVd2L9jxawt2btU0o0kqN1q7CCGEkIGCgh0Tu1GlDHY87XUEO9JGQC7TW97OQgAbkbKDrqSSencIIYSQu1GwY2I3qpsAAB52d6zEkjUDe18EVnsAa3yA3/7ZbnmO49TzfWjeDiGEEKKNgh0TkrYqUFbXAgDwsG8LdhgDfngZyP8aYApA1gCkvwWc+bTdelTzdmj5OSGEEKKNgh0TulXTBMYAcz4PjpZCZeKlDODsHoDHB575DxD1hjI97f+Amus661EdM0HLzwkhhBBtFOyY0J1DWBzHKXt1/rtK+WR4PHD/JGDC/wE+DwDyFuDIOp31eLX1Cl2vauqVdhNCCCH9CQU7JnSjLThRD2HdzAZu5gB8MfDgYmUaxwETlyv/nbsLaJBo1aMqf4OCHUIIIUQLBTsmpDU5Ofcr5feAqYCl018Zvf8GuIcAChmQ95VWPV5tK7muVzdBoWA92mZCCCGkv6Fgx4TUPTt2YkAhB87tVT4x6mntzKFzld9zvtR6ys1WBB6nnPAsqW/podYSQggh/RMFOyak7tmxFwM3soHGCkBkC/hN0M48YhrAEwDlF4DyQo2nBGY8DLJV9g5do6EsQgghRAMFOyakMYz15yFlov9EwEzHKR4iW+C+tiDown6tp9Xzdqop2CGEkHvBmjVrEBERYepm9AsU7JiIQsFwq7oZAOBuJwYuHVY+cf+k9gsFPK78fvGA1lOedqoVWbSLMiGE3Avy8vJ0nnzeVampqfDz84NIJEJoaCiOHTvWYZmjR4/i8ccfh7u7OziOw3fffWe09hgTBTsmUtUohVSuAAC4msuAW3nKJ3QNYan4T1R+v3EGaK7ReMqTlp8TQsg9JS8vD8HBwUapa+/evVi8eDGWLVuGnJwcREZGIiYmBiUlJXrLNTQ0YNSoUdi8ebNR2tFTKNgxkdJaZa+Ok5UQwtIzyt2S7bwBW4/2C9l5AQ7+yrxFv2k8pTpbi4IdQggZeM6fP4+oqCiIxWKEhIQgKysLhYWFRuvZ2bJlC+bNm4f58+cjICAAGzduhJeXF1JTU/WWi4mJwapVqzB9+nSjtKOn6JgcQnpDWa1y1ZSrjQgoaesq9DZg7PW+KKDyMnD1CDBssjr5r54dGsYihJCOMMbQ1Gqa/xyK+W0byRrowoULCA8Px4svvogdO3YgPz8fsbGxYIwhKChII29KSgpSUlL01nfgwAFERkaqH0ulUuTm5mLp0qUa+aKjo3H8+HGD29mXUbBjIqqeHVcbEXDtlDLRK7zjgvdNALJ2AFd+0Ui+c2NBxlinfpAIIeRe09TahPBdBvzO7QGnZp+ChcDC4PyJiYmIjY3F+vXrAQD+/v7Ys2cPsrOzYWlpqZE3Pj4es2bN0lufh4fmCIJEIoFcLoerq6tGuqurK0pLSw1uZ19GwY6JlNa0BTvW5sCltvk6HqM7LugbCYBTLkGvLwOsXAAAg2zF4DigpVUBSb0UztbmPdRyQgghvaW4uBiZmZnIzs7WSBcIBDqHsBwcHODg4NCl17r7P8kD6T/OFOyYSFmdMtgZbF4NNFUpD/50Gd5xQQsHwCUAKPsDuJ6lHsoS8nlwsxHhVk0zrlc1UrBDCCF6iPlinJp9ymSvbajc3Fzw+XwEBgZqpGdnZ2P27Nla+bsyjOXk5AQzMzOtXpyysjKt3p7+ioIdE1H17AxhV5QJzsMAvoEBimdYW7Dzu9a8HWWw04QQb3tjN5kQQgYMjuM6NZRkKjweDwqFAlKpFHy+8k92Wloazp07p3MlVleGsYRCIYKDg3H48GHMmDFDnZ6eno7Y2FgjXIXpUbBjIrfbJih7tlxSJrgF6cl9F88xQPbnyp6dO3jYiXEaVbSxICGEDBChoaEQCARISkpCUlISCgoKsHDhQgAw6jBWQkIC4uPjMWbMGERERGDbtm0oKSlBfHy8Os/mzZuxb98+ZGRkqNPq6+tx6dIl9eOrV68iNzcXDg4O8Pb27nQ7egoFOyZyW7X0vO6CMsEtUE/uu3iOUX6/kQ3IW9U7Lru1HRmh6jUihBDSv7m7u2P79u1YunQpdu/ejZCQEMyZMwcff/yxVg9Nd0yfPh1NTU1YuXIlbt26hZEjRyItLQ0+Pj7qPBKJBJcvX9Yol5WVhYceekj9eMmSJQCAOXPm4NNPPzVa+7qLgh0TkLYqUNEgBQBYVP6hTBzUiZ4dpyGA0BqQ1gHl59WB0iBbEQAKdgghZCCJi4tDXFycRlpH83K6YuHChUhMTGz3+eTkZCQnJ2ukRUVFgTFm9LYYG20qaAKqycnOZo0wq7uhTOxMzw7P7K+VW9dPq5Pd2oKdW7UU7BBCCCEqFOyYgGoIK9SyXJlg46k86LMzVMGO6pgJ3NmzQ3N2CCGEEJV+GezcuHEDcXFxcHR0hIWFBYKDg3HmzBlTN8tgqsnJgaLbygSnwZ2vRNUTVHr2r6S2YKesrgWytnO3CCGEkHtdv5uzU1VVhQceeAAPPfQQDhw4ABcXF1y+fBl2dnambprBVHNq7jdr29PAaUjnK3Frm4V/+5x6krKTpTkEZhxkcobyuhblaeqEEELIPa7fBTtr166Fl5cXdu7cqU7z9fU1XYO64HbbnB0fRdt8na4EOw73AUIrQFoPVPwJuASAx+PgaiPC9aom3KpppmCHEEIIQT8Mdn744Qc8+uijeOKJJ3DkyBF4eHggISEBL7zwQrtlWlpa0NLSon5cW1sLAJDJZJDJZEZrm6qujuq81XYyuYu0GADQancfWBfaYeYyArzrp9B6IwfMXjkU5mZjjutVTbhRWY8gd6tO19mTDL0/9yq6P/rR/Wkf3Rv9WltbASiPP1AoaIj/bqrVVH3l/igUCjDGIJPJYGZmpvFcVz/jHOsPa8buIBIp56UsWbIETzzxBH7//Xe88sor+Ne//oXnnntOZ5nk5GSsWLFCK33Xrl2wsOj9HTQ/PMdDca0CF0RzYQYFDo3YiGZh5zeBCrz2Oe6THMYllxic83gaAPBZIQ/ZFTz83UeOh9z71VtLCCE9gs/nw83NDV5eXhAKhaZuDumAVCrFtWvXUFpaqg5UVRobGzF79mzU1NTAxsbG4Dr7XbAjFAoRFhamcez8okWLcPr0aZw4cUJnGV09O15eXpBIJJ26WR2RyWRIT0/HpEmTIBAI2s336KbfwFUUIsP8H2BCS7QmFQFdOGyNy/0S/J9egcI3EvJn9gEA1hy8iB2/FeP/jfPBGzFDu3opPcLQ+3OvovujH92f9tG90a++vh5XrlzBsGHDIBbT8P7dGGOoq6uDtbV1nzj4s7m5GUVFRfDy8lJ3cKjU1tbCycmp08FOvxvGGjRoEIYP1zwwMyAgAN9++227ZczNzWFurn3ulEAg6JFfDB3VW9EgRTh3EwDAOd4PQVf/p+Gu3IiQV34BvLbX87C3BACU1Un77C+9nrrvAwXdH/3o/rSP7o1uqjOlOI4Dj9cvFyH3KNXQVV+5PzweDxzH6fw8d/Xzbfqr6qQHHngAFy9e1EgrLCzU2NK6L2tplaOmSQY/TrUS6/6uV+bU1nPTUA40VAD4a6+dW7TXDiGEEAKgHwY7ixcvxsmTJ5GSkoJLly5h165d2LZtm94trvuSinrlMRE+vDJlgr1v1ysztwLs2g5aKz8P4K+9dujICEIIGdjWrFmDiIgIUzejX+h3wc6YMWOwb98+fPXVVxg5ciTeeecdbNy4Ec8884ypm2YQSb1y7tB9fIkyoTvBDgA4Byi/lymDHdVy89t1LZAr+tV0LEIIIZ2Ql5en8+TzrkpNTYWfnx9EIhFCQ0Nx7NixDsusXr0aY8aMgbW1NVxcXPD3v/9da/SlL+h3wQ4ATJ06FWfPnkVzczPOnz+vd9l5X6MKdry4tp4du24Ov7kMU34vV56e7mRlDjMeB7mCqV+LEELIwJOXl4fg4GCj1LV3714sXrwYy5YtQ05ODiIjIxETE4OSkhK95Y4cOYLExEScPHkS6enpaG1tRXR0NBoaGozSLmPpl8FOfyapk4IHBVwVbediGa1nRxnsmPE4uForJ2PfrKZ5O4QQMhCcP38eUVFREIvFCAkJQVZWFgoLC43Ws7NlyxbMmzcP8+fPR0BAADZu3AgvLy+kpqbqLXfw4EHMnTsXI0aMwKhRo7Bz506UlJT0uSOc+t1qrP6uvL4FbqgEH60ATwDYuHevQnXPzvm/kmxEuFnTjLI66tkhhBBdGGNgTab5DyEnFndqifeFCxcQHh6OF198ETt27EB+fj5iY2PBGENQUJBG3pSUFKSkpOit78CBA4iMjFQ/lkqlyM3NxdKlSzXyRUdHa2zzYoiamhoAgIND5/eO60kU7PQySX0LvLi2Xh07L4Bnpr9AR5yGAuCAxgqgvhywcoZLW88OBTuEEKIba2rCxdGhJnntodlnwHViQ9vExETExsZi/fr1AAB/f3/s2bMH2dnZsLS01MgbHx+PWbNm6a3Pw8ND47FEIoFcLoerq6tGuqurK0pLSw1uJ2MMS5YswYMPPoiRI0caXK43ULDTyyT1Unjz2k477+58HQAQWgD2PkBVkbJ3x8oZLjZtwU4trcgihJD+rLi4GJmZmcjOztZIFwgEOoewHBwcutyrcndvE2OsUz1QL730EvLz8/Hrr7926fV7EgU7vUxS14K/cbrn6zTIGrA5ZzOO3zyOQZaD8FLISxjpZEB07BygDHbKLgB+4+FqrVx+XlZLPTuEEKILJxZjaLZp5pVwndjFOTc3F3w+H4GBgRrp2dnZmD17tlb+rgxjOTk5wczMTKsXp6ysTKu3pz0vv/wyfvjhBxw9ehSenp4GlelNFOz0Mkl9C7xVK7Hs/+rZaZQ14rkDz6GwqhAAcKXmCk7eOon3J7yPiT4T9VfqPBQoPKBekaXu2amjnh1CCNGF47hODSWZCo/Hg0KhgFQqVe8EnZaWhnPnzulcidWVYSyhUIjg4GAcPnwYM2bMUKenp6cjNjZWb12MMbz88svYt28ffvnlF/j5+Rl6ab2Kgp1eVq4xZ+evYCflVAoKqwrhKHLE62Nfx6GiQzhcchivHXsNX9t+DX87//YrdW7bSbniEgDApa1n5zb17BBCSL8WGhoKgUCApKQkJCUloaCgAAsXLgQAow5jJSQkID4+HmPGjEFERAS2bduGkpISxMfHq/Ns3rwZ+/btQ0ZGhjotMTERu3btwvfffw9ra2t175CtrW2fOoeMlp73IplcgepGGQZxyqMdVLsfX6y8iO8vfw8AeD/qfTzm9xjem/AexrmPQ4u8BStPrISCKdqv2HGw8nvFZQB39uxQsEMIIf2Zu7s7tm/fjv379yMsLAybNm3CnDlz4OTkpNVD0x3Tp0/HBx98gJUrVyI4OBhHjx5FWlqaxlFMEokEly9f1iiXmpqKmpoaREVFYdCgQeqvr7/+2mhtMwYKdnpRRX3bHjuoUia0LTv/V/6/AAAxvjEIdVWuDuDz+FgxbgXEfDGyy7Lx35L/tl+xKtipvQ5IG9Q9OxUNLWiV6wmSCCGE9HlxcXG4du0aKisrkZGRgZSUFJSXlxv9dRYuXIiioiK0tLTgzJkzGD9+vMbzycnJKCoq0khjjOn8mjt3rtHb1x0U7PQiSX0LnFENPqcAODPAyhWSJok6kHkhSHMnaDdLN8QFxAEAUvNSwVg7xz9YOABie+W/K6/A0VIIMx4HxpSrvwghhJB7GQU7vai8vgWDuErlA+tBAM8M+y/vRytrRZBTEO631z4Bfc6IORDzxbhYdRFZt7Par1w9lHUJPB4HZyuapEwIIYQAFOz0Kkldy1/zddqGsH4u+hkAEDtY94x3W3NbTLlvCgDgm4vftF/5HcEO8Ne8HZqkTAgh5F5HwU4vktRL/+rZsfVAWWMZCioKAAAPez/cbrlZQ5TLCNNL0lHRVKE7092TlFV77VDPDiGEkHscBTu9SFJ/Z8+OB45cPwIACHIKgpPYqd1yAY4BCHQKRKuiFT9d+Ul3JurZIYQQQnSiYKcXVdw5Z8fGA6dunQIAPOj5YIdlp943FQBwqPiQ7gx3BTuqXZTLqWeHEELIPY6CnV5U2SiDW1uww6wHIfu28qyTMNewDstO8pkEDhzyy/Nxs/6mdgaH+5Tfm6qAxso7zseinh1CCCH3Ngp2elFVg1Q9jHVdIER5Uzn4PD4CnQI7KAk4WzgjzE0ZFKkmNWsQWgA2beeRVFxSn3x+m3p2CCGE3OMo2OlF1fVN6g0Fz0iVG0KNcBwBEV9kUPlHfR4FoJyorJNj25ESkj/hakOHgRJCCCEABTu9itdYDj6nAOPMkF2jXDU12nW0weWjvKIAAGfLz6KquUo7wx3zdlQ9O5L6FsgV7WxGSAghhNwDKNjpJU1SOexblb05zNoNOeW5AIBQl1CD63C1dMVQ+6FgYPjt5m/aGZzaNiWsuARHK3PwOEDBlBOjCSGEDCxr1qxBRESEqZvRL1Cw00sqG6XqycmNNoNQXFsMABjpNLJT9UR6RgIAjl0/pv3kHT07ZjwOTla0/JwQQgaqvLw8nSefd1Vqair8/PwgEokQGhqKY8d0/J3RUSYoKAg2NjawsbFBREQEDhw4YLQ2GQsFO72ksl4K97bJyZcs7cDA4CJ2gaPYsVP1RHoog53fbv4GuUKu+aRqRVZVEcDYHaef0yRlQggZaPLy8hAcHGyUuvbu3YvFixdj2bJlyMnJQWRkJGJiYlBSUqK3nKenJ9asWYOsrCxkZWXh4YcfRmxsLM6dO2eUdhkLBTu95M6enQsiZRAy1GFop+sJcg6CtdAaNS01OCs5q/mkrRfA8QBZI1Bfpt5rp6yOenYIIaQ/O3/+PKKioiAWixESEoKsrCwUFhYarWdny5YtmDdvHubPn4+AgABs3LgRXl5eSE1N1Vvu8ccfx+TJkzFkyBAMGTIE7777LqysrHDy5EmjtMtYKNjpJZUNLXDllJOKL0AGABjmMKzT9fB5fDzg/gAA4NiNu7oY+cK/lp9XXb1jF2Xq2TFEs0wOCc1vIuSewBiDrEVuki/GOrdo5MKFCwgPD0dYWBgKCgqwfPlyxMbGgjGGoKAgjbwpKSmwsrLS+3X38JRUKkVubi4mTZqkkR4dHY3jx48b3E65XI7du3ejoaGhz80l4pu6AfeKygYZAlANAChsrQXQtZ4dABjnPg4Hiw7i91u/AyF3PengC9SUAJVX4WSlXOlFf8D1q2mS4Z0f/8C+nBuQKxiGD7LBmhmBCPK0M3XTCCE9pFWqwLb/PWKS135x0wQIzM0Mzp+YmIjY2FisX78eAODv7489e/YgOzsblpaWGnnj4+Mxa9YsvfV5eHhoPJZIJJDL5XB1ddVId3V1RWlpaYftO3v2LCIiItDc3AwrKyvs27cPw4cPN+TSeg0FO72ksqEFLlw1WgEUNitXZQ2171qwM3bQWABAgaQADbIGWAru+LDb+wFXjwJVV+FsrYysJXXSbrV9IGuUtuK5T35H3rVqddoft2oxc+sJ7JofjjBfBxO2jhByrysuLkZmZiays7M10gUCgc4hLAcHBzg4dO33FsdxGo8ZY1ppugwdOhS5ubmorq7Gt99+izlz5uDIkSN9KuChYKeXVDbI4MxVo0TAR4tCBjFfDC9rry7V5WHlAQ8rD9yov4Hs29nqFVoAAHtf5feqIjjd/9deO0S3d348j7xr1bCzEODj58Lg52SJV/fk4UhhORZ8cQbpSybAwVJo6mYSQoyML+ThxU0TTPbahsrNzQWfz0dgoOZO+9nZ2Zg9e7ZW/pSUFKSkpOit88CBA4iM/OvvhpOTE8zMzLR6ccrKyrR6e3QRCoUYPFi5GjgsLAynT5/Gpk2b8K9//avDsr2Fgp1eUltXB1uuEacEYgDAYLvBMOMZ3o15t7FuY7Hv0j6cLj2tGew4+Cm/V15VLz0vp2BHp6yiSnz1u3KlwZZnRmNMWy/O1rhQ/P2j33Dxdh1S0s5j/RPGW9pJCOkbOI7r1FCSqfB4PCgUCkilUvD5yj/ZaWlpOHfunM6VWF0ZxhIKhQgODsbhw4cxY8YMdXp6ejpiY2M73WbGGFpa+tbfHQp2egmrLwMAXBUqAxBfG99u1Td2kDLYOVV6SvMJ+7Zgp+oqnFW7KNNqLJ02pBcCAGaFeWKcv5M6XSw0w5oZgZi25Ti+zb6OF8ffhyGu1qZqJiHkHhYaGgqBQICkpCQkJSWhoKAACxcuBACjDmMlJCQgPj4eY8aMQUREBLZt24aSkhLEx8er82zevBn79u1DRkaGOu2NN95ATEwMvLy8UFdXh927d+OXX37BwYMHu3C1PYdWY/USXkNbsCOyAgD42vp2q76xbsp5OxcqL6CmpeavJ1TDWA3lcBIq5+o0SOVolLZ26/UGmuySKhy/XAGBGYf/fWSI1vMh3vaYHOgGxoBNGX+aoIWEEAK4u7tj+/bt2L9/P8LCwrBp0ybMmTMHTk5OWj003TF9+nR88MEHWLlyJYKDg3H06FGkpaXBx8dHnUcikeDy5csa5W7fvo1nn30WQ4cOxcSJE3Hq1CkcPHhQa2WXqVHPTi8Rtk1KLhYKAbR2u2fHxcIFvja+KKotwpnbZ/Cw98PKJ8R2gNgeaKqCVeN1mPN5aGlVQFInhbcjvd0qu9uGrx4f5Q4PO7HOPC89dD/SzpbiYEEpymqb4WJj2IGthBBiTHFxcYiLi9NI62heTlcsXLgQiYmJ7T6fnJyM5ORkjbQdO3YYvR09gXp2eoFcwWDRIgEDUGymAAD42PjoL2SAMLcwAEBOWY7mE21DWVxVkXooi+bt/KW+pRU/5t8CADw1xrvdfMPdbRDqYw+5gmFP1rXeah4hhBAjo2CnF9Q0yeDEVaOSx0MdFODAGSXYCXFRbrKjFezomqRM83bU0vJvoVEqh5+TJcb42uvN+/RYZTD01e/XoKDT4wkhpF+iYKcXVDZI4YwaFAkEAIBBloMg4nd/SEQV7JyrOIfm1jt2Sb5j+bl6kjL17Kh9n3cDADAz1LPDPSSmBg2CjYiPG9VNOHW1sjeaRwghxMj6fbCzevVqcByHV155xdRNaVdlgxQuXDWKBMo5M92dnKziaeUJJ7ETWhWtOFdxx6Frd6zIop4dTTVNMpy6ogxaJgcO6jC/SGCG6BFuAICDBbd6tG2EEEJ6Rr8Odk6fPo1t27ZpnQ3S11Q2SOHMVat7dro7OVmF4zjdQ1l3DGM5Wyk3xKOeHaUjheVoVTAMdrGCn5NlxwUATA5sC3bOldJQFiGE9EP9Ntipr6/HM888g48//hj29vrnXZhaZYMUTlwNrrf17HjbtD8ptrN0BjuqYayaa3CxVG6aRcGO0uE/bgMAHgnoeFdQlQcGO8HanI/btS3IuVbVU00jhBDSQ/rtWuTExERMmTIFjzzyCFatWqU3b0tLi8ZujrW1yoM4ZTIZZDKZ0dqkquvuOiW1jXBGNW7wlRvXuYpcjfa6QQ7KXq3csly0SFvA43iA2Bl8M3Nw8ha4QQIAKKttNuq1dkV796e3tMoV+OWicr+jh4Y4GtwOHoCooU7Yn1+KtPybCHLvmQ0GTX1/+jq6P+2je6Nfa6tynzHGGBQKhYlb0/eoTmHvK/dHoVAoT6WXyWBmprnLdVc/4/0y2Nm9ezeys7Nx+vRpg/KvXr0aK1as0Er/+eefYWFhYezmIT09XePxhSuNMOdacYOvfNMu51xGQ36DUV5LzuQQQIBaaS0++/EzuJopeywe5jvAWn4L1QUZAIJRUlaNtLQ0o7xmd919f3pLcR1Q28yH2Izh5tnjKC0wvKx9EwfADGk5RQhSXO4wf3eY6v70F3R/2kf3Rjc+nw83Nzc0NDRQQKhHXV2dqZsAAJBKpWhqasLRo0fVgapKY2Njl+rsd8HOtWvX8L//+7/4+eefIRIZtqJp6dKlWLJkifpxbW0tvLy8EB0dDRsbG6O1TSaTIT09HZMmTYKgbX4OAJz7937U1XKobYtQn3zsSc2Tyrtpf8Z+ZN3Ogk2ADSYPngwAMKv9HLh8C+PvtweuAk2Mj8mTHzXaa3ZFe/ent/zr6FWg4E88cL8Lpk4J6VTZvzVI8cXaX3CrkUPogw/DtQc2GDT1/enr6P60j+6NfvX19bhy5QosLS0hFuveRPRexhhDXV0drK2tDTrlvKc1NzdDLBZj/PjxWn/nVSMzndXvgp0zZ86grKwMoaGh6pPUODAAACAASURBVDS5XI6jR49i8+bNaGlp0er2Mjc3h7m5uVZdAoGgR34x3F0v11iOm23zdezM7WBnYWfU1wt1DUXW7SzkS/LxVMBTykRHf+DyYdhJbwLwQaNUDqmCg6W56d/ynrrvHfm9uBoAMG6wc6df39VOgCAPW+Rdr8GJq9V4IqxrJ9YbwlT3p7+g+9M+uje6qQ7Q5DgOPF6/naraY1RDV33l/vB4POVBrTo+z139fJv+qjpp4sSJOHv2LHJzc9VfYWFheOaZZ5Cbm6sV6PQFgsZyXG/7YfOwMt5ZJir6JikLaq9BLKBJyjK5AllFyiXnEf6OXapj/BBnAMDRPyVGaxchhHTVmjVrEBERYepm9Av9LtixtrbGyJEjNb4sLS3h6OiIkSNHmrp5OgmbJbjZFuy4W7kbvf5RzqPAgcP1+uuQNLX9IbZTrvjiqovhZK1cfn4v77WTf70GjVI57C0EGNrFE8xVwc7xSxL1hD5CCDGVvLw8nSefd1Vqair8/PwgEokQGhqKY8eOdap8X973rt8FO/2RWFaFG23BjqeVp9HrtxJawd/OHwCQX56vTLRvO46iukS9seC93LOj6tUZ6+cAHq9rY9KjPO1gzuehokGKy+XGmWBOCCFdlZeXh+DgYKPUtXfvXixevBjLli1DTk4OIiMjERMTg5KSEoPK9/V97wZEsPPLL79g48aNpm6GTjK5AtbyavVKrLt7duT1Daj8/Avc+Mf/4fbqNWg6d05XNR0KclZ+wM5KzioT2np20FgBTwvleGx5vbRLdQ8EedeV83VCvLu+J5OQz0OIt3K+1e90dAQh/RpjDLLmZpN8daVn+Pz584iKioJYLEZISAiysrJQWFhotJ6dLVu2YN68eZg/fz4CAgKwceNGeHl5ITU1tcOy/WHfO9PPVh3gqhtlcOTqcEOgPWdHWlSEawviIS0uVqdVfvYZ7J97Fq7/93/g+Ia/PUFOQdj7596/enZEtoDIDmiuxmBhJQD+PT2MlVuiDHZGeXZvcvhYP0ecvFKJ00WVmB1uvM0hCSG9q7WlBf+cM9Mkr73os/9AYOBqYgC4cOECwsPD8eKLL2LHjh3Iz89HbGwsGGNaPSkpKSlISUnRW9+BAwcQGRmpfiyVSpGbm4ulS5dq5IuOjsbx48c7bF9n9r0zFQp2elhNkxQOXK16zo4q2JHX1+PawgRIi4vBd3OD3RMz0XLpEuoOHETV51+g9XYZPDa8D87ACdeBzoEAgAJJAeQKOcx4ZsqhrFvV8DErBzDonh3GKqttxs2aZvA4IMjTtlt1jfV1AEA9O4SQ3pOYmIjY2FisX78eAODv7489e/YgOzsblpaa25jEx8dj1qxZeuvz8NBcKCORSCCXy+HqqrmzvKurK0pLS/XW1dl970yFgp0eVt0ogwVXiwaect6Mm6XynCXJhx9CevUq+K6u8PtmD/jOysmvtTExuPlqEuoOHULZBg+4/uMfBr2Ov60/LPgWaGxtxOWayxhiP0Q5lHUrDx6sDMCge7ZnJ+easldniKt1t5fej/axA5/H4UZ1E65XNcLT3vibUhJCeh7f3ByLPvuPyV7bUMXFxcjMzER2drZGukAg0DmE5eDgAAcHhy616+49dhhjevfd6cq+d6YyIObs9GXVjTK0CpSTWa35FrAQWEB6/Toqd30FABi0apU60AEAm+hoDFq9GgBQueMT1B762aDXMeOZYaSTcjXa2XLVvB3lJGVnuTIyv1d7dnKvGWcICwAshHyM8FD2Dp0uot4dQvorjuMgEIlM8tWZjftyc3PB5/MRGBiokZ6dna1zcnJKSgqsrKz0ft29ysrJyQlmZmZavThlZWVavT13unPfOz6fDz6fjyNHjuCf//wn+Hw+5HK5wdfZ06hnp4fV1NXDgq/c7trVQvmhqfriS0Amg+W4CFhFPqhVxnbqFLRcvICKj7ej9O23YRE6Gnwnpw5fK9Dp/7N33uFRlWkfvs/0TDLpvZCEUENC6AiKBQVB7LrqqogFXQuoi65+brGga1lXsRdUYK1gAcWGIkjvEAgh1JCQ3iaZZDK9nO+PkwSQmjCTxrmv61zT3vOeJ2cmc37zvE/JZFPFJnJqcriuz3UtYifEUQ6cvWJnR5PYGdTDN8UcR6aGs6PYxKaCOq4Z7PvsOhkZGZlmFAoFXq8Xp9PZUhzxp59+YteuXccVO21ZxtJoNAwaNIjffvuN6667ruX5pUuXctVVV51wnua6d0dyxx130K9fPx5//PFOVfdOFjt+xtFQRWVTJlZMUBxemw3Tt98CED5lygn3i5o+ncZVq3Hs3UvFv/9N4qxZpzxWc0bWH9PPA62lgFRn51Ruye6GxyuSU1IPwKAk34idoclStkF2kdwBXUZGxr8MHToUtVrNo48+yqOPPkpubi733XcfgE+Xse6//37uvfdehg8fzqhRo5g9ezZFRUXce++9LWPeeustFi1axLJly4DDde+OpLPWvZOXsfyM21x9WOwExtK4YgXe+nrU8fEEnnesV6cZQaMh/sUXQKHA/PMSLBs3nfJYzWIn35SPxWVpST9Xm4sBsLu8WJydx63YHhTUNNLocBOgVtI7OsgnczaLpn2VZqxO9ylGy8jIyLSd+Ph4PvzwQ77//nuGDRvG66+/zpQpU4iMjDzGQ3MmXHvttcyaNYuZM2cyaNAgVq1axU8//URycnLLmJqaGvLz/dsI2V/IYsfPeBqrqWpy5UXrozE3dSUOvmziKTOtdP37E3bTjQBU/vvfiO6TX1gjAyKJC4xDRCS3JvdwFWVHA7EaG3D2VVHeVSY1jesXZ0Cl9M3HPSZYR2ywDq8IuaVta0onIyMjc7rceuutFBcXU1tby7Jly3j++eeprq72+XHuu+8+CgsLcTgcbN26lfPPP/+o159++mkKCwtPOkdnrXsnix0/I1hrqGxaZ41VhdO4YiUAhvHjT2v/yOnTUYaE4Ni3D9NXX51y/FHFBTWBoJdifQbopaUc41kWt7O73AxA/zjfdbcHyEqSgpSb44FkZGRkZDovstjxMyqbkcomD07CQTNeqxVVdDS601zPVIWFETl9OgA177yL12Y76fjMSClif0f1DumJpridPhqjNMdZVkV5T4XkefG92JGWsraXyGJHRkZGprMjix0/o3bUtsTshO6SYmcCR52DoDj9Ux92w59Qx8fjrq6mrill/URkRUkBazurd0olyZsyslJUktgxWs42z44kdtLj2tb880QMakpjlz07MjIyMp0fWez4GbXbiKnJs6PathsA/chzWjWHoNEQ+cADABg/+ABPY+MJx/YL74dKUGG0GymzlLXE7SQJVdL+Z5Fnp9bipLJBEnd9Y33r2clIDEEQoKTOdtam9MvIyMh0FWSx42fcolR4LtilxJW3B4DAkSNaPU/IVVeiSU3FYzJRO+9/JxynU+noE94HaCou2LSMFe1tFjtnz4V5T5NXp0e4nqAzrJz8R4J1atKipOwu2bsjI9O5aS630ZYGnDLtjz/eJ1ns+BGXx4tLKQXIDq7Wg8eDKjYWdRvSBQWViqgHpdid2o8/Pql3Z2CkFKS8o3pHi2cnwtlUWNBy9nh28sqb43V8u4TVTHNF5h1NdXxkZGQ6JyqVCq/Xi9Vq7WhTZE6D5vdJrVb7bE65qKAfMVlduFVWQE16lfSmBfyhQ21rMFx6KZqePXEePEjdF18Qeffdxx03MGog8/fOlzKyekrVMA32MkCk5ixKPfdXJlYzGQnBfLMN8srk9HMZmc6MUqnEbDZTXV2NQqFAr9efVcVVT0VzhWa73Y6iFfGkvkYURaxWK1VVVYSGhvq0ArMsdvxIvc2JQ+UA1KSUeQEIGJh58p1OgqBQEHHP3ZT/3xPUzp1H+K23oggIOGZcc0bWbuNuXEExqAGVx0Y4ZowW/3g5OiPNwcn9fByv08yAeCn9PK9M9uzIyHR2zGYzffr0oaqqqqNN6XSIoojNZiMgIKBTiMDQ0FBiY2N9OucZiR2Xy0VFRQVWq5WoqKg2d1rtrtSbG7EopYrFMcWSW06X2XbPDkDIpEnUvPkWrtJSTF99Tfhtk48ZkxycTIg2hHpHPXsbD5FhiANzOUlCFUWNEWd0/K6C2+PlQJW01OevZazmecvq7dRZnIQFavxyHBkZGd8QExNDXFwcLpero03pVLhcLlatWsX555/v06WjtqBWq/3SU6vVYqexsZHPPvuML774gk2bNuFwHF4WSUxMZPz48dxzzz0MHz7cp4Z2RSx1VdQolejtIvraJrGT3v+M5hTUaiLunkrF089gnDOHsJtuRNAcfZEVBIHMyEzWlK5hR/UOMkJ7gLmcRKGGHVYXbo/XZ9WEOytFtVacHi86tYKkML1fjmHQqUmO0HPIaCWvvIFze526WauMjEzHolQqO1WDys6AUqnE7Xaj0+k6XOz4i1Zd8WbNmkVKSgoffPABY8eOZeHChWzfvp29e/eyfv16nnrqKdxuN+PGjWPChAns37/fX3Z3CRz1lRiVSpJqpMeq2FiUhjP3MoRccw2qqCjcFRWYvvvuuGOOqqTcVGsnSSG5b2ut3T9IudmrkxYVhELhP7dselM80C55KUtGRkam09Iqz866dev4/fffycw8ftzJiBEjuPPOO3n33XeZM2cOK1eupHfv3j4xtCviNtdgVCpJrJbS6LQ+OhcKrZbwO++k6qWXMH7wIaHXXIOgOvqtbM7IyqnOgbDRAPRSG8Et1dqJNuh8Yktn5UC1JHZ6+aj554kYEB/Mz7kVcpCyjIyMTCemVWLnqyN6M40aNYpffvmF4OBjgz91Oh3333//mVvXxXFZjNQolZxT0yR2evVqec1UZSVvdRm15Ra0ehVJ6eH0GhqNSn167tWwG2/A+P77uIqKaPh5CSFXXH7U6xmRUjuKYnMxtYmRhAPJSsnFdDYUFmz27PSK8q/YSY9v9uzIYkdGRkams9LmwI2NGzdit9uPeb6hoYG//e1vZ2RUd8FrNVKnVJDU1Jy2Wezs31zJgmc3kb20iEO5RvZtqmTZvN188cxGinYZT2tuhV5P+JTbADDOfh/R6z3q9RBtCKkhqQDkKqQg6QRRMuRsaBmRX9Venh0pIyu/uhGb0+PXY8nIyMjItI1Wi51rr72WF198EUEQjpvCZ7FYePXVV31iXFfH5qjCIwgkNXt2+vSmZG8dv83Nw+3yEt87lAtv6cuwy1IIDNHQUGPn+zd3sPH7g4jeU1eQDLvlFhRBQTj2H6Bx+fJjXm9pCuqUqjhHeSsR8Hb7ZqCiKLZ4dnrH+FfsRBu0RARq8Iqwt9Ls12PJyMjIyLSNVmdjJScn88MPPyCKIllZWURERJCVlUVWVhYDBw4kJyeHuLg4f9ja5bC5agiyioRapMfKpBSW/2cnXq9I7+ExjLsjHaEpeHbw+B5sWJTPzpWlbPmxELPRztjb+p80uFYZHEzYzTdjnD2bmvfeJ+jii4+qkZAVlcXi/MXkmA+BoEAtuoiivtu3jCivt2NxelApBJIjAv16LEEQSI8PZvX+GnaV1TOoqRu6jIyMjEznodViZ9asWQBotVrWrFlDWVkZ2dnZbN++nUWLFuH1evnPf/7jc0O7InavqSUTS52QwM4NRsy1doLCtFx0a78WoQOg0ak4/899iUo28Pune9m7oQKv28sld6SjOEmaePjtU6j9+GPsublY1q0j6NxzW15rzsjKNe7CG5yAor6YRKG62zeubPbqJEfoUbdDiv2A+BBW76+Rg5RlZGRkOiltLiposVhQNWUAXXXVVT4zqDthx0xsnbQcpUrtyc7fSwAYeWVP1NrjByL3Hx2PJkDFrx/uYv+WKlQaJRdN7nfCqpaq8HBCb/gTdR9/gvG9948SO71CexGgCqDR1UhBaDxp9cUkCVXdPkC5ZQkrun2qRTcHKTf34pKRkZGR6Vy0+WevSiV3mjgVdsFGtEkSOzVRg7DUOwkI1tB7eMxJ90sbHM2ld2cgCLB7XTkbFx886fiIO+8EtRrr5s1Yt21reV6lUJEekQ5Ajl5azkkSqrt9M9D97RSc3Ey/WElU7aswy12VZWRkZDohrRI7RUVFrZq8tLS0VeO7E063F5vSQYxJelwiJgGQPjoOperUp73noCguvKUfAFt/PkTO78UnHKuOjSX0asm7VvPee0e91ryUldOkTROF6m4fs5PfTjV2mkmNDEStFLA4PZSabO1yzK5KXlkDM7/PY/JHG7n74y18uPog9Va5dL+MjIx/aZXYGT58OHfffTebNm064Zj6+no++OADMjIyWLhw4Rkb2FWpt7mwKt1Em0Q8Cg0VDVLLgrSh0ac9R/p58Yy8sicAq7/cT372iRvYRUydCgoFllWrse3a1fJ8VmQWADluaYklSaju9stYBTVSRHjPKP8GJzejVipIa6rns7dCzsg6Hi6Pl5nf5zHpzdXMWVvA6v01LM2r5Lkfd3PRKyv4dVdFR5soIyPTjWmV2Nm9ezchISFMmDCBmJgYJk2axN1338306dO59dZbGTJkCNHR0cybN4+XX36Z6dOn+8vuTk+9xUq9CmJMYAzvj8crEBypIzKxdd6GoROTybggAURYOiePioPHb0ugSU4m+LLLADDO/qDl+cwoKf38gL0aqyCQKFRjc3mwOt1t/Ms6N40ON9VmyXPl70ysI+kTIy1lyennx+L2eHngs23MWVuAKMLEjFhevn4g/5zUn17RQdRanPzl0618tvFQR5sqIyPTTWmV2AkPD+e///0vZWVlvPvuu/Tp04eampqWHli33HILW7duZe3atUycONEvBncVzKYazB4FIVaoC+sLQHJm5AkDjU+EIAiMuaE3KZkReFxefnwnB1OV9bhjI+65Wzr2r7/iyM8HIFofTWxgLF5Edmk1xAtGFHi7rXensMmrEx6oISSg/Rra9W2K25E9O8fy9Pe7+DWvEo1KwfuTh/LurUP507Akpo7pyU8PjmHyOcmIIvzr21zZwyMjI+MX2hSgrNPpGDduHLNmzWLRokUsWbKETz/9lEceeYSMjAxf29glsZpqUJil02sKl2JvEvuEtWkuhVLB+KkZRPUwYG908cNbO7AdR6zo+vQh6JKLQRSP8u4098naoQtALXiIw9ht088LjZLYSYnwT6fzE9E3RhY7x+PnneV8uqEIQYA3bhrEpQNij3pdo1Iw86oB3DQ8Ca8IDy/YzqGm91BGRkbGV7Q5G2vMmDFUVMi/wk6Etb6CgAYFTnUQlgAp+yq+9+GCc6Io4nGf/lKSWqtk0gMDMUToqK+y8dM7O3Efpz1B5F/uBaD+hx9wlkip7i1BykFSinSSovvG7TR7dlIi228JCw57dg5WW3B5vKcYfXZgbHTwj29zAbjvgjQmZBy/2KggCDx3dQYjU8OxOj088uUOPKdRQVxGRkbmdGmz2Bk2bBgjR45kz549Rz2fnZ3NZU2xI2czJnMJ0fVQH5IGQERCILogNdWHCvjuv8/xxpTree2Wq5n9wB389uHbVBWePL0cIDBEy+XTstDqVVQcrOe3uXnHtJUIyMwg8NxzwePB+MGHwBFiR61EBKnWTjftj1VQIy3xpbZjvA5AQmgAgRolTo+3RXCd7cz6bR+1Fif9Yg08dEnvk45VKRW8ckMWQVoVWw7VyfE7MjIyPqXNYufDDz/kzjvv5LzzzmPNmjXs27ePG264gWHDhqHVan1p41G88MILDB8+HIPBQHR0NFdffTV79+712/HaSoO1nGiTSINBSjmPTgkmf+smPv/HIxzYvAG3QxIb5ppqdiz9mU8ef5Dv/vtv6qsqTzpveFwgl92XiUIlkJ9dzbqFB44ZE3mf5N0xffMNzuJi+of3RyWoMOKhXKVsqqLcTT07xo7x7CgUAr3lIOUW8qsb+WKTVC7hmSsHoFUdv4jmkSSG6Xl8ghTf9urSfZis3fMzKiMj0/6cUS39p556ikceeYRx48aRkZGBzWZj8+bNLFq0yFf2HcPKlSt54IEH2LBhA0uXLsXtdjN+/Hgsls71a9riqCG6HhqDegCgD7Lw4xsv43Y5SRk0lMkvvcF9H3zGtf/3NH1HjUEQFBzYvJ55M+5jy/cLj+lifiTxvcO4eEp/ALb/VnxMDR79sGGSd8ftpubtd9CpdPQNly4iOVqtVFiwm8bsNMd7pLaz2IHDxQXluB1JrHi8Ipf0j2Zkz4jT3u/PI3rQN8aAyerijWXHCnkZGRmZttBmsVNeXs6DDz7Is88+S3p6Omq1mptuuokhQ4b40r5jWLJkCbfffjsDBgwgKyuLuXPnUlRUxNatW/163NZid9cRaj7s2Tm49RtcdhtJ6Zlc89iTRKf0RB8cQurgYVz+8OPc9vKbJKVn4nY5WfnpHL569h80VJ+4rk6f4bGcc/XhGjwHt1cf9XrUww8BUL94MY78/MMd0LWabtsywmx3tXis2tuzA0ekn5/lYueQ0cLPO8sBePTSvq3aV6VU8PdJkpD/bOMhqsx2n9snIyNz9tHmng89e/akX79+fPXVV0yaNIlffvmFG264gZKSEh5//HFf2nhS6uulujPh4eEnHONwOHA4DnsyGhqkAnsulwuXy3fVW5vncrlc2Dz1GOwhuDTBeN3FlO/fiUKpYuzU+/F4vXj+4LkJiY3n6ieeYdeK31j96RyK83byv79N46I77qXv6DHHPV7m2Hjqq63sXlvBrx/t4ooHBxKdIl1wVf36ETh2LJbly6l6/Q0GTLsIgJ1aLVOEamrMdp/+7afDkefHHxyokN7XyCANWoXY7n9fr6gAQBI7bTm2v89PezF7ZT5eES7oHUlaRECr/55RKSFkJYawo6Se2SvzefzSPkD3OT/+QD43J0c+PyenK52fttooiG1s5jN//nxuuummo57btm0bl19+OVdffTXvvPNOmwxqDaIoctVVV1FXV8fq1atPOO7pp5/mmWeeOeb5zz//HL3ePynK6w88z+VfJ7Ajaxpu22Lc9gME9+pP9IjzTrmvy9xA5frfsddInh1Dam+iho1GodYcM1b0gnFbAPZqFQqNl+hRVlR66S3VlFeQ/PrrCKLIjmm38W/D56hFkQ2FxYwT5jJj0KnjKLoS22oE/rdfSU+DyEMZx2aq+RuzC/65RYWAyEsjPJyg12u3xuKCp7YqcYkC09I99A5pW1ZVbp3AB3uUaBQiTw/xENh+JZNkZGQ6MVarlZtvvpn6+nqCg4NPe782e3b+KHQAhgwZwrp169otG2vatGnk5OSwZs2ak4574oknmDFjRsvjhoYGkpKSGD9+fKtO1qlwuVwsXbqUcePGsXnXU1gDYxG9NtyOAgAm3XE3UcmppzWX9/o/senbL9n87deYC/ajsDYy4YEZxPTsdexxx3n4/vUcaoobse2O4qoZWeiarg4Ve/fS+PPPjMopIHRsKCaHiTythkh3A5dddovP/vbT4cjzo1b7/up18Pd82J/P4N4JXHZZx9R7enX379RaXPQaci6ZCSGt2tff56c9+HhDES5xD31jgnjwplGtLqLZzERRZM07G9hdYabC0JfpY9O6xfnxF/K5OTny+Tk5Xen8NK/MtBafty5PSUlh7dq1vp72GKZPn87ixYtZtWoViYmJJx2r1WqPmyGmVqv98saq1WrUVjcWfQweVz6IHqJSehLfq09rJmHMTbeRmjWEn958hfrKcr565gnOu2kywy6/BkGhOGKomsunZfH1S1uor7Kx9MPdXPnQIFRqJdEPTqdx6VKsq1ZzxaChfBJoIlunxVBdhlKpQqFo28XoTPDXeS+uk+I7ekYZOuwftl9sMOvyjRyosTEkJbJNc/jr/PgbURT5elsZIAUaazTHeiJbw70XpvHQ/O3M31LC9Ev60HxKuur5aQ/kc3Ny5PNzcrrC+WmrfWeUjXUiwsLaVin4dBBFkWnTprFw4UKWL19OaurpeUraE1EUUVs9WPUxeF2FAPQaNrJNcyX2z+C2/7xJ75Gj8XrcrPpsLt+88BSNdbVHjWuuwaMJUFF+oJ5l83YjekW0qamENXnhxi4uRvCKbNNqSRSqMNk6//psayhoqZ7c/sHJzTQHKR+oauwwGzqK3NIGdpc3oFEpuHpwwhnPNzEjjsggLVVmB7/IbSRkZGTOAL+IHX/ywAMP8Omnn/L5559jMBioqKigoqICm83W0aa1YHW40VhFGgOi8bql4mgpWUPbPJ8uKIgr/voE4+6Zhkqj5VBONh8/Np2D2ZuPGhcRH8TEezNRKAUObK3i90/3IHpFIh+4H0VwMIGFVVy4U2S7TkuCUIWxm6WfH66e3L6tIo6kV7TU6HX/WVhrZ8GWIgAuHRBLqP7MvDogtZK4eYSUzfjxernIoIyMTNvpcmLn3Xffpb6+ngsvvJC4uLiWbcGCBR1tWgvmxka0Fj1OpQ1EB9rAIGJ7nbyC7KkQBIGBF0/g1hdeIyo5FVtDPYtefIbf583GfUR0emLfMC65Ix1BgN3rylnx2R6UIaFE3ncfAH9e6cXuVqDTlHerwoL1Nhd1Vuk8dKRnp3ez2DnLPDtOt5fF26UlrBuHJfls3ptHJqNUCGwqqGXfWSggZWRkfEOXEzuiKB53u/322zvatBYa6yrROSLxuiXXe0Lf/igUvknNiUhM4ubnXmHwxCsA2PbzYj7/xwyMJYcLC/YeFsMld0qCJ29tOSu+2Evon/+MukcPQi1w1QYv9QHdqxloca3UJiIySEOg1uehaKdNs2en1GTD6jz93mddnbUHamiwu4kyaBmVdvpFBE9FbIiOS/pHA/BNUzyQjIyMTGs5o6vCsmXLWLZsGVVVVXj/UDdmzpw5Z2RYV6a+vpQAVySNHknsxKa1IjD5NFBpNIy9/S+kDBzCkndmUX2ogE+feJiLbr+bzLGXIggCfYbHInph2bw88lZLF4nBjzxC+UMPccUmkW/T7N1qGatZ7CSGddwSFkBEkJbwQA21FicHqy1ktDIjq6vyQ45U8wpCIgAAIABJREFURPCyjFiUPg56v35oEr/sqmRxTjkZHZNkJyMj08Vps2fnmWeeYfz48Sxbtoyamhrq6uqO2s5mak0laD3hiO5msXNmS1gnoueQ4dz28lv0yByE2+lg6ey3WPzK81hM0vnvOzJWaishQN7qMjYWxePI6ofGDZmrFZhNRr/Y1REU10lip0d4x4odOCJup+rsWHZxur38mid91i/LPH5n8zPhwr5RRARqqGl0ssfU/tmDMjIyXZ82e3bee+895s2bx+TJk31pT7fAZClDTSiitxCAGD+JHYCgsHCu//tMtvywiDXzP+bA5vUU5+Vwwa13kXHROPqeE4dCpeC3uXkc2FqFZfAjpObdT/9CFw3rvoFJw/xmW3tSXCsFqCeFB3SwJVLczqaC2rMmI2vNgWrMdjfRBi3DUk5cybytqJUKrhwUz9y1hWyulsWOjIxM62mzZ8fpdDJ69Ghf2tJtsNaXY9VK2Si6wFD0wf5dyhAUCoZfeR23PD+LmJ69cFgs/Pr+G3z17D+oqyij97AYJt0/EJVGQXmhk3WjHsSlCiBjyc94GrvHBbmothN6diq7x7k9FT/tlLw6E/2whNXMdUOkWlo7awXqu1nJBBkZGf/TZrEzdepUPv/8c1/a0m1wmaqwqaUv/ZCYkxc89CXRKT25+blXuGDyXag0Wop35fDxo9PYuOhL4vsEc+VDg9HqVaDoycZhjyJ4g6l+7fV2s8+fNC9jJXVwzA5A7+izp9aOxyvy+x6prcmlGbF+O86A+GD6xgThFgV+ypVr7sjIyLSONi9j2e12Zs+ezW+//cbAgQOPqWr46quvnrFxXRVvQz1upRM8EJHUfmIHQKFUMuzya+g1fBS/ffg2h3KyWTP/Y3J/X8qFU+7m6hmD+erl33ESy9Yhj+L8fjaGSzYSeE7bih52BrxekZKWZaw2ih1HIxRvgNoCEBQQkgTJo0BraPVUvWMkz86hWisOtwetqvs2ydpRYsJocWLQqRjuhyWsZgRB4OpB8bz0yz5+3FnBbaN7+u1YMjIy3Y82i52cnBwGDRoEQG5u7lGvtbUfTreh0YtXlLqxx6SmdIgJoTGxXPf3mexZs4KVn83FVFnOt/+ZSeqgoWQOV7E0O5FoSzLZWdNxvvgF532agTKo4+rTnAlVZgdOjxelQiAuRNe6nRurYcXzsGMBuCxHv6ZQw4BrYMwjEN3vtKeMNmgxaFWYHW4Ka6z0jW29YOoqLN8teXUu6BOFWunfShYTM2J46Zd9bCqso8psJ9rQyvdaRkbmrKXNYuf333/3pR3dCsEWgOiR2jlEJvXoODsEgf5jLiJt2Eg2LvqSLT98S8H2rRzKUWBKWIrNMIlk83ByY6/E+q+FjH/5FpSqLld6qSVeJyE0AFVrLrh7foJv7wW7JEwJ7QExmSAIULkL6gpg55ewayGMfhAu+jsoT92XRRAEesUEkV1kYn+VuVuLnWVNS1gXN9XC8ScJoQEkB4kcahT4JbeCyaNS/H7Mro4oini8Yuv+L2RkuiEdV32tG6OwBSB6pQtoeEL7LmMdD02AnjE3307GReNY8fGHHNy2mR7FwThVK3GHVaF0jeOgLYGvn1rBZY+MxhDetX4xN9fYaVUm1oZ3YckTgAixA+HS5yHlPEnoNFOWDSv/A3t/gjWvQtF6uOFjCDr1hb13tCR2unPcTnm9jd3lDQgCXNDH/2IHYFCEl0ONSn7IKZfFzgmotTiZv7mIpXmV7KswY3F6CNKqyEgI5pL+MfxpWBIhAZ272aOMjK85I7FjMpn46KOP2L17t+RF6N+fu+66i5CQs6OQ2okQ3IGAHVAQGOq/pqitJSwugWsef4rCrRv44c2/g02Pu3ovCmUhonI41eJQvnxuI+PuyqDHAN9VwfU3rc7E2jIXlvyfdH/4VJjw4vE9NvGD4c9fQN538N00SezMnQi3LYaQkze67HUWtI1Y3uTVGdIjjPDAM++FdToMihD57hBsKqyVl7L+gFeE91cV8O7Kg1icnqNea3S42XCwlg0Ha5m1dB8PXdKbO85N9fvSo4xMZ6HNn/QtW7aQlpbGrFmzqK2tpaamhlmzZpGWlsa2bdt8aWPXwy19ASuV+k4Zv5Qy9BwuTitk5aBqzHoXTo8Dp3MNLtMHNNZtY/EbW1m1YB/uP3xhdlaaM7FOq3rywRXw4wzp/nkzYNIrp16aSr8K7v4dQnqA8QDMnQCm4pPu0pKR1Y3Tz1fvqwHgor5R7XbMcC0MSgpBFGGJnJXVgtHi5K1dSv67dD8Wp4cB8cE8f00mv824gK3/vIRfHj6fZ64cQN8YAxanh+d/2sON76+not7e0abLyLQLbRY7f/3rX7nyyispLCxk4cKFLFq0iIKCAi6//HIefvhhX9rY5RBF6VeuRtvxadAnQqmKhch6Fp1fRuI1Y9EbgvFixW1dhqP+I7J/XsyC59ZRXdT5qwAXn65np6EMvr4LRC8MugUufvL0DxLZC+74CcLTwFQEn10PthNXCm/27BTUWHB7vCcc11XxeEXW5Uti57ze7Sd2ACYOiAHgx6YWFWc7JXVWbvpgE/lmgUCtkpevH8gP08/j5pE96BUdRESQlr6xBqaMTuHnh8bwn+sHEqxTsa3IxBVvrWFvRef/H5eROVPOyLPz+OOPo1IdXglTqVQ89thjbNmyxSfGdUWcLhdeJG+O3hDawdacmAZtPCPsdrwKOJjqYOo7cxk16gJ0TjeIFty2FVTse4MvnnqbdQt34XF33gt28emknYsi/PBXsNZAbKbk0Wmt1y00CaYsBkM8VO+B+beA+/id4xNCAwhQK3F6vC3LbN2JnaX1NNjdGHQqMtu5/9eEJrGzqbCWqoaz2zNRa3Ey+aNNFBqthGlEvvnLOfxpWNIJPcoKhcANw5L4fvp59I0xUG12cNPs9eSW1rez5TIy7UubxU5wcDBFRUXHPF9cXIzB0H2zT06F3VmPR5CEQViM7/sE+QpbUCIjbdKFYlPFJtQaLaMf/hvXnHMRGcVVBLg8INpwWdewfsE/mD3tGfasz+tgq4/F7vJQ0XTBSwo7SYBy3rewb4mUTn7th6BuY1uJkES49WvQBsOhtfDrP447TKEQSIuWUvm7Y9zO2gOSV2d0WoTfqiafiPjQAAb3CEUU4de8ynY9dmfC5vRw57zNFNRYiA/R8XCGh7So0ysfkRwRyIK/nENWYgh1Vhe3zdlEYY3l1DvKyHRR2ix2brzxRu666y4WLFhAcXExJSUlzJ8/n6lTp/LnP//ZlzZ2KWzOWjxI3cSjeiR3sDUnxh3cg+F2yc4DpgPU2KSLV9yjj5KeNYwL8goZVGvFEBYHuLHWbeXH1x7jg+mPsn/TZkRR7EDrD1Nqkrw6gRrliYNkbSb46THp/pgZraqZc1xiBsC1H0j3N82GnC+PO6w7V1Jevb8agPN6RXbI8cenS9Wal57FYueZ73exvdhESICaj24bQqi2dfuH6jV8OnUkAxNDqLU4uX3uJmotx/dUysh0ddosdv773/9y7bXXctttt5GSkkJycjK33347119/PS+99JIvbexSuOqr8CItW0T2Su1ga06MEJpMqNdLmlMSLZsrNkvPK5XEv/wyAX37El9czsWl5Vxx/+OExKQD0FC1h8WvPMN7f7mLjd9+1dJhvaMoakk7P0kw+NrXwVIFEb2lAoG+oO8EOP9v0v3FD0LV7mOGNMftdDexY3W62XbIBLR/vE4z49Klpax1+TWY7Wdfr6zFO8qYv7kYQYB3bxnS8llrLQadmg+nDCMhNIBCo5UHPtuGx9s5fsjIyPiSNosdjUbD66+/Tl1dHdu3byc7O5va2lpmzZqFVtvKnxjdCNHUgOiVLm6RySdPT+5INFFSuf1RNsl1vbF8Y8tryqBAkt55G1VUFM79+ajffos7nn+KSQ//F33YcECNtb6KNV/8j/fvu53Frz5P4fatiN72j+spOULsHBdzBWx8T7o/biaofPjZvPAJSBsLbht8MxXcjqNePpx+3r0CQDcX1uH0eEkIDSAlomOC8HtFB9EzKhCXR2TF3uoOsaGjKDPZ+MfCnQBMv6gXo8/QuxZt0DHvjuHoNUrWHzTyxrL9vjBTRqZTccZFFvR6PZmZmQwcOBC9vvNmH7UXQqMTkFK2DRH+6xV0pgRF9cAlKhllk8TCkWIHQJ2QQI+5c1CGhmLPyaHk/vvpMziFe97+F2OnvkxA2AQEZSyi18P+jev45oWn+PDBqayZ/wnGkpOnZfuSFs/OidLOV70MLiskjoC+E317cIUSrn4P9BFQmQvLnzvq5d5NYie/yoK3G/1aXtO0hHVur4gOLa3Q7N05m5ayRFHkX9/mYna4GdIjlAcv7u2TeXvHGHj+mkwA3li+n3VNMVkyMt2FVhUVnDFjBs8++yyBgYHMmDHjpGPP1kaggqXZu6FGre28Bc8igvWUiREMtVejEpSUNJZQ1FBEj+DD7S20vXqR9OGHFE2ZgnXTJorvvY+kt99i8Lhe9B/9F7b8XMiOpdm4bDl4nLtpqK5i46IFbFy0gOiUNPqddwH9zj0fQ7j/4jqaM7F6HK96cn0JbJ0n3b/k6dZnX50Ohhi48k2YfzOsexP6XCpVYkZKhdcoFdhcHkpNtrY3Ke1krMs3AnBuB8XrNDM+PZb3Vx7k9z1VON1eNF2w1Ulr+Tm3gmV7qlArBf5z/UCftoG4enAC6/ONLNhSzEMLtrP0r+cTqm+fYpEyMv6mVf8p2dnZuFyulvsn2rZv3+4XY7sETSsZCqFzf0lEBGooFqMIFEWyAqTlttWlq48ZF5AxgKT330Oh12PdsIFDd96Jx2RCF6jmvOt7M/nfV5A17hZ0YX9BHXgZCnVPEBRUFeaz6tM5zL7/Dr585gmyl3yP2ej7X4slppMUFNzwLnjdkDIGUs71+bFb6DcJhtwGiLDoXrA3AKBSKkiNlLJjukvcToPdRV659Ped07Njq2wPTgolMkiL2eFmY4GxQ21pDywON08v3gXA/Rf2ole077Nen75yAGlRgVSbHcz8vvNlX8rItJVWeXaObP75v//9j8TERBSKo/WSKIoUF7ffMkanwyWdD0Ho3L1ndGolFYoYYBcjCGErkti5pf8tx4zVDxtGj3lzKb77Huw7cjh02xSS3n8PdVwcwZEBXDS5P0MmpLDl5yT2buiP123F49qHQtiP01JEcd5OivN2Au+jDY9ks8tK33POIzwh8YyXQUrrJM9Owh/Tzm2mw16dc9uhyOWlL0DBKqgrhN+ehsslz2avmCD2Vpo5UNXIRf3ap3+UP9laWIcoQkqEnpjgjvVcKhQCl/SPZv7mYn7dVcmYDgqWbi9mrzpIldlBj3A991+U5pdjBGiUvPynLK5/dx0Ls0u5LDOOS5qWC2VkujJt9oGmpqZSU3PsL/Xa2lpSUztvFpLf8UinVKHo/D1W6zRSHaBhVinGaEvFFmxu23HHBgwcSI9PPkYZFYlj3z4KbrgB244dLa+HRAVw8W39ufnpkWRc2Att0GAUmuvRBk9FHz6W4OieIAg4amtY/9VnzHvkPubOuI8VH39IYU42bmfrU16tTjd1VsnTeIzY2TIHnI0QPQB6XdzquVuNNkhazgLY8hEUrgUOx+10lyDljQW1AIxI7RzxaOMHHI7b6SzlEPxBVYOd2asOAvD4hH5oVUq/HWtIjzDuHiMlMDyxaCf1trMv2+10EUWRqgY7Gw8aWZJbzk87y1l3oIYio7Vbxel1B9p8RT7RF0tjYyM6XeeNVfE3XrFJ7Cj992XkKxr0PaAe0hoqiIuLo9xSzuaKzZyfeP5xx+v69CHli/mU3H8/jn37ODT5NuKee5aQK69sGRMarefCm/sy8spUcleWsnNFCTZzME7XIHShVgTtXoL1NVQf2k1dWQlby0rY+uO3qDRaktIzSBk0lJSsIYTFJZzS69Ps1THoVATrjvCkeVxS/RuA0dP9E6tzPFLPhyFTYNv/YPF0uG9tt2sI2rxcNDK1czSKHZ0WiV6jpKLBzs7SegYmdt6q5WfCq0v3YXN5GNwjlMsyY/1+vL+O68PS3ZUcrLbwyq97mXlVht+P2VUQRZHsYhPfbC1h5b5qSuqO/wMxTK9mVFoEkzLjuSQ92q8CVebUtFrsNAcmC4LAk08+eVQGlsfjYePGjQwaNMh3FnYxmkWgUtP5PTs2gyR29OYizht2B1/t+4o1pWtOKHYANIkJJH/+OWWPPUbj8uWUPfY4lg0bif3nP1Ac8VkICNIwfFIqg8f3YP/mKvLWlFJxEETHYOodENpjHFEJtXidhZTtz8FSV0vB9q0UbN8KQHBUNEnpA0lMzyApPYPgqJhjxE9JU0HBhNA/eHX2LQFzOegjIeM6H52t02T8s7D/V6jNhxUv0jvzUUBqCCqKYqdsDHu6WJ1udpZIbQU6i2dHp1ZyQZ8ofs6tYGleZbcUOweqzHy5RQoN+Oek/u3yGdKplTx3dQY3f7CRTzcc4oZhSWS0c1uQzoYoiqzYV82rv+5j5xHtNRSCFDMYZdCiEKSmrCV1NuqsLn7aWcFPOysI06uZOqYnU0anEKTt/NeG7kirz3p2djYgvfE7d+5EozkciKvRaMjKyuLRRx/1nYVdDG9T2rkmoHMHKAN4Q1OhBAKctYyJGcZX+75idclqxBEnvygrgwJJfOtNat5+h5p336V+4UJs2dlSMcKMAUeNVamV9B8dR//RcVQeMrHk8w24qvVYTW4OmcKBcMLjx9D/fDcKoZiKAzsp3bOLhuoqdq38jV0rfwPAEBFFYv8BJKZnkNg/g7C4BMpOJHa2zJVuh0wGVTu/D7oQuHwWfHETrHuT1H5XolQImB1uqsyODo9zOROyi0y4vSLxIToST9aao50Zlx7Dz7kV/LqrkkfG9+1oc3zOm8sP4BWlv3NocvuJzNFpkVyZFc/iHWX849tcFt03GkU7twbpLJSabDyxcCer9kllFzQqBVcMjGfSwFjO6RmB/g8/bl0eLzklJpbtrmLhtlIqGuy8/MtePlh9kBnj+nDLyOR2b7NyttNqsdMcpHzHHXfw+uuvExwc7HOjujJe0Q1AQEjn7w8WFBKBUTQQIZgZqY5ErVBT0lhCQUMBPUN6nnRfQaEgavo09CNHUPa3x3AWFFB4ww2E3347UdOnoQg49mIYHh9IaLqD8eMuomSXiX2bKynaZaS2zEJtGUA0UT2uZuT1txIQWENDTT4lu3OpzN+P2VjN7jUr2L1mBQA6QzC24HhGWIJItmViM/clwBAMtQWQv0w64JApvj1hp0vfiZJHKfcbND88RM/wp9lf42BfpblLi50j43U6k4dqbL9olAqBvZVmioxWenRQoUN/UFBj4fsdZQA85KOaOq3hn5P6s3xPFTuKTczfXMzNI3uceqduxnfbS/nnt7mY7W40SgVTRidz7wVpRASduECpWqlgaHI4Q5PDeWR8X77fUcYby/ZzsMbCk9/tYuG2Ul68LpN+sfL1s71osz9t7ty5vrSj2yAiBdoGx3RsDZLTISpIQ5EYQ4RgRt9QxojYEawtW8vyouX0zDy52GkmcMQIUr9dROWzz9Hw00/UzpmD+ddfiX7sbxjGjTvuRVGlVtB7eAy9h8dgt7g4uL2a/ZsrKd1bR3WRmeoiKZg3MLQ3KZnnMOIqA4JQQUX+bkrycik/sBe7uQHB3MBIgBVbeGfFXEJj4ogNchDXGE9Uz75EaaPoMGkx4SXI/x0qdzIt/AceYhz7Kxu7dMbQpqZ4nRGdJF6nmVC9huEpYWw4WMuveRVMHXN6n92uwNu/S16dsf2iO2QZKTpYx4xxfZj5Qx4vLdnDhIzYE/eg62a4PV6e+T6PTzYcAmBQUiizbhzUUk7idFEqBK4enMAVWfF8tvEQ/1myl+3FJq58ay1PXp7OLSN7dKofD92VNoudmTNnnvT1J598sq1Td1lsdiuiKImdqOTO2wS0mcggLYViDIM5AHUFXJx8MWvL1rLs0DKmZk497XlUYWEkvPoKwVdeQcUzM3GVlFD64EMEDBlCzGN/I+AkMVy6QDXp58aTfm481gYnh3JrKMwxUpRnxGJysGt1GbtWg6AQiEnpR/LgUZzzJwNKZS0vfvIrjopCMjX1uGorMVWWY6qEPaRBpRvW30RwVDRRyalHbaHRsQgKPxegC4qCiS/BwruZVPcpbwr92V/VdX8VO9wesoukflgje3aOeJ0jGZcey4aDtSzNq+w2Yqe41sqi7FIApo/t1WF23DYqma+2lrC7vIGXf9nLC9dmdpgt7UWD3cW0z7NZta8aQYAHx/Zm+theZ1TEUakQuG1UCuPTY3liYQ6/763mn9/msj7fyAvXZR6dZCHjc9osdhYtWnTUY5fLRUFBASqVirS0tLNS7JQc3AtIaZrJ6QM71pjTICJIyzqxqYZG7UEuGjqZZ9c/S64xl/LGcuKC4lo1n+HCC9EPG07tnI8wzpmLbds2Cm/6M4HnjyHynntQZ2WddH99sIb+o+PpPzoet8tD6V4ThTk1FOUZaaixU3GwgYqDUkE7pUpBmHIAhUF9GXBFX4YMCKZ+x3eUf/8Kla5wqtVpNNRU01BdRUN1FflbDrfDUOsCCI9PJDwhkYiEpJb7obFxKFU+/MLJ/BPs/BrV/l/4j3o2L1Wm+27udmZnST0Ot5fIIA09W/nLtj0Ynx7Dsz/kseVQHXUWJ2HdwPvwzop8PF6RMb0jGdwjrMPsUCkVzLxqAH96bz3zNxdx84geZCZ232Blk9XJrR9tJLe0gQC1ktduGsSlA3yXARcbouOjKcOZs7aAF3/ew487y9lXaWbO7cO7TZX1zkibxU5zoPKRNDQ0cPvtt3PNNdeckVFdlfK9e1ruR6V0/lpDkUEaDnmbxU4BkQGRDIkZwtbKrSwrWsat6be2ek5lUCBRDz5I6I03Uv3GG9Qv+hbLqtVYVq1GN3gwQenpiOPGgfrkokKlVpKcEUFyhrRk0lBjo3RfHSV76ijZW4e13kmsWyAWNXu+PsieryE4IIJY9XX07BfOiIlTMIRCfVUJVYcKqG7aaooLcdltVB7cT+XBoxseCgoFoTGxhCckERaXQEh0LKHRMYTExhEcGdV6ISQIcPksPG+NYIjrAEMrv0YUz+uSLuvmeJ3hKZ0rXqeZpHA9/WIN7Kkw8/veKq4dktjRJp0RNY0OvtlaAuCz/ldnwvCUcK4eFM+328t4anEuX9/bPYOVTVYnt3y4kV1lDUQEaph3xwi/CDuFQmDqmJ4MSwnnL59sYX9VI1e/vZbZtw1t1yD0swmf5sAFBwczc+ZMLr/8ciZPnuzLqbsEdSUlTfe0KFWdP70wIkjLoSbPjlh7EAG4pMclbK3cytJDS9skdppRx8QQ/+9/E3nPPRg/mkP9okXYs7OJz86m8OefCb3uWkKuuRZtz9MThcGRAQRHBtB/dDyiKLJ7by2Pv7+ZJK+S88IN1JVbabAF0cAF7NsF7NrWtJ+OyKQUIpMy6DMqiLDYADzOWmorSqktKaa2rETaSotx2mzUlZdRV152zPEFQYEhMpKQ6FhJBMXEEhIdgyEyGkNEBIGh4cd/z0MS8F4yE+XPM5gmfkFtyf1EJHW9jKFth+oAGJbi4y9ir0dq6eF1g0J9Rtlz49Jj2FNhZmleZZcXO19sLMLp8ZKVFMpwX5/zNvJ/E/vza14l24pMLMou5bqhXfsc/5EjhU5kkIbP7z6HPjH+TTQZlBTKdw+cx9SPN5Nb2sCfZ2/k5T8N5KpBCX497tmIz6/IJpOJ+vr6Uw/shliN0gVB0clbRTQTrFNRpmhaqmooA5edi3tczEubXyK7KpsaWw2RAWcWaK1JTiZu5jNETnsA4yefUj1/PtTWYvzgQ4wffIi2Tx8MEy4leMIENKmpp+U1EASBBg3s1HowR2h552/n4Nj8FZUL36RSOZLK2FsxljbSWOegocZOQ42dg9nVLfsr1QpCowMIjUknPGkYPYfpCY0JQK1x0FhbjrG0GFNFOabKcuorK6ivqsTtdLQsiRXvyjmOTQoCQ0MJiojEEB5JUEQEhogoDOERBIWNpMg9kOGKXJw/Pgx/+an9Ch36AFEU2VYkfbaHJrdxOaW2AEq3QvkOqNwFDaVSLST7H74r1HrQhUJIAoT3lLbo/pAwFAJO3m5jXHoMby4/wMp91dhdHnTqrlnEzeXx8ulGKSj2jtEpHWvMEcSG6Jg+tjcvLdnDi0v2MH5ADIZuEmdid3m4++MtLULni7vPobefhU4zsSE6vvzLKGYs2MGSXRU8NH87dRYnt5/b+VcHuhJtFjtvvPHGUY9FUaS8vJxPPvmECRMmnLFhXRFng1T3RaBrfAEIgoAiMBKzIwCDYAPTIeKi+pIRkUGuMZflRcu5oe8NPjmWOjqaiAenszE1hfP1gTQuWkTj2rU49u3DsW8fNW+8iTohgcBzz5W2c0aiDDmx+/iPPbG0e76gh3YHPS6YABdJsUG2Ric1JY0YSxqpKWmkpriRukoLHpcXY6kFY6nlmHl1gWoMETEERyQT3VNHrxEBBIVrUWkceF0mLKbqJgFUgamygsbaGsxGI16Pm8a6Whrraqlg33EsDmE956Le50GffRP66CQCQ0LRh4QSGBqGPiQMbVAQtuoKTBVlBIWFo9XrUSg6/oJdUGOhzupCq1KQHneaqbJeLxStg7zFcGAp1B48vf1cVmkzl0HJ5qNeUgVGM0KVgGLjIeh9iSSCjhCNGfEhxARrqWxwsD7f2GV7kf2yq4LKBgeRQVouy2xd3Jy/ufO8FL7cUkxBjYU3lx/g75f172iTzhivV+SvC7azubAOg07FZ1PbT+g0o9eoeOeWIcz8IY956wp5+vs8ai1O/jquT6dcNu6KtFnszJo166jHCoWCqKgopkyZwhNPPHHGhnVF3HYpOFkQ/Jzp40MiDDoO2WPIEAqlC1JUX8anjCfXmMsPB3/wmdhpQakk6OKTujvtAAAgAElEQVSxhE24FI/JhHnZchp+WYJl/QZcpaWYvvwS05dfgiCg7ZWGbuBAAgZmEZA1EG2vXghNS0WlRxYUtBjh4App/oE3thwqIEhDUr9wkvodXgbwerw0GO2YKq2YKq3UVTTfWrCZXdgt0tac/v5H1Dol+pBkdMG9CEnSkDRQjz5YjUrjBNGMx2XGZavH2lBLY20NjbVGzMZqTEYjgseNS1RSb7JQb9pz3PkBPl76vXRHENAFBqELCiIgKBhdUBA6Q/AxjwOCDGgDA9EE6NHqA9EG6FFptT77ktzWlIU1MDEEjeoUn21zpdSAdftnYDp0+HmFCuIHQ+xAiM2EsBQwxEFgJCjVICjB4wS7CWx1YCqWPo+1+VCeA5W7ECxVxFEFv2XDb/+CoFjoeaHU+yztYhSBEVzSP4bPNhbxa15llxU789YWAnDzyB6nPt/tjFal5MnL07lj3mbmrCnghmFJLS1RuirP/bibn3Mr0CgVzJ48jL6xHVMjTaEQeOqKdCICNbyydB9vLD+A0eJk5lUZcgFCH9BmsVNQUOBLO1rNO++8w8svv0x5eTkDBgzgtddeY8yYMR1qk9flBUBoe3/VdicySMOhqmgyKJSWGoDLUi9j1tZZZFdlU2wuJsmQ5JdjK0NDCb3uWkKvuxavxYJl82Ys69ZhWbcO54F8HPsP4Nh/gPpvFgIgqNVoUlPR9koj0h7EeWYdffur8WRvRCl6pItoxMm7QSuUCkKj9YRG6+EPGbSmhgZ2HMyjoLQEY5WZxloH3gYlGksgAbZgtB49LruHeruH+kp7017G4xzFgCgEIugSUOpBF6cmIBZ2ljcwQbWGUE8JYkgknp7n4XGacdrNOKwN2M31GCvLETwuXHY7iCL2RjP2RjMmylt1bgWFAm2AHo1e33LbLIY0AQFNt9Jzap0WtUaLWqdDrZU2lVbbdF/L1gMVIIoMOVlGkDEf1r4OO76QRAuAxgADroI+EyD1AtCdhldI3yRME4Ye/bzLhrtkG3uWfky6rgpF0TporICc+dKGAInDmBo2ihwhmmV5arxXZ3S5INrc0nq2HKpDpRC4pZMW8LuoXzQX94tm2Z4qnvl+Fx/fOaLLeh/mrS1gzlrpe++/N2QxKq1ja0gJgsD0i3sTGqjhye9y+WxjESabi1dvyJJ7a50hnT+K9jgsWLCAhx9+mHfeeYdzzz2X999/n4kTJ5KXl0ePHh33BeF1N4mdLvQFKwUpN6VVNi01xATGcE7cOawvX88PB3/gvqz7/G6HIjAQw4UXYrjwQgDcNTXYcnKw7cjBlrMD+85cvI2NLcteg4HBAJs/YR+gUMeijhFR75yGOi4OVWQEyogIVE2bMiICVXg4QkBAyxezw+Ngc8VmVhavZFvVNg6YDuAVvU0GAZFNWxNqt5ZAVwh6ZzCBzhD0rmD0zj8+Dkbj1SGICrAp8NjAYpT6pWVioNQ9kVKAmqaNo4sMqjSg0igIihFQa1woVU6USieCwgGiHdFrw+ux4XXb8LituJ023E5L060dt8OKKIqIXi92SyN2y5k3II0EpgNCiZq3FwagPkIIqVUKVOZilOYSlIIXlSIFVVAkyrh0lNF9UTn0qPbYUOYvQ6lWo1JrUKnVKDUaVGoNSpUapebw8wqVGqVKiUKpQqFUolSpUTQ99sYPIz+mhr6XXYYCDxRvkAo3HlgGlTuhZDOpJZv5XgvVrmDqPh9HxKDLIe0iCOi41O3W8L91hQBclhnnn2rboghuh3RfUIBCKd22Uqz86/J0Vu+vYfX+GpbmVTLeh6nZ7cX6fCPP/rgbgP+b2I8rs+I72KLDTD4nmTC9mr8u2M6POeXUW128N3mo3FfrDGjVmWtuAno6vPrqq602pjVz33XXXUydKhW+e+211/jll1949913eeGFF/x23FMheqWLmuIMCk+1N82FBYGj4iquSLtCEjv5P3DvwHvb/ZebKjISw9ixGMaOBUD0enGVleM4sB9nfj7ffbuWsJoS+rjrUZgb8LoUOEpqcZQsO8XEKryBOho1XmqVdhq1IolaCNfCuRpQ6wMJNURjMERgCI4ixBBJYFAY+sBQ9EFhqAL0KLU6BLUar0LAgQs7buyik0bRRq2rAaO9HGOjmfpGG/VWGw2NdiyNDgSHGp07UNpcQWjdAWg8OjSeANQeHWqvlInkdnpxO8GGAtA1badACcoAUOhEwA2iQypw+YdbQXAiCC4EnNC8iS5E3NKt6EL0OhG9LrxeF2KzlwYQ3S7sZhf2467wHfGLuB4o3QvsPbXdrUbg7S/noVBJYkja0lAKvVB4HSg8NgRnI0rBg/JQPsplr6EQXkMREIzSEIVgiEGhD0WhVCIoFCgUCulWqURQKFseNz/X8lhoGnvEc4fHKlEom59THt7/qPkEQPh/9u47sK3qbPz492p6rzjeK3s5O5DJCiSEGQjwEkIDoazQhjLf/kppS9LSFwqBNpSyKS+jkPRl0wRIWAkhe29neq/Yibcta9zfH1dS7HjEQ7Js+fm0QtLV1b1HJ9fW43Oecw6KTkFRdCgAOh2KorhvFXU2Nm/aSbxd5brEvhQcyQBF6xZXFAVc++p0KNZalKoiqCpEqczHUV1Cv+OHqCr7BJ2lAsVSgWIpB2stiqMexVaP4rCAvR5FAa00qlYORUVB0YIevRGMgSjGIDAFOh8HgzEATEFgCkExhZBiCuaNfnV8d7yG7Z+u5yLbeMxBEWAOAVMwmELAHKo9NgR0u4T8vLJaFr2/A7tD5boxCdx7oRcmolRVbZSh3QqqHec/pvPeGWAqujPbzwo6rx6VQHigkXvf3c76oyXc8tom3rrjPKJbWaZCtKxdwU5zc+s0x5tfjPX19Wzfvp3f/OY3jbbPnDmTDRs2NPsei8WCxWJxP6+o0Cams1qtWK1Wj5XNteK5zqh49LjeFBVkYFeD4ec2Z7kvjL+QAH0A2ZXZbC/Yzui+rU8I2BauOulo3SixMQTExmCeMoW/nEjAYnOw+coi+n79MPUBA6mb8gy2gnxshYXYSk9hP1WKvfQU9lOnsJWWgKUebDZ05VWEAc13qlQ5b40Tamuct9YEAonOW3McioIDBZ1eAdWOqqjaNp0OByo2RYfNEIBNH4jNEIjdEIDNEIhNH4DdEIhdZ8KhN2HXmVB1Zhx6E6rejENnRtWZcLhuiutxCA5924Ytt/QTq13TZwIhsIJqa/BY+0WuBUt25752VOyg2pp5rt03ee56Lw7ncRzOW5MSYbdZsdtau4aaCQ6rgZKTwMmmr3Ujs533O//xKW37bXu2Eud9G4PkNrOiRbGNR8+5slte3LO3mfc0d1Wdva3j+yitvn7WdkUBVeXvH7ynPVfhVsW5Tyb89dMWDtFm7fvOa8/ed7vekQnv/uT5sjT04gfLPXIcl8EThjPzgf/X6eM01NHvj3YFO65FQH2ppKQEu91ObGxso+2xsbEUFhY2+56nnnqKJUuWNNm+evVqgoI8N2Ol6uwCcehg1apVHjuuN+WcVMh0Tiyons7my5VfoCpa3/Aw/TB22ney7Idl3Bh8o8fOuWbNmk69v6IeLDYDCir2be+gM6pk9h1BRlUlhIZqN+c8bJWOStZb1rO17jS6ej3BFoi0mBllH8gweyp964PQWyzo6urQ1VnQWa0oNiuK1YpitaGzafeK1aq9ZrWi2GwoDgeK3Q4OR9PHjua+pEGnquhQte90ABS0mnbtb0f7Vm46SqyjVEBVDDh0DW6KAfWs5w6da5vR+VyvPXe9puidN53zpj126JpuUxUDqmJudn9V0eFwPdbpQXG2L7jvdago2usqqIr2KVTFeVNVUFRU7ZM5/+dABVAczu0OUB3O+tQeq+7HztdpcO/cpp71vLl9cJ6v2f0aPXfu597m+tdw/6s0OMZZ2xo8V8G5T9PXGm1Tm3u9ueN2pebO6blytOtI6ln3ni1Ku/nw1F2qKCfP49+FNTXn+rOzeZ3qACwrK+PNN9/k4MGDKIrC8OHD+fnPf054K0OGPeXs1iNVVVtsUXrssccadcFVVFSQnJzMzJkzPbpq++fHMyg8cpyRM6cz+corPXZcbwo/Vsp7R7dSjxETVq6Y4hwpA6SWpjL/6/nst+/nuenPERnQubwHq9XKmjVrmDFjBsZzzKDcmt255bB9M2mhKvHVBwAYcM3DDIg5sxxDtbWadw6+w7sH36XOXgcKDIwdxG3DbmNmykxMeu8tJ6CqKthsqHY72O2oNhuq1cZL3x/lX5uzuXFsPA9OH4By7Dv0K7Xr0jbrOaxJk/lp/XqmTpqMwaBHdTi/LFUVHA7tuKqK1VZPlaWSyvoKqiwVVFurqbJWYbFbqLfXU2+zYLGfudU76nE47DhUB3bVgUPVvtgddgcO7DhUO2BHp1jRUYdO0aGgoFN0ZJ+qo7rORlooRNblo9gt6FUVXXAMuqj+KHoTerTuGj1ad4sePXqdHp2iQ4eCXtEe6xUdOkWPHgWdc5vrpld06HA+1+m0Yzrf79oXFY4cPsKwIUMxGIyN/u50tqk661/Pe5uyySyt4bKhMZyfFuWOK1S7FcqzoeQoSukxqD3l7MxxHU1B1RkgIAI1MApHUCSYw8EYDMYQVEOge/SYQ2fUuh5UFRx2rXXKYQdbHarVArZaFJsFrLVgqUKtr0KxVKLW16A4bA2+f886v+tDGQJxmELBFIJqDgVTKKo5ROsiMoWA7sw1bFft5OTkkJScjF7Rc/bXqYqK8/+ui9S9reELaoP/Nn6oRZ6Njuo8xrojpZyqricxPIDz0yIbvMVxZsJIuxUcNq3+XdsavmZ3Plbtzn3sznM3CBTVBuVF5UxHnM5Vdc6uIJ2zDM7XdKCio67Ogl1v4nSNDRUdfUMDCDAZtP10ruNogXbjLiad859H5zyeqzvqzOsqCuiVM/u49nft5/rnbVyBZwW7Z+r1rH8sQFuf7lBhJbX1NvQ6hcExwYQFGpr8Gyo4GtRTg/pquN9Zr6uqg/LycsLDw5z11kzZXPXf7NfsmY2VFisF5RbsDgfhU2dwpYe/C109M+3V4WBn27ZtXH755QQGBnL++eejqirPP/88f/7zn1m9ejXjxo3r6KFbFR0djV6vb9KKU1xc3KS1x8VsNmM2N+3nNBqNnfrSPdu1ix5i1apVTL7ySo8e15tiw4NQ0ZFDLAPIxViRBTFas8iYuDEM7zOcA6UHWJm1kjvS7/DIOTtb70WVWjPmNUF7Ucot0GcgxoRRWuuAqvLp0U9ZtmMZpXXaSKnRfUezcPRCpiZM7brcI1PTYCp1iI1Te8rZZw0kKCUFUhZA7X7Y8hqmrX/AOuJrrH37EjRk8Dnrpyvm1HU4VM5f8h/u1n/APdYvUXQOCIuDa1+AwZd3QQkas1qtFK5axag2/Hzt7HOCD784gC4oioXXT255x9Jj2mSH+Tu1W8FubZ4fsrXX65w3TzA6by5B0RCRAhEpfJZlYFtZCGNHjmLO9CkQnqzlv7SR1Wpl1apVTPfB7560/Aqu/vuPOFSYMXMiUwZ2biJSb7BarbywfBUvHzRiC1B5/Mph3OyNPB0vK6+1cvfb29iSeQqTquPJy9P5rwmdHy3run6u7MT1U1ZTz5IvDmiL10bB0LhQrps22uPXY0eP1+Fg56GHHuLaa6/l9ddfx+Cc+8Rms3HXXXfx4IMPsm7duo4eulUmk4nx48ezZs2aRmtwrVmzhtmzZ7fyTtEcV7LbMXssA/S52i//gZe5X587ZC5/2PAHVmSs4Lbht6HvBpPc5ZVpzZgXO7ZoG4ZdC4pCZnkmSzYuYVvRNgBSw1J5cNyDXJpyabcYGjvIOR/JkeIGI6Qu/x9tRuGsnzB8OB9D4qM+Kl1TOXvXskL9bwYYCrS/6EbfArOe6hEjmy4bFsuSLw6wLfMUp6rriWppYdA+A7TbKOd8Ug47lOdq8/uUOm+V+VBdAtUntXtbnXZTz+qu1BlAb9aG2AdGacPoAyO0oCY8EcKSnPfOm1HLqTlYUMEDO35Er1P4xRWXQHigF2vG84YnhPGzSam8szGLxV/sZ+WvLsDYzQZpFJTX8dZhPTaHyjWjE7jrgp45O3F4oJF37jyfh1bs4st9hfz6wz0cLKjg8SuHdWpF9s76cm8Bv/9sPyVVFnQK3HfxAH516aBuNVy+Uy07DQMdAIPBwK9//WsmTJjgkcK15OGHH2b+/PlMmDCByZMn89prr5Gdnc3ChQu9el5/FBVsQlHguJoAbIeSxotjzuo3i6XblpJXlce32d8yM22mbwraQN7pWgzYGF6jzbBrHXw5b+15jVd3v0q9o55AQyC/HPNL5g2bh1HXfVrYBjiDnZOVFspq6okIMmldIje9Da9dhFJ6lPHWl8E++5wLpXqVtQ6+/zPJG15Ep3NwWhdF5M0vwZArfFemdmq4MOh3h4q5sa3rOOn0EJmq3QZMb31fuw3sFi3I0RlB17EvG9dw81kj4ojvYYGOy8MzBvPF7nwOF1Xx7sYsfj6t+wQTdVY7i5bvosqqMDQ2hL/cMLJb/PHTUQFGPf+YN45l3x5h2bdHeOunTI4UVfG3uWO6fKRWcWUdT3y2ny/3aT0tA2NCeObGUa3PyeUjHQ4Fw8LCyM7ObrI9JyeH0FDvzkB5880387e//Y0//vGPjBkzhnXr1rFq1SpSU1O9el5/pNcpRAWZOKY6p6UvPdro9UBDIPOGzQPgjb1vuEec+VJeWR3jlCME2KvID4nmjn1/5+87/069o56pCVP5+NqPuX3E7d0q0AEIMRu0GZ85q3UnpC/M/ReqIYC4it3oVz6gLbfgC7nb4NULYMML6HDwkX0a/xq3okcFOi4zh2vd2msOND9wodP0BufQanOHA53T1fVasz+wYGqaBwvXtSKCTDx6ubbA7V+/OUxJleUc7+gaqqryh8/2sSe3giC9yj/mjSHI1PPnqtHpFB6aMZiXbx1HkEnP+qMlzPrbOr7PKO6S89sdKv/anMWM59fx5b5CDDqF+6cPZOWvpnXLQAc6EezcfPPN3HnnnaxYsYKcnBxyc3NZvnw5d911F7fccosny9isX/ziF2RmZmKxWNi+fTsXXnih18/pr6JDzBx3NB/sANw69FYCDYEcPHWQDfnND+/vSnlltVyi38W3QYHc2DeU3Sf3EGIM4akLnuLly14mKbT7rsY8KNbZlVV01mR/CWOxz3kTBzp0e/8NX/+2QYJgF7DWwZon4M0ZUHIYQmL5XcBvecT6C0YMTOu6cnjQjOHaRHfrDpdQZ7X7uDTNW7EtB4vNwfD4MCZ0dJHVbmLueSmkJ4ZRWWfj2a+8McdS+723OZt/b8tFp8Dtgx2kRHlu9G13cMXIeD75xVSGxIZSUlXPHW9t5Q+f7aOyzntTn2w6XsrVf1/P45/so7zWSnpiGJ8tmsojM4d0q26rs3U42Fm6dClz5szhtttuIy0tjdTUVBYsWMCNN97IX/7yF0+WUXhZnxATx10tO+U5UN94aF9EQAQ3DtaGnr+25zWft+7knq7gRN9dPBjbl0rsjIweyf9d839c3f/qbt88fSZvp+nMfOqgy9mZqs2qweaXYdWjXdPCk7UBXpkGP/1Ny0MZ+V+cXvAj75WlAzA2JcL7ZfCC9MQw4sMDqLXaWXe4+82vY3eovLtRWz9swZS0bn/tnotep7Dk2hEA/Ht7DpuPN7eUStfZmnmKJZ/vB+CRGYMYGuH7VmlvGBIXymeLprJgShoA72zMYvpza/lsVx4Oh+c+897ccu56extzX9vEwYIKwgIMPHHNcD79xVRGJHh/BHZndTjYMZlMLFu2jNOnT7Nr1y527tzJqVOn+Otf/9rsyCfRfUWHmDlNGHUG5wV76liTfW4ffjtmvZkdxTv4Psd38y0dOHkMXdxf+TJC+2K4ffDNvD3r7W7dmtPQoBiti/docfPLOORGTcV+xVJAga1vwMd3g62+2X07ra4C/vMQvHUFlB6BkFi4+V9ww+vscMYGA/oGa7lFPZCiKFyRrgXxq/a2b22xrvDNwSLyymqJDDJy7Zjus1RBZ4xPjeLmCcmoKjzyf7u92sLQmsLyOu57bwc2h8pVo+K5e1qaT8rRVQKMehZfO4L37pxIv+hgTlZaeGD5Lq5Y9iMr9xRgs3fsjyaHQ2Xt4ZPc8dYWrnlxPd8cLEKnwK0TU/jhvy/hjqn9fJoY3R4dLmVtbS01NTUEBQUxcuRIwsPDee2111i9erUnyye6gCuprSTAua7YWUnKoK2XNX/4fAD+uv2vWB1d/0ts5fGV3P71LTgCi4iw2/mHPYpHJ/8Oo7575ea0ZmBL3VgNOMYtgBve0BJf930I/3sVlOd5rhAOB+z6AP5xPmz7p7Zt3O3wyy0w7GoAtmedBmB8D+9auWqUFuysOVDU7bqyXKubzz0/hQBj923+b6/fXT2MpMhAck/X8qf/HOjy89dZ7dz73nZKqiwMjQvl2RtH9fhWs7aaNiiarx68gEdnDibUbCCjqJJfvr+DKU9/x1NfHmRn9ulzBj42u4Ntmad4+stDXPjs99z+zy18n3ESnQJzxiay+qGL+PP1I1se4dhNdThTa/bs2cyZM4eFCxdSVlbGxIkTMRqNlJSU8Pzzz3Pffd5fPFJ4Rp8Q7aItMCSSxN5m83YA7ky/k4+PfExmRSb/zvg3tw67tUvKV2ur5ektT/PxEW318/61Rl49mUfcRT/vkvN70kBnN1ZhRR0VdVbCAloI1EbeqA1b/vDnkLtFSxqe9Rdte0d/casqHP8BvnlCm08GIKo/XLMM+jXOeduRrQU73TXZsK3GJkeQEB5Afnkdaw+f5PJusmBlRmElG4+XolPgZ5P8a2BFaICR524azdzXN/HvbblcNiy2yxYKdThUHly+i905ZYQHGnl1/niCTIYes3yPJ5gNehZNH8T8SWn886cTvLspi+JKC6+uPc6ra48TYjYwMjGctOggIoNMmA16Kmot7D2q45+vbiajqJI665mAKCzAwJxxSSyYkkZadLAPP1nndLhlZ8eOHVxwwQUAfPjhh8TGxpKVlcU777zDCy+84LECCu/r62zZycTZlN5Myw5AiCmEX475JQAv7HiBvCoPtja04Ojpo9zyn1v4+MjHKChMjbyJdwtyibPbfTKxXWeFBRiJc65m3VJXltvAy+CetRA3EmpK4eO74N3rIGdr+05qs8C+j+H1S7T3F+wGcxjM+CPct7FJoGO1O9ido62B1NNbdnQ6hStHaq07K/d0n66stzdmAjBzeJx7hJ4/mdi/D/dcoE3a9/8+2kPu6Y5N8d9eT315kK/2F2LS63ht/nhS+/TcL+fOCg8y8tCMwWx67FJe+dk4Zo2IIyzAQJXFxsbjpXywJYeXfjjGX785zJs/ZbHlpI7dueXUWR2EBxqZPSaBF24Zy5bHL2PxtSN6dKADnWjZqampcQ8xX716NXPmzEGn0zFp0iSysrI8VkDhfa6WncM2519fpc0HOwA3Dr6RlcdXsqN4B0/89ASvzXxNm8rfw1RV5aMjH/GXLX+hzl5H38C+PH3B0xz/4QBhioUKYzRhsekeP29XGBQbQmFFHUeKKs/dchLVD+76Dn5aBuue0Vpmjv8AyRO1ifAGTIfIfk1be2pPQ9ZGOLpGC3TqyrTthkAYfztc+N8Q3PxMt4cKKqm12gkLMDCgb9tn8e2urhoVzxvrT/DNQa0ry9ddRuU1Vj7Zof2hcLszqdQfPTxzMBuOlbI3r5yF723nw4VTvFr3//vTCV7/8QQAz940ion9+3jtXD2JyaBjVno8s9LjsTtUDhZUcLiokqzSGirqrNRZHQQZFYpyjnPZpLGMSo4ktU8wep1/df11ONgZOHAgn376Kddffz1ff/01Dz30EKAt2+DJ9aaE97lydvZbYrQNJUe1Lo9mukt0io4/Tf0TN3x+A5sLN/Pegfe4bcRtHi1PWV0Zizcu5tvsbwGYmjCVP0/7M30C+1Bd9AoA+X0vIKyH9sMPignlxyMlZBSeo2XHxWCCi/5b68L6cSnsXg45m7UbQECENiOvOUSb2beiAKrPmm8jNAHG/gwm3ttikOPi6sIakxKJzg9+4Y1JjiAxIpC8slp+yDjJrHTfdmX9e1sOtVY7Q+NCmdS/Kxb+8A2zQc8r88dzzd/Xsy+vgt9+spfnbhrtlfyZf2/NYfEXWn7QIzMGM3tMosfP4Q/0OoX0xHDSExuPntKWizjGlSPjesxSR+3V4T/J//CHP/Doo4+SlpbGxIkTmTxZW39m9erVjB071mMFFN4XHaoFO7tr+miL4NVXQlVRi/unhKXw8ARtAcvntz/PpoJNHivLloIt3PDFDXyb/S0GnYGHxz/MS5e9RJ9A7a+0IZUbAahOudRj5+xqQ+O1FtGMonYuaBfVD2b/Ax7cBzOfhKTzQW/SWm2K92vBT8HuM4FO1ACY8HOY/yk8tA+mP37OQAcaJCf38HwdF0VRuNqZqLzSx6OybHYH/+ucMdkfhpufS2JEIC/eMhadAh/vyONv37TcatxRn+3K4/99vAeAn0/tx6LpAz1+DtHzdbhl58Ybb2TatGkUFBQwevRo9/ZLL7200ZpVovvr48yqr7brcYSnoC/L1PJ2Qlv+C3jukLnsK9nH58c+56HvH+L1ma+THt3xbqWq+iqW7VjGiowVqKikhaXxlwv/wvA+Z1Yyp/QYCfZ86lU9pkGXdPhcvjYsTmv5PFhQiaqq7f/CC4uHKfdrN2ud1u1YVQz11WAMhKA+0GegtkZTB7hadnp6vk5DV42K59V1x/nmQBFVFhshZt/MottwuPl1Y3tH68OUgdEsmZ3O7z/dx7JvjxAZZGTBVM8sJ/Huxkz+8Pl+VFUbDv37q4f5fQApOqZTyRZxcXGMHTsWXYOp0s8//3yGDh3a6YKJrhNg1BPq/OVfF+ZcCbiFEVkuiqLwh8l/YELsBKqsVdyz5h62FGxp97lVVWV15mpmfzqb5RnLUVG5YYyNhlIAACAASURBVNANrLh6ReNAB7BlfAXAFsdQ4mP7tvtc3cWg2BB0CpyqrudkZ6fVNwZoCcwDL4Xh18KgGZA4rsOBTnFFHbmna1EUGJ3c/ScKa6uRieH07xtMrdXOlz5s3fnn+kwA5k30r+Hm5zJ/UioPXjYIgMVfHOCVtU3n8moPh0PludUZ/P6zM4HOn2anS6AjWtQzZgMSXudKUq4Idg6DbWFEVkNmvZl/XPoPxsaMpbK+knvX3Msbe99o0xw8qqqyIW8Dt666lUfWPkJxbTEpoSm8PvN1Fk9ZTJCx6bTu1kNfA7BeGedujeqJAox698iGjMKmMyn7kqtVZ0hsKKEtDYvvgRRF4YZx2sSTH+3I9UkZ9uWVsyXzFAadwvxJaT4pgy89cOkgFl40AICnvzzEE5/to97W/snuymrqufudbfz9O+0PsocuG8yT16X7RX6Z8B4JdgTQYGLBQGfz8smDbXpfkDGI12a8xpX9rsSm2li2YxlzPpvDh4c/pMw1AshJVVVO2k/y7sF3uf6z67n3m3vZW7KXQEMgC0cv5KNrP2JS/KTmT2Spwpyr5escDJnU4/+CGxqn5e0cKuhuwY72bzbOj7qwXK4bm4iiwKbjp8g51TVDoRv650/aSKGrRsUTFx7Q5ef3NUVR+M0VQ3nsCq3l/+2NWdz4ygaOFLXtZ0BVVVbuKeDyv63j20PFmAw6nrlxFA9cNqjH/z4Q3tfzl38VHuEKdnINqYwEKD7U5vcGGAJ4+oKnmZY4jWe2PkNmRSZLNi7hjxv/SFJoElEBUdTb68mtzKXSWgk7tfcFGgK5YdAN3DnyTqIDz5E4e2IdOkc9WY4YHFE9PwFxaFwYq/YWcrCwnUnKXrYjyz8mE2xOYkQgk/v3YcOxUj7ZmcevLh3UZecurqzjP7u17rM7PJSv0lPde9EABvQN4ZH/282e3HJmLfuRueclc+e0fvRvZqoDm93Bt4eKeX3dcbY5r89+0cG8OG9sj1iTSXQPEuwI4Ew31jHFuWREZT7Ulmmz+LaBoihcM+AaLkm+hA8Pf8h/jv+HjNMZ5FTmkFOZ495Pj57z4s7j0tRLuar/VYSaQttWwCPaMiTfO8aQGNnzVy52tex0p26sepuDPXnaZILjeujin+dyw7gkNhwr5eMdudw/fWCXtQi8tymberuDcSkRjEn2z7ptj8uGx7LqgQtY/Pl+1hwo4l+bs/nX5myGxIYyOjmc6BAz9TYHmaU1bM08RXmt1jVu0utYePEAfnHxgF6V8yQ6T4IdAZxp2cmvM2pztlTkwclDkNJCt1ILQkwhLEhfwIL0BZTUlnCi/AQV9RUYFAOxAbHs+2kfs6fPbt9cDqraINgZy3g/mHF2qHNE1pGiKmx2R7dYTG9/fjn1NgeRQUb69fDZUlsyKz2O33+2j8zSGjafOMWkLph4rtpi423ncPM7p/X3+vl6isSIQF6/bQKbjpfy2rrj/JBRTEZRJRnNdGtFBZuYe14yt09JIzas93UBis6TYEcAZ+baKam0QMwwLdgpPtjuYKfRMQOjG3VPWa1WMpSM9h+o+ABU5GFRzGxyDONaPwh2kiIDCTbpqa63c6KkmkGxbWzh8iJ3vk5KpN/mQASbDcwek8AHW3J4b1NWlwQ7H2zJprzWSv/oYJ9PaNgdTerfh0n9+1BaZWHziVMcLa7iVHU9JoOOxIhA0hPDGJMc6Xcz+oquJcGOACDaObqptLoe+g+Fo99owU534GzV2aEbiQUTCX4Q7Oh0CoPjQtmZXcahwsruEey48nX8MDm5oZ9NSuWDLTl8vb+Q4so6YkK911Jgsdl5/cfjANx7UX/5wm5FnxCzex0zITzN923noltwt+xUWSDGOb9NG0dked2RNQB8XT8KwG8WTnR1ZR3qJknK/rLS+bmMSAhnXEoEVrvKv7fmnPsNnfDJjjyKKizEhQVw/dgkr55LCNEyCXYEcGYW5dKqeohxTgrZHVp2ak9DtrYcxTe20SgKfjNsd1h89xl+nl9WS0F5HXqd4leTCbZk/mRtPql/bc7Gam//XC9tYbU7eOkHbfK8uy7oh8kgv26F8BX56RPAmZadKouNugjn0O7qk1Bd4sNSAce+B9VOXcQgctW+xISa/eZLY4iz6+pQNxiR5WrVGRYfSpDJ/3u3r0iPJzrETEF5HV/szvfKOVZszSH7VA3RIWbmTUzxyjmEEG3jH98aotNCzQZ3EFFSb4QI50zKvm7dcXZh5fe9AMAv8nVcXN1YeWW1VNSde9Zpb9qRdSY5uTcIMOr5+bQ0AF5ZewyHQ/Xo8Wvr7bzwrTYL+f3TB/aKAFKI7kyCHQFo8+S4kpRPukZkgTb83FccDjiqBTsHQycD/pOvAxAeZCTB2SV3MN+3eTv+uPjnudw6MZUQs4HDRVV8n1Hs0WO/vTGT4koLiRGBzD0/2aPHFkK0nwQ7wq2vc/6KRsGOL1t2CnZqXWmmUHYwBPCvYAdgRKKWH7Pfh8FOndXO/nzXZIK9J9gJDzRy6ySte+mF746iqp5p3SmrqedlZ67OQzMGYzbI5HdC+JoEO8Ktr3NiwZNVFujrCnYO+K5Azi4sBlxCbrnWzZMY6V/BTrpzuvt9zpmLfWFfXjlWu0p0iJkkP6vfc7lzWj+CTHp255Tx5b5Cjxzz2a8zKK+1MiQ2lOvHJnrkmEKIzpFgR7jFhGnBTnGFBWJHaBuL9mvdSb7gnF+HQTPJK6sFICHcv76M0xO1vJ19+b4LdrZnubqwIvx2MsGWxIQGcNcF2qzGz3x1qEOrcDe0J7eM97dkA/DH2SNkXh0hugkJdoRb45adIaA3g6UCyjK7vjBVJyFvh/Z40Azyy+oA/0pQBkh3dmMdLa6itt7ukzJszTwFwITUKJ+c39fuubA/0SEmMktreG9TVoePY7U7ePyTfagqXD82kYldMDuzEKJtJNgRbo1advTGM3k7BXu6vjBHvwFUiB9Nrbkvp6rrAf/rxooJNRMdYsahwqFm1gTyNodDZWum1rJzXr/eGeyEmA08NGMwAM+tznC3IrbXsm+OsDevnLAAA49dMdSTRRRCdJIEO8LN3bJTqbWiEK/NWEyhD4KdI19r9w26sELMBsIC/GsIr6Io7q6sAz5IUj5SXEV5rZVAo54RCWFdfv7u4pbzUpiQGkl1vZ3HPt7b7qHoWzNP8dIPRwF4as4oYmSxSiG6FQl2hFtMw9FYAHHOYKerW3bsVjj6nfZ48CzyXfk6EQF+mVMy0tmVtS+/61t2tji7sMalRmDsBiuv+4pOp/D0DaMwGXSsO3zSHbi0RV5ZLfe9twOHCjeMS+KqUbK+kxDdTe/97SaaiAk9k7OjqloXEtD1LTvZm8BSDkHRkDDOHez427BzlxEJvht+vuWEFuycl9Y7u7AaGhgTwp9ma4n5z605zKq9Bed8T0mVhTve2kJJlYWhcaEscb5fCNG9SLAj3KKd3VhWu0pZjdU5IkuBqiKo9Myw3DY5/JV2P/hy0OnOjMTy02DH1Y11pLiKTg4GahdVVdnqDHbO76X5Ome7+bwUbp2YgqrCrz7YyWe78lrcN6u0mptf3cjhoir6hpp5c8F5hJj9q5tVCH8hwY5wMxl0RAYZASiutIApGKIHaS92ZVeWK9gZNBPAHez4W3KyS2JEIBFBRmwOlYKarjtv7ulaCivqMOoVxib3nskEz+WPs9O5bkwCNofKA8t38esPd7tbF0FbCuKf609w5bIfOXaymoTwAFbcM8lvWx6F8AfyZ4hopG+omdM1Vk5WWhgSF6rl7ZQchsLdMHim9wtQchRKj4LOAAOmA/h9N5aiKKQnhLP+aAnZ1V2Xk+TqwkpPDCfQJLP8uuh1CktvGk1iZCD/+P4Y/96Wy4fbcxkaF4bZqCOjsJIa5zQB56dFseyWMcT72fxPQvgbadkRjcSEaknKxe4RWc68nfxdXVMA1yis1KkQcGahTPDfbiyAUUla3k5WZdcHO+dLvk4TBr2O/758KCvumcSk/lE4VDhQUMHO7DJq6u2kRAXx5+vT+eCeSRLoCNED9KiWnczMTP70pz/x3XffUVhYSEJCAj/72c94/PHHMZlMvi6eX+jrSlJ2jchKmqDd524FVQVvj4Zy5+vMAsDuUCks1wIvf23ZARjrXJMqq6rrgh3XZIKSnNyyif37sPyeyeSV1XKooAKr3UFqn2CGxIaik9mRhegxelSwc+jQIRwOB6+++ioDBw5k37593H333VRXV7N06VJfF88vuEZkFbuCnfgxWpdSVRGU50KEF1dwriuHrA3a48GXA9poF6tdRa9T3GXzR2OSIwAoqoXKOitRRqNXz3ey0sLxkmoAJqRJvs65JEYE+nWwLYS/61HBzqxZs5g1a5b7ef/+/cnIyODll1+WYMdDmrTsmIIgNh0KdkHuFu8GO8e+A4cN+gyCPgMALYkWIC4sAIMfzwPTN1RbhDP3dC178iq4eGiQV8+36XgpAEPjQokIklZRIYR/61HBTnPKy8uJimq9Gd5isWCxWNzPKyq0+UysVitWq9VjZXEdy5PH7GpRQdolUVRR6/4cuoTx6At2Yc/ejGPItR0+9rnqR3/oS3SAfeAMHM59ckqrAIgPN/foem2L0Ymh5J6uZUfmKaYO8O66SuuPFAMwqV9kj6lXf/j58hapm9ZJ/bSuJ9VPR8uoqKravnnRu5Fjx44xbtw4nnvuOe66664W91u8eDFLlixpsv39998nKMi7f0H3NEfKFV48oCcmQOXxsdqIk6RTGxif9Qqnggbw45AnvHJeRbUxa+/9mOzVrB/4GKWh2rpc3+YpfJ6tZ3y0g9sG+Wj19S6ytkDh40w9wyMc3DvMu5/1jzv0lFoU7hlqZ0Rkj/0VIIToZWpqapg3bx7l5eWEhbV9iZtuEey0FIw0tHXrViZMmOB+np+fz0UXXcRFF13EG2+80ep7m2vZSU5OpqSkpF2VdS5Wq5U1a9YwY8YMjF7OufCWYyermfXCT4QGGNjxuDb0m9MnML50HqrehO3RE2DoWO5Ma/WjnFiH4f05qEF9sD2wX8sTApb85yDvbc7hvgv78fCMQZ36bN3d9sxS5r65nYhAI1seu9hrS2PknK5h+vPrMegUtv72kh4zEZ4//Hx5i9RN66R+WteT6qeiooLo6Oh2Bzvd4rfcokWLmDt3bqv7pKWluR/n5+dzySWXMHnyZF577bVzHt9sNmM2N/2CNhqNXvmH9dZxu0JCVDAAlXU27OgIMOqh7yAI6oNSU4qx9NCZEVod1Gz9HF4JgDLkSozmM4mghRVakJrUJ7jH1mlbjUyKxKColNVayauw0i862Cvn2ZJZDsDo5AgiQ3pe0m1P/vnyNqmb1kn9tK4n1E9Hy9ctgp3o6Giio6PbtG9eXh6XXHIJ48eP56233kKn89+kVV8INRswG3RYbA5OVlpIjgrShpsnnacNC8/e1OlgpwmHAw79R3s8fHajl1wJyv48x46LyaAjOQROVGrDwr0V7Px0TEtO9nZekBBCdBc9KlLIz8/n4osvJjk5maVLl3Ly5EkKCwspLOzCdZv8nKIoxIS5hp/XnXkhdYp2n7ne8yfN3aINbTeHQb+LGr3kmj05qRcEOwADQrVe5c3HT3nl+KqqsvFYCQBTBrbtDwwhhOjpukXLTlutXr2ao0ePcvToUZKSkhq91g1Sj/xG3xAzOadqzww/B0i7QLvP2gAOO+g8uLzAgc+1+8GzwHBmGHRlnZWKOhsA8b0k2BkYrvJNPmw+UeqV42cUVVJSVU+gUc/YlAivnEMIIbqbHtWys2DBAlRVbfYmPOfMkhENgp340WAOB0s5FOz23MlUFQ5+oT0e3nhYe36Z1rIUHmjsMUm0ndUvVJtAMfd0LbmnPb8q6PojWqvOef2iMBtkPSwhRO/Qo4Id0TVc3ViNWnZ0+gZdWT967mS526A8G4xBMODSRi/5+wKgzQnQw4iEUMA7XVk/ZJwE4MJB0oUlhOg9JNgRTfQNcebsVFgav5A2Tbs/sc5zJ9v7b+1+6NXabM0N9IYFQJvjWpjT011ZVRab+5iXDI3x6LGFEKI7k2BHNOFu2ak6K9jpf7F2n/kTWGs7fyK7FfZ9pD0edXOTl13BTlJkbwt2tLWqNp/wbMvO+iMlWO0qqX2C6O+lkV5CCNEdSbAjmugb2sxoLIDYERCWCLZaOOGBrqxj30FNKQT3PRNINZDvbtkJ6Py5epAJqRHoFMgqrfFo3s73h7QlIi4ZEuO1CQuFEKI7kmBHNOFOUD67G0tRYNBM7fGR1Z0/0R5nF1b6jaBvmoCc14vm2GkoNMDIuBStdceVY9NZqqryfYYW7EyXLiwhRC8jwY5owtWNVVJlwWY/a42mwZdr90e+1kZSdVTNqTMTCY66qdldXBMKJkX2vvXLXDk1PzgDlM7an19BcaWFIJOeif1bXzhXCCH8jQQ7oonoYDMGnYJDbSZvp9+FoDdDWTYU7e/4SXZ/ALY6iBsJCeOavGyx2SlydqP1tpwdgIuH9AXgp6Ol1FntnT7eqr0FAFw4qK8MORdC9DoS7IgmdDqFGGfeTmH5WXk7pmAYNEN77Eoubi9VhW3/1B5P+LnWPXaWgrI6VBUCjXr6BJuavO7vhseHERNqptZqZ2tm5xKVVVVlpTPYuWpUvCeKJ4QQPYoEO6JZceFa3k5RRV3TF9PnaPf7PupQV5aStR5Kj4IpBEaeqwsrsFcm0yqKwiVDtK6s7w91Lm9nf34FWaU1mA06ydcRQvRKEuyIZrmCnSYtO6At62AMhrIsyNve7mPrtjtbdUb9F5hDm93HNQqpN3Zhubi6sr49VNSpWcJdrTrTh8YQ3EtmohZCiIYk2BHNig1zBjtnj8gCrStryBXa453vteu4IXUFKK7E5PPubnG/HHew0/uSk10uHNwXs0FHVmkN+/MrOnQMVVVZuUe6sIQQvZsEO6JZca5gp7yFyQPHL9Du96yA2rI2H3dg8SoUVBh8BcQOb3G/ht1YvVWw2cClw7Rupy/25HfoGDuyT5N9qoZAo166sIQQvZYEO6JZ7m6s5nJ2QFs6ImY4WGtg1/ttO+jpEySfWq89vuDhVnftzcPOG7p6VAIAK/cUdKgra8XWHEBr1QkySReWEKJ3kmBHNMvVjVXUXDcWaCOoznd2Q216GWwt7NeA/rs/olPtOPpPh+TzW93XlbOTHNV7W3ZAm+04yKQn93Qt27JOt+u9VRYb/3F2Yd18XrI3iieEED2CBDuiWfENEpRbbFEYNRdC4rRVy7e+2foBT/yI7tAXqCjYL13S6q4Wm90dZPX2lp1Ak56rRmq5Nh9szm7Xez/dmUdNvZ3+fYOZkBrpjeIJIUSPIMGOaJarZafWaqeiztb8TqYguOS32uN1z2izIjenrhw+/QUAmX0uhphhrZ7btUxEkElPZJCx3WX3Nz+blArAf/YWcLq6vk3vsTtU3lx/Qnv/xNReOXxfCCFcJNgRzQow6olwBhrNDj93GXOrlrtTexo+WwSOs5aXcDjg8/uhPBs1IpUDiXPPee7ePsfO2UYlhZOeGEa9zcGKbTltes+aA4WcKKkmPNAoXVhCiF5Pgh3RIveIrJaSlEFbwPP6V0BnhIyVsPJhsFu116y18Ol9cOAz0BmxX/sSNv25c3AkObkxRVG4bXIaAG/8eJya+hZa2pwcDpUXvz8KwPxJqTK3jhCi15NgR7TInaTcWssOQPxomP0PQIHtb8E/zocPfw4vjIM9y0HRwfWvoCZPbNN53cnJvXjY+dmuH5tISlQQJVX1vLMxq9V9P96Zx768CkLMBhZMTeuaAgohRDcmwY5oUZtadlxG3ww3vwuBkXDquLaURGU+hCXCzz6CkTe2+bzSstOUUa/jgUsHAfDS90cprmz+36SizsozXx0C4P7pA4kOMXdZGYUQoruS9m3RothzzbVztmHXQP+LIeMrqMiDPgNg4AwwBrTrvDmyVESzrhubyFsbTrAvr4LffryX1+ZPQKc7k9OkqiqPf7KP4koLqX2CpFVHCCGcpGVHtCi+tfWxWmIOhVE3wbQHteCnnYEOSMtOS/Q6hWduGI1Jr+Obg8X8aeUBHA5tWgCHQ+V/Vh3ki9356HUKf715DGaD3sclFkKI7kFadkSLziwZ0Y5gp5PqrHZOVrrm2JGWnbMNTwjjqTkjeeT/dvPWT5nszC5j2sBo1h8tYVeOtmzHn69LZ1yKzKsjhBAuEuyIFp2ZRbnrgp28Mq1VJ9h0Zui7aOyG8UkoCvz2k73syilzBzkBRh1/vm4kN4xP8nEJhRCie5FgR7TItT5WaXU9Fpu9S7pFck65lokIkjl2WjFnXBLTBkbz0Y48sk9VkxIVzA3jEokJa3+3oRBC+DsJdkSLIoOMmAw66m0OiissJEd5P4dGVjtvu5iwAO67eICviyGEEN2eJCiLFimK4k5SLuiivB1Xy44kJwshhPAUCXZEqxLCtRaWvLKaLjlfVql2npQuaEUSQgjRO0iwI1qV6OxOyi/rmpadLGfLTmofCXaEEEJ4hgQ7olUJEVqw48ql8SZVVckurQYgtU+w188nhBCid5BgR7QqKcLVsuP9YKe0up7qejuKAslRkqAshBDCMyTYEa1ytezkdUGw48rXiQ8LkNl/hRBCeIwEO6JVZ3J2alFV1avnyj6ldWGlSL6OEEIID5JgR7TKNfS8pt5Oea3Vq+dyteykRkm+jhBCCM/pscGOxWJhzJgxKIrCrl27fF0cvxVg1BMdYgK8n6TsHnYuLTtCCCE8qMcGO7/+9a9JSEjwdTF6hcQuSlLOco/EkmBHCCGE5/TIYOfLL79k9erVLF261NdF6RW6Kkk5+5R0YwkhhPC8Hrc2VlFREXfffTeffvopQUFtawGwWCxYLBb384qKCgCsVitWq+fyUFzH8uQxu4P4MDMAuaeqO/XZWqufKouNkqp6ABLCjH5Xh23hr9ePp0j9tEzqpnVSP63rSfXT0TIqqreH2HiQqqpceeWVTJ06ld/97ndkZmbSr18/du7cyZgxY1p83+LFi1myZEmT7e+//36bA6be7IcChU8y9YyJcnDHEIdXzpFXDc/sMRBsUPmf8+xeOYcQQoieraamhnnz5lFeXk5YWFib39ctWnZaCkYa2rp1Kxs2bKCiooLHHnusXcd/7LHHePjhh93PKyoqSE5OZubMme2qrHOxWq2sWbOGGTNmYDQaPXZcXzMeKOaTzF04giK48spJHT5Oa/Xz9f4i2LObAXHhnTpHT+av14+nSP20TOqmdVI/retJ9ePqmWmvbhHsLFq0iLlz57a6T1paGk8++SSbNm3CbDY3em3ChAnceuutvP32282+12w2N3kPgNFo9Mo/rLeO6ysp0SEAFJRbPPK5mqufvHKtmzGtT4hf1V1H+Nv142lSPy2Tummd1E/rekL9dLR83SLYiY6OJjo6+pz7vfDCCzz55JPu5/n5+Vx++eWsWLGCiRMnerOIvZprNNbJSgu19XYCTZ6f3VgWABVCCOEt3SLYaauUlJRGz0NCtBaHAQMGkJSU5Isi9QoRQUZCAwxU1tnIPV3DoNhQj5/DNew8JUqCHSGEEJ7VI4eei66lKIo7CHFN/Odpx09qwU7/vjLsXAghhGf1qJads6WlpXl9vSahSe0TxP78CvdcOJ5UU2+joLwOgP7O/CAhhBDCU6RlR7RJsrNlxxvBjqtVJzLISGSwyePHF0II0btJsCPaxDWrsVeCnRJXF5a06gghhPA8CXZEm5zJ2an2+LGPn6wCoH+05OsIIYTwPAl2RJu4hoTnnK7F4fBsntSZ5GRp2RFCCOF5EuyINokPD8CgU6i3OSiqrPPosY+XOFt2ZCSWEEIIL5BgR7SJQa8jMVKbXDDbg8PPVVXlhLNlZ4AEO0IIIbxAgh3RZu68HQ8mKRdVWKiut6PXKaRESbAjhBDC8yTYEW3mCnY82bLjSk5OjgzEZJDLUQghhOfJt4tosxQvzLVzTIadCyGE8DIJdkSbuUZkeXL4+bFiGXYuhBDCuyTYEW3Wz7mUw/GT1R5bpuNwUSUAg+M8v7ioEEIIARLsiHZI7ROEToFKi42TVRaPHNMV7AzxwkrqQgghBEiwI9ohwKh3r5F1rLjzXVklVRZKquoBGBQrOTtCCCG8Q4Id0S4DnInEx5yjqDrD1aqTEhVEkMnQ6eMJIYQQzZFgR7SLa+I/jwQ7hc4uLMnXEUII4UUS7Ih2cQ0Rd61n1RkZkq8jhBCiC0iwI9rFk91YGYUyEksIIYT3SbAj2sXVjZVXVkttvb3Dx1FVlcNFWsAkLTtCCCG8SYId0S5RwSYigoyoaudad/LL66iy2DDoFPrJhIJCCCG8SIId0S6KojDU2e10yNkN1REZhRUA9O8bLGtiCSGE8Cr5lhHtNjQuDIBDBRUdPsb+PO29w+LDPFImIYQQoiUS7Ih2Gxavtey4RlN1xN68cgBGJoZ7pExCCCFESyTYEe3matk5WNDxYGefM9hJl2BHCCGEl0mwI9ptcGwoiqIt93Cysv1rZJVW15NfXgfAiATpxhJCCOFdEuyIdgs06Unro42gyuhAkvL+fGdycnQwoQFGj5ZNCCGEOJsEO6JDXCOyDnYgSXmfMzlZurCEEEJ0BQl2RIe4ApXduWXtfu8+Z8uOJCcLIYToChLsiA4ZkxwBwK6c9gU7qgo7srX3jE2J8Hi5hBBCiLNJsCM6ZGRSOIoCuadrKalqe5LyyTotQdlk0DEySVp2hBBCeJ8EO6JDwgKM7kVBd7ejdedEpQLAqMRwzAa9V8omhBBCNCTBjuiwjnRluYKdCWlRXimTEEIIcTYJdkSHdSTYOe4KdlIjvVImIYQQ4mwS7IgOG5eiBSzbs05jtTvOuX9JlYWiWi3YGS/BjhBCiC4iwY7osKFxoUQFm6ipt7epdefHI6UAjEgIJTLY5O3iCSGEEEAPDXZWrlzJxIkTCQwMJDo6mjlz5vi66TkYTwAAEetJREFUSL2STqcwZUAfAH48UnLO/dc697lwULRXyyWEEEI01OOCnY8++oj58+dzxx13sHv3bn766SfmzZvn62L1Whc4A5efjrYe7NgdKj8d1Vp2JNgRQgjRlQy+LkB72Gw2HnjgAZ599lnuvPNO9/YhQ4b4sFS929SBWuCyK6eMyjpri2td7c4to6zWSqBeZYzMryOEEKIL9ahgZ8eOHeTl5aHT6Rg7diyFhYWMGTOGpUuXMmLEiBbfZ7FYsFjOTHxXUaEtV2C1WrFarR4rn+tYnjxmdxcbYqRfnyBOlNbw7YFCrhoZ1+x+X+7JB2BIhIrqsPeqOmqr3nj9tIfUT8ukblon9dO6nlQ/HS2joqqq6uGyeM3y5cu55ZZbSElJ4fnnnyctLY3nnnuO1atXc/jwYaKimp+7ZfHixSxZsqTJ9vfff5+goCBvF9vvfZGt45s8HaOiHNw5pOmoLIcKS3boKatXuGOwnTF9eswlJ4QQohupqalh3rx5lJeXExYW1ub3dYtgp6VgpKGtW7dy+PBhbr31Vl599VXuueceQGu1SUpK4sknn+Tee+9t9r3NtewkJydTUlLSrso6F6vVypo1a5gxYwZGY/PdOf7oYEEl1760EZNBx8ZfX0RYYOPPvvnEKX72z22EmPU8MdrCVbN6V/20VW+9ftpK6qdlUjetk/ppXU+qn4qKCqKjo9sd7HSLbqxFixYxd+7cVvdJS0ujsrISgOHDh7u3m81m+vfvT3Z2dovvNZvNmM3mJtuNRqNX/mG9ddzuamRyJENiQ8koquTTPUXcOa1fo9ff3ZwDwFUj4zDps3pd/bSX1E/rpH5aJnXTOqmf1vWE+ulo+bpFsBMdHU109LlH6IwfPx6z2UxGRgbTpk0DtIg0MzOT1NRUbxdTtEBRFG6fksZvP9nL/244wfxJqZgM2kC/YyerWHOgCIDbJ6dyZFuWL4sqhBCiF+pRQ8/DwsJYuHAhTzzxBKtXryYjI4P77rsPgJtuusnHpevdrh+bSHSIiZxTtby9IRMAVVX54xcHcKhw6dAYBsWE+LaQQggheqVu0bLTHs8++ywGg4H58+dTW1vLxIkT+e6774iMlOUHfCnQpOfXlw/l1x/t4dmvM0iICGRPXhlrD5/EqFd4/Kphvi6iEEKIXqrHBTtGo5GlS5eydOlSXxdFnOXG8Ul8n1HMl/sK+eX7O9zbF187gv59Q3rEsEYhhBD+p8cFO6L70ukU/jZ3DLGrDvHZrjxCA4wsmj6Q/5qQ7OuiCSGE6MUk2BEeZTboWXztCBZf2/Ikj0IIIURX6lEJykIIIYQQ7SXBjhBCCCH8mgQ7QgghhPBrEuwIIYQQwq9JsCOEEEIIvybBjhBCCCH8mgQ7QgghhPBrEuwIIYQQwq9JsCOEEEIIvybBjhBCCCH8mgQ7QgghhPBrEuwIIYQQwq9JsCOEEEIIvybBjhBCCCH8msHXBfAFVVUBqKio8OhxrVYrNTU1VFRUYDQaPXpsfyD10zqpn9ZJ/bRM6qZ1Uj+t60n14/redn2Pt1WvDHYqKysBSE5O9nFJhBBCCNFelZWVhIeHt3l/RW1veOQHHA4H+fn5hIaGoiiKx45bUVFBcnIyOTk5hIWFeey4/kLqp3VSP62T+mmZ1E3rpH5a15PqR1VVKisrSUhIQKdreyZOr2zZ0el0JCUlee34YWFh3f6C8SWpn9ZJ/bRO6qdlUjetk/ppXU+pn/a06LhIgrIQQggh/JoEO0IIIYTwa/rFixcv9nUh/Iler+fiiy/GYOiVPYTnJPXTOqmf1kn9tEzqpnVSP63z9/rplQnKQgghhOg9pBtLCCGEEH5Ngh0hhBBC+DUJdoQQQgjh1yTYEUIIIYRfk2DHg1566SX69etHQEAA48eP58cff/R1kbrc4sWLURSl0S0uLs79uqqqLF68mISEBAIDA7n44ovZv3+/D0vsXevWreOaa64hISEBRVH49NNPG73elvo4ffo08+fPJzw8nPDwcObPn09ZWVlXfgyvOVf9LFiwoMn1NGnSpEb7WCwW7r//fqKjowkODubaa68lNze3Kz+GVzz11FOcd955hIaGEhMTw3XXXUdGRkajfdry2bOzs7nmmmsIDg4mOjqaX/3qV9TX13flR/GKttTPxRdf3OT6mTt3bqN9/PXn6+WXX2bUqFHuiQInT57Ml19+6X69t107Eux4yIoVK3jwwQd5/PHH2blzJxdccAFXXHEF2dnZvi5alxsxYgQFBQXu2969e92vPfPMMzz//PO8+OKLbN26lbi4OGbMmOFer8zfVFdXM3r0aF588cVmX29LfcybN49du3bx1Vdf8dVXX7Fr1y7mz5/fVR/Bq85VPwCzZs1qdD2tWrWq0esPPvggn3zyCcuXL2f9+vVUVVVx9dVXY7fbvV18r1q7di2//OUv2bRpE2vWrMFmszFz5kyqq6vd+5zrs9vtdq666iqqq6tZv349y5cv56OPPuKRRx7x1cfymLbUD8Ddd9/d6Pp59dVXG73urz9fSUlJPP3002zbto1t27Yxffp0Zs+e7f5jqtddO6rwiPPPP19duHBho21Dhw5Vf/Ob3/ioRL7xxBNPqKNHj272NYfDocbFxalPP/20e1tdXZ0aHh6uvvLKK11VRJ8B1E8++cT9vC31ceDAARVQN23a5N5n48aNKqAeOnSo6wrfBc6uH1VV1dtvv12dPXt2i+8pKytTjUajunz5cve2vLw8VafTqV999ZXXyuoLxcXFKqCuXbtWVdW2ffZVq1apOp1OzcvLc+/zwQcfqGazWS0vL+/aD+BlZ9ePqqrqRRddpD7wwAMtvqc3/XypqqpGRkaqb7zxRq+8dqRlxwPq6+vZvn07M2fObLR95syZbNiwwUel8p0jR46QkJBAv379mDt3LsePHwfgxIkTFBYWNqons9nMRRdd1CvrqS31sXHjRsLDw5k4caJ7n0mTJhEeHt5r6uyHH34gJiaGwYMHc/fdd1NcXOx+bfv27Vit1kZ1mJCQQHp6ut/VT3l5OQBRUVFA2z77xo0bSU9PJyEhwb3P5ZdfjsViYfv27V1Yeu87u35c/vWvfxEdHc2IESN49NFHG7Wa9pafL7vdzvLly6murmby5Mm98trxz6kSu1hJSQl2u53Y2NhG22NjYyksLPRRqXxj4sSJvPPOOwwePJiioiKefPJJpkyZwv79+9110Vw9ZWVl+aK4PtWW+igsLCQmJqbJe2NiYnrFtXXFFVdw0003kZqayokTJ/j973/P9OnT2b59O2azmcLCQkwmE5GRkY3e528/e6qq8vDDDzNt2jTS09MB2vTZCwsLm1xfkZGRmEwmv68fgFtvvZV+/foRFxfHvn37eOyxx9i9ezdr1qwB/P/na+/evUyePJm6ujpCQkL45JNPGD58OLt27ep1144EOx6kKEqj56qqNtnm76644gr345EjRzJ58mQGDBjA22+/7U4slXpq7Fz10Vzd9JY6u/nmm92P09PTmTBhAqmpqaxcuZI5c+a0+D5/q59FixaxZ88e1q9ff859e+P101L93H333e7H6enpDBo0iAkTJrBjxw7GjRsH+Hf9DBkyhF27dlFWVsZHH33E7bffztq1a1vc35+vHenG8oDo6Gj0en2TaLe4uLhJZNzbBAcHM3LkSI4cOeIelSX1pGlLfcTFxVFUVNTkvSdPnuyVdRYfH09qaipHjhwBtPqpr6/n9OnTjfbzp2vq/vvv5/PPP+f7778nKSnJvb0tnz0uLq7J9XX69GmsVqvf109zxo0bh9FobHT9+PPPl8lkYuDAgUyYMIGnnnqK0aNHs2zZsl557Uiw4wEmk4nx48e7m0Zd1qxZw5QpU3xUqu7BYrFw8OBB4uPj3c3JDeupvr6etWvX9sp6akt9TJ48mfLycrZs2eLeZ/PmzZSXl/fKOistLSUnJ4f4+HgAxo8fj9FobFSHBQUF7Nu3r8fXj6qqLFq0iI8//pjvvvuOfv36NXq9LZ998uTJ7Nu3j4KCAvc+q1evxmw2M378+K75IF5yrvppzv79+7Fare7rp7f9fKmqisVi6Z3Xjg+Sov3S8uXLVaPRqL755pvqgQMH1AcffFANDg5WMzMzfV20LvXII4+oP/zwg3r8+HF106ZN6tVXX62Ghoa66+Hpp59Ww8PD1Y8//ljdu3evesstt6jx8fFqRUWFj0vuHZWVlerOnTvVnTt3qoD6/PPPqzt37lSzsrJUVW1bfcyaNUsdNWqUunHjRnXjxo3qyJEj1auvvtpXH8mjWqufyspK9ZFHHlE3bNignjhxQv3+++/VyZMnq4mJiY3qZ+HChWpSUpL6zTffqDt27FCnT5+ujh49WrXZbD78ZJ133333qeHh4eoPP/ygFhQUuG81NTXufc712W02m5qenq5eeuml6o4dO9RvvvlGTUpKUhctWuSrj+Ux56qfo0ePqkuWLFG3bt2qnjhxQl25cqU6dOhQdezYsY2uDX/9+XrsscfUdevWqSdOnPj/7dxPaBNbGMbhd8xNQrBDcWyotfindmWh1rpQKlIDol3oxoK4qBKVuhBaSaErKwoqCK7sQgQ3RReC4KIgIrpQilJRQUtLu45ZGBGrIDQWJfO5C+Ta3lswzej4eyCQnMw55zvDhLxMZmKTk5N25swZW7FihT169MjM/r5jh7BTQdeuXbMNGzZYLBazbdu2ld0C+bc4fPiwNTQ0WDQatbVr11p3d7dNT0+X3vd9386fP29r1qyxeDxunZ2dNjU1FWDFy+vJkycm6adHOp02s6Xtj9nZWevp6THXdc11Xevp6bHPnz8HsJrK+6/9UygUbN++fZZMJi0ajdr69estnU5bLpcrG+Pr16/W19dnnudZIpGwAwcO/LTNn2ih/SLJRkZGStssZe1v3761/fv3WyKRMM/zrK+vz+bn56u8msr7v/2Ty+Wss7PTPM+zWCxmzc3Ndvr0aZudnS0bJ6yfrxMnTpS+j5LJpO3Zs6cUdMz+vmPHMTOr3nkkAACA6uKaHQAAEGqEHQAAEGqEHQAAEGqEHQAAEGqEHQAAEGqEHQAAEGqEHQAAEGqEHQAAEGqEHQC/pVQqpUwmE3QZAEKAf1AGELhUKqWtW7fq6tWrpbZPnz4pGo3Kdd2q15PJZJTNZjU6Olr1uQFUHmd2APyWPM8LJOhI0qtXr7R9+/ZA5gZQeYQdAIE6duyYxsbGNDw8LMdx5DiOstnsTz9jpVIp9ff3K5PJaNWqVaqvr9eNGzc0Nzen48ePy3VdNTc368GDB6U+ZqYrV65o06ZNSiQSamtr0927dxet5fv374rFYhofH9fQ0JAcx9GOHTuWdf0Alh9hB0CghoeH1dHRoZMnTyqfzyufz2vdunULbnvz5k3V1dXp5cuX6u/v16lTp3To0CHt3LlTr1+/VldXl44ePapCoSBJOnv2rEZGRnT9+nVNT09rYGBAR44c0djY2ILjRyIRPXv2TJI0MTGhfD6vhw8fLs/CAVQN1+wACNxC1+z8uy2VSqlYLOrp06eSpGKxqNraWnV3d+vWrVuSpPfv36uhoUHPnz9Xa2ur6urq9PjxY3V0dJTG7e3tVaFQ0O3btxesZXR0VL29vfr48eNyLRdAlf0TdAEAsFRbtmwpPY9EIlq9erVaW1tLbfX19ZKkDx8+aGZmRvPz89q7d2/ZGN++fVN7e/uic7x580ZtbW0VrhxAkAg7AP4Y0Wi07LXjOGVtjuNIknzfl+/7kqT79++rsbGxrF88Hl90jomJCcIOEDKEHQCBi8ViKhaLFR2zpaVF8XhcuVxOu3fvXnK/qakpHTx4sKK1AAgWYQdA4DZu3KgXL14om82qpqZGnuf98piu62pwcFADAwPyfV+7du3Sly9fND4+rpqaGqXT6QX7+b6vyclJvXv3TitXrlRtbe0v1wIgWNyNBSBwg4ODikQiamlpUTKZVC6Xq8i4Fy9e1Llz53T58mVt3rxZXV1dunfvnpqamhbtc+nSJd25c0eNjY26cOFCReoAECzuxgIAAKHGmR0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqhB0AABBqPwCUUgz4gz5qrAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds = [0.02, 0.05, 0.1, 0.2, 0.3, 0.4]\n", - "t = linspace(0, 20π*5, 1000)\n", - "for d in ds\n", - " Bd = [ 0 1 \n", - " -0.01 -d ]\n", - " plot(t, [(expm(Bd*t)*[0,1])[1] for t in t], \"-\")\n", - "end\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solution $x(t)$\")\n", - "title(\"mass on a spring for different drags\")\n", - "legend([\"\\$d=$d\\$\" for d in ds])\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's even more fun to use a slider control for $d$:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":0.15}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":0.15}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["d"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":0.3,"min":0.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.01,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-640749d2-8a76-41d4-8850-7a501593625d","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_06","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", 0.15, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", 0.15, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_01\", 0.15, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_01\", 0.15, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_01\", 0.15, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"d\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 0.3),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_01\", 0.15, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.15}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-9540950e-3cc6-4a1c-9468-26dbc2ab118f\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_05\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t = linspace(0, 20π*5, 1000)\n", - "fig = figure()\n", - "@manipulate for d in 0.0:0.01:0.3\n", - " Bd = [ 0 1 \n", - " -0.01 -d ]\n", - " withfig(fig) do\n", - " c = d < 0.1999 ? \"blue\" : d > 0.2001 ? \"red\" : \"black\"\n", - " plot(t, [(expm(Bd*t)*[0,1])[1] for t in t], \"-\", color=c)\n", - " xlabel(L\"time $t$\")\n", - " ylabel(L\"solution $x(t)$\")\n", - " T = c == \"blue\" ? \"underdamped\" : c == \"red\" ? \"overdamped\" : \"critically damped\"\n", - " title(\"$T mass on a spring for drag \\$d=$d\\$\")\n", - " ylim(-4,8)\n", - " grid()\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The case of $d=0.2$, where the discriminant $\\sqrt{\\cdots} = 0$ and the two eigenvalues are *equal*, is called [critically damped](https://en.wikipedia.org/wiki/Harmonic_oscillator). This is a bit of an odd case because the matrix becomes *defective* (non-diagonalizable): there is only a single eigenvector.\n", - "\n", - "We will analyze such defective cases later in 18.06. They are not our primary concern, though, because they are kind of a weird limiting case that doesn't show up most of the time." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Two coupled masses on springs\n", - "\n", - "When we are solving things by hand, it is hard to go beyond $2\\times 2$ matrices, but on the computer we have no such limitations. **Practical engineering problems are solved every day involving millions of coupled differential equations**.\n", - "\n", - "Let's try upgrading to *two* coupled masses on springs:\n", - "\n", - "\n", - "\n", - "Now, our equations look like:\n", - "\n", - "$$\n", - "\\frac{d x_1}{dt} = v_1 \\\\\n", - "\\frac{d x_2}{dt} = v_2 \\\\\n", - "\\frac{d v_1}{dt} = -\\frac{k_1}{m}x_1 -\\frac{k_2}{m}(x_1 - x_2) \\\\\n", - "\\frac{d v_2}{dt} = -\\frac{k_3}{m}x_2 +\\frac{k_2}{m}(x_1 - x_2) \n", - "$$\n", - "\n", - "where the spring $k_2$ connecting the two masses exerts a force $\\pm k_2 (x_1 - x_2)$, with the two masses feeling an equal and opposite force from that spring.\n", - "\n", - "This can be written in matrix form as $d\\vec{x}/dt = Cx$:\n", - "\n", - "$$\n", - "\\frac{d}{dt} \\underbrace{\\begin{pmatrix} x_1 \\\\ x_2 \\\\ v_1 \\\\ v_2 \\end{pmatrix}}_\\vec{x} =\n", - "\\underbrace{\\begin{pmatrix} \n", - "0 & 0 & 1 & 0 \\\\ \n", - "0 & 0 & 0 & 1 \\\\ \n", - "-(k_1+k_2)/m & k_2/m & 0 & 0 \\\\\n", - "k_2/m & -(k_3+k_2)/m & 0 & 0\n", - "\\end{pmatrix}}_C \\vec{x}\n", - "$$\n", - "\n", - "Let's set $m_1 = m_2 = m$ and $k_1/m = k_2/m = k_3/m = 0.01$ for simplicity." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 0.0 0.0 1.0 0.0\n", - " 0.0 0.0 0.0 1.0\n", - " -0.02 0.01 0.0 0.0\n", - " 0.01 -0.02 0.0 0.0" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "C = [ 0 0 1 0\n", - " 0 0 0 1\n", - " -0.02 0.01 0 0\n", - " 0.01 -0.02 0 0 ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Again, let's just try plotting the solutions $x_1(t)$ and $x_2(t)$ computed by \"brute force\" first, assuming an initial condition $\\vec{x}(0) = (0,0,1,0)$ where we start $x_1$ moving from rest:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHGCAYAAACSMkoBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXdYFOf2x79LFwEBAcEGdsWKYjcRC4otGmNM0USjpqr5GTW50WuiqUYTo4k3MUWvxhhNYmIXCyp2RUSxN1SKCrGDosIC8/vj3JcFWcruzu7M7p7P8+wzwzLzztl3Z2fOnKqRJEkCwzAMwzCMjeKgtAAMwzAMwzDmhJUdhmEYhmFsGlZ2GIZhGIaxaVjZYRiGYRjGpmFlh2EYhmEYm4aVHYZhGIZhbBpWdhiGYRiGsWlY2WEYhmEYxqZhZYdhGIZhGJuGlR2GMZEHDx5gxowZ2LlzZ4n/LVmyBBqNBsnJyRaXyxCmTZuG2rVrw8nJCd7e3qVut2rVKrzwwguoX78+KlWqhJCQEAwbNgwXLlywoLSMWtm5cyc0Go3e3wLDKImG20UwjGncvHkT/v7+mD59OmbMmFHsfzdu3MDFixcRFhYGV1dXZQQsh7Vr12LQoEH497//jT59+sDV1RXh4eF6t23fvj0CAwMxaNAg1K1bF2lpafj888+RlpaGgwcPomnTphaWnlETWVlZOH36NEJDQ+Hl5aW0OAxTiJPSAjCMLePv7w9/f3+lxSiTkydPAgDefvttBAQElLnt+vXrS2zTvXt3hISEYO7cuVi4cKHZ5GTUi1arhUajgZeXFzp06KC0OAxTAnZjMTbLjBkzoNFocPz4cTz77LOoUqUKfH19MXHiROTl5eHcuXOIioqCp6cnQkJCMHv27BJjpKamYvjw4QgICICrqyuaNGmCOXPmoKCgAACQnJxcqMx89NFH0Gg00Gg0GDlyJIDS3Vj//e9/0bJlS7i5ucHX1xdPP/00zpw5U2ybkSNHwsPDA0lJSejbty88PDxQq1YtTJo0CTk5OeV+/oKCAsyePRuNGzeGq6srAgIC8PLLL+PKlSuF24SEhGDatGkAgGrVqkGj0ZSwThVFnzJUvXp11KxZE2lpaeXKFBERgWbNmuHAgQPo1KlToSts8eLFAICNGzeidevWcHd3R/PmzbF58+Zi+yclJeGVV15BgwYN4O7ujho1amDAgAE4ceJEic/+6aefolGjRqhUqRK8vb3RokULfPPNN4Xb3LhxA6+99hpq1aoFV1dX+Pv7o3Pnzti2bVuxsbZt24YePXrAy8sL7u7u6Ny5M7Zv315sm4qOpY+9e/eiR48e8PT0hLu7Ozp16oSNGzcW20acR7GxsXjzzTfh5+eHqlWrYvDgwbh27Vq5x7h06RKef/55VK9eHa6urqhWrRp69OiBxMTEwm1CQkLQv39/rF69Gi1atICbmxvq1q2Lb7/9tthYwlX166+/YtKkSahRowZcXV2RlJSk141lyHl85coVDBkyBJ6envD29sawYcMQHx8PjUaDJUuWGPR5GKYobNlhbJ6hQ4di+PDheP311xETE4PZs2dDq9Vi27ZteOuttzB58mQsX74c//rXv1C/fn0MHjwYAN3AOnXqhNzcXHzyyScICQnBhg0bMHnyZFy8eBHff/89goKCsHnzZkRFRWH06NEYM2YMAJRpzZk5cyamTp2KF154ATNnzsStW7cwY8YMdOzYEfHx8WjQoEHhtlqtFk899RRGjx6NSZMmYffu3fjkk09QpUoVfPjhh2V+7jfffBM//fQTxo0bh/79+yM5ORkffPABdu7ciSNHjsDPzw+rV6/Gd999h0WLFmHz5s2oUqUKatasadD8Xrp0CSkpKRg0aFCFts/IyMArr7yC9957DzVr1sT8+fMxatQopKWl4a+//sLUqVNRpUoVfPzxxxg0aBAuXbqE6tWrAwCuXbuGqlWr4osvvoC/vz9u376NX375Be3bt8fRo0fRqFEjAMDs2bMxY8YMTJs2DU8++SS0Wi3Onj2Lu3fvFsrx0ksv4ciRI/jss8/QsGFD3L17F0eOHMGtW7cKt1m2bBlefvllDBw4EL/88gucnZ3x448/onfv3tiyZQt69OhR4bH0sWvXLkRGRqJFixZYtGgRXF1d8f3332PAgAFYsWIFnnvuuWLbjxkzBv369cPy5cuRlpaGd999F8OHD8eOHTvKPE7fvn2Rn5+P2bNno3bt2rh58yb2799fbD4AIDExERMmTMCMGTMQGBiI3377Df/3f/+H3NxcTJ48udi2U6ZMQceOHfHDDz/AwcEBAQEByMjI0Hv8ipzH2dnZ6NatG27fvo1Zs2ahfv362Lx5c4k5MOTzMEwhEsPYKNOnT5cASHPmzCn2fqtWrSQA0qpVqwrf02q1kr+/vzR48ODC995//30JgBQXF1ds/zfffFPSaDTSuXPnJEmSpBs3bkgApOnTp5eQYfHixRIA6fLly5IkSdKdO3ekSpUqSX379i22XWpqquTq6iq9+OKLhe+NGDFCAiD9+eefxbbt27ev1KhRozI/+5kzZyQA0ltvvVXs/bi4OAmANHXq1ML3xDzduHGjzDH1odVqpYiICMnLy0tKTU0td/uuXbtKAKTDhw8Xvnfr1i3J0dFRqlSpknT16tXC9xMTEyUA0rffflvqeHl5eVJubq7UoEED6Z133il8v3///lKrVq3KlMXDw0OaMGFCqf/Pzs6WfH19pQEDBhR7Pz8/X2rZsqXUrl27Co9VGh06dJACAgKke/fuFb6Xl5cnNWvWTKpZs6ZUUFAgSZLuPHr8+5w9e7YEQEpPTy/1GDdv3pQASPPmzStTluDgYEmj0UiJiYnF3o+MjJS8vLyk7OxsSZIkKTY2VgIgPfnkkyXGEP+LjY0tfK+i5/F3330nAZA2bdpUbLvXX39dAiAtXrzYoM/DMEVhNxZj8/Tv37/Y302aNIFGo0GfPn0K33NyckL9+vWRkpJS+N6OHTsQGhqKdu3aFdt/5MiRkCSp3KdpfRw4cAAPHz4sdHMJatWqhe7du5dwj2g0GgwYMKDYey1atCgmpz5iY2MLZS1Ku3bt0KRJkxLHMQZJkjB69Gjs2bMHS5cuRa1atSq0X1BQENq0aVP4t6+vLwICAtCqVatCCw5A3xOAYp81Ly8Pn3/+OUJDQ+Hi4gInJye4uLjgwoULxdyA7dq1w7Fjx/DWW29hy5YtyMrKKiFHu3btsGTJEnz66ac4ePAgtFptsf/v378ft2/fxogRI5CXl1f4KigoQFRUFOLj45GdnV2hsfSRnZ2NuLg4DBkyBB4eHoXvOzo64qWXXsKVK1dw7ty5Yvs89dRTxf5u0aJFiTl6HF9fX9SrVw9ffvklvv76axw9erTQDfs4TZs2RcuWLYu99+KLLyIrKwtHjhwp9v4zzzxT7mcUVOQ83rVrFzw9PREVFVVsuxdeeMHoz8MwAlZ2GJvH19e32N8uLi5wd3eHm5tbifcfPXpU+PetW7cQFBRUYjxxQy7PRaEPsU9p4z4+pj45XV1di8kpx3EMRZIkjBkzBsuWLcOSJUswcODACu/7+PcB0Nzr+54AFPusEydOxAcffIBBgwZh/fr1iIuLQ3x8PFq2bImHDx8WbjdlyhR89dVXOHjwIPr06YOqVauiR48eOHz4cOE2f/zxB0aMGIGFCxeiY8eO8PX1xcsvv1zoivnnn38AAEOGDIGzs3Ox16xZsyBJEm7fvl2hsfRx584dSJJk0DlWtWrVYn+LDL+in/1xNBoNtm/fjt69e2P27Nlo3bo1/P398fbbb+PevXvFtg0MDCyxv3jvcVn0yV0aFTmPb926hWrVqpXY9/H3DPk8DCPgmB2GKYWqVasiPT29xPsiINTPz8+oMQGUOq4xY5Z3nMdjcEw9jlB0Fi9ejEWLFmH48OEmyWoIIobm888/L/b+zZs3i9UHcnJywsSJEzFx4kTcvXsX27Ztw9SpU9G7d2+kpaXB3d0dfn5+mDdvHubNm4fU1FSsW7cO77//Pq5fv47NmzcXztH8+fNLzTASN+LyxtKHj48PHBwcZD/H9BEcHIxFixYBAM6fP48///wTM2bMQG5uLn744YfC7fQpZ+K9xxUtjUYji2yCqlWr4tChQ6UevygV/TwMI2DLDsOUQo8ePXD69OkS5vulS5dCo9GgW7duACr2dC3o2LEjKlWqhGXLlhV7/8qVK9ixY0dhwKupdO/eHQBKHCc+Ph5nzpwx+jiSJOHVV1/F4sWL8eOPP+KVV14xWVZD0Gg0JeoVbdy4EVevXi11H29vbwwZMgRjx47F7du39RZ4rF27NsaNG4fIyMjC77tz587w9vbG6dOnER4ervclrE/ljaWPypUro3379li1alWxc6egoADLli1DzZo10bBhw/KmxGAaNmyIadOmoXnz5iXkO3XqFI4dO1bsveXLl8PT0xOtW7eWXZaidO3aFffu3cOmTZuKvf/777+XuV9Zn4dhBGzZYZhSeOedd7B06VL069cPH3/8MYKDg7Fx40Z8//33ePPNNwtvRJ6enggODsbatWvRo0cP+Pr6ws/PDyEhISXG9Pb2xgcffICpU6fi5ZdfxgsvvIBbt27ho48+gpubG6ZPny6L7I0aNcJrr72G+fPnw8HBAX369CnMxqpVqxbeeecdo8Z9++23sWjRIowaNQrNmzfHwYMHC//n6uqKsLAwWeQvjf79+2PJkiVo3LgxWrRogYSEBHz55ZclrFcDBgxAs2bNEB4eDn9/f6SkpGDevHkIDg5GgwYNkJmZiW7duuHFF19E48aN4enpifj4eGzevLkwG8/DwwPz58/HiBEjcPv2bQwZMgQBAQG4ceMGjh07hhs3bmDBggUVGqs0Zs6cicjISHTr1g2TJ0+Gi4sLvv/+e5w8eRIrVqyQxXpy/PhxjBs3Ds8++ywaNGgAFxcX7NixA8ePH8f7779fbNvq1avjqaeewowZMxAUFIRly5YhJiYGs2bNgru7u8mylMWIESMwd+5cDB8+HJ9++inq16+PTZs2YcuWLQAABwcHgz8PwxSiYHA0w5iV0rKMRowYIVWuXLnE9l27dpWaNm1a7L2UlBTpxRdflKpWrSo5OztLjRo1kr788kspPz+/2Hbbtm2TwsLCJFdXVwmANGLECEmSSmZjCRYuXCi1aNFCcnFxkapUqSINHDhQOnXqVIXkFJ+rPPLz86VZs2ZJDRs2lJydnSU/Pz9p+PDhUlpamt7xKpKNFRwcLAHQ+woODi53f31zLMbt169fifcBSGPHji38+86dO9Lo0aOlgIAAyd3dXerSpYu0Z88eqWvXrlLXrl0Lt5szZ47UqVMnyc/PT3JxcZFq164tjR49WkpOTpYkSZIePXokvfHGG1KLFi0kLy8vqVKlSlKjRo2k6dOnF2YdCXbt2iX169dP8vX1lZydnaUaNWpI/fr1k1auXGnwWPrYs2eP1L17d6ly5cpSpUqVpA4dOkjr168vto04j+Lj44u9ry/76XH++ecfaeTIkVLjxo2lypUrSx4eHlKLFi2kuXPnSnl5eYXbie/gr7/+kpo2bSq5uLhIISEh0tdff633mOLzlyePIedxamqqNHjwYMnDw0Py9PSUnnnmGSk6OloCIK1du9agz8MwReF2EQzDMAxCQkLQrFkzbNiwQWlRivH5559j2rRpSE1NNbgGFMMI2I3FMAzDqIL//Oc/AIDGjRtDq9Vix44d+PbbbzF8+HBWdBiTYGWHYRiGUQXu7u6YO3cukpOTkZOTg9q1a+Nf//pXYUsThjEWdmMxDMMwDGPTcOo5wzAMwzA2DSs7DMMwDMPYNKzsMAzDMAxj09hlgHJBQQGuXbsGT09P2UueMwzDMAxjHiRJwr1791C9evXCQpMVwS6VnWvXrlW4QzPDMAzDMOoiLS3NoHIEdqnseHp6AqDJ8vLykm1crVaLrVu3olevXnB2dpZtXFuB56dseH7KhuendHhuyobnp2ysaX6ysrJQq1atwvt4RbFLZUe4rry8vGRXdtzd3eHl5aX6E0YJeH7KhuenbHh+Sofnpmx4fsrGGufH0BAUDlBmGIZhGMamYWWHYRiGYRibhpUdhmEYhmFsGlZ2GIZhGIaxaVjZYRiGYRjGpmFlh2EYhmEYm4aVHYZhGIZhbBpWdhiGYRiGsWlY2WEYhmEYxqZhZYdhGIZhGJuGlR2GYRiGYWwaVnYYhmEYhrFpWNlhGIaxEwoKgIwMWjKMPcHKDsMwjB2wdClQowYQFAQ0bAjs26e0RAxjOVjZYRjGbFy9Crz1FtCrFzBzJvDwodIS2Sc//ACMGEFWHQC4eBHo3h04dEhZuRjGUrCywzCMWThxAggLAxYsAGJigKlTgc6dgcxMpSWzL06eBCZMoPV33wVu3AD69gVyc4GhQ4EHD5SVj2EsASs7DMPIzr17wODBdGNt2RKYOxfw8wOOHgWGDwckSWkJ7YfJk4GcHKBfP2DWLPoeli8HatcGUlKAb79VWkKGMT+s7DAMIzuzZgFJSXRD3b6dLAtbtwIuLsCGDcBffyktoX2wdy+wZQvg5AR88w2g0dD7VaoAn31G67NmAdnZysnIMJaAlR2GYWQlIwP4+mta/+YboGpVWg8LA6ZMofWpU4H8fGXksyf+8x9ajhwJ1KtX/H8vvkjv3b0LrFhhcdEYxqKwssMwjKz89BMFIrdtCwwcWPx/kycDvr5k9fnzT2XksxeuXwdWraL1t94q+X8HB+CNN2j9hx8sJxfDKAErOwzDyEZeHvDjj7Q+YYLObSLw8AD+7/9ofcECy8pmbyxeDGi1QPv2ZFXTx8iR5OJKSADOnbOoeAxjUVjZYRhGNmJjgWvXKAh2yBD924weTVaFPXuA8+ctK5898dtvtHz11dK38fMDevak9T/+ML9MDKMUrOwwDCMbK1fScvBgCkbWR40aQFQUrS9ZYhGx7I4LFyj138kJePrpsrd97jla/v23+eViGKVgZYdhGFnIywNWr6b1Z58te9tXXqHl0qXcusAciO+hWzeKkSqL/v3J3Xj8OFnlGMYWYWWHYRhZ2LkTuHmTXCMREWVvO2AAxe9cvUrxIoy8iMDkwYPL39bPj4LJAUpTZxhbhJUdhmFkYeNGWg4cSO6TsnB1Bfr0ofU1a8wrl73xzz9AXBytP54NVxrCrbh5s3lkYhilYWWHYRhZ2LaNlr17V2x7cSNeu9Y88tgr27fTMiyMmn5WBKF4bt1K7kiGsTVY2WEYxmTS06kHk0ZDDSYrQt++ZAE6dYoCahl5EMqOyLKqCG3bAj4+VGDw6FHzyMUwSsLKDsMwJiNusK1b6yoml4ePD/DEE7TOsSLyIEnUdBUAevSo+H6OjtSkFaAWEwxja7CyYyPk51Np+MaNKfCze3fg8GGlpWLsBeHCMsSaAACRkcX3Z0wjKQlIS6O0/y5dDNtXKJ6s7DC2CCs7NkBeHjBsGDB+PFVBzc6m4m6dOpEPnmHMzc6dtDTEmgDolJ3YWI4VkYMdO+iS3qkTULmyYfsK5WjPHu5Kz9gerOzYAFOmUPVTZ2dqvJiQQLUztFrgmWeAlBSlJWRsmatX6RxzcAA6dDBs37AwqgOTlQXEx5tHPnti+3bqz2GohQ0A2rShLLkbNziGirE9WNmxcmJjga++ovXffgPefpviJv7+m57u7t/X3wSQYeTiwAFatmgBeHoatq+joy6gWcSaMMYhScCePaTsVDRIvCiurtRHCyDrDsPYEqzsWDH5+dRsEQBee6141VoXF+C//yVrT3Q0X7wY87F/Py07dTJuf2GFEK4wxjiuXfPArVsauLmRlcYYxHd46JB8cjGMGlCVsjNz5ky0bdsWnp6eCAgIwKBBg3DusVa8ERER0Gg0xV7PP/+8QhIry+LFVOLdxwf4/POS/2/UCBg1itY//tiysjH2g6nKjgiMPXiQXK+McZw9S30h2rYtvS9ZeYSH05KTGxhbQ1XKzq5duzB27FgcPHgQMTExyMvLQ69evZCdnV1su1dffRXp6emFrx9//FEhiZVDqwU++YTWP/yw9HTfKVMolmLbNuDsWcvJx9gHjx4BR47QurHKTuPGFLfz8KFuLMZwzpwhZcfY7wHQWYROnABycmQQimFUgqqUnc2bN2PkyJFo2rQpWrZsicWLFyM1NRUJjzXPcXd3R2BgYOGrSpUqCkmsHCtXAqmpQEAA8MYbpW8XHAz060frdqgTMmYmMZEU74AAICTEuDEcHHSZQJz2bDzCsiPq5RhDcDA9OGm1pPAwjK1QTgcbZcnMzAQA+D7Wtve3337DsmXLUK1aNfTp0wfTp0+HZxmRkTk5Ocgp8piSlZUFANBqtdDKaDcXY8k5pj4kCZg1ywmABm+9lQ9Hx4Iyzf+jRmmwfr0TVqyQMHNmHhwdzSpeqVhqfqwVa5yf+HgHAI5o3boAeXn5Ro/TsaMD1q1zxK5dBXj7bf3jWOP8WIp//tHiyhW6BoaHa01yB7Zp44itWx0QF5ePli1toyW9Ws+dnBwKDFcatc6PPoyVUbXKjiRJmDhxIrp06YJmzZoVvj9s2DDUqVMHgYGBOHnyJKZMmYJjx44hpoxUjpkzZ+Kjjz4q8f7WrVvh7u4uu+xlySIHZ8744vjxJ+Dikoe6dbciOrrsLz8vT4PKlaPwzz8umDMnDs2a3TKrfOVh7vmxdqxpftatawUgGJ6eFxAdbbyfVKPxAfAkdu7UYuPGzdBoSt/WmubHUhw+XA1AB1Svfh+HDm03aawqVRoDaIQ1a66gZs1EWeRTC2o4d3JzHfDXXw2xdWsw7t51Q1DQfQwefAE9e6aWed5bAjXMT3k8ePDAqP00kqTO8lFjx47Fxo0bsXfvXtSsWbPU7RISEhAeHo6EhAS0bt1a7zb6LDu1atXCzZs34eXlJZvMWq0WMTExiIyMhLOzs2zjPs6YMY5YutQBI0YU4OefK/Y0LfZ58818fPONMk9rlpofa8Ua56ddOyckJmrw5595GDTI+EtJbi7g5+eER480OHZMiyZNSm5jjfNjKf79b+DLL53x0kt5WLTItEv6mjUaDB3qhBYtJBw+bBuVHtVy7ty8CfTr54SjR0tqNa+/no9vvy1QROFRy/xUhKysLPj5+SEzM9Og+7cqLTvjx4/HunXrsHv37jIVHQBo3bo1nJ2dceHChVKVHVdXV7jqsRU6Ozub5Ys117gAFV/76y9af/VVBzg7Vyzs6rnngKVLgdWrHTF/vqNirizAvPNjC1jL/OTkUBNPgJQeU0R2dqYaL7t2AXFxzmjRoqxtrWN+LElCAj3AdOoEk+dGFIY8fVqDvDxnVKpkqnTqQclz5+FDYMAAarTq5wd89x3w5JN0XX7/feDHHx3RqJEj3nlHEfEAWMdvy1j5VBWgLEkSxo0bh1WrVmHHjh2oU6dOufucOnUKWq0WQUFBFpBQeX7/HXjwgDJYDMm66NkT8PICMjJsv6vx/fvAqlV0MYmNBQpsI+xAdZw6RYGsvr5A7dqmjyfO57g408eyJwoKgIQEMge0aWO6ob5mTQo4z8uj0haMPEycSNXt/fyo7tnQoUBgIPDee1T5HqDs2ceqrTAyoSplZ+zYsVi2bBmWL18OT09PZGRkICMjAw8fPgQAXLx4ER9//DEOHz6M5ORkREdH49lnn0VYWBg6m5KCYEUsWkTLMWNgkLnTxUVXVdWW+2VFRwP161ObjHHj6DO3akVZQ4y8iDTx1q0NOxdLo107WrKyYxgXLwKZmRq4uOSjaVPTx9NoqI0HABw7Zvp4DLBhA/DDD7T+22/0sFqUceOA3r3JWjpliuXlswdUpewsWLAAmZmZiIiIQFBQUOHrjz/+AAC4uLhg+/bt6N27Nxo1aoS3334bvXr1wrZt2+CopF/GQly6RJVNHRyA4cMN379XL1raqrKzbh3w1FPAP/+QpWHAALJmnThBqc07digtoW1RVNmRA9Gq4NQp4N49eca0B0QBwDp1Mk1yJRZFuBHZsmM6Dx9Sk2YAmDRJdx0uikYDfP01XdtXryYLECMvqorZKS9WulatWti1a5eFpFEfK1fSsls3oFo1w/cXP7L9++lmYmgfIzVz6RLw0kvUQmPYMLKAiaaGL7wAbN8ODBpEVgN9wa+M4cit7AQFAbVqAWlpdLGPiJBnXFtHKDv16t0FIM+PunlzWnKtHdP58ksgOZncg3qSggsJDQWefx5YvhyYOxdYtsxiItoFqrLsMGXz55+0HDrUuP3r1QPq1qU4C1vrQzRuHAVvd+pEbTREPLq/P7BxIwUC3rtHlh+2GphOfr7uqV+4PORAuLK4N1PFEd3i69e/K9uYRS076szXtQ7u3gXmzKH1r74CKlcue/uJE2n5xx9koWbkg5UdKyEpiZ6kHR2Bp582fhzRdNGWDGRbtwKbNlFGz5IlKGHKd3Ulq1itWjSP772niJg2xaVLZJ6vVImUaLkQriyO26kY+fk6C1uDBvIpO40b07Xm7l3g6lXZhrU7vv+eHsJCQ4s3ai6NNm2ot1leHiWjMPLByo6VIFxY3buTtcJYRNNFWyrL/8UXtHzrLaBBA/3bBAQAv/xC6z/8wPE7pnLyJC1DQyFrGQO27BjGuXNAdjZQubKE6tXlM1m6uuqCaDluxzgePADmzaN10aOwIrz0Ei1//dU8ctkrrOxYCaa6sASiB1FCAv0YrZ2EBEovd3Ki4L+y6NYNePNNWh83jjtsm4JQdooUN5eFNm3opnDlCnDtmrxj2yLChRUWJsleO4vjdkzjv/+lmMGQEIrFqSjPP0/Xs4QE4MwZs4lnd7CyYwWcP0+p06a6sABq9FejBplJbeHpWTw5PfccuanK4/PPqc7FmTPAggXmlc2WMZey4+GBwvRpWzg/zY0ITpajvs7jcEaW8Wi1FJgMAO++S8pLRfH3B6KiaF085DKmw8qOFSBcWD17UkdiU9BobKfD9L17wN9/07pI7SwPb2/gs89offp0Kt/OGI65lB1AF7fDyk75CGWndWv5lR227BjP8uVAaiplzb7yiuH7i4faDRvklcueYWXHCpDLhSUQcTt79sgznlKsXk1Bsg0b6mI9KsLo0UDLlhR8+fHH5pPPVsnJIWsjYB5lh4sLVgytVlc96i++AAAgAElEQVQsMzzcfMrOmTPUu4ypGAUFujjCd96BUe02+val5eHDQHq6fLLZM6zsqJxz58iM7OREdWLkoGNHWsbHW3da6W+/0XLYMMMq+Do6UgEvgFxZFy7IL5stc/48uUGrVCGXqNwIy058PLf6KItTp4BHj+h7kDMjTlC7NhXlzMvj34ghrFkDnD1L34uIETSUwECd0h8dLZ9s9gwrOypHuLAiI6kHkRw0a0btI+7cAS5flmdMS3PjBrBtG60PG2b4/t27A/360YX8/ffllc3WKerCMkeH5tBQwN2d3JRnz8o/vq0gquy2bl3xTB9D0Gh0GVkcKFsxJAmYOZPWx40jZdFY+venJbuy5IGVHZUjtwsLIEWnZUtaF9kc1kZ0ND31h4UZ/1Q7ezbdJFatAvbtk1c+W8ac8ToAWTHbtKF1az0/LYGorxMebr5jiGrjrOxUjO3byfVUqRLwf/9n2lh9+tAyNpbqKTGmwcqOijlzhoIDnZ2BgQPlHbttW1qKAEdrY/16Wg4YYPwYoaHUUBUAJk+2bpeeJTG3sgPozk9WdkpH7nYd+ggNpeXp0+Y7hi0hrDpjxphWDw2gB7kqVYDMTODoUdNls3dY2VExRV1YPj7yji2eBq1R2cnNBbZsoXVh6jWWjz6iEu4HDwJ//WW6bPaAJZUdzsjST16eriO5OZUdtuxUnLg4Klbq5EQPT6bi6Ah07UrrXATVdFjZUTHmcGEJhLKTkGB9QaC7dwP371Nap3B3GEtgoK59xPvvU6YRUzrZ2dQqAtDVwzEHIjjz2DHOBNLH2bOUiejhAdSvb77jCGXn3Dl2pZSHsOoMH07B3XLQrRstY2PlGc+eYWVHpZw8SdkWLi7yu7AAuohVqkRBoNaWabF1Ky379JEnMHPSJOq4fekSFxosD/GEHxBgupm+LOrUoZpSublc1E4fwoUVFmae4GRBnTrUOuLRIyAlxXzHsXZOnQLWrqWg7n/9S75xhbKzZw9XfDcVVnZUyh9/0LJ3byqEJzdOTjrzt7XFRYiO7T16yDNe5crAJ5/Q+scfU5Yaox+RHSViOcyFRsOurLKwRLwOQK6URo1onV1ZpSMKlT79tC6DTQ6aN6cs3OxsjtsxFVZ2VIgk6ZQdQ3qqGIo1xu1kZupSbiMi5Bt35EiKQblzh1pKMPoRyo64AZoTDlIuHUspO4DOlcVByvo5e1bXoXzaNHnHdnDQ1UU7eFDese0NVnZUSGIiuZbc3EzLNiqPsDBaikBHa2DvXooxql8fqFlTvnEdHXW9bL791nrrD5kboezI+fRaGmzZ0U9Bge4p35LKDlt29PPJJ/SAOnCg7poqJx060PLAAfnHNhcrV1LLjIwMpSXRwcqOChFWnX79AE9P8x2naKM/a0m7Fi4sOa06gt69KfMtNxf497/lH98WUELZOXOGYssYIimJAvTd3CzzPbCyUzpnzwIrVtD6hx+a5xjCsmNNys6sWVTsdf9+pSXRwcqOyijqwnruOfMeKzSULBq3bwNXr5r3WHJhTmVHoyHrjkZDF7DNm+U/hjWTn68LZrfETTYwkDrZS5LObcPo5qJlS8O6aRuLiM86c8Z6Hoosxccf05w89ZT5rGzt2tE1KSXFOvpk5ebqmseaw9JlLKzsqIz4eCA5mYJm+/Uz77FcXXU3LWvIeMnM1F3ozaHsAHQDGTeO1l95hdpSMERyMl3I3NzkS60tD3ZllcSS8ToA0KABxY5kZqrLLaE0Bw/qrDrTp5vvOJ6euppW1hC3c/o0XSe8vYGQEKWl0cHKjsoQP54BA6g/kLkRbSOsIW5n/35dvI45GlAKZs2ip9mMDGDUKOurQ2QuhAurYUPzpjsXRdTb4SBlHZZWdlxddS1Z2JVFFBTo2kGMHGn+78KaXFnCqtOypXl65xkLKzsqQqst3snbEhSN21E74qmmUyfzHqdSJfoeXFyoCZ+cdTOsmXPnaGkJF5aAM7KKU9SlZ2pBTUPgjKziLF1K1kYPD8tkb1qTsmOJCuvGwMqOioiOJrdJtWpAVJRljmlNlh2h7LRvb/5jtWoFLF5M6199RSml9h6vYMm0c4G4oScns0sRoLiNO3eoX545K1g/Dgcp67h2DXjnHVqfNo0KkpobkZGVkECtQtTMqVO0tOT5WRFY2VER4ub60kuWCTwEdJadc+eoSqpaKSjQxW2IH765efFF6owOUNGw554Dbt0qffucHCrrPnUqPYkFBNCTX0gIjWXtJd8tmYklqFJFd7zDh1VkE1cIYdVp3pwsj5aiaJCyPZOfD4weDdy9S3XKJk60zHEbNqRrycOHOgurWlGrsmOhWypTHtevAxs30vrIkZY7blAQ4OcH3LxJJ6klTeOGcP48XWDc3OhCbynefZcCBMeNo9oRW7YAI0ZQGXd/fwraPHmSGvXt3Qs8eFByjOxseiJfsQIYMgRYuJBu4taGEsoOQK6ss2dJ2VHr+WkpLB2vIxCWHXEO2CsffEBZmm5uwC+/kIXNEjg4UGbTnj1k3VGbIiG4f5+ssID6ZGTLjkpYsoTMk23bWvYk0WisI24nLo6W4eGWu8AI3niDXGjNmwNZWcD8+cDgwcATT1DX9fffp35dDx6QC3LYMPo+ExOpJsrOncCbb5K17q+/gC5dSLm0Jm7f1rmRGja07LFF3A5bdnTVwy2t7AjXZXo6Kfj2yLff6pp9Llxo/pYpjyO+czWXYRCWv2rVqLedmmDLjgrIywO++47W33zT8sdv1owsE8L8qEYsGa+jj/BwUl62bAH+/psuOPfuUYmA+vWBJ58ka0+zZiUzEOrVA7p2pcyup54iS1D//tS93ZKuCFMQpvOaNcmcbklERtbhwxq89pplj60mJEk5ZcfLC6heneJVzp5V7neoBFotFQz84gv6+9//tlwCSVGsQdlRqwsLYGVHFaxbB6SmkjvphRcsf3xxYqo500IoO5aK19GHgwN1Wu/Tx7j9w8OB7duBzp3JUlX0Aqp2lHJhAbrieTduaHDjRiXLC6ASrl0j65qjo84aa0kaN7Z+ZSczk2Lnzp8nK22VKuSODg6mV+3alI0J0P+jo8maI6zeH3wAfPSRMrILF+7RoxTDaKnyD4bAyg5TJt9+S8vXXiNfsKUR5li1WnYePNDVbrDWi6ygSRNg0SJyg82eTRaeLl2Ulqp8lFR23Nzo5n7kCHDhgo/lBVAJ4om+SRPdDdmSNG5MFmBrjNu5dQv46afmePZZJ2i1ZW/r708W1/R0XY0tb2/gp5+AZ581v6yl0agRfe/375N73NLu5IrAyg5TKgkJwK5d9LSmhAsL0Ck7qankmjFnPy5jOHWKsiD8/eVt/qkUTz9N1ZkXL6YU1rg4dT6lFUW4sSyZdl6Udu2EsuOtjAAqQKngZIG1BiknJgL9+zvh6tW6AOhzdOhAVp3MTOCffyiBICWFFImiJQ7q1SOX1dtvKx+D4uREVs6DB+lcUKOyo9YaOwArO4ojTKIvvKDcjdzXl/oQZWRQgJmIkVALwoTcooW6KnKawhdfULDy4cOUpaVEDIAhKGnZAShI+YcfgKQkVnaUUnbEd29Nyk5CArWWuX9fg5o17+G//62EyEj9tz1JohpGKSn0cFWjhmVq6BhC69ak7CQkAM8/r7Q0xcnKAtLSaF2Nlh2VP0/aNgkJwPr19FQ/bZqysgjrjhrjdkTBQ1EA0RYICKAsLoAU3vx8ZeUpC60WuHiR1pVUdgAgKclH1XNlTkRwslLNFcV3n5SEcl1BauDqVUoIuH8f6Nq1AF98sRsREaVXBtVo6MEvLIzi69Sm6ADqDlIW947q1cntpzZY2VEISQImT6b1F19Uzj0gEJq4GuN2ilp2bIm336aLwoULpPSqlUuXKGOwcmXz9iQri9BQoHJlCY8eOam+qJo5uHaNbt4ODspZdmrUoHMgL0+n/KoVSaJ6Zdeu0bnz99/58PBQeenhCiAe+I4fV19FdzXH6wCs7CjGypVUf8XNDfjkE6WlUa9lR5JsV9nx8NDFaX35pbKylEXRNhFKuREdHYGwMLq622O9HdEbrGlTy6f+CzQa63FlLVkCbNtG19c1ayh13hYIDSWF9+ZNijVSE6zsMCW4eROYMIHW33+f2gkojVrTz69cIT+6o6Pli3hZgvHjKfNj/35KKVUjSsfrCNq2tV9lR7RKEe48pbAGZSczU2c1//hjoEEDZeWRE3d33ecRGapqgZUdphiSBIwZQ2mNjRsD772ntESEUCSSk8nHrRaEVadxY8DVVVlZzEFQEDBoEK0vWaLOn6NalJ02bexX2RGWHaWTB6whI2vOHKr43aSJrmGnLSHa5ait4j0rOwYyc+ZMtG3bFp6enggICMCgQYNw7jEnfU5ODsaPHw8/Pz9UrlwZTz31FK5cuaKQxIbxwQfA2rX0NL98uTL1MvRRtSqV+AbUdSGzVRdWUUaPpuWKFQ7IyVHdT1LxtHNBeDgpO8ePa1TdtFZuCgrUo+yo3bJz8yYwdy6tf/KJ5RoqWxI1tve5e5diygD1WuBVd2XdtWsXxo4di4MHDyImJgZ5eXno1asXsrOzC7eZMGECVq9ejd9//x179+7F/fv30b9/f+SrOE2joACYMYO6ZwPAf/6jXFZFaaixuKAtZmI9To8eVLn17l0N4uLUlQIiSeqx7NSpA3h7P0Jurqbw5m8PJCXpmuAqXb9EnANnzqgvQBYAvv+eLNNhYVS40xYRlh01ubHEPaNWLfU2OVadsrN582aMHDkSTZs2RcuWLbF48WKkpqYi4X95l5mZmVi0aBHmzJmDnj17IiwsDMuWLcOJEyewbds2haXXT1ISpUCKmjqffgq8+qqyMulDjXE79mDZcXQEXnqJ1vftUyjdqRRu3KCYKY1G+dgHjQYIDb0FgLo/2wsiXqd1a8s3wX2c+vUpQDYri+pyqYmcHFJ2AODdd22nJtfjiGvh6dOUGacG1O7CAlSo7DxO5v9a7Pr6+gIAEhISoNVq0atXr8JtqlevjmbNmmH//v2KyCg4dgw4etQfa9ZosGwZWXF69SLz/8aNdKFauJAayakRtVl2Hj3SuVBsWdkBdGXojxwJwL17yspSFGHVCQ5Wh8s1NPQ2APtSdoQVS+ngZIDi5upSIWLVubL+/JMylKpXB4YMUVoa8xESQiUAcnKobIUasAZlR9UeTUmSMHHiRHTp0gXN/me/zcjIgIuLC3x8ivfIqVatGjJKedTIyclBTk5O4d9ZWVkAAK1WC62M1bHee88BsbGd9P4vKqoAM2fmo2lT9RbkatRIA8AJp09L0Grlf2QQc13ROT92DCgocEbVqhL8/fNUO29y0KQJUL++I5KSHLFuXR6GDVPHhz19ms6JRo0KoNUq6ybWarWFlp39+yU8epQHR0dFRbIIcXGOABzQunUetFr9viNDf1um0LChI5KSHHDqVD66dCkw+/EqyoIFNE9vvJEPoKDY9cKS82MJmjVzRFycA44cyUP9+qb7E02dn5Mnae4bNy79HJULY2VUtbIzbtw4HD9+HHv37i13W0mSoCnFbjlz5kx8pKdV7datW+Hu7m6ynAJX1xaoU8cHrq75cHXNh7d3DurUyUT79ukICnpQ2H9FrWRluQDog8uXNVi1agvc3Mxzc4uJianQdtu31wYQhurVb2LTJmWtdpagZcsmSEpqiB9/vAUfH3UEpWza1BRAfbi4XEZ09EmlxUFwMODurkVWljMWLNiHunUzlRbJrGi1Ghw50g8A8ODBTkRHZ5e5fUV/W6bg4hIKoAG2bElGrVrKnxMAkJ5eGQcO9ISDg4SaNWMQHZ2jdztLzI8lqFKlJYAQrF17ER4e8pnYjJ2fo0d7A3DDnTv7EB19VzZ59PHgwQOj9lOtsjN+/HisW7cOu3fvRs0iTaMCAwORm5uLO3fuFLPuXL9+HZ066beqTJkyBRMnTiz8OysrC7Vq1UKvXr3gJWO1qchILWJiYhAZGQnnQud6IACF01gMYNIkCTduaBAS0lv2Sq1arb75KZ0dO8jL2q2bL/r27SuvMCrE3z8Pf/8NJCYG4ckn+ypWPK4oP/5IppOoqBD07VtbUVnE+dO5swNiYgBJegJ9+6rHsmAODh/WQKt1hI+PhFGjupYah2Lob8sUrl/XYM0aICenjuLnhGDGDLpWREZKGD68R4n/W3J+LEFysgO2bgUePGiAvn3rmjyeKfNz+zZw5w7tM2ZMJ7Nft4RnxlBUp+xIkoTx48dj9erV2LlzJ+rUqVPs/23atIGzszNiYmIwdOhQAEB6ejpOnjyJ2bNn6x3T1dUVrnqKtDg7O5vlxDfXuJYgNJS6sF+44Iz27c1zjIrOj8g2aNXKEc7Otu+vCA8HAgPvIyPDAzt2OOOZZ5SWSBczFRqqnu/giSeAmBhg/35HTJyoDpnMxcGDtOzcWQMXl/J/M5a49oi4jLNnHeDsrHzYZ0EBlfEAgBEjypbJmq/NRRGZvCdPyvsdGDM/58/TMjgY8PEx/9wa+/0pf6Y+xtixY7Fs2TIsX74cnp6eyMjIQEZGBh4+fAgAqFKlCkaPHo1JkyZh+/btOHr0KIYPH47mzZujZ8+eCktv/YiiYUpnZNlym4jS0GiA8HCqAb9pk8LCgALEk5NpXem086J06UIxAXv2qDP9WU727aNlly7KylEUUW8pLU0dBUj37KHz1MtLV6DT1hHp5ykpVDFaSawhOBlQobKzYMECZGZmIiIiAkFBQYWvP/74o3CbuXPnYtCgQRg6dCg6d+4Md3d3rF+/Ho72EK1oZkRG1pkzysqRng7cukVprmr/EclJmzY6ZUfpG3lSEj01V6miKzipBsLDJbi4ANevqycbxRxIEiDCFTt3VlaWolStCvj707p4qlcScWsYMkQdGYOWwMcHENEdJxUOmxLHV7oGVHmoTtmRJEnva+TIkYXbuLm5Yf78+bh16xYePHiA9evXo1atWsoJbUOoxbIjrDqNGlExNXuhadNbcHeXcO2a8hVSixYTVFPNEjc3oEMHWt++XVlZzMnFi5RK7eJCLk41oZZKygUF1OgT0JVvsBfUUkmZLTuMVSIsOxcvUh0HpRCVk+3FhSVwcSlAt25k0omOVlaWot3O1YYos7V1q7JymBPhwgoPV5/Cr5YeWXFxZAX28gK6d1dWFksjXFlKW3ZY2WGskqAgunDk5yvrIhBPK7bcJqI0oqJI2VE6bkcEJ6spXkfQuzctt29Xb90qUxEuLDXF6wiKto1QklWraNm/P1nA7AnhNlJS2blxg14ajU4BVius7DDFoJL8tK7khczegpOLEhVF6dT79ysbfKiWnlj6CAuj2JF79+jp3hZRY7yOQA1uLEkCVq+m9aefVk4OpRDKzokTysX3CatOnTqAjCXrzAIrO0wJlI7bycnRXUTtUdkJDgYaNiTr2u7dysigpgag+nB0BCIjaX3LFmVlMQfp6TT/Go26lZ3z5+k8VYKTJ8nd7uYGREUpI4OSNG5Mv4M7d+h8UQJrcWEBrOwwelDasnPmDDW4K5pxYG+I+AOlAnCvXaO0YkdHoF49ZWQoD+HKssW4HdHTuHVrsmCpjdq1ScnIzdWVJ7A0Qsnt3h2qKMBpadzcdM15lXJlsbLDWDVKW3aKurDUlAVkSYSys2OHMscXVp26ddUbCyEsO/HxFDdgSwhlR62lwxwdyfoIKOfKEnMkzgN7ROm4HVZ2GKtGWHbOnycLi6Wx10ysonTrRssTJ6iejKVRc3CyoEYNsnxIErBundLSyIckqV/ZAZTNyHr0SOfiVfMcmRuRkSWqzVsSSdIpWazsMFZJcDAV58rJAS5ftvzx7TkTS+Dnp/v8sbGWP76a43WKMngwLUWgqi1w9iy5Ed3c1JmJJVAyI+vAAeDhQyAw0DputOZCScvOP/9QXywHB/VfJwBWdhg9FD15lXBl2XMmVlGUdGWpucZOUYSyExMDGNkfUHWIxtNduqivvk5RlMzIKmr5sldXN6BTdk6dogKLlkS4sOrVs47K1azsMHoRJmpLP7VlZJDbxt7aROhDDcqO2p/YmjQhGXNzgQ0blJZGHoSyo3b3jFqUHXumXj1SiB8+BC5dsuyxrSleB2BlhykFEbdjacuOsOo0aKD+ug3m5sknKRA0KQlITbXccbOzqckjoH5lBwCGDqXlr78qK4ccZGfrbuRqT6cWAcq3bgE3b1ruuHfuAIcP07q9KzuOjrprtaVdWazsMDaBUpYddmHp8PLS9USypHVHNHf081Nn2vPjvPwyLbduBa5eVVYWU9m6lYJvQ0LU/xtwd6f4PsCy1p3YWHLZNGlCQer2jlJxO6zsMDZB0Vo7lvQFs7JTHJGVtWuX5Y5pLfE6gnr1yApWUCC/defBA2DnTuDPP4G1a81vYVu7lpYDB1pHLIoSD0XswiqOEhlZksTKDmMj1KsHODmRWf3KFcsdV6Sd23MmVlEiImhpSWVHuC6twYUlGDmSlj/9JE9F31OngJdeosKW3boBzz0HDBpElowOHagnk9wl+vPydHFHgwbJO7a5UCJuh5Wd4ihh2UlPB+7eJTeatTwUsbLD6MXZWeeTt1TcTm6u7gmRLTtE5850Qbl8GUhJscwxxRObuIhaA889Ry63y5d1zSGNITcXeO89UraXLaO/a9YEunal9xwdqRfXM88AAwbIWwNp2zaKf6laVd0p50WxtLKTkkINih0d6TthdL/T8+epXIglEIpV/fqAq6tljmkqrOwwpWJpE/W5c9TBukoVKkfPUBl8EbdjKeuONRUKE7i7A2PH0vrs2cZZXf75hzLgvvySrEMDBwKHDpHraudOIDGRYoL+/W+qKr1xI9C2rc71aipLl9LyhRfIqmoNWFrZEVad9u3pOsFQ3JK3N1kGRTFQc2OND0Ss7DClYumMrKKVk60hXsFSCFfWzp3mP9ajR9RcEbCuCxkAjBtHabiHDwNr1hi2b0ICKZX79tFNdM0aerVtW/xcrFYN+PRT4OhRyhhMTaXvR2QHGUtWlq4wogi4tgaEsnP5Mp075oZdWCXRaCzvyrK2eB2AlR2mDCxt2eHgZP1YUtk5e5YCfX18qDqtNeHvD0ycSOsTJ1LtkYqwYgW5ja5cofiDQ4fIqlMWoaHkzurYkVKhe/akHl3G8scfpCw0aaKz5FkDAQF0rkiS+a8TBQWs7JQGKzvlw8oOUypFLTtyB2Pqg5Ud/VgybkdcLJs1s07r2pQpZNZPTgZmzCh727w8is958UVSNPr1IwVGxKqVh48Pdd5+4gkgM5O6sBvj0pIkYN48Wh892rrmXaPR/V7NnQ10/DjV86lcmdxYjA5LZmRJks7az8oOYxM0bEgXszt3LNOMkjOx9OPpabm4HWt8YiuKhwcwfz6tz54N/P67/u3S04FevSg+ByAlae1aw+NAPD2B6GidhScy0vC4ic2b6ebh6QmMGWPYvmpAKDtyxS6VhrDqRERQzBSjw5KWnStXyO3q5ESuXGuBlR2mVCpVAurWpXVzx+1cv06tIjQa673RmhNLubKsXdkBgKefBiZMoPXhw4HPP9e5tDIzga+/JndRbCwpRytX0jaOjsYdz8ODFJ5Wreg87tmTLEsVQZKAWbNo/dVXrTPo1tLKDruwSiJ+r8nJwL175j2WuEY0bGhdSicrO0yZWCpuR5hf69WjmwdTHEvV27HGLAt9zJlDLqH8fMqe8veneBx/f2DSJFJ6wsMpPmfIENOP5+1N1Y+bNKEn3x49qHN5eWzYQN+pq6tOQbM2hCVWWGbNwaNHwO7dtM7KTkmqVgWCgmhd/IbNhbU+ELGyw5SJpTKy2IVVNiJu59Il81Xxzc7WNRO0tgvZ4zg4AD//DCxZQoUAs7OpDolWS+f0Tz8BBw/qlHk58Pcn60PdujSPPXsCN26Uvv29e8D48bQ+YQJQq5Z8sliSpk3JInv9OqXvm4MDB8g6Fxho/eemuRBxO+Z2ZVljaQqAlR2mHCxl2eHg5LLx9ATatKF1c1l3xHfs708va0ejAUaMIMXj1Cmat4sX6WL96qvGu63Konp1YPt2KkR45gzFBelTAAoKKD4nJYWUsalT5ZfFUri762I3zOXKKurCsqYAbktiqbgdtuwwNomlLDus7JSPueN2bMWF9TgODnQeP/kkWV3MfbMMCSGFp1o1KkTYqhXw99+6HnNZWaSE/fknVSr/9Vdq+mrNmDtuh+N1ykf8bs2ZkVVQoLsXWNt1gpUdpkxE0bCMDMo2MQdare5Gy26s0jG3smOt5mk10rAhWZKaNqXfzpAhFI/WsydZcpYtI8vSkiWUum7tmFPZuXNHV7SxRw/5x7cVLOHGunyZXMKurtQqwppgZYcpEy8vMskD5nNlnT9PPYg8PelGwOjH3HE7rOzIiyhQOG0andvJyWTxuXuXlKGYGKrxYwuIhxRzKDuxsWRRaNxYdy1iStKkiS52ylylQoTVKDTUelqaCFjZYcrF3HE7iYm0bNGCXA6Mfry8zBu3c/QoLVu1kn9se8XdHfjkE+qptWkT9b/at48smd26KS2dfAjLzunTZKmVE+HCioyUd1xbo3JlXakQc1l3xLjCimRN8K2FKRdzx+2ITCy+yZaPuVLQ09MpkNbBgeOmzIGnJxAVBbz0EtCpk/U9FZdHcDB9xtxcstTKCcfrVBxzu7KEZcfa4nUAVnaYCiAsO+ZSdoRlh5Wd8jFX3I6w6jRqRNYIhjGEom0jxO9ZDlJSgAsXyH3btat849oq5s7IEsoOW3YYm0RYdszhxpIkVnYMQcTtXLwIpKXJN65QdsLC5BuTsS9at6alqR3giyKsOu3aWWd1aUtjzoysnByd1Y6VHcYmEcpOSgqlzcpJejoVXnN05MDYimCuuB1WdhhTadeOlocOyTcmu7AMo6gbS+7mzWfPUkVyHx+qJ2VtsLLDlEvVqtRJGpA/20JYdRo1ol5cTPkIc76crixWdhhTaduWlkePyhOkXFBA2WsABydXlAYNqFmmIAoAACAASURBVHbT/fvyZ2wWjdexxsKOrOwwFUK4mOTuf8PByYYjd9xOZqauTQR/D4yxNGhArqaHD+Xpz3T0KFl9PTyA9u1NH88ecHbW1UaT25VlzfE6ACs7TAUxV7M/jtcxnC5dKGvq4kVqOmkq4juoVYuseAxjDA4OOutOfLzp423ZQsvu3a2ru7bSmCsji5Udxi4Qyo6cmRZFx2Nlp+LIHbfDLixGLoSyI0fcjlB2oqJMH8ueMFdGljXX2AFY2WEqiFBGTp6kIDU5uH+f0koBbhNhKHK6ssRTuFCgGMZY5ApSzsoC9u+n9d69TRvL3hDKiJxW+Lt3ddmf1ppIojplZ/fu3RgwYACqV68OjUaDNWvWFPv/yJEjodFoir06dOigkLT2Q716VH/l4UOdgmIqJ05QxkBQEBAQIM+Y9oKcys7Bg7Ts2NH0sRj7Rlh2Tp2iHkrGsmMHkJdH/ZdEVWCmYogSAKdPAw8eyDOmsMCHhADe3vKMaWlUp+xkZ2ejZcuW+M9//lPqNlFRUUhPTy98RUdHW1BC+8TRUf6iYWIctuoYjojbSUoyLW7n+nUKTtZodE/lDGMsNWrQKz/ftLgd4cJiq47hBAUB1apRNptc2bNHjtBSKFLWiOqUnT59+uDTTz/F4MGDS93G1dUVgYGBhS9fX18LSmi/yB2kzO4T45ErbicujpZNmnDRNkYeRBd3Y89LSQI2b6Z1jtcxHI1Gd21ISJBnTFtQdqyyQ8vOnTsREBAAb29vdO3aFZ999hkCyvCD5OTkICcnp/DvrP9VxtNqtdDK2LVOjCXnmGqiWTMHAI5ITCyAVmt44M7j83PokBMADcLC8qDVylwBywox9Px54gkHxMc7YseOAgwdalwg1b599J22a2fcd2pJbP33ZQpqmpvOnR3w+++O2LXLuHPq3DkgOdkZzs4SOnfOk6Vmj5rmxxK0bOmA6GhHxMdX7Dsob34SEuha3aKF8tdqY79Dq1N2+vTpg2effRbBwcG4fPkyPvjgA3Tv3h0JCQlwdXXVu8/MmTPx0UcflXh/69atcDdDI6CYmBjZx1QD2dk+AJ5EXFwuoqO3GD1OTEwMHj1yxJkz/QAAWVnbEB2dU85e9kNFzx9392oAOmDTpgeIjt5u1LGiozsB8Ie7+3FER6cYNYalsdXflxyoY248AXTHvn0FWLt2E5ydDbs5rlpVH0BThIbewO7dB2SVTB3zY34kKRBAe+zadQ/R0TsrvJ+++Xn40BHnztG1+vZt5a/VD4wMRNJIktxFpeVDo9Fg9erVGDRoUKnbpKenIzg4GL///nupri99lp1atWrh5s2b8PLykk1erVaLmJgYREZGwtnZWbZx1cL9+0DVqk6QJA2uXNEaHFRcdH7i4lzQvbsTatSQcPlynnkEtjIMPX8yM4Fq1ZxQUKDB5cvawirXFSU3FwgIcMKDBxocOaJVfSdjW/99mYKa5kaSgJo1nXDjhgY7d+ahUyfDbjFdujji0CEHzJ+fj9dfL5BFJjXNjyVISwPq1XOGk5OE27fz4OZW9vZlzc/+/RpERDihenUJycnKX6uzsrLg5+eHzMxMg+7fVmfZeZygoCAEBwfjQhkpQq6urnqtPs7OzmY58c01rtL4+FB2xIULwMmTzkYHDzo7O+PIETr12rbV2ORcmUJFzx8/P/KhHz4M7N3rjOHDDTtOXBxla/j7A61aOVtNCXhb/X3JgVrm5skngb//BvbudTKoW/nVq7q09cGDHeHs7CirXGqZH3NTpw5dH27e1ODMGecKJx/omx8R5Ny6tTqu1cbKoLoAZUO5desW0tLSEBQUpLQodoH40YjAVmMRwckiVZUxDtEzaMMGw/eNjaVlRIR19rph1Ito3Llpk2H7rV1Ly44drbPZpFooGqQsgouNxRaCkwEVKjv3799HYmIiEv+Xl3z58mUkJiYiNTUV9+/fx+TJk3HgwAEkJydj586dGDBgAPz8/PD0008rLLl9IHrUsLKjDoSHNzoayDHQlS6UnW7d5JWJYfr2peWBA8CtWxXfb/VqWvLl3HSEsmNq6w6h7Fh7hXWTlB2tVou0tDScO3cOt2/flkWgw4cPIywsDGH/m9mJEyciLCwMH374IRwdHXHixAkMHDgQDRs2xIgRI9CwYUMcOHAAnp6eshyfKZuiyo6x0V63bukaT4aHyyOXvRIeTk/A9+5RIbaK8uiRrkItKzuM3NSuTXW5Cgp0aeTlcf26TgFnZcd0RK1d8Ts3huxsXZsIay8RYnDMzv379/Hbb79hxYoVOHToULHA35o1a6JXr1547bXX0NbIR/aIiAiUFTO9ZYvxWUCM6bRsSU35bt2iRpT16xs+Rnw8+Uzq16c4IMZ4HBzIuvP99/RU3KdPxfbbs4csQYGBQKNG5pWRsU/69aN4j40bgWHDyt/+t9+oGGH79sZdV5jiiIroZ8/S9dqYJr/x8aSw1qhBjYKtGYMsO3PnzkVISAh+/vlndO/eHatWrUJiYiLOnTuHAwcOYPr06cjLy0NkZCSioqLKDBpmrBNXV53v1lhX1t69pOx06SKTUHaOcGWtXVvxvmUiNqJfP47XYcxD//603LiR2syUhSQBixfT+siRZhXLbvDz0z3IiJYwhnLgf5n/ttBKxiBlZ//+/YiNjcXhw4fx4YcfIioqCs2bN0f9+vXRrl07jBo1CosXL0ZGRgaeeuop7JKjJTOjOoQry9gf0P79rOzISUQEVT++fh3Yt6/87SUJWLeO1gcONKtojB3ToQMQHExNPR9rcViCo0epV56rK/Dcc5aRzx7o1ImWxrqybKlvnkHKzsqVK9H8fy1VO3bsWFiJ+HHc3Nzw1ltvYcyYMaZLyKgOU4KUtVqHQjeWKCvPmIazM/DMM7S+ZEn52ycmUh0Od3dd1gzDyI2DAzBiBK3/8kvZ286bR8unn2bXtpx07kzLijwEPY4k2bFlpyhxcXF49OhRifezsrLw7rvvmiQUo26EspOYWL55+nGSkryRk6NBQADQoIH8stkrr7xCyz//pOKPZSEyXnr1AipVMq9cjH3z8su03LqVFGx9pKYCK1bQ+qRJlpHLXhCWnUOHYHDbjcuXgRs3KEbT2tPOASOUncGDB+OLL76ARqPB9evXS/w/OzsbX3/9tSzCMeqkTh3KANJqdZp/RTl9mqLkunThWBE56dyZlMfsbFJ4SqOgAFi6lNaffdYysjH2S716lO0nSUBpt4U5c4C8PNqOszPlpVEjspQ9fGh4A+fdu2nZpg25F60dg5Wd4OBgbNiwAZIkoWXLlggICEBkZCQmT56MpUuXYs6cOVzgz8bRaHTpyoakOwPA8eN+AKjCKiMfGg0wahStz51LSo0+YmOBlBSK8eH0XsYSTJlCyx9/LGndOXuWMgmLbsfIh4ODzrpjaAituLZ37y6vTEphsLIzd+5c7N27F87Ozjh48CB+/vlndO7cGUlJSfjoo4/w999/Y/bs2eaQlVER4gcg6mJUhIcPdZYdUfmXkY/XXwc8Pakuxvr1+rcRsREvvsguLMYy9OxJlseHD4E339Qp4jk55ObKy6PMLb4mmIcePWi5bVvF95Ek21N2jO6NlZ2dDScn2n0gp3TYHeIHcOgQxYh4eJS/z969Gmi1jqhZU0KTJuzDkhsfH2DsWOCLL4CPP6YbiGOR1kLHjlFbCY0GeOcd5eRk7AuNhqw6YWGUhj5qFDB6NPDZZ1THxccHmD9faSltF6FE7tpFxUTLawoKUP/Dq1cpXscWgpMBEwKUhaLD2CchIfTKy6MCdRVh2zZScHr2lDhex0y88w5Zd44cAb77Tvd+QQHw1lu0PnQoB4czlqVpU+C//6X1X34hN/aWLWRd/OMPupYw5qFpUyAoiCxrFU1BF1adTp1sxwJskLKTmppq0OBXr141aHvGuhBPDBs3Vmz7rVvpdOvZs5SAEsZkAgLIsgMAkyfTd5OfD0ycSBc6Dw/gyy+VlZGxT4YPp6ysDh0Af3/qn7VvH7uvzI1Go5vjmJiK7SMaFdiKCwswUNlp27YtXn31VRw6dKjUbTIzM/Hzzz+jWbNmWLVqlckCMupFVO5ds6b0gFhBUhJw6pQGDg4F6NHDyKZaTIV44w3KtNJqyZXl7w988w39b8EC6y/7zlgvkZGUwXn9Oini1t5c0lro1YuWGzaUv+2DBzplZ8AA88lkaQzyRZ05cwaff/45oqKi4OzsjPDwcFSvXh1ubm64c+cOTp8+jVOnTiE8PBxffvkl+lS0UQ9jlXTvTpaCq1eBhISyO5ivXEnLFi1uompVrhpmThwcgF9/pXLxP/wA3LkDeHtTltbw4UpLxzCMpenbl4qPnjxJGXCNG5e+7dat5PIKCaFeiLaCQZYdX19ffPXVV7h27RoWLFiAhg0b4ubNm4U9sIYNG4aEhATs27ePFR07wM1N13iyvHLwf/xBy86d2bVpCVxdKaU3PZ3cVykp3HOIYewVHx+dK0s8eJaGuJYPGmRbtdCMijJ2c3NDZGQkBg8eLLc8jJXx9NP041mxAvjkE7IqPM65c5QJ5OQkoX37dADNLC6nvVKtGr0YhrFvnn0WiI6moqMffKB/m5wcXd88W6vDZXQ21hNPPIGMjAw5ZWGskIEDAS8vKi1eWs2dn3+mZWSkBC8vA2uWMwzDMCYzcKDOlXX0qP5t1q7V4M4doEYNXV8tW8FoZSc8PBzt27fH2bNni71/9OhR9O3b12TBGOvA3Z0K1AHFU50F2dnAokW0/vrrnIXFMAyjBD4+gHDG6LtWA8CiRaQSjBpVvEaXLWC0srNw4UKMGjUKXbp0wd69e3H+/HkMHToU4eHhcLWFRhpMhRk3jny7q1cDx48X/9+33wJ371KPnN69OQuLYRhGKcaNo+Vvv1FiSVHOn/dBbKwDHB11rWdsCZMqA06fPh0uLi6IjIxEfn4+evfujfj4eLS2hRapTIVp2hQYMoRid95+mwpSOThQN2NR8+Wjj2zvSaGi5OfnQ1uBlsNarRZOTk549OgR8vPzLSCZdcHzUzpKz42zszMc7fUHbkV07kyvffuA6dOBhQvpfUkCfv21CQDgpZdss8ij0cpOeno6Zs6ciYULFyI0NBRnz57F888/z4qOnfLFFxT8tmsXMGECKT1DhwJZWUC7dsALL1BxO3tCkiRkZGTg7t27Fd4+MDAQaWlp0NhSGoRM8PyUjhrmxtvbG4GBgfzdqBiNBpg1C+jShcIL+vQBnnkGmDfPASdO+MPNTcK0abb5/Rmt7NStWxeNGzfGypUr0a9fP2zZsgVDhw7FlStX8K9//UtOGRkroG5d8gOPHEl9bkSvG19fSjt3cLA/ZUcoOgEBAXB3dy/3JlBQUID79+/Dw8MDDvrS2uwcnp/SUXJuJEnCgwcPcP36dQBAUFCQRY/PGEbnzvRAOm8ePZA++SSwcydZ5T79tAD16tmmhc5oZWfx4sV4/vnnC//u3bs3YmNj0b9/f6SkpOD777+XRUDGehgxguq7TJoEXLtGP6rFi23TJFoe+fn5hYpO1apVK7RPQUEBcnNz4ebmxjdzPfD8lI7Sc1Ppfw2Url+/joCAAHZpqZxZs6jY6C+/ADt30ntDhpzH+PF1ANjmd2e0slNU0RG0bt0a+/fv52wsO+b554HnnqN6DRXprmuriBgdd3d3hSVhGMsgznWtVsvKjspxcaEH0TFjKBW9dWst0tPPQKOpo7RoZkP21uUhISHYt2+f3MMyVoRGY9+KTlE4foGxF/hcty40Gord6dKF+uilpystkXkxi73Tx4d7HzEMwzAMow7Y8c0wDMMwjE3Dyg7DMCWQJAmvvfYafH19odFo4O3tjQkTJigtFsMwjFHIHrPDMIz1s3nzZixZsgQ7d+5E3bp14eDgUJhxYywRERFo1aoV5s2bJ5OUDMMwFcNoZefhw4eQJKkwAj8lJQWrV69GaGgoevXqJZuADMNYnosXLyIoKAidOnWq0Pa5ublwcXExs1QMwzDGYbQba+DAgVi6dCkA4O7du2jfvj3mzJmDgQMHYsGCBbIJyDCMZRk5ciTGjx+P1NRUaDQahISEICIiopgbKyIiAuPGjcPEiRPh5+eHyMhIAMBff/2F5s2bo1KlSvh/9s48PKaz/ePfmclkIwkSkSDWKEHs+5pWUYpWStG3lKKtt9UXVa3XUrQora19S1EtXZRWS39tLYldq0KEUoJWgyAaIRKRSCaZ8/vj9mQSksnM5Jw5s9yf65rrnMzynDvPzDnnfu41MDAQjz76KO7cuYORI0di3759WLZsGTQaDTQaDS5cuFDi8aOiojB+/HhMmDABlStXRrVq1bBq1SrcuXMHL7/8MgICAlC/fn1s27at2Oe2b9+OLl26oFKlSggMDES/fv1w/vz5wtdLk62s10ri66+/hre3N64UaTA0ZswYNGvWDBkZGVbPOcMwymKzspOQkICuXbsCoAtFtWrVcPHiRXz++ef44IMPZBOQYVwGSaI28Go8JMubsC5btgxz5sxBzZo1kZKSgiNHjpT4vnXr1sHDwwO//vorVq5ciZSUFAwbNgzPP/88EhMTsXfvXkRHR0OSJCxbtgwdO3bE2LFjkZKSgpSUFISFhZUqw7p16xAUFITDhw9j/PjxGDduHJ5++mm0a9cO8fHx6N27N4YPH47s7OzCz9y5cweTJk3CkSNHsGvXLmi1WgwcOBBGo9GsbOZeK42hQ4eiYcOGmD9/PgBg9uzZ2LFjB7Zt24aAgACL55phGPtgsxsrOzsbfn5+AICYmBhER0dDq9WiQ4cOuHjxomwCMozLkJ0NVKxY6staAJWUOnZWFlChgkVvDQgIgJ+fH3Q6HUJCQkp9X3h4OBYuXFj4d0JCAvLz8xEdHY3atWsDACIjIwtf9/T0hK+vr9kxBc2bN8f06dMBAFOnTsW7776LoKAgPPfcc/D398fMmTOxYsUKnDhxAh06dAAAPPXUU8XGWLNmDYKDg3H69Gnk5eWVKtu5c+fMyl0SGo0Gc+fOxaBBg1C9enUsW7YMBw4cQI0aNcr83xiGsT82W3bCw8OxZcsWJCcnY8eOHYVxOqmpqfD395dNQIZhHJM2bdoU+7t58+bo0aMHIiMjMXjwYKxevRrp6ek2jd2sWbPCfZ1Oh8DAwGIKSLVq1QCgsB8TQHFGzzzzDOrVqwd/f3/UrUvVYC9dumRWNlvl7tevHxo3bozZs2dj8+bNaNKkiU3/K8MwymOzsjNz5kxMnjwZderUQbt27dCxY0cAZOVp2bKlbAIyjMvg60sWllIexsxM3Lp8GcbMTLPvs+mhQNuKCvdZinQ6HWJjY7Ft2zY0btwYH374IRo2bIikpCSrx9br9cX+1mg0xZ4T1XqNRmPhc/3798eNGzewevVqxMXFIS4uDgAFT5uTzVa5d+zYgTNnzqCgoKBQ+WIYxjGxWdkZNGgQLl26hPj4eMTExBQ+36NHD04tZZiS0GjIlaTGw06l/DUaDTp37ozZs2fj2LFj8PT0xObNmwGQG6ugoECR4964cQOJiYmYPn06evTogYiIiAesM+ZkM/daSSQkJGDw4MFYuXIlevfujRkzZijyfzEMIw/lqrNz6tQp7Nq1Cx999FGxFRYAfPrpp+USjGEY5yIuLg67du1Cr169EBwcjLi4OFy/fh0REREAqG9eXFwcLly4gIoVK6JKlSqydeiuXLkyAgMDsWrVKoSGhuLSpUt48803LZKtLLnv58KFC3j88cfx5ptvYvjw4WjcuDHatm2Lo0ePonXr1rL8PwzDyIvNys7s2bMxZ84ctGnTBqGhodwEjmHcHH9/f+zfvx9Lly5FZmYmateujUWLFqFPnz4AgMmTJ+O5555D48aNkZOTg6SkJNSpU0eWY2u1WmzYsAGvvvoqmjZtioYNG+KDDz5AVFRUmbIlJiaalbsoN2/eRJ8+fTBgwAD897//BQC0bt0a/fv3x7Rp07B9+3ZZ/h+GYWRGspGQkBDp888/t/XjpbJv3z6pX79+UmhoqARA2rx5c7HXjUaj9NZbb0mhoaGSt7e31L17d+mPP/6w6hgZGRkSACkjI0NO0aW8vDxpy5YtUl5enqzjugruND85OTnS6dOnpZycHIs/U1BQIKWnp0sFBQUKSua88PyUjiPMjS2/eXvhTtceW3Cm+bH1/m2zDTkvL8/i6qrWcOfOHTRv3hz/+9//Snx94cKFWLx4Mf73v//hyJEjCAkJQc+ePXH79m3ZZWEYhmEYxvmxWdkZM2YM1q9fL6csAIA+ffrgnXfeQXR09AOvSZKEpUuXYtq0aYiOjkbTpk2xbt06ZGdnKyILwzAMwzDOj80xO3fv3sWqVauwc+dONGvW7IFU0cWLF5dbuPtJSkrCtWvXivXe8vLyQvfu3XHw4EG8+OKLsh+TYRiGYRjnxmZl58SJE2jRogUA4I8//ij2mlLByteuXQOAB2paiFYVpZGbm4vc3NzCvzMzMwEABoMBBoNBNvnEWHKO6Uq40/wYDAZIkgSj0fhApmJpSPfaE4jPMcXh+SkdR5gbo9EISZJgMBig0+lUkaE03OnaYwvOND+2ymizsrNnzx5bP1pu7lemJEkyq2DNnz8fs2fPfuD5mJiYwq7tchIbGyv7mK6EO8yPh4cHQkJCkJWVhby8PKs+y/Fn5uH5KR015yYvLw85OTnYv38/8vPzVZPDHO5w7SkPzjA/RfvhWUO56uzYG9FT59q1awgNDS18PjU11WwF06lTp2LSpEmFf2dmZiIsLAy9evWStbWFwWBAbGwsevbs+YBbj3Gv+bl79y6Sk5NRsWJFeHt7W/QZSZJw+/Zt+Pn5cSmHEuD5KR1HmJu7d+/Cx8cH3bp1s/g3by/c6dpjC840P8IzYy3lUnZu3bqFNWvWIDExERqNBhERERg9erRiXX/r1q2LkJAQxMbGFrakyMvLw759+7BgwYJSP+fl5QUvL68Hntfr9Yp8sUqN6yq4w/wUFBRAo9FAq9VaXDhPuB/E55ji8PyUjiPMjVarLWzr4ajntyPL5gg4w/zYKp/NZ0V8fDzq16+PJUuW4ObNm0hLS8OSJUtQv359JCQk2DossrKycPz4cRw/fhwABSUfP34cly5dgkajwYQJEzBv3jxs3rwZf/zxB0aOHAlfX18888wzNh+TYRiGYRjXxWbLzsSJEzFgwACsXr0aHh40TH5+PsaMGYMJEyZg//79No0bHx+Phx9+uPBv4X567rnnsHbtWkyZMgU5OTn497//jfT0dLRv3x4xMTHw8/Oz9V9hGIZhGMaFsVnZiY+PL6boABSUOWXKFLRp08ZmgaKiogozC0pCo9Fg1qxZmDVrls3HYBiGYRjGfbDZjeXv749Lly498HxycjJbWRiGsTtRUVGYMGGC2mIwDOOA2KzsDBkyBKNHj8bGjRuRnJyMy5cvY8OGDRgzZgyGDRsmp4wMwzCMjMyfPx9t27aFn58fgoOD8eSTT+Ls2bPF3rN8+XLUrVsX3t7eaN26NQ4cOKCStAxTfmxWdt5//31ER0djxIgRqFOnDmrXro2RI0di0KBBZjOjGIZhGPnp168f1q5da9F79+3bh5dffhmHDh1CbGws8vPz0atXL9y5cwcAsHHjRkyYMAHTpk3DsWPH0LVrV/Tp06dEaz7DOAM2Kzuenp5YtmwZ0tPTcfz4cRw7dgw3b97EkiVLSkzzZhjGedi0aRMiIyPh4+ODwMBAPProo4U3QkmSsHDhQtSrVw8+Pj5o3rw5Nm3aVPhZo9GIBQsWIDw8HF5eXqhVqxbmzp1b+Hpubi5effVVBAcHw9vbG126dMGRI0cKX4+KisKrr76KKVOmoEqVKggJCXkgRu/OnTsYMWIEKlasiNDQUCxatKjM/ykqKgrjx4/HhAkTULlyZVSrVg2rVq3CnTt3MGrUKPj5+aF+/frYtm1bsc9t374dXbp0QaVKlRAYGIh+/frh/PnzFs2VJa8X5euvv4a3tzeuXLlS+NyYMWPQrFkzZGRklPk/Wsr27dsxcuRINGnSBM2bN8dnn32GS5cu4ejRowCo3c/o0aMxZswYREREYOnSpQgLC8OKFStkk4Fh7Em5CzL4+voiMjISzZo1U6QaMcO4CpIE3LmjzsNMzP8DpKSkYNiwYXj++eeRmJiIvXv3Ijo6ujBxYPr06fjss8+wYsUKnDp1ChMnTsSzzz6Lffv2AaAingsWLMCMGTNw+vRprF+/vljRzylTpuC7777DunXrkJCQgPDwcPTu3Rs3b94sfM+6detQoUIFxMXFYeHChZgzZ06x6q6vv/469uzZg82bNyMmJgZ79+4tvFGbY926dQgKCsLhw4cxfvx4jBs3DoMHD0anTp2QkJCA3r17Y/jw4cWqtN65cweTJk3CkSNHsGvXLmi1WgwcOBBGo7HMuSrr9fsZOnQoGjZsiPnz5wMAZs+ejR07dmDbtm2K1S8DUKhIValSBXl5eTh69GixHoQA0KtXLxw8eFAxGRhGUSQrmDhxopSVlVW4b+7hyGRkZEgApIyMDFnHzcvLk7Zs2SLl5eXJOq6r4E7zk5OTI50+fVrKyckpfC4rS5JI7bD/495paxFHjx6VAEgXLlx44LWsrCzJ29tbOnjwYLHnR48eLQ0bNkzKzMyUvLy8pNWrV5c4dlZWlqTX66Wvvvqq8Lm8vDypevXq0sKFCyVJkqTu3btLXbp0Kfa5tm3bSlOmTJHS09OljIwMydPTU9qwYUPh6zdu3JB8fHyk//znP6X+X/ePm5+fL1WoUEEaPnx44XMpKSkSAOm3334rdZzU1FQJgHTy5EmzcyVJ5ueyNH788UfJy8tLmjt3rlS5cmXpjz/+KPMzBQUFUufOnaU1a9ZYfByB0WiU+vfvXzg3V65ckQBIv/76a7H3zZ07V3rooYdKHaek37yj4E7XHltwpvmx9f5tVer5sWPHCptwHTt2rNT3cSl3hnFemjdvjh49eiAyMhK93xhsWgAAIABJREFUe/dGr169MGjQIFSuXBmnT5/G3bt30bNnz2KfycvLQ8uWLZGYmIjc3Fz06NGjxLHPnz8Pg8GAzp07Fz6n1+vRrl07JCYmFj7XrFmzYp8LDQ1Fampq4Rh5eXno2LFj4etVqlRBw4YNy/zfio6r0+kQGBiIyMjIwueEBUocSxxvxowZOHToENLS0gqrFV+6dAm9e/cuda7KmsvS6NevHxo3bozZs2cjJiYGTZo0KfF98+bNw7x58wr/zsnJQXx8PF599dXC57Zt24auXbuanZNXXnkFJ06cwC+//FLseWt7EDKMI2OVslO0+ee6detQs2bNB0qTS5KE5ORkeaRjGBfC1xfIyir9daPRiMzMTPj7+8te8t8aD7NOp0NsbCwOHjyImJgYfPjhh5g2bRri4uIKb/Q///wzatSoUexzXl5euHXrltmxpXvum7JupPeXhNdoNIXHFmPYQknjFn1OyFC0c3j//v0RFhaG1atXo3r16jAajWjatCny8vLMzlXdunXLfL0kduzYgTNnzqCgoMBsz7+XXnoJTz/9dKG8zzzzDAYPHoynnnqq8D33f0f3M378ePzf//0f9u/fj5o1awIAgoKCoNPpcO3atWLvLasHIcM4MjZfUevWrYu0tLQHnr9582apJzHDuDMaDVChgjoPaxfkGo0GnTt3xuzZs3Hs2DF4enpi8+bNaNy4Mby8vHDp0iWEh4cXe4SFhaFBgwbw8fHBrl27Shw3PDwcnp6exawIBoMB8fHxiIiIsEi28PBw6PV6HDp0qPC59PR0nDt3zrp/0gJu3LiBxMRETJ8+HT169EBERATS09OLvae0ubL09aIkJCRg8ODBWLlyJXr37o0ZM2aUKluVKlWKzb+3tzeqVq1a7DkfH58SPytJEl555RV8//332L17d7FrtqenJ1q3bv1AB+zY2Fh06tSpzDljGEfE5grKpa2usrKyHK7jLcMwlhMXF4ddu3ahV69eCA4ORlxcHK5fv46IiAj4+flh8uTJmDhxIoxGI7p06YLMzEwcPHgQFStWxHPPPYc33ngDU6ZMgaenJzp37ozr16/j1KlTGD16NCpUqIBx48bh9ddfR5UqVVCrVi0sXLgQ2dnZGD16tEXyVaxYEaNHj8brr7+OwMBAVKtWDdOmTVOkAWblypURGBiIVatWITQ0FJcuXcKbb75p0VxZ8npRLly4gMcffxxvvvkmhg8fjsaNG6Nt27Y4evQoWrduLev/9fLLL2P9+vX44Ycf4OfnV2jFCQgIgI+PDyZNmoThw4ejTZs26NixI1atWoVLly7hpZdeklUOhrEXVis7oleVRqPBzJkzi2VgFRQUIC4uDi1atJBPQoZh7Iq/vz/279+PpUuXIjMzE7Vr18aiRYvQp08fAMDbb7+N4OBgzJ8/H3///TcqVaqEVq1a4b///S8AYMaMGfDw8MDMmTNx9epVhIaGFrtJvvvuuzAajRg+fDhu376NNm3aYMeOHWbjWO7nvffeQ1ZWFgYMGAA/Pz+89tprsqZmC7RaLTZs2IBXX30VTZs2RcOGDfHBBx8gKioKQNlzVdbrgps3b6JPnz4YMGBA4Ty2bt0a/fv3x7Rp07B9+3ZZ/y+RQi7+D8Fnn32GkSNHYsiQIbhx4wbmzJmDlJQUNG3aFFu3bkXt2rVllYNh7IVGstIBLpp07tu3Dx07doSnp2fha56enqhTpw4mT56MBg0ayCupjGRmZiIgIAAZGRnw9/eXbVyDwYCtW7eib9++Nrehd2XcaX7u3r2LpKSkwgq0lqBkzI4rwPNTOo4wN7b85u2FO117bMGZ5sfW+7fVlh0RpDxq1CgsW7ZMVmWBYRiGYRhGbmyO2fnss8/klINhHI+sLMDTkx4MwzCM02KzsjNnzhyzr8+cOdPWoRlGXVJSgFdeATZvBry9gddeA2bPBth1wjCMICcH0Ol4MeQk2Kzs3J86aTAYkJSUBA8PD9SvX5+VHcY5SU8HHn0UOH2a/s7JAd55B7h+Hfj4Y3VlYxhGfdLTgYkTgS+/BDw8gHHjgAULWOlxcGxWdkqqoJyZmYmRI0di4MCB5RKKYVRj4kRSdGrUAH76CThxAhg5Eli5EujVC4iOtmq48hTAYxhnwi1+69nZQN++gKjxVFAALF0KXLgAfP+99QWtGLshq13e398fc+bMMVsIi2EcloMHgXXr6IK1aRPQogUwYgTwxhv0+uuvA/fapZSFyGgo2lCSYVwZ8Vt39GyecjFrFik6lSsDBw4AW7YAXl60/fBDtaVjzGCzZac0bt26pUi9C4ZRnLlzaTtqFNChg+n56dOBTz8F/v4b+OIL4PnnyxxKp9OhUqVKhT2WfH19y+wrZDQakZeXh7t373JqdQnw/JSOmnMjSRKys7ORmpqKSpUqQafT2fX4duPcOWDJEtr//HOgSxfaX7SIYvxmzgT+9S8gMFA9GZlSsVnZ+eCDD4r9LUkSUlJS8MUXX+Cxxx4rt2Bux82bwOTJZFGoVImsCePGcVCsvTh1Cti6leZ76tTir1WoQN/NlCnARx9ZpOwAQEhICIDiTSXNIUkScnJy4OPjww0XS4Dnp3QcYW4qVapU+Jt3Sd57D8jPJzdWv36m5196CVi1ilze778PzJ+vnoxMqdis7CwRGu49tFotqlatiueeew5T779ZMObJzAS6daMbLgDcvk0rhbNngWXL2A9sDz75hLYDBgDh4Q++PmoUWXgSEoD4eKBNmzKH1Gg0CA0NRXBwMAwWuL8MBgP279+Pbt26ubYrwEZ4fkpH7bnR6/Wua9EBgNRUsuYAwL0K14XodJStOXAgKT0zZljXeZexCzYrO0lJSXLK4d68+CIpOtWrU4T/8ePApEnkA27XDnj2WbUldG3y8mjeAWDMmJLfExQEPPUU8PXX9F4LlB2BTqez6Eag0+mQn58Pb29vvpmXAM9P6fDcKMw339B1onVroKRmqP37A3XrAklJwIYNFlt/GfvBPhK12bePTg6tluq6PPwwZQTNnk2vT5xILi5GOXbvBtLSgGrVgN69S3/f0KG03bQJMBrtIxvDMOqzfj1tn322ZEu7Tge88ALtf/WV/eRiLMYqy45oAmoJixcvtloYt+Stt2j7wgtkxRFMnUqriVOnyJUllB9GfkTNqIEDqW5GafTqBfj5AVeuUEZGSSs8hmFci6Qk4LffSMkZMqT09w0dStftPXuoMGloqP1kZMrEKmWnpNo6JcHBgxZy9ChZdjw8gGnTir+m15OCM2gQKTuvvQZwHzL5KSgAfviB9p980vx7vb2Bxx8nS9zWrazsMIw78M03tH3kEfMKTJ06QMeOpBh9+y3w6qt2EY+xDKuUHdEElJGJlStp+/TTQM2aD74+cCDQsCEFKm/YYDKTMvIRFwf88w8QEEAuxLLo3Zu+i5gYqqzMMIxr8/PPtH3qqbLfO2wYKTsbN7Ky42CUK2bn1q1bWLRoEcaMGYOxY8diyZIlXGPHUvLyKPYDAEaPLvk9Wi0wdiztr15tH7ncjR9/pG3fvpaVe+/Vi7bx8RTnwzCM65KZScoLYD6eTyAqrP/2G3DjhnJyMVZjs7ITHx+P+vXrY8mSJbh58ybS0tKwePFi1K9fHwkJCXLK6JrExlKPlZAQoHv30t83YgS5tOLjKUuLkZedO2lraW2o6tWByEhAkkyfZRjGNdm9m2rrNGgA1KtX9vtr1DBdH2JilJePsRiblZ2JEydiwIABuHDhAr7//nts3rwZSUlJ6NevHyZMmCCnjK7J11/T9umnKZK/NKpWBZ54gva/+EJ5udyJ9HSKmwKAHj0s/5xY4fHFjGFcmx07aGuJVUfQpw9tt26VXx7GZspl2XnjjTfgUSR7xcPDA1OmTEF8fLwswrksBoPJfWIuul8wbBhtv/+eVgyMPOzZQ/PZqBGtyCzlkUdoe+CAMnIxDOMYiAWNLcrOjh1cosKBsFnZ8ff3x6VLlx54Pjk5GX5+fuUSyuWJiyNfcJUqQPv2Zb+/d2/Ax4c667IrSz527aLto49a97mOHSkN9a+/KLiZYRjX48oV6oen1VKFe0vp3JlKVFy/ztdrB8JmZWfIkCEYPXo0Nm7ciOTkZFy+fBkbNmzAmDFjMExYIpiSEauFnj3Nu7AEFSqYVgvffaecXO7G7t20tcaFBVDvsqZNaf/XX+WViWEYx0Cc282aWVf2Q68Hunal/X375JeLsQmblZ33338f0dHRGDFiBOrUqYPatWtj5MiRGDRoEBYsWCCnjK6HLX5gEeW/ZYv88rgjaWnAmTO0Ly5M1iA6Hv/yi3wyMQzjOAhlR5zr1iCSTvbvl08eplzYrOx4enpi2bJlSE9Px/Hjx3Hs2DHcvHkTS5YsgZeXl5wyuhY3bwJHjtB+z56Wf65PHzKnnjoFXL6sjGzuhEgnbdQICAy0/vOdO9OWlR2GcU3EuW2LsiPcXgcOcNyOg2CzspOTk4Ps7Gz4+voiMjISAQEBWLVqFWI4Q8U8+/ZRUGzjxiUXEiyNKlWAtm1pPzZWGdnciYMHaWtrFWSh7Bw7BmRnyyMTwzCOwe3bpngbca5bQ6tW1Pn8xg0gMVFe2RibsFnZeeKJJ/D5vZb3t27dQvv27bFo0SI88cQTWLFihWwCuhzCNGqL60QUtGOFsvwIZceWCxkA1K4NBAdTDY4TJ+STi3mQ/Hy6YSQlqS0J4y4cOUIWmVq1rFuUCjw9KZEBYFeWg2CzspOQkICu927YmzZtQrVq1XDx4kV8/vnn+OCDD2QT0OUoj2lUKDuxsWwaLQ95ecDhw7Rvq2VHowFat6Z9UauHkZ9vvgHq1gUaN4a+YUN0nTLFFGvFMEohyqcUbc5sLcKVxcqOQ2CzspOdnV2YYh4TE4Po6GhotVp06NABFy9elE3A+5k1axY0Gk2xR0hIiGLHk5XsbNON0RZlp317Smm8cYPcJ4xtHD8O3L1LrsGHHrJ9nDZtaMt1pZThvfeoDtXly4CPDySdDlXOnYNHt27sGmCURZzTYkFjC0LZEaELjKrYrOyEh4djy5YtSE5Oxo4dO9DrntUhNTUV/gp3527SpAlSUlIKHydPnlT0eLJx5AiZ5KtXJzeItej1poJ2IqOLsR7hSuzUiYK+bYUtO8rx/ffAlCm0P2UKcPMm8v/6CzcfegiaW7eoqnhOjroyMq6LOKfFgsYW2rcHPDyAlBSghJp0jH2x+Uo/c+ZMTJ48GXXq1EH79u3R8Z5/MiYmBi1btpRNwJLw8PBASEhI4aNq1aqKHk82irqwNBrbxhAZXNyB3nYOHaKt8KnbilB2Tp/mG6+cpKYCL75I+xMnAgsWAN7eQI0aiJs+HVKNGsCffwLz5qkrpz1JSwPefJOSFDp3JqvX3btqS+WapKdTMUGAAo1txceHavQAJrc5oxoeZb+lZAYNGoQuXbogJSUFzZs3L3y+R48eGDhwoCzClcaff/6J6tWrw8vLC+3bt8e8efNQz0yTttzcXOTm5hb+nZmZCQAwGAwwGAyyySXGKm1M3aFD0AIoaNcORluP26kT9ACkgweRn51N1h4noaz5sRceCQnQAMhv0QJSeWQJDoZHcDA0qanIP3oUkiXVsM3gKPOjNrqXX4Y2LQ1Ss2bIf/ttaq8Cmpc8f3/kvfcevJ55BtKiRch/8UWgWjWVJVaYs2fh8fjj0BS1Dhw8CGntWuT/+CMQFsa/nTKwZn40hw/DA4BUty7y/fwKf3+2oG3bFrqEBBT89huMTz5p8zhK40y/H1tltFnZAVBoWSlKu/IEdFlA+/bt8fnnn+Ohhx7CP//8g3feeQedOnXCqVOnEFhKvZT58+dj9uzZDzwfExMDX19f2WWMLSU1vNdvv8EHwMG8PNy0tUmc0Yg+FSvCMysLBz/6CLfKE3OiEqXNjz3wyMnB43/9RXJcv468cjbrax8WhpDUVJz+4gsk3bghh4iqzo/aVD53Dt02bYKk1WLfyJHIKKGz/HYfH3Rr0ACV//wTF8aPx+mRI+0vqJ3wyMpC1GuvQf/PP8gKDcXZoUPhkZ2Nht98A+/Tp5HbuTP2L1wIw73QAXf+7ViCJfMT/v33aALgamgo4st5fQjz8kIrALe2b8cvotCgA+MMv59sG0t9aCTJuSOn7ty5g/r162PKlCmYNGlSie8pybITFhaGtLQ0WeOLDAYDYmNj0bNnT+jvt7hcuwZ9rVqQNBrk37gBVKxo83F00dHQ/vQTCt59F8ZS/mdHxOz82AnNwYPwiIqCVL068i9cKPd42lmzoJs3D8YRI1DwySflGssR5kdVJAm6Xr2g3bevxPksOj+eO3bAIzoaUuXK9D36+Kgjs8LoRo+G9osvINWpg/xffwWEy/7SJXj06AHNxYsw9u6Nu999h9idO933t1MG1pxbumHDoP3uOxTMnQvj66+X78BnzkDfrBkkHx/kp6U5rCXema49mZmZCAoKQkZGhlX373JZdhyBChUqIDIyEn/++Wep7/Hy8iqxqrNer1fkiy1x3Hu1WDSNGkFfuXL5DtC9O/DTT9AdPAjdG2+UbywVUGreLeJeMLumRQt5ZLhnydQePw6tTP+TqvOjJvv20cPTE9q33y51PvV6PTwGDABq14bm4kXoN28GnnvOzsLagcOHgS++AABo1q+Hvnp102v16wM//QS0aQPtjh3w/OoroFo19/3tWIhF83Mv01XXrh105Z3LJk2AgABoMjKgP3sWUDietbw4w+/HVvnKkYriGOTm5iIxMRGhoaFqi2IeEd1fnlRGAZcitx1RFVWui06LFrRNTCyXb58B8P77tH3+eSrmZg6dDhg7lvbvKQQuxzvv0HbEiJKD6Zs2LXyP7vXX4Xnrlh2Fc1Fu3ZInOFmg1Zpq9cTFlX88xmacTtmZPHky9u3bh6SkJMTFxWHQoEHIzMzEc46+spNT2WnZkkqRp6dTJhBjOaI+kVBSykutWtQR2WAAzp6VZ0x35MwZslRoNJSBZQnDhtF2zx7K4HIlzp4FfvyR9qdNK/19EycCrVtDk5mJRhs32kc2V+aPP2gbFkZ1uORAJC6wsqMqTqfsXL58GcOGDUPDhg0RHR0NT09PHDp0CLVtqVtjT+RUdvR6LkVuCwaD6WIml2VHowEiI2mf20bYzuLFtB0wwPJCj/Xq0flkNAKbNysnmxosXUrb/v3Nz4dOV2gRq71jB1eXLi+iZps4p+VAKDuiATSjCk6n7GzYsAFXr15FXl4erly5gu+++w6NGzdWWyzz/PMPcOUK3RjluskWdWUxlpGYSK0i/PyoBYFciAujsxS3dDTS002uqNdes+6zgwfT9ttv5ZVJTXJygC+/pH1LrFxRUTD27Qut0Qjd/PnKyubqKKHsiAVuYiI3DVYRp1N2nBJh1WnYsFxZWMUQjURZ2bEcEa/TokX5KiffD1t2ysdXX1GBvMhI69uoCGVn716Kt3AFfv4ZyMqiKusWpisXzJwJANBs3AicP6+kdK6NsPw2bSrfmKGhQEgIWSD5GqEarOzYA7mDYgEKetPpyGKUnCzfuK6M3PE6AlEllS071iNJwOrVtD92rPWVxevVo0VEQQGwe7f88qnB+vW0HTbMcqW8VSv806oVNEYjVZxmrEeSlLHsAKZgZ24toxqs7NgDsVoQN0U5qFDBNN5vv8k3riujhNIJmFaBycmuY12wF0eP0mrXywv4179sG6N3b9q6Qr+4W7fIsgMAzzxj1UfPDRpEO2vX0iKIsY4rV2j+dTqgUSN5xxaurIQEecdlLIaVHXsgVgtymkYBU5Cy6PXElI4kKafsVKpE2RsAW3esRRQOfOop27Nfiio7zl0jlf6HvDwgIsJq68LNxo1h7NKFAvGXL1dIQBdGnLsNG5LyLSfCssPKjmqwsqM0eXmmDAm5TaNC2WHLTtlcvEirNr0eUCKgnV1Z1nPnjsllM2aM7eN07w54etJ3bKa4qFMg2hP062fTx42vvko7K1dyMKy1KBGvIxDKzh9/cANXlWBlR2nOnQPy8ykDqKxCadbSoQNtExKAIu0wmBIQ8TpNmtCNUW44SNl6vv0WuH2bqgGXp29QhQrUCRwAdu2SRzY1MBqBbdtov29fm4aQ+vcH6tQBbtygwG/GcpSK1wHI8hsURPcCoVQxdoWVHaUpulqwNviyLOrXpxMoL890M2dKpmgmlhKI1SAXebQc4cIaPbr82XGuUIrh6FHg+nVaGAnlzVp0OkBYd5YudX63nj1RUtnRaNiVpTKs7CiN0icQu7IsQyiDSvWmiYigbWKiMuO7GmfOAL/+SjdnOaqfFy3F4Kw3eGHV6dWrfA0jn3+eSlycPg2U0DWeKYH8fNO5q8S1GuCMLJVhZUdplPQDAyZXFgcpm0dpy06jRqR8pqXR6pwxz5o1tH38caBog0tb6dAB8PAALl+m2B1nRKTO9+xZvnECAoBRo2hfVGJmzPPXXxQKUKECuQGVgDOyVIWVHaVR0rIDsGXHEm7cMNUiat5cmWP4+lIROICtO2WRlwesW0f75QlMLkqFCqaVszO6su7eNS1YHn64/OONH0/K99at3LPNEsSitHFjeQuOFkX8Pk+c4KbBKsDKjpJkZQFJSbSvlGWnbVs6OZOTubZGaQirTr16tOpVCnZlWcaPP5L1KzQU6NNHvnGduap4XBxZFkJCgAYNyj9egwamjK4PPij/eK6OyJhVsvVQ3bpUpiIvDzh1SrnjMCXCyo6SiB90SAgFEitBxYomqxG7skpG6XgdgbhQcpCyeURg8qhR5HqSCxHU64zdpffto21UlHyJDBMm0HbtWrJuMqUjlB2xYFGCokHKHLdjd1jZURKl43UE7Moyj9LxOgK27JTNpUumSsfPPy/v2O3a0fbUKeerMbN3L22jouQb8+GHyW2bnQ18/LF847oi4pyVu3Ly/Qhlh7Nn7Q4rO0qidLyOgCspm4ctO47DZ59RttQjj1DpBDmpUYNcYwUFznUzMRhM565IoZcDjQaYPJn2P/yQa3GVhtFosuzYS9nhIGW7w8qOkojVQpMmyh5HZGTFx5M/mDGRk2O6kNnLsnPlCpCZqeyxnJGCAuDTT2lfrsDk+2nblraHDyszvhKcPEm/00qVqFWBnAwZQkrgP/9wkcHSuHKFrF8eHhTXpyRC2Tl+nM4Hxm6wsqMk9vADAxSMGBhIKzfhsmGIkydp5Va1qjwpzuaoVIksCwC7skpi505yY1WpAgwcqMwxhLJz5Igy4yuBiDFq107+TCC93hS78/77dC4wxRHX6fDw8tU3soQGDShzMCeHs+TsDCs7SnHnDl3YAflXa/ej0XC9ndIoGq8jdwXrkuC4ndJZtYq2w4cD3t7KHEPE7TijstO+vTLjjx1LVZkTE02FCxkT9nJhAaTMCguzM7laXQBWdpTi3DnaBgWR1UVphLLDQcrFsVe8jkAoOxy3U5zkZOCHH2hfKRcWALRpQ9u//gLS05U7jpyIBYo4h+UmIAB44QXaf/tt560wrRRiYaK0BV7AcTuqwMqOUthztQBwRlZp2CsTSyCClNmyU5wVKyhG4eGHlc1OrFLFFPgcH6/cceQiPd3kzhBWKSWYPBnw8SErElt3imPvazUrO6rAyo5S2PsEEv7+ixeBq1ftc0xHp6DA1IWcLTvqkZNjcmGJJpVK4kyuLBFILZr6KkVICPDyy7Q/cyZbd4qiprLDMVR2g5UdpbD3CeTnBzRrRvu//mqfYzo6f/5JWRa+vvJUpbUEYdlJSqKbPAOsX09F7WrXBvr3V/54QrF1hmB9Ea+jlAurKFOmUHDs0aPApk3KH88ZyMgAUlJoX+nYSkFEBODlRRmbosI+ozis7CiFME3bS9kBgE6daHvwoP2O6ciIeJ1mzai7tj0IDgYqV6aVs4jbcmcKCoCFC2n/lVfs8z2I/me//678scqLsOwoFZxclKpVTXV3XnuNkijcHXGdDg1VtpVMUfR6U+01dmXZDVZ2lMBoVEfZEeXy2bJD2DteB6CMLy4uaOLbb0npq1IFePFF+xxTKDt//un4N3RxsxMdsZVmyhSysCUnA3Pn2ueYjoy9g5MFXEnZ7rCyowSXLlEXY09PoE4d+x1XKDvHjjlfuXwlsHcmlkAouO4epGw0Au+8Q/sTJpCr1R5Uq0YPSTK1bHFE/vmHXCgajckFrTS+vsDSpbT//vummDZ3xd7hBgIOUrY7rOwogEZYdRo0sJ/7BABq1aJqqfn5zlVBVgkkSR3LDmBaJYoLqbvy3XfUp8rfHxg/3r7HdgZXlvh9NmhADX3txRNPAAMGUJuKYcPce2HkCMoOB4vbBVZ2FECjhgsLoBWisO64e9zO1avA9euUoaZ0b7L74cKCZNl84w3anziRqkvbE2dQdtSyPGo01Hk+NJRcrc8/775ZQWopO5GRtBC+fp3aVTCKw8qOEqil7ACmIGV3j9sRq+ZGjai+iD0Rys65c2Rlc0eWLaNMk+rVgddft//xWdkxT9WqlCWn1wMbN5Llzd0UHoOBik8C9r9We3ubYvvYlWUXWNlRANUsO0Bxy467XbyKouaNpFYtupjl5blnaunZs8CsWbQ/fz6lO9sboeycOOG454FablZBVBSwdi3tL18OREcDaWnqyKIG58/TYqRCBaBmTfsfn+N27AorOwqgESnHaig7zZtTEOKtW+7tRlHzRqLTmWp2uFvcjsEAjBxJbqyePakPlho0bEgJArdvAxcuqCODObKyKFsMUEchFzzzDFl4PD2pnUfDhlR08Ngx+g4lia4l584B+/cD33wDfPQR8PHHwM8/A6mp6sleXoq6sOzRN+9+OCPLrrCyIzMeWVnQXLtGf9irSFVR9HpTzQ53jttR07IDuGfcjiSRO+TQIQpKXrNGnZsIQOdBkya074iurN9/p/mqXp1qM6nJsGHAL7/QQunmTeqf1aoVuX+1Wqob1bAh0L07MGQI1UsaNw7o148qM/fvT4UKnQ214nUE4trElh27wMoqj7SWAAAgAElEQVSOzPiJVg3Vq9sv1fZ+3D1uJyMD+Ptv2lfLReBuyo4kAbNnAytXkoLz1VdAWJi6Mjly3I6wPKpp1SlK27bUS2zDBqBPnwcDyv38KGusa1fgqacooysigr73n36iBdY77zhXZpHayo64Nl2+7NwWMifBQ20BXI2Kly/TjlonEMDFBcXNLSzMPh3nS0J8/+7gxsrKojo6a9bQ34sW0apfbRxZ2RGWR7WU8ZLw8CDLzZAhJvdVbi5VFi4tyP/cOWDGDHJvzZhBMT9Llqhn0bMGsRBR61rt5wc89BDN4bFjQO/e6sjhJrBlR2YqijRCNZWdjh3pYvPXX1S4zN1whBtJUcuOM612LcVopODrxYspq0QoOh9+SKnmjoAo1OeIhQXVdrOWhUZD7quQEPPZjA89RNlcy5fT38uWAQsW2EfG8iBJpoWIvasnF4WDlO0GKzsy4+cIlp1KlUwX+r171ZNDLexdgr8kGjSgeIeMDEDEcDkLFy8Cc+YAPXpQN+7KlSno3cuLVv8aDQVh16tHPZaSkykDbdcuiudwFETMzvnzjtWUNT/fpIA5kmWnPIwbR4HLADB9OgUzOzLXrlEjTq0WCA9XTw5WduwGKzsy4xCWHYBuVADdgNwNceEQFxI18PYG6talfWeJ27l9G3jpJVJw3noL2L2bYp9u3SJlIS+PGnsKPDwoPmzVKlolP/KIerKXRHAwuTGLruIdgb/+ormsUMH0G3EFxo2j7LuCAmDUKMrmclTE76FePVLi1UJY9jgjS3FY2ZETgwEVUlJoX21lR9x4du9WVw57k5NjUi7UVHYA52obkZRE87VyJd2sevSg9OJff6X5TEqinm9Xr5JrNC2NlKNffwXGjrV/4UZLKNqU9dQpdWUpirDqNG5MlgVXQaMh60716qQki273jog4J9XImC2KUHbOn6dFBaMYTnumLV++HHXr1oW3tzdat26NAwcOqC0SkJQEbUEBJF9f6lGlJl27kqvh/HlyS7gLJ0/SzTo4mC66auIsGVl//w1060YWh7AwUpB37qQu5Z06keJepw69Fhpqsph4e6stedkIV5YjKjtNm6orhxL4+VGAOkAFJUV2qqPhCPE6AJ1HtWvTvsjQYxTBKZWdjRs3YsKECZg2bRqOHTuGrl27ok+fPrh06ZKqchVWTn7oIfVXbP7+lE4KAHv2qCuLPREurJYt1c8IcQZlJzsbGDiQ0l8bNQLi4oCHH1ZbKvkQys7p0+rKURRXVnYAyubq1IncWO+/r7Y0JaN22nlRhAXaGWsVORFOqewsXrwYo0ePxpgxYxAREYGlS5ciLCwMK1asUFUuoexIaptGBcKV5U5xO44QryNwhvTz8eOppUJwMFlzQkPVlkheHNGyI2RxVWVHo6GYL4BcoY6YEepIyo5YlMbFqSuHi+N0dXby8vJw9OhRvPnmm8We79WrFw6WUjE4NzcXubm5hX9nZmYCAAwGAwwGg2yyae6t4PMbNIBGxnFtRdO9OzzmzYO0ezfy8/JUt3SIuZZzzu9Hd/QotADymzWDpPZ3EB4OPQBcuQLDjRtkbTODPeanKJo9e+Dx6aeQNBoUfPUVpOBgavfgoNg0Pw89BD0A6e+/kZ+RQVllanL3Ljz+/BMaAIaGDWWbb3v/dsokKgq6du2gPXwYBcuWwTh7tqriFJufO3egv+cFMNSvr/pvXtOmDTwASIcOIV8lWRzu92MGW2V0OmUnLS0NBQUFqFatWrHnq1WrhmulpPjOnz8fs0s42WJiYuAr48Wv6+HDqALg97t3cXXrVtnGtRVtbi766vXQXb2K/Z98giy144juERsbq8i4GoMBj584AQDYk5GBbAf4DnpXrgzv9HQc/PRT3HroIYs+o9T8FEVrMCBqwgT4AUjq0wcn79wBHGC+LMHa+XnM3x9emZn4dc0aZNSvr5BUluGflISHCwqQV7Eith07Jnuchj1+O5YSGhWFdocPw7BiBWJatYKk16stEmJjYxHw99+IApAbEIDtDmBN8cjJQV+tFprkZOz+8kvcrVJFNVkc6fdTGtnZ2TZ9zumUHYHmPiuFJEkPPCeYOnUqJk2aVPh3ZmYmwsLC0KtXL/iXsdq2hvyaNXFk40Y0efFFtKhVS7Zxy4Omc2dg715E5eXB2LevqrIYDAbExsaiZ8+e0Ctx4Tt+HLr8fEgBAYgaNUp1SxYA6Jo3B/buRecqVSCVMf+Kz08RtCtWQHflCqRq1RC2di3C7m8P4IDYOj+65s2BAwfQpXLlMr8DpdGsXw8A8GjeHH0ff1y2ce3527GYnj0hffklvK9eRd+cHEhPPKGaKEXnx3PTJgCAPjISfVX+PRQybx5w8iR6VKyoym/UIX8/pSA8M9bidMpOUFAQdDrdA1ac1NTUB6w9Ai8vL3iVUEtBr9fL+8U2a4arly+jRa1ajvODefxxYO9e6LZtg27CBLWlAaDAvAtOngQAaFq1gt7TU/7xbSEiAti7Fx5//UXNKS1AsfkR5OQA774LANDMmAF91arKHUsBrJ6fpk2BAwfgcfasxd+BYtyLFdFGRkKrgCyK/3asQa8HXngBmDULHqtXUw0e1UXS07kIQBsRoch3YBMdOwInT8IjPh4YPFg1MRzq91MKtsrndAHKnp6eaN269QPmttjYWHQSDTAZE6JH0d69VBfFlRHZDI5Ugt8RM7JWrQJSUiiVfMwYtaVRHkfKyHL14OT7GT2aLKwHDgAXLqgtDeFIwcmC9u1pe+iQunK4ME6n7ADApEmT8Mknn+DTTz9FYmIiJk6ciEuXLuGll15SWzTHo2FDqoiblwc4gT+2XBw+TNt27dSVoyiOpuwUFABLl9L+f/+rbvVYe+FIGVmunnZ+PzVrmkoZ3HPhqY4jKjsdOtD2yBFqJ8LIjlMqO0OGDMHSpUsxZ84ctGjRAvv378fWrVtRWxRnYkxoNED//rT/00/qyqIkd++auluLVZIjIC6o58+Twqk2//d/tMKuUgUYMUJtaeyDUHaSkqiukFpkZZEMRWVyB559lrZffKF+U9yCAuoyDjiWstOoEWVr5uQUuuMZeXFKZQcA/v3vf+PChQvIzc3F0aNH0a1bN7VFclyEK+vnn6lbtSty7BilkAYHmyqSOgI1alBV2YICqlCsNsuW0fbFF9VPw7YXVavSQ5LUtbAJN1q1akBQkHpy2JvoaLIgnjmjfg+oixeB3FySx5GuE1otu7IUxmmVHcYKunalVUNqKlBKLSKnR6SQtmvnEFlYhWg0phWk2q6sP/8E9u2jC+u//62uLPbGEXpkuZsLSxAQAAwYQPsqu7KKVbnX6VSV5QGEK4uVHUVgZccd8PQERNrnhg3qyqIUQtlxJBeWwFHidtaupW3v3hRL4U44QtyOuwUnF2XoUNp+/72qrqxCZceRXFiCjh1p6wh9Hl0QVnbchWHDaPvtt64ZAOfIyo4jtI0oKAA+/5z2R41STw61cISMLHe17ACkYHt7U8ySijEpDq3sdO5M1qakJEDlPo+uCCs77sKjj1KH3dRU6mrtSly/bgr8FH1mHAlHsOzs2kXNPitXNgWsuxOOYNlxZ2WnQgWgVy/a37JFPTmEsqN2t/OS8PcHWrem/X371JXFBWFlx13Q64Gnn6Z94c5wFYRVp1EjwBErAYsL65kz6gWIr1tH22eeoRW2u1E0I+vOHfsf/+ZN4OpV2hfxQ+7Gk0/SdvNm1URwaMsOAERF0XbvXjWlcElY2XEnRo+m7aZNZOFxFX79lbbC5+1o1KsHeHhQ2nNysv2Pn5NDKeeAKQ3Y3QgKoowsQB0Lm7Ao1apVZkNYl6V/fwqOP35clQKD+sxMaK5fpz8s7FNnd4Syw5Yd2WFlx51o3ZrcPAYD8NlnaksjH/v309ZRyw/o9UCDBrSvRtxOTAzVeAkLc8yYJnuhZtyOOwcnC4KCKDMUMCnfdqSisKzVqkVuNUekc2dSCM+fV2dh5MKwsuNujBtH2xUrSOlxdrKzqeoo4LjKDqBu3M69xod46inHSsu3N2rG7bhzvE5RRPPT7dvtfmi/y5dpx1FdWADH7SgIKzvuxtChVNTs4kVTdo4zExdHSluNGkDdumpLUzpqKTu5uaZV9KBB9j22o6FmrR1Wdog+fWi7dy+5V+1IRaHsNGxo1+NajWivsXOnunK4GKzsuBs+PsAbb9D+O+84v3WnqAvLka0WaqWf79wJZGYCoaGOG9NkL9RyY0mSSdlxpzYRJdGkCS1McnJM566d8Bfp3I7+HfTuTdvt21234r0KsLLjjrz4Ill3LlwwNYW0hfPngS+/BObOBd59F/jhByA9XTYxLcLR43UEall2irqwtG5+uquVkfXPP8CNG6SMO2LKsz3RaEzWHTu7svyEsuPo1rUuXYCKFel3o3Z7DRfCza9+boqvLyknAPDWW6S0WIrRCGzcCLRpA4SHA8OHA9OnA1OnUmppjRrAyy8DaWnKyF6UvDzgt99o39GVHWHZuX6dbnz2ID+fFFCAXViAehlZwm0WHk6WVXfnscdou22b/Y6ZmQlfcU1ydMuOpyfQowft22uOMjLgff06cOuWfY6nAqzsuCvPPQc88giZk4cOLdt/Lkl042zRgt5/9ChV++zcmSryDh9OvvCcHGD5clo9Ke1zPnyYjhcU5Pgr5goVKAsEsJ8b5eBBsrRVqUKrRUYdVxa7sIrz6KN07Th71lQMVGE0975vqUYNx6zFdT/C+rV1q3LHSE+nRW9EBPRVq6L32LHQBwfTwmzmTFNdKBeBlR13RaMB1qyhqsrx8WSVuX37wfdJEnVLb9+e3nPyJGUMzJkDpKQAv/wCfPopBTsnJlJ15saNyQTbpw/w1VfK/Q/CDP7oo44dryOIjKTtiRP2Od7PP9O2Tx/Ha3qoFmpkZHHaeXECAoBOnWjfXq4soew4S0FHkbV26BBdZ+Vm0yZanE6dWhhHWODhQa+dPQu8/TZZIufNoyQHF4CVHXemTh1qzOfrS7VYmjcHVq2ileihQ8CSJUDLlkC/fpTe7etLJ0dSEjBjhsklINBoKJPg6FHqxZWfTxYfETciN+JCKczijk6zZrS1t7IjLpyMOhlZbNl5EHHO2knZ0dz7viVn+Q5q1qQu6JIEfPedfONKEjBtGjB4MLnUGzUC1q6FISUFP23aBMO1a9QsumNHsppPm0YhC9a6fSXJ4YKrWdlxd7p1o75JtWqREvPii2SB6NgRmDQJ+P13csFMnkyvz5tHbhFzeHtT4PLYsfSj/9e/yKUiJ6mppFQBpp47jk7z5rS1h7Jz8SLd0LVaU3YHY383liSxZackxG9y9267ZIRqnM2yA5ja+3z7rTzjGY3AyJF0DQcoK/f4cQppCAyk56pUAYYMoar0X30FBAeTst6mjanljCV8+CHQty9w7Zo8sssAKzsMrSD++ANYuJDcVVWq0Mri0UfpR3vxIvDee/TDtxStlgoXDhxIgcSDB5NrSy5iY2nbvDmlVTsDwrJz8qTyqx7h6+/UqWzl1J2wd0bW5cuU+u/h4bgtCtSgZUuKtcvKIiuywgjLjlP1JRNJBQcOyBM/8+abFG7g4UGhB+++C3h5lfxejYb66P3+OwVLZ2eTojR8OP2ezfH778DrrwM7dqjb9PU+WNlhCD8/+oEeOkTZQsnJpFC88opJ67cWnY5OrogI4OpV6J59FpqCAnnkFYXynMWFBVDLCG9vusn+/beyx2IXVsnYOyNLuLAeeoiybBhCqwV69qT9mBhlj3XjBjT3LAySoycyFCUsjBYrklT+ArArVtCCFaBWQaNGWfa5kBBSWt5+m76zL7+kJBWRBXs/ly8DTzxBC9z+/clT4CCwssMoS8WK5HOuUAHaffsQLkfH45wc0808Orr849kLDw+TZeH335U7Tk4OuQcAVnZKwp6uLK6cXDrC/ay0snPPqpNdtSot6pyJsWNpu3q17dbgrVtp0QpQYom1zYB1Oiovsn8/ULs2WUVFFu7vv5MyVlAA/PgjeQYuXqSF3aefOlTiCCs7jPJERAAffQQAaLRhQ/lv9Dt2kHUkLIwamzoT9ojb2bOHFJ6aNfkmWxL2zMgSx3CWwFh7Iiw7R44AN28qd5x730Fm7drKHUMpnn6astf+/ptiK63l2DEaQ8TrTJ9uuyydO9O1+9lnScFZu5asPIGBlM4/YAC52xo3Jq9AUJDtx1IAVnYY+zBiBIwDBkCbnw+PUaPKl84osrsGDXKolYNFiLgdJS07RV1YzjY/9sCeGVls2SmdGjVICZQk227klnLvO7gdFqbcMZTC15fiZABg0SLrPpucTJm0d+5Q3M3KleW/HgQEAF98QW6sgQMp5ic9nWKvAgKAKVMoFMIBFUtWdhj7oNGgYPly5AYEQPPHH1S52RZu3zZVBX7qKfnksxdKW3ZEXSSAXVilYS83ltFoOgZbdkrGHq6se8pOpijq6WxMnEgu8B07So+VuZ/MTDr/r16l396mTfLGjHXoQGVLbt6ka9np05TKvmCBw7oKWdlh7EdwMH4fN47233uP0hutZcMGWkU0aGAqTOZMCMtOUlLZWQ22cPo0+cy9vKhCNvMg9srISkoid6KXF1C/vnLHcWaEsrNjBynqciNJhVZUp3RjAUC9epQeDpAbqqx5ys01FYANCaHFj1JVo319qVRJRASg1ytzDJlgZYexKykdOsA4fDitekeMKLlqszlWraLtCy84p4tGpPUDdDGSG2HVefhhqo/EPIi9MrKECysiglbmzIN060bKYHIyVe6VmwsXgIwMSHq9c7qxBNOnk2Vm927g669Lf19+PsXU7NlDFpaff3ZIl5IasLLD2J2CxYupiOHffwOvvWb5B+Pj6aHXm1Y6zoiScTvswrIMe7iyODi5bHx9ga5daV8JV5boGt6kCSQHtzyYpU4dqloPAOPGFbZ4KEZODsUxCpfVli1Aq1Z2FdORYWWHsT8BAVSNU6OhlMoff7Tsc6Ly59ChD7aqcCZatqStqAAtF+npJtcgKzvmsUdGFgcnW4aScTv3lB2pRQv5x7Y3U6ZQRlRmJrmoi8bvHD5Mmak//ECWsk2b2I19H6zsMOoQFUWBdwBlG/z5p/n3x8cDmzeTgjR1quLiKUq7drQ9fFjecWNjqd5FRARQt668Y7sa9sjI4p5YliGUnT175G866UrKjqcnBQU3bUrNQTt1IitxkyZU3+bUKapyv2MHFfRjisHKDqMe8+ZRD66MDKq6WVrAbn6+qSjWs8/SzdyZEbWBTp+mYGu5+Okn2rJVp2yUdmMZDKYYFLbsmCcyEqhWjVoSWJptZCmupOwApMwcOEA1czQaivs7fZoK/40YQQp29+5qS+mQsLLDqIeXF1VXrl6dAkUfe4wUn/uZNQuIi6OAuwUL7C6m7ISGUpCy0QgkJMgzZkGBqR8Wr+rKRumMrL/+opL5vr4cIFoWSrWOSE2l1GuNBlJkpHzjqk2lStTy4epVapvz889k6Vm3zrnd+wrDyg6jLqGhFLNTuTKt6jp3JpcVQKvjmTOBuXPp75UrnafpZ1nI7cqKi6OeZpUqOWdKvr1ROiNLBJ9HRtLNnDGPEnE7x4/TNjzcYWu/lIuQEFrY9O3LSo4F8FnIqE+rVpRSWa0a+Z3btqXGiaGh1IAOoCKEw4apK6ecCFfWkSPyjCeCvPv04TRnS1EySFkoO67iPlEaYdlJSKDidHIgMrFEQgDj1rCywzgGLVqY+q5otRSwfOMGrVjWrSNXlisht2VHxOv06yfPeO6AcG0oUe9IWBVExWzGPCEhNFeSBOzcKc+YwkLMyg4DVnYYR6JaNeq7kppKF7yDB4ErVyjwztVo3ZoCDC9cKP9K9sIFCkzU6SjuibEMYXURiomcsGXHeuR2ZcXF0bZDB3nGY5waVnYYxyMwkBrXdezo8CXIbSYgAGjUiPYPHSrfWKKQYOfOVKGZsYyiyo6crQpSUylgVKMxWY+Ysimq7JT3+7h6laoya7VAmzbll41xeljZYRi16NyZtgcOlG8cdmHZRuPGFN904wZZEOVCWHXCw4GKFeUb19Xp0gXw9iZFpbwlAYRVp2lT/g4YAKzsMIx6iHoY+/bZPkZWFgV3A6zsWIu3t6lmk5yuLI7XsQ1vb9M5UV5XlrCWsguLuYfTKTt16tSBRqMp9njzzTfVFothrKdbN9oePWp9Q1TBtm1Uz6VePZNbjLEcoZDIqexwvI7t9O5N2/IqO8Ky0759+cZhXAanU3YAYM6cOUhJSSl8TJ8+XW2RGMZ6atWiBn8FBbZXjv32W9oOGuScXeDVRokgZbbs2I6I29m3D7h717YxDAZTSQdWdph7OKWy4+fnh5CQkMJHRfbJMs6KsO7Y4srKzjYFJw8eLJ9M7oTcys7du6aO1GzZsZ7Gjamiek6OqamttRw5QudGUJDzt5ZhZMMplZ0FCxYgMDAQLVq0wNy5c5GXl6e2SAxjGw8/TFtbzPZbt9JFvU4dSmVnrEdYX86fL703mzWcPk2WuipVgBo1yj+eu6HRmKw7O3bYNsbevbTt3p2rVzOFOF2p1f/85z9o1aoVKleujMOHD2Pq1KlISkrCJ598UupncnNzkVukm27mvYuawWCAwWCQTTYxlpxjuhI8PyXQowf0ABAfD0NyMgDL50e3cSO0AAqio2HMz1dMREdBkd9PQAA8ataE5vJl5CckQBIZcjaiOXoUHgCMzZujwI7fiSudW5pHHoHH2rWQtm1DvmgVYwW6PXvovOjaFcb75sUV5kcJnGl+bJVRI0lyFpiwjVmzZmH27Nlm33PkyBG0KaFewnfffYdBgwYhLS0NgYGBVo2/fv16+Pr62iY0w8hE99deQ6Xz55EwfjySe/Sw6DO6nBw8NmoUPO7exb733sOtBg0UltJ1af/OOwiJj8eJsWORVM6O8c0+/hh1t2/HX088gVOjRskkoXuhz8zEYyNHQms0Yufy5bhTvbrFn9UYDOj77LPwyM3F7mXLcJubsLoc2dnZeOaZZ5CRkQF/f3+LP+cQyk5aWhrS0tLMvqdOnTrw9vZ+4PkrV66gZs2aOHToENqXEoxWkmUnLCwMaWlpVk1WWRgMBsTGxqJnz57Qu2oxvHLA81My2tmzoZs7F/kDB+Ln556zaH4069bBY+xYSOHhyD91yi2Ck5X6/Wjfegu6+fNhHDkSBatWlWssXYcO0CYkIH/9ekiDBskkYdm42rml69cP2pgYFMyZA6MV2baagwfhERUFKSgI+VeuFJ4XrjY/cuNM85OZmYmgoCCrlR2HcGMFBQUhKCjIps8eu9fsLdRMN2wvLy94eXk98Lxer1fki1VqXFeB5+c++vcH5s6FbudOaIcNs2x+Pv8cAKB5/nnoPT3tIKTjIPvv515TVm1CArTlGffuXeDECQCAR6dOqlT/dplz6+mngZgY6L77DroZMyz/3L04H02PHiWeFy4zPwrhDPNjq3xOFb3122+/YcmSJTh+/DiSkpLwzTff4MUXX8SAAQNQq1YttcVjGNto2xaoWROa27dRTTQvNMdff1HVZa3WNfuG2RthEf7jDyrSaCvHjwP5+UBwMJUVYGznySepuvXvvwNnz1r+uR9/pO2AAcrIxTgtTqXseHl5YePGjYiKikLjxo0xc+ZMjB07Fl9//bXaojGM7Wi1wL/+BQAIE5kk5vjf/2jbuzdn/MhB9epAzZqA0WjqlG0LooN9u3Zu4VZUlMBA4NFHaf+bbyz7TFKSqSFunz7KycY4JU6l7LRq1QqHDh3CrVu3kJOTgzNnzmDWrFkcZMw4P8OHAwCqHT0KmItfS08HRObhhAl2EMxNEG0FROVdWyiq7DDl5+mnafv555Y1BhVWnS5dgMqVlZOLcUqcStlhGJelSRNILVtCW1AA7dq1pb/v44+BO3eAZs2Anj3tJp7LI1xZrOw4DoMHA35+5Lbds6fs92/aRFt2YTElwMoOwzgIBS+/DADQfvghUCR7sJD0dOC992h/8mR2lciJUHYOHbLMinA/N28Cf/5J+/cCnplyUrFioXsXZWXJ/f03xbFpNMCQIcrLxjgdrOwwjIMgDR2KnMBAaFJSgGXLHnzDjBmk8DRtCjzzjP0FdGVat6ZYj5QU4PJl6z8vLELh4VQ9mZGHF16g7fffA/eKbpbIunW0ffRRjmNjSoSVHYZxFDw9kShWsnPmUOsBwY8/Ah99RPtLltCNmZEPX19yDQK2ubL276dt167yycQALVtS2weDAZg3r+T35OQAK1bQ/ujR9pONcSpY2WEYByI5KgrGqCiKy3nsMWDzZlJyRLDmyy+bslQYeRFByr/8Yv1nRSNX0diVkQ9R/X7NGuDixQdf/+wz4Pp1Svd/6in7ysY4DazsMIwjodWiYP16oEEDMttHRwOvvEIF6/r3J6sOowxRUbS1JBi2KNnZ1GkbICsEIy/du1PDXIOBzoWiMVW3bgFvvUX7kydTbR6GKQFWdhjG0QgKosyel18G6tYFIiOBxYspbsHBq5s6NULZOXHCfPr//fz2GxUTDAujDvSM/Hz4IeDpCfz0E7BgAT2Xnw+MHEnfVaNGwEsvqSoi49iwGswwjkilSqbigYx9CA4GmjQBTp0C9u4FLO1tVdSFxRlyytCkCWUi/uc/wNSpwK5dwI0bwLFjpAStW8cLAcYsbNlhGIYRPPwwba1xZd3rx1T4WUYZXn0VeOcdqji+cycpOhUrAhs3cm0jpkzYssMwDCN45BGyqO3cadn7U1NN8TrcokB5pk0DnngC+PlnwNubYtrCwtSWinECWNlhGIYRPPIIuUPOnQPOnKFYEHPs2EEBsy1bUo8tRnmaNqUHw1gBu7EYhmEEAQEmd9QPP5T9/p9/pm3fvsrJxDBMuWFlh2EYpihPPknbspSdvDxTvA4rOwzj0LCywzAMUxTRSPLQIWofURrbt1Odl9BQU28thmEcElZ2GIZhilKjBtCxI8XirF9f+vvEa8OGcfsOhnFwWEhD+EAAAA79SURBVNlhGIa5n1GjaLtmTcld0FNTqZUHwE1ZGcYJYGWHYRjmfoYMoeagiYklp6GvWkUxO+3aUcd0hmEcGlZ2GIZh7sffHxg7lvbffvvBfkyiR9n48faXjWEYq2Flh2EYpiQmT6ZWBAcOAF99ZXp+xgzg5k0gIgIYOlQ9+RiGsRguKsgwDFMSNWsCM2cC06dTk8mAAOD0aVPPssWLucs2wzgJfKYyDMOUxpQp1OgzNtaUkg5QM8rHHlNPLoZhrILdWAzDMKWh11NxwVdeAQIDqQ/T8uXA3LlqS8YwjBWwZYdhGMYcPj7Ahx/Sg2EYp4QtOwzDMAzDuDSs7DAMwzAM49KwssMwDMMwjEvDyg7DMAzDMC4NKzsMwzAMw7g0rOwwDMMwDOPSsLLDMAzDMIxLw8oOwzAMwzAuDSs7DMMwDMO4NKzsMAzDMAzj0rCywzAMwzCMS8PKDsMwDMMwLg0rOwzDMAzDuDSs7DAMwzAM49J4qC2AGkiSBADIzMyUdVyDwYDs7GxkZmZCr9fLOrYrwPNjHp4f8/D8lA7PjXl4fszjTPMj7tviPm4pbqns3L59GwAQFhamsiQMwzAMw1jL7du3ERAQYPH7NZK16pELYDQacfXqVfj5+UGj0cg2bmZmJsLCwpCcnAx/f3/ZxnUVeH7Mw/NjHp6f0uG5MQ/Pj3mcaX4kScLt27dRvXp1aLWWR+K4pWVHq9WiZs2aio3v7+/v8D8YNeH5MQ/Pj3l4fkqH58Y8PD/mcZb5scaiI+AAZYZhGIZhXBpWdhiGYRiGcWl0s2bNmqW2EK6ETqdDVFQUPDzc0kNYJjw/5uH5MQ/PT+nw3JiH58c8rj4/bhmgzDAMwzCM+8BuLIZhGIZhXBpWdhiGYRiGcWlY2WEYhmEYxqVhZYdhGIZhGJeGlR0ZWb58OerWrQtvb2+0bt0aBw4cUFskuzNr1ixoNJpij5CQkMLXJUnCrFmzUL16dfj4+CAqKgqnTp1SUWJl2b9/P/r374/q1atDo9Fgy5YtxV63ZD7S09MxfPhwBAQEICAgAMOHD8etW7fs+W8oRlnzM3LkyAd+Tx06dCj2ntzcXIwfPx5BQUGoUKECBgwYgMuXL9vz31CE+fPno23btvD7//buNqatso0D+L/wtA2BpqHy0gKKiM7JWuqADEvmaFgGI8NMSZZNcamakWyxzE744Jy6qEtG9mGRZGZqNMuWqCxxY9Gw4VgGVULZGFB5U4MZUDPb4ZCxCUKhvZ4PxpOnAx6aWHr09PolTdpz7nN63f/cJ1w7tEylQlJSEp5++mn8+OOPAWOCmbvL5cJTTz2F2NhYJCQkYO/evfB6veGcyooIJh+z2bxg/ezYsSNgjFSvr+PHjyM7O1v4Q4EmkwkXLlwQ9kfa2uFmJ0ROnz4Nm82GAwcOoKenB08++SRKS0vhcrnELi3s1qxZA7fbLTz6+vqEfUeOHMHRo0dx7NgxdHZ2QqvVYtOmTcL/VyY1U1NTMBqNOHbs2KL7g8njueeeg9PpRFNTE5qamuB0OrFz585wTWFFLZcPAGzevDlgPZ0/fz5gv81mQ0NDA+rr69HW1obff/8dZWVl8Pl8K13+irLb7Xj55ZfR0dGB5uZmzM/Po7i4GFNTU8KY5ebu8/mwZcsWTE1Noa2tDfX19Thz5gyqq6vFmlbIBJMPAFRWVgasnw8//DBgv1Svr7S0NNTW1uLatWu4du0aioqKsHXrVuEfUxG3doiFxLp162j37t0B21avXk2vvfaaSBWJ4+DBg2Q0Ghfd5/f7SavVUm1trbBtZmaG1Go1ffDBB+EqUTQAqKGhQXgdTB6Dg4MEgDo6OoQxDoeDANAPP/wQvuLD4N58iIgsFgtt3bp1yWNu375Ncrmc6uvrhW03btygqKgoampqWrFaxTA2NkYAyG63E1Fwcz9//jxFRUXRjRs3hDGff/45KZVKmpycDO8EVti9+RARFRYW0iuvvLLkMZF0fRERxcfH08cffxyRa4fv7ISA1+tFV1cXiouLA7YXFxejvb1dpKrEMzQ0hJSUFGRkZGDHjh24fv06AGB4eBgejycgJ6VSicLCwojMKZg8HA4H1Go18vPzhTFPPPEE1Gp1xGTW2tqKpKQkrFq1CpWVlRgbGxP2dXV1YW5uLiDDlJQU6PV6yeUzOTkJANBoNACCm7vD4YBer0dKSoowpqSkBLOzs+jq6gpj9Svv3nz+8umnnyIhIQFr1qxBTU1NwF3TSLm+fD4f6uvrMTU1BZPJFJFrR5p/KjHMbt26BZ/Ph+Tk5IDtycnJ8Hg8IlUljvz8fJw6dQqrVq3CzZs3cejQIRQUFGBgYEDIYrGcRkdHxShXVMHk4fF4kJSUtODYpKSkiFhbpaWl2LZtG9LT0zE8PIw333wTRUVF6OrqglKphMfjgUKhQHx8fMBxUrv2iAivvvoq1q9fD71eDwBBzd3j8SxYX/Hx8VAoFJLPBwAqKiqQkZEBrVaL/v5+7N+/H9999x2am5sBSP/66uvrg8lkwszMDOLi4tDQ0ICsrCw4nc6IWzvc7ISQTCYLeE1EC7ZJXWlpqfDcYDDAZDIhMzMTJ0+eFD5YyjkFWi6PxbKJlMy2b98uPNfr9cjLy0N6ejoaGxtRXl6+5HFSy8dqtaK3txdtbW3Ljo3E9bNUPpWVlcJzvV6PRx55BHl5eeju7kZOTg4Aaefz6KOPwul04vbt2zhz5gwsFgvsdvuS46W8dvjXWCGQkJCA6OjoBd3u2NjYgs440sTGxsJgMGBoaEj4Vhbn9Kdg8tBqtbh58+aCY3/99deIzEyn0yE9PR1DQ0MA/szH6/ViYmIiYJyU1lRVVRW+/PJLtLS0IC0tTdgezNy1Wu2C9TUxMYG5uTnJ57OYnJwcyOXygPUj5etLoVDg4YcfRl5eHg4fPgyj0Yi6urqIXDvc7ISAQqFAbm6ucGv0L83NzSgoKBCpqn+G2dlZfP/999DpdMLt5P/Nyev1wm63R2ROweRhMpkwOTmJq1evCmOuXLmCycnJiMxsfHwcP//8M3Q6HQAgNzcXcrk8IEO3243+/v5/fT5EBKvVirNnz+Ly5cvIyMgI2B/M3E0mE/r7++F2u4UxFy9ehFKpRG5ubngmskKWy2cxAwMDmJubE9ZPpF1fRITZ2dnIXDsifChakurr60kul9Mnn3xCg4ODZLPZKDY2lkZGRsQuLayqq6uptbWVrl+/Th0dHVRWVkYqlUrIoba2ltRqNZ09e5b6+vro2WefJZ1OR3fu3BG58pVx9+5d6unpoZ6eHgJAR48epZ6eHhodHSWi4PLYvHkzZWdnk8PhIIfDQQaDgcrKysSaUkj9v3zu3r1L1dXV1N7eTsPDw9TS0kImk4lSU1MD8tm9ezelpaXRpUuXqLu7m4qKishoNNL8/LyIM/v79uzZQ2q1mlpbW8ntdguP6elpYcxyc5+fnye9Xk8bN26k7u5uunTpEqWlpZHVahVrWiGzXD4//fQTvf3229TZ2UnDw8PU2NhIq1evprVr1wasDaleX/v376dvvvmGhoeHqbe3l15//XWKioqiixcvElHkrR1udkLo/fffp/T0dFIoFJSTkxPwFchIsX37dtLpdCSXyyklJYXKy8tpYGBA2O/3++ngwYOk1WpJqVTShg0bqK+vT8SKV1ZLSwsBWPCwWCxEFFwe4+PjVFFRQSqVilQqFVVUVNDExIQIswm9/5fP9PQ0FRcXU2JiIsnlcnrggQfIYrGQy+UKOMcff/xBVquVNBoNxcTEUFlZ2YIx/0aL5QKATpw4IYwJZu6jo6O0ZcsWiomJIY1GQ1arlWZmZsI8m9BbLh+Xy0UbNmwgjUZDCoWCMjMzae/evTQ+Ph5wHqleXy+99JLw8ygxMZE2btwoNDpEkbd2ZERE4buPxBhjjDEWXvyZHcYYY4xJGjc7jDHGGJM0bnYYY4wxJmnc7DDGGGNM0rjZYYwxxpikcbPDGGOMMUnjZocxxhhjksbNDmOMMcYkjZsdxtg/ktlshs1mE7sMxpgE8F9QZoyJzmw24/HHH8d7770nbPvtt98gl8uhUqnCXo/NZsPIyAjOnTsX9vdmjIUe39lhjP0jaTQaURodAOjs7MS6detEeW/GWOhxs8MYE9ULL7wAu92Ouro6yGQyyGQyjIyMLPg1ltlsRlVVFWw2G+Lj45GcnIyPPvoIU1NTePHFF6FSqZCZmYkLFy4IxxARjhw5goceeggxMTEwGo344osvlqxlbm4OCoUC7e3tOHDgAGQyGfLz81d0/oyxlcfNDmNMVHV1dTCZTKisrITb7Ybb7cb999+/6NiTJ08iISEBV69eRVVVFfbs2YNt27ahoKAA3d3dKCkpwc6dOzE9PQ0AeOONN3DixAkcP34cAwMD2LdvH55//nnY7fZFzx8dHY22tjYAgNPphNvtxtdff70yE2eMhQ1/ZocxJrrFPrNz7zaz2Qyfz4dvv/0WAODz+aBWq1FeXo5Tp04BADweD3Q6HRwOBwwGAxISEnD58mWYTCbhvLt27cL09DQ+++yzRWs5d+4cdu3ahVu3bq3UdBljYfYfsQtgjLFgZWdnC8+jo6Nx3333wWAwCNuSk5MBAGNjYxgcHMTMzAw2bdoUcA6v14u1a9cu+R49PT0wGo0hrpwxJiZudhhj/xpyuTzgtUwmC9gmk8kAAH6/H36/HwDQ2NiI1NTUgOOUSuWS7+F0OrnZYUxiuNlhjIlOoVDA5/OF9JxZWVlQKpVwuVwoLCwM+ri+vj4888wzIa2FMSYubnYYY6J78MEHceXKFYyMjCAuLg4ajeZvn1OlUqGmpgb79u2D3+/H+vXrcefOHbS3tyMuLg4Wi2XR4/x+P3p7e/HLL78gNjYWarX6b9fCGBMXfxuLMSa6mpoaREdHIysrC4mJiXC5XCE577vvvou33noLhw8fxmOPPYaSkhJ89dVXyMjIWPKYQ4cO4fTp00hNTcU777wTkjoYY+Lib2MxxhhjTNL4zg5jjDHGJI2bHcYYY4xJGjc7jDHGGJM0bnYYY4wxJmnc7DDGGGNM0rjZYYwxxpikcbPDGGOMMUnjZocxxhhjksbNDmOMMcYkjZsdxhhjjEkaNzuMMcYYkzRudhhjjDEmaf8FrwhtYwRuJNwAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = linspace(0, 20π*5, 1000)\n", - "# find solution by the brute-force eᴬᵗ [0,1]:\n", - "x = [(expm(C*t)*[0,0,1,0]) for t in t]\n", - "plot(t, [x[1] for x in x], \"r-\")\n", - "plot(t, [x[2]+20 for x in x], \"b-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solutions $x(t)$\")\n", - "title(\"motion of 2 masses on springs\")\n", - "legend([L\"first mass $x$\", L\"second mass $x+20$\"])\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, this looks a bit more complicated. But the eigenvalues should clarify the situation for us:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -1.38778e-18+0.173205im\n", - " -1.38778e-18-0.173205im\n", - " -1.59595e-17+0.1im \n", - " -1.59595e-17-0.1im " - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(C)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are four **purely imaginary** (=oscillating!) eigenvalues, coming in two complex-conjugate pairs. So, there are only **two frequencies** in this problem: $\\omega_1 = 0.1$ and $\\omega_2 = 0.1\\sqrt{2} \\approx 0.173205$.\n", - "\n", - "It is possible to get *only one of these solutions at a time* if we *choose our initial conditions to excite only one eigenvector* (or one complex-conjugate pair).\n", - "\n", - "In particular, for a given eigenvector $\\vec{x}_k$, there is a solution $\\vec{x}(t) = e^{\\lambda_k t} \\vec{x}_k$ with initial condition $\\vec{x}(0) = \\vec{x}_k$.\n", - "\n", - "Or, we could get a real solution from an eigenvector by adding the complex-conjugate solution (which is also an eigenvector since the matrix is real), corresponding to a solution:\n", - "\n", - "$$\n", - "\\vec{x}(t) = \\operatorname{Re} \\left[ c e^{\\lambda_k t} \\vec{x}_k \\right]\n", - "$$\n", - "\n", - "with an initial condition $\\vec{x}(0) = \\operatorname{Re} \\left[ c \\vec{x}_k \\right]$, where $c$ is an arbitrary complex number that determines the amplitude and phase of the oscillation.\n", - "\n", - "For an oscillating system, these are often called the [normal modes](https://en.wikipedia.org/wiki/Normal_mode) of oscillation. Let's plot these two \"eigensolutions\" for our 2-mass problem:" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHICAYAAAC1RhXqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4VNXWxt+ZZJIQktBDEloQEAg1lASQEsRQoigg1StcLHgvRT/kYuGqINeCIipcC1dRQUUQCyIKBKI0KaGF0EuQKgQCBtJImSTn+2O5cyZ9Mjkzp8z6PU+eM5nMnLNm5cze795r7bVNkiRJYBiGYRiGYYowq20AwzAMwzCM1mCBxDAMwzAMUwIWSAzDMAzDMCVggcQwDMMwDFMCFkgMwzAMwzAlYIHEMAzDMAxTAhZIDMMwDMMwJWCBxDAMwzAMUwIWSAzDMAzDMCVggcQwDMMwDFMCFkgMwzAMwzAlYIHEME5g1apVaNeuHWrUqAGTyYSFCxfCZDLh/Pnzil1j165dePnll3Hr1i3Fzqk3li1bprhfncXLL78Mk8mkthmqkJmZienTpyMkJAQ+Pj7o3Lkzvv76a7vem5GRgWeffRYDBw5EgwYNYDKZ8PLLLzvXYIYBCySGUZzr169j/PjxaNGiBWJjY7F7924MHz4cu3fvRnBwsGLX2bVrF+bOnevWAonRByNGjMDnn3+OOXPmYMOGDejevTvGjRuHFStWVPreP//8Ex9//DFyc3MxbNgwF1jLMISn2gYwjNE4ffo0rFYrHn74YfTr16/o+WbNmlX63tu3b8PX19eZ5jkVvdvPKM/69esRFxeHFStWYNy4cQCA/v3748KFC3jmmWcwZswYeHh4lPv+Zs2a4ebNmzCZTLhx4wY++eQTV5nOuDk8g8QwCjJx4kT07t0bADBmzBiYTCZERUWVGQoSIZeEhASMHDkSderUQYsWLQDQLNQTTzyBJk2awNvbGw0aNMBdd92FX375pei9zzzzDACgefPmMJlMMJlM2Lp1a5l2iWsdO3YM48aNQ61atdCwYUM8+uijSEtLK/X6HTt2YMCAAfD394evry969eqFdevWlXnOsuwXfzt8+DBGjRqFWrVqoW7dupgxYwby8/Nx6tQpDB48GP7+/ggNDcX8+fOLnfvMmTN45JFH0KpVK/j6+qJRo0YYOnQojhw5UvV/igL2VMUvALBu3Tp07twZ3t7eaN68ORYsWFDm+ZKSkvDQQw8hMDAQ3t7eaNu2LT744AO7P9elS5cQEBCAJ598ssy/p6WlwWQyYfLkyXafU2l++OEH+Pn5YdSoUcWef+SRR3DlyhXs2bOnwveLe5thXA3PIDGMgrz00kuIiIjA1KlT8frrr6N///4ICAjA3r17y33PiBEjMHbsWPzzn/9EVlYWAGD8+PFISEjAa6+9hjvvvBO3bt1CQkIC/vzzTwDA448/jtTUVLz33ntYvXp1UeguLCysQvsefPBBjBkzBo899hiOHDmCWbNmAQA+++yzotds27YN0dHR6NixIz799FN4e3vjww8/xNChQ7Fy5UqMGTOmUvsFo0ePxsMPP4x//OMfiIuLw/z582G1WvHLL79gypQpmDlzJlasWIHnnnsOLVu2xIgRIwAAV65cQb169fDGG2+gQYMGSE1Nxeeff47IyEgcPHgQrVu3tuffUQpH7amKX3799Vc88MAD6NmzJ77++msUFBRg/vz5uHbtWjFbjh8/jl69eqFp06Z4++23ERQUhI0bN+Kpp57CjRs3MGfOnEo/z1NPPQUvLy+89tprZf69Vq1aCAkJQXx8vEP+kiQJBQUFdr3W07Ps7uTo0aNo27Ztqb937Nix6O+9evVyyD6GcSoSwzCKsmXLFgmA9O233xY9t3TpUgmAdO7cuaLn5syZIwGQZs+eXeocfn5+0vTp0yu8zltvvVXqnOUhrjV//vxiz0+ZMkXy8fGRCgsLi57r0aOHFBgYKGVkZBQ9l5+fL7Vv315q3Lhx0Wsrsl/87e233y72fOfOnSUA0urVq4ues1qtUoMGDaQRI0aUa39+fr6Ul5cntWrVSnr66aeLni/LrxV9/urYY69fIiMjpZCQECk7O7vodenp6VLdunUl2yZ30KBBUuPGjaW0tLRi15k2bZrk4+MjpaamVviZ9uzZIwGQXn/99Qpf16tXL6lOnTpFv3/44YdSeHi45OnpKc2ZM6fC94p72Z6f8v4HrVq1kgYNGlTq+StXrthlvy3Xr1+XAFRqN8MoAYfYGEZlHnzwwVLPRUREYNmyZXj11VcRHx8Pq9WqyLXuv//+Yr937NgROTk5SElJAQBkZWVhz549GDlyJPz8/Ipe5+HhgfHjx+OPP/7AqVOnKrVfcN999xX7vW3btjCZTBgyZEjRc56enmjZsiUuXLhQ9Fx+fj5ef/11hIWFwcvLC56envDy8kJSUhJOnDhR9Q9eTXvs9UtWVhb27duHESNGwMfHp+h1/v7+GDp0aNHvOTk5+PXXXzF8+HD4+voiPz+/6CcmJgY5OTmVzvosXrwYZrMZjz76aNFzmzdvxsqVK4u9LisrC5IkFf0eHByMuXPn2pXw3LVrV+zbt8+un5CQkHLPU1GIjMNnjFbhEBvDqExZK9tWrVqFV199FZ988gleeukl+Pn5Yfjw4Zg/fz6CgoIcvla9evWK/e7t7Q0AyM7OBgDcvHkTkiSVaZPoAEWYryL7BXXr1i32u5eXF3x9fYuJB/F8enp60e8zZszABx98gOeeew79+vVDnTp1YDab8fjjjxfZ6giO2mOvX/z8/FBYWFjm/8j2uT///BP5+fl477338N5775Vp640bNyr8LHFxcWjXrh0aNmxY9NzLL7+MBg0aFCVDA8C1a9fQsmXLot+FMPrxxx8rPD8A+Pn5oXPnzpW+Dig/xFavXr1S9wwApKamAij9P2EYrcACiWFUpqwRdP369bFw4UIsXLgQFy9exNq1a/H8888jJSUFsbGxTrNFCJHk5ORSf7ty5UqRbbY4YwZg+fLlmDBhAl5//fViz9+4cQO1a9dW/HqVYa9f6tSpA5PJhKtXr5Z6ne1zderUKZp9mjp1apnXbN68ebn2ZGdn4/Lly+jevXvRc6mpqYiPjy92vqNHj+Lq1auYMGFC5R+yDLZt24b+/fvb9dpz584hNDS01PMdOnTAypUrkZ+fX0xEiYT79u3bO2QbwzgbFkgMo3GaNm2KadOm4ddff8XOnTuLni85+6MENWvWRGRkJFavXo0FCxagRo0aAIDCwkIsX74cjRs3xp133qnY9crDZDIVfT7BunXrcPny5WKzIa7CXr+YTCZERERg9erVeOutt4pmpjIyMvDTTz8Vnc/X1xf9+/fHwYMH0bFjR3h5eVXJHpE4nZOTU/Tc//73P3h4eCAvL6/ouUWLFsFsNmPixIkOfW4RYrOH8kJsw4cPx5IlS/D9998XS/D//PPPERISgsjISIdsYxhnwwKJYTRGWloa+vfvj4ceeght2rSBv78/9u3bh9jY2GKrqjp06ACAOsG///3vsFgsaN26Nfz9/at1/Xnz5iE6Ohr9+/fHzJkz4eXlhQ8//BBHjx7FypUrXZIzct9992HZsmVo06YNOnbsiAMHDuCtt95C48aNnX7t8rDXL6+88goGDx6M6Oho/Otf/0JBQQHefPNN1KxZsyisBND/rXfv3ujTpw8mT56M0NBQZGRk4MyZM/jpp5+wefPmcm3x8/PDnXfeic2bN+Ozzz6D1WrFggULMG3aNKxYsQJDhgzB9u3b8cknn2DGjBlo27atQ5/Z398f3bp1c+i9giFDhiA6OhqTJ09Geno6WrZsiZUrVyI2NhbLly8vVgNp27ZtGDBgAGbPno3Zs2cXPb9hwwZkZWUhIyMDAK0A/O677wAAMTExXHuLcQoskBhGY/j4+CAyMhJffvklzp8/D6vViqZNm+K5557Ds88+W/S6qKgozJo1C59//jmWLFmCwsJCbNmyBVFRUdW6fr9+/bB582bMmTMHEydORGFhITp16oS1a9eWSnJ2FosWLYLFYsG8efOQmZmJLl26YPXq1XjxxRddcv2ysNcv0dHRWLNmDV588UWMGTMGQUFBmDJlCrKzszF37tyi14WFhSEhIQGvvPIKXnzxRaSkpKB27dpo1aoVYmJiKrXniy++wKRJkzBlyhS0atUK33zzDbp06YK9e/di5MiRCAkJwfz58zFz5kyn+KMqrF69Gi+88AJmz56N1NRUtGnTBitXrsTYsWOLvU76q6xAYWFhsecnT55cLGn+22+/xbfffgug/NAew1QXk2S7vIFhGIYxNGK13OTJk9GoUSO8+OKLsFgsFVazZhh3hAUSwzCMG/Hyyy8Xm8kCgKVLlzqcp8QwRoUFEsMwDMMwTAm4UCTDMAzDMEwJWCAxDMMwDMOUgAUSwzAMwzBMCVggMQzDMAzDlIDrINlJYWEhrly5An9/f95ckWEYhmF0giRJyMjIQEhICMxm++eFWCDZyZUrV9CkSRO1zWAYhmEYxgEuXbpUpWr8LJDsRGzfcOnSJQQEBCh2XqvVik2bNmHgwIGwWCyKndcosH8qhv1TMeyfimH/lA/7pmL05J/09HQ0adKkytswsUCyExFWCwgIUFwg+fr6IiAgQPM3mRqwfyqG/VMx7J+KYf+UD/umYvTon6qmx3CSNsMwDMMwTAlYIDEMwzAMw5SABRLDMAzDMEwJWCAxDMMwDMOUgAUSwzAMwzBMCVggMQzDMAzDlIAFEsMwDMMwTAlYIDEMwzAMw5SABRLDMAzDMEwJWCAxDMMwDMOUgAUSwzAMwzBMCVggMQzDMAzDlIAFElNl8vOBa9eAvDy1LTE2kgSkpADZ2WpbYmwkCbh5E0hPV9sS45ORQb6WJLUtMTY5OdR2sJ+rBwskxm5u3QKmTwfq1weCgoC6dYFJk4Dr19W2zFhYrcD8+UCjRkDDhkBAAPDAA0BSktqWGQtJAr76Cmjblu7l2rWBu+4Ctm9X2zLjsXUr0KsX3ct16wLt2gErV6ptlfE4cQK4/37Az4/ajkaNgLfeAgoK1LZMn7BAYuziwgUgMhJYtAhIS6PnsrKATz4BunQBTp5U1z6jkJEBDBkCPPcckJxMz+XnA2vXAp07A3Fx6tpnFAoLgcmTgYcfBk6douckCdi1C+jfH/jwQ3XtMxL//S9w993A7t3ycydOAA89BEydyrMcShEbC3TvDvz0kyyIkpOBZ58FBg8Gbt9W1z49wgKJqZRbt+gLdvo00KQJsGEDzXJs2wbceSfwxx9AdDSF3RjHKSgAxo4Ffv2VRoCffUZT5UePAv36UQN3//1AQoLaluqf558HPvoIMJuBuXPpHv/jD2DCBBJPU6fyDIcSfPkl8H//RyLokUeAy5cpxDZnDmAykRB94QW1rdQ/e/cCw4fToPXuu4Hjxyk0/8knQM2awC+/AGPG0L3N2A8LJKZSpk2jGaLGjWmEPXgw4OkJ9O0L7NwJtG5NncvDD/NosDq8+y6wfj3g40MzRY88Anh7Uzhi40bye04O8OCD1BAyjvHzzxR2AIBly4DZs4FatSgcsWwZ8PTT9LdJkzisWR1OnQL++U96PHMmCf6QEAplvvwy8Omn9Ld582jQxThGVhbwt79R23DvvTST1LYttSOPPUZth49P8fuesQ8WSEyFbNhAeRpmM/DddySSbKlfH/jxR6BGDRqlfPaZOnbqndOngZdeosfvvQf06FH8797eNKPRtClw/jzwn/+43ERDkJVFgh+gfLrx44v/3WQCFiwAoqLotf/4B4t+R5AkEke3bwMDBgBvvln6NY88Ajz5JD2eMoUXIzjKc88BZ85Q27x8OWCxFP/7XXdRmwKQMD1/3tUW6hcWSEy5WK0UagCoM4mMLPt1rVvLHfaLL/LshiPMmEEjwOhoGvWVRe3awPvv0+N33qFpdKZqvP465dM1awa89lrZrzGbSeh7ewNbttDIm6kaa9ZQYraPD80UmcvpaebNo479/HngjTdcaaExOHkSWLyYHi9bRm1EWTz2GOXW5eQA//qXy8zTPSyQmHJZtgw4d45WQ1Q2Y/HUU0Dz5sDVq5TIzdhPfDywbh3g4UECyGQq/7VDh1IeUn4+8MorrrPRCFy/TmFMAFi4EPD1Lf+1zZvLobaZM3kVUFXIzweeeYYeP/MMidHyqFmTxD5AM3d//ul8+4zECy9QXtH999NMXXmYTJQs7+EBrF5NbQ5TOSyQmDLJywNefZUeP/88NWQV4eUld9jz5wOZmc61z0jMnk3HCRMo6b0yhFhdtYpWAzH28c47FMbp1o3KJlTGrFlAvXoU/ly92vn2GYXvvwd+/53C788+W/nrR46klbC3b/PgqiocOkT3pdlMM6OV0b69HFLm2Tr7YIHElMk33wAXL1K9o3/8w773jBsHtGpFZQCWLXOqeYbh8GFKyPbwkHOQKqNTJ2DYMMrzWLDAw7kGGoS0NOCDD+jxiy9WPEsnCAiQQ8xvvcW5SPYgSTRAAmhW2c+v8veYTMC//02P33uPC3bay8KFdBw5khZy2MNzz5G/f/wROHbMebYZBRZITJmIXJepUykB2x7MZlrSC9BIkJeUVo7otIcPp7COvTz/PB2/+caE9HRLxS9m8NVXZmRkAGFhFKa0l6lTKY9m3z5gxw7n2WcUtm6lMhS+vpR4bS/Dh1Mu461btCiEqZhr14AVK+ixCAXbQ5s2wIgR9Pi//1XeLqPBAokpxYEDwJ49tBpi0qSqvffvf6dEwTNnaLkpUz43b9KqE0BezWMvERFAeDiQm2vC5s1NlTfOQEgS8PHH1NRNnlx+wnBZBAbKYYmPP3aCcQZjyRI6TphA4Ul7MZvpfwNQfSqerauYJUsoDaJHj9IrXitDrOJcsYJTISqDBRJTCtERjBpFCdpVwc+PRBLAYbbKWLmS8i46dAD69Knae00muUPZuDGUO5QKOHGiLo4fN8HXt/Syfnt4/HE6fvcdzXAwZfPnn5R/BFR9YAXQ/8bbm3Jr9u5V1jYjIUly2yragKrQrx+lQmRmAl9/rahphoMFElOM3FzKPwLKX25eGRMn0vHHH2mWhCkbEUp45BH7cmJK8tBDgJ+fhORkP8THO3ACN2HLliYAqEp5rVpVf3/37pTgmpPD1bUr4quvaFYjPJySrqtK3brA6NH0WBSRZEqzcyclwfv5UdHYqmIyAU88QY/FjB9TNiyQmGLExtIoOSSERhqO0LkzJRLn5XGHUh5nz1JVcrOZOm5HqFkTGDaMpo5WrmSBVBZ5ecDu3SEAHJs9AqhDefRRevzFFwoZZkBEuFj4yhHE4Oq77+h/x5RGzB6NGlX56uLyGD+e2p69e0lsMWXDAokphpjVGDuWVlY5igizsUAqG5FgeffdQHCw4+cZN44y4b/7zgyrVQHDDEZcnAmZmV4IDpaqHMa0Zdw4Ekrx8cClS8rZZxTOn6dEdrNZngVyhH796Ptw8yawaZNi5hmGvDwSj4DcxjpCw4Zy3aRVq6pvl1FhgcQUkZ5OO0EDtLdPdRg5ko47d1LxSEZGkmQhWl0/9+8voXbtHNy4YUJcXPVtMxrffENN3MiRhdUS/EFBcp6Y6KAYmW+/pWO/fpTY7igeHrLAEoMIRmbzZipZYXs/OoqYueZBbPmwQGKKWLuW8ixat6Y8gurQpAmttJIk2naAkTl6lLYI8PGRl9w6iqcn0KvXFQDADz8oYJyBuH0b+OknCj2OHl39LHYh+lkglUYIpOrMHgnGjaOjaI8YGZEEP2xY1VZjlsWIEbRS+ehR3raoPHQnkObNm4fu3bvD398fgYGBGDZsGE6dOlXhe5YtWwaTyVTqJ4e/fcX48Uc6jhrlWNJwSUQCofhSM8TatXSMjqZihNUlMvJq0Xl5SwyZ2FggM9OEwMAsRERUXyA9+CB9L3btAv74QwEDDYJteK26gh+ggVVICO3puGVL9c9nFPLz5cGmI8nZJaldG7jnHnos2iSmOLoTSNu2bcPUqVMRHx+PuLg45OfnY+DAgciqZIfUgIAAJCcnF/vx8fFxkdXaJzdXrlt0//3KnFM0llu28B5LtojGSCk/t2t3A7VqSUhJofpVDCE2me3RI1kRwR8SQjujAyz6bRG+qG54TWAyyd8N7rhlfvsNuHGDVvs5uoCmJOznitGdQIqNjcXEiRPRrl07dOrUCUuXLsXFixdx4MCBCt9nMpkQFBRU7IeR2baN6mIEBQFduypzzpYtgY4daVZD5Da5O8nJco2X++5T5pyenhIGD6YZEjEL6O4UFtIGwADQrds1xc4rRL8QX4zs52HDlDunbcfNNb4IsR/gAw9QaEwJRBsUHw+kpChzTiPhqbYB1SUtLQ0AULdu3Qpfl5mZiWbNmqGgoACdO3fGK6+8gvAKEm1yc3ORm5tb9Hv6XxsEWa1WWBVcLiTOpeQ5HWHNGjMAD9x7byEKCgoUC9UMHWrG4cMe+PnnQvztb1U/qVb8oxQ//mgC4ImIiELUq1dQ7ZVnwi8xMVasWuWNNWskvPpqfvUN1Tn79pmQkuKJgAAJbdv+qdj9M3AgAFiwfbuEmzfz7dprTMtU9/uVng789psnABOio62KraTs0wfw8/PElSsm7NmTj65dXa+StNT2SBKwbh35+d5782G1KuOPhg2B8HBPHDxowtq1+fj73+0/r5b8UxmO2qhrgSRJEmbMmIHevXujffv25b6uTZs2WLZsGTp06ID09HQsWrQId911Fw4dOoRWrVqV+Z558+Zh7ty5pZ7ftGkTfH19FfsMgjgVlyBJEvDdd9EAfBEUtBfr1ys34vb3rwOgL2Jj8/HTT7Hw8HDsi62mf5Tk008jAQShVauTWL8+SbHzWiy/wNNzCE6fNmPJkm1o1KjikLPRWbGiDYDWaN/+CiwWSbH7R5KAhg3vwbVrNbFgQQIiIoyxRNNR/+zeHYz8/AiEhGTi9Olfcfq0cjZ16NAdu3eH4N13f8dDD51U7sRVRAttz5UrNXHu3D3w9CyE1boR69crNwhq3bo1Dh5sg08/TUGDBvuq/H4t+Kcybt++7dD7TJKk3wnMqVOnYt26ddixYwcaN25s9/sKCwvRpUsX9O3bF/8tZ8e+smaQmjRpghs3biBAiczav7BarYiLi0N0dDQsSs2bVpEjR4CuXS2oUUPC1av5dm9Oaw8FBUBIiCdu3jRh69Z89OpVtdtNC/5RipwcoGFDT2Rnm3DggBUdOlT/nLb+GTrUB5s3m7FwYQGmTHHvnYIjIjyRmGjCxx/nIjAwVtH7Z/p0Mz780AOTJhXggw/07efqfr+eeMIDy5aZ8dRTBViwQFlffPGFCY8/7onwcAl79rh+VlRLbc/775sxY4YH+vcvxMaNyq7EOHgQiIy0wNdXwrVr+fD2tu99WvJPZaSnp6N+/fpIS0urUv+t2xmkJ598EmvXrsX27durJI4AwGw2o3v37khKKn8E7+3tDe8y7hSLxeKUm8FZ57WHrVvpGBVlQkCAsjZYLBSWWLUKiIvzdDi5UE3/KMVvvwHZ2ZTsGx5uUSRxWGCxWDBokBmbNwO//uqB//u/ahT90TlXrgCJiZTse++9Zuzbp+z9c++9wIcfArGxHvD09FD0/6gWjvhHkuSFHUOHesBiUfaei4mhY2KiCWlpFtSvr+jp7UYLbY+YpBkyxAyLRdnU4e7dKdR27ZoJ+/dbEBVVtfdrwT+V4ah9ukvSliQJ06ZNw+rVq7F582Y0b97coXMkJiYiuDoljA3EL7/QUSz5VJohQ+goGlN3RTRy99yjTBmFklB+DK0adOdtGn79lY5dugANGih//qgoqmF16RJw7Jjy59cLiYlUBLZmzeoXLSyL4GDaA0+S5P+pO5KdLQ9iRVuqJCaT3PbrIFrmUnQnkKZOnYrly5djxYoV8Pf3x9WrV3H16lVkZ2cXvWbChAmYNWtW0e9z587Fxo0bcfbsWSQmJuKxxx5DYmIi/vnPf6rxETRFXh6tYAOcJ5AGDaLjgQPANeXSm3SHs4Vox460zDozk1aluCuiMxVbKSiNry+KRtnuvB2G8HP//rA7LFNVoqPp6M4d9/btJJIaNQLatXPONdjPZaM7gbR48WKkpaUhKioKwcHBRT+rbDaUuXjxIpKTk4t+v3XrFp544gm0bdsWAwcOxOXLl7F9+3ZERESo8RE0RXw8VRwODKTRmjMICqINbAH3HQmmppJABJzXcZvNckPnrh237WyDs/xse253LmS4eTMd777bedcQs6Jxce673F8MrAYPds7MMyAP2vbvp7aKIXQnkCRJKvNnotgGGsDWrVuxTGx5DODdd9/FhQsXkJubi5SUFGzcuBE9e/Z0vfEaRHz5Bgyofun6ihCNqJgqdjc2b6YGvl07ykFyFqJDcVeBlJREVa69vIDevZ13nf796bhtG1U4djesVprZAJwrkPr2pf/lxYtQdIWcnhAi3Jl+btQICAujNkoIX0aHAolRFmeHfQQiJOGuAslVfrYdCd686dxraRExe9SzJ4XCnEXnzrRVQ0YGkJDgvOtolX37aCuQevWgyGrM8vD1lauXu2P459YtWmUGoMrJ01WFw2ylYYHkxqSlyVWdnd1x9+1LM1RJScDly869lhaxTdB2JiEhwJ130khwxw7nXkuLuCK8BtCu82JFpjuOuMVn7t/fuTPPgPydccfB1fbtVBX+zjudO/MMyALJXdMgyoIFkhuzdSvVKbrzTqBpU+deq1YtWlUEuF/exrlzwNmzgKencnsoVYS4hki+dxcKC+V7y9lCFJBDHu52PwPyZxahRmci7uft290vD0mIQlf4uXdvEru//06lMhgWSG6N+PI5M7Zti7uG2USuRvfugL+/86/nrgIpMZESTP39ydfORnRaO3a4V1mFnBxg50567Iq2o1s3Kqtw/TpwUr2C2qoghKizw2sADWLFYhrRZrk7LJDcmN9+o2Pfvq65nuhQ3G3ELfzsjFoxZSEEUkIC7ZXlLghB2LcvzdY5m3btgPr1aRWoCFW7A7t3A7m5VKeodWvnX8/bm3LKAPcS/ampwKFD9NgVAgmQ+wIWSAQLJDclI0NO/nNVx927N+VunD1Lq1LcBdHYuEqINm4M3HEHhZwH86A2AAAgAElEQVTESN8dEDlXrrqfzWZZ9LtTHpJteM1VVcTdseMWIcU2bahUiitwRz9XBAskN2X3bupAQ0OpQ3UFAQFA16702F3CbFevUmK6ySSvxnEF7hZms01Kd+by/pKIkb2YJXQHhJ9dJfiB4vezu+QhuTLPSyAGF8eOATduuO66WoUFkpvi6rCPwN06FPE5O3SgZeGuwt0E0pkzQEoKhWO6dXPddYXojY93j3pIViuwZw89dqUQ7dGD9nW8coVmoN0B0Xa4YmGHoH59uVq3u7TRFcECyU1RSyCJDsVdQj+uzvMSiEZ1/36qV2N0xKxG9+7O2/aiLNq3p5nRzEzgyBHXXVctEhMp56p2baBtW9ddt0YNQGx84A6iPyNDzj9y5cwzwGE2W1gguSG5ufIo0NUCSSRbnjjhHiXt1RKioaFUuiE/n8KpRkeN8BpAOXU9etBjdxD94jP26uX8+kclsV3ub3T27qUUiKZNXZcCIRACyR2EaGWwQHJDDhygpboNGrhmFYotDRpQ3SXA+B33rVvyKNDVAgmQR55G9zOgnkAC3GtWVHxGV89qAHLH7Q6hHy34OTGRigm7MyyQ3BDbWQ1XrUKxRXzpd+1y/bVdya5dlFDasiUtiXY1vXrR0egCKSVF3qdLfGZX4i4CSZLU7bgjI6m9OnuW/udGRrSNatzPISE0Ay1J7lW+oixYILkhao62AflLb/QORTRyavlZhDPFikWjIu6j9u2BOnVcf/3ISAq1XbpEP0bl/HkgOZmSpV1RiLMktWvThqqAsUV/QYH8+dQQokDxtsOdYYHkZkiSnH+kxugEkL/0e/fSqhijIkZfkZHqXL9jR9rs89YtY1cgFgJJLSHq5wd06lTcFiMiPluXLs7dCLgi3KHjPn6cCrzWrOncjYArwh38bA8skNyMCxeoZL/FIjfqrqZ1axrpZ2dTnNuIFBbKAkmsvnE1tiN9Izd0as+IAu4RZhN+VmtWA3CPjlvMPPfo4ZqK8GUh/Bwfb+zZ58pggeRmiE67Uyfa30gNzGZ59sqoeUhJSZTg6OOj3igQML6fb9+mRQcACyRno2b+kUB03Pv2GXf22XaloFp06kSlFW7dAk6dUs8OtWGB5GaI8JpaYR+B0fOQhBDt0oVmctTC6InaBw9SKYPgYFoSrRZCNBw6RDVsjMatW1RdGVBXINnOPosVokZDDGbU9LPt7LNRB1f2wALJzVA77COwHXEbcesArQhRUaPHqHWnbPO81FiRKWjcmARaYaH8vzcSe/bQ97RFC6BhQ/XsMJvle9qIov/aNeD33+leFp9TLdwhnFkZLJDciPx8ORyhtkDq3p3i61euGHPjWq0I0fr15bpT8fHq2uIMtOJnQJ6tM6JAEn5Wu9MGjN1xi9ma9u2BWrXUtcXIfrYXFkhuxNGjNDVdq5bcaaqFry/QuTM9NlqHkpsrJ59roeM2ckOnJYEkbDDa/Qxoy89Gvp/FIEZ8RjURNhw/TiFWd4QFkhshGrnu3V2/TUBZiPCT0TqUQ4cogbR+faB5c7WtMW6i9o0b8salrtygtjzE/bx3r7HCxrYFA7UgkCIiKAQl6jIZCbVLg9gSGAjccQc9NlobbS8a6CYZV6GlRg6Q7TBatVbRmIiGXG3ESHDvXipCZxT27aNjmzbqhyMAIDycwsbXrhkrbHzxIlWu9vSUZ33VJCBAXhlqpFmkggLaXBrQThtt5Nk6e2CB5EZoVSAdOED5UUZBa34OC6Oic5mZxioYqTU/16hBxTkBY4l+LZQGKYltnR6jcPIkfUdr1gTatlXbGoIFEuMWZGbKy3S10qHceSeN/LOzKT/KKGhpmhygbTBECMqIHbdW7mfAmGFj29C8VhD/czGLaASEn7t1o++sFhBJ+fv2GStsbC8skNyEAwdoCXKTJupsnFoWZrPc6Bql4755U944VYsdilH8rLW8GIERE7W17Of9+40TNtainzt0ALy8qF37/Xe1rXE9LJDcBC1++QDjddxiRNuiBVCvnrq22GI0P587R0naXl5yWEsLiBkko4SN8/O1lxcDUAjKaGFjLbbRXl6UWwcYp+2oCiyQ3ATbxGEtYbSQhNbCawLxfz98GMjJUdcWJRB+7twZ8PZW1xZbWremJGKjhI1PnKDtXPz8KBleK3h4AF270mMjhNmys+m7CWivjTba4KoqsEByE7Q4OgHkMNSxY8bYokGrQrRJE1q2m59vjA2CtXo/Gy1sLMSHlvJiBEbquMWWOQ0b0ndVS4j72QhCtKqwQHIDkpOBS5eo8dZCvRhbgoOpQZAkICFBbWuqh1bzYgAqN2CkDkWrfgaMNSuqZT8b9X7WQmkQW4SfExKMu0FwebBAcgOE8g8Lo6lyrWGUxFbbejEibq8ljNKhWK2ymNZyx633+xnQtkASMxtGCBtr2c+tWtFq45wceSW0u8ACyQ3QathHYFuBWM8IP2upXowtRhFIx47JW+a0aqW2NaURfj5+XN9hYy3nxQBAs2ZAgwYkmA8dUtua6qHV3EWgeORB721HVWGB5AZo+csHGKfj1vIoEJBH3ElJQGqqurZUB61tmVMS27CxWAGmRw4epCX0QUFA48ZqW1Mao4SN//xTXkKvtRQIgRH87AgabF4YJSkslENsWu24u3alju7SJX3vraR1IVq3LpUfAPTdcWtdiALGmBXVcl6MwAgJ8aJ9vvNOoE4ddW0pD3dN1GaBZHBOnwbS0mgbhHbt1LambPz8ZNv02tDl51PtG0DbHbcRKhDrSSDpOQ9JD37m+9k1CNuOHgWystS1xZWwQDI44svXpQtgsahrS0XoPbH12DGqFxMQQLVwtIrep8q1uGVOWej9fga0ucVISYRtp04Bt26pa4uj6EEgNWoEhIRQROLgQbWtcR0skAyO1sM+Ar13KFrPixHY+lmPeyslJFAj3bixdrbMKQsRNr5yBbh8WW1rqo4e8mIAoH594I476LEew8ZaLg1SEiOEM6uKhptyRgn08uUTAm7/fuoA9YZe/BweTgX/rl0D/vhDbWuqjl78XLMm0L49PdZj+EfY3KoV5a5pGT133BcuANev0+x+p05qW1Mxep99dgQWSAYmJ0eumqz1DqVdO8qTSk+XN3vVE1ovpSCoUYM2oAT02dDpRSAB+u5Q9OhnPQpR4WetlgaxRc9+dhTdCaR58+ahe/fu8Pf3R2BgIIYNG4ZTp05V+r7vv/8eYWFh8Pb2RlhYGH744QcXWKsuhw5RjZD69YHQULWtqRhPT8qTAvT3BbTNi9F6KBPQd0Onp45bzzMbevKznoWoXgZWgBxqPXuWNop2B3QnkLZt24apU6ciPj4ecXFxyM/Px8CBA5FVQWr97t27MWbMGIwfPx6HDh3C+PHjMXr0aOzRa8KLndjmH2l1ma4tem3o9JIXI9Crn69do5CEySRvVKplbIWonsLGkqT90iC2hIfrN99LT0K0dm0qRQDoc3DlCLoTSLGxsZg4cSLatWuHTp06YenSpbh48SIOiDXWZbBw4UJER0dj1qxZaNOmDWbNmoUBAwZg4cKFLrTc9ehpdALot+PWq5/37aNCgHpB3Bdt29JqQa2j17Cx7ZY5nTurbU3l6DXfKz9f3jJHyysFbdHz7LMjeKptQHVJS0sDANStIJNw9+7dePrpp4s9N2jQoAoFUm5uLnJzc4t+T09PBwBYrVZYFdyxT5xLyXMK9uzxBGBCly75sFq1v2SJ9i+zIDFRQmZmPry9nesfpYiP9wBgRrduBbBaXTtV4Ih/WrUCatb0RGamCUePWhEW5izrlGX3bjMAD3TrVgir1T5lp/b9Ex7ugV27zNi1Kx8tWmjvO1iWf3btMgHwRMeOhfDwKNDFBqXdunng8GEzdu0qwL33KvMddPa9c/gwcPu2Bf7+Elq0yNeFn7t0MWP5cg/s2VOo+nerKjhqo64FkiRJmDFjBnr37o32YghRBlevXkXDhg2LPdewYUNcvXq13PfMmzcPc+fOLfX8pk2b4Ovr67jR5RAXF6fo+TIyLDhzJgYAcPPmJqxfr/2bWJIAf//ByMjwxv/+twutWsmFTZT2j5L89ls0AF8UFOzG+vV/qmJDVf0TGnoXjh2rj08/PYIBAy45ySpl2bChJ4BA1KhxBOvXn6/Se9W6f+rXbwegJb7//iLq1Tuiig32YOufb74JA9AKgYEXsH79YfWMqgI+Ps0AdMbGjam4665dip7bWfdOXFxTAOEIDb2B2FhlbXYWVmsdAH2xc2ceNm2Kg8mk7bZZcPv2bYfep2uBNG3aNBw+fBg7duyo9LWmEkk4kiSVes6WWbNmYcaMGUW/p6eno0mTJhg4cCACFJzft1qtiIuLQ3R0NCwKVnLctIk+W8uWEsaOjVbsvM7mrrs8EBsLeHn1RkxModP8oxRXrwLXr1tgMkmYMiUS/v6uvb6j/tm+3Yxjx4C8vE6IiengRAuVQZKAiROpuXr00TCEh9s37aX2/ZORYcLatcD166GIiWni8utXRln+efttDwDAyJFNEBOjwU3YyqBRI+DDD4Hz5+tj8OAYRWqROfve+ekn8vOgQXURExOj+Pmdwd13Ay+8ICEtzQdt2gzEqVObNNs22yIiQFVFtwLpySefxNq1a7F9+3Y0rmQnxaCgoFKzRSkpKaVmlWzx9vaGt7d3qectFotTbgalzyti2xERJs3fvLZERgKxscCBAx6wWDyKnneW36uLqCrbrp0JdeuqZ19V/dOjBx337y/uZ62SlESVkr29gfBwS5Wrwqt1//TqRcdDh8woLDSjjCZFEwj/2G6Z07Onp6ar79vSubPI9zLh3DkL2rRR7tzOundkP+vjOwhQvaaOHal/SUiwoGZN7bbNtjhqn+6StCVJwrRp07B69Wps3rwZzZs3r/Q9PXv2LDUNuGnTJvQSrZcB0dPqCFv0timiXv0s7D10iOplaR29bJlTkubNgXr1gLw8yjnROidO0JY5/v7a3jKnJJ6e8spGPSzyuH0bOPJXxFWvbceBAzpYGl1NdCeQpk6diuXLl2PFihXw9/fH1atXcfXqVWRnZxe9ZsKECZg1a1bR7//3f/+HTZs24c0338TJkyfx5ptv4pdffsH06dPV+AhOx7Z8vR7q8tgiBNLJk7TJrtbR2wo2QdOmQGAgraQRxUS1jF6FqMmkr9WZwsauXaniup7Qk58TE2kFaVAQhQf1hOhT9u1jgaQ5Fi9ejLS0NERFRSE4OLjoZ9WqVUWvuXjxIpKTk4t+79WrF77++mssXboUHTt2xLJly7Bq1SpE6k092MmFC/papmtLYCAVtZQkeQpaqxQWyjNderuV9Npx600gAexnV6FXP+uhRp0ttjNIBQU6M76K6C4HSbJjh82tW7eWem7kyJEYOXKkEyzSHnoqX18WERHA+fP0Ofr0Udua8klKolmuGjWo5o3eiIgAfv5Z+x1KXp6c66XHjltPFbWNIJASE4HcXGg23wsovrm13mjdmkKwGRkmXLrkp7Y5TkV3M0hM5ei5kQP0MxLUa16MQC9+PnKEOrw6dYAWLdS2puroJWxsmxejx447NJS2VbJaKbdOy+ipUnlJPDzkbUeSkuqoa4yTYYFkQERejN7CPgK9dNx697PoBJOSgNRUdW2pCOHn7t31F44A5LAxAOzfr6opFZKQIOfFNNFeRYJK0UvYODUVOHOGHguhoTeEn1kgMbrCdpmuHkcnAM3ImM20r9KVK2pbUz56n6mrWxdo2ZIea7nj1uuCA1v00HHrbe/GstCDn8XsUcuW9B3UI8LPp0+zQGJ0xLFjQHa2/pbp2mK7t9L+/dpsqXNz5dVfehVIgD46FL3P1AH62MNKrysybdFDvpeew2sCYfvFi/6oYJ943cMCyWDYJv8pUU1WLeR6SNoUSImJlOvQoIEcPtEjoqETnaPWuHWLcncAY3QoWu64jTBTJ9qNU6fo3tEiep95Bqg0QXCwhMJCMxITtdlGK4GOu1CmLIww2gbkxkOrM0h6XqZri23HbccCUZcjQn/Nm5MY1Su2YePLl9W2pjQpKbRy1GTSb14MQPeIqB2sxbCxbY06PSbCC0wmoHt3ajC0OohVAhZIBsMI0+RAcYFUqMzm3IoSH09Hvfu5c2eql5WSAly8qLY1pTGK4LcNG2sxzCY6uTZtgFq1VDammmh5tu6PP4Br12glWHi42tZUDxZIjK7IyKAcJED/HUq7dlRfKC3NhORk7dXaEB232NNMr9SoQXsrAdrsUIwQjhBouePeu5c6Ob23G4DW/UzHjh3pu6dnhEDS6iy/ErBAMhD79tEUbtOmQHCw2tZUD4uFwhIAkJRUW11jSnDjBvD77/SYO27nIUnGmUECtOtnQO7kjHQ/a3Omjo56Dq8JunYlgXTunAnXr6tsjJNggWQgjDKrIdBqrQ3h5zZtgNra0m4OodWO+9IlCkd4euo/HAEU34hZS2Fj2jLHODNI4eEUwrpyRXv5XkaaEa1VC2jcOAOANsWoErBAMhAiL8YIjRxgK5C0pUKMNKsB2OZ7UR0trSD8bIRwBCCHjdPTgdOn1bZGJjm5Jm7dMsHHB+jQQW1rqo9tvpeWRH9hoZw4boQZJABo1eomAG35WUlYIBkE23CE0WaQzp6thbw8dW2xxWgCqU0bwM+Ptpo4cUJta2SM5mfbsLGWOhRR7E+vW+aUhRZnRU+dojxRX18gLExta5ShVSuqpaDVMiHVhQWSQbhwwVjhCICW69arJyE/3wNHjmgjEbCw0HhC1MNDmwX2jFCXpyRazI8RIWwjhH0EWhRIwpauXamdNgK2M0haLBNSXVggGQTRaXfubIxwBCBqsmhrKenp07ThaI0axghHCLTWoRhhy5yy0JqfAVkgGVWIaiXfyyilQWwJDU2Dl5eE1FTg7Fm1rVEeFkgGwWj5RwIhkLSylFQI0W7djDMKBLTXcR87RiG/WrX0u2VOWQg/JybSdjVqk5MDnDtHhY+M1HGHhVEoKyODQltaYPduOvbsqa4dSmKxSOjcmdporbQdSsICySAYLewj0FoxMqMKUdE5HjlCwkRtxP2s9y1zSkJhYyAvDzh8WG1rgMOHTcjPN6N+famoArUR8PSkUBagjY47I4O+W4CxBBIgt9Fa8LPSGKjpcV/y8oCEBHpstI5bzCCdPEmrf9TGaInDAtpbCSgoAA4eVNsaYy2HtsVk0tZsnSgQGREh6XrLnLIQfhYzN2qydy+F+po1A0JC1LZGWUQbbcREbRZIBuDQIZqur1sXaNlSbWuUJTAQaNgwC5JkUr1DuX1bHvUbbabOtuMWs2RqYlQhCmhrg2AhkEQnZyR69aLjrl3q2gEYM7wmiIyke+fAAQrZGgkWSAbANuxjtFEgALRpkwoA2LlTXTsOHKAZlpAQoHFjdW1xBqLxVrtDuXXLOFvmlIX4TFqY2di9mxqMnj2NK5COHqWFFWpiZIHUogUNZG0jGUaBBZIBMGr+kUArAsnIsxoAcNdddNy5U90lu/HxdP2WLYGGDdWzw1n07EkDmTNnqDSHWly+DFy4YILZLCEiwngCKSgIuOOO4jXi1KCwUB7EGlEgmUyyGFW7jVYaFkgGwKiJwwIhkOLjaQZHLcQo0Kh+7tYN8PKiTlvNJbs7dtBRCDajUbs2VdUG1J2tE51ZaGga/P3Vs8OZaKHjPn0aSE0FfHyATp3Us8OZ2A6ujAQLJJ1z9SptnGoyGbfjbto0HQEBUrGVIK5GkuSOu3dvdWxwNj4+8sofNRs6cW2jCiRA/mzinlID4WcxADEiws9qClExsBIDECNim+9lpIKRLJB0jmjkOnQwxsapZeHhIScCqtXQnTkDpKQA3t7U0BkVtUeCVqscDnEHgaQFIdq2rXEFkui44+PV22fQyPlHgq5dSfxdv05tpVFggaRzjD6rIejRgwSSWh2KuG737iSSjIraHXdiIpCdDdSpQ3vEGRXxfU1IoM/rajIzydcA0KbNn643wEW0awcEBNDnPXpUHRuEQBJizYjYDhzVXuShJCyQdI67CKRevdQVSEbPixGIRvzYMeDmTddfX/x/e/UyVoHIkoSGUt0pq1Wdfdn27qV8viZNJDRoYLC12TZ4eMiLV9TouNPS5BWZRp5BAtQfXDkDAzdBxiczUy7qZ3SBFBEhwWymTXkvX3b99d1FiAYGAq1a0WM1lqG7ixA1mdTtUMQ1jbi8vyRqJmqLnJw77jDmikxbWCAxmmLPHhoFNm0KNGmitjXOxd9fXgHi6i/g9evyfk5GniYXqNXQSZJ7JGgLtCCQxMyskVEzUXv7djr27ev6a7saMUN2/Lg6s8/OgAWSjnGXWQ2BWiNBcb127ahaudFRq+M+d45WZVoslOtldGw7blfuOF9QYJs4rJGt7p1IRASFa8+fB65cce21hUDq18+111UDtWefnQELJB3jbgJJrY5bXM/d/Lx3L+XIuArh5y5dgBo1XHddtejcmXacv3mT9hp0FceO0b6Gfn60+tXoBAQAHTvS499+c911b9+W88vcYQYJkAexapavUBIWSDolP19W6e7ScffpQ8eDB127dYC75MUIWremHeezs2l7FVfhbn62WOR92VzZcYtr9ehBu967A1FRdNyyxXXXjI+nAUajRkDz5q67rpqImbKtW1U1QzFYIOmUgweBrCygVi25Kq/RadyYtp8oLHRdh5KRAezfT4+FQDM6ZrPc0LmyQxHXEp2ZO6BGhyL83L+/666pNuKzutLPtuE1I+6RWRbCz/v20SIivcMCSads3kzHqChjL4cuifgCuqrj3rGDZuuaN6el2e6C8LO4z5zNH38ASUl0L7tLOAIA7r6bjlu2uKYCcWGhewqkPn1IpJw65bo8pG3b6OhO93NoKP3k5xsjzOZGXaux+PVXOooG1l1wtUASAsFd/bxzJ5Cb6/zrif9n1640K+ouREZSvtW1a8CJE86/3pEjtC9YzZrGrghfkjp1gPBweiyEizPJzZX3yHQngQTIM8BGCLOxQNIhubmyOne3jlt8+RITqaF3Nu4qkMLCaFVKdjYlazsbd/Wzt7ecc+WK2TohRPv0oRwod8KVeUj79wM5OUCDBsauCF8Wrh7EOhMWSDpkzx7quAID3Sf/SBAcTA2OJDl/JJiaKhfidKdwBEDhCFeF2SRJvoa7+RmQRaErBJK7ClHAtXlIQhz07es++UcC4ecDB2i1pJ5hgaRDbBs5d/vyAa4boWzbRp1327YkzNwNV/n53Dng4kVaUeUuKzJtse24nVkPqaBAThx2RyHapw/luCUlOb8af1wcHe+5x7nX0SJNmgAtWtD95srVmc6ABZIOcdf8I4GrOm53Hm0Dsp9373buhqri/9ijB+XGuBvdulGl+Js3gUOHnHcdUR6jVi05H8edqFWLamwBzm07MjLkEizR0c67jpZRY9WgM2CBpDOysuTkP3ftuEUuwdGjQEqK867j7gKpVSsgJATIy3PuNg3uHF4DaOZMJPI6M8wmzt23L23i6o6I7/IvvzjvGtu2Uf2j5s1pJsUdEd9lZ/rZFehSIG3fvh1Dhw5FSEgITCYT1qxZU+Hrt27dCpPJVOrnpCvL1yqEWHbetCltgOiONGhAVYgBYNMm51wjOZn2FDKZ3GObgLIwmYABA+ixs/xcWMgzooBrOhTxP3RnPw8aRMfYWOeFM0V4beBA55xfD4jQYmIibR+kV3QpkLKystCpUye8//77VXrfqVOnkJycXPTTSmwcoyNiY+k4YIB75h8Jhgyh44YNzjm/8HPXrlRV2l0Rfl6/3jnnP3iQlrj7+bnHRsDlMXgwHbdupS0qlCYjQ84/iolR/vx6oXdvCuNeu+a8cKYQSO4aXgNoAZEoI7Fxo7q2VAddCqQhQ4bg1VdfxYgRI6r0vsDAQAQFBRX9eOhwnnndOjree6+6dqiN6Lg3bqRkQKVhPxMDB1Ji69GjwKVLyp9fCK/oaMDLS/nz64WwMJoVzslxTt7G5s0U9mnRQt5Q1B3x8pJnRcUgSEkuX6Z6Vmaze8/UAbLod9Yg1hXoUiA5Snh4OIKDgzFgwABs0WGRhqQk+vH0dM/VEbb07ElJl3/+KW8FohRWqxyOcOfRNkCzZ5GR9NgZDZ0QSO7uZ5NJ9oEzZuvEOYcMce+ZZ0DuuJ0hkMTAKiKCilO6M2IQu2mTcwaxrsAttioMDg7Gxx9/jK5duyI3NxdffvklBgwYgK1bt6JvOWVOc3NzkWtTQjj9r4IOVqsVVgW3OBfnsuecP/1kBuCB3r0L4etb4NKd1tWiIv8MGOCB1avN+PnnAnTpolxCwbZtJmRkeKJBAwmdOuVr2s9VuX8cZdAgM3bv9sC6dYV45BHlWrobN4A9ezwBmHDPPVan+NkV/lGKgQNN+N//PLFunYR33slXTMhIErBhA/l54MB8WK3yniZ68o9S0MyOBbt2SbhxI7/cyu2O+ObHHz0AmHHvvQWwWp1Ys0EDVOaf8HCgdm1P3Lxpwq5d+ejRwwV76ZSDo/e3Wwik1q1bo3Xr1kW/9+zZE5cuXcKCBQvKFUjz5s3D3LlzSz2/adMm+Pr6Km5jnAhcV8AXX/QEEIjQ0ONYv/53xW3QMmX5Jzi4KYBwrFqVjm7dtit2rWXLwgC0Qvv2lxAbe1Cx8zoTe+4fR/HzqwUgCps2FeLHHzfAYlGmodu2rTEkqStCQ9Nw6NBWpy5xd6Z/lCIvzwOenkNw/rwHlizZjsaNldnt88IFf1y6dDe8vAqQnb0B69eX7rj14B8lCQkZgCtX/DB/fiLuuqvizdns9U1Ojgfi4mjaJCBgG9avz6i2nXqgIv+0a9cNO3c2wnvv/Y7UVPUWRd12MLHPLQRSWfTo0QPLly8v9++zZs3CjBkzin5PT09HkyZNMHDgQAQEBChmh9VqRVxcHKKjo2GpoPZ/ZiZw4gT9u2bMaI02bVqX+1ojUZF/OncGPvgASEqqg06dYtCokTLXfP558vNjj4UgJkbbFZSrMXkAACAASURBVCLtvX+qQ2Eh8NZbEq5d80SNGjEYOFAZgbRiBeUAjh7thxgnxdhc4R8l6d/fhLg4IDMzCjExysxAvPkmZVLcfbcJw4cPLvY3vflHKcaONeOdd4ALF7ritdc6l/maqvpm7VoTrFYPNG8u4Z//7GP4UKY9/klNNWHnTuDYsTsRE6Pesut0B0t6u61AOnjwIIIrKI/s7e0Nb2/vUs9bLBanNCSVnfeXX6geTYsWQPv2FsN/+UpSln+aNaOVT7t2AT//bMG0adW/zokTwMmTlOcVE+Opm/2qnHVfCoYPB/73P+DHHz0VSVzPzpbzYkaM8IDF4twFE872j1IMG0aroH74wQPPPaeMT374gY4PPmiGxVJ22qle/KMUo0YB77wDrF9vRkGBGT4+5b/WXt+I+/n++03w8nIfX1bkn+HDgX/8Azh+3ISzZy1ordK43tF7W5dJ2pmZmUhMTERiYiIA4Ny5c0hMTMTFixcB0OzPhAkTil6/cOFCrFmzBklJSTh27BhmzZqF77//HtOU6FFdxKpVdBw5kpMsbRk5ko7ffafM+b79lo4DB3KSpS3Czz/8QHW4qsvGjTQr2rQpJbQyxIgR9P3es4e2X6kuZ88CCQlUGHLYsOqfzyhERACNGtE9qETtqYIC4Oef6fH991f/fEahdm151eD336triyPoUiDt378f4eHhCP+rXv6MGTMQHh6O2bNnAwCSk5OLxBIA5OXlYebMmejYsSP69OmDHTt2YN26dVUuE6AWmZny6ogxY9S1RWuIf+H27VTbpLp88w0dR42q/rmMRL9+QP36lFitxCbBQoiy4C9OUJBcVVsJ0S/OERVF/z+GMJtpdgMAVq+u/vm2bqWq/nXq0J5vjMyDD9LR7QSS1WrFpUuXcOrUKaSmpiplU6VERUVBkqRSP8uWLQMALFu2DFttiok8++yzOHPmDLKzs5GamorffvvNaTkPzuDnn6k+SsuWcgVphmjWDOjenVbqiFCCoxw/Dhw7BlgswAMPKGOfUfD0lDuU6nbcOTnATz/RYxaipRE+ESKyOoj/Ffu5NKLj/vFHVHsF5cqVdBw5EroJy7uKYcNoBjMhgWY09USVBVJmZiY++ugjREVFoVatWggNDUVYWBgaNGiAZs2aYdKkSdi3b58zbHVbRHht9GgebZeFCP8IPzkKh9cqRvh59erqhdk2bqTKzk2ayDWWGJkHH6TveXx89cJs584B+/bRbAmH10rTuzdVfE5NrV6157w8eXZk3DhlbDMS9evL2zV9/bW6tlSVKgmkd999F6GhoViyZAnuvvturF69GomJiTh16hR2796NOXPmID8/H9HR0Rg8eDCSkpKcZbfbcPOmXKBv9Gh1bdEqY8dSh7J1K3UKjiBJwFdf0WMebZdN//7UoaSkVK9o5Oef03HUKBb8ZREUJHcoX37p+HmEn+++G2jYsPp2GQ1PT+Bvf6PHfwUfHCI2Frh1CwgOlsOjTHHGj6fjsmXU1uqFKgmkXbt2YcuWLdi/fz9mz56NwYMHo0OHDmjZsiUiIiLw6KOPYunSpbh69Sruv/9+bFMiWcHNWb4cyM0FOnakH6Y0TZvKlcUdbei2b6cq5X5+8tQ7UxyLRW7oPvvMsXNcuyaH1x55RBm7jIjwzWefObapamEhsHQpPX70UeXsMhp//zsdf/qJZpIcYckSOj70EIWSmNKMHEl74CUlAbt3q22N/VRJIH377bfo0KEDACq2WF5tAR8fH0yZMgWPP/549S10YyRJ/vJNmsSj7YoQHcqyZY6Vtf/kEzqOG0ciiSkb0dn+/LNjSfFffknhuYgIoH17ZW0zEiNHAgEBlLPhyDjz118pPFe7NofXKqJTJ/rJy6PBaFW5dEle3j9pkrK2GQk/PzlE7+jgSg0cTtLes2cPcnJySj2fnp6OZ555plpGMUR8PHDkCODjAzz8sNrWaJthwyhv6OJFebmtvfz5p5zMypq+YsLCgB49SOR8/HHV3ltQIL/nsceUt81I+PrK+SyLF1f9/R9+SMdx44AaNZSzy4gIYfP++1Wfrfv0U3pPv35QrcaPXhDf+a++otWweqDKAmnEiBF44403YDKZkJKSUurvWVlZeOeddxQxzt15+206jh1LI0GmfGrUoIJkABWAqwrvv08rq7p0oRVxTMU8+SQdhd/sZe1ammKvXZuTWe1hyhQ6fv991Vb/nD5NK7MA+X/FlM/f/04bXyclVS237vZtWYiKtocpn969qY3NyQE++khta+yjygKpWbNm+PnnnyFJEjp16oTAwEBER0dj5syZ+OKLL/D2229XWKGasY+TJ+X6HDwhZx/TplHi5fbttHrHHm7fBt57jx4/+yyHMe1h1ChagZaSUrUk4rfeouOUKYC/v3NsMxIdOwKDBtEMRVVE/7vvUnj+vvuAtm2dZ59R8POTZ5Heesv+JOLPPgOuX6dSIyJ8xJSPyQQ8/TQ9/uCDqg2u1KLKAundd9/Fjh07YLFYEB8fjyVLluCuu+7CmTNnMHfuXHz//feYP3++M2x1K+bNoy/qAw9QWIOpnEaNKFESAF56yb73LF5MIbbmzTk5214sFmD6dHr8+uv2NXRxcZSc6eXFsxpVQQyOPv2U8l0q49w5OcfjX/9ynl1G46mn6N7cts2+ytq5ubLgf/ZZrn1kL6NHA40bA8nJJJK0jsM5SFlZWejevTseeOABvPzyy1izZg1+//13nDt3Dg+JXopxiL17gS++oMcvvKCuLXpjzhxqrDZupE65Iq5fB155hR6/8ALNPjH28Y9/ACEhwPnz8gxceeTnA2Lf58mTaRk7Yx93302VmXNygFmzKn/9v/9NCccDBsilApjKadJEDmk+/3zluUjvvEP5jsHBvBqzKnh5Af/5Dz1+7TUqY6NlHBZIntybOIWCAhrNAMCECZwTU1XuuAOYOpUeP/UUhdDK49//BtLSgPBwYOJEl5hnGGrWpAYOAF59teKChosXA0ePUhL9X7sBMXZiMlHIzGSi5Nbt28t/7bZtVIjPZAIWLOBwcVX5978p9JuQQPl15XHpEt3zADB/PifBV5UJE4B27UgcaT19pEoC6WIVy7pevny5Sq9naEZjzx6Ki7/xhtrW6JOXXqKR3cmT8sxFSX74QV7av2gR1y9xhPHjqRJ2ejqFNsuqrn30KIUgALq369Z1rY1GoGtXubzCQw+VvQLoxg25ps+kSbwlkSM0aCC3uc89R9sOlSQ/n1YU375NScei0CRjPx4eFF4zmSh0XN0topxJlQRS9+7dMWnSJOzdu7fc16SlpWHJkiVo3749ViuxC6AbsWQJMHcuPV68mDp5purUrSuHKD/6CHjzzeKJl1u2yA3bzJm8uaSjeHgAK1ZQvZ6dO2kZr+2eVklJwJAhFB4aOJDCa4xjLFxIy8gvX6a8xLQ0+W+pqcDQocCFCzSDumCBenbqncmTKTE+Jwd44AFPJCf7Fv0tL49mmrdvp5mmzz7jWTpH6ddPnj0aP77imVE1qVKc7MSJE3j99dcxePBgWCwWdOvWDSEhIfDx8cHNmzdx/PhxHDt2DN26dcNbb72FIUOGOMtuw3DkCLB5cxN8/rlHkZKeMYPrHlWXe+6hENALL1BOwdat1LEcPky1eAoKgMGD5TAR4xh33EFi9MEH6XjkCHUiV6/SKDE9HWjThoSUuVpbY7s3fn60V2DfvsCuXbTCbfJk6qA/+IDCPrVrU0VoXiHoOCYTrczs3Rs4fdqEf/0rChcumBEcTJXJExMpV/Grr4BWrdS2Vt+88gr5c9Mmypl74gkarPbsSSsDNYHkANnZ2dL3338vTZ8+XRo2bJg0aNAg6W9/+5u0YMEC6ciRI46cUvOkpaVJAKS0tDRFzztuXIFE8xuSZDJJ0ksvSVJhoaKX0DV5eXnSmjVrpLy8PIfe/847kuTpKRX5WPw89JAkZWUpbKwKVNc/SvHjj5JUu3ZpP/fqJUnJyerZpRX/KEVCgiQ1b17az6GhknT4cNXPZzT/KMXly5LUo0dBKT/XqSNJP/2ktnXaQIl7JytLksaMKe7jd95R0Mi/cLT/dijT2sfHB9HR0RgxYoSyas0NiYyUcPTodfTrVxeTJnnwfmsK8/TTQEwMhS9PnqSw5dixtDqIp8eV4/77gRMnyM8HDlAS99ChVDOJ87uUIzycZumWLqVZUYA2EX70UU4WVpKQEGDz5gK8+GICrlzpguxsM7p1o/wu3vhXOXx9gZUraQeDlSupje7USW2rZBxeitanTx/ExsYiiNfsVospUwoRGroLMTExsFi4J3EGrVtzXoYrCAqyv/4U4zg1a1JR1GnT1LbE2Hh6An37XkZMTCdYLBwfdhYmE6VEiA3HtYTD//Vu3bohMjISJ0+eLPb8wYMHERMTU23DGIZhGIZh1MJhgfTJJ5/g0UcfRe/evbFjxw6cPn0ao0ePRrdu3eDt7a2kjQzDMAzDMC6lWtUe58yZAy8vL0RHR6OgoACDBg3Cvn370KVLF6XsYxiGYZxMQUEBCgoK1DZDU1itVnh6eiInJ4d9UwZa8o/FYoGHE5IdHRZIycnJmDdvHj755BOEhYXh5MmTGDt2LIsjhmEYnSBJEvz9/XH27FmYeNVCMSRJQlBQEC5dusS+KQOt+ad27doICgpS1BaHBdIdd9yBNm3a4Ntvv8W9996LjRs3YvTo0fjjjz/w3HPPKWYgwzAM4xxSUlJQp04dNGjQAH5+fpro6LRCYWEhMjMz4efnBzMX8SqFVvwjSRJu376NlJQUAECwghWWHRZIS5cuxdixY4t+HzRoELZs2YL77rsPFy5cwIcffqiIgQzDMIzyFBQUID09HfXr10e9evVYBJSgsLAQeXl58PHxYd+UgZb8U+OvGhcpKSkIDAxULNzm8KeyFUeCLl26YNeuXdgqCnQwDMMwmsT6174wXl5eKlvCMNXH15e2hbHa7ndUTRSXfaGhodi5c6fSp2UYhmGcAIfVGCPgjPvYKfNiderUccZpGYZhGIZhXAIHVhmGYRiGYUrAAolhGIbRHZIk4YknnkDdunVhMplQu3ZtTJ8+XW2zGANRrUKRDMMwDKMGsbGxWLZsGbZu3Yo77rgDZrO5aDWTo0RFRaFz585YuHChQlYyesZhgZSdnQ1Jkooyxy9cuIAffvgBYWFhGDhwoGIGMgzDMExJfv/9dwQHB6NXr152vT4vL49X7DFVwuEQ2wMPPIAvvvgCAHDr1i1ERkbi7bffxgMPPIDFixcrZiDDMAzD2DJx4kQ8+eSTuHjxIkwmE0JDQxEVFVUsxBYVFYVp06ZhxowZqF+/PqKjowEA3333HTp06IAaNWqgXr16uOeee5CVlYWJEydi27ZtWLRoEUwmEzw8PHDx4sUyrx8VFYUnn3wS06dPR506ddCwYUN8/PHHyMrKwiOPPAJ/f3+0aNECGzZsKPa+2NhY9O7dG7Vr10a9evVw33334ffffy/6e3m2Vfa3sli5ciV8fHxw+fLloucef/xxdOzYEWlpaVV3uhvisEBKSEhAnz59ANA/rmHDhrhw4QK++OIL/Pe//1XMQIZhGMZFSBKQlaXOjyTZbeaiRYvwn//8B40bN0ZycjL27dtX5us+//xzeHp6YufOnfjoo4+QnJyMcePG4dFHH8WJEyewdetWjBgxApIkYdGiRejZsycmTZqE5ORkXL58GY0aNSrXhs8//xz169fH3r178eSTT2Ly5MkYNWoUevXqhYSEBAwaNAjjx4/H7du3i96TlZWFGTNmYN++ffj1119hNpsxfPhwFBYWVmhbRX8rj7Fjx6J169aYN28eAGDu3LnYuHEjNmzYgFq1atnta3fG4RDb7du34e/vDwDYtGkTRowYAbPZjB49euDChQuKGcgwDMO4iNu3AT8/da6dmQnUrGnXS2vVqgV/f394eHggKCio3Ne1bNkS8+fPL/o9ISEB+fn5GDFiBJo1awYA6NChQ9Hfvby84Ovri6CgIBQWFiI9Pb3cc3fq1AkvvvgiAGDWrFl44403UL9+fUyaNAkAMHv2bCxevBiHDx9Gjx49AAAPPvhgsXN8+umnCAwMxPHjx5GXl1eubadPn67Q7rIwmUx47bXXMHLkSISEhGDRokX47bffKhR9THEcnkFq2bIl1qxZg0uXLmHjxo1FeUcpKSkICAhQzECGYRiGcYRu3boV+71Tp04YMGAAOnTogFGjRmHJkiW4efOmQ+fu2LFj0WMPDw/Uq1evmGhp2LAhABTtEQZQ3tRDDz2EO+64AwEBAWjevDkA4OLFixXa5qjd9913H8LCwjB37lz88MMPaNeunUOf1V1xWCDNnj0bM2fORGhoKCIiItCzZ08ANJsUHh6umIEMwzCMi/D1pZkcNX7+WvCjJDVLzEh5eHggLi4OGzZsQFhYGN577z20bt0a/8/emcdFVe///3WGYRdQQQQSFZcQFAVRE7coExSXNrvVLc1S769FS81Ss7pq92baola3xXLp5jX91lWzmwtkKeaCgeCK+4IpiogKyDYw5/fHh8+cAYZhZjgzZ/s8H495zGGWc97z5pzP530+7+38+fN279vd3b3O3xzH1XmNVnY2Go2m10aPHo0bN27gq6++QkZGBjIyMgCQAHJrsjkq9/bt23HixAnU1NSYDDaG7ThsII0dOxZ5eXnIzMxEamqq6fWhQ4eyFEkGg8FQIhxH3FxSPFzU8oTjOAwcOBDz589HdnY2PDw8sHHjRgDExVZTU+OU4964cQO5ubl48803MXToUERFRTVYBbImm7X3LHHw4EE89thj+PLLL5GcnIy33nrLKb9LzTSrDtKxY8ewY8cO/Otf/6pjJQPAypUrmyUYg8FgMBhikpGRgR07diApKQnBwcHIyMjA9evXERUVBYD0Es3IyMCFCxfg4+MDvV68UoGtWrVCYGAgli9fjtDQUOTl5WH27Nk2ydaU3PW5cOECRo4cidmzZ2PcuHGIjo5G3759kZWVhfj4eNF+k9px+L8/f/58LFiwAH369EFoaChreMhgMBgMWePv74/09HQsXboUxcXF6NChAz788EOMGDECADBz5kw888wziI6ORnl5OQ4dOoSWLVuKcmydTod169bh5ZdfRo8ePRAZGYmPP/4YiYmJTcqWm5trVW5zioqKMGLECIwZMwZvvPEGACA+Ph6jR4/G3LlzsW3bNlF+jxbgeGt5glYIDQ3F4sWLMW7cOLFlkiXFxcUICAjA7du3RQ1CNxgM2LJlC1JSUhr4tBlMP03B9GMdpp/GqaiowLlz5xAUFISgoCDodKzzlDk0i83f35/pxgJy009FRQXOnz+PiIgIeHl51XnP0fnb4V9VVVVlcwVTBoPBYDAYDCXhsIE0adIkrF27VkxZbCY9PR2jR49GWFgYOI7Dpk2bmvzOrl27EB8fDy8vL3Tq1AlffPGFCyRlMBgMBoOhRByOQaqoqMDy5cvxyy+/oGfPng2Wrz/66KNmC9cYd+7cQa9evfDss882KLxlifPnzyMlJQWTJ0/GmjVrsGfPHrz44oto06aNTd9nMBgMBoOhLRw2kA4fPozY2FgAwNGjR+u85+yA7REjRlgMTmuML774Au3btzeVH4iKikJmZiY++OADZiAxGAwGg8FogMMG0m+//SamHE5l3759pkrflOTkZKxYsQIGg8Fi8GZlZSUqKytNf9OS8waDAQaDQTTZ6L7E3KeaYPqxDtOPdZh+GsdgMJh6efE836BUi9ZhurGO3PRjNBrB8zwMBgPc3NzqvOfo9S9ekQcZc/Xq1QZVRNu2bYvq6moUFhYiNDS0wXcWLlyI+fPnN3g9NTUVPk6o+JqWlib6PtUE0491mH6sw/TTEL1eb+pjVlJSIrE08oXpxjpy0U9VVRXKy8uRnp6O6urqOu+ZNwy2h2YZSLdu3cKKFSuQm5sLjuMQFRWFiRMnyrJTcH23H7V+G3MHzpkzBzNmzDD9XVxcjPDwcCQlJYme5p+WloZhw4axNGQLMP1Yh+nHOkw/jVNRUYG8vDwAgJ+fH6tlVw+e51FSUsJ00why009FRQW8vb0xZMgQi2n+juCwgZSZmYnk5GR4e3ujX79+4HkeS5YswbvvvovU1FT07t3b0V2LTkhICK5evVrntYKCAuj1egQGBlr8jqenJzw9PRu87u7u7pSB1ln7VQtMP9Zh+rEO009DampqTBMbx3GyqGUjJ6jbiOnGMnLTj06nM/XDq3+tO3rtO2wgTZ8+HWPGjMFXX31lKsdeXV2NSZMmYdq0aUhPT3d016KTkJCAn376qc5rqamp6NOnDxs0GQwGg8FgNMBhsy8zMxOzZs2q06tGr9fj9ddfR2ZmpijCNUZpaSlycnKQk5MDgKTx5+TkmJaL58yZg/Hjx5s+//zzz+PixYuYMWMGcnNzsXLlSqxYsQIzZ850qpwMBoPBYDCUicMGkr+/v8kgMefSpUvw8/NrllBNkZmZibi4OMTFxQEAZsyYgbi4OLz99tsAgPz8/DqyRUREYMuWLdi5cydiY2Pxzjvv4OOPP2Yp/gwGg8FwGYmJiZg2bZrUYjBsxGEX2+OPP46JEyfigw8+wIABA8BxHH7//Xe89tprePLJJ8WUsQGJiYmw1kJu9erVDV679957cfDgQSdKxWAwGAwGQwwWLlyIDRs24MSJE/D29saAAQOwaNEiREZGukwGhw2kDz74ABzHYfz48aaUOnd3d7zwwgt47733RBOQwWAwGAyG8klMTMSECRMwYcKEJj+7a9cuvPTSS+jbty+qq6sxd+5cJCUl4fjx4/D19XW+sGiGi83DwwPLli3DzZs3kZOTg+zsbBQVFWHJkiUWs78YDAaDwRCLH374ATExMfD29kZgYCAeeOAB3LlzBwBJQV+8eDE6deoEb29v9OrVCz/88IPpu0ajEYsWLUKXLl3g6emJ9u3b45///Kfp/crKSrzyyivo2rUrfHx8MGjQIPzxxx+m9xMTE/Hyyy/j9ddfR+vWrRESEoJ58+bVke/OnTsYP348WrRogdDQUHz44YdN/qbExERMnToV06ZNQ6tWrdC2bVssX74cd+7cwbPPPgs/Pz907twZW7durfO9bdu2YdCgQWjZsiUCAwMxatQonD171iZd2fK+Od999x28vLxw+fJl02uTJk1Cz549cfv27SZ/o61s27YNEyZMQPfu3dGrVy+sWrUKeXl5yMrKEu0YTdHs3DwfHx/ExMSgZ8+eTimgyGAwGAzXwPPAnTvSPKxETTQgPz8fTz75JJ577jnk5uZi586deOSRR0yhF2+++SZWrVqFzz//HMeOHcP06dPx9NNPY9euXQBIIs+iRYvw1ltv4fjx41i7dm2dYsKvv/46NmzYgM8++wyZmZno0qULkpOTUVRUZPrMN998A19fX2RkZGDx4sVYsGBBnYKkr732Gn777Tds3LgRqamp2Llzp02T+zfffIOgoCAcOHAAU6dOxQsvvIDHHnsMAwYMwMGDB5GcnIxx48bVKX54584dzJgxA3/88Qd27NgBnU6Hhx9+GEajsUldNfV+fZ544glERkaaPEULFizA9u3bsXXrVqfWQKTGV+vWrZ12jAbwdjB9+nS+tLTUtG3toTZu377NA+Bv374t6n6rqqr4TZs28VVVVaLuVy0w/ViH6cc6TD+NU15ezh87doy/du0aX1NTw/M8z5eW8jwxVVz/qJ1abCIrK4sHwF+4cKHBe6WlpbyXlxe/d+/eOq9PnDiRf/LJJ/ni4mLe09OT/+qrryzuu7S0lHd3d+e//fZb/ubNm3xNTQ1fVVXFh4WF8YsXL+Z5nufvvfdeftCgQXW+17dvX37WrFk8z/N8SUkJ7+Hhwa9bt870/o0bN3hvb2/+lVdeafR31d9vdXU17+vry48bN870Wn5+Pg+A37dvX6P7KSgo4AHwR44csaornreuy8b46aefeE9PT/7NN9/kW7VqxR89etSm79177738qlWrbD4OxWg08qNHj26gc3PKy8v548eP8+Xl5Q3ec3T+tisGKTs729TTJDs7u9HPyaGqJoPBYDDUSa9evTB06FDExMQgOTkZSUlJGDt2LFq1aoXjx4+joqICw4YNq/OdqqoqxMXFITc3F5WVlRg6dKjFfZ89exYGgwEDBw40vebu7o5+/fohNzfX9FrPnj3rfC80NBQFBQWmfVRVVSEhIcH0fuvWrW0KMDbfr5ubGwIDAxETE2N6ja500WPR47311lvYv38/CgsLTUUc8/LykJyc3KiumtJlY4waNQrR0dFYvHgxtm3bhu7du1v83Lvvvot3333X9Hd5eTn279+PKVOmmF7bunUrBg8ebFUnU6ZMweHDh/H7779b/ZzY2GUgmTeo/eabb9CuXbsGFTR5nselS5fEkY7BYDAYLsPHBygtle7YtuLm5oa0tDTs3bsXqamp+OSTTzB37lxkZGSYjIOff/4Zd911V53veXp64tatW1b3zTfShorn+Tqv1S8yzHGc6dh0H45gab/mr1EZzBvEjh49GuHh4fjqq68QFhYGo9GIHj16oKqqyqquIiIimnzfEtu3b8eJEydQU1PToM+pOc8//zz+8pe/mP5+6qmn8Oijj+KRRx4xvVb/f1SfqVOnYvPmzUhPT0e7du2sflZsHI5BioiIQGFhYYPXi4qKGlUqg8FgMOQLxwG+vtI87HU8cByHgQMHYv78+cjOzoaHhwc2btyI6OhoeHp6Ii8vD126dKnzCA8PR9euXeHt7Y0dO3ZY3G+XLl3g4eFRZ7XCYDAgMzMTUVFRNsnWpUsXuLu7Y//+/abXbt68iVOnTtn3I23gxo0byM3NxZtvvomhQ4ciKioKN2/erPOZxnRl6/vmHDx4EI899hg+//xz3H///ab6g5Zo3bp1Hf17e3sjODi4wWuW4HkeU6ZMwYYNG/Drr79KYlc4nObfmIVcWlraoFEcg8FgMBhikZGRgR07diApv/QIuwAAIABJREFUKQnBwcHIyMjA9evXERUVBT8/P8ycORPTp0+H0WjEoEGDUFxcjL1796JFixZ45plnMGvWLLz++uvw8PDAwIEDcf36dRw7dgwTJ06Er68vXnjhBcyaNQteXl7o1q0bPvjgA5SVlWHixIk2ydeiRQtMnDgRr732GgIDA9G2bVvMnTvXKT3LWrVqhcDAQCxfvhyhoaHIy8vD7NmzbdKVLe+bc+HCBYwcORKzZ8/GuHHj0KFDB9x///3IyspCfHy8qL/rpZdewtq1a/Hjjz/Cz8/P1E81ICCgUaNKbOw2kGiHe47j8Pbbb9fJXKupqUFGRgZiY2PFk5DBYDAYDDP8/f2Rnp6OpUuXori4GB06dMCHH36IESNGAADeeecdBAcHY+HChTh37hxatmyJ3r1744033gAAvPXWW9Dr9Xj77bdx5coVhIaG4vnnnzft/7333kNNTQ2ef/55lJaWok+fPti+fbvVuJz6vP/++ygtLcWYMWPg5+eHV199VdQ0eIpOp8O6devw8ssvo0ePHoiMjMTHH3+MxMREAE3rqqn3KUVFRRgxYgTGjBmDN954A0ajEbGxsRg1ahTmzp2Lbdu2ifq7Pv/8cwAw/Q7KqlWrbKqjJAYcb6ez9L777gNAijglJCTAw8PD9J6Hhwc6duyImTNnomvXruJKKjHFxcUICAjA7du34e/vL9p+DQYDtmzZgpSUFNY41wJMP9Zh+rEO00/jVFRU4Ny5cwgKCkJQUJAsOrLLCaPRiOLiYvj7+zPdWEBu+qmoqMD58+cRERHRwIvl6Pxt9woSDdR+9tlnsWzZMlGNBQaDwWAwGAw54HAM0qpVq8SUg8FgMBgMBkM2OGwgLViwwOr71iLbGQwGg8FgMOSMwwZS/RRAg8GA8+fPQ6/Xo3PnzsxAYjAYDAaDoVgcNpAsVdIuLi7GhAkT8PDDDzdLKAaDwWC4huYUNWQw5IIzzmNRQ8/9/f2xYMECvPXWW2LulsFgMBgiQ7P6qqqqJJaEwWg+tHmvmNmqDq8gNcatW7ecUuuBwWAwGOLh5uYGf39/XL9+HV5eXmjRogXro2mG0WhEVVUVKioqZJHGLjfkoh+e51FWVoaCggK0bNkSbm5uou3bYQPp448/rvM3z/PIz8/Ht99+i+HDhzdbMAaDwWA4l+DgYJw6dQqenp4WW0dpGZ7nUV5eDm9vb2Y4WkBu+mnZsiVCQkJE3afDBtKSJUvq/K3T6dCmTRs888wzmDNnTrMFYzAYDIZz4TgOJSUlGDBggNSiyA6DwYD09HQMGTKEFRm1gJz04+7uLurKEcVhA+n8+fNiysFgMBgMiXBzc5N8kpMbbm5uqK6uhpeXF9ONBbSgH+ZYZTAYDAaDwaiHXStItFGtLXz00Ud2C8OQOTwPfP89sGIFcPYsEB4OPPMMMH48wIIYxeX334GlS4FDh4DWrYFHHwWmTgVc1MVaM+TmAh98AOzbB7i7A8nJwMyZQHCw1JKpi2vXiJ5TUwGDARgwAHjtNSAyUmrJ1MWdO8CnnwIbNwI3bgC9egHTpgGDBkktmSKxy0CyVPvIEnII2GKITHk5MG4c8N//Cq+dPQvs3AmsXUte9/OTTDzVYDQCb70FvPtu3dcPHABWrQK2bQM6dJBGNrXx738Df/sbUFkpvHb4MNHzpk3AwIHSyaYm0tOJgW8eBJ6bC/znP8BXXwFPPy2dbGri7Flg9GiiW8qZM2RsfvNNYMECgM3NdmGXgUQb1TI0Rk0N8PjjwE8/AR4ewKxZwNChwN69wD//CaSlASNHAr/8Qt5nOM6bbwILF5LtSZOAJ54Azp0D/v534MQJYMgQYiy1bSutnEpn7Vqy+gkAw4eT1bnSUuAf/wCOHCErSenpQO/e0sqpdP74A0hJISsbPXuS89vHB1i2jIwb48eTMeMvf5FaUmVz5Qpw//1AXh4QFgbMnw9ERBAjdNUqcl4DwDvvSCunwmhWHaRbt25hxYoVyM3NBcdxiI6OxnPPPYeAgACx5GPIgXffJcaRpydZwUhMJK/fey8wbBjwwAPA7t3Aq68Cn3wiqaiKZvNmwTj68kuyugEQYzQlhej9zBliNO3YwdyajnL0KDE+AWDKFODjj4U765EjgTFjgF9/BR55hLg42XjmGDdvkpWjO3fIOPHjj4KLOCUFeOkl4PPPgWefBWJigKgoaeVVKkYjMTTz8oC77wZ27QJouvvQoUDfvsCLLxIjqW9fcn4zbMLhETYzMxOdO3fGkiVLUFRUhMLCQnz00Ufo3LkzDh48KKaMDCk5fly461i+XDCOKH36kLtxgPi+d+50pXTq4dYt4PnnyfaMGYJxRLnrLmKk+voSHa9Y4XIRVYHRCPy//0dcxsnJJM7L3O3g6wts2AB06gRcvEjikRiO8eqrwKVLQJcuxM1jHj/HceRm6oEHgLIycr6zlieO8emn5IbJ25vcZNWvBfTCCyQOCSDnfnGx62VUKA4bSNOnT8eYMWNw4cIFbNiwARs3bsT58+cxatQoTKP/DIay4XkyaRsMwKhRJAbJEikpwoQ+bRqZhBj28eabQH4+uQOky+H16dZNMFZffx0oKHCdfGph1SriGm7RghiZlmqnBAQAq1eT7RUryCoSwz6ysgQdfvON5fhENzdg5Uricvv9d2DNGpeKqApu3CAxiwAJgm8s6P2994ihevVq4+MLowHNWkGaNWsW9HrBS6fX6/H6668jMzNTFOEYEpOaSlxnXl7AZ59ZD/B7913A359MJt995zoZ1cDFi2R1DgC++MJ6ptrUqUBsLFlxev9918inFioqhMlk3jyyKtcYgweTuDueJyshDNuhOuN54KmnSMZaY4SHC/+T2bPrBswzmubdd8mKUFycsAJtCU9PsloKkGdWx9AmHDaQ/P39kZeX1+D1S5cuwY9lMykfngfefptsv/ACGcisERhIgrcB8r2aGufKpybeeYes0g0dCtx3n/XP6vUkMB4gRuv1686XTy2sXElW6cLDiaHZFO+9RwKId+wgq04M29izh8TBeHoKMXXWmD6dGKtXrpDVJoZtXLlC3GsA0XNTMYkjRxKXpsFAVpsYTeKwgfT4449j4sSJWL9+PS5duoQ///wT69atw6RJk/Dkk0+KKSNDCn79lWRLeXsLhk9TvPIKMZTOnSMBmYymMZ8UFiyw7TsjRgDx8UBZGXTLljlPNjVhMACLFpHtWbNsy7bs2FFwK7PVOttZvJg8P/NM0zdWADGkaKzXokVAdbXzZFMT//oXUFVFylEkJdn2nTfeIM8rV5LaVAyrOGwgffDBB3jkkUcwfvx4dOzYER06dMCECRMwduxYLKIDEUO50DuTZ5+1PaXc15cEAQLCci7DOsuXkwlh4EDrrghzOA6YOxcAoFu5EjqDwYkCqgNu82aS5RMcDDz3nO1fpO61H38ETp1yjnBqIjeXJBNwnH2uycmTgaAgcnP100/Ok08tlJWRTFeAJHXYWt8oMRG45x7ibv7sM6eJpxYcNpA8PDywbNky3Lx5Ezk5OcjOzkZRURGWLFkCT09PMWVkuJq8PJINAZBUXHt46SVSkXj3boBlM1qnqkoY5Gxx+ZgzejTQrh24wkKEMfdPk+i++opsTJ5sXzXyqCjimuB54X/FaBwaSzdmDEk4sBVfX6H0AtNz06xdSwK0IyKABx+0/XscR1yaAElAYKt1VnHYQCovL0dZWRl8fHwQExODgIAALF++HKmpqWLKx5CC5ctJJtp99wHR0fZ9NyyM1D4ByDIuo3E2byZZJaGhpOaOPej1pszBjtu2OUE49eB7+TJ0v/5KJofJk+3fAV0V/fZbYtQyLFNZSaqTA4LO7IH+b1JTWRBxU9AyHy++aDkT0xoPPURW6y5fBrZuFV82FeGwgfTggw/i37UXw61bt3DPPffgww8/xIMPPojPP/9cNAEZLobnhXTb+rV4bOXZZ8nzd9+xrBRrUD0/8wxZdbOXSZPAu7khMDcXOH1aXNlURPtffyUbI0Y41qZlxAhixF6/Dvzvf+IKpyY2bQKKioB27WyPiTGnUyfyPZ5ndb6scfIksH8/MYwcadPi6SlUkacrqwyLOGwgHTx4EIMHDwYA/PDDD2jbti0uXryIf//73/j4449FE5DhYvbuJWnnLVo4XnF16FCSlVJUxCaUxigqArZsIduO9qIKDQU/bBgAQMdKK1iG53HX7t1ke8IEx/ah1wsTyqpVooilSmiywbPP2r+qQaHxYWvXssKRjUH1PHx4w6KQtjJxInneupW46hgWcdhAKisrM6Xzp6am4pFHHoFOp0P//v1x8eJF0QRkuBhaFfvhh0kBN0dwcyOl7wHilmA05PvvSWZVr15A9+4O78b4xBMAAN26dWxCsQB34AB8CwrAt2hBYokchWazbd8O3L4tjnBqoqiI9FYDSO0jRxk9msQjnT8PZGSII5ua4HnSXw0QjHZHiIoi9dSqq+s2IGfUwWEDqUuXLti0aRMuXbqE7du3I6l2SbWgoAD+/v6iCchwIQYD8H//R7abM8gBpF8YQCaU0tLm7UuN0EGumZ3M+TFjUO3pCe7MGdIYlFEHrvZ85kePdtzgB0gsXnQ0uUZoAgND4McfyWTbs2fj1ZxtwceHxMgArOCsJTIzSRKNry/pbtAcaDmedeuaL5dKcdhAevvttzFz5kx07NgR99xzDxISEgCQ1aS4uDjRBGS4kF9+AQoLSSr00KHN21dMDNC5M0knZYGAdfnzT5Llx3HCIOUoLVrgar9+ZJvdCdalpga6H34AABjF6Bb/2GPk+fvvm78vtUF1QnXUHOg18X//x9oW1Yde4ykp9mVjWuLxx8nzzp2kgCqjAQ4bSGPHjkVeXh4yMzOxzSyLZujQoViyZIkowlnjs88+Q0REBLy8vBAfH4/dNM7AAqtXrwbHcQ0eFRUVTpdTUWzaRJ4ffZTEXTQHjhOy2djEXRda5yUhwXq7CxvJv+cessGKc9bl99/B5eejytfXFKvVLOjkv307a/hpjrl7TQwDadgw0rbo6lW2KmoOzwtjKR1bm0OHDqQmEs+z2lON4LCBBAAhISGIi4uDzqzEeb9+/dCtW7dmC2aN9evXY9q0aZg7dy6ys7MxePBgjBgxwmLrE4q/vz/y8/PrPLy8vJwqp6IwGoWLxJ66Gtagqes//0xWkhgE6qIRSc8FvXuDd3cn2S0nToiyT1VQez5f7dfPtsrZTREdTRoGV1WxCcWczZvFca9RPDxIADLdN4Nw5Ahw5gzJQktJEWefNBGH6dkizTKQpOKjjz7CxIkTMWnSJERFRWHp0qUIDw+3Wl6A4ziEhITUeTDMOHiQLLO2aEGqrYpB374k5be0lNQ2YQAlJaSNCyCagVTt4wOe9nBjq0gC1EDq21ec/XEcMHYs2WZ6FqDGor21vKzBJu6GbNhAnpOTAbH6nVI979gB3Lkjzj5VRDP9KK6nqqoKWVlZmD17dp3Xk5KSsNdKReHS0lJ06NABNTU1iI2NxTvvvGM1VqqyshKVZjV8imuX1A0GAwwitnag+xJzn46g27gRbgCMw4ahRqcjwahi7HfMGLh99hmMmzejZsQIu78vF/2IBbdlC/RVVeC7dkV1p07N1jPVS3VKCjxSU2HctAk1M2aIIaqyOXUK7qdOgdfrcT02VrTzhxs+HPp//AN8aiqqy8ub74qWmGZfX1VV0KelgQNQnZwMXqzrdNgw6N3cwB09CsPJk6RGkouR29jj9tNP0AGoHjNGPD3ffTf0HTuCu3AB1du2gbejtIvc9GMNR2VU3NVdWFiImpoatK3XH6xt27a4evWqxe9069YNq1evRkxMDIqLi7Fs2TIMHDgQhw4dQteuXS1+Z+HChZg/f36D11NTU+HTnGyYRkijPnyJSFy7FgEActq3xyVan0cEggMDkQCg4scfkTZqlO09g+ohtX7EIu7LL9EewJnu3XFcRD3/5ueHZABcRgZ2rF2LypYtRdu3Eum0eTNiABRGR6Pax0e886emBsP9/OB5+zb2L1mComaUaJATjuon6MgRDCwpQUVAALbn5wu1vURgQHQ02hw5ghOLF+OcozXZREAOY4/nrVsYXtu66Rc3N1SKqOcePXqg84ULuPzFF8hxwOCXg36aoqyszKHvKc5AonD1Jlqe5xu8Runfvz/69+9v+nvgwIHo3bs3Pvnkk0aLWs6ZMwczzO7Ei4uLER4ejqSkJFHLGBgMBqSlpWHYsGFwd6SashhcugT3CxfA63SImTULMUFB4u07MRH84sXwKSxESseOdtf8kYV+xMJohL62QFvE1KnoWFtotTlQ/Qx+4gnwn34KLjsbD/A8eLFiFBSK27JlAICA2nIVYp4/bqNGAd99hwG3bsGocD039/rSpacDADzGjEFKc9PO6+/7zBlg5kx0P38e3STQs5zGHq626j4fG4uhzS3BUn/fnp7A//6H9ocPI2z4cEBnW+SNnPTTFMUOJlUozkAKCgqCm5tbg9WigoKCBqtKjaHT6dC3b1+cttKewdPT02LTXXd3d6ecDM7ar03s3AkA4Pr1g3toqLj7DgggMU3bt8N9xw5SnMwBJNWPWBw8SKrW+vlBP2SIqO4Zd3d3cMOHA9nZ0P/6q+NVo9VAcTEpowCAGz2auNvEPH9GjgS++w5u27fDbfFicfYpMQ7rp7aEh27UKOjEvj5HjgRmzoRuzx7oDIbm1bFqBrIYe375BQDApaSIL8v99wO+vuAKCuCem2v3GC0L/TSBo/IpLkjbw8MD8fHxDZb10tLSMGDAAJv2wfM8cnJyECq2MaBUai8+iJEKbQmakaL1ekj0nL3vPufErtD+V6mp2q6qvWsXyarq3Bno0kX8/ScnE1fx4cOkppVWuXAByM0llfMd6b3WFJGRJMmjqspk8GqSmhpSWgIQxlIx8fAQEnMU4C5zJYozkABgxowZ+Prrr7Fy5Urk5uZi+vTpyMvLw/PPPw8AGD9+PObMmWP6/Pz587F9+3acO3cOOTk5mDhxInJyckyf1zRGo/MNJBqcvXu3tqtqO1vPCQmkwu61ayQlWKvs2EGeH3jAOfsPCgJocU46cWkROpkmJADOiHnjOOFa0fLEnZVFVp4DAoiunQHTs0UUaSA9/vjjWLp0KRYsWIDY2Fikp6djy5Yt6FDbqTsvLw/5ZpVBb926hb/97W+IiopCUlISLl++jPT0dPSjg5yWOXKEdCn39SVFw5zB3XcDHTuSO8Fdu5xzDLlTXi7cBTtr4vb0FO4EtVxWgRpIza0Gbw06ofz2m/OOIXdouQpn6pmuTGl54qbX8tChzsuapOfz7t2sZp0ZijSQAODFF1/EhQsXUFlZiaysLAwZMsT03s6dO7F69WrT30uWLMHFixdRWVmJgoICbN++3dQaRfPQVY177xWnmJ4lOE4YRGvjnTTHnj1AZSWpnC1GMb3GMHezaZFr14CjR8k2rQ3lDOi+f/tNm+5MnhcMpPvvd95x6Lhx+DCprK1FqBHurBsrgDSvDQsjxtHvvzvvOApDsQYSQySogeTMiw8QVja0esdN74CHDXO41IFNUAMpPV2bd4J00o6NJa4wZ5GQQG4orlwBTp1y3nHkyvHjQEEB6QfmrJVnAGjTBqD16uhYpSUqKwFa30+sAr6WYO5MizADSctUVpKJFHC+gUTvuLOzgVu3nHssOeIqQzQyEggJIf/bjAznHkuOUD070+0DEMOAJoVo0einv3ngQOLadSZ04qbGr5bYv5/c6ISEkDY3zoTqWYuGaCMwA0nL7N8PlJUBwcFAjx7OPdZddwFdu5KgcK1lpNy4QQxDwPkTN8cRdykgGL9ageddE39EoUa/FiduV7jXKFo9nwEhJCEx0bkrz4BwPufkALdvO/dYCoEZSFrGPMjS2RcfICwRay0OKT2dTN7R0eRO0NnQCUVrAfHnzgEXL5JAVhGKcDYJNQ5++40Y/lqhpka4hl1hIA0cSIoXnj0LXL7s/OPJCbpS50z3GiUsjJTFMBoFt57GYQaSlqErOXRCdTbmga1agurZLJHAqdDj7N1LMge1Ap20+/cnTZedTb9+pHhhYSFw7JjzjycXDh0Cbt4kDVPj451/vIAAoXihllaRysuBffvItjMTDsyhY4fWbq4agRlIWqWqirjYANfcbQPCXVBODlBU5JpjygE6qLvKQIqOJgHK5eVAZqZrjikHaPaNq/Ts4QEMGkS2teRmo79V5GrwVtHiquj+/WScDg0l4QmugF47WjJErcAMJK1y8CCZQAMDSYqnKwgNJUHEPK+dOKSSEiH+yFWGKMdp806QGkjUaHEF9M5eS3p29cqz+bG0NHHTlfb77nNNCAQgjBt//EHiUzUOM5C0Ch3kBg1y3cUHCKtIWplQ9u0jPv2OHUnbBFehtTvuq1eBM2fIuezKGmfUGNuzRxv1kHheiE9xpSFKj5WbS8oLaAF67boi/ojSsSMQHk5a9VD3noZhBpJWoQaSq1Y1KHSg00oQIL3jdbWeqYG0Zw8Z7NTOnj3kOSbGOW0vGqNPH+JqKyggQcRq59QpEnPl6Qn07u264wYGkv8toI3VZ4MBOHCAbLvSEDVffdbSal0jMANJixiNgjvC1RP3wIHkmbr41I6rA7QpMTFAq1ak993Bg649thRI4V4DAC8vIVCZGmlqhv7Gvn2dX/+oPlpyG2dnk/pHrVs7t/K+JZiBZIIZSFrk+HGSheLjI1SpdRUdO5JYJINB/QHE5sUaXW2I6nSCMaqF1TqpDCRA0LOWDCQp9ExXRbWwgkSv2YQEci27Emog7d9PxjANwwwkLUIHmIQEwN3dtcfmOKECsdonlD/+IANMcDBp2OtqaCyO2mMJSkuFQHhmIDkX+hvpb3YldNw4fJj8z9WMlHqOjCRZsBUVwnWlUZiBpEWkcvtQtLKyYX637cpAeAqdUNSu54wMUrywfXsSYOpqqJ6PH1d3+Yrr14GTJ8k2/c2u5K67yP/YaBTic9SIeSC8FHrmOFJLDFD/zVUTMANJi1C3jyuzfcwxn7jVnPkjtZ779gXc3IA//wQuXZJGBlcgpXsNICuEtE6NmicUOmlHRZHYGCnQwqroxYukCbJeT65hKdCCnm2AGUha4/p10pIBkO7ii4sjwa03bqi7Ezq9y+3XT5rj+/oCvXqRbTUPdFIbSIA23GxSun0oWpi4qSEaF0fiRKVAC3q2AWYgaY0//iDP3bq5Nh3aHA8PwThT64Ry+TJ56HSuTYeuj9rdbOb1WpiB5FykDNCm0Il7/371rj7LwRDt25eMXX/+SR4ahRlIWkPqVQ2K2uOQqJ579HBNX7DGUPud4LFjwJ07gL8/0L27dHLQ8/nAAXX2v6uoELJOpZy4Y2OF1efTp6WTw5lIGX9EadEC6NmTbKt17LABZiBpDbkZSGq945aLnukgq9a6U1TP9I5XKiIjSVyOWjN/Dh4khl9wMNC5s3RyeHiQ4pyAOm+uSkpIlh4grSEKqP/mygaYgaQleF6YUO65R1pZ6MV34gS5G1QbcjGQOnQAQkKIKyorS1pZnIFc9KzT1XX/qA2acNC/vzQZmeaoeeLOyCBZeh06AGFh0spC9axGQ9RGmIGkJc6dI8aIh4ewfCoVgYFChVg6+KqFmhoh1ktqQ9S87pQaBzq5GEiA8L9WYwq6nPSsZgOJ/iYp3WsU89XnigppZZEIZiBpCTrIxcURI0lq1DqhnDxJlsp9fIDoaKmlEQY6tU0od+4AR4+SbTlM3FQGtRn8gDwNpKNHgeJiaWURG7ms8ANAp05Amzak64EW2hVZgBlIWoIO3HIY5AD1Gkj098THk1omUmO+VK6mzJ+DB4k74q67pHdHAMJ1dfasutzGhYVCaRAa/yMlISGkZZF5yIAaMP89chijOU7dq3U2wAwkLSGnuxNAGAQOHFDXxE0NUbnouXdvYqgVFAB5eVJLIx5ymkwA0hyYtpRR08RNs9fuvpv8RjmgRrdxXh65RvV6kq0nB5iBxNAE5sukcplQevYkrr4bN4Q7VDUgt4nby0soGKmmiVtuegbqGv1qQY56pjcfNNZPDVA99+wJeHtLKwuFthxR0/lsB8xA0gpHjpDGqS1bAl26SC0NwcODxEMB6onbKC8X0nTlNKGwids10IlbLeczIE8900Kzf/yhntVnua3wAyRMgONIq6L8fKmlcTnMQNIK5vFHUqfpmqO2OKScHJJS37YtaawpF8wnFDVQUABcuEDO5fh4qaURUJvbWG5xMZTYWOKKunZNPX0G5ahnPz8h0UQtY4cdMANJK8jx7gRQ38qGXA1RqufMTFKGQOmYt8wJCJBWFnN69VKX2/jiRdK/0d1dcNPKAW9voVSJGsaO6moh1ktOBhKgvpsrO2AGklaQ490JIMhDK/UqHbnquVs30j7gzh0gN1dqaZqPXPXs6akutzHVc69eJJZNTqjp5io3FygrIys2tD6cXFCTnu2EGUhaoLhYmBTp3YBc6NKFZMZUVpI4KaUj15U6NzchRVsNA51c9Qyoa0KRqyEKqGtlg+q5Tx9yrcoJ+r9XU7yXjTADSQtkZpITu0MHEhsjJzhOPRNKYSGpgQPIo15MfdSiZ7nGxVDUFKgtZz2ryW0sZz3HxBC38c2bwvimEZiBpAXkfLcNqKcCMb2TlVO9GHPUYiCdPQsUFRF3VkyM1NI0hOo5O1vZbmPz/n1yW3kGgKgowNcXKC0lPR2VjJwNJPNsY6WPHXbCDCQtILcK2vVRSyab3A1ROskdOULKESgVubXMqU+XLkDr1sRtTEs+KJHjx+UbFwMQVxTNYFTy2FFWJoQXyHWMVpM70w6YgaQF5Hx3AggX34kTwO3b0srSHORuiIaHExdrdTUpR6BU5H4+m7uNlbwqKue4GIp5fIxSOXiQuAhDQ0nbHDmiltVnO2EGktq5fBm4coUMcL17Sy2NZYKDhd5KNNVVacg9LgZQT7yX3PUMMD27CrXpWU6lQcwUIclkAAAgAElEQVQxzzY2GKSVxYUwA0nt0IuvRw/ir5crSh/ozp8ntW88PORVL6Y+StezHFvmWEINgdp0VUbOeqarz4cOARUV0sriKEowRLt2Bfz9iY6PHZNaGpfBDCS1I3e3D0XpEwqVOzaWBA/LFaUbSHJsmWMJqueTJ4Fbt6SVxRGUEBcDkMzcNm2I2/jQIamlcQwlGEg6nWCMKnXscABmIKkdJVx8gPInbqXomZYfOHOGZIIpDSW4IwAgKAiIiCDbSnQbZ2fLPy4GUL7b+Pp1svoMyDNT0Bw1xHvZCTOQ1ExNjTA4yzWzihIXR+Kk8vNJ3JTSkHsGG6V1a2HlRYkTt1IMUUDZE7dSDFFA2XqWa8scS7AVJOXw2WefISIiAl5eXoiPj8fu3butfv6///0voqOj4enpiejoaGzcuNFFkkrIiRNASQmJPaINB+WKry+JkwKUdwEqJS6GouQJRYkGkhLvuJWkZyVP3ErSM5Xx6FHSskgDKNJAWr9+PaZNm4a5c+ciOzsbgwcPxogRI5CXl2fx8/v27cPjjz+OcePG4dChQxg3bhz+8pe/IEOp8S62Qi+++Hj5pumao9SJ+8gRErwo97gYilL1XFJCavMA8ndHAMrVM6CsiZueC6dOKS/eS0l6vusuICwMMBqJC1YDKNJA+uijjzBx4kRMmjQJUVFRWLp0KcLDw/H5559b/PzSpUsxbNgwzJkzB926dcOcOXMwdOhQLF261MWSuxglXXyAcicUcz3rFHBJmdfoUVJvpawsIm/79kBIiNTSNA11G1+5oiy3cWEhcO4c2ZZjy5z6BAUBnTqRbSW5jc1LgyjB4AeUvVrnAAoYzetSVVWFrKwsJCUl1Xk9KSkJe/futfidffv2Nfh8cnJyo59XDUqJi6GYuySMRmllsQelGaKxsYBeDxQUAJcuSS2N7ShNz0p1G5u3zGnZUlpZbIVO3EryCiilNIg5SnYbO4BeagHspbCwEDU1NWhbr+lq27ZtcfXqVYvfuXr1ql2fB4DKykpUVlaa/i4uLgYAGAwGGEQslEX3JeY+AQDl5dAfPgwOgCEuThnFvbp2hd7bG1xJCQxHjwJRUc7Tj4jo9+8HB6C6d2/wLpbTIf3o9dDHxIDLzkb13r3gQ0OdJJ24uO3fDx2Amvh4GG38vVKfP259+kB36BBq9u2DcdQoSWSwhiX96PbtgxsAY58+qJHxdWeOLj4ebuvXw5iRIZrMzj53uL17oQdg7NkTNTqdIsZorndv6AHwBw5Ifm3Zg6MyKs5AonD1Mit4nm/wWnM+v3DhQsyfP7/B66mpqfDx8bFT2qZJS0sTdX+tTpzAkOpqVLRsie1HjpDAOgUwqGNHBObm4sjKlbh0332m18XWj1joy8qQUtso85fiYlRu2SKJHPbqp2fbtogAcH79ehz39naOUCIzbPdu+ADYV1ODG3bqWarzp72XF+IAFG3bhr0DB0oigy2Y6+eeLVsQAuCojw/OS3Q+20vr6moMBlC5Zw9SRZbZWedO9++/RxcAF4KDcUQhetaXlmIkAO7cOez6738Bf3/Zjs3mlJWVOfQ9xRlIQUFBcHNza7D6U1BQ0GCViBISEmLX5wFgzpw5mDFjhunv4uJihIeHIykpCf7+/s34BXUxGAxIS0vDsGHD4O7uLtp+dWfOAAA8Bg1CysiRou3X2eh27gRyc9GrqgoxKSlO049YcDt3guN58B06YOhf/+ry4zuqH+76dWDbNnQuKkLHlBQnSigS+flwLywEr9PhnhdfBFq0sOlrkp8/7doB//oXgi5cQMrw4bKLUWugH56HftIkAED0hAmIUoo78957wb/1FryLipDSq5cotZucfe64vf8+AKD9o48iXAnXYC38/PngTp/GfS1aYDsg27HZHOoBshfFGUgeHh6Ij49HWloaHn74YdPraWlpePDBBy1+JyEhAWlpaZg+fbrptdTUVAwYMKDR43h6esLTQkVkd3d3p5wMou+3NlhR178/dDI/eevQvz8AwC0zE25mcjtL780mKwsAwPXrJ6l8dusnIQEAoMvKgk6nk3+WY21zXS46Gu6tWtn9dcnOn169gFq3sfu5c0BUlOtlsAGTfs6fJ0Ha7u7Qx8cDcrzmLNGyJYn3OnQI7tnZpLejSDjl3KmuNmWC6RMSlKNngMS0nj4N95wcoHdv+Y7NZjgqn7xuZ2xkxowZ+Prrr7Fy5Urk5uZi+vTpyMvLw/PPPw8AGD9+PObMmWP6/CuvvILU1FQsWrQIJ06cwKJFi/DLL79g2rRpUv0E56O0gFYKlTcnh7SUkDtKC4SndOtGVmHu3AFyc6WWpmmU0jKnPno9KbMBKCNQmwbf9uoFeHlJK4u9KCkL9vhx0s7Fzw+IjJRaGvuo1TOnpIxBB1GkgfT4449j6dKlWLBgAWJjY5Geno4tW7agQ4cOAIC8vDzk5+ebPj9gwACsW7cOq1atQs+ePbF69WqsX78e9yhtUrMV8zRdpaSPUjp2JGm7BoMyeisp1RB1cxNSuJUwoShVz4CyJm6mZ9dAZezTR3Zu1yahBtKBA8oqE+IAinOxUV588UW8+OKLFt/buXNng9fGjh2LsWPHOlkqmUDvAiMjlZOmS6G9lbZsIYNIXJzUEjXO5cvk4eYG9O4ttTT2068fsHMn0fNzz0ktTeMYjcroLN8YSkqNVoOBRMuEyNnwUPL53KsX4O4OrrAQPgUFUkvjVGR8BjEcRqnuCIpSJhQ6mfToQWreKA2l3HGfPg3cvk1cPrSukJJQitu4utoUU6fIsSM6GvDxIRXXT56UWhrrKNkQ9fIy1W1qefq0xMI4F2YgqRElX3yAcqq1Kl3PVO7Dh4HycmllsQbVc+/eygpmpSjFbXzsmHLjYgDlxHuVlZH2RIDyQiAoteEprU6dklgQ58IMJLVhXr5eqRM3HTROnCArB3JF6St17dqRlh01NfLurUT1rNSYQeo2BuQ9cZu3vZCze8oaStBzTg655kJCyDWoRGr13IqtIDEUxblzyitfX582bYCICAAAR5f85UZNjdD3iU3czkXpBj+gDD0r3RAFlKFn8/PZSrFiWVOr54CzZ4lrVqUwA0lt0IsvNhawUMdJMdBMCbnGIZ08SWIdfH1J7INSkfuEUlFhqoHEJm4no/QVUUCQ/dAhcu7IETqmKdW9BgB33w3e3x/6qirimlUpzEBSG2q42wbkbyDRySQ+Xv5FFq0h94k7J4fE7rRpI2rxP5dDJ8OTJ4Fbt6SVxRIlJcJEp2RDtEMHcq7IOd5LDWO0Tge+tkyImushMQNJbajhLhAQDCS5utjU4I4AhFpIZ88S16zcUIM7AiBB2rVuY8hwQuEOHiTxi+HhgEKaF1tE7m7joiKgtg2U6dpTKNRA0slRzyLBDCQ1UVUFHDxItmtbdiiWuDjAzQ3c5cvwkuPErRYDqVUr4O67ybYcV+vUomdA1hM3p+S6PPWRsZ5NxnGXLkDr1tLK0kz42lVR2a7yiwAzkNTEoUOkzkrr1uQCVDK+vqaaN7KrtXHnjpCmq3RDFJD3hKIGdwRFxvW9OKW2zLEEO59dAjWQcPw4UFoqrTBOghlIasL8blvJ7ghK7QUou1TSrCySxXbXXaJ0DZccuU4oN24I7ggVTCiy1TPM4kjUoGc6cZ86Bdy8Ka0s9TEvpaB0wsJQHhgIzmgUPBcqgxlIamL/fvKshrtAQL61NtTk9gHqTtxy6q1EJ5O77yauQKVT6zbGlSukRY1M8CoqAvfnn6T2ES20qGQCA4HOncm2nOK91FCjrh43u3YlGzI0+sWAGUhqgk7canD7AKZBpOWZM6S3klyghqha9FzbWwnXrwMXL0otjYDKJhNzt7GcJpSWtBpy9+5AixbSCiMWclyt+/NP4No1YiTLucekHdyk8Yty0rOIMANJLRQWqssdAQDdu4P39oZ7WRnpxyUX1LaCZNZbSVYDndr0DMhy4jat0DI9OxcaexYTA3h7SyuLSNxiK0gMRUBP0MhIdbgjAECvB9+7NwAZZUr8+Sdxj7i5qcMdQZHbhGLujmATt1Mx9dNSy40VIPyWjAz5uI3pyrOK9Hyrc2fwHEdWnq9dk1oc0WEGklpQW/xRLaZUUrnEEtBVjZgY4jJRC3KbuM1b5vTsKbU04mGeySYHt3FNDXFhA+oaO2i817Vr5KZGDuzbR54TEqSVQ0SqfXyAbt3IH3K5iRURZiCpBbXFH9ViqtYql4tPjW4fQJi4s7Lk0VuJGmpxccpumVOf6GjiXikpIVW1pebECbiXl4P39SUxSGrB21swrOVg9FdVCQHjKjKQALN0fzo2qghmIKkBo1G1E7dpBYnWeJIaleoZkZGAnx9QViaP3kpq1bNeL7hmZTBx05VZvndvZbfMsQQ1+unqupTk5JDecK1bC4VZVQIzkBjy5tQp4PZtctcUEyO1NOLSsSMq/f3BVVUJTUulorpauAtU2UoddDqhNoscBjq1tMyxhIzcmbRAJK+Gujz1oSs11LUlJebuNTXUqDPDaB7vJQe3sYgwA0kN0DukPn1Iuraa4DgURUaS7b17pZXl6FGywhIQQFZc1AY1+qTWc0WFUHhObStIgPCbZDBx62r/17wa9TxgAHnOzJR+9VmF8UcmaDxmcbE8Vp9FhBlIakCt7ohaiqKiyMaePdIKYp6FolPhpTNwIHmWWs9ZWSRmIzhYKPinJujEfegQiUWSilu3SJsIADyVSU106QK0aUOMI6krPavZQNLrhZsrqccOkVHhKK9B1Fa4sB5FNEtizx5pU3ZVmilogg7eZ85Im7JLB9mBA1XnjgAAtGsHtG9fN3ZQCvbtA8fzKA0JAdq2lU4OZ8FxgjEq5cR9+TKQl0duqtToMgYEPUu9+iwyzEBSOiUlwOHDZFulBtKtzp3Bu7sDV68C589LJwgdZNV4tw2Q+lk0k0lK94+5gaRWBg0iz1JO3LWTmWmFVo3IYeKm11JMjHoqlddHLqvPIsMMJKWzfz+5E+3YUR2NUy1g9PQ0FYyU7AK8epWsrHCcOpfJKVIPdDyvDQNJaj2bHdu0QqtGqJ737pVu9VnN7jVK//5kbDx3joyVKoEZSErn99/JM70jVSm81Evl9LgxMUDLltLI4AqknrhPniQFIr28AGoUqxGq5/37gZoa1x/fYDC591S9ghQfTxJXrl0jk7cUaMFACggQ+gyqyM3GDCSloxUDiQ4uUhtIKtezaeLOyiLZZK6G6rlvX1JFW6306AH4+xMX+ZEjrj/+oUNAWRn4li1R0q6d64/vKry8hLpTUkzclZXkWgLU65qnmK/WqQRmICkZg0EIHFb5xG0ykI4dI9k3roYaomp2+wBAp04kYNe88q8r0Yoh6uYmbeZP7TH5hAR1ZmSaI+XETTMyg4LUmZFpjtSr/E5A5VeGysnJIXV5WrUC1LxMDpBJu3NnEkfg6sq4d+4IacJqn7g5Tlo3mxbijyj0N1Lj25WYG0hqR8qJe9cu8jxkiDozMs0xX30uL5dWFpFgBpKSMV/VUPtdICDdxJ2RQeJEwsNJerbakUrPBQWkKjyg7ngNilR6NguEV2X9o/rQ33j0KOk44ErS08nzkCGuPa4URESQG1mDQXArKhwNzKoqRiPxRyakuhPUmp6lyvyhLpDoaNKzSu3ccw9xtV26RB6u4uJF4MoVQK83NYNWNSEhxHXM8651s1VXC2PVvfe67rhSYb76LMWqqBNgBpJS4XntTdz0d+7f79rWAVqJi6HExZG+fjduALm5rjuultxrAKmJExtLtl05odBj9e4N+Pi47rhSQg2UnTtdd8ycHBKEHxCgvh6ZjTF4MHmmrkWFwwwkpXL6NHFJeHgIWRpqJzqatJ8oL3ddo0+DQXsTt4eHsFrnygmFHosOslpAignlt9/Ic2Ki644pNffdR57pb3cF1L02aBBZKdQCVM+7d5OxU+EwA0mp/PoreR4wgKSyagGOEwZ1Vw10f/xBgrQDA7VzFwgIAx09z5zNrVtCIDw9tha4/37y7Co9mx9LS3qm40ZWFmmq6gqogaQF9xolJoa4x+/ckSYLVmSYgaRU6CBHB1it4Oo7QfPJRAuB8BSq5507SaV2Z5OeTo5z992kV5lWGDKEnFenTwN//un84124QB56vXZcxgBJsOjcmZxjrnBnGo1kFQXQRoA2RacTDEJXrtY5CQ2N+CrCaGQG0t69rkkl1aqe+/YFfH1JHNLRo84/nlb1HBAguMhdMaHQY/Ttq96+YI3hypurY8eAoiJyDam5IrwlzG+uFA4zkJTIkSNk4vL1JQOdlrj7biA0lBRfc3ZD1fJyIetFaxO3u7sQH+MK9w+dtLTk9qG40s2mVUMUENxsrpi46TESEsi1pCXoNbxnDxmnFQwzkJQIHeQGD1Z3OwZLcJzr7gT37SPZcmFhxDDTGq7S8/XrwOHDZFtLgcMU83gvZ5ZV4HltG6L03Dp40Pn1kNLSyPPQoc49jhzp3h1o04YUMXZVMo2TYAaSEqEGkhYvPsB1E7f53bbaq+Bagup51y7nNlSlGVwxMSRLUWsMGkRigvLygPPnnXecM2eAy5frZilqibvuArp2rRsf5AwMBmEFadgw5x1Hrpgn0yjczcYMJKVRXS1MKFpcJgeEiTsjg2RLOAstuyMAUg/J35/cbWdnO+84WsyqMsfXlxSNBJzrZqP77t+f1LnSIvQc++UX5x0jI4PUPwoMJNeQFqEG0o4dkorRXJiBpDQyM8nF16oV0KuX1NJIQ6dOQMeOxFh01h1KSQlJ8Qe0ayDp9UJGCnUZOAM6iGrVQAKEc8yZEwo1CrR6PgNAcjJ53rbNeceg18oDD2gr89UcunK2Zw8ZSxWK4v57N2/exLhx4xAQEICAgACMGzcOt5ro7p6YmAiO4+o8nnjiCRdJLDKpqeQ5MVE7xcfqw3HA8OFke+tW5xxjxw5igHXuDHTo4JxjKAFn6/nsWdJ/Ta/XtoGUlESeU1Od4840GISxg/5PtcjQoWTcPHnSee5MaiBp0b1G6dqVjJ0Gg2trfImM4gykv/71r8jJycG2bduwbds25OTkYNy4cU1+b/LkycjPzzc9vvzySxdI6wS2bCHPI0ZIK4fU0N+/datzAlupnkeOFH/fSoLqee9eUsxRbKjhNWgQSXnXKv37Ay1bktRwZwS27ttHCiQGBQFa6L/WGAEBQvzV9u3i7//2beH/p2UDCRAMcWeu1jkZRRlIubm52LZtG77++mskJCQgISEBX331Ff73v//h5MmTVr/r4+ODkJAQ0yNAiYPx9evCxZeSIq0sUnP//STY9Nw5UmRPTHheMJC0rueICKBbN7Kq4Qw3G9MzQa8X3D9UJ2JC95mcrN2VZ4ozV0XT0si1EhkJtG8v/v6VhLNvYl2AXmoB7GHfvn0ICAjAPTSgEUD//v0REBCAvXv3IjIystHv/uc//8GaNWvQtm1bjBgxAn//+9/h5+fX6OcrKytRadYQtbi2PL3BYIBBxB4zdF+27JP76SfoeR58r16oDg5WRa+bpmhUP56ecBs0CLpff0XN//4H49Sp4h300CG4X74M3scH1QMGyFrP9pw/jqIbPhxuJ07A+PPPqHnoIfF2XFYG/W+/gQNgGDbMKXp2hX7EgktKgn79evA//4zqt98Wdd/6LVvAAahOSgJvpgsl6Uc0HngA7nPngt+xA9V37jRaKsUR3bht2gQdgJqRI2FUuU6b1M/AgdB7eoK7eBGGo0fJjZZEOHp+K8pAunr1KoItpAEHBwfj6tWrjX7vqaeeQkREBEJCQnD06FHMmTMHhw4dQpqVO+KFCxdi/vz5DV5PTU2FjxM6YFuThdJn5UrcBeDU3XfjhDPuMmWMJf10bt8ePQAUrlmD/Z07i3asrt9/j2gAV7t3xwGF+M9tOX8cpU2rVhgAoGrzZmx/8EHRAk+DMzORUFGBsjZtkHbhAnDxoij7tYQz9SMWHm5uGAGAy87GjjVrUNm6tSj79SosRPKRI+A5DmkchyoLY4cS9CMaRiOSAwLgdfs2Dnz4IQqbSHaxVTdcTQ2Gb94MDwB7AwNRpJEx2pp+Erp1Q/ChQzixdCnOjRnjQqnqUlZW5tD3ZGEgzZs3z6IxYs4ftRlFnIV6NDzPW3ydMnnyZNN2jx490LVrV/Tp0wcHDx5E70bKwM+ZMwczZsww/V1cXIzw8HAkJSXB39/fqqz2YDAYkJaWhmHDhsHdWsVVgwH6Z54BAHSeOhWd+vcXTQY5Y1U/ERHA6tUIPnYMKYMGkZR0EXBbvBgAEPzMM0iRuevH5vOnOQwdCn7xYnjdvImRoaHgaWuMZqKrjU3wfPhhpDgp1ssl+hER46efQpeZiQeqq8GLdO7pvvoKAMD37YsH6iWnKE0/YuH28MPA6tXof/UqjHPmWPyMvbrhdu+GvqQEfOvW6D99OnGbqhhb9KM7exZ49VV0P30a3SQcS4sdbFAsi//glClTmswq69ixIw4fPoxr1641eO/69eto27atzcfr3bs33N3dcfr06UYNJE9PT3h6ejZ43d3d3SkDSZP73b2bBAAGBkI/YIDm4ggs6icmBoiMBHfyJNxTU4Enn2z+ga5eNbUwcRs9Gm4KmTScdV7W7pzEE/zwA/Q//kgCipuL0Qj8+CMAwG3MGKfr2an6EZMxY4DMTKJnsxu7ZrFpEwBA9/DD0DWiA8XoRyzGjgVWr4bbjz/C7dNPra6K2qyb2hUjbuRIuGuozpRV/YwdC7z6KnS//w5dURFgxzwtJo6e27II0g4KCkK3bt2sPry8vJCQkIDbt2/jgFmWR0ZGBm7fvo0BdlSGPXbsGAwGA0JDQ53xc5zD//0feX7oIc0ZR43CceQCBIAffhBnnxs2kIDCfv1YkKU5jz1Gnn/4QZyAyz17gPx8klWk9Wwfc+j5nJoqTtbgjRtCmjXdN4PUKPLzA65cIYUdmwvPA5s3k20JXUmyo3170i+U502GupKQhYFkK1FRURg+fDgmT56M/fv3Y//+/Zg8eTJGjRplCtC+fPkyunXrZjKizp49iwULFiAzMxMXLlzAli1b8NhjjyEuLg4DBw6U8ufYTnU18N//ku3HH5dWFrnx6KPkeetWcapqU0P0L39p/r7UREoK4OVF2lXQvmnN4fvvyfODD2qvn6A1oqJILyuDwbTC1ix+/JFkVcXGAl26NH9/asHTExg1imxv2ND8/R05QrJpPT2FmlYMAh2j6RymIBRlIAEkGy0mJgZJSUlISkpCz5498e2335reNxgMOHnypCkoy8PDAzt27EBycjIiIyPx8ssvIykpCb/88gvclLISs3MnUFhIStdruZieJWJjSWXt8vLmp+3m5wPp6WSb3W3XpUULIW2XGjeOYjQKgyVdmWIIUJ00V8/m+2Dnc0PMJ+7mrop+9x15TkkRLRZSNVA9//orWdFUEIozkFq3bo01a9aguLgYxcXFWLNmDVq2bGl6v2PHjuB5Hom1vWDCw8Oxa9cu3LhxA5WVlThz5gyWLVuG1iJliLiE9evJ86OPqj7wz27M3Wx09cdRqHvtnnu0XT27Mcwn7uZMKHv3EteGvz9zr1mC6rm5brabN4X2IswQbcjw4aQn3fnzzSvOyfPAunVkW4w4SLXRpQvQsydZydy4UWpp7EJxBpLmqKwUloCZe80yVC+bN5NJwVHWriXPzL1mmVGjyIRy6pTQp84R/vMf8vzgg8QlwahLdLTgZmvOKtK6dcQ937MncPfd4smnFnx9gUceIdvffOP4fvbvBy5cIKusWq+83xhPPUWem6NnCWAGktz58UfSfiAsDBgyRGpp5ElcHJkEKiuFpW57yc0lKxtuboBS+/Q5Gz8/Ybl8xQrH9lFWJhiitWUrGBagunFUz+bfffbZ5sujVqie160DKioc28fKleT54YcBJ9TIUwVPP00yBX//XfzOB06EGUhyp7aGCZ57jrnXGoPjiH4AYbCyFzqZjBxJjFGGZSZOJM/ffUeMHXv54QfSEywigsXTWWP8eHK9Z2QAx47Z//1Dh4CsLFKigd69Mxpy//1Au3Zk5ZlmodlDcbFwUyZWWQY1EhYmtNJZvVpSUeyBGUhy5tw5EkPAccLExLDMU0+RySAry/54gspKYel30iTxZVMTQ4aQoPiSEsdW66jB/+yzolXkViVt2wpZVlRn9rB8OXkeMwZo00Y8udSGmxswYQLZ/vRT+7+/di3Jnu3WjTRcZjQOXcn8+mvHV+tcDBuh5MyyZeQ5KQno2FFSUWRPUJAQILlkiX3fXbOGZAm2aydkajEso9MBL7xAtj/6yL5g7QMHyBK7Xi+s+DEa5/nnyfOKFfbF1t24AaxaRbbp/4rROC+8QM7J3buBgwdt/57RCHzyCdn+29/IjSyjcR56iIyxBQWOh0K4GGYgyZXCQuHOceZMaWVRCtOnk+fvvwfy8mz7jtEIvP++8H3mxmyayZNJPNLx40BtuxCboHp+6ingrrucI5uaSEoi1eJLS4EvvrD9e59/TspexMURFxLDOmFhQqKHPTdXmzeTa8Dfnxn8tuDuDtCm4kuWiFNw1skwA0muLFtGBrn4eGDoUKmlUQaxsWRCqKkB/vlP276zYQNw8iTQsiWLIbCVgABBV++8Y9tAl5srZGMyg982OE7Q1bJlxFBqiuJiYeV55ky2qmEr9OZq7Vpi9DQFzwMLF5Ltl14i1wSjaSZPJtmDR46IU6DTyTADSY5cukTcFwAwZw4b5Oxh3jzyvGIFmZStUVkJzJ5NtqdOJasiDNt49VWSsbNvn20VcmfOJKt1Dz4I9OjhfPnUwhNPkJiva9eA2ibKVnnvPbL6HBnJah/ZQ3w8yUIzGoE332z6899/T1zGXl7AtGnOl08ttGpFxg6AzG0Gg7TyNAEzkOTI66+TDKFBg4Q6HQzbGDyYTMI1NeSu0NrqxtKlwNmzQGgo0TnDdsLChNWNWbOst3nZto008tTrbZvkGQIeHoLO3iNnnMUAABGkSURBVH+f1NtpjPPnBRfR4sXEpcGwnX/8g8TYbdwIbN/e+OdKS4VJfvZsIDjYNfKphZkzSeLA6dPCaqdMYQaS3PjhB1KTg+OAjz9mq0eOsGgRKUC4fTvwr39Z/syRI8Df/062Fy4kRd4Y9vHaaySW6Nw54JVXLH+mqEjIDJwyhRUsdIRHHgHuvZdk/jz5pOW77upqUhqgooK4mUePdr2cSic6mpyjAIkpKiqy/LmZM4E//ySlKtiNlf34+QHvvku2584Vp7ejk2AGkpw4cEBIhXztNRJkybCfyEghIPjVV4V2C5TLl0n6c2Ul6Z00frzrZVQDLVoA335LjPgVKxoao2VlxG1x+TIxjP7xD2nkVDocR7LSAgJI1eYpU4griGI0koy3338n/5Ovv2Y3Vo6ycCEZP65cgdsTT0BXWVn3/U8+Ab78kuj3yy9JZXmG/UycSIz4qioyRly5IrVEFmEGktRUV8M3Px+6ZctI4bzSUnIHyCaT5jFlCqn6XFVFij/+4x/kTmXNGqBvX+Kq6NKFFC1jk4nj3HefEPc1ZQpJmc7KAn7+GRgwgDT/9fcnMRu+vpKKqmgiIoRzdflyYuDv3k2MopEjiYHKceT8joiQWlrl4uNDVvD9/KDbuRODZ88Gt20bkJlJUvlffpl8bsEC1kewOXAcMeQ7dSIr0H37kgD5S5fkld3GM2zi9u3bPAD+9u3bou635tFHeZ6cEuQxbBjPl5SIegwlU1VVxW/atImvqqqy/8sVFTxfX7/0ER3N8+fPiy6vq2mWfsTCaOT5uXMt67lNG57fs0cy0WShHzH59lue9/BoqGcPD57/z3/s3p3q9CMWu3fzxqAgy+f022+Tc17jiHLunDvH89261dXvwoXiCVmLo/M3W0GSGL5zZ9R4eMDYuzdZst26lcXDiIWnJ1m5+PZbICGBZFBERZG7v4wMVnxTLDiOrNDt2EE6pAcFEd1OmUJaXgwYILWE6uHpp0kxwyefBEJCyOPJJ4HsbOCvf5VaOvUwaBCqMzNxLiUFfIcOJKh4+HDg11+B+fPZqrNYRESQxtfz5hHXpl4PdO0qtVQmWFU8iTHOnYst/fsjZdQo6FjWifhwHJlUnn5aaknUz/33s8KErqB7d6HhL8N5hIXhyN/+hvCUFLizsdl5tGhBEmb+/neSgCAjFxszkKTG25v1pGIwGAwGQ2aGKJuZGQwGg8FgMOrBDCQGg8FgMBiMejADicFgMBgMBqMezEBiMBgMBoPBqAczkBgMBoPBYDDqwQwkBoPBYDAYjHowA4nBYDAYDAajHsxAYjAYDAaDwagHM5AYDAaDwWAw6sEMJAaDwWAwGIx6MAOJwWAwGAwGox7MQGIwGAwGg8GoBzOQGAwGg8FgMOqhl1oApcDzPACguLhY1P0aDAaUlZWhuLgY7jLrZCwHmH6sw/RjHaYf6zD9NA7TjXWUpB86b9N53FaYgWQjJSUlAIDw8HCJJWEwGAwGg2EvJSUlCAgIsPnzHG+vSaVRjEYjrly5Aj8/P3AcJ9p+i4uLER4ejkuXLsHf31+0/aoFph/rMP1Yh+nHOkw/jcN0Yx0l6YfneZSUlCAsLAw6ne2RRWwFyUZ0Oh3atWvntP37+/vL/iSTEqYf6zD9WIfpxzpMP43DdGMdpejHnpUjCgvSZjAYDAaDwagHM5AYDAaDwWAw6uE2b968eVILoXXc3NyQmJgIvZ55PC3B9GMdph/rMP1Yh+mncZhurKN2/bAgbQaDwWAwGIx6MBcbg8FgMBgMRj2YgcRgMBgMBoNRD2YgMRgMBoPBYNSDGUgMBoPBYDAY9WAGksR89tlniIiIgJeXF+Lj47F7926pRXI58+bNA8dxdR4hISGm93mex7x58xAWFgZvb28kJibi2LFjEkrsXNLT0zF69GiEhYWB4zhs2rSpzvu26OPmzZsYN24cAgICEBAQgHHjxuHWrVuu/BlOoyn9TJgwocH51L9//zqfqaysxNSpUxEUFARfX1+MGTMGf/75pyt/hlNYuHAh+vbtCz8/PwQHB+Ohhx7CyZMn63zGlt+el5eH0aNHw9fXF0FBQXj55ZdRVVXlyp/iFGzRT2JiYoPz54knnqjzGbVeX59//jl69uxpKv6YkJCArVu3mt7X2rnDDCQJWb9+PaZNm4a5c+ciOzsbgwcPxogRI5CXlye1aC6ne/fuyM/PNz2OHDliem/x4sX46KOP8Omnn+KPP/5ASMj/b+9eY9os+zCAX4W3bQg0DZVTAUVE58SyOiDDkmUQlsGWkSySLFNxQc1ItgjKhA/O06IuGfGDkUTjIZplS1RM3Fg0TBzLoEooOwCVkyaYcTCzHQ4ZmyCn9v9+8PXJ2wKOROCR9volJO393PfT+75yP+HPQwtx2LZtm/L/8QLNxMQErFYr3nnnnQWPLyWPxx9/HE6nEw0NDWhoaIDT6cTevXtXawkr6nb5AMD27dt99tOZM2d8jldUVKCurg61tbVoaWnB77//jsLCQng8npWe/oqy2+145pln0NbWhsbGRszNzSE/Px8TExNKn9ut3ePxYOfOnZiYmEBLSwtqa2tx8uRJVFZWqrWsZbOUfACgtLTUZ/988MEHPscD9fpKTExEdXU1Ll++jMuXLyMvLw+7du1SfgALur0jpJpNmzbJ/v37fdrWr18vL7zwgkozUsfhw4fFarUueMzr9UpcXJxUV1crbVNTU2I0GuX9999frSmqBoDU1dUpz5eSR19fnwCQtrY2pY/D4RAA8uOPP67e5FeBfz4iIiUlJbJr165Fx9y4cUO0Wq3U1tYqbVevXpWQkBBpaGhYsbmqYWRkRACI3W4XkaWt/cyZMxISEiJXr15V+nz22Wei1+tlfHx8dRewwvzzERHJycmR5557btExwXR9iYhERkbKRx99FJR7h3eQVDIzM4P29nbk5+f7tOfn56O1tVWlWamnv78f8fHxSE5OxqOPPoorV64AAAYGBuB2u31y0uv1yMnJCcqclpKHw+GA0WhEVlaW0ufhhx+G0WgMmsyam5sRExODdevWobS0FCMjI8qx9vZ2zM7O+mQYHx8Pi8UScPmMj48DAEwmE4Clrd3hcMBisSA+Pl7pU1BQgOnpabS3t6/i7Feefz5/+eSTTxAVFYUHH3wQVVVVPndng+X68ng8qK2txcTEBGw2W1DuncD885drwPXr1+HxeBAbG+vTHhsbC7fbrdKs1JGVlYUTJ05g3bp1uHbtGo4cOYLs7Gz09vYqWSyU09DQkBrTVdVS8nC73YiJiZk3NiYmJij21o4dO7B7924kJSVhYGAAr7zyCvLy8tDe3g69Xg+32w2dTofIyEifcYF27YkInn/+eWzevBkWiwUAlrR2t9s9b39FRkZCp9MFfD4AUFxcjOTkZMTFxaGnpweHDh3C999/j8bGRgCBf311d3fDZrNhamoKERERqKurQ2pqKpxOZ9DtHRZIKtNoND7PRWReW6DbsWOH8jgtLQ02mw0pKSk4fvy48uZa5uTrdnkslE2wZLZnzx7lscViQWZmJpKSklBfX4+ioqJFxwVaPmVlZejq6kJLS8tt+wbj/lksn9LSUuWxxWLBfffdh8zMTHR0dCA9PR1AYOdz//33w+l04saNGzh58iRKSkpgt9sX7R/Ie4e/YlNJVFQUQkND51XVIyMj8yrwYBMeHo60tDT09/crn2ZjTn9aSh5xcXG4du3avLG//vprUGZmNpuRlJSE/v5+AH/mMzMzg7GxMZ9+gbSnysvL8eWXX6KpqQmJiYlK+1LWHhcXN29/jY2NYXZ2NuDzWUh6ejq0Wq3P/gnk60un0+Hee+9FZmYmjh49CqvVipqamqDcOyyQVKLT6ZCRkaHctv1LY2MjsrOzVZrVv8P09DR++OEHmM1m5Vb3/+c0MzMDu90elDktJQ+bzYbx8XFcvHhR6XPhwgWMj48HZWajo6P4+eefYTabAQAZGRnQarU+GbpcLvT09Kz5fEQEZWVlOHXqFM6fP4/k5GSf40tZu81mQ09PD1wul9Ln7Nmz0Ov1yMjIWJ2FrJDb5bOQ3t5ezM7OKvsn2K4vEcH09HRw7h0V3hhO/1NbWytarVY+/vhj6evrk4qKCgkPD5fBwUG1p7aqKisrpbm5Wa5cuSJtbW1SWFgoBoNByaG6ulqMRqOcOnVKuru75bHHHhOz2Sw3b95UeeYr49atW9LZ2SmdnZ0CQN566y3p7OyUoaEhEVlaHtu3b5cNGzaIw+EQh8MhaWlpUlhYqNaSltXf5XPr1i2prKyU1tZWGRgYkKamJrHZbJKQkOCTz/79+yUxMVHOnTsnHR0dkpeXJ1arVebm5lRc2T934MABMRqN0tzcLC6XS/manJxU+txu7XNzc2KxWGTr1q3S0dEh586dk8TERCkrK1NrWcvmdvn89NNP8tprr8mlS5dkYGBA6uvrZf369bJx40afvRGo19ehQ4fk22+/lYGBAenq6pIXX3xRQkJC5OzZsyISfHuHBZLK3n33XUlKShKdTifp6ek+HzcNFnv27BGz2SxarVbi4+OlqKhIent7leNer1cOHz4scXFxotfrZcuWLdLd3a3ijFdWU1OTAJj3VVJSIiJLy2N0dFSKi4vFYDCIwWCQ4uJiGRsbU2E1y+/v8pmcnJT8/HyJjo4WrVYrd911l5SUlMjw8LDPOf744w8pKysTk8kkYWFhUlhYOK/PWrRQLgDk2LFjSp+lrH1oaEh27twpYWFhYjKZpKysTKamplZ5NcvvdvkMDw/Lli1bxGQyiU6nk5SUFHn22WdldHTU5zyBen09/fTTyvej6Oho2bp1q1IciQTf3tGIiKze/SoiIiKifz++B4mIiIjIDwskIiIiIj8skIiIiIj8sEAiIiIi8sMCiYiIiMgPCyQiIiIiPyyQiIiIiPywQCIiIiLywwKJiAJGbm4uKioq1J4GEQUA/iVtIlqTcnNz8dBDD+Htt99W2n777TdotVoYDIZVn09FRQUGBwdx+vTpVX9tIlp+vINERAHDZDKpUhwBwKVLl7Bp0yZVXpuIlh8LJCJac5588knY7XbU1NRAo9FAo9FgcHBw3q/YcnNzUV5ejoqKCkRGRiI2NhYffvghJiYm8NRTT8FgMCAlJQVff/21MkZE8Oabb+Kee+5BWFgYrFYrvvjii0XnMjs7C51Oh9bWVrz00kvQaDTIyspa0fUT0cpjgUREa05NTQ1sNhtKS0vhcrngcrlw5513Ltj3+PHjiIqKwsWLF1FeXo4DBw5g9+7dyM7ORkdHBwoKCrB3715MTk4CAF5++WUcO3YM7733Hnp7e3Hw4EE88cQTsNvtC54/NDQULS0tAACn0wmXy4VvvvlmZRZORKuG70EiojVpofcg+bfl5ubC4/Hgu+++AwB4PB4YjUYUFRXhxIkTAAC32w2z2QyHw4G0tDRERUXh/PnzsNlsynn37duHyclJfPrppwvO5fTp09i3bx+uX7++UsslolX2H7UnQES0kjZs2KA8Dg0NxR133IG0tDSlLTY2FgAwMjKCvr4+TE1NYdu2bT7nmJmZwcaNGxd9jc7OTlit1mWeORGpiQUSEQU0rVbr81yj0fi0aTQaAIDX64XX6wUA1NfXIyEhwWecXq9f9DWcTicLJKIAwwKJiNYknU4Hj8ezrOdMTU2FXq/H8PAwcnJyljyuu7sbjzzyyLLOhYjUxQKJiNaku+++GxcuXMDg4CAiIiJgMpn+8TkNBgOqqqpw8OBBeL1ebN68GTdv3kRraysiIiJQUlKy4Div14uuri788ssvCA8Ph9Fo/MdzISJ18VNsRLQmVVVVITQ0FKmpqYiOjsbw8PCynPeNN97Aq6++iqNHj+KBBx5AQUEBvvrqKyQnJy865siRI/j888+RkJCA119/fVnmQUTq4qfYiIiIiPzwDhIRERGRHxZIRERERH5YIBERERH5YYFERERE5IcFEhEREZEfFkhEREREflggEREREflhgURERETkhwUSERERkR8WSERERER+WCARERER+WGBREREROTnv9n7b2p/J4suAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "λ, X = eig(C)\n", - "t = linspace(0, 20π*5, 1000)\n", - "# initial condition from the real part of the first eigenvector:\n", - "x = [(expm(C*t)*X[:,3]) for t in t]\n", - "plot(t, [real(x[1]) for x in x], \"r-\")\n", - "plot(t, [real(x[2])+2 for x in x], \"b-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solutions $x(t)$\")\n", - "title(\"first normal mode \\$\\\\omega_1 = 0.1\\$\")\n", - "legend([L\"first mass $x$\", L\"second mass $x+2$\"])\n", - "grid()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHPCAYAAACoQyVSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8VNXd/z+zZU/IQkLIxg5hB9l3RQHF3UdtsY+ItFpbsSpuD79ahWrF4kbbp9XSVqnlsVIqIEoEohAWBcoiuyBLAoEQEiBkJ5nl/P44ntzJZGZy7527nBnP+/XKayYzd+4933vO/Z7P+Z7NQgghEAgEAoFAIBC0YDU7AQKBQCAQCAS8IQSSQCAQCAQCgQ9CIAkEAoFAIBD4IASSQCAQCAQCgQ9CIAkEAoFAIBD4IASSQCAQCAQCgQ9CIAkEAoFAIBD4IASSQCAQCAQCgQ9CIAkEAoFAIBD4IASSQCAQCAQCgQ9CIAkEAoFAIBD4IASSQCAQCAQCgQ9CIAkEAoFAIOCOgwcPwmKxhPynFruGtggEAoFAIBBowvLly0EIMe36IoIkEAgEAoGAK+rq6pCYmGhqGoRAEggEAoFAwBXr16/H1KlTTU2DEEgCgUAgEAi4Yt++fRg6dKipaRACSSAQCAQCATd4PB7YbDazkyEEkqA18+fPD2nUf7izdOlSWCwWlJSUmJ2Udvk+51VdXR2eeOIJZGVlISYmBkOGDMGHH34o67e1tbV49tlnMXXqVKSnp8NisWD+/Pl+j501a1bQ2TE7duwAQFu7N998M/Ly8hAbG4vU1FSMGTMGy5Yta3POjRs3Yvbs2cjPz0d8fDyys7Nx++23Y8+ePartLCoqajeNas779ddf44477kBWVhbi4uKQn5+PX//612hoaFB1Trn3U41NALBt2zZMnz4dKSkpiI2NRa9evfDSSy+ptknOsUpsUnKsEpv0wKhnzB9fffUVRo8e3eZzJc+OFohZbAKBIOy46667sGvXLrz66qvo3bs3PvjgA8yYMQMejwf33Xdf0N9eunQJS5YsweDBg3HHHXfgr3/9a8Bjf/WrX+GRRx5p8/mtt96K6OhojBgxAgBw5coV5ObmYsaMGcjOzkZ9fT3+7//+D/fffz9KSkrw/PPPt/z27bffxqVLl/D444+jX79+qKysxBtvvIHRo0dj/fr1mDx5smo7X3nlFVx33XWtPhswYICq+3fkyBGMHTsWffr0weLFi9GxY0ds2bIFv/71r7Fnzx58/PHHis8p936qsemDDz7A/fffj3vvvRfvv/8+EhIScPLkSZSVlbUco8QmuccqsUmp/XJs0gujnjF/bNq0Cc8++2ybz5U8O5pABAIvXnzxRcJTsaivrzf0eu+99x4BQIqLiw29rhp4yyujWLt2LQFAPvjgg1afT5kyhWRlZRGXyxX09x6Ph3g8HkIIIZWVlQQAefHFF2Vfv6ioiAAgzz//fLvHjho1iuTm5rb67MKFC22Oq62tJZ06dSLXX399y2dK7Ny0aRMBQFasWNFumuSe95e//CUBQE6cONHquIcffpgAIJcvX1aVVl8C3U8lNp09e5bEx8eTn/3sZ0GPU2KTkmPl2qTkWLk26YHZz9gvf/lLv5/LfXa0QnSxqaSyshIPP/wwcnNzER0djfT0dIwbNw6ff/55yzHHjx/Hfffdh4yMDERHR6Nv37744x//2OZcR48exYwZM9CpUydER0cjLy8PM2fORFNTU6vjtm3bhuuvvx6JiYmIi4vD2LFjsXbt2lbHsG6Xw4cPY8aMGejQoQM6deqE2bNno7q6utWxa9euxZAhQxAdHY1u3brh9ddfl22/kusoTfvevXtx9913IyUlBT169Gj13YEDB3DPPfegQ4cOSE1Nxdy5c+FyuXDs2DHceOONSExMRNeuXbFo0aJW5z5x4gQefPBB9OrVC3FxccjOzsatt96KgwcPyrbZX1rVpkfuPWHIzSu5ZS4QpaWlSEpKwmOPPeb3++rqalgsFvzsZz+TfU6tWbVqFRISEnDPPfe0+vzBBx9EWVkZdu7cGfT3oS4e97e//Q0WiwWzZ89u99iOHTvCbm8dqM/IyGhzXEJCAvr164fS0tKWz0K1MxByz+twOAAAHTp0aHVccnIyrFYroqKiNEmrkvsZiL/+9a+or6/Hc889F/Q4JTYpOdYXJTYFOlauTXpg1DN24MABTJw4ER6Pp+WzEydOoHfv3n6Pl/vsaIbmkut7wrRp00h6ejpZsmQJKSoqIqtXryYvvPAC+fDDDwkhhBw+fJh06NCBDBw4kLz//vtkw4YN5KmnniJWq5XMnz+/5Tz79u0jCQkJpGvXruSdd94hX3zxBVm2bBm59957SU1NTctxRUVFxOFwkGHDhpHly5eT1atXk6lTpxKLxdJyTUKkqEKfPn3ICy+8QAoLC8mbb75JoqOjyYMPPthy3Oeff05sNhsZP348WblyJVmxYgUZMWIEycvLkxWVkHsdNWnv0qULee6550hhYSFZvXp1m+u99NJLpLCwkDz77LMEAJkzZw7Jz88nv//970lhYSF58MEHCQDy0UcftZx78+bN5KmnniL//ve/yebNm8mqVavIHXfcQWJjY8nRo0dbjpMbQQo1PXLviZK8klvmgnHHHXeQtLQ0Ul1dHfCYrKwsMmTIEFnn88Xj8RCn0ynrLxCjR48mI0aMaPP5oUOHCADy5z//WXZ6lLZur1y5QmJjY8kNN9zg93u3202cTiepqKggf/zjH4ndbifvvPOOrPN26NCB3HnnnS2fKbGTRVsyMjKIzWYjiYmJZOrUqWTr1q1tfi/3vMXFxSQ5OZncfffd5OTJk6SmpoZ88sknpEOHDuSxxx5TdU5/dge6n0psmjx5MklNTSXr1q0jgwcPJjabjaSnp5Of/vSnrcqyEpuUHCvXJiXHyrXJGy2eL0KMe8a+/PJLMnToUPLVV1+1fPbWW2+RyspK2ef39+xohRBIKklISCBPPPFEwO+nTZtGcnJy2hTkOXPmkJiYmJbw7OTJk0lycjKpqKgIer3Ro0eTjIwMUltb2/KZy+UiAwYMIDk5OS3hTFZxL1q0qNXvf/7zn5OYmJiW40aNGkWysrJIY2NjyzE1NTUkNTVVkUBq7zpq0v7CCy8EvN4bb7zR6vMhQ4YQAGTlypUtnzmdTpKenk7uuuuugOl3uVykubmZ9OrVizz55JMtnysVSGrTI/eeECI/r+SWuUDs3LmTACCvvPJK0OPGjh1LUlJSCCGEXL16lcyaNYvk5OSQxMREMmrUKPLll18G/C2r9OT8BcqDXr16kWnTprX5vKysTFb6vVEqkN5++20CgPzzn//0+/1Pf/rTlvRHRUWRP/3pT7LO+6Mf/YjY7Xaye/fuls+U2Ll3717y+OOPk1WrVpEtW7aQd999l/Tt25fYbDaybt26Vr9Xct5vvvmG5Ofnt8qXX/ziF63Kp9JzehPsfiqxqU+fPiQmJoYkJiaSV155hWzatIksWrSIxMbGknHjxrVKr1yblB4rxyYlxyqxiaHF80WIsc/Y4sWLyXPPPdfyf6DutUD4e3a0QggklTBh89JLL5Ht27eT5ubmlu8aGxuJ3W4njz32WBvVXlBQQACQgoICUl9fT2w2G3n44YeDXquuro5YLBby85//vM13v/3tbwkA8s033xBCpIrbOypCCCHvvPMOAUDKy8tJXV0dsVqtZM6cOW3O98ADDygSSMGuozbt+/fvD3i9Y8eOtfp8xowZxGKxtBIPhBAyZswYMmzYsJb/nU4n+c1vfkP69u1LHA5HK0dx4403thynVCCpSY+SeyI3r+SWuWDMmjWLWK3WlrwjhJAvvviizTiEwYMHk+Tk5Jb0LViwgJw+fZq43W6ydOlSkpaWFnDsWE1NDdm1a5esv6amJr/n6NWrV6s8YzDnvXDhwqB2eqNUIA0fPpykpaWRq1ev+v3+9OnTZNeuXWTt2rXkkUceIVarlbz22mtBz/n8888TAOQPf/hDq89DtbOqqork5OSQQYMGqTpvcXEx6dmzJxk3blxL5HXRokUkKSmJzJ49W5O0tnc/ldjk7zqLFy8mAEhhYaFim5Qcq9amYMfKtckbLZ4vdm2jnrHi4mLSt29fQgghly9fJm+++abscwd6drRCzGJTyfLly/Hyyy/jr3/9K371q18hISEBd955JxYtWgS32w2Xy4U//OEP+MMf/uD39xcvXkRVVRXcbjdycnKCXquqqgqEEHTu3LnNd1lZWQDorAFv0tLSWv0fHR0NAGhsbITT6YTH40FmZmab8/n7LBjBrqM27f6OZaSmprb6PyoqCnFxcYiJiWnzeU1NTcv/c+fOxR//+Ec899xzmDRpElJSUmC1WvGTn/ykJa1qUJMeJfekqqpKVl5dunRJVpkLRmFhIfr3749OnTq1fDZ//nykp6djxowZLZ9duHABPXv2BADEx8fjhRdeaPnugQcewJNPPonjx49j8ODBba6RkJCAIUOGBE0Hw3fsDiMtLa1NmQGAy5cvA2ibJ1px4MAB7N69G48//nhLOfclLy8PeXl5AIDp06cDAObNm4cHHngA6enpbY5fsGABXn75ZfzmN7/BnDlzWn0Xqp3Jycm45ZZb8M4776CxsRGxsbGKzvs///M/qKmpwb59+xAfHw8AmDhxIjp27IjZs2dj5syZmDRpkuq0yrmfSmw6fvw4pk2b1ur4m266CU888QT27t2LG264QZFNSo5VY1N7x8q1yRstni92baOesa5du8Jut+P48ePYuXMnbrrpJlm/C/bsaIUYpK2Sjh07YvHixSgpKcHp06excOFCrFy5ErNmzUJKSgpsNhtmzZqFXbt2+f2bPn06UlNTYbPZcPbs2aDXYpX5+fPn23zHpnt27NhRdtpTUlJgsVhQXl7e5jt/n4WCmrTrsbbPsmXLMHPmTLzyyiuYNm0aRo4cieHDh7crGvRAyT2Rm1dyy1wgGhsbce7cuZZB8QB1hjt27Gip8AHg0KFDKC8vDzid9ujRo2hsbGx1Hm82b94Mh8Mh6y/QWlQDBw7EN998A5fL1epzNuDe3xRwLfjb3/4GAPjJT34i+zcjR46Ey+XCqVOn2ny3YMECzJ8/H/Pnz8f/+3//r833WthJvtvo0/uZknveffv2oV+/fi3igMGmoh86dCiktKq5n4FsGjRoUNBjrVZa1SmxScmxDCU2tXesXJu80eL5Aox/xm6//XasWbMGR48eRX5+frvHt/fsaIUQSBqQl5eHOXPmYMqUKdi7dy/i4uJw3XXX4euvv8agQYMwfPjwNn9paWmIjY3FpEmTsGLFiqAVdXx8PEaNGoWVK1e2inZ4PB4sW7YMOTk5AUf9BzrfyJEjsXLlSly9erXl89raWnzyySfqboJBaVeLxWJp00pbu3Ytzp07p/u1fVFyT+TmldwyFwi32w0Ara7xzjvvwGazobm5ueWz3/3ud7BarZg1a1abczQ0NOD+++/H888/j4SEBL/XGTZsWEAB5/vHomm+3Hnnnairq8NHH33U6vO///3vyMrKwqhRowLaqZampiYsW7YMI0eOVFQ5bNq0CVarFd27d2/1+UsvvYT58+fj+eefx4svvuj3t6HaWVVVhU8//RRDhgxpFdGUe96srCwcPnwYdXV1rY7bvn07ALSKfCtNq9r7Gcim//qv/wIAfPbZZ62OLygoAICWRQeV2KTkWKU2yTlWrk3eaPF8AcY/Y7fffjtWrFgRdGYgQ86zoxm6dNxFOFeuXCFDhw4lr732Gvnkk09IUVERee2110hMTAy57777CCF0RlFKSgoZOXIkee+998imTZvImjVryJtvvkmuu+66lnOxWWzdu3cnS5YsIRs3biT//Oc/yYwZM/zOYhs1ahRZsWIF+fjjj8m0adMCzgTznQXgO7Zmw4YNxGq1kvHjx5NVq1aRf//732TEiBEkNzdX0Rik9q6jRdqDfffAAw+Q+Pj4NsdPmjSJ9O/fv+X/mTNnkujoaPLWW2+RL774gixatIikp6eTnJwcMmnSpKDpV2K/3PTIvSeEyM8ruWUuEL179yZRUVHkb3/7G3nnnXdISkoKefrpp0lWVhb55JNPyDPPPEMAkLlz57b5bXNzM7n55pvJzJkzgw5g1YopU6aQlJSUlmfmoYceIgDIsmXLWh1XVFREbDYbWbBgQavPCwoKyIoVK8i7775LAJB77rmHrFixgqxYscLv+KkPP/yQACBLlizxm56HHnqIPPXUU2T58uWkqKiI/Pvf/yY/+MEPCADyzDPPtDr29ddfbxn7tn379jZ/auycMWMGee6558iKFSvIpk2byJIlS0ifPn2I3W73O1ZFznk//vhjYrFYyOjRo8ny5cvJF198QX7zm9+QhIQE0q9fvzZjWOSmVc79VGPTrbfeSqKjo1tmlS5cuJDExMSQW265RZVNSu2XY5PSY+XYpBdy8jPQ80WIsmfM4/GQ7OxsUlRUFDRNSp4dLRACSQVXr14ljzzyCBk0aBBJSkoisbGxpE+fPuTFF19slfHFxcVk9uzZJDs7mzgcDpKenk7Gjh1LXn755VbnO3LkCLnnnntIWloaiYqKInl5eWTWrFltBu5t3bqVTJ48mcTHx5PY2FgyevRo8sknn7Q6RolwWbNmDRk0aFDLNV999VXZiw8quU6oaQ/2nVxBUlVVRX784x+TjIwMEhcXR8aPH0+2bt1KJk2aZIpAIkTePWHIzSu5Zc4fO3bsIAMHDiTR0dFkwIABpLCwkFy6dIlMnDiRREdHk27dupFFixa1EUBut5v88Ic/JLfddlu704e1ora2lvziF78gmZmZJCoqigwaNMjvTCA2q8d3gGiXLl0Uze6ZMmUKiY+Pb9Vo8ebdd98lEyZMIB07diR2u50kJyeTSZMmkX/84x9tjp00aVLQ2UVq7Fy4cCEZMmQI6dChQ8t08DvvvJP85z//Cen+bdy4kUydOpVkZmaS2NhY0rt3b/LUU0+Rixcvqj6nnPupxqaGhgby3HPPkdzcXGK320leXh6ZN29eGz+qxCYlx8qxSemxcm3SAzn5Gej5IkT5M7Z48eJ2/YeSZ0cLLIR816EpEAgEKnjooYdw/PhxrFu3rs3gdIFAIAhXhEASCASqOX36NLp27YqYmJhWu29/9tlnmDBhgokpEwgEgtAQAkkgEAgEAoHABzGLTSAQCAQCgcAHIZAEAoFAIBAIfBACSSAQCAQCgcAHIZAEAoFAIBAIfBB7scnE4/GgrKwMiYmJumyFIRAIBAKBQHsIIaitrUVWVpbfLVoCIQSSTMrKypCbm2t2MgQCgUAgEKigtLS03c3hvRECSSaJiYkA6A1OSkrS7LxOpxMbNmzA1KlT4XA4NDtvpCDuT3DE/QmOuD/BEfcnMOLeBCec7k9NTQ1yc3Nb6nG5CIEkE9atlpSUpLlAiouLQ1JSEveFzAzE/QmOuD/BEfcnOOL+BEbcm+CE4/1ROjxGDNIWCAQCgUAg8EEIJIFAIBAIBAIfhEASCAQCgUAg8EEIJIFAIBAIBAIfhEASCAQCgUAg8EEIJIFAIBAIBAIfhEASCAQCgUAg8EEIJIFAIBAIBAIfhEASCAQCgUAg8EEIJIFAIBAIBAIfhEASCAQCgUAg8EEIJIFAIBAIBAIfhED6nkAIUFlJXyMBQoCLFwGPx+yUaAMhwKVLgNttdkq04/JlwOUyOxXaUVUFOJ1mp0I7rlwBmprMToV21NQAV6+anQrtqK0FGhrMToV21NfTv3BCCKTvAd9+CwwYAGRkAEOHAsXFZqcoNM6cAUaMANLTgX79gCNHzE5RaFRUABMnAh07Aj16ALt3m52i0LhyBZg2DUhLA/LygM2bzU5RaDQ0AHfdBaSmAp07AwUFZqcoNJqbgZkzgZQUICfHjm3bssxOUki43cCjjwLJybTM/e1vZqcoNAgB/ud/aP6kpgJvvWV2ikLnlVeoLSkpwPz54dNQFwIpwnE6gTvvlETE/v3AbbeFb8ve46GV1Z499P9jx4BbbgnfliMhwIMPAtu20f9Pn6b2XLpkbrpC4ZFHgA0b6Pvz54HbbwfKysxNUyg8/jiwahV9f+kS8F//Fd6NjJdeAv7xD/q+utqCt94ahr17zU1TKLzxBvCnP9FnqaEBeOghYMsWs1OlnnfeAX77Wyr8mpqAuXPDW5SvXg388pdUmDudwIIFwN//bnaq5CEEUoTzhz9QcZSeTkVFx47AoUPA+++bnTJ1LFtG7UhKoq/Z2bSy+t3vzE6ZOlatos4vKoqKpH79gAsXgDffNDtl6igqApYvB6xW+n74cKC6GvjNb8xOmToOHpQiEuvWAZMmUTH+3HPmpkstJ04Ar75K3//f/wF33OGB223FCy/YzE2YSsrLqeADqLCYNYsKpWeeCZ8ohTe1tcCLL9L3ixYBjz1G3z/5ZHh27169CsyZQ98/8wzw61/T988/Hybdu0Qgi+rqagKAVFdXa3re5uZmsnr1atLc3KzpeQkhxOUiJDeXEICQJUvoZ2+8Qf/v1o0Qt1vzS2qO9/3xeAjp25em/9VX6fdLl9L/09MJ0eEW6s7EiTT98+bR/1etov8nJhJy5Ur7v9ez/Kjhttto+n/6U/p/URH9324n5Px549MT6v350Y9o+u++m/6/fz8hFgv97ORJDRNqEE88QdM+dSohHg8hR482E6vVTQBCdu0yO3XKefFFas/IkdSflZcTEhdHP9uwIbRzm/FsvfkmTXuvXtSfXblCfRtAyEcfGZYMWci5P8uW0bRnZxPS0EDI1auE5OTQz955x7i0qq2/RQQpglm/HigtpX2/999PP3vkERp9KS4GvvzS3PQpZdcu4JtvgNhY4Gc/o5/ddx/QqRMdgP7ZZ+amTymHD9OuAJsN+PnP6We33Qbk59OWJOvWCRfKyoC1a+n7J56gr5MmAaNG0S7d5cvNS5saamqAlSvp+2eeoa+DBgE33EDfh0s3AaOxEVi6lL7/xS8AiwXo3h0YP/4cgPCzx+MB3nuPvn/8cRq17NQJeOAB+lk4RslZHjz5JOBwAB06ALNn08/CcWzVn/9MX3/6U+q3o6OpbUB4lDchkCKYDz6gr//930BMDH0fF0fH8AA0xB5OMId3111U5AHUifz3f7f+Plz497/p6/TpQE4OfW+1Aj/6EX0fboJi+XI6bmLcOCryGEycs3Ev4cLKlVRU5OfTSQGMBx+kr//4R3h143z+OR1An5MD3Hij9PmkSWcBAP/6V3iNTdy6lU7YSE6m4ywZM2fS15Urgbo6c9KmhoMH6RjRqCjgBz+QPmcCad06OqEjXDh7luaRxQL8+MfS5z/8If1s+3agpMS05MlCCKQIxeWSIir33NP6u/vuo6+rVoXPNHlCgE8/pe9/+MPW37H/16+nAwHDhY8/pq/ezh2QnGNhIZ1aHi6w/Ln77taf33svFX579lCnGS588gl9nTGDOnTG7bfTlnBxMY1ohgvMnjvuoFFLxuDBlUhLI6iokCYLhAMsWnnrrTQ6wRg1CujWjQ7Y3rjRnLSpYc0a+jptGo36M3r3BoYMob56/Xpz0qYG5g9GjwayvCZKZmUB115L33/0keHJUoQQSBHKjh10HZqUFFpAvZk4EYiPp62RgwfNSZ9Sjh6lM7yio4HJk1t/d801dAmDurrw6TY8exb4+msqHG65pfV3vXrRwdpuN7BpkznpU0pNjTRzyNee9HRg5Ej6ns1u4x2nk0ZcABrh8yYuTnLw4dKt6/FIAum221p/Z7cTTJtGQ2GFhQYnLASYQLr55tafWyzATTfR9+EkKFhafcsbINkYTrPZWHm79da237HPeC9vQiBFKOxhu/FGwG5v/V10tOTgw6XCWr+eFtVJk2gF5Y3VSltdQPhUWEVF9HX4cCogfGHjXFglzTsbN9KoZa9eQM+ebb+fOpW+hkuFtX07FX0dO1IB7gurxMKlwjpyhM74ioujz5Av119PQ8m8V1iMM2eoTVarVLa8Yf4gXMpbdTXw1Vf0PUu7N6y8rV8fHlH/5mapcecrYAFgyhT6umUL30u0CIEUoWzdSl99oy0M9hCGi0PcvJn2cbAHyxfmJMNlUULWlTFxov/vmUAKl/xh0aPrr/f/PcufL74Ij3E7zLnfcAOthH1h5XD79vCYfs2ei3Hj6BgXXyZPppmyezeNPPMO82/DhtEouS/XXUcbhidP0sgz72zdSiPGvXrR7kFfRo4EEhJol/uhQ8anTyl799Lxe2lpdJFiX/r3p4uuNjZKwpBHhECKQJqaaBcbAEyY4P8YVjHv2MH/9haEADt2UIE0frz/Y9jne/eGx/L8TCAFsmfSJNpVcOIEbfnzDrMnUHkbMYJGLi9dAo4fNy5damFdtYHsyc+nzr+xkXaV8g4TSIEEeXY20KcPe9aMS5da2itviYl01wCA7wqYwdIYyB67HRgzhr4Ph3FirME0YYL/BobFIvVi8GyPEEgRyO7dVCRlZNABfv4YMIC2SGpr+d+q49y5BFy6ZEFMjP/uDgDo0oU6eZcL+M9/jE2fUi5fplP8AWDsWP/HJCVJLS/eK6y6OrSsxBxI8EVFSTPBeK+w3G7pno8b5/8Yi0X6jmcHD1DRwyIu/rrXGKwC3r5d/zSFCrMnUHkDpGcrHMYlsjQG8geAZCvv5Q2QBFIgQQ5I5Y1n/yYEUgSycyd9HTu29ewbb2w2OtsD4L/COnqUTukYMcJ/9wDQusLi3SGy+92nj//xRww2uJ5nBwJQQe52A7m5dO+1QDDnz3t5O3iQNhy8Rao/wkUgnTtHo5A2Gx3zFohwKW9XrkgNjEAC1vs73stbc7PUqAtmDxNIvPs3QuiadYAkgvzhLZB4HVclBFIEwvYpC+YMgfBpMZ44kQyg7Ww8X5jgY/bzCnNwwZwhINnLe/6w6FF75Y0JJN4rYLZZ8IgRrafD+8Jm5vG+jxl7Hvr1az0d3hfmD3bu5Lvbfd8++tqlC42SB4LZs38/7QrllUOH6EDllBTaaArEsGH09cwZvvdqLCujM6RtNmDw4MDHDR5M1+erqqIbqvOIEEgRCHPYgbqjGKxCYw6HV4qLOwCQxhQEgn3P+5gQlj9M0AXCW/Dx2sICpPvdXnljDv6bb/jNftZFAAAgAElEQVSeuSLXniFD6Ovp03wPbGbljd3/QPTvT2e51dbSsW+8wvKnPX+QnU0jtB4P3wObmf8dOjRwxB+gq2r36EHf8+zj5Apyh0N6xnhtZAiBFGHU1dEd7gH5Dv7IEX4XWHS7gZISumx2ew6R2VNSwvcCi8whsvQGok8fOrC5vh44dUr/dKlFriDPzqYDm10uvse9scqnvfxJTqZbdXj/hkdYhdVe/thswMCB9P3+/fqmKRTkljeLRfIZPDcC5foDgH9BAcgX5IAUYeK1vIWdQFq4cCFGjBiBxMREZGRk4I477sAxpggCsHTpUlgsljZ/V3luxqpk/37aB5yVRfclCkZeHnXyTie/Fda33wJNTXbExRH06hX82JQUoGtX+p5Xh1heTsPPVmvw8S0AnbnCjuHVgdTX00U8AXkVFqsEeBUUbjdw4AB9354g9z6GV3sASSApqbB4fX4A+REkgP/yBiizJ5zKW3v+AOC/vIWdQNq8eTMeffRR7NixA4WFhXC5XJg6dSrq6+uD/i4pKQnnz59v9RfDNiiLIOS2roDWFRavBXTfPhpzHjSIBB0PwuDdgbD73Lt32wUv/cF7C+vAAdqF0bkzkJnZ/vG8l7cTJ6joi40NPAPUG97LW1kZFeVWq7wIBe/lraFB2t5Fjo/jvbx5PNK9VhJB4rW8AcoiSMxmXsubvf1D+GLdunWt/n/vvfeQkZGBPXv2YGKQOYUWiwWZcjx4mKNEIAHUIRYV8etA9u+nAmnIEHmrCw4dSveY49WBKAmnA/xXWKy8yWn9AvxXWCxdgwYFH6DNYHbz2uXBnoP8/MgQ5AcPUlHRqRMV5e3BytuBAzQ6KCdPjaS4mI75io5uvcFzIFh5+/ZbOpwiIUHf9CnlwgUqyq3W4AO0GQMG0Ib6hQtUyPNWRYedQPKluroaAJDqvbufH+rq6tClSxe43W4MGTIEL730EoYG8epNTU1oampq+b+mpgYA4HQ64dRw6Vx2Lq3OuX+/HYAFAwa44HS2LyoGDrQAsGPfPg+cTv6mruzdS4OcAwe64HS2P1KZ2bN3L4HTyd/W5Hv32gBYMWCAW5Y9/ftTe/bv92+P1uVHKV9/Te0ZNEiuPQDgwP79BE1NLr+LyGmJ0vuze7cVgA2DB8uzh3aBOnDsGMGVKy7Ex6tPqx4cOEDtGTDA//Pte3/69gUAx3dLAziRlmZcWuWwZw/LHw9crvb9VbduQGysHfX1Fhw96pQVFWQY8Wzt2kWf7wEDPCDE3e6q7CkpQFaWHWVlFuzd68KYMeYtS+/v/tCIvx09ehBERbnatScqCujZ047jxy3Ys8eFqVP1sUdtHoa1QCKEYO7cuRg/fjwGBBnQkZ+fj6VLl2LgwIGoqanB7373O4wbNw779+9HrwADWxYuXIgFCxa0+XzDhg2Ik9MUU0ihBntKeDzA4cM3A7CjsrIIBQXBux0BoKYmCcB12L3bhbVrPws6i8IM9u2bBsCG+vodKCi40u7xFy/GAJiGY8cI1qz5DHY7X/tabN8+GUAimpv/g4KCinaPr6tzAJiO06ct+Ne/NiAhwb/o06L8qOGrr8YDSENz89coKDjX7vEulwUOx82orbXhvfeK0LmzMcuey70/mzaNApAJq/UQCgpKZP0mKelG1NRE4913v0SPHtXqE6kDhYVDAeTBZjuGgoLAc6m9709m5vUoL0/AX/7yHwwadNGAVMrns88GAOiB2NhTKCg4LOs3ubkT8O23qVi6dB/Gjy9TfE09n61Vq/IB9EFKSikKCuSFVTt1Go2ysk74178OoqrqjG5pk4v3/fn0024ABiE1tRwFBfJW7M3IGI7jx7Pxr38dg8ulz/TJBpXbK1gICYedkfzz6KOPYu3atdi2bRtycnJk/87j8eCaa67BxIkT8fvf/97vMf4iSLm5ubh48SKSkpJCTjvD6XSisLAQU6ZMgcPhCOlcJSVA794OREXR1qzvJrX+aGoCOnSww+Ox4PRpp6ywtVFUVQGdOtF7Ul7egNTU9u8PIUBamh11dRbs3+/8rkXMB01NQHKyHW63BcXFTmRny/tdz552nDljwRdfuDBhQuvHVcvyoxRCgMxMO6qqLNi1yykrpA4Aw4bZcfCgBatWuXDzzfq6H6X3p3dvO0pK/N/rQEyebMO2bVYsXerCfffx5U7HjLFhzx4rPvzQhbvuaps2f/fn3nttWL3aitdfd+MXv+BrfYmbbrLhiy+sWLLEhVmz5N3rhx6y4e9/t+JXv3LjV7+Sb48Rz9YPfmDDqlVWvPaaG48/Li9tTz9txe9/b8Pjj7vx2mvm5Y+/+zNnjhVLltjw3HNuvPSSvLQtXGjFiy/acN99Hixdqk8vRk1NDTp27Ijq6mpF9XfYRpAee+wxrFmzBlu2bFEkjgDAarVixIgROB5kU6jo6GhER0e3+dzhcOjysGhxXmZOnz4WxMbKO5fDQacqnzgBnDjhCLoSstGwtVjS0hqRmir//uTn08X+TpxwYNAgHROokG+/peMgEhOBLl0csqN1/fvTxeFOnLAH3HxYr3IZjAsXqIi1WID+/R2Qe/l+/ehYkuPH7bJ/Eypy7k9Dg7Sx6cCB8tPWrx9dTfvbb42zRw4ejzTDcPDg4Gnzvj/9+wOrVwPHj9vgcPA1aIfZoyR/aLeuenv0fLbYBOwBA+SnjXWWHDvGR/543x8pf5Tb8+23Vjgc+vS5q82/sJvFRgjBnDlzsHLlSmzcuBHd/G19LOMc+/btQ2eewiUawKbq9+un7HcsysJmh/ACsycnp1bR73i1hzmPvn2DLwjnCxu8yX7PCyx/uncPviCcL7zmz7FjLAIZfAsYX9jzxps9paV0Rp7DIS0wKAdey1t1Nd02BYCiyDCv5c3lkhq1auzhbWkWQqQtYJTUQcyeo0fpOXgi7ATSo48+imXLluGDDz5AYmIiysvLUV5ejkavteRnzpyJefPmtfy/YMECrF+/HqdOncK+ffvw4x//GPv27cMjjzxihgm6wR4Ypd1KvDpE5tBycyNLIMmZreINO76d5b4MR60g5728KX1+eC1vrLLq0weKIlveFRZPsPRkZdFVpeXC7Dl2jK8tVE6domvQxcXRfQzlwuw5c4bOZOOFykq6BYrFoszH9ehBZxfW1UkCmBfCTiC9/fbbqK6uxrXXXovOnTu3/C1fvrzlmDNnzuD8+fMt/1+5cgUPP/ww+vbti6lTp+LcuXPYsmULRrLNlCIE5qAjJYIUqkDirYWltgLmVVCoFeTe5Y2nFqPa/GHP2/HjfK1Ir1bAsv3AWBcqL6i1p2tXOo3+6lWpC5UHWHnLz4ei2ZxpadIedDz5BLUR5agoKcLJkz1AGAokQojfv1mzZrUcU1RUhKVLl7b8/9Zbb+H06dNoampCRUUF1q9fjzHBthkOQwiJvC42lp6cHGXNJGb/0aN87WEWagSpuJivPczUCvLevWmFcOUKXVWcF7wrLCVkZ9NxZW43X3uYqfUHCQkAG9bJU4WlVpDbbNKinzz5OLWCHOCzW1dteQP4bQSGnUAS+Of8eaCmhjqD9rbk8IUVzrIyeg4e8B4wq3QMUvfutFXS2EjD0DzgPWBWqUNMT6frnxAijVngAbUVVkwMXZ8G4MvBq62wLBY+Gxlsh3Slgs/7NzxVWGoFOcBn/qgV5ACfUXI2BIBFIJXAa7euEEgRAmu5du1KxYESkpOlFUx5KaDffksFQWoqQYcOyvot7HagZ0/6nhd7zp2jA2btdmmDU7l49+nzYk9tLe2CAeRtyeELs4eXCkvtgFkGj+PEmE9gz4ISeCtvgJQ/asobzwIplPLGU4OJlTelDXSAP3/AEAIpQgjFGQL8OUTpYVM3SIU9pCdPapSgEGH3tWdPZQNmGbzlD7uvHTtSga0U3gTFmTN0wGx0NFQtdcGeO17KW02NJGBDEUi8VFguF+1iBkKrgHkSFNKyLMp/y/KUpy5dZo8QSALuYIVTrUDizcGzdCiZnuwNbw4klNYVIDlRXgRFpJa37t2VDZhl8FbemD3p6cpmfDFYlIYXQVFaKglYuQusesP8CC/l7fJlOgYPUB5RBlqXNx4mOngLWDU+gfm38+f5mpknBFKEEGoEibcKi9nTo4e6p5/XCitUwcdb/kRaeQvVHl7KWyiteUCyp7iYj4kOkj8ITcCWldGubrNh9mRny9tE2JeuXel9qK+nm7yazZkzVCTFxKgTsCkpaNn3j5dnCBACKWIINULBWwsrUgWS2gqY1/wJ1Z5Tp/iqgEMVSLxVwGrtyc2l4+WamvhYmybUiGVKCv0DaJkzG2/Bp4aoKKBLl9bnMhOWP2oFLCDVXbxELQEhkCICQiKvBayVPadO8bE4XKgOkf2uspKPmYahCvLcXDoWi5cKONT8SUkBUlPpex4q4FAFhd1OoxQAHz4hVH/g/VseGhmhNpi8f8tT/qj1B4DUrcvTWlVCIEUAFy7QflurVXJqSmEVw8WLdEl/M2lsBM6epe+7d1cXQWIVcHOz+RUwIaE7xMREafsLHhx8qBUWbxWwqLDawlPUUguBxOzhKX/UCnKAr/IWqiAHgFdfpWOznn5amzRpgRBIEQB7QPLy6CBGNSQmSquzmu0Q2WC/Dh2kfmml2GzS4EezHcj581T02WxSWFwNvFRY9fW0KwmIjBa9xxN5AkmLCouX/AG0jSDxkD+Rak8ogrxzZ6kblBeEQIoAtCicAD8VsLfzULKpqy+8OBB2P/Py1E3xZ/CSP6wLybtbSQ28tOjLyugK5Xa7NgLWbHu816jSIuJidnlzu7URsLzY452GSBFIWghyHhECKQLQojXi/XuzHYhW9vBSYWnhDAF+HLxWzpAXe1j56NKFiiS18FJhseurXaOKwcvzc+4c7Sp3OJRt6uoLL/njLWC16mIzc6p/qGtU8YwQSBFApAkKrQUfL/aE4gy9f8+LoAjVGfKSP1oJWF7s0Tp/Tp40twJm9nTrpo2APXPG3E2FvRdZVbNGFaN7dxphr6mhY0fNItQ1qnhGCKQIINQ1TxiRFkHipcIKdQ0kRqQJWG97eKiAtSpvpaXmbiqsVXlj++XV1ACXLoV2rlDQKn86dQLi4+mYs5KSkJOlGq3yJyZG2lTYTJ9w8iQdBxHKFH9eiTBzvp+wMSFqVmT1hrcKOFQHwlsLWMsKuKkptHOFgpYVsMVCZ2BWVoaeLrVolT/p6XSyAyHmTvVnlT8TOGqJjZUiAmY2mrTyBxYLHz5Oq/LmfQ4z7WHlLdT6h0eEQApzqqulJevVTvFnsIft3DnzWsAuFw2BA6E7RLbabEOD1OdvBloJiowM2gImxNwWsFYVMD8tYPqqRQXMKgk2JsMMWP6E6g8APgSFlhUwD/ZoKZB4KG+nT9MIUigTHHhFCKQwhy2q1bEjrTxDIS0NSEqiFbBZD9zZs3TWSnQ0kJkZ2rkcDqkCNktQVFXRPyB0B+/dAjarRe920wgWoI1D9F5R2yy0Enze5+BBwGohkHjodmf2aFneeBCwWpQ3lsdmljcmkLQob7whBFKYo6UztFikh9as1Uy9naEW/dlmOxB2XRb9CRWzBdL583RApt0OZGWFfj6zy1tNjSRgtaiAzS5vhEj3Ugt7mKg3U8Aye7TwcWbnj/e1I8UeLcsbbwiBFOZoXTjZecx64LS2x2wHoqUz9D6PWYKCXTcnJ7QZRQxeyltqKh0/FCosf8yKUFRU0O5xiyW0KfEMs8tbQwO1yTstoWC2P/B4pCEEWvg41sAwMyJ25oyIIAk4Ra8KONIEhVkORAi+4ESaPWZ3sbHylp1NNzQNFbPzh4mJxMTQ1nRimG1PeTldYsBmk7r/Q4HZU1pKx28ajdNpaVlVX0SQBNyhZf88YL4D0doesyssISiCY7Y9kSpgtbbHrArYu7yFsqo+g92XK1ekyS1G4i1gtYjAdu5MhbDbbc6ekxcvxoIQC2Jjpb0iIwkhkMIcLfvnvc9jdoUVafZo3QVqdheb1hXw6dO0+8Fo9BJ8ly7RFZONRmt7Onemkx3cbmn/PSPRurwlJNAJLd7nNhKt88dqNbebuqIiDoB2ApY3hEAKc0QEKThmV8BaCz52Xy5epOsHGY3WDj47m3Y3OJ10ALjRaF3ekpKk/enMqIC1FhRWK91DEDDHJ2hd3gBzo8p62GPmMAImkCKxew0QAimsqauTVrjVWlBcuEB3oDcS7ynkWjmQnBxaATc1mbMWktYVcHKyNBYjEipgu10aTGxGhaW1gPU+lxkVlp4VsJn5o2UFLOzRjspKKYIUiQiBFMawhy05ObQ9fbxJTpZm87ABkkZRVkbHOTgcNLSvBXa7NBjS6ApL6ynkDLMcosejr6Aws0UfCfkD6Js/kdAl5X2uSIsgmdnFJiJIAu7QwxlaLOY9cOx6ubk06qMVZoXUtZ5CzjBrHFJFBY3EWa3azMBhmFXe6uulTT4jocLyXmE90gSfsCcwZk71r6yMBSAiSAIO0cMZAuY5ED0En/f5zLInUvKHXS87m0b5tMIswceu16GDNlPIGWYJ8kuXqOgDpHFDWmDWIOCmJmlgeCR0gXov4hkJghwQESQBx+gRrvU+n1kVcKQJikjJn0gTfHrbY3QFzOzJzKT73GmFWfnDxiPGxkozz7TALHsqK+m4Tq0W8WQwe86epZMdjMLpBC5dEhEkAadEaoUlBEVwzGrRR5rgE/bIw3stJLdb23MHQ+s1kBjs+fHe6NsImD1ZWdos4slggtjjoSLJKM6dAzweC6KjCTp1Mu66RiIEUhgTqQ4+Ulr0euePWV1SeuWP0Usx6G1PVRWthI1CrwZGVhad7GD0Ugx65U98vLSooZE+Ti97LBbpnEb6OLZJbW6uNvtm8kiEmvX9INIiLkYIikiqgCsq6F5VRqFX/rClGJqb6VYMRqGXPWYtRqhXA8NmM2cpBr3yBzBnnJie9pjhs6X6hxh3UYMRAilMaWyU1vXRqwunvJxufGkEWm/i6A1b1t/oFrBeDjE5mS5ICBhbAesl+LyXYoiEFj1gTtQyUitgPfMnUuwxQ/CxCJKWEwJ4QwikMMV7E8eUFG3PnZpKW8He19EbrTdx9MaMxQgbGuigTEDfkDpzUnrjPYU8UipgI+wxtsuDvuopKMyIiIny1j7mlDfqe7p0EREkAWd4h9O13gPHjLWQmOPNydFmE0dfjHYgzJ6kJG2nkDOYPWfOGCOQLl2SuvO0nIHDMLq8Xb0qdecJQdE+kRZxMVPA6pk/RpY31njOyxMCScAZej5s3uc1yiHqNX6CYfRaO97OXY9NHM3Kn86dtZ1CzjB6Zh5z7vHxQFqa9uc3usK6coWu3A7o8wwZnT9OpzQjKxIEhV6LeDLMmNnKIkiROsUfEAIpbNFbUJhVAest+IwWSHrZY3QXWyQLcj0ErNEVFrtOejoQF6f9+Y1+fugUcjodXo8p5EbnT1WVtLm0HmN2WP6cO2fMWkje+2aKLjYBdxglKIzuYtM7ghQpETGjK6xIs8cowWd0/hhhjxEzQb3Lmx5TyI1eC4nZ06kTXfhSazIygOho49ZCovtmWmCzeTTbN5NHhEAKUyJVUERKhWVUBWzUGCQjBYXRFbAesPNevgzU1upzDW/0zp/sbGOXYtDbv3mvhWSET9A7f6xWY4cRsOenY8dGTffN5A0hkMIUEUFSRqRVwMye8nILmpr0f4z1ticnhzr5piZp+Qo90bvCSkyks0G9r6UneueP0Usx6O3fAGMbgXrnj/e5jbCHlemMDAMXYjMBIZDCkKYmaT0fvSvg8+fp9fREr00cvcnOjqwKODWVtoIB4OJFHQad+KC3PQ4HzSNAVFhq0Dt/vM9tZMRFz/wxw55IyR9WpoVA4oyFCxdixIgRSExMREZGBu644w4cO3as3d999NFH6NevH6Kjo9GvXz+sWrXKgNTqQ2kpFRWxsVKYWGvS0qTBnnqvhaTXJo7eOBxSC1hvB+K9C7leDt57KYaKCh0GNXih9wwchqiw1BNpgk9EkJRjhiBPT2/U/2ImEnYCafPmzXj00UexY8cOFBYWwuVyYerUqaivrw/4m+3bt+MHP/gB7r//fuzfvx/3338/7r33XuzcudPAlGuH3lPIAd/FCPW5BkOvTRx9McqBsNkdcXHa7kLuC7OnokLfCJLeU8gZRpW35mY62weIvAo4UgRfpArYSLMn0iNIOizJpy/r1q1r9f97772HjIwM7NmzBxMnTvT7m8WLF2PKlCmYN28eAGDevHnYvHkzFi9ejH/+85+6p1lrjHjY2Pm/+UZ/B29E6wqg9mzdapzg01PAAlL+V1bqK5Ck1qI+U8gZRgmKs2dpVCwmhs7+0QujxvHV1NBp5EBkRCjcbv22HfLGjIhLpNgjBFKYUP3ddtmpbESkH7Zv344nn3yy1WfTpk3D4sWLA/6mqakJTV6Db2q+a0I7nU44NVxogp1LyTlPnrQCsCE31w2nU78Rx7m59DqnTul7nVOn6HXy8jxwOt2tvlNzfwKRk2OUPRYAdnTp0tYeLWH5U1ERq2mZ9OXECaPsodcpKdHuOv7KD7MnL4/A5XJpch1/ZGdrb48/TpwAAAdSUwliYlyK1sFR8nzl5FB7iosJnE797tvZs4DL5YDdTpCersweJdAxbw6UlPi3RyvfQ5cScAAAsrKcuttTWkpw9apLt9lldN9MOwAL0tMbdPU9WqE2jWEtkAghmDt3LsaPH48BAwYEPK68vBydfFYb69SpE8qDzFdduHAhFixY0ObzDRs2IE6HZnRhYaHsY7dvvwZALq5ePYaCguOap4Vx9WpPAP3x1VdlKCjYq9t1tmwZBKAbXK4TKCj4xu8xSu5PIGpq8gAMxe7dF1FQsCPk8wXi88/zAfQBcBoFBQd0u86lS1kARqCiIk6T+xOIdeu6AxiIqKjzKCjYrdt1ysvTAYzFoUP1KCjYqOm5ve/P55/TchAXV4mCgu2aXseb0tIkANfh+HEnCgrWtXu8Wnbt6gRgNJKTq1FQsFnVOeSUn/LyOABTUFLiwdq1BbpFR48cSQUwAWlpDVi//nN9LgKgocEO4GZcvmzBRx9tQGysf9EX6rNVUkLLQWJiE7Zs0a8cuN2AzXYrXC4rli3biPR0fXYav3w5Bs3N02C1etCx41VdfY9WNDSoi3SFtUCaM2cODhw4gG3btrV7rMXnaSaEtPnMm3nz5mHu3Lkt/9fU1CA3NxdTp05FEttKXQOcTicKCwsxZcoUOBwOWb95/XXaNJgypTemT++lWVp8qa214P33Abc7G9OnZ+p2nSVLqD2TJ3fH9OndWn2n5v4EIjragj/+EWhoyMD06dNDOlcwVqyg9kyYkIfp0zXeedeL9HQLXn+ddrFpcX8CsXEjHao4enSmrvetVy9g/nzg8uUE3HTTdE0qYH/lZ9cuas/w4Wm62lNVBcydC1RXR+Paa6fr1j1ZUkLtGTgwSbE9Sp6v5mbgZz8jaG62Yfjw6bqscA0AV67QjO/bN1bX/AGARx8lqKqyoE+fqfBtY2vlez75hNrTq5dDd3u6dLHg1CmgZ8/rMW6cPitc79hB7aFrYxFdfY9WsB4gpYStQHrsscewZs0abNmyBTntbP+emZnZJlpUUVHRJqrkTXR0NKKjo9t87nA4dCkMSs7L+ud79rRDz3LZsyd9PX3aCodDv/H8rH++R4/A9mhx35k9Z85YYLc7dGsBs/zp3t0Gh0O/VdR69KCvly/HgBCXbk6KDTrv1k1fe7p3p68NDRZUVzs0naHpXX6Msic9nW5WXFMDlJU50LevPtdh9nTvrv45lfN8saUYzp6l9rTjdlUj7cGmr9+h16BCtqzMgaFD/R8Tqu9hEwK6ddPfni5dgFOngLNn9asbfPfI06tO1BK16Qu7WWyEEMyZMwcrV67Exo0b0a1bt3Z/M2bMmDZhwA0bNmDs2LF6JVM39N7E0Rs26E/P/X2MmkIO0CUELBa6K/3Fi/pdx4gBmQAdYBwTQ0CIpaWS1AOjJgXExKBl2wI9B9IbMUMKMG4mqFH2AMYMBI40e4zyb4AxM9mYPXrsKccbYSeQHn30USxbtgwffPABEhMTUV5ejvLycjQ2SusxzJw5s2XGGgA8/vjj2LBhA37729/i6NGj+O1vf4vPP/8cTzzxhBkmhITemzh606mT/vv7XL4MsBUa9H7goqP1r4BdLmOmkAO+FbB+0+WMEnze14i0CivS7DGiAo6U/Im050eyJ3I3qWWEnUB6++23UV1djWuvvRadO3du+Vu+fHnLMWfOnMF5ttQ0gLFjx+LDDz/Ee++9h0GDBmHp0qVYvnw5Ro0aZYYJIaH3Jo7eWK2SaNHLITJ7MjP12cTRF70d4tmzdLCkEQIWkJyUXot51tZSEUuvpc81vNG7Ana5jIvAAiKCpAYj7TFS8EWePZEvkMJuDBIh7WdKUVFRm8/uvvtu3H333TqkyFiMbF0B9IE7flx/gWSUPV26AF99pZ+DN1LA0uuQ766rTwSJ5XtqKh1Pozd6C4pz56iAdThgyC7kegvy+nq6Ej0QGQLW44m8iIuRAslIAZuXB1zVZ6IcN4RdBOn7jpGtK0D/B85oe/R28EbbwyJ8Z87oI5DMEOTe19Ua4wUsfdW7vHXoACQn63MNb/T2BxUVdKseqxW6DQL3Rm9/UFcHXLpE3xspYM+c0WdT7tZjRiM/giQEUphhVoWldwQpUgSf8fZQJxUpgk9vQRFpgs+sBkZJCa0stYbdp+xs6DpDlyFt10Mnb2gNy5+UFCpi9UbvTbkrKmjUSM99M3lCCKQwI9IiSEYLikgVfCKCJA+znp/z52mlpTVG5w+LWNbXS2PTtMTo/ElOlrqO9fAJRueP3ptys3PqvW8mLwiBFGZEWgTJyPEG3tfRuwVsdASJbs+g/fmNzh9WAdfU0E1ytcbo/OnYUdq/To+B9EbbExNDJ1R4X1tLjPZvFou+Ps7o/AH0bdQanT9mIwRSGOFySVQc8CsAACAASURBVIvCGR+hoINbtcS7P9toe2prI6MCzswE7HY33G5Ly/ICWsLskbHcmCbEx6NlgUg9HbxR+RPJFXAkRFy8r6VHeTM6IuZ9LT2fH6P8gdkIgRRGlJVRkeRw0BCnEWRlAXY7va7XygmacOUKjRQAxjnE2Fhp+r3WDsQMAWu1AunpdA2wSBAUgKiAlWBGhRVpFbAR9kTa82OkPWYiBFIY4b2CqV47Nftis0mD8bR2IOx86enQbZ8qf+jlQNgU8qgoqRvCCDIy6OhSrfOnrs7YKeQMvSIubrfxAtb7WpFSYRlRARspkCJNkEea4DMTIZDCCLMKp14OxIzws/f1tHYg3uuDGDGFnMEiSHrlT3KyMVPIGXpFXFgE1m43LgIL6GdPQwOdVQRERheOGV3u3teKFEEhIkjaIQRSGFFcTF8jRVBEmuAzyx69IkhmjTfQK+JiRgQW0F+QG7UGEkOv/LlwgU4ht1qNnUKulz0NDVIE1izBp+VEFLMErJkIgRRGCEGhDZEm+JhAipT80SviYvSMPEakPT965Q87X06OMWsgMbyXYtByZWizBCwTl42N2m7KXVFBz/l9WQMJEAIprDC7RS8qrOCYVWGlp+sTQTI7Yhkp+cOud+4c4HRqd16z8oc9P9XV2s4ENcuetDQ6exLQdikGs6bER0dLXcha+gTvRTyjo7U7L88IgRRGmN1ijLQKK9IiSKWl2i7FYHZ5u3SJDhTXCvPyh1YoHo+0Ua4WmGVPfDxd3wnQ1ieYZY/Foo+PM7M7KtLsMQshkMIEM6aQM7xb9Fru72N2BVxVJS0zoAVm2ZOaehV2O4HTqe1SDGZFLJOS6NYMQGQ4eKtVn24pMyssPRoZkWaPWZNQvK8ZKfljFkIghQlG70LuTU6OtL8PmzUTKt7heaND0AkJNKwOaFcBmzWFHGi9FEMkCApAH0FhVpeu9zUjLX/0sMeMRQhF/rSPEEgCbmH980btQu6Nw0H7nQHtKiz24KalUcFiNFq3sLwX8TRawALSliNa2VNba+wu5L5oPQ7J4xEtei3Rwx6zxiB5X1OP/DHz+YmU8mYWQiCFCWYv8a51i8Tsh00ve4xeA4nB9jDT2p7UVGkzTyPROn/On6cDpG02Sewbidb21NebM4WcobU9QsBqi4ggaYMQSGGC2YVTawci7NEWrSNIZgtyrfPn9GkLANoVabdrc04laG8PfTV6CjlDa3vKy4HmZipg2W70RqK1oGhspOs6AeYLPi3WQvo+roEECIEUNphdOLV2IGaOB/G+buRExPQRSKK8aYNe5S1SIsqse81sAXvuHBVqocKWC0hIkCYcGAmLKGu1KXdFBV0j6vu0BhIgBFLYYHaFFWkRl0izJ9IEn14RJLPt0WopBrPzR+ulGMy2JyMDiImhkRItlmLwtsdiCf18SomLozZ5pyUUvNdAiooK/XzhghBIYYLZDkSvFmOk2GN2/uTl0QiSVksxmG0Py58LF2h3RaiUlFhanddoOnemkRGXiw7oDxWz88e7a0+LZ8hse7zXQtJSUJhV3ryvrWX+mBWxNAshkMIAp1OaQm72mJDi4tD7tAkBTp6k73v0CO1camHOo7KSDngNFe9Zhmag9VIMZgvYlBRpcLgWFdapU/TVrPJms0ndHlrYY3Z5A1r7hFAxu7x5X1uL/DHbvwHa2sND/piBEEhhQGkpjQpERwOdOpmTBra8QGNj6IsRXrwoLdBoluBLTqatYCD07QWcTukcPXuGdi61OBzS4FYmBkLBbIdosUiVC6tsQuHUKRpBMit/AG1b9DxUwOzZ1UIg8RChiLT80TIixnyKiCAJuIM9bN27mzOFHKD9zuyBC7XCYr/PzgZiY0M7Vyiwyj9UQXH6NB1XEhcHZGaGnCzVsMo/1Py5fFka2Nm9e2jnCgVWuZw4Edp5nE5rSwSWB0ERankjRLonZgo+du1Q8weQyqyZFbCWERd2T3gob1oIWB7KmxkIgRQG8FI4tWrR89C6ArQTFN7O0IwBmQytKix2P7KyqOgzC63yp6IiDoRYEB8vDVw1A63y5+JFOjvJYjFXUGjlD5qapAhsr16hnSsUtGoweQ8hiBQBy0sdZDRCIIUBvBROrStgXgRSqPbw0Fr0vr5W9phd3rSy5/z5uJbzRYKAZb/PyaEzr8xCK3tKSugQgvh484YQANrZU1FBxzVaLOaO2WFi8+TJ0CZuXL0qzewz28cZjRBIYQBvFVakRZAiTfBpFRGLlPJWXk73sjHbnkgtb6dOhbZ0gXe0hQcBW14e2tIFLH9zc+m4UbPIzaVjE5ua6PpOamETcxITgfR07dIXDgiBFAbwUmFFqoM/fjy080Ra/vBmT0kJnR6vlvJyKYJkJuz6lZV0s2a18JI/OTm0AvaeZasGXuxJSZE2sQ7lGeLFv9ntUhdsKPZ454+ZAtYMhEDiHI+HnwdO6wiS2Q7RuwJ2OtWfh5f8YQOqL10CqqrUn4eXCis7m7bAQ62Ay8vjAZifP0lJ0hioUJ4hXp4fm00qc6HYw0t5A6RuKS0EEg/2aNFo4sW/mYEQSJxTVkZDpHa7uWueAJIzrKqiM53UUF9PQ9iA+Q9cVhYdw+FyqZ/q7/FIgzrNdogJCdIsukiosKxWqQUcij28CCRAmwqLlzFvgLb2mF3evNMQKYIi0vLHaIRA4hxWOLt2NWePIm/i4+mKwID6CouJiZQUc/Yo8sZqDX0g8LlzkoDlYY+iUB1iTY200CQPDj7U/PF4gAsX+OhiA7StgHmosCKtAmYRpFC63YWAjRyEQOIc3gpnqAOBeWpdAaGH1NnvunUzX8ACoXeDst9lZEgrWZtJqOXt3DnA6bTB4SARI2ArK+l7Hp6hUMubyyWt08ODjxMCti08CT6jEQKJc3gTSFpVwLw8bKEO1ObVnlAFX6SUN7aCdpcufAjYUAW5t4BNTNQmTaEQank7c4aKpJgY2uVtNqFGkKqr6TpVAB8+wTt/1GwR5XRKK4vz4hOMRAgkzuG1wgq1AubBeQCRJygizZ5Qy5skYEPcQFAjtMofHp8fNRWwtz1m7RLgDbPn/Hl1ezSy8paezoeA7dKFDqZvaJDGfiqBNwFrNBwUSUEweKuwWAvr22/V/f7oUfqan69NekIlkissNfBa3k6cULfY3bFjNILUuzcfAomVE7UVMG/lLdQ9Gnkrb6FO9T92jL727q1dmkLBe4soNfaw35i5zZWZfA9NDh88Hv4cIhM2R4+qazHyKpDULnb3zTf0lTd7ysulDYGVwLoWeClv3bpRJ9/YqG6mIRNIffponDCVhFoB8/b8REVJMw2ZOFACb+UN8B73pnzRH5Y/fftqmKAQCWUYAW+Cz2iEQOKY0lLayrTb+XEgvXrRxcIuX5b62uVy5YoU5uWlwsrJkdbaUbqpo8slOR1eKqzkZGmqP3PWSuBN8NntUhSJpU0JkkDiI4IESJWNGkHB7gFPFTBLi5r84U3wAd5RWPUCiSd7WHkLxR/wVN6MRAgkjmGFs1cvumItD8TFSSFbpQ6RVQhZWXzMkAJo/zwTa0rtOXWKCqu4OCAvT/u0qUVthVVZSUWvxcKXg/eOWirh6lVJ9PIkkFj+HDmi7HeE8FkBhyKQ2D3gqQJm95aJayXwmD/9+tFXNfkjBJKAW1jhZAWcF9jDorTC4tF5AOodCDu+Tx+++ufVVljs+C5dqOjjBbXljY5bsiAuzmnqJqi+qC1v584BtbVU1PMyZgdQX97q6qRuU54qYLX543ZLYzN58nFqBTkgBBJHbl0+W7Zswa233oqsrCxYLBasXr066PFFRUWwWCxt/o6qiTkaCK+Fkz38Sh0I7wJJqQPhrTuKEapAirTylpNTy9UeUmrLG7OnZ0869ocXQs2fjAxpXBYPSALJomic5ZkzNGoZHU0X9uUFZk9xMR3LJ5fLl6VFY3nzcUYRlgKpvr4egwcPxv/+7/8q+t2xY8dw/vz5lr9ebHADp/BaYUVqBElthcVr/kSKQAq1vGVnh7A1uw4we44dU7YJL++CvKxM2cQAXiPkPXrQIQ319RZUVsbK/h0rb7170ygfL6SnA6mptItWybg3Zk9uLt3G6PtIWAqkm266CS+//DLuuusuRb/LyMhAZmZmy5+Np1LsB14rrEiNIH3zjbKZebzmD0vPyZN0GxS58DgeBJAGmVZW0o145SJFkPgSSHl5tAvT6ZS23pEDr+VN7cQAXsubwyGNSywtlb+YEa/+zWJR1wjkVZAbCQdryxrH0KFDcfXqVfTr1w/PP/88rrvuuoDHNjU1ocmrdqn5rmnkdDrhDGXrdx/YuXzPSSsDBywWgu7dXSHtNq81dPyDA6dPA1euOBEf3/5vrl4Fjh+3A7CgZ0+nbHsC3R8toass21FXZ0FxsVPWlhR0wCy1p0cP+fZojb/707EjkJRkR02NBUeOODFggLxzffMNtad3bxecTn4GNUdHA7m5dpSWWnDggAvjx8tL28GD1J6cnFpdy48a8vNt2LvXigMHXOjWTZ49R47YAFjRq5d2+aPV85Wfb0N5uRUHD7owdKi8tB0+TO3p08cNp1PFIlc6kp9vw6FDVpSWJsq+NwcPsvzh0R4rtm2z4dAh+Wk7fNgKwBYwf4zwzVqhNo3fC4HUuXNnLFmyBMOGDUNTUxP+8Y9/4Prrr0dRUREmTpzo9zcLFy7EggUL2ny+YcMGxOkwgrWwsLDV/4cOpQEYj/T0BhQVfa759UKlQ4dpqK6OwV/+sh29e1e1e/zJkx3gdl+LxMRm7N//GQ4cUHY93/ujNZmZk3H2bCLef38Xhg6tbPf4iopY1NRMhc3mwcmT63DmjLkO0ff+dO48ATU1qfjgg30YP76s3d83NNhx9uzNAIDS0g2oquLL6WVkjEJpaSY+/PAIamraX4/B6bTgyJFbAFjQtWuN7uVHKYmJ1wDIxerV38LhaH+BGkKAr7++EUA0Ll/+EgUFVzRNT6j3Jy5uIIDu+PTTYnTsKC9MsWfP9QASUF29AwUFCtcM0Rm7vQ+AfJSWJsq+N1u3TgSQApdrDwoKVKyaqSMeT3cAA7Fp0wWMGrVL1m82bx4NoBPc7oMoKDgd8Djeni1/NDQ0qPrd90Ig9enTB328Ft4ZM2YMSktL8frrrwcUSPPmzcPcuXNb/q+pqUFubi6mTp2KJA3nqDudThQWFmLKlClweM3lP3mS9n6OHBmL6dOna3Y9rRg50obCQiAhYSymT2+/xfj3v9NRssOG2XHzzfLtCXR/tGbECBvOngXi4kZh+vT2xc6aNdSefv0suP32G3VLV3sEuj+ffmrFsWOA1XoNpk8f0u55vvyS2pOVRXDvvVN0S69atm+3Ys8ewO0egOnT2++TOXAAcLmsSEoiyMho0L38KOXgQSs2bwacznxMn97+WMhz54CaGgdsNoKHHx6LWPlDY4Ki1fN1/rwFBQVAXV0PTJ/etd3j6+uB8+dp9fPggyNbuuh4obHRgg8/pF1scu6NywWcPUvtmTVrKHr2HGpEMmUTFWXBu+8CFy92ll2fPPIItedHPxqAkSP7t/neKN+sBTVqVs3F90Qg+WP06NFYtmxZwO+jo6MRHR3d5nOHw6FLYfA978GD9HXYMCscDv6Gig0dChQW0m4MObfj0CH6OmSIOnv0uu+Ma64BVq0CDhywweFof2was2foUAsXzsH3/gwbBvz1r/LtYeWNF3t8ueYa+nrggLzyw8ZaDBpEYLHoX36UMnw4fd2/X549hw/T1/x8C5KS9Pc/SvG2x263tjtrkI33y8wEcnP5yRfGkO/aFKdPJ8FqJe3em+PH6TCChASgTx8HV8t+AFL+nDhhQWOjo9116MrL6Z/VCgwdGtzH8/Zs+UNt+jjLRuP4+uuv0blzZ7OTEZCvv6avQ/lqiLTAHMi+ffKO37+fvg4erE96QoVVwHv3yjue2T2k/eCMKbB0sXLUHuFS3g4elDfzi5W3QYP4GUvlDbvP335L1wNqD97LW//+dOZWZSWdzdYerLyx5443evUC4uMJmprssmZ+sfI2cCBfa6Ix0tPprgGAlNZgsPLWuzdfa6IZDYdZ2T51dXXYt28f9n2Xi8XFxdi3bx/OfLfq2Lx58zBz5syW4xcvXozVq1fj+PHjOHz4MObNm4ePPvoIc+bMMSX97dHUJLUYeXWILF0HDrS/hxkh4SOQjh6Vt4ko7xXWoEHUUV+4IG8Xb94rrB49qKOmg/3bP553gdSpE11R3vvZCAbv5S02VprtJKfRxBoivApymw0YMoSWna+/bn8RLd7zB5CebTmNJmYPr/ljFGEpkHbv3o2hQ4di6He5N3fuXAwdOhQvvPACAOD8+fMtYgkAmpub8fTTT2PQoEGYMGECtm3bhrVr1ypeJsAoDh+mreSUFL62sPCmd2/qFOvr6XTyYJw9C1RV0X21eFvzhJGZCXTuTCus9gaQX7kClJTQ97wKvrg4aapyew6xuVkS5Lw6RJuNij6g/QrYW3Sw3/CIkqgl7xE+QEqbnAo4POyRL5B4bwAC0r1WUt54FnxGEJJAcjqdKC0txbFjx3D58mWt0tQu1157LQghbf6WLl0KAFi6dCmKiopajn/22Wdx4sQJNDY24vLly9i6dSuXA58Z3s6DpxWAvbHZaDgZaL/CYvbk59Mp27wit8JiAiovjy7Axityu9mOHKFr8qSkSPvs8QirfNorb2VltKvHagX69eMzggTIFxQ1NVIjhOcKWG63e3Oz9xg+fdMUCkwg7d0b3AkTItnMc/4oEbDhEBEzAsUCqa6uDn/+859x7bXXokOHDujatSv69euH9PR0dOnSBQ899BB27ZI3jVDgn3BoXQGSoNi5M/hxO3bQ15Ej9U1PqMgVSKx4854/cluM3q1FXgU5IA00ZeUpEKw8DhjA9/gJueWN5U9ODl3jildYeduzJ/hxR45QkdShA9Ctm/7pUgsTSPv2WeAJMrH1zBnalW238y2QWHk7fJh2VQeiulrqxhYCSQFvvfUWunbtir/85S+YPHkyVq5ciX379uHYsWPYvn07XnzxRbhcLkyZMgU33ngjjssZLCBow1df0dcRI8xNR3uMH09ft20Lfhyr0MaM0Tc9ocIcyH/+E/w4lj9jx+qbnlBhgnT79uArhG/fTl+ZAOEVVt7+8x9awQaC2RMu5e3QoeDj3r78kr7ybs/w4TRqV1ICnA+yDBATsMOG8S3I8/OBqCgX6uosLZvQ+oOVtyFDoNnyC3qQk0MHa7vdwUX5zp3UX3TvTvfJ+z6jSCB99dVX2LRpE3bv3o0XXngBN954IwYOHIiePXti5MiRmD17Nt577z2Ul5fjtttuw+bNm/VKd8RSWyv1Z48bZ25a2oNVWHv3BnbwbrckOEaPNiZdamEV0OHDdMyUPwgJH4E0YgRt1ZaVSWOm/MEELstPXunTh25qevVqcAcfLoI8N5dWWm538ChsuJS3pCSp252JOn+ES3mz24GePemCnMHsCRdBbrFIdUqwRi2zlffyZgSKBNKKFSsw8LsnYMyYMQEXX4qJicHPf/5z/OQnPwk9hd8zduwAPB46FoRNy+SVvDyaRpcrcNTlwAEqnhIT+dtzyZdOnejgc0ICO8TTp+msMIeDtoB5Ji5OilIEsufSJWnPJd4dohwH39QE7N5N3/MuyC0WYMIE+n7rVv/HeDxSBcx7gwmQ0hgJAgkA+venm/9t2RL4GJY/vJc3QCpvwQQSE+ThUN70RvUg7Z07d+Kqn47MmpoaPPPMMyEl6vsMc5Th4Dwslva72b74gr5OmMDXDteBaK/CYmP/hw3jO5zOYPkTyMGziiw/n+/xLYz2ytv27TTClJkpbXLLM+2Vt0OHgMuXaVnjeXwLg1Wqgcrb2bM0mmm1hoeg6NcvuECqqpLGXAXYlIEr2PPz5ZfwO66quVkSfLw3mIxAsUC666678Oqrr8JisaCioqLN9/X19XjzzTc1Sdz3kfXr6WuQfXS5gj1wgXpTmUC64QZj0hMqkybR188DbH/H8mcKf7tx+OX66+nrhg3+xyExe6691rAkhQQrb1u3+l9/i+XbDTfwPb6Fwcrbl18C/raL2rCBvl57LRAVZViyVDN5Mn3duxfwUz2Abds1bBiNKvNOfn4VbDaCkhKg2M8WgJs2UaGRn89/xB+gA+kTE6no9tdN/eWXNOLfqRNkb3IdySgWSF26dMGnn34KQggGDx6MjIwMTJkyBU8//TTef/99vPHGG1yvUM0zlZXSDKkbzdveSxGsAt6yhU5H9qapSWp5hYtAmjaNVqx797ZdEdjtlhz81KnGp00NkybRpRVOn0abFYEJAQoK6HuOV71oxfDhdPbT5cv+x+2w/AmX8ta3L+2qvnoV2Lix7fdMwE6bZmy61JKZKc188reHabiVt9hYF8aOpS2LTz9t+z2zMVwaTA6HlNa1a9t+z8rb1Kl8rghuNIpvwVtvvYVt27bB4XBgx44d+Mtf/oJx48bhxIkTWLBgAT766CMsWrRIj7RGPOvX00pr0CAgO9vs1MgjP592ZTidwLp1rb9bt462irOzw6c1kpEhzf5izpyxYwcds5OYCIwaZXza1BAfL4X+fR380aO0uyMqSmr5847DIVWua9a0/q60lI6Fs1jCp8KyWICbb6bvfSus6mqpgREuAgmQGne+5a25WYqIhYtAAoBbbqECybe8ud3Axx/T9+HSYAKke+9b3giR8ixcGuh6o1oj1tfXY8T/Z+/Mw6Mq0rZ/n+7OSvaELEAIS5A17MjmwsgAAwKOiIoLioLzoaMj8KqIqDMw78jIqCxeIzO44DaOzqg4ryNLEEVUFAUSFwiCIRshIYGQfelOd31/FNXnZO8+fZbqpn7Xlas7p7vr1FNVp+qu7alx43DdddfhD3/4Az744APk5uYiLy8Pt956q5ZxvGT4xz/o63XXmRsPb2Hxfe+9ltf/9S/6euON/jHdwZg9m76+/XbL6yx/rr8eHh3QywvXX09fWfwZ7P+pU6mQ8hfmzqWv777bch0FK29XXkmP8fAX5syhr+++29J9Aft/6FDZK7o/wMrbf/5Dd+UyPvqIjjInJ/PvUkLJ7Nm0kO3b13La8PPPqTuDmBj/EeQAFUgWC52tUHri+e47uoM3OBiYOdO8+PGEaoFks9m0jMclT3Gx3Lu6805z4+Itt9xCX7dvpw7TADoFwnpXN99sTrzUcvvtVNDt3St7MG5slBvg2283L25quPlmWullZ8suJJxO4LXX6PtFi0yLmipmz6ajeLm58rQUIbI9/lbepk2jx9ycOwd8+KF8ndnDyqO/MG4cFXQNDcC//y1f37aNvt5xh39N3wwYQG1qbpZtAOT8ueEGvk8IaE1KijwiefHwCQCyPXPnUq/6Ai8FkvJ8M08oLi726vuXMn/5iwUuF+399u9vdmy8Y9QouiPF4QA2b6bXNm+mi/1GjPCf6ShGnz5yj/Avf6GvW7bQ6bXUVP+ZjmLExcmjfH/6E3198026oyg2Vh6R8RciImgjCwDPPCNPDfzwA/1swQJz4+ctNpssUtevp6Nin31GRyhsNuC220yNntdIEnDXXfT900/TeuG77+QpHfaZP3HvvfT1r3+lywby8+kzBAD+6M3m7rvp69/+RjuzZ88CW7fSa/7WYdIV4gWJiYlkyZIl5ODBgx1+p7KykmzdupUMHTqUbN682ZvguaaqqooAIFVVVZqGW19vJ088cYDYbC4CELJ3r6bBG8Z77xECEBIURMgLLxDSrRv9/1//8i1cu91OPvjgA2K327WJqIfs20fjL0mE/PWvhMTF0f9ffNHQaHSJp+nz/ffUFoCQzZsJSUmh79evNyiiGnPiBCHBwdSGP/6RkAED6PuVK1t+z6zy4y0lJYRERlIbHn+ckBEj6PulS/W9r17pU11NSPfu1IYVKwiZOJG+v+kmTW+jK8q0qasjJDWV2nD33YT86lf0/bRpZsdSHQ4HIcOGURsWLCDkhhvo+8svJ8Tl8iwMf3m2CFHffnslkM6fP0/+53/+h8TGxpLExEQya9YssmTJEnL//feT2267jYwaNYoEBweTSZMmkR07dngVEd7RSyDNnesktA9MC6m/4nIR8utfE7ctACFTphDidPoWrpkP4e23t7RnzBhCeKsLvEmf++5rac/AgYQ0NhoQSZ1Yu7alPb16EXL+fMvv+FMlvmFDS3sSEgg5c0bfe+qZPi+/3NKeyEhC8vM1v41utE6b//63pT0hIYRkZ5scSR/49FO50wQQYrUS8sUXnv/en54tte23V1NscXFxeOaZZ3DmzBls2bIFl112Gc6dO+c+c+22227D4cOH8eWXX2KmWOXlEaNHE4SHO7BokavFfLC/IUl0DnvhQrpAdsECuibJn9YatGbrVuA3v6H2/PrXdIrAnxZnt2bDBmDZMrqrcOZMumvSn9ZOtOaxx4DVq6n/mV/8gq4Zi4szO1bqefBB4KmnqBf9SZOoTyd/9phy993A88/TA2nHjaNrLNPSzI6Veq69lq5BSk+nrgw++sg/nHd2xJQpdF3loEF0I8D77wvv2a2RCOnsGMuOqampQaQ/ePrSiOrqakRHR6OqqgpRUVGahVtV5cDevTswZ84sBPlz66sTDocDO3bswKxZIn3aQ6RP54j06RyRPh0j0qZz/Cl91Lbfqvv3V155JUpLS9X+XHCR8HD/OIJDIBAIBIJLCdUCaezYsRg/fjyOHz/e4npWVhZm+ZMXMIFAIBAIBIJWqBZIL730Eu6++25cccUV+OKLL3DixAncdNNNGDt2LEL8eWGDQCAQCASCSx6fvD3+/ve/R3BwMKZNmwan04kZM2bg22+/xejRo7WKn0AgEAh0xul0wtne6b+XMA6HAzabDY2NjSJt2oGn9AkKCoJVh7UqqgVSSUkJ1q1bh5deeglDhgzB8ePHsWDBAiGOBAKBwE8ghCAyMhKnTp2C5E/uug2AEILk5GQUFRWJbgtzrQAAIABJREFUtGkH3tInJiYGycnJmsZFtUDq168fBg0ahH//+9+49tprsXv3btx00004ffo0Vq5cqVkEBQKBQKAPZWVliI2NRffu3REREcFFQ8cLLpcLtbW1iIiIgMWf/ZXoBC/pQwhBfX09yi4elJeioW8M1QJp27ZtWKDw6T9jxgx8+umnmD17NgoKCvDCCy9oEkGBQCAQaI/T6UR1dTUSEhIQHx8vREArXC4X7HY7QkNDRdq0A0/pExYWBoAK/sTERM2m21RbtaCdA49Gjx6NAwcOYN++fb7ESSAQCAQ643A4AADBwcEmx0Qg8J3w8HAAcrnWAs1lX58+ffDll19qHaxAIBAIdEBMqwkCAT3KsS7jYrGxsXoEKxAIBAKBQGAIYmJVIBAIBAKBoBVCIAkEAoHA7yCE4De/+Q3i4uIgSRJiYmKwbNkys6MlCCB8chQpEAgEAoEZ7Nq1C6+++ir27duHfv36wWKxuHczqWXKlCkYOXIkNm7cqFEsBf6MaoHU0NAAQoh75XhBQQG2b9+OIUOGYPr06ZpFUCAQCASC1uTm5iIlJQWTJk3y6Pt2u13s2BN4heoptuuuuw6vv/46AKCyshLjx4/Hs88+i+uuuw5btmzRLIICgUAgEChZtGgRHnjgARQWFkKSJPTp0wdTpkxpMcU2ZcoU3H///VixYgUSEhIwbdo0AMC7776LjIwMhIWFIT4+Hr/85S9RV1eHRYsW4bPPPsOmTZsgSRKsVisKCwvbvf+UKVPwwAMPYNmyZYiNjUVSUhK2bt2Kuro63HXXXYiMjET//v2xc+fOFr/btWsXrrjiCsTExCA+Ph6zZ89Gbm6u+/OO4tbVZ+3xz3/+E6GhoSguLnZfW7JkCYYPH46qqirvE/0SRLVAOnLkCK688koANOOSkpJQUFCA119/HZs3b9YsggKBQCAwCEKAujpz/gjxOJqbNm3C2rVr0atXL5SUlODbb79t93uvvfYabDYbvvzyS/z9739HSUkJbrnlFtx9993IycnBvn37MG/ePBBCsGnTJkycOBH33HMPSkpKUFxcjJ49e3YYh9deew0JCQn45ptv8MADD+Dee+/FjTfeiEmTJuHIkSOYMWMGFi5ciPr6evdv6urqsGLFCnz77bfYu3cvLBYLrr/+erhcrk7j1tlnHbFgwQIMHDgQ69atAwCsWbMGu3fvxs6dOxEdHe1xWl/KqJ5iq6+vR2RkJAAgMzMT8+bNg8ViwYQJE1BQUKBZBAUCgUBgEPX1QESEOfeurQW6dfPoq9HR0YiMjITVakVycnKH30tPT8f69evd/x85cgTNzc2YN28e0tLSAAAZGRnuz4ODgxEeHo7k5GS4XC5UV1d3GPaIESPw+OOPAwBWrVqFP//5z0hISMA999wDAHjyySexZcsWfP/995gwYQIA4IYbbmgRxssvv4zExEQcO3YMdru9w7idOHGi03i3hyRJ+NOf/oT58+ejR48e2LRpEz7//PNORZ+gJapHkNLT0/HBBx+gqKgIu3fvdq87KisrQ1RUlGYRFAgEAoFADWPHjm3x/4gRIzB16lRkZGTgxhtvxIsvvogLFy6oCnv48OHu91arFfHx8S1ES1JSEgC4zwgD6LqpW2+9Ff369UNUVBT69u0LACgsLOw0bmrjPXv2bAwZMgRr1qzB9u3bMXToUFW2XqqoFkhPPvkkHnroIfTp0weXX345Jk6cCICOJo0aNUqzCAoEAoHAIMLD6UiOGX8XN/xoSbdWI1JWqxV79uzBzp07MWTIEDz//PMYOHAg8vLyvA47KCioxf+SJLW4xjw7u1wu97U5c+bg/PnzePHFF3Hw4EEcPHgQAF1A3lnc1MZ79+7dOH78OJxOp1uwCTxHtUCaP38+CgsLcejQIWRmZrqvT506VWyRFAgEAn9Ekug0lxl/Bh15IkkSJk+ejDVr1iArKwvBwcHYvn07ADrF5nQ6dbnv+fPnkZOTg8cffxxTp07F4MGD24wCdRa3zj5rjyNHjuDGG2/E3//+d8yYMQNPPPGELnYFMj75QTp69Cj27t2Lv/71ry1UMgC88sorPkVMIBAIBAItOXjwIPbu3Yvp06cjMTERBw8eRHl5OQYPHgyAniV68OBB5OfnIzw8HDabdq4CY2NjER8fj61btyIlJQWFhYV49NFHPYpbV/FuTX5+Pq699lo8+uijWLhwIYYMGYJx48bh8OHDGDNmjGY2BTqqc3/NmjVYu3Ytxo4di5SUFHHgoUAgEAi4JioqCvv378fGjRtRXV2NtLQ0PPvss5g5cyYA4KGHHsKdd96JIUOGoKGhAd999x1iYmI0ubfFYsHbb7+N3/3udxg2bBgGDhyIzZs3Y8qUKV3GLScnp9N4K6moqMDMmTMxd+5cPPbYYwCAMWPGYM6cOVi9ejV27dqliT2XAhLpbJ9gJ6SkpGD9+vVYuHCh1nHikurqakRHR6OqqkrTRegOhwM7duzArFmz2sxpC0T6dIVIn84R6dMxjY2NOHXqFBISEpCQkACLRZw8pYTtYouKihJp0w68pU9jYyPy8vLQt29fhIaGtvhMbfut2iq73e6xB1OBQCAQCAQCf0K1QFqyZAneeustLePiMfv378ecOXPQo0cPSJKEDz74oMvffPbZZxgzZgxCQ0PRr18//O1vfzMgpgKBQCAQCPwR1WuQGhsbsXXrVnz88ccYPnx4m+Hr5557zufIdURdXR1GjBiBu+66q43jrfbIy8vDrFmzcM899+DNN9/El19+ifvuuw/du3f36PcCgUAgEAguLVQLpO+//x4jR44EAPz4448tPtN7wfbMmTPbXZzWEX/729/Qu3dvt/uBwYMH49ChQ3jmmWeEQBIIBAKBQNAG1QLp008/1TIeuvLVV1+5PX0zZsyYgZdffhkOh6PdxZtNTU1oampy/89czjscDjgcDs3ixsLSMsxAQqRP54j06RyRPh3jcDjcZ3kRQtq4arnUEWnTObylj8vlAiEEDocDVqu1xWdqn3/tnDxwTGlpaRsvoklJSWhubsa5c+eQkpLS5jfr1q3DmjVr2lzPzMxEuA4eX/fs2aN5mIGESJ/OEenTOSJ92mKz2dznmNXU1JgcG34RadM5vKSP3W5HQ0MD9u/fj+bm5hafKQ8M9gafBFJlZSVefvll5OTkQJIkDB48GIsXL+bypODW035M/XY0Hbhq1SqsWLHC/X91dTVSU1Mxffp0zbf579mzB9OmTRPbkNtBpE/niPTpHJE+HdPY2IjCwkIAQGRkpPBl1wpCCGpqakTadABv6dPY2IiwsDBcddVV7W7zV4NqgXTo0CHMmDEDYWFhuPzyy0EIwYYNG/DUU08hMzMTo0ePVhu05iQnJ6O0tLTFtbKyMthsNsTHx7f7m5CQEISEhLS5HhQUpEtFq1e4gYJIn84R6dM5In3a4nQ63Q2bJElc+LLhCTZtJNKmfXhLH4vF4j4Pr/WzrvbZVy2Qli9fjrlz5+LFF190u2Nvbm7GkiVLsGzZMuzfv19t0JozceJEfPjhhy2uZWZmYuzYsaLSFAgEAoFA0AbVsu/QoUNYuXJli7NqbDYbHnnkERw6dEiTyHVEbW0tsrOzkZ2dDYBu48/OznYPF69atQp33HGH+/tLly5FQUEBVqxYgZycHLzyyit4+eWX8dBDD+kaT4FAIBAIBP6JaoEUFRXlFiRKioqKEBkZ6VOkuuLQoUMYNWoURo0aBQBYsWIFRo0ahSeffBIAUFJS0iJuffv2xY4dO7Bv3z6MHDkSf/zjH7F582axxV8gEAgEhjFlyhQsW7bM7GgIPET1FNvNN9+MxYsX45lnnsGkSZMgSRK++OILPPzww7jlllu0jGMbpkyZgs6OkHv11VfbXLv66qtx5MgRHWMlEAgEAoFAC9atW4f3338fx48fR1hYGCZNmoSnn34aAwcONCwOqgXSM888A0mScMcdd7i31AUFBeHee+/Fn//8Z80iKBAIBAKBwP+ZMmUKFi1ahEWLFnX53c8++wy//e1vMW7cODQ3N2P16tWYPn06jh07hm7duukfWfgwxRYcHIxNmzbhwoULyM7ORlZWFioqKrBhw4Z2d38JBAKBQKAV7777LjIyMhAWFob4+Hj88pe/RF1dHQC6BX39+vXo168fwsLCMGLECLz77rvu37pcLjz99NNIT09HSEgIevfujT/96U/uz5uamvDggw9iwIABCA8PxxVXXIFvv/3W/fmUKVPwu9/9Do888gji4uKQnJyMP/zhDy3iV1dXhzvuuAMRERFISUnBs88+26VNU6ZMwQMPPIBly5YhNjYWSUlJ2Lp1K+rq6nDXXXchMjIS/fv3x86dO1v8bteuXbjiiisQExOD+Ph4zJ49G7m5uR6llSefK/nnP/+J0NBQFBcXu68tWbIEw4cPR1VVVZc2esquXbuwaNEiDB06FCNGjMC2bdtQWFiIw4cPa3aPrvB5b154eDgyMjIwfPhwXRwoCgQCgcAYCAHq6sz562TVRBtKSkpwyy234O6770ZOTg727duHefPmuZdePP7449i2bRu2bNmCo0ePYvny5bj99tvx2WefAaAbeZ5++mk88cQTOHbsGN56660WzoQfeeQRvP/++3jhhRdw6NAhpKenY8aMGaioqHB/57XXXkO3bt1w8OBBrF+/HmvXrm3hkPThhx/Gp59+iu3btyMzMxP79u3zqHF/7bXXkJCQgG+++QYPPPAA7r33Xtx4442YNGkSjhw5ghkzZmDhwoUtnB/W1dVhxYoV+Pbbb7F3715YLBZcf/31cLlcXaZVV5+3ZsGCBRg4cKB7pmjt2rXYvXs3du7cqasPRCa+4uLidLtHG4gXLF++nNTW1rrfd/YXaFRVVREApKqqStNw7XY7+eCDD4jdbtc03EBBpE/niPTpHJE+HdPQ0ECOHj1Kzp49S5xOJyGEkNpaQqhUMf7vYtPiEYcPHyYASH5+fpvPamtrSWhoKDlw4ECL64sXLya33HILqa6uJiEhIeTFF19sN+za2loSFBRE3njjDXLhwgXidDqJ3W4nPXr0IOvXryeEEHL11VeTK664osXvxo0bR1auXEkIIaSmpoYEBweTt99+2/35+fPnSVhYGHnwwQc7tKt1uM3NzaRbt25k4cKF7mslJSUEAPnqq686DKesrIwAID/88EOnaUVI52nZER9++CEJCQkhjz/+OImNjSU//vijR7+7+uqrybZt2zy+D8PlcpE5c+a0SXMlDQ0N5NixY6ShoaHNZ2rbb6/WIGVlZbnPNMnKyurwezx41RQIBAJBYDJixAhMnToVGRkZmDFjBqZPn4758+cjNjYWx44dQ2NjI6ZNm9biN3a7HaNGjUJOTg6ampowderUdsPOzc2Fw+HA5MmT3deCgoJw+eWXIycnx31t+PDhLX6XkpKCsrIydxh2ux0TJ050fx4XF+fRAmNluFarFfHx8cjIyHBfYyNd7F7sfk888QS+/vprnDt3zu3EsbCwEDNmzOgwrbpKy46YPXs2hgwZgvXr12PXrl0YOnRou9976qmn8NRTT7n/b2howNdff43777/ffW3nzp248sorO02T+++/H99//z2++OKLTr+nNV4JJOUBta+99hp69erVxoMmIQRFRUXaxE4gEAgEhhEeDtTWmndvT7FardizZw8OHDiAzMxMPP/881i9ejUOHjzoFgcfffQRevbs2eJ3ISEhqKys7DRs0sExVISQFtdaOxmWJMl9bxaGGtoLV3mNxUF5QOycOXOQmpqKF198ET169IDL5cKwYcNgt9s7Tau+fft2+Xl77N69G8ePH4fT6WxzzqmSpUuX4qabbnL/f9ttt+GGG27AvHnz3Nda51FrHnjgAfzf//0f9u/fj169enX6Xa1RvQapb9++OHfuXJvrFRUVHSaqQCAQCPhFkoBu3cz583biQZIkTJ48GWvWrEFWVhaCg4Oxfft2DBkyBCEhISgsLER6enqLv9TUVAwYMABhYWHYu3dvu+Gmp6cjODi4xWiFw+HAoUOHMHjwYI/ilp6ejqCgIHz99dfuaxcuXMCJEye8M9IDzp8/j5ycHDz++OOYOnUqBg8ejAsXLrT4Tkdp5ennSo4cOYIbb7wRW7ZswTXXXOP2P9gecXFxLdI/LCwMiYmJba61ByEE999/P95//3188sknpugK1dv8O1LItbW1bQ6KEwgEAoFAKw4ePIi9e/di+vTpSExMxMGDB1FeXo7BgwcjMjISDz30EJYvXw6Xy4UrrrgC1dXVOHDgACIiInDnnXdi5cqVeOSRRxAcHIzJkyejvLwcR48exeLFi9GtWzfce++9WLlyJUJDQzFo0CA888wzqK+vx+LFiz2KX0REBBYvXoyHH34Y8fHxSEpKwurVq3U5syw2Nhbx8fHYunUrUlJSUFhYiEcffdSjtPLkcyX5+fm49tpr8eijj2LhwoVIS0vDNddcg8OHD2PMmDGa2vXb3/4Wb731Fv7zn/8gMjLSfZ5qdHR0h6JKa7wWSOyEe0mS8OSTT7bYueZ0OnHw4EGMHDlSuxgKBAKBQKAgKioK+/fvx8aNG1FdXY20tDQ8++yzmDlzJgDgj3/8IxITE7Fu3TqcOnUKMTExGD16NB577DEAwBNPPAGbzYYnn3wSZ86cQUpKCpYuXeoO/89//jOcTieWLl2K2tpajB07Frt37+50XU5r/vKXv6C2thZz585FZGQk/ud//kfTbfAMi8WCt99+G7/73e8wbNgwDBw4EJs3b8aUKVMAdJ1WXX3OqKiowMyZMzF37lw89thjcLlcGDlyJGbPno3Vq1dj165dmtq1ZcsWAHDbwdi2bZtHfpS0QCJeTpb+4he/AECdOE2cOBHBwcHuz4KDg9GnTx889NBDGDBggLYxNZnq6mpER0ejqqoKUVFRmoXrcDiwY8cOzJo1Sxyc2w4ifTpHpE/niPTpmMbGRpw6dQoJCQlISEjg4kR2nnC5XKiurkZUVJRIm3bgLX0aGxuRl5eHvn37tpnFUtt+ez2CxBZq33XXXdi0aZOmYkEgEAgEAoGAB1SvQdq2bZuW8RAIBAKBQCDgBtUCae3atZ1+3tnKdoFAIBAIBAKeUS2QWm8BdDgcyMvLg81mQ//+/YVAEggEAoFA4LeoFkjtedKurq7GokWLcP311/sUKYFAIBAYgy9ODQUCXtCjHGu69DwqKgpr167FE088oWWwAoFAINAYtqvPbrebHBOBwHfY4b1a7lZVPYLUEZWVlbr4ehAIBAKBdlitVkRFRaG8vByhoaGIiIgQ52gqcLlcsNvtaGxs5GIbO2/wkj6EENTX16OsrAwxMTGwWq2aha1aIG3evLnF/4QQlJSU4I033sCvfvUrnyMmEAgEAn1JTEzEiRMnEBIS0u7RUZcyhBA0NDQgLCxMCMd24C19YmJikJycrGmYqgXShg0bWvxvsVjQvXt33HnnnVi1apXPERMIBAKBvkiShJqaGkyaNMnsqHCHw+HA/v37cdVVVwkno+3AU/oEBQVpOnLEUC2Q8vLytIyHQCAQCEzCarWa3sjxhtVqRXNzM0JDQ0XatMOlkD5iYlUgEAgEAoGgFV6NILGDaj3hueee8zoylyRnziA0kOb+CQFqaoDISICDeWlNqKkBIiICx57aWqBbt8CyJzwcCJSFtHV1QEgIYNN8D4051NcDwcGBY09jI2C1AoEyatLURF9DQsyNB4d4VaNkZWV59Jedna1XfAMOy5YtmLFkCaxXXw2cOWN2dHyjsBAYPx6IjgZGjwZOnTI7Rr5x9ixw9dVAVBQwdChw9KjZMfKNCxeAmTOpeE1PB7791uwY+UZdHTB/PrWnd2/gs8/MjpFvNDUBd95J7enRA/joI7Nj5BtOJ/Db31J7EhOBd94xO0a+QQiwahWtD+LigJdeMjtGvkEI8NRTtL6OjQVarSsWACACj6iqqiIASFVVlabhNi9ZQlwWCyEAIRMnEuJ0ahq+YTQ3EzJhArWD/Q0ZQkhjo0/B2u128sEHHxC73a5RRD3E5SLkmmta2tO7NyE1NcbGowu8Sp/rrmtpT/fuhFy4oH8k9WLp0pb2REYSkp/f4iumlR81PPxwS3tCQwnJydH1lrqmz9q1Le2xWgnJytL+PjrRJm22bm1pD0DInj3mRtIX3nqrrT3vv+/xz/3p2VLbfvs0Jl1ZWYlnn30WS5YswT333IMNGzYIH0he4nrhBez9619BIiKAr77y317WSy8BX39Ne1f79wNJScCxY4C/Hmr87rvAJ58AoaF0ZKJPHzpC9vzzZsdMHfv2Af/5D53m+OQTYPBgoLwc+N//NTtm6vj2W+Bvf6Pvt28HJk6kU6H+as9PP8k9+LfeAqZNo1M5jz9ubrzUUloK/PnP9P3WrcD119MRpWXLaFPsb1RUAA8/TN8/9RSwZAl9/8gj/mlPfb1sz2OPAWz5zCOPAA6HefHiDbWK7NtvvyVxcXGkZ8+e5Prrrye//vWvSa9evUh8fDw5fPiw2mC5Ra8RJKbCm//wB6rgMzLo6IU/4XIRMmgQjf+GDfTa5s30/z59CHE4VAdtWi9l/Hga/yeeoP+//jr9PzaWkIYGY+PSCR6nz7RpNP733Uf/37FDHqWorNQ/olpz2200/rffTv//8kv6v81GSGGh+2t+08u97z4a/1mz6P8//ECIJNFrR4/qdlvd0mflShr38eNp/VBQQEhICL128KC299KJFmnz7LM07sOG0dHy8nJCunWj1z76yOyoes9LL9G4p6XR+qy6mo4oA4S88YZHQfjNs0VMGEFavnw55s6di/z8fLz//vvYvn078vLyMHv2bCxbtkw7BXeJ4Lr3XrpI7ocfAH9bw7VvH3D8OF3IfPfd9NqSJUB8PJCfD3z6qZmx854ffgAOHqSjLb/9Lb12661Aaipdx+Nva0OKioCPP6bvH3qIvv7qV3QUqbER+Ne/zIubGsrLgX//m75/8EH6OmkScOWVQHMzHYHxJxoagH/8g75fvpy+DhsGzJ5N37/5pjnxUovTCbzxBn3/yCN0M0Dv3sCNN9Jrr7xiXtzUQAjw97/T9/ffTxdoJyQA99xDr736qmlRU83LL9PX++6jo+SRkXJd9/rr5sWLM1QLpEOHDmHlypWwKXYm2Gw2PPLIIzh06JAmkbukiI0FrruOvn/tNXPj4i2ssVqwgE6xAUBYGF1AC/jftCFrrObOpVOFAK0Ub72Vvve3Buutt2glf9VVQN++9JokAXfdRd/7W4X4n/8AdjswahQwdqx8feFC+vr22+bESy0ffghUVdFp3Guuka8ze958E3C5TImaKj75hG44iYsDrr1Wvs46T//8J80/fyE7Gzhxgu6UvO02+frtt9PXDz+k07v+Qm4uXc5htcplDJDf793r/xuGNEK1QIqKikJhYWGb60VFRYiMjPQpUpcst9xCX//7X3Pj4Q2EAP/3f/T99de3/Ozmm+nr++/Tnr2/wNKf9XgZTCDt3Enn8P0Flj8s/owFC+jrgQPA+fPGxskXmD3z5rW8Pm8eHfXLzgZ+/tn4eKmFlbf581u6Kpgzh/bsi4qArCxz4qYGlj833NBy6/jVV9PdbNXVwJdfmhM3FVhY/syYQUfJGaNHAwMG0FHYHTvMiZwa2Aj4VVcBKSny9X79gAkTqBj3pzZIR1QLpJtvvhmLFy/GO++8g6KiIpw+fRpvv/02lixZgltYQy/wjqlTqW+N3Fzg5EmzY+MZR44AxcXUr46y9wvQBzAmhk5LHT5sTvy8JT+fbue3WmmFqCQjA+jVi27H/vxzU6LnNRcu0MXzAN3iryQ1lU7luFxAZqbxcVNDfT2wZw99P3duy8/i4+k0G+A/9jidVHADLUdbADr1wZ6p3buNjZcvsLjOmtXyusUil0E/EhRugTRnTssPJEm+5i/lDZAFUuvyBsh55k/lTUdUC6RnnnkG8+bNwx133IE+ffogLS0NixYtwvz58/H0009rGcdLh8hI4Ior6HtWafIOW180dSqt0JVYrXIFz9bA8A6rGCZNotOeSiRJFk3+UiHu2UMF0JAhdB1Ia1iD5S/l7euvaY+9Z08qWFvzy1/SV38pb0eOAOfO0anpyZPbfs7Km780WKdO0c6dzda2wwTIDbCfCKTg6mpIbPSuteAD6G5DgD5n/rCbraGBrhkF2reHlbePPxa72eCDQAoODsamTZtw4cIFZGdnIysrCxUVFdiwYQNChEdO9UyfTl9ZIeadL76gr6zn3hp/a7D276ev7VXugJw/bBSDd5iAZfFuDavgmd28oyxv7XkCZ+Xtk0/8Y1qXpfvVV7fvmZnl24ED/jGt+8kn9HXCBHk9opKpU+nrsWNUGHJO3LFj9M3gwfJ6RCVXXUW9hBcV0XVKvHPwIF3/1aMHMGhQ28/HjKFrx6qrqXi/xFEtkBoaGlBfX4/w8HBkZGQgOjoaW7duRaa/9Kx5hQmNL7/kv0dCiNxgsZGv1jCh8dVX/rEwk02ddST4rrqKvv74I11YyztsrUdH+TNhAh3pKygATp82Ll5q6aq8jRlDG+aqKppHvMPKW0f29OtHG7PmZv/wfM7KW0fPT3w8Hc1Ufpdj4plAuvrq9r8QHk6fIcAv7Omyg2G1yiOZBw4YFy9OUS2QrrvuOrx+cfdLZWUlxo8fj2effRbXXXcdtmzZolkELznGjKE9krIy/hea/vQTXdwbFkYXLLbHZZfRHklTE/Ddd8bGz1sKCmhP0GaTK73WJCfTRosQ2hvjmcpKWSS0N30D0GndkSPpe94r+OZmKrSBjgWF1UqPuwHktVe8ouxgdCQoJIlO9wL+0WCxOHZU3gA575jtHJPAjhdiHaP2mDiRvrKyyTNddTAAubzxXh8YgGqBdOTIEVx58aF+9913kZSUhIKCArz++uvYvHmzZhG85AgNBcaNo+95L6Cs9zt+PBV17SFJstjgvcFiFdyoUXTReUewCpH3BuulT7keAAAgAElEQVTrr2kj3L8/FXYd4S8N1vff04Npo6Lo4vKOYOWN9wbr5EnawQgNpR2jjvCXHn15uTzNxJ6R9mDljff6rakJUQUF9H1n9viLQHK55Dh2JmDZZ/4wi6EzqgVSfX29ezt/ZmYm5s2bB4vFggkTJqCAFSqBOlgPmHd/UqyC6+xhA/xHILE5d6VvnfZgPSze7WFTMh2NhjEuv5y+8r7TkJW3SZPoSFFHsAaL9/xh5W3EiI47GEBLe3husFh5GzSIjhp3BOsAfvcd3cXHKdKPP8LS3AwSFwekpXX8RfZ8HTvG97R7bi5dWxQa2v4GB8bYsXQUvbSUjqhfwqgWSOnp6fjggw9QVFSE3bt3Y/rFxYRlZWWIam9xnsBzRo2ir7x71Ga7O1gD2xFM8H3zjb7x8RXWYHU0XchgvX3e84fFryt7WHnjvMFy509X5Y19fuIE3w0We35Y+nfE8OFUEJ47x7cDP0/L24ABdO1OfT3fC5sv5g8ZPbr99TqMpCQqoAjhu05g5S0jgwqgjggLo4vSAf6XReiMaoH05JNP4qGHHkKfPn0wfvx4TLzYy8nMzMSorh54QecoGyxePeg2NdEeEyCvYekI9nluLp0i4RFCPBdIGRnUp8vZs7SXxSueNsCXXSY3WDz732KNT1flLT6e+qsCIP3wg86R8gFPy1tYmLzjyB8a4K7Km9Uq5yHHO6Wki3EjnrRnI0bQV54FhaflDZDz0J8clOqAaoE0f/58FBYW4tChQ9i1a5f7+tSpU7GBnUqtIy+88AL69u2L0NBQjBkzBp934rjv1VdfhSRJbf4aGxt1j6cqBg6kw6C1tfwu1D52jC6ajY2lDgc7IzGRroEhhN+dRQUF1KliUBAwdGjn3w0Pp6IC4LfBqqwE8vLoe1Z5d4TVSkcpAH4rRLtdFuRd2aP4jvT99zpGyge8EeSALCh4LW+A5wIW8IsGWFKOIHWFP+SPpwIW8A97DEC1QAKA5ORkjBo1ChaFe/zLL78cg9rzr6Ah77zzDpYtW4bVq1cjKysLV155JWbOnNnu0SeMqKgolJSUtPgLbe3YkBdsNv4bLNZTGjGi8+FnBu89LNZYDRvW8niEjuC9AmHpnJbW+XoQBu8N1vHjVCRFRdEzy7qCd4FUVARUVNBnvbMF5wzey1t1tdyZCwSBZLe7Rx8DYgQpEAW5AfgkkMziueeew+LFi7FkyRIMHjwYGzduRGpqaqfuBSRJQnJycos/ruG9AvGmtwjwX4GwdPak8gD4r0C86S0qv8frlIdSkFs8qLZYeeNVILF0HjrUO0HOa33A0rlXL3rSfVew5ywri8+F58eOQbLbYe/WTT7guTNY/hw9yqcH6uJiuobNau18gTaD2ZOXR0ejL1E6WanFJ3a7HYcPH8ajjz7a4vr06dNxoJNtsLW1tUhLS4PT6cTIkSPxxz/+sdO1Uk1NTWhqanL/X11dDQBwOBxwaPgAsLBah2kZPhxWAK4jR+Dk8IGzZmXBAqB52DAQD+InDR0KGwBXdrZX9nSUPlrD7HFmZMDliT3DhsEGgGRlodnE/OkofayHD3tnT0aGbI/d7tmooIFYjhyBFZ7bg6FDEQRAOnoUcDp1Lz/ewuxxjRjh2fNw0R7k5sJx/nz7XqpVoNXzZTl82Dt7LrsMtqAgSBcuwJGb2/kuMROQvvsONgDVffogvLm56+ehZ0/YIiMh1dTA8eOPno0KGoh06BB9vgcNQrPV2rWIi4iALS0NUkEBmg8fBmnHD5RRdbMWqI2j3wmkc+fOwel0IqmV2/ekpCSUdrBgdtCgQXj11VeRkZGB6upqbNq0CZMnT8Z3332HAQMGtPubdevWYc2aNW2uZ2ZmIjw83HdDWrGn1dEVsbW1uApA0+HDyOTt3CJCMPPwYQQD+LymBtUexC+yqgrXAHBlZWHHf//r2SiAgtbpozVTDx9GBICvampw3gN7Qior8SsAOHkSu99/H06Tp2tbp8/VBw4gBsAhhwOlHthjaWrCbEmCVFGBvW+9habW59CZzKRPPkF3AN9LEgo9eR6cTlwbEgJbQwMiSkp0Lz/eMvaTT9ATwDGLBbkePt/T4+MRdv48vt66FRXMG7VG+Jo+Iz76CH0AnAwPx3EP7flFSgqiCgtx6PXXUdaZHygTGPzf/+IyADWpqfjSw7S5olcvxOfk4Ps33sDpjjxvm0T69u0YCqA4Lg6HPcyfy5OSkFJQgJy338apTjbX8PZstUe9ymN6/E4gMaRWip4Q0uYaY8KECZig8AUzefJkjB49Gs8//3yHTi1XrVqFFStWuP+vrq5Gamoqpk+frqkbA4fDgT179mDatGkIUp7FNHkysHIlwioqMGvyZCA6WrN7+kxxMYLq6kCsVlyxZIlnUwTNzSAPPwxbYyNmDR5MnRd6QIfpoyUNDbCdPQsAGL9oUftnLrUDeeghSOfOYUbfvp5PZWlMu+njcsF2yy0AgNG33y4vKO+Kvn2BU6fwy549QaZM0SfCKrH9v/8HAMi49VYMY350usAyYgTwzTeIys/HxLvu0q/8qMC2ejUAYND112MgOzC4C6xjxgCZmZgYGwvS3kGjKtDq+bKuXw8A6D9nDvp5GDfrG28AhYW4PCICLo3s0Qrryy8DoALJ07Sx7NoF5ORgpNWK4bzZ8957AICUa67BLA/jZjlwAPjmGwyxWDCond8YUjdrBJsB8ha/E0gJCQmwWq1tRovKysrajCp1hMViwbhx43Cyky3NISEh7R66GxQUpEthaBNuQgKQkgKUlCAoN1f2JcQDubkAAKl/fwRFRHj2m6Agujvv+++pPV4u5Ncr3QHQdQOEAHFxCOrZ0/PppUGDgC++QNDJk1375tGZFumTn09P7Q4ORtDAgZ37PFEyZAhw6hRsJ0/Kh9jywIUL1KUCAFtGRvuHurbH0KHAN98gorhY3/LjLc3Nbv8/tuHDPbdn8GAgM5Pmj8a2+JQ+hNBF9PAyf4YNA957D9YTJ2DlJW8YF+2pSU31PG0uTqtZT57kz56ffgIAWDMyPI8bs+ennzr9DVfPVgeojZ/fLdIODg7GmDFj2gzr7dmzB5OYh+MuIIQgOzsbKSkpekRRO5izrpwcc+PRGhYfb3crsu9frHy4gW0fHzLEu7U3LH94s4flz4ABnosjgN/yxtK3Z096dpynXCxvkbwdwnvqFF0DEh4O9O7t+e94zZ/ycrojT5JoJ8hTmD3s+eOFxkZ3J7CmKxcmSnit3whpWcd5Cq/lzUD8TiABwIoVK/DSSy/hlVdeQU5ODpYvX47CwkIsXboUAHDHHXdg1apV7u+vWbMGu3fvxqlTp5CdnY3FixcjOzvb/X1u4bUCYRUAi5+n8FqBsArAW3t4rUACzR5WXlQK8ojiYo0j5CPseR482Lu1eLzmD4tPnz7UqaWnsMY6J4evnWw//QS4XCCxsWiKifH8d6x8/vwzdUnBC6dPU596NhuQnu7575g9ZWVUAF+C+N0UGwDcfPPNOH/+PNauXYuSkhIMGzYMO3bsQNrFnRCFhYUtfDNVVlbiN7/5DUpLSxEdHY1Ro0Zh//79uNzkaZEuUVYgPOFjg8WdQFLTuwJke3jLH7UCidnPmyBXa49CIBGePNIrBZI3sO8XFFCv5zpsFlGF2vy57DIqECsrqUd6Xkb0L+YPGTzYuxHlHj2AiAgqRnJzvU8PvVCOKHsz1RQRQZ0AFxXRMLo6czMA8csRJAC47777kJ+fj6amJhw+fBhXKbYh7tu3D6+++qr7/w0bNqCgoABNTU0oKyvD7t273UejcA3vPcZAGUFSK5CY/SdP0nUlvOBr/pSU8HWGmVpB3q8fSFAQbE1NtBfNCyx/vC1v3bvTY1QI4esMM7XlLSRE3qzBUx3HBJK3+SNJfNZxagU5wG8n0CD8ViBdErACnZdH58V5oLpaPjDT2waL7aY6d47+8YDDIZ8/5m0F0rs3nVJwOOi6Eh5Qrjfw1p7oaLrOB+CrQlQ7pauYUpAuLlLlgkBrsNSuSQT4XEbAxKenuz+V8CiQ1ApygN91lgYhBBLPJCUBMTH0wFpeDhFlD0pKiveuB7p1kxel8tJg5efTE+zDwmRx4CkWi7wolZcGq7yc7vqSpMCo4Jua3Atm1TTA5GL+cCOQCJGfZW8WNDN4bLDUClhAzlOeRsQu5g/xZr0Og0cBy9LWl/LGkz0GIgQSz0gSnTcG+Dm0ljU0ah42gL8GmKVr//5eO68EINvDSwPM7ElNVbdGhZU3JkrM5uefaQchMlLVGhUmkLjJn/JyoKaGPtueHGHRGt7KW0MDXaMCqBPkvNVvhLjjQjz01dYCHgUFS9sOnCJ3Cnt+eOmgG4wQSLzDejG8VCAsHmoqQ0B+4HgTSGoqD+XveBIUgHe7VZTwXN5UHH9CLpZTiZcRCqWAVeN9neUPL+WNTS1HR3t2BltrmAjhpbyVlckCtl8/73/P6sWTJ/nYmdfQIK+/U1MnsN/k5fG1ztIghEDiHV4bLDW9K4C/Ct5XQcHSgRd7WDx8zR9eypuv9lz8ncTLGjFfBTlvgkJZH6g5v4+3BpjZ07u3ZycEtIaJqqoqPrbGs3IfEwPExXn/+549aTo0NwOFhdrGzQ8QAol3eKsQNWqwuBEUgTri4qs9vPSAfbSHsAarqIgP3zS+5g+zp7KSjwaYPcdq7eGtAWZTSWrtCQ+Xp4J5qON8FbAWi1zmeLDHYIRA4h3eRlx8rRCVAikAGmC3PUVFdEGx2WjVAPPSA/ZVkCcloTk0FJLLRRfkm42v+RMeTv3tKMMyE1/tsVj46gT6OsIH8FVn+5o/yt/ykD8GIwQS77DCWVhofgNcVSVvz1czPw/QhamSBNTV0fl+M2lupkP7gPoKMSmJ7s4LlAZYuZuPhwrRV4EkSahjZzQGWoMVaPbwUN60sIenUXIt7eEhfwxGCCTeSUykHk0JkRtzs2APfFKSd2diKQkJAXr1ahmeWRQVUR9GISHeb/FnSBI/FeKFC/Koj1pBAfDTYDkcsuj0oYKv42XKQ7nFP1AaLF8FLMBPeQPk/PFlBImn/Ak0QW4wQiDxjiTxU4H4ukCbwcsD5+sWfwYv+cPSMzmZjmqphZf8KSykPqpCQ306hqIuOZm+MTt/Kiro2iFA/QgswE95s9s1EbDc2KPY4h8wgiLQRvgMRggkf4CXAqpFb1H5e7MrEC168wA/9mhRGSp/z1N580HA1jOBxEv+9Ozp2zlqvJS3ggI6tRwW5ts5aryUt/JyelKA2i3+DF7yp6lJXviu1ZQhT2caGoAQSP4ALxWIVg0wLxVIoAqKQLFHoxHLOt4EUiDmj5odUgzliIvT6Xu81OKrjyoGK68lJXStpVnk51NB060bXRahlrQ0wGqlx12VlGgWPX9ACCR/gJcKMdBGkLTYsQLwM6QeaA2wRuXNLZBOnTK3B6x1B+PsWXpyvFloJchTU+kp83Y7UFzse7zUolX+xMUBsbH0vZn+t5T2+CJgg4KAPn1ahnmJIASSP8CboAiUESStBV9eHh89YK3yp7yc7lw0C40a4Ibu3UFsNjrlwEMD7Gt5i4kB4uPpezOfIa3Km80mH7ti5pEWbD2VmiNgWsNDHadVeVOGIQSSgDuUDbBZ3mYbGuTGRStBwdz6mwEhdA0FIPeO1NKrFxAcTHvAzK2/GWgl+CIj6e5JwNwesEb2EKtVzmMzGyzWAPuyvoURaA0wSxMzXWWwe/taHwB85A/b9axF/vAyqmwwQiD5Az160GFOpxM4c8acOLCHLSpK7r2qJTpaDsOsBvj8eXl9QO/evoVltcq9TrMqROX6AC16wKyRMKvBIkQ7wQeFR20zGywmyNPSfA+LhwZYS8HHyqyZrkz0yB8zBYWW9vAgYE1ACCR/wGqVC7lZFYhy+NmX+WyG2RU8syclRd2ZS61hgoJVSkbDTlTv1k3dmUutYQ2WWRViWRkdtbRYfBew4EAgORzyCKwWIxRmlzdC5LKhRQNstiBX3lvLESQzR2C1tIeH/DEBIZD8BbMLqJa9EcD8Blir6TWGyfkjKe3RQsDyUt569KDTl77Cyq1ZguL0abpAPCREnr70BbOfn4oK7UZgAfPLm9Mpb4kPBAGrvLcWdTYPI3wmIASSv2B2BaJlb0QZjlkViJa9X8D8/NFawJptj8bljZgtkJTlzRenpAxe8ic5mfpB8hWz7Skpoes7bTb5rDtfUNZvZpw5WV1NPesD2o7wnT1LR3YvEYRA8hfMrkC0boBZOGbbE4gjSFrAwjGrxxio5U1rAZuXZ04DrNeI8pkz5pw5ycpFaipd0uArvXrRkdzGRnPOnGT5Exen/lgoJbGxcjhmjooZjBBI/oLZAkmvESRhjyZIeo4gmdEA6zWCZHYDrFV5Y9Na9fXyAdJGorU9CQnUuzgh8lSXkWj9/AQHy+c7mlEnaJ0/kmR6HWcGQiD5C4HWozf7YdNrhKK42BxXDFqunwBke2pq5KF6I9E6f7p3p1NBhMgL2o1Ea3tCQuSpIDOeIa3tMbsB1lpQKMMKhPwBzK+zTUAIJH+BDUGfPm18A9zYCJSW0vda94Crq+UDPI1E6woxKYk2Wk6nKb6QNJ9iCwuj60sAcxssPRpgM6YIAq0B1sMeMxeea/38KMMS5c1vEQLJX0hOpsO2ZjTAbHRCqy3kLKzu3el7ox+4ykoqzABtduAAdOGtSetcJOUW8kDoMWrpxFOJmeuQAq1Hr6c9ZoySay3IgcDNHyGQBNxhYgPcojeixRZyhlkPHLtfYqJvp6q3xiR7ws6fh0QIPWBTiy3kDLMarIoK+YwxrQQsYF55czrlab1A6dEH2giFHvaYKcgDLX9MQggkf8KsAqpHbwQwXyAFiD3hbJdMWlpgCFhW3pKTfTtVvTVm2XPmjLyFPCVFu3DNsqeyUj6jLxBGKFwueZQ8EOwBxAiSRgiB5E+Y1aPXY7oDMM95n172mCWQystb3l8rzFoTopeANXsEtndvbbaQM8zKH/b8JCTQqXKtMMsZ4dmzdGejxUK352uFWb6Q6uroQdPKOGiB0hdSfb124XKMEEj+hBhx0YYAsydMOYKkJWaPIOklYM0S5Hrmj5ENsN75U1pqrDNCZk+vXvTMS61ITaUjuka7YmCjYVFRQEyMduFegr6QhEDyJ8zuMQbIiEug2eOeYtPLHqOdEeotYIuLAbtd27A7Q4/1IIB5DbBe+RMXB0RE0PdG+kLSy56QEHlK1cg6Qa/yJknmH3FjMEIg+ROBNuJi9pSHXvYY7IohXK8RJLZAuq4OOH9e27A7Q68Rl6QkuqbJ5TJ2J6he9pjlC0mvDoZZDbBegkIZphn5o3V5Ay65dUhCIPkTrHCePk1PBzcCu50uMlXeXyvYA6xc9GkEelXwSlcMbNu9Aeg2ghQaak4DrGcPmIm+QLBHGaYZ9ujZABu5DskIQWHklFSglTcTEQLJn2DOCF0u47wBs1PItd5CDtD57Ph4+t6oCqSmhm4jB7SvEM1wxdDcjFA2uiMarK4xo8HSS5ArwzQyf4xogAPNHjGC5JcIgeRPmNEAs4etd29tt5AzjH7gtD7EsTVG21NcDIvLBRIUpO0WcobRgqKqSvasHggVvMsVeA2WELCeY8YygkATsCYiBJK/YXQFoufDBhi/1V9vewxusCSl/xaLDo+zWYI8Pl5esKslRguKs2fpNLXVqu0WcobR9tTWyuvRAkEgEWLMlKEQsH6JEEj+hlkNlh4PG2B8BaJnZQiYZg/R0uO0kkAV5EaXt549qaNIrTE6f9h9YmKA6Gjtwzc6f8rLqUsBSaK7ArXGaF9IjY1ASUnLe2sJy5+yskvCF5IQSP5GoDVYZk2xBYg9kt4CNlAFudGCwgjBZ0QDbFR9UFpKG3u9YfmTkkLXd2oN67jU1sprH/WErU0ND5fXd2qJ0heSka4YTEIIJH8j0Boss3r0AWIPm2IzZATJiAbYKAFrlCsGvcsby/f6emNcMeidP3FxsnduIxpgvQVfaCjd3aq8l57odW4mQ5LcZVm6BKbZhEDyNwJ1BClQevQs3KIiYxrgi/YQvRvgmhrgwgV97qFEb0GhdMVghC8kvcub0c4I9c4fSTK2TtA7f5RhG5E/endoAbc9khhBEnCHkQ1wc7PciOg95XH+PG2E9UbvCj4lhR5X4HTK/qN0RNLjkE0lYWHUvQRgbIOllz0Wi7G+kPQub4A5DbCegsLIUVgj88eI50fvDq0y7Etgq7/fCqQXXngBffv2RWhoKMaMGYPPP/+80++/9957GDJkCEJCQjBkyBBs377doJhqjJENMDuFXK8t5EDL84L0rkDq6/U5xFGJsgHW2x7FKeS6jSAB5jRYRlTwgdZgGWlPoAiKQBN8RowgiSk2vnnnnXewbNkyrF69GllZWbjyyisxc+ZMFHYw5PfVV1/h5ptvxsKFC/Hdd99h4cKFuOmmm3Dw4EGDY64BRvaA2QOQmqrtKeStMapCZOFrfYhja4yqEEtKIDkccFksssdrPTCqx1hXJ58pFgiCjxBDGywxgqSCQBN8RgpyMcXGJ8899xwWL16MJUuWYPDgwdi4cSNSU1OxZcuWdr+/ceNGTJs2DatWrcKgQYOwatUqTJ06FRs3bjQ45hphlO8gIx42wLgK0YjKXRm+QfnTkJCgzxZyhlHljYUfHa2vgDUqf/TeQs4wSsA2NFC/TkBgCAqlD6RAEXxiBElTdKxV9cFut+Pw4cN49NFHW1yfPn06Dhw40O5vvvrqKyxfvrzFtRkzZnQqkJqamtDU1OT+v7q6GgDgcDjg0PAcNBaWN2Fae/eGBYAzNxcuHc9ks5w6BSsAV2oqnHrep3dvWAE4T51qY4+a9OnwPrm51J7evfW1p1cvep9Tp3S9j/Tzz7ABaOjeHZKe9qSmGmNPbi5soDvymjW6T3vlR+rZEzYArrw8Y+xJSUGzxaLb+YnMHpKf73W6efV85eYiCACJjERzRASX9nhFRQWCamsBAI6UlDb2aFb39OxJ062gQF97HA7YioshAXD07KnfeZ0X7ZFKSmDRuD3UC7Vx9DuBdO7cOTidTiSxhaMXSUpKQmlpabu/KS0t9er7ALBu3TqsWbOmzfXMzEyEh4eriHnn7Nmzx+PvXtbUhMEATn/xBbJ37NA8LoyRX3yBNAA/2e04oeN9+tXVIQNA6ddf41AH9/EmfTpiyCefYACAfELwg472pFZVYTSAc0eO4Csd7zNgzx4MAVCfmIgvNUifjkgqK8MEANU//ojPdLSnz86dGAGgNCwM32h8H2X5iSspwZUAGnJy8LGO9vT48kuMA1ARFYUvdLxPxOnTmAqgOTcXOz76SNX2bk+er+5ZWZgEoCY2Fp/u3Ol9RD0kpLISvwKAM2ew8z//ocfo6EB0bi6mAGiMicHuTz/t8Hu+1j3WxkbMBiBVVSHzX/+i4lIHws+exTSXC87gYOw4fFifbf4AQAiuDQmBrakJYeXlmtTNelOv0qml3wkkhtQq8wkhba758v1Vq1ZhxYoV7v+rq6uRmpqK6dOnIyoqSmWs2+JwOLBnzx5MmzYNQR5WBNL588A//4lUQtBj1izN4tIa6/PPAwAGTJ2KdB3vI9ntwCuvIMXhwKxW91GTPh1hfestAEDa1VcjVU97IiKATZvQva6ujT1aYv3wQwBUIGmRPh2Slgb87/8i+sIFXe2xfPEFACBx3DjN7tNu+Rk2DFi9GuHnz2PWjBm6ra+zHD8OAIgdMULXdENDA3D//QhqaMCsSZOoMz8P8eb5ki5uCokYNkxfewgBWboUUmMjZmZkAP366XIb6YMPAADBl13Wrj1a1j2ke3dI5eWYPnAgMGKET2F1hLRvHwDAkpaGWddeq8s9GNa+fYHjxxFeXo5Jd96pX92jEWwGyFv8TiAlJCTAarW2Gf0pKytrM0rESE5O9ur7ABASEoKQdjyrBgUF6VIYvAq3f38AgKWgABY9C+bFRXi29HS6k00v0tMBdG6PJul+0R5rv36wGmCPVFiIIKtVnzPSALfX3IbERN3KJQDZnspKBNXX63PEBOC2x9q3r+b50yJ90tIAmw1SczOCzp3T54w0wG2PpV8/fZ/ToCAgMREoK0NQcTF973UQHpQfZk/fvvraA9A8+uknBJ05AwwcqM89LrowsfTp06k9mjxbaWlAeTnNn7FjfQurI4qLAQBS3776C5aLAimsrEzfukcj1MbP7xZpBwcHY8yYMW2G9fbs2YNJkya1+5uJEye2+X5mZmaH3+ce5S4Cl0ufe+h9CrkSo873MWqRds+edFTCbqdHJujFxUWf9SoaRK+IiJCPLdBzYaZR+WOzyYum9Vw4a9TzAxizUNuoTRuAMQubjbTHyPwxorxdvEd4WZn+9zIRvxNIALBixQq89NJLeOWVV5CTk4Ply5ejsLAQS5cuBQDccccdWLVqlfv7Dz74IDIzM/H000/j+PHjePrpp/Hxxx9j2bJlZpngG6wBdjjkgwm1Ru9TyJUYcb6P8hBHvSsQm01OM70EhWILeX337vrcQ4kRO9lMqOANscdIQWGEgDVS8AWCIAeMzR8DBZ8QSBxy8803Y+PGjVi7di1GjhyJ/fv3Y8eOHUi7WAgLCwtRohAOkyZNwttvv41t27Zh+PDhePXVV/HOO+9g/PjxZpngG0Y0wHqfQq5EebyAXj0sdohjt276HOLYGr17wGfPAk1NIBYLGoywR+/8aWyUR9sCYcRF6QMp0EYoAm0EKRDKmzJsA+0JdIHkd2uQGPfddx/uu+++dj/bd3GxmpL58+dj/vz5OsfKQPr0oRVwfj6gx1ShkZUhQB/qH37QX/Clpem3u0NJnz7A/v2GCFi9dvm0QO8ePRs57NYNSEjQ5x5K9G6AL1yQj87R6yBhJXrnT1OTPAJrpOALlBGXQBtBumhPGDuZIEDxyxEkAfR/4Ix82JT30avBMtoevRvgi+ESIxpfwDB7dDuFvDV6N8As3KQkevHuFawAACAASURBVJ6d3uidP0VFdFQsPDwwBGxlJf1T3ktP9K7fnE55lNxAe8IqKvTzt8QBQiD5K3o/cGaMIAHGjCAZgVEC1ih79BYUZuWP3s+P0fljhD1GCtjTp/U5lJuV44QEOmqpN6wcVFTocyi3EedmKklKAgkNheRyyQeaByBCIPkrRgmKQBlBClB7dD2kVonegsKsEUu9doKaNWJZWQlUVWkfvtHPDzuUu7lZn0O5je5gREXJ/qn0qLNZ/uh9biZDcXxOIB85IgSSvxKogiJQRlyUApYQ7cNnAsnoBvjcOXqorNYYXd569aL+qZqa5PPFtMToESS9XTEYLfj0PpSbhdm3r/Zhd4SedZzR+QNF3SMEkoA7lIVT6wbY6B04gNyQnDlDGy2tMbpCTE2lvayGBnpoqdYwe4xagxQTIzuI1LMHbFR5CwqiOzQBfe0xSiAB+jbARucPoO8ouZn26Cn4jCxvF+seMYIk4I9evWgD3NhIHSxqydmzNFyLRX8fSIyEBLoAFNDeF5Ld7vYya1iFGBIirwXQugJRCFjDptgAfUctA7XBMnKEItAa4EArb0YIWAPLG6t7hEAS8EdwsH49YBZez576HjGiRJL06zEWFlJRERYGGOFUkaFXBV9eTkemFOsADEGv/GlqkteZiAZLPYEmKMQIkufk5dFXI6fYmD16OfflACGQ/Bm9HjgzKg/l/fS0x4gdOAy9KnhmT48edKTKKPTKH1bBGrWFnKGXPRcuyAuljRxx0au82e3mCtgAERSBKmDFCJKAT/TqAZstkPSyx8jePKBfhWj0gnOG3oIv0ARsYqI8bWwEepW306fpTr/QUFUH4apGr/wx2gcSQy97nE65k2HCFJturhg4QAgkfybQRpAC1Z5AE7CBkj/CHs8w2gcSQy9XDEofSBER2oXbFcwerQ/lLi421gcSIyUFLpsNkl6uGDhACCR/JlAr+EATFIFij16Cz4QtygD0c8Vg1ogls+f8eaC2VrtwzSpv7FBuu10+p08LzLInJkafQ7mVO1qN8IHEsFhQz6bEA3SaTQgkfyZQG+BAEXxKe/RogM0SfKWldJejVpixQwqQXSTU11P/TlphxvoWgLphiImh77WsE8wSsMpDubWsE8x6fvQ6lNssewA0sClXPQ/hNREhkPwZPRpgpQ8koxss9oAXF2t7vo9ZDRZLv5oaec2DFpiVP3Fx8rEMevSAjc4fvVwxmNhg6TLKZ5aAVd5TD3uMHuED9LGH1W8m2FPPdgULgSTgDtYDrqujZ/xogVlbyAF6sGdoKF1voNX5Psot5EZXIGFh8qJWrSoQQkQPWEuEPV0j7NGOALOnntVvYopNwB2hoUByMn2v1QPHwunZk/paMhJJ0v54ATbS0a2bfBSDkWjdYzx/Xj7qwygv2kq0tscsH0gMrad1CTG1Rx9oDbCuI0jCHp8RU2wCvtF6HZKZlYfyvnrYY+QOHIbWDRYLJyWFCmSj0dqeoiJznHgytC5vFRXyAulAELDNzcZ7oVeih+Aza8pdeU897DFjik2MIAm4RusesNkCKVDt0aoCMWv9EUNre8wWsHqVt+RkKvqMRusG+PRp6mcnOJhOgRuN1uWtstIcJ54MPQQsW45g5hSb1q4YOEEIJH9HjCB1jpm9ReV9A0XwBao9gfL86CVg09Lo2YxGo8wfLTaiMHu6d5c3HBgJs0erQ7mVApYttzCQxrg4ED1cMXCCEEj+TqCNuOjVAJuxHgTQd8TFDPQaEeOhvGnRAJu5/giQ7Tl7lm628BWzy1tqKh1ZbGigG0h8xWx7EhLkkUUtdoKaLGCJ1Spv5gnAdUhCIPk7WveAzW6wAk1QaC34WANs1hSb0hWD3e57eGbnD1snpJUrBrPtiY2VnRFq8QyZucUfoCMjPXq0jIsvmJ0/yp2gWuSP2YIcANF6Yw1HCIHk72jZACt34JjdABcV0aFjXzG7QmT3VR5g6gu5ufS1f3/fw1JDYiJdHE4IzSNfMbu8hYdr64rB7PImSdp2Mswub4C29pgt+ABt62yzyxugn4d9DhACyd9h6r2qyvcecEkJHcq2Ws2rQFJSaK9RufhQLY2N1CbAvAokIkJugFljoxaXSxYU6em+haWWQGyAWdk4dcr3sMxe86a8txYNME/5Eyj2sNEeLcobBwKJaL3MgyOEQPJ3unWTt0f7WkBZ5ZGWRg8+NAOLRa5AfBUUrAKKjqZeoM2CiZmff/YtnOJiurDTZjPeiacSrQRFXZ28sNPMBovljxYClqVJoIy4BJqgYM+gWR0MQE5LX+sDQM4fM6fYxAiSgGvYA+drBc8eWDMrQ0A7QaGsDM3YQs7QKn/Y7/v0oSLJLLQSFOz3cXF07YxZaFXeSkroqKXNxscUjq+CoqaGnjwPBIaAdTr5ELBa2QPIZXbAAN/DUgsrb1rYwxlCIAUCWlXwrICb2btS3l9LgWQmWudPoAhYXsqb1h0MXgSsVvmTkEBHYc1CyxFYu52Ojps5Aqu0x5edkzU1dLciYGqdQNi98/Pp0ogAQgikQIA9cCdP+hZOII8gmYnWI0iBlj/CHm1howm+NsC8lbeCAt92Tiqno8wUsP360RHt6mp6dJBalAI2JkabuKmhRw/quqC5OeCm2YRACgSUFaIvBGqP3uwKPpAFkhYNsNnljd2/qIhOkamFF0Herx99raoCzp1THw4v5S0pia61dLl8W2fJS30QGkrPugR8q7N5KW8Wi5ymvnbSOUMIpEAg0HrAWjXAvFQg7P6nT/vmvI8XQdG3L+0B19bKQ/xq4KW8de9Odxsq3VyogZfyFhYmTyFp0QCbnT+SpE0dx0v+KOMQKPZo1UnnDCGQAgH2gBQXA/X16sKoqJDdBLAeqFmkpVFXA/X16t3X2+3ycK/ZFUh8PBAVRd+rbYAJ4afBCgmR3Uv4UiHyIviUDbAvo3w8NVhaTLvzkj/KOARCeVPGQZQ3mexs4MABbRy2aoQQSIGAcheQ2geOPWw9elDneWYSHOzeBSSptSc/nw7Jh4ebckZRC7RogCsqZEeTZgtYwPceo90uH7VgtuADfG+AlQKWhwZLix49L1NsgDYNMC8dDGUcAmUESQsB+/TTwOTJwIsvahMnDRACKVDwtULkqTIEfBcUvGzxZ/haIbJ0YAsizcbXCpEJ2G7dzDklvjW+2lNWRqccJclUnzRufBUUTU2yp3Qe6gQtBKwYQdIP1v74ImDZb810WdAKIZACBV8rEJ4eNsBdKUu+Cgpe7PG1QuRVwPpa3vr3DwwBy37XuzedgjQbXztMgSxgzfRyzvDVnvp6uqRCGZaZsDjk5anb6k8IcOIEfS8EkkBzfH3gOG2AJbXO7ngaTgd838nGmz1alTceKndA2xFLHlCOIKnZ6MDSgW1JNxtmT34+4HB4/3tmDy8Clj3H5eV0u7+3sHoxJsbcUwIYPXvS3XnNzfLUuTeUlVG/TpLETx0HIZACB1+H1NnveKvgA63BYr0kb/npJ/o6aJA28fEVXxtgVt54qQyVPWA1DTBv5Y2la1WVOl87rLwNHKhdnHyhRw/fGmDeOhiRkfIZjWo6GbwtIfB1qz8rb2lpNJ85QQikQMGXHj0hQE4Ofc9LA3xxmFVS2wAzIcJLg8XSNS9Pna+d48dbhmM2bKF4dbU6Xzu82cPWdjmd6nYa8tYAK7f6q2mweMsfXxtgZg8vgg8ALruMvjJx4A28CXLAt2ldlj+DB2sXHw0QAilQYIWzqIgeAuoN5eXAhQu0J8IeWrPp3x+wWiHV1CC0osK73zY2ykPQvFTwiYl0p6Fyrt1TCOGvwVI2wGoqeN4EucUix4XFzRt4swfwbVSZxwbLF0HB8ocne3wpbyx/eKmvAd9GyXmr3y4iBFKgkJBA/wDvKxD2gPbpw8cOKYBu9b/4wEWy3TSecvIkXWAaFQWkpOgQORVIkvzws8rAU4qLqei12fjY4s8YMoS+elvB19RQp5kAXxUiazy9tcfplJ85liY8wEZL1AgKHhssteVN+RueBJLa8gYAx47RVx7Lm7f1G8BnBwNCIAUWaisQHitDwF2BRLLG1FOY/UOG8DE/z1DbY2T5k55OD9rkBVbeWGXtKazBTkzkY4EpQ22DlZ9PRy1DQvjYIcVg+XP0qHe/q6igi2YBvkYoWP54W97sdnnah6c6Tm15Uy6J4EkgDR1KX73NH4DbNsjvBNKFCxewcOFCREdHIzo6GgsXLkRlF543p0yZAkmSWvwtWLDAoBgbiNoGi8feFeCOT4RagcSpPV73sDitPAK1vHndYLHvDxxIPcDzgtr8YeUtNZUewcILau35+Wc6yhcZKZ+BxgOsvJ044d3W+NJS6m3aYuFTwJ4+7d3OvPp6+dQDzuoEvxNIt956K7Kzs7Fr1y7s2rUL2dnZWLhwYZe/u+eee1BSUuL++/vf/25AbA0mQBssr6fYeLVH7QgSp8PPPgsK3vJHKWC92RjAnjfe7GH1QW6udxsDeBXkAwfSEeHz5+m6SU9RPj88jSj37k09/Tsc8ppJT2D29O/Ph8sCRkwM3ewAeFcnnDhBn7e4OHmZCCf4lUDKycnBrl278NJLL2HixImYOHEiXnzxRfz3v//FT13Ms4eHhyM5Odn9Fx0dbVCsDUTtEDSvFaLaESQe5+cBOX9++omukfIUzvMHRUXe9Rh5tSc9nY4A1dTITvg8gcfpDoAesRMbS8uaN+uQeM2f8HB5CtObOo7HBecAHQFSs26HV0EOqOukK8sbTwIWgM3sCHjDV199hejoaIwfP959bcKECYiOjsaBAwcwsJMtnP/4xz/w5ptvIikpCTNnzsTvf/97REZGdvj9pqYmNDU1uf+vvtgAOBwOONT4SekAFpYmYQ4YgCAA5Oef0Vxb61nvoq4OQRf9ijjS09X5gNGL/v0RBCC0qgr1paWenanmdMJ24gQkcGhPz56wBQdDamyE4+efPT6Swnb0KCQAzenpIK3s0bT8eEtkJGzJyZBKS9H8448g48Z59DPbsWPUngED2tijNV6ljyTB1r8/pBMn0PzDDyAeepC2HjsGC4yxx1usgwfDcuAAmr//HqQdAdde+liPHoUFgPOyy+Di0Z68PDh//BGuSZM8+41Ke4x4tqwDB8KSlUXtmTnTo99Yjh6FFYBz4EBT86e99LEMGgTrxx9TezyMm+WHH2AF4LrsMjh1skdtHvqVQCotLUUic66lIDExEaWdnPp+2223oW/fvkhOTsaPP/6IVatW4bvvvsOePXs6/M26deuwZs2aNtczMzMRrsNhrp3FxWMIwazwcATV1+PzV15BzcUDXzsj9sQJXAWgMSYGuw8e9D0OGjMtIQHh587h8BtvoIItAuyEbiUl+GVTE5zBwdhx9Ki6HRU6MqVHD0Tn5+PIq6+iVCH0OyKkshK/OnsWRJKw6/RpODvwOaRJ+VHBpO7d0b20FN+/8w6KPJj2sNjtuPbkSUgA9paUoHHHDv0jCc/T5/LYWKQAyHnvPZyy27v+ASGY9cMPsADYX16OGoPs8ZQR3bqhD4DcDz/E8aioDr+nTJ/pBw8iDMCB2lpUcGbPkOBgDABQsPP/t3fvUVFceR7Avw10E1TsAUEBQSUmxihvGbWND0ZH1BFj4o4bjbokGZlNTtCQ6B9jMhOdTHZ13TOZuJvRmcxkPIkxIbNR2WR8xDfGACoC8nDiahTJKPhABQWh2+7f/nGpbrrpR4l0d3Xz+5zDqbKqur339q2qX1Xde2s3qmJjZX0mo7gYWgClLS1o6EZ+3LlvjQgMxOMALu/dizIZxzcAmHD0KCIBnNLr8b0Cfp/O5TPUaEQKgOuHD6NEZtrG7t+PaAA1gYE476b8tLa2dutzigiQ1qxZYzcY6ezEiRMAAJWdW3BEZHe5JCcnxzyfkJCARx99FOnp6SgrK0NaWprdz6xatQqvvfaa+d/Nzc2Ii4tDZmYm+js50Nwvg8GAffv2Yfr06VD3QA+lwKQkoKQEk8PDQT/5icvtAzoeJWjGjsVPZGzvaQHp6cCePRj30ENQyUifavt28bnRo/GTOXPcnbz7FrhtG1Bbi/SgIJjk5Ec6+DzyCGbMm9dlfU/Xn/sVsHcvUFWF5KAgJMqpP2VlCDCZQAMGYOqSJW6/pX6/5RNQWgocO4bRBgNGyslPbS3Ud++C1GpMeuEFZbUJARDw3XfAvn14VK/Hw3by06V8Ghuh7hh5e/zPfy4aNiuI6vp1oKAAw+7cQZyc30evR1DHMS7thRfESM0yeWLfUhEBW7ci9vp1RMnJDxGCfvYzAEDiwoVIdHD+8gR75aPSaoFNmzDw+nXZ55OgV14BADy+cCFGTp7slrQ2d+d1LlBIgJSbm+uyV9mwYcNQWVmJK1eudFl37do1DLqPFyqmpaVBrVbj7NmzDgOk4OBgBNs52KnVarfsLD32vSkpQEkJgqqrgcWLXW9fVQUACEhNRYCSupB3MKamAnv2IKiqSl76OvKj6viNFSctDdiyBYFVVQiUk76OLtqqlBSn+XFXvXSpY/8JPHVKXn6qqwF05EejcWfKrMgunzFjAAABlZXy6puUn9GjoVZSjy9JUhIA8RjDWX7M5SO1HRk+HGolDcEgSU8HAARUVCAgKMh1gF1TIx6zh4VB3c0XI7t13+rIj+rbb6E2Gl2/ZqOuTjRSDwqCOiVFEcN+WJVPcjIAQFVXB/WdO6INnDO3bpl7sAWlpbktP939/RQRIEVERCBCRut1nU6HpqYmHD9+HGPHjgUAHDt2DE1NTZgg83k0ANTU1MBgMCBaKYMI9iQp4Csrk7d9RYWYpqS4Jz0PiKQdTkqnK+XlYpqa6qYUPaCO/ODUKXnbS9tJn1OazvWNyPUJSOm/j5Sumhoxfo6rIE7az5Sen/PnxcnoBz9wvr3S69uoUeI3aWoSr4RxNXBq5+ObwhoAAxDDDgwYIIKemhpzgO6QtP+MGqW4u5UARED08MOivpWXA1OnOt9eqm9DhrgOprzAp3qxPf7445g5cyZycnJQUlKCkpIS5OTkICsry9xA+9KlSxg5ciSOHz8OAPjuu+/w1ltvobS0FLW1tdi1axfmz5+P1NRUPPHEE97MjnvYnrCcMRqBykoxr9QASUrX6dPihOWK0k/A0onnwgVxwnJF6Ses0aPFVd/Nm5axTJxReEBuPlAbDPIGWJTqmxcfdTg1YICl55eciyal1ze1GkhMFPNS2TsjbaPU+qZSWY5VcvIj/YZKrW+AJW0nT7reVqpvCv19fCpAAkRvtMTERGRmZiIzMxNJSUnYsmWLeb3BYMCZM2fMjbI0Gg0OHDiAGTNm4LHHHsPy5cuRmZmJ/fv3I1BJg7r1lIQE8UqKxkbR/dqZc+fEIF0hIZZ3uSlNfDwMffpApde7HlvjyhWgvl4cdDoeLShOeLg4CQOW4NSR9nZLI3OlnrA0GlHnANcnYJNJ8QdEqFSWtMm5a6n0gByw3JW4nxOWUusbYClrOQGf0gNywH/rmx8E5D4XIIWHh+Pjjz9Gc3Mzmpub8fHHH+MHnW4bDxs2DESEjIwMAEBcXBwKCwvR2NiI9vZ2nDt3Dhs2bEC4Ep+v94TgYPknLKlyJiYqawTgzlQqNEnd4V1dYUnrR4xQ1gjAtuQeEKurxQi7YWGAzB47XiFdMbr6fc6fB6ThJ5T0VnVb0u/jKj9XrgCXL4ugSqEHeADyT1h6veWumZLzI7e+EflGgCQFO/4SIN3PHSSF/z4+FyAxGeRW0I6egYre2QA0Se0MXB3gfeHgAVh+H1fDKkjrx45VZvsJidx2b6WlYpqUJO5yKpXcOxS+EpDLPR6Ul4tHixER99Xby+Ok3+fkSefNCL77TgxgqtEoc1BFSecLJmevHLl2zfKSZ4UGFAAs9e3sWdFWzJG7dy130V21vfISDpD8kVRBpQDIkaIiMb2PBu7ecPORR8RMcbHzDaX1Mgcs9JqJE8X06FHn20n5GT/evel5UJ3rm7MTllTfdDr3p+lBdHQAQWmpeMzpiBTAKvTgbialz9UJq3N9U3JAnpQk7nhfvSp6dTki1bf0dEX09nJo5Eigf3+gpcXcC9eujna1GDFCccMvWImIsDQjcHaXr7RUBITR0ZbtFYYDJH8kBTzFxaIhtj3t7ZYrSoUHSDekq7/ycnEQscdkAr75RswrvfH9uHHiAF9X5/wAX1IipkoPKFJTRffka9fEe5Uc8ZGAHCNGiIN8e7vzu0hSgCsFvEoVEWEZtV2qU/b4Sn3r08cSlEv7vD3SOqXXt4AAS5k7y4+v1DdAHOMA5/mRAnKdTrEBOQdI/igpSVyRNDc7bghcXi5OABER4qWHCnY3MhI0eLAI9qSrKFtnzgA3bogG50p/xNavnyWNjg4gV6+KRvSA5Y6GUgUHW9L49df2t2lpsbQ3UPoJS6WypNHR73PvnuUA7wsnLGkAvsJC++uJLAGs0u9YApYyd1TfAEt+lH7BBFjSKKXZHimvvlTfjhxxvI0P3CHnAMkfBQZaDvCODiCHD4vpE08oNno3U6lArvIjLR83zvXYNUrg6jHbwYNimpKiyPFBupg0SUwd/T5FRSLAjY0F4uI8l67ukk5Yjg7wp06JoE+rFUMdKN2UKWLqKD/nzoler2q15epfyVwFSNevWxqcK/2OGGBd3+w9pm5rszSZkPY1JZMCpG++sd+uymi0nIMUnB8OkPyVVEH377e//quvxDQz0zPpeUCmH/1IzEjptiUt7+i9qHjSAd7RCUv63X78Y8+k50FJ9e3AAfsHeOn3mT7dc2l6EFK5Hzpkf/ytvXvFdPJk8YhE6aQA6fhx0ZPQRoAUkD/xBNC3rwcT1k2TJokLu5oa0ZPQ1r59oh4mJQH38ZYFr9HpxGPqS5cso5l3duSIqIfR0Yq/4w9A9KQOCxMXEfbawpaWWgYu7RhNXIl8YM9m3SK9GfrAAXH10dmdO5ZHBz4SIJGUzpISMShhZwaDJaCQ+UZsr8vIECfW6uquAywS+WaA1KePOMDbGyVcCihmzPBsurorJQUYOFDsK/Yee0gv1VTg+wvtio8XJ1aDQQQPNlS+Vt8iIy2dMXbv7rpeCsh9pb6FhFgu7vbs6bq+c31T+h1/QBzbpIuhv/2t63qpDk6dqugerRwg+avkZDGMfWur5VamZO9ecaCUDpq+YMgQMby+ydT1LtI334j2VpGRir4asTJggOW2+hdfWK8rLxdBU0iIb7Q3AMTVr3Ry3bnTet3Fi6J3jkrlOyfggADLydU2PzduWIImXwnIVSrgySfFvE19C2xrs7wU2VcCCsASnNr+PvfuWYIMX8qPo/pGZFk2e7Zn0/QgpJeFf/ll13UFBWKq8At0DpD8lUoFZGWJ+fx863Vbt4rpT3/qG1cjkrlzxVRKv0T6d1aWbzzukEj52bbNern0e2Vl+cbjDol0QMzPt37MJv0+P/qRCAx9xVNPiemnn1r3Bv3rX0WgnpSk7PGCbHUOkDoNXzCotBSq1lbxDi2lD1nQmVTfdu+2fm3PgQNiEM8BAxTdvqULqb4dPmwZ7wgQvY3PnROdIaZN80rSumXWLNEetqpKdKKRnD0r8hQYCMyb5730yeBDZxN23/7lX8T0r3+1HEAaGy23PBct8k66ukvKz+7dQEODmG9tBT77TMxnZ3snXd01f74I6AoLLa9R0euBTz4R88884720dcdPfyruJFVXW3obmkyA9CqgxYu9l7bumD1btKO4dMnSaB4ANm8WU1+rbxMnikbyN24An39uXjxEytuCBb51wZSaKtq6tLVZ9hkA+OgjMV2wwDc6bEiGDROPqomAjz+2LP/gAzH9p38SvZN9xYABlrt8779vWS79Pj/+sbjrr2AcIPkznU70sLl7F9i4USz77W/FSTg1VbnvK3Nk5EjRJdRoBP7zP8WyjRuB27fF1a8vXS0C4rGhdBX8zjtiumWLOCFHRfnW7XRANLicP1/Mr18vptu3i/fJ9eun+KvFLoKDgWefFfP/9m/ixHXwoAj+goJ8L+ALCgJycsT8734n9qPycgwqKwMFBADPPefV5N03lQr42c/E/O9+J45r//d/lgsmX8sPYEnzu++K9m+XLlkuMJ5/3mvJ6rYXXxTTv/xFXJw3NQHvvSeWSb+dkhGTpampiQBQU1NTj36vXq+ngoIC0uv1Pfq9Zlu2EAFEffoQbd4spgDR//6ve/6/HtalfHbvFunXaER+tFrx782bvZnM7issFOkHiDZuJIqJEfO//a2sj7u9/tyvykqiwECRh//+b6KHHxbzq1d7JTkPXD4XLxIFB4s8rF9PNHq0mH/55Z5NqKfU1xOFhoo8vP46GXU6IoCMCxd6O2Xd09REFBUl8pOXRzR9upjPynrgr/bKvqXXEw0fLvLw858TzZ0r5sePJzKZPJcOGWSVz717RAkJIg/z5xNlZ4v5UaOIjEaPpbW7528OkGTy2QDJZCLKyLCchAGiadMUt7M50qV8TCZx8Oucn7FjPbqz9bilS63zM3IkUUuLrI8qLkAiInr1Vev8DBkiTmRe0CPl8+ab1vmJjCS6dq3nEulpmzZZ5UcfEkL6M2e8naruky4Cpb+HHiKqrn7gr/XavlVQYJ2foCCiEyc8mwYZZJdPURGRSmWdpz17PJPIDt09f/MjNn+nUgH/8z/A008D4eHAP/+z+LcvtTXoTKUSjX4XLRLPuOfMEY1Ofalxtq3/+i9g6VKRn+nTRS+9Pn28naru+4//AJYvF+0LJk0SXXp9qe2ErTffBFatEuPpjBsn8hMR4e1Udd+//qt4ZBgdDUpJQfHq1ZZXkfiixYvFPhQbK5oU/O1vvjF4pyNz54pHUkOHitfebNvmO71z7dHpxGPP4cNFU4itW32md6FyByBgPSciQrQF8Rf9+1s3YvR1ISHAn/4k/vyBWg1s2CD+/EFgIPDv/y7+/IFKBbz+OvD667hnMOCmNMaOL1u2TPz5i+ef9802R47Mn29pn+hDraKnlgAADfNJREFUfPiymzHGGGPMPThAYowxxhizwQESY4wxxpgNDpAYY4wxxmxwgMQYY4wxZoMDJMYYY4wxGxwgMcYYY4zZ4ACJMcYYY8wGB0iMMcYYYzY4QGKMMcYYs8EBEmOMMcaYDQ6QGGOMMcZscIDEGGOMMWaDAyTGGGOMMRtB3k6AryAiAEBzc3OPfq/BYEBrayuam5uhVqt79Lv9AZePc1w+znH5OMfl4xiXjXO+VD7SeVs6j8vFAZJMt2/fBgDExcV5OSWMMcYYu1+3b9+GVquVvb2K7jek6qVMJhMuX76M0NBQqFSqHvve5uZmxMXF4fvvv0f//v177Hv9BZePc1w+znH5OMfl4xiXjXO+VD5EhNu3byMmJgYBAfJbFvEdJJkCAgIQGxvrtu/v37+/4iuZN3H5OMfl4xyXj3NcPo5x2TjnK+VzP3eOJNxImzHGGGPMBgdIjDHGGGM2AtesWbPG24no7QIDA5GRkYGgIH7iaQ+Xj3NcPs5x+TjH5eMYl41z/l4+3EibMcYYY8wGP2JjjDHGGLPBARJjjDHGmA0OkBhjjDHGbHCAxBhjjDFmgwMkL9u4cSPi4+Px0EMPYcyYMfj666+9nSSPW7NmDVQqldVfVFSUeT0RYc2aNYiJiUFISAgyMjJQU1PjxRS715EjRzBnzhzExMRApVKhoKDAar2c8rh58yaWLFkCrVYLrVaLJUuW4NatW57Mhtu4Kp/nnnuuS30aP3681Tbt7e1YtmwZIiIi0LdvXzz55JP4xz/+4clsuMXatWvxwx/+EKGhoRg4cCCeeuopnDlzxmobOXmvq6vDnDlz0LdvX0RERGD58uXQ6/WezIpbyCmfjIyMLvVnwYIFVtv46/61adMmJCUlmQd/1Ol02L17t3l9b6s7HCB50WeffYa8vDy88cYbKC8vx6RJkzBr1izU1dV5O2keN3r0aNTX15v/qqqqzOvWr1+Pd955B++99x5OnDiBqKgoTJ8+3fx+PH/T0tKC5ORkvPfee3bXyymPZ599FhUVFdizZw/27NmDiooKLFmyxFNZcCtX5QMAM2fOtKpPu3btslqfl5eHHTt2ID8/H0ePHsWdO3eQlZUFo9Ho7uS7VWFhIV5++WWUlJRg3759uHfvHjIzM9HS0mLexlXejUYjZs+ejZaWFhw9ehT5+fnYtm0bVqxY4a1s9Rg55QMAOTk5VvXnj3/8o9V6f92/YmNjsW7dOpSWlqK0tBRTp07F3LlzzRdgva7uEPOasWPH0osvvmi1bOTIkfSLX/zCSynyjtWrV1NycrLddSaTiaKiomjdunXmZW1tbaTVaukPf/iDp5LoNQBox44d5n/LKY/Tp08TACopKTFvU1xcTADo22+/9VziPcC2fIiIsrOzae7cuQ4/c+vWLVKr1ZSfn29edunSJQoICKA9e/a4La3ecPXqVQJAhYWFRCQv77t27aKAgAC6dOmSeZtPP/2UgoODqampybMZcDPb8iEimjJlCr3yyisOP9Ob9i8iorCwMPrzn//cK+sO30HyEr1ej5MnTyIzM9NqeWZmJoqKiryUKu85e/YsYmJiEB8fjwULFuD8+fMAgAsXLqChocGqnIKDgzFlypReWU5yyqO4uBharRbjxo0zbzN+/HhotdpeU2aHDx/GwIEDMWLECOTk5ODq1avmdSdPnoTBYLAqw5iYGCQkJPhd+TQ1NQEAwsPDAcjLe3FxMRISEhATE2PeZsaMGWhvb8fJkyc9mHr3sy0fydatWxEREYHRo0dj5cqVVndne8v+ZTQakZ+fj5aWFuh0ul5Zd/xz+EsfcP36dRiNRgwaNMhq+aBBg9DQ0OClVHnHuHHj8NFHH2HEiBG4cuUK3n77bUyYMAE1NTXmsrBXThcvXvRGcr1KTnk0NDRg4MCBXT47cODAXlG3Zs2ahfnz52Po0KG4cOECfvWrX2Hq1Kk4efIkgoOD0dDQAI1Gg7CwMKvP+du+R0R47bXXMHHiRCQkJACArLw3NDR0qV9hYWHQaDR+Xz4AsGjRIsTHxyMqKgrV1dVYtWoVTp06hX379gHw//2rqqoKOp0ObW1t6NevH3bs2IFRo0ahoqKi19UdDpC8TKVSWf2biLos83ezZs0yzycmJkKn02H48OH48MMPzY1ruZysuSoPe2XTW8rsmWeeMc8nJCQgPT0dQ4cOxc6dOzFv3jyHn/O38snNzUVlZSWOHj3qctveWH8clU9OTo55PiEhAY8++ijS09NRVlaGtLQ0AP5dPo899hgqKipw69YtbNu2DdnZ2SgsLHS4vT/XHX7E5iUREREIDAzsElVfvXq1SwTe2/Tt2xeJiYk4e/asuTcbl5MgpzyioqJw5cqVLp+9du1aryyz6OhoDB06FGfPngUgykev1+PmzZtW2/lTnVq2bBm++OILHDp0CLGxseblcvIeFRXVpX7dvHkTBoPB78vHnrS0NKjVaqv648/7l0ajwSOPPIL09HSsXbsWycnJ2LBhQ6+sOxwgeYlGo8GYMWPMt20l+/btw4QJE7yUKmVob2/H3//+d0RHR5tvdXcuJ71ej8LCwl5ZTnLKQ6fToampCcePHzdvc+zYMTQ1NfXKMmtsbMT333+P6OhoAMCYMWOgVqutyrC+vh7V1dU+Xz5EhNzcXGzfvh0HDx5EfHy81Xo5edfpdKiurkZ9fb15m7179yI4OBhjxozxTEbcxFX52FNTUwODwWCuP71t/yIitLe3986644WG4axDfn4+qdVq+uCDD+j06dOUl5dHffv2pdraWm8nzaNWrFhBhw8fpvPnz1NJSQllZWVRaGiouRzWrVtHWq2Wtm/fTlVVVbRw4UKKjo6m5uZmL6fcPW7fvk3l5eVUXl5OAOidd96h8vJyunjxIhHJK4+ZM2dSUlISFRcXU3FxMSUmJlJWVpa3stSjnJXP7du3acWKFVRUVEQXLlygQ4cOkU6no8GDB1uVz4svvkixsbG0f/9+Kisro6lTp1JycjLdu3fPizl7cC+99BJptVo6fPgw1dfXm/9aW1vN27jK+7179yghIYGmTZtGZWVltH//foqNjaXc3FxvZavHuCqfc+fO0a9//Ws6ceIEXbhwgXbu3EkjR46k1NRUq7rhr/vXqlWr6MiRI3ThwgWqrKyk119/nQICAmjv3r1E1PvqDgdIXvb73/+ehg4dShqNhtLS0qy6m/YWzzzzDEVHR5NaraaYmBiaN28e1dTUmNebTCZavXo1RUVFUXBwME2ePJmqqqq8mGL3OnToEAHo8pednU1E8sqjsbGRFi1aRKGhoRQaGkqLFi2imzdveiE3Pc9Z+bS2tlJmZiZFRkaSWq2mIUOGUHZ2NtXV1Vl9x927dyk3N5fCw8MpJCSEsrKyumzji+yVCwDavHmzeRs5eb948SLNnj2bQkJCKDw8nHJzc6mtrc3Duel5rsqnrq6OJk+eTOHh4aTRaGj48OG0fPlyamxstPoef92/XnjhBfP5KDIykqZNm2YOjoh6X91RERF57n4VY4wxxpjycRskxhhjjDEbHCAxxhhjjNngAIkxxhhjzAYHSIwxxhhjNjhAYowxxhizwQESY4wxxpgNDpAYY4wxxmxwgMQYY4wxZoMDJMaY38jIyEBeXp63k8EY8wM8kjZjzCdlZGQgJSUF7777rnnZjRs3oFarERoa6vH05OXloba2FgUFBR7/vxljPY/vIDHG/EZ4eLhXgiMAOHHiBMaOHeuV/5sx1vM4QGKM+ZznnnsOhYWF2LBhA1QqFVQqFWpra7s8YsvIyMCyZcuQl5eHsLAwDBo0CO+//z5aWlrw/PPPIzQ0FMOHD8fu3bvNnyEirF+/Hg8//DBCQkKQnJyMzz//3GFaDAYDNBoNioqK8MYbb0ClUmHcuHFuzT9jzP04QGKM+ZwNGzZAp9MhJycH9fX1qK+vR1xcnN1tP/zwQ0REROD48eNYtmwZXnrpJcyfPx8TJkxAWVkZZsyYgSVLlqC1tRUA8Mtf/hKbN2/Gpk2bUFNTg1dffRWLFy9GYWGh3e8PDAzE0aNHAQAVFRWor6/HV1995Z6MM8Y8htsgMcZ8kr02SLbLMjIyYDQa8fXXXwMAjEYjtFot5s2bh48++ggA0NDQgOjoaBQXFyMxMRERERE4ePAgdDqd+XuXLl2K1tZWfPLJJ3bTUlBQgKVLl+L69evuyi5jzMOCvJ0Axhhzp6SkJPN8YGAgBgwYgMTERPOyQYMGAQCuXr2K06dPo62tDdOnT7f6Dr1ej9TUVIf/R3l5OZKTk3s45Ywxb+IAiTHm19RqtdW/VSqV1TKVSgUAMJlMMJlMAICdO3di8ODBVp8LDg52+H9UVFRwgMSYn+EAiTHmkzQaDYxGY49+56hRoxAcHIy6ujpMmTJF9ueqqqrw9NNP92haGGPexQESY8wnDRs2DMeOHUNtbS369euH8PDwB/7O0NBQrFy5Eq+++ipMJhMmTpyI5uZmFBUVoV+/fsjOzrb7OZPJhMrKSly+fBl9+/aFVqt94LQwxryLe7ExxnzSypUrERgYiFGjRiEyMhJ1dXU98r2/+c1v8Oabb2Lt2rV4/PHHMWPGDHz55ZeIj493+Jm3334bn332GQYPHoy33nqrR9LBGPMu7sXGGGOMMWaD7yAxxhhjjNngAIkxxhhjzAYHSIwxxhhjNjhAYowxxhizwQESY4wxxpgNDpAYY4wxxmxwgMQYY4wxZoMDJMYYY4wxGxwgMcYYY4zZ4ACJMcYYY8wGB0iMMcYYYzY4QGKMMcYYs/H/g4ecx5sO2gMAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# initial condition from the real part of the first eigenvector:\n", - "x = [(expm(C*t)*X[:,1]) for t in t]\n", - "plot(t, [real(x[1]) for x in x], \"r-\")\n", - "plot(t, [real(x[2])+2 for x in x], \"b-\")\n", - "xlabel(L\"time $t$\")\n", - "ylabel(L\"solutions $x(t)$\")\n", - "title(\"second normal mode \\$\\\\omega_2 = $(imag(λ[1])) = 0.1\\\\sqrt{2}\\$\")\n", - "legend([L\"first mass $x$\", L\"second mass $x+2$\"])\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you look carefully at the plots, you will see a simple pattern:\n", - "\n", - "* The *lower-frequency* solution is when the masses are *moving in the same direction*.\n", - "* The *higher-frequency* solution is when the masses are *moving in opposite directions*.\n", - "\n", - "There are lots of interesting phenomena to think about in coupled mass-spring systems, but let's leave most of the physics to 8.03." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Hints of things to come: Eigenvalues and matrix structure\n", - "\n", - "From basic physical intuition, these coupled mass/spring systems *must* have purely imaginary eigenvalues if there is no damping/drag/friction! In a physics class, we would say that \"energy is conserved\": the oscillations cannot increase ($\\operatorname{Re}\\lambda>0$) or decrease ($\\operatorname{Re}\\lambda<0$) because there is no place else for the energy to go.\n", - "\n", - "And if there is drag, then the eigenvalues *must* have negative real parts: the oscillations must be *losing* energy, not gaining it.\n", - "\n", - "But these physical laws must arise *algebraically* somehow! There must be something in the *structure* of the matrices (the *pattern* of their entries) that guarantees it for any positive values of $k$, $m$, or $d$. This turns out to be an extremely important topic in linear algebra: deriving *general* facts about the eigenvalues of matrices from their structure (even though the specific values of the eigenvalues must be found by a computer).\n", - "\n", - "We've already seen this for Markov matrices: the fact that their columns summed to one guaranted a $\\lambda=1$ eigenvalue and other $|\\lambda|\\le 1$ ($<1$ for positive entries).\n", - "In the case of masses and springs, the physical properties of the normal modes turn out to be closely related to [real-symmetric matrices](https://en.wikipedia.org/wiki/Symmetric_matrix) $A=A^T$, which we will soon see have very special eigen-properties." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# A Note On Numerical Solution of ODEs\n", - "\n", - "Matrices and eigenvalues are a great way to understand linear ODEs. They can even be used to study *nonlinear* ODEs via, for example, [linear stability analysis](https://en.wikipedia.org/wiki/Linear_stability).\n", - "\n", - "However, if you want to get a *numerical* answer from an ODE, there is a completely different set of [techniques for numerically integrating ODEs](https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations) that I should mention. Such techniques have the advantage of being *extremely general*: they can handle time-varying and nonlinear problems with no difficulty, for example. (Interestingly enough, linear algebra also plays an important role in analyzing these methods.) An extremely powerful Julia package of numerical ODE methods is [DifferentialEquations.jl](https://github.com/JuliaDiffEq/DifferentialEquations.jl), but there are also nice packages in other languages." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - }, - "widgets": { - "state": { - "b184d86c-9a1f-48ba-b955-0188b6a60745": { - "views": [ - { - "cell_index": 49 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Orthogonal-Polynomials.ipynb b/lectures/Orthogonal-Polynomials.ipynb deleted file mode 100644 index 55ce0ca7..00000000 --- a/lectures/Orthogonal-Polynomials.ipynb +++ /dev/null @@ -1,976 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Pkg.add([\"Polynomials\", \"PyPlot\", \"QuadGK\"]) uncomment to install if needed\n", - "using Polynomials, PyPlot, QuadGK" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# Dot products of functions\n", - "\n", - "We can apply the Gram–Schmidt process to *any* vector space as long as we **define a dot product** (also called an **inner product**). (Technically, a continuous (\"complete\") vector space equipped with an inner product is called a **Hilbert space**.)\n", - "\n", - "For column vectors, the usual dot product is to multiply the components and add them up.\n", - "\n", - "But (real-valued) *functions* $f(x)$ also define a vector space (you can add, subtract, and multiply by constants). In particular, consider functions defined on the interval $x \\in [-1,1]$. The \"components\" of $f$ can be viewed as its *values* $f(x)$ at each point in the domain, and the obvious analogue of \"summing the components\" is the **integral**. Hence, the most obvious \"dot product\" of two functions in this space is:\n", - "\n", - "$$\n", - "f \\cdot g = \\int_{-1}^1 f(x) g(x) \\, dx\n", - "$$\n", - "\n", - "Such a generalized inner product is commonly denoted $\\langle f, g \\rangle$ (or $\\langle f | g \\rangle$ in physics).\n", - "\n", - "This satisfies the [key properties](https://en.wikipedia.org/wiki/Inner_product_space#Elementary_properties) of dot products that make linear algebra \"work\":\n", - "\n", - "* **symmetry**: $f \\cdot g = g \\cdot f$\n", - "* **linearity**: $f \\cdot (\\alpha g + \\beta h) = \\alpha (f\\cdot g) + \\beta (f \\cdot h)$\n", - "* **positivity**: $f \\cdot f = \\Vert f \\Vert^2 \\ge 0$, and $=0$ only if $f = 0$ ([almost everywhere](https://en.wikipedia.org/wiki/Almost_everywhere)).\n", - "\n", - "As long as the dot product has these properties, much of what we do in 18.06 will \"just work\" for functions too. **Gram–Schmidt will just work**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Orthogonal polynomials\n", - "\n", - "In particular, let us consider a subspace of functions defined on $[-1,1]$: **polynomials** $p(x)$ (of any degree).\n", - "\n", - "One possible basis of polynomials is simply:\n", - "\n", - "$$\n", - "{1, x, x^2, x^3, \\ldots}\n", - "$$\n", - "\n", - "(There are infinitely many polynomials in this basis because this vector space is **infinite-dimensional**.)\n", - "\n", - "Instead, let us apply Gram–Schmidt to this basis in order to get an **orthogonal basis of polynomials** known as the [Legendre polynomials](https://en.wikipedia.org/wiki/Legendre_polynomials)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Julia code\n", - "\n", - "I'll use the [Polynomials package](https://github.com/Keno/Polynomials.jl) to do polynomial arithmetic for me.\n", - "\n", - "However, I'll need to define a few extra methods to perform my dot products from above, and I also want to display (\"pretty print\") the polynomials a bit more nicely than the default." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "polydot (generic function with 1 method)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# compute the definite integral of p(x) from a to b\n", - "function Polynomials.polyint(p::Poly, a, b)\n", - " pi = polyint(p)\n", - " pi(b) - pi(a)\n", - "end\n", - "# compute the dot product ⟨p,q⟩ = ∫p(x)q(x) on [-1,1]\n", - "polydot(p::Poly, q::Poly) = polyint(p*q, -1,1)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# force IJulia to display as LaTeX rather than HTML\n", - "Base.mimewritable(::MIME\"text/html\", ::Poly) = false" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$3 + 4\\cdot x + 5\\cdot x^{2} + 6\\cdot x^{3}$" - ], - "text/plain": [ - "Poly(3 + 4*x + 5*x^2 + 6*x^3)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Poly([3,4,5,6])" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$9 + 24\\cdot x + 46\\cdot x^{2} + 76\\cdot x^{3} + 73\\cdot x^{4} + 60\\cdot x^{5} + 36\\cdot x^{6}$" - ], - "text/plain": [ - "Poly(9 + 24*x + 46*x^2 + 76*x^3 + 73*x^4 + 60*x^5 + 36*x^6)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Poly([3,4,5,6])^2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gram–Schmidt on polynomials\n", - "\n", - "Now, let's apply Gram–Schmidt on the polynomials $a_i = x^i$ for $i = 0, 1, \\ldots$.\n", - "\n", - "Ordinarily, in Gram–Schmidt, I would normalize each result $p(x)$ by dividing by $\\Vert p \\Vert = \\sqrt{p \\cdot p}$, but that will result in a lot of annoying square roots. Instead, I will divide by $p(1)$ to result in the more conventional Legendre polynomials. **This is not an \"orthonormal\" basis because we have chosen a different normalization, but it is still an *orthogonal* basis.**\n", - "\n", - "That means that to get $p_i(x)$, I will do:\n", - "\n", - "$$\n", - "v_i(x) = a_i(x) - \\sum_{j=0}^{i-1} p_j(x) \\frac{p_j \\cdot a_i}{p_j \\cdot p_j}\n", - "$$\n", - "\n", - "We would get an ordinary orthnormal basis of polynomials with\n", - "\n", - "$$\n", - "q_i(x) = v_i(x) / \\Vert v_i \\Vert\n", - "$$\n", - "\n", - "but instead we will use the Legendre normalization\n", - "\n", - "$$\n", - "p_i(x) = v_i(x) / v_i(1)\n", - "$$\n", - "\n", - "\n", - "where I explicitly divide by $p_i \\cdot p_i$ in the projections to compensate for the lack of normalization.\n", - "\n", - "In Julia, I will use the special syntax `2 // 3` to construct the exact rational $\\frac{2}{3}$, etc. This will allow me to see the exact Legendre polynomials without any roundoff errors or annoying decimals." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$1$" - ], - "text/plain": [ - "Poly(1//1)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p0 = a0 = Poly([1//1])" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$x$" - ], - "text/plain": [ - "Poly(x)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a1 = Poly([0, 1//1])" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$x$" - ], - "text/plain": [ - "Poly(x)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p1 = a1 - p0 * polydot(p0, a1) // polydot(p0, p0)\n", - "p1 = p1 / p1(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "0//1" - ], - "text/plain": [ - "0//1" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "polydot(p0, a1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Orthogonalization didn't change $x$, because $x$ and $1$ are already orthogonal under this dot product. In fact, any even power of $x$ is orthogonal to any odd power (because the dot product is the integral of an even function times an odd function).\n", - "\n", - "On the other hand, $x^2$ and $1$ are *not* orthogonal, so orthogonalizing them leads to a *different* polynomial of degree 2:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$x^{2}$" - ], - "text/plain": [ - "Poly(x^2)" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a2 = Poly([0, 0, 1//1])" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$-\\frac{1}{2} + \\frac{3}{2}\\cdot x^{2}$" - ], - "text/plain": [ - "Poly(-1//2 + 3//2*x^2)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p2 = a2 - p0 * polydot(p0, a2) // polydot(p0, p0) -\n", - " p1 * polydot(p1, a2) // polydot(p1, p1)\n", - "p2 = p2 / p2(1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It quickly gets tiresome to type in these expressions one by one, so let's just write a function to compute the Legendre polynomials $p_0, \\ldots, p_n$:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "legendre_gramschmidt (generic function with 1 method)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function legendre_gramschmidt(n)\n", - " legendre = [Poly([1//1])]\n", - " for i = 1:n\n", - " p = Poly([k == i ? 1//1 : 0//1 for k=0:i])\n", - " for q in legendre\n", - " p = p - q * (polydot(q, p) // polydot(q,q))\n", - " end\n", - " push!(legendre, p / p(1))\n", - " end\n", - " return legendre\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6-element Array{Polynomials.Poly{Rational{Int64}},1}:\n", - " Poly(1//1) \n", - " Poly(x) \n", - " Poly(-1//2 + 3//2*x^2) \n", - " Poly(-3//2*x + 5//2*x^3) \n", - " Poly(3//8 - 15//4*x^2 + 35//8*x^4) \n", - " Poly(15//8*x - 35//4*x^3 + 63//8*x^5)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "L = legendre_gramschmidt(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's display them more nicely with LaTeX:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$1$" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$x$" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$-\\frac{1}{2} + \\frac{3}{2}\\cdot x^{2}$" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$-\\frac{3}{2}\\cdot x + \\frac{5}{2}\\cdot x^{3}$" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$\\frac{3}{8} - \\frac{15}{4}\\cdot x^{2} + \\frac{35}{8}\\cdot x^{4}$" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$\\frac{15}{8}\\cdot x - \\frac{35}{4}\\cdot x^{3} + \\frac{63}{8}\\cdot x^{5}$" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "display.(\"text/latex\", L);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Key things to notice:\n", - "\n", - "* The polynomials contain *only even* or *only odd* powers of $x$, but not both. The reason is that the even and odd powers of $x$ are *already* orthogonal under this dot product, as noted above.\n", - "\n", - "* A key property of Gram–Schmidt is that the **first k vectors span the same space** as the **original first k vectors**, for any k. In this case, it means that $p_0, \\ldots, p_k$ span the same space as $1, x, \\ldots, x^k$. That is, the $p_0, \\ldots, p_k$ polynomials are an **orthogonal basis for all polynomials of degree k or less**.\n", - "\n", - "These polynomials are **very special** in many ways. To get a hint of that, let's plot them:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAG0CAYAAAAresMpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4lFX2wPHvtMyk9waEEHrvTQUEVIqoKIqoi6g0EV0X667lt7u6hV3WLiAiIIiooGAHBaUqKBI6CaGTQEJ6L9N/f7yZQCSBlJnMDJzP8+R5zMz73vdEIDm599xzVXa73Y4QQgghhKgTtbsDEEIIIYTwJpI8CSGEEELUgyRPQgghhBD1IMmTEEIIIUQ9SPIkhBBCCFEPkjwJIYQQQtSDJE9CCCGEEPUgyZMQQgghRD1I8iSEEEIIUQ+SPAkhhBBC1IMkT0IIIYQQ9aB1dwBXApvNRnp6OoGBgahUKneHI4QQQog6sNvtFBcX06xZM9Tqus8nSfLkBOnp6cTFxbk7DCGEEEI0QFpaGi1atKjz9ZI8OUFgYCCg/M8PCgpyczRCCCGEqIuioiLi4uKqfo7XlSRPTuBYqgsKCpLkSQghhPAy9S25kYJxIYQQQoh6kORJCCGEEKIeJHkSQgghhKgHSZ6EEEIIIepBkichhBBCiHqQ5EkIIYQQoh4keRJCCCGEqAdJnoQQQggh6kGSJyGEEEKIepDkSQghhBCiHrwqedq6dSu33norzZo1Q6VS8cUXX1z2ni1bttCnTx8MBgOtW7dmwYIFF10zf/58EhISMBgM9OnTh23btrkifCGEEEJcAbwqeSotLaVHjx7MnTu3TtefPHmSm2++mcGDB7Nnzx6ef/55Hn/8cVavXl11zcqVK5k1axYvvPACe/bsYfDgwYwePZrU1FRXfRlCCCGE8GIqu91ud3cQDaFSqfj888+5/fbba73mz3/+M1999RXJyclVr82YMYN9+/axY8cOAAYMGEDv3r155513qq7p1KkTt99+O7Nnz65TLEVFRQQHB1NYWOi0g4Htdjt5RaXsOrqHazsNQKPzqjxXCCGEcIqfVy6jeZQPHW64F41W69SxG/rz27lReJgdO3YwYsSIaq+NHDmSxYsXYzabsdvtJCYm8pe//KXaNSNGjGD79u21jms0GjEajVWfFxUVOTdwIK+8hCUvbMLPEsBfQ1eRaQ91+jOEEEIIT9ZNdYxhJ39iv72cY4fSuO3J590dEuBly3b1de7cOaKjo6u9Fh0djcViIScnh5ycHKxWa43XnDt3rtZxZ8+eTXBwcNVHXFyc02P31fpSqCsFIML3mNPHF0IIITyXncmadTyufR27vQKAjr26uDmm867omSdQlvcu5FilVKlU1f7799f8/rULPffcczz55JNVnxcVFTk9gfLVaejStgV5B8xE6orZ9lwfwn0jnPoMIYQQwuOU5+PzzWNoj37Hf/N7oUX5Wd160M1uDuy8Kzp5iomJuWgGKSsrC61WS3h4OHa7HY1GU+M1v5+NupBer0ev17skZgeVSkWbls3JO3CKgPJQPj++isd7P+7SZwohhBBulbYTPpsMhWkkGfzQFkQAFahUBrQ6nbujq3JFL9tdc801bNiwodpr69evp2/fvuh0Onx8fOjTp89F12zYsIFrr722KUOtUXCkLwBBFRGsTFlJmbnMzREJIYQQLmCzwc9vwvujoTANQhNY2utWQkoCAdD5BLg5wOq8KnkqKSlh79697N27F1BaEezdu7eqrcBzzz3HpEmTqq6fMWMGp0+f5sknnyQ5OZklS5awePFinn766aprnnzySRYtWsSSJUtITk7miSeeIDU1lRkzZjTtF1eD4Cg/AMJMMRSZivj82OdujkgIIYRwstJc+HgCbPgr2CzQZRxnJ65k09lf0VmVn4OGwBA3B1mdVy3b7dq1i2HDhlV97qg7euCBB1i6dCkZGRnV+jMlJCSwdu1annjiCebNm0ezZs146623uPPOO6uumTBhArm5ubz88stkZGTQtWtX1q5dS3x8fNN9YbUIilBmnnwrAlHbNCxPWs6EDhPQqr3qj00IIYSo2ent8NkUKE4HjR5G/xf6PMjy3/5LfIYVo84HgIBwz6r59aqfwkOHDuVSbamWLl160WvXX389u3fvvuS4M2fOZObMmY0Nz+l8A3XoDBrMFVZa2FqTWnKUH1N/ZGSrke4OTQghhGg4mw1+eg02/RvsVghvC+OXQUxXCo2FrDm6hhvP2DHq1GCFwIhwd0dcjVct211tVCpVVd3TzRFjAVh6cOklE0ghhBDCo5Vkw4fjYOM/lMSp+wSYvgViugKwMmUl5ZZy+mQFYFHbAAiN8ayZJ0mePJwjeeptGIheo+dg7kESMxPdHJUQQgjRACe3woLr4MQm0PrC2Hlwx7ugVwrCjVYjK5JXgN1OfGYgdns5AKGxkjyJenAkT+Z8FWPbVM4+HVrqxoiEEEKIerJZYfN/4IOxUJIJkR1h+iboNREu6Kv41fGvyKvIo5sxEpPFD7tN2WUeECrLdqIeHEXjhdnlTOoyCRUqtpzZwomCE26OTAghhKiD4nOw/HbYPBvsNug5EaZthKhO1S6z2W18cOgDACZa+lHuG4ndrpy04R/iWUeUSfLk4RztCgqzy4gPimd4y+EALEta5s6whBBCiMs7vhEWDFKW63T+yhLd7fPAx/+iSzelbeJU0SkCfQLpds6HEt9wsCvnyEryJOrFsWxXnFuBzWbnwS4PAvD18a/JKc9xY2RCCCFELawW+PEfsHwclGZDVBeYvhl63FPrLe8ffB+ACR0mYN67n1LfYABUai16/4uTLXeS5MnDBYTo0WjV2Kx2SvIq6BnVkx6RPTDbzHyU/JG7wxNCCCGqKzwLy26Fba8AdujzIEz7ESLb13rLnqw97Mveh06t497mt2E8dowyvbLy4hsQfMnzZt1BkicPp1KrCIowAErdE8BDXR4CkCNbhBBCeJajG5RlutTt4BMAdy6GW98Ene8lb3PMOt3W5jZ8k09jt9upqDxD1i/Us5bsQJInrxAUeb5oHGBo3FBaBraUI1uEEEJ4BqtZOV5lxV1Qngcx3eHhrdDtrsveeqLwBJvSNgEwqcskyhMTMfkEY8UEQFB4mEtDbwhJnrxA8O+SJ41awwNdHgDgg0MfYLaZ3RabEEKIq1xBGrx/s3KwL0C/aTBlA4S3qdPtjh12Q+OG0jq4NWW7EinzjQSbstMuIFSSJ9EAjuSpqDJ5AmVqM8wQRnppOt+d/M5doQkhhLiaHV6rLNOd2Qn6YLj7AxjzCugMdbo9pzyHr45/BcDkrpOxVVRQfvCg0qagMnny87CddiDJk1cIjjzfrsDBoDVwf+f7AVhycAk2u80tsQkhhLgKWUzw3fPwyb1QUQDNesPDW6Dz2HoN81HyR5htZnpE9qBXVC/K9+8HsxljeLzH9ngCSZ68QtWyXU5FtXPtJnSYQIAugGMFx9iStsVd4QkhhLia5J+C90fBL/OUzwfOhMnfQ1hCvYYpNZfySconwPmNUOW7dwNQEd2mqru4f0iIc+J2IkmevEBguAGVCixGK2VFpvOv+wRyd4e7AVh0cJEcGCyEEMK1kr6CBUPgbCIYguGej2DUbND61HuoVSmrKDYV0yqoFUPjhgJQtks5u7XcNxJk5kk0hkarJiCssl1BVnm19+7vfD8+ah/2Z+9nV+Yud4QnhBDiSmcxwtpnYNX9YCyEFv1gxk/QcUyDhjNajXyQpBSKT+46GY1ag91qpXzPHuxAsVFXVfMkyZNosJAox4676n2dInwjuL3t7QAsPri4yeMSQghxhcs9Dotvgp0Llc+vfRweWgchLRs85JfHviSnPIcY/xhuaX0LABWHD2MrLcUSGovFbASsAPgFy7KdaKCQyjPuCjLLL3rvwa4Polap+fnszyTnJjd1aEIIIa5UB9fAu9dDxj7wDYP7VsGIf4BG1+AhLTYLSw4uAeDBLg+iqxyrPFGpd7J2u6Zq1snH1w+dvm4795qSJE9ewnFAcEHWxR3F4wLjGNVqFEDVX0ghhBCiwczl8PUs+OwhMBVDy2uUZbr2Ixs99PenvudsyVlC9aGMazeu6vWyRKXeydyqa1WPJ09csgNJnrxGSHRlu4IakidQ1owB1p9eT2pRapPFJYQQ4gqTcxQW3QiJ7wMqGPwUPPANBDdv9NA2u41FBxYBMLHzRHy1SkmK3W6vSp4qQuOw2x077SR5Eo0QXFnzVJBVjt128a66DmEdGNJiCDa7TWafhBBCNMy+lcoyXeZB8IuAiavhhr+CRuuU4bee2cqxgmP46/y5p+M9Va+bT5/GmpODSqejVBXo0Q0yQZInrxEUbkCtVmE12ygpMNZ4zZSuUwD46vhXZJVlNWV4QgghvJmpDL58FD6fDuZSaDVYWaZre4PTHmG323nvwHuA0qcwyCeo6j3HrJOhe3cKc4wXNMj0vGJxkOTJa6g16qoDgmuqewLoHd2b3lG9MdvMLE9a3pThCSGE8FZZh+G94bDnQ0AF1/8FJn0JQbFOfcyuzF3sz96Pj9qn6oQMh7LKYnHf3n2Uc1wdDTKDZeZJNFJVu4LMmpMngCndlNmnVSmrKDQWNklcQgghvNSeFbBwKGQnQ0C0kjQNew7UGqc/ylHrdEe7O4jwjaj2Xlmi0qdQ1aUXFqPVo49mAUmevEpwdO3tChwGNx9M+9D2lFnK+OTwJ00VmhBCCG9iLIHPZ8CXM8FSDq2HKst0ra93yeMO5R5ie/p2NCoND3V9qNp7luxszKdTQaXCGNMOALVa+TknyZNotKpeT9m1zzypVKqq2qcVySsot9SeaAkhhLgKZR6C94bBvo9BpYbhL8LEzyEgymWPXHxAaeI8OmE0zQOq79pz1DvpO3SguFQFIAXjwnkcy3YFl1i2AxjRagQtAlqQb8xn9ZHVTRGaEEIIT2e3Q+JSpb4p5wgExiotCIY8A2rXpQMnCk/ww+kfgPMbmy5U9puyZOfXpw+FWWXY7TasZlm2E07i6PVUlFOB1Wqr9TqtWsvkbkrfp/cPvo/RWvPuPCGEEFeJiiJYPQW+/hNYKqDtjcoyXavrXP7oJQeWYMfOsLhhtA1te9H7ZTt3AuDXvz/558oqDwS2o1Kr8QsOdnl8DSHJkxfxD9aj9VFjt9kpzqm45LVj24wl2i+arPIsvjj6RRNFKIQQwuNk7IOF18PB1aDSwI0vwX2fgn/E5e9t7KNLMvj2xLcATO029aL3LXl5GI8eBcCvX18KMsvOHwgcGobaBYXrziDJkxdRqVUER9Z+TMuFfDQ+VV3HFx9cjNlqdnl8QgghPIjdDjvfU7qF552AoBbKgb6DZrl0me5C7x96H4vdwoCYAXSP7H7R+44lO327dqiDQyjMLsduKwEgIDSsSWJsCEmevExIdN3qngDGtRtHhG8EGaUZfH3ia1eHJoQQwlNUFMKnD8Dap8FqgvajYcY2aDmgyULIKsuqqrud1n1ajddcuGRXnFeBzWpHpVJmniR5Ek5TteMu6/K76AxaAw92eRCA9/a/h8VmcWVoQgghPMHZRFgwGJK+BLUORv4b7v0Y/Jo2GXn/4PuYbCZ6RfWif0z/Gq+pSp4GVNY7AT6+SllKQFh40wTaAF6XPM2fP5+EhAQMBgN9+vRh27ZttV47dOhQVCrVRR9jxoypuubBBx+86P2BAwc2xZfSIMFRlz4g+PfGtx9PqD6UMyVnWHdynStDE0II4U52O/zyDiweCQWnIaQlTP4ernkUVKomDSWnPIdPj3wKwIzuM1DV8Pzq9U79qlZUtJrK5ClUkienWLlyJbNmzeKFF15gz549DB48mNGjR5Oamlrj9WvWrCEjI6Pq4+DBg2g0GsaPH1/tulGjRlW7bu3atU3x5TRISFWjzLolT346PyZ1mQTAwv0LsdqsLotNCCGEm5TlwSd/gO/+AjYzdLoVHt4GLfq4JZxlh5ZhtBrpHtGda5pdU+M1VfVO7dujDQ294OdaZc2TzDw5x2uvvcaUKVOYOnUqnTp14o033iAuLo533nmnxuvDwsKIiYmp+tiwYQN+fn4XJU96vb7adWFhnrvO6qh5Ksk3YjbVLRG6t+O9BPkEcaroFBtOb3BleEIIIZpa2m/w7hBI+RY0PjD6f3D3cvB1z6G6eRV5rExZCcDDPR6ucdYJqtc7wflJAYu5GFB223kqr0meTCYTiYmJjBgxotrrI0aMYPv27XUaY/Hixdxzzz34+/tXe33z5s1ERUXRvn17pk2bRlZW1iXHMRqNFBUVVftoKgZ/HXo/LQBF2XXrHu6v82di54kAvLv/XWz22ntECSGE8BI2G/z8Frw/CgrTIDQBpqyHAdObfJnuQsuTllNuKadzeGcGNx9c63Xnk6d+AORXJk+m0gIAAmXmqfFycnKwWq1ER0dXez06Oppz585d9v6dO3dy8OBBpk6t3mdi9OjRrFixgo0bN/Lqq6/y22+/MXz4cIzG2htLzp49m+Dg4KqPuLi4hn1RDaBSqarqnhzFdXXxh05/IEAXwLGCY2xK3eSq8IQQQjSF0lz4+B7Y8H9gs0CXO+DhrdCsl1vDKjQW8lHyR0DttU5wcb2TqcJCWaEJu92MqUL52SYzT070+z8Iu91e6x/OhRYvXkzXrl3p3796xf+ECRMYM2YMXbt25dZbb2XdunUcOXKEb7/9ttaxnnvuOQoLC6s+0tLSGvbFNFBojKPuqbTO9wT5BHFvx3sBZfbJbre7JDYhhBAudnoHvDsYjn4PGj3c8jrc9T4YgtwdGcuTllNmKaNDaAeGxg2t9bra6p30vsrEhVavR+/nX+v97uY1yVNERAQajeaiWaasrKyLZqN+r6ysjE8++eSiWaeaxMbGEh8fz9HKjLgmer2eoKCgah9NyZE81WfmCeD+zvfjq/UlOS+ZbWdr36UohBDCA9lssO1VWDoGis5CeFuY9iP0nezWZTqHIlMRK5JXADCjR+2zTlB7vZNfsNLQOSA0rE4TI+7iNcmTj48Pffr0YcOG6gXPGzZs4Nprr73kvatWrcJoNDJx4sTLPic3N5e0tDRiY2MbFa8rhcYo2Xh9k6dQQygTOkwA4N19MvskhBBeoyQbVtwJP74Mdit0uxumb4aYbu6OrMqK5BWUmEtoG9KW4S2HX/Lasp2/AhfXOxkqZ548eacdeFHyBPDkk0+yaNEilixZQnJyMk888QSpqanMmDEDgEmTJvHcc89ddN/ixYu5/fbbCQ+v/odRUlLC008/zY4dOzh16hSbN2/m1ltvJSIigjvuuKNJvqaGqJp5yiyrdwL0QJcH0Gv07M/Zzy8Zv7giPCGEEM50chssGATHN4LWF26bC+MWgj7Q3ZFVKTGVsDxpOQAPd38Ytar29MKSm4vx6DFAqXeC8zNPGp2yEcqTezwBaN0dQH1MmDCB3NxcXn75ZTIyMujatStr164lPj4egNTUVNS/O6/nyJEj/PTTT6xfv/6i8TQaDQcOHOCDDz6goKCA2NhYhg0bxsqVKwkM9Jy/lL8XFOmLWq3CYrRSkm8kMMxQ53sjfCO4q/1drEhewYJ9CxgYO9Cjp0aFEOKqZbPC1ldgy3/AboOIDnD3Mojq5O7ILvLx4Y8pNhWTEJzATfE3XfLa39c7wfnkSUXl0SwePvPkVckTwMyZM5k5c2aN723evPmi19q3b1/r7Iyvry/ff/+9M8NrEhqNmqBIXwoyyyg4V1av5AngoS4P8WnKp+zO2s2v535lYKzndlQXQoirUnEmrJkKJ7cqn/ecCDfPAR/PK6IuNZeyLGkZANO7T0ej1lzy+t/XO9lt9qrkyVrZ48mTz7UDL1u2E+edX7qr+447h2j/aMZ3UBqFztszT2qfhBDCkxzfBAuuUxInnR/c8S7cPs8jEyeAlSkrKTQWEh8Uz6hWoy57fdlv1fs7lRYasZhsqNUqjGWFgOfPPEny5KUaWjTuMKXrFPQaPXuz97IjfYczQxNCCNEQVgts/CcsvwNKsyGqC0zfAj3ucXdktSozl7HskDLrNK3bNLTqSy9oWXJyLqp3chSLB0X6UlqQB3h2jyeQ5MlrNbRdgUOkXyR3d7gbgHl7ZfZJCCHcqigdPrgNtv4PsEPvB5Q2BJHt3R3ZJX2S8gl5FXm0CGjBza1vvuz1pb8ou+z0nTudr3eq/DkWHOVLSV4u4NndxUGSJ68V4miUea7+y3YOk7tOxqAxsD9nv/R9EkIIdzn6g7Kb7vTP4BMAdy6G294Cna+7I7ukUnMp7x98H1D6OunUusvfs0M5Ts1/4PnDgh2TAIGhYDUrfZ78Q2TmSbiAY9mutNCEqdzSoDEifCO4p6MyHTx/73yZfRJCiKZkNcOGvyn9m8pylZ5ND2+Fbne5O7I6+TDpQwqMBbQKasWY1mMue73dbqd0h1Im4n/NhcmTMgngG2ACwBAYhNbHxwURO48kT15K76vFL1j5y+VYL26Ih7o+hK/Wl0O5h9hyZouzwhNCCHEphWeUTuE/v6F83m8qTPkBwtu4N646KjIVVe2we6THI5etdQIwp6ZiSc9ApdPh16d31et5GUrypNVXAJ6/0w4kefJq5+ueGr50F2YI476O9wFS+ySEEE0iZZ2yTJf2K+iDYPwyGPMq6OrXdsadlictp9hUTNuQtoxsNbJO9zhmnXx79kTtp/z8MpaZKStUZpxUKmUiwNN32oEkT14tNLpxO+4cHuzyIH5aPw7nHWZj6kZnhCaEEOL3LCb4/gX4+B4oz4dmvZRlui63uzuyeimoKKjqJv5Ij0cu29fJoXR75ZLdtRfXO/mH6DEW5wMy8yRc7HzReOOSpxBDCH/o9AcA5u+bj81ua3RsQgghLpB/Ct4fBTvmKp8PnAmTv4ewBLeG1RDLkpZRai6lQ2gHboy/sU732K1WSn9VdtpdWO/kWLILjfGjJF9pUyAzT8KlnLFs5/BAlwcI0AVwJP8IP5z+odHjCSGEqJT8NSwYAmcTwRAM93wEo2aDVu/uyOotryKPFckrAHi056OXPMPuQhXJh7EVFqIOCMDQtWvV6/mVyVNYrD8l+UqbApl5Ei7l2HFXmF2O1dq42aJgfTATO08E4J1978jskxBCNJbFCGufhZUTwVgILfrBjJ+g4+V3pnmqJQeWUG4pp0t4F4bGDa3zfY4WBX79+6PSni8udyzbhcb6U5InM0+iCQSE6NHqNdisdopzKho93v2d7ydQF8ixgmOsP3XxQcpCCCHqKO8ELB4BO99VPr/2j/DQOghp6d64GiG7LJtPUj4BlFmn+hwqX1ZDiwI4v2wXFut3wcyTJE/ChVRqFaHRytKd4y9gYwT5BDGpyyRAqX2y2qyNHlMIIa46B9coy3QZe8E3DO5bBSP+CZrLN5H0ZIsPLsZoNdIjsgeDmg+q8302o5GyxN0A+F9z/iB6s9FKcZ7yi39QhJ6yggJAZp5EEwiNdV7yBDCx00SCfII4WXiStSfXOmVMIYS4Kpgr4Jsn4LOHwFQMcQOVZbr2ddvK78nOlZ5jVcoqoP6zTuV79mA3GtFGRuLT5nwfq4LMMrCDIUCHzVKC3W5DrdHiFxTs9PidTZInLxcWq9Q95aU7J3kK8Angoa4PAUrfJ7PV7JRxhRDiipZzDBbdCLuWKJ8PehIe/BaCm7s3LidZdGARZpuZPtF9GBg78PI3XODCFgUXJl0X7rQrys0GIDAiApXa81MTz49QXFJYswDAeTNPAPd1vI9wQzhnS86y5ugap40rhBBXpP2r4N0hkHkA/CJg4mq48W+guXzXbW+QXpLO6qOrgfrPOsH55ph+A6vXO1240644NweAwPCIxobbJCR58nKOmaeCc2XYbM7pDu6n82N69+kAvLv/Xcot5U4ZVwghriimMvjyMVgzDcyl0GqwskzXtm69j7zFgn0LsNgsDIgdQL+YfvW611pYSMWhQ0D1eie4YKddjD/FOZUzT+GRTojY9SR58nJB4Qa0PmqsFhtF2c5Lcsa3H0/zgOZkl2fzUfJHThtXCCGuCFmH4b3hsGc5oILr/wyTvoSgWHdH5lQnCk/w5fEvAfhjrz/W+/7SnTvBZsOndWt0MTHV3surNvPkSJ5k5kk0AZVaVdXvyVl1TwA6jY6ZPWcCsOTgEopMRU4bWwghvNqeFfDeMMhOBv8oJWka9jzU8ZgSbzJ3z1xsdhvD44bTI7JHve8v3a70d/IfWH3WyWqxUVj5C3/oBct2QREy8ySaSFizyuQpo8Sp445JGEPbkLYUmYpYenCpU8cWQgivYyyBz2fAlzPBXAath8IjP0Pr690dmUsczDnIhtMbUKFq0KyT3W6ndNtPAPgPqt7aoCCrDLvNjs6gwT/EhyJZthNNzdk77hw0ag2P9XoMgA+TPySnPMep4wshhNfIPKTMNu37GFRqGPYiTFwDAVHujsxl3tj9BgC3trmVtqFt632/+fRpzGfOgE6H/4D+1d7Lz1DqncJi/VGpVFIwLpre+Zkn5yZPAMPjhtMtohvllnLe2/+e08cXQgiPZrdD4jKlvinnCATGwgNfw/XPXJHLdA470nfwa8av6NTnSzjqq6Ry1smvd2/U/v7V3nOcyRoa44fZWEFFsVIaEijLdqKpOGae8jPLsDXyjLvfU6lUPN77cQBWHVnF2ZKzTh1fCCE8lrEYVk+Frx8HS4Wyi27GT9Cq7t21vZHdbq+adZrQYQLNAxrWq6r0JyV5Chh88f+v3LNKmUlYs4CqWSedwRe9n/9F13oiSZ6uAIFhyo47m8VeVYDnTANjBzIgdgAWm4X5e+c7fXwhhPA4Gfvh3evh4Geg0sCNf4f7PgV/71hWaowNpzeQlJuEn9aPqd2mNmgMm9Go7LTj4nonOF9mEt7Mn+Kc80t29e0h5S6SPF0BVGrV+bonFyzdAfyp158A+ObENxwvOO6SZwghhNvZ7fDbIqVbeN5xCGqhHOg76Anwgs7XjWWxWXh7z9sAPNDlAcJ9G3bOXHliIvbycjSREeg7dKj+DLOVgizlF/3w5gFVbQq8ZacdSPJ0xXBV0bhDt8hu3NDyBmx2G3P3zHXJM4QQwq0qCuHTB+Hbp8BqhPajYcY2aDnA3ZE1mS+PfcmpolOE6kOZ1HlSg8epT62YAAAgAElEQVQp+elnAAKuG3TRbFL+OWWnnd5Pi1/whTvtvGdWT5KnK0SoC4vGHR7r+RgqVPyQ+gMHcw667DlCCNHkzu5WjlhJ+gLUWhjxL7j3Y/ALc3dkTabCUsH8fUppxrTu0wjwCWjwWKXbtgHgX0O9k+OX/LBmv99pJzNPoom5euYJoG1oW25tcytwfgurEEJ4NbsdflkAi0dA/ikIbgmTv4drHwMvqb9xlk8Of0JWWRax/rHc3eHuBo9jzszEePQoqFT4X3vtRe87isXDmyvJmbd1FwdJnq4YjnYFBZllWJ284+5CM3vORKvW8mvGr2w/u91lzxFCCJcrz4eVE+G7P4PNDB1vgRlboUVfd0fW5IpNxSw6uAhQvs/rNfoGj+XYZWfo1g1taOhF719YLA6cn3mSmifR1ALDDOj0GmxWO4VZrjvIt3lAc+7teC8AryW+htVmddmzhBDCZc7sggVD4PA3oPGB0XNgwofge/EP+6vB0kNLKTQW0ia4Dbe2vrVRY5U4WhTUsMsOIDe9sk1B8wDsdrvXHQoMkjxdMVQqFaFNsHQHML3bdAJ1gaTkp/DNiW9c+iwhhHAqmw22vw1LRkJhKoS2ginrYcDDV90ynUNOeQ7Lk5YDyuG/mkY0/7RbLJRu3wHU3KLAWG6hJM8IKOUmxtJSzMYKAALDG7azzx28LnmaP38+CQkJGAwG+vTpw7bKorSaLF26FJVKddFHRUVFg8f0ZBHNleTJsZ7sKiGGEKZ1nwbA23vepsJScZk7hBDCA5Tlwcf3wPoXwWaBLnfAw1uhWS93R+ZW8/bOo9xSTveI7gxvObxRY5UfOICtsBB1UBC+3btd9L7jl3v/ED0Gf11VvZNvYBA6vaFRz25KXpU8rVy5klmzZvHCCy+wZ88eBg8ezOjRo0lNTa31nqCgIDIyMqp9GAyGRo3pqcJbKMV3rk6eAO7rdB+x/rFklmWyInmFy58nhBCNkvoLLBgER78HjR7GvAZ3vQ+GYHdH5lbH8o+x5ugaAJ7q+1Sjm1SWVrYo8L/mGlRa7UXvny8WV37Z97YDgR28Knl67bXXmDJlClOnTqVTp0688cYbxMXF8c4779R6j0qlIiYmptpHY8f0VI6dC02RPOk1+qpTthcdWER+Rb7LnymEEPVms8G21+D9m6HoLIS3hWk/Qr8pV+0y3YVe3/06NruNG1reQO/o3o0er+QnZeWmpiNZ4MI2BY6ddo5ice/ZaQdelDyZTCYSExMZMWJEtddHjBjB9u217/oqKSkhPj6eFi1acMstt7Bnz55Gj2k0GikqKqr24QkcyVNRTgWmcovLnzem9Rg6hnWkxFzCwv0LXf48IYSol5JsWHEX/PgS2K3Q7W6YvhliLl5Ouhr9mvErW89sRavSMqv3rEaPZ8nPp+KA0gOwpnongLz06jNP3timALwoecrJycFqtRIdHV3t9ejoaM6dO1fjPR07dmTp0qV89dVXfPzxxxgMBq677jqOHj3a4DEBZs+eTXBwcNVHXFxcI7865zD46/APUbaX5rq4aBxArVLzZJ8nAfgk5RPSitJc/kwhhKiTUz8py3THfwStL9z2NoxbCPpAd0fmEWx2G6/uehWA8R3G0yq4VaPHLN22DWw29B06oPvdKg8oBw7nnnW0KaiceZJlu6bx+/VYu91e6xrtwIEDmThxIj169GDw4MGsWrWK9u3b8/bbbzd4TIDnnnuOwsLCqo+0NM9JGppy6Q7gmmbXcF2z67DYLLy5580meaYQQtTKZoUtc2DZrVByDiI6wLSN0HuSLNNd4NsT35Kcl0yALoAZPWY4ZcySzZsBCBg6tMb3y4pMVJSaUakgNMYP8M4eT+BFyVNERAQajeaiGaGsrKyLZo5qo1ar6devX9XMU0PH1Ov1BAUFVfvwFBEtKnfcnWma5AngiT5PoELF96e+Z3/2/iZ7rhBCVFOcCcvvgE3/ArsNev4Bpm+C6M7ujsyjVFgqeGvPWwBM6TaFMEPjj6Cxm82UbKvs7zT0+hqvyaucdQqO8kPro7RDkGU7F/Px8aFPnz5s2LCh2usbNmzg2hrav9fEbrezd+9eYmNjnTamp2nqmSeADmEduK3NbYDSONNutzfZs4UQAoATm5VlupNbQOcHty+A2+eDj7+7I/M4HyZ/yLnSc8T4xzCx00SnjFm2ew+24mI0oaH4du9e4zVVzTErO4vbbFaKc3MBCPKyZbuL9xF6sCeffJL777+fvn37cs0117Bw4UJSU1OZMUOZcpw0aRLNmzdn9uzZALz00ksMHDiQdu3aUVRUxFtvvcXevXuZN29encf0No7kKedsyWWXH53psV6P8d2p70jMTGRz2maGtRzWJM8VQlzlrBbY8l/Y+j/ADlGdYfxSiOzg7sg8Ul5FHosPLAbg8V6PY9A6p7dSyZYtAAQMGYJKU3OTTceKiONYltL8fGxWC2qNhoAw72mQCV6WPE2YMIHc3FxefvllMjIy6Nq1K2vXriU+Ph6A1NRU1Orzk2kFBQVMnz6dc+fOERwcTK9evdi6dSv9+/ev85jeJiTGD7VGhbnCSnFuBUERvk3y3Bj/GO7vfD+LDizi9d2vM7jFYLRqr/rrJYTwNkUZsHoKnFZ6C9H7ARj9X9A1zfc9b/TuvncpMZfQKawTY1qPcdq4VfVOw4bWek1O5YpIRJxStF+YpZTMBIZHoK4l4fJUXvfTbebMmcycObPG9zZX/uE5vP7667z++uuNGtPbaDRqQmP9yT1TQu7ZkiZLngAmd53MZ0c+42ThSdYcXdOoU7mFEOKSjv4An0+HslzwCYBb3oDu490dlUc7VXiKVSmrAKUhplrlnMod0+nTmE6cAK0W/+uuq/Eaq8VW1eMporKhc1F2FgDBUXWrW/YkXlPzJOouwg11TwCBPoFVuzbm7plLsam4SZ/vjWwmE+aMDCqSkynfv5+yxETKfvuN8gMHMZ44gTkzC7vF9T27hPAaVgv88HdYcaeSOMV0g+lbJHGqgzd3v4nFbmFIiyEMiB3gtHEdS3Z+ffuiCay5FUT+uTJsVjs+vloCw5WlwsKsTACCIr0vefK6mSdxeVV1T2dc3+vp9+7ucDcrU1ZysvAk7+57l6f7Pd3kMXgiW2kp5fv2UX7wEKbjxzAeP4EpLQ1bYeHlb1ar0UZGoouNxadNa/Tt2mFo3x5D9+5oAgJcH7wQnqLwDHw2BdJ+UT7vNxVG/At03nMmmrvsztzND6k/VOvP5yxVS3bX17zLDiDnjPLLdESLgKpaXEfyFHw1JE/Lli0jIiKCMWOUtdJnn32WhQsX0rlzZz7++GOvrRW6koQ30QHBNdGpdTzT9xlm/jiTFYdXML7DeOKDrr6/E3abjYr9+yn+cSOlP/9MRUoKWK01X6zToQkJRq3zQaXTgUqFraICW3k5tpISsFqxZGZiycykfO/e8/ep1ejbt8evd2/8Bw3Cf+AA1H5+TfMFCtHUUr6DL2ZAeT7og+C2t5SDfcVl2ew2Xtn1CgDj2o2jTUgbp41tLSmh9LddQO0tCgByHMXiLc7/wleUXZk8eeGyXb2Tp3//+99V577t2LGDuXPn8sYbb/DNN9/wxBNPsGbNGqcHKerH8ZezMKsMs8mKzqdpC/EGtxjMoOaD+OnsT7y661XeGv5Wkz7fnSqSkylYvYai777DmpNT7T1ds2b49uyJvn07fFq3Rp+QgDYyEnVwcK27Iu1WK5bcXCyZmZjPnsV49BjGo0epSErCfOYMxsOHMR4+TP5HH6Hy8cFvwACCRo0k8Kab0HhQ/zEhGsxiUo5X2TFX+Ty2J4x/H8JauzcuL/LNiW84kHMAf50/j/Z81Kljl/68HcxmfOLj0Sck1HpdTlplsfgFyVNh9lW0bJeWlkbbtm0B+OKLL7jrrruYPn061113HUNr6SoqmpZfkA+GAB0VJWbyM0qJim/6H6LP9H2GHek72JS2iV8yfmFg7MAmj6Gp2Ewmir76iryPPsKYlFz1ujoggIAhQwgYNhS/fv1qPK7gclQaDbqoKHRRUfh26wajzr9nzsyifM9uSn/9ldItWzGnp1O6bRul27Zx7u8v4T9kCCF3jlO2DtdwurkQHi//NHw2Gc4qMxsMeARuegm0evfG5UXKzGW8kfgGANO6TSPC17nNKC/XVRwqj2U5Uz15slmtVd3Fr4qZp4CAAHJzc2nZsiXr16/niSeeAMBgMFBeXu70AEX9qVQqwpsHcDYln5y0ErckT61DWnNPx3tYkbyC/23/D3PavEj28WOU5Odhs1kx+AcQERdP845dvPIfDijT1fkff0zeBx9gza6cZdLpCLzhBkLG3YH/wIGofHxc9nxddBS6UaMIGjUKu92O6fhxin/4kaJvv8V49CglP/5IyY8/oo2JIeTOOwm9ZwLaSO9qRCeuYsnfwJczoaIQDMEwdj50usXdUXmdRQcWkV2eTYuAFtzf+X6njm232c73d7pEi4LSAqNyLItaVdUgszg3G7vNhkanwz8k1KlxNYV6J0833XQTU6dOpVevXhw5cqSq9unQoUO0atXK2fGJBoqMU5Kn7DT37XibFHc3pz//gZapJr6w/L3W62LatKPnyFvoeN31aLxghsRmMlHw8cfkvLMAa0EBANroaMImTSJ43B1oQ5v+G4FKpULfti36tm2JmPEwFUeOUPjFlxR+/jmWc+fImTeP3PfeI3jcHYRPnoxPy5ZNHqMQdWIxwoa/wq8LlM+b94W7lkDo1Vc72VhnS86y7NAyAJ7u+zQ+Guf+Mldx4ADWvDzUAQH49e5d63WOJbvQGD+0OqWMpGqnXUQUKrX3bfyv90+qefPm8eKLL5KWlsbq1asJD1e6giYmJnLvvfc6PUDRMJEtle2iOW5Inuw2G4nffsH2Tz+irVHZBVNusNGt92AiYuNQazSUFRaSdfI4GUdTOHf8KN/Nf50dn33E9ZOm0rbvwCbrjF4fdrud4u/Xk/XKK5jPnAHAJyGB8GnTCL5ljEtnmerL0L49hmefIXLWnyjesIH85R9SvncvBZ+spGDVpwSNGkn49OkYOnZ0d6hCnJd3Aj59CDIqN0Zc8xjc8DfQes6/LW/y2q7XMNlM9I/pz/CWw50+fnHlkp3/oEGX/P6Xc6b2eidvXXmod/IUEhLC3LlzL3r9pZdeckpAwjkcHVxzzpRgs9lRq5smGakoLWHd3Fc5sfs3AGLbd2R9syMk+p7G0EXH2H7Vz1EqLcjn0JYf2b32SwqzMvnqlX/RbsC13DT9j/gG1NwvxB1MZ85y7h8vU7plKwDayEgi/vgYIePGeXQ9kdrHh+AxYwi6+WbKExPJee89SrdspWjtOorWriPolluInPUnfFq0cHeo4mp36HP46nEwFoFvqHI2XYdRl79P1GjXuV2sP70etUrNs/2edckvpCU//AhA4CWW7ODCNgXnv6cXZV0FydP+/fvrPGD3Wg4EFE0rJNoPrY8ai8lGQWYZYbGuPxyzrKiQz/71f2SfOoFGp2P4gw/TbfgIWmZsJ/GHR2psXeAfEkr/sXfRa+Qt/PL5SnZ9vYajv27n3LGjjH36BaJbt3V53Jdit9nI//BDsl5/A3t5Oeh0REybSvjUqV7VFkClUuHXty8t+/al4vBhche+R9HatRR98w1F339P6L33EPHII25ZchRXOXMFfP887FLOWyNuINy1GIIloW8oq83KnN/mAEprgg5hzj/nz3T6NMajR0GrvWSxONQ286R0F/fGnXZQx+SpZ8+eqFQq7HZ7je873lOpVFhr62UjmpRarSKiRQDnThSRk1bs8uSporSET//xAjmpp/ALDmHcX/5elfgMaj6oqnXBK7te4e3hb190v85gYPC9D9B+wHV8+9Yc8jPS+eRvf+bmx5+mXb9rXBp7bcyZWWQ89xyl27cDSvfcmJdfQt/au7dIGzp2pPlrrxI+dQpZr75G6c8/k//BcgrXfE7EzJmE3T9R6TclhKvlHINPH4TMA8rng56EYS+AxnNnc73Bl8e/JDkvmQBdAI/1fMwlzyiunHXy798PTXBwrdeZKiwUZiubyS7s8VTo5TNPdarSOnnyJCdOnODkyZM1fjjeO3HihKvjFfXgWLrLTnNts0yrxcLXr/+HnNRT+IeEcvffZl80Y/RMv2fQqDRsTtvMjvQdtY4V3botf/j36yT06ovFZOTr12ZzePtWl8Zfk+KNmzg5diyl27ejMhiI+dtfabn8A69PnC5k6NyZlosX0XLJYvSdO2ErKSFrzhxO3nkXZbt3uzs8caXb/yksvF5JnPwiYOJquPFvkjg1UomphDd3vwnAjB4zCPcNd8lzin/4AYCAG2645HV56aVgB79gH/yCztdFFVUeCuyN3cWhjjNP0jXcO0U6kqdU1xaNb/1wCakH9qLTG7jjL38nvHncRde0Dj7fumDOb3P49NZP0apr/uun9/Pn9mf/j+/nv0HStk2sfesVbBYLnYc4v+Dx9+w2Gzlz55IzX2kEq+/cieavvHJFJU2/53/ttSR89hmFn39O1v9ewXjkCKfv+wPB48YR9fRTaMPC3B1ik7Pb7VjMNkzlFuw2UGtUqDUqfAwa1Brv2xnkUUxl8N2fYfcHyufxg+DORRAU6964rhALDywkryKP+KB47ut4n0ueYcnOrjrtIPAyyZNj09KF9U4Ws5mS/DwAgrx05qnBKX5SUhKpqamYTKZqr992222NDko4x4U77hzLqs52PHEnu9d9BcDNf3ya6ITa2/4/0uMRvjnxDccKjrEyZSV/6PSHWq9VqzWMnDkLtVbHwU3rWTf/dQCXJlDWoiLSn3m2qm9J6P33E/3M0x61i85VVGo1IXfeScDw4WS/9hoFn35G4Zo1lGzcSMxf/4+gm292d4guUVZkIut0EVmniynILKM4t5zCnAoqSszYbTWUKajAN0CHX5APgeG+hMX6E9bMn8i4QEJj/Txyl6hHyU5RlumykgAVXP8sDHlWZpuc5GThSZYnLQeU1gQ6jWuW34s3bgK7HUO3bpdt/ptdQ2fxosp6J53egG+gd56EUO+/sSdOnOCOO+7gwIED1eqgHN80pObJc4TF+qNWqzCWWSjOqyAo3Nep45cVFfL9O0rn2t43j6Vtv0t3EQ/WB/N4r8f5xy//YN6eeYxqNeqSU8pqtYYR0x9Do9Wyb8Navl/wJgFh4bTs2sOpXwcou+nSpk/HdOIEKr2e2JdfInjsWKc/x9NpQ0OJ/cc/CB43jnN/fwljSgpnn3yKog0biPnrX72+oNxYbuHM4TxSk/JIS8qjOLfi0jeoKms6HYmUHcqLzZQXm8k9W8qp/eeP4DEE6GjWNoQWHUNJ6BFBQKgcVlvN3o/g26fAXAb+UXDne9B6qLujumLY7Xb+s/M/WGwWBjcfzPUtaj9nrrEcS3aBN9542WsdKx+OX+ah+pl23voLR72Tpz/96U8kJCTwww8/0Lp1a3bu3Elubi5PPfUUr7zyiitiFA2k0akJbeZP7pkSctJKnJ48bVm+mPLiIiJatmLwfQ/W6Z47293JZ0c+IzkvmTd3v8nL1718yetVajU3TJ5BRUkxKTu28dWr/+bef/yP8BbOa/JYkZRE6sMPY83OQRsTQ4t5c/Ht0sVp43sjv169SPh0FTkL3iXn3XcpXvcdZTt/I/blly47Te9pzCYrp/bncPS3TE4fzMVmvWBGSQWh0X5EtQoiLNafoAhfgiIM+AXp8fHVoPPRoFIrvyTarHaMZRbKikyUFRopzC4nL72U3PQSsk8XU1Fi5sTebE7szWbrJ0eIig+kTZ8oOgyIwT/4Kj5OxFQK3z4N+z5SPk+4Hsa9B4HeuVzjqTambWR7+nZ0ah1/6f8XlyUl1pISSn/5BYDAmy6dPFnNtqoD6qPizydPVQ0yI6NcEmNTqHfytGPHDjZu3EhkZCRqtRq1Ws2gQYOYPXs2jz/+OHv27HFFnKKBIlsGknumhOzUYlr3dN7RHKkH95G0dSOoVIyY/ke0ddydpVFreH7A89y/7n4+P/Y5d7W/i+6Rl25voVKrGTXzCYrzcklPSWLNf/7Off981Skt/Ut+/pmzf3wcW1kZ+g4diFv4Lrpo+aYOoPLxIfLxPxIwbBjpz/0F07HjnHn0MYLvupOY55/3+FYNBZllHNh8hsM7MjBVnJ8RD4n2o2XnMOI6h9GsXQg+hst/G1SpVGi0KvyCKoteL1iCALBabGSnFnP2SD6nD+SScaKQrNPFZJ0u5pcvTtCqWzidBzUjvks4qibqueYRMpOUZbqcFFCpYehzMPgpUDftYeVXugpLBXN2Kq0JHuzyIC2DXHeCQMmWLcpBwAkJl60FzU0vwWa1o/fXEhh+fib2fIPM+p/36SnqnTxZrVYCApRvHBEREaSnp9OhQwfi4+NJSUlxeoCicSLjAjiMczuN22xWNi1dCECPm24mtl39eoj0jOrJ2DZj+fL4l/zr13/x0c0fobnMN1Otjw9jn36BT/76DPkZ6Xz9+mzG/9+/G3WcS/HGjZz90yzsZjN+1wykxVtvoQn0nMacnsK3W1cSVq8m5+23yV28hMLPVlO+Zy/NX38NQ/v27g7vIhnHCti17jSph3KrXgsMM9CufzTt+0UT3jzgEnc3jEarJqZ1MDGtg+kzqhWlhUZO7ssh5ZcMzp0o4uS+HE7uyyGsmT+9bmpJu37RaLSeWXhut9koLcinKCeb8uJC7DY7drsNtUZLQGgYAWHh+AUFX/pIDbtdKQhf9yxYKiAwVikKbzWo6b6Qq8jig4tJL00nxj+Gqd2muvRZ9Vmyyzqt/NyJahlYbSas6GqceeratSv79++ndevWDBgwgDlz5uDj48PChQtpfQXvSPJWrmhXkLRlIzlpp9H7+3PdhImXv6EGs/rMYmPqRpJyk1hzbA3j24+/7D1+QcHc8ee/8eFzszh7OImfPvmA6ydObtDzi75fz9mnngKLhcBRo2g+579XRWF4Q6n1eqKefhr/QYNJf+YZTMePc2r83UQ//zwhd4/3iLqF9KMF7PzmJGdT8pUXVNCqazjdhrYgrlNYk874+Afr6TqkOV2HNCcvvZSkn9JJ2p5OXnopPy5L5tevTtD/1gQ6DIhx++69sqJCUg/sJf3IYc6mJJGbdhqrxXLJe7Q+eqJbtyW2XQead+xCfLce6PSVMwvGYvjmCTjwqfJ52xvhjnfBP8LFX8nVKa04jSUHlgDwTN9n8NO5bkbYZjJVnbJwuSU7uLDeqXpRuLcfzQINSJ5efPFFSktLAfjnP//JLbfcwuDBgwkPD2flypVOD1A0TkSLAFApp1qXFZmq9dloCLPJyM+rPgRg4B0TGnyESoRvBI/2epT/7PwPb+5+k5ta3kSIIeSy94XGNmfkI7P4+rXZ7Pp6Dc07dqFt3wH1enbR2rWcfeZZsFoJuuUWmv1ntkcfseJJ/AcOIOGLz0n/y3OUbtvGub/9jdJfdhD7j3+iCXB9F/uaFGSW8fPqY1XF22q1io7XxtJrREtCoty/tBjWzJ9Bd7ej3y2tOLQtnX0b0yjJN7Lxg8PsWZ/KwNvbkNAjokkT0PKSYo7+8jMpO7aRdugAdrut2vsqlZqA8HD8g0NQaTSoVGqsZhMl+XmUFuRjMRk5e/gQZw8fYtfXa9DpDbTu058OHVvSJuV/qPOOgUoDN/wfXPsn8MKDX73FnN/mYLKZGBA7gJvib3Lps8p27MBWVoY2KgpD166Xvb6mYnE4v9vuqlq2GzlyZNV/t27dmqSkJPLy8ggNDfWI3z5FdT4GLSFRfhRklpGTVkzLLo1rmHZw43pK8nIJjIik58hbGjXWhA4T+OzIZxwrOMbcvXN5ceCLdbqv/YDr6D36Nnav+4rv5r/G/f95s87/CIs3bqxKnIJvv53Yf/0TlUbqL+pDGx5O3LsLyHt/KVmvv07xuu8wHj1Ki7ffRp+Q0GRxmMot7Pz6JAc2n8Fms6NSq+h8XSy9R8U7fXOEM+j9dPQeGU/3YS04sOUsid+dIv9cGesWHCCucxhDJrQnJNq1yV7umTR2r/uSpK2bsJiMVa9HxifQonNXmrXvRGzb9gSGR6Ku5d+F1WKh4FwGGUcPk3E0hVP7d1OUnUXK9q2kbIcgXSh9mnWi67Q5+LQb4tKv52q39cxWNqdtRqvS8nz/513+M9jRVTzwxhsuvWxL7cXipopyygoLgKts2a4mYVdhEz1vEtkykILMMrJONy55slrM7PxqNQD9x45H28hlLq1ay/MDnmfy95NZlbKKce3G0Tm8c53uHTLxITKOpZBxNIVv336Fe/7+31q/2TuU/vIrZ2c9oSROY8cS++9/XfYbgKiZSq0mfMpkfHv34uyfZmE6pizjNZszh8Dhw1z+fMeOttICJQGI7xrOtXe2bZIzHBtL66Oh100t6TyoGXvWn2bvhjTSkvL4+OVf6XlTS/qNaYVW59yEPif1FD+tXM7xXb9WvRbZshUdBw2l/cBBhETXfQZAo9US3iKO8BZxdB12E/byAs598Cgpew+RVBhNkdnAptMGdsyez8A78+g5cgwarRz342wmq4n/7vwvABM7T6R1iGvLZuxWK8UbNwKX7yoOFxSL+1UvFi84lwGAb2AQBn/n1x82lTolT+PGjWPp0qUEBQUxbty4S167Zs0apwQmnCcqPpCjv2WSdbqoUeMc2rKRktwc/EPD6Dr08uvdddEvph+jE0az7uQ6/v3rv/lg9AeoVZdPaDRaHbf86c8se+YxMo4c5revVjPgjrtrvb58/37OzJyJ3WQi4MYblBknSZwaza9XLxJWf8aZWU9QnpjImZkziXj0USIenemS/79lRSa2fJzCiT3ZAARF+nL9Pe0bPaPqDnpfLQPHtqHjNbH8tOoopw/msvu705zcm80ND3QmOqHxzQOLcrLZvmoFSVs3KktzKhVt+w6kz81jad6pS+NnKtL3oPr0QWLzTxEbq+W6ex4iydiOxLVfkPElGiQAACAASURBVJ+RzuYPFrFvw1qG/GEybfoOkNUJJ1p2aBmpxalE+kbycPeHXf68ssRErLm5qIOC8O/f/7LXO5bsouKrF4vnZ6QDEBLbzDWBNpE6JU/BwcFVX3zwJQ4AFJ4pqpXyTTjrVMOTJ7vNRuI3nwPQ95Y7Gj3rdKGn+jzFlrQt7MvexxfHvmBcu0sn6A5BkVEMf+hhvpv/Ots//YiEXn2JanXxb1+m1FTSHp6BrawMv2sG0vzVV6XGyYm0kZHEv7+EzP/OIX/FCnLmzaPi8GGa/2+OU9sZnNyfw6blyZQXm1GrVfQc0ZJ+N7dC6+Pdy64hUX6MebQ7J/flsOWjFPLPlbF6zi56jYin/60JDdqVZ7NZ2fvdN/z0yXLMRqURaLsB1zLonkmENWvR+KDtdti5ENa/CFYTBLeE8e+ja9GXHkC3G0dyaMuP/PTxB+RnpPPlK/+k/YDruGHqTPyC5GdIY50pPsPC/cqO5yf7PkmAj+tncIq/+w5QdtnV5eBwx0673xeLF5xTkqfQ6P9n77zjm6q7P/7O7N57l01L2WVIWbI3qCgqCsgWBYEHEX6A4gCER8ajCAgIioJsUEH23mXPsgqlA7r3TJrc3x9pA7WDpCRd9P165aWk537vSZvce3LO+X5O5R7Ho9MdZO3atUX+fzWVAycvK0QiyEhRkJGcg4Wt/oJ9j65dJvFxJHIzMxp26v78A/TAxcKFj5p8xH8v/JdFFxfR0asj9qa6lYL923fi/vmz3D9/hn9++I735i0pENjlJiURMXoMqqQkTBs0wGvpUsQmL7FgoZEQyeW4zpqJaUAA0V98QfqhQ4S99x5ey5Y9d3zD81AqVJzcfI9bJzUXXQcPC7p84F9gVlZlRyQSUbOJE+51bDmx6S53g2O4tO8RkbcT6TYyABsn3Xu4YsMesP+nH4h5cA8A97p+dHh/BO516xvG2awk+PNjuL1L8+/6faD/UjB7qrsmFkto+Go36rVuy7kdm7mwawd3z50i8vZNuo0ZT63m+m3yqOYpgiAw99xcslXZtHRtSe8avY1/TpWK1P0HALDu2UOnY4prFk+KrhqZp+q6xUuAzESCvbumFySmlNmn/Pl1AR27YmIEccR3/d6lnl09UnJSWHRhkc7HiUQiuo7+GHMbWxIiwzm9Zb32Z2qFgqjxE1CEhSF1d8NrxXLEFhW/J6YyY/vaALx//QWJgwM5t0IIe2sQWTdulnq95JhMtn57QRM4iaBJV2/enNaiSgVOz2JqIaPr8Ab0GBOAibmU2EdpbJoTzL3zMc89VhAELu7+kw0zJhPz4B4m5hZ0HfUxb38533CBU+QF+Km9JnASy6DHfBj0e4HA6VnkZua0e3cY736zEAdPbzJTktm54GuOrluFunqUV6k4FH6IE1EnkIqlzGg9o0xKoZkXLqKKj0dsY4NF65LHcEHxzeLwtOfJ1vUlC54SEhL46KOP8Pf3x9HREXt7+wKPaiomzj55pbtS9D0lRT/m4ZWLIBLRtEdfQ7sGaJrHZ70yCxEi/gz9kwvRF3Q+1tzahq6jxwNwYdcOYh7cRxAEomfNIvPCBcSWlnitWIHUyXAK69UUj3nTpvhu2oRJndrkxsby6L33SN2/X+917l+MZfO88yQ+zsDMWk7/T5oQ9EZtJLKq/52vVlNnBs1siVttG5TZKvb/fJOTm++hUqmLtM9MSWbHt7M5um4VqtxcajZvybBFy2nUpYdhes8EAU4vhTXdITkc7HxhxH5oPRZ0uHm71KzNe/OW0Lz3AAAu7v6TrXNmkZma8uK+vURkKDP4NvhbAIYHDKemTdloK6bu3QNotJ10KdkV1ywOz5TtKnnwpHfjx3vvvUdoaCgjRozAxaXyDvV72XD2tSbk9JNS9T3dOKy58fk2boatq/Hq1I2dGjOw7kC23N3CN2e/YUvfLTpPBa8d2Ip6r7TjzpkT7P/pB3rWb0LKn3+BRILHkiUVUgm7KiP39MDnjz+ImjSZjBMniPpkIrnTp2M/5P3nHiuoBc799YCLex8B4F7Hlm4jG7x08+Gs7E0ZMKkpwbsecnHPI64ejiAuIo3uowIK6LU9uX+Hv76bQ3pSIhKZjI7vj6Rxt16GuzZnJsLOD+GupucF/wHQ73sw1a93SSqX03HISNzr+bH3x8VE3LzG79Mn8tpnX+Dk7WsYX6s4y64sIyYzBk9LT0Y1HFUm5xRyc0nLL9n16KnTMc+W7J59Hyqys8hI1ojYGvNeUhboHTydPHmSkydP0rix4SfbV2M88lOnsY/SEARB5wurKjeXm8c02h6NDNzrVBSfNPuEQ+GHCE0J5ddbv+o1auDVYaN5dO0ysWGhnDt7npqAy9RPsWwbZDyHqykWiaUlXsuXETN3HkkbNhAzdy65cbE4TZ5c7PtPqVBxaO0tQvN20zXt6k3rATXLXYW7vBBLxLTuXwtnH2sO/nKLx/eS2TLvPH0+boyDhyU3jx3iwKqlqJRK7D286DPxM8MGIuFnYesISI0EiQn0mAuBI3TKNhVH3VZB2Lt78tfCOSQ9ecym2Z8xYOrneNZ/uYdxP4/bibdZH6JpS5jRegamUtPnHGEYMi9cQJWQgMTWFotWz99lB083JxVXsqvsMgVQirJd/fr1ycrKMoYv1RgRBw9LxFIROZm5pMTp/vd7ePkCGclJmNvYUrN5CyN6qMHGxIYpgVMA+OnqT0SmRep8rIWtHW37DQTgrrMtoh7dsRsyxCh+VqMbIqkUl1kzcZo0CYCEVat5Mm06glJZyDYjOYcd310i9HIcYomIzsP8aPNG7Zc2cHqWmk2cGPhZILYu5qQn5bBtwQX+/t+P7F22GJVSSa3A1gyes9BwgZNaDScWwdpemsDJvhaMPAgtRr5Q4JSPo5cP736zCPd6/uRkZLDtm1ncf0aDqpqCqAU1X5/5GpWgoptPN9p6lN2MwNQ9ebvsunbVqWQHT3trXXwLZifzS3aVPesEpQieli1bxowZMzh27BgJCQmkpqYWeFRTMZFIxdomW336nm4c1aRr/dt3KjOhuz41+9DCtQXZqmzmBc9DEASdjhMUCqw2bMYhLRO1WMwNh+rm8IqASCTCccxo3ObOBYmElD//JGLcR6jzxjyBJs2/5dsLxIWnYWopo/+kptRvXfkvsIbE3s2CN6Y2x7WWBRkJf3H3tKYPpfUbb9P/P/+H3MxAGzky4mHDm3DoSxBU0PBNGHMM3BoZZv08TC0tGTjjK2o2a0GuUsFfC+cQcuqYQc9RVdh6dyvX4q9hIbNgaoupZXZeTclO07ah6y47RXYuiY81n+1/a5XlazxV9n4nKEXwZGtrS0pKCp06dcLZ2Rk7Ozvs7OywtbXFzq7oHReGZNmyZdSoUQNTU1OaN2/OiRMnirVdtWoV7dq10/rYpUsXgoODC9gMGzYMkUhU4NFah90ElRGX/NJdWJpO9lnpaTy8fBGABh2eryhrKEQiETNbz0QqlnI88jiHww/rdFzs4iXkXLtOo5RsxBIpj25c5f75M0b2thpdsX39NbyW/YjIzIyMEyd4NOwDchMTibqTxI6Fl8hIzsHO1ZyBnwXiXvv5cw5fTnJQpu9ArbwLiJFZ9ERuEWSQbBAAYadgRVu4fxCkptDvB3h9FZgYZ3ejzMSU/lNm0qBDFwS1mj0/LOTOmZNGOVdlJSErgSWXlgDwcZOPcbEou2G6mcHBqJKSkNjZYa6DMCZA3KM0BAEs7UwKyeIkx1SNnXZQiuBp8ODByOVyNmzYwKFDhzh8+DCHDx/myJEjHD6s202utGzatImJEycyY8YMLl++TLt27ejZsyfh4eFF2h89epR33nmHI0eOcObMGby9venWrRtRUVEF7Hr06MGTJ0+0j3/++ceor6O80Ipl6ph5unf2FGpVLk7evjh6+RjTtULUtKnJ8IDhAMwNnku6Ir1E+/Rjx0jM0yCr8+VXtOj3BgBH163WigRWU/5YduiAzy9rkdjakn39OsHDZ/L391dQ5qjwqGfLG58F6qVp9DKRmZLM5tnTiLp9A7mZGf6vjkUi9yP474ccXX8HtVq3DG2RqFVw7L/wax9IewKOdWHUEWg2xHCBWTGIJRK6j51Ag45dEAQ1u79fwL3g00Y9Z2XiuwvfkaZIw8/ej7frv12m59aW7Lp101lYWFuyK0Ihv6qoi0MpGsZv3LjB5cuXqVevnjH8KZFFixYxYsQIRo7UNBEvWbKEffv2sXz5cubNm1fIfv369QX+vWrVKrZu3cqhQ4cY8kwvjImJCa4vKORXGcgPnuLC01Cr1M/tJQk5eRSA+m07GtmzohnVcBR7Hu4hIi2C7y9/z/+1+r8i7ZQxMTyeNh0Au8GDserShVbZ2dw6fpjUuFiC/9xK0FvvlaXr1ZSAWePG+GzYwLlJS7jh0gdBJeBTx5weHzc2+Ey3qkJ6YgJbvp5B4uNILGzteH36lzj71uTG8SiO/3GHWycfk6tU0XmIn/49YumxsG0kPMwrmTV+F3p/B/KyK3uLxGK6jRmPoFJx68QRdi2Zz4BPZ1GjaWCZ+VARORV1il0PdiFCxKzWs5CKy24ygqBUknZAP2FMgOgHGvmJf/c7wdPMU2VXF4dSZJ4CAwOJiIgwhi8lolAouHjxIt26dSvwfLdu3Th9WrdvKZmZmSiVykJ6VEePHsXZ2Zm6desyatQoYmNjS1wnJyenUvZ62bmYIzOVkKtQkxSdWaJtanwckSE3AKgf1KEs3CuEqdSUz1/5HICNtzdyJfZKIRtBrebx1M9QJSVh4ueH89RPAZCZmtJxqCbIPv/XNu0uj2oqBnceybju1h9BJME1+iy1d3xG7sPQ8narQpIaH8emL6eR+DgSSwdHBs3+VjuGKKC9B11HNEAsFnH3XAz7V99ElVu0FlSRPDgKy4M0gZPMHAYsh9eWl2nglI9YLKH7uInUa9MetUrFX4vnEX3/bpn7UVHIVGby1ZmvABjsN5iGTg3L9PwZ54JRJScjcXDAPFC3IFYQhGIzT4rsLDKSEoGXtGw3fvx4PvnkE3755RcuXrzItWvXCjyMRXx8PCqVCheXgvVeFxcXoqOjdVpj2rRpeHh40KXL06G2PXv2ZP369Rw+fJiFCxdy/vx5OnXqRE5OTrHrzJs3DxsbG+3Dy8urdC+qjBGJRTjnSeU/T2k8v1fIvZ4/1o7lJy7Z2q01A2oPQEDgi9NfoFApCvw8cd06Ms+dQ2RujseihQVGr9Rp2Qbvhk1QKZUc+XVlWbteTTFcPhDOiU2am2LAKw40EYIR4mMJHzL0hdTIqyJpifFs/nIaydFPsHZy4e3Z32Ln5lHApk6gC91HByCWigi9HMeen66Tq3yOerdaBUfmwroBkBELzv6aMl2Td434ap6PWCyh50eT8WnUlNycHLbP//Kl/eKz9MpSHmc8xs3CjfFNx5f5+VPz2lesunbRuWSXnpRDZooCkViEUzEyBaZW1phaVm6ZAihF8DRo0CBCQkIYPnw4LVq0oEmTJjRt2lT7X2Pzb30YXTWLFixYwB9//MH27dsxNX2qjzFo0CB69+5NQEAAffv2Zc+ePdy9e5fdu3cXu9b06dNJSUnRPsojE1daXGpoUqn5qdXiuHdOk82r26qN0X16HlMCp2Bvas+DlAf8fP1n7fM59+8Tt2gxAC5Tp2JSo0aB40QiEZ0+GINYIuHBpfOEXiy4WaCasufqoQhOb7sPQGAvX9oPaYTvr79g2rAhquRkwocNI/PSpXL2smKQmZrC1q9nkhIbg62LG4Nmf4uNc9HtBTWbONH7w0ZIZGIeXU9g94/XUCqKCaBSn8C6/nBsPiBo+ppGHgJnA41weUEkUin9Jk/H2bcWWakpbJv3+UunRH4j/oZW02lW61mYyww/Eqsk1NnZT3fZ9eql83ExDzVfyh08LJD9a2B3VRkInI/ewdPDhw8LPR48eKD9r7FwdHREIpEUyjLFxsYWykb9m++++465c+eyf/9+GjUqebutm5sbPj4+3Lt3r1gbExMTrK2tCzwqC6618oOn4jNPGclJRN7WZADqtCz/4MnGxIbpLTU9TSuvryQ0ORRBqeTxZ9MQFAos2rXDdtBbRR7r4OFFs179ATjy60pyFYoi7aoxPteORHJyi+ZzFdjbl1b9aiISiZDY2uK9dg1mgc1Rp6cTPmIkGWde7l2S2RnpbJvzubZU9+asOc/NAHs3cKDv+MZITSRE3k5i70/XUSn/VcK7f1Czmy7sBMgt4fXVmh118rK9OT8PuZk5r0+fjbWTC8nRT/h70TxUuYW1waoiSrWSL05/gVpQ07tmb9p5titzH9KPHkWdno7U3U3nkh08q+9UtZvFoRTBk4+PT4kPYyGXy2nevDkH8hrY8jlw4ABt2hR/g//vf//L119/zd69ewnU4U2QkJBAREQEbm5VIzr+N655deikJxlkZxR9MQq9cA4EAZeadbB2ci5L94qlu293Onh2IFedy+zTs4lbsYLsmzcR29jg9s3XJWYfX3njbSzt7EmJidYOOK6mbLlxPEpbqmvWw4eWfQpmCSWWlnivWoVFUBBCVhYRY8aSfuLl3LKuzM5mx7dfEhsWirmNLW/OnKPz59Cjrp0mgJKLCb+ZyL7VNzTz8FS5cHA2/P4GZMaDS0MYfQwavWncF/MCWNja8fq02cjNzIgMucGRX1aVt0tlwq83f+Vu0l1sTWzLVNPpWVL+3gWATZ++es1GjHmY1yxeo/hmcduXNfMEEBoayvjx4+nSpQtdu3ZlwoQJhIYav9lz8uTJrF69mjVr1hASEsKkSZMIDw9n7NixAAwZMoTp06dr7RcsWMDMmTNZs2YNvr6+REdHEx0dTXq6Ztt7eno6U6ZM4cyZM4SFhXH06FH69u2Lo6Mjr732mtFfT3lgZiXXbgUvru/pXl6/U52Wr5SZX88jX/vJXGpO4s3LxK9YAYDrrFnInpN5lJuZ0/adoQCc27GZzJRko/tbzVNunXzMsQ13gLxxK/1rFhnsis3M8Fy+DMtOnRAUCiI/+uilC6ByFQp2/vdrHt8NwcTCgjf+7yvs3T2ef+AzuNe2pdeHjZBIxTy8Gs+hlRdRr+0DJzUlbgJHaNTCHWsb4RUYFgdPL3qN/xREIq4e+IerB/aUt0tGJSwljOVXlgMwtcVU7E3tn3OE4clNSiL9+HEAbPr20fk4lUpN3CONhmBJMgV2L2vmad++ffj7+xMcHEyjRo0ICAjg3LlzNGjQoFBWyNAMGjSIJUuW8NVXX9GkSROOHz/OP//8o814hYeH8+TJ0+bCZcuWoVAoGDhwIG5ubtrHd999B4BEIuH69ev079+funXrMnToUOrWrcuZM2ewsjKOKFxF4GnprnAfgTI7m4ibmsb/2i0qllioq4UrE5tMYOw/KkQqNbJX22HdW7d6vH+7V3GuUQtFViant2wwsqfV5HP/YixH1t8GoHFnL155vVaJWUKxXI7nksVYdu780gVQglrNnh8XEX7jKjITU96Y/pV2V52+ePnZ02NMAGKxwL2raRy52RxBbgMD10KfRSArm7lohqBW85a0HaQZKH147QptS0FVQy2o+fLMlyjUCoLcg+hTU/fAxZCk7dsHSiUmfn6Y1Kmj83GJURnkKtXIzaTYuRQuAz8VyKwamSe9RSOmTZvGpEmT+Pbbbws9/9lnn9G1a1eDOVcU48aNY9y4cUX+7OjRowX+HRYWVuJaZmZm7Nu3z0CeVR5ca9pw52w00aGFg6dHN66iUiqxdnLB3qPi7SLsel5J3BPIMIHNXQTm63icSCym45CRbP5yOtcO7qVJ995lLvz5shFxO5EDa2+CAA3auRM0sLZOmztEcjmeixcROWky6YcOEfnRR3guW1blBzwf3/ALd8+eRCyR0v/TmbjVeQEtPZUS3ydL6Gp9gf3J/+F2VmfkHgNo2yAQ40peGoeWA94k7tFD7pw5we4l83l//veY21QtFfrt97ZzIeYCZlIzZr0yS+fh7YYm5a+/AbDp21ev42KeGQYsEhf0XZGVqZUpsHPVL5NaUdE78xQSEsKIESMKPT98+HBu3bplEKeqMS6uNTUp1Ziw1EKqxA8uaXak1WzWotw+vMWhiIwi/n/fA7Chs5Q96Wf556HuavBe/g2p3eIVBEHN8d/XGMvNatCo2O9Zfh11rkCtZk60f6eeXu+n/ABKm4EaN470k6eM6HH5cmX/P1z4ezsA3cdOwKdhk9IvlhwOa3rA6R+obXqGzs00mZprZ9K4vL/oaQwVHZFIRLexE7B39yQ9KZF/li5EUOuhZ1XBic6IZuGFhYBmBIuHZfkEGIrISLIuXQKRCOvevfU6ViuOWUTJLjFKM+Dd3Ma2SsgUQCmCJycnJ65cKSxWeOXKFZydK0ZzcTUlY+9uicxEgjJbRdKTp8NZBUHg4aXzANRq1qK83CsSQRCInj0bISsL8xYtqPu+Jvs4L3ge8VnxOq/TfvAwxBIpD69cJOzKRWO5+1KTHJPJ3z9czRu5YkfXDzQijvqiDaCe7YGqggFU6MVgDq/R9PC1eWsw/u07lX6xkF2a3XRRF8DUBgb9Tr3REwkaqOlvOrMjlDtnK6duktzUjL6TpiGVm/Do2mXO7dhc3i4ZBEEQmH1mNunKdBo5NWKw3+By8yV1l6ZR3Lx1K2Qu+t3Pn+RVMtyKmEuZEKWR83GogNWM0qJ38DRq1ChGjx7N/PnzOXHiBCdPnuTbb79lzJgxjB492hg+VmNgxGKR9tvBs31PcY8ekp6UiNTEBE//slWzfR5p+/aTcfIkIrkc16++ZETjkfjZ+5GSk8LXZ75GEHSb62Xn5kHTHppvVEd/+xm16jligtXoRUZyDn/97wrZ6UqcvK3o9WFDJLJS7UsB8gKoJYs1AVRODpEffUTG2bMG9Lh8iXlwn13/m48gqAl4tSutXy/l7LJcBeyZBpsGQ3YKeDSHMSfAT1N6adLFmyZdNDeuw+tuE34zwVAvoUxx9Paly0jNF6fTWzZo+zMrMzvv7+RU1CnkYjlfB32NRFw+I4oEQXimZNdPr2MzUnJIjcsCkaYt5N8k5gVPFbEVpLTofVWbNWsWn3/+OT/88AMdOnSgffv2LF26lNmzZzNjxgxj+FiNEch/gz/b9xR2VSNO6N2gEVK5vFz8Kgp1ZiYxeT12DiNHYlKjBjKxjK+DvkYqknI44jB7Huq+C6f16+9gamlFQmQ41w/vN5bbLx2K7Fx2/XiVtMRsbF3M6Tu+MXLTF5/F9e8AKmLcR2ReumwAj8uXtMR4diz4itycHHwaNaXLyI9KVypPfAhrusE5zS4tXvkYPtgLdgV7+tq8Xps6LVxQqwX2rLyh84DwikaDDp21Q4T/+XER2eklDw2vyERnRLPg/AIAPm76MTVtSrdBwBBk37yF4sEDRCYmWHXTr3c5/z7i4G6JiVnhz3xCdfCkqT1PmjSJyMhIrcJ2ZGQkn3zySYXrkammeLSZp4dPL6CPrmluSD6NmpWLT8URv3wFudHRyDw8cBg9Svt8Pft6jG6syXbODZ6rc/nO1NKSVwa+A8DpLetRZGcZ3umXDLVa4MDPN4mPSMfMSkbf8Y0xszJcAC6Sy/FYslijA5WZScTo0ZV6lItSkcNf380hIykRB09v+k6ahkTHERgFuLkTfmoPjy+DmR28sxG6zwFp4d+9SCyi81A/POvbkZujYtfSq6TGV873fucPxmLn5k56QjwHV/+oc+a5IiEIAl+e+VJTrnNsxBD/Ic8/yIik/q3JOll17oREz76kJ/fzSna1Cmed4Gnm6aUu2z2LlZVVld7SX5XJzzwlx2SSla5AmZNN1B1Nw79PoxdoVjUwOQ8ekPDLLwC4zPg/xKYFt1iPbDiS+vb1SclJ4Zuz3+h8EW3ctSe2Lm5kpiRzcddOQ7v90nFqyz3CricgkYnp9WEjrB3NDH4OsVyO59IfMA8MRJ2eTsSIEWTfrXyDYwVB4MDKpUSH3sPU0ooBUz/HxFzPQbzKbNj9H9gyFHJSwas1jD0J9XqWeJhEKqbnmIY4elmSlaZk14/XyMnKfYFXUz7ITE3p+fF/EInF3DlzgpATR8rbJb35M/RPTkadLPdyHYCgUpHyj2YkmXUf/XbZATwJ1WjnudUuHDzlKpUk500Gsff0fAEvKxZ6B08xMTG8//77uLu7I5VKkUgkBR7VVA5MLWTYuWq0OGIepBIVchOVUomVgxP27hXjDS4IAjHfzAGlEssOHbB89dVCNjKxjG+CvkEqknIo/BB7w/bqtLZEKiPobY12zPm/t1cLZ74AVw9HcO2IZjdNl2H+RfY8GAqxmRmeK1Zg2qgRqpQUwoePIOfhQ6Odzxhc3LWDkBNHEInF9J00DVuXoufVFUtCKPzcBc6v1vy77SQYtgtsdPvcys2k9B7XCHMbOUlPMti/+gZqVeXbueZWux5tBmoGGR9as5yUWN0GxFcEYjJiWBCsKdd91PQjatqWX7kOIOPUKVRx8UhsbfWWBFHmqIiL0JROi2oWT34ShSCokZuZYWnnYBB/KwJ6B0/Dhg3j0qVLzJo1i61bt7J9+/YCj2oqD/limU9Ckwm7rtlB6dOoSYUpv6YfOUrG6dOIZDJcZvxfsX7Vs6/H6EZ55btzupfv6rVui0vNOiizszizbaPB/H6ZCLsWz6m8eXWvvFaL2s2Nv+NWYmmB96qVmNSvjyo+nvAPhqOIjDL6eQ1B2JWLHF//CwAdh4zCO6Cxfgtc36op00VfB3MHGLwNuswGiUyvZSztTOk9rhFSmWaMy8mt9/Xzo4LQ8rU3ca/njyIri30rvq8U5bv8cl2aMo2Gjg3LvVwHkLx1GwDW/foi0rPfNeZhCoJawNLOBCv7wuKrCXkyBfYeXhXm3mII9A6eTp48yfr16/nwww8ZMGAA/fv3L/CopvLgXkfzLSHqbrJ214r3i+jLGBBBoSB2geabmf2woci9vUu0H9lIU75Lzklmztk5kwhVUAAAIABJREFUOl1ERWIx7QcPA+DawT0k5U39rkY3EqLS2ffzTQQB/IPcaNqt5L+RIZHY2OD982rkNWuSGx1N+AcfoIyJKbPzl4akJ1Hs+n6Bdmdd0x56KEgrs+CvCbBtBCjSwSdIU6ar06XU/jj7WNPlA38Arh+J5PrRyFKvVV6IxRJ6jpuEVG5CxM1rXDuoW+a5PPkr9C9ORJ1ALpZrsubiF99U8SLkJiaSdkRT9rR9Y6Dex2slCp7b71R214eyQO/gycvLq1JE99U8H/e8FGvsw3jiwjSlDy+/gPJ0SUvSxk0owsKQ2NvjMGbMc+2f3X13MPwgux/u1uk83gGN8W3SHLVKxamNv72o2y8N2RlK/ll+jdwcFR71bGn/rn4imIZA6uCA99o1yLy8UEZEEP7BcHITKuYWfGVONn8tmkdORgbudf3oPGKc7r+vuLuwqhNc+hUQQfupMOQvsH7xGWG1mjnTeoCmZHRi871KKWFg6+pG27c12Zvj69eQGh9bzh4Vz5P0J8wP1sxFGNdkXLmX6yCvUVypxDQgANN6dfU+Pj94cq1VtOL70512FaMdxFDoHTwtWbKEadOmPXf0STUVHysHUyztTMhVamrStq5uWNqXf01alZxM3I8/AuA0YYLOOz/q29dnTGNNoDX37FyiM3TrgWj3zlAQibhz5gTR9ytfA3JZo1ap2b/6Bqnx2Vg5mNJ9VAASyQvtPSk1MhcXvNeuRermhuLBA8JHjESVWrG24AuCwMHVy4gPD8Pcxpa+k6cjlelYZrvyB6zsALG3wMIZ3t8BnWaAxHDZimbdfajX2hVBLbD/55skx2YabO2yomnPPrjVrY8iK4sDqyrm7ju1oGbmqZmkKdNo5NSIoQ2GlrdLCIKgLdnZvvG63ser1YJWK7CoZnF4JvPkWXV22kEpgqdBgwZx9OhRatWqhZWVFfb29gUe1VQeRCIR7nVsUedq0vUe9RuUs0ca4pYtQ52SgkmdOtgOfEOvY0c2HEkjx0akKdOYeXImauH5jbDOvjXxb9sR0MwXq4gX3orEmR2hRIQkIZVrdtaZWZavJpjc0wOftWuQODiQc/s2EePGoc7OLlefnuX6oX3cOn4YkUhMn0+mYmmnw3VSkQE7x8HOsaDMhBrtNWW6WoU3TbwoIpGIVwfXx6WGNTmZuexZcR1FduXagScWS+g+9hMkMhlhVy5y6/jh8napEOtD1hMcHYyZ1Ix5beeVe7kOIPvGDXLu3UNkYqL3OBbQlO6V2SpkphIcPAp/yVWrVSQ91vQjViWNJyjFYODFixdXqaavlx33OrZcP6h5c3tWgJKdIiKCpA1/AOA87TNEemrfSMVS5rSdw1u73uJc9Dk2hGzgPf/3nntc0KD3uXPmBBE3rxF29RI1mjQvlf9VnTvnorlyUPNNsvNQfxw9K8acKrmvL96rV/Ho/SFkXbhI1KTJeH7/P0S6ZniMRMyD+xxeqxm90vadIXg1aPT8g2JDYMswiLsNIjF0nA7t/gNG3MoukWkkDDbPPU/i4wwOr7tN91ENKtW13sHDizZvDubEhl848utKfBo11S1QLQPuJ91nycUlAEwJnIK3dcXo/0nepsk6WXXrhsS68Ey655Gv7+Ra06bIEUypsbHkKhVIZDJsnF1ezNkKht7B07Bhw4zgRjXlhbOPOYJKU95yr+Nfzt5A3Pc/QG4uFkFBWAbpt2U2H18bX/7T/D98c+4bFl9czCvur1DLtlaJx1g7OdOkR18u7trBifVr8WnUBHE56q5URGIfpXLkt9sANO/hUyY76/TB1M8PrxXLCR8xkvQjR3gycyZu8+YhEpdPSTErPY2/Fs1DlZtLrcBWtOj3nCyqIMDl3+CfqZCbBZau8MZqqNGuTPy1sDWhx+gAdi66TOilWC7vt6JZd5/nH1iBCOzzGnfPniTmwX0Orl5G/ykzyj0AVKqU/N/J/0OhVtDWoy1v1n2zXP3JR52VReouTW9oaUp2AI/v5ek7FdMsnt/vZOfmUeWup3pfVTp27Mi6devIyqqcyrTVFCQrNQJQg8iS7EzDCxvqQ/bt29rBlE6TJ73QWm/Ve4sgjyAUagXTT0xHqVI+95hWA97ExNyCuPAwQk4cfaHzVzUyUxXsWXEdVa4a34YOtOpX/o2uRWEeGIjHksUgkZDy51/Ezp9fLmVYQa1m74+LSI2LwcbFlR7jJpV8E89Jg+2j4a/xmsCpVmdNma6MAqd83Grb0m5QHQDO7gwl/FblaiAXSyR0/3AiYomU0AtnuX+h/OcgLr+6nJDEEGxNbPmqzVflHszlk3bgAOr0dGSenpi3bKn38YIg8PheEgAede2KtKmKM+3y0Tt4at68OVOnTsXV1ZVRo0ZxtgoN6XwZibqtGXEhlnpod02UF3GLl4AgYN2rJ2YNXqz/SiQS8XWbr7ExsSEkMYQV11Y89xgzK2taDtB8Kzy1+XdyFYoX8qGqoFKp2bvyOulJOdi6mNNleANERaToKwpWr76K+9w5ACT+uo6En34qcx+C/9zKg0vnkchk9J00HVOLEsqb0ddhZUe4vhlEEuj8BQzeCpZOZebvszRo74FfGzcEAfavvklKXOX6ouzk7Utg39cAOLJ2ZbmOX7oSe4Wfb/wMwOevfI6Tefn8TYsieZtGl9Hm9ddKlZ1NfJJBVpoSqUyMi2/RJb8ErUxB1dppB6UInhYuXEhUVBTr1q0jLi6O9u3b4+/vz3fffUdMBddZqaYwkSE3ABDLPLUp2PIg88IF0o8dA6kUp08+MciaTuZOfN76cwBWX1/Nldgrzz2mac++WDo4khYfx5V9uwziR2XnzI5QntxPQW4qodeHDYsc/FnRsOnfH5f/mw5A3JL/kbSx7ERQw29c49Sm3wHoPPxDXGoUUzIWBLiwBlZ1hoT7YO0Bw3ZDu8lQTqVG0HzxaP9OXZx9rLQN5MocVbn5Uxpavz4IaycX0hLiOFtOAriZykymn5iOWlDTt2ZfuvroN2zXmCgiIsg8dw5EImwHDCjVGlF3NPcL11o2SGRFv1+f7rSrGD1ehqRUn1CJREL//v3ZuXMnUVFRvPvuu8yaNQsvLy8GDBjA4cMVb6dDNYVR5Sp5fFfTwyKWevIkNKVcxjQIgkDsosUA2A58A7mP4fosuvl2o0/NPqgFNTNOziBTWfI2bJnchKA3BwNwbsfmSj2x3RCEXo7lan6D+DB/7Fz1nMFWjtgPGYLDh2MBiP7yK1L37DH6OTNTU/hn6XcIgpoGHbvQsFO3og2zU2HrB7BrEqhyoE53TZnO5xWj+6gLUpmEnmMbYmYlIyEqnSO/365Uu1BlJqZ0+kAjW3Jx907iw8PK3IcF5xcQmR6Jq4Ur01tNL/Pzl0Ry3jQQi6AgZO6l0wuLultyyU4QBBKfURevarzQ15vg4GA+//xzvvvuO5ydnZk+fTrOzs707duXKVOmGMrHaoxEzINQchU5mFpaYWLhjDJbRXxk2QcLGadOk3XpEiITExw/HGfw9ae3mo6rhSvhaeHMC573XHv/Dp1w8PQmOyOd4D+3GNyfykJyTCaHfw0BoElXb2o2qTglB11xmjAB27cHgSAQNfUz0k+cNNq5BEFg34r/kZGUiL2HF52Hjy3a8PFlzYiVmztALIVu38A7G8G8YuwMy8fSzpQeowMQiUXcOx/DzROVS4G/VvOW1G7RGrVKxcGfl5dp8Hfw0UG23dPsZPsm6Bus5FZldu7nISiVJG/dCpS+UVxQCzy+q8k8edQrOnhKT0wgJzMDkViMneuLC7pWNPQOnmJjY1m4cCEBAQG0a9eOuLg4Nm7cSFhYGF9++SUrV67kzz//ZMWK5/eYVFO+5JfsPP0aPB3VcqdsS3eCIBCfJ4hp9/bbyFwMv4PLWm7NvLbzEIvE7Ly/kz0PS85AiMUS2r07DIBLe/4iNT7O4D5VdJQKFXtX3kCRrcKtto1WhbqyIRKJcJ01C+tePUGpJHLCBLKuPL98Wxqu7NvFg4vBSGQyek/4FJnJv+Z8CQKc+wl+7gZJD8HGGz7YC23Gl2uZriTc69g9o0B+l7jwtHL2SD9eHTYaqYkJUbdvcvPYoTI5Z3RGNF+c/gKADwI+oJVbqzI5r66kHTqkGQLs5IhV586lWiPhcQbZGUqkcjHOvkUHhnGPNFMr7N09keo5L68yoPcn1tPTk9WrVzN06FAiIyPZunUrPXr0KLCDoGXLlrRo0cKgjlZjeKLu3AI04pieed8eIu8klqkPmWfOkHX5MiITE+xHDDfaeQJdAxnVcBQAX535isi0kud41WzWAk+/AFRKJae3rDeaXxWV4xvvkhCVjpmVjO4jy09B3BCIJBLcv/0Wi6AghKwsIsaMJSc01KDniHv0kGO/rwGg/eDhOPv+K9jMSobN78OeqaBSQP0+MPY4eFX862TTrt74NnJEnSuwd+V1crIqj4CmtaMzbQa+C8Dx39eQlWZc9XmVWsW0E9NIVaTSwKEB45uMN+r5SkPSH5oeMNuBA/UeApxP1B1Nyc6ttm2x14b84MnJp0apzlHR0fuKeOjQIUJCQvj0009xcio6jW9tbc2RvEGD1VRMBEHQjiJxr+uHZ31NyeDxvWRUuWXT9yQIAnE/LgPA9q23kDkbVzdobOOxNHFqQroynWknppGrLv4mIBKJaD/4AwBuHTtcLj0T5cWtU4+5ffoJIhF0GxmAha1Jebv0wojkcjx/+B7TRo1QpaQQPmqUwQYJK3Oy2fW/BaiUSmo2a1F44G/kRfipHYT8DWIZ9JgPg34Hs6LLHRUNkUhE56F+WDmYkhqfzeF1IZWq/6lZr/44eHqTlZbKqU3GnV+56voqLsZcxFxqzoL2C5BJylek9d/khIZqGsXFYuzeeqvU6zztdyp6nh1UB0+FaNeubHVHqjEOaQlxZKYkI5ZIcPatiYO7BWZWMnIVamIelo1kQea5c2RdvIhILsdh5Eijn08qlvJt+2+xkllxNe4qy68uL9HerU496rRqgyCoOfHHr0b3ryIQF5HG8Y2aoLplv5rajGRVQGxujtdPK5D7+pL7+AkRo0YbZA7e0XWrSYyKwMLOnu4fTnyahRcEOL0U1nSD5HCw84UR+6H1WKggWj+6Ymoho/uoAMQSEQ8ux3HtcMmZ24qERCqlywhNL+W1g/uIDXtglPNcib3CiquadpWZrWdWGBXxZ8nPOlm++ioyN7dSrSGoBe3O7OL6naA6eAKgadOmNGvWTKdHNZWD/KyTo7cvUrkckVikvVFG3E4qEx/i87NOAwcapdepKDwsPfj8FY18waprqzgffb5E+7ZvD0UkFvPg0nkibl0vCxfLDUV2LvtW3kClVOPT0IHmlUxdWhekdnZ4rV6FxMmRnLt3ifzoY9Q5OaVe796501w7uBdEInp+NBlz6zyl5cxE+OMd2D8D1Lng3x/GHAePynuNdPG1JmigRkDz9Lb72oGwlQFP/wDqvtIOQVBz9NdVBs+cpSpS+ez4Z6gEFb1r9qZvrb4GXd8QqDMzSdm5EwC7d94p9TrxkenkZOYiM5Hg5F10v5NSkUPSE80GAydv31KfqyKjk2DLgFLqQFRTcYkOvQeAa6062uc8/ey5dyGWyJAkWhn5s58RHEzm+fOIZDIcRo8y7sn+RY8aPTj1+BQ77+9k+onpbOu3DRuToscL2Lt70KhzD64e+IcT63/hnW++qzAKwYbm+Ma7pMRlYWlvQpdh/hVaCPNFkHt64r1yJY/ee5/M8+d5PPUzPBYtRCTRb3xEanwc+3/6HoAW/d7Ap2ETzQ/Cz8HW4ZAaCRIT6DEXAkdUumxTUTTs6MHje8mEXopl3+obDPq/lphaVqzSVHF0GPwBDy6cI+LWde4Fn6Zuq9KNf/o3giDw9ZmveZzxGE9LT2a2mmmQdQ1Nyq5dGkVxb28s2pReEiO/ZFdSv1NCRDiCoMbMyhqLCjJf0NDoFDx98cUXxvajmjImP/PkWruu9rn8zFNMWCqKrFzkRhRDzM862Qx8A5mrq9HOUxzTW07nSuwVwlLD+OL0FyzuWPzA61cGvsOt44d5cv8O986dom7rtmXsrfG5GxzNnbPRmj6n4Q0wtagcN8TSYurnh+ePSwkfNZq0ffuImeOAy6yZOgfGarWKf374juyMdFxr1yXorfdArYbT38Ohr0BQgX0tePMXcNNhGHAlQSQS0en9+sRHpJESl8XBX2/Re1yjSvGFwtrJmcB+b3B22x8c+20NNZoGIpO/eD/fzvs72Ru2F6lIyvz287GUV4xh2c8iCIK2ZGf39tsvNO8xMq8y4VFPt36nyvDeKA2l/g1evHiR33//nfXr13P58mVD+lSNkVGrVcQ8vA+Aa62nwZO1oxnWTmYFatrGIPPCBU3TokyG46iyzTrlYy4zZ377+UjFUg6FH+KP238Ua2tha6cd93By4zpUuZVnt5EupMRlcXTDHQACe9fArXbxF8WqhEXr1njM/xZEIpI2bCBh5Sqdjz23fTNRt28iNzOj9/hPkeQkw4a34OAXmsApYCCMOValAqd85GZSeowJQCIV8+h6QqXqf2rZ7w0sHRxJjYvh4t87Xni90ORQrXbcR00/opFTxfx7Z1+9Sk5ICCK5HJvXSl9JUinV2syTt79DsXZx4VW73wlKqfPUqVMnWrRowYQJE/j4449p3rw5nTt3Ji7u5dPDqYwkPY5CkZWFzMQUB8+Cyq+e9fMkC4zY9xS/ciUAtq+9Vmp1W0Pg7+DP5OaTAfjvhf9yI/5GsbaBfV7D3MaWpCePuX54f1m5aHTUKjUH1txEma3CrZYNgT2rXp9TSVj36oXL9LwxLosXk7z9+TfUqNu3OLNVE2x3HjEO2+wHsKIt3D8AUlPo+z28sRpMKo4woqFx9LQiaGBtAE5vv19p9J9kpqZ0yNtFe+7PLaQlxJd6rUxlJpOPTiYrN4vWbq35oMEHhnLT4CT9oXm/WvfqhdSu9JtAnoQmk6tQY2Ytx8Gj+GkDVb1ZHEoRPI0fP57U1FRu3rxJYmIiSUlJ3Lhxg9TUVCZMmGAMH6sxMPn9Ts41aiEWF+zz8MqTLIi4bRy9p+y7d8k4fgJEIhyMqOukK+/5vUdn787kqnOZcmwKKTlFN8HKzcxp/cbbAJzZuqFch40akvO7w4h5mIrcTEqX4f6IK7GeU2mxH/I+DqM0uz2fzJqlmbFYDNnp6ez+4b8Ighr/dh3xV1+AX/tA2hNwrAujDkPzoVWiv+l5BHTwoEZjR9QqgX2rb6DIrhwZ2Xpt2uNez5/cnBxObPilVGsIgsA3Z7/hQcoDnMyc+Lbdt0jE+vXMlRW5SUmk7tkLgN07b7/QWhEhmvuCt599seU4QRCqg6ei2Lt3L8uXL8fPz0/7nL+/Pz/++CN7ymB2VDUvzpMi+p3yya9jJz7OICOl9LuQiiNxzVoArLp2NegMu9IiEon4KugrPCw9iEqPYtapWcXuxGnUuQe2rm5kpiRzwQAp//Im6m4SF/aEAdBxcD2sHczK16FyxGnyZGz69weVisiJk8i6erWQjSAIHFi1lLT4OGydnelsfhyOfAOCGhq/A6OOgEuDcvC+fBCJRHQa4oelnQkpsVmc2HS3vF3SCZFIRKdho0EkIuTkUZ7cu6P3Gjvu7+DvB38jFolZ0H4BDmbFl7DKm+SNGxEUCkz9/TFt9GJlxfBbmuDJy7/4JvC0hDhyMjIQSyRVcqZdPnoHT2q1GpmscDOpTCZDrS77obLV6E9MaF7w9MxOu3zMLOU4emkaHg1dulPGxJCyezdAhcg65WMtt2Zhx4XIxDKORBxh3a11RdpJpFLavj0UgAt/bycjuWwkHYxBdoaSg2tvgQD127hRJ9ClvF0qV0QiEW7ffI1F27ZPVcgfPixgc+PIAe6ePYlYLKa3w3nk4cdAZg79l8FrK8Ck4jUKGxtTCxldh/sjEsHtM9HcDY4ub5d0wqVmbRq014wmOfb7z3pJF9xJvMPcc3MBGN90PIGugUbx0RCoFQoS128AwP6DYS/UvJ2ZqiA+QjP71Muv+OAp7lGY5nzunkiLiBWqCnoHT506deKTTz7h8eOnQyKjoqKYNGkSnUs5J0cfli1bRo0aNTA1NaV58+acOHGiRPtt27bh7++PiYkJ/v7+7NhRMGMgCAKzZ8/G3d0dMzMzOnbsyM2bN435EsqVXKWS2DDNTcGtiMwTgHfet4rwWwkGPXfiunWgVGIW2Byzxo0NuvaL0sChAVNbTAVgycUlXIktev5Z3dZBuNauizInm7PbN5aliwZDEASO/n6b9KQcbJzNaPdW4SD6ZUQkk+H5vyWYBgSgSk4mYuQolLGxACRERXD4l58ACHIMxZVwcPLTZJuaDi5Pt8sd9zp2BPbyBeDohjukxGWWr0M6EjToPaRyE6Ju3+L++TM6HZOhzGDKsSnkqHJo59GO4QEV50tgUaTu2o0qPh6piwvW3bu/0Fr5JTtHL0vMrYsf6/IylOygFMHT0qVLSUtLw9fXl1q1alG7dm1q1KhBWloaP/zwgzF81LJp0yYmTpzIjBkzuHz5Mu3ataNnz56Eh4cXaX/mzBkGDRrE+++/z9WrV3n//fd56623OHfunNZmwYIFLFq0iKVLl3L+/HlcXV3p2rUraWmVowFSX+IfPUStysXUyhprp6KzDd4NNCno8JuJCGrDiMmp0tNJ3rQZAIfhIwyypqEZVG8QPXx7kCvk8unxT0nOLrzjUCQS0T5vaPC1g3tJehJVxl6+OCGnnhB6OQ6xRES3EQ2QmxpPkqKyIbawwOunFch8vFFGRRExegw5iYnsXjyX3JwcvC2SaGEfCc2GaPqbnOuXt8sVgsBevrjVtkGZrWL/6ptlNuLpRbBycCSwj2bn2fH1a1HlKku0FwSBL09/SVhqGK4WrsxtOxexqOL2CAqCQOIvvwBg997gUs+xyycir2TnXULJDl6e4EkklFJq9cCBA9y+fRtBEPD396dLly6G9q0QrVq1olmzZixf/nSshp+fHwMGDGDevHmF7AcNGkRqamqBXqwePXpgZ2fHH3/8gSAIuLu7M3HiRD777DMAcnJycHFxYf78+YwZM0Ynv1JTU7GxsSElJQVra+sXfJUFycjIKPZnEokEU1NTnWzFYjFmZmZc3reLw2tW4ObfkP5TihZzEwT4Y+YFFNkqBn4WiJWLtNi0tkgkwtzcXPvvzMzMIm0T1v1G/OLF2NSuTc1dfyMSi8nKyiqx1Gth8XQ3hz622dnZqFSqUtmmK9IZuncoEWkRtHFrw4reK7SNoDk5OeTmyRT8uXAOYVcvUadFG3qN/w8A5ubm2rT4s7ZFYWZmhjhPa0WhUKBUFn/h1sfW1NQUSZ7YY1G2STEZbP/vRXIVatoN9KNFT80AW6VSiUKhKHZdExMTpFKp3ra5ubnklKDgLZfLtW0A+tiqVCqys7OLtZXJZMjzbhb62KrVarKyslBERvJo6DBUiYncD6hJqEjATKJkaL172L+5EBq9qbUtDqlUiomJRkdIEAQyM4vPyOhjq8/nvjTXiNLYZmZmkpqQxbYFF8jJzKVxJy9aD6gF6H6NKMrW2NcIRVYmv346nszUZDq8N4Im3XoVa7vt7jbmn5+PRCThpy4/0chZ0z+kz+e+LK8RGWfPEvHhOESmptTeuweJjUYI+HnXiGfJtxUEgVVTjpGenEGfjxvjUbfwjr38z/2aSWOJjwynz39mPBWOLcYW9PvcG4NS37+FSkJOTo4gkUiE7du3F3h+woQJQvv27Ys8xsvLS1i0aFGB5xYtWiR4e3sLgiAIoaGhAiBcunSpgE2/fv2EIUOGFOtLdna2kJKSon1EREQIgJCSklKal1YiQLGPXr16FbA1Nzcv1rZDhw6CIAjCnh8XCd+91VuwtbIq1jYwMFDY89M1YemYQ8K5v0IFHx+fYm39/f0L+ODv71+srbtUKiRt2aK1DQwMLNbW0dGxwLodOnQo1tbc3LyAba9evUr8vT3LwIEDS7RdcmaJ1nbo0KEl2sbGxmptx40bV6Ltw4cPtbZTpkwp0fbGjRta2y+++KJE2+DgYK3tggULSrQ9fOiw1nbp0qUl2u7atUtru3bt2hJtN2/erLXdvHlzibZr167V2u7atatE26VLl2ptjxw5UqLtggULtLbBwcEl2n7xxRda2xs3bpRoO+WjEVrbhw8flmg7btw4rW1sbGyJtkOHDtXapqenl2g7cODAAu/hkmxLc43Ix9HRsVjbwMDAAraGukb4+PgUsK0M14j09HStbVW7Rhw5ckQQBEGIi0gT3gwaX6Ltrl27BEVWlrBwUF9hUItGJdqW9hphDFJSUgTQ//5dqpzjoUOH6NOnj7Zs16dPHw4ePFiapXQmPj4elUqFi0vBUpOLiwvR0UU3KUZHR5don/9ffdYEmDdvHjY2NtqHl1fl2VEQ8zAU4LmjKPJLd49uGk6yQCSRYN2vn8HWKwtWXVvF8cjj5e2GUaiq41eMiWD6cgiIVvOUHJXhdx1XNnTtf40JC0UQ1JhYVP3NE3qX7ZYuXcqkSZMYOHAgr7yimY9z9uxZtm7dyqJFi/j444+N4ujjx4/x8PDg9OnT2vMCzJkzh99++43bt28XOkYul/Prr7/yzjNDENevX8+IESPIzs7m9OnTBAUF8fjxY9yemTA9atQoIiIi2Lt3b5G+5OTkFEgzpqam4uXlVeHLdnKZlO+HDEStUvHugh+wdix6GK9YLEadI+aXaadABG/Pblbs/KrnpeQFQSBs0Nvk3LuH0/jxeI9/+v6oiGW7Z5kfPJ/tj7ZjbWLNxt4bcTFxKZBmT09MYN3UCSgV2fT4cCJNO3evsGW7iFsJ/LNCM9i4+6gAfBs6FrCtLts9U7a7tgvhr/HsuOdGRKYt9uZmNAsOQSIIuE+ehNvYsU9tq8t2QMHPfa5CxY5Fl0h8nIGXnz29xjbCwtKiSNt/U9Zlu3weXL7A34vnIZHJGPLt97j5avrXNqNDAAAgAElEQVR1lGolw3cN51L0JXysffilxy9YyAqKQ1bEsl3E51+QvH07lq92xHPRogK2pSnb7Vx0ifCQeFoO8KFhR88ibU1MTLiy92+O/fYzvs1a0OPjKcWuWxXKdnp3is6bN4/FixcXCJImTJhAUFAQc+bMMVrw5OjoiEQiKZQRio2NLZQ5ysfV1bVEe9e8mWrR0dEFgqeS1gTNHz7/Qmdsnv3Av6htbNgD1CoVJhYWuHr7lrxt1UyzqyI+Ip34sGzqtdLtG/ezFz6AjLPnkISGYmFpiceQ9wuewkx3XSF9bJ+9WbyI7az2s3iw7wFX464y8ehEfu/5e4HfsYWFBe0Gvs2pzb9zYccmGrZ/VTsrS5/3iFwu1968jWGbmarg9JZwTGRmNOzgQYPWPoVsZTKZzhcofWylUqn2ImlIW4lEovNnQ2dblRLxoa+wOP095xM8iFU4YmEm481538OBQ8TOn0/ykv9h5uqK7YABiMVinX0QiURGsQXDXiNKa1vgc28BfT8MZMu8C8Tez+Le2QSadLEo2vY5lNU1IiCoPSGH9xFx8xqX/96G23jNjX/RhUVcSbqClaUVP/b8EWebor9w5qPP595Y1whxejrKPXswF4vxGjUK8xL+jrqsm52h5PH9FCQSKf6tvLGwKP73nC/A7FnXT+f3jz6f+4qE3mW71NRUevToUej5bt26kZqaahCnikIul9O8eXMOHDhQ4PkDBw7Qpk2bIo955ZVXCtnv379fa1+jRg1cXV0L2CgUCo4dO1bsmpUZ7S4Ib92GNfrkl+5ulF6yIGn97wDY9O+nbVisLMgkMhZ1XISDqQP3ku4x+/TsQt+Ym/d9DSsHJ9Li47i0+89y8rR4BEHg8LoQslIV2Ltb0OaN2uXtUsUkORzW9oTT3xOdZcnJOE0j/asfjMHB0wuHD4Zh/4Fm/MaTGTNJP141S7mGwsHdkrZ541vO7Ait8ONbRCIRHd7TyA6EnDxKdOg9dj/Yze8hmuvXnLZzqGFTOXaPJW3ciJCTg2lAAGbNm7/weuG3EhDUAvbuFlg7lhygRudpCLoUoSFY1dA7eOrXr18hrSSAP//8k759+xrEqeKYPHkyq1evZs2aNYSEhDBp0iTCw8MZm5dGHzJkCNPz5lQBfPLJJ+zfv5/58+dz+/Zt5s+fz8GDB5k4cSKg+cBMnDiRuXPnsmPHDm7cuMGwYcMwNzfn3XffNeprKQ/iwsMA3beQ+gTkSRbcSkBdCskC5ePHpB06DID94MqpheNs7syijouQiqTsCdtTSEBTJjeh3btDATi3cwvpScYZa1Narh2J5NGNBCRSMd1GNEAqr5gjJMqV27thRTuIPI9CasfulA6oBajbKoiGnZ5q4zh/OgXrfn01KuSfTCxShbyapzRo/3R8y/6fb6LMKb6UXhFwqVkb/3avArBn7Q/MPjUbgFENR9HZ2/gahoZAnZVF0m+agM9+6NAXEsXMJ+ya5suzb0PHEu2y0lJJidFUelxrVv3gSe9cmZ+fH3PmzOHo0aMFep5OnTrFf/7zH77//nutraFn3Q0aNIiEhAS++uornjx5QkBAAP/88w8+eWM+wsPDtXVfgDZt2rBx40ZmzpzJrFmzqFWrFps2baJVq1Zam6lTp5KVlcW4ceNISkqiVatW7N+/HyurqjfUU1/9DZca1piYS8nJyCU2LBXXmvpljpI2bgK1GvPWrTGpXXkzHs1cmvFpi0+ZFzyPxRcX42fvR0u3ltqf1w/qwOU9f/Pk/h1ObfqN7mM/KUdvnxIfmc7p7fcBCBpYGwePqt/EqRe5CjjwOZzLkz7xaM6h9I4kJwVj5ehE19HjC9x8RGIx7nPmoEpMIuPkSSLGjMVnwwZMalaOjERZIxKJePX9+sSGBZMck8nJLfd49b2KrYsV9P/snXd0FGUXh5/Zlk2vpAMJLXTpvfduA0UERLoCohTpIu3DLkiRjoooUkQR6SC9B5CaUBIghYT0utk28/2xEEBI2WTTIM85ezS7M+97N2Fn79zyu30HEnzyKPE3QnBzEChfrzmj6owqarNyTeKmzRgTElD6+uLQ9ekMkbkYjSJ3rzxwnmpn7zw9TNk5e3mjtnv+rzVmF4z7++fuQiEIAiEhIXkyqqRRkDpPlkKSJL4f3h9NchJvz/vmmXPtnsXuVZe5efY+9TqXp+mrFXO9n6jVcrNNW4wJCfgs+g6Hjh3zanqxQJIkph+bzrZb23C2cmZDjw1423lnvh55/Rq/zpgIgkD/+Qvw8M/976og0OuMbPrfGRKi0vGr7Ua392pZ5C70uSE+FDa/C5HnTT83Hc01dVt2LF2AIMh449P5+FZ99pw6MS2NO4PeJePSJZTe3pT/9VeUHtnXwrzIhAfF8+fCCyCZmhUq1S++vyuDaGDm/AG4XEwh1UHig4XrcLbJXhSyuCDpdNzs1BlDVBSen36Kc983871mRHACf3x7HrWdkne/aIEsmw7dE1t+5fjG9VRr0YZuY7IuFi9u5PX72+y0XWhoaK4eL4rjVFJIT0pEk5yEIMhwLfd0wXBWVHipDACh/8aYtV/yjp0YExJQeHlh37atWecWRwRBYEaTGVRzqUaCNoEPDnxAuv5RR5R3lWoENGsFksShn1aZNSurIDi2+SYJUenYOKpoN7BqqeP0OFf/hOWtTI6TtTO8tYGEl0axd41p/EqT19/M0nGCRyrkqvLl0UdGEjZsGMYCrPcs6fhWdaFeJ9M15+D6IFLis+58LGq+CfyGXR5X0CpF7JIFwk6cKWqTck3SX9sxREUhL+OG46uvWGTN0IuxAPjVdM3WcQKIupn1zNTnkeKrLV+KRYm5bXJmnb28MzvCckO5mq7I5AIJUekkRGXduvw4kiSR8LMp7+781lsIJbCT4lmoFWoWtl2Iq9qV4IRgphyZgig9ao1u1W8QCqWKsKuXuHn2ZJHZGXIhhiuHTWNjOgyqjrVd/sYyPDfoM+DvCbBxIGiToWxjGHEEY8UO/L3wC/QZGnyr1aTJa31zXErh4kLZ1auQl3FDe/064e+PQsym3fpFp1Evf9z9HNCmG9i39mqeaigLmt9v/M66q+vQKSX8OrcG4MSm9eizkbkoLkhGI3ErVwLgOuhdZBboBpckidsPnaccUnaSJGWm7XKb1SjplDpPLwj3zax3eoiVtQLfqiYp/pALuYs+ZVy8SMaVKwgqFU69XzfP0GKOl50XC9ouQClTciDsAIvPL858zaGMO/UfzspatwZDNvopBUVqQgYH1l0DoG7HctlOP3+hiLsFqzvCGdMXDM0/hEF/g1NZjvzyI9EhN1Hb2dNtzARkOQjIPkTl60u5lSuR2dmRfvYskRMmImWjL/YiI5fL6DSkOkorOZE3EgncebuoTXqCs1FnmXNyDgDv13mfN/qOw6GMB6kJ8QTuKH5dtP8lZe9edLdvI3N0xOnN/KfrABKj00mK0SBTCJTNYZ5dSlws6UmJyORyyvhVsMj+xZ1S5+kFIdbMTrvHqVDHlLoLuRCbq+Pjf14PgEO3bihcnr8v7zrudZjVbBYAKy+t5O+QvzNfa/Ryb2ydnEmMvse5Qr7oiqLEvh+uok0zUKacPY1ffjEuYjlyaTMsbw1RF8HGFd7eAh1ngVxJyPkzBP79BwCd3/sQe9fs77D/i7pqVXyXLEFQKknZu5eoOXOKPGVbXHEsY0Prt0xRiTN/3+beraQitshEeEo4Hx38CINooItfF0bWHolCqaTFWwMBOLNtM+lJTw8JLy5IokjsMlPK2aV/f+R2udfnyo6HKTufKs45Dg9/KFHgVtbPrMxGSabUeXpByM+ka7/abiDA/dvJpCZkn5owxMaS/ECZ3bmEyhPkhp4VezK4pkkX5pNjn3Ax5iIAKmsbWvYbBMDJLRtIjjWvViw/nN9zh4jgRBRWcjoNqYFc8YJ/vPUa+GssbBkCuhQo3xxGHoXKpiHmqfFx7FryLQB1u/akUoPG2a2WJbaNG+H95ZcgCCRu+I3YpUst9haeNwKaeFGlkQeSKLF3zRW0mqwVtguDVF0qYw6MIVGbSA3XGsxuPjuzPrBq05Z4VKiETqPhxJYNRWpndqTs24c2KAiZrS0uA/pbbN3QB5kG/xxSdvCo0+5FqXeCUufphcCg1xMfGQ7kzXmydbTC098kU5BT4Xjipk2g16N+qTbWtWqab2wJYmy9sbTxbYNO1DH2n7FEpZk0Tqq3bIt3QHX02gwOrVtdKLZEhyZzepvJQW71ZmWcPHKv4vxcEnMdVraHwB8AAVpNhIHbwMHUISmKRnYs/hpNSjJl/CrQ6u3B+drOoUtnPGZMByB20WISftuYzzfw/NL6rQAc3NSkxGVwaH1QkUXqjKKRSUcmcTPxJmWsy7Cw7UKsFY9EIAWZLPPfxcV9O0mIiiwSO7NDEkVil5icdeeBA5A7WWb2Ykp8BlEhySA8yjxkx8Ni8RdBHPMheXKejhw5Qv/+/WnatCkREabC1HXr1nH06FGLGleKZYiPCEM0GlHb2mHn4pqnNR6l7rJ2niRRJHHTZgBcnkOR0f8iE2R81uozKjtXJlYTm9mBJ8hktB88EkGQcf3kUe5cvFCgdugyDOxZfRlRlKhU352qTb1yPul55t8NsKIN3L8CtmVgwFZoNx3kj1IPp7duIuzKRZRWanqM/RiFBWZnufTrh+t7JsHeqFmzSCngYeklFZW1go6DayDIBG6cvU/wyayHsBckC84t4HD4YazkVnzX7js8bJ8eyVWuZm3869RHNBo5+utPz1ilaEnZuw9tcDAyOztc33nHYuuGnDdd570qOmLrlH0aThJFokNMenJeL0ixOOTBedqyZQudO3fG2tqa8+fPZw70S0lJ4X//+5/FDSwl/zyesstry7p/HVPoNvJ6Ihlpzy6ETjt+An1kJDIHB+w7d37mMc8btkpbFrVbhIvahWvx15h0eBJG0Yi7XwXqdO4OwP61yzAaCq54/PCG6yTHZmDnYkWbtwNeXFkCXRr8MQq2jgB9Gvi3MqXpKj4plREedIXjm38BoP2Q93Dxfvag07xQ5oMPcOrTG0SRiHHjST971mJrP094VnCkUQ9TFPzQhusk3s96EHJBsDF4Iz9c+QGAOc3nUNMt6yh5y7ffBUHg+smj3LsRXEgW5owkisQuNjWsuFgw6gRw69x9ACrWy1mTKy78LjpNOgorK1x9y1nMhuKO2c7T3LlzWbZsGStXrnxiOGizZs04d+6cRY0rxTLE3DHJFOQlZfcQJ3cbXLxtEUWJ25eeXTieuGkTAI49eyIzYzhvScfHzoeFbReikqk4GH6Qz05/hiRJNHvjbWwcnUiIDCewgObeXT8dRfDJKAQBOg6ugZVNwU0fL9bcvwYr28GFn0GQQZupMOAPsPd84jBNago7vvsKSRSp1rIt1Vu1s6gZgiDgOXMmdu3aIel0hL0/iozg6xbd43mhXpfyeFd2wqA1snf1FYwGMeeTLMDh8MPMOzUPgPdfep+u/l2zPb5MOT9qtDaNZzn085pi0xCQsmcv2hs3kNnZ4WLBqFNqgjazmL9i3Zydp4jgqwB4V66a607V5wGznafg4GBatWr11PMODg4kJhbfjoQXmZg7twFwK++Xr3Uq1jWl7m6evf/Ua4a4OFIOmObYOb3RJ1/7lETquNfhs1afISCwIXgDP139CbWtHa3eNg2TPbllAylxuetWzC1JMRoO/mK6E27QzQ/vSpa78ywxSBKcWwcr2kJMENh5mmqb2kwCmfw/h0rsWfYdKXExOHl60WHIewUSpRMUCny+/grrevUQk5MJGzYM/YPyhlIeIZMJdHi3OlY2Cu7fSeH0XwUvrHwl7goTDk1AlEReqfQKI18amavzmr/RH4VSRUTQFULOnS5gK3NGMhqJWbwIAJeBAy06dP3WedP13bOCI3bOOXfORQSbpFG8A6pbzIaSgNnOk5eXFzdv3nzq+aNHj1KhQmlrdHEkLiIMADff3CuLP4vKDU01AWFX48lIfTINlfTHn6ZC8Vq1UAcE5GufkkrH8h2Z0MA0luCrs1+x+/Zuqrdql1k8fvDHlRbbSzSK7F1zBX2GEa+KjjTo5mextUsM2lRTim7baDBooGI7U5rOv+UzDz+3Yxs3z5xAJlfQY+wkVNYFV1Qvs7am7NIlqCpVxHD/PncHD8EQF1dg+5VU7F3UtBtQDYBze+4SFlRwg7UjUiMYvX80GoOGpl5N+aTpJ7l2nu1d3ajXrRcAh9f/gFjEel5Jf25Dd/MWMkdHXAZZLuoEj1J2uR2jExFkijz5VC11nrJlxIgRjB07llOnTiEIApGRkaxfv54JEybw/vvvF4SNpeQDbXoaaQmmC5KLT/5qO5w9bXEra4coStw89yj6JEkSiZtNheJOfXrna4+SzoDqA+hX1VQsP/XIVM7fP28qHpfJuH7qGDfPnrLIPmf+vk10aDIqawUdBldHJn/BGmejLsOK1nDxNxDk0P4Tk36T3bM7gyKCrnJ4/RoAWg8YjEeFgh9ULXdyotyqVSi8vdDducPdoaVjXJ5FhbplqNHSGyTYt/YqmlSdxfdI0ibx/r73idXEUsW5Ct+0+QalzLwUd6NX+qC2dyA+IozLB/da3MbcImq1mVEnt+HDkVtwnmpa0qOUXYW6OXfZpcTHkhwTjSDI8K78Yt00m33F/fjjj3nllVdo27YtqamptGrViqFDhzJixAhGjx5dEDaWkg/iwk1RJztnF6xs8i+e9jD6dONMdOZzmrNn0YWGItjY4NCte773KMkIgsDHDT+mbdm26EQdH/zzAWnOAg16vgbA/tVL0abnrzg24noCZx8oNLd5OwAHV+vsT3iekCQ4u8ZU3xR3E+y9TUrhLceD7NmXs/SkRLYv+AzRaKRK05bU7dKz0MxVenpSfs0a5K6uaK9dI+y99xE1mkLbv6TQvE9lnD1tSE/SceAny8oX6Iw6PvznQ0KSQnC3cWdJ+yXYqezMXsfKxpamr5nUu49vLLqxLYkbNmCIvIfCwwPnty3b1XzrXAxI4OHvgL1LznWrkQ9SdmXK+xdoJLc4kqfb1Xnz5hEbG8vp06c5efIkMTExzJkzx9K2lWIB4h+k7Fws1AVRuYHJeYq8mZgpmPkw6uTQravF1G1LMnKZnM9bfU4tt1qZd7xVunfCycOL1Pg4jm74Mc9rZ6Tp2bf2KkhQtZlX5t/jhSAjGTYPhu0fgVELlTub0nTlm2Z5iiga+fu7L0lNiMfF25fOI8YUejeiys+PcqtXIbO3RxMYSPgHY5F0lo+ulGSUKjmdhtZAphC4fTGWy4csUyMmSiIzjs3gbPRZbJW2LG2/FE9bz5xPzILaHbvh6O5BWmICZ//eahEbzcGYmpqpJu42epTFG3Me3hTnNmUXfu0KAN4B1SxqR0nALOfJYDCgUCi4fPkyNjY2NGjQgEaNGmFnZ74XX0rh8LDeydWnrEXWs3dR41XJESS4GRiNMSmJ5F27AXDu8+IVimeFtcKaRe0W4WvnS3hqOGMOj6XF4CEAXNizI7NOwBwkSeLg+iBSE7Q4ulvT8o0XR5COyAumNN2V30GmgI5z4K0NYJu9btmJTb9w9/K/KKys6DluSpHdHaurVqXs8mUIajVpR44QMWlS6Ry8/+Dma0+zV03p1GObbxIXkZqv9SRJ4oszX7AjdAcKQcE3bb4hwCV/qSWFUkmLvg/Htvxe6GNb4tesxZiQgMrPD6dXX7Xo2on304kKSUIQyPVNWfjVSwCUrf58CyI/C7OcJ4VCQfny5TGWfuhLDJmRJws5T/Dog3XjTDRJf21H0mqxqlIFde3aFtvjecDV2pXlHZfjonYhKD6I+VHLqNamPUgSe1YsMntw8NWjkdw6F4NMLtBpSI0c5009F0gSnFphGuobHwKOZeHdXdD8gyzTdA8JOX+Gk7//BkCn4WNwK5u/hon8YlOvHr6LFoFSScrOXUR9OqvYtL0XF2q386VcDVeMBpE9q69g0OX9u2bFxRWsv2aaszm7+WyaeTeziI0BTVviUaEy+gwNJ7b8apE1c4M+Opq4tWsBKPPhWASFZT//10+ZxEp9q7nkKIwJkJ6cRGzYHdM51WtZ1JaSgNlpu+nTpzNlyhTi4wuuK6IUyxEfYRrL4prPYvHHqVTfHUEmcP9OChG/7wHAqXfvF1ecMRvKOZRjWYdl2CntCIwOZHf5G9g4OhEfEcbpP3I/wiMuMpUjG03zoxq/XAH38pYrEi22aBJh40DYORGMOgjoDiMOQ9mGOZ6adD+anYu+BuClTt2p1qJNARubO+xatsDnyy9AJiNx0yZivv66qE0qVgiCQPt3qmHtoCI+Mo3jW57u7M4NvwX9xuILJgHJyY0m07Oi5ercTGNbTBIkF/ftIj6ycGQoYhYsRNJosK5b1+IixJIkEfzAeQponLu0Zvi1ywC4lS2PjYPlpBJKCmY7T9999x1HjhzB29ubgIAA6tWr98SjlOKDXqcl8b7pA2HJyJO1vYqyVZ0BuJteBkGlwrFX4RXhljSquVZjUbtFWMmtOBBzhOhmpgvNqa2biLl7O8fzDToje1ZdwagXKVfdhbodXgAV3/BAWN4Srm0DmRK6fAZ914ONS46nGnQ6/vr2MzLSUvGsVIU2A4cWgsG5x6FLFzxnfQpA3KrVxK60nITF84CNg4oOg0w1NJcOReQ4T/O/7ArdlSmCOfKlkbxdzfIDysvVrI1/3QamsS35qGHMLZorV0j64w8APCZPsviNatStJJJjM1BayXM1yw4g7IppGPqLGHUCMDvu98orrxSEHaUUAAmRESBJqG3tsHG0rIBiQFNP7l6N555nE16qJlp0NMDzSAPPBnzV+is+/OdDtkiHeadSPcSbcexc/DX95n2T7Wy1o5tvEh+ZhrWDivaDqiPInuMInyTByaWwdyaIenAqD33Wgk/9XJ4usW/VEqJDbqC2s6fnh5MtMrfO0jj36YOYnML9L78k5utvkNs74Nz3zaI2q9hQrrordTqU5cK+MA78FETfGQ65SiUdizjGlKNTkJB4M+BN3n+p4ORzWvUbxO0L57hx6jiR14PwrlK1QPaRJIn7n30OkoRDjx5Yv/SSxfcIehB1qli3DEqr3KmEh10x1TuVq/FilmuY7TzNnDmzIOwopQB4vN7J0ncq/tWdUBg0aNUupDfuZdG1n1falG3D7OazmXZ0GhvLX6BvZEVi7oRyfNN6WvUb9Mxzbp27z5XDprRAx0HVsXFQFaLFhUx6PPw5CoJ3mH6u/jL0WgTq3KcEzu3YxpVD+xEEGd3HfoxDmdx1DRUFrkMGY0xOJm75cqJmzUJma4tjzx5FbVaxocnLFQkPTiA2LJV9P1yl1wd1sr1xuHD/Ah8d/AiDaKCrX1emNp5aoKUEbuX8qNGmPZf/2cvh9Wt489PPC2S/lH37SD9zBsHKCvdxH1l8fYPeyK1Ak25fQJPcpezSEhOIC78LgE+1Gha3qSTwAlScvrjEPah3smTK7iEZp0/gEX2aCJ/WhCa78uLM0s4fvSr2IkmbxBdnvmB/1XDanXPnzLYtVKjbAN9qT3asJMdp+OfnIADqdS5H2eo5p6xKLGGnYdO7kBwOchV0/h80HApmfBnduXiBQ+tWA9B6wBD8atctKGstRpkPxyKmJJPwy69ETp6MoFLh0LlTUZtVLJArZXQaUoON/ztDeFAC5/fepV7nZxf9B8UHMWr/KDQGDc29mzOvxTxkQsELxzbr8zZBRw8REXSVW2dPUalhE4utLUkSurQ07q1Zi+jlhVPfNzG6uGC0sL7UnStxCEoRl3JqXMtZk5GL9W9fvoiNixsuPmWRqaxydU5RIZfLUSgUFndsc+U8OTs753rj0kLy4sPDyJOrr+Wdp6Q/t+F97zIRPq0JuRhLRpoetW3xS48URwZUH0CiNpEVrOCGbyqVw+3YueRbBn6xCCsbUyu9aBTZu/oq2nQDHv4ONOr1nI4+EkU4/h3snw2SEVwqQJ8fwMu81ERCVCTbF3yGJInUaN0+c5RGcUcQBDymT0fUZJC0dSsR48cjKBdi386yA4tLKs6etrR8swr/rAvi1J8h+AQ44+H3ZLPEjYQbDNszjGRdMi+VecmkHi4vnGuRvasb9bq/zOk/NnHklx+oUK+hRYbj6nQ67t27R8q9e4hDBoNcTpK7O8mhoRaw+kk0Rh21ejqispZz+8Ec1JzQqtTUe+tdVDY2hBaATZbGxsYGLy8vVCrLRe5z5TwtWLAg8//j4uKYO3cunTt3pmlTkzjdiRMn2L17NzNmzLCYYaXkn3gLazw9xJiUROqBA9jrdLi4KYiPNXD9dBS121reSXteGV1nNDqjjvX6H/GMU0NMNP/8sIIu738IwOntoUSFJKFSy+k0pAby53H8SlqcaTbdzQejLmr2hp4LwMrerGV0mnT+/HIuGWmpeFUKoMPQUSWq81OQyfCaOwdJryd5+3Yixn6I75LF2D1jAPuLSLVmXty9Es+tc/fZu/oKb0xrmCnTEZIYwtA9Q0nUJlLTtSbfd/geG2Xhank1erk3F/fvJj4ynMv/7KV2hy75Wk8URUJDQ5EBHjY2KGxsUHl5Ibc373ORG4x6kcT7pokHju7WKJQ5O36SJBEfGYFoNOBYxgOVdfGdcCBJEjqdjpiYGEJDQ6lcuTKyHCROckuunKd33nk0ePD1119n9uzZT4xi+eCDD1i8eDH79u3jo48sn5MtxXxEo5GEe6ZaGUun7ZJ37UbS6bCqXJka7f058tsNrh67R602viXqS6soEQSBcfXHoRf17E3ZTNeTHlw5tI+K9Rth7ViVwF0m/ZQ2/avi4FZ8L0555s5x2DwEUiJBoYaun0O9d8xK08EjBfG48LvYObvQa8I0FBa8uywsBLkc78/mIxkMpOzaRfjoMZRd9j22zSyjTVSSEQSBNm8HEH07iaQYDUc2XKf9oOrcTrrNkD1DiM+Ip5pLNZZ1XIa9yuoLMb4AACAASURBVPIORk5Y2djS9PW+/PPDCo5vWk/VFq1RqfP+mdXpdIiiiKdKhUqvR2Zri8rNrUCuramaDJQKFSq1Ajv73Dmdep0WORIKhQJ7R0cECzkjBYW1tTVKpZI7d+6g0+lQW0iV3ex3vXv3brp0edqz7ty5M/v27bOIUaXkn8ToKIwGAworKxzcctd6mluStm0DwPGVl6nSyBO5QkZceCoxd1Msus/zjiAITGo4ibZNX+FyBdPA2O3ff82ulSdAgurNn8PxK6IIh7+EH7qbHCfXyjB0P9QfZLbjJEkS//ywgpBzZ1AoVfSaMA0755JbFyYoFPh8+QV27dsj6XSEvT+KtNOni9qsYoHaVknHwTUQBAg6GcWJQ1cZsmcIsZpYKjtXZkXHFThaFZ3W0Esdu+Lo4UlaYgKB2//I93piRgZSWhoIAkpv7wJxnCRJIiPNJNSrtst9mlP3YDanytq62DtOD7FUtOmJNc09wdXVla1bn57p88cff+Dqmv2ohFIKj8xOOy9fi/4D1929iyYwEGQyHHr0RG2rzJy+/bArrJTcIwgCUxtPpXzXNsQ6aBE1WpLv/YGThxUt3nzOyvBT78PPr8GBuSCJULsvDD8Innkb7RC4fSsXdv8NgkDXMePxqlTyp7oLSiU+336DbetWSBkZhI18j/Rz54varGKBdyUnGnTzA+DUxtto4g1UdKzIyo4rcVIXrVSKXPH42JYtpCUm5HktMT0dY1ISAApXV2RWOUs05AVtugHRKCGTC1jZ5L53TKt56Dy9WIOA/4vZ36qzZs1i8uTJdO/enblz5zJ37lx69OjBlClTmDVrVkHYWEoeiMuUKbCcsjhA0ra/ALBt0gSlh6kNvFZrHwCCT0eTkWreyJFSQCbImNlyFg5Vu4NghWS8h85uD0pV/gtPiw2hh2FZCwj5BxTW8PJSeG05WOVtLub1k0c59PMaAFr3H0yVxs0taW2RIlOp8P3uO2ybNUNKTyds+HA0Fy8WtVnFAu9WVsQ7haM0qukWOowVHVbial08btoDmrTAs2Jl9NoMTmzO+9iW+HU/g9GIoFSiKGPZrMHjaFIfRp1UuY5siaIRvUYDmNKVLzJmO0+DBg3i+PHjODk58fvvv7NlyxYcHR05duwYgwYNKgATS8kLBVEsLkkSSX/+CZhSdg/xrOhImXL2GPUiV49FWmy/F4mIoEQcbtZGaWNqU48/G8jG7UuL2CoLIBrh4Gfw08uQGg1lqpmiTXXzrvocEXyNHYtNY03qdO5B/e7Pn3CvzMoK3yWLsWnUCDE1lbtDh6G5dKmozSpS7ibf5d29g9hRYRV6RQbOid7c2ptU1GZl8sTYlv27iI8MN3sNzcWLmWURCnd3BAt07j0Lg96IPsMAgLVZKTsNkiQhVyqRF0Px2cIkT/mcxo0bs379es6dO8f58+dZv349jRs3trRtpeSDhx9cS0aeNOfPow8LQ7Cxwb5Dh8znBUGgdlvTPpcOhiMaRYvt+SKQmqBl75orIEGNNi3RvOQGwK1ft7PpRMGPfigwUqJMTtPB+aY0Xd0BMOwAuOddiTkuIow/vpyDUa+nYoPGtB007LltUpBZW1P2+6VY16+PmJzM3XcHk37+xUzhhSSGMGjXIKLSonAr40jLfpUAOLf7LiEXzBvfUpCUrVGbCvUaIokiR3/9yaxzJb2ee9NngCgiWFsjty24yI4mxRR1UlkrkCty7wZo09MAU9TJ0p+7uLg43N3duX37dq7P6d27N998841F7cgteXKeRFHk+vXrHD16lMOHDz/xKKV4kBh1DwBnLx+LrZn0p+mOyKFTJ2Q2T+a7KzVwx9peSWqCltB/Yy225/OO0Siye+VlNCl6XH3taN03gEkTl2PwskNlkHFp5S9s+PfnojbTfG4dMKXpbh8BpS28thJeXgyqvNdJJN2PZvPc6WSkJONRoTLdx0xEJnuOUpvPQGZrS7kVy7Fp2BAxNZWwIUNJP3u2qM0qVILjg3l397vEaGKo7FyZtV3WUr9ZFV5qZ4qq7//hKonR6UVs5SNavvUOgiDjxunjRARfy/V5cavXoL1+HZmDA3LHgit+F0Ups7zC2j73namSJD3hPGVFq1atEAQBQRBQKpUEBATwyy+/5Lj+/Pnz6dmzJ35+frm26ZNPPmHevHkkJyfn+hxLYbbzdPLkSSpVqkS1atVo1aoVbdq0yXy0bdu2IGwsxUw0qSlkpJo635w8vCyypqTXk7J7NwAOzxghoVDKqdHS5Khd/Mf8cPWLyomttzL1nLoMr4lCJUeptGLUzKVIdioc05ScXLmGny6XkAiU0QD758C61yAtBjxqwohDUPuNfC2bGh/HprnTSI2Pw9W3HK9N+RSlhVqOizsyW1vKrliOTdMmiOnp3B02nLRTL0YX3pXYKwzePThTjmBNpzW4WZsis01fr4hXRUd0GUZ2rbiEXmssYmtNmMa2mCLzh39egyRJOZ6TERxM7JIlpvOHDyvQLjZNiu5B6k2GSp37mw+9NgPRaESQyVBZP/uzJ0kSFy5cYP78+dy7d4/r16/TokUL3nnnnWzFNDUaDatXr2boUPOGeNeuXRs/Pz/Wr19v1nmWwOy/0MiRI2nQoAGXL18mPj6ehISEzEdBqosnJCQwYMAAHB0dcXR0ZMCAASQmJmZ5fHx8PGPGjCEgIAAbGxvKlSvHBx98QFLSkznyhx7y449ly5YV2PsoDBKjTHVHds4uFvuCSTt5EmNiInJXV2yzSNHWaOmDTCYQeSORmLBS2YKcuHX+Pv/uM9WmtX+nOk7uj6Iyds4u9J/6OShklI2x4cD6Vay6tKqoTM0dSRHwY0848hUgQYPBMHQfuFXO17LpyUlsnjeDpOgoHD086T1tDjYORdeWXhSYUnjfY9uiBZJGQ9iIEaQeO1bUZhUo5++fZ+ieoZnK4as6r3qiq04ul9F5WE2sHVTERaRx8JegXDkqhUGzN/qhUFkRef0awSeOZHuspNMROWkykl6PXbt22BWgurwkSWhSdADYOOS+UBxAm/Z4yu7ZrsONGzdISUmhRYsWeHp64u/vz9SpUzEYDFzMpulh586dKBSKTOHth/z666+o1WoiIh51cg8dOpTatWtnfpf36tWLX3/Ne4F+XjHbebpx4wb/+9//qFatGk5OTpnOzMNHQdGvXz8uXLjArl272LVrFxcuXGDAgAFZHh8ZGUlkZCRfffUVly5d4ocffmDXrl0MGTLkqWPXrl3LvXv3Mh+Pi4KWRBLvmZwnJy9vi62Z/LdpWKtD584Iime3tdo5W1Gxnqk75Pyeuxbb+3kkMTqdAz+aQvp1OpbLlHt4HM+Klen23jgAaoU4smvrar4N/LbYfEE8wfU9pjTd3eOgsofea6DHt6DMn8CnNj2N3+fPNIlgurjSZ/pc7FyKR3dVYSNTq03K461bI2VkEP7e+6Q+p6USxyKOMWLvCFL1qdT3qM/yjstxUDk8dZytkxWdh9ZAkAlcPxXN5UPFQy7F3sWNhr1eA+DQutXoMjRZHhuzZCnaoCDkzs54zZ71lEMjSRLpOoNFHvEJGaRlGNCKIqJSyPH4h9cakyZUKgDqbGqxAgMDTTWwtWtnPhcebspEeHhkrVl3+PBhGjRo8NTzffv2JSAggPnz5wOmbv/du3ezc+fOTH+jUaNGnD59Gq1Wm+X6BYHZg4EbN27MzZs3qVSpUkHY80yuXbvGrl27OHnyZGZh+sqVK2natCnBwcEEBDyt71KzZk22bNmS+XPFihWZN28e/fv3x2AwoHjMAXBycsLTM3fTpEsCCQ8iT04elnGeRK2WlAcCqA7dumZ7bN1O5blx9j43z0bTqIc/Th4vthbIs9BlGNi5/BK6DCNelRxp8krWc+uqtWhDwr1ITmz+hcZXXNir/pU4TRwzm81EKSsG3S5GvWku3fHvTD97vQS914JrxXwvrU1PY8v8mUSH3MTa3oHe0+fi6P78fE7zgszKCt9F3xH+0ThS9+8nbNRofL766rkaJvzXrb/45NgnGCQDzbybsaDtAqwVWTvhPlWcafpKRY7/fpOjm25Qppw9nhWKPjLZ8OXeXD18gKT70Zz6/Tda9hv01DHp588Tt3IlAJ6fforCzQ3Df4bsavRGqn+yuzBMfoqrsztjo1Jg0Okw6vUIgoAqm3qnc+fO4e/vj4ODydENDg5mwoQJ1KlTh0aNGrF9+3bGjx+PKIpMmjQpM013+/ZtvL2f/r4SBIF58+bRu3dvvL29WbhwIUeOHMHH51Etr4+PD1qtlqioKMqXf/bg6ILA7MjTmDFjGD9+PD/88AOBgYFcvHjxiUdBcOLECRwdHZ/o6GvSpAmOjo4cP3481+skJSXh4ODwhOMEMHr0aNzc3GjYsCHLli1DFLPvFtNqtSQnJz/xKE48Kha3jPOUduQIYmoqCg8PrOvVy/bYMuXsKV/LFUmCc7vvWGT/5wlJlNj/4zXiI9OwcVDRaUjNHOfWNe39FrXadUKGQOvzbhw/u5MP//kQjSHru9lCITEM1nZ75Dg1GgFD9lrEcdKkprBpznTuXQ/CytaW16fNsfiMxpKKoFLhu+Bb7Lt0Ab2eiI8+InHz5qI2yyL8eOVHph6dikEy0M2/G4vbLc7WcXpInY5lqVC3DKJRYvfKy6Qn6wrB2uxRqqxo885wAM5u/+Mp6QJjaiqRkyaDKOLQq2exdoC1D6JOVjY22ap1BwYGcvv2bezs7FCr1dSpU4caNWqwa9cuRFFk3LhxHDhwgHPnzvH5559nlvpoNJosx6b06NGD6tWrM2vWLLZu3UqNGjWeeN36wWy99PTCbRowO/L0+uuvAzB48ODM5wRBQJIkBEHAaLR80V5UVBTu7u5PPe/u7k5UVFSu1oiLi2POnDmMGDHiiefnzJlD+/btsba2Zv/+/YwfP57Y2FimT5+e5Vrz588v1oKgmZEnT8sUiyfv2AmAQ9euuSpkbNDVjzuX4gg+GUWD7n44uD6Hs9nyyNmdtwk5H4NMIdB1ZC3snHNWDxYEgQ5DR5GaEE/o+bN0OOvBbvkJhmqHsqTdkqJRVw7aAX+8BxmJYOVo6qSr3ssiSz+scYq5HYLa3oE+0+fi7pd1dO5FRFAq8fn6K6Ls7UjctJl702dgTErGdcjgnE8uhoiSyDdnv+HHq6bGiAHVBzChwQRkWdTW/BdBEGg/sBrxkWkkRqeze+Vleo2tY1YbfkFQsX4j/OvUJ/RCIAfWLuf1qbMzvy+jZn6K/u5dFN5eeE6bluUa1ko5V2d3zpcdkiSRdF+DXmtEbafC3iV3quXWSrmpTupBA5KVbfaitufPn2fixIkMHToUGxsbvLy8MtOQx48fp0aNGplRo27durF7927eeust3NzcSEh4tir77t27CQoKwmg0PjP199ABK1OAgqLPwux/WaGhoU89QkJCMv9rDp9++ukzC7Yff5x90Jb7rMK2hw5bTiQnJ9O9e3eqV6/OzJkzn3ht+vTpNG3alDp16jB+/Hhmz57Nl19+me16U6ZMISkpKfMRFhZmxrsueDIjT575jzyJ6emk/PMPAA7du+XqHM8KjvhWdUYUpdLap8cIuRDD6b9MHSet3wowK7Ugk8vp+eFkvKpUxUovo/NpT+7eusbAXQO5l3qvoEx+GoMOdk2FDW+ZHCfvejDysMUcp+TY+/z26WRibodg4+jEm5/8r9RxygJBLsdz9mxch5rqOO9/+SX3vymmNXHZoBf1TDs6LdNxGld/HBMbTMy14/QQlbWCriNqoVTLibyRyOEN14v8dyEIAm0HDUeuUHDn4nlunjkBQNLvv5P8998gl+Pz1dfZShMIgoCNSpGvh0IUUIhgrVLg5mad6/MEQUCv1ZpSdjIhW+cpJCSExMREOnbsSKVKlfD+z0y+yMjIJ9Jtvr6+mYXgdevW5erVq0+tee7cOfr06cPy5cvp3LkzM2bMeOqYy5cv4+vri5ubW85/EAtiduTJkjnF0aNH07dv32yP8fPz4+LFi0RHRz/1WkxMTLZFaAApKSl06dIFOzs7tm7dijIHVdQmTZqQnJxMdHR0lmtbWVlhVUDzhvKLpWUKUg8eRNJoUJYti7pm7meQNejqR3hQAteO3aNBVz9snYrn76uwiI9MY99a08WhVhtfqjc337FVqtW8PmUWm+dOJ+rWDbqe8WKHEE7/Hf1Z2mEpAS4FPNst4TZsehciz5l+bjoa2s8ERe61YrIj5k4ov8+fSWpCPHaubvSZPhcXb8uOF3reEAQB9wkTkDk6EvP1N8StWIExKQnPT2YUmDq1JUnVpTLh0ASORR5DLsiZ3Xw2vSrm3RF38bal05Aa/L30IlePRuLqY0vttkWb7nX28qFBz9c4tXUjB39ahZedE1Fz5gJQZuxYbOrVLdD9JUkiLdFUTG1tpzQ7Gvfw+8TKxi7HlJ0gCNSvXz9LO/7LQ+eqc+fOTJkyhYSEBJydnQFTHVT37t2ZPHkyAwYMoHr16jRs2JDAwMAn9jhy5AidOhV+yjNPMc1169bRvHlzvL29uXPHVNeyYMEC/nwwuiO3uLm5UbVq1WwfarWapk2bkpSUxOnHJoyfOnWKpKQkmjVrluX6ycnJdOrUCZVKxbZt27LMqT7O+fPnUavVODkV7aDJvGJpmYKkHQ+67Lp1M6ut1buKE14VHTEaRAJ33s63HSWZjDQ9O76/iF5rxKeKE8375L3ZwsrGltenzsHdvyJWWoHup70xRiUycOdADocXYOfV1W2wrJXJcVI7wVsboPM8izlOdy//y4aZk0hNiMetbHn6zfmq1HEyA7dhw/CcPQsEgcTffiNiwgREXdHX/WRHZGokA3YO4FjkMawV1nzX7rt8OU4P8avlRtNXTXV3RzfdJOxawUno5JbGr7yBvWsZkmPuc3D6x0gZGdg2a5YZNSxIdBoDBp3RFMFyNO/zKklSpvNkbW+f7bHnzp2jUqVKWX53+vj4PCE5EB4ejpeX6Qa/Vq1aNGjQgI0bNwKmVFzXrl3p1asXU6dOBaB+/fr07NmTaY+lODMyMti6dSvDhg0z631ZArOdp++//55x48bRrVs3EhMTM2ucnJycWLBggcUNBKhWrRpdunRh2LBhnDx5kpMnTzJs2DB69OiR2WkXERFB1apVMx2slJQUOnXqRFpaGqtXryY5OZmoqCiioqIybf7rr79YuXIlly9f5tatW6xatYpp06YxfPjwYhtZyolMmQILpOyMKSmkHTJ9ITt0y13K7iGCINColyndcuVIZLFSAC5MjHqRncsukRSjwd5FTedhOReI54Tazo7e0+bg7lcRlRa6nfLGMUpkzIEx/Hz1Z8umKvQZsGMibBwA2iTwbQQjj0JA9l2XuUWSJM7v+ovN82ag06TjW70mb876HHvXwg3BPw84v/EGPt9+A0olKTt3ETZ4CMZstPCKkosxF+n3dz9uJt7EzdqNNZ3X0Mq3lcXWr9uxHAFNPJFEUwF5UV9/lGo1rQeaHKXrcol0Lw+8P/+sQMUw4T9RJ3ul2dcebXoaotGITC5HZZ195/T8+fO5fv16lq83atSIy5cvExERQUpKCjt27KBz50e1XDNmzGDhwoWIooiLiwvXrl1j+fLlT6zx559/smvXrsyfV69eTePGjWnSpIlZ78sSmP2XW7RoEStXrmTatGnIHwsLN2jQgEsFOLhy/fr11KpVi06dOtGpUydq167NunXrMl/X6/UEBwdnVtwHBgZy6tQpLl26RKVKlfDy8sp8PKxRUiqVLF26lKZNm1K7dm0WLlzI7Nmz+frrrwvsfRQ0CQ/qnSzhPKXs34+k16OqVBGrKuYLHfoGOFO+liuiKHFi661821PSkCSJ/T9dI/JGIiq1nO6japs1DiE7rO0deGPmfMrVrI3cINHprCflItR8fuZz5p6ci17U53+TuFuwuiOcXmH6uflYeHcHOFkmDWLQ69mzfBEH1i5HEkWqtWjD61Nmo86hKLWUrHHo0oVyy5chs7Mj/exZbr/VD10xq8ncFbqLd3e9S1xGHAHOAfza/VdquuW+JCA3CIJAm7cD8KzggDbdwN9LL5KRZoHPRD5wvXQN96Q0JJnAtTrVkLsWvF6ZNt2AQS8iyARsHMy/9mhSTJ3k1vb2+Z5lp1Ao+Prrr2nbti1169Zl4sSJuD72O+jWrRsjRox4IjqVE0qlkkWLFuXLrrwiSGbeplpbWxMUFET58uWxt7fn33//pUKFCty4cYPatWuj0RRx+3QRkJycjKOjY6YUQlGyY9FXXDt6kBZvvUPjV/rka627w4eTdvgIbmNGU2bUqDytEReZym9zTiNJ8OqEenhXKpnp0LxwalsIZ3fcRiYT6DHmJcpWc7H4Hga9np2LvuL6KZPa9MWKSZyvkkgT76Z81earZwoL5orLW2DbWNClgI0rvLocKne0mN2J0VH8/d0XRN28jiDIaPX2IOr3ePW5HfJb2GQEXyds5EgM9+4hd3U1DRh+TLiwKJAkiWUXl7H0wlIAWvu25otWX2CjLDgtuLQkLZs/O0tqghavio70GlsHharwa8FSjx0jbNhwNHKBo7UrozfoaTd4JHU7Pz3qKiMjg9DQUPz9/XNVapIVkigRfy8No0HE1tHK7LpTo8FAzN1QkMCtbHkUKsvc+BUF2f1O8/r9bXbkyd/fnwsXLjz1/M6dO6levbq5y5ViYSyl8WRISCDtuKkzxKGreSm7x3H1tqNaM1Ne+/iWm0Xe/VJYXDseydkdtwFo/XZAgThOAAqlku4ffkz97i8DUPuWIx0DPQm8e5L+O/pzJ9lMrS29Bv76EDYPNjlO5ZqZ0nQWdJyuHT3IukljiLp5HStbW16bPJMGPV8rdZwsiDqgCn4bNmBVvRrGuDjuDHwnU+i2KMgwZDD5yORMx2lg9YEsbLuwQB0nAFtHK3qMeQkrGwX3biWxd+1VRLFwr0HakBAiPhoHoohnr5dp+SB9d+SXH0mOjSmwfdOTdRgNIjK5DOu8Rp0kU8qxJDtOBYXZztPEiRMZNWoUv/32G5Ikcfr0aebNm8fUqVOZOHFiQdhYihk8UhfPX6dd6oEDYDBgVbUqVhX887VWo14VUKhkRIcmczPwfr7WKgmEBcVz8OdgAOp3LZ+nzjpzkMnktBk4jK6jx6NQqvC+b8Urx31JC43kre1vcTDsYO4Wir0BqzpA4FpAgFYT4Z2/wMEy9qcnJ7Fj0VfsWPQVOo0Gn6rVGfjFIvzqPLs7p5T8ofRwx2/dOmxbtzKNcxnzAfE//VToNzDhKeEM2DmAHaE7UAgKPmn6CRMbTkQuK5wIkKu3HV1H1kKmEAg5H8PRjTcK7XdgiI8nbMRIxORkrOvUwfOTT6jTsRveVaqhz9Cwb+XiArHFaBAzhULtnK2Qycy7MZEkCU2yaXbcizZHMreY7Ty9++67zJw5k48//pj09HT69evHsmXLWLhwYY6yA6UULI/LFORX4yllz14Ai6je2jpaUbeTSeLi6KYbaNOLtvagIIkOTWbn95cQRYnKDT1o3KvwNIqqt2xL39lf4FDGA5s0GV1PehJwUc6He8ew6PwijGI2Arb//gbLW0P0ZbAtAwN+h3bTQW62mslTSJLElUP7WTvuPa4dPYggyGjaux9vfDIfB7enxW9LsRwyW1vKLlmCU983QZKI/t98oj6ZiVRInXhHI47y5vY3CYoPwkXtwvKOy+lTJX/lBHnBp4ozHQZVBwEuHQwvFP05Uasl/P1R6MPCUJYti+/SJcisrBBkMjqNGINcqST0QiCX9lt+9EpqQgaSJKG0kmNlY/5nWJuWitFgQCaXl9YgZkGeSv2HDRvGnTt3uH//PlFRUYSFhT1z4G4phctDmQLbfMoUGFNTSXsw9sa+o2XSNfU6l8PR3Zr0JB0n/jBPTLWkEBeRyl+LLqDXGvGt6ky7gVULPRXlUaESA7/4jhptOiAANUMd6XXUm7/3/cSoA6NI0iY9eYIuHf4cBVuHgz4N/Fqa0nQVLTPZ/d7NYDbOnsKupd+SkZJMmXJ+vDX3S5r16YesBOgQPQ8ICgWeM2fiPnGiScpg0ybuDHoXQ2xsge0pSiLL/l3G+/veJ1mXTC23WvzW4zcaeTUqsD1zonIDD1r0NjW+nNh6i6CTBScuKxmNRE6ajObCBWQODpRdvgyFy6PUvatvOVr0HQjAwZ9WZZZbWAKdxoA23QCAnYs6T9eg9KRHUaeC7ggsqeTrt+Lm5vbMsSmlFA2WUhZPPXjI1GXn74+qYv7nlAEolHLavl0VgCuHI4i8WTxbqPNKUkw62xZeQJtuwMPfga4ja6FQFo1zYGVjS5f3PuTliTOwcXTCMU1Jx7Me2Gy9weD1b3It7prpwPtBsLItnP8ZBBm0mQoD/wT7/A/fjQsP469v5vPLtPGEX72MQqmixVvv8Pb8BXhVKmAxz1KeQhAEXIcMpuzyZcjs7dGcO0do7z5oLl22+F7JumTGHhjLkgtLkJDoU6UPP3T5AU/boh/q/FL7stTpYOoWPfDjNW6cfVp8Ob9IkkTUp5+SsmsXKJX4LlqEVYWnI9D1u71M2eq10Gsz2Ln0W8TsIsO5RBQlUuJNg4Wt7VUo81Acr8vIQJehQRAErEtTdllidjyvbt26z/RkBUFArVZTqVIlBg0aRNu2bS1iYCm5J+GeZWbapew1pezsO3WyaOTEJ8CZas29uHbsHgd/DuLNaY2QK0v+XU1qQgZ/LrhAerIOVx87eox+CZU6/+mu/FKpQWN8q9Xg1NaNBO74E59Ya3x2w8oLY6jXsAr9bv+OzKgBOw94fTX4t8zXfpIkcefSBc79/QehFwJNTwoCNVq1p9kb/UpTdMUAu1at8Nv4G+GjRqMLCeFO//54zvoUp1descj6V+OuMvHQRO6m3EUlUzG9yXRerfyqRda2FM1eq4ROY+DqsXvsXXMVmVygYl3L/NuUJIn7X3xJ4qbNIJPh8+WX2DZ+drRNkMno6rku8QAAIABJREFU8v5H/DhxNJHBVznz5xYav/pGvvZPS9RmFonbmimI+WgNk6io2s4euaLor2PFFbO/ubp06UJISAi2tra0bduWNm3aYGdnx61bt2jYsCH37t2jQ4cOZquNl5J/EqPzr/EkajSkHjYJY1oqZfc4zV6rhLW9koSodM78HWrx9Qub9GQd2xZeICUuA8cy1vQaWwe1bfYjgAoTta0drfsP5t1vvse/YSMkwCdaTfT2u3wRWpNDYisSX9uaZ8dJkiTu3w7h6IafWPPhcLbMm2FynASBSg2bMPCLRXR5/8NSx6kYYeXvj99vG7Br3RpJq+Xe5ClETp+OmJGR5zVFSeTHKz/y9o63uZtyF29bb37q9lOxc5wABJlAm7erZopo7ll1hdsXLZPCjP3+e+LXrgXAa85sHLpkP9DXoYw77d41Das/tvFnwq/lPRKo0xjQpJhq2exd1cjyIMar12rRpqUBYOvknGdbXgTMditjY2MZP378UwP65s6dy507d9izZw8zZ85kzpw5vPzyyxYztJSceVjz5JyPyFPasWOmWXbe3qhrWF56Qm2rpFXfAHavvEzg7jv4BDgXWBt/QZOWqOXPBedJiErHztmKXh/WyZMQXWHg7OnNa/1fI07czq/hMtJiXFCmqTkbLHF2yiRcfcvhHVAN78pVKVPeHzsX16fqHYwGA6nxcSTH3ifmzm0ig68Scf0aqXGPvniUamtqtu1A3S49LTKYupSCQW5vj+/3S4ld+j2xS5aQtHkLGZcu47PgW6z8zeuujdXEMv3odI5FmrTG2pdrz6xms3C0Kr4pH0Em0G5gNUSDyI2z99m54hLd36tNuRp5E66UJInYJUuJXbwYAI8pk3F6/fVcnVu9VTvuXLrAtSP/8PfCL3hjzldm7y+KEslxD9J1diqsrPMWMUpNiANMUadSeYLsMVsk09HRkcDAQCpVenI+182bN6lfvz5JSUkEBQXRsGFDUlJSLGpscaW4iGR+P7w/6UmJ9J+/AI8KeZufFjlpEkl/bsPlnXfwmDLZwhY+4p+fg7h6NBJrBxV9pzcqtk5HVqTEZ/Dnt+dJitFg52zFyx/Vxcm9YDVr8owkQeAPsGsyGDLA3pvAFhP5/vBmHG5r8YpTI5OeTs/K5ApU1tYgSUiShE6jQZLEp45TKFX4121AlSbNqVC/ESq1dSG8qVIsRdqJE0RMmIgxLg6ZjQ1ec+fkehzTsYhjTD06lfiMeKzkVnzc8GP6VOlTYjS7jEaRPauuEHI+BrlCRufhNfGvbd5oIEmSiFm4kLhlplEiZcaNw224ebPW9BkZrJ82jrjwu1Rs3JwqXV6mQoUKuRLJlCSJ5NgMtOl65AoZzl62ZksTAOg0GuIjw0EAN9+SLYr5X4qFSKZareb4g06sxzl+/HimUaIoltjZcCUVvTaD9CRTEbaDu0ee1pB0OlIO/AOAfSfLp+wep8UblXHxtkWTrGPf2itIhSxclx8S76ez9etzpnl1rmpeHV+v+DpOGcmwZQhs/9DkOFXuBCOPUr/xYBaM3YhV30b81j6cA/Xuc7+mGvcqVUzhekFANBrISE0hIy0VbXoakiQiVyhw8vTCv059mr/Rnz4z/sf7q36h1/ipVG3eutRxKoHYNm2K/++/Y9OwIWJ6OhHjxhM5ZSrG1NQsz9EatXx55ktG7htJfEY8lZwqsaH7Bt4IeKPEOE4AcrmMTkNq4P+SG0aDaQ7l9dNRuT5fEkXuf/FlpuPkPmmS2Y4TmIQoe340BaWVmns3gtGmp+X6XE2KLlP+xd5VnSfHSZIkUuJNEWQbe8fnynEqKMyO7Y0ZM4aRI0cSGBhIw4YNEQSB06dPs2rVqszpx7t376Zu3boWN7aUrEmOMYlPqqxt8qzLkXbqNGJKCvIyblgX8N9PqZLTeWhNNs0/Q9i1BE5vDy1UTaS8Eh2azN9L/0WTosexjDUvf1QXe5e8y0IUKPf+hU2DID4EZApo/wk0HQMPUnF2Kjvmt5xPM+9mzD05lx2GYA4pw/l44Mf08utJelIi+gwNgkyGIAgo1dbYOjqVti4/hyg93Cm3dg0xixcTt3wFSVu3kn76NN6ff4ZNgwZPHHsl9grTjk7jVpJpXmXfgL6MbzAetaKYfg5y4GHE6cBP17h+Kpq9a6+iTTdQq41vtueJOh33pk4jeft2ADymT8el/9t5tsPVtywdh4/m4Pof0KWnk5GWmmPkSacxkJpgGvxr56zOc6NKRmoK+owMBJmArXPRlFHExcVRrVo1Tp8+jZ+fX67O6d27N82aNWPcuHEFa9wzMDttB6YhvYsXLyY42KSiHBAQwJgxY+jXrx8AGo0ms/vuRaA4pO1Czp9h62ezKFPen4Ff5G1Q4r1PZpK4cSNOfd/E69NPLWtgFgSduMf+H02t8237V6V6i+JbJ3Pnchy7VlzCoBMpU86eHqNfKp7pRkmCM6tg91Qw6sCxLPReA2Wz1ti5m3yXqUen8m/MvwA092nOp00/LRbt5aUULumBgUR+PAl9RAQIAq5Dh+A2ZgxGucCyi8tYfWk1RsmIi9qFmU1n0q6cZTTBihpJlDjy23UuHTINpq3bsRxNX62I8IxIjjElhfDRY0g/dQoUCrzmzMHpVct0LB7d/CtKd298vDwp41sWK+tnR7UNepGEqDQkUUJtq8TeNW+aTkajgbiwu4hGI/aubvkuFG/VqhVHjhwBTMOAK1SowMyZMzP9g6yYMGECCQkJrF69Otd7Xbx4kbZt2xL6f/buPK6pK23g+C8kYQlLABFZXMCquOIColirdrGu2E1HR2u1LdjN6rzWzlvtaEtnlDrt245j26ltrXWmLuNSajfFjnWbuoOouABWUUFwYYeEQJL7/hFIpSwmbCF4vp9PPm1uzr05F4Q8nPOc51y6VO9nb6uYtgOYMWMGhw4dIi8vj7y8PA4dOlTtC+Pi4nLXBE6tReENU70Sj/YNnLIzGCjevRtonlV2dekZ6U/4+CAA9m5I5XJKbou9t6UkSeLUnqt8/9Ep9OVGOvX25tEFA1tn4KQtgC2z4IeFpsApZDw8t7/ewAmgs0dn1o1dxythr+Do4MjPWT/z+PbH2X5h+12zH6FgogoLI3j716gffxwkidxPPyP10SgWfjSJT059gkEyMDZoLF8/8nWbCZzAlER+37QeRESZEuZP/HiFHatPU6GrXn+p/PJlLk+fjubIERxUKjp9/HGTBU5gqv+kdHJCkiQKc7LRl+tqtDHojRTe0CAZJRSOctwbWAxTkiSKb93CaDCgcHRCpW7cxu2SJJGcnExcXBzZ2dmkpaUxfPhwZs2axaVLda+u1mq1rFmzhujoaKveLzQ0lKCgINavX9+ofjdEg4KngoIC8zRdXp6pJkRSUhJZWVlN2jnBclXBk7qB+U7apCRTwqhajWtEy1YBjogKNi8b3vlpCtcvFbXo+9dHX2Hgp3+e48C/05GMEiFD/ZjwYmirqONUQ1YirB4BZ7eDgxLGvg3TNoDKsmF4uYOc2X1nsyVqC33b9aW4opg//fwnYn6M4UpR829nIbQecjc3ApYvo/3776Bzd4aLV5jzYQYv/EfB/4X/hXdGvoOXc9tbyi6TyRg8IZjRz/TGQSHj0slbfPVuIkW3tACU7NvHpSm/Q5d+AUX79nT58l+4Db+3afvg4ICzuwcKJ2eMRiN52dfQ37adjtFgpOCGxlzPSd3epdbRMUuUVW3pJTOVTWhsvlp6ejrFxcUMHz4cPz8/goODWbx4MXq9nlOnTtV53o4dO1AoFERGRlY7vnHjRpydnavFFtHR0YSGhlJYWQV90qRJbNy4sVH9bgirg6dTp07Ro0cPVqxYwTvvvENBgSlJOT4+nkWLFjV5BwXLFN2sDJ7aN6yeTlFVYcz770embNk6RTKZjPuf7EnHnl7odQa2/+0Eman5LdqH2hTd0hL/bhLnD+Ugk8G9k7vx4KxeyBWtLOdHkuDQR7BmDBRcBs8u8GwCDH0BGvDLsKtnV/41/l/MHzQfJ7kTR7KP8Nj2x/jk1CdUGNruvoRCdfsz9zOjdBUvPlPB3n4yHID7j5UR/OL7FP/nP216RLJHhB+P/s8gnN2U3LpawuZlx0iOW8fV518wbfI7cCBB27bi3Lvpy7mA6Xeih48PCkdHjHo9edcyqdDpKgMnLYYKIw5yGZ4dXBr8+6hCp6Po1k0A3Lza4dgEs0WJiYnIZDJCQ0PNxzIzMwHo0KHuP+z3799P+G9y6wCmTZtGSEgIcXFxAMTGxpKQkMCOHTtQq02lMCIiIjh69Cg6Xc0RuuZk9Vd9wYIFzJ49m/T09GpTc+PGjWN/ZXFFoeWZp+18rc9RkSSJkt0/AeA++qEm7Zel5AoHxj3fj8AQTyp0Br5bdZKLyTdt0hdJkkg9nM2mvxzlxuVinFwVRM0bwICHOre+lUSaPNg0AxIWgbECek0yTdMFhjXqsgoHBdH9oomfFE+kfyTlxnJWnVjF7777HcdzjjdR54XWKKc0h4X7FvLS7pe4VnoN9/aB9Hn/Yzqv/Rxl587or18nc+7LXH02mrK0NFt3t9n436Pmd4sH4xvojE6r5+fLnUjv+hju035Pl3VfoGzmrcnkcgVeAYEoHB2RykrIv3KBvKs56EuLcTBq8fSSUEhlUF5q9cOgKaTg6i+gK8VRIeGqcqy9rZUBclJSEsHBwebcodTUVBYuXMiAAQOIiIjgsccew8vLi8mTJ1c7LyMjg4CAmvmuMpmMZcuW8dlnn7F8+XJWrlzJzp07CQwMNLcJDAxEp9ORk2P5KsmmYPXcw7Fjx1i9enWN44GBgS3eeeFXVavtGjJtp0tLpyIrC5mTE67DhjV11yzm6Kxg4tz+7PrsDJdO3mLnJymMmNaDPvcFtFjQoi0u58C/00g/bvp6+t+j5qGne+Ph0wqX4F89BlufhsKrIHeEMcthcHSDRpvq0smjE6tHr+b7S9/zzrF3uFBwgacTnmZs0FheCX9FJJS3ITqDjnVn1vHZ6c/Q6rXIZXKe7PUkLw54EZVSBR2h6zfbufWRqYp26cGDXHr0MTynTKH9vJdRtGtYgcnWSpIkjP/dRd9v40hv/wBXOz3I1U4PUiypeOCqFv97mj/nUS5X4O3jhcOa0Ds3tua6QHtLGi6+Bo6uFl83MTGRjIwM3Nzc0Ov1yGQypk6dyooVK3BwcGDevHk888wzrFu3rtp5Wq22zjzpiRMn0rt3b2JjY9m1axd9+vSp9rqLi+l3s0ajsbifTaFBdZ6KimrmpKSmptK+vUXfDqGJ6TQa07w1DZu2K9ljqu3kGhmJg4ttgwSFUs7YOX3pWZkDtW9DKrvXnaNcq2/W9zUaJVL2ZbL+jcOkH7+BzEHGkEnBPLpgYOsLnIxG+HklrB1rCpy8u0L0fyAipkkDpyoymYyJXSey/ZHtpgKIyNiZsZOo+Cj+cfIflOkbvq2HYHuSJLH78m4e+foRVp1YhVavZaDvQDZO2MjCwQtNgVMlB2dnfBf8D12//w73hx8Go5GCf/+bXx4ew61//ANDGymMXH7lClejY7j2x/+FogJC3S/y8BR/VB6OFFzX8NW7iez/dxplpc07jS1JEjpt4zcMbiknTpzg1VdfJTk5mYsXL6LRaPjiiy/MU3b3338/7u7uNc7z8fEhP7/2VI2EhATOnz+PwWCodeqvKu+6peMPq0eeHnnkEd566y02b94MmH6xXrlyhddee40nLCxHLzStwhumET9ndw8c61jWWp/iPaYpO7dWspmzg9yBB2b1wsvflcNf/0Lq4RyupRcwakYInXs37V+3kiRx5WweR7Zf5OYV0y9+n05ujJrRkw5BtqsWX6fSXPj6eUjfZXre9wmY+Ddwbv6+ejp7sjRyKb8L+R1xR+JIupHER8kfEZ8ez9yBc5kQPAG5g/W7uAu2k3IrhfcT3+dozlEAfFW+LAhbwPjg8fWO9jp27kzHv69Ec/w41+PepuzMGW6u/Du5a7/A+6mn8H5qJnIb7rbQUEatlrwvvuDWx6uRdDpkjo74vPgC7aKjkSkUdBpawc9b0zl/KIfTezJJO5JD2Lgg+o0KRKFs2n/7hgojhYVayrUOFD+ZiqOLAgdZCdrKwQu5oxJ37/Y4qe78x50kSZSVlppynIxGHBQKvPz871wMU2n558nFixcpKChg9OjRNXYguZOBAwfy5Zdf1jielJTElClTWL16NZs2bWLJkiVs2bKlWpuUlBQ6duyIj491leEby+o6T0VFRYwfP54zZ85QXFxMQEAAOTk5DB06lB07duDqavkQX1th6zpPF44dZvu7f6FD1+48Gfe+Vefqb94kfcRIkCS67duHskPr2sD1Wno+//niHMWV+zYF9/chIqorPh0bVgi0itEokXHqFok7Mrhx2RQ0ObooGPpIV/qMCGxQld5md/kgbH0Wiq+Bwtm0mi5sdrOMNt2JJEkkZCTw7vF3ua4x5dt19+rOHwb9gfsC72t9uWFCNZeLLvP3pL+z67IpCFc6KJndZzbR/aKrjTRZQjIaKfr+B2794x+UX7wIgIObG15PzsBr+vRmzw1qCpJeT0F8PLdWfYD+hmnKXhU5FP8338SxS5ca7a+czeXnrRfIu2aqBO7m5US/UR3pPTyg0RuDF+YWcynjEu29AlHKlSCT4ebpiIu7IzKZjLLSEopu3sBoMI1IOTq7oFKrcVS54vCbAraSJKHTlKIpKKC8zLRiUOnsgmcHP+SKpl0xvGXLFqZOnUpeXh6ennWXPNi7dy8ffPABW7duNR87ffo0gwYN4saNG3h5mVZxZmRkEBkZycsvv8zixYvNhbmPHTtGWNivOZ2zZ89GLpfXWx+qOeo8NahIJsBPP/1EUlISRqORQYMG8dBDtkk0bg1sHTwlfr+dvf/8lB5D7iVqgXUrHgu2biX7T0tw7tuX4K1b7nyCDZRr9Rz99hKn9maat3Hp3MebPvcF0rmPt8V/8UmSRN61UlKP5JB2JIfSQtPyX4WjA31GBDLo4S6ts3aT0Qj/fQ/2LAfJAO26w5QvwK+vrXuGVq9lw7kNrDm9huIKUxAa3iGceYPmMdBX7DLQ2uSU5vDpqU/Zlr4Ng2RAhoyoe6J4acBLBLg1rkCtZDBQvGsXtz76B7r0dNNBhQL30Q/h9fvfo6rckaI1MZaXU7h9O3lrPqc8IwMAZWAg7f/nf/CYUP/om9FoWlhy5JtLlBaYVnoplA50H9yBrgPb0zHEC4Wj5b+bbl4p5tzP2WScu06vMe4E+ndC5abC3cupxnWMBgMl+XloiwrNqx5lMhkKJ6fKoMi0vVKFTodkNJpfd/XyxtXTE5ms6VcML1q0iG3btpF2h0UEtQVPAJGRkcyePZvnnnuOvLw87r33XkaMGFEtx/qRRx5Bp9Oxc+dOwBQUdejQgYSEBIYOHVrne7aq4Om3rl69yhtvvMHnn3/eFJezK7YOnn76YjUndnxLeNTjjHzyGavOvfrSXEp278bn5bm0f+mlZuph08jLLuXYd5e4kHQDKv/VKp3lBHb3xO8eNV5+rrh5OeFYuaN4WUkFpQU6ivPKyLlYyLULhWiLfq2X4qRS0Oe+APo/2Ll1Bk0AJTchfg78YppaJXQaTPg/cGrcyFtTK9QV8tnpz9hwbgPlRtPXeIjfEJ7v/zzhfjWXIAstK7skm89Of0b8hXgqjKY8nfsC72P+oPmEeIc06XtJRiPFP/6HvHXr0CYlmY87de+G55QpuI8da/PRqIrr1ymMjydv/XoMN017usnVanxefAHP3/8eByv2dtNXGEg/dp2TP2WSm/nrfoAKRwcCunvh09EN7wBX1L4uOKuUyBxAX25EU1hOwQ0NNzKKyEzNN2+z4qx2oP9jnvQIuQd3T7d6AziDXo+mqICykhIMFbXnXznI5bi4e6DyUCNv4TI0takrePrhhx9YuHAhKSkpNUbQ6vLhhx+yfft2du3aVW+7Vh08nTx5kkGDBmEw2E9yW1OxdfD09Tt/5pfjR3jw2RcZ8LBlu6EDGMvKSIschqTVEvzVtmarWdLUCm5oOHPgGheOXzf/wrGUg0JG597t6BnpR1BfH+TKVlaz6XaXDsC2aCjJAYULTHgXBsywyTSdpbJLsll9ajXbL2xHL5mS/MM7hPN8/+eJ8ItodSMPbV1mcSZrUtbw9YWv0RtN34+wDmG8NOAlBvsNbvb3Lzt/nvyNmyj89lukqtVQMhmqiAjcxzyM+8iRKG9bdt6cDCUllO7fT8H27ZQe+K9pRBdQ+PnhPXsWnpOnIHdreNqJJElkXyjkwvHrXDp1y+rfTQpHB4JCfQi5tz1a8mr9oK/vvQ0VFVSU60zTeZKEg1yOwtEJhaNjq/m5GzNmDElJSZSWluLt7U18fDyDB//673DlypU8/vjjdOrUyaLrffLJJ4wcOZKQkPr/ABDBUytl6+Bp3atzuXUlg8dfe5PggZb/lV+8dy+Zz7+Aws+Pbnt+ajU/YJaSjBI3rxaTlVbAzSvFFFzXoCkqp7xMDxI4uylxVTvh6umITyd3Arp54hvk3uSJnU3OaID978C+FSAZoX1PmLIOfHvaumcWu1ZyjTWn1/DVha/MH9q9vHvxVJ+nGBM0BqWD7f8CbstO3jzJujPr2H1lN0bJFCQM8RvCc/2fa5Gg6bcMxcUUfvMNRd99j/bEiWqvOXXvhuuwYbgMHITLoIFNNiol6fWUpaaiTUykZN9+So8ehdtGZ1zCw/CaMgWPceOQWTHSZNF7SxK3rpaQc7GQvGul5F4roTi3jHKtHkkCudIBF3dH1O1daBfoSkA3T/y7e6J0lNf7QS80THMET61wjwnBGpIk3VYg07oaTyV79gLgdv8ouwucwLQXlW8XD3y72N+qnjoVX4evouFSZcHZgU/CuHfA0fpVlLYU4BbAksglxITG8HnK58Snx3Mu7xyLDizi/cT3mdFrBk90fwK1k9rWXW0z9EY9e67uYd2ZdeYNngHuDbiXOaFzGNRhkM36Jnd3x3vGDLxnzKA8M4vinTso3rMX7YkT6NIvoEu/AOv+CZhGgpy6d8epe3ccu3RB6dcBRYcOyL28cFCpTOVUHByQ9Hqk8gqMxUXob+Wiz71FxZWr6C7+QvkvFyk7cwbjb2r/OAYF4f7ww6gfexSn4OBmu1+ZTEb7zu6071xzWb7QNojgyc6VlRRTUbmKwsOKGk+SJJnrO7k/0HY297Rrv+yBr2Kg9CYoXWHi+9B/qq171Sh+rn4sHrKYF/u/yOa0zWw4t4Ebmhu8n/g+HyV/xJigMUzpMYX+7fvbZQDfGuSU5rAtfRtfpX/FDY1ppZjSQcmErhN4qvdTdPfqbuMeVufYMZB20dG0i47GUFhI6c8/ozl+HE3SCXSpqehzctDn5FB64ECj38vB3R2XgQNwjYjA7YEHcerafAGTcHexOHh6/PHH6329ao87oWVVjTq5enqhdHSy+LyyM2fR37iBTKVC1cIbAQu/YdDD3jg48H+ABB36wuS10L6HrXvWZDydPZkTOofZfWbz/cXv+fLcl6Tlp/HNL9/wzS/f0MOrB5N7TGZc0Dg8nRu3s/vdoMJQwc/XfmZb2jb2Z+03T815OXkxucdkpveajo9Ly9a9aQi5Wo3H+PF4jDflahpKStClpaNLNz0qsrKouJ6DPuc6hsJCqC0tRKFA0a6d6RHgj9M93XC6pytOIT1x6t4NmYXJx4JgDYuDp6pN+Op7/amnnmp0hwTrNHjK7qfKwpj3DsPByfKgS2hiRddMSeGXfzY9D3saxsaBspVVNW8ijnJHHuv+GI92e5RTt06xOXUzCRkJpOWnsfzIcv569K8M7ziciV0nMrLjSJwVIuejiiRJnLx5ku8ufkdCRgIFul//YB3sN5gpPabwYOcHcZS30pWjFpC7uaEaNBDVoJplLiRJQqqowFhq2nNNplQiUyiQOTmJAElocRYHT2vXrm3OfggNVHTTFDyp21sXPBXvNU3Zud0vpuxsJv1HiH8ONLng6A5Rf4N+k+98Xhsgk8no374//dv354+D/8h3F79j+4XtnMs7x96re9l7dS9uSjdGdRrFA50f4N6Ae60u3tgWGCUjp26e4qcrP/Hj5R/JLMk0v+bj4sP44PE80eMJuqq72rCXLUMmkyFzdLSqjIAgNBeR82TnqkaerNkQuCInB93Zc6bKtSNHNFfXhLoYKuCnP5v2pwPwCzUVvWx3j027ZStqJzUzes1gRq8ZXMi/wPeXvuf7i9+TXZrNdxe/47uL3+EkdyLSP5L7O9/PsIBhbXpD4tKKUo7lHGNf5j72XNlDblmu+TUXhQsPdX6IiV0nEuEfgcJB/AoXBFsQP3l2rmrkycOKkaeSfaaVXC6hoW1uJ/RWr+AqbHsWrh4xPY+YA6P/DEoxPQXQzasb873m8/LAl0m+kczuK7vZfWU3WSVZ7M3cy97MvQAEeQQRGRBJpH8kYX5heDja74rLCkMFZ3LPcCj7EIevHebUzVPmGlkAbko37ut4Hw90foARgSPuyhE4QWht7CZ4ys/PZ968eXzzzTcATJo0iVWrVtW7h86oUaPYt29ftWNTp05l06ZNjbpua1J407S6xpqVdiUHTMGTqxh1almpOyD+eSgrACc1PLIKej9i6161Sg4yBwZ1GMSgDoNYGL6QtPw0frryEweyDnAm9wwZRRlkFGWw8fxGZMi4x/Me8zRg//b96eLRpVVuUixJEje1Nzl96zQnb57k5I2TnMk9g85QvaBiR7eODAsYxoOdH2Sw32DTHmeCILQadhM8TZ8+nczMTPOeNnPmzGHmzJl8++239Z4XExPDW2+9ZX7u4lI9Ebeh120NJEmiONe0tYCHT3vLzikvR3PwEABu94ngqUXoy2F3LBz6wPQ8YBBMWQteQTbtlr2QyWSEeIcQ4h3CCwNeoFBXyLGcYxy6dojD2Ye5UnyFCwUXuFBwgW3p2wBwkjtxj+c99PDqQXes5wlxAAAgAElEQVTP7gSrg+nk3okAt4AWSag2SkZuaG6QWZzJleIrpOenk5afRlp+WrVE7ypqJzURfhEM9R9KZEAkndwtq7AsCIJt2EXwdO7cOXbu3Mnhw4cZMmQIAJ9++imRkZGkpqbWW5pdpVLh51d7fkRjrtsa6DSl5hpP7u0sW5asSTqBUaNB3q4dzn3sYzsWu5afAVufgaxE0/OhL8FDb4JCJL02lNpJzUNdHuKhLqbNyHO1uaZRnJsnSb6RzLm8c2j1Ws7mnuVs7tlq58qQ4efqR6BbID4uPrRzaUc753a0c2mHh6MHLgoXXBQuqJQqnOROONy2gaokSZQby9HqtWgqNGj1WkorSskryyNXm0tuWS652lyyS7PJKsmqMZpUxUHmQFd1V/q3788A3wH0b9+fII8gUedKEOyIXQRPhw4dQq1WmwMcgKFDh6JWqzl48GC9Qc769ev58ssv6dChA+PGjeONN97A3d29UdfV6XTodL/+YiwqKmrsLTZI8a2bADi7e6B0sixnpmrKzm34vWJ5b3M7+w1snwu6QnD2hEf/AT0t33tQsEw7l3Y80PkBHuhsWjlqlIxkFmeaR3rS89O5XHyZzOJMtHot2aXZZJdmN3u/5DI5AW4BdHTrSDevbvTw6kEPrx50VXcVJRgEwc7ZRfCUk5ODby37Hfn6+pKTk1PneTNmzCA4OBg/Pz9SUlJYtGgRJ0+e5Mcff2zUdePi4oiNjW3AnTStqik7S0edANOGmICrmLJrPnod7PoTHP3E9LxjBExeA56dbduvu4SDzIHOHp3p7NHZPDoFppGj3LJcMoszuVZyzTxSVPXfkoqSaqNKZfqyGtdWypXVRqdUChXezt7VRrB8Vb50cu+Ev6u/WA0nCBbKzc2lV69eHD16lKCgIIvOmTx5MsOGDWPBggXN27la2PQn+80337xjEHLs2DGAWoe0JUmqd6g7JibG/P99+/ale/fuhIeHk5SUxKBBgxp83UWLFlX7ZhUVFVm8C3RTKs41jTxZGjxV5OSgS0sDBwdc7x3WnF27e+X+AlufhuzKvcXunQ8PLAGR8GtzMpkMHxcffFx8GOA7wNbdEYQ2acSIERyo3FpHoVDQtWtX3njjDaZPn17veXFxcURFRVkcOAEsXbqU+++/n+joaKs29W0KNg2e5s6dy7Rp0+ptExQUxKlTp7h+/XqN127evEmHDpYv0R80aBBKpZL09HQGDRqEn59fg67r5OSEUyuoyl1UOW1nabJ4SeU/aJd+/VB4eTVbv+5aKV/BN/OgvBhcvOGx1dDjYVv3ShAEoUVIkkRycjJxcXHMnj0brVbLX/7yF2bNmkVkZCTBdWzGrNVqWbNmDT/88INV7xcaGkpQUBDr16/nhRdeaIpbsJhNk158fHzo2bNnvQ9nZ2ciIyMpLCzk6NGj5nOPHDlCYWEhw4ZZPoJy5swZKioq8Pf3B2iy69rKr9N2lgVPpftNwZPriPuarU93pQotfPc/phGn8mLoHAnP/1cEToIg3FXS09MpLi5m+PDh+Pn5ERwczOLFi9Hr9Zw6darO83bs2IFCoSAyMrLa8Y0bN+Ls7ExWVpb5WHR0NKGhoRQWFgKm8kIbN25snhuqh11kDPfq1YuxY8cSExPD4cOHOXz4MDExMUycONGc1J2VlUXPnj3NgdAvv/zCW2+9xfHjx8nIyOCHH35gypQpDBw4kHvvvdfi67Zm1kzbSRUVlB6qLFEwQuQ7NZlb6fDZQ3D8c0AG9y2EWd+BOtDWPRMEoQ2QJAlNhcYmD0mSrOprYmIiMpmM0NBQ87HMTNOWQvXN5uzfv5/w8PAax6dNm0ZISAhxcXEAxMbGkpCQwI4dO8z77UZERHD06NFqi7hagt1kM65fv5558+bx8MOmv+YnTZrEBx98YH69oqKC1NRUNBoNAI6OjuzevZuVK1dSUlJCp06dmDBhAm+88QZyudzi67ZmVavt3C2YttOcOIGxpAS5tzfOffo0d9fuDqc2w7d/gIpScG0Pj38C94i9AgVBaDpavZYhG4bcuWEzODL9iFUV7ZOSkggODjbnH6WmprJw4UIGDBiAv78/o0aN4saNGygUCpYsWcKUKVMAyMjIICAgoMb1ZDIZy5YtY/LkyQQEBLBy5UoOHDhAYOCvf5wGBgai0+nIycmhS5cujbxjy9lN8OTt7c2XX35Z5+tBQUHVouROnTrVqC7ekOu2VpLRSHGuac8rDwum7Uor851cRYmCxivXwI4/wol/mZ4H3QdPfAbubXe/NUEQhDtJTEwkIyMDNzc39Ho9MpmMqVOnsmLFCoxGI3/7298YMGAAN27cYNCgQYwfPx5XV1e0Wi3OzrWX75g4cSK9e/cmNjaWXbt20ec3f/xXFb6uGjhpKXYTPAnVaYoKMRr0IJPh6uV9x/YllflOoqp4I904D1tmw81zgAxGvQYjXoVWuBWIIAj2z0XhwpHpR2z23tY4ceIEr776KtHR0ahUKvz9/autXK/KN/b19cXb25u8vDxcXV3x8fEhPz+/1msmJCRw/vx5DAZDrVN/eXl5ALRvb1nub1MRwZOdqpqyc/PyRq6o/9tYcf06utRUU6A1/N6W6F7bdGI9/LAQKjTg1sE02hQsglFBEJqPTCazi82gL168SEFBAaNHj6Zbt271tj1+/DhGo9Fc4mfgwIG1zgAlJSUxZcoUVq9ezaZNm1iyZAlbtmyp1iYlJYWOHTvi42N5vcOmIIInO1VkRbJ41ZSdc6goUdAguhJT0HSyckVH1/tN+U1ulm/GLAiC0JZVJYuHhYXV2y43N5ennnqKzz77zHxszJgxLFq0iPz8fLwqP6MyMjKYMGECr732GjNnzqR3794MHjyYxMTEau9x4MABc85ySxLJL3aq+JblZQrMU3ZilZ31rp+BT+83BU4yB1PByye/EoGTIAjCbZKSkujWrRuenp51ttHpdDz22GMsWrSoWjmgfv36ER4ezubNmwHTVNy4ceOYNGkSixcvBiAsLIyoqChef/1183llZWXEx8dXK4jdUsTIk50ylym4w0o7yWCg9PBhANyGD2/2frUZkgRJ62DH/4K+DNwDTFusdGn99b8EQRBaWlxcnLmkQG0kSWL27Nk88MADzJw5s8brS5YsYeHChcTExODt7c25c+dqtNm+fXu152vWrGHIkCEMHTq08TdgJRE82amqnCePO0zblaWkYCwqwsHDA+e+fVuia/ZPV2wqQZCy1fS822hTtXDXdrbtlyAIgp36+eef+fe//01oaChff/01AP/617/o168fAOPHjyc9PZ2srCyLtztTKpWsWrWq2fpcHxE82SlLq4uXHjwIgOuQIcjkYkXYHWWfNK2my7sIMjk89AZEvgyivIMgCEKDDR8+HKPRWG+b+fPnW3XNOXPmNKZLjSKCJztl6bRd6c+VwZPYCLh+kgTHPoOE18GgA3UnmPw5dIqwdc8EQRCEVkYET3bIoNdTUmCqiVHfajtjaSmakycBcLWDvfpspqwQvnkZzlbOp4eMh0c+BNWd62cJgiAIdx8RPNmhkrxckCTkCgUqD3Wd7UqPHYOKCpQdO+LYuXML9tCOZCWZpukKLoODEka/BUNfgNsKuwmCIAjC7UTwZId+3RC4fb1brZjzncSoU02SBEc+hl1LwFgBnp1hyhcQWH+NEkEQBEEQwZMd+jVZvP6VdiJ4qoM2H7bPhfPfmZ73ioJJH4BL3fVJBEEQBKGKCJ7sUNGtO1cXr7h+nfILv5i2ZBlqmx25W6Wrx2DrM1B4BeSOMGY5DI4W03SCIAiCxUTwZIfMI08+dVe5Lj14CADnvn2R11Px9a5hNMKhD2B3LBj14BVsmqYLGGDrngmCIAh2RgRPdqjYgn3tzFN2kZEt0qdWTZMH8c9DeoLpeZ/HIWolOHvYtl+CIAiCXRLBkx36deSp9uBJkiRKD5lGnu76fKfLh2Dbs1CUBXInGLcCwmaLaTpBEAShwUTwZIdK8nIBcPOqfbsQXVoahlu3kLm44DJoYEt2rfUwGuHn9+GnZSAZoF130zSdn9iiRhAEQWgcseeEnTHoK9AWFQLg5l178FRVVVwVHo6Do2OL9a3VKLkJ65+A3W+ZAqfQqTBnrwicBEEQWqnc3Fx8fX3JyMiw+JzJkyfz3nvvNV+n6iGCJztTmm+qLC5XKHBxrz1n564uUXDpAHw8HH75CRQupkrhj60GJzdb90wQBKHNGzFiBDKZDJlMhlKpJCQkhA0bNtzxvLi4OKKioggKCrL4vZYuXcqyZcsoKipqRI8bRgRPdqYk3zRl5+rVDlkteTtGnQ7N8eOmNndT8GQ0wN4V8M9JUJID7XvCnD0w8EmR3yQIgtACJEkiOTmZuLg4srOzSUtLY/jw4cyaNYtLly7VeZ5Wq2XNmjVER0db9X6hoaEEBQWxfv36xnbdaiJ4sjO/5jvVvu+a9kQyUlkZch8fnHp0b8mu2U7xdfjXo7B3OUhGGPAkxPwEvr1s3TNBEIS7Rnp6OsXFxQwfPhw/Pz+Cg4NZvHgxer2eU6dO1Xnejh07UCgURP5mdfjGjRtxdnYmKyvLfCw6OprQ0FAKC03pK5MmTWLjxo3Nc0P1EMGTnSnJzwPqznfSHD0CgOvQobWOTLU5v+wxTdNd2g9KV9MU3aMfgqOrrXsmCILQaJIkYdRobPKQJMmqviYmJiKTyQgNDTUfy8zMBKBDhw51nrd//37Cw8NrHJ82bRohISHExcUBEBsbS0JCAjt27ECtNu3rGhERwdGjR9HpdFb1tbHEajs7c6eRp9LDpuBJNSSixfpkEwY97Hsb9r8LSODbx7Sarn0PW/dMEAShyUhaLamDbLPnZkhSIjKVyuL2SUlJBAcH4+FhysdNTU1l4cKFDBgwgF69ejF48GAqKiowGAzMmzePmJgYADIyMggICKhxPZlMxrJly5g8eTIBAQGsXLmSAwcOEBgYaG4TGBiITqcjJyeHLl26NPKOLSeCJztT38iTUaNBe/o0AK5D2vCWLEXXYFs0XP7Z9DxsNox9G5QuNu2WIAjC3SwxMZGMjAzc3NzQ6/XIZDKmTp3KihUrcHNzY9++fahUKjQaDX379uXxxx+nXbt2aLVanJ2da73mxIkT6d27N7GxsezatYs+ffpUe93FxfR7X6PRNPv93U4ET3amvpEnTdIJqKhAEeCPslOnlu5ay0j/D8TPAU0uOLqZKoX3m2zrXgmCIDQLmYsLIUmJNntva5w4cYJXX32V6OhoVCoV/v7+1dJHVJWjWGVlZRgMBvO0oI+PD/mVK8l/KyEhgfPnz2MwGGqd+svLMw0otG/f3qq+NpYInuxMfSNPmiOV+U4RQ9pevpOhAvYsg/++b3ruF2qapmt3j027JQiC0JxkMplVU2e2cvHiRQoKChg9ejTdunWrtU1BQQEjR44kPT2dd955B5/KXTIGDhzIl19+WaN9UlISU6ZMYfXq1WzatIklS5awZcuWam1SUlLo2LGj+VotRSSM25mqkSfXWqqLlx6pyndqY1N2hZnwxYRfA6fBMfDsjyJwEgRBaCWqksXDwurOz/L09OTkyZNcunSJDRs2cP36dQDGjBnDmTNnqo0+ZWRkMGHCBF577TVmzpzJW2+9xbZt20hMrD4Kd+DAAR5++OHmual6iODJjpRrNVSUaQFw864+bWcoKaHszBkAXNtSsnjqTtNquqtHwEkNv/snTHgXlLXPjwuCIAgtLykpiW7duuHp6XnHth06dCA0NJT9+/cD0K9fP8LDw9m8eTNgmoobN24ckyZNYvHixQCEhYURFRXF66+/br5OWVkZ8fHx5sTzliSCJztSXDnq5OiiwtG5+ly05vhxMBhQdu6MspZVC3ZHXw4Jr8PGqaDNh4BB8Nw+6P2IrXsmCIIg/EZcXBxpaWl1vn79+nVzJfCioiL2799PSEiI+fUlS5awcuVKjEYj3t7enDt3jtWrV1e7xvbt29m5c6f5+Zo1axgyZAhDhw5t4ru5M5HzZEdK6813Ogq0kVGn/Muw9WnIqhyeHfoiPBQLirtwnz5BEIQ2IDMzk2effRZJkpAkiblz51arBzV+/HjS09PJysqik4ULnpRKJatWrWquLtdLBE92pN6VdlX5ThF2nu907lvY/hKUFYKzGh79B/ScYOteCYIgCI0QFhZGcnJyvW3mz59v1TXnzJnTmC41it1M2+Xn5zNz5kzUajVqtZqZM2dSUFBQZ/uMjAzz5oS/fdyerV/b6x9//HFL3JLVzCvtfhM8GQoKKDt3DrDj4ph6HfzwR/j3k6bAqeNgeP6/InASBEEQWh27GXmaPn06mZmZ5vnOOXPmMHPmTL799tta23fq1Ins7Oxqxz755BP++te/Mm7cuGrH165dy9ixY83Pq8q+tzbmkaffTNtpjh8HScIxOBilr68tutY4eRdhy9OQXflXybB58OBSkCtt2y9BEARBqIVdBE/nzp1j586dHD58mCGVy/A//fRTIiMjSU1NrZZ0VkUul+Pn51ftWHx8PFOnTsXNza3acU9PzxptW6OS/NrLFJRW5juphtrhlN2ZePhmHuiKwMUbHvsYeoyxda8EQRAEoU52MW136NAh1Gq1OXACGDp0KGq1moMHD1p0jcTERJKTk3n22WdrvDZ37lx8fHwYPHgwH3/8MUajsd5r6XQ6ioqKqj1aQtXIk/tvR56qimPaU32nijL4bgFsmW0KnDpHmqbpROAkCIIgtHJ2MfKUk5ODby3TUb6+vuTk5Fh0jTVr1tCrVy+GDRtW7fif//xnHnzwQVxcXNi9ezevvPIKt27d4k9/+lOd14qLiyM2Nta6m2gCVTlPrrflPOnz8tBVLg9VRdhJvtOtC6ag6fppQAb3LYBRi0FuF/8cBUEQhLucTUee3nzzzTqTuqsex48fB6h1uxFJkizahkSr1bJhw4ZaR53+9Kc/ERkZyYABA3jllVd46623eOedd+q93qJFiygsLDQ/rl69auEdN5xkNNZaqkBz1DRl59S9OwrvmqvwWp1TW+CTkabASeUDT26rzG8SgZMgCIJgH2z6iTV37lymTZtWb5ugoCBOnTplLuN+u5s3b9a6UeBvbd26FY1Gw1NPPXXHtkOHDqWoqIjr16/XeW0nJyecnJzueK2mpC0uwmgwgEyGq6eX+bh5SxYbFAmzSrkGdv4vJP3T9DzoPnjiM3Bv/blmgiAIgnA7mwZPPj4+Fm3mFxkZSWFhIUePHiWicmrqyJEjFBYW1piGq82aNWuYNGmSRbsunzhxAmdnZ4tKzLekquriKg81csWv3zbN0WNAKy+OeTPVNE134ywgg5H/CyP/CA5yW/dMEARBEKxmF3MlvXr1YuzYscTExJjLtc+ZM4eJEyeaV9plZWXx4IMP8s9//tMcYAFcuHCB/fv388MPP9S47rfffktOTg6RkZG4uLiwZ88eXn/9debMmdPiI0t3Yp6yu22lnT43l/JffgHApZ7NGG0qeQN8/wpUaMCtAzz+KXQdaeteCYIgCEKD2UXwBLB+/XrmzZtn3j150qRJfPDBB+bXKyoqSE1NRaPRVDvv888/JzAwsNZdl5VKJR999BELFizAaDTStWtX3nrrLV566aXmvZkG+LXG0695TZrK3aWdundH4eVV63k2U15qCppObjQ97zrKFDi52WEdKkEQBEG4jd0ET97e3nz55Zd1vh4UFIQkSTWOL1++nOXLl9d6ztixY6sVx2zNqmo83T7ypK0MnlzCW9mo0/Uzpmm6W2kgc4D7F8PwV8DBLipjCIIgCC0sNzeXXr16cfToUYKCgiw6Z/LkyQwbNowFCxY0b+dqIT7N7ERt1cU1x0wrEVXh4TbpUw2SBInr4NMHTIGTuz/M+g5GvCoCJ0EQhLvAiBEjzKvllUolISEhbNiw4Y7nxcXFERUVZXHgBLB06VKWLVvWYrUWbyc+0ezEb2s8GYqLKTt/HmglwZOuGL6KgW/ngb4Muj1kKnoZdK+teyYIgiC0AEmSSE5OJi4ujuzsbNLS0hg+fDizZs3i0qVLdZ6n1WpZs2YN0dHRVr1faGgoQUFBrF+/vrFdt5oInuyEeVPgypwn7YkTYDSi7NwZpQXlGppV9ilYPRJObwGZHB6KhelbwPXOKykFQRCEtiE9PZ3i4mKGDx+On58fwcHBLF68GL1ez6lTp+o8b8eOHSgUCiIjI6sd37hxI87OzmRlZZmPRUdHExoaSmFhIWDKf964cWPz3FA9RPBkJ3672q5VTNlJEhz7DD57CPJ+AY+O8PQOGP4HMU0nCIJwl0lMTEQmkxEaGmo+lpmZCVBvTcb9+/cTXstn2bRp0wgJCSEuLg6A2NhYEhIS2LFjB2q1GoCIiAiOHj2KTqdrylu5I7tJGL+bGY0GtJVzulUFMjWVlddVtipRUFZo2tD37Nem5z3GwaMfgcoOqpwLgiDYCUmS0JfXv99qc1E4Oli0i0eVpKQkgoOD8fDwACA1NZWFCxcyYMAAcwkhjUZDr169mDJlCu+++y4AGRkZBAQE1LieTCZj2bJlTJ48mYCAAFauXMmBAwcIDAw0twkMDESn05GTk0OXLl0ac7tWEcGTHdAWFSFJRmQyB1w8PDCWlaFNSQFANdgGI09ZSbD1acjPAAcljI6FoS+CFT9kgiAIwp3py418Mn+fTd57zsqRKJ0sL2acmJhIRkYGbm5u6PV6ZDIZU6dOZcWKFThUzkYsW7aMIb/ZxF6r1eLs7FzrNSdOnEjv3r2JjY1l165d9OnTp9rrLi4uADXKFDU3ETzZgdKCfABcPDxwcJBTejIRKipQ+Pqi7NSp5ToiSXBkNez6ExgrwLMzTP4COrayUgmCIAhCiztx4gSvvvoq0dHRqFQq/P39q41cpaenc/78eaKiokipHAAA024j+fn5tV4zISGB8+fPYzAYap36y8szpbRYsoNIUxLBkx2oCp5+nbIzbcmiCg+3aki1UbT5sH0unP/O9LxXFEz6AFxa1zY2giAIbYnC0YE5K22zK4PC0fLc1YsXL1JQUMDo0aPp1q1brW0WLlzIO++8w8GDB6sdHzhwYK11HJOSkpgyZQqrV69m06ZNLFmyhC1btlRrk5KSQseOHS3a6q0pieDJDtQMnirznVpqyi7zOGx5GgqvgNwRHl4GETFimk4QBKGZyWQyq6bObKUqWTysjjzc7du306NHD3r06FEjeBozZgyLFi0iPz8fr8rdMjIyMpgwYQKvvfYaM2fOpHfv3gwePJjExMRq73HgwIFadxBpbiJ4sgO3B09SeTnaE8lAC+xnJ0lw6AP4z5tg1INXMExZCwEDm/d9BUEQBLuSlJREt27d8PSsfTbi8OHDbNq0iS1btlBSUkJFRQUeHh4sXbqUfv36ER4ezubNm3nuuefIy8tj3LhxTJo0icWLFwMQFhZGVFQUr7/+Ojt37gSgrKyM+Ph4EhISWuw+q8ik2vY0EaxSVFSEWq2msLDQvMqgKe354hOSdnzD4EcmM7j3ADKm/R65Wk33QweRNVdJAE0efP0CpJn+kdLnMYj6Ozg3/f0JgiAIJmVlZVy6dIng4OA6k6jt3RdffEFKSop5tR3ADz/8wMKFC0lJSTEnl9/Jhx9+yPbt29m1a1e97er7mjb081uMPNkB88iT2ss8ZecSHt58gdOVw7D1GSjKArkTjHsbwp4W03SCIAhCsxg/fjzp6elkZWXRycKFUEqlklWrVjVzz2ongic7UFpYNW3nieZb00hQsxTHNBrh57/BT38ByQDtusGUL8CvX9O/lyAIgnBXmj17dq3H58+fb9V15syZ0wS9aRgRPNmB0oICAFQeajSJiab/b+rgqfQWxD8HF/5jeh46FSa8B05uTfs+giAIgmDnRPBkBzSV03bKgiJKi4txUKlw7tWz6d4g47+wLRqKs0HhAuPfgYFPimk6QRAEQaiFCJ5auYpyHTpNqenJhV8AcBkwAJmiCb51RgMc+D/YGweSEXxC4HfrwLdX468tCIIgCG2UCJ5aOU3llJ1cqcRw2lSR1SVsUOMvXHwdvoqBS5Vl/wc8CeP/Co6ujb+2IAiCILRhInhq5W6v8aRNPgGAamAj6yxd3AvbYqD0BihVMPF96D+tkT0VBEEQhLuDCJ5auaqVdi4qN/TXssHBAefQ/g27mNEAe9+G/e8AEvj2Ma2ma9+jyforCIIgCG2dCJ5auapkcWejqZapU88Q5G4NmForyjYlhV/+r+n5oFkwbgUoXZqqq4IgCIJwVxDBUytXNW2nLNUAoBrYgHynC/+Br+aAJhcc3SBqJfSb3JTdFARBEIS7hgieWrmq4Elx6xYALtbkOxn0sOcv8N/3Tc/9+sGUddDunqbupiAIgiDcNUTw1MpVFciUZ98AQDXIwuCpMBO2PgtXD5ueD46Bh/8Cyra5V5IgCIIgtBQRPLVyVTlPTuXlKPz8UAYE3PmktARTtXBtPjh5wKRV0OfRZu6pIAiCINwdmmlnWaGpVK22c9IbcBk4oP7GhgpIeB02/M4UOAUMhOf2i8BJEARBaNVyc3Px9fUlIyPD4nMmT57Me++913ydqocInloxSZLMOU9OFYb6k8XzL8PnY+HQB6bnQ1+EZxLAO7gFeioIgiAIMGLECGQyGTKZDKVSSUhICBs2bLjjeXFxcURFRREUFGTxey1dupRly5ZRVFTUiB43jAieWjGdphRDRQVQOfI0qI7g6dx3sPo+yDoOzmqYtgHGxoHCqQV7KwiCINzNJEkiOTmZuLg4srOzSUtLY/jw4cyaNYtLly7VeZ5Wq2XNmjVER0db9X6hoaEEBQWxfv36xnbdaiJ4asXMK+0MBhTOzjj3DKneQK+DHa/Bv2dAWSF0HAzP/xd6TrBBbwVBEIS7WXp6OsXFxQwfPhw/Pz+Cg4NZvHgxer2eU6dO1Xnejh07UCgUREZGVju+ceNGnJ2dycrKMh+Ljo4mNDSUwsJCACZNmo1h9O0AABYFSURBVMTGjRub54bqIYKnVkxz25SdS2ho9c2A8y7CmofhyD9Mz4e9DE/vAM/ONuipIAiC0BwkSaKirMwmD0mSrOprYmIiMpmM0NBQ87HMzEwAOnToUOd5+/fvJzw8vMbxadOmERISQlxcHACxsbEkJCSwY8cO1Go1ABERERw9ehSdTmdVXxtLrLZrxcz5TnoDLreXKDgTD9/MA10RuHjDYx9DjzE26qUgCILQXPQ6HX+fZZuixvPWbUXpbHl5m6SkJIKDg/Hw8AAgNTWVhQsXMmDAACIiIlAoFPTt2xeA8PBwPvvsMwAyMjIIqGUluUwmY9myZUyePJmAgABWrlzJgQMHCAwMNLcJDAxEp9ORk5NDly5dGnO7VhHBUytWVePJqUKPatAgqCiDhMVwfI2pQedIeGINqAPruYogCIIgNL/ExEQyMjJwc3NDr9cjk8mYOnUqK1aswMHBAU9PT5KTk2ucp9Vqca4jSJs4cSK9e/cmNjaWXbt20adPn2qvu7iYthjTaDRNf0P1sJvgadmyZXz//fckJyfj6OhIQWVgUR9JkoiNjeWTTz4hPz+fIUOG8OGHH1b74ufn5zNv3jy++eYbwDR/umrVKjw9PZvtXixVnG2a53XSG3Hp5AFrHoKc06YXhy+A+18Hud18CwVBEAQrKZycmLduq83e2xonTpzg1VdfJTo6GpVKhb+/PzKZ7I7n+fj4kJ+fX+trCQkJnD9/HoPBUOvUX15eHgDt27e3qq+NZTc5T+Xl5UyZMoUXXnjB4nP++te/8t577/HBBx9w7Ngx/Pz8GD16NMXFxeY206dPJzk5mZ07d7Jz506Sk5OZOXNmc9yC1YoyTKsTVK7OyDeMNwVOKh94chs89IYInARBENo4mUyG0tnZJg9LAp8qFy9epKCggNGjR9OtWzcCAgJqnF9UVERYWBjDhw9n37595uMDBw7k7NmzNa6ZlJTElClTWL16NWPGjGHJkiU12qSkpNCxY0d8fHys+Ko2AcnOrF27VlKr1XdsZzQaJT8/P+ntt982HysrK5PUarX08ccfS5IkSWfPnpUA6fDhw+Y2hw4dkgDp/PnzFvepsLBQAqTCwkIr7uTO1j87Q3r3dxOk/04KlaQ3PCRp7QRJKrzWpO8hCIIgtB5arVY6e/aspNVqbd0Vq2zevFmSyWRSfn5+nW2ysrIkSZKk06dPS507dzZ/Zp46dUpSKBRSXl6eue2lS5ckPz8/admyZZIkSdLx48clmUwmHT9+vNo1Z82aJT3zzDP19q2+r2lDP7/tZuTJWpcuXSInJ4eHH37YfMzJyYmRI0dy8OBBAA4dOoRarWbIkCHmNkOHDkWtVpvb1Ean01FUVFTt0eQ0eWjyTPvZqd3LYOT/wlPbwcO/6d9LEARBEBohKSmJbt261ZvyUpUU3rdvX3r37k1aWhoA/fr1Izw8nM2bNwOmqbhx48YxadIkFi9eDEBYWBhRUVG8/vrr5uuVlZURHx9PTExMc91Wndps8JSTkwPUXB7ZoUMH82s5OTn4+vrWONfX19fcpjZxcXGo1Wrzo1OnTk3YcxPJSY2EDCQJr8kL4P7F4CBv8vcRBEEQhMaKi4szB0O1yc/PN5cTyMzM5OzZs3Tt2tX8+pIlS1i5ciVGoxFvb2/OnTvH6tWrq11j+/bt7Ny50/x8zZo1DBkyhKFDhzbx3dyZTYOnN99801zGva7H8ePHG/Uev51zlSSp2rHa5nR/2+a3Fi1aRGFhoflx9erVRvWxNjK5nJj1/2beu+/hH2Vd1VVBEARBaE3OnTtHeHg4/fv3Z+LEiaxcuRJvb2/z6+PHj+e5556rVhDzTpRKJatWrWqO7t6RTTOO586dy7Rp0+ptY80+N7fz8/MDTKNL/v6/TnXduHHDPBrl5+fH9evXa5x78+bNegt6OTk54WTlKoQGcfFE2dn2q/4EQRAEoTGGDRvG6dOn620zf/58q645Z86cxnSpUWwaPPn4+DRbhnxwcDB+fn78+OOPDBxoKjBZXl7Ovn37WLFiBQCRkZEUFhZy9OhRIiIiADhy5AiFhYUMGzasWfolCIIgCIJ9s5ucpytXrpCcnMyVK1cwGAwkJyeTnJxMSUmJuU3Pnj2Jj48HTNNxf/jDH1i+fDnx8fGkpKQwe/ZsVCoV06dPB6BXr16MHTuWmJgYDh8+zOHDh4mJiWHixImEhITU2g9BEARBEO5udlMoaOnSpaxbt878vGo0ac+ePYwaNQowlYKv2iwQ4I9//CNarZYXX3zRXCRz165duLu7m9usX7+eefPmmVflTZo0iQ8++KAF7kgQBEEQBHskkyQrd/4TaigqKkKtVlNYWGje00cQBEEQrFVWVsalS5cIDg6uc8sSwTr1fU0b+vltN9N2giAIgnC3EOMaTac5vpYieBIEQRCEVkKpVAItv9FtW1b1taz62jYFu8l5EgRBEIS2Ti6X4+npyY0bph0mVCqVVXvMCb+SJAmNRsONGzfw9PRELm+6QtMieBIEQRCEVqSqTmFVACU0jqenp/lr2lRE8CQIgiAIrYhMJsPf3x9fX18qKips3R27plQqm3TEqYoIngRBEAShFZLL5c3ywS80nkgYFwRBEARBsIIIngRBEARBEKwggidBEARBEAQriJynJlBVgKuoqMjGPREEQRAEwVJVn9vWFtIUwVMTKC4uBqBTp0427okgCIIgCNYqLi5GrVZb3F7sbdcEjEYj165dw93dvUmLmRUVFdGpUyeuXr3aZvfMa+v3KO7P/rX1exT3Z//a+j025/1JkkRxcTEBAQE4OFieySRGnpqAg4MDHTt2bLbre3h4tMkfiNu19XsU92f/2vo9ivuzf239Hpvr/qwZcaoiEsYFQRAEQRCsIIInQRAEQRAEK8jffPPNN23dCaFucrmcUaNGoVC03RnWtn6P4v7sX1u/R3F/9q+t32Nruz+RMC4IgiAIgmAFMW0nCIIgCIJgBRE8CYIgCIIgWEEET4IgCIIgCFYQwZMgCIIgCIIVRPBkY8uWLWPYsGGoVCo8PT0tOkeSJN58800CAgJwcXFh1KhRnDlzplqb/Px8Zs6ciVqtRq1WM3PmTAoKCprjFuplbT8yMjKQyWS1PrZs2WJuV9vrH3/8cUvcUjUN+TqPGjWqRt+nTZvW6Os2F2v7kpeXx8svv0xISAgqlYrOnTszb948CgsLq7Wz1ffwo48+Ijg4GGdnZ8LCwjhw4EC97bdt20bv3r1xcnKid+/exMfHV3vdkp/HlmbNPX766afcd999eHl54eXlxUMPPcTRo0ertZk9e3aN79XQoUOb+zbqZM39ffHFF7X+WysrK2vwNZubNX2p7feJTCZjwoQJ5jat6fu3f/9+oqKiCAgIQCaT8fXXX9/xnH379hEWFoazszNdu3at9fdEi3//JMGmli5dKr333nvSggULJLVabdE5b7/9tuTu7i5t27ZNOn36tDR16lTJ399fKioqMrcZO3as1LdvX+ngwYPSwYMHpb59+0oTJ05srtuok7X90Ov1UnZ2drVHbGys5OrqKhUXF5vbAdLatWurtdNoNC1xS9U05Os8cuRIKSYmplrfCwoKGn3d5mJtX06fPi09/vjj0jfffCNduHBB2r17t9S9e3fpiSeeqNbOFt/DTZs2SUqlUvr000+ls2fPSvPnz5dcXV2ly5cv19r+4MGDklwul5YvXy6dO3dOWr58uaRQKKTDhw+b21jy89iSrL3H6dOnSx9++KF04sQJ6dy5c9LTTz8tqdVqKTMz09xm1qxZ0tixY6t9r3Jzc1vqlqqx9v7Wrl0reXh41Pi90phrNidr+5Kbm1vtvlJSUiS5XC6tXbvW3KY1ff9++OEH6fXXX5e2bdsmAVJ8fHy97S9evCipVCpp/vz50tmzZ6VPP/30/9u799CmzjcO4N/OJum0F3C1jasYRbSpa0vN2prZrZFNakVBEJ2O0gW3iQ7EORyjwqRWmVQZOm/oLkH9Y1O0KgjibdLKWOPmaubqOkc7orJBdXGjret0vTz7Y+v59TS95JyeXH7w/YDQvHnz5nny9D15jCdHMZlMUlNTo8yJRv3YPMWIQ4cOhdQ89fb2itVqlerqamXs0aNHkpKSIgcPHhQRkaamJgGgOsB7vV4BILdu3TI++CEYFUdeXp689tprqrFQNl246c3P5XLJW2+9Zfi64WBULMePHxez2SxdXV3KWDRqWFhYKGvWrFGN2e12qaioGHT+yy+/LKWlpaqx+fPny4oVK0QktP0YaVpzHKi7u1uSkpLkyJEjypjb7ZbFixcbGqdeWvML5dg62tfMSKONZdeuXZKUlCQPHz5UxmKpfv2Fcgx49913xW63q8ZWr14tTqdTuR2N+vGf7f7P+P1+tLa2oqSkRBmzWCxwuVyor68HAHi9XqSkpGD27NnKHKfTiZSUFGVOJBgRR0NDA7777ju8/vrrQfetXbsWqampKCgowMGDB9Hb22tY7KEYTX6fffYZUlNT8cwzz+Cdd95BR0eHIesazahY2trakJycHHSBu0jW8O+//0ZDQ4Nq7wBASUnJkLl4vd6g+fPnz1fmh7IfI0lPjgN1dnaiq6sL48ePV43X1dUhLS0NM2bMwKpVq3D//n3D4g6V3vwePnwIm82GSZMmYdGiRfD5fKNeMxyMiMXj8WDFihUYN26cajwW6qfHUHvw22+/RVdXV9TqFxuX6qSQtba2AgDS09NV4+np6bhz544yJy0tLeixaWlpyuMjwYg4PB4PsrKyMGfOHNX41q1b8dJLL+HJJ5/E5cuXsWHDBgQCAbz33nuGxB4KvfmVlZVh6tSpsFqtuHnzJjZu3IgbN27g0qVLo1o3HIyI5cGDB9i6dStWr16tGo90DQOBAHp6egbdO0Pl0traOuz8UPZjJOnJcaCKigpkZGRg3rx5ytiCBQuwbNky2Gw2+P1+bNq0CS+++CIaGhpgsVgMzWE4evKz2+04fPgwcnJy0N7ejt27d6OoqAg3btzA9OnTDXnNjDLaWL755hvcvHkTHo9HNR4r9dNjqD3Y3d2NQCAAEYlK/dg8hcHmzZtRVVU17Jxr164hPz9f93PExcWpbouIamzg/YPN0SvU/EYbx19//YXPP/8cmzZtCrqv/xtsXl4eAGDLli2GvPGGO79Vq1YpP2dnZ2P69OnIz8/H9evX4XA4dK+rRaRq2N7ejoULF2LmzJmorKxU3RfOGg5npL2jZ77WNcNNbzw7duzA0aNHUVdXh4SEBGV8+fLlys/Z2dnIz8+HzWbD2bNnsWTJEuMCD5GW/JxOp+rk6KKiIjgcDuzduxd79uzRtWa46Y3F4/EgOzsbhYWFqvFYq59Wg70efeP9fx44J5z1Y/MUBmvXrg369tRAU6ZM0bW21WoF8G83PnHiRGX8/v37SudttVpx7969oMf+9ttvQd25HqHm9/33348qjpqaGnR2duLVV18dca7T6UR7ezvu3bs36hwjlV8fh8MBk8mE5uZmOByOsNcPiEyOHR0dKC0tRWJiIk6fPg2TyTTsfCNrOJjU1FSMGTMm6G+j/ffOQFarddj5oezHSNKTY58PPvgA27ZtwxdffIHc3Nxh506cOBE2mw3Nzc2jjlmL0eTX54knnkBBQYESuxFrGmU0sXR2duLYsWPYsmXLiM8TrfrpMdQejI+Px1NPPQURiU79wnY2FWmi9YTx7du3K2OPHz8e9ITxr7/+Wplz9erVqJ0wrjcOl8sV9A2toezdu1cSEhLk0aNHuuPVyqjXubGxUQDIlStXDF3XCHpjaWtrE6fTKS6XS/7888+QnisSNSwsLJQ333xTNZaVlTXsCeMLFixQjZWWlgadMD7cfow0rTmKiOzYsUOSk5PF6/WG9ByBQEAsFovqpPJI0ZNff729vZKfny8rV640bE0j6Y3l0KFDYrFYJBAIjPgc0axffwjxhPGsrCzV2Jo1a4JOGI90/dg8RdmdO3fE5/NJVVWVJCYmis/nE5/Pp/pafmZmppw6dUq5XV1dLSkpKXLq1ClpbGyUV155ZdBLFeTm5orX6xWv1ys5OTlRu1TBcHH88ssvkpmZqXpzFhFpbm6WuLg4OXfuXNCaZ86ckY8//lgaGxulpaVFPvnkE0lOTpZ169aFPZ+BtObX0tIiVVVVcu3aNfH7/XL27Fmx2+0ya9Ys6e7uDnndSNKaY3t7u8yePVtycnKkpaVF9fXovhyjVcO+rzR7PB5pamqS9evXy7hx4+T27dsiIlJeXq464H711VcyZswYqa6ulh9//FGqq6sHvVTBSPsxkrTmuH37djGbzVJTU6OqVd8xqKOjQzZs2CD19fXi9/ultrZWnnvuOcnIyIhKjlrz27x5s5w/f15+/vln8fl8snLlSomPj1cdc0ZaM5bz6/P888/L8uXLg8ZjrX4dHR3K+xwA2blzp/h8PuWyAhUVFVJeXq7M77tUwdtvvy1NTU3i8XiGvFRBJOvH5inK3G63AAj6U1tbq8zBf9fD6dPb2yuVlZVitVrFYrFIcXGxNDY2qtZ98OCBlJWVSVJSkiQlJUlZWZn88ccfEcoq9Dj8fn9QviIiGzdulEmTJklPT0/QmufOnZO8vDxJTEyUsWPHSnZ2tnz44Yeqr8FHitb87t69K8XFxTJ+/Hgxm80ybdo0WbduXdA1V2KlfqHEMjDH2traQX+nAYjf7xeR6NZw//79YrPZxGw2i8PhUD7xE/n30063262af+LECcnMzBSTySR2u11Onjypuj+U/RhpWnK02WyD1qqyslJERDo7O6WkpEQmTJggJpNJJk+eLG63W+7evRvhrP5HS37r16+XyZMni9lslgkTJkhJSYnU19drWjPStP6O/vTTTwJALl68GLRWrNVvqONDX05ut1tcLpfqMXV1dTJr1iwxm80yZcoUOXDgQNC6ka5fnMh/Z1sRERER0Yh4nSciIiIiDdg8EREREWnA5omIiIhIAzZPRERERBqweSIiIiLSgM0TERERkQZsnoiIiIg0YPNEREREpAGbJyIiIiIN2DwRERERacDmiYhogKNHjyIhIQG//vqrMvbGG28gNzcXbW1tUYyMiGIB/287IqIBRAR5eXl44YUXsG/fPlRVVeHTTz/F1atXkZGREe3wiCjK4qMdABFRrImLi8P777+PpUuX4umnn8bu3bvx5ZdfsnEiIgD85ImIaEgOhwM//PADLl68CJfLFe1wiChG8JwnIqJBXLhwAbdu3UJPTw/S09OjHQ4RxRB+8kRENMD169cxd+5c7N+/H8eOHcPYsWNx4sSJaIdFRDGC5zwREfVz+/ZtLFy4EBUVFSgvL8fMmTNRUFCAhoYGPPvss9EOj4hiAD95IiL6z++//46ioiIUFxfjo48+UsYXL16Mx48f4/z581GMjohiBZsnIiIiIg14wjgRERGRBmyeiIiIiDRg80RERESkAZsnIiIiIg3YPBERERFpwOaJiIiISAM2T0REREQasHkiIiIi0oDNExEREZEGbJ6IiIiINGDzRERERKQBmyciIiIiDf4Bw3OAqvxj27UAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(24,0.5,'Legendre polynomials')" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "leg = []\n", - "x = linspace(-1, 1, 300)\n", - "for i in eachindex(L)\n", - " plot(x, L[i].(x), \"-\")\n", - " push!(leg, \"\\$P_{$(i-1)}(x)\\$\")\n", - "end\n", - "plot(x, zeros(x), \"k--\")\n", - "legend(leg)\n", - "xlabel(L\"x\")\n", - "ylabel(\"Legendre polynomials\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that $p_n(x)$ has exactly $n$ roots in the interval $[-1,1]$!\n", - "\n", - "This is essentially required by the fact that they are orthogonal: $p_n$ has to oscillate in sign faster and faster in $[-1,1]$ as $n$ increases in order to integrate to zero against the previous polynomials." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Expanding a polynomial in the Legendre basis.\n", - "\n", - "Now that we have an orthogonal (but not orthonormal) basis, it is easy to take an arbitrary polynomial $p(x)$ and write it in this basis:\n", - "\n", - "$$\n", - " p(x) = \\alpha_0 p_0(x) + \\alpha_1 p_1(x) + \\cdots = \\sum_{i=0}^\\infty \\alpha_i p_i(x)\n", - "$$\n", - "\n", - "because we can get the coefficients $\\alpha_i$ merely by projecting:\n", - "\n", - "$$\n", - "\\alpha_i = \\frac{p_i \\cdot p}{p_i \\cdot p_i}\n", - "$$\n", - "\n", - "Note, however, that this isn't actually an infinite series: if the polynomial $p(x)$ has degree $d$, then $\\alpha_i = 0$ for $i > d$. The polynomials $p_0, \\ldots, p_d$ are a basis for the subspace of polynomials of degree $d$ (= span of $1, x, \\ldots, x^d$)!\n", - "\n", - "Let's see how this works for a \"randomly\" chosen $p(x)$ of degree 5:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$1 + 3\\cdot x + 4\\cdot x^{2} + 7\\cdot x^{3} + 2\\cdot x^{4} + 5\\cdot x^{5}$" - ], - "text/plain": [ - "Poly(1 + 3*x + 4*x^2 + 7*x^3 + 2*x^4 + 5*x^5)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = Poly([1,3,4,7,2,5])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here are the coefficients α:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6-element Array{Rational{Int64},1}:\n", - " 41//15\n", - " 327//35\n", - " 80//21\n", - " 226//45\n", - " 16//35\n", - " 40//63" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "α = [polydot(q,p)/polydot(q,q) for q in L]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's check that the sum of $\\alpha_i p_i(x)$ gives $p(x)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$1 + 3\\cdot x + 4\\cdot x^{2} + 7\\cdot x^{3} + 2\\cdot x^{4} + 5\\cdot x^{5}$" - ], - "text/plain": [ - "Poly(1//1 + 3//1*x + 4//1*x^2 + 7//1*x^3 + 2//1*x^4 + 5//1*x^5)" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(α .* L) # α[1]*L[1] + α[2]*L[2] + ... + α[6]*L[6]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$0//1$" - ], - "text/plain": [ - "Poly(0//1)" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(α .* L) - p" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Polynomial fits\n", - "\n", - "### Review: Projections and Least-Square\n", - "\n", - "Given a matrix $Q$ with $n$ orthonormal columns $q_i$, we know that the **orthogonal projection** \n", - "\n", - "$$\n", - "p = QQ^T b = \\sum_{i=1}^n q_i q_i^T b\n", - "$$\n", - "\n", - "is the **closest vector** in $C(Q)$ to $b$. That is, it **minimizes** the distance:\n", - "\n", - "$$\n", - "\\min_{p \\in C(Q)} \\Vert p - b \\Vert \\; .\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Closest polynomials\n", - "\n", - "Now, suppose that we have some function $f(x)$ on $x\\in[-1,1]$ that is *not* a polynomial, and we want to find the **closest polynomial** of degree $n$ to $f(x)$ in the least-square sense. That is, we want to find the polynomials $p(x)$ of degree $n$ that **minimizes**\n", - "\n", - "$$\n", - "\\min_{p\\in \\mathcal{P}_n} \\int_{-1}^1 |f(x)-p(x)|^2 dx = \n", - "\\min_{p\\in \\mathcal{P}_n} \\Vert f(x) - p(x) \\Vert^2\n", - "$$\n", - "\n", - "where\n", - "\n", - "$$\n", - "\\mathcal{P}_n = \\operatorname{span} \\{ 1, x, x^2, \\ldots, x^n \\}\n", - "= \\operatorname{span} \\{ p_0(x), p_1(x), \\ldots, p_n(x) \\}\n", - "$$\n", - "\n", - "is the space of polynomials of degree $\\le n$, spanned by our Legendre polynomials up to degree $n$.\n", - "\n", - "Presented in this context, we can see that this is *the same problem* as our least-square problem above, and the solution should be the same: $p(x)$ is the **orthogonal projection** of $f(x)$ onto $\\mathcal{P}_n$, given by:\n", - "\n", - "$$\n", - "p(x) = p_0(x) \\frac{p_0 \\cdot f}{p_0 \\cdot p_0} + \\cdots \n", - " p_n(x) \\frac{p_n \\cdot f}{p_n \\cdot p_n} \\; .\n", - "$$\n", - "\n", - "Let's try this out for $f(x) = e^x$. Because we're lazy, we'll have Julia compute the integrals numerically using its `quadgk` function, and fit it to polynomials of degree 5 using our Legendre polynomials from above." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "polydot (generic function with 2 methods)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "polydot(p::Poly, f::Function) = quadgk(x -> p(x)*f(x), -1,1, atol=1e-13, rtol=1e-11)[1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let's use dot products to compute the coefficients in the $p_i(x)$ expansion above for $f(x) = e^x$ (the `exp` function in Julia):" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6-element Array{Float64,1}:\n", - " 1.1752 \n", - " 1.10364 \n", - " 0.357814 \n", - " 0.0704556 \n", - " 0.00996513\n", - " 0.00109959" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "coeffs = [polydot(p,exp)/polydot(p,p) for p in L]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One thing to notice is an important fact: expanding functions, especially [smooth functions](https://en.wikipedia.org/wiki/Smoothness), in orthogonal bases like Legendre polynomials or Fourier series tends to converge very rapidly.\n", - "\n", - "Let's write out the resulting polynomial $p(x)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$1.0000309413759412 + 1.0000165970001087\\cdot x + 0.4993522954128024\\cdot x^{2} + 0.1665177055581527\\cdot x^{3} + 0.04359743565129904\\cdot x^{4} + 0.008659240751762349\\cdot x^{5}$" - ], - "text/plain": [ - "Poly(1.0000309413759412 + 1.0000165970001087*x + 0.4993522954128024*x^2 + 0.1665177055581527*x^3 + 0.04359743565129904*x^4 + 0.008659240751762349*x^5)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = sum(coeffs .* L)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's plot it:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAHICAYAAACVqkoXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Wl8TOfDxvHfZE9IQhCCWKv2JfZdPK1dWlWqqK3VFqFaW6tFLS1VqpbSHW0tRe21lLbEFrvYaq+tSNGQEBKSnOeFyr9BIvuZTK7v5zMvZuacmWtmksyV+9znHIthGAYiIiIiVsLO7AAiIiIi/6VyIiIiIlZF5URERESsisqJiIiIWBWVExEREbEqKiciIiJiVVRORERExKqonIiIiIhVUTkRERERq6JyIiIiIlZF5URERESsisqJSDoKDAzklVdeASAuLo5nn32WN954w+RUIiJZi8qJpKsFCxZQvnx5XF1dsVgsTJ48GYvFwpkzZ+KX2bZtGyNHjuT69esPrZ/YfbNnz37ocazR0KFDWbhwIefOneOdd94hNjaWTz/9NMl1kno/rM3IkSOxWCxmx8gUGzduxGKxPPKyfft2UzJlld+D5EjLa7Gl90EezcHsAGI7rly5QpcuXWjevDkzZszA2dkZHx8fateujY+PT/xy27ZtY9SoUXTv3p1cuXIleIzE7mvVqhXBwcEJHscaFS5cmK5du/LMM88AsGXLFuzt7ZNcJ6n3Q8w3duxYGjdunOC2ChUqmJTGdmSV32kxh8qJpJvjx49z9+5dXnrpJRo1ahR/e9GiRdP82Pny5SNfvnxpfpzMUKVKFWbMmMG2bdvImTOn2XFsxq1bt3Bzc8v05y1VqhS1a9fO9Oe1dVnpd1oynzbrSLro3r079evXB6BDhw5YLBb8/f0fGn4dOXIkgwcPBqB48eLxw+QbN25M8r5HDePe38Rw+PBhOnbsiKenJ/nz5+fll18mPDw8Qb7ly5dTqVIlnJ2dKVGiBFOmTEnxJootW7bQtGlTPD09yZ07N61ateLEiRMJltm5cyejRo2iffv2fPfdd499zKRe8/3nfOqpp3B3d8fNzY26deuyatWqZOU9efIkPXr0oFSpUri5uVGoUCECAgI4ePBgstZftWoVVapUwdnZmeLFizNx4sRElz1x4gSdOnXC29sbZ2dnypYty/Tp0x9aLrmfw/3b9u7dS7t27cidOzclS5ZM8fMld7mMcP817Nu3j7Zt2+Lh4YGnpycvvfQSV65ceWj5lH7WmzdvxmKxMH/+/Ifu+/7777FYLOzatStBluT8riQ3y/3HPHDgAO3bt8fT0xMvLy8GDBhATEwMx44do3nz5ri7u1OsWDE+/vjjBOs/6nc6rT+zYkMMkXRw8uRJY/r06QZgjB071ggODjYOHz5szJo1ywCM06dPG4ZhGOfPnzf69etnAMaSJUuM4OBgIzg42AgPD0/yvgcfxzAM4/333zcAo3Tp0saIESOM9evXG5MmTTKcnZ2NHj16xC+3Zs0aw87OzvD39zeWLl1qLFq0yKhVq5ZRrFgxI7m/Au+//75hZ2dnvPzyy8aqVauMn376yahYsaLh6+tr3LhxwzAMwzh79qzh6+trbNiwwbh48aLh7u5unDlzJsnHTeo1b9y40XB0dDSqVatmLFiwwFi2bJnRtGlTw2KxGD/++ONjMwcFBRkDBw40fvrpJyMoKMhYunSp0aZNG8PV1dU4evRokuv++uuvhr29vVG/fn1jyZIlxqJFi4waNWoYRYoUeeg9O3z4sOHp6WlUrFjR+P77741169YZAwcONOzs7IyRI0fGL5eSz+H+Z1u0aFHj7bffNtavX28sW7YsRc+X3OUSs2HDBgMwvL29DXt7e8Pd3d1o2rSpsXnz5seu++BrGDx4sPHLL78YkyZNMnLkyGH4+fkZd+7ciV82uZ/1g78Hfn5+Rr169R567ho1ahg1atR4KMvjfldSkuW/jzlmzBhj/fr1xpAhQwzA6Nu3r1GmTBlj6tSpxvr1640ePXoYgLF48eJEX4thJP9n9lHrim1ROZF0c/+P+aJFi+Jve9QfkQkTJiT6hyWx+5IqJx9//HGCZfv06WO4uLgYcXFxhmHc+0Pt6+trREdHxy9z48YNI0+ePMkqJytXrnzk8xw/ftwAjDlz5hgRERFGxYoVjW+++Sb+/t69exs9e/Z87OMn9ppr165teHt7x5cfwzCMmJgYo0KFCkbhwoXjX19yxcTEGHfu3DFKlSplvPXWW0kuW6tWLaNgwYLG7du342+LiIgwvLy8HnrPmjVrZhQuXNgIDw9PcHvfvn0NFxcXIywszDCMlH0O9z/bESNGPJQtuc+X3OUSs3fvXqN///7G0qVLjU2bNhkzZ840ypYta9jb2xtr165Nct3/voYH3+u5c+fG/9zcl9zP+sHfg/vX9+3bF7/ezp07DcD47rvvHsryuN+VlGS5/5iffPJJgsesUqVKfNm+7+7du0a+fPmMtm3bxt+WnIKR2M+syont02YdyfLuTz69r1KlSkRFRXH58mUiIyPZvXs3bdq0wcnJKX6ZnDlzEhAQkKzHHzFiBCVLlqR///7ExMTEX4oXL46rqyt//vkn7u7uHDhwIH43YoAZM2bw9ddfp+o1RUZGsmPHDtq1a5dg3oq9vT1dunThr7/+4tixY0k+RkxMDGPHjqVcuXI4OTnh4OCAk5MTJ06c4MiRI0k+965du2jbti0uLi7xt7u7uz/0nkVFRfHbb7/x3HPP4ebmluD9admyJVFRUWzfvj3Vn8Pzzz+fqudL7nL336f/XgzDAMDPz4/JkyfTpk0bGjRoQI8ePdi2bRs+Pj4MGTIkyff+vzp37pzg+gsvvICDgwMbNmyIf79T+1l37NgRb2/vBJuqpk2bRr58+ejQocNDyyf1u5LaLK1bt05wvWzZslgsFlq0aBF/m4ODA0888QRnz5595Ou4L7U/s2J7VE4ky8uTJ0+C687OzgDcvn2ba9euYRgG+fPnf2i9R932oNDQUPbt28epU6dwdnbG0dExweX27dsZsofN/dyP2pOhYMGCAPzzzz9JPsaAAQMYPnw4bdq0YeXKlezYsYNdu3ZRuXJlbt++neRzx8XFUaBAgYfue/C2f/75h5iYGKZNm/bQe9OyZUsArl69murP4cHXn9znS+5yZ86ceej+oKCgRPPkypWL1q1bc+DAgSTfw6TeMwcHB/LkyRP/+aXls3Z2dub1119n3rx5XL9+nStXrrBw4UJ69uwZ/3vwX0n9rqQ2i5eXV4LrTk5OuLm5JSi292+Piop65Ou4L7U/s2J7tLeO2LTcuXNjsVj4+++/H7ovNDT0seufP38egE8//TR+wu+D/jtRM73kzp0bOzs7Ll269NB9Fy9eBCBv3rxJPsacOXPo2rUrY8eOTXD71atXkyxU99+zR70/D96WO3fu+P+qAwMDH/l4xYsXx8XFJVWfw4MTZZP7fK6urslazt3dPX7S6H2lS5dONA8QP7KS3MnUoaGhFCpUKP56TEwM//zzT3xRSOtn3bt3bz766CNmzpxJVFQUMTEx9OrVK1nZHpQeP3dpkdqfWbE9KieS6R78by2596VGjhw5qF69OsuWLWPixInxmxRu3rzJzz///Nj17/9XaLFYqF69erpketCjXnOOHDmoVasWS5YsYeLEibi6ugL3jjo7Z84cChcuzJNPPpnk41oslof+e161ahUXLlzgiSeeSHS9HDlyULNmTZYsWcKECRPi/wO+ceMGK1euTLCsm5sbjRs3Zt++fVSqVCnBJpsHpeVzSM3zpSRXcl27do2ff/6ZKlWqPDQykJi5c+dSrVq1+OsLFy4kJiYGf39/IO2ftY+PD+3bt2fGjBncuXOHgIAAihQpkuzX9F/p8XOXFqn9mRXbo3Iima5ixYoATJkyhW7duuHo6Ejp0qVxd3dP9L60GD16NK1ataJZs2b079+f2NhYJkyYQM6cOQkLC0ty3ZIlS9K4cWOGDRvGzZs3qVWrFoZhcOnSJTZs2EC3bt3iv2RSK7HXPG7cOJo0aULjxo0ZNGgQTk5OzJgxg0OHDjF//vzH/ufeunVrZs+eTZkyZahUqRJ79uxhwoQJFC5c+LGZxowZQ/PmzWnSpAkDBw4kNjaW8ePHkyNHjofesylTplC/fn0aNGhA7969KVasGDdu3ODkyZOsXLmS33//HUjb55Ca50vuconp1KkTRYoUoXr16uTNm5cTJ07wySef8PfffzN79uxk512yZAkODg40adKEw4cPM3z4cCpXrswLL7wQv0xaP+v+/ftTq1YtAGbNmpXsbI+S1ixpkZafWbEx5s3FFVuT3L11DMMwhg4dahQsWNCws7MzAGPDhg1J3pfU3jpXrlxJ8NiPWnbp0qVGxYoVDScnJ6NIkSLGRx99ZLzxxhtG7ty5H/u6wsPDjaFDhxpPPvmk4eLiYuTOnduoXLmy0a9fP+PatWspeo8Sk9j7sXnzZuP//u//jBw5chiurq5G7dq1jZUrVybrMa9du2a88sorhre3t+Hm5mbUr1/f2Lx5s9GoUSOjUaNGj11/xYoVRqVKlRK8Z/ff8wedPn3aePnll41ChQoZjo6ORr58+Yy6desaH3zwQYLlkvs5JPbZpvT5krvco4wbN86oUqWK4enpadjb2xv58uUznnvuOWPnzp2PXfe/r2HPnj1GQECAkTNnTsPd3d3o2LGj8ffffz+0fHI+66T2UilWrJhRtmzZJLMk53cluVkSe8xu3boZOXLkeChDo0aNjPLlyyf53Mn9mdXeOrbPYhj/bkAVyUbu3r1LlSpVKFSoEOvWrTM7TrZly5/DyJEjGTVqFFeuXMnQeRoABw4coHLlykyfPp0+ffpk6HOJZAZt1pFs4ZVXXqFJkyb4+PgQGhrKF198wZEjR5gyZYrZ0bIVfQ7p69SpU5w9e5Z3330XHx8funfvbnYkkXShciLZwo0bNxg0aBBXrlzB0dGRqlWrsnr1ap5++mmzo2Ur+hzS15gxY/jhhx8oW7YsixYtMuXcQyIZQZt1RERExKroIGwiIiJiVVRORERExKqonIiIiIhVyRITYuPi4rh48SLu7u4ZegAgERERST+GYXDjxg0KFiyInV3yx0OyRDm5ePEivr6+ZscQERGRVDh//nyKjvSbJcqJu7s7cO/FeXh4mJxGREREkiMiIgJfX9/47/HkyhLl5P6mHA8PD5UTERGRLCalUzI0IVZERESsisqJiIiIWBWVExEREbEqWWLOSXLFxsZy9+5ds2NkK46Ojtjb25sdQ0REbIhNlBPDMAgNDeX69etmR8mWcuXKRYECBXQMGhERSRc2UU7uFxNvb2/c3Nz0JZlJDMPg1q1bXL58GQAfHx+TE4mIiC3I8uUkNjY2vpjkyZPH7DjZjqurKwCXL1/G29tbm3hERCTNsvyE2PtzTNzc3ExOkn3df+8130dERNJDli8n92lTjnn03ouISHqymXIiIiIitkHlRERERKyKyomIiIhYFZUTK1erVi12794NQLdu3fj8889NTiQiIjbl/HnYv9/sFAmonFi54cOHM3bsWD755BNy5sxJ7969zY4kIiI2ZF77JdzwawjTppkdJV6WP86JrWvdujXDhg3j5s2brF692uw4IiJiQzZN2UfnHf0pTFuOVL9OTrMD/UsjJyY7f/48nTt3Jnfu3OTOnZtOnTpx7dq1+Pt37tzJ9evXyZUrFw4O6pIiIpI+YqNjeOOdewfSbFXuDDnrVDQ50f/YXjkxDIiMNOdiGCmKevLkSapVq0bJkiUJDg7m119/5dSpUwwePBiACxcu0LNnTzZs2MCJEyc4cuRIRrxjIiKSDX3dfSv7o8qQy3KdD5aWNztOArb3r/itW5DTpIGpmzchR45kL96rVy969+7NqFGj4m8bMmQIgwcP5vbt27Rr147PPvuM4sWLM2TIED744APmzp2bEclFRCQbCTsZxrAFFQAY/fwB8j7Z0ORECVkMI4X/7psgIiICT09PwsPD8fDwSHBfVFQUp0+fpnjx4ri4uNwbwcgC5eTs2bMUK1YMV1dX7Oz+N4AVGxuLr68vx48fz6iU6e6hz0BERKxav0ob+eygP+WdTxJyvRgOLhkzVpHU93dSbG/kxM3tXkkw67mTaf/+/Xh5ebFjx46H7rt/Mj0REZF0t28ftQ7NZBFlmPLhzQwrJmlhfYnSymJJ0aYVszg6OnLjxg18fHzIkQXyioiIDYiLg8BAXjKCafs8uA383uxEj2R7E2KziFq1auHh4UGXLl0ICQnh5MmTrF27lv79+5sdTUREbJTx3fcQHAw5cuA2eazZcRKlcmISLy8vVq9ezbVr12jUqBFVq1bl3XffpVixYmZHExERG3T9bDhVX6vGPDpiDB8BhQubHSlRtrdZJwupWbMmGzZsMDuGiIhkA+8/u4+QGH9GO31Au8DCOJkdKAkaOREREbFxBxYd47P9DQCYNvo6TjmtuZqonIiIiNg0I84gsGcUcdjTrnAwTd6uanakx1I5ERERsWFz+2xlS0Rl3Ihk0k9FzY6TLConIiIiNirifDiDvy4FwLBmu/CtVdDkRMmjciIiImKjVry6ktC4/DzpeJoBi+qaHSfZVE5ERERs0cGDvPRrdzbSiG/GXcHZ3bonwf6XdiUWERGxNYYBgYEQG0ujtnlhYE2zE6WIRk5ERERszMZhv3J281lwdYVPPzU7ToqpnIiIiNiQa6ev02FcFcrxBzu6zYAiRcyOlGIqJyIiIjZkaKv9XDbyUdQpFL8JncyOkyoqJyIiIjYi+KsDfHmkEQBfTLxp9UeCTYzKiYkMw+C1117Dy8sLi8VCrly5ePPNNzPs+f755x+8vb05c+ZMstdp164dkyZNyrBMIiKSPu7eusvr/V0A6FFqMw37VTY5Ueppbx0TrV27ltmzZ7Nx40ZKlCiBnZ0drq6u8ff7+/tTpUoVJk+enC7PN27cOAICAlJ05uMRI0bQuHFjevbsiYeHR7rkEBGR9De1w1YORvnjZQnj45XlzI6TJho5MdGpU6fw8fGhbt26FChQAG9vb9zd3TPkuW7fvs23335Lz549U7RepUqVKFasGHPnzs2QXCIiknbngi/w/s/VAZjQ7TB5S+cxOVHaqJyYpHv37vTr149z585hsVgoVqwY/v7+8Zt1unfvTlBQEFOmTMFisWCxWBLdHPP3339jsViYMmUKfn5+uLi4UL58ebZs2RK/zJo1a3BwcKBOnTrxt82fPx8XFxcuXLgQf1vPnj2pVKkS4eHh8bc988wzzJ8/P53fARERSS/5xr7Fm0zmqVy76f51PbPjpJnNlpPIyMQvUVHJX/b27eQtm1JTpkxh9OjRFC5cmEuXLrFr166H7q9Tpw6vvvoqly5d4tKlS/j6+j7ysfbt2wfAjBkz+PTTT9m/fz/FihWjc+fOxMXFAbBp0yaqV6+eYL0XX3yR0qVLM27cOABGjRrFL7/8wpo1a/D09IxfrmbNmuzcuZPo6OiUv1AREclYy5fj+vMiPnAYxbpNrtg5ZP2vdpudc5IzZ+L3tWwJq1b977q3N9y69ehlGzWCjRv/d71YMbh69eHlDCNl+Tw9PXF3d8fe3p4CBQo88n4nJyfc3Nweef9/7d+/H0dHR9auXUvx4sUBGD16NNWrV+fChQv4+vpy5swZChZMeMIni8XChx9+SLt27ShYsCBTpkxh8+bNFCpUKMFyhQoVIjo6mtDQUIoWzRpntBQRyQ6irt7EsW9/7AEGDcKuYnmzI6WLFNWrcePGUaNGDdzd3fH29qZNmzYcO3YsyXVmz54dv1niv5eoB4cvJNVCQkJo27ZtfDEBcHZ2TrDM7du3cXFxeWjd1q1bU65cOUaNGsXSpUspX/7hH+z7k3RvJdbgRETEFMNb7qH2X4sI8WkBw4ebHSfdpGjkJCgoiMDAQGrUqEFMTAzvvfceTZs25Y8//iBHjhyJrufh4fFQiXnUF2V6unkz8fvs7RNev3w58WXtHqhvKdgLN9OEhITQrVu3BLft3buXvHnzxo+C5M2bl2vXrj207i+//MLRo0eJjY0lf/78j3z8sLAwAPLly5fOyUVEJLUO/HScT3fVIxYHLr4+iipubmZHSjcpKidr165NcH3WrFl4e3uzZ88eGjZsmOh6FovlsZsm0lsSXSnTlk0rJycnYmNjk1zm9u3bnDhxIsFycXFxTJkyhW7dumH3b7vy8/Njzpw5Cdbdu3cv7du358svv+THH39k+PDhLFq06KHnOHToEIULFyZv3rzp8KpERCStYu/E8nqPaGJxoF2hYFq+X+fxK2UhaZo1c3+PDi8vrySXu3nzJkWLFqVw4cK0bt06fgJnYqKjo4mIiEhwyY6KFSvGjh07OHPmDFevXo2f3PpfBw8exGKxMGfOHIKDgzly5AgdOnTg+vXrDBs2LH65Zs2acfjw4fjRkzNnztCqVSveeecdunTpwujRo1m8eDF79ux56Dk2b95M06ZNM+6FiohIinzeeQvbb1bEnQgmL7W9uYCpLieGYTBgwADq169PhQoVEl2uTJkyzJ49mxUrVsTvulqvXj1OnDiR6Drjxo3D09Mz/pLYXiq2btCgQdjb21OuXDny5cvHuXPnHlomJCSEMmXKMGzYMNq1a0f16tWxs7MjODiYXLlyxS9XsWJFqlevzsKFCwkLC6NFixY888wzvPvuuwBUq1aNgIAA3nvvvQSPHxUVxdKlS3n11Vcz9sWKiEiynN9xkaE/VQVgfId9FKpR8DFrZD0Ww0jpfib3BAYGsmrVKrZs2ULhwoWTvV5cXBxVq1alYcOGTJ069ZHLREdHJ9htNSIiAl9fX8LDwx86SmlUVBSnT5+mePHiGT6PxRoFBgZy7do15s2b99hlV69ezaBBgzh06FD85p7HmT59OsuXL2fdunWJLpPdPwMRkcxixBk847OLny/XpJ77fjaFVbTqXYcjIiLw9PR85Pd3UlK1K3G/fv1YsWIFmzZtSlExAbCzs6NGjRpJjpw4Ozs/tLeJPFpISAgBAQHJWrZly5acOHEifvfi5HB0dGTatGlpiSgiIunkxvdLuXrZByei+WpODqsuJmmRoldlGAZ9+/ZlyZIl/P777wl2XU3JY4SEhODj45PidSUhwzA4ePAglSpVSvY6/fv3T9Fmstdee43SpUunJp6IiKSnsDA83u7NFuqzuef3lHvmCbMTZZgUjZwEBgYyb948li9fjru7O6GhocC9A4bdPxZG165dKVSoUIKjjtauXZtSpUoRERHB1KlTCQkJYfr06en8UrIfi8WSbScLi4hkO4MGweXL2JcrR83PupqdJkOlqJx8/vnnwL2z5f7XrFmz6N69OwDnzp1LMJ/h+vXrvPbaa4SGhuLp6Ymfnx+bNm2iZs2aaUsuIiKSTfw2YS+/zCrDSNxw+/prsPGpD6meEJuZkppQo8mY5tNnICKScW5dvUVFn6v8GVOE4dXXMHpXC7MjJVtqJ8Ta5kwaERERGzGy1U7+jClCYfuLDF6W9c84nBw2U06ywACQzdJ7LyKSMfbOO8qknfUB+HzoedwLJX/0ISvL8uXE0dER0EnpzHT/vb//WYiISNrFRMXQsyfE4kAH3220HlPL7EiZJlXHObEm9vb25MqVi8v/nr3Pzc0Ni8VicqrswTAMbt26xeXLl8mVKxf2D55RUUREUu2TtlvYd9uf3JZrTFllu7sNP0qWLydA/EkFLyd1emHJMLly5cr0EzuKiNiyW/uOMWlNWQAm9ThE/ooNTE6UuWyinFgsFnx8fPD29ubu3btmx8lWHB0dNWIiIpKeYmNxC+zBbs4zq+SHdPu6i9mJMp1NlJP77O3t9UUpIiJZ25QpEByMr7s7IzY0BrvsN1Uhy0+IFRERsRUn1p9hzTtB96588gmk4HQjtkTlRERExArE3o2jR7sIWt5dzpQnp0PPnmZHMo3KiYiIiBX47MUtbI2oRE5u8NzMAMjGe56qnIiIiJjs1IZzDF1SHYAJL+6lSL3suTnnPpUTERERE8XFxPHKc2Hcxo3Gufby2g/Za7fhR1E5ERERMdHnL20hKLwKObjJt8vyYuegr2a9AyIiIia5vOc8by+oCsBH7fZQvFERkxNZB5s6zomIiEiWYRh4v/My3+PO/Lz96DO/kdmJrIZGTkRERMzw+efw66+0dV3Lom2FtTnnP/ROiIiIZLIzG88QOmjivSvjx0OpUuYGsjIqJyIiIpkoJjqWjgE3qXB7Jxv93oLAQLMjWR2VExERkUw04dktbL9Zgbs4UnLGQLDTV/GD9I6IiIhkkv0/neD9X+oAMPWVA/jWLmRyIuukciIiIpIJom/coWuXOO7ixLMFttP1q/pmR7JaKiciIiKZYFTzYA5ElSav5SpfrS+BxS77njvncVROREREMtjOmYcYv+3eSMmXA4/jXcHb5ETWTQdhExERyUi3blFuXBde5XUii1Wg7QRtznkclRMREZGMNHQoOU+G8EXBMcTuOmR2mixBm3VEREQyyJm5W4mbOu3elW+/xT5vbnMDZREqJyIiIhkg7NQ16nctQVPWcbnrIGje3OxIWYY264iIiKQzI87gdf+jXIirQ07H2+ScONLsSFmKRk5ERETS2XevbeWnv+rgwF3mfhuFW74cZkfKUlRORERE0tGpDefo921lAEY33UK1LuVMTpT1qJyIiIikk5ioGLo8E85N3GnoEcKQlQ3NjpQlqZyIiIikk7EttxB8syKeXOf7VXmwd7I3O1KWpHIiIiKSHrZvp3XQYEpzlBm9D1G0vq/ZibIs7a0jIiKSVjduwEsvUTXuFPvbf4jz9O/NTpSlaeREREQkjc71HA2nToGvL85fTQOLTuqXFionIiIiabB48HaeWPghExkEP/wAuXKZHSnLUzkRERFJpb92XeK1T57kLk6E1W4JjRqZHckmqJyIiIikQuydWDo3+Zsww4vqbocZub6e2ZFshsqJiIhIKnzQbDObwquQkxvMX5ETp5xOZkeyGSonIiIiKbRp2n5Gb2wAwBe99vPEU0VNTmRbVE5ERERS4PqfYXR+Kx9x2NOt5GY6f17f7Eg2R+VEREQkuQwDj7de4a1xqV/iAAAgAElEQVTYiVRwOsZnW/zMTmSTVE5ERESSa8YM7FYsY4DjZ+zdFEnOAjnNTmSTVE5ERESS4dTPR7g5YMS9KxMm4FirqrmBbJjKiYiIyGNEXo6k1fPOVL+zlaP+veCNN8yOZNNUTkRERB7jjQZ7OXanBDfsPMn7xQc6PH0GUzkRERFJwvx+25h5vAEW4pg7MZS8pfOYHcnmqZyIiIgk4tiaP3nts4oADKsfhP9b2jsnM6iciIiIPMKtf27Tvm0MN3HH33Mf7//awOxI2YbKiYiIyCMM99/MwagnyW93mXkbC2Lv7GB2pGxD5URERORB33/P4ENdacI65n70Fz5V8pudKFtRDRQREfmvP/6A3r0pwC1+Gbkdy+ARZifKdjRyIiIi8q/Iy5EsbzYDbt2Cp5/GMuw9syNlSyonIiIigBFn0LvOPtr89Rkjck6CuXPB3t7sWNmSyomIiAgw8+Ut/PBnfeyI5emx/wfe3mZHyrZUTkREJNs78NNx+n5XHYAPm22iYb/KJifK3lROREQkW4v4K4L2nRyJwpWW+XYy5OdGZkfK9lROREQk2zLiDLrX/IPjd4tT2P4i320uiZ2DvhrNpk9ARESyrc195rP0Um2ciGbx19d03hwroeOciIhI9vT77zT8ugvLWMC1rm9Ss0djsxPJv1ROREQk+zl/Hl58EeLieLa7F8z0NzuR/EeKNuuMGzeOGjVq4O7ujre3N23atOHYsWOPXW/x4sWUK1cOZ2dnypUrx9KlS1MdWEREJC2iI6LpVX0X5664QJUqMGMGWCxmx5L/SFE5CQoKIjAwkO3bt7N+/XpiYmJo2rQpkZGRia4THBxMhw4d6NKlC/v376dLly688MIL7NixI83hRUREUuqtujv48nJbmtj9RuzCxeDqanYkeYDFMAwjtStfuXIFb29vgoKCaNiw4SOX6dChAxEREaxZsyb+tubNm5M7d27mz5+frOeJiIjA09OT8PBwPDw8UhtXRESyue9e20L3r+tjIY5Vo/bQYkQNsyPZtNR+f6dpb53w8HAAvLy8El0mODiYpk2bJritWbNmbNu2LdF1oqOjiYiISHARERFJi5AFx+j1dTUA3vffpGJixVJdTgzDYMCAAdSvX58KFSokulxoaCj58yc81XT+/PkJDQ1NdJ1x48bh6ekZf/H19U1tTBEREa6dvk7bl1z/PdDaLoavf/Rov1iHVJeTvn37cuDAgWRtmrE8MNHIMIyHbvuvoUOHEh4eHn85f/58amOKiEg2F3snlk41T3I6pgjFHc7xQ/ATOtCalUvVrsT9+vVjxYoVbNq0icKFCye5bIECBR4aJbl8+fJDoyn/5ezsjLOzc2qiiYiIJHBt8FhCr7bGlVssmXMbr5JFzI4kj5Gi6mgYBn379mXJkiX8/vvvFC9e/LHr1KlTh/Xr1ye4bd26ddStWzdlSUVERFJqwQLyTh3BVuqx7v1tVOlQ2uxEkgwpGjkJDAxk3rx5LF++HHd39/gREU9PT1z/3RWra9euFCpUiHHjxgHQv39/GjZsyPjx43n22WdZvnw5v/76K1u2bEnnlyIiIvI/kcEHyNGjBwBuQ/pRf+TTJieS5ErRyMnnn39OeHg4/v7++Pj4xF8WLFgQv8y5c+e4dOlS/PW6devy448/MmvWLCpVqsTs2bNZsGABtWrVSr9XISIi8h9XjlylYsNcjL49iLhmLWDsWLMjSQqk6TgnmUXHORERkeS6e+suTQsdYuN1P55wPMOeE554FM1tdqxsyZTjnIiIiFibgXW2sfG6Hzm5wfKfYlRMsiCVExERsRmzXt7MtAONAJgz9A/KPfOEyYkkNVRORETEJuz49hC9ZtUEYKT/Rp4dq7mNWZXKiYiIZHk3jl2k7Wt5uIMzbXy26wiwWZzKiYiIZG23buHe+RnGxL2Hn8sffL+7vI4Am8Xp0xMRkawrLg66dYM9e3g5zwp27nfBvaC72akkjVROREQky/qu7TKu/LQRHB1hyRIcnixhdiRJB6k6t46IiIjZFvTfSvflbSlOFfZN2opnQ80zsRUaORERkSxn1+zDdJ9aFYDnq5/Ds28XkxNJelI5ERGRLOWvXZd49pU8ROFKa++dfLS1gdmRJJ2pnIiISJYReTmSZxtd51JcASo4n2Du3rLYO9mbHUvSmcqJiIhkCXExcXTzO8De22XJZ7nCyl9d8SikPXNskcqJiIhkCVcGfsSBi3lwIpoln12iWP3CZkeSDKJyIiIi1m/mTPJPfY/t1Gb5gE3U71PJ7ESSgVRORETEqoUv3wCvvw6A17BAmn/SxOREktFUTkRExGodXnaCEs9V5ouYV6BTJxg92uxIkglUTkRExCqF7v+blu1cCTO8mOfRm5ivZoLFYnYsyQQqJyIiYnUiL0cSUPcq52ILU8rxNEt3++KQw9nsWJJJVE5ERMSqxN6JpXPlg+y+VZ68lqusXmNHnlJeZseSTKRyIiIiVmVQrc0sD62NM1Es//wSTzxV1OxIkslUTkRExGr83ncJk0P8Afj+zb3Ufb2iuYHEFDorsYiIWIdly2g8oz3jGYjRvCUvfOpvdiIxicqJiIiYb+tW6NgRixHHkNfC4YtGZicSE2mzjoiImOroqlO82PhvbkQ5QEAATJ+uXYazOY2ciIiIaS7uDaXZs86ci22Lh7cdX/3YFBz01ZTdaeRERERMEX4unBb1wjkXW5gnHU8zdlMDcHMzO5ZYAZUTERHJdNER0TxX+U8ORJUmv91l1v7qQN7SecyOJVZC5URERDJVXEwc3SvuZsN1P3JygzVzwije0NfsWGJFVE5ERCRTDa/3Oz+eq4cDd1ny0Qn8OpYxO5JYGZUTERHJPJMm0X7nIHy4yKxeO2nydlWzE4kV0pRoERHJHN99BwMHUgU4PmYhOYe9aXYisVIaORERkQz387DtbHl55r0rAweS873+5gYSq6aRExERyVBBU0Jo92EV7FjD1oDx+E0YqYOsSZI0ciIiIhlm37wjBLxZgmhcaFrgIBUXDlcxkcdSORERkQxx/JfTNHspLzfwoJFnCD8eqYyDiwbs5fFUTkREJN39tesSTVs5cMXIR1XXI6w4VAKXXC5mx5IsQuVERETSVdjJMJo1iORsrC+lHE+zZldePAp7mB1LshCVExERST83b5Kj4zOUjQ6hkP0l1m90wrt8PrNTSRajjX8iIpI+bt+GgACcd29lgddxLi7aim/dUmankixIIyciIpJm0RHRfFH9G+I2BoG7O/ZrV+H7fyomkjoaORERkTSJiYqhY5l9LL3Uj0MOjny2ugLUqGF2LMnCVE5ERCTVYu/E0q3MDpZeqoczUbT5sCbU1/lyJG20WUdERFIlLiaOXhW3Mu/svTMM/zTiIE8PUTGRtFM5ERGRFDPiDN6stplvjjfEjljmDdhN61HalCPpQ+VERERSxjAYVn8D0w40AmDWa9tp/0kdk0OJLdGcExERSZkPPsAveD+O1Gdqp+10/bKh2YnExqiciIhI8k2aBCNG0A6oPnwOxUa/bHYisUHarCMiIsnyXZdfOTtwyr0rH3ygYiIZRiMnIiLyWNNfCKLvoqcpxkb2vDUXr/feMzuS2DCNnIiISJJmdAii76J7k19fqHWW3BNVTCRjqZyIiEiiPn8xiMCF94rJ4JpBfLStERY7i8mpxNapnIiIyCN9/mIQfRbcLyYbGR/cUMVEMoXKiYiIPGT+y+vji8mgGkGMD9aIiWQeTYgVEZGEPv+cp2a9T3l+p0X1q3y8XcVEMpfKiYiI/M8XX0CfPngDwW/8SM5Px6iYSKZTOREREQC+6hyEw7ydvAwwcCDuE8aARcVEMp/KiYiIxE9+tdCA8h0rU2vCGyomYhpNiBURyeYmPbMxfvLrm1U3U3OOiomYS+VERCQb++DpjQxc6Q/AO3U28sku7S4s5tNmHRGRbMiIMxjWIIix2/wBGP1/Gxn2q78GTMQqpHjkZNOmTQQEBFCwYEEsFgvLli1LcvmNGzdisVgeuhw9ejTVoUVEJA0Mg3XPfxlfTCa0DmL4byomYj1SPHISGRlJ5cqV6dGjB88//3yy1zt27BgeHh7x1/Ply5fSpxYRkbSKi4M+fWi67Eve5jq+L9Ql8N/5JiLWIsXlpEWLFrRo0SLFT+Tt7U2uXLlSvJ6IiKSP2Dux3Hm5F65zv8FisfDRt/mhR0OzY4k8JNMmxPr5+eHj48NTTz3Fhg0bklw2OjqaiIiIBBcREUm9u7fu0vmJHTwz9wWi7Nxg7lzo0cPsWCKPlOHlxMfHh6+++orFixezZMkSSpcuzVNPPcWmTZsSXWfcuHF4enrGX3x9fTM6poiIzYqOiOaFkntYcL4uQTRi56g10LGj2bFEEmUxDMNI9coWC0uXLqVNmzYpWi8gIACLxcKKFSseeX90dDTR0dHx1yMiIvD19SU8PDzBvBUREUnazdCbtC1/jPVh1XAmisXvH6TVyBpmx5JsIiIiAk9PzxR/f5uyK3Ht2rWZM2dOovc7Ozvj7OyciYlERGzPPyfCaOV3kR2R1cjBTZaNP87TQ1RMxPqZUk727duHj4+PGU8tIpItXNh9iab1I/kjugJeljBWf3OJWi9XNTuWSLKkuJzcvHmTkydPxl8/ffo0ISEheHl5UaRIEYYOHcqFCxf4/vvvAZg8eTLFihWjfPny3Llzhzlz5rB48WIWL16cfq9CRET+5/hxwp7px8XoHyloF8q6pZGUf6a82alEki3F5WT37t00btw4/vqAAQMA6NatG7Nnz+bSpUucO3cu/v47d+4waNAgLly4gKurK+XLl2fVqlW0bNkyHeKLiEgC+/ZBs2ZUvHKFtb6vkX/epxSrX9LsVCIpkqYJsZkltRNqRESyk03T9mN5520a3PoF/Pxg7Vrw9jY7lmRjqf3+1on/RERswM8jdtDsjSdpfWsBf1TrAhs2qJhIlqUT/4mIZHFzem2h+5e1icWBJvkPUnzdl+DpanYskVTTyImISBY2uc1GunxZn1gc6FJiK4tPV8XVS8VEsjaVExGRLCguJo6B1Tby1nJ/APpXCWL2sTo4umpAXLI+lRMRkawmOpovas1i0l5/AMa3DOLTPQ2xc9CfdLENqtgiIlnJ9evQpg09925jpaUQnXt58NKMRmanEklXKiciIlnE5ZCL5H2pOXaHD+Lk7s7qJY5Ynq5rdiyRdKcxQBGRLODQ0hNUqw4DDr+MUcAHNm/G8vRTZscSyRAqJyIiVi5oSgj123rzV2xBfnEKIGLddqhc2exYIhlG5URExIotfGsbTd8sSzie1PM4wNY/vPCsWMTsWCIZSnNORESskBFnMOnZIAb97A/AcwV3MPdQZVxzu5gbTCQTqJyIiFibu3cZUG0Tkw/em1MSWHETU3bXw97J3uRgIplDm3VERKxJeDi0akXDg5/hwF0+bRPEtJAGKiaSrWjkRETEShinz2Bp3Qr++IPncuTg+KdBFH/1abNjiWQ6jZyIiFiBHd8ewu/Jm5z74wYULAibN6uYSLalciIiYrJFb23Dv2dJ9sdU4N3cn8POneDnZ3YsEdNos46IiEmMOIOPWmzk3XWNAQjIv4MvQhpBgZwmJxMxl8qJiIgJ7ty8Qy+/Hcw6ea+Y9K8SxCc76mviqwgqJyIime6fY1dpW/MvNkU0wI5Ypr6wlcAFOnmfyH2acyIikpn278e1SX1uRMThTgQrR+0jcEFDs1OJWBWVExGRzLJ4MdSti9v5Yywv2p/tK67QckR1s1OJWB1t1hERyWBxMXGMabIJu40hDOcWPP00vgsWgJeX2dFErJLKiYhIBoq8HEm3qgdYfMEf8OfZzu5Umj0AHPTnVyQx+u0QEckgZ7f+xbNPR7I/qg6O3OHz7juoNGuI2bFErJ7mnIiIZIDNn+2nRgNn9keVxttyhQ0zjvLKrAZmxxLJEjRyIiKSngyDb7ttovcPdbiLE36uR1j2mwdF6lQyO5lIlqFyIiKSXqKiIDAQ+x9iuUsjXvDdxqy9VXDL62Z2MpEsReVERCQdGGfPYWn3POzeTXc7Owp0bUGzb1/AYmcxO5pIlqM5JyIiafTbhL3UeCKMq7tPQ548sHYtzWd1UDERSSWNnIiIpJIRZzAhYBNDV9cnDntG5/uMqTtrQ7FiZkcTydJUTkREUuHGxRv0qHmYxRfunROn+xObGb/jWfByNTmZSNanzToiIil0bM2f1Cp+mcUXat87fknHTcw8Vh9XFRORdKFyIiKSAts+2kSNlnk5cqckBe0usemrY/Sa11DzS0TSkcqJiEhy3L0LAwdSfmgA3lymoUcIe0Psqf1qRbOTidgclRMRkce4vPcvjAYNYdIkPIngt54/8uul8uSv6G12NBGbpHIiIpKEVSN3Uba6GzN2VIVcuWDZMop+PQxHN0ezo4nYLJUTEZFHiImKYWidjbQeVYMww4v5OV8lbvdeePZZs6OJ2DztSiwi8oCLe0N5sfHfbI7wB6BfpSAmbK6NnYezucFEsgmNnIiI/Mf6j/ZQpbo9myMq404EC98KZur+RjirmIhkGo2ciIgAxMTw16DJtJryBndxorLLMRatcKZUkzpmJxPJdlRORETOnoXOnSm8dStjuMKfZVoxeWsNHVRNxCQqJyKSrS0eHEzpLwdS4UYwuLsz5IsqWDo1NDuWSLamciIi2dKtq7d4q8FuvjrakPJ8xc5qfXBbOBtLiRJmRxPJ9lRORCTbObD4BB07W/gjuiEW4giofRXH334DHbtExCpobx0RyTaMOIPpHTZRs50vf0Q/QQG7v1k3PoRxwf46qJqIFdHIiYhkCzfOhtGl9gmWh96bT9Iy3y5mBxUnX9mqJicTkQdp5EREbN/69bjVqcy10CgcucOnbYL4ObQ6+crmNTuZiDyCyomI2KzbYbe5HTgImjbF/tJfzC0+nO1zTvHm0kZY7CxmxxORRKiciIhN2jvvKNV8LjJkRtF7N/TpQ+FDa6nauay5wUTksTTnRERsSuydWD4O2MyIdfWIwZHrdu0Z82MZcrVvYnY0EUkmlRMRsRmnN52nS8A1tv57wr62Bbfz5e+lyFVaxUQkK9FmHRHJ8ow4g1mvbKFSo1xsjaiEOxHMfmUzP52vRd7SecyOJyIppHIiIlnb33/zT0B3Bswsz03cqe+xn/1B4XT7poEmvYpkUdqsIyJZ18KF0KcPef/5h6/sojnVpBeDVzTA3sne7GQikgYqJyKS5Vw5cpU+TU/Q+a95tOEfqFyZ9rPfgSpVzI4mIulAm3VEJEtZPDiY8uUNfvqrDv2Yxp33RsHOnSomIjZEIycikiVcPR5G3ybHWHCuDgAVnY8z+9tYnDqPMDmZiKQ3jZyIiNVbNnQH5cvGsuBcHeyJ4b26G9h1uagOqCZiozRyIiLW6+pV9nX9lOfWfAhAOaeTfPdVNNW7NTY5mIhkJJUTEbE+hgHz50P//vhdvcorlCBf7RK8v6YOLrlczE4nIhlM5URErMq57RcZ3PYkn1waQmGuQoUKfP1NRSy1apodTUQySYrnnGzatImAgAAKFiyIxWJh2bJlj10nKCiIatWq4eLiQokSJfjiiy9SFVZEbFdcTBzTXwiifB13Fl5qSH/LNBg9GvbsUTERyWZSXE4iIyOpXLkyn332WbKWP336NC1btqRBgwbs27ePd999lzfeeIPFixenOKyI2Kajq/+kodch+i5qxE3cqee+nw+WV4Thw8HJyex4IpLJUrxZp0WLFrRo0SLZy3/xxRcUKVKEyZMnA1C2bFl2797NxIkTef7551P69CJiQ+5E3uXjZ7cy5rc63MGZnNzgo/Z76T2vAXYO2plQJLvK8N/+4OBgmjZtmuC2Zs2asXv3bu7evfvIdaKjo4mIiEhwEREbs20b056YwvDf/LmDMy3z7eTwtggCFzZSMRHJ5jL8L0BoaCj58+dPcFv+/PmJiYnh6tWrj1xn3LhxeHp6xl98fX0zOqaIZJawMHj9dahXj96hI6hhv5e5fbbyc2gNitQpZHY6EbECmfLvicWS8MyghmE88vb7hg4dSnh4ePzl/PnzGZ5RRDKWEWfwQ6+tBPjsIvarbwBwe7kjOy4VodP0ejqDsIjEy/BdiQsUKEBoaGiC2y5fvoyDgwN58uR55DrOzs44OztndDQRySTH1vxJ707hbLheD4C5PoPp+mNLaNgQVRIReVCGl5M6deqwcuXKBLetW7eO6tWr4+jomNFPLyImiroexdhntjN+cx3uUAJXbjGi2Q5e/Gk05NReOCLyaCnerHPz5k1CQkIICQkB7u0qHBISwrlz54B7m2S6du0av3yvXr04e/YsAwYM4MiRI8ycOZNvv/2WQYMGpdNLEBFrtH78Xip6hzJm870Jry3y7uLwxqu8s7YxTiomIpKEFJeT3bt34+fnh5+fHwADBgzAz8+PESPunRn00qVL8UUFoHjx4qxevZqNGzdSpUoVxowZw9SpU7UbsYitOncOo117RrwTzcm7xShod4lFA7ax6u/qFG9UxOx0IpIFWIz7s1OtWEREBJ6enoSHh+Ph4WF2HBF5hKjrUcRNmozbxNFw+za7LTX4odLHjFnph4evp9nxRMQEqf3+1sEERCTNfh6xk/L5/mbMGANu34aGDake8g1TQvxVTEQkxXTiPxFJtRO/nuXNTpdZfeXeuW8W2Hdi5MwSOHd5ARI5VICIyONo5EREUizyciTv1dtIhSYFWH2lBo7c4e1aGzhw3gvnrh1UTEQkTTRyIiLJZxhs+3ADHUaW4a9YfwCa5dnNlB+8KN2isbnZRMRmqJyISPLs3QsDBuAbdIowjlLM/jyTB1/gmQ9r6eiuIpKuVE5EJEkX94aytM96And2A8PA18WFX178kWoTO+KaR+e9EpH0p3IiIo906+otJr6wk/EbanCLLlTgGxp1LAQffUT9IjpeiYhkHJUTEUkgLiaOef2CGfp18fh5JXVyHsTjs2nQrZK54UQkW1A5EZF42748yFsDLeyMvHeCvqL25xkfeI4XPq2reSUikmm0K7GIwJkz3H2hMy/28mRnZAVycoOxTTdw5HJeOkypp2IiIplKIyci2dg/J8LwnDEOhxlTcbxzh/EY/P5kL8YsKkOBSto1WETMoZETkWzo1tVbjGu+kRJP2vPd5DC4cwcaN6bjviF8fawhBSp5mx1RRLIxlRORbCQmKoZvum2mVP4I3v3Fnwg8WeLeDdasgd9+gypVzI4oIqLNOiLZgRFnsPy9nQydlJejdxoA9ya7ftDzLJ0+qw8O+j9FRKyHyomIrdu6lTfbX2TqpfYAeFnCGPbMAfp8VxtnTx1ETUSsj/5dErFRxqHD0KYN1K9Px0uf4EYk79bdwJ9n7HlrmT/Oni5mRxQReSSNnIjYmBPrzzDytQsUOrONj1kOdnbUfqUSf/UPJ3d57YEjItZP5UTERpzZ8hdjXjnNd8frEEsxXPHj3dYHyPXxu1C2LLnNDigikkwqJyJZ3MW9oXzY7ThfH6rNXQoD0Np7J6M/dSdXpx9MTiciknIqJyJZ1ZUrLO25ik4rOhBFQwCe9trDmI+cqP1qTZPDiYiknsqJSFZz7Rp88glMnkytSA+gA/XcD/DBqFj836pmdjoRkTRTORHJIsJOXWNyj/38uf1v5tz9EICC1cqwv9cuSr3cQOe/ERGboXIiYuWuHvuHST0OMi24GjfxB+CtkkuoNrEjPPssT1pUSkTEtqiciFipvw9d4ZOXDzNjV3Ui/y0llV2OMbxvGH7j5uuoriJis1RORKzNxYsEv7WQpxa+xu1/S0k1tz8Y8eYNAsbU1OYbEbF5KiciViLmzF84fDIevv6aqtEGeXieQjn+ZMTg27QYXl2lRESyDZUTEZOd/O0sE/udYevRPOwzPseBWJzr1WNH4J/4dGioUiIi2Y7KiYhJ9s0/yvi3w1h0vhZxFAVgXYWBtJzaHPz9KaiJriKSTamciGQiI85g09QQPvowhrVXa8Tf3sp7J28Pd6ZB3/EmphMRsQ4qJyKZIS4OVqxg7/Cl+B/6DgA7Ynmx2HbenpCPSu10RFcRkftUTkQy0N3IO4SM/4Uai4bA0aNUA56268qT5RwYOK04JfzrmR1RRMTqqJyIZIDwc+F8E7iPKWtKERbbmLNcJo+nJwQGsq5fBSwF8psdUUTEaqmciKSjs1vOM6X/Kb7ZW5Ub/x6jpIDd3xztNY1641qDhwea5ioikjSVE5F0cHpZCO+8cYvF52sSiy8A5ZxPMqDjJTp/WgOXXJ1MTigiknWonIikVmwsrFgBkybhvOUUSzlDLA487bWXAW/G0fy9aljsnjA7pYhIlqNyIpJCkZcjmd13Nwd/ucAXEZ0BKOjoyPTqc6n5Vj0qt69qckIRkaxN5UQkmf7ccJbpg04zc28VrtMIgL4e06nQ1x/69uVVHx9zA4qI2AiVE5EkGLFx/PrxXqZNjuXnyzUw/j2S6xOOZ3izzVmKf7YOvHOYnFJExLaonIg8SkQEfPcdP407yQuXpsTf3Czvbt7oa9D8vWrYORQzL5+IiA1TORH5j1Pr/+TC5yto+OsIuHGDAJwpYXmTlhXP03e8L6WbVzc7ooiIzVM5kWwv9m4cv3y4mxnTDVZfrUFJWnGMAdiVKYNL374c75wX+1zFzY4pIpJtqJxIthV68AozB/3BV7+X5GzM/85tU8o7nGszfidP20ZgsWBvYkYRkexI5USyF8OADRuYOvAsA0NeIubfvW5yW67Rze8gvT8uzpNPadONiIiZVE4kWwg78Q935y4k/7xP4cQJqtCAGHpQJ+cBer0YTvuPquGap6HZMUVEBJUTsWFGnMH2L/fzxYQIFpyuyevcYQonwN2dBp0rcOjpo5R/vpLZMUVE5AEqJ2Jz/jl1nXlDQvhmVQEORFeJv/1gzroYn3yFpVNHLDlzUt7EjCIikjiVE7ENcXHw+++8ERjDl8cbc+ffMwK7cHWMMMsAABgESURBVJuOT+6h17t5qNG1BhZLDXNziojIY6mcSJZ2dst5Cq+bif33s+DsWVwYzx2aU9nlKK8EXOGlCZXIXbS+2TFFRCQFVE4ky4m6dptlI/by7TwXfgvzYw3baMZZ8PSk3zPhvNj0D6p2LguWMmZHFRGRVFA5kazBMAiZ9wfffnSFuYcrc82oF3/XzhIdafZBd2jTBl9XV3zNSykiIulA5USsW2goYd8s4f8+/D/2R/1vCmth+4v0qHeCHh+UpHiD7ublk/9v797Doir3PYB/h7sgjJoK3sBLKBAYNxElwcwQw7Yns7Q8SKamPbW9dtp6yq3ozqjdNi95y9jY3ruklDRPXsm8FViGaCjeUERNUUFlUAQEfuePYnIElBmGWQv8fp6H53Heedc7v9+8s2Z+rnnXLCIis2NxQqpTnF+MX5buRei+hUBKClpWVKAcmbBFGf7L/QDGvmqPgdMfhbVte6VDJSKiBsDihFSh8nYFdi08iH+tvIXkU48C6ItLeAaOqIAmNBT/eTwL7uM6olXXUKVDJSKiBsbihBSVteEE/h1/Hv/52QvnK4L07V1szuLU2L/Db3ok4OkJ/3uMQURETQuLE7K8CxeANWuwcmExJp6fBaA7AKCF5jqe98rE6Ekt0PcVX2isXlM2TiIiUgSLE7KIK8cKkDwvC92zNmDAoQ8BEUSiM2zxFwx2O4jRMYLot/zhoO2ndKhERKQwFifUYHTnCrFhXibWrHdASr4/KtAPf8JVDMACoG9fdImJwZWom9B2DlE6VCIiUhEWJ2RexcVInpWBz5OssOlCAErxx6+zBjY7iieedAIWnwE8PAAAWoXCJCIi9WJxQvVWfrMUNju2AUlJwMaN+OBmCvahDwDAy+4UXgg7h5FvuqN7lDcAb2WDJSIi1WNxQia5dfUWtv49E+uSyrE11wsnZAwewlUAwGttvkREtzKMnNoOjw73hMaqm8LREhFRY2JlykbLli1Dly5d4ODggKCgIOzdu7fWvqtXr4ZGo6n2V1JSYnLQpIybl25g7bQ0jHBPRZuHKjAsPgSfn+mLq9IKW1q8CEydCvz4I/770gLEp0XA//nu0FhplA6biIgaGaOPnHzxxReYMmUKli1bhrCwMKxcuRKDBw9GVlYW3N3da9zGxcUFx48fN2hzcHAwLWKyrMJC4JtvsHXZaQxLnY5bv39dAwAe1ucw/NFsDH+lFULGLgJsTKp1iYiIDBhdnCxYsABjx47FuHHjAAALFy7Etm3bsHz5crz77rs1bqPRaODm5la/SMli8k9ewzfvHYHrLykYfCgeKCtDANqiBG+hm00uhgedxvBX2yIoxgcaK15mj4iIzMuo4qSsrAzp6emYMWOGQXtkZCRSU1Nr3e7GjRvw8PBARUUF/P39MW/ePAQEBNTav7S0FKWlpfrbOp3OmDDJBKd2ncPXC3Pw9S4tvi/0RSUew+Mow2DMBby84Prsszje6xgeftobGisPpcMlIqImzKjiJD8/HxUVFXB1dTVod3V1RV5eXo3beHl5YfXq1fDz84NOp8OiRYsQFhaGQ4cOwdPTs8Zt3n33XcTFxRkTGhlLBEhPx9/euI4v9nngcKkngD+Ogvg7HMWAvhrI4iPQPOIDAKh5toiIiMzLpLN1NBrDRY4iUq2tSmhoKEJD/7hYW1hYGAIDA7FkyRIsXry4xm1mzpyJadOm6W/rdDp06sSvD+qrrKgUP318EI+d+hTYuBH49VekYhMOwxPWKEdEi0MY2l+HoVO7wiOcp/0SEZEyjCpOWrduDWtr62pHSS5fvlztaEptrKys0KtXL5w8ebLWPvb29rC3tzcmNKrF1dPXse0fh/H1/2mw+ZwfitAbuXgO7vgVcHLCtID9eNHHGU/9zyNo9XDQ/QckIiJqYEYVJ3Z2dggKCkJKSgqeeeYZfXtKSgqGDh1apzFEBAcPHoSfn59xkVLdiCAnJRtJCy9ic2oLpBY+gso7fqXV1eoyTj01Ge6vegMDBmAgz5oiIiKVMfprnWnTpiEmJgbBwcHo06cPPv74Y5w9exYTJ04EAIwePRodOnTQn7kTFxeH0NBQeHp6QqfTYfHixTh48CCWLl1q3kweYDevFOP2jj1osWcjsHkz9ueG4H/xpf7+R+xP4unACxg6tjVCYr1hZTNdwWiJiIjuzejiZMSIESgoKMDcuXNx8eJF+Pr6YvPmzfD4/VopZ8+ehZXVH793cf36dbzyyivIy8uDVqtFQEAA9uzZg5AQXuytPk59l4tNy85g824n7Mr3xdv4Hm9jOQAg0u4Whmh/xFP9izH4ta7oHOEJLmclIqLGQiMionQQ96PT6aDValFYWAgXFxelw1FERXEpdn50BFu+0GFTpjuO3+5qcP8wxy1Ifukb4KmngMcfBxwdFYqUiIjoN6Z+fvPaOiollYIr+06hbfoWYPt2yHd78GzxWeh+v46vDW7jsRaHER1WiOgJHeEVHQVYDVY4aiIiovpjcaIi+Seu4tulx7F9SwW2n+4G+woNTmESgN8m6sVmG1DSsRui/2SDJyd5Q+te+w/ZERERNVYsTpRUVob9iYfx9b912JbRFunFXpA7rl3jgFu42O95tBsSBDz5JJY/+ihgxevXEBFR08bixIKkUnBk0xl0P7UFdt9tBXbuxOob8ViG1/R9/OxPINL3AiKHNUe/CT5o9tAXCkZMRERkeSxOGpAIcGr3eXyXmIvvdlth57mHcbmyC3YjCeHYCwAYqt2Nay0CMOjJSjz56sNoH9gdQHdlAyciIlIQixNzu3ABh/91AP/4Zwt8d7oLzlZ0BNBRf3czFCPHOxrhLw0BIiMR2bMnIvlVDRERkR6Lk3q6cqwAu1adgHvu9+h95J/AsWMoQRBW42cAgC3K0MflCAb4X8OAYS0Q8pIP7LV/UThqIiIi9WJxYqTLR65g7+ps7Ekpw+7jbjhU0gNAH7yMLPTGMUCjQUCAFd6y24HwIS4IG+cNJ1eeVUNERFRXLE7uJzcX2LsXt75LQ9BnU3G07GEAbQy6+NmfQLdAV+AvG4DwcFi3bIm/KRMtERFRo8fi5A5SKcjefhp7Pj+PPT9YAZcu4dObzwEAmgHA72fV+DmcQLhnHsKfsEH/sQ+jrS8XsRIREZnLg12cVFQga8MJ7FyThz0/2mHPhYeRV9kNQDcAvy1eXWXdDHbBPYHwcCR1uoKO0dfRqiuLESIioobyYBcngwbhjR3TsAVP6ZvsUYLe2uMI73kd4UNcYDXhCqB1AgD0VCpOIiKiB8iDXZwEBiLq+12ocHZFeOANhA9thV6jusNB+6jSkRERET2wHuyrEhcV/Xb1Xmtr841JREREAHhVYtM4OysdAREREd2FP01KREREqsLihIiIiFSFxQkRERGpCosTIiIiUhUWJ0RERKQqLE6IiIhIVVicEBERkaqwOCEiIiJVYXFCREREqsLihIiIiFSFxQkRERGpCosTIiIiUhUWJ0RERKQqjeKqxCIC4LdLLxMREVHjUPW5XfU5XleNojgpKioCAHTq1EnhSIiIiMhYRUVF0Gq1de6vEWPLGQVUVlbiwoULcHZ2hkajMdu4Op0OnTp1wrlz5+Di4mK2cdWkqefI/Bq/pp5jU88PaPo5Mj/TiQiKiorQvn17WFnVfSVJozhyYmVlhY4dOzbY+C4uLk3yBXenpp4j82v8mnqOTT0/oOnnyPxMY8wRkypcEEtERESqwuKEiIiIVMV6zpw5c5QOQknW1tbo378/bGwaxTdcJmnqOTK/xq+p59jU8wOafo7Mz7IaxYJYIiIienDwax0iIiJSFRYnREREpCosToiIiEhVWJwQERGRqjT54uSdd95B37594ejoiBYtWtRpGxHBnDlz0L59ezRr1gz9+/fHkSNHDPpcu3YNMTEx0Gq10Gq1iImJwfXr1xsihXsyNo4zZ85Ao9HU+Ld27Vp9v5ruX7FihSVSMmDK89y/f/9qsY8cObLe4zYUY2O5evUq/vznP6NHjx5wdHSEu7s7Jk2ahMLCQoN+Ss3hsmXL0KVLFzg4OCAoKAh79+69Z//k5GT4+PjA3t4ePj4+WL9+vcH9ddkfLc2YHFetWoV+/fqhZcuWaNmyJQYOHIiffvrJoM9LL71Uba5CQ0MbOo1aGZPf6tWra3ytlZSUmDxmQzMmlpreTzQaDaKjo/V91DR/e/bswdNPP4327dtDo9Fgw4YN991m9+7dCAoKgoODA7p27Vrj+4TF50+auL/+9a+yYMECmTZtmmi12jptEx8fL87OzpKcnCyZmZkyYsQIadeuneh0On2fqKgo8fX1ldTUVElNTRVfX18ZMmRIQ6VRK2PjKC8vl4sXLxr8xcXFiZOTkxQVFen7AZDExESDfsXFxZZIyYApz3NERISMHz/eIPbr16/Xe9yGYmwsmZmZMmzYMNm4caNkZ2fLjh07xNPTU5599lmDfkrMYVJSktja2sqqVaskKytLJk+eLE5OTpKbm1tj/9TUVLG2tpb58+fL0aNHZf78+WJjYyP79u3T96nL/mhJxub44osvytKlSyUjI0OOHj0qY8aMEa1WK+fPn9f3iY2NlaioKIO5KigosFRKBozNLzExUVxcXKq9r9RnzIZkbCwFBQUGeR0+fFisra0lMTFR30dN87d582Z56623JDk5WQDI+vXr79n/9OnT4ujoKJMnT5asrCxZtWqV2Nrayrp16/R9lJi/Jl+cVElMTKxTcVJZWSlubm4SHx+vbyspKRGtVisrVqwQEZGsrCwBYPAGmpaWJgDk2LFj5g++FuaKw9/fX15++WWDtrq8qBuaqflFRETI5MmTzT5uQzBXLF9++aXY2dnJ7du39W1KzGFISIhMnDjRoM3Ly0tmzJhRY//nn39eoqKiDNoGDRokI0eOFJG67Y+WZmyOdysvLxdnZ2f59NNP9W2xsbEydOhQs8ZpKmPzq8t7a32fM3OqbywffvihODs7y40bN/Rtapq/O9XlPeDNN98ULy8vg7YJEyZIaGio/rYS89fkv9YxVk5ODvLy8hAZGalvs7e3R0REBFJTUwEAaWlp0Gq16N27t75PaGgotFqtvo8lmCOO9PR0HDx4EGPHjq123+uvv47WrVujV69eWLFiBSorK80We13UJ7/PPvsMrVu3xiOPPII33nhDf2Xr+o5rbuaKpbCwEC4uLtV+QMmSc1hWVob09HSDfQcAIiMja80lLS2tWv9Bgwbp+9dlf7QkU3K8W3FxMW7fvo1WrVoZtO/atQtt27ZF9+7dMX78eFy+fNlscdeVqfnduHEDHh4e6NixI4YMGYKMjIx6j9kQzBFLQkICRo4cCScnJ4N2NcyfKWrbB3/++Wfcvn1bsflTx0/BqUheXh4AwNXV1aDd1dUVubm5+j5t27attm3btm3121uCOeJISEiAt7c3+vbta9A+b948PPHEE2jWrBl27NiB6dOnIz8/H2+//bZZYq8LU/MbNWoUunTpAjc3Nxw+fBgzZ87EoUOHkJKSUq9xG4I5YikoKMC8efMwYcIEg3ZLz2F+fj4qKipq3HdqyyUvL++e/euyP1qSKTnebcaMGejQoQMGDhyobxs8eDCee+45eHh4ICcnB7NmzcKAAQOQnp4Oe3t7s+ZwL6bk5+XlhdWrV8PPzw86nQ6LFi1CWFgYDh06BE9PT7M8Z+ZS31h++uknHD58GAkJCQbtapk/U9S2D5aXlyM/Px8iosj8NcriZM6cOYiLi7tnn/379yM4ONjkx9BoNAa3RcSg7e77a+pjqrrmV984bt26hc8//xyzZs2qdt+dH2D+/v4AgLlz55rlg62h8xs/frz+376+vvD09ERwcDAOHDiAwMBAk8c1hqXmUKfTITo6Gj4+Ppg9e7bBfQ05h/dyv33HlP7GjtnQTI3n/fffx5o1a7Br1y44ODjo20eMGKH/t6+vL4KDg+Hh4YFNmzZh2LBh5gu8jozJLzQ01GDxZ1hYGAIDA7FkyRIsXrzYpDEbmqmxJCQkwNfXFyEhIQbtaps/Y9X0fFS13/nvu/s05Pw1yuLk9ddfr3b2xd06d+5s0thubm4Afqsm27Vrp2+/fPmyvnJ0c3PDpUuXqm175cqVatWlKeqa3y+//FKvONatW4fi4mKMHj36vn1DQ0Oh0+lw6dKleudoqfyqBAYGwtbWFidPnkRgYGCDzx9gmRyLiooQFRWF5s2bY/369bC1tb1nf3POYU1at24Na2vrav+bunPfuZubm9s9+9dlf7QkU3Ks8sEHH2D+/Pn49ttv0bNnz3v2bdeuHTw8PHDy5Ml6x2yM+uRXxcrKCr169dLHbo4xzaU+sRQXFyMpKQlz58697+MoNX+mqG0ftLGxwUMPPQQRUWb+Gmw1i8oYuyD2vffe07eVlpbWuCD2xx9/1PfZt2+fYgtiTY0jIiKi2hketVmyZIk4ODhISUmJyfEay1zPc2ZmpgCQ3bt3m3VcczA1lsLCQgkNDZWIiAi5efNmnR7LEnMYEhIir776qkGbt7f3PRfEDh482KAtKiqq2oLYe+2PlmZsjiIi77//vri4uEhaWlqdHiM/P1/s7e0NFs1aiin53amyslKCg4NlzJgxZhvTnEyNJTExUezt7SU/P/++j6Hk/N0JdVwQ6+3tbdA2ceLEagtiLT1/Tb44yc3NlYyMDImLi5PmzZtLRkaGZGRkGJw226NHD/nqq6/0t+Pj40Wr1cpXX30lmZmZ8sILL9R4KnHPnj0lLS1N0tLSxM/PT7FTie8Vx/nz56VHjx4GH34iIidPnhSNRiNbtmypNubGjRvl448/lszMTMnOzpZVq1aJi4uLTJo0qcHzuZux+WVnZ0tcXJzs379fcnJyZNOmTeLl5SUBAQFSXl5e53EtydgcdTqd9O7dW/z8/CQ7O9vg9MWqHJWaw6pTDhMSEiQrK0umTJkiTk5OcubMGRERiYmJMXhD++GHH8Ta2lri4+Pl6NGjEh8fX+OpxPfbHy3J2Bzfe+89sbOzk3Xr1hnMVdV7UFFRkUyfPl1SU1MlJydHdu7cKX369JEOHTookqOx+c2ZM0e2bt0qp06dkoyMDBkzZozY2NgYvOfcb0w151flsccekxEjRlRrV9v8FRUV6T/nAMiCBQskIyNDf9rvjBkzJCYmRt+/6lTiqVOnSlZWliQkJNR6KrEl56/JFyexsbECoNrfzp079X3w++9BVKmsrJTZs2eLm5ub2NvbS3h4uGRmZhqMW1BQIKNGjRJnZ2dxdnaWUaNGybVr1yyUVd3jyMnJqZaviMjMmTOlY8eOUlFRUW3MLVu2iL+/vzRv3lwcHR3F19dXFi5caHCaqqUYm9/Zs2clPDxcWrVqJXZ2dtKtWzeZNGlStd8cUMv81SWWu3PcuXNnja9pAJKTkyMiys7h0qVLxcPDQ+zs7CQwMFB/xErkt6N1sbGxBv3Xrl0rPXr0EFtbW/Hy8pLk5GSD++uyP1qaMTl6eHjUOFezZ88WEZHi4mKJjIyUNm3aiK2trbi7u0tsbKycPXvWwln9wZj8pkyZIu7u7mJnZydt2rSRyMhISU1NNWpMSzP2NXr8+HEBINu3b682ltrmr7b3h6qcYmNjJSIiwmCbXbt2SUBAgNjZ2Unnzp1l+fLl1ca19PxpRH5f7UJERESkAvydEyIiIlIVFidERESkKixOiIiISFVYnBAREZGqsDghIiIiVWFxQkRERKrC4oSIiIhUhcUJERERqQqLEyIiIlIVFidERESkKixOiIiISFVYnBCRItasWQMHBwf8+uuv+rZx48ahZ8+eKCwsVDAyIlIaL/xHRIoQEfj7+6Nfv3746KOPEBcXh08++QT79u1Dhw4dlA6PiBRko3QARPRg0mg0eOeddzB8+HC0b98eixYtwt69e1mYEBGPnBCRsgIDA3HkyBFs374dERERSodDRCrANSdEpJht27bh2LFjqKiogKurq9LhEJFK8MgJESniwIED6N+/P5YuXYqkpCQ4Ojpi7dq1SodFRCrANSdEZHFnzpxBdHQ0ZsyYgZiYGPj4+KBXr15IT09HUFCQ0uERkcJ45ISILOrq1asICwtDeHg4Vq5cqW8fOnQoSktLsXXrVgWjIyI1YHFCREREqsIFsURERKQqLE6IiIhIVVicEBERkaqwOCEiIiJVYXFCREREqsLihIiIiFSFxQkRERGpCosTIiIiUhUWJ0RERKQqLE6IiIhIVVicEBERkar8PyS5RNMxAtTpAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'fitting $e^x$ to a degree-5 polynomial')" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(x, exp.(x), \"r-\")\n", - "plot(x, p.(x), \"b--\")\n", - "legend([L\"e^x\", L\"fit $p(x)$\"])\n", - "xlabel(L\"x\")\n", - "title(L\"fitting $e^x$ to a degree-5 polynomial\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "They are so close that you can hardly tell the difference!\n", - "\n", - "Let's plot the fits for degree 0, 1, …, 3 so that we can watch it converge:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAHICAYAAACVqkoXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcFdX7wPHPZV8uiyAiIC6oaK5IJbmiJmlupZV+TcXdr2VqqGiamlpBYqLmVj9MtMV9qdxwCVBzFzMtcwE1V8SVfb13fn/cr7cIZFHwAj7v14s/ZubMOc/MoPNw5swclaIoCkIIIYQQZYSRoQMQQgghhPgnSU6EEEIIUaZIciKEEEKIMkWSEyGEEEKUKZKcCCGEEKJMkeRECCGEEGWKJCdCCCGEKFMkORFCCCFEmSLJiRBCCCHKFElOhBBCCFGmSHIihBBCiDJFkhMhnmGjRo1i6NChAGi1Wl577TXGjBlj4KiEEM86SU7EM23t2rU0bNgQS0tLVCoV8+fPR6VScfnyZX2ZgwcPMmPGDB48eJBn/0dtW7FiRZ56yqLJkyezbt06rly5wgcffIBGo2HevHkF7lPQ+Shryst1KIonOZaKdB7Es0GSE/HMun37NgMGDKB27dpERERw6NAhevbsyaFDh3BxcdGXO3jwIDNnznxkcpLftq5du+appyyqVq0a/v7+9OjRg127drFmzRqMjY0L3Keg8yFKT3n5nRKiJJgYOgAhDOX8+fNkZ2fTv39/fH199etr1KjxxHU7OTnh5OT0xPU8DV5eXixZsoSDBw+iVqsNHY54hPL0OyXEk5KeE/FMGjRoEK1btwagT58+qFQq2rVrl6f7e8aMGQQGBgJQq1YtVCoVKpWK6OjoArfl140+Y8YMVCoVf/zxB3379sXOzg5nZ2eGDBlCYmJirvh+/PFHmjRpgrm5OR4eHixYsEC/f1H98ssvvPLKK9jZ2VGpUiW6du3KhQsXcpU5evQoM2fO5K233mLlypWF1lnQMT9s8+WXX8bGxgYrKytatmzJtm3bihTvw+P79ddf6dWrF7a2ttjZ2dG/f39u376d59iK287+/ftRqVSsXr06z7ZvvvkGlUrFsWPHcsVSlGtV1Hge1nnq1Cneeust7OzscHBwYNy4ceTk5HDu3Dk6d+6MjY0NNWvWJCQkJNf++f1OxcbGMnjwYOrWrYuVlRVubm50796d06dPF3guQNdzOGLECNzd3TE3N8fJyYlWrVqxZ8+eQvcVorRJciKeSdOmTWPx4sUABAUFcejQIZYsWZKn3LBhwxg9ejQAmzZt4tChQxw6dAhvb+8CtxXkjTfewNPTk40bN/LBBx+watUqAgIC9NsjIiLo1asXjo6OrF27lpCQEFavXl2k5OGhGTNm4Ovri7u7O6tXr2bZsmVcvXqVl19+mZSUFACuXLnCm2++yXfffceCBQtYtWoVf/31V4H1FnTMe/fupUOHDiQmJvL111+zevVqbGxs6N69O2vXri1y7D179qROnTps2LCBGTNm8MMPP9CpUyeys7MBHrudNm3a0KxZM/11/6dFixbx4osv8uKLL+ZaX9i1epx4evfuTdOmTdm4cSPDhw9n3rx5BAQE8Prrr9O1a1c2b95Mhw4dmDRpEps2bSrwXN24cQNHR0c+++wzIiIiWLx4MSYmJvj4+HDu3LkC9x0wYAA//PAD06dPZ9euXSxbtoyOHTty9+7dAvcT4qlQhHhGRUVFKYCyfv16/brw8HAFUC5duqRfN2fOnDzrCtuWXz0fffSRAighISG5yr777ruKhYWFotVqFUVRlBdffFFxd3dXMjMz9WWSk5MVR0dHpSj/ZLds2ZJvO+fPn1cA5bvvvlOSkpKUxo0bK8uWLdNvf+edd5Rhw4YVWv+jjvmll15SqlSpoiQnJ+vX5eTkKI0aNVKqVaumP75HeXh+AgICcq3//vvv9XEXt51/X4eHy7/++qu+zNGjRxVAWblyZZ5YCrtWxYnnYZ1z587NVaeXl5cCKJs2bdKvy87OVpycnJRevXo98ljyk5OTo2RlZSl169bNdR7z21etVivvv//+I+sSwpCk50SIp6xHjx65lps0aUJGRgYJCQmkpqZy/PhxXn/9dczMzPRl1Go13bt3L1L906dPp3bt2owdO5acnBz9T61atbC0tOTixYvY2Nhw6tQp/WvEAEuWLCEsLOyxjik1NZUjR47w5ptv5hq3YmxszIABA7h27Vqhf8k/1K9fv1zLvXv3xsTEhKioqCdup2/fvlSpUiVX78nChQtxcnKiT58+ecoXdK0e97i7deuWa/m5555DpVLx6quv6teZmJhQp06dQnuycnJyCAoKokGDBpiZmWFiYoKZmRkXLlzgzz//LHDf5s2bs2LFCj755BMOHz6s75kSoiyQ5ESIp8zR0THXsrm5OQDp6encv38fRVFwdnbOs19+6/4tPj6eX3/9lbi4OMzNzTE1Nc31k56ejr29fckcyD88jDu/N0lcXV0Bivy4oGrVqrmWTUxMcHR05O7du0/cjrm5Of/9739ZtWoVDx484Pbt26xbt45hw4bpr8M/FXSt4PGO28HBIdeymZkZVlZWWFhY5FmfkZHxyGMBGDduHNOmTeP1119ny5YtHDlyhGPHjtG0aVN9jI+ydu1aBg4cyLJly2jRogUODg74+/sTHx9f4H5CPA3yto4QZUilSpVQqVTcunUrz7ai3DSuXr0KwLx58/QDfv+tdu3aTxZkPipVqoSRkRE3b97Ms+3GjRsAVK5cuUh1xcfH4+bmpl/Oycnh7t27ODo6lkg777zzDp999hnLly8nIyODnJwcRo4cWaTY/q0kj/txfPfdd/j7+xMUFJRr/Z07dwpNQitXrsz8+fOZP38+V65c4aeffuKDDz4gISGBiIiIUotZiKKQnhMhCvHvv5aLuu1xWFtb88ILL/DDDz+QlZWlX5+SksLWrVsL3f/hX+UqlYoXXngh359KlSo9UYz5HbO1tTU+Pj5s2rQp13qtVst3331HtWrV8PT0LFL933//fa7ldevWkZOTQ7t27UqkHRcXF9566y2WLFnCl19+Sffu3alevXqRYvu3kjzux6FSqfL0+Gzbto3r168Xq57q1avz3nvv4efnx4kTJ0oyRCEei/ScCFGIxo0bA7BgwQIGDhyIqakp9erVw8bG5pHbnsSsWbPo2rUrnTp1YuzYsWg0GubMmYNarebevXsF7lu7dm3at2/P1KlTSUlJwcfHB0VRuHnzJlFRUQwcOJB27do9UXyPOubg4GD8/Pxo3749EyZMwMzMjCVLlvD777+zevXqIr8GvWnTJkxMTPDz8+OPP/5g2rRpNG3alN69ewOUSDtjx47Fx8cHgPDw8Mc8E5RYPI+rW7durFixgvr169OkSRNiYmKYM2cO1apVK3C/xMRE2rdvz9tvv039+vWxsbHh2LFj+jfFhDA4gw7HFcKAivq2jqIoyuTJkxVXV1fFyMhIAZSoqKgCtxX0ts7t27dz1Z1f2c2bNyuNGzdWzMzMlOrVqyufffaZMmbMGKVSpUqFHldiYqIyefJkxdPTU7GwsFAqVaqkNG3aVBk9erRy//79Yp2jR3nU+di/f7/SoUMHxdraWrG0tFReeuklZcuWLUWq8+H5iYmJUbp3766o1WrFxsZG6du3r3Lr1q1cZYvaTkFvuNSsWVN57rnnCoylKNeqqPE8qs6BAwcq1tbWeWLw9fVVGjZsWGDb9+/fV4YOHapUqVJFsbKyUlq3bq3s379f8fX1VXx9fR+5b0ZGhjJy5EilSZMmiq2trWJpaanUq1dP+eijj5TU1NR8z4kQT5NKURTFADmREKIYsrOz8fLyws3NjV27dhk6nFIxY8YMZs6cye3bt0t1nAbAqVOnaNq0KYsXL+bdd98t1baEEMUnj3WEKIOGDh2Kn58fLi4uxMfH8+WXX/Lnn3+yYMECQ4dWrsXFxfHXX38xZcoUXFxcGDRokKFDEkLkQ5ITIcqg5ORkJkyYwO3btzE1NcXb25vt27fTsWNHQ4dWrn388cd8++23PPfcc6xfvx4rKytDhySEyIc81hFCCCFEmSKvEgshhBCiTJHkRAghhBBliiQnQgghhChTysWAWK1Wy40bN7CxsSnVDxoJIYQQouQoikJycjKurq4YGRW9P6RcJCc3btzA3d3d0GEIIYQQ4jFcvXq10C8X/1O5SE5sbGwA3cHZ2toaOBohhBBCFEVSUhLu7u76+3hRlYvk5OGjHFtbW0lOhBBCiHKmuEMyZECsEEIIIcoUSU6EEEIIUaZIciKEEEKIMqVcjDkpKo1GQ3Z2tqHDEEVkamqKsbGxocMQQghRxlSI5ERRFOLj43nw4IGhQxHFZG9vT9WqVeX7NUIIIfQqRHLyMDGpUqUKVlZWcqMrBxRFIS0tjYSEBABcXFwMHJEQQoiyotwnJxqNRp+YODo6GjocUQyWlpYAJCQkUKVKFXnEI4QQAqgAA2IfjjGxsrIycCTicTy8bjJWSAghxEPlPjl5SB7llE9y3YQQQvxbhUlOhBBCCFExSHIihBBCiDJFkhMhhBBClCmSnJRxPj4+HD9+HICBAweydOlSA0ckhBBClC5JTsq4adOmERQUxNy5c1Gr1bzzzjuGDkkIIUQF8uXSpTy4d8/QYeQiyUkZ161bNy5evMjOnTtZsGCBocMRQghRgaxfv549kycT+VILks6eM3Q4epKcGNjVq1fp168flSpVolKlSrz99tvcv39fv/3o0aM8ePAAe3t7TEzK/TfzhBBClBG3b9/mk9Gj+aBKFZ4zMiL7wAFDh6RXYZOT1NTUR/5kZGQUuWx6enqRyj6O2NhYnn/+eWrXrs2hQ4fYs2cPcXFxBAYGAnD9+nWGDRtGVFQUFy5c4M8//3y8kyGEEEL8y/tjxhBoZo61kTEW3t44DBpo6JD0KmxyolarH/nzxhtv5CpbpUqVR5Z99dVXc5WtWbNmvuUex8iRI3nnnXeYNWsW9evX5/nnn2fixIlERkaSnp7Om2++yaJFi6hVqxYTJ07kk08+eezzIYQQQjx06dIlbCIjed7KCsXCAreQ2ajK0BQi8pzAQP766y9+/vlnDh48yNy5c/XrNRoN7u7uWFpacujQIf36vn370rdvX0OEKoQQooJxycpirFMVyMnBddpUzKpVM3RIuVTY5CQlJeWR2/49wdzDmXHzY2SUu3Pp8uXLTxTXQ7/99hsODg4cOXIkz7aHE+IJIYQQJU2blcWNiZMgJwd1hw7Y9epl6JDyqLDJibW1tcHLFsTU1JTk5GRcXFxKrE4hhBCiIHv27KHS1m1YnTuHsYMDLrNmlsk5zirsmJOyzsfHB1tbWwYMGMDJkyeJjY0lIiKCsWPHGjo0IYQQFdDdu3eZPWgQFjt2AOAyayYmlSsbOKr8SXJiIA4ODmzfvp379+/j6+uLt7c3U6ZMoWbNmoYOTQghRAU07p13CDQzx0ilQt2jBzYdO+q3ZeRkFLDn01dhH+uUB82bNycqKsrQYQghhKjg1q9fT+19+3G3t0dbuTKu06fpt607t45vz3zLwg4LqWlX03BB/oP0nAghhBAV2K1bt1g1dixv2dujADXnzsX4f5/AOBZ/jOAjwVxOukzU1bLzx7IkJ0IIIUQFpSgKgUOHEmile/Gi0pDBWPs0B+Bq8lXGRY8jR8nh1VqvMqjhIANGmpskJ0IIIUQF9fPu3bT97RSVTEzQ1qpF1fffByA1O5UxkWN4kPmAho4NmdVyVpl6a0fGnAghhBAVVLPrN3CztkZjYkzdxYtQmZmhVbR8sP8DYh/E4mTpxIL2C7AwsTB0qLlIz4kQQghRAWWcPcvt0FAA3KZOw9zDA4CFvy4k+mo0ZkZmLGi/AGdrZ0OGmS/pORFCCCEqmKidO6k2fwFKdjbqDh2w79MbgG0Xt7Hs9DIAZraaSWOnxoYM85Gk50QIIYSoQC5fvszeoUPJuXQJKlXC5ZOPUalU/H7ndz46+BEAQxoNoZtHNwNH+miSnAghhBAVhEajYU7fvvRR2wDgFhyMiYMDCWkJjIkcQ6YmE99qvoxpNsbAkRZMkhMhhBCiglj06af85/YdAIxe64FtO18ycjIYGzmW2+m3qWNfh8/afIaxkXEhNRmWJCdlSLt27Xj/f695CSGEEMXx28mTWIQto7KJCamVK1N31iwUReGjgx/x+93fsTO344sOX6A2Uxs61EJJciJK1OnTp/H19cXS0hI3Nzdm/e8fhxBCiNKTkZHByrffpq21NdkqFQ2/XoaRuTlf//412y9tx0RlQqhvKO427oYOtUjkbZ1nTHZ2NqampqVSd1JSEn5+frRv355jx45x/vx5Bg0ahLW1NePHjy+VNoUQQsCiDz5gQI4GjIywH/0elvXqseevPSw4sQCAD5p/QHOX5gaOsuik58RAUlNT8ff3R61W4+Liwty5c/OUycrKYuLEibi5uWFtbY2Pjw/R0dG5yoSFheHu7o6VlRU9e/YkNDQUe3t7/fYZM2bg5eXF8uXL8fDwwNzcHEVRUBSFkJAQPDw8sLS0pGnTpmzYsCFX3WfOnKFLly6o1WqcnZ0ZMGAAd+7ceeQxff/992RkZLBixQoaNWpEr169mDJlCqGhodJ7IoQQpUSbmclrcXFYGBmRVs8T95EjOXP3DFN+mQJA3/p96VO/j4GjLJ4Kl5woikJaVo5BfopzAw4MDCQqKorNmzeza9cuoqOjiYmJyVVm8ODBHDhwgDVr1nDq1CneeustOnfuzIULFwA4cOAAI0eOZOzYsZw8eRI/Pz8+/fTTPG3Fxsaybt06Nm7cyMmTJwGYOnUq4eHhLF26lD/++IOAgAD69+/P3r17Abh58ya+vr54eXlx/PhxIiIiuHXrFr17937kMR06dAhfX1/Mzc316zp16sSNGze4fPlykc+NEEKIoksImUPOhViMHRxoEhZGQvptRv88mvScdFq5tmLiixMNHWKxFeuxTnBwMJs2beLs2bNYWlrSsmVLZs+eTb169R65z4oVKxg8eHCe9enp6VhYlPznctOzNTSYvrPE6y2KM7M6YWVW+ClNSUnh66+/5ptvvsHPzw+AlStXUq1aNX2ZuLg4Vq9ezbVr13B1dQVgwoQJREREEB4eTlBQEAsXLuTVV19lwoQJAHh6enLw4EG2bt2aq72srCy+/fZbnJycAF2vTWhoKJGRkbRo0QIADw8PfvnlF7766it8fX1ZunQp3t7eBAUF6etZvnw57u7unD9/Hk9PzzzHFR8fT82aNXOtc3Z21m+rVatWoedGCCFE0SiKwqH586n0/fcAuH4WTHYlNaMjBpGQnkBtu9rM8Z2DiVH5G8FRrIj37t3LqFGjePHFF8nJyeHDDz/klVde4cyZM1hbWz9yP1tbW86dO5drXWkkJuVFXFwcWVlZ+sQAwMHBIVeSd+LECRRFyZMEZGZm4ujoCMC5c+fo2bNnru3NmzfPk5zUqFFDn5iA7nFNRkaGPjF6KCsri2bNmgEQExNDVFQUanXeUd1xcXH5JidAnomjHvYmlaUJpYQQoiJYt2QJNZYsBWNjHIYMxqpNa8ZHj+fPe39SybwSi15ehI2ZjaHDfCzFSk4iIiJyLYeHh1OlShViYmJo27btI/dTqVRUrVr18SIsJktTY87M6vRU2sqv7aIoyuMfrVaLsbExMTExGBvnrvdhwqAoyiOTgX/6d+Ko1WoB2LZtG25ubrm2PXwko9Vq6d69O7Nnz85Tn4uLS74xV61alfj4+FzrEhISgL97UIQQQjy5yxcvosydi52ZOfccHan//vt88etC9lzZg6mRKQs6LKCaTbXCKyqjnqivJzExEdD91V+QlJQUatSogUajwcvLi48//lj/F3p+MjMzyczM1C8nJSUVOSaVSlWkRyuGVKdOHUxNTTl8+DDVq1cH4P79+5w/fx5fX18AmjVrhkajISEhgTZt2uRbT/369Tl69GiudcePHy+0/QYNGmBubs6VK1f07f2bt7c3GzdupGbNmpiYFO18tmjRgilTppCVlYWZmRkAu3btwtXVNc/jHiGEEI9Ho9Gw4a236GpmTppKhfd33/LTlR1/z5nTcibNqjz6HlsePPaAWEVRGDduHK1bt6ZRo0aPLFe/fn1WrFjBTz/9xOrVq7GwsKBVq1b6QZ35CQ4Oxs7OTv/j7l4+3ssuKrVazdChQwkMDOTnn3/m999/Z9CgQRgZ/X05PD096devH/7+/mzatIlLly5x7NgxZs+ezfbt2wEYPXo027dvJzQ0lAsXLvDVV1+xY8eOQh+h2NjYMGHCBAICAli5ciVxcXH8+uuvLF68mJUrVwIwatQo7t27R9++fTl69CgXL15k165dDBkyBI1Gk2+9b7/9Nubm5gwaNIjff/+dzZs3ExQUxLhx4+SxjhBClJCvAwJ4NSUVANuJEzljdY8Zh2YAMKLJCLrX7m7A6EqI8pjeffddpUaNGsrVq1eLtZ9Go1GaNm2qjB49+pFlMjIylMTERP3P1atXFUBJTEzMUzY9PV05c+aMkp6eXuxjMKTk5GSlf//+ipWVleLs7KyEhIQovr6+ytixY/VlsrKylOnTpys1a9ZUTE1NlapVqyo9e/ZUTp06pS/zf//3f4qbm5tiaWmpvP7668onn3yiVK1aVb/9o48+Upo2bZqnfa1WqyxYsECpV6+eYmpqqjg5OSmdOnVS9u7dqy9z/vx5pWfPnoq9vb1iaWmp1K9fX3n//fcVrVb7yOM6deqU0qZNG8Xc3FypWrWqMmPGjALLl9frJ4QQhnB4504lunYd5Uy9+kp0797KlcQrSuvVrZVGKxop46LGKRqtxtAh5pKYmPjI+3dBVIpS/A9QjB49mh9++IF9+/Y91hsYw4cP59q1a+zYsaNI5ZOSkrCzsyMxMRFbW9tc2zIyMrh06RK1atV6pgfZPjR8+HDOnj3L/v37DR1Kkcj1E0KIosnOymJN48a8oDLitoUFjaMjGBg9nEuJl2jk2IjlnZdjaWJp6DBzKej+XZBiDc5QFIXRo0ezefNmoqOjHysxURSFkydP0rhx42LvK/L6/PPP8fPzw9ramh07drBy5UqWLFli6LCEEEKUsKTvV/GCyogsoF7YV0w6Oo1LiZdwtnLmiw5flLnE5EkUKzkZNWoUq1at4scff8TGxkb/ZoadnR2WlrqT4u/vj5ubG8HBwQDMnDmTl156ibp165KUlMQXX3zByZMnWbx4cQkfyrPp6NGjhISEkJycjIeHB1988QXDhg0zdFhCCCFKUPrp0ySEhgLgPuMjFufs5NDNQ1iaWLLo5UU4WTkVUkP5UqzkZOnSpYBu9tx/Cg8PZ9CgQQBcuXIl18DOBw8eMGLECOLj47Gzs6NZs2bs27eP5s3Lzzf+y7J169YZOgQhhBCl6MKpU+SMGQPZ2dh06sSOJjmsO7YOFSo+a/MZ9R3qGzrEElfsxzqF+ffcL/PmzWPevHnFCkoIIYQQunF5+/u+TQuNhpxKlbj0TmdCjk4CYNzz4+hQvYOBIywdFW5uHSGEEKKi+K7/AF1ioiikTBrBhJiP0CpaetXtxcCGAw0dXqkp218rE0IIIZ5RkWFhvHjqFBgZcaPry4Rkf0taTho+VX2Y6jO1Qn8/SnpOhBBCiDLmZmwsSsgczIyMiHNy5P98b5KQppvML7R9KKbGpoYOsVRJciKEEEKUIRqNhv1v9cbV2JhbwM5xnpx/cAFHC0cWd1yMrVnRvxdSXklyIoQQQpQhu98bTeP0dLIUhV/ef4nopGNYmliy+OXFuKndCq+gApDkpAxp164d77//vqHDEEIIYSBpJ05QY98+AA508mSt5XH9K8MNKzc0cHRPjyQnosRkZGQwaNAgGjdujImJCa+//rqhQxJCiHIj5949rgeMA42G1HbeLPW+CMCk5pMq7CvDjyLJyTMmOzu71OrWaDRYWloyZswYOnbsWGrtCCFERaPJyeFI377k3LqFtrorY1/4E1Qq+j/Xn37P9TN0eE+dJCcGkpqair+/P2q1GhcXF+bOnZunTFZWFhMnTsTNzQ1ra2t8fHzyfOQuLCwMd3d3rKys6NmzJ6Ghodjb2+u3z5gxAy8vL5YvX46Hhwfm5uYoioKiKISEhODh4YGlpSVNmzZlw4YNueo+c+YMXbp0Qa1W4+zszIABA7hz584jj8na2pqlS5cyfPhwqlat+mQnSAghniE/DfDH4a8rZKlgVtc0kkyzae/engkvTDB0aAZR8ZITRYGsVMP8FGOC58DAQKKioti8eTO7du0iOjqamJiYXGUGDx7MgQMHWLNmDadOneKtt96ic+fOXLhwAYADBw4wcuRIxo4dy8mTJ/Hz8+PTTz/N01ZsbCzr1q1j48aNnDx5EoCpU6cSHh7O0qVL+eOPPwgICKB///7s3bsXgJs3b+Lr64uXlxfHjx8nIiKCW7du0bt378e9MkIIIfJxOCwMzxMnAPi+i5oz9ik0dGzIZ20+w9jI2MDRGUbF+whbdhoEuRqm7Sk3wMy60GIpKSl8/fXXfPPNN/j5+QGwcuVKqlWrpi8TFxfH6tWruXbtGq6uuuOZMGECERERhIeHExQUxMKFC3n11VeZMEGXWXt6enLw4EG2bt2aq72srCy+/fZbnJx0E0OlpqYSGhpKZGQkLVq0AMDDw4NffvmFr776Cl9fX5YuXYq3tzdBQUH6epYvX467uzvnz5/H09PzCU6UEEIIgFtnz6Kd8zlGRkbsq2/KjiYZuFq7sujlRViZWhk6PIOpeMlJORAXF0dWVpY+MQBwcHCgXr16+uUTJ06gKEqeJCAzMxNHR0cAzp07R8+ePXNtb968eZ7kpEaNGvrEBHSPazIyMvSJ0UNZWVk0a9YMgJiYGKKiolCr1fnGL8mJEEI8GU1mJsf+05faRkZctoWvummxMbVlScclVLasbOjwDKriJSemVroeDEO1XQRFmUBRq9VibGxMTEwMxsa5u/UeJgyKouT5fHF+dVtb5+7N0Wq1AGzbtg03t9zvzJubm+vLdO/endmzZ+epz8XFpdD4hRBCFGzH229TOyODVCOFef8xQTEzZV77edS2r23o0Ayu4iUnKlWRHq0YUp06dTDF1Bm5AAAgAElEQVQ1NeXw4cNUr14dgPv373P+/Hl8fX0BaNasGRqNhoSEBNq0aZNvPfXr1+fo0aO51h0/frzQ9hs0aIC5uTlXrlzRt/dv3t7ebNy4kZo1a2JiUvF+TYQQwpDi16+n9h9nAFjyujE3HVV80nIGPi4+Bo6sbJC7jgGo1WqGDh1KYGAgjo6OODs78+GHH2Jk9Pf4ZE9PT/r164e/vz9z586lWbNm3Llzh8jISBo3bkyXLl0YPXo0bdu2JTQ0lO7duxMZGcmOHTsKnQzKxsaGCRMmEBAQgFarpXXr1iQlJXHw4EHUajUDBw5k1KhRhIWF0bdvXwIDA6lcuTKxsbGsWbOGsLCwPL05D505c4asrCzu3btHcnKyfgCul5dXyZ1AIYQoxzLOnedBUDAAm1uoOFbPiNHNRvNandcMHFnZIcmJgcyZM4eUlBR69OiBjY0N48ePJzExMVeZ8PBwPvnkE8aPH8/169dxdHSkRYsWdOnSBYBWrVrx5ZdfMnPmTKZOnUqnTp0ICAhg0aJFhbb/8ccfU6VKFYKDg7l48SL29vZ4e3szZcoUAFxdXTlw4ACTJk2iU6dOZGZmUqNGDTp37pwrifq3Ll268Ndff+mXH45hKcqjLCGEqOg0SUlcGz0aJT2d07WMWNNWxVuebzG88XBDh1amqJRycNdISkrCzs6OxMREbG1zT3iUkZHBpUuXqFWrFhYWFgaKsOwYPnw4Z8+eZf/+/YYOpUjk+gkhnhWKVkuU3yu4XL/OXTsjJg5S8bxne+a1n4eJUcXsKyjo/l2Qink2niGff/45fn5+WFtbs2PHDlauXMmSJUsMHZYQQoh/2T9mDC7Xr5NlrBDSU0Wt6k0J8Q2psInJk5AzUs4dPXqUkJAQkpOT8fDw4IsvvmDYsGGGDksIIcQ/nFu9Gsfde0ClYllnYzSeNVj48kIsTSwNHVqZJMlJObdu3TpDhyCEEKIAiefOkTRzFmqVit3NVJxqXpnvOn6Jg4WDoUPTSUmA48uh7UQoYEzh0yTJiRBCCFFKNGlp/PqfvjgD511h1SuWLHt5Me627oYODbRaOLECds+AzERQO8MLgw0dFSDJiRBCCFEqFEVh39tvUzU9nUQrmN/TlBC/eTSq3MjQoUH877A1AK7971tZLl7gWnY++SDJiRBCCFEK7n+/iqpnz6FRwbzXjRjdeQZtq7U1bFBZqRD9GRxaDIoGzGygw1RoPhzK0CSDkpwIIYQQJSz16FHig4NQAd+3N8K3xyh61e1l2KDORcD2QEi8olt+rge8OhtsDTRZbgEkORFCCCFKUNrly/w1+j1UGi0HnlNh3u9N3mn6juECSrwOEZPgzy26Zbvq0PVz8OxkuJgKIcmJEEIIUUK0aWkc7f0GzklpXKwKp0e0ZW6LaYVOK1I6wWjgaBhEfgxZKaAyhpbvge+kMj8HnSQnZUi7du3w8vJi/vz5hg5FCCFEMSmKwt63e1M1KY0HVrC6T3XC/Az09dcbv8KW9+Gmbn4zqr0I3eZD1TIwGLcIysYLzaJCiI6O5rXXXsPFxQVra2u8vLz4/vvvDR2WEEI8FUc/nEjVs3HkGMGX3W1YPGTd0//IWkYS7JgEYR10iYmFHXSbB0N2lZvEBKTn5JmTnZ2NqalpqdR98OBBmjRpwqRJk3B2dmbbtm34+/tja2tL9+7dS6VNIYQoC+LWr8F201YAwtub8NmEH7Ezt3t6ASgK/PmTLjFJvqlb1/gt6BQE6ipPL44SIj0nBpKamoq/vz9qtRoXFxfmzp2bp0xWVhYTJ07Ezc0Na2trfHx8iI6OzlUmLCwMd3d3rKys6NmzJ6Ghodjb2+u3z5gxAy8vL5YvX46Hhwfm5uYoioKiKISEhODh4YGlpSVNmzZlw4YNueo+c+YMXbp0Qa1W4+zszIABA7hz584jj2nKlCl8/PHHtGzZktq1azNmzBg6d+7M5s2bn+xkCSFEGXb/91MkzpwJQEQTFYOnrMLFxuUpBvAXrOoD6/x1iYmDBwzYDG8sK5eJCVTAnhNFUUjPSTdI25YmlkUe9BQYGEhUVBSbN2+matWqTJkyhZiYGLy8/v4IzuDBg7l8+TJr1qzB1dWVzZs307lzZ06fPk3dunU5cOAAI0eOZPbs2fTo0YM9e/Ywbdq0PG3Fxsaybt06Nm7ciLGx7j32qVOnsmnTJpYuXUrdunXZt28f/fv3x8nJCV9fX27evImvry/Dhw8nNDSU9PR0Jk2aRO/evYmMjCzyOUlMTOS5554rcnkhhChPsu/f4/SQt3HKgT+qQZ1xQTR2a/x0Gtdk675Xsnc2ZKeBkSm0DoA248C0fM/ZU+GSk/ScdHxW+Rik7SNvH8HK1KrQcikpKXz99dd88803+Pn5AbBy5UqqVaumLxMXF8fq1au5du0arq66d9AnTJhAREQE4eHhBAUFsXDhQl599VUmTJgAgKenJwcPHmTr1q252svKyuLbb7/FyckJ0PXahIaGEhkZSYsWLQDw8PDgl19+4auvvsLX15elS5fi7e1NUFCQvp7ly5fj7u7O+fPn8fT0LPQ4N2zYwLFjx/jqq68KLSuEEOWNNjubg8PfpEqShgRbiPfvz3svvf50Gr96VDfgNeEP3XKN1tAtFJzqPZ32S1mFS07Kg7i4OLKysvSJAYCDgwP16v39S3XixAkURcmTBGRmZuLo6AjAuXPn6NmzZ67tzZs3z5Oc1KhRQ5+YgO5xTUZGhj4xeigrK4tmzZoBEBMTQ1RUFGq1Ot/4C0tOoqOjGTRoEGFhYTRs2LDAskIIUR5FTh6M2+83yTCFtFljeK/zU/iWSfp92DMDYlboli0d4JVPwOttMMTryqWkwiUnliaWHHn7iMHaLgpFUQoto9VqMTY2JiYmRv8o5qGHCYOiKHkeI+VXt7V17vfZtVotANu2bcPNzS3XNnNzc32Z7t27M3v27Dz1ubgU/Cx17969dO/endDQUPz9/QssK4QQ5dGPcwPw3BoDwPWxPelW2omJosDpDbBzMqTe1q3z6g9+s8DasXTbNoAKl5yoVKoiPVoxpDp16mBqasrhw4epXr06APfv3+f8+fP4+voC0KxZMzQaDQkJCbRp0ybfeurXr8/Ro0dzrTt+/Hih7Tdo0ABzc3OuXLmib+/fvL292bhxIzVr1sTEpOi/JtHR0XTr1o3Zs2czYsSIIu8nhBDlReRPS6i1PAKAo21rMnBYUCF7PKG7cbBtHFyM1i1Xrqd7Pbhmq9Jt14AqXHJSHqjVaoYOHUpgYCCOjo44Ozvz4YcfYmT098tTnp6e9OvXD39/f+bOnUuzZs24c+cOkZGRNG7cmC5dujB69Gjatm1LaGgo3bt3JzIykh07dhQ6KNfGxoYJEyYQEBCAVquldevWJCUlcfDgQdRqNQMHDmTUqFGEhYXRt29fAgMDqVy5MrGxsaxZs4awsLA8vTmgS0y6du3K2LFjeeONN4iPjwfAzMwMBweHkj2JQghhAMd/3Y7VjIWYauBQZS2+ExeWXmM5mXBgAez7HDSZYGIBbSdAy7FgYlZ67ZYB8iqxgcyZM4e2bdvSo0cPOnbsSOvWrXn++edzlQkPD8ff35/x48dTr149evTowZEjR3B3dwegVatWfPnll4SGhtK0aVMiIiIICAjAwsKi0PY//vhjpk+fTnBwMM899xydOnViy5Yt1KpVCwBXV1cOHDiARqOhU6dONGrUiLFjx2JnZ5crifqnFStWkJaWRnBwMC4uLvqfXr0MPNmVEEKUgD/+Osr99yZglwaxtlo8pi+gdp06pdPYpf2wtBVEfapLTGp3gHcPQdvACp+YAKiUogyAMLCkpCTs7OxITEzE1tY217aMjAwuXbpErVq1inRTruiGDx/O2bNn2b9/v6FDKRK5fkKI8iDu7gWOD+hJk4sa7lgoxA4azuD3x5d8Q6l3YddU+G2Vbtm6CnQOhkZvlMsBrwXdvwsij3XKuc8//xw/Pz+sra3ZsWMHK1euZMmSJYYOSwghKowbKTeICOhDh4saMowVol7wYXpJJyaKAr9+B7un6d7IQQUvDIGXp4OlfaG7VzSSnJRzR48eJSQkhOTkZDw8PPjiiy8YNmyYocMSQogK4U76HcJn9qbXUd3HPb+rUpnZX35dso0knIWtAXDloG7ZuZFukj73F0u2nXJEkpNybt26dYYOQQghKqTEzETmLOrHgK13AfjjpWZMm7+kWG8wFig7HfbNgQNfgDYbTK2g3WR46R0wLp050MoLSU6EEEKIf0nLTuOj74cw4LsrGCtg0tWPNz5fUOQpSgoVuwe2jYf7l3XLnq9ClxCwr14y9ZdzkpwIIYQQ/5ClyWLKllG8/n9nsMoEbZP61A7+vGQSk+Rbug+p/b5Rt2zjqktK6ncrlwNeS4skJ0IIIcT/aLQapkQG4rvkMM4P4JqSTWq3njQ0e8LXd7VaiFkOe2ZBZiKojMBnJLSfAuY2JRN8BSLJiRBCCIFu+o9Zh2ZS56vd1L8GyWg53O5lpj3pNBzxp3WT9F3/3xe8XZvpBry6ehW83zNMkhMhhBDPPEVR+Pz45xiHb8D3d4UcFNa71+CzJ/k0Q2YKRAfD4aWgaMDMBl6eBi8OA6O8X9kWf5PkRAghxDPv/079H1fWrODdX3TfJf3G3JwZP2zOd6qOIjm3A7YHQuJV3XKD16DzZ2DrWkIRV2ySnJQh7dq1w8vLi/nz5xs6FCGEeGZ8e+Zb9m36gg926GZsX52dxbioyDwzuhdJ4nXYMRHObtUt21eHLnPB85USjLjik7l1RIk5d+4c7du3x9nZGQsLCzw8PJg6dSrZ2dmGDk0IIfK1/vx61m6dzbjNWky0EKXR8OamTbi4uBSvIk0OHFoCi5vrEhMjE2j1Prx7RBKTxyA9J8+Y7OxsTE1L5+M+pqam+Pv74+3tjb29Pb/99hvDhw9Hq9USFFTKU4oLIUQxbYnbwuKds/hkvQarLLB88UWGfbkUs+L2mFyP0Q14jT+lW3b3gW7zwLlhyQf9jJCeEwNJTU3F398ftVqNi4sLc+fOzVMmKyuLiRMn4ubmhrW1NT4+PkRHR+cqExYWhru7O1ZWVvTs2ZPQ0FDs7f+eh2HGjBl4eXmxfPlyPDw8MDc3R1EUFEUhJCQEDw8PLC0tadq0KRs2bMhV95kzZ+jSpQtqtRpnZ2cGDBjAnTt3HnlMHh4eDB48mKZNm1KjRg169OhBv379ys0khEKIZ8fOyzv59OcP+WBdDo7JYFbbA/dFC4uXmGQk6saVhL2sS0ws7KD7AhgcIYnJE6pwPSeKoqCkpxukbZWlZZE/0hMYGEhUVBSbN2+matWqTJkyhZiYGLy8/n61bPDgwVy+fJk1a9bg6urK5s2b6dy5M6dPn6Zu3bocOHCAkSNHMnv2bHr06MGePXuYNm1anrZiY2NZt24dGzdu1A/umjp1Kps2bWLp0qXUrVuXffv20b9/f5ycnPD19eXmzZv4+voyfPhwQkNDSU9PZ9KkSfTu3ZvIyMgiHWNsbCwRERH06tWrSOWFEOJp2Ht1Lx9GTSJwUw41bsMdjQbHwECM7eyKVoGiwJkfYMcHkBKvW9ekD7zyKaidSi/wZ4hKURSlqIWDg4PZtGkTZ8+exdLSkpYtWzJ79mzq1atX4H4bN25k2rRpxMXFUbt2bT799FN69uxZ5CALmnI5IyODS5cuUatWLSwsLNCmpXHO+/ki112S6p2IwcjKqtByKSkpODo68s0339CnTx8A7t27R7Vq1RgxYgTz588nLi6OunXrcu3aNVxd/x7d3bFjR5o3b05QUBD/+c9/SElJYevWrfrt/fv3Z+vWrTx48ADQ9ZwEBQVx/fp1nJx0/2hSU1OpXLkykZGRtGjRQr/vsGHDSEtLY9WqVUyfPp0jR46wc+dO/fZr167h7u7OuXPn8PT0fOTxtWzZkhMnTpCZmcmIESNYunQpRkb5d9L9+/oJIURpOnTjEO/tGcXQLRm0P62QptWy0rMu83/66ZH/T+Vy/zJsmwCxu3XLDrWh61yo3b5U4y6vCrp/F6RYj3X27t3LqFGjOHz4MLt37yYnJ4dXXnmF1NTUR+5z6NAh+vTpw4ABA/jtt98YMGAAvXv35siRI8VpukKJi4sjKysrV2Lg4OCQK8k7ceIEiqLg6emJWq3W/+zdu5e4uDhANwC1efPmuer+9zJAjRo19IkJ6B7XZGRk4Ofnl6vub775Rl93TEwMUVFRubbXr19fH39B1q5dy4kTJ1i1ahXbtm3j888/L+YZEkKIkhdzK4axUWPpsS+T9qcVNIrCMnt7QjZsKDwx0WTD/lBY/JIuMTE2A99J8M5BSUxKQbEe60RERORaDg8Pp0qVKsTExNC2bdt895k/fz5+fn5MnjwZgMmTJ7N3717mz5/P6tWrHzPsR1NZWlLvREyJ11vUtouiKJ1VWq0WY2NjYmJi8rxnr1ar9fX8+zFSfnX/+3U4rVb3uty2bdtwc3PLtc3c3Fxfpnv37syePTtPfYWNYnd3dwegQYMGaDQaRowYwfjx4x//ewFCCPGETt8+zaifR9H8RCq9f9H9HxhmpOLTiB2F99peOawb8Hr7T91yzTa6Aa+V65Zy1M+uJxpzkpiYCOj+6n+UQ4cOERAQkGtdp06dCvyWR2ZmJpmZmfrlpKSkIsekUqlQFeHRiiHVqVMHU1NTDh8+TPXquhko79+/z/nz5/H19QWgWbNmaDQaEhISaNOmTb711K9fn6NHj+Zad/z48ULbb9CgAebm5ly5ckXf3r95e3uzceNGatas+UTTgyuKQnZ2dpESMiGEKA3n7p3jv3v+S52zyfx3uy4xWZWZwbjo6ALvX6Tdgz0z4MRK3bKVo25cSdP/yCR9peyx7zqKojBu3Dhat25No0aNHlkuPj4eZ2fnXOucnZ2Jj49/5D7BwcHMnDnzcUMr89RqNUOHDiUwMBBHR0ecnZ358MMPc3Urenp60q9fP/z9/Zk7dy7NmjXjzp07REZG0rhxY7p06cLo0aNp27YtoaGhdO/encjISHbs2FHooFwbGxsmTJhAQEAAWq2W1q1bk5SUxMGDB1Gr1QwcOJBRo0YRFhZG3759CQwMpHLlysTGxrJmzRrCwsLy7QX5/vvvMTU1pXHjxpibmxMTE8PkyZPp06fPEyU4QgjxuC4+uMiI3SNwvpRE4GYwUSAiLY03fthMjRo18t9JUeDUOtg5BdL+94ZiswHgNwusCkhmRIl57DvGe++9x6lTp/jll18KLZvfo4eCbqCTJ09m3Lhx+uWkpCT9o4KKYs6cOaSkpNCjRw9sbGwYP368vifqofDwcD755BPGjx/P9evXcXR0pEWLFnTp0gWAVq1a8eWXXzJz5kymTp1Kp06dCAgIYNGiRYW2//HHH1OlShWCg4O5ePEi9vb2eHt7M2XKFABcXV05cOAAkyZNolOnTmRmZlKjRg06d+78yGezJiYmzJ49m/Pnz6MoCjVq1GDUqFF5es6EEOJpuJp0lWG7hmF+/S5TN4BZthbLli3oMGoUTb2989/pTixsGweX9uqWnerrHuHUaPn0AhfFe1vnodGjR/PDDz+wb98+atWqVWDZ6tWrExAQkOsGNW/ePObPn89ff/1VpPaK87bOs2748OGcPXu23HxbRK6fEKI0XEu+xuCdg8mMv0nwt+CQqMGicWNqrAjHKL9vmeRkwi/zYP9c0GSBiQX4ToQWo8HE7OkfQAXxVN7WURSF9957j02bNhEZGVloYgLQokULdu/enWvdrl27aNlSstCS8Pnnn/Pbb78RGxvLwoULWblyJQMHDjR0WEIIYTDXU64zdOdQku7eZPpaFQ6JGu5bWeG2dEn+icmlfbC0pW4GYU0W1OkI7x6GNuMlMTGQYj3WGTVqFKtWreLHH3/ExsZGP27Ezs4Oy/+9qeLv74+bmxvBwcEAjB07lrZt2zJ79mxee+01fvzxR/bs2VOkx0GicEePHiUkJITk5GQ8PDz44osvGDZsmKHDEkIIg7iZcpOhO4dy+8F1Zm40xu12Fgk52Wxv2oQWjo65C6fegZ0fwqk1umW1s27m4IY9ZcCrgRUrOVm6dCmgmz33n8LDwxk0aBAAV65cyTUmoWXLlqxZs4apU6cybdo0ateuzdq1a/Hx8XmyyAUA69atM3QIQghRJsSnxjNk5xBuJl1j8hZT6lzJIEmjYWODBsxbtuzvsY5aLfz6LeyeDhkPABW8OAxenqb7BL0wuGIlJ0UZnvLvuV8A3nzzTd58883iNCWEEEIU2a3UWwzdOZRryVd5f7c5Tc+lkanVEl61KgvWr//7DcOEP2FrAFw5pFt2bqybD6eaYb4sLvJXYd7vlO9olE9y3YQQT+p22m2G7RrGleQrDDloRcsTyWgUhS+trZizfZvu45JZabBvDhz8ArQ5YGoN7aeAz0gwrjC3wgqj3F8RU1NTANLS0vTjXkT5kZaWBvx9HYUQojjupN9h6K6hXE66TO/Tajrv080r9pUKPt61CxsbG7iwR/d68IP/vSFaryu8OhvsK9YnKiqScp+cGBsbY29vT0JCAgBWVlZFnhlYGI6iKKSlpZGQkIC9vb182l4IUWx30+8ybOcwLiVeomusLW9uuw/AHT8/AgMn4GShgfWD4I/Nuh1s3eDVEHium+GCFkVS7pMTgKpVqwLoExRRftjb2+uvnxBCFNW9jHsM2zWMuMQ4Xv7LFv+ND0BRqNSvH/WnfIAqJhy+nwWZSaAyAp93oP1kMLcxdOiiCCpEcqJSqXBxcaFKlSpkZ2cbOhxRRKamptJjIoQotgcZDxi+azixD2JpddOWIavvo1IUTDp2xHlIN1TLX4Hr/5sA1tUbus8Hl6aGDVoUS4VITh4yNjaWm50QQlRgDzIeMGL3CM7fP88Ld2x559sHmCoKe9NS6NTwLqplHUDRgLktvDwdXhgCRnJfKG8qVHIihBCi4rqfcZ/hu4Zz7v45Gj+wZcyKJMw0Wi6QxoBhJljf2qYr2LAndAoGWxfDBiwemyQnQgghyry76XcZvns4F+5foH6qHePDk7HIziHdKoNuXRIx0ipgXwO6hkLdjoYOVzwhSU6EEEKUaXfS7zBsp27wa90sByZ+nYxVRhamdll4vnwfIzNjaDkG2gaCmZWhwxUlQJITIYQQZdbttNsM3TWUS4mX8NA68ukqDaSmY2aTQ4329zCu8xJ0mwdVnjN0qKIESXIihBCiTLqVeothu4ZxOekytVSVCfk2Be3NFEyscnBun4JJ7wXg1R/+MZ+bqBgkORFCCFHmxKfGM3TnUK4kX6EmtsxZdhNtggpjCw01RrbA7O25oHYydJiilEhyIoQQoky5mXKTITuHcC3lGjWzTZj7bTyaBDNUZgrV536E2cv9DB2iKGXSFyaEEKLMuJ5yncERg3SJSUYOod8lorllRrZKywqPuph3eNvQIYqnQHpOhBBClAlXk68ydFt/bmbeo1Z6NnPXZZETb066oiXcvTqh6zfJ3GnPCElOhBBCGNzVhNMMiRhMvJJJ7fRs5mzQkHPDnHStljCXqszbskVmL3+GSHIihBDCcBSFi0cWMezMl9w2NqJOejafbrMl51oyGVoty6s6ExoRgYWFhaEjFU+RJCdCCCEM484Fzm4dxX+117hnbIxnNsw54U3mhV/J0mr52qkyIRERWFpaGjpS8ZTJgFghhBBPV3YGRAVx6mtfhmivc8/YmIYmDsz9swOZ+34FUxPOvf4aIbt3Y2UlX3x9FknPiRBCiKfnYjRsHcfxtGuMcnYizciIZvb1CYxwJD1qF5iYUG3ePJ7rKPPjPMskORFCCFH6Um7Drg/h1FoOWFrwftUqZKhU+Dg3570tZphERaMFqgYHYSOJyTNPHusIIYQoPVotxKyARS/AqbVEWlkyuqozGSoVbV3bMHqLOeY/R6NVFJaprTFr187QEYsyQHpOhBBClI5bZ2BrAFw9DMB2t/pMMc9Ao2jxc+/I4PUZuh4TRSFcbc3MyEhsbGwMHLQoCyQ5EUIIUbKy0mDvbDi0CLQ5YGrN5uff4KNbe1EUhR41u9Hn+7uY7NuPRlFYZmXJzMhIbG1tDR25KCMkORFCCFFyzu+C7ePhwRXdcv1urKrXiuBTSwHoXedNeiy/gumBg2gUhTBrK2ZGRmJnZ2fAoEVZI8mJEEKIJ5d0EyImwZkfdcu21aDLHL7Ovsn8E/MBGFivP3033CbpwEFyFIWvbW35+Oc90mMi8pABsUIIIR6fVgNH/g8WvahLTFTG0OI9lHcPsyDtgj4xGdlwOP9Zl0DS1m1gYoLm/bF8Gh0liYnIl/ScCCGEeDw3TsLW9+HGr7pltxeg+3w0VRrw6ZFPWX9+PQABTUbTdHYUySdPgqkp1eaFyuvCokCSnAghhCiezGSICoIjX4KiBXM76Dgdnh9MtqJlyv4PiLgcgQoV01+YTI2PNmH1++9kKwoWH3wgiYkolCQnQgghikZR4OxW2DEJkq7r1jV6AzoFg40z6TnpBEQHcOD6AUyMTAj2+RiHSctR//knWVota2vVZMZbbxr0EET5IMmJEEKIwj24AtsnwvkduuVKNaHrXKij6wVJzEzkvZ/f4+Ttk1iaWDLvpc8wGROKTVwcmVotG+vWZdaPP2BiIrcdUTj5LRFCCPFommw4vBSigyE7DYxModVYaDsBTHWzBd9Jv8N/d/+X8/fPY2Nmw5KXPidzxAxsr14lTatlS4MGzNi4AWNjYwMfjCgvJDkRQgiRv6vHdANeb/2uW67eErrNgyr19UWuJV9jxO4RXE2+iqOFI1/6fE76sMnYXrtGskbDdu9mTF+9GiMjeTlUFJ0kJ0IIIXJLfwA/z4Tj4YAClpXA72Pw6gf/SDJi78cyYvcIbqff/n/27js8imr/4/h7S3Y3PSSkUJLQS0INLfReQhFFBBso9i69SBMFEQUpFtQrXiz32lBBeu8EkC5FILQECNWHa5sAACAASURBVIT0vnV+fwzmyk9QAsluyvf1PHnkzM7M+Q5g8mHmzDlU8arCJ01nYX95MsrFi2RrNKxr15YpixZJMBGFJuFECCGESlHg6I+wZgLkJKnbGj8MPd4Ez4o37Hrk2hFe2PgCGeYMavnV4sPI18l9fhzWCxfQBwZSd+FCmkdGoNFoXHAhorSTcCKEEAJSz8LKUXBmk9oOqK0+wqne/i+7xl6O5dXNr5Jny6NRxUa8V2MM5wYMxddiwa1yZcIW/xtDWJiTL0CUJRJOhBCiPLNZYNd82DYbbPmgM6qDXdu+CnrjX3ZffW41r+14DZvDRnSlaGYEPsu5gY/ia7dzzmKh2utTJZiIuybhRAghyqvzO2HFCEg+qbard1TvlgTUvOnuXx3/ind+fQeA7uHdGWu8n/iHh+KjKJyymNG98QYRHTo4q3pRhkk4EUKI8iYnBdZPgUNfq23PQOj5FjR8AG4yRkRRFOYemMu/j/4bgIfqPcRjmc25/NxTeAJHLRYCFyygU9++TrwIUZZJOBFCiPJCUeDwN7B2IuSlqtuaPQ7dXlffyLkJq8PK67te55czvwDwatSrdDvuTfLUV3EHDlos1F78b1rIHRNRhCScCCFEeXDtFKwcCee3q+2gCOg7D8Ja3fKQXGsuI7eOZOelneg0Ol5v8zodD1pJfH0qBmCH1UqbJT8QGRXlnGsQ5YaEEyGEKMus+bB9DuyYCw4r6N2h03ho/SLo3G55WGp+Ki9ueJGjKUcx6UzM6TibiFUnuTJ3LhrgasOGdJ35FjVq1XLetYhyQ8KJEEKUVWc2q3dLUs+q7do9ofe7UCH8bw+7mHWR5zY8x4XMC/gZ/fiw8/vkT/mYa1u3AhDwzDPUGzFc5jARxUbCiRBClDXZSbD2NfjtB7XtXQliZkH9e2464PXPfk/9nec3PE9yXjKVPSuzsNP7XHpmPBWPnwDAd8Rwgp59trivQJRzEk6EEKKscDjgwGLY8DrkZ4BGCy2fgc4TweTzj4fvSdzDq5tfJceaQ+0KtfmozXucGPQkIZcvY1UUVteqycgnnij2yxBCwokQQpQFV4/B8uFwca/artRYHfBa5fYGq64+t5qJOyZidVhpHtyc2Y2ncqT3YEIyM8lzONjVri1jFy2SRznCKSScCCFEaWbJgS1vQ+yHoNjB4AVdJkGLp0H3z9/iFUVh0dFFzD8wH1AnV5tY9RmO9upPiNlCht3OqUGDeGnG9OK+EiEKSDgRQojS6uQaWDUGMuLVdv1+0GsW+Fa5rcNtDhsz9sxgyaklAAyJGMKLHn04PmAQQRYrV202skYMZ+iLLxbXFQhxUxJOhBCitMm8DKvHwQl1YjR8Q6H3bKjb67ZPkWPNYfTW0ey4tAMNGsa1HEf/lGpcfHYoXhYr8YD7O7PoN2BA8VyDEH9DwokQQpQWDjvs/Rdsmg6WLNDo1PlKOo0Hg+dtnyYpN4mXNr7EidQTmHQm3u7wNnU2XSRh9nNgs+HRqhWd583FUOHms8YKUdwknAghRGlw+aA64DXxkNqu2kId8BrSoFCnOZ12mhc2vsCVnCv4m/z5oPP7pE/7hOyNmwDw6dePSjOmozUYivoKhLhtEk6EEKIky8+EzTNg76egOMDkq66FE/U4aLWFOtWexD0M3zycbGs21Xyq8WHHBfz++HBCT50CYFtgRZ55Z5a8kSNcTsKJEEKURIqijilZPQ6yEtVtDR9QVw/2Cir06X458wtTd03F5rARFRTF7Kg32d/nQcLT0rArCtvr1+PpJUskmIgSoXCxG9i2bRv9+vWjcuXKaDQali5d+rf7b9myBY1G85ev33///Y6LFkKIMi3tAvx3MHw/VA0mFarDoz/B/Z8VOpgoisLCwwuZuGMiNoeNmGoxvFNrAoe79yM8LY1ch4NDMTE89/PP6PXy71VRMhT6b2JOTg6NGzdm2LBh3H///bd93MmTJ/Hx+d8MhYGBgYXtWgghyja7VZ2vZOsssOaC1g3aDYf2o8DNvdCns9qtvLH7DZbGqf+IfKLBEzym68SxfvdRBUix28l69RUefemlIr4QIe5OocNJTEwMMTExhe4oKCgIPz+/Qh8nhBDlQsJedcBr0jG1Hd4W+s6FwLp3dLr0/HRGbBnBvqv70Gq0TGw1kd5Xgrk04ikqAvF2OwHz5tGuT++iuwYhiojT7uE1bdqU/Px8IiIimDRpEp07d77lvmazGbPZXNDOzMx0RolCCOF8eWnqWjj7F6ttd3/oMR2aPPyPi/TdyrmMc7y48UUSshLwdPPk3fbvUH/jORLeeQEcDtxbtKDBpIlUqXtnwUeI4lbs4aRSpUp8+umnNGvWDLPZzFdffUXXrl3ZsmULHTp0uOkxM2fOZNq0acVdmhBCuI6iwG9LYO0EyLmmbmvyKHR/AzwD7vi0uxN3M3LLSLIsWVTxqsL89u9x+slxXDsdB4DvwPupNGUKGnlVWJRgGkVRlDs+WKPh559/5t577y3Ucf369UOj0fDLL7/c9POb3TkJDQ0lIyPjhnErQghRKqWcgZUj4ewWtV2xjvoIp1q7uzrtD6d+4K3db2FTbDQJbMJbkRM5PHAINbOycSgKV3v1pPO8efJGjnCazMxMfH19C/3z2yVDs6Ojo/n6669v+bnRaMRoNDqxIiGEcAKbGXbOh22zwW4GnRE6jIG2r4D+zr/n2R125uyfw1fHvwKgT40+PO12Dyd7DaCmopDncHDuvnu5f9asoroSIYqVS8LJwYMHqVSpkiu6FkII1zi/A1aMgGR1wjNqdIY+cyCg5l2dNseaw7ht49h6cSsALzV5iWaH3bk2fRhVtFqu2u24TZnM/UOG3O0VCOE0hQ4n2dnZxMXFFbTPnTvHoUOH8Pf3JywsjAkTJnDp0iW+/PJLAObNm0e1atWIjIzEYrHw9ddf8+OPP/Ljjz8W3VUIIURJlZMC6yfDof+obc8g6DUTGtx/xwNe/5CYnciLm17kdNppjDoj09tNx/j5LgzffY+nVkucBiK//YYazZoVwYUI4TyFDif79u274U2bkSNHAvDYY4+xePFiEhMTiY+PL/jcYrEwevRoLl26hLu7O5GRkaxcuZLeveX1NSFEGaYoaiBZNxnyUgENNB8GXaeC+91Pq3Dk2hFe2fQKKfkpBJgCeL/jfIK+Wkfq9z+ARsMRLy96rV6Fr8wpJUqhuxoQ6yx3OqBGCCFc4tpJ9RHOhZ1qO7iBukhfaIsiOf2qs6uYvHMyFoeFOhXqMC9qOsq0ueRs367uMPB+ak+dit7NrUj6E+JOlaoBsUIIUSZZ89TBrjvng8MKbh7QaQJEPw+6uw8KdoedBQcX8PnRzwHoWLUjT9l6carbACoDGpOJym/NwEfuTItSTsKJEEIUhbiNsHIUpJ1T23VioPc74BdWJKfPsmQxbts4tl9S74482eBJItbmYFs8ispaLdc00OI/X+MeGVkk/QnhShJOhBDibmRdVSdSO3p9kL93ZTWU1Ot71wNe/3A+4zwvb3qZ85nnMeqMvN5qKtkTvqDKb0fRarWccnOj1Y9LcK9Tp0j6E8LVJJwIIcSdcDhg/+ew4Q0wZ4BGCy2fhS4TwehdZN3suLSDsVvHkmXNItgjmOmRkzj/4Cga5+SCRsPRsFD6L12KwcOjyPoUwtUknAghRGFd+U1dpO/SPrVduak64LVykyLrQlEUvjj2BXMPzMWhOGgS2IRJgc9w5r6naazRYFUULvfpwwPvzSmyPoUoKSScCCHE7TJnw5aZsHshKHYweEPXydDiKdDqiqybfFs+02KnseLsCgAG1B7ACKUbSS+PpbpGQ6qi4DntdXo9+GCR9SlESSLhRAghbsfJ1bBqDGQkqO2I/tDrbfCpXKTdXM25yvDNwzmachSdRsfopqPovDmNxI+fA4cDQ0QEtaa/SXBERJH2K0RJIuFECCH+TsYlWD0WflfvYuAbBn1mQ52eRd7V4WuHGb55OMl5yfgafZlUfQRpj7xBpsWidn3/AEImT0ZrMhV530KUJBJOhBDiZuw22PspbJ4BlmzQ6qH1i9BxHBg8i7QrRVFYcnoJM/fMxOqwUsuvFo+ndUH36ASa6HSYFQXjiy9Q+ZVXirRfIUoqCSdCCPH/XdqvDni9ckRtV20J/eZBcNHPIWK2m5mxewY/x/0MQJfQLjT5bwah2z7AXafjGhD83hzq9ulT5H0LUVJJOBFCiD/kZ8Cm6bD3X4ACJl/oNg2iHgOttsi7S8xOZMSWERxLOYZWo+Wpmo9jGvEN0ZlZoNVyzs+X9j/9hHfloh3XIkRJJ+FECCEUBY4vhdXjIfuKuq3hIOg5A7yCiqXL3Ym7Gbt1LGnmNPyMfrxTfxypj75GDasVgItt2hDzr0/R6IruLSAhSgsJJ0KI8i3tPKwcDXHr1bZ/DejzHtTs/LeH3SlFUfj3sX8z/8B8HIqD+v71me05lPznZ+JntZINGMeNpfuwYcXSvxClgYQTIUT5ZLdC7AewZRbY8kBngHYjoN1IcCuet2FyrDlM3jmZ9RfUINSnagz3LM8nZ+1YUBSM9etTfd5cTOHhxdK/EKWFhBMhRPkTvwdWDIek42q7Wnv1bklg8a1NczbjLCM2j+Bsxln0Wj2PGe6h0vPfUuH6WBa/Bx4geOJr8pqwEEg4EUKUJ7mpsOF1OPCF2vYIgB4zoPGDRbZI381svLCRiTsnkmPNIdA9kHv2hNN82X8J0OvJVRS0L75AJXlNWIgCEk6EEGWfosCR72Hta5CbrG5r+ih0fxM8/IutW5vDxvsH3+fzo58D0NinIc1nx9E9ORatXk+iyUSjL7+gYqNGxVaDEKWRhBMhRNmWHAcrR8K5rWq7Yl11zpLwNsXa7dWcq4zdNpYDSQcAiLG3ImrMFhrr3UCjIbFRIzp+sRidu3ux1iFEaSThRAhRNtnMsGMebJ8DdjPoTdBhDLR5BfSGYu069nIs47ePJzU/FU83T94xPITP9H9j1LuRBxhHDKfLs88Waw1ClGYSToQQZc+5bbBiJKScVts1u6rr4fjXKNZu7Q47nx75lIWHF6KgEOFdm+knG2L74mMAMgMCqLfoM3zr1SvWOoQo7SScCCHKjpxkWDcJDn+jtr2CoddMiBxQrANeAVLyUpiwfQKxibEAdE6vR8zs37FZTwDg99CD1B0/Hq3RWKx1CFEWSDgRQpR+Dgcc+hrWT4G8NEADLZ6ELpPB3a/Yu99/dT9jt44lKS8Jk9ZI7xXu3HPwCB5aLRaDgeqz38WnR49ir0OIskLCiRCidEs6AStGQLx6x4LghuqA16rNi71rh+Jg8bHFLDiwALtip7otiD5zE+hgywGtlqtBQbT6739wr1q12GsRoiyRcCKEKJ0subDtXdi1ABw2cPOEzq9Bq+dAV/zf2jLMGUzaMYktF7cA0P5EAAOXXKCS3g2bomB9YCAdp02TtXGEuAMSToQQpc/pDerrwekX1Hbd3hDzDviFOqX7Q0mHGLdtHJdzLuOuuPH4ck86HL2CTu9GmslE3Y8/JiC6lVNqEaIsknAihCg9sq7AmvFw7Ge17VNFDSX1+zqle4fi4POjn/PBwQ+wK3YaW0OYuNoDjp0CjYb0qChaffopOi9Pp9QjRFkl4UQIUfI57LDvc9j4BpgzQaOFVs9D5wlg9HZKCddyrzFhxwT2JO4BReGhg4EM2JaCkncRrbc3QVOmUL+fc0KSEGWdhBMhRMmWeERdpO/SfrVdOUod8FqpsdNK2H5xO5N2TiI1P5XAbD1DP8umVd4VFMCjeXMqz3obtypVnFaPEGWdhBMhRMlkzoYtM2H3QlDsYPCGblOh+ROgdc4gU6vdyrwD8/jy+JcAtN+vY8iaHPy0eqyA7rGhhI0bh+b6ysJCiKIh4UQIUfL8vhJWjYXMi2o74l7o9Tb4VHJaCRcyLzB221iOpxzHM0/hsf9Y6HRNB1odaRUq0OjzRXjVr++0eoQoTyScCCFKjoyLaig5uVJt+4VBn/egdnenlrH8zHKm755Ori2Xpqc1PLnETBA67IAy4D5av/46GkPxrs8jRHkm4UQI4Xp2G+z5GDa/BdYc0OqhzcvQYSwYPJxWRo41hxm7Z7D87HKMFoXxewKI2pEE6Mj08qTewo/xbVH8k7sJUd6V23CiKAp5VruryxCi3NNe3o9h9Si0V38DwF61FZZec1CCrj8ysdicUsdvyUd4PXYSF7MTiIhXGLvBC4+rSQA4evchcupUtO7u5DqpHiGczd1Nh6aY16C6XRpFURRXF/FPMjMz8fX1JSMjAx8fnyI5Z67FRsSUtUVyLiFE4XmTy2j9dwzRbUCrUUhXPJlpe5jv7R1RcOYAUzuGipswVNyMyWrnkY16eh0yA3DN3Ze5TQdzMKiOE+sRwjWOv9ETD0PR3rO405/f5fbOiRDCVRT6aPcwxe1LgjXpAPxob8db1kdIwdeplWjcknGv8h069wQannPw7Eo9QVlqMFlVLZpFkX3JdTM5tSYhRDm+cyKPdYRwPk3aeQxrx6I7uxEAh39NLL1m46jWwal1KIrCL2d/Zu6B2ZCdy6Pr7XQ/qn6W5eFB6Dvv4tvBuTUJ4WrF8VhH7pwUkkajKfLbV0KIW7BZIPZ92PoO2PJBZ4D2o9C2HY7JyXcmUvNTmbprKlsSttD4jINnltsJzFO/IVu7d6P522+j9ZTp54VwJfnpLIQoXhdiYcUIuHZCbVfvAH3mQsVaTi9l28VtTNk5hfy0ZF7cBB2POAAN2d5e1J2/AJ82rZ1ekxDiryScCCGKR24qrJ8CB79S2x4VoecMaDQYnPxGQJ4tjzn75vDd79/S+neFpzZo8M62g0aD0qcPzd6YhtbDea8sCyH+noQTIUTRUhQ4/C2smwi5Keq2qKHQbRp4+Du9nN+u/caE7RPIvniecWsdNDujDrMzVK9OpRnT8YiKcnpNQoi/J+FECFF0kk/DypFwbpvaDqwPfedCuPMfl1jsFhYeXsjnhz+j1z4Hg7facbdpsAEVnn6Kyi+/jFZmeRWiRJJwIoS4e9Z82DEXdrwHdgvo3aHjWGj9EuidHwCOpxxn/NbxKKfPMn21nVpXADTkhIXR4KMPMdVy/ngXIcTtk3AihLg7Z7eqA15Tz6jtWt2gzxyoUM3ppVjtVv7127/44tdPuG+Hlb57FXQKmPV6gkaPot7QobKCsBClgIQTIcSdyb6mjis58p3a9gpWVw6OvM/pA14BTqaeZNLOSRh/Pc6sdQ6C1fndsLRoTuScObgFBTm9JiHEnZFwIoQoHIcDDn4J66dCfjqggRZPQdfJYHLuDK8ANoeNTw5+wo87P2HoRhutTqoDXjWBgYRMnYJft25Or0kIcXcknAghbt/V4+ojnITdajukIfSdD1WbuaScM2lneGXZCzTdfZE5Ox2YrIBOh/+jjxL4yssymZoQpZSEEyHEP7PkwtZZEPsBOGzg5gldJkLLZ0Hn/G8jNoeN97a+x4EtXzB8g4Oq199YzqtWjYj58zDVrev0moQQRUfCiRDi751aB6tGQXq82q7XF2JmgW9Vl5Rz8NJBJn37Iv13pjP1uPoIJ89ooOprrxE4aFCJWfJdCHHnJJwIIW4uMxHWjIPjy9S2T1Xo/S7U6+2Scsx2M58eWEjC4n/xxg4HHmZwALreMTSeOhWdr/PHuwghioeEEyHEjRx2+HURbHwDLFmg0UH089BpAhi9XFLS/qv7+fLrsfRadpluSeq2nKqViJg7H4+GDV1SkxCi+Eg4EUL8z+VDsGI4XD6otqs0g77zoFIjl5STmJLImA8fo8uBizz3u/oIx+HtQaWRY6gw6AE0Op1L6hJCFC8JJ0IIMGfB5rdgz8egOMDoA12nQPMnQOv8AGC325n2yQT0O5cz5jAYbODQgPeg+6k8fBT6ChWcXpMQwnkKPVXitm3b6NevH5UrV0aj0bB06dJ/PGbr1q00a9YMk8lEjRo1+Pjjj++oWCFEMTixAj5sBbs/UoNJ5AB46Vdo+bRLgskv65fx4mON6P7v5TywXw0mqTUqU3PpUsKmTZdgIkQ5UOg7Jzk5OTRu3Jhhw4Zx//33/+P+586do3fv3jz99NN8/fXX7Ny5kxdeeIHAwMDbOl4IUUzSE2D1WDi5Sm1XqKZOO1/LNZOWXbp0idcmPkj/C8m8mni9RB8DNSZPo17f/vIWjhDlSKHDSUxMDDExMbe9/8cff0xYWBjz5s0DoH79+uzbt4/Zs2dLOBHCFew22LMQNs8Eaw5o3aDtK9BhDLi5u6SkM3H72PvGcMbuTUELmPVgf+heWo2aitZkcklNQgjXKfYxJ7GxsfTo0eOGbT179mTRokVYrVbc3Nz+cozZbMZsNhe0MzMzi7tMIcqHi/tg+XC4+pvaDmsDfedCUD2nl2K321m65BuMh9dQZfl+mljV7QnNq9P+nU9wrxzq9JqEECVDsYeTK1euEBwcfMO24OBgbDYbycnJVKpU6S/HzJw5k2nTphV3aUKUH3np6qvB+z4HFHCvAN3fhCaPgAtW6V23Zg0rZ45iUKYd/zz1cc2V6r7UnPQmPdp2d3o9QoiSxSlv6/z/Z8WKotx0+x8mTJjAyJEjC9qZmZmEhsq/ooQoNEWBoz/C2tcg+6q6rfHD0ONN8Kzo9HIOHjjAojEv0Ts9hedytICGJD8t+pcep+PDo9C6ICgJIUqeYg8nISEhXLly5YZtSUlJ6PV6AgICbnqM0WjEaDQWd2lClG2pZ2HlKDizSW0H1FYf4VRv7/RSzp8/z4JRI2gSd4QXzQZAS7YJ4vpHcc/YD/H09HN6TUKIkqvYw0nr1q1Zvnz5DdvWrVtH8+bNbzreRAhxl2wW2DUfts0GWz7ojNBhNLR9FfTOD/2WxETWDOzLk9k2tBiw6mBvmwDaTZzPQ9Vcs5qxEKJkK3Q4yc7OJi4urqB97tw5Dh06hL+/P2FhYUyYMIFLly7x5ZdfAvDcc8/xwQcfMHLkSJ5++mliY2NZtGgR33zzTdFdhRBCdX4nrBgBySfVdvWO6t2SgJpOLSMvLw8lO5triz4h87/f0tFiBzTsjtBTYfjLPNH+KbQaeYQjhLi5QoeTffv20blz54L2H2NDHnvsMRYvXkxiYiLx8fEFn1evXp1Vq1YxYsQIPvzwQypXrsyCBQvkNWIhilJuKqybDIe+VtuegdDzLWj4ADhxfhC73c5/P/+c395+m4c83TFZ7OiBE1Xh3JAOPD7oLQLcb/44Vwgh/qBR/hidWoJlZmbi6+tLRkYGPj4+ri5HiJJDUeDwN7BuEuSmqNuaPQ7dXlffyHFaGQrLf/qJ7VOm0N9uJQB1ZtkLgbCjbzgDH59Jk+CmTqtHCFEy3OnPb1lbR4jS6topWDkSzm9X20ER6iOcsGinlaAoCuvXrmX1+An0ycniCZ0boOOKH6zo7EX00NFMqzsQnQumwRdClF4SToQobaz5sH0O7JgLDivo3aHTOGj9EuicN8hcURQ+e/ppQjZt4hmDEXRupHrBz211+D8wiCktXsXX6Ou0eoQQZYeEEyFKkzOb1bslqWfVdu0e0PtddV0cJ7HZbJj37iVp3jzaHfkNDEayTbC0tZarMVGMaTeJuv51nVaPEKLskXAiRGmQnaROpPbbD2rbuxL0ehsi+jttwOvxY8dYPGoU3VPTqHp9SYl8N1jZQsPuTsG82H4svar1kgX6hBB3TcKJECWZwwEHFsOG1yE/A9BAy2egyyQwOWdweFxcHF+OHkPtgwcY5u4BgEUHG5to+KWdkftaPc73DZ/Gw83DKfUIIco+CSdClFRXj6mL9F3cq7YrNYa+86BKlFO6P3XqFF+PHUedgwd5yN0d3D0KQsnS1lpaNuzF11HDqepd1Sn1CCHKDwknQpQ0lhzY8jbEfgiKHQxe6p2SFk+Drvj/l1UUhbWz55D0/vs85OEB7u43hJKq1RuxoMVYmgQ1KfZahBDlk4QTIUqSU2th5WjIuD6RYf1+0GsW+FYp9q7NZjO2g4dI/uADwvftI9zDA6sWNjRVQ4kppDLjo4bTq3ovmd1VCFGsJJwIURJkXobV4+DEL2rbNxR6z4a6vYq96+PHjvHNmLG0iI+nts0GgF2vYV1j9Q0ccwVPnm70NI/WfxST3lTs9QghhIQTIVzJYYe9/4JN08GSBRodtH4BOk0Ag2exdn308GF+GjuWhidP8bBJDR12nYYNTTT8HK0h3VfHgNoDeLHJi1R0r1istQghxJ9JOBHCVS4fVAe8Jh5S21VbqDO8hjQs1m5379jB+omTaJ6QwAMGA5hM5Os0bGyuY1lLhXQvDZ1DO/Nq1KvU9HPugoFCCAESToRwPnMWbJoBez8BxQFGX+g2FZoNA23xjeVw5Oay962Z5H7zDQPd3MBgIMdNw/rWRpZFWclxhyaBTRnZfCRNg2QdHCGE60g4EcJZFAVOLFfHlmRdVrc1GKiuHuwdXCxdOhwO4g4fxn/PHlK/+BLftDR83dzINOlY18GDZQ1zMRts1PCtyfCo4XQK7SSTqAkhXE7CiRDOkB4Pq8bAqTVqu0J16DMHanUtlu4sFgs/LFxIwsKFdFPAfj1w2CoF8Eu0jh9rpWDV5xHkEcxLTV6iX81+6LXy7UAIUTLIdyMhipPdCrs/UuctseaC1g3aDYf2o8DNvci7y8nJ4buZM8n79ls66PREaTSggZzKAazq5M6PoYk4tBq8DT681PApHq73sLyBI4QocSScCFFcEvaqA16Tjqnt8LbqgNfAol8UL+nqVZa89ho+m7fQ2mAAvbo68aUq/mzu6cMvQQmgycDTzYshEUMYEjEEH4Nzpr8XQojCknAiRFHLS4MN02D/YkABd3/o8SY0eaTIF+lzWCxkLl9O8sKP6XzxIhgM2BWFhPrhbOrtxRrjKSATk86dh+s/zLDIYfiZ/Iq0BiGEKGoSToQoKooCvy2BtRMg55q6rckj0P1N8Awowm4UtixfTuaSJdQ/ew57v9cA5gAAIABJREFUcjIawKLXc7lVJOu7u7HerL6e7KZ1Y3DdwTzZ8EmZq0QIUWpIOBGiKKScgZWj4OxmtV2xjvoIp1q7IuvCarXyy/sfcHXRIlpbrYRotdgBfXAwOfd15tPq59ievh/MoNfoGVB7AE83epoQz5Aiq0EIIZxBwokQd8Nmhp3zYdtssJtBZ4QOY6DtK6A3FkkXaSkprJg6Ff3atTTR6YkA0Gq55uWF8sQ9fBkex97kJZCuhpJ+NfvxTKNnZLVgIUSpJeFEiDt1fgesGAHJp9R2jc7q68EBRTOrqj0jg70z3yZnyRKa6/Wg02NXFBKrhaN9ph+LTbs5lPw9JINeq+e+WvfxZMMnqeJV/IsECiFEcZJwIkRh5aTA+slw6D9q2zMQer0NDe6/6wGvDoeDxL170a5ZQ8ayX/DLy8NPrycLyGjVEu1zMXyesoyjKZ9ANhi0BgbWGciwBsPk8Y0QosyQcCLE7VIUNZCsmwx5qeq2ZsPUqefdK9zVqTNSU1n1xhuwejVNNP+bwt5Ypw7m7l251jWUz+O+5tSpGQCYdCYG1R3E45GPE+gReFd9CyFESSPhRIjbce2k+gjnwk61HRQJ/eZBaMu7Ou2p2Fj2TJ9O2KnTNNHpQKPFrigY27cn4ImhrPGL58sTX3Hp10sAeOg9eLDegwyNGEqAe9G9ASSEECWJhBMh/o41Tx3sunM+OKzg5gGdxkP0C6Bzu6NTKg4Hv372Gec//oT6OTk012hApyMDyGjenMjxw1lu38s3JyaSdjoNAH+TP4/Uf4TBdQfja/QtwgsUQoiSR8KJELcSt1F9PTjtnNqu0wt6vwt+YXd0OltaGhk//UTad9/jHR9PQwCNhjPuJvwGD6bGMw/xVdy3TD78PHm2PACqeFXh8cjHubfWvTLNvBCi3JBwIsT/l3UV1r4GR5eobe/KEDML6vcr9IBXh8PBrs8/5+Jni2iQmYnO4QBA6+3N7yEhRI4cQY1GwXx1/CvWrLgXm2IDoJ5/PZ5o8ATdw7vLgnxCiHJHvusJ8QeHA/b/W5163pwBGi20fBa6TASjd6FOlXL+PFvfeBOPXTsJR8Mfo0OMkZH4P/Qgnr16cjF1L9OPf8H+FfsLjmsV0oonGjxB68qt0RTxVPdCCFFaSDgRAuDKUVgxHC7+qrYrNVEHvFZuetunUOx2Dn35Fec/+4waycnU12gADfkOB2eqVKHuKy8T1rcHS+OW8p91g0nISgDUidN6VOvB0IihRFaMLIaLE0KI0kXCiSjfLDmwZSbEfgSKHQze0HUytHgKtLrbO8XFS2T89BPpS3/GdDmRegAaDWc1GuydOtJx8mSCfeC/J/7LTz90J8uaBYCPwYcH6jzAQ/UeItgzuPiuUQghShkJJ6L8OrkaVo2BDPUOBhH91cnUfCr/46H2/Hz2vv8+aT/8QLWsbDSKAoDi4cF+Ly/qvPA8MYMGse/qPqadnM2m+E3YFTsA1Xyq8Wj9R+lXsx8ebh7FdnlCCFFaSTgR5U/GJVg9Fn5fobZ9w6DPbKjT8x8PTdi+ncNz3iPoxAn8NBr8rm/3aB2N3/0D8e7ejTCNleVnlzPzlwGcyThTcGyrSq0YGjGUdlXaof3TRGtCCCFuJOFElB92G+z9FDbPAEs2aHTQ5iXoOA4Mnrc8zHzlCnvenY11w3oqmy3UBNBouGq3ca56DRoNf5X6vXsTlxbH+wffZfmZ5eTacgFw17vTr0Y/BtcbTJ0KdZxznUIIUcpJOBHlw6UD6oDXxMNqu2pLdcBr8M0HoDry8sjauImMZcvI2bmTwOuvAFsVhcNGI1739qf76NG09XJnU/wmhq0Zxr6r+wqOr+5bncF1B3NPzXvwNhTuTR8hhCjvJJyIsi0/EzZNh1//BYoDTL7QbRpEPQbaGx+tKA4HVzdt4vhHC6lw4gSm6+NIANKCgzgRFESbMWMY0rIlCZkJfHb6c5adWUZyXjIAOo2OzqGdebDeg7QMaSmvAgshxB2ScCLKJkWB48tgzXjISlS3NXwAer4FXkE37Jp98hSH589Hu307flYrla5vt1aoQKWHHsT3nnswVKtGM7uZjRc2Mnvtk+y9srfg+ABTAPfXuZ8H6jwgKwMLIUQRkHAiyp60C7BqNJxep7b9a0CfOVCzS8Eu1qQkzv/3v1z65luCMzLwv749y27nV4MbHr1703vUKAJDQohLi+PHvbNYfnY5GeYMADRoaFOlDQNrD6RjaEfctHe2zo4QQoi/knAiyg67FWI/gC2zwJYHWjdoNwLajwI3E/aMDDLWriVr1Wpy9+4Fh4NgwKYo/GqzkteqFe1GjODFFi3IsmSx7vw6fjrwE0euHSnoIsQzhPtq3cd9te6jklelW9cihBDijkk4EWVD/B51wGvScbUd3g76zsXhWZWrP//C2S++xOfMmRv+wrs3bsxmm43KgwcxdMAA0MLuxN2M3TqWTQmbMNvNgDqDa6fQTgyoPYA2ldugu83J2YQQQtwZCSeidMtNhQ2vw4Ev1La7P44u00i9VpHTL0zE4+gxDIpS8NjmtMVCi5EjCbi3P4aqVRkGnEo7xbyD81h5bmXB4FaAGr416F+rP/fUvIeK7hWdfWVCCFFuSTgRpZOiwJHv1dWDc5NRHJDjHUNmcijXnpiNwWotmCAt3mLhV6MRn7596Pv881SqUYPkvGRWH/+KX878wu+pvxectoKxAjHVY7in1j1E+EfIGzdCCOECEk5E6ZMcBytHosRtJeeqkdTEKuQluuPIPgwcxgAk2azsRIOxW1d6vPACkxo1IsOcwcb4jcxcN5O9V/biUNS5S/RaPZ2qduKemvfQrko73HQyuFUIIVxJwokoPWxmHJvnkLPkQ7Iu6Mm6FILDqgUUIBedvz/e3bphjW6FwdeXCW3akGfLY1PCJj7Z+Ck7L+/E5rAVnK5RxUb0q9mPXtV64Wfyu2W3QgghnEvCiSjxHGYzWT98TMY3H5MX78Bh9Sn4LNlmY4vZTPWHH+aRt2ag0enIt+Vz6tIORm8dzbaL28i35xfsX6dCHWKqx9CzWk9CvUNdcTlCCCH+gYQTUSI58vLI3r6drJXLyd68GYfFfv0TLZnYWJ2dR17TpkQ//jhj+vTBrrOzNn49G+I3sP3i9oK1bQDCfcKJqR5Dr2q9qOlX0zUXJIQQ4rZJOBElhi0tjawtW7jw/Q9ojxzGze4o+Ezvbueav4Y13rWIGvok42JiMGvMbE7YzOido4m9HIvFYSnYP8QzhJhqMfSq3ov6/vVlYKsQQpQiEk6ES1kuXiJj/Tou/bwUt9On0SoKxuufuXnY8A7Nx6dJZUxPvk+t0BbUzE1iU8ImXt72Mvuu7sOu2AvOFe4TTrewbnQL70ZkQKQEEiGEKKUknAinUhQF88mTZG3YSNbGjZhPnAAoCCTpejPV61jwC81D569D6TyB3+t2YuvlHWw/PJsTqSduOF89/3p0DetKt7Bu1PSrKYFECCHKAAknotgpNhu5+w+QtHw56evXYcrI/N9nGg2/5uSQ6ufgwS4O6vtlk63RsL1WG7ZWqsv2xKWknvu8YH8NGhoFNqJbWDe6hneVQa1CCFEGSTgRxcKRk0P2rl0kLl1G/o4dGMzqVPAmwK7T4dupE95du2KtGULMrhlkpu5mvbuJbd6h7DfqsdkSICEBAC83L9pUbkPH0I60q9IOf5P/3/QshBCitJNwIoqMJSGB7C1bSV2/jvx9+9E51AGtBiDdbmdzdjYXgoPoOmoUXQb0ZMeuWcTuWsFug5akqn9aRE+xU82nGh2qdqBD1Q5EBUXJxGhCCFGOSDgRd0yx2cg7eJCUdevJ3rKl4E4HgA512vituTmk1qpN/UH30aBjLUzWOL6P/5Y3l7yj7uhhAMCkNdAspEXBHZJwn3DnX5AQQogSQcKJKBR7ejrZ23eQuHw55j17Ch7XAKDT4REVhVenTnx29BC2pkEE1HYnMeMoX177D5ZDlhvOVd9io3VIS1pHPUvTkGYYdUaEEEKIOwonH330Ee+++y6JiYlERkYyb9482rdvf9N9Fy9ezLBhw/6yPS8vD5PJdCfdCydSFAVLXBxZW7Zwadkv6OPi0F7/7I/HNduysznt78tj373LIWsc+65s5TfDb1gdVjj1v3MF2RVa5+bQJi+fVmGdCbhvDvhUulm3QgghyrFCh5PvvvuO4cOH89FHH9G2bVs++eQTYmJiOH78OGFhYTc9xsfHh5MnT96wTYJJyWXPziF3z26S1qzFsX8/tsuXATWMAJw057PTYeZayzAsXaphCbZxJvsMe/aPveE8QR5BNPePoEXiaZqf/5Vwmw2NXxj0/wTq9HDyVQkhhCgtCh1O3nvvPZ588kmeeuopAObNm8fatWtZuHAhM2fOvOkxGo2GkJCQu6tUFBtFUTCfOkX6xk0krlqF25kz6BSl4HONwYA9KpJYfysrvRK5VgsylAwgBzgGWep+IZ4htAhuQfOQ5jQPbELo8VVoNr8F1hzQ6qHdCOgwFgweLrlOIYQQpUOhwonFYmH//v2MHz/+hu09evRg165dtzwuOzub8PBw7HY7TZo04c0336Rp06a33N9sNmP+01iGzMzMW+4r7ow9PZ2c2FiurllL9vbtmHLVtWj+uJ+VoLWxr6Kd5E6h7A7PIkv/2/8OVkCr0VKnQh0aBzamcWBjmgQ1oapXVXUStIv74duhcOX6MaGtoO88CI5w7kUKIYQolQoVTpKTk7Hb7QQHB9+wPTg4mCtXrtz0mHr16rF48WIaNmxIZmYm8+fPp23bthw+fJjatWvf9JiZM2cybdq0wpQm/oHicJB/7BjX1q7FHLsb24kTcP1VXxOQp1X4LVjhSH0dh2truer/x1+NVAB8jb4FQaRxYGMaVmyIh9v/uwOSnwEb34RfPwMUMPlB92nQdChotQghhBC3444GxP7/KcIVRbnltOHR0dFER0cXtNu2bUtUVBTvv/8+CxYsuOkxEyZMYOTIkQXtzMxMQkNlJtDCsiUnk75lK/HLlsGRw7ibb3xb5mKghoPV4VANDb+HarDq1T9DD70HUf71iAiIICIggoYVGxLuE37rqeEVBY79DGsmQPb1kNpoMPSYAV6BxXmJQgghyqBChZOKFSui0+n+cpckKSnpL3dTbkWr1dKiRQtOnz59y32MRiNGo7xWWlj23Fwu79zAtc0byN6yk8BU9VGN+/XPc41wpJqGQzU0HK6hIcVHg6ebJ/X86/Hg9SASERBBNZ9qaDW3eacj9RysGg1xG9S2f03o+x7U6FTUlyeEEKKcKFQ4MRgMNGvWjPXr13PfffcVbF+/fj39+/e/rXMoisKhQ4do2LBh4SoVBbIt2VzIvMD5tLMkH/4V685fCTqRSLUEM252NYz8EUjOBsOhmhoOVdeSXNmf+pUb0KhyI+7xq03tCrWp6l319oPIn9ksEPs+bH0HbPmgM0C7keqgVzd5E0sIIcSdK/RjnZEjRzJkyBCaN29O69at+fTTT4mPj+e5554DYOjQoVSpUqXgzZ1p06YRHR1N7dq1yczMZMGCBRw6dIgPP/ywaK+kDMm15nI5+zKXcy5zMetiwa8vZV/CnBBPtVOZNDqn0OC8Qo38G4+95gNn63hzMthEcmgIUVGdGRDZidF+NYpukrMLsbBiBFy7vkJwtfbQdy5UvPkYIiGEEKIwCh1OBg8eTEpKCm+88QaJiYk0aNCAVatWER6uTjceHx+P9k+DH9PT03nmmWe4cuUKvr6+NG3alG3bttGyZcuiu4pSwu6wk5qfSlJeEtdyr5GUm0RSbhLX8tRf/7EtzZxWcIxHvkKDCwqNzin0O6cQkn7jOXN0CgdNNi4E+vHA1DeJbtGVDnoDxSI3FdZPgYNfXS8uAHq+pY4vudV4FCGEEKKQNIrypwktSqjMzEx8fX3JyMjAx8fH1eVgsVvItmaTY80hx5pDtiWbbGs26eZ00vPTSTOnkWHOIC0/jXSz2k7PTyfDkoFDcfztuXV2hTqXoOk5LQ3O2KmR5ED7pz8hq6LwmyWfC74V8IiOpvHA+2ndrl3xTmqnKHD4W1g3EXJT1G1RQ6HbNPCQFYKFEELc3J3+/C7Xa+usOLuCEyknsNgtWB1WzHYzFrtF/XJYMNvNWO1W8u35BUEkx5qjTst+h7QaLRVNFQn0CCTII4hAY0W8T6XhEXsG/2MXqZGSizsawF5wjKFGDTzbtCEtLJSrvn7c06Uz3t7eRfA7cBuS42DlCDi3TW0H1lcf4YS3dk7/Qgghyp1yHU62JWxj9fnVd3y8h94DTzdPPN088XLzwtfkSwVjBfyMflQwqf/9868rmCrgqfHEev4C9kOHyNmwh5QtP2PI//PAEQ2pdjtnPD1RGjWkzQsvUPP6q9ghQP27u+TbZ82HHXNhx3tgt4DeBB3HQuuXobgeGwkhhBCU83DSMbQjIV4hGLQGjDojBp1B/dIaCn79x/Y/AsgfYcRD74FOq/vHPlJTU9m7ahWHV69Gd+w41bOzCdb/77fdAOQ6HJz38MAeEUFov740u/de2rq73/qkxe3sVlg5ElLi1HatbtB7NvhXd11NQgghyg0Zc1IMLh47xjevvYbh5CnqWiyEG26802DTaPBp0QLP1tG4t2yJW/36GDxKwHoz2dfUcSVHvlPbXsHQ622IvE8GvAohhCg0GXPiAvn5+ezfv589mzZR22Khhcmd3N27MZ8+Td8/djIYsKNw1csbR4NIqsbEUL9fP/QlIYz8weFQ38BZPwXy0wENtHgKuk4Gk6+rqxNCCFHOSDi5TYqiEBcXx549eziwK5b03bupePkyzY1GephM6DQa0v60f0aAP46ISML79SWkSxcaeHm5rPa/lXQClg+HhN1qO6Qh9J0PVZu5ti4hhBDlloSTW0hJSeHChQtERUXhsFjIO3SYfw0cSEPgcXd33DQa8PMr2D/Hz4+qvWPwaBWNR8sW6CtUcF3xt8OSC9vegV3vg8MGbp7Q+TVo9Rzo5K+FEEII15GfQoDZbObQoUPs2bOHPXv28OuePZguXaJ7SCUqdu5M7oEDKPn5DPvToxiLry+mli0J7tYVz+ho3G5zbaES4fR6WDkK0i+o7bp9IGYW+MniikIIIVyv3IeTJ598kq+/+opqWi2tPDxo4+HBq+4eeIdXAyBn1y4AdBUr4tmqFR7RrdQwUrXqrVfpLakyE2HNeDi+VG37VIXe70C9Pq6tSwghhPiTch1OMpYv5964MzwRFo6//sbfCo23N17RrfBoFY1ndCsMNWuWvjDyB4cdfl0Em94EcyZodBD9PHSaAMYSOhZGCCFEuVWuw0nWho3UunoV9Ho0Hu54NGuOZ3QrPKKjMdWrh0b3z/OYlHiJh9UBr5cPqO0qzaDvPKjUyLV1CSGEELdQrsOJb/97MNatg2d0NO4NGqAxlKGZT81ZsPkt2PMxKA4w+kDXKdD8CbiNyeOEEEIIVynX4cS7Sxe8u3RxdRlF78QKWD0WMi+p7cgB0GsmeIe4ti4hhBDiNpTrcFLmpCeooeTkKrXtFw593oPa3VxblxBCCFEIEk7KArsN9iyEzTPBmgNaPbR5BTqMAUMJmolWCCGEuA0STkq7i/vUAa9Xf1PbYa2h71wIctr6xUIIIUSRknBSWuWlw8Y3YN/ngALuFaD7G9DkUdBqXV2dEEIIcccknJQ2igJHf4S1r0H2VXVb44egx3TwrOja2oQQQogiIOGkNEk9q047f2aT2g6opT7Cqd7BtXUJIYQQRUjCSWlgs8CuBbDtXbDlg84I7UdBu+GgN7q6OiGEEKJISTgp6S7sghUj4Nrvart6R/VuSUBN19YlhBBCFBMJJyVVbiqsnwwHv1bbnoHQ8y1o+ACU1jV+hBBCiNsg4aSkURQ4/A2smwS5Keq2qMeg2+vg4e/KyoQQQginkHBSklw7BStHwvntajsoQn2EExbt2rqEEEIIJ5JwUhJY82H7HNg5D+wW0LtDp3HQ+iXQubm6OiGEEMKpJJy42pnN6t2S1LNqu3YP6P0uVKjm0rKEEEIIV5Fw4irZSbB2Ivz2vdr2CoGYWRDRXwa8CiGEKNcknDibwwEHvoANUyE/A9BAy6ehyyQw+bq6OiGEEMLlJJw409Vj6pwlCXvUdkgj6DcPqjRzbV1CCCFECSLhxBksObB1FsR+CA4bGLyg80Ro+Qzo5I9ACCGE+DP5yVjcTq2FlaMhI15t1+sLMe+AbxXX1iWEEEKUUBJOikvmZVg9Dk78orZ9Q9W3cOrGuLYuIYQQooSTcFLUHHbY+y/YNB0sWaDRQesXoON4MHq5ujohhBCixJNwUpQuH4TlwyHxkNqu0lwd8BrS0LV1CSGEEKWIhJOiYM6CTTNg7yegOMDoC92mQrNhoNW6ujohhBCiVJFwcjcUBU4sV8eWZF1WtzUYqK4e7B3s2tqEEEKIUkrCyZ1Kj4dVY+DUGrVdoRr0eQ9qdXVpWUIIIURpJ+GksOxW2P0RbHkbrLmgdYO2r0KH0eDm7urqhBBCiFJPwklhJOxVB7wmHVPb4W2h71wIrOvauoQQQogyRMLJ7chLh43TYN+/AQXc/aHHm9DkEVmkTwghhChiEk7+jqLA0R9hzQTISVK3NXkEur8JngGurU0IIYQooySc3ErKGVg5Cs5uVtsBtdVHONXbu7YuIYQQooyTcPL/2cywcwFsexfsZtAZ1cGubV8FvdHV1QkhhBBlnoSTPzu/A1aMgORTartGJ/X14ICarqxKCCGEKFcknADkpMD6yXDoP2rbMxB6zoSGA2XAqxBCCOFk5TucKIoaSNZNhrxUdVuzYerU8+4VXFubEEIIUU6V33CiKPCfgRC3QW0HRaqL9IW2dG1dQgghRDlXfsOJRgNhreHCLug0HqJfAJ2bq6sSQgghyr3yG04A2rwCjQaBX5irKxFCCCHEdVpXF+BSeoMEEyGEEKKEKd/hRAghhBAljoQTIYQQQpQodxROPvroI6pXr47JZKJZs2Zs3779b/f/8ccfiYiIwGg0EhERwc8//3xHxQohhBCi7Ct0OPnuu+8YPnw4EydO5ODBg7Rv356YmBji4+Nvun9sbCyDBw9myJAhHD58mCFDhjBo0CD27Nlz18ULIYQQouzRKIqiFOaAVq1aERUVxcKFCwu21a9fn3vvvZeZM2f+Zf/BgweTmZnJ6tWrC7b16tWLChUq8M0339xWn5mZmfj6+pKRkYGPj09hyhVCCCGEi9zpz+9C3TmxWCzs37+fHj163LC9R48e7Nq166bHxMbG/mX/nj173nJ/ALPZTGZm5g1fQgghhCgfChVOkpOTsdvtBAcH37A9ODiYK1eu3PSYK1euFGp/gJkzZ+Lr61vwFRoaWpgyhRBCCFGK3dGAWM3/WwxPUZS/bLub/SdMmEBGRkbBV0JCwp2UKYQQQohSqFAzxFasWBGdTveXux5JSUl/uTvyh5CQkELtD2A0GjEajYUpTQghhBBlRKHunBgMBpo1a8b69etv2L5+/XratGlz02Nat279l/3XrVt3y/2FEEIIUb4Vem2dkSNHMmTIEJo3b07r1q359NNPiY+P57nnngNg6NChVKlSpeDNnVdffZUOHTowa9Ys+vfvz7Jly9iwYQM7duwo2isRQgjxf+3dfVBUdRcH8LPCAgLLpiksSK7mGC+tDK6Am6bLlIM42DhjL1AMbVaMNmNo2TQ4aQKODjqNZWZRtIP9UVKCNM74kuWAOS2m4WarYAOFkiUaqLBGmsh5/ujhPl4XcO+yL5d9vp8ZZuC3v/3tOXv23j3u3nsF8AuSm5Ps7Gzq7OykkpISunDhAul0Otq3bx9ptVoiImpra6NRo/73gcysWbOosrKS1qxZQ2vXrqUpU6bQ559/TjNnznRfFgAAAOA3JF/nxBdwnRMAAICRx9X3b8mfnPhCf/+E650AAACMHP3v21I/BxkRzYndbiciwvVOAAAARiC73U5qtdrp+SPia52+vj76448/SKVSDXl9FKm6u7vpvvvuo99++81vvy7y9xyR38jn7zn6e35E/p8j8nMdM5PdbqeYmBjR8ah3MyI+ORk1ahTFxsZ6bP2IiAi/fMHdzt9zRH4jn7/n6O/5Efl/jsjPNVI+Menn0hViAQAAADwFzQkAAADISkBRUVGRr4PwpYCAAEpPT6fAwBHxDZdL/D1H5Dfy+XuO/p4fkf/niPy8a0QcEAsAAAD/P/C1DgAAAMgKmhMAAACQFTQnAAAAICtoTgAAAEBW/L452bBhA82aNYtCQ0Ppnnvuceo+zExFRUUUExNDo0ePpvT0dDp9+rRozpUrVygvL4/UajWp1WrKy8ujq1eveiKFIUmN4+zZs6RQKAb82bVrlzBvoNvLysq8kZKIK89zenq6Q+w5OTnDXtdTpMZy+fJlevnllykuLo5CQ0Np4sSJVFBQQF1dXaJ5vqrh+++/T5MnT6aQkBCaMWMGHTlyZMj51dXVlJiYSMHBwZSYmEg1NTWi253ZHr1NSo7l5eU0Z84cGjNmDI0ZM4bmzZtHx44dE8157rnnHGplMBg8ncagpOS3Y8eOAV9r169fd3lNT5MSy0D7E4VCQVlZWcIcOdXv22+/pccee4xiYmJIoVDQl19+edf7HD58mGbMmEEhISF0//33D7if8Hr92M+9+eabvGXLFn711VdZrVY7dZ/S0lJWqVRcXV3NNpuNs7OzOTo6mru7u4U5mZmZrNPp2GKxsMViYZ1OxwsXLvRUGoOSGkdvby9fuHBB9FNcXMxhYWFst9uFeUTEFRUVonk9PT3eSEnElefZaDRyfn6+KParV68Oe11PkRqLzWbjxYsX8549e7ilpYUPHTrEU6dO5ccff1w0zxc1rKysZKVSyeXl5dzY2MgrVqzgsLAwPnfu3IDzLRYLBwQE8MaNG7mpqYk3btzIgYGBfPToUWGOM9ujN0nN8ZlnnuHt27ez1WrlpqYmXrJkCatswEA5AAAKmklEQVTVaj5//rwwx2QycWZmpqhWnZ2d3kpJRGp+FRUVHBER4bBfGc6aniQ1ls7OTlFep06d4oCAAK6oqBDmyKl++/bt4zfeeIOrq6uZiLimpmbI+b/++iuHhobyihUruLGxkcvLy1mpVHJVVZUwxxf18/vmpF9FRYVTzUlfXx9rNBouLS0Vxq5fv85qtZrLysqYmbmxsZGJSLQDra+vZyLiM2fOuD/4QbgrjuTkZH7++edFY868qD3N1fyMRiOvWLHC7et6grti+eKLLzgoKIhv3rwpjPmihmlpabxs2TLRWHx8PBcWFg44/6mnnuLMzEzR2Pz58zknJ4eZndsevU1qjnfq7e1llUrFn3zyiTBmMpl40aJFbo3TVVLzc2bfOtznzJ2GG8vbb7/NKpWKr127JozJqX63c2Yf8Prrr3N8fLxobOnSpWwwGIS/fVE/v/9aR6rW1lZqb2+njIwMYSw4OJiMRiNZLBYiIqqvrye1Wk0zZ84U5hgMBlKr1cIcb3BHHA0NDfTjjz/SCy+84HDb8uXLady4cZSamkplZWXU19fnttidMZz8Pv30Uxo3bhw9+OCD9Nprrwn/s/Vw13U3d8XS1dVFERERDhdQ8mYN//nnH2poaBBtO0REGRkZg+ZSX1/vMH/+/PnCfGe2R29yJcc79fT00M2bN2ns2LGi8bq6OoqMjKQHHniA8vPz6dKlS26L21mu5nft2jXSarUUGxtLCxcuJKvVOuw1PcEdsZjNZsrJyaGwsDDRuBzq54rBtsEffviBbt686bP6yeNScDLS3t5ORERRUVGi8aioKDp37pwwJzIy0uG+kZGRwv29wR1xmM1mSkhIoFmzZonG169fT48++iiNHj2aDh06RKtWraKOjg5as2aNW2J3hqv55ebm0uTJk0mj0dCpU6do9erVdPLkSfr666+Hta4nuCOWzs5OWr9+PS1dulQ07u0adnR00K1btwbcdgbLpb29fcj5zmyP3uRKjncqLCykCRMm0Lx584SxBQsW0JNPPklarZZaW1tp7dq19Mgjj1BDQwMFBwe7NYehuJJffHw87dixg6ZNm0bd3d20detWmj17Np08eZKmTp3qlufMXYYby7Fjx+jUqVNkNptF43KpnysG2wZ7e3upo6ODmNkn9RuRzUlRUREVFxcPOef48eOUkpLi8mMoFArR38wsGrvz9oHmuMrZ/IYbx99//02fffYZrV271uG229/AkpOTiYiopKTELW9sns4vPz9f+F2n09HUqVMpJSWFTpw4QXq93uV1pfBWDbu7uykrK4sSExNp3bp1ots8WcOh3G3bcWW+1DU9zdV4Nm/eTDt37qS6ujoKCQkRxrOzs4XfdTodpaSkkFarpb1799LixYvdF7iTpORnMBhEB3/Onj2b9Ho9bdu2jd59912X1vQ0V2Mxm82k0+koLS1NNC63+kk10PPRP37773fO8WT9RmRzsnz5coezL+40adIkl9bWaDRE9G83GR0dLYxfunRJ6Bw1Gg1dvHjR4b5//vmnQ3fpCmfz++mnn4YVR1VVFfX09NCzzz5717kGg4G6u7vp4sWLw87RW/n10+v1pFQqqbm5mfR6vcfrR+SdHO12O2VmZlJ4eDjV1NSQUqkccr47aziQcePGUUBAgMO/pm7fdu6k0WiGnO/M9uhNruTY76233qKNGzfSN998Q0lJSUPOjY6OJq1WS83NzcOOWYrh5Ndv1KhRlJqaKsTujjXdZTix9PT0UGVlJZWUlNz1cXxVP1cMtg0GBgbSvffeS8zsm/p57GgWmZF6QOymTZuEsRs3bgx4QOz3338vzDl69KjPDoh1NQ6j0ehwhsdgtm3bxiEhIXz9+nWX45XKXc+zzWZjIuLDhw+7dV13cDWWrq4uNhgMbDQa+a+//nLqsbxRw7S0NH7ppZdEYwkJCUMeELtgwQLRWGZmpsMBsUNtj94mNUdm5s2bN3NERATX19c79RgdHR0cHBwsOmjWW1zJ73Z9fX2ckpLCS5Yscdua7uRqLBUVFRwcHMwdHR13fQxf1u925OQBsQkJCaKxZcuWORwQ6+36+X1zcu7cObZarVxcXMzh4eFstVrZarWKTpuNi4vj3bt3C3+XlpayWq3m3bt3s81m46effnrAU4mTkpK4vr6e6+vredq0aT47lXioOM6fP89xcXGiNz9m5ubmZlYoFLx//36HNffs2cMfffQR22w2bmlp4fLyco6IiOCCggKP53Mnqfm1tLRwcXExHz9+nFtbW3nv3r0cHx/P06dP597eXqfX9SapOXZ3d/PMmTN52rRp3NLSIjp9sT9HX9Ww/5RDs9nMjY2NvHLlSg4LC+OzZ88yM3NeXp5oh/bdd99xQEAAl5aWclNTE5eWlg54KvHdtkdvkprjpk2bOCgoiKuqqkS16t8H2e12XrVqFVssFm5tbeXa2lp+6KGHeMKECT7JUWp+RUVFfODAAf7ll1/YarXykiVLODAwULTPuduacs6v38MPP8zZ2dkO43Krn91uF97niIi3bNnCVqtVOO23sLCQ8/LyhPn9pxK/8sor3NjYyGazedBTib1ZP79vTkwmExORw09tba0wh/57PYh+fX19vG7dOtZoNBwcHMxz585lm80mWrezs5Nzc3NZpVKxSqXi3NxcvnLlipeycj6O1tZWh3yZmVevXs2xsbF869YthzX379/PycnJHB4ezqGhoazT6fidd94RnabqLVLza2tr47lz5/LYsWM5KCiIp0yZwgUFBQ7XHJBL/ZyJ5c4ca2trB3xNExG3trYys29ruH37dtZqtRwUFMR6vV74xIr530/rTCaTaP6uXbs4Li6OlUolx8fHc3V1teh2Z7ZHb5OSo1arHbBW69atY2bmnp4ezsjI4PHjx7NSqeSJEyeyyWTitrY2L2f1P1LyW7lyJU+cOJGDgoJ4/PjxnJGRwRaLRdKa3ib1Nfrzzz8zEfHBgwcd1pJb/QbbP/TnZDKZ2Gg0iu5TV1fH06dP56CgIJ40aRJ/8MEHDut6u34K5v8e7QIAAAAgA7jOCQAAAMgKmhMAAACQFTQnAAAAICtoTgAAAEBW0JwAAACArKA5AQAAAFlBcwIAAACyguYEAAAAZAXNCQAAAMgKmhMAAACQFTQnAAAAICtoTgDAJ3bu3EkhISH0+++/C2MvvvgiJSUlUVdXlw8jAwBfw3/8BwA+wcyUnJxMc+bMoffee4+Ki4vp448/pqNHj9KECRN8HR4A+FCgrwMAgP9PCoWCNmzYQE888QTFxMTQ1q1b6ciRI2hMAACfnACAb+n1ejp9+jQdPHiQjEajr8MBABnAMScA4DNfffUVnTlzhm7dukVRUVG+DgcAZAKfnACAT5w4cYLS09Np+/btVFlZSaGhobRr1y5fhwUAMoBjTgDA686ePUtZWVlUWFhIeXl5lJiYSKmpqdTQ0EAzZszwdXgA4GP45AQAvOry5cs0e/Zsmjt3Ln344YfC+KJFi+jGjRt04MABH0YHAHKA5gQAAABkBQfEAgAAgKygOQEAAABZQXMCAAAAsoLmBAAAAGQFzQkAAADICpoTAAAAkBU0JwAAACAraE4AAABAVtCcAAAAgKygOQEAAABZQXMCAAAAsvIfciugNP58IyMAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'fitting $e^x$ to polynomials')" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(x, exp.(x), \"k--\")\n", - "for n = 1:4\n", - " plot(x, sum([polydot(p,exp)/polydot(p,p) for p in L[1:n]] .* L[1:n]).(x), \"-\")\n", - "end\n", - "legend([L\"e^x\", [\"degree $i\" for i=0:3]...])\n", - "xlabel(L\"x\")\n", - "title(L\"fitting $e^x$ to polynomials\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By degree 3, it is hard to tell the difference from $e^x$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fitting a non-smooth function\n", - "\n", - "It may not be so surprising that we can fit $e^x$ to polynomials; after all, $e^x$ has a convergent Taylor series, which is also a polynomial. But what we try to fit a *non-smooth* function, such as a **triangle-shape function** $t(x)$? That is,\n", - "\n", - "\n", - "$$\n", - "t(x) = 1 - |x|\n", - "$$\n", - "\n", - "(a triangle peaked at $x=0$ and zero at $x=\\pm 1$). Let's see:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAHFCAYAAAApNFnJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FNX++PH3bMtuKukJBBIIJXRC71W6iAICIoheUEFUEPEHCAgIiO1+8XoVLLQrRVBQFC5FepFggNB7IBUSUkivW87vj72JhCRAILABzut59uFh9pw5nzObnfnsmZkzihBCIEmSJEmSVEGobB2AJEmSJEnSzWRyIkmSJElShSKTE0mSJEmSKhSZnEiSJEmSVKHI5ESSJEmSpApFJieSJEmSJFUoMjmRJEmSJKlCkcmJJEmSJEkVikxOJEmSJEmqUGRyYkNr166lfv36GAwGFEXh+PHjzJo1C0VRipRbuHAhy5cvL1b/2rVrzJo1i+PHjxd7r6T1PAqys7OZNWsWe/bsKVO9itZfW8XTuXNnGjRo8NDbLQ/5+fmMGTMGX19f1Go1TZo0sWk8pX3vIiMjURSlxPcetM2bNzNr1qyH3u696Ny5M507d7Z1GOViz549KIpS5v3S/dZ9ksnkxEYSExMZMWIEgYGBbN26lZCQEGrXrs3o0aMJCQkpUvZ2ycns2bNLTE5KWs+jIDs7m9mzZ5f5i/yo9lf626JFi/j222+ZNm0aBw4cYMWKFTaNp7Tvna+vLyEhIfTt2/ehx7R582Zmz5790Nt90jVt2pSQkBCaNm1q61CeGBpbB/CkunjxIkajkeHDh9OpU6fC5fb29vj5+d33+v38/MplPRVddnZ24TZ7Evr7ODt9+jQGg4E333zT1qHclp2dHa1bt7Z1GNJD5OzsLD/zh01ID93IkSMFUOTVqVMnIYQQM2fOFDd/LP7+/sXK+vv7i927dxdbDoiZM2eWuJ6CdfXt21ds2bJFBAcHC71eL+rUqSOWLFlSLMb9+/eL1q1bCzs7O1G5cmUxffp08f333wtARERE3LZ/hw8fFkOGDBH+/v5Cr9cLf39/MXToUBEZGXnbehERESX2aeTIkUX6dPToUTFw4EBRqVIl4ePjU2p/16xZI7p37y58fHyEXq8XQUFBYvLkySIzM7PY5+Hg4CAuXbokevfuLRwcHISfn5+YOHGiyM3NLVI2JiZGDBw4UDg6OgoXFxcxbNgwERoaKgCxbNmywnIlxVMQU+vWrYW9vb1wcHAQPXr0EGFhYbfdLgUSEhLEq6++Kvz8/IROpxMeHh6ibdu2Yvv27YVlOnXqJOrXry9CQ0NF+/bthcFgENWrVxfz588XZrO5sFxOTo6YOHGiaNy4sXB2dhaurq6idevWYsOGDcXaBcS4cePEN998I2rVqiV0Op2oW7eu+PHHH4uVjYuLE6+99pqoUqWK0Gq1IiAgQMyaNUsYjcbb9q2kz33ZsmWFfxM3b9ub6xT8vQvx9zY/ffq0GDp0qHB2dhZeXl7ilVdeEampqUXqms1m8eWXX4rGjRsLvV4vXFxcRKtWrcRvv/0mhCj9eyeEKDWm/fv3i65duwpHR0dhMBhEmzZtxKZNm4qUWbZsmQDErl27xJgxY4S7u7twc3MTzz33nLh69eptt1FJ+42bv485OTliypQpIiAgQGi1WlG5cmXxxhtviJSUlNuut2DdDg4O4vTp06Jr167C3t5eeHh4iHHjxomsrKwiZe+2nU6dOhXu1ywWi6hZs6bo0aNHsbYzMjKEs7OzeOONN4QQonDftnr1avH+++8LX19f4eTkJLp16ybOnz9frP6SJUtEo0aNhJ2dnXB1dRXPPvusOHv2bIn9O3funOjRo4ewt7cXPj4+Yv78+UIIIUJCQkS7du2Evb29qFWrlli+fHmR+gUx7d69u3DZ3e7nSqp7+fJlMWTIEOHr6yt0Op3w8vISXbt2FceOHSvh03kyyZETG5gxYwYtW7Zk3LhxfPTRR3Tp0gVnZ+cSy/76668MGjQIFxcXFi5cCFh/uQUGBrJs2TJeeeUVpk+fXjjEfKfRgxMnTvDuu+8yZcoUvL29Wbx4MaNGjaJmzZp07NgRgJMnT9K9e3dq167Nf/7zH+zt7fnmm29YuXLlXfUvMjKSOnXqMHToUNzc3IiLi2PRokW0aNGCs2fP4uHhUWI9X19ftm7dSq9evRg1ahSjR48GwNPTs0i5AQMGMHToUMaMGUNWVlapcVy6dIk+ffowYcIEHBwcOH/+PJ988gmhoaHs2rWrSFmj0cgzzzzDqFGjePfdd9m3bx9z5szBxcWFDz74AICsrCy6dOnCjRs3+OSTT6hZsyZbt25lyJAhd7VdPvroI6ZPn174meXn5/PZZ5/RoUMHQkNDqVev3m3rjxgxgrCwMObNm0ft2rVJTU0lLCyM5OTkIuXi4+N58cUXeffdd5k5cya//vorU6dOpXLlyrz00ksA5OXlcePGDSZNmkSVKlXIz89nx44dDBgwgGXLlhWWK/D777+ze/duPvzwQxwcHFi4cCEvvPACGo2GQYMGFbbbsmVLVCoVH3zwAYGBgYSEhDB37lwiIyNZtmxZqX0LCQlhzpw57N69u/CzCQwMvO3nW5qBAwcyZMgQRo0axalTp5g6dSoAS5cuLSzz8ssvs3LlSkaNGsWHH36ITqcjLCyMyMhIoPTvXWn27t1L9+7dadSoEUuWLMHOzo6FCxfSr18/fvzxx2J/I6NHj6Zv376sXr2amJgY3nvvPYYPH17s7/JmM2bMICsri3Xr1hU5henr64sQgmeffZadO3cydepUOnTowMmTJ5k5cyYhISGEhITcNn6wfgf69OnD66+/zpQpUzh48CBz584lKiqKjRs3AtxzO4qi8NZbbzFhwgQuXbpErVq1Ct/74YcfSE9PZ9y4cUXqvP/++7Rr147FixeTnp7O5MmT6devH+fOnUOtVgMwf/583n//fV544QXmz59PcnIys2bNok2bNhw+fLhIO0ajkQEDBjBmzBjee+89Vq9ezdSpU0lPT2f9+vVMnjwZPz8//v3vf/Pyyy/ToEEDmjVrVur2utf9HECfPn0wm818+umnVKtWjaSkJA4ePEhqauptP6Mniq2zoydVQTb9888/F1le0i/u+vXrF/4Cudnhw4dL/VVZ2siJXq8XUVFRhctycnKEm5ubeP311wuXPf/888LBwUEkJiYWLjObzaJevXp3NXJyK5PJJDIzM4WDg4P417/+dduyiYmJxX4R39qnDz74oNT3SmOxWITRaBR79+4VgDhx4kThewW/SH/66acidfr06SPq1KlT+P+vv/5aAGLLli1Fyr3++ut3HDmJjo4WGo1GvPXWW0XqZmRkCB8fHzF48OBSYy/g6OgoJkyYcNsynTp1EoD466+/iiyvV6+e6NmzZ6n1TCaTMBqNYtSoUSI4OLjIe4AwGAwiPj6+SPmgoCBRs2bNwmWvv/66cHR0LPL3JYQQn3/+uQDEmTNnbht7wa/bm93LyMmnn35apNwbb7wh9Hq9sFgsQggh9u3bJwAxbdq028ZT2veupJhat24tvLy8REZGRuEyk8kkGjRoIPz8/ArbLhg5KRglKPDpp58KQMTFxd02pnHjxpX4d75169YS+7527VoBiO++++626y34Dtz6/Zw3b54AxIEDB8rczs0jJ0IIkZ6eLpycnMT48eOL1K1Xr57o0qVL4f8L9o19+vQpUu6nn34SgAgJCRFCCJGSkiIMBkOxctHR0cLOzk4MGzasWP/Wr19fuMxoNApPT08BFBm9TE5OFmq1WkycOLFYTDePftyqtP3crXWTkpIEIL744otS1yUJIS+IfcI0adKEatWqFf5fr9dTu3ZtoqKiCpft3buXrl27Fsn8VSoVgwcPvqs2MjMzmTx5MjVr1kSj0aDRaHB0dCQrK4tz587ddx8GDhx4V+WuXLnCsGHD8PHxQa1Wo9VqC6/vuTUORVHo169fkWWNGjUqtl2cnJzo1atXkXIvvPDCHWPZtm0bJpOJl156CZPJVPjS6/V06tSp8AJgIUSR900mU+E6WrZsyfLly5k7dy6HDh3CaDSW2JaPjw8tW7a8bV8Afv75Z9q1a4ejoyMajQatVsuSJUtK/Iy6deuGt7d34f/VajVDhgwhPDyc2NhYADZt2kSXLl2oXLlykfh79+5duP0ehmeeeabI/xs1akRubi4JCQkAbNmyBaDYL/V7lZWVxV9//cWgQYNwdHQsXK5WqxkxYgSxsbFcuHDhjjECxT6ju1Uw4vLyyy8XWf7888/j4ODAzp0772o9L774YpH/Dxs2DIDdu3ffdztOTk688sorLF++vHBEbNeuXZw9e7bE64zutI1CQkLIyckpFkvVqlXp2rVrsVgURaFPnz6F/9doNNSsWRNfX1+Cg4MLl7u5ueHl5XXHz+Je93Nubm4EBgby2Wef8X//938cO3YMi8Vy27aeRDI5ecK4u7sXW2ZnZ0dOTk7h/5OTk4sciAqUtKwkw4YN46uvvmL06NFs27aN0NBQDh8+jKenZ5F27pWvr+8dy2RmZtKhQwf++usv5s6dy549ezh8+DC//PILQLE47O3t0ev1RZbZ2dmRm5tb+P/72S7Xr18HoEWLFmi12iKvtWvXkpSUBFgP4Le+X3CqYe3atYwcOZLFixfTpk0b3NzceOmll4iPjy/S1t18xr/88guDBw+mSpUqrFy5kpCQEA4fPsw//vGPIn0u4OPjU+qygtNK169fZ+PGjcXir1+/PkBhHx+0W/tfcJqhoP+JiYmo1eoS+3QvUlJSEEKU+HdZuXJlgGKn3u4UY1klJyej0WiKnQJVFAUfH59i7ZdEo9EUi+vWz/h+23nrrbfIyMhg1apVAHz11Vf4+fnRv3//YmXvtI0K2iptu98aS0nfcZ1Oh5ubW7H6Op2uxO/Bze51P6coCjt37qRnz558+umnNG3aFE9PT95++20yMjJu2+aTRF5zIhXj7u5eeDC92a0HwZKkpaWxadMmZs6cyZQpUwqXF1zjUB7uZv6QXbt2ce3aNfbs2VPkbqj7Oafr7u5OaGhoseV3s10KRqHWrVuHv79/qeWaNWvG4cOHiywrOMB5eHjwxRdf8MUXXxAdHc3vv//OlClTSEhIYOvWrWXpCitXrqR69eqsXbu2yPbMy8srsXxJfSxYVnAQ8fDwoFGjRsybN6/EdRT0oywKDia3xnU3B9vSeHp6YjabiY+Pv6tE905cXV1RqVTExcUVe+/atWsAt73+oDy4u7tjMplITEwskjgIIYiPj6dFixZ3XIfJZCI5OblIUnDrZ3y/7dSsWZPevXvz9ddf07t3b37//Xdmz55deA1JWRTEVNp2f5Db/H73c/7+/ixZsgSw3rn5008/MWvWLPLz8/nmm28eWNyPEjly8gi49Vfvzcvh3n9tlaZTp07s2rWryC9di8XCzz//fMe6iqIghCh2UdzixYsxm813rF9efSo44N4ax7fffnvP6+zUqRMZGRmFpwUKrFmz5o51e/bsiUaj4fLlyzRv3rzEF1iHvm9drtPpiq2vWrVqvPnmm3Tv3p2wsLAy90VRFHQ6XZHEJD4+nt9++63E8jt37iySsJrNZtauXUtgYGDhRdhPP/00p0+fJjAwsMT+3Uty4u3tjV6v5+TJk0WWlxbn3Sg4zbRo0aLblivte3crBwcHWrVqxS+//FKkvMViYeXKlfj5+VG7du17jvfWmKD496Nbt24AxS5aX79+PVlZWYXv30nBiEaB1atXAxROplYe7YwfP56TJ08ycuRI1Go1r7766l3Fdqs2bdpgMBiKxRIbG8uuXbvuus/34n73czerXbs206dPp2HDhvf0XX5cyZGTR0DDhg1Zs2YNa9eupUaNGuj1eho2bEhgYCAGg4FVq1ZRt25dHB0dqVy58j0dBG42bdo0Nm7cSLdu3Zg2bRoGg4Fvvvmm8DyxSlV6Tuvs7EzHjh357LPP8PDwICAggL1797JkyRIqVap0x7adnJzw9/fnt99+o1u3bri5uRWupyzatm2Lq6srY8aMYebMmWi1WlatWsWJEyfKtJ6bjRw5kgULFjB8+HDmzp1LzZo12bJlC9u2bQNuv10CAgL48MMPmTZtGleuXKFXr164urpy/fp1QkNDcXBwuO3kWmlpaXTp0oVhw4YRFBSEk5MThw8fZuvWrQwYMKDMfXn66af55ZdfeOONNxg0aBAxMTHMmTMHX19fLl26VKy8h4cHXbt2ZcaMGYV365w/f75IYvbhhx+yfft22rZty9tvv02dOnXIzc0lMjKSzZs3880335R5LhpFURg+fDhLly4lMDCQxo0bExoaWnjQvBcdOnRgxIgRzJ07l+vXr/P0009jZ2fHsWPHsLe356233gJK/96VZP78+XTv3p0uXbowadIkdDodCxcu5PTp0/z444/lNltwQfuffPIJvXv3Rq1W06hRI7p3707Pnj2ZPHky6enptGvXrvAumuDgYEaMGHHHdet0Ov75z3+SmZlJixYtCu/W6d27N+3btwcol3a6d+9OvXr12L17N8OHD8fLy+uetkWlSpWYMWMG77//Pi+99BIvvPACycnJzJ49G71ez8yZM+9pvXfjfvZzJ0+e5M033+T555+nVq1a6HQ6du3axcmTJ4uMwjzxbHk17pOsLHfrREZGih49eggnJ6ci8y0IIcSPP/4ogoKChFarvet5Tm5161X1QljnbGjVqpWws7MTPj4+4r333hOffPKJAIrNGXGr2NhYMXDgQOHq6iqcnJxEr169xOnTp4W/v3/hnCW3s2PHDhEcHCzs7OxKnOfk5ruICpTU34MHD4o2bdoIe3t74enpKUaPHi3CwsKK3WlR0l0ipa0zOjpaDBgwQDg6OgonJycxcOBAsXnzZgEUzpFRWl0hhNiwYYPo0qWLcHZ2FnZ2dsLf318MGjRI7Nix47bbJDc3V4wZM0Y0atRIODs7C4PBIOrUqSNmzpxZZB6KgnlObjVy5MgifzdCCPHxxx+LgIAAYWdnJ+rWrSu+//77EuPmf/OcLFy4UAQGBgqtViuCgoLEqlWrirWTmJgo3n77bVG9enWh1WqFm5ubaNasmZg2bVqx+WVKirGkzyEtLU2MHj1aeHt7CwcHB9GvXz8RGRlZ6t06t/59FNwhc/NdZmazWSxYsEA0aNBA6HQ64eLiItq0aSM2btxYWKa0792d5jlxcHAQBoNBtG7dusj6bo7l8OHDRZbfzd0gQgiRl5cnRo8eLTw9PYWiKMXmOZk8ebLw9/cXWq1W+Pr6irFjx5ZpnpOTJ0+Kzp07C4PBINzc3MTYsWOLfW53205J+5UCs2bNEoA4dOhQsfdK2zeWtt0XL14sGjVqVPg59u/fv9idYaX9bZX2fbl1X1nS53O3+7lb616/fl28/PLLIigoSDg4OAhHR0fRqFEjsWDBAmEymUrcXk8iRQghHk4aJD3qevToQWRkJBcvXrR1KBVKwfwl0dHRj+UstYqiMG7cOL766itbhyI9IC+//DLr1q0jMzPzobTXvHlzFEUpdn2VJBWQp3WkEk2cOJHg4GCqVq3KjRs3WLVqFdu3by+8iOtJVXCADgoKwmg0smvXLr788kuGDx/+WCYmklRe0tPTOX36NJs2beLo0aP8+uuvtg5JqsBkciKVyGw288EHHxAfH4+iKNSrV48VK1YwfPhwW4dmU/b29ixYsIDIyEjy8vKoVq0akydPZvr06bYOTZIqtLCwMLp06YK7uzszZ87k2WeftXVIUgUmT+tIkiRJklShyFuJJUmSJEmqUGRyIkmSJElShSKTE0mSJEmSKpRH4oJYi8XCtWvXcHJyKrfJjCRJkiRJerCEEGRkZFC5cuXbTlR5q0ciObl27RpVq1a1dRiSJEmSJN2DmJiYMk238EgkJ05OToC1c87OzjaORpIkSZKku5Genk7VqlULj+N365FITgpO5Tg7O8vkRJIkSZIeMWW9JENeECtJkiRJUoUikxNJkiRJkioUmZxIkiRJklShyOREkiRJkqQKRSYnkiRJkiRVKDI5kSRJkiSpQpHJiSRJkiRJFYpMTiRJkiRJqlBkciJJkiRJUoVS5uRk37599OvXj8qVK6MoChs2bLhjnb1799KsWTP0ej01atTgm2++uadgJUmSJEl6/JU5OcnKyqJx48Z89dVXd1U+IiKCPn360KFDB44dO8b777/P22+/zfr168scrCRJkiRJj78yP1und+/e9O7d+67Lf/PNN1SrVo0vvvgCgLp163LkyBE+//xzBg4cWNbmJUmSJEl6zD3wa05CQkLo0aNHkWU9e/bkyJEjGI3GEuvk5eWRnp5e5CVJkiRJ0pPhgScn8fHxeHt7F1nm7e2NyWQiKSmpxDrz58/HxcWl8FW1atUHHaYkSTZkNBrZvXu3rcOQJKmCeCh369z6qGQhRInLC0ydOpW0tLTCV0xMzAOPUZKkh8dkMnH8+HEAMjMz6dixI927d+fPP/+0cWSSJFUEDzw58fHxIT4+vsiyhIQENBoN7u7uJdaxs7PD2dm5yEuSpMfHjBkzaNGiBV9//TUODg7UqFEDs9nMkCFDSh1RlSTpyfHAk5M2bdqwffv2Isv++OMPmjdvjlarfdDNS5JUwWzevJmPP/4Yk8mEl5cXiqLw7bffUqdOHa5evcqIESOwWCy2DlOSJBsqc3KSmZnJ8ePHC4dkIyIiOH78ONHR0YD1lMxLL71UWH7MmDFERUUxceJEzp07x9KlS1myZAmTJk0qpy5IkvSoiImJKdw/jBs3jueffx4AR0dHfv75Z/R6PVu3buWTTz6xZZiSJNmaKKPdu3cLoNhr5MiRQgghRo4cKTp16lSkzp49e0RwcLDQ6XQiICBALFq0qExtpqWlCUCkpaWVNVxJkiqI/Px80bZtWwGIpk2bitzc3GJlFi9eLAChUqnEvn37bBClJEnl6V6P34oQ/7s6tQJLT0/HxcWFtLQ0ef2JJD2iJk+ezKeffoqzszNhYWEEBgYWKyOEYOTIkaxYsYI6depw5swZ1Gq1DaKVJKk83Ovxu8yTsEmSJJVVaGgon376KQBLly4tMTEB6x18ixYtIi8vjzlz5sjERJKeUHLkRJKkB04IwZdffklMTAyff/65rcORJOkhkSMnkiRVWIqiMH78+Huqu3v3btRqNR07diznqCRJqqgeyiRskiQ9mX788UcyMjLuuf7GjRt56qmnGDJkCNevXy/HyCRJqsjkyIkkSQ/E77//zrBhw6hduzZHjx7F0dGRnJwcoqKiiIuLIykpiaysLIxGI4qiYG9vj4uLC97e3lSrVg1PT0+6du1KUFAQZ8+eZfjw4WzdulVehyJJTwCZnEiSVO4iIyMZOXIkAH369OHSpUucPHmSyMhI7vYyN2dnZxo0aMCSJUvo1q0bO3bsYN68eXzwwQcPMnRJkioAeUGsJEnlKj8/nw4dOhAWFsagQYNo0qQJOTk5he+7Gpzx0bhRKd+AIV+LxqzCogjytWYydHkkKenE5SRhspgL69jb2/P555+TlJTEjh076Nq1qy26JklSGd3r8VsmJ5Iklat33nmHXbt28dRTT+Hk5ASAk8aeOnmVqWHywlkY7rgOE2ZiVclcMlwnypwAWO/4OXbsGKdPn+bgwYP4+Pg80H5IknT/ZHIiSZLNrV27li1bthAQEACAI3qa5dcg0OKDCgW1mx6Vj458Qz652myy8tMxCxMajQaN0GFQOWBvcUa5bsZ4NRMskKZkc0R7mQiVNUnJy8vDycmJqVOnlvpkc0mSKgZ5K7EkSTZ18uRJTpw4QUBAABqhIthUg/pmP7ROdmS5ZhKdcY7LV46QefTGHdelUqvxqVaLIP+2eOb60u16Q64raRzSXiTRLp38/HzWr19P3759MRjuPBIjSdKjRY6cSJJ0X8xmM1u2bOHIkSMAeFqc6Wysj5PBQIT5LMcubMUsTIXlFZWKSt6+OLi64lDJDY1Wh8mYjyk/n8wbSdy4GosxL7dIG95u1Wke0Af7FHtOqKMI00QgFIGLiwvDhg3D29v7ofZZkqS7I0/rSJL00OXm5vLzzz9z+fJlENDEHEAT4c/5zFDOxh9AYN29+NasQ2DzVlSuUxefGrXQ6vWlrlNYLGQkJxFz9hQRx44QdfIYuVmZALjZ+dLa/xlyTAp7tGdIV+Wg1WoZMmQINWvWfCh9liTp7snkRJKkhyo1NZVVK1eRmJSIRqjoYmyAJiedI9e3kGvOwqGSK4179KFuu84YnD2Iv5JOQlQ6aYk5pCflkJmSh8lowWKyYLEI7Ow1GBx1GJx0uPra4+HniIefE5W87Lh89C9O/PFfYs6eAiDAsSF13Tqyz3CBeFUqiqLQt29fmjdvbuOtIknSzWRyIknSQ5OSksLyxctIy0rHXujokluPyMQ/ic46h4uXNy2eGYhPrdZEnkwl4mQSyVcz4R73NAYnLdXquePfwB1H10wO/7aWS6EHsdc409S9N5dcsghXxwPQo3sP2rZrW449lSTpfsjkRJKkhyIlJYVl3y0hPScTZ4uB9ln+HL++mVxVNi37D0Hn2IzzhxJJicsqUs/F04BPoAuuPvY4uxtwctej0alRaxQURSEv20ROZj5ZqXkkX8siOTaTxOgMjHl/z3eitVNTq4U3nlWzOL3rJ66eP0N91/bkePhwQhMJQPcuT9GuU/uHuUkkSSqFTE4kSXrgUlJSWPrtEjJyM3Gx2BOc6sLxhK1412uAt/8zhB/LxphrTSZUGgX/+u4ENvXCL8gVBxe7MrdnNluIv5xG1OlkrhxLJC3x78ncfGo44+4bReim5fg7BKHzrcsJbTQAT3XqSvsu8kGBkmRrMjmRJOmByszM5Pt/f0taXgYuFnvqJms4Grcdrzp9MGc2xGy0AODq60Djrn7UbO6NnaH8ZisQQhAXnsrZA3GEH03AbCpoz8KpsC+p5eyFS9VWnNJdBeDp7n1o3q5lubUvSVLZyeREkqQHJi8vj6Vffsf1rGScLHqqJ+RxJPYwPpVHola5A+Bb04XmvQOoWs+txMnRhNFIfkwMpuvXMSUkYEpKRhjzEUYTCAsqBwdUjk6oXZzRVvFDF+CJ50QPAAAgAElEQVSP+n8zzN4qKy2PY39Ec2bfVUxGC0IIYuN/JsAxCzf/9pzVxaGgMPjpgdRt3uCBbhtJkkonkxNJkh4Ik8nEii+XEpV+Db3QUv16LheSknBzH4CiqHGr7ECb5wLxb+BeJCkxXrtGVkgI2UeOknv+PHnh4WA0lqlttbs7+gb1sQ8OxtAkGEPTYFQ6XeH72en5HN4UwZn9VxECELHojAfQ+jYgUnsDNSpeGjoc/6Aa5bU5JEkqA5mcSJJU7oQQrFu4ijOJ4aiFipqJZhJzXVHrGqHRqWg7oCb1O1ZBpVIQQpB79izpmzeTuWMn+VFRxdansrdH4+uL1tsLtbsHKr0daDQoigpLVhbmjAzMKSnkx8RgTkoqsb5Dhw44deuKY9duqB0dAEiMyWD/2ovEhachLBloTX8gKtcgXpOBHi2jR7+Kh5/XA99ekiQVJZMTSZLK3e6Vm9kbHooioMYNSMkOQK2tRkAjDzq9UBtHVz2mlBTS1q8ndd168iMj/66sVmNo2BD71q0wNGiAXVAQ2ipV7vp5OObMTPIvXybnxAlyjh8n6/BhzIl/JyyKwYBzr15UGjgAQ7NmAJzZf40/14djzM1Gyd2BuZo3N9TZuCqOvD5+LPpKDuW5eSRJugOZnEiSVK5O/jeEX0P/QCiCaulastKrozX40umFIILa+JB/5QrJy5aRvnETIi8PAMXODsfOnXHu3RuHdm1LvWbkXgiLhdwzZ8jYtYuMrdvIj4gofM+uXl3cR43CuWdPrlyK45tpv+HvWQeN6U9Sq2jJVRnxV3sycsoYVFp1ucUkSdLtyeREkqRyE33oHKu2rCdPMeGVa4cpOZC4lFSiCWHppzNIWriI9P/+F/63+7CrVxe3F1/EqWevwlMtD5IQgpxjx0hdt570LVsQOdZbjLV+fniMHcsOs5lln/2X3k2Ho1ZCSPS2YFEEjfUBPDt5pHyasSQ9JDI5kSSpXKSEX2PFD6u4ocrC2aRDc702oZf+IuziGjYOHUz+1q1gsd7G6/hUN9z/8Q8MwcE2O+CbUlJIWb2alBUrMaemAmBXqxa/ODqw7M8rvNLtfRycz3Hd1fowwa4eDen45kCbxCpJTxqZnEiSdN+yk9P4ZcFKwjWJ6CxqHBMC+f3geqrG7mFStWqocq0HeMdu3fAc9wb6evVsHPHfLDk5pKz+kaTvvsOSlgbASbWaufHpDH36Y1y8Y0iyz8FOaOlXtw0Nhna1ccSS9PiTyYkkSffFmJfPHx+u4LA2BgR4pFVn+7blvJIbSR0761OE9Q0a4P3++9g3DbZxtKUzp6WR/P333PjPDwijkTwh+C4tmxrPfYJwu0KW1oiX2Zm+3Trh37mZrcOVpMfavR6/VQ8wJkmSHhHCYuHAR6s5rrkGgFuuF1l/rmSeJY46dnrUrq74zptLwE9ryzUxEUJgEZZyWx+A2sUFr0mTqLHxd+zbtMZOUXirkgNtjn9NbbeWaISKBHU6IX8c5vq5S+XatiRJ5UOOnEjSE04IwYHPV3A8I4FkVSaOJge6HA/DPvw4ANpuXQmYMweNm1uZ1ptjyuFK2hWupF4hIi2CuKw4ErMTuZ59nfT8dHJMOeSachEIFBTUihqDxoCLnQuV7CrhYfDAz8mPKo5VCHAJIMgtCA+DR5n7lr7pv1ybMwfS00Gr5eRzEzinsj6Dp02WH23+X3+cPT3LtF5Jku6OPK0jSdI9+WvFb8ScT+S0NhatRU23XXtxSbqKys0N06ujqf/KK3e1nqScJEKuhXA84Tinkk5xMeUiZmG+c8Uy8DB4UN+9Ps29m9PcpzlBbkFoVHd+fo8pMZG4GR+QuWcPAjjQ7yWuOeRhEDqaprvS6aOR6Az25RqrJEkyOZEk6R6c2X2IhM0X2GsfAQq0OhRGQOQlHNq1o/InH6PxKH2kQgjBuRvn2B61nf2x+7mQcqFYGTe9G9VdqlPDpQZ+Tn542XvhZfDCxc4Fe409Bq0BtaLGLMyYLCayTdmk5aWRmptKQnYCsZmxxGbEcjntMpFpkQiK7q6cdE50qNKBLlW70L5Kexx1jreN99LXC8n66is0ajVb+z9Plk4QYPbELTubpz+biEol50CRpPIkkxNJksok9lwEFxduIcwtnUwlF//oOJof3MeZJo0ZtGIFGq22xHpR6VFsCN/A1oitxGbGFnmvrltdWvq0pLFXYxp6NMTHwafc4s02ZnMp9RLHE45zJP4IR68fJcOYUfi+TqWjc9XOPF3jadpXaY9WXTz+jRs3MnHQIL6oXIVKPj7s6NEDoUCbvEBy7TPpP2NsucUrSZJMTiRJKoOU+BR2fvBvcry9uKyOxyEnnw7btvDmxQtcdXHh1KlTeNw0amI0G/kj6g/WX1rP4fjDhcv1aj0d/KwjF20rt8Xd4P7Q+mC2mDmZdJLdMbvZHb2byPTIwvfc9G4MqDWAwbUH4+voW6TepEmTWPR/C/i4alWqNGvGyUYN0Qo1HdP9yK3vRvfR/R9aHyTpcSeTE0mS7kpORh4/vjsHf/f67Le7gCIEbY4dY+SWLSRYLOzcuZPOnTsDkJaXxrqL61h9bjUJOQkAKCi0q9KO/oH96ejXEXut7a/VEEJw/sZ5Nl3ZxOaIzSTlWJ/Bo1JUdKnahVENRtHQsyEARqORjh07cujQIWY2aoRnxy4kulfCy+JC9ev5eD/Xnaa9mtqyO5L02JDJiSRJd2Q2WvjPe59TV/Fht3M0+YqJemnpvP7dt6RmZzNnzhymT59Oam4qP5z9gVXnVpFtygasF6MOrjOY52o+V66na8qbyWJiT8wefjz/I6HxoYXLW/m24rWGr9HStyXR0dEEBwdz48YNPn9xOLkB1TFqVDQ1Vift6mnaTxhP9SZ+NuyFJD0eZHIiSdJtCSH45ZNfsI+4SJyXE9HqJDwVFQvXrOHs+XN0796d9RvXs/zscladW0WWMQuAWq61GFlvJL2r90an1tm4F2UTnhLO8jPL+e+V/2ISJgBa+7ZmfNPxRB6KpF+/fgAs/+wzIjIzUQmFXjn1OXI9hOfnzMSzmtzfSNL9kMmJJEm3tW/1YSK2rcC/Snv26M6iQiEqJpqlS5dSuUplPvrtI5aFLyM5NxmAILcgxjYeS5eqXR75B+Vdy7zG0tNLWX9pPSaLNUnp7t8d43Yjh3ceZs2aNfy5cxeXYqLxsDgRnOLEiZxERv5zEg4udjaOXpIeXTI5kSSpVKf3RrL7u8/o5NuDzQ6nyVWMdOrUifDwcKZ8NYVWU1oRkx8DQDWnarzT7B26VuuKSnm8JpG+mnmVhccXsvHyRgQCvVrPP+r/g1GNRpGXncdXX/6bPGM+LYyB5MSdItutIcM+GoZGJ28xlqR7IaevlySpRDEn49m5ZBlNKtXnlCGOXMWIp4cHDVo04HLQZSpPrExMfgyOWkcmNZ/Ehv4beMr/qccuMQGo4liFee3nse6ZdTT3bk6uOZeFJxcy4PcBnEg/QaMmjQE4qrlCDY92ZMbtYcvnO3gEfsNJ0mNFjpxI0mPsRmQSaz78GVfLeapX7sJWnXVK+sCugSyOW8yN3BuoFBUDag3gzSZvPtRbgW1NCMHmiM18fuTzwrt7Ug+l8maNN8nJysHL4kyLNA8OJB2mZcfBtHu9g40jlqRHjxw5kSSpiLz0bDbM3YI59wCNPbpzQHsegGhNNJ9GfMqN3BvUrFSTlb1XMrPNzCcqMQFQFIW+Nfqy8dmNjKg3AkUoVGpdibWatajUKhJU6SQ5qgm0d+NIyCHOrD1o65Al6YkhkxNJegxZ8vPZ9N5PpOUcpKlbB87or5Op5JKjziGsShjCJOjr2pe1T68tnP/jSeWoc+T/tfh//NDrB1SpKoxuRg5Xsk40d0RzmQC3lhhMZ9i97RKxf4TeYW2SJJUHmZxI0mNGmM3se/d7YvMS8NUZMDj5cUZtvdj1qMdRMqMzeTrtaT5+5uNH7tbgB6mJTxN+fe5XsvZmEeEQQYI+AbNi4aDdJVp69MKYs51tqy6SdvysrUOVpMeeTE4k6TEiLBZOTFnAqRw31HlhBHs8xX7tOVAgyjGK07tPU+dIHT6a8JGtQ62QalSrwaIhi4j8LJJDqkOYFRPxqlSuO1io5ViLDMsptn26m7yoKFuHKkmPNZmcSNJjQghBxLwF/JVcA2PWVpq6d+WCLpEUVRZ5qjw2rdmE7pCOH5b/gEolv/ql6dmzJxMGTuDErBMcyToKwGHNZQLcWmCwXCNer2Xfu99jTEiwcaSS9PiSeyhJekwkLvsPB865kWM6hp/BEyenqhzXRAKwedNmUk+ksnbtWtzdn6wLX+/FrFmz6N21N8MaDkPvocekmDmkC6e5Zy+M2du54NqC42NnYU5Ls3WokvRYksmJJD0G0rdu49Av4aQaBBrjBYLdradzLIogICCAAN8A5s+fT5s2bWwd6iNBo9GwceNGRowYweiho1GpVMSqb5Bur6WmYxDGnJ0cc+7OpXGTsOTn2zpcSXrsyOREkh5x2WHHODH/P0RXbosxaxvB7t24rLtBgiodnU7Hc889x4YNG3j33XdtHeojpWDKfg8PD1q0aAHAIe1Farm1RS+SyCGao6bmXJs2XU7SJknlTCYnkvQIy4uI4NL4qZyt+QLGnD346r1xc6zOEc1lAJ566ilcXFxQFOWRfz6OrVy+fJnRo0eTkJBAnmLiiF0ELTx6Ycreww0nT06eNJH09UJbhylJjxWNrQOQJOnemG7cIOq1sZzyG0ieiEdlDKep9z84oD2PSTETFRXFokWLaNGixcNLTCxmSIuFlAjIiIeMuP/9Gw85KZCfCflZkJcJxmzglhEHlRbsHEH3v5edEzh6gZMvOPlYXy5VwT0QdA4PpUsBAQHUqVOHDRs28Oqrr3JFnUCggw/VHYOIzN7GFf9BuK74Fzr/arj87ynHkiTdn3tKThYuXMhnn31GXFwc9evX54svvqBDh9Kndv7iiy9YtGgR0dHReHh4MGjQIObPn49er7/nwCXpSSaMRmLfHs9FTWNSnapgTF9OsGsH4nTZxKpvYDKZ2LhxI++///6DSUyEsCYhccfh2nFIugDJl60vc979rTvrLu+CcapsTVI8aoF3A6gcDN71QVO+TxFWq9WsXr2aJk2acPDgQdq1a8ef2gs8496RuNj/YMo/yZm6L+MwYy41fX2xb968XNuXpCdRmZOTtWvXMmHCBBYuXEi7du349ttv6d27N2fPnqVatWrFyq9atYopU6awdOlS2rZty8WLF3n55ZcBWLBgwX13QJKeRHHz5nE1PIOoJj0xZm3BTeeCn3ND1msPAbB3717at2/PO++8Uz4NmvLh6lGIPAAxh+DaMchOLrmsWgeuAeBc2Tri4eht/dfe7X+jIf8bFdHaw60PFzTnWUdV8rMgPwNy0yEz4aYRmDhIjbK2nXHN+orc/3d9lRa86kKVZhDQ3vpy8rnv7vv4+LBq1Sp69+5N3aC64O7GcV0szd17sD/xd3KcanA+cDCaceOo+fPP6ErYF0qSdPfK/OC/Vq1a0bRpUxYtWlS4rG7dujz77LPMnz+/WPk333yTc+fOsXPnzsJl7777LqGhoezfv79Y+ZLIB/9J0t+SflzNtXmf81eLaeQoNzBnbaR7lZcJc7jOFfV14uPj2bZtG2FhYbi6ut5bI0LA9TNwcStE7IOYUDDlFC2jqMGrHlRuDF71rSMY7jWhUjVQqe+/o7eTfeN/IzXh1lGbuBPWhCknpXhZ91rWJKXmU1CjszU5ukezZ89m2bJlhT+w+uY15Ur8Xq7mZ6FzfJ6giz9S2T6GoJ9/RWVvf8/tSNLj4l6P32UaOcnPz+fo0aNMmTKlyPIePXpw8GDJD8Vq3749K1euJDQ0lJYtW3LlyhU2b97MyJEjS20nLy+PvLy/h4bT09PLEqYkPbZS/zpI/Jy5XKjzMnlaPabM7QS5tCJdr3BFfR2LxcLmzZtZt25d2RMTUx5E7IeLW+DiNkiLKfq+vYf1IO/fDqo0tZ5C0RrKr3NlYe9mfVVt8fcyISA12nqqKfov64hK/ClIvmR9HV0Gajuo3gFq94I6vcHFr0zNTp8+nf3793P06FGaNWvGfu05+nh0IyF2Keb8U1ysNYhKRz7m9MSxNFy0XF6ELEn3qEzJSVJSEmazGW9v7yLLvb29iY+PL7HO0KFDSUxMpH379gghMJlMjB07tliCc7P58+cze/bssoQmSY+99KjLXH7jddI9mpLg3Rxj1hYcVXpqubZig9b6oLpDhw7x7rvv0rJly7tbqcVsPVVzeh2c/Q1yb5pUTGOwjjTU7AYBHcCzDlTkg62igKu/9VWvv3VZTgpEhUDEXusoUEokhO+wvjZPgmptoOEgqPcsOHjcsQm1Ws2qVav48MMPcXBwID0ri7N212ns1oUjKTtRawM4U3ckzfd+TtiCD2g2cc6D7bMkPabKdFrn2rVrVKlShYMHDxaZzGnevHmsWLGC8+fPF6uzZ88ehg4dyty5c2nVqhXh4eGMHz+eV199lRkzZpTYTkkjJ1WrVpWndaQnVkZGMkee7UGlJB2HWk7DaI7DmPUbXXyHcckxi3Oaq+j1eiIjI1m0aNGdf7EnnIdjK+DUOsi86YeFow/U6QW1e0P1jqB7jE5NCAGJF6xJyoUtEPMXhXcLKWoI7ApNhkHQ06C58wMRz58/z5o1a1CEQv/85py+tplkoaA2PEf1qM0ERG0m8+N3aNX/tQfbL0mqwB7KaR0PDw/UanWxUZKEhIRioykFZsyYYZ1lcfRoABo2bEhWVhavvfYa06ZNK/EZH3Z2dtjZle8V95L0qErPT2fTm/1pcjWHI8GjMSsqLHk7qeHUGIvBkXOaiwAMHjyYGjVqlL4iYw6c/d16eiM65O/lehfryEHD58G/7YO/XsRWFAW8gqyv9hMg7Sqc+cWaoMUdh/Dt1pe9BwS/CE1HWu8GKkVQUBD16tXj7Nmz7Nee5ynPXmyLXYJZfYZI/954JJ9GNXMBf/p60K7lgIfYUUl69JVpEjadTkezZs3Yvn17keXbt2+nbdu2JdbJzs4uloCo1WqEEHJWRUm6gyxjFos+GkzwX8lE+3Umw6UO5vw/0QpBQ/fO7NdaRyuDg4NLT0zSYuGPGfDPIPj1NWtioqihTl8YuhomXYJnvrRei/G4JiYlcakCbd+C1/fCm0eg43vWu4qyk+DPf8G/m8IP/a3X31gsJa4iPDycnJwcklUZXLFLpYFrByz5+xAii5MNX8GQryVj0nT2hm8vsb4kSSUr8wyxEydOZPHixSxdupRz587xzjvvEB0dzZgxYwB46aWXmDp1amH5fv36sWjRItasWUNERATbt29nxowZPPPMM6jVT9COUJLKKMeUw6wfXqbXuigyHXyJqDUAizEWU84Jmrp355T2KmmqbLKysggMLOEX/rXjsH40/KsxHPwSclOtE5h1mQbvnIYXVkNQ33KfF+SR5FELuk6HCaetCVvN7oACV/bA6sGwsDUc/Q8Yc4tUGz16NH/99RcAYZoIfCrVp5KqEpb8XeRpPblY5zn8EwSnZrzD/ti7uztRkqR7mOdkyJAhJCcn8+GHHxIXF0eDBg3YvHkz/v7+AERHRxcZKZk+fTqKojB9+nSuXr2Kp6cn/fr1Y968eeXXC0l6zOSZ83jvv+MYsPg0GrOG483GYrZYwLybKva1sHeszEm19SLYGzduUL9+/b8rR+yHfZ9abwEuENAB2oyDWj2erNGRslJrrAlbUF9IiYLQ76xJSdIF2Pg27PwQ2rwBLV8DOye8vLyYPXs2ixcvJjAwkAPa87Tz7MX2qz+gUV0kzrsT3vHH6HbsEgu/egvDhMU095GTtEnSnZR5nhNbkPOcSE8So9nIO7sn0OLL3bS8KLjcYDBRHp0Qpr+wZB6mZ7VX2a4/S5Iqg+joaBYsWICLi4s1KdnzMUQdsK5IUUODAdDmTajcxLadepTlpkHYD3DoG0iPtS4zuFpPCf0vSfnoo4/IysxCq9PSzlgHY+JlLuWeQa0fgYNORfPdUzGpcpn9qiPzhi2nvkf927cpSY+Jez1+ywf/SVIFYraYmXpgKvYb9tDyoiC9UgDRnp2wmJPJzzpEI7dOXNYmk6TKIDc3l9GjR+OSegaW9YX/PG1NTNQ6aPEqjD8BAxfLxOR+6V2sicj44/Dcd9aJ5nJSrKMoXzSE/f9kysS3uHrtKgChmnACXJtjsGhRxEGyTToutxmD3ghjf87krc2vEZ4SbuNOSVLFJpMTSaoghBDMD53PhUNbGb7bgkVRE95uAhaLQK3swV3rg5dLEEc1VwAIcNfTNurfsKx30aTk7ePQ93OoVNXGPXrMqLXQeAiMC4UB3xdJUlRft+Bfr7QgIeE6RsXMIV04zTx6kpt+HIsphquaWiQHtKVaIgzalMJr218jJiPmzm1K0hNKJieSVEF8d/I7Npxaw/jfzGjNcK3zWFKztKiUM+SlxdLcqzf7NecwKxZcjAm8lvUlXNhsPX3T/B9/JyUuVWzdlcebSg2NBluTlOe+s07XnxGHy+73meJ/ChUQrU4i096OQKfGqNiDECYu1h2OUetAl5OCoMPXee2P10jKSbJ1bySpQpLJiSRVAOsuruOr41/x8g4LVW5ATrVGhCt1EZYMjFn7qFupNdfscohTp6IVRkZqN6HCbL0d+I1D8PQCmZQ8bCq1dSTlzSPQYx7oK1Et5xQdsc4hE6K9QB33DijZOWjUR8nJEcT2fR+AV/8Q5MXGMG7nOLKN2bbshSRVSDI5kSQb2xm9kzmH5tDmrIVuJwQWlZoLzcdisYBO+yf2wpFqrsGEaqzXKXRTDuBWpSa8ssV6O7BnbRv34AmnsYO2b1qvSWn7Fu1Vx/EUSeQqRo7qImnm3oPslENYzElEpFYis0U/9HmCiRsVziee4d2972K0GG3dC0mqUGRyIkk2dCzhGJP3TcY9xcy4P6y3+CYOeJ8bNyyoVFfITDpHc4+eHNRexKiYqapKoGX/12DUDutsrlLFYXCFHnPRjDvIM1XTQAjC1fFYnNyooq+JVr0XISycrfw0Fmc3AmNNDDmo4sDVA8wJmSMnpZSkm8jkRJJsJCY9hvG7xmM05jJjqyO6HCPGpl04l+KLsORiztpGoFMwKQ4qYtU3UAkL/f8xCVXwi1DCYx+kCsI9kKqjfqC2l3Vyuz+152nk0QVj2nW06tNkppm49txMAJ7900RQLPwa/iuLTiyyZdSSVKHIPZwk2UBaXhpv7HyDlLwUxh51xyciDRydOVfnRSxmgcHyX9RGDbXcW3FIcwmAdh074eF3m2fnSBWHojDo1UmoFIVMJZdTdvE0dutC7o3tCEsGF6M0GPuORLEIpm9zxJArWHRiERvCN9g6ckmqEGRyIkkPmdFsZOKeiUSmR9I2oRKddiYCkDpiNklxeahN4aRmRNHUoweHdBHkKyYqVapE586dbRu4VCY6nY4Xhg0D4Kw6Fgdnf9ztAtDnrkEIwQldG1TVqqNLSOXjv6xJ5+yQ2YRdD7Nl2JJUIcjkRJIeIiEEcw7NITQ+FDezgQmbVSAE6t79OXlBQQgT5PxOVYe65Do6Eq223mr6wgsvyGdRPYJq1apF3bp1QYH92rMEe/QgMz8HrSmM9BQz8Z1eBLUa34OXGBtfD5PFxITdE4jNiLV16JJkUzI5kaSHaOnppfwa/isqRcWCU40gLgGNpwvnzL6YLFrsjf/FaNFT160jIdqLAHTq1Alvb28bRy7dq379+qHT6UhVZRNuSKGBawdMeQcQllzOxHihdLDO4Nv1p8u0pSYpeSm8testMvMzbRy5JNmOTE4k6SHZG7OXf4X9C4B5PIdhy5+gQE4DX2LzG6JYrpOWG0ljty4cMUSTqxjx8PCgQ4cONo5cuh/29vb0798fgOPqKDxdgrBXPHHQ7ECg5pi6K3beCiIri0l/2OFt50l4ajjv7XsPs8Vs4+glyTZkciJJD8GVtCtM3j8ZgWC47zPUXrQFAIc6cFgZiRACre4gnrqqmF08iVInoigKAwcORKMp88PDpQqmXr16BAUFIRTBAd0Fmnv0IiU5HI0qlhvmAJIat0bRWDAdPcG/krujV+s5cPUA/zz6T1uHLkk2IZMTSXrA0vPTGb9rPFnGLJp6BvPC8qOYU9LRORu5WPsVci3O6A3nyUqKpZ5nVw5qLwDQpUsXfH19bRy9VB4URaFPnz7Y2dmRqEon2j6HIJeWCMtehDARZnoB+2ADAOpFP/CJ1wgAVpxdwcbLG20ZuiTZhExOJOkBMlvMTNk3hcj0SHwMXny0J5qssChQBDz3LBfSmyNEBpnJu2ng2o4j+hiMipkqlavQrl07W4cvlSNnZ2d69eoFwFHNFbxdG6HKNGLvcAKzRU1Ync+wr2xGmKD6h18xxqczYL2D52zyWRtGLkkPn0xOJOkB+vexf7P/6n70Kh3/uniVzC1xAFQa2JWQ7IEAGPQhuFAJk6sv19QpaNUaBgwcIO/OeQw1adKEoKAgLIpgv90Fgj16kBq3H0VJ5mqsmsw3l6OyU8hNUjN4yS90sPMiz5zHhN0TSMlNsXX4kvTQyORE+v/s3Xd0VVX2wPHvfT29dwIhQEKAJPReVXpHEQtYRiyjjoCiKB2kyWjE8TcwDkUUla6CSFXpvYUOoYUA6QmpL6/f3x9XgxlaQF5COZ+13lrXl3NPzhbI27n3nr0FJ1mXvI65R+cCMCE9A/cNZhxWFYaYWiQ3HEZ+VgkabTIF6ceJCuzAXu1ZADp27oSfn19lLl1wEkmS6NmzJ26ubuSpirngbibSLRa1tAlZdrBzuw2v9ycBkH3Ugw/3HKKqrCGtOI13N7+LzWGr5AgEoWKI5EQQnOB8/nnGbh8LwAt5BbQ4ZKc4w4Ck12N4/58k/nIJ2WGiJH8d0d4tOOiWjl1yEFmtOk2aNKnk1QvO5ObmRu8+yu6do5qL+PvVx56Xg8HlJAvqsZIAACAASURBVOZiG4dLonF/5BFwSOTv9OXTlIu4yDK703czY/+MSl69IFQMkZwIwl1mtBp5+9d/YLQZaVxi4vVLRWQeCQDA/+232b6pEIdDRmfYjYfshtU/hGxVIXqtnt79+iBJUiVHIDhbVFQUjRs3BmCH4Qxx/o+Rn6GUtj+9JwPbwHdQe3tjvqLGJymYSZlKMb6vjn/F2uS1lbl0QagQIjkRhLtIlmUmbXybM4UX8LfZmZ5vIetSWxxmKy4NG5JatQMZ5wuQpFSKMw5SK6gDiZoLAHTv2R0vL69KjkCoKJ06dcLXywejZOacl5Uqhpq4uO5AlmW2/pyO32ilOWD2QWgjNeZvefkAjN/yAcl55ypz6YLgdCI5EYS7aPmWcfyUth21LDPd4oY25AOKD55E0uvxHDGeXSvOKSXq7b8R5dOcfa6pyJJMTFRtYmNjK3v5QgXS6XT06/84EhLn1Bn4BjXAmHEWnf48hTkmTppr4tmtK9jtpG1V8Wb08zQqMVEs23hn5QBMxtzKDkEQnEYkJ4JwN8gyx38dw9Rz3wPwliqA+t0WkvH5PAAC3nqLXTtKsJrsGAyJ6Etkrvj7UqAqwcPFnV59e4vbOQ+hKlWq0LZtWwD26pOJ9m+LufBXZIeJQ7+koHrxbdQ+PpiTTpN3LoTpjUfga7eTJJuYtqgTFKZXbgCC4CQiORGEv8puJX/F33n7/DIsKon2ugCef3ot6VM+xlFYiCEujrz63Tl/KBvZkUNh5k6CQ1pxRpOOhMTjA57AxcWlsqMQKknbdm0JDQjGItk462PH2+GLxfYLsgxbf0oj4INRAGTP+g9eXu2Y1uAdJFlmudrMT189CulHKjkCQbj7RHIiCH+FuQjHt08yOnUDl7UawrSeTOr3A0Vr1lG0eTOSVov/uA/ZuuQ0suwgP28ZET6NSXRR6p20adGKiIiIyo1BqFRqtZonnn4SnUpLhioffWgsamMycJGslEKSXerh3r49WK2kjh5N87gXeC36aQA+dINzX3eHsxsrMwRBuOtEciIId6ooC77qwYLsvWxyc0UnaUjoPBu3Agvpk6cA4P/GGxw8LFOcb8Fq3UuQ3pXL/gaskp0qfiG0e6xDJQch3At8fX3p2bMHAMd16VQNbk1u5nJk2caen87jNuQDVO7umA4dJnfBAl5t9j7NAhtRolLxjo8Lxu+ehCPLKjkKQbh7RHIiCHci9xzM7cix7GPM8PUGYESzD4jxjSF94kQc+fno68RgfeQJjmy5jOwoxFKwHbewRsq2YZWWJwYNEFVghVKxDeKpX6seSJDkZaKadySFRRuwWRxs/yWXgOHvApA14zPsl1OZ1v5j/A1+nNHpmOzjDstfgp3/ruQoBOHuEMmJINyu1ESY24nivGTeCw7GJkl0rNaR/lH9KVy3jsINv4BGQ9CHk9m06AyyQyYnewkRoa04ZVDqVfTo3gNvb+9KDkS413Tr3wtfgxclkoWS0Gq42M5jt2eSciyX7Mi2uDZrhmwykTZmLH4GP6a3+ycqScVKD3dWuLvBupGwfgw4HJUdiiD8JSI5EYTbcWEHzO8BxVlMqRJJihpC3EIY12IcjsJC0idPBsD/lZc5keJCbmoxZtNhqnh5cs5H+cBoEFmP2EbxlRmFcI/S6XQMGPQ0alSkafIJrNqK7MxFyLKDbUtP4zNyHJLBgHHXLvKWLaNJcBNej38dgMmBQaRoNLDjX/DTP8Bhr+RoBOHOieREEMrr7G+woB9YCvkpogErNVZUkoppbabhpfci89NPsWdlo4uIQN3vefb9nIzsKMFatAVjlUjMkpVAgy/dn+lT2ZEI97CgsGA6tXkMgNOuBdQIrY1Of5ySQiv795gIGDIEgMyPpmPNyGBw7GAaBzWmRLYxIqoRVkkFB7+B718Bu7UyQxGEOyaSE0Eoj1Nr4LsBYCvhYo12TNKWAPBa/Gs0DGqI8eBB8hYtBiBo/Hi2LD2L3eZAkrYSUKM5OepidGgY8MLTaDSayoxEuA80faQFtQNqIEsy6QEe2IsPITsKOb49jZIWPTHExeEoKiJ9wkRUkoqpbabiqfPkaEkaM5s/AyoNHF0GS18Am7mywxGE2yaSE0G4laPfw+KBYLdgje7Gez4uGG1GGgU14pXYV5CtVtLHjQdZxqtvXy7JVbl8Kg/kS+jUdi66KolMz/Zd8QsOqNxYhPuCJEn0/duT+Ko9KFFZsQbXQmfYhizLbF54moDxE0Grpei33yhcs4Zgt2DGtVDK3c9N38qerhNBrYeTq2DRM2AxVnJEgnB7RHIiCDeT+J2yC8Jhg9j+/F+txhzNOY6nzpNpbaahVqnJ/eorzElJqL298Xh9KNuWnkaWLajZTWaAJwANg+sQ275RJQcj3E/0LnqefGoAWllNrtaETetKUdE+8jKMHDurxf/VVwFInzQZ25UrdIroRL9a/ZCR+SD5e/Kf/BK0rnDmF/juSTAXVnJEglB+IjkRhBvZOxd+/DvIDmj4HLua/415x+YDMKHlBILdgrFcukTW/ynbNwNHjGDXL1mYjTby8lZTHBCKVbITpPah24t9KzEQ4X4VXKsKXes/AkCmh4TONRnZUcyBtRdQ9XoWfa2a2HNzyfz4YwBGNBlBhGcEmcZMxqf+gvzsctB5QPJWWNAXSvIqMxxBKDeRnAjC9eybBz+/rRw3fZX8jh8yascYAPpH9eexao8hyzLpEyYim0y4Nm1KflQbknZnYLVewL2aN4UaKwZZy5NPD0Cj11ZiMML9rEHvljTwiALAGBrClaKV2G0ONi0+S9D4CQDkL/+e4j17cNW6Mq3tNDQqDb+k/ML3ljR4fgUYvOHSXvjmcTAVVGY4glAuIjkRhP91YAGsGqYct3gTun7E5L1TyDRmEuEZwfDGwwEoXLuW4q1blRL1o8by24JjyLIViz6RPFcVkizRu1Fn/GoGV2Iwwv1OUkl0G9yPYHywSQ70keGYTIdJP5tPsjEI76cGAJA+bjwOi4W6fnV5q8FbAHy09yPOu/vCC6vAxQcu74Nv+4O5qDJDEoRbEsmJIPzZocWw8h/KcbPXoNMk1iavY835NaglNVNaT8FV64q9oID0KUqJer9XX+XgETvGPBtF9o0YA3wAaO0VS+0e4jkT4a/Tehl4ou/juMo6jBoHBGThcBSxZckp3Aa/iTrAH8v58+R88V8Anq/7PM1CmlFiK2Hk1pHYAmNg0I9g8IKLu5SdZ+IhWeEeJpITQfjD0eXw42uADI1fgi7TyDBm8uGuDwF4Oe5lYgNiAcrUNJG7PU3iLylY5QvYQl1AglpyCO0Gd0dSSZUYkPAg8Y+vQrfa7ZFkiSJ3HcWardgtMtt/TiV45EgAcv77X8znzqGSVExqNQkPrQdHc44y58gcCK0Pg34AvSdc2AaLngZrSSVHJQjXJ5ITQQA48RMsf1l5+LXBIOj2MTIwdsdYCiwF1PWryytxrwCUqWkSOG48q+YkIssWjL7nsalk/B0e9H6qHxpPfSUGJDyI6vZvTktDDACmADdM6iOcO5hNTlhj3Nq1Vba1jx2H7HAQ7BbMyOZK0vLFoS84nnMcwhrBs8tA5w7nNilb5EUdFOEeJJITQTi1Bpa+CLId4p+Gnv8ClYpFpxaxI3UHerWeKW2moFVpr6lpcs4YijFXpthzHxa9CoOspUdcB9xjRD0T4e6TNCrav9yTaHsoSFDin4dVlcOWhUn4jRiN5OKCcd8+8r//HoDu1bvTsVpHbLKNUdtGYbaboWozeGbJ1W3GS54Hm6WSIxOEskRyIjzczm+BJc+Bwwr1Hofe/waVivP550nYlwDAsEbDiPSKBChT08Tl5SHsWnkOo+EEJjcHkizRwRBLtb71KzMi4QGn9Xeha4+uBDu8saug2PcYBXlFrFp5loB/KM9LZfzzY2w5OUiSxOjmo/E1+HIm7wz/d/D/lEkiWsHTi0BjgKQ18MOrohePcE8RyYnw8EpNhIXPgN0CtXtA3y9ApcbqsDJy60hMdhPNQ5rzdO2nAcrUNAl4bwTL5yVSJKdi9FI6DTexR9Lo1U5IavHPSnAu72bhPFalCe6yAasGCj0PkHHCSka9tujrxODIzydj6jQAfA2+jG8xHoCvjn3F/oz9yiSR7eCpb0GlhWPfw5oRIMuVFJEglCV+igoPp5yzSs0HSyFEtIHH54JaqUUy98hcjuYcxUPnwYetPkQlqa6pabI2Q0Nxnpki71MgQW1bKC16t0Pja6jkwISHReRzzehAHTSyCouLmRKPM/wwczcBY8aCSkXBqlUUbd0GQIeqHehTsw8yMqO2jaLYWqxMUvMx6PcFIMHe2bD5o8oLSBD+RCQnwsOnIA0W9AFjNgTHwVPfgVZJKk7lnuKLw18AMLLZSILdlBolf65pYnzuJS7sK6bA+zCyCkLtPjSrVhefJlUrLSTh4aMyaKg7uC2tLbUBKHHPQO8NM7/bh8/AZwFInzABR4myI2dEkxGEuIVwuegyH+/7+OpE9R6Hbv9UjjdNhT2zKzQOQbgekZwID5eSK/BNP8hLAd9IGLgcDEr/G6vDypjtY7A5bHQI70D36t0BytQ08X55MF98sRNbUAp2jQ0vhyutpFpEvNC80kISHl6GcG+i28VQ3xYBQLFXEqpiDxJr1UcTHIz10iWyZ84EwF3nzqRWkwBYlrSMbZe3XZ2o6cvQ7n3lePW7SrNLQahEIjkRHh4Wo1J8KvM4uAcrNR/cA0u/PP/ofE7knsBT58mY5mOQJKVGSWZCglLTpHp1Pk+6QlCkOzZdMXpZwyOWOlR/rQWSVl1ZUQkPuZAusdT2DqaaPQBZghK/06xfchzdG28AkDPvS0wnTwLQNKQpz8YoV1XG7xhPoeVPzQDbvw9NBgMyfP8KnP2tokMRhFIiOREeDnYbLH0BLu5WqmQO+h58Ikq/fObKGWYdmgXA+03fJ8BV2Qr855ompzo8hgZvzC5ZSLLEo9ZY/B6tgmuoT0VHIwhl1PrHIzS2VsHX4Y5DbcMnSubrPal4dOwIdjtpY8ch25XdOEMaDiHcI5wMYwaf7Pvk6iSSBF2nQ91+yu61RQPh8v5Kikh42InkRHjwyTKsHg6n1ylbJ59ZAkF1S79sc9gYs30MVoeVdlXa0SOyh3La7wWtADz69GHlwQwk/ysAtLJF4+IPVTqKbcNC5VPrdYS92ID25tq4yDrs2mJ0ejWew95D5eaG6fBhrixWkmwXjQsTWioNA5efXs7O1J1XJ1KplV1rkR3AWqxcabxyoTJCEh5yIjkRHnw7/gX7vwQkZVdO1bLPh3x9/Gtld47Wo8ztnJz58zGfPo3ax4fc7gMIjnIDoJ6tKgE2FbXf6FrRkQjCDflGV0Vb38BjljjUsooSTRZLV24nYJjSxDIr4VOsGZkANAluwoBopWHg+B3jMVr/1GdHo4MBCyA4FoqzlEaBJXkVHo/wcLuj5GTmzJlUr14dg8FAo0aN2Lp1603H5+Xl8cYbbxASEoLBYCAmJobVq1ff0YIF4bYc+xE2jFWOO0+BmB5lvnwu/xz/PqjULnmv6XsEuQUBYLl4kex/Kw8S6ocOZeWva0ByEG73p64pkJAXG6LV6youDkEoh9pPPYpDn0cbq1Li/mLeCRIOnkEdHY2jqIiMaVNLx77d6G1C3UJJLU7l0/2flp1I76FcYfQIhexTsGSQqCIrVKjbTk4WL17M0KFDGTVqFAcPHqRNmzZ07dqVlJSU6463WCx07NiR5ORkli1bxqlTp5g9ezZhYWF/efGCcFMX9yqVLwGavgLN/17my3aHnTHbx2BxWGgd1preNXoDlKlpUlCrJt8lJWPDjK/DnXaWaEwNbATWrlnR0QjCLUmSRMxb3fAy24m3VQNA4yYz3WoDtZrCNWsp2rwZAFetK+Nbjgdg0alF7E3fW3Yyz1B4donSh+f8FvhpiCjSJlSY205OEhISeOmllxg8eDAxMTHMmDGD8PBwZs2add3x8+bNIzc3lx9//JFWrVpRrVo1WrduTXx8/F9evCDcUO55WPgU2EwQ1QW6TFMe+PuTb058w+Gsw7hr3RnXYlzp7ZzCNWso3rYNWaNhvl8gZrsRg6yloyWOy/oz1H+6V2VEJAjl4u7ri0ffasSU+FPNHgAqCIpvQGJ0NADpEybiMCq3cVqEtuDxWo8DMG7HOEps/9OlODgW+s8HSQ2HvoMt/6zIUISH2G0lJxaLhf3799OpU6cy73fq1IkdO3Zc95yVK1fSokUL3njjDYKCgqhXrx5TpkzBbhd9HAQnMeYq98n/KLL2+FzlQb8/Sc5P5vODnwPwbpN3S4utKTVNlEvfS2PrERQRjkqW6GSJJ6fkPA2GPIGkEo9qCfe2mq1bkFE1ndbmKHwd7mj1anaGhGHy88Oamlpa+wTgncbvEOQaxMXCi6X/Jsqo1fFqkbaNk+HwkgqKQniY3dZP2ezsbOx2O0FBQWXeDwoKIj09/brnnDt3jmXLlmG321m9ejWjR4/mk08+YfLkyTf8PmazmYKCgjIvQSgXmwUWD4Kc0+BZRblvrncvM8QhOxi7Yyxmu5mWoS3pW7Nv6dcyExKwZ2dzNDoa+fffNNtZ6yAb8wh+Jg5PP9FtWLg/tHh1IEn2vXSyxOMi6/AN8OWrWjWRgZz5X2E6lQSAh86DcS2UXWnfHP+GxMzEaydr8hK0VJoKsuINSN5eQVEID6s7+hVQ+p/L47IsX/PeHxwOB4GBgfz3v/+lUaNGPPXUU4waNeqGt4EApk6dipeXV+krPDz8TpYpPGxkGda8Cxe2gc5DuV/uGXLNsCWnlnAw8yCuGlfGtxhf+nf3j5ommQEBHImLBaCBrTqBZh35dY3UbNaiQsMRhL9CZ3ChyT+e4lLBYR6zxKGSJbwjItjQoD7YbKSPHYvscADQpkobetXohYzM+B3jsdiv8/DrYxMhppfSKHPJILHFWHCq20pO/P39UavV11wlyczMvOZqyh9CQkKIiopCrb56WT0mJob09HQslus//f3BBx+Qn59f+rp48eLtLFN4WO2dA/vnAxI8Ma9MLZM/pBenM+PADACGNhpKiLuSvPxR06TI3Y2NrVqiUquJtAdSzxzCEXbQ5oXnKzAQQbg7AiMi8e1RC0dxDm2tdQC4Eh1Ncq1alBw6RN6Sq7do3mvyHr4GX87mn2Xu0bnXTqZSKTVQQuLBmAOLngFLcUWFIjxkbis50el0NGrUiA0bNpR5f8OGDbRs2fK657Rq1YozZ87g+D1DB0hKSiIkJASd7vpbMfV6PZ6enmVegnBT57fC2t97gzw2DqI6XTNElmWm7J5CsbWY+ID40joPoNQ0KUxOZnO7dmAwEODwpLWlNrtyfqbDkL+j1ekrKhJBuKsadO1JWuhlgsy60h08exs1JNvPj8xPErBlZQHgpffi/abKv6HZh2dzLu/ctZPpXJVGmW4BkHEUfvy72MEjOMVt39Z5++23mTNnDvPmzePEiRMMGzaMlJQUXnvtNQCee+45Pvjgg9Lxf//738nJyWHIkCEkJSXx888/M2XKFN74ve+DIPxlV5JhyXPgsEFsf2g19LrDfkn5hY0XN6JRaRjXYhwqSfnrb7l4kcyZs9jZsgVFHh64yXo6WuI4nPMbdQZ0JKBqRMXFIgh3mSRJdHzjTfYbfyXeUoVq9gAcwPb27Sm028mYOq10bJeILrQJa4PVYWXCzgk4ZMe1E3pVgQHfgEoLx1eIHTyCU9x2cjJgwABmzJjBxIkTqV+/Plu2bGH16tVUq6Zk5CkpKaSlpZWODw8PZ/369ezdu5e4uDjeeusthgwZwvvvv3/3ohAeXuYiWPgMlORCSH3o9fk1W4YBCiwFTNmtdBb+W72/UcunFnC1psnB2rVJDwlBI6voZInnUv4R5Fo66nfqXqHhCIIzuHh40u4fL7MraxVtLbXxdbhj0mrY2qY1OevXU/R7IU1JkhjdfDQuGhcOZB5g+enl15+wanPo/ntfno2T4cSqCopEeFhIsnzvX5MrKCjAy8uL/Px8cYtHuMrhgKXPwYmfwC0QXtkEXtcv7jdx50SWJi0lwjOCZb2WoVcrt2kKVq9m879nsr9JYwAes8SiKypkv3kTz//zM1w9vSooGEFwvu1LviF3wxlq+bVihX4vJZKFsEuXaJ98gRo/rUTl4gLAguMLmL53Oh5aD1b0WVHaCPMaq9+FPf9VCrW9tAGC6lRgNML94E4/v0XBBuH+tWW6kpiodcpl5hskJvsz9rM0aSkA41qMK01M7AUFHJw5iwONGgLQ2FoDH5PErqxV9H5nhEhMhAdOi8efpsC/mIyCk6U7eC5XqcIBXx+yZ/2ndNwztZ+hnl89Cq2FTN0z9cYTdp4CEW3AUqQUPTTmVkAUwsNAJCfC/enUGtj0+w/N7glQtdl1h1nsFibsVDqwPl7rcRoHNy792umEBLbH1kNWqahhDybaEsDWjOW0eOZZQqNinB6CIFQ0lVpNr+EjOFy8E4xXSnvwnKhTh/0bNmBKUmqfqFVqxrccj1pSs+HCBn5L+e36E6q18OTX4F0N8i7Asr+BQxTYFP46kZwI95/c8/D9n3rmNBx0w6Gzj8zmfP55/F38ebvx21en2LWbnwsKsOj1BDo8aWmpxY6MH/CNjqJxjz7OjkAQKo2Hnz89hw1nR+ZKgs36qzt4Gjfi0JSppbVPon2jeaHuCwBM3j2ZIkvR9Sd09YWnF4LWFc5thE3Trj9OEG6DSE6E+4u1RCkAZc6HKk2h040rDZ+5coY5R+YA8H7T9/HUKfc77WYzixctpNDTEzdZz2OWOA5mr6dQY6L38OE3LCgoCA+KiPoNqdelJ1vSlxFrDlV28KjV/BYcRMp335WOey3+NcI9wsk0ZvLZgc9uPGFQXej5+9e3TIekdU6OQHjQieREuH/IMvz8DqQfAVd/pSGZ5vq1chyygwk7J2Bz2GhfpT2dql2te/L9p5+S4e1dujMnOW8/F4pP0vf90ehd3SooGEGoXO0HDUQfHMrOzBW0tUTj63DHbDDww4EDGFNTATBoDIxtMRaAxacWX7+0/R/inoQmLyvH37+ibPEXhDskkhPh/nHga0j8FiQVPDH3hg/AAiw9tZTErERcNa6Maj6q9GrIrvXrOWYyAdDeWg9jUSpHrmylaZ8XCIuqVSFhCMK9QFKp6D92JDmOfA7nbCztwZPn6cnimTNLC2c2D2lO7xq9S0vbW+3WG0/aeTKENQZTnlJ7yGqqoGiEB41IToT7Q+pBZdsiwCOjIbL9DYfmlOTw2UHlEvNbDd8q7Th84cIF1m1XGpY1ttbAs0Rmd9bP+FdrROsB4jkT4eHj5uVFjyEjOFd4lMv5V3vwXNBoWDN/fum44Y2Hl5a2/+r4VzeeUKOHJ78CF19IO6T0uhKEOyCSE+HeZ8xVfguzmyGqK7QadtPhn+7/lEJLITG+MTwV/RQA+fn5LF6wAFmSiLQHEmUJYFvGUiSdDwPGjBDPmQgPrZqN44hpN4BDuZuwFWeV7uDZm5JC4r59AHgbvBneeDgAXxz6gkuFl248oVcV5comknK188ACZ4cgPIBEciLc2xwO+OFVyEsBnwjo+x+lAdkNHMw8yIqzKwAY3Xw0apUam83Gwm+/xWiz4eNwp6Ulim3pSylx2Oj59kgMHq4VFIwg3Ju6vPYU7gFx7Mr8iQCTpnQHz4qffiptvNojsgdNgptgspuYumcqN63fWeMReGSUcrx6uHIVRRBug0hOhHvbjs/g9HrQGODJBeDifcOhNoeNSbsmAUpNk7iAOGRZ5ueffyY9MxO9rKGjNY79mWu4YskkruPfiKxfs6IiEYR7lkqlov+YETg03mxJX0pdUzDV7AHIksS3X39NXl5eaWl7jUrDlktbblz75A+t34FancFmgqUvgLmwQmIRHgwiORHuXRf3wK8fKsddp0NI3E2HLz61mKQrSXjpvRjScAgA+/bt4+DBg0gydLDWIzlnH5eMp/AJe5RHX+ji7AgE4b7hE+RJhxfeocRhY3vGclqbo5QePFYr3377LWazmUivSF6s+yIAU/dMxWg13nhClUq50ukVDrnnYNUw0cFYKDeRnAj3ppIrsOwlkO1Q73Fo+NxNh2cZs/i/g/8HwJCGQ/Ax+HDhwgVWr14NQGNbTewFGZzI34FaH0Xf915GpRZ//QXhz+IfrUNEg4HkWjI4kLW2dAdPVlYWK1asQJZlXol7hSruVcgwZjAzcebNJ3T1hcfngKSGI0uV3XaCUA7ip7Nw75FlWPkW5P/+nEmPGdftNPxnCfsTKLIWUc+vHv1q9lMegF20GFmWibQHUqVQYk/WaiSVH+0GvY5PsKhnIgj/S5Ikur/RDVefR7lkPMW53N2lO3iOHz/Orl27MGgMjGw2EoBvTnzDqdxTN5+0anPooIxn9buQdYvxgoBIToR70b65cGIlqLTwxJdguHkny73pe1l1bhUSyj1x2SGzdMlSjCVGfBzuNC0KYWvWChyShqrxg6j/aI0KCkQQ7j8Gdy1dXn8Wta4uJ/J3UZKfQjObUgNow4YNpKSk0KZKGzpW64hdtvPhrg9xyI6bT9r6bWX7v9UIS19UKj0Lwk2I5ES4t6QfhbW//5b12HgIa3jT4VaHlSm7pwDQP6o/df3rsmHDBi5dvoRO1vBISRTbslZgdpTg5teTrn9vg6QS24YF4WaqxwVQv8tzSOpg9uasI6jQQaQ9CIfDwdIlSygqKmJEkxG4alw5lHWI709/f/MJVSro+19wC4DMY7BuVMUEIty3RHIi3DssxbDsRaWeSa3O0OKNW57y3YnvOJN3Bh+9D281fIvjx4+ze/duANpaanMk8xfyrdloXNrT+ZXuuHnpnR2FIDwQWvevTWCNATgkA1uzVtC4KBBvhyuFRUUsW7oMf4M/bzZ4E1BqC+WU5Nx8Qo8g6PuFcrxvLhxf4eQIhPuZSE6Ee8fq9yA7CTxCoM+sWz5nklF89YG8QHbpAQAAIABJREFUYY2GYSuy8eP3PwAQa6tKXtYR0kznUOvrU79TD6rHBzg9BEF4UGh0arq+1gKDV28sDgvbslbQviQKrawm+UIyGzdu5OnaT1PbtzYFlgIS9ifcetKaj0Krocrxin/AlQvODUK4b4nkRLg3HF0Oid8ofXMenwNufrc85ZN9n2C0GYkPiKdbtW4s/m4RFpuVIIcX/tkFnCrcj0pTnYDq3Wj5hKhnIgi3yy/MndYD2qB17UShNZcjmRtobYkGYNu2bZxJOsOY5mOQkFh5diV70/feetJHRkOVJkpn8eWDwW5zchTC/UgkJ0Lly7+k1EAAaPMORLS+5Sm70naxJnkNKknFqGajWPPTajJzsjDIWurnebL/ym9Ian/0Xj3o/HIsWp3ayUEIwoMprkMVqjdsjdrQjEzTBa5kJFLXFg7AD8u+p4q6Cv2j+gMwadekmzcGBFBr4fG5oPOAS3tg26fODkG4D4nkRKhcDgf8+Hcw5UNoQ2g34panWO1XH4IdED0AU7KJxCOHQIbmxeHsy1qDLBnQufelZb8Y/Kt4ODsKQXhgSZLEo8/H4BHQDpU2irPFh/HJyiHQ4YXZZmHJt4t5Pe51fA2+nMs/d/PGgH/wqQbdP1aON0+Dy/udG4Rw3xHJiVC5ds2E81tA6wr9Ziu/Vd3C18e/5nz+eXwNvgwIHcDPq1YBEG8JJyn9FywOKzr3PlStV434R8KdHYEgPPBcPXU8+nwdtG6dkdRBHM7bSr0rLuhlLek5GezZsKu0MeB/Dv3n5o0B/xA3AOr2BYcNvn9FeSBeEH4nkhOh8mQcg18nKMedp4D/rZ8LSS9O54vDyhP/Q+OH8vPCldhkO2F2X4rTEim05KJ164ardziPPh8jtg0Lwl0SEetP3CPV0bn3BsmVg1nraFQUBMDuxL3UNNagSXATzHYz0/dOv/WEkgTdE8AjFHLOwPoxTo5AuJ9oKnsBlUWWZUqs9spexsPLZsKwbDAquwV7zc6YYweC5dYPxk3ZPY0SWwnxAQ2w77aSa8zHVdbhl5nL+ZLzaFzbotbVos3AaCQXNcZyzCkIQvnU7xHB5dN5ZCf3xVq4kDNpv1Lb0I6T2nRW/PAjrz37JgcyXmLjxY1sSN5Iq9A2N59Q44mqx+cYFj4O++ZiinwMR81OFROMcA0XrRrpFrskK4ok37Tv9b2hoKAALy8v8vPz8fS8ebXQ8jJabNQZu+6uzCXcvlGab3hZs5os2ZMu5o/IweuW56jdknCtOg9ZVlH73CvUU2WBDPXzvTmb9gtqbR00bp3ZbbCx1UUkJYLgDN52iecK9WgsZ7EWrcRbH0Rx9RhyVUWoHZ5863UWrf8WHBY/is8NBfnWt2rHaBbwkmbNbf08EO6+4xM746q7u9cs7vTzW9zWESpcS9VRXtYoDflGWF8p3w8iyYYhaCUA3pkdqC/lAlDT7Mf5tI1opUA0bh25rHGwzSASE0Fwljy1zDpXK2pdTTSubcizZOCdmoZWVmNXFdDjSjwOqycqXQ46vy3lmnO6bQCnHFUIkAqYpp0D3PO/MwtO9tBeORG3dSpJSR6GOW1QFaZibfAC1q6flOu0L4/N4T+H/02ALpAnzvUi03oFf4c78uk9yDYHKp+/YfBwp/d7jXDzeTCqwNrtdmw2m2gz/6CQJDQaDWr1g7GtfeeS05zYmoqjaDVW2ykCgptxzseOJEPdJjFMyJmEXq1nUbflhLqH3XI+KeMohvkdkewWzF0/xd7g5p3IhbvPGbd17vTz+6FNToRK8sNrcGgh+NaA17aC7tbdgS8XXabPj30w2U18kDeUpCsX0cpq/FNSMBWmo/L5Gyq1Fz3+EU+1urcu3navk2WZ9PR08vLyKnspghN4e3sTHBx8z9zbv1M2q53l0/eTlZKPnPctFrLxiGhLqosRV/Skxqbya9EmOoR34F+P/Kt8k27/F2wYAzp3+PsOZcuxcF+708/vh/aBWKESnFytJCaSSumxUY7EBOCjPR9hspt4wTiApNyLIEFAdiFFxanoPfqB2ouGXao9EIkJUJqYBAYG4urqet9/iAkKWZYxGo1kZmYCEBISUskr+ms0WjWdX67Hkkl7sHg9iS53DsaU3bjXbEyR2kzsqRi2h+5k48WNbLm0hbZV2t560hZvwKnVkLITVr4Jg1YoTQOFh45IToSKYcyFVb/31GjxJoQ3KddpWy5tYePFjdQx1sCergbJRoBRRWH2cTzUzbHqqxMS6UmzntWduPiKY7fbSxMTP78HI9kSrnJxcQEgMzOTwMDA+/4Wj3egKx2ei2H9nGPIPgORrszDcOkMxqpVuWjJZNiVV5jq+zlTd0+lWUgz9Opb3HJVqaH3v2FWK6X+0b650PTliglGuKeIlFSoGGtGQFEG+EdBh/K1SzfZTEzdPRVPqxsdMx7BKJlxs2koSdmHtzUcq1crDAaJTi/XQ6V+MP4qW61K6W9XV9dKXongLH/82f7xZ32/q9U4iHptw1CpvdG698ZSnIHfFaWg2tm8dPrndeNS0SXmHZ1Xvgn9asBj45XjDeMg97xT1i3c2x6Mn+jCve3ET3BkiXI7p89/QGso12lfHv2S1MLLvJr2LJfIRSVLqC+dwNfiSknAE4BMp1fjcfcp33z3E3Er58H1IP7Ztu5fi4BQPbKhBu7qZpRkHMfTLGGXHPjmBFKnOJK5R+aWr3IsQNNXoForsBbDijeVNhfCQ0UkJ4JzFedcberXaghUaVSu0y4WXmTOkTk8m9GTizblwVCPnBwMRhMlfs8hSRLNe1QjPMbXWSsXBKGc1FoVXd9shF5jx+rVCh9HBPaURDQOiWxVIY9n9MDFrOOjvR+Vb0KVSrm9o3WDC9tg72znBiDcc0RyIjjXmnehOAsCYqD9B+U6RZZlpu2ZRuMrdfAo9scq2XE12bFmJqNx7QdqA9UiNDTsXsPJixcEobw8fA10eaMBkuygxLcvASpf9GnKLZkTXOaNSwPZkrKFLZfKV/sE3+rQ8ff2Fr+Mh5yzzlm4cE8SyYngPMd+hKPLQVJDn5mgKV/9kU0XN3Hu7Cm6Zj5ChioftQMMOckE6x/DagjBQ2Ok09CWD+TlcUG4n1WJ8adJe18kSaLY8AQBGh0uBYXIElxyFDAwswdTd0/FbDeXb8LGL0FEG7AaYcUb4vbOQ0QkJ4JzFGfDz+8ox62HQVjDcp1WYithxs4Ehl56nsPqFAB0mRcJNzSg0K0earuZbm83R2cQG83uJzk5OQQGBpKcnFzuc5544gkSEhKctyjBKRo/1YBwrwJQ6zGbH0GTfQmtzUGRZCKkMJywNJ/yPxz7x+0dnbuyvXj3f5y7eOGeIZITwTnWvg/GbAisA+3eK/dpcw7Pod+Z9pwkA4ckoyssIDokllRrfQDadHDDP9LfWasW7oKhQ4fSp0+fMu9NnTqVnj17EhERUe55xo4dy+TJkykoKLjLKxScSZIkuozpgrs1B5suEH99RxzJx0GGM+p0+qd3Z9X+H8v/cKxPNej0oXL824dwJdlpaxfuHSI5Ee6+pPVwZKmyO6f3/5X7ds6Fggtc3noS9xIfrqiKUNnsFKZlkn45BoAow3nqPlOOQk5Cpdq7dy9NmzYt/e+SkhLmzp3L4MGDb2ueuLg4IiIi+Pbbb+/2EgUn07kb6Py3KNS2EorUkVTzb4c2OxWA/erzvJnyNB/v+mf5J2z04tXbOz8NFS0dHgIiORHuLnPh1d05zV+HsPLtzpFlmbm/zKRX+qMc+f12Tt6ZE9T0fga7Sotv0Rnaj3vcWau+LxQXF9/wZTKZyj22pKSkXGNvl9VqRafTsWPHDkaNGoUkSTRr1ow1a9ag0Who0aJF6diFCxdiMBi4fPly6XuDBw8mLi6O/Pz80vd69erFwoULb3stQuULbhVP8/A0AApNdTHIQWhMJVgkGyn2fOrsC2Lzxc3lm0ySoOdnoNbDuY1waJETVy7cC0RyItxdv34IBZfAuxp0GFnu0zae+ZVOBxuyQ5cEEpjTU6kf/iImhwEXYwYdB9ZE6+PtxIXf+9zd3W/4evzxsolbYGDgDcd27dq1zNiIiIjrjrtdarWabdu2AZCYmEhaWhrr1q1jy5YtNG7cuMzYp556iujoaKZOnQrAhAkTWLduHWvWrMHL62qX6qZNm7Jnzx7M5nI+QCncU+LeH0StfOXvhIujHfkpaUgOmTT1FcKLqrF59SpMNtMtZvmdXw1o/75yvO4DKMpy0qqFe4FIToS75+Ie2PNf5bjnjHL3zim2FJP7fRIXyKNIMoHZRJhnawoLXdDYjLQKOoN/l0ecuHDhblCpVKSmpuLn50d8fDzBwcF4e3uTnJxMaGhombGSJDF58mTmzJnDlClT+Oyzz1i7di1hYWW714aFhWE2m0lPT6/IUIS7RKXX03pkPwIz9yOjopbvIPLPnQZgr+YM3S60ZumO27ht1/IfEBwLJVdg7QgnrVq4F4gtD8LdYbPAyn8AMsQ/AzXKn0xs+PF7gvKD+FV3BGQZc7YaSV0FZAdxqT9QM+FT5637PlJUVHTDr/1vj5Y/mstdj+p/Gqndzg6aWzl48CDx8fFl3ispKcFguLaKb48ePahTpw4TJkxg/fr11K1b95oxf/SiMRqNd22NQsVyja1H67Yb2bDnAoWe1YgJHkSWZRMWnQs7NKep/0soF2MvEF6eDsRqLfT6HGY/opQpiH0Sors4PwihwokrJ8LdsS0Bsk6Cqz90nlzu084nnSLqQADbtCcBkErshGseBaDm2R+IHfk31LfRZvtB5ubmdsPX/37432zsHx/4txp7JxITE69JTvz9/bly5co1Y9etW8fJkyex2+0EBQVdd77c3FwAAgIC7mg9wr0h+PVXaWz+DZ05D0uRnij/LqgcDnJVRWQ7zBz45pfyTxbaQOleDPDz22ASu7keRCI5Ef66zJOw5WPluOtH4Fq+kvJ2k5WCBafYqT2NWbLiYTAQYnkUWYbgtJ3EtgzAvXUrJy5cuNuOHDlCXFxcmfcaNGjA8ePHy7x34MAB+vfvzxdffEHnzp0ZM2bMdec7evQoVapUwd9fbB+/n0k6HZFTxhB3ch4qh5WMJJnokAYAHFZfICw1gL2bNpV/wvYjwScCCi7DrxOdsmahconkRPhrHA7ldo7DClFdoF75d9QcmbOBLIeRi+ocJMCnpBFWk4xX/llii7cQ9N67zlu34BQOh4PDhw+Tmppauuumc+fOHDt2rPTqSXJyMt27d+f9999n0KBBTJw4keXLl7N///5r5tu6dSudOnWq0BgE5zBER1Hj+Z7UPqk8Y5J9yIuizAKQYJP2OG5rjRhzynkVROeq7N4B2DsHUnY5adVCZRHJifDX7J8Hl/YoFRy7f6Js+SuHtC0n0F5Ws0uTBIBLSSglGWr0plxij84mbMqHqN3v7NaCUHkmTZrE4sWLCQsLY+JE5Tfa2NhYGjduzJIlS8jNzaVr16706tWLkSOV3VyNGjWiZ8+ejBo1qsxcJpOJH374gZdffrnC4xCcw2/wS0QEm6mash6ACKkLZmMJRSoTiZqLJP17I7K9nDVMIttD/YGADD8NUZ57Ex4YIjkR7lxhBvzy+yXVR8eCV5VynWZKz6f450ts1h7HJjmwFkm45tdAYzcRf2QWQU/3we1PRbyE+8fAgQO5fPkysizzySeflL4/ZswYPvvsM7y9vTlx4gRffPFFmfNWrFjB2rVry7w3d+5cmjVrRvPmzStk7YLzSRoNodOmUvPyOgKyEpHsGgLNTZBlmSRNGkUmG0kLyln7BJTKsa7+yvNuO//PeQsXKpxIToQ7t340mPMhpD40KV/1T4fVztnPN3NCk0amKh+H3UGQsQkqZOod/S++/loChw1z8sKFitatWzdeffXVMkXXbkWr1fL55587cVVCZdBHRhI4dAh1TszHsygFndkXbaHywPM27Uk4YSVr95nyTebqC50mKcebp8OVC05atVDRRHIi3Jlzm+DIEkCCHp+CSn2rMwA49u+fsTrUHNAordS9CmNQOwzUPvENvgVnCP3ndFT/s5tEeDAMGTKE8PDwco9/5ZVXiI6OduKKhMri+/xzeDRpSOzhWRjshXgba+MwqTFJVrbpTnJleRJFGTnlmyz+KajWGmwlsOY9Udr+ASGSE+H22cxXOw43GVzujsNJP23GLc2dTdpjyJKMrsQPvSmQyMvrCcnYTcCbb+DyPzs9BEF48EgqFaHTpuJigLgDn6FVyfgV1UeW4aI6hxRtAac/24DVUo7nSCQJeiSASgtJa+Hkz84PQHC6O0pOZs6cSfXq1TEYDDRq1IitW7eW67xFixYhSdI1HUuF+8z2zyDnDLgHwaPX3wL6v9JPJiFvLmS/9jx5KiOSXYtHQRThliSqnV6BS4MG+IkHHwXhoaENCSFk/Djci9OolzgLrd0N98JIAHZpktDJPhz4fEn5JguIhlZvKcdrRoD5xgULhfvDbScnixcvZujQoYwaNYqDBw/Spk0bunbtSkpKyk3Pu3DhAsOHD6dNmzZ3vFjhHpBz9mpNk85TwOB18/FAcX4eKbN3kKezc0xzEQCP/GhC3S3U3Pl/qN3cCP3ndCSNKFgsCA8Tz27d8OrdC9/cE9RJ/xkXYxhasxc2ycFm7TH8MoI4snLtrScCaDMcvKsqvb02T3PuwgWnu+3kJCEhgZdeeonBgwcTExPDjBkzCA8PZ9asWTc8x2638+yzzzJhwgQiIyP/0oKFSiTLsPpdsJuVbXzlqGlit9nY/fEC/LRV2axVCnEZjCGEeAYStX4CKtlB0OjR6KqUb6ePIAgPlqDRo9GGhhJ0YjXR+mQ88qORHGoyVQWc0KZh+y2XS8eP3XoinSt0+32H2M6ZkFGOc4R71m0lJxaLhf37919TFKlTp07s2LHjhudNnDiRgIAAXnrppTtbpXBvOP4jnP1VaVvePaFcNU22f/k1EababNeewiiZUdtcCFLVJu7gv9CYi/Ho0gWvPr0rYPGCINyL1B4ehE7/CFQqwtZ9QmSwFveCmgDKg/MuXpz4zxoKc7NvPVlUJ4jpBbIdVg1TikQK96XbSk6ys7Ov2wcjKCjohl1Dt2/fzty5c5k9e3a5v4/ZbKagoKDMS6hkpgJY83u78tbDlPblt3Bs06+4HNGQos3jnDoDZPApiaGFejeqs8fQBAURMn4cUjkLtwmC8GBybdwYv5dfRkImcvUEwv2qoS/xR5ZkNmmPEenSgN8+nonNar31ZF2mKUUhL+6GxG+cv3jBKe7ogdj//TCRZfm6HzCFhYUMHDiQ2bNn31ZvjKlTp+Ll5VX6up3th4KTbP4IitLBN1JJTm4h/expzi7cgodrCNt/b+rnWlyVTo1ckZd/CUDotKmovb2dumxBEO4PAW++gaFePaS8HOqf+YpgbV1Udh35KiP7teepaYrlt9n/Qb7VVmGvMOigVB9mwzgw5jp/8cJdd1vJib+/P2q1+pqrJJmZmdftKnr27FmSk5Pp2bMnGo0GjUbD119/zcqVK9FoNJw9e/a63+eDDz4gPz+/9HXx4sXbWaZwt2WehN3/UY67/hO0hpsOL867woaEfxHr1YbN2uNYJTsaiwedOzRB/mw0AL4vvohbixbOXrlQydq3b8/QoUMrexnCfUDSapUH411dse/eQju/M3iU1ALguOYShQYJzREbhzasufVkTV+FwDpQkgsby98lXbh33FZyotPpaNSoERs2bCjz/oYNG2jZsuU142vXrs2RI0dITEwsffXq1YsOHTqQmJh4wysier0eT0/PMi+hksiyUtjIYYPo7lDrsZsOd9jtrJrxEbHalpzQppOmvgIOFbVq18Hrm6k48vMxxMUROEx8YAn3hyNHjtCuXTtcXFxKewbd8rd34Y7oq1cneKxSnsA8ewZ92oWjNwYDsEV7gqpe8RxftJbLp07cfCK1BrpOV473zYP0I85ctuAEt31b5+2332bOnDnMmzePEydOMGzYMFJSUnjttdcAeO655/jggw8AMBgM1KtXr8zL29sbDw8P6tWrh06nu7vRCHffiZVwfrPyEGznW/8Gsn3xAtxT3ZBcvNinUa6MaQzetM88QcnBg6jc3Qn75GMk8Wcv3CXW8jyHcIcKCgro2LEjoaGh7N27l88//5yPP/6YhIQEp33Ph513nz549e4NDge2f46gZbtY1DYXjJKZ7dqTNPbtzLrPPsVYkH/ziaq3gbr9QHYouwxFQnlfue3kZMCAAcyYMYOJEydSv359tmzZwurVq6lWrRoAKSkppKWl3fWFCpXAYoR1v3eKbTUEfKvfdPjZ/Xs4tXoztX1askl7DIckY7frGNQ4ktw5ygPRIZM+RCeeIXogFRcX89xzz+Hu7k5ISEiZxn9/sFgsvPfee4SFheHm5kazZs3YtGlTmTGzZ88mPDwcV1dX+vbtS0JCAt5/ejZp/Pjx1K9fn3nz5hEZGYler0eWZWRZZvr06URGRuLi4kJ8fDzLli0rM/fx48fp1q0b7u7uBAUFMWjQILKzb7wL5Ntvv8VkMjF//nzq1atHv379GDlyJAkJCeLqiRMFjx2Drnp1bJmZRK5cgCHMB2Q4r84kVWektqoJq//1MQ6H/eYTdZoEWldI2QlHllbM4oW74o4eiH399ddJTk7GbDazf/9+2rZtW/q1TZs2MX/+/BueO3/+fH788cc7+bZCRdv2KeRfBK/wWz4Em5+Zwbp/z6BZQHcOai9wRVUMDhU1W3tinqAURPJ+agCeXbpUxMofKLIsY7TYKuV1Ox/A7777Lhs3buSHH35g/fr1bNq0if3795cZ8+KLL7J9+3YWLVrE4cOH6d+/P126dOH06dOAsrvvtddeY8iQISQmJtKxY0cmT772it2ZM2dYsmQJy5cvJzExEYDRo0fz5ZdfMmvWLI4dO8awYcMYOHAgmzcrXW7T0tJo164d9evXZ9++faxdu5aMjAyefPLJG8a0c+dO2rVrh16vL32vc+fOpKamkpycXO7/N8LtUbm5ETbjUySdjqLNm3lWI2NSK0Uad2hP4esegXzOxK7li28+kVcYtB2uHK8fA+ZCJ69cuFtESU7h+nLPK2XqQbmdo3O94VCb1cpPn06jpi6eEhctRzVKteCLVS/ywsJzlOTkoI+OJuj99yti5Q+cEqudOmPXVcr3Pj6xM666W/+YKCoqYu7cuXz99dd07NgRgK+++ooqfyqud/bsWRYuXMilS5cIDQ0FYPjw4axdu5Yvv/ySKVOm8Pnnn9O1a1eGD1c+UKKiotixYwerVq0q8/0sFgsLFiwgIEDpZltcXExCQgK//fYbLX5/0DoyMpJt27bxxRdf0K5dO2bNmkXDhg2ZMmVK6Tzz5s0jPDycpKQkoqKirokrPT2d/2fvzuOiqtcHjn9mY1iGXURAFFABVxD3FUtxKy3bLSUzLW9miltlpqapuXFNc8vSsH7VNZfKXVNBxQVFccGNTREVENmXYbbz+2O6dElNLWUUvu/X67xeM5xzvuc5A8w8c5bn8fHxqfSz/178n5mZia/vXx9NFP4+64AA3D/8gMxPplOwaAnd57zDvsM30MkN7FOdpbtrGDt+Xo1nQGN8WrS880Ad3oUT30Fuqrlzcc8ZVbcTwt8mGv8Jt7fjI3MlWN9Qc1GjvxC95isMV0vwdWxVUQX2qs113surQ9nhI8hsbPD6dyRy67++y0d4fKWkpKDT6SoSAwAXF5dKXYWPHz+OJEn4+/uj0WgqppiYmIo79y5cuEDbtm0rjf3n5wD169evSEzAfLpGq9USFhZWaew1a9ZUjB0fH8/evXsrzQ8MDKyI/05uVzrhdj8XHjynV17BvmdP0OvxjVxPfuAVJEnGNUUeSVY3aFurD1sXzaPo5l8UaFOqzbVPAA4vg5ykqgle+EfEkRPhVkm/wYUtIP/9ive/eBM+HxvDmV076en1OrFWFyiRlVMmL6exi4TVwo0A1Pn4Y9SibcHfZqNScHZ6L4tt+17cy+kfk8mEQqEgPj4ehaLyuBqNpmKcOyUD/8vOzu6WsQG2bNmCl5dXpXn/PSVjMpno168fc+bMuWU8Dw+P28Zcp06d25ZOAG5bPkF4sGQyGR6fzkCbmIg+I4ORB+rzsf9ZmuY35qgyhWdt2+BV0oDNC+fw0tTZKO7Un8u/F/j3Nnct3jYRBm24pwrXguWI5ESozKCD7e+bH7cbAbUD77jozYwr7FyxmCCXUK5Za7mkuIGERIrzMd74phTJaMTxmf44DhBdqP8JmUx2T6dWLKlhw4aoVCoOHz5MvXr1AMjLy+PixYuEhoYC0LJlS4xGI9nZ2XdsABoYGEhcXFylnx07duyu22/SpAlqtZr09PSK7f1ZSEgI69evx8fHB+U9Npns0KEDkyZNQqfTVdxduHPnTjw9PW853SM8HAoHB7wiF3Bp0GCkPbG87N6OaKtcaulciFYl0tcllN9So9j/QxTdBv9Fi5ResyBlj3k6vwUaP111OyHcN3FaR6jsyHK4mQx2tSH0/TsupteVs3nhZ7jI3KnlGMAh5UUAEp1O8/5ukG7mom7UiDpTRXn6mkCj0fDmm28yYcIEdu/ezZkzZxgyZAhy+R9vMf7+/rz22muEh4ezYcMG0tLSOHr0KHPmzGHr1q0AjBo1iq1btxIZGUlSUhIrVqxg27Ztd/0bsre3Z/z48URERBAVFUVKSgonTpxgyZIlREVFATBy5Ehyc3MZOHAgcXFxpKamsnPnToYOHYrRePu7Pl599VXUajVDhgzhzJkzbNy4kVmzZjF27Fjxd12FbIKCcH/f/H7UdO0xDIoz6GUGbsqLOWGVTnu3pzm++WeSjx258yCuDaDje+bHOyaBXlsFkQt/l0hOhD8U34B988yPe0wD6zsXv4tZ8zUFVzMJcevDHtUZjDITmdaZ9EnMRnM+A7lGQ93Fi5Db3vlCWqF6mTdvHl27dqV///706NGDzp0706qXhj7mAAAgAElEQVRVq0rLrF69mvDwcMaNG0dAQAD9+/fnyJEjFQUZO3XqxPLly4mMjCQoKIjt27cTERGB9T1crzRjxgymTJnC7Nmzady4Mb169WLTpk0VF616enoSGxuL0WikV69eNGvWjNGjR+Po6Fgpifpfjo6O7Nq1i4yMDFq3bs0777zD2LFjGTt27D98tYT75fzaqzg8/TQYjYz8uZiz9uZE5IwynRJbKwId27Nj2cK/bhDYZSzYe0L+ZTiyrIoiF/4OmfQY3KxfWFiIo6MjBQUFolrsw7Q5wlxN0SMIhkfDHd6wk44e4tf5M2lX6ymuOis5p7yKVq4lv3QXo38uBaDuki+w7969CoOvHrRaLWlpafj6+t7TB3JNMHz4cM6fP8/+/fstHcoDIX7Hf5+ptJRLL79CeVISVxrY8+0TjWhQ3Ai1pOJZbWsOXVuLppE7L0yegVx+h+ulTv4IG98GK3t47zhoalftTtQwf/fzWxw5EcyyEiH+G/Pj3p/dMTEpzLnBjqWf42Xrj+RYm3PKqwCkqY/yzjYdAK7Dh4vERPjb5s+fz8mTJ0lOTmbx4sVERUXx+uuvWzos4REgt7XFa9HnyDUavFOKaHHqNHlWeZTL9MSoz9HG7Smunk3k6C/r7zxI85fAMwR0RbDn06oLXrgvIjkRzGWdt39oLvPc5Bmof2ufJACTyciWRfNBa6Kx25PsV5n7W6RoLvD2pixU5QZs27fHbfR7VRm9UM3ExcURFhZG8+bNWb58OYsWLWLYsGGWDkt4RKh9ffGYba5V83ScnvKiwxjlRjLl+aTaFtHCuSuxa7/j2sU79N+Ry6H3bPPjE9+KvjuPKJGcCObb69JiQGEFYdPvuNjhDWu5diGRkFq9OWidhE5moECdT7cDp/DIMaJ0dzf3zbnHOyEE4XbWrl1LdnY2ZWVlJCYmVvTtEoT/cggLw3WY+c6ct7cUkWplvqPrhCINjVNDall5sXnhXLQlxbcfoF77P/rubP9Q9N15BInkpKYz6GDnZPPj9u+As89tF7t6/iyHfvoeH00zshxlZMkLQA62Vw/S8bwJVErqfr4Qpatr1cUuCEKN5TZmDLbt2mGtk3jj10tcs00HGcRYJRJUuzdluQXsXPHFnWvwhH1ibmh6aT9c2Fq1wQt3JZKTmu7oV7/fOuwGXcbddhFtcTE/z/sMW4UGN7dWnFReBiDLcIhXfzP3qqgzaRI2wcFVFrYgCDWbTKnEa8F8lHXq4JULXfYdxWhtoFSm46h1OsGu3Uk6coDTe3bdfgCnetDxXfPjnZPNX9SER4ZITmqy0lyI+b2s85Mf3/bWYUmS+GVBJNriXJq59+GA+gIAhTbXGPZLOnLA6eWXcXrllSoMXBAEAZS1alF3yRegVtM62YBN8m5kMhkZipsUOTngaduQ3V8v5+bVK7cfoHMEaNzNfXfivqza4IW/JJKTmix6NmgLwL05tBx020WObd5Jxtk4Gji05qT9DXQyA2o7JX1/icW2HNStQqjz0SRRkEoQBIuwadoUr98vkB1wIB+d3nyBa7wyhbq1O6GSlGyY/RlGg+HWldX25i9mYG4KWPIXNVKEKiWSk5oq+zwc/dr8uPcsuE1NgOxLmez/fiX2KlfKanuQIy/CSqGi3oGf8co1YajtQr3Fi5H9XtZbEATBEhz69sXxLfMdXS9uTMTWwYAkg1jrizStHUbhjctsW7r69isHvwp1WkB5AeyddftlhConkpOa6repIBkh4Cnw7XrL7PIyPT99OhdMOjw8u3JBdR0AtxsnCLlQgt5KTsMVX6F0canqyAVBEG7hMSYCXcdg1EZo/+PPOGo0aGV6zjoWUU/TjAuxv3I6+vitK8oVf9xaHP8N3LhYpXELtyeSk5oobb/59mGZwnzF+p+YjCbWzf4/tEUX8anVgZM25kJrDWwVdN6ZCIBm+iRsGjeu0rCFx0+3bt0YM2aMpcMQagCZXE6zRSvJ87THrdBIo+hfUCusuCEvxODhh63Snt9WLiTnSt6tK/t0hoC+5i9su299TxSqnkhOahqTCXb9fo619RtQq1Gl2ZIksSfqKJkXN+Gk9uSyqwKDzERdjQston4AIO35tvg9+1pVRy4IVS46OppnnnkGDw8P7OzsCA4O5v/+7/8sHZZwBwqNBr9lX1JsI6NBcg6Ns5MBuKC8hqdnV0yGXNbOWEhZ0W3uzOnxifkL2/nNcPlgFUcu/JlITmqaxA1w7QRYaW7bdfjU3gxO716DHCOmek0okJeiUVjTfMN3WBklTjW15YmpomGW8OjQ6/UPbeyDBw/SokUL1q9fz6lTpxg6dCjh4eFs2rTpoW1T+GfqBAST+eEgjDII2HWIIKUagFO22dR1aU1ZQTzrZq9Hr/tTJ2o3fwgJNz/e+bEozGZhIjmpSQzlsPv3CrCdRt/S8OrK+VxivtuAyXAZh7rtuKrMR4GcdgnxOOQWkVwH6s6Zh42V6DQs3KqkpITw8HA0Gg0eHh4sWLDglmV0Oh0TJ07Ey8sLOzs72rVrR3R0dKVlVq5cibe3N7a2tgwYMIDIyEicnJwq5k+bNo3g4GBWrVqFn58farUaSZKQJIm5c+fi5+eHjY0NQUFBrFu3rtLYZ8+epW/fvmg0Gtzd3Rk8eDA5OXe+Q2PSpEnMmDGDjh070qBBA9577z169+7Nxo0b/9mLJTxUfV94n60vmDtd+//ft9RVOWCUmchws0ajdiM79We2LT+KyfSnBKTbh6Cyg6vH4OwvFohc+C+RnNQkR782twrX1IEOIyvNKrhRyralsehLYrB19eeKphyAjjlaaiWeIdsR4sf1pFPDJy0Rec0mSaArscx0H98eJ0yYwN69e9m4cSM7d+4kOjqa+Pj4Ssu88cYbxMbG8uOPP3Lq1ClefPFFevfuTVJSEgCxsbGMGDGC0aNHk5CQQFhYGDNnzrxlW8nJyaxdu5b169eTkJAAwOTJk1m9ejXLli0jMTGRiIgIBg0aRExMDADXr18nNDSU4OBgjh07xvbt28nKyuKll166r19HQUEBLuJC8EeaQq7g6TEL+bmDHLkk0Wr9d9ihpkiuxejdFKQyUuLWcvjn5Mor2rtDp997g/02TRRmsyDRBKWmKMuHfXPNj5+YBFZ2FbN0ZQY2LzlFyc2tyG1syXFzBCSa6xzw/G0lJWr44lUHlveYYpnYazp9KczytMy2J12r9LdyJ8XFxXz99desWbOGsLAwAKKioqhbt27FMikpKfzwww9kZGTg6Wnen/Hjx7N9+3ZWr17NrFmzWLx4MX369GH8+PEA+Pv7c/DgQTZv3lxpezqdjm+//RY3NzfAfNQmMjKSPXv20KFDBwD8/Pw4cOAAK1asIDQ0lGXLlhESEsKsWX/cLrpq1Sq8vb25ePEi/v7+d93PdevWcfToUVasWHHXZQXLauLahE1vDyY2fw2dzpXR5fAhdrVrTbaqGA/vNhRfOcKxzTtx83agURv3P1bs8K75i1xeGsSvhnZvW24najBx5KSmOBAJZXngFgjBf1zMajJJ7FqVSM6lgxik62i9/THKJOoanQj8JQqDHBY8J2dg3/dxtRF9c4TbS0lJQafTVSQGAC4uLgQEBFQ8P378OJIk4e/vj0ajqZhiYmJISUkB4MKFC7Rt27bS2H9+DlC/fv2KxATMp2u0Wi1hYWGVxl6zZk3F2PHx8ezdu7fS/MDAwIr47yY6OpohQ4awcuVKmjZteh+vjmAp77YaxU8v1uG8FzheSqLjlUIArmuMWLn4oS/dy2+rj3EjveiPldQaeOJD8+OYOeZClUKVE0dOaoL8K3B4uflxj09A8cev/civqaQmJKPX7sfk25xyhQknky3t9u5CbtSx/Ck56nZtGNBwgIWCF1DZmo9gWGrb9+COzdX+h8lkQqFQEB8fj0JRueifRqOpGOfP1YZvN7adXeWjOSaTCYAtW7bg5eVVaZ5ara5Ypl+/fsyZM+eW8Tw8PP4y9piYGPr160dkZCTh4eF/uazw6LBT2TGh0ySmFIxh5hoTnge30KLWm5yyLSavtiu2ZTfQFu5kyzJHXp7UFhv73wtKtgyHw8sg5yIcWAg9plp2R2ogkZzUBHtngrEcfLqAf6+KH188mkn8tkvoSndi8PBBq1aglpSEXsxDmZPK+o4yYoPVrOswRZSntySZ7J5OrVhSw4YNUalUHD58mHr16gGQl5fHxYsXCQ0NBaBly5YYjUays7Pp0qXLbccJDAwkLi6u0s+OHTt21+03adIEtVpNenp6xfb+LCQkhPXr1+Pj44NSee9vfdHR0Tz99NPMmTOHt956657XEx4N3et1Z6N/KLNfjOGz72QEbvuBvGfCuaLMQ+cdiCo1gcLMBLZ/aUv/McEoFHLzF7gen8CPA+HwUmgzDBy97r4x4YERp3Wqu+un4OSP5sdhn5g/6IDsy4XsWXMeY/lxdA4GtI6OyCQZ3fJrY31yE0ebW/OfrnKGNR+Gn6OfBXdAeBxoNBrefPNNJkyYwO7duzlz5gxDhgxBLv/jLcbf35/XXnuN8PBwNmzYQFpaGkePHmXOnDls3WpuWT9q1Ci2bt1KZGQkSUlJrFixgm3btt01Oba3t2f8+PFEREQQFRVFSkoKJ06cYMmSJURFRQEwcuRIcnNzGThwIHFxcaSmprJz506GDh2K0Wi87bjR0dE89dRTvPfeezz//PNkZmaSmZlJbm7uA3rlhIdNJpMxqd0k8mrbMPs5CUkqp/2B/TiZ7NApJAzeTdBpY7h6IYPYtUl/rBjQB+p1BIPW/AVPqFIiOanudk8HJGj6HHi1AkBbomf7ijPotTlolacor22+5a6dzgfn/d+R1bgW/+6tx8fRl2HNh1kweOFxMm/ePLp27Ur//v3p0aMHnTt3plWrVpWWWb16NeHh4YwbN46AgAD69+/PkSNH8PY2/w126tSJ5cuXExkZSVBQENu3byciIgJra+u7bn/GjBlMmTKF2bNn07hxY3r16sWmTZvw9fUFwNPTk9jYWIxGI7169aJZs2aMHj0aR0fHSknU//rmm28oLS1l9uzZeHh4VEzPPffcP3y1hKrkpfHineB3OO8tY/kAa+RZZ+mWUopaUlJurUJXxxNd6W+cis7gbOzvp1BlMug5w/z45A+Qfc5yO1ADyaR7OVlsYYWFhTg6OlJQUICDg4Olw3l8XIqFb/qCXAnvHgUXPySTxOYlp7h85gZa3TpKvGsjyeUEGDxpdfggepss3uh3hTK1jFW9VtGmThtL70WNotVqSUtLw9fX954+kGuC4cOHc/78efbv32/pUB4I8Tu2DIPJwKtbXuVc7jneS/On80/J5IeNYadjOpJMQp11BTttS1S2TRkwLoQ6fo7mFf8zCM5tgsCn4RVRHfh+/d3Pb3HkpLqSpD96RISEg4v51MyxbZdIT7yJwXCMUg9nJLkcd5MjbdLykcuuMfslBWVqGQMaDhCJiWAR8+fP5+TJkyQnJ7N48WKioqJ4/fXXLR2W8JhTypVM7zQdhUzBIt+LFL38JC5HfqKtvgEA5bXrUiqPw6gvYsfKM5QV/17j5MmPQSY3l7XPuPv1T8KDIZKT6uriDrhyBJQ20HUiAJcTbxK3OQ2j8QaFzlmYrNRoJGuezPfCdGUHByf04KTpMi7WLoxrPc7COyDUVHFxcYSFhdG8eXOWL1/OokWLGDZMnF4U/rlAl0CGNB0CwAcBCVg/0YJGZ0/hb/AAmYxyz/qUG3dTlKtl16qz5gqybgEQNNA8wG/TRFn7KiKSk+rIZPqjTH27t8HBg8KbZexalYhkMlJoexCTxhGlJKeHtinyUz8gn/c+n2f9B4AJbSbgqHa04A4INdnatWvJzs6mrKyMxMRERowYYemQhGpkRNAIfBx8uKHN4Zs+Vqg9S2mXqaC2yRFJoaCktg1G0xmunM3l2JY080rdPgCFFVzaD6l7LbsDNYRITqqjM+sgOxHUjtB5DAa9kR1fnqG8xECZ9UEMzs4AhOqbYn8hGvdPxzHt5hp0Jh2dvDrxlO9TFt4BQRCEh8Naac3UDua6JetSN5L5/kAUuji6FzfATlJjUltT4HgJk6mQo1svcTnxJjjVg9Zvmgf47RNx9KQKiOSkujHoYM+n5sedR4ONMwfWJpF9uQiDOp0SJ/MtkyF6X7yzcqk1vDu/ulzi5I2T2KnsmNp+qqhpIghCtda6Tmte8jf3VJoWPwu3f3+K1fXdhOmCUEpyTBpHSh0PI/1eQbsoVwtdxpmbAl5PEE0Bq4BITqqb41Hm5n52taHdCC4cvk7i/msY5KXk2SeDTI6P0Y2gUjfsn3ShsGtzFp1YBMDYVmPx0Px1pUxBEITqIKJVBLVta5NelM6KS99R9/OPcMo8Q6i+CQBldtZIzqcpLzGwY+UZjDaufzRM3fMpGA0WjL76E8lJdaIrgX3zzI9DJ5KfJyP6h4tIMiNltU+AUomLSUNXXWNsGxbj8upzfHLwE8oMZbSp04YX/F+wbPyCIAhVRGOl4eP2HwOwJnENSYocPKa9Sv0CHS0N5to4N9V5mGyzyEor5MgvqdDxXbBxgZtJ5tonwkMjkpPq5MhyKM4Cp/oYmw9mx1dn0JcbKHc/ixYj1pKKMF0LbBzzcBv5EuuT1nMk8wjWCms+6fAJcpn4cxAEoebo5t2N3j69MUpGph6citzbnVpvtaaltg4+RjeQybhpm4hBVsaJnemkpxigy1jzytGzQa+17A5UY+LTqLooy4PYz82Pn/iIg5vSyblSjNbxMkXkIZNk9NC1wEGpw/39AWSWZDL/2HwA3m35Lt4O3hYMXhAEwTI+aPsBjmpHzueeJyoxCtsgfxy61yZU3xRXkwaUSvKd45BkRn775iwl/uFg7wmFV+HY15YOv9oSyUl1EbvI3Nq7dlPSpG6c2pNBuTqHYpt0ADobAnGXbHCfGIZMLmP6oemU6EtoUasFgxoPsnDwQnXVrVs3xowZY+kwBOGOXG1cmdjGXAtqacJSkvOScerTEk1DNWG6IKwlFZKVjCKX05QW6fjtu1Sk0A/MK+9fAOVFFoy++hLJSXVQkgNHVgBQ3OYjdn97AYOyhELHRACaGrzxN9TBbVgrlA5qNqduZv/V/ajkKnPFRLnir0YXBAFITk7G3t4eJycnS4ciPGD9/PrRtW5X9CY9H8V+hN6kp9aQdjg6qemha4FMklGuKqTM4TIZ5/M4nt3FXHW79GbFe6/wYInkpDo48G/Ql2DyCGHXvjqUlZZR6Hwa5DI8jE60MzTEMaw+1g2duVF6gzlH5wDwdou3aeDUwMLBC8I/o9frq2QbAwcOpEuXLg99W0LVk8lkTO0wFQcrB87ePMvXp79GppRT+1/tcFfY08UQCECJbTrl6hsc2XyZzIDJ5pUPLjYftRYeKJGcPO6KMuHoVwCcsPuIq0n5FDmfw6jQoTGp6a5vgdrfCfvu9ZEkiakHp1JQXkBjl8YMbT7UwsEL1UlJSQnh4eFoNBo8PDxYsGDBLcvodDomTpyIl5cXdnZ2tGvXjujo6ErLrFy5Em9vb2xtbRkwYACRkZGVjlZMmzaN4OBgVq1ahZ+fH2q1GkmSkCSJuXPn4ufnh42NDUFBQaxbt67S2GfPnqVv375oNBrc3d0ZPHgwOTk5d923yZMnExgYyEsvvfT3XhzhkVfbtjYftvsQgBUnV3A+9zwKRzVubwTTyFiHZgbzdXmFjufQyYvYtd8DnXNz0ObD4WWWDL1aEsnJ4+7Av8Gg5YZLP+IOKSjRpKGzykchyQjTB2Flr8LttabIZDI2JG1g/9X9WMmtmNV5Fiq5ytLRC/dAkiRK9aUWme6nafmECRPYu3cvGzduZOfOnURHRxMfH19pmTfeeIPY2Fh+/PFHTp06xYsvvkjv3r1JSkoCIDY2lhEjRjB69GgSEhIICwtj5syZt2wrOTmZtWvXsn79ehISEgBzArF69WqWLVtGYmIiERERDBo0iJiYGACuX79OaGgowcHBHDt2jO3bt5OVlXXXhGPPnj389NNPLFmy5J5fC+Hx9JTvU3Sv1x2DZOCjAx+hN+qxbuCEYx8/2hoa4mV0BjkUOZ8hP7eQA7KPzCseWgKluZYNvppRWjoA4R8ouArHVmGQrNiVNZRSVRZlmgzAXJreERs83m6NXK0koyiDuUfnAjCq5SgaOje0ZOTCfSgzlNHu+3YW2faRV49gq7K963LFxcV8/fXXrFmzhrCwMACioqKoW7duxTIpKSn88MMPZGRk4OnpCcD48ePZvn07q1evZtasWSxevJg+ffowfvx4APz9/Tl48CCbN2+utD2dTse3336Lm5sbYD5qExkZyZ49e+jQoQMAfn5+HDhwgBUrVhAaGsqyZcsICQlh1qxZFeOsWrUKb29vLl68iL+//y37dfPmTYYMGcJ33313X+3ehceTTCbj4/YfczzrOBfzLrLs5DLeC3kP+651KUm+wZNJzflFFkehQkuBUyJnzwbhU/8F/MrXwaEvoPsUS+9CtSGOnDzO9s8Ho45DTCS7oIgixwsABBnq42usjevAQFS1bDBJJibHTqbUUEpI7RAGNxls4cCF6iYlJQWdTleRGAC4uLgQEBBQ8fz48eNIkoS/vz8ajaZiiomJISUlBYALFy7Qtm3bSmP/+TlA/fr1KxITMJ+u0Wq1hIWFVRp7zZo1FWPHx8ezd+/eSvMDAwMr4r+d4cOH8+qrr9K1a9e/+coIjxtXG1cmtzdfT7LqzCrO5JxBJpPhPqgFCls5vfQtUZnkGKyKKHZIYk/2QEqMTnB4ufnmBOGBEEdOHld5l+H4t6SXB5GQ35zCWidAJuFldKGVoQFSS2vsW5hL0X979lvis+KxUdrwaedPxd05jxkbpQ1HXj1isW3fi3s5/WMymVAoFMTHx6NQVP4b1Gg0FeP8ubfT7ca2s7O7ZWyALVu24OXlVWmeWq2uWKZfv37MmTPnlvE8PG7ftmHPnj38+uuvzJ8/vyIWk8mEUqnkyy+/ZOhQcd1WddTTpyd9Lvdh26VtfHTgI9b2W4tarcbrnbZkzD9Ed0MLtqsS0NpmkV9gz57ySTwtn4gs9nPoOcPS4VcLIjl5XO2bh9ZgzW9F4yh0OodJUY69yZon9c0o0RQS+LL5roKU/BQWHTf3zpnQZgLe9qLY2uNGJpPd06kVS2rYsCEqlYrDhw9Tr149APLy8rh48SKhoaEAtGzZEqPRSHZ29h3vegkMDCQuLq7Sz44dO3bX7Tdp0gS1Wk16enrF9v4sJCSE9evX4+Pjg1J5b299hw4dwmg0Vjz/5ZdfmDNnDgcPHrwlCRKql0ntJnE06yipBal8ceILxrUeh6qWLfYv+KL4KZ22sobEqZIpdkgh5WYwifSiWdxK6PAu2LtbOvzHnjit8zi6mQIJ3xOTP4wb1jno1QUoJTk99UHojMX4jXoCmUyG3qRn0oFJ6Ew6Ont15oVGoneO8HBoNBrefPNNJkyYwO7duzlz5gxDhgxBLv/jLcbf35/XXnuN8PBwNmzYQFpaGkePHmXOnDls3boVgFGjRrF161YiIyNJSkpixYoVbNu27a6dsu3t7Rk/fjwRERFERUWRkpLCiRMnWLJkCVFRUQCMHDmS3NxcBg4cSFxcHKmpqezcuZOhQ4dWSkD+V+PGjWnWrFnF5OXlhVwup1mzZjg7Oz+gV094FDlZOzG1w1QAohKjiLtuTpprtfajNFBPc2M96hvdQCZR6HyW/cWDKdA6mm9SEP4xkZw8jmLmklzSmkRZU8o0VwDoqm+CjUGO/Us+qB3Nh7y/OvUVZ2+excHKgU86fnLXN3hB+CfmzZtH165d6d+/Pz169KBz5860atWq0jKrV68mPDyccePGERAQQP/+/Tly5Aje3uYjep06dWL58uVERkYSFBTE9u3biYiIwNra+q7bnzFjBlOmTGH27Nk0btyYXr16sWnTJnx9zU3cPD09iY2NxWg00qtXL5o1a8bo0aNxdHSslEQJwn918+7G842eR0LiwwMfUlBurmcS8Hp3MhWXCdU3wcFkjUlRTq5jKrtuvot0dLX5ZgXhH5FJ93OvoIUUFhbi6OhIQUGBuGL+xkXKFnXnm+z5ZLsnIckNNDHUpZ2+AZkNMmn31kAATt44yevbXscoGZnbdS59fPtYOHDhXmi1WtLS0vD19b2nD+SaYPjw4Zw/f579+/dbOpQHQvyOHy+l+lJe3vwylwovEVY/jAWhC5DJZORfzyR17m6U1i78YhWHUSZhW1yPHuW7CeldB566tc5PTfR3P7//1teFpUuXVvxjtWrV6i/fNFauXEmXLl1wdnbG2dmZHj163HJOWbh3UvQctqe9zU3XDCS5ATeTA+0MjThnOkqrN8ynbYp1xby/732MkpE+vn1EYiI8VubPn8/JkydJTk5m8eLFREVF8frrr1s6LKGGslXZ8lnXz1DKlOy6vIuNyRsBcPKog6qnKyqdni76JgCUatLZJz1Nzt4dUJBhybAfe/ednPznP/9hzJgxfPTRR5w4cYIuXbrQp08f0tPTb7t8dHQ0AwcOZO/evRw6dIh69erRs2dPrl4Vh73ul3QjieNrb3LBozYGqyKsJCVP6ppxvuAwISNfQKkyF1WbeWQmV4uv4qXx4uP2H1s4akG4P3FxcYSFhdG8eXOWL1/OokWLGDZsmKXDEmqwpq5NebfluwB8FvcZlwouAdCsdy9SHM9Sz+BMY4P5AukCl1S2Zo1At/kzS4VbLdz3aZ127doREhLCsmV/lOtt3Lgxzz77LLNnz77r+kajEWdnZ7744gvCw8PvaZvitI5Zxohn2aB4lly3SwD01AUhFWaj7O5CuwEvArApZROTDkxCLpMT1TuK4NrBFoxYuF/ikH/1J37HjyeTZGL4zuHEZcbR1LUp3/b5FpVCRWFONtsmzaWNc1+2qI9zU16MqtyJ9icTCV0WgbJ+E0uHblFVclpHp9MRHx9Pz549K/28Zyohz7gAACAASURBVM+eHDx48J7GKC0tRa/X4+Licj+brvFufjGffbltyXM1XwAbZKiPbWk5V5xSafPMcwBcKbrCzCPmUt8jgkaIxEQQBOEBkcvkzOw8EwcrBxJvJrIkwdzOwKFWbZoPfopTN/fwhL4ZSkmBXp3PiYB2nH9rHMbCQgtH/ni6r+QkJycHo9GIu3vle7jd3d3JzMy8pzE++OADvLy86NGjxx2XKS8vp7CwsNJUk+X99BOnfzxKWkNrJLmR2iYHAspcOZK/ld7vjkEuV6A36flg3weU6EsIqR3C8ObDLR22IAhCtVLHrg7TOk4DzNVjj2YeBaBx524omzuQnX+OTnpzVeRihwwOe/QhfdhQTKWllgr5sfW3Loi9XQXHe7lNde7cufzwww9s2LDhLw9nzp49G0dHx4rpv7cZ1kSF27dzZfoc4lt3Q29ViEpS0Lncn9isDbR/bSBOdcyVLZcmLOVUzinsVfbM7jIbpVzU1xMEQXjQwuqH8Vyj55CQ+GD/B+Rqc5HJZPQY9g7JstPYFZfQ0FgHZHDdu4Rz+a5kvPsupvJyS4f+WLmv5KRWrVooFIpbjpJkZ2ffcjTlz+bPn8+sWbPYuXMnLVq0+MtlP/zwQwoKCiqmK1eu3E+Y1UbJ4cNcnTCRhObPUOSYBUBHvT+ns3bg2rQ+LXr0BmBfxj6+Ov0VAFM7TsVT42mxmAVBEKq799u8j4+DD9ml2UzaPwmTZMLaTkOfdyM4dGMzTYtdcDDZYFSUc6plE3Liz3Nt4vtIv7dZEO7uvpITKysrWrVqxa5duyr9fNeuXXTs2PGO682bN48ZM2awfft2WrdufdftqNVqHBwcKk01jfb8eTLeHUWWY0OuNFCCDBoZ61CQfZoCVS49R4xGJpNxvfg6kw5MAuCVgFfo5dPLwpELgiBUb7YqWxZ0W4BaoSb2WmzFl0PvJs1p2a8fh7I20lHbALkkQ2uTR1zbARTu2EHW7M/uqQ+V8DdO64wdO5avvvqKVatWce7cOSIiIkhPT2fEiBEAhIeH8+GHH1YsP3fuXCZPnsyqVavw8fEhMzOTzMxMiouLH9xeVDP6q1e5MvwtdKXlnOjUBb2iHAeTDbVuFpNSlEDvd8agcXZBb9Qzft94CsoLaOLahAltJlg6dEEQhBrB39mfj9p9BMCShCUV1590euk17OvV5tz17YTofQC44VnG5XrtyPv2W3JXrbZUyI+V+05OXn75ZRYuXMj06dMJDg5m3759bN26lfr16wOQnp7O9evXK5ZfunQpOp2OF154AQ8Pj4rpv10+hcqM+fmkv/U2hhs3OBP6KgU2BcgkGU0K7Um8GUNI32fwa9kGgIXHF3Lqhvk6kwWhC7BSWFk4ekGorFu3bowZM8bSYQjCQzGg0QCeafAMJsnExH0TySnLQaFU0XfUeArJo+j6SeqYnDDKTJxt04xylS3Z8+ZRsGmzpUN/5P2tC2LfeecdLl26RHl5OfHx8XTt2rViXnR0NN98803F80uXLiFJ0i3TtGnT/mns1Y5Jq+XKOyPRpaSQF9Ce1NoGAJqU1+J85i5q+fjS5dUhAOxO382as2sAmNF5BnXt61oqbEGo1iRJYv78+fj7+6NWq/H29mbWrFmWDkt4RHzU/iMaOjUkpyzHXJnbZMTVy5vQwW9yrfQitbPNNzIUqYo59bS5mOC1SZMoOXTIwpE/2kS3q0eEZDJx7cMPKTt+HBycORnUEr3MgKvRjqz0/cis5Dw9eiJKlYrLhZf5+IC58mt4k3C61+tu4egFwXL0ev1DHX/06NF89dVXzJ8/n/Pnz7Np0ybatm37ULcpPD5slDYsCF2AjdKGuMw4vkj4AoCgsD40bNOetLw4AkpsAUizyuZG36Gg15Px7ijKk5IsGfojTSQnj4icJUsp2rYdVCpS+48iS56LQpKjunqRcmMxT77xNi6edSnRl/Denvco0hcR7BbMmFbikLnwaCgpKSE8PByNRoOHhwcLFtza+Eyn0zFx4kS8vLyws7OjXbt2REdHV1pm5cqVeHt7Y2try4ABA4iMjMTJyali/rRp0wgODmbVqlX4+fmhVqsrjsjOnTsXPz8/bGxsCAoKYt26dZXGPnv2LH379kWj0eDu7s7gwYPJycm54z6dO3eOZcuW8csvv9C/f398fX0JDg7+yzpNQs3j5+THtA7TAPjq9FfsuLQDmUxGrxFjcHBzJ/1KDF56eySZxDGNhLxdKKaSEq786x0MeXmWDf4RJZKTR0DBli3kLDFXG5Re/4QT+mQA3PKLKSm5TmCnUJp1C8MkmZi0fxKpBanUtqlNZLdIVHKVJUMXqoAkSZhKSy0y3c+dBRMmTGDv3r1s3LiRnTt3Eh0dTXx8fKVl3njjDWJjY/nxxx85deoUL774Ir179ybp92+QsbGxjBgxgtGjR5OQkEBYWBgzZ868ZVvJycmsXbuW9evXk5CQAMDkyZNZvXo1y5YtIzExkYiICAYNGkRMTAwA169fJzQ0lODgYI4dO8b27dvJysripZdeuuM+bdq0CT8/PzZv3oyvry8+Pj4MGzaM3Nzce35dhJqhr19fXm9iblD5cezHXMy7iLVGQ78x7yNTyCm9FIe1SUWhvJR4n9ao6vmiz8ggY9QoTDqdhaN/9Nx3bx1LqM69dcpOnuTy4HAknQ6H18bxq76ILHkB9uVypNQ4atX15tWZkVhZ27Ds5DKWJixFJVfxTe9vaOH21/VihMfP7fqumEpLuRDSyiLxBByPR25re9fliouLcXV1Zc2aNbz88ssA5ObmUrduXd566y0WLlxISkoKjRo1IiMjA0/PP2rx9OjRg7Zt2zJr1ixeeeUViouL2bz5jwsGBw0axObNm8nPzwfMR05mzZrF1atXcXNzA8xHbWrVqsWePXvo0KFDxbrDhg2jtLSU77//nilTpnDkyBF27NhRMT8jIwNvb28uXLiAv7//Lfs1YsQIvvnmG4KDg5k3bx5Go5GIiAicnZ3Zs2fPfb6aZqK3TvVlMBn412//4vD1w9TV1OXHp3/EUe3I8W2b2PvNClQOnuR6mf/2+9i1xuk/0zEVF+H43HN4zPz0noqZPm6qpLeO8GDpr1/nysh3kXQ6NE8+S0K5NVnyAhQmOaYrCVhZqeg3dhJW1jbsTd/L0oSlAHzc/mORmAiPlJSUFHQ6XaXEwMXFhYCAgIrnx48fR5Ik/P390Wg0FVNMTAwpKSkAXLhw4ZbrOW53fUf9+vUrEhMwn67RarWEhYVVGnvNmjUVY8fHx7N3795K8wMDAyvivx2TyUR5eTlr1qyhS5cudOvWja+//pq9e/dy4cKFv/lqCdWVUq5kXtd5eGm8yCjOYOK+iRhNRlr2fhr/th3RF17DoUgLwP7iM2je+gzkcgo2bCB31SoLR/9oETXOLcRUVsaVd0ZizMlB3TiIPI9uxBsOA6DKTEWu19Fr9ERcvbxJLUjlwwPm2jEDAwcyoNEAS4YuVDGZjQ0Bx+PvvuBD2va9uJcDsCaTCYVCQXx8PAqFotI8jUZTMc7t2mP8mZ2d3S1jA2zZsgUvL69K89RqdcUy/fr1Y86cObeM5+HhcduYPTw8UCqVlY6qNG7cGDCXTfjf5EsQAJysnfj8ic8ZvG0wB68d5PPjnzO29Vh6/ms02RdPknftLFYNWlGs1LIvPZnu//qUm0smkT1/AVZ+ftg/8YSld+GRIJITC5Akicxpn1B+7hwK11pYPxHBlpwDmOQSquJilAU5hLRtQkDHruRqcxn520hK9CW0cm8lCq3VQDKZDNk9nFqxpIYNG6JSqTh8+DD16tUDIC8vj4sXLxIaGgpAy5YtMRqNZGdn06VLl9uOExgYSFxcXKWfHTt27K7bb9KkCWq1mvT09Irt/VlISAjr16/Hx8cHpfLe3vo6deqEwWAgJSWFBg0aAHDx4kWAitpOgvBnAS4BTO80nQkxE1iduBpfR18GNBpAvwmf8MPHYzFePQf1ArmgvEb9TDd8XnqbgrUruDbxfXzXr8Pq9/+hmkyc1rGA/P+speCXX0ChwPn1ORzLOs9NeRFyowmr6yl42ZfTddR0tAYto/aMIqM4g7qauuICWOGRpdFoePPNN5kwYQK7d+/mzJkzDBkyBLn8j7cYf39/XnvtNcLDw9mwYQNpaWkcPXqUOXPmsHXrVgBGjRrF1q1biYyMJCkpiRUrVrBt27a7nou3t7dn/PjxREREEBUVRUpKCidOnGDJkiVERUUBMHLkSHJzcxk4cCBxcXGkpqayc+dOhg4ditFovO24PXr0ICQkhKFDh3LixAni4+N5++23CQsLu+01KoLwX719ejMiyFw5ffqh6Ry6dojaDQPp1SsEZWkxqlxzj7oDynNoFS2xadUZU1ERGe+NxqTVWjL0R4JITqpY2enTZP1+94HLm1O5mpbPCeUlAKwy07CnmKdfG4BMZcWkA5M4deMUDlYOLO2xFBdrFwtGLgh/bd68eXTt2pX+/fvTo0cPOnfuTKtWlS/kXb16NeHh4YwbN46AgAD69+/PkSNHKjqPd+rUieXLlxMZGUlQUBDbt28nIiLini4cnTFjBlOmTGH27Nk0btyYXr16sWnTJnx9fQHw9PQkNjYWo9FIr169aNasGaNHj8bR0bFSEvW/5HI5mzZtolatWnTt2pWnnnqKxo0b8+OPP/7DV0uoCd4Jeoen/Z7GIBkYGz2WpLwkAgd+QBv3G6hvXEVeXk6pTEes4SzWrYejcHWj/Px5Mj+ZXuN78Ii7daqQIS+PtOefx3DtOva9XsSo6cHPijjy5MUoC3Oxu5bMwMAM6kw+SuTJJaw+sxqlXMmXYV/Spk4bS4cvVAFxJ8ethg8fzvnz59m/f7+lQ3kgxO+4ZtEZdby16y3is+KpY1eH7/t+j+uRVfz87S8kG70p9QkEmYzuumYE1vcg5/O3wGSizvRPcP6L29wfF+JunUecZDRybfwEDNeuY+Xrj8LjKU7IUsmTFyMz6FFnptPH4yJ1wobxU+qvrD5jbg41veN0kZgINcr8+fM5efIkycnJLF68mKioKF5//XVLhyUIf4uVworPn/gcHwcfMksyGbl7JNrWg+nrm4GrMQerm+ZedLGqC+SlleEybAoAWTM+pez0GUuGblEiOakiOcuXUxIbi8zaGvv+H5FZkMNJxSUA1JnpdHBKJdBdz+46fnx6+FMA3gl+h34N+lkwakGoenFxcYSFhdG8eXOWL1/OokWLGDZsmKXDEoS/zVHtyNLuS3FWO3Mu9xxjD09H3nYQz3onYnszE7m2FK1MT6zqAro8LzQ9nkXS67k6ejTGwkJLh28RIjmpAqXHj5OzxFyjxHXEbMoulxGjSkSSgbIgl4aqPDq5XeZgi/5MODgFk2RiQMMBjGgxwsKRC0LVW7t2LdnZ2ZSVlZGYmMiIEeL/QHj8eTt4s7j7YmyUNsRei+UDeT6Otiae9TqJ9bVLIJm4rLhBsvEaynoDUNVvgP7aNa5PnVojrz8RyclDZiws5Nr4CWAy4fDMYMrT7TiuTCVfXorMoMe1tJRn3GI5qXFgTO5h9CY9YfXDmNpharWsFigIglBTBbkFsfCJhajkKnZd288njVpST5NPj4YmrG5cA+Cg6gIFuQU4PDsZlEqKtm2nYOPPFo686onk5CEy1zOZhv7aNVQ+DZE7dydbKuCk4jIAtjdyeC04ixRrBe+416LMqKWTVyfmdJmDQq64y+iCIAjC46ajZ0fmdZ2HQqbg5/JrzHN1oaVpF008/ZCXFaOXGdmnOkv5ZR0uQz4CIPPTT9FdvmzhyKuWSE4eooJffqFw6zZQKHDoP4ny/DL2Kk+DDJQFBQx4bgA3cw/ydp3aFEkGQmqH8O9u/0alELVMBEEQqqvu9bszvdN0AL5z0LDUyZH+DRJxLVWDycQ1RR7nFVfRF3pj2/5JpNJSro6fgKTXWzjyqiOSk4dEn5lJ1qe/1zN5YxK6dAPHFMkUKcqR6fUE+z+F7OYKhtZxJ1ehoLFLY77o/gU2ynsrFy4IgiA8vvo36M+Hbc1tSZY7O7Isaz8vv/UC1jeLATisvEihvhh10OvInZzRnj7Nza++smTIVUokJw+BJElcn/wxpuJirEM6YCjxIVOWzxllBgDO5X74djUwVHuBHKUCf/v6LA9bjr2VvYUjFwRBEKrKq41fZWyrsYA5Qfm/M5Po2mMoilItRplEtDIRXZYW50GfAHBj6TK0NaThpEhOHoKC9espOXAAmZUVth1HUF5Wzh7VKZCBVYkdQf1aMiL+Q/MRE5kNX/f9TlR/FQRBqIHeaPYGExsNBOArXQaxruuoq+4CJhPZikISFVfQXbVG0/MF0Ou59sGHNeL0jkhOHjD9tWtkzf4MAOfXp6DPKOeA8hylcj1yg4K6dUJ4/8oI8iUDzcrLWRkaiZO1k4WjFoSHo1u3bowZM8bSYQjCI21wx0lMMpk/B9akrSc9JBFNobmx5FFlEnmUIPPsg8LJhfJz58hZ8aUlw60SIjl5gCRJ4vq0aZhKSrBpHYo2x5VkeSapymyQwLGkGSsdZ1JiLKN1mZYv1QE41u9s6bAFQfgLO3bsoH379tjb2+Pm5sbzzz9PWlqapcMSqpmBHScx/cZNFJLEusJvKfU0otJqMMlgr/I0pnw9Dq+aq8fmLF+O9vfu2NWVSE4eoKIdOyjZtx+ZygpDwwGUouOA6iwAtsX1iXPfQ77qBmGl5SzPysa+yzgLRywIjz/9QzzEnZqayjPPPMOTTz5JQkICO3bsICcnh+eee+6hbVOooRr1YoB1XRZm5aCWKfjFdSXWWl9kJjm5ihJOKi6ju2qNTY/nwWAgc9onSCaTpaN+aERy8oAYi4rImjkLAFP/kVhprdmjPI1BJqHUOVACnK6zj5fs/ZmXlYXavQX4hlo2aEF4gEpKSggPD0ej0eDh4cGCBQtuWUan0zFx4kS8vLyws7OjXbt2REdHV1pm5cqVeHt7Y2try4ABA4iMjMTJ6Y9Tn9OmTSM4OJhVq1bh5+eHWq1GkiQkSWLu3Ln4+flhY2NDUFAQ69atqzT22bNn6du3LxqNBnd3dwYPHkxOTs4d9+n48eMYjUY+/fRTGjRoQEhICOPHj+fkyZMPNSkSaiC5HDqOoltZGSvzyrG2tSKm3kY0hf4AHFemkiMvolzTAezsKTt+nPz16y0c9MMjkpMH5MbCzzHcuEFxYBA2+gacUF7ihqIImUmBXUFDYhr8yLiQUUxOTkAB0Gk0iAqwwj2QJAl9udEi0/2UzZ4wYQJ79+5l48aN7Ny5k+joaOLj4yst88YbbxAbG8uPP/7IqVOnePHFF+nduzdJSUkAxMbGMmLECEaPHk1CQgJhYWHMnDnzlm0lJyezdu1a1q9fT0JCAgCTJ09m9erVLFu2jMTERCIiIhg0aBAxMTEAXL9+ndDQUIKDgzl27Bjbt28nKyuLl/6i82vr1q1RKBSsXr0ao9FIQUEB3377LT179kSlEvWIhAesxUugqUPLvGt85/sKkk8BmTaZqMvckGTwm+oUCmwofuJNJCB7/gIMN29aOuqHQiY9BkX7/27L5apSduoUl15+hXxrK5RdxyLZObJVdQJkYJ8fyHn3kwwe3IeuWamwaTQ4esN7J0AUWxP+RKvVkpaWhq+vL9bW1gDoy418OTrGIvG89XkoKvXdqxUXFxfj6urKmjVrePnllwHIzc2lbt26vPXWWyxcuJCUlBQaNWpERkYGnp6eFev26NGDtm3bMmvWLF555RWKi4vZvHlzxfxBgwaxefNm8vPzAfORk1mzZnH16lXc3NwA81GbWrVqsWfPHjp06FCx7rBhwygtLeX7779nypQpHDlyhB07dlTMz8jIwNvbmwsXLuDv73/bfdu3bx8vvvgiN2/exGg00qFDB7Zu3VrpaM79uN3vWBAqHPg3/DYNajehYOh2Jm2fSoNd3SlxTsSo1FLPWIvuumYkZXyHV3wsDv374TV3rqWjvqO/+/ktjpz8Q5LJROaMTym2UpIZ0gt7Gw92q86ADKxL3SlXSUwYPpSunp3h4Bfmldr/SyQmQrWSkpKCTqerlBi4uLgQEBBQ8fz48eNIkoS/vz8ajaZiiomJISUlBYALFy7Qtm3bSmP/+TlA/fr1KxITMJ+u0Wq1hIWFVRp7zZo1FWPHx8ezd+/eSvMDAwMr4r+dzMxMhg0bxuuvv87Ro0eJiYnBysqKF154oUY2YxOqQKs3wEoD2WdxvBLH5/3nQ/sb2Oc3AUlGuiKHRGUGtWv3JKW2M4W/bqL02DFLR/3AKS0dwOOu4JdfyTt/jhMBjQh1CeU3q9OUy/Qo9Rrsivx4dmJLvGvVhvNb4WYSqB0hJNzSYQv/3959h0dVpQ8c/04mk96oKRBCAilEShI6CEGlsyDYEJEm8JPVlbKCaxdkRUHNKiwCixCjuwsigV2RsihdWiAEBEJLCE2BGEoKKZPMnN8fQ0aHFJKQZAZ4P8+TJ5M7Z859T86Ud+4959y7iL2DHf/3qXXGJ9k7VOz7S0U+qI1GI1qtlsTERLRay6Mxbm5u5npuveBlaXW7urqWqBtg7dq1NGrUyOI+R0dHc5mBAwcye/bsEvX5+vqWGvP8+fPx8PBgzu++mf7zn//E39+fvXv30qlTp1IfJ0SVOXtB29Gw+++w81Psg3sx5dkxxP2ymaJLzcjxTGGffQr1naMwhvbiXNF6nGa9T9OV36Cxu3eON0hycgeMN27w899iSAjy5QHvniQ5/syvdllojFo8rregY/9g/AMbmgrvmmv63W4MOMpKsKLiNBpNhU6tWFPz5s3R6XTs2bOHJk2aAHDt2jVOnjxJdLQpsYqMjMRgMJCenk63bt1KrScsLIyEhASLbfsr8K0wPDwcR0dHzp07Z97fraKiooiPj6dp06bY21fsrS83N7dEIlX8t/EenikhrKzTH2HvQjizA34+gKZRFE/8X1f+OWM3hXlZFDins0l3mAF12/NjwAns01Kos3o1Xo8/bu3Iq829k2ZZweVFC9nrrsPNK5g8Ly+O2/8MCtyvt6ChbwPa9mtqKnh+H5zbDXY66DjBqjELURPc3NwYO3Ys06ZNY9OmTRw5coTRo0dj97tvciEhIQwfPpyRI0eyatUq0tLS2LdvH7Nnz2bdunUAvPTSS6xbt46YmBhOnTrFokWLWL9+fYmjKbdyd3dn6tSpTJkyhbi4OFJTU0lKSmL+/PnExcUB8OKLL3L16lWGDRtGQkICp0+fZuPGjTz33HMYDIZS6x0wYAD79u3j3Xff5dSpUxw4cIAxY8YQEBBAZGRkNf33hLiFZ2No+YTp9s0vtm51nHjo6TDcM4OxL3SjQFPIFsfjtK7/MIeaeHNk/jwMOTlWDLp6SXJSRWeP72PTxu/IcnfH17sTu+1NC+K45jTF2VCPR0a1QGt/89+7e57pd+unwKP0w8dC3O0+/PBDunfvzqBBg+jZsycPPvggbdu2tSgTGxvLyJEjefnllwkNDWXQoEHs3bsXf39/ALp27crChQuJiYmhTZs2bNiwgSlTplRo4OjMmTN5++23ef/992nRogV9+vRhzZo1BAYGAuDn58fOnTsxGAz06dOHli1bMmnSJDw9PS2SqN97+OGH+fe//81//vMfIiMj6du3L46OjmzYsAFnZ7lIp6hBXV4y/U7+L1w1LfoX0tGHoDbeeFx7AK1y4JpdDqe8CvFxDSaxrgtbZ07BqO6NI3oyW6eSTl8/zZIjS/D9ZDsFWk+C6ncluX4RhRoDrgU+OF8LputjwUT2Nh3a5uppmNcWlBH+uBu8w60av7BtMpOjpPHjx3P8+HF27Nhh7VCqhfSxqLCvHoPUTdDh/6D/hwDkZulZ9u5esguukFn3EEqjCNE3JP30D+gKbpDUW8ujvf9Iv8B+2NtZf+SGzNapQXqDng1nNjDhhwkM/u9gLn/7AwVaT1ycvTlVDwo1BtyNXjhfa45/WF0ievr/9uDdn5kSk+a9JDERogI++ugjDh06REpKCvPmzSMuLo5Ro0ZZOywhal/XSabfB76CG6b1TFw8HOgxPBRdoQcemabZcCcd0qnj15Z8Bx0PbNHz1rY36L+qP/MPzudC9gVrRX9HrJ9W2ahr+dfY/ctudv6yk20XtpFZkAlA3Uwd4WfqY9DpyGkcSK5dAW7KGYdfW+Ds6kjP0eFo7G6eH79xBZL+abpdfIhOCFGuhIQE5syZQ3Z2NkFBQcydO5dx48ZZOywhal9gd/BtAxcPwb7PocdfAGgW2ZCW3RtxZDv4FRTxi2MKaR6FNLgRQP71s/RL8ua7dhdZeGghCw8tJKphFN0ad6OLXxfC6oZhp7H94xL3dXJy+NfDZORlkFOYQ05hDr/m/krq9VRSrqdwPvs8it/OeDV0acgg3344fLGfG/Z5qCYtybUvws3ohPuV1hQpHQ+NCMPVy/G3HexfAkV54NPa9CQTQtzWihUrrB2CELZBo4EuEyF+LCQsgq4TQWca69T1yeZcSssk47wfzRroSdWeI8OnAU6F16mfnslrLmPY4nmMvRf3ciD9AAfSD/DpgU9xd3An2CuY5l7NaeLRBHcHd1x1rrjr3Hmg/gN4OnpaudEm93Vy8t7e9zh65WiZ94fUCaGLXxcebPQgbRu25b9zZpJ2I48C/1AKHbW4KEeCb0RwweBAZO8mBEX8tigUhfmwd5HptixVL4QQoirCB8MPMyDzHPy0AtqaTnHa67T0GdeSFbP2kZ8RQFD9Ak5rL5PfuDlO50/y63938MEHn6LvomPrha3s+nkXey/tJVufbU5WbhXXN44o76jabmGp7uvkJLhOMHYaO9x0brg5uOHl6EUzr2Y082pGsFcw9Zzrmcse+n49aYeSyPMPxuDigpPS0V0fwYEbDjQKrUOnR4MsKz+0DHIzTEvVhz9ayy0TQghxT9DaQ8fnYeMbsGeBaRHPm192vbxd6PFsKN8vScYnM5SmnkbOQESzVgAAIABJREFUaH8lv3EwnD/Jmk9mM/y9jxkWNoxhYcMoNBSSmmk6O5ByLYWLNy6azhzoTWcPvJyqdkmGmnBfJyczu86sULnrly6y9aul5DVuhsHVHQdlTx99BEezHHGt40ifcQ9gp/3dOTyj0bS6H0CnF2SpeiGEEFUXNQK2vg+/HoPUzdD8EfNdIe19uHLhBgf+d5bOeeEUOR/hgvYK+f7NST93km1fLaXnuBcA0Gl1hNUNI6xumLVaUmG2PyrGyoxGA+s++xvZDfwwuHlir+zoo48gK9+VG3Z29H2+Fc7uDpYPOrURrqTcXKp+hHUCF0IIcW9w8oTIm58lez4rcXenR4MIbFOfn3IVD+lb4WvwQmntyfUP4cD2LZw78lMtB3znJDm5jf1rVpOWeYMi9zpojYrehW3wMHhwvEDRe3xLvJuWMm+7+MnTdpQsVS+EEOLOdXwe0EDKD/DrCYu7NHYaeo4Jx8nPjZR86FXYhgZFbmBvT16TENYunk9hQb514q4iSU7KkZWRzuZNmyis0wCU4qHCVvgZ6/JTnoHuz4YS2Lp+yQddPgpp20CjNS2cI4QQQtypuoEQNsB0u5SjJw5O9gx4oTWXne3JLdLStyiKOgValL2OdLd6bP9mWS0HfGckOSlH/Of/IL+uNwAd8wJpqrw5rzcS0D+QFl38Sn9Q8ZOmxUDw8i+9jBD3iR49ejB58mRrhyHEvaHzi6bfh5abF2X7Pfe6TgyaEsUxOw06ZU9/1QXXvEKUzoFdR45x+fzZWg646iQ5KUPCts2czSsEoFlOHVrZNSPPqNBFN6Zt34DSH5TzK/z0jel2pxdqKVIhRE3Jz89n9OjRtGrVCnt7ewYPHlxquW3bttG2bVucnJwICgpi4cKFtRypuC806Qy+EVCUD4lLSy3i5e1Czz9HcU6jwRkHeqkH0RQWYnBy4d9fxHIXXLEGkOSkVDk5Ofxv81bQaHDP0dDD3nT10cIOPrR7tFnZV0hNjAVDAfhFgX+H2gtYiPtYYWFhjdVtMBhwdnZm4sSJ9OzZs9QyaWlp9O/fn27dupGUlMTrr7/OxIkTiY+Pr7G4xH1Ko/nt6EnC51CkL7VYHR9XWk2KIgdFfTs3uhREgTKSaYDvv/u2FgOuOklObqGU4l+xsRg0dmgL9Ayw64YGDUVNnAh/IqTsBxYVmJYXBtNRE1l0TVQTpRSF+flW+anMt6wbN24wcuRI3Nzc8PX15eOPPy5RRq/X88orr9CoUSNcXV3p2LEjW7dutSizePFi/P39cXFxYciQIcTExODl9dv6C9OnTyciIoKlS5cSFBSEo6MjSimUUsyZM4egoCCcnZ1p06YNK1eutKg7OTmZ/v374+bmhre3NyNGjCAjI6PMNrm6urJgwQLGjx+Pj49PqWUWLlxIkyZN+OSTT2jRogXjxo3jueee46OPPqrw/06ICgsfDO6+kHMJjq4qs5inryv+z7fBqBQt7BvSJKcOALv2H+DSpUu1FW2V3dfrnGxffpJrl27gE+SJi4cD+vwikpOPcjHrChiN9CiMxM1eh9FwnSbj+pdf2dHVkHPZ9KR5oPRDv0JURVFBAXNHPWGVfU+MW4muglfOnTZtGlu2bGH16tX4+Pjw+uuvk5iYSEREhLnMmDFjOHPmDMuXL8fPz4/Vq1fTt29fDh8+THBwMDt37mTChAnMnj2bQYMG8cMPP/DWW2+V2FdKSgorVqwgPj4erVYLwJtvvsmqVatYsGABwcHBbN++nWeffZYGDRoQHR3NxYsXiY6OZvz48cTExJCXl8df/vIXnnrqKTZv3lzl/9Hu3bvp3bu3xbY+ffqwZMkSCgsL0elknSNRjewdoMN42PQu7J4PrYeW+WXYNdCT/Eh78g4a6GkfxfLc/5Hr4sDS+V/QrdVjeDV0wWhQ/Ho+m0unM3nilXY4udnG8/W+Tk7OJV8hMz2PC8evAWDUFHG1fiJoITi/LoH2Phj1OdQZ1BA7B23ZFSllepKA6Ukji66J+0xOTg5Llizhyy+/pFevXgDExcXRuHFjc5nU1FSWLVvGhQsX8PMzDSifOnUqGzZsIDY2llmzZjFv3jz69evH1KlTAQgJCWHXrl189913FvvT6/V89dVXNGhgumTEjRs3iImJYfPmzXTu3BmAoKAgfvzxRxYtWkR0dDQLFiwgKiqKWbNmmetZunQp/v7+nDx5kpCQco6MluPSpUt4e3tbbPP29qaoqIiMjAx8fX2rVK8QZWo7BrZ9CJd+grM7oemDZRat81QnbmxbhJ1nSwZourHSuBu9Np89u/fiktfIouyltEyatiplFqoV3NfJSd//a8Wl05lcTsukMN/A+ZwjqGwjrgZ7HrSLRBn0GC+vxy360/IrOrvL9CSxdzI9aYSoRvaOjkyMW3n7gjW074pITU1Fr9ebEwOAunXrEhoaav77wIEDKKVKJAEFBQXUq2e6VMSJEycYMmSIxf0dOnQokZwEBASYExMwna7Jz883J0bF9Ho9kZGmMWOJiYls2bIFNze3UuOvanIClBiHVnw6rMzxaULcCZe6EDEM9i+F3Z+Vm5zY2dnh0acR179NxrNhOO0Km7HPMY08zzTCQ1qi1eqo4+OCTzNPfJvZxkX/4D5PTlwzCwh0sSf86RByC/P5+MN40EBnQwvsjEbyEhbiPXXk7d9giqcPt3na9KQRohppNJoKn1qxloqMTTEajWi1WhITE82nYooVJwxKqTI/6H/P1dW1RN0Aa9eupVEjy2+DjjcTLKPRyMCBA5k9e3aJ+u7k6IaPj0+Jc/jp6enY29ubky4hql2nF0zJyYl1cCUV6jUrs6hn/778+skANNrhtKoXyHHjRbLt8tE0/oU+f+iP/nw2+ceuogu3nc+v+zo5ydpyjsILOVz7jx27NSdQWqhvdMenyJXcHR9h53ADjz59yq/kahocX2u63fGPNR+0EDaoefPm6HQ69uzZQ5MmTQC4du0aJ0+eJDo6GoDIyEgMBgPp6el069at1HrCwsJISEiw2LZ///7b7j88PBxHR0fOnTtn3t+toqKiiI+Pp2nTptjbV99bX+fOnVmzZo3Fto0bN9KuXTsZbyJqTv1gCO5tulzK3kXQf06ZRTUODtQZ9iS/zv0bDt1fJKpOENsckjm4P4kWB9zR5Zm+EDiF1sGxqW0cPanSbJ3PPvuMwMBAnJycaNu2LTt27Ci3fHx8vPnNIzw8nNWrV1cp2OqkjArnB+ph38CZwiI9J+1+BsA700Be2lcYr52mzvDhaBwcyq8oYTGgoNnD0ND2L6YkRE1wc3Nj7NixTJs2jU2bNnHkyBFGjx6Nnd1vbzEhISEMHz6ckSNHsmrVKtLS0ti3bx+zZ89m3bp1ALz00kusW7eOmJgYTp06xaJFi1i/fv1tj166u7szdepUpkyZQlxcHKmpqSQlJTF//nzi4uIAePHFF7l69SrDhg0jISGB06dPs3HjRp577jkMBkOZdScnJ3Pw4EGuXr1KZmYmBw8e5ODBg+b7J0yYwNmzZ/nzn//MsWPHWLp0KUuWLDGPmxGixhSvp5X0T8i7Xm7ROkOfQuOgRb/lb+Tnp+BucESvKeKk/gIanR0ukQ2xc7Kd4xWVTk6+/vprJk+ezBtvvEFSUhLdunWjX79+nDt3rtTyu3fvZujQoYwYMYJDhw4xYsQInnrqKfbu3XvHwd8JjZ0Gj4eaUOdPrZh1/isKNQbs9PkYXS5if/gAGgcHvJ68zQyJ/Cw48KXpdqcXaz5oIWzYhx9+SPfu3Rk0aBA9e/bkwQcfpG3bthZlYmNjGTlyJC+//DKhoaEMGjSIvXv34u9vWk25a9euLFy4kJiYGNq0acOGDRuYMmUKThU4rTVz5kzefvtt3n//fVq0aEGfPn1Ys2YNgYGBAPj5+bFz504MBgN9+vShZcuWTJo0CU9PT4sk6lb9+/cnMjKSNWvWsHXrViIjI83jWAACAwNZt24dW7duJSIigpkzZzJ37lwef/zxqvwbhai4oB7QMBwKb/z2WVQGrZcXnn8wLX/fsOA8+l9PAvD9jf2c7FZA3aGh6Hxcy6uiVmlUJZeL69ixI1FRUSxYsMC8rUWLFgwePJj333+/RPmhQ4eSlZXF+vXrzdv69u1LnTp1WLasYmv9Z2Vl4enpSWZmJh4epVxo7w68/PLL5Obm4u3tjePl8/RycsV1/fd4DBpIozllHyYDYM9C2PAXqB8CL+yFct7ghKiI/Px80tLSzEcmBYwfP57jx4/f9gjt3UL6WFSrA1/Cty+BVxOYeBDsyp5ZmnfkKGeeeAJ0OnY+3IkLHt6g1bJmzRq2b99eYixXdajq53elPk31ej2JiYkl5vT37t2bXbt2lfqYstYAKKs8mEbvZ2VlWfzUhPXr1/P111+bpgEaDXhhwHXrjwDUGTq0/AcbDbD35hLVHSdIYiJENfnoo484dOgQKSkpzJs3j7i4OEaNGmXtsISwTa2eBOe6cP0cnNxQblHnlg/g9MADUFhIsHsddFmm6/OMGDGiRhKTO1GpT9SMjAwMBkOpc/rLWnGurDUAyluh7v3338fT09P8U3zIt7p17dqVxx57DAD77Os0r+cNeXk4BjfHOSqq/Aef3ADX0sDJyzRLRwhRLRISEujVqxetWrVi4cKFzJ07l3Hjxlk7LCFsk84Zokaabu9ddNviXk+bvnjX238Qh8yrgGmdIr2+9KXwraVKX/dLm+pX3oC1ypZ/7bXXyMzMNP+cP3++KmHelru7OwE3ZxbYZ13D+6dkALyGPl2B6cM3T2u1HQ0OtpVxCnE3W7FiBenp6eTl5XH06FEmTJhg7ZCEsG3tx4LGDtK2Qfrxcot69u+PnZsb2jPnaOrji0ZfQFFRESkpKbUUbMVUKjmpX78+Wq221Dn9tx4dKVbWGgBllQfTugQeHh4WPzXh559/JjsnB4wGGnl5oDuZgsbJCc9BA8t/YPoxOLPD9GRoL9/ohBBCWJFXEwi9eYmVhH+UW9TO1dX8Ged/NQv7bNMK6cnJyTUaYmVVKjlxcHCgbdu2fP/99xbbv//+e7p06VLqYzp37lyi/MaNG8ssX5uOHTsGgH12Jv65piubegzoj/Z2yVDCYtPvsAHgVTOnnIQQQogK6/B/pt+HlkN+ZrlFvW6OqXTbnYBz/g0AThw/XqNX+K6sSp/W+fOf/8znn3/O0qVLOXbsGFOmTOHcuXPmQ68jR47ktddeM5efNGkSGzduZPbs2Rw/fpzZs2fzww8/MHny5OprRRUopThy+DAAupxreO1LAqDOk0+W/8D8TFPnw29PBiGEEMKaArtDgxamacVJ/yq3qFNoKM5t2qAtLKKpqxuawgIKi4pITU2tpWBvr9LJydChQ/nkk0949913iYiIYPv27axbt46AgAAAzp07x8WLF83lu3TpwvLly4mNjaV169Z88cUXfP3113Ts2LH6WlFFLbzro7t6mUZOzjjm3MAhMBCnNm3Kf9DBZabObxAGTUtf5VIIIYSoVRqN6cKzAPsWw81LOpTFc8hgALzP/IxDxkU8s37F/3cX6rS2Ki0H98ILL/DCCy+Uet/WrVtLbHviiSd44gnrXPK9LBqNhowjSThdPo+fvWlAq+fgweUPhDUaTZ0OpieBXNRLCCGErWg9FH6YAVdPQ8oPENK7zKIe/fpxedb7eJ44hZvHA+ivZ3Dtwllcwx6oxYDLdt8uzqGMRkI7P0hD/6bUPXQUNJrbD4Q9vQWupICjB7SW6cNC3E6PHj2sfgpXiPuGoxtEPmu6nVD+tGKtpyduDz+MVkGQex1aPtQbJ9eSV+y2lvs2OdHY2dF+0OP0a/YAjkUGXDp1RHe7K5MWj4KOeMb0JBBC3NPy8/MZPXo0rVq1wt7ensGDB5cos2rVKnr16kWDBg3w8PCgc+fO/O9//7NCtEIAHcYBGtORk4zypwd7PjoIgOCDx+g99o/U9w+ohQAr5r5NTsA0KDbzP/8FwPPRR8svfDUNTt58w2k/voYjE0JUVE3OMDAYDDg7OzNx4kR69uxZapnt27fTq1cv1q1bR2JiIg899BADBw4kKSmpxuISokx1g0xXK4bfhiGUwe3BB9HWq4fhyhVyfvyxFoKruPs6OclLOoj+7Fk0Li549OpVfuH9SzBdffgRqN+8VuIT4m5y48YNRo4ciZubG76+vnz88cclyuj1el555RUaNWqEq6srHTt2LDFObfHixfj7++Pi4sKQIUOIiYnBy8vLfP/06dOJiIhg6dKlBAUF4ejoiFIKpRRz5swhKCgIZ2dn2rRpw8qVKy3qTk5Opn///ri5ueHt7c2IESPIyMgos02urq4sWLCA8ePH4+PjU2qZTz75hFdeeYX27dsTHBzMrFmzCA4OZs2aNZX47wlRjTrenEma9C8oyC6zmEanw/MPfwAwf1G3Ffd1cpL5X1NnePTujV151xXQ58KBr0y3ZfqwqGVKKYx6g1V+KnNd0GnTprFlyxZWr17Nxo0b2bp1K4mJiRZlxowZw86dO1m+fDk//fQTTz75JH379uXUqVMA7Ny5kwkTJjBp0iQOHjxIr169eO+990rsKyUlhRUrVhAfH8/BgwcBePPNN4mNjWXBggUcPXqUKVOm8Oyzz7Jt2zYALl68SHR0NBEREezfv58NGzZw+fJlnnrqqap2TamMRiPZ2dnUrVu3WusVosKCHoZ6zUGf/dvSF2XwHGw6a5CzeTOGzPLXR6lNVZqtcy9QRiM5N7+xFXdOmY6shPzr4BUAwbc5wiJENVOFRn55u+wLZdYkv3e7oHEo+yqnxXJycliyZAlffvklvW4ehYyLi6Px76YmpqamsmzZMi5cuICfnx8AU6dOZcOGDcTGxjJr1izmzZtHv379mDp1KgAhISHs2rWL7777zmJ/er2er776igYNGgCmozYxMTFs3ryZzp07AxAUFMSPP/7IokWLiI6OZsGCBURFRTFr1ixzPUuXLsXf35+TJ08SEhJyB/+p33z88cfcuHGj2pMeISrMzs70RXr9K6axku3HlTm71KlFCxxDQyk4cYKcH3/Ec8CAWg62dPdtcqKxsyNo7VpytmzGpUOHsgsq9dtA2Pbjyr0ctRD3q9TUVPR6vTkxAKhbty6hoaHmvw8cOIBSqkQSUFBQQL169QA4ceIEQ4YMsbi/Q4cOJZKTgIAAc2ICptM1+fn55sSomF6vJzIyEoDExES2bNmCm1vJweypqanVkpwsW7aM6dOn89///peGDRvecX1CVFmbYbDpXcg4aZpp2uzhMov6vPkGdp6eOFVTgl4d7tvkBEDr5ornwNtMHz6/Fy4dBnvn36ZoCVGLNDo7/N61zuUeNLqKnfmtyOkfo9GIVqslMTERrdYyyS9OGEq7KGhpdd96eXfjzQWn1q5dS6NGjSzuc3R0NJcZOHAgs2fPLlGf7+1m6lXA119/zdixY/nmm2/KHDwrRK1x8jDNLE34B+z9R7nJiUv79rUYWMXc18lJhRRfgrr1k+Ai55BF7dNoNBU6tWJNzZs3R6fTsWfPHprcvNL3tWvXOHnyJNHR0QBERkZiMBhIT0+nW7fSV1cOCwsjISHBYtv+/ftvu//w8HAcHR05d+6ceX+3ioqKIj4+nqZNm2JvX71vfcuWLeO5555j2bJlDLCRw+JC0OH/TMnJyQ1w7QzUaWrtiCrsvh4Qe1tZF+HYt6bbMn1YiDK5ubkxduxYpk2bxqZNmzhy5AijR4/Gzu63t5iQkBCGDx/OyJEjWbVqFWlpaezbt4/Zs2ezbt06AF566SXWrVtHTEwMp06dYtGiRaxfv778lZsBd3d3pk6dypQpU4iLiyM1NZWkpCTmz59PXFwcAC+++CJXr15l2LBhJCQkcPr0aTZu3Mhzzz2HwWAos+7k5GQOHjzI1atXyczM5ODBg+ZBuGBKTEaOHMnHH39Mp06duHTpEpcuXSLThgYXivtU/WAIeghQkPiFtaOpHHUXyMzMVIDKzMys3R1vnqXUOx5KLelTu/sV9628vDyVnJys8vLyrB1KpWVnZ6tnn31Wubi4KG9vbzVnzhwVHR2tJk2aZC6j1+vV22+/rZo2bap0Op3y8fFRQ4YMUT/99JO5zD/+8Q/VqFEj5ezsrAYPHqz++te/Kh8fH/P977zzjmrTpk2J/RuNRvXpp5+q0NBQpdPpVIMGDVSfPn3Utm3bzGVOnjyphgwZory8vJSzs7MKCwtTkydPVkajscx2BQQEKKDET7Ho6OhS7x81alSp9d3NfSzuQsnfmj7HZgcqVZhf67uv6ue3RqlKzBW0kqysLDw9PcnMzMTDw6N2dlqkh09aQs5leGIptHy8dvYr7mv5+fmkpaURGBiIk5OTtcOxCePHj+f48ePs2LHD2qFUC+ljUasMRfBJK8j+BR773DREoRZV9fNbTuuU5fgaU2Li5gNhtxk0K4SoNh999BGHDh0iJSWFefPmERcXx6hRo6wdlhB3J609tB1tur1/iVVDqQxJTsqyP9b0u+0osHewbixC3EcSEhLo1asXrVq1YuHChcydO5dx48ZZOywh7l5RI0GjhXO74fJRa0dTITJbpzS/noAzO0BjZ+pUIUStWbFihbVDEOLe4uELYQNMEzz2L4UBJS8tYWvkyElpio+ahPQDz8bllxVCCCFsXfuxpt+Hlpd7vR1bIcnJrfS5cOjfptvtnrNuLEIIIUR1CIy+eb2dHPjJ9o9OSnJyq6OrID/TdB2dclbUE0IIIe4aGg20u3n0ZP9S06VZbJgkJ7fad3M0c7sxposnCSGEEPeCiGGmS7FcPgLnE25f3ork0/f3fkmCXw6AnQ4iR1g7GiGEEKL6ONf5bc0uG59WLMnJ7+1favod/ii41rduLEIIIUR1a39zLOXR1XAjw7qxlEOSk2L5mXB4pel28ahmIcQd6dGjB5MnT7Z2GEKIYo3agm8EGPSQ9E9rR1MmSU6KHfoaCnOhQQto0tna0QghbEB+fj6jR4+mVatW2NvbM3jw4HLL79y5E3t7eyIiImopQiGqoP3NRQ0TY8FotG4sZZDkBEyjlotP6bR7zjSqWQhxVygsLKyxug0GA87OzkycOJGePXuWWzYzM5ORI0fyyCOP1Fg8QlSLlo+DkydcOwOpm60dTakkOQHTkr6/HgOdC7QZau1ohLgr3bhxg5EjR+Lm5oavry8ff1xyFUq9Xs8rr7xCo0aNcHV1pWPHjmzdutWizOLFi/H398fFxYUhQ4YQExODl5eX+f7p06cTERHB0qVLCQoKwtHREaUUSinmzJlDUFAQzs7OtGnThpUrV1rUnZycTP/+/XFzc8Pb25sRI0aQkVH2eXdXV1cWLFjA+PHj8fHxKbf9zz//PM888wydO8uRV2HjHFygzTOm2/s+t24sZZDkBH47atLqCVM2KYQNUUqh1+ut8lOZi5ZPmzaNLVu2sHr1ajZu3MjWrVtJTEy0KDNmzBh27tzJ8uXL+emnn3jyySfp27cvp06dAkynRSZMmMCkSZM4ePAgvXr14r333iuxr5SUFFasWEF8fDwHDx4E4M033yQ2NpYFCxZw9OhRpkyZwrPPPsu2bdsAuHjxItHR0URERLB//342bNjA5cuXeeqpp6raNWaxsbGkpqbyzjvv3HFdQtSK4kVGT/0Prp+3biylkGvr3MiA5P+absuKsMIGFRYWMmvWLKvs+/XXX8fB4fYXvszJyWHJkiV8+eWX9OrVC4C4uDgaN/7t8g+pqaksW7aMCxcu4OfnB8DUqVPZsGEDsbGxzJo1i3nz5tGvXz+mTp0KQEhICLt27eK7776z2J9er+err76iQYMGgOmoTUxMDJs3bzYfuQgKCuLHH39k0aJFREdHs2DBAqKioiz+l0uXLsXf35+TJ08SEhJSpf/RqVOnePXVV9mxYwf29vKWKu4SDUIgsDukbYfEL+CRt6wdkQV5JSX90zRq2S8K/CKtHY0Qd6XU1FT0er3FKY26desSGhpq/vvAgQMopUokAQUFBdSrVw+AEydOMGTIEIv7O3ToUCI5CQgIMCcmYDpdk5+fb06Miun1eiIjTa/rxMREtmzZgpubW6nxVyU5MRgMPPPMM8yYMaPKyY0QVtNurCk5SfoKerwKWp21IzK7v5MTo9E0WhnkqImwWTqdjtdff91q+66Iipz+MRqNaLVaEhMT0Wq1FvcVJwxKKTS3DEgvrW5XV9cSdQOsXbuWRo0aWdzn6OhoLjNw4EBmz55doj5fX9/bxl+a7Oxs9u/fT1JSEn/605/M+1FKYW9vz8aNG3n4YbkMhrBRYQPAtSHkXIYT60xrfNmI+zs5Sd1sGq3s6PnbqnlC2BiNRlOhUyvW1Lx5c3Q6HXv27KFJkyYAXLt2jZMnTxIdHQ1AZGQkBoOB9PR0unXrVmo9YWFhJCRYLqu9f//+2+4/PDwcR0dHzp07Z97fraKiooiPj6dp06bVdvrFw8ODw4cPW2z77LPP2Lx5MytXriQwMLBa9iNEjdDqIPJZ+DEG9sdKcmIzigfCRgwzjV4WQlSJm5sbY8eOZdq0adSrVw9vb2/eeOMN7H53faqQkBCGDx/OyJEj+fjjj4mMjCQjI4PNmzfTqlUr+vfvz0svvUT37t2JiYlh4MCBbN68mfXr15c4mnIrd3d3pk6dypQpUzAajTz44INkZWWxa9cu3NzcGDVqFC+++CKLFy9m2LBhTJs2jfr165OSksLy5ctZvHhxiaM5xZKTk9Hr9Vy9epXs7GzzANyIiAjs7Oxo2bKlRfmGDRvi5ORUYrsQNqntKPjxb3B6C1w9DXWDrB0RcD8nJ0YDFOWbbsspHSHu2IcffkhOTg6DBg3C3d2dl19+mczMTIsysbGx/PWvf+Xll1/m559/pl69enTu3Jn+/fsD0LVrVxYuXMiMGTN488036dOnD1OmTOHvf//7bfc/c+ZMGjZsyPvvv8/p06fx8vIiKirKfErMz8+PnTt38pe//IWvss+TAAAP7UlEQVQ+ffpQUFBAQEAAffv2tUiibtW/f3/Onj1r/rt4DEtlZjIJYbPqNIXmj8ClI3A1zWaSE426C15hWVlZeHp6kpmZiYeHR/VWnnkBPBvfvpwQtSA/P5+0tDQCAwNxcnKydjg2Yfz48Rw/fpwdO3ZYO5RqIX0sbE72ZXCpWyMDYqv6+X3/HjkpJomJEDblo48+olevXri6urJ+/Xri4uL47LPPrB2WEPcud29rR1CCJCdCCJuSkJDAnDlzyM7OJigoiLlz5zJu3DhrhyWEqEWSnAghbMqKFSusHYIQwspk+XohhBBC2BRJToQQQghhUyQ5EcIG3QWT6EQVSd8KcXuSnAhhQ4qXi8/NzbVyJKKmFPdtRS8NIMT9SAbECmFDtFotXl5epKenA+Di4nLb1VHF3UEpRW5uLunp6Xh5eZW5Iq0QQpITIWyOj48PgDlBEfcWLy8vcx8LIUonyYkQNkaj0eDr60vDhg0pLCy0djiiGul0OjliIkQFSHIihI3SarXyQSaEuC/JgFghhBBC2BRJToQQQghhUyQ5EUIIIYRNuSvGnBQvWpSVlWXlSIQQQghRUcWf25VdfPCuSE6ys7MB8Pf3t3IkQgghhKis7OxsPD09K1xeo+6CtZSNRiO//PIL7u7u1bogVVZWFv7+/pw/fx4PD49qq9eW3OttlPbd/e71Nkr77n73ehtrsn1KKbKzs/Hz88POruIjSe6KIyd2dnY0bty4xur38PC4J59wv3evt1Had/e719so7bv73ettrKn2VeaISTEZECuEEEIImyLJiRBCCCFsinb69OnTrR2ENWm1Wnr06IG9/V1xhqtK7vU2Svvufvd6G6V9d797vY221r67YkCsEEIIIe4fclpHCCGEEDZFkhMhhBBC2BRJToQQQghhUyQ5EUIIIYRNueeTk/fee48uXbrg4uKCl5dXhR6jlGL69On4+fnh7OxMjx49OHr0qEWZa9euMWLECDw9PfH09GTEiBFcv369JppQrsrGcebMGTQaTak/33zzjblcafcvXLiwNppkoSr/5x49epSI/emnn77jemtKZWO5evUqL730EqGhobi4uNCkSRMmTpxIZmamRTlr9eFnn31GYGAgTk5OtG3blh07dpRbPj4+nvDwcBwdHQkPD2f16tUW91fk9VjbKtPGxYsX061bN+rUqUOdOnXo2bMnCQkJFmVGjx5doq86depU080oU2Xa98UXX5T6XMvPz69ynTWtMrGU9n6i0WgYMGCAuYwt9d/27dsZOHAgfn5+aDQa/vOf/9z2Mdu2baNt27Y4OTkRFBRU6vtErfefuse9/fbbKiYmRv35z39Wnp6eFXrMBx98oNzd3VV8fLw6fPiwGjp0qPL19VVZWVnmMn379lUtW7ZUu3btUrt27VItW7ZUf/jDH2qqGWWqbBxFRUXq4sWLFj8zZsxQrq6uKjs721wOULGxsRblcnNza6NJFqryf46Ojlbjx4+3iP369et3XG9NqWwshw8fVo899pj69ttvVUpKitq0aZMKDg5Wjz/+uEU5a/Th8uXLlU6nU4sXL1bJyclq0qRJytXVVZ09e7bU8rt27VJarVbNmjVLHTt2TM2aNUvZ29urPXv2mMtU5PVYmyrbxmeeeUbNnz9fJSUlqWPHjqkxY8YoT09PdeHCBXOZUaNGqb59+1r01ZUrV2qrSRYq277Y2Fjl4eFR4n3lTuqsSZWN5cqVKxbtOnLkiNJqtSo2NtZcxpb6b926deqNN95Q8fHxClCrV68ut/zp06eVi4uLmjRpkkpOTlaLFy9WOp1OrVy50lzGGv13zycnxWJjYyuUnBiNRuXj46M++OAD87b8/Hzl6empFi5cqJRSKjk5WQEWb6C7d+9WgDp+/Hj1B1+G6oojIiJCPffccxbbKvKkrmlVbV90dLSaNGlStddbE6orlhUrVigHBwdVWFho3maNPuzQoYOaMGGCxbawsDD16quvllr+qaeeUn379rXY1qdPH/X0008rpSr2eqxtlW3jrYqKipS7u7uKi4szbxs1apR69NFHqzXOqqps+yry3nqn/7PqdKex/O1vf1Pu7u4qJyfHvM2W+u/3KvIe8Morr6iwsDCLbc8//7zq1KmT+W9r9N89f1qnstLS0rh06RK9e/c2b3N0dCQ6Oppdu3YBsHv3bjw9PenYsaO5TKdOnfD09DSXqQ3VEUdiYiIHDx5k7NixJe7705/+RP369Wnfvj0LFy7EaDRWW+wVcSft+9e//kX9+vV54IEHmDp1qvnK1ndab3WrrlgyMzPx8PAosYBSbfahXq8nMTHR4rUD0Lt37zLbsnv37hLl+/TpYy5fkddjbapKG2+Vm5tLYWEhdevWtdi+detWGjZsSEhICOPHjyc9Pb3a4q6oqrYvJyeHgIAAGjduzB/+8AeSkpLuuM6aUB2xLFmyhKeffhpXV1eL7bbQf1VR1mtw//79FBYWWq3/bGMpOBty6dIlALy9vS22e3t7c/bsWXOZhg0blnhsw4YNzY+vDdURx5IlS2jRogVdunSx2D5z5kweeeQRnJ2d2bRpEy+//DIZGRm8+eab1RJ7RVS1fcOHDycwMBAfHx+OHDnCa6+9xqFDh/j+++/vqN6aUB2xXLlyhZkzZ/L8889bbK/tPszIyMBgMJT62imrLZcuXSq3fEVej7WpKm281auvvkqjRo3o2bOneVu/fv148sknCQgIIC0tjbfeeouHH36YxMREHB0dq7UN5alK+8LCwvjiiy9o1aoVWVlZfPrpp3Tt2pVDhw4RHBxcLf+z6nKnsSQkJHDkyBGWLFlisd1W+q8qynoNFhUVkZGRgVLKKv13VyYn06dPZ8aMGeWW2bdvH+3atavyPjQajcXfSimLbbfeX1qZqqpo++40jry8PP7973/z1ltvlbjv9x9gERERALz77rvV8sFW0+0bP368+XbLli0JDg6mXbt2HDhwgKioqCrXWxm11YdZWVkMGDCA8PBw3nnnHYv7arIPy3O7105Vyle2zppW1XjmzJnDsmXL2Lp1K05OTubtQ4cONd9u2bIl7dq1IyAggLVr1/LYY49VX+AVVJn2derUyWLwZ9euXYmKimLevHnMnTu3SnXWtKrGsmTJElq2bEmHDh0sttta/1VWaf+P4u2/v31rmZrsv7syOfnTn/5UYvbFrZo2bVqlun18fABTNunr62venp6ebs4cfXx8uHz5conH/vrrryWyy6qoaPt++umnO4pj5cqV5ObmMnLkyNuW7dSpE1lZWVy+fPmO21hb7SsWFRWFTqfj1KlTREVF1Xj/Qe20MTs7m759++Lm5sbq1avR6XTllq/OPixN/fr10Wq1Jb5N/f61cysfH59yy1fk9VibqtLGYh999BGzZs3ihx9+oHXr1uWW9fX1JSAggFOnTt1xzJVxJ+0rZmdnR/v27c2xV0ed1eVOYsnNzWX58uW8++67t92PtfqvKsp6Ddrb21OvXj2UUtbpvxobzWJjKjsgdvbs2eZtBQUFpQ6I3bt3r7nMnj17rDYgtqpxREdHl5jhUZZ58+YpJycnlZ+fX+V4K6u6/s+HDx9WgNq2bVu11lsdqhpLZmam6tSpk4qOjlY3btyo0L5qow87dOig/vjHP1psa9GiRbkDYvv162exrW/fviUGxJb3eqxtlW2jUkrNmTNHeXh4qN27d1doHxkZGcrR0dFi0GxtqUr7fs9oNKp27dqpMWPGVFud1amqscTGxipHR0eVkZFx231Ys/9+jwoOiG3RooXFtgkTJpQYEFvb/XfPJydnz55VSUlJasaMGcrNzU0lJSWppKQki2mzoaGhatWqVea/P/jgA+Xp6alWrVqlDh8+rIYNG1bqVOLWrVur3bt3q927d6tWrVpZbSpxeXFcuHBBhYaGWnz4KaXUqVOnlEajUevXry9R57fffqv+8Y9/qMOHD6uUlBS1ePFi5eHhoSZOnFjj7blVZduXkpKiZsyYofbt26fS0tLU2rVrVVhYmIqMjFRFRUUVrrc2VbaNWVlZqmPHjqpVq1YqJSXFYvpicRut1YfFUw6XLFmikpOT1eTJk5Wrq6s6c+aMUkqpESNGWLyh7dy5U2m1WvXBBx+oY8eOqQ8++KDUqcS3ez3Wpsq2cfbs2crBwUGtXLnSoq+K34Oys7PVyy+/rHbt2qXS0tLUli1bVOfOnVWjRo2s0sbKtm/69Olqw4YNKjU1VSUlJakxY8Yoe3t7i/ec29Vpy+0r9uCDD6qhQ4eW2G5r/ZednW3+nANUTEyMSkpKMk/7ffXVV9WIESPM5YunEk+ZMkUlJyerJUuWlDmVuDb7755PTkaNGqWAEj9btmwxl+HmehDFjEajeuedd5SPj49ydHRU3bt3V4cPH7ao98qVK2r48OHK3d1dubu7q+HDh6tr167VUqsqHkdaWlqJ9iql1GuvvaYaN26sDAZDiTrXr1+vIiIilJubm3JxcVEtW7ZUn3zyicU01dpS2fadO3dOde/eXdWtW1c5ODioZs2aqYkTJ5ZYc8BW+q8isdzaxi1btpT6nAZUWlqaUsq6fTh//nwVEBCgHBwcVFRUlPmIlVKmo3WjRo2yKP/NN9+o0NBQpdPpVFhYmIqPj7e4vyKvx9pWmTYGBASU2lfvvPOOUkqp3Nxc1bt3b9WgQQOl0+lUkyZN1KhRo9S5c+dquVW/qUz7Jk+erJo0aaIcHBxUgwYNVO/evdWuXbsqVWdtq+xz9MSJEwpQGzduLFGXrfVfWe8PxW0aNWqUio6OtnjM1q1bVWRkpHJwcFBNmzZVCxYsKFFvbfefRqmbo12EEEIIIWyArHMihBBCCJsiyYkQQgghbIokJ0IIIYSwKZKcCCGEEMKmSHIihBBCCJsiyYkQQgghbIokJ0IIIYSwKZKcCCGEEMKmSHIihBBCCJsiyYkQQgghbIokJ0KIWrds2TKcnJz4+eefzdvGjRtH69atyczMtGJkQghbINfWEULUOqUUERERdOvWjb///e/MmDGDzz//nD179tCoUSNrhyeEsDJ7awcghLj/aDQa3nvvPZ544gn8/Pz49NNP2bFjhyQmQghAjpwIIawoKiqKo0ePsnHjRqKjo60djhDCRsiYEyGEVfzvf//j+PHjGAwGvL29rR2OEMKGyJETIUStO3DgAD169GD+/PksX74cFxcXvvnmG2uHJYSwETLmRAhRq86cOcOAAQN49dVXGTFiBOHh4bRv357ExETatm1r7fCEEDZAjpwIIWrN1atX6dq1K927d2fRokXm7Y8++igFBQVs2LDBitEJIWyFJCdCCCGEsCkyIFYIIYQQNkWSEyGEEELYFElOhBBCCGFTJDkRQgghhE2R5EQIIYQQNkWSEyGEEELYFElOhBBCCGFTJDkRQgghhE2R5EQIIYQQNkWSEyGEEELYFElOhBBCCGFTJDkRQgghhE35f+zLw1YtnXLQAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'fitting a triangle-shape function to polynomials')" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t(x) = 1 - abs(x)\n", - "\n", - "L16 = legendre_gramschmidt(16) # compute a few more terms\n", - "\n", - "plot(x, t.(x), \"k--\")\n", - "N = [1:2:16;]\n", - "for n in N\n", - " plot(x, sum([polydot(p,t)/polydot(p,p) for p in L16[1:n]] .* L16[1:n]).(x), \"-\")\n", - "end\n", - "legend([L\"t(x)\", [\"degree $i\" for i in N .- 1]...])\n", - "xlabel(L\"x\")\n", - "title(\"fitting a triangle-shape function to polynomials\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is still converging, just much more slowly!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Power-Method.ipynb b/lectures/Power-Method.ipynb deleted file mode 100644 index 2df62210..00000000 --- a/lectures/Power-Method.ipynb +++ /dev/null @@ -1,686 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using Interact, PyPlot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The power method\n", - "\n", - "We know that multiplying by a matrix $A$ repeatedly will exponentially amplify the largest-|λ| eigenvalue. This is the basis for many algorithms to compute eigenvectors and eigenvalues, the most basic of which is known as the [power method](https://en.wikipedia.org/wiki/Power_iteration).\n", - "\n", - "The simplest version of this is to just start with a random vector $x$ and multiply it by $A$ repeatedly. (This is the procedure by which a Markov process approaches its steady state!) This works, but has the practical problem that the vector quickly becomes very large or very small, and eventually becomes too big/small for the computer to represent (this is known as \"overflow/underflow\"). The fix is easy: *normalize the vector after each multiplication by A*. That is:\n", - "\n", - "* Starting with a random $x$, repeatedly compute $x \\leftarrow Ax / \\Vert Ax \\Vert $.\n", - "\n", - "For example, let's try it on a random matrix with eigenvalues 1 to 5:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 2.16448 0.244199 0.659965 -0.176119 -0.411305 \n", - " -1.9244 2.34136 2.23935 -2.23181 -4.39314 \n", - " 2.05763 -1.13639 3.83808 0.0750929 -0.0123258\n", - " -0.975796 0.17486 0.48734 2.79602 -0.366001 \n", - " 2.61483 -1.5337 -0.187983 0.365594 3.86006 " - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = randn(5,5)\n", - "A = A * diagm(1:5) / A" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 1.0\n", - " 2.0\n", - " 5.0\n", - " 3.0\n", - " 4.0" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 5.0\n", - " 4.0\n", - " 3.0\n", - " 2.0\n", - " 1.0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "λ, X = eig(A)\n", - "i = sortperm(λ, by=abs, rev=true) # sort the eigenvalues in descending order by magnitude\n", - "λ = λ[i]; X = X[:,i] # and re-order λ and X\n", - "λ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's look at the result of $n$ steps of the power method side-by-side with the eigenvector $x_1$ (which is normalized to unit length by Julia) for $\\lambda = 5$:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":50}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":50}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["n"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":100,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-81a84ce3-c575-4ff2-90e9-444ef9be60f5","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_06","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;b&gt;power iteration 50&lt;/b&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;5-element Array{Float64,1}:\\\\n -0.0188049\\\\n -0.573112 \\\\n 0.518715 \\\\n -0.0276525\\\\n 0.63353 &lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;align-self&quot;:&quot;stretch&quot;,&quot;borderLeft&quot;:&quot;solid 1.0px #DEDEDE&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;b&gt;eigenvector&lt;/b&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;5-element Array{Float64,1}:\\\\n -0.0188073\\\\n -0.573116 \\\\n 0.518709 \\\\n -0.0276534\\\\n 0.63353 &lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]}]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;row&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;b&gt;power iteration 50&lt;/b&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;5-element Array{Float64,1}:\\\\n -0.0188049\\\\n -0.573112 \\\\n 0.518715 \\\\n -0.0276525\\\\n 0.63353 &lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]},{&quot;props&quot;:{&quot;style&quot;:{&quot;align-self&quot;:&quot;stretch&quot;,&quot;borderLeft&quot;:&quot;solid 1.0px #DEDEDE&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;style&quot;:{&quot;display&quot;:&quot;flex&quot;,&quot;flex-direction&quot;:&quot;column&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;b&gt;eigenvector&lt;/b&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]},{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;pre&gt;5-element Array{Float64,1}:\\\\n -0.0188073\\\\n -0.573116 \\\\n 0.518709 \\\\n -0.0276534\\\\n 0.63353 &lt;/pre&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]}]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 50, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 50, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_01\", 50, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_01\", 50, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_01\", 50, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 100),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 50, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":50}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-bd1d2943-8fc4-4d8a-8186-3d0358132532\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_05\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:setInnerHtml, \"power iteration 50\")), 0), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:setInnerHtml, \"
    5-element Array{Float64,1}:\\n -0.0188049\\n -0.573112 \\n  0.518715 \\n -0.0276525\\n  0.63353  
    \")), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:style, Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(\"align-self\", \"stretch\"),Pair{Any,Any}(\"borderLeft\", \"solid 1.0px #DEDEDE\")))), 0), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:setInnerHtml, \"eigenvector\")), 0), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:setInnerHtml, \"
    5-element Array{Float64,1}:\\n -0.0188073\\n -0.573116 \\n  0.518709 \\n -0.0276534\\n  0.63353  
    \")), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:style, Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"column\"))), 2)], Dict{Symbol,Any}(Pair{Symbol,Any}(:style, Dict(\"display\"=>\"flex\",\"flex-direction\"=>\"row\"))), 7)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 8), Any[]))" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = [5,4,3,2,1] # arbitrary initial vector\n", - "@manipulate for n = 1:100\n", - " y = x\n", - " for i = 1:n\n", - " y = A*y\n", - " y = y / norm(y)\n", - " end\n", - " hbox(vbox(HTML(\"power iteration $n\"),y),\n", - " vline(), \n", - " vbox(HTML(\"eigenvector\"),X[:,1]))\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that the *sign* of the resulting eigenvector depends on the initial $x$.\n", - "\n", - "We could also plot the difference $\\Vert \\pm y - x_1 \\Vert$ versus the number $n$ of steps:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8U1X+//F3mkJpoZSlUCltoVAdxLJICyiCLEqLCwq4ICIg4NdxBxkGRRnFBcEF0REBYVBG0QEdhZ8rUqUUENwqqAOoKEgpO0gXQJam9/dHmtAkLSQhadL09Xw88oDce3PvyU00H87nnM8xGYZhCAAAAAoLdAMAAACCBYERAABAGQIjAACAMgRGAAAAZQiMAAAAyhAYAQAAlCEwAgAAKENgBAAAUIbACAAAoAyBEQAAQBkCIwAAgDIERkCIWLx4sS644AJFRkbKZDJpw4YNgW5SyFu7dq0mT56sgoICl32TJ0+WyWTSgQMH/NoG23XcEYjvyLFjxxQeHq7o6Gjde++9fr+eJBUXF2vChAnKyMhQkyZNZDKZNHnyZK/OtWLFCo0aNUpt2rRR3bp11bx5c1177bXKzc31+FwbNmzQVVddpaSkJEVGRqpRo0a6+OKLtXDhQq/aVt6//vUvmUwm1atXz+PXrly5UiaTqcLHl19+edZtq24IjIAQsH//fg0bNkytW7fWsmXLtG7dOp133nmBblbIW7t2rR577LEKA6NgE6jviMlk0ooVK9SlSxfNnDlTv/zyi9+vefDgQc2dO1fHjx/XgAEDzupcs2fP1u+//64xY8bo448/1osvvqh9+/bpoosu0ooVKzw6V0FBgRITE/XUU0/p448/1uuvv66WLVtq2LBhevLJJ71u486dOzV+/HjFx8d7fQ5Jeuqpp7Ru3TqHR2pq6lmdszoKD3QDAG8cPXpUUVFRgW5G0Pjll1908uRJ3XLLLerZs2egm1Ml+A54xh/fEXc+g4iICF166aWaMGGCVqxYodzcXL8HZC1atNChQ4fsPXb/+te/vD7Xyy+/rKZNmzps69evn1JSUvTUU0+pT58+bp+rV69e6tWrl8O2q6++Wtu2bdPcuXM1adIkr9p4xx136NJLL1WjRo303//+16tzSNK5556riy66yOvXhwp6jELcTz/9pCFDhiguLk4RERFKSkrS8OHDdfz4cfsxa9as0WWXXabo6GhFRUWpW7du+uijjxzOY+uu37hxo4YMGaKYmBjFxcVp1KhRKiwslCQtXbpUJpNJn3/+uUs7Zs+eLZPJpB9++MG+bcuWLbr55pvVtGlTRURE6Pzzz9fLL7/s8lrbtb/77jtdf/31atiwoVq3bi1J+n//7/+pffv2ioiIUKtWrfTiiy9Wmlpw53ruvE9P76+777MyZ/p8br31VnXv3l2SNHjwYJlMJpf/+Vb0HtevX69Bgwapfv36iomJ0S233KL9+/d7dG1J2rhxo0wmk9555x37ttzcXJlMJl1wwQUOx15zzTVKS0vz+N6c7jtwuvf4ww8/6IYbblBMTIwaNWqkcePGqaSkRD///LP69eun6OhotWzZUs8884zLOc7UtsmTJ+vvf/+7JCk5Odmeeli5cqXDefbu3XvG75I791mSPvroI3Xs2FERERFKTk7Wc889V+k9KO9M3xFP/h/g7mfgrE2bNpJUJek722fhC85BkSTVq1dPbdu21Y4dO3xyjdjYWIWHe9dPsXDhQuXk5GjWrFk+aQskGQhZGzZsMOrVq2e0bNnSmDNnjvH5558bCxcuNG688UajqKjIMAzDWLlypVGrVi0jLS3NWLx4sbF06VIjIyPDMJlMxqJFi+znevTRRw1Jxl/+8hfjkUceMbKysoznn3/eiIiIMEaOHGkYhmGcPHnSaNq0qTF06FCXtnTp0sXo1KmT/fnGjRuNmJgYo127dsbrr79uLF++3Pjb3/5mhIWFGZMnT3Z4re3aLVq0MB544AEjKyvLWLp0qfHJJ58YYWFhRq9evYwlS5YY77zzjtG1a1ejZcuWhvNX293rufM+Pbm/nrzPirjz+fz666/Gyy+/bEgynnrqKWPdunXGxo0bKz1n+fv597//3fj000+N559/3qhbt65x4YUXGidOnHD72jbNmjUzbr/9dvvzadOmGZGRkYYkY+fOnYZhWL8f9evXNyZMmOCz78CZ3uNf/vIX44knnjCysrKMCRMmGJKMe+65x2jTpo3xz3/+08jKyjJGjhxpSDLeffdd++vdaduOHTuMe++915BkvPfee8a6deuMdevWGYWFhS5tON13yd37/Nlnnxlms9no3r278d577xnvvPOO0blzZyMpKcnl++7sdN8RT/8f4O5n4OzOO+80JBkZGRmnPa60tNQ4efKkWw937N+/35BkPProo2639UwKCgqMmJgYY+DAgV693mKxGCdPnjT27dtnvPzyy0Z4eLgxZ84cj8+zd+9eo3HjxsbLL79sGIZhjBgxwqhbt67H58nOzjYkGU2bNjXMZrMRHR1tZGRkGKtXr/b4XKGAwCiE9enTx2jQoIGxb9++So+56KKLjKZNmxrFxcX2bSUlJUZqaqqRkJBglJaWGoZx6n+KzzzzjMPr77rrLqNOnTr248aNG2dERkYaBQUF9mM2bdpkSDJeeukl+7bMzEwjISHB/iNic8899xh16tQx/vjjD/s227UfeeQRh2M7d+5sJCYmGsePH7dvKy4uNho3buzyQ+Hu9dx9n4bh3v315H1WxN3Px/Y/tnfeeee05yv/Hu+//36H7W+++aYhyVi4cKFH1zYMw7jllluMVq1a2Z9ffvnlxv/93/8ZDRs2NP79738bhmEYX3zxhSHJWL58ucf3prLvwJne4/Tp0x22d+zY0R7I2Jw8edJo0qSJMWjQIPs2d9v27LPPGpKMbdu2VdqGM32X3L3PXbt2NeLj440///zTflxRUZHRqFGjMwZGhlH5d8TT/we4+xmU9+mnnxqSjIYNGxpNmjRxq53uPCq67878ERgNHTrUCA8PN7799luvXv/Xv/7V/h5q165tzJo1y6vzXHfddUa3bt3sn5G3gdF3331njBkzxliyZImxatUq49VXXzXOP/98w2w2G8uWLfOqbdUZqbQQdfToUeXk5OjGG29UkyZNKjzmyJEj+uqrr3T99dc7zGQwm80aNmyY8vPz9fPPPzu85pprrnF43r59ex07dkz79u2TJI0aNUp//vmnFi9ebD/mtddeU0REhG6++WZJ1lkqn3/+uQYOHKioqCiVlJTYH1deeaWOHTtW4UyI6667zqHt3377rQYMGKDatWvbt9erV0/9+/d3eJ031zvT+3Tn/nr7Psu/R08/H08MHTrU4fmNN96o8PBwZWdne3ztyy67TFu3btW2bdt07NgxrVmzRv369VPv3r2VlZUlSfrss88UERGh7t27++Q74I6rr77a4fn5558vk8mkK664wr4tPDxcKSkp2r59u6Sz/9ycne675O59PnLkiL755hsNGjRIderUsR8XHR3t8n33hDffMU8/g4KCAo0aNUrXXnut7rrrLu3fv1+7du2q9Pi0tDR98803bj3OdrCxN/7xj3/ozTff1IwZMxzSwp546KGH9M033+ijjz7SqFGjdM8997idFrV599139cEHH2jevHlnnTa88MIL9cILL2jAgAHq0aOHRo4cqbVr16pZs2aaMGHCWZ27OmLwdYg6dOiQLBaLEhISTnuMYRhq1qyZyz7b/3AOHjzosL1x48YOzyMiIiRJf/75pyTpggsuUOfOnfXaa6/p9ttvl8Vi0cKFC3XttdeqUaNG9nOWlJTopZde0ksvvVRh2yqa4ly+nba2x8XFuRznvM2b653pfbpzf719nzbefD6eOOeccxyeh4eHq3Hjxjp48KDH17788sslWYOf5ORknTx5Un369NHevXv1xBNP2PddcsklioyM1M6dO8/6O+AO23fOpnbt2oqKinIILmzbi4qK7O/rbD43Z6f7Lp08edKt+1yvXj2Vlpa6fGaS6+foCW++Y55+BnfffbdOnjypefPmadWqVZKs44wqC2rq1aunjh07unVub8fleOuxxx7Tk08+qSlTpuiee+7x+jxJSUlKSkqSJF155ZWSpIkTJ2rEiBGV/kOrvMOHD+vuu+/Wvffeq/j4ePusyBMnTkiyBqO1atVS3bp1vW5jgwYNdPXVV2vOnDn6888/FRkZ6fW5qhsCoxDVqFEjmc1m5efnV3pMw4YNFRYWpt27d7vss/2LLjY21uNrjxw5UnfddZc2b96srVu3avfu3Ro5cqTDdW3/Ir377rsrPEdycrLLtvL/KmrYsKFMJpP27t3rctyePXscnnt7vdNx9/6ezXX99fnY7NmzR82bN7c/Lykp0cGDB9W4cWOPr52QkKDzzjtPn332mVq2bKn09HQ1aNBAl112me666y599dVX+vLLL/XYY4/Z39vZfgf8xR/fl9Ndy537bPu+O3+3Jdfvuz+uX54nn8F///tfvfXWW/rggw/UpEkTderUSZI1MLIFBM5ycnLUu3dvt86/bds2tWzZ0u32nI3HHntMkydP1uTJk/XQQw/59NxdunTRnDlztHXrVrcCowMHDmjv3r2aPn26pk+f7rK/YcOGuvbaa7V06dKzapdhGJKq5r+7YEJgFKIiIyPVs2dPvfPOO5oyZUqFP6B169ZV165d9d577+m5556z/4ugtLRUCxcutP/YeWrIkCEaN26cFixYoK1bt6p58+bKyMiw74+KilLv3r21fv16tW/f3iEV5q66desqPT1dS5cu1XPPPWc/x+HDh/Xhhx86HOuL6zlz5/6e7XX99fnYvPnmmw6pgLffflslJSXq1auXV9e+/PLL9fbbbysxMVFXXXWVJOm8885TUlKSHnnkEZ08edLes+SPz8RXPGmbc0+ip9y9zyaTSV26dNF7772nZ5991t7jVVxcrA8++MCra3tyfW/s2bNHd9xxh26//XZ7SjM5OVkNGjTQ+vXrK32dLZXmjqpKpT3xxBOaPHmyJk2apEcffdTn58/OzlZYWJhatWrl1vHnnHOOsrOzXbZPmzZNOTk5+uSTT87qH02StTfxww8/VMeOHV16WEMdgVEIe/7559W9e3d17dpVDz74oFJSUrR37169//77euWVVxQdHa2pU6eqb9++6t27t8aPH6/atWtr1qxZ+t///qf//Oc/Xv1LoUGDBho4cKAWLFiggoICjR8/XmFhjsPZXnzxRXXv3l09evTQnXfeqZYtW6q4uFi//vqrPvjgA7cKpz3++OO66qqrlJmZqTFjxshisejZZ59VvXr19Mcff/j8es7cub9ne11/fD427733nsLDw9W3b19t3LhR//jHP9ShQwfdeOONXl37sssu06xZs3TgwAG98MILDttfe+01NWzY0CEQ88dn4ivutq1du3b240eMGKFatWrpL3/5i6Kjo92+lrv3+YknnlC/fv3Ut29f/e1vf5PFYtHTTz+tunXrunzfPeGv79j//d//qWHDhnr++ecdtl944YWnnbIfHR2t9PR0r65Z3ieffKIjR46ouLhYkrRp0yZ7jZ8rr7zSXn/JZDKpZ8+eLmUWbKZPn65HHnlE/fr101VXXeUyvsy57s/pznf77berfv366tKli+Li4nTgwAG98847Wrx4sf7+97+79BZVdq46depUWJJjwYIFMpvNFe47XbtuvvlmJSUlKT09XbGxsdqyZYumT5+uvXv3asGCBRXdltAWwIHfqAKbNm0ybrjhBqNx48ZG7dq1jaSkJOPWW281jh07Zj9m9erVRp8+fYy6desakZGRxkUXXWR88MEHDuexzUjZv3+/w/bXXnutwtkhy5cvt8+6+OWXXyps27Zt24xRo0YZzZs3N2rVqmU0adLE6Natm/Hkk0+6dW3DMIwlS5YY7dq1s7+3adOmGffdd5/RsGFDr67n6ft05/66+z4r487n482stNzcXKN///5GvXr1jOjoaGPIkCHG3r17Pb62zaFDh4ywsDCjbt269in/hnFqtlv5WV82vvgOnO49Oh9f2aydnj17GhdccIFXbZs4caIRHx9vhIWFGZKM7Ozs07ahou+Su/f5/fffN9q3b+/wfbdd50xO9x05m/8HVGTevHmG2Ww21q1b57Jv3Lhxhslkspe08JcWLVqccTZbcXGxIcm46aabKj1Pz549Tzszrrwzne/VV181evToYcTGxhrh4eFGgwYNjJ49expvvPGGy7HutM1ZZd/vM51r6tSpRseOHY2YmBjDbDYbTZo0MQYOHGh8/fXXbl87lJgMoyyJCISAkydPqmPHjmrevLmWL18e6OYEpcmTJ+uxxx7T/v37z7q7HajOPv74Y1199dX6/vvv7b1/wXK+YD1XTUAqDdXa6NGj1bdvXzVr1kx79uzRnDlztHnzZr344ouBbhqAIJedna2bbrrJZ8GCL88XrOeqCegxQrV24403au3atdq/f79q1aqlTp066aGHHlK/fv0C3bSgRY8RAFSOwAgAAKAMla8BAADKEBgBAACUITACAAAow6y0MygtLdWuXbsUHR1d48qiAwBQXRmGoeLiYsXHx7sUGT4dAqMz2LVrlxITEwPdDAAA4IUdO3acdsFvZwRGZ2Ar7b9jxw7Vr18/wK0BAADuKCoqUmJiokdL9EgERmdkS5/Vr1+fwAgAgGrG02EwDL4GAAAoQ2AEAABQhsAIAACgDIERAABAGQIjAACAMgRGAAAAZQiMAAAAyhAYAQAAlCEwAgAAKENgBAAAUIbACAAAoAyBUYDk50vZ2dY/AQBAcCAwCoD586UWLaQ+fax/zp8f6BYBAACJwKjK5edLt98ulZZan5eWSn/9Kz1HAAAEAwKjKrZly6mgyMZikX79NTDtAQAApxAYVbFzz5XCnO56WJiUkhKY9gAAgFMIjKpYQoI0d65kNp/a1rGjdTsAAAgsAqMAGD1a+v136dVXrc+/+07atCmgTQIAACIwCpiEBGnkSGngQOvzadMC2x4AAEBgFHAPP2z98623pK1bA9sWAABqOgKjAEtLkzIzrTPTHnmEoo8AAAQSgVEQsPUavfkmRR8BAAgkAqMgkJzs+JyijwAABAaBURDYssV1G0UfAQCoegRGQaCioo9mM0UfAQCoagRGQaCioo/nnis1axa4NgEAUBMRGAUJW9HHBQukyEjpp5+kceOYpQYAQFUiMAoiCQnSiBGnKmL/85/MUgMAoCoRGAWh7t0lk+nUc2apAQBQNQiMgtCWLZJhOG5jlhoAAP5HYBSEKpqlJkkFBVXfFgAAahICoyBU0Sw1SRo6VFq4kAHZAAD4C4FRkLLNUsvOln75RerXTzp6VBo2jAHZAAD4i8kwnEezoLyioiLFxMSosLBQ9evXD1g7tm6VWrd23GY2W4OnhISANAkAgKDl7e93uB/bBB/avt11m8Uibdhg/fuWLdaxSQRJAAB4j8ComrANyC4tddx+663SoUPW7WFh1rFJo0cHpIkAAFR7jDGqJpwHZIeFSQ0aSAcPngqWqHcEAMDZITCqRsoPyN6+/VSF7PKodwQAgPdqRGA0cOBANWzYUNdff32gm3LWEhKkXr2sf3buXHG9o0OHmNIPAIA3akRgdN999+n1118PdDN8rrJ6R4MGMaUfAABv1IjAqHfv3oqOjg50M/yifHrt/fcd9zHmCAAAzwQ8MFq1apX69++v+Ph4mUwmLV261OWYWbNmKTk5WXXq1FFaWppWr14dgJYGL1t6rV49130Wy6m0Guk1AABOL+DT9Y8cOaIOHTpo5MiRuu6661z2L168WGPHjtWsWbN0ySWX6JVXXtEVV1yhTZs2KSkpSZKUlpam48ePu7x2+fLlio+P9/t7CBaVTekfPVoqKbEuTMuUfgAAKhdUla9NJpOWLFmiAQMG2Ld17dpVnTp10uzZs+3bzj//fA0YMEBTp051+9wrV67UzJkz9d///ve0xx0/ftwhyCoqKlJiYmLAK1+7a/58a/rMYrGOPWrRwlo1uzwqZgMAQp23la8Dnko7nRMnTig3N1cZGRkO2zMyMrR27Vq/XHPq1KmKiYmxPxITE/1yHX8pP+bo99+lV15xPcZikdatI7UGAICzoA6MDhw4IIvFori4OIftcXFx2rNnj9vnyczM1A033KCPP/5YCQkJ+uabbyo9duLEiSosLLQ/duzY4XX7A6X8lP42bSqe0j94MDPXAABwFvAxRu4wmUwOzw3DcNl2Op9++qnbx0ZERCgiIsLt44OdbUq/Lb1mY0ug2mauZWaSWgMAIKh7jGJjY2U2m116h/bt2+fSi4TKlU+vLVrkup9q2QAAWAV1YFS7dm2lpaUpKyvLYXtWVpa6desWoFZVT7b02iWXVJxae/ttads2xh0BAGq2gAdGhw8f1oYNG7RhwwZJ0rZt27Rhwwbl5eVJksaNG6d//etfevXVV7V582bdf//9ysvL0x133BHIZldbztWybRnJ2bOlVq0YdwQAqNkCPl1/5cqV6t27t8v2ESNGaMGCBZKsBR6feeYZ7d69W6mpqZoxY4YuvfTSKmmft9P9gl1+vjV9lpIiffKJdPvtjvuZ0g8AqM68/f0OeGAU7EI1MCovO9vaU+Ts3/+WEhOthSMJkAAA1UlI1jFC1bBVzHY2YgSpNQBAzUJghErHHdmwGC0AoKYgMIIk96b0f/kli9ECAEJbtSjwiKqRkGB95OdXvBjtiBHSn3+yGC0AIHTRYwQXzqm1sDCpWTPp6FHXitn0HAEAQgmBESpUPrW2fbv02muux1AxGwAQakiloVK21JpNRem1Zcus2847jyn9AIDqjx4juMU5vWbz9NPSZZcxpR8AEBoo8HgGNaHAoydsFbMjI6WLLz415kiy9iht307PEQAg8CjwiCphW4y2/EBsm9JS6cEHWYwWAFB9ERjBK5VVy37zTRajBQBUXwRG8IrzmCOzWRo61PEYpvQDAKobAiN4rfyU/t9/r7jYo8UirVhBag0AUD0wXR9nxZ0p/SNGnNpHtWwAQDCjxwg+w2K0AIDqjsAIPsVitACA6oxUGnzuTIvRDh8uHTvGYrQAgOBDjxH8pqLFaOPjpT//ZDFaAEBwIjCCXzkvRvvqq67HsBgtACBYkEqD37kzc+2LL6TWra0B0rnnsqwIACAw6DFClapsMdpJk6SkJCpmAwACi8AIVc45vfboo477GXcEAAgUUmkIiPLptZ49XfdbLNLq1dI555BaAwBUHXqMEHCVLUh7882k1gAAVYvACAFHxWwAQLAgMEJQcKdi9vffUzEbAOBfjDFC0HCnYnZBgXU7FbMBAP5AjxGCTkUVsxs0kP7441SwRHoNAOAPBEYISs5T+l9/3fUYKmYDAHyNVBqCljsVs7/+2rruGlP6AQC+QI8RqoXKKmY/8ABT+gEAvmMyDNs656hIUVGRYmJiVFhYqPr16we6OTVefr41fVarltSjh7W3yCYszJp2o+cIAODt7zc9RqhWEhKkXr2kEyccgyLJmmZ79llpxw6m9AMAvENghGqpsmrZ//wni9ECALxHYIRqyXnMkdksXXON4zFM6QcAeIrACNVW+Sn9v/8ujR3reozFIq1aRWoNAOAepuujWnNnSv/Qoaf2US0bAHA69BghZLAYLQDgbBEYIaS4sxjthg0sRgsAqBipNIQcdxajLSxkMVoAgCt6jBCyKluM9tAhFqMFAFSMwAghjcVoAQCeIJWGkMditAAAd9FjhBqFxWgBAKfDIrJnwCKyoYnFaAEgtLGILOCBMy1G+/TTLEYLADURgRFqtMoWo505k8VoAaAmIjBCjVbRYrQDBjgew5R+AKg5CIxQ4zkvRnvffa7HWCzS5s1UzAaAUMd0fUDuTekfOVLavZuK2QAQyugxApxUVDE7MlLauZOK2QAQ6giMgAo4V8xesMD1GCpmA0DoIZUGVKJ8eq1bt4rTa7/9RsVsAAgl9BgBbqisYvZttzGlHwBCScgHRsXFxercubM6duyodu3aad68eYFuEqqp8um1zz933MeYIwAIDSGfSouKilJOTo6ioqJ09OhRpaamatCgQWrcuHGgm4ZqyJZey8523WexSK++Ko0aJW3ZQnoNAKqjkO8xMpvNioqKkiQdO3ZMFotFLA+Hs1VZxexHH6ViNgBUZwEPjFatWqX+/fsrPj5eJpNJS5cudTlm1qxZSk5OVp06dZSWlqbVq1d7dI2CggJ16NBBCQkJmjBhgmJjY33VfNRQFVXM7tXL+ndb3E16DQCqn4AHRkeOHFGHDh00c+bMCvcvXrxYY8eO1cMPP6z169erR48euuKKK5SXl2c/Ji0tTampqS6PXbt2SZIaNGig77//Xtu2bdNbb72lvXv3Vsl7Q2hzrpj9yCOux1gs0tq1VMsGgOrCZARRXslkMmnJkiUaUG6xqq5du6pTp06aPXu2fdv555+vAQMGaOrUqR5f484771SfPn10ww03VLj/+PHjOn78uP15UVGREhMTVVhYqPr163t8PdQc+fnW9JnzlH4bqmUDQNUpKipSTEyMx7/fAe8xOp0TJ04oNzdXGRkZDtszMjK0du1at86xd+9eFRUVSbLepFWrVukvf/lLpcdPnTpVMTEx9kdiYqL3bwA1inN6zWRy3E9qDQCCn0eBkcViUU5Ojg4dOuSv9jg4cOCALBaL4uLiHLbHxcVpz549bp0jPz9fl156qTp06KDu3bvrnnvuUfv27Ss9fuLEiSosLLQ/duzYcVbvATVL+fTaokWu+1mMFgCCm0fT9c1mszIzM7V582Y1bNjQX21yYXL6p7dhGC7bKpOWlqYNGza4fa2IiAhFRER41D6gPNuU/vx8FqMFgOrG41Rau3bttHXrVn+0xUVsbKzMZrNL79C+fftcepGAYMNitABQ/XgcGE2ZMkXjx4/Xhx9+qN27d6uoqMjh4Uu1a9dWWlqasrKyHLZnZWWpW7duPr0W4A8sRgsA1YvHla/79esnSbrmmmsc0lm29JbFYvHofIcPH9av5X4Vtm3bpg0bNqhRo0ZKSkrSuHHjNGzYMKWnp+viiy/W3LlzlZeXpzvuuMPTpgMBwWK0AFB9eBwYZVe0FsJZ+Pbbb9VhgHEIAAAgAElEQVS7d2/783HjxkmSRowYoQULFmjw4ME6ePCgHn/8ce3evVupqan6+OOP1aJFC5+2A6gKtvTaX/9q7Smyue0265+MOQKAwAqqOkbByNs6CMDp5Odb02eGYV0+pDyz2Zp+o+cIALzn7e+3V4vIFhQUaP78+dq8ebNMJpPatm2rUaNGKSYmxpvTATUOi9ECQHDyuMfo22+/VWZmpiIjI9WlSxcZhqFvv/1Wf/75p5YvX65OnTr5q60BQY8R/Ol01bJNJmuPEuk1APCct7/fHgdGPXr0UEpKiubNm6fwcGuHU0lJiW677TZt3bpVq1at8qzlQY7ACP42f/6pMUdms9Sjh7RypeMxpNcAwDNVFhhFRkZq/fr1atOmjcP2TZs2KT09XUePHvXkdEGPwAhVwTbmKCXFmj5zHnckSYsXS02akFoDAHdU2Rij+vXrKy8vzyUw2rFjh6Kjoz09HQA5TumXKp7SP3jwqX2k1gDAPzwu8Dh48GCNHj1aixcv1o4dO5Sfn69Fixbptttu05AhQ/zRRqBGYTFaAAgcj3uMnnvuOZlMJg0fPlwlJSWSpFq1aunOO+/UtGnTfN5AoCYaPVrKzLSm1/btO9VbZGNbjJaUGgD4ltd1jI4eParffvtNhmEoJSVFUVFRvm5bUGCMEQKtsplrqanSyy9bgyTGHQGAI29/vz1OpY0aNUrFxcWKiopSu3bt1L59e0VFRenIkSMaNWqUp6cDcAYVLUZbt670v/9JPXtaB2q3aGGd3QYAODse9xiZzWbt3r1bTZs2ddh+4MABnXPOOfb0WqigxwjBovzMtd27pS5dHPczpR8ATvH7rLSioiIZhiHDMFRcXKw6derY91ksFn388ccuwRIA3yk/c23LFtf9Fou0ZIk0cCAVswHAW24HRg0aNJDJZJLJZNJ5553nst9kMumxxx7zaeMAVOzccyue0n/ffdKYMVTMBgBvuZ1Ky8nJkWEY6tOnj9599101atTIvq927dpq0aKF4uPj/dbQQCGVhmDlXDG7fXtp/XrHY0ivAaipqqzy9fbt25WUlCSTc3GVEEVghGDmTsXst9+WYmNJrQGoWaqs8vWKFStUr1493XDDDQ7b33nnHR09elQjRozw9JQAvOROxewbbzy1j9QaAJyex9P1p02bptjYWJftTZs21VNPPeWTRgHwnPO0fmdUzAaAM/M4MNq+fbuSk5Ndtrdo0UJ5eXk+aRQA74webR1TlJ1tXXTWmcViTbnl51uPIUgCAEcep9KaNm2qH374QS1btnTY/v3336tx48a+ahcAL9nSa/n5FafW7rzTGhyVlpJeAwBnHvcY3XTTTbrvvvuUnZ0ti8Uii8WiFStWaMyYMbrpppv80UYAXqioYrbZLP3886lgifQaADjyuMfoySef1Pbt23XZZZcpPNz68tLSUg0fPpwxRkCQKb8YbUqKtHy5a++QxWLdz4w1ADiLRWR/+eUXff/994qMjFS7du3UokULX7ctKDBdH6GksgVpmdIPINRU2XR9m5YtW8owDLVu3drecwQguNnSa7bCkDZM6QcAK4/HGB09elSjR49WVFSULrjgAvtMtPvuu0/Tpk3zeQMB+Fb5mWsffOC4jzFHAGo6jwOjiRMn6vvvv9fKlSsdFpK9/PLLtbii+cEAgk5CgtSrl1S3rus+22K0TOkHUBN5HBgtXbpUM2fOVPfu3R2WBWnbtq1+++03nzYOgH/ZFqN1dt99UlKSdYmRFi2s67IBQE3gcWC0f/9+NW3a1GX7kSNHasz6aUCocJ7SbzZLF15o/bttWgbpNQA1iceBUefOnfXRRx/Zn9uCoXnz5uniiy/2XcsAVInyY45+/12aPt31GItFWreO1BqA0OfxdLKpU6eqX79+2rRpk0pKSvTiiy9q48aNWrdunXJycvzRRgB+xmK0AGDlcY9Rt27d9MUXX+jo0aNq3bq1li9frri4OK1bt05paWn+aCOAKsRitABqMq8LPNYUFHhETZWfb62IvW+fNHiw6/4VK6Tevau+XQDgDm9/vz3uMerdu7fmz5+vwsJCT18KoBqxTenv1q3imWuPPy6tX8+4IwChxePAqF27dpo0aZLOOeccXXfddVq6dKlOnDjhj7YBCAIVLUYbHi6tXCl16sSUfgChxatUWmlpqT777DO99dZbWrJkicxms66//noNHTpUPXv29Ec7A4ZUGmBlS62lpEg//ST17eu432y2zmpjrTUAwcDb3++zHmN07NgxffDBB5oyZYp+/PFHWcovwBQCCIwAV9nZ1p4iZzNmSB06sBgtgMCr8kVkJWnPnj1atGiRFi5cqB9++EGdO3c+m9MBqCZsFbOdp/Tff7/1T6b0A6iuPB5jVFRUpNdee019+/ZVYmKiZs+erf79++uXX37RV1995Y82AggyFY07Ko8p/QCqK49TaZGRkWrYsKFuvPFGDR06NOR7iUilAZU705T+f/5TGjhQ2rKF9BqAqlVlY4yWL1+uyy+/XGEVzd8NQQRGwJnl51tnpjmn1iTJZLKuu0Z6DUBVqrI6RhkZGTUmKALgnooWo+3Uyfp3FqMFUJ14HOHs3btXw4YNU3x8vMLDw2U2mx0eAGom58Von3vO9RiLxZp6y8+nMCSA4OTxrLRbb71VeXl5+sc//qFmzZrJZDL5o10AqiF3FqOdMEHKzbVuJ70GINh4PMYoOjpaq1evVseOHf3VpqDCGCPAe/PnW9NnFsupsUbOKAwJwB+qbIxRYmKiWHcWgDvKp9fy8qTp012PsaXXACAYeBwYvfDCC3rwwQf1+++/+6E5AEKNbTHahATpxhsrXpD22DHGHAEIDh6n0ho2bKijR4+qpKREUVFRqlWrlsP+P/74w6cNDDRSaYBvlU+vOWPMEQBfqbIlQV544QVPXwIAdqNHS5mZ1vTZnj3SkCGn9tmm9GdmMuYIQGB4HBiNGDHCH+0AUIPYZq9lZ7vus1ikFSusi9RSMRtAVfOqUuNvv/2mSZMmaciQIdq3b58kadmyZdq4caNPGwcgtNkWo3U2erSUlGQNjlq0sKbfAKAqeBwY5eTkqF27dvrqq6/03nvv6fDhw5KkH374QY8++qjPGwggdFVUMTslRSopoWI2gMDwODB68MEH9eSTTyorK0u1a9e2b+/du7fWrVvn08YBCH3OFbPnzHE9xmKR1q1j5hoA//N4jNGPP/6ot956y2V7kyZNdPDgQZ80CkDN4k7F7MGDWYwWgP953GPUoEED7d6922X7+vXr1bx5c580CkDN5ZxesyG1BqAqeBwY3XzzzXrggQe0Z88emUwmlZaW6osvvtD48eM1fPhwf7QRQA1TPr22eLHrfqplA/AXj1NpU6ZM0a233qrmzZvLMAy1bdtWFotFN998syZNmuSPNgKogWzptfz8ilNrr7wixcdLO3cypR+A73hc+drmt99+0/r161VaWqoLL7xQ5557rq/b5jPh4eFKTU2VJKWnp+tf//qX26+l8jUQeGdajJZxRwCcefv77XVgVJ3ExsbqwIEDXr2WwAgIDvn51vRZSoq0dq11MHZ5ZrM1/UbPEQCpCpcEGTduXIXbTSaT6tSpo5SUFF177bVq1KiRp6cGgEqVn7nWpInrfotF+uQTa+BEag2AtzwefL1+/XrNnz9fc+fOVU5OjlauXKl58+Zp/vz5+vzzzzVu3DilpKRo06ZNbp1v1apV6t+/v+Lj42UymbR06VKXY2bNmqXk5GTVqVNHaWlpWr16tUdtLioqUlpamrp3766cnByPXgsg+FRWMfv226mWDeDseBwYXXvttbr88su1a9cu5ebm6rvvvtPOnTvVt29fDRkyRDt37tSll16q+++/363zHTlyRB06dNDMmTMr3L948WKNHTtWDz/8sNavX68ePXroiiuuUF5env2YtLQ0paamujx27dolSfr999+Vm5urOXPmaPjw4SoqKvL0bQMIIs5T+k0mx/1M6QfgLY/HGDVv3lxZWVlq27atw/aNGzcqIyNDO3fu1HfffaeMjAyPx/WYTCYtWbJEAwYMsG/r2rWrOnXqpNmzZ9u3nX/++RowYICmTp3q0fkl6YorrtATTzyh9PT0CvcfP35cx48ftz8vKipSYmIiY4yAIGQbd7Rvn+uYI0n6979ZjBaoqbwdY+Rxj1FhYaF94djy9u/fb++JadCggU6cOOHpqV2cOHFCubm5ysjIcNiekZGhtWvXunWOQ4cO2QOd/Px8bdq0Sa1atar0+KlTpyomJsb+SExM9P4NAPCrhASpVy+pWzcWowXgG16l0kaNGqUlS5YoPz9fO3fu1JIlSzR69Gh7T8/XX3+t884776wbd+DAAVksFsXFxTlsj4uL0549e9w6x+bNm5Wenq4OHTro6quv1osvvnjageETJ05UYWGh/bFjx46zeg8A/I/FaAH4isez0l555RXdf//9uummm1RSUmI9SXi4RowYoRkzZkiS2rRp41GtoDMxOQ0gMAzDZVtlunXrph9//NHta0VERCgiIsKj9gEIvNGjpczMU1P6f/5Zuvxyx2Nsi9HGxpJaA1AxjwOjevXqad68eZoxY4a2bt0qwzDUunVr1atXz35Mx44dfdK42NhYmc1ml96hffv2ufQiAQCL0QI4Wx6n0mzq1aun9u3bq0OHDg5BkS/Vrl1baWlpysrKctielZWlbt26+eWaAEIDi9EC8IZbPUaDBg3SggULVL9+fQ0aNOi0x7733nseNeDw4cP6tdxqkNu2bdOGDRvUqFEjJSUlady4cRo2bJjS09N18cUXa+7cucrLy9Mdd9zh0XUA1Dzl02sVzVyzLUZLSg2AjVuBUUxMjH1MT0xMjE8b8O2336p3797257bK2iNGjNCCBQs0ePBgHTx4UI8//rh2796t1NRUffzxx2rRooVP2wEgNJ1pMdo5c6RmzaRduxh3BKCGrJV2NlgrDQgdLEYL1BxVVsdIkkpKSvTZZ5/plVdeUXFxsSRp165dOnz4sDenA4AqMXq0daHZ7GwpL09avNhxP+OOAHg8K2379u3q16+f8vLydPz4cfXt21fR0dF65plndOzYMc2ZM8cf7QQAn3BnMdqvv7b+nYrZQM3jcY/RmDFjlJ6erkOHDikyMtK+feDAgfr888992jgA8KfKFqMdPpyK2UBN5XFgtGbNGk2aNEm1a9d22N6iRQvt3LnTZw0DAH9zntIfFiadc4505AjT+oGayuPAqLS0VBaLxWV7fn6+oqOjfdIoAKgq5ccdbd8uLVjgeoytYnZ2NgESEOo8Doz69u2rF154wf7cZDLp8OHDevTRR3XllVf6tHEAUBVsi9EmJEgXXFBxem3wYFJrQE3g8XT9Xbt2qXfv3jKbzdqyZYvS09O1ZcsWxcbGatWqVWratKm/2hoQTNcHap7y0/orYjZbe5kYlA0EL29/v72qY/Tnn39q0aJFys3NVWlpqTp16qShQ4c6DMYOFQRGQM2Un2+tir1njzRkiOv+7GxrLxOA4FSlgVFNQmAE1Gz5+db0mXPF7LFjpTFjpG3bmNIPBKMqLfAIADWF88y1stWR9MILUnIy446AUENgBABn4Fwx+5//dNzPlH4gdHhc+RoAaqLyFbNTU133WyzWwCkhgdQaUJ3RYwQAHjpdxWxSa0D15nVgdOLECeXn5ysvL8/hAQChrrJxRzak1oDqy+NU2pYtWzRq1CitXbvWYbthGDKZTBVWxQaAUDN6tJSZaZ3Sv2+ftQBkeSxGC1RPHgdGt956q8LDw/Xhhx+qWbNmMjn/UwkAagjbuKP8fGtqzXlK//Dh0tGj1nXXwsKsvUyjRwemrQDc43Edo7p16yo3N1dt2rTxV5uCCnWMALijfLXssDCpaVNrccjyqJgNVJ0qq2PUtm1bHThwwNOXAUBIc3cx2l9/reqWAfCEx6m0p59+WhMmTNBTTz2ldu3aqVatWg776VUBUFOVn9IvVZxeW77cuu288+g5AoKRx6m0sLI5qs5ji0J18DWpNADeOt1itIw5AvyrytZKy8nJOe3+nj17enK6oEdgBOBs2BajjYyULr7YOhDbJizMmnaj5wjwPW9/vz1OpYVa4AMA/mRLr2VnOwZFkjWl9tBD0uOPsxgtECzcCox++OEHpaamKiwsTD/88MNpj23fvr1PGgYAocRWLdt5zNEbb1gfEuk1IBi4lUoLCwvTnj171LRpU4WFhclkMqmilzHGCAAqV37MkdlsLQr51luOxzClH/ANv6bStm3bpiZNmtj/DgDwXPlq2Skp1orYzoERi9ECgeXx4Ouahh4jAP6Sn29dcNY5vWZDag3wXpUVeAQA+AaL0QLBh8AIAAKofMXsRYtc99sWo83Ptx5DkAT4l8fT9QEAvsVitEDw8KjHyGKxKCcnR4cOHfJXewCgxnJOrYWFSeecIx05cqoGEuk1wL88CozMZrMyMzNVUFDgr/YAQI3GYrRAYHmcSmvXrp22bt2q5ORkf7QHAGo8dxaj/fprqXVra4DEtH7AdzwefD1lyhSNHz9eH374oXbv3q2ioiKHBwDAd5zTazYPPCAlJUl9+lin/M+fH5j2AaHG4zpGYWGnYilTubmlhmFQ+RoA/MS2GG2rVtZAacoUx/1UzAYcVdkistnZ2Z6+BABwlsqn1y67zDUwslikNWukuDhSa8DZ8Dgw6tmzpz/aAQBwU2UL0g4ZYv2TKf2A97yqY1RQUKD58+dr8+bNMplMatu2rUaNGqWYmBhftw8A4MQ27si2IK3JdGo6v3RqSn9mJj1HgKc8Hnz97bffqnXr1poxY4b++OMPHThwQM8//7xat26t7777zh9tBAA4cadi9o8/UjEb8JTHg6979OihlJQUzZs3T+Hh1g6nkpIS3Xbbbdq6datWrVrll4YGCoOvAQS7yhajbdxYOnTIup30Gmoab3+/PQ6MIiMjtX79erVp08Zh+6ZNm5Senq6jR496crqgR2AEoDqYP/9Uai0sTIqOlgoLHY9h5hpqEm9/vz1OpdWvX195eXku23fs2KHo6GhPTwcA8AHnitn//rfrMVTMBs7M48HXgwcP1ujRo/Xcc8+pW7duMplMWrNmjf7+979riG1KBACgyrlTMXv9eutAbab0AxXzODB67rnnZDKZNHz4cJWUlEiSatWqpTvvvFPTpk3zeQMBAJ5znrlmM26c9U/GHAEV83iMkc3Ro0f122+/yTAMpaSkKCoqytdtCwqMMQJQndkqZpvNUs+ejtP6w8KsaTd6jhCKqmSMUUlJicLDw/W///1PUVFRateundq3bx+yQREAVHcJCVKvXlJJiWNQJFnTbC+8IO3YwZR+wMajwCg8PFwtWrQIufXQACDU2aplO5s+ncVogfI8npU2adIkTZw4UX/88Yc/2gMA8APbmCOz2frcbJauusrxGFvFbHqOUJN5PMbowgsv1K+//qqTJ0+qRYsWqlu3rsP+UKt+zRgjAKHENuYoJUXassXaU+TsP/9hMVpUf97+fns8K23AgAGevgQAECTcmdLPYrSoyTzqMbJYLFqzZo3at2+vhg0b+rNdQYMeIwChrHzFbOfFaCWqZaP6qpJZaWazWZmZmSooKPC4gQCA4MNitIAjj1Np7dq109atW5WcnOyP9gAAqpgtvZafX3FqbdgwFqNFzeHxrLQpU6Zo/Pjx+vDDD7V7924VFRU5PAAA1ZPzzLWwMCkmRjp48FSwxMw1hDqPZ6WFlSuEYTKZ7H83DEMmkynkahwxxghATVN+5lpurlTRnJvsbGvhSCBYVdmstOzsbE9fElA///yzBg8e7PD8P//5D7PrAKASLEaLmszrtdKqo8OHD6tly5bavn27S/2lytBjBKCmKz9zzRljjhCsqmRWms3q1at1yy23qFu3btq5c6ck6Y033tCaNWu8OV2Vef/993XZZZe5HRQBABxnrq1aZZ3Wb1NaKt1+O2OOEDo8DozeffddZWZmKjIyUt99952OHz8uSSouLtZTTz3lcQNWrVql/v37Kz4+XiaTSUuXLnU5ZtasWUpOTladOnWUlpam1atXe3wdSXr77bcd0moAAPecaTHa559nMVqEBo8DoyeffFJz5szRvHnzVKtWLfv2bt26ebUcyJEjR9ShQwfNnDmzwv2LFy/W2LFj9fDDD2v9+vXq0aOHrrjiCuXl5dmPSUtLU2pqqstj165d9mOKior0xRdf6Morr/S4jQAAq8oWo50xg8VoERo8HmMUFRWlTZs2qWXLloqOjtb333+vVq1aaevWrWrbtq2OHTvmfWNMJi1ZssRhYHTXrl3VqVMnzZ49277t/PPP14ABAzR16lS3z/3GG2/o008/1cKFC0973PHjx+29YJI1oEpMTGSMEQCUKT/myGyW+vWTPvrI8RgqZiPQqmyMUbNmzfTrr7+6bF+zZo1atWrl6elO68SJE8rNzVVGRobD9oyMDK1du9ajc7mbRps6dapiYmLsj8TERI+uAwChrvyYo99/l/72N9djLBbpp5+omI3qx+PA6K9//avGjBmjr776SiaTSbt27dKbb76p8ePH66677vJp4w4cOCCLxaK4uDiH7XFxcdqzZ4/b5yksLNTXX3+tzMzMMx47ceJEFRYW2h87duzwuN0AEOpsY44SEipPr40ebU2rkV5DdeJxHaMJEyaosLBQvXv31rFjx3TppZcqIiJC48eP1z333OOPNjoUkpROFZN0V0xMjPbu3evWsREREYqIiPCofQBQk9kqZtvSa2FhUq1aUrmhoPaK2ZmZpNcQ3Lyarj9lyhQdOHBAX3/9tb788kvt379fTzzxhK/bptjYWJnNZpfeoX379rn0IgEAAqd8em37dum111yPsVisFbWBYOZVYCRZB2Gnp6erS5cuqlevni/bZFe7dm2lpaUpKyvLYXtWVpa6devml2sCALxTPr3Wo0fF6bXt2xlzhODmcSrN1w4fPuwwmHvbtm3asGGDGjVqpKSkJI0bN07Dhg1Tenq6Lr74Ys2dO1d5eXm64447AthqAMDpOKfXbG691fonFbMRrAK+JMjKlSvVu3dvl+0jRozQggULJFkLPD7zzDPavXu3UlNTNWPGDF166aVV0j6WBAEA79kWpC0pkfr2ddzHlH74k7e/3wEPjIIdgREAnL3sbOvsNGdPPSUNGyZt2cKCtPCtKl0rDQAAT1Q2pf+hh6iYjeBCYAQA8DvbmCOz2frcbJa6d7f+3Za3sE3pZ2A2Aingg68BADXD6NHWOka//iqlpFjTZ87pNYtFWrtWatKE1BoCg8AIAFBlEhIcg52wMGtPUXm21ZuYuYZAIJUGAAgI5/SaM1JrCAQCIwBAwJSvmL14set+FqNFVSOVBgAIKFt6LT+/4tTa6NHWfaWlpNfgf/QYAQCCgnNqLSxMqlPHuhitLVgivQZ/IzACAAQN58VoX33V9RgWo4U/kUoDAASV8jPXbIvROqfXbIvRMqUfvkaPEQAgaFU2c+3WW6mWDf9grbQzYK00AAg8FqOFp1grDQAQshISpF69Kq55ZLFIb7zBlH74BoERAKDaYDFa+BuBEQCg2mAxWvgbs9IAANUKi9HCnwiMAADVDovRwl9IpQEAqjUWo4UvERgBAKo9dxejBc6EVBoAICScaTHaCROkmTOl48cZd4TK0WMEAAgpFS1GGxkprV8vXXIJU/pxelS+PgMqXwNA9WSrlp2SYv37xRc77qdidmij8jUAAOXYqmUnJEh//um632KRPvyQitlwRGAEAAh5lVXMvusuKmbDEYERACDkVVQxu317a7VsKmajPGalAQBqBOeK2b/8Il12meMxFou0bp0UG8vMtZqKwAgAUGO4WzHbMKiYXVORSgMA1EiVVcwmtVazERgBAGosdypmb9nCzLWahFQaAKBGO1PF7HvvlTZvtm4nvRb66DECAECuqTWTyRoIbdx4KlgivRb6CIwAAChTPrWWlyfNnu16jMVindmG0EQqDQCAcsrPXLvyyorTa4cOWYMnpvSHHnqMAACoRGUz1wYNolp2qGIR2TNgEVkAgG1B2qIi6dprHfexGG1wYhFZAAD8xLYgbXS06z4Wow0tBEYAALiJxWhDH4ERAABuYjHa0MesNAAAPMBitKGNwAgAAA+xGG3oIpUGAMBZYDHa0EJgBADAWXJ3MVoEP1JpAAD4wJkWo336aeuYowMHGHcUzOgxAgDAhypajNZslj791DqDjSn9wY3ACAAAH3NejPbDDx33M+4oeJFKAwDAD8rPXKtofJHFIi1ZIqWmkloLJvQYAQDgZ5VVzL7vPlJrwYbACAAAP3Med+QcJJFaCx4ERgAAVIHy447+8x/X/SxGGxxMhmErQYWKFBUVKSYmRoWFhapfv36gmwMACAH5+db0mfOUfpPJ+icVs8+et7/f9BgBAFDFWIw2eDErDQCAAHB3Mdpff7X+fcsWZq9VBQIjAAACxJ3FaB9+WPryS+t20mv+RyoNAIAgUFHFbElau/ZUsER6zf9qRGD03HPP6YILLlBqaqoWLlwY6OYAAFAh54rZ06a5HlM+vQbfC/nA6Mcff9Rbb72l3Nxcffvtt5o9e7YKCgoC3SwAACqUkCD16mX9c+hQ15pHJpN08iRT+v0l5AOjzZs3q1u3bqpTp47q1Kmjjh07atmyZYFuFgAAZ+ScXpOss9YyMqiY7S8BD4xWrVql/v37Kz4+XiaTSUuXLnU5ZtasWUpOTladOnWUlpam1atXu33+1NRUZWdnq6CgQAUFBVqxYoV27tzpy7cAAIDflE+vvf664z7GHPlewGelHTlyRB06dNDIkSN13XXXuexfvHixxo4dq1mzZumSSy7RK6+8oiuuuEKbNm1SUlKSJCktLU3Hjx93ee3y5cvVtm1b3XffferTp49iYmLUuXNnhYcH/G0DAOA22+y17GzXfRaLlJMj9ezJlH5fCKrK1yaTSUuWLNGAAQPs2/f6ZxcAABeMSURBVLp27apOnTpp9uzZ9m3nn3++BgwYoKlTp3p8jdtuu00DBw7UVVddVeH+48ePOwRZRUVFSkxMpPI1ACDgKquYXbu2ddwRFbNPCcnK1ydOnFBubq4yMjIctmdkZGjt2rVun2ffvn2SpJ9//llff/21MjMzKz126tSpiomJsT8SExO9azwAAD5WUcXsli2lEyeomO0rQZ1TOnDggCwWi+Li4hy2x8XFac+ePW6fZ8CAASooKFDdunX12muvnTaVNnHiRI0bN87+3NZjBABAMHCumP3TT1Lfvo7HWCzSunVSbCypNU8FdWBkY7JVuSpjGIbLttPxpHcpIiJCERERbh8PAEBVc6di9uDBpNa8EdSptNjYWJnNZpfeoX379rn0IgEAUBNVNKVfIrXmraAOjGrXrq20tDRlZWU5bM/KylK3bt0C1CoAAIJL+Sn9ixa57qdatvsCnko7fPiwfi33aW3btk0bNmxQo0aNlJSUpHHjxmnYsGFKT0/XxRdfrLlz5yovL0933HFHAFsNAEBwsaXX8vMrTq299prUvLl1P+OOKhfw6forV65U7969XbaPGDFCCxYskGQt8PjMM89o9+7dSk1N1YwZM3TppZdWSfu8ne4HAECgzJ9vTZ9ZLNYlRJx/6WvCuCNvf78DHhgFOwIjAEB1lJ9/aubaypXSsGGO+81ma/otVHuOvP39DngqDQAA+F75mWvNm7vut1ikTz+VWrUitVZeUA++BgAAZ+/cc63pM2e33cZitM4IjAAACHHOU/qdSwEypf8UAiMAAGoAd6b05+RYg6Ps7JobJDHGCACAGuJMU/pHjWIxWnqMAACoYViMtnIERgAA1EDlU2u//y7Nm+d6jG0x2pqUWiOVBgBADcVitK7oMQIAACxGW4bACAAASGIxWolUGgAAKKemL0ZLjxEAAHBRWVHI11+XzjsvdCtmExgBAIAKlU+t5eVJCxc67g/FcUek0gAAQKXKz1yLj3fdb7FIubnWv2/ZUv3TawRGAADALbbFaJ3HHQ0fLh0+bN1e3af1k0oDAABucR53FBYmNWkiFRWdCpaqe3qNwAgAALit/Lij7dulf//b9ZjqXDGbVBoAAPBIKFfMpscIAAB4LdQqZhMYAQCAs1I+vfbWW677q1PFbFJpAADgrJ2pYvayZVJysrR1a3BP6afHCAAA+ExlFbOfflpq2TL4K2YTGAEAAJ9ynrk2fbrj/mAed0QqDQAA+Fz5mWsXXui632KRVq60LkgbTKk1eowAAIBf2SpmOxs2LPhSawRGAADAryobd2QTTKk1AiMAAOB35ccdLVrkuj9YpvQzxggAAFSJ003pN5ullJTAtc2GHiMAAFClnFNrZrP0yivBMQCbHiMAAFDlRo+WMjOt6bOUlOAIiiQCIwAAECDOi9EGA1JpAAAAZQiMAAAAyhAYAQAAlCEwAgAAKENgBAAAUIbACAAAoAyBEQAAQBkCIwAAgDIERgAAAGUIjAAAAMoQGAEAAJRhrbQzMAxDklRUVBTglgAAAHfZfrdtv+PuIjA6g+LiYklSYmJigFsCAAA8VVxcrJiYGLePNxmehlI1TGlpqXbt2qXo6GiZTCavz1NUVKTExETt2LFD9evX92EL4Yx7XXW411WHe111uNdVx5/32jAMFRcXKz4+XmFh7o8cosfoDMLCwpSQkOCz89WvX5//0KoI97rqcK+rDve66nCvq46/7rUnPUU2DL4GAAAoQ2AEAABQxjx58uTJgW5ETWE2m9WrVy+Fh5PB9DfuddXhXlcd7nXV4V5XnWC71wy+BgAAKEMqDQAAoAyBEQAAQBkCIwAAgDIERgAAAGUIjKrArFmzlJycrDp16igtLU2rV68OdJOqvalTp6pz586Kjo5W06ZNNWDAAP38888Oxxw/flz33nuvYmNjVbduXV1zzTXKz88PUItDx9SpU2UymTR27Fj7Nu617+zcuVO33HKLGjdurKioKHXs2FG5ubn2/YZhaPLkyYqPj1dkZKR69eqljRs3BrDF1VNJSYkmTZqk5ORkRUZGqlWrVnr88cdVWlpqP4Z77b1Vq1apf//+io+Pl8lk0tKlSx32u3NvDx06pGHDhikmJkYxMTEaNmyYCgoK/N52AiM/W7x4scaOHauHH35Y69evV48ePXTFFVcoLy8v0E2r1nJycnT33Xfryy+/VFZWlkpKSpSRkaEjR47Yjxk7dqyWLFmiRYsWac2aNTp8+LCuvvpqWSyWALa8evvmm280d+5ctW/f3mE799o3Dh06pEsuuUS1atXSJ598ok2bNmn69Olq0KCB/ZhnnnlGzz//vGbOnKlvvvlG55xzjvr27Wtf1xHuefrppzVnzhzNnDlTmzdv1jPPPKNnn31WL730kv0Y7rX3jhw5og4dOmjmzJkV7nfn3t58883asGGDli1bpmXLlmnDhg0aNmyY/xtvwK+6dOli3HHHHQ7b2rRpYzz44IMBalFo2rdvnyHJyMnJMQzDMAoKCoxatWoZixYtsh+zc+dOIywszFi2bFmgmlmtFRcXG+eee66RlZVl9OzZ0xgzZoxhGNxrX3rggQeM7t27V7q/tLTUOOecc4xp06bZtx07dsyIiYkx5syZUxVNDBlXXXWVMWrUKIdtgwYNMm655RbDMLjXviTJWLJkif25O/d206ZNhiTjyy+/tB+zbt06Q5Lx008/+bW99Bj50YkTJ5Sbm6uMjAyH7RkZGVq7dm2AWhWaCgsLJUmNGjWSJOXm5urkyZMO9z4+Pl6pqancey/dfffduuqqq3T55Zc7bOde+87777+v9PR03XDDDWratKkuvPBCzZs3z75/27Zt2rNnj8O9joiIUM+ePbnXHurevbs+//xz/fLLL5Kk77//XmvWrNGVV14piXvtT+7c23Xr1ikmJkZdu3a1H3PRRRcpJibG7/c/OMpMhqgDBw7IYrEoLi7OYXtcXJz27NkToFaFHsMwNG7cOHXv3l2pqamS/n979x4T1dW1AfwZh5nhjiDKIChILQIqykW5tUC01kustWm1KhFMGsUiN2kUa02hWl9MDZVo1NTGQCsaWwM2am9CFKygUgQqVQSviM1Y1ICXakSY5/ujeF6nUEUr5ZVv/ZJJOPvsvdc+a8iwMrMPA1y5cgVarRb29vYmfSX3T2fnzp2oqKjAzz//3OGc5PrZOX/+PDZv3oyUlBQsX74cZWVlSExMhE6nQ3R0tJLPzl5T6uvre2LJz63U1FTcuHEDXl5eUKvVaGtrw+rVqzF79mwAkFx3o67k9sqVKxgwYECHsQMGDOj21xUpjP4FKpXK5Jhkhzbx9OLj43HixAkcPnz4sX0l90+uoaEBSUlJ2L9/P8zNzbs8TnL95IxGIwIDA/Gf//wHAODn54eTJ09i8+bNiI6OVvrJa8o/99VXXyE3Nxc7duzA8OHDUVVVheTkZAwcOBAxMTFKP8l193lcbjvL87+Rf/korRs5OjpCrVZ3qG4bGxs7VMri6SQkJGDPnj04ePAgXF1dlXa9Xo+WlhY0NTWZ9JfcP7njx4+jsbERAQEBMDMzg5mZGYqLi7F+/XqYmZnByclJcv2MODs7w8fHx6TN29tbuVlDr9cDgLymPANLlizBsmXLMGvWLIwcORJz587F4sWLkZGRAUBy3Z26klu9Xo/ff/+9w9irV692e/6lMOpGWq0WAQEBKCgoMGkvKChAaGhoD62qdyCJ+Ph45Ofn48CBAxgyZIjJ+YCAAGg0GpPcGwwG/Prrr5L7JzR+/HhUV1ejqqpKeQQGBiIqKkr5WXL9bISFhXX4txN1dXVwc3MDAAwZMgR6vd4k1y0tLSguLpZcP6E7d+6gTx/TP4FqtVq5XV9y3X26ktuQkBDcuHEDZWVlSp9jx47hxo0b3Z//bt3aLbhz505qNBpu3bqVp06dYnJyMq2srHjx4sWeXtpz7d1336WdnR2LiopoMBiUx507d5Q+CxcupKurKwsLC1lRUcFx48Zx1KhRbG1t7cGV9w4P35VGSq6flbKyMpqZmXH16tU8c+YMt2/fTktLS+bm5ip91qxZQzs7O+bn57O6upqzZ8+ms7Mzb9682YMrf/7ExMTQxcWF+/bt44ULF5ifn09HR0cuXbpU6SO5fnq3bt1iZWUlKysrCYCffvopKysrWV9fT7JruZ00aRJ9fX155MgRHjlyhCNHjuTUqVO7fe1SGP0LNm7cSDc3N2q1Wvr7+yu3lIunB6DTR3Z2ttLn7t27jI+Pp4ODAy0sLDh16lReunSp5xbdi/y1MJJcPzt79+7liBEjqNPp6OXlxS1btpicNxqNTEtLo16vp06nY3h4OKurq3totc+vmzdvMikpiYMHD6a5uTk9PDz4wQcf8N69e0ofyfXTO3jwYKev0TExMSS7ltvr168zKiqKNjY2tLGxYVRUFJuamrp97SqS7N73pIQQQgghng+yx0gIIYQQop0URkIIIYQQ7aQwEkIIIYRoJ4WREEIIIUQ7KYyEEEIIIdpJYSSEEEII0U4KIyGEEEKIdlIYCSGeWmRkJJKTk3t6GQqSWLBgARwcHKBSqVBVVdXTSxJCPGekMBJC9Bo//PADcnJysG/fPhgMBowYMaKnl/Svcnd3R1ZWVk8vQ4jnmllPL0AIIR7W1tYGlUrV4Qs+u+LcuXNwdnbuFV/yef/+fWg0mp5ehhD/78g7RkI85yIjI5GYmIilS5fCwcEBer0e6enpyvmLFy92+FipubkZKpUKRUVFAICioiKoVCr8+OOP8PPzg4WFBcaNG4fGxkZ8//338Pb2hq2tLWbPno07d+6YxG9tbUV8fDz69u2Lfv36YcWKFXj4m4ZaWlqwdOlSuLi4wMrKCkFBQUpcAMjJyUHfvn2xb98++Pj4QKfTob6+vtNrLS4uxtixY6HT6eDs7Ixly5ahtbUVADBv3jwkJCTg0qVLUKlUcHd373SOB/G++eYbeHp6wtzcHBMmTEBDQ4NJv82bN+OFF16AVqvFsGHDsG3bNuXce++9h9dee005zsrKgkqlwrfffqu0DRs2DJ999plynJ2dDW9vb5ibm8PLywubNm3q8Bx9/fXXiIyMhLm5OXJzcztdf3p6OgYPHgydToeBAwciMTERwJ+/B/X19Vi8eDFUKhVUKpUyprS0FOHh4bCwsMCgQYOQmJiIP/74Qznv7u6OVatWYc6cObC2tsbAgQOxYcOGLsUVotfp9m9jE0J0q4iICNra2jI9PZ11dXX84osvqFKpuH//fpLkhQsXCICVlZXKmKamJgLgwYMHSf73Cx+Dg4N5+PBhVlRUcOjQoYyIiOCrr77KiooKHjp0iP369eOaNWtMYltbWzMpKYmnT59mbm4uLS0tTb74dM6cOQwNDeWhQ4d49uxZrl27ljqdjnV1dSTJ7OxsajQahoaGsqSkhKdPn+bt27c7XOfly5dpaWnJuLg41tTUcPfu3XR0dGRaWhpJsrm5mStXrqSrqysNBgMbGxs7zdeDeIGBgSwtLWV5eTnHjh3L0NBQpU9+fj41Gg03btzI2tpaZmZmUq1W88CBAyTJPXv20M7Ojm1tbSTJ6dOn09HRkUuWLCFJGgwGAmBNTQ1JcsuWLXR2dmZeXh7Pnz/PvLw8Ojg4MCcnx+Q5cnd3V/r89ttvHda+a9cu2tra8rvvvmN9fT2PHTum5Pr69et0dXXlypUraTAYaDAYSJInTpygtbU1161bx7q6OpaUlNDPz4/z5s1T5nVzc6ONjQ0zMjJYW1vL9evXU61WK79Dj4orRG8jhZEQz7mIiAi+9NJLJm1jxoxhamoqyScrjAoLC5U+GRkZBMBz584pbbGxsZw4caJJbG9vbxqNRqUtNTWV3t7eJMmzZ89SpVJ1+CM/fvx4vv/++yT/LFQAsKqq6pHXuXz5cg4bNswk1saNG2ltba0UKOvWraObm9sj53kQ7+jRo0pbTU0NAfDYsWMkydDQUM6fP99k3IwZMzhlyhSSfxZhffr0YXl5OY1GI/v168eMjAyOGTOGJLljxw46OTkpYwcNGsQdO3aYzLdq1SqGhISQ/O9zlJWV9ci1Z2Zm0tPTky0tLZ2ed3Nz47p160za5s6dywULFpi0/fTTT+zTpw/v3r2rjJs0aZJJn7fffpuTJ0/uUlwhehP5KE2IXsDX19fk2NnZGY2Njf9oHicnJ1haWsLDw8Ok7a/zBgcHm3xsExISgjNnzqCtrQ0VFRUgCU9PT1hbWyuP4uJinDt3Thmj1Wo7XMNf1dTUICQkxCRWWFgYbt++jcuXLz/RdZqZmSEwMFA59vLyQt++fVFTU6PECgsLMxkTFhamnLezs8Po0aNRVFSE6upq9OnTB7Gxsfjll19w69YtFBUVISIiAgBw9epVNDQ04J133jHJwccff2ySAwAma+rMjBkzcPfuXXh4eGD+/PnYvXu38lHi3zl+/DhycnJMYk+cOBFGoxEXLlxQ+oWEhJiMCwkJUa73aeIK8bySzddC9AJ/3aSrUqlgNBoBQNnEzIf2/dy/f/+x86hUqkfO2xVGoxFqtRrHjx+HWq02OWdtba38bGFhYVLwdIZkhz4PrulxYzvT2ZiH2zqL9XBbZGQkioqKoNVqERERAXt7ewwfPhwlJSUoKipS/o3Bg3x9/vnnCAoKMpnzrzmxsrJ65JoHDRqE2tpaFBQUoLCwEHFxcVi7di2Ki4v/dqO20WhEbGxsp3uCBg8e/Mh4D673aeIK8bySwkiIXq5///4AAIPBAD8/PwB4pv/f5+jRox2OX3zxRajVavj5+aGtrQ2NjY14+eWX/1EcHx8f5OXlmRQopaWlsLGxgYuLyxPN1draivLycowdOxYAUFtbi+bmZnh5eQEAvL29cfjwYURHRytjSktL4e3trRxHRkZi69atMDMzwyuvvAIAiIiIwM6dO1FXV6e8Y+Tk5AQXFxecP38eUVFRT5+AdhYWFpg2bRqmTZuGRYsWwcvLC9XV1fD394dWq0VbW5tJf39/f5w8eRJDhw595LydPY8P8vG4uEL0JlIYCdHLWVhYIDg4GGvWrIG7uzuuXbuGFStWPLP5GxoakJKSgtjYWFRUVGDDhg3IzMwEAHh6eiIqKgrR0dHIzMyEn58frl27hgMHDmDkyJGYMmVKl+PExcUhKysLCQkJiI+PR21tLdLS0pCSkvLEt/ZrNBokJCRg/fr10Gg0iI+PR3BwsFIoLVmyBDNnzoS/vz/Gjx+PvXv3Ij8/H4WFhcoc4eHhuHXrFvbu3YuPP/4YwJ/F0ptvvon+/fvDx8dH6Zueno7ExETY2tpi8uTJuHfvHsrLy9HU1ISUlJQurzsnJwdtbW0ICgqCpaUltm3bBgsLC7i5uQH48+6yQ4cOYdasWdDpdHB0dERqaiqCg4OxaNEizJ8/H1ZWVqipqUFBQYHJnWclJSX45JNPMH36dBQUFGDXrl3KXXaPiytEr9KTG5yEEP9cREQEk5KSTNpef/11xsTEKMenTp1icHAwLSwsOHr0aO7fv7/TzddNTU3KmOzsbNrZ2ZnMm5aWxlGjRpnEjouL48KFC2lra0t7e3suW7bMZIN0S0sLP/zwQ7q7u1Oj0VCv1/ONN97giRMn/jbO3ykqKuKYMWOo1Wqp1+uZmprK+/fvK+e7uvnazs6OeXl59PDwoFar5bhx43jx4kWTfps2baKHhwc1Gg09PT355ZdfdpgrICCA/fv3V673+vXrVKlUfOuttzr03b59O0ePHk2tVkt7e3uGh4czPz+fZOcb5Duze/duBgUF0dbWllZWVgwODjbZMH/kyBH6+vpSp9Px4Zf3srIyTpgwgdbW1rSysqKvry9Xr16tnHdzc+NHH33EmTNn0tLSkk5OTiYbwR8XV4jeREU+tPFACCF6uZycHCQnJ6O5ubmnl/I/w93dHcnJyf9TX+8iRE+Ru9KEEEIIIdpJYSSEEEII0U4+ShNCCCGEaCfvGAkhhBBCtJPCSAghhBCinRRGQgghhBDtpDASQgghhGgnhZEQQgghRDspjIQQQggh2klhJIQQQgjRTgojIYQQQoh2UhgJIYQQQrT7PyfKvtUeSpJlAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'convergence of power method for $\\\\lambda=1,2,3,4,5$')" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d = Float64[]\n", - "y = x\n", - "for i = 1:100\n", - " y = A*y\n", - " y = y / norm(y)\n", - " push!(d, min(norm(y - X[:,1]), norm(-y - X[:,1]))) # pick the better of the two signs\n", - "end\n", - "semilogy(1:length(d), d, \"b.-\")\n", - "xlabel(\"number of power steps\")\n", - "ylabel(\"error in eigenvector\")\n", - "title(L\"convergence of power method for $\\lambda=1,2,3,4,5$\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Convergence rate\n", - "\n", - "How fast does the power method converge?\n", - "\n", - "Suppose that $A$ is diagonalizable with eigenvalues sorted in order of decreasing magnitude $$|\\lambda_1| > |\\lambda_2| > \\cdots$$. And suppose that we expand our initial $x$ in the basis of the eigenvectors:\n", - "$$x = c_1 x_1 + c_2 x_2 + \\cdots$$\n", - "Then, after $n$ steps, the power method produces:\n", - "\n", - "$$\n", - "\\mbox{scalar multiple of } A^n x = \\mbox{multiple of } \\left( \\lambda_1^n c_1 x_1 + \\lambda_2^n c_2 x_2 + \\lambda_3^n c_3 x_3 + \\cdots \\right)\n", - "= \\mbox{multiple of } \\lambda_1^n \\left[ c_1 x_1 + (\\lambda_2/\\lambda_1)^n c_2 x_2 + (\\lambda_3/\\lambda_1)^n c_3 x_3 + \\cdots \\right]\n", - "$$\n", - "\n", - "The overall exponentially growing (or decaying) term $\\lambda_1^n$ gets removed by the normalization. The key thing is that the $x_2$, $x_3$ and other \"error\" terms not proportional to $x_1$ decay like the *ratios* of their eigenvalues/λ₁to the n-th power. \n", - "\n", - "For large $n$ the error is dominated by the $x_2$ term (the *next*-biggest |λ|), since that term decays most slowly, and the magnitude of this term decays proportional to $|\\lambda_2/\\lambda_1|^n$: the *ratio* of the magnitudes. \n", - "\n", - "For example, in our case above, we'd expect the error to decay proportional to $(4/5)^n$:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xdc1dX/B/DX5bKHDBUVERyUpiAICEqaW3GP3IqmlGmalqmpWWrlyNKy1Nyjn4vcuVJMFE1yIIii33ILLpRkyRAu5/fH9d643Avci/cyX8/H4z7sns/nns/7c+8N3pwpEUIIEBERERGMSjsAIiIiorKCiRERERHRS0yMiIiIiF5iYkRERET0EhMjIiIiopeYGBERERG9xMSIiIiI6CUmRkREREQvMTEiIiIieomJEREREdFLTIyIiIiIXmJiRFRBhISEoEmTJrCwsIBEIkF0dHRph1ThnTlzBnPmzEFSUpLasTlz5kAikeDp06cGjUFxHW2UxnckMzMTxsbGsLGxwYcffmjw6wFAamoqpk2bhs6dO6N69eqQSCSYM2dOseo6fvw4Ro8ejUaNGsHKygq1a9dG7969ERkZqXNd0dHR6N69O1xcXGBhYQEHBwe0bNkSmzdvLlZsea1duxYSiQTW1tY6v/bEiROQSCQaH3/99dcrx1beMDEiqgCePHmCoKAgNGjQAL///jsiIiLw+uuvl3ZYFd6ZM2cwd+5cjYlRWVNa3xGJRILjx4/Dz88Py5Ytwz///GPwayYmJmL16tXIyspCnz59Xqmun3/+GXfu3MGkSZNw6NAhLF26FAkJCWjRogWOHz+uU11JSUmoU6cO5s+fj0OHDuGXX35B3bp1ERQUhK+//rrYMd6/fx9TpkyBk5NTsesAgPnz5yMiIkLl4e7u/kp1lkfGpR0AUXGkp6fD0tKytMMoM/755x9kZ2dj+PDhaNOmTWmHUyL4HdCNIb4j2nwGZmZmeOuttzBt2jQcP34ckZGRBk/IXF1d8ezZM2WL3dq1a4td1/Lly+Ho6KhSFhgYCDc3N8yfPx/t27fXuq62bduibdu2KmU9evTA7du3sXr1asyaNatYMY4dOxZvvfUWHBwcsHPnzmLVAQCvvfYaWrRoUezXVxRsMarg/ve//2HIkCGoUaMGzMzM4OLighEjRiArK0t5zunTp9GhQwfY2NjA0tISAQEBOHjwoEo9iub62NhYDBkyBLa2tqhRowZGjx6N5ORkAMDevXshkUjwxx9/qMXx888/QyKRICYmRll2/fp1DB06FI6OjjAzM8Mbb7yB5cuXq71Wce2LFy+if//+sLe3R4MGDQAA+/btQ9OmTWFmZob69etj6dKlBXYtaHM9be5T1/dX2/ssSFGfzzvvvINWrVoBAAYNGgSJRKL2w1fTPUZFRaFfv36oUqUKbG1tMXz4cDx58kSnawNAbGwsJBIJduzYoSyLjIyERCJBkyZNVM7t1asXfHx8dH5vCvsOFHaPMTExGDBgAGxtbeHg4IDJkycjJycHf//9NwIDA2FjY4O6deti0aJFanUUFducOXMwdepUAEC9evWUXQ8nTpxQqefx48dFfpe0eZ8B4ODBg/Dy8oKZmRnq1auH7777rsD3IK+iviO6/AzQ9jPIr1GjRgBQIt13is9CH/InRQBgbW2Nxo0bIy4uTi/XqFatGoyNi9dOsXnzZpw8eRIrVqzQSywEQFCFFR0dLaytrUXdunXFypUrxR9//CE2b94sBg4cKFJSUoQQQpw4cUKYmJgIHx8fERISIvbu3Ss6d+4sJBKJ2L59u7Ku2bNnCwCiYcOG4osvvhChoaFiyZIlwszMTIwaNUoIIUR2drZwdHQUw4YNU4vFz89PeHt7K5/HxsYKW1tb4eHhIX755Rdx9OhR8cknnwgjIyMxZ84cldcqru3q6io+/fRTERoaKvbu3SsOHz4sjIyMRNu2bcWePXvEjh07hL+/v6hbt67I/9XW9nra3Kcu768u96mJNp/PjRs3xPLlywUAMX/+fBERESFiY2MLrDPv+zl16lRx5MgRsWTJEmFlZSWaNWsmXrx4ofW1FWrVqiXGjBmjfL5w4UJhYWEhAIj79+8LIeTfjypVqohp06bp7TtQ1D02bNhQfPXVVyI0NFRMmzZNABATJkwQjRo1Ej/++KMIDQ0Vo0aNEgDErl27lK/XJra4uDjx4YcfCgBi9+7dIiIiQkRERIjk5GS1GAr7Lmn7Ph87dkxIpVLRqlUrsXv3brFjxw7RvHlz4eLiovZ9z6+w74iuPwO0/QzyGzdunAAgOnfuXOh5ubm5Ijs7W6uHNp48eSIAiNmzZ2sda1GSkpKEra2t6Nu3b7FeL5PJRHZ2tkhISBDLly8XxsbGYuXKlTrX8/jxY1G1alWxfPlyIYQQI0eOFFZWVjrXExYWJgAIR0dHIZVKhY2NjejcubM4deqUznVVBEyMKrD27dsLOzs7kZCQUOA5LVq0EI6OjiI1NVVZlpOTI9zd3YWzs7PIzc0VQvz3Q3HRokUqr//ggw+Eubm58rzJkycLCwsLkZSUpDzn6tWrAoD46aeflGVdunQRzs7Oyl8iChMmTBDm5ubi33//VZYprv3FF1+onNu8eXNRp04dkZWVpSxLTU0VVatWVftFoe31tL1PIbR7f3W5T020/XwUP9h27NhRaH157/Hjjz9WKd+yZYsAIDZv3qzTtYUQYvjw4aJ+/frK5x07dhTvvfeesLe3F5s2bRJCCPHnn38KAOLo0aM6vzcFfQeKusfFixerlHt5eSkTGYXs7GxRvXp10a9fP2WZtrF9++23AoC4fft2gTEU9V3S9n329/cXTk5OIiMjQ3leSkqKcHBwKDIxEqLg74iuPwO0/QzyOnLkiAAg7O3tRfXq1bWKU5uHpvc9P0MkRsOGDRPGxsbiwoULxXr9+++/r7wHU1NTsWLFimLV8/bbb4uAgADlZ1TcxOjixYti0qRJYs+ePSI8PFysX79evPHGG0IqlYrff/+9WLGVZ+xKq6DS09Nx8uRJDBw4ENWrV9d4zvPnz3H27Fn0799fZSaDVCpFUFAQ4uPj8ffff6u8plevXirPmzZtiszMTCQkJAAARo8ejYyMDISEhCjP2bBhA8zMzDB06FAA8lkqf/zxB/r27QtLS0vk5OQoH926dUNmZqbGmRBvv/22SuwXLlxAnz59YGpqqiy3trZGz549VV5XnOsVdZ/avL/Fvc+896jr56OLYcOGqTwfOHAgjI2NERYWpvO1O3TogFu3buH27dvIzMzE6dOnERgYiHbt2iE0NBQAcOzYMZiZmaFVq1Z6+Q5oo0ePHirP33jjDUgkEnTt2lVZZmxsDDc3N9y9exfAq39u+RX2XdL2fX7+/DnOnz+Pfv36wdzcXHmejY2N2vddF8X5jun6GSQlJWH06NHo3bs3PvjgAzx58gQPHjwo8HwfHx+cP39eq8erDjYujs8//xxbtmzB999/r9ItrIuZM2fi/PnzOHjwIEaPHo0JEyZo3S2qsGvXLuzfvx9r1qx55W7DZs2a4YcffkCfPn3QunVrjBo1CmfOnEGtWrUwbdq0V6q7POLg6wrq2bNnkMlkcHZ2LvQcIQRq1aqldkzxAycxMVGlvGrVqirPzczMAAAZGRkAgCZNmqB58+bYsGEDxowZA5lMhs2bN6N3795wcHBQ1pmTk4OffvoJP/30k8bYNE1xzhunIvYaNWqonZe/rDjXK+o+tXl/i3ufCsX5fHRRs2ZNlefGxsaoWrUqEhMTdb52x44dAciTn3r16iE7Oxvt27fH48eP8dVXXymPvfnmm7CwsMD9+/df+TugDcV3TsHU1BSWlpYqyYWiPCUlRXlfr/K55VfYdyk7O1ur99na2hq5ublqnxmg/jnqojjfMV0/g/HjxyM7Oxtr1qxBeHg4APk4o4KSGmtra3h5eWlVd3HH5RTX3Llz8fXXX2PevHmYMGFCsetxcXGBi4sLAKBbt24AgBkzZmDkyJEF/qGVV1paGsaPH48PP/wQTk5OylmRL168ACBPRk1MTGBlZVXsGO3s7NCjRw+sXLkSGRkZsLCwKHZd5Q0TowrKwcEBUqkU8fHxBZ5jb28PIyMjPHz4UO2Y4i+6atWq6XztUaNG4YMPPsC1a9dw69YtPHz4EKNGjVK5ruIv0vHjx2uso169emplef8qsre3h0QiwePHj9XOe/Tokcrz4l6vMNq+v69yXUN9PgqPHj1C7dq1lc9zcnKQmJiIqlWr6nxtZ2dnvP766zh27Bjq1q0LX19f2NnZoUOHDvjggw9w9uxZ/PXXX5g7d67y3l71O2Aohvi+FHYtbd5nxfc9/3cbUP++G+L6eenyGezcuRNbt27F/v37Ub16dXh7ewOQJ0aKhCC/kydPol27dlrVf/v2bdStW1freF7F3LlzMWfOHMyZMwczZ87Ua91+fn5YuXIlbt26pVVi9PTpUzx+/BiLFy/G4sWL1Y7b29ujd+/e2Lt37yvFJYQAUDL/35UlTIwqKAsLC7Rp0wY7duzAvHnzNP4CtbKygr+/P3bv3o3vvvtO+RdBbm4uNm/erPxlp6shQ4Zg8uTJ2LhxI27duoXatWujc+fOyuOWlpZo164doqKi0LRpU5WuMG1ZWVnB19cXe/fuxXfffaesIy0tDQcOHFA5Vx/Xy0+b9/dVr2uoz0dhy5YtKl0Bv/76K3JyctC2bdtiXbtjx4749ddfUadOHXTv3h0A8Prrr8PFxQVffPEFsrOzlS1LhvhM9EWX2PK3JOpK2/dZIpHAz88Pu3fvxrfffqts8UpNTcX+/fuLdW1drl8cjx49wtixYzFmzBhll2a9evVgZ2eHqKioAl+n6ErTRkl1pX311VeYM2cOZs2ahdmzZ+u9/rCwMBgZGaF+/fpanV+zZk2EhYWplS9cuBAnT57E4cOHX+mPJkDemnjgwAF4eXmptbBWdEyMKrAlS5agVatW8Pf3x/Tp0+Hm5obHjx/jt99+w6pVq2BjY4MFCxagU6dOaNeuHaZMmQJTU1OsWLECV65cwbZt24r1l4KdnR369u2LjRs3IikpCVOmTIGRkepwtqVLl6JVq1Zo3bo1xo0bh7p16yI1NRU3btzA/v37tVo47csvv0T37t3RpUsXTJo0CTKZDN9++y2sra3x77//6v16+Wnz/r7qdQ3x+Sjs3r0bxsbG6NSpE2JjY/H555/D09MTAwcOLNa1O3TogBUrVuDp06f44YcfVMo3bNgAe3t7lUTMEJ+Jvmgbm4eHh/L8kSNHwsTEBA0bNoSNjY3W19L2ff7qq68QGBiITp064ZNPPoFMJsM333wDKysrte+7Lgz1HXvvvfdgb2+PJUuWqJQ3a9as0Cn7NjY28PX1LdY18zp8+DCeP3+O1NRUAMDVq1eVa/x069ZNuf6SRCJBmzZt1JZZUFi8eDG++OILBAYGonv37mrjy/Kv+1NYfWPGjEGVKlXg5+eHGjVq4OnTp9ixYwdCQkIwdepUtdaiguoyNzfXuCTHxo0bIZVKNR4rLK6hQ4fCxcUFvr6+qFatGq5fv47Fixfj8ePH2Lhxo6a3pWIrxYHfVAKuXr0qBgwYIKpWrSpMTU2Fi4uLeOedd0RmZqbynFOnTon27dsLKysrYWFhIVq0aCH279+vUo9iRsqTJ09Uyjds2KBxdsjRo0eVsy7++ecfjbHdvn1bjB49WtSuXVuYmJiI6tWri4CAAPH1119rdW0hhNizZ4/w8PBQ3tvChQvFxIkThb29fbGup+t9avP+anufBdHm8ynOrLTIyEjRs2dPYW1tLWxsbMSQIUPE48ePdb62wrNnz4SRkZGwsrJSTvkX4r/ZbnlnfSno4ztQ2D3mP7+gWTtt2rQRTZo0KVZsM2bMEE5OTsLIyEgAEGFhYYXGoOm7pO37/Ntvv4mmTZuqfN8V1ylKYd+RV/kZoMmaNWuEVCoVERERascmT54sJBKJckkLQ3F1dS1yNltqaqoAIAYPHlxgPW3atCl0ZlxeRdW3fv160bp1a1GtWjVhbGws7OzsRJs2bcT//d//qZ2rTWz5FfT9LqquBQsWCC8vL2FrayukUqmoXr266Nu3rzh37pzW165IJEK87EQkqgCys7Ph5eWF2rVr4+jRo6UdTpk0Z84czJ07F0+ePHnl5nai8uzQoUPo0aMHLl26pGz9Kyv1ldW6KgN2pVG5FhwcjE6dOqFWrVp49OgRVq5ciWvXrmHp0qWlHRoRlXFhYWEYPHiw3pIFfdZXVuuqDNhiROXawIEDcebMGTx58gQmJibw9vbGzJkzERgYWNqhlVlsMSIiKhgTIyIiIqKXuPI1ERER0UtMjIiIiIheYmJERERE9BJnpRUhNzcXDx48gI2NTaVbFp2IiKi8EkIgNTUVTk5OaosMF4aJUREePHiAOnXqlHYYREREVAxxcXGFbvidHxOjIiiW9o+Li0OVKlVKORoiIiLSRkpKCurUqaPTFj0AE6MiKbrPqlSpwsSIiIionNF1GAwHXxMRERG9xMSIiIiI6CUmRkREREQvcYwRERGRgchkMmRnZ5d2GBWSiYkJpFKp3utlYkRERKRnQgg8evQISUlJpR1KhWZnZ4eaNWvqdZ1BJkZERER6pkiKHB0dYWlpyQWC9UwIgfT0dCQkJAAAatWqpbe6mRgRERHpkUwmUyZFVatWLe1wKiwLCwsAQEJCAhwdHfXWrcbB10RERHqkGFNkaWlZypFUfIr3WJ/juJgYERERGQC7zwzPEO8xEyMiIiKil5gYEREREb3ExKiUxMcDYWHyf4mIiKhsYGJUCtatA1xdgfbt5f+uW1faEREREelGCIGcnBy18uIOhC6ovpLGxKiExccDY8YAubkAsBK5uV9jzBgZW46IiEhNSfcuCCGwaNEi1K9fHxYWFvD09MTOnTsBACdOnIBEIsGRI0fg6+sLMzMznDp1CnPmzIGXlxfWr1+P+vXrw8zMDEIIZGVlYeLEiXB0dIS5uTlatWqF8+fPK69VUH2ljesYlbDr1xVJ0T0AHwHIQm5uKM6c2YyBA+uUbnBERGQQQgDp6bq9ZtMm4MMP5b8zjIyAn34CRo7UrQ5LS0CXiVuzZs3C7t278fPPP+O1115DeHg4hg8fjurVqyvPmTZtGr777jvUr18fdnZ2OHnyJG7cuIFff/0Vu3btUq4nNG3aNOzatQubNm2Cq6srFi1ahC5duuDGjRtwcHAosL5SJ6hQycnJAoBITk7WS31xcUIYGQkh/9/kFwFYCwDC1tZe7Nq1Sy/XICKi0pORkSGuXr0qMjIylGVpaYqf+yX7SEvTPu60tDRhbm4uzpw5o1IeHBwshgwZIsLCwgQAsXfvXpXjs2fPFiYmJiIhIUGlLhMTE7FlyxZl2YsXL4STk5NYtGiREEIUWJ8uNL3XCsX9/c2utBLm7AysXg3IE+ogAFGwtW2O5ORnePvttzFmzBg8f/68lKMkIqLK5urVq8jMzESnTp1gbW2tfPzyyy+4efOm8jxfX1+117q6uqq0Kt28eRPZ2dl48803lWUmJibw8/PDtWvXVF6rqb7SxK60UhAcDHTpIm8mnTXLDTLZaUya9AV+/HER1qxZg4iICERGRsLU1LS0QyUiIj2wtATS0rQ///594I03FEMv5KRS4OpVoHZt3a6rrdyXFzt48CBq57uImZmZMjmysrJSe23+MiEEAPUFGIUQamWa6itNbDEqJc7OwIwZgIcHkJZmCgeHhQgNDUWtWrUwaNAgJkVERBWIRAJYWWn/eP31vL0L8n9XrZKX61KPLuOLGjduDDMzM9y7dw9ubm4qjzp1dBsD6+bmBlNTU5w+fVpZlp2djQsXLuCNN97Qqa6SxhajUmRkBMycCQwZAixdCkye3AFXrlyBra2t8pwbN26gSpUqcHR0LMVIiYiopCl6F27cANzc5H9QG5KNjQ2mTJmCjz/+GLm5uWjVqhVSUlJw5swZWFtbw9XVVeu6rKysMG7cOEydOhUODg5wcXHBokWLkJ6ejuDgYAPexatjYlTKBgwAvvhCPltt5UpgypT/RupnZmaiX79+SEhIwKZNm9ClS5dSjJSIiEqas7PhE6K8vvrqKzg6OmLBggW4desW7Ozs4O3tjZkzZyq72rS1cOFC5ObmIigoCKmpqfD19cWRI0dgb29voOj1QyIUHYGkUUpKCmxtbZGcnIwqVaoY5Brr18v/MqheHfi//wOaNJH/j3Dv3j1069YNsbGxAIDJkydj/vz5MDMzM0gcRET06jIzM3H79m3Uq1cP5ubmpR1OhVbYe13c398cY1QGDB8O2NsDT54AgYH/rYbt4uKC8+fPY/z48QCAJUuWoGXLlvj7779LOWIiIqKKiYlRGZCQACQl/fc8Nxd4/335SqcWFhZYtmwZ9u3bh6pVqyIqKgre3t5Yt24d2NhHRESkX0yMyoDr1+VLceUlk8kH3Cn06tULly5dQvv27ZGeno6NGzfq3N9LREREhePg6zLgtdfkM9Ty5jkSiXwWQl61a9dGaGgovv/+ewwYMEC57LqmdSGIiIhId2wxKgNUV8OWEwKIilI/18jICJ988glcXFyUZVOmTMGcOXPKxK7ERERE5RkTozIiOBi4c0e+i/KoUfKy4cOBrVsL31U5OjoaS5Yswdy5c9GuXTvcvXu3ROIlIiKqiJgYlSHOzkDbtvL1jOrXB1JSgGHD/pulpomXlxe2bNkCGxsbnD59Gp6entixY0eJxk1ERFRRMDEqgxIS5K1HCnlnqWkydOhQREdHw9/fH8nJyRg4cCCCg4O5GS0REZGOmBiVQdevqw7EBuSz1C5eLPg19evXx6lTp/DZZ59BIpFg/fr16NChA6f0ExER6YCJURmkmKWW39SpwIUL8nFImlqPTExM8PXXX+P48eOoXbs2Jk+ezNlqREREOmBiVAbln6VmZATY2gL//AM0bw60b1/4uKO2bdvi77//xsCBA5VlERERePToUQlET0REVH4xMSqj8s5Su3sXOHxY9XhR446srKyU//348WP06dMHTZs2xaFDhwwXNBERlXuJiYlwdHTEnbyDXQ2gf//+WLJkiVp5165dMXv2bLRo0QKurq64evWqQePIj4lRGaaYpebsDGRmqh+XyeTjkeLjC+5eA4DU1FTUrFkTT548Qffu3fHRRx8hU1OFRERU6S1YsAA9e/ZE3bp1NR6TSCT46KOPNL72nXfewfTp0zFnzhxIJBKVR82aNVXO/eKLLzBv3jykpKSolF+5cgX16tXDX3/9hffeew/79+/X271pg4lROVHQuKMpU+TdaoV1r7m5ueHs2bOYOHEiAGDp0qVo0aIFrl27ZuCoiYioPMnIyMC6devw7rvvqh07f/48Vq9ejaZNm2p8bW5uLg4ePIjevXsDAJo0aYKHDx8qH5cvX1Y5v2nTpqhbty62bNmiLEtOToaJiQneeecdAICpqSns7Oz0dHfaYWJUTuQfd6QYU33x4n8z2ArrXjM3N8fSpUtx4MABVK9eHZcuXYKPjw9WrVrFmWtERAQAOHz4MIyNjdGyZUuV8rS0NAwbNgxr1qyBvb29xtf++eefMDIygr+/PwDA2NgYNWvWVD6qV6+u9ppevXph27ZtyudXrlyBn5+fyvMmTZro49a0xsSoHMk77ujePUBD16za5rP5de/eHZcuXUKnTp2QkZGBiIgIzlwjIiohz58/L/CRf4hDYedmZGQUeW5xhIeHw9fXV618/Pjx6N69Ozp27Fjga3/77Tf07NkTRi+7N65fvw4nJyfUq1cPgwcPxq1bt9Re4+fnh3PnziErKwuAPBHy8PBQHr98+TLc3d2LdS/FxcSonMk77mjAAPXuNYkEMDUtfMxRrVq18Pvvv2PlypX46aeflOW5+RdPIiIivbK2ti7w8fbbb6uc6+joWOC5Xbt2VTm3bt26aucUx507d+Dk5KRStn37dly8eBELFiwo9LW//fabshvN398fv/zyC44cOYI1a9bg0aNHCAgIQGJiosprateujaysLOWs6djYWGVilJOTg7S0NHalGULfvn1hb2+P/v37l3YoelXQ5rNvvln0lH4jIyO8//77sLGxefk6gd69e+Pzzz9HdnZ2CURPRERlTUZGBszNzZXP4+LiMGnSJGzevFmlPL9r164hPj5e2aLUtWtXvP322/Dw8EDHjh1x8OBBAMCmTZtUXmdhYQEASE9PBwD8+OOP6NWrFwB5V9z169f1d3NaMi7xK5aCiRMnYvTo0WofSEUQHAx06SLvPjt3Dvj00/+OKcYcdekiT6IKc+zYMRw4cAAHDhzAsWPHsHXrVtSrV8+wwRMRVTJpaWkFHpPm/SsXQEJCQoHnGuXrLtDX1Ppq1arh2bNnyueRkZFISEiAj4+PskwmkyE8PBzLli1DVlYWpFIpfvvtN3Tq1EmZ6ORnZWUFDw8PtUTn33//BQCN449KS6VoMWrXrp2yZaQiUnSvNW+ufkwmA65eLXpKf6dOnbB9+3bY2trir7/+gpeXl8qAOCIienVWVlYFPvK3yBR2bv4ERNM5xdGsWTOVdYM6dOiAy5cvIzo6Wvnw9fXFsGHDEB0drUzm9u3bp2zp0SQrKwvXrl1DrVq1VMqvXLkCZ2dnVKtWrVjxGkKpJ0bh4eHo2bMnnJycIJFIsHfvXrVzVqxYgXr16sHc3Bw+Pj44depUKURa9hU0pX/UqKKn9APAoEGDEB0djYCAAKSkpGDo0KF45513kJqaatjAiYioTOjSpQtiY2OVrUY2NjZwd3dXeVhZWaFq1arKQdEJCQk4f/48evTooaxnypQpOHnyJG7fvo2zZ8+if//+SElJwciRI1Wud+rUKXTu3LnkblALpZ4YPX/+HJ6enli2bJnG4yEhIfjoo4/w2WefISoqCq1bt0bXrl1x79495Tk+Pj5qH5y7uzsePHhQUrdRJmjaSsTCAnjwQLsp/YB8AN/Jkycxe/ZsGBkZYdOmTSpbixARUcXl4eEBX19f/Prrr1q/Zv/+/fD394ejo6OyLD4+HkOGDEHDhg3Rr18/mJqa4q+//oKrq6vynMzMTOzZswfvvfeeXu/hlYkyBIDYs2ePSpmfn58YO3asSlmjRo3E9OnTdap4lCOyAAAgAElEQVQ7LCxMvP3220Wel5mZKZKTk5WPuLg4AUAkJyfrdL3SFBcnRFiY/N+QECHkQ7JVH2FhRdcTHh4uGjRoIM6dO2fokImIKoyMjAxx9epVkZGRUdqhFMvBgwfFG2+8IWQymVbn9+zZU3zzzTc6X2fZsmWiU6dOOr8ur8Le6+Tk5GL9/i71FqPCvHjxApGRkWrNbJ07d8aZM2cMcs0FCxbA1tZW+ahTp45BrmNIeaf0BwRo7l67d6/wMUcA0Lp1a/zvf/9D8zyDl/bt21fpWuKIiCqTbt264f3338f9+/e1Or9Vq1YYMmSIztcxMTFRWTKmrCjTidHTp08hk8lQo0YNlfIaNWrotFN8ly5dMGDAABw6dAjOzs44f/58gefOmDEDycnJykdcXFyx4y8LNE3pB4CRI4secwTIp0sqxMTEYNCgQWjatGmJ711DREQlZ9KkSVo3DEybNq1YjQhjxoxBw4YNdX6doZXpxEgh/8rMQgidVms+cuQInjx5gvT0dMTHx6u0gORnZmaGKlWqqDzKu7wrZh89qnqsqDFHeZmbm6Nx48ZITExEr169MGHCBLXVV4mIiMqzMp0YVatWDVKpVK11KCEhQa0ViQqn6F4z1rBylUwGbN9e9JT+119/HREREZg8eTIAYPny5fDz80NsbKzhAiciIipBZToxMjU1hY+PD0JDQ1XKQ0NDERAQUEpRlW8FTemfOhVwcSm6e83MzAyLFy/G4cOH4ejoiCtXrsDX1xerVq0ybOBEREQloNQTo7S0NOWiUQBw+/ZtREdHK6fjT548GWvXrsX69etx7do1fPzxx7h37x7Gjh1bmmGXW/nHHEmlQIsW8v8WQv6vNt1rgYGBiImJQWBgIDIzM5WrlxIRkZxQ/FAlgzHEe1zqW4JcuHAB7dq1Uz5XdNOMHDkSGzduxKBBg5CYmIgvv/wSDx8+hLu7Ow4dOqSyFgLpJu82Im5uwPXr8paivGQy4MwZoHp1eSuTpi1FatSogYMHD2LHjh0q+9BlZWXBzMzMwHdBRFQ2mZiYAJDv/1XQFhmkH4o91hTvuT5IBFPaQqWkpMDW1hbJyckVYiC2JvHx8u4zxSKQ+RkZyVuZgoOLrisjIwP+/v7o3r07vvzyS71+WYmIyouHDx8iKSkJjo6OsLS01GnCEBVNCIH09HQkJCTAzs5ObasRoPi/v5kYFaEyJEaAfEzR++/LW4o0kUrlM9uK2ox269atGDZsGACgefPm2LZtGxo0aKDfYImIyjghBB49eoSkpKTSDqVCs7OzQ82aNTUmnkyMDKSyJEaAvOXoxg0gIQEYNEj9+LFjQMOG8q63grrXAGDXrl149913kZSUBGtra6xYsQJBQUGGDZ6IqAySyWTIzs4u7TAqJBMTE+UmtpowMTKQypQYKRTUtVa/vrzVKDe36O61uLg4DB8+HOHh4QCAYcOGYcWKFZXmPSQiotJV3N/fpT4rjcoeTZvRmpgAt25pvxltnTp1cPz4cXz55ZeQSqXYsmULJkyYUDI3QEREVExMjEijvKtl372reV0jmUze9VYQqVSKzz//HOHh4fD29sa8efMMFi8REZE+MDGiAuXdjLZdO80LQz54UPRmtAEBAbhw4YLKXjorVqxAvDb7kBAREZUgJkaklYI2ox02TLvNaPPOGNi/fz/Gjx8PT09P7N2710ARExER6Y6JEWktb/fakSOqx3TZjLZRo0bw8fHBv//+i759+2LcuHHKRbqIiIhKExMj0omie03Tuo3abkb72muv4cyZM5g6dSoAYOXKlWjevDliYmIMFzgREZEWmBhRsbzqZrSmpqZYtGgRQkNDUbNmTVy9ehV+fn5Yu3atYQMnIiIqBBMjKhZ9bUbbsWNHxMTEoEePHsjKyoKdnZ1hAyciIioEF3gsQmVc4FEXitWyC9qMFgBCQgrfjBaQL59//PhxdOjQQVmWlJTERImIiIqFCzxSqcg7pb+g7rVBg4ruWpNIJCpJ0cOHD9GwYUNMnToVL168MEzwRERE+TAxIr0paEq/gi4z1/bu3YuEhAR89913CAgIwD///KPfYImIiDRgYkR6lXdKf0iI+nGZDPj776LrGTduHPbs2QMHBwdERkbC29sbGzZsAHt+iYjIkJgYkd4putcCAjR3rc2YAZw9W/SK2X369MGlS5fQtm1bPH/+HKNHj8aQIUOQlJRksNiJiKhyY2JEBqNpM1ozM+D8efkMNm1WzHZ2dsaxY8cwb948SKVShISEYMGCBSVzA0REVOlwVloROCvt1eWduXbnDtC6tepxqVReXtCMNYWzZ89i7ty52LFjB6ysrAwVLhERVQCclUZlVt6Za9nZ6sdlMuDQoaJXzPb398ehQ4eUSVFubi5mzJiBe/fuGS54IiKqVJgYUYkqaEr/uHHarZid148//oiFCxfC09MTO3fu1H+wRERU6TAxohKlacXsxo3lU/l1WTEbAHr27Ak/Pz8kJSVhwIABeO+99/D8+XPD3gAREVVoTIyoxOWd0n/nDvDTT+rnyGRAREThXWsNGjTA6dOnMWPGDEgkEqxduxY+Pj6IiooyZPhERFSBcfB1ETj42vDi4+XdZ7m5quUSibwVychI3soUHFxwHcePH0dQUBAePHgAU1NTrFmzBiNGjDBs4EREVGZx8DWVWwWtmK1L11r79u0RExOD3r17QwiBxo0bGy5gIiKqsNhiVAS2GJUcxbT+hAT5/mr5HT8uH7x9/XrBG9IKIRATEwNPT8889cbDuai1AIiIqEJhixGVe0WtmD1xorzLrbCZaxKJRCUpio6OhpubGyZPnoysrCzDBU9ERBUCEyMqc/J3rUkk8kTpypX/xiFpO3Pt6NGjyMrKwvfff48WLVrgf//7n2GDJyKico2JEZVJeWeu3bsHrFihfo5MJu96K8y0adOwf/9+VKtWDdHR0fDx8cHatWu5GS0REWnExIjKrLwrZnfvrrl7LSmp6M1oe/TogUuXLqFjx45IT0/He++9h4EDB+LZs2cGi52IiMonJkZULhQ0c61vX+1Wy3ZycsKRI0fwzTffwNjYGDt37sTmzZsNGzQREZU7nJVWBM5KK1sUM9eSk4E+fVSPabsZ7fnz57F69WqsWrUKRpqaoYiIqNzjrDSqFBTda5q+4zIZcOBA0ZvRNm/eHGvWrFEmRenp6Rg1ahTu3LljsLiJiKh8YGJE5VJBm9F+8IHum9HOnDkTGzduhKenJ0JCQvQfLBERlRtMjKhc0rQZbdOm8tWydd2MdtKkSWjZsiVSUlIwePBgjBo1CmlpaYa9ASIiKpOYGFG5lX8z2u+/Vz9Hm81o69Wrh/DwcMyaNQsSiQQbN26Et7c3Lly4YMjwiYioDOLg6yJw8HX5oY/NaE+ePInhw4cjPj4eJiYm2LJlCwYMGGDYwImISO84+JoqPX1sRtumTRtcunQJ/fr1Q5UqVRAQEGC4gImIqMxhYkQVSt7uNU3jqGUy+Sa0hXFwcMDOnTsRGRmJ2rVrK8tjY2P1GywREZU5TIyowilqM9r584GYmMLHHUkkEri6uiqf79u3D+7u7pg4cSIyMzMNEzgREZU6JkZUYWnajFYqBY4dAzw9dZvSHx0dDQD46aef4O/vj6tXrxowciIiKi1MjKhCy78Z7cGDqse1ndI/e/ZsHDp0CI6OjoiJiYGvry9WrVrFzWiJiCoYJkZU4eXdjNbUVP24TAbs3l30ZrRdu3bFpUuX0LlzZ2RkZGDs2LHo168fEhMTDRY7ERGVLCZGVKkUtGL2pEnada3VrFkThw8fxuLFi2FiYoK9e/fizz//NFzARERUoriOURG4jlHFs26dvPtMJpMnSfnXPdJ2M9qLFy/i0KFDmDVrlsFiJSKi4uE6RkRayjvuaNs29eMyGfDbb0VvRuvt7a2SFD148AA9e/bErVu3DBM4EREZHBMjqpSKmtI/YYLum9F++OGHOHDgALy8vLBlyxa9x0xERIbHxIgqNU2b0Xp5FW8z2iVLluDNN99Eamoqhg8fjhEjRiA1NdWwN0BERHrFxIgqvfyb0S5erH6OTAbcuFF495qrqytOnDiBOXPmwMjICP/3f/+HZs2a4dy5c4a+BSIi0hMOvi4CB19XPgVtRuvvD5w/Ly8vakPa06dPY9iwYbh37x6MjY2xf/9+BAYGGj54IiICwMHXRHqjacVsADh79r9kqajutVatWiE6OhoDBgyAm5sbWrdubfjAiYjolTExItIg/4rZ336rfo6ie60g9vb2CAkJwenTp2FlZQUAyM3NxalTpwwTNBERvTImRkQFyLti9uDBmmevZWUVvRlt1apVlc8XL16Mt956C+PHj0dGRoZhAiciomJjYkSkhfzdawqBgbpN6X/27BkAYMWKFWjevDkuX75sgGiJiKi4KnxilJqaiubNm8PLywseHh5Ys2ZNaYdE5VTe7rX8yxRpO6V//vz5OHLkCGrUqIHY2Fg0b94cy5Yt42a0RERlRIWflSaTyZCVlQVLS0ukp6fD3d0d58+fV+neKAxnpZEmYWHylqL8Nm2Sl1+/Lt+XraBtRRISEjBq1CgcOnQIANCzZ0+sX78e1apVM2DURESVB2elFUAqlcLS0hIAkJmZCZlMxr/O6ZUVtBltcLB2K2Y7OjriwIEDWLp0KUxNTfH777/j3r17hg2aiIiKVOqJUXh4OHr27AknJydIJBLs3btX7ZwVK1agXr16MDc3h4+Pj86zepKSkuDp6QlnZ2dMmzaNf5XTK9O0YnaDBkBOjvYrZkskEkycOBHnzp3DunXr4O3trTzG5J2IqHSUemL0/PlzeHp6YtmyZRqPh4SE4KOPPsJnn32GqKgotG7dGl27dlX569rHxwfu7u5qjwcPHgAA7OzscOnSJdy+fRtbt27F48ePS+TeqGLLv2L2ypXq58hkQERE4TPXPD09ERQUpHx+8eJFtG7dGjcKWwuAiIgMokyNMZJIJNizZw/69OmjLPP394e3tzd+/vlnZdkbb7yBPn36YMGCBTpfY9y4cWjfvj0GDBig8XhWVhaysrKUz1NSUlCnTh2OMaIiFbRitkQib0UqarVsQN5S9OabbyIiIgLW1tZYvnw5goKCIFGsMklERFqpkGOMXrx4gcjISHTu3FmlvHPnzjhz5oxWdTx+/BgpKSkA5G9SeHg4GjZsWOD5CxYsgK2trfJRp06d4t8AVSoFTenXZTNaiUSCkJAQtGnTBmlpaRg5ciSGDx+O5ORkwwVORERKOiVGMpkMJ0+eVK7FYmhPnz6FTCZDjRo1VMpr1KiBR48eaVVHfHw83nrrLXh6eqJVq1aYMGECmjZtWuD5M2bMQHJysvIRFxf3SvdAlUve7rWQEPXjRa2WDQB16tTBH3/8ga+//hpSqRRbt25Fs2bN8NdffxkkZiIi+o+xLidLpVJ06dIF165dg729vaFiUpO/G0EIoXXXgo+PD6Kjo7W+lpmZGczMzHSKjygvZ2f5Iz5e3n2Wv2tt5UrAyQm4f7/gKf1SqRSfffYZ2rdvj6FDh+L27dto1aoVTp8+jRYtWpTMjRARVUI6d6V5eHjg1q1bhohFTbVq1SCVStVahxISEtRakYjKmoI2ow0JARo21G7F7JYtWyI6OhpDhw5F+/bt4efnZ/jAiYgqMZ0To3nz5mHKlCk4cOAAHj58iJSUFJWHPpmamsLHxwehoaEq5aGhoQgICNDrtYgMIf9mtL/+qnpcm3FHtra22Lx5M/bt2wejl4snPX/+HAcPHjRc4ERElZROXWkAEBgYCADo1auXSneWontLJpPpVF9aWprKtOTbt28jOjoaDg4OcHFxweTJkxEUFARfX1+0bNkSq1evxr179zB27FhdQycqFYquNQDQtISWTAYcPgy4uRXctSaRSGBhYaF8/vHHH2PNmjUYM2YMvv/+e+UipkRE9Gp0TozCwsL0GsCFCxfQrl075fPJkycDAEaOHImNGzdi0KBBSExMxJdffomHDx/C3d0dhw4dgqurq17jICoJihWz8487GjNG/q+2U/oVY/xWr16N8PBwbN++HZ6engaKmoio8ihT6xiVRdwrjfRt3Tp595lM9t8aR3lJpfLut4L2WVM4duwYRowYgYcPH8LU1BSLFi3CxIkTueYRERGK//u7WIlRUlIS1q1bh2vXrkEikaBx48YYPXo0bG1tda2qzGNiRIYQHy+ftp+QAAwapH5840agQ4eiN6N9+vQpRo8ejf379wMAunXrho0bN6J69eqGC56IqBwoscTowoUL6NKlCywsLODn5wchBC5cuICMjAwcPXpUZb+nioCJERlSQatlGxvLW5S0WTFbCIEVK1bgk08+gbW1NWJiYuDk5GT44ImIyrASS4xat24NNzc3rFmzBsbG8iFKOTk5ePfdd3Hr1i2Eh4frFnkZx8SIDC1v15pUCtSvL28pykub7rXLly8jISEBHTp0UJbJZDJI8y/FTURUCZRYYmRhYYGoqCg0atRIpfzq1avw9fVFenq6LtWVeUyMqCQoutbc3IC//wY6dlQ/59df5bPaCutay2v37t2YP38+tm7ditdff13/QRMRlWEltldalSpVVHa2V4iLi4ONjY2u1RER5IlO27byfxs2lHef5TdokHaLQgLylqLp06cjMjISzZo1w/r168F5FkRERdM5MRo0aBCCg4MREhKCuLg4xMfHY/v27Xj33XcxZMgQQ8RIVKnoYzNaqVSKsLAwtG/fHunp6QgODsbgwYORlJRkuMCJiCoAnbvSXrx4galTp2LlypXIyckBAJiYmGDcuHFYuHBhhdtnjF1pVFqKmrkWFiZvZSqMTCbDt99+i88//xw5OTlwcXHBli1b0KpVK4PETERUVpTodH0ASE9Px82bNyGEgJubW4VdeZeJEZW2gmauvf028PXXwMOHRY87OnfuHIYOHYqbN29CKpXi6tWrHHdERBVaiY0xGj16NFJTU2FpaQkPDw80bdoUlpaWeP78OUaPHq1rdURUBE2b0UokwK5dwBtvaDfuyM/PD1FRUQgKCsKYMWOYFBERFUDnFiOpVIqHDx/C0dFRpfzp06eoWbOmsnutomCLEZUVeWeunT0L9O+velzbFbPzTuG/f/8+IiIi0D9/ZURE5ZzBW4xSUlKQnJwMIQRSU1ORkpKifDx79gyHDh1SS5aISH/yzlxzcFA/LpMBf/0lT6DCwgoenK1IimQyGYKCgjBgwAAEBwfj+fPnhgueiKic0HoTWTs7O0gkEkgkEo3N8BKJBHPnztVrcESkWUGb0Y4YAWRmar9idkBAAE6cOIH169fj9OnT2LZtW4VbvZ6ISBdad6WdPHkSQgi0b98eu3btgkOeP1lNTU3h6upaIbchYFcalVV5V8w2MgJq1JAPxM5Lm+61sLAwBAUF4f79+zAxMcHChQvx0UcfwUjTYkpEROVEic1Ku3v3LlxcXCrNDt5MjKgsyzvuKDYWCAxUP0ebFbMTExPx7rvvYu/evQCALl26YMuWLahataoBoyciMpwSm5V2/Phx7Ny5U618x44d2LRpk67VEdEryDvuqEmT4q+YXbVqVezevRs///wzzM3NERcXBwsLC4PGTkRUFumcGC1cuBDVqlVTK3d0dMT8+fP1EhQR6e5VV8yWSCQYO3YsIiMjERISolybLDc3F1lZWQaMnIio7NA5Mbp79y7q1aunVu7q6qpxDzUiKjnBwfIxRWFhwLZt6sdlMnnXW2EaN24Md3d35fNvv/0W/v7+uHbtmn6DJSIqg3ROjBwdHRETE6NWfunSJY5HICoDFN1rrVpp7lrbsQO4fbvwKf0K6enp+PHHH3Hp0iX4+Phg9erV3IyWiCo0nROjwYMHY+LEiQgLC4NMJoNMJsPx48cxadIkDB482BAxElExaFoxGwBWrADq19duxWxLS0tcuHABnTp1QkZGBt5//330798f//77r+FvgIioFBRrE9mgoCDs2LEDxsbyZZByc3MxYsQIrFy5EqampgYJtLRwVhqVd3lnrh08CIwdq3pcmyn9ubm5WLJkCWbOnIns7Gw4Oztj8+bNaNOmjUFjJyIqrhLfRPaff/7BpUuXYGFhAQ8PD7i6uhanmjKPiRFVJGFh8pai/DZuBFxcit6MNjIyEkOGDMH169dhYWGBu3fvonr16gaLl4iouIr7+1vrla/zq1u3LoQQaNCggbLliIjKtoJWzH7nHfm/Ra2W7ePjg4sXL+LDDz+El5cXkyIiqnB0HmOUnp6O4OBgWFpaokmTJsqZaBMnTsTChQv1HiAR6U9B444UiprSDwDW1tbYsGEDJk6cqCy7cOECtmmaBkdEVM7onBjNmDEDly5dwokTJ2Bubq4s79ixI0JCQvQaHBHpX94p/du3qx+XyYCIiKI3o1Wsfp+WloYhQ4Zg6NCheOedd5Cammq44ImIDEznxGjv3r1YtmwZWrVqpbItSOPGjXHz5k29BkdEhqGY0h8QoHlK/8iR8jFH2sxcMzc3x9ChQ2FkZIRNmzbB29sbFy5cMFjsRESGpHNi9OTJEzg6OqqVP3/+vNLsn0ZUUeTvWjMyAmrXBjIytF8x29jYGHPnzsWJEydQp04d3LhxAy1btsSiRYuQm38wExFRGadzYtS8eXMcPHhQ+VyRDK1ZswYtW7bUX2REVCLydq3dvQusX69+jqJ7rbCutdatW+PSpUvo378/cnJy8Omnn6Jz585ISUkxaPxERPqk83SyBQsWIDAwEFevXkVOTg6WLl2K2NhYRERE4OTJk4aIkYgMzNlZdZq+pplrgwbJW5EKm7lmb2+PX3/9FevXr8fEiRNhbGwMa2trwwZPRKRHOrcYBQQE4M8//0R6ejoaNGiAo0ePokaNGoiIiICPj48hYiSiEqSPzWiDg4MRGRmJjRs3wujlIKb09HRkZGQYMHIioldX7AUeKwsu8EiVlWLF7MePAU27/YSFyQdways4OBjnzp3D9u3b0aRJE73FSUSkSXF/f+vcYtSuXTusW7cOycnJur6UiMoRxcy1N9/UPHMtJAS4dUu7zWgTEhJw4MABXLlyBb6+vvj555+5GS0RlUk6J0YeHh6YNWsWatasibfffht79+7FixcvDBEbEZUBBS0KuXIl0KCBdlP6HR0dERMTg8DAQGRmZuKDDz5A3759kZiYaPgbICLSgc6J0Y8//oj79+9j3759sLGxwciRI1GzZk2MGTOGg6+JKqi8M9fu3QPWrFE9rs2K2TVq1MDBgwexZMkSmJqaYt++fWjatCnCwsIMGjsRkS5eeYxRZmYm9u/fj3nz5uHy5cuQyWT6iq1M4BgjInUFbUa7YYO89aiozWijoqIwZMgQ/P3336hRowZu3boFS0tLwwVMRJVOiW8iCwCPHj3C9u3bsXnzZsTExKB58+avUh0RlRMFbUY7apT836I2o23WrBkiIyPx0UcfoU+fPkyKiKjM0LnFKCUlBbt27cLWrVtx4sQJ1K9fH0OHDsWwYcPg5uZmqDhLDVuMiDRbt07efSaTyccd5f9JIpXKu98KaznKb8+ePXj+/DmGDx+u11iJqPIp7u9vnRMjCwsL2NvbY+DAgRg2bFiFbyViYkRUMMWU/oQE+QKQ+W3fLp/Vdv160d1r9+/fh7u7O5KSkjB8+HAsX76c/88RUbGVWGJ09OhRdOzYUbloW0XHxIioaPHx8rFF+bvWzM2BrKyiV8wGAJlMhvnz52Pu3LmQyWSoX78+tm7dCn9/f8PfABFVOCW2jlHnzp0rTVJERNrRtBltnTpAZqb2K2ZLpVJ8/vnnCA8Ph6urK27duoVWrVphwYIFFW5SBxGVXTpnOI8fP0ZQUBCcnJxgbGwMqVSq8iCiyin/ZrSa1jWSyeRdb4UJCAhAdHQ0Bg0ahJycHMycOROdOnXiemlEVCJ0npX2zjvv4N69e/j8889Rq1YtSBSrvRFRpafNZrRhYUD9+sDNmwWPO7Kzs8O2bdsQGBiICRMmwN3dHaampoYNnogIxRhjZGNjg1OnTsHLy8tQMZUpHGNEVHxFzVwratwRANy4cQPOzs4wNzcHIN9exNramlP8iahQJTbGqE6dOtzjiIi0kr97bd481eParJjt5uamTIpkMhkGDhyI5s2bIyYmxnCBE1GlpXNi9MMPP2D69Om4c+eOAcIhoopGsRltnTpAy5bqx2Uy4ORJ7TajvX37Nv7++29cvXoVfn5++Omnn/iHGhHplc5dafb29khPT0dOTg4sLS1hYmKicvzff//Va4CljV1pRPpT0LR+BW261p48eYJRo0bh4MGDAIDu3btjw4YNqF69ugEiJqLyqsTWMdq0aVOhx0eOHKlLdWUeEyMi/dLHitlCCCxbtgxTp05FVlYWatasiV9++QWdOnUyaOxEVH6UWGJU2TAxItK/olbM/u03oFmzolfMjomJweDBg3Ht2jV4eHggKiqKy4YQEYASHHwNADdv3sSsWbMwZMgQJCQkAAB+//13xMbGFqc6IqpkFOOOAgLk3Wf5BQXJu9zat5f/q2lNJABo2rQpLly4gPHjx2PLli1MiojolemcGJ08eRIeHh44e/Ysdu/ejbS0NADyv9xmz56t9wCJqOLStGJ21apAcvJ/45CKmrlmaWmJZcuWwcPDQ1n2ww8/YOPGjRyYTUQ60zkxmj59Or7++muEhoaqLLjWrl07RERE6DU4Iqr48k/p1zSMUSYDIiK0m7kWExODKVOmYNSoURg6dCiSkpIMEjcRVUw6J0aXL19G37591cqrV6+OxMREvQRFRJWLomvN2Rnw9NTcvTZoUNFdawDQpEkTfPnll5BKpdi+fTu8vLxw5swZg8VORBWLzomRnZ0dHj58qFYeFRWF2rVr6yUoIqq88nevKeiyGe3MmTPx559/ol69erh79y7eeustfPXVV9yMloiKpHNiNHToUHz66ad49OgRJBIJcnNz8eeff2LKlCkYMWKEIUMwglgAACAASURBVGIkokomb/fa1q3qx7XZjNbf3x/R0dEYNmwYZDIZvvjiC3Tr1o3jjoioUDonRvPmzYOLiwtq166NtLQ0NG7cGG+99RYCAgIwa9YsQ8RIRJWQonutdWvNXWvHjgH37hU+7qhKlSrYvHkzfvnlF1hbW6NHjx7c+JqIClXsdYxu3ryJqKgo5ObmolmzZnjttdf0HZveGBsbw93dHQDg6+uLtWvXav1armNEVPr0sRltfHw8ateurUyM/vnnH9SuXRtWVlYGjJyISgsXeCxEtWrV8PTp02K9lokRUdmgWBSyQQNg2zbg009Vj2uzYrZCamoqvLy8YGpqim3btsHLy8sgMRNR6Snu729jXS80efJkjeUSiQTm5uZwc3ND79694eDgoGvVREQFcnb+L+lp3lz9uGIzWienwlfLBuSb0WZmZuLWrVvw9/fHN998g0mTJrGbjYgAoaO2bduKKlWqCCsrK+Ht7S2aNWsmrK2tha2trfD39xd2dnbC3t5exMbGalXfyZMnRY8ePUStWrUEALFnzx61c5YvXy7q1q0rzMzMhLe3twgPD9cpZhMTE+Ht7S3efPNNceLECZ1em5ycLACI5ORknV5HRIYTFyeEkZEQ8k419YeRkRBr1xZex5MnT0SvXr0EAAFAdO3aVTx69KhkboCIDK64v791Hnzdu3dvdOzYEQ8ePEBkZCQuXryI+/fvo1OnThgyZAju37+Pt956Cx9//LFW9T1//hyenp5YtmyZxuMhISH46KOP8NlnnyEqKgqtW7dG165dce/ePeU5Pj4+cHd3V3s8ePAAAHDnzh1ERkZi5cqVGDFiBFJSUnS9bSIqQ/JP6c/f0FPUlH5A3sW+d+9erFixAubm5jh8+DA8PT1x5MgRwwVORGWfrhmYk5OTxtagK1euCCcnJyGEEJGRkaJq1aq6Vq2xxcjPz0+MHTtWpaxRo0Zi+vTpOtcvhBCBgYHi/PnzBR7PzMwUycnJykdcXBxbjIjKqLg4IcLChAgJ0dxytHev/Jzjx+X/FuTKlSvCw8NDABDdunUTubm5JXYPRGQYJdZilJycrNw4Nq8nT54oW2Ls7Ozw4sWLV8vYALx48QKRkZHo3LmzSnnnzp21Xsn22bNnyMrKAiCflXL16lXUr1+/wPMXLFgAW1tb5aNOnTrFvwEiMqiiNqMdMUK7zWibNGmCs2fPYvr06diwYQPHGhFVYsXqShs9ejT27NmD+Ph43L9/H3v27EFwcDD69OkDADh37hxef/31Vw7u6dOnkMlkqFGjhkp5jRo18OjRI63quHbtGnx9feHp6YkePXpg6dKlhQ4MnzFjBpKTk5WPuLi4V7oHIjI8TZvRVqsGpKRovxmthYUFFixYAEdHR2XZhAkTsHbtWi4KSVSJ6DwrbdWqVfj4448xePBg5OTkyCsxNsbIkSPx/fffAwAaNWqk01pBRcn/15sQQuu/6AICAnD58mWtr2VmZgYzMzOd4iOi0hccDHTpIp/S7+YGxMQA3burnqNYMVubKf2hoaFYvnw5AODIkSNYvXo17O3tDRA5EZUlOrcYWVtbY82aNUhMTERUVBQuXryIxMRErF69WrlQmpeXl17WBalWrRqkUqla61BCQoJaKxIRUd7NaJs21dy9Fh5e+GrZCh06dMA333wDY2Nj7Ny5E56enjh16pRB4iaiskPnxEjB2toaTZs2haenJ6ytrfUZk5KpqSl8fHwQGhqqUh4aGoqAgACDXJOIKoaCNqOdPbvoMUcAYGRkhGnTpuHMmTNwc3NDXFwc2rZti9mzZytby4mo4tFq5et+/fph48aNqFKlCvr161foubt379YpgLS0NNx4uRtks2bNsGTJErRr1w4ODg5wcXFBSEgIgoKCsHLlSrRs2RKrV6/GmjVrEBsbC1dXV52uVRxc+ZqofFOsmG1mBrz5pup2IkZGwN27RXetpaamYsKECfjll18AyH8m7tq1y4BRE9GrMujK17a2tsoxPba2tsWLsAAXLlxAu3btlM8VK2uPHDkSGzduxKBBg5CYmIgvv/wSDx8+hLu7Ow4dOlQiSRERlX+KFbPDwtT3WMvNBb78Epg1C7h5s+AVs21sbLBp0yZ06dIFH3zwAd57772SCZ6ISlyl2CvtVbDFiKhiiI+Xd58pZqlpos1mtElJSbCzs1M+/+uvv+Du7m6wIQVEVDzF/f1drDFGOTk5OHbsGFatWoXU1FQAwIMHD5CWllac6oiIDC7/mCOpFBgwQPUcbVbMzpsU3b17F4GBgfD29sbFixcNEDURlTSdE6O7d+/Cw8MDvXv3xvjx4/HkyRMAwKJFizBlyhS9B0hEpC/BwcCdO/JutTt3gHHj1M+RyYDYWHlyVNTstYSEBNjY2OD69eto0aIFFi9ejNzCmqSIqMzTOTGaNGkSfH198ezZM1hYWCjL+/btiz/++EOvwRER6VveKf2vvaZ5Sv/IkdqtmN28eXNcunQJffv2RXZ2NqZMmYKuXbvi4cOHBr0HIjIcnROj06dPY9asWTA1NVUpd3V1xf379/UWGBGRoWlaMdvaGnj8WPsVsx0cHLBr1y6s+v/27jwuqnr9A/hnZthBUENRXEATA0UWccUFl0TJLG0zXMslyFzI3ay0rluW2U3T0twSDeunlnq7Jt4AxZ1NLBEVFVExXFgUF2T4/v4YmBi2mcE5LMPn/XrN6zrnnDnnma9dePxuz3ffwdLSEgcOHICnpyd+++23qvkSRGRQeidGBQUFUCqVpY5fu3YN9erVM0hQRERVpfjwWmoqsGVL6WuUSuDYsfKH1mQyGd555x3ExMTAw8MDt27dwu+//y557ERkeHqvShs+fDjs7Oywbt061KtXD4mJiWjUqBFefvlltGzZEps2bZIq1mrBVWlEdUt5q9dkMtVyf20r1x49eoR///vfmDZtGiwsLADoV8aIiAyjsr+/9U6Mbty4gb59+0KhUODChQvo1KkTLly4AHt7exw6dEijAKMxYGJEVPds2KAaPiujcxyAaujtyhXdaq7l5+dj8ODBePXVVzFx4kQmSERVpMoSIwB4+PAhwsLCEBsbi4KCAnTs2BEjR47UmIxtLJgYEdVNRTtmp6UBY8aUPh8RoZrErc0PP/yAsWPHAlDtmL1+/Xo0bNjQsMESUSlVmhjVJUyMiOq28obWVq4EXn1VlTyVt2M2oJqXuXLlSsybNw9PnjxBs2bNEBoaij66ZFVEVGlVusEjEVFdUV4x2vffB1q21L6kXy6XY8aMGTh27BhcXFxw/fp19OvXD/Pnz8eTJ0+k/wJEpBcmRkREWpTcGHLWLM3zuuyY7ePjg7i4OLz99tsQQmDJkiUICgqSMmwiqgQmRkREOijaGNLJCQgIKH1eqQSioyveLdvGxgYbN25EWFgYmjZtihkzZkgaMxHpj3OMtOAcIyIqSVtBWl2K0T569Ei9nB8A9u7diz59+nA/OCIDqfI5Rnl5ebh27RquXr2q8SIiMnYl5x2VXIGvy9Ba8aTo2LFjGDZsGLy9vXHq1CkJIiYiXemdGF24cAG9evWCpaUlnJyc0KpVK7Rq1QrOzs5o1aqVFDESEdU4xecdhYWVPq9UAn/+qVsxWplMhmbNmiElJQW+vr747LPPWIyWqJroPZTWo0cPmJiYYO7cuWjatGmpzco8PT0NGmB141AaEWlT3tBa48bA7duq49qG1zIzMxEUFISff/4ZANCvXz9s3boVjo6OEkdPZJyqbB8ja2trxMbGwtXVVe8gayMmRkSki+K7ZcvlgLU1cO+e5jXadswWQmDjxo2YOnUqHjx4gGeeeQabNm3CkCFDJI+fyNhU2Ryjdu3a4fbt2/p+jIjIqOlajPbixfLvIZPJMH78eMTFxcHb2xt37txBWlqaZDETUWkm+n7gs88+w+zZs7FkyRJ06NABpqamGufZq0JEdVXz5pq9QXJ56eG1xERVMdqKdst+7rnncOzYMYSGhmLcuHHq4/n5+TAx0fvHNhHpQe+hNLlc1clUcm5RUfVoZXlVF2spDqURUWVVVIxWlyX9xWVnZ8PX1xfvvfce3n33XRajJdKiyuYYRUVFVXjez89Pn9vVeEyMiOhpFBWjVSgAPz9Vb1ERuVw17FZez1FxK1aswMyZMwEAL730EjZs2AB7e3uJoiaq/VhEViJMjIjIECIiVHXVSpo1C5gyRXsxWiEEvv76a8yePRt5eXlwdHTE1q1b0a+smxKRtIlRYmIi3N3dIZfLkZiYWOG1Hh4eOj+8NmBiRESGoG23bEC34bWEhAQEBgbi3LlzkMlkmDNnDj799NNS8z2J6jpJEyO5XI6bN2+icePGkMvlkMlkKOtjnGNERFS+4nOOFApgwABg/37Na7Qt6QeA3NxcvP/++1i/fj0AYNasWVi+fLl0gRPVQpImRqmpqWjZsiVkMhlSU1MrvNbJyUnnh9cGTIyIyJCK5hy1aQNcuFD28NqPPwIODhUPrQHAzp078fHHHyMyMhKNGjWSLmiiWohzjCTCxIiIpGKIYrQFBQXq1cIA8N133yEwMJA/r6jOq/IiskRE9HQMUYy2eFIUGhqK4OBgeHl54fjx4xJETGT8mBgREVUjXYrRnjmjWzHaZ599Fs7Ozrh8+TJ69uyJxYsXG928TyKpcShNCw6lEVFVKW9ozd4euHtXt2K02dnZCA4ORlhhluXn54fQ0FA012WzJCIjUiVDaUqlElFRUcjMzNQ7QCIiqljJoTW5HLC1BW7f/idZ0ja8Zmdnh+3bt2PTpk2wtrZGVFQUPDw8sG/fvqr5EkS1nF6JkUKhwMCBA5GVlSVVPEREdZqhitG+9dZbiI+Ph4+PDzIzM2FmZiZZzETGRO9qhB06dMClS5fQqlUrKeIhIqrzdClGm5am6jW6cKH8Zf0uLi44evQowsPD4e/vrz6em5sLa2triaInqt30nny9ePFizJw5E/v27UN6ejpycnI0XkREZDglh9eKjBkDtGyp2gfJyUm1eWRZzMzMMHjwYPX7y5cvo3Xr1vj666/L3KiXqK7Te/J18aWhxas7CyG48zURkUSKNoZs3hxYsgTYtEnzvC47ZgPA/PnzsWTJEgDA4MGDsWnTJm4OSUapyjZ4jIqKqvC8n5+fPrer8ZgYEVFNU15B2h07gEaNtBej/eabbzBz5kw8fvwYTZo0wQ8//IABAwZIGzRRFePO1xJhYkRENY0hdsxOTExEYGAgzp49CwCYOXMmFi9ezEnaZDSqdOfrrKwsrFixAhMmTMDEiROxcuVKZGdnV+ZWRESkp/LmHRXRZcdsDw8PxMTE4N133wUAfPHFF1i1apUE0RLVLnr3GMXExGDgwIGwtLREly5dIIRATEwMHj58iAMHDqBjx45SxVot2GNERDVV0byjjAxg+PDS5w8eBJ57ruKVawDw66+/4ptvvsHevXthbm4ubdBEVaTKhtJ69eqFNm3aYP369TAxUa32z8/Px4QJE3Dp0iUcOnRIv8hrOCZGRFTTlTe01rKl6pwuO2YXLaABVD/TFy9ejGnTpqF+/foSR08kjSobSouJicGcOXPUSREAmJiYYPbs2YiJidH3dkRE9JTK2jHb3By4elX3HbOLrzJetGgRFi5cCC8vLxw5ckTi6IlqFr0TI1tbW1y9erXU8bS0NNSrV88gQRERkX5K7phdcjk/oH3H7CIBAQFo3bo1UlNT0bt3b3z66afIz883eMxENZHeidHw4cMxfvx47NixA2lpabh27RrCwsIwYcIEBAYGShEjERHpoHlzoE8f1f/26qXqOSopNVWVPFU0Mbtr166Ij4/HqFGjUFBQgAULFqBv375l/qOYyNjoPccoLy8Ps2bNwrfffqv+F4SpqSneffddLFu2zOgm7nGOERHVVhs2qIbPytp3V5cl/QAQGhqKSZMm4d69e6hfvz527NihUV6EqKaq8n2MHjx4gJSUFAgh0KZNG1hZWVXmNjUeEyMiqs2KVq7l5wMl93DUdbfslJQUjBgxAmfOnEFsbCzc3Nwki5fIUKpk8nV+fj5MTEzw559/wsrKCh06dICHh4fRJkVERLVd0fBaWXseKZXA1q2q5Kmi4bVnn30W0dHRiIyM1EiKbt26JU3QRNVIr8TIxMQETk5ORlcPjYjI2Lm4lD3n6IMPdCtGa2pqii5duqjfR0dHw8nJCV9++SUKytuCm6gW0nvy9Ycffoh58+bh7t27UsRDREQSKLmkX6FQTdAGgKIJFbrsmF0kLCwMDx8+xIwZMzB48GD8/fff0gROVMX0nmPk7e2Nixcv4smTJ3BycoK1tbXG+bi4OIMGWN04x4iIjEnRnKM2bVQ7Yj9NMdrvvvsO77//Ph49eoTGjRtjy5YtGDRokLRfgEhHlf39baL9Ek1Dhw7V9yNERFRDNG+umezI5aV3zC4qL1LRyjWZTIbg4GD06tULgYGBOHPmDAICAhASEmKUK5Sp7tCrx0ipVCI6OhoeHh5o0KCBlHHVGOwxIiJjVtGSfkC3lWuPHj3C7Nmz1UVot2/fzn3tqNpV2XJ9CwsLJCUloVWrVnoHWRsxMSIiY6etGG14OODqqr0Y7b59+/Drr79i3bp1GiVGiKpDldVK69ChAy5duqTvx4iIqIYqWtLv61v2yrVx41Qr1rStXHvxxRexfv16dVKUnZ2NKVOmIDMzU7rgiQxM78Ro8eLFmDlzJvbt24f09HTk5ORovIiIqHYqqxithQWQlqZ7MdripkyZgtWrV8PT0xOHDx+WLnAiA9J7KE1e7J8TxbtKhRCQyWRGt8cRh9KIqK4pvnItOhooa7pQRISql6kiMTExCAwMxMWLFyGXy/Hhhx/io48+gomJ3ut+iPRWZXOMoqKiKjzv5+enz+0kl5ycjOHFBs2Tk5Px448/6ry6jokREdVl166phs9KrlzbuBFwdq54zhEA3Lt3D1OnTsXmzZsBAL6+vti2bRucnZ2lCpkIQDXUSquN7t+/D2dnZ6Smppbaf6k8TIyIqK4zRDHasLAwBAUFIScnB7a2ttizZ0+N+4c0GZcqm3wNAIcPH8aoUaPg6+uL69evAwC2bt2K6OjoytyuyuzZswf9+/fXOSkiIiJV0nPlimr47OBBzXO6zjl68803cfr0afj6+sLGxgbt27eXLF6ip6F3YrRz504MHDgQlpaWiIuLw+PHjwGoukuXLFmidwCHDh3CkCFD4OjoCJlMhl9++aXUNWvWrEGrVq1gYWEBHx+fSk/i++mnnzSG1YiISDdFK9fKWrWmVAKbN2svRuvs7IyoqChERkbC3t4egGp+akpKimRxE+lL78Ro0aJF+Pbbb7F+/XqYmpqqj/v6+laqHEhubi48PT2xevXqMs/v2LEDISEhmD9/PuLj49GrVy8EBATg6tWr6mt8fHzg7u5e6nXjxg31NTk5OThy5AheeOEFvWMkIiKV8orRfvSRbsVoTUxM4OLion6/detWuLm54fPPP2cxWqoZhJ4sLS3F5cuXhRBC2NjYiJSUFCGEECkpKcLc3Fzf22kAIHbv3q1xrEuXLiI4OFjjmKurq5g7d65e9/7hhx/EyJEjtV736NEjkZ2drX6lpaUJACI7O1uv5xERGavvvxdCoRACUP2vn5/qz8VfCoUQaWna7/XWW28JAAKAeP7558WNGzckj5/qhuzs7Er9/ta7x6hp06a4ePFiqePR0dFo3br10+ZpGvLy8hAbGwt/f3+N4/7+/jh69Khe99J1GG3p0qWws7NTv1q0aKHXc4iIjF3xOUdXrgALFpS+RqlU7ZStbXht48aNWLduHSwtLXHw4EF4eHhg3759UoZPVCG9E6OgoCBMmzYNJ06cgEwmw40bN7Bt2zbMnDkTkyZNMmhwt2/fhlKphIODg8ZxBwcH3Lx5U+f7ZGdn4+TJkxg4cKDWa+fNm4fs7Gz1Ky0tTe+4iYiMXdGco+bNyx9ee+897Ttmy2QyTJw4EbGxsfD09MTt27cxZMgQTJ06FY8ePZL8exCVpHdiNHv2bAwdOhR9+/bF/fv30bt3b0yYMAFBQUGYPHmyFDGWqrkjCjeT1JWdnR3+/vtvmJmZab3W3Nwctra2Gi8iIipfyR2zZTLVn5OSdN8x283NDcePH0dISAgAYPXq1Th58mQVRE+kqVLbjy5evBjz58/H2bNnUVBQgHbt2sHGxsbQscHe3h4KhaJU71BGRkapXiQiIqo+48cDAwf+s2P2/v3AxIma1yiVqvPlbQhpYWGBlStXwt/fHwkJCejdu7f0gROVUKl9jADAysoKnTp1QpcuXSRJigDAzMwMPj4+CA8P1zgeHh4OX19fSZ5JRESVU3x4bdCgsofX7typeM4RAAQEBGDevHnq95cuXcKoUaNw584dwwdNVEKlEyNDuX//PhISEpCQkAAAuHz5MhISEtTL8adPn47vv/8eGzduRFJSEt5//31cvXoVwcHB1Rk2ERFVoOTwWpHXXtO+pL84IQTefvttbNu2DR4eHoiIiJAmYKJC1V4SJDIyEn379i11fOzYseraOmvWrMHy5cuRnp4Od3d3rFy5ssq6WFkShIio8ooK0t6/DwwZonlOoVCtaquo1hoAxMfH480338T58+chk8kwb948LFy4UGMvPaKSWCtNIkyMiIieXkSEqqeopNWrgZdfVi3tr6ggbW5uLqZNm4YNhd1MXbt2xfbt2w2+TQwZjyqtlUZERKSP8pb0T5mi247Z1tbW+P777/HTTz/Bzs4OJ06cgJeXF2JiYqQNnOocJkZERCS5knOOFArAy+ufvbIB3QrSvv766zh9+jR69uwJFxcXeHh4SB881SkcStOCQ2lERIZTNOeoTRvg/Hmgf//S1/z0E2BvX/HQWn5+Pu7evYvGjRur3//111/w9PSUMHqqTTiURkRENV7xJf1t25Y9vPbGG7oVoy1KigDgk08+QadOnbB06VIolUppgqc6gYkRERFVi/KW9BfRZWgNUC3pT0lJQX5+Pj744AMMGDAA169fN3zAVCcwMSIiompTvCDtjh2lz+tSjFYmk2Hbtm3YuHEjrK2tERERAQ8PD/z666+Sx0/Gh4kRERFVq6LhNV/fsofW3n1Xt2K0b7/9NuLi4tCxY0fcvXsXQ4cOxaRJk/Dw4UPJvwMZDyZGRERUI5QcWpPLVX9OTta9GG3btm1x7NgxzJgxAwCwZcsWpKWlVUH0ZCy4Kk0LrkojIqpaxVeuHTigGm4rKSJC1ctUkQMHDuDOnTsIDAyUJE6q2bgqjYiIjELxlWv+/mUPr926pb0Yrb+/v0ZSdPjwYQwbNgy3b982fNBkNJgYERFRjVXeyjVdlvQXp1QqMX78ePzyyy/w8PDAwYMHpQmYaj0mRkREVKMVX7m2b5/mOV2X9CsUCvz8889wc3NDeno6/P39MWfOHOTl5UkWN9VOTIyIiKjGKxpes7IqfU6pBHbvrnhJPwB4enoiJiYGQUFBEEJg+fLl6NGjBy5cuCBp7FS7cPK1Fpx8TURUc1y7pho+K1qlVpxMpqq7Jperht/KmrRdZNeuXZgwYQIyMzNhbW2N+Ph4uLi4SBc4VTlOviYiIqNXVjHajh1Vf9anGO0rr7yCxMRE+Pn5YeDAgWjTpo20gVOtwR4jLdhjRERU8xRf0n/hgmoidkm6FKNVKpV4+PAhbGxsAABZWVk4d+4cunXrJmH0VBXYY0RERHVG8SX9Li6VL0arUCjUSZEQAkFBQejZsycWLVrEYrR1FBMjIiKq1QxVjPbJkycwNTWFUqnERx99hH79+nHX7DqIiREREdV6uhSjPX++4nuYmZkhNDQUP/zwA2xsbHDo0CF4enpi165dksRMNRMTIyIiMgraitF+8gkQF6d9x+zRo0cjPj4enTt3RmZmJl599VW88847yM3NlSx2qjmYGBERkVEpqxitqSlw6BDg46Pbjtlt2rRBdHQ05syZA5lMht9++w2PHj2qmi9A1Yqr0rTgqjQiotqp+Mq18+eB/v01zysUquG38lasFfnf//4HMzMz9OrVC4BqkjYAyGQyCaImQ+GqNCIiomKKr1wrK4dRKoH//U/7jtn9+/dXJ0UAsGXLFgwePBgZGRnSBE7Vij1GWrDHiIio9itvx2wTE1WCpOuO2Q8ePICTkxNu374NBwcHbNmyBQMHDpQ2eKoU9hgRERGVo6wds11cgPx8/XbMtrKyQkREBNq3b4+///4bgwYNwowZM/D48WPpvwRVCSZGRERUJxRf0n/lCrB2belrlErg2LGKh9bc3d1x6tQpTJo0CQDw5Zdfonv37khOTpYsdqo6HErTgkNpRETGqbzhNX2K0f76668YN24c7t69i3r16iElJQWNGjWSNnDSCYfSiIiI9FDejtn6DK29/PLLSExMRL9+/TB58mQmRUaAPUZasMeIiMi4FS3rz8gAhg8vfT4i4p9iteUVpFUqlRBCwMTEBABw8eJF3Lx5Ez179pQ4eioPe4yIiIgqQduO2TNmqIbcKtoYUqFQqJOivLw8BAYGws/PDwsXLkR+fr60X4AMiokRERERSg+tFe19FBf3zzwkXYbXnjx5gnbt2qGgoACffPIJ+vTpg9TUVGmDJ4NhYkRERFSo+Mq1q1eBr74qfY1SqRp6K4+1tTW2bNmCbdu2oV69ejhy5Ag8PT3x008/SRY3GQ4TIyIiomKK75j96qtlD6/l5movRjtixAgkJCSga9euyM7OxvDhwzF+/Hg8ePBAstjp6TExIiIiKkd5K9defFG3YrStW7fG4cOHMX/+fMhkMiQmJqrnIlHNxFVpWnBVGhERFa1cu3ULeOMNzXO6FqONioqCo6MjXFxcAAD5+fmQy+WQl9UlRU+Nq9KIiIgkUjS8Zm9f+pxSCYSHay9G6+fnp06KAGDBggUICAjAzZs3pQmaKoU9Rlqwx4iIiIoYqhhtRkYGWrdujdzcXDRq1AhbtmxBQECAtMHXMewxIiIiX1fllwAAHxxJREFUklhZxWife07/YrSNGzfGyZMn4eHhgVu3buGFF15ASEgIi9HWAEyMiIiI9FCyGO0335S+RpditO3atcOJEycwdepUAMC///1vdO3aFUlJSZLFTtpxKE0LDqUREVFFDFGM9j//+Q/efvtt3Lp1C40aNcKVK1dgZWUlbeBGjkNpRERE1cAQxWgHDx6M06dPY8CAAfjss8+YFFUj9hhpwR4jIiLShS7FaPv0qfgeBQUFkMlkkBXWI4mOjoZSqYSfn5/hAzZy7DEiIiKqRtqK0X79NZCUVPG8I7lcrk6K7t69i8DAQPTt2xcfffQRnjx5Il3wpMbEiIiIyIDKKkYrkwG7dwPt2um2YzYAmJmZYcCAARBCYNGiRejduzcuX74s/Reo45gYERERGVjJYrS7dmme12XekY2NDTZu3IiwsDDY2dnh+PHj8PLywo8//ihp7HUdEyMiIiIJFC9Ga2dX+rxSCezbp70Y7fDhw5GQkABfX1/k5ORgxIgReOutt5CXlydZ7HUZEyMiIiKJubiUPe/o3Xd1G1pzdnZGVFQUPv74Y8jlcjx48ACmpqbSBVyHcVWaFlyVRkREhrBhg2r4TKn8Z4+j4nQtRhsdHY327dujQYMGAIDc3FxYWlqyGG0JXJVGRERUgxWfdxQWVvq8Ugn8/rv2YrQ9e/ZUJ0VCCIwdOxYDBw5Eenq6dMHXIewx0oI9RkREZGjl7ZatUKiO6bpj9vnz5+Ht7Y0HDx7A3t4eGzduxJAhQ6QNvpZgjxEREVEtUVYxWldXVa+RPjtmt23bFrGxsfDy8sLt27fx0ksvYcqUKXj48KH0X8JIMTEiIiKqBroWo714seLhNVdXVxw/fhzTp08HAKxevRpdunTBn3/+KWn8xopDaVpwKI2IiKpCecNrfn7A4cOq49qG1/bv34+xY8ciIyMDbdu2xdmzZ6EoWcStjuBQGhERUS1W1o7ZABAV9U+ypG14bdCgQUhMTMSLL76I9evX19mk6GnUicToiy++QPv27eHu7o7Q0NDqDoeIiKhMJXfM/vTT0tcUDa+Vx8HBAXv37kXv3r3Vx3bs2IE//vjD8AEbIaNPjM6cOYPt27cjNjYWMTExWLt2LbKysqo7LCIiojIV3zH77bdLbwwpk6mSI207Zhc5f/48xo0bh+effx7z5s1jMVotjD4xSkpKgq+vLywsLGBhYQEvLy/s37+/usMiIiLSquTwGqBatfb887oXo23WrBlGjhwJIQSWLVuGHj16ICUlRdrAa7FqT4wOHTqEIUOGwNHRETKZDL/88kupa9asWYNWrVrBwsICPj4+OHz4sM73d3d3R0REBLKyspCVlYU//vgD169fN+RXICIikkzx4bWNGzXP6bKk39raGuvWrcPPP/+M+vXr49SpU/Dy8sLWrVsljbu2qvbEKDc3F56enli9enWZ53fs2IGQkBDMnz8f8fHx6NWrFwICAnD16lX1NT4+PnB3dy/1unHjBtq1a4epU6eiX79+GDZsGDp37gwTE5Oq+npERERPrWh4zdm59DmlEjhyRPuO2a+99hpOnz6NXr164f79+xgzZgzGjBkDLk7XVKOW68tkMuzevRtDhw5VH+vatSs6duyItWvXqo+5ublh6NChWLp0qd7PmDBhAoYNG4bBgweXef7x48d4/Pix+n1OTg5atGjB5fpERFTtylvSb2EBPH6s247ZSqUSS5YswSeffIK5c+di0aJF0gdeDYxyuX5eXh5iY2Ph7++vcdzf3x9Hjx7V+T4ZGRkAgOTkZJw8eRIDBw4s99qlS5fCzs5O/WrRokXlgiciIjKwknOO5HKgRQvg0SPdd8xWKBT46KOPcOLECSxYsEB9/NatW1AqlRJ/g5qvRidGt2/fhlKphIODg8ZxBwcH3Lx5U+f7DB06FO3atcOoUaOwadOmCofS5s2bh+zsbPUrLS2t0vETEREZWvE5R6mpZU++ViqBY8cqHlrz8fGBqakpAFVHxKBBg/D888/jmi5L3YxYrZhsIyva5aqQEKLUsYro07tkbm4Oc3Nzna8nIiKqas2bq15F5PLSw2vDh+tejPb06dNITk5Wz/v9/vvvMWzYMGmCr+FqdI+Rvb09FApFqd6hjIyMUr1IREREdVFZS/oB/YrRdu7cGfHx8fDx8cHdu3fxyiuvIDg4GA8ePJAu8BqqRidGZmZm8PHxQXh4uMbx8PBw+Pr6VlNURERENUvx4bWwsNLnte2WDQAuLi44evQoZs2aBQD47rvv0LlzZyQmJho+4Bqs2ofS7t+/j4vF/rYuX76MhIQENGzYEC1btsT06dMxevRodOrUCd27d8e6detw9epVBAcHV2PURERENUvR8Nq1a2UPrYWGqiZqX70KuLhoDsUVMTMzw/LlyzFgwACMGTMGZ8+exdSpUxEREaHXFJbarNqX60dGRqJv376ljo8dOxabN28GoNrgcfny5UhPT4e7uztWrlypUQNGSpVd7kdERFRdNmxQDZ8plaoSIiV/0+sy7+jWrVuYMmUKFi9ejGeffVbagCVQ2d/f1Z4Y1XRMjIiIqDa6dk01fNamDRAeDowbp3leoVANv5XVc1Se5cuXw9vbGwMGDDBorFIwyn2MiIiIqHKKF6Mtb8fs8HDdi9EeOnQIc+fOhb+/P2bNmoW8vDxDh1wjMDEiIiIyci4uquGzksaN070YbadOnRAUFAQA+OKLL+Dr64sLFy5IEG31YmJERERk5Eou6S85j1qXJf1WVlZYu3Ytdu/ejYYNGyI2Nhbe3t7YvHmzUdVbY2JERERUB+iypD86Wnsx2qFDh+L06dPo06cPcnNz8fbbb+Odd96RNPaqxMSIiIiojiiad+TrW/bQ2ltvAS1bah9ea968OQ4ePIglS5ZAoVCgV69eUoZdpbgqTQuuSiMiImNUfEm/QgE0a6ba46g4XVauXbhwAW3atFHvc5SSkgJnZ2coSm7FXcW4Ko2IiIh0Vnxo7cqVyhejdXFxUSdFd+7cQe/evdG3b19cLZll1RJMjIiIiOqo4kv6XV3LHl4bPlz3lWuJiYnIycnB4cOH4enpif/7v/+TJG4pMTEiIiIigxSj7du3LxISEtClSxdkZWXh9ddfx8SJE5Gbmytd4AbGxIiIiIgAGKYY7bPPPovo6GjMmzcPMpkM33//PTp16oSEhARJYjY0JkZERESkVjS81qNH2UNrP/ygSo4qmndkamqKJUuW4ODBg3B0dMS5c+ewYsUKSeM2FCZGREREVEp5m0Ju2qTaSVuXeUf9+vVDYmIigoODsWrVKumDNgAu19eCy/WJiKguK16M9o8/gLFjNc/rW4xWCIHg4GAMGzYMgwYNMni8Rbhcn4iIiAyu+Mq1Fi1Kn1cqgdhY7TtmF/nxxx+xbt06BAQEYMaMGXj8+LEkcVcWEyMiIiLSSXnFaMeMUQ2r6TK89sorr2Dy5MkAgC+//BJz5syRKNrKYWJEREREOik570guB+ztgZwc1XJ+QPuyfgsLC6xatQp79uyBu7s75s2bVzXB64hzjLTgHCMiIiJNxecdJSYCgweXvuann1RJk4tL+fOPCgoKIC+rC8oAKvv720SSaIiIiMhoNW+umezI5f/0GBUZPly1OaRcruplGj++9H2kSoqeRs2LiIiIiGoNQ+yYXZMwMSIiIqKnUnzH7O3bS5/XZcfsmoJDaURERPTUiobXrl0re2jt99+B1q2BlJSK5x1VN/YYERERkcGUt2P2smW6L+mvTkyMiIiIyKCKD62lpgJffKF5vibPO+JQGhERERlc8ZVrHTuWPq9UApGRQLNmNWtojT1GREREJKnydswePbrmDa0xMSIiIiJJlTfvqEhNGlpjYkRERESSKz7vKCys9PmasqSfc4yIiIioSlS0pF+hUJUYqW7sMSIiIqIqVXJoTaEAvvuuZkzAZo8RERERVbnx44GBA/8pRlsTkiKAiRERERFVk5LFaGsCDqURERERFWJiRERERFSIiRERERFRISZGRERERIWYGBEREREVYmJEREREVIiJEREREVEhJkZEREREhZgYERERERViYkRERERUiIkRERERUSHWStNCCAEAyMnJqeZIiIiISFdFv7eLfo/riomRFvfu3QMAtGjRopojISIiIn3du3cPdnZ2Ol8vE/qmUnVMQUEBbty4gXr16kEmk1X6Pjk5OWjRogXS0tJga2trwAipJLZ11WFbVx22ddVhW1cdKdtaCIF79+7B0dERcrnuM4fYY6SFXC5H8+bNDXY/W1tb/h+tirCtqw7buuqwrasO27rqSNXW+vQUFeHkayIiIqJCTIyIiIiICikWLly4sLqDqCsUCgX69OkDExOOYEqNbV112NZVh21dddjWVaemtTUnXxMREREV4lAaERERUSEmRkRERESFmBgRERERFWJiRERERFSIiVEVWLNmDVq1agULCwv4+Pjg8OHD1R1Srbd06VJ07twZ9erVQ+PGjTF06FAkJydrXPP48WNMmTIF9vb2sLa2xksvvYRr165VU8TGY+nSpZDJZAgJCVEfY1sbzvXr1zFq1Cg888wzsLKygpeXF2JjY9XnhRBYuHAhHB0dYWlpiT59+uCvv/6qxohrp/z8fHz44Ydo1aoVLC0t0bp1a3z66acoKChQX8O2rrxDhw5hyJAhcHR0hEwmwy+//KJxXpe2zczMxOjRo2FnZwc7OzuMHj0aWVlZksfOxEhiO3bsQEhICObPn4/4+Hj06tULAQEBuHr1anWHVqtFRUXhvffew/HjxxEeHo78/Hz4+/sjNzdXfU1ISAh2796NsLAwREdH4/79+3jxxRehVCqrMfLa7dSpU1i3bh08PDw0jrOtDSMzMxM9evSAqakp/vvf/+Ls2bNYsWIF6tevr75m+fLl+PLLL7F69WqcOnUKTZo0wYABA9R1HUk3n332Gb799lusXr0aSUlJWL58OT7//HOsWrVKfQ3buvJyc3Ph6emJ1atXl3lel7YdMWIEEhISsH//fuzfvx8JCQkYPXq09MELklSXLl1EcHCwxjFXV1cxd+7caorIOGVkZAgAIioqSgghRFZWljA1NRVhYWHqa65fvy7kcrnYv39/dYVZq927d0+4uLiI8PBw4efnJ6ZNmyaEYFsb0pw5c0TPnj3LPV9QUCCaNGkili1bpj726NEjYWdnJ7799tuqCNFoDB48WIwbN07j2CuvvCJGjRolhGBbGxIAsXv3bvV7Xdr27NmzAoA4fvy4+ppjx44JAOLcuXOSxsseIwnl5eUhNjYW/v7+Gsf9/f1x9OjRaorKOGVnZwMAGjZsCACIjY3FkydPNNre0dER7u7ubPtKeu+99zB48GA8//zzGsfZ1oazZ88edOrUCa+//joaN24Mb29vrF+/Xn3+8uXLuHnzpkZbm5ubw8/Pj22tp549e+J///sfzp8/DwA4ffo0oqOj8cILLwBgW0tJl7Y9duwY7Ozs0LVrV/U13bp1g52dneTtXzO2mTRSt2/fhlKphIODg8ZxBwcH3Lx5s5qiMj5CCEyfPh09e/aEu7s7AODmzZswMzNDgwYNNK5l21dOWFgY4uLicOrUqVLn2NaGc+nSJaxduxbTp0/HBx98gJMnT2Lq1KkwNzfHmDFj1O1Z1s+U1NTU6gi51pozZw6ys7Ph6uoKhUIBpVKJxYsXIzAwEADY1hLSpW1v3ryJxo0bl/ps48aNJf+5wsSoCshkMo33QohSx6jyJk+ejMTERERHR2u9lm2vv7S0NEybNg0HDhyAhYWFzp9jW+uvoKAAnTp1wpIlSwAA3t7e+Ouvv7B27VqMGTNGfR1/pjy9HTt2IDQ0FNu3b0f79u2RkJCAkJAQODo6YuzYserr2NbS0da2ZbVzVbQ/h9IkZG9vD4VCUSq7zcjIKJUpU+VMmTIFe/bsQUREBJo3b64+3qRJE+Tl5SEzM1Pjera9/mJjY5GRkQEfHx+YmJjAxMQEUVFR+Prrr2FiYgIHBwe2tYE0bdoU7dq10zjm5uamXqzRpEkTAODPFAOYNWsW5s6dizfffBMdOnTA6NGj8f7772Pp0qUA2NZS0qVtmzRpgr///rvUZ2/duiV5+zMxkpCZmRl8fHwQHh6ucTw8PBy+vr7VFJVxEEJg8uTJ2LVrF/744w+0atVK47yPjw9MTU012j49PR1//vkn215P/fv3x5kzZ5CQkKB+derUCSNHjlT/mW1tGD169Ci17cT58+fh5OQEAGjVqhWaNGmi0dZ5eXmIiopiW+vpwYMHkMs1fwUqFAr1cn22tXR0advu3bsjOzsbJ0+eVF9z4sQJZGdnS9/+kk7tJhEWFiZMTU3Fhg0bxNmzZ0VISIiwtrYWV65cqe7QarV3331X2NnZicjISJGenq5+PXjwQH1NcHCwaN68uTh48KCIi4sT/fr1E56eniI/P78aIzcOxVelCcG2NpSTJ08KExMTsXjxYnHhwgWxbds2YWVlJUJDQ9XXLFu2TNjZ2Yldu3aJM2fOiMDAQNG0aVORk5NTjZHXPmPHjhXNmjUT+/btE5cvXxa7du0S9vb2Yvbs2epr2NaVd+/ePREfHy/i4+MFAPHll1+K+Ph4kZqaKoTQrW0HDRokPDw8xLFjx8SxY8dEhw4dxIsvvih57EyMqsA333wjnJychJmZmejYsaN6STlVHoAyX5s2bVJf8/DhQzF58mTRsGFDYWlpKV588UVx9erV6gvaiJRMjNjWhrN3717h7u4uzM3Nhaurq1i3bp3G+YKCArFgwQLRpEkTYW5uLnr37i3OnDlTTdHWXjk5OWLatGmiZcuWwsLCQrRu3VrMnz9fPH78WH0N27ryIiIiyvwZPXbsWCGEbm17584dMXLkSFGvXj1Rr149MXLkSJGZmSl57DIhhJC2T4qIiIioduAcIyIiIqJCTIyIiIiICjExIiIiIirExIiIiIioEBMjIiIiokJMjIiIiIgKMTEiIiIiKsTEiIgqrU+fPggJCanuMNSEEHjnnXfQsGFDyGQyJCQkVHdIRFTLMDEiIqOxf/9+bN68Gfv27UN6ejrc3d2rO6Qq5ezsjK+++qq6wyCq1UyqOwAiouKUSiVkMlmpAp+6SElJQdOmTY2iyOeTJ09gampa3WEQ1TnsMSKq5fr06YOpU6di9uzZaNiwIZo0aYKFCxeqz1+5cqXUsFJWVhZkMhkiIyMBAJGRkZDJZPj999/h7e0NS0tL9OvXDxkZGfjvf/8LNzc32NraIjAwEA8ePNB4fn5+PiZPnoz69evjmWeewYcffojilYby8vIwe/ZsNGvWDNbW1ujatav6uQCwefNm1K9fH/v27UO7du1gbm6O1NTUMr9rVFQUunTpAnNzczRt2hRz585Ffn4+AOCtt97ClClTcPXqVchkMjg7O5d5j6Ln/fLLL2jbti0sLCwwYMAApKWlaVy3du1aPPvsszAzM8Nzzz2HrVu3qs/NmDEDQ4YMUb//6quvIJPJ8J///Ed97LnnnsN3332nfr9p0ya4ubnBwsICrq6uWLNmTam/o59++gl9+vSBhYUFQkNDy4x/4cKFaNmyJczNzeHo6IipU6cCUP13kJqaivfffx8ymQwymUz9maNHj6J3796wtLREixYtMHXqVOTm5qrPOzs741//+hdGjBgBGxsbODo6YtWqVTo9l8joSF6NjYgk5efnJ2xtbcXChQvF+fPnxZYtW4RMJhMHDhwQQghx+fJlAUDEx8erP5OZmSkAiIiICCHEPwUfu3XrJqKjo0VcXJxo06aN8PPzE/7+/iIuLk4cOnRIPPPMM2LZsmUaz7axsRHTpk0T586dE6GhocLKykqj8OmIESOEr6+vOHTokLh48aL4/PPPhbm5uTh//rwQQohNmzYJU1NT4evrK44cOSLOnTsn7t+/X+p7Xrt2TVhZWYlJkyaJpKQksXv3bmFvby8WLFgghBAiKytLfPrpp6J58+YiPT1dZGRklNleRc/r1KmTOHr0qIiJiRFdunQRvr6+6mt27dolTE1NxTfffCOSk5PFihUrhEKhEH/88YcQQog9e/YIOzs7oVQqhRBCDB06VNjb24tZs2YJIYRIT08XAERSUpIQQoh169aJpk2bip07d4pLly6JnTt3ioYNG4rNmzdr/B05Ozurr7l+/Xqp2H/++Wdha2srfvvtN5GamipOnDihbus7d+6I5s2bi08//VSkp6eL9PR0IYQQiYmJwsbGRqxcuVKcP39eHDlyRHh7e4u33npLfV8nJydRr149sXTpUpGcnCy+/vproVAo1P8NVfRcImPDxIiolvPz8xM9e/bUONa5c2cxZ84cIYR+idHBgwfV1yxdulQAECkpKepjQUFBYuDAgRrPdnNzEwUFBepjc+bMEW5ubkIIIS5evChkMlmpX/L9+/cX8+bNE0KoEhUAIiEhocLv+cEHH4jnnntO41nffPONsLGxUScoK1euFE5OThXep+h5x48fVx9LSkoSAMSJEyeEEEL4+vqKiRMnanzu9ddfFy+88IIQQpWEyeVyERMTIwoKCsQzzzwjli5dKjp37iyEEGL79u3CwcFB/dkWLVqI7du3a9zvX//6l+jevbsQ4p+/o6+++qrC2FesWCHatm0r8vLyyjzv5OQkVq5cqXFs9OjR4p133tE4dvjwYSGXy8XDhw/Vnxs0aJDGNcOHDxcBAQE6PZfImHAojcgIeHh4aLxv2rQpMjIynuo+Dg4OsLKyQuvWrTWOlbxvt27dNIZtunfvjgsXLkCpVCIuLg5CCLRt2xY2NjbqV1RUFFJSUtSfMTMzK/UdSkpKSkL37t01ntWjRw/cv38f165d0+t7mpiYoFOnTur3rq6uqF+/PpKSktTP6tGjh8ZnevTooT5vZ2cHLy8vREZG4syZM5DL5QgKCsLp06dx7949REZGws/PDwBw69YtpKWlYfz48RptsGjRIo02AKARU1lef/11PHz4EK1bt8bEiROxe/du9VBieWJjY7F582aNZw8cOBAFBQW4fPmy+rru3btrfK579+7q71uZ5xLVVpx8TWQESk7SlclkKCgoAAD1JGZRbN7PkydPtN5HJpNVeF9dFBQUQKFQIDY2FgqFQuOcjY2N+s+WlpYaCU9ZhBClrin6Tto+W5ayPlP8WFnPKn6sT58+iIyMhJmZGfz8/NCgQQO0b98eR44cQWRkpHobg6L2Wr9+Pbp27apxz5JtYm1tXWHMLVq0QHJyMsLDw3Hw4EFMmjQJn3/+OaKiosqdqF1QUICgoKAy5wS1bNmywucVfd/KPJeotmJiRGTkGjVqBABIT0+Ht7c3ABh0f5/jx4+Xeu/i4gKFQgFvb28olUpkZGSgV69eT/Wcdu3aYefOnRoJytGjR1GvXj00a9ZMr3vl5+cjJiYGXbp0AQAkJycjKysLrq6uAAA3NzdER0djzJgx6s8cPXoUbm5u6vd9+vTBhg0bYGJigueffx4A4Ofnh7CwMJw/f17dY+Tg4IBmzZrh0qVLGDlyZOUboJClpSVeeuklvPTSS3jvvffg6uqKM2fOoGPHjjAzM4NSqdS4vmPHjvjrr7/Qpk2bCu9b1t9jUXtoey6RMWFiRGTkLC0t0a1bNyxbtgzOzs64ffs2PvzwQ4PdPy0tDdOnT0dQUBDi4uKwatUqrFixAgDQtm1bjBw5EmPGjMGKFSvg7e2N27dv448//kCHDh3wwgsv6PycSZMm4auvvsKUKVMwefJkJCcnY8GCBZg+fbreS/tNTU0xZcoUfP311zA1NcXkyZPRrVs3daI0a9YsvPHGG+jYsSP69++PvXv3YteuXTh48KD6Hr1798a9e/ewd+9eLFq0CIAqWXr11VfRqFEjtGvXTn3twoULMXXqVNja2iIgIACPHz9GTEwMMjMzMX36dJ3j3rx5M5RKJbp27QorKyts3boVlpaWcHJyAqBaXXbo0CG8+eabMDc3h729PebMmYNu3brhvffew8SJE2FtbY2kpCSEh4drrDw7cuQIli9fjqFDhyI8PBw///yzepWdtucSGZXqnOBERE/Pz89PTJs2TePYyy+/LMaOHat+f/bsWdGtWzdhaWkpvLy8xIEDB8qcfJ2Zman+zKZNm4SdnZ3GfRcsWCA8PT01nj1p0iQRHBwsbG1tRYMGDcTcuXM1Jkjn5eWJjz/+WDg7OwtTU1PRpEkTMWzYMJGYmFjuc8oTGRkpOnfuLMzMzESTJk3EnDlzxJMnT9TndZ18bWdnJ3bu3Clat24tzMzMRL9+/cSVK1c0rluzZo1o3bq1MDU1FW3bthU//PBDqXv5+PiIRo0aqb/vnTt3hEwmE6+99lqpa7dt2ya8vLyEmZmZaNCggejdu7fYtWuXEKLsCfJl2b17t+jatauwtbUV1tbWolu3bhoT5o8dOyY8PDyEubm5KP7j/eTJk2LAgAHCxsZGWFtbCw8PD7F48WL1eScnJ/HJJ5+IN954Q1hZWQkHBweNieDanktkTGRCFJt4QERk5DZv3oyQkBBkZWVVdyg1hrOzM0JCQmpUeRei6sJVaURERESFmBgRERERFeJQGhEREVEh9hgRERERFWJiRERERFSIiRERERFRISZGRERERIWYGBEREREVYmJEREREVIiJEREREVEhJkZEREREhZgYERERERX6f8vD5+r1lOtwAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(1:length(d), d, \"b.-\")\n", - "semilogy(1:length(d), (4/5).^(1:length(d)), \"k--\")\n", - "xlabel(\"number of power steps\")\n", - "ylabel(\"error in eigenvector\")\n", - "title(L\"convergence of power method for $\\lambda=1,2,3,4,5$\")\n", - "legend([\"error\", L\"(4/5)^n\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pros/cons of the power method\n", - "\n", - "* Our analysis shows that the power method can converge very slowly if $|\\lambda_2/\\lambda_1|$ is close to 1. And if two eigenvalues have *equal* magnitude, the method may not converge *at all*.\n", - "\n", - "* Also, it only gives us $x_1$. What if we want $x_2$, or in general a *few* of the biggest-|λ| eigenvectors?\n", - "\n", - "Still, the power method is the **starting point for many more sophisticated methods,** including the [Arnoldi method](https://en.wikipedia.org/wiki/Arnoldi_iteration) (which gives a few of the biggest eigenvectors) or the [QR algorithm](https://en.wikipedia.org/wiki/QR_algorithm) which gives *all* of the eigenvectors.\n", - "\n", - "And the power method *by itself* can still be a pretty good method if we know that one eigenvalue is bigger than all of the others, e.g. for Markov matrices. And because it is so simple, the power method is easy to apply in lots of different cases, especially since:\n", - "\n", - "* The power method only requires you to supply a \"black box\" that **multiplies matrix × vector** This is a *huge* advantage for problems where the matrix is *mostly zeros* (or has some other special structure), in which you can multiply **matrix × vector much more quickly than for a generic matrix**.\n", - "\n", - "An interesting application of the power method comes from how Markov matrices relate to the [Google PageRank](https://en.wikipedia.org/wiki/PageRank). Google actually runs this algorithm on a *huge* Markov matrix where rows/cols are *web pages*: the matrix is [*over a billion by billion entries*](https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/chapters/pagerank.pdf). But since most web pages only link to a few other pages, the matrix is mostly zeros, and you can multiply it by a random vector in a few billion operation, rather than a billion² operations. (They don't even store the whole matrix: you only store the nonzero entries of such a [sparse matrix](https://en.wikipedia.org/wiki/Sparse_matrix).)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Getting an eigenvalue from the eigenvector\n", - "\n", - "In the textbook method of solving eigenproblems, we first find the eigenvalues from the roots of the characteristic polynomial, and then we find the eigenvectors from $N(A - \\lambda I)$ for each eigenvalue.\n", - "\n", - "The power method, however, gives you an eigenvector first! How do you find the eigenvalue? And how do you find an *approximate* eigenvalue given the *approximate* eigenvector that you get from a *finite* number of iterations.\n", - "\n", - "For example, suppose that we do 30 iterations on the example above:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " -0.0186024\n", - " -0.572773 \n", - " 0.519148 \n", - " -0.0275813\n", - " 0.63349 " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y = x\n", - "for i = 1:30\n", - " y = A*y\n", - " y = y / norm(y)\n", - "end\n", - "y" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " -0.0932159\n", - " -2.86417 \n", - " 2.59527 \n", - " -0.137977 \n", - " 3.16745 " - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A*y" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If $y$ was the *exact* eigenvector, we could just multiply $Ay$ and see how much each component increased: they would all increase (or decrease) by the same factor λ.\n", - "\n", - "But, for an approximate eigenvector, each component of $Ay$ will increase by a slightly different amount:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 5.01095\n", - " 5.00053\n", - " 4.99909\n", - " 5.00255\n", - " 5.0 " - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(A*y) ./ y # divide each element of Ay elementwise (./ in Julia) by the corresponding element of y" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These are all pretty close to the true eigenvalue λ=5, but don't quite agree. Clearly, we need some kind of average?\n", - "\n", - "A problem with dividing things elementwise is that some of the eigenvector elements might be zero (or nearly zero), and then our estimate will go crazy. Instead, we need to take the average in some other way.\n", - "\n", - "Instead, the most common approach is to use the [Rayleigh quotient](https://en.wikipedia.org/wiki/Rayleigh_quotient):\n", - "\n", - "$$\n", - "\\lambda \\approx \\frac{y^T A y}{y^T y}\n", - "$$\n", - "\n", - "where $y$ is our estimated eigenvector. If we have an exact eigenvector, so that $Ay = \\lambda y$, then the Rayleigh quotient will gives us exactly $\\lambda$. Otherwise, it is a kind of weighted-average (weighted by the components $y_k^2$), and is a reasonable approximation:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.999936109151186" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(y'A*y) / (y'y) # a Rayleigh quotient in Julia" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Clearly, this is a pretty good estimate for the true eigenvalue 5. Let's see how it converges by plotting the error as a function of the number of power iterations:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHHCAYAAABN+wdFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYU+fbB/BvEqaADBnKUhQXwwXiHqjg3laLVlFRHNifo2jVtoq1rdZVrVuLWmrfuvcsVdy4UBzgQMUiCOJiiazkef9IEwlhJCEhg/tzXbkk55w85z7Jkdw8k8MYYyCEEEIIIWXiqjsAQgghhBBNRwkTIYQQQkgFKGEihBBCCKkAJUyEEEIIIRWghIkQQgghpAKUMBFCCCGEVIASJkIIIYSQClDCRAghhBBSAUqYCCGEEEIqQAkTIYQQQkgFKGEihBBCCKkAJUyE6IDdu3fD3d0dxsbG4HA4iI2NVXdIOu/KlSsICwtDRkaG1L6wsDBwOBy8efNGpTGIziOLvLw86OnpwczMDF9++aVc51HH/VWZeBWVnZ2NOXPmwN/fHzY2NuBwOAgLC1OorLNnz2L8+PFo0qQJTExM4ODggIEDByImJkbusmJjY9G3b184OzvD2NgYVlZWaNeuHXbu3KlQbMX99ttv4HA4MDU1Vej1586dA4fDKfVx9erVSsenSShhIkTLvX79GqNHj0aDBg1w6tQpREdHo1GjRuoOS+dduXIFixYtKjVh0kQcDgdnz56Fj48P1q1bh8ePH8v0OnXdX4rGWxlv377Fli1bkJ+fj0GDBlWqrI0bN+L58+eYPn06Tpw4gTVr1iA9PR1t27bF2bNn5SorIyMDTk5O+Omnn3DixAlERESgXr16GD16NH744QeFY0xJSUFoaCjs7e0VLkPkp59+QnR0tMTDw8Oj0uVqEj11B0CIvHJzc1GjRg11h6ExHj9+jMLCQnzxxRfo0qWLusOpEnQPyM/Q0BCdO3fGnDlzcPbsWcTExMiU+Kjq/qroM1Q03sqoW7cu3r9/L64d/O233xQua/369bC1tZXY1qtXL7i6uuKnn35Ct27dZC6ra9eu6Nq1q8S2fv36ITExEVu2bMG3336rUIyTJ09G586dYWVlhX379ilUhkjDhg3Rtm3bSpWh6aiGSYc9fPgQAQEBsLOzg6GhIZydnTFmzBjk5+eLj7l06RK6d+8OMzMz1KhRA+3bt8fx48clyhFV+8fFxSEgIADm5uaws7PD+PHjkZmZCQA4dOgQOBwOzpw5IxXHxo0bweFwcPfuXfG2hIQEjBw5Era2tjA0NETTpk2xfv16qdeKzn3r1i0MGzYMlpaWaNCgAQDg8OHDaNasGQwNDVG/fn2sWbOmzCYKWc4ny3XK+/7Kep1lqejzGTt2LDp27AgAGDFiBDgcjtQv1tKu8fbt2xgyZAhq1qwJc3NzfPHFF3j9+rVc5waAuLg4cDgc7N27V7wtJiYGHA4H7u7uEscOGDAAXl5ecr835d0D5V3j3bt38dlnn8Hc3BxWVlaYNWsWioqK8OjRI/Tq1QtmZmaoV68eli1bJlVGRbGFhYVh9uzZAAAXFxdxE8S5c+ckynn16lWF95Is7zMAHD9+HC1atIChoSFcXFywYsWKMt+D8jRp0gQAZGpWq+j+kjV2eT9DReOtLNHnqAwlkyUAMDU1hZubG168eKGUc1hbW0NPT7F6j507d+L8+fPYsGGDUmKpFhjRSbGxsczU1JTVq1ePbdq0iZ05c4bt3LmTDR8+nGVlZTHGGDt37hzT19dnXl5ebPfu3ezQoUPM39+fcTgctmvXLnFZCxcuZABY48aN2YIFC1hkZCRbtWoVMzQ0ZOPGjWOMMVZYWMhsbW3ZqFGjpGLx8fFhrVq1Ej+Pi4tj5ubmzNPTk0VERLC///6bffXVV4zL5bKwsDCJ14rOXbduXfb111+zyMhIdujQIXby5EnG5XJZ165d2cGDB9nevXtZmzZtWL169VjJ21rW88lynfK8v/JcZ2lk+XyePHnC1q9fzwCwn376iUVHR7O4uLgyyyz+fs6ePZudPn2arVq1ipmYmLCWLVuygoICmc8tUqdOHRYcHCx+vnTpUmZsbMwAsJSUFMaY8P6oWbMmmzNnjtLugYqusXHjxmzx4sUsMjKSzZkzhwFg06ZNY02aNGG//vori4yMZOPGjWMA2P79+8WvlyW2Fy9esC+//JIBYAcOHGDR0dEsOjqaZWZmSsVQ3r0k6/v8zz//MB6Pxzp27MgOHDjA9u7dy1q3bs2cnZ2l7veKTJkyhQFg/v7+FR5b3v0lzz0i72eoSLwCgYAVFhbK9JDF69evGQC2cOFCmY6XRUZGBjM3N2eDBw9W6PV8Pp8VFhay9PR0tn79eqanp8c2bdokdzmvXr1itWrVYuvXr2eMMRYYGMhMTEwUiikqKooBYLa2tozH4zEzMzPm7+/PLl68qFB5mowSJh3VrVs3ZmFhwdLT08s8pm3btszW1pZlZ2eLtxUVFTEPDw/m6OjIBAIBY+zTL7tly5ZJvH7q1KnMyMhIfNysWbOYsbExy8jIEB8THx/PALC1a9eKt/Xs2ZM5OjqKv1xEpk2bxoyMjNi7d+/E20TnXrBggcSxrVu3Zk5OTiw/P1+8LTs7m9WqVUvqC0TW88l6nYzJ9v7Kc52lkfXzEf3C2rt3b7nlFb/GmTNnSmz/888/GQC2c+dOuc7NGGNffPEFq1+/vvh5jx492MSJE5mlpSX7/fffGWOMXb58mQFgf//9t9zvTVn3QEXXuHLlSontLVq0ECc4IoWFhczGxoYNGTJEvE3W2JYvX84AsMTExDJjqOhekvV9btOmDbO3t2cfP34UH5eVlcWsrKzkSphOnz7NADBLS0tmY2Mj02vKur/kuUfk/QwViVcUpyyP0j6zklSRMI0aNYrp6emxmzdvKvT6SZMmia/BwMCAbdiwQaFyhg4dytq3by/+jCqTMN26dYtNnz6dHTx4kF24cIFt27aNNW3alPF4PHbq1CmFytRU1CSng3Jzc3H+/HkMHz4cNjY2pR7z4cMHXLt2DcOGDZMYHcHj8TB69GgkJyfj0aNHEq8ZMGCAxPNmzZohLy8P6enpAIDx48fj48eP2L17t/iY7du3w9DQECNHjgQgHPly5swZDB48GDVq1EBRUZH40adPH+Tl5ZU6smLo0KESsd+8eRODBg2CgYGBeLupqSn69+8v8TpFzlfRdcry/ip6ncWvUd7PRx6jRo2SeD58+HDo6ekhKipK7nN3794dz549Q2JiIvLy8nDp0iX06tULvr6+iIyMBAD8888/MDQ0RMeOHZVyD8iiX79+Es+bNm0KDoeD3r17i7fp6enB1dUV//77L4DKf24llXcvyfo+f/jwATdu3MCQIUNgZGQkPs7MzEzqfi9PRkYGxo8fj4EDB2Lq1Kl4/fo1Xr58KfPri1P0/pTnM5Q3Xi8vL9y4cUOmhzI6Ocvru+++w59//olffvlFomlaHvPnz8eNGzdw/PhxjB8/HtOmTZO7aXb//v04evQotm7dqpTmx5YtW2L16tUYNGgQOnXqhHHjxuHKlSuoU6cO5syZU+nyNQl1+tZB79+/B5/Ph6OjY7nHMMZQp04dqX2iXyZv376V2F6rVi2J54aGhgCAjx8/AgDc3d3RunVrbN++HcHBweDz+di5cycGDhwIKysrcZlFRUVYu3Yt1q5dW2pspQ3FLh6nKHY7Ozup40puU+R8FV2nLO+votcposjnI4/atWtLPNfT00OtWrXw9u1buc/do0cPAMKkyMXFBYWFhejWrRtevXqFxYsXi/d16NABxsbGSElJqfQ9IAvRPSdiYGCAGjVqSCQdou1ZWVni66rM51ZSefdSYWGhTO+zqakpBAKB1GcGSH+O5QkJCUFhYSG2bt2KCxcuABD2C1IkeVD0/pTnM5Q3XlNTU7Ro0UKmshXt96OoRYsW4YcffsCPP/6IadOmKVyOs7MznJ2dAQB9+vQBAMybNw+BgYFl/vFWXE5ODkJCQvDll1/C3t5ePMKzoKAAgDBJ1dfXh4mJicIxAoCFhQX69euHTZs24ePHjzA2Nq5UeZqCEiYdZGVlBR6Ph+Tk5DKPsbS0BJfLRWpqqtQ+0V9x1tbWcp973LhxmDp1Kh48eIBnz54hNTUV48aNkziv6K/QkJCQUstwcXGR2lb8LyFLS0twOBy8evVK6ri0tDSJ54qerzyyvr+VOa+qPh+RtLQ0ODg4iJ8XFRXh7du3qFWrltzndnR0RKNGjfDPP/+gXr168Pb2hoWFBbp3746pU6fi2rVruHr1KhYtWiS+tsreA6qiivulvHPJ8j6L7veS9zYgfb+XZd++ffi///s/HD16FDY2NmjVqhUAYQIi+uJVRewlyfoZKhLv+fPn4evrK1P5iYmJqFevnkzHVtaiRYsQFhaGsLAwzJ8/X6ll+/j4YNOmTXj27JlMCdObN2/w6tUrrFy5EitXrpTab2lpiYEDB+LQoUOVjo0xBqBq/t9WFUqYdJCxsTG6dOmCvXv34scffyz1F5eJiQnatGmDAwcOYMWKFeK/AAQCAXbu3Cn+EpRXQEAAZs2ahR07duDZs2dwcHCAv7+/eH+NGjXg6+uL27dvo1mzZhJNarIyMTGBt7c3Dh06hBUrVojLyMnJwbFjxySOVcb5SpLl/a3seVX1+Yj8+eefEs0Ce/bsQVFREbp27arQuXv06IE9e/bAyckJffv2BQA0atQIzs7OWLBgAQoLC8U1Uar4TJRFnthK1jzKS9b3mcPhwMfHBwcOHMDy5cvFNWTZ2dk4evRohedJS0vD5MmTERwcLG6mdHFxgYWFBW7fvq3S2BWhaLyiJjlZVFWT3OLFixEWFoZvv/0WCxcuVHr5UVFR4HK5qF+/vkzH165dG1FRUVLbly5divPnz+PkyZOV+kNM5P379zh27BhatGghVaOrzShh0lGrVq1Cx44d0aZNG8ydOxeurq549eoVjhw5gs2bN8PMzAxLliyBn58ffH19ERoaCgMDA2zYsAH379/HX3/9pdBfBhYWFhg8eDB27NiBjIwMhIaGgsuV7Cq3Zs0adOzYEZ06dcKUKVNQr149ZGdn48mTJzh69KhMk7p9//336Nu3L3r27Inp06eDz+dj+fLlMDU1xbt375R+vpJkeX8re15VfD4iBw4cgJ6eHvz8/BAXF4fvvvsOzZs3x/DhwxU6d/fu3bFhwwa8efMGq1evlti+fft2WFpaSiRoqvhMlEXW2Dw9PcXHBwYGQl9fH40bN4aZmZnM55L1fV68eDF69eoFPz8/fPXVV+Dz+fj5559hYmIidb+XNHHiRFhaWmLVqlUS21u2bFmpofqquj8VjdfMzAze3t4KnbO4kydP4sOHD8jOzgYAxMfHi+co6tOnj8TcURwOB126dJGaTgIAVq5ciQULFqBXr17o27evVN+3knMWlVdWcHAwatasCR8fH9jZ2eHNmzfYu3cvdu/ejdmzZ0vVLpVVlpGRUanTjuzYsQM8Hq/UfeXFBQAjR46Es7MzvL29YW1tjYSEBKxcuRKvXr3Cjh07Sn2N1lJjh3OiYvHx8eyzzz5jtWrVYgYGBszZ2ZmNHTuW5eXliY+5ePEi69atGzMxMWHGxsasbdu27OjRoxLliEa4vH79WmL79u3bSx1x8vfff4tHcjx+/LjU2BITE9n48eOZg4MD09fXZzY2Nqx9+/bshx9+kOncjDF28OBB5unpKb62pUuXsv/973/M0tJSofPJe52yvL+yXmdZZPl8FBklFxMTw/r3789MTU2ZmZkZCwgIYK9evZL73CLv379nXC6XmZiYiKcmYOzT6Lvio9BElHEPlHeNJY8vayRQly5dmLu7u0KxzZs3j9nb2zMul8sAsKioqHJjKO1ekvV9PnLkCGvWrJnE/S46T1m2bt3KeDwei46Olto3a9YsxuFwxNNglKW8+0vW2GX9DJURb2XVrVtXptF12dnZDAD7/PPPSy2nS5cu5Y7UK66isrZt28Y6derErK2tmZ6eHrOwsGBdunRhf/zxh9SxFZVVmrL+b8hS1pIlS1iLFi2Yubk54/F4zMbGhg0ePJhdv35d5vNrCw5j/zU0EqLlCgsL0aJFCzg4OODvv/9WdzgaKSwsDIsWLcLr16+VUvVOSHV14sQJ9OvXD3fu3BHXNlJZuo2a5IjWCgoKgp+fH+rUqYO0tDRs2rQJDx48wJo1a9QdGiFEx0VFReHzzz9XSiJRHcrSBVTDRLTW8OHDceXKFbx+/Rr6+vpo1aoV5s+fj169eqk7NI1FNUyEEKIYSpgIIYQQQipAM30TQgghhFSAEiZCCCGEkApQwkQIIYQQUgEaJacggUCAly9fwszMTKemfieEEEJ0GWMM2dnZsLe3l5pYuTyUMCno5cuXcHJyUncYhBBCCFHAixcvyl1EvSRKmBQkWv7gxYsXqFmzppqjIYQQQogssrKy4OTkJNcyRgAlTAoTNcPVrFmTEiZCCCFEy8jbnYY6fRNCCCGEVIASJkIIIYSQClDCRAghhBBSAerDRAghhFQxPp+PwsJCdYehk/T19cHj8ZReLiVMhBBCSBVhjCEtLQ0ZGRnqDkWnWVhYoHbt2kqdJ7FaJ0zHjh3DV199BYFAgK+//hoTJkxQd0iEEEJ0mChZsrW1RY0aNWjiYyVjjCE3Nxfp6ekAgDp16iit7GqbMBUVFWHWrFmIiopCzZo10apVKwwZMgRWVlbqDo0QQogO4vP54mSpVq1a6g5HZxkbGwMA0tPTYWtrq7TmuWrb6fv69etwd3eHg4MDzMzM0KdPH5w+fVrdYRFCCNFRoj5LNWrUUHMkuk/0Hiuzn5jWJkwXLlxA//79YW9vDw6Hg0OHDkkds2HDBri4uMDIyAheXl64ePGieN/Lly/h4OAgfu7o6IiUlJQqiZ0QQkj1Rc1wqqeK91hrE6YPHz6gefPmWLduXan7d+/ejRkzZuCbb77B7du30alTJ/Tu3RtJSUkAhO2cJdFNTAghhJDSaG0fpt69e6N3795l7l+1ahWCgoLEHblXr16N06dPY+PGjViyZAkcHBwkapSSk5PRpk2bMsvLz89Hfn6++HlWVpYSroIQQggh2kBra5jKU1BQgJiYGPj7+0ts9/f3x5UrVwAAPj4+uH//PlJSUpCdnY0TJ06gZ8+eZZa5ZMkSmJubix9OTk4qvQZCCCGEaA6dTJjevHkDPp8POzs7ie12dnZIS0sDAOjp6WHlypXw9fVFy5YtMXv27HJHLcybNw+ZmZnix4sXL1R6DYQQQog2YoyhqKhIaruiHbDLKq+q6WTCJFKyTxJjTGLbgAED8PjxYzx58gTBwcHllmVoaIiaNWtKPFTlzJkzGDVqFN68eaOycxBCCNFuyclAVJTwX1VjjGHZsmWoX78+jI2N0bx5c+zbtw8AcO7cOXA4HJw+fRre3t4wNDTExYsXERYWhhYtWmDbtm2oX78+DA0NwRhDfn4+/ve//8HW1hZGRkbo2LEjbty4IT5XWeWpm9b2YSqPtbU1eDyeuDZJJD09XarWSdMUFRVh8uTJePLkCSIjI7F+/XoMGzaMOqQTQogOYgzIzZX/db//Dnz5JSAQAFwusHYtEBgo++tr1ADk+Vr59ttvceDAAWzcuBENGzbEhQsX8MUXX8DGxkZ8zJw5c7BixQrUr18fFhYWOH/+PJ48eYI9e/Zg//794vmQ5syZg/379+P3339H3bp1sWzZMvTs2RNPnjyRmAuxZHlqx3QAAHbw4EGJbT4+PmzKlCkS25o2bcrmzp2rlHNmZmYyACwzM1Mp5RV3/fp15u7uzgAwAGzIkCEsNTVV6echhBBSdT5+/Mji4+PZx48fxdtychgTpk1V+8jJkT3unJwcZmRkxK5cuSKxPSgoiAUEBLCoqCgGgB06dEhi/8KFC5m+vj5LT0+XKEtfX5/9+eef4m0FBQXM3t6eLVu2jDHGyixPHqW91yKKfn9rbZNcTk4OYmNjERsbCwBITExEbGyseNqAWbNm4bfffsO2bdvw4MEDzJw5E0lJSZg8ebI6w5ZJ69atERMTgwULFkBPTw8HDhyAm5sb/vjjj1KnQyCEEEJUJT4+Hnl5efDz84Opqan4ERERgadPn4qP8/b2lnpt3bp1JWqhnj59isLCQnTo0EG8TV9fHz4+Pnjw4IHEa0srT520tknu5s2b8PX1FT+fNWsWACAwMBA7duzAiBEj8PbtW3z//fdITU2Fh4cHTpw4gbp166orZLkYGhpi0aJFGDJkCMaNG4fbt29jzJgxcHJyQteuXdUdHiGEECWoUQPIyZHvNSkpQNOmwuY4ER4PiI8His3HXOF5ZSX470THjx+XmPAZEH5XiZImExMTqdeW3Cb6o7+iPsZlladOWpswde3atcLalqlTp2Lq1KlVFJFqNG/eHNeuXcOKFStw9+5ddOnSRd0hEUIIURIOB5A3L2jUCNiyBZg0CeDzhcnS5s3C7arg5uYGQ0NDJCUllfodVLyWqSKurq4wMDDApUuXMHLkSADC0XM3b97EjBkzlBazKmhtwlSd6OvrY968eRIZ+Js3bxASEoKlS5fCxcVFzRESQgipSkFBQM+ewJMngKsr4OiounOZmZkhNDQUM2fOhEAgQMeOHZGVlYUrV67A1NRUrpYbExMTTJkyBbNnz4aVlRWcnZ2xbNky5ObmIigoSHUXoQSUMGmR4tWVs2fPxp49e3D8+HEsXboUU6dOBZertV3SCCGEyMnRUbWJUnGLFy+Gra0tlixZgmfPnsHCwgKtWrXC/PnzxU12slq6dCkEAgFGjx6N7OxseHt74/Tp07C0tFRR9MrBYdSLWCFZWVkwNzdHZmamSudkKktCQgImTJiACxcuAAA6deqE8PBwNGzYsMpjIYQQUrG8vDwkJiaKF4UnqlPee63o9zdVSWiphg0bIioqCuvWrYOJiQkuXryIZs2aYeXKleDz+eoOjxBCCNEplDBpMS6Xi5CQENy/fx89evRAXl4eQkNDsXTpUnWHRgghhOgUSph0QL169fD333/jt99+g5ubG6ZNm6bukAghhBCdQgmTFpBlvSAOh4OgoCDcvXsX5ubmAITzWsycOVM8uSchhBBCFEMJk4YLDwfq1gW6dRP+Gx5e/vGitXoAICIiAqtXr0br1q2xYMEC5OfnqzhaQgghRDdRwqTBkpOB4OBPs7kKBMKJymRdmbpXr14YOnQoioqKsHjxYnh5eeH69euqC5gQQgjRUZQwabCEBMmp7wHhrK5Pnsj2ejs7O+zbtw979+6Fra0t4uLi0K5dO8yZMwcfP35UfsCEEEKIjqKESYM1bCicNr84Hk84q6s8hg0bhvj4eIwaNQoCgQDLly/HZ599prxACSGEEB1HCZMGs7cHTE0lt/36q2Izu9aqVQs7d+7EkSNH4OjoiHnz5iknSEIIIaQaoIRJg8XEANnZwqTJzk64rU6dypXZv39/PHnyBB06dBBv2759O86cOVO5ggkhhBAdRgmTBjt2TPhvr15AQIDw58OHK1+uoaGh+OeEhARMnToVPXr0wKRJk5CZmVn5ExBCCCE6hhImDXb8uPDfvn2BQYOEPx87BhQVKe8ctWvXxvjx4wEAW7ZsgYeHB06cOKG8ExBCCNEZb9++ha2tLZ4/f67S8wwbNgyrVq2S2t67d28sXLgQbdu2Rd26dREfH6/SOIqjhElDpaYKm+QAoHdvoEMHwMoKePsWuHxZeecxMzPD+vXrce7cOTRo0ADJycno27cvAgMD8e7dO+WdiBBCiNZbsmQJ+vfvj3r16pW6j8PhYMaMGaW+duzYsZg7dy7CwsLA4XAkHrVr15Y4dsGCBfjxxx+RlZUlsf3+/ftwcXHB1atXMXHiRBw9elRp11YRSpg0lKiSx8dH2H9JTw/o10+4TRnNciV16dIFd+/excyZM8HhcBAREYGWLVsiLy9P+ScjhBCidT5+/Ijw8HBMmDBBat+NGzewZcsWNGvWrNTXCgQCHD9+HAMHDgQAuLu7IzU1Vfy4d++exPHNmjVDvXr18Oeff4q3ZWZmQl9fH2PHjgUAGBgYwMLCQklXVzFKmDRU8eY4EVGz3OHDAGPKP2eNGjWwatUqXL58GU2aNMGECRNgZGSk/BMRQgjROidPnoSenh7atWsnsT0nJwejRo3C1q1bYWlpWeprL1++DC6XizZt2gAA9PT0ULt2bfHDxsZG6jUDBgzAX3/9JX5+//59+Pj4SDx3d3dXxqXJhBImDZSfD0RGCn8unjD5+wNGRsCzZ8D9+6o7f7t27XD79m3MnTtXvO3WrVvYtWsXmCoyNUIIqeY+fPhQ5qNkTX95x5aclLi0YxR14cIFeHt7S20PCQlB37590aNHjzJfe+TIEfTv3x9crjDtSEhIgL29PVxcXPD555/j2bNnUq/x8fHB9evXxct63b9/H56enuL99+7dg4eHh8LXIy9KmDTQxYtATg5QuzbQsuWn7SYmgJ+f8GdVNMsVZ2RkBH19fQBAQUEBxo0bh4CAAAwZMgSpqamqPTkhhFQzpqamZT6GDh0qcaytrW2Zx/bu3Vvi2Hr16kkdo6jnz5/D3t5eYtuuXbtw69YtLFmypNzXHjlyRNwc16ZNG0REROD06dPYunUr0tLS0L59e7x9+1biNQ4ODsjPz0daWhoAIC4uTpwwFRUVIScnh5rkqjvRdAJ9+wLcEp/Qf/cb9u4FoqJkX1euMjgcDoYNGwZ9fX0cOnQIbm5u2LFjB9U2EUJINfLx40eJbhovXrzA9OnTsXPnznK7bzx48ADJycniGqjevXtj6NCh8PT0RI8ePXD8vz4ov//+u8TrjI2NAQC5ubkAgF9//RUDBgwAIGzSS0hIUN7FyUCvSs9GKpScLEyGAMnmOBFRx++7d4Fu3YQJ1ZYtQFCQ6mLS19fHd999h0GDBmH8+PG4efMmxo0bh927d2Pz5s1wdnZW3ckJIaQayMnJKXMfj8eTeJ6enl7msdwSf2Urc/i/tbU13r9/L34eExOD9PR0eHl5ibfx+XxcuHAB69atQ35+Png8Ho4cOQI/Pz9xAlSSiYkJPD09pRIg0Ujt0vo3qQPVMGmQ8HCHuUPSAAAgAElEQVSgbl3g5Uvhc9G/xRUWSj4XCIBJk6qmpsnT0xPR0dFYunQpDA0NcerUKXh4eCAuLk71JyeEEB1mYmJS5qNk7U15x5ZMSko7RlEtW7aUmPeoe/fuuHfvHmJjY8UPb29vjBo1CrGxseJE7/Dhw+KaodLk5+fjwYMHqFNiKYv79+/D0dER1tbWCsesTJQwaYjkZCA4WJgAiUyfLp0IlVYDyecDT56oNj4RPT09fP3114iNjUW7du3QsmVLNG3atGpOTgghRG169uyJuLg4cS2TmZkZPDw8JB4mJiaoVauWuDN2eno6bty4gX6i5hEAoaGhOH/+PBITE3Ht2jUMGzYMWVlZCAwMlDjfxYsX4e/vX3UXWAFKmDREQoJksgSUngg1bAhwOJLbeDzA1VW18ZXUpEkTXLx4EQcOHBBXAefk5GDLli3g8/lVGwwhhBCV8/T0hLe3N/bs2SPza44ePYo2bdrA1tZWvC05ORkBAQFo3LgxhgwZAgMDA1y9ehV169YVH5OXl4eDBw9i4sSJSr2GyqCESUM0bCjdwbu0RMjREfj+e8ljNm8Wbq9qPB4PtWrVEj//5ptvMGnSJHTu3BmPHj2q+oAIIYSo1HfffYc1a9ZAUPIv/P+cO3cOq1evFj8vrTlu165dePnyJQoKCpCSkoL9+/fDzc1N4pjw8HC0adMGbdu2Vf5FKIgSJg3h6CjsvC3q21deIjR79qdapuvXVdvhWx7u7u4wNTXFlStX0Lx5cyxbtgxFylz4jhBCiFr16dMHkyZNQkpKikzHd+zYEQGi1ePloK+vj7Vr18r9OlXiMBobrpCsrCyYm5sjMzMTNWvWVFq5ycnCZjhX1/JrjVxcgOfPgQsXgE6dlHb6SktKSkJwcDBOnz4NAPD29sb27durdHIxQgjRRHl5eUhMTISLiwutoqBi5b3Xin5/Uw2ThnF0BLp2rbiJrWFD4b9VPA1FhZydnXHy5Els27YN5ubmuHnzJlq1aoV9+/apOzRCCCFEYZQwaSlNTZgA4USX48aNQ3x8PPr37w8TExN06NBB3WERQgghCqOESUtpcsIkYm9vj8OHD+P27dsS82vs3r1bam0kQgghRJNRwqSltCFhAoS1TfXq1RM/P3r0KD7//HO0bNkS0dHR6guMEELUhLoOq54q3mNKmLSUKGF68gTQpv97PB4PdnZ2ePjwITp06IBZs2aJ1wkihBBdJlrQnH7nqZ7oPRa958pAo+QUpKpRcrIqLASMjYWTWyYnAw4OVR6Cwt69e4eZM2ciIiICANCgQQOEh4ejS5cuao6MEEJUKzU1FRkZGbC1tUWNGjXAKTkTMakUxhhyc3ORnp4OCwsLqeVWAMW/vylhUpC6EyZAOPXA06dAVJRwZJ22OXHiBIKDg8XzeYSFhWHhwoVqjooQQlSHMYa0tDRkZGSoOxSdZmFhgdq1a5eakCr6/a2nzABJ1WrYUJgwJSRoZ8LUp08fxMXFYc6cOdiyZQtatWql7pAIIUSlOBwO6tSpA1tbWxSWXE2dKIW+vr544V9looRJizVsCJw6pfkdv8tjbm6OzZs348svv5SY3PLSpUvw8PCAhYWFGqMjhBDV4PF4KvlSJ6pDnb61mLaMlJNF8WQpNTUV/fv3h7u7O44dO6bGqAghhBAhSpi0mC4lTMWlp6fDxsYGL1++RP/+/fHFF1/g7du36g6LEEJINUYJkxYTJUxPnwJlLBwtITlZ2EE8OVm1cVVW8+bNERsbi9DQUHC5XPz5559wc3Oj5VUIIYSoDSVMWqxuXUBPD8jLqzgJCg8XHt+tm/Df8PCqiVFRNWrUwPLlyxEdHQ03Nzekp6fjs88+w/Dhw8Hn89UdHiGEkGqGEiYtpqcH1K8v/Lm8ZrnkZCA4+FMtlEAATJok3K7ptU4+Pj64desWvv32W/B4PNSuXZs6ShJCCKlyNEpOyzVqBDx+LEyYuneX3JecLNz+4IF0kx2fD3z2GXD9unAflwts2QIEBVVd7LIyNDTE4sWLMXToULi6uoq3P3/+HPr6+nDQplk7CSGEaCWqYdJyZXX8Lt4EFxJS+muvXi291klTtWjRAqampgAAgUCAwMBAuLu7Y9u2bbQ2EyGEEJWihEnLlZYwlWyCE+H+92nzeEC/ftJl8flAdLRmN9GJvHv3Dnl5ecjMzERQUBB69uyJf//9V91hEUII0VGUMGm50hKmhITSR83t2iVMhp4/BzZu/JRAFTd8uHZ0DLe2tsbly5exfPlyGBkZITIyEh4eHtiwYQMEsgwZJIQQQuRACZOWEyVMz54Ja4gAwNpa+jgeD2jXTriEiqOj8LFli3B7abShiU5PTw+hoaG4c+cOOnbsiJycHISEhMDX1xfp6enqDo8QQogOoYRJyzk5AYaGQEEBkJQk3LZ/v+QxPB6webMwSSouKEhY2xQVBezeLV02nw88eaKSsJWqUaNGOH/+PNauXQsTExNkZGTQkiqEEEKUqtomTC9evEDXrl3h5uaGZs2aYe/eveoOSSFcLtCggfDnhAQgKwtYs0b4fOPGT01wZY1+c3QU1jq1b196E93Ro8CLF5rfr4nL5WLatGm4d+8e/u///g8GBgYAgIKCAjx+/FjN0RFCCNF21TZh0tPTw+rVqxEfH49//vkHM2fOxIcPH9QdlkKK92PasAHIyACaNAEmTvzUBFeRkk10HI7w31WrAGdn7ejXBAAuLi5wd3cXP//555/h6emJJUuWoKioSI2REUII0WbVNmGqU6cOWrRoAQCwtbWFlZUV3r17p+aoFCNKmGJjgZUrhT/Pn192/6SyFG+iS0oCli2T3K8N/ZqKY4zh1q1bKCgowPz589GmTRvcuXNH3WERQgjRQhqbMF24cAH9+/eHvb09OBwODh06JHXMhg0b4OLiAiMjI3h5eeHixYsKnevmzZsQCARwcnKqbNhqIUqYduwA3rwBXFyAgADFyhI10Tk6At7e0vu1pV8TAHA4HBw4cAARERGwtLTErVu34O3tjYULF6KgoEDd4RFCCNEiGpswffjwAc2bN8e6detK3b97927MmDED33zzDW7fvo1OnTqhd+/eSBL1fAbg5eUFDw8PqcfLly/Fx7x9+xZjxozBli1bVH5NqiJKmEQtTvPmCZdNUUa5pfVriovT/D5NIhwOB6NHj0Z8fDwGDx6MoqIifP/99/Dy8sLdu3fVHR4hhBBtwbQAAHbw4EGJbT4+Pmzy5MkS25o0acLmzp0rc7l5eXmsU6dOLCIiQqZjMzMzxY8XL14wACwzM1Pm86nK8uWMAZ8eGzcqr+zffmOMx5MsX/TgcoX7tYVAIGC7d+9mNjY2zMjIiD1+/FjdIRFCCKlimZmZCn1/a2wNU3kKCgoQExMDf39/ie3+/v64cuWKTGUwxjB27Fh069YNo0ePrvD4JUuWwNzcXPzQlOa75GTg668lt02bprzan+L9mi5ckNynbX2aOBwOhg8fjri4OOzbtw8NRVVzAM0STgghpFxamTC9efMGfD4fdnZ2Etvt7OyQlpYmUxmXL1/G7t27cejQIbRo0QItWrTAvXv3yjx+3rx5yMzMFD9evHhRqWtQltJm9VZ2PyNRv6bSBpnx+cDDh8o7V1WwsbFB3759xc8vX76MBg0aYMaMGVo7UpIQQohqKaGni/pwRGPf/8MYk9pWlo4dO8q1hIahoSEMDQ3liq8qiPoZFb8UHg9wda2acwHA998DDg5AWprwGFmmMdAkkZGR4PP5WLNmDY4ePYrffvsNvr6+6g6LEEKIBtHKGiZra2vweDyp2qT09HSpWiddV3L+pLJm9VbFubhcwMAAuHgRcHPTnrmaSgoLC8OpU6fg5OSEZ8+eoVu3bpgyZQqysrLUHRohhBANoZUJk4GBAby8vBAZGSmxPTIyEu3bt1dTVOpTvJ9RebN6K/tc//4LHDwouV/b+jWJ9OzZE/fv38fkyZMBAJs2bYKHh4fUPUYIIaR60tgmuZycHDwp1hEnMTERsbGxsLKygrOzM2bNmoXRo0fD29sb7dq1w5YtW5CUlCT+wqtuRAvqVvW5EhKk94v6UGlb01zNmjWxceNGDB8+HBMmTMCzZ8+QrG2ZHyGEEJXQ2ITp5s2bEv1IZs2aBQAIDAzEjh07MGLECLx9+xbff/89UlNT4eHhgRMnTqBu3brqCrlaKqtfU3S0sB9VQoL29Wvy9fXF3bt3ERERgbFjx4q3v379GjY2NuoLjBBCiNpwGGNM3UFoo6ysLJibmyMzMxM1a9ZUdzhqFR4ubIbj84Vr0InuKNHPXK6w75MqmwpVLSMjA+7u7ujcuTN+/fVXSpwIIURLKfr9rZV9mIhmKdmvafZs4XZR4qSt/ZqKi4qKQlpaGnbt2gV3d3fs2bMH9LcGIYRUH5QwEaUQzdXk5AT07i29X5vWoCvN4MGDce3aNXh4eOD169cYMWIEhg4dKvO8X4QQQrQbJUxE6cpag05UC6WtNU3e3t6IiYnBggULoKenh4MHD8LNzQ0RERHqDo0QQoiKUcJElK7kfE0i48Zp71xNIgYGBli0aBFu3ryJli1b4v379zh16pS6wyKEEKJi1OlbQdTpu2LJycJmOMaEiVJxPJ6wxkmbRs+VVFhYiDVr1mDs2LGwtrYGIJwOw8TEROYZ5wkhhFQt6vRNNI6oX1Np+Hzg7l1hUqWtzXT6+voIDQ0VJ0uMMYwePRp+fn5ITExUc3SEEEKUiRImonJl9WkaP17YPKftzXQiT58+xenTp3HmzBl4eHhg7dq1cq1XSAghRHNRwkRUrrQ16MzMgFevPk14qQtTD7i6uuLu3bvo3LkzcnNz8b///Q9dunTB48eP1R0aIYSQSqKEiVSJknM1lVabpO1TDwDCpCkqKgrr1q2DiYkJLl26hObNm2PFihXg8/nqDo8QQoiCKGEiVUbUp8nREWjXTrqZjsMRPrS1T5MIl8tFSEgI7t+/Dz8/P+Tl5WHdunX4+PGjukMjhBCiIEqYiFqUNvUAY8KESlf6NNWrVw+nT5/Gtm3bsG3bNpiamgIABAIBCgsL1RwdIYQQedC0AgqiaQWUQzT1wNOnwIQJkvt0YeqB0mzcuBFbtmzBtm3b0LJlS3WHQwgh1QpNK0C0kqiZrn596X18PvDwYZWHpFKFhYVYtmwZYmNj4ePjg++++w75+fnqDosQQkgFKGEiGqGsqQfmzwdu3tT+fk0i+vr6uHr1KoYNG4aioiL88MMP8PLywvXr19UdGiGEkHJQwkQ0QmlTDxgZATduAK1b606/JgCws7PD3r17sW/fPtja2iIuLg7t2rXDnDlzqGM4IYRoKOrDpCDqw6Qaoj5Nrq5AYiLQubPkfl3r1/T27VvMmDEDO3fuBI/Hw/Xr19GqVSt1h0UIITpL0e9vPRXGRIjcHB0/JUMJCdL7+Xzg5ElhQtWwofYnTrVq1cIff/yBESNG4OHDhxLJkkAgALe0dkpCCCFVjn4bE41VVr+m4GDdaqIDgH79+iE0NFT8PC4uDm5ubjhz5owaoyKEECJCCRPRWCX7NXE4kvt1YTmVsixcuBCPHj1Cjx49EBwcjMzMTHWHRAgh1RolTESjFV9SZdcu6f18PnDpkjBp0pWRdACwfft2hISEAAC2bt0Kd3d3HD9+XM1REUJI9UWdvhVEnb6rXnKysBlOtGCviJERkJ8vnCmcyxXWSgUFqSdGZbtw4QKCgoLw5L9F9kaPHo3Vq1fDyspKzZERQoh2ookric4rbeoBJycgL0+YLAG610zXuXNn3LlzB7NmzQKHw8Eff/yBP/74Q91hEUJItUM1TAqiGib1KT71wIMHgL+/9DFRUcIZxHXJ1atXsWHDBmzfvh28/7JGxhg4JTt3EUIIKRNNK0CqjeJTDwDCmqaSzXSHDwv7NzVurP1TD4i0bdsWbdu2FT/Py8uDn58fQkJCMGLECEqcCCFEhahJjmi1skbSrV4N9OihW1MPlLRhwwZcunQJAQEBGDRoEF6+fKnukAghRGdRwkS0XvGRdFevSk4/IBAI523SlT5NxU2bNg2LFi2Cvr4+jhw5And3d+zYsQPUyk4IIcpHCRPRCY6Owj5LHz586gAuIuoI/uiRbk09YGBggAULFuDWrVvw9vZGRkYGxo0bh969eyMpKUnd4RFCiE6hhInolLJmBz9xAmjSRPdmCAcADw8PREdH4+eff4ahoSFOnz6NmTNnqjssQgjRKZQwEZ1Ssk8TjyesXSpO16YeAAA9PT3MmTMHd+7cQc+ePbFq1Sp1h0QIITqFphVQEE0roNmKTz2QkCCsWSopIgLw9RXu14WFfMsyc+ZM1K1bF19++aV4OgJCCKmuFP3+poRJQZQwaY+yZgjX0xNOPaCLM4SLXL9+HW3atAEAtG/fHuHh4WjSpImaoyKEEPWhmb4JKUNpzXSurkBRke7OEC7SunVrbNq0CWZmZrhy5QpatGiBn3/+GUVFReoOjRBCtArVMCmIapi0T/FmukePhPM0lbRnD2BtrXtNdElJSQgODsbp06cBAF5eXti+fTs8PT3VHBkhhFQtapKrYpQwabeymulEdLGJjjGGiIgIzJgxAxkZGXBwcMCzZ89gYGCg7tAIIaTKUJMcIXIo2UxXki420XE4HAQGBiIuLg4DBgzAqlWrKFkihBAZUQ2TgqiGSTeImunS04ERI6T3Hz8ONGumeyPpRP/tRevP7du3D7du3cKCBQtgZGSkztAIIUSlqrRJrqioCOfOncPTp08xcuRImJmZ4eXLl6hZsyZMTU3lLU4rUcKkW8pqorO0BDIzhdt1sZkOALKzs9GgQQO8fv0aTZs2xbZt2yQW+SWEEF1SZU1y//77Lzw9PTFw4ECEhITg9evXAIBly5YhNDRU3uII0Qglm+i4XMDCAnj//lMSpYvNdABgZmaGzZs3w87ODg8ePED79u3x1VdfITc3V92hEUKIxpA7YZo+fTq8vb3x/v17GBsbi7cPHjwYZ86cUWpwhFSl4ov4/vsvsHOn9DF8PhAdrVtr0gHC/7/x8fEYM2YMGGNYtWoVmjVrhvPnz6s7NEII0QhyN8lZW1vj8uXLaNy4MczMzHDnzh3Ur18fz58/h5ubW7X5q5Sa5HRfWc10HI5uT3Z58uRJBAcHIzk5GRwOBw8ePEDjxo3VHRYhhChFlTXJCQQC8Pl8qe3JyckwMzOTtzhCNFZZI+l0fbLL3r174/79+wgODkZQUBAlS4QQAgUSJj8/P6xevVr8nMPhICcnBwsXLkSfPn2UGhwh6la8mW73bun9fD7w4IEwadKlZjpzc3Ns3rwZmzdvFm9LSkrC1KlTkZGRocbICCFEPeRuknv58iV8fX3B4/GQkJAAb29vJCQkwNraGhcuXICtra2qYtUo1CRX/ZTVRFe7tnBaAl0eSQcAffr0wcmTJ2Fvb49Nmzahf//+6g6JEELkVqXTCnz8+BF//fUXbt26BYFAgFatWmHUqFESncB1HSVM1VN4uLAZjs8XJkdGRkDJbns8nrBWSlfmbBK5dOkSgoKC8PjxYwDAyJEj8euvv6JWrVpqjowQQmRHS6NUMUqYqq/ia9Jdvw4MHSp9jK6uSffx40csXLgQK1euhEAggK2tLdavX49hw4apOzRCCJFJlSVMERER5e4fM2aMPMVpLUqYCFB9R9Jdv34d48aNQ3x8PADh74XRo0erOSpCCKlYlSVMlpaWEs8LCwuRm5sLAwMD1KhRA+/evZOnOK1FCRMRKd5MVxpdbaLLz8/HDz/8gEOHDuH69evVqkmeEKK9qmxagffv30s8cnJy8OjRI3Ts2BF//fWXvMWpXW5uLurWrUuzlBOFFR9Jt2uX9H4+H3j4UPdG0hkaGmLx4sWIiYkRJ0tFRUWYM2cOUlJS1BwdIYQol9wJU2kaNmyIpUuXYvr06coorkr9+OOPaNOmjbrDIFrO0RHo2hXo0EHYDFdSYKCw6a5bN+G/4eFVHqLKGBgYiH9evXo1li9fDjc3N4SHh4O6SBJCdIVSEiYA4PF4ePnypbKKqxIJCQl4+PAhzR9FlKa0NemMjICXL3V/TTpAOOmlj48PsrKyMGHCBPj7++P58+fqDosQQipN7oTpyJEjEo/Dhw9j06ZNGD16NDp06KC0wC5cuID+/fvD3t4eHA4Hhw4dkjpmw4YNcHFxgZGREby8vHDx4kW5zhEaGoolS5YoK2RCAFTvNenc3d1x5coVLF++HEZGRvjnn3/g6emJDRs2QFCyZzwhhGgRPXlfMGjQIInnHA4HNjY26NatG1auXKm0wD58+IDmzZtj3LhxGFrKuO3du3djxowZ2LBhAzp06IDNmzejd+/eiI+Ph7OzMwDAy8sL+fn5Uq/9+++/cePGDTRq1AiNGjXClStXlBY3IYCwpql4J28uV3ok3YgRujmSjsfjITQ0FAMHDkRQUBAuXryIkJAQPHjwAGvXrlV3eIQQohCtmIeJw+Hg4MGDEslamzZt0KpVK2zcuFG8rWnTphg0aJBMtUbz5s3Dzp07wePxkJOTg8LCQnz11VdYsGBBqcfn5+dLJF9ZWVlwcnKiUXJEJtV1JJ1AIMDGjRuxYMECnD9/Hh4eHuoOiRBSzVXZKDlNUFBQgJiYGPj7+0ts9/f3l7m2aMmSJXjx4gWeP3+OFStWYOLEiWUmS6Ljzc3NxQ8nJ6dKXQOpXmQZSaeLa9JxuVyEhITg33//lUiWtm7dKp7DiRBCtIFMTXKzZs2SucBVq1YpHIys3rx5Az6fDzs7O4ntdnZ2SEtLU8k5582bJ/E+iGqYCJGVqJkuObn0JroxY3R3TTpTU1PxzzExMZgyZQp4PB4WLlyI2bNnQ19fX43REUJIxWRKmG7fvi1TYRwOp1LByKvk+RhjCsUwduzYCo8xNDSEoaGh3GUTUpJoJF3JNemK5/qikXQ9e+peM52dnR169uyJEydO4JtvvsH+/fuxbds2NG/eXN2hEUJImWRKmKKiolQdh1ysra3B4/GkapPS09Olap0I0URBQcJkSLQm3Y0bwJAhksfw+cL9AJCQoDvr0jk6OuLYsWP4448/MGPGDNy6dQve3t6YP38+vvnmG4l5nQghRFNoZR8mAwMDeHl5ITIyUmJ7ZGQk2rdvr6aoCJGPaLJLR0egdevSJ7xctEg3J7zkcDgYM2YM4uPjMXjwYBQVFeH7779H165dabJLQohGkntaAQC4ceMG9u7di6SkJBQUFEjsO3DggFICy8nJwRPRn9cAEhMTERsbCysrKzg7O2PWrFkYPXo0vL290a5dO2zZsgVJSUmYPHmyUs5PSFUq2UwnWrz33LlPx+hiM13t2rWxf/9+7Nu3DyEhIfjiiy+qvGmfEEJkIfe0Art27cKYMWPg7++PyMhI+Pv7IyEhAWlpaRg8eDC2b9+ulMDOnTsHX19fqe2BgYHYsWMHAOHElcuWLUNqaio8PDzwyy+/oHPnzko5f0Vo8V2iCsnJn5rptm8HShu4uWcPYG2tO010Iu/evYOFhQW4/1W1Xbp0CRwOR6kT4hJCiKLf33InTM2aNcOkSZMQEhICMzMz3LlzBy4uLpg0aRLq1KmDRYsWyR28NqKEiahacrKwGa7kaDpR7ZOujaQrLicnB82aNcPz58/x5Zdf4qeffoKJiYm6wyKE6IAqm4fp6dOn6Nu3LwDhyLEPHz6Aw+Fg5syZ2LJli7zFEULKUHJdOhHRnzi6vCadQCAQ92f69ddf4enpibNnz6o7LEJINSZ3wmRlZYXs7GwAgIODA+7fvw8AyMjIQG5urnKjI6SaKz7h5bZt0vtFI+l0bcLLmjVrYtu2bTh16hScnZ2RmJiI7t27Y/LkycjKylJ3eISQakjuhKlTp07i0WnDhw/H9OnTMXHiRAQEBKB79+5KD5CQ6k40ms7Pr/SRdPPn6+ZIOgDo2bMn7t27hylTpgAANm/eDHd3d5VNUEsIIWWRuw/Tu3fvkJeXB3t7ewgEAqxYsQKXLl2Cq6srvvvuO1haWqoqVo1CfZiIOhRfk07Ul6kkXV2X7ty5cwgKCkKzZs1w4MABGk1HCFFIlXX6JkKUMBF1KT6SbvduIDRU+hhdHUn34cMH5OXloVatWgCEyyRFR0ejf//+ao6MEKItqqzTt6+vL8LDw5GZmSnvSwkhSlB8wssRI0pvphsxQjeb6ExMTMTJEgDMmDEDAwYMQEBAAF6/fq3GyAghuk7uhMnT0xPffvstateujaFDh+LQoUNSk1cSQqpGdR9J5+TkBC6Xi127dsHNzQ27d++mmcIJISohd8L066+/IiUlBYcPH4aZmRkCAwNRu3ZtBAcH4/z586qIkRBSjuIj6SIipPfr6kg6LpeLJUuW4Nq1a/D09MSbN2/w+eefY+jQoUhNTVV3eIQQHVPpPkx5eXk4evQofvzxR9y7dw98Pl9ZsWk06sNENFFZk102bw7cuyfcrosTXhYUFOCnn37Cjz/+iKKiIlhaWuLo0aM0SzghREqV9WEqLi0tDZs2bcLPP/+Mu3fvwtvbuzLFEUIqqWQTnWgg2Z07n5IoXWymMzAwQFhYGGJiYtCqVSsYGxvD3d1d3WERQnSI3AlTVlYWtm/fDj8/Pzg5OWHjxo3o378/Hj9+jGvXrqkiRkKIHIo30SUlARs3Sh/D5wPR0brVRAcIl266du0aoqKiYGFhAQBgjOHYsWPUt4kQUilyN8kZGxvD0tISw4cPx6hRo9C6dWtVxabRqEmOaIvqvCYdAPz+++8YO3Ysunfvjq1bt8LFxUXdIRFC1KjKmuQOHz6M5ORkrF69utomS4Rok+o8kg4A8vPzYWxsjDNnzsDDwwNr166FoGT2SAghFaCJKxVENUxE24gmvHz5Ehg1Snr/2bPCiS4TEnRvwssnT55gwoQJ4pG8HTt2RHh4OBo1aqTmyAghVa3KaphevXqF0aNHw97eHnp6euDxeBIPQohmEk142blz6ZNdThSzm64AACAASURBVJqku2vSubq64uzZs9iwYQNMTU1x6dIlNG/eHL///ru6QyOEaAm5a5h69+6NpKQkTJs2DXXq1JFaz2ngwIFKDVBTUQ0T0WYl16TjcoU/F6era9L9+++/CA4ORmRkJC5evEhTDxBSzVTZWnJmZma4ePEiWrRoIXeQuoQSJqLtiq9Jd+YMMHas9DG6uiYdYwzXrl1D27ZtxduuXr0KLy8v6OvrqzEyQoiqVVmTnJOTEw3PJUQHFF+Trnv36rUmHYfDkUiWEhIS4OvrCx8fH9y+fVuNkRFCNJXcCdPq1asxd+5cPH/+XAXhEELUobqPpHv+/DlMTEwQGxsLHx8ffPfdd8jPz1d3WIQQDSJ3k5ylpSVyc3NRVFSEGjVqSFVfv3v3TqkBaipqkiO6SNRMl5YGBARI7//nH6BxY90cSZeeno5p06Zh7969AAA3Nzds374dPj4+ao6MEKJMVdaHqaJRJYGBgfIUp7UoYSK6rKzJLh0dhdMS6OqadACwf/9+hISE4NWrV+ByuZg7dy5+/PFHdYdFCFESRb+/9eQ9UXVJiAipzkRNdKKRdFwuYGAg2SQnaqbr2VO3apqGDh2Krl27YubMmfjjjz9gYGCg7pAIIRpAocV3nz59im+//RYBAQFIT08HAJw6dQpxcXFKDY4Qoj7F16T7918gIkL6GD5f2ISXnKxb69LVqlULERERiIyMxLx588Tbnz17hpycHDVGRghRF7kTpvPnz8PT0xPXrl3DgQMHxL887t69i4ULFyo9QEKI+hQfSdeuXekj6RYv1t0JL3v06CGuYSooKMDgwYPh6emJf/75R82REUKqmtwJ09y5c/HDDz8gMjJSoqra19cX0dHRSg2OEKI5So6kE81Ze/bsp75OujyaLikpCZmZmXj+/Dn8/PwwceJEZGZmqjssQkgVkTthunfvHgYPHiy13cbGBm/fvlVKUIQQzVS8mS4pCQgLkz6Gzweio3WriQ4QLq9y//59hISEAAB+++03uLu74/jx42qOjBBSFeROmCwsLJCamiq1/fbt23BwcFBKUIQQzVW8mS4oqHpNeGlqaop169bh/PnzcHV1RUpKCvr164cxY8YgNzdX3eERQlRI7oRp5MiR+Prrr5GWlgYOhwOBQIDLly8jNDQUY8aMUUWMhBANVV0nvOzcuTPu3LmDr776ClwuF8+fP4eRkZG6wyKEqJDc8zAVFhZi7Nix2LVrFxhj0NPTA5/Px8iRI7Fjxw7wSv7m1FE0DxMhn4gmvExMBMaPl94fFSVcs04XJ7y8evUqrK2t4erqCgD48OEDPnz4AFtbWzVHRggpTZVNXCny9OlT3L59GwKBAC1btkTDhg0VKUZrUcJEiLSyJrxs0wa4cUO3J7wUmTFjBnbu3Im1a9fi888/B0fUO54QohGqPGGq7ihhIqR04eGfJrzkcD41zxXH4wk7j+tSTRMA5Ofno127duIFfAcMGICNGzfC3t5ezZERQkSqLGGaNWtW6QVxODAyMoKrqysGDhwIKysreYrVOpQwEVI2UROdqyuwbx8wc6b0MXv2ANbWutdEV1BQgJ9//hmLFy9GYWEhLCws8MsvvyAwMJBqmwjRAFWWMPn6+uLWrVvg8/lo3LgxGGNISEgAj8dDkyZN8OjRI3A4HFy6dAlubm5yX4i2oISJENmU1Uwnqn3S1Sa6+/fvY/z48bhx4wYAoGfPnggPD6fRxISomaLf33KPkhs4cCB69OiBly9fIiYmBrdu3UJKSgr8/PwQEBCAlJQUdO7cGTNL+5OSEFLtVNeRdB4eHrhy5QqWLVsGQ0NDXLt2jWqYCNFictcwOTg4IDIyUqr2KC4uDv7+/khJScGtW7fg7++PN2/eKDVYTUI1TITIR9RMl5wMjB4tvf/sWWHznC6OpHv06BGePn2KPn36iLelp6fTSDpC1KDKapgyMzPFC+4W9/r1a2RlZQEQTm5ZUFAgb9GEEB0mmvCya9fSJ7ucNk1316Rr3LixRLJ07NgxuLi4YPXq1eDz+WqMjBAiK4Wa5MaPH4+DBw8iOTkZKSkpOHjwIIKCgjBo0CAAwPXr19GoUSOlB0sI0X6lrUnH5QLx8dVjTToA2LVrF3JzczFz5kx07twZDx8+VHdIhJAKyN0kl5OTg5kzZyIiIgJFRUUAAD09PQQGBuKXX36BiYkJYmNjAQAtWrRQfsQagprkCKmc4iPpTp8GJkyQPkZXR9IJBAJs3boVs2fPRnZ2NgwNDbFo0SJ89dVX0NPTU3d4hOi0Kp+HKScnB8+ePQNjDA0aNICpqakixWgtSpgIUZ7qOpIuKSkJkyZNwqlTpwAAXl5e2L59Ozw9PdUcGSG6q8r6MImYmpqiWbNmaN68ebVLlgghylVdR9I5OzvjxIkT2LFjBywsLBATE4PExER1h0UIKYVMNUxDhgzBjh07ULNmTQwZMqTcYw8cOKC04DQZ1TARonyiZrrUVGDkSOn9Z84AjRrp5ki61NRU7NmzB9OnTxdvy87OhpmZmRqjIkT3KPr9LVNjubm5uXj+EHNzc8UiJISQCjg6Ch/JycJmuJJNdOPHAy9e6OaadHXq1JFIllJTU9G8eXNMmDABCxYsgJGRkRqjI4TQWnIKohomQlSr+Jp0XC6gp/f/7d15WFRl+wfw7zCsyuJCgsjmjggoIi4oYqaolWZaueWSe2lKZC7ZLy1TTDOsTHM3W17MXN60MjEFVHBDURLXVBDFkEIUVJbh+f0xLxPDgCzCHObM93NdXDrnPHPOPY8FN+c+93OAkquVyPWZdADw2WefISQkBADg4eGBjRs3omvXrhJHRWT49HoPU0FBAfbv3481a9bg/v37AIBbt24hOzu7KocjItIxfrw6GTp4EEhOBr7+WneMSgXExanHyO3+phkzZmDnzp1wdHTEhQsX0K1bN4SGhuLBgwdSh0ZklCp9hSk5ORn9+vVDSkoKcnNzcenSJTRr1gwhISF49OgRvvrqq5qKtVbhFSYi/TLWTrrMzEyEhoZi8+bNAIDmzZtjw4YNCAoKkjYwIgOltytMM2bMQMeOHZGZmQkrKyvN9hdffBG///57ZQ9HRFQhxtpJV79+fWzatAm//vornJ2d8eeff+LHH3+UOiwio1PpFdIOHz6MI0eOwNzcXGu7m5sbbt68WW2BERGVNH480LevupPur7+AYcO096tU6hXDAfl10vXr1w/nzp1DWFgY5s2bp9mem5sLCwsLCSMjMg6VTpgKCwtLffZRamoq21+JqMaV10k3ahSQkSHPTjpbW1uEhYVpXhcWFqJv375o3rw5li9fjnr16kkYHZG8Vbok16dPH6xYsULzWqFQIDs7G/Pnz9d6uKQhuHbtGp5++ml4enrC29sbOTk5UodERBVUskRnYgJYWwPp6cbzTLojR44gJiYGGzduhKenJ3bv3i11SESyVembvm/duoWnn34aSqUSly9fRseOHXH58mXY29sjJiYGjRo1qqlYq11QUBA++ugjBAYG4p9//oGtrW2Fn+PEm76Jaofiz6Q7eRJ48UXdMQcPqvfLrUwHqJOmcePG4dKlSwCAESNG4LPPPoO9vb3EkRHVTnp9ltzDhw8RERGB+Ph4FBYWokOHDhg5cqTWTeC13blz5zBjxgzs37+/Su9nwkRU+5TVSRcQABw9Ks8yHaD+nrxgwQJ88sknKCwsxFNPPYUvv/wSL7/8stShEdU6el2HycrKCq+99hpWrlyJVatWYcKECdWeLMXExGDAgAFwcnKCQqHArl27dMasWrUKTZs2haWlJfz8/HDo0KEKH//y5cuwtrbGwIED0aFDByxevLg6wyciCZQs0/3vAQWIjZV3mc7Kygoff/wxjh49irZt2+LOnTtYuHAhCgoKpA6NSDYqfdO3vuTk5KBdu3Z47bXXMGTIEJ39W7duRUhICFatWoVu3bphzZo16N+/P5KSkuDq6gpA/eTv3Nxcnffu27cP+fn5OHToEBISEtCoUSP069cP/v7+6NOnT41/NiKqOcU76Vq0ACIigHfe0R5TtOClvb28SnT+/v6Ij4/HokWLMHDgQM0tBiqVCiYmJppHXBFR5RnEo1EUCgV27tyJQYMGabZ17twZHTp0wOrVqzXb2rRpg0GDBml1kZQlLi4OH3zwAfbu3QsAWLZsGQDgnZLfWf8nNzdXK/m6d+8eXFxcWJIjquWMdcHL4j766CMcPXoUX331FZzlkh0SVZFeS3JSy8vLQ3x8PIKDg7W2BwcHIzY2tkLH8Pf3x19//YXMzEwUFhYiJiYGbdq0KXN8WFgY7OzsNF8uLi5P9BmISD+MdcHLInfv3sXSpUvx888/o23bttiwYQMM4PdkolrHIBOmjIwMqFQqODg4aG13cHDA7du3K3QMU1NTLF68GD169ICPjw9atmyJ559/vszxc+fORVZWlubrxo0bT/QZiEh/ij+XbssW3f0qlbqEl5oqv+fS1atXD0ePHkXnzp1x7949TJgwAcHBwbh+/brUoREZlCrfw5SXl4f09HQUlrjOXXT/kD6UrMcLISpVo+/fvz/69+9fobEWFhZcTZfIgJW34OX06cC5c/LspPP09MSRI0ewYsUKvPfee9i/fz+8vLzw8ccf4/XXX4eJiUH+7kykV5X+v+Ty5csIDAyElZUV3Nzc0LRpUzRt2hTu7u5o2rRpTcSow97eHkqlUudqUnp6us5VJyKi4srqpEtMlHcnnVKpxNtvv42zZ88iMDAQOTk5mDlzJpKTk6UOjcggVPoK09ixY2Fqaoo9e/agcePGknRdmJubw8/PD5GRkXix2Cp1kZGReOGFF/QeDxEZlpKddL/8ok6QipNrJ13Lli0RFRWFVatWAYDWL7qVvUpPZEwqnTAlJCQgPj4eHh4eNRGPRnZ2Nq5cuaJ5fe3aNSQkJKBBgwZwdXVFaGgoRo0ahY4dO6Jr165Yu3YtUlJSMGXKlBqNi4jkoahEBwDPPlt6mW7oUHl20pmYmGDatGla244cOYJZs2Zh3bp18PT0lCgyotqr0iU5T09PZGRk1EQsWk6ePAlfX1/4+voCAEJDQ+Hr64v3338fADB06FCsWLECH374Idq3b4+YmBj88ssvcHNzq/HYiEhejL2TTgiBt99+G7GxsfD19cXixYuRn58vdVhEtUql12E6cOAA3nvvPSxevBje3t4wMzPT2m8saxLx0ShE8lP0XLq0NGDECN39v/8OtGolz2fSpaamYvLkyfjll18AAB06dMDGjRvRrl07iSMjql56e5ZcUTdFWR1qKpWqMoczWEyYiOSrrMUumzVTL08gx046QP19/LvvvsP06dORmZkJU1NTvPvuu5g3bx7Mzc2lDo+oWugtYYqOjn7s/qCgoMoczmAxYSKStw0b1GU4lUrdSWdqCpSsUimV6gRKTleaAOD27duYOnUqduzYAQCIiIjA0KFDJY6KqHroLWEiNSZMRPJXVKJr0QKIjgZefVV3zA8/yK+Trsi2bdvw008/YcuWLeyeI9mo0YTp7Nmz8PLygomJCc6ePfvYsT4+PhU+uSFjwkRkXPhMOiArKwuDBw/Ghx9+iG7dukkdDlGV1GjCZGJigtu3b6NRo0aaJ16X9jbew0REcla8TFcauZboisycORPLly+HQqHA9OnTsWjRItStW1fqsIgqpUYTpuTkZLi6ukKhUJS7KqyxtPUzYSIyTkVlur/+AoYN092/bx/Qpo08O+nu3r2Lt99+Gxs3bgSgXvRy/fr16NWrl8SREVUc72HSMyZMRMatrBKdoyOQni7fTjoA2LdvHyZOnIiUlBQAwKRJk7Bs2TJ+LySDUNWf33ziIhFRFZRc7NLEBKhTB7h9W97PpAOA4OBgJCYm4vXXXwcArF27FvPmzZM4KqKaxStMVcQrTEQEaHfSnTgBDB6sO0bOnXRRUVF499138dNPP8He3l7qcIjKxZKcnjFhIqKSjLWTrvhDe4UQmDp1KoKDgzFo0CCJIyPSpZeSnEqlQnR0NDIzMysdIBGR3BnrM+mKr9G0e/durF69Gi+++CKGDx+OO3fuSBgZUfWpVMKkVCrRt29f3L17t6biISIyaOPHq5cWOHgQ2LpVd79KBZw9q06aDh6UX/IUHByMOXPmQKlUIiIiAp6enti6dWupS9EQGZJK3/Tt7e2Nq1ev1kQsRESy4OwM9OwJBASoy3AljRihLt316qX+c8MGvYdYYywtLREWFoajR4/C29sbGRkZGDZsGAYPHoy0tDSpwyOqskonTIsWLcLMmTOxZ88epKWl4d69e1pfRESkVlonXf36QFaW/DvpOnbsiJMnT2LBggUwNTXFrl278Nxzz/FKExmsSt/0bVLs16Xideuim/640jcRkbbinXRnzwLPPac75uBB9X45Lnh59uxZjB8/HmFhYejdu7fU4ZCRq+rPb9PKnujgwYOVfQsRkVFzdtZOgExMdDvpQkOBM2fkueClj48Pjh07pvUL96ZNm5Cfn4+JEyfywb5kELisQBXxChMRVVXxZ9IVLTlQkpyfS3fz5k14eHggOzsbvXr1wrp169CsWTOpwyIjodeVvu/evYvly5djwoQJmDhxIsLDw5GVlVWVQxERGZ3inXQpKcCqVbpjVCogLk6enXSOjo5YuHAhrKyscODAAXh7e+OLL75AYcnLbkS1SKWvMJ08eRJ9+/aFlZUVOnXqBCEETp48iYcPH2Lfvn3o0KFDTcVaq/AKExFVF2Nd8PLPP//E+PHjER0dDQDo3r07NmzYgFatWkkcGcmZ3lb6DgwMRIsWLbBu3TqYmqpvgSooKMCECRNw9epVxMTEVC5yA8WEiYiqU/EyXWnkWqIrLCzEmjVrMGvWLGRnZ6Nu3bq4fv06H7NCNUZvCZOVlRVOnz4NDw8Pre1JSUno2LEjHjx4UJnDGSwmTERU3Yq66W7dAkaO1N1/4IC6g06OnXTJycmYNGkSfH19sWTJEqnDIRnTW5ecra0tUlJSdBKmGzduwMbGprKHIyKi/ynqpktNLb2TbtIk4OpVeXbSubm5Ye/evSgoKNBsO3fuHHbu3InZs2fDzMxMwuiIqnDT99ChQzF+/Hhs3boVN27cQGpqKiIiIjBhwgQMHz68JmIkIjIqJRe8VCjUf79yRd4LXioUCk1ipFKpMG7cOPzf//0f/P39cfr0aYmjI2NX6YTpk08+weDBgzF69Gi4u7vDzc0NY8eOxUsvvYSPP/64JmIkIjI6JTvpNm3SHSPnTjoTExOEhISgYcOGOHPmDPz9/fHee+8hNzdX6tDISFV5HaYHDx7gzz//hBACLVq0QJ06dao7tlqN9zARkT4Zayddeno6pk2bhm3btgEAPD09sXHjRnTu3FniyMhQ6WUdpoKCApiamuKPP/5AnTp14O3tDR8fH6NLloiI9K1kma5I0a+8cizRAUCjRo3www8/4Mcff4SDgwOSkpIQEBDAp06Q3lUqYTI1NYWbm5vRPC+OiKg2KV6mi4jQ3a9SARcuqJMmuZXphgwZgnPnzmHUqFHw8/NDYGCg1CGRkal0SW7Tpk3Ytm0bvv32WzRo0KCm4qr1WJIjIimVVaJzcgJu35ZnJ12RnJwc1K1bFwDw6NEjLF26FKGhobC2tpY4MjIEeluHydfXF1euXEF+fj7c3Nw0/9EWOXXqVGUOZ7CYMBGR1IovdmliApibA48eaY+R64KXRebOnYslS5bA3d0d69atQ+/evaUOiWo5va3DNGjQoMq+hYiIasD48UDfvurlBlq0AI4dA156SXtMUSedvb38FrsEgGeeeQYRERG4fv06+vTpgwkTJuCTTz6BnZ2d1KGRzFTqCpNKpcLhw4fh4+OD+vXr12RctR6vMBFRbWOsnXTZ2dmYO3cuVq5cCQBo0qQJ1qxZg+eee07iyKg20kuXnFKpRN++fXH37t1KB0hERDXLWDvprK2t8cUXXyA6OhotWrTAzZs38fzzz2P58uVSh0YyUumFK729vXH16tWaiIWIiJ5Q8U66rVt196tUQGKiPDvpevTogTNnzmDmzJmws7PDSyXrk0RPoNI3fe/btw+zZ8/GwoUL4efnp3PTt7GUp1iSI6LarqwSXf36QFaWvDvp/vnnH61O7vXr12PAgAFwcHCQMCqqDfTWJWdi8u9FKYVCofm7EAIKhcJo1mhiwkREhqBkJ52NjTpZKk7unXT79+9Hnz590LBhQ3z++ecYPny41s8vMi5665Lj6qpERIajZCddQgIwYID2GLl30tnb26Ndu3Y4c+YMRo4ciYiICKxevRpNmjSROjQyIFV+lpyx4xUmIjJEZZXpisi1RJefn48lS5Zg4cKFyM/Ph52dHT799FO89tprvNpkZPTSJVfk0KFDePXVVxEQEICbN28CAL755hscPny4KocjIiI9KauTrohcO+nMzMzwf//3fzh16hT8/f2RlZWF8ePHY9SoUVKHRgai0gnT9u3b0bdvX1hZWeHUqVPIzc0FANy/fx+LFy+u9gCJiKh6VaST7uRJeXbSeXl5ITY2Fh9//DEsLCwwoGR9kqgMVXo0yltvvYXRo0fDxsYGZ86cQbNmzZCQkIB+/frh9u3bNRVrrcKSHBHJQVklujp1gIcP5b3gZWpqKpo0aaIpyR04cACurq5o0aKFxJFRTdJbSe7ixYvo0aOHznZbW1suaElEZGBKluhMTABHR+DBA/kveOns7KxJljIyMjBs2DD4+PggPDzcaDq+qeIqnTA1btwYV65c0dl++PBhNGvWrFqCIiIi/SleoktOBr7+WneMSgVcvizPMh0APHr0CN7e3nj48CFCQ0MRGBiICxcuSB0W1SKVTpgmT56MGTNm4NixY1AoFLh16xa+++47zJw5E2+88UZNxEhERDXM2Rno2VP9p6en+kpTSa+/ri7f9eql/nPDBr2HWWOcnZ2xf/9+rFmzBjY2NoiLi0P79u2xZMkSFBQUSB0e1QJVWlZg3rx5CA8Px6NHjwAAFhYWmDlzJhYuXFjtAdZWvIeJiOSs+IKXCoU6gSpZpZLrgpc3btzApEmTsHfvXgBAx44dERMTAysrK4kjo+qgt5W+izx48ABJSUkoLCyEp6cnrK2tq3IYg8WEiYjkLjX13wUv9+8HXntNd8wPP8hzwUshBLZs2YKQkBAMGTIE69evlzokqiZ6T5iMHRMmIjImZXXTKRTy7qRLS0uDlZUV6tWrBwBISUlBeno6OnbsKHFkVFV6XbiSiIiMS1kLXsq9k65x48aaZEkIgUmTJqFLly6YO3eu5rYUMg5MmIiIqEKKd9P95z+6+1Uq4OJFeXfS1a9fHyqVCkuWLIGvry/i4uKkDov0xKgTpvDwcLRt2xaenp6YPn06WJ0kInq8om667t1L76QbO1a+nXRWVlb4z3/+g507d8LR0REXLlxAt27dEBoaigcPHkgdHtUwo02Y7ty5g5UrVyI+Ph6JiYmIj4/H0aNHpQ6LiMgglLbgpaWl+qpS0X1Oci3TDRo0CElJSRg7diyEEAgPD4e3tzcuXbokdWhUg4w2YQKAgoICPHr0CPn5+cjPz0ejRo2kDomIyGCUXPByyxbdMSoVEBcnvxJd/fr1sWnTJvz6669wcXGBqakpXFxcpA6LalCtTZhiYmIwYMAAODk5QaFQYNeuXTpjVq1ahaZNm8LS0hJ+fn44dOhQhY//1FNPYebMmXB1dYWTkxN69+6N5s2bV+dHICKSveILXnbtWnqZbuhQeZboAKBfv374448/8N///lezTpNKpcLhw4cljoyqW61NmHJyctCuXTusXLmy1P1bt25FSEgI5s2bh9OnTyMwMBD9+/dHSkqKZoyfnx+8vLx0vm7duoXMzEzs2bMH169fx82bNxEbG4uYmBh9fTwiItkx1k46W1tbeHh4aF5/9tlnCAwMxLhx45CZmSlhZFSdDGIdJoVCgZ07d2LQoEGabZ07d0aHDh2wevVqzbY2bdpg0KBBCAsLK/eY27ZtQ1RUFL788ksAwLJlyyCEwKxZs0odn5ubi9zcXM3re/fuwcXFheswERGVULTgZXq6+upSSb/+Cnh5qZ9NJ7cFLwFgzpw5WLp0KYQQaNy4Mb766isMHDhQ6rDof4xqHaa8vDzEx8cjODhYa3twcDBiY2MrdAwXFxfExsbi0aNHUKlUiIqKQuvWrcscHxYWBjs7O80Xa9VERKUrKtMFBJReonv1Vfl20gHAkiVLEBMTg1atWiEtLQ0vvPACRowYgYyMDKlDoydgkAlTRkYGVCoVHBwctLY7ODjg9u3bFTpGly5d8Oyzz8LX1xc+Pj5o3rz5Y38DmDt3LrKysjRfN27ceKLPQEQkd6V10tnYAH//Lf9Ouu7duyMhIQGzZs2CiYkJ/vOf/8DT0xORkZFSh0ZVZJAJUxGFQqH1Wgihs+1xFi1ahPPnz+PcuXP4/PPPH/teCwsL2Nraan0REdHjleyk++473TFy7aSzsrLCxx9/jKNHj6Jt27a4e/cuHB0dpQ6LqshU6gCqwt7eHkqlUudqUnp6us5VJyIikpazs/Z9SiYmus+ke+WVf/fJ7Zl0/v7+iI+PR1xcHLy9vTXbz5w5Ax8fn0r9ok/SMcgrTObm5vDz89O5tBkZGYmAgACJoiIiovKU1UlXRK4lOgsLC/Ts2VPzOj4+Hn5+fhgwYABS5fZhZarWJkzZ2dlISEhAQkICAODatWtISEjQLBsQGhqK9evXY+PGjTh//jzeeustpKSkYMqUKVKGTURE5Sheptu6VXe/SgWcOiXfZ9IBwNmzZ6FUKvHzzz+jbdu2WL9+PR/PVcvV2mUFoqKi8PTTT+tsHzNmDDZv3gxAvXDl0qVLkZaWBi8vL4SHh6NHjx56ia+qbYlERPSv1FR1p1zJEp21NZCTo17DSY5lOgBISkrCuHHjcOzYMQBA7969sW7dOri7u0sbmMxV9ed3rU2YajsmTERE1WPDBnUZwfx3YgAAIABJREFUTqVSJ0f29uo1nIpTKtVXpeS2ZpNKpcJnn32GefPm4dGjR6hbty7Cw8MxceJEqUOTLaNah4mIiOSjos+ki42VX4lOqVQiNDQUZ8+eRY8ePZCTk4O8vDypw6JS8ApTFfEKExFRzSirTFdEriW6wsJCbN++HUOGDIHJ/1b8vH79OlxcXKAs6y55qjReYSIiIlkw1k46ExMTvPzyy5pkKTs7G7169UK3bt2QlJQkcXTEhImIiGqdinTSHT4s7066xMRE/PPPPzh27Bh8fX2xaNEi5OfnSx2W0WJJropYkiMi0o+ySnTm5kB+vrw76W7evInJkyfj559/BgD4+vpi48aNaN++vcSRGS6W5IiISJZKeyaduzuQl6dOlgD5lumaNGmC3bt345tvvkH9+vVx+vRp+Pv74/3334dKpZI6PKPChImIiGq9kp1069frjlGpgIsX5VemUygUePXVV5GUlITBgwejoKAAZ8+e1dzrRPrBklwVsSRHRCSdssp0rq7qfYWF8i3T/fjjjwgICICTkxMAICsrC+bm5rCyspI4MsPAkhwRERmN0sp05uZASsq/SZRcy3QvvfSSJlkCgKlTp6J9+/Y4cuSIhFHJHxMmIiIySBVd8DIuTl4luuIyMjJw8OBBXLp0CYGBgZgxYwZycnKkDkuWmDAREZHBcnYGevZU/9mtm/pKU0lDhwK9eqlLeBs26D3EGmVvb49z585h/PjxEELg888/h7e3Nw4cOCB1aLLDhImIiGShrAUv5d5JV69ePaxfvx6//fYbXF1dce3aNTzzzDOYPHky7t27J3V4ssGEiYiIZKN4mS4iQne/SgUkJcmvkw4AgoOD8ccff+CNN94AAOzevRuFZT1fhiqNXXJVxC45IqLaraxOuqeeAv7+W96ddNHR0cjLy0OfPn0AAEIIzc8tY8cuOSIiomJK66Sztgbu3JF/J11QUJAmWQKALVu2oHXr1ti5c6eEURk2JkxERCRbJTvpvv1Wd4zcO+mEEFi7di3++usvDB48GEOHDsWdO3ekDsvgMGEiIiJZK95J5+dXeifdK6/It5NOoVDg999/x9y5c6FUKvHDDz/A09MTERER4F05FceEiYiIjEZZnXRF5Fqis7S0xOLFi3Hs2DH4+PggIyMDw4cPx+DBg5GWliZ1eAaBCRMRERmV4mW6rVt196tUQEKCPDvp/Pz8cOLECXzwwQcwMzPDf//7X1y5ckXqsAwCu+SqiF1yRESGr6xOOhsbIDtbvYaTXDvpEhMTceDAAcyYMUOz7dGjR7C0tJQwqprHLjkiIqJKKq2Tzt4euH9f/gteent7ayVLV65cgbu7O9asWcP1m0rBhImIiIxayU66b77RHSP3TjoAWLlyJf766y9MmTIFvXv3xtWrV6UOqVZhwkREREaveCedl5fxddIBwPLlyxEeHg4rKyscPHgQ3t7e+Oyzz3i16X+YMBERERVjrJ10SqUSISEhSExMRM+ePfHgwQOEhISgR48euHjxotThSY4JExERUQkV6aSLi5NnJ13z5s3x+++/Y/Xq1bC2tsaRI0cQUdqD+YwMu+SqiF1yRETGoaxOOgsLIC9P3p10KSkpWLp0KT799FOYm5sDAFQqFZRlXX4zAOySIyIiqgGlddK5uAC5ufLvpHN1dcXKlSs1yVJeXh66du2KhQsXIj8/X+Lo9IsJExERUTlKdtJt3Kg7RqUCjhyRX4muuO3bt+PEiRN4//334e/vj1OnTkkdkt4wYSIiIqqA4p10Hh6ld9INGybvTrphw4bh+++/R8OGDXHmzBl06tQJ8+bNw6NHj6QOrcYxYSIiIqqkkmU6hUJ7v1xLdAqFAsOHD0dSUhJefvllqFQqLF68GB06dMDRo0elDq9GMWEiIiKqguJlutKayFQqYP9+eXbSNWrUCD/88AO2b98OBwcHnD9/HnPmzIGc+8jYJVdF7JIjIqIiZXXSKZXqbXLupPvnn3/wzjvvYPbs2WjVqhUAQAgBRcnLbrUEu+SIiIgkUrJEp1Sq73NSqeTfSdegQQNs2LBBkywBwNtvv41p06YhOztbwsiqF68wVRGvMBERUUmpqcCVK0CLFsClS8Azz+iO+e03wNMTuHwZaNlSnWzJydWrV9GyZUsUFhbCzc0N69evR+/evaUOS4NXmIiIiCRWvJOuVavSO+lGj1aX7+TaTdesWTP89ttvcHd3R3JyMvr06YOJEyciKytL6tCeCBMmIiKiGlDagpd16gB//fXvvU5yLdP17t0biYmJmDZtGgBg/fr1aNu2Lfbs2SNxZFXHklwVsSRHREQVUbxMd/Ik8OKLumN++AGwt5dnie7QoUMYN24crly5gnr16uHatWuoV6+eZPFU9ee3aQ3GREREZPScnbWTIBMT3W66oUPl20kXGBiIM2fOYP78+fDy8pI0WXoSLMkRERHpSckyXRG5d9LVqVMHy5Ytw5gxYzTbfv75Z7zyyitIT0+XMLKKY8JERESkR8UXvNy6VXe/SgWcOSPPBS+LFBQUYNq0adi2bRs8PT3x/fff1/pFL5kwERER6VlRN11AQOmddCNGAK6u8u2kMzU1xY4dO9C+fXv8/fffGDlyJF544QXcvHlT6tDKxISJiIhIIqV10tWvD9y7J/8yna+vL44fP44PP/wQZmZm2L17N9q2bYuNGzfWyqtN7JKrInbJERFRdSneSXf2LPDcc7pj5NxJ98cff2DcuHE4ceIEACAmJgaBgYE1ci52yRERERmoinTSvfLKv/vk1knn5eWF2NhYrFixAufPn6+xZOlJ8ApTFfEKExER1ZQNG9RlOJWq9P1KpfrGcbldadIHPhqFiIhIJirSSXfsmLw76WobluSIiIhqoaIyXWpq6SW6UaOAR4/ku+BlbcMrTERERLVYaZ10TZoADx/Kv5OuNjGKhOnFF19E/fr18dJLL+ns27NnD1q3bo2WLVti/fr1EkRHRET0eMVLdMnJwObNumNUKiA2liW6mmIUN30fPHgQ2dnZ+Prrr/Hjjz9qthcUFMDT0xMHDx6Era0tOnTogGPHjqFBgwblHpM3fRMRkVRSU9ULWpYs0xVhia5svOn7MZ5++mnY2NjobD9+/Djatm2LJk2awMbGBs8++yx+++03CSIkIiKquLKeSVeEJbrqJ3nCFBMTgwEDBsDJyQkKhQK7du3SGbNq1So0bdoUlpaW8PPzw6FDh6rl3Ldu3UKTJk00r52dnWv1suxERERFKtJJd+AAO+mqi+Rdcjk5OWjXrh1ee+01DBkyRGf/1q1bERISglWrVqFbt25Ys2YN+vfvj6SkJLi6ugIA/Pz8kJubq/Peffv2wcnJqcxzl1aNVCgUT/BpiIiI9Ke8Trpx49Tb2En35CRPmPr374/+/fuXuf/TTz/F+PHjMWHCBADAihUr8Ntvv2H16tUICwsDAMTHx1fp3E2aNNG6opSamorOnTuXOjY3N1crKbt3716VzklERFTdikp0RYtdKpVA8+bApUv/jikq0/XtywUvq0Lyktzj5OXlIT4+HsHBwVrbg4ODERsb+8TH79SpE/744w/cvHkT9+/fxy+//IK+ffuWOjYsLAx2dnaaLxcXlyc+PxERUXUpXqK7fh1YvVp3jEoFHDrEEl1VSH6F6XEyMjKgUqng4OCgtd3BwQG3b9+u8HH69u2LU6dOIScnB87Ozti5cyf8/f1hamqK5cuX4+mnn0ZhYSFmzZqFhg0blnqMuXPnIjQ0VPP63r17TJqIiKhWqcgz6UaM+HcfS3QVV6sTpiIl7ysSQlTqXqPHdb4NHDgQAwcOLPcYFhYWsLCwqPA5iYiIpFSyTKdQ/LvQJcASXWXV6pKcvb09lEqlztWk9PR0natOREREpK14mS4iQne/SgX89BM76SqiVidM5ubm8PPzQ2RkpNb2yMhIBAQESBQVERGR4XB2Bnr2BAIC1GW4kqZOBVxdgV691Ithbtig9xANguQJU3Z2NhISEpCQkAAAuHbtGhISEpCSkgIACA0Nxfr167Fx40acP38eb731FlJSUjBlyhQpwyYiIjIoJRe7VCoBX1/13/lMuvJJ/miUqKgoPP300zrbx4wZg83/e1jOqlWrsHTpUqSlpcHLywvh4eHo0aOHniPVxkejEBGRIUpNBa5cAVq0AC5fVl9ZKmnLFnWC1bKl/O5vqurPb8kTJkPFhImIiAydMT6Tjs+SIyIiokopWaYr2YDOEt2/mDAREREZsYp00n3zDTvpWJKrIpbkiIhIbsor0QGGX6ZjSY6IiIieSGmddEFB2mOMtUxnECt9ExERkX6MH69e/ftxnXQqFXDihPrvly/Ls5uuJCZMREREpKUiz6QbORJ49Ei9hpOhl+kqgiU5IiIiKlPJMp2JCeDoCDx8aFwLXjJhIiIioscq3kmXnKxe2LIklQqIjZVvJx1LckRERFSuipTphg79d5/cSnS8wkRERESVUrJMV5IcS3RMmIiIiKjSipfptm7V3a9SAdHR8lnwkiU5IiIiqpKiMl1qauklurFj1YmTHDrpeIWJiIiInkhpC142bw4UFMink44JExERET2x4iW669fVCVRJKhVw+LBhluhYkiMiIqJqUZFOuuHD/91nSCU6XmEiIiKialeyTKdQaO83tBIdEyYiIiKqEcXLdBERuvtVKuDnnw2jk44lOSIiIqox5XXSTZmivvpU2zvpeIWJiIiIalxpnXTt2qn/bgiddEyYiIiISC9KdtKFh+uOUanU+2tbiY4lOSIiItKbinTSjR79777aUqLjFSYiIiKShCF10jFhIiIiIslUpJPuyhW9h6WDJTkiIiKS1OM66ZRKoEUL6WIrwitMREREVCuU1km3Zo32PU9S4RUmIiIiqjXGjwf69lWX4Vq0qB3JEsCEiYiIiGqZkp10tQFLckRERETlYMJEREREVA4mTERERETlYMJEREREVA4mTERERETlYMJEREREVA4mTERERETlYMJEREREVA4mTERERETlYMJEREREVA4mTERERETl4LPkqkgIAQC4d++exJEQERFRRRX93C76OV5RTJiq6P79+wAAFxcXiSMhIiKiyrp//z7s7OwqPF4hKptiEQCgsLAQt27dgo2NDRQKRZWPc+/ePbi4uODGjRuwtbWtxgipJM61/nCu9YdzrT+ca/2pybkWQuD+/ftwcnKCiUnF70ziFaYqMjExgbOzc7Udz9bWlv8D6gnnWn841/rDudYfzrX+1NRcV+bKUhHe9E1ERERUDiZMREREROVQLliwYIHUQRg7pVKJnj17wtSUFdKaxrnWH861/nCu9YdzrT+1ba550zcRERFROViSIyIiIioHEyYiIiKicjBhIiIiIioHEyYiIiKicjBhktCqVavQtGlTWFpaws/PD4cOHZI6JIMXFhYGf39/2NjYoFGjRhg0aBAuXryoNSY3Nxdvvvkm7O3tUbduXQwcOBCpqakSRSwfYWFhUCgUCAkJ0WzjXFefmzdv4tVXX0XDhg1Rp04dtG/fHvHx8Zr9QggsWLAATk5OsLKyQs+ePXHu3DkJIzZMBQUFeO+999C0aVNYWVmhWbNm+PDDD1FYWKgZw7muupiYGAwYMABOTk5QKBTYtWuX1v6KzG1mZiZGjRoFOzs72NnZYdSoUbh7926Nx86ESSJbt25FSEgI5s2bh9OnTyMwMBD9+/dHSkqK1KEZtOjoaEydOhVHjx5FZGQkCgoKEBwcjJycHM2YkJAQ7Ny5ExERETh8+DCys7Px/PPPQ6VSSRi5YTtx4gTWrl0LHx8fre2c6+qRmZmJbt26wczMDL/++iuSkpKwfPly1KtXTzNm6dKl+PTTT7Fy5UqcOHECjo6O6NOnj+a5l1QxH3/8Mb766iusXLkS58+fx9KlS7Fs2TJ88cUXmjGc66rLyclBu3btsHLlylL3V2RuR4wYgYSEBOzduxd79+5FQkICRo0aVfPBC5JEp06dxJQpU7S2eXh4iDlz5kgUkTylp6cLACI6OloIIcTdu3eFmZmZiIiI0Iy5efOmMDExEXv37pUqTIN2//590bJlSxEZGSmCgoLEjBkzhBCc6+o0e/Zs0b179zL3FxYWCkdHR7FkyRLNtkePHgk7Ozvx1Vdf6SNE2XjuuefEuHHjtLYNHjxYvPrqq0IIznV1AiB27typeV2RuU1KShIAxNGjRzVj4uLiBABx4cKFGo2XV5gkkJeXh/j4eAQHB2ttDw4ORmxsrERRyVNWVhYAoEGDBgCA+Ph45Ofna829k5MTvLy8OPdVNHXqVDz33HPo3bu31nbOdfX56aef0LFjR7z88sto1KgRfH19sW7dOs3+a9eu4fbt21pzbWFhgaCgIM51JXXv3h2///47Ll26BAA4c+YMDh8+jGeffRYA57omVWRu4+LiYGdnh86dO2vGdOnSBXZ2djU+/7Vj+Uwjk5GRAZVKBQcHB63tDg4OuH37tkRRyY8QAqGhoejevTu8vLwAALdv34a5uTnq16+vNZZzXzURERE4deoUTpw4obOPc119rl69itWrVyM0NBTvvvsujh8/junTp8PCwgKjR4/WzGdp31OSk5OlCNlgzZ49G1lZWfDw8IBSqYRKpcKiRYswfPhwAOBc16CKzO3t27fRqFEjnfc2atSoxr+vMGGSkEKh0HothNDZRlU3bdo0nD17FocPHy53LOe+8m7cuIEZM2Zg3759sLS0rPD7ONeVV1hYiI4dO2Lx4sUAAF9fX5w7dw6rV6/G6NGjNeP4PeXJbd26Fd9++y2+//57tG3bFgkJCQgJCYGTkxPGjBmjGce5rjnlzW1p86yP+WdJTgL29vZQKpU62XB6erpOZk1V8+abb+Knn37CwYMH4ezsrNnu6OiIvLw8ZGZmao3n3FdefHw80tPT4efnB1NTU5iamiI6Ohqff/45TE1N4eDgwLmuJo0bN4anp6fWtjZt2miaRBwdHQGA31OqwTvvvIM5c+Zg2LBh8Pb2xqhRo/DWW28hLCwMAOe6JlVkbh0dHfHXX3/pvPfOnTs1Pv9MmCRgbm4OPz8/REZGam2PjIxEQECARFHJgxAC06ZNw44dO3DgwAE0bdpUa7+fnx/MzMy05j4tLQ1//PEH576SnnnmGSQmJiIhIUHz1bFjR4wcOVLzd8519ejWrZvO8hiXLl2Cm5sbAKBp06ZwdHTUmuu8vDxER0dzrivpwYMHMDHR/tGoVCo1ywpwrmtORea2a9euyMrKwvHjxzVjjh07hqysrJqf/xq9pZzKFBERIczMzMSGDRtEUlKSCAkJEXXr1hXXr1+XOjSD9vrrrws7OzsRFRUl0tLSNF8PHjzQjJkyZYpwdnYW+/fvF6dOnRK9evUS7dq1EwUFBRJGLg/Fu+SE4FxXl+PHjwtTU1OxaNEicfnyZfHdd9+JOnXqiG+//VYzZsmSJcLOzk7s2LFDJCYmiuHDh4vGjRuLe/fuSRi54RkzZoxo0qSJ2LNnj7h27ZrYsWOHsLe3F7NmzdKM4VxX3f3798Xp06fF6dOnBQDx6aefitOnT4vk5GQhRMXmtl+/fsLHx0fExcWJuLg44e3tLZ5//vkaj50Jk4S+/PJL4ebmJszNzUWHDh00re9UdQBK/dq0aZNmzMOHD8W0adNEgwYNhJWVlXj++edFSkqKdEHLSMmEiXNdfXbv3i28vLyEhYWF8PDwEGvXrtXaX1hYKObPny8cHR2FhYWF6NGjh0hMTJQoWsN17949MWPGDOHq6iosLS1Fs2bNxLx580Rubq5mDOe66g4ePFjq9+gxY8YIISo2t3///bcYOXKksLGxETY2NmLkyJEiMzOzxmNXCCFEzV7DIiIiIjJsvIeJiIiIqBxMmIiIiIjKwYSJiIiIqBxMmIiIiIjKwYSJiIiIqBxMmIiIiIjKwYSJiIiIqBxMmIio2vXs2RMhISFSh6EhhMCkSZPQoEEDKBQKJCQkSB0SERkYJkxEJHt79+7F5s2bsWfPHqSlpcHLy0vqkPTK3d0dK1askDoMIoNmKnUAREQVoVKpoFAodB6MWhF//vknGjduLIuHo+bn58PMzEzqMIiMDq8wEclUz549MX36dMyaNQsNGjSAo6MjFixYoNl//fp1nfLU3bt3oVAoEBUVBQCIioqCQqHAb7/9Bl9fX1hZWaFXr15IT0/Hr7/+ijZt2sDW1hbDhw/HgwcPtM5fUFCAadOmoV69emjYsCHee+89FH8SU15eHmbNmoUmTZqgbt266Ny5s+a8ALB582bUq1cPe/bsgaenJywsLJCcnFzqZ42OjkanTp1gYWGBxo0bY86cOSgoKAAAjB07Fm+++SZSUlKgUCjg7u5e6jGKzrdr1y60atUKlpaW6NOnD27cuKE1bvXq1WjevDnMzc3RunVrfPPNN5p9b7/9NgYMGKB5vWLFCigUCvz888+aba1bt8aaNWs0rzdt2oQ2bdrA0tISHh4eWLVqlc6/0Q8//ICePXvC0tIS3377banxL1iwAK6urrCwsICTkxOmT58OQP3fQXJyMt566y0oFAooFArNe2JjY9GjRw9YWVnBxcUF06dPR05Ojma/u7s7Fi5ciBEjRsDa2hpOTk744osvKnReItmp8afVEZEkgoKChK2trViwYIG4dOmS+Prrr4VCoRD79u0TQghx7do1AUCcPn1a857MzEwBQBw8eFAI8e+DMrt06SIOHz4sTp06JVq0aCGCgoJEcHCwOHXqlIiJiRENGzYUS5Ys0Tq3tbW1mDFjhrhw4YL49ttvRZ06dbQeGDtixAgREBAgYmJixJUrV8SyZcuEhYWFuHTpkhBCiE2bNgkzMzMREBAgjhw5Ii5cuCCys7N1PmdqaqqoU6eOeOONN8T58+fFzp07hb29vZg/f74QQoi7d++KDz/8UDg7O4u0tDSRnp5e6nwVna9jx44iNjZWnDx5UnTq1EkEBARoxuzYsUOYmZmJL7/8Uly8eFEsX75cKJVKceDAASGEED/99JOws7MTKpVKCCHEoEGDhL29vXjnnXeEEEKkpaUJAOL8+fNCCCHWrl0rGjduLLZv3y6uXr0qtm/fLho0aCA2b96s9W/k7u6uGXPz5k2d2Ldt2yZsbW3FL7/8IpKTk8WxY8c0c/33338LZ2dn8eGHH4q0tDSRlpYmhBDi7NmzwtraWoSHh4tLly6JI0eOCF9fXzF27FjNcd3c3ISNjY0ICwsTFy9eFJ9//rlQKpWa/4Yed14iuWHCRCRTQUFBonv37lrb/P39xezZs4UQlUuY9u/frxkTFhYmAIg///xTs23y5Mmib9++Wudu06aNKCws1GybPXu2aNOmjRBCiCtXrgiFQqHzw/+ZZ54Rc+fOFUKoExgAIiEh4bGf89133xWtW7fWOteXX34prK2tNYlLeHi4cHNze+xxis539OhRzbbz588LAOLYsWNCCCECAgLExIkTtd738ssvi2effVYIoU7OTExMxMmTJ0VhYaFo2LChCAsLE/7+/kIIIb7//nvh4OCgea+Li4v4/vvvtY63cOFC0bVrVyHEv/9GK1aseGzsy5cvF61atRJ5eXml7ndzcxPh4eFa20aNGiUmTZqkte3QoUPCxMREPHz4UPO+fv36aY0ZOnSo6N+/f4XOSyQnLMkRyZiPj4/W68aNGyM9Pf2JjuPg4IA6deqgWbNmWttKHrdLly5a5Z+uXbvi8uXLUKlUOHXqFIQQaNWqFaytrTVf0dHR+PPPPzXvMTc31/kMJZ0/fx5du3bVOle3bt2QnZ2N1NTUSn1OU1NTdOzYUfPaw8MD9erVw/nz5zXn6tatm9Z7unXrptlvZ2eH9u3bIyoqComJiTAxMcHkyZNx5swZ3L9/H1FRUQgKCgIA3LlzBzdu3MD48eO15uCjjz7SmgMAWjGV5uWXX8bDhw/RrFkzTJw4ETt37tSUJMsSHx+PzZs3a527b9++KCwsxLVr1zTjunbtqvW+rl27aj5vVc5LZKh40zeRjJW8OVihUKCwsBAANDdPi2L3FeXn55d7HIVC8djjVkRhYSGUSiXi4+OhVCq19llbW2v+bmVlpZUIlUYIoTOm6DOV997SlPae4ttKO1fxbT179kRUVBTMzc0RFBSE+vXro23btjhy5AiioqI0yy0Uzde6devQuXNnrWOWnJO6des+NmYXFxdcvHgRkZGR2L9/P9544w0sW7YM0dHRZd4gXlhYiMmTJ5d6z5Grq+tjz1f0eatyXiJDxYSJyEg99dRTAIC0tDT4+voCQLWuT3T06FGd1y1btoRSqYSvry9UKhXS09MRGBj4ROfx9PTE9u3btRKX2NhY2NjYoEmTJpU6VkFBAU6ePIlOnToBAC5evIi7d+/Cw8MDANCmTRscPnwYo0eP1rwnNjYWbdq00bzu2bMnNmzYAFNTU/Tu3RsAEBQUhIiICFy6dElzhcnBwQFNmjTB1atXMXLkyKpPwP9YWVlh4MCBGDhwIKZOnQoPDw8kJiaiQ4cOMDc3h0ql0hrfoUMHnDt3Di1atHjscUv7dyyaj/LOSyQnTJiIjJSVlRW6dOmCJUuWwN3dHRkZGXjvvfeq7fg3btxAaGgoJk+ejFOnTuGLL77A8uXLAQCtWrXCyJEjMXr0aCxfvhy+vr7IyMjAgQMH4O3tjWeffbbC53njjTewYsUKvPnmm5g2bRouXryI+fPnIzQ0tNJLEJiZmeHNN9/E559/DjMzM0ybNg1dunTRJFDvvPMOXnnlFXTo0AHPPPMMdu/ejR07dmD//v2aY/To0QP379/H7t278dFHHwFQJ1FDhgzBU089BU9PT83YBQsWYPr06bC1tUX//v2Rm5uLkydPIjMzE6GhoRWOe/PmzVCpVOjcuTPq1KmDb775BlZWVnBzcwOg7naLiYnBsGHDYGFhAXt7e8yePRtdunTB1KlTMXHiRNStWxfnz59HZGSkVifckSNHsHTpUgwaNAi94XI9AAAB6UlEQVSRkZHYtm2bpuuvvPMSyYqUN1ARUc0JCgoSM2bM0Nr2wgsviDFjxmheJyUliS5duggrKyvRvn17sW/fvlJv+s7MzNS8Z9OmTcLOzk7ruPPnzxft2rXTOvcbb7whpkyZImxtbUX9+vXFnDlztG7MzsvLE++//75wd3cXZmZmwtHRUbz44ovi7NmzZZ6nLFFRUcLf31+Ym5sLR0dHMXv2bJGfn6/ZX9Gbvu3s7MT27dtFs2bNhLm5uejVq5e4fv261rhVq1aJZs2aCTMzM9GqVSuxZcsWnWP5+fmJp556SvN5//77b6FQKMRLL72kM/a7774T7du3F+bm5qJ+/fqiR48eYseOHUKI0m/ML83OnTtF586dha2trahbt67o0qWL1o36cXFxwsfHR1hYWIji3/aPHz8u+vTpI6ytrUXdunWFj4+PWLRokWa/m5ub+OCDD8Qrr7wi6tSpIxwcHLRuQC/vvERyohCi2A0MRERGavPmzQgJCcHdu3elDqXWcHd3R0hISK16zA2RVNglR0RERFQOJkxERERE5WBJjoiIiKgcvMJEREREVA4mTERERETlYMJEREREVA4mTERERETlYMJEREREVA4mTERERETlYMJEREREVA4mTERERETlYMJEREREVI7/B5OWwNqNEUoIAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Δλ = Float64[]\n", - "y = x\n", - "for i = 1:100\n", - " y = A*y\n", - " y = y / norm(y)\n", - " λ̃ = (y'A*y) / (y'y)\n", - " push!(Δλ, abs(λ̃ - 5))\n", - "end\n", - "semilogy(1:length(Δλ), Δλ, \"b.-\")\n", - "semilogy(1:length(Δλ), (4/5).^(1:length(Δλ)), \"k--\")\n", - "xlabel(\"number of power steps\")\n", - "ylabel(\"error in eigenvalue\")\n", - "title(L\"convergence of power method $\\lambda$ for $\\lambda=1,2,3,4,5$\")\n", - "legend([\"error\", L\"(4/5)^n\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is converging at the same rate.\n", - "\n", - "(For symmetric matrices, it turns out that the eigenvalue converges even faster than the eigenvalue, but that is not a topic for 18.06.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Shift-and-invert\n", - "\n", - "The power method finds the eigenvector (and eigenvalue) for the biggest |λ|. If, instead, we want to find the *smallest* |λ|, we can apply the power method to $A^{-1}$. More generally, if we want to find the eigenvalue *closest to some μ*, we can apply the power method to $(A - \\mu I)^{-1}$. This is called a **shift and invert method**:\n", - "\n", - "\n", - "* Starting with a random $x$, repeatedly solve $(A-\\mu I)y = x$ and then replace $x \\leftarrow y / \\Vert y \\Vert $.\n", - "\n", - "Notice that we don't usually compute $(A - \\mu I)^{-1}$ explicitly; instead, we solve $(A-\\mu I)y = x$ by whatever the best available method is. (If $A$ is a huge sparse matrix, this is a tricky problem in itself, which requires its own iterative or sparse methods.)\n", - "\n", - "If $\\lambda$ is the closest eigenvalue to $\\mu$, and $\\lambda^\\prime$ is the second-closest, the same analysis as above tells us that the errors on the n-th iteration should go like\n", - "$$\n", - "\\mathrm{error} \\sim \\left| \\frac{\\lambda - \\mu}{\\lambda^\\prime - \\mu} \\right|^n ,\n", - "$$\n", - "since $(\\lambda - \\mu)^{-1}$ and $(\\lambda^\\prime - \\mu)^{-1}$ are the largest- and second-largest-magnitude eigenvalues of $(A - \\mu I)^{-1}$, respectively.\n", - "\n", - "Let's try this on our example matrix above to find the eigenvalue closest to 2.1. This should give us 2, and the error should go as $|2-2.1|^n / |3-2.1|^n = 1/9^n$:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHHCAYAAAACpgSVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8U9X7wPFPmm5aWqBDZil7lrIR2QoIgoB+xS97CnwFBSugIDKUoQgCspE9RWQIsoUyZJZRhiBDQVoQyiwthdJxfn/k10jpIEmTJmmf9+uVV5Pbm3Oe3JPb+/Tce87VKKUUQgghhBDCZjlYOwAhhBBCCJE5SdiEEEIIIWycJGxCCCGEEDZOEjYhhBBCCBsnCZsQQgghhI2ThE0IIYQQwsZJwiaEEEIIYeMkYRNCCCGEsHGSsAkhhBBC2DhJ2IQQQgghbJwkbEIIIYQQNk4SNmHzVq9eTcWKFXFzc0Oj0RAeHm5yWaNHj0aj0XDnzp1M11u8eDEajYarV6++MJaDBw8yevRoHjx4YHJclpLyeQ2R0We2Nba6vTOLy9DvXVYZ095PnjzB0dERT09PPvjgA6PqMec+aaisxGuqmJgYhg4dSrNmzfD19UWj0TB69GiTytq9ezc9e/akXLly5MmTh8KFC9OmTRuOHz9udFnh4eG88cYbFCtWDDc3N/Lnz8/LL7/M8uXLTYrtWfPnz0ej0eDh4WH0e/fs2YNGo0n3cfjw4SzHZg1ZbTdzfockYRM27fbt23Tp0oWSJUuybds2Dh06RJkyZSxe7xtvvMGhQ4coWLDgC2M5ePAgY8aMsbkEwljpfWZbZKvb21bjyohGo2H37t3UqlWLGTNmcPHiRYPeZ6190tR4s+Lu3bvMmzeP+Ph42rZtm6WyZs+ezdWrVxk4cCBbtmxh2rRpREVFUadOHXbv3m1UWQ8ePKBo0aKMHz+eLVu2sHTpUooXL06XLl0YO3asyTFev36dwYMHU6hQIZPLABg/fjyHDh1K9ahUqVKWyrSWrLabOb9Djll6tzC7uLg43N3drR2Gzbh48SIJCQl07tyZhg0bZlu9vr6++Pr62kQs2SW9z2xLZN8wLxcXFxo0aMDQoUPZvXs3x48fNyjxssR+YEjbmhpvVgQEBHD//n197+j8+fNNLmvmzJn4+fmlWvb6669TqlQpxo8fT5MmTQwuq1GjRjRq1CjVslatWnHlyhXmzZvHiBEjTIqxX79+NGjQgPz58/PTTz+ZVAZA6dKlqVOnjsnvtyVZbTdzfofstoftjz/+oEOHDvj7++Pi4kKxYsXo2rUr8fHx+nV+++03Xn31VTw9PXF3d6du3bps3rw5VTkppxB+//13OnTogJeXF/7+/vTs2ZPo6GgANmzYgEajYdeuXWnimD17NhqNhtOnT+uXXbp0iY4dO+Ln54eLiwvly5dn5syZad6bUveJEyf4z3/+Q758+ShZsiQAP//8M0FBQbi4uFCiRAmmTZuW4ekOQ+oz5HMau30N/ZwZeVH7dO/enXr16gHw7rvvotFo0vyRetbt27fp06cPRYsWxcXFBV9fX1555RV+/fXXNOveunUr0+3w/OnBjGIZPXo0Q4YMASAwMFDf/b9nz54M47x8+TI9evSgdOnSuLu7U7hwYVq3bs2ZM2dSrWdsm23evJng4GBcXFwIDAxk0qRJGcaQnuc/s6H1W2L/yGjfMGV7p5R1+vRp3nnnHby8vMifPz8hISEkJiZy4cIFXn/9dTw9PSlevDgTJ05MU8aLYjY0rhd978Cwv1uQ9fZOUa5cOQCDTmu+aJ805m9uen/3zB1vVqW0ozk8f9AH8PDwoEKFCkRERJilDh8fHxwdTeuHWb58OXv37mXWrFlmicXcAgMD6datW5rlTZo0seg/0FltN3N+h1B2KDw8XHl4eKjixYurOXPmqF27dqnly5er9u3bq4cPHyqllNqzZ49ycnJS1atXV6tXr1YbNmxQzZo1UxqNRv3www/6skaNGqUAVbZsWTVy5Ei1c+dO9e233yoXFxfVo0cPpZRSCQkJys/PT3Xq1ClNLLVq1VLVqlXTv/7999+Vl5eXqly5slq6dKnasWOH+vjjj5WDg4MaPXp0qvem1B0QEKA++eQTtXPnTrVhwwa1detW5eDgoBo1aqTWr1+v1qxZo2rXrq2KFy+unm8yQ+sz5HMas32N+ZzpMaR9Ll++rGbOnKkANX78eHXo0CH1+++/Z1hm8+bNla+vr5o3b57as2eP2rBhgxo5cqTR7a2UUosWLVKAunLlSqaxREREqA8++EABat26derQoUPq0KFDKjo6OsM49+7dqz7++GP1008/qb1796r169ertm3bKjc3N/XHH3+Y1Ga//vqr0mq1ql69emrdunVqzZo1qmbNmqpYsWJpvjMZef4zG1q/JfaPjPYNU7b3s5/jyy+/VDt37lRDhw5VgBowYIAqV66c+u6779TOnTtVjx49FKDWrl1rVMwvisvQbWno3y1ztHeK//3vfwpQzZo1e+G6me2Txv7Nfb5tzR1vcnKySkhIMOhhiNu3bytAjRo1yuBYX+TBgwfKy8tLtWvXzqT3JyUlqYSEBBUVFaVmzpypHB0d1Zw5c4wu59atW6pAgQJq5syZSimlunXrpvLkyWN0OaGhoQpQfn5+SqvVKk9PT9WsWTO1f/9+o8t61p07dxSgvvvuu1TLk5OTlZeXl/roo4/SfZ+5vwMpTG23rH6H7DJha9KkifL29lZRUVEZrlOnTh3l5+enYmJi9MsSExNVpUqVVJEiRVRycrJS6t8/HhMnTkz1/vfff1+5urrq1wsJCVFubm7qwYMH+nXOnTunADV9+nT9subNm6siRYqkOYAMGDBAubq6qnv37umXpdQ9cuTIVOvWrFlTFS1aVMXHx+uXxcTEqAIFCqT5Y2xofYZ+TqUM277GfM70GNo+KX8A1qxZk2l5Sinl4eGhBg0alOk6hm6H55OXzGL55ptv0qxrjMTERPX06VNVunTpVH94jGmz2rVrq0KFCqnHjx/rlz18+FDlz58/ywmbIfWbe//IaN9QyvjtnVLW5MmTUy0PDg7WJ1gpEhISlK+vr3rrrbeMjjmzuAzdlobuF+Zob6WU2r59uwJUvnz5lK+vr0HvyWg/MPZvbnpta854U+I05GHId8kSCVunTp2Uo6OjOnbsmEnv79u3r/4zODs7q1mzZplUzttvv63q1q2rbyNTE7YTJ06ogQMHqvXr16t9+/aphQsXqvLlyyutVqu2bdtmUmxKKbVt2zYFqIMHD6ZafuHCBQWo5cuXp/s+c38HUpjabln9DtndKdG4uDj27t1L+/btM7ze5tGjRxw5coT//Oc/qUa6aLVaunTpQmRkJBcuXEj1njfffDPV66CgIJ48eUJUVBQAPXv25PHjx6xevVq/zqJFi3BxcaFjx46AbhTTrl27aNeuHe7u7iQmJuofLVu25MmTJ+mOlHn77bdTxX7s2DHatm2Ls7OzfrmHhwetW7dO9T5T6nvR5zRk+5r6OZ/9jMa2jyFq1arF4sWLGTt2LIcPHyYhISHDdV+0Hczh2e2SmJiIUkq/fPz48VSoUAFnZ2ccHR1xdnbm0qVLnD9/3uhYHz16RFhYGG+99Raurq769Tw9PdN8ZzKLKyOGbCtL7R/P7htZ1apVq1Svy5cvj0ajoUWLFvpljo6OlCpVir///tvkmDOT2bY0dL8wtr0z8uDBA3r27EmbNm14//33uX37Njdu3DD4/c8yZZ82tm2Njbd69eqEhYUZ9MjqRfam+Pzzz1mxYgVTpkyhevXqJpUxfPhwwsLC2Lx5Mz179mTAgAFGnxpfu3YtmzZt4vvvv8/yqbuqVasydepU2rZtS/369enRowcHDx6kYMGCDB061ORyw8LCcHR0JDg4ONXylJGaGW0/S3wHzNFuprK7QQf3798nKSmJIkWKZLqOUird0W4pjXL37t1UywsUKJDqtYuLCwCPHz8GoGLFitSsWZNFixbRp08fkpKSWL58OW3atCF//vz6MhMTE5k+fTrTp09PN7b0hvU/G2dK7P7+/mnWe36ZKfW96HMasn1N/ZwpTGkfQ6xevZqxY8cyf/58Pv/8czw8PGjXrh0TJ07kpZdeSrXui7ZDVl29epXAwMBUy0JDQ2nUqBEhISHMnDmTTz75hIYNG5IvXz4cHBzo3bt3uvUb0mbJyclpPiOQZllmcWXEkG1lqf3DnCNWU+JI4ezsjLu7e6qkJ2X5w4cPTY45M5lty4SEBIP2Cw8PD4PbOzP9+/cnISGB77//nn379gG668JMSV5M2aeNbVtj4/Xw8EhzgM+Iqdd9mWrMmDGMHTuWcePGMWDAAJPLKVasGMWKFQOgZcuWAAwbNoxu3boZNIAoNjaW/v3788EHH1CoUCH9COenT58CuiTZycmJPHnymByjt7c3rVq1Ys6cOTx+/Bg3Nzejyzh27BgVKlRI895jx47h4eGR4eATc38HzNVuprK7hC1//vxotVoiIyMzXCflAPjPP/+k+V3Kf2Q+Pj5G192jRw/ef/99zp8/z19//cU///xDjx49UtWb8h9l//790y3j+YMlkOq/mnz58qHRaLh161aa9W7evJnqtan1ZcbQ7ZuVei3VPj4+PkydOpWpU6dy7do1Nm7cyKeffkpUVBTbtm0zurysKFSoEGFhYamWlS1bFtBd3Nu1a1fGjx+f6vd37tzB29vb6LpSvjPPfz8g7Xcms7iyyhL7h9ku1jWRJfaxzOoyZL8wpr0z8tNPP7Fy5Uo2bdqEr68v1apVA3QJUMqB3xKxP8uYtjUl3r1799K4cWODyr9y5QrFixc3OJ6sGDNmDKNHj2b06NEMHz7crGXXqlWLOXPm8NdffxmUsN25c4dbt24xefJkJk+enOb3+fLlo02bNmzYsCFLcaX04pu6Px87doymTZumWb5nzx6qVq2Kg0P6JwvN+R2wZLsZyu4SNjc3Nxo2bMiaNWsYN25cugf2PHnyULt2bdatW8ekSZP0WXlycjLLly+nSJEiJg0H79ChAyEhISxevJi//vqLwoUL06xZM/3v3d3dady4MSdPniQoKCjVKU1D5cmThxo1arBhwwYmTZqkLyM2NpZffvkl1brmqO95hmzfrNZrqfZ5VrFixRgwYAC7du3iwIEDWSrrRdLrcXJ2dqZGjRrprq/RaPTvSbF582auX79OqVKljK4/T5481KpVi3Xr1vHNN9/oe4xiYmLYtGlTqnUziyursmP/APP3hmbGmJizGpeh+4VGozG4vdNz8+ZN+vXrR58+ffSniQMDA/H29ubkyZMWjd0UpsabcjrMENl1SvTLL79k9OjRjBgxglGjRpm9/NDQUBwcHChRooRB67/00kuEhoamWf7VV1+xd+9etm7datI/z8+6f/8+v/zyC8HBwWl6sw1x8+ZNrl+/nqYHbO/evZw4cYJBgwZl+F5zfQcs3W6GsruEDeDbb7+lXr161K5dm08//ZRSpUpx69YtNm7cyNy5c/H09GTChAk0bdqUxo0bM3jwYJydnZk1axZnz55l1apVJmX63t7etGvXjsWLF/PgwQMGDx6cJrOfNm0a9erVo379+vzvf/+jePHixMTEcPnyZTZt2mTQRHtffPEFb7zxBs2bN2fgwIEkJSXxzTff4OHhwb1798xe3/MM2b5Zrdfc7RMdHU3jxo3p2LEj5cqVw9PTk7CwMLZt28Zbb71l9DYwRuXKlQFdW3Tr1g0nJyfKli2Lp6dnuuu3atWKxYsXU65cOYKCgjh+/DjffPNNpqehX+TLL7/k9ddfp2nTpnz88cckJSXx9ddfkydPnjTfGUvJrv3D2O2dVYbGbI64DN0vstLe7733Hvny5ePbb79Ntbxq1apZmirDEn9zsxKvp6enWf452bp1K48ePSImJgaAc+fO6ecoa9mypX7+OI1GQ8OGDTOcYmby5MmMHDmS119/nTfeeCPNtY/Pz1uWWXl9+vQhb9681KpVC39/f+7cucOaNWtYvXo1Q4YMSdO7llFZrq6u6V4OsXjxYrRabbq/yyyujh07UqxYMWrUqIGPjw+XLl1i8uTJ3Lp1i8WLFxtVVoqUhGvNmjVUqFCBUqVKER4erp9WJyoqirNnz6Y7Ma85vgOGttvevXt59dVXGTlyJCNHjky1jqHfoRcyaaiCDTh37px65513VIECBZSzs7MqVqyY6t69u3ry5Il+nf3796smTZqoPHnyKDc3N1WnTh21adOmVOWkjFi6fft2quXpjRJUSqkdO3boR5VcvHgx3diuXLmievbsqQoXLqycnJyUr6+vqlu3rho7dqxBdSul1Pr161XlypX1n+2rr75SH374ocqXL59J9Rn7OQ3ZvoZ+zowY0j6GjhJ98uSJ6tevnwoKClJ58+ZVbm5uqmzZsmrUqFHq0aNHRm8HY0aJKqXUsGHDVKFChZSDg4MCVGhoaIax3r9/X/Xq1Uv5+fkpd3d3Va9ePbV//37VsGFD1bBhQ6NjTbFx40YVFBSU6juTUoYhMholamj9Splv/8hs31DKuO2dUVkZjYRr2LChqlixotExZxaXMdvSkP1CKdPa+/vvv1darVYdOnQoze9CQkKURqPRT92Tkcz2g6z8zbVUvFkVEBDwwpGFMTExClD//e9/MyynYcOGmY5SfNaLylu4cKGqX7++8vHxUY6Ojsrb21s1bNhQLVu2LM26hsT2vIz2jReVNWHCBBUcHKy8vLyUVqtVvr6+ql27duro0aMmxzVy5Ejl6Oio1qxZo4oXL65cXV1Vo0aN1JEjR1SpUqVUwYIF04weNSdD2y1lv0hvBKgh3yFDaJR6wRAxYRMSEhIIDg6mcOHC7Nixw9rhCCGE+H9btmyhVatWnDp1St/Taivl2XtZLVu25ObNm5w4cSJL9eUEdnlKNDfo1asXTZs2pWDBgty8eZM5c+Zw/vx5pk2bZu3QhBBCPCM0NJT//ve/ZknWzF2evZd1/Phx2rVrl+X6cgLpYbNR7du35+DBg9y+fRsnJyeqVavG8OHDef31160dmhBCCGFx165dIyAggAULFtCzZ09rh2N1krAJIYQQQtg4u7vTgRBCCCFEbiMJmxBCCCGEjZOETQghhBDCxskoURMlJydz48YNPD09rX77HCGEEEIYRilFTEwMhQoVyvC2VrZIEjYT3bhxg6JFi1o7DCGEEEKYICIiIkt3mMlukrCZKOV2MxEREeTNm9fK0QghhBDCEA8fPqRo0aIWu52dpUjCZqKU06B58+aVhE0IIYSwM/Z2OZP9nLwVQgghhMilJGETQgghhLBxkrAJIYQQQtg4uYZNCCGEsCFJSUkkJCRYOwy75eTkhFartXYYZicJmxBCCGEDlFLcvHmTBw8eWDsUu+ft7c1LL71kdwMLMiMJmxBCCGEDUpI1Pz8/3N3dc1SykV2UUsTFxREVFQVAwYIFrRyR+UjCJoQQQlhZUlKSPlkrUKCAtcOxa25ubgBERUXh5+eXY06PyqADIYQQwspSrllzd3e3ciQ5Q8p2zEnXAkrCJoQQQtgIOQ1qHjlxO0rCJoQQQghh4yRhE0IIIYSwcZKwCSGEEELYOEnYhBBCCJEtlFIkJiamWW7q4ICMysuJJGGzQSdOnKBjx47cv3/f2qEIIYSwM5GREBqq+5kdlFJMnDiREiVK4ObmRpUqVfjpp58A2LNnDxqNhu3bt1OjRg1cXFzYv38/o0ePJjg4mIULF1KiRAlcXFxQShEfH8+HH36In58frq6u1KtXj7CwMH1dGZWXG8g8bDYmOTmZjh27ceHCWfbs2c+qVctp2LChtcMSQgiRjZSCuDjj37dkCXzwASQng4MDTJ8O3boZV4a7OxgzyHLEiBGsW7eO2bNnU7p0afbt20fnzp3x9fXVrzN06FAmTZpEiRIl8Pb2Zu/evVy+fJkff/yRtWvX6udKGzp0KGvXrmXJkiUEBAQwceJEmjdvzuXLl8mfP3+G5eUKSpgkOjpaASo6Otqs5c6dqxQcVVBaAUqj0ahhw4app0+fmrUeIYQQtuPx48fq3Llz6vHjx0oppWJjldKlbdn/iI01PO7Y2Fjl6uqqDh48mGp5r169VIcOHVRoaKgC1IYNG1L9ftSoUcrJyUlFRUWlKsvJyUmtWLFCv+zp06eqUKFCauLEiUoplWF5L9qez7LU8dvS5JSoDYmMhL59AWoCJ4CeKKWYMGECr7zyCpcvX7ZugEIIIcQzzp07x5MnT2jatCkeHh76x9KlS/nzzz/169WoUSPNewMCAlL1wv35558kJCTwyiuv6Jc5OTlRq1Ytzp8/n+q96ZWX08kpURty6dKzrzyABUALPDzeIywsjODgYA4fPkylSpWsE6AQQohs4e4OsbHGvef6dShfXnc6NIVWC+fOQeHCxtVtqOT/r2zz5s0Ufq4SFxcXfdKWJ0+eNO99fplSCkg76a1SKs2y9MrL6SRhsyGlS+uuOUi9s/2HXbtqM3RoF5ydnalQoYL1AhRCCJEtNBowNicpUwbmzdOdqUlK0iVrc+fqlltKhQoVcHFx4dq1a+leb/1sL9uLlCpVCmdnZ3777Tc6duwI6EaPHjt2jEGDBpktZnslCZsNKVIk9c4GULMm1KpVlF27dhETE4ODg+4s9qNHjwgPD0/VdSyEECJ369ULmjeHy5ehVCndccWSPD09GTx4MB999BHJycnUq1ePhw8fcvDgQTw8PAgICDC4rDx58vC///2PIUOGkD9/fooVK8bEiROJi4ujV69eFvwU9kGuYbMxvXrB1aswc6buP6zDh2HDBtBqtalGwnz00UfUr1+fzz77LEfd3FYIIUTWFCkCjRpZPllL8eWXXzJy5EgmTJhA+fLlad68OZs2bSIwMNDosr766ivefvttunTpQrVq1bh8+TLbt28nX758FojcvmhUykljYZSHDx/i5eVFdHQ0efPmtUgdw4bBV1+Bnx/8/jv4+OiWJyUl8d5777Fo0SIAatWqxcqVKylZsqRF4hBCCGFZT5484cqVKwQGBuLq6mrtcOxeZtszO47fliA9bDZs9GioWBGiomDAgH+Xa7VaFi5cyI8//oi3tzdHjx4lODiYJUuWIPm3EEIIkfNIwmbDXFx0kyBqtbB6NaxZk/r377zzDqdOnaJBgwbExsbSvXt3OnTowIMHD6wTsBBCCCEsQhI2G1e9Ogwfrnv+v//BrVupf1+sWDF2797NuHHj0Gq17Nq1i8ePH2d/oEIIIYSwGEnY7MCIEVClCty9q0vanj/rqdVqGT58OAcPHmTFihUULFhQ/7vkZ+cIEUIIIYRdkoTNDjg7606NOjnB+vWwalX669WqVYtmzZrpX69du5ZXXnmFv/76K5siFUIIIYQlSMJmJ6pUgZEjdc8HDIAbNzJfPzExkaFDh3L48GGCg4NZtmyZDEgQQggh7JQkbHbkk09017Tdv6+bXDez/MvR0ZHdu3dTv359YmJi6Nq1K506dZIBCUIIIYQdkoTNjjg56U6NOjvDL7/onmcmICCA0NBQvvzyS7RaLatWrSI4OJjffvstewIWQgghhFlIwmZnKlaEL77QPR84ECIjM19fq9UyYsQIfvvtN0qUKMHff/9No0aNuHjxouWDFUIIIYRZSMJmhz7+GGrXhocPoXfvzE+NpqhTpw4nT56ka9eu9O3blzKWvBuwEEIIIcxKEjY75OioOx3q6grbt8P8+Ya9L2/evCxZsoTvvvtOvywyMpKVK1daKFIhhBBCmEOuTdgiIiJo1KgRFSpUICgoiDXP30bAxpUtC+PG6Z6HhMDffxv+Xq1WC+juSZoyGKFTp05ER0dbIFIhhBDCeC1atGDUqFHUqVOHgIAAzp07Z+2QrCrXJmyOjo5MnTqVc+fO8euvv/LRRx/x6NEja4dllIEDoV49iI2Fnj3BlDlyGzVqhFarZeXKlQQHB3PgwAHzByqEECLH2rdvH61bt6ZQoUJoNBo2bNiQ7nrdu3fn008/BSAmJoZBgwYREBCAm5sbdevWJSwsLNX6Z8+eJTAwkMOHD/Pee++xadMmi38WW5ZrE7aCBQsSHBwMgJ+fH/nz5+fevXtWjso4Wi0sWgTu7rB7N8yZY+z7tYwcOZL9+/cTGBjI1atXadCgAaNHjyYxMdEyQQshhMhRHj16RJUqVZgxY0aG6yQnJ7N582batGkDQO/evdm5cyfLli3jzJkzNGvWjNdee43r168DEB0djZOTE927dwfA2dkZb29vi38WW2azCZshGfusWbMIDAzE1dWV6tWrs3//fpPqOnbsGMnJyRQtWjSrYWe7UqXg6691z4cMgT//NL6Ml19+mfDwcLp06UJycjJjxoyhYcOG/PPPP+YNVgghRI7TokULxo4dy1tvvZXhOgcOHMDBwYHatWvz+PFj1q5dy8SJE2nQoAGlSpVi9OjRBAYGMnv2bEDXu1arVi39+8+ePUvFihUt/llsmaO1A8hISsbeo0cP3n777TS/X716NYMGDWLWrFm88sorzJ07lxYtWnDu3DmKFSsGQPXq1YmPj0/z3h07dlCoUCEA7t69S9euXZlv6JX7Nuj992HdOggNhR49YM8ecDAyFc+bNy9Lly6lRYsW9OvXj/v37+Pl5WWReIUQQhgms0t1tFotrq6uBq3r4OCAm5vbC9fNkyePCVG+2MaNG2ndujUODg4kJiaSlJSUKnYANzc3/TyhZ8+epXLlyvrfnTlzhkqVKlkkNruh7ACg1q9fn2pZrVq1VL9+/VItK1eunPr0008NLvfJkyeqfv36aunSpQatGx0drX9EREQoQEVHRxtcnyVduaKUh4dSoNSUKVkt64r6/fff9a8TExPVw4cPs1aoEEKIDD1+/FidO3dOPX78ONVyIMNHy5YtU63r7u6e4boNGzZMta6Pj0+662VVesdrpZQqU6aM2rhxo/71yy+/rBo2bKiuX7+uEhMT1bJly5RGo1FlypRRSin1wQcfqJ9//lkppVRCQoIqVaqUUXFktD2VUio6Otqmjt+GstlTopl5+vQpx48fT3Wjc4BmzZpx8OBBg8pQStG9e3eaNGlCly5dXrj+hAkT8PLy0j9s7fRp8eIwaZLu+bBhkJV5cYs2QBlMAAAgAElEQVQXL06FChX0rydNmkSVKlU4dOhQ1oIUQgiR65w/f57IyEhee+01/bKU+1sXLlwYFxcXvvvuOzp27KifxeC7777jzTffBHSDBC9dumSV2G2JXSZsd+7cISkpCX9//1TL/f39uXnzpkFlHDhwgNWrV7NhwwaCg4MJDg7mzJkzGa4/bNgwoqOj9Y+IiIgsfQZL6NMHmjaFJ0+ge3dISsp6mfHx8SxcuJArV65Qv359vvjiCxmQIIQQ2SQ2NjbDx9q1a1OtGxUVleG6W7duTbXu1atX013PEjZu3EjTpk1TnZItWbIke/fuJTY2loiICI4ePUpCQgKBgYEWiSEnsNlr2Ayh0WhSvVZKpVmWkXr16pFsxDwYLi4uuLi4GBVfdtNoYMECqFQJDh2Cb7/VDUTIChcXF44ePUr//v1ZsWIFo0aNYseOHSxfvpzixYubJW4hhBDpM+aaMkutm1U///wzvXv3zjCOPHnycP/+fbZv387EiROzLS57Y5c9bD4+Pmi12jS9aVFRUWl63XKbokVhyhTd888/B3PMM+jl5cXy5ctZtmwZnp6eHDhwgCpVqrBq1aqsFy6EEMKuxcbGEh4eTnh4OABXrlwhPDyca9euERUVRVhYGK1atUr1nu3bt7Nt2zauXLnCzp07ady4MWXLlqVHjx7W+Ah2wS4TNmdnZ6pXr87OnTtTLd+5cyd169a1UlS2o0cPaNkS4uN1p0bNdQazc+fOhIeH8/LLL/Pw4UO6d+/OtWvXzFO4EEIIu3Ts2DGqVq1K1apVAQgJCaFq1aqMHDmSTZs2Ubt2bfz8/FK9Jzo6mv79+1OuXDm6du1KvXr12LFjB05OTtb4CHbBZk+JxsbGcvnyZf3rlIw9f/78FCtWjJCQELp06UKNGjV4+eWXmTdvHteuXaNfv35WjNo2aDTw/fdQsSKEhcHEiTB8uHnKLlGiBPv27WPs2LH6thBCCJF7NWrUCKVUur9788039YMHntW+fXvat29v6dByFJtN2I4dO0bjxo31r0NCQgDo1q0bixcv5t133+Xu3bt88cUX/PPPP1SqVIktW7YQEBBgrZBtSqFCMH06dOkCo0dDq1YQFGSesh0dHRk9enSqZWFhYWzfvp1hw4bpR/kIIYTI3erVq0eHDh2sHUaOoFEZpcUiUw8fPsTLy4vo6Gjy5s1r7XDSpRS0awc//wzBwXD0KFiit/nJkycEBQVx6dIl6tWrx/LlyyVxFkIIIzx58oQrV67o794jsiaz7WkPx+/02OU1bMIwGg3MnQsFCkB4OIwfb5l6XFxc+Pzzz/H09OS3336jSpUq/PDDD5apTAghhMiFJGHL4fz9YeZM3fOxY+HECfPXodFo6NKlC+Hh4dSpU4fo6Gg6dOhA9+7diYmJMX+FQgghRC4jCVsu0L49/Oc/utGi3bvrRo9aQsqAhM8//xwHBweWLFlCcHAwN27csEyFQgghRC4hCVsuoNHArFng6wtnzsAXX1iuLicnJ7744gv27NlDsWLFKF26NC+99JLlKhRCiBxELis3j5y4HSVhyyV8fWHOHN3zr77STfdhSfXr1+fUqVMsW7YMBwfd1yw2NlbmbRNCiHSkzD8WFxdn5UhyhpTtmJPmdbPZaT2E+b31FnTsCCtXQrduuuvZLDkYydvbO9XrDz/8kPXr1zN37lyZf0cIIZ6h1Wrx9vYmKioKAHd3d4NvtSj+pZQiLi6OqKgovL29c9Q0U5Kw5TLTp8Pu3XD+PIwcqZtUNzvExcVx7tw5Hjx4wLvvvsuWLVuYPn06np6e2ROAEELYuJTLR1KSNmE6b2/vHHc5jszDZiJ7nccFYNMmePNN3bVtv/0G2XU3r4SEBMaMGcP48eNRSlGyZElWrlxJrVq1sicAIYSwA0lJSSQkJFg7DLvl5OSUac+avR6/JWEzkb02eIru3WHJEihdWjdHm7t79tW9b98+OnfuTEREBFqtljFjxvDpp5/mqK5rIYQQtslej98y6CCXmjoVCheGS5fgs8+yt+4GDRpw6tQp2rdvT1JSEtOmTePu3bvZG4QQQghhR6SHzUT2mqE/a9s2aNFCd2p0zx5o0CB761dKsWTJEvz9/WnRokX2Vi6EECJXstfjt/Sw5WKvvw69e+vuOdqjB8TGZm/9Go2G7t27p0rWfvrpJ3r27ElsdgcjhBBC2DBJ2HK5yZOhWDH46y/45BPrxhIbG0u/fv1YtGgRVatWJczSk8UJIYQQdkIStlwub15YuFD3fNYs2LXLerF4eHiwbt06ihYtyuXLl6lbty4TJkwgKSnJekEJIYQQNkASNsGrr8L77+ue9+wJDx9aL5ZnByQkJiYyfPhwXn31VSIiIqwXlBBCCGFlkrAJAL7+GkqUgGvXoF8/CA2FyEjrxJIvXz5++OEHFi5cSJ48edi7dy9VqlTh9u3b1glICCGEsDJJ2AQAHh6waJHu+apV0KQJBATA3LnWiUej0dCjRw9OnjxJzZo16dSpE76+vtYJRgghhLAymdbDRPY6LDgzkZG6AQjPfyPKlYOaNSEoCKpU0f3098++uBISEkhKSsL1/298GhERwa1bt6hRo0b2BSGEECJHsNfjt9xLVOhdupQ2WQP44w/d41n+/rrE7dkkrnx5cHY2f1xOTk44OTkBulu2dO7cmYMHDzJ27FiGDBmCg4N0FAshhMjZJGETeqVLg4MDJCf/u0yrhe+/h+vX4fRpOHVKl9jdugU7d+oeKRwddUlbSgKX8tOc9999/Pgxfn5+JCYm8umnn7J9+3aWLl1KkSJFzFeJEEIIYWPklKiJ7LVL9UUWLIC+fSEpSZeszZ0LvXqlXicuDs6e/TeBS/kZHZ1+mX5+qRO4lN44F5f014+M1CWFpUtDenmYUoqFCxfy4YcfEhcXR758+Zg/fz5vvfVW1j68EEKIHM9ej9+SsJnIXhvcEJGRcPkylCqVfsKUHqUgIuLfBO7Z3rhne+xSODrqro17vjdu82ZdwpicrOvtmzcvbcKY4uLFi3Tq1Iljx44B0Lt3b6ZNm4Z7dt7JXgghhF2x1+O3JGwmstcGz25xcfD772l74x48MOz9Wi1cvZpx4vj06VNGjRrF119/TcWKFTl69Chubm5mi18IIUTOYq/Hb0nYTGSvDW4LlNL14j2bwJ0+DRcupD/oITQUGjXKvMzQ0FB8fX2pVKkSoBucoNFoZECCEEKIVOz1+C0Jm4nstcFt2aVLutOkzw96yKyHLSPjx49n9+7dLFmyhMKFC5s1TiGEEPbLXo/f0v0gbEbp0rpr1rTaf5dVq2Z8svbgwQMmTpzIrl27CAoKYsOGDeYNVAghhMhmkrAJm9Krl65HbfZs3aCDsDDdnReM4e3tzZEjR6hWrRr37t2jXbt29O3bl0ePHlkkZiGEEMLSJGETNqdIEd39TEeO1L1+/33j72tatmxZDh06xNChQ9FoNMybN4/q1atz8uRJ8wcshBBCWJgkbMJmDR+uuyXWgwfQs2f6AxIy4+zszNdff82vv/5KoUKFuHDhAo0aNeKBoUNUhRBCCBshCZuwWU5OsHQpuLrq7qgwa5Zp5TRp0oTTp0/Trl07xo4di7e3t3kDFUIIISxMRomayF5Hmdij6dPhww/BzQ1OnoSyZU0rJ+WrrtFoADh69Cg3btygbdu25gpVCCGEjbPX47f0sAmb178/vPYaPH4MXbtCYqJp5Wg0Gn2yFhMTQ8eOHWVAghBCCLsgCZuweQ4OsGgReHnB0aMwYULWy3R2dqZdu3YAMiBBCCGEzZOETdiFIkVg5kzd8y++gOPHs1aei4sL33zzDTt37qRgwYJcuHCB2rVrM3nyZJLTu/mpEEIIYUW5PmGLi4sjICCAwYMHWzsU8QIdO8I77+hOiXburDtFmlWvvfYap0+fpk2bNiQkJDB48GBef/11YmJisl64EEIIYSa5PmEbN24ctWvXtnYYwgAajW5C3Zdegj/+0E37YQ4+Pj6sX7+eOXPm4ObmhpOTEx4eHuYpXAghhDCDXJ2wXbp0iT/++IOWLVtaOxRhoAIFYOFC3fOpU2H3bvOUq9Fo6Nu3L8ePH2fhwoX6wQmxsbHExcWZpxIhhBDCRDabsO3bt4/WrVtTqFAhNBpNuveDnDVrFoGBgbi6ulK9enX2799vVB2DBw9mgjmuYBfZqkUL6NtX97x7d93EuuZSvnx5/P399a8HDBhAjRo1CA8PN18lQgghhJFsNmF79OgRVapUYcaMGen+fvXq1QwaNIjPPvuMkydPUr9+fVq0aMG1a9f061SvXp1KlSqledy4cYOff/6ZMmXKUKZMmez6SMKMJk2CkiUhIgIGDrRMHbdv32bHjh2cP3+e2rVr8+2338qABCGEEFZhFxPnajQa1q9fn2qC09q1a1OtWjVmz56tX1a+fHnatm1rUK/ZsGHDWL58OVqtltjYWBISEvj4448ZmXIDy+fEx8cTHx+vf/3w4UOKFi1qdxPv5SQHD0L9+pCcDGvXwltvmb+OO3fu0KtXLzZu3AhAs2bNWLx4MQULFjR/ZUIIISxOJs7NRk+fPuX48eM0a9Ys1fJmzZpx8OBBg8qYMGECERERXL16lUmTJvHee+9lmKylrO/l5aV/FC1aNEufQWRd3brwySe65336wM2b5q/Dx8eHDRs2MHv2bNzc3NixYwdBQUH88ssv5q9MCCGEyIBdJmx37twhKSkp1bVGAP7+/ty0xFEbXY9cdHS0/hEREWGReoRxRo+G4GC4exd69zb+BvGG0Gg09OvXj+PHj1OlShXu3LlD7969iY2NNX9lQgghRDocrR1AVqSM5EuhlEqzzBDdu3d/4TouLi64uLgYXbawLGdnWLYMqleHzZthwQJd4mYJ5cuX58iRIwwfPpzXXntNpv4QQgiRbeyyh83HxwetVpumNy0qKipNr5vI+SpVgvHjdc8/+gj++stydbm4uDB58mRatGihX/bjjz8yZcoUGZAghBDCYuwyYXN2dqZ69ers3Lkz1fKdO3dSt25dK0UlrGnQIGjQAGJjdTeIT0rKnnpv3rxJnz59CAkJoWXLlhY7JS+EECJ3s9mELTY2lvDwcP38V1euXCE8PFw/bUdISAjz589n4cKFnD9/no8++ohr167Rr18/a4YtrESrhSVLwNMTDhzQTfuRHfz9/ZkwYQKurq5s376doKAgNm/enD2VCyGEyDVsdlqPPXv20Lhx4zTLu3XrxuLFiwHdxLkTJ07kn3/+oVKlSkyZMoUGDRpkS3z2Oiw4p1u0CHr2BCcnOHYMgoKyp95z587RsWNHTp06BUD//v355ptvcHNzy54AhBBCGMRej982m7DZOntt8JxOKWjbFjZuhMqVISwMsmusSHx8PMOGDWPKlCkAVKpUiSNHjuDu7p49AQghhHghez1+2+wpUSFModHA99+Dry+cOQOZTK1ndi4uLnz77bds27YNf39/Xn31VUnWhBBCmIX0sJnIXjP03OLnn3U9bRoN7NsH9eplb/1RUVHkzZsXV1dXACIjI3FycpJRzEIIYWX2evyWHjaRI7VpAz166E6Rdu0KMTHZW7+fn58+WUtMTKRDhw4EBQWxZcuW7A1ECCFEjiAJm8ixpk6FgAC4cgVCQqwXx+3bt4mOjiYqKoo33niDDz/8kCdPnlgvICGEEHZHEjaRY+XNq5vqQ6OB+fNh0ybrxFGwYEGOHj3KwIEDAZg+fTo1a9bk7Nmz1glICCGE3ZGETeRoDRv+27vWuzfcvm2dOFxdXZk6dSpbtmzBz8+Ps2fPUqNGDaZPn45cRiqEEOJFJGETOd7YsVCxIkRFQb9+lrlBvKFatGjB6dOnadmyJfHx8Xz//fc8ffrUegEJIYSwC5KwiRzP1VV3g3gnJ1i3Tvfcmvz9/fnll1+YPn06q1atwuX/J4qTnjYhhBAZkYRN5ApVq8Lo0brnH3wA/3+HM6vRaDQMGDCAihUr6peNGzeOgQMHyoAEIYQQacg8bCay13lccrPERN0N4g8dgsaN4ddfwcFG/mX5+++/KVWqFImJiVSuXJmVK1dSqVIla4clhBA5jr0ev23kcCWE5Tk6wtKl4O4OoaHw3XfWjuhfAQEB/Pzzz/j5+XHmzBlq1KjBjBkz5DSpEEIIQBI2kcuUKgWTJ+uef/opnDtn3Xie1bJlS06fPk2LFi2Ij4/ngw8+oHXr1kRFRVk7NCGEEFYmCZvIdfr2hRYtID4eunSBhARrR/Qvf39/Nm/ezLRp03BxcWHz5s3Url2b+Ph4a4cmhBDCiiRhE7mORgMLFkD+/HDiBHz5pbUjSk2j0fDhhx8SFhZGxYoVGTx4sH4kqRBCiNxJBh2YyF4vWhT/+vFHePdd0GrhwAGoXdvaEaX15MkTXFxc0Gg0ABw/fhxXV9dUo0uFEEIYzl6P39LDJnKt9u2hY0dIStKdGn30yNoRpeXq6qpP1h4+fMg777xDjRo1mDVrlgxIEEKIXEQSNpGrzZgBhQvDpUvwySfWjiZzT58+pWzZsjx58oT+/fvTpk0bblvrXltCCCGylSRsIlfLlw8WLdI9nzkTduywbjyZ8fHxYfPmzUyZMgVnZ2c2bdpEUFAQO2w5aCGEEGYhCZvI9Zo2hQEDdM979IB796wbT2YcHBwYNGgQR48epUKFCty8eZPmzZsTEhJCYmKitcMTQghhIZKwCQF8/TWULQs3bkDPnrqJdSMjrR1VxqpUqcKxY8d4//33Abh8+TJardbKUQkhhLAUGSVqInsdZSIydvQo1KkDKXuEgwPMmwe9elk3rhfZvHkztWrVwtfXF4D4+HicnZ31gxWEEEL8y16P35KwmcheG1xkLDISihX7N2FLUacOFCyom7ctvUe+fP8+9/DQzfOW1TguXYLSpaFIEePf36VLFx4+fMiCBQvw8fHJWjBCCJHD2Ovx29GUNyUmJrJnzx7+/PNPOnbsiKenJzdu3CBv3rx4eHiYO0YhssWlS2mTNYDDhw0vw9Ex48QuvQQv5eHlpZsPbsEC6NMHkpNN6+G7ePEiP/74I0+fPqVy5cosXbqUpk2bGl6AEEIIm2R0D9vff//N66+/zrVr14iPj+fixYuUKFGCQYMG8eTJE+bMmWOpWG2KvWboImORkRAQoEuWUjg4wPTpul6ze/fg/n3dz+cfd+/C06em163RQN68EB2derlWC1evGtfTFh4eTseOHTl//jwAH3/8MePGjZO7JQghBPZ7/DY6YWvbti2enp4sWLCAAgUKcOrUKUqUKMHevXvp3bs3ly5dslSsNsVeG1xkbsEC3b1Gk5J0ydLcuYb1cCkFjx+nTuIySu6ef8TGZl52aCg0amTc54iLi2Pw4MHMnj0bgODgYFatWkW5cuWMK0gIIXIYez1+G52w+fj4cODAAcqWLYunp6c+Ybt69SoVKlQgLi7OUrHaFHttcPFikZFw+TKUKmXaNWTGevoUHjyAc+fg1VdT9/CBLpaSJU0re+PGjfTs2ZO7d+9SsmRJ/vjjDxwdTboSQgghcgR7PX4bPa1HcnIySUlJaZZHRkbi6elplqCEsKYiRXQ9WtmRrAE4O4Ofn67OefN0PXvPGj06/WvrDPHmm29y5swZmjdvzuzZsyVZE0IIO2V0wta0aVOmTp2qf63RaIiNjWXUqFG0bNnSrMEJkdv06qW7Zi00FJYv1yVvy5fDyJGml1mwYEG2bt2aavDBunXr+PXXX7MesBBCiGxh9CnRGzdu0LhxY7RaLZcuXaJGjRpcunQJHx8f9u3bh5+fn6VitSn22qUq7MvChf9eQ7dggW5S36y6evUqQUFBxMTEyIAEIUSuY6/Hb5PmYXv8+DGrVq3ixIkTJCcnU61aNTp16oSbm5slYrRJ9trgwv58/jmMHaubMmTLFt2ttLIiLi6OkJAQ5s6dC0DVqlVZuXKlDEgQQuQK9nr8lolzTWSvDS7sj1LQpQusWAGennDgAFSunPVyN2zYQO/evbl79y5ubm5MmTKFPn36yB0ShBA5mr0ev41O2JYuXZrp77t27ZqlgOyFvTa4sE/x8dC8OezdqxsMcfgwFC6c9XJv3LhB165d2bVrFwDt2rVjzZo1cl9SIUSOZa/Hb6MTtnz58qV6nZCQQFxcHM7Ozri7u3Pv3j2zBmir7LXBhf26fx/q1oU//oAqVWD/fl2PW1YlJyfz7bffMnz4cD744AMmT56c9UKFEMJG2evx2+hRovfv30/1iI2N5cKFC9SrV49Vq1ZZIkYhBLpbWm3ZopsC5NQpaN8eEhOzXq6DgwODBw/m2LFjjB8/Xr88KiqKp1m5fYMQQgizMTphS0/p0qX56quvGDhwoDmKE0JkIDAQfvkF3Nxg2zbo39/0OdqeFxQUpB8tmpiYSLt27ahbty4XLlwwTwVCCCFMZpaEDUCr1XLjxg1zFZctrly5QuPGjalQoQKVK1fm0aNH1g5JiBeqWRNWrdLdf3TePJg40fx1XLx4kT/++IPjx49TrVo15s+fj4xPEkII6zH6GraNGzemeq2U4p9//mHGjBkULVqUrVu3mjVAS2rYsCFjx46lfv363Lt3j7x58xo8E7y9ngMXOcd330FKp/aqVfDf/5q3/OcHJLz11lvMmzePAgUKmLciIYTIRvZ6/DY6YXNwSN0pp9Fo8PX1pUmTJkyePJmCBQuaNUBL+f333xk4cKDJs73ba4OLnOWjj2DqVN3trX79FerXN2/5ycnJTJ48mc8++4yEhAQKFy7M0qVLadKkiXkrEkKIbGKvx2+T7iX67CMpKYmbN2+ycuVKsyZr+/bto3Xr1hQqVAiNRsOGDRvSrDNr1iwCAwNxdXWlevXq7N+/3+DyL126hIeHB2+++SbVqlVLdbG1EPZi0iRo1053A/m2bcHcl5s5ODgwZMgQDh8+TJkyZbh+/TpDhgwh+fk71AshhLAos13DZm6PHj2iSpUqzJgxI93fr169mkGDBvHZZ59x8uRJ6tevT4sWLbh27Zp+nerVq1OpUqU0jxs3bpCQkMD+/fuZOXMmhw4dYufOnezcuTO7Pp4QZpFyr9HateHePWjZEqKizF9PtWrVOHHiBO+//z7Lly9P09MuhBDCsgw6JRoSEmJwgd9++22WAkqPRqNh/fr1tG3bVr+sdu3aVKtWjdmzZ+uXlS9fnrZt2zJhwoQXlnno0CHGjBnDtm3bAPjmm28AGDJkSLrrx8fHEx8fr3/98OFDihYtanddqiJnioqCOnXgyhVd8hYaqhtJamlff/01Pj4+9OzZU+6QIISwC/Z6StSgK+xPnjxpUGHZ9Qf76dOnHD9+nE8//TTV8mbNmnHw4EGDyqhZsya3bt3i/v37eHl5sW/fPvr27Zvh+hMmTGDMmDFZilsIS/Hzg61b4eWX4cgR6NwZfvxR1wNnKeHh4QwfPpzk5GS2bt3KvHnzyJ8/v+UqFEKIXMyghC00NNTScRjlzp07JCUl4e/vn2q5v78/N2/eNKgMR0dHxo8fT4MGDVBK0axZM1q1apXh+sOGDUvV05jSwyaErShbFjZs0N0cft06GDIELNDhrVe5cmXGjx/PiBEjWLt2LUeOHGHZsmU0atTIcpUKIUQuZdcXojzfo6eUMqqXr0WLFpw5c4azZ8++8FSui4sLefPmTfUQwtY0aACLF+ueT5kC06dbri6tVssnn3zCoUOHKF26NJGRkTRp0oThw4eTkJBguYqFECIXMmzSseeEhYWxZs0arl27lubWNevWrTNLYJnx8fFBq9Wm6U2LiopK0+smRG7ToQNcvQrDh8OgQRAQAG++abn6atSowYkTJ/joo4+YP38+EyZM4ODBg4SGhsp1bUIIYSZG97D98MMPvPLKK5w7d47169eTkJDAuXPn2L17N15eXpaIMQ1nZ2eqV6+eZlTnzp07qVu3brbEIIQt+/RT6N0bkpN1E+qGhVm2Pg8PD77//nt++ukn8uXLR4cOHSRZE0IIMzK6h238+PFMmTKF/v374+npybRp0wgMDKRv375mnYctNjaWy5cv619fuXKF8PBw8ufPT7FixQgJCaFLly7UqFGDl19+mXnz5nHt2jX69etnthiEsFcaDcyaBRERsH07tG4Nhw9D8eKWrfftt9+mQYMG+Pj46JedPXuWwoULky9fPstWLoQQOZjRdzrIkycPv//+O8WLF8fHx4fQ0FAqV67M+fPnadKkCf/8849ZAtuzZw+NGzdOs7xbt24s/v+LdGbNmsXEiRP5559/qFSpElOmTKFBgwZmqf9F7HVYsMhdYmJ0dz84dQrKl4cDByA786YHDx4QHBxMcnIyy5Yto2HDhtlXuRBCpMNej99GnxLNnz8/MTExABQuXJizZ88Cuj/McXFxZgusUaNGKKXSPFKSNYD333+fq1evEh8fz/Hjx7MtWRPCXnh6wi+/QOHCcP48vPUWPDOdoMXdunULJycnIiIiaNy4sf4WV0IIIYxjdMJWv359/bVj7du3Z+DAgbz33nt06NCBV1991ewBCiGypkgR2LJFl7zt2aO7ts24fnXTlS1blpMnT9KzZ0+UUowfP5569erx559/Zk8AQgiRQxh9SvTevXs8efKEQoUKkZyczKRJk/jtt98oVaoUn3/+ea65TsVeu1RF7rV9O7zxBiQlweefwxdfZG/9a9asoU+fPjx48AAPDw9mzJhB165dZXCCECJb2evx2+iETejYa4OL3G3+fHjvPd3zBQugZ8/srT8iIoLOnTuzb98+2rRpw/r16yVhE0JkK3s9fht9SrRx48YsWLCA6OhoS8QjhLCg3r1187MB9O0Lz82MY3FFixZl9+7dTJ48mfnz5+uTNfm/UQghMmd0wla5cmVGjBjBSy+9xNtvv82GDRvSTJ4rhLBdY8dCx46QmAhvvw1nzmRv/VqtlpCQEP3UH0opunbtyogRI2RAghBCZMDohO27777j+vXr/Pzzz3h6etKtWzdeeukl+vTpw0CK/nYAACAASURBVN69ey0RoxDCjDQaWLhQdxurmBho2RKuX7dePAcPHmT58uWMGzeO+vXry4AEIYRIh0n3EnVwcKBZs2YsXryYW7duMXfuXI4ePUqTJk3MHZ8QwgJcXGD9et0N4yMjoVUrXfJmDa+88gqrV6/Gy8uLI0eOEBwczJIlS+Q0qRBCPCNLN3+/efMmc+bM4euvv+b06dPUqFHDXHEJISwsf37YuhX8/CA8HNq3150mtYb27dtz+vRpGjRoQGxsLN27d6djx448ePDAOgEJIYSNMTphe/jwIYsWLaJp06YULVqU2bNn07p1ay5evMiRI0csEaMQwkICA2HTJnBzg23boH//7Juj7XnFihVj9+7djBs3Dq1Wyw8//EDLli2lp00IITBhWg83Nzfy5ctH+/bt6dSpEzVr1rRUbDbNXocFC5GeDRt0d0FQCr76Cjp1gkuXoHRp3cS72e3IkSN07tyZ2bNn89prr2V/AEKIHMtej99GJ2w7duzgtddew8EhS2dT7Z69NrgQGZk2DQYN0j3XaHTJm4MDzJsHvXplfzwJCQk4OTnpX2/dupUyZcpQsmTJ7A9GCJFj2Ovx2+isq1mzZrk+WRMiJxo48N+JdFP+jUtO1s3XFhmZ/fE8m6z99ddfvPvuuwQHB7N06VI5TSqEyHWMzrxu3bpFly5dKFSoEI6Ojmi12lQPIYT96tAh7bKkJJgwAa5dy/54Ujg5OREcHExsbCzdunWjU6dOMnm3ECJXMfqUaIsWLbh27RoDBgygYMGCaW4r06ZNG7MGaKvstUtViMxERkJAgK5nLT21a8M778B//qNbLzslJSUxYcIERo8eTVJSEgEBAaxYsYJXXnklewMRQtg1ez1+G52weXp6sn//foKDgy0Vk12w1wYX4kUWLNCdBk1KAq1WN91HZCT89lvqEaQ1a/6bvAUGZl98hw8fplOnTvz11184ODgwcuRIRo0alX0BCCHsmr0ev40+JVq0aFG5fkSIHKxXL7h6FUJDdT9XroR9+3R3Q5gxAxo21A1KCAuDoUOhRAmoUQO+/hr++svy8dWpU4eTJ0/SpUsXkpOTefTokeUrFUIIKzNplOjkyZOZO3cuxYsXt1BYts9eM3QhzOHmTd2dEtasgb17U59CrVZN1+v2zjtQqpRl49i0aRPNmzfH2dkZgNjYWDw8PCxbqRDCrtnr8dvohC1fvnzExcWRmJiIu7t7qpFcAPfu3TNrgLbKXhtcCHOLivo3eQsNTZ28BQf/e9q0TBnLxpGQkED9+vUpVaoUM2fOxMvLy7IVCiHskr0ev41O2JYsWZLp77t165algOyFvTa4EJZ0+7ZuEt41a2D3bt11cCmCgv5N3sqVM3/de/bs4bXXXiMpKYnixYuzYsUK6tata/6KhBB2zV6P30YnbELHXhtciOxy9+6/yduuXanvU1qpki55e+cdKF/efHUeOnSITp06ceXKFRwcHPj8888ZMWIEjo6O5qtECGHX7PX4bVLC9ueff7Jo0SL+/PNPpk2bhp+fH9u2baNo0aJUrFjREnHaHHttcCGs4d49+PlnXfK2c2fq5K1ChX+Tt5Q/H5GRpt8a6+HDhwwYMIBly5YBULduXVasWJGrr7kVQvzLXo/fRo8S3bt3L5UrV+bIkSOsW7eO2NhYAE6fPi1D64UQ6cqfH3r0gC1bdNe8LV4Mb7wBTk5w7hyMGaPrdatQAVq31s3x1qSJ7ueCBcbVlTdvXpYuXcqKFSvImzcvBw8epGfKLRyEEMJOGd3D9vLLL/POO+8QEhKCp6cnp06dokSJEoSFhdG2bVuuX79uqVhtir1m6ELYkgcPYNMmXc/b9u3w9GnadbRa3fQiptyE/sqVK/Tt25fp06dTtmzZLMcrhLB/9nr8NrqH7cyZM7Rr1y7Ncl9fX+7evWuWoIQQuYO3N3TpAhs36nrehg9Pu05SEvwfe3ceFlX59gH8exhWERA3FFlEQwURRHBDRXDBcAtLS819z8pd0fRnpiluiZorYWJpaaWSmqlYrJIbi3u4L7hErogby5z3j/M6OUImcGaD7+e65tJ5Zubc98wI5/Y5z3L+fMmO7+Lign379qkVa19++SX++OOPEmZMRKQbxS7YKlWqhJs3bxZqT0tLQ61atWRJiojKHxsb4IMPAKMifivJ9avlwIEDGDduHNq0aYM5c+ag4MVprEREeqzYBVvfvn0RGhqKW7duQRAEKJVKHDhwAJMmTcKAAQM0kSMRlRMODkBEhHQZ9EUffAA8flz643t4eKB3794oKCjAzJkzERAQgMuXL5f+wEREGlbsMWx5eXkYNGgQNm/eDFEUYWxsjIKCAvTt2xdRUVFQvPybtowy1GvgRIYgM1O6DHrnDjBoEJCTAwQGSuPdLC1Lf/yNGzdi9OjRePjwIaytrbFmzRr06dOn9AcmIr1nqOfvEq/DduHCBaSlpUGpVMLb2xuurq5y56bXDPULJzI0Bw4Ab74pFW0BAcCuXfIUbRcvXkS/fv1U49lGjRqF1atXl/7ARKTXDPX8XexLos/VrVsXPXv2xLvvvlvuijUi0p5WraQZpFZWQFwc0LmzVLyVVp06dZCQkICZM2fCyMgIPj4+pT8oEZGGFLuHbcKECUUfSBBgbm6ON954A2+99RYqV64sS4L6ylArdCJDdfAg0KkTkJ0NtG4trelmZSXPsU+dOgV3d3cIggBAWg7Eycmp3AzxICpPDPX8XeyCLTAwEKmpqSgoKED9+vUhiiLOnTsHhUKBBg0aICMjA4IgICkpCe7u7prKW+cM9QsnMmSHDwNBQcCDB1LP2+7dgNw/fvfu3YOXlxdq166NjRs3wsnJSd4ARKRThnr+LvYl0bfeegsdOnTAjRs3kJKSgtTUVFy/fh0dO3ZEnz59cP36dfj7+2P8+PGayJeIyrFmzaStrSpV+mdsW3a2vDGOHz+O+/fvIzExEZ6entiyZYu8AYiISqDYPWy1atVCTExMod6zU6dOISgoCNevX0dqaiqCgoJw+/ZtWZPVJ4ZaoROVBSkpQMeOwL17QIsWwJ490jpucrl48SLef/99HDx4EAAwcOBAfPnll7CS6xosEemMoZ6/i93D9uDBA2RlZRVq//vvv5H9///VrVSpEnKL2mOGiEgGPj7A/v2Ara00ti0oSNrmSi7PJyT873//g5GRETZs2ABvb28cOnRIviBERMVQokuiQ4YMwfbt25GZmYnr169j+/btGDp0KEJCQgAAhw8fRr169WRPVm7h4eFo2LAh3N3dMWbMGJRwhRMi0oEmTYDff5c2lj98+J8eN7mYmJhg9uzZiIuLg5OTEy5cuIAvvvhCvgBERMVQ7EuiOTk5GD9+PL755hvk5+cDAIyNjTFw4ECEh4fD0tIS6enpAIDGjRvLn7FM/v77b7Ro0QKnTp2CiYkJ/P39sXjxYrRs2fK1Xm+oXapEZc2xY0D79tIiuz4+wL59UhEnp/v372PGjBn47LPPUKVKFXkPTkRaZajn7xIvnJuTk4OLFy9CFEXUrVsXFStWlDs3jfr777/h6+uLY8eOwdzcHP7+/vj+++9Rt27d13q9oX7hRGXR8eNS0Xb7NuDtLV0u1eTKQqIoYtSoUWjfvj3effddzQUiItkZ6vm7xAvnVqxYEZ6envDy8tJIsZaQkIBu3brB3t4egiAgOjq60HNWrVoFFxcXmJubw8fHB4mJia99/GrVqmHSpElwcnKCvb09OnTo8NrFGhHpF09PIDYWqFYNSEv7p8dNU37++WdERETgvffew+DBg/Hw4UPNBSMiAmD8Ok96++23ERUVBWtra7z99tuvfO62bdtkSezRo0fw8vLC4MGD8c477xR6fMuWLRg3bhxWrVqFVq1aYe3atQgODsbp06dV6yb5+Pjg2bNnhV67b98+WFhYYNeuXbh8+TIsLCwQHByMhIQE+Pv7y5I/EWmXh4dUtLVrB6SnS3/+9htQtar8sbp06YLp06dj3rx5iIqKQmJiIr777js0a9ZM/mBERHjNgs3Gxka1AriNnHPnXyE4OBjBwcH/+viSJUswdOhQDBs2DACwdOlS7N27F6tXr0ZYWBgAICUl5V9f/+OPP+KNN95Q7cjQpUsXHDx48F8LtmfPnqkVf9lyL/5ERKXWsKG0fVVgoHSZ9HnRVq2avHFMTEzw+eefIygoCP369cOFCxfQqlUrfPbZZwgNDeUOCUQku9cq2NavX1/k33UlNzcXKSkpmDp1qlp7UFAQkpOTX+sYjo6OSE5OxtOnT2FiYoK4uDiMGDHiX58fFhaGzz77rFR5E5Hmubn9U7SdOPFP0Va9uvyx/P39cezYMYwaNQo//PADpk+fjlOnTmHTpk3yByOicq1EY9jy8/Oxf/9+rF27VjV248aNG8iRY0fm13D79m0UFBTAzs5Ord3Ozg63bt16rWO0aNECnTt3hre3Nzw9PVG3bl107979X58/bdo0PHjwQHW7du1aqd4DEWlOgwZS0VazJnDypFS8/fWXZmLZ2tpi8+bNWL9+PaytrVW9/kREcnqtHrYXXblyBW+++SauXr2KZ8+eoWPHjrCyssLChQvx9OlTrFmzRhN5Fun5ZdrnRFEs1PYqc+fOxdy5c1/ruWZmZjAzMytWfkSkO/XrA/HxUrF2+rT05++/AzVqyB9LEAQMGjQIISEhqFSpkqo9MTER3t7eBjeLnoj0T7F72MaOHQtfX1/cu3cPFhYWqvYePXrgt99+kzW5f1O1alUoFIpCvWlZWVmFet2IqPxydZV62hwcgDNngIAA4OZNzcV7sVg7d+4cgoOD4e3tjSNHjmguKBGVC8Uu2JKSkjBjxgyYmpqqtTs7O+P69euyJfYqpqam8PHxQUxMjFp7TEwM/Pz8tJIDERmGN96QijZHRyAjQyratPGr6t69e7C1tcX58+fh5+eH+fPno6CgQPOBiahMKnbBplQqi/ylk5mZKevGyDk5OUhPT1ftmnDp0iWkp6fj6tWrAIAJEyYgMjISX3/9Nc6cOYPx48fj6tWrGDVqlGw5EFHZULeuVLQ5OQFnz0pFW2amZmM2a9YMx48fR69evZCfn49p06ahQ4cOyNR0YCIqk4pdsHXs2BFLly5V3RcEATk5Ofj000/RuXNn2RI7evQovL294e3tDUAq0Ly9vTFz5kwAwHvvvYelS5di9uzZaNy4MRISErB79244OzvLlgMRlR116khj2pydgfPnpaJN03OHbG1tsWXLFnz99dewtLREXFwcPD09sXXrVs0GJqIyp9hbU924cQOBgYFQKBQ4d+4cfH19ce7cOVStWhUJCQmorom583rIULe2ICrvrlyRirXLl6UiLjZW6nnTtHPnzqFv3744evQopk6dqlovkoi0y1DP3yXaS/TJkyfYvHkzUlJSoFQq0aRJE7z//vtqkxDKOkP9wokIuHpVmjV68SLg4iIVbdronM/Ly8OaNWswcuRI1TjggoICLrRLpEWGev4u8ebv5Z2hfuFEJLl2TSraLlwAateWirbatbWbQ15eHgIDA9GtWzdMnjwZRkYl3t6ZiF6ToZ6/+duBiMolR0dpIsIbb0iXR9u2BS5d0m4OP/zwAw4cOICpU6dyQgIRvRILNiIqtxwcpKKtXj3pMmnbtlKPm7b07dsXkZGRqFChAmJjY+Hp6Ylt27ZpLwEiMhgs2IioXKtVS7ocWr++dJk0IABITJTaNN3hJQgChg4dirS0NPj4+ODevXt45513MHz4cDx69EizwYnIoLBgI6Jyz95eKtAaNJCKNH9/adN4Z2dg3TrNx69Xrx6Sk5MRGhoKQRAQGRnJPUmJSE2JJx3k5uYiKysLSqVSrd1JG/Pj9YChDlokon+XlgY0aaLeplBIY9wcHLSTQ2xsLEaPHo0dO3bA1dVVO0GJyhFDPX8Xu4ft3LlzaNOmDSwsLODs7AwXFxe4uLigdu3acHFx0USORERacf9+4baCAmDcOM0vsvtcYGAgTp06pVasbdiwQWtb/xGRfjIu7gsGDRoEY2Nj7Nq1CzVr1oQgCJrIi4hI61xdASMj4KULB9i6FdixA+jfHwgNlSYpaNKLy3vEx8dj8ODBsLW1xbp16xASEqLZ4ESkl4p9SdTS0hIpKSlo0KCBpnIyCIbapUpEr7ZuHTBypNSzplAAY8ZIl0rj4qTHBQHo1QuYNg1o3Fjz+WRkZKBv375ITU0FAIwYMQJLliyBpaWl5oMTlUGGev4u9iVRd3d33L59WxO5EBHp3NCh0pi12FjpzyVLpL8fOAB07QqIIvDDD4C3N9ClC5CUpNl86tevjz/++ANTpkyBIAiIiIiAj48P0tLSNBuYiPRKsQu2BQsWYMqUKYiLi8OdO3eQnZ2tdiMiMnQODtLyHi9ONPDzA3buBI4dA/r0kS6d7t4NtGkjzSrds0cq5jTB1NQUCxYswP79+2Fvb4+MjAw0b94cK1as0ExAItI7xS7YOnTogIMHD6J9+/aoXr06bG1tYWtri0qVKsHW1lYTORIR6Q1PT+C774CMDGD4cMDERFq3LTgY8PEBfvpJupyqCe3atcPx48fRo0cP5OXloUKFCpoJRER6p9hj2OLj41/5eNu2bUuVkKEw1GvgRCSv69ely6Zr1gCPH0tt9eoBU6cC778P/P8e77ISRRExMTHo2LGjauLXvXv3+J9motdgqOdvbv5eQob6hRORZty+DXz5JbB8+T/Lgzg6ApMnS+PiNNkZdvfuXXh5eaFr16744osv2PNG9AqGev5+rYLt+PHj8PDwgJGREY4fP/7K53p6esqWnD4z1C+ciDTr4UOpt23JEuDWLamtWjVg/Hhg9GjAxkb+mJs2bUK/fv0AAG5ubvjuu+/QWBtTWIkMkKGev1+rYDMyMsKtW7dQvXp1GBkZQRAEFPUyQRBQoKnBG3rGUL9wItKOp0+BqChgwQJptikAWFsDH34oLcRbvbq88fbv348BAwbg5s2bMDU1RVhYGMaNG6e2phsRGe75+7UKtitXrsDJyQmCIODKlSuvfK6zs7NsyekzQ/3CiUi78vOBzZuBsDDg9GmpzdxcmrAwaRIg525+t2/fxrBhw/Dzzz8DAIKCghAVFYWaNWvKF4TIwBnq+Ztj2ErIUL9wItINpVLaLWHePODIEanN2Bjo10/aPUGutchFUcTatWsxYcIEPHnyBMOGDcNXX30lz8GJygBDPX+zr5yISAuMjICQEODQIWD/fqBdO6n3LSoKcHeXdk/4/80MkJkpLdabmVn8OIIgYNSoUUhJSUG3bt2wcOFCWd8HEekGe9hKyFArdCLSHwcPSpdKd+z4p83DQ7p0qlRKRV5EhDTLtLREUcTUqVPRt29feHl5lf6ARAbKUM/f7GEjItKRFi2An38GTpyQ1mwTBODkyX82n1cqpX1NS9LT9rJvv/0WCxcuRLNmzRAeHg7lyzvcE5FeK1bBVlBQgPj4eNy7d09T+RARlTseHsDGjcA33xR+rKAAOH++9DE6d+6M7t27Izc3FxMmTEBwcDBu3rxZ+gMTkVYUq2BTKBTo1KkT7j9fFZKIiGQTECBdBn2ZHL9yq1atiujoaKxevRrm5ubYt28fPD09sWvXrtIfnIg0rtiXRBs1aoSLFy9qIhcionLNwUEas6ZQqLf36SNdOi2tFyckeHl54fbt2+jWrRtmz55d+oMTkUYVu2CbO3cuJk2ahF27duHmzZvIzs5WuxERUckNHSottBsbK20w37WrtAjv229LxZwc3N3dcejQIYwfPx4KhaLc7AFNZMiKPUv0xVWzn286DEgzkLjTARGRvPLzgVGjgHXrpPszZwKzZkkTFORw4cIF1K1bV3X/1KlTcHNz4w4JVGYZ6vnbuLgviI2N1UQeRERUBGNj4KuvgFq1gNmzpduNG8Dq1dJjpfVisZaRkYFmzZqhTZs2iIqKQo0aNUofgIhkUewfd3adExFplyAAn30G2NtLG8hHRgJ//SVteVWhgnxxTpw4AaVSib1798LT0xPr169Hly5d5AtARCVWooVz79+/j3Xr1uHMmTMQBAHu7u4YMmQIbGxsNJGjXjLULlUiMmzR0dIkhKdPpXXcdu4EqlaV7/inTp1Cnz59cOLECQDAhx9+iEWLFsHCwkK+IEQ6ZKjn72IPUjh69Cjq1q2L8PBw3L17F7dv38aSJUtQt25dpD7fV4WIiDQiJETa2srWVtopoXVraZKCXBo2bIjDhw9j3LhxAICVK1eiadOmqgKOiHSj2AXb+PHj0b17d1y+fBnbtm3D9u3bcenSJXTt2lX1A05ERJrTqhWQlAQ4OkozSf38gGPH5Du+ubk5wsPD8euvv8LOzg6nTp3CDz/8IF8AIiq2Yl8StbCwQFpaGho0aKDWfvr0afj6+uLx48eyJqivDLVLlYjKjuvXgeBgaWsra2tg+3ZpU3k5ZWVlYfHixZg7dy5MTEzkPTiRDhjq+bvYPWzW1ta4evVqofZr167ByspKlqSIiOi/1aoFJCQAbdsC2dnAm28CW7bIG6N69epYuHChqljLzc1Fly5dsHv3bnkDEdErFbtge++99zB06FBs2bIF165dQ2ZmJjZv3oxhw4ahT58+msix1Hr06AFbW1v07Nmz0GO7du1C/fr14erqisjISB1kR0RUcpUqAXv2AD17Anl5QO/ewNKlmou3YsUK7N69G126dMGYMWPw9OlTzQUjIpViXxLNzc3F5MmTsWbNGuTn5wMATExM8MEHH2D+/PkwMzPTSKKlERsbi5ycHGzYsAE//fSTqj0/Px/u7u6IjY2FtbU1mjRpgkOHDqFy5cr/eUxD7VIlorKpoAAYPx748kvp/qRJwIIFRe9NWhpPnz7F1KlTsWzZMgCAh4cHvv/+e3h4eMgbiEhDDPX8XewfZVNTUyxbtgz37t1Deno60tLScPfuXYSHh+tlsQYAgYGBRV6uPXz4MBo2bIhatWrBysoKnTt3xt69e3WQIRFR6SgUwLJlwPz50v3Fi4EBA4DcXHnjmJubY+nSpdi9ezeqV6+OkydPwtfXF19++SVKsEoUEb2mYhVs+fn5MDY2xsmTJ1GhQgU0atQInp6eqFCKlRsTEhLQrVs32NvbQxAEREdHF3rOqlWr4OLiAnNzc/j4+CAxMbHE8V5048YN1KpVS3XfwcEB169fl+XYRETaJghAaCiwYYO0C8KmTdJepA8fyh8rODgYx48fR+fOnfHs2TOMGTMG06ZNkz8QEQEoZsFmbGwMZ2dnWfcLffToEby8vLBixYoiH9+yZQvGjRuH6dOnIy0tDW3atEFwcLDaxAcfHx94eHgUut24ceOVsYv636Ag1wZ9REQ6MmCAtKCupSUQEwMEBAC3bskfx87ODrt27cLy5ctRtWpVDB8+XP4gRASgBJdEZ8yYgWnTpuHu3buyJBAcHIzPP/8cb7/9dpGPL1myBEOHDsWwYcPg5uaGpUuXwtHREatXr1Y9JyUlBSdPnix0s7e3f2XsWrVqqfWoZWZmombNmkU+99mzZ8jOzla7ERHpqzffBOLigGrVgNRUaa22c+fkjyMIAj7++GNcvnxZbV/SnTt3ckICkYyKXbAtX74ciYmJsLe3R/369dGkSRO1m5xyc3ORkpKCoKAgtfagoCAkJyeX+vjNmjXDyZMncf36dTx8+BC7d+9Gp06dinxuWFgYbGxsVDdHR8dSxyci0iRfXyA5GahbF7h0SSraDh/WTCxLS0vV33///Xe89dZbaN68OU6dOqWZgETlTLE3fw8JCdFEHkW6ffs2CgoKYGdnp9ZuZ2eHW8Xo3+/UqRNSU1Px6NEjODg4YPv27WjatCmMjY3xxRdfIDAwEEqlElOmTEGVKlWKPMa0adMwYcIE1f3s7GwWbUSk9954AzhwAOjSBUhJAQIDgZ9+khbc1ZSCggJUrVoVx48fh6+vLxYvXozRo0dzyAlRKRSrYCsoKEBAQAA8PT1ha2urqZwKefmHXBTFYv3gv2rmZ/fu3dG9e/f/PIaZmZnezoIlInoVOzvp8mjPnsDevUC3bkBkJDBokGbidezYESdOnMDgwYPx66+/4qOPPsKePXvw9ddfo1q1apoJSlTGFeuSqEKhQKdOnXD//n1N5aOmatWqUCgUhXrTsrKyCvW6ERHRv6tYUZqIMGCAtGbb4MHAvHmAplbisLOzwy+//IJly5bBzMwMu3btQqNGjbBv3z7NBCQq44o9hq1Ro0a4ePGiJnIpxNTUFD4+PoiJiVFrj4mJgZ+fn1ZyICIqK0xMgKgoYOpU6f706cBHH0kFnCYIgoAxY8bgyJEjaNiwIf76669iDWchon8Uewzb3LlzMWnSJMyZMwc+Pj5qA00BFHvV4JycHJw/f151/9KlS0hPT0flypXh5OSECRMmoH///vD19UXLli0RERGBq1evYtSoUcVNnYio3BMEICwMsLcHxo4FVq2SlvzYtAkwN9dMzEaNGuHIkSPYsmUL+vfvr2rPy8vjhvJEr6nYW1MZvbDPyYvjyJ6PKyvuGm1xcXEIDAws1D5w4EBERUUBkBbOXbhwIW7evAkPDw+Eh4fD39+/WHHkZqhbWxARPffjj0C/ftJuCP7+QHQ0oK3hyXfu3EHz5s0xceJEjBo1ihMSSGsM9fxd7IItPj7+lY+3bdu2VAkZCkP9womIXhQXB7z1FpCdDTRsKG0k7+Cg+bhz587FjBkzAEiTvyIjIzkhgbTCUM/fxS7YSGKoXzgR0cuOH5eW+bhxQyrWoqKkTeNdXTVXvCmVSixfvhyhoaHIzc1FjRo18M0336Bjx46aCUj0/wz1/F3sSQcAkJiYiH79+sHPz0+1U8C3336LpKQkWZMjIiLN8/QE/vgDcHMDMjOBDh2Adu0AZ2dg3TrNxDQyMsK4ceNw+PBhuLu749atWwgKCsLEiRPx7NkzzQQlMmDFLti2bt2KTp06wcLCAqmpqaofrIcPH2LevHmyJ0hEleo8bQAAIABJREFURJrn5ARs2aLeplQCI0dKRZymeHl54ciRIxg9ejQAaTvCWbNmaS4gkYEqdsH2+eefY82aNfjqq6/UZvf4+fkhNTVV1uSIiEh7bt8u3FZQAKxZIxVvmlKhQgWsXLkSP//8M3x8fBAaGqq5YEQGqtgFW0ZGRpEzNK2trbW2oC4REcnP1VUau/ayuXOBli2lLa40qXv37jhy5AgqVaoEQFp9YNGiRbhdVCVJVM4Uu2CrWbOm2rppzyUlJaFOnTqyJEVERNrn4ABERAAKhXRfoQDeflvaJeHwYaB1a2l7qwsXNJfDi8t7REZGYsqUKWjUqFGhBdSJyptiF2wjR47E2LFjcejQIQiCgBs3bmDTpk2YNGmSagwCEREZpqFDgcuXgdhY6c+tW4Hz56WxbEZG0n03N2DiRODePc3m0rRpU7i5uakmJEyaNIkTEqjcKtGyHtOnT0d4eDiePn0KQNoY/fnuB+WFoU4LJiIqqZMngcmTpbXaAKByZeDTT4EPPpC2vdKEx48fY9KkSVi9ejUAoHHjxvj+++/RoEEDzQSkMs9Qz98lXoft8ePHOH36NJRKJdzd3VGxYkW5c9NrhvqFExGV1t69Ug/bqVPSfVdXYNEioHt3aesrTdixYweGDBmCO3fuwMLCAuvWrUOfPn00E4zKNEM9f5doHTZAmtXj6+uLZs2albtijYioPOvUCUhPB9auBapXB86dA0JCgMBAQFOLBXTv3h0nTpxAx44d8ezZMzg6OmomEJGeKnHBRkRE5ZexMTBihDS+7ZNPpI3j4+MBX19g0CDg/9dUl1XNmjWxZ88eJCYmonXr1qr2v/76S/5gRHqGBRsREZWYlZW07EdGBvD++4AoAhs2SJdJZ84EcnLkjWdkZAQ/Pz/V/T///BN169bF5MmTkZubK28wIj3Cgo2IiErNyQnYuPGf5T+ePAHmzJEKt3XrpAV4NWHnzp149OgRFi9ejBYtWuDPP//UTCAiHWPBRkREsmnaFEhIkJb/qFsXuHULGDYMaNIE2L9f/niTJ0/G9u3bUaVKFaSlpaFJkyaIiIhACefTEektFmxERCQrQZAW3D19GliyBKhUCTh+HOjYEejSRWqXU0hICI4fP4727dvjyZMnGDlyJN555x3cuXNH3kBEOsSCjYiINMLUFBg/XpqYMHasNFFh927A0xMYPRrIypIvlr29Pfbt24dFixbBxMQE27dvR2RkpHwBiHSsxOuwlXeGuo4LEZGunD0LhIYC0dHSfWtraYbp2LHSLFO5pKamYtmyZVi3bh2MjY3lOzCVCYZ6/mYPGxERaUW9esD27UBcnDSmLTsbmDoVaNAA2LxZmmEqhyZNmmDDhg2qYu3Zs2cYPHgwzp49K08AIh1gwUZERFrVti1w5AjwzTdArVrAlStAnz6Anx/wxx/SczIzpf1MMzNLH2/OnDmIioqCt7c3IiMjOSGBDBILNiIi0jojI6B/f+ky6Zw5gKUlcPCgVLQ1bQo4OwPt2kl/rltXulgffPAB2rVrh8ePH2P48OHo1asX7t69K88bIdISFmxERKQzFSoAM2ZI21sNGybNMD16FFAqpceVSmDkyNL1tNWqVQsxMTFYuHAhTExMsHXrVnh6eiI2NlaeN0GkBSzYiIhI52rWBL76CoiIKPxYQYE007Q0jIyMMHnyZPzxxx+oV68erl+/jvbt2+Orr74q3YGJtIQFGxER6Y0335Qul77M1lae4/v4+CA1NRXDhw9HxYoV0aFDB3kOTKRhLNiIiEhvODhIvWwKhXp7SAhw8qQ8MSwtLREREYEzZ87AxcVF1X7kyBFOSCC9xYKNiIj0ytChwOXL0izR2Fhpi6vLl4GWLYFffpEvTq1atVR/379/P5o1a4Z3330X9+7dky8IkUxYsBERkd5xcAACAqTboUPSnzk5QLdu0nZXcneEnT9/HsbGxvjpp5/g6emJ+Ph4eQMQlRILNiIi0mtVqgB79wLDh0uF2sSJ0t9zc+WLMWrUKCQnJ8PV1RWZmZkIDAzEJ598gry8PPmCEJUCCzYiItJ7pqbA2rVAeLg0KWHdOmkz+du35YvRtGlTpKamYujQoRBFEWFhYWjVqhXOl3aKKpEMWLAREZFBEARg3Dhg1y7AygpISACaNwdOn5YvRsWKFREZGYmffvoJtra2OHLkCA4ePChfAKISYsFGREQGJThY2sLKxQW4eFGajLBnj7wx3nnnHRw7dgzz589Hv379VO2cRUq6woKNiIgMTsOGwOHDQJs20ibyXboAy5fLOxnB0dERoaGhqvu3b99Gy5YtkZCQIF8QotfEgo2IiAxS1apATAwweLC0hdXYscAHHwCamicwa9YsHDp0CAEBAZg+fTonJJBWsWAjIiKDZWYmTUBYtEga47Z2rbRbgib2dp8/fz6GDBkCURQxb948tG7dGhcuXJA/EFERWLAREZFBEwRg0iRgxw6gYkXg99+lyQgZGfLGqVixItatW4cffvgBlSpVwuHDh9G4cWNs2LCBY9tI41iwERFRmdC1K5CcDDg7S5vFN28uXTKVW69evXDs2DH4+/sjJycHgwYNwurVq+UPRPSCclGw9ejRA7a2tujZs6da+7Vr1xAQEAB3d3d4enrixx9/1FGGREQkh0aNpMkIfn7AgwfSjNJVq+SP4+TkhN9//x1z586Fq6sr3n//ffmDEL1AEMtBP25sbCxycnKwYcMG/PTTT6r2mzdv4q+//kLjxo2RlZWFJk2aICMjA5aWlv95zOzsbNjY2ODBgwewtrbWZPpERFRMT58CI0YA334r3f/wQ2DpUsDYWP5Yz549g5mZGQBp2Y+NGzeid+/eMDExkT8YlZqhnr/LRQ9bYGAgrKysCrXXrFkTjRs3BgBUr14dlStXxl1NjFQlIiKtMjcHNmwA5s+XxritXAl07gxoYl/358UaAKxZswYDBgxAmzZtOCGBZKXzgi0hIQHdunWDvb09BEFAdHR0oeesWrUKLi4uMDc3h4+PDxITE2XP4+jRo1AqlXB0dJT92EREpH2CAISGAtu2ARUqSOPZWrYEzp3TXMxq1arBxsYGhw4dQuPGjfHNN99wQgLJQucF26NHj+Dl5YUVK1YU+fiWLVswbtw4TJ8+HWlpaWjTpg2Cg4Nx9epV1XN8fHzg4eFR6Hbjxo3XyuHOnTsYMGAAIiIiZHlPRESkP0JCgAMHAAcHaeZo8+ZAbKxmYvXs2RPHjh1DmzZtkJOTg4EDB6Jv3764f/++ZgJSuaFXY9gEQcD27dsREhKiamvevDmaNGmiNgPHzc0NISEhCAsLe+1jx8XFYcWKFWpj2ABp7EHHjh0xfPhw9O/f/19f/+zZMzx79kx1Pzs7G46OjgZ3DZyIqLy6dUsq3g4dksayrVwpjXPThIKCAoSFhWHWrFkoKCiAs7Mzvv/+e7Rs2VIzAem1cQybBuTm5iIlJQVBQUFq7UFBQUhOTi718UVRxKBBg9CuXbtXFmsAEBYWBhsbG9WNl06JiAxLjRpAXBzQty+Qnw+MHCltJp+fL38shUKBGTNmICkpCXXq1EFmZiYvjVKp6HXBdvv2bRQUFMDOzk6t3c7ODrdu3Xrt43Tq1Am9evXC7t274eDggCNHjgAADhw4gC1btiA6OhqNGzdG48aNceLEiSKPMW3aNDx48EB1u3btWsnfGBER6YS5ObBxI/D559L9ZcuAbt2kJUA0oUWLFkhLS8PWrVvh5+enan/y5IlmAlKZpYEJzvITBEHtviiKhdpeZe/evUW2t27dGkql8rWOYWZmpjYTiIiIDJMgANOnA/XrAwMGAHv2SJMRdu4E6taVP561tTXeeust1f3Tp08jMDAQixcvRr9+/Yp1PqPyS6972KpWrQqFQlGoNy0rK6tQrxsREVFx9OwJJCYCtWoBZ85IkxHi4zUfd9myZcjKysKAAQPw/vvv44GmuveoTNHrgs3U1BQ+Pj6IeWlvkZiYGLWuZSIiopLw8ZF2RvD1Be7cATp2lDaTz8yUZpJmZsofc+XKlZg9ezYUCgW+//57eHl54cCBA/IHojJF5wVbTk4O0tPTkZ6eDgC4dOkS0tPTVct2TJgwAZGRkfj6669x5swZjB8/HlevXsWoUaN0mTYREZUR9vZSz9q77wJ5ecCwYYCTE9CunbQv6bp18sYzNjbG//73PyQmJsLFxQVXrlyBv78/Pv30U+RrYgYElQk6X9YjLi4OgYGBhdoHDhyIqKgoANLCuQsXLsTNmzfh4eGB8PBw+Pv7azlTdYY6LZiIiIomisDEiUB4uHq7QgFcviyt4ya37OxsfPTRR/j2//fQioiIwPDhw+UPRCqGev7WecFmqAz1Cycion8XGyv1rL1s717gpRWmZPX9999j06ZNiI6OhrEmNjwlFUM9f+v8kigREZG+cHUFjIo4M44cCezbp7m4ffr0wc6dO1XF2tOnTzF9+nROSCAVFmxERET/z8EBiIiQLoMCUvFmYyNdEu3UCXjvPeA1dz0stheX9/jkk08wb948NG7cWJaF4snwsWAjIiJ6wdChUoEWGwtcuQJcvQqMHSsVbz/8ADRoIC24q8n5Ab169YKLiwsuX76MNm3aYNasWZyQUM5xDFsJGeo1cCIiKpm0NOCDD6S9SAHA2xtYswZo1kwz8bKzs/Hhhx9i48aNAAA/Pz9s2rQJtWvX1kzAcsJQz9/sYSMiInoN3t5AcrJUpFWqJBVwLVpIRdy9e/LHs7a2xrfffotNmzbB2toaycnJ8PLy+tfde6hsY8FGRET0moyMpAkIGRnStlaiKBVwDRpIe5Rq4ppV3759kZ6erlowvn79+vIHIb3Hgo2IiKiYqlcHNmyQxrm5uQFZWUD//kD79sCff8ofz8XFBfHx8UhMTFS7JPp8kXkq+1iwERERlVBAAJCeDsybB1hYSAWcp6e0ufzjx/LGMjY2hqenp+r+nj17ULduXcyZMwcFBQXyBiO9w4KNiIioFExNgWnTgFOngC5dpO2t5s0DGjYEfvlFc3H37t2L/Px8zJw5EwEBAbhy5YrmgpHOsWAjIiKSgYsLsHMnsG2btJ7b5ctA167AO+8A167JHy88PBzffvstrKyskJSUBC8vL2zevFn+QKQXWLARERHJRBCAHj2AM2eASZOkBXi3bZPGuX3xhdT7Jqd+/fohPT0dLVu2xIMHD9CnTx8MGDAA2dnZ8gYinWPBRkREJLOKFYFFi4DUVMDPD3j0SCrgfHykpUHkVKdOHSQkJGDmzJkwMjLCt99+i/3798sbhHSOC+eWkKEuvEdERNqlVALr1wNTpgB370ptQ4cCCxYAVarIGyspKQm7du3C/Pnz5T1wGWKo52/2sBEREWmQkZFUoGVkAEOGSG3r1gH160uFnFIpX6zWrVurFWtZWVno2bMnl/8oA1iwERERaUHVqlKhlpgozSC9c0cq4Nq2BU6e1EzMMWPGYOvWrfD09MSWLVs0E4S0ggUbERGRFrVuLW1rtXAhUKECkJQkbXsVGiqNdZPT3Llz0bx5czx48AC9e/fGoEGD8PDhQ3mDkFawYCMiItIyExNg8mRpNmlICJCfLxVw7u7Azz8DmZnSIryZmaWLU7duXSQmJmLGjBkwMjLChg0b4O3tjcOHD8vzRkhrOOmghAx10CIREemfnTuBjz8GXl771sgIiIiQxsCVVmJiIvr164erV69CoVAgOjoaXbt2Lf2BDYyhnr/Zw0ZERKRj3bpJOyWMHq3erlRKm82XtqcNANq0aYNjx47hvffeg7OzM/z9/Ut/UNIaFmxERER6wNIS6NmzcHtBAXD2rDwxKlWqhO+//x4HDx5U9S6Jooj4+Hh5ApDGsGAjIiLSE66u0mXQly1aBMg1V0AQBFSrVk11f9WqVQgICMDgwYM5IUGPsWAjIiLSEw4O0pg1hUK6b2Qk/X3PHqBFC+D8eflj3r17F4IgICoqihMS9BgLNiIiIj0ydKi0cXxsrDQJ4cABwN4eOH0aaNpUKt7k9L///Q9xcXFwdHTEhQsX0KpVK4SFhaGgoEDeQFQqLNiIiIj0jIMDEBAg/dm8OXD0KNCyJXD/PtC5s7StlZxrPPj7++PYsWN49913kZ+fj08++QTt27fHtWvX5AtCpcKCjYiISM/VrCn1uA0fLhVqU6cCvXvLu9Cura0tNm/ejK+//hqWlpZISkrC9evX5QtApcJ12ErIUNdxISIiw7Z2LfDRR9Jiu56eQHQ04OIib4xz584hOTkZAwcOVLUplUoYFTUjwsAY6vnb8D95IiKicmTkSKm3zc4OOH4c8PUFfvtN3hiurq5qxdrJkyfRuHFjHDlyRN5A9NpYsBERERmY1q2lcW2+vsDdu0BQEBAeLu+4theFhobixIkT8PPzw/z58zkhQQdYsBERERkgBwcgMREYOFDaEWHCBGDAAODJE/ljbdy4Eb169UJ+fj6mTZuGDh06IFOO7RfotbFgIyIiMlDm5sD69cDy5dJ6bRs3Sr1vV6/KG8fW1hZbtmxRTUiIi4uDp6cntm7dKm8g+lcs2IiIiAyYIEgbx+/fD1StCqSmSpdKExLkjiNg8ODBSEtLg6+vL+7du4eePXti165d8gaiIrFgIyIiKgMCAqRxbd7ewN9/A+3bAytXyj+uzdXVFcnJyZg2bRoCAgIQHBwsbwAqEgs2IiKiMsLZGUhKAvr0kZb9+OgjYNgw4NkzeeOYmJhg3rx5iImJgeL/99F68uQJIiIioFQq5Q1GAFiwERERlSkVKgCbNgGLF0t7kX79NdC2LXDjhvyxjI2NVX+fOnUqRo4cyQkJGlIuCrYePXrA1tYWPXv2LPLxx48fw9nZGZMmTdJyZkRERPITBGDiRODXXwFbW+DQIcDHB/jjD83F9PLyQoUKFRAbGwtPT09s27ZNc8HKoXJRsI0ZMwbffPPNvz4+d+5cNG/eXIsZERERaV5QEHDkCODhAdy6JfW0RUZqJtaQIUOQlpYGHx8f3Lt3D++88w6GDx+OR3Lun1WOlYuCLTAwEFZWVkU+du7cOfz555/o3LmzlrMiIiLSvLp1pZ61d94B8vKk/UhHjwZyc+WPVa9ePSQnJyM0NBSCICAyMhJNmjTByZMn5Q9Wzui8YEtISEC3bt1gb28PQRAQHR1d6DmrVq2Ci4sLzM3N4ePjg8TERNniT5o0CWFhYbIdj4iISN9UrAj8+CMwd650uXT1amkW6a1b8scyNTXF/Pnz8dtvv6FWrVrIysoyqD079ZXOC7ZHjx7By8sLK1asKPLxLVu2YNy4cZg+fTrS0tLQpk0bBAcH4+oLqwL6+PjAw8Oj0O3Gf4yw/Pnnn1GvXj3Uq1dP1vdERESkbwQB+OQTYOdOwMZGmk3q6ytdMtWEwMBAHDt2DDt27ICTk5Oq/eHDh5oJWMYJoqipnceKTxAEbN++HSEhIaq25s2bo0mTJli9erWqzc3NDSEhIcXqGYuLi8OKFSvw008/qdqmTZuGjRs3QqFQICcnB3l5eZg4cSJmzpxZ6PXPnj3DsxfmRWdnZ8PR0REPHjzg/xyIiMignD0LhIQAZ84AZmbA2rXSFleatnv3bgwYMACRkZFq53ptys7Oho2NjcGdv3Xew/Yqubm5SElJQVBQkFp7UFAQkpOTS338sLAwXLt2DZcvX8bixYsxfPjwIou158+1sbFR3RwdHUsdn4iISBfq1QMOHgS6d5fWaBs0CBg7VhrjpkkrVqzAnTt30KNHD4wcOZITEopBrwu227dvo6CgAHZ2dmrtdnZ2uFWMC++dOnVCr169sHv3bjg4OOBICfp/p02bhgcPHqhu165dK/YxiIiI9IW1NbB9O/Dpp9L95cuBTp2kXRI0JTo6GlOmTIEgCIiIiICPjw/S0tI0F7AMMf7vp+ieIAhq90VRLNT2Knv37v3P5wwaNOiVj5uZmcHMzOy1YxIREek7IyNg1iygcWOgf38gNhZo2hRYs0a6VOrqCjg4yBfP1NQUCxYsQKdOndC/f39kZGSgefPmmDdvHiZMmAAjI73uR9Ipvf5kqlatCoVCUag3LSsrq1CvGxEREZVMSIi0uO4bbwBXrgDBwUC7dtJWV+vWyR+vXbt2OH78OHr06IG8vDxMnjwZsbGx8gcqQ/S6YDM1NYWPjw9iYmLU2mNiYuDn56ejrIiIiMoed3fg5ZW1lEpgxAhAEztNValSBVu3bsXatWsxevRotG/fXv4gZYjOC7acnBykp6cjPT0dAHDp0iWkp6erlu2YMGECIiMj8fXXX+PMmTMYP348rl69ilGjRukybSIiojInK6twm1IJdO0KxMXJH08QBIwYMQIrV65Utf3111+YPHkyHj9+LH9AA6bzZT3i4uIQGBhYqH3gwIGIiooCIC2cu3DhQty8eRMeHh4IDw+Hv7+/ljNVZ6jTgomIiP5NZqZ0GVSpLPrxtm2Bzz6T/tSUrl274pdffkGLFi2QnJxcrDHrr8NQz986L9gMlaF+4URERK+ybh0wciRQUAAoFMD8+cDly8BXX/2znVVAgDRZQROFW0xMDAYOHIglS5agd+/esh/fUM/fLNhKyFC/cCIiov+SmQmcPy9NQng+S/TaNal4i4z8p3ALDJQKN7kvej18+PBf9wAvLUM9f+t8DBsRERHpFwcHqRftxSU9HB2BlSulQm70aMDUVFoGpG1baUapjNt8a6xYM2Qs2IiIiOi1vVi4ffABYGIiFW7+/tKG8nIWbvQPFmxERERUbI6OwKpVUuE2apRUuP3+u1S4deggbS5P8mHBRkRERCXm5ASsXi0VbiNHSoXbb78BbdpIhduBA7rOsGxgwUZERESl5uQkbWl17px64da6NdCxIwu30mLBRkRERLJxdv6ncBsxAjA2Bvbvlwq3oCAgOVnXGRomFmxEREQkO2dnYO1aqXAbPlwq3GJigFatpMLtjz90naFhYcFGREREGlO7NhARUbhw8/MDOnVi4fa6WLARERGRxj0v3M6eBYYNkwq3ffukwu3NN1m4/RcWbERERKQ1Li7SNlcZGcDQodL2V3v3/lO4HTwo7bQQGyv9SRIWbERERKR1depI21ydPateuLVsKa3x1q6dNA5u3TpdZ6ofWLARERGRzrxYuL33nvpjSqW0RAh72liwERERkR6oU0cqzl5WUCAtylvesWAjIiIiveDqChi9VJkoFMAbb+gmH33Cgo2IiIj0goODNJNUoZDuKxTSWm4ODrrNSx8Y6zoBIiIioueGDpXWZzt/XupZY7EmYcFGREREesXBgYXay3hJlIiIiEjPsWAjIiIi0nMs2IiIiIj0HAs2IiIiIj3Hgo2IiIhIz7FgIyIiItJzLNiIiIiI9BwLNiIiIiI9x4KNiIiISM+xYCMiIiLScyzYiIiIiPQc9xItIVEUAQDZ2dk6zoSIiIhe1/Pz9vPzuKFgwVZCDx8+BAA4OjrqOBMiIiIqrocPH8LGxkbXabw2QTS0ElNPKJVK3LhxA1ZWVhAEQdfpyCo7OxuOjo64du0arK2tdZ2O1pX39w/wM+D7L9/vH+BnUJbfvyiKePjwIezt7WFkZDgjw9jDVkJGRkZwcHDQdRoaZW1tXeZ+UIujvL9/gJ8B33/5fv8AP4Oy+v4NqWftOcMpLYmIiIjKKRZsRERERHpOMWvWrFm6ToL0j0KhQEBAAIyNy+dV8/L+/gF+Bnz/5fv9A/wMyvv71zecdEBERESk53hJlIiIiEjPsWAjIiIi0nMs2IiIiIj0HAs2IiIiIj3Hgo0AAGFhYWjatCmsrKxQvXp1hISEICMjQ9dp6UxYWBgEQcC4ceN0nYpWXb9+Hf369UOVKlVQoUIFNG7cGCkpKbpOS2vy8/MxY8YMuLi4wMLCAnXq1MHs2bOhVCp1nZpGJCQkoFu3brC3t4cgCIiOjlZ7XBRFzJo1C/b29rCwsEBAQABOnTqlo2w141WfQV5eHkJDQ9GoUSNYWlrC3t4eAwYMwI0bN3SYsbz+69/Ai0aOHAlBELB06VItZkjPsWAjAEB8fDw+/PBDHDx4EDExMcjPz0dQUBAePXqk69S07siRI4iIiICnp6euU9Gqe/fuoVWrVjAxMcGvv/6K06dP44svvkClSpV0nZrWLFiwAGvWrMGKFStw5swZLFy4EIsWLcKXX36p69Q04tGjR/Dy8sKKFSuKfHzhwoVYsmQJVqxYgSNHjqBGjRro2LGjai/lsuBVn8Hjx4+RmpqK//3vf0hNTcW2bdtw9uxZdO/eXQeZasZ//Rt4Ljo6GocOHYK9vb2WMqNCRKIiZGVliQDE+Ph4XaeiVQ8fPhRdXV3FmJgYsW3btuLYsWN1nZLWhIaGiq1bt9Z1GjrVpUsXcciQIWptb7/9ttivXz8dZaQ9AMTt27er7iuVSrFGjRri/PnzVW1Pnz4VbWxsxDVr1ugiRY17+TMoyuHDh0UA4pUrV7SUlfb82/vPzMwUa9WqJZ48eVJ0dnYWw8PDdZAdsYeNivTgwQMAQOXKlXWciXZ9+OGH6NKlCzp06KDrVLRux44d8PX1Ra9evVC9enV4e3vjq6++0nVaWtW6dWv89ttvOHv2LADg2LFjSEpKQufOnXWcmfZdunQJt27dQlBQkKrNzMwMbdu2RXJysg4z060HDx5AEIRy0/OsVCrRv39/TJ48GQ0bNtR1OuUaly+mQkRRxIQJE9C6dWt4eHjoOh2t2bx5M1JTU3HkyBFdp6ITFy9exOrVqzFhwgR88sknOHz4MMaMGQMzMzMMGDBA1+lpRWhoKB48eIAGDRpAoVCgoKAAc+fORZ8+fXSdmtbdunULAGBnZ6fWbmdnhytXrugiJZ17+vQppk6dir59+5bJDdGLsmDBAhgbG2PMmDG6TqXcY8FGhXz00Uc4fvw4kpKSdJ2K1ly7dg1jx47Fvn37YG5urut0dEKpVMLX1xfz5s0DAHh7e+PUqVNYvXp1uSnYtmzZgo0bN+K7776e97RXAAAOCklEQVRDw4YNkZ6ejnHjxsHe3h4DBw7UdXo6IQiC2n1RFAu1lQd5eXno3bs3lEolVq1apet0tCIlJQXLli1DampqufzO9Q0viZKajz/+GDt27EBsbCwcHBx0nY7WpKSkICsrCz4+PjA2NoaxsTHi4+OxfPlyGBsbo6CgQNcpalzNmjXh7u6u1ubm5oarV6/qKCPtmzx5MqZOnYrevXujUaNG6N+/P8aPH4+wsDBdp6Z1NWrUAPBPT9tzWVlZhXrdyrq8vDy8++67uHTpEmJiYspN71piYiKysrLg5OSk+r145coVTJw4EbVr19Z1euUOe9gIgPS/5o8//hjbt29HXFwcXFxcdJ2SVrVv3x4nTpxQaxs8eDAaNGiA0NBQKBQKHWWmPa1atSq0lMvZs2fh7Oyso4y07/HjxzAyUv9/rEKhKLPLeryKi4sLatSogZiYGHh7ewMAcnNzER8fjwULFug4O+15XqydO3cOsbGxqFKliq5T0pr+/fsXGs/bqVMn9O/fH4MHD9ZRVuUXCzYCIA22/+677/Dzzz/DyspK9b9qGxsbWFhY6Dg7zbOysio0Xs/S0hJVqlQpN+P4xo8fDz8/P8ybNw/vvvsuDh8+jIiICEREROg6Na3p1q0b5s6dCycnJzRs2BBpaWlYsmQJhgwZouvUNCInJwfnz59X3b906RLS09NRuXJlODk5Ydy4cZg3bx5cXV3h6uqKefPmoUKFCujbt68Os5bXqz4De3t79OzZE6mpqdi1axcKCgpUvxsrV64MU1NTXaUtm//6N/BygWpiYoIaNWqgfv362k6VdDxLlfQEgCJv69ev13VqOlPelvUQRVHcuXOn6OHhIZqZmYkNGjQQIyIidJ2SVmVnZ4tjx44VnZycRHNzc7FOnTri9OnTxWfPnuk6NY2IjY0t8ud+4MCBoihKS3t8+umnYo0aNUQzMzPR399fPHHihG6TltmrPoNLly796+/G2NhYXacui//6N/AyLuuhO4IoiqKWakMiIiIiKgFOOiAiIiLScyzYiIiIiPQcCzYiIiIiPceCjYiIiEjPsWAjIiIi0nMs2IiIiIj0HAs2IiIiIj3Hgo2INCIgIADjxo3TdRoqoihixIgRqFy5MgRBQHp6uq5TIiJ6bSzYiKhc2LNnD6KiorBr1y7cvHmz3Gw59lzt2rWxdOlSXadBRCXEvUSJyGAUFBRAEIRCG7S/jgsXLqBmzZrw8/PTQGbalZeXBxMTE12nQURaxB42ojIsICAAY8aMwZQpU1C5cmXUqFEDs2bNUj1++fLlQpcH79+/D0EQEBcXBwCIi4uDIAjYu3cvvL29YWFhgXbt2iErKwu//vor3NzcYG1tjT59+uDx48dq8fPz8/HRRx+hUqVKqFKlCmbMmIEXd8PLzc3FlClTUKtWLVhaWqJ58+aquAAQFRWFSpUqYdeuXXB3d4eZmRmuXLlS5HuNj49Hs2bNYGZmhpo1a2Lq1KnIz88HAAwaNAgff/wxrl69CkEQULt27SKP8TxedHQ06tWrB3Nzc3Ts2BHXrl1Te97q1atRt25dmJqaon79+vj2229Vj02cOBHdunVT3V+6dCkEQcAvv/yiaqtfvz7Wrl2rur9+/Xq4ubnB3NwcDRo0wKpVqwp9Rz/88AMCAgJgbm6OjRs3Fpn/rFmz4OTkBDMzM9jb22PMmDEApH8HV65cwfjx4yEIAgRBUL0mOTkZ/v7+sLCwgKOjI8aMGYNHjx6pHq9duzbmzJmDvn37omLFirC3t8eXX375WnGJSEa63cqUiDSpbdu2orW1tThr1izx7Nmz4oYNG0RBEMR9+/aJoiiqNrdOS0tTvebevXtqm1s/3xy6RYsWYlJSkpiamiq+8cYbYtu2bcWgoCAxNTVVTEhIEKtUqSLOnz9fLXbFihXFsWPHin/++ae4ceNGsUKFCmobyvft21f08/MTExISxPPnz4uLFi0SzczMxLNnz4qiKIrr168XTUxMRD8/P/HAgQPin3/+Kebk5BR6n5mZmWKFChXE0aNHi2fOnBG3b98uVq1aVfz0009FURTF+/fvi7NnzxYdHBzEmzdvillZWUV+Xs/j+fr6isnJyeLRo0fFZs2aiX5+fqrnbNu2TTQxMRFXrlwpZmRkiF988YWoUCjE33//XRRFUdyxY4doY2MjFhQUiKIoiiEhIWLVqlXFyZMni6Ioijdv3hQBiGfOnBFFURQjIiLEmjVrilu3bhUvXrwobt26VaxcubIYFRWl9h3Vrl1b9Zzr168Xyv3HH38Ura2txd27d4tXrlwRDx06pPqs79y5Izo4OIizZ88Wb968Kd68eVMURVE8fvy4WLFiRTE8PFw8e/aseODAAdHb21scNGiQ6rjOzs6ilZWVGBYWJmZkZIjLly8XFQqF6t/Qq+ISkXxYsBGVYW3bthVbt26t1ta0aVMxNDRUFMXiFWz79+9XPScsLEwEIF64cEHVNnLkSLFTp05qsd3c3ESlUqlqCw0NFd3c3ERRFMXz58+LgiAUKj7at28vTps2TRRFqYACIKanp7/yfX7yySdi/fr11WKtXLlSrFixoqpwCg8PF52dnV95nOfxDh48qGo7c+aMCEA8dOiQKIqi6OfnJw4fPlztdb169RI7d+4siqJUHBoZGYlHjx4VlUqlWKVKFTEsLExs2rSpKIqi+N1334l2dnaq1zo6Oorfffed2vHmzJkjtmzZUhTFf76jpUuXvjL3L774QqxXr56Ym5tb5OPOzs5ieHi4Wlv//v3FESNGqLUlJiaKRkZG4pMnT1Sve/PNN9We895774nBwcGvFZeI5MFLokRlnKenp9r9mjVrIisrq1THsbOzQ4UKFVCnTh21tpeP26JFC7XLby1btsS5c+dQUFCA1NRUiKKIevXqoWLFiqpbfHw8Lly4oHqNqalpoffwsjNnzqBly5ZqsVq1aoWcnBxkZmYW630aGxvD19dXdb9BgwaoVKkSzpw5o4rVqlUrtde0atVK9biNjQ0aN26MuLg4nDhxAkZGRhg5ciSOHTuGhw8fIi4uDm3btgUA/P3337h27RqGDh2q9hl8/vnnap8BALWcitKrVy88efIEderUwfDhw7F9+3bVJeF/k5KSgqioKLXYnTp1glKpxKVLl1TPa9mypdrrWrZsqXq/JYlLRMXHSQdEZdzLg9MFQYBSqQQA1eB98YVxZXl5ef95HEEQXnnc16FUKqFQKJCSkgKFQqH2WMWKFVV/t7CwUCvEiiKKYqHnPH9P//XaohT1mhfbior1YltAQADi4uJgamqKtm3bwtbWFg0bNsSBAwcQFxenWu7k+ef11VdfoXnz5mrHfPkzsbS0fGXOjo6OyMjIQExMDPbv34/Ro0dj0aJFiI+P/9cJCkqlEiNHjixyzJmTk9Mr4z1/vyWJS0TFx4KNqByrVq0aAODmzZvw9vYGAFnXJzt48GCh+66urlAoFPD29kZBQQGysrLQpk2bUsVxd3fH1q1b1Qqn5ORkWFlZoVatWsU6Vn5+Po4ePYpmzZoBADIyMnD//n00aNAAAODm5oakpCQMGDBA9Zrk5GS4ubmp7gf8X3v3EpLaHoUB/AvSUEMJCoUGSoRE0MsI90gPPQY1sKKQQKhRFD5KhLBB9ICCCIQoaBZFEQSRDZxlRAQRRDQoKmoQQVOjoFGFrDs458qR07l1L13Ohr7fTPfftbZbkI+999Jv37C4uIjc3Fw0NjYCANxuN9bX13F9fZ05w2Y2m1FcXIybmxv4fL7/fgB+0Ol08Hg88Hg8CAQCKCsrw9nZGRwOB7RaLdLpdNZ6h8OB8/NzlJaW/mPdtz7Hv4/He32J6HMwsBF9YTqdDoqiYHp6GjabDalUCiMjI59W/+7uDpFIBH19fTg5OcH8/DxisRgAwG63w+fzobu7G7FYDDU1NUilUtjd3UVFRQVaWlo+3Mfv92N2dhahUAjBYBBXV1cYGxtDJBL51z8BotFoEAqFMDc3B41Gg2AwCEVRMgFuaGgIXq8XDocDDQ0NSCQSiMfj2NnZydRwuVx4enpCIpHA5OQkgO8hrqOjA0VFRSgvL8+sHR8fx8DAAIxGI5qbm/H8/Izj42M8PDwgEol8eL+Xl5eRTqfhdDqh1+uxuroKnU4Hq9UK4Pu05/7+Prq6upCXl4fCwkJEo1EoioJAIIDe3l4YDAZcXl4imUxmTYIeHBxgZmYGbW1tSCaT2NjYyEy9vteXiD7Jn7yBjoj+X263WwYHB7Oea21tlZ6enszji4sLURRFdDqdVFdXy/b29ptDBw8PD5nXLC0ticlkyqo7NjYmVVVVWb39fr/09/eL0WiUgoICGR4ezhoMeHl5kdHRUbHZbKLRaMRisUh7e7ucnp7+ts/v7O3tSV1dnWi1WrFYLBKNRuX19TWz/aNDByaTSTY3N6WkpES0Wq3U19fL7e1t1rqFhQUpKSkRjUYjdrtdVlZWfqlVW1srRUVFmfd7f38vOTk50tnZ+cvatbU1qa6uFq1WKwUFBeJyuSQej4vI24Mhb9na2hKn0ylGo1EMBoMoipI1KHJ4eCiVlZWSl5cnP3/1Hx0dSVNTk+Tn54vBYJDKykqZmprKbLdarTIxMSFer1f0er2YzeasAYj3+hLR58gR+enmFSKiL2x5eRnhcBiPj49/eldUw2azIRwOq+pvxoi+Ik6JEhEREakcAxsRERGRyvGSKBEREZHK8QwbERERkcoxsBERERGpHAMbERERkcoxsBERERGpHAMbERERkcoxsBERERGpHAMbERERkcoxsBERERGpHAMbERERkcr9BQSj+Dmac5HtAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Δλ = Float64[]\n", - "y = x\n", - "for i = 1:15\n", - " y = (A - 2.1I) \\ y\n", - " y = y / norm(y)\n", - " λ̃ = (y'A*y) / (y'y)\n", - " push!(Δλ, abs(λ̃ - 2))\n", - "end\n", - "semilogy(1:length(Δλ), Δλ, \"b.-\")\n", - "semilogy(1:length(Δλ), (1/9).^(1:length(Δλ)), \"k--\")\n", - "xlabel(\"number of power steps\")\n", - "ylabel(\"error in eigenvalue\")\n", - "title(L\"convergence of shift-and-invert method $\\lambda$ for $\\lambda=1,2,3,4,5$, $\\mu = 2.1$\")\n", - "legend([\"error\", L\"1/9^n\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yup, it converges at the expected rate!\n", - "\n", - "If you have a reasonable guess for the eigenvalue that you want, shift-and-invert can converge amazingly fast!" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - }, - "widgets": { - "state": { - "261a280b-0628-4842-8d64-15aa1b5543bc": { - "views": [ - { - "cell_index": 5 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/lectures/SVD-intro.ipynb b/lectures/SVD-intro.ipynb deleted file mode 100644 index e7245927..00000000 --- a/lectures/SVD-intro.ipynb +++ /dev/null @@ -1,1212 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Singular Value Decomposition (SVD)\n", - "\n", - "In this notebook we take a first look at one of the most important matrix decompositions, the SVD. The SVD gives what is arguably the \"best\" basis for the row and column spaces of a matrix, and reveals the \"true nature\" of a matrix in a unique way. It is heavily used in nearly all applications of linear algebra, especially to non-square matrices, especially for data analysis." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "arc (generic function with 1 method)" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using PyPlot, Interact\n", - "arc(args...; kws...) = gca()[:add_patch](matplotlib[:patches][:Arc](args...; kws...))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## *Which* orthonormal basis?\n", - "\n", - "Orthonormal bases are \"nice\", and make it especially easy to do things like projections or changes of basis. However, for any matrix $A$ with rank > 1, there are **infinitely many possible orthonormal bases** for $C(A)$ and $C(A^T)$. Are they all equally good?\n", - "\n", - "Let's look at a simple $2\\times2$ matrix $$A = \\begin{pmatrix} 1 & 1 \\\\ -1 & \\frac{1}{4} \\end{pmatrix} .$$ This matrix is **rank 2**, so $C(A) = C(A^T) = \\mathbb{R}^2$. The obvious orthonormal basis would be the unit vectors (1,0) and (0,1). But is there a better choice? A choice that comes from $A$ itself?\n", - "\n", - "Let's see what $A$ does to two orthonormal vectors $v_1$ and $v_2$ as we **rotate the \"input\"** basis." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":29}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":29}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":90,"min":0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-4dc89683-6a8f-497b-a9cf-601007f4b8c2","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_06","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 29, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 29, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_01\", 29, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_01\", 29, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_01\", 29, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 90),Pair{Symbol,Any}(:min, 0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 29, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":29}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ae41185-3931-4c7b-95c5-249a61f903cc\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_05\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 1\n", - " -1 1/4]\n", - "fig = figure()\n", - "\n", - "Θ = linspace(0,2π,200)\n", - "V = [[cos(θ),sin(θ)] for θ in Θ]\n", - "U = [A*v for v in V]\n", - "Vx, Vy = first.(V), last.(V)\n", - "Ux, Uy = first.(U), last.(U)\n", - "\n", - "@manipulate for θ in slider(0:1:90, value=29)\n", - " withfig(fig) do\n", - " ϕ = deg2rad(θ) # convert to radians\n", - " v₁, v₂ = [cos(ϕ), sin(ϕ)], [-sin(ϕ), cos(ϕ)] # orthonormal inputs\n", - " u₁, u₂ = A*v₁, A*v₂ # outputs\n", - " \n", - " # arrows and labels for v₁, v₂, u₁, u₂\n", - " for (v,s,c) in ((v₁,\"v₁\",\"red\"), (v₂,\"v₂\",\"red\"), (u₁,\"Av₁\",\"blue\"), (u₂,\"Av₂\",\"blue\"))\n", - " arrow(0,0,v..., color=c, width=0.04, length_includes_head=true)\n", - " text(((norm(v)+0.1)*normalize(v))..., s, color=c)\n", - " end\n", - " \n", - " # show the angle between u₁ and u₂\n", - " uangle = rad2deg(acos((u₁⋅u₂)/(norm(u₁)*norm(u₂))))\n", - " arc([0,0], 0.5,0.5, angle=rad2deg(atan2(u₁[2],u₁[1])), theta1=0, theta2=uangle, color=\"blue\")\n", - " p = 0.4*normalize(u₁+u₂)\n", - " text(p..., \"$(round(uangle,2))°\", color=\"blue\")\n", - " if round(uangle,2) == 90\n", - " arc(p + [0.2,0.05], 0.5, 0.23, color=\"blue\")\n", - " end\n", - " \n", - " # plot dashed lines for all possible v₁, v₂, u₁, u₂\n", - " \n", - " plot(Vx,Vy, \"r--\")\n", - " plot(Ux,Uy, \"b--\")\n", - " \n", - " axis(\"square\")\n", - " xlim(-2,2)\n", - " ylim(-2,2)\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Some key observations:\n", - "\n", - "* $A$ takes points $v_1, v_2$ on the unit circle and maps them to an *ellipse*. In general ($n$ dimensions), linear tranformations map the unit sphere to an [ellipsoid](https://en.wikipedia.org/wiki/Ellipsoid).\n", - "\n", - "* In general, even if $v_1 \\perp v_2$, $Av_1$ and $Av_2$ are **not** orthogonal.\n", - "\n", - "* However, for a **particular** choice of **orthonormal input basis**, we get **orthonormal outputs**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The “right” bases for A\n", - "\n", - "In fact, it turns out that we can **always** do this for **any** $m \\times n$ matrix $A$ of rank $r$:\n", - "\n", - "* We can choose an orthonormal basis $v_1, v_2, \\ldots , v_r \\in \\mathbb{R}^n$ of $C(A^T) = N(A)^\\perp$ such that $Av_1, Av_2, \\ldots, Av_r$ are an **orthogonal basis** for $C(A)$!!!\n", - "\n", - "* To make an orthonormal basis for $C(A)$, we simply divide $Av_k$ etcetera by their lengths $\\sigma_k = \\Vert Av_k\\Vert$ to get orthonormal vectors $u_k = Av_k /\\sigma_k$.\n", - "\n", - "* Geometrically, $A$ transforms spheres to ellipsoids with axes oriented along $u_k$ (the \"principal axes\"), and the \"semi-axes\" (half-diameters) of the ellipsoid are the $\\sigma_k$.\n", - "\n", - "(This is *not obvious*. We won't have the tools to prove this, or to *find* these vectors, until later in 18.06.)\n", - "\n", - "Equivalently:\n", - "$$\n", - "Av_k = \\sigma_k u_k\n", - "$$\n", - "The matrix $A$ transforms orthormal vectors $v_k$ into orthonormal vectors $u_k$ \"stretched\" by the factors $\\sigma_k$.\n", - "\n", - "The $u_k$ and $v_k$ are called the **left and right singular vectors** and the $\\sigma_k$ are called the **singular values**. Together, they form the **singular value decomposition** (the **SVD**).\n", - "\n", - "In particular, if we put the above relation in matrix form, we have:\n", - "$$\n", - "A \\underbrace{ \\begin{pmatrix} v_1 & \\cdots & v_r \\end{pmatrix} }_V =\n", - "\\underbrace{ \\begin{pmatrix} u_1 & \\cdots & u_r \\end{pmatrix} }_U\n", - "\\underbrace{ \\begin{pmatrix} \\sigma_1 & & & \\\\\n", - " & \\sigma_2 & & \\\\\n", - " & & \\ddots & \\\\\n", - " & & & \\sigma_r \\end{pmatrix} }_\\Sigma\n", - "$$\n", - "\n", - "In fact, since $C(V)=C(A^T)=N(A)^\\perp$, so that $N(V^T) = N(A)$, we can write:\n", - "$$\n", - "\\boxed{A = U\\Sigma V^T} = AVV^T = A[VV^T + \\underbrace{(I-VV^T)}_{\\mbox{proj. to }N(A)}]\n", - "$$\n", - "which is in the form of a matrix factorization, the SVD.\n", - "\n", - "In Julia, you can get these vectors and values with the `svd` function:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.55425 \n", - " 0.804248" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U, σ, V = svd(A)\n", - "σ # the ellipsoid semi-axes" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " -0.874642 -0.484769\n", - " -0.484769 0.874642" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "V # columns of V are the orthogonal \"input\" basis v₁, v₂" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGzCAYAAABU5qIKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlYVGX/BvB7GGAAlXFBAVfUVNxwTcENl8IlLbPcI5dezcpMzUpyQ8vdfE3NtLdesSy1Mi1/mmm9apZomuCuWYFogTuDK8jw/P54YhQ4w8zALDDn/lzXXDVnzsx8D4Nz85zzLBohhAAREZGb83B1AURERM7AwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwyCr79u1DbGws0tPT82yPjY2FRqPBlStXXFTZfXFxcdBoNEhOTnZ1KQBKXj32Zu53ojTZsGEDGjduDF9fX2g0GiQmJlr1vBMnTsDLywsajQYXL150cJVkLww8ssq+ffswc+bMEv3l9thjjyE+Ph7BwcGuLkUVSsPvRGEuX76M6Oho1K1bF9u3b0d8fDzq169v1XPHjRuH7OxsALA6JMn1GHjkNipXrozw8HDodDpXl+IQt2/fdnUJTuGs4/ztt99w7949PPPMM4iMjER4eDj8/PwsPu/LL7/E//73Pzz22GMAGHilCQOPLIqNjcVrr70GAKhduzY0Gg00Gg12795t2ufixYsYPHgw9Ho9AgMDMXLkSBgMhgKvdfbsWQwZMgRVqlSBTqdDw4YN8d5771ms4fLlyxg9ejRq1KgBnU6HypUro3379vj+++9N++Q/hZh7uvXEiRNW1fb1118jLCwMOp0OderUwbvvvmt6jQcNHz4cISEhij+n/Pvm9/vvv2PEiBGoV68e/Pz8UK1aNfTp0wfHjh1TfK3Dhw/j6aefRoUKFVC3bl3F19y8eTM0Gg1++OGHAo+9//770Gg0OHr0qGmbtZ/B6dOnMXjwYAQGBkKn06FmzZp49tlnkZmZadXvxE8//YRu3bqhXLly8PPzQ7t27bB161arj9Oaz9wcS+89fPhwdOjQAQAwcOBAaDQadO7c2eLr3rlzB5MmTUKNGjWwZs0aaLVaBl4p4unqAqjk+9e//oVr165h2bJl+Oqrr0ynDBs1amT6gnvqqacwcOBAPPfcczh27BhiYmIAAP/9739Nr3Py5Em0a9cONWvWxDvvvIOgoCB89913GDduHK5cuYIZM2aYrSE6OhqHDx/G7NmzUb9+faSnp+Pw4cO4evWqxfqtqW379u3o168fOnXqhA0bNiA7OxuLFi2y+/WZv//+G5UqVcK8efNQuXJlXLt2DWvWrEHbtm2RkJCABg0a5Nm/X79+GDRoEMaMGYNbt24pvmbv3r1RpUoVrF69Gt26dcvzWFxcHFq2bImwsDAA1n8GR44cQYcOHRAQEIBZs2ahXr16SE1NxTfffIOsrKxCfycAYM+ePXj00UcRFhaGjz76CDqdDitWrECfPn2wbt06DBw40OJxFvUzt+a9p02bhjZt2uCll17CnDlz0KVLF/j7+1v8/ObPn49z585h/fr1qFSpEurVq8fAK00EkRUWLlwoAIikpKQ822fMmCEAiAULFuTZ/uKLLwofHx+Rk5Nj2ta9e3dRvXp1YTAY8uw7duxY4ePjI65du2b2/cuWLSvGjx9faI2rV6/OU6MttT388MOiRo0aIjMz07Ttxo0bolKlSiL/P5Nhw4aJWrVqFXj/3PczV4+S7OxskZWVJerVqycmTJhQ4LWmT59e6DHnmjhxovD19RXp6emmbSdPnhQAxLJly0zbrP0MunbtKsqXLy8uXbpk9j3N/U4IIUR4eLioUqWKuHHjRp5jbdKkiahevbrpZ1/YcVrzmSux9r137dolAIgvvvjCqtc9d+6c8PX1FZGRkaZtAwYMEB4eHuLWrVs210nOx1OaZBePP/54nvthYWG4e/cuLl26BAC4e/cufvjhBzz55JPw8/NDdna26darVy/cvXsX+/fvN/v6bdq0QVxcHN5++23s378f9+7ds1ttt27dwqFDh9C3b194e3ub9itbtiz69Olj9ftYIzs7G3PmzEGjRo3g7e0NT09PeHt74+zZszh16lSB/Z966imrXnfkyJG4c+cONmzYYNq2evVq6HQ6DBkyBID1n8Ht27exZ88eDBgwAJUrV7b5GG/duoUDBw7g6aefRtmyZU3btVotoqOjceHCBZw5c8bicRblMy/Ke1tr4sSJyMrKwtKlS03bwsLCkJOTU+CUNJVMDDyyi0qVKuW5n9tx5M6dOwCAq1evIjs7G8uWLYOXl1eeW69evQCg0KENGzZswLBhw/Dhhx8iIiICFStWxLPPPou0tLRi13b9+nUIIRAYGFjguUrbimPixImYNm0a+vbtiy1btuDAgQM4ePAgmjVrZqrnQdb2OG3cuDEefvhhrF69GgBgNBqxdu1aPPHEE6hYsSIA6z+D69evw2g0onr16kU6xtyfp1LtVatWNdVi6TiL8pkX5b2tsWvXLmzcuBHPPPMMatasifT0dKSnp6NOnToA2HGltOA1PHKKChUqmP7KfumllxT3qV27ttnnBwQEYMmSJViyZAlSUlLwzTffYPLkybh06RK2b99e7NrMjadS+nL18fFBZmZmge3WjEVcu3Ytnn32WcyZM6fAc8uXL19gf0udYB40YsQIvPjiizh16hT+/PNPpKamYsSIEabHrf0M/Pz8oNVqceHCBavf+0EVKlSAh4cHUlNTCzz2999/A5Cf54OUjrMon3lR3tsSo9GIcePGAQDWrFmDNWvWFNiHgVc6MPDIKvlbRbby8/NDly5dkJCQgLCwsDynDm1Vs2ZNjB07Fj/88AN+/vnnIr9OrjJlyqB169bYvHkzFi1aZKrt5s2b+L//+78C+4eEhODSpUu4ePGiqQWYlZWF7777zuJ7aTSaAsMmtm7dir/++gsPPfRQsY5j8ODBmDhxIuLi4vDnn3+iWrVqiIqKMj1uy2cQGRmJL774ArNnzzYbEOZ+J8qUKYO2bdviq6++wqJFi+Dr6wsAyMnJwdq1a1G9enWrx7vlsvYzd8R7v/feezh+/DhmzpyJTp06FXj8qaeeYuCVEgw8skrTpk0BAO+++y6GDRsGLy+vAj0KLXn33XfRoUMHdOzYES+88AJCQkJw48YN/P7779iyZQv+97//KT7PYDCgS5cuGDJkCEJDQ1GuXDkcPHjQ1LPSHmbNmoXHHnsM3bt3xyuvvAKj0YiFCxeibNmyuHbtWp59Bw4ciOnTp2PQoEF47bXXcPfuXSxduhRGo9Hi+/Tu3RtxcXEIDQ1FWFgYfv31VyxcuLDIpw8fVL58eTz55JOIi4tDeno6Jk2aBA+PvFctrP0MFi9ejA4dOqBt27aYPHkyHnroIVy8eBHffPMNVq1ahXLlypn9nShXrhzmzp2LRx99FF26dMGkSZPg7e2NFStW4Pjx41i3bp3FlmtxPvPivveDrly5gtjYWLRr1w7Tpk1TfG6zZs3wyy+/ICcnp8DPm0oYF3eaoVIkJiZGVK1aVXh4eAgAYteuXaZedpcvX86zr7keiklJSWLkyJGiWrVqwsvLS1SuXFm0a9dOvP3222bf9+7du2LMmDEiLCxM+Pv7C19fX9GgQQMxY8aMPL3jzPXStLa2TZs2iaZNmwpvb29Rs2ZNMW/ePDFu3DhRoUKFAjVt27ZNNG/eXPj6+oo6deqI5cuXW9VL8/r16+K5554TVapUEX5+fqJDhw5i7969IjIyMk/vP3O1W7Jjxw4BQAAQv/32m+I+1n4GJ0+eFP379xeVKlUy/UyGDx8u7t69a9pH6Xci1969e0XXrl1FmTJlhK+vrwgPDxdbtmzJ8x7mjtPaz9wca97bml6ao0ePFp6enuLYsWNm9xk/frwAIE6fPm2xLnItjRBCuCBniUq8e/fuoXnz5qhWrRp27Njh6nKIqJh4SpPoH8899xweffRRBAcHIy0tDStXrsSpU6fw7rvvuro0IrIDBh7RP27cuIFJkybh8uXL8PLyQsuWLbFt2zY88sgjri6NiOyApzSJiEgVHNql6Mcff0SfPn1QtWpVaDQabN68udD9d+/ebZqE9sHb6dOnHVkmERGpgENPad66dQvNmjXDiBEjrJ4iCQDOnDmTZyLXokxvRERE9CCHBl7Pnj3Rs2dPm59XpUoVxVkniIiIiqpEdlpp0aIF7t69i0aNGmHq1Kno0qWL2X0zMzPzTPOUk5ODa9euoVKlSjYNMCUiopJBCIEbN26gatWqdh3MX6ICLzg4GB988AFatWqFzMxMfPLJJ+jWrRt2796tOKUPIGdVmDlzppMrJSIiRzt//rxdZiHK5bRemhqNBps2bULfvn1tel6fPn2g0WjwzTffKD6ev4VnMBhQs2ZNnD9/3qoFHYmIqGTJyMhAjRo1kJ6eDr1eb7fXLVEtPCXh4eFYu3at2cd1Ol2ByXgBwN/fn4FHRFSK2fuyVImf6TQhIcHqNcGIiIjMcWgL7+bNm/j9999N95OSkpCYmIiKFSuiZs2aiImJwV9//YWPP/4YALBkyRKEhISgcePGyMrKwtq1a7Fx40Zs3LjRkWUSEZEKODTwDh06lKeH5cSJEwEAw4YNQ1xcHFJTU5GSkmJ6PCsrC5MmTcJff/0FX19fNG7cGFu3bjWtxkxERFRUbje1WEZGBvR6PQwGA6/hERGVQo76Hi/x1/CIiIjsgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8Kh1WrQKqVQNycvJuf/xxYNgw19REJU5ICLBkSd5tzZsDsbGuqIZKGgYelQ79+wNXrgC7dt3fdv068N13wNChrquLiEoNBh6VDhUrAj16AJ99dn/bF1/I7d26ua4uIio1GHhUegwdCmzcCGRmyvuffgoMGgTcvg307Qs8+STQqhXwySeurZNKpFWrgKefln8fPfaYPEFA6uLQwPvxxx/Rp08fVK1aFRqNBps3b7b4nD179qBVq1bw8fFBnTp1sHLlSkeWSKVJnz7yGt7WrcD588DevcAzzwBlywKbNsnb8uXA0qWurpRcxMMDECLvtnv35H9HjQK+/BL44QcgOxvYt8/59ZFrOTTwbt26hWbNmmH58uVW7Z+UlIRevXqhY8eOSEhIwJtvvolx48Zh48aNjiyTSgtfX6BfP9myW7cOqF9ftug0Gnm7ehWIiQHeecfVlZKLVK4MpKbev5+RASQlyf/3+OfbLi4O8PMDevZ0ennkYp6OfPGePXuipw2/VStXrkTNmjWx5J9uVg0bNsShQ4ewaNEiPPXUU44qk0qToUNlS+/ECdm6y3XsGPDyy8CCBUCbNq6rj1yqa1cZaH36ABUqANOmAVqtfMxoBKZOBW7cAD7//H4AknqUqI88Pj4eUVFRebZ1794dhw4dwr3c8xL5ZGZmIiMjI8+N3FjXrrKjypkzwJAhctvVq0B4OHD3LjBrFnttqlhMDNCpE9C7N9Crl7y0W7eufOzNN+V1vORkebl361aXlkou4NAWnq3S0tIQGBiYZ1tgYCCys7Nx5coVBAcHF3jO3LlzMXPmTGeVSK6m1QJ//513W6VKwK1brqmHShR/f2DDhrzbHhymOX++c+uhkqVEtfAAQKPR5Lkv/rkCnX97rpiYGBgMBtPt/PnzDq+RiIhKnxLVwgsKCkJaWlqebZcuXYKnpycqVaqk+BydTgedTueM8oiIqBQrUS28iIgI7Ny5M8+2HTt2oHXr1vDy8nJRVURE5A4cGng3b95EYmIiEhMTAchhB4mJiUhJSQEgT0c+++yzpv3HjBmDc+fOYeLEiTh16hT++9//4qOPPsKkSZMcWSYREamAQ09pHjp0CF26dDHdnzhxIgBg2LBhiIuLQ2pqqin8AKB27drYtm0bJkyYgPfeew9Vq1bF0qVLOSSBiIiKTSNE/nkJSreMjAzo9XoYDAb4+/u7uhwiIrKRo77HS9Q1PCIiIkdh4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAo9IvK0sudvbpp66uhOwsIwMYORL4+WdXV0LuoEStlkBUJDk5cqGznBy5GOy4ca6uiOzg0iUgKgo4cgQoXx5o397VFVFpxxYelX4+PsBDD8n/f+UVYOpUwL1mzFOdc+eAiAjg2DF5v1kz19ZD7oGBR+7h4YflaugAMHs2MGYMYDS6tiYqkhMngDZtgJQU2WgHgObNXVsTuQcGHrmH5s3ztur+8x9gwAAgM9N1NZHN4uOBdu3kmensbLnN0xNo2NC1dZF7YOCRe2jW7H5zAJDht3kz0LMncOOG6+oiq23fDnTtCty8mbdxXr8+4O3turrIfTDwyD0oXeTJyQF+/BGIjASuXHF+TWS1deuA3r1lg/zBv1s8PeXZaiJ7YOCRe6hSBahcueB2oxE4ehQID5cXhajEWb4cGDpUflT5+xrl5PD6HdkPA4/cR6tWgEZTcLvRCCQnA23bAqdOOb0sUiYEMH068PLL5jvVMvDInhh45D5atLjfUzM/oxG4fFn2df/lF+fWRQUYjcCLLwJvvWV5Xw5JIHth4JH7aN78ftc+JUaj7MASGQns3Om8uiiPrCxg8GBg1SrL+wYHAxUqOL4mUgcGHrkPa8595eTIb9xevYDPP3d8TZTHzZuy4+zGjZbnBtBo5FlqInth4JH7qFtXzrpiSU6ObAkOGgS8/77j6yIAsqNsZCSwZ0/enpjmaLVAy5aOr4vUg4FH7kOrBZo0sX5/IeSFpJkzORWZg50/Ly+fHjli/QQ42dm8fkf2xcAj99K6tRy8ZYvYWDnhtDXNDrLZ6dOyg2xSku2zvbGHJtkTA4/cS/PmRZtDM3cwWFaW/WtSsYMHZcvu0iXbP5YyZYCQEIeURSrFwCP3kn9OTVusXy+bI2Q3ixcD6elF+xskLAzw4DcU2RF/nci9NGmiPPi8MFot4OcHzJnDWYrtbNo0OT8mYFt4eXmxhybZHwOP3EuZMkDt2tbt6+kpv4VHj5YXmGJi5Dct2U2jRsD33wPffgvUq2f98+7d4/U7sj8GHrmf1q2ta04IAQwbBqxYIefiJIfQaIAePYBdu2zrT8TAI3tj4JH7ad7cutOaRiPw8cfA2bOOr4nw1lvWX1718AAaN3ZsPaQ+DDxyP0o9NTUa5VafRgO8/rpz6lKx06flVGLmOq/kb/k99JB1cwgQ2YKBR+7nwXNhWq28rjdrFlC2bMF9s7PlQrE//+y8+lTo9deVG90eHkB0NNCly/37Hh5cA48cg4FH7icoSN60WuCFF+TSQFOnyhlVlL51tVrglVc424qD7NkDbNmi3LorVw5YuhTYsQP47jsgNFSO/2/Txvl1kvvTCOFe/8ozMjKg1+thMBjg7+/v6nLIVQwG4OpVoE6d+9uysoD69eU8V0qzqmzYAAwY4LwaVSAnRw4vOHZMOfCWLpXr4eUyGoETJ4CmTW0fXULuw1Hf42zhkXvS6/OGHQB4ewMLFyqHnUYDTJoEZGY6pz6VWL8eSEwsGHYeHnIWleefz7tdq5UDzhl25AgMPFKXp5+WF4jyLxQrBHDhAvDee66pyw3dvQu89ppyeOXkAO+8I/8GIXIWBh6pi0YDLFmifH5NCDmR9LVrTi/LHS1dCqSmFrw0qtUC4eHAk0+6pi5SLwYeqU+7dkC/fsqjoG/flgPGqFiuXJEdY5V6CBiN8m8OnrYkZ2PgkTrNn6+83WiUKyf88Ydz63EzM2fKU5r5abVA//5yuSAiZ2PgkTo99BDw0ksFr+XleuMN59bjRn77TS4kr3TWWKMx/7cGkaMx8Ei9pk2TqyTkl50NbNwIxMc7vyY3YO5vBQ8Puc6utXN7E9kbA8+NhITIayMPat5c9sMgBZUqATNmmB+MPmECB6Pb6Kef5MQ1Sq27smXl+H8iV2HgkbqNHQtUq1Yw9IxG4MAB4KuvXFNXKSSEnLBG6SyxRiOv61Wo4Py6iHIx8EjddDo5GF2pJefhAbz6qpyhhSz6/HPg8GHlQeY1awIvvuiauohyMfBU4uhR4Kmn5LJvu3e7upoSZuBAoGXLgk2TnBwgJUX2wKBCZWbKiWrMDTJfuJCDzMn1GHhuxMOjYEPl3j3537Aw2Q+jUSPn11XiWRqMPmMGcP268+sqRZYvB/76S3mQ+cMPywluiFyNgedGKleWM1vkysgAkpJcV0+p0rEj8MQTyoPRb9wAZs92fk2lxNWr8vocB5lTScfAcyNduwKffALs3QscPw4MG2Z+mBkpWLBA+Vs7Jwd4913+9WDGW2/JCWry8/SUE9q0a+f8moiUMPDcSEwM0KkT0Ls30KsX0LcvULeufOzSJXn/+HHZNTz/8AWCXDrohReU/0oQApg82fk1lXC//y7n2za3kjkHmVNJwvXwiB505Yoc0HjrlvLjBw5wddIHPPUU8PXXyj0zX36Zf1hR0XA9PCJnCAgApk/nYHQrxMfLYYpKrbsyZeRENkQlCQOPKL9x44DgYOXB6Pv2ySaNylkaZD5jhpzIhqgkcUrgrVixArVr14aPjw9atWqFvXv3mt03Li4OGo2mwO2u0tTrRI7g42O+A4uHBzBx4v3xHiq1cSNw8GDB1p1GIyeuGTvWNXURFcbhgbdhwwaMHz8eU6ZMQUJCAjp27IiePXsiJSXF7HP8/f2Rmpqa5+bj4+PoUonuGzwYaNZMeTB6cjKwapVLyioJsrLkBDQeCt8eQshB5jqd8+sissThgbd48WI899xz+Ne//oWGDRtiyZIlqFGjBt4vZPYKjUaDoKCgPDcip/LwKHww+rRpgMHg/LpKgBUrgPPnZfY/SKuVE9YMHOiauogscWjgZWVl4ddff0VUVFSe7VFRUdi3b5/Z5928eRO1atVC9erV0bt3byQkJJjdNzMzExkZGXluRHbRubMc46E0GD0jA5gzx+kludr16/L6HAeZU2nk0MC7cuUKjEYjAgMD82wPDAxEWlqa4nNCQ0MRFxeHb775BuvWrYOPjw/at2+Ps2fPKu4/d+5c6PV6061GjRp2Pw5SsYULCzZlALnt3/8Gzp1zfk0u9PbbwM2bBbd7esqJajp2dH5NRNZySqcVTb4/+YQQBbblCg8PxzPPPINmzZqhY8eO+Pzzz1G/fn0sW7ZMcf+YmBgYDAbT7fz583avXw3GjJHDy158EfjgAzncTGn2DNUJDQWef165O2JOjhztrxJ//gksXaqc/0LIfj5EJZnCuRr7CQgIgFarLdCau3TpUoFWnzkeHh54+OGHzbbwdDoddLxCXmzJybLX3aFD909XeXjI1akfflguJNusmfyv6i6pxsYCa9YU/AvAaATWrZO9Nlu3dklpzjR5svKpTK1WTlBTv77zayKyhUNbeN7e3mjVqhV27tyZZ/vOnTvRzsoJ9oQQSExMRHBwsCNKpH98+aX8zn6w511ODvDHH8AXXwBTpgA9e8rhaQEBQFQU8MYb8vv+1CnzU0u5hSpV5A/A3GD0iRPdfjD6gQPy90Dpc/bxkdf1iEo84WDr168XXl5e4qOPPhInT54U48ePF2XKlBHJyclCCCGio6PF5MmTTfvHxsaK7du3iz/++EMkJCSIESNGCE9PT3HgwAGr3s9gMAgAwmAwOOR43NmVK0LUqyeEViuE/AYv/Obldf//vb2FaNFCiFGjhHjvPSF++kmIjAxXH5Ed3bolRFCQEBqN8g/jm29cXaHD5OQIERGh/Huh0Qgxf76rKyR346jvcYee0gSAgQMH4urVq5g1axZSU1PRpEkTbNu2DbVq1QIApKSkwOOBZkV6ejpGjx6NtLQ06PV6tGjRAj/++CPacP5Ch6tUCfjf/4C2bYGLFy232h4ce52VBSQkAMeOyeflNnhq1QIGDHCD6zt+fnIm5GHDCj7m4SGnHOvRA/Dycn5tDrZ5s5xGLD+NRrb4x41zfk1ERcHJo6mAM2eA8HC5DJw9TlWWKQNcu+YGK17n5MgLmebO4a5YIS9muZGsLKBBA7nwu1JnlbVrgaFDnV8XuTdOHk1O06ABsHOnDKjijqnSaIA333SDsANkS+7dd83/FTBlihyf50ZWrZIdmpQGmTdrJiekISotGHikqHVrYMuW4i0gq9EAgYHA+PH2q8vlunaVpy6VBqMbDG61AFx6uvkVD3IHmStNL0ZUUvHXlczq1k32wixqK08IYN48efnLrbzzjnIrLycHWLRIzrvlBubMkae189Nq5QQ0nTs7vSSiYmHgUaGefhpYubLoz9+0CTAzhLL0atQIGDVKuflrNMpTm6VccrJswZkbZL5wodNLIio2Bh5ZNHq0nFKqKP7v/4CGDWVPvitX7FuXS82cqdwj02iUPTkKmf+1NIiJUQ47rVZOPBMa6vyaiIqLgUdWefPNonU/NxrlbcUKOWvLwoWAWyxtGBQkfyhKF7FyhymU0g7Qhw4B69crn7XV6eTEM0SlEQOPrKLRyLmShwwp2jU9o1FOOvzGG8BDD8lrg0otiFJl4kQ57YzSyuh79gDffuuauopBCJnV5lYynzpVTjxDVBox8MhqHh5AXBzQvbv53nleXoUHohDA33/L4GzdGvjxR4eU6hxlysheOeZWRp8wAcjOdn5dxbBlC/DTT8ormbtdj1tSHQYe2cTLC9i4UU4ordQK0GqB6tUthx4AHD0KREYCjz8uB7uXSs8+KzuxKK2M/ttvwH//65q6iuDePdloNbeS+fz5gK+v8+sishcGHtnmPsolAAAgAElEQVTMz0+eratXL+9wNA8P2dnh7FnZc9/fv/BxWrmtiG+/lZnx0kvA5cuOrd3utFrzK6MD8jqfUt/+Eug//5GThSsNMm/SBHjmGdfURWQvDDwqkgoVgB9+kH03chs3lSoBr74qOzZMmAAkJQGvvCJDsbAB7NnZ8kt21SogJESeJbxzxymHYR+PPipvSoPRr18vFX34DQZ5fU6J0SgnmOEgcyrt+CtMRVa1KrBrF6DXy/vz5snLWrkqVgQWL5anK598Um4rLPiMRrnk3JtvAnXryt79paZjy+LF5gejL1gA/PWX82uywbx5MvTy8/SUy0J17er8mojsjYFHxfLQQ7JD4tq1ygsJAECdOnIttX377q+TaukaX1oaEB0NtGghQ7XEa9IEGDlSOdGzs803n0qAlBSZ10p/XBiNcvIYInfAwKNia9JEzphvad7NiAi5zMyXXwI1a1rXseXECdm66N1bLlJQor31lvnB6GvWAEeOOL8mK7z5pnLjVKuVE8o0auT8mogcgYFHTqXRAE89JTswLlkiT4da07Hlu+9ksI4ZI9fqK5GCg+VAQ3OD0V991fk1WXD4MPDZZ8qB5+0tJ5QhchcMPHIJb285c0tysuwKb23Hlg8/lDO2zJ4tr/eVOJMmyYuX+RmNspfPd985vyYzcgeZK+Vz7rJOQUHOr4vIURh45FLly8tOjGfPAv37y22WOrbcuSOXralTR54ptMcitXZTtiwwd67yYx4ecuR2CSl42zY58F9pkHnlyvIPESJ3wsCjEiEkRE43duAA0Lat3FbYqU4hgEuXgOHDgebNge+/d0aVVhoxQs6unP8AcnKA06fldDUulp1tvnWXO8jc7ZZ1ItVj4FGJ0qaNnNpq82YZgoXJ7dhy8qQcBte9O3D8uMNLtEyrlROPKnV71Gjk6PybN51f1wM++ki2qpUGmTdqJHvIErkbBh6VOBoN8MQTsjG0fLk87VlYay/3S/t//wPCwmTPwtRU59RqVvfusntp/sHoQgBXr8qpaFzkxg15fU5J7krmxVnpnqikYuBRieXlJacbS04GXntN3rfUsUUIYPVqeX1v1izg1i2nlZuXRlP4YPR581yWygsWAOnpBbd7et6fNIbIHTHwqMTT62U+nD0LDBwot1nq2HL3ruxSX7u2nL/ZJf1EmjWTk0srFXvvnux542QXLshOQuYGmS9e7PSSiJyGgUelRq1awKefygVK27WT2yyd6rxyBXjuOaBpU2DHDufUmcfbbyvPsWk0yiQ+dsyp5UydqrxikVYrJ4pp0sSp5RA5FQOPSp1WreR0Zt98I09dFia3Y8uZM/Ky2iOPyGWJnKZ6dXk+VimZtVqnDkY/cgT4+GPl1q6Xl5wohsidMfCoVNJogD595HRj778vV2+wpmPL7t1yGMPIkXIhWqd4/XXZ8ya/7Gxg5055c7DCBpl7eACTJ8uJYojcGQOPSjVPTzndWHKy7O3v7W35+p4QsqVTty4wY4YTRgiUKwfMmaP8mFbrlMHo330nJ+FWeptKleQEMUTujoFHbsHfX14u++MPOZG1RmNdx5a335bj/f7zH+VrW3bz3HNyxdz8TSyjUQ4k/OQTh711drbMVHMt4Llz8y7rROSuGHjkVqpXl9ONHT4MdOwot1k61Xn1KjB6NNC4sZxuK/e6n115ehY+GP2NNxw2OWhcnLyGmf+tPTzkhDDDhzvkbYlKHAYeuaXmzeVA9G3b5Jp91vj9d+Cxx+R48cREBxTVqxcQGVmw6SkEcPmyQ8YE3LwpT/UqycmRGcxB5qQWDDxyWxqNXK37xAnggw/ktSprOrbs3Qu0bCkXtL1wwc4FmWvlCSGXgEhLs+MbysVbr10ruF2rlcHevbtd346oRGPgkdvz9JTTjSUny3FoOp11HVs+/VR2bJk6VU7HZRctWphfLffePdmLxk7+/ltOAq2Urzk5skFZ2CK8RO6GgUeqUbasnH3ljz/kBCjWdGzJypKdOkJCgJUr7dSxZfZs5Tc2GmXvmZMn7fAmciKXe/cKbtdqZeu1WTO7vA1RqcHAI9WpVk1OcpKYCHTuLLdZOtV57RrwwgtAw4bA//1fMTu21KwpF5szNxjdDmMEjh2Tc4oqDUPw9JS9U4nUhoFHqhUWJtfR274daNBAbrN0iu/PP+WA98hI4Ndfi/HmMTFyktD8srOBb7+VPW6K4dVXlRuRHh5yHHy1asV6eaJSiYFHqte9u2wRffQREBBgXceW+HigdWt5OS4lpQhvmjtwUEnuYHSli29W2LFDTt6idPq1QgU50xmRGjHwiHB/8uSkJNlvxMfH8lJEAPD553LYw+TJgMFg45uOGiV7xSgNRj92TPaasZHRKKcQM1f7nDly4hciNWLgET2gTBlg+nR56nLECHmKU2mxg1zZ2bJjyMKFsmPL8uXKHUUUeXnJrpLmBqO//jpw545N9X/8sezzkv/anYeHnOhl5EibXo7IrTDwiBQEB8sOk8eOAd26yW2WTnWmpwMvvyxnL9m82cqOLX36AB06KA9Gv3hRLj9upVu3ZEtT6Tpk7iDzwsKbyN0x8IgK0bix7NSyc6fsoWmN5GTgySdljv3yi4WdcwejK3WnFEJe57t0yar3XbxYTtiSP2i1WtnJplcvq16GyG0x8Iis8Mgjcj25uDggMLDw3py5ZygPHADatgUGD5YhaFbr1sCgQcoX3jIzgdhYi/Wlpcnrc0qtytzWHQeZk9ox8IislDtg+88/5WKpvr6WB64DwBdfyOtnr70mT3sqmjtX+Zyp0QisWgWcPl1obdOnmx9k/swzcoIXIrVj4BHZyM8PmDJF9uj8179kThV2bcxolJ1bFi+WHVuWLpUzuOQREmJ+DR8Pj0LHEpw4AXz4ofJZUa1WTuxCRAw8oiILDJTTjR07BkRFyW2FtfhycuTQhfHj5UD3jRvznYJ88005Pi+/7Gw5vcuePYqv+9pr5geZv/oqUKOG9cdE5M4YeETF1KgRsHWrnBylcWO5rbDrZULIwepPPw1ERAD79//zQPnywKxZyk8yMxj9hx/kxCxKg8z1etlrk4gkBh6RnXTpAiQkyMXLg4Ks69hy6JAMvf795bVBPP88ULu28mD0xERg/fo8rzF+vPlW5ezZyg1GIrVi4BHZkYeH7CTyxx+y16Sfn3UdWzZtkqc5J072xrXYpeYHo7/2GnD3LgBg7Vrg+HHlQeZ168rri0R0HwOPyAF8feXpxORk2Wjz8LAcfNnZskNL7Zcfw+JaS5Dp4Zt3JyGA1FRg6VLcvg288Yb5QeaLF8uJXIjoPgYekQNVrgy8956c7uuxx+Q2S8GXkaHBpHPjUC/nND5Hf+QZWicEMGsWlsy+hYsXlQeZd+ggJ3AhorwYeERO0KAB8PXXsqNl06ZyW6EdW6DBX6iOgfgcbXEAP6Od6bGLd/zx9gIvxUHmRiMHmROZw8AjcqJOneQ6ep99BlStaqFjyz//PA+jJTrgZ/TDRvyOuojNmYqs7IL/dLVaOatL69aOqp6odNMIUay1m0ucjIwM6PV6GAwG+LOLGpVgd+8Cy5bJkQh37igPHH+QJ+5BAMiBFkLhb1UvL+DsWaBWLcfUS+Qsjvoed0oLb8WKFahduzZ8fHzQqlUr7N27t9D9N27ciEaNGkGn06FRo0bYtGmTM8okciofH9npMikJePFF2UIrdCkieMEILwgUbBZ6eMh18Bh2ROY5PPA2bNiA8ePHY8qUKUhISEDHjh3Rs2dPpJhZJjo+Ph4DBw5EdHQ0jhw5gujoaAwYMAAHDhxwdKlELhEQIHtnnjp1v7NJYR1bUCDwBPz95UQtRGSew09ptm3bFi1btsT7779v2tawYUP07dsXc+fOLbD/wIEDkZGRgW+//da0rUePHqhQoQLWrVtXYP/MzExkZmaa7mdkZKBGjRo8pUml1s8/ywHlhw4BGo2AEJZ6oAgsW6bB2LFOKY/I4UrlKc2srCz8+uuviMqdaPAfUVFR2Ldvn+Jz4uPjC+zfvXt3s/vPnTsXer3edKvBiQOplGvfHvgl3ogNY3ahuuYvaKAwCB0AIKDRCNSurcHzzzu1RKJSyaGBd+XKFRiNRgQGBubZHhgYiLS0NMXnpKWl2bR/TEwMDAaD6Xb+/Hn7FE/kKjt2QBPWFANWdsXZnIewCJNQDhnQQk6YqYERvbEFlXQ3IYQG77zDQeZE1nBKpxVNvr7XQogC24q6v06ng7+/f54bUal09KhcabZ7d+C33wAAOmRiIv6NZIRgHN6FJ+4hAFexDoORlBOCk0ez0bevi+smKiUcGngBAQHQarUFWmeXLl0q0IrLFRQUZNP+RKXe338DI0cCzZsDu3fLbfnGKFTEdSzGJCQjBH9o6qFsBW+UW7kQDZt6cpA5kZUcGnje3t5o1aoVdu7cmWf7zp070a5dO8XnREREFNh/x44dZvcnKrVu3gRmzJAzPX/8sZwnrLDBeFotqnlfQbk3X5aTdI4c6bRSidxBIaN+7GPixImIjo5G69atERERgQ8++AApKSkYM2YMAODZZ59FtWrVTD02X3nlFXTq1Anz58/HE088ga+//hrff/89fvrpJ0eXSuQc2dnA6tVyHMG1a8orIzxIq5X7DB0KvP02V3QlKiKHB97AgQNx9epVzJo1C6mpqWjSpAm2bduGWv+MkE1JSYHHA2t/tWvXDuvXr8fUqVMxbdo01K1bFxs2bEDbtm0dXSqRYwkBbN8uR4ifOWN5fw8PGXQdOsgJMlu0cHyNRG6MU4sROUNiIjBxIrBr1/0gs6R+fRl0PXtyNmhSlVI5Do9I9S5cAIYNA1q2BH78UW4rLOw8PIBKlYBVq4ATJ4BevRh2RHbi8FOaRKp04wYwfz6waJG8ZmdFhxR4espVXSdNAsqVc16tRCrBwCOyp+xs4MMPgSlTgPR06zukPPss8NZbQLVqzqmTSIUYeET2IASwdavskPL775b3z72O17kzsHgxEBbm8BKJ1I7X8IiK69dfgchIudTBn38Wvm/u9bgGDWSPze+/Z9gROQkDj6ioUlLk2LjWrYH4eLnNUoeUgADgo4+AY8fkFGJE5DQ8pUlkK4MBmDtXnorMHdWTnW1+f61Wzu4cEwO8+ipQpoxz6iSiPBh4RNa6dw/44ANg6lQgI8NyhxRPT9kzc8QIYNYsIDjYOXUSkSIGHpElQgDffCMHjlu6RgfIFp3RCHTrBrzzDtC4seNrJCKLGHhEhTl4UPa8/PlneQ2uMBqNDMfQUGDJErnUDxGVGOy0QqQkORkYPBho0wbYv19uK+wUpkYDVKkCxMUBR44w7IhKILbwiB6Ung7Mni1baLkszZDi7S0Hmk+YAPj5Ob5GIioSBh4RAGRlAStXAtOny2nBrOmQkpMD/OtfwMyZABcoJirxGHikbkIAX30l5688d+7+MANzcjukREUBCxcCjRo5p04iKjYGHqnX/v3A+PHAgQOyQ0phYZfbIaVxY3m6s0sX59VJRHbBTiukPn/+CfTvD0REAIcOyW2WOqQEBQGffAIkJDDsiEoptvBIPa5dA95+G1i27H5rzlKHFJ0OmDYNeOUVwNfXOXUSkUMw8Mj9ZWYCK1YAsbHArVuFhxxwv0PK88/L51Su7IwqicjBGHjkvoQAvvxSdkg5f976Dim9egELFsgVDYjIbTDwyD3t2yc7pBw8eL/DiTm5j4eFyQ4pnTo5r04ichp2WiH38vvvQL9+QPv2wOHDcpulsKtaFfjsM9mBhWFH5LbYwiP3cPWqXJFgxYr72yx1SPH1BWbMAMaOBXx8HF8jEbkUA49Kt7t3geXL5Wwnd+5Y1yFFCOCll+SsKpUqOadOInI5Bh6VTjk5wIYNwGuvAX//bX2HlD59gPnzgXr1nFMnEZUYDDwqffbulePiEhKs75DSooXskNK+vfPqJKIShZ1WqPT47TfgiSdkx5KjR+U2S2FXvbpsCf7yC8OOSOUYeFTyXb4sO5Y0agRs2ya3WeqQUq4csGgRcPYsMGCADD8iUjWe0qSS684dYOlS4K23ZOcUazqkAMDLLwNTpwIVKzq+RiIqNRh4VPLk5ADr1gGvvw6kplrfIaVvX2DePKBuXefUSUSlCgOPSpbdu2WHlKNHLXdI8fCQ4di6NfDvf8vVD4iIzOA1PCoZTp0CeveWS++cOCG3WeqQUqOGnCszPp5hR0QWMfDItS5dAl54AWjSBPjuO7mtsGt1Hh6AXi+HGPz2G/DUU+yQQkRW4SlNco3bt2VozZ4tl+/JySl8EdbcDinjxwNTpgDlyzunTiJyGww8cq6cHLly+BtvyNadtR1Snn4amDsXCAlxSplE5H54SpOK7/BhYOVKIDu78P1++AFo1gwYPtxy2Hn886vZti1w4IDstcmwI6JiYAuPiufECaBrV8BgkPfHjFHe59VX5TU6rVZus9SyCwkBFi8GHn+c1+iIyC7YwqOiO3cO6NYNuHlT3p8yBcjIuP94WhowejTQtKls3QGWO6SULy9XPzh9Wk4jxrAjIjth4FHRXL4sW3ZXr94PsfR0YMEC4NYtOTtK7drAf/8rW3OFne7UagEvL7nyQXKyXLrHy8sph0FE6qERwtK5pdIlIyMDer0eBoMB/v7+ri7HPd24AXTsCBw/XrDF5u0tW2lXrhTe6xK43yFl6FBgzhygZk3H1UxEpYajvsd5DY9sc/euXFNOKewA2Zq7fNm6GVLatZMzpLRq5bh6iYj+wcAj6xmNwODBcj06c623e/csv06dOjLoHnuM1+iIyGl4DY+sI4Tsgfn115ZPVSrx8AAqVADef//+NGIMOyJyIrbwyDpTpgAffmj78zw9Zdi99ppc/YDXVYnIRRh4ZNm//y1nOSmKgQPlkj3Vq9u3JiIiG/GUJhXu44+BiROL/vzISIYdEZUIDDwy7//+DxgxonivERNzf2A6EZELMfBI2U8/yaV3ijtM8/p1YOFC+9RERFQMDDwq6OhRoGdPOTtKcQMvJ0cGXlaWfWojIioidlqhvP78U86PeedO0YYfeHndH4vn6QmEhsqlfby97VsnEZGNGHh0X1qanB/z+vXCJ3kG5FADjeb+fv7+QIsWctaU5s3lMkChoQw6IioxHHpK8/r164iOjoZer4der0d0dDTS09MLfU7nzp2h0Wjy3AYNGuTIMgmQEz8/8ghw4ULBsPP0zDtIvFYtoG9fIDYW2LIFOH9ePn/3buCdd4DoaCAsjGFHRCWKQ1t4Q4YMwYULF7B9+3YAwOjRoxEdHY0tW7YU+rxRo0Zh1qxZpvu+vr6OLJMA4Mkn5bp1DwabtzfQqBHw8MP3W21hYUC5cq6rk4ioiBwWeKdOncL27duxf/9+tG3bFgDwn//8BxEREThz5gwaNGhg9rl+fn4ICgpyVGmkpFUr2ZJr2VKGW/PmQL16chsRkRtw2LdZfHw89Hq9KewAIDw8HHq9Hvv27Ss08D799FOsXbsWgYGB6NmzJ2bMmIFyZloVmZmZyMzMNN3PeHABUrLeokWuroCIyKEcdg0vLS0NVapUKbC9SpUqSEtLM/u8oUOHYt26ddi9ezemTZuGjRs3ol+/fmb3nzt3rukaoV6vR40aNexSf6m0ahVQrVrB3pWPPw4MG+aamoiISgibAy82NrZAp5L8t0OHDgEANAqz4QshFLfnGjVqFB555BE0adIEgwYNwpdffonvv/8ehw8fVtw/JiYGBoPBdDt//ryth+Q++veXC6/u2nV/2/XrwHffyUVWiYhUzOZTmmPHjrXYazIkJARHjx7FxYsXCzx2+fJlBAYGWv1+LVu2hJeXF86ePYuWLVsWeFyn00Gn01n9em6tYkWgRw/gs8/kWDoA+OILuT33PhGRStkceAEBAQgICLC4X0REBAwGA3755Re0adMGAHDgwAEYDAa0a9fO6vc7ceIE7t27h+DgYFtLVaehQ4HRo4EVKwCdDvj0U2DQIECrlUv8/Pyz3G/3bpeWSUTkbA67htewYUP06NEDo0aNwv79+7F//36MGjUKvXv3NnVY+euvvxAaGopffvkFAPDHH39g1qxZOHToEJKTk7Ft2zb0798fLVq0QPv27R1Vqnvp00dew9u6VY6P27sXeOYZ+djs2XLsHBGRCjl04Pmnn36Kpk2bIioqClFRUQgLC8Mnn3xievzevXs4c+YMbt++DQDw9vbGDz/8gO7du6NBgwYYN24coqKi8P3330Or1TqyVPfh6wv06ydbduvWAfXryyEHREQq59BBVhUrVsTatWvNPh4SEgLxwOTENWrUwJ49exxZkjoMHSpbeidO3G/dERGpHFdLcEddu8qOKmfOAEOG3N++dCkwdSpw/LicGqyQ4SFERO5GI0Rx138pWTIyMqDX62EwGODv7+/qcoiIyEaO+h5nC4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFTBoYE3e/ZstGvXDn5+fihfvrxVzxFCIDY2FlWrVoWvry86d+6MEydOOLJMIiJSAYcGXlZWFvr3748XXnjB6ucsWLAAixcvxvLly3Hw4EEEBQXh0UcfxY0bNxxYKRERuTuHBt7MmTMxYcIENG3a1Kr9hRBYsmQJpkyZgn79+qFJkyZYs2YNbt++jc8++8yRpRIRkZsrUdfwkpKSkJaWhqioKNM2nU6HyMhI7Nu3T/E5mZmZyMjIyHMjIiLKr0QFXlpaGgAgMDAwz/bAwEDTY/nNnTsXer3edKtRo4bD6yQiotLH5sCLjY2FRqMp9Hbo0KFiFaXRaPLcF0IU2JYrJiYGBoPBdDt//nyx3puIiNyTp61PGDt2LAYNGlToPiEhIUUqJigoCIBs6QUHB5u2X7p0qUCrL5dOp4NOpyvS+xERkXrYHHgBAQEICAhwRC2oXbs2goKCsHPnTrRo0QKA7Om5Z88ezJ8/3yHvSURE6uDQa3gpKSlITExESkoKjEYjEhMTkZiYiJs3b5r2CQ0NxaZNmwDIU5njx4/HnDlzsGnTJhw/fhzDhw+Hn58fhgwZ4shSiYjIzdncwrPF9OnTsWbNGtP93Fbbrl270LlzZwDAmTNnYDAYTPu8/vrruHPnDl588UVcv34dbdu2xY4dO1CuXDlHlkpERG5OI4QQri7CnjIyMqDX62EwGODv7+/qcoiIyEaO+h4vUcMSiIiIHIWBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REquDQwJs9ezbatWsHPz8/lC9f3qrnDB8+HBqNJs8tPDzckWUSEZEKODTwsrKy0L9/f7zwwgs2Pa9Hjx5ITU013bZt2+agComISC08HfniM2fOBADExcXZ9DydToegoCAHVERERGrl0MArqt27d6NKlSooX748IiMjMXv2bFSpUkVx38zMTGRmZpruGwwGAEBGRoZTaiUiIvvK/f4WQtj1dUtc4PXs2RP9+/dHrVq1kJSUhGnTpqFr16749ddfodPpCuw/d+5cU0vyQTVq1HBGuURE5CBXr16FXq+32+tphI0RGhsbqxgwDzp48CBat25tuh8XF4fx48cjPT3d5gJTU1NRq1YtrF+/Hv369SvweP4WXnp6OmrVqoWUlBS7/qBKuoyMDNSoUQPnz5+Hv7+/q8txGjUetxqPGVDncavxmAF5pq5mzZq4fv261R0erWFzC2/s2LEYNGhQofuEhIQUtZ4CgoODUatWLZw9e1bxcZ1Op9jy0+v1qvoFyeXv78/jVgk1HjOgzuNW4zEDgIeHfftV2hx4AQEBCAgIsGsRhbl69SrOnz+P4OBgp70nERG5H4cOS0hJSUFiYiJSUlJgNBqRmJiIxMRE3Lx507RPaGgoNm3aBAC4efMmJk2ahPj4eCQnJ2P37t3o06cPAgIC8OSTTzqyVCIicnMO7bQyffp0rFmzxnS/RYsWAIBdu3ahc+fOAIAzZ86YelZqtVocO3YMH3/8MdLT0xEcHIwuXbpgw4YNKFeunFXvqdPpMGPGDMXTnO6Mx62e41bjMQPqPG41HjPguOO2udMKERFRacS5NImISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVMEtAk+t6+4V5biFEIiNjUXVqlXh6+uLzp0748SJEw6u1H6uX7+O6Oho6PV66PV6REdHW5yyrnPnzgU+a0uzBbnaihUrULt2bfj4+KBVq1bYu3dvoftv3LgRjRo1gk6nQ6NGjUxjW0sbW447Li6uwOeq0Whw9+5dJ1ZcPD/++CP69OmDqlWrQqPRYPPmzRafs2fPHrRq1Qo+Pj6oU6cOVq5c6YRK7cvW41yJFE4AAAeISURBVN69e7fiZ3369Gmb3tctAk+t6+4V5bgXLFiAxYsXY/ny5Th48CCCgoLw6KOP4saNGw6s1H6GDBmCxMREbN++Hdu3b0diYiKio6MtPm/UqFF5PutVq1Y5odqi2bBhA8aPH48pU6YgISEBHTt2RM+ePZGSkqK4f3x8PAYOHIjo6GgcOXIE0dHRGDBgAA4cOODkyovH1uMG5JRbD36uqamp8PHxcWLVxXPr1i00a9YMy5cvt2r/pKQk9OrVCx07dkRCQgLefPNNjBs3Dhs3bnRwpfZl63HnOnPmTJ7Pul69era9sXAjq1evFnq93qp9hw0bJp544gkHV+Qc1h53Tk6OCAoKEvPmzTNtu3v3rtDr9WLlypWOLNEuTp48KQCI/fv3m7bFx8cLAOL06dNmnxcZGSleeeUVZ5RoF23atBFjxozJsy00NFRMnjxZcf8BAwaIHj165NnWvXt3MWjQIIfV6Ai2Hrct/95LAwBi06ZNhe7z+uuvi9DQ0Dzbnn/+eREeHu7I0hzKmuPetWuXACCuX79erPdyixZeUeWuu1e/fn2MGjUKly5dcnVJDpWUlIS0tDRERUWZtul0OkRGRmLfvn0urMw68fHx0Ov1aNu2rWlbeHg49Hq9xfo//fRTBAQEoHHjxpg0aVKJbdFmZWXh119/zfMZAUBUVJTZY4yPjy+wf/fu3UvFZ5qrKMcNyOkIa9WqherVq6N3795ISEhwdKkuZe6zPnToEO7du+eiqpynRYsWCA4ORrdu3bBr1y6bn1/i1sNzFlvX3XMHaWlpAIDAwMA82wMDA3Hu3DlXlGSTtLQ0xYWAq1SpYjo2JUOHDkXt2rURFBSE48ePIyYmBkeOHMHOnTsdWW6RXLlyBUajUfEzMneMaWlpNu1fEhXluENDQxEXF4emTZsiIyMD7777Ltq3b48jR47YfqqrlDD3WWdnZ+PKlStuO8l+cHAwPvjgA7Rq1QqZmZn45JNP0K1bN+zevRudOnWy+nVKbOAVZd09WwwcOND0/02aNEHr1q1Rq1YtbN26VXHdPWdx9HEDgEajyXNfCFFgmzNZe8xAwdoBy/WPGjXK9P9NmjRBvXr10Lp1axw+fBgtW7YsYtWOZetnVNI+06Ky5TjCw8PzdDRr3749WrZsiWXLlmHp0qUOrdOVlH5GStvdSYMGDdCgQQPT/YiICJw/fx6LFi1yj8AraevuOYsjjzsoKAiA/Cvxwb8EL126VOCvRmey9piPHj2KixcvFnjs8uXLNtXfsmVLeHl54ezZsyUu8AICAqDVagu0agr7jIKCgmzavyQqynHn5+HhgYcfftjl/4Ydydxn7enpiUqVKrmoKtcIDw/H2rVrbXpOiQ08ta6758jjzj2tt3PnTtPKFVlZWdizZw/mz5/vkPe0hrXHHBERAYPBgF9++QVt2rQBABw4cAAGgwHt2rWz+v1OnDiBe/fuufyzVuLt7Y1WrVph586deZbE2rlzJ5544gnF50RERGDnzp2YMGGCaduOHTts+pm4WlGOOz8hBBITE9G0aVNHlelyERER2LJlS55tO3bsQOvWreHl5eWiqlwjISHB9n/DxeryUkKcO3dOJCQkiJkzZ4qyZcuKhIQEkZCQIG7cuGHap0GDBuKrr74SQghx48YN8eqrr4p9+/aJpKQksWvXLhERESGqVasmMjIyXHUYNrP1uIUQYt68eUKv14uvvvpKHDt2TAwePFgEBweXmuPu0aOHCAsLE/Hx8SI+Pl40bdpU9O7d2/T4hQsXRIMGDcSBAweEEEL8/vvvYubMmeLgwYMiKSlJbN26VYSGhooWLVqI7OxsVx1GodavXy+8vLzERx99JE6ePCnGjx8vypQpI5KTk4UQQkRHR+fpufjzzz8LrVYr5s2bJ06dOiXmzZsnPD098/RmLQ1sPe7Y2Fixfft28ccff4iEhAQxYsQI4enpafrsS4MbN26Y/t0CEIsXLxYJCQni3LlzQgghJk+eLKKjo037//nnn8LPz09MmDBBnDx5Unz00UfCy8tLfPnll646hCKx9bj//e9/i02bNonffvtNHD9+XEyePFkAEBs3brTpfd0i8IYNGyYAFLjt2rXLtA8AsXr1aiGEELdv3xZRUVGicuXKwsvLS9SsWVMMGzZMpKSkuOYAisjW4xZCDk2YMWOGCAoKEjqdTnTq1EkcO3bM+cUX0dWrV8XQoUNFuXLlRLly5cTQoUPzdFVOSkrK8zNISUkRnTp1EhUrVhTe3t6ibt26Yty4ceLq1asuOgLrvPfee6JWrVrC29tbtGzZUuzZs8f0WGRkpBg2bFie/b/44gvRoEED4eXlJUJDQ23+IigpbDnu8ePHi5o1awpvb29RuXJlERUVJfbt2+eCqosut7t9/lvucQ4bNkxERkbmec7u3btFixYthLe3twgJCRHvv/++8wsvJluPe/78+aJu3brCx8dHVKhQQXTo0EFs3brV5vflenhERKQKqh6HR0RE6sHAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEq/D9hJdJnED+IrQAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'the singular vectors of $A$')" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for (v,s,c) in ((V[:,1],\"v₁\",\"red\"), (V[:,2],\"v₂\",\"red\"),\n", - " (U[:,1],\"u₁\",\"blue\"), (U[:,2],\"u₂\",\"blue\"))\n", - " arrow(0,0,v..., color=c, width=0.04, length_includes_head=true)\n", - " text(((norm(v)+0.15)*normalize(v))..., s, color=c)\n", - "end\n", - "axis(\"square\")\n", - "xlim(-1.5,1.5)\n", - "ylim(-1.5,1.5)\n", - "title(L\"the singular vectors of $A$\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Modulo an arbitrary choice of sign ($v_1$ is flipped in sign), this is exactly the case of $\\theta \\approx 29^\\circ$ that we found above which gave $Av_1 \\perp Av_2$. Julia has now computed a much more precise angle where this happens:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "28.997308395958257" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rad2deg(acos(-V[1,1])) # rotation angle of the basis, in degrees" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Any matrix = sum of rank-1\n", - "\n", - "The SVD $A = U\\Sigma V^T$ can be thought of as: to compute $Ax$ for any $x$ you (1) write $x$ in the $V$ basis with $V^Tx$, then (2) multiply each coefficient by the $\\sigma_k$, and (3) add up in the $U$ basis. In the SVD basis, any matrix $A$ acts like a bunch of **scalars** $\\sigma_k$ once you have decomposed $x$ into the right **input and output basis**!\n", - "\n", - "This can be also written\n", - "$$\n", - "\\boxed{A = \\sigma_1 u_1 v_1^T + \\sigma_2 u_2 v_2^T + \\cdots + \\sigma_r u_r v_r^T}\n", - "$$\n", - "That is, any matrix $A$ of rank $r$ can be written as a **sum of *r* rank-1 matrices** with orthogonal vectors, weighted by the singular values $\\sigma$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data “Compression”\n", - "\n", - "It is conventional to sort the singular values in descending order\n", - "$$\n", - "\\boxed{\\sigma_1 \\ge \\sigma_2 \\ge \\cdots \\ge \\sigma_r}\n", - "$$\n", - "In this way, the earlier singular vectors describe the more \"important\" part of the matrix $A$: the part that has a bigger effect on the output of $Ax$.\n", - "\n", - "Because the SVD **decomposes A into orthogonal components, sorted by \"importance\"** it is extremely useful in data analysis for pulling out the \"most important\" parts of a data. There is a whole statistical technique, [principal component analysis (PCA)](https://en.wikipedia.org/wiki/Principal_component_analysis) that is based on this.\n", - "\n", - "If we take only the **first k (< r) singular values** of $A$, we can think of it as an \"approximate\" version of A that throws out the \"less important\" parts. This is called a [low-rank approximation](https://en.wikipedia.org/wiki/Low-rank_approximation) of a matrix:\n", - "$$\n", - "A \\approx \\sigma_1 u_1 v_1^T + \\sigma_2 u_2 v_2^T + \\cdots + \\sigma_k u_k v_k^T\n", - "$$\n", - "\n", - "A great way to visualize this is to look at **images**, which can be thought of as **matrices of numbers** representing the **red, green, and blue (RGB)** components of the image." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "# Pkg.add(\"Images\") # install the package if needed\n", - "using Images, FileIO" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 111k 100 111k 0 0 330k 0 --:--:-- --:--:-- --:--:-- 373k\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATkAAADGCAIAAAAmMGDeAAAAAXNSR0IArs4c6QAAQABJREFUeAE83dmSJFmSHmbbzXwNjyWzKmvtZTgtGIAQEoQQAt5QhBS+F9+BF3wp3oCAkBhMo3t6uruqsjJj8902d35qUUOvqMgID3ezs+jy66+qx9P//f/4P7uhv17HvCo96jQfLuN5bK/X67yu71c3t4tVU+RZV/d9m6XXOs+Ky7W6XLJT2x6On3/6Ty9//MP1+XnWFOVqWW/uh7F+/Lj9/e//Y7fd5oeuPA/D8TgMQzEri6Ye8r4u07rIXKdMs+Ka52mRJ1lfFsl1rNK8zvPrZejP7eU6pGman5LL5eolZdVc/daeD6dz2/fFPL1cr5fk2l+TPrn04zgknrgWedUOYzuOlzS7ZOW5v+wOx914TqpktlzcPzzcvL+db5ZpVXSXvh+HJk3MNy/L+XqelOmp75IsKZv64fZuvb7d3L1fr25mi2XZlO7Wj12TJIfDoT33r6+vu93h9fn1hx9+8MPz04/Pr9v97nRNiktSDmPaDdfLmBRjOl6zpKizojG8vjubZpmlYzYmWXYt50lenrthv9+3h/0w9IubdDlfPCyXq7Ja5eX9YvF+fbuaNV5/6IZPL/t//Onxr5+fXg7nMUnSPLuudmVSVFk9S5tyzPO+zIdrcknTejydz6/nfZdc8ro+Xbu2H5I8aYqq67q68igu/VAUxeZmvVgsknTIkzQdU0+ez93+dNwdj6d+vKZZcr1USbpIki/L8rtZ8z693BblbHW7Px8eh9M/7HY/jNe7r5f/47/59n/6N7/9zW+/TZLs5fX4D3/46//1f//xjz9un8/pX398Op4NJJnnuQV/mC/eLZZJ241du7xf/u5f/e63f/er9Yf7c1b8w58f/+P/++efPu3zzZf1cp3OmnOS2df0Mg7toTsc3i3yxbKuy6wuLmk//Pkf/vCn//z7ft8mo2F2VZ1/+PL2m+/evXt/s1zV2/3Lf/n7j3/9608kt1ksTXO+rMr6UtVG0jTVbDhfP3/avW6Ha9p0iY3o1rfvsuaSFafbRf83323efT07VPvHYXcYikVZflhu7st5ehz61649jm3bvwzZ8dw/b/vnx/Of/+mn42s7K5r2dH4dznlyJdRllvd9313SerFa3Gyus3fp2M+qdF4kpHwchrbr9scjobl7d/vVd+/rm1lP7Jv1uc8+/vx8efk0L9N++2n7+Yfip7/811iLIi3rqq5pSnm5XMbrpSiyeZWlxTUpx2uZdU0+jnWZpwMJ60YKVM68otxcvrkcu64sLFPz5f3im18dhrJbfuyT1x//yx+2zy91O1z7c9d3fZ8M+0s5lkVKU5IqvVaJ72WTu2y5yKjbmKdJU1LqrE4zuj+vimFejl03Xi7p9ZJnKatRL+d0OOs7368pARjHSWlpgv3qTmejoyfDSF9YlDxZzMfrrC13dqhOT80py7JTUmSdK3rjWBz7NinytD+nTVUml2JWL9J8vZh/eP/w8O59XjSXxIXG43n3unvJ2svz8/Pry+7z56fX1+3z6+6nn34+0pzx2nYskqk0ZTW/JoZ1GZKhpqqxoCZAuRJaZOku1yQz1bSgbr2hemfb+SNreTMrH25Wm/myvBptKErbH9Nrn8/GUze8nnf7/tBezmnVN3a0SAl0kZV1VldXi5WlXT6yT93ltW3b4dIR4CSz4EWSdW6a+J19SwyUJL3dkdZaSXtvyayZR4x3+u4FaXalBl5srLnl9HYzoj8m5F05la/yoe278XTsz/vhcDgVReX6Q3/xzaZcTdkjz61IfxnnZemN7sP+zxcLl++Oh/Z0SMebsPaNr+I5M4CuO+4ZbYqVllWIZVpdr+fTqbN/lybL0qzKsqZpOJjz9dBk9XgtKEW4hrZrh75mufLiQqU61jgpUp5inpfFwT4e2vy8nTfsfb7ftefzNSfZVVbZ/8zoiHratUl7Gngte1Bds3OaX+3UMFy4lzTLOI+M7F3z7FJkfA+pKedNfTmOfs6v1ev+HHO/JtP3cCoeRr7vjkUyMqzGRsksM6/S25v0fDpnh2M1Vt2lyPOMC6lJxyll0tMuzU4c2x/+w38IReVRZ2Ftr6svybzrNnU9hAzPMlOo0iJ7jJ3zE1eRjNQmn5VlVV+2q3KxOb9uW3I5X6e3D16Uj3n/+S8fk+TnvluV5WJ5S6mGLPGa5rjitIf+dOmPGWfLl5Z9GUq2dVkSPBvL+UhX04q7uyTr0haHuDeUoA49qIqyKookjS0vUktLHa8kO2TqcjWPeRHr4j2+m6gd82jHjnNO+z497C/wAYtRFWmec08zbvraZu2QVBYpbZbJTTK77fvbblyR9/P+1Nujtt1vT69Pzz88f3r8TFs/fnrabQ+HY8e/DuM1n23SvEwHxqI/J1tQgFu1pTBKf7kM5LVgB22BrWdDrjRvTDndUzsmx5MRtDRqVpWbstxUzbIOmMGWefW+Pe4O42xInvbnp91p1566K3Pc8zWM02ogJBVdrTMCnXvyzEYM/ZbhGIc+LhDGwXotCj8mp2EgkYz9MHR0KNawKOZ1k5bXfowVC1HNqWBVkaO+GxJbl1DUkimJH4AET7j1JU9DbLw9SdrRCp4HisREuIBXuY6tCXtCrItqll3P/cF+VQxMyk2ObFVj7PmlO+7a3et4XkMJ82zcNOVjOh5662bZrhmnQahTWpTbwtN5nxU2tbgQxTybLear1fLwsi29xLu6Cx/1vCvXd/PFpTGJr97fWbDHx9Npd2Dnq76Gs87tIafE1Tm/lhwBO5kNY5GBMnUW9iwdR1O6dvukO0F6HoSEpenD2NCgzG6WVPaS9FBhGj7imobMDX13DHdxAq8sGOn750e85BoW0CRyrx2hHw+mL1YiI9LtdezOp30+C/8BAtlKSpPkVt1qWuim+NPf/8HakVHrbpPK98/TZiQU43h3dz2ckg8flutV2R9D3qp4jX1qsuIMeSXpviXK7e5MAor1dQZCni+9a7M1Y1rmq5v3X3/7q++/v7nfVKs5K5SdZl17OB1ezqftcD7ZM+Mxjd352Pbnw/nw0p92yVCMQ3puvYCBsjLpNaFV+flcpiYBRSZlzq1zy3mTh301IS7IOhsGs5cXWVVk4QpMOOv5pftiRWuTPIPqOqLVAneUJZkV+bxL+kt6IdoJV5zVp6w+ZyzssLt0P++uedX17f6wfXp5fNk9f/zTE196JBSHQ2bW/XXZhmDuTgdbOph7xxKQq4wzmpQHvh87e3w9sDN0MDDlhQeEqK/8/5lRmdRgHjgi3+TlKi9mLHeW1FXpn7OVSc7np8vnLV1tD+fruSv6rjM7isje8nMp85ybBAfigscTJzftMGfxJiM191dCTFDneTmbW3A/vAkT5QnFTMVBgQA8adhvIkYwWLxY1SyvE/g5r3LmlA3yF1scs6RN3hThRBu+1PN0k+8kSi71dk3f6bfXuq4fElbBfQLBJzDUwK/ut9fTISvzdZV/sZo/z6tze75mdZZfSCbB42jZF4HEpajCSU3AGD7hVwmn7c7OV/jCVQV0RyEKB5gms6r5+psPh8N5+9K+vnDdxWK9GgDPdsya0ByGhsBcxFAX2O1U58Uw8tsgQNwCcr6eecGyvBaz5HAauqHrhwsjVQTAYPkFPHlN4Oqia5p0MauPNVkb3hYWcnpbqFismHbAGYvLfI3XgY1g7NzFci3m9Torh+vp0ia+6ERyAcuv2ZDXLVPQpyeSlhavj0dvL4h33tmkqv2jFbRpr5fhsFwOn3/svv369v7uerPgKLgjs7P04eWK0q2Gp8f+6XHY7oW1/PD++fB0Oh6O7Xgcx/OQJuLA2/uvvnr4+sP6bu3tdXEjIBr7w+Xahs4F2gqPWJ4qurpvd6fuwPPUjMv51B8Ojx30kiVirOPpcm5TAg5Ot93luKe0sCkQSXAhJq/xJhabHKbtUKSDZc55ABs4JotjUs9m9XyW5SWJDlgU4Cy7XVX59ZqbSy/uTboLBN+Glx132x+ex5u7crYQxH7+/OnHTz/AwMdtejl1DbEa89W1HLP0lPXW5GN/EowN4oNk5BbrGeceeOBYNMd2yI/tqe8Zw7lIi7XsLkwhtO41gXOz0BZB6WxeC4rgO6GjbfYk/NoHQK/OL93xmByOSQuFXPLQxKSn9/xJ3FWsxpGnoRsd1ExiswpoKoNciIjZZi3qimfYXkbybTnHC8MV0dSbWoK2b3oV/0zIjWAxMbFG4R+SmvGn1dNKecskfgQwXm0DeSLq54vZ/+WCl4u7nDzazDfXsOIRAAB3sSthR5mYiKog1vPJomTX3srdbxa3y/lPp21pAcrcEHsoBd4ENLjYbFYI0C1JPCVSi6WjBuHnQzgtZsiFuRFmj7Y9B1xnLC7innJezoS/tLOYd/DIcsaZlwcy17YWklvdn/iD2m3Yf74guTbhZEUB3GgIakAPawIqG1OPWTmx+2xgUsOPi9l5OTdtEanLFXxMAIh4TLMNfSXkFeYC8sDU5AAiOCNQKgSafcuIJGP3BhNLz8F+6dhe2iHjD4CKc74L40isev74ku68xnInZUXYz/3H3bb98fbxtlnenMriVAsPFnmfNWO6XIkDuZfk9HxClyy7049/+fvb820/Vj9/Ov7x5x9Mev7h7jwfny77vNvvH3ueZznrLmNPy9Er9IXmkN/OqrN3x3yZv/96tio6ynnJrfCYCEVCZPOEpWzZQ+oIAMJ3h91AZSfgdelPwvxLuMsuYSb6IdwvY8+7DAMZwVR9JnZdn7bnYuhnyaVmrCHEof8pvAXZOfirV86KgNj2+vkvp/ly0S1/6sZhB6Nec7TY4lSuLfD6Lslmh2484GHqa1sC9KcvTktLfTQ8G+AqTU0eu+78frlxhe3i9NrieSDu3t9cuRyrd3fz02H36dOnIhvvNvVyuaAJ+QqWYzso81zkgR6YX5bFtdqXZ446ZEcUfLnAXvm8yReCPs6nDGt9BfCZx44d4HzS6wmctTFMw7xahO3OZ4KkZLUlccwgn20xT0N7ya9nozovkp7Fn7HIW4+DS1lCHpWPpFIDZU2qyzUfcuZlvK7O/a7IBJNl083P+6vY2Cr0y+65v1YChh3Xcb3O9s8vLYGIiIADKURf7kGNmF7TWYExo/h0PmyTw6cuL5J8ldCm5vZ6faq2x2PKMSTpbL2hbE0Idn4GVqHGNgXTRyNHQJbFompG3vN4nM9RVyLg4eWnnxaX8913XxWLZr3OVw/J4Zq8dudSLHC7aV9PRbKsKk55gabJ522G3BmhWeud9Lv9KlAZrITxK266Sox9LvNjcd1d99T4bhGhNd5ylrQvWbpYhrE49uM8n++y+YFPzmaCOpFzVTZugjLouzbnsXlI+I1PyRf4TLEV/qKBVWCUntvvxFKYBNwkNBPoDGdY9Ha+upR77GuHcGUqhFxTrGJREuzMOJaVMEGwUZ6OotPzYdtbiX3N77ixyDdr9lkHv76+NGm9Lhr8wOcffp59eszSGfN/7TEAQFfaHi8vz/sif6ZyRV19Hj4DgXXBWRC5wdYB1pDAAmA/tQDdudrHZob0hYHedQf+nvhG6ENPQCtoTtwB0ITY19l6DRpRTk7e4F8uVjMAPJ6ZB6Z+nqTdZ2rEnYXPbBNzbs/j6cQbl0ehV3jm7nBiEZlwwbSAL02qz8fjeDyEjehHUQu0g9G9r+dlM0OzMmxixiK9CLlW5SyfpXQVy3Lm4QBdd8+uOAb2Bv68XdzMLou9u2DYgleyB0ljByJ4m0NwM2xDNVALTByTzWaPWWswkOIISoxDkZ2rfF9m+xJM40+qpF6VWM2bNOhl5t44rSgOHTrj0TlnpjAicXIU3H2KHeIHLKOoE/ynqXaElNO2eTU/VsbdizaRlicwID9RtksGfxEa8+Y6gLJ4L68Sd6QSnIX9S/nbXAj95kXTdBXiZMjBDnVnj/7KiIA3aHzuKAwKtUC0cIJlgdOvIkqY7C9yMRB4WmNOyg5oMVNuWGjiXlYVIxC0h4AyXBaMFVCiEbJuNs9P+3D1njx3aP/VDDjjqsclug7KAVUGJGlfdoFoa26YkiOHItdQLoOtzPfHluVbN5WkQcM929/RBTAhCTDhViCB78B1N4xNIBIwoyz60KksQ2QFfRJBFhg79Ew+PoHKWxwxmEFzhOL/m2UEQdgktG1dL3h1OsLzS7yEuINBbzRULLBFxPkVNdTZD0eKQrhiIUIXxB8SNxMzc+GdyHNyOogMg3quS7T+XV9vDvXtLsvPfZLVDdSSntN1uQKjs90n/HLRHiqWF9BPBXRt09SH/PxxwIsH0gbDzwNHhuNFQMWuWCNYgGdYEiC/0zNOPZBMAEGmgjZDbsGORBAagQmd9IBvPaD6CKWKWirCThKm040ANsYW1BH2UowtFL9cl9kypgktwsQsU7AEwTzft4zdQKbE9Vxr4LYziW1zyaHDDtp267Ps1LE/7LvdlnqfG2ITshsckWtyaoDYuSDKNkooI5iZto04EoeUXpXz+XwzExNmGB93CJczviJl5rNqvdwYk7hQOIMK4PJ9h7cyOCeeNOKAUsXlpcn2i+Zc1Ne5eIoLCqJzvJ/fY5EBTUmNzGKhleHbflx5aQgb/n9aapwgoMQvuhKRC4Y2XS6XNzcbYIcRzC7s6/E6nAhjOhyLEegQoAQAJjRwo6EJRnCeNslzLjHhuqAMfFlN63Y+7q1o7AsBtLMRFQvyYhqBS6cHnwB+WyKGVgBvNdKxDAU+d/O+ryOhJTFQcXjuf7LL4nrbQYjdmc2+MiGuH8BYKIUzEznM1zefk78S9iovYagjOLGJqNIOSLUtGvhfuqEzCWvAbS3y64GWwN8sWJ4sVzMrQDihYJpi3WylrRdWRoR6lQkI9TB1hNCZMZbtyiIrwXUgWsMKuY7kRYOgrSBVKzyOIWoeIcgeU2hg/F+tl0x/BCD2xRLJ6AwJmMPhG12QKcQDV8r2h4gKbxj0K7MWehyJyAj7Kbcr83WYgxiFoZ/OlzYIReHUcnb3ff3+6/n9l8Pi7jzQ8yFZRJpw2L3v0/qVUTqfwwM/PTbHDtdVS4eC5Gl2eE22z9skC9OPjLuUq5LDubQYqkjbQtsxDUndbLVaGRMTEVrNilDpWX3fPBi9FaxmViJ4BTOw6QIZ+IFJsCUyF78kD/IS5eeaSH4emLaTLUSHH+orY0FrqTM9IKiilljEblYDLMlylqV3YdTTdHFN5tdxdgafGT+AL0V5ffr4+b/+w5+e//Cnf/z5L3V2YCAElhKhrCb3XQzp9FKcGBdhUIbpfUiYIO1wvJIZKQwzJRiq+Zy5QRfHwMJJcEHhVQBqZl7KKjQi/hCuaIqpYyKiWc5ms+G7I0sgKg42+NJLaflxABV4QHwHKYAaLj3bl17pbpjp4gJ1SVjHBguRrR7O8Vqmzc1qtlkxZsehK9uhOV0yHMIgoK/rSN+EOrbQjXh6Sn2TLUDAEk3DNrfQP8iFrLSh0WjSoQ/6IDCaKUTGb7pdTCZwT1jg0gUSkZ9hZdhrC8w3yjEeT6cbehEZ8qypss2y6SOf7T/8W8sRC0MsqQUxbcCu8N3kQCo2zybksgqMXT6rZmO7w/EhjwFDWaSU6gvWZ5L8ob88qlTGSTJmf5mPdhLLCIF5WmJ+OByz87FHDEZ+ZsjW+8tsy95dm9t5Uy2GAe1AL/rILFoHIS27wDWJD6p6tpitbubyb/tj8PWhkOQaj0jNyvgyvKI7h/3OJTqCYrRjsUM2GFITsg7jaTxY/+DdzCDitmPD7MSe01iGhcMJmfFlefpgevJyNptxPofjYeilRKvi23Uxe3e++dCv3kVyf2xJNEPTAg1Jc3162T/+mfQkx5dxu5t1Uj9fwZIiue6Y7w5yGKIRnvY1n99ZlETkMHYyVLGLYYWSl7pZLQAXAkh9IDPoUA6l/HT+41km2WyFZ4YEUYQdw9x1ZJ1KomAYLXwApGNTqvwQU4p18QUuTEKTJ/NkEb8LsSJFHIAq0F9NmKY0nEsErxmuIy5Sc5RsQPwMKHUUfbHezmYfr9c/tfaph5nWRf2Q53M3DIoA9KhYY4wNmAK7SEuHJEe+q0ZvvO62x8duzJKFlPxyOaubTFEJuacFgSihfIatF+cB1WDz5JrC/zDkJJ6MgswQMjNHxCc0COLiU4c6Mn5RATGvApDbGNJctGk14CguVpgQJudDSxorfuIqTcfJB3ue5eIwqZpLCHlXdMU1yJ1isoBsltUi0mOb+kMkguUc2YKgEMg73OcpyhhkHq0Pyj1KFuzeL49I94DTNtdfLHwqOyLkITJlNZGgPc04Dz2QwuWKDY5HafpJ6PmUplrPu8ORVliAoguvxgVheIRAVYBTAU1gDqFURnjg9LHKj92pUYgDfKbJYd++vB6sdTFvxdzXRd3PitMeEDtWCauJz6KMXZYzCdV+u4t0/ABIdufjKjisekWJBlFTOxtlsqE3Ay8aeWEMCWo2eHz7QGX3NCYMuqRKfbnOlvP50Fb7qpKZFM8AfnaRd2F4B6p1fv58mi9Ws1Vj5G1Enty7RG9ltsz5ab/lmZq5GhXuRQgk/LS8EiqBAkQ/e8sJxhEtdhGcs9r2pJqxRZvyEKURBr3rTbI7JNddNrZFoZqkmI2Bp8pFkDJ1Nr9ff/UvfrV519c//TV/2bdziFG0L0LM9oe9GzW3s/mskf5islZlvpzPAmgFiJdATl4rGRAFSJFzj5irSw9t99LtcRo4W/Dl8nqUPDV2zoJVfjMzoZTx+oBG1JmnHC+tWAfsDHxS5UEfjVFm8DC7YdI9wuEF6K4bo2kaswlr560UOMQvYaRI8+nxLL6mqkJdkFje5J9env9pv5U03kgzAKlpnyan4/WqCGGeY28ggvGM+CU7Bhi2FFzPOSrwwJ7K+Cu5enzd7g7trJKOUcY1JTeC0AyHYEdb/qMQYQoQI6PD0brWhDsysTZ5x7tTD0ZqZncUo+ATQ0Uhr1BpBHFRDzW0R0kOkXtgHQLQq0aR0xYawtksYFO8WzSC5oYP7U7CHuJ/6Mdd36oiQF5L/QbtR+jV+GBo46YxJgPCaUWyKFjQQG32682vys+wMOJ8b/dFS+O+0F54cdbonwEw889bAZkDIqp7PRysH1L9iniZHoiXJmuWptccGrCbpWd0g9VlpKhssBVCmresdcRmRU5+gsBdzdq9srHzBZdxSV723U+fntBv72bEQRACPihPOEkgLGdWFLiXX8RNsikgNbjNiV2l0keeAuM03/DxQOXxxI6wSTPxuGoKjtowT5lKCwsQlmOmDCAKb/hQ7I4FK0KBZ2Jggrm3YbASDZrm7a35as6wkasKrQpfk3n4J7OW6H8vZrascYcSOld48LpYz+sluC2fhFqTgXt4uP3Vt9+RUUQAs7rb7fb7YF9VZG1u5+5AgS/dT5feBJansWpFFTZM2FRX6TEgDarjq6/v//Vv/uWv+9vqz/+1//HH//Ty/OljKzfWyVTyIUVxt161Xb59/bSa1b/5+ouv7m4up53yw/PxpLTgVDRhI6gdalr5X4RuVct1IGWxATKIgSb8M+295FHN0BtsVLHAMByRmhUiIkAjfKI8LrKIEJHkSUwnPxefQyezSbddRNxvTFHxwygzWtLgkyoXaJ7Q1f0+KrdI0bmXWyHu/ePT60971WhyF+oO7HeSz5TUYCsoVh9iCcuxzggBUqziRq6M6LXqbcRBZVYtShD1dJIh2O6OVbVlXxScSCQFQxN1GQAOIBlAg9qDUKxu5AgCpSUkO9BxBG/H8pq25QLMcKv1wwaGwj5TeWye6rFCAR2vF0F/JEWkJoIewxTAQsH5JO8m0xTY+NzWaVLDAucz+HTpRZvcxlUJXc9IKOQJLxYBUpRAkCR2D6dnv8PXCdQIwYREAIQwiooTBfmH+U0T22hO5EYNz0U5pyIzs6OxRB/+6HGfOCqVjCBgHZU+QaVSbsIAQOHmVksmhSu1DNgGSate4Z9JwT8GNRlQCUe/Bhpqlqvm7jZ5ej5OuU0miZHbq9xs+3d9Vc2bzWKzaV5fLnJ+QV1TNEU+gvzHz9L5rR2QfEYiBFVx3ppr0SwwAMduK8zd7c+r7XB3s4DgTLdto1YpStTU3nGtUN05IoAAiCzYm7rWUWlzTg2np8fQYmxdhDRCj7lx8z3iF7G8fG1khGRqRWJWy6RFfHRbtJzVVGa9yIVj404y/Fp89/37f//v//3/9r/8r19//bW1/ss//UXR3O9///uPP30yHpsmrUcHrue/XM6b7rw0NSudlDX7LBLIjkfeebVsHpLl1+vrry6nVfFwXV4On4v5rF6t4Lr549PRFQRc2KybxfzL+5u/+9u//c2Hh8Pjx93j407Z8KX/2GUqugJDEiyiVy82797dvmv+uvuhFJKwWiqU4UucCCxlK5SXElUFrso61SKGwzTvvk6WHJ74P8AZg8cUCrsy/KpRUz7bL34HySP5LR47pooRJpqRdIXnGt9UNylu8HOQX2cHAX6BhuENg/xsUzTA47rJ7jY30NJerN7KjYX/Ewb7l+p0AJ265dMBzwGY2l5VV8wfhAv7dUqPImeMnTpXsxvInBAHlK6L8RzeM8hr7gzqgO78lKaH63nJDWNYkC0nxUxbGX7mQOUOKZeAEm+NqZkGDwFtKOdh7byYxnsB2I+nsQi5vArFCKZWavoCF1tZeHHdIGlVSMrfKA1OTiRImprjjbIOrk1ZkHkQyQhAODhiBkSbKrTshrQQwx11N/v9ppfYimqfqL+dL6K4POpDIiYLjB7MjdoCoKVW5ROBAZNYq2dRIYjROFXnuftwbRZMABKZW6bG3maDjIb7Q9QTN9iqO7TgJT571sxVRCxm4+upY2bQGZHJYlJrotCsRMCru/nNYwkGXRdZscwu5+WKtG9f5QGPD3cCZNWl9KtumK7r4dy+IkFT+Il6IhyGfZ7eRAkI3iVQg+QgTpkwxsYRNNplcvaM2wgPUIrUjBFYx5sr57Bzv1BNWwO0eyz+NHpWqZQuzlUQCWUU3TVlq0DIbwPXAVArW2Rr3S2Mw7f/+rv/9t/92y++/e2yvvvylh5/d7f5683s3d8X/8+PP348MSHt6Xg6Dk95+x//snqq6t9UL1+kY/XtcniQ+n3sfz6kaLrTh9n8Xy2GL5HR72WaLt8y0Z+HZ1nPcx8RBCFotzbNsP6H/+6//7f/8u/eqwB790X78vjzX//0Z2bk0/jHw/4nHiwCvWK1Wf3b//nfzd/dfPr88vr6/Pzy+aQKgfvanhRbYIeP/ZY9ku1BBIpGhRtciIpR3pUfqHLrN6r0V1gno0M45rh1UY/cjlA0vxxkRCgQqw+zQMLooABqkRE9tvvUuvQvshan4C/DYdGhVZJ8v5jfPNytm+K2STeLGlRUVVfO7g4qnQ/PCvZneYaT538O3VlWpFnPxwbMyboer1zKt9HHZN4Us26WC0cOpxP0GzQs8RLHSl4KoLvLSWmjKAx4IYxkLxTxOU1vcW9NJP3CykYIN+AKP/8MqLNUFHUiBSr4cWbPMzEZOxOpZlWwkEnEdnmz3/BkAacjJL4OuGQWLd7c1180855vw7rU9T457bm08bKZyiVEjoixQsYXiZJms0s+78vjcK7XEGOnj0HsIMtYDdcCx/XY1fNltlNEeyKEfMeVi478E0nnToUoouwQWGDx5nZ9wFUdKKQUZrWiQauz8lWZsXlVRiZvf+JuYnOvSOOBj4hoQBZG/eReJ8iYN9eSq7je/TCs9jzSTGab72a+8v7TcZ/O7hbjpsy/LspdUT6pW77ULNGsWN2vMoxWlnWb+7uvv3mvpQSiTF6WT+3rvtwx9uc2ez1dN7vyy9tFc4mE9KJUTJU/Kig6h1w0s6uQXpmk+hgkwnK1hG+O/WW2uhuPn3BXdlFYi5IAWpg5b1EBpNCTORGhBWXSSPOSGlV5MjKsOCEVHymBYn+8/Hjc4zvQPjbjWLx///7u7m6z4SPQgms1N+fTbve8vLvfKE0/AAndQXC4F5irIFs8JbvteP+exXdPbo0XIs8E/S0mCZhJ8rIo/unwEucIr8Rm507EdRov1X/zu29//Ztvv/rmwy1ZO9T+3h92u9vX2X6nQMvMQcuqWXz11Te/+93v1l++2wdCfvzp419harUNx8fdS/Gs0O6wbUd1P9KhQhD4k6XHBAwX5R4xBM4tak1idKANEiOAsv+R7aoJCAe5CAsiyYJ/jaTilc9B24VJGyXlffPmcAWiC7R09C/wQkU27O9W7+5XNRmPmlF5wLjzQRmhBBUIgJ8T86lHU5dr/7JiDRz1CmXP7WyWiZGpozHbkHGoRLO2LxyVe7HaDMzgwlF9EMRC8BGCRDstywiLM3uqFwgiPkwyXsSa7l5+pKjBKBMjVxA+oR0u4yMoFeXW6QzkCLwAdPEC+ODI4phpAG55H79Eu48cXqIWNp3NMBZWY5EmKzXULJvajkWzQfco8CBTx5MsLTC7U2YTQohoiQSSSMsVpOphdSHDpSjxXm4bNUYSjXI8gX+DVY+RwPiRA0EM5utrgaOc4ZxYPs04++P1yPEX1bz+4u5h98pN7raSXGQdjVvKtUd+MhZGcM5/ihesEWIuGzaLRi1uwN8RvcvC8YfsRCb6k5O5qv7zdnY0EEE+n1sLJftRr3+zXHz1/t397Yqhf/lrWypNO76+vEr3j0pW5KpBB0FOZCfMJMBmf0iSXZpvk+S+WiXSfvwrmm0QGUQS0VId2U/QHhAIV+xNoS+kcT4PwG/V+Ul7a8H8G4hMjiOw1ESfyb6Lwy8Mp5LVaymkDgo7LQAVcAU8416EaiwNAXu43xTpb2Zl+vv8T1FH0HZIEat4eVwU73ejqjmRrcoh+28PCLQBhQsicZEeEzcD9/ARoeTz1WxhufbbM3i/uV/qIpktiCpMGyoPWyqmBrOmfRShBXfy8PDw7Tff65N62R9mS8U0UVoxtJrTVHfnu/Sl3b5GuOre4XYQQhV6DWPMi0ZBOK1UP8ADQDcYCrQz4i7IEGohSyYDTWL8likiijhYdn4qIW5V8h2PkQ05MM9kKtgbOXVbobpg3dS/++3m1999M8svT58/vdo2GX++dfc6K9aLyv5ft6hzESmnQ93FlBXOWG5iVNe/nNeq58BA7HgFgAemHLPuHGpX1414MKJdefgIymCnYHg8YaAahbiLlFEZ+CkZDpCTVtA4rISEKPhFLa09GMtEEt9xEZcBg20Q1JxqPup7ePpG1UXIVWAqwoHXcpGISMce8QmYQrSSxBoyBmjlMupA5MOYOSLiFiFeSkWul1aRZSyp60Md6jQDEiMLXj9v5SkbRM/THurI+WuDg66MxMzJu4whxTaIQSCejc/P6XyWSN5gjJRrHuXKLEFhWDd3t5vn408vJ/k+XJ7wyI4ArYC3OauTUojKatFJsjPLu80NJqxUbG7V6DNmgBVaIbEuZ/65XFeFdrMtZBbdedfs53EQm/frplnJSK4XHx42TM8sO3Y/718ft+WB27dDWj9HvTjp/QIhqMpJMD0VGJGJq+qpARsTRU7B59uGyPdmmZdhe+eztRJEvWEwMytKvLESmjqFNSG2xDFXRcyVSeqQHmodNAebqa0RoJIpBDfXyVLihlZEuShCRkcTKxj1KNM2LhbNav7F11/evJNov1utN/WPH3/mwF4OyYFoGJ+WS7UmURNzRtZQOnOP5AKk64ve4gHkFC784PZxu82q2Q7Fdjo9bN5XekkkOuZ1ZZ01c4apU4w+mcAoEDLWYCxwLnN9YRBPcpgcdVSEEOh8mVBJPRP2mwFVIh7UksKxhUayFfGtUlAqPMNxz0ikdVCIUZmAsiGUfCR+QjZIWYIHjcDKMzHNrGRWTVzGKNpT9aH9nHx83vX7iYuFB5Lxfr381Tfv/vY7kdGlRWCO++gW1XR36Rf+nOQM9svLUatc0ELhScAOXNGg0y64NdE9M9MdLJgmJ5Fh04S7thNCQTCoVLo9tEySX5no9CoE5kd5WHuYzpeKeKFasbwB2+ZLM2NoqstuwY9EsVLkcvgQJUTRtLhDJuLPVCkUafgFDqRomLBD1GEETytaCwx8qQX8lmKul04f7TUqfkOteLZcC4zywIAsyi2gEOFCfJmXQF598DRHPmIhC8YuqERgDV449ENWX6/7g6rLdxBviSCCWnj7BJDVz1LUqUhhoRca5Di00SVZM55czFlXxOpwnpnpTESDqiZRgkYBLehL4PjjyGmLXYJy1KXpJaYG8NcapJleLRItOITqemmHUzneHBO5nIGrW9XzzTz7vD+/nPUUNktl51c9WesbvcKalxsZXZdlRHbX5mmoX49QiSAW/FGGjX0Ym0UasLzGgkKY7EcW/CQnl+SL4PdE71JhkB1InO6ViFa7FDUS9iwWhy+lYdFbIeigakyrfRGeTLwaD4EP5lcC85DoAFX2hzVkMNWPRb9kZKs9QnCjHMLWiWiJHotwWS+K77+9b89PQ/d6HW+bp+7ztYQRXUBznvSUleONbJr9BMY5WboKjwqxum7bdttz97rbX5LqcBSME+cZimVV1au6WSjSuy7CU2pr4hPT1yDT2ApGn5kJYhanqd0FWByCp6uhR4WgIzKJ7EWZXoBUPwW2+uVBK6khbAOIRYd58C0dFp0PkTGEGkALb3PnwDOKXLQi6aBL+tkclKhubvTuLLp2RVd/HLcvu5dx3COUdQXzUl/eV7/9Zn07G3bPPz09Pkv98SdkD4hezTS4F/tzH05V3sskl0pwxSRMp+VRqNbW2cAbq4uZ25y6UP0LIx2PFfLTD+Zrj44KtHN1vBwXu9U1hXI/hBZzy15B4vyAMEqEoUF9lC3QwvgxAiB7T8PF5dEYEPVYl/T105O5KiFUOzZDs/CcigGjsT4yWPoUuoBnCYdIHSSJQypU7cj7UO8onYl6nDYdVVaByuhtqQ0JMZ6YYtC3yB5ZbEU9w7XpITaDaspOsD7l6Mtj2rarLv+yaNZKpsNHo+PF/2nPVjaKTUljB0dHziciEwFIJIIYBXbEzWUfhE5qXKIkjR/EkEQnULa+am/I58rfCX97VqqpexyS+giIn4S0OnciLUfc5M8YNnwaxpIPMHlVmeSu2p+4rcBblimX7ppHMkbuSN4R63vpVnzii79HHZssD4rtsK53+1OzBjp+KR8HbSTY+ibKwDhMS8HAURqayVLYSlvvmuYSmgn0UMLIzUWq2s+WkQCjye06tQnHA+VGnYhIC5MQJSkh2OH/JK75pCjJgmsCSpJ5EmyhooozQtn9efd43D8qOstTvaYv8+oyVzx3OI77w3jCy42pxi1wYPKpRmJkKNDQ2ujwCAre8I2ZPuEW3JTmCOBYYQZBV5eMeOi3VNN8Nl/Obm5WzfY5d3rAtE9OMbDc8HEUqBFAYyZ6hhp34Roil2Wa0SITU6SDIa+eUahpCH4n/RHVkG6yrL00lF7HbTRqWRfrwxsbEqrIIqxvyof7mZME+GTz3++S9i7fPGeSlE4ymJfJl8vsN99vvvnATrz+vH9ugeoSsTCTczJOxjUCY7l16VkBRcAqcZAVwKPCwl1TDpt1cbfEBuRq0CGy5Xw1JcmUwigDjhmwPHwdqhxCjOi001Su9lE4bZHzp+1xOS/uZlF0aWECDLfHbn/Qpsx9R34Gd8ECB8cmv2U7PBXBIowFBKlMCtFErgmnOEzViVFhp4k51T0Hb6OrpZuz+dKmSl1QFdslcIcDLTPLfuiv271mxrNfxe03csZwuiCTYUbz2OqxotzKAdX/qAoJnuSCdA1VE4O/Sxo8Py4f5Ip9k9+SsiTk9DGAlI0N/hnEQjrl2zMyP28uy+H6oFxE11x3IKRsbdWddTfYESqBAubbFoU6iPSgyH1WKsKMJD0sasujaUUbFFZTr/TZ5BWP3yzr/Wuhe6+V3hBbRlu5BvaOPz+cl2pYTX+xWN3fnn/+2D9iaQ6YiOTcro7OEhgvqErzbg6psyCcKTEudOToGsKFcPqSViIEmlTrk53PIcOwwEEvwUl0c3qE5oaoTk0VdCRcZhRsWlJABissXgG1eG5m9SIb3oizXX9iXKm+x1v0Ys2iv1geNr0s5+UgQ6QA5PRyHXdd6Geh/SM4aDrKWMsuzprTsbNR0xu9lxOKgxFiqOVtmctcKROMboNazkB2NV9nmfLXJfAidWJkDKw+tflqPj9MNXcYj0lXAVEPmBeAiZw6+BPsCGZERkpQbmvF+vEvVZ3PaYe0WTYrq1nEPVE6tM9Ocq57iEj/KvZdMkumVdbEsjGkgDB0maZPHw9KYpv7zc2iWK8KlzkLMXASD3V7udu8u62r5XpWfrXOfnWX3yz77WMcKiPgTirpK17EouKT8ldueHeMcyj0FuIutwf9Im49G8/ohLvb+YcvVg93ULbja6LmRZyB+A2VQIRMxU9UKDZCNQKnCnO5ijIaBUexeenj7JVN4cnF2tqeqfFuf9TAtZrzSIEu2C8gWc8vex/yiguKBCeoGsdF8Gb2yC3oQISxUZyJf2atJq+jvDYYGZFUurQpKiWqvkVSj+Mrpz1eNZEYkBS2BKSrOkGBsaQ5UbMMWiCr7Q7REUix/jjEUWTTT9xFDDqojOpaSxFJuwBEYCE8nDUdw1HN4TRoh/iawHh62fUSpefL3XwUsJyHpYTf4eRUCM5bycRydoKEGn2AAeNMBv3TK41csRd5M8xWw+GiH7bEI7kp36oeQaZGW6L+6qbcLMoXNvx0uhxFGkxpY6SyHNzmHmmiLjbleRfrhb2/7jeNoESgB9aJt82VhVjOlGpUh0M4yEZgrz5bzn5ID7kcOKhqexsh96qfrdcL2rNN2nMsSFQZxYLDuZY6MLB9sEEgCuAFZDiXiMUL+BvkE+eMe5BLwD0Eyo1As6ClJIZ8kyxCI3kLRAE0wOlhn54Or4fdk7Nlnj8/HtvlcJkTT6KPiHQzUE3+lxDwydMjokq3R2YX2U1y2WnmMvi00Y9VS14s5+/0wAi/8ZU4BmpGWcOroC2MJUKpUHtXDtYjAiKDgohtZfCek02Iv3puYgKhAIW+U0U/S/2WWgSqIPxfqmcQSDRJf18h0YmgzHMnjGA+oiYXrkLQitbTNUsI2+h7TtV5WyDnSL0UvfT5fC0rrMaz+rDiInaHw2ecsyvU9c1xLPfPU241wv3LQbSngEsdS5YftsqtLjUAWiXvZabe33z11e3Dw/xmBci7D3PndjOs3psZMh2z9l3zczlbAhOoVAXWCpAOSBtUyCV7v5HvVTAoQa8z8LK+zu9vcGn99y0l5EjGw/H48vL61O92ioPHZHuUJ9L108Os4WUFQ+KIut4QsLB7EfVEZVJw5YHAI7E0Zttdiw6+vdnQc1qs0inyV12/0/F/uUajvMBuNmN79ZuSfvpFfplBLkWsNx2gEXl8uQNwW3F+AwuV3D1B5wWvzh/AwkdXvNONlIZwO7qJsM2RUEoisR5NFPod++uLElf+JTLqM6ezsDglxN1XkjTtMTnh+5UsGHz4LaHsfNzY/7aYP407XeGQKXU1rl5W9nxhgwJPNNXS/kpXtYkYWRpBLuH1aQ9p39wWp+5hmdZOonFuxMH5Sq1sM16lAf7tjuXEhqwIm3KiOD4kyDzQRBoyiqkYCjo36SE7yVrCL8TMwVBKzlGQoSCShJEimYI0mj81d2EYKKqqiOZmE97WvpBuCgwM0ocIjAkqVaerQ9EtK8IQ3hpyZvGu9VrmaS6pcXrnpu35z7//0+d//Hk4DbPZrQRbakIPzctSRgiNLo9p1evryclp1pbBVBA2FFVb3VXjTf6PydNP9WKOZZtLSS7K9ftx856DONT0NTqDAraZrFN4kIJUX1k1QJOqFjoKex2kleqQ4w8ipSGeMv/0VHESDomIAjqFIwzNYfd8s5Cl4uAHRwHIZo2pc0EwV0ZTyeM4g2rUUmz6OMPLsCiS/WuUzqzni1PUdVS3N8vNsrwXWgWPrxbyCqKeDj/Mr8e7fHgHHSiu3D7t9y91V5jL8Zx/+nj46dPuMxaK1bkmn/rl0O/WxLF//ZBevrmTAWMU8t98vZAV++qLL3UmEHPWkCuDdasljINkjppdsShDKhSPLFSlz11/77hAQEsOF1xssEHNZW15OfJlqVZLDlYYxVZTWafNgHggQ3Hf1F+sVtF8ejx/06q80bvvAJPAtwIBKlLOLn31qlOW8jLktUq4hcIDLmoQQh9P0YHRVgssCXskgxlaeDifLFop+rkcWb0mKvicmOCma5WqUtDKuvhzZ91oKJc7urwKsShhNNb64SDPrEoxuW+W0F+wGQoqtbiqdsH3j8ISEs8eSUVpiFSuuXjNm09OIji83oI6+eXYvooIkObjOSim+VElpaa1AMR8u6LwS6YlupxfHsf9+e6oeTb9CRSZ5TvnGUA/RnQ+D59nTtxSaiKMIznKJOfJ7FK0aqH70ZF0NYz8178yd8Xust29Do+P1+d9KSxPacfp+DJobHjdd+Wc/uaQ8GUdBW3jn55OyW19oycSTjkdS1msS80hLMqZYc6X62a21URcy+vROUEIu4LRDd+GMIl21FTp7tSCvP38gk1NlghC0alUWWpxKPKBi5OlA9PPkToNT0UZBCYRm4RrVnSiMCsSgeP53ikYv/r1N89Pu+6qzSr69Th0MS4gifZgU6I53yPaAMLnODAhSkuYEYXDmjDMt64pqzNrgv2dHjbPw708wsBPD/c1A0bfS0inF8BVYYrAm2lUUE1EdWF31L0EkzrDw6kimMdBHjc3N5WDH/Jy79QTPOKsabvp/BcrE9cDfYNnCwogzk/jh4PAyB4kCCIHX64X2WoRjJP8CC07frakroSf4QAlu9UgsX+bxZL9jMqhU7sloZhmTbYCvDYaLngBznqzzj+8v/vqy/Vmvfjm6/l6vb6JFqLo4Y926kgA120UCE2wAdEVdEGkzCPoiwUJoASg8IcmHuvgNqgkUNiJYjKwvoslpxYNXBokoH846rdUfc8byXLvOnWpg4U+PsosvRZMveog7kCCATsYVfIqRgKOysSs1wjwRXvYBiYS1MdRL4E3mEe1lmu0u8O66uPw88vueNIF8OLEMoHlLEGvoZQkpAUlIk+BNFjKGxsxHY799b/vdDRJno5HnEPEXeRUv65aV/lOVLBYPGIWFSOSGfLyZ7CDrcXqPF6DuzFf7rwMXkznNJMdLVmGIS1PVBTZO8oJzj9xezqJkOCD3vzKmYHLIeNvSWCNWMSIZmcEWtNf7/IKBS9kjVS4ISpc2b1Gw39x5VAZSFYJbyDwtx5UPRErvzo3cyll4pwVJ1KSGGYj8irMxvEwj11FO0GboBonzAf2um6qWWtbMARxPg4ix9gtuLSBqjREP3Ul5CxX4WwPzQbP6r6arI/6CCVNcdCNYv5WN61cgjBeCfMU10/6Y4M9gqpxjIiO+WXSBAf/8M23X/z2b77ZPr4+7pLzrhkQmvKWRSMFd9QQDWNMbyR3gQMIOE0LqWpR/WgBiUTlodIvNJgDQvYEIJvguveJUwBAOjrd2iaGKpmBPfY6Lsjz8QbFqcga6b5Q6OjMWq4WZ23aGM5CbZnEwzx6jtdr8Xx+ODwfdmS3PGW0XdLRFSNMUxMSimEwxbJOORRE8/xaflktP6zeOT0QSRhVaVktBk8uP6ikkRcMJkurlGNFt/tA640jP8ZjJyiTTFhk9cpgjy+fWb6bpt7U6aYaf/3h9ne/+fDhi8397fruAfBkz6MEyQNIIJH4FdFHmAuPyHMaV0w6hDsqFmKoIIFpjsIh/pa9nuxXJIHsuZSelqAkeEGALyROOjuSylw0labz2QMqoVNZl988la8cyzXTzSX059FbaRIlX7Jbp9PLm72IUTiooJjJPvDerYoRPjLHJMhWN6HqwFfStEs7cTjun152r1Kde+1BUQ9skyJ6iYJAAVvUYJlFJN1pLIGYVFZhkqdZnmkFgkjG7pJbrQp4Gek7rwzOSymp/DeGJ7++9n3Tjs3lskCcR8yGKUhf4wC9q14dVxeiV+DBaR95NycPBAulAZDTyzdNs5AjP8uQ6ZFLr4LRY5ysplZjEcCAQzbWOHeW03ZA1e7xORjY80kQIxzQjiT3BU7Nhe6dbNmpUgSyPaTbaApZZc2xng0nSKM1DUFXHLfC9kyUgZIOmY9ebyV5i06wGjYPDCzVBUL3wYJycfhFC6JY8TBoBo9XSbQyI0pYxSoI0kQ5qDT2SaWNMUZ7iqkhAoJb8vDzpAtBoiJgZLDouJNqb+91al4VM9s2jaPiQR5Y0IfDOA0SG4CE4gtslmmKKcQBSD6HVgzy7gpYHNR3ddaszKB85OUmakgZlelh3L88Jhn1szG8bbq19HMIaVQ/k0V1atGPEipnz0F4SMxuSQSJXTxlf4Pl9FuIi+g81JzxRgJEzypN71UpYvnfz5qvOTuS3Xeza/KbbPGrCv69kUvA4NnCY7J1wlZ0uolvsvT18Wn3+iTi26w3WJmn7f7Ti+MCS9U3QXZGQiFVffvd+5tv75fvF+nffHX77XSq742GQQmTqC+I8dFVg7KjTJKaedKNRjVUTHL45AgI/M4qx9LQYvyXGgFGhs1yHKJXBoykRXSTGbcI2PU4MCV0L8pvZ3qSepVeOHTEibTDlw+3q9UCBHjZn562O7R5OjhRgr4z8dcoiO3lAK0KL3pdzKLl2nRw0JFICL66zufR9Kur511+p0Fzvlw5Gu4vf/nL8PHpOKreYRwUdsrvToNWLPHWWRNYJjbhF6/qdVGeGI8+jDAhNVGeOCnILozgBUFHT2lDT8BKjqQTtzt4U8lMGiwLbfVQhYMZXdcWNk4XkMLbvbaPz8+b1QoFyHA7bI30EcLeOpzRE00r067hLDhw5ajpfTW/iaORw3FE49pUkKjtpTpKQToDCGdZNqzHoZ9fnNEVB++pz3BYW/a61y48yxCh1fIy13mm5xbDxpODoOyrrAt3ROexZSywnRbf8CKLBUNjh+NLmnjysQFiSTZuQTeGZdncymAYhDycKNlh29htAbiFtbjyIZElDXtPx9BNNCOoNcg7ZDyWNcieqC7hlwXogBplVjatckEDAW6LhseyemMIE7MEgzB2ONswefhmrHHU3wwCc5SIQeK5UdxxhwBEbHr4GvcJjZxw7+Rb4sm3xwTGDM9NuCbIio0IOVOZcYgOqCE/5avUwXwhu5HGiWqoKMIJVAnyUlPmNgLgVlZQ3oJHGlX3J1/UxRdKUKL+uv1iMbuJg55v8mm3UbHy/at5Maxdd6kU9eXxk36Z2/XN7WqzO4OW7VRdU572h5f9J3ZtlSdffXHzL77/4vsvlu/XxYd70FHSvF6tdYoab4D2CMgjKW1lYs2IZrTKq/4lsP7hdqaVsN3xRKTQ6IGXRWUDYH2N1n2rHeczxA/BvUWCDOFDP9hKO+vknvCuiMtU6UkXCK6qbubqLNC4crsIygXjAwDbOyeRv7aqYSO+MEIFdYhKqRC2B0sSVkOK0pFu/JjT1/gi9hWAl2+J7v7C2TF6AUSfQjVCRzRcaapP+cX8QkhGGJd/+4E4GHB887KYi+kSLzTjZFdtlcvHffEeiCh8Io/NuaCXt2GjmSxDGTP7YtPq1PlR4n/5v+N5eHYeXTJac7xXVLu/XIMGPEh4X25numXDUTNTRX9mjAKHg4DhBVSh0j2EBURY6ODlDGh5xLWg+umctn16rKvzgTFDbzth+bofFB3Sm8uuS7ajNsgL768YKY6sjtMPlQbX3Bnazbl5juV1bkEYJBQLqoQ1dq6tArYAA6Njn1WMZzLYyWJWqDDQnycLpx6evJTzBdwv0kucoa9jNoynqJMgh6awaRGpcorTb5EAmhZUiICd1Bju0I1oq+dLRGVS6pJ8ZEWKRudbyOP0iKv5P8ir2CqGWY5vwubqlBjHhmkJx2kTefn//yH0drNItcdT9DiMqF2iwBNl7YLxh4m9lInyKykN72mfWasQ88hCRPMCcY3EgdBY940KJH3WJEMAAEAASURBVLYNSR8P1wQ7pMiWSaoa+WvZmFnzXBY3H27qh8V4O89uFwibEzK07G/Ws7OzahTQOGP5eELki4V7FS+wb6ohrRlVcKa7pD/A0mq7/9Wvv/ntt3fv75rbVXa7Dv5vuVyvN3dUkh2LcYYFjEn5zVJNKYDpT1NVimcYZvKk/CikOUxuLKFVAfmZLEVH8aTCgVhAD2QvdKRKJoNSVXtANuf9IaqyEuU1tXxPZFGYZoseLVGNkkvZQLSRax6d4SGAnFY7ygZkszrcSzSVRGVxKEoYBbZC+x6MxYq77etz69MGZDicacSDKz2Ws8c+GrGF9d2OEEyTleeZtPRNV/0lCqsiiw/8eEy0SKxJSNlktHiESfwidnKExdjNWR86k6EGVfNpIxOaOMTXqkORoRBxKM7NRibIdufIb7L9btmsZa0bHP52OD2qHZGsikpaa5ZFPilpFRVFTl5opmziTZzEVnGaoDKMyJ8x7g6WkfoO0I2TlOjXE6pklS9zVObxurscmduXnfPH4nwm5sk59XHaYdgknQs2Ub49q5NTtT8W+2O+3cOVEa5wqo70s45RHBU6sJK3v62/vF9tpN3nxeN+/OFlfI0Uu5MpQJpwa8Gh6hlmBnAV2l1CUKgthxTqYMAeIRAmM9k+53hgzOL4c0R4mHpcfUTZdFgdTkW7wxZMCht6Rq/iyCP1QJ4kevybgNkJ6yrtFPFNTpf0Guw/P0L3eBLb6T3hbxmDqF9hVN9eQqpCk5lbxTdRqK7esFotHManxCFgopGKfblWx3VUkrzIdjmT8qCOgAy4bOgJJ2CBnITiyGz9tEVke8d1ubmdNSuNfgi4/CRnedTBw5xanH6v6vhwlq2/Wa35O45U9UGUlhHOcbyp0tVt/s1D/d1Xm7/57v37h9lqkd7eAqONZaoXS59cgY+HTkK3rIldsrCsPBNMzwDSqS43IlUGgOOFo/wEsfNV4lTSHFyqbfZW/oaqTpeyVy6EfnVE4Fw/YjgfuVYpFotnfXDZjWP0wad+p0kDRuMpHLXioBfHFkZQOxVjjHfytJgmUO4kqaZ8wXqAseFpWBOrqoqTEQw1i5BZmaAKAI0lS7w4qJUMThPwt8jLmXBUzPPAk/JNGssem4ur+S9OJZlqp+Q7kN4RyNjQ7HrInDsR/lrUGztbC33zo7qqdpirKYiOHERLVS99aII57hxY5/MIZrPl3bu7+/t7nHi765H2ySavv1jk6zhSoW/r/aHZnhbbQ/fzsc2YLfAuanKlHGULQW6yHmtqeOWla1SjTKiHjAkRi+y4cpITzvgXb4GKmjv0xcetOLD/rdUWtIK/DLjVw7ijpJJjeIPIezksqapOS8j+eC62++p0rJ2tKZCfKkCcQCGEkbNQXvXFpvzt1xuh02ZRybJ8fNZlfKKJneVgqoVFjj5kYiJxFRsfuTUjJusU9E0/fZ9+DjwdX6REY5yaNLcHESJb5ssGqgtW6B16Tqrsma///8HDTcAjOMzISVTOyoxeeg5gussvL3VrN5++//IM+/oWtgQyn7ilMCXENyKcCLTCMNtrwYAKVy5FwotAWELNRbOFZphwuZIdCufxnnQ/MJp5YkMDsZMSyNzH0mhU83w975xs3fB10gJi7VMrd7EaL4/MnyJ7AUk/3mzu7m7uQEf9fbJ/mIznx6dPWvOS8bdf3/3dr+9+9YHCrOSN6tlFWWmzUKOj3kFT1ehDeELUrT6GWR0TYEJWGMsouQvF8z87w+e8LV2Yx39+xLzeXJCMQJyX5BFGznMuaCmiUvd4VggSDlnSvLcjJiuqGBkKvdSvO6hA2YA6yyXrY06X3YgFYXccFoUn0/v/+PJopeMoGjUSMLkzJZQxuAEJ5KRr3R6O0Yzz2e26pK06efUr69u1iEqBOHomyDPDGlQ1S+lORj921C4wCwFl/YJEpRssUER2LLK9lZN134WiWyaJSbBnGYoQ/6JXQ8G2xrgqm0sWSlo4PVLhkDg8DvBMs5tmdquIdzGXNuTcglZbwuWN41WRVKcqdfTGqWm2zngV1Ft32IrBNg2l1/yqmHzGEmEwONxOIwtFwukY6gk+6ZPdfqu8zHILBIi1TMrq4hQLJ5zKdjhzheMJVUocpfuqnoLXgjejJUuUxpVFz4wKInI1DCvGCgvAGkdpSHFIjkErpZcm6W/nDuiovlhVPmrg09hXTvkinFNIpBOSMUY8raIgOcJK1lCMIFY5qgiRz3dYaZPUB3rNZeoWAKGz9/X1Q9H/FFzRpZ9d+/rUOSl10c0PHY1ITrOq28MaVNE+KcHa5Knzkc8qnGAqJaTDQiLr5qnDcGFZxu18GX0AUIdfHKkMJueLHKE7OhNHtJU4A0UwofxGRTZSnxHwszAimoddEJ45s006Rq/doYuU+jyrF6rBHSDIJfRdMVMhKTmlKjw+hinOP6r0Ijj0SXmfYypCHnzEjVOJbxZOBF9W2UqZASTl4u0Fd9DPmxdFhDsnbDnlw5EoJc3uUh/hER8ypMgoaYv2+UkDx7/42/vvv12+v5fHXqtB0h29vnk3c1hMXscnYzFsELR+ZcIUKsdoqRjjP5igWDseVjmA4U2kA3kCQFWy6PsR/o3Olpv8cJg2YrCa3zIcyt0CtcjFylEGRxXVc3E4C82YPuaIMvcO6kWKKHMtZ0MuU6kI1wdgwCpO2hEBSaGqTJRcJVDWKVvlS922yWs0lMycd5ehHnsRO6XUdLVF+HJIxez1uI/PO1KQ/vwM0egNoUMzxwygX+CZKGhUs1oc6+do1cPcnAVjuD5VSlx54pOboh6RTSHCdjWOpFKEebkj330g+YVeBAFI9+zcZfUid46/6c75/FJ/cf/xo49nimhvdnK2xgH5f++DlGbJ3W05Lhcvz8fy+f6WjSxrJ56o/F3kd+PL9rLt6whVVXNbsQA3FlSTd6viiGmJo4qNY+p2YhyzUdefQgz8vFV95M2iYzbQvCMesuPlnsr6G47TSUan6cOEWJhxPIIUW1BF1mHOLKl31h/RVk4CiECGm6pWPm8K/acnJz5957vrmjOZsiTH5aVyuvRhq0Awu7afnFrkfFB6ghZMB5yVDst5ghM8PLuREMxxcBHNkwgDdvWIBWMO08MmsXnTI6ALUhzMJFmepRhS+ZdM6ExPeH6IhuuV5MFaocH4EiBWNQ/mtVmnQDDWj8qppJmwmx+jzoOtCT9ZRGueICE+AExAGGfl/fJgRP3kxcYW8Zn5T4GNZTRiz//yp/D5AQdITYzOi5HU08PPby+LYrlwYb9UCwvDZDEnxB0ew3Yxq75jlw+74/7lSd2XksD1VGQf50TaBaye0yjZv6a8fzf/za+/+donh618GtbCuZWKz+aLtYJKcjutKAQvco6wOpgN/0wVMDEoJj1acSJwFb0ZkiFaac9MczXOUFGLbN5+jgA2eD4Lb/zxeo/wq4YMy0175NkAdoapIgb3XocP9jL6xf63Bs0I4heYSF5aPji6+mPZiVwQws7Egm+zAW/ssCMNJREscSLQntyx/7r2ZrN5uL9/RnqamVo3Lig2xMG7dA2LEKZRgkTUG2d38GkwhC2WT3KgiayihJcAb1qJOMyQ9Ef7phOuAabL7rRVlyWo+nC/ubtfayj//Lx/kl7aPu+cdSRw9Wf9QFZ609ze3opKFlLoDITcUgNbmb3FIiNS+7rneoeyaJMR7JB595xO7eLZY+EsSxQICsKZdXpg+6fUK2LF7xFXe4YrdMmJGQMZj0A6/kx6JrrttQDJlsNouBgmyC2nCguAT5+Nnnu9flHcGp1hU5GTQn50r5rG81plZshnqJ3Jn17Sl/EMnvrwHLnAUUiBE4zqpfiMK9bbyBZiT4V/SvdUTkWOn5xbWg8jdcMQm3jEwgYnKTZRGRlx+RuMASwCMyCYHa7u2Dj1X8ngsBfhN2QoVPcW6CHKsX0FYCY5pTlJX7JvIboRx8SqQUKmG+IJ5oLp/hZyGvplAJ58+8HPXuwR8juh9FhjJHXQzyHUMVwDhrltwvSwWJhxT07vize6M25xSnrJpCpJ138oSgwPY4MQgA6VdFqkJszj00+OlVs29FArmVN2JM8loBaqLnnvh5vqV99++d3X7x9uVUqUiKzV7YNz7sK45rIMEbHzo0o/3SsqxeA9NzctuCv482DdPWOEOABOyFxiGvFcTCT+icHGz2+D951/DhcFLkbx7JuuOqh1rvZDxY34iSTS3gnMMhbyWd7CuvhMEGhcXic2BCBzeCYXrSfZ7rKSKrbjLDjCpW+8S0WiToFCV06IeVS0XF1mqoPH1xcq/fT09PGnn86Hy9dfrXl3eJHpFQPqVyCJ4psIndU1K5dXXmt75KbieE7H+qWO4QOxvcNsOS+aFY8pUAxZzy7rdfXtN3d/89tvPnz18Jw1f/inv7z+53/8/FmZdWTFo9WjKZc+6a/KtGYtNWLEJ3g5DFBpVHwigx64OItd0X8y3s2r2Yf3EgI3kiDTAchkLOT8bZnh5J3GyShRJ1DaaRBsUtY+T0gx+GQWkQthv2k2EQzjI/lItuQjJmKGLRC60VcfYhHUZjQLtUXc+qJ6CbPoE2go803YKYVJQdUhf3X+Fjh4ixJFaizq9bBFA3RArCADZ2Xwuv5lLGxwRAr6CqorLbVWcfCdwkcfPUZjCVjIB/WBGKgoY0J/pmc8T1FlGuMuJDFMmC+1JIoynK/lM10SSYE27+2PiuFJULXX5evlbOtIZFyhSrUwRxgbhoDyxxf5CwMSd4nQVOKBuFkOqhYxiroNB4xZxSlMDTpicqoGw2OHVrM54Upj+V2KnLqkv4aJZbMjnxan/vBs3mvJkAFhNAJDinXhsyiGhfqjY4zdkU0sSucInH2M1MtWt1u0WsnYAXEKT7praIMIFyesmu/Lm28+aA1SLZwhk+fRxRN5o1CjmJf/Yx0nRYtII8YqBKN9fDtayeAj4eIJA4p4ipbFyENC7FhoedixyWpZaW+zN+YXTnii5yd9ftPfCDLftNzvHpMsSVXyw/Hwp0maIl0UZZewS4N4Ky2sXABBUfqlrsrnfcD88WkuxwPQZw/skKX1qVuRIIaMS/nkkc5b0qjthxc4i6Crwwf5Qp9QXPUKjpyO/gMFVXGiBip6UJibX+fU99oeVSRF6GWvYk6Js4CNX35ts1l++Jtvfvcvf/2b77/crGf5MX05OgLmj8+ftZwGhrKakuLYnJlPkApPgzM+GZBMeJC32HAms8qiBHrsnL/3/t3d5nbxsFpFSRdu14E7zhRVtD2pq5NtxOEHBwOZhaj/oHHKwRi5/t54EMZ4ocTVm6w5F1jlfDAjElscj4Jtf4jl1VEdB11NzBsBVnyk7jIiP5gq7+e57nW1L4h8UkymI3cdAIqc2/pEkb2CXDvrwDa7zrMBQ3YYdTnVGIM+M8g6ZICeK+6iq4p7w4y4N/niewGBf/5iqYlVfLzqQHZFvOaKhJFFbrMuHKsJeDHsq/KMfMR84nMTdDuVPqrAvuorjNwL8lj7hnDtDV+ExybPsoBBuxB2Np5ShRsOOlL1jDq8AFLTuOKbTX17+Nkb6QIZejMxvr9hgTeg6/m4lCg/PgZS5KwUhG9RiB7aFLlO3pQ8WzGHE7HQ8i+m4iPl5DLQ8WcVV2x/1LYgA8k/+M+SHnbnedY/3K1ubzfv3y3B47U48kaBNxfiRHCLKhw1FpbUpQOdkujIV4aaRo0Gc6kxkaTGp0bEjLwlFHnS1ng5YzUpqqWhuYFpw5SNiRLHySjh+qc+B++ZHs4iI1r0p15Go6mSI0lRfm2mhCo+NM02EZ4INCibOmH9jrFfU8ZS0elBqsYZUT4WYFzJ3USTqs0Lq2fG01Yuclyx+gqlwt4opejdyBOSSnWDnWQpWE+OZhooX6EtNY4TDMBtqCikkzIazLKDTbX03a2TG4gu1D+2r+1UAnIZ2eL9bPWb2+X399m7uc+D2GSz+0WjB9AJ6zgjN62dB6AmJx2/2GRfrlK1Aw6AeFIbrDI66lzpo4cOYJ5LHdOgJQ3Bev/1e2sDMhnvLM7TCMnxwGxzB51jN53Gc71q6or8YwbyOyWJm5zCFHYu8hHxAXgnT1tzhtBnQaB4HXiiGozxSpbBUdFCn1Lh+qG3QeFnC7OL7NTZMaUnn97THqejFHxkd+x77Hxg/0gK2DZnIQZm9kOUuPuayhiDMFcaFT5SW64jDolO1GIK+yfzTMjJVAhCeO4oYGKW0LjHZBfMoGYKlAhtZXLiRnHgOqgep1PIY/Hu4RvCaKIxwF39wY4nl45QA7MPloEMUBR1Wa4FEgnzQyCCKJtgrZ0OY2GHJzdrPQ3AC4zNWmsQ8oOF9nrPaw4JjEstQrBJZsSjkWzgwdgugiXEDF/uuSiUiB2a6hkjtIqw1vD7+FRmX9G9HV58+/K43z5hImypqcS2RS2XrY/Tb3zNH0Sqy9vb2XJTbxwycvOwZELVzwTbzFpauhiNslQ8qHcTCk0G0yWmE5zixA92IAK9sD3ENBCK/+MmMeYwTWHs4uF37olV9mFLjreb4IM/M2beGviA4THsaeIMQyza1DxofQhopMeiRJ9pTDkd0gwmPzlKRzpVaSsD6QOquUOvS3RiFo6YpDb6Sd05bERUFoE2vgXqcU2iCXOGvRfixgEo8VnMxhthq8InozUgvfZhaMkg1CZCif4+Ix7X++VsvFtn3z9UX91BsG4ScxjwKfFBKz50a1bepW0zOFLV0ckNT5Cc1kX/9Sq5YU+Z8eLqcwt9Mu3mNv96cZmVw5PKO+de6rj2SeH8UchB7JpZsC9XRwXA7vM4RDbUNRbWklnncOnd+SXio1LVfzQPR1/jlLAo1ftjoi2rLYidsXoKyiJxFFZpIgEivKW+QmMhU35rGcJd0lVNDqKKKBzIntRJs1LxwcxOKDq9Xro4L1x/VcREERDFhjvGiQcw6DTXF2GbLYlSRdFtk+oXxEs7AZ2CRv9dgujW4cMfsouB0ia06c0WctLx6DxVD6627OePP5JfoQaOHk9BGjlSKqcQAhSgfpGTU+caZeXu6Pc4yEBxqk9kc7V4XOPsQFV8PCnrpAwk7mgQNljQiDSNpYgFtYVvDyPxvEc8+c+Ptz9N+xJXfRstjhg4mTxzVOR5LecvKgsND6F4u0LocHANkaCImGHiY6O8IAyX/Mdp9/z089HpazraVnfWVKlmCK3j0J+30CA64sE5NF/d3twsbzUL3L+fVT4zLlTZZzYEGFDkw5/ExYNIm6KwmFI4cDvtPKJpJFw+k/jG/fBxYa9syGTwA3NMwhTGJ5ZjChE4+Vgisw2nEDIeBXmh3HaUAXMg4kGjL48S0hDH3xAn1zFPJk2Lqodfw++8FWAz+AiNvNSgoyD/eti7pNwJOyO1f+heYmzurZraUw7PwPw5txV9LMKbPJOSYToZuso+a7JxDrGs9nTEy/QxtlGjo/OBwJiDIot3y+qbh+Zvvqi+vxnerccbbifYftBw0fngsmJ2zOcK+YXebeuYcofmbSUtbzbZb75dfPPwQMJ1nSZ0OZUvOK+d7CMPq5AIq+2czW740pmHUSNmfaXUM9Do+fH44z69eXld6JuKI0HIeuALK2iiPvBr8qj9eefwdyckyujxAXr2/BEWmmQxDKllRFSMPqsxSlk9z37FZ4XVsnGk64aYM222LfThEiXVyLVrfh8n9Hc+9PXj5dNJPUl9LoANkWgdpyjjdQLZyiHFtuAz8cs+syv8tIh7siopL+iK95XuBje9KDKOhmQW5RebMX16LBGwQaGrjAR4GMfTNwBnYDgZPQJpIoIfhVcBpSJXEpApFp8AInbie7ycrkrt0TcKGZOXfIoiRA9K6aYeIUzxQWWzxQoQE0dpLg8RC3g0PbyYzL8p5JsDDRWYHnERsj9ZFntAKC164NA3+ze1nrFt1uLtGd/9zJoGNDE4HivI2ACZXJewxcFoEmu2HmRVhRmHdDjAgpYR0tMRUn53//Duy/WXX71Xe7psbpfKg8cZ2ghUsPC/rLHVi/GDs/Yhxvo23thjc45fYkbWRyAbMMS3yeJ4i2mC6+b1i4maJuLFHhpofA8TjHEI54uKjV8Vb7wtkdWa6ORQdat6OO0mvxqWK5I9YkXuy2F8wS1BU8B4bBHxctifaEMvhA6DQOTEM5yzKhav4IQCyLimTfeDFQ53oXYiPhMk+E//207/hgq7wN0ySoSc0KY0Y0JeBTy3mn/zbv1339//iw/Fffm0qfe3OkHLa9QI7DoHUmkMe0lzrWeDz3AXoanYGQ4+IbpZ5s3D/OsPC3HoBOW02HZVfq5GPKYkLdGNz7ANgWRSxZiI2rANQIOjAqbjH/7ph0BgQu6Q30jCsykmclvpfFKrpBkkjre3VmHsy3pXKMMKLyNN6i2cuXJBZfaf6q23kkDBIpl17JC9E6Y1ydHZlQGs8HL4MWKAROO0eHrn7TgNRwqBEXW6B6iB/WvY9FDC8OUso+VW9VVUn18jiHyr5vMULzsd0li8IgiCMKBVOk4cbcHqtzvYJg7HcFTmqCdwqRwd4s3n4/qmhY8aTK+U1P9H1X02SZadd2JP7zPLdLWbwTiCAM1SjJWCseJXkPaN3ilCX3gVIS6X4jIU2gUwgzHd09Vl0nun3/9kD0hdNGqysjLvPec5j7e67Gvioc5YkX+vcpBi3L5qLRf6Yc7Px1lL4+GO/JfmeaqehwE47DXnCyyHKT6HeIj6wKTK8qPcOts4RrXx3E5lGCDseFnAnRgxl4ajyqPUgoOATcht0H2dkRDSC1NRXun8lO7FK0ALh/sZ9SlBP1GoTb0xRwft6uNuTO3Uh4MzV9/rq3Orv2+bn9iptzdnDUxkMIxwz+RrSvFejA+LqfQR8l+7KANVIxcAfc8dtSUNbrp33cqLu95nulTzYYjfIpFE3bTOhChRpEIqDjX91/h78QZEEXc18yTOLSQGV/IfBwIdwm9CYMhBZjufKg5CMUW3/EMaJbCEkm6r/JAToOgfEFN+NnegazyNu0QXnOvBcCW0gi9Xqs+zMYJCTtgH3shCp01RY/DTYbef/CZDcFpdSrpOGqeox+KsmqHoYpRcCHaFvHkEQKB0+yMCXNhGQ0NihFISSZt2a+Zs1ZaemKwifOmklAVqy3SkKfT79WG/pzbJ6av5VuHZf/3y9k3r+m7crz1Bno2mIqS0oyKYaAK128P2amFAqp1xe9UnPDZXlfp8t2o3Z736ppdhHfx6ZJ8ODbyUZBL/SzNdfmbnlrmqbRNy+ZBo8NLuHycfxvN5WtE+7Rewni6nNQYJeHd9c3s14O6aVLW2O6+WM1VD9IGR3r5CVZ3eqvYIt6CnzCVGYM0IkuY+WU+iXTWKLndXdTTU6UYbTRWqfaDi00oJjPx+bIBWWbS0xmFCVJuHMlttnha7h4WeU1VzZ26ag1NjkfgmV4oWwCWkB6LnjRqYVDo6MhmFGYRdWZmoSEvXiVBe8PCafMkVBaygixcwKMSA4xI9UMmWeEPTAqIkjkUQkMLJk+ODsiXQyhVRFxXBvSJ+ueSCssQcRaL8Eea5N+Amjy3UlzNHhv6aQSmErRXjH6GNuIR9Mv98LAYqwFlmmJDlegfBur+sRT8JImgUOvHJqDl5k03lSu9et6KQ6EhC4MBWGytxWoWTUkkI80hjkf3IH5+SQ6e/o7zo6PokjBVqLOg8rkbtl69vX75+NRhdseQtuKzCquizQBVflmfaQoFkgWuqTdP3ABJbUUga87fcrCBbyb/yA0Bd3sKFULUPWHuomosmfvG4HyOVPQwTLu6Nw5rdqaLEdvgOxLYFnEhsVnEENQsN5Hg6QEOBvq5n8rSsyfgjAPD5E7mkTSADK74LbMCx5F6gWc6ggF2eXSRWwEtzA0LzcWiTDpfIdCq+6XucxAWktDvdyqlq8ZZ4LtjKTu2w7m9viSYMEy6BkFNnNQAXkIQtxTeR+TeYDvHDscdrnJx3WM9+VwhtpUGCwto+gbfoSrSAoqPRzbg9PREMrdPlfT/TOwWAo/LRpqTKgJQyV7eDPdo4gvSsVl8LJ/d7pGWZlWDA4uo4m+3Xy9gBMrI6PS4PefvkBgcR5p467CBhQ8f5QV2RrWYitG8pXuQGDTMd52xXSCZyKc0nszkySVMGCJDcxrgWHQUaEXSEItCsoDaWEl9RZlWa98nn1766Or+4Gr26vpZjjlaDWjYZtpvyA62/bcadbTOEwvSUb6meKAZhZn6GqiO7tSdQoxozO1fg4GADYKfBJIxajP3FUsOgYXZq0zKfQjYF3ix5JKYd4xZ1MLXYaRZOPY3yn7C6fwz6zCAsaO9HIdVfaDUxtyAiseWxhIs1WJhDtXoXehONKVpjODgzALB1gvKAGArZMfdoMXGZfHripTWwrpsUEq4IbQHCe8p1JLavh4M3r28/++Lzt59/oZbD/SEZRHJkAUjwKM8kL8E8fsACOWvlOyhaZAJtiC1/jsj6V8XeJ1224PI4umYCejhWeBPuGCe+p8DrYj4gRWuP+0Q2MN2chZiDdnzp+EwvjsrqpDWMBBAMNstKipgqE/UhKkHAKATAUpI37LiQEAWK1RpajcEX4qHlOrcUkZlYWrgLQPukPHqQ9pRolZHzbuCDdFHJxlyUVKGtyp/sk7rGBkbW2qZI2CvSibooKus7OVRsDfrKc9cjNvFmYPODoZAXsbQYihnrBywaHGDAsbIQn9t6ZOCsRI6oKA2lC+VTywJM+W/Xw1FIRsvCvV6HaAKe47mq1nBYDV9B1h0OrdbWMu9uG7dXLWrqylTEamez5PrVLj625GYjb4QhXtdeozzOwUn9kLVg4FXjdm3q97G7NA0ARzSqTzJnVf5UV2c8PqK9zNaUAUsF8YLmG1Sh5vAK2SObVXEUdocPLhcAi6sACtjBFNWUr19lxsPtsPr21evXdy/4ERBQgJNYUnRUTBKlkIUiifJIVTjg3orwS/9yMLRjuFKESFGHpF/yYOW4gti+DpFyCOw34a/k6YcbRl4mUdIfKYO0FQaef+5g5zTiE303kjUYDNVwCSsTw0JqoJIjDW0FgS0VHsZvlXZ9ENo3cj5+AiVUFRovvs2EB51QkWZSRA6iN0g2GKabFouy8PbgZtJJYavOgKQT1OkYeqHLMx9HVs5flmTU9qu3Lz///PWdetDbl9gB6WjXEMgXsQeYF/GI19DESSUMyN69K6AdSS+ZLnkIPKv09HwAIRJIURVy+ULWj5/6JoYDghcuVzids6ZZmf/lz9QNegIIUCKyunQAVxGSb7gJBcafPt2yRKCjwWMQSSE7p6fDalMbJi+1YaBTlh6I0uUwVwsAKze0B/iV1NsyZ7kAVjZ/VQ+aweCctu4r9VweCYTWl7PP3hECC50qXFBBn5kLZwWDiE2hSGLEypI+7jwdma8FTWKfW3wc/DlBVhd6cz/oF+QBQdI4VB0sgJgWjUF6iy6Q49a1SMjq4jkKk7QET0NrSey1K1On8HTo6SDpx/2eqVa6YSDWnv4gB0OXWufXgnDXmqLul41Dry7rlHhrGI5DgKjshk40LBqMFbNqoTLD0zE09CLdVIUlzT5XoKGKhUjU91yjvpeJE9DRzMM+SCKWfNpry+CMMIS0lEGaLcHGCw9f6BDSiFNOkL1lg7pV370cfvHVqzev1JVU7m611hqZE5PyUowz1BiX8pm9SWCrNlm0Zt0MB5o/fnz48f279x8ZH9XxRBfMoW/oqKDYQgrlWGKlIwizj7YhDQXrThTT1pidbphEHu1IIAU/t6IKqBdeE6uO383WgVz5huZlXCBy4XyPxwCLWOuKEn3Q6hEslHYLx+lXWO64ExzQuFSyN6SPuh2Eg0d0qYhZA7Op1XwK0SFhtpxt3m6FN3gQKzIfpmgmIpXgDycoCUh3URJZnZlJuU7sGGghWaffePnZq9e/+mx0/YLGEJzzydgAMVPyDy6jSVgek4LKLGeomBIJV9Jdc0S0Do7DiLmoh+UrXpc1g01YHcaTA6OMwSS5PzpsuculQ45cqNiFevlYtn2D6iUUQaUV3aBRk9W8PuFeXBvMWdw138n2QU+GIPxlCihjdX8JIBJWEgss7UXVOITzI36apMl3ks55E9PFRSxLCBTnTp1GqZRo4M0b2XFGHm6gKJO9pOPH3yyaT9pL3pf7QddDg1H+L+wJisUTGFEZZh60LEw2fqkEm5LNlY2VzH4ML/7W3PtIJhGpgVS+EewIjEO77hbrqhwu6DuIZG/g+JziBpqtBHWLfhcc2uMdJ4mTA7Zxp266r2xIgk27iYGiXmVZkFdRT58CwLhtDdJ9qjpbnp4ny9mc1ie1EFZH/oQtZvmOW8akEsOufVJFUkWlv2NdB/3O7RUmepDfrm5qMl5LdLOAxDbVnukpVQxPrDAQYGElmbgt8JRfAVNnQfdJpJKhIujaFjJ/nJ2e9eKJpRFmnTwhIFZCkb6VMjpaGyBzvjwEk9ny45PAhZHIOtHTxtYdUxe1G47RA/0QEvXduUZ7DbkS5ZDMg6FF03C7urA1HzY+4viQFu6PQn3MC0sEeF4mViMBZDvO0w1d8IODBfE4y5xuOZeYbTGdcaWgt49CXNeFYh294wzWChCxfog+aQk2GT+hdGXK1t55+Er0sJRqsbWieGIpCBW60seWOgkcTP6Et1VtTF68uHn1+u3Ni9e94XU+mXhY5HEiT0mmJB9Kp9pivhGbZE6cDThF7LbowLEC2V0xfv05NECk2ODleOIdgL5AE7iAio85itzIR3EBH8WB/OZEEkQi1oIYJZaIW+VG2aH/sz7cM4ivQMTmI+2Qt5XE+ab1AD9VmCqPaFPyBm5g9CEXDQ5Ir9ImeF3TpbooOBdyYiR4PjrfzykYmUFK75UIJAAAxmRX9HXGHHCGwNxHmJAZmcx3X3WAORvfgRCRJRwVMBIHiUYUfcvanVy5bBVsoTLjk85CokVnTygu7sycuy36pl9TMV404UK9wGa1UbwdfkpD3UjyAOW3t5AAUwxTsjI1yGl14V+4m3QlKilWLQuAWkKccrTJlRxKzx+21tvmw7PUEdmIlCjOzsaKyVkUTrhCNA+NPDZwRG6Wh/FJ1NSjszBNx9GzgCv6XEVzh8bP1DNzV7V0R3aJDSofcGWdZQspHWMmbObq4ItZzdZgxO6Pk8mM976yUry10ExitowR65SgHBGW48JrLcTX9V1eHNdzfW9nCiBpfaLThCr3swdrYL3S77uymhrjHn4GUk6DV6kEo0OrARzJztOQCgx/cO/opz6sDom1ez62o7sFF136rF73BoOOQm+po1V1Ry0hPSJYa6tQX9AX1YYBl8vh2xKWGyEdVICUcSvRAqMz2nfIPoUrOaQ25gT1ZWngqYJEMVrtOuHARjoF0poMYKUD4ieidSyyaFjqp/rd13cvv/n1169fa+M9qqj7iIIWswh3wqN8KIwKRVKkw1ojUPM/6AOdIgyAhep3lHm8M5wpnwekrArQIHfw21pJaWcOf6l1oTuUzcRU4O8RXGxmEKFJxVBp28tEc8A+Dxi+EDU2imGo4uJ58hoVhRh8Cq1y/2sZkQoSWYVVnjubkLrGFQHSKsYzUAX5FFkHusEqJkMEbxbkdfd84geezRa+JA88DX4ElJMe5GicMzYfMsqWGIIpvw53QIahOUBX75+Sm5AxrA4x+WiwgxiNQuIUXLyEuIqPs245sUkjNO95cbhc5Kev4M4YQBSVmBkej96dli8AajyC25ymZUMY6hXBbwEyRTm75SA6egVGOkqqqIHNreb+etS6GXGy7dOL0GHoPpyO891VrNrDYlJZoDoA5jlgEzJCAbxZ008uvUSa7UPH6cmtTb6EnfQ4wIf+mQbAqdFXNi9ey/GkS7xsZqtX2Yjbxp+kToY2Ax4kFhCoaDWOIB5BTO2oeTnoqfvRPFJfzZmg4bYobZdDir1KkOp/mwIf3SY3s+en+/v3z9NH3lFcwp+prD4DPhQxwivFFKV9RM4I4GOLOD3oyDqwGLIzbDRYmOOxKspCjLB8GYsSOw4m58+QwM4lVfmrj3jHkdA6kCJM8JmCE3mwCz65p9NN/L1oFJ6e+6C2kmvlW7ixDn/cRPQSCoqJ1T5AtdP4Qx4Wfu6kcej4KoM4QXL30K4TRiLeK5Nw+AmGnV998fbLr351dX0T01uJPhcgnGNMkbBU6kunxegUcU0nBIX83DnrgYsRogWFHZNfAznPuqy2vPbyEwQCI4p4gVtsZw2PsrnMDRLvH+D5OnHQWTmBThm+jjVRyIzvsn5E6lhSlJ1JwBAPgOO8Dev2PIQdURS/Ko1EONU6NYqF4NC8rKdIeDcqZ4HV+Y4FWAzmoIE89fdcnYzHS2l1PJ/IiVDSaI2HsSi6eUq+C6pUJ29GbuQd7MMxOQ2e48I0IGLZt+X6FIyiR4TF5UzjsGBQIHslgdqDoRGKwichbOm5H9i7JzTLDn0vgvlyZZvuU3Ytbz60xerWVQ02k328o4FNw3Dq3tXVqLkWIDIp43R9rdM60UofEDCL2RYvR6utkYFW/LrliVbCVAceT0fs6Uqj05QBTpEm6GTJF8UbO13hLEJ9XWWlrbM+V4oaaqcVzz8xPuyaOW7GpRKB4lSH+qAkFBS0Dgczk0z/V444EpFbK06unEl1qqL9VB2vNgKIja7Wsw4ZiSIKuupOtUB1sZssV9rfrR73jXfj5vvx9XsV+WvVkN39ujHYdrrHweTc3fWuFx3eSGBJEkISIvkV6Y3r01glshap6v4l8B3nKkON+Tm2+yWaqmORKHhPgnAhfgxw31yfqde0ZDejFGlkKccSBNcMS+ARdFQyKVgc7if6J+NRmgo7k8tC+47DoFkfiWus9s3O0Qhh+KL2da1XO7ZcOUmaba51fq+J/UrBJuTxFZorX4A28tdX1xvlWgkz1j/c/3jSGq27wsj79cGb4edf3v3FTfsrTYWp+3siG3iDgRAxQl5oThmHhohHzWpw1kNyW9wcSjoksluIHPok/pOekWmpJ1aLfMXs4kSxThjqAyV7JNimH6qxpQxp5l/aoKWjnRw1yVP0Z4KCwoILhy+Ui9CkDPNfuyd7LIitmkIQdEeH5zTF++oLFdmntj4oK6n4mxWzjALvlBFVS4dgstdmDJBHPfYl5BIKIvwoIEAUu7Ri9kSzs+b/rGgOaFD5SuP9aO2xdErfnJQoHeQMiw3gWsiTyyftvm19q55MMS3UJjSxUN0BkJ0S6oxdlPUQPwbmJPlpQ5nA7ZxOw6w9zg7doFkwtdYtlV+CeLfOd6hF3q6uRWWkXHO1ywRWTB4J6nqhRDSD2nlHAPa004/e0wANmgEwQtYH4IXMWr7BSuuuf8VTbDh8v4Y15DQwUt2aFORWDEDRSr132jSepyetK5rpDi4+mhCGaRMJxhILXOd6aVL5Y/3FKI47jEU8Qqid1mS7mlb2c9pPWrbVjoYXqFXrJu8ChLFanVJAi9fLr6oV6JHuspJCQUa1+pt9bzOprWvP/W3jZvBKp+ZiUiDsor44Lc2Uw8jZMaZ2bY5S697fz7774f7pfib6vk0iRGwgzJL+w7Uo5czBIqBwQ7KSXluOOonbmgKKjct18dq/mHjhREVRL2pxQZdySJvxeMx5FaUFp4mgg+0hBkiDsti1ybRMCCiaZzFi455DGUo4wNh6siSdez/FL4PIQcGIF3igXB2nz83KPct94xEKk6Z4aBwnxPf08GgZba50Fk11MRy1X38uoHqtao0/ReoeVwIIXQRgBARWa6lw05ojauNocl0yg/MmYHg8mw6HRH8QVRsZSQmRZRFDPpw7FHlbPh3TV62lHUeti1avoo012GS9kCpONYCTcgCxkoZ7JGCtRy/hqDNYQJRFe0xmJcZ8ubOneLfwhJSGOKD835J+kXs+XBxB3pD5TnbLqoCHVOOowWz3BI/lXTZJct6j+LTd061c+U65sooUjscB7q/ub+MO1Gwt6EcUk+1++krZdRRYO48OGNAEkvnp/0Wk05vyTiGgALCYGpfH+Vl2ENJyq9ylbKp8PevxaxSs9KVwFPjgBWliqaCaInGPpk7qaaI/Q8ZtygfRZFgFHegqgVfwK1cJHPUy1142BdcOjE+OgzzONzAXk6e5WxXtOGtg7iae3JSLGSAweUAf+skt0VmBlyxymVGT3flwzjSGg/tyBVsta6HJ2IgKEuerdkuUv0yl7Z+v2w3TcKnl3CftCDcIZ5M8HjFxonpphF25/zj99tsPf/jD/Q8/PJssxMNH6qmDlDPgJFjbJYQdHPH1aK70QsYDBubkUwPcwkRo/5JNWRjcEp6BwuA4zukwbI+IiCck0xD5XlmKpUC80JhjjisYVlNrA2QnZ3k5A1ErzEiI2fM4xWy+nBA5lP6pKDmZcsDH8EnukPrQ6Jf+ATFoF2UzBwysAADpQNCUoYfHe0mGHFytnhM9v3h18yudlF5fhdYMBNMkR8wgwwwLodG/CkbafVHmwlmzEscXjye9xklpfpPeKxCdQegpnpiT4hW4oGYA4rjdGEJZoM84z+LpLAae8/Yrg3Gpm4XIoe+X9xNhsi+PkANsw3ZY0NlDrINgR8wwL4YGmRqbAiz0VGpqQZRjitrFbaD+OTTszvDRvXETrr2EBRQjMzWNVCXu+DDRbcM8GMNzjittKdFeSTxAI3Zvg27ittlpYAEDY4TZGne6OpFMVT0bGBBLB7ZAlOiuBey+HvwtIeH8JznFZGJR7MG1UII7QxMbBClwQ9oBcGGJnzgGmiaL4Zcv5LpoPjR5PZMyaJn0Bl0QSCEkPRZOdVanBl3ihDJ1yND9I4FvDA+aEkYcBcXwishPKo0IdFgb/GlIfUCrOgrE0JZ/VNVQy8e0QJc3xaSiZ0d9zfa4jhkFodUkZ/h+UiY+6SMMcpTGByc0YUcqMwiCGPeKii5SIOhgwuCArN5qn6p6jt5P1y6NtXgSqkaSwGZat3HWdMZzzYur7uDlcUoNwydzjEsDQ5gZKcfBRgkaiQ/oPryZHy+MKwoenG9q75b4TYkjlcMle1VNKvqVTBa1IxeUjvmXy29Yq4Pymj2UKA6C6qQRYTTjWDPg4Jw9QHVuIqhQG4rAFgIBXWIiuWU5Q/iEv3oNxPu6aG1KLtLIK/w7fN9aXUlwqZ0zPGo6YdbxV6+O1Zu7wes3X9+8/LyidbMzNMQJ4sqo4Y7JMYAr6wbmQft4eBiCfnpwdgR741mJ05fos4Biv3EfX3QCYikHbxnwOkfom/kuPpkvoyt/9pHc17fPEmK6N69eOe5gc1t3a2W0ev1xYzKlZhFgYU6o1L9wBF83xhVHQJDl+YV3Mpuw7HTru+SJhZaDTMVBFRhwKUnBEarSPcd0O15zlCvLjgTQy6aq7U0n3glSRjuFiyb2C7TjgiiXs/Fft7psCirqAklO63VupIcTDCjyM2u0SmRFOjizErxJ5gCVOtharj9BKcAtIMIBiAHwRj5JcmLQZsd5LNv+IvCBB5x8wzGU2pXgGOD7QHDT6SCxijm99GluZ84LY3d4kAQu1M07XSaGf7COQckyjBIURIlelBCSO1mMR8L23C6VODtkFy6ZfE40mA/EFErP1LQEzjww49t5mKBLwXP3szviJj7/s+mwSU8sQ72o3FBKLNnh1I1EFYuDFiafNExCMbJkYRh3qlLoKmGQ2gwQa9YkaIYZoRHxT+9EFAXAYd2wiKAVyAV1/+CzI4BuBLeDKJthxyk/geZV9YoWinNgGcUhLNzExJJWeNluOJZ+TVDUBly+nj3x9dlx2lHYOnkV7EMntomT0qc5dUnKogE5GHsjviLAwryT4kug+D9Y5w7lCHOwJJALPLzkRYAvlMblYhKheq7oC+H7vc9//dnbvxiMPqdAFF82cxQDUsRUWD4EQVg+hxiyKdaxpRcSDDtxjCROzh11QG+b9cDQcU6YEPRp38syw4Dy2iouRB688Hc7TUQEvmBWsu3rnfR+sOiIYHxKICEMmT0mxStNHCJI4Xh0vki7xD6sldmZSmjkRp0k/GwfVLN9H7OL4pzzqwWTn0CECyoUsyQcnDIuAI13J5Zj3LgMOQtj2x1Py6UFsN1t0m6gXQCbRMXEybwk46wlj1GMk8S+hcBBGnmGH4XRBUWCN1GAnWSEM/BQ0ILDjktcwq1Y7CWhJey8XMEPn0jakY0kkS8gBbF4EAABawKA3CpQj/x1SAXoqdWMSE6S/YlfBUORda5GTZ65RHxsKVVDiFa4hy0nz++wk7JgnjNooILoRG5LzpqMwfSOftOQLBG3bh73ib+4L64RDui54RTpHKqckGm+V8UA9HZCkyn6UAYn+248igumV5L945dRToc6whQOU2nWmaBd48dAifESAiG4Wc3QTDehMwne3YV0ftWRsqj65GP73FPwdarPduEmwJEjj5PDsmhTfg17hxJ+ghVw8tcn5GDrdYPyuM70SkkkOKmKxXWuA1Qz3eIpDmo/Oo209oNmEYxB93JlAjr3EMxyBG5tBZoS9DOk2HEWuRoTiOlZzsyCAtCgQ/S6MvM3yk3iIA7Q1shayEe6ah/goRbip8E7q9ViPHnayVJf7a56Mgq/IldrvZtYxYRzOFC+vDsuAK48IouEP59eR85eqA+BerMQbl0iS+pjclJlAiqC8XX/L1w/OYcucLpcOAXGL8QVMkgHZscSqZOsc4Ik3dxp1E7Koxw6YGtgkATmCHW3Rfwhj5wAM8UZkSMRW/A+Sm8EADcj7IIKbuemdAzkDj5cZD4Gw6Tj+2iYQJMo5QIwvrMlCEMRlMgDDlw+9NQd9kBEhyKyBXQJDlhO4UaBDIwtHrbIel9ntxc3KjPGPcr55ox8DbGHy3jTzqw+Xj/0leZ9Cb04K6eWzJbQdojarwXxmimt5fFDMkE1+7MPsCg0T6ZlXfHDlbBRTGXORHxSKBgw2c7UYchogiM3XpSzGCmspHB7HDED64w9IvNC87lZSPOc3lRC5Sac4fHIaVFZeijkSEay0FDsPAuVSGvjCTYgAF46/sGIjvPBaN52e8cKts4cejizIqr+erVsLYVe60AsN4yh6LTtVO4tvz88wbca/CrskaJLQng1Viu4GzafvEMDRZUjbLrmi2lsDhisVURjZtVa7uyu0htA4BxUWDkEwg8L+qaPhPRhvCgJHbhM03gunFnim8Qkz0u1XzI2mI8csIPugHbaWM1z3kG34NnlSk1iWy8bVhM9YqWnjt6xIIHdqvKK6pW4jzMIjOAv1ISqfkVYkFYj5KK0FAqRRZRwY95xIXHqSlSojOTbzmaTybPum7LPu5+9+eLPf/NNf9DjUyVWiS0lXqlLxMELTdoq8IG0M0RgkbEX+WoDdCI/rAbmOU7Po4YUTMquICORH2abrYbKguXBzryTvDHhCPuFpoJnwpJR2nioQphJi00+cKRDUxppAoh2WvRHdyZuI6jdKPkfhATkZN7imzsDjooRwV0/TX7MBUs+wbnk5bOpgALEVP9ZJColdHxAnZlIBwTGxVJSYWtpgBifluXSw0PxsbqzAFtDNRG0cOsg/EGUQXD7NMMyjmAyNLsk29y68PYCkfC7coJgV4CEN7GbE8IpY/SIwnwuWZC6hztAliPURaocXejWaToLmIkNgbFbgecFpCASXPh07lYgqI776VWdDEQQShhGIo7mJfU1n3ERXQY+6YUuwDE5ScuTDZCcO3lv4UvJFOEECCJkvt3WHHqpqSQTX5CiVpZsHCIxY+JD521XJxP3Y0iYMhqJUhYXtkOWRWxoI91Ju8V+hwefvGXC8iiHt9BTDBkIv3CepW+hW0WnLflZd8NrsmluYk31WOaR8urYleKmx/X2tN41ZTOflXiu9LczNbKfwnFYFNDkcit6aDR70QYA1CM3oSlkRsNiFO8Wu9pkejU3V3jVNwRLkTzZAASx2ouOUc4ydOqoAntfVDSni8hymjHe8+f1YrxcL0RWzWgMspdT9Hj74W+zcW+i2MTTIQo3r9De4bA4ryhs+XTuLKAg/T1B8wibyGxzSy1pxVwa9Adv33zxqy9eiw3pw9ga9B2F4tZ0MJJX3OoH0aPJhdhQK9YI6rimN0Ir+QMJU7g7bC6cwzuW5zXVwJZc8TH8cvlrNLhyMQVCAnzFxJCAUDf2dhGGDkuwxxHak2gIktASdfnq5rUGKxWhQBkSESlhRq5ejVmbm/IvZEE4o7Mvo98kjJCc+DfaC9B4KzSEW251FPDrYhEPsGovOpHUF8npajWdLODGoSWtIuzNYyJDL5e/BgiOMYwnliGqjbFThGzQgsndDBLjzvQDNyhbD1BQeNhepFZoPm+40YX+7ecifPJ+4GpfvhPWCNMihS+a84UffvLw+1iemCvLJCKjWdh5fJvlJw9a1OElRhCCUULDgPNrbSW66Oa+r0bUHMX9YYaAMRuc9iLk7dmSwobAqPjh1QM52AiqWKpJZuCsTTyXxprEPvfO3yhlMMaiFwgHHPE2bBwgsvd0iqB5qjDFiXmqFiyJGH8k89H8UWmxkIikVTlzmh1MuZUkr7thRF3U4Uxi7//6z/7s7aubLz57+Yc/XHf29Z/e3e/nykdJGIphAl8N7XeS+WQ53HKq24VBafGSrWat82HYrM52Rkh0rlutZ+kjqbbZmQZyWCrVk5uwMH5Dd5y6/vga5fVXZng1FBvqUqw6f1vvraqvq/19xxB0Fs+hk+0dlyUPtUFjOMzVGzLCxPWvu9dxA2xV4rYkbtK31MsifglJHGAYuoEkOny9UrFtoLgQGVzR9Ldz0+paWvR4vrX3P/xowNTf/U9/8fzwbvT1XuOzaBBCdXteJbnzTD21cvpeQDwXqemkP2llwIpDOcYisUTgHAKuingYDIw7runoGzRhSkgHyTAdFRIQEI7DdzleE2nkz+V+FvlKazGiIPNCNYHXz3et/NEUU6Z/fOdh7MohJcK0+lLDpZUbgaVXZdzCaCYskkuQhSjeIKGiN+w0n3b78XIpn0yG6Mxps4yCvHH8StdSWaTZNorgbgzHsKLkr1IAgJuL0mzXdq0f9c8eM68pmbTRyIkonoZiYBQxFfYVww57juc89JtkAWk9h/MC7rGBDcpFDBpkUGxobmbxns8jarVKASqawldSTvv9uWl2WmynSb6wJedENU1RlBSp6SQOJGAJ5zf2zE2lBMfF8hDDZdiUobFcKGginNiAVNKIvKOmCAKm9IFmZdvyLsKpV8fMA6a3zjb8iV2dp6unrUTiWtqAN6vU0t623nw2dKZae9FqHkb9lNcjMLXzegnJbE/ulzwkAz2RMuRAmSjVRETtQwwg1vBSv8fp4jg51gT8pMfpWmou8AyfF/+OEqTTO969WqWF/H6kQz+E0A4G2qXpErzEBhbHbqVruj2cc7BhkN4tXAzSiDs5bDo0PtuovRrc3vYMPJStTQJVxsunqomy6QWOj6RAKRyx6FQ55NwKmia6lVBRsLG8jTQ05FQXxfC7dN8q9kPhfpAyPFCqALihLCqH3AcDS+QijHRqgg/NtWgXykxKsnrD4+rR5JZn3CYc7PLQYmy7jwP3DkZFVgS3vNFJX6wLY/Yni/MzUCgbbtDvFQ7PlzDp7Rdf/tmv//zupv/FV99EyLsdl0M+WsjT3qLBlD2GI0eKXq5fXuR3Hy8fCTP2vpUQuZG3UT5y8P4nTSRVqDmtuIpyz4usSM4PXGShlbskyBf/BKHoPuSkNEvrwhfDaKUsamW8ezJ+3JGnpxVXe7WqdZZkI4B32AgDIxQ6EKmB0hkDutVkPXo23p4l2eJRi8YVDcbXASc8rngfrNh6AYnWR0LbWcg7RZC+hxjiY/NmNlhEotc5R5suF4GJ+0SExiowaXq225X+KGFxfIo2Vf6QTxA5xXVe5GRk8ic91v0+XVSk2LGOjh4X9hd3Cf7mNS2SNIM5gB8BVPjl5SfM8iRwCSrKVCwt+8hYrNIXLSGqNqx2AQYjmSuLWqAEfnuhyQaXAABAAElEQVRMUxzxiqR6Yn+pu8y2coy2GX+1MA/NTTGs99wgxpE/ZCfUCiSRBCOdAFnQcQMCRyz3+LksEQx44vzfbWXM5H/TGXU36lrcaTz/PuurnmYEVGmjBQmwfEfDDYPnpRRQSJL7WyKZqiguqMNqvZwedqvRFS1GO5lzty0X3x6pYvBgQMW1PovMY4oiF3WD0Y5MsW0gtkmgDx+NWwL3jqkeXM8RORYLyIpZnxTD5Euk4ELUazCqD6+SSCmzWZudjDLodoc2NNtPh7Pn5jvCwf1DVFlAakTAv0A0CCTk47b26fIimAeggWfojczwJnvoLL8hHRJad28+f3Nz88XXXzz1ai9e3onEhQNJ+4nf20vKfQnSeZa1h9qzW7C80GEsfFsqJx4fS8zSPDHCNi7BT4TtKx5vqdGBHQW68iNn7SlQkcPQ17i/fMNTCjfMr52rzo392gdHJSlk/Hy8lMfWbP6B8LNtQtczYuaWZ3snphDXO1XrmMHkyDacYH0kmtTCcnwDDwwT7OZHICuzeM6WdPolwVLF7hDpFpqhUA1xWh4IAoSAszhgLJmovKKpc7YvUMqSQ9UhNuAIakMASHc6T8dm3/ShKt7j+AlfKqrUNAjoQAJUPCNXvhvbP/9P4rB/XvhrVOsiB/KsUrHMgPYFhGo2ijdF1LQjhLc5cvo9Pqf/igMMzEONyAihMlBtvKBBMpIBwLPcJ7vQLYMfmGW2Oq31pJCHRTumaXqEMnE+pzRjQRTUVUcvkCF3zgRfpyLrUycisQ7AJV7acnQ5dGXPczw5/zQ24CxA17XOTmPHFGvbW8DvdFvt/WjliGhWsZLstKUsTPYeDbHQMyS3izDsFMGRQcriNIBbGbtUyM6B2f16zpwpi+T/5MoTPt8kaHopidI/0ei6/991MRKJoxwAUGAKcSbp4GXxG6mO5qykZVnOpQhzC0jHn4XOeKliS049n3ZVMr3gcuWFuqOG3EbDIeo7e2t3tToyicWF319EQQDuPKCFIy2UeXlx+av386JiRksWmo85fMcVQSEz5UDI9Uejz7/+sm2CobkcTc0iSJ5kEQMfqR4zR+osnCnqa1ifJxYea5Oe5VdXeRHlw6YjLeWdI4ZLjKX81QcKJSbYk7v5V1YeUe/oEgyW9+NF+IMPwzL/UQCkoJEnD1dIPC0C1iFwymKux+HVKBpmHE3q4IiBtPrn5ZD3bVngTLuYLtczk+AwDeihARkmJfJA7WYOKLMPRDwPFprcUfwixouX1rKQmkSIWW+t3OfYYqQM6ysaTZ6yzcDlbCbyM0uGjV4nUB4ohN69RjWbrcVENHo/Ij/arYeaDeR2YbKRXzGCo1GACmKL0uFd1EYvIWNQXWJ8CNUpUysiYHzY4Sbgh62E42+BjCGXpZRz8UVLC1ukVTALWfoyMnhu8AuPKbiAjq0qfESOHeiripIYKmN2G7GS7aAhk9DCUByCRTAmMJTwinbvmuvD8fa0RE8zlKJha1uvHxnTTRsAxB/1QnosrZnvsLmTw5BwnH4tyjDpWNWBqR71G54pgC0N5ah6HWU9Oji7LAtb9DM6nq+xZcO0M1KhAzP2RtIrf5s+LqYfN8vJfD5eLMfBHDUZiJkyZKRavHSR6vlX0DfnU0gU0MNXixwrulgCjPDrkLi4Vrd9xT6AFUT1+GAO0je59hILzRcDJB9AOVrXK2KMwyGOVx5Q1grEzvfg7C+X195x2ZLj9DYG5IU7+RlaTfCoyP5ye8t0L4InJa0oioYw6Il/TMYP4GUyYIJYbC/mrJz+SAHrtdOce/Za8OBCqKDilqCYzVtBgprZb8jVssC1pKwUOpWPk/LLrAcrEj+0y6iW8dcw9JJeEm9b9uWrl0PxVLxCDipC1qlFdi5ZLG8Tdpq6vdktNaSKUiK8EChEK7XPRA944dMGJ3mqvsKPmywlZCMaAY+oFDwNO06DeCnwvgssLxCzmiK12KtoLBsTSeQHRyT+Odw8q8Dfz+w6MMihOFGsDfCcngOzP2CAy6SvuAF3rpId2QcMO+EnVk+OlEZQnOYxYApnjJhNhCNiP6cWXA+WWTCl6wKcElzNluPVkbVDIfSipKadOtXWSocK0Y0mro8yPx1fEuYScCZAs+KikEavxkIie+PDplfbBqsFxGzeKiQsCKBK/8ngPwzLGFuNUtClwHmGceTTHuzoqEqp3QMg7lJrD2Ck69CUSeAoycQfy1FOSrYTjN7Qebo1Hb8rr19VX95KRWHWNhcUhHP958Vm+syWg9HIHGTiVMwOA/dgDXDpAd3gh1S2upiY6yLzTxo/Qz+qBb7FaajwmaRXtqy8pIypLuy3UEs5MYAOkbg8BhA5xsLDdJNN84dSipk8hBwpQPqY3cbSYvgYnSrfm2okLmW/PuwDYj2FqXLq8YXKcTRsESnCWXSIzC6Y4me2VYwuSyW98SQSzE+7i1DNYftGLv+FomolGDNYJheFg9oQP7PnuxHmWlIwkhhIsYQKIA3a/0ql2ZvnWeUnFhE2kjcdHUT2XK5WSIrqCD0jW3CQWAN2DcpByfLh/LAYf7VOtOpPKYWmwQVQDN2QLNL1MdLFjVkpRZom6yNBV3/QlyW+puTuK1n2XIqb8uP0kEzckWtFR66kbRlDvtwsPcLCEEnTTDCLRxWx6IzJ0LcxTUvLktyYgqpjBwkPN2LnpFwdCvp7/PaJXcPkpE84bJ8oOhQAATLxwaom9wiiBILCPk6LbWOmLF5uyiWCIbXZXYPcEPfi0XV8mJhvRyoCLCLCRZIYyO+dyvecWzT1wDVssBBtOE5OIrRX7NVI41zgai+9tkmuUpT4PeIhCKFeBGM82Ww9Uh3gyyl4/ll5w8KiYmcyLEA18IiIQqNUKwyYfCa22x3Vq1hMY8EJGELVV9mkySohyflIMjgcKC1kXUaiObYNnSQK7nICYTsSVS1ROVH1YIiWf199Pf7y8/rbuwEGt9w1P6zqnXfa+e3vF30ftIgESgIA7CobdzrEScjerOFB/+razN3aZ4TN48MHGXrTR60hp1YgX0ymk5TRzWFpSfDGFfDkptaQ08VRExFMTKyYrWGzsVqdQZh73C1OK3gTjKQPwIkULGKB8eqAFIVUqG/eoxTSjle0YkBfbCaL5fN6O7HmP3EZL1w2QjHjL/uE/eUDFgDpQ9XFjvKni8ka8uByoLTQWc57gxSkeG03y9pxm2yQ4nuIYQXbLA93RIp2BTEKcwk3hZe/ECrkKMw/ql+AUDhrmI1fUFt5EShHdcl7loHkiqtStDi2U7haUMX9c6Q+lYWyX7h+kg2PdSFhEto/5AFdnGn0qEbFsIgkX+QW+IG5ugkIVibzNSonqXvdKymsYYrMzoMsAgC32LCtC1JHw8u6Ak9KUHwghWiimpqgAZ5Qj6OBiZhh08xl9JR2vcqZ0XBxioXYwm/cpfS1yHpi5zt1+wlajOfnyULM78zBxKxm9IqAFa2O8AEqHnffyZODQpfuAsnviHoQuQmoFzFdmAIABpzFwi0oh9tz1EcMhOOwEqWFCxuCvKWV3cXnTUHN8SWBkCoBZTAzm5PKhazpB1FNkocCzBTDMHfmIMwccM92R/QfLcJZ8tiV3m38KJTh7TodSd3EtBS1gxzLVF1I5VByO+N2sLjN6qx1qBBoo+al8jevnc5xc0TvL0fV6+vz13eHr+7mb1/m9JYHNfLd59nhp0blsej2WBjc/qQDO/UYPcwY1qVNVOr9/vC2d309bO3XE7GDyWHz/rv7bvu500ZBPp0xBMB1kSeQqZx3IPjpdXYcZMK8Lm/6Q4FUoezCFANJnyhXDqPoN0lAJT05OU0/2ZxWHCiC9Tsef0nY67lMwPWU4MBmaAIuILeNC636SZj+6U2OEvRtPZFRuEGkaYTY5QpuJyEifIU9QBfermaG8dxeD6VmKFYiQCCDG8DLDEenOkFz3wibyzbz/z/9jMTJG0ybvFm8mdGiWQ6Fvr1ZWBrYQXWWbA7czyhfdDWpM3qK1WpsjaL6Fi9AaAKLik7cNJi86MaJAJXMfF1F+RmGrRtTPi3V2buAUT8EwCG7FzN9saEdX3bii2mH0NhLSyIRqf06/jGbeKQ8Pews090CmLBbqBx/8IWEYwA7OK0h4F5iFlZrzamSiFfJ0j0LOeTnL36m7NCtsufogbjydHGYr+Rst+winz46KHM6w7FdUCAPcyJF3uTvPpsY4yd26K8+Qoe9nN2FVn0RzMvrvI3o/Bog+76F5Y0oC3ykKEgtN5bo77CgaHR24jNWjY9dzg5m6uRCNHAf5LYoEF6QXf1OZRpkjQDOg6JS+zBqkxjXodlGIczwE1qgUw3WxKcDf2hVkDjNmozJVDVfb97UuGlZppLq0X3XMAH9RA0479dedmojAbKz8VfdUcV4ZllI8Th4osXYVGPZXW971TFNdz+uNmfEKgjhM4mUHHZVo3V5Ks9cQ9eHSr/abOvdcGwZ1Jm0Z5U7CgjlqxpVezZs/TT9eJi8P0v9PFwt6svZsSEfa7VssFC70a2rSK8ibgNVNXUxdrfNPhaCbF0Nmr1Dd1Q7LgR7S0l8ZT09zqb7iXAX38H60N/uxKbmj0+SIWazirazYlS82ySz1PCn8/kNPJ1rF3lqjg3qVpE4qu9Nldb0LH2sCeeKceMqFbW8Mn81jZ4NoeYYo/BioIflfv10WI/VNxJEJunKy+QrcPoUMqxLe12CDkqpi0KRsI/h7EWYUzQL/wnnr/GG8aBp8Rz54MwwvjgeaC84fVIplCGXflTV1faq15/rSc3KadQ03r4kb1VR4HwevRG70jpDDIYWM58zmbDQAd97ShFnmDaCPS731ZtK38xgg95KvghZnUTVem3UE6w6LFf6d8/XuyXTpt3Zt7eL5/lR2BbnEpDnxIy72y70Pk6yd7yTBeU5tKCtdxJCJcDNwUGyMkMFTPryRavVlQnfjcF8vZDKT0rghHwgUJcuQarJVDElNQNUixeKFOBb+uFp//8+DK6Gg5eVx6a+udoLp/eQii6WYbxGBHd1u+moVFGLx+je7NU2EXU0BF4ed7iW2tc6t8xNphnXz+BsGd2b8BVNBNMyknOh2txsNwZX45q6nen6GclOfDLve+b+YUYrdCQL2LM1g+rEmSQ7V8NeTkWZSzIAtVVoSF1q7/c3skpr7T2RKfJHsAOGwweMEljB7LBSnx7WqnfCrduNscvK2Y2/ouobY5V22swBIlFwVi1t7Wjabde8smFNLPhJUtyR0K6J8p9Ve3f1XDSOWddTzt/m9em6+2DM+wpKkogyVBq9XfW6bqYH6d3NMATTbxxFS/EUfiSZQ9LZ7P7+/undD4vxw06X953Ei01lzTmexMjzkRqMv0q44gQ6m87bV247r+iZJzGo2AZcZjEw4BADcTvVjYKWh1mwTHgJj+Bz1W5c94f99aazwQek1NCgBLR1nVGmEC3SaMqdfyspU83jun1ciQHytEUFRITEhM5qjQW3N61WND180UVzwHPwOmH7KG8x0Tl9aSgpSMXCrQGmatC8NnJ1PsUvk1hHv8JF1L4VOyaUWbg1ks5NIySKhUZT9U7eLD+JGq+xwTgnfYcUwK2j35JpYcPFoWdtYgw5aPXW3i53jqeTDmJHSpp9uNTBJBsB5kNjntyVvD+RCbY/uQRmwmxyfXWAGDlIdKCvHGlsvzrUciCZJCbZXvl9t3NYrKar9b7dx7XS4KDTSWcTMqpAScJ6GI5FY0NZv/xG55INETjRifksAYQM9KeL7bnayIfDoQgk2mmd0YHlxzlTrovC6e/5rUihT++fK+PJ5v3P08lt9zPuAQEIKS51qTG5ouoigmIdXr6be4IiI8BTLCRRQLwjl/eBS+BCmJGUtOtiZflyjAu/+ABvRWRjDYNW/HnqYR6lFjIrDjuSfyqkF59zrrIRXwx35SPCO6ISJkLkvZTJFYjgvKBkAdZjVV5YI/qTPIBF8/P1jBCOLzimftwLZf/RjyEkFsF1AshUJM51vhhPpRTLz9CnxIhqwr6pUMJD2CnoQA6Uej2hIK4Ezizt9auNF+eO5oKcO/CEC367XDUGOhKYZckXPFONvpiPf/zph//6z//4/R9///A0ZQeteroEmvlTQoMyNJF52i3E58Bgamp5t6kbtBYnAysw0tviohvalgGfGUcep2wGCkupFKrSvCKNQjIHNVfCS9rDNRQL9ObRAM/aqmwXwvkyQQwn6u3nvfniQaQH9hqrqN0A9yY44wfFkRMwwt14VxgT3Hn67yfqAhoScNJuOr5BDMlwnSbxun8a3y/mT8oH4p90BI4ifpr49AJxLN8tglIxX6LLBuiJ/oWeCd2QLVShFjmOlNoh1GLYEFWC0h4dt4k/wRhXxA+6plqkhUG4A0S9eL/IaABLFQ0ikbcYm4cb99Dsa7yfACPMMbbEsXp0OEOKrRCvKIOPxpaVrJThhXst4em/0HxQa0jCTt2i0WnL4/M0TWp2boLtAFkM32I4gJrrcgSXF36mhiQuiPzBU/AgDiecoqO5BOxnQxWnI2xn6yL0rKKQmT0BeLC8XPjW+Gn/x2/H96+af/l6VG1yrqK08IBil1ArMb+YSZfPo1JAAfBy2YZbOUmfsV4ZYWfOEgpmFFUO2V9MuYI8cUuDDM8WSRnPlM2nwVpUSSQTyo/R7sy8UYjVX8KHHCWI2ADpzshjVFCSDcDwJY4U+OVDqDSk6ygBreyOAsCVplurzpJ+eolWy3Ew6Z2IDLUgWwRalHhhz5hzySiJFgBTMO4W+Rr8LUk3sWS064HRte6+o3kb3G23Qqtv62bVVEVRC0M+rIcHeWjqU80Z+TCePTx+eHr4+aeffvz2px9+fuawMGCzJWfBXdmUdJNTvb3Vdp39Uq0uRW89VUYuHrPvpnN4a3OI6wOcpYWdEDR/1ppugC8a8UVAIRohekRKBBgKKuc8HIijrXVodbRWUSjJuHpSVIXEs/XmYtdZ7HoL/fdIHufB6Im/LX0uPYfHBnvGHKAxHopcAZSjBoxzyhehCEOYxXyucl1511Z7hHrYrYdpMqrUUC8Wf7XkTN+BKzggBMqLZPkHlxzaLziIEWImTuEQdJDryHYWeNmsxS89OhSMjxchDktcvi5PSGhGgx+cRdUyUQoQqSdJc3x6QLIgIW10Cs42ra4kQ3Rl9qbZEg0mjeO4Nxl1y+V4MYu0zWikupRmTNRZKCr3zel8BiStNmdZW4sPeiZJ7tjREljBHiocnkKBpFTRZsq+bAu+2nrxiVFcaPpoLkSdvgFRcopPOpYAHaDQKqYja7lEFHSsgcbUiRAMegOm0HmM+bYJcj8/bN9/2K9+q61YyiwZc0o2ce04ZWNuhnJoSoxcX3EWoVD/yeWnqA+bMCZ+TJD4QUCMwi9hxXEnFQuJeryv4IyxKqUEyF1LR58/8QDfJupSCZWym4vEs13bQn7+hSoxL88SrYVH4aW8CwRRBKGKH2audGFWQUIp1VX0PXIrxrT94mWJrEauxhagErHL/DR+GpIAHQXC0SJXjj/JjY5Jb+yFu1PuuRCkjFHI940V7d1wv1GjnsQTdC2D7dz4fMcYPY4Ph6GqnNm4cvMZGsTBwMCj17PVbLxUls73fWW0iSmSGoypaQs33iXKMRpqFA5CTL9oNK1TVVZxozNYarGD2EzGlIRUM/u8f9yNlCU4bXmM26koPdUE7BULLTK/2SStxKGoffFwYuhpsJcSBs7zJVdwErecZY33UDJHKy1dK9LlNJKU01rOxjzppmb09ByHzSUUsZFza9IavRELE9AxzLVR3UwvtGXGhwTS6XL8VNktqKdxBMCIOH7j3XflJuCHYIuAjRchpmhQuvw9uBmmWypCYCUaEFth//hatLdUyZCfSS1KWogCGTZcbPXobNAovpnCpwGGNh+zNunmTojk9rtjVTHKWEpcNa6DtDzmMXZz08f7OJ7y1rY6eN9ekJh6FuHXvD8bTUV9XGBVjSesd9gLvbwFL7S+1gmh2+PdiH8o+G7EcKHVMH54HBkSEgs1BKkJvcg4BwOls23oU6RnocILMXnbifgagGT0XqGx0EBA5acdNSez7Xfvlu8+7q76TIyuGCBScFpRmYHYD/9yE1TH64zZZTG4jEeGaGi/jjUfRdtxl2DC1pOmxLCZx7Nc7qMMKMeW0D3dLdaW5eT2HmY1SZC8aN8W5q65Qq/uZe/4B+OICz6eG0px+JRtu3+p8E1Fsc/yWtEb/UxOhETBf3PFoVcU9eAS7awA06pc3KDc6G4e4sYEkl+tbIf7paseB54RrY7WO9gLNtueR/9igGB6jdcfnjmReovd1U9/PPa6ys8paTD+vFy1f37f++mH2+dxa7F62W6/6fWny+oi/UH0FFu2N/PGmh/+NpVB2Olu98V583o+HXSmveP6Sk6/IFM6W+y0j+zuVv1N5Wa9fCMLWYr2/Kk2eT7Xr3bL/Wy+l+B8/zybTMVyM0UL/rV2q8Z6UV3NWp1bKRtDNmY7+R9Enjnq6Y8dxIgfhIbjn54uTDUo6v0QCV0VliW/PfaMEjozweJIEU1k7Jii1dJnK9J39vT88OHHyf3702pRzLZLO4UgDaACeY4w6lEQMocZRxMOG8xlk+Z5hWgTR0eMSVQJl0a70c1yhduiOWYAI4rQ69xcwaTop6qLaqfQYdzv8ZNg1UKlcvehVKIYJdoUQjPXYb/DxgUFZL1h1Vwaw+sX/ashJ7DPZaAq80PK9Z7YTMceUeO7mys9Kz9+nJn2MBzdUXhmEkZNLocv6WUCJNCoJMRLZix1QuFJkWlRFgsMBc9sL1sgKkhJ+4JGUD56HY2fH6Jc2TLZcqHMECfcArEQasFUshkU6yJv37+b/fc/PL66vTbcmRMDBiIaLMB3KVQ+jyhQh1ZeJc8x1b/gU/zN5lcq9fB490evDl9KbbRX/D1MEScpDATQHXqCzmwHOjDztFxJKgotJFfBjovML46NbAiMcw9atq/7tSSteINGFuFOeZkulkt56NxmBhrGJ0fLQ0fW4wsZnEZL9Y9wcHxaZ3g+oJB5hGrJZwqviAsd6SZMW7DJNnibNf+P6uECgXQnNdhPvROh2eu3WaNpyExlu/7dD83dqbPe9LhC7z8OfvtHyQsNyobelg9PtYenN7jvejM5T9LTHkVKm1vN6h/fqTpt81wc+J/6e2MCNptBZfJ5737QfNc6fjg+H6ozJdx0TWrhsb3f3samItix3PPnm1Xz559JtO10MXs3WdxvFw/L43TXOVZeRDTprHp+fTi+FIw2FKTR6Le7K8Wketsc11oXTxvbBxom1sSTs9botc0tzpKSmIjjIzncn56e0jcszhe0ktOYoluXaMB8iSMvHTp8cKNb4+O7d9OHD+3zQsJ7XZ85mIrE46MvRw4hHV0OPGeGOoufwAkhNjZIcFrSbcKJoRouUOeLQQRheKCFHoAfESNkRy3udHN6yQmxXUgKDVq4YFgh13jnsfIk/zlJq3f/iGHqXNVgESwKoihF5GlGM130wGF04v1fqOrl5H712dtrOaARvY3ZB2YpXXuZsGOFaxQPEcy5vn/8ETwRgEAksATXWY1k/OVCUcn++eVXvC4Kp5VGHhVrKn+DbBS8eoRWsk2goC3YO+bFfg9vKxqNWxaJklv7hlZVAgzTxendh+nzpPtaZYgNYLZOEvmgv4i+yNUw0ZKQDCBu5c5eJDbHtdZMYpGqJ4fMtXRRQUo5ukhQLp+8bNB9nJpMB1dYgjOKSyDynWEIloUQiwlb1C+PdrmDx3GKOwTpwRwcvuI984GcrgR5WQw8vQxghmdRHdyGVGRJ9MjGtMHV2Yo2SQVGydpSk5nZpKJiK4hniAjJOCKtOndSf7IM/RYUyjoMAKRKQpnZ8jCZaxnZcxq8LJqQ0w0brR8/uJFk7hbvoe5gP/3LSC4VsOsPsFwP1gY0JsTcbMz7spVw752OyRNKUruyb88eZu9/X2tcn6sjGRqNynzYuG/Xf6hXHp7WjWhwPMacK81zr3W+VXw1aL/qNSHTZxp/+shktZzIYhxvHjdGS96I27SSDIETavvzpt5QQupIjFgxxWDTTd6ToZxm9wwt/PqaeOxlmgDY6Zkf4yGZJajDZMDiCWB8oAE1UHBKVodeyfhT8THEwZpDkfa4E1uarTUlbZX2GW6Dj1o0/ABFNJiDDvZjzp9wDgLCoHI5CadNIyuUG4atOSyJ3ozj2YxILa1MJaTcxN5KrC/nfpDfCSGCWUUOXH4WdOQQ0UMIv2YZ8FEl1FDIPuo/1KSp5iYy6I2czNTssI/s8bCXgjgYDX3GICfs4bO33/z0D//4048P7fYVg/f+Z4WP9W6vDzLcx55IPbMDKMb+dRN5qNkQmiqby8pyRaWP1PkkHmF60D16a8FpzD7WfBrQYY82Q32LAuLz//byjWjmRj8RGjUjXo56YoqFFfvU50Mh5VsAnRflBkRlchWyNhI9kbOL6Is5bMfCph7qFxBjR3jc5dARakSW4KcSB7SNtMvNL4KLlnO5UpoTU9fqE+MvD8WSQmHShTgb4mSOfoZFhZPQ6i/Lunzd43yRczLTqSKU0+mEH6vI1SiAUcTCUFIlLfGHzhCipf7GBUutl0SBH6FkZ1WiR0kxSfQo1rKM2xRR5am8VOQvZg00je+e9R3FcE6V5b1Vba8afdw7PWCVtMSm4j2Wj9Y9Xls71UCH4KP57RIk3n9sfKjXb/m/m41T7yTKwludpoh72hHxIEGlcN6dtctoeFE5f95prrvNUaez/91/7n/8b+C1ep6K5F8tlv/udPqz3nGq+QhzWxS02/v1+N3VH1aVwauUJenrrbpyMV88T64ent5uVYpTxvFHaNAwDuz6cfzC7faH29W8M553pofxubsyhHe3X61nw0rt7nwaEX3VvYwn5aHdY+1af+fl5sP5+bh4OvN496vPlePr1y+ROntOrSpuGz9tAjlJC2D7cDrXlbOCPJ00PgImh3wiojWBcPksllNTOiu1otNZTsciJxGJvTRJEWM4qH7FuXWJPVRmpzGLqcOdS6JQDvTEqO5V5BrEp0cNDbM9uFFgFPe3yNlp9/Fpn3kyg77GwivzwjeLc0aBHntXLyi0j4+PYk6DyW16/7b1hL+5uWn89b//hkfhw/24Uls0B2y6VbU3+OLra8O2eUlBSx0rVNamJ9IT9xezxUgYKck2Q6P1xD2FSmjjiBMRuyQyEP8cZg44AxLYkOgwcjhmZOp7u/CQhmdj2B52CfkMs9RaQ/NkuX6dwWDbbk8Ota/OlS8Grfu+xaT2prqLKtI8pd0E915TlZ7fBYWr+0FnqCc2sJkx2CqjTLSfECSdM1BLJVS41apBvaCmzverIrsS62voBEqg4iBJhYlBnjhidafZXhqRicvKv7UtTFGdtyPENap3C/6iVThpjBq0LSIQ52WcTvBfS2pDefuDK5JVGfWcR7wu+Xh5NFYhUQ/jztmiq9Oud9oOq/srzK7ZWBlhG6f+MRJDtAYyHxv86cv26fiqsft1f/v6WoI43SL9nE/rznHR3S7tb+om3lbuTRo0+v/b/4Lx4ADoirbRXa1XY4VWTxqmpJG0j8QYbvejA/CsOp22NGxq96xY2LvZrH1UL8Rnx2sDfbdTPZQrh+1Y5XoMaQYDcdfa1gxEcXKjw0N7Lb1oJslBHkKXR1SzSBWS9REEfd0e6KHGQgPal5NJjyLy83dwhcuRLojjvdDvdK70ev4kqzIaHKWXBDqPNqfh7NCQ63RavOTaaLfe6hp1qugstZTlejx/uT++3dferg7XhAknv+R8oQ2JzsvZfi7ARG6mOQaVVm03CXhW65SQWLyb9uyYg8/UYYhKfBQ+HBOCVC2ePa7UCFKedtyDyrtjQqYo709NPS5uBkRLMCJ+ac9BKVqu1cej42s2UkE+sCEtAPi9aiKxArPkSL07GqkQV17duxq+0oJ0sQilmnw0NFxd67L1xw/38/sPTeFlPGo+3941msPeb//mz/s3D4KvsG06nT483Pd6L07DhtKx1abkNha3Fp27CMwImYsBFxaoSwEY4t+WhRizwIvA9AthGxBclu0P//aiiLBrsbHyFd9hqwhckSjQffM0PX24X3x8Oq0+H151Oya+cJsnOkO5i+2pZl+ULpknFAqcjvFH/pI3AA1ItfqQhRTOkYlK2prJTO+b8X0Retbvige5LKis8KLgXt74tMxw3nKE/hNftZOPmIwG0TjxU1o4FqPThpg1K0RRABEp70uDjLT0dpTGf2pL4+ismVJFJLrcAUDckxXrCzYLCmS3ezCpQRSYfcxT8MRYwbKdW+I1vIVRTnw10ZL9kY95saLXypZ0S+QXZR42Nn71f/zvZL8ATLSy47H7vHz/xx8e/vFffvxv36kPTpCcNK2fP6dJApczj17AFZnwCHZ2Xd125LXRo5q1dOk6rNtYgbZr2/p1vaM5ORYte2Mmr6Fh47WRthIse75c1fpUd9ktrHlpTSI9CmiqRmK3sETxieP6cXucdbivpWjZq61Jmz4aoGRo/W5YPHVuyKXHH9BablrVWaW+OlUfFcMPOY3jGRLlqZiFDd8+55ipVm/We5WwvAXQe76Z7qb1B4GojzzAnszqxEubGQrAJ4G9iUMk9ZWPPpohXKWc6MrglxBwDN/E7oLF+UDhxDlzpxK9yeVFibKat408oVqm1hOw/cEANrP+mabugrJ9sqhPMuEcTa2y4sev1nRHlmxw6mwP1dHdHf86K0AzG/kmo7uUwuk8vnn3XtrSy7dv1EfhY7gaR7A5Ax9nD69eftZq9sGUw4EUtRe2ALqFWs7bJhMn4oRK96CEWEN8JIuf4TcXQos3kgIBOvZpNVFYo098Qv185d9QgV80FBNwwkdiIqI3lYwkNbYURxPNkAdDv1QDv2XzS7SApYai08eSAZqvEA3scMrhxbllIR4G9YmRk34jxr3I6VPdgYF4DrWTJRdDMVSHp5KQcVcXTb2wv/JOWGG2Uf4B9WXReTOf9FcsOPwnrjOTA37pDgMfEtypK98FHp7CdE4jly87DhmxoWOy1TpCoDhLlPRYB67MM3G89uIR9h2KFp6KgsbR7yDwcyFCaQ50NcIjciBZ0ObVn6aT9WxqAEN0YNlUDk5snGBvvP7NX2fJRAVKY8bMlrOrWyMyfv/dj797epIcIilDUO7m9NFfw+niPEgAzInZwV1D06hlv73Tln5fCtcHlfO1+Guv9ULvQvG3emVZq8yb1S0hoUXqaQAyyb+ND8lfNZzYdbUyP57XavwqHFj2hmmLR+8NJBmMDAuIg8FeLTO2oOKtqkwwxkQ4BP2GAVfdcxqz1U/t6lrocoDh8SqQdFg6Ph9NVIogomcEJHyTDM2JF4vp85ma2btlQOIlKkuqekRwytyOsDkPJGaiCubhZpkLmlCAKWykBp7JoClY4WiYJRGkGFCx2HhwOZYkHB2WGqDUr66udGoUFo2/Ic4RnEbRGYt7TYaLnCQm12aJtxqDjmTD5hXdDM4lQ58I3U3H60r9anjN6NpprmcMz+0NtnUwAGo356Ggr8vEFGr2315f3Lx+Dx7byuPz7OHj4sPPzxxVPCIyxEzWkmoHdYDX1xwDCZDNoDl7CTnC21hgUIS3MxYp+gXsiNc4opBhPow9/cmI9eqXq2ibmVGNnetFAJlX/JTbgynhcD1zqKn+Zpfv6S9WiOfFS5+Hey5gy6pB6cCXRL4E2XAyUKVtpGJS2JvIZc4H19U86oZBkDD5iBTZyBbhQKIHFQJxfsiHwzB+YKR1oS4ES/MphEZkYSYpZYh3NoYttpnWWu7vVlxW9sBfqb/Y4dSzxsKoUi6bJmgdEUdjcowdxDDkw6HcXD4DNPEYxkiHI+IkcaLzWpqSczhPUQ3XrkeISois5+HpQxj4Egb6KE+nsmOVe/PCRocnLEKgVPpbabjB6dzOFx6VE7y4PV0PH+vVHzb4tBZ/+jHvpkWKh/6j9CcOnaBVpfKRjSEIepBoTwWm5NDTK4NKFZ9/0Wlfa0+OSpvVyU7NvixdeQLpH9/pJkJVOKAY7bbfb7xABOwZGJfOgShLRNaidlUlfCLAaUKBw5jywiGQTL7VfubDQqtpra6PrfQpsf3K/qY6SKQ7lV7hBP4fWNRqzxSQGDcsSyFnNhlTbXqYrQ4VfZWkz2gg4OdZM7Rzda7tDu6bfznA4MpFnYiuJlHXAy1NTI81S8kXcE9EI67LxLoUeJhKIziSf0oRF45VphisVSNq+pCNO0rpUxv5MUThibJVis9a3dDedsxfKmdX2lZGEFKt4Vmz8TgZf3weQ16sE61Mp+akyB/pN/ra9BhSg1mnGHW1mtsOOwXTEbE4n9rXwy/26+HvfvfdbPIk4Y58xSdJVGuwOUSA9xB//M3gFJ2hUCE2B4+lqermgDJTsVjQGakCSrDdf4oOfPnpz47Va8zUoRBQIpJWX4hEQiwhIE+DmkGFOC7TiN/qILJIIrQOIaUZKT04vIK6HAkX/TfMEgOhiskoZTDKDJFB4wzlZWgMwHNJFulb4liuANYHXJZRtD8rDr7GmYuDXhyFiMlN4+YIAbjKslEm9E8hongi7w9G5pSAwIA9HmyCtTAoZBgP12WnOUbn2JKpUpMtHPd/kjdye6sGmywkH+EUlIUWr0uy6CK2rRMSHVjdKaCLRE1dBBZs4ZROve4WS3K1pqm/tDs+LKwWv2pMZyn7Dt1DytPJ1JrFEvOXx3x99epXyc2oNVfLTc3sIwiq3mKvx0+ag8aJRwxSTIRFaH1uF55b6570n6j+cFi/OKyveegEgDr18X47WZEe+NQiyaNRY3L+SSnZ70aN3vVpiJmqs+Sut52RQVz+JpNv+ogwxBX7JU9MDeJFvvEPseQH3WPG3sqQpD9TwE6718fMfQvcopoGoZwCCyaRQ31nOMCdix4FIUBuk/qkrgIxcVHZAbgwCxJrDz2GskOYaYvCbxIihVXh/0Fqpjg7S0jJVvS54Tfi2dRqgZuWUk55SbwoHjwpHzoPixaiK/w4sWvU4ZxSNbRleKdzA7kas6gfC7Xbi5rME9Plo6cd6aPYrdx0bl+/mEtU329A1EmZtakoQc7+bDbTjlL57dAgom7//vD4+DBerJ+PzVFiKOG/IsfyuNW1niVqUc0y3o0PpC27XWAzkXakwoRHf3yJSd1zyb1Ir3zNkW0n5IKw8xNbv2g4OH254HyQoVzeSFJPBAR7TNlYU0dbjD3h3PHZXsPcUB76iWLtcMgTI8GK1kS4JiJOdtmgJjUIGJcycEK2hgUKFia3sUcvCo2nSUTRWTEpaTLo9srTESqpRfLEn35ZYdA0yqpblDVGWfIyCkKYCwCRfpoPxwELt5vNa/qU84HNqCfjyyPcO4zWVE+XvdJuzRNMIEu2UXK0OFdDdR7oOYWEI+A4k93Tc10IJy5eyHSJmVOEZafRgbvNYd8UudYJD8IRTpJz5O6f9bGTt8JJi0f4mvWg0cYf3z2Rq9ZjD1YsJ0EwxfSRr77529sXvxn1r2TDCw6QR3bCyHKOhp4DihW4yVT5pSWtVbhsksQcZ+y5vjx8v/rDdHtYLFfJszod5wwBTCZVKsWDzXEd6ZKAktWMzuvv8JbDltpvL9SyHmEc7UV/XyVC556m5Nr8MKy4X+XBmrm0TX39cIevZVH6/0E2zOf2OC3ACecHjsTwC3e7ZVkIBeGwGRxq0adm32iE9uK0AGZeIYFgOVAkRph5JoGspe+DkMPMscMxmj8NPNjP1R72CcmQrmVPV7PtdEqKWKpwC48rDCi0Sqkyn4+gHsrB1qRjLTIUf70p41Kq96YZrNYyN1GPxrAic4y9GmeYRLbuzc12t5pOPSi98F/cfTnqtShT1Cf61YthVxtP3KgxvKZwGpQLRzDtl1c3spnG09m7h0dppq3mSNHoejmBCpS9xWZ22zNrEEXoCYejancgdygrpngXycOBE4epRUJ6EkZoDlZAXwQGoJE/jEd1OJGtSDdvhS3+cmFPZJ6/SdXOkELzvRPY7b6uvaodZvGFi+93joy0Tmrp6LrGjkBDg+CiHGfIREXhCicGXoCkLCohJVmz0id5HrhbeIK5ZmL+Yfnqa5oaYeqs4GNRgyGpuE90q6KlhyniwmWBkIG8odFb7C/UG9tPTL7EbqKEp1YPk+PriiRty0DZJ41RIU1myiCAUiEYPpV0ZvFImKPpQkERt81Siy3JnOboxOw4+6FejHwiU5ISNnaR/UF//nG2rmSJBi+4e3IiLBeUJgVSzJ+2rHgRBXtx4kzWxv/5n/6rfSNXVO4ycH08mT2NV5XKoKeyqH/b7w6G/SP3ESqlmWBFhRVH3NuV10ZQ7fSO2C/PnYzQamsPMt0MH3l8x8/T75+N9l0BB06axI7uwQz7JoUVapF+PP84kzz9aWWJr9BdSB5GIeydnyBui9BHjPxJiVeib2Wzkku0tznqHlnrCT6AzVmidjAGjK8rC7ugabgSRA34whauAzOcPtN/hC9I4V5lMGjVXl/JdVPSxVOZpIMwZsE/7n9TvDOmMbfhyUsIMNyfJiESKSqLFFMzSq2lOoEM4dlsXrU7mmKxrMhXLRNIQc68tCPC5vz04QxtFvPabJAE7c5NuHCn08lqW52tOfH6xqo/zxdrpSG3V92rga7l0lb1xP/Nb6vXt6q/4GB4dBwu0iz2u07vVWOgQ6le2wupoWysdVX7h8V+8Zi2AUNeIU1bJqf6ujdS2Gi8gEoyHfC0ExvShh3dRt4ns2C1NssQu8Fs6T0i1mII4gsszXhoi1JqvyHW/D+M9hfy/Nf/uo93OTWgoOQeyOBvGT91rt4Ob1YTOvrCmURg4Ykp0Y4Ckztx/jr9xOAcI8xu49ixkbAFH005FiYIQfhANZdFqznU1J82Br32zaB7bXQ4CF/U4LAQi47QjBXjvxZWLu+5YtdGMYoRG10QjuDvDsQCHpK+lsNC/7Wt04iPK0M0kl3GuV9RZ9zpYet4hNHVWJouUqk18s+3sD9rsCkOPKkB3D28p/bkUbhOrHE2cqx/iq+lkRr0SEpYVXGrB/AmzGZHNZ+SMRIs6POU40SWJwRzaHz/cOf2MIZrBKPS8YOpsz73K0O3rj8eG8+bDGU8rtLcNcdElO+VsLDKVA/tN/Px7dX1YKDadc3+NaYTx5GJeFWtjlsf5oPFsWNszgfGZMB21EgmOR7YkPEU7MzUNTXq8w3XSfez33zzl3/9N1998+W7n77/8fvfPT+8n42fRkemgCBz6+HjY6AKCzAZuXONDgrR9do+Mv2uZLcQfdYV3MFTbcZ2YBZWJEFU63ZZQKoEHISu/ftVfzz5Zsh58Nm1dMPdz8PN9Is3n42fJk+L9cfn7VuqRFfQWOoKitpuZ8uB6cLM8X1lNhmvja/XoumKD2s3njwnY+/mzox7xy2pmW22mo4JICtvrpqc2ovObDtatkej/osR61DL3up6PajcvsbGNprmxQ3//H45X02UG3d7o+Vs9e7n71X6v/xs9PLN8M3d7cvOpm6M7UJNQUfp6W41b9W22hKcnnlH0n9Qwr4IpIoaLqiv7iqVtXyV+vfv//j7nx92tcHN67v1qb5dMmxFzIR5VREu+6eBDVLdep2RDCIwjJmWN2gYEEwQbdMVx4zqFu0UR4zPBW3Z54FUp7TC0ZAv1kH+Ukl4+xSGCEOmIEC/9eVqIke13b9pDa4H/Y/PT6fa/vlYGae3W69WuVLxpaf0cWUOqjFr3TZH4eGnQ+2xsV8b+MqTiU8u57JAWDgEMibfrbWv9/GTM94WFHK1YL2t9G2uNJk3W8w7o/Q6XfyU2qLilbtkyxleOUvPbB1wSWAS3Li2fNoYl0Ycfa2EkfHRC3eWkrE6fuS54lYQluZ3ZG2fdw1mUl8mNUGtbVicOfjtjZwhmp/Ji5fgswln3Mqn2lz7mUa3p3cGs4jBvEkRC/1WOhm2BDw4n/HHx8FwgLCuzvPqebDf90U2d6bWduWFT7Co2uB6p9qlsZax3bi5/ozFLL2GqkSqmIOiBwzfuGgSWauEYLeg/RKCGzUU0QOhftKksBHCXESZR1ZYfCudjX+FgxdB2bZkDFlCgn8ykRab8Wq9CKXhJYk+MqQduoKYFP+gMif+2z//zX/8X//j3/2H//nNm1fv3/3w//zf//Bf/uE/3Tc6x2mIHJ+vSxTQ13E4QJxaCvECRs4XVTzaeDFUgjJMBGhGdw1DjaHqTQ/GnL0ypc4OLAFBi5BNxovTzdqkHZW1A65iKg0ILLbzh4eSPYfZYufCEJltImYFEGv+KxqwHKhMylROrU43Ofa3ty9BYTJ5Wj0/aSanyBeTjuUdfSyOHIBL8weRJGfY6lkvKdYdDGQt0JRmmwmOYKfMSL2B2orwW8ig3u+NfvX2q9dvr00HWz3pWcs7OcAmQFmpDR6dFq3JhzsYWkI2NpM9lqLHL775m/un5/pk3e8NIaUskulKJ/nTVecK/8YuGZG25QRBSSAv4sBaYzHEvqQTAimFNgaFRIKoNLHWqUM01ZCnN6Ka5kUMuug14Mx/oo4AucaZs1iv1Ppwq1c3+76Nl9b7QnCrJX63nY63E3Ht62FpV1OCMTE6LIRSZARSwijOLDornNMxpXvQwdKgP9lBGZEt4fao/zN1aIvQUnpo4Xg1bAqaRhNAheEuiQSAGKUbsaRolIyiTqsExpqiKREyXHGaMNOp0zyZDFqLsisgdkvjKB2xfhrM5hxMs8XvHHdHlH2yVLd0KibVp99udIWg9CVVAUKcqPyk8Ku6YPAlSsxEZWxomYD0GqKz0WZhhIwXegvHLPOWDGIAOU3I4wJ7whhw6V/pmn9zO+BX0A5ms+o6xVAOsc8WVMl5rE6eZo+b5cxkuU1jtVxaYrGenWlapcCtZt+JHni3a+1htHhMO5ZwUgP4ukfXd6KMm81zs3a4Hg7h5b4q/WHx8VGAfpmTD6hy8jft3t//7f/4d//u31N5rhDwzx+euzej0da0eHqFGoD70ZNS3HovdZsJXZWpl/CpUGY2A9UsiReHeoNmCyVHmbEoAQANq4nhTFKXFcWvdRCPZaO2N4uptu+tjhC8oE7mTOp8Txbwzbqb2y4Wc7RK26xqPCCzQgPIfq89wC+P8zTf0Ydh0OvF2BLqmT08L5+f+WQ8yaqpqoqNJJ+lBMkvPFudPoWPQYeBhAdxespJ1HdX3UZiOLXpVCiCLs9ekAXXG3aVLnTHT6un+w9p2V3vvnrTv+1dDYbqdjVnUFjzoAPVx8nk48N4PlkasT5s9JxByyTsyuDu1df9u7dPk9Xvv/+Z84Dl27/uT7ezthyodnu8nVtkNwXOZjjOQqx4PaaCPJEH+y9UW7r8FN9a9BM8J8cV06L8hM6xXeBCgpcUycwS7phCyoTj6427l6ttL4FlNqQc9CRCp3UvP+d0WpuTgPxAVJGN0haTFfSuTx7KdslxlyJuJo4iwLUYG7aLCZkaDK4SZ9jAqZ13+voAHrqVfat1s5BhZHgM9ZOPn0M+VgsvBk9uu2OcYrXLTUUfxUUElTmgMYNi2sR1ErJL3RlFVXeykslgJiAnTbU2322fFahRzaT7tnucAFSMIEukjv9rBoKiZDVohNtLv3rIjy71AIG2wBgHKZIuw/KST2wW+Zwk4/dGx/GiiHuT9nttMKrz1X7On4fCaW3twdCA9H5HDSkHCFVCqs/3nL4RXUKVrAgQgFo6WyggtwujUlr7VW09ed6LsFPZ6XW4E+8bLyMO1doY51zRpZYB5MGgQ5c+ZEbcHOvDimxjqC1K7+Xf/vVfuVbNwU8//fBP//RP3377LRqADTYuWq6aVgftwWAwe37iI7rq9L9+89lXL1583qLziHX3/nj//tnQRWxH0hicOLYRasGZsPkL0UIWPRdBDerQ6rmaHIwlsR83ER581fQZ8VJJ/2Se9oXSoqfJsqMFi6Id1mICPOnEoi5YDFFJXMp/3N8ZOlBol7B3r5O+uvvjMtme9Encs/n+h98vnjG2e0aBrC1nlmoMxd2CJBpBGKyWrB1aVzpxYx7EjtzFmDcomGmSgbccmCrBORh5wPkbep2X1/Va96NM9+f3ePXL15/9+qtv3n7+JfE2lUb989O7d99/++Hh/f3DDx8ep1POzPrL4Z3qG+xtuXroCnG/HN2+UB8lJMD11hZnh+t4Owkc3S8bs0CuF3iLuTHkY/KFncfZgn5qot/QOIErIsiDw2IuAhU5I9FSOpj/lF8TLQug4kKPuxbpZA4fPd+JwFm2Ig7gsdt1Q/3lmGE6Nr1EvV8ijRn8xG+Qv26POtseTpM47OpLLfI2lc1J4ie1+WQuxXGlZUJP2npV+E8nwc1JbxwlKKr41WXGHcsW5CJK/aLsFdgSPSEW02nFe+Ax2hOI4NkPTmJVeL4DkvljssNiRj8nkvsUcBWsKXGoarmkGLtNUrNFFeM1VRAb5iEvLXBm0ooeSSRkSIAcHrcX7HcexLzvpgUzH2S8MLtGc8R/g9DBEhzi6savAkgFMA0RGNNQkI9smcH1i6ubF53BcLo56wdIKjS+//Y/Q244Gxw61UatL/jRqLwx/M/VxYTrY72Zalv4tBXUjInIhIhgZxUL1Tb3V9KGzLXTHcTBOGcS3HXczfK1zfS4nRByL25G/8Nf/eXf/4e/X/b6f/jDK5GG9+/fZ9ZTcoUoPXVFR7KttJGp9tppXTzs3bx9LYXsm9HIFK2m3jK3/ebH++PTA88lE7SrzU0RpPDMnhGkF/hIq8PDFVrdyVWU6YJXZCTwdt+qJg7BF0AtRuMy2elvx4Pbc8BwD+xam7kwuPIApLbC4PQVSzYDC5VPiK84qkhMHK1n4wp3ZtgMprFazO+ff3z69ncKL2rHDbcdvk900zAxcUJXqRpAEVi+Eo+ktMu401MVQPryvDi4sDlKgeJCWVVVh2qa9LLXm9K1tdpZLsav765eci51B9OHx+9//OH+6VHQfr5YVAZfPi6X//2H3cPDnFP0abS5VnwvbLr9qDPW8+z6Zjw0m+ezV69vBrfTyeK7D2NPpyoJWKYsjhKx3tLntUgPJLmPkFUINp4SiASYTpOxH+kZSAfYSJy8IGYDeBiZWCiUAX5EHv+c9CzyFyIUspcBlgAYXiDsVNyn1J/j/f28uti9gNlqMiF1iQ4CKWcGw3E6q1IO8TRq/mbLGZJayq4I/bBSV4CC6JYd5QuVU7u+bBzQRvVh9zRm2DAWucUsI0qlSgZGItbsMIUjkuOuD5BgHULRBE2EKTwGK6JpZQ7hZv/0sKRUKZpsVrtp0qUeTUrIFRUdh1Lgs6sqyZTUbBioITdotSK3BIGasTKFyCxeVTIQZ36RhXynQMxaxT7PDRBPhz/9hK1fk7JaRUabAuxWhtC1WJpqqDZp6dXp9oaj0eiKVB12TPTpjDuCYI0ff/8v7ChpUkqacfS7u49xKxNU4Yz8zofFeE3VAn/hSMqDSJO4vtGp6uHh2OC85S6zjqORDXzTGcrgrMmyWUWkRk3Fego6esbc3d2RnM7s9u7m9vY6EpWKQreJzcBbqcQ+ZbAgLf8J50EzXBpnKVE8Z2i6126PBm2jBZ1z7ITkhCDRKGNU3rCwJPSmYVLCCylF5kBN8gZ0ioYinS5KFdYYIqcNK8dm4PVZMOzznvlXyDdlEdDQP/cIB4j3X0xfDQ4NNf4qBRC8vptl+IL4N2Q572ab2YsrPXNkTY2I661QFaOEdpKZTlx8tSYlWSKdYzqKOSTfFKYrooHzHHhcNYSBBoPzxWpfx1G7brxarD5+fBS7ffGiezUcvr69g23//I//Fx5H6W1fDV598fn1iy8bN3/14cOsdv6B8FloGUdP7iywil+9aXHEGvT23bdTZv7XX38J/oNhR0eORnVnJGdYbYqb8QXVWM3O+SbADPERhw5Q1l/ssKTjxMUKpSOEABtoeAWkPAEtBA6u0zRVhVG6oAAAQABJREFUePIdtwWmZOdGiPpUEhJi5RB0sLlkbicPlisnZ2Iun0HdFBwQSN1eifGS9twAHv+s2qV1mG8FPFtnzhasDUNdaBx2QG96Pa44QxdC0PvdWLMtmLLfz6bKagYqhGMsZ+YSv4nMkZ5wAoRQiMvhkjnJfGuyOEMeEIEbDKkmvSVtTrjTHZESbb3emLNHXRSGqlK6PapWUi1oXTii4QVpXEAPItPTOJ/KLsMoXaZ57exELtQFLYseHt9JApyyI9Ru043tkLLPFYdlRKv09M2htlgf5ptT5kbRs5g4yf1J0UMqoSSwQ7cP7/8ZOv1/TN3nr6zbfR/26X1mzy6n3MLLKpKSaCkGggCJEwcwYCTwu7zKf5k3cmBEQCTEcACnSpYcKLEoiuQtPOfsMr23fL5rzr3yw8N9957yPGv91q/XEigy+7D2my8XUeLxdu57Bdk1E5/O4qu7xUnTMdmlw0Z70OxY5jalys7vGbJnkpsCaR6Laje4mJw7UfSQ634373R0UOQ06aErTFph2nCoelx+WMJc7FX/G9AU6Q6R6PBDuW0F6apJZYmxNfnIn2dyn+JBv/aCPguYJ0z80V4NuSrgRf6ZxhEbigseLcAuwjM6iAIpKCD4QugGf4TnhHt4jKKPMA2HaNmouWNt0OiPBq9S2o6blAttkwkCBMpcODKIawqUpPokrxLdHHrC2Tev1vPZcsr/MycHcfR2dwBnN6dNF0xia6m3kk64juJ70bJ3yN+xHYxo/VRp46+IIJgu0OpSvMYBRf8mn9mmn33y6rBffphOvv7qK8GiTz//9P6zz/r3twD+t7/8vzfPvxpU5t8fZ27iq5vOw5A+3euO+3K9lvPDr5/mT49TGI9Qh+Pu9793OxjU0ColXxATfoY0aB6cDMGoxMxA1aFQcZPukwR+kiSFtSHLRPTDIildSc4jmwJOQce6fBVCmO4cFw5SZ47RBXn1HJ+oLW1b/ZHBViGFkouFspuNmTTMC76GqOGcI0njTtSvSZzkUfk3LQ4bxtgWvko25zcQYTVE9mwaD/dKZV/ftFLhxCWFkLpRbuNuwgOZcozroc6HsIqIX9eWUHLV2s80CKpRd7qdin/sDco9BVgvP6xDhEktgUkZIpFy80fp9SM4Ce0aZCbdiljryr/brbWxL0qum2H/0KHtn9ii34GpsXuqbSRS7jPS9VzhNIMC1GdRqk5mryR1J4CytE2Y4+p0Xi7VrOo6ear0qqwnSWYcIcFrZ5Se0MfGbPL/wkX+aCVf5q5Plmo5CkuUu6mzqLaERhts9v3zkiI6YoU1ezcNSYTVzYlb8bKWsU/U8BarlZFls0d0pZPttsvcE+swTiW9HBXG66pod+R+hxIuSp7zwxD4chw/VyGXkbTu6Euk5IFTZylF4VHe7DEDyOeLBa+dgdCsHmRmWoRoIdHnhAsPs6IIZ/9Kfms8bxzyMhcQLiyrp1dWiJSWRWwEEWOTAXoUIaNqu4J4+Iv2ys3+fX+MYUDcmFzQmPq22yo1G9yMaku9aAzATAdnKno8iBwo65mJBlqeT58+6CjHUoimJ0TZbj/8/ItmZiropk8XE0PTqpMjjiacjBdXDAfer+SZXGxzs6vxyDfiOolr1hrJWT3yfvsf/i65qqfdZ2/f/PwPf9a/e1AlxX8yrs9+/mn3zeinddME9c7hZZHzdFq/37alqknMEKVZSTTTvmW/1TN2fCOvde8g5+vWfLPSeVVaG00BCgCgoCMYodWQcGm5yPmQUDAGGgnK6IsJAX/AkkyIwATT0CcKodybtin8RsFJVmbqtNjoElnlV6ivyG6rMkC8jYxsSp/Fy00r2b0l6xeLQADSkPAN7YNU7G7TTWglClyla3kqjYDTr1Zf4jLSZnCEamMnCZLmucv45nLojhjcdNzPnHGDCdDp4dReOJBLZRFpFiE37B/1/uxK5ZSaT4LI1REYOlzmJ/qyGwi1X7o2Lo4UR26Gx7g5unF4aNiYSmIqcq81oD6ox9msKxKzyAdYupwdz9JXp8vKYkPckhQ9/RLkFnROz4f38SsWcWEOALgxwLiI9A6Td7lccTgzwbnMW859NOhjqVebImW1d43PZEswDOx5tdzSJGsmwRL3KrHktKUE1dMr++bcR6xEUFVw3WSPBk+paCN8l5JEt5BuyA1RG57qA1zAnA56+eOHLx3QeHw/fnglw2TfPHaOfeY/RJUmRqDp0Tjud6qX5eefCvtyfYvitiud/rk3XJtmxm4QHpNuKGVbvxO+ncGAlUaD6jbvmV1CmWru4Aix4EKU7cx66doeIRxRG22X0VOTGQT34p6HlofUaHOXDmp9n9nqed3JUBG+Qwp+Z4gXpXuk+FmNDML7mPHtW16+y6Q671z03u2dxQMPd0Z0rk5//zJDpPNnFXbUlR9JTdNYmEGuSimJxv9PtfKimcGu/cNx/3aMTaWptAFQ5EvGowbOibNljNBoNVWhz4UKA8wsn9Zbq/7whs385ZePX8++/sFnX/z45z/pK8zaVw8vKwoIGff91z/63u1x2OqgMGU3a+r55TRdzuurl/1iddxt7u5ad/e98aCzm8yfV3M+JRYiMUKsCpiKc/RN26icBDwpO9JkPE61ALseSmGiynq0gKDwF9MmwXvait8Zcgm7wwKW+6VC5xo4JNlxPOWZdggJSbV4uXsI4bSSzXLZrEYqlrFgut9gcBlbd7+D48o0pNc1Kz1SmUbGxlGlZYwpwXMUnztO3ddBS+TxWCp7Ci845toUx6WJW5u2AEV11+ueuhaU+IK0uy7trqb7mnQGJQvNZAKItTUYgpxGeN79kycS9fBY6AvzSAmb7M75XstvqnsyqfwTM0hQQePeyukmXg723LF1HrQ6A0EAY+kacmnOndXp8HX1w+kp9Uwsrsls8dVvD5vZRQaWLpJqdE5zma7CeMf25SxBTDu8QeV8T4nctWezC3/X++0Dq6e9Oo+my+pmUa19Ke7Q7jwcGFKbx9v5VwwAMxQ4uYMwFLtm43A/GkN0zCuqfKEBgg4oaYqk6/y0VFnZgKd0BLHX3X6OYXKjZuydiwaV6jbuuZkkV/k9a2kbmbZGoPfhws1ou6aGJnVKWbWf40H3zUO/0xq9evWKsE28MDZAujMTMpIm7h7eOnhR9dRwReWW66XBl4YsmfPh4uMlgRd69tGXXIoar0EI+VJJ5yJ8cdkUoviwBFzdXrg7g3Ncf6ej9BOslnOFlZEO7dt9X4IDvTnflY8Sce0eDFMeSYvifpi9zO90OupAgO16OX/3fvXlV9PffsN6b7y6F/8mR1utYfOz2wfzL3fnKaPcGqzZrdyQC0bCyWnJFRFl0usuK7xe7CDCrd9Xk3NZO9KQ1kWZzhc/+a+HHekEQ7yD55KOBFmZxRUyXswusZVUQybDeCv7xZj2qRCheocvHt7c3j2Mhj1Wy3o543RK/uP2sNb1joeMocfaEnfqD1VYL6fY9iF6bCkbsdqH0ThgkZtFh5JeIOIaEma8xJqHKhCbqOH0BnYuJd3Gsx8bjY0S4SxZ1u8cdSlNZvmkItdB0rZBitAyAxrbAaDiuiNnWF4cWg0OMqykoV61cyG7aKRmc5/7gkzYCalAFinV4eltdhWvv/vt0/FlLT2VBcdnWJ8+l1Q2QfxKt7rpOLroOekFS/Gi9D7Xl4wegWr6kSUJ/WIs1Uunv8uabTy8n8CnSNCRNMiva8Rb5Q0QcZLIHXOduUV703qwul2sT+/gzoeJ7/KTzRfrr54pK3uNy7vdO7zF7/GQZ+wWy6jU8qUulig+vednOCwmlIWF5I1SDK+0erGZPU1h3breNz/BMmAfm2sp2CjV3GkkQBmFj1ZyKLRn2DWnSgLl1HS65VoXcC1225LwU8C2qp6QiUzGcbU7Hjgt/gVWIf1cKL/h3OWYWT3lcTweO07Hk+5kUig1F5CEqThNwWq7ORrSjwIdh00SQk+8X7894beH158gQGMtrSo+HxbvLlkE1xpuGOXg3r37pv6kV7t25n2OVmzBPjYU8IyIiEELjdp9uez71WJmAN5s8igySX1FkqXCRCcG/kJdiEVb55FvQ30ayKZEh/AItOGGofqKSdS1S2cgQsVHMnte/fm/+ct/+a/+FNn8zbvm8/PkZvT3437/s7ubt8POF+Mb/hZhf6be7duBJfsYEQTukeC4dYG3O2e7cfTHkSqTBiiQKCdNsv1QROWEEO5e3WaqDxYqGLA7DnSB1mRUjqHYoTzYqA9yd1tQUySJe+Lh1Z10Qzk092/ePty/7bRq2+V8Ut0qDsb4x/1uOgFcatOpLlzJNwZPxtTJ0QITBEANvGxASh0q6yHygGjPmGUh1TkvMueOnCVjcTF8lTSNeRE0ghqoNQ4pUwykLe82ij04DLghJOw0S9MvZ08/oAjxkNIp04uQMJA/jZfzLmyVOJ+OBofzqphyJnklCYFwwOuDnq6NPBXtvprj5LTt2hopHKfzCT8qlB72hlHZcaHzuU/9TLIF49mtbNCNYohVNBMadIVG4AbssH7wsN/qehIlApqxH4T5hFkKOdTmKbpgSkxNyMTqL1uSPYd2VNXi4euT8S1RJgjjOmYpxkKJ6/YYJirQpNMbPt7jwmQSgzDmyFZ38jTnFxlKu/rLmdsCQaj6xKB1qajvjXZXb1MV3l1WhJjp3sJEpijzehDPHJ7T3Yp2j7Fo7jsctrXGifPrUhnRtrX7ZAm0G0flwdm2UXHCNW1sjKnwijHXjZUVqcTM2Mti21uOGme+5/Htnb7xwhTybGSLH3erDJfEttJByLiF5DBInU1avHk2hWHDqaQjdgYZVMta0DeNicRQodXwSqgnUmApHMJlsVz0xDpKahOilwxkGWdN89jPFzAaxJWVVkPyLcfz6cC4jtOHy2z6JE9bV2zoJv+DxqzSUk1cCmRS/LJur4ucjvUV2cN/Qg4677vXlJfW7MPjv/nLf/8n//p/+3px/M//y3+yeuj89t/+68f58k1NqX1zXDk9T2aP8/mH3WR017v/VOkp3IUEoSu7DkUWixR8CwePd6e8IhC/Z/TFJsQoj4fpdDIY9G8Pd0QaqYeEfCyhPZcktoEUlLi+eOIEARvDfos383wa3w5u7/SW6PH+y8WaPs8kbC5mz60et3aUnJveYNQbfmjNxKyJgqWkxVZnSLWpt5bL9eQy5fiGviJdgjD8YZFH+tw5QghwZoRxr+g3EeeCQ42XWHqneBU/GQWDJQdoGj/rf9E0MBJipBxUkAMKAYT7kABL/ofljD8cNOJ7D/8RvU9sV+Z3dGc++kp1xkUu54HNnEjbGT4ITzNQpFPBER5F3TgkFmqmgQEOH25+/rOf/PB7n3cYPkoO96etQNFmk9Z5MYmk4HlOY3zbExQZj+96XQgG8RlgsLXSPq/hlQU5DhpcRHiM+XNvJ4dH78CXzd99+fjVu91mJVHCFhlPNIDqcSUsnLBjk4dUgTXsPEJO7XnZcZvtJHaCid/1jnwZgWasYGvuJI/8pq48FN/Soya6CqdSGsgqRG7sVyf9aNgV55fVZX6gvWixGkoWBYo7sNbqtajEaT7CduCJlqNVin1Ms0pbrSwaJTgSIG9T8+ttBSQANOg+DPsZy8HVwtBnEjab2kEYOm/FVLi7uzsIopBzrwTq26uohAx3er8GUw44Tv9EEtb6RoUyWzRq5ih5JAczHCNJ8Az8pBS0dCdkY3itTsiiR5gf1Ur+bglSY9WsECpXx3s3t6V6LTlgVse1VdcMKT584IgXX4E7vwtfaaOtW1IXVmmJguU8PLyS1iNFNbIv1auSlro0jenzh//j3/3F//Cn/9Pjev1f/It/8aOf/v7sr77uDVl/lU8+7//kZw9f9NtDbOjptJtsXn/66vXbNzwF0Dyc2HgICR2FeQOpHUEImRu4OM8A4rQOWou9hVb5hhZzvEu3brnwlgSHQInT8LJdhn3sN/5UseMiu9p903hGjunp/TuQqdOAdjM9vg3t4kBxVuvNhOaPJlJSO+rT4uZ6kh4uv1k8nzaqog4dEpc3X6wDHcbW4PemzabYlMERRQ5jo2pipWIFicxzEFIgybCo9JG6vHZCDZbKa6DxhR1n4LUAUbwI3FEw2JmgYChN8l49yRF2VwuZjXLcoe6MxktXp+2ckaNnrVg1vqwnJn22UhVvm84o+zhDfTpfc/1yg+ut+eMffv8f//Ef//THP5BDhKIWFUUNC/Fks1KT11DZUXVpbN1a0g2Gw5FgB5ccFgTfbCFztZgkEcn6cey7hVDxHWA/zZfE9f758f2Xe3NHoCXvZa+qiP9CSCk3PGFgGj0o+lEgs+OalRTbBQEttRe6ve40upqg7/id/aAYnC9zviuqLX+ZXJgSqEgJ4kVIWU2cgqraHY/0+szZRJI23tzeMk6rl4Vxm7ybh/Ve0irHDxcaxzcq50ug138SYRX12HfTexQTJcQ3dNljsiiaSWFQtmLIkwo4FNvvDjHXRBC58zkY0lI1eoYSD6kyqDCRWP42yoFqdjSX3LaUWlGrrqJcxgujdDw0DtXXB44t1mfwxVAfgz14uKjuCSnAfluOOC9m4RXosVR9J1ozLkkPioKfD9PD0R+CZAZDl+OaL9osIhQ/uLnjp/U5vHT29ZeelVhn/ObxACVWbz/N2vRp8md//md/+Vd//erh9r/6Z//8B7/3h3/zt3/3t3/1v8p5+dEn1f/kJ6//8Id3D7SJyqj2ye0Pmz/nV/viJz9CAyRqDFbhVTKIJMl9Q6uo1F7AlmSFAfy+t3c9g3QZRnBI6rNs6q+//Pr1q4eU2kcj5bOI70xCFHUECnK38JPTlsEAgtKWFYPYKwHCUOQCYGhgss5ytRU+ABGlbiKoPPdnETXm4uDQLHXwSd4JkZeVkviGXgmo4FXAGeJUVax126khoRFzRDYAhDZ9njpiI+r78I4U0RTa1fiMTwj5pgSCYV0UCvNCe6MMYRKQCQ3TVpJglJOia2mDtY+GSYYoOjc7eLNYmeS5kN15xrBeJddYEMfrz8/Pi+VeaEoxg/TVZmt4+3D7s5/++IvPPxmzUriObrqLNAwfx22raCPZr3vtx+Kz3qgqSgypuOXLDsrQwqRxh3kUFYhZwMQs3oQP6w9ccDUzEkddGTxLHygfMwpiaAzJeNDuYTsBcpK2lALM5PNphmVsRv3V53ezpay26WQye/ciTcS5R9CSjzrApfUGfeF0YqcAATNY0mBMZsxQ2wbcj8BJX4Vu4+6mBU+Egubbkw7tw97g0pX2VhWOw6X46JgfUPutDg8xhcXQ1cyg8XqDF3S9er6sh3C+W1ddedtrA4h4vq4xnFobVTTuJJTkSU5Vc6laayN2QeXoDCQAyDxDpOgET6X4eZDzFWuCxCBI8uArhD7m6yYxgcLybIald1K9ATMsjC27Zabsk/zoPvbiyONajY+VIIxZn0ZEeE8YGkoMT7AX5gd1TGsJsoXUIMWZ1Ww6w2B0GlAaAuk9AvgSaNbSFzTOlcVvvvyL//3f/vmf/Alh+8/++X/7i5/93ruX5+e//+XPX4/+4O3P//Ef/fhHn90rppSZrg2U3Jjbu9HgJuXvaIuFg69QBWTAhiGVy4b9N2w7nIgOmFQSWgbpxE5XVrDl/fLcySRT68ZD2km8MPFG0Us4brARLbTOcv6Tw4CZMjMpV1pLYEVGIR2U4+jlS2uVD1upDUco2CfEQdY8f7Jvq8I5/Md7YfZrRiSVWC6aaRAiXGJjiCgrDB9QBkjiU9cPQq8yCBxRnL60x1KUG7ri35aWELqmiKj6xEyTjFq06ZwKYwKFOFE51kAk9JyGkYAMv1PxTr6c2ufjoF8ze2nrdgDTaCimSdChUvnki15zJPu6flmI3Gw+LGbclAJfTWM+jb3Tc1iYU5KYvJeepOcmZqFpQ13IGdbwT2Dz0R+TqOKhlDdWRWiCh1kDS9iTFv5R/TARGMX9jVB0tu0OxSnrN7d7jV0xo2pDhMIt0xek2+/ev0p2z6AXs59PCbnX2g96H41uuqPbXn+gaub09DR9fpq8/MXfvbyfL2SkhF2nsbxUJtxKoLUjoaqkmvCf0REchzSwibgFy8+TjuvG69f9zaYpT1abRNRzOdxETjW4iuWUK2+/4ByO6vau76wguPTIOLDY4yNTNRZLMrNLyx3e3Y9e8SnrdUjdqOwGteFgt7yp7Pr3dze3iuYG9hxDRKdwgZpe3/GBEKdkLH/oQ5sK94BQSTLyu7MGx81ifoirNll43ApEPSwh1IUU0tM/hmtzW2P+hfnYPPqKb1Dmu7sFRchxbXOSFlMsq+KJzFuETShETi5YwD4qnrsRRSw/ztJOd+jkhF5Y2sxi98Er6F2//Hd//b/8j//q8e83P/2pCpHK4fFxVG380z/6o82Pt/1O7Yefvzpu9Qv8ZrlSN59kYDvwFGrniG40HEaW0qjpCIU4EapXIMp3l8/O51jcttetDvpygumiQaNk71XDIvucy4gDTNRD0Wikt+pM3ahylMTQLvm+SU1vDqmabiuuMH155vRWfwVdTd4bj5uDkeWI5e7Fw2ABQrs8MWhI/Vib5JnHARffylQWQrhCDsm59Mp8MIt/Piz5XUJk5bIHSEJHiD160Y0xCSkQDqe0ftts3vRQu886Iy8k7rJay2aVMEDrZIihLJoUn6RztfrZYU04YPczDbSN+UmjnFMfH1Owc2NqaasB4Zu0QZxthZeKcwxbA6ry7yaPo+f+cMwxJ660Nd3S/UMDaTzEn49/Q4b0LLBg5MlzFCLdrafT6Xw+3a6mVg7ANEE5wLZMHhAIOndqlLGYzA1n4weOvznKavXh5k4G9uefvXl1Wx8EqbV0WJGUl8MDEh/etB7ejG5vb8iFlpPr9z55ObxsfiWAQEUBaLhmRZCLrcAZVjI8hbBUFDJ+Ab650r9Fd1ULJF/vP/uCdJzvFm82vVvtadduUad0iihjD2iYH1zkc6i75VA3keaycvrtMpOXa9v2uPbpU3V7Uxt92v7kVesT/EvypZH37WVXAHtS674dvt7pEGkxrYEeJ22NceR2qObLWADygeaEXctHFdtKV6jilaD4M4dFoJeT56ffpVlRt7Va4nHOEjasqUQZpSTK6itRZ5F0/mn3dJZMoZfCbMyd1etrWKMGotZVxr42MCdYEsQU2xUVGHS6AwHJ82HIale9+7vK8vc+v//07WdPv/vNfj1fzD7A18VkXfuic9uXQWjZs//wf/7Zn/7P/5Jm/t//d//07ub1YKRN7f7hptW9ua29aRy3i9PsuXHZ3Ht2s8ZfSHfd63LQqtxKxe/3iXX6LnaDsTT22qPGi8rzd1bt3hu1NDL2+aVBBpolbFsPakp5pxXrNtcz7VnGEpfNAFqcXm7GiqJSCte/GU3OpDh3D/+mA2vS4FOGzaG0626mm9lkwqU7qo84Yoht2QG8EfILqxXdMPjya8P2qGH8Sa29PlUXcvX0dpQW0xnIw9FHZrKecg/w4cvtELcjvWLswcdDrS+12QyBkTrvAR3HoQDXpw+fc568TOfT/TaZrl3t5ENM/Z6+czDDpC3xGlkRqEfGFxfniea+X0zah81NpyHC0bsdM82W0rd7VQaAx2pfN17sNs+bkzbBN3fDal9nN7rAfac6lsXc3DWGI40P44Tixfndh2mt+sv0Nlve3zTHTlYbGfk7TC1BHr7Ua06rCPNhiKgYwtdruphDG69U5+8kOKT7g4pOgbkRf4d2c3Q7cqihr+svf/2ikABvql22XNyCPa9ftz/55PRwM+I7q7foet3nJ8xpJvBcu7watobz6gCDsP2lrFsu7t0a5mOsGDW+5tyktTYq/TVCkB2EvwleqLwJh1FNNtLFkm1Ek2p0OyOmbbsxpKVa0ABK0cUZMfQ0n93Ut3VT01tqabtiQ4KKUnzwW+0E+fxbZ860UVzfXCccTCJpvJB1jOdV52LWpvA3bnnT59QwIipTomIXiqx2/ZP1CuoJXcAjP68cGhi86IrTZbd+//4daiTuUBrh5pRSQBMXYTzUV1WZI8rXC8MW2ppgvukzPYqLJXnz5CyNS4aOTD+0qsHwfKqp1FUIFVmq/+X28Wnx9rb7Znwn7+n9Oylpx8f907na+8FqLY0ZVzlPF49f/84dfvGP/vif/JP/pt+7UTixO8zJEadLgmljI+IXrxDUptpXkzsq/df6oQsmGaUcysQ2P/DjCFVE0QIugm2fMoPRYCij8nBUOKCYQMxCgEGLTZEMCSDP2Da7z4wGgMJB1fgdz8sMbBU4kDBeXJd8juBmMYZfy0DfYo3a8NzpKF0xZA7EOjufJBGUEBkpLPolXtGTqc1j87v3KdnRqQQozRIWBjZ+W7pi7Mar5a91024ZOMvko7nKghHf4ask8PHpmFpC3PINWuqeLYOdLaJBmUs8kbbLDuG45YnVSl3PbsN66djHuXoFJemL+Z6v+lal69093v7y+CItSH4in7lG8FTYgHS/lBTOxUZPIk2MVh1p1XXfkx/Vro4NThc0fvxmvdhdBLdGXQLGylRS9tAChYGDgkiFLE6BkIRI6LOI03ivXDy9VBFRILSKUY5utOaQ4qxwneNKZtJ5Mtl8eJRAx46hWbLkeq/uere3HSGQ8ZBLSWuoqPxadhpjyPTf7s6zuYDHxhMV8jLmR4PGL37/R8/Pm+eX9dMEMNGDTp1mcEnAT6EtV26x98DMSdX3muZzu4ZMVAR2hkoCVGD1uNga/aHyPGoCqawahH5PuCobOVdu5YM5oDNiPb/sG9IzOQgah8pgT4yiO1otkuVcAuEkrfWXG26t7WJ2/+kbDQEQGU4SqwatmAvJP2z3xRcaSa9+N3gcs8FD0YVfGEX4HCWEH8VHICiTBvmltu106kvaw6HdT0iuTMKkFyJLLgzKLY1mydmN/k1j2sytiRXqwOxayQ1VVmk8p+0gbUssIha15gdSA+5ky96+osJtnjWgWV3qzw7QMDpcbfE0m76b3N7e/f4/+sXdH/w0KfxRKxMRpd7Snao6zg9kv1SWL5u1riy6xOOSeOHNbX8kvUVGPSmVTSaCSQtKEgB91t6wUDzf+Cz+N5mLjCXqEDsc8tMsU67VMOP4JL1DBWcGvXtmqHJT6d7wzSTiRAmVnJPqsgKNar+dWcrd2mjQY4NAgvqKY2LNiR/fG3U0kcOtlk60Q0zw7nYE8uz+3z2K4q9ZfVI62gcuhvSdDFOP2Sx9LMUnGJw4gWlZTCIziRwCHoxiHYcg8qDbkaSxlHAhsGFdUvUqQwNVUjHKaja8sNLTlkdevWKIU22JicrZ5N5AYPv6QkCGnaMgIucdcXZCajcGjvOEySU+ruoVmT9yEVh3eM0ZjTT77drx1VSATJxQw/PtaTLfS1KTEKcYhlOaViCXQ1l3GifyilBgKxafPFYRdV4JlOBwiueP/sZ5JlHQWO95T5wlJXCVm36VJ2s6jWMbTYgwgBo34HhYG/W5yWokGWJjakFf5MoJqY3PXMesw0QnInwNe5YX+Nmr0Y+++Fzaw29+8/jX//6XL5NFX8XNThVxnz0ub3I06gz70nm1AxIGMkCVTR0xbknoRfWMFmNn6ZEer6kGc41DIIhdrTIEGRxipB0pJOcDtVW0HRHijby6xDGmm7MECGKLpz4tZ9stTrbN0nQe/ocHjUhubwCd9Bbf1J1gOn0RHXa0rpATqcc3gm+6InSK6zbhaC4NjgHRQIw6ngAfo9wkGZ/v4Fs6j7yKTE241Q2qxy6YmC+ATeh27d48DH4q60piiurIJHsoft5AX5mEWBpgQGp1xPPN4ddfP3KSVZpwQ8D6wtNMM3Rzx7OcLdlSX/zw915//rmMlZViSD56FdKaN1mcfC1EpwhVTumONrtiS95IaOB0uLt1e0yobDbuBF04mE9p4qfriDCJxPdWE9KznKw3QzIII6nr5mrFU4T3nnGF40lXq2SiCxczB/QeI19UDF4h4xD2TgAACq3WxgkygzHzXiYryHCxmFs/aibqk2xQNcqVs4euN4vjQpLjQOOWt2/uJaN8mCwQGuVMvE2WGglptUSc+zluAHen5WWdZNtw1ISFAyL6riZYbUZZZ7gz72RhiyXS7j9qtyQT8qNgWQ6cZoxeZNSksQFvpeIS5y4Em0T++RqljPmSwyH4TETqdnRn3+jQ2jITlbcrKnTqaEyBptYLphOpS83C1DUSTNzdojL1m2brUJnyZanJ4TplIEgwLhUnyDxWFYCjUvvg9OOfiUekIzrO+cyQ1RgmJ5rGoB7IVWnMBZsmaeDxhuumq2Bc6JAAdCic0zlTrDh+ILpiU1PhDzrgzGcKhxP9raY59/ceGvd3wzf37U/u3oh//OVf/A3vmh46ZuouV3rWVLTZ+r5cszcPyjfIpO5eyqTqeoBOnG9dbywbTcOX1K20W+2bWN4YevxUwrsK4cRmxWupdlQ1UosqIvaHPUWZCKU6kZhesuMIEinyKv9YA7Pb2/7r1+Mf/+j7n37yaqjIBuenF8lkgxzHJAPA3WLZp++Td4lTe7VbTA9CQLJ4hq7GPUWkXKHV4pYUIfQNOF1oNQqni7hSSY4I5FcIEATJXDsloLU1Vc3p88WkoT7LNhXGFrxfKmhMJNPqjcL68MRZRspV30bRMx/nMsWiN2bdKuOsvP70e5//9GejT96K3HRZ7EmDV4K04nfmjlot5xLDVtMnDnoLYhzcvf5ES/zhzThClQ8ykYnE46Ve1fX61j54OltMwlNEruJVpPU2rFlmXcrV4AURkxYhVctcnI94oXMT8a4LYmVmQ6dHnU0UpbRHUQAW4iq1Rwq7A0NONlEuYRhHCxRGeB3moVXcTnCeCq4BUWZQnSYvT9xp4tivH+7Wx9OHyVIWPWWpphG7i9KY4VRhl/zOiQZX9HzTcSZD5cl+8RG3BVa6sX5Lx+EAkH2F4M4XFLK1zBM0DEGimHPQqFwnN4wFa9bzRBiCJ94hKErMVBBISQN3+hHXOiLoD2TeHbMMdzuoWx6iKVggFIXWdhv3aSgi3h5eatVlKJf/ucqMvXt7q8yG+U3xr7wsNs+L3dNcPhv+mKAAHRWQyVLcIAKDriK2t5xlztsxFgj3pBNWVAe80gsNrGmx9HF21dbV5kDuUdrEMG1TMe6f7ePpTFuoq4WoWDKTSHMncXX9/ORgyWqMyagXa00fgcG7r9/+6v/7FWPC1mWa8G4zElTwjfrdV/cSNZJF29hkriylE7EwmE6aHFidg8Wy4rOET4lKp76OwkbVFFhBt+AW/kmV4HMXEKIGlAwP3MgFsnRFLJfjPfJw2hwMW2/e3H/2+Zub8VA6u2GERdmI/kd+Uv58ywoKJtDzI05xelD2OjyAapCphGyS7gOkqQMxDa0ffRhyu0ooHsuBbsw8JgIGFKK9xlbhNG0lG/U6GR9bPhEdOmORVyR1qB2Z6rqp06ctqkem6swmz0fOMk+v1KTg61mmYo58//wnP339gx9UupnXk4R3Ukna7Yynq62B/3Lxslm84BFs8/bD+Gb8enD/avzwQMEOHyo7tWe/22HUT7lR85k+GMZ1kBJWSyc/aCCR1D2+QBgYLIo7TEb8Os4G7d29zTuNZ92Mbs295qxFz4ARp6SamdJRFiDVNGG9wspJCYmvDpzjF1ht9LhJdIQWwuNLhzSDilIiYV/P4apiYa1D+qPHCRXxzOoBZGjc0uxGPCOjMaPw4M39wRCLdkY04PA9PoH0t5AGB8Cc0olSYEv4Iu9/MiTSRBHgiQCyNbnyPphMsFL2KVvHTcRHomLKxBikDDbx+FgHh+V5op0Y2Qy3dhnq2GatHanQZ/XITX105fJfKuuhhOPxSJ2/KeuMv89fD77/+v5GWH8wMsP7eb795nH2668kHT0tV8Kb9s7LiD8af5jMDaYTkKUOWxEltqFyrWqa7ZY/lR6xXXMRsrLio2LQqec0T0kZEeukcEsESRIoyacfFPyiCDh0E3M7t9hGpWZ6C9vyLBQrv0owkCmrr61Iph4r6+1m0GSTn7UL1rUJ17Ye6UtcO2rKYLUL7UEbgp4soXWJ3OgjEvaSqmKKRbouXZXhuGcQps6LOmKwXKuwixwD+9A0UepbDgu2l8XKQJQgpDw9aoTGfkKL3BMpPhTjQquQxjEjFQdPiDp9VAiNUWmh2SQJxFArqyBmSHkfxQBje8vNwFYSBsNZkzsBl6FpopLgEc+quF1yJnzFIYrGuJrtYTQBkPYpkPC+2kdKnawTgpg6Bi2g1SF2yrsJA34i9+xh2N3MdWWYVe5udSHULXLjYyg7PUdOi9k3Bw0ztpc9mS08cKgMmwMebsuus/+HD7w6LA9YZgHoIXpkipsNiuhgKnxLybzKLARssc6BpjOHPbLsxV5oBaRw5pOU7DeqrhgvZsjTAHKcCXi9Vk1yi9nz2WMqqQM3T08PH4eFF2GvsY/tN2aPAlqfoz9bDONW6DI2PNqqVoa9m+NiYSZV+hmcuG2G/GR8LXIlnArfJkWfQX/1MZH1ynu5JwGckWtF8BKv4PnCFBxzfrdPkTNetaTT5BbJmbcp4TeCB67ARSy6tV9p/qgwjJmVAjclKzLjUWqsAR+CWQJrOsaLzK5qRvukm7EUxLTYKfovFLCTcbvLufn6ts8hrLaG5fu91/ef34/FAzj82Xo9BWvtLhejkQW7ZXIjwAqtxhpNg3W6v+3INR4K8SrRVMIVm4krTARF6oVDAUf+VmzG1zzknFFUyrGxjAxJpJbD46sGDOqQzQXPMDqt8BQvx9w7vHtZms4ijczI3K8/fEXexaqgo5x2zDOqJJHC8Tl55iKtaU8l7yjoy0sKujQdTI/eCl0MkYL5zjJc2j/ijWqQ5VJUUumYM7fDONMwBWcXIXmsRO9CFNGEKcdirP4xynZrSn6a2GoXElMgKWMQyIOLogu1rjRZ4px0iHKJ48EqN8RLyiJJ/3y80BihRIREAjtCK4wHOM+VDUWwG+mtqLdDXm0dvvMBBohbBNpaMC59uWXJFUFjXRV6uLIr5YVxpdK2/bIxY53P5Vz5ZjJlFLaqZkQu+QrtE3dRI3jf53VsnfkEd4vl4xOPgs6Aesbx7gjDqgxLRpGnKPQVBR/fRaAGYsWi87zSeJGqKWh8kr5BlBBwlJG0RNRx/SQBG6mIkItQxiY4c9QOjHyT8c4VzwWA6ZGucUJqHa5HUeYCJLPTFiIDo+eyGcWug+d8VyLzhDb1FfVivfpwOVR8dL2SyOlBYAz1wEp9rvDA8kW7NWVj/SFB8OHx+SaOdEl5LToht7OcflDCrE2091z9TWKsYOpKS7FuvDJHz3SAVzHjeR1FYvADGVI4qIosaKxmSVVgi+GHUiuP3GyLhaqXi3HP7om52Ak/gvR7MCf85Ragm3UyHRFPYI0hiQ4yFFiNIr7sYFDiHFVOZPgW2tPQ/O5WzJ/HYMNhJ6UlBVhi+2Qkw5jM45WnAycxJUocRQ8YqB7HtG/ldhRIK4BhpIl21PfT7VrsFWLIaqEZZCnGJmWCY/I1perKiTB4JfcAi9w8xaT8d7IB/Ra5ppi0cnycLXWfnr88qft7eXpeCW6lK4h8wwhPLb8WMzCMBjqZLKg/m+JhskQhAS1osLuE/OLcknCzpkMIdWDMiBXJIDcuMgSTnqopOsFK84ZSPTmHl276gpNhWPCmuxm1kf1eie3jfrdRt1Jdbg8fHuMARdvHPZ2KH/emNXy+jKXlmhUNTJbYUau4Y8EBHbFdpWxJyBm0HtoniTfYcjPFGoFoFN8QuEbbsTJoXSlBSu5NkuqFlQTqDIS7HX2ikWqqosMsqSQ6CYi4LZeKG2EuJsVJi/ciWPsm6EGazeT+MqvUTBLaL/PjtL7FZZ/Xq8mHJxMjOt1OVcUQx2RipCmHffP2RyKmcHhgUJbBp+SIm++F7qvt4aDNuyP2SaXC4Ni0qvDCb9joalP1v+grB2u09I1LRb5jvrSF7ud6pvNlyus96WybSprG8WkntfWgb/MmPgxDrBCA/EDsAy5gDjRDIguPdGbMEZhEx41ngVWArddq/Xa8FJKOnYODxH1gJp2UqUoVo1TjoeuG5sG1D3Ii1sRvaaa7rQ72Y2pTMiCNpx31x6NbtSzOi/AlmdGLMAeXj1EdRZJzYVVWvFDC5cnTPY2HyihGmIjFVKaMSbGly0z+lrF3g3QSj3JSF/qa1S/z2mGlsqYnAbxVX57Xl0PyRqQh8XQytRaa2B8q3c2QiVFZaZ7VOG91Jqlt1Rsdqjdm/zQ2o4GOXaveTXdVI0TPW+Oku637Hg5Ol+Ci487cKILmnYhef2kTx+Q9M0fA8cvZTJmQ7F6t9qVTUVv45DkY6CFE9GYxNfVehYcPk47Qyd6DjIDbWlXOenZhWJu0dKkOFmdJgBpE6jxxvmlUts1VtYe/d+vrsWz9386+SmxvVX96d1hOLaN12s3EklIni9KXgihM5sM3qLgrVV0l3gbrcXwUlGiAwZ8M4JYKahn6W1tCkpnl9uS3InYww+sVm7ZoldRyOmMzOW8nqj+u7Rt24G6wRMqJpuVkvz6KXILptAx7kEeC8pEzVhC7l2Zhy/SK5BjCatgl4C5LyWPdKK08QqPEUczlsjLv4BMpEHAIcU4QlVFKdur690iG+QYnqL8+jw/nPLj9tMI+m3CcGmsLyFIziBrbiaPVhRd4PUwlOXRH+Xc42Mt0+vTcli6Jl6EQRAEdUWMaatgvVVz6v6Q6/L2j0zekj4UgmtUWsYdF2gUhHEDxgBgKmC4RCvfAbSh05J5i0ynN36ihYjy3ZhFd5AYIAmUm0y20QOB4GJpTudfgrXLXH2nsQwfFTanzAQ5rg4hgjXPxuDd9w7FiC8RmGFCEBgAl/SxdtJL8ZVYX4R+4UjmpRtIUMWJeIqTOU5auYtilI8qw93LgnZOwuEHHA54e670iUIyRTEWieOEjmri0M5tB+EuFhDLvlLDIk2/vqrzNiT0SXFGNLA4Yoy9l/KSfYn7EEwlnoRwiYTpiyEdOBJU8GTPNHmU+YE/XbwVnyuVjfncHLMOBSNawMNEJcAdbCkaazxR1wwcSQCq/Y/O5T4FdsA9347lIsL6UqkU3dvrMaS9XDY2wkqLLfUsDuY0vZwt++XYledEr1xexP6w2ajzkE7EBaaxzv3/SlXa+XU7308cl4lSaxgVDRZKMCfQewP4h9+Z6atWNIxVwgBUeYUjEILTgbpEJQtup8/ZnzB0hGrR6pSg/o3gWLTWOzHL5JK8jLUbKreVmUYD1sS1Upb2/3EnWabfVz7fmKzVrPgKphQzB1+dlCHhbEhlAENrptKN7VhRbn8Qm8OKEE9Q/k6KcdpZUABS096AgKKlZzinet0QAhG51k4UnCX6wm+LKLRlzWRVLQA9Wo7Hj/aNb8a4mOcGn/UJKfJuqUIJPUB7GVs46Rrx/mlBbRA8anR7tSy8Cqilsz3oYvVk8E5SLr5+4Hn2IUYnDa9lDeFJrfSV+XQQb6st5sg8BU/86rdNQKtcXt0RzBacIsaf13AtrsQn/kXzHvaVTvmVO14w8QVNK56SzBguZmiob9EWAIDL2CRzMRoeJOOo1FmybnQl3YHzs2HC06HTMfYMVUwcIXMDMx49hYpEmPSBegJTkzwI2uwMSepdbE4hQFbDbMgIIU7MTbBkGJ0beQO3gwK72FtRDjpDSFsVAxBHwXMuDWmDiRb9E3YllkAs8rncOUNwWwyk0THhAcDM20aotJG3GWYY15wPXbzk4Tyy7y/JSfxeKD3aFPhwhFygvbfA6TN878My7scQSOchpuOLptLt8FZ9P+rkzivClO3gdusSfwNoM2YORd/JLoXV3uhKku3rR+khj8ClIFS5QkDOJ0Ox4fYf0jWGRK3lFqDBSUoKiF74a7myccUBJtzLEqh0vswXXxVJ0cBQp4ct1cJxNoRzGP8Wfi67wqsCxpBlcYYf7BKbiUFIjfC85Fqwf5cJZvsu3Am4bMCQIi96f7mqt21atu1y3JvMuL6u5velyRFtIwEqaFBbAl4GuTvSPmLJuFAQNZZVKVeSqa3v33AU6KSeWhMU6Os8iyD0URCKuCs0YIFP4bmgYJSPvADmasB9xgPmiAGCMlfjJitmaCFAOr9wK3uWGxAd9g8coLfi35w8vi8lKSx7iWjiImk54gYXjNPFJ0gSOIA7J6OAiZXXyTiTwlogYPVfB50laj1Mv24NmASqwnlO57GWxFm18z0fRIfU8GPlkX5dcoBOzffLZsBPQNOHMgOMF4cXDjp4eZzwsnX7zdf01rxwah8iAAFuCRClVsd4U3IehQJeY9PYYLwXWDGDW4VM4ALSFMVwRVCi2QNq55pDpldFbFOmZ7hvkLlNUsECKtT85/MMODdcT9JFMdjXOMEd2oT2w+NKwSANZHlM8ZLtcTCVqWCRdGOXrpccXGOlQkrpmJSAkS4Hf14JRk704RPzX4v3uuBnbJe7u148veuv6rk25SqsE4Zy4gmgonJkxxqUARRfCWXES1hqxGR7txqFZ1lwJ3XE/ggkvWTElfDbSMH8noqNfAA0Xy8PT0WqYS5YUhA9F4Fa4nXQLAtx+rpLMZ6CCdVuAL/oy65q+g+NImW3XdhpiAftA3qlUczqQxoLpvJ0SUNxGbixrMZpkvWFenP96GIkQ4MThjnyyhqJTFdbF2wa+iZCVFFZsIW75iESfY09SP6FI/BlhsYVH2QBuSRqupnMJXxq/8Vjrx3z88CjOcLppqdFsxNEQbfN6Bn5xwSb+vTwCT40WBv8DBVxcxaIkOAVlQTumBKdyRMQF/AIjAl8BgFQmbtOwIGh01ynMI54kSsdWfx6dEihSL+HM3PLhKPmBlN3qevaW4z654oPJZW6FfNkt3N2flUmmZtNH40gGgsChtDNTfR2NSxQrSj3NikfQ7myF9ch4McoZR0/Dxuh7doqBcPZEx4xiGaGf2TIltgR3bel2OHhZbuYaggFyupa2RtpqqU3hjqLq6kVkLN2cL3Shj2lvNLnR8BAuIhHeVDiT3lx5jFOg1BChVhdfAw+f3QbChKSkdpARNNITVx7CiQuE52atGlSQIsonJ4Z8bCjkmKMuAgwY8iIT3G7raADCdihKYBXBYnsXmX3yAUsTc58psoV3wJOJBt3UMZOEdXFjcMHboqDWZhPDQdgviQBShOEjlu9xwdOwYdmUvAq5MBGX13NK314h03IFB+QN7pP3atTOCUL7NCc/bDKEC5WihPiW0jo4i09fHnfB1im8ZBT2gqebrCEQhZCDQ5A6ensmD3D+wPyoBd7wNR/Px4oGilA9iunpT7FSy/F/0E5+R6ELp+9+CR8LU2BTIZ20v5Byq8qL+IcOpD8nXkOdmjWU0ijwxURK+UBqzpR/WwdWAXyCLh5vQWnETvtRax8V81t1PJ4Ka7UbRMC5w7yMAURJkYCdJj2W6AwKBygxEG0KTke1zHJtzvOpIrnTSC4Mc9V+r3geo5EoDZgKXDzKX3zfMvjdmb1gltng/sEqCbqAwCQPUjlq5xkPJv4Qs+/qQczArTZTEdJp3TrQ6JyQWkeA+QzT3EgzJORiYISx4AR2DQfFL20b+cEWi8epQkO89frzZxlQ86yHDw8UFZoULHwkXMb+kZo4F0LlJLUPmJk5BYFJsQgSzHCq+U+QoLjp4DytwWfJ3KgP6vyb27PmGlSGUnnDwbRfGRK2wYBFazAFU9DuW23RXRsD6FWmOdXlxS23m0Z70R/OL29vNVnhEkuKjepnQbTYilILUqnsIgCAyx6veJPZ7vQpbZKjt6e2NCr0SWd3E9xSlkafILRZjpKWoMNC41cX6FANIWe5JwQo2JlMZkSC8Fxe9CBpEj4bT0ABU7hnqzoe9ZYWVhPHr2mDILfGLeOTj6smcjt2JhWfThAFHiLELiuGJBQEPreOc0T8x119xXXdzvVPPynbLtu9/kxYjnjmuxLkyNrDHQKhjzow+Ufrj7viaszTAiifQkFpyR+Okro5tS5EIZUdHwgDLBgeaHx7WXmEHSlSpL2Ne+carOG2wzThs3extiRT2sg5/b0MGkhDC40BnLL29cm8NjSyp1BDfzmEuG/XuQEFIi1PhQdqhuk3o2HyHzzDDZHoCVtVmUhPoNyQEelQ/vEq8p7W4ALLIJt/uEX0Tl4/tCoxMfZPsg79m6cXe1ot6myQZDKikOUlslKgjPD9A2IXEBBEvioDHv46OAfDfnJi/f5oeCODQ/u7NpyQw6o83uedqG5/6nqjuKOqds/defXBZThQDRXFDM5uVpoLHBebebTzfQJLHhdDJEwU19PDxpF03M1bBBD8cDP3D/7pASfgfFryUIXng21htZDIZqN0Unlj9bPkIYgZxJLySKJwKEcorIx6UwUag8Umo/t6bk4uDE3FUPNoBNlpTbXmW6DprnSuNnFxNtXChfKc5GZKQBrlNmQAM5RhI5o9JJdmm477j+tWb8oMv9V1Lo0OOBjyJcAjLJg6OaUS+iIky7lFm4jEoF7SqNxNeBYqKHWNUcZV4UvKQIixPUeENYi0nk2aDMAogzHi3MdfwMXcdnHTJXtBHL64wBEQ6MlYLwou/gaYe6JemqdHM7tyD4w4TSeS1QSoPu+GVyRzc9hZnnYVYsV1kqmZ3EsRBgDpsK7n5cOBc1mP13HtdPohZfRtJVPYgxZvrwiE4uL86IXBkqtgsFGS0dvhQv4T3cQBRY3YMUCTBUTdTDw8OpmkFd0V6TVBn8j9sDgPdfm6yy8+ClX8cl2hbSGR67tlnThPCUPH5elBnAgQKuJUOIwHdIg9a5qTx+qWWu2r3eVt5wrdGJS41RsmOW1u54DcLvTPXa7YiqVkd99eDsYVAk62VBDRVYBrjVECGELB5P/oyorxyzjTsiBkg74wFt6MtGRk//zDlYMHDxmq8gLiD4ooiCeBzjLSk1JXoBHya1fWyrbCrX0eMaX4W0eCRJbMcnJu6lC5NjkHkoBF2ydOMtCd4FdQcVjERoisFjnDBa97Y358u3DSvFBqaKksj2LOYGKYM7Pcxb8IZQB2pqm3BSspvrLq2Xq4G7/tjnHmjJ13/kFtD3MwYB83RpDYvth3ZoMJ+Yi5hPXj55Zb8ih9EpbLMoPXkWjsLX9vE7Ojrndf9WUu4vhuYjSoPh4vz+YMHtXhHMcnTXS0XZFBniwFy0oOTYFzUtJjwNucDXqSSlFBPIopxUBckhsu7x/iU5RXw+qT309pUiVHV1MpgwQAxM7xIaifjacyLk26/eLLzsMHAPsKU0jvF8wPD8MtYJan+yXsy9hJsk3jrLZ+zKlehs7uEHYPTfER6eo0Ipp8qcQi9ZgURWE9zfj3NgaTzt+8Ts5dDiIMJNcV70LloB1ohh06tLwXagxZWVK+VU7QkefUi0odY/LbO2TZoCVEH9OKuSh9AUkFLX0sEzQi8kOc+Y+1ly17evk9uw9yFq0TcJMLAqJ5fgiBcx0tUF35Z+JJSVxNTFjPdY5IdX2H9kapiWTA0DuDXSEH4EC6235Tl2CRBenaAkDsqbYBGxrqx8Buv5YSczRLlahTtRIerLIqbpUI43HX5E/9CAfcHto3qbaRbXnQ1Zb6GOOw0uqR7XwldenWlcHsVFvX4z/tYGr7XTfalt1oby8+YNZIuAhHRUuXmvqu6ySDY44xrcpV++t1Jd8zDiFG4/MzBUYIgJf/bjhMfu1qJYYQKbuca5+suzFJcdoamsra5dat6WF3MNi7MTO7qKp2JNyfMgL3I0gJwKCR7Eyqpvo8HdEVF7xMmlIBtlrsR58V94ak7z5MMJNKW7GkbC1qeEgpRwQjY+Hv1Vbzfu43S3UoGG+wSAlDRQq0D6meoNhjZ1SqVvzDGtXygIgfSXWSuA8mfGhQtt1cjzpVCpDWOLSupMFuUd55OK70hk+PT7LSVCbDJXSkwsOUpK/fG6Py69XbV8ubwWrQP95sVOWKWQz6r9b1X+v4Git9HswAAEAASURBVIQuiqtfkCR8UuXERtBRTI0nUZGqtbj5Wv3LeL2cbHdL6kWvOdTYQRhfcAnj4qWU3cEzBfvIKfkOGrGf96moBglqHrrFjqKkph450SyIBi4Jgkh6BEFuAilitJ1OJlYm9yt9XlTq7CR4oA0NoIg1xb0KP/AUjYSYk0rtU0/PJrnmMEmwOBtwrxvgSOmdeaPGumh0L1fKLAREJV1XG2GLpgfRkbSwNmq6q3cr0Q+dG6YKa9h5cBj6Q3I26qWLYImb6Ffni6Jj82exMcvGoaT6Gz5vG1T1BBbsB/LUaGcRqgQUd5Kwv6YoYUC07KYmKtLecJcb8NWwGGNjDSgtMBy7VUVR5DQvoRaFfMqUbRyBlpgcu3Z/2J5eTptL5yS2Qou6mIBlDiHsiQecH5WKAo8wRVfYRBidG1B6+BoOq+1SZs+pQoFcqtdFVNhGXGMcF+EzJexWYdYSLLYTiUiSuOL7KkzWa/Fz4Nrlw1fG4x6kTJ4U52jRp8HncGC6tTDbKqdFzNaApYi/NIih30tIK+65WCXg4jNZc2Ry0fKsKISXc6XmgxlFIfKvpFDytiLEIjZt06cCbAFTuRNyWJIFQ5hI5yEiCqsuaiunHB9R9iM/ZLfDICrbITHXjPlDZynGRFaZZZRNFfugMGl/kkThCtGRYh76nwcnWObR+CeuH49iTDUb8jPPCTfX3ash4Jj2i7GeJGqcJ7J/NWPHGNXFXS6qolla7CgLm62Wo+WYIw/HpUERYZveSjcDBnjnDqOLzMkWillYYKWpKEsncIoQSu5fMQYCvJQuyZSzQKlQcNd6HVnYewnYkKJ+8VVC0C+CPrZn/7l/ZGm8dC7Pcx9aIsnmQsaESb5LvuC8KSMQlAv+YZ30HBzE3XLDb8VUjhWdF6hGVl3XHeEMTh9dxFnux29ljTwt3/5ZPg5zvtWdSlQ1kaC0M812wlz985Tr5bWCNn6krarFOxFveT1P1msqV6ARpAGvwMPp2ii/WrTRlOfkymn6oi8FvJG+kaT2GLCUK98sl7+ur+ev9LTNeoLYsZCK7ynIl5S08DAdo/YSLTKRELvEa2j4BLfPKpL03nq1naQs8rLRWoYEv+gSXuIQ9JssXjm1FfEWENzhnFl9ArIxTGlLfHdJwirrzumW7XozULuuu2wve8vd9P0x/ED6PMerhG58lye7TMCV3S4+B4skQhmTytRzD7e14Oxzr7mUMXjco3ig1ULXZOs2DU+ITqxBsBRkagf9BdjBLKiIgAoOIxSlGyS+c8CB4gFEv4qm6D9cZtoQYZPwTu/5RagFP2yp1A/skWA5tKg1rqwH7uetK9IAhp2BrKeFZ+mFk1/L2+wo3G3HO61onuYTFHKDIvaMEbt4Q52400a9zl0SbgRTR2uIDrd0vhDdI2NTnKVeZ8t1IzWvZ4MkUeWB75n47miHkecFSxxNHmmT6oy4uItvH7kHL40N40yg6QmlRC2sshks+UrjZTskKS+4+9igl7NYqcSFfxaDJXsKDMq3gs2JfUVK5tz5Pkk2tKqERkmap+ipsKOiU8tT8JSNo/uC2lGySyX9x6L8QC6QyoXIPPyKM+VboVW/eIvqp9j6ugCfz6eL2zbmJ/BxQAQ5Q5+CYLhQ0UFjOpYF5xHWiT1YG++Onpl2fb2znyiq3NmH7T3uxQLRq1hL08MruWJZ1nZdwxXnCy3GtER/Xo9q68rN8gsxlWBp0ZP9zXcDnxgJjEz2H4hLD3AsEtYpDuQ67EHyH1MLcWpslAAKT0Ns1DKWGKoJSZB7mc5T1Md8x6K+gxcfkLIAAimaOtDbknWR7L5e/spCoSF9shwIMQMW159wJftzBijQcdIVxTAyfOiyqRynxsxv1zcXFaSprobuCsGcujTjXRTLmIg1o9m1FS5NzGT3wTKpcqVsIGWOUrHmy8lUAySdFo6aRMLNQM8SnILLCapgVinBcKTlOY1S0weW53TJgkcWb1jfVNfOBVHQqXWSTltOxteTKh1fDdTIKeZcHaUvFcZFPShdyzEuGIfKProGklAhv4Cae8QWVVNGocGDNePbbI8CNi9zxTtqwxiK8dNJN5ERMdk9oVEer+6tUYaSSQ25PXWGClPkkzRAhFCYN9e6VUqglFLX7LwCq0QESvFqToUTImIB/kbIFdXFknLE9A8OtUKZDtYriJY1QjPJTuy0KH6BWMBXZClatXd3DGuOpvLxwgui+hTPCiwBE28E6in3p2B6eGJUkbIRdKSl4y8YESbvaUkn+O4KgX575UNXoV3Ixe/eyXIDPx/EGGFToBnC+PjF5EH4PaoY48TRs6xzYOUJOa3c3R2Qrp9W6bbeg/z+vD5OnLRMzMpjvFj4AL4doUp3Rq7gUZzJ/7BqiO/y9QKtIl0pLCEdsLFO/4Vp/LDlAkXPSgwpmSqWFPU1jCvCkfUHzynBSbPLwx2Lj0Sx0kTuJjkraMssmfBNGiFPBFVAQCKjfqJn8zCUAwtogYlYzon6UrbpYJEl8xqtZrm25TMg5nJ27hiYRvnOuRY9OC8KEUsTT1kPnUmE3mL389UzhYw71weASkdLtyMW4CDQS23xPLRKyrt32SFT+dgwFTtiVThhYyzAfDPfXTbS9RIPSoFH5ABgBO5CghqUF36WOk7+E/9Lc8Cgj07ykZ6HvWaR7x+fGHwEfs4GULHN6+aj7IWDi1KHsQI4WOYt4MCt3VNHlbLL4Eu+6EPUYrnuNgROFg6m2aCyh/2ZvwgT5VdL0yPtmZ1DNJ+m0JFEuLQw4ptZLnfLmQC4pjhthWs0fKtJgh5luyrIeZ57UkNW2s14xKdvNbYKaylPodJUxAF0U9IubCjZJ6lzjANNskNB2YJYOTIYCUo53EKPXrliGzwrJBHM8qLLFsiEYJ+kMzj1rRgMIkcRCkrEdQJNwTfd6YKY0SDhQ1ANlhTTASUVGir39Pnr5ShCYZ7i78CrYKCnuLx+XQBi9ItXvvtAll7+vN7lu2/l9WLC2CDFiksc08XYfOx6Qz/9jkw7coMj28wVKTJbfqUxBRLfZWGFWTnReOeKlw3jLdQfjoNlhErj5wMkt3OVxZEBTAMuaYzDFYSy3ozJRIL0DyMQ0yq9m9liHADxNBzV8zDE/Z8CERIEAjL3OFYTqNGcsHI2w40ihdCyMeLsDqjzySu9eXrAF8VcEhTJHVl+2RJsUJ64InPd8uPmLYxvMOlOYV/lJ1q93sECYn+ljwQ05qQ3tmXM2aMZzO++VBIOEfNMXqrYD8pqEhhEpdgPIEFFqBZprqv1KcMRI+VKETP/XfOwV2+qS15gBYewksh1fwDOZcVdEmcgF4JCESxKuo7bY/yxu5C05y0W26+++mo1n3fHWYdHh9lEioaNX7V6jLHIB2+UE4FZsg3EdfdKp4bCo3iApUJGaRmiAOu93nS03dQ9c2KscSDWMGwAXl0q6D6Nrn7xi3mGBllWRVKt/gPii/vNXOtXk2ySKU6R5bkk9kKOQKThbgKVl6pGX+gjqZR8w/HX5AKuOMLdpYfPp0hDpw3Qcn7sWMoQ4Z6DuWachL5CG9/9tH70YoM2TTOJUh3265UcJ3iBr78LbETvHBi8ydfhOI0umYiCQxgvaZ8kL2nqkV1+uiIWy7M8wi+ugLIA0538Gfu+MAxfub7rl+tb5YP5ilWEAHE3G49EQYixfTADi/MmG8rv2UShKXdwykKR0jJkmF9v4W7W7KebSzbAwVqU5C5zj4c84sjrNOX0t8YkI6esKw56b5W15bllqaFF9wzdeHjwI3Y1aKjtRS74pougx5EhBmUelRlcIpX8vtFeckJh9AovjMWAsRoVZFEOhwc2KVRZn7t7yU3DiMvTPTK0TCIXeWLD1/34DFzEscMShDgYqSRFmfPlts7SF30yXDWGX5btJXTuik2OkL1bPFU9/jcp8lM95i+15+fedD4Q8J9mSkl2jucRpp1096C1R3+wK06OfDvxhoiFANEQzcIaAgC/6SUQhENI0DrcvSgnbmhhXvfGbbVpPgl+ojiCbrqt1tVNsO/Lh6P6wX0ZPmj16enli9vXkDEek/jcg5oOySdth6bisADS6YO9eIsp3jMTkDLRrKNfGDxPnkCNAa0TG51ar78ttZ37crnYGd2a+im0Q991kKhmvZ/MVoupUeDi6pvRWAH1LB1M2Khr/cTW0EVn9+p+IeiyuZx1fjp21V1obdWFn/y4NIrd7v1qtRjf3gg+Zr/lgp2SSjHGY9twk3Bf8wxJWEfvrXDBzNH8uC9gzL5IHZnWpPBH6i2istBqOFPwP/BMRFPold8SFxbsDeBzOwRcAncgVbArJGWFQTyYgQUAAzvHi3AGjlgHkPqzrDcYer2Amm0Jv/3pLT+t2XX9ZMCPKMoVDCt3iI2HVqyCTOdgwdFIEF8vd/SZK61asbCh1zwCRsWwYU+5tB9jRaNV1T7Jjiv8i/yhi3EsRSGK7Lzasd8txn3idecgQ5zEdlZVmHvAWG5tUVjE9XdiQVcVlrW+h9rIkZs4e5vXrSapQAydrmI2TvoI+LLd2Vd8adEMFXFL5YN/EcwWEVM0Fa4FIoH8P1zhrPHaxCmaVWBBiCkR3GCzy9mGdRR26E8HZd2B4rcXgHMS57S0R3h83I7eI6eTAdWz1WhrZpbkr3QzsfOEps+GcgFdfLi9OtPxClxIlsHV0RYVF2aKLxzxqVgufoaXOvVCfWSyZdgrjnGlxnFrPOVj41PnZjLWrbWb1lZQzFfyfayBmbDbP34wWerl7eHWSAJn6SZXgJTNoTBgwr+DXrm7TVIytjTwuYyiG1qlu1Eww32lLe+0ZqMyWKfDAhsKgsu6CDdJv1VVWGvD7/Yr9cGYH47WaMuVJHY1oiDz893Tvt/tjUcj+Tf23Ch7RzHAJXqAOsS78IOX2ctsqX/C8f7h1hdtni/wunJHTvHTUFNQWAEZr4DlwDaEHC5f6AF7tJass5ygF30ryK3QV23af3R5CyaI2toPZPAZBBqnHnERAkfiYJMrdkAsKmLyI/cUfQ+i0LlwOkuMWA3dur3bBkABVLkJ1MTzvl1M7lpU4uu7fpYn/MMPr3isb4dQ8ZGcaHCVzhlJVT4fUi+PdDd3ltgTeewPVJaEKuGJzECkDF1J0afc1tI8OTZcOIJPkrEIPFIoe/SQ7LNcRWB9tyY3ibJZjIWrbwnhZI8AEgtB/hatuKmI3AxoGrEOFjhNeJ6QFZ4oemTZJwMvlNbt3k8XTM3kP+nrVOslPGvMJHn3dtDfTxbUVkW9Q+XGinzF1NKYdavhqeE+LF0zDAkFWjUU2By3z6uVwL/WVMfJzIgIq9hpUpOutztaufG1Byktle0nA+pQ61f/11+Pn5ZvRt3Tenr85re386e+ykkjQCI5A5Tr2fjltE6qjf0DxhXEfve6jwG3F6Owh17j4vV1iksWWz5cuG/Ai1Z9mArWblV1MxP4U/6UCN3++GSmpz9LXavenr1m5cOHD/vnZdsooNpeBgaG4qil1nI6w0tJH43jwCnuThuO5Aplab2srbfnRyM4W41PD/Pl716e5+P2YNTpbU98aCr7v7c5p4mbJlwWo3jspBGVzr0qVLTDnOi/beSSNLTeqDtq9DXa+iqzuvRMaPaNvNbKxjwamVfpdayrqUlHKZfhxF80Ogdhrsamc691VmdI5Z6+m3Kyje+QtgY4t9TkTWXFrBV+Mntyu9xe1MHK3I6LYStYkCyQkB3rqGfmExVABgtgs9aJzACNa0OtOAiinaSF18yzEsGcLieL/ara7f/g5qZT6QkmcMKLKGrOL3Q5mT8ZwKs6X72TKQadVs9cvve7VeMypAdwJKBv2FXSdTey8dI231nHwZeervhfnc9c3ixutMWeKKXqew93MqEoM9IWHU7UNVVJrCeJ6TDbWLwN5yo6CBZAEg+IcmcTBFJIsVgQMCwD7r1r1jmhQEPkdDz0CSrSTJy2vdQRhHqPmhhAJIgAmXYRu8ZpO6rEYuvLoHuZPm51IThoVbXpHptP6pJRnHEUEn8hbAx1ymaa70q467PZ7SiOK0pPdzcXLorrn2P1mPy8xlgi04XvVHfNqnNs1G/ieSr8S2GnRnDmedLWqHJUToKUyclvmGjOd8QA468SCetAG1jOZQtiyT5RRCzxEQdFP9fPX9nMlUggtxeBzM/oD0UBTgA2CkNl9eU3z7XWV9OXvXZWkpfnU4Wvjfl2oPmbXg54Lupj1YTxU+wjZK+3DeoURutIY4mmhga/05WzULLtkVVORYuoq2FEAkCxyPLQqpKSuKiJSiFPTbw2x8Hm7F80JU+VMmDzh4rCuK/evcP5eB+uOhUOjSNiwcCE1cJW2SA0EtBRmLoytnj6Qv+sV4dacpD4elt+ePlaf8z7tw9GFzt5AQLOeGMC9Y2Vk0DTBcKThuCrRSYOV3ZKMFoN0wCkX8iw7asytcGmwUDsPQ0iriVGTFZEFEaWAMZGebIOJ9UWVOC1gb9UOW6R/SIJ8BZ2f//waqgO76A1jYR22hPxJytTjxrTHQUhPUV9RCBY/D4EnkTOwiojMa6oQl4SWKAj3yWmjpOIKUyd1wFnb8iMIQD32MLoBgUJp81323eTqY7c9AYHRAcJLWT6HD2zeJfculwwxy7cTfWXuzpuuJK5GoUve+V6hS/HfxKN1L7iLykVm3nXSwRpUeii7OT6KG8/vlmkNDXy+tFQZq6cB3zoG2mC9dXMyVstTydlXgJCPEfeyn3L5fdg4PWVqNe0B+IgPOBbNe67eG9yFI0DaZ53at5tJyEWMTlZLirbRT3aZZsUihxg9mIVZLOIjEiXRgtDlimPo0ZZBKatABcG5swMMpI9oU8yN6ET0lEkqhvFG68tV8GJcscivhCFdDBVAUKyJd7qSaEQIHRbH77+zCshyWi/0pCI8hJLoIDnw5pA8DpUnye6Pi+WTxr06TPc93HDLphRyvFLoS+IULLgZKIJdKHo3EVH8ke5wM7VG/J8RpN0yvQe5+FQoBpvm94LUTK0f+S1oi2zTy0J5XNaAbjESl7b9Xmwuoy2lnqS6p1so9gjZ/0PvvzmvRI6isSVV9kajmZHrrignBzXGlqXfbNYCAurvHX/LMLcl4y6qD++ezTz7M1ifv/Jq+O5R5Ut893EcdNzk/61O64pFUdN4WOkGGLJMZkijqDq2YQlLiacP5UiHmYTICEfWEAQN8IG0ZWwFRNE/rLGsoKJJVSBT/Wsar/mWecdeVLBZ/aGygf4BsMQqi8KbOKIAZwzvZwMzNNxCPOgVck3Qj+2ia7iXSqnmYZJfsUJIAhuFdu1om/86lT5ZraotfuXrim1Q7xgsVxorPs4n8JBtb0GLiRm5QC5IrX3jsvd+WUldhlfZDwLH6nCawXAyRDw3HyuUAjMcb7gQJ8P9oaBA0G8EujySoQ+n5t6+ep0Kdj47R1Cvd/Rp1vSv+LNT5fZrRw2BxtkQofYo/O/sqiC87ktUgnfL0FdD7uSq7ukXiB8g0cm8qLU+QKdrIG0sAO74ltyB8u0sPSUcQkthF5wAjyAqptibqXcqhH4lcbNPnPWmYqycwZrdizihTmH5iXNiTHyPSkqNRmXqQjRrdomfRI/yRYiGGPouoIOtgKUPoateB9LA9V8J8CNOm4FcvR8CkAzOC6KOtB5kD/w+PX2ZDxqv3EeVLe9SpWHREepZCU3jNsq2y/nGc9FnpC4AgJ08/JkZ5yDxA0CTIsgphNMAw6HlW9AShNbrN/HFNl51wKKJyUlg76hNFX5ryyADiRXoepzjEw7R8zcsqls2/36779+ep5/IuMvZ0UJ9tzsyDazXX2GKcSSVjcriXzRDaFijPMG7lgf39d1KT3U3n/1jVWbnNIyhsJQxTvEIdm8uiN66+rw1q9brfvb3uvjYaI1GUJJnnOqBczWJEjFceupJKMjEIhC54ReMFWOiKaSsfYyblNjwrZG7qoZmQSjnlxSquwRlHH0D+9fBHJ/9OPvqYhgNrshRn7QTWi1THUqSzhl/c1ud6BZOL2A1wM6cZLbp0wvx+oEYTp9zC/iNhYiABWnESUsLduaMy0OVjslsOJM4LCYryd6WOnTKbneoLdej6XuDnH1xEyBMbAqlXolildm6Wi0lJSY2C+0V6eRPfM80VxFELGFYu/AcmqyMhUNIJx6VEhv5K2cS8E2fyGMOBTyWw6qXKgFb8qxFR0tenCkCVrN2BQNeVr1A35oJFCK+8wzyduO3ZevNwlhXsVPgOFFmBeFITDJTOMmq9cyAqQILU3R0E9q09zBN5gS3A0pIDPGitgoI86whLAbEKamcZQEyS89HRqa1bVYFGmvM1WamQrvYA+qIiSHJqtPjxeKf3rWcpF5gpU56aBg3J5pvxJuGu9aOAG+RsACB+qJVRAzI/pJoZ54cXwXZLwuhI5RIV+RI2o2POCDEZWo3F3MnjfjpiR1i8QpKudEqcyl7gj0YFUEoy+XC5SMcPRruGPM+vI65sCJZ5eeqjEaFEbKPCXEsSxQbm6YAaha/CS/J/RKiZcmj671g0UH5JodO3MF9M5arDVz7pIVky6QX/763W9+9c0nn/bdMewWt4rjxPnEAQcTHEkegK7IPx2KZzNpGwq58DY5+0YX/+QX48/efvY8f9H2oTHUK1BPLVNI+ul/u1i33/MeLEanYVufFMMsXiZzbcQbEko1wVIVLPsjATeZ81BSxsgFPnMbGlkm4hK5430eAeaVGbbM7QRkrI7PSstpq8Os+OnVL7x//wjUn3/xqTHUjoqF0+61WibSKGA1t3qjXnxgNoRbzubPAFOQPM4gXN1iSMJyoYUEWtCRg8WSwTFvsck4MKotydmgqQ3YSvt2Hj+iX+yofFkjKd9M9fvVxSNqIzsjOmTUMWKgxMuQvqpm2k8QyWIcNGohBoJaVLdY1SW4EM1J2kkkRbwYAirh0MXB4WAKkvhpzW6eO4Sj54VCubAyxhEfildhe2FC+aT7QE7MICnG315hMkG60Lxb+C3xxOJhCl7HJxYNruVAvIV8vUhBErxVtrhjhLNGy8OTjs37EE9MerMqNg5KMqlghI3YDpxVGrJnnLMj0h6k9MLLyiAtyoHzKZsNSYT6iQX7DxbifoXeYm7GRs9xAbAlMzgdo9vnFpCWlC1ghcfum/1YnCC9IjccJRvIlwvtM+4FNCKfebelBVZFnYkFZLozR4x3lGLIF4VWsY24FlPtV+6proD1n02HVuFGIUIHQRKnybgAylmrKhqSj1M1Zcb3m934BNNyImyWSM+zKGM4vrkD2BSPtHw7Tt9uddenfou3ycrXkcH6a0PJ3Ivt8zcvst29gEVZtL35xQb9jPO8OKtxJsRMJL08P+LXr98mEle0rFOj2+s+vLrvNvpUg8ZWpRDGtNNdrm+cZCph291mdRFBWzcIeGXlaj7Se0ZK+4K6uDEkIpNWkH68lAR/mBHfLxDDYS/x80Hautw+0zULF6ltgxLiUOHrELxnKHjlbLggQv/pH/xYC5HZcs7oaJ77sOf5hV/ZCeuNdur3FAh097oawhMTk8Og8OdgSw46Rf8CsmFW0QcjEzigUcMFjtvCqdk9tjpbiVTcDTEETjQlppIYAeSOrhu3qRPkv/C1HCYEVhgbmwQKQdi8lo2FMsrlT9gY6VC0POuxTuo9yse8PdpZwNhCRCF7l6e4fLH8/vFO/kSijs+LuDC44EE+ZF8SSEbKZE0AMdWCeHVJDOcALTcqt4mcxAYLwyIorn+GF8DtsCxsgrZSWIylX2k4t0mqfvVsUmWZ5U2WiuEdfFa9W67sGFCip0aBFAmPtdVOtYfVhp1hdJ5WEqxD1PAtKeCwnWpqkxhKgUsUAJd7AVDcbCUJK7Qnmi7382qupmESTLLUvI6lXHWScgfKTG5lD9FJEmJJjzL3tP+ivJTN8w4nOQpRSgImni5Dqw7rE2kIlvg/qCEhwjaPyF+5rcttIEDVTAErlG/rzsGFHI/72DHXJTYkiZskKJofBrLvJeeyarxEbFtRJ8owcpX+JDZOhkTNpJVUUJNGXU+//WBmFK5hk+FjthP6pD6k8cF5vToqrDdzbrGYP0+W89nN/c3D29cNM9d1Eiw13lh3Sz1HylFG7kDnpAPgiXSZm1uJszf7ke/znm4o51pamtwhyT0eGMK+elnvqX9xiwC0/UaT5w0GWOSS0BpC5RGQL7brm0eaGtjUssBFuAJcJJCJ2Xo8tXspE3dqhs9l4L05UB7Xa49Hg/nyPF3xmu71qhXG5qqQbcQmUtlASSZsorfGV+k/gbyaqfJgzrkzSQqpKXcKcJi7bZOOesNt7Vnjw+1xa6QfmF4Uu6t0zoBUuoE1JKGlHFQQzJKgupOkiLXotqUvWAJXQO3/Dpy5UggbWYIEnA2FxMYrEAnm4vbRyeE7JuFLrhxtub77M0Qd+8zp5blhY2EE7lJQF8/BBvAmiJd2ayGn651CvUHroF9+y5WF+br/F3wsL3i7SC43oSK2zlKLknACRa4P8t2IRdQHq/O9cH/4hKXCfXIVSTt6iaaSWogh51WmlSSjRvQ7HHgH+FxF3yqx2Qc9W8Z1ucq6KMIfaTWhYKF77vG0ItBrgJYbnPBZS/FrfrqVhXyr63tkWpq42J1ayYISkUxrCN8mvvEcnUj7PGRIEo0qo8vU81KL6um4FpCRnTQ6cL0+63oA3s0HKMLUQZpupJ1l0M7V00QR0BmZGpZ6ICBSe5mAoLy+cCvRCa6YxK3RXfgzk4Bpq/N6W1lcupDs27KFfvt3v97v/1NPie3oKudc/ptHo4rDeskNtVmkcz8vxaf9TznQBFQlpFEM9EyhHrslYdxtv5IXYURNMcE9l60nX1A7nqUcCD0rTeDl3mvFT2SjJy2ftOZNT5XImchpQPVGCsoKGwxr0vQW1LiQLpehGBVTXfG7AgQeoMijmH/72eR7hny8fZNu76o39APodVYbPfV0SzYpp39zU90c+RSTUM5MlWsNqIXso0BiU6ANqzFoUCq+3+ReZt4MVxZy5cbT8s6Ims1mMLyNGlnnK0sjgmiYkRW+ifu6CzQ14LBM/SvU5GWPgE4lXrav9LpiRFAoiV7Bn8hG5xhY43MINeol0y8Wma4cJKr9YlQAoszNfQrWBWFcOa/CuK+/A2JUgWipXrhuyj3jGsiw7ENlqbEv4qIDg1xy4z5e1zUE88pKoiFGJIeBIf7CUSIcQoc4qZ4kiCXTwzedBLpS0YkNIXaQYQz7GNECVVAy1LNm1MYzCP6kgfYaag9onpH+WDNGnUrY1NESiyq1+wocuSgOgjcRP202Y7U2M29eQoTTJ8m7x8t9s6uLSG/Ven4/76+b/TJAvWnGDlYp16Iuo0KZmwJOM74w+3VFf6DLsatzWKOuZ3CzfS+n6K7Z7WxxAUIMCxrG6ulvQgRJVVbg2EyGOi3LegAh/eX0AiTtfKzWOgxxljChcEdkmfoJrLV36QZnDZcjiGK2MOT1Z7buvpQ8Pa58vnTbxkn9RtFdI/noXJedtsljzo/DpqU45CkL2yk7hGT1ystudtdsPk937367/cV/9oPN+neizJvJsts2AU2hwZKWUCfSaXhHYVIz5qZmw7WHdy0JR2S6GFEZImRElcPuwSwDhLAyBiZ3oOAb74OpNrW1aBrS1oHMPHuZP5Eb2iPt96/SOWCpFQCV0oKDrXQLGon8LWqImhs2shYwavYjZ6pzzFP9ZRihKQmN09Na4b165fGtGcDc8BWjGyOBD9Lr+kIrmkjfUJFQ+leypSYG6I2NnR2NTKAlzGMJSV1kYMSQAWZ6iIeyDBkouv0AlYoBwU/GYqQ3ce+fLB/Uo2OlZO/RuTdQpoywWFjEdV0kPvIEH6QDOXN6MVaCnrVhzaTudgSb6sCJCqdKdTC+Pe4eLUGcBx6Lb9E9dLSP+aCxH8fVfbUxNoypJd20tsLHkzsV2ofcWEI8jMAWY5CQBiGsFUsGHmFejnq0H/ecjrzJ0jT9W51qYxdfbsZnpP5+e9J5bZDxckTtiD2DFWgLwj2QZIKz4R1aXNI2sQzOEYNNCQnOhjb56Dkmv/WsG462FdAwVdOOjn0TeIRHNivvtYhLnaHO7swqfbjdR15EZdxrr3e3yWhKEzXI7ujjYQnbUiLFBRWpxAzkcxLH2CjwpCZiZP6UkIYrmIqmQ99l+XLRkHi7qO0HMmhp6tHOHSk/EZ6RnExyLsxSbmxEL0ES7pqUwDTd0MFVCQNxdNKkAxZqk1H8WSxQDUg5AmVAkhRQr1yFk/lRHPGoNa5gPMYDIkA8HaNcbRF+/FswIfKcdsQXplCMa6QYtuRPDD1Dl2i5F11mOvyMF4lEa2Ug0YUgUcjaY1J7kGdyH9AGcff3jx8m5mU4c52NHDCC8QU2mFKv9LFJGRjx6zOiHf3Ow82tbCFaYWSan9kEzAGidK0Np8Q/s8aoHf5DAGo8o9lkZdjv+4xX3TMjfbfretjgSczNbew5pkoWV10s5xFwkD4Kn5QSmBEGP9kdFMMar5vl8wfU8MX6ME1vajyxmPpyPSX6MHIvcaph53Rdq7Tz+CycXJpXMTw7OIDfIR+FNMCmgCWhNSqIxWdj0aSyuwiTgLdcV607CeJWFA7lJrHZwoR5CoKXIWVMUigj/uPUxxa9NF6WPKgofhGPIBzWmsvjyE+hhCQyZpyllZtkFTcHeeyd64MgQxYDXAk3RjN1uWHu5or4cwz5gA3i+O6EMXtmtu2yAzct+wgalEysqAVFn8mNvr1VzrBsLXZqrpgbHu0D4Ty0tHA5PgdqLbuhJAh8vHEgdl2Yn7bmPAN3f8TsK/p+GhQzxHhk48h0U/vPDYtFn0alGQKgDWU2oMZfMgee40nGrSEdftZ9Fy9xdlTrzb6/ftLzr8PwOVDKE/dKYFKwJVT6cSUARMqXjNmiG+uOhf+WCxOLApFFAF8EY5L35K4KIKG1VIAHFNHn/DeXHQY74kWCzDFVoEvWH9kksebNTbYS5qsQFfWE7bivWUdoEq9G6LqqNXSaSiyl3q5Eyz7Mniun5+PO0Na0dW9o30pmiYAULV4WkF4bFLx3Hz58+eXXJTe5XUIykCOGhP/bY3xaJ/nLs/fPL8iuq8rl/g33uIdng1bnIKJl2yOGiRFYp6W7BQRyG7yMVUOixhEvFu5uKxPZKGDFf0691IuZ9ZkKXX3aDYqTLdGgfgqJeaUw2DgECtG3+oblalhJ1Mr9HbSqg2ESHow24n+Wk2BJuICfw8ENA9kBRROBEBRL42vM2sKORUO73VXpuhjHnexoUovxJps9Seu+HWUlwipJQU4hx4BZ+t3C6CvgYmMFD+weVoRaEyKjNwcqoRnkQ0p4AyMrKBsMdqrIM17BMHIhKyByeKF8F/xJH5h0zd3IRO3F54ySPBGxX3l1hHYybnyYapcEArok9MrN8yD8vOCnvyNgoiwEt2gF/rlQCJemrG+WrMdZXrQ/MEZK2dTH3FhbsFkfoArmp0b6VAZiJpFO4s49omsYBkR9zMrzsQjGCEgrsX+iv7hykHA8wcGHgAbRhmMYuUtwYV7HU+aO2F/J06Iz+0WAmkUd9kNFi4nO+5/0g50kXE5JjFJDJzDow1b40TAt/XRfqerYJckgWePpe5KmOM6vl856WRaQu2HMZQgXxA1PxSoL4MoZZ2R9RyJETxpGj9CrGQbNm+4QLQFAcqbwwQ7D39zg42U/AZachWBCo3I7xsbcDMXTFm0uOo9FAEgctEGcJv/m3a2aMXAVoTzJsnviJa7zOmnoSZkpWcdINYpUbBrWBYuo111Npl9/9Q4PqHQ7h63hy0UUgHg5LSuxx5irMiu7jLXb7hDjYH0kOQQHwW99ALgtJ4dU5BLjJoQKQEjwyEef3rzsWttEAzCs0+sPMe89ok0lcTQAqhp2mTwA9uyeTHX4aAwQBGocC/o8NG9ms83L+ydh1k9vB/efDUdDI85xAPb79fE5ASsP+ZWV07TpOJiJhEcF4p34foKjPlMOy5GGTiKMxOqx7XgfYbejsZsEvR2JBReKCkz86TuExPV1ihtUz6cKHdqd3zV+pqDGecQcUCyfb7kT0r+SRG5rYel0cr3KHbKMgBDbWlnAsalviSbjqC1OWNqK99zcwyNdmRHc5yXOYaeWgXy8F5Nc31V5mVujNnwtxEbyRoYT+qgClcaBZOBauH9Zm09FBoazlisIFbvAsiNufOb/5+m+n2RNr/uwd85xZu7MDXv37mKBJUAsQQgkJVMqqRxUJZdc5fCv+jfbZVu2SirJCqQEESSxALH5pkmdc7c/37eXbFzMTuh+3+d9npPP95yTWxATztq2JU2QX3oKMkeUsjA8Y5OcWdSJenpxAcCbbEhcVusK/7uynA1rFZlhAWZphA11HzmQTDagHP0QrFnCfymltW/OPptJODk4/GYGfPr1M2Mqh+GwN6mV+XJtAi0Yp4T6kCPxnsiRQdJu5i/4WlTJ/voX5spBeuZC6RVRTPuExYKnEf1sbUQvaBFWsD2k4xODOp+WTzGCBGuyMmSKOHzUjsYqMvLQ/D1NAYU1/ZeYIXc8OwteCsMVuBLurd12r2XMcDBMRKz5K8vGrlPdNeuGsW+A4xtNXrf9JFztXtHhoM4qxed3txPO6PjDIbnswvbTU5wjop4QP8UYPpUuLq8G4yu9pOyuc/LUEZoJYsUJY59Yy5koPVoybTl4pxOxVDxrJKgzQy5QecdaY7KerE36cg8kVTcqHPYBNMlcP9GyXBHBMOllaEzZWK4395O76e397N2d8E7v+ejmqj8aWEJmGbtuutqj2ag++xvMrX8YFciUYYzctcYEmqEjHTlmFjxK5AhriCBsTeRNt78ClMJbiclt5XnMQvj6JodVcC6Gye851ekzWlH311zpF1W3CfJm2DzehKe0JO3RcrOoYnJLpM2xsVfOF0daEQHIn/Mg4SkqTcdB2GiPyqs4JdSScSe5azbNu/OBCLs8aER9FhoD8/yXkGBOwc1QatKQ+C2ej/dF9mT3UTOmDU3nyfLycYTro9GZObiEY/PkntGbPZTPFrf4nqWth3xK2CTbkQ8idu/MjucaRRkcHyqmh7UkEQmcRynZEhdOGjECw4ccajpJRysEE6CTVXNhsrTRvEmcRnbllkUPM7vNJJRcMckbSmYoAmdTypWrTucWtIXwyZGgM7IhuQ7b7mCzdJKmVGZiOWbgBllI18yhRHQHPuFnz8wES7Dae6PjCw9V/IH7gVmQbHSNrS02msknrb8Tyo6twEBHuFmk51dLtje6a5dMArp2pjakoKFVKDpbFIFtNO/Mr3VRUJ8LNK+5+cNBsy+RIW0+TLzsyHvmYHI+zvJwWM644C2Lubt7/PLLb8cv44iCCBKwkZkmr6gy8ALsFS0rV8dPbnoXV9JEOUXXQUE56e9lk4Vp9uvJXJ4kdOpJp6VKIwFs+sX2CN3k8DbQ/cqNlOwl2ST1lEiVYcOHo5jP43EBC4pu0x9rtZ0u148Tun+qvHWh8Zf2htXSB0+7H30wenLZaXHMo17oXiURRRBVFvTsnthh3ffNszRMamZadAc4QoWGXtMqgqmIczLbakNShZEDjm/bs+U2OFZY/pRXQa5hqvwyBOoLujYtw5tnU1HlssnnQvFQN3go7nRM09AAYc6qj1EoSqUHDSWCBkUWi4MoLmWrqT60JlIfDIMtZCBGb2QzyT80FD1GLsYdiyb326zw/LIYS/Uz/sY7IR0KMMZ5wBleoiziPXwfFYBkBqIVCYimKR7HQsMSBV/FSC1eiLw4ye/1aghezBL/Fy+3DolnQQmieyeOiuiwzjD2mb2jT2yXLcLaIQW/jqxOJo6wZ3gwqbIR+MOyWV/oDzhRV0ixF5EK5V+pt8TUp6b6ABWmhUFJ9tW6ws9iiO5Q1r00/ewZmSFHdhOYTDujblbMM69ixYXe2CYbTleyu1otEQ6+ELPQW3CD4CfVJ7KLChGZrnMSJvobKdjyoIoiTJUOWMVGE0y7pPhptTytRURKwKYztQV6Q4Wy2IF02gnsT4dXTr2TJg+M/oIxZFZmE8N6qTHKxc3Lq1V9Mq9tVhLg2aN8zDNl8SQZhyEGCXO8VX/z+vYvf/Xrn//RpzBWYOl4zeE5SGrRueYre6RS7Y8veoMR186lUECuxkzJcbho5GayqkGH5j+cHPEcmsQBrvWaCeVx22tyHUeJGlcUHc6S0kkVBMioTIXqSz1REESVJt8u5XQXS7WuM1Apyj0Z7NKzfv1HH1z+5MOrywt3n8DIdHt4kAqOPnCKwjxkqNQAC/p8UAiCoqh3qhJG3WbT4MqQckJcHipqz7OgpMTKJG+Tq6+a80s92JxYN4wo/03kNfSGDuMZRh7pfEUQ2ClZp12vSDITOa4WCuKcRwoUg3PESc97FHazN+4av9dJxMH0RZkN14UBmClK7HEDLhlVZ48Az4YC3T0YBedeCBcrcUnL8Ix/+3L10OzfvayE4mFGuZRXrEZvoO70zghznV9JOXj5we98Y3PwQj7q5c4xmHMF3yCJiF4TZZNKEvXLXz1ApEMoIhVq+ertRRhM3vP8Fr/8nmbxhthY/N5wL6JxSDY0bnW8vUr98uIJKIL6/aSByJP9XCt4iHDexJZxIU8mbkTwU0jQQ1jPxDSm5d8K0eyUGHZK5i0itBkp7LSY9WyJwgywvOjVBPIizzy0J7VxCMy2Ei3J3oZBPKv4F2xMAWUhJRPiTWSfdQ0DAKjnrfbIw1gAM51cMvY96XKBa564/yVnTRBVtpN0pIhACaI0j68oBL9H0+dY3cPkTkXWNHjsoqi8Qs4k1KVtLXULw1493d4+fPHFFwxFiNl8yiK/P8GcYuizeBwgAKOlxORjRNngwnc6/8mPCCX0QNBgErOurRVsqzhso2i4JklYQwTKWZlnPlfMChrMTYaFOM5M+80UdvQf8SE5xHrUuu1xvpxrLkfOJNTcvOmUf/jy2WefXj8bi8BMH+4Xw/Ho4smFYOHZFDAuwv6TL5Xyxsic0FNBzR4oqb92EpuOzC+LP+FNzBleBbfh4DF/uJf+dNZXETgeSQZDlKPg1eyG4yycHScm5Eyd7U2Vtmfs4QI76Z4+jhxSgQjA4i3+bxnnyH/BAy7rI+etyzVjBp7bvsviRXx4DPkGa0ZQ2VRLLBjpvPLwy5knz6GfgpFcJwsL5ZytXNo4d/FRvFAwe6GnnRAuiwSKxMndz/8izcmY4ooFDeeDZ70MTVqEeXG07XWuGm04fB8/szyd683Esa8YwNNFJQlHUTUJOmAr1iPZF0Hgoey+5JIluXu6Wjpapr/+PdXmxugFpxLWk5TQ0Mh87cpWDFcr2WrjoiVfv9S2n6TcVLer02oxrWymqrdsk9Y/9qXXbfU7M07t9L5yXD7O77rNcZq+7lT6mUE6LeGHFrTMQLxGBJErRJt0jy2yRO2YBgc2jMFAPOHe+KAqgop9wv1Cv/wXkUcRg/2amQD7YuKp3H/aGlDa3rg63dpt/fbZV0CZEe3x/HlBFbAAVq4jIZME5xOUQfG1siJuU1f5ue5qb0a70vW6MjOPspCgs/1SwKfV1+t4d9G/eLOc/PnfvPnq6+3vXfYP1Td6tunk2jldSqpA/tGD7WF9dVq6vcWQC4LGMWDAak2JkncOZtmfnFa6usVBQg864AYjlFZScdGdbVEGMMWId7OpfOdi+XYqK952IMsJnL0wE4+9YVTcvd4Z82WlNWDVLU9a5uoRve82y//ok+YPPlax2iML5wteaKnXrRin3ehppxH13+1p6HOc3z1WBpXeRbsPin1A9INTeaFTRbMLIHhyXCfAAA2vGl2iNKZjkW0ShJWzQiCbRapDNYVJPhDtNiqrwyi1yLZ3rQZAykA0tQXUIi8HjIQn7vdzmMVWa7A+co4N2l7yuBlVksR4fBnst+RQozyEwdsojIMhNDVUiwv4Me7CobFAOHhTpR9RkYpWzetPw/rOWOiqiTq2veUwTWWoOYpBpW6GuSSTkRWiczwJFloGU3X2VwGm4IS0p1tqeQkVJEPQA0zncXg2YfQIkM3janM3mU5X0hvgZ7VOxhEk8NDt0cQcE+JRfZ/RImtNLoUULL5UXXdrPVtkhBRH0o2kDf2egd0sQxzQlq2j8hgoBvUJuLDQlKwEAiDd9VkQaTCNF0qeiflEjDFUa+YPtdGxDPzBsWzV4Rhwi9vV2syMS9f6mRch6xvRVkijUDC3N4hH+iG9kHOHKO50vBJNKWe5u7Z5UaJzZdmO1Zwbx0hb9CnqZktUeUXpteunQdsAyi1Aod4/kp1EiiAQ/wLvhbksWJtiWAVaPxIoXBw8QwIpMeX8nerkAYMWbVUYJ/jcCmSlEOzUOU6xUmIa2xF8Z6sq4jM8jGPSlipGBQsgBob8tKpNqadFGeqX0Y04SuDzotny/YwQ/uyTVnPy3e23v/7i9z77EGhG2K3R0WMxKs4M48FouFnpCQNOkpAm/axjt63Zo0Ww0uA1WL8AtGhsD5UUo4Bt6h3b9YSyhhIy+HWtl/duPV09vps+pofL1vTk40K19vx+tb9bGBZy6PSbBrIaIzYaDx5mc8N8aS6EfdFtXgxH1xfDFx+0Lq4uyQLoedWS9B86JzskupkgCRlLqGx3OtmT74ypc4RLt0cqhKVcFMpxgzO4PgpTKxOWOvPKwdtImxGnwKPkN5afaC+biBBPXzYpdi26Ozq4o/sSkqeBt3MOqRW02uVOvT4yNIHdsT8O2u2ZhFqQcuZBZvgf4yrhuGWtvC2Cs3BIMZxjlLHHAv8vgouWgcxYicw02kbJPs8ogAH93o0bh+MOMG7PiZA5hi8n0ONi+cr7h1tIUQOukaglUmNvub7jyeAaTxUjj0XnvTujg8QC0j6ZbAvWzJUCcT5HS0hMQUzL4HJRBrYidpOuDlwiH5bpEfcrrK2Yg+ipMDeimEO++cn/8ywVcHgjyk1opnfgbAMIMtJoEcL1Tq65ohKfEfjzmJI7pgOoa+ypBVI4dlxsHkQ2BQhFa4rJPAK5tGACO7ZOUaN4ppkLLaJTp/zMvUqNDiJYtsKBWItBwAPekqorMYuJIVGbkS5hJj2pU5Yuqe5VqsNKpqKMSZ3W4mxBbG/aGS9Jo2JUGzuBkNHqO5EILFvYDxWNZoMBEFViETOdhEaQzfEw8+TZBRIlmOAiBX12sfBq7N1oACQW9xDrAxW4CB7SxB0p9OvSyyvdDdSIHEz+YX6TPki1DMwq5v6kN7795s1/+o//6Z/8Nz+vXbSW62mrRaZDx1T7/WGGpC/1TlEpzrxTSsWTDIgxUQDKoJA5AYhU64BOOFN9jWC1iOtyOnu407QRpIoBv2f0zu4eH98/LtP7eLderOAu1d28uZ+9VZMxbD+/uXr+vKOYrTF4/vbt29nkXrUr+NGLy/aHzy8+fP78ycjAos5CJfsyLZQZimjCwa1YT4Zv96nklkjS5OGBx/305rkSKhpGgAw19gedVq8hcra0RkZHbCZAsNhydiq2ADWRtGOYld1K8BXWpL3Ecuy3wv/VtE0KniwCt+6K16VJoNOSD4LnCchWXMSonm05Qf9txdzOiE4pDKmylomMKFi/O4S7U0+pAt7vUQcPX7UhTJY7n4uiNMg3E/0a3Cc+nY0GbcIhyUcECOnoiwBnjCsuh72PvRq2JKeNV2LjpscDOuGgsgb4TeiIwgUhiXzOL3nHgQX5HqMmKhy1lLyWrmUnIYbUQ0o9gVLNdUhaVZMSxxCACYQJNds+4jochOUYUxJFTsRzhPU88tkmDmaWx8dGTnUbuZCuHzFkbC/tm/6GNPSuJuwrWABvJaLkKpnylN4Mx/VC7hGGrrxftY4DsENSyxapDbcHDh5/stlo7jwHjtnuqprBqb5gUGPL5SI+VlMRB/vEZPHVRi8CyHX1zcCecN6btXCOtGb5sAh8n35EAIng6UdS47Mdlvpw2KroPoTCFihCR/EQGdge0/mn96MQDkVsE51v0eGKTLUVMAhgBH5XXByHnz2XIsyQcE/2JlwuliWNZePqsrtGBdfqMwhzAVoOrSS0aAeG3zL7xs3aelBdflX6d//lP/3Fb37zB//wlTAHoB67JBZpYnL75ruEiFR+Kjakbkm9wq9TeZOwjyIruAaBpUUSzvv542Q15zEwthTlZVwiDavN93x+O5u+Px7V4giSneDgT9q2GTg9283Lm6Djn12Mn7Ueb6e7d3PHpJL98kn9yVhuZvj0qv/0sgXW8AjT9PDIkiw6DKCBpBPlySUaQUGsZFEmLDR+e/hgpu0IuQZ6vUQZFB5EmQ1Y7KB1hSkITyccDXB+MaloiLjahV6NvokestEIW5UYoRv/yqqTABQHlYhuDKo6pNqoDohqgyNFWUgZ7kzw43eVq11DUVxOBI7Uq/aX3wdpCAc11TiPhhemOUy2i9lhPRI2VmJRO87SyPmAwZ4f6494WrPHTWtOE1ePILYackpEhsv5l/pm+SdVyROJERXEAYhuyrTOfhJmFdcoMpy4CrMwjmxdX1i41b59uzTqO84mMw1uDzQRDpIVmXxu4hTEAM4LmyM0IoEZvi5cU6fLSWhWAG7h5R9CpKG94uWBPZNtipLBejEE2FkICs/uy8J2ViuEw8oXZa2d3k2SsD0AqK5arLfF++NiapRCZbPozBdCR0QUL7Knn8N8qRMKq1jMX0KKPWtfyTg3SbXsYlp77LAzVkqtJ+93D5NjysfsteAB6GP5uFil65JROKV9a1+9ni6fThYfiFspcDuWVJ2kT/aKKmzIliVYpo5S0BM/eZENkACCS1Qbxc1Jwth2BFRBVKbQWIXlK1sUSwHZuKFNjQ5g4qYvYcHxJCpJHROkMLFDXizf2D92mRRt1Ur9avmiVu5wYIghfu2+0tZ557i7aLWv2/Wvu8fqoPTrL778V//+3//gFy9gk6QyiWyRJDCPzCC3JxDyj/djRKVx6LDv17I5337z1eP9BJeagqw5+Ojpi+ubK2A/0FZT6TVP4ukzQGqd0mJrRPP9tjbr3XSvrp4wrKrfnhaHxdPr/mzYuP0i+oQTD0w5XRzff/dVq7p98Wr46UcvhwPjHQ1ZITVKj4vt3bv308mEwdlv92kkTEu0MyIZbyJoTk+CzUHKJD9O1ycOafJuIv/HtjFHpLbAbNJftAjhzHBk1ScAg+4lM2xxkAcFT9q9mA1I1mnoYiuZymONowbQAnslo0ULUhLYhlxMMb+4NsXB15mX65o++7h0a4SI7J8uS6NRq5oQNOZQUqgR3qa0fnzkTigiCR+WWkoEtPOA6EPSIoqn5XE34YitS9DqSyYbr51IbDvdJD8QO7IhSFRVFdkLFy7yFriC+crhowaBbxjITKRYmgHcilslrgiGaGCgRtLTALBJosKkSD5XQ3zPHvUYI8OKoiO90v6o4NsY3ASSLUmtFLJNzZ2XpkwcKJanDRd5JxIHdlxIw3oK6Jg/ugIfyqVdmVToBS73enJaideUVBu3FotO6TZLJRf22+FyNvBolRL11jvpMzWtgEHMV8cl9y3FVvEdeHlxMtgBs+W9mcwPgpj7xWP1cdE+nCBPnSExrGHaRpnY16/HulqV9GJoPHlz9+pxtSg1nqOsY/uyUxmT7XczFz20jAzk6qwQi2JMu2FrIxsLrCvTmraLk8zPM36L3YDGePssW/8iePCdj3M+eJgSTzYzBgUjgEUhHIdVi1dkROILRdV+fGUm3KE02O6fHssf22thp62ajy1FWS/vnzVbF43TtLJ93m+++2bz1//xl7ff/cOPn3wSu8laUrupSigAPbsHw2vIRq3Rnc0fWJvRPHD9y9XkYf7mm7dffPFNqTESKv7k04/+8Oe//+EnP9weFk7K4KihQtaHyr6xrE7K4/HFBx9+ZIDYuncar++H2+r9/rb814v7d4s3o98ODx/Wd81XTy8+fjb88OmTp0/GW2pysUiBwlEIeU2vro3Q6OfUgQpv7yf7AABAAElEQVSoa8n0gZ4TJhJsjpOFISCn7akuePyw2mpZTXfTCCDDvZ4ZmWWQfW4ZeUfuc87sHjWDKG0f8c+cgWZwAH6KnWhrZSxOFVOjUuygpy794VMGgWwWdYO/iGwSoapzer9mRmelS72xanYd+JTg7275ri2dEpRlmCW16xUjmtCufWPMwYgpZ5ZMiINZKWd2Xa02Nhi70epT2e3+qN8ZtKpm+QDTiIRpy9A0RQTRBjQS85o1SgIV1e6kihoqdg2ykp+yjkanXEvnVjE7wp4nyKVh6LK2EA+RRlEh4jjEiv4AOWBwBUgEN4JbEL1ziXgHLlQ2xa2yiSHN/M9v42QlU5naL4N6o1yS2onSjnNE5hVWeho8uCxDTh+qNG6wf5mH6DrmVB5A//Fq4/28NN/gNw0ajuuZTgHMPzuB2mUdOdQQ0gLujeZa+UIZr04WKQMXK2buErqyYlTXSXeh+7RBwPSyyNtFC7JASg5wL4mfIH/mr99HBV+9r566rXL7+N23V/PpZ/XWfHRZVofcPI5sihERnidOrIloyn2N0kk5EmqjG/PVv+8lWRhPuDvyPEEjjIpbMGtMUCzLpFQ/QU+wdDzmEro5ETDwYgFm7khsOl/Fs2Qt9jSoWdC88PJhtDm95JjDvVfgbCABWDTeeRp1KqPK4ZPd8breeaLK4uvb17/8m48/+aipMXadoTDH+hL8eqNoF+jGkea1ynS9VBU2EpDt/t7zJ8/0hPhm/GbQG/+HP//yv/znL3/96y8HF8Pf+/lP9MCYbSZPnoy7rXrzalTpte9u3/X7/d4HL0rrbWu1bL7blx63g/32mlI5lQbzVX+5H3RGrU+BMssjQV2ybar4QYS4NlszrmfQJ/Ec46lGGWZFeIfgLsM21Oai+AyVdPTf3s82w3ZLkFRxzNXV5eXoUkJVxCptLqVgiDbk6ZA5ERF8SSEwHB0EX4r5RnUlD8fxU1QTFBDjIQ0pzAHunBaV+qrb2nQDsU7UtHc49Xc1nQs7ctn102VltqzORXzax/XwdOzTGadVY7syNRgzMNdElfDDaAWAm1sODtWumvvpBh74clN5Ve7Su5et0bBjZGGpVar5Z/yrQEN/e2iv1131WzQpIZwARNXH/ZvYAjKnsLpSO8jM13RETRl5ZHtz4CKwTLE1qBpSkvsQvCKxoIAkRrkSNk7qYKCuNw10IgJYnKaJEgdqfDUupzHjrmbTKFQOJrAOLo+FJYKgBVPkXfaOagl5U0SsfmYJ675wUtF5rEeKObljellEsPKwFPckrEoGOa6Xp53CPWdmVVUuCxxJrACRR3LFaYtkQxhJk1Dfal7NXS5BADEVhcwkI9AGDwBd7Lq8UekJvXDZ8IEtHLT2e5zLA942Tu1utbe6u22V9zfV2lW7q7B2Wl6rwYPHJYx2WlNyP3dzvEqmeJTCA4gnGw3OBiNuU1HBAAjMKc0eQi60pE+zprFc4L8cSbTFLaf2lqJoCeMxE7Bv4cLgaPyqzSYfnIbAWXrkn8rdXekKSKnfYzFuJN1FPJqmxJhRLDF1HPEAys1nFx31qbe/+bZ0O9dcI2dyTA9wNf7dgdHFfZFbl+Tei6VKPvR77f7FRX8kIFT+6INPPv3hj5/dfNdu/1+/+vx3f/GXn//kT346fjoA8jJ9tV3v6gPa3u5AT06gjnUqTnCi1zq10PGr4UXzp9bVeHLxbDQaKd36bm82l9wZaYgGjPaDDdvfTpb6BgnhCiHFkEMGRF3xAqDAVayRRFOQRqXOGZ4uN62tYaqEem0kstwf3i31VnTM/LAoTILQ15CUaAde9ZuztRPOzSvvsMvoiJAVeM0ETfHIVJcDVnnzlT/z4KQ3auvG4bGxPrS7JTrt1W7dIQpbGUYqSNk9roR6JNVLxmxqGUUhaNxBs+6k9aSEW1iImCnVZ5VOs7fcXUm0V5QCt3ZzHq4Horjax45iwmqnt+vqgAieTr4YSLraG8pw/ie86R3oImwi266LehEO66aupdximZgekf7d0D8oGqSL0EpykY+BVzVpTYjJxF1WRQouEu7nUmRCQjKIx61cVCoypfSzc4kY0XwUm5r7AsDHpWBoEqwyGAnHIxGIYAoXTUukx5qgfKkUgZJoIwaFgvXa4+qhRgSe66zxnj6SMoJJRquKrspirtG3yjHFDBami+lJJ4rGguAq99U/KE+K24JH7HKKAZgMzo4cdoP95n7dHvTWx/1g2Jku59vHZfVBWkePXIvSk8S7TppEYSFvFvfY8qTteJmnx6EmYEz/FrmXRU1JAPHBTUF29OE2kXAxhPAt6SQfzk3wXW17fyYd9GHf6Xm9LtAW/Jzf55eFBYJy/Og6QJaxfpNwtoGGZvpDadQ2TCad/cpXN6SqBFPSjHeLHmBItXqJbtvlL9893v3Lf3P3935y+U//wWo3bRixSZIcEGP56vn14c3r1frd+Mp8zvFwfNEaXJolRYYIWgucsgD/qPXxs1f/w7/+N//6l7/65Z/9i3/12R9+Np1PWz+qVm+0UlDINijVTa3Z3t7OUXxl2XiYu/rlWETp2ZBRrSe4DkrLxX2bhVltrKYqBhJ8mcmNbrfvpwZYCQQKuOqcNCaxksHt8j8iM2V3Lq70uqQflippVSo8vLt9dvN0v/2q0p73rnUZPRznqcTY3k32x77UFQBE00TfuBT0k6hCnCbBPzpXQNO2Q406UtTNYGMZKsB89/ZNt9UZN3ov+jedZqWtUy51oG2yQcyTSluqy9R0ZuXjcVgDJw8wQ2jNFvGrAdpOhhCB2BijUG3c3t/1Ka5RnzSqTlniKz2UMz12NevFsFosT5uh5AaOpm6OD8faVBxW9vZw29v1xOTFGI/T6fzN29uHx3cw4D1txgy0ZxiTbMt1lDmhVR4P6lcNfeQULZtKfIAIi7lpxNOpwsBcmehaqY4piWEM8Z0GH391O+30V/32vF+5kARa6V05OU0fSmsgsQc2KIafrPbvddZC2I8muSDqEu9b2qTU2Mzqa65yU7zPbN+ncpMCeYWOhe/BpeQhKi3V+2xadcWV0rT2eqETcaybSBlhasj84lUIzrw7H6CPD7P8piD389fz77mEeYfMZMIM+Ke4QZmNi30TaaX7HLBI9fvJ/N5kpf5Nbat5FceDnAp2r6WZR4VTiMWRMYsET1oKIwJPNliWGeVMyCQCAUJAnRIapxN2ZmB4O07zRG6GcJJRuAzHxMTlWlG/rhaRz2axnCzVT8WScxEvdnF+6eLIL26xqyG25OB8mwgU0YoOJK+FUFuZcSwOV+tUh8P309mvP//tn/7Jj5t1EYIlu5fgkvLaj641RQ+i9dDrdJPEClptr3g9+99udgha2ew/fHrz4Ycvf/RnnyyWs1//l796/frb3/31b/74j//o+uklDEB1tpi9e7c4vR62x9EJ3W4RyQ/2MILM6L4qHVUdNgZwe+oMHLP2CeDcPBU8AHpXZCd5gozInMv5ZZO9BE/9OJU61NIbFn+3u39/Sw+PBsPBYGhXvMduxwpcbdP6RqT9mBa1mRZYBxJu2mLvOR9y9q9Qtvhtu1idpaG/en9le+JS6mFk8Lqsg7S+xLmuUm3aarNYTLV6Ty46LVnJsWRqUiSt0BzSkdoxKETSI1PQY9+I9HSD055ulsdHlIWs5PuYCbX14XHB/0qiddOJOhPoKN3vt+ZH7zOJjMSWgqo+rsbT7cel9k1Lln8nPi9xtFfeJ9Kt39eiBB69kFAX1oK7EHuhFniudYCEhrhfAoj8UZdKq9NyvwSbUtm/rk6Pu7cPU1FtI541GlzMKvP5obreCa+RqQi91tywsIRZBNYqj9v+vtaudoeV7uCYdB+MKATPe4K2IEFbLXOg46hN9mRMWW40+6LcLtX+3TbJQGRtt/LubkHoRGVU5TnAlYMmkP3VN+evvjm/lvM16yq7gQm8PzZwzK2O0WmGC5SrFw0haGKrfFvu3pV2i3IvdZr7facTRoGSqBjvXa0+rt+HQRNPoyL5isFLBvRTE5hJMCC4P+wrQR1LwbnjX1fggkVH8zMsIT9aRASKU/MSKfB2ZlyCT1b+d4tPkqp4ZaxPxEDk0BkSiUDz4HFeBQn57XEfBDFZs520VNF7e9vsjA+Vxt+8vt/+63//yX/1h9c/eSn9LcArWVpvDYajuqCZ6NJ6U+/rogQVZV+KqIxNJjOtkeqgR548ff73/uDnb19/R2NctnoMpMnffLF6+5qKzvBYSEYl4lc9QZTlALaeJPJwWp9Jc+l/EGJ7NAxHq1MTqlg06mw46UUq35ZGxBRxNpwaoFYSnGlyHhi4yIHKjRWsg5yMmPBuOnlgK19eXoqNSaq6YEgg0GXi27UyUxOqV2ASQJj0x4oO0YmcVWL2upCPGExwJhuYKVs6q50e0o+40S8v5Bgz75vuVZUFpcoCByFi4BctBzx7lkUKqYBLa4UxrwrCtaTQuCFKim61jGCCZi/DsaIqQbEkSMSeq8AIsclIbPK5KBVbacLYnN8tv0OQsdYkaeGndpXRsdYXplFnKN/bhGZR7CEkrbmxLOCuf9KvSwTjqGg5vfQLJYYCuuWeZ5Q/N65Mashet6Ysw+1mdlLStHQNIdUAb9prF1qzSg5weRcyxxIYx5QuUTho2tCR4V71mREv1dIs7QGl7lPy/ezG0fq8aJKj2jVoNHWY8BACKvxIGa1G7X+bPHoLUsrRJs9nrkkSyQVCl0trM8Kf8qTWGrouONb3BUvopouuhNmcQ2I1jsxFsAX0EsfYI4wePHiKVKbr6kTTsaq6q6lGhd2t4Q5lhSlFG4Ka7GPBq/GESFb/CDWKSMIopm8WYlk4kExhmYgn5kUBiA5SrsnxYG2iNnHjvM6ih245r5niDNMWiz9Tlff4sRHwfNbulSf6XiUrW2b6JNdHW/occkVFTZRTJRk5U+ht8MXpdvL56z/4z7/5nz77KbzAZvWgaYqkt5l0g6FujLdy8WJzuWlhuOQGIUau+B6qa60fvxqxevP50xeQQh6VkymmEVVHjgYuXSs6DtW9zahZO9AZJI64k5Zmw7GkKqfVm3faRsyW7ixuBkVmUqMWG3AcZfrP+osHi3/ufOUJWl27Hp+BH5RoWqwSWojQPw6GfREwXquG5CqGwJCRcx3N6thAnRpKkYFlCPIAx4NfvLKB0gupfwjrer48rFeRWUsByL50Pzdf5di4Kg8abeGR7XTFnW6WZlqfZYZlZSL2S4eQVuePY1on1dd1q1yepN+5snaKLLYWMbeQ4gPeBY2xESQPxRBfR3M5rJGqUcK+JLkjj2xJxF2nR77FuPCE3KsmdYxQyku2TrDhmo+jdJGSAG17ncrVUSibN7QCAnBbbqpn4WkO2hfsMdQlK8nHlFlqeINQ8X4+ne4nk7WgrbzTSaugY33tFutdi4JUrM6RJfnsVXrZsCfSB0+CEnaHt4joyE9n89hkLOWFWXAhIzANYpyU+IgAU/RSufZ4/JjqCIeQmCoMxdnzUGENitFekElJBBV6ySmcD8O2nl+Al8mf2rGc0PdGUZwZTmhkn7qIFh9ZuMVhius9tDYP5ff3szcw+G60FLcvQHYuQjsmBBIblRN5PvOSrm/+QqpKEHh/6CMEcWhJ7hYMDCMavKUTjFQtcaaLhaFBTxBe99VBRLeEb/MjkZJf5lkK8VJ8Y1/8SIwiFH/y7FSEJslI0JWIxGiY/a6zPU1Xp1HVgYCJdL96M/lf/58///k//q8//ODGNnBZXFm38M6o02b44HfsiSKkjyIPYt6Lk7H/XTzxDOZkub2Z63DjaBv94QWcUrM54JEmGJlid9DENCgdGoGX1n6h4Pm0tJusp7MJLFg6QuzMo9lrBg72xcmDpZgupnDtWkA4iKTO07YC8FnmEu5Y2Ss8UDpsYXgRB3o1wcLDQXI/tq7VkuuH0mQKJ2H0FvsH7kwQpOBDkfckDaEMbF3g6Rbpm+IWiQv4TaIpGvC1WkueD/TCWk/vQ/f62bHRP7RLgryH7YqT3Ngzjkr4uF1Zy196OndnMNJuPIpxdYH97i1zyeXbNjZ6vJcp2mk6TFIGNk+nKFgFDxUSHWtapb6rVjyCfWfNHQvE28VN8LPr6a6KPQWoMrjGpjXpL872mh29TScbnFCrDdq17WVHouRxbjrG9rScahzW1RFL6Zhqko6hmqmAruqn3OoZKQSav5m/0Xen6D8HRaCkpR3gBzmogk14jZ3HVmiz2Cqa8OzqUiICFyl6zI6Ri6FCRlJpmj7IYqGkBm0XmIC6sIRadtp5yhwlPlv7rz79Y+/BJ2QFO2OThp4+nrg8KzRoy8KMrAZ3YbvCCb7x+v4bAI14kogi8Asi7GxrLjKFJEYqEmQ+9Xs9WT+Bsqt++/3d11988+vHxdvFLtjwg1C2PhVw4rlI4dNhltio/uNZpDwZNRtAkzNjgW0Tw8QI61WsVHMYVatZEEYoldSpFoLd8hINt6r8zQb4mohy/mhVefltfl98tvjJX8iciIko2hUrUMiVsvARhM5UwW/jVk+DenGc41zRNJBK6d/+xV//yz/7i//l6qrbHjBFKR5hNSH8djcgaqFnC0K9dtezJLiT/5t1QACG0JlFBDDWZfaz72KAyQGIRkC1C+4nqsh5PkJPM7+c4sbcobUkB/WzNpPGfDtIboMLJrIbRXcsUipWBkoplCqaEAtlAsJYKzHE2ERVwd4nQ3RAIINnrzBXC8hboRjBAMuV9XwG2rg9yJ+luhgOiqQETmMae5Qmlj3bKejc4n31ozvaLXTmgDrH6nSx0LDeM7Ks7vh/LM9Wv/2yNwRDz2GnAHu4n2ASGy5dj1UjKB8fPVrTwKZmmyYxB+ebh8NpDjGRjiJy8zm7QiWZqAd60QK9aDRuomINtEzGQK4kWQGZz3rtSf25AQBLLnnutyKJQ6/kjZtK0oiG8IrTUQ5CpLVCrt1BY9DSqPlh//7h0egn2INKfdhWaQB6pCxggyU6Zk1xuiLUW40n4GD8nzhK1HAq+KTqWNfk21pgwI4C1vHa5G7hEhjbtpTNaccdTYixIFiuhz3ElsKzpJ9ro0WuV78zsjOSCdin9qc/+SnG9pFYkQCQRYk6LRSCpaqKl2/qpdjrofCCY//uq5SiXxKs/uaX2StL9crg7Jo8BDEAd8r+kWnVj2BSbjyptkvTyVfLSWW/FPISgxHwrsMzBV7qFFhGkkEYK7StkhpLJfoVshaYaQwGXRnMdXFf1tp0prl7/Cib4h+vzTKsHtNFS4brwp/Eyd8t/m+Z2S9cXN41jOzm0bj5WlyB0e1MI76zMc2ONoJFzxwMq+vLYirRQ54QDzJR/8f/+b///McvfvzJK9lxyhIz+mCz3UfEOT9eh8gILw40NRmNtBpUae2v1oWG651U8/LxMGBjA1e2q7YKOBY053q72NylHf4iXTwJztViNplMGCCy6TzBh9s7yPyU/uqazafWsVKxzFjdScX8CM/H/8MCBcA8R4M+uDvWR3cpjglheMxitkryDSDepLx8RLCBuBNtg41aaeY/EWL+FFngVXxBGKGwwnH1Oz9mw1NZAezD1Y8sI0LpIkwOus8MvLoavXx6RRmeIwrSG7maQL1bFFr6nG0ykAAUrDUfVN5NXv/F52AUvMpofNZsYSsh0fgAMXo5wdV3x6b2eM0d905Npkxjh9LH7afTsFTvblsaqe6QJETWsKWkqLI8LDRDcBiDRVowOlo96fYDvc5b46vL5+XxqNV9d3q3eTsdnPZXR1G3VntUX3ZPD2A9entKOsG1oYx6x9g7/kHQSkQVSybjcKxKO1WDup0wGYwQG4Q/rFk9PlwMEXCKcB3eC8uT6qyAwCrwLm133hNqEkICUTsQjnrtw6c/i9Lxo6v6COu4oOXQr9BErMf83KpOfXUMzuP8cjnfeDdyKCgg6yThuHI2XRSm3G6Y1yfPuGjXx61uW1h8d7zbHG+rq81tZ3OLcs3oxeGbhXdFZtJ8HgUFn5HaVEPgJmzLIC8zI0Dcic1P6zSfNAcMl7lIukKr5X4VZI3ncKH0xU9IJTweszyCPc8WrNl5/b73GxvmR2ZMIZcSFcunuMTF51TuyRjUxaLRs5SNRqns6f1hJjkjlls/9iql63FX9F/46eH961//5s+e3XQ6KenKhQE62p2xKJASQzaKS0hYkGNUD76UTLx9fLRXg9GF55YXh0qh8Ga77WX7pA51ueTuHhQBaIl62C1azfLqAXNlfiRpfHbtSKjp41RFl+7FMTsNyyThdwvyA5F3pOlVrVAgsDmZOIZ+s3X78iwkZYfSwB/L+1yLF8dJcboYwVGK5ZIRrpmCEf091msyVO7CB0W8GMkYL65UIZftpI/4WuxuvkTcQwVEw1CokbnWHAfMNFCjCofNyyc9PZ7wsMtXtgOX9XIR7/e13xcaOCymd41mRzGRYfZfvL6dvXu0YAfLinQ+UT0J+yT0NV/J/R2nbTD6sgYxgdIqPBt2dAZon6R5wLudHEC66GvZNMzq1WjY7fZnb050ITGnJmZXmu3Rd7M9bD1pdV5cXvaHjZfd/l19uGi9rUzve6WdQ2t0jhO5AM1jA6GRoY0hQNjy9/NjuIGgE10kRLmp8KNwZWrYgjrgYiu67LdLmsYWihDdQTGZfKvEiFmiCNwWEnPIFB/4RIQe2VgtLWvVtS7Fjr5WGjD7WfLFXuuv8WjfeNt6B4AeJ7hKOJrvu++07CPCxZBqacQTwqjRgemOCfQgIuKdCjJoc5cdql5Ol40G7tHqlhme9HOntLxbvNmtH5smt9TfKHjbgt1memB8pJ3QV3M4vFKSh96t3QuWPhwF+yHCkfbeJBEDrLtaRs/MZpzBamPcV2O5mU15PfEMrMe9Ga6YOyGFXMcFY3WBeZ3gRM/86NcAYIEjB8BVvA/ShxqKKaxvsKOMe98JlmW3HZc2/H8A8GEf+q82vqoNL82064v5zTeHf/urX3cvLv7pP/xFZT1dTu8dFCGHSDZv5xkqCe/REktTztmEL9eJ/CKxR6iF90SRzXQ7FNpTk32n6sT6xQ3WnhD3JbvnaRxFqZkBrQfScEQEnVqrNd9Pg3KoA9JABU0wWE1opMamMRpewYxVTsC4EyzZEZU6Y1Zbw7uJOVOLtSifsDwERXDgjcfnm5tW1/GJvq62c+kWEXV5dXq83/Q+qluH51YAJXZnHfjMUJErgUig0py7BXq1yWTGdjUz4BK0RrPeXrf5borBTx3Wr6pXyu84O8EpXI5zLJBnx3HHfFbexHqOpApQVk/qtNn9mqJqbKFB2upQy49BE/BRUmDOeokhocZLrMaIBNJhNzkcxkk8S7S0V/XBvNI/9lsPnVJ32GNNVw/9/WNzP3nz9eNjZTc5XcnsESWnTrfWBwnVHm2/nm/uas1ZabDuj8pXg+cfjV4der2v1/c6QV0BYMZRr7zXBYUrAGnY6LZGdOmJ693kJAdlxbp1tGux4tq2Mi9fe94eXDlOVCNpLBIx0i5916jQt4VhRZo0tOemDcR26qup7SN7kCYOjNvAkIG+ADxtdggvcs0APyZb3NxkAjKUPIY3H0SZDM7ElD5JZR9XFHnMG66JVnr4gY7wdb59j5GiqBKgAhhiRALPlKXifZBgLaIGBHFGPHjj7d3t48Q45tvp7FFABcMLtOiLp++fqzFuwXFckFygPRjPK+2GipeT9cvCDqz6EwPn3PzP793Iy6UwY5zmgl2xG7EXU69g+wSEvZXgE8WLRWwjog021SKtT7em5otMC2oS/fWNMzOKb7+sluY89etu82rQ6rWrmlIP+62Li06PSm2b+9zcnkB16vPZ7utv7t++WT4fD0rlpQS3mn2BgEBoZQejbqLGsz2+jciLQCzUv1+GbgVOHAnKSLCb5RqBm3hmQga1ykpZGMcc7Nr/FEv4A1e8iHymjXfxsuMSgGRyWC7+ZGSOT3MPU4hmYquBNxylKE/U7m6UEMWZHrnZEAtLHdn3/xKkLGTcef+pYi+nLvxheWegvyOz887LIvNXtywSrRTZ+Ud+IKKwTgLcHajr6fwgcKq4NbA8n+O7t6iiCsSqGBLkz/39bClWo7G5MuuNETubzYMhAcjbv5M4Tb7aPaKEEnNRckwr5KaaxKrpdgI7KJSPT7EzJIRLEKcnLbX7KqWa2/bqtH4j67LftFlwjeOgDismeEQvAf/Qk4ENKqMZ1nrH4XYKZ488Cfgy5CbPlkeJ65i4MbBbnfpIwVIgyj4v5rZI2Exs5XgE+EP8CE5ltb4AyBxfWewHPN74ntQvK9IFRR2DFFCCJKrMjUeA2XDna0cpZBwn1KD+lGn/+s03cUdSj1M4u6KEKu5EKcQ/qnLWHckx+06AWh8jcLVeTu7ngg0OSXezza5QxJI6+Nkt0EcR0lDGH/YhLzPFU+opNMphW6zuJ4v7b99+8TC9RwqMkV532G72+qOk4NGNBZK36aOjuUB1I05KiHinv3rZdD8WllIfiZjvYG3Uu1tnhQU/+s/55U/IB/TMj/7KE6VImbrUbQSSSLzNwrDBgIn0CTagfxXr8dV4MgZL9zvVq37netS5GreGfQ5UCnAETnrtgeHUzrQE+93qqZn68u39/WT/+RfvL4c/afWfLaePMOMQJNm5nBkhZvXiU1E/HoSlGt+aKInNk6fzaHmKRPdRW+EEOhM2JFIT+0xaBIpUnZ3guigSjiqqp0WfZNP1WBK7SFM6RlIAo7Q2J990eszEGOMPc5UL85XiDK+K8boh7rKNAjnWoCQ7ZaK0ppQRE4o0EJLFvkGo4AtcYeOs353QBoOFxxXfDDEXXTn9EKSIa9p4olxDLSlmrNLp9iCxQTVWqhzXFGNvsTTjV9YURT1GHZQOs+k935XKmcVK1MWwxTCZTecPwsBz3h4LXOVjBTwiZdOIRPSozOLIblrER08Gl097rX79fm6Qu+HdnfJ+JMYOJGdPaSvYzWb9sn6YreRcRc3W8x7XuwLadxDSTSWBgtXEoaOru5V6n23Qao17XYGH+natGnUmksBB1r65bthKu9sbMqz6hfWGotJKatPCqwkuOzfeL2lLojRSeBTeyJpPT+upBXfqaE4jLR0EVL1Ghwr5S4Ahj7QWQoLxHaLqOD0H7Qps8LH27/7y/3NOXe2D+sGO9sanbs8DdiIyoVv9oa0MWEBYnEql5Hr9en17+/Y3X36hotpsMxNXfBzzZCSDGBFmOB+VFj6o4gRRg6th/ZQSsvJsGmdGcHXZ0aO3fzUcjLvyG7J+9UrCnh4SdRSRIoXPgVnGF47C8RVVqScKoUeXMoCSg3ASCy0NQ/dWEq6wgPycuEjq3SJ90Uu9T5+E8PBIHFNviAiosYVU2tF9+iMQxpLPiQUc+hDho/4H16ObS9ijYiCxv6VGWrdRmYK+GES7M2y1exjX5L/+9f13X/3ul7/+7c2T8Y8/eQm/xzDhobE0KB6PH0JnZidYW0QP+JGJ3RQsWggyp+mV3XOMNj/MAQFCNMWyaA+doko4calYPoEyFC+bThRmvk9g2dQeAU6Mq/6Xo+OHujuRmr485Nm6aNwmSyiayzQLxXj0IpBhV8FaFcYzyubS38yRYjNja8Qqa+ZYgNSQIaNAfi91TRjaXsZUi1TM3gczIyJSyOs0+J/JJLdKw6GNiomWXT+UH6eBScDu0S163JH/q8X84fbtfM791stpjfCuoCe0mJnO/E1ryCKGYOP4vmi1yQiSPi1ENAiqeXa96+v+s6e93rBWz8zM7VwsTiT9aJJlakEoSqE9YIDtvq0+bj9Xdqwx6yNA5rE8b4F6x/6nZ2o63qbsR1OX49wkIqiOdI6DXRVOokIYSQH46TbGNO/2+sMh39VJOVTGjYKAjAJrotXdMuEwD6uQQURF10pZTymmMK2xGbjWs/Ag8XVwrdKUKeSHYicCQ8z2tMCT2B0YmKQLRaO+Xr7ud5tdo7Y/UmExvrg89bqm2nVcC8UozsEPzgICFtEsF83DcPXVvDz53evPb38rrjFqWi2iS2dO0Sp2XfE57TvUBjllGXygeCZQR7NSCR3uRkstSadxOewMxhddpZXpo2lkgxhBmuWgKox5NoB9dVRnRU25MtVYyA4G065VnKVKIGwc/oyyPI/YLkgmZBMfFaX5QrltpMakFOmFNGNHMnSC5zuK/KBsjda6zdJFu/Ks37wZNAftxuDmAyg9fe09jzoNmU0FftBGzeYrsHBudZM54IChZSSVKodepXt8U/7zX/6Kwzu8+qdPxz1NWbYbIGTdD3ArU7jwHxC2NTCqwgEJDOdMCrs9CjjRsAA8HI4fE6rADngVn2S+O48IJ9A6mSobR5wmDmCjbMRbowOPprAhvnjS4WuTeATjM+2Xn2gPU9CVE/KVBS2DinkTX48oxArUJTGvx0Gppv2aRA65aoPcgvI0PDkTcXVC8VHkq9eIVzry2v44MolCis5FFReCxgpUHRWmiuhgQFr+wxw9on8iA9hwp9krp/71GgriMJvsH97vtUNSuKc9t64v+85tHzQB9L/BWigtZzD74h2tjy+vR6MLF7l9/zibJuilAdJNf2Tq8GjQHY5q2q8OGsdHR01AVuoLKb5UuqYQVn6f+FIuh4skYxeb03qmFBsomrCNEYhX7MLmHkgFxa5b3rFdaxrBkuB0uhJVrhHAUmP9S0wZGAJjDDVyAvFqAOHqnbcZ1FYpd+209W1WpdnqpAUs7Q/f4QCjRIrXelWaTqk/e1ZuDVPMlbMpzJlAqXyLSM3eLdwKrR9qlx/1jQQav+jefDx4/uLJqCMxGAXrrNzdN+jMvU9NvVYavPxG52a+ffnu/vmD8ulvbh8kHnBDVofOvAIkJYcPB/g4tr+IESGticRWzSLvWGCA6cLY14OWscYBUJNVOmrGtHh8fDwrT+xFZzh4PiZQCxb1aCSFq6MQB0+UtLY1vut8LnYSYsLhjsaunl9n6vFmhq9X8hT7OSbmFLQlB00AUVGt6War1jlt243SRb/yZNi4GXWuh/2xXHCzPa8+QYerrWhWXTRHDKnWG2iN3KiPmq1urdUlJVVMbfUANZZow7devHuY/uarr9+/f/vs2ZN//t/+aftyrJh3uyK7imwiviIw2R34nx9pm3hkVli42E4IE9hBCsfjxyNEj3SUjdcyCzZ1OYkaUSQOKMb8y2GqCmnOjgukwmkyyzwVI2K2cAtUJ4fvZJR6Swk7RkYe0X+VmhhgsCPGHLmaO/IgJNqLV2oXMhadnSpsYUEFQanIKYAHKHO9i1uEIm22o0G6kSLpTeY5/AXDxqI+C0vSO1LAoCaiQuo/2CimfHAUia0oyCm3M6O1PFQjNFmkbl6Bl4Efg/LpYtD6+Orh1YsLthcuuZus/8Nvvn00+mnc+8nz6+vrGwDZr1qv3755wK7Bv9vJqG36istHrCo5IX3YkQdHFoKM+a+IVHss5bTTx/v3ZsufYLOm1PjegMtW86DcRyD1tJ0EB6nwqN9zGNL3YA3pmAodA+egxH8zUwVf2g5R5An8F0nJ+7FvI3mDQbRzqNeuJIm9NNZ9+zDdpeqv8Be+LdquJ5ZKem5M/wQRzeitS13pMCorO0KGIUrcirSdSo+Z5Rd+lAx6/sFYq51alQKcVctD5dFWIj4v4OEThHIgpLhBpEY/xJNizWrpo4+OfzwvreZmXv3u9QPxHiZ1XWK48Fd5naOLEf1Ml4LFSkVTejjM1ZSZpzFhym6bpk0pnorFG3RAnhCpnZnNO2URcKnO1UgGLcUW9NqtJ9MH4heRa1ektRdetUL76YNnG7hYTL5EXoXeclhPdOljNjfK/Q4PQjnvYTioDQet4XA0bFcvh/XxgPQwBARWtLsttx8WQVydeoNq86LZGRXdrcVCHIzse5Lb5I8tpXapo9Vi/dvfvv6rz7/79s3y89nXo/6/+ODpzd//w98DG8Z9mDIiwwodhpRg8SqAcXIipCklHy3kRdui73yDzBL3FLKPIo6+xcJ0HfdaCA+Tpr2acmpSFXhVvwWUYiPNklANA7QD0SNQUoWF1CyChHRPSyDtMaQYaswtu54NohCzw97ANFI7hlcFr5R8efm9A3U4vCllkPmA2m0GcFELnIIaF6J/pQ+KDI21s7Zj6RQP4llcoQ+52FOiIvxoAbqmpWmDi4nggsGPmzf75XQluq0Ty+5xUJqpDf5wWP/FJ8cfvCwDcC2Xx+/uq/dvK2939dF4+MFHN0+un8FpYNNpyDybip8E82a04eEwu9fnkajz+wgs7Q3J6dgpPAXYm9UjDb5+960rSBNtV9X1rGx0ufzrVbOk2Rb+VLGj/GauuhahBqEl61LZOCL45WpF1KI2aI1IQEGBALPYr7J72CVWik1DpNZFIGqyIkMzm0FXsxSLdoQiprooJOyXZtxWKf6sB7EfVxrLiwY7aj6a84/9nqNRYmYV2bikAasHXdozInIxPG4GG8UbKTtLFCGOJyKIMVnqmMPYFB+3B80PBteNH/10dz8/Tpb3kz+3OMeDjnE/6Ubv4TF0D4R12Mnt66ypnxtN2gUdPR0fgTQ1DlHfG4drTe8gVc50AhK0qK/ueFaenkGZIUvYLfzedtCl+DNWRz0lIGe9KpIcEz/2IQPDG/NOSsMX/nrRhLV6aYKqkY3dtjDzoFMddNtPb/o3N8Pu8KmxDM0M0DFsrz47dKfH0erUad74YLfckFsZB81GcGesUAzmWqONNsk6HouY4fTt/e7+9P529ZvPX7+/V+Vd+r//3//wR5999nsvXw15uoJf7NjC7U50lN0Y+/eMQi6MTEEDNrlTLnjYmrFnKBs1EzOhlo1yfXIh7yEhEokUzaUZifpKB4L3oE2fFMlWIEebKeMteu02mgMx7hUoC8as7cY5xAWdFm1nUbYsgXo7FP/SfXOIERxpEJP9C3A0Z+FskGvoBWmINWtwIFyXSsOg37G8dXIsXAfxOWjP4eNenhcPp/Z+MIDrpdxIWDSiK50gm4DLgYu0mtb2q27R2gWablw5PO+UPhmffnhRetld6ja1Atk8Nj8ea9PUv3xyPbgZdkbdh7UGORmXIANO34DJ30+miH/dLD/cL2We9eMkFQ0bZNQLXSNiWna3npfnj5zgynLK2IMtUpKz2FXePWwuaou6YT+9Ol9zqz25sniJIdSf/gF65iqzgYIyarJx2erur4yYHGo/kUYFbG6psYRTwoEIU2suO6muinUCUYZJweUVW8WQBraHDCTLYmzJWAumkoNIqXZaZboLnysxR/sYF8TtK6JIjiQE77Wd3+4e3y1n1fvSur54GDx7eXP9bDC6VO+uCCk7js3qjaWSVdRB33a6W50xWtWbw8+fHvefHWuAJgSJKTLOlSymwS263+76pe6FCmA7bYckrqBrnm5h3wdyw1IFW1pDIs/gzAYF68RvVkoa2KufTx3jSte0ckVpi72gG0JPIN2TO6YEK4vywZ+s0PRGihl+0iyEGlE0QUR1dsfeafu81bxsNcf9kzlQOoY+6bV7l4Pazbj28qZ+PdZZl5d0uz7IkZqM16x2ws5CZrBsUCMGgKvDQrYqQ5pdj9dqdvk1xBFrHqag3RSNaMgtXVyPQXmNeyJuhCj+1b/91acfffSP//7Put2BTnfmeQVKIJwQe5gFxO1jPMqQJJYW9BC4Dbkk/1hqL+Yz9qJtWfPg4SfTkyUVdXtku+sOBZ9Llelukq6kW8AvsS6wG8Vlh+awYpIjR6HcydjlpiBhZzDoPyH9J5PHHH66vR6WGacIMCD7G5DjoNknexYIDg+lnz3lIbSq/657J2kgsDydqsCo43wrhk+JCm80tmlATqmkpwADwDPwayunOYwWYzpAK4+rJtCkr45OeKRLOIaJwWLFm6f9UnQFMuNQua905nXgknJPsnvdX6/G1faoV+mrhJjW6uPVgzTe9bB7cf30+rle8/Vs+Nevv7t/XPW6F06A1lrPSpNe6367n0AglY9Xl91dFwq1auqpSGHrtGsflw0BrcXitNThoL+v3L6++26VfH15fiq/nqzb+zbgRVefnLWy35ZYrcBhu19/vMNyW+38aru5fjitm/H6+lAerzv9emTo+qiuUA2iHio20/GkTZXK1U5rqre61tkdrSuADSS9Ezy4aYzBk6m/DCkEVtJAqugfoicdZ4fji7xtkp5UIgUIvquvpsKJ8HaL17cUR0+/aFHz+/srUObN5kbpX3/U0sIGUdF7fHxp9uAfyAt8r/Cuxhb50Q8+1hzl22+/vX1/R/Wxr2hK7OSbRPPQMvvM0RUyW7wyzVyUngSAljizZflKEntFlVNeEfBxOuWEdrsZD7bbu/AbEyHCpXyuFHbUpZhh1y0sFpqoaAI1CQITUVKJdWVOx+1NufWyo1i29KLXvOjWLwbNXq0+Ul3aG5z6nVV/uDXmuNo9ajQkwhRIDZqn+M3J7RMayBrldfuDdqufFFKjExgMOKp2BhkmT8Ggdx9gIJUurqYvFKM+fyYH9snHP7zoNa/74pHr33z9/vd/+NTj8EGIFGrIGnEmW5G1xeSlNvNXR+fmmMwPrN/C+CRrGTJOK6HHUun9+/c6w+koJONBMQKIKidcb9dVBFY+6WZmK3BLLlBMizWKBg4BcZAQxbHnaOB7vZwQrso7vTeRZVax2b/FeRQmSSSiM45itLFZW3zPovwNDMEjRCcXQak0E4q2jVxL1IkmFcGivVOvQKJBwQwlGDyQH7FqCDHGWr4yezxdbXPXKa0ALpkC4sx1E6h4xZv1Yr4/2EeDLUFlBNP0rOsNL588Ec+DDtHkUwfzxUyxWFtgUEmDlUIfQ7QkLxZbSrMOeR89KWKQeNDikUQJFYkcJbWUzKK65BJj0+QcPG/eE3PMmxPC9VW2Od+oc5CNz1ljKJDhcX10iZ9XKoB5nHDVTMskHIV5Xco1SYk6SBvbhvfZbEhZ1VqBbetz1zrAT7movWL3iYZr48TjxQHYjPPCzSIqi1WHMGwc9V0QOVFea1yM1oKecIflyv3jndiLwD/jQWmMTEzjoAN9hKx9cBVXjD0UBXHKNLFul0Y9M56TsEpSHEE4FEtHH6xWvy/uqjds82p46as/eae/2iD86UWo+lSqmRETDIAAOy6qlh8e36OT1Vq9jVfIujL3XksQ6YtBFS2akIxDCsoQLq27PY325Z+2G5/1Wy8bpxcDvNrsVaaeK5Vnrdqs2blvdHUnOzXGZUUFFpGO8JiJYtccV75XaFCZR1NY3oxtpGLgJExVzsDZ8/UTXLGaJMF4jw7+6Xj4+z/85KMXr37+8188u7nWgl+XgXJ3mHKgpMJj4icP4wOolCayldlGz+N62R8vC/HL2JZB5wi/GLGR5ImwmYhYYRsHiCWXqvLUhxOqk8NngBpm36hiYHYwpui0BMKgOiVrJEiJzYUMLHzG1MQNLcYs3CqKllph2FRHhMcKfZ8TzLnQ9oQGshGSZRjI74i4uBtK4vQSKJIaoiWBY/h4vGuXtXJhsAgFpjYIUqtjsCWZs4JYTPTz/KAJ+3i5KRecVK2Xl4dcEtJ9WVbM3NQ2qRAAQVbbJx3n9vTdTl5PIWJ3qM20coX1yn1ODC69pTUT9RJwUpZCphRyhL5PV2zRplDNCQIM4GelBZHuEbDkO517suGuH9mB0kKEoe3Ed/GHpy08FhskkifJokoS0rVT719ULp42Lq/w1XR2mG7ubqcLVmoXrFF+oMMy0rFJmc/J+KDGQd2SavNOxD0YodS17mvhQ/znHbqs4H/OgCB9bFikbr3Z0kKM2i8jsQHXkurEgKHgdl9cfwtJqHPPfObY9LYbTmdX1+vRxWU/qw3Ip5CtwgvJXorfUsJ3b97d3t1rsWGYN+GHSfWOxpzuys4TlvWia4UWEiWqahE2Gg5vfPzMluu0sw4n22iAHL/0yiEWbOAoio8LHyTQwVWyt7RDcMynUregcwalf6It+VOeipewUOP5ab/6D4btn3Wr16flZXU3rG09oUsAU0HczWWTtGav9Eq1ca09iLjvBAEJxAoKx0ZuC4E1TCGNTHGWuXshIPms53oUBiw3zoslJ1+PFoXFXj57yvX44PmzV68+FqiGfxF9KVUnSgPRD/VkF5Na8pVcCHA/wcCoKRuswIImK5dIJQ8upyKcUwjopNtwwnh8uVnCY3q7WRNHrQa7fdZ3hRXscnwfASxTIDLIR7GBUlvBHs0NECz/Kwis4B6cLK4DBiG+y3r1AKhpzdlMPUriqEGmOeWIWuI8adI0JcK2cZ/oE7KDNih40n9SreEDZ7MNZ6eUCF5KeYKYRkmIV0PwXhMUQSKfqswGWHvElL1zwjgdo0BWE4VI0drEsOQElpv8U9YmJCEBBkyIAwXPq/UnUJPsBeIpmjaNPqI1sKg1Nq+6rHRpjgTX4+ZHAnsjVRXzPOoxzT016/HXRj3TzlFatBYREz71uN7loRCUsK7Dc0s2FwOAXUNEJm+tZiZ1rQy7ei+du9en94+L949zbmK1reNfYurZWpIdedXbax0cZ9iCoracIl4ncpRvSFjbweTMjwwTXkRATKAwrK0zxZ8tkYiPULg/6uo8IuRIGjONNL9bLmcP03W7PR9diFAlIiy9RYbKe5M61oK1GKis09t377/55vWXX375zTffMQQcpGCP39smgSXC3swI36D48XhsL/gY/E8Ck/WiUiRsyh/TuDRpGPY1JRzjAaWGqP7WQg4ba+H9t5qH0UwV+NorYqepNFCGRkwxKtI2rvK0UnpVr/yk3vxJu/JJ7agYEbSKlpofmv6zLB+njfI996zW3dcHtdroWBEmbZpZh7YyURDJogtKR1cdznlhKeRYISeIMnK46F2gUYp+VhQWTjCwzaPhiusnF9I5/W4b+Ta6GUKAB8CK4iZiVgQTfDWZ7RdIvaiWjz9YhIRxfjrXxkyOCsIlaAf4AnoLgq5x6g8a08eJvHMI7gRAh7kSUNDDyqIobmKqrH91uvsCvnX65iKjMPZ2YdlRNzTqzNQoc7KDZXfXEIt9BQIhsJNhTMpiLzBJBHlHgVOWLkpc2qUYUF76R9sLZ62VDI7IXhEJTGkUnzR5U80roUkFgXY1+eo6yDouep9Y8GjyuzQ2CRYAQRa4gaG0T4qSTkDZvfUDLO3jZKcrh/bQigX1AgX/mMOTV5vPtYezMUkR0T2RSTRUMhte5+fgaftHrios0pkeVonPjDEK8AvVvYmIKSKsDiJPT8oTIQngRqdFSFGiMW38OQWoAqw4BwPFtAFoqYD+pEyf9Pa5Y6U1l9WL3SVMlDIsze8jn81SEILBPQJoG9XFK9iS+OsGYfTbmm64A7PN6rEA0W0/02yjSHjGQnAncUMbxx7zZJE8DpYSLjeW6Su7ur8XztlfjK/5dBwd9ksZQZ9Mtdk8qjIBMMFIypNLldnj5Ntvv8OrVOsXX359d3fnTz7lIc1Hw5lXV1f6CViBvAuuOzPq3ePD8f5OTRsSD0NWK4OxRrH4pIMIGJVeWWfhXiN9/I8Hvnub/ib8VZ9KJiNMa81JmYQ+AiVJZ5LAIJIqKI02O4AXMZbFcfHQhfxuHXrDfa89GV9Lve9Ho/3Vk8bF09HF08rlB43hhaq99A+SUjZvNElaVJQVgEg5xkREogo00LJJ82yAlFmRWzJ5JlZAIS/dWht2Wzbqj8bjkegvghK8ETrfL0TL4pUkZ6ODJVHDLkkAB1EVT4MKAdjEhAqTWHfSbA5W8qJuCv/fj9Q+6gBHyIibiYhLu9vnebEQrBCXWgdoDERHdTDsXo64ql2rChqR8FaemryS0ZDYUDwoXkzoLbQuyIQS0D/uo49zIfqFzU16JgFOpqRFLYy7DWoCKtjkGIP1TNxIJuGcuMV7bGM4gsU8GhwGudsD9/U96KKWSaLmVCHJlRADrQuHHk44rRfSBCl4Fd0ViNgN4A2a7StPu8hoCpPG6nveqFYvPGvs5HYQ7y7lZ3saJz1FaDIlgm8mb2UfbKD+kQxsJpcsZmECGODAtI0MCoAE3L/QdLYcQdnpnHvMYJjjnE6oKdghYipbxdlh1mIbj6yuYf/+nnJVNmv+xBaiT9mXrpddEbrINzKQHLRUexODnKmSKu0kmIXpKAYRKXd3Kv4qle2d+qSe6ZnkidyJ9AyAPSoid02okWUQK//hcXF7x1RrXD97/tmPf6LpDoWIBQKKKEZ0cuOnq+WbN2++/fobVpVxD+/evJc7ybiTzRKRIlM6E23iOh/vdnqrQ+F5GvXNQkRicAvLIJD2u6kI/uWlwiORgidPnz7F2ziWKPJXi/MYRQtHRmX48/7RnIc7QkEE6+7uPb59eLhDwSuYikLeM+CkqnhOwl9+8+5QetK6WI4Gk4vB+/Fwe9k/vnhKAu27F+kV0G1XR0MxswO8VHvM5r1od8nO5M9j6Xj5gkng4cFolvPZZLPV0n09mz4s04uESzXLDp5DEMmq0CyBN5UHmuhrtacLCo3qsBg52ILD5NG4QDh1CTqBOdC0O0Iy5BwQPqnp5Zbfi3pqNqqw+ML5F+sLCESLnwIIoUu3WlajRlJbDQmj2JnRQ8Ww8DgBdJu6M0AdEGxpPtJE0k4GWuQjXom+V6Y8FdMc2JfRHtbviz948NyGxLAJ+VPg+OhEEk9NdvAGPhbq82spR8KI4NYtM8otKKbm6rCdzLUPJ6/xdbfR0bkriV9aywXpHgtAyLy0SAlmQxHHShvJaIBdM3ZYrQccdGoORhito5iXZmKCQqTXpDL3dQ1/GDoAKUDqwbJH2Lh4LGpOSJ1qy65Z8gKEsOgFv5K2wMikZEIGxSPSrCykAqBo630crybqbigkOkagRUaKX4Kc4LQoFUpV0+wVjMlUp8jablaWapp3RkM7XM5M6Uan39Vux5E09c2hh1GIzI1U9kr5k5AZX3xnai53pcZp1m476dacP7XlrFNneMrEBqraj4SF+cZIwgrwtx1ii2UHv/rqW5Ow7ybz588/+tGnP/341afPP3gBwBnMR3GoMzkEsa79/u6vf/Nnv/yVviE+puNjDJlKzTtFVs/JbrII17G6BC0fFne0oofHb0jRG3Amffvzn/29Z8+e3dzceKe/Ury2CUVqki60ikwIRRRQGCTxYOHI3X06nXwDJHX3joDAtICjd9M7gSid7DUQN7koEbTCmBw+//jyZ3/wyY8//fj5jTrFkrTczdV6OOzsWxHC8lwdrSZ1SFG4p/ajLV1qG2RmhbfZKUxbd+fraEs/mTzc373brk3L2y7nk/VqxoXhjrEX5HLgmQ2jiEcrwsOt7YN46/JBN9H3cnqRp2CT/bq6UHwkrElYx7ynuz0ykU1sxjYmtotXpHu8IwQUERAKT6GVVccdz4gZ1oN7qJGAXqIE/df26IEnB0i+ZByRhdWIQmVgxiHaxRjshPdCaycjlBNoDUmCK8QHKxxSDBwVmrpw9zyvxI2LFRRDwaUqxd4LRmVmsJLDZKlVVBEaNwzriR6FxZzEEo5nmHIMJni/D6kgDaAQl4ccd1E0p5AHRJRvE2pVjQhkpLZLSspJkA/lhYFamqK8e7dVgtq57PC74YKL5EC3UdPvVSk1XA3yse0wNmwPmxhDPXo6KMCCGmIvsjN183B3YbEgCzyUL7Eb0tsgJwfIYkWeOqZwIauD0wsdkljxeW2rnfZLVOEdmNAApuW8JpXQHoKidsZPmngKqEaQGBXYeV6SIgTbHj0WEianJb83Ez/LjWv7LhNLeAgVB6YDxJYaetH4oPPitIsiROU6Ie/kgtv2kDbkyF/+578KuyM71RZmp17cNHoX9W5PsiKWRuk4HI5RrYKG6yevle5sj9Mub6laMtrCQL7exQWWIwtio5a0HclgMrwnM2Nhd/fLD198+NlnP/vow48MI2PuCi+FS9Ecck5ZecS4CoGeCAAL0XzXbidztFCx6C442mounGZK+LObS8wvwYRFcez7yR2mxcCyu9HwyyVuZQ68+Ojjf/Q//s+/g7UBLAAAQABJREFU//u/b74o25qUDSHa4v7AjazbwTjXtC2QwNSLAAzDvtIShx21QHlyJxRbP06+JKQephO9l8G92JT9thyCmkTz19rMB0/hCB24XXLNChgLtUtOYze3011Fi119PeuLLT9+NUWO6LI4fGksvhBLUHKS75PEpxY5GXWjDb69lagmkg2FopjUSVYcv2moZpArfW1WLy+G6tcRHDCJ0Y+zXTDb3SFzebs8kX+17lDrWtg1eLBkd4RkhRE1Zkd5g34KYZhXVk401II3Sq19/FQWZQJegihnXyCNc5iTngi6TqKoJNop3iNXEPpeSRirgIYaOOyGmtdUysA5VSmuznNVNQJf3qdLqwuXdRtKn0Haz85oj9S1/8QXL6FVay5oMaYnC0+xDvNxX1/uO9+8nbeNFfhuNDmMOv3G/WZSarzrNNbj1ut945rhRTQQSZq9pIKLW6cLLLyWABbUrux3r34LkURrReNfVraLzvZosmhJK9CtbrvxcGrv96repsdHcgPACWHtATJ4uapNuCPq7ztQm0fgo8gRU7jMpOzUqhf93lVv8PzZ+Eefdq+uxVFONdPaaS3hrT1icFJGBzb7o1JtAo8oKkQGTZeT4ulZCcHnaYSCDPyNHEgBXnz45bDDuoy5pS4Nx4ILxlUpqW3QRcokV23td7Wvvv6aROoPLmMvUeOURpF68o08NusSWSDL7+4fKMZXr16x9JC5ykKExxbCVhj1LI+JAYzqJMKTVOfNzbPrpx+9+sGLFy/7XbpXLFbKGOb+DH+xaCtNUavfCATzD/g5RDFcOaeqCAwyh1VzyzUn6sqStkhN/WIJL6c/+OGDcYavX7/+3e9+99VXX+FhMvDVxz9iyV88uWaTM5YsxvXtpna6FumhcivnG9Ci/+rGslyoD9ir5lg+MHRnc3MQV7PpYXdPLSFgBzAcdC+H43HPaCeqVBwn2iHuU0pKnE7h/KS4Lh6GP6C8mJJFbiJ3ZwsflCCDbmCGKiIF0iPgvfusCBJ38riJVbhGoU8dPt8nYQqrzWyvAiytsSBgYxDRXKKUXwBBJLP6/RMByHMppeJnxsMxK5PCES/ZU74iwekFwAFV4Ur5xFFNSL/QJ7mrayXizP4qFuAZo/EzYiTCNAI/34S985XIE/mA2yCzEFtFl03ldLY3zhC/yQdcKtvgFPNh0MK0iRDZFolwL7aIH+1VxkcUMS05IYBd1miRLWu/Pg1ms9rr7a5dC3B+suiP6pe7leZD6rYTAmSdFKZ1IO/C8FeXcER8D8fBN5TdpKLFBotBZNlU74p4y5ZhVapGCoznkoxwnj2R6fwjVSQ9Yv/7g3d6IsQK7i8fI17Yu7gsv/yg9YMfjH7wg+blFedkfxLFCAottiHl4/FAxESvRWGF1JoqLKMtkKICHvmcFJCYfBvkb2xvmyIiqH+tIDt0Oug3sY8QqLBi/w5tDVJTyePXTCrk5mk1cuIgigKD4OipdwIEj76JG1kvAbLxKp8/f/7y5cvFdAKaEPVN6+nOIAJWaCpcJMgkwMsF/eEPf/jf/fP//vnNcxZyF3qmIDg4GVT65Fqdqn3jY0UexpnJkZkLygoQdRB8Thc0D5fS+2pjoQurSK13U4bNjr3AYb3d7sZ4RXnDxeL29va3v/3t559/7u6O5MXHHw2vrlv9YRQUYs+QkRyYMkRPJy/nH4fBB8P2qGBhevj9m4fbN/j+9p3oro0RTXlx0yNxeldjVvqAomAKMIZS8BqsfMjOY2RSdx7Gknhy7u50vcc/LyfnPZIDQlWJOIRCfAbBUAOY2n2cFq+LZrEXlF8+LvYTAeCa8YmxaqAMjg7uzaWJ4SCq0rXYvqVdL6CyB8En4hHa7NONpr4Fl9/u+Cq1Bv+wUOOmwBWnR52y/60GWihGb9I0WXBEUhw03dOJs7BXTR+vPKN0C+JOfSSjDFvll/wq1jXRo5aMEp4KK0wXWm5K6YLQ2J/4Wh4gBrNvY+wV1gNLgl1HW8B+RuSRckJFro5nWXqeyR5QNnzR6eApbTCHpdtHK6T7de+m0ZSthRuzdeaBHuQHBVlgzsVsMYzPJ6as2a4kerMP8UDI7aR5Uja4Va5EsXjAwlWm86nE4OOdCPqzxQn8FcPKNO5RLotD5G8SLM9E7CLrYHNSNHrZB8kYjaq6IwidVZsubr/AOZABqSk0/G7ybjsvJr5ridWpji8G9X6LAayG3m7bFIftnrYlxqWpiZsVLwaKni5ggjMcijONj03Q8wkjlyWDPnj5oU4NdnUym2n9/urVjzyPk7PjHp+1TTYw9JAsdvVylfvbWxG6zXwGt0Fb+42XhdoTnPnTn/70n/2zf/bZH/yM+Pd7py3gHGLXNcirmGHLmhKvCymgc0W6RYMCk5TFn2KN8Hth84aXKtEFYi0m6/E/NET8eEpcoa/uZtPs9okkHRNgzfvjS9fpDy7QOEHrq2f0G3LTV2nFmMqMc9UzKdDR1nXKE37/zefv7m6/fP31l19/xQZ++fzZn/zxH//400/HXUhxqtS0WLNYg6MRj7Cxi82cAezR0LgXWqRkSGFCzcM5M6+C1vNjODaagoTPqShRZHBSuDrh8529I+8U6k/CUHCH2A+7ulKxM4EXuLY/+BEKCYsRveFiDVZSq0LWagKc/jhJteMufQmnc4xku+Ifp+2gSXBy8KkSkVohty2PO+b/hRWM98I9QeAXaHdHf/ZK3OUsCm2XD/nnmnkW9F0gq9LHC9PWGnb+wbGxLQXtuiO1S54pEsyyhTzsDP6muWNn4EQ57LQuSOjWIRZpWvVOMow8OHK7KK6EepZ0Ia8RngY6GqUkcTA7Tt48frk1DlU3FCVEnV4jPbEsKbsbsI4OAU0yIlWy0ZsZckFUbo7bjb4pSpAkG7EvNiEblUcpN0psIL6zvFOErerHpNiUY5UhxpgGDjhJYMSdKsTdEQqJ1dnp9xptfRqDptDjKZraRhimrbg24f767b205FSKfTSosCc7g+7FSSHRQmdEQ7Htm60okrpkpZ1KiUZ2KGpdJtUuId54S1C3Rt1Bcwd7Q+D/g3/0T96+f3P3MNFMK/CGuzuaSqIRkFRbQjxcsG1qR0lcNGrX2GMSEWKj65m6dpPUWAgdFvKLFy8+/vjjP/mTP/nFL37Bs2fxcsQ9iAhMSFjhdGBuEEhIMy+PisPjlOLyjUjM/H6SqkRbqKfLYDIjHy7Gl2hf+lkEiDnls4mJxCl35RSvOyFPy1YxVjx3qdem83nj/t63Hj5Xjim41e76nATCpZS/x2Q2f/3112+/+mt5ChW/Jd03qpXL0RA52l6RRlkumvhx9ohR6R8FFkwjkRlmAm468yHfrnAZIkc8URaA+1Bi8fIeaieBjZRNIQoEm6YMiR8E0IQMjEpDJp4lOGdbFKazLbJ6ruBEmYQMu1QRB2wrdMUDOKoBYvKABWg0I5ttg8QrY/ByL4NbpAzvptNgP6QnKQmTzEqsKYEMpokfUpQXsFFeoTQvhxgHOocSWcPmwL0Oh6BxZ3qVAkLWBUos6HzHa9/oyQVQFBuuPxo9edbqDj2A1Eckkac606MNcX1Ve3oU16qijMRcASTZ0tX8DPsceyJWCQZK5QAZNGREkES5hJFgag/26+k7tWUXy+Dy3t8++JSsrYZdGjKQB2AnSWGuNQlVkkrF2/XYCyQpevGchE5K7Ivwup1HEmiDOExU0hNH3yVJL0GkkOoEIJKakjThsrAYeswezJDyNFoi1gS4ibY4YXWGQXFYBIeo2Hyxfvvu7v7duwGcNeLviAN50DrwemetHYVZbXbC/9JFjFUh0xbIYcpI+ariz7YrN8I+scBrt2XIa+9l0P/pP/4ndMzr12/v7x488dfffkMoQho+e/50OOyD+SeNmYfVmTZEfzYg0+miaI/0/KOPxHXZxh988MGHH37oe8FeASTLRsROQ9Lf0gxOCZshBKYHyRghHTPSBcO5RjKdpqgZf6iG8U6m5u37g2mlTlUU4XjoERU+EsiAQ7VyyMb01KS6ZXSHDsShJE9bgbBL6NB9o+q1XqcgEveiBCQGq20Rj1LX9wk8Gk1w0aXPJ6vFZPbIBid0ID3evbtdNA2O/u79HWDWOz7uDz582f7wpSjfaDjANtZvox2ZDbU5HkSOIusu7FgPie6s1o6jBI9feEp+WQRaNc8pi+85LMdHnRm/WxAMqYpZkxSNXZ2PE7F52uTKwxZIWfAEiTEW1JHLC7cr+9m+1dMaSnJrojF1Xd+MY6qB9Z9m0ylIyEQHuhO9so9azUGvjyeT1XN/SdbUYVErPB0B5tw3N1TirqswBghWjCnjWUMBhD0nOnoSN6nHSnNteXfVNK3u+LI7uoJe2GY0b6g/dCza45kL4okg8mlnz8EO5yy4sl7tTLLR/ciNGRoUMj9P3UH7Qo4NzMVxR9ZoPsZtU/JXeneb+cAAF+Tp1dVFyXQsMie90pbQHmZceQSx7f+/rDv/bfVK7wMuiZTEndQu3d13bE/HE3eapkWBAi1QoD/0by+SDCZIJpmM7bGv7btppUhxESmyn+95dZ0WfX1NcXmXc57z7NtBG8XPmrxfnMEONZDYclTqD/Mudgh/rGcHwHH4EqvsT2ro1IY2WlZlTwtiGD2HkQndumvyvZyMIUb26UJo889EjqIQwWc9ZeY2rJsNR3c/vb/Ym/FIunKzLSitZZyO5g+47g4XIkKi15qQ0F5lchiarF8SH6GCNm6PKezYFy8qEFVdBlXCyttKjbQSsg2LhdEPhdiE6cRdAlntBoEJ3LIhuHAIJfTAcH1yqLfb1n63/+uvv0ao6n9hOesUlXpjjSXwEOgcGoztEp2eFrGgt+WeXzMI/p6yxZ3QGfGownuxnu9P2rfjrqYdV7ezqyu+pPH15Qc6YxqQq1NLzh48SRqYe1LCpH4MOjawOzjox3Hl0bAbDQOuVWYkeVC6CKYxl3xj5Q59zwUyH6EjGtYblmQY3U+HtwzXa2hIoqIG2Yg34+mbtx9+fvsjlsUI11SpMziQloRywvPK7kDA6m7IRyGOgcFnrK0oRSprgotEKJmKO0cFZBRBGeodf8qDTMwo7ztlNpwhCRcyXqK2Z3imQPJ5H7lrAcPX2Kd8CklCjOIXHYxGWjl7RWFLFnVaUm5yJ4j4SZWlT9hmQvUaCYXZ2RyHsp6kOlIC6UHN2JNRhLEIym1cBo70oPMsXRSEZVkbOQphs2ai2lq4ha3KhSnoELuNnkLjvUPd6Jlv6vsifLUvyt3kaVBHYylgC9gBnmA+0S1YQaF9Fta2QfL0FaUQD0AZG4327mZHJG+llSYTAmypybRFq1jTEtr+jq1mb29wcHosH+fS5m/iiBAdtTNJ+AbgBS6DpvIv6VFmC7YgxmvAIiT103KAMwAE80uSQxCqhi+6zt0sF/3VUtclkWiy2tIpCCEodIu18LQFF2WlAc3Eki2Ddrns4WMJ+zH6LNeWgjvJIdmuMUmmejIvZQODSoS58bgFvS/OrLSFNTsUQYAklOpHaViYCSfOqrZn2dFq7NWf3709PTmGf8SXeXU6Nn9Imhktkbw1GLQKI69HciHeWiPC88vXr794+VIRxCkqf/bMCSES4l4RSjseedLyXqOc6XR4dYlEu3Iqduxkh+STqoZ+ytoT1GI2WEjoVumPBIRetyYBmf51fnXXbnLNUqmWzqZkWFeKi7FRarmS7QrpQcE2B/rEdAgljEqa9n1yjMMjYniHSvE99gnwspkdZocGrJyf1EYGP+1f8LCkJtMe3U2pgviqIsVWt3t09kQq/LPPXvYGe3L2ObTBCiEBtFxnItNNGGQq+CwZQg2w0Ybh0Foy47BKEjPBRD5GXDO4jFna4sy5dFG77kInkICXmOcu3RPGulYYUADZehaezfgU1UZEKJz/qcQnTUOTJK6y6cT681jZmjlr3dxResGSREsaI6S3dbSppFJRjnI3WkYxtzJGF5ALoVzQBLNKSX/kF6xj3AXQHmlbO5uyCnYalyxDH+w0bMvUr3VsxmXkMJYZkuRKziJEAPCxxcgt+6T6C1RUQCGc+P7Dd8OEIGg6ofAFaoULIJzGtUUPbMGHXcwW1dt2oQ6KOsVXIMcOfeHBR7okCe7v9ZV5LSZrO8Za7qVwPl23FJFajWghfD9SwaQKRSHLAX6YT1o7h1Cz4J5ETpqzPIKd+dw+04OOAkCgwHLSQgziKVqDVSgHAqHLwgHI2lgEUM05hYwDRQt8dHyqn4E0PglFzClTUI0T4JYz9QKiXDqTvUr7SGg/Xges05fWI77DWIfp/9pfaOm4qZvCqv73f/v7s9On+4ODfVTSlZE8t1euOSN4U4Hxo9GNcQibErN7je5vPnuhgEPTh30NFXYbg2ZfMYqwKQxNgCAuTpsf3dyW+ius1d61cscO5coqVUcU2w1zM38ji5TU5y0b3/HCpeukPTA3Njq15exZp3dcl40wnIlxECJazHFx4odkEafWjWS5RHTpLfKkKRhJM0nIR+VqanQMuDqqZ3kuYDiQGc3cR0hjPPDVJgvA7REAPVA21wttG15njsluPXn2XDQbp5bka3sYdXAfbIWyoc9rvLrRowk9PFmmKYIsvMNzo8JAMmYI9io44TH0r2QywdB4Vrgjl5vHG5JV2ZPzS5ilRBD1uqsIddqBJFEN68VfGEpx/2vbpNOAjgDciR4KZKYjs9ppOTNeKkv2gMt6HLN0ttGyHxW2qX1wo9HjmuJQ4QtOAiA4ua80QE04dcQP7SlwYVpzBQs4jJxBfigoJojtkEMESQh0DcpPdcdCIuEDT8eettw6gPvBbrV0XlhNrMZdtrIDJIrEwhSQelLYBxyE33HWxKLlSfIRgATkac4CragYD2XJNJG/nM/dAcoAQEujrmJSw3zSPVEFj67Fbj/R2hOutzaOpCfuU1M0G5wOR+Nvfvj5kmJZO4rlca1+lENI17sGJmzPrO7uqN62Cduk3oSQ9HBDU0mGdnduNCHesNWP+taVpEZ9BgYMCS2aUMJYg5lZIl3gFo+C3k0wUUNCUIobhVzmL2BtJyfajjnTu8725MnTM8l5Km84PzxmyzZE9fHsVow/JTUElfmWhcPObVd9p9hBotZsaaOx4DzUlmG14pPiobBHpNx9GwqOrm705SUeD/ePTk7PuJ95fdnEQRb8Kd4KTMum27VBr2OFqO1xMRd3JTThubVJBf+206TKSv6/uVL0u3RDt9zrD3I3th2fdLEPrEgRRrCrpBFEdYy3rvQ8wLb4EYqMqslWEyBNCigGB81C4xgUA2W15iiKjE2Jis28GTD4Z3Bag1gArI4KPxAe0PA5AY0Reg/LwaLiiAgQdaHhKMsh5WRT+UtjEq3c7faKQJG/SoVLtdH1TXqsklNtcWaasItjqsTzmWkUOU8oRg32LVpMznelrGIQUYtzEiRW3ZKgDyt3Iikm/fnoQ6id2ULvTYYT3LARzWKiZ0cJy5LjfBQcbT7yIpUo2zSMRlUg6cqFZl5SmlWRQC8IwBKh/FD9bIYVszlpb+YA17CMR2CyFFkTfCd8YNEEASiERfLSXU0A2dmJmB+Eh4nJbKuZK6629fxAdqaAebfnTGl4XGGZVWQq5dx34WIuD3UWJZ6uDvKUIzpJ8i8UgplC6jRiRvopWF9gZmkoaFmCHHHORQir4KFO2/s17rNQNYvAm1ybT42dXhca0o2hS3uqiGF7vAHFbzbXh67nRrXkACKZWNJFFovGLOapIFK+IP0ybXwVd9h7aW5HWMG9ZEZjiR4Q/xYtOW+zdmWJf3ktI/dLDuiVZUmtmAQ+T8s/Spi5IBMm2M7O8u6h+IELzrtJJbScX6ElTLX0/B4OszYAqKRqVQCJA6j+3/7rf5EPwIdoNVltw1t6tnYn1L0BSa2e0yoB6CFH9taGSKOiyOIgxOcCr3v5vvfqFWVg4debRB4LU/rwk7OnxhgqleWpz2/CHhP3oYKbTxmKT1knr1mYyFhFkUuZWNITSEE/mQOpEkuqiCzflLm5BAXwodGZss+CRyMewIUi6e3p56hiuXlAWzh6IfvoMygcNAv9xFu2ri1kAk60qYwvKtomLZ2vst7a95B2P1oD2LXopkltn9mnFHZgnzZA7LWKKgPxcUHblj/Kc+kpPA6RL74huQ2jjCR2Sqy0olbIcCdu6Ia0vxhVKWak+j5kXyPz1VaJVw2jpqxEgVpsZss99Ex7jwlkvVxojtr+uaFXcRfhU1aplQvKuDOzEXZm45SUhyZgjufZtoBK3ODb2pyMpnRF3jiWW2or7Wo1Ts6ZyDR9FC9xjepdUtfJW80uC3y+VhShp+KmPe121P50dHLFAiwPtGb/iSHpKGumJANVLpqFSUN33Q6Ns1L1OU3ijytME9cCqELIoQ2MAldttLlOE+FziSQ3bBUeONN8BzShcqFF5B9zgo+WVQlhzdYYOsDudU8my/PJ+oobpD7nOvbsld3CpHnKClF5RtkR8Ndtj12l/6gM3Qe1MprF0EOTt7lpA1UZN0DD903ZpeLg55Wx8wmjyoKGeisWXX00GIB3wC5uy/C+qlDAxPmbTWAjbdMN2JkuhR5RdApuJ0uXtqEgGAozpMopEJliLtFe2hFeUf9f//N/SBIYK0Mu7Xn1dnTB+O5WZU268zv0FyjuY8LCrBXtqjmRBmFM4LWymXMJ8so6gltaxI1urqAbjMfyAZE1BZba7QxvblhfY1kPJRsL+zQld/YETinyRJyeHScZnD0jfuM0IBDucRNzs06RUb5hZtBq9vYTjU+2QNosQkS06nxpgG6L+N3fJQ4fvbqn0xxuW93Q4KNF243m+vrt+3cfP4rl3FJMqktmqyb+1rMP0dEx+HZV4O7UtLGdja7BH5GeHN4/7O+1uSwZhHEFeY4lirz2z9vqcUGEclQoVYzB8B50I6e8pq+/jji2+t5YtYv3z0Q4M7RvluoIdDyGLCmoEj/IY8a5q7XxzjgBbzy8MRFFi7rxEiDYVVKAcZcgC0QTCRBnRu2UDzUrsQbRQ3ALlpGorDiLQLfUTXO2EN32ZaOm0Iqchbu8vfArqjLEFo1Q8oSFSXDZYfVIt6DDE4oVy0VKAYKoZYSkVaKIxdxDTkn3Vy2Le8Vc9/RQWJEtYOujIw7XovEG4/BKSRu64gsNRN3J1i84IUACt9NcahEdboOleWPhKL4Gub+1eXD/MLidXk8kim1dSMKUCbKw1cX1dH4j5GxnxcRxZUYEjRO6Yl4rhUAm8Y7ja+zP0C36yl4ShCq4URPiUPj/DiM3murVGyPxSj7Zx93UgKOsgsE7JciBDVkvtJP5wGqihV4dXaOJgGI70WfIhNSiYb9cYWZqsVIgUX/27BkizrzR+MPDTXw3ZqE4Jh/dVDdNaikJj/ZW7WjSUlX9CpOQ9+JeLxX7Q5aQCM8JnNKMIK160/+SS5kQljl+8f7dzz8md/d6cgm+FSWbDIVemOfVq1fd/UFQnSlAgrEnQL3Ui5IvRbeCDokHO8XHKIdpZRjnULADBSYnO64m+Wq+jb0ef4lJFoDEmxIgOgEZoWPSw5lKJBTub2105WNgc4ln8NnNFzByeqs4wTqk0kWS04cP9vC8GyrxmYxIj/3+YPKCZrHYH+z1qNZEsfuUoxqVwTg8kTJVmKtPuIQr2Jupg52nnM0W9jMoY9vETvYG3dJNXeVF8kTk2UsJsY8NHR8NcEG5JqpH+iSZID+S5qGancrTtuGnzGPFVhw4ecZc3IRADCOPShU7El3K35JUR+0I1SUPuZgSbu52ECAJlWGOUaJQM6LnHtrd2tb8Swd61Kgbw+31rUzK/uHp4dnzzcERh95M50MwjYIcD7EIlVlF2TRMzRYNPJ7lcKvQaHQNVI9QkG8YK/3WdX5F5CtdetaJ1vRUg9hyipApR1qW4huPCjqyiMmBJ+ymiRHOG6EKNnZM2ei0ojfwcS6X9q/Yg6L3i6OhnkT3t8p27jZu9Kfk+JBwO1tM7WGrBcyMPyAaoz4gRJiRSicERv+SbhYGAeTkgRSe2DWZSDm8qQ5jNADvvTr8aDAGHLYhVGSF0sPBDFP5VB2VkKg0LPNBVs6HaxbLGkQGF3IsC44d7xCIlPQYO4eHx1Yn7sAidwmTcq80c1PDYrY+GgTWTc1h8lCmEKpf7U+U7IK7S3ky5oY7aysmsAH5JuPZn7/7Vqau5bLp4Jtv//LjX747//BRat/723ey4aW/w2me59evX8uz/93vfvf05QvSVRGo+UQP8UgRQIYcm85h4YtGFc0h3KgacsAFH71yw2NqIIV4SYwQRYGpCfvrBHzTnd21IEC6DVcwFZXzRhts/ngKlKRz90CrL0RtdludvUNhup/evvv+++/ev3t7fXGOC1A3uP5HykibbewuxhnbsN7mdM7aFseVBzny9GRKERnWAOPDUTUaydAk+iiPJU1kLSIIjbjH3Z3+YndfvaavIwfp9bKx49J0HXuc8GRp5JYpvuaNSOX0bLW2RXqs8fC0+nZre70joGJjFWdaMiOKZwG/5jkGK65b97OeRcVLDBILyF7CgnK8aEppufmmCyXtMjyxBcwrTNnOUxq81XYPDw57Zy97Byc8IXAYP1YBzWDGoQ3ZvKyUNFz1eiV9Im5cqUiRrEXniI8t4pxmQWIkgariXKjCtRZF1JRQLSdnKZ0Dj9NANSfEowbc4Qg5RDrIcBF3Sxz1GJaUyl+kxeKVi9tscnpv3E0XO71mr7l91LFB6Oy2bnJ2lqPY6IUXDCrpoaX/VKRRsKncS9C5GNzEHPmAE9MWDLI6ynWhW/zJUPxfLbcVJ6Ici6mF1XJsAbwUDFjpp+rWfk26q5yyaIvxm2zPZyV/VoV2djDHO90ty2n0zMs4/uva5IkRo2l2QiQi2KVY3fZ4PbfmsMiDI2SSRxsjk9IcTiYstoZSu3pzCalId8uT1YzNJhRFGcUf3+oR94aBysPNJXz+9v3kdkh7T8eQFlkFS+HKxmj48PanN97rreD/0+Nj6xQcL3HX+Whs8bY0ZU1U2L6aksYSTS/UaPl4SYqtggIFN6jApTAqpFl4m8FWb9wvX4WkYqCiWGvgPRAT7JSV2IAcW3Zmwx21EQa27ZZ1bXR0JO0qEZ71uqNu72FyZ0NA4KEU2J+ARJWamyRvouJhYzYePtD57aRrUSsZClLR0KirCatxtkRNIQtLo3rdj+SGSL+KQ2d5PyZhV7oKbOo8GXZkqlJa0A3PTTqbJPPJ2nkrKUdzqPtstM003bZpeMpgxOoTw3VWXTewZIbH1sCPiUdUE4qkjVtlYo8LMiKCxINqYtAbaack7pNKMb2BbO0Ta4c/n+61cV/fvB3PR0ogm52902eNo6fr1mCUGi4YndgLNaq4f9IoOwgCj/AY4tJ6BNQ8iNCPsI0xIpKVpSCLKNVZEDiW0Jq18EqJQ5kVrXINF4rNhrZUARhfpFp0DMBMLjJXsk24VE7EtRxkCGIgihJEkbnJDo99RKkk4DSxZF339vTbW93pqzdcrm5q41s95vSKUIEUby/TYamuZq6ukDDwdOQQIMhaKjgToBW5Wr0GqXDpTxSYj8Velbsq86+2xPcpHIx1jTgMLZQumIXSTDPUrKIiOj+xGdWkITgNghxIideFxTpTgFulCh2Y6NGyJft5IharzLOsTNoFAEddMVPObvak/EcJS6liL5YXY3iCdmcLJWPcbrPFQI+l8+vrDzb0Guvksk1T/Ont25+/+ebdTz/bVAP8rE9PA/hGE0lMt0b9/u5nn30mvanyPHmcisvxzTCsms4erg/VNGBKytFic8o5u2yEfab/TZabzkJHS9QujA59JfIWJdmcDQ34YAjPpzv7xkcHFxQ8ABdSwuUmWFAhemEdG9pe32vGKaNwPjRxv9/fX+w0r7e1vNjSGWOyluqsHZ3GLqRYu7nX63eUmND9BEsQG6V1NrHtA5+VJ4bbsDYKj8CD4gJBzQYSHcfWLJHthpS2I9rtURipNBt2UeG5qY3jNtsVNHnghiMV1kmhiUp2dytNT1qCrXqZpDhYQ/rg1u5kcZvUQfWkzXhWh9wO0hhQGgRj0DvZI7gKPT2uJeNSPh7zoaIV/g7jgPkxbQj5tKSTQO5B9iXwC8ywDzczq9/aP2oenz60ure2cIUPwhslk4wRAl2CtZ6BouIvDQBBAXdBW/TjOGgkESQNs0L2EIElDrImaSFSET+2RqKRvYEstGJDF0eD+yHN5PRkMbUdwlPBmzzj80l1qawUIlRT1vi2lmsLBLYEV3IwWEzaXlBpbFmhzahcqMl4fTuada4fVn/auL68H+EW9gpkw0pjRLekxnLZDJONe99wY0mxG0OWjurvp0/5xiobPJZU/YqY5Asx9aj09qaXJ8d5mWRnBQH6S+8K7eYmrnJUGOhij2NnoRPadxgOhOaSiFjRH4E6nSbIVlKp1jyTNiplm+RyMBz8McJ4AUhhGi4lik+niKd1c233lB22LZI7OeoN5+m6uDdsHR20hEMJrltUvXi6NR9jlaPrK83WaJ+KfTjiMO3efvvzX/366ZOXfDZPzp4KZMeOshV398jae6iJGLphao+7Y8cHSx5GynyTFHab6WVlyw5sGWlgVP4+vqc5ZzaZArLJl+lY0WyCViBKFOgmrIfY6kHIEY+Qlnd+cTVbDfUkzba7CavWr25Gc62Fx3ZVnwMvNHlx9Kz9Ip5eshRTS3+meO24eSGN8SIEZlGYWQYHATD8IlfTHaJqPlIypXAhtKBvBvQ3NoY9zuobOmTw29VSAMla8fu725SM1iaxyVR/BplAPV4k6CNnzq6f2J/mvFBS8FYmuj2BLq9vlN/yQxgzGaYgfON+pEqMOxqlY3a66tvsDjwpkG37nSXAK1FWjGrVxFDr895q3Ivrs3Y92Tifb75Vh3Z02j05XXe6o7qtlrc5u0BE7lw4iNlyqJaUIBX8JKmG2Mg2bRYtJF2oRD2cI56WvEgeJ/iYyjjhZhBayh2lN90Mr7BRzounT59SdsBT/gZ2zEPuWizR3chP39c39BWSDxU6D08A7a0NHRCteYxVnuqHKeTW8xgwnWP7Ehog9RqfZNfbwVi/3N3j/fZpf2P/uPUv37z57i9TlhxTeWPd36mPxVqofOOJZqfc64nibO6warkWaPMd0OeHZ93bQ2ZbTxXhR6qUIFky/+1eo2nh/dbOzxej5exqf9E/2u8rzxKJJTI1jEXW/CyZHZ5Ytv/GqSrKxdFU+gEFFA13w9gwCf6j+N0f7CywO+HQB3kKcBASOCVwJqBIUpDnpJEr3ZpEyC2jZjhKSL9pI50wsOZqKYJ6f3xCXpHrvsHS1AC8+9ULzVfGN9cf371VDip6fa0q4OPHveP9V69ef/H5b+x0IDOxYwsHXUI7TYkoqMvdTQNzNgLatxuSrQiXVxQXEFFEA/GL2FxLDOOR2ZUrysgyuJQsRsu1bP4LKUh8563azmhpwiArCR+tOsfdbmw2Ml/0Ov1Or89xMuLqnM236xfvPn6gBgnztY1PNJXTQwr0xqYKOeweWLDteElK+ZLh0RbDVgqtGkaeVRLH47suWz9ZBr/6EmlCR8PLaBOPFKal8EHx8NfaZjx5FJnEi7M/zeJupH3MHUQZWHjdyfgQ9LCHiHRW/QoZq1vaSy0kNNO+NG7BrQQcROl0E9GJVipo1j5CIuIBeRR2Hv8mPDfmuLuW932VlptzKhotlkpMbZdEKFQvl2+n06trR4i5aJJcbe9b9Hr3cbitAeTukQvhU9W6/PJqUp4ibl0NwPe5Cnp5AyG50TY2FPmjVeH4QObxhpIB/OKoDBacN8ozA8wr/QIuWlxepurhHgGTMaDqwM8sgBs46dPoEho0fQPIGMTGbG6ka1W3f/3uvQ1fOIKoSXF6NOr324KuaQM3Y9SCtJkFd9KJUm6KN7Fc/EOjcY8EsKZuXr7KzWl5Frnb7tgqTRSN4iJLhHlZ3+zWesETFFeiFaSUAQORmKLphN6oXRHioTssv11v8WoZtHq2uoKdAKPo6x7DKMyJOdNM49H2pYnHxxGCdRuRppyTaKbLtviH2QgwOWlJAA3ojLnXz0/RE3fF7dUlTVgi3F+++fOf//Snxl77N//u33/1298dHhwre5MO6nK7I9H68iD6RpYqd3af0lc8nftokmhVz5tQbPIeJMoFAxCb07xxuNi1MxGfgg0JGybRr57+LMkqBQG/UKRpFTR/HrDJ/FbGnqXgRK0hV+2XjjUketC1/frli2fuGYAyvxRyoafk2UVSRyghI/+jilIk5MbxsBfscSage+/aQP8TNlcfzTaQcqvCBA2I2DBjb4ob3m7mqXMofjstZC7Oz99jfEJdz0+ed54M5JXQVe6XF2Y9vbocrh66x88RimsRqsvCEXaw/jvuPZghA4UCXEXIPcXoUyH5qFsGRYh/jM8/uUBcT2kPuNwSy7DV0HSntdXuPn/1StmdKMQ02xqae6rPKPWmlpULdgYP0IM3voTVWbwCKF+WlYmi5JuSwOXZuJfSGQjOnEsHazCU0GphOQKw1grsLnEU+AStK3oDVczYrfLRt74vtOobstoR76HljOnO6PZ1/Ezu4zqXVPcJu6dhavjW7jx58VI7nsv9vduP728+vF/M7nQGJ0xlOs6xNXMpspkDTJBb56Kk+3MBkOg4CBfuWsYvl3YMzjwLqVlObYJaDTvJ7+0f7h0ciTXwCdCZoJ3Yz26SroKiGY8Em6BHBioEDJq+9BMNwTdlRvJamkIFmgTMtZorVc6F5eIQYRthkQXUXj+xqRICqkj9F+hXbGydqHI5YsUXiPD7b9qHtoGo2FtPT445fq7P0yrpx59/UovcbEki6DXbg1azQ8RF15a4VewK/MbhuV5lflh7XkVylYcSdi7utZWQPyUToG7LZsMkwADA2hXqyNNlpQRqcUeyY0IVPFMg4lTA9c/d3ZxVbG9Pe6svpzrgOERMG+q6pCRIm+Kl2lYN8eg3zi62TC4xvAyuyswAb11WiuTnXCpPiVcdHQoPevN/IUcWwFHWElNLaY7xSJEouIVOEvI1u7SO0qFHnFfm1/AmSelXF1r7NpoKSo5ffvnXr379WvPiu+sPt+c/40R2OiBzwYPz0oVkocV2fxWmrEmuS8IdkqSEhASBrAQMAiuwBWHYDltSziU8wRM0fK/Ll1phwZw7nMfC7O03Dw+b/SOJTjIoae9L/dzomrKAkrnlZuFEQAL1qwlGNy7YbbIFi8IOzM6BU2Y1Y+FXCOaUkJyIzM2HW5XD4LbTaAEHZushjICI+LBdK+YSeEkzx3PLnXOPLL/lJNwsrHSOWNsMgrgwIwBL4oXXcHDjzPNMu4zHqy6nKog48nUrOjk7vbu6eP/mh/Hw8uH8e9sFeS4uxg+gMJ9DATEiDveU8ZSYq4ATj0B8UcINCC+0V0EDrIUs+4P2Vn3/4OS4r8o8FjtznY4r+4oBl6hSNRZvcOm8bm5O74egUQEHv6ugamryDG2kLj31vlvTrdeWIij6EbiSTlzpsuouEDte6fwhN2KeuWFEAmkF79HVJ2YQBTPMLjHbZNKj+k6q4NkjDAlnUlzGpOOlhmP6EI87vTk3DVhAL5zW861vGSIAYI+BvGH4xngAwsdqkKRcUKmZLvjVkZsbVjl0y6ouDJkzgKNbZoXSydZpwVRqq44m2ZRXbsbsbtUOGXZjhqgsAaakjC9bsjIYO4KQnAdUGvlTJi3tKZ1HGWK4WD7SWkLoOaLDh+rLDpSeWA0D+Rh85vgJXVxFCJcYODhDhbjNyBYhMA6Gm8sLEPpwcc6hxe919vzz15//6vnz57utg+5BDxnaxa4LG8k27Kq2M7WrpDzBJdbG5ZbIA4ecoLB9n5GhdLrsF8CZ6igahYS0IliC/2BGeBT/qw2BQiGsShmbK85xbRlPnm7tDaYr27nh+igoC5S1sMJZMWQT9dJMrXt1RD1MiVqO6psgUiGViMCKtoGueG5kJlmg5L2kcbTirTO+RqvmTJcUyFRyNU+hyD/etrp5SDEKfZSZgvpsm397KA0iHwofsXLlBACwCg7DwDs0PaeaJEtE9ouSjIMDSYeDyUBwUPttG8bxs2/L2sJThaMAUh6mcSEEWoI5UqzsaEkrCQDQQ6FAdmTCywoMJAF3Dg77e319sCTnolUGvpiXBL7KFwU+aB+RG2juQNmyJNDTa7Q2o+Hxe5DEBMrS4IBKZFGGt1yOXFJEsx6HgVSBdQyQHNiXW4dMS8acVQ5DA65QV+CCtlCYC3OfQmNI2+3dVHWo4KxCEH7/D1cXxnX29Ln6LTgMcJ6E5GFvkWERZSSMICR88ghgdeMC+CwbWebmvjQ8r25VHdUTLUZWpdS1G633RmvwzuHcj3XmMmKRQyAGcMk71s6HHNINaXo7vPxgGOodkwdsezLkPB6+P/9IkrNVJW8ZrUcgdbTliWhj0E8GJZwzGPypGptZF4iZWbDT0ws8A1IHQgUTU6u+98ogt0ulzo8fP76Pu//duScyN2y09PTlq+cvXh2dnlEO19ttcoXlxB/b2OtzRKPBq/cfPv70FsAom/QCDd5Qu+wF5K+Zgqa+suB7HfpF+k7pDwHmOBGCwntKvlecsaCNafEr2S5Huf1CMWprcHD2Yvtgf47WZ7YH0rNUqKcIrNhE+Z/ZHyEATcLLM1mzg7Ss0MzT+yJsyyoAmxp9yxZmSwEFQlBKbdp6bd8GiszzFy8+++yzvQNVmTnAhw/vk1zFZAJS17mnJKyssv9CrnlMzoZ4fgzPtup0oDJD3+ZWEc5OrEb4y6shY/545qQm7ZXesLZTraQonoz53aiFWXd4hQjxxMYUde3qGaGzmn4cfLGKCIr8EKQLeSKxQrL8LCyjSLUsh+0IVRbXOfbiBpLEya5F4FEQ/AsFEUOJFJWJqQROQngYYuqrEkawwwS6TfgtfEn3lBSDMd4KBkaaAYR7+Cm3MPdSww3nwBYUKrZU3BLAUeihBKaxStXI4AIXHajE+rqDGyJisTuBBD6Ug+Mj2Uj6F+EicvZSXr9LYKLU+XQ8hGdYrF7CCBU5QSlrnOL/wiwMhsPEa1GCKjHyaIEYnjO9GjybyntrU+Rx9V7MVAqQCIdRuYG50ucMjTuSoyUJKUlDFiWfEhVzPrPAS2T4bnT18YNGL91B32C2Ob6NuKTjgIMIFzmQbTg5ORV8llRyN/foajzVkMi/MB81REVHABODdLmHu0ox6o2Ney/S401PDhAQD2PGPz15AnufPnu1v6d4OK3ndYowajxWMxxd6zRpjJ5r7yzBs9Gte9KurFy6fIZfIa5Vc3ezzeRUV18X6qAeEHs1mYs5GcQEmyC6hVMJ1dz19brWqHd79orq9w7tEK5QgIC2QQVV1OCx1ZiKSCTO2Sy9T4Fy6KH4qcrHihi8LZ8i08DBlzznvgl5g5ESCzbwen1d+pBArdevPz85Oco9s8VG8mm53CpYIdTgHt2xHLDS3ZzowUGwsqI+GyQ6KFpfVH7PKvK7OEwzlhyPFxbMoKvT4mn/zXlb7s5CP+GHOXG1fXQ273RtKY36bu7nl2hke2vK6LxPPweuawjNB5xOHHjPzrYSHKM1nkSrCijCy5TVKwZUU0tE3utZi5NkX5TUNNvtNQwmJ6Pq6jARDTupa+E6gGS/DBI79RBuQd2LdYo0rFQmGIu88MfJvY1mK59N5E9ZSyubfadKK4bUqssm4Q/00fd2OarG6iuHp1awlt/tvTs4k9MJr37x6hV9q7Nbe/bs+ZHdmQTDVvazkj03V+0tJUhU6vIqUiVYWdRmIMiurdEhPcSahwzIMR+5iP3qsADVGlQfKaQWEyAM2PdKIfNKB1bYhlrKl+VeQSBf8TIElGZscwgrxCxJuEoX9Wav3db72EkD5YIH+9re0nSVrUeWpuA/CrY7WD1TlgwS6CdlLK9Rk6NqYLGUrLjpqY6wk83t9WG1jSZNQd/jiwsNP86Fu8CK3fjF51/ZU/PJk+cDnV/L9o1sQGbeWlRGdMVWqxIZuA0lUR+eiZPXxjcFlTfv1iO6PRwGqgzCxmSlRDrN+qRgJsuVZzX7eZp4lQRKucBGufCg8Xi+Fq3o7h314g7p0r8m8r7t0BQLNKCVohHKLgU1ZFWl6ZpLhaBO8MYBdl59Xx0eBdq+NEjLyquET5g/EMpQteKWW6iGB9gJAEJcw9sKkdwna/RoQYQd+xiGVd6gVTdUceE1zyqDhA5hG1JcQwgx3+JEKsTpKrd1BwqRS3Y5u4kr2sXOnE9jed+YybfaWN415vYMV6F/cTe8H4/aBAoT4mBv92bEcqT+u3MyzyUOW48s/JLM9YhqtHAt2BfWkR1YF9PV3Xiov7RoGCVPLk/JKIr4hRJFahiLY7nTbKROx5DjNU2WQ9y6qoUTXQt1arfJ2E9TGb+HVg1eVowiaDtBFV2x4lvGobgnAElNDDQVJkvtmOOhYUf25HNxmkDP4uXLfsetdm04GadTVjK/t1qbx89bveOzV6r7oLYWCxZROQ53pV6fSmS//flfR0M9tqZxfUtvTa/3pGE8iCCkrIVqag1Yypt2ZKG60MCMKkgUbdzKmHtWpbk98erwQ4UlXnNWQRrMlwjfsOvcckq/swozioVyQu2PbHJc3z7UjJg7hkYO4tu15sHezsagvzc4PjrttzqYU9n/Im5hAINnku+ITS5lzumApahkxlHRj2HQW2W/46NWx0hoEolp3Qx1F2SX8gwpsrPPrxlpKvvq6fPTp8/FfdXwQKKwrHUyViHZwKamNikMVw1PnvKqNrcbJ5uzxbkQQ3d2hfq31jY5mSP66WpzsNzqd1t7rT32Ftf5jtaV2mpLxdiOTGhCZLoZG308u7gZtXuD5dnZwenZ8dkzm9CocJTAqNuZLSTvm9n3DTLKDsbebTSDSGK+0LIzp8iQeJcsTI5on5hOEINKRZbD2tUCaxOCVHRHJcAfVPm02rvvP/z45qfvnP/iq69iLM3uhaRQmrIaPDHR/5IthL8QZZGZaX7vjr7AEWAidYnqhS3SkeyWnLocX4a1hEaNzqiU37TcB+v3Pc8YpdMy2Zl+sj2Hx8in/SCHRJlhe97vSqXu1i9vd2o3jdrdcPtCsdFksdc+214NZulhuDja7zXrrcF4pzFq2Jd5urVMt/AlHG+wNO2bvLlskM0svJ1+5E1dz4zNI04RhkayNWbcftFrYOy/HXEcbC9H0DjfW5j8FKoNZJF3cN726gnUFhQPchfUl3LNMKVM8AUg1OpXXII25H04RoRlKAPj8mpBYJLlLDQcUQMj0QW2QhPjT8Lw9IClO9o9kXUkA96WFzZl0ThFNqsm1+cXb4c3Fz+fv6UUOreh5lL7BoW32niVPg7wHm2AcDXJrJLQaGrKQ5wGVfGnSvWX1F++jI5RLV5mjt+jd0yAGq2JD6BK7IJY0QQjXcmMiFa1LWoz5fekqyN1dIKZE6X7+/tylXmu0apSLbPmKYzPNpVJEaqxfssOHZ7ogDpEhMc5lBDi9SW9gfovcCp1UsfI0WR2d3l5rUYCURhbv3tIvDx59lRn5WqyZRaRFgZf3dOaODDd8GFCOD7wmq0EHzojbeBrk93FhJojTp0UAglAcfGlbUvCy6SLNhGYUkNKJ3GMqyzXw7upjt9bfPKD42e//ko9aqPTVdqBALJ9aVRdKztzu4whLL9Y/XQHw4i3SXIPMUIVD4QhEBFuf8tiP1uUIhJtPlJCaLKLjNnIraMF1R1eIp51fP7ElCF6WTUtyZBRtshU4ZiH5rYFgz0aUsE08gAYKmSILlgOcPBNTg4+FAcBiJfDnf2tBu7cX86BWvmdQw2hIN5yGLm729ttd9Ad93vz/rWkiOHt3YPwf/Owth4vO9ubthC0sZQ6NX6OUn9rMdixDAUKsigj/GhD4V19uWxp1+D9SoanwGFUETskBI0dZVQZT3WgJG+Mv5pC9cY3nPORTIt05Y9CEgOO/YRHCjRH0UisOWhRyLgSrYqCnUUaewwHHEmUNEUDSWZmxVnp8TxnCem6LeYrE96pyMINVZozksFf8fR0Njp/p2/+hZCi7K7x6Mo+FHCqo+FbJ/HjNqSxTXOrbVWNxA0tkvFUkykzxXOK5pNnwwFHoqwGrK4ptFTeVxP20SGYmpHTmxh/vHYybu1Bz5O+mTVj67g5Gp6OlWTEPzK6ucPCde7neXf0tG4pYcrkJ8WLnINPptw7mUXwz+OMw6OrwzfkA25sCTA455c9A7JpgHipYIwEI46JTrdPjh4cHoUdDPociwXC8BBO+mfqORCYWImfMFJT9yCuJjDpdva3ZtP63dXO/OZBBv5YNAsZRZonNEyO2yVK43izVkozAaUR1XxrsMd5bD9Cey2fvvzixWdfNk+eYHoyjbUz0lpH+auxkeDx/xaq4bUM5OE2wlDQg1UsQ3gwndYHSUwTJKNYlbCZcy0evmNpTD840GhEqKaspP7ttz//+OOP+weD33z1BUCpATQjFokAnI2qZZ3T1awISMY6zjNjjHrcY2JeoUwP9RS/OtNDy1pEgkQhLZf4KXkHwdicY4Eyg6Jau5f3LiH4c3coWw6t3dYPNkiYq70e9jraDtqxe9iuza6har1vq1QtmrWxsBb09TTSRwXiq2oQET5VjnK2kthn6fV9T5KWLS0Ik5oqBTxbeV7iWw78kEA1GEcGJtHGXQrFlYlEDuUQCfHZBCOtyCgPARKUZJKUj/Iv9lUy8pKUYVZiggDn2nBYB05REi/S0SIrhPsV/drcqdSYGfFCivCsLG1Z3ZS7nFgCOTq/vbz48Iff/90//eEfNJ57csL51+NPPTg+6/YGvb19m3baOFqcWjGUdY+ftsCxgrInV29MNMPIREIe4GWxA/p1cqcqavHGl47yMbUaxOqC6Z58jww0LXiK1AIMV8dlSHOz+1mxfgRnWaqnuo/v7YEGdiZP7VZvI+WQhZ4jSWxhDNaWv55WRnxiv0A8Pm7NZQrQMGzZCcQp9xmRS3I3uIfa3eByGBTtT+dQmwVGgcyQ3DeyAkYkDgbugGsxK/6UiZTZo9vtHYmG3VWvvznvL6e3d7d3s5G8wpVE0na/rcSAEr68H9EgucDTGGKk7oQ23ZFnvG50j05fvv6rvxkcP5GaiFe7zt5U2XEJ38YGyQELy/QA9iLgstYwEr6UNB16aSgTEpaYJD1FvznDcxqc4OlNHaPgRrxrc8zIPBAOfeTNmzdqpP/Tf/6Pp6cnPGoyyTmkLZ1YEEdGrJ1SW+M2UfHKgUOBTPXeqyHl10+06o0vvfoiaFBosjrfe4vgy8yinObCRKjoDWAboMYRlYiklU9ze/Xsauzt3SbYsjODh63GeGN3OVmP74dqfDcur+57NjbfU1m2tCtlaIwnRKmE7TZjaLLzGDENnWDkbAtC6JEobzEKG0eV2HswDZ+oQvWwMBhr5/RCtNU4q9cyfqoNX727i1GI3eKd8DeZT/HqMiFMAGfKqTFIAiBu6MfZWvVQSFEe6CSAWdDdq+8juEi2kqopa5I1h9rZVnkcY2o2vxldfvvNv/7+7//uH3//D1x+ty+f/fY3X/IB6tytUXhff5p2T9xVL2/pMgDLenRUq+IR1eEbZFi9ryzVimLLwLJJR3WAQiHVvEjddVW8ZpK/+cejC+TXonxFsYgRHBZeVBQSlWZGv7RBi7J8VqJGR3iN2oOSO2VE4XJcDZH2hlgTlIKRnktKECC+d6GbBCRRB9PdL4qammLoq8ayn93x6KgIEsogTs92cqVIED6i1O5e1jQcJ+hFbuMRBRrVp/AWxrBN4xq2McfzJspuZ8PpSlG8kSSrx5Y5IXDjgY0a1c/sSDgcLpq9/ecnL04/O3j+ee/w2Z1NNMJd4yCOvhZ8KMuc/D54z50RqRpaAW6WJOgVV3ClXTrBFc5Ewk4xy1yS3zw5CeuF2KMLcMrhaN99951OrmdnNpV+aabONDxXuRYTzAh70uUAAAlSSURBVGKZuOqwQooVqAHH3IHXl9X3Ts6A/fwonfKTC8PRkGakq7+wN/PK9wHZIw27j7tZqVxAnwJeKJvzuGl3tedHyvS11qbMSApvr7fbm8+aLKK76+W7S8bR91eT1cv7J8dPuAOkIrVQHz8tXjy8ucregnMNNj5sKDupNVK44YBs/MwBZrbBAMagHKW5HHkPwuUAsZxeXr3pbjXiywopiaaG3QTSyNE9dMIQH0ofLOucLl6PtBqxW9gSbPamUobN1GN89OwsT5HPBuRpCnpgSLIglsvRTTKnbRej6Pybd9/+/n//7Z/++C+3ozHF+I4s3N7pHZ0OTo57El73DyS4pmlXo8hV/KIMwEiqmXh9fF9Fn/PR840g5OkvvSzvPh0VRDLIbNUbCpdBC25RJGL4SeiLpZTTtr1x70e+0GbkZduYDWW8bsa2dbY3cMD0wqCoCmUF4EbKBLH/lIqwb2Nmg4yjKFoBPb0QXZNCv4RhN1VDM5kKlbov84zDxpmVHkH1pUy6JZA6cAZjzOMwSRugJYZhKFm1BdegrTG2u/WWQMtqf3w/vZHROaFdaMkxub0tLF/FuiZn6+vJ3cWNePfWYW//4Fdfdg6Oda1j+Yo1pyTFERgGURjwFbmVgHkCggEOHCJlA2ZjCTUWJEGjbu9HzXQ2tGRFdeAJmwKBREpZzBrtym2eqFgmRf/lT3906ddf/1btBCvH/rtmGFsRacmXlDAUnomK0yIw64HMPqGv91mkgg/eewQZFRAVgszHguXJJojmmLkYjzMzu7CefBOnvz9lZ5CcF5IOeuQMZ5YZKlfUUZ9y0LHFPSrtb852t25rD7cX5zc2LP3h7ce724N3vS+eP2EiUQgpFtcPFzQnhc08gsPhFc4uLdi9oxwZsP4H0Ske4xfVFPJ0MAfXLGbB7fyNtZ0/FiS4CiqhpbpUTBYxokIWrseCouBxEtiplvVcKXXFFemBXEcg6CTzdCMyoUhbWB6KDdmEZoqfoKRduBV+w0Kl/d58vHj3409/+OaPf/zDP0mfC3OQsCwScnzSE+4/OYrq2+0pKY2oYY3BlhgAeZajjDwv1fvYR2ZY2VKfCDVPX+8UB6A3AQH+RaGkFjFJLUN6nGNsNbFsKxwlWHG1EXsTmJXVrR7Eae4ym/MxTwlAvlmNmdWJTPXBzmlVRCpoG4wsbc29CX4VAzuQrA7FrZaLR0RdBlNtlS2D3VBBhmAWcpMVyrvPVkAsUAMUK1EQJdL/sTiyetYElhaemPtWg8yMGjvr+/Z6Z6ByrtHb2tAe4Prq/k47jpA+FkliJdJAv00Ts61Fd//s6enrv/6bgxcvuHLS8PSB87w+Sk18QiBsccpHtMaoXfaDoROSXFmL8HJQ85ZYLWWGhpTlKBtyWgyyqF1vGxu3JzgUwomm6hxLClQI9S/ff8ur9MUXv3r9+nUmkkr1VniJKpIwpIA0odIyx4A630UvdZ9I7EK9AQEsLE6t6OpxU1frEBHv+nCTYAqHfJrfV2qXb5xkeL7HDogJMbRq0U0Qw81KhfUm813kA76bemal2Kyv/HWz3uKu795dz68vb978dPX24/l8dPdqNH/2JEkOJoglUSst9G6to/BBPqKq/iTCZWIwUM5GGXnRI4IwYFQOKlO1pj55U73mjYwRodzFw+5yo65dQyHIPCxrX5fBl+5y+L7XuMutSq3W6e0HGME3tMQIyrn5RvcNw+M/iMOJdcZJxaB3D2xyJX6nlRNalbqoFdMP33/3zT//+eriigDGQtMPR35efw/FNmUa8MRoitXoMIUK34Bl1DFLGBKsYGr0QOK14jtFllscyOP3rJlRlclmMSxYEZNl7vH6Rz7kwYJgBdtpc3r8udAiVZdXTMd9siM4oUoWKIuTA0F1tf8vZ80qhSBBIaeWaC3xKIIFMsQdBPWrn7IMQdaaQn03Bw66nyMKHh+V4E2rb4jEOk2g6H3LtPCVSVMKgLJUhspz50GfSkN89F0Mq8i/WKwWQAzNPpAbeizv9MToWx25DO1mqz4ZKdBKyodzWEw2/xRCkzX59Mu/+vXXv3311RfKl+waqbQPM7RlRJmOHGdV+3xq8SsBSTJZgq2somKj5sFlLbB5TLFI3nJKWDw6MtLcrqxCNPz6Y/8Ns+cxkjryw5u/fP/9904giyggwELOWDLKE+4s6RBfAq58Y7UC5yyqb0y0Onywfn4yFs/yWpkJIePyZS4pmOAXl7BEwFxhN+A7tVojF6oEd5qfCDSnEX0Gk0cDLOTOppuaU6WKVVKeFmZbNrxYa8LYY6CnXOehzmk6md798P2PNvOR0KwZvZJroM7NNYXSt/ShwVYnH+FCqTWPhYF+jdNRTad6Y6jN7f+HVjOvQrELmVRwkTBFsZPbD7ZfRviJddueYN0xBzjq1DjTQ6hbLEmoVxLcNbFlKFqbMB3pXGYoeKZlsfUoOn+2XeX6lURLItFvtTKWNXt1/nEyH19cfbianze6ILMzvps/zBbNh4fjTvdYv/6d/W6zK8igVkq2peU0AM/G7crU4EVG7yhUBmfYnAnxlSN4S8xjh+AfppnxRfI6UGIYdSOk6z/iHHsFML9wmdkY3Byrw61+geB9V7rVbHF1JefKLWfd2bIr4MrtaYSWKk/nGdLHK54zwCiZ5eHpWKHkyprsgmRWosaKUAsK1m1bhLaDMc3sqWHdiTIPLewPu9PNAPPjHIC7sShMrJhjfDnyXTL2EtZMFYFP08XGDvDsdKaN6fVqbg9uCt/q4ESW8KJ+pyhh1d0bLzc+zm/fDGejzdbZf/jiy7/+7/bUkrUuWGkvCP2lpzaLrSmtkRRStnHgBxV5xY3IMo7cwiQD/VLRQvbjH8mVs/2ugxqZwDfhA6e5TXZFL8xFkM34CFzA4FaSYjjo92U+/PEf/+nN9z98/fXXv/7iy9Hw1i4NGiNaCn3yIwpNyjWVV0kvG9zCKmrcdS98mrCKO0swslimX2CuvFR5Vkg6zfSLVJT9aHlkXDkHv9Bgg+ClNOJTeKv0L61pEA/D9F6vGiWnViGiK3TrDGQQHIBMJlVCIfxC21CzJjDe3FgfbO0s191570lj1erwMk4vfvzTDyKOo7PTfcT9YTxbNfbsstHeOBB/jKe4sZQ9RMnBwxUUypxAzJ5AY/IGDZmIoUIKLLMYQ5GOZHD6BWQ7VRvq1tX3wuP/Awo3Q625/VkDAAAAAElFTkSuQmCC", - "text/plain": [ - "198×313 Array{RGB4{N0f8},2}:\n", - " RGB4{N0f8}(0.502,0.576,0.592) … RGB4{N0f8}(0.106,0.071,0.012)\n", - " RGB4{N0f8}(0.408,0.467,0.455) RGB4{N0f8}(0.071,0.075,0.02) \n", - " RGB4{N0f8}(0.275,0.282,0.271) RGB4{N0f8}(0.09,0.09,0.051) \n", - " RGB4{N0f8}(0.153,0.129,0.137) RGB4{N0f8}(0.114,0.071,0.055)\n", - " RGB4{N0f8}(0.094,0.055,0.098) RGB4{N0f8}(0.145,0.047,0.059)\n", - " RGB4{N0f8}(0.063,0.067,0.047) … RGB4{N0f8}(0.2,0.027,0.078) \n", - " RGB4{N0f8}(0.039,0.039,0.039) RGB4{N0f8}(0.208,0.039,0.078)\n", - " RGB4{N0f8}(0.012,0.008,0.031) RGB4{N0f8}(0.216,0.047,0.086)\n", - " RGB4{N0f8}(0.0,0.0,0.035) RGB4{N0f8}(0.231,0.055,0.082)\n", - " RGB4{N0f8}(0.016,0.016,0.047) RGB4{N0f8}(0.251,0.075,0.094)\n", - " RGB4{N0f8}(0.0,0.004,0.0) … RGB4{N0f8}(0.278,0.098,0.11) \n", - " RGB4{N0f8}(0.004,0.027,0.0) RGB4{N0f8}(0.278,0.098,0.106)\n", - " RGB4{N0f8}(0.122,0.149,0.086) RGB4{N0f8}(0.263,0.082,0.09) \n", - " ⋮ ⋱ \n", - " RGB4{N0f8}(0.812,0.847,0.843) RGB4{N0f8}(0.482,0.388,0.294)\n", - " RGB4{N0f8}(0.812,0.827,0.831) RGB4{N0f8}(0.435,0.341,0.247)\n", - " RGB4{N0f8}(0.827,0.835,0.831) RGB4{N0f8}(0.396,0.298,0.212)\n", - " RGB4{N0f8}(0.847,0.847,0.847) RGB4{N0f8}(0.416,0.333,0.22) \n", - " RGB4{N0f8}(0.839,0.839,0.839) … RGB4{N0f8}(0.447,0.388,0.267)\n", - " RGB4{N0f8}(0.835,0.827,0.831) RGB4{N0f8}(0.467,0.416,0.282)\n", - " RGB4{N0f8}(0.851,0.835,0.839) RGB4{N0f8}(0.451,0.373,0.243)\n", - " RGB4{N0f8}(0.882,0.859,0.867) RGB4{N0f8}(0.427,0.306,0.184)\n", - " RGB4{N0f8}(0.886,0.851,0.863) RGB4{N0f8}(0.439,0.302,0.176)\n", - " RGB4{N0f8}(0.812,0.776,0.788) … RGB4{N0f8}(0.49,0.396,0.247) \n", - " RGB4{N0f8}(0.729,0.686,0.702) RGB4{N0f8}(0.549,0.498,0.333)\n", - " RGB4{N0f8}(0.69,0.631,0.612) RGB4{N0f8}(0.557,0.522,0.369)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "picture = download(\"http://web.mit.edu/jfrench/Public/gstrang.png\")\n", - "pimage = load(picture)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"3×198×313 Array{Float64,3}\"" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = Float64.(channelview(pimage)) # convert to an array\n", - "summary(p)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "([-0.0425341 -0.0450356 … 0.00151963 0.00756285; -0.0404302 -0.0474975 … 0.018155 -0.0318043; … ; -0.143038 0.101536 … 0.0478258 -0.031868; -0.144002 0.111713 … 0.00208723 -0.00647907], [85.0721, 21.0869, 16.5932, 14.0062, 11.7329, 10.1639, 9.09968, 7.38199, 7.21165, 6.61043 … 0.0242461, 0.022777, 0.0226532, 0.0215465, 0.0208984, 0.0198099, 0.019109, 0.0189211, 0.0177043, 0.0170277], [-0.0697386 -0.0166765 … -0.00833632 -0.00208403; -0.0695657 -0.0410425 … 0.0132635 0.0545603; … ; -0.0231986 -0.00117247 … 0.00208234 -0.0117437; -0.0217245 0.00349056 … 0.0677007 0.0426431])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pr,pg,pb = p[1,:,:],p[2,:,:],p[3,:,:]\n", - "Ur,σr,Vr = svd(pr)\n", - "Ug,σg,Vg = svd(pg)\n", - "Ub,σb,Vb = svd(pb);" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAACNCAYAAAB2dDryAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmQ5tlVp/fkXlmVW1VlZu1d1bta3VpQC1oCNGJgEDR4QIAHYgjLNl+AkCMwoS+GUIzDInDIAWFMeAxMCNsBxFgTjD0jD4sQFgyr1ALU2pDUm7qruva9cqnMyj394dynznmzO6Cr1O7sMu+NyMjMd/kv9557lt/5nfPv2dzc3KQ7uqM7uqM7uqM7uuN1Onq3+wK6ozu6ozu6ozu6ozv+rtF1VrqjO7qjO7qjO7rjdT26zkp3dEd3dEd3dEd3vK5H11npju7oju7oju7ojtf16Dor3dEd3dEd3dEd3fG6Hl1npTu6ozu6ozu6ozte16PrrHRHd3RHd3RHd3TH63p0nZXu6I7u6I7u6I7ueF2PrrPSHd3RHd3RHd3RHa/r0XVWuqM7uqM7uqM7uuN1PbbVWfnVX/1V7r77bnbs2MGjjz7KX/zFX2zn5XRHd7zi0ZXd7rhTR1d2u+NOHNvmrPz2b/82P/3TP80HP/hBPv/5z/Oud72Lxx9/nJMnT27XJXVHd7yi0ZXd7rhTR1d2u+NOHT3b9SDDxx57jLe97W382q/92s3XHnroId773vfy4Q9/eDsuqTu64xWNrux2x506urLbHXfq6N+Ok66srPDkk0/yMz/zMx2vv+c97+HTn/70Sz6/vLzM8vLyzf83Nja4evUqe/fupaen5//z6+2O/3+Ozc1N5ufnOXjwIL29rwxk7Mpud7weRld2u+NOHbcju7BNzsrly5dZX19n3759Ha/v27eP8+fPv+TzH/7wh/nQhz70Wl1ed/wDG6dOneLw4cOv6LNd2e2O19Poym533KnjVmQXtslZcWz1zjc3N1/WY//Zn/1ZPvCBD9z8f3Z2lrvuuotRgnQzAEwAB9rPPLALGAJuAMPAfcA54K+BR4H9wB6gD9ggJuI6MNX+7m2vr7djLLbfK8Ba++lr768DS+3/CcA72AT2tvf3AleA5fbZwXY9s+Xcw+34G8Az7Rp2ec/AIWAnMA7saN95GjjV/h5p97/S5uBCO9YI8BBwuZ1zF3C0fW4JON6ufbR97o3AvnbcPwV+GHgn8DngN9pxVtpcTQKPALvbd+eB/7P9HiYFbKrN2TPtu6PAm4AjwJ8Ap9vfPWWuaOfa365ppL1+rB33XLv+88BT7b2RNld7gNW2Hv1tvlcJmaDN3yDwV8Do6Ci3Or5e2WWEEJBBYvIOtZ8JQkh2AWfbZ+4nFvPLwDe1z40Ti7tJTPRi+85Cu9GB9t4qcK29Pk8Iykz77gIwRwj2ArFAbphlYrJ6CGHwuCvt/U1CaK4Tgup17yAWYrC9vwlcJRZ3nFh4v3cCuNgmZrJ9d6VdgwG9m2CgfXYUuKfd0wYg1WKQmFPaOXe2z/+nwDsIAfk37bzr7f114HC7v29u5/hTQgBHCOFabve2Cvxxe20v8ED73hOEIKpzp9q10c61A3hLu+ZlYu3Ot+/cAF4kNrFrPk/Iw1D7f6OtixtjZ5vPC/F7W2SXHe2VvnaRewmNMt1eU6OtEJO0DnwWeCtwFyksa+37i8SOpd3oantvidAAc8SkzrXjKqjz7TiL7TU3wRIhpDcIwVokFldNvNS+u9HO5XcmiMVx8tfbeQ+11/aQVuVqu56lduw9hOAtth/aPEwTG+4CIVRH23vLhPD2tr8H2+dH2/weB76L0Ogn2vwttvnZ0a5BRfCW9v1n2nzvbsecLdf7RLvW/vaZSeBv2rGOEBt8os3LAGlZJ9scXW3nW2/r2tvu/5l23LH23UlCBna339faZw+0z1xpr524ZdndFmdlcnKSvr6+l3jzFy9efInXDzA0NMTQ0NBLXr9B7N15QkxGiKl/HrhEiO84IZ5fJG52DXiB2AKK53A73kT7nsu03P7e0f5fJaZb0VashkkjuE4ayevkNrrWjne1XWtvu7Z9xJLrIA20v7+1fX+DWHL11WZ7f4MQT7f9WPt/D7E1Foltcrld20p7v5fQq3sIW+g90s6zs32+t/3d14411K5NFbRZ5n+p3bdzON0+09fOudyuvYcQ2Yttnne0+59ux9UxGya29EI7z2Y7nltotc39WDvmSDvHALmNe4CD7XibZf7W22d2kSr3ViDtV0t2WWgXMEssppOt7nbyFoE/a5/fAJ4lJnCN9Lj0xgbKJKy28/STjsU0oW/GiElWIHpJG7FCOjSXiM010167REygArOH0Emr7ViD7T7ubde93M7rQtC+v9GOMUQa5jHSPqm758gNZ+Swj1j8tTZ3LupaO2Z/Oe9mu27nZZ4UhJV2bKOPzXbcyXaujTZHa2WejhHK5QzhPe8khK+3XcNouxd1/1Cbm/V2PUZAI6SzOlHmdLDcz87291C5NzeZ5726TbILhJAtkdpgjdjdasy5uEA+RyxKPzFxs+1G+tsN6mWeLJ9zkXQwBojJN5wbJiaU9l1DyiVigq8SGneWENolUht73EOkg+Pk7wDe1l6bITeh2kxNt05swhvtGjTgOlGD7ftjziSp/SaI0ExHa6hdM+3eFRbaMQ6219WG/e1car01UoHsJIV3pH3HOTxKOD0zhMM43O5XTa52VXuvkk7dSHsfUmtCRjXOk9c/3O53gnSYVsi1DIt7q6nEbXFWBgcHefTRR/nkJz/JD/zAD9x8/ZOf/CTf//3f/4qPs0n6gctEgLKDmHJ11QIhuiuE0zIO/C0xlUtkEAa57Xa313QgaJ81wBsh9ZIBpLpnvX1OXaxe8tyngD8g9Pwj5LJeb7/72nWcIhCFXe1aRHN0hhSRQ4Q495IB8joZmLrVLpHbdCehStxCBr872o9bRbXjFtReDLT5oPw2xpgitsJlMj7aIB2I1fbTT6iTk+UatYmqscXy/2VCXfW1z42310WzRtvnVYOiZcPtGBA+fW+b+zXSwbyV8WrJLj3EpLjgzxBG/q2k4VsiAqK/JiZgmtBzCvdi+71BTMgaoR8NbBW+VWIhDcrUU0OkZ+r/46Tw3kcazhvAp4E/JBbMAFEEp+rRpwmjP9S+K6ylYGqc9xGGXefqAqkzhS61JbuIhZ5s55glbUVvuQZ1qvp/hYwYtAMKCSTKc53YTNNkwKsu19Ov93qtXcs0gZKsEd7/QDv3ddJWXG3fXyKEV1vb044x2b67Wq5PsKG3fX6mXYde/21o7ldNdm9qGyf7NPA48J8QE7HaLvKPgN8jtMMRQquJQc+2G4JEAobJSR4m4S3DUD1jQ7oeQuBFcwx3dgB3k17qIvAFQvNeIhZaIVd4+to1fJUQzAkS6tN4i5gMEiGfTs4aschq5lVCCK6V69cazLdjDLdzKMRqf4WfdiyNvNdImaMdhJBdJwRRiLUKmOFuFZjldm1jbR1m2nXub8ddIoRvgnQmvRbXXCXlPSmcq+1/IdTdZE4BMoq69bFtaaAPfOADvO997+Ptb38773znO/nIRz7CyZMn+cmf/MlXfIzHiGU9R0yJuuAisWTe3H2AW/FjpP/4LPB2EuX+K2Kp5toxFEO3zhXSv9bO9JPI7WD5rH7uHkJcBgixOEvEF4PlePrNFTkA+Fp7XzE3wNMxMJ7ZJGzMEIkSVaB2od3PJKn3N4kg8Uq7LtEjY5Qd5TiLZAwlygOpj68Q23++zet+OlNkpqwG27m1SV9rn50ibdhCm59xEkxYa9/RTswQqmKsfUYbLHCrH6Bjt1DmTgTGlNPtjFdDdvkWYkLPETphqV0ohDDtIfTJmwkH5q8Jx2WNWMgXCMHeSTgywovX280PEZPmZGvglogF3UHoE3NjCp52YKRdh4HSIrkI46RR1iMdID3TISK9oS4XxdkgdblRwA1yo+5u1zRKBuCLZCA5Tiw+7fWFct095Vh64EYzLye8ojczdMKzk0TKyKB/Z5mv3WT24AzhsE2RAfsi4eiMtOP2tOsTkfJ6dpGBL8T6a+tMz6k4zGyIskEI73Fua7wqsssbyV1pWuUF4qZHyQW9G/jnwF8S2maz3dhJIqTpJbSHIVAvCSua3lE79hAe/Vp7bai9X73IHSTKYLK8p13X5XZNfkZhVTD0oEeJTWmOdgcJT7pAfe3vWWIhK8TWT0YHpoQKFHYzNFwinQnIcE6HBBLH1ss2BBO9mW/3KWToph8hhGacUCI7CEH9QjvuRUJ7Hml/qwnFu6+3a54grM1uEkkz+lB4h0k4dL1dy4H29/n23UXSOZ0mk/y3NrbNWfmRH/kRrly5ws/93M9x7tw5HnnkET7+8Y9z9OjRv//Lbfy3xLQ9SaSazxFisJtY1knCl38T8I8IMfkcsYzLxDb7zwlDe5pwXk4QS/RdwHPtmCuEqA8Sjo0ZO33XQ+2YPcQyzLXjzxDby+CKdm1vI/Scn18htrD+6Sypz0dIjohozlJ7X5FdJVTFOmH818js6Cohko+269JxmiccteuE3h0js68DJPrs1qn2bZY0/tqBpfb6HCGOkLZJp0pUQ1WhGnqIoGVca9d/oa3ZSpufc2SaaITQ0yI4m+S2vEgCDT3te8PtnAboO0i6h9vtVserIbv8C2KiPwP8x3ajZ4mFfHP7TD+xeMPEAr3QbtZ85D9rn/sKgXgsEwL6XxK24Ww77hkyXS9cuEJMmHkzISjzaqajoROROEoSgdZJXobGWXhLiHO2HcMNA5lT1Zu8SnrdEEI2TurMTdIBWSqvL5OLqJ3R3okQXSd05gqdTol2YqKd+3y7h4n2WaFLU0FXCcHWJvYQut31gdjclwgKwY02v6ZvRH3kDpm6GiXtt/PcT/JzpHwIi4qU3WaA+qrILv8DoSE+RTDOFojd9lUihHwDoXmnCa91ipjAftJ4/3C7ic8RYaKw4A8Tgn6cEMKz7Zx7SDRnlczvQWK9es2zRChk3k2BP0ymmvTyxXiF0CbIBPNs+5xIhfj0GokCqf1kNu4mDfQo6QiYw5sj0yPi2967OVk/K7Ysfi/yovY1dzxPMvW+SqbEPPeNds4hQnh3tuseJyOPccICPkDygs6RWLwwrhv1eru/KTK0dwNfasc/QmpdrYta/9bHthJs3//+9/P+97//tr8/Tezda8TU/TEJNC6T8L8irN+nb/uNBPLuMUQT3gx8N7HlvkBM7WdJnTVK6g0DMMFEU++mKExBD7ZjjxLpnzcSfMmzhJiIuqyRqMwkmeIXldCJ2erLihhcJlM5L5LI/DVCXDXk3sNBYgvPlnNsEOImKr1AZllFb0QutG2Kv6n/vYSo95EB+e42Bwfb96WpGducJQPoR9rnPktsBTPC0hVEc0y9TbbzGIgb35hlNm2kvdCG3u74emWXKeJmLgDfAPw5MWGnCTKmwmWA10/oth5ikb8ZeJCYQAk4K4TwfhfhoDxJEoQWiUnbQwipAabRvzoFkjsx0M7p6CeclbsJR+Zyu4frZKpDlMY0lmiGwbKLosAukujOBZL4Koos1OnrGv01EolZaL+FKw2EnROVgrpbjo70ht0kj3Mv6bCYtjLAXyftzHy77mFC+I6393YTiNc0scG/QnJB3STyEc1/Dpd5dF7MIkBClcPkZjeDchvj65ZdpoibOURoyU8R3t4ZYrIUVOjkRuwiJu/NhCBdJXbmIDG5bwW+h1iwJ4jFFBqbJyZN6E5+hhCdJB83jYZRA6pAHCIW6yKhYTTC4u1eszCWzGfxW8MvUQ/JTddJ9MOkuQl0F76/HMNNuFD+1kmomO+59nu13AukEJtSWyAE0Y0nGuVvicTXSAu1hyxbkOx8rF2Pofsmya25QmpyLYvettwX5+xa+849JFRr7uP2hHdbnZWvdwjIGdyME/zmPyWNuAGMUf4sEcSIxspHrJUrOh/6oYJ7ElAnSVT2Ehm9m0oZIrbBPe0czxHB8yhhR76RIPzKkT5PbE+PAfBwO88ecgvKOZwjCcJX233Nt59rhFjOkD78GLlVdXYG2/H3tTmR1ylYN0VyI4fa+daJwooFQvTUu2YC5ki+6MH2/gKdtncC+GT7zjmSYHyARIcm2xxYBXSSiL9OEc7l3navcufdpmNtPoxNdIKMu3aRlVJ7yYB4W4YOwqH2/y7iJjWCwneQHu88ueC7yeqXSVIvmwYZJcmbBmVDZHmayIrCO0w6DfuIRdtJGNzPkFUt9xPBm17pHOFkWAhyg7BDMqC910FCFwvBSVJSh1lq52LJT5S9bioLkmtj6Zc5Q49rhsDo4m9IlHw3WfigDpfAdprMJ4r8DLd704HaR3q8ZwnH7T5iE6+19zfb7752/ifb+w+348+3Ofe6J9vfl7dcE2QqaIgk4Lmht3UI7x0mcFAhrXUSw9UD3kFM1nlCeL+DmFSraGTDDbefXcRkV76FGmuB1HwSmcSXB8t330homKcJQT5KCMznSQdqhlwANZiw2SShBdW8V0lrspXFPUcuiJ77KOnkyOORLNVP8kX0jK/TWa+olZH3Iqxn6Gv5haVzV8iUlSV+stEXy3vCpm6Y3WS4f4BEjY6RsKSOIm3O9pZ7k+GpcyL8WflCu0jHTYz91scd7azU6phRQkTOE0spWgGZppYYO0WixG6HERKlNu0vsiDHfJVYftMha+U99YnkTT+7t13Hd7b/HyLF6AQZ8OqbTxE67V1ksKi/rn07T3LcJZxWXX2mHXuhHX++XfNeOtF4DfsmoSevkqDnKomarxD2SLDSLWfhRC0QMQM9QqRpatWUmd57CbtsSq3y5M+36zhF2EUruva314+1OTYTAMl1mSbs7zUSlNRRtQBEZ1DVtm2jct92EReuxypSoheobrPM2YBKR0TYCGIihL1qumWNEC5Z4Xq7EIGmjowpofF2LZeBf0IsjuVy0wSvQ+Hd1V7fTyzat9Dp5QvBWUat/jUFZVHGDcK+vEjaPINQN7o/lphBVrg6F7LCJc6uEYsv6ReyV4CQ6wyBbh0nIdn+djwJY3rpXt/5dt2mxcwmnCE2sQK3p1zvKLlJ5INaHm4qyg1qmkwFNkTyeLJX2zYMd5Na6QXCKXiY5KyIs6oVdRb6CUERATDlAnlja+UYGmM/N04me2U1D7b3bQwhfHiRQGsmSSbiQWIBJIKOEQuq1TC0MnxVu91FEkXVmqIsMgjPEUIgjLhCEo6GyEjCuRshhG2WDIXlpWhVNkinRo9drF1YdIUIf813GlpbyiBEOE3kh80lrpO5gOUyR3raIibmHOWn0NYPssRhnnSK4KUlIQq7xIFbH3e0s+Jy7Se3zHPEdGtkdUhMAZwmkQPJl+PteNoAqU6WEqurzFweJHncosXq1kWSyDrVPre3nedhQpxGCdE41651ljDW307EAw+3e5JK5VYwfhAMvdH+tkxax+kw4RQtEZnb42RB4Bqx7Q6QCL+89H5ClE2J2/bBVJQIDyR/ZoJUQfJhFtrxd5EB/wxpbyaINA8kD9JCFIGFE0TxyQKd5ddyjWYI9WgHBOlgrlkfmSkVURtrP1ZDbWtw6s47QJI6v0hMrPXgwleWNW0QgmG/Eo2XaeSB8nna/7tIo9xD9hCpiILfO9M+ew8h5HsJL/US4WFaiSSxSmhtiQiuHyAET6RHr92JVrBMC6m/5SNCOGN3tddOEYtvVGAa/ACZInHR+0jvXwGQBa+zdIkUQpF/bY5VT8+Q9kU2u5tvF4mEy3U5TbLrtVGnCOFdJ6kEVi+ZwhLOXG7XM1WOUccKAS1Ot+ur5eXbNiQ+HSEu+suE5q1MPvFqUzyzhGDdRSIWCoJhmJT6ys+o1H/r/uR0qNmF5gbb8ScJAV4nEvkTZN2hDoM/MuX2E4IlpmxjIb/jQlluYNRgLnAHCRP2tvMZDpq7O0I4ApdJcrC8FhvvQHrbnneTEF7KvKh1zR2OEcJoTsBQUxLwJCG8Oju17NmS8GtkJy7x6R3tesfLdy+14y0Twm0vGJWKqMoNwvpI2KBdb80tv/JxRzsrAmLq9zcQInaqvT9OLI+cbyN++eb6i24Vt5XbyKhewqpI8DAhqm5FEdoRomfXBIGYv6m9/3li+e1/sodYWoGxhwiy6z8mkAONvIZ3iM6U1gAZv4hySD69SIiOdmw/gVJ/iSQJy+Vzm6in9xNitUy09qgVOKoHh3Q2yrUKAu4ky4uNS/YSYi9iso/chm5l1cxs+47thMyOy1vZ165Ne1eRnarPrQuYIVSQxzK43tbg1OBIjtxDhG47TepHCwVkU0MGLzoBNXXta9Xb1GFRQCUUXSFbPEg4PUrqp2li0izb1as+THi06vMjxMK9lVgk4TsNvCRc0R6FVeJVrbq5TKLf/e1cM4QdtNGcwmtJ2412DUPE5lkn0i4LdJYnb03366RU+yiUquD5//523C+RXrgRyilCGK2iXW1zZf5R1PwqsemPlvOa5pIe4ffNn7puk23tjLDOkLKxLWOdmHDx5cMEgUojKiSnMAqfmcKBzsYQeraQ3qzlvsJvkkH3kETXyu043L63nwiFxgjvH7I+dCdJ3LpCTuwxUkN5TbL3ZMGJUojgaD0kac2QpR29hDWaI4x1D7HQp+hkn68RG20X2VXwb0nMHDLcVoDFskVwtFhzJAmKNtfLJOv8acKBM4QztWXtp2UXs+06rYW1c9clktwlJ0cH03SQOQA3qNVFa2RnRdNXtz7uaGel8qzVgy6XaRzILWPVpajLWjlWrSLZfJljWmW/1cExI3udWK43EE6KzebcysMEqnKUbPp5kdhW39e+t5+MB2olpjyTGoO4pXrJwNAmd+vtWs6ToOtiO/Zx0jkQBNxBkmHX23mnCR2sw6Rq6Cu/pbQptvJ4nLPZMsfao3kSNPwSmYpZK3Npyw+3n4TeoXbdkn+lJKyRGRIzq0vt++tEFmMvoQbMSm+QxYzbMnQQXOwh0gALCbo77fPkpJinq7p6rfwW1RVOlPM4QWf/Jp0JF81SqfvIwgmF5wQhQEb0Jwjn5FsJod7bviMJ1rJiN1Zv+V8P040lAiMP0b4i8kf2tp9TJN9ykyQdnSILQyRR/V3VMvJadJRqWbOBsdWxOwkHZZwQvIfbXP4tqSice+3QepsfOZ4S5C6SvRWEQ91YdhMWPoSEY6fbPV4hUbXrbKO37aKaHHfSTGlowCEnyPItPWydFY1b/azwoAbUEE+ikt2nKg5uYlqExGocEYcDJFH06XaMbyLLGYTzNknCk/cqTqvQGiHUNIfE2Z1kuYL4eB+heXXazLX2k9VOzoch6Hp5HXLzQGper80KG0uLVQJyVKbJTrzzBIwrIiXPSDRsiCztq9wYazONmqzuskeOSJTnNscgfHiZLMX4B+isuF3UPRpas3F1yzgEqZzCjfK6aYzaCkJDqC3Rrujzqy8FKfcT22p/e89maxfJlMVpQi+9h+C+HyLsgHbKoEx/3i1uNwFRDMjqJre9OlEKgqXXZhT2t+9dbH8riupURc3rca5EL7RzEpMh+5jIhbTwoZ/kkNxLdj+QAnaBBCZF1rV1IkXX23147afI0uMrJI9dW7u3XOM5Ql29h3Q2TXPVGGpbRm3z4ARYCGAloZF9JRq5IBXaqhWay2RaXWEaJKEl9ZFeoWkOUzLLJPn0Mtnm3rLn04RQP0JUJE2TyIb3peMgSqDwGCAKF9r6HjqDvZ3tfBfL6yvlGi4SjpHCqxfs+c1xumG0pbbycO70gNX3QoEi43JQ7iWf6XEPYV8m21xor7WXPtLADTxOprDOE0Jt+sjGoDXfqzIT9nyYtNnXyEhLm7EtQ6dCL9OFUKAhja+hjYbTB2/oaev4mF/UUxfJkITbS2Lau4mJFa6TPCpJaIB82MhZsk3yLNm68mg7hl2xbARkyqk2ZPO9el8mts2l2tPEUoLTpFbS6+8jsW8RiX7SOXB+JCGoGDyvcwQZbquJLZGw5lPhPNyu7STZVG8v4XkbnnpMcw61h43a8imyX7qh4ADZ7toowZTSMp1kBp3Z6t3f2rijnRV5y/q9kjh9TQOt86JuNtV+kZg+K2Um6aQT1TgAkrrVQzo6ipAGUvqXXHbLpHV4FIFeolHd4XZeRazaJyvwK2XJ7IAokE4aJG/G8/S16xC0097Z6ucCIU4WpVlo0Ec+AmCc2MqCeToRBnVuR23lJAGqPkWI8DLh+Bxt5/ka6V/3ESmdHpIHafwwR+plUflZMs2kM6SdlYMpsgLB/1knUHMFvT4aoQITr/moyErlKWi0oBPlhRT4GtxBkoeukuklKzJ1ghaJia+UADeJQicZVC5fH+EdqkcNHG8QXvY+kpilUA6T5F4F0zSMecLqlHkfRho76ewsrr50c5i6epF8WJb5VWkEft/jW0anLTMwVXe7mUfba2dJasJdZMr9QLk/OZFuSDMZlaujfobk+MyTcOIlUngX6eSaymV8gfTMK5IyxDY6LBpFuRsHCeNoF1p3sTXZ8hfs9eEO7CXTO5YC63FXZ0ZkpTK11Yx2bJ0gQx4tgQa5n9wcdpjyWRGHSOdIQhFkyOgYIZ0jzy2qonay1l+md50v6+tnyaY9NnYz1O0hyb/Om0Rir0fv2jymRGHL+ioBVuHaS2f9u/we0SGPu1jOp7ftWCWjFwXdHOYqCRVCptmulvd1Cpfa37fea+WOdlZqKkfjrZhq7HeT5b57CNG8TjYENihSF6ozTSGoS+VArJTzQdKG1KtjZDfZIcJQilT0EcHVOvC9RLeB/XQGnAaDG+V1nSG3hrrO6zFVZMbQLaZ/rq5TzJeIYPGrJP1KDuYlMrA3vhBgdDs7B28kUZcloh3Ut7freaK9fogIRh8mKve1HT1EL5s3k6Jb4wiD0+qLq27W2986ONIiDGxn2o/x0LPl2iVLm33e1mFOTcGV06Yxr553L6HfagM1eSEix0JzTozHF8VRryq8wosaUPuE7G7vfZrsQ9LT/l4gKk/fQDgrbpCtOVmF1eBRod5R3q9BtI6ZVTdVePWiDWLvJQLFlXKtCoUC5vw4F/YvsQOu3BgD9ncTJXirwE+38wp5TpI5VSOIdxHdHe1EW0v2bLkhA3+F5Edq1+Q4zrfvT7X3Rdt97tEXyE1ezZonAAAgAElEQVTdT6dztG1DT9tFF/qqzG6F0ZydjcX0ZOvNKLxOSPXg1coKb+1topBAGnArgU6S8JW8l2sEY+4NZIpI/L0m1EVV3IQbJI/E+/Z6vF+Z6svlM2tkfb5a6hiB79rv2/SY/cxlaYu4QMKCGviaSoPQvN/QjvXft9csOzHi0IOfIQhmam/ztSImCyRUqYWpXal0jERXRF60Or4GEQ4bsfgwmCE6ncBXPu5oZ6XySnoJXWvlpnpwiQQTDRAtZPM1darbwK0BndXxFQh0uq+TetSq0FqccZH0J9VP9xB0tEPklnT71+BpkE50p2YEtGcGoNqBrUiOVUO7SYRdsbS7QCWralOukFQHEWmzkr2EuP8g2ZHdB/vafO5d7T43Cb9+H+E0WJl5g0BfTpEP3BUgqEjSMGl3DpXXVSGul49DeJYIjE3p19RaH9kFYYpt5ihCJ/mntpvQ81bIFCh5K3rilWFdCyS8sZXyHQ1c1RXqjprb1A4Mkq2NRXqvEIL7JgJx8DgVWdA2aYvcSDUrUHvIuJAG26bCFUYdkhsk51HyqUUUUiK0FdpEIdMFUs8Pkox22zbvKMfube/vJ6E6CWTaq02y8mhPO6/VQgqv8Kre9GESttUxq3N3nahEMm8sAmV0YkrNe7i96s9XaRhG6enZXVbtpzZR2ITZRAckz0InM7xyNSx91qPsozOcmyNxbJ0I01HrBCQ11a7rOoEKTBEL+xZyMdw8FddVWA2Fa/jnphJ9cAPb4lLsVnhThp6CYVfcHrLndm3sYI5Sp2GZ7I4LsRmcK5l6OlN2kxI730HyTOyEC8FYl80uqlKZiRuE4Bua+igB4VE31Q1y7U8Q2t/N4pBg5ZwpI7c+7mhnRd9S8dRPVfQURX3KQTJbJw9aH7aPrII0EITOSnZRZMWxBkx9ZG+tmvm0KGGuHWeMqPB8IxmXeP1uRXU+5dg95e8q0hZWrJIFYfaaMtD02r1PYxKziYqYNknql1Q37eYEYRumCGfkbhKN3ktsAdviHyMLXETjVSu0+71A8BS1jQ+0z11uczlFpoL6y3cFfFV5/SRta5YIgqVnbLT5OE/GOm7ZvWzj0IsUrd1PBoBCaRVaWyf3vXpLuMg+Wt60/VXMjdYb14HQ+A3SWXzg5xTuHmKh9PrvJpCNyrQ2MNWTtSrSz1Qv343ZU675OulM6EDYN6WmxRREF9XzmMpykw2S5LV+skHeOUJJvINwtuQY7iR7lo0QaMpd5RrccDdIDswJEipcI/KcsuZNpUEWW8i2tzjDOnqdMjeirbRVPCPko2pUSr1k9LEtw4uxzfC97fVqqDTwwyRVfomEklZIA2nliLt8nUw+K7xqCYVXHoQN0wbLsRaJSTN3aZ7vQYJUa1csrYXfXScRBUhoT4/RPJ5evtUwMqUtq7ZBWxV201EKscQjq4sq6mCI7LXtIBtcHCIfxbtKIEV9JDIjmiNCVNNatvSfJza1EcXhdp4ThGBNkQx3LaxOC2QeAZJI4bzY/cq1kHAtBHD7vcPvaGel+vdGzhphqyLlrBloGchB8p3VfzXSrrFARc11JOT61acmaF8km6o7jfJHCQDyzSSX0Qyv5+8txzDNpT0w/vBcXovXqIjq8wsc2uVVkE9kSN6htkDExQbTbqnLZMmvKIlb1flWJYjAuyY1A+B2hMxomwGpmdAxoiDFrrzPt+/00vncuwPts6OEuhRpEmyoMZsO5DDhFD3Q1uJv2cZRSTNOgrqqItIKrkjDBhmsKGDqDgOsSsoVelJ36uFJ3KwBlRCXRRZyPYaIXN7b6CyMqPbFkupdZB61Cq8pf0gosRYzmBqSbCWPwxykSLs20ZymAuhmF2VZJ6sn1cFWb1aymce22SZ0UhZ0JobL/yLhzrvzOkE4Lj7M9kR732IRzztNtpcWsXcNjDDc/GYWBomNcZQQ+P+FbRrmK7cywIXLzOVVhnc1njXF4mcgSbt95TWhvgozCb3JkfB6dhILKHO6wlEPEk9IE+HQ4NZQsbd8X08XkjAq+uJm9NyiGGoePWmNtQKmU6RXv0TWOPojqUqN2UOWgNkeuZLMzHG6IRQWrZalebUURH6KG9amRYvEJnmRDP2qc2VUMk422LAaSOeqhseV5b/ern+ccLB+n1sdd7SzYtGD5bBniWmuleMacP1xgUuBSv13SL2t/lujc/tohNdJ8qii5vZyWw6RDpO+5Tih66WKaVjV1762NeXkUlfkeJ3swqt47iWbg1b9v0pW7PjsT4PqnXS2qD9CFjSI4BvgXi/nq4Rdt1/NSAyX9x06Smskj2i6/b+bpECMEAH8cnt9P6Hzz5DxiGrGmM0uD9fpbCxtoD3S5nacCJpNUW3bsFR3jtj3J4lgRxhJ7mBv+VFXatR1bszXQepG6BRgdYa6TpRAgauE1PoQKvubTALvJB+sVxneer7Q2c9KdEAhNCUiwiD7vYfQkRfIzWvHdh0zCzdmSG/cghC99SMk30O9r8Au0MmfdJPp8BjRrJXv6SQOlOPZYdAugzcI4RKmc66saFIxCcG6sV23fgKGlHDlOusEVdrEOOGoHCvvb8sQ0pM1fIIkZ0outTxL7abwuuA2Ulstn7W2UUFR0CTW6jXqjSu8amC9SDkyZ8g0y9vJp4lVT1WND51edhVeBdjrsWeITtc0naXDHm+T0Mhi8Ya1lVUtcnSwzKcaVB6PgmKkohCJpDjU/JBCpAMjQW2mXZOPdzVqseRBp0YGuohJnbO95Rr2t/NeKNehRa28I0PdPeW7tzbuaGdFkdU3PEXohauk7qipB9M4IiTQ6XvXbuTqbfWp6fwddBppdZnobS2hFrzbIETh7QQaUEm9tc9IpU3Vjuk1GyDvRQcC0lkRNK2FFv6MEQiJxQwiMtfLNfcT29veYbb016jbx0p0ZKMcf5B0fpw/EQ1RoBpU69CJLtkj5QbZpHWwzZfdCbQpi2QbEOkOh9o1v0Dy6gUZdpD8UQiHVkB624ZOyQ0idXCGSENcIz3DrQupE2Mjs57yY48Wy7VqL6sqqKaoq8Oj7TFYsxJTRHyUQM8P0emlytWATufEazcPB7mBDOg8v7YBOtEWSDtnY9BREl0yShksnzvbrmmUbM/h+RfIvl+QkYH3YKDtHJliH+GlUYTOkt1yfZ7EIlk7r6K5i+QWuub7yAzFIGHrhohGsK6naydg4VNAX+R2G4C+imOd7G8tH0Ty5iz5JDG1gsIlZb4SdLdqJ0tf7XWiE1LhQDVIJZ3KHVkhuxnaROEbiGi+biSP58LKaJSvIolJdmCtKzcCUIPo1FRMWdjUzVZrU/2uJQ+9hPAaPteIQyvkPBqiV+eh3o8olJGEDlYNv/tIcthoOadQ6zqZp/ShlG7SAyQcqWXYTTgrbh4ru0SITI+dJ6yKCNytjTvaWRENXiEqW75IttPfQaIM0Amw2TPQNLekVtEQUzOmZHpJhNi4QS6dToaIroGRFCpF4D6C1qWe89iQjoKjUrz08WtKSuTgLOlvi457ff5t0F3bEVURlmcOsZ3OkBSwtXYsi/GkvGn8vT4Dd9GYmpoSVRfU9HvqYZ+rN0A4IEtkZlYnz4BziSzEcxuItEyR5c4TZENrQdIDJDXBgrpt5axUMtWLRJ8q+Sjq+Yo6QwqMsJKeGGS6CDJwFXXQcVAv+v/W9hH+9hkKohEH6dT1dXFFVVyMGuhp3EVpausMKzQXyj3obJlfVbC8L50HhdFc6QYRsC2Q9mOj3IMbSM9Wva7tUHhXyvEsWDH9Im1CGNF58jp8MuZ4m68Nkn3+RdKm7CT7q8iD2Usi6XsIJabN8f3aVG6WrB7almFlyzLBDZkl2XoSpfTMFDC9R71jhRMSJalhmcJfvUs1lcJaoS9Rgd3Ewlxs57mH6Fwov8ZjVz6MeLChU01oG25ZkjHY7rluQI3vMJ2GWAfKTWHTHYVL1MiHclWOiaXAOh4KsTmDrdpXK2IzPMNDc48KvhthuJxLkq6fVdj3EhrTBL4PKBshk/Q2DrKMXWUgjDnQrtkqorMEbn7r4453VhT954nnkJni6CPEy6XUp/QBhwZC+p9XSR6byDN0ojDyGuXEiA4Y6Co+6uNL7b19RLZUkXHUlHitcNGhMMCrRFydmF4yhWNDU+kCHsO4oG5H/XozAKJA+vpTZLt70086Vn1kA1GD41qRZHDaX44Nuc2MFQzGRXkqfW6k/fiYg0opMJ6rut5iEdWcT46usYA2odYg2N5o20bln71IlAmfJT09y2FrWZp6W8Hwb20G7fV5Uh9C6hKFs0b5BqYusshLre9/BxloVX0PqSddAIVXHes1eGyvWeHVW5W/V1P6IvDalBvlWG4WnRl1tAKuAFSPf5bsUl4JYArvEJ3nhdwEbiKF1wyG9mOQrIaVAa7y0BEZIYTVaMMmRBvlPEt0PrtJ+2kvgQrdbusQvrpKUOsrUcqGaS5ErS4xlyastcpLNa8CYpRvEx1DFidC4XPRTO7PlffeRGpXw801UmBrftIEsyVyDtMykERVawpN1dj5Seuj5oVOdqHQoCXBfmeMDMs8p38LV14nQm29ZTHtGgK7Gf2eG6UiSLvodHBkjVuysVl+zA2MkU9ZNbfqA7I8RmUUuskkoEnAOMztjtvDY14nwyp0s59bEQXb0ajPNsgnIe8jp3UXsRQVzVCHqyfNuOlP1/5WVQTUWetEA7TLBJ/iKCn+0rcU20ong0Rs9KcreViE2O0r0Rc6g9qa6uklt3btYmA3AfWigKzckZqVVdRMrW+lmrnd9afljUNuJ1F7dT/kdqv6fi+JFFWqno7QFWLbXiPtmrGVasFh8G5G2Xl5nqgU3bZRuxEOkcEQpP7U2xRZMK1iSkBITaRAA21HQBffwo3KJTToUgPoyfkw1a8RPJp7CEa4TWlMmZvuh3RKDL4qXFerWPSYbSJ6mHzYlovr9yAFTsOu8Br8eT9mDkScK69H4fUY58n0lhte9N4HS9WSQudcuLGuiZFEvX7toc7iHIlQ9ZHCKwHM3KmCa85ZG2P3yivtODME4n6cbRySqWx7L4SkdtITduItV4bEr2sObavmrU7OOim8FfGoSIvohvXsXyacie8AvosQ4j3kxnJytw4rWUQ9KtoDWaKwhywz2Mpt8dor87pqXg29YXQ/qYFHeKnwmpvdbPek8yA86gZW+9l0SFxaBKWWbGwtVxY5OdzubScZmcjqlNTgo2UlT7jZ1fyVP2Qi3pz0NULwz7/M3P/94452VvTNzdy5LE5nNfgChuqSDfLpzPrp6iWnXNqQFY1bCZk6CabjnUw/d4bg2n0bqZtEovWDq85Xr+sgaXQrJ1C/d4zOtLvgpaJv9lKi61j5f53UfafJeGUHmcrZSWYMqhryelU9VXdXZMkMg+vTU86h/11jA7eD/5sJESHTb98ksyUiI1b/em0eV0dMtWGrEGVjWx9cW3Wh3qTowZXyORehTuoaib672LU3h06I9esWRqifjeQVHugUwj6yx8q3k31NXo7s63erztTG+NvP6Mj45HntjUJhoK3XasrHtLob3L4DZ0hkaZCAMn1enef0/Hq11QFxLl2DyltUAAfK97WzCm9P+YwbTaHV+dNxrMJbn+dXn56t/jfgVzEdIPPOnmtb2eFqKdM5alx3V+WGOCkm0+cJdqFM6ZfTvCuE1j1DeqI1cW0kL9S4FY04RTgT7yA2iiWzXk8lIFVnRC/YyXfTuNASDAyF3Sw2f1ADiw9XLazwGmJdLMfqJ0kLW4XXsNJwVoTH8NA50eExIlAw3fyS0VQkW/lE5kEvEms4Q3jEV0kkzCeSituLJkESxyoR2R48hvZuxtvDtO/oNFCt8HkH0bvkYwQ3XVBSg242dZCIA2z57hSqYwYInXovMTkHiOV6ns5tZ0GYXbeH2/dqwHaGINWakq7VP5Ve4KhZSEg02POJJrtoC2T7fnWf2WNJt33Etv0yIYqKq+kQs8tuB0FU7YjBu/OtOtEe6qR4/fKIaqzkljRQNhB1m9o+v1IFvAe34FkSVfc7veUYZj9sOmegLcpmB4CKzm/r0MPrJxpQ2lTzY2Qgoh6RX6jx0lD6feu3rTiRVLVOwmA9JGJQK4gMoCAFoIdAVb6DEN4a9ZtnhHRGtF0aXDeUwWb9vB5lvUd5OjNkikvhksOh9ynsKLypzajo9o3y/UpCrnCiqFPlLOqRS02o6SZ1vpvBtXBYGijComBCtol2jr22yq/x3DpEzuFiWwtTVLvoLNXbliEu3EckuA+RLY/1ziA1pnyM4fL9BfKZPZVZLWFqkcxFShDS2fCpj5WI1Uu2rzxD4NkmiLUUVePr2NS8pmUN4tBqacO1WmN6ndTQgyQnY40U5HHy2fWiHpX8an8AQ+1lsv2xm0BtRnnfUFe2uhvIa62cn1qDKSplrwM3vJtSC7NAKBNhVrXtYHm/HmeOsJKuhdVHNo6zIZApttsbd7SzYsMwxdeyVfWMW0BRVg+7nDUFoj+twzJJpG6uED7vX5AiYxBcK88NtvQrewlCrW3sHS6nY6vTYlDntZtCqbGA59duSGlyVFpWL+Erayfkc4hUiKZoKyyHVi14bjOQgrHz5TNyf6Az1e896NhtkI/7MsgVdanEYefFtZglW25U++hDEe2Aa9pP1aLjN0YUZfhgxBvkM0DtMPCaD1PEBjV25YbUk+oqBaEiyHqM5hJrWmkf+YTlVVKnQpKA9II1nP3lnLsI7/88aXwliMFLoUAXxWDU4ykcChQk2WmsvK/waiO8lh5Cz3m8Wv4nTHeNtEc+/NE0Sm2NUSHLWbK3Sd04OlsiG96fPW3GCIXgnOtdVydMgacd4xKdhRHOk/waO1E6D66Bnr4KRNvmfGsLtmWYmDU1cZ7kaChANdK33ECPd5nOiVbL6DVa1y6splaRKFSF13MYfowRNfbP09mSX0JtHRVec2E2y+dNpCv4am65KgqVTXcMBT3GJdJJML2lxrZDF4Q2NZWmIKnJKurTQ+LBRh7VoiiUzj0kual2EayJ/xU6nchNsqbT46mtdUT3tPcqE7/WfPozSHKVdGwkZd16c7g72lkx0LpONvu1ubAtGBQPhyliI/HakkhHQN+76lybpXm8yq+rqQ6X2h4hboetet6huBtcGWC5PV0gY4Jekodt9tEgbooIwgZJUE9bc5VsxrxerlEgV9RFgE4/2y1pcYkxUQV7q73T2RKghXQEa6rfyiydSwPHiqSr3kSNVB22R1L85fmbJvP6zYZPEeDFY23e/qz9bOuoi/AcWelxhc4mNQqv3ptGe45s5CMvsXIHq74yp+kCWDNeOXwKnw01x9o1QS6IAV9N80AiHebWdK703q0aEnHQsTJlbqrjOZL0K4phX4DK6jZ1tEEGlV5LDYj1mKvXbbl07U7oZ9TJ2gVtRhVedfBQOUaFGCvP0f4uXpOdhqfJSGekHNfrd120828lIh9l5U/Y5rFO9sk+ThCcJNYYKtYUSn/5Ef/UUOvkGPVDcisU3Eri2kqsVch7yQ6C9hQx5aF20RusyIqaT7JXTaFskLnIfpJsJAnMEg61nU6JjsAoAQuaFxTerE6S9ywhoVqMrZajEmer5REdEUUxMqmOmHNt2s1SaklkfraXLNlQsO1LbglERXtqaq5aSc83AxwjN//tjzvaWalo6TcS07kL+CiZFnZZobMyBjLQcjlr64sZssHcNXILyqtQl1rEpf/o9jAQ3U9G+bVPFXSiP/6vjlR0RHDUzwt0OjXqX7kdOiOj7bovkP1FRJIq+mDKRRB2tnxeP9rUk9nQZSIrrOhZlMGW61ElVK6ln3VtjKVEvapqqc6hDyCsKSuvSVtY52SK6BG2Rmav39zm7wQZDG/bqGT8t7XfTxDCO0tnRQt0Qn+VfCuaoeOyQJYFrxBepehtrdZU7xitG0BWb28/nVy5msJQp2rg5VVWL3+9fM/GoJ5Hz1fhloQqMrJBCO+edj1udjeNQlU7yXoMA3bnaish9+KWY1XhdR6d70pEM/jf6j17LRXlrvnTIZJnYp7Y3zqmIvyWKksuGyYgXpvxnaHThm3LWCbJsY8RFTdjRI32FfKZ7ToEYpx6m066AmAVjhM/Qwjui3SWX1VvUuGF1ASmUqwRNBltjm6z/FRPu/IsKhlLTSYS4Hdqyd4SEQr6SHPLl2fJToYLZGIeOtNWHssWyXWzVc3rxlMDLhOCopCaW9V61AS9f1dFoRNoI6GBck6/oyOlUnCjuJ51U8wSAjxK5mPddGfa9yxvvz23o/fv/8jrd6yRxQSzZF8tCaz6gr3E9hEx1ndU34oITJFlrtLFThGxg8Z1ns4GyhYZ1D4ripRlxToCW7N1FeVfL9+tlTAGqNVp8TmZVkNNlPdGybjAFMkZOtvju/21h24V+Tc6WmZoacfXKeglHga7q7xvet/iFu2CtQCrpH8u6g0ZPBp3qHKMoQxup0h14DUPkNVdq21t5GnKY58iHxpM+22DUTOy2zLWSGhpliDlnCYnuKadl9pnLEboJ3W9nt40OTly4C6240Kmln1PIYPOChoD14tkCkInxc+rpwz+1sp7otNCj3rvLqxw5mkylzhD2pcdZHnfQbJ3lQJto01TaOo9ER0/CxnwKYhGBs/TufnVvQIClOs2yJT0JMfFcw+X+XOOaprHPjIy4ytS5gbSJuwgyxIHSHLdIGH33JBu9G0b1eucJYTFlsN6iS6WiMFa+fsaiXwYbuiNzpfXfW2dbARhasINIKqh8C+RrSGr0Ir0CDmqXRRmhVXiaGVP623rnJwiOycKmfkIVoVkivQsdRbqOSFD5Oqseb7KpRF1kuh0kGTVazV0MiCtjSiLsKSbuxIaKnJUmYymdSx9cMN5LcKPkIiNGtpj7Wxz5JxOkw/quvVxRzsrdt9eIJ7x8n8B/4EQa/WfDYYVRcWR9r7f14Dr/14nnJSnyYqgq+V78qHVP4qHYORqObbHrSjK2pbfinB9OOwA6TxJ71KstCsG1lNkkGZ3Vp0uCaymhsx6GjSLsmivTJ+pR3U2vE6IbSjXxa1YU1zaN/mP10l7sULn0D77W6EUxTHDYQCtPTZlpV1cJLnrN8prXqd0rxt0OlrbMiyMWCWgnj8BPk4uuDlODZf6UuelouHDpH7VQ79BOCrXCOHVE628khp4QeqcNcJTN1B0wdTfOijyERUcP6fwuoDqYNH82pgIQveOlfsz4J4hycNyOoT7qo6uGQEFdWc5h695vvPkhnTz9pdjeHxL+GSx6yQ6FzWyULm4qQzYteE3ynv2UzMrIIRqt/maG3YYCPeRMO62DcO/ZcLr/Evg/yZ3Xu3EN0QsrIZQwpLCIcdFUpChl1G63q1GUofFSdcJ6CO8u8V2TRramtiueK95S8r/kMJrm3sNswsqMmFr/LsJRpx5SVGPOQIWnCbTLLURng5cHQqlxxJyq5Zmg+wiW5Pm0OnBK2A6Ux7fuah8l62IipvZXIPzr/KR4S3pbKXNR0VctjqCfkYreevjjk4D3Us+fFtfcxr4bmKqdpMVMw8SEbhE3DcA/5TIpi0S9uIMIV7jxJapBXcWn7m1IP17Oew1pf9ZUjdD8hrNnLpc/l8zeha23UtuUR0oEQQ5doKGZwm0+EUCOVBFeKwbdHZ9dct6DTpGlUSrY1fBVx0bgH8N/Gfl87T3rxD1AZX/XjMXctjVywawqpMKlir++uknCdXgcWpPFotAtN3GfSJeK+07p+hEW7Zl/C7ZNv1k+9FBeRH4CuF51fryIUJAfbL8aeApon3zWZI7coXYCGMk6qEhFzGoi6ojIUHoTwgP/QDJcamI9BAZJFcP3GDsAhlEGQVcK+dYIxbA1PclQtiPt98r7R5OE962hRwi7xXJ7y3Hodxn1ZU6Zm7GPqLq6kfodHBoc+7jS3aV1/WifWAvpC6v81M5QNBpA08QwqsdMPqA1PXez2abs0NkGm+jzcs+ttlZ+RhREtxHaM0zJPb6DMEIe4C46GcITsswcUMvts9+hSRGzZAswkvEDdrOXw2oZlKbmFSXsCWq8inicdj3kfisEOV6+ZwOAKT2UpNapaSxl/G3SGpSteO5dq8vkJrJahrr6GXV6UBUrornUEOqxRSg9S2/h4hNbx9vSOE+X+ZpN7l5a7rN+dhKgvP8NU/r3zuIzXiEjHZEkayE0qmDToa6cz/ajml/mlsfd7SzskA4BROkI3FXeV8KmHpGfvdOonv4fSQasQL8ALHcAwSNYLV95lI7Fu2z9xBL8CABfF0kCZ+moPS7K5VqgLQPLmflSe9s5xdwXCNTScYUVuuYib3aPnetXcslchs/Quh/s4dysQ10azAMqcsVMe1Q5f1UZ0ukqW/Ld71PbaBFG9IjRLp0VNTva3SWa68StmqJTkTGtL722fk0VjC+EE3ZT+h8S7GNCSsJ+DUfnyd0uCn2flKnvUAIgghqrRKCJNk/RRivi+2zRt0vEA7DIKFLbehmULRALIgespH6OrGoZ+nszaUHWHXsVh06QniBFm8Ia1LuUa/UQgg3jGl/nzo6RjzO5SwprD72xfvX4655Qeh0SNTHlYBrUKmzs7vNkUHtIuHtK6xumsqDpHze1w1gzTAsk8TgKpy0458iGwy5uSt1AtK5nGyfmSUdWIPlbRlfAL5EwlvS3lcIR+VJ4uZs5SvaYvi2B/gMsQFmyAkbIJyYi+2Yp0gTZWQuR0J+ynj57jVC4wlZukDCV/JWbK6gkR5r37OMQOKXi2NbeS2N9YzCb2cJTbVBaJsjhFDZH0CSkdCbyI3CLdPOvKoOjMhJDXnXydTNYrsWjb9IlbX3hqAKlNj6Krmh7RljQzqRDzexWlyoby+pjZ0f88WzxIYyQpmjs7zbaMVNc2vjjnZWDhFi/ydEcLlEOiv6mvtJ3ThJPkLkCtnT8BIxfYcJJ8alU9T3tPf0jSXVfls719X2PashTxIiZOuL+8noX5/ZvyERZgE/7cZse6+2gZC+4DaZaDFuvN4AACAASURBVOe/iwxQL7S/nyGfXnyCfM5PfS6ogXU18G6VzfK3GUp5jBuETbzY5tVtpaibLa3xgTzDSpfYmvqBdIbMfqh2lsg2+fIwbb0v79FYodIDRL3WCRVyleQDbdv4VULQ/j3wN3QaMxfaVPNM+d4OshIIUvcMEkJgxUg1eKaSV4hFc9GnyN5cV4gJPUdwOvYRE+ViVGGQnOR7G3Sy3RVeS9XUvwajLsbR9v444Zw9RD686QzBiP4SIbyj7TWdlnrMqvuq8FJ+yyEURXGTyrGphDH/rkG9iJTv13RRFd5qY1RCKg4zHEYp5iINfIUuK/1Au2TgbAuPbUVW/kfioj9OkGrhpc+jseORjsMekhR7ob2m8zFMYOMLxILLLrRkSmLu1XLcKbLniBDl04QgW6njolX+h9oJEgu32YOCqfCazqqlE3qk+9u17CeFV837JULrn2g/B8mnL7txvQ7/fzmhrRCiGnWz3aOdwtxwq+U7VkTtIR8uIwat8G7VuNDp6atoPP8YGSFISvCanGsJZzqlatgeMp23l3+QyMoj5APDP0pM6QRp7KVuGUBOA99CbKUzJMBFe+0wWVH0IhnkmTm1z8dKe20/sRz3EiJ6lqx0kZd9mnROaiVSLS6zFcUqiZTsIX1+6VxDxPaxoecg+XzTTWL7mtJXj58mnbNpOnsH1t6GvXRyFyuyskk6BcYWl4gt7jPVqvOh0yCCoRozblgvn1XEK4fS6zcDvkHaRkjnbqLNk1tCAHSeWEtlw0C8l2z8ql3atmEF0Aki3Q9xcRr/qiONto2wJSUNEwu+RAZofYQhXia7vhpISfypnpzPnFkihOlzpGE9SzokOk7ChKIFCyTRyUfC6FEOkdCYm2eabLbjPawSKScbgQqtnSARdYXXTaSTYvdbA7+Ksiu8pml8jpxzZitk51rURXsLnVVbtaeAn1d4Fcq+8ln7s4y3ueklHZ5dZKOgCl1eJ4TXOXUj9BM28Xo557aNbyHzkH9A3LQwmIbWcEosV89ultAIPjNCcikks642NtCLXibQD9MzEBNoL+trBFwp0eo8KQTCei6sRFsN6DzZz9zc6Vi7Py1HLxEe26/EBPMKQSY4Rzof+9pvyz/cxCI5eu1yarRY1dPWY5YvY9WO0F7l7OjM2I/AhhRXyecNXSrHleNTybyepzpvve289SGOVjdpNfTEazh5hiQruPZ6/NDpjb/ycUc7K8+QjcDeQxhNqU0apPn2v6DXvyP131biqFOvjlfv6gP79HfJ+BJQ1wjxHCWNsxX7+8iUg6KomPUQ+ljxNF1zmUg1uZUsQZaXrbPUT6SiahXPpXadl8iUlo3tfCapfSG1U7OkPqy2ohYubBL6VfTIjIMozVYbpu9s2Tek7bV8uoqw59JpU39rp1VpboEZkjjcU15ze5uh3SRs/GBbkwtk78nb2zKv0niB1C3fTz6w1FYOEDfgxc4QOkBjC505PHWuXp8GWbKOhCUJsxV+EgWweY+lWeYaKyeQ9t4w2SpaMtAaIXjHyCfLXyB05gT57CE5F/eV77lg6syvtc+cJ9F0nQ37Sq2SQXgt9KgbTWSkBpcnyeBRiM77Wi/H0LbUYFS+SYUcq302OPV6jEashFonMwOyxSG7NQ6V7wrrGm1dICkT2yq8l9oF7AZ+jDDihi7enJrLBy59nhSW2otETxAS7xRT1tCZnjHE0Pi7sBr9fjJHpmaztrCWMgwRm8nqHus7Z4CHSfbeBcIJ0du2edsmoaHro3J9vsIMAU1OEQ6QG3GS3NyWil0jc60VQalwpvdlPft5spWlkYeckK0aVstVa051lrRKzoubXaEVR9fiCWfKDq8PPPSYIihaBLuD0dbPiql/gM7KR8iKIMFA/ffJ9vtuEmi8TnSilWuhb+sy7SMee/UEgawME8AiZHRu5q2nHAOyUKyfQHweJZbqAp0pcv1QSZ4u5SAhhvJn3G4DhJieIvS3DdnuJ7ob+CDDeZJ/Od9enyRsover729vKp2L/aQv7rVWPdxPZmwFIQ+1a6rI/wSdhReiGetkRc46ybFX3VgAY9WmqSLVgPZCNbiHjFO0Kwa9dl6w8l9VN9rm9zKJFFWU6TUfHyW9WyNpnx+mTlG/DJAN466SHp39nTaINPn3kvzCCTKdbUArNKfQuVlmSCdhlEjPrJNVRNoN2epXCF0MmbY+X87zZtI730Po7q+1c1wlnovxDaTRrQurbheWtK2y5WQ1oFtr12FH81rUAKlzh8gSPQm0CsLOdg6pAcKctbOu6Xk9+FqBqsdtGk9HrmYx+kmisME4dKL8kJVdKjOhX2FKYcIptjmH+TSxg+wWa6351mY4TsA1QjC+QoZqQ+Uz9wPfA/wRUddpGkf4qj7gqmqoHpJ0ZXh6hEQRtAgVApQMpgd/g9BkUvStM+8ny4+fJUOmQ4Q3PtDOO0NW/oh6LLV7VatdIlEJCWSDBGIjAgQJvdVcYH0o1mVCs18mobkFYrOfJ8m5XuskKdD729wqkLUpn7lYkRb7whhJ6EwZIvugKj3+6nRKfhb1ud6uuaecx26TtzbuaGflAdIh2SD0obpOP1DOoq8fIp2GESI41Ej/T0TzsD8Dfo/kqqs7pETJj+gnS2T9vUZmVa0mt2LpEul7T7T/9YOPk0ZZrrnPFPK5pk+RrYPk4nyhfe5ou6/PEbZhsp1jXzv+6fa9vYStUSTNLKoK1Lc6E6oEeySeb9+/n1APJ0lfWWdBFGOtnXOonGO8XbcxST+5HbVdOig6E8Yj2hn9f1NT42SW2ayscZ5pK9E002gTbU62bdxDElf7CN0m6qzu0hPVEN9FRvl7iMlX5/wM0RnxAPDbZPnYHrKxpF5dFV5LuRRin20wQQiuRvty+f5hUohmSIhTQRkgn20wSiehdIiEKJ8gdf8qQTx7rl3bATJd8hlyE8yQjpNpLyFO561Cgr3ks5KutO/7fJ0TZKQigVX7qWAK26k01kjUyGBS50nn0tp/yPSZpWvaEs8hjUPEZpMM5u1mbtNXIdXb61b+Ko6HyZseJEI7IT89scpGGyZLFVYIDsdxEn/+74BvIgTrX5Ph1wSpEdS81Zu0OYHXsUrWm/uEYI2jmPEBUjNcIQTOxLVPkZ4gFnmU2EDHSQ7IMWIhv0howbuIBfkCsYF3ExvRvgHPtu9NtWMOttcN82qSugpxraIZJB89a4maIbMCIVQHifJAQpZ2TFwpn/UpmibvPafhrCmqecKS6KGvEUJtXtoNApnvlKFoms4SQOHMWx93tLMyQ0yXRhVCJ9aI3P2t3yz16L8gEJD/Ffgd0jlYbcf8HoIydZLQlZDLARlsuXUsiTbA8jWILSqVS+7Glfb3GbLvlYHXULtWi0Aq+n6+HPNF4Fvb9X6qHfN/a/Nyfzv+sfbzbcBfkTbGbbBIprW83p4tPxa7SY0wO9lDbHV5iAOEeIrkWHAyT/a4kkA8RScwW7Obbp0bxPY36LU4xgIJqQJucZt4m/6TKG1Kzyd1SIbetucCQSxEfTKjvEM9XcvE3N8i0zuAfwa8mxTeHsLo9xIT+z2EbpkhPFxT0Q4XQaa0dsBNM0l6fj65eYVkNM+1/08SAiC5aIKE6UzZQC6UT5Y/R0B+7yAE74+JBfuDdi65k8eISOStBGfR3K3BndCZerV61wqVfBWLQbRZEADBaTr7rFwic4o6NTpGZ8v66E1bTOGzjoRGZwlnSPtQhXeK3BQb5Uf77/lE2yCreA8RNv2rbON4kmj+oMc2R4RIc+UzU2Tuz/RAH/DPgX9CaKrfIaN+v/M97fc14vGrTpLDXKG8Co2li2yZ2QZJLnWTqeU2icV5ql1zLb9YJ8tsTYUISVpe8DXCIZkA/rRc6zqxOH9FbMBDBMz4HFme10sIlg9JqeUOkAIMiS9DhoBix5IEJMJKoNJrVkgtI1GjitJocQzr7HVj9EKbk2VCCXkdQqVX6MwFaCn0uCWJ9bVzDBMbeorsVHlr4452Vj5GPufMflIDwDeTgaGV+96o2bSjxNK+Efh9MgPn1nuaDGYUk5q+h1yCTWI5x8gsYx8hqoqkQd4SsVwvtGvUybnQPnu5XZe6yTT/EOkYSQD+LiIgHyHikpn2I9h4qZ3nPxDO2WR77RLZkb0+idiMgvcs6l7TVQa72oDedixjKlXGCbLXy1fbZyC2+V7SRkoROEVmiM2OyKXZSZCYJ8guuJDl6jpSokT2ajxLxhfnCdW0TMRCUtq2bfwWmZox9bNALJKP7VglLlwWsY/Dvp+YpEeIxVV3i8aeb581be0ziBReeYA+SgXS2KoDTU3pULmwO8mqHLmKZ8kqyiMkejNBCI8VPArUC4Twfra9923tGiRWQT525t8DP0kExBLQvLcRMsgzqKwB4iD5cENRJItLILMM0igsXHmKzs6JEnAvlu87l3OEnfoyEVzrXIhSqSSs7DXoF4680Y5xjqR4iJ7JFvcZEb2k8H59j1n5OscHyd0vbHWV0Koa+iXiwhVehfJeQugfJIVTcpUJchs/1DBJDS7pylb1ljCvkV7e0XYMsVq12hEC6dDznCM0kuxyc4KXCcHdQ3arUpiOE48Y+CsCXfnHpGM0QSzMPe1a/gx4vH33Ovl0Yom3MsRFoYT4FDIfbljRqp3lb8r1So6SP7NECI0CfIbM51qVZH8aN4Rlaa6taR6jqeU2bzqh8mEsCzGaERrUybxO5wNQdHxubdzRzsoQMQXStfQvjxN72uf6mIYQYX0jIS57CR09SBRnWNWiz0l77yBJe5ohn/g+RPrwZglFKrQ18h2royJNYYmgnZ0kdLEE2AsE50WAUOBOnuUeMjX1lvL/buCH2/UdJxyaXuC9ZLxxjexsYLpEPuUkiU70lfmtVIBdZZ4rP1Cx1QkwQ+D7O9t1nW7XZtC72q7b7XuKJM6KmJjmP0Ai7FLszgN/TlL73kAiXEfbsZ9t9y3648PlzR5vy1gl9foc6WxYLThfPqOhP0EEavvIZxQMttfkMUy07xwk9bSpB4XX3JxsZdrrIrjm8OqzywyUrOi5TAjvaWIjjbSfZwnhNS2uN2ow6SNb5gi6g/DhGoEWXSE2wJn2+ve1c+i4bUWezJlaFiy6YiBdCbLaIh0358wop7K+RWBMoVnYcrJdl/NmkYR5RdfF96bKMWwcJNhwnSyru0QiLrYtGSSipnXCUTKtZ9Xstg3JUgrKWTKVYoMEJ1kP9wSRuN9Daqx+0sExP7iT2OmQXuIGmcMzhNNb62vvWTXkBJok3tX+N2UhT+QEMbFWNlUoUwKsZFMrl/SAV4jw0Nah64TH7QNa5Li8mxBmSbwyrUUbbF1prxh/ekkGoMQo+7uIf0+RIaNIxjqJJOnk6QS5TjUFY55BJ2sXnZvGY+jpm4YSO7dN6TKxZsKbIySmbqrrKhFaH+J2E/B3tLPiMmwQulni5ArJDdwk/GAN3tNkf5ba50rEW308QTgUTpA+4wliK5pOvkqIfx8hlk+1c+8mqxdNvWg7drbj/SjhVP0GISLfTRaFfD+drXiq3XH7KhpnSGRojAwW30SiJM8R4nSUoBhca+/dRQS6BtaQVCmLCEWWhsr17SIpU2dJZ26gvC+VrfbKWiD07jcTabZZQqRFWY61tZRr5H3ZW+YFIl4RAK3zK9XLpnHX2vV9lQR/rYay2GLbhnlJAz45ES7wCCFQpoEMRg6SXBa/D5nSUbceI3OPOhwnyFT8CFnPLgz1JUKP2GTIx75Uwv8GYSw/QNAQPk0s8BsIWzJCwHhbhRfSA640hEtkv4HK4H4z6dF+sb03RQivT+zcT3i+BqNWiUKWi+l8aUdr/ytZ4HrNOjXSH/rJHgISls8S9u1Yuw7zuQOELT5ACq9OovzSE4TwzpHE5gsk4qSS2Es+C+o5Etmya+RFbpej+CoNYah14oav0vnwIz2+g3Q2CDhAOA16zuYeq9e8l9AMLqSpkuMkWjJCTKrNI14k2HqWRfQRE3SpHcPF7ic03ocIWPKvCYG6i3xQx/fSWUas5nWsERpkkizh0rtUaB4icWW1631kf5kBAn052f4WpZAAJau9n0xWy+qrPUrE7SGFR1y+jywlM7d4gXCy7iI9ZBGTR9rrdog0RDbkPEM0hHIOrpGb18jkKombC1teI7HuRfLxwLc+7mhnRS6KHLZpAiG3aM6lu4vUNSOkb69us7iiFn7Zw2OIRBJsqAadxXNjZLM4jbggWD+ha7+Z3EZDxHOMvoNsgPw4kckVYJNTqT4VUbaCaZHYZoJ6crZ90KL+vxySB8ln7NzdzvM82b+lUqsmCbHWP7ZaVF4/dFIbDBSlgYmqPEc4hm8gAkrpE48SztjdJBXDQHZrqyNtmrz7QbJH5QABKvtYmQmyCup5AkUzIHeefLTafrb5WXCSN9Whu8l8m8Z3griZmvKfJgM6EVrzX/3EhI2RTGYRGo03JPHI6lO983GyKtXg+XMEMUo9uRP4P4gFhGCifxuhn5cIe1TJpwqvhRKynZ8luSwGwqZ55OgME4JzjCRMHSGNvPfi/dOOqdOkQ1cLR3REJsmSQW2TVUnzZDfe+wmhfrq99ybCnh0kYUaPb98D4UVznYdIlOxT5TuH2zWYqrJJ3/Mkf8jrlwdpPtU03LYM4T4j7mEC7oPURCawIbksU2QJ7mD5vJtArTJBEoasH1TbQ3qVU+06dpPVLL2kFvks8I/Ist5dhPB+LyFkf0p4mMcIwTpAZ3rD5na1x/gKgRAI7xkNLJFwl2HQyXZc87cTZLtmSC2nphe1qF72VuGVHLa7fQbSGfFzJ9oc6Eiebd99hAiJ95I9W3xa2iRJBqjVVpbQDRCRiRGSsK7Yu9VhL9KZzhIpgnSMJoiNfWvjjnZWpklCqnrjIcI4jZFG/Bgxpc+RqRZ5DyMkr1yRsWzY6tABsuvpCokeCArWlJFbTj/XKpVLhC89TKDn/xb4b9o1/xYh0sYF8qgF8yzYM0BdIoytfJdpkmNtFZIdBHYQMYYiYgZZ8usw+cRqCwrNToiwXCUzrqofQVaLBEfJ7PVy+84VYit/Q7uu50mn8jSZflcNWY58sZ3rZLuOcZL6YCa1l1CPbyWcHntZ3t2O9xTwa+06LByUALyLzPRu29hHeqpWIB4kL1aU+whx4afI56IJdxn1GziKFqvfFUiPKVK/QHYAlK9YnQvTGDZtu0To9HGCQ/I/A/+CELgPEXruGdJrVKeb+pDvAtkza54QECkMFhBYEm3axjT6nva9C6TtM4g0KnAORNX7SUhNLovevhwg52QHae885g3ycSgGiP3Ehrm3XaPNikRRJMqdJKuhxgj7AIl+TRLCe4j0yJ3jrwL/hsymbJIevZtWTs22DBl5aoyrhGG0s6rYpb2tTXlMEhc/QpJqazJZdMaOqNVLlzdimKI29hh6nWpsu2vZeWon0XH33wL/dfv8f9W++xVCuKyQMbWhwCjAC8QGnCO0x1EyXSLz7wZZ+nyabJZzqH3nIuldi73rtbtxXGzDZC2MwqNHLr483s5xg4T6LOlbIx/aso/Q9OOEUEqW87hzhGNzgnyKqE/Kc6h57yZTPdXrfgH4j+2zC6TCUemY/7z1ccvOyp//+Z/zi7/4izz55JOcO3eOj33sY7z3ve+9+f7m5iYf+tCH+MhHPsK1a9d47LHH+JVf+RUefvjhm5+5du0aP/VTP8Xv/M7vAPB93/d9/Mt/+S+ZmJh4yfn+rnGEfEidFCdF7rn2dy/hrIy2vw1MIR9gbbVJbYx2hmxxYYrdLUX7f5pE02v1kdm/LxEFD2fJVP4G8P8A/4q0MZY9W8Aheg5JV1ghjazxzDz5uC8dG5F6K05Pt3ly650jts+b2v09T3IUFQaLObRdB9p8WNU0RWZKV4jtt9DW4jCZkZDr4+cPkxWkf0x2Ua+dc68STtvZdlypX9PkVjvbznWAQG32tfs6Rz4W7SwBvD5LFq+sko/cMsNQx2spuzdTOfLrbJ0goqoATJJGWWgIUrdJxjeA2SQcG71q9ZqoNmRHQNGMVbK1grrzy20Cz7ZzPEos3CeBX2/n16C7GURP1H1WS6rH5VjuIoRJ+2YJshWYOjknyFbEq8TibxCLPkAItxvWHKkQqeV4k+0cbuA9JOdwhWw9PUCgKArJDGGLhtt39hL29bn2mWdJcpUB8hU6hVcY9a723dNkQ6R9BNwp16U2e71ORDaWccuDhKRSbBmvqewyTXrNYr+SbJbbZM0R3hekURMNGCHDHrWZqYdnSU97kNQ6TsAs2br/XHtNb2+pneNFQnBebOf5VmJT/DtC8wrTzbTXx0nEwjB1jnR8bNKjB62luExq3GkSUdokvOoHyDbJp9qx3kgY9HOkly7yYCOdoXaOg+0arW20v/oG6RhZFvaG8jlznW6KXWSr0CcIUnEfGerT7lfhtexumFxnCWhi/kZZQ+QTN5WF/WS5I3QSoL3XWx+37KwsLCzwlre8hR/7sR/jh37oh17y/i/8wi/wS7/0S/zGb/wGDzzwAD//8z/Pd37nd/LMM88wOhoC+qM/+qOcPn2aT3ziEwD8+I//OO973/v43d/93Vu6FrlmBqGLJFH1AunzGvW7z+8nllHEwcpFfcw+YukO8VKU2XSHvvtlUlepZ6ZJbrR9PU6T1ABJsXYkl3z7bLvOI6Q+2lptb+wharFIcu6lhxlvSCuT2yjJ9QKdjUZr+yB5hqvlfxvmyQOVowOdD1xcJMnHh8iYyYBX1Oc58vEvk+3eL5EolL0V3Ua2lFgj0Hi7Kuxr9z3avj9DbF1B3H/arum3yOzpJLH+v0ek4T5OjtdSdm+2/7XdgoQae1cZsMoEXyYchSNkBaNGXn1ZhfcAuQGkDSi8Cv9J8onOUgfkjci67idZz08RTPS3kAUW84QTol24m0RD5F+avrbc7Eo55yIZFEqSNXVykGxeapB9rs3LETqRd0vlIKs5+0nbaYpJ1MVr8TN2cx8g+SNGAEKaY4QTt1Q+67mt9BGp0RGdI4TTPjJyRq36UvFcJeyIFU7fSdAL/neyWd5+woH8I4Kc/AQ3x2squzeb52yWH7sAWkK2SqYVrLY5SAh4JeSaMzN9NEPsbHN4ahrTLcKMMuMMO3SGNohF3tGOc54QomcJ9uID7VoUysvEAu0nH1FraV4VXmHKGVLjjRAerQl3GYJaHBETW1BeI4lisq4tydPDtjRNtr11rXaNtVLIVJjCqSevMjFf4P2YohG71mrqgLhphRl3k87PMklmE9d2bJD1n5Z2f1O7n98nyXf3EZt6tp3z89zquGVn5fHHH+fxxx9/2fc2Nzf55V/+ZT74wQ/ygz/4gwD85m/+Jvv27eOjH/0oP/ETP8FTTz3FJz7xCT7zmc/w2GOPAfDrv/7rvPOd7+SZZ57hwQcffMXXou9ocOVveYWmvS34miCQ1/vb902V9JCohD78TrJEV4TZz22QQaIiZZqmovLzRGXpAOEYnCL05jtIfri2qZdAlqdIMFBE+hzhJPh4lcvkNl8kKx/vIbkZUg7knGi3BsmnX1wiy4T1sy3zHiEfu2LBhRVWBsvyVcZICsEimd4xlphr92kjuHcRW2OaQHgGCBvwe21edVTkN1Y+pDyj2j1Bh8ju9K7fWRJEsOPAvYS6+j06hf+1lt2bN+IkirDIa3OSh8m08NuIaFxyrmiKvD4F1cUbIvORCgBk2doK2eRzg+RGiIp8un3XNM8U8IPt+xfJ/OAm0SfsEElngBDw50kSqY9V0esWxThN6DIX2PI9USbzmwrvBqGbK/F4Dxk5+Lk5El06SHJCbf+gIBkxzBPC0UcSd00fySR/N5nRONbO9Tzwh2SjVR3HTfIxB8KNkIRl79PA1aZARj1XyAeT7SYcwfsJZ6UQrl5z2b3pxWm4NJryLwx5LPfdJBb4aPvMZTKX50Q5MWpqc3UKsB7lLGnwbIYDnaVn/URIdL0d6zjhvT9I9oSBfCz2NxILb1hnuukFspWn5CsF1+qh4yRhS82jcNnDRafFRVPzLrV7niB5IQqBsGQP4XTVUNL7dQ1MvR0in0a6k8wnmNpSg08RG8bGeJ9ux9ThVMEI8db8hdGVWlmcWmTFWvtr7douk8pnB9kF8dbH7WMyLzOOHz/O+fPnec973nPztaGhId797nfz6U/HhDzxxBOMj4/f3DAA73jHOxgfH7/5ma1jeXmZubm5jh8vXv9QvqC6Zam8d50sAdbPFEjTOfF7HscCBYMsxc3v7SGW/i5CzC2+M7gyQFwgDPFxskeUKZbdZHpDpNk0vbZqB53Ge7Ed362+XD7vVjVDoI9t6wrRdLsRLBPbUSpZzTjPkm0vdAR6CXBVXW/wKsIDWaSmrq0ZUekQk2QHXp0zyceCA1byCowukz3FzDyoGiQIO2e09z5F2JDjZA+apwg6ACS3HV572aWPRANMYwhp1RJcobMZQsdJqvQ7IgPqLfOGVhXV9M8qKVCHCeNnNakLXbvWXiegrAtEYLqLjBBElo8QQnyEfDQ5ZOnzEEnCMq/q9cpT2VVeq2RhK2Cssbf0Wub8ebJdxEVSeGcI4ascTgtX3GAL5TzmCXeW+RY10lnSidpNCO9kO548Q/PIUgz08He1c9tsziB2qPwouM7rIpFD/hRZKXCJ6OPyh+2evsDN8ZrL7s3krDvWYV5QbeouNUFbG7mZgtDjNuwwP6r2krSzRmieY0TI+ab2e5rkrCzTGZpdJgTma6TALpNa5wipxafaeUWKZJyLmJiG0VMdI9NZamXhNa/F0gM7yCpoOjpi8nPteKaMbMSjE2hoN0o6hZb0KfDmNUVTZGebsrL0Q+E9TFoN79trVUjdtFfIpL8bYqR8zk0kae45wiG0DecysVk/B/wl0VTw1ser6qycPx/9Vfft29fx+r59+26+d/78eaanp1/y3enp6Zuf2To+/OEPMz4+fvPnyJEjQPqlBlMiu/p/o6S+lLd9L+mLGnCKNECnsXSpnI5PBgAAIABJREFUK9+hpjz8gXyumj5nJduuEI7KGZJMqk9qbLKzHKOvfGaE2DaWW68Ty36WQJWfJhAM0zyrdFa0qnMFZwUbDRZVO1aU2tXcObVvmekwn99DuTd5hNqXNfJRMdpd7af0BYmuArsD5X1IB0Yah8d3WGghEu9aasMFO8+SqkngWim7Uo73Wsvuywqvul89oSBpAE3JqIsMmnRUREZkXkv0d0Ig9JqOkAjOWDmG1SzqMftAWUZdUyMGsQfIZ9lRXt9NTPpRQoithLxMCO5XyErGCdILleBqIK2TJW3BfmNeo85CDcoloQovql+1gTLXX054bf5mXwSF1020g4xOdM78DYmYKdA6Lg6Ft3/Ld+SRLhJo0wmyL43Zghfb56/mV19z2b3JWq7CK+5cI2jDNz1Xz+NuHS3fUUCv8f+296ZBml7Vnecvt9rXrKysqqysUhWohGQVixG4AdPdCNzgNhi7HR09tnvajlkcg90CYybCY0dMzOgTjo7+MBMTXsLtcMAHM2Z6uu1uT7fbIMYGm7HBIFnIQkKgrfZ9yVqzcnvnw7m/OudNCUOKUqUSnhuRUZVvvu/zPs+9557lf/7n3MRiFWKN/Jl2jZNk4nieJFpZ9VPzoqfIklq/C7IkeoJwgMTMDfesK7SWVE/+PGGMnyUPfFpPRhSWlFWL4TyIEkGiLIZaal5h1iq85i3VjlV41ZBuVnk8dqRSEBdIrepG0PoMlWsb5RgGKoB1VM1rUyO1vWHqCfJcDYm+J8meOEsft9RZcQwMDPT93uv1+l5b/PcXe08dv/qrv8rU1NTNnyNHjgC5fPKYRQ4MKKU6GVxeJIq3DOjsIWihROWsmLKG/lOcZwkRtYiiR+gPqVYafUVAX1jdA5lCmScNsgCfoqWom9ZQX72a/pLsfYRue5RstaN904ERsIP0ixV1SOqTxGIzBAbpotvjJLG3OmlrSF6JwayOQxVpbYFZWe3dRnKbaq/rGpoh8bm0H1LR3KoiZ5TP2c1X+7KWRJr8t47bJbsvKryQ8J0TqA0wlfIUaaD912AI0tGAJOLX3J25OCdbPp1pFp2gIbJ77Rkyze9nhQa3kIZUITOoswx5Y/vZQwZ5E0SQd5mAuzS+RhX2k3KTapNEPkQcbPWv8Kqj9ZC9zlh73U0l5LiaFwqv8/5iwmutvc6FQlajE51LlY/XrsJbN35FXNT93kdVKLUk0CijjNsmu31QkMJrCkiv1wcQFlpHRNtqXPkVdcFEJdR4ojQuhAK1nWw+d4xMCLvo1hjWEi3xYx0HjwMwHWP+TiRAjog/kyTWPUFWAh0u96XFMXluwx2NeK1Hr6Stqnl1qEbIJhR2tzpDOkN+n03iqvC6RvBC4fX9hsiGjFodSM2v41eFV86MBAuRNa1K5RZJJBA+oN3zUgndMZbMWfm7xs6dUY528uRJdu3adfP106dP3/T6d+7cyalTp17w2TNnzrwgMnCsXr2a1asX125kx2p50VVXCDbq22rwDPD0TQUh6zaRcGocYRpIUixkn0ObnFlV7lZ02aRcaTMo37G2/K6B1mGRNjZQfqQYSN/a2+7nDKEGvkDwQSxjlqcpJ8XGbusI26A/vZUI2CnzMEJS4PxeHSxJzQaBzq86ei1piwVRHTpaNQtt6r5mLKSQVb+/Bu7qdEFbETC3l1txiEyvub0vELa/StTtlt2bRliSbd2JIrm2vteDM8dW9Zw2Q7LWNNlwCJKRPdaue4LsaCjb2pylaRp1y0z5vQadklZHSMdBR8Z7FUE2mJsm9LEpeZuCLhDe/t+QJzELZfpdet5GA5dJO7SNcLi8N/+9Vv69QHq24+2absrFwisRmPZvFV4F2r/rZLj5VQAiOTo0QrXQL7yQuU4dT+dbod9SrgcJMhR5ue2yezPUsxZRzWAi3lBLbUa74VP0pyggHYC1ZA3h97W/qa3HyBb54qTnSZISpMbVCohWqLlquGbEL+t6NbkIkJrD0q0bhIZUG8nhGCFQlsNEGLmRrDfXETOHWQm0pqtshOTmNYwW875Of+8WCcQbyZSa6TM9XedjNSmE0F+zX6HZivMreEKxCnYVXi2Vv/scFbPX8dFpVOB1BO2NsLRxS5GV/fv3s3PnTh566KGbr83MzPC5z32Ot73tbQC89a1vZWpqir/+67+++Z4vfvGLTE1N3XzPtzvklcyQOkPf3oyoekXjrfNS+Q3qGX3IEbIT9zQZGOpcqMsFy9RvAnKD9PNG3Mo6BBp0v19b0SuvCbAOlmu4/GZj50hu+mrgs0Sq+yQpdvL6qg61G6xoeM3GGpir89WRok7ex1qyr4rbRaAR0tkwbnCOZkgqmnN6g2wyqkDKM3UNp8ltrUpyG3hvzm3dGqpBK3UFg6G/Kdztlt2+CVJ3KDwuunu/Bi0GZyLNCmLNh9mdUIa533Wd3AAGr3qM6hEREtFpCZ/HScGQh3GDhMiMDtTl5vocos8K7WD7d6G9/pfECfZHyf4zZgYURjmVkAJyg+xlIslYO1XRKWE8EfWN9KeW3ETahGFioxhgirT4jEPl/do4BbMqCIVXu+XnTUdVB8d19Zn9PCR5yw1ZkJXbLrs30wNryRyaxs4dW5PACnMNUXQONKYauy1kiCMvZBWJx9beKhUGnCXDq0H6vUG7Sol1ey2bzkGiDB7AoqZxo6g5zrXfz5Kl0nI0LNedJk9fo33vFEk2Nb+phnK+3JA6iGpDBUuyk13EnHMFXhKCVlDycS3/gGSWy4epUGKFaBVe1xAS7oO0en7uCv2bxNDYUF8rsJmXMpaMrFy5coWnn3765u/PPfccjz76KKOjo+zdu5cPf/jDfPSjH+XAgQMcOHCAj370o6xbt46f/umfBuCee+7hh3/4h/m5n/s5fvu3fxuIErr3ve99S2SkZ/B1jqQYVc7CCAkySuxXb1VEdZj+AMoKGl/TZlwiz84RIXf53YJ+3gznYHmfSPdiDkf914BKkRFEc4g83yA4K7Y9gmzzsIpAhfaVz2kTdTjkMepHVwBV3nnNsBooXyG2rZSxdaQ4y1F0PvTrtSsz9HdbNyU0T/KDdKBsaFf5ozqZBvD+HfrtWl1fn09n8DTZhVf0/8iRI9x77723VXZv5gAvkyi0E2NPrRr8qGvU19XTvkIGWkbmVQ9Xjp9wosJQr68jYiGAyPh8mzSdI50Ckfua7heN0fmpwiuB7BqRzhojD6q6QjhE8wT/ZXv5nAImVOh8uVHqPfk356F6yddI3o1IvU6gDpzKY5YsovC5KM+lHdJeeC86l8KxM+X6tYRtsfAaXOs8+aw1YK79VZrAL4vs3tRmU2SO0KYJCuhcef9s+ZspH0go0N91QCoRF5LIVD3rmmdTI3jYimkfyVnnSQGqwuuo7HadAiEs79OE+g2yfedFsgmS5b2XyW6+lGeBxLxdzF753cjF+/PZ3DDXyNPMrpFtQ71/LceN8pxV80L/pnRj+9Mr/9dxmi7fMVD+r+On41VDcq9T8wum/bwXNe/SxpKdlS9/+cvcf//9N3//yEc+AsDP/uzP8vGPf5xf/uVf5vr16/zCL/zCzeZEn/70p2/W+gN84hOf4EMf+tBN9vr73/9+fv3Xf33JN+80KP7qC/0+dYc/A+V1HQP1c0UQpgn+nx1OdUzsmQUx5frW8vHURTVAMvgbIQvm9Nv9voHyu+i2W03DPUTo18PtfcYh5wmf9RAhyqLeLuxustLmRrmuulTdaSAtcq9vbqcDt4y+vui8akJnwGv7471Wne4zDpbP+x6DTFNDvmY/NHmVFdB0nuuWNY4bLM9/gaj8d7i+H/3oR/nEJz5xW2X3JopcyfvCS5B6WgHyQasDorBfJslDI2STMUjEVVsBIbBTJBNb4VVXiaaIRIyQp2JKBK66382jUa7kUuFAu4yLGmlX7iAgx/FyjxfIhnDyQdTpCkgVXu+9BpgVka7RiEKqkqhwnptWXez/B8rfqvD6/DWH6ftr1CFRyrmUu1h1u/JQN4iCqxNbszgNYVoW2WWePGhJWM+qkzoUCEiPGHLCXQQfdJbUvIPkOfZCgk7EcbIFsmkk8VU1qqHQCKE11TJVU5kCmSe5IDpdkpsMd3RMzGteJsrpnqW/M6vhpWXEEqpMJ+nJSwRQuCpZwY2nUDiqsChsVfv26Pd4/WzF1p1/NfVioqyfU2PbBE/8v9bPuqncBNMktFjzAb7mvRjWL20s2Vl5xzveQa/X+6Z/HxgY4MEHH+TBBx/8pu8ZHR3l937v95b61S8YotWKpvxyjWr1A0VY3BIj9JMwT5BbYQ/RD7DqCXsYepyIQeY64E2kvZHjAaF3j5b3niaKt15PbnPFTN34LMFF8aDB8+WzOiEX2/2alreK6FVkkGZz0r8gttR2krMhmmHVqMh6La5QPCnzaH9HA3zvWQBWlWFQW4FguSqCqiLhVnDVbSMYC0nk9WBCEbNaKFPtSXX6jF3MrLwa+FcEn/Nv2jM8DfzWb/0WcHtlty8wUg+og2j/mjM7TTbAmSU9bb22a4QzMUAY/uPtwRx6otBftQKpR0xTuPCivurGC0TF4etJGKuSiqYJB2M3qcdOkT3ALhJ24DiRpzSINFg9QB5+Ndw+93lCqMdJvW6gbE+w2im2IhA1vWOqSVRptt2LG9xcb03jVOGFTLtU4ZUqYAALWSGq3VpNQpGn2+dEmCpRrjL73UBmPwxw99Hfq+z0MskugyQxU2/Rm9XT0kBaIeNkaexMlF8nmgvYH+QUoTVdbOva3d3Pk8bdSTdHtpgdJzoxTWjeA2TDNa+/ilisx9rfxV+fpr9+fQvZetKGbnr9E8QG3E6Uxs0CXyS8bc85gkQ+dKoM+RaTnaCfebmB3FSmghQaS+UgnYNvpnl1IGTX+x43S+1Zo9O1tf3dTo5qW7F5USAjCPO1olfmlXeQTi28lJb7t5Rge7uHTcAUf2ldbgMR8iny6KZLZGnuVWICRMy/TBah3UH6hNVvVXwMMqsxFAUxnXGZ2HpfJbfHs0RvL1EYjS2EOEhLe5ZwmjYQul0a2wJ5IOMkufXMespP9JknyRYPdxMxhqrF7VedDh0O72mOPMH6vvbe8+0620hRNr5yjgweq16vjVXNltYUjcO/zRG26jIRa1VqwGz5vfbW0e6Y4oJ+QPIaYfs2k93hl2Wow33wmt524qruEpW18EK9YLD1fxJ9ty4TOvQyuYjqE4VX6Erds1h4hbDseuhEf5Vo/ua1aqB1krAjW4j85ASZC50iJv98u7dhQhBMxZiaESVXv40Rzs0Mwbk8RizcNNnYU305QzqAFXWxCONVJInrDNl2X2cMEgmyv0CF/2pO2GY/1clU35tnFRhYIB0MUXCdJr/PNJ38SRWL9IVajbu1zedLC05v0bAZmh1k6+7Vgx4gO91BGlvDmepR/iEhMB6WoeDpJVeExpQM9GspNaeJaR0Bx9OEEOhMDZME1+cJB2k7Ecbsau890v6+hoT7Nre/nyFD3QHSwpwlNe/5dm/3kJpXx6dqbiuPauLcGsuL7V6c96Mk8/oSaelMx9Qych2U6nXXtXLzVtTDz24jz4CovBYjDMvo3LA1XIcQ6F0kM9B5FF5d+ljRzor72aqceu5LpVhp+Gqa2SHKbBC0QEzxDFkNbkGGiK76zaZyFf2u/LsLBPXKe1lDIB3/lES1NcxWZIoWjRJpI+9PvuIdpG4z6PKZhsmiMBH/WaJ65yIRGB8kK/i9z+3EFqh6UpFUXI+S3RMOk9tA4E8x1UmodAbnRh5kdSRco5oRnS0/J+jPmGib3T6upfOkPdDeyaOsGWorZy+xzMP+IjUFb6BTSU3VHvgg6jMFUuKS3DUnogqveto6cKG9KyTM6GFNNhlV560hmpT9FNlQbb793/YJoiwbCcHf3v5vu/hpopeX93aV/tJcW/37jJfJI00eAV5XPmeUMkrYOIW3UiWGSNh0on3XyfKcCnpFxN3EovUiHJWo7Mbxs2Y4dD5ExU6TZwstFl7XRKdKWNPeONDfGEklJg+02uHbPsRWt9OfdK/CW9Mt1Rj6Xj0wCI2iJzpcXtfIVuGV7GPoYYhliGoC25DGznsPE2fbiwFLCD1OJoRXEYv1PHkEOqQx3kVqO/OuYu/2jFFwrhFowgWCOf4a+g+GoX2mnsCsVjQ3OUSy0VcRWniEECpLAWWM28RBR0wMXAKvQlOdjiq8Q+X3BfKseolbVXihn0Sm8BpNie0rG5LsbCShxVvaWNHOymJwSx7dQvl/raCvPBHT/QKBleviYYFny2s11aAzZOfwqyRYaRRvSsOWDjoI3yCjfEix0fAfJ4LIOwlEXVqVLfXlogsmniTFR4BvkBQZCHRHMXyGRPIFOHeSpyebZqn+to7NJUL/XierhyqIOFfea+BXxbtmROvWdB6qSvMzm8r1tdl1K2vTjW9qFdYqMp1m5arbWfRl2YY6R51tWdsNsopzjv6ASyNv0YWCDqFjhRJnyVQDZDtg9T1kvvA6qf8t7fL+qrc6T+hcy89cMIXmAqFL/x7RvVzawRYiADtKBONHSQLYafqNroJXyVBWL50lbMib273Ydf0ukm6g51wJUzKx15CnLFe+iu+rdlYkvQoi5f/1c9BPx9A2G/zq4VfagAF15Xn6N4EB7ZTojbwf7eZLC05v0RggqzzchZJfTexaMyj0pPD6oD4YpLa025OeuNUofqfXMNFvU7TK9zCf5hC1OEQKSuVySKZ6HvgHxLk2p0gPfiuheU2+Gz1oUVxQ2Y/CeybTB8kW/68j8wFThPNjEl4+i6krSBTJnjK+psDNlH89v8ONvVD+r1MjN6gKj9dSQei41ON+F2ve6vCsI500K6GGSfhPR9OGSDVsXNpY0c4KZCO4ym2GNLrT9BNDK2nTDKu6WFRb/9ygxqkXTYf+7bm5fcZlsZWPWUHFZJbk0LvFBshlPUIGl7ZS8AR6yLPPTpI2zqyqW1AxFaVR50FwV1QBPfKUZP3cLaQ+FrnRHhoj7CIDbv1t0ylmYRcI3o2N8pyXGosILlYnUjtKu76UNKl7brsak9WtbaFIr92v1UmD5Zo+zxaWWd9DRtA1BT9LsppFWE1RD5f31qAP0mmwqtHyKvVyRVdEXK6Qh+mpc4Un1bfqt6uEvr9APyP9AuHpPk12Pp8mOxEqRHYolzNS201UXaln7wZw8a2TF93wtMx58uAs5wL6U1ueyba13adHr/hd6mszBztIna2QaAsV3uqUsOj/lRwnl/LFhNfX1PXT5HE3Cq+bwjXToazPetuHkNriuvWaCnBxN9NPFHUCK1FKratzsriWUDQD+mv3FQr7vtSOrr5fYbXDrEjBINlN9Wn6T432gELztJvJJD30OyyQgqvQWcJrOYC8FedlmAgR59o9jZGbVUxZZTBKHh/+FP1QqFU1Cm+PEPKT5IaGdGR0Fr1+Fd4aji+OnCq/p5JlB8vr0+QxtrUuVEKt82rzo6WPZdfX38moPGqXWMBskuytUQ/2U2dDtjWaJFNB0F8c4Ba0F6EOiIVts4To2OXWc3FELbQdGvYbBMHTYNpn8MDCcdJJqpU7VsPMEDrarOcYuRWkq6nrDxHg6qX29zHSDx8ntkGvPdsEmcapyJMlzAZ31XZsIkHX+p4NhKNi8FhFek25rjGYw62k2rAwRRGHdKjk+WsPa+W/WdKKsNdtqZM6xjKOGpxUVHaYPDb8PFnsUIlRlnXZHRASLhJpMXe4njz2pBpHF0PU+mL7PoVaD9iqIb3vr5CcGsuhPbdoL/35PdssKJwi496PQuRzuJEXyB4B2sHtpPO2iRTmtaTnWfWjgmVlkI6GxRwe0OVcCgBoA2wfUukNw2SazJSTkYRoxyZS15umc5NAbkBtW0VbZLx7LdNvFVwwOqpFIrd9iFFWCE/hEo4TWzXS3kjWxA8SxlqSznXC6zXfVVNBY2SIJYZey6nmySS6qMzF8l4nb4gspxps/7/Y/j1NYNlrSCugo7KBDEUnCUFcIBbaMFXeicRUyw+MBDzq22tMkOFYPU9BYVND+q+CbVdcNWQl4+oF67nXfKproxWpmlc05Qaxkaz+MXFv/kJL5Fwa8lZc37IIn2OYbNcqy39deZ6ljRWNrNRUr4ZxgJiW/WSFez3doFKI9BkrEdNtIPnW9+vAyOUwFtBvFHTTgKtvrXq36G0D2Wm2ZnSPtu/YRS511Vmms9cRaXz1qVx3+zLqaEwT2+0osTXeSh562yNFclW7502EYzNL2g3vXbuqDoZ0FCDF3ayoqR/5gfPENhBNqQGrKsXXvHcdJ+fc343d7Obga7VFlGRrib31Gfy/wPGyDSdNUrxpHZ0T4Sudh1pxcoPwNmsJ1RqyrTLkYYR+V2VBv4o8bd5rzxHOxighaI8SLG+hRXXhXwE/Qn8fl5Pt/veR0YJovEIuuuDxLXr80g62kflV0aQn23O9q92XZ17UMuA1hPDaJdHmogaGVdBqpWUVXnWoAiIdQrhWpEr963t04CpP0bJDN7BzrjArvBUurPCjwmnmpCIoghiiQcs2RDEq1d3wbYg8OrR6xU5mTVkYrpm0VZvVME3NoGBtIw9mqt73HlJzPUI6JjpWgwRv5T7yhGYI4V1P5BP1DitGf4Mkh24lBdZTNRdI7abgTxDadKT9306/Oj9izjopzqUaXeEzZLWGEzLcky8CScByLhYzGc+RrHSxaNfEjS1ZSuGVCO3aQCok0S6jAO+1EntrJZCaXZhxcUnitzdWtLMyQp5jY4CkE2LKY5LsWajuHi6f03cV+ajcB/1yDahLW/W3esW/12BrmkQ5RCUWiANsKde+SMQV+9rrfl60SGqBzsNq8qDt4+SWPdqe6wShLk4S2/fdZW5MgwmMniW2qXQowTx1rVtE/SyYOEeop1WLrqn6GSYdvkqY1WmoaX9B1epUuA0MLBe3JzJbq32vWdraE6wWeujs9crryzZMZdfJqJWFEEGcnl/VH6Lvq8t75YdYfHGVRCYUNMlRNXBVmNUn2h69cfl/plGeIklR2qhLRKnZ2nJNA14NuIF2bY5jV/ERsujjDAEJmrt8LwmzKWgWf5wmhVdui8e0GEUoXAqygnORbIHtc1cv2o3svcvkr+z8KriLiy1cU52TxcKr160Qa/eFIEWZahWRr5n7Xraxjiw/0EgqXJZ02dXPiVF7GELKIhPD3UAaRzWpP3Jhav6sapSajBZ+q6Gmp1U+364jGWiqfe5eEqKsZQFuPhevniYnxKWDJaJ0goQl30IKkR6pv58hooYN5Ts8bdnvrwIG6QjYmrNGHKIdhspqUa1XbVa0mMBW8W21tzCASsS/1bWpEKbWaaS83/ut5dq1CmxpY0U7K4OEuFhOe55syW7qwGUZINH13aSuHSUrVCTWaiQFrtSNTrc6URSm2gCzuZfJQ2AnSB0zDXyG0Pl3kHppgNje1QetS7+WLIyYIrbEMUJlHCGcjk1EQPw1QozfT5RJ+0z2izlGOHO07xojxWcjiYjobEjvut7+rz2Zbs+garCj7Wb6eUHaYE/BlsspSGpRo/ZRu1Z5//PE+poBr1SLdeWz2kvXkPIdqgvte92it30MEG0dJBVdJJ0Sda8w2Zb23qfJMrPL7XXP2DlHckYMPO0d4hlDVtFcItMTenE9wsNV51twoN5RwL9BpILuJJwFUyt76e8lpa4UXdjRvvdQu8ZxspLoSnuWY+SZFAcJ4bU82YKLZwiv3g0ySmwmURWdElEV+7hYBOKJxqLrliqrKCwN9jkqkdn7cC7s+SWi7/ca1ehFXyaPmYH+I8QNnLXTBr1uEgN9hdnU2ks7uPYWjWHCwA+Tx7oKmw2214SONhIpny+T2O5FQgtXz1pM3KYC4rQKk1jxSRLK0rAbJumZO2ky1Wn39TShvUQZnmmvT5Bhqjk62wdvIfDuowTUeIxsmDNF4unnyLLijUT3rXPkIYQbCOG/m9S2EgTUzNWLVWuOkp76DHla5wixcXRCKqFNQkTNWW6nPzcJCdsukOFvhRBlRNoHwYjKjV1zGoal8odqGOvxCb5mqm1pY9kDzO9k2BJiL0mkNKUg0mLrInuCmBI6Tiy1x5N4/JSBlI00FZtxkuexkfRrITnXLuea9j63zFlCzPXn7wH+mGzXsJ3YulYWGcy6XabISp6z7d6PE1vhDGE7PMz8MgGIvpc4F04Cr+DdJsIe2I1XBEVei7QJxdhsJuW9qpAt7d53kFwRt9QcGVj3ys85Msby+iIdlY8pmnK2XcciF+Omyol327gOVYXJYTcF51aqaaxlG1sIo2/ViFCT5E+IB9tA6HAJ+qfIstZx0kb42dNkWkQ9NUF4lq8iBMXz4ExnWJq7mdRloyREJcw4BnyShB/H2/UMmm0qqpCY+n+S2ARfI6DFQ4TteKp9/tVkOuktRNXPQPu8TtZaospVKFXjfpl0zEQz5sv7Bknv2IpUU+eDpFN2tc2tOttopQqVJFk37+IWExVdMuAVPXEz6Zgo9NBP6hIVqmQw37+4EmlZxg1iIu8kHQJ3uE0TJDZtIYTK/ORxkn0sC1uYyNxgbVFvGLOBPNVR9KBG/JBG04VSEG1nuRP4j+RC7CQbAl0kN43aye6Df0MI9sn2c5HYZM+SDdsOteveRVQUKZhGCVYkTdN/7sUlslzM6MEwb7p9jx6wuPAGQpO7gb1fBcT/z5a/2ydgI6kt1bYL5X1qZLV3RUKs8KoC6L0OkxbPzpJCrKI4FUJc+ljRyIpVfurkcZKOJShl0ZR7X5TCtP9qQocfINPWtTTWZRVBqYau8isqF0bUep4w5C7jetIp+QTwIUKEpDUdJxyNLcDnSCdhH6HT7WpwjvDPnyEDQLMDbyD0vPHJc4QtqGnu84TDYtpFm6JelgjsM1UdKnXO0vCzZHkw9B9dtaF91znyPNJLBBirU6TDol0xrSZArEO1hVAtZj/qUVgGua6DNAbjNreYRYw6OS/t7M9bNDyG2xp5CyDNiEhSAAAgAElEQVQgUZU5YnJPtH/lzp0jdNhc+/cqSVyC5BfK/hZm8kdjrneoUa3G0aASMpWzkQgy/xPwvxNe8Bix4EfbvzuBh0jnYm+7f733a4SAPkfqyx3tu/cT1Z32jvk6IfQXSE7eFBFcep8KkUiOgXEd2lJZ7+rUKbK3gI7GZlL4TEXJg7lBIvU6O/Jd/Azl/qVnjJIB6iBJmIYUXhE186jmrk37Cz7Ip1lWwtUNMtzTu5P3oLMyRwjqccLDvEqEeOfJBTV0uUo4P3rELqqCLVNcLaRDIS5tHq8SfjTQOgBq4T8iOl2dIj32Q4Sw7wD+lCTQ7iYcFbWGsF414lvbtTYTvVTcYM+QCy/fxs1uakTEyL/rXEFqdolROiCeIa9zsZGMdkxTXW9za42n8N9GktTs92nNPAxM+M/U0ZZ2T/Z7qVGVwmtuVf6LWLfPJjHPtNJLaxqxop2VjYTDMUeIlToIMiNZdZJ8ZyvrJdTeR4jtOLEktZW8HApFbqD8QL8fqi7RzswSuvrHSIfKw2FNXxlvjJMH214jQNYngH9H+PIfI3ktlwlnxfjm8+0z3wfcT/bzOkECtAKHx9t7n2n/7ie2mtum8ncEH3VYFsgsqY1HtxPozpn2ns1kD6zJ9rxbCRv3hvb+ve2a/m2hPb+AqcCi66Pj6NbQ+dBeCNrqTNraQnB4sFzP2MvgetnG10mD5rlkCo6TP0IsprCSxvFxEt1+npjcaaLDbK3MNAj1Wnp0kPCVeqaSYdX5VoJK7tpcvtfXBknhtULoNYSO/ySx0f7vdt09xOJ8H9Gz5Sngz9t7Xwv8BCFIN0i03s23huzddbp9/952fQlh1rovDrSvkI6culNhtxeAQi26XmFWq6FE1LVHevN6+EKEc+X6Bs+WOy8u0lisSBbK51U46nZtzLI7KydJ/NcmCXrflbl3mGxRL0v56+09Y4Tm2UE8+GGSMbeYQGSZNCQnxpAJMmQ1cpeAqvC6AWpqCkKjjhOt9nvEQt1FICafbvf3fxCCt52Y+IPtGZ4lBPjx9tq9hMalPbPIwpX2jNPkmUIQmtdEu6W+1VGDdAAvtPvzNFFDskuEUzJHVhxVvFoB3dZ+9MZNGzmfq+g/B8n0jkrCDWE0oDauTHVIZ0sHE/rTeYbUG3kpecwV7ayofzSqZinlmBg0QeqTGZJvfaJ87jVk+bF8tkqnUuRrlYk/dicfoL8RpYUdby/vFXl5I7Fc8izUmy6xQN+9hMPyHwjd7FEB6te1wIdJioENq08SDslku54oyES7p0PtO+5pr6sezKIaqAomribs4iSJ3IwQW2CYcPhsCaQKuUiK/RXC0RJZd94NXj1CYGt5rm2k365DUilkp8hU3aXyNwEJdb1ZAreydkPkalnGcdJJUCeZP3PPS+SHZDvbxuAImaav+kddr64Sgajep2xw6O8gKwqsgyOH0NTGBULAdgP/L/APyS68W8gGlXcQDtRBAnX/JJHmWUfofDkhg8DPkNwPD/C1q7jHicwRtnGy/f58m4fXkDbT5/dZITfuYJuvTYTDdL19bqB9p3pcZrnroNCbbYDYOFNtLi617zUDIMdSRSScd5EMOj2s8mi7lylio5r608673sNkP7BqKxajR7d1nCK1oE6FnrQoRo8Q8oXy+hpiwp8h+47IlZgn4DY7sxrFG+mrAc6TRtgyiSq8vfLadhKVEMWRP3M3Wd+/ul1rF6Fx9xEQ3x8S2ncvIXx3tOtbMvfftHs7QQiY36tQiUmfIjTbagIWNDUlgqM36ybVK9Upe5Jwqu5s3yvJzZaetiQ1rWP+oGrBi2TUs4Nknx8hNfKlNo/72uemSEd0Gwm9fq29rvaF0LIqojliI4+RVVC0z1Ri2dLGinZW/iPZRRWSYlR9PX1pgbbtxJSeJHkRVtdXxFy9Z6A5WH6v6IO0ML9XGyAiUPUc7TNyQx4F/meSuDrZ7scqTrfRBwnf/3j7FxJlkWvjKRzPk60vvAc5kLPENjpPclTGCftzrd2DHB71phwgHYRjhMOzgxA7r2HaSZU0TVIeBkh/WpTnOon+qCq+n37KAWXee4SNdO4lAH+hvfdMu/4e0oHcQ6ojS7ZHSEB5WftqnSZRkEqer8Ir0kv5V84bZMAqKcn31fRIJbtCv+6H9FINiPxeSG9utvwuIezjhBc+Syz0JLGI28mswA4i1/klQnD+kBDSOULHjpNs9K2EAZcwJt9RB2uB0H/q6LXt8+fa+zeQulljX4O/WcJm2KbCPK6UCiuzLN8zvX+N/kMhF8p1dewsRVbg5b9A5hovkcJ3iaiifY5sCwL9TlYtFRwlFcwG0imSjHzbh3kz8WMnrgqvhtuIupIrRRr0Us+TaRoNno6H36fGVePridsHpBpEvW03l/dix73/C/hf2z3sbu/VK9ci7AB+idAwRwhr49hHaGmvuZU8vewq/ekqPWbJV+YNd5JOisfJ1tbVtdvWHGGxNpHkVJWFwlDndRsJoZ4mE/tzZETw5yQLXNKaxCjLtQ0bJYSpCOYIGNfcsKH4SZIA4HrolHmtYVLglzZWtLPyB6QzYQpANMDAUiRC0RYEXEOIoHzwG+U6Gki3k8bezJ4EfnX6YjS3gl4GVJDxhbSy68C/ILut7iQrOI0taO/bT/BqpkhOtltQf/0kiaxcaT9WIq0iCyPkjnx/+/0YGQTqX5sKqxStje37H21/s3R5imxDZHGFqMoMyVkXOdpL2jxpDNLH5tszXCHinIG2TgPt+SHTZ3OEcwaJmtfA2DUTLBVVs1Js2Q8yrKitwlmFV29XMpFItoIuXUBBrCkG9bisZI24Ql45keq1KrxO5mLjr8PyecJ79hDCffQHWpKSrrW/7SMWVUKTDsYu8qRoUW51+zYy5yeib7OesXbtk6TTpzDVY9crw/oykW14HYmYzJMkYNEZ0z5mFdzwq8hjDebaPWijzXJMtb/taPd8ikz/23BV+yK3aCv9nMdhwumrFAydUTMLywoLenM1TNTQKYQSfSqZcoTQZJeJPKAL4GSrbWo3V2E/000K47calltUfombSO9zktA2kyQzXCM7REz0XQSEZ32nwqtzMUcIsCmca4RASTqyP0tt1DBOEnjts+K17OqrcyY7XK/5AJF+suzAENGow0hB1iRkuZm1lNMkpm4qypK5BWJ9rZ1dIFGV9YSVOkseBmb6zbWycZ0W1HtT4dirYOljRTsrD5A0ocpLEPFwO7kdpGNNEeJzgfAvHyOBS5cMsu3QFkIv2X9RFAb6M6s6LGb91Pu+z61iccNG4H8Bfpfc5i7jMJn2FimoLZLOkZnM82RwZ09Gq3VqvKHfb4pMUfY6l9r17Qvj1jM1tZXMXpwBfogsjND+icx8vc1t5YLLS7TAb5BAP0yxHSQpZAIIb2jrcKS93iMPFZb345yp69eRyLnZ7HoO3TBZELhs4x+TXrE3ZYCo8KpzhAU30X9C5ReI6FzhUh/oZYpQ3EnmPWt7Cr/b7xQ+819TDrT3qes8NPFfA/8bqasMzkR75IDIep8iFtNUj0G1ebnLpJ2yoaeLZG7VjWdu8CLZu8D5Ew5UeHskbGgV5T8n+R8GmBdI7ujD7XssLnF9fM1qLCHLcfqLWTYSGYWtRCO9zYSeX0124HWD27XWgNqIpXKJqiIZKWuwLMPJgxRem9BUp0AvWe1rHfoAkdj+AqllJG/5sBI+95XrQGrWOqrmrWURtf/IJrI2E0JwHySJTuLpG0gvcphY2LWEBhojvOMLhDCeItGSWhLmXGjIIVEe0SjDVR0Rn+/FhNcTlt2wP0YSWKvmvdze9/Uy/86PxFdLC3cSYerX2+sXyZBujNC8zxHhvM/kGo2TrVHXkkxPiQCGqSojkabhtg7mbpc2VrSzIge6RxZmuXSiD9P0B0dbyTSMfEO30BaC+wchhtfIgEwnZjshrtoQRV17Ufl2a8j0h4DZ9xFGdz95WvTHgf+ePD1B/772+5LEO0sWNbj9vb9rJPo/Tab4Fc8ThI67TvJxrtGfKvNfHTpIJ25Te/6zZAn4ePvXQFfe/ySpQnRoRE4k+i6QcYExy0Eim/wWku72z8l2Tl8nW2qYhqoxnuCxqsBtLL9UkFX5WLYxSToXcu/0KCEFGTL1rfHXSK8nIbytBGQFeQ7bYuEdJ4TX1JAovALmqF6xBFXIfilvJRARiNTOj5GkTzvvrSeN7gx5DoWpdVPytiKeJqsqIQTK5jwby3P4dzmBFlY4Z1ZFWS6m8Hqt62QHdQld2id7vkA4K9ImrDQ9Q9IVxkmvejO5hjvJtbuLaFVtybWlbTtJXqP8Rc/SgNhkNVBXDnRetP9/wzKNAyQj/BIZ1ulIiGjI8NbTtouS5zqcIQRlG8EHgYSi7Poqm3mULA8QNXHh65kGlZlssleq/QARHo236/8h8I9IbSd6so4szzDc0dsXW9fr9z3yRtS2lvRtac/rQjonhsTeX83Pmo6yskdnw7TSDUJ4RSnOk6jKONHISKdHrLuWqu0nD6MR/psr1zhLaOJ/AnyKVBrmLyxv8HDH7cT6en+iMCJgOpA6Wz7r0saKdlaeInTnGNn7ZDXhC/4HEoS7Rn9TsIqEXyRSJROkuFdU3fS4FStSlCCDn1Uv8jkDoDvbfb2eEJGh8redhLh8rf3cQQa4XkcE2G3hsIrS1JQAoumbzaSKkCe+OBN5hcy06uubmagBpferiphs9/YY6W9fJmIPue9n6UeJdEy2Evr7Ifp7rqwhttzj7dpvIjOy68iz5XzvdqJliHPlPUiSHiTrDKSSVZDArPeyjedJvbmGNM5PEelxUwc1QHQxtAszxGJYH18LIqrwzrf3vJjwukjz5XV1u+VXBwnhtB58kEj1jxGb7SiZDlJg5QjW8+78nqvE4uuwiPzbhdayPh0VkWSNvSkXA3GNuM8vMqTnrb0cJttqPN7uG0JoniNbXtipXftmoLuJEMxH2+8TZNfgC4QnfZ3Y9K6R7UR0tMYI4bXBq204RIYM8oUBT5f7MO8rfLxsw3JemylowI4QO1ttpebVOKuRpcDvIbViZapBwoLCVpY+QAqvKRLI5gd6gbb53UeWRY8R2vggsXAPk/lGW/ALJxruVA9ZMpKbUob1NfJQQcsJTDhrpPWYLRlYU66p8TaBrbXSUvmzsz37hfYsCs432r3o0Ll5q3Oj0ImeWMY8QQj/XxJOiSeO1rpLNfim9v5N5fdNhBXVcarliDZOYtEcfg/2WbmHqELZRKasBc2+DPz7F/mMYqlPKUHU4jlI4+a2cluKvIoUiKK4NS2I2EKIzd3EoeOQvQ5HSL90nmw19D8RtK9K1BWhcSvL89CJEMWuBOJdhAiaibTJqYGpVUoad+2A/u45EuWuAbeiKw8IQo9Ote96lthCGwkn4vsJn3weeA+xnZ5u92dQauxi/DBH8txtvneWrPQ3A3KeUEGSZ3skuHuWWMcBwh6tInz/be3vtcnqso53EdyJLSTBZhURtB4mhLeyxTXSosNCgaP0k3cU3toDZAchvBZqyIHRAFK+34P4Jgmdvo6se99BtnXQkboK/Cvg3xD60mpH9aWtM3Qq1Md6rzpWkBvxcvtO0ftaSgxpBy33G2j3Y2NR4Ul1rNHELEmlUPhWEcJ5jITs3kLYsW0EGv4U4YhY9aTn7jqYnj/d5rlSG3aTqaENhDC6RqbN7IF2kjw2xvs+SmwabegIsUEWZ0Ju69hH7HLhK+F/Pd//TGpjQwwX31MrbSkJyRR2YlywtYS2OUM8sIiDwitOamcthRIC1tpH8md2k6zuBbLf+b8mBNi8pUlt6OfgWB5nmKP2lA8i1nyZ0IR6sTVHqxcttm34tIkQHsgNKvtSj17hlLR0hYggrPWfIrzs/e37dxH9AI4SQre13ZM93u0zbl2/XJux9vohkligM3KkzaN1mZ7HsYEsXTcqkHle01VD7d5emtuxop0VRUiR0b/fTFTQLBDV8guk2G8gfM/NpA8sf0OHQIBM31wE23Y+pvxN16wlt8YkgaJsba8/SwZ+Bqamu7cSOvA/Efrw3xDFE5X7CFkOLfdQMdah0dlQdxogbiDRG4FI4xz7uVSj7XNVbofUK7k2a+nnz8+RNnMdkab/SWIbaR8OEPaANo/PEFvMwrx19JehP0PYiteT28EjATa075DbeJUMzD1jqbYnEdSdJXuczZCg5bKN2vfD+nVLk3+K0C9fIh56PSEsawjdYyPPacLA6QBU4Z0hK00sC4Z0VKrwDhOLOk44UDZwsyxa46vzsbndz8NEK+YniEZAP0N/PtLcq9CgjlH1TkXLIYT3XHkOgzydF8lUOkAi/m4GSBtpmqu2u1hNMs6tLNXzpz33m8nIZDfhrJxs7zcPqU3wOz3zQib3VwjHbgO5QVVAovdTJMHL8jiD8zMknDtKnmMxR+ZjlxVZsSZwA4lkKMT/gniAv6Zf806S5ypYcmWnQ71yhde/S+R0Vy8WXhEUSZ2ThNDcIBZoPYHe7CTJoOtI7fEwoW3+H+JwEjWKaSQ9blEbPUTJBZaNaax1YBanvSohSZRFrV21fNXmLrjk4jVtzuXy1GYaNoCD1JIHCIhPpGWOLF2QeT7f/v4MaRnOkdCmDpqMw53kJjXkE8+/UD5v/tR521CuY8pw6WNFOytfIqb4+wnxU6wk///99r4T5BLdICsSz5H+bUVe7d8hdWiQ2DbqQFGX1QQq/ENkJb5UsRuEaGxt97KJ/gO6FXFLfN9FiMxXCMSoEoVrIYAtLwx2z5A8GoO63cS22UAecitQuRitkd8y0P6+iiTZLuZ+Xm/zLDgLGVRaUW/c4Xze2e7pSTK99LV2/VGyhNrjbAxwjxOtOaRprW1rsKH8XGivmZ7ymvYvEyjWKdLnN0MgPWFZxmeJRXkjma9ScF9FEHXGyNMp5XVsJtFphVc4b4AQXuvWJZ+aXnE4WSOEsIySbfPvIbksenpViG1yuZ4QmFFiAxwiPNK9JJexIikKksK4jkCD1hMb5TxZ0Wlb51FyU9d8q9czwhgguzwayAoDWmhCe9Z15MLrMG0hhV84cg0RmK5pz1VbaAySDYF8RtNYAySR18KLSqC9s93Hc+1alaxrHtu1pDz7SPm+SjxelvEp4iF/gFhwnYZV7ff/iojsbUs5Tzogh+lv/WiYCSG81pfrudXjx3UEZkjkYpYQml3ExvFak+QZ9aPkASk6BdPtGu9p93aGLEkwl1qT79YfynA81773FOGpiqvLETFFdoEXpnX0/s3vniWFTyhVJEZY8g7SYuh9P9muL79HL36CCOnWEni2jk8lAOs0WZpxhmSx25Vqvs2bnvhe8tRQIV4Vi0rItqdzZKmcz2WFk4jS0saKdlbWEvpuhjBse8iW+QYrl4kpMl1h+toI/Tph6NU1ApE2LHba15Pi5nXuB36BQI1NWXyV3FLDxBbSuOrk6DtfbP9/D+EH30NWaLqlFK/Kka9ZRK87RCA7ZjRvEFtJPe6WX8zhlBxsMYZ2xu+FpB4Mkj29pND1yFLgiyTVQkKt7ffN9grmqscFjkU7fE7Jr6L5Q+X/EqSfad/5KsJ2bCaLS/ypRFpjI/X9slZ/biM5E3cRekBv2SoZ0yQKr7m/jYQhtSBhmmy4A9k3SscAErlV120kdNoYMaFrycUab5/Z3t6nkInCD5fr/n1CcO+hvwhC7kpFsk3tiOJ7Ts8qwogvkMGtwbAnaBqsKTQi/zXN4+ZXvw+Vz6wmNqP16m4CBUSir53MdVjU/zLRdSRMSUlZkBDn84j8V1Tf9h1rySNmXkVWEmmbRKFqtZbrVrMJyza2E5rXdMiryCZvYpxXyt/d+WreN9EvvOdJp0bNK4FWBrmlDOK8Gko94G2EFbBGcF+7z9pz20nViP4ggd/e065zun23eUYxaMu8JK0OE8IrFv1qkgF5hRBejbUCVytihFF1XqbJftrXSc3rnBqCuhH8rNi/wmh+U+TEU6GNdIw2brR/bWJhBY/3JwIiVr+ecPjuJDbAV9v8eP6GuVsFVkVkm07LQUwJvjRYcEU7K/bVOkX/oYLTRPT+FPAIeWzHncTUDhPI9QnyMNQJ+tHvE4RPavsaaULak/2EszNKLM0JUo/uIB0Jl1sf3Sqjy6Sz8pp2PY27QalBotsRknshdWqIrKzRHx4iwU8BS1PlkEiEjdVMedlna6o8g2ChNDTBzPWk0yaKs798xk61bk0DRQnGgqyLAUFJxeplt500jCtk997z5HpJUxtpz6ouH27vqxng2n1h2Ya5Ohs9mm6/RuiCr/FC4bW866uE8Nu2d5JMEym8z5GwYPXMKkdFva8eupO0Ox6bYg7SlJNot22Pv48I+qQhGKhBPzfQgo55chPJtbGSRi9ZaoEEK5uW1qooG3RqAwbJDMMo6SjpsE2Q9rLqa9GhN5X5MgC33r1XvkN9bDRSaQxCoXr/DoV9jlAAEtZcdwljevxu7OE2z6vLj9HENZZxuIhWyZwnQ74nCeH9Crnz7yIWdIRgkll2tZoQXssBZkjNa4WLGgj6KfK2Tt5DhHpvIHKYNsORne2mOkQs9iWyoc8BwiKsJ5uXCVuqSa2ocVHXlNefIQnApli2tN8lFBtliC4YEZwhOyTqbJ0jMWGfdYFErxSC86RicLM8QWpG61UXd4Cs+VKdHOFF31NTUQ7RKvMNbsTK9lZ4tVa24hwo77d88XswDQSBlt9JLvsjwL8klskqS3kN5wnd+CPALxL6Sz98iGw26dEhVq6fISpfvkjSju4mit4UOwPe0XJvN4gU92nysNidhFhuJ3zlwfLjZ0zx7CLLbRVfu72qb+VnLu6FaErqAtnY04DPILoW9Z0hdKciLmi3kXD6tpEgpGCeqkhbaHrtEXJL68vvIilY6mFtjcjMIJmiF6Gp7YOukt3kJ4mg3rUzzXWZjI9EkexYKxnXCqplTfsPE9267yQR5q8SzYPmiUlZLLzHCRjuAbISZXGpllyVc+ThsE8SFIJD7do/AHyU2CCQvD31jhDUU+07rdiUYLqd8LBNQZk6t8GPdmQTiXIYTVjpKlN7gURPtC37SJ7NVRJyM2MgK9yg23yr9y1xa5w8Y8Lv8rPqeu9RQtMT5FkSg2QBxDfoR0ggEZlrJEfGMmcbwOnVi9afa3P3TtIeXSUJ0LXhm5HKPBl4S8hd1rEN+B/JtMsMIbz/A0l0+kGSAX2eEKL3EQdATZCGC7KTlE7CKWI3nyacGzXvLIFn/xpJBLX5T02ci7s+SQjwDNkbZIxwnvzeXvuuKbLGX4fCMxBEUWxEMUO20ZRgsKW9vp9Mqs8SzpR5PDFeEYYhYpNuoL9Kx3DxPCEshqhi7R7SZYRjuD3Snk1hHW7Pa8MKeTZCiN6PUOtlEoGpTtuxNgfniOjk7aTwXmvrZfRg7lmistpeS2N11NLHinZWTNtUjuIE4S8blZ8lpv9ZIrX+QZKfaGEZ5HRKmZKMC+HXvhb4YWLbfAF4G0kxE2hbIIPPM0SF4/H2+XHCOdlGiqpUBMigzSDMwwBrtaoIAqSNUAeKIEhrmCbTYOdIoLGi1Op/A0eDO4HALYRzt5bkbGof1NOVBmYw+1SbdxF/g2izziIqFtWtKu+DVGGD5RprSM7PTlJlWOj3GFlMN0l/QaO2pTqjZjSWbVwm9/N6kmNygLjBS7xQeH+JeEDJ/JJyalpGFreB4iUiT/l+UnjfTtiZmrpeIIT1avv3a+3f7YSg7yeFTs6faDSkEA2TuU6DLAVEfol5PM9IkAJgmkguxxWSgykKYaALGYwbnMrdu05s4NNtnmSC+5mRNi/aWTe/gesTJFqi165CqcQ4e8ZI+jIANWh1vtaT0dNbCGXi+6aJSmDt3T5yLd0IEq+hv8Bi2cYlchJknKl5TX2cIW7yOSKs+yWyjEytYQQ/TZYdj9NfqfJWwsFReP9B+x5DD1EBu7E+TzhOR8hz7veTJM850jFQICEdHUgtJ0m0koT83nPtmqtJnLyW8YroSHBSw7moYui1TwAk+/s8WcupgTeX69HfVVtvJCDOi0QEJMG4EpL1eJ0LyVY6ew4JYobw5gt+kBBe5+46YeUGyHJm85U+i3ljnT2JDksfK9pZuUH423eSKZjtxJR4jMgQ4Sz8LOH368MPkxWAA4ROPEXYhQFCxHcTIqAjNEsWhG0mKAd+9gzhqDwL/H/tb9PtO+8mRMtUjBVLA4Q4riadEsVGx0KUxUDPlLzA4i6S9iViXdWF/DyfQy5KLcAwTSLxVxRcFGVXmXO/t0fy7g3qe21Od5AZ0c+ShRFyTkRY3LqqA0FlyncIAtdUz5byHuOor7a/v6nN9zPEeuqsDJMUQJ2el0bzukVD4T1AwkjbyTNfjhM3WoVXR0Auh8J7jRD4o+06E4Tw6kn7oHva924jz2a40L6rCu/z7Z4+2O7PkltZ0/I2tpDOktCYOk+DPUh623q4OhZ7yYKEDe06cjlMUVmYsL5cR0dipN0/pKMhb0VPfILktEAKljlSvWU3W20d8RjJ94TsFaCjqS6+Qn/DUDkmatfqyY+RaSDv5cn2/je0+zrU1ka50DkRWdrGMh8ZPkvcpMjKOvqF9wQvFF4FYIg8r0b+yBnycMMDRLihd6ZB3k9M2jixKCI2p9r3PUv0CnmCWKAHiES9PbPXkn1ADFWN+tWuLogksEoYEsWQ5LS7/S4JoUd2YzxNEk7FoMVxa8hn/bypFRPZEnxfQzoWlHvcRXbXMhqwtGxjm8+HCBRkS7svc7F64JabCAW6WZ0L62W1FqI05mHF4A8Rm/AuQh5OtO/XEZQMDOlovbQ6zBXtrNxPTM2fEHr4DhKR3UfoqR9q/99LLJuVlers9cRSXSTPDDpKltruJoOxbcTy30sGw/LazRweJBDeafJctkNEXHCF6FS7j2zJow5y+QzkzHQa/EntmiF1rxx8zwuyzbxp7w2k0R4lU0Run1mSS7OeVA/VUZkgt6wiaiYZMiDUMaR9l2sA1xQAAB9ZSURBVFlVq6te3+bpWbKDgupKR83MppVKl4n1nSTTTMYRqhDt1qX2nXKStImVLGyZu47LshZU/BAxMZ8ihHMfGazuIwzXj9AvvKbALWm1JnuKJMmeIpGBCXJyN5HHnEiO0sOfIAT4de2+pkhU5wSR17sM/NfEJjPfWRnS6vwKT5of1E7pLfp3WzuY4pZ8pSd/hjwc0Qqlms+ErI7VeOvArCH5N4srQSslwDb8bvLx9ved7e/niIqtzQRIoMcseVd7V3mDOksLZF2+61M3jpteKPY0eVCjCNJgud4I/cjSso13El7lpwjh2UPyOvYR9ZkKr4SmK2SqxTaec+01tdFFwnO7TqY1XLz95NHdNZErtf4uAjK8QrbBv0hYh4tEP4C97XvN/Ul4qqkK85ODZB29GkWSqKGYHA0rZHQWNpC4uT2+JdrqjKiZjACgnx9zN9nMThxY7WWYJi9ExvUO0rItEAJ1sM3PEbLEz7pSr+UmrpGNwmufGiMfOS0Kr/DncfrPgLBUxQ1oOCyD/XmWOla0s7KWrGaXF3KFaPcgMrKLbFlwmRDjPSRfRJ2hGG4idJy+oTryefJAPtEE/dwZssGlRt3u5/bxuqvdwzjJjbY4T16fdKia2ZOOZLbUwFVjazrc0l5b8usvz5HFHTMkIu0hhFV8bfF0kizMGyrvrRU6cj/Wk+h9jRHsr+h2nCHs5B3t+l9s15aq4PbZ1P4OobbOkut1icyCCFSawegR21KeqbGLjpVHhomiXyXbMC3LkCy5jqx+nCaa1GwnWzMLI10kFmU34b3p0TnBlomNtR9R5qvkEeOmX2opcS0UUHh3EXZGnXuQzAuKWJuq14Fwo1hOrRDTXpdkVasdLRGTM2hRg+RXyH4oeuwbyEOszENCf3pngRBeqQbCfhUCtMTvCkla3UA6K3rCRgj3ErbyMEFEE+V3jj3Hw/5lblpRf8sSdeC0S0KH97bvVh4qy9wMww3Sbi6r8JpbW0t4s/bp+GfEgo0TQmoy+zS5k3fRX4MuHLaZmNDTZG7yPEHUrc1lRAa+meY17aPmfR25SUyjVME0yWwe0HSLyeprJJnYyRf5sP/JOdIq3CDL3DzAUM04QpbpnSOF12S3Lab3kpwcHZNaE2ku1gMTFeYN9FcaWVHlWtge3/4pQnZycC6TJKnrpAduKYhKx/Wzbv8OwrlcQ/Z18ZmsMXVzXyv/X9pY0c7K84T4byLAQ43UBElUfZY8uO8Y8NOELTBb5/5XJ10kD8Hr0d+UU+Nf+d0u5zoS1NM2mL3cQoiUhNQLxHa4k+RWVKpTNbLXyveod6fbPXhva8iqJakEq0gxMfi2l8kV8lwit5tZ2DWE3dzR7vsEaQdqufI0aQusOJL3Iv3LRm46CSI5Nr1+ikTx7fvl1rEVvwiLdAhIW+CWVX0JGJsRcL5sDgcZNwyRztmyjG8Qe3wfYQQNQMxjXiWguWfa/w8T7StkIGv0FF7oP8l3gexQbjdAG85Av5CtJis27Vclp2OchOWEC4cIm7CmXKci6XrZvu41PZtnmCy1tohAhBryfAi97OoE2ZLCjWjbCD3xa4Tw7qKfpa3gCqtJ5lV4LfQwgKx52Sq8WwhbcoHMsWoXRKyMMGw8VIPhbya85oKNCoQGPa5GARf514ldlvE4oXH3EKGdjLJRsvb8KAFFTRHC/pPErpdJV4V3nuySJwPQUjC7AZowhkwnuaAyuyXICjVq9IXVjhATuZtsIVrx3BqOiZgY2kmGkuYvUckGF3qiapUdpHPiAnoIiSRXLdZ5EuI70O5PMpX3o6NmUt/zJtw0a0gSmvOjR2/O8kqbEw8mMZys5F+dEFEw+Sd/l/AKF3oP9nyxoZIEY8dLy2GuaGflvyOr+s+TU36ObCbpMllReY7Q+18hHBnJo68lkHdbIFwr11tLVpPr1FiZo36ZK3+TI/54u6+/JkuYbUa3nTj/zaIOffpa2WNhmekgOTSKkb4wpPgrHhbn6fvK/ZNDvpYMzqwoHSJ4lQKrHsWiQ2ZQrF0wrWIhxkXyYFkzsBYymMUwS2D8I1foqTbfOoLbSOqdz6G4uzVUV/LjLZTQ7ulk6rxoV67Rf2j7soyfIYsGbLdrekMUxTSAOukcUdX5JcIW2LjzINF5dR1ZFapg6nAovJWrVxHgKrxzRCrpPAGBmS/V499KsM3HSeEVptQxmiaFRUTFINs0h0YeMie4gzTUsqcrcbVSHWZI+7eZ2NhbCOfPvKjpIhEVnQeHhxFeJM9pMggXnhsjhdf5uUhySIfJIhbzlT7zULmOz0l5XeHVq7ZvAeTGNZrwuT2fadnGTxIPPUVMgjChOOw5cieLH58jNO6XCCFeSwrvfeQEeHqZKYPaMdG+Jn+X5r1KQF9XCELu9nZvF4jwditRUufrclfmyWZndqI1zHWyz5M9Ywyf1CLmU8WZJSrVek7IsmudinoOw07CWTHk8pnXlGtU4bVG/zyZNltHP7ZsSkgr6HOeIwTWUrzz7ZqyC4X2KvG4Cq/ImNwWnSHfq4VaR+Z/RcG+Bzkrd5Dnpwka1sNZr5KOi/yNBwgOiZxlq2NeS/AJLUgz9VGrOuVu6+OrW6xysXGaQeBasl/WNmKrfoEkiXq8iaCnDoeBqA6LNKWTZC+TIWL7idS4jdy2cl8ENw32tFW2LzJFNktsZZto2tLJ+bDcGRK8NZUu7ewasd02kfqVci9mDCC2US3jNph+tty3W0Zb+GJxhmrmKNmh1+BUG2TsJIBJef5lGwfIclqhJIMgy4clmm4kFucXCSfCYO3FhFc9tI4sd9NQ2kNKb07hFT1QeBWKfYTATRLo7hdI/osbZI50HEwpuSGrd7qRMPqQ6RqFx88JM24knBp1fSUnjbTn0CFzIx8jnJQ7SKEwT6jeFx0XeRJlkQP4OvLkTHUupNMk4lIdml3tuSQoQzocQnsVUf9mwmv/A6/r+su29/0LxIY3SlmW8Woy1WGeSm04S/Ze0ds6TAjoN9p7DXMWC+8VkoNhEwgNobT8+fLzYppX7XsPWUp8mtD6I+TJaevJEmmF9wrprOgYCUXKdVlFNoOA1II7Sda5zy4xC9JZ0QHS+x8kHJW7CUakTTgUgs1kymtx+a/VRlcJp89a+cVM9JpDHW7XvEAK+yHgr8i8ps+kg/GthHeMbMFvyG3Jhw0tRIBmy/+XNla0s2KGTWdiB2H46rRYQX+NENuHiW0gQvsTZLpYXp9ZuuvkKb612Kqi3esJna7oKhanCB1/mCju2tS+95+SZ8WJFBtLuNRy97YQW6By2HVO5NDrNy+0Z79I6G35kQa++vo+n+iCbSCOkX0XzSqq0x2ChpAVtxYcniIAYcFPAUNt4gIZe1l1aQZCfuVs+/wXiO3u9b2GrT5cC52kGYLfso1IrdUWR2YwamXrAv0xwLIMeRcK73biZl0k08YK7wQJ550hJv2fEDpqF0nmgRAC84TyDKvn6HcovHII5Q6eIEpsTxHw4AVic/wj8vwGSWC1aKIKr31GTNMIg51o17N/iiXWpvsPk5tPZ0P9XMvhtJV2P3872XJDlKoizwrFAFkOKJfmNOE87qS/w27NPIzSHwlAetjbCFtzF/A5kkVuRsO5FyKs1+kR2ZKNRFZF52mQUEqSzNTUZjsql/G2j6tkH+phsoTK1IMe7CUyL6fXLBvwpwja/XYyYTxPnsR2kdR0VXjVLusJjVOZ3OYX7yE2zlfJ3N17ydzZdLu2TdQqerCW7Ii4imxlfJlII50iz4+fIU+MWyCE2+S8QmQZhmiJUKECvoZAlqy0MT3kc0J/vlGcWOE9RTiPCq9oT0Vz3IDyTgZJEtQYYQHvJTTv02S4LDvetalhqXnfoyQh2n4FkJym4fb9OpjmVJc+VrSzUkG42hbBqXbqthHbZSeR6hkkdMrThE6+gwTP9B3tTOuWs5LQLJ5Rf81yKgbPEMt7gFjCXaRR1wGw2l+9KY9QZF4/WH09QzZ4e4TQ6eNEMDhEBN4ny3NvJcRI/9jgEhIx0UGYI/SslVJzZLbWYLZSEdxubq2NhF/+NjKwhiwPFpHRXgmQVqKudLHNxDlJF9v6HGtr4He55d06prV2EdnYCRIFqvwUC1eMB5zbZRuiz9AvvE6gyMAooTvHCYbyHFGEcZgQ3v30P4x5OUtqp0gSlcIrVCWRykBpjsjH9Qj9N9m+W25JLa+S1W0prX9XgD3jrgrvEcJ+iHjfTwjgo0T+Uca3RFU9djdmLUsz8B0lD9MSMVIA6meq8Aq9XWuf/xLRQqLqUG2xdAY3d03TGCkNEvZrO9HP5ijwt2SvAoNkIV+JyQqvBTWm2+xU6XfM0i8revDLNgwxzKs5wZUA1CMM4lZikl9FCMKniZ39TiK0EKbyc2NkG/gLhAYwrygJSgepepYQ6Z/1hAd/N6nFTUxr9M+V16rw+mN4Y85P4X2UWNzt7f4vEbX+j5MVRjKkh8kW0NV5UfBM0byBrPs3alB4h+j3nE1qryEEaJTI076NhDNny/3X6zoUHIXXa+8EfpSwJH/T1khNX+tGTbzrgFkjaz8D19JnvkQ/N2kT35N9VkSS1SNOf+X8SdESWNPHu0osiaXNpp2vkSnzGojtJnWhPq+iZdZ0jkzHrCW2xCiht3UcDP7myaOpzDRK8ZLeJYIOYbyfIPvAvL/c9wAh8k8QjtIosV3WEKpie7uGRSB2TF/X7vcASRlzLgVTafejHpd2Jjg7Rujku9rzQFIMansLyjWkKsh5rAhLba90L6HHLSmXK+98e1/e034SgXJrGE8456bXjEGWbXhwn4awQoT1xhTeYVL39ogeIO8mnAr18DVSDxqIrSMmsQpvLbmtrO0zxOQbsO1o7zvW7sWKzjnCM5RQKn9QHftiwvskSUz6CcJO6SiJ1jxJLPzx9rkN7ZltcWHaRxR9gOjGq3OnHjXog6y0hBQUI4Ct7ZlfQ2wm6C/JmyNRa5Ed10sbUoX3Aqn31xJ63whFBeGceK8GnnvJoLk6WhWhMcNS7fOyDHN03oTCq/MwTExETWJb6z5PeHLnCIfC0jLr2NWoCu8k/cKrEa65PEveLrXrHyYJoM+1exRVmSO0uSzCF9O8Trak2L8lNOtaom+MpRH1fPunSOG9RnI5FEQtjM3kRggnwwS1xl2WIGSC3s8bQt4gtfzdpPD6fVY8CScK41Ur6d902iTHTZD1nJV4a9ThfeqQmNNw3SjPYe605kUrkXlpY0U7K3K/rSLUcG8hgyvbGwiMWZ1/J0ET20satL8lnArFQyNphUvlTSgWEk9djqpHzIzayHKo3ZvngHoYusCh20/eilvmNLEVThMidD9pb+xHNU7YLVEgjfEoWaVvmwe7y15r82DfmSGSNiDwOtLuwXtzKxiLDLU5+6H2filglVoFyaWfK9edKb8bL2whT3A2A3CacMR0GAVAbd2vOpDep0pzu/psbjP5My+tgO4WjStk+VMVXvNWOgKiIKbmFwj9tJHQUXqEjxFOhcIrVGgOsQqvAqqnp/4zUJ5v9ycLWda2QbIbzDPqqvDqpLi4p8kzJ/YTZyToEAh37W3ff5asfNxIoiqDpGDaQ2WYyCKYInf+KopixPHNhJc2ZwqvCFMVXtn0Btl+t9AepPAqdJbbjbTrG71A2gjbdtTcrM2JZLKLoqwinSYRmWU9G8gco56jXtwYqfHqmQWSk+YJz/CfEVAS7fUvEw6G/BDp8iabq/A6aeYsh+lv+Wtdtxrbekc5J1vJ+kQ/pzDoCQpdnSahwD0Eq9x7U3jvbp+Rp6IzoPE23SP8Zsh8H7lh/Ex1BP4u4TWhrebVaqwieSsS1CpcW508FYXCKzHqPFkl9XSZP50eBV8nVOKANZs6OEZPPofrd5mX6nasaGdFQNDAR8qV3bql9ogEjJClvJ77eYVY8mOEs2LliuXG6kh1TBUBnRMDYg2jS3uecExsODdBovZuBcud1T/6+hKGT7b7u0ogIHeSKe8NZDPmy+1ed7X7Pd2edTuJrsuJPNvu506ySpJ2D7VNkkh79YO1n+rzr5CN2MwK1NjEANJrLJApmrptDD6lf9mPZrTNwdeImGQb2TtH56s2+rR61cJHKRRud51GHbhlG8JLIhuivMfJIMqTMI3cJeS+hVjw80TgeIRAJbQRm0nh1ZhXiNENo/DamkGnZIQQzG3te8YJx2iCJO0qvAvl2lYfKbxnyM6IBwk7ZdAnn0V9N0EEaGfJgM/u7HI3IUvp3tSe0cMcDR61OyItzq2CoPOn8G5r71tT5lrBF561SktoUpvi99Je30kGnFfb/e8glIvcSR1CN4TRhpxS/QARnMWOpEUwy5oGcrirNMoKgWW4W0gUYQvxAG8nSLWXyeNmHyYPnTKMU3iNyPUcz9AvvIZdU6Q1OEN2ed1G9ghQOM6QVUoy+NRs0/Rr3hmiK+C9ZDmuDDjN5z6ytn+BbNgjmqKBvkx45m8jNrOep2UQCoYIhmiI0YDfuYbIC1hespbsMFVzyhUxEvpUsO2M6+9221X7bmvXPEYoHC2O96Mz5mEvkyQZrdbX12ZCC2Q/naWPFe2suCQCWToRFTS0sAJS34niTgN/SDgpryWqPyXaGuCMlGspVvYSNJN3tfzNTKTI7ZX2s5tIrQ+QZ396Lwuk0zLe3nOY7DWyi0xnVz1pzKLPu4psdudxAxp9uZoWDL6ZPOvOSlJIH98AtQZ+OoDq4WuEjfyX5KnTOiLqWR0Gt62oh68be7lNVTcG1/OEHTtJoCuu4xvJEzh0cOxwUHmRlcNUgYMaGC/LMC+ph7VAf0StYCxGPHRwrgP/nuDE3U3okz1kY7FKK/BacubU/1V450m4TuG1yGNv+w7r6s2/ijAIDSq8R8iTJPcQBtvmO25YBU57NEIebXKivW+i/W5vgl0EfPhOMnNQ0yqQwgeZD5R7qfDuaJ/9GvABAk2XbuBc1arYmi4bKq9rS6rwunZGOVvI3gASnyEjEh1TG9OJpqisDPKrDMhfXbYhlGWkXncVpHa0NEEeiBN0Dvi3BFnoDuDvkYwzW18qvBpHk/S2vVR4za1ZpqZASeTdQ2heyC5aNVTSE66aV9LsfrK+ETKHWlMezsVe+rX2DrJ3zBlCM7+O4IWYD6ier6kTvWpIa+b8XSXLQ74K/BxJ+N1FOng+m8LrGpgcdxN6/3Udq5culLpAoCxudCMS0zreb83Xqnl1yFQyKq+ljxXtrNgjxWXQWVF/1Own9KefrxJOyifb/ycI/9hzbFxKx2C5jlNupbkFZNoV4wz9VhuRukQCZoqSDUQN7ExlaW8E6KC/D5fBowWCiv0uQrery22HdITgxN9NbEfFthZbLJTvMg5ZII+pGiAcpyvAfyFoE+vL84lorCrXW8wpskWT91ZVk7yZyltfRaiCDURA/+eEnXkLecboJaIArwKOqgPtv+vndta+Lcsw/VJTKDWdXPWhulodfZp46N8j9OEeYlF3kyR8Fwv6ix0WSMFVbwhJ6uWZF1SnaeTnyINoh8mg1ABa4dWz9scgr5ZkOfk6bXMkd+MweSLoAiGsp4B/TNi2C+WaFUHXoLvAOi0iGpB9yz5FCu9msseWBRd67BXVh0RTKrK+WHgrAdeGdvsJ1Owxwna9iYA2nyQ26yHSmYOsCpLXWIXXVNOyjVXkGew6IJAh3WJjLs4qq+8x4BOEJtxBoBZ76T84qWpbUyMKYNW8A6Smq1UsIhCbyOT/4rTPNJl3NbSyEkhoUu+3Mgsp96Mnu5uAz84RC62WP9P+/5b2dz1brYihGeW6ziNkKfMCsdEuAX9MpH/shmhzI7vtvpjwCh86T0K7/m2x8+Rz7ySF/2nC+bL0Te7RY+Vazr+KDPqF1/KKpY8V6az0eqF5vkEGJC6DWUmNOvS3e7AnyWng9wlRErByeQxm1BPwwlJcSCMoAq3BF32uIOYJAlR8TfuscYGAoUjzKrLc2gDtUvkOi+m8F1NCIiu23TETYKPQ8wRdoKY/psjWHrUMXNu2ofwOaVMvk8Ta/SQwKzBgaybTXQaDzqmOnPbJg8kNRg1i1cd17s2Ef41QCa8nm0y7bnUbDpH0Da8F/cRf5el2jJvf9Q3y5GS9ty3kcSAGcep4kY5TBHHz3xJGfDVZSWK0XvNv0E8GVfd7XYW8evVyD+cJgTpKTParyKBZQtY4CY+tImvxdca0LcMkXOY11Psa5rn2DNvas9neeI5oPb2XTJfJhDflP1zea4faqiP1yC+R6PZ+QhHMkw7eNNk7y3lxc+sQaRvrBlPI1NM6dc7jNjLV9BgRObyWhIXtNwNZSFKLX3wO2r22uVkW2e0TXqtFxkj2stpPI2rHvDPEg/87QiNtJBZhC3kabxVOSG2ksPr3iuIYcg2QiX43zbH2cxe5Aaba+xYLr8jLAJnW0blw8vUgF0cAG4iNOEoYcDfBHPDfEqFwFTDblKrFa/i5YdHvsr3Nzap57SwlGcDOXJVtXksLKpFBx0dI0fTTEBkl6IVvJiDNHUTl06fanEqssDRaq1Fx81pWAcluf3zJsjvQu53SfovGs88+y6tf/erlvo1ufJeMI0eOMDk5eVu+q5PdbtzK0cluN1bqWKrsrkhkZXQ0uhsePnyYzZuX9YSX76lx6dIl9uzZw5EjR9i0adO3/sArfPR6PS5fvszExMRt+85OdpdndLL7nY9OdpdndLIbY0U6K4ODkdjdvHnzd8XirbSxadOm75p5v91Kt5Pd5R2d7L700cnu8o7vddkd/NZv6UY3utGNbnSjG91YvtE5K93oRje60Y1udOMVPYYefPDBB5f7Jl7KGBoa4h3veAfDwysyk7ViRzfv3/no5nB5Rjfv3/no5nB5RjfvK7QaqBvd6EY3utGNbnzvjC4N1I1udKMb3ehGN17Ro3NWutGNbnSjG93oxit6dM5KN7rRjW50oxvdeEWPzlnpRje60Y1udKMbr+ixIp2V3/zN32T//v2sWbOG++67j7/4i79Y7ltakePXfu3XePOb38zGjRsZHx/nx3/8x3nqqaf63nPjxg0++MEPMjY2xvr163n/+9/P0aNH+95z+PBhfvRHf5T169czNjbGhz70IWZmXtphVd/to5PdWzM62b39o5PdWzc6+X0Jo7fCxic/+cneyMhI73d+53d6TzzxRO8Xf/EXe+vXr+8dOnRouW9txY33vOc9vY997GO9xx9/vPfoo4/23vve9/b27t3bu3Llys33fOADH+jt3r2799BDD/UeeeSR3v333997/etf35ubm+v1er3e3Nxc7+DBg73777+/98gjj/Qeeuih3sTERO+BBx5Yrsd6xY5Odm/d6GT39o5Odm/t6OR36WPFOSs/8AM/0PvABz7Q99rdd9/d+5Vf+ZVluqPvnnH69Oke0Pvc5z7X6/V6vYsXL/ZGRkZ6n/zkJ2++59ixY73BwcHen/zJn/R6vV7vj//4j3uDg4O9Y8eO3XzP7//+7/dWr17dm5qaur0P8Aofney+fKOT3Zd3dLL78o5Ofr/1WFFpoJmZGR5++GHe/e53973+7ne/m7/8y79cprv67hlTU1NAHlj28MMPMzs72zffExMTHDx48OZ8/9Vf/RUHDx7sO5TqPe95Dzdu3ODhhx++jXf/yh6d7L68o5Pdl290svvyj05+v/VYUc7K2bNnmZ+fZ8eOHX2v79ixg5MnTy7TXX13jF6vx0c+8hHe/va3c/DgQQBOnjzJqlWr2Lp1a99763yfPHnyBeuxdetWVq1a1a1JGZ3svnyjk92Xd3Sy+/KOTn6/vbEie/cODAz0/d7r9V7wWjeWNh544AEee+wxPv/5z3/L9y6e7xeb+25NXnx0snvrRye7t2d0svvyjE5+v72xopCVsbExhoaGXuA1nj59+gUeZje+/fHBD36QP/qjP+LP/uzPmJycvPn6zp07mZmZ4cKFC33vr/O9c+fOF6zHhQsXmJ2d7dakjE52X57Rye7LPzrZfflGJ7/f/lhRzsqqVau47777eOihh/pef+ihh3jb2962THe1ckev1+OBBx7gD/7gD/jTP/1T9u/f3/f3++67j5GRkb75PnHiBI8//vjN+X7rW9/K448/zokTJ26+59Of/jSrV6/mvvvuuz0PsgJGJ7u3dnSye/tGJ7u3fnTy+xLGMpB6v6NhCd3v/u7v9p544onehz/84d769et7zz///HLf2oobP//zP9/bvHlz77Of/WzvxIkTN3+uXbt28z0f+MAHepOTk73PfOYzvUceeaT3zne+80XL5971rnf1Hnnkkd5nPvOZ3uTk5Hdt+dx3MjrZvXWjk93bOzrZvbWjk9+ljxXnrPR6vd5v/MZv9O64447eqlWrem984xtvlnt1Y2kDeNGfj33sYzffc/369d4DDzzQGx0d7a1du7b3vve9r3f48OG+6xw6dKj33ve+t7d27dre6Oho74EHHuhNT0/f5qdZGaOT3VszOtm9/aOT3Vs3Ovld+hjo9Xq9243mdKMb3ehGN7rRjW58u2NFcVa60Y1udKMb3ejG997onJVudKMb3ehGN7rxih6ds9KNbnSjG93oRjde0aNzVrrRjW50oxvd6MYrenTOSje60Y1udKMb3XhFj85Z6UY3utGNbnSjG6/o0Tkr3ehGN7rRjW504xU9OmelG93oRje60Y1uvKJH56x0oxvd6EY3utGNV/TonJVudKMb3ehGN7rxih6ds9KNbnSjG93oRjde0aNzVrrRjW50oxvd6MYrevz/G33c54CLUpMAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "subplot(1,3,1)\n", - "imshow(cat(3,pr,0*pg,0*pb))\n", - "subplot(1,3,2)\n", - "imshow(cat(3,0*pr,pg,0*pb))\n", - "subplot(1,3,3)\n", - "imshow(cat(3,0*pr,0*pg,pb))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHGCAYAAACRhUQpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVFX/B/DPnWEHAUFUZBDsByrkgogKlopW4kZpuaQ9rhiWVCpqPj3mmmWmuZS4BaaZj6k9ZoqmYeKSYqJpprZAojJuGCiIicrM+f0xzMg4wyrDDPh5v168dO7cuXPuzGXmyznf8z2SEEKAiIiIiCAzdwOIiIiILAUDIyIiIqIiDIyIiIiIijAwIiIiIirCwIiIiIioCAMjIiIioiIMjIiIiIiKMDAiIiIiKsLAiIiIiKgIAyOqMc6ePYuZM2fi/PnzBveNGDECvr6+lTruozwWAMLDwxEeHl7px9c0P/zwA0JCQuDo6AhJkrB169ZKH2vNmjWQJMnoe2oO58+fhyRJWLNmjbmbUim+vr4YMWKEuZvxyCpyjWVmZmLs2LFo2rQp7O3t4ebmhpYtW+LVV19FZmambr+dO3di5syZ1dB605o5cyYkSTJ3M2o1K3M3gKi8zp49i1mzZiE8PNwgkJk2bRrGjRtnnoY9RoQQGDhwIJo2bYpt27bB0dERzZo1q/TxevfujZSUFHh6elZhK6kmq8g1plQqERwcDFdXV0ycOBHNmjVDbm4uzp49i02bNuHcuXPw9vYGoAmM4uLianxwNHr0aPTo0cPczajVGBhRrfB///d/5m7CY+Hy5cvIyclBv3798Mwzzzzy8Tw8PODh4VEFLbNM9+/fhyRJsLLiR215VeQa++yzz/D333/j6NGjaNKkiW5737598Z///AdqtbpSbRBCoKCgAPb29pV6vCkpFAooFApzN6NW41CahUlLS8OQIUNQv3592NraIiAgAHFxcXr7vPbaa7Czs8Px48d129RqNZ555hk0aNAAV65cAfBgmCIpKQkjR46Em5sbHB0dERkZiXPnzhk89+rVq9G6dWvY2dnBzc0N/fr1w2+//aa3z4gRI+Dk5IT09HT06tULTk5O8Pb2xsSJE3H37l29fe/du4c5c+agefPmsLW1hYeHB0aOHInr16/r7efr64s+ffpg165dCA4Ohr29PZo3b47Vq1fr9lmzZg0GDBgAAOjatSskSdIb8jA2HBYXF4fOnTujfv36cHR0RMuWLfHRRx/h/v375XgnDAkh8NFHH8HHxwd2dnYIDg7Gd999Z3TfvLw8TJo0CU2aNIGNjQ28vLwwfvx43L59W28/tVqNTz/9FEFBQbC3t4erqytCQ0Oxbds23T4bN25E9+7d4enpCXt7ewQEBODf//633rHWrVsHSZKQkpJi0JbZs2fD2toaly9fLvX8fvzxRzzzzDOoU6cOHBwc0LFjR+zYsUN3/8yZM3UfyFOmTIEkSaUOQarVasyZMwfNmjXTnVurVq2wZMkS3T7GhtLCw8PRokULpKamolOnTnBwcMATTzyBDz/80OCL7syZM+jevTscHBzg4eGBmJgY7NixA5IkYd++fbr9ShpiKs8waHp6OkaOHAl/f384ODjAy8sLkZGR+PXXX/X227dvHyRJwrp16zBx4kR4eXnB1tYW6enpBse8f/8+6tevj6FDhxrcd/PmTdjb2yM2NhYAUFBQgIkTJyIoKAguLi5wc3NDWFgYvv3221LbDZQ8VKlta/HXCAD27NmDZ555Bs7OznBwcMBTTz2FH374QW+f69evIzo6Gt7e3rrf66eeegp79uwpsz1VfY1lZ2dDJpOhfv36Ru+XyTRfcSNGjNB9jmo/O4q/LpIk4Y033sCKFSsQEBAAW1tbrF27FgAwa9YsdOjQAW5ubnB2dkZwcDASEhLw8Prr5fkcK/46hIWFwc7ODl5eXpg2bRri4+PLNaxsbChN+9yJiYlo06aN7nMiMTERgOY6CAgIgKOjI9q3b49jx47pPf7YsWN4+eWX4evrC3t7e/j6+mLw4MG4cOHCI7V948aNCAsLg6OjI5ycnBAREYETJ06Uen4WQZDFOHPmjHBxcREtW7YUX3zxhfj+++/FxIkThUwmEzNnztTtd+fOHREUFCSeeOIJcePGDSGEENOnTxcymUx8//33uv0+//xzAUB4e3uLUaNGie+++06sWrVK1K9fX3h7e+seK4QQH3zwgQAgBg8eLHbs2CG++OIL8cQTTwgXFxfx559/6vYbPny4sLGxEQEBAWLBggViz549Yvr06UKSJDFr1izdfiqVSvTo0UM4OjqKWbNmiaSkJBEfHy+8vLxEYGCg+Oeff3T7+vj4CIVCIQIDA8UXX3whdu/eLQYMGCAAiP379wshhMjKytK1MS4uTqSkpIiUlBSRlZWla5ePj4/e6zlhwgSxfPlysWvXLrF3716xaNEiUa9ePTFy5Ei9/Yw91pgZM2YIACIqKkr3Wnp5eYmGDRuKLl266Pa7ffu2CAoKEvXq1RMLFy4Ue/bsEUuWLBEuLi6iW7duQq1W6/YdOnSokCRJjB49Wnz77bfiu+++E++//75YsmSJbp/33ntPLFq0SOzYsUPs27dPrFixQjRp0kR07dpVt8/du3dFw4YNxSuvvKLX5vv374tGjRqJAQMGlHpu+/btE9bW1qJt27Zi48aNYuvWraJ79+5CkiTx1VdfCSGEyMzMFFu2bBEAxJtvvilSUlLEzz//XOIx586dK+RyuZgxY4b44YcfxK5du8TixYv1rmXtNZqRkaHb1qVLF+Hu7i78/f3FihUrRFJSkhg7dqwAINauXavb7/Lly8Ld3V00btxYrFmzRuzcuVMMHTpU+Pr6CgAiOTlZt6+Pj48YPny4QRu7dOmi995lZGQIAOLzzz/Xbdu/f7+YOHGi+Prrr8X+/fvFN998I/r27Svs7e3F77//rtsvOTlZABBeXl6if//+Ytu2bSIxMVFkZ2cbfX0mTJgg7O3tRW5urt72ZcuWCQDi1KlTQgghbt68KUaMGCHWrVsn9u7dK3bt2iUmTZokZDKZ3uth7DyNvb7F21r8NVq3bp2QJEn07dtXbNmyRWzfvl306dNHyOVysWfPHt1+ERERwsPDQ6xatUrs27dPbN26VUyfPl13nZTEFNfYl19+KQCI7t27i127dhm8llrp6emif//+AoDusyMlJUUUFBQIIYTufWvVqpX473//K/bu3StOnz4thBBixIgRIiEhQSQlJYmkpCTx3nvvCXt7e73PO+1rX9bnmBBC/PLLL8LOzk60atVKfPXVV2Lbtm2iV69euuv24ffqYdrPIWPP3aJFC7Fhwwaxc+dO0aFDB2FtbS2mT58unnrqKbFlyxbxzTffiKZNm4oGDRrofQZv3rxZTJ8+XXzzzTdi//794quvvhJdunQRHh4e4vr165Vq+/vvvy8kSRKjRo0SiYmJYsuWLSIsLEw4OjqKM2fOlHqO5sbAyIJEREQIhUJh8Mv9xhtvCDs7O5GTk6PblpaWJpydnUXfvn3Fnj17hEwmE++++67e47Qfiv369dPbfujQIQFAzJkzRwghxI0bN4S9vb3o1auX3n4XL14Utra2YsiQIbptw4cPFwDEpk2b9Pbt1auXaNasme72hg0bBADxv//9T2+/1NRUAUAsW7ZMt83Hx0fY2dmJCxcu6LbduXNHuLm5iTFjxui2bd682eDDvHi7SgtuVCqVuH//vvjiiy+EXC7Xey3LExjduHFD2NnZlfhaFv9ynTt3rpDJZCI1NVVv36+//loAEDt37hRCCHHgwAEBQEydOrXU5y5OrVaL+/fvi/379wsA4pdfftHdN2PGDGFjYyOuXbum27Zx40aDD2ZjQkNDRf369cWtW7d02woLC0WLFi2EQqHQBXPawGH+/PlltrVPnz4iKCio1H1KCowAiJ9++klv38DAQBEREaG7PXnyZCFJksGHbERERJUGRg8rLCwU9+7dE/7+/mLChAm67dpgo3PnzqWes9apU6cEALFq1Sq97e3btxdt27Yt9fnv378voqKiRJs2bfTuq2xgdPv2beHm5iYiIyP19lOpVKJ169aiffv2um1OTk5i/Pjx5TrH4kxxjanVajFmzBghk8kEACFJkggICBATJkwwOOeYmBiDgEILgHBxcdH7XDBG+zkye/Zs4e7urvdHTnk/xwYMGCAcHR31Ag6VSiUCAwMfKTCyt7cXSqVSt+3kyZMCgPD09BS3b9/Wbd+6dasAILZt21bicxQWFor8/Hzh6Oio90daedt+8eJFYWVlJd5880294966dUs0bNhQDBw4sNRzNDcOpVmIgoIC/PDDD+jXrx8cHBxQWFio++nVqxcKCgpw5MgR3f5+fn747LPPsHXrVvTp0wedOnUqManwlVde0bvdsWNH+Pj4IDk5GQCQkpKCO3fuGAw1eHt7o1u3bgZd6ZIkITIyUm9bq1at9LpdExMT4erqisjISL1zCQoKQsOGDQ268IOCgtC4cWPdbTs7OzRt2tRoV255nThxAs8//zzc3d0hl8thbW2NYcOGQaVS4c8//6zQsVJSUlBQUFDia1lcYmIiWrRogaCgIL1zj4iI0Bu+0A7DxcTElPrc586dw5AhQ9CwYUPdeXTp0gUA9IY6X3/9dQCavAutpUuXomXLlujcuXOJx799+zZ++ukn9O/fH05OTrrtcrkcQ4cOhVKpxB9//FFqG41p3749fvnlF4wdOxa7d+9GXl5euR/bsGFDtG/fXm/bw9fY/v370aJFCwQGBurtN3jw4Aq3tTSFhYX44IMPEBgYCBsbG1hZWcHGxgZpaWkGQ80A8NJLL5XruC1btkTbtm3x+eef67b99ttvOHr0KEaNGqW37+bNm/HUU0/ByckJVlZWsLa2RkJCgtHnr4zDhw8jJycHw4cP17tm1Wo1evTogdTUVN3Qbfv27bFmzRrMmTMHR44cKdfQtKmuMUmSsGLFCpw7dw7Lli3DyJEjcf/+fSxatAhPPvkk9u/fX+5jdevWDXXr1jXYvnfvXjz77LNwcXHR/f5Nnz4d2dnZyMrK0tu3PJ9j+/fvR7du3VCvXj3dNplMhoEDB1bk1A0EBQXBy8tLdzsgIACAZrjYwcHBYHvxNuXn52PKlCnw8/ODlZUVrKys4OTkhNu3b+tdY+Vt++7du1FYWIhhw4bpXU92dnbo0qWLwee/pWFgZCGys7NRWFiITz/9FNbW1no/vXr1AgD8/fffeo/p3bs3GjRogIKCAsTGxkIulxs9dsOGDY1uy87O1j03AKMzgxo1aqS7X8vBwQF2dnZ622xtbVFQUKC7fe3aNdy8eRM2NjYG53P16lWDc3F3dzd4bltbW9y5c8foOZXl4sWL6NSpEy5duoQlS5bg4MGDSE1N1eUZVPS42tegpNeyuGvXruHUqVMG512nTh0IIXTnfv36dcjlcqPH1MrPz0enTp3w008/Yc6cOdi3bx9SU1OxZcsWg/No0KABBg0ahJUrV0KlUuHUqVM4ePAg3njjjVLP7caNGxBClPj+Fz//injnnXewYMECHDlyBD179oS7uzueeeYZg/wGY8pzPWRnZ6NBgwYG+xnb9ihiY2Mxbdo09O3bF9u3b8dPP/2E1NRUtG7d2uh1VJEZdqNGjUJKSgp+//13AMDnn38OW1tbveBuy5YtGDhwILy8vPDll18iJSUFqampGDVqlN7v3KO4du0aAKB///4G1+28efMghEBOTg4ATd7I8OHDER8fj7CwMLi5uWHYsGG4evVqicc31TWm5ePjg9dffx0JCQlIS0vDxo0bUVBQgMmTJ5f7GMbadvToUXTv3h2A5g+OQ4cOITU1FVOnTgVg+DlizuvWzc1N77aNjU2p24tfO0OGDMHSpUsxevRo7N69G0ePHkVqaio8PDwq1Xbt9dSuXTuD62njxo0Gn/+WhlMlLETdunV1fz2V1INQfNYFoEnCvnXrFp588km89dZb6NSpk9G/eIx9YF29ehV+fn4AHvwya5O2i7t8+bLeXwflVa9ePbi7u2PXrl1G769Tp06Fj1kRW7duxe3bt7Flyxa9Hp2TJ09W6nja16ik17J4gmi9evVgb29vNOlSez+gmZGlUqlw9erVEr9M9+7di8uXL2Pfvn26XiJAk6BrzLhx47Bu3Tp8++232LVrF1xdXQ16uR5Wt25dyGSyEt//4m2uCCsrK8TGxiI2NhY3b97Enj178J///AcRERHIzMzU+yu2Mtzd3XUfwMUZe4/s7OwMJgcAmj82yjq3L7/8EsOGDcMHH3xg8FhXV1eD/StSY2bw4MGIjY3FmjVr8P7772PdunXo27ev3u/xl19+iSZNmmDjxo16xzZ2Pg/T/gHz8L4PfzFpX4NPP/0UoaGhRo+l/fKrV68eFi9ejMWLF+PixYvYtm0b/v3vfyMrK6vE33dTXWMlGThwIObOnYvTp0+X+zHG3revvvoK1tbWSExM1Ptj8FFqd1Xkuq0Oubm5SExMxIwZM/Dvf/9bt/3u3bu6YFirvG3Xvpdff/21QY96TcAeIwvh4OCArl274sSJE2jVqhVCQkIMfor/NRIfH48vv/wSS5cuxbZt23Dz5k2MHDnS6LHXr1+vd/vw4cO4cOGCbjZOWFgY7O3t8eWXX+rtp1QqsXfv3kpNy+7Tpw+ys7OhUqmMnktlat/Y2toCKF9vj/ZDTvsYQDOrrPgwU0WEhobCzs6uxNeyuD59+uCvv/6Cu7u70XPXBlE9e/YEACxfvrxC5wEAK1euNLp/27Zt0bFjR8ybNw/r16/HiBEj4OjoWOq5OTo6okOHDtiyZYvea6tWq/Hll19CoVCgadOmpR6jLK6urujfvz9iYmKQk5NTJQUdu3TpgtOnT+Ps2bN627/66iuDfX19fXHq1Cm9bX/++We5hm8kSTJ4/Xfs2IFLly5VotX66tati759++KLL75AYmIirl69ajCMJkkSbGxs9L64r169Wq5Zadpr7eFzLz7rEQCeeuopuLq64uzZs0av2ZCQEF1PQ3GNGzfGG2+8geeeew4///xzie0w1TVmLNACND2tmZmZut4ooGKfH1raUgvFe+Pv3LmDdevWVbitWl26dMHevXv1glO1Wo3NmzdX+piPQpIkCCEMrvH4+HioVCq9beVte0REBKysrPDXX3+VeD1ZMvYYWZAlS5bg6aefRqdOnfD666/D19cXt27dQnp6OrZv3469e/cCAH799Ve89dZbGD58uC4YSkhIQP/+/bF48WKMHz9e77jHjh3D6NGjMWDAAGRmZmLq1Knw8vLC2LFjAWi+tKZNm4b//Oc/GDZsGAYPHozs7GzMmjULdnZ2mDFjRoXP5eWXX8b69evRq1cvjBs3Du3bt4e1tTWUSiWSk5PxwgsvoF+/fhU6ZosWLQAAq1atQp06dWBnZ4cmTZoY7b5+7rnnYGNjg8GDB+Ptt99GQUEBli9fjhs3blT4XADNF9ikSZMwZ84cvddy5syZBkNh48ePx//+9z907twZEyZMQKtWraBWq3Hx4kV8//33mDhxIjp06IBOnTph6NChmDNnDq5du4Y+ffrA1tYWJ06cgIODA95880107NgRdevWxWuvvYYZM2bA2toa69evxy+//FJiW8eNG4dBgwZBkiTde1yWuXPn4rnnnkPXrl0xadIk2NjYYNmyZTh9+jQ2bNhQqUq7kZGRaNGiBUJCQuDh4YELFy5g8eLF8PHxgb+/f4WP97Dx48dj9erV6NmzJ2bPno0GDRrgv//9r25YSjtVGwCGDh2Kf/3rXxg7dixeeuklXLhwAR999FG5aij16dMHa9asQfPmzdGqVSscP34c8+fPr7JaMqNGjcLGjRvxxhtvQKFQ4NlnnzV4/i1btmDs2LHo378/MjMz8d5778HT0xNpaWmlHrtdu3Zo1qwZJk2ahMLCQtStWxfffPMNfvzxR739nJyc8Omnn2L48OHIyclB//79Ub9+fVy/fh2//PILrl+/juXLlyM3Nxddu3bFkCFD0Lx5c9SpUwepqanYtWsXXnzxxVLbYopr7P3338ehQ4cwaNAgXcmLjIwMLF26FNnZ2Zg/f75u35YtWwIA5s2bh549e0Iul6NVq1ZGAz6t3r17Y+HChRgyZAiio6ORnZ2NBQsWGAQRFTF16lRs374dzzzzDKZOnQp7e3usWLFCl8NV/LqtDs7OzujcuTPmz5+PevXqwdfXF/v370dCQoJBj2h52+7r64vZs2dj6tSpOHfuHHr06IG6devi2rVrOHr0KBwdHTFr1qxqPc8KMWfmNxnKyMgQo0aNEl5eXsLa2lp4eHiIjh076maQ5efni+bNm4vAwEC9mQZCaGZdWFtb62bzaGekfP/992Lo0KHC1dVVN/ssLS3N4Lnj4+NFq1athI2NjXBxcREvvPCCwYyf4cOHC0dHR4PHGpspcf/+fbFgwQLRunVrYWdnJ5ycnETz5s3FmDFj9J7fx8dH9O7d2+CYD88YEkKIxYsXiyZNmgi5XK43e8jYzLLt27frntvLy0tMnjxZfPfddwYzlso7XV+tVou5c+cKb29vYWNjI1q1aiW2b99utJ35+fni3XffFc2aNdO9ni1bthQTJkwQV69e1e2nUqnEokWLRIsWLXT7hYWFie3bt+v2OXz4sAgLCxMODg7Cw8NDjB49Wvz8888lzp66e/eusLW1FT169CjznIo7ePCg6Natm3B0dBT29vYiNDRUrx1CVGzG0Mcffyw6duwo6tWrJ2xsbETjxo1FVFSUOH/+vG6fkmalPfnkkwbHM/Y+nT59Wjz77LPCzs5OuLm5iaioKLF27VqDGXtqtVp89NFH4oknnhB2dnYiJCRE7N27t1yz0m7cuCGioqJE/fr1hYODg3j66afFwYMHDR6rnem1efPmMl+b4lQqlfD29i51huKHH34ofH19ha2trQgICBCfffZZibOTHp599+eff4ru3bsLZ2dn4eHhId58802xY8cOozM89+/fL3r37i3c3NyEtbW18PLyEr1799adU0FBgXjttddEq1athLOzs7C3txfNmjUTM2bMMPg8Mqaqr7EjR46ImJgY0bp1a+Hm5ibkcrnw8PAQPXr00M3+1Lp7964YPXq08PDwEJIk6V13AERMTIzR51i9erVo1qyZsLW1FU888YSYO3euSEhIMLhuK/I5dvDgQdGhQwdha2srGjZsKCZPnizmzZsnAIibN2+Wes4lve/GntvYeRl7fZVKpXjppZdE3bp1RZ06dUSPHj3E6dOnjV5PFWn71q1bRdeuXYWzs7OwtbUVPj4+on///nrlHyyRJMRDVaqo1lizZg1GjhyJ1NRUi++6pKqzfft2PP/889ixY4cucf9xEh0djQ0bNiA7O7vU3gAiS9K9e3ecP3++wjNmLUFNbrsxHEojqiXOnj2LCxcu6Koka3OYarPZs2ejUaNGeOKJJ5Cfn4/ExETEx8fj3XffZVBEFis2NhZt2rSBt7c3cnJysH79eiQlJSEhIcHcTStTTW57eTEwIqolxo4di0OHDiE4OBhr1659LFbgtra2xvz586FUKlFYWAh/f38sXLiQCwqTRVOpVJg+fTquXr0KSZIQGBiIdevW4V//+pe5m1ammtz28uJQGhEREVERTtcnIiIiKsLAiIiIiKgIAyMiIiKiIky+LoNarcbly5dRp06dxyKZlYiIqDYQQuDWrVto1KhRhQpnMjAqQVxcHOLi4nDv3j389ddf5m4OERERVUJmZmaFKtVzVloZcnNz4erqiszMTDg7O5u7OURERFQOeXl58Pb2xs2bN+Hi4lLux7HHqAza4TNnZ2cGRkRERDVMRdNgmHxNREREVISBEREREVERBkZERERERZhjREREZCJqtRr37t0zdzNqJWtra8jl8io/LgMjIiIiE7h37x4yMjKgVqvN3ZRay9XVFQ0bNqzSOoMMjIiIiKqYEAJXrlyBXC6Ht7d3hQoMUtmEEPjnn3+QlZUFAPD09KyyYzMwIiIiqmKFhYX4559/0KhRIzg4OJi7ObWSvb09ACArKwv169evsmE1hrBERERVTKVSAQBsbGzM3JLaTRt03r9/v8qOycCIiIjIRLjGpmmZ4vVlYERERERUhIERERERVamZM2ciKCjI3M2oFAZG5qJUAsnJmn+JiIjIIjAwMoeEBMDHB+jWTfNvQoK5W0RERGTgcSxOycCouimVQHQ0oC34pVYDY8aw54iIiIyrxhGG8PBwvPHGG4iNjUW9evXw3HPPITc3F9HR0ahfvz6cnZ3RrVs3/PLLL3qP+/DDD9GgQQPUqVMHUVFRKCgoMHlbTYWBUXVLS3sQFGmpVEB6unnaQ0RElssMIwxr166FlZUVDh06hBUrVqB37964evUqdu7ciePHjyM4OBjPPPMMcnJyAACbNm3CjBkz8P777+PYsWPw9PTEsmXLTN5OU5GEEMLcjbBkeXl5cHFxQW5uLpydnR/9gEql5uIuHhzJ5cD584BC8ejHJyIisysoKEBGRgaaNGkCOzu7yh3EDN8X4eHhyM3NxYkTJwAAe/fuRb9+/ZCVlQVbW1vdfn5+fnj77bcRHR2Njh07onXr1li+fLnu/tDQUBQUFODkyZMmaadWaa9zZb+/2WNU3RQKYNUqzcUNaP5duZJBERER6TPTCENISIju/8ePH0d+fj7c3d3h5OSk+8nIyMBff/0FAPjtt98QFhamd4yHb9cktX5JkMzMTAwdOhRZWVmwsrLCtGnTMGDAAPM2KioKiIjQXNx+fgyKiIjIkL8/IJMZ9hj5+Zn0aR0dHXX/V6vV8PT0xL59+wz2c3V1NWk7zKXWB0ZWVlZYvHgxgoKCkJWVheDgYPTq1UvvjTcLhYIBERERlUw7wjBmjKanyAwjDMHBwbh69SqsrKzg6+trdJ+AgAAcOXIEw4YN0207cuRINbWw6tX6wMjT01O36m79+vXh5uaGnJwcswdGyjwl0rLT4O/uD4UzAyQiIjLCzCMMzz77LMLCwtC3b1/MmzcPzZo1w+XLl7Fz50707dsXISEhGDduHIYPH46QkBA8/fTTWL9+Pc6cOYMnnniiWttaVSw+x+jAgQOIjIxEo0aNIEm7w8PAAAAgAElEQVQStm7darDPsmXLdIlXbdu2xcGDB40e69ixY1Cr1fD29jZ1s0uV8HMCfBb7oNsX3eCz2AcJP7OOERERlUChAMLDzTLKIEkSdu7cic6dO2PUqFFo2rQpXn75ZZw/fx4NGjQAAAwaNAjTp0/HlClT0LZtW1y4cAGvv/56tbe1qlj8rLTvvvsOhw4dQnBwMF566SV888036Nu3r+7+jRs3YujQoVi2bBmeeuoprFy5EvHx8Th79iwaN26s2y87OxudOnVCfHw8OnbsWO7nr+pZaco8JXwW+0AtHowZyyU5zo8/z54jIqJaokpmpVGZTDErzeKH0nr27ImePXuWeP/ChQsRFRWF0aNHAwAWL16M3bt3Y/ny5Zg7dy4A4O7du+jXrx/eeeedMoOiu3fv4u7du7rbeXl5VXAWD6Rlp+kFRQCgEiqk56QzMCIiIjIzix9KK829e/dw/PhxdO/eXW979+7dcfjwYQCAEAIjRoxAt27dMHTo0DKPOXfuXLi4uOh+qnrYzd/dHzJJ/2WXS3L4uZl2lgERERGVrUYHRn///TdUKpVunFOrQYMGuHr1KgDg0KFD2LhxI7Zu3YqgoCAEBQXh119/LfGY77zzDnJzc3U/mZmZVdpmhbMCq/qsglzS1DGSS3Ks7LOSvUVEREQWwOKH0spDkiS920II3bann34a6ocLZJXC1tZWr7qnKUQFR6GVfS/8ePIang5qgHYBniZ9PiIiIiqfGt1jVK9ePcjlcl3vkFZWVpZBL1JFxcXFITAwEO3atXuk4xiTkACEtvBE7JAghLbwrI6lb4iIiKgcanRgZGNjg7Zt2yIpKUlve1JSUoVmnhkTExODs2fPIjU19ZGO8zClEoiOflDIVK3W1O6qhkWTiYiIqAwWP5SWn5+P9GLrwmRkZODkyZNwc3ND48aNERsbi6FDhyIkJARhYWFYtWoVLl68iNdee82MrS5ZaUvfsBA2ERGReVl8YHTs2DF07dpVdzs2NhYAMHz4cKxZswaDBg1CdnY2Zs+ejStXrqBFixbYuXMnfHx8zNXkUplp6RsiIiIqB4sPjMLDw1FWDcqxY8di7Nix1dSiR2MBS98QERFRCSw+MDKXuLg4xMXFQaVSVfmxzbz0DREREZWAgVEJYmJiEBMToyspXtUUCgZERERElqZGz0ojIiIi87p37565m1ClGBgRERFZMGWeEskZyVDmVU9dl1u3buGVV16Bo6MjPD09sWjRIoSHh2P8+PEAAF9fX8yZMwcjRoyAi4sLXn31VQDApUuXMGjQINStWxfu7u544YUXcP78eb1jf/755wgICICdnR2aN2+OZcuW6e47f/48JEnCli1b0LVrVzg4OKB169ZISUmplvPWYmBERERkoRJ+ToDPYh90+6IbfBb7IOFn01cEjo2NxaFDh7Bt2zYkJSXh4MGD+Pnnn/X2mT9/Plq0aIHjx49j2rRp+Oeff9C1a1c4OTnhwIED+PHHH+Hk5IQePXroepQ+++wzTJ06Fe+//z5+++03fPDBB5g2bRrWrl2rd+ypU6di0qRJOHnyJJo2bYrBgwejsLDQ5OetI8iopUuXioCAANG0aVMBQOTm5pq7SUREVEPcuXNHnD17Vty5c6fSx8jMzRSyWTKBmdD9yGfJRWZuZhW2VF9eXp6wtrYWmzdv1m27efOmcHBwEOPGjRNCCOHj4yP69u2r97iEhATRrFkzoVarddvu3r0r7O3txe7du4UQQnh7e4v//ve/eo977733RFhYmBBCiIyMDAFAxMfH6+4/c+aMACB+++03o+0t7XXOzc2t1Pc3k69LYOrkayIiotKkZadBLfQrAquECuk56SZbePzcuXO4f/8+2rdvr9vm4uKCZs2a6e0XEhKid/v48eNIT09HnTp19LYXFBTgr7/+wvXr15GZmYmoqCjd0BsAFBYWGnzHtmrVSvd/T0/NWqJZWVlo3rz5o51cOTEwIiIiskD+7v6QSTK94EguyeHnZrqKwKKobqCxxdmLc3R01LutVqvRtm1brF+/3uCYHh4eKCgoAKAZTuvQoYPe/XK5XO+2tbW17v/adlRkMfhHxcCIiIjIAimcFVjVZxXGJI6BSqggl+RY2WelyXqLAOD//u//YG1tjaNHj8Lb2xsAkJeXh7S0NHTp0qXExwUHB2Pjxo2oX78+nJ2dDe53cXGBl5cXzp07h1deecVk7a8KDIyIiIgsVFRwFCL8IpCekw4/Nz+TBkUAUKdOHQwfPhyTJ0+Gm5sb6tevjxkzZkAmkxn0IhX3yiuvYP78+XjhhRcwe/ZsKBQKXLx4EVu2bMHkyZOhUCgwc+ZMvPXWW3B2dkbPnj1x9+5dHDt2DDdu3NAt92UJOCutBHFxcQgMDES7du3M3RQiInqMKZwVCPcNN3lQpLVw4UKEhYWhT58+ePbZZ/HUU0/pptiXxMHBAQcOHEDjxo3x4osvIiAgAKNGjcKdO3d0PUijR49GfHw81qxZg5YtW6JLly5Ys2YNmjRpUi3nVV6SeHjgkPRok69zc3ONdg8SERE9rKCgABkZGWjSpEmpAUVNcPv2bXh5eeHjjz9GVFSUuZujp7TXubLf3xxKIyIiIp0TJ07g999/R/v27ZGbm4vZs2cDAF544QUzt6x6MDAiIiIiPQsWLMAff/wBGxsbtG3bFgcPHkS9evXM3axqwcCIiIiIdNq0aYPjx4+buxlmw+RrIiIioiIMjIiIiIiKMDAqAafrExERPX4YGJUgJiYGZ8+eRWpqqrmbQkRERNWEgRERERFREQZGREREREUYGBEREREAIDw8HOPHjy/xfl9fXyxevLgaW1T9GBgRERERFWFgRERERFSEgREREZEFUyqB5GTNv9WhsLAQb7zxBlxdXeHu7o53330XxtabP3/+PCRJwsmTJ3Xbbt68CUmSsG/fPt22s2fPolevXnByckKDBg0wdOhQ/P3339VxKpXCwKgErGNERETmlpAA+PgA3bpp/k1IMP1zrl27FlZWVvjpp5/wySefYNGiRYiPj6/Usa5cuYIuXbogKCgIx44dw65du3Dt2jUMHDiwiltddbhWWgliYmIQExODvLw8uLi4mLs5RET0mFEqgehoQK3W3FargTFjgIgIQKEw3fN6e3tj0aJFkCQJzZo1w6+//opFixbh1VdfrfCxli9fjuDgYHzwwQe6batXr4a3tzf+/PNPNG3atCqbXiXYY0RERGSB0tIeBEVaKhWQnm7a5w0NDYUkSbrbYWFhSEtLg0qlqvCxjh8/juTkZDg5Oel+mjdvDgD466+/qqzNVYk9RkRERBbI3x+QyfSDI7kc8PMzX5uKk8k0fSvF84/u37+vt49arUZkZCTmzZtn8HhPT0/TNrCS2GNERERkgRQKYNUqTTAEaP5dudK0w2gAcOTIEYPb/v7+kGsbUsTDwwOAJo9Iq3giNgAEBwfjzJkz8PX1hZ+fn96Po6Ojic7g0TAwIiIislBRUcD585pZaefPa26bWmZmJmJjY/HHH39gw4YN+PTTTzFu3DiD/ezt7REaGooPP/wQZ8+exYEDB/Duu+/q7RMTE4OcnBwMHjwYR48exblz5/D9999j1KhRlRqaqw4cSiMiIrJgCoXpe4mKGzZsGO7cuYP27dtDLpfjzTffRHR0tNF9V69ejVGjRiEkJATNmjXDRx99hO7du+vub9SoEQ4dOoQpU6YgIiICd+/ehY+PD3r06KEbirM0kjBWnIB0tLPScnNz4ezsbO7mEBFRDVBQUICMjAw0adIEdnZ25m5OrVXa61zZ72/LDNceN9VdvYuIiIiMYmBkbuao3kVERERGMTAqQbVUvi6pehd7joiIiMyCgVEJYmJicPbsWaSmppruScxVvYuIiIiMYmBkTtrqXcVZUvUuIiJ6JJzfZFqmeH0ZGJmTuap3ERGRSWmLId67d8/MLand/vnnHwCAtbV1lR2TdYzMLSpKsyJgerqmp4hBERFRjWdlZQUHBwdcv34d1tbWFluzp6YSQuCff/5BVlYWXF1dDapyPwoGRpaguqt3ERGRSUmSBE9PT2RkZODChQvmbk6t5erqioYNG1bpMRkYERERmYCNjQ38/f05nGYi1tbWVdpTpMXAyAIo85RIy06Dv7s/FM7sOSIiqi1kMhkrX9cwDIzMLOHnBEQnRkMt1JBJMqzqswpRwdWwSiAREREZYDaYGSnzlLqgCADUQo0xiWOgzGOBRyIiInNgYGRGadlpmqAo1wvICAdyvaASKqTnsMAjERGROXAozYz83f0h/TwaYvsKQMgBSQUp8jX4TWCBRyIiInNgYGROeQogcSUgijruhBxS4kogTwY4m7dpREREjyMOpZlRWhog1PpvgVot41JpREREZsLAyIyMLpUmE/BzvGKeBhERET3mGBiVIC4uDoGBgWjXrp3JnsNgqTQUYkLd0cBzXkBCgsmel4iIiIyTBJf+LVVeXh5cXFyQm5sLZ2fTJP4oU69gyStD8HHvNAjXS5CpgVU7JERtvcilQoiIiCqhst/f7DGyBNkHsXDwPgjXSwAAtQwY01tAeSbFzA0jIiJ6vDAwsgBpbppgqDiVDEgX2eZpEBER0WOKgZEF8G/eETJIeoUe5WrA7+WxzDUiIiKqRgyMLIDCWYGhqv3A4gvA2mRg8QX8a80oKHIFMGYMoOQSIURERNWBgZEFUCqBde930lS/BgAhx7qLK5Hq5AWoVGBhIyIiourBwMgCpKUBarX+NjWs0OFFPyQES0BWFnuNiIiIqgEDIwtgrNAjpEII93SM6SOgfHUQ4OPDfCMiIiITY2BkAbSFHmXyopJSUiEQOQZwuQSVDNgcCCid1Mw3IiIiMjEGRhYiKgo48utVSCO6AVFhQN1zmllqAojtAfiMBxJaMd+IiIjIlBgYWZB2AZ4Y5j0LSDiim52GE6MAFBV9jASUno5mbiUREVHtxcDIghibnYbtKzU9Rygq+mh724wtJCIiqt0YGFkQY7PTIKyAHD8AgFySw8/Nr/obRkRE9JhgYGRBSpqdBrd0yCU5VvZZCYUzF5UlIiIyFStzN4Ae0M5OGzNGU9dRLgc+XJyHkD5fws/Nj0ERERGRiUlCCGHuRliyvLw8uLi4IDc3F87OztXynEqlZvKZn58mWCIiIqKKqez3N3uMLJBC8SAgUio1uUf+/gySiIiITI05RhYsIUFT8LpbN8DHRyBh8u8s8EhERGRCj0Vg1K9fP9StWxf9+/c3d1PKTakEoqMfzFJTqyVEL/BDamAYlwYhIiIykcciMHrrrbfwxRdfmLsZFVLiwrL9/g8Jy19lzxEREZEJPBaBUdeuXVGnTh1zN6NCSl1YtreA8kCiWdpFRERUm1l8YHTgwAFERkaiUaNGkCQJW7duNdhn2bJlaNKkCezs7NC2bVscPHjQDC2tWrqFZWXabqNCIGwhgKIK2O+O5ZAaERFRFbP4wOj27dto3bo1li5davT+jRs3Yvz48Zg6dSpOnDiBTp06oWfPnrh48WI1t7TqRUUBR05fAzrOByQJOPw2sPgCpOOj4HhXaAoecUiNiIioylh8YNSzZ0/MmTMHL774otH7Fy5ciKioKIwePRoBAQFYvHgxvL29sXz58ko93927d5GXl6f3Y06edTwhHZmot36aSFyJDgO9kNBKpSl4RERERFXC4gOj0ty7dw/Hjx9H9+7d9bZ3794dhw8frtQx586dCxcXF92Pt7d3VTS10tLSAKF+6G0SVhA3/DAmElDK8s3TMCIiolqoRgdGf//9N1QqFRo0aKC3vUGDBrh69arudkREBAYMGICdO3dCoVAgNTW1xGO+8847yM3N1f1kZmaarP3lYTQJGyrA+rYm12jE88w1IiIiqiK1ovK1JEl6t4UQett2795d7mPZ2trC1ta2ytr2qB6snyagUkkABAA5kHAEUp9oON5drck1iohgaWwiIqJHVKN7jOrVqwe5XK7XOwQAWVlZBr1INVlUFJCSIkGSBICigO/hXKPNm5mITURE9IhqdGBkY2ODtm3bIikpSW97UlISOnbs+EjHjouLQ2BgINq1a/dIx6kq+fmAEPo9Y3q5RjNjgcaNgcmTGSARERFVksUHRvn5+Th58iROnjwJAMjIyMDJkyd10/FjY2MRHx+P1atX47fffsOECRNw8eJFvPbaa4/0vDExMTh79myp+UjVqaSCj3BL1+QauQEQAliwQLPAGvOOiIiIKszic4yOHTuGrl276m7HxsYCAIYPH441a9Zg0KBByM7OxuzZs3HlyhW0aNECO3fuhI+Pj7mabBIGuUZSIRA5BnC5BLka8MsptrNazbwjIiKiSpCEEMLcjbBkeXl5cHFxQW5uLpydnc3dHCiVwJKdO7Dwj7FQO1+EXA3MTQJCrgD+OYCieNml5GQgPNxcTSUiIjKbyn5/W3yPEelTKID50b0xLu8Q0nPSceybOEx57muoZYBMDazaDkSdgGbczdHR3M0lIiKqUSw+x8hcLC352kCeAlmnn8Tbyp+gvuUFZIRDfcsL0ZFAaiNohtNCQ5lrREREVAEcSiuDpQ2lAZpYJzpaE/sA2kVmZYCkAiKjIQta/aDnSC4Hzp9nrhERET1WKvv9zR6jGkapLB4UAZq3sOhtFHJg+0r9niMVaxwRERGVFwOjGiYtrXhQZISwAnL8oJYBoaOBhDYAYmM5hZ+IiKgcGBiVwFJzjIyvnVacZh01AFDLoCn+6AxNNBUdDVhIXSYiIiJLxMCoBJZW4FFLW89ILtfclqTigdKDddTw8ygAgEoGbA4sFhwxIZuIiKhETL4ugyUmXwOalKH0dMDPD7hyRRPv6A2xSYXAeF/A+RIgPTSVnwnZRERUyzH5+jGjUGhqNyoUmnXUDPKOhBWQGaZbc1ZvWE2l0kRVREREpIeBUS1QYt7R/77SDakBeLCmGos/EhERGcXAqBbQ5h0ZBEdF0/eR6wUAD9ZUY64RERGRUQyMSmCps9JKEhUFbNhg5A5hBZzpD1muN1YmSg/WUtMuNMv6RkRERDpMvi6DpSZfG6NUasoV6ecbCQASZJIasW6vYtz91VxoloiIaj0mX5PBVH4NTfa1WsiwIGclGo/y0hR9BJhrRERE9BAGRrVMVJRmJv7ChUbuFFYQN/z0iz4y14iIiEiHgVEtpFAAAwYYm6mmqYqtkgEp2hJG2orYmzYx34iIiB57DIxqqQfDatoUMv2q2IP6A5OfK9ZzNGgQ11MjIqLHHpOvy1CTkq+NSU0FOnQQEEJ6sFFbFdvlkn5FbEDTzXTkCFBDZuMREREZw+TrKlbTpuuXJD8f+kERoJnCn+MH4KGK2ADzjoiI6LHGwKgElrqIbEUZr4qtyTXS3Sq+0CzAGkdERPTYYmBUyxlO4S/KNYo/Anw/T1MVWwCxPYDG44vlHalUQEqKJjhKTmaQREREjwXmGJWhpucYaaWmakbIDBablVRAZDQQvFq3SZd3dLJoCE4ITbfTqlWaegBEREQWjjlGVKr8fCNBEaBZT23bSuD0AN2aarq8ozpCExQBHF4jIqLHAgOjx4TxXCMtK+DrTcDiC8DPowBo8o7S3R7aTaUC0tNN2UwiIiKzYmD0mNDmGpUcHEHTe7R9JZDrBZkacLynyTdK9i3KO5LLAT+/amoxERFR9bMydwOo+kRFARERwJIlwKJFmg4gA8IKyAyDusXX6DAagAQIqSjv6N6zYIYRERHVZuwxKkFtqWP0MIUCmD9fs57apk0l9CB9/RXw/TyIW17QlkBSy4AxNruhfNIbmDyZuUZERFQrcVZaGWrLrLSSJCRolkozmpgtqYBnpwCNjgNuaYDLJWzaBAw4C0CSgIkTgXHjNNEWERGRBans9zcDozLU9sAI0PQcDRpU0r0CgKSb1i8LWm24hAin8RMRkYXhdH2qtI4dS0vK1tYy0iRmq295GS4hwmn8RERUSzAwovLNWAN0a6ypZEBK8dEzlQrYvJnBERER1XgMjAiAZiTswgVg0qTiy4c8RCoE3DR1jF7uDyS0KXZfbCzQuDETs4mIqEZjYEQ6xWesJSdr/q8LkqRCIHIM4HIJgGaWWnQkkNqo2AGEABYsAHx8NFndRERENQyTr8vwOCRfl0ap1BS7Pnw1CVN3faCbnaYlUwMfJgEhVwD/HECRV3SHXK6JsDhjjYiIzIDJ12QSCgXw11/AtFeeBdYm6y0bAmh6jt7uDnQbATQeD0x+rigxW6UCUlLM1m4iIqLKYGBEpVIqtXWOis1O27YKUIY82El7lwxY8BTgM74o/+jllzmkRkRENQoDoxLU1srXFZWWZqz4oxyIPwJ8Pw/I9TJ4jFoGzZR+J7Umqtq0iQnZRERUIzDHqAzMMdLkUhutjA0YrY6tpauSDbAQJBERVSvmGJFJlFnjSMiBpPlG84/0pvSri3qPUlNN3mYiIqLKYmBEZYqKAo4cKWd17GL5R7ohteJVsjt0YK0jIiKyWAyMqFzatStndWzIgYQjup4jlQzYHKipd5TsCyjrFKt1NH++pmASgyQiIrIQzDEqw+OeY/QwpRJYsgRYtEgzI79kKmB0KOB1TNOhpF2LVg1MTAHG/VSs5hHzj4iIqIpV9vubgVEZGBgZpy38eOwYMGVKCcnZpSRmy9TAqu1A1ImiDSwISUREVYiBkYkwMCpbaioQGlrSzDVtV5EKiIwGglfr7pGpgQ3/AzpmFvUebdoEDBhQTa0mIqLajLPSyGxKzz8quTCkWgYMGlCsYvarg1gQkoiIzIqBEVWJsmeuASUVhtRVzB4nkLD8VSZjExGR2TAwoiqj7TmSy0vbSw4cfltT8+jQRCAjXBckqWVAdG+B1B/WVUdziYiIDDDHqAzMMaq4ciVmAygp/0imBlbdi0BUTDyTsYmIqFKYfG0iDIweTemJ2cVIhcB4X93MNZkaOJIAtBv3ERASAvj7M0giIqJyY/I1WaRyF4YUVkCOn+6mWgaERgEJG94GunXTFIRkYjYREZkYAyMyuago4MIFYNKk0vKPVID1bb0tekuKcK01IiKqBgyMShAXF4fAwEC0a9fO3E2pFRQKzQog589rVgGZP//hIEl/KREt7ZIiuuAoNJQ9R0REZDLMMSoDc4xMx3j+UdFSIopjmpvGlhLJl2lqAzBoJSKiEjDHiGqc/HxjSdkP1TrS1ofU1joaDyS0Zs8RERGZBgMjMht//5KSsovVOnpoaE0tA6IjgdSGaignvorkz6dD+QfzjoiIqGpwKK0MHEozrYQETU51ydP5C4H+QwDvw3qL0EpqABIgpKK6R+7DEfXWmmpoMRER1QSsY2QiDIxMr3y1jlRAx4+BDp/oBUhaMjXwrf80ODq6wj+wExTNmH9ERPQ4Y2BkIgyMqkfZPUdapQRIRYna7EEiIiImX1ONVr5aR0Bp+UfaRG21DBiTvRbKA4mmai4REdVSDIzIYhSvdbRpUxnVsoUc2LYSOD1AtwhtcSoZkD7iec0Bk5M1C7gRERGVgYERWRyFAhgwoDxLiVgBX28CFl14ML2/iEwNON4VwNtcUoSIiMqPOUZlYI6ReSmVwJIlwMKFFc8/kqmBD5OAkCuAfw4LQxIRPU6YfG0iDIwsgzZAWrQIUKnK2FlSAZHRQPBq45WzoycB48ZpuqaIiKhWqvbk688//7yyDyWqsIrnH60ClCEGlbMbjwcm/7IAyhaNObRGREQGKh0YbdmyBcnJybrbd+7cwSuvvFIljSIqSfnzj4oWpT00EcgI1+Uf6ZYWGScwf/VoVs4mIiI9lR5Ky83NRc+ePbF69WrI5XIMHjwYY8aMwauvvlrVbTQrDqVZrvLlHxWNpRmrf1S87tG9CETFxHN4jYiolqi2HKPY2FgEBQUhKCgINjY2GDJkCIQQWL16Ndq0aVPhhls6BkaW71EStLXkauD84qL8o4EDNSvc+vszUCIiqqFMHhjl5eXB2dkZ3377LU6dOoVTp07h999/x+XLlxEaGorOnTujRYsW6N27d6VPwhIxMKo5yre0SBFJBTw7BWh0HHBLA1wuIXkNEH6+2D4ymWbMLirKNA0mIiKTMXlgJJfLsWnTJrz00kt62+/cuYPTp0/j1KlTOH36NBYtWlSxlls4BkY1S0ICMGZMOWauAdAbZgv7GJ9f+QQ+uKSZ2p9XtItcrsn4Zs8REVGNYvLASCaToVu3brh16xYkSUK7du3wr3/9Cx06dKh0o2sCBkY1j1IJpKcDx44BU6aUswcJ0E3zlwWtxqrtQNSJou0LFwJPP83hNSKiGqRapuv/8ssvaN++PcLDw/H777+jc+fOmDBhQoUbW90SExPRrFkz+Pv7Iz4+3tzNIRNTKIDwcM26a9r110qfwVakaJq/+nIIoiOB1EZF22NjgfbtWUGbiOgxUKEeo927d+O5557Tbfv111/Rt29fjB07FhMnTjRZIx9FYWEhAgMDkZycDGdnZwQHB+Onn36Cm5tbuR7PHqPaoTIFImVBq/UrZ2uH12SsoE1EZOlM3mPk7u4Ob29vvW0tW7bEJ598ghUrVpS/pdXs6NGjePLJJ+Hl5YU6deqgV69e2L17t7mbRdWseIHI5GTN/2WyEv4mKNZz9HZ3oNuIosKQzwFKZ2jG5kJD2XNERFQLlTswat26NRKMfBH4+fkhMzOzShtV3IEDBxAZGYlGjRpBkiRs3brVYJ9ly5ahSZMmsLOzQ9u2bXHw4EHdfZcvX4aX14PFRRUKBS5dumRwDHo86A+zSYgYegqAsS6kogKRhzUFIsUtL01hyPFAQhtogqPoaE0ZbqWyek+CiIhMptyB0Zw5c7B06VIMGTIEP/74I/Ly8nDt2jV88MEHaNKkickaePv2bbRu3RpLly41ev/GjRsxfvx4TJ06FSdOnECnTp3Qs2dPXLx4EQBgbKRQkiSTtZdqDoUC2PVFK2zf+zckyUjvkZADSfOBtcnAogvA9/OgvuX1IP9IrQYGDWckg+kAACAASURBVGLeERFRLVLuwCg0NBRHjhzB5cuXER4ejrp166JRo0b4+uuv8fHHH5usgT179sScOXPw4osvGr1/4cKFiIqKwujRoxEQEIDFixfD29sby5cvBwB4eXnp9RAplUp4enqW+Hx3795FXl6e3g/Vbn26NsBnn0klJGhrg2g5cPhtYNEFqPfMQ4eBXpgfBiT7AqkN1Uj+4FUoDyRWX6OJiMgkKrUkSFZWFo4fPw61Wo0OHTqgXr16pmibAUmS8M0336Bv374AgHv37sHBwQGbN29Gv379dPuNGzcOJ0+exP79+1FYWIiAgADs27dPl3x95MgRuLu7G32OmTNnYtasWQbbmXxd+1W4QOQzUwCvBwUiJTUwsTAE44Ytg6IZE7OJiMypWqbra9WvXx89e/ZE7969qy0oMubvv/+GSqVCgwYN9LY3aNAAV69eBQBYWVnh448/RteuXdGmTRtMnjy5xKAIAN555x3k5ubqfkyZP0WWpV07TaFrubwcOws5sEd/mE3c8sICm2Pw+W97JLzTg7lHREQ1kJW5G1AVHs4ZEkLobXv++efx/PPPl+tYtra2sLW1rdL2Uc0RFQVERJS3QORDw2yHJwIdP4a6wyeIrrMbrUK90W7cR0BICAtDEhHVEJXqMbIU9erVg1wu1/UOaWVlZRn0IhGVV6ULRD6chzTACwkb3tYUhmzcGJg8mb1IREQWrkYHRjY2Nmjbti2SkpL0ticlJaFjx46PdOy4uDgEBgaiHYv4Pda09Y8eBEjalLzSUvM0AZJYcgGvKkZh05OAso4AFixggEREZOEqlXxdnfLz85Geng4AaNOmDRYuXIiuXbvCzc0NjRs3xsaNGzF06FCsWLECYWFhWLVqFT777DOcOXMGPj4+j/z8rHxNxemvwyagVpdV+qEQ6D8EcMnAwJNOmPRHGtrlX9J0QX34oWaYzcmJ67AREVUxky8iay779u1D165dDbYPHz4ca9asAaAp8PjRRx/hypUraNGiBRYtWoTOnTtXyfMzMKKSaJcZWbiwPDPZBDQ5SSp0r/8xErI+gQIPFRqVyTTZ31FRpmkwEdFjpNYGRubGwIjKUrEASUOCCh/ZRaNtw9X667DJ5Zp1S9hzRET0SKp1uv7jgDlGVF4l5yGVTECOyQUr0S1kALwHhGBQ23CkOnlpVrgtGjomIqLqxx6jMrDHiCpKqQRSUoBBgwSEKM/yMw+G2UJ8Psayqb5o5+fBnCMiokfAoTQTYWBElZWQAIwZI6BSSXgQ/JSDpEJEQDTiL30OxdR5TNAmIqoEBkYmwsCIHoV2Ftv5/DMYOXcnkDIBEOWpq6oCokLx0ZErCDnjDyfkIx9O8Ec6FJNeBsaNY4BERFSKyn5/14rK10SWSqHQxi9PQtXoCKLX/x/UF9sD//tKs6xIieRAwk94G4AmFVDT4ySDCqsWRCNqoQ9nsBERmQB7jEoQFxeHuLg4qFQq/Pnnn+wxoiqhzFMiPScdxxJb4d/j61Z8mA2ADCocQSjayX4GNmwAmjThMBsR0UM4lGYiHEojU9EOs+WLa5g16wCO7X8RQHlWsNUERx9iCkJwHP5I09REYh0kIiIdBkYmwsCIqkvi5jOIHBQAiPJW0dD0NElQYSI+xjh8AoX8KusgERGBdYyIarw+A55E/GcyyOXav1VUgKQq+r+xv1+konvkWIC34YMLSFAN19QKICKiSmGPURnYY0TVTTvElnpnA6YkTYHIeQK45wh8ta2MhG1NRe1tDqHoMzZcM3MNANLSmH9ERI8d9hgR1RIKBRAeDkzuORgXZx7+//buPSzKOv8b+PseAmwnJcnk4Ci6aQfDVA4rstWi/aQsULfysPmYPR6wLRMVfNBfv71qe3ZXSsP1ucRyajrsb/fy0EHztLZ4LaYGKEdXsVX4pcIo6qYCQivgzPf5Yw7OwMDcg3MzB96v6+JK77mB791XnLef7wmZs+OhemAfkJoGSDfNdzn+94xAAFJ/LEL8Z/ei+KEEYMgQYOJE039XrDClLiIi6hQrRp3gqjTyJsXni5GgS4CxPgK4Ohy4EAfkZaPLHTckA54enIUnWkpx//UmqH+8C3ehGU2Zb2JE+tMsIBGRX+Pka4VwKI28ha5Mh0W7F8EgzPOOGgYBR5YABRnofDWbZSsA+/+qVAJarcQFbETktxiMFMJgRN7Eug/ShRJk5WXBCCOgjwN0RU7nH7WnUpm2QUpM5PQjIvI/DEYKYTAib6Vv1GP9kfVYV7gOhtK5wM5N6M5m9pIkkDG9FjPmBKNJHcZ52kTkFxiMFMJgRN7OUkVq+tfd+O2aayj5/DHzeWyu7ah9a5iN+0QSke9jMFIIgxH5muLv6vDtsUvYf7geezY+2i4kyQtLKpXA5tcrkZh6DzTxEQq3mIjI/RiMFMJgRL5sd3EFpmxcDnHHdaBNDQQ2A/VDZRxia6KCAdq5BZj/yWPKN5aIyI26+/7t+oSEXsJ2uT6Rr0qJH4MPXpuNtF1pponaAKApAVrTZM1JMiIACz9NRNiQI1DfHYQRj4WzgkREfo0VIydYMSJ/cGuidg4MwmgaVKsfBBxdAhQulzEnyTz/CAZon/wC8z/kUjYi8m4cSlMIgxH5E8tE7eGhw4G6Oqw//C7erfwW4up9sofZJBiwU52AMenzUHVPAqtIROSVGIwUwmBE/q74fDESPhwHo+WYkbJ5wE4tOt80EgDMVSeoIMGAjLiDSN/4IAMSEXkNnpVGRN0SPyge2tQPECCZgpAU8zGwIAGQuppfp4Iw//UhEIC1JRMw5GcDsSI+H/riuh5oNRGRMlgxcoIVI+otbIfZ6q7XYdwrmyB2ve/ynkgqGJD99EHEPXE3h9mIyGM4lKYQBiPqrXRlOiz8828hrv4UaFUDW3a6cOyIKUhZh9ne6A+N+hq4rTYR9RQOpRGRW82PmY+aNwuQOTseAQ9+DaSmAdJN86sG80dnTNUl6zBb6iismFgM/ZBEQKdTuulERN3GilEnbPcxOn36NCtG1KvZHjvy16NV2Pg/y0wvHFkCFCyH3C3RJBiQgXVI3/UfwJgxqKpiEYmIlMGhNIVwKI3Inr5Rj6g/RsEozBtGNgwyBSRZ+yGZSDACkgQhJEgSkJEBpKczIBGR+3AojYh6hKafBtoULVSWvz5CzgPJWcDSocDcJGDSCgA3u/gKpmX+QpiH2wSwdi0wZAiwYgWg1yvafCKiLrFi5AQrRkSO3dpNex0Mot18I0sVyYVhNguVSiA7W0JcHIfZiKj7OJSmEAYjoq5Z5h+pA9VobmtGyYUSZOVlmc5m63ZAMq9q4zAbEXUTg5FCGIyIXFd8vhgJuoQu5iFZKkzylv+rVIBWC8yfr0hzicgPMRgphMGIqHt0ZTos2r3IfpitYRBwdTgQWm36vQvVJJUk8NVHP0AddS+H2IjIKQYjhTAYEXWf7TDbtpPbup6PJGtVm+k1zkMiImcYjBTCYETkPpagZDcPycJSTboQB+Rlw3kVyTIPSSBjei3SMwN5/AgRWTEYKYTBiEgZllVtOQXvwoh2fw1ZJ21nQO48JAkGZCRXIl33CCtIRMRg5G7c+ZqoZ7Rf9i9BAowCQgVAHwfoilw4o800Fyn7P+sRF3qWh9gS9WIMRgphxYioZ1iG2YaHDgfq6rD+T68g544SGCvmAbs2tZt/5Gx3bftDbGe8MRJN6jDORyLqRRiMFMJgROQ5+lPFWH/4XeRUFsB49adAYDPQpnZhHpKFzXykDIn7IhH1AgxGCmEwIvI86+q2a004W1WCWd+9BWNDpFt2177rLqCpiavbiPwNg5FCGIyIvI+uTIe0XWn2u2u7cIitif193ESSyL8wGCmEwYjIO91a1ZZzKyC5tNy/I5UKKCoC4uPd314i6lkMRgphMCLybrdWteXA0OkRJHKrSOZVbW9z80giX8dgpBAGIyLf4HDzSEsVKbAZODndhaBkP1l7xgzOQyLyNQxGCmEwIvI9HYbZLGyH2/Znu1xNkiQgIwNc1UbkAxiMFMJgROS7Og1IwK2Q1KoGtux0bRNJFZCdDQ63EXkxBiOFMBgR+b72u2t3UOZoE0l5WEUi8k4MRgphMCLyH7bzkFbuX2kfkm5zVRuX+xN5FwYjhTAYEfknS0hqam3C1C1TYRTt5iJ1Y1Ubl/sTeQ8GI4UwGBH5P12ZDot2L7p1iC0EBNCtVW22y/25qzaR5zAYKYTBiKh3sD3EtqC2ADM/n9nxJtnDbfbBifOQiHoeg5Gb5ebmIjc3FwaDAadPn2YwIupF9I16RP0xyn54rT3LcFtBBgB5K9o4D4mo5zAYKYQVI6LeyXZ4rUv6OEBXJHu5v2UeUkQEUFXFYTYipTAYKYTBiKj3sgyvqQPV2HZym9uW+0vml4VgFYlIKQxGCmEwIiILh8eOWNzGrtpczUbkfgxGCmEwIiJHZO2qbVnNJmMekgSBjEwJ6emm33OYjej2MBgphMGIiLridFdtwKV5SJJk+itZiFuH2HI1G5HrGIwUwmBERHJ0OcwGtJuHZAlQ8iZsc7k/kesYjBTCYERErrpVRcqBQRhvTTWyDLGFVgPXI1xazQZwojaRKxiMFMJgRETdZV3Vdq0J2z7/LdbdUQKDCreCUtk8YOcmuHIum0olsPn1SiSm3gNNfIRCLSfyfQxGCmEwIiJ30Z8qRvV336Lk5H5kteyBUQUH57LJG2aTYEBG3EHMeGMkmtRhnKhN1A6DkUIYjIhICfpTxVh/+F2s038GA4z2w2yAeVft5XBeTTKVnyRJIGN6LdIzA1lJIgKDkWIYjIhISbbDbWerSjDru/97a+J2h2qScyoYkP18CeJeGccqEvVqDEYKYTAiop5kdxSJ7aTt2vHAF1tkTta2qSJxuT/1UgxGCmEwIqKe1umk7W5M1gZME7a1Womr2ahXYTBSCIMREXma/lQxCo/tMQ2zNUS0G16TeeyIZETREZX18Nq77gKamri7NvkvBiOFMBgRkbewG2Zrf+yIrKAkIEkSbP/W5+aR5K8YjBTCYERE3sQ6zBaoxraT25BT8C6MEPaH2OZlw9XhNtuABPCsNvJ9DEYKYTAiIm9WfL4YCboEGIXNESSW1WwyDq9tTzIXm4TgTtvk27r7/q1SsE1ERKSw+EHx0KZoESCZApAECVLIeSA5C1iQAEidHGzbCSFgHWozGoG0NKC42N2tJvJevSIY/fKXv0T//v3x/PPPe7opRERuNz9mPs4uPYv8ufmoWVaDmmW1yEzMhEpTCqSmAdJN850Gm6Akb7DAaATGjQNWrAD0ekWaT+RVesVQWn5+PpqamvDpp5/i888/d+lzOZRGRL5K36jH+g8WIEd/AsZrNrtq207alrW7tgmH1siXcCitCxMmTEDfvn093Qwioh6l6afBmox9OPfyduRPm4Y1A8ZA1fc8MOwbQFNiGm5bNhRIfMe+qgTHw2+WobVt21g9Iv/l8WB08OBBpKamIjIyEpIkYceOHR3u2bhxI4YNG4Y+ffogNjYWhw4d8kBLiYh8k+aBeCRNW4rM/9yNomm7oLIdJ7DMR1o6FJibBCyL6nJuktEIzJwJDBnC4TXyTx4PRs3NzRg9ejQ2bNjg8PWtW7di6dKleP3111FeXo7HHnsMkydPRk1NjfWe2NhYREdHd/i4cOFCTz0GEZFPiB+bAu2UD6Fq/9d/iLmSFHLeVE1KTQNw0+HXAEwTtNeuBaKiAJ1O2TYT9SSvmmMkSRK2b9+OadOmWa+NGzcOMTExeO+996zXHnroIUybNg2rV6+W/bUPHDiADRs2OJ1j1NLSgpaWFuvvGxsbMXjwYM4xIiK/om/UY/2R9cgpyLl1aG17Mg+xVamAr74C1GrufUTewy/nGLW2tqK0tBTJycl215OTk1FQUKDI91y9ejVCQkKsH4MHD1bk+xAReZKmnwZrJq3BuWXnkJmYab/c33KT7TDb89O7HF5LTRWYOJEVJPJ9Xh2MfvjhBxgMBoSFhdldDwsLw8WLF2V/nSeffBLTp0/H3r17odFoUNzFphyrVq1CQ0OD9aO2trbb7Sci8naWgORwub8lIoWcB6I/dzK8ZrqXE7TJ17m2Z7yHSJL9uT9CiA7XuvL111/Lvjc4OBjBwcGy7yci8geafhpo+t0aA1szaQ3Sx6Vj/QcLsK7xaxhUAMZ+BNz3tdNdtS0TtFUqgeW/P4X0V+6y+9pE3syrK0YDBgxAQEBAh+rQ5cuXO1SRiIjIvSzL/c++cBT5o9dhTdAzpuX+MnfVNholrF01AoMzn4WujONr5Bu8OhgFBQUhNjYWeXl5dtfz8vKQmJio6PfOzc3FyJEjER8fr+j3ISLydg6X+1tWrln3P+psHU8A8EEhFrx2FbuLK3qoxUTd5/FVaU1NTaiuNu3GOnbsWOTk5GDChAkIDQ3FkCFDsHXrVsyZMwfvv/8+xo8fD61Wiw8++ACVlZWIiopSvH3c+ZqIyJ6uTIdFuxfBIAymlWuWnbTrhwJfbAFEJwfXSgY8/euDeOLnd+P+iEioEcZVbKSY7r5/ezwYHThwABMmTOhwfe7cufjkk08AmDZ4fOedd1BXV4fo6GisW7cOjz/+eI+0j8GIiKgjfaMe1VeroT59FtvW/m+sGw/TPKTSecAuLTqbf2SqLEnW/6pUAlqtxGNGyO18Nhh5OwYjIiIndDroM9NQfbcRJZHA/3koDuKjos4rR+1JRny85Qqi7r2XFSRyGwYjN8vNzUVubi4MBgNOnz7NYERE1BW9HqiuBkpKoP99FtYHvIR3r2yCkL342VJBArKzgbg4bhZJt4fBSCGsGBERucgckvRnb2JBVjm+/tcy887ZlmE0eSQJyMgA0tMZkMh1frnzNRER+SCNBkhKgual/8C+P4TiaN+fYl1YEp6JWiFjFdstlvPYbA+s1euB/HxuHknKYcXICVaMiIhuk80wW/Fb67H2/vuwbYQa2LpT/jwkmCpIgCkwsZpEzrBiRERE3slcQUJmJuJPFmLrhHjU/vWvePIhR/sgdf5vdSFMH5Zfr13Ls9nI/RiMOsENHomIFKDRAGvWQHOiBvueDsWusKGQXkwCFvwMmJsETFqBzs9j68hyNlsXR2ASuYRDaU5wKI2ISEHFxdC9PA6LUoRpHyTAtGnkkSVAwXLIPdKTQ2vUHlelKYTBiIhIYeZ9kAojjZj1PGBsH5AKl5tXtVnOZut8XhKX+5MFg5FCGIyIiHqAeYK2rnAj0m58discAbeOHQk1HR9lqiZloKuABNyqIs2YATQ1MSj1NgxGCmEwIiLqWfpTxVj/p1ew7o4S0/Ca/Ski5pviAJ0Lu2uD1aTehsFIIQxGRESeoT9VjOrvvoX6J3fj8OViLP+fjfY3lM0Ddm6C3HlItlQqQKsFz2jzYwxGbsYjQYiIvIe+UY+oP0bBKIz2L3SYhyR/d22VCvjqK0CtZgXJHzEYKYQVIyIi76Ar0yFtVxqMMHZ80TIP6UIckJcNV6tIXNXmf7jBIxER+bX5MfNxbtk5ZCZmQtW+KhRyHhj2DfDzd4FlQ5EU8Q5UcG3zSG4YSQArRk6xYkRE5H2KzxcjQZfQcWgNuDWaZqki3dGMGRVqjDgRh9Utb8PoZDWbSgVs3gwkJrJ65Ms4lKYQBiMiIu+kK9Nh0e5FMAiD85sBqIzAK1/GIfdEEYSTcARweM3XMRgphMGIiMh76Rv1qL5aDXWgGodrDmP535Z3/QkCQPk8YNcm2ZO1GZB8E4ORm3FVGhGRb+l05ZojDYMgXRmOj/Y2o/KH6ViH5TA4mbDNfZB8C4ORQlgxIiLyHa4Or0lGIKMQmFE4CGebxmMWtjidgwRwHyRfwGCkEAYjIiLfYju8tu3kNqwrXOc0KFkCUtiheci6sQlGGcv9uQ+Sd2MwUgiDERGRb7MEpZILJcjKy3K8D5KZygis3D0I1dVL8FnjcgiZ+yFxmM37MBgphMGIiMh/dLnM38J2uX83dtXm4bXegcFIIQxGRET+pcsdtB2x7Id0Pg7S/rdlLfW3xVVtnsFgpBAGIyIi/6Nv1GP9kfXIKciRH5AAoDYOkk7ePkjt2Q633XUXq0lKYzBSCIMREZH/sgQkORO0rcoc7YMk//BaW1zdphwGI4UwGBER+T/bCdor9690HpIsw2uBzUCb2jzMli17srYtlQooKgIiIoCqKlaR3IXByM24wSMRUe/UneX+ACDVD0LKfy/BnivLzcv95VeRJPNtQnBOkrswGCmEFSMiot5N36hHYW0hZn0xS9au2lL9IGTsHo4Z1c3YBttdtV0bbmNAuj0MRgphMCIiIsC1XbUDjMDZPwKaRkCPQajGcJQgDiuR7XJIYkDqHgYjhTAYERGRhSvDbO/tAh64Aoy4agpIwK2Q1AQ1pmKnrONHLLiJpGsYjBTCYERERJ3pcpjNXBRSGQHtLmB+uf3LOszDImyCAXdAgsH8KfKCEqtIznX3/VulYJuIiIj8mqafBtMfng5tihaq9m+p5pEyowpISwWKI+1fno+PcBZDkY8k1CAKNYhCJt6BCjedfl8hgLVrgSFDgBUrAL3eTQ9ErBg5w4oRERHJsa1yG2Z+PrPT11WQkJ0nEHfefnitPT0GYT2WIAfLZR1mC3DzSEc4lKYQBiMiIpJD36hH1B+j5K1cg4SM1likbyyDpt5ov17f8vXMAYmr2rqHQ2lEREQepOmngTZFiwDJ+TwhAYG1QSUYslRgxYczoP/uCPQHdiL/pxL05vdwDc5jDbKsw21rsELWMJv1e3C4rVtYMXKCFSMiInKFZeVaU2sTpm6ZKruCBJgCU2eTtYHuDbNZ9LZVbRxKczPufE1ERLfLlb2PbKkEUPQhEH/e8evuGmabMcN/5yMxGCmEFSMiIrodtuewZeVlwQjnFSTANFlbeyMZ89fsBwyOg9Xtbh5p/V5+eJgtg5FCGIyIiMhd9I16rD+yHjkFObICkgoqfDVJB/WlaxhRdQX4wx9Q1V84XNVmCUlqmI4icXW4TaUCNm8GEhP9o3rEYKQQBiMiInI3S0Cy7JxtO8eoM3LnIVm/RzeH2/xlNRuDkUIYjIiISCmWYbbhocNRd70OCboEWZO1ASAAKpyd8BU0xruAkhIgKwswdvxc2+G2LGTLriL5+jwkBiOFMBgREVFP0ZXpkLYrTfY8pPeefg8PDHgAI+4ZAdTVoerjtRjx/mfQNDh+a7+dSdu+tqqNwUghDEZERNSTis8Xu1Q5AtoNs0EF7U6B+WWdv73bzkc6i6GYhS0uH2jr7ZO1GYwUwmBEREQ9zdEyfznzkCxUkEzL/fXy3uJ1mIc0bHJ5svZXXwFqtXdWkBiMFMJgREREnmCZf6QOVKO5rRnDQ4ejoLagy/PYbEkAMjQzMGPwZDQ1m1a1aVatdjgPCbj9zSO9rYLEYKQQBiMiIvIWrpzH1p5KUiE7bhXiDlZ1cx5S1/ORvG25P4ORQhiMiIjIm9zuMBtgCknaf0+StXmkGs1ohtq8qu1tp3ORvGW5P4ORQhiMiIjI2zgaZnN1ub8KKhRN+QrxDV0v97dVjDgkoEjWRG1PD6919/1bpWCbiIiISAGafhokDU1C/KB4JA1NgqafBvGD4qFN0UIl863dCCPG7ZyCFa17oE+bBZw7B2RmmhJNJ+JRAi3SEICb5iud11aMRiAtDSguduXJPI8VIydYMSIiIl/SfldtOVSSCtlPZCMuMg531Tejaet/Y8Smz6Gp73yitnW5f8prmLV3DoxGx/OPPFU54lCaQhiMiIjIF7UfbnP1EFsJEjI005E+Yo7T3bV10gLTcn/huNqkUgFFRUBEBFBV1TPL+xmM3Cw3Nxe5ubkwGAw4ffo0gxEREfm87m4emTE+A+kJ6dDsKwBmOt4uQC8NxvqUvyFn9wMwio7VI8l8SYieqSIxGCmEFSMiIvInrh47YmFd7v/aH3DXDYGmIGDEVUDTaH+f3AnalipSfLyrTyAPg5FCGIyIiMjfdGcekh3zlkYqI6DdBcwvt3/ZtJO2VlY4UqpyxGCkEAYjIiLyV5Z5SCUXSrBy/8puhSSVEabjRy7YX/d05YjBSCEMRkRE1BvYTtbednIbcgpyZA+3dVU5WoRNMOAOSDCFLuEgKClROWIwUgiDERER9UauDrepjMDmL4DEWvt5R5al/cNRjTpEdFpFCggAzp5132o1BiOFMBgREVFv5upwmwQJGa2xSM8tdXgeW1fzj/LzgaQk97SbwUghDEZEREQmlpDU1NqEqVumdrnsXwUVtDccn8fmaP6Rt1SMeCQIERERyWI5iiTl/hRoU7QIkDqfWG2EEWl98lBcvAPYts3uqJH2R4sEBAhs2uTZQ2ctWDFyghUjIiIix/SNehTWFmLWF7M6rR6pJBW0KVrTxOy0NLuds63zj7athmb6eLe2jRUjIiIi6lGafhpMf3h6l4fXGoURabvSUPzUI6Z1+TaVIw3OI0l1CJqhd/RUk51iMCIiIqLbMj9mPs4tO4fMxEyHAckIIxJ0CVjTegD5/2859Hfb3GM0AgkJgE7Xgy3uHIfSnOBQGhERkXxyzmOTICHjW4H0IzZL+908+5pDaURERORx8YPiuxxaAwABgbU/B6KWArqx5osGA1Bd3TON7AKDEREREbnV/Jj5KFpQBJXUdcwwqoC0VKA4EqaK0fDhPdPALjAYERERkdtZKkddLekHTOEoYQGgy/lfXrFen3OMnOAcIyIiou6z3Tk7Ky+r0/PXAqQAnF16Fpp+nGNEREREfsqyKWRmYmaXK9cMwoDqq5xjRERERL2Epp8GayatcTj/KEAKwPBQzjFSXG1tLZKSkjBy5Eg88sgj+OyzzzzdJCIiol6t/fyjACkAm1I2uW0Y7Xb4/Ryjuro6XLp0CWPGjMHly5cRExODU6dOQa1Wy/p8zjEiIiJShmX+0fDQ4W4PRd19//aePbgVEhERgYiICADAwIEDERoaiqtXr8oORkRERKQM3WjyKwAAD+VJREFUTT+NV1SJbHl8KO3gwYNITU1FZGQkJEnCjh07OtyzceNGDBs2DH369EFsbCwOHTrUre9VUlICo9GIwYMH326ziYiIyA95PBg1Nzdj9OjR2LBhg8PXt27diqVLl+L1119HeXk5HnvsMUyePBk1NTXWe2JjYxEdHd3h48KFC9Z7rly5ghdffBFarVbxZyIiIiLf5FVzjCRJwvbt2zFt2jTrtXHjxiEmJgbvvfee9dpDDz2EadOmYfXq1bK+bktLCyZNmoSFCxdizpw5Tu9taWmx/r6xsRGDBw/mHCMiIiIf4pf7GLW2tqK0tBTJycl215OTk1FQUCDrawgh8NJLL2HixIlOQxEArF69GiEhIdYPDrsRERH1Hl4djH744QcYDAaEhYXZXQ8LC8PFixdlfY1vv/0WW7duxY4dOzBmzBiMGTMGx48f7/T+VatWoaGhwfpRW1t7W89AREREvsMnVqVJkmT3eyFEh2udefTRR2E0Ot5+3JHg4GAEBwe71D4iIiLyD15dMRowYAACAgI6VIcuX77coYpEREREdLu8OhgFBQUhNjYWeXl5dtfz8vKQmJio6PfOzc3FyJEjER8fr+j3ISIiIu/h8aG0pqYmVFffOjTuzJkzqKioQGhoKIYMGYLly5djzpw5iIuLw/jx46HValFTU4OXX35Z0Xa9+uqrePXVV62z2omIiMj/eTwYlZSUYMKECdbfL1++HAAwd+5cfPLJJ5g5cyauXLmCt956C3V1dYiOjsbevXsRFRXlqSYTERGRn/KqfYy8Ec9KIyIi8j08K83NcnNzkZubi5s3bwIw/Q8mIiIi32B533a1/sOKkRN6vZ6bPBIREfmo2tpaaDTyD6plMHLCaDTiwoUL6Nu3r+y9k+SwHDVSW1vr10N0veE5+Yz+oTc8I9A7npPP6B9u9xmFELh+/ToiIyOhUslfhM+hNCdUKpVLSdNV/fr189s/1LZ6w3PyGf1Db3hGoHc8J5/RP9zOM3ZnVblX72NERERE1JMYjIiIiIjMAt588803Pd2I3iogIABJSUm44w7/HtHsDc/JZ/QPveEZgd7xnHxG/+CJZ+TkayIiIiIzDqURERERmTEYEREREZkxGBERERGZMRgRERERmTEYecjGjRsxbNgw9OnTB7GxsTh06JCnm9Rtq1evRnx8PPr27YuBAwdi2rRpOHXqlN09SUlJkCTJ7mPWrFkearHr3nzzzQ7tDw8Pt74uhMCbb76JyMhI3HnnnUhKSkJlZaUHW+y6oUOHdnhGSZLw6quvAvDdPjx48CBSU1MRGRkJSZKwY8cOu9fl9N21a9cwZ84chISEICQkBHPmzEF9fX1PPkaXunrGtrY2ZGVlYdSoUVCr1YiMjMSLL76ICxcu2H0NR/2/cuXKnn6UTjnrx5deeqlD+xMSEuzuaWlpwWuvvYYBAwZArVZjypQp0Ov1PfkYXXL2jI5+PiVJwpo1a6z3eHs/ynm/kNNPNTU1SE1NhVqtxoABA7BkyRK0tra6pY0MRh6wdetWLF26FK+//jrKy8vx2GOPYfLkyaipqfF007rlm2++wauvvoqioiLk5eXh5s2bSE5ORnNzs919CxcuRF1dnfVj06ZNHmpx9zz88MN27T9+/Lj1tXfeeQc5OTnYsGEDiouLER4ejkmTJuH69esebLFriouL7Z4vLy8PADB9+nTrPb7Yh83NzRg9ejQ2bNjg8HU5fffCCy+goqIC+/btw759+1BRUYE5c+b01CM41dUz/vjjjygrK8NvfvMblJWV4csvv8Tp06cxZcqUDve+9dZbdv37X//1Xz3RfFmc9SMAPPXUU3bt37t3r93rS5cuxfbt27FlyxYcPnwYTU1NSElJgcFgULr5sjh7Rttnq6urw0cffQRJkvDcc8/Z3efN/Sjn/cJZPxkMBjzzzDNobm7G4cOHsWXLFnzxxRfIyMhwTyMF9bif/exn4uWXX7a79uCDD4qVK1d6qEXudfnyZQFAfPPNN9Zrv/jFL0R6eroHW3V73njjDTF69GiHrxmNRhEeHi6ys7Ot127cuCFCQkLE+++/31NNdLv09HRx3333CaPRKITw/T4UQggAYvv27dbfy+m7kydPCgCiqKjIek9hYaEAIP75z3/2XONlav+Mjhw9elQAEOfOnbNei4qKEuvWrVO6eW7h6Bnnzp0rpk6d2unn1NfXi8DAQLFlyxbrtfPnzwuVSiX27dunWFu7S04/Tp06VUycONHumi/1oxAd3y/k9NPevXuFSqUS58+ft96zefNmERwcLBoaGm67TawY9bDW1laUlpYiOTnZ7npycjIKCgo81Cr3amhoAACEhobaXf/LX/6CAQMG4OGHH0ZmZqZPVVMAoKqqCpGRkRg2bBhmzZqF77//HgBw5swZXLx40a5Pg4OD8Ytf/MJn+7S1tRV//vOfMW/ePLvDk329D9uT03eFhYUICQnBuHHjrPckJCQgJCTEZ/u3oaEBkiTh7rvvtrv+9ttv45577sGYMWPw+9//3m1DEz3lwIEDGDhwIO6//34sXLgQly9ftr5WWlqKtrY2u76OjIxEdHS0T/bjpUuXsGfPHsyfP7/Da77Uj+3fL+T0U2FhIaKjoxEZGWm958knn0RLSwtKS0tvu03+u12ml/rhhx9gMBgQFhZmdz0sLAwXL170UKvcRwiB5cuX49FHH0V0dLT1+uzZszFs2DCEh4fjxIkTWLVqFY4dO2YdrvF248aNw5/+9Cfcf//9uHTpEn73u98hMTERlZWV1n5z1Kfnzp3zRHNv244dO1BfX4+XXnrJes3X+9AROX138eJFDBw4sMPnDhw40Cd/Zm/cuIGVK1fihRdesDuYMz09HTExMejfvz+OHj2KVatW4cyZM/jwww892Fr5Jk+ejOnTpyMqKgpnzpzBb37zG0ycOBGlpaUIDg7GxYsXERQUhP79+9t9nq/+3fvpp5+ib9++ePbZZ+2u+1I/Onq/kNNPFy9e7PAz279/fwQFBbmlLxmMPMT2X+GA6Q9I+2u+aPHixfjHP/6Bw4cP211fuHCh9dfR0dEYMWIE4uLiUFZWhpiYmJ5upssmT55s/fWoUaMwfvx43Hffffj000+tEzz9qU91Oh0mT55s9y8yX+/DrjjrO0f96Iv929bWhlmzZsFoNGLjxo12ry1btsz660ceeQT9+/fH888/b60+eLuZM2dafx0dHY24uDhERUVhz549HcKDLV/sRwD46KOPMHv2bPTp08fuui/1Y2fvF4705M8kh9J62IABAxAQENAh1V6+fLlDAvY1r732Gnbu3In8/HxoNJou742JiUFgYCCqqqp6qHXupVarMWrUKFRVVVlXp/lLn547dw779+/HggULurzP1/sQgKy+Cw8Px6VLlzp87r/+9S+f6t+2tjbMmDEDZ86cQV5enl21yBFL4K+uru6J5rldREQEoqKirH8+w8PD0draimvXrtnd54s/p4cOHcKpU6ec/owC3tuPnb1fyOmn8PDwDj+z165dQ1tbm1v6ksGohwUFBSE2NrbD8ENeXh4SExM91KrbI4TA4sWL8eWXX+Lvf/87hg0b5vRzKisr0dbWhoiIiB5oofu1tLTgu+++Q0REhHV4ybZPW1tb8c033/hkn3788ccYOHAgnnnmmS7v8/U+BCCr78aPH4+GhgYcPXrUes+RI0fQ0NDgM/1rCUVVVVXYv3+/rMpBeXk5APhs/165cgW1tbXW9sfGxiIwMNCur+vq6nDixAmf6UcLnU6H2NhYjB492um93taPzt4v5PTT+PHjceLECdTV1Vnv+dvf/obg4GDExsa6pZHUw7Zs2SICAwOFTqcTJ0+eFEuXLhVqtVqcPXvW003rll//+tciJCREHDhwQNTV1Vk/fvzxRyGEENXV1eK3v/2tKC4uFmfOnBF79uwRDz74oBg7dqy4efOmh1svT0ZGhjhw4ID4/vvvRVFRkUhJSRF9+/a19ll2drYICQkRX375pTh+/Lj41a9+JSIiIkRjY6OHW+4ag8EghgwZIrKysuyu+3IfXr9+XZSXl4vy8nIBQOTk5Ijy8nLriiw5fffUU0+JRx55RBQWForCwkIxatQokZKS4qlH6qCrZ2xraxNTpkwRGo1GVFRU2P2MtrS0CCGEKCgosH7O999/L7Zu3SoiIyPFlClTPPxkt3T1jNevXxcZGRmioKBAnDlzRuTn54vx48eLQYMG2fXjyy+/LDQajdi/f78oKysTEydOFKNHj/aaP8PO/qwKIURDQ4P4yU9+It57770On+8L/ejs/UII5/108+ZNER0dLZ544glRVlYm9u/fLzQajVi8eLFb2shg5CG5ubkiKipKBAUFiZiYGLul7b4GgMOPjz/+WAghRE1NjXj88cdFaGioCAoKEvfdd59YsmSJuHLlimcb7oKZM2eKiIgIERgYKCIjI8Wzzz4rKisrra8bjUbxxhtviPDwcBEcHCwef/xxcfz4cQ+2uHu+/vprAUCcOnXK7rov92F+fr7DP59z584VQsjruytXrojZs2eLvn37ir59+4rZs2eLa9eueeBpHOvqGc+cOdPpz2h+fr4QQojS0lIxbtw4ERISIvr06SMeeOAB8cYbb4jm5mbPPpiNrp7xxx9/FMnJyeLee+8VgYGBYsiQIWLu3LmipqbG7mv8+9//FosXLxahoaHizjvvFCkpKR3u8SRnf1aFEGLTpk3izjvvFPX19R0+3xf60dn7hRDy+uncuXPimWeeEXfeeacIDQ0VixcvFjdu3HBLGyVzQ4mIiIh6Pc4xIiIiIjJjMCIiIiIyYzAiIiIiMmMwIiIiIjJjMCIiIiIyYzAiIiIiMmMwIiIiIjJjMCIiIiIyYzAiol4pIyMDqampnm4GEXkZBiMi6pUqKiowZswYTzeDiLwMgxER9UrHjh3D2LFjPd0MIvIyDEZE1OvU1tbiypUr1opRfX09UlNTkZiYiLq6Og+3jog8icGIiHqdiooKhISEYNiwYTh+/Dji4+MRERGBAwcOICIiwtPNIyIPYjAiol6noqICo0ePxubNm/H4448jMzMTWq0WQUFBnm4aEXmYJIQQnm4EEVFPeu6555Cfnw8A2L17NxITEz3cIiLyFqwYEVGvU1FRgeeeew43btxAfX29p5tDRF6EFSMi6lWuX7+OkJAQlJaW4tixY0hPT0dBQQEefvhhTzeNiLzAHZ5uABFRT6qoqEBAQABGjhyJsWPHorKyEqmpqTh69CgGDBjg6eYRkYdxKI2IepVjx47hwQcfRHBwMADg7bffxsiRI/Hss8+itbXVw60jIk/jUBoRERGRGStGRERERGYMRkRERERmDEZEREREZgxGRERERGYMRkRERERmDEZEREREZgxGRERERGYMRkRERERmDEZEREREZgxGRERERGYMRkRERERmDEZEREREZv8fr9WOFawdWkwAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "semilogy(σr, \"r.\")\n", - "semilogy(σg, \"g.\")\n", - "semilogy(σb, \"b.\")\n", - "title(\"exponential decay of singular values of Strang image\")\n", - "ylabel(L\"\\sigma_k\")\n", - "xlabel(L\"k\")\n", - "legend([\"red\",\"green\",\"blue\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "clip01 (generic function with 1 method)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# clip x to [0,1] so that imshow doesn't complain about rounding errors\n", - "# that lead to values slightly outside this range.\n", - "clip01(x) = max(min(x, 1), 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2","id":"ob_14","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2","id":"ob_13","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_14","value":0},"value":{"sync":true,"id":"ob_13","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":40,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-883766e9-b21b-47bc-a601-8b28e66b452c","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_18","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_13\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_13\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_13\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_13\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_13\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_13\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f2c98486-0b82-453a-9469-0e4f8338d4d2\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_17\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for k=slider(1:40,value=1)\n", - " withfig(fig) do\n", - " p̂r = clip01.(Ur[:,1:k]*Diagonal(σr[1:k])*Vr[:,1:k]')\n", - " p̂g = clip01.(Ug[:,1:k]*Diagonal(σg[1:k])*Vg[:,1:k]')\n", - " p̂b = clip01.(Ub[:,1:k]*Diagonal(σb[1:k])*Vb[:,1:k]')\n", - " imshow(cat(3,p̂r,p̂g,p̂b))\n", - " end\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 5416 0 5416 0 0 130k 0 --:--:-- --:--:-- --:--:-- 142k\n", - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 48674 0 48674 0 0 756k 0 --:--:-- --:--:-- --:--:-- 805k\n", - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - " 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAD6CAIAAADYySIZAAAAAXNSR0IArs4c6QAACVhJREFUeAHt1LFNxVAUREGbhDJog5wE0QXd0AMJDdABOSURIGHSX8OecfTk7MxK9zzenw9fQOC8rus8j9+fp4fHr5e3QLHEG4HP17/vj7v787ium7+eywJ3y3HaCBAgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFXDcq8vrJkBgWsBxn55XHAECVQHHvbq8bgIEpgUc9+l5xREgUBVw3KvL6yZAYFrAcZ+eVxwBAlUBx726vG4CBKYFHPfpecURIFAVcNyry+smQGBawHGfnlccAQJVAce9urxuAgSmBRz36XnFESBQFfgHe9cPbJ4duP4AAAAASUVORK5CYII=", - "text/plain": [ - "250×500 Array{RGB4{N0f8},2}:\n", - " RGB4{N0f8}(0.0,0.608,0.282) … RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) … RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) … RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " ⋮ ⋱ \n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) … RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) … RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)\n", - " RGB4{N0f8}(0.0,0.608,0.282) RGB4{N0f8}(1.0,0.475,0.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEHCAIAAADXsiNqAAAAAXNSR0IArs4c6QAAQABJREFUeAHsvQecXlW1/v/2Mi2TSU8mPZn0TDJJJj0hAS5FuQgqiqLXe73XK80GImJvoIIFEJGmSAcFpYYEAoQWSID0ENJ7r9Pf/v8+a78zGcIM1xKE/+9ztvHMec/ZZ+211+E8a+21117bP3Xqxb62Si6X8/v9LXfcTx0DWV8u7PNlfb6Ajv5cLhvw+3MtNf/pk4DPn6KJnC/t94VyuYyxYW3906SNAKR8RpyGcr5c0OfP6KgeHZcC2YxkIkH5rYlwLpdqLcx/phlI+rLu1UgmOV8W4Qey0aw//c+QbXn26IuGbst/AxLU0f8YXOWjd1sethP+m4hnkxfsWRbPJXl57mZAjPo4esWTgCeBf40EhHRtlhYwcidHj8Bujm80AOwK2e37tyttkvm7L4psLiiy1kQzG8cLeeEH8MlA3IfmAH5zALFd/Ls5be+BLASl7YSGAVMbaX+7Ym6PyLtdRyaSO5wD8moifLyQnVbzLxqqUhvqAi1ZL96NJe+eJwFPAh80CfzfqKNv+5iCqcuXz6OyIM00O36WO2StRSFuC7gANMew8A//hDhkXRPi3vBL9vVxKkafcUAgm4XnLD8px4m2kcFYR/DWCzFvOH8c+XfEWzFs4xtr0V20Dh3XHrVqzDv1JOBJ4HhJ4O8Dd8OpbCCgQbYZvMJ3TEgzhI8PS4It8MT44tRa9B1H+gCiOAfNpaJASYfvx4d5qIi+bOpcMBiU8RswcR033QR9NIePV2A2tRpSg8ePvhH0S21rcIN85FCiR3YuTOcnx9Yn7qd39CTgSeADJYH/G9xbs2vfeS6TFrjYR64xuwHx30enNc1jz/0BoMr8+Naa3zkHjq31T/yGZ3/AH6QJiNCGsOu4GtdG0y/DHVd+TicOkf8Jnls/qtEAvyV5iqYlOBHiH5cikqbzoMqJBlKaUwm6Th1fQR0Xhj0ingQ8CbQpgb8VlFsAJegLBkO+bMYNzI878vpyGWiG/YwGsljXefrHF1OwpjOZFms0g//kOI4MnJTN1M2GQlIkpjxk+R6XYlDuXGHyuZvzB8J/63v823mAbSpL0WK2Z/IaxT3uFMDfTsqr6UnAk8C/XgL/Nyg4cHKcpdPpvv27TpkyLJlMgzKU4+vtda107FBw8qnjE8lGh7kC32ZXwPEQEPSy0WjwQx+ejFXqbFJ15PgVA3TUU+aUUycUFUdlwh8/n74bJ8EwMkk1JWbPHtO9W4dMJnW82NdLlc2eny1IpTLjx1cMHd47lTpuTRwvVj06ngQ8CbyLBP5vcHcPO4hPJpPjJwz5+CdPxn7neiCggBMQUiEox6nQxKCKXp/+zL/FYtGMuZSdi/84kVcQSCad7da19LP/dVppaUk2hdNEQHm86EMHmzebThcVFZ173r/16d0FfDyOxB0pvY6sLxQKffQTJ4ypGpJsajheTbjZDo40QUknsh8+c9q06ZW8F6dRWjfEldY/vXNPAp4EPjgSaBfcm79bKgRwuDojNxgMjx83ZNyYAX379UylmO5Mc0vfPLU0RZn/1N2zzRT+ps6atSg/MoA+afKwgf17DhzUO51Ohny5QE5Iwy1w2dHSaXNb7VFXx2zK1FwWFs8nHoVGyYRv3LiK3t3LRlcOaEqBWXiBjHPRdI4UztSWm09oswnphGZ+rIIa5Ap/cr5QUzpTMaRb/96dq8cNZ7jDEIQmwMrmR6ilKBSk2iZxRyp/y7hqrsZUdjDgS9EP5N+7T/cxowZMnDDUb7rW1aEhqKunrlPNT77z7zEV7AlJVqGiWTl6Mtl0x87FVeMGT5k0LB6PU4F3wT/8WnpfUoqsePCKJwFPAh9ECfAJt100R2chj9zG+42PPZVK9CrvWlk5CKgaOqwbphwAl9HcZChLvAwrm7QU6GiRxd0+vkhd6HYIlBBQODTK5Tp06FA9YQSG9MRJQ8EvNe3DQS4r0oYI4EpGsSIWC3+0sXeciaOsY8DYZAYVD3UAwv5IKDBlygiemDFjtM+XzvmSDg6hz+ImrguHfSHwV7jaTgkwJ2B11AvDbXsqwGnW15hNZ6bPHMujU2eMKoyH4RnUl38J5SGVAEss1IIfWmm7mEvKdEDzwMiagUXcPEGupdLp8RMr6M+YscM6dinN2DAHniWxQCbHvEW771YtOqZbn0jC7nogjKDSuWAykRk+vE9ZadGAAd379u9OC1k/rzqZy4asMhDv+WokTK94EvgASqBdcBEAZfxNjelUttEZaI21TaeeghM5hj922rRRf37gxVoDK2Ai5M+Eo9FQKCITPx8CLyx7F3xXsIo/nc0lGusSPBLIRbDaGxOpKVN69+/ficZnzqy88ca/1Bz2hWQnBlmnE43Gw+EMysTiT7IMKGjaEL9NwYKzGdrgXmNtEg1hEOwHsAb06zRufAVNjB1X0aG4eN/+2mCIGB34Zgo0Ei8A0iFtprmAtf2ilahyX/j82YaGdDaV5pwlWNmMr7iwYNKkYTw5ZEjv3uXdli7fGI1GcwjUnwn5I9GCqC8XEs7DU/vkpVwVDApVKZl0OptsbELpwmc2m+b/k01FdelaNHpU/0cfWVhQGHO94JF4oS+Eic+D7bQgoljipoA5ofDq0ulUqimZ1vJaKGWSdemZM4ZDJRAOTxw/fMmr62JFYRgA0xFYJBoIRt5l7PEuHfNueRLwJPCeS6BdcAdKBg/qecqp1QBEoinJJ43veNasSnEU8FdXj/jG5Z9IYSDiWwgEigsLX1701ssvvRH0xwQTZoa/C7JDg2rZbK5L185n/feUeDTc1JgEs5oSueoJA81l4RswoOdll51XX58IWhheQVFs7Vtb5j7+GjapL5AQ2mUd8+24+7MY+L5MOldSFD/3Uyd1KitpaMAxHdKccO+u0Rigmu3SucMll52zY/vecDiKYV0QL9q+e99jj73c1JgyZ5CZ8O1Z7wa7NAHIRoKhfz9nav9+PeprGzRiyGVKOxb3Ke9BHwl2v+CiM1at3hyJxGgxFovV1jc89teX9x884oJJJc+2C7iprskHgp7N5GbOqKqq7t9Un+SccVI05ptQNRS/DsrlU+edPGhw72gk5M/mItEQ3vhHHl24bet2nPJt0zb584Jg3qE8yM6U6fjx40+YPrgBfE/rjeOXmT6zShT8vrM/Oq2wSPqb3oUjAQKB5j+1bOWqTeHw24Zr7TXnXfck4EngXywB/7vklmEZztlnzz7/gtNBDT5pmWxYtzI4lfWlmVFWTAbmzFl8w2/vP3igIeCPCtlVQS4RgKO52rF/5Z3IBaE168Qxl176ieISHgRH5eto9SDoJmOUP6+/sf6XP7t325b9YLsqiL49cSzho78dt0DhuHGDL/3GOf16dwdepTmaCxqihT/wc/PGfVddedeKlRvBRBrw5+Dk3XLCwAaUJJZMcsCAHt+4/LMjR/Vtps1oA/TON6d6JsDd+2p+8fP7X3xxObKFmVY9bX6u+a+6iDQ0LNAaJX6WdQyff/EnTz91gvFskmHcQAYb65F1locD9Y0Nv7n24UcefZlzSfT/Ko4HCTmbLSkp+cIXTj/rrBlyXzkXjUjgqpKDyC/pUQKZrO8Pt8+56855yQSq3V20O3aAKS+3zFFxeGeeBN4nCQT79JnYZtPACm7cxYtXvbRg2ZAh/bp1L8MxICgDUvnUgS15qDMHD9X/+Ad33XTzo7g7QkHcMhDjaxc2CpjaL1aBqpnVq7fNfXJx796dmaQVZZmiwiQ/zZkTv7Ep/dvrH/7ZlQ8crjkcCqNUgtAVsMrr/S5NyEHEfSYFNm/aM/exN0pK4sOGO/AFVfOPCrDois93191PX/HNW3bsOBiJRARlJOdicWn7fmthIv5t66M/ENqzt+bxR19IZdNjKgcGA6xdol1YFEgaeiK14NwnF112ye9Wv7kpEiMtGleamWhbSvKTqJeaLAVD/fUNmaefXLxl894xVYMK4jFrQonDJDC9DF6Kf9Fray79yk0LXlgejTLVKWRv7y3kMZ1ewIe0FFMnwcbGxvlPLV+zZlPlmH7FxUXuPUA5301J279hw45Lv3rjI488H8QpE+RdH/sK4Cecy0yo3xPGFdb834Dk8K5vq20ZeFc9CXgS+Ecl0C6488ETG8Oge+/+2qfmvhqOREeOHhAQ7PE580kL3xe9tu6yS2564/W1saJIMBA1NJE1GgDdrDgEcefvPKqJQJABfk1949wn36irqx9TWUGLAB9t4L5Heaxfv+Obl/1u3tzXYgWhEKunzOGTxxo/QC/8arOYg1vQDaTgRkgkE889s3Tr9t3jqgYDfI64dce/c9eRH3z/tnvvfj6EOzwSkaFqXWD28F3oBwIRTW0KWWkhi4MbVl55ed2KFetGV1Z0KI2bqQtrKIBAXV3jNb/40w3XPQT6RyJhdBhwDGfmET8WHF13IGsucRn4zf31haOhVas3vfzC6gqCfXqUgckgputFOpP+/S1P/uTKuw8erissxjnGBID8WW0Kh4stt3DO5H9KFwXCseD6dTuefXp5j15d+vfvoceNBgfUyIMPvvjdb9+2bceBgoICe0pvSnVaFQ/cWwnDO/Uk8L5JwMC6rdZlHmeVzjAaDzUkE7f/4eGaIw3NWCrLFvC69+6n12/YVVCAA5svOmXRNUINUNuRbEGQd7YgOw7okWc8FA4HwpHIvXfN37J1l8BYhrtR8AcffvTFVxetK2AW1xUZmqJvlKVI3knZXZF7B8tbs3+CQJzF0aLYX/7y8muLNriLAWJOrCx8ZfkTT75RUBhCmQlJhbzOGU0z7dLP+vBK+zWpK8tfyiwYCjDb/NyCVU8//ZqUnysKxPGtXbv9vvvnhwtisIF+Ek4qMwEybq6Wr93qj4ZIqI+01c/7uGCoqKRwzdotf3l4AbwjqoCihph39e3afeAPtz8OK7E4biKsfaZTbXzTimTrU4kFLs3tzon7yZGeA9zbd+2/4/YnVYP/6w8l29jUcMftcw7XNUTiqs90A3PW7p539CTgSeCDJoF2wUUTg0yp8fUyn5f2V08a0aFDodnsLMkxyx13+cwx4UgwKz1gk3+tPvUWsDCH+dtQhlvoDOkD8Ffx3xD0E6YxYmTfwYN7m4CAV9MXPt8JJ4zHHe/m/dSKFUP2vCRdB6AoIG6FxUCPqQGmCow9Ilsy6QF9u48bP1gIbhdBTxqaNHFU9+6l8uurX0eLugBYagCB/a+GAUMdOecx66yiZXRRq62oykrRzp06TJky0qi0JFjPDh3Wf+jg8iyRR242QgxAzYLiRdho2jHfBM8bffGpk6MM8zoIvJk+w2a2VQ1dSNCqj5icceOG0gJkqI+OspeUl7zYtKK+IG564MRitXUlLxAGZdJuAX/mxFlV4pHn5IKjSqAwXkB8DnPUKM6gRm8+9LkJRhqMB5vfBaAvpQNNJnj1JLMGJiaNhbziScCTwL9EAu2Cu4GX4QM+15xvylQFhjNwf+zRRdf++uGGxgTf/PiJQwiCtsgKfciOYXdy9MgqVlBMIXcOB8yVDGHDLHsEv4A/k0xMmjKSwBhQ4pWFq66++v4Dhw5zd+Tw3v37lqeYwrOiZpob4oI7F9Yq0hF4xYK2HmHzWmvmthZj+C6SjcnKyiEdy4r4+dZbO678yV2bNu0DvHr16lA5sn8y2WQt6AApR1lHxhZEH2YUFIQdLSTlJk01wyInzrPBCbMUAwd0HTq0nF7s3FmDk+T1petpvCAeHjduWAZb3xH3RahAfS0VkoUOuxpkqG3CN5FYM3FdeXtJpX29epSxNoqnaurqf33dn5+Z/7qrP2X6SJLmBOUhF8Miy/9NXC5ikWrKmEbTrq23U3ZEqE83iRCtnlwhnZvO3vb7J/78pwV6Kpc7YdaoSEi6FihnMiCEkjP63Go5gaoRcXntJXxXXJ+kdbx/ngQ8Cbz3EmgJemn+BJv/gpEZvmf+ZXJdu5ROnTQ6kUj9+tcPEt5O1pcVKzZ++zuf7tu3G2uannt+SUiLWFu+YRlrrYs8JBCTD6Al9g49IatYFrqhBjHa06fLGr3ttrm33fJoTW1q8aK1l1/xiaqqQePGD3pr3dYIxmJLG62oA+pMNoItmJugZR5lBPdSH/wREtOG9Etg+gkj+PHII4uu//X9e/bVvPD88ku//skTT6yaOnUUvXBUHcY5Oi3nPMu5O8pfr9AXa8JAzVXmCgu7ZpwwGhR7ZeHqn/3s3nUbds2du+j8L37kk+fOmjl79EN/XkAIIzLAIS7jWbzJo0LhWdEUv4jDNvew646l1keaqKgoLy6JoZ9+8qN7li5bF48GP/3Zky+++KypU4eXdShpShELnwuxyMqibKQ9JB0NrWjFxkBv0+iuIy1NUDmTyg4a0XvIkL67dh266qo7n39+JXeXrdj4jcs/WTl6SJ/ysu279gbDaPw0OK0xhQx0DZycBpaq1jInq+B0rVGnWjt9amncO/Ek4EnguEmgXXDH9GUlC2iTSKYw4g7X1Hz54huWr9xcWBSOFhS+seSt//7c1d/5/qdnzBq94IWlGpA3f7gO6RyDnOO+zrGUNUgSA7P3hDLUNmQX7Ah3Ek2ZsWMGFJfGv3bxDc++uDwej5aWBTdu3vali6676EsfO+HEsY8+8pIsc0PSY7pukEEqF0Vquoh4KlhFhY/kK5MnIZXs3bczCbB+euU9D/7puUA0XFrW4cChmisuv+3c8zZ+6N+nduve9cjhGoIgIdjSRPO58ApbmKIs7fKEHEV2V5krRNCXlpZOqB55++1P3fTbv2QC2Y4dO6aS6at/eu+Kleu+eMHZgyp6rFu/O0JcKaCIpsBdoQ3zJDiihmA+ncpocX8IQ156r80SDmSnzBz1xJzFP7/q7rqGhg6lBek0GnHOqhWbrvjeeeOqBz7zzFIEKD8Iq51AdpEyH1czwXQiHYrqvR8jT9cp1HS6MXniyRMWL1rz/e/+YdfeQwVFcTTFo48sWrNq64+v+tzUGSPuumtXMKzIKPxB7rW7Z6HJCUCPYydT34CWonF53uSbk3dL/1G117E2e+td9CTgSeAflUC7ce4iaF9uOpXDfN64fteB/YfDBSxJ5HOVZYYH2Z8NTpg4dMWqDYmmNFjlyjGQkUilJ40fun79ziO1dXI4uBh5bDsAWMHy8vykM4mKIf3qaps2r98WLyliaT0X0QFog0QiMbF6+OYNu2q0BCmPqvmWmv+QonLE8D41NQ07dx0ioMZMVPlnXJS64CaLuyJT3rsXmQBWLFsbL4qbZS/dBRssbqocW3HkcOOe3XubbXNhELdowR0Bp/79uhJL8+aarYT3uLscWypwThOdO3fu2aPjosUryMQCKd01d3l9XdPQIb2D4ej6ddt4PM844hW2SxPBDxkKunQu6dGjy+tvrCVWMo+a+apH/0TD4SEj+r62aC0jAMXj87R8Lv7G+obynj07dStcvXpLWCtHtdQJkBWu23oCjGxeW1EsPmRI+WtvvOXWN1njjoU89sNwwB9myevypRtIvKOoTYYs9tLTDb7ikviQoX3eWLJOgUvS24w2NKaBP3MryXanlQ4FsesvOqVDASueeNP8t2FdNv+7Sf5od7wzTwKeBN4jCbQL7oR/BxVqAsiwKF1eCLe0J0CiFww5raTHaZRLZ1LBAPHOwinHYmu84JyVrtdde/G998x/4aWVsRiDdcAmiCObymbvQx8rXoEroFGYKEFBjeDOOdBpnZUykSgYRYP5Jt4ui0B9feOPf/L5t1ZtvOPuZ4gClFMZWENvQMo8BcKdAPOpCV+a4Gx1SjcNcGgLPrDrgwHZ7K2bMDbED/hVc6TpwovOKCkp+ulP7yGL7zGd5SmNSqwk06loGFADEGU9Qxx5cYf0kyjFIOs56S5xMjhkoIw/Hy0Gn75gU0Pi9NPGzT6p+rKv3RQuQAM4m/jtfXVNJNNOwYiCFWCbkVE6yZKrHDY14nUdcV2gvwT1oE6T6cyIof0vvfSc8y/4JQxTp7mC6EBbP2E2h38pCxmYp1vyuaEZApYMhxnhdDoas2xC2OJUPfreHT1NPHTqWHLXA9/tqBgnt0246Rljvt1etdFR75InAU8C/7gEDOHaehxMYkcLgaCPUMVoiPBzgSKgxeeJcYdvJczvEHBliVhaaLhP3P0ECHqVd66eOGTcuIFpyIEmgjYHPbJ/gRjMOi0XChqy8xg4Y2Y7yGUNBSMRmmzb4U51oIQ50smTh0+aPFycGNYAOWCtmfA4l6iF6R4IBmLE7Zs1KywLZAlNpy1GD4FQMJq3Lo1vemp/84d0NkMQ48SJQ6ZMGV5cEMcAdRU48hRHCgQpPKBI+eaflgYHRoT7oTC7nGAFg5jyyKCA9JgWAQnFdZ5OTZo0fPLkYV27FpF3LN92W3+ULEHyMDhmfJORrgDQI1GcRkxJ27PCbbiiv/TPuuPPJRPpqnEDWUY7oL/yvnHHEeFEta3X7ojMfSwjyMrmp2gDboNxtKSS5Ihr/gNgblnvkx+uUBOCVp9pFthTPyFkjCI1dZVz758nAU8C/wIJtAvuOF4CQQxCTDfyJqaBQtm/QiO+USAND3qS75avmjo2JG/+xO2v+8hBkAnjievITZoyqrCwkM+emw5QMJfJqx4MRsEmgaxyfGnSFQtUdcx+FCwJLriSBzsoOCKuMc7JiDJkWHlZx6Jhwwd1615KoJ5VMIMSjUEREsk6F8jKIQxJ/sE0XaNlbmcUrS4XhnWnGaHyPxmkZHLlvbsNG9a3T5+ugyp6GyyqMqXF/nX8cIVxA8yLvrKPAbv0S71mkalDeY4U1UC/EFauPtJEsqxT6ZiqwbFoeOy4QcxdO4JtHm0aVqyKiAkf25/Xk1dmqDHc7eoQvAjBqWeDiCyKZ+Lk4TxSXT0KuSEJu3sU4tUl8aPrkOMXegFlrHZ0hffNTb0mxgIE1dh/FUeFpqep1ixGe0YP2FQu/dUFr3gS8CTwr5FAu+AOVoAdfOrALUeg0LAJe41vFHBqxmiqGMQIL32+pmSiMZFsSqbIGdDURIor/9TpoElg8OBew4Z2P3yknluJxiS3mhrJFsyXjyeBiT8NCFAnwnfz2BhN6LU0asaurEB5b3gc+g1NOOQTdfWJE2YouW5pWWxs5eC6w4caEpkmlSSL6XEKOzmKaaV3gW2ZoA5vuSbAMoBHgVHTgF1To8CrKCQ4pFi9NWH8IJCRChMnVDA3QDdpXT0lcbuNSOijgZ+pkjx9SUnF5IMAgTmEpdzIUjPkw0wnRYRupOqOpHCF9+rZhepTp48FeaEMfWuiSUAsdUcbeTgWWXsFhqRSFQhO92mNMEgf7h7O0ommrOg35BoTmZojjX3Lu4wZM4BqJ8wcwTDCREQPkWQjGkuKyV6iQ2c1YIzys1lcri922QBbatk4cmw4reDYsKd14Jb9N2MX9N+IVzwJeBL4V0ig3WiZv7dxuWczubGjh5R0iDc1NAJh2VyKVfjjqoYI1Pz+T517MsATI/0iPgqSA0cCq1duqqsl6aOW8YMAuGdsgq5tAADdFOjoyw0aWN6zR1l9fZMzL/GrTJ40XLDiD5xy+sTduw7E4xEsYvwJ8cKCtWu2kT5Bhj+enUAIlo6BnpZuMotoNilTr9mevboMHNCTKUqWnYJnjU2Jk04Z72pyQlAgGO3cOAVFhZs37di+Y5/pQrqGtdtC8tgTRGTILhVS1qFo6CQGAZi/9B6UT5919nT3wPjxg04+cUJjolES8fsLYtEDB2vXvLWFPiEEczgdS1m/wWVbWMQpT2XS/sKiyPjqfrk0oY2y3xOJ9PSZlcwHIIpBg/t96PTqPbsPk9IBycXjsbr6hpWrN5pxrRfkFU8CngT+/y6B4wbugCtTdODPRRd9pF//bm50D8qYgDAqcyeeVDV7dpUMUAW9p39/+zNLXl8D1Dq/CehsvngXP9OGVFlgKmRLB5hgPffTs8eMHayRhRCtZbifnT5tFP+c+Q30P/LIyyuWbQQ+Q8SeWOxN0BeyIUgb9KkmCxN+swFM2lNOnXTiiZUtpJoROztoUPcbfvdlZ4pi7L+8cO2vrrmfiQOLgZE3HmhtgzqdllVsHnB5oDT4GD9++Mc/eYKcUBIJBb+2ZMMa119de767yIV1a3b99Ko/0kQwlJanxMxzVX97QdQUGiGdPHqQXcwZvPTv3/uC809h2ZFab1E7/mw0Fvjhjz7vCNCLXTtrfv7Tu7N4pxQ96RVPAp4E/l+QQLuJw/7uzuH2Dfh3bD00b86iDh07DBnaS8Nx+QqACzk/9EemZW77zn3f+sbvH3rwuUCAFT0YjugEd5dq+YU872ydoGr5iIK5g/vrnpzzKgTZJA+PtkGWc2Eb0qslPw6Za67+0+9ueIzYFQWPKEEZOMk90y3vpC7e5K0Rt/5cQ33T03MXHzxYXzWuIkJ8y1FkpAKtyLZNJLM33vDYNT+790htvZKdCTu5JUu/LfJGX8hvs8r8SWUXPPfGunU7SGTGAi7oij0LXRQh+cjVtfvufe57371t1679YXK1KwBHdNqkLxmbbgDZRQn/UC6w+NXVSxZvGDaid1mnDpoFEG/WR3duynHevDe+ddktawjxjDCzrf63Tf9vuwp7pOln8PTxj82MxkyZ/W0PerU8CXgSOL4SOG7g7nCNbeMSqeSzzy7ZufNQ5ZhB8TifN2DhIJ6zzFPzllx+2U1vbdhWWBD3B2xqTvYsJidhM+82jADYFH8J5BHJ7gu+9NLKNW9uHTVqABlvBNqCPKES2LJy5ZbLvn7js88tjxcSycNz0gA2o8hzCuRsR4K4qUFHVaYEQ+ElS9YsfGXV0CHl3bqR7rilqJX167df8c2bnnj0ZfZtwmYXSAKbNhXZHvbatDPISU9RMZwQaxhZt27nM0+/3qt39759uzo0F8ZLUQT27j/8w+/fccedcxkNsRzUiZcbLXy840RmO8XiLEl7SU8yzBNs3b7nqaeWlHQoqBjaR+CdL/ipgnUNjb/+1V+vv/5BPPsxxaTTuFOWzbX+/r8w4IH73y827wlPAsdfAscN3B1ACz2U5jH42uI3meObMnWUWDZIwnLcsGHvRV+8rilFoDTpyAEsDEVcGYq4NFTSNGN7liP+dvnRFcGBvZ4myeNbb27btm3P6R8azxUTjFzyR44k/+fzP92y/XBBUcSREuZBn9Yoivmxuu88aFShWEpBvJLlstdRaMf2g8uXrj/77GmEGJqKcpav72tfvfG1198q7lBo1OizjOIgfnh2Hm3PbaIklNQS+ukPIZja1S94qLZ24YsrTzltQrGiwg36TQo/veqehx9+uaS0UMpGeot/b3OuvLMHIiv0xuqXquFN8C8UCTYlUs8+tXTixGFkCRax/C3fH2598nc3/7W4QzGZ3Jn34JaCY0xHWp1/5AAND9z/EcF5z3gSON4SEBgcl2KzkaLkUJS0sZVV/fVbSAPcKPyvT5/OAyp6avoUkA5Y0CIR8w4NZWlSt13jHQRnwlYGqTzbGPtZIserxg+xR4BLa8rvLy2NTZw0TO57+SiAezlMFI2Dbc3/37FtkHvQHXmK5T5EZgqsaQjHdSAwYuQAi44HWYHFvLiU2p5xhtGELMBOL9g5WmkW2i3QxCdjsK46zD8LTtlMdcDAXt27dzL6UnKAPi0xqRCLSxp0QUkW8cjzbB6a22jDAT/jH1OZ8ORkggSE2n37dR00mIkQCOdlBd2q8YNLCoskKy1JE+fqi1c8CXgS+H9CAscP3OWYEDVNXab9PbqVjq0eApikM7nHH31p40at7MfXUT1pKFkkARELfuYR0McelMXcCnreIVxhkHzOWJgKL0FXFMULpk52yXUDzzy9aOnSje6hWbPGYhXDisEcWXbhDGs5j1/vIJy/oLj+AHkVUnKuwIh0Dalrs9NnjHF28GuL33p+gSUXy5IccQw7fkhLqcd5uMxpVVe78kQRwI91Vv50TtySq0w6OWNmJcoPCH7rza2aTjDtMrF6aGlJUS4LPxkeUF+kS/KRne/shVI7SJKi45SNqxPwhVKJJFuBs4UeV7ZvP/jXvywgPhIlPHRUvz79OmXIM2mSlz7Q/ide8STgSeD/BQm0C0aCxGZTzj57oINLZIJy5ivWpDzmWKOGKcJSgxWG9llSUzHb2am0eP+BI9++4vbLv/mHCy68llxXWJWzZlQWhNmzyflhWkxRg6RW8qQVqEHUiCvTlm6agaxmcCenfIMregwb1rspkbnmF/dfctnvL774ejKCAcSkNe/Zs4w9nh09AiyF7oaYaBTRBLsFydjDrhdqBZta3mr9hU1gMp1M+7r27DKxehD1b7/9yS99+YavXXLTb3/7VwYFo4YP6Nu7OxHurgmesQZ4Lm30RVbNtsJ6xgFqRLHkEix3OKF0KC6cPGUwkpzzxCvnX3TtZZff+sMf/bG2Ltm7d5dRo/oBwvDrWrGji/dn+ScXpSFMEemOlJ8V1J71Jf8U10nvNWP6KPr76mtvXnzhDd/69u2XX3YbMaNF8cj48cNSTUqEwD89fbQp+pEvtKEzG/noqHfBXavQ6oHm6t5fTwKeBD4QEngXnzswJMzl21aQiuUplMuAM7ZrUAgJvghgUpjQjNUABLuDEime+98LzqypabzkS797fcka5jzr6+qfmfcGWQxnnzT21UVrdu87bGnHDTBEQCeGfcJG4Mk8MIoXIfzdYEunxg9IJdRkec55nz25c5eSr3zpunnzXosXRli689wzy7Zs3Tn1hLHbtx9YuXIz7hSDcR1kzmLVEkzJL7O4WcuqDI/qoophqKx8Z1azi15jY8PJp46rnjDiW5fffO99z0CNsnDh6uVL1k+dPrKmrvb1196KhNnXW6IglB4G8RHxi7Q80oCBXDqZUcpzfDXyJaU1ZyDTG7GpFfCRaMUxYwd95OyTfnn1fTfe8HA6ky2IR1Yu3bTwpZWVYyqKSmLPPbtS4TpSBOLQeoEcgGOJHjqMHuy6frmi8UeGpPBOYlrB27dv98//7xn33/vslT+643DtETZHJY/bM08t6T+4Z8Wwvk/Ned2ome5ROmKnd1E/nNIqAyU3NJGQ7K5u2Bvjgt5Xc8v6SyXP595aIN65J4H3SwLtgrt9wIIPQxZ9tAYludLSIvYtOniwBieLRdcZ8BjSyPHMCtJsrqysNBjMXPfLvzBbSFQcyKRJ1kjw9UVr1q3fHo3Hdmzba8tnZC3Sc44G7ZASjpC9pLxX55pD9RjWwhfZvzrTvtN5vwSbyQU6lXX8za8f2rhtT3FRETeI7A6G/W+u3vnCi0s6dyrbvHkXAOegB+LWCj9pyPri8/ft040Vs+bN4Epe/pyYjlF1JlH79e/xx9/PIU1jUXFcCMimg5Hw5i37npu/pKxL6bYte42aWiHZi/Eu0OV/SAKEJdLmyJFGa5yLWoRFX+gsFay/dCo3dGj/vz707FNPvxGLR5xMItHo3n2H5s9dXNyhaPeeA6l0QnJVigZ4g7TNCcMwfcr4y3uXke0YBJeQqEAVBKWO25kpsj79ui1auOqBe+eHydxmqiIcjjTUN86bs5h1rYcO16N60d8MuWiEfhtpNQen6XSue9eySDjCSi6ayHPOFABnkpnjQ2eu8IgH7s3C8P56Eng/JdAuuPPdNqOJkIIfoEYikZkyZfQJsypfeG5FKArW8m27avJA8EvmfCCXSqZWrtjsJ7hcxr1DNPAgwy7bW7fu3bvnsJZJUtMAybCPOsIKjizarBjc63P/ddr8p14DrvMYIojHJOY+BfCh6cCbb24m7DJCanJlPWSvJm4HIpHgoUM1m9btDrGbBHArJ4sw1B6ToAFHRhalHYsuufTcF15Ykk4kfQEMfCkVLFRhtFSRuCUCcd3aLVArKIiDy0JlEWB5baC2rnH92h0AoqGo8t5bqnLySvK02lKnAoGvffXjb67edvhIHU8aKAuAWwYLnITDoa2b9u/csydWUCD4ppa5a0KREHH0a97c4oJYRA3IznfEUFty8acSmYu+/NG62uSmzTsthS+qw3UWM9xoSUVl9u+r2bRpb7wwbo4c+oEnjeQwRNKE1qzZyPJV6y+bTPEQHKoLuoK4GVvUJz7zn6d37dJhydINYe2XAvRLQUkgtkghLxSTDAf67oF7szC8v54E3k8JCLjbLC6wxHDK0Mpm6tgjdPKUoR/+8KQuXTuSgIVvnH88rk8aZJBbWQHUZBFgvhHI47osVoETYRyKL4yQ9Ve1hQ9cpD7VrEL+CNmxVf1mzhzbrXsZ6YLl4bUmwEyr6TQKF1MsHcLuxpcNA3K4WEOQCrMaJww1tcNF80E7WFZHibYB0CsG95g6ddigAeXa1pSUhwbKwmiLCJQfwmYv8cMoy6P6rn0p8u5moiQJoKc39EHFzTogBbnggTxqYkqXl5fNmj16ZGVfFqOaFsOXQiI2JTfnGWryuDwewbSy1mhXC5jEujehMRIgTSapGammPflkWBtv6izUqIpwSIc5m7W6Vf0QGtcpUFanxbDEq6OUqF9ZHnkQxKcBu+KqISskqackPUnJdZaj6uYYIYWmTCMd5tDm/sr7RKGm8aMTr3gS8CTwAZRAu+DueNVnL2PNQDHrY6Fj1djBRYXRiooexLwImwQoAgXyveubF35oqZH7/kEl/qEnqENlIIPgDWAhRypaw0phls0EGgUyTfrATTLfhkO+ceOHkFELUoazAizDHZAUXMKMF9rKDaTf2JEOLgVkXAHAVN/g0l1x/NgV5gT8FgOTmzR5BCm5VFH9cEhKL/SEGdrKDA8NB7g6Wh3xw5mhrdiWcjJ+bMrUNUEO+imTRtDotCkjQkiGfnPXKBgmSmL5Qi/UNhy4eEcFBeHcUtfohmZOSekFJarBIbzKUwW1dMo3clSfwoIYiYgJHGp+F6JGHYnICh2xX3kBOtXivFv5atZfvQ5rLmT1OQ/6Q4yi+vfrNWRw+fDh/bt0KkGdSHXZG4d+SxOuIe/oScCTwAdKAvpW2y5K6ivHMUYohZPGusbBg3qW9yJzYYDktGRk5CI2o+7qH/apBfkZRshWzRd+C3N5Ckh0KVwEUorIDmXSPnYCcS1wZIKxvGcXtrHm/rSZwwEsCKfZaSmTYCc9tqwTDRmkZvOCccqjIlgjk4FpCwsGZy5TK4bwG2BdKpqeHUX4R+JDojDJxUg6s0kTR4CY06ePiMZwBCnVPLdggG2yBV8CXMjCuaAdRIOOeefzresqLbsxh4EjlR19EUmkyJZMOjOAdcyYis5dCgk9RFAU6lABlgTledAV9END/VL3mBmGMieiS5EaU3Z0dGMqkzSBG6uNTfXTZoyhwqBBfQYO7tnIMlP6516H3ou0BQ/aS2Bg47SCxGJ6i+YocjUZM1JgqCvedpKk70wEZzK832RjQ/XkoXBVVlZSOXZQU70SWFLUiupAxAudNEF6B08CHzwJtPtxAiWlHUs6lnVtagQfyXXl4+SU0yYrMXouNGNW1eNPLAL9BD/+HHu/8cHv2nEQ4NCWPdihMjlBK1mRICRzfwAJfyzVOOYwwABcZQqLCrp1693QgFdaKENOmFknV+LSwfKuHD14VOWA2tracCAM8kRY5R/I7dh+xBcglaIzIUXSUDaf2RePtQvwaVEAkI1Ew/169k4kGgXWSo6YYg+5Xr06cT5gQPmUaWPeWrs9QnCmPCFB/DA7duxKp+Q10jIruY+w5dVNhGA9kDVNT3RFETJcx6/t792nayabwskjQaVy+GTGjBkChJd1Kpw1u+qZBcsLtb5ffupYLLZ79/7GBraxlkC0OkkobAVitrRJe4/qLtcRMe2TNi3Sq1dZNOxvZDRjnqBYrGf1pGFUQMfMnD2WdAVsnerIxOOFB9gftqZGu4XQMZhEITIw4E1ofSzeIXHPGCvLkl0a0W/WiKV7du8WLwjShF4aV1LpaTNGO5qzTx6/cvkmZn0lRF+ACe3amtT+fQds7a6r4h09CXgS+ABJoP1t9lLZrt07XHbZJ0khIJPQVodGWMyOHan5x1wCDGPW0RfB+N22fd9VV/319deX4MM1XAB/BE8c6atDsWM6zX0wqjAeu+jLH/n3M6ZlsNBBsFyWnLShMHgnrQMQQwFgiheED9bUX/vLB4jbC4S1Eauza/Pwdwzp5p9oA8I2WYD/2c+d/LnPnkyamURC7g8I4PxxkCpzWynlc/FImLwIt9z82AP3PaMJR0W/aIJU8NpugUmNDLDy//0jUy686GM4rBoaCW4BcENSUVZsVKMdNJiJZc+nB+5bcPPNj5FCHVhEE5J7vUU+kGo516O0btMY4C9Dl6oJFZd981PkZG9qavDlIoB1SxPY6ZjTTB6TR4BX9NTTS6/91f0HDrJpbV5tvI2scXVsWz4fJvmIkcO/fcVH+g8oZ8tyYyAdQ++hZjRGUrJ+JIW7KBoNLl2y5cor79i+bQ+zskYv7wvS6/L5S8P+758yoDQs1eL0Crwx+FCHWjSZe8w7ehLwJPDeSKBdcMfISyWysXDo8184jYhywlaEPHzlmjo1DMJINeh49ZU1P73qvq07trMrtMNcbGTQxFV7J4jkO8L0I45jUDqX+cQnZn7x/DMLzPCUgWyB4YBv87PZtWt3/+THd6xetSEaL2Z/DyjIVWJhkTgN2pQMiEsdTG8298DZcuopE7526Tm4F2QtazwhyGpVsrt2HfnZVXe9+PKbBGKa4U8NaSZZu20Ww33oc5PONtYlJlQP+foVnxjYr5eqM0Hg5gNMYk6R1NY1XfurBx995HkiW/zacu8orLsWmvvrfoGDDH00/8woim4mG5M9epVd/s1zmSqAJxSQdQHdc1QC7Ah4681zbr99HtOk7G2LN6Y9/lva4oT2HPrjiikrK7vim5+YOZN1ueoCK3tt+hYPFBPCaER17M9/fv7G3/y1vjERDOf3enWv2/ENuMezyf/e+BJHtLWlPLPnyARhwZb57nl/PAl4EngvJdAuuAsVAOhspkFbHVV+44pP9ejeUYALEMhwF6Aw4XbTzQ/e9cfnMoF0PKYN89xH7pCCCi0I8s4uCFM0MYnTI1NX1zCmcjCwxVZ2wEArtNL5ffc/C5Q0NCUd7DpSjrJsc/kZ2ijCZICIghHuyzTWNpWXd/36tz4zbfJQrrnHcz5AE8DyPfP0iquvvnf33kPxQrJ3AWfiyox3utk2fWPSfCamKOhKQ0NTaWnJ177y0Q//+2RrG+PXraKihezSJZuuvPKuteu2FRbGmYIwUYlF7rWU1uLyZ82DxSUnVAN6hhn+bOY//uu0//nf08NBjRtae703b9595U/uXbTorYLCiJsPwNA+pomWtjhpJp1/a9KFtok20yAf/disi750FrO1Vl9vwVRRcP+Bml9e/acn5y3kXciIR9drBJZXD46gA/cv7l1WALg3qw3+uwHmqcA8eGsevHNPAp4E3iMJtBvnzmer+T1F0UXXrt31ysurT/tQdSSi9LzCbr5Qf/pHP7rrzjueiRXh5Mh7Yxysc+QzdmDhrrTBvWhzWQARjQV37DjwzLzXp0wfxtKkVpX9t9702C+uvs8fxqtPw+gDAMI4AHU5l9FqCN7qGXcq2vKbo4n0QDgSPlLTMPfxhcNH9OnTp5txiOEMPvqfePyVb15+UyKdicXkgsA5rc5BXI7vd9A9ekFQZtzAAqLCiiW8JDXvydc7dSok3Rj6zzgFGXOrV247/3+v2XfwsILNzUFhig1ax/JvjAltccUwNNHEKr2QX1xhpuw6QubKl15cnmxITp7CnLA4dRyx3Ol//vMX6zZsKygiThMVkA0ySyEZaRR1lOtWZ+66xkD5OQzd430EQ5HFi9du3LjrtNOqTbrIHVkF8Thd8MVfvfzymoLCOCyJNWvd0eFIQSjIjtDOcXW7ovxSy/q/nZgWgSPvnycBTwLvvQTyDlN91scU5jwJ2wjiVE6HY77C4lBBgctwq4lJAbcvVNqpgHWnfNJBvM6AkBV+tnbLHEO19U+qK9hQ8BvAEoR+p07Mc4KGeH5wR8hg7NqtI052wtn9OaJKlAUFWOFBQM4iWKjTbhHWyG+uPfaAeQWnhyNlnUx5CPbgWujarVdZMBLVXELeuERbAKagXLMDqq0WDLec9wlhwDHBQtAIsgFJxy4deILWDVMh5SOdeiQWySTgHHsXdsSYTxO28syoO83HlqaE7JrkJNBFgTtmgwsjqYivvkvXEk6MT0kAAsXFhcUl8f2H64jNZAiFex/uGYXYXT3WQtmdtDSqt6A8DCpUozmkFQpnO3cqVk17C9Iw2o0v2qlziZ/NrLSWlXbJoGmPGPH848YW57LQUfCG7K5FWJGMveJJwJPAv0QCgp42CxtbCP0AH7y9TZkTThgfYnrMl92758iGDTuADRI+njR7QjyCfQYBIRQgJ+xphqoWslyhtP6pc7ZHEoYaCPr9eHvHTRhS1rEAw5YwjHXrtrsHqieN6taljHBIcwuIGfcIBLEwWZUqUm0XOdyBOB6w9glDzFYM6TlsWA+8GYlkas2b29JZrf0ZNnzAoIE9iPYRk7L1QTrQTIrE0LNt6grnF5BJJhi++JeoRxBhr/LO46vZE1wqcPXKLfhquFzeuxPZiRW2r4h8DhAW7KIYHfXW8nEyJEGjBbUQHS9jGoIGuzjE0mWlRdOmjXG8rV+/++ChBh7BhTJxyjAYoLtGE4+V8qBxzl3XSuuja8XdEq8t1eRm8TMrcMIJVTTKdRYV79xzWCRymRkzqnhxZnsTwgQLdtnkq/v2lqHpyHJFrhhlbuM0z4Z0uffPk4AngfdeAu2Cu/tWcSEAJyVFMZbk8CmvWLHp4gt/87nP/PzBBxfg7R06tM/Agd2I2+Y753u2b9xsS+BBeNRGcd8/R+rzFLEizBYSlo73fPoJ7OwR2Lpt76WX3PDZ8358801zmI7r2r145Mh+TO06vOA5gZr8LYReCPbaaMMumdPcllmBLkz9BoIExkydriYOHmr60Q/v+MynfnTVlXfX1TbFI8Hx44eCvBqOmAcZ4ubQULqV9uijZkB2NAEENTig5GgiO27coA5F0abG7LW/fvBzn/vJFVf8fvfuOuowC8oD1CXUh77wByFA3YmCp5s7KGi2CmCgFrWqqhVqc51sAWwR3m9Qd67efff8/zjvqq9efMOadVuB9BmzRkfZLpWE9LhlMLl1kJzd4y1HWqTwk1ucOJXMT3eRIxqivGe3seMsV+WTSz//n1d/8b+vfvXV1bzTidUVHTsUM23r8NrR5BExbA1xTtF12tcVd8GJMd8R95R39CTgSeA9lUC7PndAi/C1bDCdbMqNHNH3c/91yn33zP/O9+88cKAGt++zz7y+a9ve6SdU7T9Ys3jxGtbPN3/gecudp/mwW7PuPv6jV/D44MkVPEezqUzP8o4XfvmsF15Y9s3Lblm3YQeBhAtfXrFy2cYpU0dGYuFn5i8hAl14IbQQJJoJj2aSXX6UZqszkMgWSkmFmB2dK4gXfOUrZ2/fdvDrX7vhlUWro4Xx5cs3vbpw5ejKgQMG9HziyVdh2SxRNxzAPQE88az+32YxZwW4JgCT80Re+uyFF56FG+kbX73pibmvhOKRjRt2k2Wsf/9eY6sGzHliUVMyyXorpVAwj4VUlXzUKjThgLD5XEuZoMjRfCNc1pACJcSE7fAR5d/+5q133jWfDD+7dh94+snXS8uKJ08b9vxzyw7tr9cUsknmGGjPw25zZ9Sq4TsXOHFHOkIc5KmnTpg1a9TPfnbP9b95KJXONdY0PvHUa+Tmn3Vi1fIVGzds3E4CsgAZ8LW0Kv+shGCFC2F87vV7OEpHGnH+OGY48f55EvAk8C+QQLvgrnX3AUKno+l008RpI5+ev+T2P8wh7yJhzQAyPuoVK3a8+PIbAyt6r1m9mXBDoEfOcEbh5AfWd26QJzzKRmORgoKoUqxYySOy6gDNgvhkOjFi9OCNm3b/+hd/SiZ9sTh+aZoIbNq8b95Trw0c1Gvjup1NZPhyMAER9I41YdCos2AgFI9GkumkRb8A6KgBgFrQr8U7rEdKpoZU9MZ3/cMf3Y4fg1xggUA6Go3v3lPz5NyXyrqUHdhdU3O4RqtO5ctQ5KedEJ0NEXnt8VJFCyJZ0vIC4+KB3soVrqMMfM1h9ujRrVvP0h987w8bNx9QVEzARz7FmtrGOXMWopxS2eyObXtCRLcLZY2wnEaamkQxmMSypaUdkyl887rcjIfqN/9XZ33+gli4smrQr6758+LFG4pKIjBLLslk0j9//uKamkRBUZz9XUmQaaANSb0FnnSDEjWUy6DkEJlRg546a/QlRSbJqQ7XE6YMv/mWh+fOWcraK156gG1IcqGXF65av2lX1+5lb63eEgrGcn4SXrJZq7EGieYzBBfKZarr9oS1s1X+ttrjteXren88CXgSeM8l0G4opEGwUMgN2/Edx2IkmQKUwkAlk5kslMfRQXIr4qn5Cac2OQok8c8hO0DBev8cuWLYSe7OO+YVFIiCLG+DG3P1Ggz50qx+qq+vD4ejoKvV4Y9c5gT/cYVYGRIgAB8Ccg6G3aIifgiWTw/o3+PU0yaw1zMTs3aXvZhAZKcDdHS9SDY1+UMwbNPIugzgBJy3PV4QozvmZhFhK/LS2IpcJm+zhUWxz//36Tde/xct7IcBGBREUqjm2MqEQhFWGIGS+Kyd+8XVAVLRYKR+ZFm/VQZPrRxl0jRiNnf+l8687+6n9h+oVaCjEg/kdaROzJ9DhLySC6RywYi7C4cmUBn1CZYaOAe6I2+PS2ISFBRYPdyU+MKFZ770/LLVb25B2qJp74sKWeZ4ldFNehEZQg1hio6x4eSJhmYDRfe6jbiiOlWnVUH1EeF+wZ5l8VxSUzZWRNHotqronXoS8CTwHkpAQNxm4bN31wEjEMl958JlPwYo36kiweUqUQ5IVhXZ3KZt0sZ1YZ8DYvZ4S2cnTxn+4Q+PY+m8sFSziCIsIiqCBr56gJUmHHCbcxkwUogeIS7EMaJMHITxgNVHJQBXsnfhkzVKI0f1Pu2M6uJi3MHCWTWgthhj5PEdcxuEDZEROKCoTd0Hx8A1Cz4JBQuSKZpgYZFu0R2dyN+d0cJKn7LfDOjX/cwzJ3Uv78RsrAx2iUJqRs59BbTIk57JJsPhOCtR9SwQaUucIBfwo7wirCOFrOWoEXFkoKYc7OaUNKZL19Kzz5o+pKI/qYxNVvZ2VEGtiCAOcYE3prQLc5IKdNdphIFIBi0rmIaye7Oq4JpQ27lcYWHh6R+aOHY0s7tSM27OQGzoLaRtCKEIJibSY9FCiZe4GAxwYqasv+ROMF0o2apb70B2R8o7ehLwJPC+S8BBQFtsAI42HQcEYL2CrWaeGqiaKYfpyg8DT1znbC+nuULMPoLwBHqgmz1CFMe4qqGDBvZhUXsyJUAxsAGdsVUt7aJpEbmJrTmgCqIwBGVzFDA9qCWpvpxZkfld/YCvPKiBfHjtJ00c1aVjaWXlQJSE6gqjMRaTRtOMYnUHDcQdZ2VzFH0tvKIjQQIZnTIT3AsxxYNcU4R9QpAUApOnjIxH1RfSlxk00wxMi1uY0ciAilI2YsCsXX4LvtWklneqRY55s1dc8IM2oIACw7WSrho3MB6LTJw4NMs6KjEscTUbzqJiOhUiKWNAsEujDGmE0crciwIgu73lNXBjKbcIVgpYfCKcQYN6sr3t5KlDIxHUgwN814o5ySzbAU2jrtR0/i2IU/4vTtB2QTfHy2u0B9Vbr3gS8CTwgZNAu+AuA9MsS7EMOjiniNl0wlzDLHcEUEA3Z8MSXYNpyWSh/Q5ggQ4a2K2iohcgefK/jU+mmvJmpny7UgkCR2cmy0hUU64Ix9SEUhRYBX6a5wdIacYdITUBJRlftx4llVV9cVtMmjxEwwauylMB+ivDogNxqrJHlPSROTF0VTymFeJNXbCLFaGqDZgC1rAHmJEsXjjOOQbv5EkVsDRj5qhwBPe6mnYMCHNVpCeE4GZfC9axajVsMFjMX/ObpB4AAEAASURBVHcojPFuiC/ol/xlFxsKT5o6Qr2YOqRDhzjENB3J3CR1xAfniN2GO0Jw6R4TEVjOtCuCwv2tCpCiTZQNd6XhhNF0nL8BxgNE1PDs8JHkUuuaIm+YOEYvWxIYucR1wXHl6LsuCNabX4ci9K0gN7rtzr2jJwFPAh80CbQL7uZn4JPOVxBWGPDZ9yyc5QRU0tFwUKCLN5vQaty1TcTYpFKJpobaxNRpoy3oMVg9aUQ0HEo0sG0cWWuS2VQ2rIAZFUMlM9iFLO5KMywKU/JQ5aphpdKo8n0lsqlEuu5IY+XoAZ06llJvyuTK4sIomWmTTdxKsE83HhKYBKdg00YSwm6Rdh4JO3ddgG3oc46XSaEggVBjYyrZmE40JRtr6lBRQyr6wdnIEQN69Syrr6ODCbLe0k0Ho84tk/fD0AsaweY3k1wIalHw1pCglhIMRnH4ZFIJRMG0RFN9EoN6wniyPPp6l3cfOXRgfU0Tt5qa6vAIwTPzBE4BwLkEZKit4YI5rzjqmpnSagVtYd1BdSltGe8CYo1NRQWR6uoKKhQWRhklNNQ1ZpqSmQTTBCQ7y5BNQDTQtUjMXoT0ixasmZMq/1+CJMkbgQFrSArGK54EPAl8ACXwrhOqziFubgcHH3ztAA0wTrFPXIYhH7nrGCsw+/Tt+IULzizv1am+jsU7BLGnBwzo06lTHCwgOHrVqm1MsEIhyuxlOvXH255c/Ooql1YQOkAVqOeoCZscfqEtKGYkCrOyodKS+H+ff8bw4f3qahtBbqYoe/Xt2rNbGTYvULR69VZmAgkhiYTIkRh98E/PzZnzqm1BJ7eSoTwILpItekug6VRYHvdZr+r/zGdPmTZ9VH0diYLBvTS7lAwY0NU9wu7SBw/XyiMTCrMf7Px5i+6/7xkRR1xqosWezVvNLfKxRnXXdfOss2d+6IyJgl2CDXO54sKCYcN6wxfi3Lpt9+5dB/HTE8xfWBRf8sbGP9726JFawihNPiCvwSucm9DAX72OvEYJhCzRWIhw9VknTfjUubNJjZlMaEQTi0RGjOgNWMPk7j0Ht27Zjc5AH8eLwuvX7b/phocPHDokXSXNJIloX3RGEMJxyDe/INpyNnueDSq+rXDTm1B9m0S8H54E3g8JtAvufMwtqNSMgy1mmsxhA1+qACoCYqE+696T/iEV5Zd949zhI/oa5LtHHHaqf2Z+Bg8ePHzN1X96/rkVQjpQETzD6nSQ4dSGPPLOE6QmTDIQ4R9NpHr06HjJ1z85ddpQ1snrllMu1NKJeW+0nih5428efugvL7CmxzDdVVJ117W3d1DXKWAm13FydCiJfPF/z/7I2VPRGY4+HQT2rBLX4E0+kLvueOoPt83V/Kc0HBMJYKiaUzVBpLrW3JCu27kexEuP0/tT5530+f88nVBD1c8XnrWfALi1MufxRTf85qGD5O8l7lHIL+SVc8kUCQTNsqbdfLH3JqAHl1ka9uEPTbz4ax8norH5fjP95t/0b9Hitb/4+b3bth/ERnfCdnzqFTgoh6Ojoxz6atMY+ffSTKj5rwfuzZLw/noSeD8l0G6cuwD3aAEB+GfFjDigyypIAQDMwgJhIJOpvt27Dz722Ms4DNhqA7+E4RGAiz6gAkjuW7Bg6SWX3rxkyVsk88JvIQgUUDmCLU1SnYh5WhX4WwtcwW7FnIwcOnJkzpxFhw42VFVVkNzGnoGIKloqscCG9du/ftntT85dyJbcoKuxyn1jwXWC4Yc8TfliWKb+Qp4/MN/QmH16/uJ1G/aOGzuQbPJutlHkxakgdvv2A5d//bb7//ysXC88wJ9AxlLagvtGyXrUQpk+Uqw9HWmcDOwLF656/fV1w0f1LivtYA8Jea2S1MKhw/U/ufLOm256vCkpT5GeZl4UJhW6b2KBW4YHzcMdIy7erJg8A77Xl61b8OwSFhL36MkWWhTum6x0zu5Rmd/85uGfXXV3zaG6aDRgcekCcmRlDbmDjvZky9F0mSgcLS09RcmTILSqcVcM1vQERRoHpjPy/ucvuRve0ZOAJ4H3SALtgnv77REyAcgCKsI090kLSGRgE62hNTXYsC8uWLZ+3a6Zs8aE9VMwyjfNI7feOucnV97T1JgkBSPw2oIIqtBs5HJiP7Xi0xpygIqJqkWqIIb5xAPLlqxZtGg1QfTFxQUCXZ4yTfLcgje+8uUbd+zcySyorglYRFB+C2vCYB2QYcISyrDXUoEaeU0D+IbDoXVrt85/+o2qcRWdOxebqW4N5HwvLlz9lYuvXb9pJ0HfNnGgvqs70g3qbDP4AuISlLWv1l1xncUhThPbd+yZ98SSgYN69Onb2Y0GrBeBzZt2femC6195dTX51Ej/bo8oWEW6hRrWF50oP43BMTXaKtFI+ODB+nlzXisuio8Y2U9vqXlkcOhQ/Ve/fP3jj78SjWoXFoSNjgLxIYNYEFfL+22tF9tqRNfoGkekDWtRt0KVqXVdM8nn14U5SeiiVzwJeBJ4TyWQj3z4u9ow/AIcFX1uSMHnbB+1xvSyO1lnE4nHNm/aoc9aoSB8+LKv8cFs3XyAqPlYgULB9Yzdc7jQwoO7qJ9CIuEhrfB/4s21otWfxtsAEMUKijZt209lWfQgCMaucNW3f1/d4cM1JSUlDmqAV+fjbmkF5BUCQVlAqbgeh8hU4HpzfUAzy7qtXXuPHKltMB0APWvA76urbdh/sLYQpaKuo+jwheOTgkxa+WZEGrcINwTD6juKxFw04s+6ZGyrWqwgBqm9+2qtdXl71N1chlVj23fsVn75AEEt3KR3BMUYy0ZBnh0NPoTF71LoUiQSYJXs7r379XC+rzzFdoiZDZv2xONhyOg9uDgiN0OLkstPDejFWfbKd2lEmC4WrUimtIRvy16fG4kYn8Qh4VIyGb4bMe+eJwFPAsdBAv8AuDvHsYGE7OIWoDQIs4+cS7i8Z5xQFYuF+NBZsZ9MJQsLaCt76mlj5j75MowfA7iuK4ZhpiCkJgQWIK+iIWWw67oBCCAErPnr6mpmTh4nbwNmczbT2NRYRLZ0X5Ztr3t271JTlyDAD1vU4Y4dwSnBpLwFpge4CCEItxS7m//NOdtqD64oHz9eQZA4oNlKqaQ4zlOTJo3oVd6VnSuwvoEwOekFnPJEg11msAqhHVndbdUEdaBs7XJKfKavV8+O02cMl8sFtVHXwCpToo6Gj+hPUvilyzezi6F4VJLdDHO4UmKY3sSbO5S0SE2nnFp60foEmmgZ9v+bNWucrgd8dfUJEuiT4KZzWcm0aaMffXQBQxwNWRTvCO9Zpljd2zHJuNedB+7WlN25607LdbrGSxKVpiRJN502ZloYbWx1EES7pFqIeCeeBDwJ/PMS+LvBXR+zJtlAKEKwWdwEiAkUYIVbTO5ZqIaPNTJTppBI0nekJvGzn9+zZdvOK77x2REj+owYNbB7jy5797exsbKDiZbZQoeB6qHwAq89f6Qe1BCIBkzlIrOnjwVJyMV4w28efuGFpV+/7JzJk0Z179Zp2PD+L7y4PC51Iq6MhjDFNSGGUR7yxTsdI7Jmv1sUIJTZkjvHmiBfsikwrXo0+bF48N57F9x799NfOP8jZ3y4urRDwYRxgx959NVQAUQ1jBDyav7TrGvqW8IvLRSFb6693WznIuipW8R0NjaMmDiia5cONDfvqUW/ve6xM8+a9B//cRobbkycNPSNJW8F/IwPnF2MbPMYmdd8us6gRkpFLbVVkFQmnRg8sO/wYQPA1deXrPv5VXdXjq348pc/hrqdNmXUnMcWaq5YhDUOgCVxy7kpG5nzaFU5z9u2uIXmzQUaUsrsExIOlY4fE0cTwaFelfz8nIl4+6w2k/H+ehLwJHAcJPB3gzttZjOY0nyyFpci2HLGHWYymEXkOxsSKdnL+OohK5dv+OGP7nhr3S4yWf3PF6752lfO+ug5syZMqnjowecLCgRJDhrefiJEyJGLXDjgKphRyQ+5ZWgOXUIAZLasU3zqtBHbd+z/wXfuXPzGqmCo4KtfvfE/P3vaFy44Y/ZJY55/YYlbbtOqCfNuCLtloMp8FzABso5/zGOhs1pVpjBhFinMWPVT19D44x/cNXfeG4S1fP97f1i25K0rvvXpE2dPfOyRhUCetIKkIVYlCVmmImzGL3lgJCzuvvNdUUlt5YKzTx6Dx+nX1/z5ngeeYs7i+usfXrFs43d/8LnZJ4+/849PKVm86CMWrHWDS52LPdz9rGWVntUsiK60Uch1nMhNnzE6FPbdcfuTv7v5MVI0r3lr29rVW7/7/c9MnDyoa7ey/YePaEjAfiNHEdykYYJCF+o9mNOmDfpiRnMN6DP6TQV+4pSbePc1JYURcQXvTgAtxzapeBc9CXgSOK4S+LsnVLHfCovDhNk5B3CAVC3kJNH2QrLsDGJyZF85+dTqHTv3f+eK3+8/XFuIWzcUxEP//PMr9+87PGr0wFdeITm4Co8IGuxB52dwFnRYCWDkuZUpKGyQy8KqmUpg+9ZEunriCLaU+8Ylt2zcsrugkAVSsj5fXrh86dIN48YPWrZsc2NjU953IUAXaudblFoKRcPYk7RNPE/KFAZVQFtVoSb9Il5+yLDyESMGXn7ZTa+9vh7fRSjIvtahZcvWvfzCyrHVg9e8uelITZOlIcvPo9L/Vg0RB5/DAZJOWeSieqHS0l/OUQBdu3U64cTRP/7+vfPmLo7G4qEwMUTB9Rt2zZ/76rCRg/ftPbJt205y+JgBTP80tcpTCiSSWmL3J2awccqbBjH6xx5y2YJY5Iwzp9x26+N33/ks7hhQnjQ+O3btn/fE4t79u6TTmbVvbecFSdqAu6aUOWE04jSV0vgQtakf7RSJTJMSirDhSfRuYVH0ox+dGYvBJBekKN3rs1/tUPEuexLwJHBcJdBunHt7raSaMl/5+scf/euCjZv2kblQrhIXom6jdqw34CGQC5V1ju7cdSgQjJL22wGPLGRi75rSPXt0rKvJJNKNgEIL4LZujqWhn/6Pf1uxbO2qFduYDASIff6EcAcTEhNVTfhIzUiarf37jrDSVfrFD+phboMmvsbG+s4dO5Mssr7OZQmmEcNsWoMJKyw9PfVD1cD3s08vixbgXzq28ARPlXSIs0S0PtmEl0laRRMBgrBEY5I9K4JMVB5pZKUPWqWZMGhGJSEvmbnGTRjcp2/3P9//XEEhGdYEcy3FsYRvpqQoisP+0MEacnJhmxNMSvYACitLGTeUFpfuP3QQiSIrCJu8RFyPB9jI2t+nb5eZs8fefuvj0WgbvaA5mihiM8RIbNee/bGCuKVYkC+NeQvWkYHoncs6HD5c28I/9+QZU2ssZQgx+11UHDz3U6f8/tbHW5h/5wn88JY13ctj6WzHsoIH7vthcYntry2heaj+Tpl5VzwJvLcSMEhuqwk+SH2TivQQqFCFD5jvtrRz8emnTezbtxu+F0U/YOSqXt6sY08lwWIwvWdvDRllQ+y3ictAUGLmsC9A/An5bJOZJg3km41BO4ETuThwwcSCwTM/VF1VOZRZWbNY04GsQy7NzMGJ/gR8e/ccAg2DDP3NKWDoqaaYkKxvqmeJrHA4bzHyEEEz2jjawlHIvJX+t5PHnTCzkl2kBGT0gucZKthqLDoEL6B2bW09W8gyKKB/+J8gByHO6UV9YwJkFwYyAyC0RKmJOee8phekDZg2ZeSHTxtPlgUF0lhxXTZdY76OoK+2vqmhvhFoNqeQpkfVhGXMz6QD+w4cZCiAVEUbNuGSLuu9SPSkwxw9rN9ZH5nGwMV8+K6RlqN44eG6hsSBQ4fhGdeJ66zpjwwKC9oHDtUgNa67dt1RfCJ6P7kqk/369PzYR2egSvHnSAx6ldYdUzWuMfFjknE/JYYWReohe7NQvL+eBP6VEhBWtlmCOKD5wN1nLOjStwvajq3sX1ISn1jNfnUgGFF0sjTlq8VcNYsVvAPLCCOxubg8qL2zCekOnBhG1u5i9MtUZKehQRW92Bpp2vThsXCEyEKug7qGFToXuFoBtoR77RRZoGLeZkqFwURuZNI2JQvs9urWpbJyMGugOpUWobEMm2SBC2FNl6nvGLDW7zZbsNaFiTxjU5By00u3CNdSuMLJcsPufSNHDujbt4tL4w7n+fqCagVPijsrXKe8rSHqsgEszZhU1RGl/8I+9qcw9VVZinfy1FE9u5VWjhzIKMQgNY+/DHfUF/P1U/kYQXGFQnMcucVRvbAjDOlBl+dAA4gU2YGKi6PV1cPQJUzeZrgrefL2Jd638ez98CTgSeADI4F2wRHgBoyyviRxH8CKLMpcGE/7CTOrmCysnsxemtq0AdjCLUNIBnHNDhwMJgwpmj98rtBfEIGjAxHXfQCCekzPgkpABTSgTzauKdPJNZYbOrx33/5dGR8obD5nk7eKKXRJHM3sFXznwfGd8oR1QZDyoyhppSqA1fJXE12THDO2Hy6Xbt3LRlf25SfzBxkQGahy0O5qC/Hap4/2MPrmr5fuoQvwr8kIf46sZmQ5Hjq0J9A5vnqYpbsxPSP/hCaxmYGQdoOGFTXYqrh2rQt5nrlCd5TZErwOZEnUg98G/sdPrECMk6eOVMfUS16o1GQ2l4C4DSPyTQiRW72IVq3lX0r+BVkgEupZ9DLBkqL4lCkjeeOzT6iMBCMp9KO6nfZnGM3AkvxgXvEk4EngAyiBdsGdKAzs6DiTYsJdFaZJe3XrJDTJ+Xv06DK2anCikU89yzZKaIEIbmmzow0j8rOX1ORBuu2Orv95EDEcBc/ljxaqszQdDMkVF8QnTx4CSMWisYkTh6eTDdqsTcojR/4vsglIJZhp6czY9mQqLJNdyeQjzutoyBf2pXIkCLAOh2ZMr+JB6kybOhrLXR4bpgbS7DYSzm9Loh4DXlJIbRa6jHw0kjCVEIsElYKLvqoj7ByYmjZzuEGtb+Zs9q0Ok0VYHcwx+ZyJRJnWFPA2G+5va8HJyhpX65wwDOKirWjVvqQ4ZjimmrJjqwaWyK8dmDptWElJETeoJmWZI6MZm16Fmr1Befot3WluIq+6nF2PnkbCyEpaQvmKwySsHFzRe2BFd5oYPnJgr/LOaBRoocGQLlPSUspe8STgSeADKYF2J1SxRMG7c86dccYZU5U2NkVIiR/XcN/+3XG40BfSCh7YX+vyFBYWFi9dsf7G6x46dDgZCKmmTGxBsExafoImLcji5ODAK5PMnHzquM/+56k4XORYALdCoUGDyrXzhd938FDdrp0HTGUEYoWxHdv3XverB7ZtP2xYJ4LvJNtayFQAp2AehfTF888qKYg2NjaCU9j/g/r3pC9UYCHopi37cJLwILkEDhypueE3f16xdIvtZdGa2LudY/oPqeh+0ZfP6dGtjM0CqYrlW96nc4cSwuB9iWR608ad4D4aDMc3Q5Hf3/rYiwtWkkzB0L8NfFS/kLH8HuaJgmA63KFj5PwLPzJuzJC6+sNoFrRW924dO3UqMeXpY9NqEiBTn34FQv4/PfDiXx56xmXcfCfrLXJzMqQCVzii2C48/8MTpwwnHab2c8r4SjsW9ezRxc2Hbt26hwVQAX8GNcP077ynFhOpqSHI24tNqBbdf+93Szqo+17xJOBJ4H2RQLvgDjeYcuzn9olPzfzCFz6sHfWAAKxdAQEeGOX0srA5Af0zT732i1/+mak5udqbrV2HIK2Pb+uhkNlm7dL+U08f9+WvntOhJA64owpcVCUtKUgRi9tafWPp+quvvHvLFoXokNFXzIiNdi1rwSIVgvLJZFLZiRMqvvmt80gnCU7as4qtdLy1cLV58+6fXnn3kmUbSbSii3K6y2RuqdD6xBSL3ZUJnks3ZSoqyq/4znlDh/Zx1URcRr0A2q7QbuDgwYZrrr77uWeWaQUY6imP4K0JHz13Tbf0kf3tOnUs+dol58w+Cc+YFfc+ZMzjsjGB+QKJZOKG6x5/6MGn5ZHSpEHbInJ9b2mCVhAUpai48IILz/rImZORTn6iXAQYdMCrGqJHiOTOO+bf/vuHm5KMJ46l74H70VfonXkSeP8k0G6cO18xnzEG4isLyc+1atSoAR3LyNbCRw4OOLSiQq6mNvGzn9772+v/2pTKhcI8w3MgI6ABdOmErvEA5Zg+AnW6qFQq2RUrNi54bkmf/t3Ly7txKV9TwSsCcTbFuO2mx6768X0HDx0OR2NGUQANF1IOLfXf3oDC5NWonEoA0KYNu598/JVOXTsMHtzbukBtKnAUQPL/hx56/tvfuHXz5r0RUiY4DFPkjyPydtLulzLWQBkVIuDDdbJ3z/7HH10UDgdGVQ5Sz6DKH0W56AFYXbBg5aVf+82SpWtj8RjzrkSMSgZt0VZ9EyDE8ZkYO5z46xvSc594dc/eI+MnDSXWhYW7FheqxmiGaitXb7z0qzc9O38xgiIW3jxBbbfQ8kY40dtSc5pcTTQlyJW2edPOsVUVBUqHCYdSS/IhqYp/+7YD37z8pgceeDbAmi6pj2PpI5Z4PPLxj82MxlyMUzs99C57EvAk8F5KoF1wF2ABT7kgYLdzx+G5cxb16d15wIAe4BGwiNMGKNi589BFF1z3wktLI4UKq+OOkMjSXAkTmpG9Tf5BJpECnNg9OuI/eCAxb86rkWiocoyQ0Y0JAL/a2qZvXPLbB//yUjgSCoWJADGws0WZ2I+shnWttNWE2eagv+ZRScDob0w2PTV3eV1t/ZSpw3iUpmlIs5OZ1A++/8dbbp6bC6Txhgvm8mqDCjzbdsEmDwbCGcIVTdVRMRCOMPH7wvOr16/fcsKsKu1KxVU1oXLzTU/87Cd3NiazUZSHUiRyU3H77m7rNmCAn7rNOl3zQImMMcJmScFIcPmyja+/8uaUKcOLiookKqY3pUKyjz/6Cuut9u4/EitCBYLIhNc0q+HWDZjmcBesFcNs1wAoTu6FcHDNmu0Lnlk6ZnxFpzJyEds9qvr9ryxc9ZWLrlu/cXtBUSGxrMG2euCB+9uF7f3yJPD+SKDtj994yd8CfmIF4QOHG/bsr7XrsuOIvAa0GhqSW7bviBVE8yACVJmH/W1daQ1fOoesrEwl/8KsRX1gEvpQIeHGZAIPezOaCl+xFjOZ5MaNe6NxN1kryMNg5kgTdnSOAuAwf8J1c1dz14xRnDOKL1EOnHCIFFxp8vTqWSG7EaHtYHjztv0Eo4eCWJriDRLsv2q9sJ+O5zzbeTQWmmbTZlbTkMGxciYEwjHfpg0HcLAbeY0wXEe2bt6TzGRDEaASCSjAk2JxkygTTrhOhEq+Xy0ddJSNCPT0RljQhcA379iXobKI0ITWklG27txbQ1KwOAMowB7+9aa4LmrqMLX1k2PrKBfuqgNW7C71g2Sj3L5zX10tHna7ll+klT1ypH7vwZponNwRCsxk1t094o7QaP3TO/ck4EngfZSA+9rbYCDnaxJM2v1MKt29S4ep00YaOgSYVbOQON/AgV3GjqlgL9Nm1GiLDjeb0aM5vEQADJYJ0eTWkOWYyyXi0fBJJ1cZYPkaE00keoRsx9KSKdNH2E5HeSoO+FxL9qyw2LFKFIeu60G5NaQ9nFUKqFEHBZANnnZytXuWbVyTKauf8504YwyR6TwiN70hIBHeRoRJUFcdUopkd61bTf3gni414yMnSOOE2SNjkSi3kil/Y1OS5JJ05N9OqWIGlweFsRZqY0/ZtIEGIhok4QTLN9b+HwJVmDitGjO4Z88y9As9pglVzwVOOnlcSXGxFId8UUxXKDMEd1CH4twmIfSmtF1UXkHCDxXgpOUoSqwJSKWHVfQeM6aP/cw1Nlm9XKB64uDevTpn2O5QgTIWHUQNr3gS8CTwwZNAu+AuaMAvYFFxxMoMGVLep1xb+Sx4Yfl55/74lt89mQGSfMGpk0fk0iCUoWRb3RNwGCZyorRicqMLwmSXC3cwfrEAs7g3+vbpMWLkYEBu+crN//Nfv7jqynvq6wluIYVvFR4AKjsM0rNWWl8hGyXTv9jgmlmkGBaZja8HHYRRoXOnwgnVgwC47Tv3fvVL1112ye/2HTgMI1OnDy8qhDFMWnFFfXeCkY0Z6+IddeKg2aq5ClRuKVyhReJhJk9CC5IOs4EsY1/8wjXr1u2hF6Mrh3TvViYBSHkggSwCVOovpx5sAZW1Bey2O4tLZVZKobxOnDUGCRKlc+2v//rZ865cvGgNvRg0oHzYkB5s3W1sIwMUFZ1y6ocUZhrSiHizBoFhismy9evDWA+kmhJTp44KB1EPvrvvefrcc77/+BMv0UTH0o5jxg5IapdadcH6Qgte8STgSeADJ4F2fe7mWCBpFByHkk3Z//r8h4YM63X9tQ//6uo/HamrXbxo3ZurNk+cOLRHecc5TyxOESqeH8C30UMgkexUtkMTd7HZAQXo4lYQdfMqpBMNqQ+dMXXa9BH3P/DcD793O3lpVq3avGjhmlGV/QcPK58/77UjNfUtoTgOlexZd5CKIl+VLalBl+RYVq9ZAekErXuyXgBY2XHVAz92zuz585d887Lb1qzdtnXb3ufmL+nTr9foygGLFq/eKedMSPOclu1WUC4OBYAukXo2TZT60VnWFh3QckLAaP9+3b70lY8uX7YBzbFw4Zp9++qenvt6Scf4mLGD1q7buWrVhkgUeMV/g/5BZjZ7AEa6plBzSoHOgMlJplUXm09JEta5Y+GXvvqxQwePXH7ZjU888UpNTcNTT75BqgB2jDq0v3bhy2+FouRkcOKlFU7gmYySUnmcSF/TMROKo+rkme8FygN+gqELLjyzpLjou9+59Y47nmas9tyzSw7tq506fSRCfvqpJcjJCQd108ya/kLK87m3Foh37kng/ZJAu+BuQS/AQIYUXcTJnHTK2Kt/fv8jj74c0wIcXOSRjRu3PT1v2ZDhffbur9mxfR9xI232AYRkCVGnTkW17GekjUbBGtUUtgge9AewC8f8/37WlPvveeaWW55gJpIwc0Bw166aJ59Y1KO8LOgPv/nmJgfuDoM4GhGBIGZ2yJ+liYb6BMCoFGK06mfk4RqysYIM3uRZHzvxxeeXsjc3seek5WL/1cNH6p988lVWYHXu3G2J8gZLE5gHQ44LwbspIaxdVoeyQUdjfaOuie1j8RGWiFY85bTJ27ft/953btt3oK6A3GLhUCKVemb+G0cO1w8f1efVhetsYzzwEwWiYEtRwqQG5eXEz5JVjTW6bK/aGnxpq6WQDpPlY8xnXv71W2xiM640j37fSy++uWHdjnGTBi1evDbJogQNL1Ag9EJqhE61yK1jB82Foo+tg/kxSstdhhJsszF0aP+RlX2/8bWbXnvjzYKiWAi5hMPLlqx/5ZU3q6or3ly5qbamgdGSGe8trOnEA/e3icP74Ung/ZNAu3Hu/197ZwIgV1Wl/6rq6q6uXrLv+55OZ986+wIII8g4IIuKOuPo6Dg6goi46ziOyoCjKOAw6iiIioCsAiFAwiJr9oQlOxCyr51Oeq39//vure50Qnck/k3LVJ1HeP3qvfvuued7Vd8979xzz/XsCc/C7qVlJZizB6sPR6KEeii5VVBxK8FknIVGCzp3KSGpIUOLbWrBHKLJE4efcdbUH1z3u0hJFBeHalZ0othZJCfuYSm4IuYQ7d99oCiqJODyhIidWbUOkzzTu2eXg9VHWovwZOQlJlLp/n26fvJTF/zHt2+jeGEgzKxUGNNf9SXZc3uXTqV79lVr+hKNVc4W2AhvTSqZyPTr0726plaNcU1yJMXriMvQEmR90URxOHrVly79yQ331dQeJWjFV37CnttJsrhvb3VQ2YHhTUCBtnGMFyQaG3r17V1f14A/W02SB1zvFOiJXyrEWlKBAtwsX/zSJQ/e9/zGLTsB9oTKsx9TgfKuJUdq6qiUyQfya7meBrc6uSp79ejalIjHE8TPODanatnp8r2wB+emuthnrrh00/o3H1/6IhnWqNNfarVXsodOnUsb6xLM+WKgW5dAhaoyISaasVAJsx/qahsBWU+kGeeWqizOve0HZ2cNgY5FoG1Gdm2QA5oBO/i9oT5xtK4RLhBVwYf8ouU7ZjKpBt+qDx1Huye0HzqYMm3U2edMLSuPpOA1BYhAN/qr7L1smn8TisdS1YcOR7S8Az4EeIjUJVyHHQmBDB+oPozZTlmIxm+iKveRPc4Qpg6966yJ/fv2wHmvAlTqaFrVu5JqcyaDNe0npsraVxGNl2KU8qJABKEGGJrr5BrMxd6VSyXiyYEDe553XhUzlRJKunBso0zLXRTeX10TKnJ506BuqBV/SLAQ3CIlxQCVSMZVs/oGBy8a0gJ8SoSsJ5M9upW/5z2zJkwaQfa0YwJOOCoI1ByuRT9gwW/vmV11BoLRaKTmaG08lnC4uhBNNV+crj2qpVl+pHDBGROqqkZwC5sue3yO7fU2UVsTIx+koja1BIsr5EbXQa+xIVl7tIloKeGjtttmCBgC70QETkLuuIP14yfvCpnDNS9UDCJDDWdCgSK1XaIWbHDRbrv1FBeXVFWN6tq1rGrm2KYmvA1Yq9AFlcmeFe9o0E9MRy8CWShdoiMa0CL+Ef8BLEyEITdwxtGMdh5LDjjPAOOc2ePD4dDUqpF0EnKaq6jbZ8tlj9UbuVu5yzEbjZEzBPnKTa9qsyOQzTWIvTifiAdnztFKqjNmjePO1vq6u/y9gkjh72p2Uq8mGU0Ckr+bFxBHjuq06NVwS6M+DcWsFnIaw8RsnzBhGF6v2bPH0NuoAW1ttJ9x4zDdQ0ZBMmQmRgBS3ANAMihKpN6vNJvMbV5nonfi6eHD+w0d3Gva9FHEyNPaE/ozStMq6mLMQtytmtlJXz36FE+d0wES6GtjAm+7jz0r2f4YAobAXwsBcVmbmzjLUaKLz9MxJ6A6caZIGOYSTfLjd7cr6lkeenYQlwtdx+mCTT16xMCxY4dSCoPxkcUrSWdIecd34hCo0N/uCC5M3heXSytrECoVpeNxZ3ZzLBaDU0SOtEikg2Uc6N2j87QZyjW2cP6ku+58miBK+grRlApAhRR1jO4kIZK/0k7aaPOaQvA4vvVKoiYRX0/UucYhNYmfdeMioVkzxqHFrFljSsuijYmE2M53aYzjapls2drqoRwyIkXVnfSiXRcBYjrlmk1JVmgiSpI2UhH3hnCCzztjLCqOnzCsf9/OO3YforsK4ZtKqxicqr1eBdRyPQjXD2Wfjmx/BjNkTQt+tGPnyqlXkVzuCzXFYjPnTOT8oEF9K8cMXrZ8YySCBS598QyhfkGmkOenut1Gl8Nf4eMliuh1QU/aIdwaWK5xUs8lRMayVN3+A6UNxe41Sq8qSj/v9q5i2xkChsBpR6Bdcj9VybiM4dzSkjKm1ieaHEMEA/X1DXPnTlZemkxgRtWYEcP61Byuc9lIcOmEocSa2jqlGBSHuIjyLJm3IdyxCcweJDFkp7LyJpeQEpIjYS9p2Xv36oqIsWOHVIzst2dvNZVTHqohbgT3NKSnKExRI+fVu7x1E+mrO4C9yKMQ6t61WxMh6o71GBEdOqzPuAmDaeTgIb2mTBm5evWW4uKIuqhQGE/F0aN1cSx13S2Ce2vlnBFRUsAtSeiKJXt275IkYFy9nfqSfr16TJtaQbmyspI5cybe/8ALLPBNFA3p2hj7bWhM1TfWM9ahjrXNDVpFA7dJc1F8vEtXwt7JnaZeC+4vjxbPnaNVyyk5Z97YV156I1pWSkQl72E4pmKJdG19LcdtVv8nT3qhNIIOpqGufvmF/1hMHk7AyBC55DoYYkoV1t82Pn+yfitgCBgCp4RAuwOqp1QLhUUfLH3XtfxzX7h45oxxDQ2NsBYUQ9r0KGsAQSfBdPXhhnhTDMcMa4XW1SduvvH+J5asCRXSwWDXeR+3jMT2ROuFIK2sh//ymb9793nT48zl50UgHSorLywvK4ZEII+aI01sTKAtjJCrOHjbrY/cc/cfaZuCefA0OAu0zfpFmqQTcHOXsD8/eNk5H/nIWeSrp/PAHqZ/6ta1xBufR2sbGxpimMMMAhMI/sB9L/7i5w8nsPRPSlvQvhPvlhGnP0uTLm3GJz9zPtmAGQAlyJJ1q7p36yLrPpisq0/V10LlAXop4Hv+2bU33vAgowLY8ifBB72AMUuyIYYiYjNmTL/q8xew6B2OcvUroVCP7p1lXgcLeKk6eLBO64EEguXlnV5+ecu11/5u1276RfW0p7QhkR4kKxcQQgVFyaZP71lTnIrJ4aSQeA0JKDgVkjduPyVwrbAh8Oci8BcjdwxTnCXMbSyNlkC+F148BxpyrgPIOssXoh6xfGD79oPXXPPrVcs3RSJR1uQTr4ZI39hu/F+LdtQAi7Je82UfPucT/3R+QRi/h5t8L070gtw+HTha33jdNXc8/tjycDGOYtaVog51Gyeh4Cwzqp8KsjTre/529hVXXkS3ISO4VeU0wbtuWCX1f25+6K47l6j5sBdanpS6qN+rqdGFBH6Yxpmzx331ax/2rx3SUcTXDJfTiFiaO29f+r8/fbgpHudeuLg9Eb7xqoTN+4QyQV4+xo0d+pWvXjZ69EB3IVu5K4wAdRWE2z/22Mrr/+v3NcwkEJanTO6u5uyOmunFSgPJT+xdWabRED6DnmsTLw90cIi1zRAwBE4/An8xcnd8AangZgg2NiT+5t3Tv/ili5pNUWePNtPWHx584Ybr766uqS8pyeZvoU9AU++4aI+8BAXOBk/dyXSsgTk7w77yzY8MH0Ius9YbbJV+ad2b3/nubzdveqNTpy7ym2c3Rgjbta+PWdZuGAAfcX1D7fARg778tQ9NmTwcjnKE7itSIzZs3nHtf/x23To8Gy6wktZ5y709fgcbdW3iNt4/1POFAoQh9epR/vmrP3DO2ZN9FyhKlxBEBHbvO3rtd+94+o+rAUrOdJEkAeztetKyj0BN9eYxUkJNTQ2l0ci/fOrC91+2kNO+jCS4jbeQH/3w7gfu+2NhcQR3me+0mi++rb8i72bdfeW0syST+Je9a0sCCTeConrcJRXUyIBthoAhcPoRaHcS06mKhhhgFY3OKbdimPmlLzzzyhlnTiotjXq6k8UeCNx8830/+M97UsFEpJilgmTUwQ2Y1uxk4p1MajYwMRAohH5JJLljx6FHH1kxbdrInj274MpQ/VBiMPTHZ166/LM/Ibk84fkiFcd1crhrdLTdqZ8iPgiXWBHN+sGcJVdlhOD6RQ8tHz6i97ChA2iaeCwoel29csOn/+XGXXsORMsjbh4stjgCKILDWn/eukm77OgxKGHnq2nhwgJWC3n8kZW87jAXt3k8QI4T8nb988eufWX9tk5lxSoLTyOp/fpxjOj1wW0IkgZqURI3C+sHPvHE2iM1R+fOHe94343HpoO1dfWf+ZcfPfX0Ok1TorDQh3tP+hDeohgVsgmxZornERRmUlPr94bxmhHLQ+tdv+2joKjd/hkChkAHINCuGfiWX/GfPAFhMXeGUD+SlcejJZFYIs5ib47qZOp6liVuHc8rU1xFWM4W5YDMAS6CD2IkL+NxUeTHpGoglMpgEoLloWAWhNPKp0Tfc8qxqhiTIvipk+lENAKzEw4ItTuyhrXE8qrhWJ2tj7jkmM1Z91ygvRnyfzU2xiLhqPNeqCq6Fq4R30lYukLmFetCjXikZGs7cswyrPt4bBdkeQ4XUSOz3b1AiPHApSiMcR0qRCMaxrp9MCG4hMJFRbFUAABJEEOeH/L6MoVIsZUO0GP1Nh8RscOoLPwuJeX/ocnuNUWxqin1udkgSfmUJCKUKSqJsJJ3mOFuUmLKg0L4Em6f5hrf3l//WFvKCjUHnWYzuM7mhAJmubdgZQeGwGlFoG0m+nNEkrFWxqJyEkIwDJzOnDWxvLwUb3VDQ3L/3hpHrIGFZ00o70yYtNJXOa4VJ8rkdHZjKxfKW5oAtboegpLM50RQMpYYN3bw8OFyyzArcveeg563p04eNXLYQFZ8JULf3+IsWVF7dlbqW+rmhG+Pv6K20AOFQqwCOGRQ7ynTRjjJmZ07D/oskRWV/Vm/m7FWmkFIu/jLxarDZ23V7c+5Tkut0CYOVAfCBOBAt+6dZ89TrjH6hn27D+PK56hPzy5V00bFGpv8efYFKbLSuE9t7ajwmOVOPKR6Kj0K6qSPKy4ML1w4QTKZZnWgpqGWGPkQy77OnzsxwLCn4iS5whqzJ2l/W1JVnzpLvz/xgCb59ybXVbKjAKRv/wwBQ6AjEGj7J/uWs56M3OmsDa4zzowUs4msoCRNOvWmGTPU582toPz+fUe+9uWff/hD37n/gef4dRP2XjFyQCzRlCUFx5pZaSI+6nGWdUvNMm/FOKIfNnee1fPoE5KJwIL5E6jzaEPjd66564OXfvu2Wx6DP3D4TJs2OpaM+Qy6TpA3q7lfYTnZepDlROmjo6fsJT7AjdAuA5KJphlVo0qihclE6Gc/W/yBD/77f/3w7oZ4gkjumVWkw2SmPvxJX6bwQW7nk8DQG4CTQk2yh7PN9h2Y7+Q45zbSDqfGjuk/ZGAvbrjn/uc+eNl3/u3rvzpcTfhmYN688cBIt0Nb+Ihpnb3H10mWBXWl4k933qEkz5Q6qqwsWJ7JZqkM02snTh5J5/fMs69+9CPXfeaKH7+x/QCtW7BgbLSoxGWUIKEm9UoH1aB9tmY3c8GfRCuqph/gI2OvKuObxL6F3/2xrwdXjC/grraCu+U2OzAEDIHTg8Cf8LnzE/U/2lY/Xc7ptHNf6+fK+75MUOZeQiWyx8klEBg0uPtnP3/xihc2fuGqm19+9XUCYp58bO2hA0fnLhhXU9Ow7LkNrKzkNfI1q8asPet4RCSMKUr9fHRnIDI5WHQTAvEilJcXX37VRfv3Hrr6yp88+8wr9CvPPvfqli1vTp8+pnvX8kWPLPOWrK+2Zc+Bi9tTVSQsg9e8I9uJE7dRgM0doFb60599H+luvvLFn95/7zOhgtCaVVtXLVvPVNghw3o//OAzmKFqnmuW7lLrPGKqgQY47sdpQwega2wtIvzHZCz50Y+fP2rUwG9/4xe//PljyUBq69YdTz+5btTovuMmj1j88IrGxrjg1cxeQnack8bVhT9dHic4X72q2uD0zcrNCoLOyezeFD//vXNnza38yY33Xn/t3Q0NDXv2HFr66PJefXrOnFX5zLPr9u5l8VueIGioX+JeZCn6yKEB5WcX13KxOk5othj4qOTxG31+YSA9vW5vIXMXmq/qQfqqjy9snwwBQ+A0IdAuubfmII69ePFLOk2+xuKiIlIPEpznyAou4DpGu37q/ODJxDVzZuUbb+y+7jt31jY1YUrj9yVU/KV1W5cvWz9+4nAy4iZdYLiX0lK5ahGFZZgKVVoS8ctQwGpwCaHrtEIdicg0kEjGKscMJ7vW17526779NSzaybJ2rAi4edPuxxavGD168PYdNWyaO+o2z0GueXJCI7cgHIqWKMYcahSVeR3c3rcKr/qgQYOGDevzza/+csOmHdHyInoXcmLu3XPk4UeWDRzQ69DBxj17DxQWKubH3Y5J69zMHhSdzZSVFMeSZFBQs321XhAX9TmT6dqlfOqMEdd8+9fY1NGyYoIR6faqa+oee2hlaSfWQQ3A9ZoFprSRDgb5fxxVCifmr6Z69CjHk0O1fkzVV8tHNsiZaVDMyZp3xuRbfvHI/fc8y5pWSoZZSBRNfOmjKxpjqa7dyl95ZSsx+z49suBVh61Oq5mNg53JC0THTSCUMsap9/K0zgGFT9iM3E8AxD4aAn8VBE4WCsnPmDa5X7L/PWvPAOPFlyxsrG96eNGLjCgySuc9AJRUHvUC0oVDOgWlZcVHq2sZ25Q5iEedqvCzB5LxWKakVGOSyYT4yIvwmnum4AxrJM2bPXbI0H63/uphgm2gGTeL37XBe+qV0DFZXFzcUNuQIh0wk13xXaRZySgJIWkuakEiWlzGbCbffmqmVV6cvDuZYDyeHDVy4DnnTrvp+nswzFua0dIGXxgR8abGeDITLuI2qqavwP2UYcAWr0RpaUlDUwx1s4zu1XCkKFXT6c7lZR//xPk/vuEu5V8jllFRKsfhyUd6PqBobEgVR3lv4D5ljOE1iDyU5KokOyPhkqCquh2A6uYEtdxUzqUeuPyKC2+9dTHZxNSTuZcHuWWcIPaU5gWISzVHSf0W4U3FPS9nhGfSiVisvEsnkru5V65jTE317p1GspoaGj57xSVPLF2zcdOOcJFLmZPld8q3YbnziHwoZDQT5xmrKbQhOwjgP9neEDAETjsC+vW2t3mm46o/8HzHfuEZk3EHO3OaT9lfr/PGajqS/DPBYF1dHbOHFLnH7xq3tGb2i81JIUtCWkYRORZDtdo8w3IimYjNnld57nnT6DwcIaqYxkJdcdceqiqAu3n/x2LHq5xm0T5idXAZYF0T9BEsbGF2yntBWUWgLZdIkixd7zlvRnmnUqWRcRvn2Xxhv2+KNaaVWJceTDwGP6eQEkorvUGgoK6hkWJMkHJ3qQjVcEZlAwEyOw4b3u+898zo17sXLwG+Qi6xUazlINaUjCcTRVFYmZuSZAQjsIUKIGRSAjTUNyrAnTa71Aie2WFwx+wMIyf79ulywQVzx1QMIimYr7MZJT1ZitH18FQaY/FoVH0qGy1ho2vg0dB7NTawniJvRzwq95TUfl5lECknFf76zp3LznvPzAmThpG9mTPNlTjITvb18QVtbwgYAn8dBN7ur9P9qkP81Pv16TlxwvCJE4d36VoKOWsRT2dL8luXi1kjluSvVZ5bzw5uMNAFViMKdnarEAUzynzrNeaAzVGFKA+m7VxeOmXyyBEj+g0Z3JcwGDEZTmuZ/44B2Tn7lMIwIH0MUpvpSdGPzqUgAmWjjK/c751EkSVlZswY3a1r6fjxw3x0SksB7mo5dkSp9PWSlX3/cN0MPhJl3HIyKJ81YBlzUD/hRm2VjGHmrDEl0YIpU5XClzqddO38sW8ekT9hN2rqVABPcbxTUI/G6eKeEWzrtNZdjuu5xEKzU6eOihSFZkyvoBdUO10fIGCc7v5dwWnhocBsV3/LQuHsMcKRpuBUnOPKs8/7AfdlQVMxwk4TqVGjBvXs0Xn2nHF0aB54j7C6MIcMJW0zBAyBdxoCJyN3z0EYto44YKs05vCESUOJHunVq+v4CYMbG2LSh7kqRFSkWPbCczQBHhAExTUJEw5x9WC/i7PYFJoX1IocbF4Eey+FW2LxONGNw4f3h0GmTB0OuTiDUenO6RdUHv4S/6ly0b1yOWbr8aTmSErtYqM8UqicA2pQm0jjkkz36dt10pTRWN+zZ1eQZZ72+zb4ZnCLv923UKzK6tXKwkJtkCPiUSw7IKzEZ87WRgh3IYA9OW/KS4tmscBsJrNgwUQsfSdaw8S+gN/zkV5QuiCRlw91TapE3RfHVOziZDxru8rVvwrtdAgtCsKZ2bNJBBaaNWt8WVlxsyL4oBjRcFkqFdOiehxWrvEMICNL8wncelVquVb2kAqOuR0Ces/wDSbcc8EZU/g4tnJovwHdcWdRgM0XYE89thkChsA7EIF2yZ3fLSzAa7vSY7kNtoWk5s2fInYLpufMm8wZynAxxKykSEFJCWlY4AlZqWziQehJSXRFN270FWNQKcGVS6rZgI24jarYqAqn84IzpjsCDSw8cyrymWPJ/EkmcxZFAqzW5IiVu6F2LGd4XsEiIiwMZoUvQjcyst0Z2Z60BAkoQuOpv7AglEykZ1SN69xJ6xDNmF3Zo0c3iiGdArhgEOHv9U/L02ImpLTybJ4rxboYv/wROaqPwYonm6PSwofpt/AmBUZXDOXlg6p4ORg0uC9c6VDUjolXyFJtyvaLEa32Sh3nmua82NbRvQxt+J15ns6gLy0jNp00yRnmPGFrDxpMDP4YKhk0uOeEiWNSAlkYqjHlURCTCCHh93wEK9czifHdA5IVnx2NQBIFyfPOjcLJpSPo3r3r1KrRXOhUHplRNRFW9zBysTgaKSyMeJRsbwgYAu80BNodUIW0WEtz+ozKz/zre7uURevrG4NaoyFFxDRjgLAaa7Dt2lEtfgsEykpK99ccufGHd738yrbCIjnZHaOQEiAbXNiituMU3UP/AOezNNPIYX2v+PxF/Qf0qK+LY8JC1n37dC8vj2JMkrlw+7ZDMnJDqZJolOCZn//sD3986uWCiGND2c7tTGd18nzbsMt79yq7/HMfqKwc2FAbowHYvj17delGOlyakU6++eaBpCJ/SE8ZCYbTt//mifvufw4CpU8RObazybeDHsjAuZEMlZUUfuozF8yZU5kVkUrhze/br5u/e/euA2TBRGEyYBYXFz708HKGQGmGy7ugIi2wnHCsa46aGWtNZxovuvSsD1yyAI3on2hApLhg0MA+hA4FA4XMJ2CZVro1pJSUR1ib+79/8mBtw+FwsN11P1R5cxer5wUyqdTfvnfOhz/0Lp4fr1C8H0QKiwYO7qIuORg8VH300MGjHNCi8k7RjRu3/eD6e/bvO6y1Q1rhhFeuLBX/5ME1ZbwjCSMJkY+H9xZ1hf6MO207Q8AQOG0ItEvuMieZPhmLT5la+eWvfHDQoF4iOqhMTfF+Cf+b5Yeb3rplzzXf+836V94k/xRhHoypqhTmoc+QJbM6u7WwmAxH+AR3TiwwYkSfq7/2wQnjhmuSPWaqGEcc4rhbS/lBoSS8ve67v3vu2VfCEToMd1X1i8ua627jr/OGZ5JNwV69O3/+i5cumD/elaZvoHnNWrj7ONHYmLj+B3c+/OCLZE1n8y1so1JfXpcVFCPTGMd5MlAaLYLfL75onrt+XOUOMfz04VQ69YufL7r910/FU02YwPRbrdvvwcnuva9GRrzKACl+GF4X3nfhvM/868XRYmhSTNm8UTmPBmR4dwk9+IcXbvrxvYz38jYiJm5na/UsBCilaA891XvOn3f5595HOsxWbXPq8CCQwjtGIP3Cc5uuu+43u/ceLWJspXnzFULupZnEP+9bW5ZJ8BLHRdWjQRO0bS5qfw0BQ+A0I9B+nDsjlRmWjCvY9ub+xYuWde1SVjFmgLhdv3AcIPxeoQ25D+6886lvfOWXO3cfZPlsDGGozv2ioQOVUsFWW8tHfBDyQFO6gAnxhx95cDl1T5g4ikXqHBvoriy9BjNLH1/+hS/8z/r12yLRSDqYoAyx9Cp2UkuQ6jHHmWdTUBgg/eFji1aQinLS5FFEoTg9JIJWSE4guHrN1qs+d9Ozz71MOhfOy+PDRTq4Vo0/4bBAHm1Pi+BEBGfiqSVrtmzdPmnKKCI4XWEqpwLHjIHAa2/s+coXf37/A88TZo7vBCYNy7tynASPj/awotCVa0tuJsIwkZEOrVy5acWLG4ld6datk9rtqBai993uoerab//bbb/830WavCqnGQC1S+4tz6L1Ae9n69ZtevrJl0aO6Ne3X1fXOrBw1StAKkjgzfU/uPsH37+jvjFO+jZf/bFmS22C4VNV9Xs0uRYkXRuzSsp21xfC/hkChsDpRqBdctfvT/MvmfJS2JSIPfH4miOH6+fMG4/Bq5d0/uAXCAS/8bWf/fKXjxZoZgw/W+ekaKZ0uEUz548n92P8iC8eu5LfuXPaY3S+8OzGLZu3n3HmFC2soQ1B7EM33fTA979/H0tPFBdHcdrQJK3Q4dz9jiVc2bfsvBXp6E/8SX+AO3zNqteWvbh+ztyKsjLI1znrHc/cc8/T3/jyrw4fOUokuGsww5rEOFKpTNW31K0TFCMVi7hLPhVYDxcLq/FFN23e9uTS1VOmVHbv0clZzdCfmPG5P66/8vL/fmPH3pLSCK55ZgyRwwAK5lpzU49hReUCWZI5iZvLQ6F+iEVI9u6rprtl2Bmfuwq6Xpb91q27P/2pH6196fVoKSmCNb/s5OTeWi/akFUqyCS14pqa2sUPLcOzVDl+KCMktN8BESTX5mc/ff3SJ9YUl0RA1D0+14TWdbmxJFf7AAA4o0lEQVT0+VX1e3nx4y56GGJ09OVwIloXtGNDwBA4fQhkQz7aEIDHA28D7EysXrgoXpDesXuPK5ZlXmdOBnZr7R5SbPHzx3+iaDzHNrCeMgTI8JTd2tYWimDmc4GMhAqehCqKAjt27hMPNJu6jhMCe3cfTmZixeEoPgeZ9dAisYPavEXcdv1ipGxqAexe/5IQiJaG9u2tlvno8gGIbiDgTObQwbr6WEN5eYTzYmroVHPumesPPm3X78iKLkAR98EQJR3Dh2LR0pID+8h2Uw/pUjOeZvUO6WBdQ/2RI7XRTsWK78ngi3YhP0GBhiatiQ8Aszc6JXUznQEPgpFPcWSId4tDNfXVNeTnoQH6HwKFfZmLtHf/4WKlyQRQGoaT5eTvHlkB/PFCOaDvBGGGx2uPNhw8VK8Hq807VAjRSe3Zc4RRbhUUMq7/8U/dNVuK8A/1XAcMueuMg0L9mBIx+O+Pq9V2hoAhcNoQaJfcmYAkZvczaDTdMn3W31T5ZhC1DaMURWDYFIb22rVvQjpadUccwY6fM9TKb5ifdjvMyJ0iOBcKgpfYcVMy2TR/4ZQizQVNI4L6osxOzQTe9e5Ji5csVz8hExDiw48MYzpe83HlbaFDnWnGRNmltdIpAuGjWFN67uxhDNjSrmSKAdsmnzH4zDMn3PabxTQcfSFbsZHorEjx+PJstLE5zlJcP0XxlmSCzCMNZ9KFzPkcM3rgpEkjHAqh+vqmMlw0wUDVzAoGjQ9UHy4IoWHYxSdmwWkh1uPEoKjGpWkLmsLvQCFweXFKpGMDBvSYPa9COLNQbW2cSb9M3hpTOXTM2EFyXhWSAt5FKGlxQZ5CG5u7N/u0hL/bOEmHzr3Ev5eWdJ5/5jg9Q/J6NsUixM8UBlg0avqM0YsWLS8t5XHQLvfs3L18Q2SlOwKPlEZn/O6nnUo19dc9KPVJPkSqjabYKUPAEDgNCLRL7uSjcpQNX2teZu8eXWZWVdKAbW/u/t5/3F5UVPj1f/tIn95d5swZ+78/e4iwbgiCTYREpGM2vVWWMrirhUq8CiIR1x/gzZBzQ/ZyqriwZPacsZBJdXX9f15z++5dh77xzcsqKgZNmjiqT49uB6FFJYqB7OBEMZ2YTczbdv8hA5lLIkSkuci/kGI0Fy6chAhWrbvxhrtffGHDF7502ayZo0eOHDh69KCX124vkrNBId6i1XQC73G79StDgPoz2ch4fTJFhAnSoZCrcuaccbQM3rvt1sfvuXvJP33yggv+blaXLp0mTxnJKlRl5bAgZOd04Y2CY7e1IOM/6t1BGQu0CAnNpnOSrkgIZRKNoQnjh/fs2oW2PfTwiptvuueC9y342MfPpfjsmWNfXv16hr5DtbBmhkJ0fM3t7VsK+AMk8S8RD4we1W3smKEw+LIXN1/7n7+rqhp3xZXn0xfOnzf+sUcYIOFRZ+19f2PLkyDkpqAwWj5mdOfOxK2qOvcQfMffXivsvCFgCPyFEWjf5y4PAD9b2cuxpsYZVWMuumjuo4tWfvlLP9/yxu7tO/c/ueSlwYN6TJo0atnyjdt3HiDBi4Yh+S3LmiOkGmPT82+2xZ4CWpoPZ4mtZODLpkskmLvU/7P/esHqVZu/cNVNq9Zsq645suTRVZ06FTME+vpre15Z/wbef3G7clepcrGWiL4d8spech4L1w8QbULU9pVXXrx3b/UXr/6fJUtWHzna9PhjK8jrNX3aqOrqoy8+/1JRJEIWRSILfdNg1ROa3dJ+Ea34SrHkEK7jaF5H0kXh4GeuuJBVrb/+lZ/fccfTDbHYU0+uJk5x3rwJODyeXLIS95PeDGTQukB9R+4t1bZIRC5+oWa3tvzvjiQ1pkkM0yf/6b3Dhve59rt33nTz/fWNDcuXbdi0YceMmWP79+u+6KEX9Lbh7H03LNxS93EH7eslxcggdOmlZ0ydOpzlW7/3n3dUHzn60quvr1i2ceLEIaMqBi1+ZHV9A28qYCtfi2+zPjhMwCISLXz/JWdGiFj1T8chdZx4+2AIGAKnGYF2yR02kZUoGpX3/IKLFi5duvqGH90XT6WKNe2o4OjRxkcfW8mMmt59O61b+TrBzt7IhTVk1Im1qUCmKTODyHSYSBBIg7maZRVPBLLr4IR0KBFPn3vejNde2/mtb9125EgDk2DDBSwhnX7iiVUHDzZWjO2//MUNuHoYRhWrSoSnXY1M0gYM20i4kNmson6dUVucJFiXXDOcCLG4x8wZY0KFRV+++mZ6I4zQIs2TzSx/Yf2r67dPnzlm5fKNCUVma8oot6mvAgD0J1KFVmZYeK8gqSlZnPSkpS5AZXwpVqJKpCoqBo8cPeBLX7h5zdptZZ3QojBcmFm79vUXn3tl0rSKDa/urKtVqDheFPVqqC9ESHmm+FHYnDlECnmkh3TKitDVefkH4W5JpPr16z5z7vhvfevXS57APVJUGI4StbJ1y74lS1eOGtNv394ju3bv10Qmdcz+5UVVZAEjqWc4QqU8o2YMudjyauWeWjBdWhw592+rbr5p8V13PlFUzGpRhZGigt27Dy9+eGXfAX3TmaYtG3YyW0tzrNzjUA3uf1TDr8649MUXzWc+hKrOYqVD2wwBQ6DDEDhJnDs/S7hFljvM2KmsdP++Q5HiMFYhLmwcHVxVyoFEU69ePY4eaVRace9e1e8cg05MBC3iPSdRzNDh/X5/19PMEnXU6HnZ042YkQrxP3TpWn5ofzXzRJ2LHHbzTpVQoinGnKO6hgTv++AiSsqOBKh+pBBIM2RQ//lnTLj1lochITcGSJBiNp0LpOm8vfLNdO/aqbr6CD4aN/1SRrfSWKYK4o1xMt/GyXQQJ6UZ+ma9VRRAIm1GdKeysks+OP83tz5OMSDgdcP7PtQe1wE4Xgt0KovgZ4/HkoXFynrm+jP6mVSsPtClawT/TX1dk1OQxmezifkaJCud/ug/vee+3z99pLahGSjYEx1byFeokw2Z7AJgzuOQduQPcAO/5AZg0mhpp7Kaw0f0jJTwHf51HSF+LDnLwrGG2Ec+ds6KFzds3rKHkFDarsqzJb0supxkpKg4UhQ4dKCpkOxvDhA1MkSKM3nxu3XrTFCpHGvZB00d2rwidE5du5Xd+btvdvJuGX/N9oaAIdCxCEAx7W26xO9co4WZDE6SSEmpz5XFSc/jUFxhpJhVpJUNUtYlZjg7vN0Y1GI0MW8yMGt25d+ePyssK15c6YK7XQ2OtjBhHQkGqw/VhrESXTSFCJPhOWzuUICUvNU1tal0ExXCULreTElqhlI8psZU9r/wormlpeVZtsqwziomI9xHad4MKAbNhmgqFZPJ3dMxl2B2qi0qIcVjA28P+KmdNep0VyOwfukDyGyT7j+g20WXLCDAkfmoNABmxzvvaBGt1bGx0evUHK3nUjjiJyhRQiAQwVhcWlTXEGMWrmhXYwAu94s4V1LobnDZd+vW9dJLFo4aNYBYcvGmM9r943FlRMR0m+RxbGwg43GRx0GXXKJgsleyIvXhw4e9CHR3z47rPqGmFCENw3v/bs6ECSPpCfjoWq7OW52EG5lwEsIE3hyuaSqKAhSF1NVJSAbfG8+24FANIjinrto3z/aGgCHwTkNAv9E2N7GSZ1h+wAz/kd4l6NKEOQPN04onNXElprQz8P0gmxuQZFwS7kwWRwqmTauoGD144KA+ZNbikvJrsdCz2zzdi9yUK91ZjuJreE1cSQ3uD/Y1BisLU8iI9j0B5x15iWZhz5kzxvXr3W1s5aBYrNHXLEbTJTZRud4yiFmkrY6WdNoNKagYh3QiuDFEYH79P+eycJap6LuAtUHSM2eN7VpeNnXqaKxydy9Vuja4ljhAuAElCn3ORSfCN0C1pTIJrpGShUPXQponp4uWLVJLUqTomjBxSOdOJVVVSvGYRVj9H89Ij0kgi2QFDRlmuEvvD9C674PAX7okicZBcWevq7Nxd9EAwYoIBjYGD+wza1YlTVEnzaMQyKDqldKzdvhrcRXVo/6Y2/XopChXgylEuGaof7LNEDAE3pkItEvunkT4SdNu/cLxz8jBqmO80v53Ll4gwYA7D8U4IsB+F3fpxlAwkUoPH9anomIAvH32OVWkoxEfUULr5Hke4XbdyC2ORLKEjiDVopNQs0QraF3jtBCWyIgN4bxJ4DDp0bPz9KpRfJo1Zwz9AswIC+GWcfyIgmIltTnN2qfiSqhcikgzNkxhmNL5YZz/gWMarz6AWmhbSNkuo8VK8YiI+fPHhVlEjih4tUJF1BIkZrXGE4IK1OaA9SclXuE3nCTAxiklufzPFTLDUItXbc58iZgxa1x5aac0S3Nwh9QXnwpP95lmC0OtQ65nwZ3s6Cz1D10Eju+VPf/Kea+NXiAQjMfScxdUUmL8hEG9+3UlBb537eu609dL0d49aBRRw9TX0nrXEieLk8CuwV7XJNVvmyFgCLzDEGiX3EUZsighEDEIzeaAvWMTnXcn+cFzSbzjiskyTSfjTU3JxoZ4rLGp7kjjjBnjFEeTCcycPZ6MjE31LDqdaGpoxFHuKFsGszBxNMExxOG8Ci0SIRr984wDCyEjKRHxuKvnaE3DuLFDu/fozJDnnNkTcDrjQI81xuMNGXLFiOlatIBwpZSsaaeThDnrlTcC3DjuqloaJ8tlMpXAPU1TY/Xx+tq6oYN6VlYO4kbWCOzZo6z+KBdoRApBKA4zwo0ubNHRNzvnxRaGDjHhI8KUp8gRLXRJDmEGJGJxFgRpjNUfre/RrbxqOvl7A0w9rRjVs+5oPc4XcizHGiDSFFpzI/88sarp4nHolfNqv6tdXSNXdBzA/8Mc25BQYgigMdnUkCDDJssfUqBz586TJw8/Ul3HVcSTQSiRpDwjpDhn5FVzhrwPo3TDJ+CU3XiBIwV0khcUXly8gs2X7K8hYAi8gxA46YCqSNCRuKxRTVj1FOxYhs/6wWcLiMIyLKE3Ynjvf/zEezuVRyEsLsFK48eO6NkrSnBhIpVcsWJLMqal78IMe4ZDd//+mWf/uIZ4EkpC6CLHlr7G9RbQk48llweGrkX5FwO9e3b56CfOHTCgW0N9jEg8hhaHjhw0ZGAPOI4wkxXLX4s11jNuSW5cnPWPPb7m4T88Q8egCVMibm+ne0ObKvUeoA2KxDp20e0kziV38d//w3njxg1pqKtFT+Ld+/TpVTGmLwV5gXj55TfJYsasIaSUlJWuWLb+d799QiEuIT+wmZWC9uJfz7YeK1e/QxRUCy79wJyZsyfG6uKMRbN17Vw2efJItSXDGtl7d2zfrRzHTCYqLX399b2/vvXhQ9UNmP5aZipLvlA7VCvfjvoSx8tcOqZIKvXud88+7/zpeGMYlqCqaFF02vSRylETSO3cWb11yy6fIo24oQMHa//3Zw/v2b1fuYjdiwt9j+rM9lKS5dBzL16uz2/1fRCEbMKThbRsQNXDYXtD4K+KwEnIHRvT+WT1g/WGOSYh9qdsN7VZZinU6CxSfWLKeSCdSE+dNuxLX71sQH/YtuVqC2dndWUJoZtuuvf+e59Vil8YU0aoow+9LeguTxN+7+5RDaJLyDWRGDVy0Je/+pExlX0CGRqphnhj1ZuX7lg13P6bpbfc8mhDExHZnrhxdBBliDxHiI6JaKRjxixz4QzBDUOq2v59el551fvmzpvopDutESRh8LtayyGoLF606ic33VtdXefyY2WHT50V33o41KuvWawysh3jE1tUXhb9539974UXzHZAOTnH75z6meXLtpCla8eOA8q4jBhVrH5ObZC3yquefS6+f/LI47dnjdsPf+jsj378PLckOL1CVoAwoClArTPpLVv2XXvNr19+ZVe4CJcOdTrJQgodZcWrz9DmnzX8rgcBfvLlOCjcVfcQjdw9FrY3BP7aCLQb5978SxaXiT/dXkfyLzgiFjlmf88iA0/locy2N/c+9PCyrt26jh7dz90kBhFPiFBEji+99MaVV9381FOrSI4od4Y7KS+DDrwg95aAZC9VvYvSwagpDO0WFO3Zd+APDz7HgqyTJg3DsHb3qh/Kknwmc3B/zVe+dvvttz+i3GS4ZWTtIpwDv4m9EO04LHuXm46Eqx3tJJegl0WLXqiubpw6ZZRyoqlDwJJ1DdJirQWHa+q/+93f3fw/fyA8METaW9867qSbwLHhzFqhogvciGYaZGDzZMjgbkNTfOmSlVu27J40eYRSFDjGdRg4hVmFNRG/6cYHrvnP248cbSDRcUhc7GpsQckNQvCkqFaCVL9X0POyOsk/PvfSqhWbx40f2a1bmdOXSwqPEVEzBJEO/Pa3T37tG7/Ytas6qlzKkq9WZuvJfuShtz7D2ePLeKHac97FuRddcvGCSDHDALYZAobAXweBk5B72w2C1xyP8yuGCzytEC0DLbjpP0GCXsJMwX/i8dUH9tfNnFVBwkhVJFsP+sncfdeT3/zGL/YfOMQcTudH1kXqcrzjGMMfK32VYxqxMEwjytSMTkdhLKkEvz333Jr1r+yYMWNMcbRYqapEP1ijgVUrX7/i8hte3bCByEiXO/JY5VQhSnMsi9sh27WoCSjA6wiXKCBxDB7QvDVrNix78dWpUyu6dClxWjvxwRCZF7/wuf9etvzVsrJSiRWz88d1dbqdfzJyvSDd43TUH3fgC9M2Jndt3rz9qSdeHj16QL/+3d1dAoHG7N5z8AtX/PSRRcuKy6LM52JGFa8dGhhw5Es1DnR1bK4/Uc/h6z9hTzA7xP3Y4mXdepSTYoEb0c63o7a+7ptf/8VvbnuUAEfW28q6kGSkUyYLvmtMtiP0jW/ZnyDIf6S8kXubyNhJQ6CDEXC/81OTKdqChiAgT44cYM2HglqmwxvH+M+xNF94YR1B7lmag6yxZwOhVateq62PF5eQuVCc69hW1fFRfzw/6lhSuOrIgmP+Ic3tvdOmIBQt6bR67ebaukYMUPF/gOFTigc3bHx9+45DZaVdOXYSdJbLciK3qhnu9le5lG0kHn4kZAdgNVmrvLz8lQ3bmc4qD4ZTWUE6gcD2Nw9seX1HSVlUfh63IdpLd3tH565erwI9IgfuRHbnP9JAvPZvvLlj89ad7oKkcECVBw8ceeXVrSWdSU0sFxMns+57R82cYaOY65N4M2j3ObKiFOl5Dxyu2fDqdlWu6rNbXW3T8he3RMqYW0CgK9GTis6kQmr1JZw3RjV7WYhrvtX+GgKGwDsdgXZJ4SQN91Nm+KlDlxRzEeIFZFqHYkQ4qrKAEbwFCyeXluATJ6qCBOzwhTz1Z5w9kbk2eFngCz5SCZs/5mPLgRzTjrx8GVwi4jhHr85rzmmSWzVMnDJ08BA875ROJVMKGKfYwjMm9O7ZlWE9fRRTZ4nVC2Kvm5GFNwM/R7N0qLxFYrYZwQyOkRHDB1RNV8Y0tpRW6Nbts2ZV9O/bQ4HuJCZgkxTngGb4UYtwCBYqYVP9zeysks06tjQDj3bf3j3nz6/05J9Ud8gWGjduGLMDCF6kpCNZl5FNoyDiegX+6wb3vtLMxf7OE/dualJJceTMsyYJqFCA9yoqccsZ9pg5awwBORokQC0/pOyQd5WrmON6qdC62uarx55X66t2bAgYAu8EBP4ccndcww9brIMOzlfAj9+To/PJK8tuYNZc1m4ONcUyP7r+3s997obtOw5TeMrk0b17diMO0t/bAgF8wZatkDqwI1tYWITq7EcMdNdeLomCkgXz50xhZT68CLf9ZsmnPnn9pg174K+BA3pXjB3A+qtUqOZ5hm3uS/iUFcTBMcoSJbusMr5F3j8TSMTCs6ZXMA8LEYsfW/Hxf/zecy+sp0TPHuWTJlXEmvBEqf9w7yuidLIEu/vVShqp+a6ef7NucV3kLA3wGx+bGpNjxgzq17c3UK5Ytelj//j9e+97DjLlxWL6jCGM7Yq6GYmlsapfbM7WjI8z6t1Lg6pua0uHCpJx0jMMnDBhBPe/9tquz15+/c9+tsh3S3PnjisMKDGvekXfZSh8no4qm5lAQIv59XBdKcmgAV5Uy0Fbku2cIWAI/DUROGWfu37hLkZFJqk4lxMygeEGx7z62RNtMnBA989dddnO7fu+/MWfL178Ip6NpY+t6tevy9hxwzdu2LFx007s9xa9T+AI91ELgFA1x2x42zUC6ATALZznSnlp+HNXXkpW3m9+/Ze/+82S3XsPLX18Rafy0orKwQ2N8aefWh0hMZgjIl8PeyexpQshLARLXIEfaOGkUNp3URLNSV4IPv3pC/sN6PZf37/jhh8/sGd/9dLHVxO2yJzbZDr55JK1YVYDV7Gw4iAZEKBZGi2gHl8DtfHpGDJeZankNsrzivMPHz13TOWg225d9J3v/mbnrkPPPrNu/4Ejs2eN69ytdPFDL0oDNkU66tWHQ9c2WN7RLss5AT+taGfDERNrSrzn/Glz5o5btGjVV776UyIgV67csmnD9unTKwYO7EMWycZYTIMMincCZAlzXbRrNsCw9BVLFSrj55/euNl87n8aJithCJx+BE6Z3KHxUBCLldE9/e5FZ7Cw4wSYhwbzMdaYefd5M+KxxJc+f/Mbb+4rKYmwskd9Y+yJJSsJ5htdOfjZZ9bgBhGLNG+ilOZN52SrclkFJEdTKanZ0Zqc70Em91TNrBw8tM8VV9y0Zu3m0k5kRiyIJ9NPPLFm25u75swe++KyTZTxzhb2qtJv6jMkwXGlnB6qVFEoyNLgrdcIRiPF4/CRfeYvmPTVL//i0UfXsCAGCRjpzl584dVXX942d/6EVas2sAi1q1WLqbaA4Lo9iVAeAnlsRPEUc0Il2x9zgDHes3v5314470c/vOeO25eECgqLoyXkhn9p3RvPP/fq9Koxr7+2e+/ewyESS7qW+hvpkxDhXjXwK0HtGgqmtjY3JbMsDF122d/ce/czN/7obhqinGBFIdZ6XfL46sqJA+prE5s27yyir1UnTRfiump1SMgAOfV/Cn5tpUJL+98qkUtG7m+Fxc4YAh2PwEni3NtuTCaZ+cBHzlj0h+U1R2IFhSQ20SicgqPx7fLD9iZwKjBoYPedO/YzdQYLXeQvM7OAlSySseTQ4X32H6jFYm0hwRZJItZgkESSf/e+M5a98BKDinBLMFMcKKgNpJnRAy8ii/+Voab/gD6HDx4+WtdYVKx0CC61gHxEDQ1NpE9hYiZ5Ex25Zw1ef6/bFzY11Z35rpl79+4lDXo4XAwLS7SzjmmAb4Zj3i5MIt1fXU1sD6OtFJAiwXRjfRM+d1iw+nBNgRb0YMv62UV8cl6HmUE7ZVoFibqee2ZNJMIA8nHGtROhSapdOrPGUWTXzoPRkpIgyzlRKkMG4HRTLNWtS1FZaZc9+/exxhMC8By5BqhXJc8PPp9ELDR0RI8RIwcufvhFt/Sda8jxO0SURos7dy7f9saeSIliE/X+o9wGaXKHlRQVkgpt7z7hrDyXVKyASz/3lHK8FsS7dIvOnjP1wfufZn5TCzjU41FqLc2fsUlMrTGxY0Pgr4VAuxafKMDxkRtMw/YUZ+l327PLhz90zuDBPZMp5prKJOYHz6KgirXQRybHKHLuze0HoSLve8Gsl3ebBIzEqEeLtu84gENcZOfrp2a2Zu6DjJgl//73zxlbOSQWbxDhBpuYXEnlaonzLzPdFBE7d+xrjCUjkUJulTmOCHUNmZKSor37Dxw9WidmFxdzq/vfJZR0bxxQecEFF1TNmjGeqflkeuckUSXu9UAyGCOms0AZln86UlsXjbDwKf+RhUtqII4prAdIjVhdw5QnR+sa7AUKUkhKF5cWht7rXWdNPefsyWCjtktBTe73mjaPkQYO1zQc2E/nQai8cmuClTK+ZDI4+mvrkrv3HiAXglxeCABaB5WGP4OFwJxI1k+fOPqi983zkT+S3NzHqBl0Bw6R+samnbv3weyoBEAOEWkRKQyTRnnP3mo9C+W5dFK04ojay+042NBi6OA+f/+hM0l/774DDObqRUFhqYAupbQJZy67txM9d2XbpJnqVrNbtmDzR/trCBgCpxkBb3W2IcQN2SnORIOXStolozgej00YP7hrl7IxFUOWLd9aFIEHMNnxEsDOIgU28Ssx76IRl3PKeQx00nlDOMhSjN764QE+wl06oCacIbFY0/jKocOH9p9eVfH44mWqUDXAni0z7LHbqSZIAi+34MSxxnt+4RJkx54mQTksWMr4bCCU4h2D1orFEum+vbtNnVJRXFR02y0leN2J0nTZJWEpF1Di6oWOUF3/NW8t/MWJcKHSXsqUDigHC1XAlyogpuMtIlVeGp02dUy0JNS5S3ljIq6FP8j3UsCahUCKHJecgP7ARWSqtQ46L0r1BdIunF+kmL0qynWvSq5F7mSoavbIiROGD+jfdeeuw8rHq2WqFKKqpvAUdIv6Wgqz6WQzBXtBvmSLUMly7hf1cFQQUjrl2bOnDBrUi76WlZjom1lBW6E6cinxWPhuqIVUiwxfD3USgbPhW9eVF/DMuEprKKuuUfOwbDMEDIEOQaBdcmf8DDvS/2Dl8MYclfs1yBKa/KbnLZh0+51PwQCwBwyIm1Wx5s5SdOzBb1784tzNWYPOkwt7fvxUJ5dxCHrGrIUQw/C0ZBDRmEzOnjcOdpwxfSTLd5DZnDy9yiEZJBBFHAGviKY41sFxZCHqcuKRAumIfOU5xmUMm6pxSEYcsTosYB0pCleMHtK/f/cduw8w8Up2q+ZnUSBJi7xlzR1yNbmNml0Ls+ro/UTdE91YBN8FBrdXV5gElL93/NghQ4f2pM2VlYOfX7a5pAQzV8ye5VOxniBmp9a+ZaNLU3iMuyLR9D5smSKvB4GMyWRiQL/e4yeM4uWhamrl6288WVgYTQfjtNzdJ0EEbzovTFaEB6dF1DGs3KmWq9SgZJJQcjpQXh6tmjEMLQiafO75V5RRJ0PWeJYe5zIa0/zjNirhe0J8zvbf3hN1sT5qtr5AvJHg+TmusH0wBAyB04dAu+SurOt4dmMxXDFePLkYe/bsOX06AY7pispBfXp13rJ1d6TYDbhpSmchi6txyROoI2v9pNne2nooANbMkHM2WIDnNx6vk7BAYTKdYD0IMhfCqgMG9h41etCTT64rjjpTkYjygkBxVL4F+MXxr6852zzV0No4FRlC/WkWy0sRrx5LakyQLRNuakqQXJc2lJQWTZk2Yt0tr5eWFftbkRHFMY1zRZYrVRzH7F6EKqGT0XXfsYlPyV8GVOJ6bgwV1Nc1zpo9xRecOafysSUr0im3WrQC1cM44rGyEaFOR1JkU1O4NVb0Xr7rcgXk7eH9I9bQ4JcF4Y76uthZZ07o3LmUAvMWjr/t9sfTaT+6K4853iqXkF0IuBqEVev6XduyiLmOVtY9JfFTJZN4w+SdJyNl1fTRI0YMpqlz50646cf3HqlpKFCyBWBJRyKlpIakVu7S03SKUAny+BguL2GmMvo5LeTQlyfoxL7At8L2hoAh8JdHoF1ylzkdCl5w4ZxBA3uTO9e7X/v268X4G60oLg589vILN2zcxrR1fs0s/Lb34OFHF73QUI/BKEJUulkRlw80zLa7NbnIzcJQZDp1xpljx08YWV/bqNKZdOdOpWPGDOQG2O3D//CuysqhRRHs+ExhFFJOP/jA04cPJ8M4nDUlyr8cHNd5eIZyRJPNj5iMJyZNGzl71sR4Qz3uGUZBC8JpkrP7xlx08YJyIm0Y9c1oYBW+ffihFQxvhgtpnvxRcqA75qVJrdsPp7kEAJAXoZ/MdepPwnreCdLqDMP0UmefO9Wrfc450+tqG/0xY5IM/z71xKr163eSssa9rujKcTW7ohpsyGZEAIok6TC7de98/odnlkULSUoDt/JycNZZ0x1hBsdPGHbllRe5MWpGIwL0sitWbFixYlMojAfFSz62d+A4Rvbemwyah4nvpAQZKN//wfmdy7s0NtbTz9HvTp46Qh1kMDR4cO/PX3XJocOMZMgpRskNG9586uk1zdgcq98fyZPHOAw7DRSAq7oZej59ss0QMAROPwLtkjukAH1s2bj9fRcuIJW5HAMyY2VvYn5Bt+86e/K7zp7q6LvgjW27vnfNHeTgLSiI8P5Ns+XcEGUd+yl7TvEaufO4YorSqabNG3e8+9xZCxdMkG/d23baQwIhYr3556s4UF37w2vvPFoTCxNjgs+AEUWXIhjnQGsprep3Lw8wUSD82pa9Z59V9ZEPn+VS3NDrOIeCKzpq1MDRo/t7vRrjTT+58f4DBw6RhJjweSxlbztTf+vGZ0WkcCCLthhgpMDuXYeweT/+iXPD6tWyeviSzHj61Kfe607JiL711iXbtx3k/UPLlWDiygpuYxOwdC4SIBzpLFkZdeeOA1/4wvu6devScoMaFgiWl5d+/J/Od1WJQx95eOXrm/eilGf2E/DxH9lzr68Hy91/rK+v37b14NVfO6tPz27CilcYoc/4s9r7/g+e6R83p5Yte/WB+55HBfoSv7WWQs0icdfzCG0Z9lk1zTOTxcv+GAKnGYGThULyE02RbDyY/sePn/vxT5zvaQuSava0iuuhh7vvfOrGG+5viDXgbXCt1c9dv2ZRhpjUqyAaasX14lOZhBnWpCZh+gXvm/O5Ky8sUTggHCXybq34kidW/eDa3+/ffyBaWi6yECvp9uMrzN7RWpCoj44oiUMjNn/B+C99/cN9e3V292b9Idzj2DOwau2m675zx5Ytu6JlETVb48NZRVq3pOXY2aAq4FuCoMa6xvETh33t6x8eOcqlw1QLmzd1VwGCEa/53q9J4Rsti4oTYVeJyBIrRY9Xx7+XeP7lWFzP4tp9e/a4+qsfWrhwnMYSRL6gAXfqWVDDoeqa719752OL1zCQS7p5DWa0hX9riLir9UeAYqjj8isvPf/8qlbPwD0SaZFmnRW6wDvvehpnWbhIPRkc7mvwex5qNB3/1P51JWktSstJrxhDOK1Hp7nRNkPAEDh9CJxsEhPWWpBVlEKBF57f+NLa1ydNHtmpU4kz5dQeXrpZ4eHb/37LLb96jFn3kcJifvmcdv/gAn7XUNJx/NuavBQjo0yH+DaC5P5du/qN559/edSYgX16dWkejBUv4PT/4Q/u/vGP74/F45FifPqck6fb+dz1x0Ojk616Dh07s1F/NdQrGtr6+valj788cECvIUN6O0oVG7IRtnfbLY/9x3/89tDho1FlNOOcp6TjGu/KHtu5oUQ1AAeROw4WRZV/8dHHlpeVRcdWDvVFFUvj7N8HHnrhG1/9xdbXDpR0igAMUmizhhEcg9JgtdltWV307qKGuAKy8KHQoqKSow31Sx5fkUrGJ0+u0EJ3Ik7P7OllL2744tU/Xblqa2nnYjwiCmRx+PsKW+pXrcfLavnIpYKicGNjfOnS1fv3V/PEFWmq7oF+gucV2Lx5B1OOH1u6MlpSHCbQR29Hck+5hrsdbwuZQFEwM71hX5Fsf74+goc2oIPTWwrZP0PAEDjdCLT6WR77geqIXyMbv+hwqLC0vPipP770wvJXPZf6NkFqGzZtW/TICtyvEW+hYyZrgwv49arm1qzR+tgV4jePR5twPa4ESzsVvbJuO4mCFaXRfCPnd+w+fM/vn8Yn7kPms3VKEBar3MR+a115y7HaTzP8NKtgprSk065de+7+/VO6JRuTp5Cb2rrY7+5gKaU42XF1ScQuh76O/8R2TFNpnQ6URAvJUnnn7U8T8+OxCmlkUsXuvuPJg4fqo2XEY5K9QTRH/5Ry4xMnCMm234PpirWCNElwOtbwXXf8seZInRfhEeMl4P4/PLN56+7S8ghVO49OVoUWQE4QxMe3XqI3YSQ2Eg3fd+8zr7+xX080ixXkHFy6dM3ylRvLysrwqfHOoAAY3xG6qimgzshZ61zlHN2j66N8J+a/Hq6o7QwBQ+A0I9AuhWGNQXJ4D3Bt49YY1K/3rCqt8MnGz1b8GyiYMHbosCF9E6kmIsX9pVPYy6zEINQae84wzJR3LpozbzzeBmcq+prSI4f1njBpuBZcbbVxi3jEv/K3On/coVYUEk9zEuKjs4GyeRc565zprXsFVOnSqWTmnDGMRnJVl1zdqqrl4Lh6j/tA/WyuLVnmoreav2Cilo3NnsimeVywcFImwNKDDDUXMWjgIi9pX7v4Hyfm+A/xZGpaVUWP7mWc9riLUkOBhQunR4sZFFYAvlaFlSdH/copb1q7MDC2YuiECYN0r+dpdVHpMxZOY5YDOdt0mh7d90CnLMBuMAQMgdOOQPvkgsHrw1FCaXIGjK7oN2BADwiLtIJf/crPVq7axG++S5eyqdNGu/yL7dfTngqiRDdJSrN/0sykHziw30QyFwYKDh6q/fdv/2rJ0jXO7g4RYZ1SdJ+jabdvYW0O2qtefZBEcJ84juNUKtirR9fp00cgl7X3/uu/7rjzzme832PBvEkFCld3DgbXUYl3GUN0M3XaFOHbgwAvw3+kPK6jOXPGkdWRyJxf/nLxf//Pgy6pfWDevPFljCjwvpNuol1UTrU+eXKb9bd7UlUUzJ1HRyvr/IEHnrv2mt/V1Teg5vSpI3t1L+Np6d5MoeueT4JPuxKg7FQ8NmfOGLxmwPjs8xv+7eu/2rPnCH39qNF9R48YGG8SLukgcxT+rM6jfcl2xRAwBP5SCDhHRFuVwVbKuJJmiWRSQYXOJjAmELjrrqf+96cP7dl/5Pnn13/0I+d87BPvftfZEx9+8Hnx4anSCPfoLo1bQtGJZOO8BZWFRUE4/YYb7iX85pFFK9aunHv5lRefffaMX93yKBPls/NO22ptm+dEuzjE5REWzafiyfGTBvXr13Pdui3fv+7ul1/exhzXNas3XnX1B6qqxvTt3+nggVqc2J6suUkzs9rvPJyZf1x/Qxvo50aNHDxl2pDtb+6/7trbn39xA8mP16544+ovXzJqdP+KygFr126LlhRhWWu0WeSM8dtm29s9mYql+/Ytmzdv4tEjDd+/7q5HFq9E6OrVmz9/9aUzqsbMqKr4w4Mriss1YYoXFjcY0G5V7V2gbdGSyPwzpqD/j390z513PtlQ20SWtMuveN/fvHva7HmVa19+3Q15I+LPk9CeZDtvCBgCfzEE2h1Qhdac5atJjj17dXr/h8688fr7f3nLI4l0kik/iWTy2ede3bRh59wFU9at28gK0QUM4J3KxjiqYuzSTEoS00UjRX//8XP/cO8yDOq6hobS0jJcF2tWbX3hufXTZ1Xu23No25t7PLm3mMx/UpqsfEhOQY2ibOYAffTj731p3Wvf+Oote/cfKimPFoTDGzZse/Lx1WMnDmPW5cvrNheGcVizoYsGhN1Bu+yr/s9t3KD602l49gOXnHGkNnb1VTdv2rofF3w0Et6+fS8UPLBf3+69ur7w/HrWzGu+C1Gn2iUGYvHE7FljBw7sdeUVP3lx+friknCkJHTg4NHHH11THAmPGT/kqafXUStvHa5ydWx/EqjWBXjViScDY8cPmTt/3Jc+/9NFi5cXRorg+qP1TUsfXV1zpJ7JyU8+uZrcMc2qt75bx1gDhbxG1O8r1OpOWQX5Yx3BiUjZZ0PgdCJwslBIDZUFmHuZ6tmjc6Sw4PU39kRLcenKMS2PSjBAWPSQAX3ItcsM/myg5Ntuq2dG2JPaOGZBux7dSzeu38GsUccIvqsgOWJjDxbb7lbuyf1tV68BA9intRSywQwe1GP9xl2FBTSW5kOyml7LVJ1IcXjQ4F6vb92nABAN8zpK4m7XK7wdoQjytvyIYX2Ip4TVCggzgfPxXJArgNeTRHrM+MFbXttFbT4JgfMCKdXB26m/pUwinRnQr+fhgzV1DU1FURIMqKugX2FoON6UIgPMzl0HmuIxuk41Xtx+avVzRzyVGDCob92RJkL+I5oSzCAwETnkiSmMNzaRBvlwTRN52QiFlFPrLfX7UMhP71sXzcT5oviW++lLFuTe8hztwBA43QicjNwVqicDVjlGYA8mdgYyxICnxBhKWyLyJAmXLDgSxr6t8JLj1RE1uEB4RMB/zOxUbkRyyQSZyE+lSHeTM7Vwh/NRZymbWiBT9kg+vsYTP4nc3cgwHAT5xmMBTHMRsbNnEctpyEjkhYJuCFbkTpdzKswoIFx7EB9PZCK4sgSRH4ik4VzUGeauNsf84JFhsiwTvphremqbGsy0fm2ajEqzpYtiEjWjlXEFaeEWg/VdF+VOTYDDllqpjZmr4EfDfSXysJNYJimgWKqJbwJvVz4sqrUII/fWaNixIfDXQsAbyO1IZ+5lSNNsyINC8i5mxJCmBZ5SRlilghT3Yuqy6eKfueE9EJPCvNQiliKVYEbkJUaEEzMFrFRxArMjigK+TPtiaaRjdpG3zFs+FUZYBRUfP/2Io+MQObZEwuillIqsrQG1pRXmx8beUVu7EtQ8t6mh7pg9wwaK6FYqNLoVXDBSUNWRurdICVtUp3s5SJPKmO7tFLcCkOelgC1ED+j0YjEmzXAiiw60q8z6GMhidqIQ/wxmx19G3QUCxKWIcPGm1JntSumfuIqAhEDMLit4ijpYcUPAEDj9CLQ7oIpoxzwiJx07w1x+XPGFLDi9kOsYepKZ60qd4i77Rp/lIImgJslSq2BjHbI1E+BbqeqtZ1Q+u7lqRXPNJ9Rsp47jfAmQCQ+Jc5oyUoo/Tm72ltbHLbW0HLSW7o+1V2uhVQ+bJKpmNl4S/DW9r0ie3nWaVVOBt7c5qL1qmOg+0l8f9WjIrZYNI5XQU+841ALeZrR3jzu7d0rprH/g7kBlJCAb6Ek/yH+cZPOdSpo3IhItY+1nT9M7UAe3ZD/7wrY3BAyB04TAycj9NIm0anMLAb0hqYt0Yxzqs/iMVX/ipjPNRH/iNftsCBgCf3EETuqW+YtLswpzEAHeGzDbyazsX0McgfMi4ZxDrdjcf9PMbM/Bb4Cp9M5EwMj9nflc/q+1yntzXKs1TC0D3jth5Jlx3pi32vL/13S09hoC/6cQCNfVsRSqbYbA/xcC3pXu9jB7KEHcTm0dQ64ac+AsEacaF3CD2P9fcuxmQ8AQeLsIhD/2sXe/3bJWzhBoCwHP7FzRUCqjxQGWT0xVHJ0QJr9NgGXHGVcVrWu0mTLNIUZt1WTnDAFD4C+GgBlTfzEorSKxfJbpyd1AwmhZ8aJ7S1JgXw5DoMMRMJ97h0OeywLlWIfe2Xzcpzvk2BzuHgnbGwIdh4BZ7h2HtUkyBAwBQ6DDEDDLvcOgNkGGgCFgCHQcAkbuHYe1STIEDAFDoMMQMHLvMKhNkCFgCBgCHYeAkXvHYW2SDAFDwBDoMASM3DsMahNkCBgChkDHIWDk3nFYmyRDwBAwBDoMASP3DoPaBBkChoAh0HEIGLl3HNYmyRAwBAyBDkPAyL3DoDZBhoAhYAh0HAJG7h2HtUkyBAwBQ6DDEDBy7zCoTZAhYAgYAh2HgJF7x2FtkgwBQ8AQ6DAEjNw7DGoTZAgYAoZAxyFg5N5xWJskQ8AQMAQ6DAEj9w6D2gQZAoaAIdBxCBi5dxzWJskQMAQMgQ5DIFzz0isdJswEGQKGgCFgCHQMAsEHh0zpGEkmxRAwBAwBQ6DDEAhrtUvbDAFDwBAwBHILgXAmZOSeW4/UtDEEDAFDIBCwAVX7FhgChoAhkIMIGLnn4EM1lQwBQ8AQMHK374AhYAgYAjmIQDiUyUGtTCVDwBAwBPIcAbPc8/wLYOobAoZAbiJg5J6bz9W0MgQMgTxHwMg9z78Apr4hYAjkJgJG7rn5XE0rQ8AQyHMEjNzz/Atg6hsChkBuImDknpvP1bQyBAyBPEfAyD3PvwCmviFgCOQmAkbuuflcTStDwBDIcwTCacsbludfAVPfEDAEchEBm6Gai0/VdDIEDIG8R8DcMnn/FTAADAFDIBcRCKfT6VzUy3QyBAwBQyCvEQgXlEXzGgBT3hAwBAyBXEQgWL9rdy7qZToZAoaAIZDXCAQzGcv5m9ffAFPeEDAEchIBG1DNycdqShkChkC+I2Dknu/fANPfEDAEchIBI/ecfKymlCFgCOQ7Akbu+f4NMP0NAUMgJxEwcs/Jx2pKGQKGQL4jYOSe798A098QMARyEgEj95x8rKaUIWAI5DsCRu75/g0w/Q0BQyAnETByz8nHakoZAoZAviNg5J7v3wDT3xAwBHISASP3nHysppQhYAjkOwJG7vn+DTD9DQFDICcRMHLPycdqShkChkC+I2Dknu/fANPfEDAEchIBI/ecfKymlCFgCOQ7Akbu+f4NMP0NAUMgJxEwcs/Jx2pKGQKGQL4jYOSe798A098QMARyEoHgHy/4h5xUzJQyBAwBQyCfEQgfWrYqn/U33Q0BQ8AQyEkEwoXFxTmpmCllCBgChkA+IxBOB/NZfdPdEDAEDIHcRMAGVHPzuZpWhoAhkOcIGLnn+RfA1DcEDIHcRCAcyuSmYqaVIWAIGAL5jIBZ7vn89E13Q8AQyFkEjNxz9tGaYoaAIZDPCBi55/PTN90NAUMgZxEwcs/ZR2uKGQKGQD4jYOSez0/fdDcEDIGcRcDIPWcfrSlmCBgC+YyAkXs+P33T3RAwBHIWAUs/kLOP1hQzBAyBfEbALPd8fvqmuyFgCOQsAjZDNWcfrSlmCBgC+YyAWe75/PRNd0PAEMhZBMznnrOP1hQzBAyBfEYgnDx6NJ/1N90NAUPAEMhJBMIVV382JxUzpQwBQ8AQyGcEgpmM5fzN5y+A6W4IGAK5iYANqObmczWtDAFDIM8RMHLP8y+AqW8IGAK5iYCRe24+V9PKEDAE8hwBI/c8/wKY+oaAIZCbCBi55+ZzNa0MAUMgzxEwcs/zL4CpbwgYArmJgJF7bj5X08oQMATyHAEj9zz/Apj6hoAhkJsIGLnn5nM1rQwBQyDPETByz/MvgKlvCBgCuYmAkXtuPlfTyhAwBPIcASP3PP8CmPqGgCGQmwgYuefmczWtDAFDIM8RMHLP8y+AqW8IGAK5iYCRe24+V9PKEDAE8hwBI/c8/wKY+oaAIZCbCBi55+ZzNa0MAUMgzxEwcs/zL4CpbwgYArmJQHjXQ4tzUzPTyhAwBAyBPEYgeH/vcXmsvqluCBgChkBuIhAOlRbnpmamlSFgCBgCeYyA+dzz+OGb6oaAIZC7CBi55+6zNc0MAUMgjxEIhzJ5rL2pbggYAoZAjiJglnuOPlhTyxAwBPIbASP3/H7+pr0hYAjkKAJG7jn6YE0tQ8AQyG8EjNzz+/mb9oaAIZCjCBi55+iDNbUMAUMgvxEwcs/v52/aGwKGQI4iYOSeow/W1DIEDIH8RsDIPb+fv2lvCBgCOYqAkXuOPlhTyxAwBPIbASP3/H7+pr0hYAjkKAJG7jn6YE0tQ8AQyG8EjNzz+/mb9oaAIZCjCBi55+iDNbUMAUMgvxEwcs/v52/aGwKGQI4iYOSeow/W1DIEDIH8RuD/Ae1eYcTpXQ8iAAAAAElFTkSuQmCC", - "text/plain": [ - "263×500 Array{RGB4{N0f8},2}:\n", - " RGB4{N0f8}(0.231,0.231,0.427) … RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) … RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) … RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.231,0.231,0.427) RGB4{N0f8}(0.706,0.129,0.204)\n", - " ⋮ ⋱ \n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) … RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) … RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)\n", - " RGB4{N0f8}(0.706,0.129,0.204) RGB4{N0f8}(0.706,0.129,0.204)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAImCAIAAAC6lVTuAAAAAXNSR0IArs4c6QAAQABJREFUeAHsvQmcZUdZ93/Wu/U++2SyzEwiIRtgIAiEJWCAYGQzKLshCTv4ogio+MoiiH70FRVBBYS/giJ8lBCDCRI2CYYA2QMkkG0yySyZmd779l3O+v8+VbfvdPfp7sxyeztdNXdOn1OnTi1P1a+ep556qspOX/Pyvfc/WGjGhcS2LMsr+JNJ6HmeE6d2ioeV2vLD8chP38uzcYYChgLLTYHAtRxwmqZyTVLgCXBjxwpsa/2WTd4h5YqN2FfABd71OHR8r2C7Gt7kP3GkEE6y3EUx6RsKGArMpEDoWjBfO1HMWME7sezYtiLH9ooFz3dh1Z7rWoVUQOy6XminruNGzVCBWiIjNA6049PGvHgZZyhgKLCsFEiAtxKrbTh3aiVWmsDOHSt1HCuMvRTfBG9h8OSzdW+ngnnxEOcoeGtstz31K3M1FDAUWEYK2A7wFmALA2ccjbOcWPi0W3I8L4ljflYUg3tymTgOj4QGzPQD2im+Lj2Aku+XsSwmaUMBQ4GZFHBlyI1XquVzYddg3bId244Tr+j5Rb9Q8p0CY2/bBvCRY8G6oyDUTFu+VBEK97ZbnHxmCubJUMBQYHkoALpBMgh3bRs2noBqpUTjitjuxWEUB2EM905sdOceI+0kAv8F1xNerZyrx95q4O2CcuMMBQwFVggFRDiH7wqmkc+BsAjpXJHOUaR5tuM6QB6pnMG4xcVLebRFRJ8SzrXmnFhwiPbGGQoYCqwQCkQiiVsuUFXIRERXY2/BeRzHHlCOoqiggB0EAQo1EJ5EMXJ6tgDwczU7nn1jfAwFDAWWgQLCiwWV6MeQzYWPo1dDRGfqO3FthPEZTonhM3xmPQBvwsDCzdVQwFBg+SmAHK7mtoR/K6xy1T+e2uPrWSie1zoNePOxuRoKGAqsCAoAZgVJpVCbgWIAb08+/3kP/vzeSmhVbE+E81IRs5YkSWRArnsDBWZ6KR7pDDCCM85QwFBghVAAOVxG0WjOhesKYmNltRa7zrqtmz3dA2mGzL123PDN1JP4yXdKDNABzNVQwFBgJVBAcMqIW/A52/FKkD/dAew2yIXpq1/bR4fUAr25GgoYCqwECoDKtnBNfgTtU7z5MLzBf7sLANWzIM2jBICrq4/N1VDAUGAlUEAPmfVVc1+wLRlTvxa8p4MZDGun0d7GfPtjbnQQczUUMBRYXgroLqaNzVZmFGh5JaZpeMnVthidc8MUOfNnYuymHkG+/kZQbdZ7a0Kaq6HAyqAA8ASzAlGwOZWl9pj6sHA+9cr8NRQwFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPDOSUWaYhgKZClg4J2lifExFMgJBQy8c1KRphiGAlkKGHhnaWJ8DAVyQgED75xUpCmGoUCWAgbeWZoYH0OBnFDAwDsnFWmKYSiQpYCBd5YmxsdQICcUMPBeZRWZWlb7p7Nup1b75yYWP2/ar2BHTpwWvfVJ3JV6hdhOCp4f1UMrde3Uca26ZdebXtTwnMBxY8tfZeQw2V2QAgbeC5InFy9j25m0omoSx9IziLNxcptYljQA3Ts4qcXPuDxRwMA7T7U5V1lSJ3adg3HzQNKMHKpb4dm2dVDwjXNT4flcbQG8cfmhgIF3fupynpJ4ke/tjZt7o3pg2y4QVtzbmeLkAN5NHOR5JxE2blyeKGDgnafanKssqRO5/q6otjupB26Le7u2A5IRxVPFxeHbAm/N2eeKw/itUgp4qzTfJttHSgHbCzzv4aRZixoNGwjbdmLbapCd2FZsC6qBOgiPUdq1ZPYjjduEW+EUMPBe4RV0vNlDiR64/r4kqFthAzHcosYTRHQ9yI4BdwLYYebo0VMAb1yeKGDgnafanKMsie02XXfYtWp2yg1a9MQCzeA4SW1+liBcTbaBbX4G4HMQcdV6qbpdtbk3GW9TgKkufZ+moh/j0XVdz/NqiTWZWoNBWCsUDkxOpAU/DEPPcbV4TlB+jLvBucjqYN+4HFHAcO8cVeZcRYlKxaGg2fR8uPRwFIUlr+AAZQVqEcxl7C3YVvcG3HORcBX7Ge69iivvSLLeqJQfmZxMPD+0nIPNerPgJY6rOTyfKx7uAHKtVNPXI4nWhFkVFDDwXhXVdOyZnCz5+6oTiVsIbftAszZZcBwPc1Th3kjz8uN2yk2/n/Izf1cxBQy8V3HlHUnWh/30UFAXmzTbGwwbVTtNPEfUaop1axt14d2pg+KcF0cSpwmzWihgxt6rpaaOMZ+DSTCWpjEWLI4/kUbDcRPhXLRp4hKmu9Gt6T4ewMujcTmigOHeOarMuYpyMGw0PSuMmQzzJh1rJApSsV1Ty0j0dWrBGZzcKM7nIuEq9jPwXsWVdyRZn4yDmOnuNAHfGLA0o7CtP0OvxmAbpo3T7cC0hiMh6SoKYyp0FVWWZFUwqbIs09Tq19J7226MCO67UZqEVlC003J1ckOU3u6kDxe9Us9AnLj19RvujcIhJ44rfuzaieOndil2/MCPGsVG4KeBp+NeZTQx2Z2PAgbe81FmtfmnqaziVg7jUkzTbNezbKceNC0HQMcWI27LagRNYeNThTNonqJEPv8aeK+6emUpp9SamrLWmRef9lQ2AOde9GWFAgu8q/WG7TpBxK2Yo47XJiP5GKzLojF+rXgAvXpcdeQwGV6AAgbeCxBnhb6aznL1+JmMToc3+GZjlqjgV61kvFlPXDu2IkCO7myy3mgmaSRLx2QLBy3qm0awQmv6uLNlava4SbgCIpD1Xsp6PI0T2ZFFzXaFvkx016IgFL6sAtjWZBhWozhGbtc2LVNmLeojLqY9rIDq7FwWTHV2jpZLGNM0Bi5rOXXKLNmO49BlMQnLwly75lqPNOtgO2QsjimLnSKWh7Y72gyasv5EVoeKKYuRyZew4pY4KQPvJSZ455I7rCBr8Vzk8xitOdamtgugq46zr9lIC26Qxl7Bj5X4nvr+cBiyMlTM1DTrlnhk9A7O+RmXJwoYeK/W2kTa1miUKhRlm9KooT9n6xV2a3DcqucdAtKuw1SZi5m5FTPvnbjeeBI3XU/07PDtKeF8tVLB5HtBChh4L0ielfdSi9IgUzuBaKKU3uyw5Lrd5VIURaz0rkXRpO89kkRYl3d1daVJlEYxAULb2T0yEpfLlucjwyOcC8tPklh6B5HYV16JTY6OnQKmOo+ddivkS6qQX2s+DG5t8/NS1xuz00E1100+4ees6QbDgePUHWcsTdi2pZ3/qb6i7WFuckKBw3WckwLlvxiC5ak1IbNLCx8G50xx257H5g0jKih7LqnVYKKDw0C16jqjUYTFGw77F7ZkErs3eUJcV75yb1weKGDgvZprUWnXRD7XWxoD1BRjU3ZSg4N7I2EwZMUMslGo+0niydR4Gjl2zXZGmnXMXHjDr2XTuprJYPI+HwUMvOejzAr1bwvSevgNt2WLU8RzII0GHAAjhXNl66WRZmMCCKOBS1KEdMG5ZTEurzvpoXojVqxaIxx/mP4KLbDJ1nFQwMD7OIi3Yj7VUEcmJ0eCcwxXEoF3w/VYwm3HKVfh3sjitlNL7bFmQ7Togmq1b8uKKYjJSGcpYODdWXouQ2xqekzqUYbcigmjPA+TGAO10GNtNzhOwbba/FgWmnAU0XjQZOw9JZy3BYJlyLxJclEpYOC9qORd/MiVyK2TAdvKOTLRlVggHExTwSKxT0GY4CwsCeOIITdOLx3Tcej7xc+xSWHpKGA2Y+owrd00kBhbeDoMGQxA8VWgElYqo2WFKkepvMCaAuHh3hZbFBG22Y8cfRjGpqzolNOD7C6/wad1fIOkK/XLnhfY9WpjImwGZcfujQqTQWOw1P9wsXB/lI73b3CJJbVGEzvyk/EimraQBB8arT5UKoYHrFOsYnGiavVYPou9Rya6iqWRok/c+mwDTjMRiYCtF5VQwHR60KxTsp6eHjTujXod/0LgsHlbzY6r7Bvh24UCW7FaSRODd490GeETnlLhqVewNHwOOzJuiShg4N1hQqORpkHDI0VmVif1KYZJKgJnpQaTFAmjtd0sxQbt+uRt+CpvdIaKfjFAhG4GjmeXCwW76AZBoxE2QzZtcGyBTZTW6o1qULNcD1Q5fqEeNMZSp5pazIcNBYFbqGBXTueQss2aSrNAMnD2KGnE8aEkqFQKmLW5bonzieyoWSj71dSOuFczawJsC6V7mIRNAJ+EUV9fX9H3giCoVseJRmR/z4sizkTwLabaXR/bOLoCER4wtUmla5Nt1KXrIsMy827cElPAwLvDBMfeE52Vr9daqgUbcvSHmn8S2LcsvaXpa3m5EEawN7EnY9MF0WZL70DXAHPGsszxgUkUNyYjQGlFHlNfAas7LadYLBYqdpiywDOKGFAXq5NxNXBKnhWUu8b7++4fHx+PolrD6gF6wjzFDBUBIIqtJEzGE+tA2dt85o4HR0eCCXdwnB0Wg6396/zQHgiHkRm8JPVjWxRySQLXBZhFhvFICFEzTmO/XKQvIK+y7LTucxgKijvEDKblLCbU08RHi09HIU7kFNR40qFhWyNii+HeijBLcjHw7jCZwTVsCiFc+JUFYrEboU0Lu+YHYDRbg7/pCWcboVWf4QezFHVXyi7FuIJfAJ3Neg3Ie2Xf5zGxw6Dp9PSN1mojk+zKEPhOubCuz+/pc/t61p267eQt6zbtPMU67TFW3/qHP/4J70ffD8ZHU7dA6h4cnz5BlozBkG2s1nY8+5kXvf71VqkIQ7dGR637HogfGTn40P7Gw3dVJybGDw5NHByKxscLadrlOd1s/xCEFYdcwZ6RI4KoXvV8v9LdZZckfnofL6LfQG2nFqy5h09KUPRli2U9GDk8WlH+5rK4FDDw7jB9i0rOBstByyBUhr4K1TL45AYRHeQzuI2QYm1MvwtMVccenhiK8jqykoiB+MjQUHeh1NVVxmp8rNGsjjebHOTp+vda48X+vuKWnX3bTz7psWefcs7jrVNPs9b1WX1lSSAMYL1WWrj+wIMPPbKvXO6iN2EEDft106SQODDXMMayxfve7l2/vm2L8NJG01rfb23fiUp9axBZXfQxllWrW/sP1O/++QO33rb79tv37N7djzR+cLAwVt9UqfQyGghtvxm4zdhiVzc6I7i9Y5dIxGbjCHoS+jWRTkRaUcII2SAP3E+RpcNkN9HNSQED7znJcuyehVjMuQPA5CgGntqMeIVvK3GdRg8zB9jAW3PvgLWYiLkyXE/dOEjZyVQ0aYlf9uu2w/FgQ83mKDNbff3rTjlpYMuWV17yfOukE61TTrJ6ey2/aDHu9QrosCZdVHF+w7W7nELBcu7Yu3syrG/s71UDXmV5KkK6KOcQ5UPXu3PvHqtQpDupJWlXsSy5YU140anaTd92iv0Va2Bd+fTTz7r4BWfVGxYbtt1886Gbbn3o1ttGH35o8NAQe6/2ForlQrE4yZYwacFxKyVUBIVQZI+YAYctvRtDfym7Kqs8CsSNW0IKGHh3mNiYf6JcQgpmwyNas4tUTFNXHIzH0G2xblKFs+HfxJAsSdBWs9EpjDUN2RYtQpdV8wsHoupwoVA8fefJT/ulxzz9/PI551ibNlppw+rqskRZRv+BDIAw79me39WM7JJXdHt4HqtP7Nq/xyk69Wiyz+8mC5Fo9TBYRTJHUmew4O85MPjQocEtG7f4pT5yK1ukql93oXiYIuTP96xySVajPOtZG5/znI1hau3bN3z9//70R7fce/+DQwceeaZrB7W614zDMOoSdRxD8BhpgcE48cCucVAEgQWlI9dCYuTzwwRe7DsD7w5TmBUaxKigi/aY7QsTGfeqVi4qdBHLdQBp6HBcK6676J3BRGqHiVW33KqTTthutVI855cvfs5vXGI9+Tyr5LIvosDPR+HVJ7hBdWWzESo3iUCTfwWpSuTwyWawd+++RrV50kmb5cACSdpB3JdOB87KJBdoc7yR8Yk9e/dv2riFz+LI8kT/Jj1Gy6kRBKyX8YSK1nOBfRQxyLZOPXXdjlOf8ZpLwfkDt9y2+1Mfqx4aTA+O9EbR+jStOLKnGyp0yZtkDrNYCkyf54niUBIw8J4i8uL/NfDuMI2r8C7Fw4psXijcW0y+paULi0X9FEWNOqJsT7HsMEE1NrG15I3VJsfTeMxx90bBZF/vac+84OnPv7D0ohdZIJYfO6tQS6KfE/DJg+os5MqIHdW6KgFoCkPLh23a3vXf+i6n/EbVeqVSjgsyKcbeTGKtKjsyuXYUsS/T2NDYrp/fe97ZvyjAboJv0X6LE1jKVQNRwK0cqcjOykCVOxDKdedJO/m99AJr18P7vnrdj7/y1d13/3yzbfcV3KhR7Sn3NqIm/VGxUGIavTbZ9Gy/u1Jp1upo/clLs9lkak10hkz7Mc1H32Fcpylg4N1pisJmAQI8lSu2YwCBCSPbqlZrHM1JU15XqDC6bo5PMsJ2C97eOKxziGc9mqj4Z170q4+99FLrcWdZqLh6e2CpsP+peaTWuJWYW/BWVqW81dwQVHrMgYne3dm76+GiUwDnDPRFQObCfyVCICeg+wPmRd+95+6fiVzB2YJF1WVIMBg2f8TxB2zrvkM9qvkxeak5uoSR18Vu67SdJ7z1TSe87lLra9d979OfuvfHt21Enh8e2TTQi7pvbGS86BU3DqxnOnx4eLDkMRYRix2MZLgyc45mDlU8jypGc+kkBQy8O0lN4rLdAhzOQ7OGJAyk7ITxNkJub2932gyL8DMn5ajtepIeisNGGN1cTAa2bnvmi1674zWvtTZvtJoopyJr4wYiApkIx62DQ5Q+W+UV/ilsHGiBxAL6duWbioF5Eej5kfWzO37m++XEwaLM94hHUJ44SP98BLasFA0fHc33f/h9x7WFhdIx8GVMvpi9ViYwCt5E3MK69CHAWzNuuVewJweWHXZZHjP0iVX2rVe+6Bkvu6j57W/f/OWr777mG9FQvKPgnVBZnyaNyQP74pLds7475aAzsZaRrd9EzGGswDJWWdhiXOcpYODdYZoynBatuYKSqMexMHNlampsvLqpq6/LLwwOjz08MT5edJqbetKe8vmvec15Fz3POm07+UibTXvTesvx0J17stuhYEquAjKZThcQ2KFo4YUBi0EYPurUXniyQiAGcGF4/wMPuB5TV6knuBVtF8CEb6PeQnUO0/SQzu30Z3fdxTfso4q1DPiH8YNW/ou4Lz0BibUdaRFW8iGjDeVNeP7yrSjIHQdLuNhyugtdxYsuPv9ZF53/mlt//tnP3XnNtesnqlu6i1jmuLHT193VmJIOQLV28G36Gu7biZmbTlHAwLtTlGzF44cR8OAfKjR+HLELwrHR3LBpy8E9B5iWtnv7hn3vYNk5+4UXPf7SV1lnPVmptlKr6Fo9GKwnYRpi3ikGKAJgEKyOJZlio6kdiHCA6ksNxQW99CGgzteDZfvA2PDB8RF2UATwKaNa+hgG3JKRFmhlDI41exKNDI0G5NbDClwi4YKFu0xi6bQOywsaz57CO2x6hks97GSbQTXq7u4F/kmNzVojj73czn/66eedu/26F3ztH/5+9003ndXVu6NYCnaPNPp6GG8jk5MHBAc95MbHwHsGWTv0YODdIUJOReNEiLg2YJI11pisIYKG/En27H/E7e09UAsOhPVTnn3Bc99yhfXEJ4gqDJSWCvD3RiSz3jR7uNkUloGSYptwSCzbFNsE6/D0SDi4OLoBWfchjFTp2Ozk7nt+inU6gwIEb+AmdqB0NXyEACzwFSYt8ObQscS57+57z37cGc0k8kUsJxBJTw32pTeQjOCrBgNyIRlSxKftHhk5tGlgc3d3QXwjyym5TtlFyce0nOu4xZdc9JLnPzu98qpv/O0nb7jjru09A35D2HwFe3elUWPUzSM9TjtCc9NBChh4d5CYEhWW2bBrmrbYjySRG6Zxk3lsu5ZYDw4dLD3ucRe//vKuF77Q6umDuQoEy/IVrbuCZYjsqqLQg6GoCMMaswI7Rsayk7FClwKYqNz4ypfxvUKfhJfh/m233JSEk+itym7JCxqO00M0KoyIv+SNRIGiz1oS2771hh+ec/YZzEcD+IgU4OJtoE2BmEk7yYlAW9CvnE5RbrcOYPpmoQVHZeb6YqBKDGjjmQxjT3WRADDz+fXfeN7TLnjgn7945f/3Ly/Chj6KqtVquSxmMLBxPQ43CBfSddoZeHeYomiLwHYk1plsk4IlJ7bhrPKyx4Lopa+/3HvD66wdp1iVbmTpUPNc9EyhzEn5oBYENcEYI1qWdaiMsdOKeIsqS42u5Y9wdFaeKKiLtkvYLeE1CK3777+XxVzMp6GjjiOUa8K2tZM84fiU/VvIpmXd/eO7iR0zcrznHvxKrDLYaDkdg6xqmXIiHQBk2D/51qHlT2BRPpmOK1QqVpBa207a+ea3vutXXrL/sktGRkYmJiaQzFlYyiSZ1pmbibEpgnbyr4H3o1Cz6TcFQjLXJaf2wAYRcNE/yeg3SRohY8keoBI1mq7jj4+N1beutyfr/bXAbYQMex+oTd5dSApPPe8lH/xj6zFnpus2coxI2rQwBy3oiV5B9lQeBNgaQPgoDilYbCG9VVUK9lzUXxVKB1TT1gT+5v98Ly1WYtaBJ2Vm2hNrkpjIicjeFATVurBXOyjGtbh2+z03s7QLZVujOomBu/QECuqSIZ2RVjJTOcz+VcFaWVBvdYbL1jTrN5g6v14s2/u33n3zfR/9xH2f/NdtjwyXRiPPrSf9XrG/i52j/MTz6k7ZKdFZjIyOV+PGhk0bG0GNCEU1SL8nokorB1IiSqMqghudWd62urBsPtekj4H3EVU7wEZHBpgE1aopxVG6YcPGZqNWr9fDRFZEu77f299Duxzo6mG3lAPNiapjDfZUHn/hBef+8QetUtnqwmJUjV01GogHOzUxEe2YgytqWRehV8bwopmbAsTMRHiFbLxnzx6ZDIuiKWxrmMwM2tmnJH3G2976jNPOvP6jH7vvzttOcP1ivTFenehd1ydbxDnJZLPqNLyBgb4+Z93QyLDXJTpB4Es5ALPGsS6SPCrkL36mO0uCpYutk21r6XK9hCmJxXgiy0Lgg2iqGE8HboI9edAI4mojGm/ajbjM6ueiF6bN2Iu228XJfQdGE2uX7/y0r+uC97/v3E98wtq4xdp8olXAeNtyiUpTXaThaVLu8RVKa553796NsoqYwDZuAXU0sjSCMeHr1ar+hN0iji8LR/a1pyzYX/TMZ171mZPf+Io7kvqhscam8kBzaMyOgmJPqbyh2yti5TaJKXt3oQKGhUWjtpM1diLx82PZGT/84ecsrdc/kjese1YdGHjPIsgcjyITCuOWH05fGTfW680oSoqlMnuUMHQMmg3+HxoZRS98476H0jPOuPzqr3a/9jfZU9zqHmAOGs2YWF5qFqSvymJ0jiSP1evuu+9mTCuZlJGwWI8sEBNhOO37zjvvRBgmGAx/gcCdesUBClZfTx1j200DZ/3x/33pRz5QP2nbHXv3pW6xYPvV0ZHhkUNqW3a7GQbtLGlGrZk2YrlaoCIjDu3PxJ0Wy7Vg1ams5iAeA+9HqUQH8zNZwilMg0bE7iXFWH6CDZpZT1dcLEw2mpiVlNgPKbQf8JPrD+198ut+84Wf/7x1+pmW3+1t3VpXbBpJnGGw6LnhP+yxwmPnnMbzj3/8Yzoa+DYRw7oX4N4I57wtFvxvf/vbjoI311hx/s5lao6YmqViTQhQCiIXhX3P6177vI/9xfiZj3lwojlyqOqJVsKpRvVGKbErHkvfdK/Klf4QAYobBkqQEEZNpQBvIC0jpinMz5HkGvYy8H6UykeXBtvmaC7WM9KOGAhiBUI7C+MwdtGRRdVmneXZGIcMT9Tu2bd31/r+3/jTD5/xwQ9YWzZhedn0Wa0l6ynBPzI5GycC6hDlWsy2Rh3FtyoHrBjQaqbHjcb8nCXU8O7u7v7+978vAZTeXE19zxm8Y56TIVapKO2xkfXTro0WG8KddcYl13z1hIued08QPDg02lXpL7nFqNmwCw6DHQCsf+QAhGs5fGqWoMXAtUzOVd90LK+rPyID70etQ0Q/wTY/2LjSnPMJw3Gn0MUiTeaemm7qDo1OPjhe87dtf9LvvbP7rW9kYXYjCJyeErqt2lDY5cgENUpx+A0aIjZkcQpF2aKsowBHLL/nnntANcI26MUxup6veCBfuwcffFCYthLm2V9pvvCd8l/PFhRBnf6RPV7Zji2xStZJO60tm8/++F+e9LpXP+yX73n4oF+z1qFqTxpuj0wwtnELqulb0YOwJY6oQiCl1IT8kNt55GfcdAosxXBrenqr7r7FEOQgACRCmX9We60k49WR3t7egrLgZm/R3eNVa8eOp7z33darf51RLHo3u3+gAZ4Ta2DAh18rjTm7lLLrAnov1mvxJRF2jB4wXjRkBw8eJEaEcw1vdOMhI/+5HAGAN5L8pHK9hGRqqlSaK2wn/djKpcQuMaKHwD5P8MmucSxuK27Z9MQPvX/rui23fuZzlWpjQ+hWJyb7Nq3T6j6CaSGc6gDkPAJvkdGnHIxdZs4WUjVMBV1Lf6dRaC0V+8jLGiHr2l6X5ZdSF63QZJpUXSuUTQxdPwiS4ZFgrLp/vFrbsvlFf/ER66UXW8WKxTrPSpnGJ+ozLMSgcUEkAJqo63gyRFdg53Wr7zjy3CwY8qc//SlQBdLgvFRCcJBF1MBeO/2phj1XHpnSwzh0aGjoJz/5CY8svJ7HtGXBVI/ypesix1B+x4YKdH82JrkOy1PrXsFav/6EP3j3mVe89vZGfW8trKTlynBY8Qq2bBMbs/Ql9GynVGhtXMGUovrp0bg3xdWPMjs5D27g/SgVjKDbaDSaE5MRRuGYhgIMtgR2nC63MDE4Os5W4z2Ve+zwFV/8J+uXn8U2hjAZrb9Fu4VopKxCIrEwlSE8aQmuYNoiSfKgnh4lB0f2GiSDUiRzoNtWreG5wNd0AeypQOD7779fdmkiN0pEX+CT43+lxGpZoyIgV4pGbviJNSxDiUph57ve+YI/eNcu3x0K7MmGPfzw/s3967r8Irastu+hzqzJfnRCY9i4/JQpCx2lEc6ztWPgnaXJDB+WbzO4K/uFnlKF/VbYjCiJ0qga+vW0XOgaLvk3VA9e/r1rrXNOs7oqGGYJM5HtwfWPpSUI49J8WcGR2hiMAXk9IAJ4iOwyidURB4v+3//9X6IC3qjWwDk+C0yM0UMBb4br3Pzwhz8kfEey8aiRID5DDd3smhxnIpoINXAZb7AihW0hQfimd/3W89733nts/4HIO6F3XePgSDI22V/pDqJwoll3ustsGqv7UJ0c92jR9e9RM7CmAhh4P0p1M0qEgZdKRY+dfpOYdYxlOVvAHW8kDzXCXWX/TVf/u7VjqzXQMzw+IcK2ZsiABV4PZnRzVrwbKEuj1AEkWQItxF0fJWczX8OE77jjDiRz4ArCNRvXQvjMgK0nXoF/ikYXcNNNN+m5sTlDdtZTD0wouVBDCMTB4/ysclepNjIG0FM0kFE4cMWlz/idt/2QHaWi5kh1vOB47F3FdAUZrocBwnxbnS5d5xS2Qbhx0ylg6DGdGnPcpwEbH8S1sD5eH2f01+V6xcRjq/DdjeCOsPmqz3zSesoTkc8nLX/dwDobZkQcgmH+KhUQrU8dIcAzt6BZAK03TpPFGB2jf61WO3ToEAwZeGu+zQ1ujiIpL+DNEL2rqwsBXoRz3Dzmq/PFcGz+kEgOOmLtjHzvFJkrhDR0hY5V3tgXBoHts/dLCRJtfedbTv+/b79zeM9YIS33dFWHRtFqYPA7ODyElA6k6UwBuca2tmYT2wTjplHA0GMaMea8lVN12OWENZ1RN/sNxcGB4cEHRkYe6e1+w8c+aj396bG0zy5aKosiYD6KoGK/KhKo4BwPBPaME2yjOH7UFRuZD+fxuPfee4ErPLwNaW4W4N5EQy+guwMs1R/atUvgvSQIJ2mIonQTss+LADR1xifGdZasqGGhmOwqWX2li//gnee++kU/bwzfs//hUkGObbHqQU9XNwZtEpj/M51pzTPpoVvjLD/zOI0CHktFODbMs4sFlwM5xsdHBxu1aNvmZ/z2W+yXXwKfcQv9ldB1Jhts6h9adcRixcEZRjLZ7aSeQ+vV8zVa2SabnijWrmwy9Dh8WnrHenvjjTcikMOKhWWrjQrB9gKqNbCNJI9kzrprQl5//fXHmvJRfgeR3IiZhEokM9hCGukArd7u3vGh4ULRt4qF0ckRWWHGCr043fT+t5/0gqftT2rsY4N8Ho5WN/T0ybyaclptLvPhiUyGyylLxk2jgOnvphFjrlvZmYztSpmwDjiPszo5PlFZ3/+Lz37G5ktfyS6/rBKJGjQ1DvGsyHG3WKponqI2QmPzEqRQmpxujPByYdYEyPKduZI+Kj/U5mAVBs5XGuEAeGF4Y/SCag0GzoD2lltukeQ6qMqfJ/dyBinikExCKGxDCpF0hCYcxFIbG2dc0z0wwDlqatbQsbb2Pe1P33/qOWfuGny4t7vHd1w2qivIHnKt70RCUj80mvyMm06BjnGP6ZGu5PtSxN4CTF+xywH7i6AVj9gtKXZYrJTKybrswM+GSGxkiETNhoO2XeuadJvN4ni9p2/ghgMPNHae+vCOk8/7u79My11YkgPXQllty8BEV8KJHhrBLQLMTdzj61EBLQ4AA2auMF5Ea9a3fO1rX2MSWyvMSR5/AugZsjmrA2xziCjBmCrfvHnzrbfeKhuqL76zLbU9zTzWcZX+frIA3dCTc2OjZvPOs06ydvzVP1z1ukuD0dpJnGSIphN9P5XFuChMGp4z2s22OHZ/M4KBK2Fg8YuxSlI4vra2Sgo5ZzZhDqzuVCxClDRAGUlPbVok/uxRxiGe3NANsFMg2N79yIENO08LKl1v/8w/Wo1As+IWIJR4KaksPvcAkDiNcG5IE2xzHR0dBahAGk/Nvbm2V1xJ3mY6YsDgHNaNdo1vH3744cbkJIZrM0OtgCeK2GyWH3/2m9797v2oN0rFoTE2Ttfdg9qmknl+DjBXAlJLZF8BuV4hWVhz8BYUK3Mx0Ks3M2VsjBNsq6vCNq/UWZpWYFcnOHZr3+BQMrDuloNDv/5nH7HWb5QzBhjsIQ0qwRslcISqnO8XH95kFQBrGLfb0H333Qe220tBCaDZOBhuh5l1g60Ob5HeZaqpXsd2be/evbPCrIhH5s2wNS1461/8q899y5vuGh8rD6wbH+UI4wA5P/GYo3QqsVtSo26Oa1sReV4xmVh78AaQMqEiW/sLvNVqBHDNBt/I6tSLYEP8ZZ80fl22w7k5SXfvvdXG+Zf+pvXUpwcMCzmOB6dWNfBHtgtcqhoF2CQFZ+YKPnHcfOtb34JRA1S0ZQjkYBuo43TgObNGDAQA3gTmQ+Jh9pubOQMvp2caOT2FAOOXSmXrO//P+iefOxgn9GQULaF3Ykdax2bqoiAWBdJfL2dWV17aaw7erPoS7g02hHvLgQNwbxqFjOVEOKeK5CWMzUrDNGUDsJSteven6dZnPeus93+IoP6mTZN8QHPiJ7ZSPEy1KvFZXDcd3txrRo3ZGWI2Dny2WTc3C4y9UZiDcK4UlUE7gRm9L83w+6gIFFls6swm8GWLvdO7u57/wfc/4thjdopxC5s3yQDKTdn2vYXrxVcNHlXmlz3wmoM32BZjEjE7EShL+1CVQCuXozNp5tpb3oRI6KOTzT0Tk6P9fU/9w9+3KqWgpwdRPAhDiYc2JabSrCYTKV35LHqFthksvFcnBshZ1AmSJe+KmXOjB94w8/kypIVzze31taU8n++DZfJ32WwxlO1jqyjbS0Xr3F/8ld96y/2N+jjntEUcmIztLaIT7+TgZTq0ZcrmCk12zcEb8yiEc2HU07guvb8yIBNqwMR5hXjOUUCFKB6yvH2WffHvvsN6zE45baco/UHB99VRYNzSGXBUn8OPDkMUbovsgK5OAaFaa84GBwcfeughjW3gjdPwJhhh5ssOU2gEY0kJHQGO3oF4xkdG5gu/XP4UoOAXQC3rSNhUg7mvyhWvO+1Xnn8otWqAm0Mj0pB9X2TUzXyCmnlcrqyuwHTXHLzBrrBZQKmmSdsGZfT97eqRGVRZjcTsU/qg4+288MLCJb+GHVWjIBt8B7Vmid6gtQULHym7K1rXYRm9HdOi3IBJ4m1rxffv34/eG6y2HW8BOeNqHXLOTCCQ4wA52KYXIDwKNlR0cwZeRs8A5MruLgjmxSqaAkT0cvGXPvLhA547Rs5ZcSsMXPQRHJPuiPW6cYcpcLhNH/bL9Z0sy1SW3moaTCnMxT6UwwfkjHuOzRgfGcXskQbjOP7YeH3f5k1P/t13WZUi65JpQQi//V0cZI/1CAcMwFroLQTr/Bafc0vFIFQzZa3NV3gEmd/85jf1kBuggnDNirlqN19l8uHY2BgIp5sgpEa43pgJqPOVvtJH6NH+fPEstn/JFYNfUoG85JVdr2QQvm3bs9/8pt1hEDtuY2IyDTgynbV46FGMcD6jQtYcvKeXHoSLRk15Iei5voOlx4YNG0YGR5pBUo3tkSh98hteb51xuuUXQ7VeuyihkYplkMeeYbK9Ek5Fwd0SUFMPp7lq+IHMH/3oR5pvq3LIRb9qP855A57pFAgJgAlAl0Ekel8HbvBpX0lizhiWxhNLBIgMd+an8xG7PoPwbZe99qQLnvkIvV0Ynbx56+gjh7pL3c2aWqiyNDlbDaksZ80tC33UqLuVsjQdYVQirodMg2GzxsHXvltrBFap64Hx6sZzzj33Na9kFxGalmdh6YZIDxhoaSIF6rWN8r3COlEVVGzis2hOc9rp0bPMG6DiPwvkhNEQnR64fQ+w+QqQa+YMvBl+Y7iuuwb8dchsnO0YluhGZYRN2SILKV2W4AiNvaK1bevTLr/0JyODUaE4emB0a3d/dWSsqA85W6KcrYJk1hy8GVfDtEV71rJvaY3FBeFRs7+3B+G8VO6uef4e29t++eXRhnWx7HYq+jhZiBzUkckVipHJNeNXf/Xt4sO7LS2DRpDJ5moHDhxgSgwcaoTrRnckDFyDv90vgPYHHniA2NrNlkh0mDba26+W7gaSyihIazGpBXEyuiJnv3zBaRf+8r4wemRwZF3Phlq1Wqks+l5xS1fwTqS05uDNPiZAG4yrCWu1SZIo1dihD67M5ipJs96wyqWfDQ5ue/YzrRf/CoPsgGG2KG9EiKVRidJNgK1aGo1P5tgUwlVD7ESlPEoc4BBgkxNG4NiigG1wqCfG9JdtbGtwzhkdqCYSrnrsTa9BtEy2sZUy4fWHoHqBGOaMdpE8VQ0RNyRO9DnjYbGEiH7hn/zJvlIp6eo7MDTY098TRuyhbtxhCqw5eGvuDcTBh2bgmhgsRWLmuDo6Wi6Vxmr1oTS54IpL2YMFIZwtlOD0IBwuUiygNaeLgG5I61zRmBOZ7LgkeFeQP0zdRbjTCnNgKQna9nXXXYfRuJ7l0ny4nebCyKS0gFnHwz3F4x5NGytDs6heOKp2iotyA0nZW95yGAq1GLmyPmIus46F/C/sPOtFv7onCEbZ5tLHHsHAe0YlrD14K0tS4QJqow8OylAqM1TQURGNGXZQtj1am3zyRc9zL3yOVfILSeRhvcruqKwKFbmedWRspsjOnAzBMY8hJnVGAXNLKsIZ1F20BzIJv4Vv63XaIBN3VCAkMPDWV76FdZNZrt/73vdQV+mMH4kUsGhFnIpY9ZhyMBtmR6296WQSEmErcQtWHJ13xeXBhvVBpVRtVJG9pj4zf4UCaw7ewmLhwjL2lnktHDc4Le72dnexNiNI0ie88hWW7zVKnsUOIWwiKsM9WU2MyglNMzEAbx7xEOFcFFESGZ5L4PRstgYh+yiBc633JulZCJ/1OD1vvNJcWnP+tipe7/oyPeRyDrylSCovQmBpq0JzCC41YVU4sbiny3rs6U+64IKh2iQmuEG48la8qewv12XNwZsVwl4SF5KgkkR9YYqJqR+ldpwyu8pWfoOhc1/PwIPPfpr1qxdZRXbfxZyi23J9Vil7VtGTPZAtWYxoi9pcmVBwDEjZctnVXA7mntcEtIPVmyayd2uadHdVvvutb8bNBvoCzkpRE78UJOKHD9tKaP/5UqZTQKqHgSOQA2AcgIeNg/a77rqLr/DhkU6EK8Hmi2ex/VkqItvdoN3EaAX5W4+J5DADlgVZdSqj1z3hQ2/7dnfQ9AsbwjI7unhJwUsHXGu9k3QxGWK5ge3JthpMlKhD2lvdBIIb29cudv6XN/41B2+ai/BZ5YQHyCAcxsD8Lzs5eNUo3DM89KorLldS9xTrmAq/Qv7KnjDIC2qNF1mCdeOOM29gWzvgffPNN+vYADae3GvR/TiTOJ7PaabkQ/8kHmHgwshjVJ6YIPT0XvSSFz/wyIFxWaEvYyWkK6UNRfUv/wgpC4HVl3JZM27NwZuTLuAG0lDU9FjoqvO6kfZoGW5xf712wjlndz3n2UjmK3zgwibm3/3udwGeVn0fbYvVuGV0PX2AjSeMWpaOTTmtdZt6Woa/NFDBtlKQwGpntFd4uK32cfBLT3v5K4dsaxgDPE47YFpBVugK1slxu4CiHJHOXVYNCeIF8wry6j6XlxnkymUJZxUqdDkKiG2HMGCRTQ5pC6wL48pjkNgH4uRX3vomy+e99P8rsPKxMpMSTUnRrOhEikbSnlXMo30E2PBq7aafaqAV9UcbW2fDayiCROCtTiUDodxJ0+U/ihJJ7owztz/lKXvYo4lNVKOmlUZsbytMXiEcTMtSItVLKF7OBzKalw9z7dYevOHeNA6mgYA3IrmTstiIff1oD2O1RuHkk62LX5CyqxEcHv9YdiZccU51O+jA2GIF7k0vpFnxUeWTT2Z9xSPwRsc2MjKil6ChbiRO/BdYmnJUiR5jYPCrftSbhrrEI6pBFR/GhMyBe4VnvPrVu2DOMQenY4XUZLYSNWirgxY7GLFNoFo1vBXbngK/iiaXlzUHb3ZPVGbmsu6TmmbszSCNay0Ix8L4zAt/GWMJe906+n+Ed1e22F9ZTm3GKo32mmuu0RovZBFtiH5sGdUyimB9Ct7csLaEa1t80Tg/tviP86uZFcDTYQ8BMjDHBIBJcaT35z4/OvFE9kqO45CNXIR7E1hG6QrbaiGw/r41Fyo5OxzbceZzZX6+5uBNjUpDblmkCrZl56UkZceAsNJ7xotfJDuWeOimhcUv1VTXUbYNZdNy5ZVXao3Xsem9IMH0VBVNhHtzwxaLWMvwth3m2JKYHv8x30sdaK4t+QWNePCTyUgyK/jGQRAYeG//WS94ARPfnCWaphxYgnCuEK5CcKE317/2EJ5VBvIyv27NwVv2NFHNhMEY7InZI9ZV4NP0S8m6AeuJT8QidWySETqLTGgqtKQV5qYUArfceps+gQBMou4+/lxqMMOxsZa57bbbiJCYtYCwjPBu2RcIwjW2WwUFwdIPg1hOZW5yJEKZbR9+8QUX12y74Yr2VGnO+UQArCbK5UMtmXODCNcalot3bt2ag3fKrrpegelcDrKh1ZY8v8vxw0Z0MGicf8kl1DtLhvnHBCtHUItGZoU51Ggwrpt/+MOuSpkNGCgCIDwGBRjydlv25gZHPMTW29sLpH/2s5+xcSpKOw1s3i4XGUgYhIsOQPW1PKqsyP4y+LhyHDPDKc8qYJDgbD7v3Hj9uma5xE5s4B4ZjGKy7WIR8Auk5adv5A/OcG9Nh9xcC4zB4tB2HTYWRQeDWQiGLpwpn2xY333euWzHiTzXXXGiJpYhK2/kDUfFetRxvvOd78Bs161bB9+mBYPMTlUQsenJsB/84AckAcI7FfOxxaOTl3nLw12tiOnaUWweBPP84cG1zmANWTNkTbhkHhMXD2NWDA1FQJOJ7xaeD8cwFVM+/3asWawW8tDfJ2zOhQmLzxYlHA0Yxs00TJzS9pOtJz9R5l6UA/bsIrBiW8HXv/51OCoaNW1bpuXqjlQBc2xaFvjqV79Kr7GMfFsXZ6qBih3PlDCF35T3VJmlF6C2sC582SWDBQ5fJ7RsCC27r3GWSYh9gxgVc9UMXPRt6TQV21Q8Ofs7m0w5K96cxQHVjL9lh01ZVukGzWi4Vj/x3CdYvRWajZoMYlAHZdC/yUKLFeWY92bDw3vuuQfsVatVEI78TEE6lUl6Cvo+4rzhhhs0JyfmDnYfR5tPDPTUXDectyVHSJ+rZOx2VK1eWMHbesITStu3V0PoJPaoABuTPlTsYNuTTZO1Gp3NsLUxWzuOfN6sOXiLNSMbq9lp2FTqKN8N4nQiSX+B9WEM4WDZIsJZHhuqIQTLBi0ryzExBvCYmkavhmTOlfx1UIQG24AZSLBDI8PvzkZ+DKQE3vzE2Kzl6JinGu00X/Gi4vhVyjufev5EmMTNxHcLYTMqlIp0hYRFjUrlHubeIgJMRTUVe87+5rx42doKqV5RmcO8OcCTtSRyYmX3ps3WU84TRQ0m3Mjnwgds2cFBtjBfce7qq69GMwgCWQ0CGhGnO8hdNbwRCqAQ2zwtf+GFUctJ6BwXQWOVGtIwbv1lTN6e4lavHffMZz4rRJlCh4BButS0mP2oEyuAtyxEWTtuzcGbTVqYR8UkFfGbplwP0KF5O846i42FU3XCJw1IVLVYLbMwYeU1haBeV2eSFJGcNQOnFB1sryBBwKB2Pv/P//xPYua+g9LBUWcV/KqRh3S57Y+nEK4grB8UeydsuVR+3OOK5V7PLTXrQblYmaxj0yBMW1i38Gue2OuePp6pkZy3/5wXr90e2jeiQlWOpRisNQLerPDcftovgGjmUsJApktR0oZJRK+/AuHNgSSHDh0aGBhgbg/UYS7KNHW7dB25Ad6UHVSjPBcisJbyuG3ajz1jAlsF3VYUM1qsVqcrlZvkE/hGzGmuW1eodPmur4nD9KEw8BbCp0fVijHHf2YQK8flbBdtU7q+HJcn4sZEWPVH64Vi9y0bS/ZvPN8qFIpJ6hfkHBsk8hKTwIy+3eNdqtFO92hv0AnRKLXOjAaqPwfS3/rWtxh444NtGWNvsK2XZB9t/POFJzYtmXOuMJbnP//5z+cLuUT+TAS6alG9HAwuChEZLyOvqGV/Rdkzle1R2Z+aLbPEsxhGVnX8Mb924e3eZL2LzTjG1GnBNlJbw49Gy83xUtBkNTxCCfo29tHLtVtz8K416hHbOXCYpucHUTLZbFQ4zRd7tRXm0F3DRRG8YUFt/RlgxlwUps1ODExf8agl52Mwa5mvuMRMtDpdhveYvtLRAPj5wq9E/2Jxyymn2CUhYKp2euZG55PmPk0ftxLz3tk8rTl4s+BAdFHMkcgRNmkzTtZvO8Fa1yc8ATcluneWyscWmxaJ2wanPOJY460nwwA5qNYNt4NjY6Kq1WrAG9kBBn7VVVd1dmx/bKQ4iq+oQbY7f+wvpOUS9UtFY8aE3hzpnHEZI3CmvmVyZG24NQdvt+jH7InfDFL21nTYt8ffvONk7MwR1loIXxkVD7pgm+RFc06ADT+/9tprxyeqMHNeAXs8CQADR6LuVK6Jmd3mSAs2ztCAvdwY6uuEOpXE4saDsoBGffK2pFKSvS8xXpDxVstaDTtEJsCV8jz/q0GlbSwurVde7GkBE23ULyhOUY+nTdfecOp2PZbLZBbiLBt9gLfODxIyHBUujfvyl79cLslxIvgAe6DIDfDWQ/RM/o/FA4mAUT1x0okQLYP8r3zlK8cS0XJ9gxxOT91bsdf1I5r5sjUec2qamLLXmidL+deKgm3Zmu9y1U+fqOkAAEAASURBVH7Aqd2+wwbH1HQjBd7Oxp3bWY0gJmrS14t8riyclyuDrXQBWHvEC6MG0lw5gluLzbyCu+ouQEO9U9mlywDeDPi5AeH0KZ///Oc7OLbvVD7njUdqkOOgvP7tJwXsTp2IvZrsvib1K6sI+CnuPW8EeXqx5uDNUe/UH0MyEThd1+nuck7eJjv7sAJBWUqsnNrVSAbDGl2Muvfs2cM9kjNXzdK5B4rtjuD4Mw/Hph/RQwN0bDgWh2L9evwxL1UMDK9dq+yfcOYZVHCMTWIsxmqKfcO92YMHnbm0APIjN7l2aw7eSOZsvBTUGwxdmQcrDPRZGzcxGmcgruua60oQ3bS8DfOkGwLMPLJKTB/ZC1MF24yQAaGGN6y+U60USzj6C5RqJE38dBzI55jBdir+RY9Hj70Lxf6TT4rQSjA7gpKFOhWhTExZhJmvGdexZrFaKMZJoDRcbc452qhvPuUUzot2nKKudIA9E9vLRh+gpUkKkrmBk//VX/3V+vXrQTLww4cxOQ4tt54A7xT90dLRZcDA6VNw8O2NGzeSNLI6SbR1eBMTEzzqvHUq6c7EI8v8bGS0gbPO8Lq7mAQlWrwyTlV13sX0lWhTnamJTnoIT5KlYim72GPq4FW60MSIhlVp0YDUVFOAmS/zglDJZZqCYfjnHXfcoalA34TrJEVmxgWk8dCSP6y7r68PMUGf+40nsjq5wsHeeaQXwGdmBCvgSfbhKLiFosPpgi4bWkNFQC5T90qrblRrK6COFikLKNFwQcpxHmng2OXePqVUOwwYEE4Q/dxioIuUlQWj1RjW7BGY/cu//Iv2EXArp79uM/kFIzu6lzpRDWMGAsgLLB37whe+oGNBjsBxDz9fidgWqYf+j+1TK8Xe/ogj4abqVuRztdW5Ksgy1u3RVcfxhF424fN4Mn0838o0CdjGuIVhreP0rlvPAkM2JdFtQEvmU+3heNI53m8BFSgC2IjHwJnZKQUrjHHmOCqQAMeb3tT3oJrRPqngAd/mEYSTjb/5m7/BE0jToZATBIqpL1biXxHH/HKpr4+NbNgrk42uJZec0cTBQ0yTrcQsL0qe1hy86cFxITOhnhOmVs/AAPCWw6bUcqJZNF7GdtBmywytMUTdt28fGINbgjGcxrMO00FsU3wiB9JcSY5HoM5QnDzs2rWL1Sw86kG4luEJOYtiy/6oeLUyUfILpd4eObVCVbnOGNgG4VOZVMPvqYdc/m0XNZelm6NQHPHLqFrkNMcG5EUMztXW53pYdvgDtRZpGQU4jRwtJ3/0ox8FYzggp7E9C9KzHg+X4ujvSEUnQVooIIExOaEfQZ/32c9+VnNyBAqCdTDRo8/mvF/oXMngwfFKXZUAVYsyR6XSlWTOUlC5WSNuzcFbGzDRCDT3tirdUtvym2btMAXrZeTeYEwzZ0xZmPFGZ45IDNo19havdZIoCRG/Tksnhw9aNOxbhoeHeYUnVxCuQy5eZo4lZjVOEY04c2DFktrq4fApLnBy2TUdp+a9W0OyY0lmdXyz9uAtR5Io5YvGj1IUqxWGMytsCuEzfZfuCeQgBgOkf//3f6cz0qIyGFN5X0TuQ6IkTYrMgcGxQTswRjhHhY5wzv4t+MPVGXsTRgsXS0eUI05Jzyra2DiwpaJ03dq1Wrvh3kdMyNUW0IvdQuT024W4FgSc/943YDllMUqFY3Fqdxx5HE0VsyDYoWkUlnBoCWw0u9YUBVrgivt/+Id/AEVIyGAM4HGPI+Qs16l64JxwTgi3opCbEsb5bDtnpUXX6WKvcN9733v/oFQshPUapu8AZ5lnDucsc+hxkpiwcCf27KDi22wr5TSjYmRVwqQcR8UkYk9Fzv1m8ixNZae6HLs1x72lL0e1lsh4UkzMpzr21t+W5CZQXxoHVrXJJ2ozjVhYNGBmuhv2CLaxVMO8HIc/nkuTq2wqyBGccMDuDv99zTXoAAgQKeuabMhl9qHiptUda0LJD5TkmntRPEv5NQdvBDMEtjCWje2RQal0GYapBqEagmocun1w1TdZsnXOB9i0QaunnbQcTgoMdD/zmc9wo61Qwbwe9HYu8aOIiVyRATRtv//7v8/gG5N9D5BPmdYdRUSLHXRalSHkkBoVrX+zUkbZlnejNWWqNavY+X6kwunRmfdGuSY7o7ImGHd4C4/WojHtuQSkgGNrkRvhHPRqAGtu88UvfvHHP/7xtm3byAYzUtoafAmyNF8S5A0N309+etftt9yC0AFPDDq3zny+RI/aH4YlMpnMc0JbjfCW8nQa8o862tX5wZrj3rJRIgYtlmwezI4kFlsp0oerihegc6PnRWkccr/otYrIDWw0yPVgGx4OeDAm//SnP80InHt4Jq+4AvJFz9A8CUAuhHNyxdlmf/iHf4jBDegpLN9gYZ5stqZBRCYH21pJMcW9p09zr5F2v0aKebgxCGjV8k8Wg7JNjyUDyNnzX7qz5xsJvMhOS+aAR2MbHg6McWD79ttvB1G0UYblXMfHx9ti/CJnao7oGSDQ75AxhIivX/eNH914o5h+dm6l2hxJHpMXylD50XEL5265WTHlXiZvl3fNwVvW9XOopOu47IOM0RXiJX28LDZo/eDYupuf3tm36bUYN8CmzZZBMlDHGvTjH/84aW3YsAGFOY2UcS+PWnRfjDwcSZxkku4GgYKzUz/ykY+w4/oKHHvrWtP9MnTT5WpV7rTOWktsDL/z7dYcvKlO7NVwcowBBxUwk8xBgtMq+TDOp3ku6i2cWavTEH1JCHH9c5/73H333bd582buGZmDdpgnCzOX0dKbFaAcSIpwQa6g3n9dcy2HBMtpxCvMtQBLj83sF3lrI1yNtpZAHFtR9Fhz8EZnHjONnMaN+iSGI/HoqCUr/MWWiR9LEaZBfSn4NxwGkRuWSLMAwwAYqP/d3/0dj9zwanR0FHmYYAcPHtQC/LI0IG3rwjrQoaEhOhrfc//0T/+Ug8WXJTMLJxrEUYF1oLYzemiI2W2Pbnwe2/jcT5WtOXhrhCDlysnvURxVa7IRlwjmh91MhB/2X4w7LUCSK0Rf2DgI5wamzTkkvIJvgyje4oOUztB3MfJwJHGSB4QLuiG4N6MJ5uG//e1vy/B7hTky5FO31GecNsar9NxI4KglZ2UTNj6jyme9zsvjmoO3FoMxu6QRAO8aRtSy6AATl+x5U/gsehvQw2muoFrfA/Jf+qVf4igSII0YrF8hFcOCwNVyNTxSRy9A/0IeyIxG+HJlZoF0adCcNCP11gwnRkbZzAHAI3q0P5nWdy+F6rSd7rLcrDl4AxjwA62xtSwk6cShYSuO2AebRsBPk6N9xWcJHDCGUWulGsnRAb35zW/mBrEcbAMkMgzrJufLqDmn99HyOQycrE7W6m94wxvQSi4BfY4qCbEtBtvkq1prTkz6dI8xB4wuTU0eVU6XIvCag7ecEEijlImTtOx444cOWSHjXsWlp7FqhXbdTBa9GkAv0NXJaP78tKc9DfCAeXg4oALkAJteALfouZknAbLBSAHVAAwchJ980omvetWrVqBwnrJGDGzzOzhoBVHRdh2tZpuq3HaLF1O2eQqbG+92YXNTokcpCEKmFtXo1FnNPHZoyKpOCrZU9XMDRVpQazWTR4nw+F/DDCV9pePVg3Ae//Zv//bUU09luAuogBO4IudIxcef3LHFoGUHeqIDBw5MVCd/93d/95SdO48tqkX9Sua62KYjsQYf3M3OPIy9Xc4paR1jsKgpr8TI1xy8qWmOjGRWDB5e8vzx4SFrYkx6+6neXdfSktFFjxRIFOm33UCAMez6iiuuQI81ODgIvOHb+KBma4dZ4hutGiAntXrjJS9+kUjmuCmhY4kzs1ByjLVFOrMeun8XkjnVjebcmzb2Xujb3L1bsma8UigHF4JDIu5is0jF1ydrzcka95K/mQhfmhxrpg162/I50i/8HL79rne969WvfjW4gm+LXK6G6EuTq2wq5PORRx4ZHBzCKJV9kQvlcnWMbnHlOSoRXp1ahw4chG/LGQZq17qVl9GlyNGagzcG3MPjE2LU4qBbbWzs6nnwuu/Zk2yMXbdstgcU1bTsuyYtpBjLmdKdcXpQjYwNu4YHEqleB6pHCqjTZk166ce//Mu/POecc5hqZhDOcg5wzocgDceNbrj0C/qxIxllK7Jqo5m69DHlWhAGcL9SmcO68BmbrLE/05ve9vaTduwMwqjc0wuddJbaSaustbJHx4TTGdY37WBHcUNBBbHK1lTdEyMaCCjIjVBBB5A7ua0yBVbwrMG97k3f3ZQGrFGnME2n2GTxtyuq8sROIpf1gmkxLHY3K0eRk1UYdM3Bm+YIKuzE9jwWRSRsXTC0f78W56YU51MtpqPVqWHMtLbGJAhAGa4RPmc6GrRI6f/0T//EHDiB77rrLr7icxw3FIQug5E5YWZ1DXNGeISeWKdheUpuuWE4oOUIwLl//36uzNj9+Z//OWeG0h+RBzKpQ1IQui18tNNp8RbHPVf8jxHhWhHCtX2jYp/5NLNw9CmTNStKmvWGW5A94aCVWKGqLmBm0Jw/rTl4I60hk9MyOUUQKc5PosH77rfUmRtarabbDdXOTQepQ+OGadPOuAEJuq1rpdqcTYwRBKyeAOeeey5bKcLAdXeA0K5jAFd0FgSj+XYQ3ljI0V8wEADbODLMIznEnwz827/9G0DlhiLoDksIZdv40OnogtDp6NLxSGDtqbuktr/2PJIr34sl6dSPR63uJjGZy5bX6qcuvJJMBDVr7yNOI4wD2ViKpDmHCJWbtjAnODjnXjj5keRgNYfpYANeHWTA3tx3fCrWddmBKSq7aX3vw9bQiFS1sJoZ5k08d8rB7jQkaOLcA0vY48KwBFGavb/0pS9FzcaKMToIHYlGC5+DcK5tFB1/bjFH07NfZJIckhzxo95jbwmG3NrgnERJEVS3kU+6oJrwZIxOgdK1s0QMvAVmxNPuEY48n4xG+F4gLPtw6P3K5WuN91nxEEwadKncuOundq3huWI1oBPVAy6Jalqlsi9yvl3ey5epPbFYBMYpmnP+MvWdFscmLBi4zJ1I/86v1XZaD5kojtVDt3jNsWn0wGABbqbH52CM1AjJ+tCTTjqJjZn4hHwDFfgq4AdgREsjPtZMzf5OiwwAWM/JkZxO5dd+7dcuv/xyMsAHpAhmuOrskR+Kw4d0DbwlSzziqSGNj0Y4PrjZ6T3as8a2BnYb6q2PZlaQfusxJE+C+2+6za83u4tltoOU4yDg4XTowrHlwCkaPQycee807/L6moM3NS2NzxV4sCYUAX0giUZvujkjqAnP6azTci9xMmAGkGBDc785UyGfIJwwGm8A42Mf+1h/f//BQ4MMfcm87ia44XONnznjOVpPogK38GFSZDkqxyeg1XvKU57yz//8zzBw9kuFk/OKYOBfCxGEJxU9YteYx7+dLvcEJp+4BbqzdvhZNzoiKkPjXFJSLPpwAjwLUCUAPw/laBw+fNfdlZgdID38yRI7dBBeIN3m3syYyU9Fl9/LDCrlt5iHS0af3eREWM/HENT2UFIFfWl6Fwfcsj2oaju0ALX72uE92A5/fBx3oJSvaeJc4XIwZFDKkHWBKAkD54SRAg96hIsvvvid73xnX28P2IOLgn9kYH09Bq44X7r0GnQ95JaYiZZBOOvD2F+NrNI90eOAeb7Fn1Lo4vCoxQctSoBncohFbfvt8WRPC+HTm+lsSKoQmnVL3cVN6+67avv299heFDblJIM4AuEsHdMrCNqrxKhttOjz0SEf/tPplo8SPUop4E3MIzuuD5pttvlNokoa7f3pTwTecHWFcNqK5hKPEtfRvAalBAcSNDUcrf+Nb3zj9ddfP18ciN+wR0AFcgCMlnv/6I/+6Pzzz4eFgh+QD8aAEG9x88VztP4wWBCOrp4kdu3aBU9+4Qtf+OIXv5guBn96HBBOxrjHhy6A+EGvzgCyBjd8+IEPfABdIDc6dcmfmnymUEebHxKgbBrSGuqS4pSPfiFAbccbNEZ+dpc3MdntuGGjCdkpEQSnZnXlTufYHa/ldi5WyE3HmsUKKc+jZoP13l7Br4eBxR730nknbhD2uW783e9ZoUzS4hUDetnkQTZLftQIZwXQ8me7ZQMGQDg9Hh45cPNlL3vZVVdd9Tu/8zuz5FUegY2OE27JDSx6ehL/8R//gYgOrrSQzCsih9mCcxzfSlNWjpt2VNNj0Pc6SzqkjgQfnB7VI5ADSDL/mMc8Ru/WyqP+EITrjGkfYiDPXHmrr//6r/+Kqv/pT3863RCe5A1/YiY2HcPRXRUsSVvjnBudDymazU55bJVHfWFpLnUnr4Lg5v/+7xN6uoKx8c0bN42Oj4Fn8ixvVWXaiQy/0Z3Dug33Prq6WBWh2a1FGrKdoDhFxQZDKcfpzdd9Q+BdE/tzAX3KWgSYu7Tao3LAA8lZW49yQ8OiIep2TzywXFjfc5/73O985zuA5NZbb73sssvaINQAkLzN360Q/ze+8Q2gBavEjAz2zpAYHosPqeiE2jHoxznzT3j9yay3YJVuglSQL+DhHAxKfzQrzKxH4iE8kjnJ3XjjjW9/+9sJQN4QNPgW/snIgv5Ok2LWt4/+CCZB+BQP50bf68PX3aKvMVtA20jAOLT27Q/27LHr9TLGLXyFv+/rsQOf6q6hneisx7Z/bm5yX8DZNdUaeulBFzwH/a5jlW1r140/ANtWErvI6GkS6LOK1FB5dhQLPoMNuBaQA2Pc0LKRYzWLBgBoqnbs2MFGS7zVA28O7v7Hf/xHjWcYHTgBCQvB0vNYy4GabWR0jA6CLVzANomCMT1a5lsNb25w82WW8LzSIblphyQS8km26YYQLli7hk+7A8rGpkfpbQnlda97HYEpGmUH6qwqIypGFjwScgpm2Wjm91HwbiOcTOsmS80JsEUTLoCHt3upVaJ2b7ql8dAeN2wWih7mBZxD5HGsCvK5ogTf8Dn3BOTG1sbI8ye+2t9oWq32UhxF/ln6y5yYcGiRzWjkDlsrlizbHxyxvv9DtliEAzip49msB582zXrEKRAh7ZhtyQAM4KFlgxP9NScBPv7xj+eeVyeffDIhucLn2VeYTVFBCFI37J3rQqnZNtsp/OZll73+issHh4aBIjxfjwWIljj5VoOWaxu02QgBoXY6P3yov9UgZOTMePu9730vYYC3fpWNBB+YMxlAlODmFa94Bf0Xowm0cfBqrGi//OUvs3adnBCSeLSQPGc8C3nO7KN40h5y1AyFtVjOrU4EjIGrN/jNb5fGJ8qeg3TG8IptMyV1MVME0shqSG5SsbzlkvvWn/sCzm42YJufKz9p/RwlRgfPquD+WvO2L34J+TyamCwCeJRGwhdoOUfntDjKN0COe25o7iTECPaSSy4BCXDy0047DTzgr+VVIMQrQtIRwPcA2EJJxrGPcrvR+Ou//utnPfMZrM3kK+CnB958qCGtEbUAvAmvne4FdEhyQupk8rGPfSxGLBrYuhTzZQmGTCmIClXCl770JQKfcsopRIJkQa4oDuIJUgCiPkXWUsx8Uc3tTwtVgJYeYspxT+WgRsFD9WfYoEeyXGAy2PW972+03J5yoRGFEf04yv8odHxmyCQCxtyu2pVHx0YHPBVlPv+uOXhj20CZxaiFmoaTqx1T2Xx4fWo/cMMPUAQVigVeMYizquyRfNS1TlunKSORwpY1ZgDJW9/61te//vW0dZi5Zs40dFgcyCQY2EBHTQAkc9KDDS6QKjHzFlCVurpAzuZNG4dHRnkEV8SjUU0AbrSbL6r2WzKJ45FIADZKNSSCD33oQzt27NBp8WqBHodOinRh2ixu0yp3ImG8gKNofKsH8J/85CfJoS7gfFma2z+D7XYwIuceK2OxZVMn/R68+Y7g4f0bPL+A3pTpdpg0wg4G58y9q7lx4K05P4/Usr5vR5i/G/cPTzt1dGjYTywWx2J8gJJExBgEHgij+k0ZtEyRQf5O3a9SWvjUuKimOUWS6mU/RWrecS2nENvDQXPL2acXzzrTcnxmT1lWJGUsHl0PCBJo1nAqcAKef/CDH6BIY9dBLaWfeOKJzBsj+hIA1TcY4AZ4wOhQsxEedRTwWAAGHho0ZrzpCBynp7d3w7p13/rmN7UOj0g0v6Xd4wS1jzb2JgBfcSUP5JzuBt6Ngdr73/9+skHeeEtmcAtHxSf33nvvpk2bwDCFIjb6CL5lyE2vwefXXHPNli1bzjvvvAXimbNFgWCqgSs/3fT0VaBLeWm0IXtpIWo5Vj26+lOf2XHzDV2IS47n0O/IyEvOAKamRV1ODArSkdKho1cVwX2Vt2epZkU4VSa5o4iiXHBsFgkcXdudswJWl6dUsDBw4d7yA+H8B+hh2Ot5/3PddZAnDSyfmZRSgd0+jrZ08F6AzVdwrXe84x3AlWkwcAJ0t2/fDoRgdMAAMZiQtHt8hNP19vIJoGKwqiX2+dKl1cr5AczkyQ7tyaWXX04qGNQiDgCq6V/RdKc/zrqnI9B9gW4efA6eyQxiOTI2nrBisgfg+XCqCc2KQx5J9D3veQ8TARSHYtJ5AWyKoCfPdB6ICodGnf3b54hiQS8tP+mS6HsdnHRdNXRi6Zz40KKbwQ+/d8PGSjd7MIVR4JeKaFkEv65sU7naYbwgkeZ9uea4t2NPhF7acCuRU3ISDqm2a6UwKoTN2tiGnu7qfbt2XPAMe3NxAsYFl0RYZvisUWNHsR0yycrEqdoWXVpUFTvLMCjQSSZW4CDRO14Sl8ulG67/7st//WVXfeWq9f19vYjk5TI/1PJYmRV9DyFYtmFG3xNFPlM7qAMcNplgLmrsBz/4/jve8X941BxrfHyMQTr9M8noaxBEpUoFFYFXKDLJxk7o5z/jmbffeedtd9xBR97d24cn5myO5xfL5fHqpOsX8M/+0EoxMJWNyh13bKI6ODxChISHzSJo6AGCZrwwYTqjdi/AI0I7SNZt6p67fvrWN7+ZscEJmzeVi0VVLggRIu6LxI/xLEoGxA1XPK/88pWPPfPMnTt3ItIDOaIiEvoUbvS97qRISyfHW06DI6fI3wjXHooxII5cze7l7NMQwr/tRJavWE5Qtz7+0eJ/fbnY3ZOUKnaxjN6U4hGDy1p1FtKKcC56F66kKgmrPkH9XcUXw71nVB61Pk1jKutIRJRJHdY7Dh8aTBrB/Z//N3h51JzkqCKRCLnSFpQAxFOLgSD8hOnw8HjZ9SrFUp0FZ2ymrdYqwAF/661vRSC/6eZb1q+TvcpRhsPJZ2Ri2gPtmDC6uZ944gkPPbSH9WG0chCFg6tzr5VnhCSYBh6exIFEwDIykHbllVci9sN+77nnHuRhJGSYJyDUQsG01A7fEo8+tAzBHtYKv2XI8Gd/9mdnnnmm1g6QOuwdBs435BCFAjdwZjBPYO7JAwlddtllqPe2bN5E3njFVwBVg5+vCEa2iQcfslQs+C9/+cth9fgTMxkmk+SEAPhoT+LhQ6Iifm6gPe8Qr2Qmi1rQuCSo1KNYLuCRTjasKL7h2q91e5KxdtcgMa5t16bWWiFDxCiMpiLaNRof0jmDOIbhTqXcXXL9cmTd9o3vWGONAVRuvPatmAkyWrhs9CHzacLIoRltzbfXD/ROjI4j4Zf7B1RM6be+/t9MFLO6i8a5Yf06BuFbt25lEaUW1+cjMeyLNg3P5Aqnu/rq/3rf+94HSGjcOOUpvI7PgROBucFTx4aMiooeeHz2s5/Fh/Etwj+AAR46wHxXcEVgNmlAnAbh5PCCCy747d/+bbIBPIgWpzkqMeCjMU+Hwj3IZGKfKzbw9GLdXRXekjfCkxOSJnJyrpPGk5D0CHxLMHAOwj/1qU/xFk+So2ikRb/Atf2JhrekpeDNnLbubFsytuDcSXwXouCP+ZH1ne8+dPtP1nmiLOArHU/7mvVpv8r3zZoTzlnXj06G+pcWItwZ3KJMlJ2Zerv70SwFrt/X39t1zhNg1ax1jlRQhWjOE5XwoshRrQxO1tNTEcWNevzgB9//xje9eXjwEGxq69YttF1aPA0L3ggaab5ztiSU3bwlpGbFdAe0829841tnn33W2WefTdMHMBozmt1VKl2ar+rYQDIJgfnTTz8d5DA7RTACwGbBkmb7c6ZLzIQkb2j4+Jz7q6++GsATWHclugcBZsTGW/wBLUmAH3woI0yY4XRPpUwHQQwUAWGBrOrsUXAQrnHFJzjueQvWEQSuvfZazi1npwqdDf0WePOJvudGAiO9a8sTmc0S7TdEbA1cqBdXeluW/lmN4Np3vWfbWHVDynhLEtKRTC+4zsl0n3zcG+F8Rj0ySQJGtXZNydpi7IC1A8DmhnUI/c3oxs99yTo4DM+Ko6buCHQjg2OiY5folG+p7I+OjhPsBzdcf+bpp33gw3/Sv3EAWw5EcVonkOCedgZjRD6fkYlpD7RpxGmtZwZRwIlmzWIthF52X8JHm6xoDAMqPgVmOgKApG8AOej6vd/7vZe85CWkBWb4ENlbh5+W2uFbIiQkMQBvIuRA0jPOOIMPiYcsCa7o+JSQrFPhHk6LOE0A3oJnLNIoo+4FAA+iCp8TJ5+3PfkKh4+OhA95RS9AVJi7vPvd79YdB6UmOYpNYJ1F3Y+0souELj/pXFv8XYZTCtvgPW5YN9/00P/esK2n34lkaICbBeZZj61o18Af1VjXQDnbRZQF/Qzb4Njado1WBbwTp9TV2wiaA109zuhEdO9u67rvwM8LMsJTgCawLGGY0qQDb+bFJyb7+3s//Y+ffvZzL/zZrl19G/plvBhFwJXWCSwRenkEYwuMgWnfDHoJQKPUuOKKPI9xOjulsmgU2IAoGihxkij3sFwNAzzBG4jCU79lJvyss85CciZd4mmjpV389g3fkjTz7YTBQO3yyy8HY/gQD8hvB8MH1PHYjkon9Ja3vAWrcqbuKR0+ZFKDn2hBMr0V4XE8csWnnRlmDTDpUy9TVp4QDyIGqZAEFOCGV+3UBfaK1NpHd2aHXwexywRmdeJnX/yX7V3lyaFBHQmJcjM9nnaEa+1m7cFbRHLY9eGKxowJ7u0XSqwSZYfkPt/b2IzvvPIaa3DYYrMuC/GcxaPalJGvYPxKRreF2zDfy7rOrr7eLdu24L9+00baLswQvCHowr1poDA63OH0Zt7RpmnfIJaQtEjQQgzc79hxyte+9nU5RludAcxHJMc9AIABAhjNe4EiUj0AA1GEITb4MDGAPfCm9WEzE2w9gTf4NumiS2O3Rlg90Qqcppzmt3hqeOtXGjlf+MIX2N3hhBNOIAypcOUtjrf0U3xCrvTn+JAlrtrpwhKSbxHpSR1jPlSJ9IO6S9LB6Jsghf5QJjERJVQvK9OZWrkJ904tD8Uomr5vfPPe//n2yd3lKA7sMueLtRzlIBKcfp4q1tr6u+bgraZF1Iy3rAqTymahv5vYE7VJt1QYqY5uWjdQrtd233Cj9d0brFpDLTfEmllzDj7Q9hHWnXf+BC3aVV/5yvqBdTRlALZj+3b0t7BT8EDDBdLwXto67RhYztesaMqMt2H1yPBI9XQNfA5XBJlsjvzXf/0xtFD4AAnJ6pT5N00WVPNI14A/8ZMiCEdKR0PGsnA8d+/ePZ0Pz8oA2dOc/8Mf/jCjdGBJf0Fu8QT5xA+69CcgBB/NtCkpHQEGarBrskRnREiKgCMY4ckDQMWTkNpHR0VsOvOkQq/HKx6hDP7XXXfdU5/6VJR8uixEorsGbjRXl/60NRcJzNGA8GMJKDrR1BqduOPKq+xDh5Lq2PqN660peOucm+sahLeNNK4kbim7WLbQv2N67vnNNF5/4uaJ2tg2dGuNxtV/9TFrfFJsXIJaEjVk/tS2GjEn3Fhf+NIXn/ykJ95/78839Q50+8WBnn6s1pujE2VLRGhaJ3jAATkaMQ2am/maGq0fSNPKYYOgVAODGyR8YMBXH/jAB1hwAvC4b7d7whMtoAJgXDX2SEX3Ahi6ABgCw5/BGyHpC3SuSAUUkTc9cOCwEYbrxAzeCMPnZJh7ssGVYBqc+HNDMJJ47Wtfyw0p0hkRgGjJG4570MgVf8JzTyZ1zESFIySOD+nLuCEn3INwehaW0D3pSU/6yle+QnhekQeSo6PhUfXAVh04o/OLmyPjwyzFjy00jonFov1rv77/+z/sT8KtG9ZNNiYj0K8cyfGtdirxw49T3mvi75qDt2zKo+zVhCOIU1p05l18b7LZmGjW7YJT8pxNpWLh4GDy95+mTcE0nQJTMxih1zzX/3//7y+uuOwyGnqJUapf8JkbhjOxsRPrlaaPFI+v/RA9rPiEE7bA1S+88EIiAzOgiMaqRW7QCITwpD3rpOgUCMA9/cUNN9yAiA744dJwWvADlojwwQcfBFeM9oE9U+Wf+MQn+Fyjlxs+J04cX2mI4qlFA67EzOI21r0RLWHoVohKJ33kVw3dNuRIkdhAOP4sJsVe4KGHHuKedBE9yAPCOHs2oCypRpKldb0DIVZpSd2KQmt85NZ/v7I4OLJ9w+axkaFSpQxDP/KcrIWQaw7eFFhGz2owpwV1qWYbjuEw71Vj/FbE5MvuqxR7Jie/ixHlw3sZgVus9GLbplLlbW97+x+85z3sj1/pKpW7KsVyyS8yX+5h+YgKnaFhpxwyMNyPps+VZg2PBQkwNNgasjStH4hqPAMznSgAhidzr0H+93//96wG5xHP7du3g3lAu2PHDvoLIgRCX/ziFwlJ/Fzh8JrZ8gpHR0BseHLPDelyxSqeZWrERn9B5wKjPobCksr/3965B1ty3Hd9nud97mtfd1e7Wj1WsmRbdoyjlaxy/JAS2ziFISHlsgqSVJmCogAHUhQp/nABoUhBgKKKggIqj0qAOHEcGxtssB2hRFYcy5ZtObEkS6u3pZW0r7t7zz2vmTMvPr/uc46udleL1t7ZudL9tVbnzpnTM7+e7/S3f7/u/vWvrSEAwzlANLfiiZBIY3H33XcTtpGxALJRYH7NB1E9rA+jAZ4tzUYryeMkHbdok5Px5EtfeuLee5czp1trsESIplaWl2jahMC2m/cWHzUZLcfWlEMZNue7GT3DPYIVCNiUTpLjXAlhhydPfb/TOMgi7W57FE/+3i/84m/8l1+D/VdfeSVulgwzo8S4RAZ86GziREWVvUgFboqz6YXMDqnrMBx2oYShJV19NOt73/ve06fPwASIgXqH2NAA4tmLyI9JD+tgBWb529/+dph8zz332My0BZaQ8BPmYPPbWAvchPzchPaC1sRqTnQ7J9GfPCA3h96U5GMf+9jDDz+MzucMxeNunMRomRX51f2ddekplU1IJPFQfHJDyknAqQcffPADH/iA0eFtFHWtUffZEC4asPlEi4Ukw4HzxNNf/hf/cvnEqYPdbjSJFldW0gl9IgmKuq2StJHmgeejxaa7uV2XlJh1/LYCSJebI7yZWTyYpHEzxHlclpPlIY7OaSdwrlxuP3b3nzjfeYguHYPYv/lrv7FjZdeBvfvSifQt0diQE1MgKyRyAF33yWxe9oevYdRsKIeeRBBs3L1758c//k8YhYLt8JNfITYMRAciC/6TMHHncunTckwoJRZpoYS5hLtxCaN9dH3f//73f/zjH2cMDJbOlT9dfct/bgvNSNwBntNXJxt7D33+859HBM0KGRDHDa30udBXc0DJyWaJzeV8RSiJe1I81opzQMLN9tChQxgLtJYE2AgIfZeO0d50f5LjJ5jNeO6/f/LYfV8/uLy00GnhUhPU20mCh+FFtjWvpsSv5TzbrK2zr8qsS2BliET0YBM8FsKKKs+LZOIlrBhhykU809wsXqwHu7zg7s9+9l/9o1/6j//5Px24+iC97DSeEB/f3ElqqtRXGSTmXrKI4lJVBrgHkeAV5GTYCX5yZ1xBrIrmmPNG7YnGgxgkTqKBrQ60GfiElli/NBAkiAotmVSH9vxES8FJ2yig5zmDliYDB1jLsJf8lAGVTn+bSzhm2IyeP7+SDYnkIfNFJdsiWJXDMcSmfeGTktO+0Pog4rrrruPBKQxTANdfdfCh7z08wWEOYjtpPBrUusvOt777zd/55CE/qKWTtMga7cXegGKz/4xM0WuaI7Dt6L0pOKbxhYKf6Ac3b9SCbBzX3RBmTwiU2mAonU5s4afp3X/4h7/6739914HVF9noa3mROVssSBmfM5NqAUvlc6+W+ywf5d8c2R/ygLqO5oR+sAuqM4vODPTTT3//Qx/60PHjx6HWnCHQACuaZBkCZ2A40mE1zGFFKgtFICo3QW/TFvAVD1aaCfJYsmEPQyprnGMkk82et4qdC3F6oX255ppruDOqlV8pFb/abBf1pDNbUi6iZeQOnOFxaGXoUDBGYAvA81J+JgifPXnsbYcPv+n6Gx5/5HuBQ9y0uhM5n/7H/2zhxOmbduwOipSQTFj24yQLAybbL6osr//Ml6w6vsagmnq28PjTOB4yMDNJ+aQzPSIUQcBMVQuH7t6p0w8/+9y+1dbxtVO79q2y4pPxKnSLWPZGVWPP849gP3hIE13gUuFgCQzx0JkQGD1JpxffMBQpI0+obqvY4QY0sLy1E2lWmfMJczDsScx+0Wm3ehIfEgaoOYZOcJ5ryWnN7LlxTo8AiTwIeViggufJU089Ra8entPcYPbDQ5oDe8OLfV4KTOIqy20O5k0GRQVbHpkWhF8RwZmdq7s7C51Bv/e2t9x858/d+fSjTzz02//V7Q3eduDaZb+22G4RSyvmxdWaDJZQpIstz+s7vzt8//ueOfJ4M3GaXoDZGTTqLNUlSBUBL8Qxm7W2otymIHBmfvwaxSUOJj5LJLKAgbUkSLDMeSI3D8LUwx191E6DYXTwtNtYXn1o1+J3N3q/NHoOplHPqIXUSzhDovJZDXkpQDh/i4BQK+usT5gMzYj6AFHnPCHzhUuC7Q17KTOmNe0ClIZC572EHgreqsRy4xmJyfDVr3zl9ttvxzTA94b8ViKfNnGGbOe9zyU72SPoSj4o4mHMPH9/JfCvX1i4oda6Y99Ve4fx7vGEpijMI+bFWRnOLu21XBz+U/OiUuOMZO01WgFTpKmzzbx4STqSzSRpmnMJfO8XVA0PS6DP8Atr8hkBYTMjBuTdfMwXz2kwDrCVElFZRM2YbVh4cIomPlhMLATeztU9W6uslwE3WiozMUY7Ne0n81cO2afeL+oxbzBIOiFdvacGvSNrxx1cVaZjk5ehdC+JsK+K75ulc2y7u2hgBsYZiEKdWt17geYGVYwm/MQnPsHlcBv1aG/ykrBNRxjKfGPQHMHDjQ2ixNEQcNW8JPPyUML58aYbXOLDRrNWEHEep+G6P4qIgRe92B8UTp9dCq6p1W/oLF292NkRdoNJEg/7kyjuFPi2iLkvEXjEhZXZDNxgzLCINbfQW7PBZsra8glyX8g/oibL0l9aKyCA5+IUxxWoAVmkwFmpJJf46cq+3bajN7oATHnv1gzBxOa14etCA1jLnVrEuFqtv9J6okjuO3PqO8OTXnvHrDa89C7OPfPSb5foaE5v7mfF2U96vKzKYAjqzjvvZCh7bpBfgN7oXm5Cflu0C3BbMoBHmtLtb3Y69NK/98ijLOemD0yjYC/f/Lm5kJvPX8LjrEj9QsY1vLAR+kWchr0iGTjp95PhA+lodTC6Km5dW+tc3VjY211dWAobcR8DZIL1kUz8YkJMRWYMmMUcxGOcXmTxQG7cD+WNE+qlwKsWP8SxGV7NWHEGm6kZk1wi8EiSPxLYhj6ExOQjvZYovv3mvU1vQ6ZbsN/MJDWvTVS6xG5wmsT3abefW2x8dbT21d6po+wA3pLwBhhvZ1H6rK/y3n/ANOv5XPDyeRkYeYKfKGT6w3SeP/jBD0L4V7K0uSXdUQpPHu7AMRdeILMpArN8KQ5un/nUpwhgTLxTrqL/bxG4dE99wad92Y9+JvPZol/hOIP1TrORtxujZr1fD087zvEkOz6evDiMjm6Mv98f+a38TODjgVS0W06rQcTMYTLpjyJieMhyfSwBelpeUIP1/AtrRH5mXhPKiieEqG3xls9TLHRqBVobFS6/yDiq/M/h1Oh7WRmr+zK3oKxpQkE2z3tvO+09fREunl5GjU/H2GQQnL0FG26979cec7OvxxtPOkmxcweLlajTZ1Xrs76W8XI3K0Yrzp6BnKhWxgIY62J7EyaH8TCHtFZFn1sSqawmUho34Sp63Rc2zvFQpdqzgIulJkwRQmxG2mgdLmAdnCv0Ep4punUCmsuIAM7BLP6Rt0b/2a+FbQKeRn6aBNkgzp+JJ81JHKbFV4brS43Waqt7oLNwoN7a2V5cai22sLzjSS1PRXGbvpg07BzkTmq88RlCwNVeVtCKOQdUcFuCbdKJheNmvI5xF3ms19bM27ajt7XJTW87w+ozni1SY+haZaGD8j6eTb47GB4hDFi9ydBxPpgapbDrMrD6XGIglzQ/j8ZGgRPqhKXa8PxXfuVXWD1y+PDheYazDigzl0NsznPAtTAcwqMIz8q5+SthWB586OEr9u1FdUNvfoLhNoMtzLxIZWMyScd4FoojAuGxxC+QqY5C/IdFmRYJ60ocL6n7dXz4ZCozGEfhC2n++HjU2RjudLw9QX13WFtyg2t376nnWZ3BCxO8SSJIUnRU+uRMmGG1FQFux7msnPHYFpx2MGaxIBsbIY0mwarGCyG2Gb2tc7zt6C3hrsWZhZiZMNpneaedGpAuVy08Uw+PxKMHhzh5ePV614uN96p5XVRoW6epAZft/VmhVq79RHtTAPrejKux5JODD3/4w9/4xjdwVjlvqSyx+Ym5NC5kkIw7QO/zZuYkrnCf+8xnfu+Tv18LpW6QHw8WLuQqW4DNF3KmbDTcMTsTwjKcCxksEzsEWtYdD38W/FSxsnmHkB0De5IlLBkIsgbaN6g3+2G+ludPoN3HG0GaNYen4DaOr80waJm1QLWApQLezv7R3WH7DcHCKicTjHHZHJYVafC6xjbwotVN2y8hcoXeuAFvRmCLH287etv+Nm8FW4utiCC50JuvjLHWa2tB+Fi0/uxolLQ67Vo7GyZuQ8h8bs2+nO8V6TYhlIkx7GT8xp5//nnsc7gHyWE48+GvVCRMdy5nipsMEBs9fIHRNfxX6XIz5U9+mgZycgnj87ZZ4T7cZPPnKwm9VOdZloc42IvXsGwqZBaB4xAcCBOzbCI2hRnb9tlpIfTdpN5mJixiGNxhWVnGYLjPKyQ8HJGkabyIrZoVbPztxWNePHXgqlO9G2u93Tu8fe1duDblk2gjT7KYtkOml7hEbHIzwWYE8aH0BoQtm3hpsxckJhfmnpkjxaHlTO782fjMNzZOjIJ6q7mQx3nDZSh9GmjlVaopssEHaiSJY2xgEgfwEIbYHiwWr81g8qCDJIMlHmf4SjZ6yBzPb8WBPQZX+Alj4Z411Ml57733fu1rX8NE5yQWOx1mss0PNnfLubnlthEtLRe35SSfdjL8ox/9qPWKowXhJEWlbPaGZOaYxAGXk+yBPX/WJ9dy5odPePLLTWBaGITiMCyJFQG5UUy4FVOakOX6GGTScS7WmsxviUuxMdF4E2kkfeos7NBO8bCBLA7MXEJkegyjZ8X+mnNo3/6D3dUmxjhhoWgM/HBIIGqaBwZWTetvViXI2gSk46T4GkrbTnuz6gAGSVdbainjJlJhqLIsH86XOg+fOvkcozedhThK0RDsNXax7xKyWaXHPeEGCTZyTA8WNlpXbfgmEk3cQhQkTIAqnCFxAHX5iTxcy91gHSchPLS0ifvDN9xCGRrgthyQGWcyzlNauGrLbJuSVyo/spBLZqRYpxduwk5gxDCdmCjOFIM83IQDcmKl80kiv5XCT/byuYjNhLfH85/mB9xzfvxqDpjFJnGNeVH20WCYNIicR29znn4V3zhgQMwvREvjREhPnQkxvAxT1qO4zkZCWBsZCPfZAXaSB7FD0Osw99971dV76+zzRqQOgqUT2o1wFmw8RfhraZ84TQEwyzlg9pv7KL1fzVurLE+AdUZMD7yybYRdxkIZsXHDrPB6hfdIb/146Ldbrez0KKv5EkzgIhMk4Qr4CS1J1DvLSYgNN/gVEsIQVCtf0eespyAPyTIHPpO4HNc0qMuEM6NoV111FSPkV199NV/ZM5jhMUts7mxLx7W0HfZ4zuo5z8/7BJTBNiKUAUVNHsIhYZZP4olsrDKL3MKdISpeMXTduSGJ+1Na8nOeX+3xuSIuGb1RxOKYQIsMdeVYuC6h6WV+WhgrJBT6mUI59TyChRI/D1wpI/Y4Cpv5j8xtN+stsg/Xg5Nndjv+Tbv3Xbu6/yd4hmjiDEesqhfbnXY2w7tl2vqj46kt9Le5/7SFufgqcS44l+3MttPe6GZ552YpKJ00Wml8mxieiWutx9d7x7Oc1Y8MXtXYYAzbTeIoXlyCNtR4aICCJVHLSZzkDD1YCA/DYQgctuoxisTFGqKiHvEqJ7Ah68Mg8y233EJOEhdyBwox5+25BSKP7VrzE8fUWHtwbs75GbIh1JaBFsf24YmyyqZCMHm9t9HttLEIaAJoiewiE8tkLuQmiOChSJTQ3tMWkmN78Eq0nxfgVR4wrC2JV8bH9GWInwIPKlQ3J82PrOo1Z6WzJRYagDHkneXFRMbGsuXOQtI7M+mdWc2zty4vvW3Hrutb3RXfaZ8Z8OysS3EkJoefZPIfOt/1JT6PbUrEcLBtiZEoYl4jadvRG/uKl4brkq0C1AW0dxR6653mt448k7QXvXpzHE067WY2HkJ+XvXFvkoqvdXbXAgNYDJfOWlpD1sgFT/hcMZw96233sb6RyhNmHGUJOfJyVWQZK6cNxeA8yRLYG64mfNQkZzWRCcPv5LNsnHzHewxP3Et5KRyIwiLgDAphHD6zjfvZy8E/OGOHj1KuFWbh4aJA1t+DkjclsQBgs66Odk4Yz/P+omv5+Y/N8/mM91YTGIsZPsPPWyT7FtilLmQ2fggQkLJiUHhsPuvR3PIYDtkl21ocme4traUJgcbzbe2Wze3u28Mwt3s3zQa99JcuF2vBa2Qnj1x6JhZqfsyTYBBgAjD8mklQBbbkb6G0vajt9mFjl3leEk5dpjQ201879kifnS8ke3Yh7t1TNRUvyEmPIOzF78IzNIAssFqmywbITZ0gsbETrvjjjtQ1FjF7G12VnWx5OFCeG75wwG1zdKJzIZZs2puCGO5au8j9dIkDkhn3XzzV3t/2xxwByRSvFtuu41/LLRm6+Lf+q3fYtAOZd7b6GOx2wKQk2QLOb+bJfO5n/MMP/CBqOip0pZ7CFuleRYTmdPmn4y38c803IyH8dJgOf0qGWMTR+Mi66R5J0reumfXzXv2XO05C6fXwuOnoH67Xh+ydoo+eI0WgYsEZ0Y5mDCIjBOuBPMxMyzcSqyC11radvSmH2WrPRqc2iFE8Iqk5j3UXzvZqo1osL2aG0RxNOpkeWhiuFzUO6XqW8KgolF6yKILTYLSt99+O6EC6TZzkl/hEsI5NnyRTqy9UKrvbOmIPYZXZOPTfuUTZtJ8cJJLSLYV4IAz/MQBeUjcxx6c99M2N7Ca3gE3pzzcM2Aa2YwOUlb+xaPRfffdx5bA8Jz8rBInIYJLUPhcQuGRYhM3mR1K9+S8Qinqec+/0knW9pAsq9GleKjanATf4Mhwfbp8wJ5PfSbSGF+Jm5N0qSj2ef5+N7zC9d525bW7smJlbURr6udh0VoZZJMNCs/W9tJEOkWc+ewa6/BSWPBfxMy8yTg5SycJ7CFd+NT4pZswu1bUa+Bz29GbMRLTVRPr1zT+vF1emfvsxpms247YC95s+sXyowUWEM9ctV79m4QDVHE4A1WISfCud72LkGYQ2/KZ+/ATlKBbzrE5KTHG5pWeUnE5P3FAsnLPpcrmS8hj9TAHXDu/yt7H3uHcT+5pB8NtSRiZYwRe2oVUnFIBgUtQ6Njt77njjvfcfju3fvThh+8yicDMLPnmEp6RkiCIxA3niWvnT3SW6Fc6f1a2+deJDJbIN7htNbTpV7MQTDrlZsQNkgtFbUqKOg031bpbCw42am/uLL61tXi931zuDTos4x8wI86+EN4kcKN6kKG6E8JaiHUfOjVxZfMkHjYL/vNmiHVuDH5eifhBCb0x+e1Q/kzcFv+77dZ7B5jlvsfSwWaj1nZ53UlcX3i81fl3Tz7y+Ep3rStBjXdMiiZvMm+yOWhe60MeKjd1l30wiLLG7DU77vQZJ0OD4sbIVKlZXmQGy+K/+MIZhrD3O+4/+PgvH/rFjzmdcFCjb1eDzQH1ymXdip+4CbNnBAtnmXLHzL1NeSwzO9Q1WZkkOo6z/DMKmFaJ6sy36UBWedVqVhSRYCzhmSj8s8GBNpFJB+fYk08RpPFb93/znkcfO/nisTPHT7JhSECUSTxOaviS1Vh9zfJMfE0ANGPxFiZvSyJAMjaA+zdqH5NjNImJkUjoK1ahYwsw5yT6eeZHCLEpSytZgWacS2nEGDRkl3UHb2Ja4TzMs4ZZjN1gVXZa1DLxMPtL/fXlpr+vu7K/s7zbazaY3I4TfGKIYsArtffEeLdNBtC+ptg6exWb/up6701goOikDyUByfknhmXgR3XvZDqKApkLET9EqTdEYnEndM5glLGBUYkYng0cK1q18WR8fO00lbLVarTrnTwap+tnmB0+wORze+HNO8bvePutp59dO3L3Hx86fLPzY4c7SV602U7YE45LB5GGQiZkMf5QEPPtSimlNWepzGbTHUNsw237E7++pKRe9kwlfJnKtSWyYhniAgwIkhOQafW6az9y7TUf+fmfK+rNM6fXH3v0CEFUH3nkkSNHHnnyySePHX9hcWkpGo2HG7JDA5Z8KwhHg9GZMxsrB3YkEf6j0Z7FnQutdm+9P06jnZ0u63lkopp+s0xq0J32MIwBpxX3eTzxW3NpJWEoryKRd0QHIUlradZ1vOV6fU93iZt0m63Dea+Wu63UbWZuGifxRFol8Rs3k1u8UG5Bkom0zQ1ZCRBuhVtuO+3NO6XquinGF2Mu6bDdfHqx/Ydrp7+w0VtrtX3XbzhFS0bUnB5jbF7QGkUSQTXLk2hMgyCOyYGPV5PTJsh+nA/67X7/YJq8pdW9eWnXtYvLe7ruc489fdXiapQUR9bX3/nzf23lH37M6TYdViIz68Y2Js06mtlLilqUsNnHBP9po6untc2MCCCIcsIqW1pZJiXfzWfJ3Sk7D2VpPWtbDB/sOJ8pFQWjb4NRzg9s/uA06phEsXBSjI40gtX9h/78uy8cP3bs5InnXnwBwqPhJ1hKo+iJ0TO7OkvhMPYHk6Wgzg7dWESNTicqWHaNH6g0rPSfpNmTDoJLI8FQNiMCLPTAyVz8xgl4XrirrdaiH+6ut3fUm13PrSWFh9MqfauFzE0yfwL5xWmcheKYDwyojJOJHXu39LbcA3Nj828FJv6AZVDt/TLgJCQHRiDGtg3kwUa5oft0tDEOCZmKU0QRiiN6aiovkYBZ1i9qls45Ds2E52H5GF2xBub98ZOtPN3tuW9c2Xlzd+HNYeNgkrU2BidPrN3YWfROn05O92/sdr7967+Z/8lX3v/Pf9k5fJhVTaHrj1NqHEEaiRnACjXiohg1Qk0mwRuhjPCaOg5VDNmE+EIlKYfJVuYHEpHDJwKnHQTEwTysXE5KSyMJM5tSSqK34Il3APaIZKDL0WBvh9p7f/x9WMScC3xpkJgqZCqZ1sBxXzz90GP3/sHnHrz7vvzUej0nViWO425ad8V7hL1aZbCakAtTTb63VrDwgw5Q0w+hd5uoDkJvh+3fWo5L96qFDkfNM1lN0NQ0O9FLWOQFaXm/OKnQkY49ziNZxsb5Z8A1JbfPWD6kU2FV/ClZF1TxSBeWKW9X2EONkJpE5mGWn45GGU6X0pIzjo0vi/iFsEiw5vpE8yBKvnQiO60Ub+QoLoa3i3GyAAAeVklEQVSDzmh4Q56/qdW6ZWXlhnZ7Dy7Nw7EzHuKqslJvjU+e2bewtLI7XOv19qfJ89998Esf+4V3/OzPLv7UT3kHDraJZscmXzVfbi0Ky5bX/KFKorKkFOYfDIfWqDHXo1mBQ3QfLnrXnwvDcc6vSKYolsPTH/kOW8TPj0IY2kNiSTI9tYFjp5O1ZTF2KPYFmesstPVkZp+NEPjEpxUP+SasZNZ47Dz7XPR7n/b+9123DbK9AfEW3LDe9Br1Qc5urLSwMgHFwF6A55k4D9MKm0UjtKw0q/iTGiuBn9j8iTGRjBBMbCpeyAwi3X6/4S8WzAJI4ZjvYuBNQtDTwaLJ5qv04QVD/m2TtO3oLQPLOGMkZu873B6yojcZD7NJ4XbQSFRgGnjoRGUgNkAjz1I3ZcLKaYexy5rKnrveP5gHN9W779mz6+osvcLLuxvrRTREe4RuENbb4yxbWt6xMeyPexsrdEAb9WDt1MkXXvzir/7rNz388E0/82HnlltC3FcKJ6HeMVwrmoXKaFhtKx2FkCRD/EK0TRPv1M6yEzUfdthPUwC+iNhsMIRAMFYGDaQNomWSfGakgAPchPjku9lS1XPGadqU4UO8+6Xz7eD4udF/4Rtff/FX/+nzjz+1MHGv37lvOU79KPVjf9LrL9V8uvWAT5KwDWaMDbInocz20RpLkvE1ugAyOx1k2N0ubr1ZLWSOe5KlI1kSmu/MO/wKtMJhNpphIUrg4yc4jMaW1fKOt03afvSGun7Ikis6eQThyibZ0I3xXaFemTFb8S5OMClzlxEaenQ9xmTDIA7S8WiI7j7k+O9vr7x7YelQnLQnrEUe0NVLietDKIE4cGNvgKIlsherpXetxI3WoD9oeMF+P2gk0VOf/oNjD3znHR/+cOenf9q55qqw1RzQcW1bOtFBpNJZvQOxGVyzx9OayIB7zdZLyVZiQpCRYFoSKwt6Q7YFs3ODNEN4f0wIZ4K+pBxdqxBF8fKblJnRAyat2kREmMQYRITJcDZ6zp898v1P/c97P/eF3cOj1+7as7p3OR/F66MNRivrNY89Ael1yyIA84wwmL98Q/6Gaf6k+0xDwSeuoxLw0Ilk84Oc/VqFyYjGfGfjc/g8EsuLIuAVQBPO/2YTGikY5aN7QJPBKUt1cr6+07ajt/iYy6iNJPQK+1KtM29DTxh6iwei6B/WC6IiiNzCqawZpklUvHBmd1bc1Fx+157VW/32wThuDjYgtBcUjJZNmDGTMBEBET1b9VZ/PGLfkGa3e+p0L0idfav7104e391odGqNk0ePfvnf/NvFu+768b/1N5y//JOdBqM/lsdUaWbF0NWUhLrIganrprpL4S5XElkInYqc1X/WU8URcwd0gmWcirZM+udCwxB7mUkHx40whFGWTHxh+cRY6p44jDAGeeLE0d/+nT/97d9tHz35o8u7iDDdDNvjXh+SdZcWmFo8FbGYvC5NAk8tFOfxbb9JjhMCatCRwq6HktZEB6mCLjh9AOlcAR+qXVaVoNnZTpRRUZ+2B1Od1ysjBlOvIfN+KTa3EmgNya3z+uWCtgI5247eTFLnsli/VvfEOSltBM9snB7hwxD6GHfQlF6cJ1/DiGlSxzmVb7R6/bcl/vt27n/nwvKudOJOjjFceaomQYLqaaOey+gSOj8K85E3akasEqdeBdFgTFwQeqynRhOnvYiXFdO+B8LGcjR+/tsP/O7f/tbVv3/bOz7yM/7PfUQqNGFjUEU0PBIsSDS5BIOz5DJkZ/jKRBHJ6850q3Bba6W+mmRGAC9BBZJqj8E9dVYXO5zEA9UCAJtyPyVoNMODjAzAk7qH8y1rp9vsH+I4xCilLy4Dh3HqPPfCmU//r/v+2+8Njjx2Tauzurobn5m218hj1GiY+d4GW4zQhjYbEx6ZwURhK7eUT3H1l74S5yPOySlpeBl1Mz0oAM/o3fPNNAsyj22GMaS9wdWcZ4DVdLymgND8WGvffhdc5VFe/2nb0dvUD2qJDIbz+mPPjXwn8twB0bnaO1pUtUk6isesGmaihq73vsn4xvbST9SX31FvXjsehvFwI8PXlLBdTXE/dUI0iczWMnWGFjHrgUUBiwpE52AkMqwstZAJdbI1XX+h1V1tNJ/fWHvhT+/940cfPH3Pn/yVOz/i33arF/q1dOR0FxmlWlvv71xalvFraiJONUzbignKPann0wSfLaWhH2NM9nj24w/+F5nEHZRwCFMKwGF5FKYOWErFgxi9KNWGZau46DVqTWIbSVHpXUvbiZ5N2OvsxOe/+NAXvnzyK/fvd7wf2XsgTBjh6DMBLt0g05lHKZtxbOGaUcDI42KSbdUw1+VYHhqpMJ1P85P5ZnGAxdjbvExzlfzhKkF7bn5ziqxiXRilzYG5LTeV+1lJcvXrNG07evOaSSwF5TUzFh0VxQR/CsLkN9AheeIloj7Z1DdOWS3JpM1Hve6h9u5rO62FaDSMN+pZigHfIMKCrDGWxcDoCuoddbaWsdMYVVQGlEyNo/JgLUJ/FzufSVeGeNhHlH2pa06+p94I8mTc60Wf/OJnPvWlq979jsN/92/iA+OM+1S7paUu08gYmSh/+c/oSammoh4naGsewX4ajouv2KWqn7FQWbqoPBbiUIoUxPQfYLj0XWAGLRmeYGx/zCrUGrOHMqyf4m0rv504NvyDz33tk59Kjz7v94f7XGfHIuNoceQkbA+G48k43gB5M34puNnOsH0p8giGmfwFQKSTQFScfExDacpisZUfp6QVnT/NzMFI+g3TZO9Ap11ekJj0sx/kmYTb8jiv63TJqsVrBSVRRuIChe8Vo930GImsxdtmaqbWx/PByZqB3xzFjcHoiiC8ctfqhwq/Gza84Xi8sR5PolqdOW/2IcOu54lZlIRFaQ+pYRISSNSJ1FYxD7GwOYnlSKcVj42A/mKjRR8zm0hgppX6Iq6VV7jhpB4+/fX7P3Hfn+685S+886/f2b79vc4KQZXWnUbTaTC5Sy01FRXfK7NeZa6ocfm+hHrbvsFAGCd84BmM9SBT/hyDW8oDYZ7gfce/uhQpowexzlCiWTj72ONPf/H/HLnrruSxx5eGIxZp7d25XGs3GYnAw6C7ssBUdq/Xd5vGoja8mvFzSs4p3wRYSUgVwTQtEFgUPhKBmsnDWX6xyflJMlNUySyJ34XJ8meW5FbySuQ7uV73rJ49N24G2yxJpwx6o4G8YpIzaC4bUnmZH49lf7Wi4RajcXdj41Aa3LqyfNOefbtPPFMMh/kk7xDZ3l9k/eg4S+OMnQOoJRixjN2AIDUPZxkoHMpkjKgc+cfYD0tIsB75gVi9cX8jzWQunR0t+a3vRlEyaTejaLyx16/tC7snvvrAXXffv+tNbzz0znfu+ft/x+nQo5WlyMzkYRMzooU6F18R5Bl9apU2DMc+v1QK3FYIyg09zJPRDTbcgGREJUU2tvs4Eh8VtgXiKxsGf+GPvvn5L7z40IPeqZPBaGNn3Vleai13WxJRPe4zp1CrNXAyiFj2TmhTHMkM94TbhpNmyZYlpZFqSEge0bqY5PKL0d6G3oa5YjGRVVgqjYy5dkZauzybk3NdPbuf5CRZktvjWYtgv70OP7cdvVlSSKcP85C3jlUe526EOjWjUzg85uOoeWb9zX7zfav730q8kn4vjYbMpnpMsPoNqpy4S+NZRfhO0SfiaWKUEXegtolbDEpOxnlJ/MZtWT6M/ybsd73xRCZt3GYjEfdpJwjbLXyxJ4OOK+F8aRi6re5uPxk+/ezTxz/7R7/zib1v/5E3f+DHd77n3c4brmNAGuPAYUHL0gL3htJ82tVXfKLGReKlSJCKktP+8RTW/ucx8WjB1dwY5RjifoDwaNS/754H7v9G77OfT3vDxmC81/d2NxvtDiHMImbOmEekWZPONusrCWgxiV0WlbS7LLEFnTn3NhdZVK7l4uws5GU2w8BpeLzpV6uBpQ0y9jyfBnRe7+zi2V85b0zx2Qn5e94CbM7w+jjedvQmhAM2cy3N8T+Fm3GRD/xiFLgt9rEajRcnozf77Z9c3PuuzkonWh+cfCFqoGll4ApOyiAW60xYW8LwrMzUyhAdSTpy/MrgN/6mRYwJK0EgIL5TM94ecsQcMJtTN7tNVlMNBqMiimXBIcEG4rrpnDPqTngB31ustXBpi5MbvGL8rW9/59t/lv+HX+++4dAbfuy2HXe827n+OtaJo6gtsedV8FKpbrkhDYUYvBICHnoz6CVWeW9d2hfI1Bs5Dzz04v/9ypNf//bg6ItulFwZDGUOrM6gWlLDrbuotdgiPWjFOY69MjcxSul8NDrsFDJJh70evROem8Z1SkjsqNnAmXDb/qMYFljcWrwmzIbhArX4pE+NcEtnsstpMdqnOvysBsJCxLWIs42DvQPHckPTOtg8r8vPbUdvIaP4JIsHKnRNipyAoAx94dXUGEcHup0f3bX/jWmrfvJMFh1fdLM1plTEEjZxj+hE5wTQZ3vcKIS5U3NRqg41j4qF+mE2TabAZTGYmOv4W4jyKXLWUCdRwjJSNxoyON/w6+2wnkVJw22wvpG5tTzIRm6McmPIjR29FjF/vXqS++sb0QsP/PkfP3pk9D8+7XRavTs/QvCmt7zlLfv27aNGorch4Vls/6FqqiGBhGWQpxKeT/q98alTD917z/EHHjz2zT8PnjuxGjt7Mv+a3GmJUpcg6rUaoaNZl5nH0TCP/QYboflhhBM4AxVmuKFH5CNcYzq0XRvgId5pRqMyMiGNohEqxd58YI4phXBXPMgFVgFTlp0IpGQHc3NGxjxm15Lr7EQ2Yfg8i+G2FSXu8q/ftO1WjK3lo9XmQmsj2nD9J/YsfHnS/9z4TN/1Gs+c+ODy6l9d3HmTH9SSMdZz5NaYjy3caQTSkuqA1M7zJWtv28lt+wmLSC5RiXHbIOjnzl07Dl3VufEG58YbnStWUexOLXSIAMmoAPoTlzLaH1y2k7GMv5u++txuhbQykScEZugfthndJwOLuTN43hmM8EVxnno2f/ixE987cuaJpyYnTnVYLUtEA5kGZEhfPMdkKyBxC917vuLrucuEgK4YexnQ7VojI5IKIT677RYB9Dai4NRa3QtvvuLAdc3FZaxMojTQtWXjWdEWuGi87PLL9gWFLGQWTw6JfGqoLR9MqFF8xgOOv/jc948fTe6/f9KsE9hpYf8VTrdb372zu3ff0hV7l1f3dncsO822t6MjnXbGuzHpaUukt4q/GZ/EDZw4vY3i5OnesROnj53cOM3Kmih/7ki0MRisrSWn18NBtOh6K0F9ZWGxiEYyRijTZRIoGGwK2Rfkda37LtvLLk3QtjPO29jMDOnKyJbsl9ns9a/pF+2O977dV1xb+CvppGAM3XgrMxVEEAZZ+VRFms9+WWJTBA74HI3XMcaZmkM7d4RqRTYe44iTnFnHc4aYJGuOexyLVabTZO0Fy6Nx0ZSd7GkvjF+3hDFCc7MTKK0H8eToYtOxkE216Nm69SBkx8DlwpUVMkGHbkKIry0ZCXjMaCJrNZl7EHdQCVhIOncoS85q2hoIbDt6y8JgJpADL2YFYj/dEU9ubTevvOLgG1x3mWAAcUyQBujNshPqNBU7rozg0wqChtysJInKSGcVfY6BIYN95GKwT9ojeCff0NA2v+2D9ln2gg0ibmjGe1tG/EFAPFWYiEaTE52KFRnGV1y8yWM26pglyCxmTJZGTsYMNpfKuIXIkEkpVdzTN7SF/2w7eqPvRI+xViFL63l6Tav9hlptf7td7w8Yr8arjMVLjOVCHCa2UY1V1WLoKjyaWb/zg6Com2Fg0Z/oZFiKnucvERrhKleR4CQeNxzwAARBEEtaRpbEOYQxJhmZIuZJkyCnjE/REUGXQ1qJEQjl20yCyWMLgSE+Y/R42zGZLzzHOYdRfoolQS+kUnPMVZq2LALbjt5mkJkgHiRnoVbrhitunjQ31uuE9DC7eTF2RGc1S9llEreXH2AXg0vzrqV8m9L8axJPO+T0yjmZwGLzNMQrwn6nPaDxku0zGV6TmXmnJdGlIDeO60JvManNJ84pWO7IkPVVXEVoM4jNAvhowq3swjDGt7m9tHcJg2qoehm05p4yXG2Lx/Uyiq1piyKw7eiNy3jC2n+xTn3i/Mi4FXG9WStSr+G8ghLDx4RoIzmruKFH8NKUzWV+gdBpTunNotlyEDbKrxIOCT3Ls2CR5PVaQxzpRfUK32AznxzXZeGz9Jf5UeaYrQ4vvEaTeOBiqKOmxYcPmkpzUCQt31gAKc482PMIwtXcrxG50Iy7W4sczc6yWmNZELhqc/H0eEshsO3ojf09wSLF5QKKs7rTyQjChXMVSzhkBpnAIj6BsnE9k2lWv+ahxCt5YcIewx9LV/spJWGmGZMav1q63hDSYwUXIQ4YGjO9YlSz7U7I0BoRiHCRFUrL5WYtlZnNhqNuFkcY2/KLJbaxuVHtsl4aoz90WRMr4jDwaReIo2hceKxtLh1v2S6TFsYjXJymLYvAtqM3HqiMmhF3gEqPXcmnXcgJtxlvk/AEKY4s0kclDEuURjV8pKtIL/HZSLdU5zCRaI4yfkafW/Q3GpqvRC+STjXfrHq1f6VhStjJmoYKB3ioCCFR2Sh2PqG/eHpYzW4UuQSfk1E40fAEORH2ix1u5ctgu5Bdop9wC2G9DLDJ4jJNWxaBbUfvTW9Ceo1SeU1/UjqosuARQKR7iTOm/CxVemsl1rGYAolyNgd8SoFhnDB+WlgZEpcmqsgmMuUtrZgQf/ak8mjmGO0vl6CUxVHU3IfzRkcbbsvtDA5yYG4oB3In+WYYLyc0bVEEth29mQ3CHDU+z/RURYGHmexoAAEwShPxyeJVSUVncFj04RZLolpnaaaqZZTbJst4y3zLexbDyE/mWaaPI9ye5ufxhbSGr1M9Lb+REdt7mse4wsixnJBlcNMc9NXJx5jbNJ/+2XoIbDt6Cz1mFdfQQKoxZqnZUcoE7DbfqcJUfaryVvNJxh5+FY2O1eSW4FQ6GEjPXEx02a3DfMoz0zHBrBdA5FMsbrm5bSIEIzOyPo1eytepXLH15w3KXMTWq9paIny3thsI1GBji6KjZE4bvWdGjIUzrIX0RZ3xO1Ufc5YzsqR7SyUZzZ8VaEbFGfHmhjTcNAY2JxJiHYplbogtXWajsMUOx63ejpbLsVxqSE7MGW5PmwcynLWa3mryTXbDtAgC2swQmBVK/24hBLYfvcWBS+o4dVgGh8zQL19ZmA2zbWU1s8NieU711RZ6X1IUSzbKzEOIkp0l81DyxRrwsJpj+6TmQcRRBtUtjDV2NXcyVj2nSfKrqHHTNHDATdDSc1kccBNpHKeZjc5n4F7pbRDZmh/bjt6s/WRgPMAvC+XEdpPQW/xBglDidHMG5w7qsXCdNKvNW+jdmX2QpDxz4hnFK2fMhPdLTZLtkIvn6aY0bw6mrNxMTvMbwSpMduG5GV/E2JETVpzcU4x56buYbHza/OabfmwxBLYdvWEs1dXsxC5e2rwOccYschZ+h8IECSxGtTa/bLF3ZYuDgjWJolNIyzpOiDIXBWtGyE2G6Tz4JpPaXjj9nBP9ZWeZMOD+1nKZantrC0zbO3M3hiSF5pbhr3Cfl99Vv1WDwLajdz2XNWCmgxnYqKYSWmiaDHPMVC9UYfOhy+CQZXXsrAD//7+y+c6rS7M7n1+7nsvKmZk91fb2csHmZVnPf7dXVyLNdbkRmL7Lyy1W5SkCikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPgNK7fIxVgiJQEQJK74qAV7GKQPkIKL3Lx1glKAIVIaD0rgh4FasIlI+A0rt8jFWCIlARAkrvioBXsYpA+QgovcvHWCUoAhUhoPSuCHgVqwiUj4DSu3yMVYIiUBECSu+KgFexikD5CCi9y8dYJSgCFSGg9K4IeBWrCJSPQJAUies76YT/MoeDIo3yNAiCvMhcxylm/2xJOJOVXyaVoAgoAq8SgTAvPFjqeE5RQM9cKOvlHHlenCcBv7mF47uuJ786ged5mcsZz3Elj8sFhuSuZJMc8r8mRUAR2BII+AX0FMLyjwRxMci9wkuz3MnyIJ/kxSSXz9wlFQ4HNAFekUv2gotdR/S4XCOf0jBoUgQUga2BQFrkkNmyFe4Wrpc6RerlYbPu526QhEFaC4OCVgD97bocZl4W+GhtTmGKw2dLb2kZOOPJJyf1UxFQBCpHIC2McZ6L7V2QHBd6Z64Xo6KdIjjlpyeCtJnmTXrenusH3sjNPA4NjW0LBaVJfi4GQOrLJzfTT0VAEagcAddY2eht0eGwG9XtyrCZ127krVpww+HDS7tWW3HR8gK0tx8Go3TiBr6QeWZ+WIOchop/KZ1ypbcioAhsEQSwrQsPYsJw+Ip1Drdzz5n4Tntp6f8BVSBPW1Dvo80AAAAASUVORK5CYII=", - "text/plain": [ - "550×330 Array{RGB4{N0f8},2}:\n", - " RGB4{N0f8}(1.0,0.361,0.341) … RGB4{N0f8}(0.953,0.306,0.302)\n", - " RGB4{N0f8}(0.918,0.278,0.259) RGB4{N0f8}(0.894,0.239,0.239)\n", - " RGB4{N0f8}(0.937,0.29,0.275) RGB4{N0f8}(0.894,0.22,0.227) \n", - " RGB4{N0f8}(0.933,0.286,0.271) RGB4{N0f8}(0.925,0.227,0.243)\n", - " RGB4{N0f8}(0.925,0.275,0.259) RGB4{N0f8}(0.929,0.216,0.235)\n", - " RGB4{N0f8}(0.953,0.29,0.278) … RGB4{N0f8}(0.941,0.216,0.239)\n", - " RGB4{N0f8}(0.941,0.271,0.263) RGB4{N0f8}(0.953,0.227,0.251)\n", - " RGB4{N0f8}(0.957,0.275,0.271) RGB4{N0f8}(0.941,0.216,0.239)\n", - " RGB4{N0f8}(0.965,0.278,0.275) RGB4{N0f8}(0.933,0.227,0.243)\n", - " RGB4{N0f8}(0.965,0.278,0.275) RGB4{N0f8}(0.933,0.227,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) … RGB4{N0f8}(0.925,0.227,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) RGB4{N0f8}(0.925,0.227,0.243)\n", - " RGB4{N0f8}(0.953,0.282,0.275) RGB4{N0f8}(0.933,0.227,0.243)\n", - " ⋮ ⋱ \n", - " RGB4{N0f8}(0.961,0.278,0.275) RGB4{N0f8}(0.937,0.224,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) RGB4{N0f8}(0.937,0.224,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) … RGB4{N0f8}(0.937,0.224,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) RGB4{N0f8}(0.937,0.224,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) RGB4{N0f8}(0.937,0.224,0.243)\n", - " RGB4{N0f8}(0.961,0.278,0.275) RGB4{N0f8}(0.937,0.224,0.243)\n", - " RGB4{N0f8}(0.941,0.275,0.255) RGB4{N0f8}(0.91,0.216,0.224) \n", - " RGB4{N0f8}(0.949,0.271,0.255) … RGB4{N0f8}(0.91,0.204,0.216) \n", - " RGB4{N0f8}(0.941,0.247,0.247) RGB4{N0f8}(0.922,0.196,0.22) \n", - " RGB4{N0f8}(0.922,0.267,0.263) RGB4{N0f8}(0.882,0.196,0.216)\n", - " RGB4{N0f8}(0.843,0.278,0.247) RGB4{N0f8}(0.827,0.235,0.239)\n", - " RGB4{N0f8}(1.0,0.49,0.459) RGB4{N0f8}(0.973,0.424,0.42) " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100 10266 100 10266 0 0 92087 0 --:--:-- --:--:-- --:--:-- 96849\n" - ] - } - ], - "source": [ - "pics = Dict{String,Array}()\n", - "pics[\"Ireland\"] = load(download(\"http://tinyimg.io/i/HnPJyjV.jpg\"))\n", - "pics[\"USA\"] = load(download(\"http://tinyimg.io/i/E0p7u37.jpg\"))\n", - "pics[\"Klingon\"] = load(download(\"https://images-na.ssl-images-amazon.com/images/I/51ibu5dAb9L._SY550_.jpg\"))\n", - "display(pics[\"Ireland\"])\n", - "display(pics[\"USA\"])\n", - "display(pics[\"Klingon\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"options_js\\":[{\\"key\\":\\"USA\\",\\"val\\":1,\\"id\\":\\"idQFSC68pX\\"},{\\"key\\":\\"Ireland\\",\\"val\\":2,\\"id\\":\\"id67K9fv5x\\"},{\\"key\\":\\"Klingon\\",\\"val\\":3,\\"id\\":\\"idXNyMmPRv\\"}],\\"index\\":2}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " \n", - " [this["options_js"].subscribe((function (val){!(this.valueFromJulia["options_js"]) ? (WebIO.setval({"name":"options_js","scope":"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6","id":"ob_45","type":"observable"},val)) : undefined; return this.valueFromJulia["options_js"]=false}),self),this["index"].subscribe((function (val){!(this.valueFromJulia["index"]) ? (WebIO.setval({"name":"index","scope":"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6","id":"ob_44","type":"observable"},val)) : undefined; return this.valueFromJulia["index"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"options_js":[(function (val){return (val!=this.model["options_js"]()) ? (this.valueFromJulia["options_js"]=true, this.model["options_js"](val)) : undefined})],"index":[(function (val){return (val!=this.model["index"]()) ? (this.valueFromJulia["index"]=true, this.model["index"](val)) : undefined})]},"systemjs_options":null,"observables":{"options_js":{"sync":false,"id":"ob_45","value":[{"key":"USA","val":1,"id":"idQFSC68pX"},{"key":"Ireland","val":2,"id":"id67K9fv5x"},{"key":"Klingon","val":3,"id":"idXNyMmPRv"}]},"index":{"sync":true,"id":"ob_44","value":2}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["flagimg"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"foreach : options_js"},"className":"field is-grouped has-addons is-oneline is-centered"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"click: function () {$root.index(val)}, css: {'is-primary is-selected' : $root.index() == val, 'button is-fullwidth' : true}"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"button"},"children":[{"props":{"attributes":{"data-bind":"text : key"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[]}]}]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]}]}]},{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":1}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085","id":"ob_47","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085","id":"ob_46","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_47","value":0},"value":{"sync":true,"id":"ob_46","value":1}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":[""]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":40,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-736f02f1-97af-45a5-8c97-8b8a54581a66","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_51","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:togglebuttons}(DataStructures.OrderedDict{Symbol,Any}(:options=>Observables.Observable{Array{String,1}}(\"ob_41\", String[\"USA\", \"Ireland\", \"Klingon\"], Any[Observables.g, Observables.g]),:index=>Observables.Observable{Any}(\"ob_44\", 2, Any[Widgets.#32, WebIO.SyncCallback(WebIO.Scope(\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"flagimg\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :button), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text : key\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"click: function () {\\$root.index(val)}, css: {'is-primary is-selected' : \\$root.index() == val, 'button is-fullwidth' : true}\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, \"data-bind\"=>\"foreach : options_js\"),Pair{Symbol,Any}(:className, \"field is-grouped has-addons is-oneline is-centered\")), 2)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 3), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 9), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"options_js\", (Observables.Observable{Any}(\"ob_45\", DataStructures.OrderedDict[DataStructures.OrderedDict{String,Any}(\"key\"=>\"USA\",\"val\"=>1,\"id\"=>\"idQFSC68pX\"), DataStructures.OrderedDict{String,Any}(\"key\"=>\"Ireland\",\"val\"=>2,\"id\"=>\"id67K9fv5x\"), DataStructures.OrderedDict{String,Any}(\"key\"=>\"Klingon\",\"val\"=>3,\"id\"=>\"idXNyMmPRv\")], Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"index\", (Observables.Observable{Any}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"options_js\\\\\\\":[{\\\\\\\"key\\\\\\\":\\\\\\\"USA\\\\\\\",\\\\\\\"val\\\\\\\":1,\\\\\\\"id\\\\\\\":\\\\\\\"idQFSC68pX\\\\\\\"},{\\\\\\\"key\\\\\\\":\\\\\\\"Ireland\\\\\\\",\\\\\\\"val\\\\\\\":2,\\\\\\\"id\\\\\\\":\\\\\\\"id67K9fv5x\\\\\\\"},{\\\\\\\"key\\\\\\\":\\\\\\\"Klingon\\\\\\\",\\\\\\\"val\\\\\\\":3,\\\\\\\"id\\\\\\\":\\\\\\\"idXNyMmPRv\\\\\\\"}],\\\\\\\"index\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"options_js\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"options_js\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"options_js\\\",\\\"scope\\\":\\\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\\\",\\\"id\\\":\\\"ob_45\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"options_js\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\\\",\\\"id\\\":\\\"ob_44\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"options_js\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"options_js\\\"]()) ? (this.valueFromJulia[\\\"options_js\\\"]=true, this.model[\\\"options_js\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"index\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:2), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"flagimg\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :button), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text : key\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"click: function () {\\$root.index(val)}, css: {'is-primary is-selected' : \\$root.index() == val, 'button is-fullwidth' : true}\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, \"data-bind\"=>\"foreach : options_js\"),Pair{Symbol,Any}(:className, \"field is-grouped has-addons is-oneline is-centered\")), 2)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 3), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 9), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"options_js\", (Observables.Observable{Any}(\"ob_45\", DataStructures.OrderedDict[DataStructures.OrderedDict{String,Any}(\"key\"=>\"USA\",\"val\"=>1,\"id\"=>\"idQFSC68pX\"), DataStructures.OrderedDict{String,Any}(\"key\"=>\"Ireland\",\"val\"=>2,\"id\"=>\"id67K9fv5x\"), DataStructures.OrderedDict{String,Any}(\"key\"=>\"Klingon\",\"val\"=>3,\"id\"=>\"idXNyMmPRv\")], Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"index\", (Observables.Observable{Any}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"options_js\\\\\\\":[{\\\\\\\"key\\\\\\\":\\\\\\\"USA\\\\\\\",\\\\\\\"val\\\\\\\":1,\\\\\\\"id\\\\\\\":\\\\\\\"idQFSC68pX\\\\\\\"},{\\\\\\\"key\\\\\\\":\\\\\\\"Ireland\\\\\\\",\\\\\\\"val\\\\\\\":2,\\\\\\\"id\\\\\\\":\\\\\\\"id67K9fv5x\\\\\\\"},{\\\\\\\"key\\\\\\\":\\\\\\\"Klingon\\\\\\\",\\\\\\\"val\\\\\\\":3,\\\\\\\"id\\\\\\\":\\\\\\\"idXNyMmPRv\\\\\\\"}],\\\\\\\"index\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"options_js\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"options_js\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"options_js\\\",\\\"scope\\\":\\\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\\\",\\\"id\\\":\\\"ob_45\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"options_js\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\\\",\\\"id\\\":\\\"ob_44\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"options_js\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"options_js\\\"]()) ? (this.valueFromJulia[\\\"options_js\\\"]=true, this.model[\\\"options_js\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"index\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:2), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:vals2idxs=>Observables.Observable{Any}(\"ob_42\", String[\"USA\", \"Ireland\", \"Klingon\"], Any[InteractBase.#128])), Observables.Observable{Any}(\"ob_43\", \"Ireland\", Any[Widgets.#30, Observables.g]), Observables.Observable{Any}(\"ob_43\", \"Ireland\", Any[Widgets.#30, Observables.g]), WebIO.Scope(\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"flagimg\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :button), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text : key\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"click: function () {\\$root.index(val)}, css: {'is-primary is-selected' : \\$root.index() == val, 'button is-fullwidth' : true}\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, \"data-bind\"=>\"foreach : options_js\"),Pair{Symbol,Any}(:className, \"field is-grouped has-addons is-oneline is-centered\")), 2)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 3), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[], Dict{Symbol,Any}(), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 9), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"options_js\", (Observables.Observable{Any}(\"ob_45\", DataStructures.OrderedDict[DataStructures.OrderedDict{String,Any}(\"key\"=>\"USA\",\"val\"=>1,\"id\"=>\"idQFSC68pX\"), DataStructures.OrderedDict{String,Any}(\"key\"=>\"Ireland\",\"val\"=>2,\"id\"=>\"id67K9fv5x\"), DataStructures.OrderedDict{String,Any}(\"key\"=>\"Klingon\",\"val\"=>3,\"id\"=>\"idXNyMmPRv\")], Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"index\", (Observables.Observable{Any}(\"ob_44\", 2, Any[Widgets.#32, WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"options_js\\\\\\\":[{\\\\\\\"key\\\\\\\":\\\\\\\"USA\\\\\\\",\\\\\\\"val\\\\\\\":1,\\\\\\\"id\\\\\\\":\\\\\\\"idQFSC68pX\\\\\\\"},{\\\\\\\"key\\\\\\\":\\\\\\\"Ireland\\\\\\\",\\\\\\\"val\\\\\\\":2,\\\\\\\"id\\\\\\\":\\\\\\\"id67K9fv5x\\\\\\\"},{\\\\\\\"key\\\\\\\":\\\\\\\"Klingon\\\\\\\",\\\\\\\"val\\\\\\\":3,\\\\\\\"id\\\\\\\":\\\\\\\"idXNyMmPRv\\\\\\\"}],\\\\\\\"index\\\\\\\":2}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n \\n [this[\\\"options_js\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"options_js\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"options_js\\\",\\\"scope\\\":\\\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\\\",\\\"id\\\":\\\"ob_45\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"options_js\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-3775ddb7-4c46-4c60-8dd9-82e1c4fb7ef6\\\",\\\"id\\\":\\\"ob_44\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"options_js\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"options_js\\\"]()) ? (this.valueFromJulia[\\\"options_js\\\"]=true, this.model[\\\"options_js\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"index\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:2), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_46\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_46\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_46\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_46\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_46\", 1, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 40),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 1),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_47\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_46\", 1, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":1}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_47\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-2ce99309-d1b5-4543-87d0-35b4fb0e5085\\\",\\\"id\\\":\\\"ob_46\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_50\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for flagimg in collect(keys(pics)), k=slider(1:40,value=1)\n", - " withfig(fig) do\n", - " p = float.(channelview(pics[flagimg])) # convert to an array\n", - " pr,pg,pb = p[1,:,:],p[2,:,:],p[3,:,:]\n", - " Ur,σr,Vr = svd(pr)\n", - " Ug,σg,Vg = svd(pg)\n", - " Ub,σb,Vb = svd(pb)\n", - " p̂r = clip01.(Ur[:,1:k]*Diagonal(σr[1:k])*Vr[:,1:k]')\n", - " p̂g = clip01.(Ug[:,1:k]*Diagonal(σg[1:k])*Vg[:,1:k]')\n", - " p̂b = clip01.(Ub[:,1:k]*Diagonal(σb[1:k])*Vb[:,1:k]')\n", - " imshow(cat(3,p̂r,p̂g,p̂b))\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Moral of the story: if *k* is large enough,\n", - "```\n", - "U[:,1:k] * Diagonal(σ[1:k]) * V[:,1:k]'\n", - "```\n", - "$$\n", - "= \\sigma_1 u_1 v_1^T + \\sigma_2 u_2 v_2^T + \\cdots + \\sigma_k u_k v_k^T\n", - "$$\n", - "is a good approximation to A often requiring less storage and less computation, revealing the \"most important\" parts of A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Nearly rank-deficient matrices\n", - "\n", - "Consider the matrix\n", - "$$\n", - "B = \\begin{pmatrix} 1 & 2 \\\\ 1 & 2.01 \\end{pmatrix}\n", - "$$\n", - "The rows (and columns) of $B$ are *nearly* linearly dependent. Maybe they were \"supposed\" to be *exactly* dependent but there was some error (e.g. measurement error) in constructing $B$.\n", - "\n", - "The SVD of $B$ reveals that fact, because one of the singular values is much smaller than the other:" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 3.16861 \n", - " 0.00315596" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = [1 2\n", - " 1 2.01]\n", - "σ = svdvals(B) # returns just the σ values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We say that the matrix $B$ is **ill-conditioned**. The **condition number** of a full-rank matrix is the ratio $\\sigma_1 / \\sigma_r = \\sigma_\\max / \\sigma_\\min$ of largest to smallest singular value. It is computed in Julia by the `cond` function:" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1004.0090039930228" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "σ[1]/σ[2]" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1004.0090039930228" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cond(B) # same thing: the condition number of B" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we plot what $B$ does to a circle, it *almost* projects it to a line. The output ellipse is so thin we can't really see it is an ellipse." - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGxCAYAAAA3ayKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4TGf/BvB7ElllQWJJiCTWoA0lpaJKamnRolWl9rWlliotxauSFtGWt/pTlFcrqmp7FV3QqqLUFkSprZaEqFgSkhBMtuf3x/POTCb7SGbOmZn7c11zZc6ZM+d8ZzKZO+ec5zyPRgghQEREpDIOShdARERUGAYUERGpEgOKiIhUiQFFRESqxIAiIiJVYkAREZEqMaCIiEiVGFBERKRKDCgiIlIlBlQeMTEx0Gg0SEhIULoUAMD9+/cRGRmJ3bt3K13KI2nfvj3at29v8e2ePn0akZGRFvs9bt26FZGRkRbZVn6ZmZkYNWoU/Pz84OjoiGbNmhW57JAhQxAUFGQ0LygoCEOGDNFPJyQkQKPRICYmxjwFm1Fhr0+j0Rj9bor7bBT2fLUp7e9n9+7d0Gg0RrfKlSujVatWWLlypWWKLQcMqDy6deuGAwcOwM/PT+lSAMiAioqKstqAUsrp06cRFRVl0YCKioqyyLbyW7JkCZYuXYrp06dj3759WLVqVZHLzpgxA5s2bbJgdco7cOAARowYoZ8u7rNhi+/PnDlzcODAARw4cACrVq1CYGAghgwZgoULFypdWqlUULoANalatSqqVq2qdBlEpfbXX3/Bzc0NY8eOLXHZunXrWqAidXnqqadKvawtvj/169c3eg+6du2K2NhYrFmzBuPGjVOwstLhHlQehR3ia9++PR577DHExsaibdu2cHd3R506dTB37lzk5ubql9PtUn/zzTeYOHEiatSoATc3N7Rr1w5xcXFG2ynq0FfeQwwJCQn6sIyKitLvpusOx9y6dQuvv/46AgIC4OLigqpVq6JNmzb49ddfi32NFy5cwNChQ1G/fn24u7ujZs2aePHFF3Hy5Emj5XSvZ82aNZg+fTr8/f3h5eWFjh074ty5c0bLCiHw8ccfIzAwEK6urmjevDm2bdtWbB15PXz4EFOnTkVwcDCcnZ1Rs2ZNjBkzBqmpqUbL5T9co5P3MFVMTAx69+4NAIiIiNC/b7pDIrrf5969e/HUU0/Bzc0NNWvWxIwZM5CTk1Pg9effe81/iGXIkCFYtGiRvj7dTfcZ2rBhA1q1agVvb2/9Z2fYsGHl8p5oNBosX74cDx48KPA6C2OOQ1j//POP/nPo7OwMf39/vPLKK7hx44Z+mStXrmDAgAGoVq0aXFxc0KhRI8yfP9/o70f3vs6bNw///ve/ERwcDA8PD7Ru3RoHDx4ssN2YmBg0bNhQv76vv/660PryfmZK+mwU9v6U9rMZFBSEF154Adu3b0fz5s3h5uaGkJAQfPXVVwVqun79Ot544w3UqlULzs7OCA4ORlRUFLKzs42Wu3btGl599VV4enrC29sbffr0wfXr1wv/RZSSg4MDPDw84OTkVKb1WAr3oErh+vXr6N+/PyZNmoSZM2di06ZNmDp1Kvz9/TFo0CCjZadNm4bmzZtj+fLlSEtLQ2RkJNq3b4+4uDjUqVOn1Nv08/PD9u3b8fzzz2P48OH6wxS60Bo4cCCOHTuG2bNno0GDBkhNTcWxY8eQkpJS7HqvXbsGHx8fzJ07F1WrVsXt27excuVKtGrVCnFxcWjYsGGB19OmTRssX74c6enpmDJlCl588UWcOXMGjo6OAGSARkVFYfjw4XjllVeQmJiIkSNHIicnp8D68hNCoGfPnti5cyemTp2Ktm3b4sSJE5g5c6b+0ISLi0up37du3bphzpw5mDZtGhYtWoTmzZsDMP7v+Pr16+jbty/ee+89fPDBB/jpp58wa9Ys3LlzB59//nmptwXIw0IZGRn473//iwMHDujn+/n54cCBA+jTpw/69OmDyMhIuLq64vLly/jtt9/K5T05cOAAPvzwQ+zatUu/TkvuBfzzzz948sknkZWVhWnTpiE0NBQpKSn4+eefcefOHVSvXh23bt1CeHg4MjMz8eGHHyIoKAg//vgj3nnnHVy8eBGLFy82WueiRYsQEhKCBQsWAJDvb9euXREfHw9vb28AMmiGDh2KHj16YP78+fq/M61WCweHov/nLs1nIy9TP5t//vknJk2ahPfeew/Vq1fH8uXLMXz4cNSrVw/PPPMMAPnZa9myJRwcHPD++++jbt26OHDgAGbNmoWEhASsWLECAPDgwQN07NgR165dQ3R0NBo0aICffvoJffr0Mel3lJubqw++lJQUrFixAn/99ReWLVtm0noUI0hvxYoVAoCIj4/Xz2vXrp0AIA4dOmS0bOPGjcVzzz2nn961a5cAIJo3by5yc3P18xMSEoSTk5MYMWKE0TrbtWtXYPuDBw8WgYGB+ulbt24JAGLmzJkFlvXw8BATJkww/UXmk52dLTIzM0X9+vXF22+/XeD1dO3a1Wj59evXCwDiwIEDQggh7ty5I1xdXcVLL71ktNwff/whABT6OvPavn27ACA+/vhjo/nr1q0TAMSyZcv084p6LwIDA8XgwYP10xs2bBAAxK5duwosq/t9btmyxWj+yJEjhYODg7h8+bLR68+/jvj4eAFArFixQj9vzJgxorA/pXnz5gkAIjU1tYhXXzhT3pPBgweLihUrlmq9+T9fQhR87wp7fUUZNmyYcHJyEqdPny5ymffee6/Qv5/Ro0cLjUYjzp07Z7Tdxx9/XGRnZ+uXO3z4sAAg1qxZI4QQIicnR/j7+xf5d5b/9eX/zBT32cj//pjyewgMDBSurq76z48QQjx48EBUqVJFvPHGG/p5b7zxhvDw8DBaTgjDZ+XUqVNCCCGWLFlS5Oe0NL8f3ec3/83BwUFMnz692OeqCQ/xlUKNGjXQsmVLo3mhoaG4fPlygWX79esHjUajnw4MDER4eDh27dpVrjW1bNkSMTExmDVrFg4ePIisrKxSPS87Oxtz5sxB48aN4ezsjAoVKsDZ2Rnnz5/HmTNnCizfvXt3o+nQ0FAA0L/2AwcO4OHDh+jfv7/RcuHh4QgMDCyxHt1//nlbkgFA7969UbFiRezcubNUr8sUnp6eBV5Xv379kJubi99//73ctvPkk08CAF599VWsX78e//zzT6mep8R7Upzs7Gyjm/jfEHLbtm1DREQEGjVqVORzf/vtNzRu3LjA38+QIUMghCiwN9mtWzf9njlQ8PN27tw5XLt2rci/s/Jk6u+hWbNmqF27tn7a1dUVDRo0MPqe+PHHHxEREQF/f3+j97RLly4AgD179gAAdu3aVeTn1BQfffQRYmNjERsbix07dmDy5MmYO3cu3n33XZPWoxQGVCn4+PgUmOfi4oIHDx4UmF+jRo1C55V06M1U69atw+DBg7F8+XK0bt0aVapUwaBBg0o8Rj1x4kTMmDEDPXv2xA8//IBDhw4hNjYWTZs2LfT15H/tukMaumV1r6uo112SlJQUVKhQoUDjFI1GY5b3DQCqV69eYJ6u1vLc3jPPPIPNmzcjOzsbgwYNQq1atfDYY49hzZo1xT5PifekKAkJCXBycjK66b5Eb926hVq1ahX7/JSUlEJbxfr7++sfz8vcnzdTmPp7KM33xI0bN/DDDz8UeE+bNGkCAEhOTtZvu7jPaWnVqVMHYWFhCAsLQ8eOHREdHY0RI0Zg/vz5OHv2rEnrUgLPQZWzwgLi+vXrRh9eV1dXpKWlFVhO9+EsDV9fXyxYsAALFizAlStX8P333+O9997DzZs3sX379iKf980332DQoEGYM2dOgW1XqlSp1NvX0b2uol53SSflfXx8kJ2djVu3bhl9EQghcP36df1eCCD/2LVabYF1mPqFnfcEft5adfUA8ncEoMD2TPkdAUCPHj3Qo0cPaLVaHDx4ENHR0ejXrx+CgoLQunXrQp9jyntibv7+/oiNjTWapzuvWLVqVVy9erXY5/v4+CApKanA/GvXrgGQn2NTlPR5K0/m+D34+voiNDQUs2fPLvRxXXD7+Pjg8OHDBR4vj9cYGhoKIQROnDiBkJCQMq/PnLgHVc7WrFmjPwQCyEMT+/fvN2q1FxQUhL///tvoyy8lJQX79+83Wlf+/x6LUrt2bYwdOxadOnXCsWPHil1Wo9EUaHTw008/lfrwU35PPfUUXF1dsXr1aqP5+/fvL/QQaH4dOnQAIIMzr40bNyIjI0P/OCDftxMnThgt99tvv+HevXtG80p63+7evYvvv//eaN63334LBwcH/clsXbDm317+55Vme7pl2rVrh48++ggACrTszMuU98TcnJ2d9f+B626enp4AgC5dumDXrl0FWnXm1aFDB5w+fbrA5/Lrr7+GRqNBRESESfU0bNgQfn5+Rf6dlaS0f1O62oHy/T288MIL+Ouvv1C3bt0C72tYWJg+oCIiIor8nJbV8ePHAQDVqlUr87rMjXtQ5ezmzZt46aWXMHLkSKSlpWHmzJlwdXXF1KlT9csMHDgQS5cuxYABAzBy5EikpKTg448/hpeXl9G6PD09ERgYiC1btqBDhw6oUqUKfH19UblyZURERKBfv34ICQmBp6cnYmNjsX37drz88svF1vfCCy8gJiYGISEhCA0NxdGjR/HJJ5+UeKimKJUrV8Y777yDWbNmYcSIEejduzcSExMRGRlZqsMRnTp1wnPPPYcpU6YgPT0dbdq00beUeuKJJzBw4ECj923GjBl4//330a5dO5w+fRqff/65vnWXzmOPPQYAWLZsGTw9PeHq6org4GD9f98+Pj4YPXo0rly5ggYNGmDr1q34z3/+g9GjR+vPIdSoUUN/SKRy5coIDAzEzp078d133xV4DY8//jgAeby/S5cucHR0RGhoKGbNmoWrV6+iQ4cOqFWrFlJTU/HZZ5/ByckJ7dq1K5f3REkffPABtm3bhmeeeQbTpk3D448/jtTUVGzfvh0TJ05ESEgI3n77bXz99dfo1q0bPvjgAwQGBuKnn37C4sWLMXr0aDRo0MCkbTo4OODDDz/EiBEj9H9nqamppf68lfTZyMscv4cPPvgAO3bsQHh4OMaPH4+GDRvi4cOHSEhIwNatW/HFF1+gVq1aGDRoED799FMMGjQIs2fPRv369bF161b8/PPPJm3v/Pnz+mb6aWlp+PXXX/Hll18iLCwMbdu2Nbl+i1OufYb6FNWKr0mTJgWWzd/iR9dqZtWqVWL8+PGiatWqwsXFRbRt21YcOXKkwPNXrlwpGjVqJFxdXUXjxo3FunXrCm1l9euvv4onnnhCuLi4CABi8ODB4uHDh2LUqFEiNDRUeHl5CTc3N9GwYUMxc+ZMkZGRUexrvHPnjhg+fLioVq2acHd3F08//bTYu3dvgZaFutezYcMGo+cX1sorNzdXREdHi4CAAOHs7CxCQ0PFDz/8UGRrxfwePHggpkyZIgIDA4WTk5Pw8/MTo0ePFnfu3DFaTqvVismTJ4uAgADh5uYm2rVrJ44fP16gJZoQQixYsEAEBwcLR0dHo3p1v8/du3eLsLAw4eLiIvz8/MS0adNEVlaW0TqSkpLEK6+8IqpUqSK8vb3FgAEDxJEjRwq8fq1WK0aMGCGqVq0qNBqN/jP0448/ii5duoiaNWsKZ2dnUa1aNdG1a1exd+/ecntPlGzFJ4QQiYmJYtiwYaJGjRrCyclJ+Pv7i1dffVXcuHFDv8zly5dFv379hI+Pj3BychINGzYUn3zyicjJySmw3U8++aTANlBI683ly5eL+vXrC2dnZ9GgQQPx1VdfFfr6CntuUZ+Nwp5f2t9DYGCg6NatW4HaC/sbuHXrlhg/frwIDg4WTk5OokqVKqJFixZi+vTp4t69e/rlrl69Knr16iU8PDyEp6en6NWrl9i/f/8jt+KrWLGiaNy4sZg5c6ZIS0sr9vlqoREiz34yPbLdu3cjIiICGzZswCuvvKJ0OVSE9u3bIzk5GX/99ZfSpRBRCXgOioiIVIkBRUREqsRDfEREpEoW24OKjo6GRqPBhAkTLLVJIiKyYhYJqNjYWCxbtkzfbQkREVFJzB5Q9+7dQ//+/fGf//wHlStXNvfmiIjIRpj9Qt0xY8agW7du6NixI2bNmlXsslqt1qh3hdzcXNy+fRs+Pj5GHUMSEZF1EELg7t278Pf3L3Y4lMKYNaDWrl2LY8eOFejLqyjR0dGKDZ1NRETmk5iYaHKPNWYLqMTERLz11lv45Zdf9B1vlmTq1KmYOHGifjotLQ21a9dGYmJigW6AiIhI/dLT0xEQEKDvw9EUZmtmvnnzZrz00ktGY7vk5ORAo9HAwcEBWq3W6LHCpKenw9vbG2lpaQwoIiIrVJbvcbPtQXXo0AEnT540mjd06FCEhIRgypQpJYYTERHZN7MFlKenp77nYJ2KFSvCx8enwHwiIqL82NURERGpkkXHg9q9e7clN0dEJhBCIDs7Gzk5OUqXQlbE0dERFSpUMMulQBywkIiQmZmJpKQk3L9/X+lSyAq5u7vDz88Pzs7O5bpeBhSRncvNzUV8fDwcHR3h7+8PZ2dnXhhPpSKEQGZmJm7duoX4+HjUr1/f5Itxi8OAIrJzmZmZyM3NRUBAANzd3ZUuh6yMm5sbnJyccPnyZWRmZpb6utfSYCMJIgKAcv3Pl+yLuT47/EQSEZEqMaCIiEiVGFBEZJXat29v1QOgajQabN68uUzrsPb3oCRsJEFEVum7776Dk5OTxbcbGRmJzZs34/jx42VaT1JSEsfIKwEDioisUpUqVZQuoUxq1KhR7ONZWVmKBLCa8BAfERUtI6Po28OHpV/2wYOSlzVR/sNbQUFBmDNnDoYNGwZPT0/Url0by5Yt0z+ekJAAjUaDtWvXIjw8HK6urmjSpIlRDzcxMTGoVKmS0XY2b96svy4sJiYGUVFR+PPPP6HRaKDRaBATE1NkjV999RWaNGkCFxcX+Pn5YezYsfrH8h7i09W2fv16tG/fHq6urvjmm28AAH/88QfatWsHd3d3VK5cGc899xzu3LlT6PYyMzMxefJk1KxZExUrVkSrVq2sugcfBhQRFc3Do+hbr17Gy1arVvSyXboYLxsUVHCZcjB//nyEhYUhLi4Ob775JkaPHo2zZ88aLfPuu+9i0qRJiIuLQ3h4OLp3746UlJRSrb9Pnz6YNGkSmjRpgqSkJCQlJaFPnz6FLrtkyRKMGTMGr7/+Ok6ePInvv/8e9erVK3b9U6ZMwfjx43HmzBk899xzOH78ODp06IAmTZrgwIED2LdvH1588cUiu6MaOnQo/vjjD6xduxYnTpxA79698fzzz+P8+fOlen1qw0N8RGQzunbtijfffBOA/LL/9NNPsXv3boSEhOiXGTt2LHr9L1yXLFmC7du348svv8TkyZNLXL+bmxs8PDxQoUKFEg/RzZo1C5MmTcJbb72ln/fkk08W+5wJEybg5Zdf1k+/8847CAsLw+LFi/XzmjRpUuhzL168iDVr1uDq1avw9/fXP3/79u1YsWIF5syZU+LrUxsGFBEV7d69oh/LP6bbzZtFL5v/Qs6EhEcuqTihoaH6+xqNBjVq1MDNfHW1bt1af79ChQoICwvDmTNnyrWOmzdv4tq1a+jQoYNJzwsLCzOaPn78OHr37l2q5x47dgxCCDRo0MBovlarhY+Pj0l1qAUDioiKVrGi8suaIH+jAo1Gg9zc3BKfpzvH5ODggPyDjGdlZZlch5ubm8nPAeSYeY+6ntzcXDg6OuLo0aMFBoT1KKdDqJbGc1BEZFcOHjyov5+dnY2jR4/qDwFWrVoVd+/eRUaeRhv5m5M7OzuXOCSJp6cngoKCsHPnzjLVGhoaWup1PPHEE8jJycHNmzdRr149o1tJhyPVigFFRHZl0aJF2LRpE86ePYsxY8bgzp07GDZsGACgVatWcHd3x7Rp03DhwgV8++23BVrpBQUFIT4+HsePH0dycjK0Wm2h24mMjMT8+fPxf//3fzh//jyOHTuGhQsXmlTr1KlTERsbizfffBMnTpzA2bNnsWTJEiQnJxdYtkGDBujfvz8GDRqE7777DvHx8YiNjcVHH32ErVu3mrRdtWBAEZFdmTt3Lj766CM0bdoUe/fuxZYtW+Dr6wtAXlv1zTffYOvWrXj88cexZs0aREZGGj2/V69eeP755xEREYGqVatizZo1hW5n8ODBWLBgARYvXowmTZrghRdeMLk1XYMGDfDLL7/gzz//RMuWLdG6dWts2bIFFSoUfnZmxYoVGDRoECZNmoSGDRuie/fuOHToEAICAkzarlpoRP4DriqSnp4Ob29vpKWlwcvLS+lyiGzSw4cPER8fj+Dg4HIdKkFtEhISEBwcjLi4ODRr1kzpcmxKcZ+hsnyPcw+KiIhUiQFFRESqxGbmRGQXgoKCCjQhJ3XjHhQREakSA4qIiFSJAUVERKrEgCIiIlViQBERkSoxoIiISJUYUEREKlfY6Lu6Tmx3794NjUaD1NRUJUs0CwYUEdmtyMhIs3V7VNjw8eYQHh6OpKQkeHt7m31blsYLdYmIrJizs7PVDqdREu5BEVGRMjKKvj18WPplHzwoeVlTabVajB8/HtWqVYOrqyuefvppxMbG6h8vbA9m8+bN+sEJY2JiEBUVhT///BMajQYajUY/tIZGo8GSJUvQpUsXuLm5ITg4GBs2bNCvp7DDasePH4dGo0FCQgJ2796NoUOHIi0tTb/u/L2i5/XDDz+gRYsWcHV1RZ06dRAVFYXs7OxSvQ/5a9G97s2bN6NBgwZwdXVFp06dkJiYqH/On3/+iYiICHh6esLLywstWrTAkSNH9I/v378fzzzzDNzc3BAQEIDx48cbjZFlKQwoIiqSh0fRt169jJetVq3oZbt0MV42KKjgMqaaPHkyNm7ciJUrV+LYsWOoV68ennvuOdy+fbtUz+/Tpw8mTZqEJk2aICkpCUlJSejTp4/+8RkzZqBXr174888/MWDAALz22mulHho+PDwcCxYsgJeXl37d77zzTqHL/vzzzxgwYADGjx+P06dPY+nSpYiJicHs2bNLta3C3L9/H7Nnz8bKlSvxxx9/ID09HX379tU/3r9/f9SqVQuxsbE4evQo3nvvPf1oxCdPnsRzzz2Hl19+GSdOnMC6deuwb98+jB079pHreWRCxdLS0gQAkZaWpnQpRDbrwYMH4vTp0+LBgwcFHgOKvnXtarysu3vRy7ZrZ7ysr2/BZUxx79494eTkJFavXq2fl5mZKfz9/cXHH38shBBixYoVwtvb2+h5mzZtEnm/9mbOnCmaNm1ayOuGGDVqlNG8Vq1aidGjRwshhNi1a5cAIO7cuaN/PC4uTgAQ8fHxRW6/MG3bthVz5swxmrdq1Srh5+dnVM+mTZuEEELEx8cLACIuLq7QWlasWCEAiIMHD+qff+bMGQFAHDp0SAghhKenp4iJiSm0noEDB4rXX3/daN7evXuFg4NDoZ8RIYr/DJXle5znoIioSPfuFf2Yo6Px9M2bRS/rkO9YTULCI5cEALh48SKysrLQpk0b/TwnJye0bNmy1Hs5JWndunWB6fzDv5eHo0ePIjY21miPKScnBw8fPsT9+/fh7u5u8jorVKiAsLAw/XRISAgqVaqEM2fOoGXLlpg4cSJGjBiBVatWoWPHjujduzfq1q2rr+fChQtYvXq1/vlCCOTm5iI+Ph6NGjUqw6s18XVYbEtEZHUqVlR+2cKI//VKrjuflHe+bp6Dg0OB3suzsrLKtN28685bR1nWnZubi6ioKLz88ssFHivLAJL535u88yIjI9GvXz/89NNP2LZtG2bOnIm1a9fipZdeQm5uLt544w2MHz++wPNr1679yPU8CrOeg1qyZAlCQ0Ph5eUFLy8vtG7dGtu2bTPnJonIDtSrVw/Ozs7Yt2+ffl5WVhaOHDmi/w+/atWquHv3rtHJ/fx7QM7OzsjJySl0GwcPHiwwHRISol83ACQlJT3SuvNq3rw5zp07h3r16hW4OeTf9Syl7Oxso0YP586dQ2pqqr5+QA4n//bbb+OXX37Byy+/jBUrVujrOXXqVKH1ODs7P1I9j8qsAVWrVi3MnTsXR44cwZEjR/Dss8+iR48eOHXqlDk3S0Q2rmLFihg9ejTeffddbN++HadPn8bIkSNx//59DB8+HADQqlUruLu7Y9q0abhw4QK+/fZbfSs9naCgIMTHx+P48eNITk6GVqvVP7ZhwwZ89dVX+PvvvzFz5kwcPnxY31CgXr16CAgIQGRkJP7++2/89NNPmD9/foF137t3Dzt37kRycjLu379f6Gt5//338fXXXyMyMhKnTp3CmTNnsG7dOvzrX/965PfHyckJ48aNw6FDh3Ds2DEMHToUTz31FFq2bIkHDx5g7Nix2L17Ny5fvow//vgDsbGx+mCfMmUKDhw4gDFjxuD48eM4f/48vv/+e4wbN+6R63lkJp+1KqPKlSuL5cuXl2pZNpIgMr/iTnCr2YMHD8S4ceOEr6+vcHFxEW3atBGHDx82WmbTpk2iXr16wtXVVbzwwgti2bJlRo0kHj58KHr16iUqVaokAIgVK1YIIWSjhEWLFolOnToJFxcXERgYKNasWWO07n379onHH39cuLq6irZt24oNGzYYNZIQQohRo0YJHx8fAUDMnDmzyNeyfft2ER4eLtzc3ISXl5do2bKlWLZsmf5xmNhIwtvbW2zcuFHUqVNHODs7i2effVYkJCQIIYTQarWib9++IiAgQDg7Owt/f38xduxYo9//4cOHRadOnYSHh4eoWLGiCA0NFbNnzy72d2GORhKa/714s8vJycGGDRswePBgxMXFoXHjxgWW0Wq1Rv/BpKenIyAgAGlpafDy8rJEmUR25+HDh4iPj0dwcHCZznnYEo1Gg02bNqFnz55Kl2KymJgYTJgwwaJdHxX3GUpPT4e3t/cjfY+b/TqokydPwsPDAy4uLhg1ahQ2bdpUaDgBQHR0NLy9vfW3gIAAc5dHREQqZfaAatiwIY4fP46DBw9i9OjRGDx4ME6fPl3oslOnTkVaWpr+lvfKZyIisi8WO8Sn07FjR9StWxdLly4tcdl/JVOvAAAgAElEQVSy7BoSUenwEB+VldUe4stPCGF0nomIiKgwZr1Qd9q0aejSpQsCAgJw9+5drF27Frt378b27dvNuVkiegQWPphCNsRcnx2zBtSNGzcwcOBA/VgloaGh2L59Ozp16mTOzRKRCXSdhN6/fx9ubm4KV0PWSHeNl+6zVF7MGlBffvmlOVdPROXA0dERlSpVws3/dabn7u5eaDc5RPkJIXD//n3cvHkTlSpVgmP+DhrLiH3xEZF+wLubxfX4SlSESpUqmWXQRAYUEUGj0cDPzw/VqlUrc4eqZF+cnJzKfc9JhwFFRHqOjo5m+7IhMhVH1CUiIlViQBERkSoxoIiISJUYUEREpEoMKCIiUiUGFBERqRIDioiIVIkBRUREqsSAIiIiVWJAERGRKjGgiIhIlRhQRESkSgwoIiJSJQYUERGpEgOKiIhUiQFFRESqxIAiIiJVYkAREZEqMaCIiEiVGFBERKRKDCgiIlIlBhQREakSA4qIiFSJAUVEVIiHD4FTpwAhlK7EfjGgiIjyOXMGcHMDHnsM2LtX6WrsFwOKiCiPs2eBxo0N0w0bKleLvWNAERH9z927QKNGhuktW4Dq1ZWrx94xoIiI/sfDA2jRQt7fvBno3l3ZeuxdBaULICJSC40GiI0FkpIAf3+lqyHuQRGRXTt3TgbTn3/KaY2G4aQWDCgislt//w2EhMj7zZoBubnK1kPGGFBEZJf+/tu4hd7GjYADvxFVxay/jujoaDz55JPw9PREtWrV0LNnT5w7d86cmyQiKtH588bh9N//Ai+/rFw9VDizBtSePXswZswYHDx4EDt27EB2djY6d+6MjIwMc26WiKhIFy4ADRoYpjdsAHr1Uq4eKppGCMt15HHr1i1Uq1YNe/bswTPPPFPi8unp6fD29kZaWhq8vLwsUCER2TIhjA/jrV8P9O6tXD32oCzf4xY94pqWlgYAqFKlSqGPa7VapKenG92IiMqLRgPs2CHvr1vHcFI7i+1BCSHQo0cP3LlzB3uL6NwqMjISUVFRBeZzD4qIyiI7G6iQ56rP3Fw2iLAUq9iDGjt2LE6cOIE1a9YUuczUqVORlpamvyUmJlqqPCKyURcvAk5OwIABhnkMJ+tgkV/TuHHj8P3332PXrl2oVatWkcu5uLjAy8vL6EZE9KguXQLq1ZP3V68Grl9Xth4yjVm7OhJCYNy4cdi0aRN2796N4OBgc26OiEjv0iWgbl3D9OrVQI0aytVDpjNrQI0ZMwbffvsttmzZAk9PT1z/378v3t7ecHNzM+emiciO5Q+nb74B+vVTrh56NGZtJKHRaAqdv2LFCgwZMqTE57OZORGZKj4eqFPHML1qlfH5J7KssnyPm/0QHxGRJTVvbrj/9dcMJ2vGtixEZFOSkuTPmBhg4EBFS6Ey4nhQRGT1bt0C3NzkgIOurrLHCLJ+3IMiIqt25QpQrRrg6SmHbCfbwYAiIqt15QoQGGiY/v135Wqh8seAIiKrlJhoHE7LlgHduilXD5U/BhQRWZ2rV4HatQ3TX3wBjBypXD1kHgwoIrIq//wDBAQYphcvBt54Q7l6yHwYUERkVb791nB/0SJg9GjlaiHzYjNzIrIq774LpKYCNWsCb76pdDVkTgwoIlK9pCTg1CmgY0c5PXu2svWQZfAQHxGpWlIS4O8PdOoEbNigdDVkSQwoIlKt69dlOOlcvapcLWR5DCgiUqXr1wE/P8P0vHnA228rVw9ZHgOKiFTnxg3jcPr4Y2DSJOXqIWUwoIhIVW7cMB75du5c2XKP7A8DiohUJSPDcH/OHGDKFOVqIWWxmTkRqUqdOsDFi8BvvwEjRihdDSmJe1BEpLhbt4DBgw3jONWpw3Ai7kERkcJu3ZLjOQHA7t3A5cuKlkMqwj0oIlJMcrIhnABgyBDFSiEVYkARkSJSUoCqVQ3TM2YAUVHK1UPqw4AiIotLSQF8fQ3T06YBH3ygXD2kTgwoIrKou3eNw2nqVHb+SoVjQBGRRVWsCFSuLO9PmSKvdSIqDFvxEZFFOTjIQ3wHDgDh4UpXQ2rGPSgiMrs7d2QwxcfLaY2G4UQlY0ARkVnduQNUqSIvwq1TB3j4UOmKyFowoIjIbFJTZTjpvPUW4OqqXD1kXRhQRGQWqamGxhAAMHYssGCBcvWQ9WFAEVG5yx9Ob74JLFyoXD1knRhQRFSuhDAOp1GjgEWLlKuHrBcDiojKlUYDrF4t77/xBrBkibL1kPXidVBEVO769QO6dQO8vZWuhKwZ96CIqMzS0+We09SphnkMJyorBhQRlUl6uiGM5s4FTp9Wth6yHWYNqN9//x0vvvgi/P39odFosHnzZnNujogsLG84AcCgQUDjxsrVQ7bFrAGVkZGBpk2b4vPPPzfnZohIAfnDacAAYOVK5eoh22PWRhJdunRBly5dzLkJIlLA3bvG4fTaa8CqVcrVQ7ZJVa34tFottFqtfjo9PV3BaojKQU6O7CH19GngyhXgpZeAmjXlYz/+CHzyCeDoCDg7Ay4ugI+PHAO9enWga1egYUNl6y9C3nDq0wf49lvlaiHbpaqAio6ORhTHfCZrlpIC7N4N7NsH/PEHcPKkce+owcGGgEpJAX7/veh1+fkZAur4ceCrr2QX4B07Go/4p4Bjx4AnngB69wbWrlW0FLJhqgqoqVOnYuLEifrp9PR0BAQEKFgRUSkIIdtYA8CGDcDo0caPu7oCISFA3brGXSy0bw+sXw/k5gKZmcCDBzK0btwArl0DmjY1LPvrr7KvoIUL5bZatgReeEEeW6tb1+wvEQCysgAnJ3m/WTPZS3mlShbZNNkpjRBCWGRDGg02bdqEnj17lvo56enp8Pb2RlpaGry8vMxYHZGJ7t+Xuw4xMcDQofIGAFevAl26AM88A7RpI4MkOFgexiuLfftk+O3eDZw4YfxYq1ayjpCQsm2jGHfvAl5ewNNPA3v3mm0zZIPK8j2uqj0oItW7dk12LPfFF8Dt23Keg4MhoGrVkof1ytvTT8sbAPzzD7B9u9z7+vVX4O+/gdq1Dcvm5JQ9EPO4d0+GEyBzcu9eoG3bcls9UZHMGlD37t3DhQsX9NPx8fE4fvw4qlSpgtp5/6CI1O7WLSA6Gli8GNA15KlTB3j9ddm+2pJq1gSGD5e3GzeAc+cAd3f5mBByzy0sTHbroDvf9Yju3QM8PQ3T3bsznMhyzHqIb/fu3YiIiCgwf/DgwYiJiSnx+TzER6rx7LPArl3yfps2wKRJ8tu6HPdUysXu3YDub87NDZgyBZg8Wd43Uf5wevFF4Pvvy6dMsh9l+R632DmoR8GAIkXlbfywY4fcI5kzB+jUyTBfbYSQITVjhmxFCACBgfKwZLdupV5N/nDq1k22iicyVVm+x9kXH1F+9+7JcSI++8wwr2NHIDYW6NxZveEEyNoiIuSJonXrgIAA4PJl2eJv2DAgI6NUqxk3znC/SxeGEymDAUWU15Ej8gKfZcuAadOAmzflfI1G3cGUn0YDvPoqcPasPByp0chrqZydS/X05cvlzy5dgK1bzVgnUTHYio9I56uv5NjkWq3c84iJkb06WDN3d2DePNmDhbe34UIm3ZH9PKGbkSGvdapUSZ5ay8mRDRSJlMKPH1FODjB+vGwVp9XKxg8nTsiGEbaiTRvgsccM0x99JMdiz84GIMPJw0NeR5ySIhdhOJHS+BEk+5abC/Tta+ih4YMPgE2bbLuLhAsXgH/9Sx7G7NEDGTfuwcPD8PC8ecqVRpQXA4rsm4MD0KKFPDezbp1s/Wbruw716gEbNwJubri/dRc8ahjS6dlnZUNFIjVgM3MiIeReRf36SldiUff3xKJi+yf10xFts7FzTwWragtC6sdm5kSmyMyULfTu3pXTGo39hdN9GIVTO+zGTk1HaDK1xTyLyLIYUGRfhJCNA6KjgV69DK3Z7ExsrOF+2yfuYpdHd2h+3yPPvxGpBJuZk32JjgZWrJDnmd5+27qubSpH7doBCxbIrot+/dUTmt82AWfOyAYjRCrBc1BkP37+WV55KoTs9DX/uE027sEDYP9+oEMHpSshe8JzUEQluXpV9jouhOzGyA7Dyd1d9ti0eHEJCycny6FyL160SG1ERWFAke3LzQUGDpRfvE88IY9t2RFdOOmU2CP5uHHAf/8LDB4sL2ImUggDimzfpUvAX3/Jb+n16+UQ7HYifzi1bAls21bCk+bOlV2Z//EHMH++WesjKg4DimxfvXrAqVPy4tR69ZSuxmLyh1NYGHDwYCnahQQGGvYyZ8yQ14gRKYABRfahWjXg+eeVrsJiHj40DqfmzYHDh01otDh0qBz3KjNTtnYkUgADimzXwYPA5s12e62TzhNPyFFETGpRr9HI/gmdnORgUBxzgxTAgCLbJITsofyll+yuUQQgT7PdvCl3hI4efcTLvRo2BN56S97/5JNyrY+oNBhQZJt+/ll2l+DuDvTvr3Q1FvHwITBmjGy0CABVq8ohrsp0LfJ778ke3jdvLpcaiUzBniTI9gghv1QBeb2TtQ86WAoPHwJubvL+4sXleFTTx0c2lCBSAPegyPYcOCBvLi7AO+8oXY3Z5Q0nwHhcwnKXkWHGlRMZY0CR7Vm0SP7s1w+oUUPZWsxMqzUOpyZN5GDA5S42FnjqKeC118ywcqLC8RAf2ZabN4ENG+T9MWOUrcXMtFrja44bNQJOnjRT/7deXsChQ3Ll//wD1Kxpho0QGeMeFNmWxEQgJEReldqihdLVmI0QxuHUsKG8FtlsnbM3bAg8/bTc8LffmmkjRMYYUGRbWrSQx7h+/VXpSsxKo5HdFgFyrMXTpy0wcsiAAfLnqlVm3hCRxIAi2+TtrXQFZnfoELB6NXD2rBzeyuxefRVwdJTHES9dssAGyd4xoMh2JCXJDuhsVGYmEBws80GnXz8LhRMAVK4sD/MB7FmCLIIBRbZjwgSgShVg5UqlKyl3mZmy1XxCAhAaCqSnK1RIt27yJwOKLICt+Mg2CAHs3CkvCrKxHst14aQTGAh4eChUTLducugSDstLFsCAIttw6RKQkgI4OwNPPql0NeUmfzjVri1fqsUO6+XXuLFN7qGSOvEQH9mG2Fj5s2lTGVI2oLBwio9XMJyILIx7UGQb4uLkz7AwZesoR40aGe7XqqWicHr4EDh3Tg4H37y50tWQDVPDx52o7P7+W/7M+61u5f7zH/nT3x+4fFkl4QTItu3NmgFTpypdCdk4tXzkicrm/Hn5s359Zesoo7y9kD/7rDzflJioonACZE8dgNyLIjIjNX3siR5d797A8OFm7srbvLKygAoVgIEDDfOCg1UWToA8GQYA167Z/WjFZF4aIdT7CUtPT4e3tzfS0tLg5eWldDlEZpOVZdy24+efgc6dlaunWHl7qU1OlmNGERWhLN/jFvnfbPHixQgODoarqytatGiBvXv3WmKzRFYhK8u4tZ6vr8ovM3Jxkb1KAMCNG8rWQjbN7AG1bt06TJgwAdOnT0dcXBzatm2LLl264MqVK+beNNmLzEw5BMStW0pXYrKsLDmek+44RpUqwPXrsss7VatYUf604a6lSHlmD6h///vfGD58OEaMGIFGjRphwYIFCAgIwJIlSwosq9VqkZ6ebnQjKtHp07IddrNmSldikqws+T2fkyOnK1eWw1mpPpwAwyG+hw+VrYNsmlkDKjMzE0ePHkXnfAfTO3fujP379xdYPjo6Gt7e3vpbQECAOcsjW5GVJX9WsK7L+t55x1B6pUpyB9AqwknHwQHIzla6CrJhZg2o5ORk5OTkoHr16kbzq1evjuvXrxdYfurUqUhLS9PfEhMTzVke2QrdQEi5ucrWYaJPPpE/vb1lWwOrCqcKFeT7rd42VmQDLPIvpybfSGpCiALzAMDFxQUuec8WE5WGrufUjAxl6yiF7GzDeSdnZ9kgzsHBysIJMLzXunNRRGZg1oDy9fWFo6Njgb2lmzdvFtirInpkuoC6d0/ZOkqQnS3PM927J28VK1pxt4G9e8vxt/z8lK6EbJhZD/E5OzujRYsW2LFjh9H8HTt2IDw83JybJnuia/KclaXgQEnFy86WLfR0GTpunLL1lNn8+cC338rGKURmYvZDfBMnTsTAgQMRFhaG1q1bY9myZbhy5QpGjRpl7k2TvahYUbYySE2V/QI1aaJ0RUZycuS1TXfvymlnZ2DZMmVrIrIGZg+oPn36ICUlBR988AGSkpLw2GOPYevWrQgMDDT3psmeDBkiT9ir7JxITg5QrRqQlianK1SQp2+srMGhsfR04P59oHp1QwMVIjNgV0dEZpKTI7/DU1LktIODvGzIyUnZusrsq69kv4dduwI//aR0NaRyqu/qiMgeHT5sCCeNxkbCCQBOnJA/rbzneFI/BhTZjpQU4OhRpavQa90amDxZHs7Tam0knADD4JBPPKFsHWTzGFBkG+LjZUuE1q0V7R8uNxc4e9Yw/dFHsqtAmwmn7GwGFFkMA4psQ1CQHHo2Kws4dEiREnJzgcBAOajvxo2G+TbVjuDYMdkcsVIl1bWWJNvDgCLboNEAzzwj7+/aZfHN5+bKwQWvXpXTY8davATL+O03+bN9eyvs/oKsDQOKbIeuU+IffrDoZnNzgbp1gbwjyFy+bNESLGfbNvnz2WeVrYPsAgOKbMcLL8i23HFxxmlhRrm5QL16QEKCYZ5Wa8VdGJXk/feBN94AevRQuhKyAwwosh1VqwK6LrQ2bDD75nJzgQYNZPsMHZsOJ0AO9fvFF0Dt2kpXQnaAAUW2pX9/+fObb8y+qcxM4OJFw7TNhxORhTGgyLb07Qv8+9/Azz+bfVOursClS0BIiLwI16bD6eRJ4M03gePHla6E7AgDimxLpUrA22/LDvDMQAjgyy8N4/QFBwNnzgA2P4zZF18AS5YAs2crXQnZEQYU2TbdmOrlQAjg8ceBESOAmjXLbbXqd/Om7H8PkHtRRBbCgCLbtHevbDAxeXK5rE4IoFkz4NQpOZ2UZEejnX/2mTyG2bKlvP6JyEIYUGSb7t8HDhyQh6XK2ORcCKB5c0MfqYDsTcmmeogoys2bwMKF8v60aXbyokktGFBkmzp3Btq1k03rIiMfeTVCAC1aGLcNePBANpCwC1FRsmujFi2AF19UuhqyMwwosk0aDTB3rrwfEwMcOfJIq3nqKUPfqICdhdO5c8DSpfL+vHnyImgiC+InjmzXU0/J66KEkL0f5OSYvApd33qAnYUTIJsoRkYCr77Kc0+kCAYU2bb58wFvb9kL92efmfz0q1dlOwu7CydAXtj1r38Ba9cqXQnZKQYU2bbq1YGPP5b3f/21xKZ3QgBDhhjaVWg0ckwnuwqnf/4xHlOLDSNIIQwosn0jRwLr1wM//ljsl60QcsSOlSvluE5paRasUS20WqB7d9mk/O+/la6G7FwFpQsgMjuNBujd2zCt24vKE1ZCyNMs+/YZFrPprouKMnGiPBzq4wNUrKh0NWTnuAdF9uXhQ2DYMODTT/WzhJCddP/+u2GxjAzAzU2B+pS0eLG8aTRyN9KuussgNeIeFNmX776Tzc41GqB2bYher6BTJ+NBeDMyAHd3xSpUxvbtwPjx8n50NNCtm7L1EIF7UGRvXntNNjkXAujfH689ewM7dxoetstw2rsXePll2Qx/0KBy6x6KqKwYUGRfNBpg0SKgVy8gMxMvHTB8GdtlOOXmAm+9JVvtde0K/Oc/bLVHqsGAIvvj6AisXg107ow+2q+xz/lZ3Nu0w/7CCZC9Q/z4o2zp+N//2mnLEFIrBhTZnR49gOkfuABbtgAvvog2mbtQcWQ/4N49pUuznDNnDPf9/YFly+ywVQipHQOK7Er37sD33wNz5gCbtrkCGzcCAwfKPSoPD6XLM7/cXOD994EmTeQeE5GKMaDIbvTsCfzwg2G6UycATk7A11/L3s919u4Frl+3eH1ml5wsdx8//FA2EuHw7aRyDCiyCy+/LI/o6dy9W8QO0+XLcjeraVNg2zaL1Wd2O3cCoaHyfJOzs2xqP2uW0lURFYsBRTbvlVeATZsM00WGEwBkZgIBAXKgvq5dZbPrlBSL1GkWd+4Ar78OdOwohwFu1Ag4fBgYPFjpyohKxIAim/bpp/I0k056egmnmurXBw4dAt5+Wza3XrUKCAkBvvgCyM42e73lLi5ONh0HgFGj5LhYTZsqWxNRKWmEKKF7ZwWlp6fD29sbaWlp8PLyUrocskL37gGenvJ+errhfqkcPAiMGAGcOiWnmzWTex9OTuVeZ7kRAjh/HmjQwDBv5ky5B9W2rXJ1kd0qy/c496DIJuXmyp8eHjKkTA4nwDCc7sKFQJUqcgh5XTgJIQ8HqkV2NrBuHRAWJs81JSYaHouKYjiRVWJAkc0ZOFBei6vLj4oVHyGcdJycgLFjgQsX5OiyOvv2AbVrA9OnA/HxZS350SUkyD2kOnWAvn1lT+SOjsCBA8rVRFROzBpQs2fPRnh4ONzd3VGpUiVzbooIgGzT8M038n659ndauTKQ9zO8ejVw44a8oKpOHTl+0rx5wLlzJQ6KWC4uXADatJHb/uADucfk4yND9MoVOUw7kZUz6zmomTNnolKlSrh69Sq+/PJLpKammvR8noMiUwwZIkeJ0ElLA8z2scnKklf8Ll0qm3DrjikCshXg8ePysCAgA+tR+7fTaoHTp+WhRjc32dktIDsO9PWVw4d07AgMHy4v9LKroX/JGpTle9wijSRiYmIwYcIEBhSZzbBhwIoVhmmzhlN+N27IYTw2bpQX+daqBVy8aHi8a1e5Z1W3LhAUJIOlShV53LFyZeO9nfnzgbNn5V7Q5ctyPbrWg82ayaDS+fFHOa9WLYu8TKJHUZbvcVWNB6XVaqHVavXT6enpClZD1mL4cONwSk21YDgBQPXqwOjR8nb/vgwWHSFka8A7d4BLlwo+t0ED44BascLQalCncmXZNLx1a+O9sRdeKP/XQqQiqgqo6OhoREVFKV0GWZHTp4GvvjJMp6YC3t7K1QN3d3kxbF4nTsg9oUuX5J7RnTvy4t+7dwuOWjt0qJwfGChv9evLPSQOgUF2yORDfJGRkSWGSGxsLMLCwvTTpT3EV9geVEBAAA/xUbFeew1Yu1YF4UREBVj0EN/YsWPRt2/fYpcJCgoydbUAABcXF7i4uDzSc8m+pKYaGtWtWSM7fKigquMBRFRWJv9J+/r6wtfX1xy1EJXKm28CS5YAu3YB7dvLeQwnIttj1j/rK1eu4Pbt27hy5QpycnJw/H/d+9erVw8e9jD2DpW7sWNlOAFARIRlLjkiImWYNaDef/99rMxzYcoTTzwBANi1axfa6/71JSqlceOARYsM03fuKFcLEZkfO4slq/DWW8D//Z9h+s4d444diEid2Fks2bS33zYOp9u3GU5E9oABRaqWnQ0sWGCYvn1bXrdKRLaPAUWqVqGCoXcfhhORfWFAkSodPWq436yZbK3HcCKyLwwoUp0pU+S4e08/rXQlRKQkBhSpynvvAR9/LO//8YfxKBZEZF8YUKQa06YBH31kmE5OBhz4CSWyW/zzJ1WYPh2IjjZMJyfLAWKJyH4xoEhx//qXHDldh+FERAADilSAe05EVBgGFCkuMxN45hmGExEZY0CRIpYulYPKAoCjI7BnD8OJiIwxoMjioqKAUaMAX1/2SE5ERWNAkUV9+CEQGWmYVm9f+kSkNAYUWcysWcD77xumb94EqlRRrh4iUjcGFFnEnDnAjBmG6Zs3gapVlauHiNSPAUVm98kn8kJcnRs3GE5EVDIGFJmdm5vh/o0bQLVqytVCRNajgtIFkO0bO1aOgNu5M8OJiEqPAUVmMW+e3HMaM0ZODxigbD1EZH0YUFTu5s8H3n1X3q9aFXj1VWXrISLrxHNQVK7+/W/gnXcM0888o1wtRGTdGFBUbhYsACZNMkwnJQE1aihXDxFZNwYUlYvPPgPeftswzXAiorJiQFGZrV8PTJhgmL52jeFERGXHgKIyi4gw3P/nH8DPT7laiMh2sBUflVnVqrLroqwswN9f6WqIyFZwD4oeyZIlgIsLkJsrp6tWZTgRUfliQJHJliwB3nxTjoQbHq50NURkqxhQZJKlS2U46WzcqFwtRGTbGFBUasuWyZFwdRITgZo1lauHiGwbA4pKZfly4I03DNOJiUCtWsrVQ0S2jwFFJUpIAEaONExfucJwIiLzY0BRiYKCgFat5P3Ll4GAAEXLISI7weugqEg5OYCjo7x/8CBw/z7g7q5sTURkP8y2B5WQkIDhw4cjODgYbm5uqFu3LmbOnInMzExzbZLKUUwMUKECcOKEYR7DiYgsyWx7UGfPnkVubi6WLl2KevXq4a+//sLIkSORkZGBefPmmWuzVA5WrgSGDpX3mzYFhFC2HiKyTxohLPf188knn2DJkiW4dOlSqZZPT0+Ht7c30tLS4OXlZebqCAC+/hoYPNgwHR8vz0ERET2KsnyPW/QcVFpaGqpUqVLk41qtFlqtVj+dnp5uibLof775huFEROphsVZ8Fy9exMKFCzEq75We+URHR8Pb21t/C2BzMYtZvRoYONAwzXAiIqWZHFCRkZHQaDTF3o4cOWL0nGvXruH5559H7969MWLEiCLXPXXqVKSlpelviYmJpr8iMpkQwIABhulLlxhORKQ8k89BJScnIzk5udhlgoKC4OrqCkCGU0REBFq1aoWYmBg4OJQ+E3kOynJ++w3o0EGGU3Cw0tUQka2w6DkoX19f+Pr6lmrZf/75BxEREWjRogVWrFhhUjiR+d26JYfJAIBnn5VDZ2g0ytZERKRjtsS4du0a2rdvj4CAAMybNw+3bt3C9evXcf36dXNtkkywbh1QrZrxoT2GExGpidla8f3yyy+4cOECLly4gFr5Om6zYMt2KsS6dUDfvvL+6tWGi3KJiNTEbHtQQ4YMgRCi0BspJ284AcD58wwnIlInnhSyI4WFU716yj5k1AsAAAu/SURBVNVDRFQc/u9sJzZsMA6nCxeAunWVq4eIqCTcg7ITr75quM9wIiJrwICyE1ot4OkJ/P03w4mIrAMP8dkJZ2eAXRsSkTXhHhQREakSA4qIiFSJAUVERKrEgCIiIlViQBERkSoxoIiISJUYUEREpEoMKCIiUiUGFBERqRIDioiIVIkBRUREqsSAIiIiVWJAERGRKjGgiIhIlRhQRESkSgwoIiJSJQYUERGpEgOKiIhUiQFFRESqxIAiIiJVYkAREZEqMaCIiEiVGFBERKRKDCgiIlIlBhQREakSA4qIiFSJAUVERKrEgCIiIlViQBERkSoxoIiISJXMGlDdu3dH7dq14erqCj8/PwwcOBDXrl0z5yaJiMhGmDWgIiIisH79epw7dw4bN27ExYsX8corr5hzk0REZCM0QghhqY19//336NmzJ7RaLZycnEpcPj09Hd7e3khLS4OXl5cFKiQiovJUlu/xCmaqqYDbt29j9erVCA8PLzKctFottFqtfjo9Pd1S5RERkcqYvZHElClTULFiRfj4+ODKlSvYsmVLkctGR0fD29tbfwsICDB3eUREpFImB1RkZCQ0Gk2xtyNHjuiXf/fddxEXF4dffvkFjo6OGDRoEIo6qjh16lSkpaXpb4mJiY/+yoiIyKqZfA4qOTkZycnJxS4TFBQEV1fXAvOvXr2KgIAA7N+/H61bty5xWzwHRURk3Sx6DsrX1xe+vr6mPg0A9HtOec8zERERFcZsjSQOHz6Mw4cP4+mnn0blypVx6dIlvP/++6hbt26p9p6IiMi+ma2RhJubG7777jt06NABDRs2xLBhw/DYY49hz549cHFxMddmiYjIRphtD+rxxx/Hb7/9Zq7VExGRjWNffEREpEoMKCIiUiUGFBERqRIDioiIVIkBRUREqsSAIiIiVWJAERGRKjGgiIhIlRhQRESkSgwoIiJSJQYUERGpEgOKiIhUiQFFRESqxIAiIiJVYkAREZEqMaCIiEiVGFBERKRKDCgiIlIlBhQREakSA4qIiFSJAUVERKrEgCIiIlViQBERkSoxoIiISJUYUEREpEoMKCIiUiUGFBERqRIDioiIVIkBRUREqsSAIiIiVWJAERGRKjGgiIhIlRhQRESkSgwoIiJSJQYUERGpkkUCSqvVolmzZtBoNDh+/LglNklERFbOIgE1efJk+Pv7W2JTRERkI8weUNu2bcMvv/yCefPmmXtTRERkQyqYc+U3btzAyJEjsXnzZri7u5e4vFarhVar1U+npaUBANLT081WIxERmY/u+1sIYfJzzRZQQggMGTIEo0aNQlhYGBISEkp8TnR0NKKiogrMDwgIMEOFRERkKSkpKfD29jbpORphYqxFRkYWGiJ5xcbGYv/+/Vi3bh1+//13ODo6IiEhAcHBwYiLi0OzZs0KfV7+PajU1FQEBgbiypUrJr8wJaWnpyMgIACJiYnw8vJSuhyTWGvtrNuyWLflWWvtaWlpqF27Nu7cuYNKlSqZ9FyT96DGjh2Lvn37FrtMUFAQZs2ahYMHD8LFxcXosbCwMPTv3x8rV64s8DwXF5cCywOAt7e3Vf1CdLy8vKyybsB6a2fdlsW6Lc9aa3dwML3Jg8kB5evrC19f3xKX+7//+z/MmjVLP33t2jU899xzWLduHVq1amXqZomIyM6Y7RxU7dq1jaY9PDwAAHXr1kWtWrXMtVkiIrIRjpGRkZGW2FBqaio+++wzjBo1CjVq1Cj18xwdHdG+fXtUqGDWBoflzlrrBqy3dtZtWazb8qy19ket2+RGEkRERJbAvviIiEiVGFBERKRKDCgiIlIlBhQREakSA4qIiFTJKgPK2saX6t69O2rXrg1XV1f4+flh4MCBuHbtmtJlFSshIQHDhw9HcHAw3NzcULduXcycOROZmZlKl1ai2bNnIzw8HO7u7iZ3rWJpixcvRnBwMFxdXdGiRQvs3btX6ZKK9fvvv+PFF1+Ev78/NBoNNm/erHRJpRIdHY0nn3wSnp6eqFatGnr27Ilz584pXVaJlixZgtDQUH3vEa1bt8a2bduULstk0dHR0Gg0mDBhgknPs8qAsrbxpSIiIrB+/XqcO3cOGzduxMWLF/HKK68oXVaxzp49i9zcXCxduhSnTp3Cp59+ii+++ALTpk1TurQSZWZmonfv3hg9erTSpRRr3bp1mDBhAqZPn464uDi0bdsWXbp0wZUrV5QurUgZGRlo2rQpPv/8c6VLMcmePXswZswYHDx4EDt27EB2djY6d+6MjIwMpUsrVq1atTB37lwcOXIER44cwbPPPosePXrg1KlTSpdWarGxsVi2bBlCQ0NNf7KwMlu3bhUhISHi1KlTAoCIi4tTuiSTbdmyRWg0GpGZmal0KSb5+OOPRXBwsNJllNqKFSuEt7e30mUUqWXLlmLUqFFG80JCQsR7772nUEWmASA2bdqkdBmP5ObNmwKA2LNnj9KlmKxy5cpi+fLlSpdRKnfv3hX169cXO3bsEO3atRNvvfWWSc+3qj0o3fhSq1atKtX4Ump0+/ZtrF69GuHh4XByclK6HJOkpaWhSpUqSpdhEzIzM3H06FF07tzZaH7nzp2xf/9+haqyH7qx5qzp85yTk4O1a9ciIyMDrVu3VrqcUhkzZgy6deuGjh07PtLzrSagRL7xpazNlClTULFiRfj4+ODKlSvYsmWL0iWZ5OLFi1i4cCFGjRqldCk2ITk5GTk5OahevbrR/OrVq+P69esKVWUfhBCYOHEinn76aTz22GNKl1OikydPwsPDAy4uLhg1ahQ2bdqExo0bK11WidauXYtjx44hOjr6kdeheEBFRkZCo9EUezty5AgWLlyI9PR0TJ06VemSAZS+bp13330XcXFx+OWXX+Do6IhBgwY90giTlq4bkD3RP//88+jduzdGjBhh8ZoftW5roNFojKaFEAXmUfkaO3YsTpw4gTX/3979u6QWBXAA/5pgP0AiodEyDGrOIIKGLrY0lVtLXGoqQoyWoKG/oLWhlusQvaBBoyVy0BoinC4FTZFwM5ckgloKLucNjy5PUrn6qnN8fD/g4L0iX69Xv8o5en79kh3FlaGhIZimicvLSywvL0PXddzc3MiOVdf9/T0SiQT29vbQ0dHR9P1I/y++crmMcrlc9zahUAhzc3M4Pj6uePHatg2v11tzfanv5DZ3tSenWCwiGAzi4uLix7+qN5q7VCpB0zSMjY0hmUw2tabLV2jmeCeTSayuruL5+fm74zXs/f0dXV1dODw8RCwWc7YnEgmYpomzszOJ6dzxeDxIpVKYnZ2VHcW1eDyOdDqN8/NzDAwMyI7TlKmpKYTDYezs7MiOUlM6nUYsFoPX63W22bYNj8eDtrY2vL29VeyrRfpf4rbq+lJuc1fz8Zng79WDf0ojuR8eHqBpGiKRCAzDkFZOwL8dbxX5fD5EIhFkMpmKgspkMpiZmZGY7P8khEA8HkcqlUIul2vZcgL+PBYZ7x2NiEajuL6+rti2sLCA4eFhrK+vuyonQIGCcqtV15fK5/PI5/OYmJhAT08P7u7usLm5iXA4rPRAZ6lUwuTkJPr6+rC1tYXHx0dnXyPLpchgWRaenp5gWRZs23Z+Kzc4OOicNypYW1vD/Pw8RkdHMT4+jt3dXViWpfQ43+vrK25vb53rhUIBpmkiEAh8eo2qZGVlBfv7+zg6OoLf73fG+bq7u9HZ2Sk5XW0bGxuYnp5GMBjEy8sLDg4OkMvlcHJyIjtaXX6//9P43scYfEPjfl87qfDnFAqFlphmfnV1JTRNE4FAQLS3t4tQKCSWlpZEsViUHa0uwzAEgKoX1em6XjV3NpuVHe2T7e1t0d/fL3w+nxgZGVF+2nM2m616bHVdlx2trlrnsmEYsqPVtbi46Jwfvb29IhqNitPTU9mxmtLMNHPpY1BERETVSJ/FR0REVA0LioiIlMSCIiIiJbGgiIhISSwoIiJSEguKiIiUxIIiIiIlsaCIiEhJLCgiIlISC4qIiJTEgiIiIiX9BhaRrtnKnMcRAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'inputs and outputs of ill-conditioned B')" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Θ = linspace(0,2π,200)\n", - "V = [[cos(θ),sin(θ)] for θ in Θ]\n", - "U = [B*v for v in V]\n", - "Vx, Vy = first.(V), last.(V)\n", - "Ux, Uy = first.(U), last.(U)\n", - "plot(Vx,Vy, \"r--\")\n", - "plot(Ux,Uy, \"b--\")\n", - "\n", - "axis(\"square\")\n", - "xlim(-4,4)\n", - "ylim(-4,4)\n", - "legend([\"input circle\", \"output ellipse\"])\n", - "title(\"inputs and outputs of ill-conditioned B\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, $B$ is *almost* the rank-1 matrix $\\tilde{B} = \\sigma_1 u_1 v_1^T$:" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.997999 2.001 \n", - " 1.00199 2.00901" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U,σ,V = svd(B)\n", - "B̃ = σ[1] * U[:,1] * V[:,1]' # \"best\" rank-1 approximation to B" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " -0.00200098 0.000997992\n", - " 0.00199301 -0.000994014" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B̃ - B" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What happens if we blindly try to solve $Bx = b$ without knowing this fact?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Sine-series.ipynb b/lectures/Sine-series.ipynb deleted file mode 100644 index a13a2aec..00000000 --- a/lectures/Sine-series.ipynb +++ /dev/null @@ -1,775 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fourier sine series" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Consider the sine functions $\\sin(n\\pi x)$ for $n=1,2,\\ldots$ on the interval $x \\in [0,1]$, with the \"usual\" function inner product $f(x) \\cdot g(x) = \\int_0^1 f(x) g(x) \\, dx$. It is a remarkable fact that the sine functions are **orthogonal** under this dot product:\n", - "\n", - "$$\n", - "\\sin(m\\pi x) \\cdot \\sin(n\\pi x) = \\int_0^1 \\sin(m\\pi x) \\sin(n\\pi x) \\, dx = \\begin{cases} 0 & m \\ne n \\\\ \\frac{1}{2} & m = n \\end{cases} .\n", - "$$\n", - "\n", - "This can be verified by simply doing the integral, a first-year calculus exercise. (The identity $\\sin A \\sin B = \\frac{1}{2}[\\cos (A-B) - \\cos(A+B)]$ is useful here.)\n", - "\n", - "Let's plot a few of these functions:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4U2X7wPFvkibpbumg0NKNDNl7772HbGUIiiiiiPBD5FVE31cUFUEcyB4OkI3sWWbZe48WWqCDlu6Z8fz+CERLKd108HyuKxfl5Dnn3CdNk/s8UyGEEEiSJEmSJJVSyqIOQJIkSZIkqTDJZEeSJEmSpFJNJjuSJEmSJJVqMtmRJEmSJKlUk8mOJEmSJEmlmkx2JEmSJEkq1WSyI0mSJElSqSaTHUmSJEmSSjWZ7EiSJEmSVKrJZEeSisCRI0f47LPPiI2NzfScj48P3bt3L4Koilbr1q1p3bp1gRxLoVDw2WefFcixcmvPnj3Ur18fGxsbFAoFGzZsKJI4AC5fvsxnn33G7du3Mz03YsQIfHx8nntMklQUZLIjSUXgyJEjTJ8+/anJjpR/gYGBvPHGG8/9vEIIBgwYgFqtZtOmTQQGBtKqVavnHsdjly9fZvr06U9Ndj755BPWr1///IOSpCJgUdQBSNKLJCUlBUtLy6IOo9Rr3LhxkZz3/v37PHz4kD59+tCuXbsiiSGn/P39izoESXpuZM2OJOXBoUOHaNeuHXZ2dlhbW9O0aVO2bNmSoczSpUtRKBTs3LmTkSNH4urqirW1NVOmTGHSpEkA+Pr6olAoUCgUBAQEZNh/+/bt1K1bFysrK6pUqcLixYszxXHx4kV69epFmTJlsLS0pHbt2ixbtixTuUuXLtGxY0esra1xdXVl7NixbNmy5annXbx4MbVq1cLS0hInJyf69OnDlStXMpQZMWIEtra23Lx5k65du2Jra4unpycffvghaWlpGcpOnz6dRo0a4eTkhL29PXXr1mXRokXkdQ3ivXv30rp1a5ydnbGyssLLy4tXXnmF5ORkc5knm7Ee/y727dvH22+/jYuLC87OzvTt25f79+9nOseqVato0qQJNjY22Nra0qlTJ86cOfPMuD777DMqVKgAwOTJk1EoFOZmoqyajD777DMUCkWGbQqFgnfffZcVK1ZQtWpVrK2tqVWrFps3b860/9WrVxk8eDBubm5otVq8vLwYNmwYaWlpLF26lP79+wPQpk0b8/ts6dKlWcaUmprKlClT8PX1RaPR4OHhwdixYzPVQD5uas3uPZqcnMzEiRPx9fU1v5/q16/Pn3/++czXUpIKnJAkKVcCAgKEWq0W9erVE6tWrRIbNmwQHTt2FAqFQqxcudJcbsmSJQIQHh4eYvTo0WLbtm1izZo14vbt22LcuHECEOvWrROBgYEiMDBQxMXFCSGE8Pb2FhUqVBAvv/yyWL58udixY4fo37+/AMT+/fvNx7969aqws7MT/v7+Yvny5WLLli1i8ODBAhBff/21udz9+/eFs7Oz8PLyEkuXLhVbt24VQ4cOFT4+PgIQ+/btM5f98ssvBSAGDx4stmzZIpYvXy78/PyEg4ODuH79urnc8OHDhUajEVWrVhXffvut2L17t/j000+FQqEQ06dPz/B6jRgxQixatEjs2rVL7Nq1S3zxxRfCysoqU7lWrVqJVq1aPfO1Dw4OFpaWlqJDhw5iw4YNIiAgQPz+++9i6NChIiYmxlwOENOmTcv0u/Dz8xPjxo0TO3bsEAsXLhRlypQRbdq0yXCO//3vf0KhUIiRI0eKzZs3i3Xr1okmTZoIGxsbcenSpSxjCw0NFevWrROAGDdunAgMDBSnT582v17e3t6Z9pk2bZp48mMYED4+PqJhw4bir7/+Elu3bhWtW7cWFhYW4tatW+ZyZ8+eFba2tsLHx0fMmzdP7NmzR/z2229iwIABIj4+XkRGRpp/nz/99JP5fRYZGfnUmIxGo+jUqZOwsLAQn3zyidi5c6f49ttvhY2NjahTp45ITU01l83pe/Stt94S1tbWYtasWWLfvn1i8+bN4quvvhJz587N8nWUpMIgkx1JyqXGjRuLsmXLioSEBPM2vV4vqlevLipUqCCMRqMQ4p8v2GHDhmU6xjfffCMAERwcnOk5b29vYWlpKe7cuWPelpKSIpycnMRbb71l3jZo0CCh1WpFSEhIhv27dOkirK2tRWxsrBBCiEmTJgmFQpHpi7pTp04Zkp2YmBhhZWUlunbtmqFcSEiI0Gq1YsiQIeZtw4cPF4D466+/MpTt2rWrqFy5cqZresxgMAidTic+//xz4ezsbH6thMhZsrNmzRoBiLNnzz6zXFbJzjvvvJOh3MyZMwUgwsLCzNdqYWEhxo0bl6FcQkKCKFeunBgwYMAzzxscHCwA8c0332TYnttkx83NTcTHx5u3hYeHC6VSKWbMmGHe1rZtW+Ho6GhOXp5m9erVmRLarGLavn27AMTMmTMzlFu1apUAxPz5883bcvoerV69uujdu3eW8UnS8yKbsSQpF5KSkjh27Bj9+vXD1tbWvF2lUjF06FDu3r3LtWvXMuzzyiuv5Po8tWvXxsvLy/x/S0tLKlWqxJ07d8zb9u7dS7t27fD09Myw74gRI0hOTiYwMBCA/fv3U716dV5++eUM5QYPHpzh/4GBgaSkpDBixIgM2z09PWnbti179uzJsF2hUNCjR48M22rWrJkhxsdxtm/fHgcHB1QqFWq1mk8//ZTo6GgiIyNz8Gr8o3bt2mg0GkaPHs2yZcsICgrK1f49e/bMFC9gjnnHjh3o9XqGDRuGXq83PywtLWnVqlWmJr/C0qZNG+zs7Mz/d3Nzo2zZsuY4k5OT2b9/PwMGDMDV1bVAzrl3716ATL///v37Y2Njk+n3n5P3aMOGDdm2bRsfffQRAQEBpKSkFEiskpRbMtmRpFyIiYlBCEH58uUzPefu7g5AdHR0hu1PK5sdZ2fnTNu0Wm2GL4vo6OgcxREdHY2bm1umck9ue1w+q2M+eV3W1taZOltrtVpSU1PN/z9+/DgdO3YEYMGCBRw+fJgTJ04wdepUgFx/+fn7+7N7927Kli3L2LFj8ff3x9/fnzlz5uRo/ydfV61WmyGOiIgIABo0aIBarc7wWLVqFVFRUbmKN6+y+/3HxMRgMBjMfYQKQnR0NBYWFpmSJ4VCQbly5TL9/nPyHv3hhx+YPHkyGzZsoE2bNjg5OdG7d29u3LhRYHFLUk7I0ViSlAtlypRBqVQSFhaW6bnHHV1dXFwybH+yA2pBcXZ2zlEczs7O5i/xfwsPD890PCDLYz55XTmxcuVK1Go1mzdvzpAY5WfumRYtWtCiRQsMBgMnT55k7ty5jB8/Hjc3NwYNGpTn48I/r9maNWvw9vbO17H+zdLSMlPHbSDPyZOTkxMqlYq7d+/mNzQzZ2dn9Ho9Dx48yJDwCCEIDw+nQYMGuT6mjY0N06dPZ/r06URERJhreXr06MHVq1cLLHZJyo6s2ZGkXLCxsaFRo0asW7cuwx2s0Wjkt99+o0KFClSqVCnb4zxZo5AX7dq1Y+/evZlGEy1fvhxra2vz8OtWrVpx8eJFLl++nKHcypUrM/y/SZMmWFlZ8dtvv2XYfvfuXXOTWW4pFAosLCxQqVTmbSkpKaxYsSLXx3qSSqWiUaNG/PTTTwCcPn0638fs1KkTFhYW3Lp1i/r16z/1kRc+Pj5ERkZmSDrT09PZsWNHno5nZWVFq1atWL169TMTpty8zx7/fp/8/a9du5akpKR8D6V3c3NjxIgRDB48mGvXrmUYPSdJhU3W7EhSLs2YMYMOHTrQpk0bJk6ciEaj4eeff+bixYv8+eefOarJqVGjBgBz5sxh+PDhqNVqKleunKGfRnamTZvG5s2badOmDZ9++ilOTk78/vvvbNmyhZkzZ+Lg4ADA+PHjWbx4MV26dOHzzz/Hzc2NP/74w3xnrVSa7nkcHR355JNP+Pjjjxk2bBiDBw8mOjqa6dOnY2lpybRp03L7UtGtWzdmzZrFkCFDGD16NNHR0Xz77bfmL+HcmjdvHnv37qVbt254eXmRmppqHu7cvn37PB3z33x8fPj888+ZOnUqQUFBdO7cmTJlyhAREcHx48fNNRW5NXDgQD799FMGDRrEpEmTSE1N5YcffsBgMOQ51lmzZtG8eXMaNWrERx99RMWKFYmIiGDTpk38+uuv2NnZUb16dQDmz5+PnZ0dlpaW+Pr6PrUJqkOHDnTq1InJkycTHx9Ps2bNOH/+PNOmTaNOnToMHTo01zE2atSI7t27U7NmTcqUKcOVK1dYsWIFTZo0wdraOs/XLkm5VtQ9pCWpJDp48KBo27atsLGxEVZWVqJx48bi77//zlDm8QigEydOPPUYU6ZMEe7u7kKpVGYYMePt7S26deuWqfzTRitduHBB9OjRQzg4OAiNRiNq1aollixZkmnfixcvivbt2wtLS0vh5OQkRo0aJZYtWyYAce7cuQxlFy5cKGrWrCk0Go1wcHAQvXr1yjSSa/jw4cLGxibTeZ42umjx4sWicuXKQqvVCj8/PzFjxgyxaNGiTKPRcjIaKzAwUPTp00d4e3sLrVYrnJ2dRatWrcSmTZsylCOL0VhP/i727dv31NFKGzZsEG3atBH29vZCq9UKb29v0a9fP7F79+5nxpfVaCwhhNi6dauoXbu2sLKyEn5+fuLHH3/McjTW2LFjM+3v7e0thg8fnmHb5cuXRf/+/YWzs7PQaDTCy8tLjBgxIsMw8dmzZwtfX1+hUqkEYH5/PG2EWEpKipg8ebLw9vYWarValC9fXrz99tsZhvU/jiUn79GPPvpI1K9fX5QpU8b8+//ggw9EVFTU014+SSo0CiHyOLOXJEkl2ujRo/nzzz+Jjo5Go9EUdTiSJEmFRjZjSdIL4PPPP8fd3R0/Pz8SExPZvHkzCxcu5D//+Y9MdCRJKvVksiNJLwC1Ws0333zD3bt30ev1vPTSS8yaNYv333+/qEOTJEkqdLIZS5IkSZKkUk0OPZckSZIkqVSTyY4kSZIkSaWaTHYkSZIkSSrVXsgOykajkfv372NnZ1doU/lLkiRJklSwhBAkJCTg7u5unhA1J17IZOf+/fuZVoqWJEmSJKlkCA0NzdVCuC9ksvN4Sv7Q0FDs7e2LOBpJkiRJknIiPj4eT0/PXC2tAy9osvO46cre3l4mO5IkSZJUwuS2C4rsoCxJkiRJUqkmkx1JkiRJkko1mexIkiRJklSqyWRHkiRJkqRSTSY7kiRJkiSVajLZkSRJkiSpVJPJjiRJkiRJpZpMdiRJkiRJKtVksiNJkiRJUqkmkx1JkiRJkkq1Qk12Dhw4QI8ePXB3d0ehULBhw4Zs99m/fz/16tXD0tISPz8/5s2bl6nMzz//jK+vL5aWltSrV4+DBw8WRviSJEmSJJUChZrsJCUlUatWLX788ccclQ8ODqZr1660aNGCM2fO8PHHH/Pee++xdu1ac5lVq1Yxfvx4pk6dypkzZ2jRogVdunQhJCSksC5DkiRJkqQSTCGEEM/lRAoF69evp3fv3lmWmTx5Mps2beLKlSvmbWPGjOHcuXMEBgYC0KhRI+rWrcsvv/xiLlO1alV69+7NjBkzchRLfHw8Dg4OxMXFyYVAc8mYnIwxNRVVmTK5Xojt39IMacSmxmKltsLGwgaVUlWAUeaBEJAaC/o0MOhApQFLe7CwhHxcp1S4hBCkG4yk602PNL0RASgVoFQoUCoUqJQKrDUqtBbKfL1niwtDYhIKBSgsLVGoivjv5gVhFEZS9Ckkpidiq7HFRm1T1CG9sPL6/V2sVj0PDAykY8eOGbZ16tSJRYsWodPpEEJw6tQpPvroowxlOnbsyJEjR7I8blpaGmlpaeb/x8fHF2zgpZhITydhzx5iV68m5dJljHFxAKjKlMGyalUcevXEvls3FBbPfisFxQWxP3Q/R+4f4drDa8SkxWR43tfBl5ouNWni3oR2Xu2wtLAspAsSEHMbQgLh/ll4cBWib0FiBBh1mctbWIGjF5TxgXI1wL0OeDUGG5fCiU9CbzByPzaV0JhkIuJTiYhPIyI+lciEVB4mpROfoicuRUd8qo7END05vV1TKsBGY4GVRoW9lRonGw3ONhrTv7Za3B0s8ShjhYejFe6OVliqi08ikXr1KrFr15F89ChpN26Yt2t8fbHr1BGH7t3RVqxYhBGWLgajgcCwQPaH7ud81HmuP7yOXujNz9up7fB18KWJexNaVGhBTZeapSKRLs2KVbITHh6Om5tbhm1ubm7o9XqioqIQQmAwGJ5aJjw8PMvjzpgxg+nTpxdKzKVZwt69hE/7DP2DB5meM8TEkHTkCElHjvBg7o+4jh+PQ/duGcoIITh07xDLLy/naNjRTMdQKpQYhRGA4LhgguOC2XhrI3YaO3r49WBUjVGUtS6b/wsxGuDOYbiyGa5thbjQrMsqlKC0MNXuIECfAlHXTI8bOx4XgvK1oFJnqP4KuFbKf4wvoIRUHdcjErgWnsj1iASCopIIiU7ibkwKemPeKpzVKgUKhQIhBEYBRiHMyZBRQEKanoQ0PZEJac8+EFDWTou/qy3+ZW1M/7raUrW8Pa522jzFlhe68HAezJ5D3MaNPC2rSw8OJnrer0T/Op8ygwfj+sF4VHZ2zy2+0iZZl8xvV35j9fXVhCdl/k55/JmVoEvgfNR5zked59fzv1K5TGWGvjyUrr5dUavURRC5lJ1ilewAmbLjx61sjz/AsirzrKx6ypQpTJgwwfz/+Ph4PD09CyrkUseYnEzEjK+IXb0aAAtXVxz798OuUyfUHh4oLCxIu3GTpMOHebh8Obq7d7k/cSLJJ07g9vEUlFotQbFBfHnsS46FHwNMHxJN3JvQ3L059dzq4W7rjr3GHp1RR1xaHJejL3M68jTbg7dzP+k+f1z9g/U31zO82nBGVh+JlYVV7i8k/j6cWgpn/8iY4CjVphoaz4ZQtiq4VAK78mDjCupHNUpGI+iSIOkBxNyB6JsQdg7unYLIyxB21vTY/5Up8ak/Cmr0B411Pl/90ikhVceFe3GcC43jbGgMF+/Fcy82JcvyGgslnmWsKO9gRVl7LW72lpS10+Jsq8Xe0gIHKzX2VmrsLC3QWpiaqDQqJUpl5s8Bg1GQojOQnKYnKd1AUpqe+BQd0UnpRCem8TApnQeJ6YTFpXAvJoV7sSkkpxuITEgjMiGNwKDoDMcra6eluocD1dztqe7hQD3vMrjYFnwClHT0GHfff99cm2rXuTP2Xbpg3aA+SisrjElJJAUeJX7LFhIDAoj54w8Sdu3CY85srOvWLfB4SjOjMLLuxjp+OvsTUSlRANhr7Oni24X6bvWp7lIdFysXtCotSbokIpIjOP/gPIfvH+bA3QNci7nGfw7/h8UXFzO10VQalm9YxFckPalY9dlp2bIlderUYc6cOeZt69evZ8CAASQnJyOEwNramtWrV9OnTx9zmffff5+zZ8+yf//+HMUi++xkzZCYROjo0aScPg0KBU6vv47r+++h1D79w9yYkkL0ggVE/TIPhMCyZg32jW/O3FtL0Bv1aFVaBlYeyJCqQ/Cw9cj2/EZh5Oj9o/x07ifOPzgPgJ+DH1+3/JoqTlVydhGRV+HwHLiw+p+mKUtHqNoDqnQH35b5S0oSwuHmHri8EW7tAaP+n3M0HA2N3wZrp7wfvxR4kJDGseBojgU95HjwQ65HJjy1ucnNXkvlcvZUKWeHv6sNXk42+LhY42Zn+dTE5XkQQhCXouN2dDK3IhO59cD0uBGZSHBU0lOvw8fZmnreTtT3KUNjP2d8nK3z1awRu2YNYZ9NB70ey+rVKffpJ1jVrJll+aSjRwmf9hnpd+6g0GrxmDMbu9at83z+F0lkciRTD0011z5XsK3AO7XfoaNPR7Sq7JPYuLQ41lxfw/LLy3mY+hCA3hV783Gjj/N2kyY9U16/v4tVsjN58mT+/vtvLl++bN729ttvc/bs2QwdlOvVq8fPP/9sLvPyyy/Tq1cv2UE5nwyJiYS+8SYpZ8+itLenwg9zsGncOEf7Jh48xN2JHyLi4rnuDl8MVtHYrzUfNfyICnYVch2LEIKdd3by9fGveZDyALVSzf81+D8GVRmU9U4xdyDgKzj3J/Dobe3dDOqPNCU56kLoB5QUDef+gOMLIPaOaZvGDpqMhWbvgebF6MiYkm4gMCiK/dcecOhmFLceJGUq4+FoRW1PR2p5OlDDw5Gq5e1wtNYUQbR5l5Sm52p4PJfux3PxXhxnQ2O5HpGYqZyHoxVN/Z1p/pILTf1dctX0FbN6NeGffAqAfdeulP/yfygts3/vGlNSuDf+AxL37weVCo9vZmLftWvOL+4FdOTeESYfnExsWiyWKkvG1RnH4CqD89QUFZcWx9wzc/nr2l8IBBUdK/J96+/xcfAp+MBfYMUy2UlMTOTmzZsA1KlTh1mzZtGmTRucnJzw8vJiypQp3Lt3j+XLlwOmoefVq1fnrbfe4s033yQwMJAxY8bw559/8sorrwCmoedDhw5l3rx5NGnShPnz57NgwQIuXbqEt7d3juKSyU5mQqcjZNQbJB8/jtLBAa9Fi7CqXi3H+4cmhDJtxeu8Pf8etqmQVMufusvXZlkjlFMxqTF8euRTAkIDABj28jA+rP8hSsW/Zk3QpcDBWXB4NhjSTduqdIfmE6BCvXydP8eMBri6GfbPhIiLpm125aH9Z1BzYKkc0RX6MJmdlyMIuBbJseCHpOuN5ucUCqhSzp7Gfk408nWmnneZ59rX5XmKS9ZxOjSGU7djOHH7IadDYtAZMn6s1vJ0pEPVsrSr6kaVcnZZ1vok7t9P6DtjwWDAaeRIyk6amKsaIqHTEfaf/xC3cRMKtRqvZcuwrlsnX9dXWq2/sZ7pgdMxCANVnaryVcuv8HPwy/dxT4SfYNL+SUSnRmOrtmVu27nUL1e/ACKWoJgmOwEBAbRp0ybT9uHDh7N06VJGjBjB7du3CQgIMD+3f/9+PvjgAy5duoS7uzuTJ09mzJgxGfb/+eefmTlzJmFhYVSvXp3vv/+eli1b5jgumexkFvHV1zxcuhSljQ1ey5dhVS3nic6NmBu8testHqQ8oEmMCx8sj4XkVBwHD6L8tGn5jk0IwaKLi5hz2tS82dmnM1+2+BK1Ug239sLf70Pso3mWfFuaEgyP55TkPMlohCsbYde0f2p6fFtBj9nglP8P0qIkhOBGZCLbL4az/WI4l8Myjmr0cLSidWVXWlZypbGvMw7WL2ZHzeR0PSdux3D4ZhQHb0Rx5SmvU6dq5ehWszx1PB3NzXWpV65w+9XXEMnJOPTqRfmvZuSpKUwYjdx7/30Sdu1G5eyM7+q/ULu7F8i1lRa/nvuVH8+a5n/r7ted6U2no1EVXC3jg+QHfLj/Q85EnkGr0jKr9SxaVsj5d5SUtWKZ7BRXMtnJKH7rVu5N+BAAj7k/YN+hQ473vR5znZE7RhKXFkdFx4rM7zAfq1NXCX1ztOl4s7/HvnPnAolzc9BmPjn8CXqjni5e7ZmRYER1eqnpSXsP6DwDqvYsHrUoulQ4+jPs/xr0qaYh7B2/gAZvFI/4ciEkOpmNZ++x8dx9bkb+02SjVEAjX2faVS1L68qu+LvayuG3TxERn8qeK5HsuRLBoZtRpP2rBszdwZKuNcrTvbITdu+NJD04GJumTfCcNw+FJu9fvsakJG6/+hppV6+ifbkqvitX5ut4pcnCCwvNN05v1niTcXXGFcr7NlWfyqT9kwi4G4CFwoJvW39LO692BX6eF41MdnJBJjv/SL97j6CePRHJyTi/+SZlP5yQ/U6P3E24y7Btw3iQ8oAaLjX4pf0vOGgdAIic9T3R8+ejtLXFd/06NAU0+u3A3QO8v/c99MJAz4REvoh6iLLhaGg3DbS2BXKOAhV9CzaPh+ADpv+/1BF6/QS2BTCkvhDFJevYdO4e68/c43RIrHm7RqWk+UsudK5WjnZVy+JcCKOQSrOUdAMHbzxg64Uwdl2OICndAMA759bRI/gIaQ5OuK5eg4dX+XyfS3f/PsGv9MMQE4PLO2/j+t57+T5mSbfi8gpmnpgJwAf1PmBk9ZGFej6dUccnhz9hS9AWNEoN8zrMo0G5BoV6ztJOJju5IJMdEyEEoW+OJunQIazq18N72bIcz8ganRLNsG3DCEkIoaJjRZZ2XmpOdACEXs+docNIOXPGdOwVK/J/9yQEnFjI7gPTmejiiEGh4E3PTrzX9tv8HbewGY1wfD7s+hQMaaa+PAOWm4a+FyNCCE7dieGP4yFsOR9mroFQKqCpvws9a7vTuXo57C1fzOapgpaqM7D/+gPOr91K9z++AeDjpqM561aJZv4uDGjgSedq5dBY5H1Vn/jt27k3/gNQqfBZtSpX/fBKm+23tzNp/yQA3qn1Dm/Xfvu5nFdv1PNhwIfsDd2LjdqGJZ2WUNW56nM5d2kkk51ckMmOSdymTdz/v8koNBp8N25A6+ubo/10Bh1v7HyD05Gn8bD1YHmX5U+d/C/97j2CevRApKRQfsYMHPtkPRIvW/o02DIBzvwGwMaKTfiP4R4AXzb/kh7+PfJ+7Ocl4hKsHgFR101z/XT5ytSsVcRik9NZe/oefx4PydBMVaWcHf3qVaBnLXfK2hfSjNYvOGNyMre6dkMfHk5U577Mrdqd48EPzc+72GoZ3NCTwQ29cHfM2zDmexMmEL91G9qXKuKzdi3KF7A562LURUZsH0GaIY3Xqr7G/zX4v+fa5JpmSGPMrjGcjDiJm7UbK7uvxMVKzsKeFzLZyQWZ7ID+4UOCunbDEBuL6wcf4PLW6Bzv+9+j/2XVtVXYqm35o9sf+DpknSRFLVjAg+9moSpTBv9tW1E5OuY+2MRIWPkq3D1umuG4/XRoOo45Z35g4YWFqJVqFndaTO2ytXN/7OctLQE2jjXN0QOmeXk6zQDV85/f8+K9OBYdCmbLhTDzSCortYoetcozuKEXtT0dZR+cQhb5/Wyif/0VtYcHfls2o7S0JCQ6mTWn77LyeIh5pmeVUkH7qmUZ2tiHZhWdc/V70cfEENS9B4boaMpOmojzqFGFdTnFUmRyJIM2D+JBygNmAOoXAAAgAElEQVRaeLRgbtu5RbIWX0J6AkO2DOF2/G3qudVjQccFpkEWUq7IZCcXZLID4Z9/Qcwff6CtXBnfNatRqHP2R7f+xno+PfIpChTMbTuXVp6tnlle6HQE9+1L2o2bOA4YQPnPc7lsR9RN+P0V03pWlg7QbwlUNHXyMwojEwImsCdkD+VsyrGmx5oMTWnFlhBw6HvY8+i1qNgB+i99Ln2OjEZBwPVIFhwIzjAz8Mvl7RncyItetd1lM9Vzkn7nDkHdeyB0Oir8OBe79u0zPK8zGNl5KYIVR29zNOif2h4/VxtGNvOlX70KOV6/K3bdesI+/hilrS3+O7Zj4excoNdSXBmMBt7Y+QYnI05S0bEiK7qswFZTdH37guKCGLJlCEm6JIZUGcKURlOKLJaSSiY7ufCiJzvpt29zq3sP0OvxWroUm8aNcrRfUGwQAzcPJNWQytjaYxlTa0z2OwHJJ09y57WhoFTit2ljzhcsvHsKfu8HKQ/B0RteWwcuGfdN0iUxcPNA7sTfobVna35o80PJqY24vBHWvWVaf8ujPry6utBmXk7VGdhw5h4LDgaZJ/xTKRV0r1me15v5UquCQ8l53UqJ0LffIXHfPmyaNcNz4YJnvv7XIxL47egd1p2+R2KaacZuF1sNrzfz5bXG3jhYPTtBFUYjt/v1J/XyZRwHDaT8Z58V5KUUWz+f/Zlfzv2CtYU1f/X4C2/7nM3FVpgCQgMYt3ccAHPazKGtV9sijqhkkclOLrzoyc7d98eTsGMHtq1a4fnrvBztk25I59Wtr3L14VWalG/CvA7zMk7sl905x71Hwq5d2HXoQIW5P2S/Q/BB+HMQpCea1rEa8leWI5iuPrzKkC1D0Bl1fNTwI16t+mqO4ypyd08+SuhiwKUyDNsA9gU3J0pCqo5lR26z9MhtohJNEy7aai0Y3NCTEc188chjPxApf5JPneLOq6+BhYXpBsAvZ3MwJabpWXMylAUHg81ri9lqLRjSyItRzX1xe0bfquQTJ7gzdBgolfhuWI9lpdK9gO3xsOO8sfMNBIKvWnxFN79u2e/0nHx38juWXlqKo9aRtT3XFsyCxy+IvH5/572bv1QipZw9S8KOHaBU4pqLYeZzz8zl6sOrOGod+W/z/+Yq0QFwff89UChI2LWLlAsXnl34xm5TApCeaJqQb/jmZw7VruJUhUkNTKMsZp2cRVBcUK5iK1IV6sPr203zBEVdg6XdTWtv5VNCqo65e27Q/Ot9fLvzOlGJ6Xg4WvGfblUJnNKWqd1elolOEXrww1wAHPv2zXGiA6bEZkQzXwImteb7gbWo7GZHYpqe+QeCaPH1Pj5ae56Q6OSn7mvdoAF2HTqA0UjU3LkFch3FVWJ6IlMPT0Ug6PtS32KV6AC8V+c9qjpVJTYtlqmHpmIUxux3kvJFJjsvmMcfsg69e+f4zu5s5FmWXVoGwOdNP8/TXYi2YkUcevY0xfD991kXDAqAlUNME/FV6mKq0clBX5ZBlQfRzKMZ6cZ0Pjn8CQajIdcxFpmyVWDkdnDwgoe3YFkPU6fsPPh3kvPdruvEpejwd7Vh9sDaBExqzRst/LCTfXKKVNLRYyQfOwZqNS5j3srTMdQqJX3qVGD7+BYsHlGfBj5lSDcYWXkilLbfBTB1/QXC4jKvKv/PTcduUq9dz++lFFvfnfqO8KRwPGw9mNxgclGHk4lapearll9hqbLkaNhR1lxfU9QhlXoy2XmBpFy4QNKRI6BS4fLOOznaJ92QzrQj0xAIevn3oo1X5uU/cspl3LugVpN0JJDkU6cyFwg5Bn8OMc1FU6U7DFyR48U7FQoFnzX5DFu1LecfnGfF5RV5jrNIOHrB8E2PaniumxKepKgc756QquPHvZmTnDmDarPzg1b0ruOBWiX/3IuaEIIHP5puOMr075fvZRwUCgVtq7ixekxT1oxpQouXXNAbBb8fC6HVNwF8sfkyUYlp5vLaihWx69wJgKh5v+Tr3MXVkftHzMnDF82+wFptXcQRPZ2fgx/j640HYNapWYQn5b9GV8qa/PR7gUTPnw+AQ/fuaCp45Gif+efnExQXhLOls7mpKK80FSrg+GjV++iFizI+ef8s/N4fdEng3xb6LYZcrjxczqYc/9fg/wBTs1tIfEi+4n3unHxh+N+mSQcfXIVlPU2rqj+DzmBkeeBtWn8TwLc7Myc5vWp7oFLKjsfFRfKx46ScPIVCo8F5dM6ne8iJ+j5OrBjViFWjG9PQx4l0vZFFh4JpOXMfM7dfJS5ZB4DLGNNkegnbd5B261aBxlDUknXJTD9iGuU4uMrgYj9b8aDKg6jpWpMkXRL/O/o/XsAutM+NTHZeEGk3b5KwazcoFDiPfjNH+9yKvcWiC6akZEqjKQUyrNvp9ddBoSBx3z7Sbt40bYy8Cr/1hbQ48GoKA38Hi7wtQ9C7Ym8al29MujGdGcdnlLwPD2f/R32U3CDyEqzobZqb5wlCCLZfDKPj9wf4dOMlopPS8XORSU5xF71kMQAOr/RFXa5coZyjkZ8zq95qzPKRDalVwYHkdAM/B9yi+cy9LDgQhNK/InYd2oMQRM37tVBiKCoLLizgftJ9ytuUZ3zd8UUdTrZUShXTm0zHQmlBwN0AdtzZUdQhlVoy2XlBRC9YCIBd+3Zo/f2zLS+EYMaxGeiFntaereno3bFA4tD6+WLX3jRPTvTiJRBzB5b3guToR6OuVoEm79XOCoWCqY2molaqOXTvEHtD9hZI3M+VS0VTwmPtAuHnYfXrYNCbnz51J4b+8wIZ89tpgqOScLHV8EXv6uz4oKVMcoqxtFu3SNp/wHTDMXx4oZ5LoVDQspIrG8Y2Y/7QelQpZ0dCqp7/bb1Ch+/3c719PwDit21DFxFRqLE8L8FxwSy9tBSAyQ0nF9vmqydVLFORN2uYbkC/PfEtybqndzCX8kcmOy8AXWQkcVu2AOS46nx3yG6OhR9Do9QwucHkAp2D5fEMrnGbNqGb3w8Sw6Hsy6Z5dCzzPxWAj4MPI6qNAOCrE1+VzA8P10qmztkWVnBzF2ydSGh0Eu/8fopXfjnCyTsxWKqVjGtbkYBJbRja2Fv2ySnmHi41dfK3bdsWjY/PczmnQqGgY7VybHmvBTNfqYmrnZY70cmMDEzkjkcl0OuJ+ePP5xJLYRJC8OWxL9Eb9bTwaEFbz5I1d83I6iPxsPUgIjmChRcWFnU4pZL8dHwBxP61GvR6rOrUwapGjWzLp+hT+OaEaWHC16u/TgW7CgUaj1Xt2ljXr2f6oD0aZuqj8traAp1Q782ab+Ju4054UjiLLy4usOM+VxXqQb9FCBRwagkrZ3/I1gvhKBQwoH4FAia24cOOlbHVPv+lJqTc0UdHE7fRtESI8+sjnvv5VUoFAxp4sm9ia95tUxGthZLlHk0AuLfiDyIiY7M5QvG2N3QvR8OOolFqmNJwSombINPSwpJJ9U19IpdeWkpofGgRR1T6yGSnlBPp6cSsWglAmVdzNtne0ktLCUsKo7xNeUbVKJx1dMpUM/WliQ22wfjKigKdSA/AysKKiQ0mArDs0jIikkpmVf1uY33mqEcCMEn1JxPKX2Db+y2Y2a8W5Rzk4pwlRczKlYj0dCxr1MCqXr0ii8NWa8HETpXZO7E1rp06EGFVBsvkBP43YTaLDgWjN5S8+V50Bh3fnzJNZzG82nA87T2LOKK8aevVliblm6Az6vjm5DdFHU6pI5OdUi5+1y4MD6JQubpg37FDtuWjUqJYcnEJABPqTcDKohAmnjs2H7uUzVhYGTCkKkm4mLc5ZbLT3qs9dcrWIdWQyo9nfyyUcxSWO9FJjFx6gjeWn2R2QjtWKk2Too2L/44q6VeKODopN4ReT+xq01Bop2FDi0Wtg4ejFXNerYfTUNMNUOfr+/ni70v0/PEwZ0Jiiji63Pnr+l/cib+Dk6VTod2cPQ8KhYKPGn6EUqFkX+g+zkSeKeqQShWZ7JRyMb//AUCZAQNRaDTZlp93bh4p+hSqO1enk0+ngg/oxi7YPhmFEhw7NDTFuLJw+gwoFAom1jfV7my8uZGrD68WynkKUqrOwKxd1+nw/QH2Xo1ErVIwppU/PSYtgSrdURjS4a9hkFAya6peRIkHD6IPD0fl6Ihdp0L4m8qHam8MRWFlhW98OA2S7nI5LJ6+vxzh4/UXzEPVi7O4tDh+OWeaL2hs7bHYqG2KOKL88XP0o0/FPoBpSYkSN5q0GJPJTimWeu06KadPg4UFjgMGZFv+Tvwd1l5fC8CE+hMK/g70YRCsGQXCCHVew3HCt6BSkXLyVKHN5lrTtSadfTojEMw+NbtQzlFQjgc/pOucg/yw5wbpeiPNK7qw7f2WfNSlCjZWWujzK7hWNXXoXj0CDMX/y0iC2FV/AeDQpw/KHNxwPE8qe3vsu3QB4GurYF6pWwEh4I9jIbT9LoC1p+4W6y/cJReXEJcWh7+DP31f6lvU4RSId2q/g6XKknMPzrE3tASOJi2mZLJTisWtMyUudm3aoHbLfomHuWfmohem0QwFPhmXLsVUI5EWB56Nodv3qMuVw66daRh67KN+RYXhvbrvYaGw4PD9w5yOOF1o58mrhFQd/9lwgQG/BhIUlURZOy0/DanLilENqVj2X0tlaG1h4G+gtYeQI7Dzk6ILWsoRXVgYiQcOAODYv38RR/N0jv1Mw9DTd+1kZhc/Vo1uzEtlbYlOSufD1ed4deExQh8WvxGNUSlR/HHVVHP9ft33sVCWjo76Za3LMvTloQDMOT0HvVGfzR5STshkp5QS6enEbdwEgGO/V7Itf+3hNXbc3oEChXkK8wK17f8g/IJp7pj+S8DCdIdbZtBAAOI2b8GYlvasI+SZp50nvV8yzdz8w5kfitWd6p4rEXT8/gC/HTXN9jyogSe7JrSiW83yT69Zc6kIfR6tVH/sF7gg19QpzmJXrwGjEeuGDdH6+RZ1OE9lVac2mor+iNRU4rdsoZGfM1vea8HkzlWwVCs5ciuaTrMPsOzIbYzG4vO3s+jCIlL0KdRwqUFrz9ZFHU6BGll9JI5aR4LjgtkWvK2owykVZLJTSiXsC8AQG4tF2bLYNGuWbfl550xfoJ18OlGpTM4WCM2xM7/D6eWAAl5ZmGHklXXjxliUL48xPp7EvYVXZftWzbfQKDWcijjF0bCjhXaenIpKTGPcn2cYtewkYXGpeDtb88ebjfjqlZo4WGWzTEaVbtDiQ9PPm8ZBxKXCD1jKNWE0Ert+PUCOmpGLikKhMNfuPO5IrbFQ8nZrf3aMb0kjXyeS0w1M23SJQQuOcjsqqSjDBSA8KZy/rpmaB9+t826x6PRdkGw1tgyvZpp4ct65ebJ2pwDIZKeUin3UhOXQuzcKi2dX7159eJXdIbtRoGBMrTEFG0j4Rdjy6Iu5zcfgn3EhUYVSiUMv02roj78YCkM5m3IMqGz6wvnxzI9FWruz7UIYHWbt5+9z91EqYHRLP7a/35Km/i45P0ibqaY1xHTJsOq1py4pIRWt5OPH0YeFobSzMy3PUIw59OoFajWply6ReuWf0X7ezjb8+WZjvuhVDWuNiuPBD+k85wALDwZhKMJanoUXFpJuTKeeWz2alG9SZHEUpiFVhlBGW4aQhBA2B20u6nBKPJnslEK6iAiSDh4CwLFvn2zL/3z2ZwA6+3bG3zH7pSRyLDXe1E9HnwL+7aDFxKcWe7w4aNKhw+giCmcYOsCoGqOwVFlyPup8kdTuxKfqmLDqLG//fpqYZB1VytmxYWwzPu5aFSuNKncHU6rglUXg4Gnq+L1tcuEELeXZ42Zk+y5dUGrzttbb82JRpgx2bU2zDj+O+zGlUsHQJj7sGN+Spv7OpOqM/HfLFfrPO0LQg8TnHmtEUgTrbqwD4N3apa9W5zFrtTWvV38dgF/P/YrOKAck5IdMdkqh+L//BqMRq3r1sp2W/trDa+wL3YdSoSz4Wp2tk+DhLbCvAH0XgPLpbzeNjw9WdeuC0Uj835ueWqYguFi58EolU/+l+efnF9p5nubIzSg6f3+AdWfuoVTA2Db+bHq3OTUrOOb9oNZO0Hc+KJRw9ne4uLbgApbyxZicTMIO06KODr17FXE0OfO4hjVuy2aEwZDpeU8na35/oxFf9qmBrdaC0yGxdPvhEH8cC3muNaVLLy1FZ9RRt2xd6per/9zOWxQGVh6Ik6UTdxPvsjVoa1GHU6LJZKcUittsWgfr8YfXszxe1byjd0f8HPwKLoiL6+D8StMXcb9FYOP8zOIOfUy1O7HrNxTqB+eIaiOwUFpwMuLkcxmZlaozMP3vSwxZeIz7j/rmrB7ThEmdqqCxKIA/P++m/9SY/f0BxIbk/5hSviXs2YMxORm1pydWdeoUdTg5Ytu8OSoHBwwPokg6+vSaT4VCwZBGXuz4wFTLk6Iz8PH6C7y5/BTRiYUzwODfHqY+ZM11U7+it2q+VejnK2rWamvzyKzFFxdjFCVvhuviQiY7pUzazZukXb0KajX2HZ+9UnlIfAg77pjuPgt05tH4+7D5A9PPzSeAV+Nsd7Hv0gWFVkv6rVukXbtWcLE8oZxNOXr5m+60518o3NqdC3fj6D73EEsO3wZgSCMvtr7XgnreBbcGGACtJkOFBqZh/etGZ1ghXSoacRtM62A59OxZYppZFBoNdl06AxD/97P7iHg4WvHbqEZM7VoVjUrJ7isRdJp9kH3XCq8ZGmDF5RWkGlKp5lyNJu6ls6/OkwZWHoit2paguCD2he4r6nBKLJnslDKPVze3bd4cleOzm0iWXFqCURhp7tGcKk5VCiYAoxE2vA2pseBeB1p/lKPdVLa22LZqBUD8lsKtrh1VYxQqhYrD9w5zJbrgl14wGgULDwbR95fD3IxMxNVOy5IRDfiyTw1sCmPRTpWFqZlQYwchgXBoVsGfQ8ox/YMHJAUGAjmrXS1OHHqa4k3YuRNjSsozyyqVCt5s6ceGsc2o5GZLVGIary85wbSNF0nVZW4Gy6+E9ARWXjXNxzW65ugSk0Tml53GjkFVBgGmmvjiNHVGSSKTnVJECEH8oyYs++7dnln2QfIDNt403X2+UeONggvi+K8QFAAWVqYvYFU2w6j/xb5rVwDit24t1D9oTztP81IYyy4vK9BjRyemMWrZCf675Qo6g6BztXLsGN+SNlWyn9QxX5x8odu3pp8DvoLQ44V7PilL8Tt3gtGIZa2aaLy8ijqcXLGqUwe1h4epz1EOp4J42d2eTe825/VmPgAsC7xD97mHuBoeX6Cxrb2+lkRdIn4OfqVuXp3svFb1NbQqLReiLnA8XP5t54VMdkqR1PPn0YWGorC2xq5Nm2eW/ePqH+iMOmq71qaeWwGtwhxxGXZNM/3c6b/g8lKudrdt1RKltTW6e/dIPX++YGLKwuM5LLYHbycsMaxAjnnkVhRd5hxk37UHaCyU/Ld3dX55rS5ONs9piYCaA6F6PxAGU+2a7tl35lLhiN9mmgTu8TIMJYlCocC+R3fgn+vICUu1imk9qrFsZENc7bTcjEyk14+HWXm8YDov6ww6VlxZAZj63SkVL9ZXl7OVs3nNrKWXlhZtMCXUi/WOKeUeN2HZtWuH0to6y3LJumTzhFwjqo8omJMbdLB+NBjS4KWOUD/3fYCUVlbYPhr+Gr+1cJuyXnZ+mUblGmEQBn678lu+jqU3GJm16zqvLjxGZEIaFcvasnFsM15r7P18q9oVClPtjm05iL4J+758fueWANO0DymnTB3f7YvZop859ThJSzpwEENi7iYQbFXJ1VSTWdmVNL2Rj9Zd4INVZ0lKy18/su23txOZHImzpTPd/J5da11aDas2DAUKDt07xK3YW0UdTonzXJKdn3/+GV9fXywtLalXrx4HDx7Msmzr1q1RKBSZHt26/fMGHzFiRKbnGzfOvhNsaSaMRhJ27ASyv6PcdGsT8enxeNp50rpC64IJ4NBs03IQVk7Q80fTF28e/NOUte2pw18L0uPanTXX1xCfnrcq97C4FIYsOMYPe24gBAys78mmd5tRtbx9QYaac1ZloMejBU8Df4S7J4smjhdUwo6dIISpOah8+aIOJ0+0lSqh8fFBpKeTGBCQ6/2dbDQsGt6Aj7pUQaVUsOHsfXr8eIgrYXn7GxNCsOySqbn51aqvolEVr8VUnxdPO0/aeZnWElxxeUURR1PyFHqys2rVKsaPH8/UqVM5c+YMLVq0oEuXLoSEPH2I7Lp16wgLCzM/Ll68iEqlov8Ti+h17tw5Q7mthVwTUNylnj+PPiICpY0NNs2zXh7CKIzmP5RXq76KSpnLyeyeJvIqHJhp+rnLTLBzy/OhbJo3Q2lvj/7BA9OK7YWouUdz/B38SdYns/5G7mdvPnQjim4/HOL47YfYai2YM6g2X/eribWmiBckrNwFagwwrS6/4R3QpRZtPC+Q+O3bAbB/NKqpJFIoFNg9qpV6PFdQbimVCsa08mfV6MaUd7Ak6EESvX86zJ95aNY6Fn6MazHXsLKwMs+C/qJ6PAz971t/8zD1YRFHU7IUerIza9YsRo0axRtvvEHVqlWZPXs2np6e/PLLL08t7+TkRLly5cyPXbt2YW1tnSnZ0Wq1Gco5ORXwcN4SJn7nLgBsW7dGqcn6zmd/6H5CEkKwU9uZ24DzxWgwrc9kSIeXOkGNfvk6nFKjMc/kGr9rV/7jewaFQsFrL78GwKprq3I8h4XRKPhp302GLT7Gw6R0qrnbs3lcc3rV9ijMcHOny9dgUxairsH+r4s6mheCLjzclKD/K1koqew7m+JPPHAAY1Le18Kq7+PElvdamJu1pqy7wPhVZ0lOz3mz1u9Xfgegl38vHLQOeY6lNKhTtg7VnauTbkxn1bVVRR1OiVKoyU56ejqnTp2i4xPzvXTs2JEjR47k6BiLFi1i0KBB2NjYZNgeEBBA2bJlqVSpEm+++SaRkVnP75CWlkZ8fHyGR2kihDDfgdllM7fO71dNHxz9KvXDWp11v54cO74A7h43DXvuPivPzVf/ZtexAwAJu3cX+jDLrr5dsVPbEZoQyuF7h7MtH5eiY/SKk3yz4xrGR81Wa99uio+LTbb7PlfWTtDtO9PPh+fA/TNFG88LIOHRDYdV3bqo3fJeu1kcaKtUQe3thUhLI3H//nwd68lmrY1n79PnpyM5WlD0bsJd9oeazj+46uB8xVEaKBQKhlUbBsBf1/6SS0jkQqEmO1FRURgMBtye+MN3c3MjPDw82/2PHz/OxYsXeeONjEOju3Tpwu+//87evXv57rvvOHHiBG3btiUt7ekzeM6YMQMHBwfzw9PTM+8XVQylXr6M7t49FJaW2LZonmW523G3ORZ2DAUKBlYZmP8Tx9yBPdNNP3eYDg4V8n9MwKZpUxTW1ujvh5F66XKBHDMr1mprelU0TTK48trKZ5a9fD+enj8eYveVSDQWSr5+pQZf96uJpboAmgILw8s9oVrfR6Oz3gF9elFHVKol7NkDgP2jZL0kUygU2Hc01e7Eb89bU9a/PW7WWjm6Ma52Wq5FJNDjx0PsvRrxzP1WXl2JQNDMvVnBzvBegrX3bo+LlQtRKVHsDcnZ9ADSc+qg/OSIFCFEjkapLFq0iOrVq9OwYcMM2wcOHEi3bt2oXr06PXr0YNu2bVy/fp0tj0YjPWnKlCnExcWZH6GhoXm/mGLo8R2lbYsWzxyF9dd10wisFhVa4GGbzyYXIeDv90yrbns3g3qv5+94/6K0tMS2RQsAEgq5KQswT9h18O5B7ibcfWqZtafu0veXw9yJTqZCGSvWjmnKwAYlYA6Vrt+AtTNEXoajPxV1NKWWPiaG5JOmzuC27doVcTQF43FTXOLBgxhTC6bfVwMfJzaPa0497zIkpOoZufQks3dfx/iUFdSTdcnmBT+HVB1SIOcvDdRKNX1f6gtgHlUrZa9Qkx0XFxdUKlWmWpzIyMhMtT1PSk5OZuXKlZlqdZ6mfPnyeHt7c+PGjac+r9Vqsbe3z/AoTR4nBM9qwkrRp5gnERxYuQBqdc79+WjyQEvoOTfLRT7zyq59e+D5JDve9t40dW+KQGT68NAZjEzbeJEPV58jVWekVSVXNo9rTo0KJaTvgI0LdPyf6eeAr021cVKBSwzYDwYD2ipV0FQomBrOomZZ7WUsypdHpKSYZ4QuCG72lvz5ZmOGNvYGYPbuG7y5/CRxKRmbZDYHbSZBl4CnnSfNPbKusX4R9a/UH6VCyfHw4wTFBhV1OCVCoSY7Go2GevXqseuJL6xdu3bRtGnTZ+77119/kZaWxmuvvZbteaKjowkNDaV8CR3qmR9pQcGkBwWBWo1t61ZZltsevJ349Hg8bD1o5p71aK0cSX4IO/9j+rn1R+Dsn7/jPYVt61agVpMeFETarcKfU2JQZVPtzrqb60jVm+5iY5LSGbboOMsCTQnC++1eYsmIBjhal7Chr7UGgXdz0KeYVqKX080XuIQ9uwHTHFelhUKhME9OmpjD2ZRzSmOh5Ive1fmmX000Fkr2XI2k14+HuBaeAJhq/1dfXw2Y/jZftEkEs1POphytKpg+7x/X2EvPVujvoAkTJrBw4UIWL17MlStX+OCDDwgJCWHMmDEADBs2jClTpmTab9GiRfTu3Rtn54yrZScmJjJx4kQCAwO5ffs2AQEB9OjRAxcXF/r0KYDRRSVM4j7TwnA2DRqgsrPLstzjGot+lfrlf7j53i8gORpcq0CTd/N3rCyo7OywaWKaOylh1+5COce/tazQEncbd+LS4th+eztXw+Pp+dMhAoOisdGomD+0Hh90qIRSWQLX41EoTJ3HlWq4sQOuPnuRRyl3jCkpJB0ydW63a196kh0A23amkZEJ+wIQxoJfcbt/fU/WjmmKh6MVt6OT6fPzYXZeCudy9GWuPryKRqmhp3/JWl/seXlcQ7/p5iaSdclFHE3xV+jJzsCBA5k9ezaff/45tWvX5sCBA2zduqjRu4wAACAASURBVBVvb1MVZkhICGFhGafrv379OocOHWLUqMyz8KpUKi5cuECvXr2oVKkSw4cPp1KlSgQGBmL3jC/70iphn+mO6/HMw09zKfoSF6MvYqG0yP9w83un4OQS089dv83V2le5ZdfW9MWRl4nNckulVNG/sml6g1/PrKDvz0cIfZiCl5M1695pRsdq5Qo9hkLlWhmavWf6edtkSEss2nhKkaQjRxCpqajd3dFWKaAFdYsJmwYNUNraYoiKKrQlXGpUcODvcc1p6u9McrqBt347xfT9iwDo4NMBR8tnL2j8omri3gRPO08SdAlsv729qMMp9p5L3eA777zD7du3SUtL49SpU7Rs2dL8XEBAAEuXLs1QvlKlSggh6NAh86gGKysrduzYQWRkJOnp6dy5c4elS5eWuhFWOaGPiSHltGlIsV2b1lmWe1yr08G7A85WzlmWy5bRAJsnAMI0aZ1vi7wfKwdsH11Tyrlz6KOjC/VcAH0q9kGJBXeTr5OqvE1Tf2c2jm1G5XKlJIluMREcvSH+HgTMKOpoSo2EPY9uONq3K3UrcSs0GmwffV4/vs7C4GSjYdnIhgxt7I1QpHE53jTcvKdf30I7Z0mnVCjpX8l0gybn3MmebAgtwZIOHACjEW3lyqg9nj66Kj49nq1BptmlH/dLybNTSyDsLGjtoeN/83esHFC7uaF9uSoIQeKBrJcYKQjJ6Xo+XXeHtNgaAFStfIFlIxtS5nkt4vk8aKxNtXEAR38xLe8h5YswGs3z0Ng9o3a1JDM3ZRVwv50nqVWmfjyvtIhEoUzHkObKzI3pRCbIGcCz0rtibzRKDZejL3Mx6mJRh1OsyWSnBEvYa+qvY9s26xXON93cRKohlYqOFalTtk7eT5b4APZ8bvq57X/ytSREbti1bm06/aO+SYUhMj6Vgb8eZcuFMIzxpo7z4fqjJOsTCu2cRaZSR3i5l2nuHdlZ+f/ZO/OwqM6z/3/ObMywCrIj4L4ri4IrxiTGmK1p2iYmzaLR7M2vTbq8bZru69u+aWrTZmuMMUmTNGmztlnNokZFQEBFxV0EAUUW2WZl5vz+OJwBBHSAmTkzcD7XNZdHOPOcG5g5cz/38r2HjHX/fpwNDWjCwgjNzlbaHJ8QvmQJ6HTYjx3DftL33XynnNJ7Xde+gN2VzXz1b9vZV93s8+sGI9HGaK4cK0kE/PPghXXCRjqqsxOkuOx22jsHqva3oxRF0V2pv3LKyqGF2D/9OVibIXHWoCaaD5bwzm6Q9m3bEO3eF8U7eLqFrz65nbLqZqJD9bx8641Mjp6M3WXnwxMfev16AcGVvwd9KFTmw743lbYmqGn7YjMAYYsXI1xgTEswo42IIHTuXADatmz16bX2N+znQMMB9Bo9L698gPFxYdQ0W7nxmXw+2ld78QVGIPK8sI8qPqLZpjqF/aE6O0GKuagIl9mMNi4W44wZfZ5TUlfCieYTmHQmrh1/7eAvdmoX7JbGTHDNn0Hrv0GXxhkz0MbF4jKb3aJt3mLzoTq+8XQ+Nc1WxseG8fYDi5g3frS7iPvtowMfDhoURKXA4oel400/A7vayTFY5BRW+CX9yz4MB+S6nbatvnV23jwsOd/L0peRkZzC2w8sIm9SLBaHk/tfKWH9l8d9PkIm2MiIy2BK9BRsThv/Pa52WvaH6uwEKe2dNSzheUsQ+hH0k0UEV4xdQbghfHAXEkX46EfSccY3ITVncOsMEkGjcX+QtHbuor3ByztPsvbFXbTZOpg/Poa3Huiab3XN+GvQaXQcaDjAocZDXrtmQLHw/0FUmlSsvH2d0tYEJY66Oqz79wMQvsS3xfpKE36J5OyYCwtxmX3jHJsdZt4/Lqngy4W3USY9L6zO4bb5aYgi/Ob9cn7x3n6cfSguj1QEQXArKsv3fJXeqM5OkNLWmcLq7yZrdpj5uEKaaSPPfhoUZf+GU0WgD4PLfzb4dYaAu25niAMJAZwukd/89wA/fWcfTpfI17PH8NKaeT2EAqON0VyaKqXP3jn6zpCvGZDoTbD819Lx9r/AuUpl7QlC2jujHMbZs9HFxipsjW8xjB+PPiUF0W6nvaDAJ9f48MSHmDvMpEemMzdhrvvrOq2GX18/kx9fLbX1v5h/kntf3jWgyenDnavHXY1Oo6O8sXz4btCGiOrsBCH2U6ck1WStlrB+lKg/q/wMc4eZMeFjyI4fZOGk3SzV6gDkPQyRyihUh85fADodjsrKIRVIWuxO7v9HMeu3nQDg+8sn89iNkoLr+Xx14lcBeP/4+zicw3Sy8PTrO5WVrVI6S2VAdKWwllzkzOBHEAT3z+mrVNa/D/8bgG9M+kav+kJBELhnyQSe/GY2Bp2GT8vrWPnsTrVTq5NRxlHuDdq7x9ToTl+ozk4QIt9sTFmZaPuZ8yWHM6+feP3gC5N3/FVKc0Sl+kwp2RO04V2dLm3btg1qjaZ2O7eu38knB85g0Gl44pYsHrxsUr+/m4XJC4kzxdFka2LLqaFHlAISQYCr/hcEDex/GyoG97sdiYgOB+3bdwAQvmR41+vIhMl1O1u2eL1u5kjTEbfw6Vcm9q+YfM3sJF67ex4xYQbKqpu54ckdHDkzDLsmB8H1E6QI/vvH38fhGqYbtCGgOjtBSPd6nb6obqum4HQBAoL7DTBgmrvVclzxSyntoSByuq59EHo7VY1mvv7MDkoqzxFl0vPKXfP4SkbyBZ+j0+i4bsJ1wDAuVAapu27Oaun4wx9JwpEqF8WyZ4/UIBAdjXHGdKXN8Qth8+YhGAx01NRiP3rUq2v/5/h/AFiSsoQYY8wFz52THsNb9y9kXGwY1ecsfO3pHeQf873oaKCzKGURo42jabQ2su2UunE5H9XZCTJcNps7Z95fvc57x94DIDcpl6TwQaaePvslOMyQOh9mKK9iGpbX6ewUFuKy2Tx+3r7qZr729A6On20nZZSJN+9fQM7YC99MZeRU1rbqbdSZ6wZudLBw6U/AGAVnyqRp9ioXpX2HFNUJW7Cg3waB4YbGZCJ03jwA2r703oep0+Xk/WNSYbKnc7DGxobx5v0LmZseTau1g1UbCvmgbGS3pnffoKmprN6MjHfpMMK8axeixYIuLq7POTwu0dWVwhpsVOdUMeztlB9f8Xsp3aEwIZMno4uLQ7RYsBQXe/ScbUfqufnvOznbamNqYgRv3r+QifGej34YFzWOzLhMXKKL/xz7z2BND3zCRsOSH0jHn/9GbUX3ADmFFbao75q54YpcI9ien++1NQtOF1BnqSMqJIq8MZ53tcWEGfjHXfNYMSMRu9PFt14t4eX8Cq/ZFYzIzuKWqi00WhsVtiawUJ2dIEOerhyWl9dnvUnJmRKq26oJ04dxedogJjCLInzyqHSccQukBIYqrCAI7uiOJ7vKd0qruXNjobu1/I37FpAYZRzwdW+YJGnuvHP0neGt75Fzt9SK3loLO59U2pqAxtncjKVMGrXRX4PAcEX+ec1FRbi8JPIpbyRWjF2BQTswYUajXsuTt2Zz6zypNf2n7+7n8U8ODe/36gWYFD2JGaNn0CF2uMcEqUiozk6Q0b6909npZ0cphy+vHHslofrQgV/g8EeSsq7OCJf9dNB2+oLwvMUAtG+7cN3O37ce46HXd+Nwilw7O4kX1+QSaRzcdPYrx16JSWeioqWCPWf3DGqNoEBv7JIW2PYXaTyISp+0FxSAyyW1Yycp06GoFCGTJ6GNjUW0Wt1DiIeC2WHms8rPANwpmIGi1Qj85qszeWjZJACe+PwoP367jA6na8j2BSOy1IiayuqJ6uwEEY66OmyHD4Mg9Lmj7K6tI9ebDAhnB3z6C+l4/v2S0m4AEbZwIWg02I4cxXHmTK/vi6LIHz46yO8+OAjA2sXjeOLmLEJ02sFfUx/GFelXACPg5jHz65CUCfZW2PIHpa0JWNwprBEW1YHOCOuCBYB3UlmfVn6KpcNCemQ6s2NnD8muh5ZN5jdfnYlGgNcKq3jglRKsjpFXcH/1uKvRa/QcbDzIwcaDSpsTMKjOThBh7ry5GKdNQxcd3ev78o0jLSKNzLjMgV9gz6tw9iCYomHRQ0M11+too6LcozHOv9E6XSI/eWcfT28+BsAPV0zlp9dOR6MZer2RPGpj08lNw1dzB0Cj6RIaLH4B6r3bcTNccBcnj7B6HRl33U7n72EoyM0U146/dmiz+zq5bX46T90qafF8cuAMdzxfSLNlGL9n+yAqJKpLc0dVVHajOjtBRNdNdlGf35dvHF+Z8JWB3zjsZvjid9Jx3vfBNGrQdvqSsPnzATDn73R/zeF08dDru3mloBJBgN/dMIv7l07w2jVzE3OJNcXSbGtme812r60bkIxbApOuBFcHfPYLpa0JOOyVlTiqqkCnIzQnV2lzFCFsoRTZse7bh7N58IMnT7efprC2EGBos/vOY8XMJF5ak0tEiI7CikZu+ftO6ts87+AcDsiprA9OfECHS1WaBtXZCRpEUaTtAjvKs+az7hvHNeOvGfgFCp6WilOj0iD37iHZ6kvCFkjOTvvOnYiiiMXu5J6XdvGfPTXotQJP3JzFN+elefWaWo2WFWNXAIyMor8rfikJDZb/Byp9MxogWJE3HKGZmWjDwxS2Rhn0CQkYJkwAUaR95+BfH+8ffx8RkTkJcxgTMcaLFsL88aN5/d4FxIYbOFDbwk3P5lPbbPHqNQKZBckLiDHG0GhtpKBWfQ+D6uwEDbbDR3CerUcwGjFl9+6Q+rjiY0REMuIyBn7jMDfCtk4Bwct+AroQL1jsG0zZ2ZKw2ZkzNB46wqoNhXxx6CxGvYbn7pjLdRcRCxws8s7zi6ovMDuGeWt2/DTIuk063vQzqUNPBRi5LefnM9RUliiK7i4sT7V1Bsr05EjeuHcByVFGjp9t5xtP53Oyod0n1wo09Bq9u9bwgxMjYIPmAaqzEyS4d5Q5OWgMvdsz5Rf0VeOuGvjiWx8DW4ukpjvrxiHZ6Ws0RiOmrCwAnnn8dQorGokI0fHy2nksnRLvs+tOHz2d9Mh0rE6ru3tkWLP0x1JHXtVOOPqp0tYEBGJHB+07pfTpSCxO7s5Qi5QPNB7gWPMxQrQh7g9lXzA+Lpx/3b+QsaNDqT5n4cZn8jk8QsZLXD3uakCak2jtUGeIqc5OkOCu1+njJlvVUkVZfRkaQcOVY68c2MLnqqDoOel42S+lItUAx5k5B4D4I2WMDjPw2j3zPVZFHiyCILhvHiNipxSZ1JXO/OxX4BqZbbzdse7bh6u1FU1kJMaZM5U2R1FCc3NBq5WG8546NeDn//fYfwG4NPVSIgyeC30OhpRRJt64bwFTEyOoa7Vx07P57D11zqfXDAQy4zNJCkui3dHOl9UDH7Mz3Aj8TzYVRIcDc6dqsFyz0p0PKz4EYF7iPGJNsQNbfMsfwGmHsXkw4bIh2+prjp9t4+dVkn5QVsMxXr87l5kpUX65tuzs5Nfkjwx10kUPgyECTu+FcrWro03WuJo/H0E7eDmD4YA2PAxTRgYw8FSW0+V0S2QMqr5wEMRHGPnnPfPJSB3FObODbz5XQMHx4T1PSyNoWDFOqjX88MSHClujPKqzEwRY9u1DNJvRjhpFyOTJPb4niqK7aHbAKayGY7D7Ven48p8FxFiIC3HodCs3PZvPdl0cFr2RMLuZlPqB7yoHy9ioscwYPQOn2HWzHtaEjYaFndPuP/+tpMM0gmnfIaVsRnoKS6arbmdgqaySuhLOWs4SoY9gYbL/fpejQg28ctc85o+Poc3WwR0bCtl8aBjPvKNrg7alagut9pGRvusP1dkJAswFUpdVaE5Or6GDh5sOc6z5GAaNgWXpywa28Obfg+iUWo1TA7uNdn9NMzf/PZ/6NjtTU6KJmi8NJDTv9N6MHk+Qd6IjoisLYP4DYIqBhiOw959KW6MYzrY2LLt3AxC2uG/ph5GG3IJuzs9HdHou3idvFC5Pv3zA4yGGSniIjo135nLZ1HhsHS7ufmnXsB4gOiV6CuOjxmN32fm88nOlzVEU1dkJAsyFUuugPHG4O3J4Mm9M3sBy32cOQNm/pePLHh2yjb6k7FQz33yugCazg4wxUbx293yi8+SBhDsv8mzvsmLsCjSCht1nd3Oq1X9RJcUwRsLih6Xjzf8LHSNLr0TGXFgITif6tDQMY7zbJh2smGbNQhMWhrO5GWu5Z0q9Ha4ONp3cBOCWc/A3Rr2WZ26bwzWzk3A4RR58tYS3Sobne1kQBHfEf6SnslRnJ8Bx2e2YO2fQhM3rGX0RRdH9Ah5wCuuL3wIiTL8ekjK8YapPKK1s4pvrd9JscZCdNoqX75pHVKieUFlcsLjYawMJPSEuNI7cROnvMGJuHrl3Q0QSNFdB8UalrVEEc4G04ZC7kFRA0OvdGzBP63YKTxfSaG0kOiSa3CTloskGnYYnbs5i5dxUXCJ87197+NeuKsXs8SVyKmtn7U4aLMO7TulCqM5OgGPduxfRakUbE4Nh4sQe39tzdg817TWE6kK5ZMwlni9aUwoH/ysJx10auFGdXRWN3P58Ia3WDnLGRvPS2nnugZ4hk7oNJOxML/gL+ebx/vH3R8Z0Zb0JlvxAOt76f2AfGVol3WkvLAIgNDdHYUsCi64WdM+cHTmFtSx9GXrN4IbzegutRuD3X5vFbfOlien/8+ZeXi+qVNQmX5AWmcbM0TNxik4+OfmJ0uYohursBDjtnTvK0NzcXiMg5Bboy9Mux6gzer7o57+V/p11E8RN8Yqd3mbn8Qbu2FBIm62DBeNH8+KaXMJDdO7vC4JAmLyr9MJAwoGwLH0ZBo2BY83HOHpuhMyPyrodosdC+1koWq+0NX7F2dyM7aCUpgnNUZ2d7sh1O5biEly2C6c4HU6H4ims89FoBH59/UxWLUhHFOGHb5bxasHwc3jUVJbq7AQ8cnHy+SmsDleHe5c0oBRW5U44ugk0Olj6Q6/Z6U22H61n9QuFmO1O8ibFsmF1DqEGXa/z5DZ8s5/rdiIMESxMkWqGRsxOSWeAJf8jHW//y4iK7piLi0EUMYwbhz7ed8KVwYhh/Hgpwmq3Y92794Ln5tfm02pvJdYUy5yEOX6y8OIIgsAvvjKDOxeNBeDHb5fxcn6FkiZ5nRXjViAgUFpXSk1bjdLmKILq7AQwLpvNnaI5vzi56HQRjdZGRoWMYn5yb+2dfvmiM6qTdRvEjPeWqV5j86E61mwswupwcemUOJ67Yy4mQ9+aJqHzO3eVZWU429r8aSbL05cDsKlik1+vqyizV0L0ODA3QOFzSlvjN7p3Q6r0RBAEQufOBaC9qOiC53504iNAeu9oNYGlUyQIAj+7djp3540D4Kfv7mfj9hMKW+U94kPjmZso/Z0+qvhIYWuUQXV2AhjL7j2IdjvauFgM48b1+J4cDh5Q7vvkDjixFTR6abJ5gPFZ+RnueakYW4eLZdMSeOb2ORj1/d8UDWNS0KemgtOJ+SI3Wm+zNHUpeo2eY83HOHbumF+vrRhaHVzSGd3Z8QTY/OtgKkV7UaezkxvY8gxKEZojfYhe6D1oc9r4vEpqfR7USBs/IAgCP756GvdeIm0Cf/GfAzy/bfg4PHLq8NOTI3P8i+rsBDDuDpDceT3qdZwup3s+04Dmymz+X+nfrNtgVKrX7PQGnx44w33/KMbudHHVzESeujWbEN3Fd39ygaR5CNOXB0OEoUsQ7ZOKEZLKAqnOK2a8FN0pGv7RHWdLC7ZytV7nQsi/F0vpbsR+OiO3ndpGu6OdxLBEZsfN9qd5A0IQBH60YirfunQCAL/+7wGe23pcYau8w2VplyEgUFZfNiJTWX5xdp566inGjRuH0Whkzpw5fPll/3M6Nm7ciCAIvR5Wa89BZgNZM1hpd+vr9NxRltSV0GhtJCokipxED2/AlTvhxJbOqM53vW3qkPjiYB0PvFKCwyly7ewk/npLFgadZy9Nebdt3rXLlyb2yfKxUiprxNTtgBTdcdfuDP/ojnlXZ71Oejr6BLVepy9CJk5EO2qU1Bm5b3+f58ipkyvTr0QjBPYeWxAEvr98Ct++fBIAv/2gnKc3B3/0tnut1EiM7vj8Vff666/z0EMP8eijj1JaWkpeXh5XXXUVlZX9V7xHRkZSW1vb42E0Goe0ZrDhsliw7JEK/sLOq9eRIwmXpV7meQpLjupkfhNGpXnNzqGy5fBZ7u2M6FwzK4l1KzPRaT1/WYbOld681vJyv9ftLE1dik6j4+i5oxw/Nzx2fx4x60aImQCWRij8u9LW+BRzoZrCuhiCRnPBVJbZYWbLqS1A4KawzkcQBL57xWQeXiaN5/nDRwd5anPwd17KmQC5DGIk4XNn5/HHH2ft2rXcddddTJs2jXXr1pGamsrTTz/d73MEQSAxMbHHY6hrBhuW0lJwONAlJqJP63JOXKKLTyslr9zjFFZlARz/QurAyvueL8wdFNuO1HPPS7uwd7i4ckYC624emKMDoE9MlOp2XC7pd+ZHIg2RLEiS0mgfnxwBs7JketTu/BVsw3fmjvzhrTo7F0ZOZfXl7Gyv2Y6lw0JKeArTR0/3t2lD4jvLJvH95ZLD88ePDrH+y+De1MgjhXaf3c2Z9jMKW+NffOrs2O12iouLWb58eY+vL1++nB0XUNxsa2sjPT2dMWPGcO2111La7UNsMGvabDZaWlp6PAKd9m4t593rdUrrSqm31BOhj2B+koddWFu6RXWi071t6qDYcbSetS8WuYuR/3pLNvoBOjoycjeIuUjBVNZIqtsBmPmNYR/dcba0YC0vB1QxwYshO4OWkhLEjp4DY+UowhXpV/TSCgsGHrxskjvC85v3y3lxR4WyBg2B+NB4suKzANyb5pGCT52d+vp6nE4nCQkJPb6ekJDA6dOn+3zO1KlT2bhxI++99x6vvfYaRqORRYsWceTIkUGv+fvf/56oqCj3IzU1sIpz+8LsFhPsmcKSbxyXpl2KXutBCquqCI59HlBRnZ3HG1j74i5sHS4umxrPk7d6XqPTF25nR4G6nUtTL+1KZTUH965vQGh1cEmnTtOOvw1L3R1zcTG4XOjT09Cfd79R6UnI5MlooqJwmc1YDxxwf93utLP11FaAgQ8qDiC+fflEHrxUUrD/+Xv7eaXgpMIWDR45IzDSNmh+qRQ735sXRbFfD3/+/PncdtttZGRkkJeXxxtvvMHkyZP561//Oug1H3nkEZqbm92PqqrAnoHiam/Hsm8f0FNfxyW6euySPEKO6mTcLCngKkzhiUbWbCzC4nCydEocT9/mWdfVhZDrBSxlZbjOK2T3NVEhUe4I20i7eTDz69JrytI4LGdmyZHCMDWFdVEEjYbQOVL9XPdU1s7anbQ72ok3xTMrdpZS5g0ZQRD43vLJ3LtEakt/9O19vFEU2J8j/bEsTXI6S+tKOWs+q7A1/sOnzk5sbCxarbZXxKWurq5XZKY/NBoNOTk57sjOYNYMCQkhMjKyxyOQMZeUQkcH+uRkDGNS3F/fe3YvdeY6wvRhLEj2YCBhdTEc/RQEbUDo6hSfbOTObsrIz9w2Z8iODoA+NRVdfDw4HO6ibn8iCwyOqK4skKI78kT0HX8ddhPR3cXJasu5R7jrdgq7nB15c3Z5+uUB34V1MQRB4EdXTXUrLf/wrb28XRp809KTwpOYHTsbEdEtYTIS8Omrz2AwMGfOHDZt6ln5vWnTJhYuXOjRGqIosnv3bpKSkry2ZqBjLikGet9k5RvH0tSlhGhDLr7Ql49L/86+CWLGXfhcH1Na2cSqDUW0250smjia5+6Ye0HBwIHQXcXVvMu/4oIg6VfoBB1Hmo5wonn4iJB5RMYtEJEMrbWw+1WlrfEaztZWdzpGdXY8w+3sFBcjOp04XA6+qPoCGKAeWAAjKy3Lw0O/98Ye/rMn+DRr5FrDkdSV5XNX+7vf/S7r169nw4YNlJeX8/DDD1NZWcl9990HwB133MEjjzziPv+Xv/wlH3/8McePH2f37t2sXbuW3bt3u8/3ZM1gx7JLcnZMc7LdXxNFcWAprLqD0mRzhK7dt0Lsq252D/WcPz6G9XfkeM3RkXG3vipQtxMVEsW8JCndOJJuHgDoQmDRt6Xj7evA2XHh84MES0mJVK+Tloa+c6OlcmGM06aiCQ/H1daGtfwgxWeKabY1Ex0S7S6KHQ4IgsCvvjKTm3NScYnw0Ou7+WhfrdJmDQi5fmrXmV00WBoUtsY/+NzZWblyJevWreNXv/oVmZmZbN26lQ8++ID0dKkrqLKyktrarhfKuXPnuOeee5g2bRrLly+nurqarVu3ktstb36xNYMZ0W7H0jlQT45WAOxv2E9tey0mnYlFyYsuvtC2P0v/TrtO0cnmh8+0cvvzBbRaO8gdG8OG1Tn9zroaCvLv6kIqrr5EdkBHUljYTfYqCI2FpgrY96bS1niFdre+jhrV8RRBq3Vv0MxFRW7husvSLkOn6T3IN5jRaAR+d8Msvp49BqdL5MFXS/n0QPC0cqeEpzBj9Axcoss9xmO445ck6gMPPEBFRQU2m43i4mKWLFni/t7mzZvZuHGj+/9//vOfOXnyJDabjbq6Oj7++GMWLOhdn3KhNYMZy/79iDYb2ujoHvOw5HqQS8ZcglFn7O/pEk0VUPYv6VhBteSK+nZuXV9Ak9lBxpgonl89t8/p5d7AMGGCW8W1ezeIv1iauhQBgQMNB6htC65d3pAxhMKCB6TjbY+Dy6WsPV5ArjsJU1NYAyLMrbdT6Hb8L0+7XEmTfIZGI/DHb8zm+sxkOlwiD7xSwuZDdUqb5TEjrSsruCvGhiGWkhJASmHJ3WWiKLp3SR61b25/AkQnTLgckpUJH1efs3Dr+gLOttqYmhjBi2tyiTB6qPY8CASNBlOnmrISqazRptHuUP1I2Sn1IOcuCImCs3L6NHhxtber9TqDRP59tRYV0mA+OzA9sCBEqxH4040ZXD0rEbvTxb0vF7PzeHCkhWRnQ8+/VQAAIABJREFUp+h0Ec22ZoWt8T2qsxNgmDvrdUKz57i/dvTcUapaqzBoDOSl5F14gdbTUPoP6VghXZ26Viu3rS+g+pyF8bFhvLx2HqNCDT6/rpLigiCF6wE+rxyBzo4xCubdIx1/+RiIorL2DAHL3r3gdKJLTkKfnKy0OUGFcfp0hNBQhNZ20urgktRLPNMDC2J0Wg1/uTmLy6fGY+twcdeLu9hTdU5psy5KWmQaE0dNxCk63VpIwxnV2QkgRJcLc2dkR575BF0fnguSFxCqD73wIvlPgtMGqfMg3f/daU3tdm5fX8iJ+nbGRJt45e55xEV40DnmBULndobQS0oQnU6/XLM7cri++Ewx56yBf7PzOvPuB30o1O6Bo8Fbu2Qu7nwPZmVf5EyV8xH0ekKzpAjn9ErRreky3NFrNTx5azYLxo+mzdbBqhcKOXQ68MeoyPeskbBBU52dAMJ+7Biu5mYEkwnjtGnur8tpETly0C/mRti1QTrO+x74WZq9xergjg2FHDrTSnxECK/cNY+kKJPfrm+cOgVNWBiu1lZshw/77boyYyLGMCV6Ck7RyeZTm/1+fcUJGw1z10jHXz6mrC1DoHsqWWXgtE6XFOqn12hYmDI85EA8wajX8tyquWSmjuKc2cFtzxdQUR/YyuLyZ8r2mu1YO/wryOpvVGcngDAXd7acZ2Qg6KXQ7+n20xxoOICAwCVjLrnwAoXPgb0NEmbCpOUXPtfLmO0drN1YRFl1MzFhBl65ax7po8P8aoOg02HKlrtB1FSWIix4ELQGqMyHiu1KWzNgxI4OLLt3A7gVgVUGRnGC9AE/o0aLUXuRZophRniIjo135jA1MYKzrTZuXV9AzTmL0mb1y7SYaSSGJWLpsLCzdqfS5vgU1dkJINzh8zm9U1hZ8VmMNo3u/8m2NijonPqe912/RnWsDif3vlxMUUUTEUYdL63JZVJChN+u3x0l52RBV1h4R80OzA6zIjYoSmQSZN0mHQdhdMd66BAusxlNRAQhEycqbU5Q8p6hnA4NhJ+z0VETfIJ7Q2VUqIGX1uYyLjaM6nMWbltfQH1bYKqLC4LAZakjY4OmOjsBhLlY+oAO7RY+9ziFVbwRLE0QMx6mf9VXJvbC4XTx4KulfHmknlCDlo135jIzJcpv1z+f7uKCogJFspOjJ5MSnoLNaWNHzQ6/Xz8gWPQdaUTJsc+lkSVBhKWkFABTZiaC1vt6UMOdky0nOWSp4GSCtNmSaxBHGvERRv5x1zySo4wcr2/n9ucLaTY7lDarT+TPls1Vm3G6/F/r6C9UZydAcNTU0FFTC1otpowMAJptzew6LTlAl6Ze2v+TO2zSbCKQ1JI1/rlJu1wiP/z3Xj4tP0OITsP6VXOZkx7tl2v3h3HmTISQEJyNjdhPVPj9+oIguG8eI1JgEKThoLNvko63rVPUlIHiHtWi1usMii8qpfEQTVMk1emR6uwApIwy8crd84kND6G8toXVGwtptwWewnh2QjaRhkiabE3sPrtbaXN8hursBAhyCss4bRqaMKnWZeuprThFJxNHTSQtMq3/J+9+FdpOQ2QKzL7ZH+YiiiK/fv8Ab5VWo9UIPHVrNgsnxPrl2hdCYzBgnDUTAEupMjdaOZW15dQWHK7A3M35nEXfkf4t/w80HFPWFg8RRRFL5/tQrv1SGRjyLKyYXEkIVo6UjVTGxYbx8tpcokx6SivPcfdLu7A6Ait6otfo3fWgwzmVpTo7AULXjrKrXke+cVwwheVywva/SMcL/x/ofK9nA/DkF0d5YXsFAP/3jdlcPs2zKfb+QG4ZNpcqc6PNjMskxhhDq73VHZkbccRPg0lXAiLk/01pazzCUV1DR10d6HSYZs1S2pygo9Ha6I4MZFwmbbpshw/jbA38FmxfMi0pko135hBm0LLjWAMPvlpKhzOwVMa7N1Yokf73B6qzEyCcP/zT2mFlW/U24CLOTvl70HQCTDGQfYfP7QT4x86TPPaJ1Nr9s2un87XsMX65rqeYOnU+lNpVajValqYuBUZwKgu6ojulr0Bb4MvoWzo3HMYZ09GY/CeZMFzYUrUFl+hiasxUxoydiT41FUTR3d02kslKi2b9qhwMOg2flp/hkbfKAsqpWJi8kBBtCKfaTnHk3BGlzfEJqrMTADibm7EdkV5gcmSnoLYAS4eFhNAEpsdM7/uJoiiNhgDIvRsMvm/1/u/eGn767j4Avn3ZRNYsHneRZ/gfU1YmAPbjx+loalLEBjmV9UXVF7jEwNrF+Y30hZAyVxK5LPy70tZcFHc3ZLbacj4Y5Ei0XF8YKstAjOC6ne4smDCav96ShUaAfxWf4n8/Oqi0SW5C9aEsSJJSj8M1laU6OwGAfDMwjB2LbrTUXt69C0vor4385HaoKQGdEXLv8bmdWw+f5eHXdyOKcNv8NB6+YrLPrzkYdN2GqCq1q5yXNI9QXSh15jrKG8oVsUFxBKErulP4nCSPEMDIkR1TtjLz5IIZS4eF/Jp8oMvZkeueRnrdTneunJHI/35tNgDPbjnO37cGTj3bcNcIU52dAMCt2No5IsLpcrK5ajNwkRSWHNXJ/CaE+bY4uKSyiXtfLsbhFLl2dhK//MrM/p2wAED+wLKUKuPshGhDWJgsqceOSDVlmanXSHII1nNdM9sCECm6ehToikioeM7Omp1YnVaSwpKYGjMVgFD5PbhnD6JjhBbq98FNOan8cIX0O/rdBwf5164qhS2SuCT1EjSChvLGcmrbapU2x+uozk4AcP7wzz1n99BobSTSEMmchH5C6nUH4cjHgCCp1vqQw2daufOFIiwOJ0smx/H4TZloNYHr6ADu+TwWBUPol6RKHQ5bqrYoZoPiaLRS4TxIhcrOwPzQk4vZu0dXVTxHTmEtTV3q3gQZJkxAExWFaLViPRg4KZtA4L5LxnN3nhR9/tFbZWw6cEZhiyDGGENWvHTflDMLwwnV2VEYl92OdZ9UAyPvhORIwOKUxeg1/UwMlnV1pl0Loyf4zL6qRjO3P19As8VBVtoonrktG4Mu8F827hB6WZliu8q8lDwEBMobyzndfloRGwKCjFsgLA6aq2D/O0pb0yfulnNVX2fAOF1OtpySHPruemCCRkNoplQ/p+SmIxARBIEfXz2Nr2ePwekSefDVEgqONyhtlvvvNxw3aIH/qTXMsR04gOhwoI2ORp+eDnS90OSOnl601MLe16Xjhd/xmW1nW23c/nwBZ1psTE4I54XVOYQadD67njcxjB2LNioK0WbDWq5Mzcxo02hmx0n5+a2ntipiQ0CgN0HuvdLxjr9IhfUBhrlULk5WnZ2Bsrd+L43WRiL0EcxNnNvje+5ZdWrdTi8EQeAPX5/Fsmnx2Dpc3PXiLg7UtChq05IxSwAoOlNEmz2wa+wGiursKIy5s6bElJWFIAhUtVRxvPk4OkHHopRFfT+p4BlwOSBtAaTm+MSuFquD1S8UUtFgZky0iZfXzmNUqH80fLyBoNF0taArpLcDXQ6rXIM1YslZC/pQOF0Gx79Q2poeuOx2rHvLAFVMcDDIqsmLx/SORMtK1OaS4oBqtQ4UdFoNf/tmNjljo2m1dXDHhkJONig3KX1c1DjSI9PpcHWQX5uvmB2+QHV2FEbuFjJ1hnvlcLAs4d0LWyvsekE6Xvhtn9hkdTi568Vd7K9pITbcwD/WziMhMvimF8vOjpK7SlmZtKC2YGQOBpUJjYHsVdKxLIIZIFj37Ue029HGxGAYO1Zpc4IOt/hpau9mCuPMmaDX4zxbj+PUKX+bFhQY9VrWr5Impde32bj9+ULqWq2K2SPfs4bbBk11dhREFEV31CE0q6ezI4cTe1H8ItiaIXYyTF7hdZucLpFvv1ZK4YlGIkJ0vLgml7Gxvtfv8QXubpCSEsV2lRNHTSQlPAW7y87O2p2K2BAwLHhAGhB6fDPUBI7QnDxWxJSdFdAdhoHIieYTVLRUoNPoWJyyuNf3NUYjpumSTphat9M/USY9L63JJS0mlMpGM6s2FNFsUabWUHZ2tlVvG1aDQVVnR0E6amvd8vTGmTNps7ex64w0XqDPeh2nA3Y+LR0veBA03v3ziaLIT9/dxycHzmDoHOw5I1m5CeZDxThzJuh0dJw9i6O6RhEbBEFw3zxkR3bEMioNZn5NOt7xhLK2dMPs3nCo+joDRa5Fy0nIIdwQ3uc5at2OZ8RHGnl5ba57cOjdLyozRysrIYsIfQSN1kbK6sv8fn1foTo7CiLfZI1Tp6Ixmdhes50OVwdjI8eSHpne+wn73oKWUxAWD7NXet2ev35+lFcLKhEEeOLmTOaND+4WXI3JhFHeVSo0FBR6tqCPWDVlGTn1uv9taKpQ1BTojK7u2QN0pZJVPEd24OXXeF/IdTuyaKNK/6SPDuPFNTlEhOgorGhUZI6WXqN314sOpw2a6uwoiCx4J99k5V2SHAnogSh27Ybn3Qt679bQ/LOwksc3SfOufnX9TFbMTPLq+kohpweVLFLOScghTB9Gg7WB/fX7FbMjIEiaDeMvBdEFBc8qbQ2O6hqcZ+ul6OqMGUqbE1S02FsoOSNtIpak9JN2p6t2znbkKM4WZbuNgoEZyVGsXzXXPUfrp+/u83sa3r1BU50dFW/gLk7OysTpcvLlqS+BfnZJxz6HM/tAHyZ1tniRz8rP8Og7ktbPg5dO5Pb5fUSVghRTlvIhdL1Wr6opd2dhpwhmyUtgbVbUFPk9aJw2DY0x+IrwlWRH9Q6copPxUeNJjUzt9zzd6NHSUFDAsnf4pEV8ybzxo3ni5iwEAV4rrOKJz4769fqLkxejETQcaTpCTZsyJQDeRnV2FMJlsbhVRUOzsiirL6PJ1kSEIYLM+D7C6bKIYPYdYIr2mh0llU1869USnC6Rm+aO4XvLA3Pe1WBx7yoPH8bZppxuhFyDNRzFugbMhMshbirY2ySHR0HO74ZU8Rx3CquvSPR5yL9fy57AKUwPdFbMTORXX5GijX/+9DCvF1X67dqjjKPIjOvZNBPsqM6OQlj37YOODnTx8eiSktxtfouT+1BNPnNA0iYRNDD/fq/ZcLSujTUbi7A6XFw6JY7f3jBr2HWj6BPi0aekgMvlrs1QgryUPDSChkNNh4bl3JkBIQiw4FvS8c5nwNmhmCldzk6GYjYEI06Xk23V24ALdI52w5Qh/X6VfA8GI7cvGMu3LpUU8n/89j4+P+i/sRLDbdyN6uwoxPlighcs9Nv5pPTvtOsg2jsppjMtVlZtKOSc2UFG6iievDUbvXZ4vhy6xAWV21VGG6PJiJNu+MNlpzQkZt0EobFSwX35u4qY4Oo2sylUjewMiLL6Ms7ZzvUfiT6PLmdnL6JrhBfpD5DvL5/C17JTcLpEvvVKKburzvnlukvHLAWg8HThsNAIG56fbkGAXDBrysykuq2ao+eOohW0vbUq2s7C3n9Jx/O/5ZVrS+rIRVSfszAuNowNq+YGzRiIwdA1AV3Z1le3WJdatyMV2OfeLR3v+JsiIyTc0dW4OHTJyX6/fjAjO+yLkxej01z83mGcOgUhJARXczP2ipO+Nm9YIY2VmM2SyXFYHE7WbCziRL3vVZbHRY0jNSIVh8tBfk3wqymrzo4CiKLoDp+HZmW6U1iZ8ZlEhZyna7PreXDaIGUOpOYO+dq2Dif3vlRMeW0LcREhvLQml9HhIUNeN5Bx7yrLyhTdVcp1O4W1w2OnNGTmrgVtCNSUQFWB3y/fvV5nuKVvfY1b/DT14iksAEGvl3SvUFNZg0Gv1fD0rdnMSomisd3Oqg2FnG21+fSa3TXChsMGTXV2FMBx8iTOpiYEvZ6Q6dPdLedy2LDrRCsUrZeO5z8g1ToMAZdL5Htv7CH/eAPhITpeWJ1DakzokNYMBoyTJyMYjbhaWrBXVChmx/io8YwJHyPtlIbZ3JlBER4HGZ16Ufl/8/vlzWpx8qCoaavhSNMRNIKGxcm9VZP7w73p2K0WKQ+GsBAdG1bnuFWW12wsot3m23o3uaxi66mtQa8Rpjo7CiDfZI0zZ2IRHBSdLgL62CXt+ze0n4XIFJh+/ZCuKYoiv37/AP/dW4teK/Ds7XOYmRK86sgDQdpVSl0Nlt3K7SoFQVC7ss5n/gPSv+X/hcbjfrusFF3tFBPMUp2dgSBvzjLjMhllHOXx8+QicDWyM3jiIkJ4cU0uMWEGyqqbuf+VEhw+FB2cEz+HcH04jdZG9tXv89l1/IFfnJ2nnnqKcePGYTQamTNnDl9++WW/5z733HPk5eURHR1NdHQ0y5Yto7CwsMc5q1evRhCEHo/58+f7+sfwGpZuxcn5Nfk4XA7SItIYFzmu6yRRhPynpOPce0Cr72Mlz3nuy+O8sL0CgMduzGDRxNghrRdsBEo3yHDaKXmF+GkwcRkg+lVk0FFdjbO+HvR6VUxwgMjOjiddWN0xZUhOpe3wYVztyk32DnbGxYaxYXUOJr2WrYfP8sM39/pMdLC7RliwN1b43Nl5/fXXeeihh3j00UcpLS0lLy+Pq666isrKvjUDNm/ezC233MIXX3xBfn4+aWlpLF++nOrq6h7nrVixgtraWvfjgw8+8PWP4jW6t7vK9TpLxizpWTdwYgvU7Qd9KMxZNaTrvbenht99IHWd/OSaaVyfmTKk9YKRQHF25J1Sg7Uh6HdKXkNuQy95GSz+6TSRNxzGadPQhAzvmjVvYnaYKaiV6qs80dfpjj5BktnA5cKyb4QriQ+RzNRRPHlrFlqNwFsl1Tz2ySGfXWu4tKD73Nl5/PHHWbt2LXfddRfTpk1j3bp1pKam8vTTT/d5/iuvvMIDDzxAZmYmU6dO5bnnnsPlcvHZZ5/1OC8kJITExET3IyYmxtc/ildwtrVhOyyNZTBmZPBltRTl6jX4U47qZN46JBHBguMNfP8N6QN+zaJx3JU3ftBrBTOBsqvUa7vmzsiO7ohn/KUQPx0c7VDyol8uqerrDI7C04XYXXZSwlOYMGrCgJ+v1u14j8umJvC7G6Si7ye/OMbL+RU+uU53jbDT7ad9cg1/4FNnx263U1xczPLly3t8ffny5ezYscOjNcxmMw6Ho5czs3nzZuLj45k8eTJ33303dXV1/a5hs9loaWnp8VAKy549IIroU1Io15ym0dpIuD6c7ITsrpPqj8CRjwFhSCKCR+taufulXdidLq6amchPrpk29B8gSAmkXaU6Bf08uosMFjwLTofPL+nuhlSLkweE/JrNS8kbVAebWrfjXVbmpPHwMkn1/mfv7efj/d53RnpohAVxdMenzk59fT1Op5OEhIQeX09ISOD0ac/+KD/60Y9ISUlh2bJl7q9dddVVvPLKK3z++ef86U9/oqioiMsuuwybre9WvN///vdERUW5H6mp/c9x8TXWvXsBqQNEfuEsSlnUUzV5Z2fUa/IKGD3w3RNAXauV1S8U0WLtIDttFH9emYlGM7LbawMllSXvlA43HQ7qnZJXmXUjhMVDSzUc8K3IoMtiwXpICvurnVieI4oiW6s6hxVfYMr5hej+HvT3cMvhyrcvn8gtuWmIInznn74RHZTrs4J5g+aXAuXzdwCiKHq0K/jjH//Ia6+9xltvvYWx25C+lStXcs011zBz5kyuu+46PvzwQw4fPsz777/f5zqPPPIIzc3N7kdVVdXQfqAh4O4AyZjd92wZcyPseU06XvDAoK7Rbutg7cZdnGqyMHZ0KOtX5WDUa4dk93DANHs2oLyzM8o4ilmxswDckvsjHl1Il8hgvm9FBs8f1aLiGQcbD1JnqcOkM5GTmDOoNYzTp4Nej7OhAcepU162cGQiCAK/vn4Gl06Jw+pwsXZjEZUN3tXxkmVRCmoLglYjzKfOTmxsLFqttlcUp66urle053wee+wxfve73/HJJ58wu/NDqj+SkpJIT0/nyJEjfX4/JCSEyMjIHg8lEEURS2dkxzx5DIebDktaFd1Vk4s3gsMMCbNgbN6Ar9HhdPH/XiulrLqZmDADG++U2hRVeobQld5V5qVIf1t50r0KMHcN6IxQUwqVvtMhMqtigoNC7sKanzSfEO3giro1ISEYp0vpdCVlIIYbOq2Gv30zmxnJkTS021n9QiFN7XavrT9h1ARSwlOwu+zuAvVgw6fOjsFgYM6cOWzatKnH1zdt2sTChQv7fd7//d//8etf/5qPPvqIuXPnXvQ6DQ0NVFVVkRTguzTHqVNuMcGdEdJAt9mxs4k2dhYgOx1Q+Jx0vGDgIoKiKPLz9/bz+cE6jHoNz6+ay9jYMG/+CEGNcfp00Olw1tfjqK5R1Ja8MZKzs7N2J3an925KQU1YrJTOgq5Urg9wR1fVFNaAkJ2dgXZhnU+gpJOHG7LoYMooE8fr27nn5V1YHU6vrC0IgnuDFqzRaJ+nsb773e+yfv16NmzYQHl5OQ8//DCVlZXcd999ANxxxx088sgj7vP/+Mc/8pOf/IQNGzYwduxYTp8+zenTp2lrawOgra2N73//++Tn51NRUcHmzZu57rrriI2N5YYbbvD1jzMkLHukqE7ItGlsPSPtXHtEdfa/A601Uu3CzK8PeP1nthznlYJKBAH+cnMWWWmD7+IajmiMRoxTpwJg3avsjXZqzFRiTbGYO8yU1JUoaktAIRfkH/wvnOtbnmIodB/Vojo7nlNvqaesvgzoctQHi9qR5TsSIo28cGcOEUYdRRVNfO9fe3C5vBPFlv/uX1Z/qXhkfDD43NlZuXIl69at41e/+hWZmZls3bqVDz74gPR0aXp3ZWUltbW17vOfeuop7HY73/jGN0hKSnI/HnvsMQC0Wi1lZWVcf/31TJ48mVWrVjF58mTy8/OJiIjw9Y8zJOSdTMisGe5QoPvGIYpd081z75ZqGAbAu7ur+cNHkpbOz6+dzpUzEr1j9DAjUHaV3dOXaiqrGwkzYNwSEF1dUU4v4qiuxtnQ0CkmON3r6w9XtlVvQ0Rk+ujpxIfGD2ktuQPOevAgLqvVG+apdGNyQgTP3jYHvVbg/b21/OHjg15ZNycxB4PGQG17LcfOHfPKmv7ELwXKDzzwABUVFdhsNoqLi1mypEt5c/PmzWzcuNH9/4qKCkRR7PX4xS9+AYDJZOLjjz+mrq4Ou93OyZMn2bhxo6IdVp5i6Ywm1KZHYO4wE2uKZWqMFGmgcqdUq6ANkWoXBsDO4w384F9S1OiuxeNYvWjcRZ4xcnHX7QRAvYC7bqdadXZ6MK8zulPyIti9q4kkO7nGKVNUMcEBMFjV5L7QJSejjYuFjg6sBw4MeT2V3iycGMsfvi7Vuj675Tgv7xz6pHmTzkROklSYHoz3LHU2lp9w2e3YDpQDsDOmEYBFyYvQCJ1/Ajmqk7FSql3wkCNnWrmnU0vn6lmJ/Pjqkaul4wlyZMd64AAuu7K1MguSF6AVtJxoPkFVq3IdggHH5CsheixYm2HPP726tFv6IUMVE/QUh9PBjhpJF21JytCdHUEQuqWylN90DFe+lj2G710hafD8/N19fFZ+ZshrBnPdjurs+AnbwYOIDgfa6Gg+cUhvcHcKq6kCDna2zc/3vN28rqVLS2duejSP36Rq6VwMfWoq2uhoRIcDW3m5orZEGCLIis8CgvPm4TM0Wsi9VzoueNarbehy3Zwp48IdnipdlNaV0u5oJ8YYw4xY78wRU+t2/MODl01k5dxUXCI8+Gope08NTYNHdnZKzpTQZm/zhol+Q3V2/IS8gxGmT+J4ywm0gpYFyQukbxY8K9UoTLhMGozoAe22Dta8WET1OQvjYsN47o65qpaOB/TYVQZAN4hat9MPWbeCIRzqD8Gxz72ypGi3u9MmpovIWah0ITvii1MWd0Wih4hctxMI78HhjCAI/OaGmeRNisXicLJm4y6qGgevk5MWmcbYyLF0iB3srN3pRUt9j+rs+AlZX+dUWigAGXEZRBoiwdYqDUAEmP8tj9bqcLr41qsl7KtuYXSYgY135hCtaul4TEDV7XRG94pOF2HtUIs13RijpLlwAAXPeGVJ66FDiHY72qgo9J0NEioXR67P6NE5OkSMM2aAVkvHmTM4PFTTVxkceq2Gp27NZmpiBPVtNu7cWESzefAjWdwbtCCr21GdHT8hOzuFo6UwojuFtfs1sLdC7GSYePlF1xFFkZ++u4/Nh85KWjqrc0gfrWrpDIRAiuxMGjWJhNAErE4ru87sUtqcwGLevYAARz6B+qNDXk5OYRlnz1bFBD3kdPtpjp47ikbQsDC5f220gaIJDSVkilRPoqayfE+EUc/GO3NJijJytK6Ne17eha1jcBo87rqdU9uCqgVddXb8QEdTE45KSTPkQ5N0085LyQOXCwqflU7KvccjEcGntxzjtcIqNAL89ZZsMlNH+czu4Ypx1iwQBBzV1XScPauoLYIgdOlXqKmsnoyeAJM6hwjL75MhIHdDqsXJniPv3mfHziYqJMqra7tTWQEQYR0JJEYZ2bA6h/AQHQUnGvmff+8dlAbPnMQ5mHQm6ix1HG467ANLfYPq7PgBOYLgTE2kQWcl3hTP5OjJUi1Cw1EIiYSMWy66zn/31vDHj6QBhj+/bgZXTL/wyA2VvtGGhxMycSLQFXFTEnmntPXU1qDaKfkFWWRw96tSd9YQkN+HanGy58gOuDdTWDKBFGEdKUxLiuTp27LRaQTe3V3DnzYdGvAaIdoQ5iXOA4IrlaU6O35AbnetSZPSTYvHLJbC6HItQtbtEBJ+wTWKTzbx3Tekm8KaReNYtXCsz+wdCQRS3c78pPnoNDpOtZ3iZMvQ9TCGFeOXQtw0sLdB6T8GvUxHUxOOk1J01TRrlndsG+Y4nI7e4qdexC0DsX8/osIyECOJvElx/P5r0nvgyS+O8VrhwJXKg7GxQnV2/IBcK1AU2wJ07uTrj8LRTYAAuXdd8PmVDWbufmkX9g4Xy6Yl8Og1qpbOUAmkXWWoPpS5CdIMuGDaKfkFQeis3UHqWnQNrs7AWiaNOjCkp6MdpaaiNi5tAAAgAElEQVR+PaGkrgRzh5nRxtFd4qdeRN/5txDtdqwHvaPyq+IZN85N5TuXTwLgJ+/sY+vhgaXzF4+RnJ3dZ3fTbBtaxNVfqM6OjxFdLiydN9qCmEZ0go75SfOh8O/SCZNXQMz4fp/fbHZw58ZCGtvtzEyJ5IlbMtGqWjpDxu3s7NuH6PTOsLyhoE5BvwCzV4IpGs6dhMMfDWoJd3GymsLyGPm1uChlkddazrujigsqy0PLJvG17BScLpEHXinh0OlWj5+bEp7ChKgJuEQX+bX5PrTSe6jOjo+xV1TgamnBZdBRGQdZCVmEu1yw+xXpBHnX2tdzO1zc949ijp1tJynKyPOrcgg16Pxk+fDGMGECmvBwRLMZ29Ghd/oMFTlNsOvMLsyOwetgDEsMoZC9Sjoe5DR0i6qcPGBkfR1fpLBkutLJakeWvxEEgd9/bRbzxsXQZutgzcYi6lo9l78ItsYK1dnxMfKOsjY1DKdWkHbwu1+VahBip0g1CX0giiI/fruM/OMNhBm0bFidQ0Kk0X+GD3MEjQbjrJlAYOwqx0aOZUz4GByurjoJlW7k3g2CFiq+hNP7BvRUURS7nJ3ZqrPjCTVtNRxrPoZG0LAgaYHPruOO7ARAo8BIJESn5dnb5zA+NozqcxbuenEXFrtnkW65bmdb9TZcosuXZnoF1dnxMXK76544aaDh4qSFXW208+7tt938yS+O8u/iU2g1Ak/ems20pEi/2DuSCKS6nR4t6GrdTm+ixsC066TjAYoM2isqcDU3IxgMGDu1XVQujBzVyYjL8HrLeXfcMhCnTtHR0OCz66j0z6hQAy/cmUN0qJ69p5p56PVSnB60pGfHZxOqC6XR2kh5g7KjdzxBdXZ8jLUzsnMw0UViWCIT6yug8TiEREHGzX0+593d1Tz2iaRf8IuvzGDplHh/mTuiCCRnB3oqk6ot6H0gt6HvfQPa6z1+mtwNaZw+HcGgKo17guxwy7VkvkIbEYFhglSzKEfBVfxP+mhp5JBBq+Hj/Wf43w8v7rzotXr3yKNg2KCpzo4PcVksWA9JOgZHkgUWpyxGkKM62beDobfy8a6KRn7wL+lNf3feOG6fr8ra+wrZ2bEfO4azpUVhayAnMYcQbYhbtVblPFLnQXIWOG1Q/ILHT1OHfw4Mu9PuTqX6Ql/nfOTUohwFV1GGuWNj+L8bpffIc1+e4B87Ly6D4W6sUJ2dkY31wAFwOmmO0NIQCXkRE+DYZ0jt5nf3Or+ivl1qMXe6WD49gR9dpbaY+xJdTAz6tDQALHvLFLYGTDoTOYk5QHDcPPyOIMC8zuhO0fPg9Gy+j1qcPDCKzxRj6bAQZ4rzScv5+chDWQMlwjqSuT4zhe9dIaV6f/7efjYfqrvg+YtSFgFQdraMJmuTz+0bCqqz40PkHeWhJBc6rZ75FZ2zj6ZcDdFje5x7zmxnzcYimswOZo+JYt3Naou5P+hKZQVGN4jagn4RZtwA4QnQWgsH3r3o6S6r1a3hYlSLkz1CrtdZlLLILzPE5I4sa9k+RFfgF7oOdx68bCJfzx6D0yXy4KullNf2H/VODEtkcvRkRES212z3o5UDR3V2fIi8ozySLDAnLoPQPW9I3ziv3dzW4eSel4s5Xt9OyigT61fNVVvM/YR7Vxkg3SBykXJpXSmtds91L0YMOgPMXSsdF1x8Xpb1QDl0dKAdPRp9SrKPjRseyM6OP1JYACETJyKYTLja2rAfP+6Xa6r0j9ySPn98V0v6mZb+W9Ldg0E7XzeBiurs+BA5LHs0GfJcIeBol6Tvxy1xnyOKIo+8WUbhiUYiQnRsWJ1DfITaYu4v5DoO6569AVEUnBqRytjIsThFJ/k1wSHW5Xfm3gkaPZwqhOriC57qHv6pTjr3iOq2ao43H0craN3Fp75G0OkwzZgBqKmsQMGg0/DsbXMZHxdGbbOVtS8WYbZ39HmuvEHbXr0d5yAVzv2B6uz4CEddHR21tbgEOJYokHes84PrvHbzJz47ylul1e4W8ymJEQpZPDIJmToVQa/Hee6cezK90sg3j0DfKSlGeDzM/Lp0XPD3C55qVet1BsS2U10t55EG/8lduMUF1Y6sgCEqVM/G1bnEhBnYV93Cd/65u8+W9Iy4DCL0EZyznWNfw8A0sPyJ6uz4CPkmWxULoyNjGNdwEoyjYPZN7nPeKa3mz59KLea/vn4mSybHKWLrSEZjMGCcPh0IoFRWtw6HQIg2BSTz7pH+3fcmtJ7p9zRZMFLtxPIMf6gm94UxwNLJKhJpo0N57o45GHQaNh04w+8+6N2SrtPoulrQA7jWUHV2fIS8QzmaLLDY5kQAyL7D3W5eeKKR//m3dM69S8bzzXlpClmqIs9LCpRd5ZyEOZh0Juot9RxsVAck9knKHBiTCy4HFG/s85SO+nocNTUgCJJ4ncoFsTltFJzunHLuY32d85Ejb7bDh3G1t/v12ioXZk56DH+6Ufr7PL/tBC/nV/Q6JxgEUVVnx0fIuecjyQJ5p4+CoIEcabr5ifp27nlZajG/amYiP1zh+/ZOlf7p0vkIDGfHoDVIw2IJ7JuH4siF/ruehw57r2/Lf0/DhPFow8P9aVlQIrecx5vimRztX6VpfUICuoQEcLmw7N/v12urXJzrMpL5wZVTAKkl/YuDPVvS5WL2Aw0HqLd4LvjpT1RnxweITifmfZJuS0WKhhyrrbPdPJ2mdjt3vlDIObODjNRRPH5TJhq1xVxR5BSHrbwcl733h6YSuNWUAzgsrDjTr4eIJGg7Awfe6fVtt5ig2nLuEf5uOT8fObpjDZBNh0pPHlg6gRvnjMElwoOvlnCgpqslPdYUy7QYSRdue3VgtqCrzo4PsB09BmYLFgMkhdkJFUWYd19ni/kuKhrMUov5HXMxGbRKmzvi0Y8ZgzY6GtHhwFYeGDNeloyROvb21u/lnPWcwtYEKFp9tzb03vOy3J1YanGyR8iOtb/rdWRMAZZOVumJIAj89oZZLJwwmna7kzUbizjd3NWSHuipLNXZ8QHyTfZYksBiSzvEz0BMX8T//HsvRRVNRBh1bLwzh7iIEIUtVQHpTRxoKq6JYYlMHDURl+hiR80Opc0JXObeCdoQqQX91C73l0WnE2unKrZanHxxTrWeoqKlAp2gc6dQ/U2gvQdVemPQaXj6tjlMjA/ndIvUkt5uk1rS5TqvHTU76HD13aauJKqz4wPaSiXtjyPJkGe2wLx7WffZUd7dXYNOI/D0rXOYlKC2mAcSgdj6GixiXYoSFguzviEdd4vu2I8fx9XejmAyETJxokLGBQ/uKefxGUQYlLk3GWfMAK2Wjro6HKdPK2KDysWJMul5YXUOo8MM7K9p4Tv/lKakz4qdRVRIFK32VvacDTyHVXV2fEBTSZH0b4KLdH0E73Qs5C+fHQHgN1+dyeJJsUqap9IHgdj6KtftbK/ZjktUZfT7JbezDX3/29BSC3SbhzVjBoJOVSO/GP6acn4hNKGhhEyWCqMDadOh0pvUmFCeWzWXEJ2GT8vr+M37B9BqtCxMXggE5gZNdXa8jLOtHd3JGgCSRlmpHn8TP3hPcnTuXzqBm3PVFvNAxNTZmuyoqqKjsVFhaySy4rMI04fRaG3kQMMBpc0JXJIzIW0BuDrc09DlD0ujmsK6KDanjcLaQsB/IyL6Q01lBQ/ZadE8flMmAC9sr2Dj9hMBHY1WnR0vY9lXhiDC2UiYq7GxZn8GDqfINbOS+MHyKUqbp9IP2shIDOPHA4ET3dFr9WoLuqe429A3QIfN/WGpdmJdnOLTxVidVuJD/d9yfj7uwbx7VWcnGLhmdpJbOuVX/z2AyzwJgIONBzlrPqukab1QnR0vU73zcwCOJ4HVPptD1lFkpY3iTzdlqC3mAY68qwyk1ld5px2IO6WAYuq1EJkC7Wdx7fontiNSNFWuxVLpn+4pLKXnh7ln1e3bj9gReEWuKr2575LxrJybikuER/5VwfhIyfkJtCnofnF2nnrqKcaNG4fRaGTOnDl8+eWFd6lvvvkm06dPJyQkhOnTp/P222/3+L4oivziF78gOTkZk8nE0qVL2R8gQlT1u6QPJXu8k/XtV5AaY+K5O+Zi1Kst5oGOu0h5d+DsKmVnp+xsGU3WJoWtCWC0esiR2tAt7z8DLhe6hAT0CQkKGxb4+HvK+YUwjBuHJiIC0WrFdviw0uaoeIAgCPzmhpksmjgas91J5SmpVCPQNmg+d3Zef/11HnroIR599FFKS0vJy8vjqquuorKfoYv5+fmsXLmS22+/nT179nD77bdz0003UVBQ4D7nj3/8I48//jh/+9vfKCoqIjExkSuuuILW1lZf/zgXRBRFDAdPAqCLMlAeMpMXVucQG662mAcD7nqBsjJEV2AUBCeGJTIpehIiotqCfjGyV4POiPWwdG+R/54q/VPVUqV4y3l3BI0G06yZQOCkk1Uujl6r4alb5zApPpzmxgkA7KgOrBZ0nzs7jz/+OGvXruWuu+5i2rRprFu3jtTUVJ5++uk+z1+3bh1XXHEFj/x/9s48Pqr63P/vmcls2QZCCIEQCGsWkhB2AqiIGkCFXr3Yq/Ziva1oa6169d7+SrUKeIXW1l63a7VK1Ra0rrRiZVdZJAkCCRAIkS3sgRjCZJlJMsv5/XFyJgkhySSZmXNm5rxfr3nlZOac73kmy5nnPMvnWbyYtLQ0Fi9ezA033MALL7wAiA7FCy+8wBNPPMHtt99OZmYm77zzDjabjXfffdffb6dTrOXfEl3nxqmFA6YZvP7vExmZoLaYBwvG0aPRmEy4a2tpKi+X2xwPrQeDqnRCVD/IugN7lR5Q9XW8QfqbGjdgHNEGZYzUMI1VngyEStdYzHr+fO8k+upGEFNjIPZ8DcXni+Q2y4NfnZ2mpib27NlDXl5em+fz8vLYufPqd6n5+fnt9p89e7Zn/xMnTlBRUdFmH6PRyHXXXdfhmo2NjdTU1LR5+ION7ywH4Hw8zJj3ONNGqi3mwYQmIkLU+kBZF1opvbDz7E61Bb0rpjyAvcoAgGnEIJmNUT5KSmFJqB1ZwUtyXCRv3DOZW/br+d83XFQ9cJ/cJnnwq7Pz3Xff4XK5GHBF3nzAgAFUdCAaVVFR0en+0tfurLlixQosFovnkZyc3KP30xXauirsBqhJiuFfp4zyyzlU/IvnQqugbpCchByi9dFUN1Zz8Dtl1KYpFYcmAaddBxoBs61AbnMUTYOzgW8qRE0wOfV1rkTqyGo6fhyXn25MVfzH+OQ+XH9BLCk5PzAGQRBktkgkIAXKV1b4C4LQadW/N/t3Z83FixdjtVo9j9OnT3fHfK9Z8PvPiPx0HbN+945f1lfxP55uEAVFdvRaPbmDcgE1ldUVUjTAaHGiPbgKHA1dHBG+7L6wmwZXAwMiBzCyj3JUpiPi4tA335DaDxyQ2RqVbnNiK/3PiQOVF9z5pOwdfhJ+dXbi4+PR6XTtIi4XL15sF5mRSExM7HT/xMREgG6taTQaiY2NbfPwF2kpKcQNTvfb+ir+xTN5uawMt90uszUtqC3o3iHJBpgTDWCrgpKPZLZIubROYSnlA0lCiTIQKt7h/PJVnHWiarl5gvxF7xJ+dXYMBgMTJkxg06ZNbZ7ftGkT06ZNu+oxubm57fbfuHGjZ/9hw4aRmJjYZp+mpia2bt3a4ZoqKt4SkZhIRP/+4HLRcEg5qsWSs1PyXQmXGpSh8KxEpFor8xRxajyFr4FCwuhKQ3J25Jpy3hmeCegKkoFQ8YLqchoKtwJgGDwIXZ8+MhvUgt/TWI899hhvvvkmf/7znyktLeU///M/OXXqFD/5yU8AuOeee1i8eLFn/0ceeYSNGzfy29/+lsOHD/Pb3/6WzZs38+ijjwJi+urRRx9l+fLlrFmzhpKSEu69914iIyO5++67/f12VEIcjUbjGTGgpCLlhMgEUvumIiDw9VlliXUpBcHlwt6st2W65T6IMEPFATiVL7NlyuNUzSlO1pwkQquMlvMraVFS3q+Ymg8VL9j1hqcb0jR+gszGtMXvzs6//du/8cILL7Bs2TJycnLYtm0bn3/+OUOHDgXg1KlTnD9/3rP/tGnT+Nvf/sZbb71FdnY2b7/9Nu+//z5Tpkzx7POLX/yCRx99lAcffJCJEydy9uxZNm7cSEyM2uat0nukEQNK0/lQU1md03j0KILNJg6UHDMOsr8vvtBqGrqKiFT7NT5hPFH6KJmtaY8xPR2NXo+ruhrHmTNym6PiDU31UPRX7JeapR8UNqolIOOAH3zwQR588MGrvvbVV1+1e27BggUsWLCgw/U0Gg1LlixhyZIlPrJQRaUFJXZkgZhuWFmykq/PfY3L7UKnVVW5WyMVJ5uystDodOK8rL3vQOlncPk09PFPF2YwooQp552hNRgwpqfTsH8/9uJ9GPzUQaviQ/a/j2C30lAtSj4oTedKnY2lonIFpsxM0GpxnjuP4+JFuc3xMLb/WGL0MVgbrZRUlchtjuKQInFSCoQBY2DYtSC4YPdKGS1TFnannd0VuwFl1utItNx0KCvCqnIVBAEK/4SjToerATR6PcZUZQ2+Vp0dFZUr0EVHYRwptuIqqRskQhvhaUFXU1ntkeQC2txRThFrA9nzNjiU010nJ99UfEOjq5GBUQMZbhkutzkdok5ADyJObIPKUuyXxVISY0Y6WoNBZqPaojo7KipXwazAImVoqdvZfkbV22mNq66OxqNHgStmYo2eA32GgL0a9n8gk3XKwtOFpYAp550h/Q82HirF3dQkszUqnVL4OgB2bQagvHodUJ0dFZWrYlJoCF1ydg5WHaTKXiWzNcqhoaQEBIGIQQNF6QAJrQ4m3y9uF74e9m3ogiB4HGUljYi4GvrkZHR9+yI4HDSWlsptjkpHVJfDt+sAPKNalDiEV3V2VFSugnRn0nDgAILLJbM1LfSP7E96nChaqU5Bb8Gjr3O1O8px/w76SLh4EMrDO/1XXlPOmboz6LV6pgyc0vUBMqLRaFrNyVLWTYdKK755EwQ37qEzaTxyAlBecTKozo6KylUxjhyBNjISt81G47FjcpvTBjWV1R5PcfLV7ijNfWHsneJ2mLehSymsCQMmEKmPlNmarmnRvFLrdhRJUz3s/QsAjfE3Izgc6Pr08Yz7UBKqs6OichU0Oh2mrCxAeRdaydmRWtDDHUEQPEWsHd5RTn5A/Fr2OVSfDJBlykNykJXacn4lStW8Umlm/wfQYIW+w7BXi86zKTtLkbVgqrOjotIBSp3Pk90/mxhDDDVNNRz4Th2U6Dx/Hlfld6DTYcrIuPpOCWkwfCYIbjHsHobYHDZ2X1B+y3lrzNniDYfj9Gmcl9QxKYpCEDyFyUxehL1EvBYpsTgZVGdHRaVDlNqRFaGNYNogcQ6cOgW95a7fmDoardnc8Y5Tfip+3fuOGH4PM3ZV7MLhdpAUnURKbIrc5niFLjYWw3CxPV6N7iiM5nZz9FGQ84OrSz8oCNXZUVHpAKkjq/HoUdz1yvpwlNIQqt5O6+LkLi6yo/Kg7zAx7L7//QBYpixap7CUmGboiJYiZWWlk8OeXX8Sv+bchasRmk6K6WFzc/pfaajOjopKB+gTEogYOBDcbuwlB+U2pw3Tk6YDcKjqEN/Zv5PZGnlpKU7uInyu1YZtG7ogCIqect4Z5pzmzkiFRVjDmupysf4NYPL92A+IKSzD0KGKmnTeGtXZUVHpBKWquMab4z0t6OE8BV1wOGhonnTuVfh83A/EsHvlYTix1c/WKYfj1uOcqz+HQWtgUuIkuc3pFp7IzoEDCG63zNaoAJ52c4ZfD/1TPTccJgXq60iozo6KSicoOYQu3aGHcyqr8cgRhIYGtDExGIYN6/oAkwVy7ha3peLKMED6G5mUOAlzRCd1TQrEOHo0GpMJd20tTSdOyG2OSqt2c6aIXY6dSj8oBNXZUVHpBCla0LBvP4LC0h5S3c7X577G6XbKbI08eC6yWVlotF5ezqRUVtk6uBQeH56eep0gS2EBaCIiMI0ZAyivWSAs8bSbp8CoPARBoGF/cyeWQouTQXV2VFQ6xZSRATodzspKnBUVcpvThqz4LCxGC7VNtWHbgi59+Jm6c5HtPxpG3AAIYdGGXu+oZ8/FPUDw6OtciVLTyWFH63bzSYtAq8Nx+jSu6mpx0nlamrz2dYLq7KiodILWbMaYOhpQ3l2lTqtj2sDmFvQwVVPucfhcmoa+96/QWOdjq5RFwfkCnG4nQ2KGMCR2iNzm9Ah1bIRCOP6V2G5uiIbxC4GWFL9pzBjFTTpvjersqKh0gVmhQ0EBZgwW1ZTDsW7HVVtL0/HjQMudv9eMvBHiRkCjFfb/zQ/WKYdgTmFJeCagf/stbrtdZmvCmII/il9z7hbr3wB7UTHQg//BAKM6OyoqXWAemwMoM4Q+fZDYgl56qZRKW6XM1gSWhgMHQBDQDx5MRFxc9w7Waj3FlRS+DiHa5dO65VzpU847IyIxkYiEBHC5PN13KgGm6hgc2SBuS5FRWiI7kkSAUlGdHRWVLvAUKZccRHA4ZLamLf3M/RjTTyzeDLfojuci29MOkLF3gSEGvvsWjn/pQ8uUw5HLR7hgu4BJZ2LigIlym9NjNBpNK0Vz5d10hAXSEN1Rs6HfCADcdjsNZWWAGtlRUQl6DCkpaGNiEBoaaDxyRG5z2iHdsYefs9NLeXpTrKi7AyHbhi6lsCYlTsIUYZLZmt5hUut25KPBCsXvittTf9ry9KFD4HQS0b+/KMCqYFRnR0WlCzRarUcCXYl1O1ItRv65/LBpQRcnnftAyExqQz+yQQzThxjBqpp8NVo6spT3PxjyFK2Cpjrony4O1G3GXtySwlL6CBLV2VFR8QKTQoeCAmT2y6SPsQ+1jlr2VYZHiN9x9iyuS5dAr+940rk39BshzswC2PWGb4xTCLVNtRRdLAKCu15HwjxmDGi1OCsqcFy4ILc54YPb1ZLCmvoTaOXUeFLJCk9hgersqKh4hZLvKnVanWcKeriksjztrqmpaI3G3i0mFSoXrYLG2l5aphwKzhfgElykxKaQHJMstzm9RhsVhXHUKECt2wkoZevg8ikw94Ws77d5SXV2VFRCDKkItunYMVw1NTJb055wq9tp8KU8/fBZ0G8UNNVC8Xu9X08hhELL+ZVIv+8GBd50hCxSu/mEe8EQ6XnaUVGB88IF0OkwZWbKY1s3UJ0dFRUviIiLQ58s3h1LE36VxPSk6WjQcPjSYS7aLsptjt/pdXFya9q0ob8WEm3oodJyfiVSe7MS08khyfn9cHIHaHSiYnIr7MWivo4pNRWtWfnz1lRnR0XFS5R8VxlniiMzXry7CvUp6EJTk9gFgg+nLI+9C4yxcOkYHNvimzVlpKy6jEp7JeYIc1C3nF+JR+CzpATBGR7F+LIidSlmfA8sSW1eal2cHAyozo6KipeYFVykDC138NvPhvboiIaybxGamtBaLBhSUnyzqDEaxony955izCBGSmFNSZyCQadcCf/uYhg+HG1UFILdTuPRo3KbE9rUVcKBD8TtqQ+2ezmY6nVAdXZUVLym9dgIpU1Ah5Yhj/nn8nG4lSV+6EskJWtzdrZv210n3wdo4Ohm+E55ekrdIZRazluj0ekwZTfLQCj0piNk2PMWuJogaQIkT2rzktDU5FGyVp0dFZUQw5iRgUavx3XpEo6zZ+U2px1j4sfQ19iXOkcd+y6GbreKT4uTWxM3HEbPEbd3/cm3awcQa6OV4kqxniKU6nUkzNlS3U7o/o3LjrMJvnlT3J7y03YvN5SVITQ1obNY0A8dGmDjeobq7KioeInWYMCYng605KuVhFajZVqS2IK+7ew2ma3xHz4tTr4SqVC5+F1RNTYIyT+Xj1twM8IygkHRg+Q2x+d40skKnFUXMhxcA3UXIGagWK9zBdL1zxQEYoISqrOjotINWlJZyrzQXpt0LdBSsxFqOKuraSovB/wQ2QFRHTY+VVSLleTxg4ytZ7YCoZfCkmiRgTiOqzZ0dJEUgyBAYXO7+aQfQ0T7mi8pqhaZkxNIy3qFX52d6upqFi5ciMViwWKxsHDhQi5fvtzh/pcuXeLnP/85qampREZGMmTIEB5++GGs1rZ3WBqNpt3jtdeCv6hQRfl4hoIqtF5getJ0dBodRy8f5UztGbnN8TnSRdYwbBi6Pn18fwKN5opp6C7fn8OPuNwuT4H6dYOvk9ka/xARH48+KQkEgQYFykAEPacL4VwRRJhgwn9cdZdgK04GPzs7d999N8XFxaxfv57169dTXFzMwoULO9z/3LlznDt3jt///vccOHCAt99+m/Xr1/PjH/+43b5vvfUW58+f9zx++MMf+vOtqKgArdrPS0sRmppktqY9FqOFcQnjANh2JvRSWZK2h9mfd5Rj7wSTBapPwLcb/HceP7D/u/1YG63EGmLJSQieu+7u0pLKUuZNR1AjiQhm3QFR8e1edlZV4Th9GjQaTM0zA4MBvzk7paWlrF+/njfffJPc3Fxyc3N54403+OyzzyhrHgl/JZmZmXz88cfMmzePESNGMGvWLJ599lnWrl2L8wpNhT59+pCYmOh5mINA1Egl+NEPGYKuTx+xG6GDv2O5ke7oQ9PZkbQ9/PhBbohquaPN/z//nccPbD0tprBmJM0gQhshszX+Q52A7icun4bSteL21PaFydAS1TGOHIEuJiZQlvUavzk7+fn5WCwWpkyZ4nlu6tSpWCwWdu7c6fU6VquV2NhYIiLa/uM+9NBDxMfHM2nSJF577TXcnaieNjY2UlNT0+ahotITNBqNooeCAlybLNbt7KrYhc1hk9ka3yG4XC2dWP6uFZh8P2gjRPXYc0X+PZcPkep1QjWFJdF6Vp0SZSCClm/eAMEFw66FAWOuuounODmIUljgR2enoqKChISEds8nJCRQUVHh1RpVVVU888wzPPDAA22ef+aZZ/jwww/ZvHkzd955J48//qKf5ukAACAASURBVDjLly/vcJ0VK1Z46oYsFgvJycE/FE9FPjxFygptfR0WO4zkmGQcbgf55/LlNsdnNB45gttmEwdCjhzh35NZkmDM7eJ2/qv+PZePOFN7hqOXj6LT6JieNF1uc/yKKSMD9HpcVVWKlIEIShprYffb4vZV2s0lgrFeB3rg7CxZsuSqBcKtH7t37wa4akuaIAhetarV1NRwyy23kJGRwdNPP93mtSeffJLc3FxycnJ4/PHHWbZsGb/73e86XGvx4sVYrVbP4/Tp09181yoqLXh0PhTakaXRaDx39tKdfijgqdcZm41Gp/P/CXObVWMPfgJW5X+gSmnLnIQcLEaLzNb4F63RiCk1FVDuTUfQUbQaGq3Qb2SL3tQVCC6XZzZgyDs7Dz30EKWlpZ0+MjMzSUxM5MKFC+2Or6ysZMCAAZ2eo7a2ljlz5hAdHc2aNWvQ6/Wd7j916lRqamquej4Ao9FIbGxsm4eKSk8xNyu4Ok6ewlldLbM1V+e65Ja6HbcQ/IMtAexFAShObs2gcTB0BridQSEyKDk7oZ7CkpA+bJU4qy7ocLugoDmCOfVBcTjuVWg8ehRBiq6O8HN01cd029mJj48nLS2t04fJZCI3Nxer1cquXbs8xxYWFmK1Wpk2bVqH69fU1JCXl4fBYODTTz/FZDJ1aVNRUREmk4k+/mhFVVG5Ap3FgqH5H12KNiiNCQkTiNJHUdVQxaGqQ3Kb4xMC0ol1Jbk/E7/ueQsa6wJ33m5S76hnV4V4rZUc3VDH05GlQIHPoOPwZ3D5JJjjxKG4HeBpEAhUdNWH+K1mJz09nTlz5rBo0SIKCgooKChg0aJF3HrrraQ2hx/Pnj1LWlqaxyGqra0lLy+P+vp6Vq5cSU1NDRUVFVRUVOByiXoXa9eu5Y033qCkpIRjx47x5ptv8sQTT3D//fdjNBr99XZUVNpgHid+4ErRBqWh1+mZNki8qQiFVJazupqmkyeBAIfPR88Rx0g0WBUtMlhwrgCH20FyTDLDYofJbU5AULoMRFCx8xXx66QfgyGyw92kG45gK04GP+vsrF69mqysLPLy8sjLyyM7O5u//vWvntcdDgdlZWXYbGLHyJ49eygsLOTAgQOMHDmSgQMHeh5SnY1er+fVV18lNzeX7OxsXnzxRZYtW8bzzz/vz7eiotKGyHGilo29SLmdOp66ndPB7+xIF1nD8OHoLAGsR9FqWyY+F7yqWJHB1l1YwSLf31v0Q4eis1gULQMRFJzeBWd2gc4AkxZ1umuwFicD+FWIIS4ujlWrVnX4ekpKSpu2wZkzZ3bZRjhnzhzmzLl68ZSKSqCQUin2AwcQHA40XdSVycGMpBlo0FB6qZQL9RcYENV5rZySCYi+Tkfk3A1f/I8oMli2DtJvDbwNneAW3J56nWsHXyuzNYFDkoGo37Yde/E+zEEkcKco8pujOlnfh5iOrxEuq5Wm48eB4HR21NlYKio9wDBsGFqLBaGhgYbDyryr7GfuR1Z/8QMg2AeDttTryHCRNUTBxB+J2woUGTxUdYiqhiqi9FFMHDBRbnMCijoBvZdUl7eICEr1aR1g3y92YemHDiGib18/G+Z7VGdHRaUHaLRazwevklNZMwfPBGDb6eB1dgSns6XdVa7Bg5PvB60eTu2Es3vksaEDvjr9FQDTBk1Dr1NehNGftNTOKfd/UNEUvAaCG0bMggEZne4azCksUJ0dFZUe46nbUWhHFrSkNQrOF9DgbJDZmp7ReOSI2O4aHY1x5Eh5jIgdCJn/Km4rTGQw3FrOW2MeOxa0Whxnz+K4cFFuc4IL+2Uoaq6hzX2o691VZ0dFJTwx54jOjq1YuXeVo/uOJjEqkQZXg6c1OdjwpLCys9B0oP8REDwig2vAqoyJ8hfqL1B6qRQNGmYkzZDbnICji47GOHo0oEZ3us3ed6CpDhIyxMhOJwhutzzSDz5EdXZUVHqIOSsTtFqc587j8HIESqBpo6YcpF1ZirnIDhwLKdeIs4MUIjIo1WJl9c+in7mfzNbIg5rK6gEuBxS+Lm7n/gy66OBrPHoUd20tmshIj3J1sKE6OyoqPUQbFYUxrVmyPghSWVvPbA3KoYk2pTg70FLEufttaJB/oLDkwIZjCksicvx4AGyqs+M9B/8ONWchKgGy7uhyd/te8Wdrzs5GE+HXJm6/oTo7Kiq9IDJH+Xo7UwZOwRxh5oLtAt9Wfyu3Od3CeekSjpOnAIXUCoyaDfGjxRlCe9+R1RS7007B+QIgvJ0dc3PtXMOhQ7gbgrMuLaAIAuS/LG5Pvh8iuhbjtRftBSBy/Dh/WuZXVGdHRaUXSBdam0KVlAGMOiNTBk4Bgk9NWdLXCbiYYEdotTDt5+J2wR/BKZ9y7zcV39DoaiQxKpHRfUfLZofc6JOSiOjfH5xOGpq79lQ64eTXcH4fRJhbJBW6wCZFdsaN96dlfkV1dlRUekGw3FUG6xR0KWIm1WUogux/g+gBYhqg5GPZzGidwgoX1eSrodFoMHtSWcq96VAMX78kfs25C6K6rvNyVlbiOH0aNBp5dK58hOrsqKj0An3SoJa7ypISuc3pkGuSrgHgQOUBquxVMlvjPba9Uvh8gsyWtCLCCFN+Im7vfElMCwQYQRA8jms4qSZ3hKdIufnvRaUDLhyCIxtAo/Wq3RxaojrG0aPRxcT40zq/ojo7Kiq9QKPReApnlVwgOSBqAOlx6QgIHl0WpeNuavKkJcxKqxWY+CMwRMPFQ3B0c8BPf/jSYS7YLmDSmZicODng51caUpGyvagoKIvwA8bXL4pf0+dDvxFeHSI5kIr7H+wmqrOjotJLzB5xQWVL1l+ffD0AX57+UmZLvKOh5CBCUxO6uDgMKSlym9MWcx+YcK+4LX2ABBDpd5g7KBdThCng51caprQ0NEajOL/pxAm5zVEml09DyUfi9vRHvD5MuomTHMpgRXV2VFR6SWudDyXfVc4aIgqH5Z/Lx+60y2xN19j3imMZIieMV2ZNytSfgjYCyrcHfITEF6e+AFp+p+GOxmDwDAJVcmekrBS8Cm4nDLsWkrxzXNx2Ow2HDgHBXZwMqrOjotJrTGPGoNHrcV26hOPUKbnN6ZDRfUczKGoQDa4G8s/ly21Olyi+A8QyuEWjRCr6DABn685SVl2GVqMN65bzK/F0Rqp1O+2xXYI9zVIJ3Yjq2A8cAKeTiIQE9EmD/GRcYFCdHRWVXqI1GDBlZgLKrtvRaDSeSIAUGVAqgtvtqRWInKBQZwda2tBLP4WqYwE55ZenxBTWuIRx9DUF3/RpfyHVlNjVjqz2fLMSHPUwIAtG3OD1YR4xwfEKja52A9XZUVHxAZ66nb3KdXagpW5n65mtON1Oma3pmKYTJ3BdvozGZMKUni63OR0zYAyMvEmcHJ3/fwE5pVSvI/0uVUSkRoGm48dxVlfLbI2CcNih8DVxe/ojXY6GaI1NEhNUkvRDD1GdHRUVHyApi9r2BLZ2o7uMHzCeWEMslxsvU3xRuXfA0s/RnJWFxmCQ2ZoukNICxauhrtKvp7I2WtlzQfzZzEpW63VaE9G3L4bhwwE1utOG4tVg+w4sQ2DMbV4fJg7/bJ50HuTFyaA6OyoqPsE8QdSBaTp2TNF3lRHaCE+dxxenlZvK8oTPlZzCkkiZAYPGg7MBvnnDr6fadmYbLsHFyD4jSY5N9uu5ghF1KOgVuJyws3k0xLSHQOf9XKum48dxW61ozGZMaWl+MjBwqM6OiooPiOjbF8MIUbfCrvDojlS38+WpLxXbPeYRE5ygIDHBjtBoYPrD4vauP0FTvd9OpXZhdU7LUFC1SBkQa8mqy8EcB+P+vVuHSv+D5qwsNHq9H4wLLKqzo6LiI6QPZttuZTs70wZNw6A1cKbuDEcuH5HbnHY4KyvFrrZWgo2KJ30+9E0BezUUrfLLKRqcDXx97mtATWF1hGd8y4EShCb55pYpAkGAr18QtyffD4aobh3eUpwc3GKCEqqzo6LiIyInNjs7Co/sROojyR2UC7R09iiJoJSn1+paOrN2vgwuh89PUXi+ELvTTkJkAhn9Mny+fihgGDYMXZ8+CI2N2A8elNsceTmxtWXg5+T7u324pzg5BOp1QHV2VFR8hhTZaTh0CHe9/1IZvsDTgq7Aup3WYoJBRc4PICoBrKdh//s+X17qwpqVPCvo24D9hUajwdx806H0dLLf2dEc1Rm/0KuBn61xfvcdjpNBFl3tAtXZUVHxEfqkJCIGDgSXC/s+ZY+OuHbwtWjQcKjqEBX1FXKb0wbbHmkWTxDU67RGbxaLQAF2/C+4XT5b2uV2tbScD1FbzjsjcuJEAGzf7JbZEhk5VwzHvwSNzuuBn62R9MKMI0eii431tXWyoDo7Kio+JFjqduLN8eQkiHdsSpqV5bbZaCgtBVra+YOKiT8CUx+oOgqH/uGzZQ98d4BLDZeI0ccwacAkn60bikROFH8+tr17EVy+cziDiu2/F79m3g59h3b7cPtu0VEMim5IL1GdHRUVHxIsdTvQIkqnJDVl+/794HIRMXAg+kFBKE9vjBFnZgFs/4NYJOoDpN/RjMEz0OuCvzPGn5jSUtFGReGuraXxiPIK8P3OxVIoXStuX/NfPVqi/ptvAIicFDqOtersqKj4ECmyY9+3T/HdIFLdzu6K3VgbrTJbIyI5iUFdFDn5fjBEw4UD8O2GXi8nCAKbT20G1JZzb9BERHhE8MIylbX9efFr+nxI6L4+jqu2lsbSw0BLlCwUUJ0dFRUfYhgxAp3FgtDQ4JkWrFSGxg5lVN9ROAWnYlJZdk+9ThCmsCQi42DSj8Xt7b/vdXTn2+pvOV17GqPOyLVJ1/rAwNDHU7ezO8ycnapjUPKxuH1tz6I6tj17QBDQDx2CfkCCD42TF9XZUVHxIRqt1qOmHAyprJuG3ATA5pObZbYEBKcTe7Eo8x/UkR0Qi0IjTHDmGzixrVdLbTy5ERD1kSL1kb6wLuSJnNTi7ChVONMv7PhfcU7bqNkwcGyPlpDqdUIphQWqs6Oi4nOCpUgZ4KahorOz89xO6prqZLWl4dAh3DYb2thYjKNHy2pLr4lOgPH3iNtSsWgPkRxR6Xel0jWmzEw0RiOuqiqaTpTLbU5guHwa9r0nbvcwqgOt6nWao2OhgursqKj4GE+R8t69CG63zNZ0zog+I0iJTcHhdrD1zFZZbbG1ushqdDpZbfEJ0x4GbYQY2Tn9TY+WOHb5GMetx8WZZsnX+djA0EVrMGAeK0Y2bLt79rMPOr5+EdxOGHYdJE/u0RLu+noaDorp9yg1sqOiotIZpowMNGYzbquVxqNH5TanUzQajSdiIHcqq37XLgAiJ4fIRbZPMoy9U9zuYXRn08lNAOQOzCXWEBp6J4EirOp2aitg71/E7Wv/u8fL2IqLwekkYtBA9ElJPjJOGfjV2amurmbhwoVYLBYsFgsLFy7k8uXLnR4zc+ZMNBpNm8edd97Z63VVVAKFRq/33FUGg4qr5OzsOLsDm8Mmiw2C04m9Oe0XUrUCMx4DjRa+XQ8VB7p9uJrC6jmt63ZCnp0vg6sRkqdAyoweLyP9rEItqgPg/bz3HnD33Xdz5swZ1q9fD8D999/PwoULWbt2bafHLVq0iGXLlnm+N5vNPlm3u7hcLhwO38+4Uek9er0enYJTHZETJmArKMC2ew9977pLbnM6JS0ujaToJM7WnWXH2R3kpeQF3IaG0sO46+vRxsRgSut+u6xi6TcCxtwmdshsfx7ueNvrQ0/VnKKsugydRufRRFLxHvPYsRARgfPceRxnz4ZcpMJDfRXs/rO4fe1/Qy9GiUipZHOI1euAH52d0tJS1q9fT0FBAVOmTAHgjTfeIDc3l7KyMlJTUzs8NjIyksTERJ+v6y2CIFBRUaFGixROnz59SExMVOScoNbigoIgKNJGCY1GQ97QPN46+BabT26WxdmxSSmsUKnXac01j4vOzsG/w/VHIX6kV4dJKaxJiZPoY+rjTwtDEm1kJOYxY7Dv24dt924soersFLwKDpvYfTXyxh4v425spGHffkCN7HSL/Px8LBaLxyEBmDp1KhaLhZ07d3bqlKxevZpVq1YxYMAA5s6dy9NPP01M8/Tjnqzb2NhIY2Oj5/uamppObZccnYSEBCIjIxX9QRWOCIKAzWbj4sWLAAwcOFBmi9rjuausqMBx9iyGwYPlNqlTbhx6I28dfIutZ7bS6GrEqDMG9PweZ2dyzworFc2AMZB6M5R9Ltbu3PaaV4epKazeEzlpYouz873vyW2O77Ffhl1/Erd7GdWx79uH4HCg6x+Pfmj3R0woHb85OxUVFSQktBckSkhIoKKi48GDP/jBDxg2bBiJiYmUlJSwePFi9u3bx6ZNm3q87ooVK1i6dKlXdrtcLo+j069f9ybFqgQOKbV58eJFEhISFJfS0kZGYs7Kwl5UhK2wUPHOTmZ8JgMiB3DBdoGdZ3cGdNik4HK1KCeH4B0lIH4QlX0uTkO/9r/F9FYnnKs7R0lVCRo0qmpyLzBPnAhvrgxdJeVdb0BjDfRPh9RberVU63qdULzB73aB8pIlS9oVEF/52N38Q7vaD6yrkP6iRYu48cYbyczM5M477+Sjjz5i8+bN7N2717NPd9ddvHgxVqvV8zh9+nSH55dqdCIjVfEupSP9jpRaVxU5RYxS1BcWymxJ12g12paurFOB7cpqKD2Mu64ObXQ0pvQQqtdpTdJ4GD1HFHzb9rsud5eiOuMHjCfeHO9v60KWyPHjQaOhqbwcZ2Wl3Ob4lsZaMYUFoq6Otnf9RqFcrwM9cHYeeughSktLO31kZmaSmJjIhQsX2h1fWVnJgAEDvD7f+PHj0ev1HGke6NaTdY1GI7GxsW0eXRGKnm2oofTfUdTUqQDYCgqDQsX1xqFivv/L01/icAXOgQzpep3WXPf/xK/734fvOpckkBxONYXVO3SxsRibSxuCQdG8WxS+DvZL0G+kWATfC4SmJuxFonp5KNbrQA+cnfj4eNLS0jp9mEwmcnNzsVqt7Gq+kAEUFhZitVqZNm2a1+c7ePAgDofDU5fhq3VVVPyNOScHjcGA8+LFoFBxzemfQ7w5ntqmWgorAheNsoXghOWrkjQeRs/tMrpz0XaR4oviB88NQ24IlHUhi0dvZ1cIiQs2WMV2c4Drfgna3t0k2A8eRGhoQNenD4YRnadYgxW/6eykp6czZ84cFi1aREFBAQUFBSxatIhbb73VU0R89uxZ0tLSPI7LsWPHWLZsGbt376a8vJzPP/+cO+64g3HjxjF9+nSv11VRUQJakwlzTg4Atl3KT2XptDrPh+uG8t5P6/YGweXy1AqEZHHylcxsju4c+AC+O3LVXTad3ISAwNj+Y0mMunpXqor3SE50fRD8D3pNwWvQcBniUyHz9l4v5/kfnDQRTS/TYUrFr+9q9erVZGVlkZeXR15eHtnZ2fz1r3/1vO5wOCgrK8NmE4XMDAYDW7ZsYfbs2aSmpvLwww+Tl5fH5s2b2xSgdrWuiopSiJwqdg3WFwTHhXbusLkAbDm5hSZXk9/P13D4MO7a2tCu12nNoHFiZ1Yn0Z3PT3wOtPwuVHpH1JTJYt3O0WM4mjs4gxr7Zcj/P3F75v/rdVQH2o5qCVX8KioYFxfHqlWrOnw9JSWlTS1DcnIyW7d2PZ+nq3VV2jNz5kxycnJ44YUXvD6mqqqK9PR0du3aRUpKik/sWLBgAdOmTeOxxx7zyXpKJ2rqVL576WVsu3YhuN2Kv2salzDO05W14+wOv3cCeYoiJ4xHE+HXy5FyuO7/iZ1ZBz4UO7PiR3leOlN7hv2V+9FqtOQNDbzeUSii69MHU3o6DYcOYSssxDJvntwm9Y6CV6HRKnZgZfSuVgdAcDiw7xEbgEI5lazsK6+Kz/jkk0945plnunXMihUrmDdvns8cHYCnnnqKZ599tkuto1DBnJmJxmzGdekSjUeUPScLxK6sOSlzAFh3Yp3fzyfVUUSFQwpLYlCO2CYsuGHrc21ektKHkwZMon9kfzmsC0kic8Vmgfr8Apkt6SW2S5Df3IF1/eJed2AB2A+U4K6vR2exYAwl9fIrUJ2dMCEuLs4jzOgNdrudlStXct999/nUjuzsbFJSUli9erVP11UqGoOByAnNasqFwXGhldInW89s9eusrLCr12mNp3bnQ7hY6nlacjDnDJsjh1UhS9TUXADqC/KDojOyQ/JfgaZaGJAFab6JUNXn7wQgMjdX8ZHn3hC678yHCIKArckZ8Ed3/yk/+ugjsrKyMJvN9OvXjxtvvJH6+npATGM9+uijnn1nzpzJww8/zC9+8Qvi4uJITExkyZIlntfXrVtHREQEubm5bc6RlpbWob7SSy+9xHvvvYfJZOLs2bOeY+677z6ys7OxWq0AzJ8/n/fee6+7v4agpUVvZ1cXeyqDjH4ZJMckY3fa2Xqm67RyT2n89lvcNTVoo6Iwpaf77TyKZOBYSJ8HCPDlswAcv3ycsuoyIjQR3Dik57L/Ku2JnDAe9HpxTtapU3Kb0zPqq8R2c4CZv/RJVAegPj8fgKgrrvWhRpgkyXuH3eEi46nAdKe05tCy2UQavPsVnT9/nrvuuovnnnuO2267jdraWrZv396pw/TOO+/w2GOPUVhYSH5+Pvfeey/Tp0/npptuYtu2bUy8SrHamjVryMjIYMuWLWRkZOBwOBg+fDjvvfce8+bNw2Aw8Jvf/IYVK1bwyiuvsHTpUjZs2EBBQQEWiwWAyZMns2LFChobGzEaAzuWQA6ipk6lElFPRnC5FK8lo9FomDtsLn/a/yc+P/G53wplJbHFsKrXac31T0LpZ1C6Fs7uYX2l+POYljRNnYXlY7SRkUSOHYtt927q8wswBOM4hK9fgKY6SMyGtN6pJUu46+uxF+8DIKo51ReqqJGdEOH8+fM4nU5uv/12UlJSyMrK4sEHHyQ6OrrDY7Kzs3n66acZNWoU99xzDxMnTmTLli0AlJeXM2jQoHbHVFRUEBERwfTp00lMTKSqqgqn08k111yD0WhEo9Hw7LPP8uabb7J8+XJefPFF1q9fT1KrIXxJSUk0NjZ2OjYklDClp6ONicFdW0tD6WG5zfGKuSmig7Pj7A6sjVa/nKN+pxg+j5oS2hfZDklIg7F3AiBseaYlhZWiprD8gadupyA40sltqDnXMgNr1pO9moHVGtuePeB0ok9KQp+c7JM1lUoY3k51H7Nex6Fls2U5r7eMHTuWG264gaysLGbPnk1eXh4LFiygb9++HR6TnZ3d5vuBAwd6hmva7XZMJlO7Yw4cOMDo0aM9EZni4mL69+/fRr361ltvJSMjg6VLl7Jx40bGjBnT9n01z7WSJAdCHU1EBJETJ1L35ZfYCgswZ47p+iCZGdl3JCP7jOTo5aN8ceoLbhvV+66P1ribmjzziqJmTPfp2kHFzF/CgY84fGYH5UkDMeqM6iwsPxGVm8t3L7+CraAgKDoj27D1t+BsgCG5MMp3XXr1O5tTWNNyFa9I31uC6LctHxqNhkhDRMAf3fnj0+l0bNq0iXXr1pGRkcHLL79MamoqJ06c6PAYvV7f7n263W5AVMqurq5ud8z+/fvJysryfF9cXNzOadqwYQOHDx/G5XJddYTHpUuXAOjfP3y6TaIkvZ0gmJMlcfOwmwH/dGXZi4oR7HZ08fEYR4/2+fpBQ98UmPBD1kVFAXDt4GuJ0kfJa1OIYs7KQhsZievyZRrLyuQ2x3uqjsHeZh25G572WVQHwqdeB1RnJ6TQaDRMnz6dpUuXUlRUhMFgYM2aNT1aa9y4cRw6dKjd8/v372/j3Fzp7Ozdu5c77riD119/ndmzZ/PrX/+63RolJSUMHjyY+PjwGXAYKc3J2r0HQaGDS69ESqcUVhRSZa/y6dr1X38NhMcdZVe4r3mc9dGigzPXOFBma0IXjV6PeZJYhxhULehf/A8ILhg1G4b6zilxfvedx+mTrk+hjOrshAiFhYUsX76c3bt3c+rUKT755BMqKytJ72GXy+zZszl48GCb6I7b7ebgwYNtnJvjx48ztLnYr7y8nFtuuYVf/vKXLFy4kGXLlvHxxx+z54oBfNu3bycvL7wE04yjRqHr0wfBZsN+oERuc7wiOTaZzH6ZuAU3G09u9OnannoddZ4d+xsucj5CR5TbzTXFf4fm6KqK72ndgh4UnN8HBz8Rt29of+PYGyRVd2NaGhFxcT5dW4mozk6IEBsby7Zt27j55psZPXo0Tz75JM8//zxz5/askyYrK4uJEyfywQcfeJ47duwYNputjbMzduxYlixZwrZt25g7dy7z58/nV7/6FQATJkxg3rx5PPHEE579GxoaWLNmDYsWLerhOw1ONFotkVPEVFaw6O1Ai+aOL1NZzupqGg4eBCAqV3V2pJ/trAYnpgslLR9uKj5H6jiy7d6D0OT/cSi9ZkuzEGzWHZCY1fm+3URy+MIhhQVqgXLIkJ6ezvr16zt8/auvvur0e4C///3vbb7/9a9/zX/913+xaNEitFoto0aNatfKvnbtWs92aWkpV/KPf/yjzfcrV65kypQpTA2DsOmVRE2dQu2GDdTnFxD/05/KbY5XzE6Zze93/56ii0WcqT3D4JjBvV7TVlAAgoBx1Cj0AxJ8YGXw4nA7WF8u/t/OSZkDF94W0xbp8yHCIK9xIYhx9Gh0ffviqq7GfuCAR/BTkZR/DUc3gTYCrv+VT5cWBKFVdDU8nB01sqPSITfffDMPPPBAG4HA3qLX63n55Zd9tl4wETVd7DqyFRXhbhZ7VDoDogYwZaAYkVp7bG0Xe3uHmsJqYceZHVxquEQ/Uz+mzVwK0QOg+gTsXim3aSGJRqttGc6r5LodQYAtS8Xt8T+EuOE+Xd5x6hTOc+dBr1e2w+dDVGdHpVMeeeQRkn2ov3D//feTmprqs/WCCcOQIaKWhcNB/a7gUFMGmD9iPgCfHvu011L7DsRfLAAAIABJREFUgiBQJxUnh3PLeTOfHvsUgFuG30KEuQ/MXCy+sPU5cbq1is8Jirqdw5/B6UKIMMN1v/D58lIXVuTYsWgjI32+vhJRnR0VlQASNV2MZtR/vVNmS7znhiE3EBkRyZm6MxRdLOrVWk3l5TjPnUej1xN5FYXucOJyw2W+OvMV0OJQMm4hxKeC/RLs+F/5jAthpLod+779uJWo9eVsgk1PidvTHoKYRJ+fQtLXiQyTFBaozo6KSkCJnjEDaGm9DgYi9ZHkpYjdc1IkoqdIKSzz+PFom8Ulw5V15etwup2kxaWRGtcc7dRFwE3N6YuCP8Ll0/IZGKLok5PRDxqk3Ajr7j/DpeMQlQDTH/H58oLLha1Z7ytcipNBdXZUVAJK5JQpoNPRdOIEDh/WQvkbKfKwoXwDDc6GHq8jRbSk+qVw5tOjouPoiepIjJ4DQ2eAq9EzJFTFd2g0GqKkm44dCrvpsFfD1t+I29f/CowxPj9FQ+lhXFYr2qgozFm+7fBSMqqzo6ISQHQxMZjHjgXw1K4EAxMGTCApOok6Rx1fnPqiR2sIDkfLHWWYFycfv3yckqoSdBqdR6nag0YDecvE7X1/g/P7A29giBN97TUA1G/fLrMlV7D9edHh6Z8upjT9gBRVjpw8OawG8KrOjopKgAnGuh2tRsutw28Fep7Ksu/fj7u+Hl2fPpgyeiZ2GSr845goyTAjaQb9zP3a75A0ATL/FRBg06/F7hwVnxE5dSpERNB08iRNp07JbY5IdTkUvi5u5z0jpjT9QN32bQBEXTPDL+srFdXZUVEJMNHNKZz6nTsRnE6ZrfEeKd2Sfz6fi7aL3T7ek8KalhtcQxh9jMvt4rNjnwFXSWG1ZtavQWeA41/BEd8qWIc7uuhoIseNA6Buxw6ZrWlm81JwNcHwmTDyRr+cwlVTg72oGIDoa6/1yzmUSvhecVRUZMKUlYWuTx/ctbXYi4vlNsdrhsQOYVzCONyCm8+Of9bt41V9HZHC84VctF8k1hDLzOSZHe8YNwym/ETcXr9Y7NJR8RlR1zSnsrYpIJV1+ptm5WwN5P2PT4d9tqZ+Zz64XBiGDcMwuPcCocGE6uyoqAQYjU7nudDWbd0mszXdw6O5c7R7mjuuy5ex7xdrT8Ld2fn0uJgGnDtsLgZdFyrJ1/632JVz6Rjsej0A1oUP0c1pnPrCQtxyjo5wu2H9L8XtnB/4fCxEa6QUVrhFdUB1dlRUZEG62NRtCy5nZ3bKbIw6I8esxzh06ZDXx9Xt+BrcboyjRoptv2FKXVMdW05uAbpIYUmYYuHGp8Xtrc9BXffThypXx5iWhq5/PILdjv2KYcUBZd97cHY3GKJ9PuyzNYIgUL9dTNlFNRdohxOqsxMmzJw5k0cffbRbx1RVVZGQkEB5ebl/jOqABQsW8Ic//CGg5ww0UTOmg0ZDY1kZjooKuc3xmhhDDLOSZwGw5sgar4+r27oVgOiZM/1hVtCwrnwdDa4GUmJTyIr38g5+7N0waBw01sCWZf41MIzQaDREz5A5wtpghc1LxO3rfuEXAUGJxrIynBcvojGbiZw0yW/nUSqqsxMmfPLJJzzzzDPdOmbFihXMmzePlJSUNs9NmjSJmJgYEhIS+Jd/+RfKysp8autTTz3Fs88+S01NjU/XVRIRffu2tKAHWSrrX0f/KwCfHf8Mm6NrBVrB5aK+OYIVfd11frVNyQiCwIdlHwKwYPQCNN7WZWi1MPc5cbtoFZzrnYq1SgvS32PdVQYjB4Stz0H9Reg3Eqb4dzhwXXNtUtSUKWgN4TdkVnV2woS4uDhiYrwXqLLb7axcuZL77ruvzfNbt27lZz/7GQUFBWzatAmn00leXh71PhxsmZ2dTUpKCqtXr/bZmkokembzhTbIUlmTEyczNHYo9Y56Pj/xeZf72/ftE0XMLBbMOTkBsFCZHKw6SOmlUvRavXcprNYkT4as7wMCrPul2oruI6JmTAe9nqbychpPnAjsySvLoPA1cXvOb/0+5V6KroZjCgtUZ8c7BAGa6gP/6OYF7aOPPiIrKwuz2Uy/fv248cYbPU7IlWmsmTNn8vDDD/OLX/yCuLg4EhMTWbJkief1devWERERQe4VcuLr16/n3nvvZcyYMYwdO5a33nqLU6dOsadVzjstLQ2NRnPVx0svvcR7772HyWRqM039vvvuIzs7G6vVCsD8+fN57733uvX+gw2pbqc+P1/eAsluotFouGP0HQB8UPZBl/vXfdWcwpoxI6xEzK7kw2/FqE5eSh59TX27v8CNS0AfCacLoORjn9oWruiio4maJM5ok/5OA4IgiEXJbieMnguj/NNqLuGsrsZeJEYEY8I0lRy+V57u4LDBchmKKn91DgxRXu16/vx57rrrLp577jluu+02amtr2b59e6cdM++88w6PPfYYhYWF5Ofnc++99zJ9+nRuuukmtm3bxkQvBjVKzklcXJznuTVr1pCRkcGWLVvIyMjA4XAwfPhw3nvvPebNm4fBYOA3v/kNK1as4JVXXmHp0qVs2LCBgoICLBYLAJMnT2bFihU0NjZiNBq9+hkEG8b0dCL698dZWYmtcJenOyQYmD9iPi/tfYnSS6Uc/O4gY+LHdLhvS71O+KawaptqWXdiHQDfH/39ni1iSYJrHoMv/gc2PAGjbgKTxYdWhifRM2dSvzOfuq++ot9/3BuYkx7+Jxz7QtRRmrPc76er27pVbBBITw/bBgE1shMinD9/HqfTye23305KSgpZWVk8+OCDREdHd3hMdnY2Tz/9NKNGjeKee+5h4sSJbNkidoqUl5czqIt/CkEQeOyxx5gxYwaZmZme5ysqKoiIiGD69OkkJiZSVVWF0+nkmmuuwWg0otFoePbZZ3nzzTdZvnw5L774IuvXrycpKcmzRlJSEo2NjVQEUfFud9FoNERffz0AtV9skdma7tHX1JebUm4C4INvO47uOM6fp7GsDLRazzyicOSz459hd9oZYRnBuIRxPV9o2sNifUddBXyhzs3yBVLRvG3PHlyBqBN02GHDr8TtaT+HuOF+P2XdF18CENN8vQlH1MiON+gjxSiLHOf1krFjx3LDDTeQlZXF7NmzycvLY8GCBfTt23G4PDs7u833AwcO5OJFsbXVbrdjMpk6PedDDz3E/v372XGFAumBAwcYPXq0JyJTXFxM//79GTBggGefW2+9lYyMDJYuXcrGjRsZM6ZtZMDcPBHbZuu6ADaYiblhFpc/+IC6L75EeOop74tWFcD3R3+ffx7/J+tOrOO/Jv4XMYb2NWG1X4hztMw5OUR08rcYygiC4En33ZF6R+9+xxFGuOV5+Mv34Js3IOcusVNLpccYhgzBMGIETceOUb9jB7E339z1Qb1h63Nw+STEJsE1j/v3XIC7qYn65mt0dBg7O2pkxxs0GjGdFOhHNy6KOp2OTZs2sW7dOjIyMnj55ZdJTU3lRCdFd3q9/oq3qcHtdgMQHx9PdXV1h8f+/Oc/59NPP+XLL79k8BVKnPv37yer1TTd4uLido7Vhg0bOHz4MC6Xq40TJHHp0iUA+vfv36ENoUDk1KloIiNxXrhAQ8lBuc3pFuMSxjHCMgK7096honJdc6Qw5oYbAmmaothXuY+jl49i0pmYN2Je7xccPhOy7gDBDZ/9J7hdvV8zzIm5fiYAtV9+5d8TXTgEO18St+c+53WZQm+wFe7CbbMRkZCAaUyG38+nVFRnJ4TQaDRMnz6dpUuXUlRUhMFgYM0a77VQWjNu3DgOHWovGicIAg899BCffPIJX3zxBcOGDWu3z/79+9s4N1c6O3v37uWOO+7g9ddfZ/bs2fz61+2FtEpKShg8eDDx8fE9sj9Y0BqNRDend4ItlaXRaLgjVSxU/vDbD9vVh7msVup3fQNAzI3h6+xIUZ05w+YQa4j1zaJ5z4LRIrah7/6zb9YMY6SIR93WrQj+ahZwu+GzR8Wi5NRbIP1W/5znCuq+FKOr0TNnhvVMOr++8+rqahYuXIjFYsFisbBw4UIuX77c4f7l5eUddvF8+OGHnv2u9vprr73mz7eieAoLC1m+fDm7d+/m1KlTfPLJJ1RWVpKe3rPp0rNnz+bgwYPtojs/+9nPWLVqFe+++y4xMTFUVFRQUVGB3W4HwO12c/DgwTbOzfHjxxk6dCgg/o5vueUWfvnLX7Jw4UKWLVvGxx9/3KabC2D79u3k5eX1yPZgI+YGUaSvbssXMlvSfeaNmIdJZ+JI9RH2Ve5r81rd1q3gdGIcNQpD8+8/3LA2WtlQvgHA08HmE2IGwI1PidtblkFt6Na2BQJzTg66fv1w19R4HHSfs/dtOF0oKiXf/Jx/znEFgiBQ21yvEz0rfFNY4Gdn5+6776a4uJj169ezfv16iouLWbhwYYf7Jycnc/78+TaPpUuXEhUVxdy5c9vs+9Zbb7XZ74c//KE/34riiY2NZdu2bdx8882MHj2aJ598kueff77dz81bsrKymDhxIh980Lb49I9//CNWq5WZM2cycOBAz+P9998H4NixY9hstjbOztixY1myZAnbtm1j7ty5zJ8/n1/9SizQmzBhAvPmzeOJJ57w7N/Q0MCaNWtYtGhRj2wPNqKvuw50Ohq//ZamM2fkNqdbxBpimTNsDtC+Db12sxipig7jqM4/jv6DJncTaXFp3isme8uE/4CkCaKyslTwqtIjNDqdJ9Vau3mT709QWwGblojbs34NlsAM4Ww4cABnRQWayEiipk4NyDkVi+AnDh06JABCQUGB57n8/HwBEA4fPuz1Ojk5OcKPfvSjNs8Bwpo1a3psm9VqFQDBarW2e81utwuHDh0S7HZ7j9cPFf75z38K6enpgsvlCuh5X3nlFeGmm27qcr9Q+l2VL7xHOJSaJnz31ltym9Jt9l3cJ2S+nSmM/8t4ocpeJQiCILjsdqE0Z5xwKDVNsB0okdlCeXC5XcKtn9wqZL6dKbx/+H3/nORcsSAs6SMIT8cKQtkG/5wjTKjdtl04lJomlM2YIbh9fc374F7xd/T6dYLgcvp27U648LvfCYdS04TTjz4asHP6m84+vzvDb5Gd/Px8LBYLU6ZM8Tw3depULBYLO3fu9GqNPXv2UFxczI9//ON2rz300EPEx8czadIkXnvtNU9h7dVobGykpqamzUOla26++WYeeOCBNuJ/gUCv1/Pyyy8H9JxyE3OT2MZdu2GjzJZ0n6z4LMb0G0OTu4mPvv0IgPqd+Qh2OxGJiWFbFLnj7A7Ka8qJ0cdwy/Bb/HOSgWNh6oPi9tpHxFlLKj0iaspktDExuCq/w168r+sDvOXIJjj4CWi0MO9F0Op8t3YnCIJAzUYxShUbJiUBneE3Z6eiooKEhIR2zyckJHitnbJy5UrS09OZNm1am+efeeYZPvzwQzZv3sydd97J448/zvLlHQszrVixwlM3ZLFYSE5O7t6bCWMeeeSRgP+87r//flJTUwN6TrmJyROdHXtRUVANBgWxhu7fM/4dgL8d/hsOl4PajaLTFnPDDUHVTu9LVh1aBcDto24nSu/HrpvrnxC1WmrPiWKDKj1CYzB4NHdqN/koldVgFZ1QEJ3SgWN9s64XNJaV4Th1Co3R6FFrD2e67ewsWbKkwyJi6bF7926Aq17kBEHw6uJnt9t59913rxrVefLJJ8nNzSUnJ4fHH3+cZcuW8bvf/a7DtRYvXozVavU8Tp8+3Y13rKLif/QDBmAePx6A2o1+qBnwM7OHzqa/uT+V9ko2Hv2c2uaW89g5s2W2TB6OVh8l/3w+Wo2Wu9Lv8u/JDJHwvf8DNFD0VzgaXF19SiLmJnFsQ+2mTZ2qz3vN+l9BzVnRGb0+sHVV0g1H1IwZaKP83+KudLrt7Dz00EOUlpZ2+sjMzCQxMZELFy60O76ysvKquipX8tFHH2Gz2bjnnnu63Hfq1KnU1NRc9XwARqOR2NjYNg8VFaURO1sMNdds2CCzJd1Hr9Pzb6n/BkDBP17HXVtLRP/+Hgcu3Fh9WBxiOyt5FknRSV3s7QOGToMpD4jbnz4MDWqqvidEz5iBxmzGceYMDQfbS290i283QPEqQAPfezUgmjqtqWl2dmKbo8bhTrednfj4eNLS0jp9mEwmcnNzsVqt7Nq1y3NsYWEhVqu1XVrqaqxcuZL58+d7JSpXVFSEyWSiT58+3X07KiqKIaY5r27fuxfHhYsyW9N97ki9A4PWQNKucgBi5sxBowtMfYKSqG6o5rNjosiilN4LCDc8BX1ToOYMbHoqcOcNIbSRkR6BwZrPP+/5QrZLotMJkPszGJrb+f4+pvHYMZqOHgO9PqxVk1vjt5qd9PR05syZw6JFiygoKKCgoIBFixZx6623euoxzp49S1paWhuHCODo0aNs27aN++67r926a9eu5Y033qCkpIRjx47x5ptv8sQTT3D//feH7MBIlfBAP3Ag5rFjQRB8VzMQQOJMcXxvyM1M+lYM/8fOnSOzRfLw3uH3aHA1kNEvg/EJAYxsGaJg/ivi9p634PhXgTt3CCGNi6hZtw6hk8aXTln/S3F+Wb9RMOtJH1rnHTX/FB216GnT0KmZDMDPOjurV68mKyuLvLw88vLyyM7O5q9//avndYfDQVlZWbv5R3/+859JSkq6qqicXq/n1VdfJTc3l+zsbF588UWWLVvG888/78+3oqISEGLmiA5Czbp1MlvSM+62phPZBFUxcC6l/aysUMfmsPHu4XcB+FHmjwJfnD3sGpjYXOf49wfB3vHIF5WrE3XNNWijo3GeP4+9uLj7C5R+BvvfF7uv/uWPoDf73shOEAQB6z/FyGLsrYFRaQ4G/OrsxMXFsWrVKk+796pVq9qkmlJSUhAEgZnNFfASy5cv5/Tp02ivIm09Z84cioqKqK2tpb6+ngMHDvDII48QEaHONFUJfmLnzgGNBvuePTSdCWzLvy8wbysCoCBNwzulf5HZmsCz5ugarI1WkmOSuXHIjfIYcdMysSC25iysfRR8UWgbRmiNRo/AoBQh8Zq6SnEkBIgT6pMn+di6rmkoKcFx8hQak4mYMFdNbk34DspQUVEg+sREIpu1qWo+u/pwTaXirq/3dGHtTNfy2fHPqKgPrjb63uBwO/jLQdHBu3fMvegCpKfSDmM0/OuboI2AQ3+H4tXy2BHExN7SnMpavx7B6fTuILcb/v5TqK+E/ukB776SkK4bMbNmqV1YrVCdHRUVhWGZJ07Gtq5d65v21wBRs2kTgt2OfugQYsdNwOl28pdD4RPdWX9iPefqzxFnimP+iPnyGpM0QdTfAfj8F1B1TF57goyo3Fx0FguuqirqCwu9O6jgVTi6CSJMsGAlRAS+hlRwuaj5XEyBqymstqjOTpgwc+ZMHn300W4dU1VVRUJCAuXl5f4xqgMWLFjAH/7wh4CeU0nE5N2ExmCg6dgxGktL5TbHa6z/+AcAlu99j/uyxblmH5Z9SJW9Sk6zAoLL7eJP+/8EwMKMhZgiTDJbBEx/BFKuAUc9fPxjcPppmncIotHriblZnCto/fs/uj7g7F7YvETcnv0sDBjjP+M6wfbNNzgrK9FaLETPmC6LDUpFdXbChE8++YRnnnmmW8esWLGCefPmkZKS4nnuj3/8I9nZ2R69otzcXNb5uJj2qaee4tlnnw3bsR66mBiiZ4mT0K2frpXZGu9wVFRgKxDvgC3z5zN90HQy+2XS4GrgnUPvyGyd/9l4ciPlNeVYjBbuSvOziKC3aHVw2+tg6gPniuCrjlXmVdrT57bbAFFg0FVX1/GODTXw0Y/A7YD0eS0F4jIgOWaxeXloDAbZ7FAiqrMTJsTFxRET4313jN1uZ+XKle3a/wcPHsxvfvMbdu/eze7du5k1axbf+973OHjwoM9szc7OJiUlhdWrw7fWwDJfTGXV/POf3tcMyIh17VoQBMwTJ2AYPBiNRsNPxv4EEEdIVDeEbleQW3Dz+r7XAViYvtC/oyG6iyUJ5r8kbu94QVVX7gb/v707j4u6Wh84/hlmhk0QVGRTck3RBDNwxa1c01wy7brE1bou16ysfmXeyDXRtPJmLmXoNW+Z5hKtrlkkqaCp5G5uuIIr+85wfn+Mzg1FBIIZZnjer9e8XvKd7/LMGWSeOd9zzuMYEIB9o0ao7GzSNm8ueiel4If/g6Sz4OYH/ReChcqjGNLTTQuSug160iIxVGaS7NiQ9evXExAQgJOTE7Vq1aJ79+5kZGQAd9/G6tq1Ky+99BKTJk2iZs2aeHt7M336dNPzmzZtQqfT0b594cWw+vXrR58+fWjSpAlNmjQhPDwcFxcXYmJiTPv4+/vfs5TIhx9+yOrVq3F0dCxUYHT06NEEBgaSkmIsZNi/f39Wr15dEc1kFVw6dkRbsyb5166RviPa0uEUSylF6rffAsZbWLd1rtuZZjWbkZWfxcojttu7s+3cNk6nnMZV78rwZsMtHc7dmg+AoFGAMt7OSjpn6Yisgkajwf3JgQAkR35d9E5xX8ChtaDRGgeFO9UwY4SFpW7ciMrKwr5hQ5wefthicVRWkuyUgFKKzLxMsz9KMzg1ISGBYcOG8dxzz3Hs2DGioqIYNGhQsedYuXIl1apVIzY2lnnz5jFz5ky23VrMbseOHQQHBxd7TYPBwJo1a8jIyCiUFEVGRgKwfft2EhISOH/+PDqdjnXr1jFu3DiGDh1K06ZNmTNnDgAzZsxgy5YtbNq0CTc3NwDatGnDnj17yMnJKXEb2BKNvb0pcUhev97C0RQv++BBck6eQuPgQPVe/6uF9efenS+Of8H1rOuWCrHCGAoMLIlbAhhXS3a1r6RrC/WeC76tjOvurA2FvCxLR2QVqvfrD3Z2xqUgzt2RJF6Ogx9eNf6767/ggXbmD/BPUjZ8BYD7U4OqbPHd4sjiNCWQlZ9F2y/amv26scNjcdY7l2jfhIQE8vPzGTRoEPXq1QMgICCg2GMCAwOZNm0aAA8++CCLFi1i+/bt9OjRg/j4eHx9fYs87tChQ7Rv357s7GxcXFyIjIykefPmpucTExPR6XSEhITg4OBAXFwc+fn5dOrUybTKdXh4OIMHD8bX15cFCxYQHR1NnTr/qyFUp04dcnJySExMNL2eqsZ9yGBurlhB+i+/kHflKnovT0uHVKSkL9cCxqKfd67W+qjfo7So1YLDNw6z7NAyJreZbIkQK8x3Z77jTMoZ3BzcCG0eaulw7k3vCE9/Bp90gYTf4YfXYMAii91ysRZ6L0+qhYSQER1N8leReL5yq3c8/RqsGQH52fBgL+j0qkXjzDl1iqzffwetFrf+Fp4JWElJz46NaNmyJd26dSMgIIAhQ4YQERFBUlLx4yQCAwML/ezj48PVq8aaTFlZWTg6Fj2jpGnTpsTFxRETE8P48eMZOXIkR4/+r2jeoUOHaNKkiSmxiYuLo3bt2oUKwD7xxBM0b96cGTNmEBkZyUMPFZ694ORkXHX0ztW1qxKHhg1xCgoCg4GUW71llY0hNdVUQ8j9b3+763mNRsPEoIkAfHniSy6lW99CifeSa8g19eqMbjG68vbq3ObuB4P/Y1zZN+5zY0kJcV/uTz0FQPKGDajcXDDkwbpRxhpktRrDoE+Mg8EtKPkr498Hly5d0JWgnmRVJD07JeCkcyJ2eAnXWijn65aUVqtl27Zt7Nq1i61bt7Jw4ULCwsKIjY2lQYMGRR6j1+sL/azRaCi4VQvGw8PjnsmSvb09jRs3BiA4OJi9e/eyYMECli41DtI8ePBgoV6luLi4uxKrLVu2cPz4cQwGQ6Ek6LabN28ClKgQrC1zHzyYrH37SF6/nlpjx6ApYlVxS0r59jtUdjYODzbGqVWrIvdp59OOdj7tiEmIYUncEsI7hps5yoqx9sRaEjIS8HT2ZKj/UEuHUzINu8JjU2D7DOP6O96BULf429VVnWu3x9DVrk3+tWuk/fgj1YmCc7+CvSsM/QKcLFuAuiA7m5Sv/ncLSxStcv3lrKQ0Gg3OemezP0p731Wj0RASEsKMGTM4cOAA9vb2pvEzpdWqVatCvTXFUUoVGltz8ODBQsnNncnO/v37GTJkCEuXLqVXr15MmTLlrnMePnyYunXr4uHhUab4bUX13r2wc3Eh7+JFMnbusnQ4hSilSP7ySwDcn/5bsb+vEx8x9u58d/o7Ttw8YZb4KlJqbqppXZ3xLcdXjnV1SqrjK+D/hHGq9JrhkHze0hFVahq9HvchQwBIilgAe4xf6hi0FGo3tWBkRqkbN2FITkbn64NLly6WDqfSkmTHRsTGxjJ79mx+++03zp8/z1dffcW1a9do1qxZmc7Xq1cvjhw5clfvzptvvkl0dDTx8fEcOnSIsLAwoqKiGDFiBAAFBQUcOXKkUHJz5swZ07ib+Ph4+vbty+TJkwkNDWXmzJls2LCBffv2FbpOdHR0kYVgqxo7Jyfcbq33cfOzyrUacdaBA+ScPInG0RG3AcWPE2jh0YLe9XujUMzdO9eqVoYuytLfl5KUk0RDt4YMbDzQ0uGUjkZjLFDp+RCkX4FVT0NWsqWjqtTcnx4CdnZkHjtPTorOOCDZv6+lw0IpRdLnnwNQY9gwNFIj8p4k2bER1atXZ8eOHaZp4W+99Rbvv/8+jz/+eJnOFxAQQHBwMGvXri20/cqVK4SGhtK0aVO6detGbGwsmzdvpkePHgCcPn2azMzMQslOy5YtmT59Ojt27ODxxx+nf//+vPmmsW5MUFAQ/fr1IywszLR/dnY2kZGRjBkzpkyx25qaz4wAjYaMHdHknDlr6XBMbn5qnE5evW+fuwYmF+WVoFewt7Nnb+Jefjr/U0WHV2HiU+L54pixsvmk1pPQ2VnhB4xjdRixFlx94Nox4wwtWWH5nvR2ybjWNbZP0vWHoPMkC0dklBUXR/bRo2js7XEfPNjS4VRqGmXtX7HKIDU1FTc3N1JSUqh+xx/p7Oxszp49S4MGDe45QLeq2LhxI6+99hoBl+hPAAAgAElEQVSHDx8usgJ9RVm8eDHffPMNW7duLXa/qvReXRj/POk//0yN4cPxnnr3bT9zy71wgdO9ekNBAQ2+/QbHJk1KdNyH+z8k4lAEdV3q8s3Ab7DXWt8qry9uf5Goi1F0rtuZxd0WWzqcvybhIKx4HHLToeUwY4+PzNAqLOUSLO9Jxh9XOR/lgcbJiQd//gmtu2XH6gBceu11Ur//HrdBg/CdbRtj4e6nuM/v4kjPjrinPn36MG7cuEKL/5mDXq9n4cKFZr1mZVdz5N8BSP76awyVoIzGzf9+BgUFVOvYscSJDsDogNHUdqrNxfSLrDhsfbOBdlzcQdTFKHQaHa8Fv2bpcP46n0AY8qlxUbzfV8Mvcy0dUeWSlQyrBkPqRZybP4BDk8aorCyS1qyxdGTkJSSYVkyuMaISLmZZyUiyI4o1ceJE/Pz8zHrNsWPH0rSp5Qf+VSbObdvi8OCDqMxMkm4NCrYUQ2oqyRs2AFDz2VGlOtZZ78z/Bf8fAJ8c/ITzqdYzODYzL5NZMbMAY7HPBm5Fz3K0Og/2gL7vG/8dNQf2RFg2nsoiL9s4gPvqUXDxRvP3SGqNGQfAzc8+pyA726Lh3VixAvLycG7TBqeHLFN41JpIsiOEFdBoNNR87jnAOFamIMtyK+AmffklKjMThyZNqNahQ6mP79OgD+192pNbkMvbMW9bzWDlj37/iISMBHyr+ZpWhrYZwc9Cp1s9VRtfg9+sr9etXOXnGktrnNsJDtXhmfXg/gDVe/dC7+uL4caNklVDr6jwbt4kee06AGqNG2uxOKyJJDtCWAm3J/qir1sXw40bJN8xcNxcCjIyuPkf4wdhzWefLdOy9BqNhintpuCgdSAmIYbvz3xf3mGWu2M3jvHZ0c8ACGsXVuKVza3KY29B+xeM//7+Zdj/mWXjsZT8HFg3Eo5/D1p7GLoKvI3rhmn0emqOGgXAjRX/QRkMFgnx5n//i8rOxrFFizJ94aiKJNkRwkpo9HrTt7jry5ZZpBv95qovMCQloa/3AG79nijzefyq+zEu0HhLYM6eOVzJuFJeIZa7XEMub/76JgZloEe9HnSu29nSIVUMjQZ6zoK2440/f/uisdBlVZKXDV+GwomNoHWAYauhQeH3233wU2jd3Mg7d56Ub78ze4iGtDSSVhnfl1pjx0gdrBKSZEcIK+I+YAA6Xx8M166TvH6DWa9tSE/n5vLlANSeMOEvr+kxqsUoWtRqQVpuGlN3Ta20t7MWxS3iVPIpajrWJKxt2P0PsGYaDfSeA61HAwq+fh5+t/xgXLPIy4IvR8DJLaBzhOFfQuPud+1m5+xMrbHGZTGuL1xIQa55p+zf+M9/KEhLw75hQ1y73x2fKJokO0JYEY29PR631h+6/vHHGNIzzHbtpM8+w5CSgn2DBlTv+9cXVNPb6QnvFI6D1oFdl3ex5kTl+1Ddf2U/nx7+FIBp7adRy6mWZQMyB40GHn8XgkYBCiL/CbGfWDqqipWbAauHwakfQe8Mw9dCo0fvuXuNESPQeXqSd/kyyV+a75Zy3pWr3FzxKQC1X55Y6crHVGbSUkJYGfennkJf7wEM169zI8I8M2fyr13jxjJjr47HhAlotOVT+LChW0NeCXoFgPf2vsexG8fK5bzl4Wb2TSbtmIRCMbDxQB574DFLh2Q+dnbQ99/QegygYNPr8FM4VNLet78k/Rqs7AdnfgZ9NRixDhoWX3bBztERj+eNt/uuf/wxBRnm+dJxfdEiVHY2Tg8/jOuthVxFyUiyI4SV0djb4/X66wDcXLGCPDOsg3T1/fkUZGTgGBBA9T5lW5X7Xob5D6NL3S7kFuTyatSrpOZafh0hQ4GByTsmcyXzCvWr1+eN1m9YOiTzs7ODPu9CV+Nq5+yYB5HjjAN4bcX1U7C8B1zaB0414O9fQ/2OJTrU/amn0Pv5Ybhxg+tLK77nK+fUKdOSD56vvyZjdUpJkh0hrJBLt244t2mDys3l6vvvV+i1Mg8cIOXrrwHwfius3LvO7TR2hHcMp45LHS6mXyQsOowCVVCu1yitj37/iN0Ju3HSOTG/63xc7F0sGo/FaDTQ9Q144gPjwoMHv4T/DjD2hli7Uz/Csscg6Sy414N/bAO/NiU+XKPX4/WGsWzEjRUryDl9uqIiRSlF4tuzoKAAl+7dcA4KqrBr2SpJdoSwQhqNBq9/TQaNhtSNm0jfsaNCrqMMBq7MMi5D7zZoEE4tW1bIddwc3Hi/6/vo7fREXYzig30fVMh1SuL7M9+z9KCxsvWUdlN4sMaDFoul0gh+1rjWjIMbnN8NSzvDhb2WjqpsCgrg1w9g1RDIToG6bWD0j+BR+vfZpVs3XLp2hbw8EmfMrLBB9ikbNpAZG4vG0RGvSZWjLpe1kWSniujatSsvv/xyqY65ceMGnp6exMfHV0xQ9zB48GDmz59v1mtaI8dmzaj5d2MZiYS3pmBISSn3a9yIWEb2kSPYubjg+eor5X7+P3uo1kPM6DADgBVHVrD6+OoKvV5R9iTsYcpOY+2xvzf/O/0a9TN7DJVWo8dg9DbwaAJpl401tXYvMSYP1iLjBqweCj9OA1UArZ6BUd+Di2eZTqfRaPB66y00jo5k7tlDSuTX5Rww5F29ypV57wJQ+8UXsX/ggXK/RlUgyU4V8dVXX/H222+X6pg5c+bQr18/6tevf8/nNRpNqZOo+5k6dSrh4eGkVoIaUJVd7ZcnYl+/PvlXr3Jlzjvleu6sQ4e5tmgRAF5hYeg8PMr1/EXp16gfLzxsXNjunT3vsPns5gq/5m1Hbhzh5Z9fJr8gnx71epjKWog/qd0UxvwEzfpDQR5s+ZexdlRaoqUju7+TP8LHHY1Ty7UO8MS/of8i0Dn8pdPa162Dx/PPA3Bl1ixyy/HLoVKKxBkzKUhNxfGhh0w18kTpSbJTRdSsWRNXV9cS75+VlcXy5csZPXp0kc/v3buXTz75hMDAwPIK0SQwMJD69euzatWqcj+3rbFzcsJnzmywsyPl669J+a58FjkryMzk8uuvQ34+rr174zZwQLmctyTGBo7lqQefokAV8Eb0G/xw5ocKv+aha4cYs2UMaXlpPOL5CHM6zcFOI38ei+TgCk//F/q8Z1yP5vR2WNwWDnxeOWdrZSXDty/BqqeMPVK1GsOY7RD8XLlVeK/1j+dwbt2agsxMLr76armtvXNz+XLSt28HvR6fWW//5bWtqjL532xD1q9fT0BAAE5OTtSqVYvu3buTcWtK5J23sbp27cpLL73EpEmTqFmzJt7e3kyfPt30/KZNm9DpdLRv3/6u66SnpzNixAgiIiKoUaPGXc/7+/uj0WiKfHz44YesXr0aR0fHQtXUR48eTWBgICm3bsX079+f1avNfxvDGjm3amVa5Cwh7C2yDh78S+dTBgOXXp9Ebnw8Ok9PfKZPM+vMj9vlJAY0GkCBKuDNX99kwx8Vt4Dib4m/MXbbWNLy0mjl2Yol3ZfgoP1r3/ZtnkYDbcbA2F/ApyVkJ8M3E4xTuK8csXR0RkpB3GpYFAz7Vxq3tR0P46JN5R/Ki0arxfe9d9HWqEHO0WNcmT37L4/fyYiJ4er8fwPgHfYmjs2alUeoVZYkOyWglKIgM9Psj9L8Z0lISGDYsGE899xzHDt2jKioKAYNGlTsOVauXEm1atWIjY1l3rx5zJw5k23btgGwY8cOgoODizxuwoQJ9O3bl+73WL0zMjISgO3bt5OQkMD58+fR6XSsW7eOcePGMXToUJo2bcqcOXMAmDFjBlu2bGHTpk24ubkB0KZNG/bs2UNOjg1Nc61AtV96CZdHH0Xl5nJhwgTyEhLKdB6lFFfCw0nfvh2NvT11/j0frbt7OUd7f1o7LTNDZpp6eKbvns68vfPIL8gv1+us+2MdY7aOIT0vnSCvID7u/jHV9NXK9Ro2zdMfRv8EPWaCzgnio423ir6bCKmXLRfXmV8g4jH4+p+Qcc04zmjUD/D4O2BfMXXN9F5e+M413kpOXvMl1xcvKfO5sk/8waWXX4GCAtyefBL3v/2tvMKssqRPrARUVhYnHjH/VL+m+/ehcS7Zf8yEhATy8/MZNGgQ9erVAyAgoPhvL4GBgUybNg2ABx98kEWLFrF9+3Z69OhBfHw8vr6+dx2zZs0a9u/fz969956JkZiYiE6nIyQkBAcHB+Li4sjPz6dTp044OBi/MYeHhzN48GB8fX1ZsGAB0dHR1KlTx3SOOnXqkJOTQ2Jioun1iHvT2Nnh++67nBs2jJyTJzn3TCgPLF+G/T3GWxVFKcW1BQtI+mI1aDT4zptr0Smudho7prafipezF0t+X8JnRz/jj6Q/eLvD2/i4+Pylc6flpvHeb+/x1cmvAHi8/uPMCJmBk86pPEKvWrQ6CJkIzQfAtqlw9BvY96mxrtYjI6HDi1DDDP+HlTLeUvv1A2PSBcZFAru8Du0mgM6+wkNw6dwZr7AwroSHc33RIuxcqlHrVuHQkso+fpzzo57FkJyMY0AA3tOmypo65aBCe3bCw8Pp0KEDzs7OuJfw26FSiunTp+Pr64uTkxNdu3blyJHC3aJJSUmEhobi5uaGm5sboaGhJCcnV8RLsBotW7akW7duBAQEMGTIECIiIkhKSir2mDvH2/j4+HD16lXAOGbH0dGx0PMXLlxg4sSJfP7553c992eHDh2iSZMmpsQmLi6O2rVr4+XlZdrniSeeoHnz5syYMYPIyEgeeuihQudwcjJ+6GRmZt7nlYvbtC7V8Fv6Mfp6D5B36RLxI54h69DhEh1bkJPD5dde58bHxinXnm9Monrv3hUZbonYaewY//B43u/yPk46J2ITYhn4zUDWHF9Tpl4epRRRF6J48psnTYnOi61eZG7nuZLo/FU16hvH8jy7CR7oAIZc2BsBC1oaSzGc3AaGvPK/buZNiPkYPuoAnz9lTHTs9NBmHEyMg46vmCXRua1m6DPUnvgSAFffmUvi27NQJRzDk/7rzkKJzgPLIrAr5m+tKLkK7dnJzc1lyJAhtG/fnuW3Cgjez7x585g/fz6ffvopTZo0YdasWfTo0YMTJ06YBtgOHz6cixcvsnmzcabG2LFjCQ0N5btyGpx5J42TE03376uQc9/vuiWl1WrZtm0bu3btYuvWrSxcuJCwsDBiY2Np0KBBkcfo9frC19NoKLg1jdTDw+OuZGnfvn1cvXqVoD992zcYDOzYsYNFixaRk5ODVqvl4MGDhXqV4uLi7kqstmzZwvHjxzEYDIWSoNtu3rwJQO3atUvcBgL0vr7UX7WK82PHknP0GPHDhlHr2VF4PP88dvf4fcrYvZsr78wl58QJ0OnwnjaVGkOGmDny4vWs35MmNZowbdc09l/dT3hsOCuPrGRs4Fh6N+h930QlvyCfnZd28snBTzh43Timyc/VjxkdZtDau7U5XkLVUa8DPLvRmHREzzeWYTix0fhwrmXsAWrcAxp0Mg52Li2lIPk8nP4Jjv8AZ38xJlYA9i7G3qR248Hdr3xfVynU+uc/UYYCri9aRNKqVWQfPozXlCk4tXioyP0N6RnGXtXPPgPAMTCQB5ZFoK1e3Zxh27QKTXZmzDCumfHpp5+WaH+lFB988AFhYWEMGjQIMI4r8fLy4osvvmDcuHEcO3aMzZs3ExMTQ9u2bQGIiIigffv2nDhxgqZNm5b769BoNCW+nWRJGo2GkJAQQkJCmDp1KvXq1SMyMpJXX3211Odq1aoVn3/+eaFt3bp149ChQ4W2Pfvss/j7+/PGG2+gvVUv6eDBgwwcONC0T1xcHI888ojp5/379zNkyBCWLl3KmjVrmDJlCuvWrSt03sOHD1O3bl08zDDd2dboPDyo99//kvBmGGlbt3IjYhnJkV9TvVcvXLp2RevuBkqRFRdH2s8/k7k7BgA7NzfqLviAau3aWfgVFK2+W31W9F7BmuNrWHpwKRfTLzJ111Tm7JlDpzqdCPIKorF7Y2o51UKDhtTcVE4nn+bQ9UP8dP4nknKMybuj1pFh/sMY//B46c2pKBoNNOhsfFz7A35bDofWQ+Z1+O0/xoedDjybgW8r45ga93rg6m1MgPROUGCA/GzIuA7pV+D6Sbh23FjaIfWOEinegfDI3yFgCDiZf4zZnTQaDbVfmIDjQ825/MZksn7/nfjBg6kWEoJrz544+jcFnY78K1dIj44m9dvvTPW1agwfjufrr93zy4kom0o1Zufs2bMkJibSs2dP0zYHBwe6dOnCrl27GDduHLt378bNzc2U6AC0a9cONzc3du3aVWSyk5OTU2igqy2u3xIbG8v27dvp2bMnnp6exMbGcu3aNZqVcQR/r169+Ne//kVSUpJpxpWrqystWrQotF+1atWoVauWaXtBQQFHjhxh6tSppn3OnDnDk08+CUB8fDx9+/Zl8uTJhIaG0rx5c1q3bs2+ffsK9RhFR0cX+j0QpaN1caHuhwtI++lnEme9Tf7lBJJWrSKpqOn8Oh01hg7FY8Lz6IqYXVeZ2GnsGN5sOAMbD2TtibWsObGGS+mX2HpuK1vPbS32WHcHdwY0GsCoFqPwcJIk2mxqN4HH50LPcDgbBSc2wantxjINiYeMj9Ky0xmTpKaPQ9O+xoHSlZDro4/S4KuvuL7wQ1K+/4GMnTvJ2LmzyH3tGzTA61+Tcenc2cxRVg2VKtlJTDQuTHXnbQ0vLy/OnTtn2sfT8+7VLj09PU3H32nOnDmmXiZbVb16dXbs2MEHH3xAamoq9erV4/333+fxx8tWtDEgIIDg4GDWrl3LuHHjSnzc6dOnyczMLHTbqmXLlkyfPp1WrVoxbtw4+vfvz5tvGosLBgUF0a9fP8LCwky3JbOzs4mMjGTLli1lil38j+tjj+LSMYSM3btJ3byFrN9/pyArC5WXh6O/P9XatcW1Z0+rW5XVWe/MqBajGPnQSI7eOMpPF37ij6Q/OJ18mrTcNAAcdY40dGtII/dGdKrTidberdHZVao/eVWLVgeNuxsfACkX4fIBuBxnTHyS4o29ODlpxh4dOx1o9eDsYVzhuGYDqO0PXi2gbjDYW8esOfu6dfCdOxePF14gef0Gsg8fJvuPE6BA7+2NQ6OGuD05COe2bWQgckVSpTRt2jQFFPvYu3dvoWNWrFih3Nzc7nvunTt3KkBdvny50PbRo0erXr16KaWUCg8PV02aNLnr2MaNG6s5c+YUed7s7GyVkpJiely4cEEBKiUl5a59s7Ky1NGjR1VWVtZ947V1P/zwg2rWrJkyGAxmve6iRYtUjx497rufvFdCCFG1pKSk3PPzuzil/przwgsvMHTo0GL3uVd5gfvx9vYGjL03Pj7/m1p69epVU2+Pt7c3V65cuevYa9euFTnQFYy3wm7PDBIl16dPH06ePMmlS5fw8zPfYD+9Xs/ChQvNdj0hhBC2rdTJjoeHR4UNGm3QoAHe3t5s27aNVq1aAcYZXb/88gtz584FoH379qSkpLBnzx7atGkDGMerpKSk0KFDhwqJqyqbOHGi2a85duxYs19TCCGE7arQdXbOnz9PXFwc58+fx2AwEBcXR1xcHOnp6aZ9/P39TSvu3i4qOXv2bCIjIzl8+DCjRo3C2dmZ4cOHA9CsWTN69+7NmDFjiImJISYmhjFjxvDEE09UyEwsIYQQQli3Ch2tN3XqVFauXGn6+XZvzc8//0zXrl0BOHHihKkeEsCkSZPIysri+eefJykpibZt27J169ZCRSxXrVrFSy+9ZJqt079/fxbdqs4shBBCCPFnGqUqY5naipWamoqbmxspKSlUv2PRpuzsbM6ePUuDBg2KXSVYWJ68V0IIUbUU9/ldHCkEeg9VMAe0OvIeCSGEKAlJdu5wu4SC1GSq/G6/R3eWvRBCCCH+TFbYuoNWq8Xd3d1UENPZ2VkWeqpklFJkZmZy9epV3N3dTWUqhBBCiKJIslOE2+v93E54ROXk7u5ueq+EEEKIe5FkpwgajQYfHx88PT3Jy8uzdDiiCHq9Xnp0hBBClIgkO8XQarXygSqEEEJYORmgLIQQQgibJsmOEEIIIWyaJDtCCCGEsGlVcszO7cXoUlNTLRyJEEIIIUrq9ud2aReVrZLJTlpaGgB+fn4WjkQIIYQQpZWWloabm1uJ96+StbEKCgq4fPkyrq6u5b5gYGpqKn5+fly4cKFUdTtE6Ug7m4e0s3lIO5uHtLP5VFRbK6VIS0vD19cXO7uSj8Spkj07dnZ21K1bt0KvUb16dfnPZAbSzuYh7Wwe0s7mIe1sPhXR1qXp0blNBigLIYQQwqZJsiOEEEIIm6adPn36dEsHYWu0Wi1du3ZFp6uSdwnNRtrZPKSdzUPa2Tyknc2nMrV1lRygLIQQQoiqQ25jCSGEEMKmSbIjhBBCCJsmyY4QQgghbJokO0IIIYSwaZLslMGSJUto0KABjo6OBAUFER0dXez+GzZsoHnz5jg4ONC8eXMiIyPNFKl1K007R0RE0KlTJ2rUqEGNGjXo3r07e/bsMWO01qu0v8+3rVmzBo1Gw8CBAys4QttQ2nZOTk5mwoQJ+Pj44OjoSLNmzdi4caOZorVepW3nDz74gKZNm+Lk5ISfnx+vvPIK2dnZZorWOu3YsYN+/frh6+uLRqPh66+/vu8xv/zyC0FBQTg6OtKwYUM+/vhjM0T6J0qUypo1a5Rer1cRERHq6NGjauLEiapatWrq3LlzRe6/a9cupdVq1ezZs9WxY8fU7NmzlU6nUzExMWaO3LqUtp2HDx+uFi9erA4cOKCOHTumnn32WeXm5qYuXrxo5sitS2nb+bb4+HhVp04d1alTJzVgwAAzRWu9StvOOTk5Kjg4WPXp00f9+uuvKj4+XkVHR6u4uDgzR25dStvOn3/+uXJwcFCrVq1SZ8+eVVu2bFE+Pj7q5ZdfNnPk1mXjxo0qLCxMbdiwQQEqMjKy2P3PnDmjnJ2d1cSJE9XRo0dVRESE0uv1av369WaKWClJdkqpTZs26p///Gehbf7+/mry5MlF7v/000+r3r17F9rWq1cvNXTo0AqL0RaUtp3vlJ+fr1xdXdXKlSsrIjybUZZ2zs/PVyEhIWrZsmVq5MiRkuyUQGnb+aOPPlINGzZUubm55gjPZpS2nSdMmKAee+yxQtteffVV1bFjxwqL0daUJNmZNGmS8vf3L7Rt3Lhxql27dhUZWiFyG6sUcnNz2bdvHz179iy0vWfPnuzatavIY3bv3n3X/r169brn/qJs7XynzMxM8vLyqFmzZkWEaBPK2s4zZ86kdu3a/OMf/6joEG1CWdr522+/pX379kyYMAEvLy9atGjB7NmzMRgM5gjZKpWlnTt27Mi+fftMt7zPnDnDxo0b6du3b4XHW5Xc63Pwt99+Iy8vzywxWH5ZQyty/fp1DAYDXl5ehbZ7eXmRmJhY5DGJiYml2l+UrZ3vNHnyZOrUqUP37t0rIkSbUJZ23rlzJ8uXLycuLs4cIdqEsrTzmTNn+OmnnxgxYgQbN27k5MmTTJgwgfz8fKZOnWqOsK1OWdp56NChXLt2jY4dO6KUIj8/n/HjxzN58mRzhFxl3OtzMD8/n+vXr+Pj41PhMUiyUwYajabQz0qpu7b9lf2FUVnbbd68eaxevZqoqCgcHR0rKjybUdJ2TktL45lnniEiIgIPDw9zhWczSvP7XFBQgKenJ5988glarZagoCAuX77Mu+++K8nOfZSmnaOioggPD2fJkiW0bduWU6dOMXHiRHx8fJgyZYo5wq0yinpfitpeUSTZKQUPDw+0Wu1d3xKuXr16V9Z6m7e3d6n2F2Vr59vee+89Zs+ezY8//khgYGBFhmn1StvOp0+fJj4+nn79+pm2FRQUAKDT6Thx4gSNGjWq2KCtUFl+n318fNDr9Wi1WtO2Zs2akZiYSG5uLvb29hUaszUqSztPmTKF0NBQRo8eDUBAQAAZGRmMHTuWsLAw7OxkpEd5uNfnoE6no1atWmaJQd7JUrC3tycoKIht27YV2r5t2zY6dOhQ5DHt27e/a/+tW7fec39RtnYGePfdd3n77bfZvHkzwcHBFR2m1SttO/v7+3Po0CHi4uJMj/79+/Poo48SFxeHn5+fuUK3KmX5fQ4JCeHUqVOmZBLgjz/+wMfHRxKdeyhLO2dmZt6V0Gi1WpRx8k6FxVrV3OtzMDg4GL1eb54gzDYU2kbcntq4fPlydfToUfXyyy+ratWqqfj4eKWUUqGhoYVG/u/cuVNptVr1zjvvqGPHjql33nlHpp6XQGnbee7cucre3l6tX79eJSQkmB5paWmWeglWobTtfCeZjVUypW3n8+fPKxcXF/XCCy+oEydOqO+//155enqqWbNmWeolWIXStvO0adOUq6urWr16tTpz5ozaunWratSokXr66act9RKsQlpamjpw4IA6cOCAAtT8+fPVgQMHTFP8J0+erEJDQ0373556/sorr6ijR4+q5cuXy9Rza7B48WJVr149ZW9vrx555BH1yy+/mJ7r0qWLGjlyZKH9161bp5o2bar0er3y9/dXGzZsMHPE1qk07VyvXj0F3PWYNm2a+QO3MqX9ff4zSXZKrrTtvGvXLtW2bVvl4OCgGjZsqMLDw1V+fr6Zo7Y+pWnnvLw8NX36dNWoUSPl6Oio/Pz81PPPP6+SkpIsELn1+Pnnn4v8e3u7bUeOHKm6dOlS6JioqCjVqlUrZW9vr+rXr68++ugjs8asUUr66oQQQghhu2TMjhBCCCFsmiQ7QgghhLBpkuwIIYQQwqZJsiOEEEIImybJjhBCCCFsmiQ7QgghhLBpkuwIIYQQwqZJsiOEEEIImybJjhBCCCFsmiQ7QgghhLBpkuwIIWzC6tWrcXR05NKlS6Zto0ePJjAwkJSUFAtGJoSwNKmNJYSwCUopHn74YTp16sSiRYuYMWMGy5YtIyYmhjp16lg6PCGEBeksHYAQQpQHjUZDeHg4gwcPxtfXlwULFhAdHXdnJ5AAAAEaSURBVC2JjhBCenaEELblkUce4ciRI2zdupUuXbpYOhwhRCUgY3aEEDZjy5YtHD9+HIPBgJeXl6XDEUJUEtKzI4SwCfv376dr164sXryYNWvW4OzszLp16ywdlhCiEpAxO0IIqxcfH0/fvn2ZPHkyoaGhNG/enNatW7Nv3z6CgoIsHZ4QwsKkZ0cIYdVu3rxJSEgInTt3ZunSpabtAwYMICcnh82bN1swOiFEZSDJjhBCCCFsmgxQFkIIIYRNk2RHCCGEEDZNkh0hhBBC2DRJdoQQQghh0yTZEUIIIYRNk2RHCCGEEDZNkh0hhBBC2DRJdoQQQghh0yTZEUIIIYRNk2RHCCGEEDZNkh0hhBBC2DRJdoQQQghh0/4faeyZS9YNnBoAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject Text(0.5,1,'orthogonal sine functions')" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using PyPlot\n", - "x = linspace(0,1,200)\n", - "plot(x, sin.(π*x), \"-\")\n", - "plot(x, sin.(2π*x), \"-\")\n", - "plot(x, sin.(3π*x), \"-\")\n", - "plot(x, sin.(4π*x), \"-\")\n", - "legend([L\"\\sin(\\pi x)\", L\"\\sin(2\\pi x)\", L\"\\sin(3\\pi x)\", L\"\\sin(4\\pi x)\"])\n", - "xlabel(L\"x\")\n", - "title(\"orthogonal sine functions\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sines as an orthogonal basis\n", - "\n", - "We can consider the $\\sin(n\\pi x)$ functions as an orthogonal basis for some set of functions, defined by all linear combinations of these $\\sin(n\\pi x)$ functions (their **span**). At first glance, it seems like this should be a rather \"small\" subspace of all functions. One of the most remarkable facts of mathematics, however, is that the span of the sine functions contains nearly all possible functions of practical interest! This was first proposed by Fourier in 1807, but took almost 150 years to make rigorous and precise.\n", - "\n", - "For a function $f(x)$ defined on $x \\in [0,1]$, the [Fourier sine series](http://en.wikipedia.org/wiki/Fourier_sine_and_cosine_series) writes $f(x)$ as:\n", - "$$\n", - "f(x) = \\sum_{n=1}^\\infty b_n \\sin(n\\pi x)\n", - "$$\n", - "where the coefficients $b_n$ can be found by integration:\n", - "$$\n", - "b_m = 2 \\int_0^1 f(x) \\sin(m\\pi x) dx \\, .\n", - "$$\n", - "\n", - "Let's define a function `sinecoef` in [Julia](http://julialang.org) to compute these [integrals numerically](http://en.wikipedia.org/wiki/Numerical_integration), using Julia's [quadgk](https://github.com/JuliaMath/QuadGK.jl) function We'll use the `abstol` parameter to set an integration tolerance: we want the error to be small compared to $\\sqrt{\\int_0^1 |f(x)|^2 dx}$." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "sinecoef (generic function with 1 method)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Pkg.add(\"QuadGK\") # uncomment to install QuadGK if needed.\n", - "using QuadGK\n", - "\n", - "sinecoef(f, m) = 2 * quadgk(x -> f(x) * sin(m*π*x), 0,1, atol=1e-8 * sqrt(quadgk(x->abs2(f(x)),0,1)[1]))[1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Truncated series = Projection = Fitting!\n", - "\n", - "In practice, of course, we are usually forced to truncate the series to a finite number N of terms:\n", - "\n", - "$$\n", - "f(x) \\approx \\sum_{n=1}^N b_n \\sin(n\\pi x)\n", - "$$\n", - "\n", - "while still computing $b_m = 2 \\int_0^1 f(x) \\sin(m\\pi x) dx$ as above. The key thing to understand is that **this is orthogonal projection** of $f(x)$ onto the **N-dimensional subspace** spanned by $\\{\\sin(\\pi x), \\sin(2\\pi x), \\ldots, \\sin(N\\pi x)\\}$.\n", - "\n", - "And, just for projection with vectors in $\\mathbb{R}^m$, **projection is equivalent to least-square fitting**. That means that truncating the Fourier series is equivalent to finding the $b_n$ that **minimize**\n", - "$$\n", - "\\left\\Vert f(x) - \\sum_{n=1}^N b_n \\sin(n\\pi x) \\right\\Vert^2 = \\int_0^1 \\left| f(x) - \\sum_{n=1}^N b_n \\sin(n\\pi x) \\right|^2 dx\n", - "$$\n", - "over all possible $\\{b_1,\\ldots,b_N\\}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A sine-series example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For example, if we have the function $f(x) = 0.5 - |x - 0.5|$, the first 20 coefficients are:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20-element Array{Float64,1}:\n", - " 0.405285 \n", - " 5.03187e-18\n", - " -0.0450316 \n", - " 1.82116e-17\n", - " 0.0162114 \n", - " -2.0849e-17 \n", - " -0.00827112 \n", - " -1.25544e-17\n", - " 0.00500352 \n", - " 4.70332e-17\n", - " -0.00334946 \n", - " -7.30892e-18\n", - " 0.00239813 \n", - " -2.34147e-16\n", - " -0.00180127 \n", - " -8.72534e-17\n", - " 0.00140237 \n", - " 3.67697e-16\n", - " -0.00112267 \n", - " -4.11412e-16" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "f(x) = 0.5 - abs(x - 0.5)\n", - "sinecoef.(f, 1:20)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Notice that $b_n = 0$ for *even* $n$, which correspond to *antisymmetric* sine functions that integrate to zero against this *symmetric* $f$.) The coefficients seem to be converging (getting smaller), as we would hope for a convergent series. Let's plot them." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHLCAYAAAA3J7d5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8zvX/x/HHZbY5zBxiDGNEimHOLGQKqYSl+lFCR5HDV3LoIJWITsSESqIvX9+c0rcTFhlytmkoqTmPkbNh27XP749PG7ONXdeu7XNte95vt+u2fd7X5/p8XtfnGnvt/X5/Xm+bYRgGIiIiIpJBEasDEBEREXFXSpREREREsqBESURERCQLSpREREREsqBESURERCQLSpREREREsqBESURERCQLSpREREREsqBESURERCQLSpREREREsqBESURERCQLSpQKsU2bNtG9e3eqVauGt7c3FStWpFWrVrz44otp+8yZMwebzcb+/futCzSXFYb3KK63cOFC6tWrR/HixbHZbERFReXJeS9cuMAzzzxDlSpVKFq0KDVr1gTgzTffpG7duqSkpDh0vM8++4wqVapw8eLF3Ag3gwsXLjB06FAqV65MsWLFCA4O5j//+U+2XrtmzRpsNlumj40bN+Zy5BAYGMjYsWNz/TzZlVfX0t3ed14ranUAYo1vv/2WBx98kHbt2jFp0iT8/f2Ji4tj69at/Oc//+H9998H4P777+eXX37B39/f4ohzT2F4j+JaJ06coHfv3tx7771Mnz4db29vbrvttjw597Bhw1i8eDHTp0+nevXqlC5dmqNHjzJp0iTmzJlDkSKO/f3bp08fJk6cyKRJk3jjjTdyKeqrwsLC2LJlC++88w633XYb8+fPp2fPnqSkpNCrV69sHWP8+PGEhoamawsKCsqNcN2armUeMaRQatu2rXHrrbcaSUlJGZ6z2+0WRJT3Ll68aHUIBVJhuK7r1q0zAGPhwoUuPe7Nrt2VK1cMHx8f46WXXkrXPmLECKNKlSpO/9t97733jNKlS+f6Z/ftt98agDF//vx07R06dDAqV65sJCcn3/D1q1evNgDjq6++ys0ws1S9enXj9ddft+Tc18vLa+lO79sKGnorpP7++2/Kly9P0aIZOxWv/Ys0s2GpsWPHYrPZ2LVrFz179qR06dJUrFiRJ598krNnz6Y71h9//EGvXr3w8/PD29ubO+64g/Dw8GzFeOLECZ599lkCAgLw9vamQoUK3Hnnnaxatcrhc6TGvH37dnr06EHZsmW59dZbs3yP2TlmduPLzG+//UbPnj2pWLEi3t7eVKtWjSeeeIIrV66k22/dunXcfffdlCpVihIlShASEsK3336b6Xu70eexbNkybDYbERERGWL5+OOPsdls7Ny506H3f7Pr+vXXX9OgQQO8vb2pWbMmU6ZMSdv/eo58htn5ucvuNXbm57Nv3760bt0agEcffRSbzUa7du3Sns/OZ3aza5eZfv364e3tzYULF3j33Xex2Wy0bNmSxMREPvvsM3r16pXu325cXBw+Pj783//9X7rj/O9//8PT05NXXnklre2xxx7j3Llz2R62cdbSpUvx8fHh4YcfzvDejh49yqZNm3L1/K7myDV2tYJ2Ld2a1ZmaWOPpp582AGPQoEHGxo0bjcTExEz3+/zzzw3AiI2NTWt7/fXXDcCoU6eOMWbMGGPlypXGBx98YHh7exv9+vVL22/Xrl1G6dKljfr16xtz5841VqxYYbz44otGkSJFjLFjx940xk6dOhkVKlQwZs2aZaxZs8ZYtmyZMWbMGOM///mPw+dIjbl69erGyJEjjZUrVxrLli3L9D1m95jZiS8zUVFRho+PjxEYGGjMmDHDiIiIML788kvjkUceMc6dO5e235o1awxPT0+jSZMmxsKFC41ly5YZHTt2NGw2W7pzZOfzSEpKMvz8/IzHHnssQzzNmzc3Gjdu7NTnltV1/f77740iRYoY7dq1M5YuXWp89dVXRosWLYzAwEDj+v92HP0Mb/Zzl91r7OzP5759+4zw8HADMMaPH2/88ssvxq5duxz6zG507bKyZ88eY/To0QZgLF++3Pjll1+MvXv3GmvXrjUA47vvvsvwmjfeeMOw2WzG1q1bDcMwexGKFStmDBo0KMO+d9xxhxEWFpbl+VNSUoykpKRsPbLSsmVLo1mzZhnaY2JiDMCYOXNmlq9NjR8w/Pz8DA8PD6NUqVJGx44djcjIyBu+zlUy61lx5Bq7Ul5ey8Leo6REqZA6efKk0bp1awMwAMPT09MICQkxJkyYYJw/fz5tvxslSpMmTUp3zAEDBhjFihUzUlJSDMMwE4mqVasaZ8+eTbffCy+8YBQrVsw4derUDWP08fExhg4desN9snuO1JjHjBmT4RjXv8fsHjM78WWmffv2RpkyZYz4+Pgb7teyZUvDz88v3eeRnJxsBAUFGVWrVk27ztn9PIYNG2YUL17cOHPmTNo+u3fvNgBj6tSpaW2OfG5ZXddmzZoZAQEBxpUrV9Lazp8/b9xyyy0ZEiVHP8ObvU/DyN41zsnPZ1bDFtn9zK59P5n9TGZl0KBBRtmyZdO1TZw40QCMY8eOZdj/4sWLRuXKlY27777b2Lx5s1GqVCmjX79+6eJI9dhjjxkVK1a86XvOzuPa/y+uVbt2baNTp04Z2o8ePZqWeN7I9u3bjSFDhhhLly411q5da8yePdu44447DA8PD+OHH3644WtdIbOEwZFr7Ep5eS0Le6KkobdC6pZbbiEyMjJtImDXrl3Zu3cvo0ePpn79+pw8efKmx3jwwQfTbTdo0IDLly8THx/P5cuXiYiIoHv37pQoUYLk5OS0x3333cfly5dvepdK8+bNmTNnDuPGjWPjxo0kJSWle96Zczz00EM3PKcjx7xZfJlJSEjg559/5pFHHqFChQpZ7nfx4kU2bdpEjx498PHxSWv38PCgd+/eHD58mN9//z3da270eQA8+eSTXLp0iYULF6bt8/nnn+Pt7Z028dPZz+3a63rx4kW2bt1Kt27d8PLySmv38fGhS5cu6V7nzPlu9j6zc41d8fN5PWc+M7j5z+S1tm3bRpMmTdK1HT16FJvNRvny5TPsX6JECcaNG0dERAShoaF07tyZTz75JNPhTz8/P+Lj40lOTs703E2aNGHLli3ZelSuXDnL95DZubPzHECjRo2YPHky3bp1o02bNvTr148NGzbg7+/PiBEjsnzdje7wuv7h6N2LjlxjV8djxbUsjHTXWyHXtGlTmjZtCkBSUhIjR47kww8/ZNKkSUyaNOmGr73lllvSbXt7ewNw6dKltF86U6dOZerUqZm+/mbJ2MKFCxk3bhyffvopr732Gj4+PnTv3p1JkyZRqVIl/v77b4fPcbM72xw55s3iy8zp06ex2+1UrVr1hnGcPn0awzAyjTf1l9Dff/+drv1GnwdAvXr1aNasGZ9//jnPPvssdrudL7/8kq5du1KuXDmH3/+1ro0zNfaKFStm2O/6NmfOd7P3mZ1r7Oz7vBFnPjO4+c9kKrvdTlRUFIMGDUrXfunSJTw9PfHw8Mj0dal349lsNubMmZPlfsWKFcMwDC5fvpwu0Uvl4+NDcHBwtmLNbO4jmJ9dZtfg1KlTAGk/h44oU6YMDzzwADNmzODSpUsUL148wz516tThk08+ydbxqlWr5nAM2b3GrozHqmtZGClRkjSenp68/vrrfPjhh8TExOToWGXLlk37S3rgwIGZ7lOjRo0bHqN8+fJMnjyZyZMnc/DgQZYvX86oUaOIj4/nhx9+cOocN/sry5Fj3iy+zJQrVw4PDw8OHz580ziKFClCXFxchueOHj2adn5H9evXjwEDBrBnzx7++usv4uLi6NevX7rzOvO5XXtdy5Yti81m4/jx4xn2O3bsWLptV/ycXC871zg3zuvsZ3azn8lUe/bsISEhIUOPUvny5UlMTOTixYuULFky3XNRUVE88MAD3Hnnnaxfv57Zs2dn+X5PnTqFt7d3pkkSwM8//5zhNvKsxMbGEhgYmKG9fv36LFiwgOTk5HTJ1K+//go4f1u6YRhA1tfS39+fp59+2qlj34wj19iV8Vh1LQslK8f9xDpHjx7NtP2XX34xAOOpp54yDOPGc5ROnDiR7rXX73vPPfcYDRs2TDdPJae6detmVKhQIW07u+fIKmZXx319fJlp3769UbZs2UxjuVarVq2MSpUqGQkJCWltdrvdqF+/fqZzlG72eRiGYZw+fdooVqyYMWLECKNHjx6Z3lLuyPvP6tyOzFHK6WeY2fvMzjXOyeec1Ryl7H5mN3o/WUl9n3/++We69rlz5xqAER0dna79t99+M/z8/IzOnTsbiYmJRteuXY3y5cunm6N2rQ4dOhiNGjXK8vznzp0ztmzZkq1HVtf0u+++M4AME9vvvffebN3SnplTp04ZVapUMYKDgx1+raOun6vj6DV2pby8loV9jpJ6lAqpTp06UbVqVbp06cLtt99OSkoKUVFRvP/++/j4+DBkyJAcn2PKlCm0bt2aNm3a8PzzzxMYGMj58+fZt28f33zzDT/99FOWrz179iyhoaH06tWL22+/nVKlSrFlyxZ++OEHwsLCXHKOnMSd3fgy88EHH9C6dWtatGjBqFGjqFWrFsePH2f58uXMnDmTUqVKATBhwgQ6dOhAaGgow4cPx8vLi+nTpxMTE8OCBQuc+ouvTJkydO/enTlz5nDmzBmGDx+eoUChK67pm2++yf3330+nTp0YMmQIdrudd999Fx8fn7ShAVee73rZuca5cd7c+MxSbdu2jTJlyqRV4k6VWppg48aNNGjQAID9+/dzzz33UKdOHRYvXoynpyfvvPMOQUFBjB8/nokTJ6Y7RkpKCps3b+app57K8vylSpVKG6Z3VufOnenQoQPPP/88586do1atWixYsIAffviBL7/8Mm3I6ueff+buu+9mzJgxjBkzJu31vXr1olq1ajRt2pTy5cvzxx9/8P7773P8+HHmzJmTo9gc5eg1drWCdC3dntWZmlhj4cKFRq9evYzatWsbPj4+hqenp1GtWjWjd+/exu7du9P2y0mPkmEYRmxsrPHkk08aVapUMTw9PY0KFSoYISEhxrhx424Y3+XLl43+/fsbDRo0MHx9fY3ixYsbderUMV5//fUMRfGycw5HepSyc0xH4svM7t27jYcffti45ZZbDC8vL6NatWpG3759jcuXL6fbLzIy0mjfvr1RsmRJo3jx4kbLli2Nb775Jt0+jnwehmEYK1asSLs7ae/evZnGl93P7UbXdenSpUb9+vXT3t8777xjDB48OMNdW9k9n6PvMzvX2NmfzxsV68vOZ3aza5eZVq1aGe3bt8/0uTZt2hj33XefYRhmb/Gtt95qNG7cOMMdfc8884zh7e2d4VpFREQYgLFt27ZsxZIT58+fNwYPHmxUqlTJ8PLyMho0aGAsWLAg3T6p1/f6XowJEyYYwcHBRunSpQ0PDw+jQoUKRvfu3Y3NmzfnetyGcbVnxZlrnBvy6loW9h4lm2H8MyApIpKLkpKSCA4OpkqVKqxYscLqcAqUxYsX8+ijj3LgwAGqVKni8Ot79+7NX3/9xfr163MhuoIjMDCQvn37Frp1zwrr+06loTcRyRVPPfUUHTp0wN/fn2PHjjFjxgz27NnDlClTrA6twAkLC6NZs2ZMmDCBadOmOfTaP//8k4ULFzo11ChSGChREpFccf78eYYPH86JEyfw9PSkcePGfPfdd9xzzz1Wh1bg2Gw2PvnkE5YvX05KSopDC+MePHiQadOmpS3LIiLpKVESkVzx3//+1+oQCpWgoCCnbgkPDQ3N9m3/IoWR5iiJiIiIZEFLmIiIiIhkQYmSiIiISBY0R8lBKSkpHD16lFKlSqnEu4iISD5hGAbnz5+ncuXKDt3woETJQUePHiUgIMDqMERERMQJhw4duunC5NdSouSg1OUlDh06hK+vr8XRiIiISHacO3eOgICAtN/j2aVEyUGpw22+vr5KlERERPIZR6fNaDK3iIiISBaUKImIiIhkQUNvIiIibiYlJYXExESrw8hXPD098fDwcPlxlSiJiIi4kcTERGJjY0lJSbE6lHynTJkyVKpUyaXle5QoiYiIuAnDMIiLi8PDw4OAgACH6v0UZoZhkJCQQHx8PAD+/v4uO7YSJRERETeRnJxMQkIClStXpkSJElaHk68UL14cgPj4ePz8/Fw2DKdUVURExE3Y7XYAvLy8LI4kf0pNLpOSklx2TCVKIiIibkZLZDknN65boUyU/ve//1GnTh1q167Np59+anU4IiIi4qYK3Ryl5ORkhg0bxurVq/H19aVx48aEhYVRrlw5q0MTERERN1PoepQ2b95MvXr1qFKlCqVKleK+++7jxx9/tDosERERcUP5LlFau3YtXbp0oXLlythsNpYtW5Zhn+nTp1OjRg2KFStGkyZNiIyMTHvu6NGjVKlSJW27atWqHDlyJE9iFxERkfwl3yVKFy9epGHDhkybNi3T5xcuXMjQoUN55ZVX2LFjB23atKFz584cPHgQMGstXO9Gk7+uXLnCuXPn0j1yy59/ws6duXZ4EREpJOx2WLMGFiwwv/5zM12uWrNmDYGBgenaRo4cSefOnV12PCvku0Spc+fOjBs3jrCwsEyf/+CDD3jqqad4+umnueOOO5g8eTIBAQF8/PHHAFSpUiVdD9Lhw4dvWJhqwoQJlC5dOu0REBDg2jf0D7sdnngCmjaFCRMgOTlXTiMiIgXckiUQGAihodCrl/k1MNBsz2tRUVE0bNgw70/sQvkuUbqRxMREtm3bRseOHdO1d+zYkQ0bNgDQvHlzYmJiOHLkCOfPn+e7776jU6dOWR5z9OjRnD17Nu1x6NChXIn94kWoUAGSkuDll+HOO+G333LlVCIiUkAtWQI9esDhw+nbjxwx2/M6WYqOjiY4ODhvT+piBSpROnnyJHa7nYoVK6Zrr1ixIseOHQOgaNGivP/++4SGhtKoUSNeeuklbrnlliyP6e3tja+vb7pHbvD1haVLYe5cKF0aNm+GRo3gww9By/2IiMjN2O0wZAhkMsMkrW3o0LwZhgM4duwYx48fJyUlhbZt21KiRAmaNm1KdHR03gTgIgUqUUp1/ZwjwzDStT344IPs3buXffv28eyzz+Z1eFmy2aB3b4iJgY4d4fJlGDbM7Db9Z/kaERGRTEVGZuxJupZhwKFD5n55YceOHQBMnjyZ8ePHs3XrVkqVKsX//d//5U0ALlKgEqXy5cvj4eGR1nuUKj4+PkMvk6PCw8OpW7cuzZo1y9FxsqNqVfjhB5gxA0qWhPPnoUyZXD+tiIjkY3Fxrt0vp6KioihWrBjLli2jdevW1K1bl7fffpvffvstw+9pd1agEiUvLy+aNGnCypUr07WvXLmSkJCQHB174MCB7N69my1btuToONlls8Fzz5l3wc2fD6nL/iQmmmPNIiIi17rBfUlO7ZdTUVFRPPLII1SuXDmtrWTJkgCk5KM5JfkuUbpw4QJRUVFERUUBEBsbS1RUVNrt/8OGDePTTz9l9uzZ7Nmzh3/9618cPHiQ/v37Wxm202rWhNtvv7r99ttQr545lymzcWgRESmc2rQxRySyqnhjs0FAgLlfXoiKisowkXv79u1UqlQp7W7zzp078/rrr9OyZUuqV6/O7t278yY4B+S7RGnr1q00atSIRo0aAWZi1KhRI8aMGQPAo48+yuTJk3nzzTcJDg5m7dq1fPfdd1SvXt3KsF3CboeffoKzZ6FPH+jeHY4ftzoqERFxBx4eMGWK+f31yVLq9uTJ5n65LSEhgX379mG/ZuZ4SkoKU6dOpW/fvmnzhmNiYqhRowYbN27kmWee4Ztvvsn94ByU7xKldu3aYRhGhsecOXPS9hkwYAD79+/nypUrbNu2jbZt2+b4vHk5RykrHh6werVZZ8nTE77+2uxd+uory0ISERE3EhYGixbBNQtQAGZP06JF5vN5ITo6Gg8PDz7//HM2b97M3r17eeSRR7h48SIvv/wyAGfPnsXT05O+ffsC5vSZMm44ITffJUpWyes5SlkpWhRGjYJt2yA4GP7+Gx55BP7v/8zvRUSkcAsLg/37zT+s5883v8bG5l2SBGaidNtttzF27FgeeughGjVqhKenJxs2bKBUqVKA2ZvUvHnztNfExMRQr169vAsym4paHYA4p3592LTJnLP09tvwzTcwbhzcoCSUiIgUEh4e0K6ddefv379/2tzghx9+ONN9YmJiqF+/ftr2r7/+SlBQUJ7E5wglSvmYlxe88QZ06QL79kGtWlefS0y8eqeciIiIu9m1axf33HMPAMnJyVy4cEFDb/mZO8xRykrTpubQW6q1a+G222DVKutiEhERuZGPPvqIBx98EDBXzfjjjz8sjihzSpSyyV3mKGXH22/DgQPQoQMMHAgXLlgdkYiIFHSBgYEMHTrUbY/nLCVKBdCSJWaCBDB9ujnpe906a2MSEZGCTYmS5BslS8K0aebQW7Vq8Oef0LYtDB8Oly5ZHZ2IiEj+oUSpALv7bvj1V3jqKbOK9/vvw//+Z3VUIiIi+YcSpWxy58ncN+LrC59+aiZIzz4LPXpYHZGIiEj+oUQpm/LTZO7M3H8/zJx5tYz9qVNw330QHW1tXCIiIu5MiVIh9cor8P330KwZjB8PyclWRyQiIuJ+lCgVUmPHQrdukJRkJk133gm//WZ1VCIiIu5FiVIhVbGiWUZg7lwoXRo2b4ZGjeDDDyElxeroRERE3IMSpULMZoPevSEmBjp1gsuXYdgwmDDB6shERETcgxKlbMqvd71lR9Wq5nylWbOgTh0YMMDqiERERODQoUO0a9eOunXr0qBBA7766qs8j8FmGIaR52fNx86dO0fp0qU5e/Ysvr6+VofjcsnJUPSfpZINw1wOpU8fCAiwNi4RkcLg8uXLxMbGUqNGDYoVK2Z1OJaLi4vj+PHjBAcHEx8fT+PGjfn9998pWbJkpvvf6Po5+/tbPUpuwG6HNWtgwQLzq91uXSypSRLAvHnw2msQFARffGEmTiIiInnF39+f4OBgAPz8/ChXrhynTp3K0xiUKFlsyRIIDITQUOjVy/waGGi2W61FC2jZEs6dg759zbvkjh2zOioREXFHa9eupUuXLlSuXBmbzcayZcsy3a9v376MGjXK4eNv3bqVlJQUAvJ4iEOJkoWWLDErZR8+nL79yBGz3epkqU4diIw0J3d7esLy5WbvkgVDxCIi4uYuXrxIw4YNmTZtWpb7pKSk8O2339K1a1eHjv3333/zxBNPMGvWrJyG6TAlShax22HIkMyHs1Lbhg61dhgOzKG4UaNg2zazfMDff8Mjj5gL7IqIiKTq3Lkz48aNIywsLMt91q9fT5EiRWjRogUA+/btw2az8e2333L33XdTokQJ6tSpw6ZNm9Jec+XKFbp3787o0aMJCQnJ9fdxPSVKFomMzNiTdC3DgEOHzP3cQf36sHEjjBlj9i516WJ1RCIihcfFi1k/Ll/O/r6XLmVv39yyfPlyunTpQpEiZvoRHR2NzWbj/fff59VXXyU6Oppq1aqlDc0ZhkHfvn1p3749vXv3zr3AbkCJkkXi4ly7X17w8oI33oDYWLjrrqvtERFw9qx1cYmIFHQ+Plk/Hnoo/b5+flnv27lz+n0DAzPfL7csX7483bBbdHQ0pUuXZuHChYSGhlK7dm26devGiRMnALMHauHChSxbtozg4GCCg4P59ddfcy/ATBS9+S4CZh2l8PBw7C4aC/P3d+1+ealKlavf79sHDz4It9wCn30GHTpYF5eIiLivPXv2cPjwYe655560tujoaLp06UKFChXS2v766y9q1aoFQOvWrUmxeLkIJUrZNHDgQAYOHJhWhyGn2rQxCz0eOZL5PCWbzXy+TZscnypXnTsHlSubCVPHjvD88zBpUu7+RSIiUthcuJD1cx4e6bfj47Pet8h140j79zsdksOWL19Ohw4dKF68eFpbdHQ0I0eOTLffjh07aNu2bd4FdhMaerOIhwdMmWJ+b7Olfy51e/LkjP8A3E3jxhAVBS+8YG5//DE0bOg+c6tERAqCkiWzflxfl/JG+16To9xw39zw9ddf8+CDD6Ztnz17lgMHDtCoUaN0+0VFRaXVTnIHSpQsFBYGixalH8oCsydp0SLz+fygZEmYOhVWrYJq1eCvv8w5TE6UyRARkXzqwoULREVFERUVBUBsbCxRUVEcPHiQ+Ph4tmzZwgMPPJC2f3R0NB4eHjRs2DCt7cCBA5w+fdqtEiUNvVksLAy6djV7YOLizDlJbdq4f09SZu6+G3791VxY97PPzMnfIiJSOGzdupXQ0NC07WHDhgHQp08f2rRpQ4sWLfDz80t7Pjo6mttvvz3dUNyOHTsoU6YMgYGBeRb3zWitNwcV9LXeXOWnn6B166vJ0pEjUKGCkicRkRspqGu9Pfjgg7Ru3ZoRI0bk6nm01pvkG+3bX02KEhPNukvNm0N0tLVxiYhI3mvdujU9e/a0OgynKFGSXLd3r1k8MzoamjWDt9+G5GSroxIRkbwyYsSIPF+jzVWUKEmuCwqCXbvMRXWTkuDVVyEkBH77zerIREREbkyJUjaFh4dTt25dmjVrZnUo+ZKfn7nI77x5ULo0bNlirh33wQdgcS0xERGRLClRyqaBAweye/dutmzZYnUo+ZbNBo8/bvYu3XuvuT7R4sWZF9wUERFxByoPIHmuShX47jv49FNo1+5qKYSkJChaNGMBThEREauoR0ksYbPBM89A7dpX20aNgk6dzInfIiKFmSr3OCc3rpsSJXEL8fEwcyasXGlO/p4zR0NyIlL4ePzTxZ6YmGhxJPlTQkICAJ6eni47pobexC34+cH27dCnD2zcCP36mZO/Z82CSpWsjk5EJG8ULVqUEiVKcOLECTw9PSly/Sq2kinDMEhISCA+Pp4yZcqkJZyuoMrcDlJl7txlt8N778GYMWahynLlYPp0ePRRqyMTEckbiYmJxMbGkqJbgh1WpkwZKlWqhC2Tya7O/v5WouQgJUp5IyYGnngCduwAX1/4808oX97qqERE8kZKSoqG3xzk6el5w57T+TpBAAAgAElEQVQkZ39/a+hN3FJQEGzaZFbxvvVWJUkiUrgUKVKkQK31lp9p8FPclqcnjB0LvXtfbfvhB+jbF86csSoqEREpTJQoSb6RmAjPPgtffAH168OKFVZHJCIiBZ0SJck3vLzgP/+BWrXg8GGz5tLzz8OFC1ZHJiIiBZUSJclXQkIgKgoGDTK3Z8yABg1g7Vpr4xIRkYJJiZLkOyVLwkcfQUQEVKsGsbHmUig7d1odmYiIFDS66y2bwsPDCQ8Px263Wx2K/KN9e/j1Vxg2DC5dMnuWREREXEl1lBykOkruKTnZXFAX4PhxczmUkSPB29vauERExD04+/tbQ29SIKQmSYYB/fvD669D8+YQHW1tXCIikr8pUZICxWaDxx83C1Tu3AnNmsG4cWaPk4iIiKOUKEmB89BDsGsXdO8OSUnw2mvm3XJ79lgdmYiI5DdKlKRA8vODxYvhyy+hTBnYsgUaNYKVK62OTERE8hMlSlJg2Wzw2GPmArv33gv+/tCypdVRiYhIfqJESQq8KlXgu+9gwwYoVcpsS0mBpUvNryIiIllRoiSFgs1m9iilmjEDwsLMZVAOHrQuLhERcW9KlKRQKlIEihWDVavMBXbnzDFLC4iIiFxLiZIUSv37m2vGtWwJ585Bv37w4IMQF2d1ZCIi4k6UKEmhVacOrFsH77wDXl7wv/9BUJA5n0lERASUKEkh5+FhLnWybZtZPuDsWahQweqoRETEXShREsHsSdq0CVasMKt5p/rrL+tiEhER6ylREvmHpye0b391OyYG7rgD+vSBM2esi0tERKyjREkkC5GR5hIoc+eaPU4rVlgdkYiI5DUlSiJZeP55c7J3rVpw5IhZc6l/fzh/3urIREQkryhRErmBkBCzjMCgQeb2zJnQsCH8/LO1cYmISN4olIlS9+7dKVu2LD169LA6FMkHSpaEjz6CiAioXh1iY82J3yIiUvAVykRp8ODBzJ071+owJJ9p3x527oQJE+DFF6+2X7liXUwiIpK7CmWiFBoaSqnU1VFFHODrC6NGmfWXAC5fhqZN4eWXlTCJiBREbpcorV27li5dulC5cmVsNhvLli3LsM/06dOpUaMGxYoVo0mTJkRGRloQqQgsWWKWEZgwway/FBVldUQiIuJKbpcoXbx4kYYNGzJt2rRMn1+4cCFDhw7llVdeYceOHbRp04bOnTtz8Jol4Js0aUJQUFCGx9GjRx2O58qVK5w7dy7dQyRVr16waBGULw+//momS+PGQXKy1ZGJiIgr2Awj+2um16hRA5vN5vBJhg4dyuDBgx1+nc1mY+nSpXTr1i2trUWLFjRu3JiPP/44re2OO+6gW7duTJgwIdvHXrNmDdOmTWPRokU33G/s2LG88cYbGdrPnj2Lr69vts8nBVt8vFk6YOlSc7tpU/jiC6hb19q4RETEdO7cOUqXLu3w7++ijpxkzpw5jsYFQGBgoFOvu15iYiLbtm1j1KhR6do7duzIhg0bXHKO640ePZphw4albZ87d46AgIBcOZfkX35+sHgxzJ8PL7wAW7fCiBHmQrsiIpJ/OZQo3XXXXbkVR7acPHkSu91OxYoV07VXrFiRY8eOZfs4nTp1Yvv27Vy8eJGqVauydOlSml27wNc1vL298fb2zlHcUjjYbPDYY9CuHfzrX/Dee1ZHJCIiOeVQouQurh/+MwzDoSHBH3/80eFzhoeHEx4ejt1ud/i1UrhUqQL//W/6tmHD4NZbzWrfRdxuZqCIiGTFZYnSb7/9xjfffEOZMmWoV68eQUFBLp/DU758eTw8PDL0HsXHx2foZXK1gQMHMnDgwLQxTpHs+uUX+PBD8/ulS2H2bKhWzdqYREQke1z2t23nzp1JTEzkzJkzzJw5k3bt2lGnTh1XHR4ALy8vmjRpwsqVK9O1r1y5kpCQEJeeS8RVWrQwK3sXL25W965fHz7/HLJ/G4WIiFjFZT1KlSpV4pVXXknX5sww1YULF9i3b1/admxsLFFRUZQrV45q1aoxbNgwevfuTdOmTWnVqhWzZs3i4MGD9O/fP8fvQSQ3FClirhXXqRP06QMbN8KTT5o1mGbNAn9/qyMUEZGsuKxHqVOnTsybNy9dm0dq+WIHbN26lUaNGtGoUSMAhg0bRqNGjRgzZgwAjz76KJMnT+bNN98kODiYtWvX8t1331G9evWcv4kbCA8Pp27dullO+ha5mdtug3XrYOJE8PIy74hr1w407U1ExH05VEfpRu677z5iYmLw8vKiefPm1K9fn/r16/PAAw+44vBuw9k6DCLXiomBJ56A0aPh4YetjkZEpODLkzpKmYmPjyclJYXvvvsuLZCYmBhiYmJYtWpVgUuURFwhKAg2b4ai1/wL/OYbSEmBrl2ti0tERNJzukdp586d9OzZk99++w0w5yj169eP0aNHU7JkSZcG6U7UoyS5IT4e6tWDkyfNnqYpU6BMGaujEhEpOJz9/e30HKWnnnqKihUrsm7dOnbs2MG4ceP4/vvvadq0KadPn3b2sCKFkq+vOcG7SBGYO9fscXKi3JeIiLiY0z1KJUuWZNu2bdx+++1pbYZh8PDDD1OsWDG+/PJLlwXpDq4tOLl37171KEmu2LDBvDMu9cbP556Dd9+FUqWsjUtEJL9ztkfJ6UTprrvu4p133qFVq1bp2vfu3UuTJk04f/68M4d1exp6k9x28aI5yXvqVHO7Rg3YsQNU51RExHl5MvR2//338/LLL/Pf//6X/v37869//Yvjx4+n2+fs2bOULVvWkcOKyDVKljQLVEZEQPXqcM89SpJERKzi0F1v9evXZ/v27Xz++edpCVLNmjV55JFHCA4Oxm638/nnn/Nh6noNIuK09u1h505zsd1Uhw7BkSPQsqV1cYmIFCZOD70dP36cHTt2EBUVlfbYt28fHh4e1KlTh507d7o6VregoTeximGY1b0jImDkSHj9dfD2tjoqEZH8Ic/rKFWsWJF7772Xe++9N63t0qVLREdHEx0d7exh3da1k7lFrHD5Mvj5mbWWJkwwK3t/8QX8U8ReRERygcsqcxcW6lESqy1ZAv37w4kTZsHKMWNg1Cjw9LQ6MhER95XndZRExBphYeYSKGFhkJxsJkohIXD4sNWRiYgUPA4NvdWoUQPbtTNLs2no0KEMHjzY4deJSOb8/GDRIpg/H154AS5cgFtusToqEZGCx6FEac6cOU6dJDAw0KnXiUjWbDZ47DFo1w5On4bixc12u928O07/7EREcs6hROmuu+7KrThE8g27HSIjIS4O/P2hTRvw8LAunipVzEeqDz6AsWNh0iR4/nlzWRQREXGO/gvNpvDwcOrWrUuzZs2sDkUstGSJ2VMTGgq9eplfAwPNdndgGLB6NSQkmENyHTvCwYNWRyUikn/prjcH6a63wmvJEujRw0xGrpU6bW/RInOCtdVSUiA83Ky1dOmSuU7c5MnQr1/64pUiIoWJ7noTyUV2OwwZkjFJgqttQ4ea+1mtSBEYNAiio6FVKzh/Hp56Crp0MYcLRUQk+5QoiWRDZOSNb783DHMCdWRk3sV0M7Vrm/FMnAheXrByJfz9t9VRiYjkL04nSgcPHiSzUTvDMDioSRFSwGS3J8bdemw8PGDECNi2DT79FIKCrj535Yp1cYmI5BdOJ0o1atTgxIkTGdpPnTpFjRo1chSUiLvx93ftfnktKAh69766vXUr1KwJy5ZZF5OISH7gdKJkGEamxScvXLhAsWLFchSUiLtp0waqVs16MrTNBgEB5n75wcSJcPQodO8OTzwBZ85YHZGIiHtyeFHcYcOGAWCz2XjttdcoUaJE2nN2u51NmzYRHBzsugjdhBbFLdw8PGDKFPOuN5st/aTu1ORp8mRr6yk54ssv4dZb4d13Yd48+Okn+Owz6NTJ6shERNyLw+UBQkNDAfj5559p1aoVXl5eac95eXkRGBjI8OHDqV27tmsjdRMqD1C4LVli3v127cTugAAzSXKH0gCO+uUX6NsX9u41t599Ft57zywpICJSkDj7+9vpOkr9+vVjypQphS5ZUKIk7laZO6cSEuDll80eMzAnfT/1lLUxiYi4Wp4nSoWVEiUpqFavhrlzzSE4LXsiIgWNs7+/HZ6jdK2IiAgiIiKIj48nJSUl3XOzZ8/OyaFFJI+FhpqPVBcumHOyXn/dLFwpIlIYOf134xtvvEHHjh2JiIjg5MmTnD59Ot1DRPK3t96CH3+E1q1h9GjVXRKRwsnpoTd/f38mTZpE72uLsxQCGnqTwuL0aRg82LxDDsxaTF98AY0bWxuXiIgz8nytt8TEREJCQpx9uYi4ubJlzdIBS5ZAhQoQEwMtWsCbb0JSktXRiYjkDacTpaeffpr58+e7MhYRcUPdu8OuXWb5g+Rkc87Syy9bHZWISN5wejL35cuXmTVrFqtWraJBgwZ4enqme/6DDz7IcXAi4h4qVIBFi2DBAhg7Fl580eqIRETyhtOJ0s6dO9MqcMfExKR7LrOlTfI7VeaWws5mg1694NFH09eNeucd8+64WrWsi01EJLeojpKDNJlb5KolS+Chh6BECZg0CZ5/XjWYRMQ95flkboDIyEgef/xxQkJCOHLkCADz5s1j3bp1OTmsiOQTTZqYtZcSEuCFF6BDBzhwwOqoRERcx+lEafHixXTq1InixYuzfft2rvxTZOX8+fOMHz/eZQGKiPuqXh1WrYKpU6F4cXNx3fr1zere6qsWkYLA6URp3LhxzJgxg08++STdRO6QkBC2b9/ukuBExP0VKWL2JkVHmxW8z5+Hp5+GZ56xOjIRkZxzOlH6/fffadu2bYZ2X19fzpw5k6OgRCT/qV3bXCx40iTw9jbLCYiI5HdOJ0r+/v7s27cvQ/u6deuoWbNmjoISkfzJwwNeegliY+G++662r1kDJ05YFpaIiNOcTpSee+45hgwZwqZNm7DZbBw9epR///vfDB8+nAEDBrgyRhHJZ/z9r35/6BB062YugbJsmXUxiYg4w+k6SiNGjODs2bOEhoZy+fJl2rZti7e3N8OHD+eFF15wZYwiko+dPw8BAeYSKN27w+OPw0cfmUukiIi4uxzXUUpISGD37t2kpKRQt25dfHx8XBWbW1IdJRHHXbliVvSeNAlSUqByZfPOuHvvtToyESksnP39rYKTDlKiJOK8X36BPn3gjz/M7eeeg48/Nqt+i4jkJmd/fzs09DZs2DDeeustSpYsybBhw264r9Z6E5HrtWoFUVHmorpTppgVvZUkiYg7cyhR2rFjB0lJSWnfZ6UgrvUmIq5RogRMnmyuD9ekydX2uDgoXdp8XkTEXWjozUEaehNxPbsd7rrLLCHwxRfQsqXVEYlIQWPJWm+FSXh4OHXr1qVZs2ZWhyJS4Ozfb9Ze2rsX7rwTRo82J4CLiFjN6R6lCRMmULFiRZ588sl07bNnz+bEiROMHDnSJQG6G/UoieSO06dh8GD48ktzOygI5s6FRo2sjUtECoY871GaOXMmt99+e4b2evXqMWPGDGcPKyJ5xG43K2YvWGB+tdutjadsWZg3D5YsgQoVzLpLzZvDm2/CP1MjRUTynNOJ0rFjx/C/tvzuPypUqEBcXFyOghKR3LVkCQQGQmgo9Oplfg0MNNut1r077NoFDz0EycmwdCloJqWIWMXpRCkgIID169dnaF+/fj2VK1fOUVAiknuWLDHvODt8OH37kSNmuzskSxUqwFdfwfz55uRuLy+zPTnZ+p4vESlcnF7C5Omnn2bo0KEkJSXRvn17ACIiIhgxYgQvvviiywIUEdex22HIkMx7aAzDrGk0dCh07WoucGslmw169kzfNm4crFxpJk+1alkTl4gULjla6+3UqVMMGDCAxMREAIoVK8bIkSMZPXq0ywIUEdeJjMzYk3QtwzAXsY2MhHbt8iysbDl3DqZOhVOnoGFDmDgRBgyAIrp3V0RykdP/xdhsNiZOnMiJEyfYuHEj0dHRnDp1ijFjxrgyPhFxoexOH3THaYa+vrB9O7RvDwkJMGgQdOgABw5YHZmIFGQ5/lvMx8eHZs2aERQUhLe3tytiEpFcksn9FznaL69Vr24OvU2bZlbw/uknqF8fZs/WhG8RyR0O1VHSWm+qoyT5m91u3t125EjmiYXNBlWrmsUfrZ6jdDN//AF9+8KGDVC8OPz+OwQEWB2ViLirPFkU99q13rZv357lmm5a603EPXl4mIvR9uhhJkXXJkup/2wnT3b/JAmgdm1YuxY+/BB8fJQkiUjucKhHaefOnQQFBVGkEM+eVI+SFARLlph3v107sTsgwEySwsKsi8sVIiPNSd/h4WaZARERcP73t0OJkoeHB3Fxcfj5+VGzZk22bNnCLbfc4lTA+ZUSJSko7HYzqYiLM+cktWmTP3qSbsRuN5c++e03M0maOdMsYCkikidLmJQpU4bY2FgA9u/fT0pKimNRiojb8PAwSwD07Gl+ze9JEpjvYf58M1k6ccLsHevd21xHTkTEGQ7NUXrooYe466678Pf3x2az0bRpUzyy+N/1r7/+ckmAIiKOaNQItm6FsWNh0iRzkd2ffoJPP4XOna2OTkTyG4eG3qKjozl06BD79+9n8ODBvPnmm5QqVSrTfYcMGeKyIN2Jht5E8o+NG6FPH9i719xetw7uvNPamETEGnk+R6lGjRqsXbuWgEJ2q4kSJZH8JSEBXn4Z9u83F9jVTbkihVOez1E6ePAgxYoVcyxKN3Do0CHatWtH3bp1adCgAV999ZXVIYlILipRwrybb/Hiq0nS6dPw6qtmEiUiciMOz1Fq27YtlStXBsiXc5SKFi3K5MmTCQ4OJj4+nsaNG3PfffdRsmRJq0MTkVx07X9VQ4bAvHnw3/+aC+y2amVdXCLi3hxKlGbNmkVYWBj79u1j8ODBPPPMM1nOUXJX/v7++P+zPoOfnx/lypXj1KlTSpRECpFevcwJ3n/8Aa1bw0svwRtvgFZhEpHrOZQoAdx7770AbNu2jSFDhrg8UVq7di3vvvsu27ZtIy4ujqVLl9KtW7d0+0yfPp13332XuLg46tWrx+TJk2nTpo3D59q6dSspKSmFbp6VSGF3770QE2P2LM2dCxMnwrffmr1LjRtbHZ2IuBOnS2x//vnnudKbdPHiRRo2bMi0adMyfX7hwoUMHTqUV155hR07dtCmTRs6d+7MwYMH0/Zp0qQJQUFBGR5Hjx5N2+fvv//miSeeYNasWS5/DyLi/sqUMROjpUvBz89MnFq0MLdFRFI5dNfb9SIjI5k5cyZ//vknixYtokqVKsybN48aNWrQunXrnAdns2XoUWrRogWNGzfm448/Tmu744476NatGxMmTMjWca9cuUKHDh145pln6N279033vXLlStr2uXPnCAgI0F1vIgXIiRPw/POwfj3s2gXlylkdkYi4Wp7c9XatxYsX06lTJ4oXL86OHTvSkonz588zfvx4Zw97Q4mJiWzbto2OHTuma+/YsSMbNmzI1jEMw6Bv3760b9/+pkkSwIQJEyhdunTaQ8N0IgVPhQrw1VewffvVJMkwzDvl7HZrYxMRazmdKI0bN44ZM2bwySef4OnpmdYeEhLC9u3bXRLc9U6ePIndbqdixYrp2itWrMixY8eydYz169ezcOFCli1bRnBwMMHBwfz6669Z7j969GjOnj2b9jh06FCO3oOIXGW3w5o1sGCB+dXKpMRmM9e8S/Xll9CjB7Rta076FpHCyeHJ3Kl+//132rZtm6Hd19eXM2fO5Ciom7FdVzHOMIwMbVlp3bq1Q2vUeXt7461bYURcbskSczL14cNX26pWhSlTzDXarObhAaVKwYYN0LChuRzKgAFQxOk/L0UkP3L6n7y/vz/79u3L0L5u3Tpq1qyZo6CyUr58eTw8PDL0HsXHx2foZXK18PBw6tatS7NmzXL1PCKFwZIlZm/NtUkSwJEjZvuSJdbEda1eveDXX+Huu+HSJRg0CDp0gAMHrI5MRPKS04nSc889x5AhQ9i0aRM2m42jR4/y73//m+HDhzNgwABXxpjGy8uLJk2asHLlynTtK1euJCQkJFfOmWrgwIHs3r2bLVu25Op5RAo6u93sScrsNpLUtqFD3WNuUPXqsGIFhIebFb5/+gnq1zcLVYpI4eD00NuIESM4e/YsoaGhXL58mbZt2+Lt7c3w4cN54YUXnA7owoUL6XqqYmNjiYqKoly5clSrVo1hw4bRu3dvmjZtSqtWrZg1axYHDx6kf//+Tp9TRPJOZGTGnqRrGQYcOmTu165dnoWVpSJFzCG3jh2hb1/zzjg/P6ujEpG8kqPyAAAJCQns3r2blJQU6tati4+PT44CWrNmDaGhoRna+/Tpw5w5cwCz4OSkSZOIi4sjKCiIDz/8MNP5UrlBi+KK5MyCBeaw1s3Mnw89e+Z+PI6w2+Hnn6F9+6ttf/4JNWtqsV0Rd+fs7+8cJUpnzpzhs88+Y8+ePdhsNurWrcuTTz5J6dKlnT2k2woPDyc8PBy73c7evXuVKIk4ac0ayORvoQxWr3aPHqUb+fNPaNAAOneGjz82ywyIiHvK80Rp69ataXWUmjdvjmEYbN26lUuXLrFixQoaF9B1ANSjJJIzdjsEBpoTtzP738dmM+9+i41Nv5CtO/ryS+jXD5KTzSRp5kzo3t3qqEQkM3meKLVp04ZatWrxySefULSoOdUpOTmZp59+mr/++ou1a9c6c1i3p0RJJOdS73qD9MlS6vDVokXuUSIgO3bsgD59zDvkAB5/HD76CMqWtTYuEUkvzytzb926lZEjR6YlSQBFixZlxIgRbN261dnDikghEBZmJkNVqqRvr1o1fyVJAI0awZYt8PLL5sTvL7+EoCD4/nurIxMRV3A6UfL19U23EG2qQ4cO5cpiuVZTHSUR1woLg/37zblI8+ebX2Nj81eSlMrbG95+2yxOedttcPSo+b2I5H9OD70NHjyYpUuX8t577xESEoLNZmPdunW89NJLPPTQQ0yePNnVsboFDb2JyI0kJMDUqfCvf4GXl9l25YqZTImIdZz9/e10HaX33nsPm83GE088QXJyMgCenp48//zzvPPOO84eVkQkXytRAkaOvLqdlAR33mk+JkwwnxeR/MMldZT+/PNPDMOgVq1alCjg/wuoR0lEHPG//0GXLub3tWvDF19Aq1bWxiRSGOX5ZO5UJUqUoH79+jRo0KDAJ0kiIo564AH44Qdz4voff0Dr1jBqlDkcJyLuz+lEacKECcyePTtD++zZs5k4cWKOghIRKUg6dYKYGHjiCUhJgYkToUkT2L7d6shE5GacTpRmzpzJ7bffnqG9Xr16zJgxI0dBuSPd9SYiOVGmjDnstmyZuVbcrl3mhO+cTX4Qkdzm9BylYsWKsWfPHmrUqJGu/a+//qJu3bpcvnzZJQG6G81REslf7HZzgd24OPD3hzZtrK/4ffKkmSS99ppZTkBEcl+ez1EKCAhg/fr1GdrXr19P5cqVnT2siIjLLFliLpcSGmouxBsaam4vWWJtXOXLw7x56ZOkV1+FSZPMxE5E3IfT5QGefvpphg4dSlJSEu3/WUo7IiKCESNG8OKLL7osQBERZ6Quk3J9n/mRI2a7O1UA//VXGD/ejHXZMnOIrnZtq6MSEcjB0JthGIwaNYqPPvqIxMREwByOGzlyJGPGjHFpkO5EQ28i7i914d3DhzN/3t0W3jUMmDMHhgyB8+eheHFzwvfAgeayKCKSc3m+KG6qCxcusGfPHooXL07t2rXxLuDlZ5Uoibi/NWvMYbabWb0a2rXL7Wiy7+BBeOopWLXK3A4NhdmzzaRPRHLGsjpKPj4+NGvWjKCgoAKdJOmuN5H8Iy7OtfvllWrV4McfITzcrOC9erU5+fyfTnsRsYA6dbNp4MCB7N69my1btlgdiojchL+/a/fLS0WKwIABEB1tFqd8882ra8aJSN5zejK3iIi7atPGnIN05EjmdYpS5yi1aZP3sWVXrVrmEOK1c5RWrYLjx807+Gw2y0ITKVTUoyQiBY6HB0yZYn5/fUKRuj15sntM5L4RD4+r8Z45A337wuOPm3ftxcdbGppIoaFESUQKpLAwswRAlSrp26tWda/SANnl4wP9+0PRombpg6Ag6+tBiRQGOUqUIiMjefzxx2nVqhVHjhwBYN68eaxbt84lwYmI5ERYGOzfb06Knj/f/Bobm/+SJDATpFdfhS1boEEDOHECHnrI7GE6fdrq6EQKLqcTpcWLF9OpUyeKFy/Ojh07uPLPUtjnz59n/PjxLgtQRCQnPDzMEgA9e5pf3X247WaCg2HzZnj5ZXP+0r//DfXqmXOXRMT1nE6Uxo0bx4wZM/jkk0/w9PRMaw8JCWF7AVwSW+UBRMRdeHvD22/Dhg1Qpw7cdRdUrGh1VCIFk9MFJ0uUKMHu3bsJDAykVKlSREdHU7NmTS2KKyIFmrstsnvpkllnqXRpczs+Hnbtyl7BTZHCJM8LTvr7+7Nv374M7evWraNmzZrOHlZExG254yK7xYtfTZIMA557Dtq3h8GDISHBurhECgqnE6XnnnuOIUOGsGnTJmw2G0ePHuXf//43w4cPZ8CAAa6MUUTEcqmL7F6/flzqIrvucAdacjJUqmR+P3WqOZ9pwwZrYxLJ73K01tsrr7zChx9+mDbM5u3tzfDhw3nrrbdcFqC70dCbSOGT3xbZXbHCXDPu8GFzwvfw4fDGG1CsmNWRiVjHskVxExIS2L17NykpKdStWxcfH5+cHM7tKVESKXzy4yK7Z87A0KHwxRfmdt268PXXZsVvkcLI2d/fOV7CpESJEjRt2jSnhxERcVv5cZHdMmVgzhzo3h2efdacr6Q740Qcl6NEKSIigoiICOLj40lJSUn33OzZs3MUmIiIu8jPi+x27Qp33mnOpSpVymwzDPjrL7j1VmtjE8kPnJ7M/cYbb9CxY0ciIiI4efIkp0+fTvcQESkoUiyA1dIAACAASURBVBfZzWohWpsNAgLcd5Hd8uWhYcOr2zNnmkNxEyea869EJGtO9yjNmDGDOXPm0Lt3b1fGIyLidlIX2e3Rw0yKrp3ZmZ8W2U31889m7aVRo8x5S3PmwG23WR2ViHtyukcpMTGRkJAQV8bi1lSZW6RwK0iL7M6fD59/Dr6+8MsvZhmBqVPhuhkUIkIO7nobOXIkPj4+vPbaa66Oya3prjeRws3dKnPnxMGDZhmBVavM7dBQmD3bLIUgUtDk+V1vly9fZtasWaxatYoGDRqkW+8N4IMPPnD20CIibit1kV1nuVOiVa2aWXNpxgyz1tLPP5tLoChRErnK6URp586dBAcHAxATE5PuOVtWMx5FRAqxJUtgyJD0hSurVjXnP1k1dGezwfPPQ8eOsHYtNG9+9bnLl1WkUiTHBScLGw29iYgzUpdAuf5/3NS/K91tntOuXXDPPfDuu/DYY1nf8SeSX+T5orgiIpI9drvZk5TZn6WpbUOHutet+h9+CMeOQe/e8NBD5pCcSGHk0NDbsGHDeOuttyhZsiTDhg274b6aoyQiYoqMzHqdODCTpUOHzP3cZQmUGTOgRg1zjbilS83YZs50r14vkbzgUKK0Y8cOkpKS0r7PiuYoiYhclR+XQClaFF55Be6/H/r0gZ07zZ6lXr3MUgLlylkdoUjecChRWr16dabfi4hI1vLzEijBwbB5M7z5JrzzjlmDqWlT+Ne/rI5MJG84PUfp0qVLJCQkpG0fOHCAyZMns2LFCpcEJiJSUOT3JVC8veHtt2HDBnPO0qBBVkckknecTpS6du3K3LlzAThz5gzNmzfn/fffp2vXrnz88ccuC1BEJL9LXQIFMiZL+WkJlBYtYO5cc1gOzPIB990HP/1kbVwiucnpRGn79u20+efPn0WLFlGpUiUOHDjA3Llz+eijj1wWoIhIQVCQlkBJ9f778P33cPfdZi/TxYtWRyTiek4XnExISKBUqVIArFixgrCwMIoUKULLli05cOCAywIUESkowsKga1fnKnO7U0XvVEOGwJEj8PHHMG0a/PADfPEFFKJlQKUQcLpHqVatWixbtoxDhw7x448/0rFjRwDi4+MLZCFGLYorIq6QugRKz57m1+wkO0uWmMuKhIaad52FhprbS5bkbqw34+MD06fDjz+aPWP79pkJ3MiR5rCcSEHgdGXuRYsW0atXL+x2O3fffXfaJO4JEyawdu1avv/+e5cG6i5UmVtE8lJ+qeh95oxZNPOLL8ztZ5816y6JuAtnf3/naAmTY8eOERcXR8OGDSlSxOyc2rx5M76+vtx+++3OHtatKVESkbxit5s9R1kVq7TZzJ6c2Fjrh+FSLV9uLrC7ciVUr251NCJXWZIoFUZKlEQkr6xZYw6z3czq1e5T0RvMBO/axO3dd+Hee6F+fetiEtFabyIiBUx+rOgN6ZOkFStgxAizSOXEie61np1IdihREhFxU/m5oneqBg2gSxdITIRRo6B1a9i71+qoRLJPiZKIiJvK7xW9ASpVgq+/hjlzwNcXNm40l0WZMgVSUqyOTuTmnEqUkpKSCA0NZa/+LBARyTU5qehtt5tznBYsML9aOeRls5kL68bEwD33wKVL5h1yjz5qXUwi2eVUouTp6UlMTAy2rP7MERERl3Cmore71l0KCDDnLE2fDiVLwsMPWxuPSHY4fdfbiy++iKenJ++8846rY3JruutNRKyQ3crc+aXu0rFj5rBcqshIqFkzY0Io4ip5Xh5g0KBBzJ07l1q1atG0aVNKliyZ7vkPPvjAmcO6PSVKIuKu8mPdJYD4eAgKgqQkmDoVHnss63lZIs5y9ve302u9xcTE0LhxY4AMc5U0JCcikvciI7NOksDsZTp0yNzPneouXbwINWrA5s3QuzcsXgwzZkDFilZHJpKDRGn16tWujENERHIov9ZdqlED1q+HSZNg7FhYtgzWrTMX2+3Rw+ropLBTeQARkQIiP9ddKloUXn4Ztmwxay+dPGlO9n7sMUhOtjo6KcxylChFRkby+OOP06pVK44cOQLAvHnzWLdunUuCExGR7HO27pI7lRJo2NBMll591ZxHVaKEmUSJWMXpRGnx4sV06tSJ4sWLs2PHDq5cuQLA+fPnGT9+vMsCFBGR7HGm7pI7lhLw8oK33oJffoH337/afvw4nDtnXVxSODmdKI0bN44ZM2bwySef4OnpmdYeEhLC9u3bXRKciIg4xpG6S6mlBK6fAH7kiNludd2lZs3Mat5gTkR/4glzYd2ICGvjksLF6UTp999/p23bthnafX19OXPmTI6CEhER54WFwf79sHo1zJ9vfo2NTZ8k2e0wZEjGektwtW3oUPdZxPbYMdi3Dw4eNKt7Dxpk3i0nktucTpT8/f3/v717D46ySvM4/usEAgQMyC0jJDrIVYSAhMCixiKosDgFBpRVa+WiMALCCiKiiAroIA6jFXckgAiKKGLEJXgZt5w4IiDWgGiSkcURkYwJ95sQAkUCofePY4fcOvb9fdP9/VSlrPftzttPMnPM4znPeY727NlT4/4XX3yhq6++2q+ggun06dNKSUlR79691bNnT7366qtWhwQAARcdbVoA3HOP+Wf1vknetBKwgyuukPLzpcmTzfXixebMuK1brY0L4c/nRGnixImaNm2atm3bJofDoQMHDmjNmjWaOXOmHnzwwUDGGFCxsbHatGmT8vLytG3bNi1cuFDHjx+3OiwACKn62EqgWTNz/Mlf/2qWEvfsMYXpjz4qnTtndXQIVz4nSrNmzVJ6errS0tJUUlKim266SRMmTNDEiRM1derUQMYYUNHR0YqNjZUknTt3TuXl5fKxOTkA1Fv1uZXArbdK334rjRtnZr4+/LD2JUQgEPxqD7BgwQIdO3ZM27dv19///ncdPXpUzz77rF8Bbd68WcOGDVO7du3kcDi0YcOGGu9ZsmSJOnTooMaNGys5OVlbvJwbPnnypHr16qWEhATNmjVLrVu39itmAKhvfGklYKc2Ai1aSK+/Ln3wgbR6tdSkyaUYy8qsiwvhx++Gk7Gxserbt6/69eunZs2a+R3QmTNn1KtXLy1evLjW17OysjR9+nTNmTNHubm5Sk1N1dChQ1VYWFjxnuTkZPXo0aPG14EDByRJLVq0UH5+vgoKCvT222/r8OHDbuMpLS1VcXFxlS8AqO+8bSVgxzYCkjRsmNSv36XrjAzp3/7NzDgBgeDVobgzZszQs88+q6ZNm2rGjBl1vjcQh+I6HA5lZ2crPT294l7//v3Vp08fLV26tOLeNddco/T0dC1cuNDrz5g8ebIGDRqkUaNG1fr6vHnzNH/+/Br3ORQXQDhYv97sfqtc2J2YaJIk1y45VxuB6n8tXAlV9bYDVjl3TurUybQ3aNhQmj/f1C/RsBKS74fiepUopaWlKTs7Wy1atFBaWpr7hzoc+uyzzzwOoq7nVE6UysrKFBsbq3Xr1mnEiBEV75s2bZry8vK0adOmX33m4cOH1aRJE8XFxam4uFgDBgzQ2rVrlZSUVOv7S0tLK5ppSuYXnZiYSKIEIGyUl5vdbQcPmpqk1NRLM0nl5WbmyN0OOYfDLOEVFNTcWWeFQ4ekBx4wdUuS1L+/9MYbUteu1sYF6/maKHmVZ7sOwj1//rwk6ZVXXlGXLl28eYRfjh07pvLycsVXO1I6Pj5ehw4d8ugZ+/bt0/jx4+V0OuV0OjV16lS3SZIkNWrUSI0aNfIrbgCwM1crgdp400bA3TNC6Te/kd5/39QtPfSQtG2baSOwcKG5juKEU3jJpwnJhg0baufOnXK4qwIMsuqf63Q6PY4lOTlZeXl5wQgLAMJOfWwj4HBIY8dKgwZJ48dLOTnSrFnSbbdJIfxve4QJn3PrMWPGaOXKlYGM5Ve1bt1a0dHRNWaPjhw5UmOWKdAyMzPVvXt3paSkBPVzAMBOvG0jYKedcYmJ0iefSEuXSosWkSTBNz6XuJWVlWnFihXKyclR37591bRp0yqvB6KYu7qYmBglJycrJyenSo1STk6Obr/99oB/XmVTpkzRlClTKtY4ASASuNoI7N9fe68iV41SamrtheEJCWZ3nVXF3g6HNGlS1Xtffy3NnSstW2biA+ric6K0c+dO9enTR5K0e/fuKq/5syRXUlJS5WiUgoIC5eXlqWXLlrryyis1Y8YMjR49Wn379tWAAQO0fPlyFRYWalL1kQAA8JurjcCdd5qko3KyVLmNwPvv174zznXArl12xjmd0sSJJlnq0UN6+WXp3nvd95MCvNr1Fgqff/55rTvqxo4dq1WrVkkyDScXLVqkgwcPqkePHsrIyKj1gN5g8LVqHgDqs7raCNx+e/3aGffdd6aG6auvzHV6upldCnIFBywWkvYAkSwzM1OZmZkqLy/X7t27SZQARBx3bQQ+/9w0oPw1GzfaY2ecJF24IP3xj6bX0vnzUuvWppbpzjutjgzBEvJE6Zlnnqnz9aefftqXx9oeM0oAUNXataZb9695+23pnnuCH4838vOlMWOkf/zDXP/v/0r//u/WxoTgCEkfpcqys7OrXJ8/f14FBQVq0KCBOnbsGLaJEgCgKm92xtXV3NIKvXqZJbhnn5W2b5cGD7YuFtiTz4lSbm5ujXvFxcUaN25clR1pAIDw5unOuGPHatYyWb0rTpJiYkyiVF5+qSFlSYm598QTEhudI1tAe5TGxcXpmWee0VNPPRXIx9oCfZQAoHaeHLB7993Sf/xHzYJv1644qw/XlarObD32mOm9lJQk/e1v1sUE6wW8mfvJkyd16tSpQD/WclOmTNGuXbv0lWubBACgwsiRpgVA+/ZV7yckSFlZpo6pttkm173p061tTlnd3XdLV18tFRZKt9wiTZ0qnTljdVSwgs/F3H/+85+rXDudTh08eFBvvvmmbrrpJq1duzYgAdoNxdwA4F5tNUhbttS/XXGSWX577DFpyRJz3bGjOWD3hhusjQu+CXkxd0ZGRpXrqKgotWnTRmPHjtXs2bN9fSwAoB6r7YBdb86Ls1Oxd7NmUmam6bN0//3Sjz+aeF5/3fRhQmTwOVEqKCgIZBwAgDDl6a64H36wZ7H3rbdKO3dKDz9sOpAPGWJdLAg9Gk56iIaTAOCb8nKTANW1K65lS+nEiZqvu4rB7XIEyuHDVTt4v/eeNHy42TkHe7OkM/fJkye1cuVKfffdd3I4HLrmmms0fvz4sD40lholAPDe+vWXul5XPy/O6ZRatZKOH6/9e+12BIpLdrZJ3nr3llavlnr2tDoi1MXXv98+73rbsWOHOnbsqIyMDJ04cULHjh1TRkaGOnbsqG+++cbXxwIAwlBdu+Lmz3efJEkmkSoqMrVLdhIVZRK8vDwpOVlauNAcjYLw4vOMUmpqqjp16qRXX31VDRqYUqcLFy5owoQJ2rt3rzZv3hzQQO2CGSUA8F1txdrvvuvZEShvvWUSLTsUerscOiRNnCh98IG57t/f7Izr2tXauFBTyJfemjRpotzcXHXr1q3K/V27dqlv3746e/asL4+1PRIlAAgsTw/VbdNGOnr00rUdCr0lM+P15pvSQw9Jp05JjRtLixdL48dbGxeqCvnSW1xcnAoLC2vcLyoq0mWXXebrYwEAEcZ1BEr1rt7VVU6SJPt09XY4zMG6335rdsidOyf95jfWxoTA8TlRuuuuuzR+/HhlZWWpqKhI+/bt0zvvvKMJEyboHrsdDx0AHGECAMFR1xEodbFbV+/EROmTT6TPPpN+97tL93/4ofbdfqgffF56Kysr06OPPqply5bpwi/Vaw0bNtTkyZP1/PPPq1GjRgEN1C5YegOA4Fi/Xpo2rWofperLbe5kZJht+3apXXLZt0/q0cPULq1caWbOYI2Q1Sjt3btXHTp0kOOXtP/s2bP68ccf5XQ61alTJ8XGxnoXeT1DogQAwVO92Hv/funee717hl1qlyRpwwZzblxpqdS8ufTyy+bn8WbmDIERshqlzp0762il9P6+++5T27ZtlZSUFPZJEgAguFxHoNxzj/ln9XYCnrBL7ZJkjj/Jy5P69TOF3mPGSCNGmMaVqB+8TpSqT0B9/PHHOsORygCAIPC00Lsyu9Uudesmbd0qLVggNWxojkG59lrTVwr253MxNwAAweZPoXdRkVnqWrvWtCCwMmlq0EB64glpxw6pVy/TYPOLL6yLB57zOlFyOBwV9UmV7wEAEAzuunp74uGHTTPLtDRz3pzVy3FJSdL27dILL0jPPXfp/rlz1sWEunldzB0VFaWhQ4dW7Gr78MMPNWjQIDVt2rTK+9Zb/f/GIKGYGwCsUbnQ+/BhkwR5w24H7LqUl5t6rM6dze69MD4u1VIh2/V23333efS+119/3ZvH2l5mZqYyMzNVXl6u3bt3kygBgIXKy80M0f793vUosuMBu5s2mRkvp9P0YnrtNemWW6yOKvyE/AiTSMWMEgDYw/r1Zneb5H1DR7v1XdqyRbrvPunHH831gw9Kf/yj1KyZtXGFk5AfYQIAgJXCqXYpNVXKz5emTDHXS5aYou8tW6yNC8woeY0ZJQCwl3CrXfr0U+n++82uveuuMzvlopjW8BtLbyFCogQA9hUutUunTkmPPCL913+ZmSX4j6U3AEDEC5e+S82bSytWVE2SFiyQnnpKKiuzLq5IxIySl5hRAgD7q+2AXW/Z6cy4ggKpSxfpwgWpd29p9WqpZ0+ro6pfmFECAOAXI0dK//qXtHGj9PbbZpebt+x0ZlyHDubnaNXKnB2XnCwtXGgSJwQXM0peYkYJAOofX2uXJKlNG5NotW9vfSuBw4eliRPNeXGS1L+/tGqVOU8OdWNGKcgyMzPVvXt3paSkWB0KAMBLvtYuSdLRo9K999qjlUB8vJSdLb3xhqlj2rZNuuEGqaTEupjCHTNKXmJGCQDqL39rl+zUSqCoSBo/Xho2zOyOQ91oDxAiJEoAUL8Fou+SXVoJOJ3my9Vn6YsvpJ07zfIc59VXRaIUIiRKABA+/KldevJJ6eabra9bcjlzxrQT+PFHafBgaeVKk9DBoEYJAAAv+VO79Ic/2KNuyaVJE2nqVKlxY+mvf5V69DBtBJgO8Q+JEgAgovlzZpxknzYCUVHS9OmmfUD//qa799ixUnq6dOiQtbHVZyRKAICIV7nv0ltvmZYAns4wueqEfv976W9/s7ajtyR17WpqlZ57TmrYUPrgAzO79K9/WRtXfUWiBACAzDLcwIHSf/6ntGyZuefNctyJE9Itt9hjKa5BA2n2bHOgbu/e0oAB0lVXWRtTfUWiBABANf4sx9llKU6SkpJMr6XVqy8lfSdPSh9/bG1c9QmJEgAAtai8HPfkk55/n2spbtIkac0a6w/YjYmRLr/80vW0adLvfifdf7+pY0LdSJQAAHDDtRw3b57Zau/NUpydOnq7XLwotW1rfo7XXzcH6376qdVR2RuJEgAAv8KfNgKSfZbjoqKkP/1J2rxZ6tjRdPe+9VbpwQc5BsUdEiUAADzgT92S3XbG3XijlJ8vTZlirpcuNc0qv/3W2rjsiEQJAAAPueqWPv1UatnS+++30864pk2lxYvNz5KYKJ09K7VrZ21MdkSi5KHMzEx1795dKSkpVocCALBQdLQ5uuTVV80ynC9Lcfv2SXfcYc6Zs7rY++abzUzSRx9JrVqZe06ntHu3dTHZCWe9eYmz3gAALuvXm11k+/b595yEBFMDNXJkYOLy15o1pqv37NnSU0+ZnXP1HWe9AQAQYv509K7MLsXeLlu3mlmuP/xB6tdP+sc/rI7IOiRKAAD4wd+O3pL9ir2XLJHefdcsxeXnS337SgsXShcuWBuXFUiUAAAIEH8P2LVTsfeoUdL//Z85VPf8eemJJ6QbbpC+/97auEKNRAkAgADyd2ecZJ+luPh4E8Pq1VLz5tL27dKBA9bGFGokSgAABJi/O+PstBTncEijR0s7d0qvvGI6jbucO2ddXKFCogQAQJCE01JcQoL0wAOXrvfuNXEtW2aSunBFogQAQBBV3hk3fbq55+0Mk536LrksWSIdPixNniwNGWKOQwlHJEoAAASZa2dcRob0P//j+wzTSy/Z55DdRYvMz9O4sZSTYw7YXb06/GaXSJQAAAihcCn2jooyM2R5eVL//tKpU6ZJZXq6dOiQdXEFGokSAAAhFqhi70mTpLKy4MToqa5dpS++kJ57TmrYUPrgA2n5cmtjCiQSJQAALOJvsffRo6bI2upluAYNzHEnO3aYxpuPP25tPIFEogQAgIX8XYo7etQUej/zjPVF3klJ5igX19lw589Lw4ZJH35obVz+IFECAMBi/i7FSdLcufYo8q5s2TLpo4+k4cOlceOkkyetjsh7JEoAANiEv0txdmsj8PvfSzNnmsTvjTfMzricHGtj8haJEgAANlJb3yVv2aWNQOPG0p/+JG3ZInXqZBK5wYOlBx+USkqsi8sbJEoAANhM9b5LrVv79hzXDJPV9Us33GDaCEydaq6XLpUmTLAuHm9EbKJ09uxZXXXVVZo5c6bVoQAA4NbIkaZvUps2vj/DDvVLTZtKL79sita7dpXmz7cuFm9EbKK0YMEC9e/f3+owAAD4VTExpjDalyJvF7vMLt18s7Rrl0mWXP77v6Xt262LqS4RmSj98MMP+uc//6nbbrvN6lAAAPCIv4XeLnaYXYqqlH18+aUpPr/+eunJJ61voFmd7RKlzZs3a9iwYWrXrp0cDoc2bNhQ4z1LlixRhw4d1LhxYyUnJ2vLli1efcbMmTO1cOHCQIUMAEBIjBwp/fST/8tWdpldkszM0t13mzgWLLhUx2QXtkuUzpw5o169emnx4sW1vp6VlaXp06drzpw5ys3NVWpqqoYOHarCwsKK9yQnJ6tHjx41vg4cOKD3339fXbp0UZcuXTyKp7S0VMXFxVW+AACwSnS09PTTpsg7IcG/Z9lhdqlVK+ntt6V160wsjz1mXSy1cTid9j3n1+FwKDs7W+np6RX3+vfvrz59+mjp0qUV96655hqlp6d7NEs0e/ZsvfXWW4qOjlZJSYnOnz+vRx55RE8//XSt7583b57m15K6nzp1SnFxcT78VAAABEZ5udl6//77piWAP+bPl+bMMYmYVS5cMMehBENxcbGaN2/u9d/vepUolZWVKTY2VuvWrdOIESMq3jdt2jTl5eVp06ZNXj1/1apV2rlzp1544QW37yktLVVpaWnFdXFxsRITE0mUAAC2sn699NBDZoecrxISTGH1yJGBi8sufE2UbLf0Vpdjx46pvLxc8fHxVe7Hx8fr0KFDQfnMRo0aKS4ursoXAAB2E4j6JTvVLtlFvUqUXBzV9kc6nc4a9zwxbty4OmeTKsvMzFT37t2VkpLi9ecAABAKleuX/NkdZ4faJbuoV4lS69atFR0dXWP26MiRIzVmmQJtypQp2rVrl7766qugfg4AAP4K5OzSunWBi6s+qleJUkxMjJKTk5VT7US9nJwcXX/99RZFBQCA/QRqdumee0z/pkhlu0SppKREeXl5ysvLkyQVFBQoLy+vYvv/jBkztGLFCr322mv67rvv9PDDD6uwsFCTJk2yMmwAAGzJ39ml8nJp1KjIrVuy3a63zz//XGlpaTXujx07VqtWrZJkGk4uWrRIBw8eVI8ePZSRkaGbbropqHFlZmYqMzNT5eXl2r17N7veAAD1jr874+rzrriwbA9gR77+ogEAsANXB+y5c31/hh16LnkrItoDAAAA/wSidmnuXKlt28hYjiNRAgAgAvlbu3TihEmY4uPDu40AiRIAABHKNbv07ru+L6MdPx7eTSpJlDxEw0kAQLgaNUp65x3/nhGuTSop5vYSxdwAgHAViPPiJDNDNWpUYGIKFIq5AQCAXwLR0VuS7rrLPCMcluJIlAAAQIVA7IpzOqV588Kj0JtECQAA1BCI2aVwKPQmUfIQxdwAgEhTeXapVSvfn1Of+y5RzO0lirkBAJHI1dH7pZekn3/2/TmtWknLl4f+GBSKuQEAQNC4ZpeOHg3Mcty6dYGLLZhIlAAAgMcC0aRSqj8740iUAACA1/xtUllfdsaRKAEAAJ/ceaf/hd52X4ojUfIQu94AAKhp5Ejp8GGzjHb55b4/x65Lcex68xK73gAAqJ1rZ9zcub4/o1kz6dFHpTlz/KuBqo5dbwAAwFKB6LtUUmISLbvULpEoAQCAgHItx82dKzkcvj3j+HFTA2V1skSiBAAAAi462uxqe/dd35/hdErTp1tbt0SiBAAAgsbfnXFFRdKWLYGNyRskSgAAIKj8XYo7eDDwMXmKRMlDtAcAAMB3/izFXXFFwMPxGO0BvER7AAAA/LN+vfTAA6Zguy4Oh5SQIBUU+N8qgPYAAACgXqjcpLJZs9rf41qie+mlwPZT8haJEgAACDlXz6WTJ03C1LJl1dcTEqT33jNJlZVYevMSS28AAAReebnZ3XbwoKlJSk21R2fuBoELAQAAwDfR0dLAgVZHURNLbwAAAG6QKAEAALhBogQAAOAGiRIAAIAbJEoeojM3AACRh/YAXqI9AAAA9Q+duQEAAAKMRAkAAMANEiUAAAA36MztJVdJV3FxscWRAAAAT7n+bntbmk2i5KXTp09LkhITEy2OBAAAeOv06dNq3ry5x+9n15uXLl68qC5duujrr7+Ww+Hw6HtSUlL01Vdf1fme4uJiJSYmqqioiN10v/Dk92alUMcXrM8L1HP9eY4v3+vt9zAOfcM4DM3nMQ4vCdY4dDqdOn36tNq1a6eoKM8rj5hR8lJUVJRiYmK8ykajo6M9/h87Li6Of0H/wpvfmxVCHV+wPi9Qz/XnOb58r7ffwzj0DeMwNJ/HOKwpGOPQm7/dLtHz5s2bF9AoIkS/fv0C+v7S0lI9//zzmj17tho1auRPaGHF299zqIU6vmB9XqCe689zfPlexmFoMA5D83mMQ8Nu45ClN5ugkSVgPcYhYD270vELzQAABUxJREFUjUNmlGwkOjpaAwcOVIMGrIgCVmEcAtaz0zhkRgkAAMANGk4CAAC4QaIEAADgBokSAACAGyRKAAAAbpAoAQAAuEGiVE989NFH6tq1qzp37qwVK1ZYHQ4QkUaMGKHLL79cd955p9WhABGpqKhIAwcOVPfu3ZWUlKR169YF/TNpD1APXLhwQd27d9fGjRsVFxenPn36aNu2bWrZsqXVoQERZePGjSopKdEbb7yh9957z+pwgIhz8OBBHT58WL1799aRI0fUp08fff/992ratGnQPpMZpXpg+/btuvbaa9W+fXtddtlluu222/TJJ59YHRYQcdLS0nTZZZdZHQYQsa644gr17t1bktS2bVu1bNlSJ06cCOpnkiiFwObNmzVs2DC1a9dODodDGzZsqPGeJUuWqEOHDmrcuLGSk5O1ZcuWitcOHDig9u3bV1wnJCRo//79IYkdCBf+jkMA/gvkONyxY4cuXryoxMTEoMZMohQCZ86cUa9evbR48eJaX8/KytL06dM1Z84c5ebmKjU1VUOHDlVhYaEkqbbVUYfDEdSYgXDj7zgE4L9AjcPjx49rzJgxWr58efCDdiKkJDmzs7Or3OvXr59z0qRJVe5169bN+fjjjzudTqdz69atzvT09IrXHnroIeeaNWuCHywQpnwZhy4bN2503nHHHUGPEQh3vo7Dc+fOOVNTU52rV68OSZzMKFmsrKxMX3/9tQYPHlzl/uDBg/Xll19Kkvr166edO3dq//79On36tD7++GMNGTLEinCBsOTJOAQQXJ6MQ6fTqXHjxmnQoEEaPXp0SOKy/ljeCHfs2DGVl5crPj6+yv34+HgdOnRIktSgQQO9+OKLSktL08WLFzVr1iy1atXKinCBsOTJOJSkIUOG6JtvvtGZM2eUkJCg7OxspaSkhDpcICx5Mg63bt2qrKwsJSUlVdQ3vfnmm+rZs2fQ4iJRsonqNUdOp7PKveHDh2v48OGhDguIKL82DtltCgRfXePwxhtv1MWLF0MaD0tvFmvdurWio6Or/FerJB05cqRGVg0gOBiHgPXsOg5JlCwWExOj5ORk5eTkVLmfk5Oj66+/3qKogMjCOASsZ9dxyNJbCJSUlGjPnj0V1wUFBcrLy1PLli115ZVXasaMGRo9erT69u2rAQMGaPny5SosLNSkSZMsjBoIL4xDwHr1chyGZG9dhNu4caNTUo2vsWPHVrwnMzPTedVVVzljYmKcffr0cW7atMm6gIEwxDgErFcfxyFnvQEAALhBjRIAAIAbJEoAAABukCgBAAC4QaIEAADgBokSAACAGyRKAAAAbpAoAQAAuEGiBAAA4AaJEgAAgBskSgAAAG6QKAEAALhBogQAAOAGiRKAiLdnzx45HA795S9/0c0336zY2Fh17dpV27Ztszo0ABYjUQIQ8fLz8+VwOPTiiy/qySefVH5+vq688ko9/vjjVocGwGIkSgAiXn5+vpo3b66srCylpaWpc+fOSk9P19GjR60ODYDFSJQARLz8/HwNGzZMbdq0qbi3d+9ederUycKoANgBiRKAiJefn68BAwZUuZebm6vevXtbFBEAuyBRAhDRTp06pZ9++knXXXddlft5eXkkSgBIlABEtvz8fEVHR6tXr14V93766Sf9/PPPJEoASJQARLb8/Hx169ZNTZo0qbiXm5urFi1a6Le//a11gQGwBYfT6XRaHQQAAIAdMaMEAADgBokSAACAGyRKAAAAbpAoAQAAuEGiBAAA4AaJEgAAgBskSgAAAG6QKAEAALhBogQAAOAGiRIAAIAbJEoAAABu/D8IY9DlRqmgogAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using PyPlot\n", - "n = 1:2:99 # odd integers from 1 to 99\n", - "loglog(n, abs.(sinecoef.(f, n)), \"bo\")\n", - "xlabel(L\"n\")\n", - "ylabel(L\"Fourier sine coefficient $|b_n|$\")\n", - "title(L\"Sine series convergence for $f(x) = 0.5 - |x - 0.5|$\")\n", - "loglog(n, 1 ./ n.^2, \"b--\")\n", - "legend([L\"|b_n|\", L\"1/n^2\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "They decay asymptotically as $1/n^2$. It turns out that one can prove this from the fact that $f(x)$ is continuous with a discontinuous slope.\n", - "\n", - "Now let's plot the series itself and compare it to $f(x)$. We'll use Julia's [Interact package](https://github.com/JuliaLang/Interact.jl) so that we can drag a slider to control the number of terms in the series." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "sinesum (generic function with 1 method)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# First, define a function to evaluate N terms of the sine series, given the coefficients b\n", - "function sinesum(b, x)\n", - " f = 0.0\n", - " for n = 1:length(b)\n", - " f += b[n] * sin(n*π*x)\n", - " end\n", - " return f\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "HTML{String}(\"\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " \n" - ], - "text/plain": [ - "HTML{String}(\" \\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":49}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":49}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["n"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":99,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":2,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-e910b00a-34b6-46e6-8686-99d8fe9b4fcc","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_06","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 49, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 49, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_01\", 49, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_01\", 49, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_01\", 49, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 99),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_02\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_01\", 49, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":49}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-dfae3b2c-5961-4c18-af3d-47299fe3d1c3\\\",\\\"id\\\":\\\"ob_01\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_05\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using Interact\n", - "fig = figure()\n", - "x = linspace(0,1, 1000)\n", - "@manipulate for n=1:2:99\n", - " withfig(fig) do\n", - " plot(x, f.(x), \"k--\")\n", - " b = sinecoef.(f, 1:n)\n", - " plot(x, [sinesum(b, x) for x in x], \"r-\")\n", - " xlabel(L\"$x$\")\n", - " legend([\"exact f\", \"$n-term sine series\"])\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In contrast, if we make a smoother function, e.g. $g(x) = \\sin(\\sin(3 \\pi x) + 5\\sin(\\pi x))$, then it eventually converges *much* more quickly (in fact, for a smooth function like this the series converges *exponentially* fast):" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":19}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value();},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab","id":"ob_08","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab","id":"ob_07","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_08","value":0},"value":{"sync":true,"id":"ob_07","value":19}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["n"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":37,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":2,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-5ac2b1df-a99f-47fd-8452-6b4d9a76e53c","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_12","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_07\", 19, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_07\", 19, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Int64}(\"ob_07\", 19, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Int64}(\"ob_07\", 19, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Int64}(\"ob_07\", 19, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 37),Pair{Symbol,Any}(:min, 1),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 2),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_08\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Int64}(\"ob_07\", 19, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":19}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value();},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_08\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-6f3b2e4a-80b1-411d-bc98-6440e361e5ab\\\",\\\"id\\\":\\\"ob_07\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_11\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using Interact\n", - "fig = figure(figsize=(15,6))\n", - "g(x) = sin(sin(3π*x) + 5*sin(π*x))\n", - "@manipulate for n=1:2:37\n", - " withfig(fig) do\n", - " subplot(1,2,1)\n", - " plot(x, g.(x), \"k--\")\n", - " b = sinecoef.(g, 1:n)\n", - " plot(x, [sinesum(b, x) for x in x], \"r-\")\n", - " xlabel(L\"x\")\n", - " legend([\"exact g\", \"$n-term sine series\"])\n", - " \n", - " subplot(1,2,2)\n", - " semilogy(1:2:n, abs.(b[1:2:n]), \"bo-\")\n", - " xlabel(L\"n\")\n", - " ylabel(L\"coefficient $|b_n|$\")\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supplementary material\n", - "\n", - "The following material goes a bit beyond 18.06 (see e.g. 18.303), but it is provided as a supplement.\n", - "\n", - "## Solving the heat/diffusion equation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we have the heat equation $\\frac{\\partial^2 u}{\\partial x^2} = \\frac{\\partial u}{\\partial t}$, with Dirichlet boundary conditions $u(0,t) = u(1,t) = 0$, and initial condition $u(x,0) = f(x)$, we can solve the equation by expanding $u(x,t)$ in a Fourier sine series. From class:\n", - "\n", - "* $u(x,t) = \\sum_{n=0}^\\infty b_n \\sin(n\\pi x) e^{-(n\\pi)^2 t}$\n", - "\n", - "where $b_n$ are the sine-series coefficients of the initial condition $f(x)$.\n", - "\n", - "Let's plot this for different times $t$ for the $f(x) = 0.5 - |x - 0.5|$ from above, using 199 terms in the series:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-915930a1-1304-4198-8b95-2c673ab13096","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":0.0}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-915930a1-1304-4198-8b95-2c673ab13096","id":"ob_14","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-915930a1-1304-4198-8b95-2c673ab13096","id":"ob_13","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_14","value":0},"value":{"sync":true,"id":"ob_13","value":0.0}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["time t"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":1.0,"min":0.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.001,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-ffd6deca-78c4-4347-9fb2-99d984fcc2f6","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_18","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_13\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_13\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_13\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_13\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_13\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 1.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.001),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_14\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_13\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_14\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-915930a1-1304-4198-8b95-2c673ab13096\\\",\\\"id\\\":\\\"ob_13\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_17\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for t in slider(0:0.001:1, value=0.0, label=\"time t\")\n", - " withfig(fig) do\n", - " b = @. sinecoef(f, 1:199) * exp(-((1:199)*π)^2 * t)\n", - " plot(x, [sinesum(b, x) for x in x])\n", - " xlabel(L\"x\")\n", - " title(\"diffusion solution at time $t\")\n", - " ylim(0,0.5)\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that the sharp kink (the slope discontinuity) \"diffuses away\" almost immediately, because that sharp kink is created by the high-frequency sine-series terms that decay very rapidly. After a short while, in fact, the solution just looks like $\\sin(\\pi x)$, because it is dominated by the $n=1$ term in the series." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solving the wave equation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we have the *wave* equation $\\frac{\\partial^2 u}{\\partial x^2} = \\frac{\\partial^2 u}{\\partial t^2}$, with Dirichlet boundary conditions $u(0,t) = u(1,t) = 0$, and initial conditions $u(x,0) = f(x)$ and $\\dot{u}(x,0) = 0$, we can also solve the equation by expanding $u(x,t)$ in a Fourier sine series. From class:\n", - "\n", - "* $u(x,t) = \\sum_{n=0}^\\infty b_n \\sin(n\\pi x) \\cos{n\\pi t}$\n", - "\n", - "where $b_n$ are the sine-series coefficients of the initial condition $f(x)$.\n", - "\n", - "Let's again plot this for different times $t$ for the $f(x) = 0.5 - |x - 0.5|$ from above, using 199 terms in the series:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "
    \n", - "WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/d6df0bcbf61025c952fa7d6260c0502952fc6253-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/76b9e9b6191c21207f614aefd21121e841930334-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/aee18abf5b39fa7dbdb49e13ea37aa8617a93fca-all.js"},{"name":null,"type":"css","url":"/assetserver/b8ef71fc8f8c937f705d60a54c85dd170cf7e73f-style.css"},{"name":null,"type":"css","url":"/assetserver/342c1e68f950ec6d9432ff00342c66dae6d08a65-main.css"}],"type":"async_block"},"id":"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {\n", - " ko.punches.enableAll();\n", - " ko.bindingHandlers.numericValue = {\n", - " init : function(element, valueAccessor, allBindings, data, context) {\n", - " var stringified = ko.observable(ko.unwrap(valueAccessor()));\n", - " stringified.subscribe(function(value) {\n", - " var val = parseFloat(value);\n", - " if (!isNaN(val)) {\n", - " valueAccessor()(val);\n", - " }\n", - " })\n", - " valueAccessor().subscribe(function(value) {\n", - " var str = JSON.stringify(value);\n", - " if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))\n", - " return;\n", - " if (["null", ""].indexOf(str) >= 0)\n", - " return;\n", - " stringified(str);\n", - " })\n", - " ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n", - " }\n", - " };\n", - " var json_data = JSON.parse("{\\"changes\\":0,\\"value\\":0.0}");\n", - " var self = this;\n", - " function AppViewModel() {\n", - " for (var key in json_data) {\n", - " var el = json_data[key];\n", - " this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n", - " }\n", - " \n", - " [this["displayedvalue"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\n", - " [this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35","id":"ob_20","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35","id":"ob_19","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]\n", - " \n", - " }\n", - " self.model = new AppViewModel();\n", - " self.valueFromJulia = {};\n", - " for (var key in json_data) {\n", - " self.valueFromJulia[key] = false;\n", - " }\n", - " ko.applyBindings(self.model, self.dom);\n", - "}\n", - "]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_20","value":0},"value":{"sync":true,"id":"ob_19","value":0.0}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["time t"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":10.0,"min":0.0,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}"},"step":0.01,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: displayedvalue"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-49fd6e62-9cdc-4520-8c50-4c19a158e871","handlers":{"obs-output":[function (updated_htmlstr) {\n", - " var el = this.dom.querySelector("#out");\n", - " WebIO.propUtils.setInnerHtml(el, updated_htmlstr);\n", - "}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_24","value":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\\nWebIO.mount(this.previousSibling,{&quot;props&quot;:{&quot;attributes&quot;:{&quot;style&quot;:&quot;display:flex; justify-content:center; align-items:center;&quot;}},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[{&quot;props&quot;:{&quot;setInnerHtml&quot;:&quot;&lt;img src=&#39;&#39;&gt;&lt;/img&gt;&quot;},&quot;nodeType&quot;:&quot;DOM&quot;,&quot;type&quot;:&quot;node&quot;,&quot;instanceArgs&quot;:{&quot;namespace&quot;:&quot;html&quot;,&quot;tag&quot;:&quot;div&quot;},&quot;children&quot;:[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})\n", - "
    " - ], - "text/plain": [ - "(div\n", - " Widgets.Widget{:slider}(DataStructures.OrderedDict{Symbol,Any}(:changes=>Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-7 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_19\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(#= circular reference @-8 =#), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_19\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37))]),:value=>Observables.Observable{Float64}(\"ob_19\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g])), Observables.Observable{Float64}(\"ob_19\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), Observables.Observable{Float64}(\"ob_19\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-7 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.SyncCallback(WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(#= circular reference @-8 =#), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), WebIO.#37)), Observables.g]), WebIO.Scope(\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol,Any}(Pair{Symbol,Any}(:className, \"interact \"),Pair{Symbol,Any}(:style, Dict{Any,Any}(Pair{Any,Any}(:padding, \"5px 10px 0px 10px\")))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"text-align:right;width:18%\"))), 2), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:max, 10.0),Pair{Symbol,Any}(:min, 0.0),Pair{Symbol,Any}(:attributes, Dict{Any,Any}(Pair{Any,Any}(:type, \"range\"),Pair{Any,Any}(Symbol(\"data-bind\"), \"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}\"))),Pair{Symbol,Any}(:step, 0.01),Pair{Symbol,Any}(:className, \"slider slider is-fullwidth\"),Pair{Symbol,Any}(:style, Dict{Any,Any}())), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"flex-grow:1; margin: 0 2%\"))), 1), WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"data-bind\"=>\"text: displayedvalue\"))), 0)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"width:18%\"))), 1)], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 7), Dict{String,Tuple{Observables.Observable,Union{Bool, Void}}}(Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"changes\", (Observables.Observable{Int64}(\"ob_20\", 0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37))]), nothing)),Pair{String,Tuple{Observables.Observable,Union{Bool, Void}}}(\"value\", (Observables.Observable{Float64}(\"ob_19\", 0.0, Any[WebIO.SyncCallback(WebIO.Scope(#= circular reference @-7 =#), WebIO.SyncCallback(WebIO.Scope(#= circular reference @-8 =#), WebIO.#37)), Observables.g]), nothing))), Set{String}(), nothing, Any[\"knockout\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout.js\", \"knockout_punches\"=>\"/Users/stevenj/.julia/v0.6/Knockout/src/../assets/knockout_punches.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/all.js\", \"/Users/stevenj/.julia/v0.6/InteractBase/src/../assets/style.css\", \"/Users/stevenj/.julia/v0.6/InteractBulma/src/../assets/main.css\"], Dict{Any,Any}(Pair{Any,Any}(\"_promises\", Dict{Any,Any}(Pair{Any,Any}(\"importsLoaded\", Any[WebIO.JSString(\"function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = JSON.parse(\\\"{\\\\\\\"changes\\\\\\\":0,\\\\\\\"value\\\\\\\":0.0}\\\");\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"displayedvalue\\\"]=ko.computed(function () {return this.value().toPrecision(6);},this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"value\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"value\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"value\\\",\\\"scope\\\":\\\"knockout-component-f4ca1cf4-9f11-45ec-a349-c7c7bacefe35\\\",\\\"id\\\":\\\"ob_19\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"value\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n\")]))),Pair{Any,Any}(\"changes\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")]),Pair{Any,Any}(\"value\", Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"value\\\"]()) ? (this.valueFromJulia[\\\"value\\\"]=true, this.model[\\\"value\\\"](val)) : undefined})\")])), WebIO.ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:3), Set{WebIO.AbstractConnection}(), Channel{WebIO.AbstractConnection}(sz_max:32,sz_curr:0))), Widgets.#4, Base.#55)\n", - " Observables.Observable{Any}(\"ob_23\", WebIO.Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[PyPlot.Figure(PyObject
    )], Dict{Symbol,Any}(Pair{Symbol,Any}(:attributes, Dict(\"style\"=>\"display:flex; justify-content:center; align-items:center;\"))), 1), Any[]))" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig = figure()\n", - "@manipulate for t in slider(0:0.01:10, value=0.0, label=\"time t\")\n", - " withfig(fig) do\n", - " b = @. sinecoef(f, 1:199) * cos(((1:199)*π) * t)\n", - " plot(x, [sinesum(b, x) for x in x])\n", - " xlabel(L\"x\")\n", - " title(\"wave solution at time $t\")\n", - " ylim(-0.5,0.5)\n", - " grid()\n", - " end\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have an oscillating wave, which bounced up and down between two triangle shapes.\n", - "\n", - "(This may seem unrealistic to you: if you actually stretch a string into a triangle shape and let it go, it doesn't retain the sharp kinks seen here. That is due to an effect called *dispersion* that we are not including in the wave equation...yet.)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - }, - "widgets": { - "state": { - "0f715249-d955-4474-8ebb-de15454b4eef": { - "views": [ - { - "cell_index": 12 - } - ] - }, - "5b9b0707-6132-41e0-a916-593e94d9d59b": { - "views": [ - { - "cell_index": 17 - } - ] - }, - "92b6fa17-c0dc-40e6-9e22-9b13eca47f26": { - "views": [ - { - "cell_index": 21 - } - ] - }, - "9cdae58e-7be2-481c-a6a6-2fce5b60e8be": { - "views": [ - { - "cell_index": 14 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/lectures/Statistics-and-PCA.ipynb b/lectures/Statistics-and-PCA.ipynb deleted file mode 100644 index 4e8b4499..00000000 --- a/lectures/Statistics-and-PCA.ipynb +++ /dev/null @@ -1,889 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "using PyPlot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Mean and variance\n", - "\n", - "Suppose we have a black box (a **distribution**) that generates data points $x_k$ (**samples**) $k = 1,\\ldots,$. If we have $n$ data points, the **sample mean m** is simply the average:\n", - "\n", - "$$\n", - "m = \\frac{1}{n}\\sum_{k=1}^n x_k\n", - "$$\n", - "\n", - "In the limit $n \\to \\infty$, we get the mean μ of the underlying distribution from which the samples are generated.\n", - "\n", - "The **sample variance S²** is the mean-square deviation from the mean:\n", - "\n", - "$$\n", - "\\operatorname{Var}(x) = S^2 = \\frac{1}{n-1}\\sum_{k=1}^n (x_k - m)^2\n", - "$$\n", - "\n", - "where the denominator $n-1$ is [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction). The limit $n\\to\\infty$ of the sample variance gives $\\sigma^2$, the variance of the underlying distribution, and by using $n-1$ instead of $n$ in the denominator it turns out that we get a better estimate of $\\sigma^2$ when $n$ is not huge.\n", - "\n", - "For example, the `randn()` function in Julia draws samples from a [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution): a Gaussian or \"bell curve\" with mean zero and variance 1:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGgCAYAAABMn6ZGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X1wVOXdxvFrkyzBIAlCSjAQhKIPgmBbg8SEYkFNgA4FnEFAHxdUQBFRINZKitjAVFK0I3GwoKgjVlCoImJbxYQiCCYgDaKISlXUCEnkpZAFscmSnOePPLtms7t5azZH7nw/M4yce+9z9nf/9iWXZ88Gh2VZlgAAAAwVYXcBAAAA4UTYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjRdldgB2qq6tVUlKijh07yuFw2F0OAABoBMuydOrUKSUmJioiovHna9pk2CkpKVFSUpLdZQAAgGb4+uuv1aNHj0bPb5Nhp2PHjpJqmhUbG2tzNebxeDzKy8tTRkaGnE6n3eW0OfTfPvTeXvTfXq3Rf7fbraSkJN/P8cZqk2HH+9FVbGwsYScMPB6PYmJiFBsbyxuODei/fei9vei/vVqz/029BIULlAEAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGC0Vgk7y5cvV+/evdW+fXslJydr+/bt9c5fv369+vfvr+joaPXv318bNmwIOfeOO+6Qw+FQbm5uS5cNAAAMEPaws27dOs2ZM0fz58/Xe++9p6FDh2rUqFEqLi4OOr+wsFATJ06Uy+XS+++/L5fLpQkTJmjXrl0Bc1999VXt2rVLiYmJ4V4GAAA4R4U97Dz66KOaOnWqpk2bpn79+ik3N1dJSUlasWJF0Pm5ublKT09XVlaWLr30UmVlZenaa68NOHNz+PBhzZo1S2vWrJHT6Qz3MgAAwDkqKpwHr6ysVFFRkebNm+c3npGRoYKCgqD7FBYWau7cuX5jI0aM8As71dXVcrlcuu+++3TZZZc1WEdFRYUqKip82263W5Lk8Xjk8XgavR40jren9NYe9N8+9N5e9N9erdH/5h47rGHn2LFjqqqqUkJCgt94QkKCysrKgu5TVlbW4PwlS5YoKipK99xzT6PqyMnJ0cKFCwPG8/LyFBMT06hjoOny8/PtLqFNo//2off2ov/2Cmf/z5w506z9whp2vBwOh9+2ZVkBY42dX1RUpMcee0x79uyp9xi1ZWVlKTMz07ftdruVlJSkjIwMxcbGNnYZaCSPx6P8/Hylp6fzEaMN6L996L296L+9WqP/3k9mmiqsYSc+Pl6RkZEBZ3GOHDkScPbGq1u3bvXO3759u44cOaKePXv6bq+qqtK9996r3NxcffnllwHHjI6OVnR0dMC40+nkBRFG9Nde9N8+9N5e9N9e4ex/c48b1guU27Vrp+Tk5IBTWvn5+UpLSwu6T2pqasD8vLw833yXy6UPPvhAe/fu9f1JTEzUfffdpzfffDM8CwEAAOessH+MlZmZKZfLpUGDBik1NVUrV65UcXGxZsyYIUmaPHmyunfvrpycHEnS7NmzdfXVV2vJkiUaO3asNm7cqM2bN2vHjh2SpC5duqhLly5+9+F0OtWtWzf17ds33MsBAADnmLCHnYkTJ+r48eNatGiRSktLNWDAAL3++uu66KKLJEnFxcWKiPj+BFNaWprWrl2rBx54QAsWLFCfPn20bt06paSkhLtUAABgoFa5QHnmzJmaOXNm0Nu2bt0aMDZ+/HiNHz++0ccPdp0OAACAxL+NBQAADEfYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACM1iphZ/ny5erdu7fat2+v5ORkbd++vd7569evV//+/RUdHa3+/ftrw4YNvts8Ho/uv/9+DRw4UB06dFBiYqImT56skpKScC8DAACcg8IedtatW6c5c+Zo/vz5eu+99zR06FCNGjVKxcXFQecXFhZq4sSJcrlcev/99+VyuTRhwgTt2rVLknTmzBnt2bNHCxYs0J49e/TKK6/oX//6l8aMGRPupQAAgHNQVLjv4NFHH9XUqVM1bdo0SVJubq7efPNNrVixQjk5OQHzc3NzlZ6erqysLElSVlaWtm3bptzcXL344ouKi4tTfn6+3z7Lli3T4MGDVVxcrJ49ewYcs6KiQhUVFb5tt9stqeYskcfjabG1ooa3p/TWHvTfPvTeXvTfXq3R/+YeO6xhp7KyUkVFRZo3b57feEZGhgoKCoLuU1hYqLlz5/qNjRgxQrm5uSHvp7y8XA6HQ506dQp6e05OjhYuXBgwnpeXp5iYmIaWgWaqG0rRuui/fei9vei/vcLZ/zNnzjRrv7CGnWPHjqmqqkoJCQl+4wkJCSorKwu6T1lZWZPm/+c//9G8efN00003KTY2NuicrKwsZWZm+rbdbreSkpKUkZERch80n8fjUX5+vtLT0+V0Ou0up82h//ah9/ai//Zqjf57P5lpqrB/jCVJDofDb9uyrICx5sz3eDyaNGmSqqurtXz58pDHi46OVnR0dMC40+nkBRFG9Nde9N8+9N5e9N9e4ex/c48b1rATHx+vyMjIgLMyR44cCTh749WtW7dGzfd4PJowYYK++OILbdmyhTM0AAAgqLB+G6tdu3ZKTk4O+PwuPz9faWlpQfdJTU0NmJ+Xl+c33xt0Pv30U23evFldunRp+eIBAIARwv4xVmZmplwulwYNGqTU1FStXLlSxcXFmjFjhiRp8uTJ6t69u++bWbNnz9bVV1+tJUuWaOzYsdq4caM2b96sHTt2SJLOnj2r8ePHa8+ePfrb3/6mqqoq35mgzp07q127duFeEgAAOIeEPexMnDhRx48f16JFi1RaWqoBAwbo9ddf10UXXSRJKi4uVkTE9yeY0tLStHbtWj3wwANasGCB+vTpo3Xr1iklJUWSdOjQIb322muSpJ/+9Kd+9/XWW29p2LBh4V4SAAA4h7TKBcozZ87UzJkzg962devWgLHx48dr/PjxQef36tVLlmW1ZHkAAMBg/NtYAADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRolrjTpYvX65HHnlEpaWluuyyy5Sbm6uhQ4eGnL9+/XotWLBAn3/+ufr06aOHHnpI119/ve92y7K0cOFCrVy5UidOnFBKSor+9Kc/6bLLLmuN5dTv0CHp00+lSy6RevSwuxrbtD92TI6XXpKioqS0tJbthZ09PnRIKiio+Xtz1lW79tJSaft26X/+R+rQoXnr2b37+2OcOVMz1qOH4vftky6/XOrdu+E6at9nsPFQa/be99Ch0pVXBr+P2vtJ/mv/61+lCy+UBg2Svvgi+LzatdVeq7dfUv2Ph3c9558vnT4tffut9K9/fV9z3fV676NzZ+nf//ZfW925jX0u1K3h/PNr1nv8uNSlS+h9vfvVrvnCCwPX8+67Uvv20sUXBx4rWM3e7YZ6V7fvdXvmraHusb3ra+gxCVZTY7Yl6W9/k/7yF+nSS6XJk2vGPv1U6tUr+HtP3XWH6kHt7d69/ddXtyfe5++vflX/fdR+HTX0vtVSc1pDfXUcOiR9+aX9NdZmhdnatWstp9NpPfXUU9ZHH31kzZ492+rQoYP11VdfBZ1fUFBgRUZGWosXL7Y+/vhja/HixVZUVJS1c+dO35w//OEPVseOHa3169db+/btsyZOnGhdeOGFltvtblRN5eXlliSrvLy8Rdbo8/TTlhURYVlSzX+ffrplj3+O8Dz5pFUt1fRBsiyHo+V6YWePn366Zi3NXVft2oP9aep6pkwJehxv76tDHS9UD4ONh1pz3fueMqXhXtXeru+Pd17t2oKtte7x6j4eDfU7Lc1/vWlpwedNmRLYmylTgvalsrLSevXVV63KysrG1RDqeRRqv4Z6WPtYwWr2bjfUu1DPsdo9q/28rX3sxj4mdfdrzPbTTwd/nP5/PdUOR+B7T911e9cerAeNeV0Gey6Guo/ar6OG3rdaak5rCFFHZWWlteeuu2ree8JUY3N/fjssy7LCGaZSUlJ0xRVXaMWKFb6xfv36ady4ccrJyQmYP3HiRLndbr3xxhu+sZEjR+qCCy7Qiy++KMuylJiYqDlz5uj++++XJFVUVCghIUFLlizRHXfcEXDMiooKVVRU+LbdbreSkpJ07NgxxcbGtsxCDx1S1MUXy1Fd7RuyIiN19tNPfzjJtjUcOqSoPn3kqPO0apFe2NnjIPctSVZEhM5+9lnD9x9i/7oavZ7duxU1ZIgcDZQdcLxQPXz7bUUNHeo/HlHzKXfAmv//v446Y2ffecf3f/7BngPNYUVG6uzLLyvq+usbXKtv/qefSlKD/bYUuIZg9xFqvXXnWhER+s8nnyjvo4+Unp4u5zffNOox9+7rex418rlS77G2bw98PIPU7Ldf3edKkOdYfT0KdWzf2hT4mDT0GARsOxySZTXqudCY2hp9DG9vSkuDvu4aWr+k+t+3GvPe9kP5GVNPHWfPnlX7vn39XvstXaPb7VZ8fLzKy8ub9PM7rB9jVVZWqqioSPPmzfMbz8jIUIH3VGEdhYWFmjt3rt/YiBEjlJubK0n64osvVFZWpoyMDN/t0dHR+sUvfqGCgoKgYScnJ0cLFy4MGM/Ly1NMTEyT1xVM/L59GlLnzclRVaVda9bo+MCBLXIf54L4ffs0JMgPuZbohZ09DnbfUs0bWGPuP9T+Acdr5Hr6bNyoAQ0eLfB4oXr4yTPPaGDd8RD1BntTd0j65JlndPDo0ZDPgeZwVFXp6yef1I+bMH/XmjVySA32u+46Qv2wCrXegLHqahWtWycNHKj8/PxGP+befb2PU1P2C3WsoI9nQ/vVea4Ee441pUe16wn1mDT0GARsN+N59d8GHen73nQ6eDDo666h9Yc6XkOvy6bOaQ311eGQAl77LV3jGe/H9U0U1jM7JSUl6t69u9555x2leT8PlbR48WI999xzOnDgQMA+7dq106pVq3TTTTf5xl544QXdeuutqqioUEFBgYYMGaLDhw8rMTHRN+f222/XV199pTfffDPgmJzZaUWc2WnS/nVxZidI/ZzZaRLO7DS+tkYfgzM73ztHz+yE9Zqdw4cPW5KsgoICv/Hf//73Vt++fYPu43Q6rRdeeMFvbPXq1VZ0dLRlWZb1zjvvWJKskpISvznTpk2zRowY0ai6wnrNTmRkzWeVkZFt+pqdqtqff7fk57Z29rjudRTNuWbHW3uw6wOaup6GrtkJdbxQPQw2HmrN/801O/Vdd1J7Xu3agq012LUjda8P8a4n2J+0NP/1NnTNTu25da9Rqe+anfpqCPU8CrVfU6/ZqVtz7edfY16jwa7ZqVtX3WPXt7b6amrMdqhrdv7/saiOiLCq6o7XPkZEhP/1NI3pbd3XUahrdoLdR+3XUUPvWy01pzWEqMN3zU4Ya/xBXrNTWVmpmJgYvfTSS37fppo9e7b27t2rbdu2BezTs2dPzZ071++jrKVLlyo3N1dfffWVDh48qD59+mjPnj362c9+5pszduxYderUSc8991yDdbndbsXFxTU9GTbGoUPSZ5/VfDOiLZ3RqcXj8WjLn/+sa2NiFBUVJaWmtvy3sezq8aFDUmFhzd+bs67atZeWSu+8U/P3889v3np27/7+GN99J0nydO+uXVu2KOV//1fO+r6NFayHwcZDrdl730OGhP42Vu39JP+1//3vUrduUnJyzTc3gs2r+22suv2S6n88vOvp0KHmm0unT9dse2uuu17vfXTqJJ086b+2unOD9MXj8ej111/XL3/5SzmdzuA1dOhQs17vt7FCPY+8+9Wu+cILA9fzz39K0dE1ddU9VrCavdsN9a5u3+v2zFtD3WN719fQYxKspsZsSzXfxnr5ZalvX8nl8j1nPBddpC1btgS+99Rdd6ge1N7u1ct/fXV74n3+jh5d/33Ufh019L7VUnNaQ5A6fM//yy+X86uvwlJjs39+t2jkCmLw4MHWnXfe6TfWr18/a968eUHnT5gwwRo1apTf2MiRI61JkyZZlmVZ1dXVVrdu3awlS5b4bq+oqLDi4uKsJ554olE1he3MDizLsgL/7xativ7bh97bi/7bqzX639yf32H/PTuZmZlyuVwaNGiQUlNTtXLlShUXF2vGjBmSpMmTJ6t79+6+b2bNnj1bV199tZYsWaKxY8dq48aN2rx5s3bs2CFJcjgcmjNnjhYvXqxLLrlEl1xyiRYvXqyYmBi/63wAAACkVvilghMnTtTx48e1aNEilZaWasCAAXr99dd10UUXSZKKi4sVEfH9L3JOS0vT2rVr9cADD2jBggXq06eP1q1bp5SUFN+c3/zmN/ruu+80c+ZM3y8VzMvLU8eOHcO9HAAAcI5pld+gPHPmTM2cOTPobVu3bg0YGz9+vMaPHx/yeA6HQ9nZ2crOzm6hCgEAgKn4t7EAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKOFNeycOHFCLpdLcXFxiouLk8vl0smTJ+vdp6KiQnfffbfi4+PVoUMHjRkzRocOHfLd/v777+vGG29UUlKSzjvvPPXr10+PPfZYOJcBAADOYWENOzfddJP27t2rTZs2adOmTdq7d69cLle9+8yZM0cbNmzQ2rVrtWPHDp0+fVqjR49WVVWVJKmoqEg/+tGPtHr1au3fv1/z589XVlaWHn/88XAuBQAAnKOiwnXgjz/+WJs2bdLOnTuVkpIiSXrqqaeUmpqqAwcOqG/fvgH7lJeX65lnntHzzz+v6667TpK0evVqJSUlafPmzRoxYoRuu+02v31+/OMfq7CwUK+88opmzZoVruUAAIBzVNjCTmFhoeLi4nxBR5KuuuoqxcXFqaCgIGjYKSoqksfjUUZGhm8sMTFRAwYMUEFBgUaMGBH0vsrLy9W5c+eQtVRUVKiiosK37Xa7JUkej0cej6fJa0P9vD2lt/ag//ah9/ai//Zqjf4399hhCztlZWXq2rVrwHjXrl1VVlYWcp927drpggsu8BtPSEgIuU9hYaH+8pe/6O9//3vIWnJycrRw4cKA8by8PMXExNS3DPwX8vPz7S6hTaP/9qH39qL/9gpn/8+cOdOs/ZocdrKzs4MGh9p2794tSXI4HAG3WZYVdLw+ofbZv3+/xo4dqwcffFDp6ekh98/KylJmZqZv2+12KykpSRkZGYqNjW1SLWiYx+NRfn6+0tPT5XQ67S6nzaH/9qH39qL/9mqN/ns/mWmqJoedWbNmadKkSfXO6dWrlz744AN98803AbcdPXpUCQkJQffr1q2bKisrdeLECb+zO0eOHFFaWprf3I8++kjXXHONpk+frgceeKDeeqKjoxUdHR0w7nQ6eUGEEf21F/23D723F/23Vzj739zjNjnsxMfHKz4+vsF5qampKi8v17vvvqvBgwdLknbt2qXy8vKA4OKVnJwsp9Op/Px8TZgwQZJUWlqqDz/8UA8//LBv3v79+3XNNddoypQpeuihh5q6BAAA0IaE7avn/fr108iRIzV9+nTt3LlTO3fu1PTp0zV69GjfxcmHDx/WpZdeqnfffVeSFBcXp6lTp+ree+/VP/7xD7333nu6+eabNXDgQN+3s/bv36/hw4crPT1dmZmZKisrU1lZmY4ePRqupQAAgHNYWH/Pzpo1azRw4EBlZGQoIyNDl19+uZ5//nnf7R6PRwcOHPC74Gjp0qUaN26cJkyYoCFDhigmJkZ//etfFRkZKUl66aWXdPToUa1Zs0YXXnih78+VV14ZzqUAAIBzVNi+jSVJnTt31urVq0Pe3qtXL1mW5TfWvn17LVu2TMuWLQu6T3Z2trKzs1uyTAAAYDD+bSwAAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGhhDTsnTpyQy+VSXFyc4uLi5HK5dPLkyXr3qaio0N133634+Hh16NBBY8aM0aFDh4LOPX78uHr06CGHw9HgcQEAQNsU1rBz0003ae/evdq0aZM2bdqkvXv3yuVy1bvPnDlztGHDBq1du1Y7duzQ6dOnNXr0aFVVVQXMnTp1qi6//PJwlQ8AAAwQFa4Df/zxx9q0aZN27typlJQUSdJTTz2l1NRUHThwQH379g3Yp7y8XM8884yef/55XXfddZKk1atXKykpSZs3b9aIESN8c1esWKGTJ0/qwQcf1BtvvBGuZQAAgHNc2MJOYWGh4uLifEFHkq666irFxcWpoKAgaNgpKiqSx+NRRkaGbywxMVEDBgxQQUGBL+x89NFHWrRokXbt2qWDBw82WEtFRYUqKip82263W5Lk8Xjk8XiavUYE5+0pvbUH/bcPvbcX/bdXa/S/uccOW9gpKytT165dA8a7du2qsrKykPu0a9dOF1xwgd94QkKCb5+KigrdeOONeuSRR9SzZ89GhZ2cnBwtXLgwYDwvL08xMTGNWQ6aIT8/3+4S2jT6bx96by/6b69w9v/MmTPN2q/JYSc7OztocKht9+7dkiSHwxFwm2VZQcfrU3ufrKws9evXTzfffHOj98/KylJmZqZv2+12KykpSRkZGYqNjW1SLWiYx+NRfn6+0tPT5XQ67S6nzaH/9qH39qL/9mqN/ns/mWmqJoedWbNmadKkSfXO6dWrlz744AN98803AbcdPXpUCQkJQffr1q2bKisrdeLECb+zO0eOHFFaWpokacuWLdq3b59efvllSTVBSJLi4+M1f/78oEEsOjpa0dHRAeNOp5MXRBjRX3vRf/vQe3vRf3uFs//NPW6Tw058fLzi4+MbnJeamqry8nK9++67Gjx4sCRp165dKi8v9wWXupKTk+V0OpWfn68JEyZIkkpLS/Xhhx/q4YcfliStX79e3333nW+f3bt367bbbtP27dvVp0+fpi4HAAAYLmzX7PTr108jR47U9OnT9eSTT0qSbr/9do0ePdp3cfLhw4d17bXX6s9//rMGDx6suLg4TZ06Vffee6+6dOmizp0769e//rUGDhzo+3ZW3UBz7Ngx3/116tQpXMsBAADnqLCFHUlas2aN7rnnHt+3q8aMGaPHH3/cd7vH49GBAwf8LjhaunSpoqKiNGHCBH333Xe69tprtWrVKkVGRoazVAAAYKiwhp3OnTtr9erVIW/v1auX75obr/bt22vZsmVatmxZo+5j2LBhAccAAADw4t/GAgAARiPsAAAAoxF2AACA0Qg7AADyXw7KAAAF4UlEQVTAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKNF2V2AHSzLkiS53W6bKzGTx+PRmTNn5Ha75XQ67S6nzaH/9qH39qL/9mqN/nt/bnt/jjdWmww7p06dkiQlJSXZXAkAAGiqU6dOKS4urtHzHVZT45EBqqurVVJSoo4dO8rhcNhdjnHcbreSkpL09ddfKzY21u5y2hz6bx96by/6b6/W6L9lWTp16pQSExMVEdH4K3Ha5JmdiIgI9ejRw+4yjBcbG8sbjo3ov33ovb3ov73C3f+mnNHx4gJlAABgNMIOAAAwWmR2dna23UXAPJGRkRo2bJiiotrkJ6W2o//2off2ov/2+qH2v01eoAwAANoOPsYCAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg7C5ssvv9TUqVPVu3dvnXfeeerTp49+97vfqbKy0u7S2oyHHnpIaWlpiomJUadOnewux3jLly9X79691b59eyUnJ2v79u12l9QmvP322/rVr36lxMREORwOvfrqq3aX1Kbk5OToyiuvVMeOHdW1a1eNGzdOBw4csLssP4QdhM0nn3yi6upqPfnkk9q/f7+WLl2qJ554Qr/97W/tLq3NqKys1A033KA777zT7lKMt27dOs2ZM0fz58/Xe++9p6FDh2rUqFEqLi62uzTjffvtt/rJT36ixx9/3O5S2qRt27bprrvu0s6dO5Wfn6+zZ88qIyND3377rd2l+fB7dtCqHnnkEa1YsUIHDx60u5Q2ZdWqVZozZ45OnjxpdynGSklJ0RVXXKEVK1b4xvr166dx48YpJyfHxsraFofDoQ0bNmjcuHF2l9JmHT16VF27dtW2bdt09dVX212OJM7soJWVl5erc+fOdpcBtKjKykoVFRUpIyPDbzwjI0MFBQU2VQXYo7y8XJJ+UO/1hB20ms8//1zLli3TjBkz7C4FaFHHjh1TVVWVEhIS/MYTEhJUVlZmU1VA67MsS5mZmfr5z3+uAQMG2F2OD2EHTZadnS2Hw1Hvn3/+859++5SUlGjkyJG64YYbNG3aNJsqN0Nz+o/W4XA4/LYtywoYA0w2a9YsffDBB3rxxRftLsXPD+tf6sI5YdasWZo0aVK9c3r16uX7e0lJiYYPH67U1FStXLkyzNWZr6n9R/jFx8crMjIy4CzOkSNHAs72AKa6++679dprr+ntt99Wjx497C7HD2EHTRYfH6/4+PhGzT18+LCGDx+u5ORkPfvss4qI4GTif6sp/UfraNeunZKTk5Wfn6/rr7/eN56fn6+xY8faWBkQfpZl6e6779aGDRu0detW9e7d2+6SAhB2EDYlJSUaNmyYevbsqT/+8Y86evSo77Zu3brZWFnbUVxcrH//+98qLi5WVVWV9u7dK0m6+OKLdf7559tcnVkyMzPlcrk0aNAg31nM4uJirlFrBadPn9Znn33m2/7iiy+0d+9ede7cWT179rSxsrbhrrvu0gsvvKCNGzeqY8eOvjOccXFxOu+882yurgZfPUfYrFq1SrfeemvQ23jatY5bbrlFzz33XMD4W2+9pWHDhrV+QYZbvny5Hn74YZWWlmrAgAFaunTpD+artybbunWrhg8fHjA+ZcoUrVq1qvULamNCXZf27LPP6pZbbmndYkIg7AAAAKNxAQUAADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjPZ/BKpDllvYCsYAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x = randn(100) # 100 gaussian random numbers:\n", - "plot(x, zeros(x), \"r.\")\n", - "grid()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is more informative to plot a [histogram](https://en.wikipedia.org/wiki/Histogram):" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGgCAYAAABrMSeuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XtwVPX9//HXGsgSMNkSQrJJCZAqohhwJGhIQAyCgZSLqFVbOim0FEUgmAGqgtOvOKOE4gU7UilaB5SLoR0MOIOmxAqhDEQumnKzDFoooSQESthAymwwnt8f/txxSRA27HI+u3k+Zs4Me85nN+8zhOTF+3zO5zgsy7IEAABgqOvsLgAAAOD7EFYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGjt7C6gNb7++msdP35csbGxcjgcdpcDAACugGVZOnv2rFJSUnTddVfeLwnLsHL8+HGlpqbaXQYAAGiFqqoqdevW7YrHh2VYiY2NlfTNycbFxdlcDQAAuBL19fVKTU31/R6/UmEZVr699BMXF0dYAQAgzAQ6hYMJtgAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGa2d3AQDCQ8+nNzTbd2TBKBsqAdDW0FkBAABGI6wAAACjEVYAAIDRmLMC4Jpi7guAQNFZAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNO4GAhBSLd39AwCBoLMCAACMRlgBAABG4zIQgFa7+BIPi7sBCAU6KwAAwGh0VoAIx/L2AMIdnRUAAGA0wgoAADAaYQUAABiNsAIAAIzGBFsALWLlWQCmoLMCAACMRlgBAABG4zIQAC75ADBaQJ2VJUuWqF+/foqLi1NcXJyysrL04Ycf+o57vV4VFBQoISFBnTp10tixY3Xs2DG/zzh69KjGjBmjTp06KSEhQTNmzFBjY2NwzgaAej69wW8DgHAXUFjp1q2bFixYoF27dmnXrl265557dN9992n//v2SpMLCQpWUlKi4uFhbt27VuXPnNHr0aDU1NUmSmpqaNGrUKDU0NGjr1q0qLi7W2rVrNWvWrOCfGQAAiAgBXQYaM2aM3+sXXnhBS5YsUUVFhbp166a33npLK1as0PDhwyVJK1euVGpqqj766CONGDFCGzdu1IEDB1RVVaWUlBRJ0ssvv6yJEyfqhRdeUFxcXItf1+v1yuv1+l7X19cHdJIAACB8tXqCbVNTk4qLi9XQ0KCsrCzt3r1bFy5cUG5urm9MSkqK0tPTtW3bNknS9u3blZ6e7gsqkjRixAh5vV7t3r37kl+rqKhILpfLt6Wmpra2bAAAEGYCDit79+7V9ddfL6fTqSlTpqikpER9+vRRTU2NoqOj1blzZ7/xSUlJqqmpkSTV1NQoKSnJ73jnzp0VHR3tG9OSOXPmyOPx+LaqqqpAywYAAGEq4LuBevfurcrKSp05c0Zr167VhAkTVF5efsnxlmXJ4XD4Xn/3z5caczGn0ymn0xloqQAAIAIEHFaio6N14403SpIGDBignTt36ve//70eeeQRNTY2qq6uzq+7Ultbq+zsbEmS2+3WJ5984vd5dXV1unDhQrOOC4DQ4S4hAOHkqheFsyxLXq9XGRkZat++vcrKynzHqqurtW/fPl9YycrK0r59+1RdXe0bs3HjRjmdTmVkZFxtKQAAIAIF1FmZO3eu8vLylJqaqrNnz6q4uFibN29WaWmpXC6XJk2apFmzZqlLly6Kj4/X7Nmz1bdvX9/dQbm5uerTp4/y8/P14osv6vTp05o9e7YmT558yTuBAABA2xZQWDlx4oTy8/NVXV0tl8ulfv36qbS0VPfee68kadGiRWrXrp0efvhhnT9/XsOGDdPy5csVFRUlSYqKitKGDRs0depUDRo0SDExMRo/frxeeuml4J8ZAACICA7Lsiy7iwhUfX29XC6XPB4PHRngIuE4H+XIglF2lwDgGmjt728eZAgAAIzGgwwBhIWLO0Z0Y4C2g84KAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRuHUZgHHCcWE7AKFDZwUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI0VbAHYjhVrAXwfOisAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIzG3UBAGLn4rpkjC0bZVAkAXDt0VgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjtbO7AACt1/PpDXaXAAAhR2cFAAAYLaCwUlRUpDvuuEOxsbFKTEzUuHHjdPDgQb8xOTk5cjgcfttPf/pTvzF1dXXKz8+Xy+WSy+VSfn6+zpw5c/VnAwAAIk5AYaW8vFzTpk1TRUWFysrK9NVXXyk3N1cNDQ1+4yZPnqzq6mrftnTpUr/j48ePV2VlpUpLS1VaWqrKykrl5+df/dkAAICIE9CcldLSUr/Xy5YtU2Jionbv3q0hQ4b49nfs2FFut7vFz/j8889VWlqqiooKZWZmSpLefPNNZWVl6eDBg+rdu3eg5wAAACLYVc1Z8Xg8kqT4+Hi//atWrVJCQoJuvfVWzZ49W2fPnvUd2759u1wuly+oSNLAgQPlcrm0bdu2Fr+O1+tVfX293wYAANqGVt8NZFmWZs6cqcGDBys9Pd23/+c//7nS0tLkdru1b98+zZkzR//4xz9UVlYmSaqpqVFiYmKzz0tMTFRNTU2LX6uoqEjPPfdca0sFwhJ3+gDAN1odVqZPn649e/Zo69atfvsnT57s+3N6erp69eqlAQMG6NNPP1X//v0lSQ6Ho9nnWZbV4n5JmjNnjmbOnOl7XV9fr9TU1NaWDgAAwkirwkpBQYHef/99bdmyRd26dfvesf3791f79u116NAh9e/fX263WydOnGg27uTJk0pKSmrxM5xOp5xOZ2tKBQAAYS6gsGJZlgoKClRSUqLNmzcrLS3tsu/Zv3+/Lly4oOTkZElSVlaWPB6PduzYoTvvvFOS9Mknn8jj8Sg7O7sVpwCgLWrpMtmRBaNsqARAqAUUVqZNm6bVq1dr/fr1io2N9c0xcblciomJ0ZdffqlVq1bpxz/+sRISEnTgwAHNmjVLt99+uwYNGiRJuuWWWzRy5EhNnjzZd0vzo48+qtGjR3MnEAAAaCagu4GWLFkij8ejnJwcJScn+7Y1a9ZIkqKjo/W3v/1NI0aMUO/evTVjxgzl5ubqo48+UlRUlO9zVq1apb59+yo3N1e5ubnq16+fVqxYEdwzAwAAESHgy0DfJzU1VeXl5Zf9nPj4eK1cuTKQLw0AANoong0EAACMRlgBAABGI6wAAACjEVYAAIDRWr2CLYDWY40QALhydFYAAIDRCCsAAMBohBUAAGA05qwAiFjMDQIiA50VAABgNMIKAAAwGmEFAAAYjTkrgCFaml8BAKCzAgAADEdYAQAARuMyEICIwaU0IDLRWQEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTuBgLQplx8xxAPNgTMR2cFAAAYjbACAACMxmUgAG1aSwvJcWkIMAudFQAAYDQ6K8A1wDLwANB6dFYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAowUUVoqKinTHHXcoNjZWiYmJGjdunA4ePOg3xuv1qqCgQAkJCerUqZPGjh2rY8eO+Y05evSoxowZo06dOikhIUEzZsxQY2Pj1Z8NAACIOAGFlfLyck2bNk0VFRUqKyvTV199pdzcXDU0NPjGFBYWqqSkRMXFxdq6davOnTun0aNHq6mpSZLU1NSkUaNGqaGhQVu3blVxcbHWrl2rWbNmBffMAABARHBYlmW19s0nT55UYmKiysvLNWTIEHk8HnXt2lUrVqzQI488Ikk6fvy4UlNT9cEHH2jEiBH68MMPNXr0aFVVVSklJUWSVFxcrIkTJ6q2tlZxcXGX/br19fVyuVzyeDxXNB6wW8+nN9hdAgJwZMEou0sAIlJrf39f1ZwVj8cjSYqPj5ck7d69WxcuXFBubq5vTEpKitLT07Vt2zZJ0vbt25Wenu4LKpI0YsQIeb1e7d69u8Wv4/V6VV9f77cBAIC2odVhxbIszZw5U4MHD1Z6erokqaamRtHR0ercubPf2KSkJNXU1PjGJCUl+R3v3LmzoqOjfWMuVlRUJJfL5dtSU1NbWzYAAAgzrQ4r06dP1549e/Tuu+9edqxlWXI4HL7X3/3zpcZ815w5c+TxeHxbVVVVa8sGAABhplVhpaCgQO+//742bdqkbt26+fa73W41Njaqrq7Ob3xtba2vm+J2u5t1UOrq6nThwoVmHZdvOZ1OxcXF+W0AAKBtCCisWJal6dOn67333tPHH3+stLQ0v+MZGRlq3769ysrKfPuqq6u1b98+ZWdnS5KysrK0b98+VVdX+8Zs3LhRTqdTGRkZV3MuAAAgArULZPC0adO0evVqrV+/XrGxsb4OicvlUkxMjFwulyZNmqRZs2apS5cuio+P1+zZs9W3b18NHz5ckpSbm6s+ffooPz9fL774ok6fPq3Zs2dr8uTJdEwAAEAzAYWVJUuWSJJycnL89i9btkwTJ06UJC1atEjt2rXTww8/rPPnz2vYsGFavny5oqKiJElRUVHasGGDpk6dqkGDBikmJkbjx4/XSy+9dPVnAwAAIs5VrbNiF9ZZQbhhnZXwwjorQGjYss4KAABAqBFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRAno2EIDLY2l9AAguOisAAMBodFYA4CIXd8d4sCFgLzorAADAaIQVAABgNMIKAAAwGnNWAOAyWrrDi3kswLVDZwUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGjcugwEgFtYAeDao7MCAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAa66wAV6mltVcAAMFDZwUAABiNsAIAAIxGWAEAAEZjzgoABAHPjQJCh84KAAAwGp0VAGgF7gIDrh06KwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjBZwWNmyZYvGjBmjlJQUORwOrVu3zu/4xIkT5XA4/LaBAwf6jfF6vSooKFBCQoI6deqksWPH6tixY1d3JgAAICIFHFYaGhp02223afHixZccM3LkSFVXV/u2Dz74wO94YWGhSkpKVFxcrK1bt+rcuXMaPXq0mpqaAj8DAAAQ0QJeZyUvL095eXnfO8bpdMrtdrd4zOPx6K233tKKFSs0fPhwSdLKlSuVmpqqjz76SCNGjAi0JAAAEMFCMmdl8+bNSkxM1E033aTJkyertrbWd2z37t26cOGCcnNzfftSUlKUnp6ubdu2tfh5Xq9X9fX1fhsAAGgbgh5W8vLytGrVKn388cd6+eWXtXPnTt1zzz3yer2SpJqaGkVHR6tz585+70tKSlJNTU2Ln1lUVCSXy+XbUlNTg102AAAwVNCX23/kkUd8f05PT9eAAQPUo0cPbdiwQQ888MAl32dZlhwOR4vH5syZo5kzZ/pe19fXE1gAAGgjQv5soOTkZPXo0UOHDh2SJLndbjU2Nqqurs6vu1JbW6vs7OwWP8PpdMrpdIa6VLRxPDUXAMwU8nVW/vvf/6qqqkrJycmSpIyMDLVv315lZWW+MdXV1dq3b98lwwoAAGi7Au6snDt3Tl988YXv9eHDh1VZWan4+HjFx8dr3rx5evDBB5WcnKwjR45o7ty5SkhI0P333y9JcrlcmjRpkmbNmqUuXbooPj5es2fPVt++fX13BwEAAHwr4LCya9cuDR061Pf627kkEyZM0JIlS7R371698847OnPmjJKTkzV06FCtWbNGsbGxvvcsWrRI7dq108MPP6zz589r2LBhWr58uaKiooJwSgAAIJIEHFZycnJkWdYlj//1r3+97Gd06NBBr732ml577bVAvzwAAGhjeDYQAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIwW8LOBAABXpufTG/xeH1kwyqZKgPBGZwUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI0VbIHvcfEKpMDVaOn7iVVtgcujswIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBrrrKDNYg0VAAgPdFYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGC3gsLJlyxaNGTNGKSkpcjgcWrdund9xy7I0b948paSkKCYmRjk5Odq/f7/fmLq6OuXn58vlcsnlcik/P19nzpy5ujMBAAARKeCw0tDQoNtuu02LFy9u8fjChQv1yiuvaPHixdq5c6fcbrfuvfdenT171jdm/PjxqqysVGlpqUpLS1VZWan8/PzWnwUAAIhY7QJ9Q15envLy8lo8ZlmWXn31VT3zzDN64IEHJElvv/22kpKStHr1aj322GP6/PPPVVpaqoqKCmVmZkqS3nzzTWVlZengwYPq3bv3VZwO0LKeT2+wuwQAQCsFdc7K4cOHVVNTo9zcXN8+p9Opu+++W9u2bZMkbd++XS6XyxdUJGngwIFyuVy+MRfzer2qr6/32wAAQNsQ1LBSU1MjSUpKSvLbn5SU5DtWU1OjxMTEZu9NTEz0jblYUVGRb36Ly+VSampqMMsGAAAGC8ndQA6Hw++1ZVl++y4+3tKY75ozZ448Ho9vq6qqCm7BAADAWAHPWfk+brdb0jfdk+TkZN/+2tpaX7fF7XbrxIkTzd578uTJZh2ZbzmdTjmdzmCWCgAAwkRQOytpaWlyu90qKyvz7WtsbFR5ebmys7MlSVlZWfJ4PNqxY4dvzCeffCKPx+MbAwAA8K2AOyvnzp3TF1984Xt9+PBhVVZWKj4+Xt27d1dhYaHmz5+vXr16qVevXpo/f746duyo8ePHS5JuueUWjRw5UpMnT9bSpUslSY8++qhGjx7NnUAAAKCZgMPKrl27NHToUN/rmTNnSpImTJig5cuX68knn9T58+c1depU1dXVKTMzUxs3blRsbKzvPatWrdKMGTN8dw2NHTv2kuu2AEAku/i2+iMLRtlUCWAuh2VZlt1FBKq+vl4ul0sej0dxcXF2l4MwwDorCBeEFUSy1v7+5tlAAADAaIQVAABgNMIKAAAwGmEFAAAYLaiLwgF24G4KRDq+x9HW0VkBAABGo7OCiMNtygAQWeisAAAAo9FZAQCD0BkEmqOzAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGuuswGg8EwUAQGcFAAAYjc4KAISZlla5peuISEZnBQAAGI3OCsIKz00BgLaHzgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDQWhQOACHAlCyayJD/CFZ0VAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYLeliZN2+eHA6H3+Z2u33HLcvSvHnzlJKSopiYGOXk5Gj//v3BLgMAAESIkHRWbr31VlVXV/u2vXv3+o4tXLhQr7zyihYvXqydO3fK7Xbr3nvv1dmzZ0NRCgAACHMhCSvt2rWT2+32bV27dpX0TVfl1Vdf1TPPPKMHHnhA6enpevvtt/W///1Pq1evDkUpAAAgzLULxYceOnRIKSkpcjqdyszM1Pz58/WjH/1Ihw8fVk1NjXJzc31jnU6n7r77bm3btk2PPfZYi5/n9Xrl9Xp9r+vr60NRNgC0KT2f3tBs35EFo2yoBPh+QQ8rmZmZeuedd3TTTTfpxIkTev7555Wdna39+/erpqZGkpSUlOT3nqSkJP373/++5GcWFRXpueeeC3apANCmtBROgHAQ9MtAeXl5evDBB9W3b18NHz5cGzZ884/j7bff9o1xOBx+77Esq9m+75ozZ448Ho9vq6qqCnbZAADAUCG/dblTp07q27evDh065Lsr6NsOy7dqa2ubdVu+y+l0Ki4uzm8DAABtQ0jmrHyX1+vV559/rrvuuktpaWlyu90qKyvT7bffLklqbGxUeXm5fve734W6FBjm4pY018oBAC0JeliZPXu2xowZo+7du6u2tlbPP/+86uvrNWHCBDkcDhUWFmr+/Pnq1auXevXqpfnz56tjx44aP358sEsBAAARIOhh5dixY/rZz36mU6dOqWvXrho4cKAqKirUo0cPSdKTTz6p8+fPa+rUqaqrq1NmZqY2btyo2NjYYJcCAAAigMOyLMvuIgJVX18vl8slj8fD/JUwxp0JgHm4HItQau3vb54NBAAAjEZYAQAARiOsAAAAo4X81mVAYn4KAKD16KwAAACjEVYAAIDRCCsAAMBozFkBAASER2XgWiOsICSYUAuEJ4IITERYQcD4YQYAuJaYswIAAIxGWAEAAEYjrAAAAKMRVgAAgNGYYAsAuCot3f3HxHsEE50VAABgNMIKAAAwGpeBAACXxAKPMAGdFQAAYDTCCgAAMBphBQAAGI05K7hqXNMGAIQSnRUAAGA0wgoAADAaYQUAABiNOSv4XsxHAdAaF//sYPl9XA3CCvwQTgAApuEyEAAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaKyzAgAIuZbWcGKhOFwpwkobwoqSAIBwRFgBABiB7gsuhTkrAADAaHRWbBasSzM80wdAuOHnFq4UYaUN4wcFgHDDpaK2ibAShggZAIC2hDkrAADAaHRWDEOLEwAC09puMz9bwwdhJUhCGTK47AMA9mB9KjPYGlZef/11vfjii6qurtatt96qV199VXfddZedJUkK3R06fJMDQGBC+Z81fkaHD9vCypo1a1RYWKjXX39dgwYN0tKlS5WXl6cDBw6oe/fudpUFAMAlcaneHg7Lsiw7vnBmZqb69++vJUuW+PbdcsstGjdunIqKivzGer1eeb1e32uPx6Pu3burqqpKcXFxQa8t/dm/+r3e99yIy44BAOBSWvo9YpKWfqeFoub6+nqlpqbqzJkzcrlcV/5GywZer9eKioqy3nvvPb/9M2bMsIYMGdJs/LPPPmtJYmNjY2NjY4uAraqqKqDcYMtloFOnTqmpqUlJSUl++5OSklRTU9Ns/Jw5czRz5kzf66+//lqnT59Wly5d5HA4Ql5vKH2bMkPVJTIF5xlZOM/IwnlGFpPP07IsnT17VikpKQG9z9YJthcHDcuyWgwfTqdTTqfTb98PfvCDkNZ2rcXFxRn3TRUKnGdk4TwjC+cZWUw9z4Au//x/tiwKl5CQoKioqGZdlNra2mbdFgAA0LbZElaio6OVkZGhsrIyv/1lZWXKzs62oyQAAGCoqHnz5s2z4wvHxcXpt7/9rX74wx+qQ4cOmj9/vjZt2qRly5ZF3CWey4mKilJOTo7atYvsNfo4z8jCeUYWzjOyRNp52nbrsvTNonALFy5UdXW10tPTtWjRIg0ZMsSucgAAgIFsDSsAAACXw1OXAQCA0QgrAADAaIQVAABgNMIKAAAwGmHFMGPHjlX37t3VoUMHJScnKz8/X8ePH7e7rKA5cuSIJk2apLS0NMXExOiGG27Qs88+q8bGRrtLC7oXXnhB2dnZ6tixY0Tdjv/6668rLS1NHTp0UEZGhv7+97/bXVLQbdmyRWPGjFFKSoocDofWrVtnd0lBV1RUpDvuuEOxsbFKTEzUuHHjdPDgQbvLCrolS5aoX79+vtVcs7Ky9OGHH9pdVsgVFRXJ4XCosLDQ7lKCgrBimKFDh+rPf/6zDh48qLVr1+rLL7/UT37yE7vLCpp//vOf+vrrr7V06VLt379fixYt0h//+EfNnTvX7tKCrrGxUQ899JAef/xxu0sJmjVr1qiwsFDPPPOMPvvsM911113Ky8vT0aNH7S4tqBoaGnTbbbdp8eLFdpcSMuXl5Zo2bZoqKipUVlamr776Srm5uWpoaLC7tKDq1q2bFixYoF27dmnXrl265557dN9992n//v12lxYyO3fu1BtvvKF+/frZXUrwtPLBybhG1q9fbzkcDquxsdHuUkJm4cKFVlpamt1lhMyyZcssl8tldxlBceedd1pTpkzx23fzzTdbTz/9tE0VhZ4kq6SkxO4yQq62ttaSZJWXl9tdSsh17tzZ+tOf/mR3GSFx9uxZq1evXlZZWZl19913W0888YTdJQUFnRWDnT59WqtWrVJ2drbat29vdzkh4/F4FB8fb3cZuIzGxkbt3r1bubm5fvtzc3O1bds2m6pCsHg8HkmK6H+LTU1NKi4uVkNDg7KysuwuJySmTZumUaNGafjw4XaXElSEFQM99dRT6tSpk7p06aKjR49q/fr1dpcUMl9++aVee+01TZkyxe5ScBmnTp1SU1NTs4eNJiUlNXsoKcKLZVmaOXOmBg8erPT0dLvLCbq9e/fq+uuvl9Pp1JQpU1RSUqI+ffrYXVbQFRcX69NPP1VRUZHdpQQdYeUamDdvnhwOx/duu3bt8o3/zW9+o88++0wbN25UVFSUfvGLX8gyfKHhQM9Rko4fP66RI0fqoYce0q9//WubKg9Ma84z0jgcDr/XlmU124fwMn36dO3Zs0fvvvuu3aWERO/evVVZWamKigo9/vjjmjApM5S4AAAC+klEQVRhgg4cOGB3WUFVVVWlJ554QitXrlSHDh3sLifoWG7/Gjh16pROnTr1vWN69uzZ4jfYsWPHlJqaqm3bthndtgz0HI8fP66hQ4cqMzNTy5cv13XXhUdubs3f5fLly1VYWKgzZ86EuryQamxsVMeOHfWXv/xF999/v2//E088ocrKSpWXl9tYXeg4HA6VlJRo3LhxdpcSEgUFBVq3bp22bNmitLQ0u8u5JoYPH64bbrhBS5cutbuUoFm3bp3uv/9+RUVF+fY1NTXJ4XDouuuuk9fr9TsWbiLjcYyGS0hIUEJCQqve+22W9Hq9wSwp6AI5x//85z8aOnSoMjIytGzZsrAJKtLV/V2Gu+joaGVkZKisrMwvrJSVlem+++6zsTK0hmVZKigoUElJiTZv3txmgor0zbmb/jM1UMOGDdPevXv99v3yl7/UzTffrKeeeiqsg4pEWDHKjh07tGPHDg0ePFidO3fWv/71L/3f//2fbrjhBqO7KoE4fvy4cnJy1L17d7300ks6efKk75jb7baxsuA7evSoTp8+raNHj6qpqUmVlZWSpBtvvFHXX3+9zdW1zsyZM5Wfn68BAwYoKytLb7zxho4ePRpxc47OnTunL774wvf68OHDqqysVHx8vLp3725jZcEzbdo0rV69WuvXr1dsbKxv3pHL5VJMTIzN1QXP3LlzlZeXp9TUVJ09e1bFxcXavHmzSktL7S4tqGJjY5vNN/p27mNEzEOy70YkXGzPnj3W0KFDrfj4eMvpdFo9e/a0pkyZYh07dszu0oJm2bJllqQWt0gzYcKEFs9z06ZNdpd2Vf7whz9YPXr0sKKjo63+/ftH5K2umzZtavHvbsKECXaXFjSX+ne4bNkyu0sLql/96le+79euXbtaw4YNszZu3Gh3WddEJN26zJwVAABgtPCZLAAAANokwgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGO3/ASIKlF/SKSDIAAAAAElFTkSuQmCC", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x = randn(10000)\n", - "plt[:hist](x, bins=100);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The mean is the **center** of this peak and the square root $S$ of the variance is a measure of the **width** of this peak.\n", - "\n", - "The mean of those 10000 samples is a pretty good estimate for the true mean (= 0) of the underlying normal distribution:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.018455222153139744" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mean(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The sample variance is:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9947610761289062" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum((x.-mean(x)).^2)/(length(x)-1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or (equivalently but more efficient) the built-in function `var`:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9947610761289062" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "var(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "which is a pretty good estimate for the true variance (= 1).\n", - "\n", - "If we looked at more points, we would get better estimates:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-0.0004721829416400511, 1.0003610674559988)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "xbig = randn(10^7)\n", - "mean(xbig), var(xbig)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mean and variance in linear algebra\n", - "\n", - "If we define the vector $o = (1,1,\\ldots)$ to be the vector of $n$ 1's, with $o^T o = n$, then the mean of $x$ is:\n", - "\n", - "$$\n", - "m = \\frac{o^T x}{o^T o}\n", - "$$\n", - "\n", - "which is simply the coefficient in the **projection $o\\frac{o^Tx}{o^To} = om$ of x onto the line spanned by o**. And the sample variance is\n", - "\n", - "$$\n", - "\\operatorname{Var}(x) = \\frac{\\Vert x - m o \\Vert^2}{n-1} = \\frac{\\left\\Vert \\left(I - \\frac{o o^T}{o^T o} \\right) x \\right\\Vert^2}{n-1}\n", - "$$\n", - "\n", - "is the **length² of the projection of x orthogonal to o** divided by $n-1$.\n", - "\n", - "In fact, the $n-1$ denominator is closely related to the fact that this orthogonal projection has an $n-1$ dimensional column space (the complement of the line spanned by $o$): after you subtract off the mean, there are only $n-1$ degrees of freedom left. (This is just a handwaving argument, but can be made precise; for more careful derivations of this denominator, see e.g. [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction) on Wikipedia or [this 18.06 notebook](http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring18/lectures/Sample%20Variance%20division%20by%20n-1.ipynb).)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariance and Correlation\n", - "\n", - "A key question in statistics is whether/how two sets of data are **correlated**. If you have two variables $x$ and $y$, do they tend to \"move together\"?\n", - "\n", - "An intuitive measure for this is: **when x is greater/less than its mean, is y *also* greater/less than its mean?** Translated into math, this leads to the **covariance**:\n", - "\n", - "$$\n", - "\\operatorname{Covar}(x,y) = \\frac{1}{n-1}\\sum_{k=1}^n (x_k - \\operatorname{mean}(x)) (y_k - \\operatorname{mean}(y)) = \\frac{(Px)^T (Py)}{n-1} = \\frac{x^T P y}{n-1}\n", - "$$\n", - "\n", - "where $P = I - \\frac{oo^T}{o^T o}$ is the projection operator from above that subtracts the mean from a vector (i.e. it projects vectors onto the subspace of vectors with zero mean). (In the last step we used the facts that $P^T = P$ and $P^2 = P$.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For example, here are plots of two very correlated vectors x and y of data and a third data set z that is just independent random numbrers" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGgCAYAAAB1+BcdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8HPV9//+cPbQ617bkQ8fK8iXZBoMPcDFHwByBQKA/fuGbJg0kEASY1iEhpE2aNE1JS0PTI03SfKE2cUggbRp6JAFCKEkxEM4YsMHYYMvGsr06bNmyda3Onfn+8ZnP7Mxe2l3tJfvzfDz8sGa1OzPa3ZnP6/N6Hx/NMAwDhUKhUCgUigLjKvQJKBQKhUKhUIASJQqFQqFQKIoEJUoUCoVCoVAUBUqUKBQKhUKhKAqUKFEoFAqFQlEUKFGiUCgUCoWiKFCiRKFQKBQKRVGgRIlCoVAoFIqiQIkShUKhUCgURYESJQqFQqFQKIoCJUoUCoVCoVAUBZ5Cn0AydF2ns7OTqqoqNE0r9OkoFAqFQqFIAcMwGBgYoL6+Hpcrdf+jqEVJZ2cnjY2NhT4NhUKhUCgUGXD48GECgUDKzy9qUVJVVQWIP8rv9xf4bBQKhUKhUKRCf38/jY2N1jieKkUtSmTIxu/3K1GiUCgUCsU0I93UC5XoqlAoFAqFoihQokShUCgUCkVRoESJQqFQKBSKoqCoc0oUCoVCoZiuGIbBxMQE4XC40KeSE7xeL263O6v7VKJEoVAoFIosMzY2RldXF6FQqNCnkjM0TSMQCFBZWZm1fSpRolAoFApFFtF1nQMHDuB2u6mvr6ekpOSUawBqGAY9PT0Eg0Gam5uz5pgoUaJQKBQKRRYZGxtD13UaGxspLy8v9OnkjDlz5tDe3s74+HjWRIlKdFUoFAqFIgek0159OpIL9+fUfscUCoVCoVBMG5QoUSgUCoVCURQoUaJQKBQKB8H+IFsPbCXYHyz0qShOM1Siq0KhUCgstry5hTuevAPd0HFpLjZfu5nWNa2FPi3FaYJyShQKhUIBCIdEChIA3dDZ8OQG5ZgUkGAQtm4V/58OKFGiUCgUCgDajrdZgkQSNsLs691XoDM6dTAMGBpK798DD0BTE1x2mfj/gQfS34dhpH6OPT091NbW8o1vfMN67LXXXqOkpIRnnnkmB+9KLCp8o1AoFAoAmmua0dAwiIxkbs3NkuolBTyrU4NQCKbS+FTXYeNG8S8dBgehoiK1586ZM4cf/OAHXH/99Vx55ZUsW7aMm266iT/+4z/myiuvTP+kM0A5JQqFQqEAIOAP8MmVn7S23ZqbTdduIuAPFPCsFPnkmmuu4fbbb+fGG2/kzjvvpLS0lL/927/N2/GVU6JQKBQKi/MazuORtx7Brbk58LkDNM5oLPQpnRKUlwvXIlU6OmD5cuGQSNxu2L0bGhrSO266/MM//AMrVqzgscce4/XXX6e0tDT9nWSIEiUKhUKhsBgLjwEil2Rm6cwCn82pg6alHkYBaGmBzZthwwYIh4Ug2bRJPJ5r3n//fTo7O9F1nYMHD3L22Wfn/qAmSpQoFAqFwkKKEoBjoWNU+aoKeDanN62tcNVVsG8fLFkCgTxE0cbGxrjxxhv52Mc+xrJly2htbWXnzp3Mmzcv9wdHiRKFQqFQ2IgWJQtnLSzg2SgCgfyIEcmf//mf09fXx3e/+10qKyv51a9+RWtrK08++WRejq8SXRUKhUJhYRclx4ePF/BMFPnmueee49vf/jaPPvoofr8fl8vFo48+yosvvsiDDz6Yl3NQTolCoVAoLKKdEsXpw/r16xkfH3c8Nn/+fE6ePJm3c1BOiUKhUCgsHE5JSDklivyiRIlCoVAoLJRToigkSpQoFAqFwkKJEkUhUaJEoVAoFBYq0VVRSJQoUSgUCoWFckoUhUSJEoVCoVBYjOuR6gslShT5RokShUKhUFio8I2ikChRolAoFAqL6PCNYRgFPBvF6YYSJQqFQqGwsIuSsfAYg2NpLG2rUEwRJUoUCoVCYWEXJaBCOIr8klNRcv/997N27VqqqqqYO3cu119/PXv27MnlIRUKhUIxBaJFiUp2VeSTnIqS559/no0bN/Lqq6/y61//momJCa688kqGhoZyeViFQqFImWB/kK0HthLsDxb6VIoCJUqKjGAQtm4V/58G5HRBvqefftqx/fDDDzN37lzeeOMNLr744lweWqFQKCZly5tbuOPJO9ANHZfmYvO1m2ld01ro0yooUpR4XB4m9Am1/k22MAwIhdJ7zY9+BHfdBboOLhf88z/DzTent4/yctC0lJ76yCOP8PnPf57Ozk58Pp/1+A033EBFRQWPPPJIesfOgLzmlPT19QFQXV0d9/ejo6P09/c7/ikUCkUuCPYHLUECoBs6G57ccNo7JlKU1FbWAsopyRqhEFRWpvdv40YhSED8v3Fj+vtIQwh99KMfJRwO8/jjj1uPHTt2jCeffJJPf/rT2X5H4pI3UWIYBvfccw8XXXQRK1asiPuc+++/nxkzZlj/Ghsb83V6CoXiNKPteJslSCRhI8y+3n0FOqPiQIqS+qp6QImS04mysjI+8YlP8PDDD1uP/eu//iuBQID169fn5RxyGr6x85nPfIa3336bF198MeFzvvzlL3PPPfdY2/39/UqYKBSKnNBc04xLczmEiVtzs6R6SQHPqvBIUVJXWQeo6pusUV4Og2mUV3d0wPLlEacEwO2G3buhoSG946bB7bffztq1a+no6KChoYGHH36YW265BS3FENBUyYsoueuuu3j88cd54YUXCAQCCZ/n8/kccSyFQqHIFQF/gM3Xbua2J24DQENj07WbCPgT36NOB5RTkiM0DSoqUn9+Swts3gwbNkA4LATJpk3i8RyyevVqVq5cySOPPMJVV13Fzp07eeKJJ3J6TDs5FSWGYXDXXXfxs5/9jOeee46FCxfm8nAKhUKRFq1rWtn8xmZ+1/k7bl9z+2mf5AqxokQ5JQWktRWuugr27YMlSyDJpD6b3HbbbfzTP/0THR0dXHHFFXmNWOQ0p2Tjxo38+Mc/5t/+7d+oqqqiu7ub7u5uhoeHc3lYhUKhSB3Tlfa48hbNLmqiwzfKKSkwgQCsX583QQJw44030tHRwUMPPcStt96at+NCjkXJgw8+SF9fH+vXr6eurs7699Of/jSXh1Uo8obqcTH9kYPwyMRIgc+k8BiGocI3Cvx+PzfccAOVlZVcf/31eT12zsM3CsWpiupxcWowOjEKwPCEcnAn9AnrZyt8EzqOYRh5S3RUFAddXV3ceOONec/zVGvfKBQZEOwPcvsTt6seF6cAyimJYO/mWlclwjej4VGGxlUX7tOF3t5e/v3f/51nn32WjRs35v34KoiqUGRA2/E2DJxOoOxxcbpXb0w35ECsnBKnKJlZOpNSTykjEyMcCx2jsqSygGemyBdr1qzhxIkTfPOb32Tp0qV5P74SJQpFBjTXNMc8pnpcTE9GwyJ8o5wSpyjxurzUlNXQMdDB8dBxFsxcULgTU+SN9vb2gh5fhW8UigyorazFrbmtbbfmVj0upimWUzKunBL5XpS4S9A0jdnlswGV7KrIH8opUSgyYH/vfsJGGIDzA+fz2EcfU4JkmiITXZVT4hQlgBIliryjnBKFIgN29eyyfq4oqVCCZBqjckoiRIuSmvIaQDVQU+QPJUoUigzYdTQiSkLjaS5HrigawnrYcryUUxLHKSlTTokivyhRolBkgN0pUbkI0xd7YqcSJYmdEiVKFPlCiRKFIgPsokQ5JdMXuyhR4jJxTokK3yjyhRIlCkWajIfH2XNsj7WtchGmL7IcGJRTAirRVVF4lChRKNKkrbeNcX3c2lZOyfTF7pSM6+OE9XABz6bwxIRvylT4RpFflChRKNJEJrnKWWShbH+1GODUsYsSUG5JwvBNSIVvCsXpdp2rPiUKRZrIfJK19Wv51b5fERoP5X3BsumyGGCwP0jb8Taaa5qLsmxa9iiRDE8MU1FSUaCzKTzJwjdqUb6pYRhG2q7qj976EXf96i7rOv/nq/+Zm1fenNY+yr3lKX9u7e3tLFy4MObxSy65hOeeey6t42aKEiUKRZpEixIDsdy7z5Of1TSD/UFLkEBkMcCrllxVVAP/dBBOyilxkqj6ZjQ8Smg8dFoLtqkSGg9ReX/m6wfphs7Gpzay8an0Fskb/PJgyp9bY2MjXV1d1nZ3dzdXXHEFF198cVrHnAoqfKNQpIkM35xbf671WD7zStqOt1mCRCIXA4xHIezfRMKp2Cxoe6IrqAqcaFFS4a3A5xZiW+WVnPq43W5qa2upra1l5syZ3HnnnZx//vnce++9eTsH5ZQoFGkwFh6jrbcNgFW1q3BrbsJGmNB4iFlls/JyDs01zbg0l0OYJFoMsFBuRTLhVExujnJKnESLEk3TqCmvoXOgk2OhYzTNbCrk6U1ryr3lDH55MOXnd/R3sPyB5THX+e4/3k2DvyGt42ZCa2srAwMD/PrXv8blyp9/oZwShSIN9h7fy4Q+gd/nJ+APWBd8PsuCA/4Am6/dbG1raHEXAwz2B7n9idsL4lZI4WSnGFdRjhYlp3t5d7QoAdWrJFtomkZFSUXK/1pmt7D52s3Wwp9y0c+W2S1p7SeTPKD77ruPp59+mscff5yqqqpsvxVJUaJEoUgDGbo5Y84ZaJpGmbcMyH9ZcOuaVs6pOweA21bfFtf9aDvehoHheCxZmCebSOGkIW6IiYRToYlOdFVOSWJRosI3+ad1TSvtd7ez9eattN/dnheX87/+67/4q7/6Kx577DEWL16c8+NFo0SJQpEGMsn1zDlnAhFrtBC5CFJwlHhK4v6+uabZEgWSfLoVrWtaubhJJMh9/MyPF12SK6jwTTTxRInqVVJYAv4A6xesz4ugf+edd/jUpz7Fl770Jc4880y6u7vp7u6mt7c358eWKFGiUKRBIlFSiAZqcgCNnu1LAv4AFzReYG1L+zefboXbJaznMMXZlEwlujqxRIkrTvhG9So55Xn99dcJhULcd9991NXVWf8+8pGP5O0clChRKNLgnaPvALBi7goAyjwifFOIXAQpSkbCiWf3MjGx0d+YN/vXznhYdL7tH+3P63FTRTklTpRTcnpzyy23YBhGzL989SgBJUoUipQZmRix8jHOnFv8Ton9d0PjQwXJ55Dt+PtG+vJ+7FRQia5OkuaUDCtRosg9SpQoFCmy59gedENnZulM6irrAKxE10LY/pYoCScWJfI5vcO9TOgTeTkvO8XulKhEVydJq29U+EaRB5QoUShSxJ5PIsvsit4psQmW3uH8JatJpFNSrKIkxinJg7gs5rVM4oZvylX4RpE/lChRKFJElgPLJFcoXE6JYRiRnJIks3v773qGenJ+XtFIp6RvtDjDN9EuU66dki1vbqHp201c9shlNH27iS1vbsnp8dJFlQQrCo0SJQpFirze+TqAo5tioZySCX3CaoqWLHxjd1EKMahIp2RgdCCmw2sxkOuckmAQtm4V/0+H1vtjevLmaYZhxH2dIj6n+vuVi79PiRKFIgW2vLmFZ95/BoCvP/d1a4YrnZJ8ixL7jD5Z+MbhlIQK55QYGAyNDeX9+JORy+qbLVugqQkuu0z8/51H01uzqBAkq74ZmRgpSJhyOuL1egEIhU7t92tsTHxf3G531vap1r5RKCZBznAlOpFVeQvVPM0hSpI5JeHicEpAhHCqfPltWT0Z0YIuW59jMAh33AG6qUF0Hb711Wa0uzVHl91ia70fT5RUllTidXkZ18fZeWQn6xrXFer0pg1ut5uZM2dy9OhRAMrLyzNq917M6LpOT08P5eXleDzZkxJKlCgUk5BscblCtZm3i5Jks3v7oFvInBIozmTXXDklbW0RQSLRTwZYP/ujPHfsMQBcmqvoWu/HEyU/2P4DS1xe+PCFeVvUcbpTW1sLYAmTUxGXy8X8+fOzKriUKFEoJiHZqry/6/gdkP9E10zCN4V2SopRlEgnqaqkioGxgax9js3NoGlgD7m73XDu/LMsUVKMg3u0KIlxCY2IS1hMYqoY0TSNuro65s6dy/j4+OQvmIaUlJRkfQVhJUoUikkI+AN87eKvce/z9wLOdu2FSnTNJHxTyJwSKM4GanIQnlE6g4Gxgaw5JYEALF0K770ntjUNNm2C/eWR78mJkRNZOVY2iRYlyVxCJUpSw+12ZzXn4lRHJboqskqmPRiKuXcDwNXNVwMwr2Keo117oUqCUw3fKKckOXIQ9vv8QPbCN52dsGdPZPtDH4LWVqd43Xt8b1aOlU2iRYl0Ce0UWx5MMor9vqKIRYkSRdbItAdDsfdugMhgUl1W7ZghFoVTkiB8YxiGM6ekwE5JMYoS6STN8M0Asicuf/pTEbopLRXbHR3if/v3pK23LSvHyibRoiTgD7D52s3WatPFmAeTiOlwX1HEokTJaUA+ZguZ9mCYDr0bIFKVIRNbJYVqM28XJeP6eNweIBP6hKPSI99OSVgPO45fjA3U7OEbyIJTYjYm+c0Pxfd3wwbx8L59QqQUu1MiRaQ90bV1TSvXL7segK9c9JWiy4OJx3S5ryhiUaLkFCdfs4VksedcvC7fyMFEOiOSYnBKILaKJN5zeoZ68trMyR66gcI4JZMJcukkWU7JVMSlrTHJ4283cZu2hT/9U3C5IBSCri7n96RzoJPBscHMj5cD4lXfAMwpnwOA1+3N+zllwnS5ryhiUaLkFCafs4VMY8/NNc2WNZzO6/KNtPVlDomkUDkl0ceLN8OPToAdDY8yNJ6/Bmb20A3kX5SkIsgtp8Q3RackqjGJG51/MTbQYARZsEA8pa0tVrwW2yCZSJQUco2nTJgu9xVFLEqUnMLkc7YgY88SDS2l2HPAH+DCxgutbXtlSzGRKHyTq5v1ZDP86MEzXl6JfI7H5aHUI5Ib8tmrJNopyWf1TaqCPDp8k7G4jNOYxE0Y9u2juVls79sX+z1pO15ceSWJRElFSQVAUXbljUfAH+DOc++0tqdTLszpjhIlpzD5zpxvXdNK04wmAM6pOyfl2LM91+C5W54ryph1ovBNLpqnpTLDjxElccqCpVAp9ZRa9ns+k11jnJKx/DklqQry6ETXjJ0SqTxsGG43LFnCEvNya2vDcqrkejLFlldyqjglgGOy84V1XyjK+4oiFiVKTmEC/gBfuvBL1nY+ZgsT+gQAx4ZTS6oMjYfY1bPL2p5ZOjMn5zVVEoVvst1mPtUZfipOiRxwfW5fQVZ6LWROSaqCPLokOOPPsa4OfD5r0wC0TZsgELD0ij18s6p2lXisyCpwEjolXtMpyWP4b6rYXa99J4orTKZIjBIlpzj22cLPP/7znM8W5GDZOdCZUlLl9q7tjhltvqtYUsUK3yTJKclGEmmqM/xoURJvhi8f83l8zKkwnZJ8hm/ChQvfRIcTEwlyK9F1qtU3O3fC6CghShnHjQY80bYMIG74ZuW8lcD0cUqs8M00EiV2V+eNrjcKeCaKdFCiZLpjXxs9Dr3DvdbPPrcv7nMy3HVc5E19LDzG8eHjkz5/W+c2x3a+E0ZTZbLqG8hO461UZ/jphm9ON6cERDhx8azFANx7yb1xBXl0outoeDRuefVknHjyJQBe5AM8zK0AuL/5DYJBrPCNXZRMN6dkOoZv7BOcQ32HCrL2kyJ9lCiZzkSvjb4lNvfALkrSmammsOu42AfLjv6OSZ8fI0qK1SmZSN6nBLJzww74A3z8zI9b24kShtNJdPW5fcWRU1LA5mky0Tea6ERXSL6WUCLGtkpRchF/xxcJ4+IanqL76R0sXCjWvQmFYGjM6ZQcCx3jxHBxtJs3DMMSkgnDN9Mk0RViJzjKLZkeKFEyXYm3NvqGDTG2hkOUpNi8KsVdxzChTxA2wtZ2x8DkouT1ztcBrPK9YnVKpFiKdko8Lg9el+jdkK1zHwlHBMefXfhncWf4KTkl4eJySgrRPE2eQyIXKzrRNdlzkzFzlxAlL3Eh+1nCvyOE5Rm/uB+vF7Ms2GB4QoiSuRVzqa+qB4rHLbF/XqeCUxJ9rm90KlEyHVCipEhIO1QSb230sChBtJPQKUlywBR3HUP0zXwyp+TkyEkrpn7WvLOA4nVKQuZgEp1TAtm9YeuGznPtz1nbiZpVpZJTImf8Pk9hnRL5ng2ODRLWw8lekrNzSCQYpVNS7i3HrbmTPjchwSC+I4eYwM1rnAfA37v+TOz3ycfgRz9iXSAInshnVO4tp7laJJsUS16JvQHfqZBTIu8lVSVVALze9XohT0eRIkqUFAEZhUrMtdGDfti6AIJ+hEe8xJl70DsSESUnR05aBzTMAxpxDhinujHermOItr0nc0rkzGXBzAVWeKLYnZLo8I39sWwIqrePvO0QkomETrrhm0I6JTXlNdZj+e5gKgfahE6J+b6VuEuszzHec5P1jQn9Wrgkb7GSBx+pZOtWePLgWbBShGi45RYeeaGJT3gjibdl3jJaalqA4ulVklSUTOPwzQWNFwDKKZkuKFFSYDINlRAIsOUjC2i6Gy67BZruhi3fukmsmW4jJnwTDGLcfgeaeUBN19HvcB4wEIB58yL7cLvFsuuBSSqJ03VKZOhmbf3aSBVLsTolCRJd7Y9lwynZemCrYzuRSEs3fFPI6pvKkkprkMt3CEcKo0TfKzkQ+zw+K+8k+rmT9Y3Z87AQJbtnXciNN8L69RAgKCpyTFyGzn3eewAx4HtcnohTEtyRfkZ5DpDvhUtz4Xa5Hb+bzuEbKUoO9x/m6NDRQp6SIgWUKCkwmYZKgv1B7lhxAN38BHUXbDj545iZXLQo6Xm5DS2qusClh+l5JXLA4WHosY1dL78sll2fjBhRMolTIpNc19avjbgNxeqUJOhTYn8sG+e+tV2IEulspOqUTFYSXEinxOvyWjkb+U52lcLInqcjCethKweqxF1ifY7293KyvjHhMHhfexGAuhsuxCXvqHEu7DGv2JYDvOWUvPh4+hnlOSBR5Q04wzf5XD9pKsjrcV7FPJbWLAWUWzIdUKKkwDQ3E7mRmSQKldjTQNqO7UV3Lu0Qt59FdE5JG81E31ImcLOPyAHfe895Px2LXestLpmKknPrzy16pyRZ+CZbs8gJfYLnDz4PwNVLrk66z5Sap8Xp6Hpi5ERMVUyukMfxur1Wc7K8i5Ikia72cIXPbXNKbOJysr4xT/5kgOVjbwFw4RcjPYHiXdh9JWJbfl+ax0Wuw94a0WwtdZs0N8j3QyZu25HnrBt63MUfE5GPFcoTIa+dMm8Z59SfA6gKnOmAEiUFJhCAb37T+Vi8UEl03smu/6zCFeWwuDVXTD8Luyg5OXKShrOq0W0LVU3g5o+0TTSeHzngO+8493vwYGp/S/SNv3OgM+Fzjw4d5VDfITQ0zqk/p2AL26VKsvBNtnJKtndtp3+0nxm+GZblnLIoSRK+8bl9VJdVWxVO9u9ELrE7JVKU5LOBmmEYVofheJ9NdA5FvJyS5ppmXNELuyGus2AQnvjqa7jROemfT1mz7aINBGDzZkuYGMB93i+IY2niO7To6DiaAQM+OFphvi4VmzQRmTQWspHUKfFWWD+nmuyarxXKE2GvmDu37lxAiZLpgBIlRcAll0R+njs3NlQSL+/k8S/389nXIs9x6bCp+mZHPwvd0CPJrYjwTejFN3GbXkkPs1mktbPuoVaHCJqqKKkuqwZEqCBRzweZT7J09lL8Pn9Wk0VzQbLwTbacEhm6uWTBJVbFwGQ5JXKwnyzR1e1yW59Lvipw7E6J7AOST6dEChKYfBVlr9sbN6ck0A+bHwfNtBc1AzY9YfDbTWJy0HBQ5JN0Lba5JJLWVti/Hyoq0IDjteIic4XF96V06Zk0mZfnXpkLbNqkaeuLTBsL2UgmSrxur+WgpPI9z+cK5YmwX7PSKZH3HUXxokRJEdDdHfn56FHojZrIxss7adbf4xKbWPivn0Lre85ZfP9ov8N67hvp48gvXrW2Z3KSP/tufYwIkqJEJrtaomSSO6W88ddX1VvdYxO5Jds6IqEbyG5eRi5I1KcEIueeLVFy6YJLJxU68r2WawUlKwmWg61Mds1XXkk8pySfosTedyPe98oernA99zxlYXE7dLyXbW20vmmw7rDYvOAQtL5h8NCX9qHrcCFClDyw48L4l8WCBXDVVQCcW25ee2Om6xAI0IwQim1SlGzaxJb/CaSnLzLOlneSTJRA5LufSgVOPlcoT4Q9fLO6djUaGsH+oEp2LXKUKCkCurqc27t2Obfj5Z0s4z1CttCvBrBtm0M3RNv0J0dO4n0zIkq8THD03dhW8FKUXHON+P/gQVKaicmbeZmnjAZ/A5A4r0T2DFhbv1a8psgTXe03uGisRfmmcO7j4XF+e/C3AFy28LKURYm9PXqi5/g8QiDKZNd8VeDEyynJZ/WNPXcmWU5Jycg4XHYZpS+Ka8PxOZoX35hHbI56RChmn7EQF2HWIV7zgnFR4qiLKUoWhEXoIDxiClvDoKVLnMPeGqC8nOAHP52+vsg0Wz6KyURJOr1K8r1CeTzsE4kqXxVLZ6tk1+mAEiVFQLQoiQ6fBAKwcWNkW9NgKXsY9kQeO1oB4Td3sGT+mKUbHv53IUo8LvHE/tF+mrpfcew7uM158P5+OHRI/CxFyci+1GZi8sZf6imlocoUJXHKgg3DsJwSS5TkMdE1k+S7XIdvtnVuY2h8iJqyGlbMXTHpPuX5yLBIslWCLaekvHBOSSGqb+w5I/G+V6MdwgL0mVGeUvP/kR7bNREI8NtPbqbfXDaqr1RMAG7n+5zFTvwM0Iefd10rEvfx+eAHAagIiX4ko4OmKNm+neaDom9L2xwXhEIEn9+fvr5IJ1s+Cak6Jal8zwP+AH95yV9GTkdz53yF8miir9lz6lQIZzqgREkRIMM3brM1QLQoAagWLi9XXimqY872vsewzSk5WFGGe2KMFcbbgNAN3/gnIUqaZjQBwj6d6e1kAjejDYsAOL6r23ETlC5NQ0Ok91Pp4dRmYg5RksQp2daxjSNDR3DhYmWtOEi+nJJMku/Gw+NWfkKy8M1UBJXsT7J+wXpcmmvSHJtUnBKro6s7yikpQE5JocM3cZ2SA/sBKDGbzJYcQOPxAAAgAElEQVSZTx/pjojVYBDWP9rKcZ8Q9j0+MWD/Bffxj4jE1R2s4sHN7sR9fBYuhOZmRjwiMWW43/wO/fd/02IalXvrxGfUPLgdLaqqblJ9EQjAV7/qfCyVxkJRTOqUpNlA7dqWa62fn77p6ZyvUB5NdHK6FCUq2bW4yakoeeGFF7juuuuor69H0zR+/vOf5/Jw0wr7bF06JeeJDtUx4RuAN8zr6NproaV+kNrxw47wzW5zFryWyAJ3uk+IkoA/YLXQ7vNBe9VZeJeL1VP9oS7274/sRwqiFSugsdF8bKwZI4WZmD1ckMgp2fLmFtZtWSfOD52f7PwJkB+nJNPkO7tQylVJ8K/2/QqAVfNWpbTPVHJKZG+OaKckb+GbeNU3BQrfxBO7owGRNCVFiXRKhmdVEQzCk0+KXFVdh2HzSX2lBt/hswBczrMAXKz9llYmEbdXXWVdr4MnyoXG/9nPaDYjrHuqRjnkh5pD27nuOudLH3wwBX0xd65z+2Mfm+QFsaQavkn1e25//xMtiJhLosv4Zf7aS4dfKkiJsiI1cipKhoaGWLlyJd/73vdyeZhpR/Rs/W23uKFdcYX4/TvvQHR/otdNx/Gcc4C9Yq2MY57IrH1/hajWsIsSrVzc8WrKayyb/2Qp9C9fh6uuFoBaui3BI48NQpSUlkJtLXQQ4MhNf+I8oTgzMbtTIhcbszslUhQYtk4pUhTkwynJNPlO3tw0NMt1sDPVc/+X1/+Flw6LhMm/fP4v2fLmlqzklNjXvoGIU3JsOE/hG3v1TQHCN5M6JTWzAPBJp8QUJS/v9TF/Plx3HTzzDOCaYLhEfGcNzzjf8fyRo9ePZhiTJ35ceaUlSsIj5Rz97R7YvZtnF4tb8Lims/Bu2NLxBPX1zpcuXZrCH/vSS85t+0wjRVJOdE2xJNgePsv3SsgT+oT1+csJz9tHhYt8LHSsICXKitTIqSi5+uqrue+++/jIRz6Sy8NMK4L9QW5/4nbHbP3Aig3gD3LZZSI0fPw4HDkSeU1npwjxuFywahUifgMEvdXWc7oqhL1sFyXNZwtRUl1abc2o+0qh8oProK4OgDq6EooSELkpAF1li5x/yA03xPxt9hwGyymxiZJkoiAfTkmmyXf2JFct2ltnak5JsD/Ixl9GEoakeyNLuYcnhmM6aBqGERElSXJK7CXBQN5bzRe8+sbulCTpU2I5JQuEe/j4U8POSUGJ85zv+/xuYr4FkyV+XHopQz7x3ZsxPsbQj39G0A9/dE3ketBdsGHhLt7vEaU+FWaRzo9/nHi3Fi+/bJ6rKSgy6HWS7fCNQ5SM5FeU2D/vcm85wf4gn/3VZ63HClGirEiNosopGR0dpb+/3/HvVKPteJvDKQDAFYbqfSxcGImI2PNKpEtyxhlQXg7s2QOAuymy3PrJCnEDXuHazd98WSTPdZi1xdVl1fh00z73wYI/OM8hSl635X0lEiXGu+85z/nVV4nGckrckZwSe0lwMlGQD6ck4A+w+drIomguzZVS8l2yJFf745mce9vxNnRihVpnf+R9i57l22/2SZ2SqETXfLeat5ySAjVPm8wpsZwk0yEpGzOvS4/zuT6fs4R07c1z0k8srawk1CjCRc3jHXif+G/aqontyuyCvj7RgEiW6v/Hf8Do/iTl+B0dokTO5YKrRSfgXIiSdMV3IZ0S+7VY6iktihJlRWoUlSi5//77mTFjhvWvUSY1nEI0zWyKfVB3Q+8S5s2DM88UD9lFiXQyzj3XfMB0SkoXVlrPqV50Ehoa0HSdP738TebOhSE9IkpcJ0ROSXd5OSUrWkRcBhG+efNNETc/elT80zRYvtw8X/N0yw6+K34oNWPD0XYxiatv5Ew/WUZ+vqpv/vCsP7R+/trFX0sp+S5Zi3mYmlMSbwbp1tycMfcMazt6v/YBNmlOSVRJsJVTkq9EV90WvilA8zS7UxI2wjHt9aOdEvdJU9h5nN/BWWWHHdt9s8pEt1aZmZ7iipWhgLjm1o2/xfwj21jcC1rULditQ+M+8Xl/7GMi4fwjJ7dQ0pykHF9eiytXwurV4udcOiUphm/sotDexDEfyGum1FOKpmlFUaKsSI2iEiVf/vKX6evrs/4dPnx48hdNM/b3OmO9Ls0NT2yi2hPA54s4FPZkV0c+CViiJOSPJI/1jvRgrBWqxbtjG5/+NFAWESUlR8V08HB9k5hRmU5JvdZFf78IQctjLloUsY6lKKk5ajolH/2o+H8SUSJzSkbDo45+KfLxVfNW0X53uyUK8lV9Yw9dJBIZ0SRrMW/fTyaC6sHXHwSwWsBLobZg5gJrcEgmSqp8IpdosrVvwOmU5GNRtXhOSaFKgiHyvslePp1HxfsjRcl4p/h95awRh964605n2XzfSJ+wMdrbxY7a21NasbJ3pgi3LhsTIc2D/RfBE5utz150i4Xl5n2voQHuvDbIZu6ILKIZrxxfXosXXhhxa3IhStJMdC2G8I28ZqVLar3XaHkvUVakRlGJEp/Ph9/vd/w71Xh8z+PWz8tmL+PH57TD9lZWzRZ3yrV14mYjnRLDiHJKdN1KdB2uiCRdjuvj9J17ltjYto3bb8cSJeMD1fh7REhnqNnMorOJEhDCJzp0A0KUlDPE3GGzrettt4n/X3sNxp0zT7sosa9Ma88reTUowj5XN1/tuCHkyymxuwSJWuBHM1n4JlOn5MVDL/Kb93+Dx+XhpVtfYuvNWx1CLdF+7e+zFByTrX0DkZySsfAYA2MDaZ1rJtidkoJU3+jO7+fwxLCjB+Af3yUGTZnoOtP87l1+1bBDb6w+q9uxH2vWHwjA+vUpl972IAb7cvO0nuVSjDdauWvJdwH4Pdd8WrfD2eHtgDAzP35OG24mKceX+SQXXBARJW1tKZ2TnWx2dLXvDwogSuJcs61rWvnmFWKhsUsWXJL3EuVcU8jFD7NJUYmSUx3DMHh8b0SUlHpKmegNcCtb+PVecae89jNN3MoWqwKno0MkvbrdZt+QQ4dgZARKShgucQake84WiXo8/zyLfUEqZgtR8p+PVjN/SDREMJaZ/azN8E2FPkgFg7zxRmJR0oIQQcyeDRddBDNnQigEb73lOL59sATilgVLUbIusM7x2kI4JfEG8ngkazEPmbeZ//rzXwfg06s+zfmN57N+wfr4Qi3qPYkrSpIluprhm3JvubXPfOSV2J0SmfsSGg851qTJx/ElBw6POHoA4naGb6rNz29obMShN/r7nDklmQorV6n5PTJP66v8DbdpW7h02RoAukvEZ7ia7VRXg88Hiz/U7FhAU+zIFREfQ0OwXYgYh1PS0SGu0TTIevgmXPjwTbQbesYcERbN92rVuabQix9mk5yKksHBQXbs2MGOHTsAOHDgADt27OCQbBl6mvHWkbc41Bf528fCYwy8K+xZlzkb0nSdTWxgxmCQQ4ciLsmZZ0JZGVbohuZmQlGD1dE2UyR0d0NTEz6fEAOv/9LNglFxUxicZ8ZlqqrMrNlIWXA8UTJ/PixH5JOEm5eJG+IFYgXb6BBOjCiJaqDWN9LH7p7dAJzXcJ7jtXKwnNAncjpo2de9SNUpSdZiHjJrM//SoZcsl+QrH/hK0v0mc0qkC5LK2jeQ3wqceE4JwMBo7l0a+/El7+0fdvYAdDsTXcvN/0/0Oz/H/gHne5Vpsm54QlyDUpS40dmkbWBtpagVDo4dY8IFi3mf5rniGFpjgIEZUU7MWWdF3Jnf/U44Jw0NBLVGtr5VjT5D5Bnx/vtpnd8pleiaYCIxr1IkGx8ZPBLzmulKMSx+mE1yKkpef/11Vq9ezWoz+eqee+5h9erVfO1rX8vlYYsPM4j9+DZR2zevQlwYoxOjGHtj7VkPYZawj127EueTsGxZTKij5/vfsX42dJ0BxGxg9fBBZppj1pv7zYFY06wQjkx2jSdKZsyA1T4hSvobzOzXC80VUScRJfWVZq8S0ynZ1rkNA4OFMxdaNweJfcDPZQjHEb5J1SnJcvgm2B/kc09/DoBbVt7CgpkL0tpvdJgMJln7xtZbJZ8VOHanxOv2Wu9fvkI40U5JXSBKuEU5JbJ5msvnfF7/kHMNqUzPPzQkXlduOy2XHqaucwCvy0vYCLN3vrhmLqwQEzl27mRG32HG8LCRfwZAf3snyHw7M3Tzft2FNC3QuOxyjTf6MssryebaN/b9QXGEbwBqK4VDfGToSEw1znTlVKssyqkoWb9+PYZhxPz74Q9/mMvDFhe2IPbjT/4jAB9ZLvq2jIXH2D3eTDjqYwhrbvaxhHfeSVx5w7JlMQmYPWWR5MWhEhg3k/U+NPw7Zpj32dfe6ovkyJkhnCavSHbt7wePB1panH/CylJxzO6Zy8QDdlFiS5iczClJFLqxvwamvtpuMhzhmzSdkmwkukqbVba6Xly9OOFz03FKUln7BvJbgTOmm6vwuoUTkO9k12inxFs+bCWwAmhe0ymJap5muKNEybAz9JCpUxJyiwPZRQluN67mFubPmA/AjvkLARHCARh44FEAnuQ6HuAzbGU9LkOn/1vfF683JwbfeeNCywXahxAlJ1/PsijxptnR1fb+59spSXTNzq0QnW8n9Im8n1OuaK5pthJ4JdO5skjllEyRYJL2AfYlxYN+eKNeZNh/ZPYHADFo7OoL8B0+53jZr/6/TXQQYOfOOE6J2aOEZcus2YBc2+ZoZeSL2WtOEEom4Evj32OGOWbN8+2NTKBMp+Sc+kh1wdKlkf5L1mO6cEre95lOydq1Qr10dtL16kHr74/OYZA5JbJXSTJR4tJc1gCby7ySjJySLJUER9usAF999qsJbVYrLDQ+eU5J0j4cnohTIsM3+XZKoACiJMop2bZ9hHAY6uvh2WfhC38aqb4Z91dH2sxHvd/9I+J8XYa4vjJ1SoZ0GS4St13dFSkllq0Cts8Wg+ayke0QDlPyH/8KwKN8EoB/4U6xj0cfgrExeEUssPmScYF1HClKQm9nV5RMJdE13zklia7ZEncJ1WWiCqp7sDvmddORgD/A1UuutrZT7b9UrChRMgXsmfzx2gfYlxR/0nQf1gWh8bi4WY6Fx+jqgvexdUstKUH/5M0A/OY30NMjxv+zzzZ/Hyd8I29oPb9/udU7obdc3ECrh8WHLJ2S2aVtLK0wB0HTKTmzphv8QViwlbqlUQPkxAT1QyKTf1fYdErKy2GNSM774oUvWX9/ezCxU2IYRlJRAokH4WxizymJLhlNRKrN00bDo0kt4XRtVnlDzWr4psxclC/POSUQ6T6brwZq0U7Jq2+Iz/Hqq+HSS6HMJQbKkjB4V62ILMgXJfD6x0UOTJ1rahVE8nN86JrnWM9W/mFju1VKLCcWOyvENdDUux2efRbf8U6OU81TiCW7f8b/zxHm4jveBX/3d3DyJHpZOTu1ldZxpCipPlE84Zuh8aEYkZhLkl2zMnx+ZOjUySuxGyVP35j/xQ+ziRIlGWIzQYD47QNobkYu+fm4uX7F7+/VKFkobhpj4TG6u23VLQBjY6wqE26IXD3YSnI9eTLyYEuLdZOznJIFc6zeCb0/FwvdVZvju8wp6S+FuiHzZmU6Jc/OeR7uboJbLuM3K5q45bs2dXXgAF59jGFKeetkpPHbwNkihHO+8ZL197cdSFx9s//Efo4PH8fn9rGqdlXc9zQfFTiZOCWThW/sjycTVPHs1GQ261TCN7qhW4NyvETX08EpiRadb7wl3rcPflBsj54UFWk+XznU1kackqjvX/+EeP8bS4Sgy0RUGYZhfY7VzYt5nvW8czIyk5XX8B6vCPHUHH0XHnoIgKPrP0bY/JzHKeFns8wB56//GgDXuvM4Y2VkdU4pSkoP58YpyWRBPshvXkmya1bmlZwqTgnA9q7t1s9S/E9XlCjJEJsJYhGz/EUgQMeyyxgsgf8VoWIaln4dX2ABIAaS/v4oUQIEju0QIsTEyieRoZv6evD7Y8I3PaEeq3dCb6VwTKpNMSLDN30+ImWDdXUE/fD3570MLvOPcen86PgGtu0x1dW7InSzh6XsOdJp1cEfDAhRciG2ZFe3M4dBOiU9oR6eb38egDV1axLe9PLRqySTnBLLCk7klNiTdJMIqr3HnZ+zvaNtPNJNdLU3RLP/bfbwjUx0zUdOSbRTUujwzaHOYTQNLr9cbI/1iwTWkgo/VFdbOSUxTokhPtPGMjGYZeKUjOvjhA0hOBYGxOdqL0KUbucR7zGOUYMrPCH6ywPL7/8U7e3w2GOi+O2bJ27H0DQRvgFONKxwVOdLUcKhQzCa2ncccrv2DeQ3hJPsmj3VKnCODB6hazASgk/3/lls/U2UKMkQmwliEb38RTAI7e8O85MVMOaB2hNebnn4qxw7Ii76sBEGLcxSzRyszhLNz1w73+KMSJdxFsnojmyStGABYT1sXfQySc4+4MouqtUtq8DttsI3A6UaeoPZQK22lrZqMKK/Ba4wL71rqiszXPTA6hLe+ECkDv6XZ4pmamexEz/mTdrrdEpqymqsmfzPXxKJeYlCN1C8Tok8n0ROiT0fJtEs0jAMvrr1q4DoSxLdKC0e5Z74osRuTdtdEPsgYP/bCpXoGu2UyF4leau+iQrf4Blh9WrRbgdgdFAMkr7KGVCdJKcE8V42muIxE6fE/hkuaYojSsyJxYjvINtZHfnFggVw3nkEAqKZ8g03QDsL6Zh5pvWUGT/+Hp82tnDddbB4MRxlLhNllSIJ/cCBlM8xlx1dIb/JrtY1EicPTIZvThWn5K0j8ftFpcKD2x4suv4mSpRkSCAAfxhZRgVNi13+Yt+747y9+ndsuE5sH5k5jn72FoLtkZmr1z1Ik9EuNv7gD8T/O3bgizyFv/gL+O0tW+ALXxAPvPIKw1v+xfq9nGXZ8yUsUbJsFbS3M+Px/wHAwIjMVOvqaO6NmCQWupsLl5vq6t13Cfrh+9e9bj1RN3S+suuLvOifjwuDDWyigSAzapyiRNM06hFt0J85auaT7E18Q8u1UzI8Pszg2KC1na0+JfbfJTr3p9qe4tXgq5R5yvjG5d+IaZSWdJ9JmqfZ80XsQsT+t0lRAHkuCS4ypwTPsBW6ARgbFOdRUjVTOCW2nBK769TvEmqlcdYCIDNRJb9Dbs3NoiazL0lQuKuAVRZu+A8xZl+j5eBB+MEPrM277oIGgtSfiKxD4cJgExv4yqeC5tpZGidkSDCNsuCUE10zyCmB4gvfnCo5JTu6dzi2U53UBfuDbHxqY9H1N1GiZAo0NER+vuaa2OUvZgw/y2eum8BM2hf/X3cn/vqIeFjofg8XBvj9cOWVAITf3MErL0duinV6kAt+dEek/NYwGP5CZBluyykJ9Vg3U0uUlFZDIEDpZVdaA5g106urI9APn3/FdtK6i5trNrF2qTlgvvee6aY410rRCbOjWsyc/o4vcZAm9FFx07Fm5sEg9QfE4DfmEQ+dd+9DCUqVcu+URLsD2epTAsnj7YZh8Bdb/wKAz/zeZ6yb4mSkE74BpxCxJ7lqNktP5pR0DXTl/OZT6JySeE7JFVdENsdCIoG1xF/tcEoMjMiAquv0e4RyaJwjBvqpOCXl3nLq6zXcbrFKwxFzXAz4A2LBOM8oqyueibzQMBzJahddBB9a3CbuGfY/jTDn1eyzegwd8mVflMjwzYQ+kVLSavT7n1enJFn45hRzSmJESYqTungr1hdDfxMlSqZAe3v8nyUnDz6DHic0MlZ20Npc5DaraVpaRNcylwv38R7mEblgmoltsBYyXYtST6mj9l7GbS1RYpa/ga36Qc70Zs8Gl4tVtgnDdy79ET/8rKmuDAPefZfmXoj5Q3Q3v9/7rrXpRkczBqxzAqCtjQbb+FM7APN79YQ3ylw7JdEVJ9nqUwLJW81//83vs717O+Xecr544RdTPd2URIlLc+FxCcXncEri9CgBeHrf04CY7ebaro2pvsl3+CZq4PSUjnDRRZHt0WHhmvlmzYaaGkuUgM0C7++n39R9jXUiW300PJryd0di/w55PJEJjQzheN1eakpEWPVwdJ6iLVlN0+DyDbG9jXSXG615ibXK+LtjuXNKIDW3pJA5JaGJ088pSbelQrH2N1GiZArYhcjevTAR1R29eVcXWtRirG40WmparNnjAo+ZvNrSIkptl4ob3xpth1Wm+56/MuYmNOwT2zKvoKpEhEmkGxBXlJiDgnVzcLth3jw6qiL7bZRt6EFM4/r6CAy6WNH2f5GiWsPF0ic+z/yoCe+I6YZYA2FzMw22juLrgqBFJ97YKFqnZJI+JZC41fxDbzzEHU/eYe3nF+/9IuXzTUWU2P+3x5Kje8aAsGu/8MwXrO1c27XF5pQ0Lhqm1KbRxkbFwFoyazZUV1MSxrpe5eeo9x5nwHwLG2ZHSvfTFVbRwna+MDcdeSXVLhGGPTAzebLa9Z8JcFfJZiYQyewTuHnxJhE7lqLktePZFyUl7hLcmjhmKsmuhQzfJLtmZaLrqeCUhMZD7DkuxpA1daJNQ6o5JQF/gN9f+vvW9mSJ9/lCiZIpYBcl4+Owf7/z97WvvkOF7bp06/B/ey4i4A9YF/58t3nTkG1UV4p+A6tv/b5Vptt99zr+6cPLbDtyM3yvSJqUF510S2ReSTxRMrNUrInhsJ/r6ui0iRLHAGhW3rBwIeeV3wlhcc5LD/wjg9s/h26LfetaJEQzPGDe+TXN4ZQsP0Zs4o2NbDglyTLJ5XtTWVIJZG+VYIgvIIL9QTY8ucHaNjDSEgGpLMgHxC0LjrfuTb7bURdbTknjQtvN2jAYHRPvq69mHlRXoxFpNS/f46FjnVb4dVbZLEv8pxvCkYN4MlFSGRai5LEzb7D6DeF2x1wzx4/Dv4y3soB21rOVBbRz2b+2EgyKOY3LBW8NN4snZ1GUaJqWVlmw/Pzl/gqS6BrnmpVOSc9Qz7RvNf/O0XfQDZ055XOs7tDp3D9basS48wdn/MGkiff5QomSDAmFRGMzEBnvALt3254wNMTzg7sY9AHDfi579Cu0fxs+/pyIT8sZbKPbVDKmQ8KqVQT9cH/gvx1lun92zm6CfuDee6G9ndCHRf6JvElEL7QmZyVJwzcAtbV0RNZKiy9Kli2jcX4YPOKmteddHx0E6Llvs1WCJF0SgK//RakIgT/1FHtrIo9/8yLYsjIc/VZaJBqEU2WylTLle9PobwSy16cE4ie6TjVmm6pTEq+BmvzZngjbXNMs8hZs5NKujam+yXPztOiZem3A9r06eZIxTVxfJbOFKAFiGqj194glEty6+H5KYZ9uKCIVp6QkJETJvkVzrX5DtLfHJKu1tZkriBPgedbTQcCK8JSWispAqyy4vV3MmFJgMlEC6TVQk/uTE6a8hm+SXLOyAi1shDkeOp63c8oFMnSzum51RvdPmfi/fM7ygjskEiVKMuSgmRayvCrIrQu30kDQGsMB2L6d/1pmrvy75/9wRsPHCPSD7/3dYBjWhV/vNkv2bE5JW7VwHuyEXbBvjhvuuQcCgZiZQHSpZ7LwTcpOieweu3w5tfMjjxvuEGvXwryvtML/iKqe0bJIhce//shHUxO8+oP/5PtrIrvTNdjwyz9K6BSks4ZMNKmslCnfG3nxpd2nJIXwjf39m2rMNt3wTbxEV7tTEvAH2HztZuucNLSc2rUFd0pk+Ma0Oipm2pySjg7GTDOipKzSEiXRZcH9J0T/B3/Yg6Zp8YV9CsjPUA7qUpQcPGh70skFACLnzOw3FM9VbG4Wbogdtxsq6oRLuHBVkC7qGPeWiXwUx0ESk5IoSWP9G7k/mVhaLOEbr9trVaFN9xCOFCWr5q3KyGmWokQ6gMWAEiUZ0t4Ot7KFnQNNfOU3l3GQJuY8HpmZh3/3Gv9tLhXTNPhRGi5tIYyL0uGT0NVlXfhVbvNCbTbt1lWraO4lNhdFhyXLLoAq8eWJngmkEr6JySkB4ZRMFr5Zvpy5DbbHS4b4xCfMn6+4ApYsYUQOALoLdA8efZTe7hdi8mPD6Inbqk/BKUklNCGdEkuUZKlPCcQ/94A/YMV5If2YbcpOiemG2GPJ8da9AWhd08qmazcBcMacM3Jq1xY6p+Ttd8zv5Kj4gu/aY/teBYOMmqLE5/aJBZ8qK2MaqPWfEMmQfj0qWTdNtyf6em0ymyPbnZLRo+LBQU9yEREIwObNzgjPTd/awrqfCpfwf5Y1weofcKQytbwSuX5XaHRyUZLO+jfy85f3pryKkklCrqdKq3lLlNSuSroOViIGxkTSnwxpFwNKlGTIsR1BNnOHVRXjRufW1yKley++8xRHKqF0uIx1cy9n1bpS9hOJ81h5AB4Iz6uzxAa1tQRK53L7G5FjuQ3Y9AQErvqo9Vj0TMBySoZ6GJkYibS0jpdTYpvl6bXz6JrMKVm2jNm1tse9IT72MfNnTYOPfCQSvpkoBTQu4XnO7h2J6YHiNqBidEncRQyn4pSkEpo4GhKCLV2nxOpTkkFJsPyb7r3k3rRjtqksyAfxwzfx1r2RXLrwUgD29e5jQp+I+X22KGT1TTAIW18wcxrGxCD7u+0jke9cMBhxSuQgbG+gZg5q/QNCyPo18V5P1SlJFr4ZCApRckI/6OiTEo/W1kiE55VdQR49GXEJDU2H6zbwSqVZ4hMlSuyLiNrX79rfntvwTT5zSiYLuZ4KrebDepi3j7wNCFGSSaGA5ZT4lFMy7Rl+O7ZM100Yfa+4AfzHsFjed9Z7H2DV2V7WrIFdiNT4kTd34zLEhT/mBtfSFufOV63igsPix1J3Ke3fcdG6Hbj22sjxo2YCllMSOmpd/G7Nbc1OIX5M/9jcSsZty7lbg+rAQEQ1VFXxvy/YRckQTz1lO98YUQIf5pcE+uGfj1xkZey7dXjgqRI+sHxu3EUMp+KUBPwBHrjmAWs7XmgiOqdkXB9PKdEtlfBNIuu0a0DY/5cvujztMEkqC/JBgkTXBCXBAItmLaLcW85oeDSnPQkSOSUjEyMpL4aYKW1t0OwSDR7aN64AACAASURBVMYWj4peOQ3utsj4HAwyan5nLTcpqoEaQP+AeK3fJT6LbDklUpT09sKg2c/vxAHxYCg8kFL+hYzwDJbEuoS4wjxvnqtdlNhFSGMj3HabbbkMt9m2/tjkTkkm4ZuCtJlPcM2eCq3m95/Yz9D4EGWeMlpqWjK6fw6MKqekaJhqv/8dQ7G9AiZwEyxdQrjnKP9llp307W7lrLNg7lwIVone8b0v7bYqWcbcoMURJfKGORoepb5PF6vyLVxoPSX6JmdPdJWhm1llsxyNs+LNVDtnOHMerJvNN79pPWasWsWO+38SeVLJkHPxwbVrGa0Tx/dNABh8mF8C8Mcf+gLtd7ez9ZP/y/4fzuKObWOca/wOiF3EcKolwTeccYP186raVTGuRHROCUy+UrBu6NYAnyx8k+hmLWdiqTZMS2WfqZQEJwrfgGiLv2Ku6LIlZ1q5INopsc/G5M0wVyyrDLLWLZZlqDK12hLPO5EVsuM5JbZeJVZOSUgMpH6PcAgydXus69VcOsDvhxmmZjh8WOSiHusqhyFxHR3sSy0PBOK7hOhueo+a7epffRWCwZhFRGMwRUl3x+Q5JSmFb/TiDd/UVkx/p0SGbs6adxZulzsjp1k6JUqUFJjJqjRSYXtPgH/jDx2P/Qf/h3dOBnj5uUfproKqEReh96+XS9ow3ixEibFzF4TN2a2bSJKrZOVKK95tYBDy4nBJIHYmIC/8nlBP3HwSiDgl9hlLR7mzGiY0ERIq4RvfsB7TdJ3Peu6PPMkbci4+6HIxcvklANT6xmlhL0vYj1FSAldcQcAfYP2iyyhbKNppXspWa1f2/Uy1JNieq5CsJNguSiYL4djPJVn4Jp6gGhwbtGzuXIqSZOGbeE4JwFlzxZdy55GdaZ9XqkQ7JR6XxxrUch3CqRtsY8K8u/nNt2XEa1shO0H4JianxLxW/GYiYKYVRPHCCfYQjuzsSp8I4Rw8mbookQnMdure2MTqfrM88LXXoKmJwe9sSSxIAFzi81q8YPLwTTpOibw39Y305a0Ed7LwjeWUTOOcEnuSK8SfnEyGSnQtAoL9Qe54InmVRiq0t8MxxKyGueKiu4pn2P/6CR7e/WMAlu1vYGZViZVAX3WeECUzOnZhjEeckhhRsmqVo8R2sAS47jrHUxJV3xwdOppQlMTLKen0Or/AofFQpObQxkiJ7WbiHYpZfHDk4gsAqBgM8VGvaBAWOvcSqIwocO+VIpfBLko0LbKfqToldlHSE+pxzMZHJkasC9AhSiZJdrWfS7rVN3IWVllSmdFMxN6QzZ5jkE74Jl5OCdhEydEcipIopwTymOza3GwJ+yrTDBvxEPmydXQ4E10hfk6J+R3ym2Jkyk5JAlHSZS7yWjqyAID2k+1p7f+ms2+yfl4yawm/z1Xcwz9FnqDrLP3WBhpw3uc0zbawqOmUzG9IEr7xpL7+jRW+MQWAY90tG9lepVY3dOsaSRi+OQVazduTXCGz8LdKdC0C2o63oZO8SmMyRkaguxtaMFf3vfdejs45k2pOsG/bx3nYEF+WbWcEmXPlFuuib7xiKToalWMnwPzexBUlLS2M+iKJHoNzZ8I65+q6icI3x0LHrMXWYpySOPHwjhExmyqZsO3XFzuQDZbYviolQzE90EbOEH9D6WiYP9H/DoD9yz7s2MesGy4D4AJexoe4abhcETs5m04JiJirROaTeF1eZpbOtGbvkzkl8n32uX2xFrmNeDcEmU+SiUti36du6I4wU1qJrnHCNyAsX8ixKIlySiDiNORclAQCdFWK3CHplAzPnRX50k6S6Go5JRNCyPrLZznOP11RIgfxyUTJDMN0StII30Q///jwcS6YE5vzpulhlhC5z7nd8NBD8Dd/Y/7ek0aiaxrVN5UlldZ3OTrZNRuudTR2p2CyRNdTwimRokSFb6Yn2WggJTPml2qmKFm+nPda/56gH7635hms1hSawb7lERdm1QXlvI9oVV3SK27Kwx4NFi3CgcfDaN1ca3Ng3ZpI/Z9J9IJT0imZ0Cd4/8T7AMwqneV4TbwbaudAJwCLzXtFaDwETz/tPB+3m5E7brE2V/9eKGbxwRFD3IBKJ2BmWDQkenGGU5TQ0kJoZh2ljPKJBa9w/vkifPPXfy1+PVWnJNpS399rEyVmPsns8tlommYN1pPllKSS5ArJnZJMRYn9hmrfbzo5JaXu5OGb90+8n5P8jrAethrHxXNK8tFAbTAsrhkrfGOYimNwEE6ejE10ramxEl2tnJKw+N9fKboAZivRFZyipNucsM/xZiZK5DUPIndjxrr5MTlvYdzsYwlf/7qzL9vatYCmY5irIadSEpxO+KbEXWK5tPa8klR6C2VCKiHX6d5qfnvXdroGhZKVE4x0nZKx8Jj1GanqmwIS8Af4+vqvW9uZ9PtvbwcvYywwIo3Pqj/xIf69enVMXw5Di7gwtbXwvk+EcCp7xSA54K8RPRKicDglLz3rLFMh9ibn8/isG75cCyGRU+LIKRkQHSubzcaGobEhePhhsfG971l3r9AFa63XjGuxsyRroLRWWgXvy887n6RpvFcv3JKP1jzLP/yDePjhh0VeSS6dEplPIuPbVsgjxfBNsnwSyI0o8bq91mJ7yURJ0vBNAqdkTsUc67x29ezK6PySYV93xu6U5Ct809cHJYYQDhUNogfQ8NiQ2QpVfOdTckpMR89fJZptZat5GsR3Suor0s8pAacoAfCvLeEONqObMyQDjTvYRF9lgLvvdvZlW7IEK58EUmuelk74psRdwqwyMUGyOyW5WvZAXrNelxe3yx33OfK7fyx0jLCeuMt0MbLlzS2cu/lca/un7/wUiNwPUr1/SpcEIp9rMXDaiRKAT6/6NCCqEA587kDaDaTa22ER7+MhLHIm6upobtH4Ze/n4zc9G4184P2NQpQ0jAnbcHD2nNgDBIOMdkdmC4NenGUq2AZL2wxeDriJRImcrYTGQ5a1Kp2SJb3mfk/0iOPMmiWmUebdyz4oxrNuR46K/cibugaOvi2S510ir+T3un7GBfODXHONcEu++EXY/Xb2ckogyikxwzcyzGWFPFIM3ySrvIH41qklSioyEyX249rfE/lzjChJI9EVcpvsal93xu6UZLVXib3hRhQ73zYodQkHaOYllwMw4tLhrbcgGCSsiS7JkCTRdXycftM98M+c5zz/LDslUpQsmDV1pwSgdHY3Py5p5VbEZKa7fBE/oJVPfUpU/thpbARvWcQxTCV8k45T4nV5LdfWPiHK1bIHqVyzs8tno6GhG7oV7p4OWO6SLTQn3SV5D0o10VWKEp/b57hGC81pKUqkVaUbujVIpcPBg7Z8kpYW0DR8Pmj0BzjjaOR5bt1setYVGcTdK4QoqQiLm93YXNviMJK2NisJDxCrlDrKXeLP4GUIp+14GxArSuw9S+QA3tEvZo1SlIROmhn7N92EfUlVuxCJd0Ma6RKNVezLv9v7tlivPSj2X9O5C5qaeOAccdP82c/gs38k/pbjfVMTJfKm6sgpMcM38j1K2SnJQvimrqoutT8gDvLzTeqUxBFYVklwgkRXiIiSXJQF59wpsTfciG54A7z/3CEMtykoFotrbtgD/OIXjnwSSJLoevIk/eav/LOEsMxW8zSIiJLDhy3zhqXzhCg5FjqWUt6GJFqUHBvuZtky+CWiaq8utJ9Z9LJxY+xr3W5YsCgiSuyfVzRWR9cUnBL7gnyWU2IL3wT8AW5fc7u17dJcWVn2IJVr1uPyWPf+6RTCSeYupRu+KcbGaXCaihJ7Uk8m8fT29ihRYuI9o9l6Q7/5DLR/G1rfdpap1FwsGqj5TMcwPM+Z9wGIyoHo6puocpd4NznplMiBNlqUeN1e6/knR04yFh6zButmKUrkjTAqacThlMS5IY3UzHD8XSD6tnSURc659+0gfzbw55En6Drzv2GrCJgQF1Xf0HC8ye+kyIFCDrbxEl2t8E2KTkkqLeYhQaLr4NQSXe3Hle+/PelVHjNeTslkia4AZ887G8hNsqvdKZEhKMiSKIluuBHd8AYY/O12xs2LsapCXGMTbph4/OcxosThlNibp504ERElMtE1i05Jfb24rMfHYYfIWWRxw0zrGOm4JVKUSIF1ZOgIZ54pKgT3u0T4asPK1zjjjPivb1osvlMu3AlDHpDZ2jeOnJKoRNeFMyO9l75z1XeysuxBqiHX6dhqPpm7lG6iazE2ToPTVJS4NJd1ccmSqHRIJErmnRNgb5XY7zX7oG4gdtnx5uuWAVBiDt5afZSXChAIMHL+71mbgz4tZj/xZgPSBZBEixJwlgXL6pASPDSa99iQFzjnHFi50vG66PBNdBvskUoz6TIsYthh3GxgEztPRM65/ddxKgLCtoqAcfNv8Q6ns+K6hRzoVteKplGH+g5ZN0aZU5KuU5JKi3nITU5JvP3aRVSy8E2yjq4SewXOZG3N00XOkj0uT/wGflNJdN2zJ7YDWJSTWLJru9Wp2O4QjryzA155xSH64zdPC0Fvr3ApbfuQTsloeDStfhDxRInHAw1mJ3ipp+rqoGlmenklhmFYouTcepFr0D3YzZli/sOL+vkA3NzySsJ9zF9gihIjcejGfv6TuTiGYThzSuKEb8Dp8ERXRWZKqiHX6dhqPtmimlZOSZpOiRIlRYK0rDJ1SpYi8jbsomTJshFGy8XFumHgF/zjZ9pjHIe6JRUcci+wREl/OP5HMNrUYP08+Od/mtC5sA+W0gWQxBMl9kFB5pPU+2ZTYc4QQ17g1ltjXmcfbA2MmMHcCil8/CbYupWNH27nB7Q6Vk5+cyC2C64BHGSB2DCdEjyjLFqc/g1KipKWmhbKveXohm71e7DCN2nmlKQavkmaU5IFUSL3ax8IM137RrJ89nJcmove4V7L1ckW8cqBweaUjE3BKYmuDgOHkxgOQ133dssNsTeGGvEATz1l/c7r8kZE06xZkZyS4QGnU2Ket9/ntwaEdIRVooFShnAktbXQNCO9vJLjw8etydW6gGgd0D3YbeWpvIIQJZXvJBYljaYokZ2mE5Hq2jdhI2KZet2RnJLorq4HTh6wfpZu5lRJ9Zqdrq3mW9e08uEWUdn49fVft9wlORaMTIykNMkoxsZpcDqLEvODSNcpGR0VSWmWU7J0qfW7mgVikGfCx8vD19F0YfzY6IinymzHDq6fP8pvb4mtzbcPMAOlsR9TvLBCdH5MXFFii4nLypv6ylrKTVEy7obxj3005nWhCaddGz1TskpQZ86G9euZd4742+2i5KWDAVERoEXsYQ144opvmweP3ERm16Y+C5VIUTKjdAaLZokya5nsmnFOSYrhm2hHI6yHLXcmm06JFBsuzWWFRaQ4SXXtG0mZV6yZAdnPK4nXOA2yEL7ZuhW+9S0ADE1WlgD/+I+Wk7hvH5ytR8I3pZ5SSxwNewDDsESJI7zl81HqEoPycKgfo7c3RpS4NJc1oUknryQTUfJC+wsplcdKt6GhqsF6bXvPER58UPxeipIZ775K8GD8SpP6+UKUGBOTiJIUwzf2UvtEJcHgFCXpJpwmarqWavhmOreal9e+FFbgFGGprIBejI3T4HQWJRk6JYcPQ6XRTx3mF7m52fpd+TxTlPQ3AJrVXt5O17YgS0bfsZySCTec/6MNdG1zXlj2AcZeuiXJNHxjLwuWTklDP5YoARj+75/GvC5ahETPlKKTL2XsevfuyHPefht+QCv/s6ldDC6bRWvsFb/5Dj884++4eOK1mL8vHeQg4ff5WTxLrMgs80qic0qkZZ9q9c1kN7jonJLjw8cJG2E0tBgHKx2iF+Wzv89yhi8FVqpr39jJVQVOIqck0zbtAGzfDjfcALrO3gtuoYlD7GchGrB1V+S7/95ve2gkaIVvvG5vpDJBrikVXQ5sUloqbtAjI4OM9h6NGwLKJAQVr3kaOEVJjdkdQOY4/GTXT1JqKCZFyaJZiywBfKi324pwvcMKBqikikG6fhO//LsuIEREeKwkaSv6VMM30aJEJrrawzdhPewIUcmJQyoka7qWavhmOreat4fGJPZ7VCr3TxW+KTIydUra26EZUd3CvHmRVbWA3nEzhX6gHo8HyuNcE92/bcOFYYmSMTd4CHPkJWcShV3pDo7HipJkia4SOTuJ91jfSJ9VeVP/2x34JrDKmUN/8rmYMsvomdFk67EsXy4ef/dd0RpiYgJ2mffDlsvM5U1vv93qnPap3V/ief2DeMz3JZOyYMsp8c2IiBLTKbFySqLDN6lW36SYUzIWHiOsh618nTkVcxyJnumSyCmxOyCZhm8gd+3ms+6UPPQQrFkDJ05gAN9++fc4bAT4D/4AgK7v/9L6yvb+73YARs2Gg16XNxJvrxXVblaPklGnc1BWJs5veHSI/hORGbT9xp1uBc6EPmENIslESV2dmP3/5+7/tB5LpaFYPFEyQDcu8+6u4+Y1zgNgSU/8EE71nEj4RlYCxSPVkmBHSbitJNie6Nox0OGo0kpVlEzWdC3l8M00bjUfT5R4XB4rCTaV+6eqvikyMnVKYsqBbUjngYEGJiZg8eKYSkVqPyDyKmSVyqhHVKnMu9BZm2+fwcc7x7glwbbwzQzfjLiDob1PROdgxCnRiLglIbdOdKZp9E0oeqY0EnYOli0tooX8yZNisbG9e0Xoq7LSsdgx3HwzEGmCK2P6w4cPkC5yoPP7/CyujjgloxOjlviMCd9kuU8JiM8mG/kk9uPKzzuuKEnSPC1Z+AZy125+spySI4NHUu/cGQyK6hoTDfgud9FAkF8iYutXGU+zb495Ue0QomTMa4oStzcSb+8TXQKtbq69fQ4BXlouzm9kPER/nxCyVUaJo+IhXafEPmuNblIVLUrajrdZnXAlkzUUiydKjo10s3lzpBH0a5oI4cx6L44oCQbRt79qHqyEtrbEf0uqJcFy0JSJzvHCNwdOOK/xVMM3kzVdSzfR9VRxSjRNc+SVTIZVfeNVTklRMBWnJJEoea8z4pRA3EpF6tYGePnmzbjNKpVRt8YrN2+ibq0z/8T+pUo1fGN3SuKFbsBpn1tOyaA4F0uU+FzO1faII0omCd+Ulka65+/eLUI3AGedhTWDA2LEj9Xm+8DeuOefDIcosYVv5AzM4/JYN8eUnZI4TeriYR/8Q+Oh7IkSz+ROSaYlwRApC97ds9sxu50qiZyS37z/GwA6BztTX+skzgKRHkTV1iucTy+zqKGXM/rFwFpzUIiSCa/4XjucElOMWE5JGMd3sKxCXB/D48P0D4hB0q85hV26Ton92okWiXZRUlubWUMxmZexaNYiKyQxODbIxz85RHu7iJRu+KEQJbz8svPFZr+XsXvuBmDW/2PvzMPkqK6z/6vunp59NNq3lma0gcQm9s1hMQTwAjGOjXEw2E7EYuzExnbiJcROPvuznXiFOAYLkINt8sUbYIzBZhWLAbFJSGIRGkmMpBbaNaNZNNNrfX/curduVVdVV/V0i5GZ8zx6NL1336q6973v+55zCgOBmW8SVGULWfLFvO/z3IumV0VX+b3lNRLW6Lpg4gJlNpahj1HolOBDuNS8FyiBaP1vxuSbURYKlERkShyZN5rJFWDDTt1TIsKVqQjAGbcvIfdP3xRPPfd8zri9NDffId+4QIlpmp4GzElNk9TfvqDEy1Ny9echHrdByVe/5Oy2R3T5BpwSjgQlxxzj+kILFjhQimJKZkT3YXgxJZt6Nil3/eSmySU+jLDZN+V2XTEj5ih0Vi1QEuQpkeEFsJTxuAxT0tneSXNdM9lCljvW3lG1Tq1eTEm6L83/edxu8RC614nm25KRt/q4FEjwABcAMOX5+9i3Dw4fEqCk4OUpSYrjr4yuBRwAvKFVLJ7DhQx9A4JVaUs42Y2oTIm+c9fTo8EJSlpaRMrn987/nrovTBsMnSlpTbaq83Dn4E5SllI66UKroWdXF+yxGAmt3oscjzmFbexe5X889DL5QRKOAqXW8ddTgmVmiPzeJ88U5Q/2Du0tYUC8ItWW4r0L7L5a7jEKK7nKa3Pvgb2BAGs0hi8oiVBAbUy+GWWh5JuITEmQfDMYdzIlUFLzTMXkuQKlx9q8CxU55BvXd9R3xPqFp7vc/UCJXqdEZd98+Cro7qZxhpghD7z7vJLXyQlILnIl8k0ZULJ6tfi7BJSkUnDLLSqTQjElE6JdKNlCVn2HcQ3j6BjXQdyIM5wfVpklurwVuk5JPpzRFZy7FJliO72l8mquENJTEtT7poynJGbEFMP2d/f8XdU6tXoxJRX3OnGZs/JWDZy//ocU116LknDM39/HKyv6lecrZwg5x8GUfPqTEI/bRteZsx0AvLFNXDdDxQx9Q8KU2eait6OWyg+SE35j20f48Y8FcfGpk+yyqyuvWRlYUCxXyLFlv+gQOnf8XAzD8K6/MWGCvYlaYUk1XV2q3osO0oZf9j8e9fF6xVIEmV3di6acd3LFnBoPyZScOF3UVimaRfYN7fN9Tz062zsBAUjcrULCyjcTGycSM2KYmFVLRz5Y4QdKovS/Gcu+GWVRMVPyhukLSvZmBfMQGxRMSby0dpoKeTL5dakNYkr0HYpbVpAXv98OWVLP6b60et8ZrTMglaJp3KSS95ch5RrpyQjDlOgZOL5MCcCSJRg33ST+zkdrKiVDN062Jlupi9cxe5wAWSvSKxzfHapfpwScAKLqnpJcgKckwOhajilJ96VVLReoXqdWL6ak4l4nz1pZWZ2dLLt8OZ108/DsJfz7v8N3vwsrJ7+LIgbG2jUM/PI+Ypjsbpihdr8OT8nZfwHd3WS/JQzWyakzHB/VME4YYYfNnIN50yNqBpHfIimJChmmKeTendvr1PxUDgxv2b+FolmkMdGojJu+9TdOP138/4zlK8nb7ICq21KAFXv8j4dhGKHMru5FsyXZQtwqBSB9JdJTcvikw9W8FdZX0psRgLFgFpQ0JCOs5BqPxRUgP9QknHLyTRhPyZh8M8qihCkJaO4lI5eD/LadtNGPGYvZpgmEpCI9Go/9foajNbhXlFsUg1KC9S6Yupl12cplaoH5/frfe+545S7v1d0iV7etvk2dlEFtyeV9km3w85ToO3PJlLz4oj2sXmnSALzrXQCMz2UcvzFsyAWkua5ZlcmWEs4zaTEJ656batcpASd1Wm1QIhmbsJ6SsCnBlRgrw4QXU5JqS7H0wqXqdugO3dbOfufhZ/KJX5zNNlL84AeCQGlqgqu+PIkVCHniyN8JWXRHx7Hq5cl40jlGqRTZRYI1cDNJje3i/B4mT581N7Q1OrPYqsWUaESFCin3evWK8QpdupHSkG+l0tMsX8kzzwjX+ec/rx6SoGRD4Qie2pwKlxYcYHZVzfis428YRklasPzuc9rnqA1DWMZCTy12sythPSVwaJaahyrLN2PF00ZHOIyuZZp7yUinYb5psSSdnVBvT2j7M/vViXDCghmO1uBeEYUpcbM5Xrt3mSYnw8T03PHKHYkEYzNbbf+LHygpmkW14MnJI4p802eRGJ2djgxqZ3R0MNg0iaa86fiNYcNrVyvNri/vetnx3SF6l+AwE1wtmZKo8k3YlOBypsFKwy/75srjr1S/6fGPP+4rTTj2CNbO/t8eOFVt7vdp69AnPgFPtAgJZ3avyCLqO8xGvw75xjqv5PVVQn+PF+fIkFGgryDGXPa9kVGp0dUNSlx2KsCWe71SaL1CLezj7ZQ236JgEpQ8+yz88z/D2rUweTLceacCJTsKHQwN2V2LvUKaXYPkG3n89fHVf5Mucc4ZP0dtdsKmBQeBkrDyDRyapeahOkbXMflmlIViSvr2lG3uJeP5522Tq+EyuUqWpL2hPdTFIBcLX1CiLTBD+SEKRbuegtdCGVavlxOqjBmtNn3tB0r0E1xOHmHkm9ZWJzDzlG5kGAY9806yPSURmRJJpeu/T4ISyQRU4imJIt/oE0LVjK6JCo2uIVOCU20prjnRTrcNzV6UCb/sG7AnQfe5KMOxR5hVZOBRId9INgQEEJGXaGMjzPrEex3vsfQh28vjMLpa4yevOzeT1DhB7JwLMdhXZ3UZbp3keE5Uo6tf4TTLTqXSdnW5NzJT0m6ztr5FwY44Atra4MABVRWXW2+F97+fbJsAGtOS4nwPzMCpQL4BHGnBsoR+a7KViY0TlUk/LFOig7USpiTCNXuolpqvJlMyBkpGSSimpH9v2eZeICbKD3/YNrm+nPOuUaIzD0GhKop6LIr5Yt7ROwKcVKmXpBBWr5cTqowwoES/PbFxYsn3AX8Pg2RLoKTHX0kUTzjJzr6pBlNiyTcyHPJNIhgUyoiy65LP2Tu0V+2iq2V0DfSUuJiSfDGvAGo5+QbgfYe/DxAgrvu67qp0avXaKcsIkgndDYAPZx0thT4GaWItNvvhvkRPvmoxPdjn9rdjn1V/18XqaIg7m5XJsSphSibbIHKnlWhSAkoqZErcNUpAyLsybVeXe0MzJb22fCPDd/cfizl3CYYhMnEMg+w8UZ5+uiF+UxAoiSLfOJgSLS1Y+knmjJ+DYRiKxQztKamSfHOolpovZ3SNUqdkLPtmlIRiSuJ5Xw5VUsjPPismStO0QcmPHznMQaaoTJZWp3HOL4LkGy9JQfeVeO0EZPdIaSbz2/G6d6cO+SbhvVjIyacx0ahQtW/vGxco0VulzyyD11rPPVkxJf3D1ZNvZDjkm4ieklDZN9Zz5ITbkGgoMUlGDfcCLr+PXGTl54DdiMuraV9QSIBuGMaIGRIZ7pRQPYJAidtncRpCunmekyhg+6fcWW27X9rGOGyzczEu2LE4cVFUyocpcU/q9ZNsULJLghLXNTOSlGCvkGm7Ol7wa2DnDt1TIsMXlKTTzmZU0lmbTpOdI0zhU4pigQ8qoBam/43X8dfTgnU/CdjX5sGWbw7VUvNjdUr+DEMxJcUh+MhHnA9+/OMseyDF7NmCQj71VHuilKBknXmYYzehmJK2g+WhEAAAIABJREFUcExJkKdBXyjlCaP7SvwuuiXHL6H7um6Wf2y5745X73IK0ZiSprom3wnJjynRtf9PftLXrgNA+3k2U7LjzV7/J3qEFyjRJ2pwyTcRs2+iMCVy9zqtZVpJXYqoEaXMvIlJvph3/KZynhLwPsdGGspT4iHfBIGSBQvEBl7GqQiTa+M7T/OUOdTrEO0b1OdbM1udBdLdnhIl37jGJzZhomqWudOaq32zb6qQEuwXMqW/XIpsECgpWWg9itBJyik7W8xbEy2mIhRTEiElGJzyjV7wDewaS2FASa6Qc7A0I5Fv5Fi9tvu1qtXoORgxUvnGNM0xUDLawlFmftA6wccLJJ9Z87piRvSIk2ceopfKxthhjp2aqo7aUj2mJGbE1IXsYEoCdu+pthRnd57tu+PVu5yCE0SVAyXNyWZf6tZrsUyn4X/+x35OgF0HAGPqFIoF8d16NnR7P8kn5AKhy1Ot9a0OyaYSpkT5dyJ4SiRTMlI/if6eYYyuIH6PfE7ciKtMpKCQk5JX5eBKo1KmJJWCY+3EGcWUnPKZUz1lDhmTT19AUZMvVYprQlxn7vLbfkZXGhposECJZErc2QnymtR360FRCSjxqoDqjp6hHvUddKOr3tPF0cI+wFmbnS6uk5YDg0znzVCeksjyjSZJSVCimJLm8Nk37nEfCVOy8s2VALy086Wq1eipdRSKBSXP+oKSMkzJcH5YWQTGsm9GScgDMZAdwHz4IXHnf/83xOPUP/8nFhZLu2nONbpJkuMAjfzLj1OOnZrqIxOSKQkEJVrhK68FI8pC6RX6wh2ZKfGYkHTJQF8sg1Ie/SKTFN9nePuWsD8H8GZKwCnheHlKyjIlEeQbKX/J3Ws1QEkUpgTE7wlrcpUhQepgbjBURc0wEYYp8dpp5/OwSQwft353P0caVpvpU0/1lDlUpFLEbr0F06JTsnViaktaY6OYknwwUwLQWBSvVfKNmymxrh+9YF9QVARKQsg3+nmmv7eUJIbzw87GhwHO2mxc0FPJggCCGzY4N2V6NlQo+cbj+KuU4Eyvw1MCRPKUlAMlYa/ZdF+aHzz7A3Vb1uh5ftvzLH9j+ahlTtwdmPVwn+d+oa8nUc7LgxFvX1BiTcQmJoPD/TBpElx0kfgHXM0tjufH4/DHr4q+EYn5HSy5yjl0iikJ6SkJ2qnrNSYUta5VdY0iKXiF7ivxSgl2n9Dl5JtcMacyXPSFMCjl0S+K7ULbLvS9GfbnAAGgxDK7xoyY40IMw5SYplmRfCNp85GaXPX3dDfk0wFpIpZQXqLh/HDoGiUydPq2XEv6sBGJKdFWvBdegP37ob0d/vao5zFMU3RwnDq1/IcuWYJh0Sn5B/4gPt9aFN2eEj+jK0CDKbwrOWvtdp9TrfWtSgJ1+0rSfemSBW1ETEkIUOKWKZvqmtR3LvGV+DhrFbNRgNN5hsFB0UgTSismdHeNUL4Z6in1lERICS4LSkLKN34Zi6fcdgrn/OycUcucBIGSsMXT5FzYVNcUik09mPG2BSWNiUaVrdKfBM4/X6ygVjfSj/IzGhAndzwOyy9fxtyvfRyA5IZ1JeaISrNvyjElOqMjI8ru3Svk5GBgOHbzfkyJnHya6po8d7l+xsqglEe/qJ8hQEQ8syvSb/IDJXLRKJpFOm/sVJNMGKYkU8gosBVFvpFxsJgScKYFh63mKkO/Fqol4fjVKQHXTtu14u3+d3F8zjkH4s9ZlUdPPbXkPXzDolNykyc4Pt+PKfECJY2aoRZKzyldAtV9JctWLqPjho6SBW1ETEmAfOMHSqBMUTAPykkHJWfVi3Hv6irNhioW4bGHKksJlr/pjd431LhJpkRPCTbdurkrqiXfeGUsgl1CoFrVjasd+prhvr7CyjdykzvapBt4G4MSwzBss2s9cIFo6sX559M7vpPx9PKZY3/M9+9azrOPPs8ZP3eZTDRzRKFYUDuS0EyJtYjo6Zsy9EUlUL6pEJRI+nlK8xQHvVqpfKODEvck75fy6PvdDhM0ihkbhF3hgYmXpyTdl+b363+vbuuTTBimRL+woxRPk1EVT4n1uflinlwh5w9KtLTgsH1vZBiGUXVfSVCdEnWe7d1esuK9555rmEma88/H7tEii35F+XyXfOD2lPjVKQFoiDnPYa8MKncGTrovzVX3XqWuZf1cqzlT0l4KSqIWBdNByTG5F6kjy733wle+UirBmpnyKcGe2TfWb5LVpKc2T1VjIuWbTCET+L5QOiY6KNGblZa7Zt0ZizGP5bAa1Y2rHapabqyuxEivsm9CyjejzeQKb2NQkk5DfVEssIopAYjF+EXLVSw7Dr7zV5/jc2vO4eTlp7Bssb85YtfgLgpmgZgRU3puudAXbzdb4infZKov37QmWx27gEqzb/TqoV7ZJoFeAFfM7LAaoiUg/8zzIX+RN1MSVEI9DFMiL+xELOG5uLrDPQlWkykBMeZ+oERPC1bHI6R8A3jKhCOJIKZEnWe73yxZ8eIUmM8GzvtL0wYlUZgS+fmuRTFsRVeARheY8wQlrgycoHPNr3haUEhWISj75tU9YnGXzKceFYOS+iaSxQzHsYrvfAduv730uUZ+ZMXTJHDTzbnNyWZ1/ZQzu0qmRLLS+hjlijn1/mHYTT1jccWVKyrrzXSQI4jli+opGQMloyQkYzxs2RbSs+bDNHERb98OX9n/Lq6+CCy/G0VMrrkI0vrcpJkjZI2Sqc1THb1ogiIQlJSRb0ZqdH3T8mts6NngoJnLZt/UNQfKN2HlgqCYPslC+nXQ98jIQElQQbmg4nUyojJS7kWnGp6SZDypfsNQfiiUfONXMyYovM6zkUQopqS1scR0ZAINMycyt9Al8skbGspX3fP6fDdT4lfR1YNN0mvAgHdxKTdT4sWQynMtqHiaX8iU4IHsgPoteixbuYw/bfkTAP/40D+WeB+UfBOyUmm2KMbDmCaKqMlUbBn6XuOyS0aWfSPDL2W/nK9EghL5eh2U6HNXWBAoMxZPmnkSt1x4i/ILGRhVqW5c7QiUHhPhPCWOwmkh+r4dzHjbgZJ0Gq66SmzQJmXE5H3X/sXqePzud7Bnwn4FSGQUYrBhknWnyxwRtUYJOE8o927diynx8pRUwpSk+9I8vvlxdVunmUcq31QDlDRJ+jEB+RUjAyVBBeW8+sW4I0q9A6/nVYMpMQzDcVxqId9A9WuV6BSzO9TvqY/BUUep+03AAH6UvwbuvFPcedRRkCydfMuFL1OSL8+UNGjHscFIej7HzZS8stuZraefa5XINzr74fZQuPtceXkfKmVKhiwpSKZiy/jGN8T/kybBeWdVZnR1d/OVJlcZYUvNS5+NBCVD+SF1rcr/Y0bM89wrF0uOX8KX3vElAD6w6ANVqW5c7QgEJSGLpymmZGdvqL5vBzPedqBE1g8yKDIzKxayZ5MLVZrqb38L0/a1YLjUmngR5v/3PZ7miKiZNyAuGsmqBDElntk3IzC6BtHMUeUbaUirJihRF1UdtLz2fGmxGJ/w6n0D/gXlvPrFuCPqYuJ+np6CPJIIBUpGYHQFmw2outE1iCnZlYY1a8Q2/Gc/4+9mP0wP7czb+YxoGAeixXQFE6W7S62fp8RzYq+3GY22hDe74WZK7nn9Hsfj9112nzrXKgEl8VhcAWy3hyJMnysFSgajgZLWRQsAJyiJx+H97xd/79kDxUyElGANGLhbXLhBSdi0YAnSOsZ1qA2HHCN9bqy0cOG0VjF2MXfq4CiJMExJaPlm1cuh+r4dzBido17DkGmqx/ISEzPiwtnYMI3580U320cegYV9A1y5yn5NvAhL74VUscXTHBE180aGn9lSZ0q8FouRyDdBkoZv9k2uNPumaBbV964qKLEuqsE6aBrYDb/4RaiLxC/7BrwLyoViSiKCP/15ExonRPJ0hHnfsJ6SqCnBUP0CaqFSgl9dLe647DLS77yC27ecy5Usc0JmrRR6pM939d7xrejqZXTVQUnc+9grUJLZT76YV4ZqCdr1+iCVgBLwz8AJ0+dKVXUNK99Y4zFx8WEUjRgdbGE6bypSeOFCmC2y9dn9ZmW9b3SgBSOQbzIClIxvHK/YFynhVDrWeoTNYHmrIpSnJGz2jXv6K1dI6iDE2w6UyDTVD/NLWi2CYvbCIVIp+MMfIJeD4twFHL3LRtmv/hcsWeNfYCNq3xsZfmnBunHUU74ZgdE1SNKIIt+ATd9W4mHwCwm0BhNWHvFll5WlFXXJImyvmTBMSdRx1p9XDenG/b5DuQBPiQay9PMnbFTd6BrCUzK4Z7tgSa6/nocfFo9NXTiekv1tBROlGxRFqVPSuMeWS9o2vel57in5Zng/f9ryJ/YN7WNi40QuXngxAOv3rlfPrRiU+GTgpNpSXHviteq2V58rabiPbHRtbiN2tJDUnvrYrWx9Ji1I4XSav5m2nJmk2ZmuzOgKTl+JbnQFmNQYTr6RTEl7Q3tJOf6okqtXhM1geasijHwTtk5Ji7siRblCUgch3nagBGAJy/gnvq1QYlv6CZ58Ukg3AKddkmLvhy5Uz5+QjQUW2KiUKfEDJXpFziBPSaUpwX6Shg5K9FoBulEvEUuo712udkYlIX9Ttk7rklyGVtQX0rB593LB9krJlhGVkdKfF2hyjWgsiyrfRK3oCjUwuobJvqkDPvQhWLSIBx8Uj3WeV0HFvaDPjwfXKSkBbuk0DSvXqJttGTzPPZ0puWedkG4uPOxCFk5aCEDXPrujXbWZEoCjp4iOyafPOt2zz5Xe/yZMlV7HQme125jz039j+imz4cwzoaODf3/uHDbTwfhHRAXsIE+JHyiVQCtuxEsMpGGZEjkeXqDk7c6URJZvYtocEaaQ1EGItx8osaoBGaCYkjOT9/GFy9L87nfi9sUXw96FHeolQ88/E1hgQ4KSqEyJX1qqQ76RtVSypQ35RrIb8JI0dGlGB0ruC93d/6YmnhJ3ElPAblnq+i3JltDVCd2l2b0iKvgLxZS4y2OG8EtENrqOQL6pltE1kCl55XXAAiX/8i9s2QL33y8eO+UDFVTcC/r8mLenxNfo2tWlOlWDBUo8zj3d6Prb18Vu5uKFF3PYxMPE21QBlAQ15ZMMyFGTj/LMDpF+pnwxXwJqvKrOqoWutw+eeMJ+smnCk08q30GcIu97+ltAdPkG7PN2RuuMkkzFqJ6S8Q3jS5mSEW7YILg302iIahhdVfbN/mGxCbj//nCFpA5CvP1AidaQRTIlg/Um9ekNHLDOwbVrYe/QXvWSocmldQD0kPJNlOwbKM+U1EK+CQp3TQz33/JxqZvLnVItmJKhOpzegoDdcpCfxC/cTey8Iuo46xOhJyjxKo8Zwi+hN+WLUqfEndoaFAeNKVm2jKZ/FCbWA3Xw5HefZc4cUVoeYN06olfcC/p8F1OSLWQpFAv+npIFC2jQSLq2DJ7nnmRKnt76NN293TQkGjhv7nksmCCMol17BSgxTXPkTIlHATUJSvzAbzKeVAu2LuH4VZ1VC92O3WXN5W1Zcf5GlW+WrVzGirRINd7at7UkjTlqSvCYfDOCOiU5W77JHnksyxveTZrRkfp8UEDJTTfdxJw5c2hoaOCEE07gySefPBgf6x1aQxbJlPQlDTZgTzrXXgvpfTZaD0Kdw/lhdUFUy1OidrrlGvKNYDfgFXXxOuU10Sccd/GnsKXPKwk5IZgGDFubZdMwYOlS0qRKVY90mr4VIsU5CigJSsmWEZWRKsuUVNKhUHvf0HVKCiMwuuZqWKfEAmXN1ul+oA5O++k1TC/aB/RTn7KOb5SKe0Gf70oJBjFGvhN7KkXjhX+tbrZlDU+mRjIlcsE/f975NCebldl094Hd9A73OhaHij0lHvKNzKoJ8i6504KDqs6q8ZjVWSqfuSKZE48P54cpFAuez3GPvzuNGShJYw6bEuwAJQ1j8o0eOiMYVK5frietWbh17WmjKSO49qDkl7/8Jddddx3XX389q1at4owzzuDd7343W7ZE6wJbtdAaskim5Jn6I9mmocRCAXb0aUxJAOqU0k1DoqGkOFC58M2+0RYVz4quI6hTUi68qMsSpsRVq6QWTAnA5+u+DsAr5iI+/uSSUtXDkkL6vvRZANr2B3f81cMwjMD+QzAy+cZrwqioQ6H2vv2ZfjXZhzG6RjkeVZdvvJgSC5Q1WfLIgTpIWBVcZVTL/O9XPA3EYhPYkO/Uv1B/ty35pCdT466i+r7D3weI1GoJBrr2dlVUzEvGSJgS/THZ/+bV3a/6lgNQC93UmaXy2cc+ps5bE/hS7j/V6/3mRvfCGSaNOYx8M5QbUvOjJ1NSBfnmUGZK5HcvmkU1V3iFvM5bsvAUp4vXjI6M4NqDku9///ssWbKEK6+8kkWLFnHDDTcwa9Ysbr755lp/tH9Y9HDrP/8bAOl65wQTj8MQNigJoil1P0nUvPgwTIlXSnA1KEq/CAVKXKXmKylr7hfJeFJVVPxF4mIKxDiKV3n8p284VI+vXZ3GtKSQ/dba2/b6G5GuqHL9b6Luun75yi/V35/942dLO4ymUnDllfbtWLCBWkZTQny+7i3wBSVaRdco2TdVr1PixZQsENKGDkryxB0sZRRPq5c3Qoa7eJu7k3JQRVf9umqb5C3J6jU3YkaMiw67SN3WfSXyHKqP10fuxhrU/yYMKJFVXeVzpXSih0wldix0bvns9tuFrhaPYwDL8+9Rr/czu7oXzjBpzFK+2Z/Z77tRkCyJbIpYE/nmz4ApgeDvPzAsJO+WLDyD3VtqFGQE1xaUZLNZXnzxRc6XfWWsOP/883n66adLnp/JZOjr63P8q1mkUrQeJ3pqzJrXX+Kr681qTEnAwZWF06Jm3oC/0dWrIV+mkFG7v1rJNxAMSiRD4i41X4mHwS8Mw6A+Jn5XT10TT3AmABfzW8fz5ha7MCyU0metK+OGiXRFlet/oya4EOOc7kvzqfs/pW4X8ekwOl3LyvniF0P5JeQEGwRKDoneN/E4JjYoGaqDa2M3sz2Wkg+H9rT6eSPU5xeddUrAuQMOrOiqja2fJKgX6Tth+glqQQUcvpKRyAl+2Temaar6I2Hlm75MHz987oeOx/VU4pKFzi2fLVgAxx0HwGnmcyTM4FolbqYqqBSBjPaGdvW4H1siQcm4+nHEjFhNsm8OZaOrvqkLYnp2bBfrWyYzgW461f2jICO4tqBkz549FAoFpk51NqmbOnUqO3aU5s9/61vfYty4cerfrFmzavn11O6wrqXfsTG4/GMZzxRcr6g08wZCGF01+QbELlbvgvnnKN+AtstJDHE3opTk+7nb8Zy8UaeIaAlK2rJGpCuqHFMSZZzD0NMAvPaa/XdIZk1+vtwxx414SeaCDrBGRUqwB1PSs+wuDGBdzu5lsyzxEVasiOZplf4EL2+E+nwPUKQDt8DiaSFAiUwDBnjhzRccoEiCkvX71o9okZQLrpsp6c/2q3MzqAGoDkq+89R32HNgj7ovRoyNn96oUomDFjoVVmPEU1lRtimf1/v5lSKQETNiTGyaCPj7SnQ/CZRmKFVTvimYBc++Q291BB0rwzACC6il0/D1r0PfAeEs3992LPG4mIdGSUbwwTG6umUN0zQ9pY4vf/nL7N+/X/3bunVrTb+XSrfN9Ds2BnrmDZRhSvorZ0rCZN8k43bvjYHsQOQumFHDC5RIRqScfFMtUNJcL35XrH6I3yKKUf0Ff2KaYVen/MnJS1WRLQVK/uLcSFdUOaYkitE1DD0NWOklVsiUkzIhx11OvF7j7JBvRtD7pqbZN3f+BoC78peru8zEAQYHo3lawwBAL1CkmwDDUuBeoCTdl+a6B66zfwOmAxQp+WakTImrWqkMKce0JlsD31fKN6t3rub7K74PwI3vuhEDgyJFx3kUFZQUh4P738j36+tJOszpXqUI9CjnK5EAzReURGA3/cIhgYxCX0m5Y+VXQE1WI/jqV6GQFL/r9CtOGmmiW9WjpqBk0qRJxOPxElZk165dJewJQH19PW1tbY5/tQzJlLgp670HXKCkRkxJmDLz4FwwdLBwMOSbolksYQx85ZtqMSXW7/rV3UP8bPlsskefQAyTtd/4HW1tcCQvM/+5/xFPXrrU9pSk5kX6nLBMSZhxDkNPUyjA66/bt3t7CRNhQIlnSvBbaXR1g4KdO2lfI+pf3GVeAjnx3WINg5Hp4jAAMIgpKWt0LcOUlANFCyZa8s2+rhJAHyX85JswfhL98TU713Agd4BTU6dyyRGXKHZFzl0QDZQcz0qKQ8EShzz+Vy9JRsrsKJcWrGqUWICtFvKNfvxHo6+kLCjxKKDmqEZgFMgk8wBk5p4x0kS3qkdNQUkymeSEE07goYcectz/0EMPcfrpp9fyo0OFZEqG88Pki3l1v5spCdIWK61RAuGYEnDq/XoXzMAJpMLwS/fVH1N1Smos37SOH+LssyF5qZBwJj15N1dcAV/nKximCR/8IFx9NX3zRVOOcU+vjPQ5YT0lYSe4cvQ03d2Q0T6rQqbEi7lxpARXUDytWkZXWax2KOMCBXffjVEs8hwnsYUOyInf9G/fOBB5Mky1pbj8aJttiRmxEgDoyZTIFga5QQqmSGUta3T1ACXlQNG88QIc9w73srVPsL0jYUoGc4MOGSEsKHkm7ez0e+bsMzEMQ1Ub3j6wXT0WCpTMnQuTJlFPVvmC/Dwlg8Pi/cy8GP+wmR2SKYkq3/Rn+8kVcvZGYgQsskMCOYSZEh1Q6dUIOupexbRo5m0tp7lf/pZHzeWbz33uc9x222385Cc/4bXXXuOzn/0sW7Zs4ROf+EStP7psyIkYnDtEN3UYhJa37BepzW6NP0yEqegKTr1fN7lW2gUzKNygxCulUXpK5GOVeBiCosT9LluUPvIInzzsYd7PbykQ48CXvgZA32EClLStWAkeXiW/CJt9E2WCC6SndekGQjMlcjwkdR0o34yw941uqI4aerHaro0uUPAbId38mks49liYPF6cS+/5q8rMhLrX6ub33FwCAIOYEr1ZXiVMSTlWrLGukVltwg/30o6XgMpAiZ7ho/tKwoCSdF+arz/xdcd933vme6T70orVlUxJoVhQzE8gKDEMxZa058TC6Cff9B+wNloF+/3CZHaoWiVlmJJ2K2NST83uGe6pmt9uNJtdy4ESL0BlJb4BcEJS1HWKFWHRUdHKWByMqDkoufTSS7nhhhv42te+xrHHHssTTzzB/fffT0dHR/kX1zh0v4Yu4YSVb25beRvdvd0AXPqbS0tTQMt9fqx8Qz5wyje1NLnq7ys/R16UDYkGtTusuXzjrhOwaBEcdhhksyy6XgCUn/FRfvv6IgD6mgUgbBsswH/9V+jPKcuUVME05whpcp0ozHxRmRI5IXuCkhH2vnEbqqOGu1gtcQEKevbUwe7d8NhjANzJB1iyBMa3jGzSX71ztfpbbxIpI8hTItsSgDebpB9vv7Eox4pJX4n8nl7fsVzEY3EFTHQJJwwoCZKY3KBEn3/Ksq8WKJmcLd20yDBN6NlfCkrCZHaU9ZRY46B66MTiCpjsG9pXtczEaqUFB6WtVxph5Rud5c5qS8xRScGgNRWTzJpV/Y3tSOOgGF0/+clP0t3dTSaT4cUXX+TMM888GB8bKnSzq4wwRtd0X5prfn+Nuu2VAVAuwjTkAxcoqWGNEvBnSnQQVHP5xj0hGAbME5S4MTCACbzGQu64QzysysxngJtvhkH/nhx6lPWUVLucv2RKrIk9qqdERjlPSSXyjdtQHTVKitXGBCjYvq0O7rkHCgVe5Hi2Juby4Q+PbCdaNIsOUOLVEdVr4pZjtD9jgxKvhoH3rr9X/X3irSf6bjaCWDGZgbN6h/ielZ5DXrVKwoCSIIlJyTf9Qr7Ri2yFBSXTc2IMveSb226DwWHrPYv2+N58M6QIbkYZ1lOiMyS6r6Ra82M1CqiVS1uvNCqRb269Vfx/5plw3rwXAGhraCl57WiIt1/vG1d4mV3DMCWhU0ADQt/d6lEi39TbwKmWNUqgdLHwMuq55ZuaMyXpNDzwgHrcAL7J9bzyQJpdu+yd77iJM2DfPrj+euek59OVt5rZN6FCMiUSlERkSmSElW+iHo+R1CppdA+RxZTMb9or8gyB3/BB3v1umDSpNIMrSrzR84YDOHmBEneZc7CPozxf6mJ1JRJoui/NV5Z/Rd2uZLMBttlVjqUsgBc1vJryhQElQRKTYkoGSpkSrwaKjjjpJEzDYIqHvJtOi8Xv7/8eiIv3/P09SZotkujsjeWbUZYrNd+bCQYl1TC6wsiZkjBp65VGVKNrNgs/+Yl47PNX92PuFn2ZWpqDe7q9VTEGSgKYEnnie02coVNAAyKq0fVgyjdBTEktuwSDx4Tg0TMmQYE5xQ388pcaU7LQqn9x441i0vvhDwO78srxr0adkrJhmqWgpK9PCO1lwg2Kwso3UTwlMLJaJT/7mesOiymZ8TcXwAsvWHeaXHGF+GskTIn0acjw2jS4i3dBKVPixSRVY7MBNlMio2KmxCMDJ6zR1U9imt7qZErk/JOIJUrmtJJoa6Nw+BHK6LpvQMwB8jK7+mqxCMaT4j3ndSb54AdhJmnmfbt8M8py8k1ZpqRKkutImZJqnUdekS16gxK59zJzzjol99wDu3aJuo3vmfw8/XWiwlNr0+jzk8AYKPFkSuQFIc1qXidmqi3FV860d1SeKaBlomyZeZkSXFeaEnyw5Ru5s9X/dntKqlFmHjxS2jx6xhQNUZ78Jz+B3iELlNzzR+0JRfj0p0VZd5+JUGcXvKKqrNTu3dDTI6Sok06y7+8vz0pUypREPR6V1ipJp22s9+tfww9+AIa1U67L271Wvs5Xueg4MfYjASW6dAMRmBLpKbFAiddOsxqbDbA9JTKqKd/IXjblQAl4S0x+npKw2XyJd5yqmipu23mg1E8EFEx7/C+5BBbyGjHXIu3lfC0n3yhPidZnrBbyzUiNrpIp06MZyAbKAAAgAElEQVSS88grPDswa3uvB+/XPCXpNCu+tZyZpFmyBBIP/YEB62W6j2w0xRgoCWBK5IXsR+GdP0+Uz5/eMt07BbRM+C2K7p2uDpyqURwoKEJ5Sg6WfCPHXWuiCEA8Tv/3lvKmkeKltRlyphivtuHgluuAYyL0k89kVNW/I1mSOXNg3DhosMYqhK+kUk9JxfJNxFol3/622B2fdZbI0r7uOoglrEVJW4cSFGhIi7GvBlMirw9PUBLElFjyjReTFKreTIiYM36OA9xUiykpmkVVYl4WR4saEpTsGNhBoViIDEo49VSaLabk5fWD3H57afNrKd8kd+3l/AO/5TvGF0vfx8P5KpmSvQf2ljAN4M2UyDEaTfLNxMaJ6hyCys8jr3AfrxJQmBPffe+jT2B2dPC9VeewmQ6+/Nj58N3v2qBkZ2lPpdEQ0fNY/8wiyFOiQIkPhSeZgklNkyo62RRTUizDlLxd5Rt93JcsgQsuEIBi/nz6SWF+Dqi30zubMgboXVBjMSGb6C28tYmwHFNS1bGWoGThQvF/e7tIXw7hKwnFlFRDvqmgVsn27baJ7is2cUgxJur+1GnqlBmLY1hjXw2m5Ljpx7EivcJz4QhiSqTc57cILzl+CRfMv4AN+zYwf8L8iq/tzvZONvVsAqoASiymZO+BvarGypTmKRW955TmKRgYFMwCew7sqQiUNN0u/nzplQFe+q37CSYkrPc8+VTq+k2OA7IkSFAkhrV6Xn99ScUuWWa+YBboGepRt2UcKvLNs9ueVcepqa6J1//+9aoAEvDowOxWty1QwsN3YVj3xynS9CdRL6zfOsytL6wViGa0VE2zYowpGQFTMlJUHqYhH3hXdD1Y8o0EHp7ZN7VOCXaPu1Z6sKvLuk+CkkwL15q3YsZsNoVbboGlSxVMMV1deYOyb3KFnCqoVxVWSmbeLBJpzIyzalCEYErcn+/V+PCtMLqm00IhGx6G008X1DGIuhemNeqSKckT58nL7bF3A9uwsW9on6oNdMrMU4AKmJIA+UZGuXLoYUKXcKol30g/yaSmSeVNqT6RiCUcVV2jgpJ06yLiWXG+tdXZdYGkwhpL2EhUl+/iFHnvxBWY0lPVVDomyXhSpUG7fSWmaQaCkp7hnupl34yQKXm8+3H191BuqKKK335R0oF5gauNVt5iTX0oB8WUZMy3viWwR4yBkqSTKSkUC4oqDfKUgD2hVlKDAMIbXfXvWPU0VVeMCvnGiylxhbKZKFDSxn8bS9ixotvRyGFZ7Cqe50QAPlO8gWXYEpsOCt0JOvpnV1W+0ZkSqDpTUq7ZXFBEMbpKDduqicbJJ9sTo55iWleAnUymk27O+Z8lanwrZUrW7FwDQGd7p/JUBKUEB2XfVMsD5Re62bXS61UtuENOUBLGTxIUMi24ElDStSnO9txcAGYku5iJOKi/+IW4htZ1aXVPNKYsTpGhvYNsPPkycYer0rcMP1/JQHZAsQ8SrEGNs28qZEoe32yDEhPTUbDPHVFrmbiP18yZ4OjIUrA8JS5QIuGhAiW5aA1MD1aMgZJ6J1PSM9yjdnmydLzfxDmSvhbgDUpM0wwl37yVnhJ9l2uaZu1Tgj1C2kxijTYoMU340T0plptnsymb4tZbhc/1BYSxdCZph+Ffgr5VazMlCToS/BkYkWUQz5CgpAKmxD2uQZ4SffKL+r3DGl29jI0//KE9rnpF2LoirOA0tpFy+BorBSXST3LstGNtH03B3+gaVKekFm0a9NBBSaUbF90vAdUDJXLnvn1ge2RQsmABxK0Mj2RrN0+1zeZKYxmnnSaIzMnTvEFJwTKn3/DKeeKOJ5+EA6XH36/UvGRJ6mJ1jvlPgpLdg7vVcR/p/DgSeTGTz5SU+NcL9ulRSS0T9/FavVrsbRoaROWEL1wj1q+hBBSstqV54tzOxzBjcfqtaaH1vPeOOukGxkBJCVMi/STj6sepx8rJN3pmSpTwkg/yxbwCRV4pwQe7TklQ9k3RLJIpVC4X+EVY6nTJErj15+JinzZeLPLf+IYAF/PmiYUTYDUiVXgxqx0LowR9y5/IliTobNxqy2QjLuc/MACy47VkSiQoCcGUGIbhAIVB2TdyJ+n3vKAIa3T1yNB2jKubKXmJYwGnr7HSSV/6SRZPXRzYot1LvpHnlVzcqgI2A0LPwKg0i8NPvqkWKKmEKUmRZmjWKgDWTIO515mcfNxVojAaLlAqT8d4nF+ds5RtpPjRI4ezhVnCHf3kkyXvL2uV/GnLnxzsgS7dGIah2M18vwAlsg8ZVIEp8ZOQQ8QLb77AcH6YSU2TlO9Hfnc9Kq1l4j5e990n7j/vPDj/fJj6nGBptteNYy6bOJvldNLNVfHb2bGim4GLLgCg5ZQzIv+2gxFjoMRldJV+kolNE8vu2JV8UyEo8WJKdIDiZkr6M6NDvtH/7sv0qYXwYDIlMpKtghlYMLsNL+xgGE5Qoi+MalGKOz0lhQKs31RFRkp2Bp482S4xL+WbCqq6Bsk3ekRlAsLKNx4Z2o5x1RelRBFWcRzxuMPOU12mJGRKsHy+9ArVminR66ks+d2Siip6urNvFChpro58s70/OlOSfvlpfnSyfbsYg2svNEm/ItiBbEbMi4kCGP/xH7B8Oduf6eby5VI6NXgQkbnYf+eDJe8vf+v3V3zfwR7ooERPgf3gewUokVlJMPK5aCTyjZRuzuw4Ux0/L1BSaS0TP1Dy3vcCa9bQ8MTTAPQsOoZt8U4e52x2xFMsXQrTT0oxMEGsJ2MpwaM03EZXaa6a1DSp7I59pPKNl9FV/9udEvyWGF09fmNdvE5N9nqlyYPNlIAtVxjZNkeSjYzPfx5eMY6miMF0dvCf/7JLLYxqIU84QUk8DpNnVEebBkpNrhCJKQEnOAqSb2TUx+sjMzxhja6pFPzHf9i33YBDAoJEQVTf/dL/HistPioqqeiaLWR5dfergGBKvHp8yAgyusqoJShJ96W5/tHr1e1KK3qWMCWDVWZKBirwlEwQQESPQgw2CGxA9p67xPsVEU7os89m3UDKwa49hJBwjEecvpJ0X5qntj6lbuvjJsegOT7eIR+aB8QHS4a5IdEwYnZzJNk3EpSc1XEW4xrEda63NpCxYOICDJzfM0wtE/147dkDK1aI+y86ditccQWNWTEO4xa10N3tsNgB9vUt177RFmOgxM2UWPLNxMaJJc3p3KGkjSoaXSVTEjfixK1MkoPpKZHvq5iSvPfiLH+zDkqqRYdHmRAkKJk2vs1z9/6Zz8BrW5rZmhQXevxlu/CWF1NiGGKBbZtQgxolOiipNlPiGvtKTJw6+PWpzK/i+OPF/zNnUgI4FCAoAu3tnHppR4l0XQlTsm7POrKFLG31bXS2dwa2lw8qMy+jlkbXalX0lDvtA7kDZAvZ6hldWys3ui5YeDox92JahPmdx4Npkr1VtBVI1jWoejxudu0RzqWIQcumtSKv3IquvV0KXMiQ4ybZhkS+3SkfDjkrk1ZjI1Fp9k2ukOOpLQJUndVxlsoS8mJKUm0pLjv6Msd9F8y7oGzGl368/vhHUfHgX1PLmHFaB6xZQ6MgAhnOD+sJiyokEzrGlIzScDMlXvJNtpClUCwtB14L+cbLn/FWdQkumkVfN7v8zRLE1cXqFIgaaUSZEKSBbMaEce76amr3nkpB8mQh4Wy5dzU9Vs2g9GabKbn2WvHnqaeKBbamNUogMlNSDpQkYgnHrqsS1kqeZ12bB8q1KFEp2YsXl3rlFCAoAMcei5euVgkokc3tFk9djGEYwfLNW8yUVKsy7LiGceq49gz1KImiakbXCuSbVFuKb5z7TXU7XoSl90Lqhz+FBx4gt3E9AHWN9qLnrn+4l0msxEK2WhbOgokLiOE9bnJhn9be7nicQj1k7Tm4Ghu2SuXFldtXMpgbZHzDeI6eerRKb/Yzuh4x+QjAluMe2PgAL775YuBn6MfrvvuEgf+r265W9ZgaLfV0aND7M8dAySiPIKZEP7m9dmNeNTyihJfR1avDqwROuWJOXZi1lm9ATPZ+bJB8ngRx1dx1VsKUtNW3sWQJnnQlwLTzBSg5PLuGm28W9/3uLvGdp8+yQcmaNcJTUqmh2JNh8JJvqsyUGIbhOAaVsFZyklq3qb9cixLWrwfa0jQeUZrK6GBKjjvO87MqmfR1PwnY50nUMvMyaml0rVZl2JgRU7vtnuEexZTIOiOVhl7VVYL/KCDt48d+XP39xmE3sWQV8M1vwrXXkrWAR9I1J8jr89FH4cILUb6S3B9sUJJqS/G9C76nbuvjJr0mjYYTlMTjdgYOVGdurFS+kdLNGR1nOI6dF1MCtn/mI8d8hEuPvJSCWeDyuy/nwY0P+kp9EpTETMGUHMnLjhL+DRZTMnTAG5TIDbhc+0ZbjIESP6akcaLj5PbatddSvtEnTP39dw3uAmoo32i/+UDugD9T4pJvquUngYiekqwNSgBPuhLAONY2u954o5gY16wSYzxjVoYjjoDWVhgchJdfrqzEvGfvv3zeWsGx2RH977CekrpgT4n7/orkG6kxJ51GV48WJTyybxlc18GdLaWpjCVMiUdUxJRomTdAYPaN1+7/YDIl4N8QL2pIX8nOgZ1qfhopU6JXdZU9cKKMhz4fTP7Qx8VxLhSgu9sGJR7vl0rBO98pGjiunix8JYO/fYjlj5oK+F536nWKOfj1Jb9W4yYX9jc3OuWa556DWZNsUPJWyje6nwSwmRIPTwnY8+eExgn88N0/pLmumXV71nHBHRf4pgjLc/u1l5Ps7y3yucQPnd9dgpKEd9uNMaZklIfOlJim6TC6xoyYurA8mZJsdeQbL6OrvqgkYgk1ocrc/VrJN4lYQn2vQFDikm+qCkoqZEoC45hjAFjEa/TsyvJXfwXkxRgbdRnicVEADIRxLKp8467dIRmG/f/8HwKYALzjHbYWUmWmBJxAdiTyjRuUuFuUpPvSrO64GmLeqYw56xwOw5SErehqmiYvbhe0tswciSrflHhKapwSDNWpDCt9Jev2CMYtEUs4mIFKQq/q2r2/G4gGSvRN0YEtGwTFaEXOWlXqTH+z6fjx8Kn/OZ1Bmmgf3slnzl3rkAqPnyGkne0Dtt+kNyOulfVrnExJsehiSqqwYauEKSkUC/xpy58AG5SUZUqG7QaDmULGAdL9zNESlGz+fy/yn/wDF+TvFxepZdppLIj/h8l7fuYYKBnlIXeH+WKeTCHj8JRAMGKuVpn5ckyJ/j0laKqVfAPOXaxfhpFbvnmrmBKp1UqXu2/Mng3t7STJsYjXGBxEaNHYQFBWv16xIrp841W7Y1ohTdt39YYwmhYyAk+J37GvlnxT32Zn30jjr848rdvVhWqqYYVu4sylRRn4uiJOH40WUZmS7z3zPTWxX/SLi1i2clnFKcEyas2UVCskU/LaHuFNmto8tcSvUklIcNfd2w1EGw89A+9A12uOk18xJXnvnbqMuYvqeRyxeF/LTUwv2sUNj50qGDY9rVoe/91b20km7VMrna6BfFMBU7J652r6Mn201bcpiTEo+wacTEmQyVePbFac7x/97eX8PTeJO3/yE9i8GZYvp/G+B3y/e76YV0BrLPtmlIaOFvsz/Q5PCRCYgVOLMvNeTIn+PeVJWyumRH/vt0y+sSaVXDHnaTDWIzRTYhhkDhdsyWKsDByLKRnMiDE/7TRx94oV0eUbr9odC2NdGO48ZamFRGVKErVnSiRrmDMGkEWpFy92enMAGocWgOmfyphbLxbPurp6qPPuz6KfY6ZXLrcW6b40X3joC+q23EH2DomxC82UuADmIQNKGpygZKTSjQzpK9ncuxmAZCzaeKh2E7OmOU5+BUoagnfiXV2wH3HdXstSNtPBxwrL2LDB9g3poET6Lxhu593vhiOPFDfdoKQac2Ml8uI96+4B4ITpJyjTf2impHF8KHO0uXUrWYsBkdVyTQyhGVvadUOqEwhm92GMKRm1EY/F1QnYn+0vZUrqnCmyeoxUvvEyuvpVR3WfQLXylIAGxHJD5eWbGjIlUJ4+DQ1KgN0zbF8JoJiSwWEx/qeI/m6sWwf7+i35JhFugkul4O//3nnf8ZcuKH2i1EIkU5LNio52ZeJgeErkOVakAAnxndavFzhKj/5tKXjzRHXbwHCYOHNdolhcXdJ/7OT5VDSLJb2f3OG3g5ReiEwh40i/NU1TFfQLYkpq3fumWqFAye7agJKtfaLacFSQpiS4Ca2O1JpcnVhW6hqCr52FLWk+xK/V7ThFlnINhzenFShZu2utKnanFvah8Vx6qc3ebd361ss3y1Yu42tPfA2Ax7ofU16Qctk3OlMizdEy28pxXVkO+j0//h/1WglKDEx2P2OzKUEsj5RudJl+tMXbHpSA0+yqe0qgtvKNPCnyxbyaVH3lG5dT+mDJN36l9JV8U0NPCZSnT6OAkqbTXaDEYkrMmBjzSZNs78TaN0SWg5wQw8QRRzhvP7M1BdOn23dYecppUix/oRVTpsqGYEtCeUpGKN84jrHlKzlwADZudD5vzfo+mLJW3f7iO77oMHHmNol84bpGf7Cu/55yu1G9XLuMuBFn4SRbGtJ9WY4y9wGektE6KbtDLrgSPFQLlEj5ptIKtw42QUt9yy69KdT7TR/oIo5TBkxQYPrgBuZNmEdzXTPD+WHW7xVG8V19VnsAs52LLrJBSQlTkmPEEUW+keXiZZiYygsSNvtGAs8lxy/h8mMuB+Azp3xGXFeag77xO19Wr5WgJI/oKaS+u3WeF8xCyfylF04bcfuMGsUYKMFe8N/sf1MdRCnfBCHmask3YNPN5eQbGQdDvhnMDZZlSmoh38SMmFpUy+1UpFYrdyRBMeFsHZSYxBDjnzPtBe2004DjlnHfzh8DsGzVstDlwWV7m4svFvjjuT9lMHeJbCl+9Svo7mYZS8T88pcx9psWkIrYKbhW8o3OGpIcIGmdnqtXO5/34Ja7oG7Y8To9cm8IFFPX7K9Z18XrSMREG9NyoCTVlnIYRWWa6PyJ9kSsSziO3itBTMlBMLpWI/SOuFB9pkTGiEAJKPkg294a7v08NE/TYhJjRoxjpgq5Vdan2XdALOxnn9pOS4sLlLz4inqPxl/e6V1cJ0Lo8345eTGoUF6QpyRbyKo1RAdVsiFhMp4scdDntEstWRCA5FpjKbNOs68PB9PsAlWj3eQKY6AEsJkSafhqTDSqkzIIMY9YvtGAh2RI/JiSt0K+2Te0z9fDUktPCYRriJXJZxT1H4Yp4cgjIRZjMnt46jc7eOLRUvns8JPScNHVYIjfre96yoVMaTz5ZHjf+0Smj1EoiFSDD36QNClHhk4vYhe1a30NmJIKpYnmOus8q+/nPe8Rf7pByarCHeIphjgHdJ2aXbvI9Ypzoq4lGCiGLTVfKBZU1tkd779DpdcmYglVB0QHr35MSV2szqHZHypMidxFy6gaU9I63XF7xKDECgkKy76fVVHNjNsr7ZYrrldoQ/eV5AsFMoZY2D94Ubt6OUC+O82EpT9X79GYw7u4ToSQ82vRLDrOJ68I8oIEMSWSJTEwHEZ9R6Vil4Ne+nUwDc4tPsq8WDen3rrEYUTX5wf3pk6WvhgDJaM8JFPyRu8bgO0nAX+ja66QUyfrSOUbsM2ufkyJ2yl9MOQbKWV5fZ47pbPqoCREQywp3UDIi6yxEQ47DIDTm1fTmSrtPTTp8C6V6iojbHlwOQemUnDttXAMIk2ycOQxYBi88IIzQ2c/YiLavq46TIl+f6XHox5xno2bPMC554r7VLZnOs22P/6KfeMeBeDcqR8GXA38XnpJ7ebqksHfIayZcGPPRjKFDI2JRv7m6L9xsCZeGTi6R0VnSvQqsHAIgRIXUzK1eWSF02RUnSmxQo6/Dgh9Y8kSjO5uXp50NgB7Xt2tHlKgZOdL/Ooe+1r/wHucoKT5zS4mHLDZjKYc3sV1IkQUeTHVlmLphUvVbb3gm2Rws4VsiSFbmlzHNYxzgBpHUcAFCxwVkRUoKSTZvuCdPLU5VWJENwzDZpp9mJLRWjgNxkAJUMqUSOkG/I2u+u1K5ZuYEVMUtlwYwzIl1QYBerhBSTKeVN9ThpsdeiuYEglKWpIt4UvcLxYSDqtXK+BXMAsqy+eCmS1uTCL6emTKH2MdlJxzDpzZLnwX6+qO5sAB+D//x/l8yZSkWsozJeUa8oHznKkfDu+F0SOWF+fZrPn9+lDBbbfB7Nn879cvBcNk6uYFnDLnKMBVa+Sll+w6FbHgRSksKHl518uAKMnt3pF6gRK5U0/EEiW6uT6Oh5rRVcaolW+siFq2nlSKrg+L1PmFL94BA2LhlKDkmTdW8fkrRSNGI9fAXb+2ih7OEOv1q/n5jNemicYcpcV1IkYynlSG0zC+kiuOuUL9veYTa5THqrW+Vb2Pmy3RTa56OJiSVAr++q/VY9mkdf4XklxwQWmRSBl+1Y7H5JtDJCRqlKBEmlzBX76RE7Huf6gk3GnBYTwlDYmGqtQp8As3KPGSp9xArCF+8JmSKH4SFTooiZfKZ527BrjlXmRGLDHZ12N7cJEv07Q9JbNmCan8L6cIiuFX647hvPPgpZegqcne+EimZGIiGlPid77Vb95m//3TOyrS1YvD4lqY0TEg681R2JLGvPoaME3usO776poNTI+Jxd/BlKxaZTMlZXbKYUHJK7uEX+DIKUeWPOY1+XrVKJHx58CUVAuUyKquMt4yUALMv/JsuphPc6Gf/P/7JQBHTTmKmBGjv7ibWyadAcC04WFWXLWMdBqSSZg6FU7iBSbqoCRPaXGdiGEYRqQMHP38mzdhnvo7ZsRsX4krA8dtcpVRsuZMtZixyy8nu/xh8Xchyemn+38fv/lTGl3HQMkojxKmRJNv/A6ubgAdiYvZDUpUSrBrkdflm1qaXMFOg5WgxOvz3PdVe9cZhSmJG/HwLeElKHn6aep32FSxovwXLOBvX4ox32p+/IvfwJI15Xddvb0iUwVE51yA2b0ClDyw/Wieflrc9+lPww03iL/rJoWvVSLHO27EHVUuVaTT1D/znLrZUKGunh0Qk9Xk1ADjxgnT/wK6MMwia6fA6mmifPyHXzVp2SfG38GUPP98ZKakXFXXV3YLUHLU5KNKHvMqNe9Vo0SGLkMeKkZX9066WqBEr+oKVfSUBIBCvzjy6Bh3NIoMluEbl6r3n1U3F4AnO8UuYfwQ3Gxew9ZnxHndMTPPt/gyE7RpoinZXFpcp4KIkoGj+9Lc4yg3TWGZkhKg3d0t/j/rLPparecWkqqukud395k/lXwzSgunwRgoAewDtPuAWKS85JsSpmSEJlcZ7lolSr4JYEpqaXIFe7KR4+EFSmou34RgSu589U4AtvRt8e0TURKvChqYzZupm2sDDeUrSaXY8L5/ZMCaVxbsBW6+ueyuS679EycK6wq7dxPbJdKKX8ZeTL/zHbHQA+wYCl/VVfbUKJgF79/a1aUacQHUF6hIVz/QK86z9qliR7V4MXSxABODm63SJOdsgnHDcVpSYsFQTMlNN8HGjTZTsiUYEEWVb7yYEk/55s+NKdF20k11TVXd5cq0YIg+Hn5G5UqYklgM3jjr42Spo+XV52HVKgCOR2SiPNYpntc+LNKG5yPO64/ll7GQ16F+oir+NjQ8CDLrbQRRCVNSH68v2aRKs6s7A0cvnKaHQ74BG5R0drL6ZTG2cZJqHvGKkvewYky+OUTCbfrRQYmf0XWk6cAyfOWbAE9JLU2uUCrfhGFKDranJN2X5kfP/0jd9usT4XxRGr74RXXTKJrUWwu5vtPp6YvTa/2c8cNw1/aALYn21iCkGwDWCj/JRuYyiH3sCgXb7Lpt0GJKyoCSdF+aG5+9Ud32/K0LFgggYkVDnsi6eiYDA3vFtdA2UUxeixfDNlJ87/Qp3HySeN6D8+GLH3ovzdPFrDiYHRQDYFWPU0zJ8ysDmZowoCRXyKk6FUdO9pBvEh7yTRBTogH6QwWUtNa3Krl2Wsu0qtaX0H0lFRdPczFdlYASgOPOn8xdWP6J738ffv5zTlwu2MYXLezUPiyU1ckHNsP69VyxTtTt+OL7ziNbFJ/7TxfAsoe/HemzvSJKVVc/2Z10mnHDguVxMyVSvpnQ4GJKdIbGNB2gZNUa8Rsbk0mCTgM/lmcs++YQCTeV5eUp8TO6jlRKcTflC8OU1Fy+CQFKSjwlB5kpCdsnwvmi0gY1CpRY459OQ/GJ+xm21rPxw/DQvz1VVgWRfhJFqFigZC3HOJ4Xj8OJJ0JLC/RanpJy8k1QHQQVqRT1k+1db33Bo2lNmejqArJ2SjBYaldbmi/85U6k/cA04AcL71WL0UB2AJ5/Xkyg2LUU6vJmIFMTZtLv2tdFrpijJdnC7HGzSx732hGGZUoOFaNrzIip3Xa1pBsZOigJlS2jRbmU4CjyDcBZZ8FSrgHAvOMO+OhHOWGTOMeK1krVPmydhkuWwOGH05LpYWsb/Gj+L9X7mAZc0/X98JKuT1Qi3zjmQavoWfuzAlj1Pvx7x2ukfOPHlAznh2HPHqELGwbMmsWaVwQoaW4MBnzljK5j8s0ojxKmpMlDvnEzJdWSb1xN+fyYEv07Hiz5RiJ7Lzborc6+8avyqfeJKH1RabEmyS7ISWXzszuY0yAKcxhFg5YsnGY+VVYF0TNvAJVHO/uiY2T1bVnQlVmzYN482+hajikJ0xMDoGHQZnvqz3tXZF391VeBjDjPBrM2U5KcsBbTNVMUDZM920SRtMHcIPzcrhMh0xbrTCOQqQkDSpR0M/lIT4YgKCXYa5E9FOUbsBeRUPV4IsRI5JtqGl1BnGs7mudjovAvi3c6nzP+kivgwgsdvQ82TADTcG1QMEOl8QdFpfIN4Ch6Ns66LPf/5g4Hc6h3CPb9XMmSzJiBmaznldfE2I5rLgNKfDZ1A7kx+eaQCDdqdHhKymTfVIspUaAkjKfkIMk3fre97qsVU/LyriORyqcAACAASURBVJc9dzyptpSjXoNeG8A3rGJNaMWa6pvEJC/B4KKtD9Jj/ZTEcAsxE97BU2VVED9QcvxHj5bVt+nutnHCvHl2SnA5pkT2xJCFwjx/a08P9bv2qZsNQ9Frbb/6KoopkTuquXPhiAMJXHM+8SIselg0SxsY6oO77xYPxGK2fPMXZwYyNWFAicq88ZBuIDgl2GtRPBSNrstWLmPzftE074END4SuMBwmqiHfVAuUxONw8VEb0KHntAGYqiV3tU+ZDZ/5jON1C/aVlBYibhK8QQkRkZgSt3yjsbLt1qnZm3Qyh75GV12S1KSbTZtg/4AY2/bW4LH1MoDDmHxzyEQlTInqCTNCT4nb6BqmId/Bkm+CPq/W8s0bPaKQ3W2rbvM0du4f3s/OQbGNuvtDd6sqn2VD9uh45zsBqC+KKVCO/4Tn/kiPtW7lhydSIMY8NpGKe2S8aOHwlBQK8IpV9vqYY2T1bcf6HIUpAdETo/u6bpZ/bLn3b33hBYenpH73PqKGDkpk6mAsBu9q7+c47ecbxRhL74X5//1bAIbNLAUDkVq0eTO5Ky4DIHnk4sDPCwVKZObNlNLMG/Bm1P6cjK5BfVWqEXpV16pn30SUgwBmnbOAgmtZWrzD/ru9oR0WLnQwnqk+uPlewwbtRVj6YD2p1pmRP1+PSpgSdX4tsJnccRYo2d+Agzksa3TNDTlAydNPA3EBSuoT4eQbP6PrWPG0UR5BnhK9Y64e1ZJvfJkSt3yTPPjyjbrt0Sm3lvJNui+tsk3A29i5aodw588eN5uLF10czJC4I5WCf/onAOp7xUWayWcEmHjwQWVynTVlIms5GoDtv3kq8C0dnpKNG2FoSKThzJvn+fwoTIn62m0pzu482/u3Pvec8scANOyMDkpeew3IivNMrz1y0vgu+0kPf4PjHtvEkr55tOy2wdTgnJnwf/8vpFLkUmL3XW5RClNmPijzBoKZkj8Ho2soP9EIQmdK/DrZ+kW1mRKAE96X4mpuIY8AGHniHHPMu9Tj7Q3tJYxnnjjPrrqVVR/rZvllD9L9XwmWPJOBLVsif74ekYyu7nk7lVK7EMWUNMUE8l++HNLpsinBDvmmo4NnnkGBknJj62UAB7uru/v+0RRjoITg7JswdUpGEpUUTxsNTEkt5ZswJtYX33wRgBOmn1DZh5x3HkybRn1W0AuZQgZefBH27qVngjjmC2a1k579DgDW3OwPSvTCaakUyuTKkUc6pCI9yjElVqfy8GVGnnvOmRKs1WAJE/k8vP46JUwJwKJ4F5vkZu7193HE7A445RTq8zZtPnjhBdAqrqOwdSrKTfqZfEYdc1/5Jl55SvChYHQN6yeqNB7vtsH/ZXddFkkaqgUoOf54uCO5hE66OZvlzKGb/Q0fVY8XpVFd60p8woRufsISir0pzl5wHqkZVvfol1+O/Pl6lJVvtIu0hCnJZmGnYHLHXS5Yzf11RcwLLoBzzsHs6KBn35uAf/E0t3yjMyVhQYn+3ZetXMZLO4TketW9V1VVBqxmjIESnCxEIpZwmMn8ysyrlOAqGV2jlJmvNVPi1+dGj7p4XWAH1pFEmIn4he0vAHDijBMr+5BEAj7yEWf2zR//CEDvMYcDglY94ioBSsa/9hTr1nm/VV8fDFpZkakUdrOYY47xfgFOpsTs63NkBWmdyunoCFGY1TQFU6KnBO8fDCULydi4EXI5qDecnhKAptyr9MpToreT46ek4Re/wACaLevKwP/erhBUEFOhR7niaa/vfZ2CWaC9ob2kJLoMz4quf0ZMSSg/UYWR7kvzhYe/oG6HSqvXopx8U8n47twp1vNtpHics0mT4rY7N6rHr73vWnsxtXTReIcYCwXgjxbsZmhQ4rMDCMwAdF2kmYfF3KGA7quviguqvZ32sy4AoLfBNvBSLNKTFcUH/crMZwtZCpuFjH1gSqfY64QEJe6sNLcMGPVYH8wYAyU4mZIJjRMcLn9fo2u2xnVKXLs4/XMOttHV7zfq91cTlKTaUtz0npvU7ZgRK5mIR8yUAHzsY3b2Te8eBUp6For6G+317cy9QoCS41nJVz8/6MleyNsTJogy8gqUyMnRI2bNgsG4YEoM04T+fvVeeifhYtG/MKucS7e/sA127FD+GLBSnTdvDjkQdk25zuml8s3uISHfJAYmQK6ZxU22ia/FKoQ7GC8qE1+1mJJymTcwwpTgQ8ToWtZPVGGMVBoqVzwtakowWGnperSlMc/6V3WzSOliKmsDqWvkKMt/FAaUBOwAfDMAPS7SzH/fBmjnl2ytvXgx42TxNG2KPFAHWaudmNtTos/vma3dALzU20mxCBOmhGRKXN+91jJgNWMMlOBkSnTpBsobXUcqpfhWdHVNmDEjpiaB0SDfuO+v9gR/zYnXcMZs0e/iX8/6V8dEvH94P137xOx1wowRgJKjj6a+URz7zIN/gGefBaC3Q2T1jG8cD7Nnk52aIkGB3fc/58le+NUoCWJKEgmYPqeBYaxxs3wlHqVUPAuz6nPpP5wiysvXp+wSj/UFIoGS114T/8/vsOQby6XPwADdRVGvxuwRFVz11OpmC5QMNMSUiS+s0bEcKCmXeQMVeErqDi2mREagn6jCGKk0VO3iaeCRtT+hfNdued3J6zA0KCmzA/BkSkwTbryx5CIdjgu5Wc2DGiiRNWZ6NVAizfQJ6gL9eRJUPLZJ1OjpmFuZp6TWMmA1YwyUIC4uecB0kyuUTwmuutHVrzIgtoRz0I2uPqBE/+216Fr87vnvBlA6qIyV21cC0DGuo+R4RY36meJiz9x3j5hojjySnoTQdNob2sEwyJ8s2JJ3IHwlbvbCkQ48MCC0EAhkSsDbV+JRSqWkMKt7Lj3RFKDETC1Sz2nIY+vRIWLHC2nOZjknTREMiWJKNmzgDcuPW+g5DIDz/jbFk1cIo6FiSv7x02p1CFs8qywo2e3fiE+Gl6EvaFE81LJvahkjlYbKFU+rZHzdWfux3gUYBC+mEpSUMCWvvSbMUn7xxBOBOwDH70un4f774ZJL4LvfLXmrTJ1g8tS8/ZI1Zx17rGrIt6O+kaIl4OyxpvD2hvElLGAillBd2YfqgBkzeOgJ8b6TpkZkSixAlWpL8fnTPq8er6YMWO0YAyWIjpBywdfTgeHgl5n3SwkG+0TTS6LXIkKDkhrJNzLOmXMOAI91P+agHl94U/hJRsSSWFE/W+z+M6Y1eb3jHfRmBGshDWjpDicoASd74QAlMhV42jSYPDnws70ycFIp+NSnnM/77ned6cRuNuVkBCjpm2Av3pHkm1tu4Ya7Z7Occ/jEfwp2ajA3KMa8SzO5WkxJsQjvvGMJ25/ppvlwsQAMnnOGertqMSVSvvFLB4bo8o0O6A8Fo2utYyTSUDmjayUpweDwsLJ5bYpbLwoGTiWgpLNT6KiZjL1BcMeWLfCFL5Ter+0A1MK+bq2gJd/7XrjzTlFd9eKL7dfEYgxfIsrjNyQaBJviwZTkGob4W+MWAFY1CFZzYrNTupGhwHYCdjR28thj4v6HH63MUwKwYIJIUz55xslVlQGrHWOgxAop4fjJN7UqM6/kmzJG12Url6kuxt988ps1dU5XIt/UApScMOMEWpOt9Az3sHrHanX/i9uFn+TE6RWaXLVINlvyjaXvcttt9GwSBgs5mYx7jwAlp/M0MYQJRWcvHDVKQvhJZPhl4NS71soWV50jnU0xKHIiAqRNPMn+zNBMSTqN+YlPELOynVqzdtbTYHZQMCVy3uydox4rFOD1wRQtk0UtCN2DUg2m5EDuAJt6NgHVlW/087QSz8OfY1QqDcnjly/m1ZjDyOQb9Z202j7lgFMJKInFROYb2FKqFdufT/PyV39F/rQzYNs2mDLFfjAWc7RmUCz5CyucuwDDgB/+EM48U9z+138lc7yQauvj9eJ99+0Tk8QRR6guwQBPNx4v3rtRZN64Ta4yFKhIwCMbO9X9ZkyMbXYoevaN7CF12qzTRiVDImMMlFghTwLZaVKGPLj5Yp580aYCa1anxEO+qXUBJXe4AYbfb6y1fJOIJTijQ+zAl3cvV/dLUFIVpmRYHNOMzNwtFuntFmk20oA29bxjyNa3MI4+juQVDFdbGYen5OmnxY059gLuF361Sp54Qvwv59U773S+LpVStd84nNdpo59csonpJx9u/64C4UDJz38ujLZWNOZsCX8gO+DJlIANyiRbJq8HqA5Tsm7POkxMJjZOZErzlJLHZUTtEiw3Gcl4sqqN7d6OoW9K9GNYDVDijiDgpIMSdSp7ZOA8+fFlTDm5g6O+fimJN7cw1DJJlAH44AfFEz7/eUdrBsWUJHBG0TJ1v8uqn7J6tZPhlizJwoXQ0EB9op6EKc7Tue8ZRy5ez4FGcY66Ta7ydxgFmynpptN+0Mq+GeyL3vtm/T4BSg6beFjga9/qGAMlCBZiY4+g+X784o8dLIRujNNRZ7XlmyCj68F2TseMmIPmfqvkG4BzOoWE8+gbjwKiH4/83SPKvLGifkAc04w28cgy86p+QCJB8oxTAfhbfsK5h6cdbWXkDu3ktcvg9tvFjVtvLZvL68WU9PeLeRJEo1SARx5x1lfLZu15T0o3HH8CDfU2pbK3kfLyzZ49FL77fcddBnZGTX+2n0LXerot3BTbL0CJ7OGTStk+p2ozJbp0EwQePCu6hmBK3u5+kmpEMp5UXjz9GIbNvqpWzLQKtw7qWfAus+v259Oc/tOriWPPo3UDPWzfDhx3nLhjh1Y6Fo1tcP8MicjPOkvcfuIJMnrvG81PAgLDFIfEdX7++wbIzlmo5pj2eidTIg3su7Y1qM/2AiWTJ0bvfSOZkjFQMsqjHAvhcEJrB7hq8o1fQz6NKXkrnNP673qr5BuAd84RlMATm58gX8wrk2tne2eJ/6eSqJ8gduGKKcF2yUv5BhDVWYHPciN/XNfB0H/ZgCOdhpmkWXSDfR5hmv65vFbMnWszJQfeFKjj6aeFNNLZCeefD0ccIcod3Huv/bo//EE0D506Fc5tEaBk+6yT+d3rv1PPOfYTsGzWHmG89QrThKuvJr5vD9uYrgx4RQzyWQHGBrIDvPnm6+TiUGck2PTSzJIePpIt0zMwqsGUrNi6AhBm5qCIzJRYk3WM2Kis0XAohWEYnsewFkxJUDQ1wURrKvDLwNnxZJcDkAAkKLDzqQ1wuMUwrl/vfF/526ZobIaOyE88UcwLe/YwvFv0YXAwJYtFm4XHH4fiAXGdH3NKL40nHck+a8+X6bXf22Fgz9sszTv/tlMZf42EGNtJ7dF63+SLeTbuExvvMVAyyqMcCxEzYp7NjWoh35im6cmU1LKAkl+EASW1lm8AFk8VRrH+bD8rt6+0Ta5VYEkA6seJ2SybsBbleIz9jeJvRa2m03Dffeo1cYo0fEYAjr4+UTxtAV0YYXJ5tWhqgkKz2EHt3yq2eFK6kXL1Bz4g/tclnJ/+VPx/+eVwekKAkkeb5/Evy/9FPacYg2sugvRrz5bWhkqn4Utfgrvvxqyr40Lu40t8C4AXOIEDWQHUBnp2sqkg0oE7xs2mY3a8pIfPSJgSybRlC1mHNLps5TJufvFmAH6+5ueB/qlAT4nH5y9/Q8iAfdk+z55KYxEtRgMogYAMnK4uGB5m5vSCq0a0KE8/6dT5cJi1SL/+uqb/6PKNdd9VVzkReTIJ7xB+s0xasJL1ifoSUPLznwPD4jofKu4nduQRKiV4Z7fNlDgM7Dlbvpl3Tqcy/n74I5Vl32zu3UyumKMh0TCq/SQwBkpCsRByd6VfeNWSb/Q6JXKHB6WLfK0KKPlFFFASM2Iqha3aEY/FObvzbEBIOMrkWmklV1eoirp/91FYvpz9r69WJe4VU+JRPMQoCsAhJ8F9rR47encur0fEJ1pMyTbBlDxuVf2WzLAEJX/8o5B29uyB3/9e3Pfxv8kwp19MgPflx5WC6xj8v18876gN9eTHLX74298GoO+si3iJ4/gVlwJwPKvonCrO9/7N65XJdc4E7x4+iikZgacE7Gsrqn/KKyXY7/PTfWl+8OwP1O3RXNXyUAmvAmphK/pWM0pAybRpopphsQhr1zLlO1/AAMUI5olzDUv5xk9TmPOsa7S3F/buVe9ZYha96CIHIk+nYdMscaFmdm4DoL5g2BXgFi9maAh+8xtg2KpVMtwLRxyhmJJNr9hMidbDj7q82IAO1cHM02Yr429dY2V1SqR0s2BC6Xo32mJ0f7uDEGFYCK8CarXofaNPrF7pirUooOQX/7+9M4+Sqrzz/reW7upuaHqxZS2g2RQRMYh7eCNoBBI1Okk8o2PUnJBX8QQH4xzHmPgqZsbAmXFi3mSMiungzGjUSSRxeR0DLsFhQFEWgxCBFhoooEGgqe6G6uruquf949Zz695bVV23qu9Sy/dzTp+u5Vbd20/f5Xu/v+XJJXxT5a+yNWlwbrMSwnm37V3rnRIpCqsqgDlzcLIx2aBOPfDTNA+JQREc8iR4fe27uvd1Nu8AVI9U7qCin4cRiQAbEykiUpTMmKHknkSjSpuEF15QwjkXXABMP7QavlgfjqMBn+z8X6niOg5s/1VM1VOj4kpcXSuwat9+BWMQwpQvN+P02LPgRwzNiUl0ukN71CTXiQ0TkQ7VKenL3SkJ+ALwJC4S8njKNX8qXeljpjv1YupqWSyka6BWEE6Jx5N0S266CdiyBaKhERfiQ8zBu2h5sA0rPQvx1FPAfQ9Vo2e40q9ImQBKQT3vxxMtGKZNU99bsQIYNw64faVyoJ5KzHNTdfS44raMHAmMGIGVK5WbiWpvwhHtCQPTpqk5JYf21Knb/LlmuqrqfuXG6OSwegQnJa8FZsfWmGtVLPkkAEUJgOwuhFEx98f71Z3DqvBNtD+q5pNoX3cLrRDJ1mbertCNRIqS9/a9p5aJWlF5A2ickkTYTE4nrssnMXZ0AvCq5zqcaggiFAJ86MddHT9R3njwQaQkXgzA0KCynviJk3j/fUVwjB6t5JsAyrlVG8KRebT/dHYLcP31AIBGdGD2R6vxxHyNuBYePP0acG5nstR4ClLj6l4Rw2S04rbbgJrr5ynbdELp5tp1eF9WUTKY6pt0OQm55k/lEr4ppq6WxULBhm+A5PG6RzlndFz9TWzBLHxcPwd3/kMQP/+58va//Avw3lElr+S9XyXzStQeVX4AVVVKoldiHYsWJaacwsWIoAr9SITdDyriBOefj5aWZM+hSIfGKZk0CSdqFDF+ZiSGN95QlnkwEX294QbgoinKjYEI6hNhTYsSQ6IrRUkRMpALYXRKtAfgoMM3mkRXeWGs8Fa4brFpRUmmDrJSkNk9h8i5w8/FmTVnqheeCfUTMtb354qxzf/JHn3jNBXZ0Slx5rharMGm1w7hwAHgZryAUZE9QFOTkqthTLwYgIZm5Q7K2xXWhW60xpMUJb//PbB5MzDeF8KVL92hxr89AJ4Ud+Ly4/OT4rr2/2DhFmA8khU4uzFFta8l/fBhn38yrrsOSmYtgNpDioXdfeyQ2s11Qn36EufB5JQAqRe14LAgllyyRH0/W/7UgImuBlHkRm5WqZNOlAxmQr58SREloRDUjmMJGn7XgjEIYVzCFLnhhuRxtgvKxXrDv+1Sv0MN21dAKe9NiJzdu5OpJ70IYAMuQ08iel11QEl47Zp4Pu7Q5L3LnJLQsTDg96NjmLJvTop04I03gHXrFCfU5wP++Z+BET5lDCNNddBiVpQY8yCLpRwYoCgxhaqYE/9geVfogWfQF2Rt+GagFvNOI//mCm9FxjteuYwQwta4vNfjVfNKAGDamdMyL5wjxlmaOyJpnBJJMAj8+MdobboUQ3EKQ5Y9iIP7Y/gRHlXev/deYEhuIvXMKcp6ApGTKUmukosuAhoakh2zJ8RSk2r9iOHAu61JcT1RKUdsRpu6zCFPEMfHJx2muEeJq0+bF0R9PRQx5fdj6IlEq/kT7dmdkkFU3wDpL2rnNCnt8i8Zc0nW/KkBS4LTiCKnc7NKnYGcEieb08lJ+dTqG61ySOCJK66gXFa7iBQlU8RONTdd3bcqADEtOYXDJEN61VpcoVbvBfYqG7C/8Qv6NLRETknomHLTI8M3UyNH8NZbwP33K88XLlTS0Kq7FZHd0zgMWnIN3/TF+xCLx+iUlBpGK0yb5DrYXArtnXqmbq5uIE82A+XMfHjoQwBA+6l22ysZtAfhG7vfsGxdGZ2SNE2NAAAeD3b8byVZcuafn8V1a+7GVOxEtKoutT+8CUZNVe6EhvSHsWGD8prMJ5EcPKjvU5LJ8Xj/mCYMMV5JvB2PfZg6VXnJK2JoPJlou/2v/4qvnNOGX2Oh2jsKtbXA5ZerfUqORo6hPTFXZdacEoucEgBq5+JZo2ZldTHkHaE8+crHQGZR5GRuVqlj/P8JIQojfJMmDyzu8aEVk1WnRLuIFCVnYZeam651iKPnJC/mxir79zxzkk7Jnv0AgDOuPF+/UEKUoOok4iKODr+yj16MAzh1SmkFUFkJPPRQYrFOZTwj9fp2zrmGbwAlJL0/rGwXRUmJYGw1L38PNp8EKHynJJMoCXWG8KvNv1Kf21nJEOoM4YVPXlCfW9nRNsUpSZdTYmDady7F8/gbeCFw3QGldLWypxP47W9zXn99s7KeepxET48yXY4UERLjTd8hjMbnSM6rE/cqjsefWjUX2UT8eySO4L7FESxYAMzEZvjCHUBdHVqvuhOrdwTh96upKQrz56M2kdq0rVYR4XWBuowibTA5JUB6UbIvrIScxtcP3KME0OczSWHpdPOucsb4/4uJmPqek6JENlDr6krMeG3MA/P5sPLSp3EQQVWUaBfZCSWnZDJacfK48jfoGmeenbRH/ic5BRYA4OzbLklOyHeqBwgEMHz2WbrpITx9ys1HrzeMzminWuF3WV9ybp6+PqXKDgCqTyrKJ1Krz9fLNXwDANuOKK32G6oaUqZRKUQoSkxgTHSVJ+DBVt4A6atv7E4cNYP82zLlzOw+vls9sCR2VTLYWTVhOqdEw6RJwG+aluj+eg+yN0tLh6deOVlVIYoAevClL+nzSYDUm765eBcjcBTxmiHAG29g1x8Vx+Pjj5OFNR1oQBeUs+KCc/bhvvuAeVit/K2zr8TLryi3dldeqVROqsybpzolfx6h/M7kkgD2OiXN9c1ZP689VuTx40ZJarli/P/Jiybg7Pi/9FLy8fTpiWbK2pn92trwfJUSqpOiBJpFfr1mHHo9lahCFPfddABvvQUcCfngSxxPkSlJgSxFiSzh3bS9CtGhyn4Y6Fc2YPtOP7q7lfzY1auBXz+RTHQ9ETkBAKjpBSaFPwUSZxK13+IBgerjnQCAnqH5iRKf16cefx8fUdoGnHXGWUUxtQJFiQmMia5W9SgB9HfqxRS+cbKSwc515ZRTksDjAS6bcQoph3eWZmlpqa1VH9YhjBkzUhcx3vTdmZhp1Hv7bcBXvoJJVwQRCCh3iXv3Ksu8/Y5HbU89um8f5s4Fvj5UESVveecpvROQnPZDZeZMDE04gCcS//oJDZnn8bEjp0SKkmzdXAHDNO+JmwY3wgflykCixKnxl51QJfG45v5AM7PffiWCoRMlSCwy98s+eKYo55P4pztx9dXAFRMOIDFFDU6PTs6/JEXJffcpv7dsASLVynmkqh/AlCl4+23lvSuuAK6+Gpg0JlkSLM8xjRGgFt0IInkjE4sB+zYfR1Ukkehape//lMu+La9bWlFSDFCUmKDGr090tapHCVD44Zu+WF/aMImTlQx2rivFKYlmd0oAoPnqKYgZDx8TzdJS8Plwyq8ks9UhjEceST9ljryjW7fqKG70/155MXEmrqhIzj+2ZYvy+803NXNmtLXB092FmRFlssAH3pmHjz5KnYFdbk/tWdN1L02sz+6UnOo9BZGIMQ3GKemN9eJQlzKDqhmnBEitwGH4xjmMzdN0TolD45+mt2HK/UE8nkyClYmuRvonJPNKAGCq2IHqRHJ5RCj71JEjyvd6PMCNNyqpW7EYEEns84EYgJdegu9Z5SC+6irl8/ImR+uU1MeVc8807FC3wecDJvvbVDHUg2RDTSBHUZJw+P98RJm5nKIEwKOPPorLL78cNTU1qK/PfOdZ6KQ4JRa1mAf0E/IVklMiJ0T7y7G/ZExidbKSwa515eOUAMCFNwRxB1agH4pQEiabpRkJhYDj/cpdVD1O6u/yDASDwBd3PwtPXx9w8cXqhF9A8uHWrYoN/OabwD4knIa2NmDtWnhj/djjnYRtpxSRIQTw6qtIYahBbE/8y+GM2y/dQgGhHh+5OCXGnJQD4QMQEKjyVw04O7CWFFHC8I1jqM3TEv8/OfZ+r9+xUEGanNaU+4OjR5WJLL1epQ9QOo42KHklUpRMww5VHMh9W04Cfu65QH09MHu2Mu9VX7/y91f1AxACd318J8YghCuV+URRV5VwSqJhNW+tsUJxSad7dqjb/PTTwIhIG6qkGNJUlQH5OSXbj25X/i6KEqC3txc33ngj7rrrLjtXYzvGNvOWhm98mj4lBeKUhDpD+N2O36nPB0pidbKSwY515Vx9k+Dss4HfDVuIZrRhDt7F+HgbWpC7UNq9OzkpXx2URmcZo0DxuBLHAfR+NfSiZPt2pWLnoL9ZeXHfPiWwDWB1/Grd51IEUCiE2j/+SbfMhF++kDFXRusWyrySnJwSv94pUZNc68abvqgZq+PolDiH6nT1650SpytvVqzQCxPj/YEM3YwerTiL6aidpXdKpkHjlCTEgQzdJKa8wezZSlNCtSQ4sbwfMcwc2qoel/ImR+sENg5Rkk4fuWmHvt/i1q3J9fbnL0qkWJfnNooSAI888gi+//3v4zzpLRcpxl4ItoVvCsQpcTKJ1W3yqb4BlIt+ZydwEEGsxRwcEMF88lwxZQoQRtIpAQaIAr30EvDZZ0ovlJtu0r2lFSUyg3/o9GblQVubKkr+iHm6z6UIzqNYvQAAIABJREFUoN27MbRH/7+feDyeMVfG6/Hq7pZj8Zi67+STU5JLkquETol7ZMopcTqfZ+FC4JVXlMdnnpnaTFmGboz5JFoaL1Uu2mdDaTU/DTtQY3BK1q1TnmtFyW5MSZYEJ8REP3wYOXuymgc2tHKoOqXC3g4l8auhfpTyXtv2ZL/FlhbgJz9Jhm8O7NVtYz7hG0mxdC4uqJySaDSKzs5O3U8hkNKnxMLwjS7RtUCcknJqx210SmT4JltOiZxzS0s+ea7BIDB+RtIpyRgFamkB/uZvlMenTwMvvqh7WybIHjwIPPec8njSlYnwzdatwM6dED4f1nrm6j6XIoCmTMHQ/qRD4RHA+C7vgLky2goc7aSS+eSU7DuZdErMwpwS9zD+/9wce9l08PPP9X19AGRMctWRmC14vGc/Fi+M6MI3p/tOIxJROioDihgBlOlwuhtGIp44XQZiyrxYd+JpfOHa5EHs9XjVEM7ek4rQaJTz7ezYocRSZcauEMnwzWc7dXc6+YRvAGBM7Rj1OC10CkqULFu2DHV1derP2EwZSQ6jdnQ1Vt9Y3KekUEqCy6kdt3buIcB8+MZMHNss485TTlYPLDqZfsocY3mBSC0/rq1NrlvOnH7Rjc3Kg4iy33ouuQT//Ey9tnVDqgAKBlH7yHL16ZhOIPDLFQPmymgrcKRLAeTplITbAOTmlBidTDolzlEoTgkADBuWzBf59FP9e6ZEyZlnAvX18AiBR65ci2Ho0uV2fPih0ktk1Ci1DRC8XuDS2ck5yzwvv4GzA0qJvkxyldQF9KKkYdRE5QvCYeDwYeCTT9SMXRm+6fFDd6eTr1NydtPZWZcvFHIWJUuXLoXH4xnw56OPPsprYx544AGEw2H154DaM9hdnAjf9MX7VFHidvgGKJ923NoJ+SJ9EdUxyRa+SdObKZ88V4VEEvikpnD6z5spL4Au7xVjxwITL24CqjUW7rx5xtYNaecMHHrbd9XHE8++JOvEgpY4Jf0Whm/olDhGIYkSADgn0Q0+kygZ8D7X41Hdksb3/gAAiPcpgjvSH9Hlk2jTnS66LDnv0qbA1fgsGsSoUUremRZ5TpHhm8ahw5N3Etu3A089pS6riqEK6O508skpAYCzGosjnwQA/NkX0bN48WLcZIhnG2mWMjJHAoEAAgH3L8hGUhJde61PdAWArt6ulNfcJDgsWJLuiBY51nERx7HTxwAoVmttZe1AHwOgXKvnz1e0weTJeQoSAKhLTLoVDqd/X3Zp0pLGlpFz4wCKifLrlR4sbG5OtLgEcL7S+joYHHhbtTbvhBFTMy+YQFtBo3VKZP+QgcgYvjHRzVViFCVuXxjLiZTwTcz5yfi0TJ0KvP12cpeXmHJKAEWUbNyoJqhE++sBnEJ3NJKS5CqZdXEUWAcg7sOf3lH2+auuSm2CKMM30mlvqG5Q4j+7dilOaFubar9W9yk3IZHhjerBGhdx9MeVgzzX8E2xJLkCeYiSpqYmNDU12bEtBUvG5mkWhm8AoCuaECUF0KekXNCO9ZFTyrTj9VX1pis/sl3gTSHL5T/9VFETxi+MRvXP09gyoVAy0Q9IRnhuneyDuod94xuKvZPF+aj0VaLCW4G+eJ+pttTpnBKzJaHai1p/vF+t8GKia3GQySlxa+zlFA15hW+ApL3R3g4A6I2fAeAgtn4SUcuBjaLk7HN7FFHSX4Vn/015zRi6AVLd14aqBqVOGVAECQDcfDOwfDmqP14DfPQd9AR86vJawZ9r+KaYRImtOSX79+/H1q1bsX//fsRiMWzduhVbt25Ft3FGowLH2GbejvANUHhOSTmgHesj3YooyZbkajnblLkpsGaN0o3J2D3thcS8P7NnZ4y7pJkUFSNjIVTs3J58YaAmKBpaNreo4uLx9x/POvlhupwSs6ET7UXtYOdBxEQMlb5KjBw60tTnAZYEu4mxz4zbLlW68E1Pj9KnBDDplGgYNlzplfNfb51GRwdQU6MPkwIAfImbhv4ADh5UHsr+JFpkTomksasP+K//0i+USGCvuux/AdCXBOfaLZeiJA0PPfQQZs6ciYcffhjd3d2YOXMmZs6cmXfOiVvY2Wbe5/WpCaWdUaXaiE6Jc/i9frVUT+uUOEYolCyXAVKFgxDA888rjxcuRLJ2UE+6xNup3t3KnDxaspQIhTpDuOP1ZFKtmckP0zklZu+UtaJE5pOMqxuXUv01EHRK3CNT9Y2b4RtAqZyXJoQ8lIYMARqy3W8YRMn4aYo4PnpCOffPmJHa50Tud+hX9sPm5vTiJ8UpOXwy9U4icXwab4SB3LvlyuPC6/GaCqUWCraKkmeffRZCiJSfOXPm2Llay1GrbwxOiRXhGyB5AEtR4nb1TTnh8XhUEdjerVi22SpvLCWdxaEVDlu3Krd9gQDwV3+V8WvSJd4uXJ57iVA+kx+qTklv/k7Jqd5TOc15o4WJru4h/3/RWBSxeCwZvnFp7EePVirRtIeQNsk1a0RRm7/l9WL0WYlyngrl3P/BB6lGpkyOR0w5j+zbl36qiBSn5OzzMx6f8kY4JmJqHokcW5/HB5/Xh2zsOqE0gYuLOCb/YnJWx7NQKKiS4EIlU58SK8I3QNIZUZ0Shm8cRY63DN846pRkqy3+zW+U39dem0yIzYCxsubm+3IvEcqnR81gnBLpNp7uO612c80lnwRIDa/SKXEO7Tkw0h9xPXzj8aTmlZjOJwEUO2XkSPUDvdFEwrtf2bfSVOPjwOFk+CbTMkDqeaVuwrSMx6f2xjSfiSZDnSH8sfWP6vOBunIXGhQlJpCq1Y4280ByJ1NzShi+cRTVKTmVcEqczCkxWhwAcMstyuvxeDKf5JZbTH+dLsJjpgZY+/k8etSoeQWDzCnJpxwYoFPiJtqL5+m+066LEiApSmQFTk6ipKVFTXJFWxt8GxL5XhXJMIoxArp3vz58k24ZIFl9AygCxef1ZTw+teOaT1VZMXflLp5Ak4tkSnS1Knwj79TV6hs6JY7iqlMCJGuLly8HnnhC6RPf2am0jzx4UHFIvvKV/L8/xxKhhRcsxPzJ89F6ohWTGydnLQu3KqdEO+9NLmTKKWFJsP14PV5U+6sR6Y/gdN/pgnCpjE6JmRbzAFKbFAIY9/Zvga8CqDitvmaMgDaNjAKfQA3fpFsG0J9XdDc+aY5Pr8eLSl8lemO9qkOfiyiRjqc2FFssXbnplJhAG9/ri/VZHr4x5pTQKXGWlJwSp6tvAOWk9NOfKuGco0eBZcuSoZtvfAOocjbPKJfJD62ovon0R7CnYw+APMI3ieOzJ9aDuIgjJmLKNjB84whaYVkITomxAse0U5KmSWFNb8JtSDgl6SKgQ+v1TkmmKKk2p6SxujHr32G8Gc5lbIu5KzedEhMY46a2h2/olDiK6pS4UX2jpbISeOwx4PrrFYHiTxyecs6bAsUKpwTIr3EakHRKIn0RfZt7hm8coaaiBscjxwtGlGidEiFMdnMFkvldGmFSHfMAELh0dgTLFqZvkiinqPjSFwN45PbMjRR1TomJZPrqimqEo+G8mwLm6ngWCnRKTBDwBdSy0a5ol7pzWBa+Sdypy++lU+IscrzNzntjK9ddp5xVe3uVifcAYM8e97bHBOk6upoVBNpeCgICfq8fo2tH57R+bfhG1+aeTokjaJ0St0uCAWDSJMWt6O5WIjKmnZI0JWzVd3wPABD3RTJV46uioX5oVcZlAH1OiRk3VhXbeYRvJLk4noUCRYkJPB6PuoMcjxxXX7c6fCNhSbCzGJ0p15wSQMkh2bVL/9pdd2VteOYmg3FKfF6fbvzHDhubc08FnSihU+I4WlHqdkkwoBiOMp9j/fqktjeVVmVIPK356vUA9P1CjMiS4GwOt/a8kkv4ptymT6AoMYmMW8v5UTzwWCYejDsZwzfOYnSmXMkpkZicfK+QGExOCaAX97mGbgB9yb7WKSmmhlHFTKHllADJEM7q1crvESNySMvSlLAZ5z1LhwzfZHO4tTklOTkleeSUFDMUJSaRO6cUJUMqh5ieHyUbRhHC8I2zFJRTkq1vSQEinZJTvadydkoAvSjJNckVSO+UmJ17hwweXfimQCqfjKLEVDlwGozdvNMhnYwq38CqJ+APqOcaMx2LjeumKCE65IF3/PRx3XMroFPiLilOiZs5Jelas2ZpeOY20r7v7u0evFOSYzkwkD6nhKEb50jnlLg9/rICR0Y98xYladq9G1HDN1luJls2t6jLLlu3LGuHVYZvyIAYwzdWJbkCqTsznRJnKSinBMi54ZnbqE5JnztOiXpH2ed+R9FypJDDN5KslTcZyMkpGSCcn8+cUuUavmHQ1STG8A2dktJBKwJrKmoK46DPseGZm0iB3h/vR3evMgN4LnfK2tL6QTslBdC8q9yo8RdW9Q2QKkrydUrkeb6nX+mBky7souaUDHDeHmhOqUyVMWr/HTolJB2qUxJJ5pRYBatv3KXSmxx/V5NcixTtsdAR6QDgYk4JwzeOkzZ847IorKsDRo1KPh9s+AbQzAZswIxTks+cUlaUBBcjFCUmSUl0tTJ8w0RXV9GOt+uhmyLE7/Wr+7Ds9ZJPTonX482rnwKdEncpxPANoHdLBpvoCmTOKzGTU5JPh9XBdHQtZhi+MYk88Bi+KT204+1qkmsRM7RyKKKRKDp6cndKJCOGjMjrc+lKgumUOEehNU+TnHOOkpYFJJsj54rf64ff60d/vD9jXokUJdkc7lw7rDLRlQyIVMyy+sbK8A2dEnehUzJ45PGQq1PSsrkFr+18DQBwuPtw1oqEdMiLQX+8Xz2B0ylxDu0s0YVSfQMAHR3JxxdeqEwAnA/ZKnDkPmfmZjKXDqsM35ABsTN8Q6fEXXROCXNK8kJW4KhOiYmLkqxI0E6xnq0iIR3aO1Q503YhXBTLhUIM34RCwEsvJZ/H48Cdd+bXGFk7aWQ6zDZPyxUmupIBkaJETsZnZ/im1He6QoNOyeCRIl11Skw4FQNVJOSCVpTImbbplDhHIYoSKxsjS3GQqaurmUTXfNCGJQGKEmJAm/AE2NenpNJXyU6UDkOnZPCoTknEvFOST0VCOnxen7o+KUpK/cRdSBRiR1crGyNnC9+YnfsmV8q1TwlFiUmMzohdJcEsB3YeOiWDJyWnxIRTkU9FQibkcdPVy/CN0xRiSbCVjZGzNVCzzSkp0/ANq29Moq1XB+wL3zCfxHlYfTN4pFOSqyjItSIhE1X+KnT1diVzShi+cQytKJEUwoVz4UJg/nwlZDN5cv69CLM6JTbllJRroitFiUlsDd9oLoqsvHEeOiWDx3g85CIKgsOCeYsRiTw+1ZwSOiWOoRUl8v9eKBdOKxojZ0t0tT2nhOEbkg6jU2JX+IZOifMwp2TwSKdE4rQoSAnf0ClxjEKckM9KsiW62pVTkhK+iVOUEA1Gp8TK8I32Tp1OifPQKRk8g3FKrIA5Je5RiNU3VsLwjbNQlJgkxSmxqU8JnRLnYU7J4HHbKZHHJ3NKnEeeC0tWlLiV6MqOrmQgWH1TumjvcE73prdoycAYjwe3nBKWBDuPPDcKiJLsE8OSYGehKDGJreEbJrq6yprP1qiPz33y3LxanZc7RqfE6ROnUZQwfOMc2nNjKYrCgRJd4yKuigW7SoIZviFpYfimNAl1hvBP6/9JfR4X8bxanZc7KTklTodvEidw5pQ4j9/rL+mu1PLcny7RVQoFwIY28wzfkIFIKQm2ckI+Jrq6hlWtzsudlJwSl8M3pRQ+KAaMznEpiULVsUgTvpGCAbDeKdGGb4QQFCVED5unlSZWtTovd1JySlwqCe7u7XZl/eWO8XxYShdO4xw0WmTlDWD9PifFkIBAX7yPooToSUl0tSt8Q6fEUaxsdV7OuO6U+BRRIl0vOiXOUtKiZIDqG22Sq9VzlmlvhCN9kbIRJezoahJt+MYDj6VWnS7RlU6J41jV6rycKZScErfWX+6UsihRE10HCN/YUTVZ6auEBx4ICET6KUqIAa1qramosVQVsyTYfaxodV7OuO6UGI4bOiXOkpJTUkLjP1Ciq12N0wDA41FufiP9EfT095SNKGH4xiRStQLWJrnK75bQKSHFSKHklEhK/cRdaLjtlNnJQOEbO50S7feWU/iGosQkHo9H3TmtTHIFWH1Dih+3nRJjInopXRSLAe05scJbYXl+hZsM1DzNrsZp6ro1899QlJAU5IFnZZIrQKeEFD+Vvkr4vclosNtOSSmFD4oBnSgpsbF30ynRVv5QlJAU5A5idfiGHV1JKaB1S1zPKaFT4ihaUVJqF82BEl3tzCkBGL4hWbArfEOnhJQCWgeRTkl5UcqiZMBEV4ZvLIeiJAdUp8Ti8I3P61MbeLH6hhQrbjolLAl2F2NOSSkh961TfadSpp9wKtG1u7db7cFDUUJU5M5pdfgGSCpthm9IsaI9LuiUlBel7JSs+ssqAEB/vB/jfzZeN2Gn3eEbeSMcjobV10ptfI1QlOSAPPCsDt8AyR2N4RtSrBRSTkmpn7gLjVIVJaHOEP5u9d+pz40Tdtqe6Jq4EZZzOgGlNb7poCjJBZH4JYTlXy0rF+TcHYQUG27mlLAk2F1Ktfom24SddueUSLET7kk6JaW+b1OUmKRlcwveaXsHAPDvH/+7zsKz4ruPR44DAO76f3dZ+t2EOEUhOSWldGEsBrSCtJTu5LNN2OlUSbA6+3WJ9YBJB0WJCUKdIdzx+h3qcwGhs/AK9bsJcZKCyikp8bvJQqNUwzdywk6J1+PVTdip5pTY7ZQkckpKaWwzQVFigmwWXqF+NyFOMrSCTkm5UqqiBFAm7Dz3zHMBACuvX4mFFyxU31PDNw4lupba2KaDosQE2Sy8Qv1uQpzETaeEJcHuUsolwQAwYugIANB1LQacT3SlKCEAkhaez+MDoIgGrYVXqN9NiJNoc0qMJ2+7oVPiLqXslABAfVU9AKAj0qF73bHwTU/5OCXOnjmKmIUXLMT8yfPReqIVkxsnWyoa7PxuQpxCJjv6vX7Hk/GYU+IupS5KGqoaAAAne07qXnc60bUUx9YIRUkOBIcFbRMMdn43IU4gnRI3BAH7lLhLqZYES6Qo6egxOCV255RUMKeEEELyQuaUuHFR8nq8uhN2KV4YC5lSd0pk+MZpp6QcwzcUJYQQS1BzSgRcKWnXXhgYvnGWUhclDdVZnBK7JuRLhG/kekpxbI1QlBBCLOG9tvcAAJ29nSlzhDiBTpTQKXEUNyuvnCCTU2L33DflGJakKCGEDJpQZwiPf/C4+tw4R4gTaFvNl+KFsZCp8FaoFYSleOFUc0oM1TdOlQRLSnFsjVCUEEIGTSE0AaRT4h4ej0cN4ZTihVMtCXYpfCMpxbE1YpsoaWtrw8KFCzFhwgRUV1dj0qRJePjhh9Hb22vXKgkhLlEITQCZU+IuUpSU4tjLnBK3El0lFCWD4NNPP0U8HsfTTz+N7du34/HHH8dTTz2FH/7wh3atkhDiEoXQBFBrddMpcZ5ycErCPWGdI2h3Tkk5hm9s61OyYMECLFiwQH0+ceJE7Ny5E08++SQee+wxu1ZLCHEJt5sAau8qy+HkXWiUgygREOiMdqrP6ZRYj6PN08LhMBobGzO+H41GEY1G1eednZ1ObBYhxCLcbAKoPYFLx4Y4h5xaINIXcXlLrKfKX4UqfxV6+nvQEelQRQlzSqzHsUTXzz77DL/4xS+waNGijMssW7YMdXV16s/YsWOd2jxCSJEjT+AV3grH29yXOy2bW/DxkY8BAMv/Z7nj5eBOkK7VPMM31pOzKFm6dCk8Hs+APx999JHuM4cOHcKCBQtw44034rvf/W7G737ggQcQDofVnwMHDuT+FxFCyhLplDCfxFlCnSHc8fod6nMB4Xg5uBOka6DG8I315By+Wbx4MW666aYBl2lublYfHzp0CHPnzsVll12GFStWDPi5QCCAQMAexUkIKW1UUVKC1R+FzEDl4KU0n5exgZoQguEbG8hZlDQ1NaGpqcnUsgcPHsTcuXMxa9YsrFy5El4v26IQQuyBTok7yHJwrTBxuhzcCYwN1Prj/erfbJdT4vf6dWNbDqLENpVw6NAhzJkzB2PHjsVjjz2Gzz//HO3t7Whvb7drlYSQMkabU0KcoxDKwZ3A6JRIlwSwL6fE4/Ho3JJyECW2Vd+sXr0ara2taG1tRTCo3zmFEHatlhBSpsi71XI4cRcabpeDO4HqlCRySmQ+CWBf+AZQkl1P9Z0CUB77tm1Oybe//W0IIdL+EEKI1TB84y7BYUHMaZ5TkoIE0LSaT4RvZOWN3+uHz2tfCXq59d9hkgchpCSQ5ZMM3xA7UFvNR5XwjXRK7HRJAJRd+IaihBBSEsg7ymgsWnLlqMR9UpySRE6JXUmuEm2vEooSQggpEj489CEAYE/HHoz/2fiSbOBF3MPYPM3uxmkShm8IIaTICHWG8B8f/4f6PC7iJdnAi7iHsXma3Y3TJAzfEEJIkbH7+G4I6JPoZQMvQqwgU0mw3TkldEoIIaTIkA28tJRiAy/iHsbmaY45JcwpIYSQ4qJcGngR99DODNzT3+NYTkm5hW9sa55GCCFOUg4NvIh71AZq1ZbvHZEOx0qCyy18Q1FCCCkZgsOCFCPEFrweL+oCdejo6UBHT4dzJcFl5pQwfEMIIYSYQG2g1nOSJcE2QVFCCCGEmEDbQI2JrvZAUUIIIYSYQNtAzamSYIZvCCGEEJKCtoGaU04JwzeEEEIISaE+kGygpuaU2O2UlFn4htU3hBBCiAlUpyTSoTbrY58Sa6FTQgghhJhA22reqZLgcgvf0CkhhBBCTKC2mu/pgN+rXD4ZvrEWOiWEEEKICdSS4J4O9MSY6GoHFCWEEEKICdxonsacEkIIIYSk4HbztMNdh21dVyFAUUIIIYSYwI3maW/sfkN93Px/m9GyucXW9bkNRQkhhBBiAhm+CUfDON13GoC94ZtQZwj/8N4/qM/jIo47X78Toc6Qbet0G4oSQgghxAQyfAMAR08dBWBv+Gb38d2Ii7jutZiIofVEq23rdBuKEkIIIcQElb5K1FTUAADau9sB2Bu+mXLGFLVJm8Tn8WFy42Tb1uk2FCWEEEKISbQN1AB7nZLgsCBWXLsCPo8PgCJInr72aQSHBW1bp9uweRohhBBikoaqBhzqOqQ+t7skeOEFCzF/8ny0nmjF5MbJJS1IAIoSQgghxDTavBLA/pJgQHFMSl2MSBi+IYQQQkwiK3AkdpcElxsUJYQQQohJjE6J3eGbcoOihBBCCDGJbKAmcSJ8U05QlBBCCCEmMYoShm+shaKEEEIIMYkbia7lBEUJIYQQYpKURFfmlFgKRQkhhBBiEq1T4oEHFd4KF7em9KAoIYQQQkyizSkJ+APweDwubk3pQVFCCCGEmETrlDDJ1XooSgghhBCTaHNKmORqPRQlhBBCiEl0TgmTXC2HooQQQggxSW1lrTprL50S66EoIYQQQkzi8XhUt4Q5JdZDUUIIIYTkgBQldEqsh6KEEEIIyQGZ7MqcEuuhKCGEEEJygOEb+6AoIYQQQnJANlDr7u1GqDPk8taUFhQlhBBCSA60d7cDAD44+AHG/2w8Wja3uLxFpQNFCSGEEGKSUGcI6/avU5/HRRx3vn4nHROLoCghhBBCTLL7+G4ICN1rMRFD64lWl7aotKAoIYQQQkwy5Ywp8Hr0l06fx4fJjZNd2qLSgqKEEEIIMUlwWBArrl2hdnX1eXx4+tqnERwWdHnLSgOPEEJkX8wdOjs7UVdXh3A4jGHDhrm9OYQQQggAJbek9UQrJjdOpiBJQ77Xb7+N20QIIYSUJMFhQYoRG2D4hhBCCCEFAUUJIYQQQgoCihJCCCGEFAS2ipKvfe1rGDduHKqqqjBq1CjceuutOHTokJ2rJIQQQkiRYqsomTt3Lv7zP/8TO3fuxMsvv4zPPvsM3/zmN+1cJSGEEEKKFEdLgl999VXccMMNiEajqKioSHk/Go0iGo2qzzs7OzF27FiWBBNCCCFFRL4lwY7llJw4cQLPP/88Lr/88rSCBACWLVuGuro69Wfs2LFObR4hhBBCXMZ2UXL//fdjyJAhOOOMM7B//3688sorGZd94IEHEA6H1Z8DBw7YvXmEEEIIKRByFiVLly6Fx+MZ8Oejjz5Sl7/vvvuwZcsWrF69Gj6fD7fddhsyRYwCgQCGDRum+yGEEEJIeZBzTsmxY8dw7NixAZdpbm5GVVVVyuuhUAhjx47F+vXrcdlll2VdF9vME0IIIcWHY23mm5qa0NTUlOvHAEB1SLTJrIQQQgghgI1z32zcuBEbN27E7Nmz0dDQgD179uChhx7CpEmTTLkkQFLEdHZ22rWZhBBCCLEYed3OtcDXNlFSXV2NVatW4eGHH8apU6cwatQoLFiwAC+++CICgYCp7+jq6gIAVuEQQgghRUhXVxfq6upML+9on5JcicfjOHToEGpra+HxeCz9btkD5cCBA8xXsRmOtXNwrJ2DY+0cHGvnsGqshRDo6urC6NGj4fWar6mxzSmxAq/Xi2DQ3qmhWeXjHBxr5+BYOwfH2jk41s5hxVjn4pBIOCEfIYQQQgoCihJCCCGEFAS+pUuXLnV7I9zC5/Nhzpw58PsLOopVEnCsnYNj7Rwca+fgWDuHm2Nd0ImuhBBCCCkfGL4hhBBCSEFAUUIIIYSQgoCihBBCCCEFAUUJIYQQQgoCihJCCCGEFARlKUp++ctfYsKECaiqqsKsWbPw3//9325vUtGzbNkyXHTRRaitrcXw4cNxww03YOfOnbplotEo7r77bjQ1NWHIkCH42te+hlAo5NIWlw7Lli2Dx+PBPffco77GsbaOgwcP4lvf+hbOOOMM1NTU4Atf+AI2bdqkvi+EwNKlSzF69GhUV1djzpw52L59u4tbXJz09/fjwQcfxIQJE1BdXY2JEyfixz/+MeLxuLoMxzp/3nvvPVx33XUYPXqHIC3LAAAHDElEQVQ0PB4P/vCHP+jeNzO2HR0duPXWW1FXV4e6ujrceuutOHnypLUbKsqMF198UVRUVIhnnnlG7NixQyxZskQMGTJE7Nu3z+1NK2rmz58vVq5cKT755BOxdetWcc0114hx48aJ7u5udZlFixaJMWPGiDVr1ojNmzeLuXPnivPPP1/09/e7uOXFzcaNG0Vzc7OYMWOGWLJkifo6x9oaTpw4IcaPHy++/e1viw8++EDs3btXvPXWW6K1tVVdZvny5aK2tla8/PLLYtu2beKv//qvxahRo0RnZ6eLW158/OM//qM444wzxOuvvy727t0rfvvb34qhQ4eKn/3sZ+oyHOv8eeONN8SPfvQj8fLLLwsA4ve//73ufTNju2DBAjF9+nSxfv16sX79ejF9+nRx7bXXWrqdZSdKLr74YrFo0SLda1OnThU/+MEPXNqi0uTo0aMCgFi7dq0QQoiTJ0+KiooK8eKLL6rLHDx4UHi9XvHmm2+6tZlFTVdXl5gyZYpYs2aNuOKKK1RRwrG2jvvvv1/Mnj074/vxeFyMHDlSLF++XH2tp6dH1NXViaeeesqJTSwZrrnmGvGd73xH99rXv/518a1vfUsIwbG2EqMoMTO2O3bsEADE+++/ry6zYcMGAUB8+umnlm1bWYVvent7sWnTJsybN0/3+rx587B+/XqXtqo0CYfDAIDGxkYAwKZNm9DX16cb+9GjR2P69Okc+zz53ve+h2uuuQZf/vKXda9zrK3j1VdfxYUXXogbb7wRw4cPx8yZM/HMM8+o7+/duxft7e26sQ4EArjiiis41jkye/ZsvP3229i1axcA4OOPP8a6devw1a9+FQDH2k7MjO2GDRtQV1eHSy65RF3m0ksvRV1dnaXjX1b9eo8dO4ZYLIYRI0boXh8xYgTa29td2qrSQwiBe++9F7Nnz8b06dMBAO3t7aisrERDQ4NuWY59frz44ovYvHkzPvzww5T3ONbWsWfPHjz55JO499578cMf/hAbN27E3/7t3yIQCOC2225TxzPdOWXfvn1ubHLRcv/99yMcDmPq1Knw+XyIxWJ49NFHcfPNNwMAx9pGzIxte3s7hg8fnvLZ4cOHW3peKStRIvF4PLrnQoiU10j+LF68GH/+85+xbt26rMty7HPnwIEDWLJkCVavXo2qqirTn+NY5048HseFF16In/zkJwCAmTNnYvv27XjyySdx2223qcvxnDJ4XnrpJTz33HP4zW9+g3PPPRdbt27FPffcg9GjR+P2229Xl+NY20e2sU03zlaPf1mFb5qamuDz+VJU3dGjR1MUIsmPu+++G6+++ireffddBINB9fWRI0eit7cXHR0duuU59rmzadMmHD16FLNmzYLf74ff78fatWvx85//HH6/HyNGjOBYW8SoUaMwbdo03WvnnHMO9u/fD0DZrwHwnGIB9913H37wgx/gpptuwnnnnYdbb70V3//+97Fs2TIAHGs7MTO2I0eOxJEjR1I++/nnn1s6/mUlSiorKzFr1iysWbNG9/qaNWtw+eWXu7RVpYEQAosXL8aqVavwzjvvYMKECbr3Z82ahYqKCt3YHz58GJ988gnHPkeuuuoqbNu2DVu3blV/LrzwQtxyyy3qY461NXzxi19MKW3ftWsXxo8fDwCYMGECRo4cqRvr3t5erF27lmOdI6dPn4bXq78k+Xw+tSSYY20fZsb2sssuQzgcxsaNG9VlPvjgA4TDYWvH37KU2SJBlgS3tLSIHTt2iHvuuUcMGTJEtLW1ub1pRc1dd90l6urqxJ/+9Cdx+PBh9ef06dPqMosWLRLBYFC89dZbYvPmzeLKK69kmapFaKtvhOBYW8XGjRuF3+8Xjz76qNi9e7d4/vnnRU1NjXjuuefUZZYvXy7q6urEqlWrxLZt28TNN9/MMtU8uP3228WYMWPUkuBVq1aJpqYm8fd///fqMhzr/Onq6hJbtmwRW7ZsEQDET3/6U7Flyxa1HYaZsV2wYIGYMWOG2LBhg9iwYYM477zzWBJsBU888YQYP368qKysFBdccIFatkryB0Dan5UrV6rLRCIRsXjxYtHY2Ciqq6vFtddeK/bv3+/eRpcQRlHCsbaO1157TUyfPl0EAgExdepUsWLFCt378XhcPPzww2LkyJEiEAiIL33pS2Lbtm0ubW3x0tnZKZYsWSLGjRsnqqqqxMSJE8WPfvQjEY1G1WU41vnz7rvvpj1H33777UIIc2N7/Phxccstt4ja2lpRW1srbrnlFtHR0WHpdnqEEMI634UQQgghJD/KKqeEEEIIIYULRQkhhBBCCgKKEkIIIYQUBBQlhBBCCCkIKEoIIYQQUhBQlBBCCCGkIKAoIYQQQkhBQFFCCCGEkIKAooQQQgghBQFFCSGEEEIKAooSQgghhBQE/x9j0hDQg+X4NAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = sin.(linspace(0,4π,100) .+ randn(100)*0.1) .* (1 .+ 0.3*randn(100))\n", - "y = sin.(linspace(0,4π,100) .+ randn(100)*0.1) .* (1 .+ 0.3*randn(100))\n", - "z = randn(100)\n", - "plot(x, \"b.-\")\n", - "plot(y, \"r.-\")\n", - "plot(z, \"g.-\")\n", - "legend([\"x\",\"y\",\"z\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "All three have mean nearly zero:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.04585364730391235, 0.015667384726053845, 0.09336771065224941)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mean(x),mean(y),mean(z)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But the covariance of x and y is totally different from the covariance of x and z:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "covar (generic function with 1 method)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# A simple covariance function. See https://github.com/JuliaStats/StatsBase.jl for\n", - "# better statistical functions in Julia.\n", - "covar(x,y) = dot(x .- mean(x), y .- mean(y)) / (length(x) - 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.46559174462535136, 0.06281305552460334)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "covar(x,y), covar(x,z)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The variance and covariance have the units of the data squared. I can make the covariance of x and y smaller simply by dividing y by 10, which doesn't see like a good measure of how correlated they are.\n", - "\n", - "Often, it is nicer to work with a dimensionless quantity *independent* of the vector lengths, the **correlation**:\n", - "\n", - "$$\n", - "\\operatorname{Cor}(x,y) = \\frac{\\operatorname{Covar}(x,y)}{\\sqrt{\\operatorname{Var}(x) \\operatorname{Var}(y)}} = \\frac{(Px)^T (Py)}{\\Vert Px \\Vert \\; \\Vert Py \\Vert}\n", - "$$\n", - "\n", - "This is just the dot product of the vectors (after subtracting their means) divided by their lengths.\n", - "\n", - "It turns out that Julia has a built-in function `cor` that compute precisely this:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9265391821850755" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "covar(x,y) / sqrt(covar(x,x) * covar(y,y)) # correlation, manually computed" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9265391821850756" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cor(x,y)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.08198929962908524" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cor(x,z)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11.300732978287218" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "abs(cor(x,y)/cor(x,z))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we've scaled out the overall length of the vectors, we can sensibly compare the correlation of x,y with the correlation of x,z, and we see that the former are more than 10x the correlation of the latter in this sample" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The covariance and correlation matrices\n", - "\n", - "If we have a bunch of data sets, we might want the covariance or correlation of *every* pair of data sets. Since these are basically dot products, asking for *all* of the dot products is the same as asking for a **matrix multiplication**.\n", - "\n", - "In particular, suppose that $X$ is the $m \\times n$ matrix whose **rows** are $n$ different datasets of length $n$. First, we need to subtract off the means of each row to form a new matrix $A$:\n", - "\n", - "$$\n", - "A = X P = X P^T = (PX^T)^T\n", - "$$\n", - "\n", - "where $P$ is the projection matrix from above that subtracts the mean. Multiplying by $P^T = P$ on the *right* corresponds to projecting each *row* of $X$.\n", - "\n", - "Given $A$, we can compute **all** of the covariances simply by computing the **covariance matrix S**\n", - "\n", - "$$\n", - "S = \\frac{A A^T}{n-1}\n", - "$$\n", - "\n", - "since $A A^T$ computes all of the dot products of all of the rows of $A$. The diagonal entries of $S$ are the variances of each dataset, and the off-diagonal elements are the covariances.\n", - "\n", - "Alternatively, we can compute the **correlation matrix** $C = \\hat{A} \\hat{A}^T$, where $\\hat{A}$ is simply the matrix $A$ scaled so that each row has unit length. i.e. $\\hat{A} = DA$, where $D$ is a diagonal matrix whose entries are the inverse of the length of each row, i.e. $D$ is the inverse of the diagonal entries of $AA^T$.\n", - "\n", - "Let's look in more detail at the two correlated vectors $x$ and $y$ from above:" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG0CAYAAADXb+jjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt41OWd///XDJADkIyUYBLOAeQc2XCSkIraA4q1a+teFotLab8urW29rNpuf2C3W3DXEnv1stb1WGula23NtQW62+q60MUTDcVgQxoO4oFAUBIgLE6CRE5z//7IZCRkJpmZzMzn9HxcV64r+fCZmXs+jjPveb/v+337jDFGAAAAkN/qAQAAANgFgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEBYf6sHYHehUEiHDh1SXl6efD6f1cMBAABxMMaora1Nw4cPl98ffx6IwKgXhw4d0qhRo6weBgAASMLBgwc1cuTIuM8nMOpFXl6epI4Lm5+fb/FoACQiFAqprq5OkjRjxoyEvjUCcLbW1laNGjUq8jkeLwKjXnSWz/Lz8wmMAIcJhUIaPHiwpI7/hwmMAO9JdBoM7xIAAABhBEYAAABhlNIAuJbP59PQoUMjvwNAbwiMALiWz+fT2LFjrR4GAAehlAYAABBGYATA1UKhkEKhkNXDAOAQBEYAXCsUCqm2tla1tbUERwDiQmAEAAAQRmAEAAAQRmAEAAAQRmAEAAAQRmAEAIBHNQXbVf1Oi5qC7VYPxTZo8AgAgAdV1TRq5fp6hYzk90lrbijV4jmjrR6W5cgYAXC1IUOGaMiQIVYPA7CVpmB7JCiSpJCR7l6/k8yRyBgBcDG/369x48ZZPQzAdhpaPogERZ3OGaP9LSdVHMi1ZlA2QcYIAACPKSkYJP8F+yr38/k0tmCgNQOyEQIjAAA8pjiQqzU3lKqfryM66ufz6Yc3TPd8tkiilAbAxTq3BJGksrIy+f18FwQ6LZ4zWgsmDtP+lpMaWzCQoCiMwAgAAI8qDuQSEF2Ar08AAABhBEYAAABhBEYAAABhBEYAAABhBEYAAFiAfcrsiVVpAFwtEAhYPQSgG/Ypsy8yRgBcy+/3a8KECZowYQI9jGAb7FNmb7xTAACQQT3tUwbrERgBAJBB7FNmbwRGAFyrc0uQ2tpahUIhq4cDSGKfMrtj8jUAVyMggh2xT5l9ERgBAGAB9inrmIje0PKBSgoG2eZaEBgBAOACdgwyemLXlgUERgAAOJxdg4xYYrUsWDBxmOVBHZOvAQBwMCf2RbJzywICIwAAHMzOQUYsdm5ZQGAEwNXy8vKUl5dn9TAygr23vMnOQUYsdm5Z4DPGmN5P867W1lYFAgEFg0Hl5+dbPRwAiMppc0yQWlU1jbp7/U6dMyYSZDjhv39TsD1tLQuS/fwmMOoFgREAu2sKtquicnOXcko/n09bVlxli2/gyIx0BhlOlOznN6vSAMDheppjwgekd9AXKTWYYwTAtUKhkOrq6lRXV+fqDthOnGOCrpgfZh8ERgBc7ezZszp79qzVw0grO09kdaJMBylVNY2qqNysJU9sU0XlZlXVNGbkcREdpTQAcAH23kqNTE9it3OjQ68iYwQALlEcyFX5+KF8oCbJikaJTuxB5HYERgAAyJoghflh9kNgBACArAlSmB9mP8wxAgBYwm67wXcGKRc2Skz32JgfZi8ERgBcbeBAShJ2ZNdO3fEGKakO6uhBZB90vu4Fna8BILWc3qnbrkEdukr285s5RgCAjHLySiwrVq4hswiMAAAZ5eSVWE4O6hAfAiMArhUKhVRfX6/6+npXbwniNE5eieXkoA7xYfI1AFc7ffq01UNAFE5diZXJlWt2W7XnFQRGAABLOHUlViaCOiZ4W8dRpbRXXnlFn/3sZzV8+HD5fD797ne/6/U2L7/8smbNmqWcnByNGzdOjz32WAZGCgBws3Ruv8IEb2s5KjD64IMPNGPGDD300ENxnd/Q0KBrr71Wl19+uWpra3X33Xfr9ttv17p169I8UgAAksMEb2s5qpS2aNEiLVq0KO7zH3vsMY0ePVoPPPCAJGnKlCnavn27fvzjH+vv/u7v0jVMAACS1jnB+8I+T0zwzgxHZYwStXXrVi1cuLDLsauvvlrbt2/XmTNnot7m1KlTam1t7fIDAECmOHnVnhs4KmOUqObmZhUWFnY5VlhYqLNnz6qlpUXFxcXdbrNmzRqtXr06U0MEkGY5OTlWDwFImFNX7bmBqzNGkuTzdW040bkDyoXHO61cuVLBYDDyc/DgwbSPEUB6+P1+TZs2TdOmTZPf7/q3O6RYU7Bd1e+0WDbpOZ0TvBGbqzNGRUVFam5u7nLsyJEj6t+/v4YOHRr1NtnZ2crOzs7E8AAANsVyee9y9Veo8vJybdq0qcuxjRs3avbs2RowYIBFowIA2BnL5b3NUYHRiRMntGPHDu3YsUNSx3L8HTt2qLGxUVJHGexLX/pS5Pxbb71VBw4c0F133aU9e/boF7/4hZ588kl95zvfsWT8ADIrFApp165d2rVrF1uCIG4sl/c2R5XStm/frquuuiry91133SVJWrZsmdauXaumpqZIkCRJJSUlev7553XnnXfq4Ycf1vDhw/Xggw+yVB/wkA8//NDqIcBhWC7vbT7TORsZUbW2tioQCCgYDCo/P9/q4QBIQCgUUm1trSSprKyMCdiIW1VNY7f90Jhj5CzJfn47KmMEAEAmJLpc3k4bvtppLE5EYAQAQBTxbnJrpxVsdhqLU5FXBgAgSXZawWansTgZgREAAEmy0wo2O43FyQiMALhaVlaWsrKyrB4GXKpzBdv5El3BlqoO26kYCwiMALiY3+9XaWmpSktLWZGGtOjrhq9VNY2qqNysJU9sU0XlZlXVNPZ+ozSNBR1Yrt8LlusDgPOle6VWU7A94Q1fm4Ltqqjc3K1f0pYVV/VpjMmMxY1Yrg8AQBSZWKkV7wq28/U0J6gvAU0yY8FHyC0DcK1QKKQ9e/Zoz549bAniUXZeqcWcIHsiMALgaidPntTJk6zK8apkVmqlajJ0b5gTZE+U0gAArpXovmeZbpCYaIdtpB8ZIwCAayWSlbGq7FYcyFX5+KEERTZBxggA4GrxZmXSNRkazkJgBABwvXhWaiVadoM7UUoDAEBMhkYHMkYAXK1/f97mED8mQ4N3DACu5ff7NWPGDKuHAYehQaK3UUoDADhKpvoMwZvIGAGADaR7Ly+3yHSfIXgPgREA1wqFQnr77bclSRMmTJDfb88kOR/28YnVZ2jBxGGuCyajBcoEz5lBYATA1dra2qweQo+89GHfV17pMxQtUJZE8JwhBEYAYCGvfNinQqr7DNkxAxMtUF65vl7GSJ1Pm+A5veyZVwYAj2CH9filss9QVU2jKio3a8kT21RRuVlVNY2pHm5SogXKofOCok69bYSL5JExAgALdX7Y371+p84ZQ1PBXqSiz5Cdy5fRsmJ+n7pkjCSC53QiMAIAi9FUMDF97TNk5/JlrEBZEsFzhhAYAYAN0FQwc+y+J1qsQJngOTOYYwTA1fx+v22X6cMaTtgTrTiQq/LxQ7uMKdoxpJ7PGHPhnC6cp7W1VYFAQMFgUPn5+VYPBwCQIk3BdjIwLpbs5zelNACAJ1G+RDTklwEAAMLIGAFwrVAopH379kmSxo0bx1wjAL0iMALgasFg0OohAHAQvj4BAACEERgBAACEERgBADypKdiu6nda1BRst3oosBHmGAEAPKeqpjGyX5rfJ625oVSL54y2eliwATJGAABPibWJLJkjSARGAAAbyUR5q6dNZAFKaQBcy+/3a9asWVYPA3HKVHnL7pvIwlpkjAAAlstkecsJm8imCxPOe0fGCABguZ7KW+kIWBbPGa0FE4d5ahNZJpzHh4wRANfq3BJk3759CoVCVg8HPegsb50v3eWt4kCuyscP9URQxITz+BEYAXC148eP6/jx41YPwxGsLLN4ubyVCUw4jx+lNACALcosXixvZQoTzuNHxggAPM5OZRYvlbcyiYxc/MgYAYDHZXriM6xBRi4+BEYA4HGUWbyjOJBLQNQLSmkA4HGUWYCPkDECAFBmAcIIjAC4lt/vV1lZWeR39IwyC0ApDYDL+f1+giKHSqavElteoK/IGAGARzQF29XQ8oFKCgbZPjOUTF8lO/RigvPxNQqAaxljtH//fu3fv1/GmN5v4GJVNY2qqNysJU9sU0XlZlXVNFo9pJiS6atkp15McDYCIwCuZYzRsWPHdOzYMU8HRtGChpXr6vWHvx6yZeCQzPYVbHmBVCEwAgCXixY0hCTd9utay7NH0eYEJbOhrBWb0MKdHBcYPfLIIyopKVFOTo5mzZqlV199Nea5a9eulc/n6/bz4YcfZnDEAGCtaEFDJytLTrHKe8n0VaIXE1LFUZOvq6qqdMcdd+iRRx5RRUWFHn/8cS1atEi7d+/W6NHRJ9jl5+dr7969XY7l5ORkYrgAYAudQcPd63fqXJSSohXbf8SaE7Rg4jAVB3KT6qtELyakgqMCo/vvv1+33HKL/uEf/kGS9MADD+h//ud/9Oijj2rNmjVRb+Pz+VRUVJTJYQKA7XQGDa/vP67bn621fPuPePZnS6avEr2Y0FeOKaWdPn1ar7/+uhYuXNjl+MKFC1VdXR3zdidOnNCYMWM0cuRIXXfddaqtre3xcU6dOqXW1tYuPwDgBsWBXF03Y7gtSk7MCYJdOSZj1NLSonPnzqmwsLDL8cLCQjU3N0e9zeTJk7V27VqVlpaqtbVVP/3pT1VRUaG6ujpdcsklUW+zZs0arV69OuXjBwC7sEPJ6cLyHnOCYBc+45A1rIcOHdKIESNUXV2t8vLyyPF7771XTz/9tN54441e7yMUCmnmzJlasGCBHnzwwajnnDp1SqdOnYr83draqlGjRikYDCo/P7/vTwRARp09e1aS1L+/Y74HekpTsJ05QUiL1tZWBQKBhD+/HfNOUVBQoH79+nXLDh05cqRbFikWv9+vOXPm6K233op5TnZ2trKzs/s0VgD2QUBkb8wJgt04Zo5RVlaWZs2apU2bNnU5vmnTJs2fPz+u+zDGaMeOHSouLk7HEAHAkdhfDPiIo75K3XXXXVq6dKlmz56t8vJy/exnP1NjY6NuvfVWSdKXvvQljRgxIrJCbfXq1Zo3b54uueQStba26sEHH9SOHTv08MMPW/k0AGSIMUYHDx6UJI0aNUo+X4xmPh7mpf3FnLRXHKzjqMBo8eLFOnbsmO655x41NTVp+vTpev755zVmzBhJUmNjY5ddtN9//3199atfVXNzswKBgMrKyvTKK69o7ty5Vj0FABlkjNHRo0clSSNHjiQwukBvvYTcxEsBIPrGMZOvrZLs5C0A1guFQpEWHWVlZV2+ODlRqjMe1e+0aMkT27od/83yeSofP7TP928XTcF2VVRu7ta7acuKq1wXAOIjrp98DQBelo6MR2cvoXiaPTq5DBVPM0mgk7O/PgGAB8QqefV1snS8+4vF2tPMKdLRTJIJ6+5FxggAbC6dGY/emj26YR5SqptJMl/J3QiMAMDmEil5JaOnXkJuKUOlqtu3GwJF9IxSGgDYXLwlr3TIxJ5mmSpLFQdyVT5+aJ+uW0+BItyBjBEA1/L7/SotLY387mRW7W+W7j3NnFaWSnf2DtZjuX4vWK4PAOnZ08ypy+irahq7BYp2Dua8iuX6AIC0SceeZk6dv2RV9g6ZQWAEwLWMMXrvvfckSSNGjKDztc04uSzF5rfu5eyiOwD0wBijw4cP6/Dhw2LWgP1YOakciIWMEQDAMpSlYDcERgAAS1GWgp1QSgMAAAgjMAIAAAgjMAIAAAgjMALgWeyQDuBCTL4G4Fp+v19Tp06N/H4+p21FASAzyBgBcLXc3Fzl5nZd8RRrh3QyR5lDtg52RcYIgOc4dSsKtyBbBzsjYwTAtYwxOnTokA4dOtSl83XnVhTns+NWFG7MqpCtg90RGAFwLWOMmpqa1NTU1CUwcsJWFFU1jaqo3KwlT2xTReVmVdU0Wj2klOgpWwfYAaU0AJ5k560oYmVVFkwcZqtxJsPJG8fCG8gYAfCs4kCuyscPtV2w4easihOydfA2MkYAYDNuz6rYOVsHkDECAJvxQlbFrtk6gIwRANgQWRXAGgRGAGBTxYFcAiIgwwiMALiWz+fT5MmTI78DQG8IjAC4ls/n06BBg6weBgAHYfI1AABAGIERANcyxujw4cM6fPhwl87XdufGrUAAp6CUBsC1jDF69913JUnDhg3rNs+oKdiuhpYPVFIwyDaTnNlgFbAWgREAT7JjAOLmrUAAp6CUBsBz7LrDu5u3AgGcgsAIgOfYNQDp3ArkfG7aCgRwAgIjAJ5j1wDEC1uBAHbHHCMAntMZgNy9fqfOGWOrAIStQABrERgB8CS7BSAXrpCzejyAVxEYAXAtn8+niRMnRn6/kF0CEDuukAO8ijlGAFzL5/MpLy9PeXl5XQIjOzVQtOsKOcCryBgB8BS7ZWd6WiFnh2wW4DVkjAC4ljFGR48e1dGjR2WMsWV2prcVcnbKbgFeQGAEwLWMMWpsbFRjY6OMMbbsX9TTEv2qmkZVVG7Wkie2qaJys6pqGi0bJ+AVlNIAeEZndub84MgO/YuirZBjexDAGmSMAHjKLR8viZSu7NS/qDiQq/LxQyNjsWN2C/ACMkYAPKGqplHf+90uhYzkk/TVBSX6SkWJLYKiaOya3UJyLuxTBfsiYwTA9VpOfKi7N3xUljKSnnx1f0ofo7dJ0olOomZ7EPdgrpizkDEC4Hrvvf9hR6bovNVfqVwS31sLgGRbBNitOzcSx1wx5yFjBLgAS7p7NuKinLRtGlt38LhW9NACoK8tAi6cewRnYa6Y8yQcGH35y1/WK6+8ko6xAEgCafrYfD6fJkyYoHl/M11rbrg05WWpqppGfe7hapkePvj4YPS23vpUwX4SLqW1tbVp4cKFGjVqlL7yla9o2bJlGjFiRDrGBqAXpOmj6zrRNSBJumluQFdMujhlZanOa2+i/Nv5H3xMova2zrlid6/fqXPGMFfMARIOjNatW6djx47pV7/6ldauXasf/OAH+tSnPqVbbrlF119/vQYMGJCOcQKIgu0kuutpPk8qN42Ndu2ljsc8/4OPD0YwV8xZfMZcmAROTG1trX7xi1/o5z//uQYPHqy///u/1ze+8Q1dcsklqRqjpVpbWxUIBBQMBpWfn2/1cIAumoLtqqjc3C0bsWXFVZ58873wehhj5Dt1Qs996+OaOnZEl41kU/1YUsfchA3fnK8Zo4ZEPZ8PRiBzkv387tPk66amJm3cuFEbN25Uv379dO2112rXrl2aOnWqfvKTn/TlrgHEgSXdXXXP4hidev+wXvvrXvXxO2A30a79mr8rjRoUdZ7PJGrA/hIupZ05c0b/9V//paeeekobN27UpZdeqjvvvFM333yz8vLyJEnPPvusvv71r+vOO+9M+YABdEWa/iPR5/NIwy/KScvjce0B90k4Y1RcXKzly5drzJgxeu2117R9+3bdeuutkaBIkq6++mpddNFFKR1op0ceeUQlJSXKycnRrFmz9Oqrr/Z4/rp16zR16lRlZ2dr6tSp2rBhQ1rGBVjJ7tmITLUTiJbF+eZVE1QwOD2BUedj2vnaA0hMwhmjn/zkJ7rxxhuVkxP7jWbIkCFqaGjo08Ciqaqq0h133KFHHnlEFRUVevzxx7Vo0SLt3r1bo0d3b5a2detWLV68WP/yL/+iz3/+89qwYYO+8IUvaMuWLbrssstSPj4A3SXb3DBZ52dxRn8sR8373kjbYwFwnz5Pvs6kyy67TDNnztSjjz4aOTZlyhR97nOf05o1a7qdv3jxYrW2tuq///u/I8euueYaDRkyRL/5zW/ieszOyVvHjx+POXnL7/8o8RYKhXq8P87t27nGmB7nitjhXJ/PF5nk6/Vzm1s/VEXlZp0LGSm8sL2fz6dX/7+uk8PPv1+p59dEIucaY7Rjxw5JUllZWczzEr1fyX7/b3BuB94j3H+uFN97RLKTrx2zJcjp06f1+uuva8WKFV2OL1y4UNXV1VFvs3Xr1m7znK6++mo98MADMR/n1KlTOnXqVOTv1tZWSVJdXZ0GDx7c7fxAIKAJEyZE/q6rq4v5HywvL08TJ06M/F1fX6+zZ89GPXfgwIGaMmVK5O9du3bp9OnTUc/NycnRtGnTIn/v2bNHH374YdRzs7KyVFpaGvl77969OnkyeqO5/v37a8aMGZG/3377bbW1tUU91+/3d/ng2bdvn4LBYNRzJWnWrFmR3/fv36/jx4/HPLesrCzypnPgwAEdO3Ys5rkzZsxQ//4dL+uDBw/q6NGjMc8tLS1VVlaWJOm9997T4cOHY547depU5eZ2fJA3NTWpqakp5rmTJ0/WoEGDJElHjhzRu+++G/PciRMnRsrQLS0tamyM3ZxxwoQJCoR78vzf//2f9u/fH/PccePGaciQjknA77//vvbt2xfz3LFjx2ro0KGSOl7vb7/9dsxzR48erWHDhkmSTpw4oTfffDPmuSNHjlTDiX4KGcmcOaUz//fRddj4Sq4uHflRub24uFjDhw+XJLW3t2v37t0x77ewsFAjR46U1PG+UF9fH/PczuclSWfPnu313LFjx0rqeNOtra2Nee6QIUM0bty4yN89nct7RAfeIz7Ce0SHkSNHqrCwUJJ08uRJvfFG7Oxusu8RyXDMliAtLS06d+5c5CJ2KiwsVHNzc9TbNDc3J3S+JK1Zs0aBQCDyM2rUqL4PHvCo6F1/0zcZGgD6yjGltEOHDmnEiBGqrq5WeXl55Pi9996rp59+OmqkmZWVpV/+8pf64he/GDn2zDPP6JZbbon5bSlaxmjUqFGU0mxyLmly551bVdOolevqdc6E1M/n072fn95tjlG6SmmSIlmJiy66KGWpesl+/29wbgfeI9x/rkQpTZJUUFCgfv36dcv2HDlypFtWqFNRUVFC50tSdna2srOzux33+/1dXvixxHMO5yZ/7oX/c3Cu/c9NZkl7Kl8/neUCSQk1eLTD651zEz/X6tc756b/XCmx10SiHFNKy8rK0qxZs7Rp06Yuxzdt2qT58+dHvU15eXm38zdu3BjzfADpwZJ2AE7hmIyRJN11111aunSpZs+erfLycv3sZz9TY2Ojbr31VknSl770JY0YMSKyQu1b3/qWFixYoPvuu0/XX3+9/vM//1N//OMftWXLFiufBoAMMcbo/fffl9RRSkvlliAA3MlRgdHixYt17Ngx3XPPPWpqatL06dP1/PPPa8yYMZKkxsbGLum1+fPn69lnn9U//dM/6fvf/77Gjx+vqqoqehgBHmGMiay2KSsrIzAC0CvHTL62CpvIAs51/rL785d0A3A/SzaRBQAAcBMCIwAAgDACIwAAgDACIwAAgDACIwAAgDBHLdcHgET4fL7IxrAs1QcQDwIjAK7l8/kiu4IDQDwopQFwvaZgu6rfaVFTsN3qoQCwOTJGAFzLGKO1L+3S6v/aLZM1UP38Pq25oVSL54y2emgAbIqMEYCEOCn7cuj9k/qnf/9fnTreJMkoZKS71+90xNgBWIOMEYC4VdU0auX6eoWM5PdJt3y8RP/v4yUqDuRaPbSoGlo+UOiCTY/OGaP9LSdtO2YA1iJjBCAuTcH2SFAkSSEjPfFqg+av2ayqmkZrBxdDScEg+S9YjNbP59PYgoHWDAiA7REYAYhLtOyLJBl9VJ46v8xmh5JbcSBXt101Qf3CwVE/n08/vGE62SIAMVFKAxCXzuxLtODonDF6ast+/XzLPoWM1JmkMeoouVk54XnhtCLNHHORBg+fqHEXDyYoAtAjMkYA4lIcyNWaG0q7laakjjeSzqBI6giIOuOnTEx47i07VTA4R+XjhxIUAegVgRGAuC2eM1p/WvEJfXVBSeTNo5/Pp3+4vCRqJqlT54TndKiqaVRF5WYteWKbKirtO98JgDNQSgOQkOJAru6+dqq+UlGi/S0nIxOZf76lIWZwlK4Jz9EmhN+9fqcWTBym4kCufD6fRo/uKOGxJQiAeJAxApCU4kBupDwVKbPFOPe710xKeRmrKdiuP/z1UMzl+FJHMDRs2DANGzaMwAhAXMgYAUiJxXNGa1B2f93269pu/3bpyItS+ljn91O6EMvxAfQFgRGAlJk1Zki3lWupDlQuLJ+d78Ll+MYYnThxQpI0ePBgskYAekUpDUDKdJbU+oUDkHT0DYrVT+n7n5miLSuu6tIWwBijN998U2+++aaM6WF2OACEkTECkFKL54zWgonDIhOzUz23KFo/pX4+n669tJjl+AD6jIwRgJQ7f2J2Ou473VkpAN5FxghAWjQF29XQ8oFKCgalPGhJd1YKgHcRGAFIufNXjaVrS5DONgEAkEqU0gCkVKymi1ZuJgsA8SIwApBS0VaNpXNLEABIJUppAFIq1qoxK5ou+nw+jRw5MvI7APSGjBGAlLLTqjGfz6fCwkIVFhYSGAGICxkjACnHqjEATkVgBCAt7LBqzBijkyc75jYNHDiQrBGAXlFKA5BxTcF2Vb/TkvaVasYYvfHGG3rjjTfYEgRAXMgYAcioTPQ4AoBkkTECkDH0OAJgdwRGADKGHkcA7I7ACEDGdPY4Op9VPY4AIBoCIwAZY6ceRwAQDZOvAWTU+T2OBmb59cHpc2oKthMcAbAFAiMAGVccyNUrbx5N++o0n8+n4uLiyO8A0BtKaQAyLlOr03w+n4YPH67hw4cTGAGIC4ERYDOZan5oJVanAbArSmmAjXil+WHn6rTzg6N0rU5rb+8IMHNzmcMEoHdkjACbSEd5ya7Zp0ytTguFQtq9e7d2796tUCiU0vsG4E5kjACb6Km8lEzA0FP2qSnYroaWD1RSMMiy1WDnr04bWzCQVWkAbIHACLCJVJaXYmWfFkwclpHVYPEqDuQSEAGwFUppgE2ksrwUK/v0lwPH2asMAHpAxgiwkVSVl2Jln0LGpLRcBwBuQ8YIsJniQK7Kxw/tU6ASK/s0e+zH2KsMAHpAxgiIwg6Tk/sqVvZpzQ2lunsCMQ6dAAAZUUlEQVT9Tp0zhr3KAOACBEawJSsDEzf1Eoo2udlLq8F8Pp8KCwsjvwNAbwiMYDtWBiY9reZyUwDhldVgPp9PI0eOtHoYAByEOUawlUztoRULW1UAgLcRGMFWrA5MOldznY/Jyc52+vRpnT592uphAHAIAiPYitWBSaa2qkBmhEIh1dfXq76+ni1BAMSFOUawlc7AxMpVU16anAwA6MoxGaPjx49r6dKlCgQCCgQCWrp0qd5///0eb3PllVfK5/N1+bnpppsyNGIka/Gc0dqy4ir9Zvk8bVlxlWUrwoxM7yf1gV03eAUAL3NMxmjJkiV699139cILL0iSvvrVr2rp0qX6/e9/3+Ptli9frnvuuSfyd24u3/6dwMpVU5lYFeemlgAA4CaOCIz27NmjF154QX/+85912WWXSZKeeOIJlZeXa+/evZo0aVLM2w4cOFBFRUWZGiocLhPL9ZN5DDc0nAQAJ3BEKW3r1q0KBAKRoEiS5s2bp0AgoOrq6h5v+8wzz6igoEDTpk3Td77zHbW1tfV4/qlTp9Ta2trlB125uQSUiVVxiT5GVU2jKio3a8kT21RRuVlVNY0pGwsAoCtHZIyam5t18cUXdzt+8cUXq7m5Oebtbr75ZpWUlKioqEg7d+7UypUrVVdXp02bNsW8zZo1a7R69eqUjNuN3F4CirX5aipXxSXyGF5pOAkAdmFpxmjVqlXdJkdf+LN9+3ZJ0dv5G2N6bPO/fPlyfepTn9L06dN100036be//a3++Mc/6i9/+UvM26xcuVLBYDDyc/Dgwb4/UZewuvliJmRiuX4ij2F1Xyen8/l8GjZsmIYNG8aWIADiYmnG6Lbbbut1ldjYsWP117/+VYcPH+72b0ePHo3sgxSPmTNnasCAAXrrrbc0c+bMqOdkZ2crOzs77vv0kp4+pN2UvcjEcv14HyMTGSwnSHaOlc/n0+jR7sloAkg/SwOjgoICFRQU9HpeeXm5gsGgXnvtNc2dO1eStG3bNgWDQc2fPz/ux9u1a5fOnDmj4uLipMfsZV76kM7Eqrh4HiOVfZ2cOoHb7eVbAPbiM8akt1lLiixatEiHDh3S448/Lqljuf6YMWMiy/Xfe+89ffKTn9S///u/a+7cuXrnnXf0zDPP6Nprr1VBQYF2796tb3/728rNzVVNTY369esX1+O2trYqEAgoGAwqPz8/bc/PKapqGrt9SPMhlX5NwfY+ZbCcGlw0BdtVUbm5WzC+ZcVVcV+Hs2fPSpL693fElEoAKZLs57dj3imeeeYZ3X777Vq4cKEk6W//9m/10EMPRf79zJkz2rt3r06e7Jh7kZWVpf/93//VT3/6U504cUKjRo3SZz7zGf3gBz+IOyhCd3SFtkZfMlhOnsDd1/JtKBRSXV2dJKmsrEx+vyMW4gKwkGMCo4997GP61a9+FfPfx44dq/OTX6NGjdLLL7+ciaF5jpXNF5E4J88N81L5FoA98PUJjmZ1TyWrHz8eqdqY14rnyqa+ADLNMRkj4EJWz5ux+vHjlYoJ3FY+V8q3ADLJMZOvrcLka3tKxaRcJz9+MpKdwO3E59opFAqptrZWEnOMAK9J9vObdwk4ktWND61+/GQUB3JVPn5owsGME58rACSLwAiOlKp5M059/Ezy0nMFAAIjOJLVk3KtfvxMcvJz9fl8Gjp0qIYOHcqWIADiwhyjXjDHyN762vjQ6Y+fSV56rgCcz/UNHoForO6pZPXjZ5KXnisA76KUBsDVQqGQQqGQ1cMA4BAERgBSwo7NLjuX69fW1hIcAYgLpTQAfeaUZpcA0BsyRkCS7JghsUKsTWq9fl0AOBMZIyAJZEg+4uRNagHgQmSM4CqZyOKQIemKBpAA3ISMEVyhKdiuX2xp0JNbGtKexSFD0lUqNqkFALsgMILjVdU0asW6ep0fq3RmcRZMHJbyD+jODMmFm6p6OUOyeM5oLZg4jAaQAByPUhocrbOsFa19e7o2OnXyFhnplOwmtek2ZMgQDRkyxOphAHAIMkZwtGhlrU7pzOKQIXEGv9+vcePGWT0MAA5CYARHi1bWkjrmGKU7i8MWGQDgPpTS4GgXlrX8kr66oER/WvGJXide04cIAHAhMkbooinYroaWD1RSMMgx2ZBkylr0IfKGzi1BJKmsrEx+P98FAfSMwAgRTg4WEilrxepDlI4VbF7hxIAaAKIhMIIkbwUL9CFKLScH1ABwIfLKkNRzsOA2dGpOHbqAA3AbAiNI8lawUBzI1efLRnQ59rmy4WSLkuClgBqANxAYQZK3mhY2Bdu1ofa9Lsd+V3uILEcSvBRQA/AG5hghwitNC5lj1FVfJk6zTxoAtyEwQhdeaFrIXmcfScXEabsH1IFAwOohAHAQSmnwHC+VDXuSyonTdt0nze/3a8KECZowYQI9jADEhYwRPCmRLIdbe/RQUgSA7giM4FnxlA3d3KOHkiIAdEduGYjB7T16vFBS7NwSpLa2VqFQyOrhAHAAMkZADF4oNdl94nQqEBABSASBETLOKXN2vFJq8sJKRACIF6U0ZFRVTaMqKjdryRPbVFG5WVU1jVYPKSYvlJoAAF2RMULGOHGjWi+UmgAAHyFjhIxx8r5aRqb3kwAAjkfGyCJOmWeTSk6cs+Pm5foAgO7IGFnASfNsUslpc3bcvlzfK/Ly8pSXl2f1MAA4BBmjDHPiPJtUctKcHS8s13c7v9+viRMnWj0MAA5CYJRhfNg6Z3m4E0t/AIC+oZSWYZ0ftufjw9aenFb6AwD0HRmjDOv8sL17/U6dM4YPW5tzUukP3YVCIdXX10uSSktL5ffzXRBAzwiMLMCHrbM4pfSH6M6ePWv1EAA4CIGRRfiwBQDAfsgrI2Oagu2qfqeF5e4AANsiY4SMoFEiAMAJyBgh7WiUCABwCgIjpJ2T90gDAHgLpTSkHY0SYaWBA3mdAYgfGSN0k+pJ0jRKhFX8fr+mTJmiKVOm0MMIQFzIGKGLdE2SpncTAMAJ+AqFiHRPki4O5Kp8/FCCIgCAbREYIYJJ0nBbr6nOLUHq6+sVCoWsHg4AB6CUhggmSXubW3tNnT592uohAHAQx2SM7r33Xs2fP18DBw7URRddFNdtjDFatWqVhg8frtzcXF155ZXatWtXmkfqXEyS9i56TQFAB8dkjE6fPq0bb7xR5eXlevLJJ+O6zY9+9CPdf//9Wrt2rSZOnKh//dd/1ac//Wnt3btXeXl5aR6xM3llknRTsF0NLR+opGCQa59jInoqo3J9AHiJYwKj1atXS5LWrl0b1/nGGD3wwAP63ve+pxtuuEGS9Mtf/lKFhYX69a9/ra997WvpGqrjuX2DW7eWjPqCMioAdHBMKS1RDQ0Nam5u1sKFCyPHsrOzdcUVV6i6ujrm7U6dOqXW1tYuP3APSkbRUUYFgA6OyRglqrm5WZJUWFjY5XhhYaEOHDgQ83Zr1qyJZKdgL6kof1Eyis0rZVQA6ImlGaNVq1bJ5/P1+LN9+/Y+PYYv/A24kzGm27HzrVy5UsFgMPJz8ODBPj0+UqOqplEVlZu15IltqqjcrKqaxqTup7NkdD5KRh9xY6+pnJwc5eTkWD0MAA5hacbotttu00033dTjOWPHjk3qvouKiiR1ZI6Ki4sjx48cOdIti3S+7OxsZWdnJ/WYSI9Y5a8FE4cl/AHeWTK6e/1OnTOGkpHL+f1+TZs2zephAHAQSwOjgoICFRQUpOW+S0pKVFRUpE2bNqmsrExSx8q2l19+Wffdd19aHhPpkeryFyUjAEAsjpl83djYqB07dqixsVHnzp3Tjh07tGPHDp04cSJyzuTJk7VhwwZJHSW0O+64Qz/84Q+1YcMG7dy5U1/+8pc1cOBALVmyxKqngSSko/zlxpIRAKDvHDP5+p//+Z/1y1/+MvJ3ZxboxRdf1JVXXilJ2rt3r4LBYOSc7373u2pvb9c3vvENHT9+XJdddpk2btxIDyOHofyFZIVCIe3Zs0eSNGXKFPn9jvkuCMAiPmOM6f0072ptbVUgEFAwGFR+fr7Vw/G0pmA75S8kJBQKqba2VlLHlykCI8A7kv38dkzGCIi38SRdrQEAySIwgq0lGuTQ1RoA0BcERrCtRIOcVC7rBwB4EwV3WKop2K7qd1q6bcmRzNYdPS3rBwAgHmSMYJmeMkLJ9C5iI1QAQF+RMYIlessIJdO7iI1QEU1WVpaysrKsHgYAhyBjBEv0lhFKtncRXa1xPr/fr9LSUquHAcBBCIxgiXjKXskGOfEu6wcA4EKU0mCJeMtebN0BAMgkMkawDGUvpFsoFNLevXslSZMmTaLzNYBeERjBUp3BUEPLB13+BlLl5EnaNQCIH4ERLEWnagCAnZBXhmWSaeIIAEA6ERjBMnSqBgDYDYERLJNME0cAANKJwAiWoVM1AMBumHwNS7FkH+nWvz9vcwDixzsGLEenaqSL3+/XjBkzrB4GAAehlAYAABBGYAQkoSnYrup3WmgtAAAuQykNSBBNKZ0jFArp7bffliRNmDCBLUEA9Ip3CSABNKV0nra2NrW1tVk9DAAOQWAEJICmlADgbgRGQAJoSgkA7kZgBCSAppQA4G5MvgYSRFNKAHAvAiMgCTSlBAB3IjAC4Gos0QeQCAIjAK7l9/tVVlZm9TAAOAhfpQAAAMIIjAAAAMIopQFwrVAopH379kmSxo0bx3wjAL0iMALgasFg0OohAHAQvj4BAACEERgBAACEERgBAACEERgBAACEERgBAACEsSqtF8YYSVJra6vFIwGQqFAopBMnTkjq+H+Y5fqAd3R+bnd+jseLwKgXbW1tkqRRo0ZZPBIAAJCotrY2BQKBuM/3mURDKY8JhULau3evpk6dqoMHDyo/P9/qITlOa2urRo0axfVLEtevb7h+fcP16xuuX/L6eu2MMWpra9Pw4cMTyhaTMeqF3+/XiBEjJEn5+fm8sPuA69c3XL++4fr1Ddevb7h+yevLtUskU9SJgjsAAEAYgREAAEBYv1WrVq2yehBO0K9fP1155ZXq35/qYzK4fn3D9esbrl/fcP36huuXPCuuHZOvAQAAwiilAQAAhBEYAQAAhBEYAQAAhBEYAQAAhBEYxXDvvfdq/vz5GjhwoC666KK4bvPlL39ZPp+vy8+8efPSPFJ7Sub6GWO0atUqDR8+XLm5ubryyiu1a9euNI/Uno4fP66lS5cqEAgoEAho6dKlev/993u8zZVXXtnt9XfTTTdlaMTWeuSRR1RSUqKcnBzNmjVLr776ao/nr1u3TlOnTlV2dramTp2qDRs2ZGik9pTI9Vu7dm2315nP59OHH36YwRHbwyuvvKLPfvazGj58uHw+n373u9/1epuXX35Zs2bNUk5OjsaNG6fHHnssAyO1p0Sv30svvRT1tffGG2+kdFwERjGcPn1aN954o77+9a8ndLtrrrlGTU1NkZ/nn38+TSO0t2Su349+9CPdf//9euihh1RTU6OioiJ9+tOfjuxX5yVLlizRjh079MILL+iFF17Qjh07tHTp0l5vt3z58i6vv8cffzwDo7VWVVWV7rjjDn3ve99TbW2tLr/8ci1atEiNjY1Rz9+6dasWL16spUuXqq6uTkuXLtUXvvAFbdu2LcMjt4dEr5/U0Yn4/NdZU1OTcnJyMjhqe/jggw80Y8YMPfTQQ3Gd39DQoGuvvVaXX365amtrdffdd+v222/XunXr0jxSe0r0+nXau3dvl9feJZdcktqBGfToqaeeMoFAIK5zly1bZq6//vo0j8hZ4r1+oVDIFBUVmcrKysixDz/80AQCAfPYY4+lc4i2s3v3biPJ/PnPf44c27p1q5Fk3njjjZi3u+KKK8y3vvWtTAzRVubOnWtuvfXWLscmT55sVqxYEfX8L3zhC+aaa67pcuzqq682N910U9rGaGeJXr9E3hO9RJLZsGFDj+d897vfNZMnT+5y7Gtf+5qZN29eOofmCPFcvxdffNFIMsePH0/rWMgYpdhLL72kiy++WBMnTtTy5ct15MgRq4fkCA0NDWpubtbChQsjx7Kzs3XFFVeourrawpFl3tatWxUIBHTZZZdFjs2bN0+BQKDXa/HMM8+ooKBA06ZN03e+8x3XZ9tOnz6t119/vcvrRpIWLlwY81pt3bq12/lXX321515nUnLXT5JOnDihMWPGaOTIkbruuutUW1ub7qG6QqzX3vbt23XmzBmLRuU8ZWVlKi4u1ic/+Um9+OKLKb9/2nCm0KJFi3TjjTdqzJgxamho0Pe//3194hOf0Ouvv67s7Gyrh2drzc3NkqTCwsIuxwsLC3XgwAErhmSZ5uZmXXzxxd2OX3zxxZHrFM3NN9+skpISFRUVaefOnVq5cqXq6uq0adOmdA7XUi0tLTp37lzU102sa9Xc3JzQ+W6WzPWbPHmy1q5dq9LSUrW2tuqnP/2pKioqVFdXl/qShsvEeu2dPXtWLS0tKi4utmhkzlBcXKyf/exnmjVrlk6dOqWnn35an/zkJ/XSSy9pwYIFKXscTwVGq1at0urVq3s8p6amRrNnz07q/hcvXhz5ffr06Zo9e7bGjBmj5557TjfccENS92kn6b5+kuTz+br8bYzpdsyp4r1+UvfrIPV+LZYvXx75ffr06brkkks0e/Zs/eUvf9HMmTOTHLUzJPq6cfPrLBmJXI958+Z1WVRSUVGhmTNn6t/+7d/04IMPpnWcbhDtWkc7ju4mTZqkSZMmRf4uLy/XwYMH9eMf/5jAKFm33XZbr6t0xo4dm7LHKy4u1pgxY/TWW2+l7D6tlM7rV1RUJKnjG9X535qOHDnS7RuWU8V7/f7617/q8OHD3f7t6NGjCV2LmTNnasCAAXrrrbdcGxgVFBSoX79+3bIbPb1uioqKEjrfzZK5fhfy+/2aM2eOa97n0inWa69///4aOnSoRaNytnnz5ulXv/pVSu/TU4FRQUGBCgoKMvZ4x44d08GDB12THk3n9essAW3atEllZWWSOuY/vPzyy7rvvvvS8piZFu/1Ky8vVzAY1Guvvaa5c+dKkrZt26ZgMKj58+fH/Xi7du3SmTNnXPP6iyYrK0uzZs3Spk2b9PnPfz5yfNOmTbr++uuj3qa8vFybNm3SnXfeGTm2cePGhK6tWyRz/S5kjNGOHTtUWlqarmG6Rnl5uX7/+993ObZx40bNnj1bAwYMsGhUzlZbW5v697i0Tu12sAMHDpja2lqzevVqM3jwYFNbW2tqa2tNW1tb5JxJkyaZ9evXG2OMaWtrM9/+9rdNdXW1aWhoMC+++KIpLy83I0aMMK2trVY9Dcskev2MMaaystIEAgGzfv16U19fb774xS+a4uJiT16/a665xlx66aVm69atZuvWraa0tNRcd911kX9/9913zaRJk8y2bduMMca8/fbbZvXq1aampsY0NDSY5557zkyePNmUlZWZs2fPWvU0MuLZZ581AwYMME8++aTZvXu3ueOOO8ygQYPM/v37jTHGLF26tMsKqz/96U+mX79+prKy0uzZs8dUVlaa/v37d1kF6CWJXr9Vq1aZF154wbzzzjumtrbWfOUrXzH9+/ePvBa9pK2tLfLeJsncf//9pra21hw4cMAYY8yKFSvM0qVLI+fv27fPDBw40Nx5551m9+7d5sknnzQDBgwwv/3tb616CpZK9Pr95Cc/MRs2bDBvvvmm2blzp1mxYoWRZNatW5fScREYxbBs2TIjqdvPiy++GDlHknnqqaeMMcacPHnSLFy40AwbNswMGDDAjB492ixbtsw0NjZa8wQsluj1M6Zjyf4PfvADU1RUZLKzs82CBQtMfX195gdvA8eOHTM333yzycvLM3l5eebmm2/uskS1oaGhy/VsbGw0CxYsMB/72MdMVlaWGT9+vLn99tvNsWPHLHoGmfXwww+bMWPGmKysLDNz5kzz8ssvR/7tiiuuMMuWLety/n/8x3+YSZMmmQEDBpjJkyen/I3VaRK5fnfccYcZPXq0ycrKMsOGDTMLFy401dXVFozaep3Lxy/86bxey5YtM1dccUWX27z00kumrKzMZGVlmbFjx5pHH3008wO3iUSv33333WfGjx9vcnJyzJAhQ8zHP/5x89xzz6V8XD5jwjO/AAAAPI4+RgAAAGEERgAAAGEERgAAAGEERgAAAGEERgAAAGEERgAAAGEERgAAAGEERgAAAGEERgAAAGEERgAAAGEERgA85ejRoyoqKtIPf/jDyLFt27YpKytLGzdutHBkAOyAvdIAeM7zzz+vz33uc6qurtbkyZNVVlamz3zmM3rggQesHhoAixEYAfCkb37zm/rjH/+oOXPmqK6uTjU1NcrJybF6WAAsRmAEwJPa29s1ffp0HTx4UNu3b9ell15q9ZAA2ABzjAB40r59+3To0CGFQiEdOHDA6uEAsAkyRgA85/Tp05o7d67+5m/+RpMnT9b999+v+vp6FRYWWj00ABYjMALgOf/4j/+o3/72t6qrq9PgwYN11VVXKS8vT3/4wx+sHhoAi1FKA+ApL730kh544AE9/fTTys/Pl9/v19NPP60tW7bo0UcftXp4ACxGxggAACCMjBEAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEAYgREAAEDY/w94g8U61p2GCAAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "PyObject " - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(x,y, \".\")\n", - "xlabel(\"x\")\n", - "ylabel(\"y\")\n", - "axhline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", - "axvline(0, linestyle=\"--\", color=\"k\", alpha=0.2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The correlation matrix is:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×100 Array{Float64,2}:\n", - " 0.1032 -0.00452839 0.219995 … -0.265528 -0.0914568 -0.0123549\n", - " 0.0500175 0.300766 0.126217 -0.207283 -0.197363 0.114342 " - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [x' .- mean(x); y' .- mean(y)] # rows are x and y with means subtracted" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.518496 0.465592\n", - " 0.465592 0.487009" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "S = A * A' / (length(x)-1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this case, since there are only two datasets, $S$ is just a $2 \\times 2$ matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# PCA: diagonalizing the covariance matrix\n", - "\n", - "A key question in analyizing data analysis is to figure out **which variables are responsible for most of the variation in the data**. These may not be the variables you measured, but may instead be some **linear combination of the measured variables**!\n", - "\n", - "Mathematically, this corresponds to **diagonalizing the covariance (or correlation) matrix**:\n", - "\n", - "* $S$ is real-symmetric and positive-definite (or at least semidefinite), so diagonalization $S=Q \\Lambda Q^T$ finds real, positive eigenvalues $\\lambda_k = \\sigma_k^2 \\ge 0$ and an **orthonormal basis Q of eigenvectors**.\n", - "\n", - "* The eigenvectors form a **coordinate system** in which the covariance matrix **S becomes diagonal**, i.e. a **coordinate system in which the variables are uncorrelated**.\n", - "\n", - "* The diagonal entries in this coordinate system, the eigenvalues, are the **variances of these uncorrelated components**.\n", - "\n", - "This process of diagonalizing the covariance matrix is called [principal component analysis](https://en.wikipedia.org/wiki/Principal_component_analysis), or **PCA**.\n", - "\n", - "Let's try it:" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "([0.036895, 0.968611], [0.695056 -0.718956; -0.718956 -0.695056])" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "σ², Q = eig(S)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We see that the second eigenvector is responsible for almost all of the variation in the data, because its eigenvalue (the variance $\\sigma^2$) is much larger:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.036895\n", - " 0.968611" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "σ²" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's plot these two eigenvectors on top of our data:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG0CAYAAADXb+jjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4VOW59/HfTEIOQBiRQBLOAeQkEcM5oIhVUWzrgb4WxFI8bFpr1ao9bMBaUatgt1vRWrVaC9ZjWhFbq9uCIiJCMWjACIoiwaAkQChMAgQCmfX+sZIJIaeZycysNbO+n+vKdU0ma9Y8swiZe+7nee7bZRiGIQAAAMht9QAAAADsgsAIAACgFoERAABALQIjAACAWgRGAAAAtQiMAAAAahEYAQAA1CIwAgAAqEVgBAAAUIvACAAAoBaBEQAAQK1Eqwdgdz6fT7t27VJaWppcLpfVwwEAAAEwDEOVlZXq3r273O7A80AERq3YtWuXevXqZfUwAABACHbu3KmePXsGfDyBUSvS0tIkmRe2U6dOFo8GQLj4fD5t2rRJkjR8+PCgPlECsL+Kigr16tXL/z4eKAKjVtRNn3Xq1InACIgjPp9PHTt2lGT+/yYwAuJTsMtg+EsAAABQi8AIAACgFlNpABzJ5XKpS5cu/tsAIBEYAXAol8ulvn37Wj0MADbDVBoAAEAtAiMAjuXz+eTz+aweBgAbITAC4Eg+n0+FhYUqLCwkOALgR2AEAABQi8AIAACgFoERAABALQIjAACAWgRGAABYoNRbpbVflqvUW2X1UHACCjwCABBl+QUlmvtKkXyG5HZJC6bmaNro3lYPCyJjBMDBOnfurM6dO1s9DDhMqbfKHxRJks+Q5r3yCZkjmyBjBMCR3G63+vXrZ/Uw4EDF5Yf8QVGdGsPQjvLDyvKkWjMo+JExAgAgirLTO8h9Ut/iBJdLfdPbWzMgNEBgBABAFGV5UrVgao4SXGZ0lOBy6b6pw8gW2QRTaQAcqa4liCTl5ubK7eZzIqJn2ujemjiwq3aUH1bf9PYERTZCYAQAgAWyPKkERDbERyQAAIBaBEYAAAC1CIwAAABqERgBAADUIjACAED0LoOJXWkAHMvj8Vg9BNgEvctQh4wRAEdyu90aMGCABgwYQA0jh6N3GU7EXwMAgKO11LsMzkNgBABwNHqX4UQERgAcqa4lSGFhoXw+n9XDgYXoXYYTsfgagGMREKEOvctQh8AIAADFb++yUm+VissPKTu9Q1y+vnAjMAIAIAzsGIBQhiB4BEYAALSRHQOQ5soQTBzY1TaBmx2x+BoAgDawax0kyhCEhsAIAIA2sGsAQhmC0BAYAXCstLQ0paWlWT2MgNDHy77sGoBQhiA0LsMwjNYPc66Kigp5PB55vV516tTJ6uEAcCA7rl9BQ/kFJZr3yieqMQx/AGKXf6NSb5UjyxCE+v5NYNQKAiMAVir1VmnCwpUNpmoSXC6tmXOuo97kYoFTAxC7CvX9m11pAGBjLa1f4c3XXuK1DpLTsMYIgCP5fD5t2rRJmzZtsnUFbLuuX4lnrOdyNgIjAI51/PhxHT9+3OphtIgFtE2LVPCSX1CiCQtXasZT6zVh4UrlF5SE9fywP6bSAMDm6OPVUKQWo1MQERIZIwCICVmeVOX17+L4N+hIFlO0az0iRBeBEQAgZkQyeGE9FyQCIwBADIlk8MJ6LkisMQIAhMCqTvJ1wcvJxRTDNQbWc4HACIBjtW/PFEkorK7E3Vrw0tagjXpEzkbl61ZQ+RoA6tm9ErfVQRvsI9T3b9YYAQACZuedW5HcsQbnIDACAATMzju37By0IXYQGAFwJJ/Pp6KiIhUVFdm6JYjd2Hnnlp2DNsSOmAqMVq9ere9+97vq3r27XC6XXn311VYf8+6772rkyJFKSUlRv3799MQTT0RhpABiQXV1taqrq60eRsyZNrq31sw5Vy/OHqc1c861zRqeSAZt9E9zjpjalXbo0CENHz5c11xzjb73ve+1enxxcbEuvvhizZ49W88995zef/993XDDDeratWtAjwcANM2uO7cisd2eBd3OElOB0ZQpUzRlypSAj3/iiSfUu3dvLVq0SJI0ZMgQbdiwQQ888ACBEQDEqXAGbfRPc56YmkoL1rp16zR58uQG91144YXasGGDjh071uRjjh49qoqKigZfAABnYkG388R1YFRWVqaMjIwG92VkZOj48eMqLy9v8jELFiyQx+Pxf/Xq1SsaQwUA2BALup0nrgMjSXK5Gv5G19WzPPn+OnPnzpXX6/V/7dy5M+JjBADYk5134SEyYmqNUbAyMzNVVlbW4L49e/YoMTFRXbp0afIxycnJSk5OjsbwAFgsJSXF6iEgBtA/zVniOjDKy8vTa6+91uC+5cuXa9SoUWrXrp1FowJgB263W6effrrVw0AbRLORrV134SH8YiowOnjwoLZt2+b/vri4WBs3btSpp56q3r17a+7cufrmm2/0l7/8RZJ0/fXX69FHH9Vtt92m2bNna926dXr66af14osvWvUSAABhwBZ6REpMrTHasGGDcnNzlZubK0m67bbblJubq9/85jeSpNLSUpWUlPiPz87O1htvvKFVq1bpzDPP1D333KNHHnmErfoAEMPoiYZIiqmM0aRJk/yLp5uyZMmSRvedc845+uijjyI4KgCxyOfz6dNPP5Vk1jhzu2Pqc6KjtbSFnukutFVMBUYAEE5HjhyxeggIQd0W+hODI7bQI1z4iAQAiClsoUckkTECAMScQLfQR3PnmpXPifAhMAIAxKTWttBbsXON3XKxj6k0AEDcsWLnGrvl4gOBEQAg7ljR/JWGs/GBwAiAYyUlJSkpKcnqYSAC2tL8tdRbpbVflged6aHhbHwgMALgSG63Wzk5OcrJyaGGURwKdedafkGJJixcqRlPrdeEhSuVX1DS4vHheE7Yi8toqWIiVFFRIY/HI6/Xq06dOlk9HACIa+He0VXqrQq4+Wupt0oTFq5sVB9pzZxzgxpLMM+JyAn1/ZtdaQAAW4jEjq5gmr+Gq6I2DWdjG/ljAI5U1xLk008/lc/ns3o4jmeHHV2sEYJEYATAwQ4fPqzDh9kxZAfB7OgKdXF0a1gjBImpNACADQTa/yzSBRQDraiN+EXGCABguUCyNdGabsvypCqvfxeCIociYwQAsIXWsjXhWhwNtITACABgGy3t6Ap0ug1oC6bSAAAxgcXRiAYyRgAcKzGRP4GxhsXRiDT+KgBwJLfbreHDh1s9DISAAoqIJKbSAAARF6naQ0C4kTECgCgKdy+wWBDp2kNAOBEYAXAkn8+nbdu2SZIGDBggtzvyCXQnBgjN1R6aOLBrzASGJwezTgxunYTACIBjVVZWRu254iFACEWs1x46OZi9PLeHlhV+46jg1mlYYwQAURBML7B4Eo7GrFatT2oqmF360TeWNrpF5BEYAUAUOLVze1trD+UXlGjCwpWa8dR6TVi4UvkFJZEcbgNNBbMnc0Jw6zRMpQFAFNQFCPNe+UQ1huGo4oSh1h6yevqxqUrbJ3NCcOs0BEYAECVOLk4YSu0hq9cnNRXMXpbbXa8W7nJccOskBEYAEEUUJwycHXqjNRXM/uLCQY4Mbp2CNUYAHMvtdkdlmz5CY5feaFmeVOX17+J/3pO/R3xxGYbRytIyZ6uoqJDH45HX61WnTp2sHg4AOE6pt4oMDYIW6vs3U2kAAFtj+hHRRA4ZAACgFhkjAI7k8/m0fft2SVK/fv1YawRAEoERAAfzer1WDwGAzfARCQAAoBaBEQAAQC0CIwCArVnVRBbOxBojAIBt5ReU+PuluV3Sgqk5mja6t9XDQhwjYwQAsKXmmsiSOUIkERgBAMIi3FNeLTWRBSKFqTQAjuR2uzVy5EirhxE3IjHlZYcmsnAeMkYAgDaJ1JSXXZrIhguLyGMDGSMAQJu0NOXV1iBm2ujemjiwa8w3kWUReewgYwTAkepagmzfvl0+n8/q4cS0uimvE4VzyivLk6q8/l1iNihiEXlsITAC4Fj79+/X/v37rR5GxERr6ibeprzCjUXksYWpNACIQ9GeuomXKa9IYBF5bCFjBABxxqqpm1if8ooUMmqxhYwRAMSZSC6GRmjIqMUOAiMAiDNM3dhTlieVgCgGMJUGAHGGqRsgdGSMACAOMXUDhIbACIAjud1u5ebm+m/HI6ZugODF518DAAiA2+2O26DISoHWT6JFBuyIjBEAxLBSb5WKyw8pO72DLbJDgdZPokUG7IqPSgAcyTAM7dixQzt27JBhGK0/wIbyC0o0YeFKzXhqvSYsXKn8ghJLxxNo/SRaZMDOYi4weuyxx5Sdna2UlBSNHDlS7733XrPHLlmyRC6Xq9HXkSNHojhiAHZkGIb27dunffv2xWRg1FRwMXdpkf758S7LAoxAW1/QIgN2FlOBUX5+vm655RbdfvvtKiws1Nlnn60pU6aopKT5T0mdOnVSaWlpg6+UlJQojhoAwq+p4MIn6cYXCqOWPTp5jVCgzWQj3XQWaIuYCowefPBBXXfddfqv//ovDRkyRIsWLVKvXr30+OOPN/sYl8ulzMzMBl8AEOuaCi7qRGNqqqlpvEDrJ1FnCXYWM4uvq6ur9eGHH2rOnDkN7p88ebLWrl3b7OMOHjyoPn36qKamRmeeeabuuece/xbdphw9elRHjx71f19RUdH2wQNAmNUFF/Ne+UQ1TUwFRrIFSHNrhCYO7Bpw/STqLMGuYiZjVF5erpqaGmVkZDS4PyMjQ2VlZU0+ZvDgwVqyZIn+8Y9/6MUXX1RKSoomTJigL774otnnWbBggTwej/+rV69eYX0dABAu00b31po55+rRK3OjOjXV2hqhQJvJ0nQWdhQzgVEdl6vh/37DMBrdV2fcuHH6wQ9+oOHDh+vss8/WX//6Vw0cOFC///3vmz3/3Llz5fV6/V87d+4M6/gBIJyyPKn6zvDuUZ2aYo0Q4lnMTKWlp6crISGhUXZoz549jbJIzXG73Ro9enSLGaPk5GQlJye3aawAEG3RnJo6eRqPNUKIJzETGCUlJWnkyJFasWKFLr/8cv/9K1as0KWXXhrQOQzD0MaNG5WTkxOpYQKIEW63W8OHD/ffjgfRbAHCGiHEq5gJjCTptttu08yZMzVq1Cjl5eXpySefVElJia6//npJ0g9/+EP16NFDCxYskCTdddddGjdunE477TRVVFTokUce0caNG/WHP/zBypcBwCYSE2PqT6Dt0IsN8Sim/ipMmzZN+/bt0913363S0lINGzZMb7zxhvr06SNJKikpafDJ78CBA/rRj36ksrIyeTwe5ebmavXq1RozZoxVLwEAosJurUKAWOEyYrHkaxRVVFTI4/HI6/WqU6dOVg8HQJgYhuHfXNGrV69mN3HEoljvQ0ZQh3AI9f07pjJGABAuhmFo7969kqSePXvGTWDUUo2hWAgyYj2oQ+yLjxWHABAHTm6xEYpY7kNGc1nYARkjALCBcGVK6moMnRgcnVxjyK5TVS0FdXYaJ+IbGSMAsFg4MyWt9SFrqseZXYSrcGQ4Mm9wLjJGAGCxcGdKmqsxZPf1R+EoHMkaJbQVgREAWCyQ6a9gNVVjKBamqtpSONLugR9iA1NpAGCx1qa/wiUSPc4iMW0VanPZWF54DvsgYwTAkdxut789kB1agkSjxUa4e5zZbdoqEpk3OA8FHltBgUcA8abUW9XmAKzUW6UJC1c2CkLWzDnX0mmr/IKSRoEfa4yciQKPAICAhKPHmV3XK9HcFm1FYATAkQzD0DfffCNJ6tGjR9xUvo4WO09b0dwWbWH9xDoAWMAwDO3evVu7d+8WKwqCF60F40C0kTECAISEaSvEIwIjAEDImLZCvGEqDQAAoBaBEQAAQC0CIwAAgFoERgAcq/zgEW36+gBd2AH4ERgBcKS/ffi1fvzabs1f7dXZv1ul/IISq4cEwAYIjAA4Tl0XdiUmy90u2d+FncxRYCLROBawC7brA3Acu7aziAV2axwLhBsZIwCOk53eQS4ZOl65T8cr98mobThqRTuLWMq+1GXa6oJKMm2IRwRGABwny5Oq+y4fJh3er5pD+5XgkiXtLPILSjRh4UrNeGq9Jixcaft1Ti1l2oB4wVQaAEeaNrq3Tj0ySrsOHNHkiePUo3OHqD5/c9mXiQO72nY6z86NY4FwIWMEwLHSO6bojJ6nWBKIxGL2hcaxcAIyRgBggVjNvtA4FvGOjBEAWCCWsy9ZnlTl9e8SE2MFgkXGCAAsQvYFsB8CIwCwUJYnlYAIsBECIwCO5HK5NHjwYP9tAJAIjAA4lMvlUocO0d2iD8D+WHwNAABQi8AIgCMZhqHdu3dr9+7dMgyj9QeEWSy1AgGchKk0AI5kGIY2frZN3xw4ogujXPmaRqyAfZExAuBI+QUlunbJBt2+7BOddX/0+pTRiBWwNwIjAI5T6q3SvGXWBCex2AoEcBICIwCOY2VwUtcK5ESx0AoEcAoCIwCOY2VwEsutQAAnYPE1AMfJ8qTqvstz9MsntqvGiH5wQisQwL4IjAA40rTRvXXqkVHadeCIJkdxV1qpt0rF5YeUnd5Bef27ROU5AQSOwAiAI7lcLo0fcYYkqWPH6KzvYZs+YH+sMQLgSGUVR1S056gO+hKj0iuNbfpAbCBjBMBxrMjctLQTjjVGgH2QMQLgKHWZmxqfoZrDXh075NXcpUURz9y0tBOO9iCAfRAYAXCU+syNoeMVe3W8Yq9qDF/Eaxg1t01/9ed7NWHhSs14ar0mLIxeBW4ATWMqDYCj1GVuak6Y1opWDaOTt+lL0oSFKxutO5o4sCvTa4BFyBgBcIy6rfL/PWXwCZkb6d7Lo1fDKMuTqrz+XZTlSaU9CGBDZIwAOMLJC65/eeEgpVSkqvspKbrAoi3zddkrnwXZKzSsKUWGDnXIGAGIe01tlf+ff21V91NSlN4xpU3nbWrRdKCLqWkPYp38ghLWdqFJZIwAxL3mpqx2HTgScmDU3Jb/YEsB0B4k+pqrKcXaLkhkjADHctIW8ea2ync/JbSgaNPO/ZrTxBvrpp37QyrieOK6I0Qea7vQkqADo6uvvlqrV6+OxFgARInTphGanrLK0bgzh2nAgAFBVb7OLyjRZX9YK6OJN9aCHft5w40BLdWUAoKeSqusrNTkyZPVq1cvXXPNNZo1a5Z69OgRibEBiAAnTSOcuLg2HFNWddfOaOJnCS6XRvftzGLqGFAXKM975RPVGAZru9BA0IHR0qVLtW/fPj333HNasmSJ7rzzTp1//vm67rrrdOmll6pdu3aRGCeAMHFKa4rm1vq05TU2de0k8/z3TR2m4b0684YbI1jbhea4DOPkhHBwCgsL9ec//1l/+tOf1LFjR/3gBz/QDTfcoNNOOy1cY7RURUWFPB6PvF6vOnXqZPVwgDYr9VY1KCoomVmNNXPOjZs3h0Beo2EY+s9//iNJOvXUUwOaTmvqvG5Jy346XsN7dW5wHG+4gLVCff9u0+Lr0tJSLV++XMuXL1dCQoIuvvhibd68WUOHDtVDDz3UllM367HHHlN2drZSUlI0cuRIvffeey0ev3TpUg0dOlTJyckaOnSoli1bFpFxAbHCCVvEA1lcaxiGduzYoR07dijQz4dNXbsF38tpEBTVHcdiaiA2BT2VduzYMf3jH//Q4sWLtXz5cp1xxhm69dZbddVVVyktLU2S9NJLL+knP/mJbr311rAONj8/X7fccosee+wxTZgwQX/84x81ZcoUbdmyRb17N94Ou27dOk2bNk333HOPLr/8ci1btkzf//73tWbNGo0dOzasYwNiSbxPI0SycGK8XzvA6YKeSktPT5fP59OVV16p2bNn68wzz2x0zP79+zVixAgVFxeHbaCSNHbsWI0YMUKPP/64/74hQ4bosssu04IFCxodP23aNFVUVOj//u///PdddNFF6ty5s1588cWAnrMuFbd///5mU3Fud33izefztXg+jm3bsYZhtPjp3g7Hulwu/7QMx7Z+bKm3Sjv2HVa/rh39QUZLvxMnnrelY/MLSnT7ss3yqT4rdsXIng0eV1hYKEnKzc1VQkJCQOetY7f/Gxxr4m9E/B8rBfY3ItSptKAzRg899JCuuOIKpaQ0X/+jc+fOYQ+Kqqur9eGHH2rOnDkN7p88ebLWrl3b5GPWrVvXKGt14YUXatGiRc0+z9GjR3X06FH/9xUVFZKkTZs2qWPHjo2O93g8GjBggP/7TZs2NfsPlpaWpoEDB/q/Lyoq0vHjx5s8tn379hoyZIj/+82bN6u6urrJY1NSUnT66af7v//000915MiRJo9NSkpSTk6O//utW7fq8OGmtxInJiZq+PDh/u+3bdumysrKJo91u93Kzc31f799+3Z5vd4mj5WkkSNH+m/v2LFD+/fvb/bY3Nxc/x+dr776Svv27Wv22OHDhysx0fy13rlzp/bu3dvssTk5OUpKSpIkffPNN9q9e3ezxw4dOlSpqeabdmlpqUpLS5s9dvDgwerQoYMkac+ePfr666+bPXbgwIH+TGt5eblKSprfNj9gwAB5PB5J0n/+8x/t2LGj2WP79eunzp3N6Z0DBw5o+/btzR7bt29fdenSRZL5+75t27Zmj+3du7e6du0qSTp48KA+//zzZo/t2bOnMjIyJEmHDx/WZ5991uiY5ZvL9Og72+Rq31lJnbpowdQcXTKsq7Zs2dLseTMyMtSzpxngVFdXq6ioqMnjBiZK+T84TcdTu6hvent17dDOHwhJ5h/WrY8/Lu3YIS1YoK4ZGerbt6//Zycee7LOnTurX79+/u9bOpa/ESb+RtTjb4QpkL8RdbKystS9e3dJUlVVVcB/I0IR9BqjmTNnthgURUp5eblqamr8F7FORkaGysrKmnxMWVlZUMdL0oIFC+TxePxfvXr1avvgATRSfvCIHn1nW9DFEIOR0Sml+bU+TzwhLV4svfOONG6cGhUmAuBIbd6VFi27du1Sjx49tHbtWuXl5fnvv/fee/Xss882GWkmJSXpmWee0ZVXXum/7/nnn9d1113X7KelpjJGvXr1YirNJseSJo+fY9d+Wa6r/rS+7mj/sS/OHqex2Q0XMzd3XinEabdbb5XvkUdUKEkdOyr34EElJCfLVVUl1R5vh993jg3+WP5GxP+xks2m0qySnp6uhISERtmePXv2NMoK1cnMzAzqeElKTk5WcnJyo/vdbneDX/zmBHIMx4Z+7Mn/OTg2do/t3y1NCW53kwukI/q7du21ZqZIknvlSiktTe6xY+U6elTq3l3atUtyuWzx+86xwR9r1993jg3fsVJwvxPBipleaUlJSRo5cqRWrFjR4P4VK1Zo/PjxTT4mLy+v0fHLly9v9ngA0WNJ2YArrvAHRS6vV/3OPFP9+veXq25tTlmZNHRo5J4fgO3FTMZIkm677TbNnDlTo0aNUl5enp588kmVlJTo+uuvlyT98Ic/VI8ePfw71H72s59p4sSJuv/++3XppZfq73//u9566y2tWbPGypcBoFZUt75feKG0fLl5+9Ahudq3V4MJu+PHpcRE6bPPpLw8ad26yI0FgG3FVGA0bdo07du3T3fffbdKS0s1bNgwvfHGG+rTp48kqaSkpEF6bfz48XrppZf061//WnfccYf69++v/Px8ahgBNpLlSY18LaBx46T1teuZjhyRmpguV0KCdOyY1K6d9O9/m4HUv/4V2XEBsJ2YWXxtFVqCADHMMKQhQ6StW83vq6vNwEfmYs8DBw5Ikk455ZT69Q3V1fWB0xVXSH/9a7RHDSAMLGkJAgC2ZRhSVlZ9UFSXDfL/2ND27du1ffv2hrthkpKkqtqSAX/7m3TddVEcNACrERgBiD8+n5SaKtUV5KupMdcPBSolRTp40Lz95z9LYW5vBMC+CIwAxBefz1wvdPSoOSVWUyOFsrW3QweprjLzokXSHXeEd5wAbInACED8OH7cDIokqVs3c0qsLfVOOnWS6tpL/Pa30v33t32MAGyNwAhAfDhxDdHAgWZNoiAKxjXr1FPrp+TmzJEefbTt5wRgWwRGAGLf0aPmomlJGj3aXHAdjqCoTrduUl2jz5tu8heJBBB/CIwAxLbDh83F0pJ0/vnSBx9E5nl69JDqOpBfe62Unx+Z5wFgKQIjALGrstJcJC1J3/uedFILoJa4XC717dtXffv2DbxHU3a2WRlbkqZPl157LcgBA7A7AiMAsWn/fnNxtCRdfbX08stBPdzlcqlLly7q0qVLUM0rNWiQtGmTefuSS6S33grqeQHYG4ERgNizd6+5KFoKeM1PqbdKa78sV6m3qu3Pf8YZ9S1GLrhAov8iEDcIjADEll27zMXQkjRvnvTII60+JL+gRBMWrtSMp9ZrwsKVyi8okWEY8nq98nq9Cqkz0pgx0urV5u2zz5Y+/DD4cwCwHQIjAGEX1uzMib76ylwELUn33Sfde29AY5n7SpF8tbGPz5DmvfKJdh04rG3btmnbtm2hBUaSGRDVNZodNUoqKgrtPABsI4ga+QDQuvyCEn8g4nZJ152VrWvPylaWJ7VtJ/7iC7M+kWRmiW66KaCHFZcf8gdFdWoMQzvKDyulbSMyTZ4svfqqdNll5hTb1q314wQQc8gYAQibprIzT71XrPELzOmrkH3ySX2w8ac/BRwUSVJ2ege5T1pbneByqW96+9DHc7JLL5VeeMG8PWiQtGNH+M4NIKoIjACETVPZGUkyJM1dWqR/frxLpd6q4KbaNmyQcnLM2y+8EHS3+yxPqhZMzVFC7c6zBJdL900d1vYM1smuvNIM2iRzW/+uXeE9P4CoYCoNQNjUZWeaCo58km58oVB1yRtD5lTbgqk5mja6d9MnfP996ayzzNt//7u5PT4E00b31sSBXbWj/LD6prdXlidVPp8vpHO16LrrpEOHpJ/9zFwLtWeP1LVr+J8HQMSQMQIQNnXZmZOnrk5k1H5J9Quhm8wcvfVWfVC0fHlAQVFLmagsT6ry+ncJf6boZDffXL8ovFs3s94SgJhBxghAWNVlZxa/X6w/rS5Wa3mZuoXQDQKW116rD4RWrzZ3f7Xi5EXfLWaiIm3ePOngQWnBArPeUkWFlJZmzVgABIWMEYBU/1mTAAAgAElEQVSwy/Kkat7FQ/X+3G/p0StzW8wgNVoI/de/1gdFH3wQUFDU3Jb8ltYwuVwu9e7dW7179w6u8nWg7ruvfpF4p05mTzcAtkdgBCBisjyp+s7w7ub0WjPH/OqiQfXZosWLpWnTzNubNkmjRwf0PB9+tb/ZLfnNcblc6tq1q7p27RqZwEgyywrMmmXe7tBBOno0Ms8DIGwIjABE3LTRvfXIjNwmf3ZGz1PMG3/4g9m1XjIbtZ5xRkDnzi8o0U0vFDa6P+xb8kO1ZIk0dap5OyVFOnbM0uEAaBmBEYCoGNmnc/P1hO6/X7rxRvPO4mKzFlAA6qbQTt4E53ap1S35hmGosrJSlZWVoVe+DtTSpdJ555m3k5Kk48cj+3wAQkZgBCAqmq0n9L8LpDlzzIO+/lrq2zfgczZXN+mR6bmtLrw2DEOff/65Pv/888gHRpK5y27UKPN2u3ZSJMoFAGgzdqUBiJpG9YTmz5MWLTJ/uHt3fXPYADVVNynB5dLIvp3DOOowKigwK3h/8YWUkCDV1EhuPp8CdsL/SABR5a8n9POb6oOiffuCDorqzhWVqtbhtHVrfdHH9u2laGSrAASMjBGAqCu98moVr/1I2WldlPX1dnM7e4iaqmptay6XmR1LTjZ3qWVlSaWl5v0ALEdgBCCq8mfcprm9vifflVeYhRi3HtC00aEHRpKZObJ9QHQil0s6csScTtu9WxoyxNyJB8ByTKUBiJrScyZrbs9z5atdVxNIIca45XbX707bulUaO9ba8QCQRGAEIBoMQxo6VMU7yvxBUZ3WCjHGtYSE+rpGH3wgTZ5s7XgAEBgBiDDDMDvNf/qpsvfvar6WUZS5XC717NlTPXv2jFzl60AkJkrV1ebtFSukK66wbiwACIwARJBhmK0wSkslSVn7d9tmF5nL5VJGRoYyMjKsDYwks65RVe104ssv11cABxB1LL4GEBk+nzlVJJlv/EeOSG537O0ii5aUFOnQITOQXLzY3KlXV84AQNQQGAEIv+PHzWBIMmv27N7dYDu6HXaRGYahw7Ud79u3b2991sgciOT1Sh6P9PDDUseO0m9/a/WoAEdhKg1AeB07Vh8UDRjQKChqSam3Smu/LI/KLjXDMPTZZ5/ps88+i05LkEB16mQWvJSke++VFi60djyAw5AxAhA+R4+aU0KS2ResoCDgh+YXlGjuK0XyGWYT2AVTc1rtdxa3Tj3VDCgzMqS5c83MUV2TXQARRcYIQHhUVdUHReedF1RQVOqt8gdFksPrG9Xp1s1sqitJN91krjsCEHEERgDarrLSXB8jSVOnmp3kg1BcfqhBI1jJ4fWN6vToIW3fbt6+9lopP9/a8QAOQGAEoG0OHKjvdTZrlrR0adCnyE7vYJv6RraTnV3fLmT6dOm116wdDxDnCIwAhG7vXqlzZ/P2jTdKS5aEdJosT6pt6hvZ0qBB0scfm7cvuSTojByAwLH4GkBodu0yp3okc4Hwffe16XQn1jdqn+TWoeoalXqrCI7q5OSYbUPGjJEuuEB67z3prLOsHhUQdwiMAATvq6+kvn3N2/feK82bF5bTZnlStfrzvVHZneZyuZSVleW/HRNGj5ZWr5YmTpTOPttc4D5qlNWjAuIKU2kAgvPFF/VB0cMPhy0okqK7O83lcql79+7q3r177ARGkhkQLV9u3h49WioqsnY8QJwhMALiTESLJG7eLA0caN7+05+km28O6+nZnRagCy6QXn3VvH3GGdLnn1s7HiCOEBgBcSS/oEQTFq7UjKfWa8LClcovKAnfyT/8UBo2zLz9wgvSddeF79y1or07raqqSlVVMVor6dJLpRdfNG8PGiTt2GHpcIB4QWAExIlwTEM1m216//36tSzLlklXXhmmUTcUzd1pPp9PW7Zs0ZYtW+Tz+cJ+/qiYPl16+mnzdna29M031o4HiAMsvgbiREvTUIEEFs215Ch9/S0V33CbstO6KOvlF6TJkyP0Ckwn7k7rm96eXWmtufZa6dAhc1qzZ09pzx6zcS+AkBAYAXGibhrqxOAo0Gmo5rJNBz78WPdvN+S7coHckhZ0HqxpkRl+A1meVAKiYNx0k3TwoLkQvls36T//qa8vBSAoTKUBcaIt01DNZZsWbjfkc5t/Jnyif5mtzZ1bv0Pw1FPNNi0AgkbGCIgjoU5DNZVtcvt8/qCoTjBTc7DAvfeamaNHHjHbtBw6VN/DDkBAyBgBcSbLk6q8/l2CCl4aZZt8NfrvdxfTvywWPfywdPXV5u0OHaSjRy0dDhBryBgBUVLqrVJx+SFlp3ewZcZl2ujemvj2Uu14bLH6HtilrE0FOqU8QfNe+UQ1hkH/sliyeLE5lbZ0qZSSIlVXS+3aWT0qICYQGMHxohGwNLfjy1buvFNZd9+tLEn6+mupRw9Ny1bc7hBzuVzKyMjw3447L79sFoJ86y0pKUk6dkxK5E8+0BqXYRhG64c5V0VFhTwej7xerzp16mT1cBBm0QhYSr1VmrBwZaPdYmvmnGufQOO226SHHjJv795t7mxCfBg71mw+K0nHj0sJCdaOB4iSUN+/WWMEx4pWXy7bt7mYPbs+KNq3j6Ao3qxfX9/GJTFRitVilkCUEBjBsaIVsES7zUVQpk83e55JktdrbvN2kOrqalVXV1s9jMj77LP6gDc1VWKiAGhWzARG+/fv18yZM+XxeOTxeDRz5kwdOHCgxcdMmjRJLperwdf06dOjNGLYXbQClmi2uQjKxRdL+fnm7YMHze3dDuLz+VRUVKSioqLYbQkSKJdLKiuTkpPNhdiZmQRHQDNiZiXejBkz9PXXX+vNN9+UJP3oRz/SzJkz9dprr7X4uNmzZ+vuu+/2f5+aapM1HbBcXcASjV1XtmtzMX68tG6debuqyty5hPjmckmHD5trjPbskQYPlrZutXpUgO3ERGD06aef6s0339S///1vjR07VpL01FNPKS8vT1u3btWgQYOafWz79u2VmZkZraEixkQzYKk7d3H5oQbft0XQO+oMQxo2TNqyxfz+6FFzxxKcwe02F2AnJkqffy6NGVO/MBuApBgJjNatWyePx+MPiiRp3Lhx8ng8Wrt2bYuB0fPPP6/nnntOGRkZmjJliu68806lpaU1e/zRo0d19ISCaBUVFeF5EbCtaPXlCvcOuKDPZxhmk9Fdu8zv2b7tTAkJ5r99u3ZSQYHZFHj5cqtHBdhGTKwxKisrU7cmdsp069ZNZWVlzT7uqquu0osvvqhVq1bpjjvu0NKlSzV16tQWn2vBggX+dUwej0e9evVq8/iBcO+AC+Z8pd4qrd1WrtLMPvVBUV3WAM6UmGiuNZKkFSuk//f/rB0PYCOWBkbz589vtDj65K8NGzZIaroAm2EYLRZmmz17ts4//3wNGzZM06dP18svv6y33npLH330UbOPmTt3rrxer/9r586dbX+hCKtSb5XWflkeU81Mw70DLtDz5ReUaMLClZrxp/WaMOsPyh9+oVRTQy0bmBmjI0fM20uXStdcY+14AJuw9CPjjTfe2Oousb59++rjjz/W7t27G/1s7969/sq1gRgxYoTatWunL774QiNGjGjymOTkZCUnJwd8TkRXTFSQbkJTTVrbsgMukPM1yiq53Zo35SZNrDxq/eJv2ENystlotkMHackSc2fiww9bPSrAUpYGRunp6UpPT2/1uLy8PHm9Xn3wwQcaM2aMJGn9+vXyer0aP358wM+3efNmHTt2TFlZWSGPGdZpbvpo4sCutn+jD/cOuEDOV1xW0URWSdpRftj21ysaXC6Xunbt6r/tWO3bSxUVZlD0yCNSx47SvfdaPSrAMjHTEmTKlCnatWuX/vjHP0oyt+v36dPHv13/m2++0Xnnnae//OUvGjNmjL788ks9//zzuvjii5Wenq4tW7bo5z//uVJTU1VQUKCEAKcSaAliH2u/LNeMp9Y3uv/F2eOU17+LBSMKXqm3Kqw74Jo939GjKu3aQxOuXyyfu37G3HatSEJk94a8MWn//voCn/fdJ82da+14gDYK9f07ZlZfPv/887r55ps1efJkSdIll1yiRx991P/zY8eOaevWrTp82FxjkZSUpLffflsPP/ywDh48qF69eunb3/627rzzzoCDIthLuKejrBDuHXBNnq+qSmrfXlmSFuxYoXn9LwopS2XX4CNWp1Ntr3Nns75Rt27SvHlm5uimm6weFRB1MZMxsgoZI3vJLyhpNH3Em+IJDh6U6spRXHaZtGxZSFkquwYf4W7Ie/z4cUlSIjv06u3aJfXoYd5++mnp2mutHQ8QorjPGAGSDStI28mBA+anfkn64Q+lZ56RFHyWys5ruVrajRfs2Hw+nzZt2iRJys3NldsdE9VLIq97d6m4WMrOlq67zlyDRCslOAh/CRBzsjypyuvfxfI3aVspL68Pin76U39QFIpoNdcNha0b8saTvn3r24VceaX0j39YOhwgmgiMgFZEq25SyM9TWirV7q7SnDnSCWvvQtHW4COS18u2DXnj0cCB0scfm7cvvdQsBAk4AFNpQAuitdYm5OcpKZH69DFv//a30u23t3ksbSktEI3rxXRqFOXkmG1DRo82W4esXi2dfbbVowIiisXXrWDxtXOFe6Fv2J9n2zbptNPM2w89JN1yS9jGVDeuYIKPaF2vcPH5fCosLJTEGqNWrVlTHxB98IEZKAE2F+r7N38JgGZEa61NSM+zeXN9UPTUU2EPiqTg13LZeW0S2uiss+qn0saMkYqKrB0PEEEERkAzorXQN+jn+egjadgw8/bzz0v/9V9hHU+oWBgd584/v34R9hln1C/OBuIMgRHQjGgt9A3qedaulUaONG8vWybNmBHWsbRFrC2Mdrlc6tKli7p06eLsliDB+O53pZdeMm8PHizt2GHpcIBIYI1RK1hjhHC38Qj5eVaulM47z7z95pvShRdGbCxtEa3rBQstXlxf+PHrr+sLQgI2QoFHIELC3cYjpOd5/XXpO98xb7/7rjRxYsTHE6poXS9Y6JprpEOHzJYhPXtKu3ebrUSAOMBUGmB3f/tbfVC0fr2tg6JY4/P55PP5rB5GbLrxRmnhQvN2RobZhBaIAwRGQCAOHTLbbHTsKGVlSf/7v9KkSRHZDdbAM89I3/++eXvjRnNHUIyKVqHMQNVt1y8sLCQ4CtV//7f061+bt089VaqosHY8QBgwlQYE4pe/lN55x1zwnJlpdh//8EPpzDMj95yPPy7dcIN5+9NPzcWuMcquTWkRBvfcYzYvXrRI8njMDxHt2YmI2EXGCGjNwYNml/EHHpAuuMCsBvzMM1JNTWjne+klc3rsJA0yKg88UB8UffllTAdFzTWltUvmCGHw0EP1i7E7dJCOHLF2PEAbkDECWvPll1J1tZSXV3/fqadKgwaZt199VXr2WfOT8pEjZtBU16bjZJs2mU05JenJJ6XZsyWdlFGRoQX/t1zTJGnnTnNxawxrqfAji7TjyNNPm1NpL78spaZKR49KSUnhfY5Dh6Sf/ER65RUpLU36xS+k114zM7eLFoX3ueBYZIyA1pxU0aIus3OspnZdyiWXSEuXmlvoBw2S/vnP5s81b56UWPt55Mc/lp59tnFGRS7Nu/BGlX5REvNBkUThR0f529/MnmqSlJwsHT8e3vOfOKW9fLm0apU5pQ2EEYER0JoBA6R27bR/5Wrd+/oWTVi4Utf//m0d+2yrPt9dKdX12PrXv8xqwNdc0/R51q2T3nij/s3CMKRZs1T88uuNMyruBO1wxUfgEGuFH9FG//qXNHasebtdu5annI8cMf/PBLL4PdxT2kAzCIyA1nTsqG3fnabDP7tNm59dpgF7duh/X39IPpdb72/bZ66VeeQR6c9/NrNFzS08nTNHSkhoeJ9hKPu2G+Q2Gr4xxFtGZdro3loz51y9OHuc1sw5l4XX8e7f/65fF5eY2HTgc+iQdPHF5nHPPdf6OVub0i4rk773PSk7W1qypM0vAc5FYAS0otRbpcv6Xqr1vYbpT6/co+fzf62CnkP1SUZ/GYahqocfNYOeQ4ek6dPNAOlkb78trV7d5KfbrMpyLXjz90rwmT+L14xKsE1po6Fz587q3Lmz1cOIT1u2mDs4JSklpeGUdGWlWbn93Xcll8vc2dZa1qi1Jg2ZmeaU9jnntG3ccDwWXwOtKC4/pIPtUnXbd36u2/Rz//3f+rJALpdLqT+7UfrNL5s/gWFIv/qVmS1qKu1vGJr28QpN3FmkHU/+RX0vOMtWwUO8crvd6tevn9XDiF8ul7Rrl5lBPXLELAK5e7fk9ZrrkD76qD4Y2rbNXDf0ve81f77aKW39+99S79qM4/790uefEwwhrMgYAa1oavFwnQkDAsiAvPaa+SbQylqILO8e5c28RFlFLCZFnHC5zEyqJO3dawY055zT+P+D2y3ddVfLWaGOHaXrrjMXYL/9tvTJJ9LVV9ev8QPChN8ooBUnLx52S/rRxGzl9u6sgRlpjY5vUI/I5zOn2QL54+3zmWsoLrxQ+uCDML8KwCJud30Q9PXX0scfN/6Q4PNJRUXmzs6W/M//mC1xLrlEOv986ayzpJEj639+2WVms+VHHjF3gAIhcBlGaxO3zhZqd16ErtRbpeLyQ8pO72CrKaVAusY3qvDco0rTbroiuCdKSDCnH959V8rNDcPI0ZS6liCSlJubKzeZh8j55huzhc62bc0fk5BgtrxZuza4c0+aRB0jNCnU92/WGMFW7Nw6orWu8U1WeC5J0sS0dGVVlgf+RDU15uLUt9+Om8DIrsEuoqCkxMzyfPNNy8fV1JglLVavplEyLMVHJNhGrLeOaLLCsztBO07JCvwkLpfUpYv0u9+ZBSDjQH5BiSYsXKkZT63XhIUrlV9QYvWQEC1ffimNH29OoQVS7DEhQbr77siPC2gBGSPYRqy3jqhbpH3ia0jw1ajvgV0tP9DlMheddu8u3X67WSAy1f6vNxDNBbsTB3aNiX9TtMHnn0tnny3t2xd4EcaaGjNTumGDNGpUYI9ZtSrkIQJNIWME24j11hFZnlRdntuj/g7D0GWb31FW5b6mH1C3piU7W1q8WNqxw2wcGydBkdRysIs4t3q1tGdP8JWpExOl3/42MmMCAkBgBNuI9dYRpd4qLSs8YR2Fy6VXTz9XpWldGh5YV/166FDpr381P1lffbVZoyXOxHqwiza46ipzF5nHE9yW+uPHpb//Xdq8OXJjA1pAYARbieXWEc2vMepuflMXEI0aJb3+urlt+YorGrcJsbEGpQgCEOvBLtogNVX6xS/Mxde/+Y250zLQ3/XEROm++yI7PqAZbNdvBdv1EahSb5UmLFzZaI3Rmqd+pKwDu6VvfUu64w6zwJ2rmYqRNtaWHYOBlDqINp/Pp+3bt0uS+vXrx3b9SNu3T1q40KwxVFPT+hSb2y198YVEdXKEKNT3b/4SAGGS5UnVAteX9T3PfDW671+PKmviWGn9enNR6aRJMRkUtXXHoB37pLndbg0YMEADBgwgKIqGLl3MqbXiYulHPzKzQi1lkFwuM5ACooyMUSvIGCFge/ZIffqotF0H7ejcXX3PHq2sObdKw4Y1OjTW6vqs/bJcM55a3+j+F2ePU17/Lk08AmhFcbE0f7707LNmgNTUdv7ERHNTQo8ejX8GtIKMEWC1mhqpRw9lTbtceW+/oqznnm4yKIrFuj4sokbYZWdLzzxjLrK+5BLzvpMzSIYhPfBA9McGRyMwAsIlK8vcYfbUU2Yn8CbEahHLeFxEXdcSpLCwUL66Lu+IviFDpKVLpQ8/lM47z7yvLkCqqZGeeEIqD6JyPNBGFHgEwqmVtSqxXMRy2ujemjiwq+0WUbcFAZGNjBgh/etf0po1ZuPl9983/z8dOSI9/LB0zz1WjxAOQcYIcS/YLeaRFOtTUnZcRI04c9ZZ0nvvmUFSTo553+9/Lx07Zu244BhkjBDX7NaUtm5Kat4rn6jGMOJiSgoIO5dLmjxZuuAC6dVXzSm1OCyACnsiMELcsmufrnickgIiwuWSLr/c6lHAYZhKQ9yye58uQ1TKAAC7IWOEJsVanZ2mNNnt3gbreew2vQcAqEfGCI3EYp2dpthxi3msbtePV2lpaUpLS7N6GABshIwRGrDrupxQ2W09Tyxv1483brdbAwcOtHoYAGyGwAgNxOMbd5Yn1TZjt+v0HgDAxFQaGoj1Ojt2Z8fpPQBAPTJGaIA6O5Fnt+k9p/L5fCoqKpIk5eTkyN1K1XIAzkBghEZ44448O03vOdnxpjq6A3A0AiM0iTduAIATkTtGXLNTnzQAgP2RMULcopAiACBYZIwQlyikCAAIBYER4pLd+6QBAOyJqTTEJQopIhDt2/P7AKAhMkawnXAsmKaQIlrjdrs1ZMgQDRkyhBpGAPzIGMFWwrlgmnpMAIBg8TEJthGJBdNZnlTl9e9CUAQACEjMBEb33nuvxo8fr/bt2+uUU04J6DGGYWj+/Pnq3r27UlNTNWnSJG3evDnCI0WoWDAdO+KhPlRdS5CioiL5fD6rhwPAJmImMKqurtYVV1yhn/zkJwE/5ne/+50efPBBPfrooyooKFBmZqYuuOACVVZWRnCkCBUNbGNDfkGJJixcqRlPrdeEhSuVX1Bi9ZBCVl1drerqaquHAcBGYiYwuuuuu3TrrbcqJycnoOMNw9CiRYt0++23a+rUqRo2bJieeeYZHT58WC+88EKER4tQsGDa/qgPBSDexe3i6+LiYpWVlWny5Mn++5KTk3XOOedo7dq1+vGPf9zk444ePaqjR4/6v6+oqIj4WFEv1hdMl3qrVFx+SNnpHWJu7IFoabozHl8vAOeJ28CorKxMkpSRkdHg/oyMDH311VfNPm7BggW66667Ijo2tCxWG9g6oQUJ9aEAxDtLp9Lmz58vl8vV4teGDRva9BwuV8NFK4ZhNLrvRHPnzpXX6/V/7dy5s03PD2dwyhQT050A4p2lGaMbb7xR06dPb/GYvn37hnTuzMxMSWbmKCsry3//nj17GmWRTpScnKzk5OSQnhPxIZTpMCdNMcX6dCcAtMTSwCg9PV3p6ekROXd2drYyMzO1YsUK5ebmSjJ3oLz77ru6//77I/KciH2hToc5bYopVqc7T5aSkmL1EADYTMzsSispKdHGjRtVUlKimpoabdy4URs3btTBgwf9xwwePFjLli2TZE6h3XLLLbrvvvu0bNkyffLJJ7r66qvVvn17zZgxw6qXARtry3QYU0yxx+126/TTT9fpp59OSxAAfjGz+Po3v/mNnnnmGf/3dVmgd955R5MmTZIkbd26VV6v13/Mr371K1VVVemGG27Q/v37NXbsWC1fvlxpaWlRHTtiQ1unw5hiAoDY5zIMw2j9MOeqqKiQx+OR1+tVp06drB4OIqjUW6UJC1c2mg5bM+dcghwAiDGhvn+TPwZqMR3mLD6fT5s3b9bmzZtpCQLAL2am0oBoYDrMWY4cOWL1EADYDIERcJJAdlzFe4VrAHAqAiOgVqDBjhMqXAOAUxEYAQo82GluS//EgV3JHAFAHGDxNRyl1FultV+WN6hNFEz9opa29AMAYh8ZIzhGc1mhYOoXOa3CNQA4DRkjOEJLWaG6YOdEzQU7bOmPL0lJSUpKSrJ6GABshIwRHKGlrFBe/y5aMDVH8175RDWG0Wqww5b++OB2u5WTk2P1MADYDIERHKG1KbBgg514aaIKAGiIqTQ4QiBTYFmeVOX170LAAwAORsYIjsEUGE7k8/m0detWSdKgQYPkdvM5EQCBERymLhgqLj/U4Hs40+HDlFkA0BCBERyFqtUAgJaQO4ZjBFPIEQDgTARGcAyqVgMAWkNgBMcIppAjAMCZCIzgGFStBgC0hsXXcBS27ONEiYn8CQTQEH8V4DhUrYZktgQZPny41cMAYDNMpQEAANQiMAJsoNRbpbVfllM6AAAsxlQaYDGKTlrD5/Np27ZtkqQBAwbQEgSAJDJGgKUoOmmtyspKVVZWWj0MADZCYARYiKKTAGAvBEaAhSg6CQD2QmAEWIiikwBgLyy+BixG0UkAsA8CI8AGKDoJAPZAYATAsdiiD+BkBEYAHMntdis3N9fqYQCwGT4uAQAA1CIwAgAAqMVUGgBH8vl82r59uySpX79+rDcCIInACICDeb1eq4cAwGb4iAQAAFCLwAgAAKAWgREAAEAtAiMAAIBaBEYAAAC12JXWCsMwJEkVFRUWjwRAOPl8Ph08eFCS+f+b7fpAfKl73657Hw8UgVErKisrJUm9evWyeCQAACBYlZWV8ng8AR/vMoINpRzG5/Np165dSktLk8vlsno4bVJRUaFevXpp586d6tSpk9XDsQTXwMR1MHEdTFwHE9fBFC/XwTAMVVZWqnv37kFlhMkYtcLtdqtnz55WDyOsOnXqFNO/7OHANTBxHUxcBxPXwcR1MMXDdQgmU1SHSXUAAIBaBEYAAAC1EubPnz/f6kEgehISEjRp0iQlJjp3FpVrYOI6mLgOJq6DietgcvJ1YPE1AABALabSAAAAahEYAQAA1CIwAgAAqEVgBAAAUIvAKI7de++9Gj9+vNq3b69TTjkloMdcffXVcrlcDb7GjRsX4ZFGVijXwTAMzZ8/X927d1dqaqomTZqkzZs3R3ikkbV//37NnDlTHo9HHo9HM2fO1IEDB1p8zKRJkxr9PkyfPj1KIw6Pxx57TNnZ2UpJSdHIkSP13nvvtXj80qVLNXToUCUnJ2vo0KFatmxZlEYaWcFchyVLljT6d3e5XDpy5EgURxxeq1ev1ne/+111795dLpdLr776aquPeffddzVy5EilpKSoX79+euKJJ6Iw0sgK9jqsWrWqyd+Fzz77LEojjj4CozhWXV2tK664Qj/5yU+CetxFF12k0tJS/9cbb7wRoRFGRyjX4Xe/+50efPBBPfrooyooKFBmZqYuuOACf++8WDRjxgxt3LhRbzp84hoAAAlmSURBVL75pt58801t3LhRM2fObPVxs2fPbvD78Mc//jEKow2P/Px83XLLLbr99ttVWFios88+W1OmTFFJSUmTx69bt07Tpk3TzJkztWnTJs2cOVPf//73tX79+iiPPLyCvQ6SWfX4xH/30tJSpaSkRHHU4XXo0CENHz5cjz76aEDHFxcX6+KLL9bZZ5+twsJCzZs3TzfffLOWLl0a4ZFGVrDXoc7WrVsb/C6cdtppERqhDRiIe4sXLzY8Hk9Ax86aNcu49NJLIzwiawR6HXw+n5GZmWksXLjQf9+RI0cMj8djPPHEE5EcYsRs2bLFkGT8+9//9t+3bt06Q5Lx2WefNfu4c845x/jZz34WjSFGxJgxY4zrr7++wX2DBw825syZ0+Tx3//+942LLrqowX0XXnihMX369IiNMRqCvQ7B/M2IRZKMZcuWtXjMr371K2Pw4MEN7vvxj39sjBs3LpJDi6pArsM777xjSDL2798fpVFZj4wRGlm1apW6deumgQMHavbs2dqzZ4/VQ4qq4uJilZWVafLkyf77kpOTdc4552jt2rUWjix069atk8fj0dixY/33jRs3Th6Pp9XX9Pzzzys9PV2nn366fvGLX8RM1qy6uloffvhhg39HSZo8eXKzr3ndunWNjr/wwgtj9t9dCu06SNLBgwfVp08f9ezZU9/5zndUWFgY6aHaSnO/Cxs2bNCxY8csGpV1cnNzlZWVpfPOO0/vvPOO1cOJKOeVtESLpkyZoiuuuEJ9+vRRcXGx7rjjDn3rW9/Shx9+qOTkZKuHFxVlZWWSpIyMjAb3Z2Rk6KuvvrJiSG1WVlambt26Nbq/W7du/tfblKuuukrZ2dnKzMzUJ598orlz52rTpk1asWJFJIcbFuXl5aqpqWny37G511xWVhbU8bEglOswePBgLVmyRDk5OaqoqNDDDz+sCRMmaNOmTfE9hXKC5n4Xjh8/rvLycmVlZVk0sujKysrSk08+qZEjR+ro0aN69tlndd5552nVqlWaOHGi1cOLCAKjGDN//nzdddddLR5TUFCgUaNGhXT+adOm+W8PGzZMo0aNUp8+ffT6669r6tSpIZ0zEiJ9HSTJ5XI1+N4wjEb3WS3Q6yA1fj1S669p9uzZ/tvDhg3TaaedplGjRumjjz7SiBEjQhx1dAX77xgL/+6hCOZ1jRs3rsGmiwkTJmjEiBH6/e9/r0ceeSSi47STpq5ZU/fHs0GDBmnQoEH+7/Py8rRz50498MADBEawhxtvvLHVXUF9+/YN2/NlZWWpT58++uKLL8J2znCI5HXIzMyUZH5iPPFT4Z49exp9grRaoNfh448/1u7duxv9bO/evUG9phEjRqhdu3b64osvbB8YpaenKyEhoVFWpKV/x8zMzKCOjwWhXIeTud1ujR492nZ/ByKpud+FxMREdenSxaJR2cO4ceP03HPPWT2MiCEwijHp6elKT0+P2vPt27dPO3futF3aOJLXoW7qaMWKFcrNzZVkrtN49913df/990fkOUMV6HXIy8uT1+vVBx98oDFjxkiS1q9fL6/Xq/Hjxwf8fJs3b9axY8ds9/vQlKSkJI0cOVIrVqzQ5Zdf7r9/xYoVuvTSS5t8TF5enlasWKFbb73Vf9/y5cuDukZ2E8p1OJlhGNq4caNycnIiNUzbycvL02uvvdbgvuXLl2vUqFFq166dRaOyh8LCwpj4GxAyCxd+I8K++uoro7Cw0LjrrruMjh07GoWFhUZhYaFRWVnpP2bQoEHGK6+8YhiGYVRWVho///nPjbVr1xrFxcXGO++8Y+Tl5Rk9evQwKioqrHoZbRbsdTAMw1i4cKHh8XiMV155xSgqKjKuvPJKIysrK6avw0UXXWScccYZxrp164x169YZOTk5xne+8x3/z7/++mtj0KBBxvr16w3DMIxt27YZd911l1FQUGAUFxcbr7/+ujF48GAjNzfXOH78uFUvIygvvfSS0a5dO+Ppp582tmzZYtxyyy1Ghw4djB07dhiGYRgzZ85ssDPr/fffNxISEoyFCxcan376qbFw4UIjMTGxwW6+WBTsdZg/f77x5ptvGl9++aVRWFhoXHPNNUZiYqL/dyMWVVZW+v/vSzIefPBBo7Cw0Pjqq68MwzCMOXPmGDNnzvQfv337dqN9+/bGrbfeamzZssV4+umnjXbt2hkvv/yyVS8hLIK9Dg899JCxbNky4/PPPzc++eQTY86cOYYkY+nSpVa9hIgjMIpjs2bNMiQ1+nrnnXf8x0gyFi9ebBiGYRw+fNiYPHmy0bVrV6Ndu3ZG7969jVmzZhklJSXWvIAwCfY6GIa5Zf/OO+80MjMzjeTkZGPixIlGUVFR9AcfRvv27TOuuuoqIy0tzUhLSzOuuuqqBltwi4uLG1yXkpISY+LEicapp55qJCUlGf379zduvvlmY9++fRa9gtD84Q9/MPr06WMkJSUZI0aMMN59913/z8455xxj1qxZDY7/29/+ZgwaNMho166dMXjw4Lh5AwjmOtxyyy1G7969jaSkJKNr167G5MmTjbVr11ow6vCp23Z+8lfd6541a5ZxzjnnNHjMqlWrjNzcXCMpKcno27ev8fjjj0d/4GEW7HW4//77jf79+xspKSlG586djbPOOst4/fXXrRl8lLgMo3Y1GQAAgMNRxwgAAKAWgREAAEAtAiMAAIBaBEYAAAC1CIwAAABqERgBAADUIjACAACoRWAEAABQi8AIAACgFoERAABALQIjAI6yd+9eZWZm6r777vPft379eiUlJWn58uUWjgyAHdArDYDjvPHGG7rsssu0du1aDR48WLm5ufr2t7+tRYsWWT00ABYjMALgSD/96U/11ltvafTo0dq0aZMKCgqUkpJi9bAAWIzACIAjVVVVadiwYdq5c6c2bNigM844w+ohAbAB1hgBcKTt27dr165d8vl8+uqrr6weDgCbIGMEwHGqq6s1ZswYnXnmmRo8eLAefPBBFRUVKSMjw+qhAbAYgREAx/nlL3+pl19+WZs2bVLHjh117rnnKi0tTf/85z+tHhoAizGVBsBRVq1apUWLFunZZ59Vp06d5Ha79eyzz2rNmjV6/PHHrR4eAIuRMQIAAKhFxggAAKAWgREAAEAtAiMAAIBaBEYAAAC1CIwAAABqERgBAADUIjACAACoRWAEAABQi8AIAACgFoERAABALQIjAACAWgRGAAAAtf4/u402Fn4iPDcAAAAASUVORK5CYII=", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(-1.5556480153860381, 1.551373778452842, -1.3633186213221165, 1.4423247125247483)" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(x.-mean(x),y.-mean(y), \".\")\n", - "xlabel(\"x\")\n", - "ylabel(\"y\")\n", - "axhline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", - "axvline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", - "arrow(0,0, Q[:,1]..., head_width=0.1, color=\"r\")\n", - "arrow(0,0, Q[:,2]..., head_width=0.1, color=\"r\")\n", - "text(Q[1,1]+0.1,Q[2,1], \"q₁\", color=\"r\")\n", - "text(Q[1,2]-0.2,Q[2,2], \"q₂\", color=\"r\")\n", - "axis(\"equal\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The $q_2$ direction, corresponding to the biggest eigenvalue of the covariance matrix, is indeed the direction with the biggest variation in the data!\n", - "\n", - "In this case, it is along the (1,1) direction because $x$ and $y$ tend to move together.\n", - "\n", - "The other direction $q_1$ is the other uncorrelated (= orthogonal) direction of variation in the data. Not much is going on in that direction.\n", - "\n", - "(In fact, this $q_2$ can be viewed as a kind of \"best fit\" line which the Strang book calls [perpendicular least squares](http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html), and is also called [Deming regression](https://en.wikipedia.org/wiki/Deming_regression).)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# PCA and the SVD\n", - "\n", - "Instead of forming $A A^T$ and diagonalizing that, we can equivalently (in the absence of roundoff errors) use the singular value decomposition (SVD) of $A/\\sqrt{n-1}$. Recall the SVD\n", - "\n", - "$$\n", - "\\frac{A}{\\sqrt{n-1}} = U \\Sigma V^T\n", - "$$\n", - "\n", - "where $U$ and $V$ are orthogonal matrices and $\\Sigma = \\begin{pmatrix} \\sigma_1 & & \\\\ & \\sigma_2 & \\\\ & & \\ddots \\end{pmatrix}$ is a diagonal $m\\times n$ matrix of the singular values $\\sigma_k$.\n", - "\n", - "Then, if we compute the covariance matrix , we get:\n", - "\n", - "$$\n", - "S = \\frac{A A^T}{n-1} = (U \\Sigma V^T) (U \\Sigma V^T)^T = U \\Sigma V^T V \\Sigma^T U^T = U \\Sigma \\Sigma^T U^T\n", - "$$\n", - "\n", - "Since $\\Sigma \\Sigma^T$ is a diagonal matrix of the *squares* $\\sigma_k^2$ of the singular values $\\sigma_k$, we find:\n", - "\n", - "* The squares $\\sigma_k^2$ of the singular values are the variances of the uncorrelated components of the data (the eigenvalues of $S$).\n", - "* The left singular vectors $U$ are **precisely** the orthonormal eigenvectors of $A A^T$, i.e. the uncorrelated components of the data.\n", - "\n", - "In practice, PCA typically uses the SVD directly rather than explicitly forming the covariance matrix $S$. (It turns out that computing $A A^T$ explicitly exacerbates sensitivity to rounding errors and other errors in $A$.)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "([-0.718956 -0.695056; -0.695056 0.718956], [0.98418, 0.192081], [-0.011127 -0.0187157; -0.0210155 0.11479; … ; 0.0207232 -0.0409839; -0.00720878 0.047507])" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U, σ, V = svd(A / sqrt(length(x)-1))" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.968611\n", - " 0.036895" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "σ.^2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As promised, this is the same as the eigenvalues of $S$ from above.\n", - "\n", - "Conveniently, the convention for the SVD is to sort the singular values in descending order $\\sigma_1 \\ge \\sigma_2 \\ge \\cdots$. So, the **first** singular value/vector represents *most* of the variation in the data, and so on." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " -0.718956 -0.695056\n", - " -0.695056 0.718956" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG0CAYAAADXb+jjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VPX59/HPTEISlmTEBJMAgbDIJhHDooQoiLYgVuvSS1EsxS5Ya/1ZtVUBa0V9FOzTKrXu2J9YtZpWpK3V8oBFtBhKUQNlURQIBCUBQmESIBDInOePk0wI2WYmM3POmXm/risXZybfOXPPSZi5c383l2EYhgAAACC31QEAAADYBYkRAABAPRIjAACAeiRGAAAA9UiMAAAA6pEYAQAA1CMxAgAAqEdiBAAAUI/ECAAAoB6JEQAAQD0SIwAAgHqJVgdgdz6fT7t371ZqaqpcLpfV4QAAgAAYhqHq6mr17NlTbnfgdSASo3bs3r1bOTk5VocBAABCsGvXLvXu3Tvg9iRG7UhNTZVkXti0tDSLowEQLj6fT+vXr5ckjRgxIqi/KAHYX1VVlXJycvyf44EiMWpHQ/dZWloaiREQQ3w+n7p16ybJ/P9NYgTEpmCHwfBOAAAAUI/ECAAAoB5daQDiksvlUnp6uv8YACQSIwBxyuVyKTc31+owANgMXWkAAAD1SIwAxC2fzyefz2d1GABshMQIQFzy+XwqKSlRSUkJyREAPxIjAACAeiRGAAAA9UiMAAAA6pEYAQAA1CMxAgDAAuXeGhVvq1S5t8bqUHASFngEACDKitaWafabG+QzJLdLmnd1nqaO6WN1WBAVIwBxrHv37urevbvVYSDOlHtr/EmRJPkMac6bG6kc2QQVIwBxye12q3///laHgThUWnnYnxQ1qDMM7ag8omxPZ2uCgh8VIwAAoqhfRle5T9m3OMHlUm5GF2sCQhMkRgAARFG2p7PmXZ2nBJeZHSW4XHrk6uFUi2yCrjQAcalhSxBJys/Pl9vN34mInqlj+mj8oB7aUXlEuRldSIpshMQIAAALZHs6kxDZEH8iAQAA1CMxAgAAqEdiBAAAUI/ECAAAoB6JEQAAYu8ymJiVBiBueTweq0OATbB3GRpQMQIQl9xutwYOHKiBAweyhlGcY+8ynIx3AwBAXGtr7zLEHxIjAEBcY+8ynIzECEBcatgSpKSkRD6fz+pwYCH2LsPJGHwNIG6REKEBe5ehAYkRAACK3b3Lyr01Kq08rH4ZXWPy9YUbiREAAGFgxwSEZQiCR2IEAEAH2TEBaW0ZgvGDetgmcbMjBl8DANABdl0HiWUIQkNiBABAB9g1AWEZgtCQGAGIW6mpqUpNTbU6jICwj5d92TUBYRmC0LgMwzDabxa/qqqq5PF45PV6lZaWZnU4AOKQHcevoKmitWWa8+ZG1RmGPwGxy8+o3FsTl8sQhPr5TWLUDhIjAFYq99aocP6KJl01CS6XVs2aGFcfck4QrwmIXYX6+c2sNACwsbbGr/Dhay+xug5SvGGMEYC45PP5tH79eq1fv97WK2DbdfxKLGM8V3wjMQIQt06cOKETJ05YHUabGEDbskglL0Vry1Q4f4WmLVyjwvkrVLS2LKznh/3RlQYANsc+Xk1FajA6CyJComIEAI6Q7emsggHpcf8BHcnFFO26HhGii8QIAOAYkUxeGM8FicQIAOAgkUxeGM8FiTFGAIAQWLWTfEPycupiiuGKgfFcIDECELe6dKGLJBRWr8TdXvLS0aSN9YjiGytft4OVrwGgkd1X4rY6aYN9hPr5zRgjAEDA7DxzK5Iz1hA/SIwAAAGz88wtOydtcA4SIwBxyefzacOGDdqwYYOttwSxGzvP3LJz0gbncFRi9MEHH+jyyy9Xz5495XK59Oc//7ndx7z//vsaNWqUUlJS1L9/fz377LNRiBSAE9TW1qq2ttbqMBxn6pg+WjVrol6bOVarZk20zRieSCZt7J8WPxw1K+3w4cMaMWKEvvvd7+pb3/pWu+1LS0t16aWXaubMmXrllVf04Ycf6pZbblGPHj0CejwAoGV2nbkVien2DOiOL45KjKZMmaIpU6YE3P7ZZ59Vnz59tGDBAknS0KFD9dFHH+lXv/oViREAxKhwJm3snxZ/HNWVFqzVq1dr0qRJTe6bPHmyPvroIx0/frzFxxw7dkxVVVVNvgAA8YkB3fEnphOjiooKZWZmNrkvMzNTJ06cUGVlZYuPmTdvnjwej/8rJycnGqECAGyIAd3xJ6YTI0lyuZr+RjesZ3nq/Q1mz54tr9fr/9q1a1fEYwQA2JOdZ+EhMhw1xihYWVlZqqioaHLf3r17lZiYqPT09BYfk5ycrOTk5GiEB8BiKSkpVocAB2D/tPgS04lRQUGB3nrrrSb3LVu2TKNHj1anTp0sigqAHbjdbp111llWh4EOiOZGtnadhYfwc1RidOjQIW3dutV/u7S0VOvWrdPpp5+uPn36aPbs2frqq6/0+9//XpJ0880368knn9Sdd96pmTNnavXq1frd736n1157zaqXAAAIA6bQI1IcNcboo48+Un5+vvLz8yVJd955p/Lz8/WLX/xCklReXq6ysjJ/+379+umdd97RypUrdc455+ihhx7SE088wVR9AHAw9kRDJDmqYnThhRf6B0+3ZNGiRc3umzBhgj755JMIRgXAiXw+nz799FNJ5hpnbrej/k6Ma21Noae7Cx3lqMQIAMLp6NGjVoeAEDRMoT85OWIKPcKFP5EAAI7CFHpEEhUjAIDjBDqFPpoz16x8ToQPiREAwJHam0Jvxcw1Zss5H11pAICYY8XMNWbLxQYSIwBAzLFi81c2nI0NJEYA4lZSUpKSkpKsDgMR0JHNX8u9NSreVhl0pYcNZ2MDiRGAuOR2u5WXl6e8vDzWMIpBoc5cK1pbpsL5KzRt4RoVzl+horVlbbYPx3PCXlxGWysmQlVVVfJ4PPJ6vUpLS7M6HACIaeGe0VXurQl489dyb40K569otj7SqlkTg4olmOdE5IT6+c2sNACALURiRlcwm7+Ga0VtNpx1NurHAOJSw5Ygn376qXw+n9XhxD07zOhijBAkEiMAcezIkSM6coQZQ3YQzIyuUAdHt4cxQpDoSgMA2ECg+59FegHFQFfURuyiYgQAsFwg1ZpodbdlezqrYEA6SVGcomIEALCF9qo14RocDbSFxAiIlNpa6eOPpYICqyMBHKOtGV2BdrcBHUFXGhAp99wjjRsnTZworVljdTSA4zE4GtFAxQiIlG98Q1qwQFq5Uho7VrrsMunhh6Wzz7Y6MtRLTOQt0GkYHI1IY+XrdrDyNUJmGNKoUdL69ZLPJyUmSnV10tSp0oMPSmeeaXWEABCzQv38pisNiBSXS7r/fjMpkqQTJ8xk6Y03pCFDpB/8QCoLfB8mwMkitfYQEG4kRkAkXX65mQS5TlpO98QJM1latEgaMEC67TZpzx7LQkR0xWOC0JGNWYFoIzECIsntlu67z6wUnaquzkySnn5ays2V5syRDhyIeojxyufz6fPPP9fnn38etS1B4jFBsMNWHx11ajIbj8ltPGHkIRBp115rJj1lZa0nSHV10qOPSr/9rTRrlvSTn0jdukU/1jhTXV0dtedqLUEYP6hHTA8gdvraQ6eutH1Vfi8tKfkqYitvw3pUjIBIS0yU7r235aToZD6fdOiQ9ItfSH36mDPajh6NfHy5ueZzneycc6S5cyP/3HEkmL3AYkk4Nma1qkLTUjK7+JOvHF39QvtIjIBo+M53pMzMwNr6fGaX2p13Sv36SQsXSsePRzY+RFy87tze0bWHrOx+bCmZPVU8JLfxhsQIiIbkZGn27KaDsNtjGOag7Jtukq66KnKxISrieXHCqWP6aNWsiXpt5litmjUx4K4nq8cntZTMnioektt4wxgjIFp+8AOze+rgwcAfYxhmMhVotSncnntOWr7crGClpEivvCJ1725NLDEgnhcnbGurj9ZYPT6pIZmd8+ZG1RmGElwuXZnfU38u2e2/HS/JbTwhMQKipWtX6a67zFlqwcyCmj5dev75yMXldjcf/9TQdTdzpvTDH5rHkydLxcXmit4IWSgJQryyw95oLSWzP5s8OC6T23hBVxoQTbfcInUO4o30ppukF1+UEhIiF1OPHlJ5eePtqiqptNQ8dte/RSxaJHXpIk2ZErk4LOB2u+V28zZoV3bpfsz2dFbBgHT/8556G7GFihEQTaedZk7Fnz+//arRbbeZs8WCGZcUiosuMhOfyy83u8nuu68xEaurk37+c6m6WvrjHxsTpRjgdruVn59vdRhoRzx3P8Ia7JXWDvZKQ9jt2yfl5EjHjrXd7siR4KpLoaqqMrvMli6VPB7poYekxx+XrrxSqqkxZ8WNG2e2/dGP6EoD4Aihfn6TGLWDxAgR8ZOfSE89ZVZkTpWWZiYrkrmOUXJydGMDgBjAJrKAk9x1V8tdZPPnS16v9M1vmrdTUljDKEJ8Pp+2bt2qrVu3Rm1LEAD2R2IEWKF3b2nGjKaDqhcskO65xzz+y1+kCRPM46SklitL6DCv1yuv12t1GABshMQIsMqsWY0DsJ991uxeO9nKlebWHJK5rQhVDQCIOGalAVYZOFD629/MhOeyy1pu88knUv/+0o4dZnXJ54v8LDUAiGMkRoCVLr207e+7XNL27VJ6urn6dMPAbJIjxJFyb41KKw+rX0ZXpusj4kiMALtzuaT9+82K0aFDUp8+UlkZyRHiQtHaMv9+aW6XNO/qvID3WgNCwRgjwAlcLunECfP4yy+ls8+2Nh4gCqzeRBbxicQIcAq3uzE52rhROv98a+MBTlHurVHxtsqwJS5tbSILRApdaYCTJCSY6xp16iR9+KG5CvXbb1sdlSO53W6NGjXK6jBiRiS6vOywiSziDxUjwGkSExu3E3nnHen6662NB3EvUl1edtlENlzCXVFDZFAxApwoKcncx6xzZ+n1183Zas89Z3VUiFNtdXl1NImJlU1kGUTuHFSMAKdKSTFnqUnS889LP/uZtfE4jM/n0/bt27V9+3a2BOmghi6vk4Wzyyvb01kFA9IdmxQxiNxZSIwAJ+vaVTp40Dz+9a+luXMtDcdpDhw4oAMHDlgdRsREq+sm1rq8wo1B5M5CVxrgdB6PVFkpZWRIDzxgJkt33WV1VLBYtLtuYqXLKxIYRO4sVIyAWJCeLlVUmMd33y0984y18cBSVnXdOL3LK1KoqDkLFSMgVmRmSrt2STk50i23mJWj73zH6qhggUgOhkZoqKg5B4kREEt695a2bZMGDJBmzDBnrV1zjdVRIcrourGnbE9nEiIHoCsNiDX9+0ubN5vH117LApBxiK4bIHRUjIBYNHSotG6ddM450mWXSf/4h3TRRVZHhSii6wYIjcswDKP9ZvGrqqpKHo9HXq9XaWlpVocDBGfNGmnsWPP4ww+lceOsjcdmGtYvcrspngOxJtTPb94NgFh23nnSypXmcWGh9MknloZjN263m6QoAgJdP4ktMmBHdKUBsW7CBOnvf5emTJFGjZI2bZKGDbM6KoRJubdGpZWH1S+jqy26ywJdP4ktMmBX/KkExINLLpHefNM8PussaetWa+OxAcMwtGPHDu3YsUNOHVFQtLZMhfNXaNrCNSqcv0JFa8ssjSfQ9ZPYIgN25rjE6Omnn1a/fv2UkpKiUaNG6Z///GerbRctWiSXy9Xs6+jRo1GMGLCJq66SXnnFPD7zTKnM2g9RqxmGof3792v//v2OTIxaSi5mL96gv/1nt2UJRqBbX7BFBuzMUYlRUVGRbr/9dt17770qKSnRBRdcoClTpqisjTf4tLQ0lZeXN/lKSUmJYtSAjdxwg/Tcc+Zx375Sebm18SBkLSUXPkm3/qEkatWjU8cIBbqZbKQ3nQU6wlGJ0WOPPabvf//7+sEPfqChQ4dqwYIFysnJ0TNtbH/gcrmUlZXV5AuIazfdJD32mHncs6e5zxocp6XkokE0uqZa6sYLdP0k1lmCnTlm8HVtba0+/vhjzZo1q8n9kyZNUnFxcauPO3TokPr27au6ujqdc845euihh5Sfn99q+2PHjunYsWP+21VVVR0PHrCbO+6QDh+W7rtP6tFDOnBAOu00q6NCEBqSizlvblRdC12BkdwCpLUxQuMH9Qh4/STWWYJdOaZiVFlZqbq6OmVmZja5PzMzUxUNm2eeYsiQIVq0aJH++te/6rXXXlNKSooKCwv1xRdftPo88+bNk8fj8X/l5OSE9XUAtvHzn0v33GMed+8uHTpkbTwI2tQxfbRq1kQ9eX1+VLum2hsjFOhmsmw6CztyTGLUwOVq+r/fMIxm9zUYO3asvv3tb2vEiBG64IIL9Mc//lGDBg3Sb3/721bPP3v2bHm9Xv/Xrl27who/YCvz55sbzkpSaqpUw6wgp8n2dNZlI3pGtWuKMUKIZY7pSsvIyFBCQkKz6tDevXubVZFa43a7NWbMmDYrRsnJyUpOTu5QrICjPPWUVFVlzljr0kU6elTi/4DjRLNr6tRuPMYIIZY4JjFKSkrSqFGjtHz5cl111VX++5cvX64rrrgioHMYhqF169YpLy8vUmECzvTyy2Zy9Ne/SikpUm2t1KmT1VFFlNvt1ogRI/zHsSCau7czRgixyjGJkSTdeeedmj59ukaPHq2CggI9//zzKisr08033yxJ+s53vqNevXpp3rx5kqQHHnhAY8eO1Zlnnqmqqio98cQTWrdunZ566ikrXwZgT3/5izRxormFSFKSdOKElJBgdVQRlZjoqLdA24lmIgZEi6PeFaZOnar9+/frwQcfVHl5uYYPH6533nlHffv2lSSVlZU1+cvv4MGDuummm1RRUSGPx6P8/Hx98MEHOvfcc616CYC9vfeelJ8vrVsnJSZKdXVSjFRT4o3dtgoBnMJlOHHJ1ygKdXdewLEMQxowQCotNW/7fFIrExyczDAM/+SKnJycVidxOJHT9yEjqUM4hPr57aiKEYAocLmkbduk9HRzfaPUVKm6OuaSI8MwtG/fPklS7969YyYxamuNISckGU5P6uB81MgBNOdySfv3m/8ePizl5JiVJETUqVtshMLJ+5CxuSzsgIoRgJa5XI0DsL/6SsrLkzZutDqqmBWuSknDGkMnJ0enrjFk166qtpI6O8WJ2EbFCEDr3G4zOZKkTZukwkJr44lR4ayUtLcPWUt7nNlFuBaODEflDfGLihGAtiUkSMePm+saFRdLl14qvfOO1VHFlHBXSlpbY8ju44/CsXAkY5TQUSRGANqXmCgdO2auiP33v0vXXSe9/rrVUcWMQLq/gtXSGkNO6KrqyMKRdk/84Ax0pQEITFJS415qRUXSTTdZG08Maa/7K1wiscdZJLqtQt1c1skDz2EfVIwABC4lRTp0SOrWTVq40JzK/+tfWx1VSNxut397IDtsCRKNLTbCvceZ3bqtIlF5Q/xhgcd2sMAj0IKqKsnjMY9/8QvpgQesjQdBKffWdDgBK/fWqHD+imZJyKpZEy3ttipaW9Ys8WOMUXxigUcA0ZOWZq5zlJ4uPfigWUG66y6ro0KAwrHHmV3HK7G5LTqKxAhAaE4/XaqokLKypLvvlrp2lW65xeqoAmYYhr766itJUq9evWJm5etosXO3FZvboiOs71gH4FyZmVL9fmP68Y+ll16yNp4gGIahPXv2aM+ePWJEQfCiNWAciDYqRgA6pndvc2+1AQOkG2+UunSRrrnG6qgQBXRbIRZRMQLQcf37S59+ah5fe6309tvWxoOoCXVqPWBXJEYAwmPIEGndOvP4ssukFSusjQcAQkBiBCB8RoyQ/vUv8/jii80tRADAQUiMAITXeedJK1eax4WF0scfWxoOAASDxAhA+E2YIC1dah6PHi1t2mRtPK2oPHRU6788yC7sAPxIjABExuTJ0pIl5vHw4dIXX1gbzyn+9PGX+uFbezT3A68u+OVKFa0tszokADZAYgQgcq68UnrlFfN40CBp505r46nXsAu7EpPl7pTs34WdylFgIrFxLGAXrGMEILJuuEE6ckS66SYpN1favVvKzrY0JLtuZ+EEdts4Fgg3KkYAIm/mTOnxx83jnj2lykpLw+mX0VUuGTpRvV8nqvfLqN9w1IrtLJxUfWmotDUklVTaEItIjABEx+23Sw89ZB736CEdPGhZKNmeznrkquHSkQOqO3xACS5Zsp1F0doyFc5foWkL16hw/grbj3Nqq9IGxAq60gBEz89/Lh06JD36qNS9u1RdLXXrZkkoU8f00elHR2v3waOaNH6senXvGtXnb636Mn5QD9t259l541ggXKgYAYiu+fOlW24xj1NTpRrrumEyuqXo7N6nWZKIOLH6wsaxiAdUjABE31NPmdWil182N509elRKTrY6qqhyavWFjWMR66gYAbDG738vXXGFeZySIh0/bm08Uebk6gsbxyKWUTECYJ0//1m66CLpvfekpCTpxAkpIcHqqKKG6gtgPyRGAKy1YoU0cqRUUiIlJkp1dZI7forZ2Z7OJESAjZAYAbDeJ59IAwZI27ebFSOfT6rvYooUl8ulIUOG+I8BQGKMEQC72LpVOv1087hbN8kw2m7fQS6XS127dlXXrl1JjAD4kRgBsAeXy1wROyHB3EKkd++IJ0cAcCoSIwD24XJJtbXm8e7d0vDhEXsqwzC0Z88e7dmzR4YFCZiTtgIB4gljjADYi9ttzk5LTJQ2b5bGjZOKi8P+NIZhaN1nW/XVwaOaHOWVr9mIFbAvKkYA7CchoXFdo9WrpSlTwv4URWvL9L1FH+neJRt1/qPR26eMjVgBeyMxAmBPiYnSsWPm8dKl0tSpYTt1ubdGc5ZYk5w4cSsQIJ6QGAGwr6Skxr3U/vhHaebMsJzWyuSkYSuQkzlhKxAgXpAYAbC3lBTp0CHz+IUXpDvv7PAprUxOnLwVCBAPGHwNwP66dpW8XsnjkR5/3Fzn6MEHQz5dtqezHrkqT3c9u111RvSTE7YCAeyLxAiAM6SlSfv3S+np0kMPmcnR3XeHfLqpY/ro9KOjtfvgUU2K4qy0cm+NSisPq19GVxUMSI/KcwIIHIkRAOc4/XSpokLKypLuucdMjm65JaRTuVwujRt5tiSpW7fojO9hmj5gf4wxAuAsmZnSrl3m8Y9/LC1aFNJpKqqOasPeYzrkS4zKliBM0wecgYoRAOfp3Vvats3cePa735W6dJGuvTbgh1tRuWlrJhxjjAD7oGIEwJn695c+/dQ8njpV+tvfAnpYQ+Wmzmeo7ohXxw97NXvxhohXbtqaCcf2IIB9kBgBcK4hQ6R168zjyy+X/vGPdh/SWLkxdKJqn05U7VOd4Yv4GkatTdP/4PN9Kpy/QtMWrlHh/OitwA2gZXSlAXC2ESOkNWuk886TvvY1adUqqbCw1eYNlZu6k7q1orWG0anT9CWpcP6KZuOOxg/qQfcaYBEqRgCc79xzpfffN4/PP1/6+OMWmzVMlb9nypCTKjfSw1dFbw2jbE9nFQxIV7anM9uDADZExQhAbBg/3txT7ZJLpNGjpQ0bpOHD/d8+dcD1XZMHK6Wqs3qelqKvWzRlvqF65bOgeoWma0pRoUMDKkYAYsfkydKSJeZxXp70xReSWp4q/3//3xb1PC1FGd1SQn661gZNBzqYmu1BrFO0toyxXWgRFSMAseXKK6VXX5VuuEEaNEjasUOlJ7q22GW1++DRkBOj1qb8B7sUANuDRF9ra0oxtgsSFSMgbsX0FPFp06SFC83j3Fz1O3GoxanyPU8LLSlav+uAZrXwwbp+14GQFnE8edwRIo+xXWhL0InRjTfeqA8++CASsQCIkrjoRvjBD8wNZyVlD+mneV/vd0qXVZ7GnjNcAwcODGrl66K1ZbryqWIZLXywrt1xgA9cB2hrTSkg6K606upqTZo0STk5Ofrud7+rGTNmqFevXpGIDUAExFM3Qvl3f6hSr0v9fv2Qpl58lsbvrNCO44khd1k1XDujhe8luFwak9udwdQO0DC2a86bG1VnGIztQhNBV4wWL16sr776Srfeeqv+9Kc/KTc3V1OmTNEbb7yh48ePRyJGAGEUL90I/qpYzUAV3rJIRWd/Xdl9s1RwRlLIH4AtXTvJHEv0yNXDNSKnO4OpHWLqmD5aNWuiXps5VqtmTWQzX/i5DOPUgnBwSkpK9L//+7964YUX1K1bN33729/WLbfcojPPPDNcMVqqqqpKHo9HXq9XaWlpVocDdFi5t6bJooKS+QG+atbEmPkAb/E1GoZWPXOjsqv3S4cPy+jcWf/9738lSaeffnpA3WktndctacmPx2lETvcm7RhMDVgr1M/vDg2+Li8v17Jly7Rs2TIlJCTo0ksv1aZNmzRs2DA9Xt+3H25PP/20+vXrp5SUFI0aNUr//Oc/22y/ePFiDRs2TMnJyRo2bJiWNEzlBeJUPEwRb7Eq5nJpx9QbzRtdu8o4elQ7duzQjh07FOjfhy1du3nfymuSFDW0YzA14ExBjzE6fvy4/vrXv+rFF1/UsmXLdPbZZ+uOO+7QDTfcoNTUVEnS66+/rh/96Ee64447whpsUVGRbr/9dj399NMqLCzUc889pylTpmjz5s3q06d5GXT16tWaOnWqHnroIV111VVasmSJrr32Wq1atUrnnXdeWGMDnCTWp4i3unDirx6SKrdJf/6z1KWL9K9/SYnBvQ3G+rUD4l3QXWkZGRny+Xy6/vrrNXPmTJ1zzjnN2hw4cEAjR45UaWlp2AKVpPPOO08jR47UM888479v6NChuvLKKzVv3rxm7adOnaqqqir9/e9/9993ySWXqHv37nrttdcCes6GUtyBAwdaLcW53Y2FN5/P1+b5aNuxtoZhtPnXvR3aulwuf7cMbdtvW+6t0Y79R9S/Rzd/ktHW78TJ522rbdHaMt27ZJN8aqyKXTOqt/nNiy+Wb+VKlUjS6tXKHz1aCQkJAZ23gd3+b9DWxHtE7LeVAnuPCLUrLeiK0eOPP65rrrlGKSmtr//RvXv3sCdFtbW1+vjjjzVr1qwm90+aNEnFxcUtPmb16tXNqlaTJ0/WggULWn2eY8eO6dixY/7bVVVVkqT169erW7duzdp7PB4NHDjQf3tOsX8oAAAgAElEQVT9+vWt/sBSU1M1aNAg/+0NGzboxIkTLbbt0qWLhg4d6r+9adMm1dbWttg2JSVFZ511lv/2p59+qqNHj7bYNikpSXl5ef7bW7Zs0ZEjLQ+6TUxM1IgRI/y3t27dqurq6hbbut1u5efn+29v375dXq+3xbaSNGrUKP/xjh07dODAgVbb5ufn+990du7cqf3797fadsSIEUqsrwDs2rVL+/bta7VtXl6ekpKSJElfffWV9uzZ02rbYcOGqXNn80O7vLxc5eXlrbYdMmSIunbtKknau3evvvzyy1bbDho0yF9praysVFlZ69PmBw4cKI/HI0n673//qx07drTatn///ure3ezeOXjwoLZv395q29zcXKWnp0syf9+3bt3aats+ffqoR48ekqRDhw7p888/b7Vt7969lZmZKUk6cuSIPvvss2Ztlm2q0JPvbZWrS3clpaVr3tV5+ubwHtq8eXOr583MzFTv3maCU1tbqw0bNrTYblCiVPTtM3Wic7pyM7qoR9dOKikpMb/5q1/Jd8MN2rJli3T11dJf/qIePXooNzdXkvmm62/bgu7du6t///7+22215T3CxHtEI94jTIG8RzTIzs5Wz549JUk1NTUBv0eEIugxRtOnT28zKYqUyspK1dXV+S9ig8zMTFVUVLT4mIqKiqDaS9K8efPk8Xj8Xzk5OR0PHkAzlYeO6sn3tga9GGIwMtNSWh/rU1ho/tvKBzmA+NThWWnRsnv3bvXq1UvFxcUqKCjw3//www/r5ZdfbjHTTEpK0ksvvaTrr7/ef9+rr76q73//+63+tdRSxSgnJ4euNJu0pUweO22Lt1XqhhfWNLT2t31t5lid16/pYObWziuF2O12xx3yPfGE2ZW2dKnyL76YrrQYact7ROy3lWzWlWaVjIwMJSQkNKv27N27t1lVqEFWVlZQ7SUpOTlZycnJze53u91NfvFbE0gb2obe9tT/HLR1btsBZ6Qqwe1ucTHEiP6ufe970osvmrdXrJDS0uR2u5vFZ4ffd9oG39auv++0DV9bKbjfiWA5Zq+0pKQkjRo1SsuXL29y//LlyzVu3LgWH1NQUNCs/bJly1ptDyB6LFk24Jpr/EmRy+tV/3POUf/+/YN6QwYQ2xxTMZKkO++8U9OnT9fo0aNVUFCg559/XmVlZbr55pslSd/5znfUq1cv/wy1n/zkJxo/frweffRRXXHFFfrLX/6id999V6tWrbLyZQCoF9Wp75MnS8uWmceHD8vVpYta77ADEK8clRhNnTpV+/fv14MPPqjy8nINHz5c77zzjvr27StJKisra1JeGzdunF5//XX9/Oc/13333acBAwaoqKiINYwAG8n2dI78WkBjx0pr6sczHT0qtdBdDgCSgwZfW4UtQQAHMwxp6FBpyxbzdm2t1KlT/bcMHTx4UJJ02mmn0Z0GxBhLtgQBANsyDCk7uzEpOn7cnxSZ3za0fft2bd++PeAtQQDEPkd1pQFAQHw+c8uPhqU36uqkCM5iARA7eKcAEFt8PikhwUyKkpNJigAEhXcLALHjxAkzKZKkM86QampIigAEhXcMALHh5DFEgwZJFRUSA6oBBInECIDzHTsm1W/2qTFjzAHXJEUAQkBiBMDZjhyRGja2/trXpH//29p4ADgas9IAOFd1tdSwPsm3viW98UbAD3W5XMrNzfUfA4BEYgTAqQ4ckE4/3Ty+8Ub/HmiBcrlcSk9PD39cAByNrjQAzrNvX2NS9D//E1BSVO6tUfG2SpV7ayIcHAAno2IEwFl275Z69TKP58yRHn643YcUrS3T7Dc3yGdIbpc07+o8XTs6R1VVVZKktLQ0utMASKJiBCACIlad2bmzMSl65JGAkqJyb40/KZIknyHNeXOjdh88oq1bt2rr1q1sCQLAj4oRgLA6tTrz/fP76Xvn91O2p3PHTvzFF+b6RJL0xBNmF1oASisP+5OiBnWGoR2VR5TSsYgAxCAqRgDCpqXqzMJ/lmrcvBUqWlsW+ok3bmxMil54IeCkSJL6ZXSV+5ResgSXS7kZXUKPB0DMIjECEDYtVWckyZA0e/EG/e0/u1XurQmuq+2jj6S8PPP4D3+Qvv/9oGLK9nTWvKvzlFA/hijB5dIjVw/veAULQEyiKw1A2DRUZ1pKjnySbv1DiRqKN4YaB0JPHdOn5RN++KF0/vnm8V/+In3zmyHFNXVMH40f1EM7Ko8oN6OLsj2d5fP5QjoXgNhGxQhA2DRUZ07tujqZUf8lNQ6EbrFy9O67jUnRsmUBJUVtVaKyPZ1VMCCdShGANlExAhBWDdWZFz8s1QsflKq9ukzDQOgmCctbbzUmQh98IF1wQbvP29KU/FYrUQDQCipGAMIu29NZcy4dpg9nX6Qnr89vs4LUbCD0H//YmBT9+98BJUWtTclvawyTy+VSnz591KdPH9YwAuBHxQhAxGR7OuuyEZ11uPaEZi/e0GL16O5LBjdWi158Ufre98zj9euls88O6Hk+3nmg1Sn5rXWduVwu9ejRI8BXAiBeUDECEHFTx/TRE9PyW/ze2b1PMw+eeqoxKfrss4CToqK1ZfqfP5Q0u58p+QBCQWIEICpG9e3e+npCjz4q3XqreWdpqTR4cEDnbOhCO3USnNuldqfkG4ah6upqVVdXs/I1AD8SIwBR0ep6Qr+eJ82aZTb68kspNzfgc7a2btIT1+W3O/DaMAx9/vnn+vzzz0mMAPgxxghA1DRbT2juHGnBAvObe/ZIZ5wR1PlaWjcpweXSqNzuYYwaQDyhYgQgqvzrCf30fxqTov37g06KGs7FqtYAwomKEYCoK7/+RpUWf6J+qenK/nK7lJYW8rlaWtUaAEJFYgQgqoqm3anZOd+S7/przIUYtxzU1DGhJ0aSWTkiIQIQDnSlAYia8gmTNLv3RPnc5ltPIAsxAkA0kRgBiDzDkIYNU+mOCn9S1KBhIUYAsAO60gBElmFIvXpJ5eXql5re4iwyKxZidLlc6t27t/8YACQqRgAiyTCkrl2l8nJJUvaBPbaZReZyuZSZmanMzEwSIwB+VIwARIbPJyUkmMedOklHj0puN7PIANgaiRGA8DtxwkyGJKlHD3PxxpOqMnaYRWYYho4cMcc2denShaoRAEl0pQEIt+PHG5OigQObJUVtKffWqHhbZVRmqRmGoc8++0yfffYZW4IA8KNiBCB8jh2TUlLM49GjpbVrA35o0doyzX5zg3yGuQnsvKvz2t3vDADCjYoRgPCoqWlMii6+OKikqNxb40+KJNY3AmAdEiMAHVddLXWpn3J/9dXSu+8G9fDSysNNpvBLrG8EwBokRgA65uDBxr3OZsyQFi8O+hT9MrrKfcowJKvWNwIQ30iMAIRu3z6pe3fz+NZbpUWLQjpNtqezbdY3AhDfGHwNIDS7d5srWkvS7NnSI4906HQnr2/UJcmtw7V1KvfWkBwBiCoSIwDB27lTys01jx9+WJozJyynzfZ01gef74vK7DSXy6Xs7Gz/MQBIdKUBCNYXXzQmRb/5TdiSIim6s9NcLpd69uypnj17khgB8CMxAmJMRBdJ3LRJGjTIPH7hBem228J6emanAbAaXWlADInoIokff2wu2ihJf/iDdP314TnvSRpmp52cHEVydlpNjZk8du7MOCYAJipGQIwIRzdUq9WmDz9sTIqWLIlIUiRFd3aaz+fT5s2btXnzZvl8vrCfH4AzUTECYkRb3VCBJBatVZvK335XpbfcqX6p6cp+4w/SpEkRegWmk2en5WZ0YVYagKgiMQJiREe6oVqrNh38+D96dLsh3/Xz5JY0r/sQTY1M+E1kezqTEAGwBF1pQIzoSDdUa9Wm+dsN+dzm24RP7F8GIPZRMQJiSKjdUC1Vm9w+nz8pahBM1xwAOBEVIyDGZHs6q2BAelDJS7Nqk69O97z/IvuXAYg7VIyAKCn31qi08rD6ZXS1ZcVl6pg+Gv+Pxdrx9IvKPbhb2evX6rTKBM15c6PqDIP9ywDEBRIjxL1oJCwRXV8oXO6/X9kPPqhsSfryS6lXL03tp5idIeZyuZSZmek/BgCJxAhxLhoJS2szvsYP6mGfROPOO6XHHzeP9+yRzjjD/61YnSHmcrnUu3dvq8MAYDOMMULcita+XLbf5mLmzMakaP/+JkkRAMQbEiPErWglLA0zvk5mm0HM111n7nkmSV6vdPrp1sYTZbW1taqtrbU6DAA24pjE6MCBA5o+fbo8Ho88Ho+mT5+ugwcPtvmYCy+8UC6Xq8nXddddF6WIYXfRSliiuc1FUC69VCoqMo8PHZLS0qyNJ8p8Pp82bNigDRs2sCUIAD/HjDGaNm2avvzySy1dulSSdNNNN2n69Ol666232nzczJkz9eCDD/pvs1kkGjQkLNGYdWW7bS7GjZNWrzaPa2qklBRr4wEAm3BEYvTpp59q6dKl+te//qXzzjtPkrRw4UIVFBRoy5YtGjx4cKuP7dKli7KysqIVKhwmmglLw7lLKw83ud0RQc+oMwxp+HBp82bz9rFjUlJSh+MAgFjhiMRo9erV8ng8/qRIksaOHSuPx6Pi4uI2E6NXX31Vr7zyijIzMzVlyhTdf//9Sk1NbbX9sWPHdOzYMf/tqqqq8LwI2Fa0Zl2FewZc0OczDKl3b2n3bvP28eNSoiPeAgAgahwxxqiiokJntDBT5owzzlBFRUWrj7vhhhv02muvaeXKlbrvvvu0ePFiXX311W0+17x58/zjmDwej3JycjocPxDuGXDBnK/cW6PirZUqz+rbmBSdOEFSBAAtsDQxmjt3brPB0ad+ffTRR5JaXoDNMIw2F2abOXOmvva1r2n48OG67rrr9MYbb+jdd9/VJ5980upjZs+eLa/X6//atWtXx18owqrcW6PibZWO2sw03DPgAj1f0doyFc5foWkvrFHhjKdUNGKyVFcnJSSE9LwAEOss/ZPx1ltvbXeWWG5urv7zn/9oz549zb63b98+/8q1gRg5cqQ6deqkL774QiNHjmyxTXJyspKTkwM+J6LLEStIt6ClTVo7MgMukPM1qyq53Zoz5X80vvqY9YO/AcCmLE2MMjIylJGR0W67goICeb1e/fvf/9a5554rSVqzZo28Xq/GjRsX8PNt2rRJx48fV3Z2dsgxwzqOWEG6FeGeARfI+UorqlqoKkk7Ko/Y/npFg8vlUo8ePfzHACA5ZPD10KFDdckll2jmzJl67rnnJJnT9S+77DL/wOuvvvpKF198sX7/+9/r3HPP1bZt2/Tqq6/q0ksvVUZGhjZv3qyf/vSnys/PV2FhoZUvByFqq/vICR/04Z4B1+b5jh1TvzFnyX3zi/K5G3vMbbOwZAeFY387l8ulPn3sX20EEF2OSIwkc3bZbbfdpkmTJkmSvvnNb+rJJ5/0f//48ePasmWLjhwxx1gkJSXpH//4h37zm9/o0KFDysnJ0Te+8Q3df//9SmB8hSOFuzvKCuGeAdfi+WpqpC5dlC1p3o7lmjPgkpCqVNHYXDcUTu1OBeAMLsMwjPabxa+qqip5PB55vV6lxdnKwHZUtLasWfcRH4onOXRIaliO4sorpSVLVO6tCbpKZdfko9xbo8L5K5olx6tmTQwpeTtx4oQkKZEZekDMCfXzm3cDOIrtVpC2k4MHpe7dzePvfEd66SVJwVep7DyWK5zdqT6fT+vXr5ck5efny+12xOolACKMxAiOE60FGR2lslKqH0isH/9YOqmbOVh2HssVC92pAOyNP5GAdkRr3aSQn6e8vDEpmjWrQ0mR1PHNdSN5vWy7IS+AmEHFCGhDtMbahPw8ZWVS377m8f/5P9K993Y4lo4sLRCN60V3KoBIYvB1Oxh8Hb/CPdA37M+zdat05pnm8eOPS7ffHraYGuIKJvmI1vUKF5/Pp5KSEkmMMQJiUaif37wTAK0I9zYeYX2eTZsak6KFC8OeFElm5ahgQHrASU20rhcARBKJEdCKjo61idjzfPKJNHy4efzqq9IPfhDWeEIVresFAJFEYgS0IloDfYN6nuJiadQo83jJEmnatLDG0hFOGxjtcrmUnp6u9PR0tgQB4McYo3YwxgihLJAYkedZsUK6+GLzeOlSafLkiMXSEdG6XgDQFhZ4BCIkWusmtfk8b78tXXaZefz++9L48RGPJ1SsMwXAyehKA+zuT39qTIrWrLF1UuQ0Pp9PPp/P6jAA2AiJEWBnL70kXXutebxunXTuuW23z82VFixoet8550hz50YiuqBEa6HMQDVM1y8pKSE5AuBHVxpgV888I91yi3n86afSkCHWxtMBdt2UFgBORcUIiLbXXze7x07RpKLyq181JkXbtjk6KWptU1q7VI4A4GQkRkA0rV8vXX+92T22cKH/7qK1ZSqcv0LTFq5R4bx/qOjlZeY3du2S+vcPz3P/5z/St74lnXGGtHJleM4ZABZ+BOAkJEZAkDo0VmbOHCmxvgf7hz+UXn65eUVFLs2ZfKvKvyiTevcO7vxut3TqChzHj5v/nn22tHixNGxY8HF3AAs/AnASxhgBASr31uh/V5Xqd6tKQxsrs3q19M47jbcNQ5oxQ6ULO8tnNJ3eXudO0A5XF2UHG2SPHlJ5eePtqiqptDTYs4RVRzalBYBoIzECAlC0tkyzFm/QybWYhrEy4wf1COxDftYsKSFBqqtrvM8w1O/OW+S++XfyuRoLuCFXVC66SFq0SLr8cql7d+m++8zntNjUMX00flAPFn4EYHt0pQHtaOjqammJ+IDHyvzjH9IHHzRNiuplV1dq3tLfKsFnfq9DFZXZs811ji67TLr0UunKK6UBA8zv7d1r3t64Ufr5z5tP64+wYDeljYbu3bure/fuVocBwEbYEqQdbAmC4m2VmrZwTYvfS3C5tGrWxLY/7A1DGj3aHHjdQmLUoLx7lnY8/3vlfv18WyUPAOBEoX5+UzEC2tHS4GHJHGMUUGXnrbekTz5pMymSpGzvXhVM/6ayN3zcgWgBAB1BYgS049Rd492SbhrfTx/OuqjFgddNZq35fObYIncA/9V8Pqm21twc9t//DvOrAAAEgsHXsJ1yb41KKw+rX0ZX23QpBTp4uNkKz71qNPXTTwN/Ip9POnZM+trXzM1i8/PD9ApwqoYtQSQpPz9f7kCSVwAxj8QItmLnrSPa2zW+xRWey5I0PjVD2dWVgT9RXZ1UXW0O2I6RxMiOyS4AtITECLbR2tYRAU+Ht1iLKzy7E7TjtOzAEyOXSzr9dOmee8wFIGOAnZNdADgVtWPYhtO3jmhxhWdfnXIP7m77gfVjl9Szp/Tkk+Y2IHfdJaWmRibQKGKfNABOQ2IE23D61hHZns66Kr9X4x2GoSs3vafs6v0tP6BhTEu/ftKLL0o7dpgbx3a2f3UsUE5PdgHEHxIj2Maps7+ctnVEubdGS0q+arzD5dKfz5qo8tT0pg0bVqIeNkz64x+lzz+XbrxR6tQparFGi9OTXQDxhzFGsBUnbx3R+hijnmbVqGE7kNGjpV/8QpoypbEbzSGCHUTNPmkAnIbECLbT3uwvu2qojpycHCX46pRbvde8MWGCuXfZhAmOS4ik0AdR2znZ9Xg8VocAwGboSgPCJNvTWfNc2xr3PPPV6ZH/96Syx58nrVljTr+/8EJHJkUdHURtx33S3G63Bg4cqIEDB7KGEQA/KkZAuOzdq6mP36PxnbpqR/eeyr1gjLJffUwaPrxZU6et69PWIGonxA8AgSIxAsKlrk7q1UvZEycq+557pIEDW2zmxHV9WuwmZBA1gBhE/RgIl+xsc4bZwoWtJkVOXdfH6TMGW9KwJUhJSYl8Pp/V4QCwCSpGQDi1M1bFyV1Sdh5EHSoSIgCnIjFCzLPTeB6nd0k5dcYgAASKrjTEtKK1ZSqcv0LTFq5R4fwVKlpbZmk8sdglBQCxhIoRYpZdN6WNxS4pAIgVVIwQs+y+T5cho/1GAICoomKEFtlpXE6o7Dqex4nT9QEgXlAxQjN2G5cTKjuO53HqdP1YlZqaqtTUVKvDAGAjVIzQhF3H5YTKbuN5nDxdP9a43W4NGjTI6jAA2AyJEZqIxQ9uO00xt2v3HgDARFcammj44D4ZH9zhY8fuPQBAIypGaKLhg3vOmxtVZxh8cEeA3br34pXP59OGDRskSXl5eXK3s2o5gPhAYoRm+OCOPDt178WzEydOWB0CAJshMUKL+OAGAMQjaseIaeXeGhVvq2Q6PAAgIFSMELNYSBEAECwqRohJLKQIAAgFiRFikt33SQMA2BNdaYhJLKSIQHTpwu8DgKaoGMF2wjFgmoUU0R63262hQ4dq6NChrGEEwI+KEWwlnAOmWY8JABAs/kyCbURiwHS2p7MKBqSTFAEAAuKYxOjhhx/WuHHj1KVLF5122mkBPcYwDM2dO1c9e/ZU586ddeGFF2rTpk0RjhShYsC0c8TC+lANW4Js2LBBPp/P6nAA2IRjEqPa2lpdc801+tGPfhTwY375y1/qscce05NPPqm1a9cqKytLX//611VdXR3BSBEqNrB1hqK1ZSqcv0LTFq5R4fwVKlpbZnVIIautrVVtba3VYQCwEcckRg888IDuuOMO5eXlBdTeMAwtWLBA9957r66++moNHz5cL730ko4cOaI//OEPEY4WoWDAtP2xPhSAWBezg69LS0tVUVGhSZMm+e9LTk7WhAkTVFxcrB/+8IctPu7YsWM6duyY/3ZVVVXEY0Ujpw+YLvfWqLTysPpldHVc7IFoq7szFl8vgPgTs4lRRUWFJCkzM7PJ/ZmZmdq5c2erj5s3b54eeOCBiMaGtjl1A9t42IKE9aEAxDpLu9Lmzp0rl8vV5tdHH33UoedwuZoOWjEMo9l9J5s9e7a8Xq//a9euXR16fsSHeOliorsTQKyztGJ066236rrrrmuzTW5ubkjnzsrKkmRWjrKzs/337927t1kV6WTJyclKTk4O6TkRG0LpDounLiand3cCQFssTYwyMjKUkZERkXP369dPWVlZWr58ufLz8yWZM1Def/99PfrooxF5TjhfqN1h8dbF5NTuzlOlpKRYHQIAm3HMrLSysjKtW7dOZWVlqqur07p167Ru3TodOnTI32bIkCFasmSJJLML7fbbb9cjjzyiJUuWaOPGjbrxxhvVpUsXTZs2zaqXARvrSHcYXUzO43a7ddZZZ+mss85iSxAAfo4ZfP2LX/xCL730kv92QxXovffe04UXXihJ2rJli7xer7/N3XffrZqaGt1yyy06cOCAzjvvPC1btkypqalRjR3O0NHuMLqYAMD5XIZhGO03i19VVVXyeDzyer1KS0uzOhxEULm3RoXzVzTrDls1ayJJDgA4TKif39SPgXp0h8UXn8+nTZs2adOmTWwJAsDPMV1pQDTQHRZfjh49anUIAGyGxAg4RSAzrmJ9hWsAiFckRkC9QJOdeFjhGgDiFYkRoMCTndam9I8f1IPKEQDEAAZfI66Ue2tUvK2yydpEwaxf1NaUfgCA81ExQtxorSoUzPpF8bbCNQDEGypGiAttVYUakp2TtZbsMKU/tiQlJSkpKcnqMADYCBUjxIW2qkIFA9I17+o8zXlzo+oMo91khyn9scHtdisvL8/qMADYDIkR4kJ7XWDBJjuxsokqAKAputIQFwLpAsv2dFbBgHQSHgCIY1SMEDfoAsPJfD6ftmzZIkkaPHiw3G7+TgRAYoQ405AMlVYebnIb8enIEZZZANAUiRHiCqtWAwDaQu0YcSOYhRwBAPGJxAhxg1WrAQDtITFC3AhmIUcAQHwiMULcYNVqAEB7GHyNuMKUfZwsMZG3QABN8a6AuMOq1ZDMLUFGjBhhdRgAbIauNAAAgHokRoANlHtrVLytkqUDAMBidKUBFmPRSWv4fD5t3bpVkjRw4EC2BAEgiYoRYCkWnbRWdXW1qqurrQ4DgI2QGAEWYtFJALAXEiPAQiw6CQD2QmIEWIhFJwHAXhh8DViMRScBwD5IjAAbYNFJALAHEiMAcYsp+gBORWIEIC653W7l5+dbHQYAm+HPJQAAgHokRgAAAPXoSgMQl3w+n7Zv3y5J6t+/P+ONAEgiMQIQx7xer9UhALAZ/kQCAACoR2IEAABQj8QIAACgHokRAABAPRIjAACAesxKa4dhGJKkqqoqiyMBEE4+n0+HDh2SZP7/Zro+EFsaPrcbPscDRWLUjurqaklSTk6OxZEAAIBgVVdXy+PxBNzeZQSbSsUZn8+n3bt3KzU1VS6Xy+pwOqSqqko5OTnatWuX0tLSrA7HElwDE9fBxHUwcR1MXAdTrFwHwzBUXV2tnj17BlURpmLUDrfbrd69e1sdRlilpaU5+pc9HLgGJq6Dietg4jqYuA6mWLgOwVSKGtCpDgAAUI/ECAAAoF7C3Llz51odBKInISFBF154oRIT47cXlWtg4jqYuA4mroOJ62CK5+vA4GsAAIB6dKUBAADUIzECAACoR2IEAABQj8QIAACgHolRDHv44Yc1btw4denSRaeddlpAj7nxxhvlcrmafI0dOzbCkUZWKNfBMAzNnTtXPXv2VOfOnXXhhRdq06ZNEY40sg4cOKDp06fL4/HI4/Fo+vTpOnjwYJuPufDCC5v9Plx33XVRijg8nn76afXr108pKSkaNWqU/vnPf7bZfvHixRo2bJiSk5M1bNgwLVmyJEqRRlYw12HRokXNfu4ul0tHjx6NYsTh9cEHH+jyyy9Xz5495XK59Oc//7ndx7z//vsaNWqUUlJS1L9/fz377LNRiDSygr0OK1eubPF34bPPPotSxNFHYhTDamtrdc011+hHP/pRUI+75JJLVF5e7v965513IhRhdIRyHX75y1/qscce05NPPqm1a9cqKytLX//61/175znRtGnTtG7dOi1dulRLly7VunXrNH369HYfN3PmzCa/D88991wUog2PoqIi3X777br33ntVUlKiCy64QFOmTFFZWVmL7VevXij7/J0AAAkdSURBVK2pU6dq+vTpWr9+vaZPn65rr71Wa9asiXLk4RXsdZDMVY9P/rmXl5crJSUlilGH1+HDhzVixAg9+eSTAbUvLS3VpZdeqgsuuEAlJSWaM2eObrvtNi1evDjCkUZWsNehwZYtW5r8Lpx55pkRitAGDMS8F1980fB4PAG1nTFjhnHFFVdEOCJrBHodfD6fkZWVZcyfP99/39GjRw2Px2M8++yzkQwxYjZv3mxIMv71r3/571u9erUhyfjss89afdyECROMn/zkJ9EIMSLOPfdc4+abb25y35AhQ4xZs2a12P7aa681Lrnkkib3TZ482bjuuusiFmM0BHsdgnnPcCJJxpIlS9psc/fddxtDhgxpct8Pf/hDY+zYsZEMLaoCuQ7vvfeeIck4cOBAlKKyHhUjNLNy5UqdccYZGjRokGbOnKm9e/daHVJUlZaWqqKiQpMmTfLfl5ycrAkTJqi4uNjCyEK3evVqeTwenXfeef77xo4dK4/H0+5revXVV5WRkaGzzjpLP/vZzxxTNautrdXHH3/c5OcoSZMmTWr1Na9evbpZ+8mTJzv25y6Fdh0k6dChQ+rbt6969+6tyy67TCUlJZEO1VZa+1346KOPdPz4cYuisk5+fr6ys7N18cUX67333rM6nIiKvyUt0aYpU6bommuuUd++fVVaWqr77rtPF110kT7++GMlJydbHV5UVFRUSJIyMzOb3J+ZmamdO3daEVKHVVRU6Iwzzmh2/xlnnOF/vS254YYb1K9fP2VlZWnjxo2aPXu21q9fr+XLl0cy3LCorKxUXV1diz/H1l5zRUVFUO2dIJTrMGTIEC1atEh5eXmqqqrSb37zGxUWFmr9+vWx3YVyktZ+F06cOKHKykplZ2dbFFl0ZWdn6/nnn9eoUaN07Ngxvfzyy7r44ou1cuVKjR8/3urwIoLEyGHmzp2rBx54oM02a9eu1ejRo0M6/9SpU/3Hw4cP1+jRo9W3b1+9/fbbuvrqq0M6ZyRE+jpIksvlanLbMIxm91kt0OsgNX89UvuvaebMmf7j4cOH68wzz9To0aP1ySefaOTIkSFGHV3B/hyd8HMPRTCva+zYsU0mXRQWFmrkyJH67W9/qyeeeCKicdpJS9espftj2eDBgzV48GD/7YKCAu3atUu/+tWvSIxgD7feemu7s4Jyc3PD9nzZ2dnq27evvvjii7CdMxwieR2ysrIkmX8xnvxX4d69e5v9BWm1QK/Df/7zH+3Zs6fZ9/bt2xfUaxo5cqQ6deqkL774wvaJUUZGhhISEppVRdr6OWZlZQXV3glCuQ6ncrvdGjNmjO3eByKptd+FxMREpaenWxSVPYwdO1avvPKK1WFEDImRw2RkZCgjIyNqz7d//37t2rXLdmXjSF6Hhq6j5cuXKz8/X5I5TuP999/Xo48+GpHnDFWg16GgoEBer1f//ve/de6550qS1qxZI6/Xq3HjxgX8fJs2bdLx48dt9/vQkqSkJI0aNUrLly/XVVdd5b9/+fLluuKKK1p8TEFBgZYvX6477rjDf9+yZcuCukZ2E8p1OJVhGFq3bp3y8vIiFabtFBQU6K233mpy37JlyzR69Gh16tTJoqjsoaSkxBHvASGzcOA3Imznzp1GSUmJ8cADDxjdunUzSkpKjJKSEqO6utrfZvDgwcabb75pGIZhVFdXGz/96U+N4uJio7S01HjvvfeMgoICo1evXkZVVZVVL6PDgr0OhmEY8+fPNzwej/Hmm28aGzZsMK6//nojOzvb0dfhkksuMc4++2xj9erVxurVq428vDzjsssu83//yy+/NAYPHmysWbPGMAzD2Lp1q/HAAw8Ya9euNUpLS423337bGDJkiJGfn2+cOHHCqpcRlNdff93o1KmT8bvf/c7YvHmzcfvttxtdu3Y1duzYYRiGYUyfPr3JzKwPP/zQSEhIMObPn298+umnxvz5843ExMQms/mcKNjrMHfuXGPp0qXGtm3bjJKSEuO73/2ukZiY6P/dcKLq6mr//31JxmOPPWaUlJQYO3fuNAzDMGbNmmVMnz7d33779u1Gly5djDvuuMPYvHmz8bvf/c7o1KmT8cYbb1j1EsIi2Ovw+OOPG0uWLDE+//xzY+PGjcasWbMMScbixYutegkRR2IUw2bMmGFIavb13nvv+dtIMl588UXDMAzjyJEjxqRJk4wePXoYnTp1Mvr06WPMmDHDKCsrs+YFhEmw18EwzCn7999/v5GVlWUkJycb48ePNzZs2BD94MNo//79xg033GCkpqYaqampxg033NBkCm5paWmT61JWVmaMHz/eOP30042kpCRjwIABxm233Wbs37/folcQmqeeesro27evkZSUZIwcOdJ4//33/d+bMGGCMWPGjCbt//SnPxmDBw82OnXqZAwZMiRmPgCCuQ6333670adPHyMpKcno0aOHMWnSJKO4uNiCqMOnYdr5qV8Nr3vGjBnGhAkTmjxm5cqVRn5+vpGUlGTk5uYazzzzTPQDD7Ngr8Ojjz5qDBgwwEhJSTG6d+9unH/++cbbb79tTfBR4jKM+tFkAAAAcY51jAAAAOqRGAEAANQjMQIAAKhHYgQAAFCPxAgAAKAeiREAAEA9EiMAAIB6JEYAAAD1SIwAAADqkRgBAADUIzECEFf27dunrKwsPfLII/771qxZo6SkJC1btszCyADYAXulAYg777zzjq688koVFxdryJAhys/P1ze+8Q0tWLDA6tAAWIzECEBc+vGPf6x3331XY8aM0fr167V27VqlpKRYHRYAi5EYAYhLNTU1Gj58uHbt2qWPPvpIZ599ttUhAbABxhgBiEvbt2/X7t275fP5tHPnTqvDAWATVIwAxJ3a2lqde+65OuecczRkyBA99thj2rBhgzIzM60ODYDFSIwAxJ277rpLb7zxhtavX69u3bpp4sSJSk1N1d/+9jerQwNgMbrSAMSVlStXasGCBXr55ZeVlpYmt9utl19+WatWrdIzzzxjdXgALEbFCAAAoB4VIwAAgHokRgAAAPVIjAAAAOqRGAEAANQjMQIAAKhHYgQAAFCPxAgAAKAeiREAAEA9EiMAAIB6JEYAAAD1SIwAAADqkRgBAADU+/9YeNCKZ2vraQAAAABJRU5ErkJggg==", - "text/plain": [ - "PyPlot.Figure(PyObject
    )" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "(-1.5556480153860381, 1.551373778452842, -1.3633186213221165, 1.4423247125247483)" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot(x.-mean(x),y.-mean(y), \".\")\n", - "xlabel(\"x\")\n", - "ylabel(\"y\")\n", - "axhline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", - "axvline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", - "arrow(0,0, U[:,1]..., head_width=0.1, color=\"r\")\n", - "arrow(0,0, U[:,2]..., head_width=0.1, color=\"r\")\n", - "text(U[1,2]+0.1,U[2,1], \"u₁\", color=\"r\")\n", - "text(U[1,2]+0.2,U[2,2], \"u₂\", color=\"r\")\n", - "axis(\"equal\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There may be an irrelevant sign flip from before (the signs of the eigenvectors and singular vectors are arbitrary), but otherwise it is the same." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cool PCA applications\n", - "\n", - "* The [eigen-walker](https://www.biomotionlab.ca/Demos/BMLwalker.html) uses PCA to analyze variations in human gaits.\n", - "* [eigen-faces](https://en.wikipedia.org/wiki/Eigenface) use PCA to analyze facial variations.\n", - "\n", - "If you google \"PCA\" you will find lots of other examples and tutorials." - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Julia 0.6.3", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/1806overview.pdf b/notes/1806overview.pdf similarity index 100% rename from lectures/1806overview.pdf rename to notes/1806overview.pdf diff --git a/lectures/1806overview.pptx b/notes/1806overview.pptx similarity index 100% rename from lectures/1806overview.pptx rename to notes/1806overview.pptx diff --git a/materials/Action of a matrix and eigenvectors.ipynb b/notes/Action of a matrix and eigenvectors.ipynb similarity index 100% rename from materials/Action of a matrix and eigenvectors.ipynb rename to notes/Action of a matrix and eigenvectors.ipynb diff --git a/notes/Chutes-and-Ladders.ipynb b/notes/Chutes-and-Ladders.ipynb new file mode 100644 index 00000000..cbebd8c1 --- /dev/null +++ b/notes/Chutes-and-Ladders.ipynb @@ -0,0 +1,1199 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra, PyPlot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chutes and Ladders\n", + "\n", + "*Chutes and Ladders*, a version of an ancient Indian board game called [Snakes and Ladders](https://en.wikipedia.org/wiki/Snakes_and_Ladders), is a simple and popular children's board game.\n", + "\n", + "* There are 100 numbered spaces, plus an unmarked starting position 0.\n", + "* Players take turns generating a random number from 1 to 6 (e.g. by rolling a die or spinning a wheel), and move a marker that many spaces.\n", + "* If you land at the bottom of a ladder or the top of a chute (snake), then your marker is transported across the board up the ladder or down the chute.\n", + "* The first player whose marker reaches position 100 wins.\n", + "\n", + "Here is an image of a game board:\n", + "\n", + "\n", + "\n", + "A simple question that one might ask is: **how many moves does it typically take to finish the game**?\n", + "\n", + "It turns out that an elegant analysis of this game is possible via [Markov matrices](https://en.wikipedia.org/wiki/Stochastic_matrix). Reviews of this idea can be found in [this 2011 blog post](http://www.datagenetics.com/blog/november12011/) or [this article by Jeffrey Humpherys at BYU](https://math.byu.edu/~jeffh/mathematics/games/chutes/chutes.html).\n", + "\n", + "The key idea is to represent the board by a 101×101 matrix M, whose entry $M_{i,j}$ is the **probability of going from position j to position i**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simplified game: No chutes or ladders\n", + "\n", + "To start with, let's analyze a boring version of the game, in which there are no chutes or ladders. On each turn, you simply move forward 1 to 6 spaces until you reach the end.\n", + "\n", + "The corresponding matrix M is essentially:\n", + "\n", + "$$\n", + "M_{i,j} = \\begin{cases}\n", + " \\frac{1}{6} & j \\in \\{i-1,i-2,\\ldots,i-6\\} \\\\\n", + " 0 & \\mbox{otherwise}\n", + " \\end{cases}\n", + "$$\n", + "since there is a 1/6 chance of moving 1,2,…,6 spaces from $j$. However, the final row is modified, because you can get to space 100 from space 99 if you roll anything, from space 98 if you roll a 2 or more, etcetera. And once you get to position 100, you stay there." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "101×101 Matrix{Float64}:\n", + " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", + " 0.166667 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.166667 0.166667 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0 0.0\n", + " 0.166667 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0\n", + " 0.166667 0.166667 0.166667 0.166667 … 0.0 0.0 0.0 0.0\n", + " 0.166667 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0\n", + " 0.0 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.166667 0.166667 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.166667 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " ⋮ ⋱ ⋮\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.166667 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.166667 0.166667 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 … 0.666667 0.833333 1.0 1.0" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M = zeros(101,101)\n", + "for i = 2:100\n", + " M[i,max(1,i-6):(i-1)] .= 1/6\n", + "end\n", + "# last row\n", + "for i = 1:6\n", + " M[101,101-i] = (7-i)/6 # = 6/6, 5/6, 4/6, ..., 1/6\n", + "end\n", + "M[101,101] = 1 # once we get to the last space, we stay there\n", + "M" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we start on position 0, corresponding to $j=1$. This is described by the vector\n", + "\n", + "$$\n", + "e_1 = \\begin{pmatrix} 1 \\\\ 0 \\\\ 0 \\\\ \\vdots \\\\ 0 \\end{pmatrix}\n", + "$$\n", + "\n", + "After one move, our probability of being on each spot is given by \n", + "\n", + "\n", + "$$\n", + "M e_1 = \\begin{pmatrix} 0 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 1/6 \\\\ 0 \\\\ \\vdots \\\\ 0 \\end{pmatrix}\n", + "$$\n", + "\n", + "(the first column of M)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "101-element Vector{Float64}:\n", + " 0.0\n", + " 0.16666666666666666\n", + " 0.16666666666666666\n", + " 0.16666666666666666\n", + " 0.16666666666666666\n", + " 0.16666666666666666\n", + " 0.16666666666666666\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ⋮\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "e₁ = zeros(101); e₁[1] = 1\n", + "M*e₁" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That is, there is a 1/6 chance of being in positions 1, 2, 3, 4, 5, or 6.\n", + "\n", + "After *two* moves, the probability distribution is given by $M^2 e_1$:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "101-element Vector{Float64}:\n", + " 0.0\n", + " 0.0\n", + " 0.027777777777777776\n", + " 0.05555555555555555\n", + " 0.08333333333333333\n", + " 0.1111111111111111\n", + " 0.13888888888888887\n", + " 0.16666666666666663\n", + " 0.13888888888888887\n", + " 0.1111111111111111\n", + " 0.08333333333333333\n", + " 0.05555555555555555\n", + " 0.027777777777777776\n", + " ⋮\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M^2 * e₁" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And so on.\n", + "\n", + "In fact, the matrix $M$ is precisely a **Markov matrix.** It has the property that the **sum of every column is 1**, as can be checked in Julia by:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1×101 Matrix{Float64}:\n", + " 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(M, dims=1) # sum M along the first dimension, i.e. sum Mᵢⱼ over i, i.e. sum each column" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The eigenvalues of this matrix are weird looking: there is a single steady state (eigenvalue 1), and all other eigenvalues are zero!" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "101-element Vector{Float64}:\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ⋮\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(M)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What is actually happening here is that this matrix is not diagonalizable — it is [defective](https://en.wikipedia.org/wiki/Defective_matrix). The matrix $X$ of eigenvectors is singular:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(M)\n", + "det(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's not worry about that for now (we will cover defective matrices later), and instead focus on the **steady-state eigenvalue λ=1**. The corresponding eigenvector is just the unit vector $e_{101}$, because the steady state is the situation where we have reached the last spot on the board, at which point we stay there forever:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "101-element Vector{Float64}:\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ⋮\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X[:,end]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot this probability distribution as it evolves over many moves, plotting it on a 2d grid that resembles the usual Chutes and Ladders board." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "plotchutes (generic function with 1 method)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Plot the probabilities on something like a chutes and ladders board. We won't show the starting position (0)\n", + "# since that is not on the board.\n", + "function plotchutes(p)\n", + " P = transpose(reshape(p[2:101], 10,10)) # reshape to a 10×10 array and transpose to row-major\n", + " # every other row should be reversed, corresponding to how players \"zig-zag\" across the board:\n", + " for i = 2:2:10\n", + " P[i,:] = reverse(P[i,:])\n", + " end\n", + " imshow(P, aspect=\"equal\", cmap=\"Reds\", norm=PyPlot.matplotlib[\"colors\"][\"LogNorm\"](vmin=1e-3, vmax=1), origin=\"lower\", interpolation=\"none\")\n", + " colorbar(label=\"probability\")\n", + " xticks(-0.5:1:10, visible=false)\n", + " yticks(-0.5:1:10, visible=false)\n", + " grid()\n", + " for i = 1:10, j = 1:10\n", + " n = (i-1)*10 + j\n", + " x = iseven(i) ? 10-j : j-1\n", + " y = i-1\n", + " text(x,y, \"$n\", horizontalalignment=\"center\", verticalalignment=\"center\")\n", + " end\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWEUlEQVR4nOzdeVwT194/8E+AEBYxymYSkaBFUFGpoldUKmKRxVZwqaJYBEVv789d+3Bdqo9oXVArLrW4Fa3WWq1XilStihWo1oog0rpdoBZ3loIKsgiBnN8fPuQSQQiSySD3++5rXq8ymUw+GYLfnDNn5ggYYwyEEEIIeaPp8R2AEEIIIc1HBZ0QQghpBaigE0IIIa0AFXRCCCGkFaCCTgghhLQCVNAJIYSQVoAKOiGEENIKUEEnhBBCWgEq6IQQQkgrQAW9hQgPD4dAIFBbZ2dnh5CQkCbt5+LFiwgPD8fTp0+b9LyXXysxMRECgQD/+te/mrSfhpSVlSE8PByJiYl1Hvvqq68gEAhw584drb0eFz7//HPY29vD0NAQAoEAT58+xZo1axAbG6vTHMePH8fkyZPRq1cvCIXCOp8dQsh/HwO+A5BX+/7779G2bdsmPefixYtYsWIFQkJC0K5dO05fq6nKysqwYsUKAMDQoUPVHnvvvffw66+/QiqVcpqhOdLT0zFnzhxMmzYNwcHBMDAwgJmZGdasWYMPPvgAo0aN0lmW77//HpcuXUKfPn0gEolw5coVnb02IaRlooLegvXp04fz1ygvL4exsbFOXqshVlZWsLKy4jVDY27cuAEAmD59Ov72t79x+lrV1dWoqqqCSCSq9/Hdu3dDT+9FB9usWbOooBNCqMudDydOnMDbb78NkUiEzp0747PPPqt3u5e7wZVKJVatWgVHR0cYGxujXbt26N27N7Zs2QLgRbd9WFgYAKBz584QCAQQCASqLm47Ozu8//77iImJQZ8+fWBkZKRqMb+qe//58+dYsGABJBIJjI2N4e7ujqtXr6ptM3To0DotbgAICQmBnZ0dAODOnTuqgr1ixQpVtprXfFWX+549e+Ds7AwjIyOYm5tj9OjRuHXrVp3XadOmDf744w+MGDECbdq0QadOnfDxxx+joqKi3mNb2+HDh+Hl5QWpVApjY2N0794dixYtQmlpqdp7/PDDDwEAAwYMUGUXCAQoLS3Fvn37VO+p9rHIzc3FRx99BBsbGxgaGqJz585YsWIFqqqqVNvcuXMHAoEA69evx6pVq9C5c2eIRCIkJCS8MnNNMX8dNa+3YcMGrFu3DnZ2djA2NsbQoUORmZkJhUKBRYsWQSaTQSwWY/To0cjPz1fbh1KpxPr169GtWzeIRCJYW1tj8uTJePDggWqbefPmwdTUFMXFxXUyBAQEoEOHDlAoFKp1hw8fxsCBA2Fqaoo2bdrA29u7zmftzz//xIQJEyCTySASidChQwe8++67SE9Pf+3jQUirwYhOnT17lunr6zM3NzcWExPDjhw5wvr3789sbW3Zy78OuVzOgoODVT+vXbuW6evrs+XLl7OffvqJnTp1im3evJmFh4czxhi7f/8+mz17NgPAYmJi2K+//sp+/fVXVlRUpNqfVCplXbp0YXv27GEJCQns8uXL9b5WQkICA8A6derE/P392Q8//MAOHDjA7O3tWdu2bdnt27dV27q7uzN3d/c67zU4OJjJ5XLGGGPPnz9np06dYgBYaGioKtsff/zBGGNs7969DADLzs5WPX/NmjUMAJs4cSI7ceIE279/P+vSpQsTi8UsMzNT7XUMDQ1Z9+7d2WeffcbOnj3L/vd//5cJBAK2YsWKRn8nn376Kdu0aRM7ceIES0xMZDt27GCdO3dmHh4eqm1u3LjBli5dygCwvXv3qrL/+uuvzNjYmI0YMUL1nm7cuMEYYywnJ4d16tSJyeVytnPnTnb27Fn26aefMpFIxEJCQlT7zs7OZgBYx44dmYeHB/vXv/7Fzpw5o3YsGjJz5sw6n52G1LyeXC5nI0eOZMePH2cHDhxgHTp0YA4ODiwoKIhNnTqV/fjjj2zHjh2sTZs2bOTIkWr7+Pvf/84AsFmzZrFTp06xHTt2MCsrK9apUyf2119/McYY++233xgAtnv3brXnPnnyhIlEIrZgwQLVutWrVzOBQMCmTp3Kjh8/zmJiYtjAgQOZqamp6ngyxpijoyOzt7dnX3/9NUtKSmJHjx5lH3/8MUtISND4/RPSWlFB17EBAwYwmUzGysvLVeuKi4uZubl5owX9/fffZ2+//XaD+9+wYUOdwlh7f/r6+iwjI6Pex+or6H379mVKpVK1/s6dO0woFLJp06ap1mlS0Blj7K+//mIA2PLly+ts+3JBf/LkiapQ1nbv3j0mEolYYGCg2usAYN99953atiNGjGCOjo51XqshSqWSKRQKlpSUxACw3377rU7GlJQUteeYmpqqHbsaH330EWvTpg27e/eu2vrPPvuMAVAVqpoC+9Zbb7HKysom5WXs9Qu6s7Mzq66uVq3fvHkzA8D8/PzUtp83bx4DoPpieOvWLQaAzZgxQ2275ORkBoAtWbJEta5v375s0KBBattFRUUxAOzatWuMsRe/UwMDAzZ79my17Z49e8YkEgkbP348Y4yxgoICBoBt3rxZ4/dKyH8T6nLXodLSUqSkpGDMmDEwMjJSrTczM8PIkSMbff7f/vY3/Pbbb5gxYwZOnz5db1dmY3r37g0HBweNtw8MDFQbQS2XyzFo0KAGu4O14ddff0V5eXmd0wCdOnXCsGHD8NNPP6mtFwgEdY5h7969cffu3UZf688//0RgYCAkEgn09fUhFArh7u4OAHW695vi+PHj8PDwgEwmQ1VVlWrx9fUFACQlJalt7+fnB6FQ+Nqv11QjRoxQ67rv3r07gBcDFGurWX/v3j0AUP3uX/7d/O1vf0P37t3VfjdTpkzBxYsXkZGRoVq3d+9e9O/fHz179gQAnD59GlVVVZg8ebLacTIyMoK7u7vqlJG5uTneeustbNiwAZGRkbh69SqUSqUWjgQhrQMVdB168uQJlEolJBJJncfqW/eyxYsX47PPPsOlS5fg6+sLCwsLvPvuu0hNTdU4Q1NHkb8qa2FhYZP201Q1+68vr0wmq/P6JiYmal+SAEAkEuH58+cNvk5JSQneeecdJCcnY9WqVUhMTERKSgpiYmIAvBg0+Lry8vLwww8/QCgUqi1OTk4AgIKCArXtdT3C39zcXO1nQ0PDBtfXHMum/G4mTZoEkUiEr776CgBw8+ZNpKSkYMqUKapt8vLyAAD9+/evc6wOHz6sOk4CgQA//fQTvL29sX79evTt2xdWVlaYM2cOnj179trHgZDWgka561D79u0hEAiQm5tb57H61r3MwMAACxYswIIFC/D06VOcPXsWS5Ysgbe3N+7fvw8TE5NG99HU65VfldXCwkL1s5GREYqKiups93LBaoqa/efk5NR57NGjR7C0tHztfdd27tw5PHr0CImJiapWOYAmX8dfH0tLS/Tu3RurV6+u93GZTKb285tyLXnt342NjY3aYy//btq3bw9/f3/s378fq1atwt69e2FkZISJEyeqtqnZ/l//+hfkcnmDry2XyxEdHQ0AyMzMxHfffYfw8HBUVlZix44dWnl/hLypqIWuQ6ampvjb3/6GmJgYtZbjs2fP8MMPPzRpX+3atcMHH3yAmTNn4vHjx6rR4TWXOTWnZVnbt99+C8aY6ue7d+/i4sWLaiO57ezskJmZqTaivLCwEBcvXlTbV1OyDRw4EMbGxjhw4IDa+gcPHuDcuXN49913X+ft1FFTRF++PGznzp0a70MkEtX7nt5//31cv34db731Fvr161dnebmgvymGDRsGAHV+NykpKbh161ad382UKVPw6NEjnDx5EgcOHMDo0aPV7pHg7e0NAwMD3L59u97j1K9fv3pzODg4YOnSpejVqxfS0tK0+yYJeQNRC13HPv30U/j4+GD48OH4+OOPUV1djXXr1sHU1BSPHz9u8LkjR45Ez5490a9fP1hZWeHu3bvYvHkz5HI5unbtCgDo1asXAGDLli0IDg6GUCiEo6MjzMzMXitvfn4+Ro8ejenTp6OoqAjLly+HkZERFi9erNomKCgIO3fuxIcffojp06ejsLAQ69evr3OjGjMzM8jlchw7dgzvvvsuzM3NYWlpqbq0rbZ27dph2bJlWLJkCSZPnoyJEyeisLAQK1asgJGREZYvX/5a7+dlgwYNQvv27fGPf/wDy5cvh1AoxDfffIPffvtN43306tULiYmJ+OGHHyCVSmFmZgZHR0esXLkS8fHxGDRoEObMmQNHR0c8f/4cd+7cwcmTJ7Fjx446LVxN3b17FykpKQCA27dvA4Dqrn52dnavLILa4OjoiL///e/4/PPPoaenB19fX9y5cwfLli1Dp06dMH/+fLXtvby8YGNjgxkzZiA3N1etu70m78qVK/HJJ5/gzz//hI+PD9q3b4+8vDxcvnwZpqamWLFiBX7//XfMmjUL48aNQ9euXWFoaIhz587h999/x6JFizh7v4S8MfgelfffKC4ujvXu3ZsZGhoyW1tbFhERwZYvX97oKPeNGzeyQYMGMUtLS9VzQ0ND2Z07d9Set3jxYiaTyZienh4DoLqkRy6Xs/fee6/eTK8a5f7111+zOXPmMCsrKyYSidg777zDUlNT6zx/3759rHv37szIyIj16NGDHT58uM4od8ZeXLbXp08fJhKJGADVa9Z32RpjjH355ZeqYyUWi5m/v7/aZUyMvRjlbmpqWidTfce0PhcvXmQDBw5kJiYmzMrKik2bNo2lpaWpLlGr8apR7unp6Wzw4MHMxMSEAVAb8f/XX3+xOXPmsM6dOzOhUMjMzc2Zi4sL++STT1hJSQlj7D+jzjds2NBo1pez1LfUN+K+tle9Xs3v/MiRI/W+Vu33XV1dzdatW8ccHByYUChklpaW7MMPP2T379+v9zWXLFmiugyy9sj62mJjY5mHhwdr27YtE4lETC6Xsw8++ICdPXuWMcZYXl4eCwkJYd26dWOmpqasTZs2rHfv3mzTpk2sqqqqsUNGSKsnYKxWfyohhBBC3kh0Dp0QQghpBaigE0IIIfU4fvw4HB0d0bVrV3z55Zd8x2kUdbkTQgghL6mqqkKPHj2QkJCAtm3bom/fvkhOTq5zn4aWhFrohBBCyEsuX74MJycndOzYEWZmZhgxYgROnz7Nd6wGUUEnhBDS6vz8888YOXIkZDIZBAIBYmNj62wTFRWFzp07w8jICC4uLjh//rzqsUePHqFjx46qn21sbPDw4UNdRH9tVNAJIYS0OqWlpXB2dsa2bdvqffzw4cOYN28ePvnkE1y9ehXvvPMOfH19VXMW1Hc2uqXfzVHjG8tUVFSo3QlMqVTi8ePHsLCwaPFvkhBCiDrGGJ49ewaZTKY2SY+2PX/+HJWVlVrZF2OsTr0RiUR17vQIAL6+vqqJkOoTGRmJ0NBQTJs2DQCwefNmnD59Gtu3b8fatWvRsWNHtRb5gwcPMGDAAK28D85oesF6zU06aKGFFlpoaT3Lq24GpA3l5eXMBAKtZW3Tpk2ddfVNx/wyAOz7779X/VxRUcH09fVZTEyM2nZz5sxhQ4YMYYwxplAomL29PXvw4AErLi5m9vb2rKCgQJuHR+s0bqEvXrwYCxYsUP1cVFQEW1tbZGZmtphRfwqFAgkJCfDw8NDpNJQNoUyaoUyaoUyaoUyNe/z4MRwcHF77ttCaqKysRBkYgmAKQzSvJ7cSDF+XlOD+/ftqt5Wur3XemIKCAlRXV6NDhw5q6zt06KCakMrAwAAbN26Eh4cHlEol/vnPf6pNStUSaVzQX9WtYW5u3mLepEKhgImJCSwsLFrEHwxAmTRFmTRDmTRDmTSni1OmRtCDYTNfR+//zmm3bdu2zjwRr+vl985e6tL38/ODn5+fVl5LF2hQHCGEkP8qlpaW0NfXrzM9dH5+fp1W+5uECjohhBBO6Wlp0RZDQ0O4uLggPj5ebX3N7IhvKpo+lRBCCKcEAkCvmT37AgBgQP/+/aGvr4+ZM2di5syZr9y+pKQEf/zxh+rn7OxspKenw9zcHLa2tliwYAGCgoLQr18/DBw4ELt27cK9e/fwj3/8o3lBeUQFnRBCyBsjJSVFo3Poqamp8PDwUP1cM6g7ODgYX331FQICAlBYWIiVK1ciJycHPXv2xMmTJyGXyznLzjUq6IQQQjiljS7zpj5/6NCh9d4cprYZM2ZgxowZrx+qhaGCTgghhFN6AgH0mjvKHXhx5Tl5JRoURwghhLQC1EInhBDCKT663P8bUUEnhBDCKT0tjHKngt44OkaEEELeGP3790ePHj3wxRdf8B2lxeGsoDc2Fy1jDOHh4ZDJZDA2NsbQoUNx48YNtW0qKiowe/ZsWFpawtTUFH5+fnjw4IHWMj579gzz5s2DXC6HsbExBg0ahJSUFNXjeXl5CAkJgUwmg4mJCXx8fJCVlaW113+dTCUlJZg1axZsbGxgbGyM7t27Y/v27bxmEggE9S4bNmzgLRMA3Lp1C35+fhCLxTAzM4Orq6tqakQ+MoWEhNQ5Rq6urpzl0SRTbR999BEEAgE2b97Ma6bw8HB069YNpqamaN++PTw9PZGcnMxbJoVCgYULF6JXr14wNTWFTCbD5MmT8ejRI94yAUBMTAy8vb1haWkJgUCA9PR0TvM0hzZvLJOSkoKbN282eA36fyvOCnpjc9GuX78ekZGR2LZtG1JSUiCRSDB8+HA8e/ZMtc28efPw/fff49ChQ7hw4QJKSkrw/vvvo7q6WisZp02bhvj4eHz99de4du0avLy84OnpiYcPH4IxhlGjRuHPP//EsWPHcPXqVcjlcnh6eqK0tFQrr9/UTAAwf/58nDp1CgcOHMCtW7cwf/58zJ49G8eOHeMtU05OjtqyZ88eCAQCjB07lrdMt2/fhpubG7p164bExET89ttvWLZsGYyMjHjLBAA+Pj5qx+rkyZOc5dE0EwDExsYiOTkZMpmM0zyaZHJwcMC2bdtw7do1XLhwAXZ2dvDy8sJff/3FS6aysjKkpaVh2bJlSEtLQ0xMDDIzMzm/x3djx6m0tBSDBw9GREQEpzm04VVf+pu6kEa87jRtRUVFDIBG08nhpanrlEolk0gkLCIiQrXu+fPnTCwWsx07djDGGHv69CkTCoXs0KFDqm0ePnzI9PT02KlTp+p9ncrKShYbG8sqKysbzVRWVsb09fXZ8ePH1dY7OzuzTz75hGVkZDAA7Pr166rHqqqqmLm5Odu9e3ej++ciE2OMOTk5sZUrV6o93rdvX7Z06VLeMr3M39+fDRs2TOM8XGQKCAhgH374YZMycJ0pODiY+fv7t6hMjDH24MED1rFjR3b9+nUml8vZpk2beM9UW82/NWfPnm0xmS5fvswAsLt37/KeKTs7mwFgV69e1TgLY4wVFBQwAKyoqKhJz2uKmt9dmIGYLRW2a9YSZiDmPO+bjpdz6NnZ2cjNzYWXl5dqnUgkgru7Oy5evAgAuHLlChQKhdo2MpkMPXv2VG3THFVVVaiurq7TYjM2NsaFCxdQUVEBAGqP6+vrw9DQEBcuXGj2679OJgBwc3NDXFycqhchISEBmZmZ8Pb25i1TbXl5eThx4gRCQ0M5yaNJJqVSiRMnTsDBwQHe3t6wtrbGgAED6pz20WWmGomJibC2toaDgwOmT5+O/Px8XjMplUoEBQUhLCwMTk5OnGVpSqbaKisrsWvXLojFYjg7O7eITMCL6aMFAgHatWvXYjIRwktBr5nhpqG5aHNzc2FoaIj27du/cpvmMDMzw8CBA/Hpp5/i0aNHqK6uxoEDB5CcnIycnBx069YNcrkcixcvxpMnT1BZWYmIiAjk5uYiJyen2a//OpkAYOvWrejRowdsbGxgaGgIHx8fREVFwc3NjbdMte3btw9mZmYYM2YMJ3k0yZSfn4+SkhJERETAx8cHZ86cwejRozFmzBgkJSXxkgkAfH198c033+DcuXPYuHEjUlJSMGzYMNWXRz4yrVu3DgYGBpgzZw4nGV4nEwAcP34cbdq0gZGRETZt2oT4+HhYWlrymqnG8+fPsWjRIgQGBmptGs/mZmrpaka5N3chDeN1lHtjc9HWR5NtNPX111+DMYaOHTtCJBJh69atCAwMhL6+PoRCIY4ePYrMzEyYm5vDxMQEiYmJ8PX1hb6+vlZev6mZgBcF/dKlS4iLi8OVK1ewceNGzJgxA2fPnuUtU2179uzBpEmTOD1X3VgmpVIJAPD398f8+fPx9ttvY9GiRXj//fexY8cOXjIBQEBAAN577z307NkTI0eOxI8//ojMzEycOHGCl0xXrlzBli1b8NVXX+n0/KQmnycPDw+kp6fj4sWL8PHxwfjx4zntzdD0M65QKDBhwgQolUpERUVxlqcpmd4EAjR/QBzV88bxUtAlEgkANDgXrUQiQWVlJZ48efLKbZrrrbfeQlJSEkpKSnD//n1cvnwZCoUCnTt3BgC4uLggPT0dT58+RU5ODk6dOoXCwkLV41xoKFN5eTmWLFmCyMhIjBw5Er1798asWbMQEBCAzz77jJdMtZ0/fx4ZGRmYNm0aZ1k0yWRpaQkDAwP06NFD7Tndu3fndJS7psephlQqhVwu5/TKiYYynT9/Hvn5+bC1tYWBgQEMDAxw9+5dfPzxx7Czs+MlUw1TU1PY29vD1dUV0dHRMDAwQHR0NK+ZFAoFxo8fj+zsbMTHx3PWOm9Kpv9GdNnaq/FS0Dt37gyJRKI2F21lZSWSkpJUc9G6uLhAKBSqbZOTk4Pr169rfb5aU1NTSKVSPHnyBKdPn4a/v7/a42KxGFZWVsjKykJqamqdx7lQXyaFQgGFQgE9PfVfW+1Wqa4z1RYdHQ0XFxfOznVqmsnQ0BD9+/dHRkaG2raZmZk6mUmpseNUo7CwEPfv34dUKuUlU1BQEH7//Xekp6erFplMhrCwMJw+fZqXTK/CGOPs1IQmmWqKeVZWFs6ePQsLCwvOszSW6U1Scy/35i4AXbbWEM7uFNfYXLTz5s3DmjVr0LVrV3Tt2hVr1qyBiYkJAgMDAbwooqGhofj4449hYWEBc3Nz/M///A969eoFT09PrWQ8ffo0GGNwdHTEH3/8gbCwMDg6OmLKlCkAgCNHjsDKygq2tra4du0a5s6di1GjRqkN1NO2hjIJhUK4u7sjLCwMxsbGkMvlSEpKwv79+xEZGclLphrFxcU4cuQINm7cyFmOpmQKCwtDQEAAhgwZAg8PD5w6dQo//PADEhMTeclUUlKC8PBwjB07FlKpFHfu3MGSJUtgaWmJ0aNH85JJKBTWKUxCoRASiQSOjo68ZCotLcXq1avh5+cHqVSKwsJCREVF4cGDBxg3bhwvmaqqqvDBBx8gLS0Nx48fR3V1tap30dzcHIaGhjrPBACPHz/GvXv3VNfD13yBlUgkql7QloJu/aojrzs8vrHL1hISEhhezI2jtgQHBzPGXly6tnz5ciaRSJhIJGJDhgxh165dU9tHeXk5mzVrFjM3N2fGxsbs/fffZ/fu3XtlpqZcFsIYY4cPH2ZdunRhhoaGTCKRsJkzZ7KnT5+qHt+yZQuzsbFhQqGQ2drasqVLl7KKigqN9s1VppycHBYSEsJkMhkzMjJijo6ObOPGjUypVPKWiTHGdu7cyYyNjeus5zNTdHQ0s7e3Z0ZGRszZ2ZnFxsbylqmsrIx5eXkxKysr1ecpODi4wc8z15nqw/Vla41lKi8vZ6NHj2YymYwZGhoyqVTK/Pz82OXLl3nLVHNZWH1LQkICL5kYY2zv3r31Zlq+fLlG+9flZWtLDduxVaL2zVqWGrajy9YaIWCskQljX6G4uBhisRgFBQU67X5qiEKhwMmTJzFixAgIhUK+4wCgTJqiTJqhTJqhTI0rLCyEpaUlioqKOBsPUFMn/lfUDkbNHHj5nDGsrHjKad43HU3OQgghhFPU5a4bdIwIIYSQVoBa6IQQQjilBwH0mnklObU+G0fHiBBCCKe0eac4ug791aiFTgghhFPaPIeekpJCg+JegVrohBBCSCtALXRCCCGc0sbkKtT6bBwVdEIIIZx6MTlL8yq6AK91y5T/KvSlhxBCCGkFqIVOCCGEU9TlrhtU0AkhhHCK7hSnG3SMCCGEkFZA4xZ6RUWF2nzExcXFAKCao7slqMnRUvIAlElTlEkzlEkzlKlxusxBXe66ofFsa+Hh4VixYkWd9QcPHoSJiYnWgxFCCOFOWVkZAgMDdTLb2hZTcxgLmleSy5kSc0sfw8HBAfr6+pg5cyZmzpyppaStg8YFvb4WeqdOnZCTk9Oipk+Nj4/H8OHDW8T0hABl0hRl0gxl0gxlalxhYSGkUukbV9Bp+tRX07jLXSQSQSQS1VkvFApbxIezNsqkGcqkGcqkGcqkmZaSSZcZqMtdN2iUOyGEEE4J/m9p7j5Iw6igE0II4RS10HWDjhEhhBDSClALnRBCCKf0IGj2vdyb+/z/BlTQCSGEcIq63HWDjhEhhBDSClALnRBCCKdeTJ/a/H2QhlFBJ4QQwim6bE03qMudEEIIaQWooBNCCOGUnkCglQUA+vfvjx49euCLL77g+V21PDop6FVVVVi6dCk6d+4MY2NjdOnSBStXroRSqVRtExMTA29vb1haWkIgECA9PZ3XTAqFAgsXLkSvXr1gamoKmUyGyZMn49GjR7xlAl5MktOtWzeYmpqiffv28PT0RHJyMq+Zavvoo48gEAiwefNmXjOFhIRAIBCoLa6urrxmAoBbt27Bz88PYrEYZmZmcHV1xb1793jL9PIxqlk2bNjAW6aSkhLMmjULNjY2MDY2Rvfu3bF9+3ZO8miaKS8vDyEhIZDJZDAxMYGPjw+ysrI4ywQAz549w7x58yCXy2FsbIxBgwYhJSVF9ThjDOHh4ZDJZDA2NsbQoUNx48YNTjO9LoGWFgBISUnBzZs3aWKWeujkHPq6deuwY8cO7Nu3D05OTkhNTcWUKVMgFosxd+5cAEBpaSkGDx6McePGYfr06bxnKisrQ1paGpYtWwZnZ2c8efIE8+bNg5+fH1JTU3nJBAAODg7Ytm0bunTpgvLycmzatAleXl74448/YGVlxUumGrGxsUhOToZMJtN6jtfJ5OPjg71796p+NjQ05DXT7du34ebmhtDQUKxYsQJisRi3bt2CkZERb5lycnLUnvPjjz8iNDQUY8eO5S3T/PnzkZCQgAMHDsDOzg5nzpzBjBkzIJPJ4O/vr/NMjDGMGjUKQqEQx44dQ9u2bREZGQlPT0/cvHkTpqamWs8EANOmTcP169fx9ddfQyaT4cCBA6rX7NixI9avX4/IyEh89dVXcHBwwKpVqzB8+HBkZGTAzMyMk0ykhWOvqaioiAFgBQUFjW773nvvsalTp6qtGzNmDPvwww/rbJudnc0AsKtXrzY5U2VlJYuNjWWVlZVazVTj8uXLDAC7e/dui8lU83s4e/Ysr5kePHjAOnbsyK5fv87kcjnbtGmTxnm4yBQcHMz8/f2blIHrTAEBAQ3+LvnI9DJ/f382bNgwXjM5OTmxlStXqm3Tt29ftnTpUl4yZWRkMADs+vXrqserqqqYubk52717NyeZysrKmL6+Pjt+/LjaemdnZ/bJJ58wpVLJJBIJi4iIUD32/PlzJhaL2Y4dOzTKU1BQwACwoqIijd9DU9X8+/SV2JJ91866WctXYkvO877pdNLl7ubmhp9++gmZmZkAgN9++w0XLlzAiBEjdPHyWstUVFQEgUCAdu3atYhMlZWV2LVrF8RiMZydnXnLpFQqERQUhLCwMDg5OXGSo6mZACAxMRHW1tZwcHDA9OnTkZ+fz1smpVKJEydOwMHBAd7e3rC2tsaAAQMQGxvLW6aX5eXl4cSJEwgNDeU1k5ubG+Li4vDw4UMwxpCQkIDMzEx4e3vzkqlm2ujaPSn6+vowNDTEhQsXOMlUVVWF6urqOr03xsbGuHDhArKzs5GbmwsvLy/VYyKRCO7u7rh48SInmZpDm13u5NV00uW+cOFCFBUVoVu3btDX10d1dTVWr16NiRMn6uLltZLp+fPnWLRoEQIDAzmbi1fTTMePH8eECRNQVlYGqVSK+Ph4WFpa8pZp3bp1MDAwwJw5czjJ8DqZfH19MW7cOMjlcmRnZ2PZsmUYNmwYrly5Uu80wFxnys/PR0lJCSIiIrBq1SqsW7cOp06dwpgxY5CQkAB3d3edZ3rZvn37YGZmhjFjxmg9S1Mybd26FdOnT4eNjQ0MDAygp6eHL7/8Em5ubrxk6tatG+RyORYvXoydO3fC1NQUkZGRyM3NrXPKQlvMzMwwcOBAfPrpp+jevTs6dOiAb7/9FsnJyejatStyc3MBAB06dFB7XocOHXD37l1OMjVHzdiMZu2DSnqjdFLQDx8+jAMHDuDgwYNwcnJCeno65s2bB5lMhuDgYF1EaFYmhUKBCRMmQKlUIioqivdMHh4eSE9PR0FBAXbv3o3x48cjOTkZ1tbWOs905coVbNmyBWlpac3+g9VWJgAICAhQbd+zZ0/069cPcrkcJ06c4KRgNZapZoCVv78/5s+fDwB4++23cfHiRezYsYOTgt7Uv7s9e/Zg0qRJnJ3T1zTT1q1bcenSJcTFxUEul+Pnn3/GjBkzIJVK4enpqfNMQqEQR48eRWhoKMzNzaGvrw9PT0/4+vpqPUttX3/9NaZOnYqOHTtCX18fffv2RWBgINLS0lTbvPw3xxjT2d8haYFet6++KefQbWxs2LZt29TWffrpp8zR0bHOtro6h65ppsrKSjZq1CjWu3dvjd6rLjK9zN7enq1Zs4aXTJs2bWICgYDp6+urFgBMT0+PyeVyXjK9ir29vdo5R11mqqioYAYGBuzTTz9V2+af//wnGzRoEC+Zavv5558ZAJaenq5xFi4ylZWVMaFQWOfccWhoKPP29uYlU21Pnz5l+fn5jDHG/va3v7EZM2Zwkqm2kpIS9ujRI8YYY+PHj2cjRoxgt2/fZgBYWlqa2rZ+fn5s8uTJGu1Xl+fQv25nxY6279Cs5et2VnQOvRE6OYdeVlYGPT31l9LX13/lpU+6oEkmhUKB8ePHIysrC2fPnoWFhQXvmerDGFOd59N1pqCgIPz+++9IT09XLTKZDGFhYTh9+jQvmepTWFiI+/fvQyqV8pLJ0NAQ/fv3R0ZGhto2mZmZkMvlvGSqLTo6Gi4uLpyNxdA0k0KhgEKh0Om/F005TmKxGFZWVsjKykJqaiono+5fZmpqCqlUiidPnuD06dPw9/dH586dIZFIEB8fr9qusrISSUlJGDRoEOeZmkpPSwtpmE663EeOHInVq1fD1tYWTk5OuHr1KiIjIzF16lTVNo8fP8a9e/dU13nX/MMnkUggkUh0nqmqqgoffPAB0tLScPz4cVRXV6vOW5mbm3NyCVRjmUpLS7F69Wr4+flBKpWisLAQUVFRePDgAcaNG6f1PJpksrCwqPNFRygUQiKRwNHRkZdMJSUlCA8Px9ixYyGVSnHnzh0sWbIElpaWGD16NC+ZACAsLAwBAQEYMmQIPDw8cOrUKfzwww9ITEzkLRMAFBcX48iRI9i4cSMnOZqSqW3btnB3d0dYWBiMjY0hl8uRlJSE/fv3IzIykpdMAHDkyBFYWVnB1tYW165dw9y5czFq1Ci1QWnadvr0aTDG4OjoiD/++ANhYWFwdHTElClTIBAIMG/ePKxZswZdu3ZF165dsWbNGpiYmCAwMJCzTKSFe92mfVO63IuLi9ncuXOZra0tMzIyYl26dGGffPIJq6ioUG2zd+9eBqDOsnz5co0zNaVLq7FMNV3/9S0JCQm8ZCovL2ejR49mMpmMGRoaMqlUyvz8/Njly5c1zqPtTPXh+rK1xjKVlZUxLy8vZmVlxYRCIbO1tWXBwcHs3r17vGWqER0dzezt7ZmRkRFzdnZmsbGxvGfauXMnMzY2Zk+fPm1SFq4y5eTksJCQECaTyZiRkRFzdHRkGzduZEqlkrdMW7ZsYTY2NqrP09KlSxv8G2huJsYYO3z4MOvSpQszNDRkEomEzZw5U+13pFQq2fLly5lEImEikYgNGTKEXbt2TeM8uuxyP9jeisWad2jWcrA9dbk3RsAYY6/zRaC4uBhisRgFBQWcd0VrSqFQ4OTJkxgxYgSEQiHfcQBQJk1RJs1QJs1QpsYVFhbC0tISRUVFnF25U1Mnvm1vDRNB8zrNy5gSE5/kc5r3TUenJQghhJBWgKZPJYQQwimaPlU3qKATQgjhFBV03aAud0IIIW8Mmj711aiFTgghhFN6APSa2cTW+7/h2ykpKTQo7hWooBNCCOGU4P/+a+4+SMOooBNCCOEclWPu0Tl0QgghpBWgFjohhBBOCQQvlubugzSMCjohhBBO0WVrukFd7oQQQkgrQC10QgghnNKDAHrNbGM39/n/DTQu6BUVFWpzbhcXFwP4z/zFLUFNjpaSB6BMmqJMmqFMmqFMjdNlDupy1w2NZ1sLDw/HihUr6qw/ePAgTExMtB6MEEIId8rKyhAYGKiT2daOmUtgqte8M7ylSiX8H+fSbGsN0Lig19dC79SpE3JyclrU9Knx8fEYPnx4i5ieEKBMmqJMmqFMmqFMjSssLIRUKtVJQY+z0E5B9yukgt4QjbvcRSIRRCJRnfVCobBFfDhro0yaoUyaoUyaoUyaaSmZdJmButx1g0a5E0IIIa0AjXInhBDCKbqXu25QQSeEEMIpPYEWZlujet4oKuiEEEI4RefQdYPOoRNCCCGtALXQCSGEcIpa6LpBBZ0QQginaFCcblCXOyGEENIKUAudEEIIp2g+dN2gFjohhBBO6WlpAYD+/fujR48e+OKLL3T5Ft4IOinoVVVVWLp0KTp37gxjY2N06dIFK1euhFKpVG3DGEN4eDhkMhmMjY0xdOhQ3Lhxg9NcdnZ2EAgEdZaZM2cCAPLy8hASEgKZTAYTExP4+PggKyuL10wlJSWYNWsWbGxsYGxsjO7du2P79u285anvMYFAgA0bNvCWCQBu3boFPz8/iMVimJmZwdXVFffu3eMtU0hISJ3HXF1dOcujSabaPvroIwgEAmzevJnXTOHh4ejWrRtMTU3Rvn17eHp6Ijk5mbdMCoUCCxcuRK9evWBqagqZTIbJkyfj0aNHvGUCgJiYGHh7e8PS0hICgQDp6emc5mlJUlJScPPmzXo/x//tdNLlvm7dOuzYsQP79u2Dk5MTUlNTMWXKFIjFYsydOxcAsH79ekRGRuKrr76Cg4MDVq1aheHDhyMjIwNmZmac5EpJSUF1dbXq5+vXr2P48OEYN24cGGMYNWoUhEIhjh07hrZt2yIyMhKenp64efMmTE1NdZ4JAObPn4+EhAQcOHAAdnZ2OHPmDGbMmAGZTAZ/f3+d58nJyVHb/scff0RoaCjGjh2r9SyaZrp9+zbc3NwQGhqKFStWQCwW49atWzAyMuItEwD4+Phg7969qp8NDQ05y6NpJgCIjY1FcnIyZDIZp3k0yeTg4IBt27ahS5cuKC8vx6ZNm+Dl5YU//vgDVlZWOs9UVlaGtLQ0LFu2DM7Oznjy5AnmzZsHPz8/pKamcpKnsUwAUFpaisGDB2PcuHGYPn06Zzm0hUa56wh7TUVFRQwAKygoaHTb9957j02dOlVt3ZgxY9iHH37IGGNMqVQyiUTCIiIiVI8/f/6cicVitmPHDo0zVVZWstjYWFZZWanxc2qbO3cue+utt5hSqWQZGRkMALt+/brq8aqqKmZubs52797NSybGGHNycmIrV65U26Zv375s6dKlOsn0cp6X+fv7s2HDhjV5v9rMFBAQoPpsNYc2MwUHBzN/f/8WlYkxxh48eMA6duzIrl+/zuRyOdu0aRPvmWqr+Xfm7NmzLSbT5cuXGQB29+5d3jNlZ2czAOzq1atN3mdBQQEDwIqKipr8XE3V/P5+su7IkiWdmrX8ZN2R87xvOp10ubu5ueGnn35CZmYmAOC3337DhQsXMGLECABAdnY2cnNz4eXlpXqOSCSCu7s7Ll68qIuIqKysxIEDBzB16lQIBALVVLG1W3X6+vowNDTEhQsXeMkEvDiWcXFxePjwIRhjSEhIQGZmJry9vXnJU1teXh5OnDiB0NBQzrO8KpNSqcSJEyfg4OAAb29vWFtbY8CAAYiNjeUtU43ExERYW1vDwcEB06dPR35+Pq+ZlEolgoKCEBYWBicnJ51laSjTy4/v2rULYrEYzs7OLSITABQVFUEgEKBdu3YtJhMhgI7OoS9cuBATJ05Et27dIBQK0adPH8ybNw8TJ04EAOTm5gIAOnTooPa8Dh06qB7jWmxsLJ4+fYqQkBAAQLdu3SCXy7F48WI8efIElZWViIiIQG5ubp1uZl1lAoCtW7eiR48esLGxgaGhIXx8fBAVFQU3Nzde8tS2b98+mJmZYcyYMZxneVWm/Px8lJSUICIiAj4+Pjhz5gxGjx6NMWPGICkpiZdMAODr64tvvvkG586dw8aNG5GSkoJhw4apvjjykWndunUwMDDAnDlzdJJBk0wAcPz4cbRp0wZGRkbYtGkT4uPjYWlpyWumGs+fP8eiRYsQGBioszm5G8v0JhBoaSEN08k59MOHD+PAgQM4ePAgnJyckJ6ejnnz5kEmkyE4OFi13cvfPhljOvtGGh0dDV9fX9V5RKFQiKNHjyI0NBTm5ubQ19eHp6cnfH19dZKnvkzAi4J+6dIlxMXFQS6X4+eff8aMGTMglUrh6emp8zy17dmzB5MmTeL0XHVjmWoGWvr7+2P+/PkAgLfffhsXL17Ejh074O7urvNMABAQEKD6/549e6Jfv36Qy+U4ceKETr4AvZzpypUr2LJlC9LS0nhr9b3q8+Th4YH09HQUFBRg9+7dGD9+PJKTk2Ftbc1bJgBQKBSYMGEClEoloqKiOM+iSaY3BZ1D1w2dFPSwsDAsWrQIEyZMAAD06tULd+/exdq1axEcHAyJRALgRUtdKpWqnpefn1+n1c6Fu3fv4uzZs4iJiVFb7+LigvT0dBQVFaGyshJWVlYYMGAA+vXrx0um8vJyLFmyBN9//z3ee+89AEDv3r2Rnp6Ozz77jNOC/qpjVOP8+fPIyMjA4cOHOcugSSZLS0sYGBigR48eatt2795dJ6dKGjtONaRSKeRyOedXTbwq0/nz55Gfnw9bW1vVuurqanz88cfYvHkz7ty5o/NMNUxNTWFvbw97e3u4urqia9euiI6OxuLFi3nLpFAoMH78eGRnZ+PcuXM6a51r+nlq6WpG6Td3H6RhOulyLysrg56e+kvp6+urWlOdO3eGRCJBfHy86vHKykokJSVh0KBBnOfbu3cvrK2tVUXyZWKxGFZWVsjKykJqaiono8k1yaRQKKBQKBo8lrrMU1t0dDRcXFx0dq7zVZkMDQ3Rv39/ZGRkqG2bmZkJuVzOS6b6FBYW4v79+2pfYHWZKSgoCL///jvS09NVi0wmQ1hYGE6fPs1LpldhjOnk1MSrMtUU86ysLJw9exYWFhacZ2ksEyH10UkLfeTIkVi9ejVsbW3h5OSEq1evIjIyElOnTgXw4pvXvHnzsGbNGnTt2hVdu3bFmjVrYGJigsDAQE6zKZVK7N27F8HBwTAwUD8cR44cgZWVFWxtbXHt2jXMnTsXo0aNUhu8p8tMbdu2hbu7O8LCwmBsbAy5XI6kpCTs378fkZGROs9To7i4GEeOHMHGjRs5y9CUTGFhYQgICMCQIUPg4eGBU6dO4YcffkBiYiIvmUpKShAeHo6xY8dCKpXizp07WLJkCSwtLTF69GheMllYWNQpTEKhEBKJBI6OjrxkKi0txerVq+Hn5wepVIrCwkJERUXhwYMHdS6101WmqqoqfPDBB0hLS8Px48dRXV2tGtdjbm7O6aWHDX3GHz9+jHv37qmuh6/5AiuRSFQ9ni0JzYeuI687PL4pl60VFxezuXPnMltbW2ZkZMS6dOnCPvnkE1ZRUaHaRqlUsuXLlzOJRMJEIhEbMmQIu3btWpMyvc5lIadPn2YAWEZGRp3HtmzZwmxsbJhQKGS2trZs6dKlapn5yJSTk8NCQkKYTCZjRkZGzNHRkW3cuPGVl9hoI1NDeRhjbOfOnczY2Jg9ffpU4wxcZ4qOjmb29vbMyMiIOTs7s9jYWN4ylZWVMS8vL2ZlZaX6LAUHB7N79+7xlqk+urps7VWZysvL2ejRo5lMJmOGhoZMKpUyPz8/dvnyZd4y1VwWVt+SkJDASybGGNu7d2+9mZYvX65xHl1etnZe1oldtZE3azkv60SXrTVCwBhjr/NFoLi4GGKxGAUFBTrtgmqIQqHAyZMnMWLECAiFQr7jAKBMmqJMmqFMmqFMjSssLISlpSWKioo4GxNQUyfOyzqhjV7zzvCWKJV459F9TvO+6WhyFkIIIZyiyVl0gwo6IYQQTlFB1w2abY0QQghpBaiFTgghhFN0HbpuUEEnhBDCKepy1w3qcieEEEJaAWqhE0II4RR1uesGFXRCCCGcoi533aCCTgghhFN6AgH0mlmRm/v8/wZ0Dp0QQghpBaiFTgghhFPU5a4bGhf0iooKtSkMi4uLAfxnSs+WoCZHS8kDUCZNUSbNUCbNUKbG6TKHAFoYFAeq6I3ReHKW8PBwrFixos76gwcPwsTEROvBCCGEcKesrAyBgYE6mZzlSpfOaKPfzMlZqpVw+TObJmdpgMYFvb4WeqdOnZCTk9OiZluLj4/H8OHDW8RsRgBl0hRl0gxl0gxlalxhYSGkUqlOCnqavXYKet8/qKA3ROMud5FIBJFIVGe9UChsER/O2iiTZiiTZiiTZiiTZlpKJp1m0MJ16HQSvXE0yp0QQghpBWiUOyGEEE7RKHfdoIJOCCGEUy8KenNv/aqlMK0YdbkTQgghrQAVdEIIIZyq6XJv7tLSjB49Gu3bt8cHH3zAdxQAVNAJIYRwrOZe7s1dWpo5c+Zg//79fMdQoYJOCCGEU621he7h4QEzMzO+Y6hQQSeEENLq/Pzzzxg5ciRkMhkEAgFiY2PrbBMVFYXOnTvDyMgILi4uOH/+vO6DahGNcieEEMIpgRZuLNPU55eWlsLZ2RlTpkzB2LFj6zx++PBhzJs3D1FRURg8eDB27twJX19f3Lx5E7a2tgAAFxcXtTuk1jhz5gxkMtnrvREOUUEnhBDCKW1eh14zMViNV93F1NfXF76+vq/cX2RkJEJDQzFt2jQAwObNm3H69Gls374da9euBQBcuXKleaF1jLrcCSGEvDE6deoEsVisWmqKb1NUVlbiypUr8PLyUlvv5eWFixcvaiuqzumsoD98+BAffvghLCwsYGJigrffflvt209MTAy8vb1haWkJgUCA9PR0XjMpFAosXLgQvXr1gqmpKWQyGSZPnoxHjx7xlgl4Metdt27dYGpqivbt28PT0xPJycm8Zqrto48+gkAgwObNm3nNFBISourmq1lcXV15zQQAt27dgp+fH8RiMczMzODq6op79+7xlunlY1SzbNiwgbdMJSUlmDVrFmxsbGBsbIzu3btj+/btnOXRJFNeXh5CQkIgk8lgYmICHx8fZGVlcZbHzs6u3t/LzJkzAQCMMYSHh0Mmk8HY2BhDhw7FjRs3OMvTXNocFHf//n0UFRWplsWLFzc5T0FBAaqrq9GhQwe19R06dEBubq7G+/H29sa4ceNw8uRJ2NjYICUlpclZtEknXe5PnjzB4MGD4eHhgR9//BHW1ta4ffs22rVrp9qmtLQUgwcPxrhx4zB9+nTeM5WVlSEtLQ3Lli2Ds7Mznjx5gnnz5sHPzw+pqam8ZAIABwcHbNu2DV26dEF5eTk2bdoELy8v/PHHH7CysuIlU43Y2FgkJydzfm5J00w+Pj7Yu3ev6mdDQ0NeM92+fRtubm4IDQ3FihUrIBaLcevWLRgZGfGWKScnR+05P/74I0JDQ+s956irTPPnz0dCQgIOHDgAOzs7nDlzBjNmzIBMJoO/v7/OMzHGMGrUKAiFQhw7dgxt27ZFZGQkPD09cfPmTZiammo9U0pKCqqrq1U/X79+HcOHD8e4ceMAAOvXr0dkZCS++uorODg4YNWqVRg+fDgyMjJa1KjrGgI9AQR6zTyHzl48v23btlqbbe3l8/KMsSadqz99+rRWcmgNe01FRUUMACsoKGh024ULFzI3NzeN9pudnc0AsKtXrzY5U2VlJYuNjWWVlZVazVTj8uXLDAC7e/dui8lU83s4e/Ysr5kePHjAOnbsyK5fv87kcjnbtGmTxnm4yBQcHMz8/f2blIHrTAEBAezDDz9sUZle5u/vz4YNG8ZrJicnJ7Zy5Uq1dX379mVLly7lJVNGRgYDwK5fv65aV1VVxczNzdnu3bs5yfSyuXPnsrfeeosplUqmVCqZRCJhERERqsefP3/OxGIx27Fjh8b7LCgoYABYUVFRk/Noqubfp387d2UP+3Zr1vJv566vnRcA+/7771U/V1RUMH19fRYTE6O23Zw5c9iQIUOa+7Z5o5Mu97i4OPTr1w/jxo2DtbU1+vTpg927d+vipbWaqaioCAKBoN7WKR+ZKisrsWvXLojFYjg7O/OWSalUIigoCGFhYXBycuIkR1MzAUBiYiKsra3h4OCA6dOnIz8/n7dMSqUSJ06cgIODA7y9vWFtbY0BAwbUeymNrjK9LC8vDydOnEBoaCivmdzc3BAXF4eHDx+CMYaEhARkZmbC29ubl0w1o5xr96To6+vD0NAQFy5c4CRTbZWVlThw4ACmTp0KgUCA7Oxs5Obmqp3/FYlEcHd3b7Hnf1vadeiGhoZwcXFBfHy82vr4+HgMGjRIey+ka6/7TaApLXSRSMREIhFbvHgxS0tLYzt27GBGRkZs3759dbbVVQu9KZkYY6y8vJy5uLiwSZMm8Z7phx9+YKampkwgEDCZTMYuX77Ma6Y1a9aw4cOHM6VSyRhjnLfQNcl06NAhdvz4cXbt2jUWFxfHnJ2dmZOTE3v+/DkvmXJychgAZmJiwiIjI9nVq1fZ2rVrmUAgYImJibxketm6detY+/btWXl5ucZ5uMhUUVHBJk+ezAAwAwMDZmhoyPbv389bpsrKSiaXy9m4cePY48ePWUVFBVu7di0DwLy8vDjJVNvhw4eZvr4+e/jwIWOMsV9++YUBUP1cY/r06U3Ko8sWelYfB5bbr3uzlqw+DgwAc3BwYN27d2fbtm1r8LWfPXvGrl69yq5evcoAqP7uanpYDx06xIRCIYuOjmY3b95k8+bNY6ampuzOnTucHQ+u6aSgC4VCNnDgQLV1s2fPZq6urnW21VVBb0qmyspK5u/vz/r06dPkDz8XmUpKSlhWVhb79ddf2dSpU5mdnR3Ly8vjJVNqairr0KGD2j8uXBf0pvzuajx69IgJhUJ29OhRXjI9fPiQAWATJ05U22bkyJFswoQJvGR6maOjI5s1a5bGWbjKtGHDBubg4MDi4uLYb7/9xj7//HPWpk0bFh8fz1um1NRU5uzszAAwfX195u3tzXx9fZmvry8nmWrz8vJi77//vurnmoL+6NEjte2mTZvGvL29Nd7vm1rQNc2bkJDAANRZgoODVdt88cUXTC6XM0NDQ9a3b1+WlJTE0ZHQDZ10uUulUvTo0UNtXffu3Tkd3dsYTTMpFAqMHz8e2dnZiI+P19pgjOZkMjU1hb29PVxdXREdHQ0DAwNER0fzkun8+fPIz8+Hra0tDAwMYGBggLt37+Ljjz+GnZ0dL5le9Ry5XM7ZyOTGMllaWsLAwECnfwdNOU7nz59HRkaG6ppcrjSWqby8HEuWLEFkZCRGjhyJ3r17Y9asWQgICMBnn33GSybgxQ1G0tPT8fTpU+Tk5ODUqVMoLCxE586dOclU4+7duzh79qza70UikQBAndHY+fn5dUZttxR8dLkPHToU7EWjVW356quvVNvMmDEDd+7cQUVFBa5cuYIhQ4Zo943rmE4K+uDBg5GRkaG2LjMzE3K5XBcvXy9NMtUU86ysLJw9exYWFha8Z6oPY6zeuxnpIlNQUBB+//13pKenqxaZTIawsDDORoC+znEqLCzE/fv3IZVKeclkaGiI/v376/TvoCnHKTo6Gi4uLpyNxdA0k0KhgEKhgJ6e+j9N+vr6UCqVvGSqTSwWw8rKCllZWUhNTeVk1H1te/fuhbW1Nd577z3Vus6dO0Mikaid/62srERSUlKLPf/7qssjm7qQRrxu074pXe6XL19mBgYGbPXq1SwrK4t98803zMTEhB04cEC1TWFhIbt69So7ceIEA8AOHTrErl69ynJycjTO1JQurcYyKRQK5ufnx2xsbFh6ejrLyclRLRUVFbxkKikpYYsXL2a//voru3PnDrty5QoLDQ1lIpFIbQSuLjPVh+su98YyPXv2jH388cfs4sWLLDs7myUkJLCBAweyjh07suLiYl4yMcZYTEwMEwqFbNeuXSwrK4t9/vnnTF9fn50/f563TIy9+Fs2MTFh27dv1zgHl5nc3d2Zk5MTS0hIYH/++Sfbu3cvMzIyYlFRUbxl+u6771hCQgK7ffs2i42NZXK5nI0ZM0bjPE3NxBhj1dXVzNbWli1cuLDOYxEREUwsFrOYmBh27do1NnHiRCaVSpv0+dZll/ufLo7srwE9mrX86eLIed43nU4KOmMvBnL17NmTiUQi1q1bN7Zr1y61x/fu3Vvv+Y7ly5drnKmpfzANZao5l1/fkpCQwEum8vJyNnr0aCaTyZihoSGTSqXMz8+P00FxjWWqD9cFvbFMZWVlzMvLi1lZWTGhUMhsbW1ZcHAwu3fvHm+ZakRHRzN7e3tmZGTEnJ2dWWxsLO+Zdu7cyYyNjdnTp0+blIWrTDk5OSwkJITJZDJmZGTEHB0d2caNG1WDLvnItGXLFmZjY6P6PC1durRJX+xfJ9Pp06cZAJaRkVHnMaVSyZYvX84kEgkTiURsyJAh7Nq1a03KQwW99REwxtjrtOyLi4shFotRUFDAeVe0phQKBU6ePIkRI0ZAKBTyHQcAZdIUZdIMZdIMZWpcYWEhLC0tUVRUxNnYoJo6kd2vG8wM9Ju1r2dV1eic+m9O877p6F7uhBBCuKWNAXH/dwq9f//+6NGjB7744gte31JLRLOtEUIIeWOkpKRQC/0VqKATQgjhFB/zof83ooJOCCGEUwK9F0tz90EaRoeIEEIIaQWohU4IIYRT1OWuG1TQCSGEcEtP8GJp7j5Ig6jLnRBCyBuDLlt7NWqhE0II4ZY2JjT/v+fTZWuvRgWdEEIIp+gcum5QQSeEEMItOoeuExoX9IqKCrUpOouLiwH8Z7rDlqAmR0vJA1AmTVEmzVAmzVCmxrWUHER7NJ6cJTw8HCtWrKiz/uDBgzAxMdF6MEIIIdwpKytDYGCgTiZnuT/UGW2bOTlLcVU1OiX+RpOzNEDjgl5fC71Tp07IyclpUbOtxcfHY/jw4S1iNiOAMmmKMmmGMmmGMjWusLAQUqlUJwX9wbC3tVLQbc6lU0FvgMZd7iKRCCKRqM56oVDYIj6ctVEmzVAmzVAmzVAmzbSUTC0hA9Euug6dEEIIt5o7d2qty95a03XopaWlWt0fjXInhBDCKYFAAEEzR6kLWuF16B06dMD48eMxdepUuLm5NXt/1EInhBBCePDtt9+iqKgI7777LhwcHBAREYFHjx699v6ooBNCCOGWFrvcW5ORI0fi6NGjePToEf7f//t/+PbbbyGXy/H+++8jJiYGVVVVTdofFXRCCCHc0sN/bi7z2gvfb4I7FhYWmD9/Pn777TdERkbi7Nmz+OCDDyCTyfC///u/KCsr02g/dA6dEEII4VFubi7279+PvXv34t69e/jggw8QGhqKR48eISIiApcuXcKZM2ca3Q8VdEIIIZyie7nXLyYmBnv37sXp06fRo0cPzJw5Ex9++CHatWun2ubtt99Gnz59NNofFXRCCCHconu512vKlCmYMGECfvnlF/Tv37/ebbp06YJPPvlEo/1RQSeEEMItLU6f2prk5OQ0eut0Y2NjLF++XKP9teJhBoQQQkjLZWZmhvz8/DrrCwsLoa/f9FvlUkEnhBDCKYGedhagdd0p7lVTqVRUVMDQ0LDJ+9NZQX/48CE+/PBDWFhYwMTEBG+//TauXLmiepwxhvDwcMhkMhgbG2Po0KG4ceMGZ3nCw8NVAzVqFolEono8Ly8PISEhkMlkMDExgY+PD7KysjjLo0mmkpISzJo1CzY2NjA2Nkb37t2xfft2XjO9/FjNsmHDBt4yAcCtW7fg5+cHsVgMMzMzuLq64t69e7xlCgkJqfO4q6srZ3k0yVTbRx99BIFAgM2bN/OaKTw8HN26dYOpqSnat28PT09PJCcn85ZJoVBg4cKF6NWrF0xNTSGTyTB58uRm3fyjuZmAF4OpvL29YWlpCYFAgPT0dE7zNJsWr0NPSUnBzZs3MXPmTJ7f1OvbunUrtm7dCoFAgC+//FL189atW7Fp0ybMnDkT3bp1a/J+dXIO/cmTJxg8eDA8PDzw448/wtraGrdv31Ybybd+/XpERkbiq6++goODA1atWoXhw4cjIyMDZmZmnORycnLC2bNnVT/XdHEwxjBq1CgIhUIcO3YMbdu2RWRkJDw9PXHz5k2YmppykqehTAAwf/58JCQk4MCBA7Czs8OZM2cwY8YMyGQy+Pv785IpJydHbdsff/wRoaGhGDt2LGd5Gst0+/ZtuLm5ITQ0FCtWrIBYLMatW7dgZGTEWyYA8PHxwd69e1U/v843cG1nAoDY2FgkJydDJpNxnqexTA4ODti2bRu6dOmC8vJybNq0CV5eXvjjjz9gZWWl80xlZWVIS0vDsmXL4OzsjCdPnmDevHnw8/NDamoqZ3kaygS8uAf44MGDMW7cOEyfPp3THET7Nm3aBOBFrdmxY4fa79bQ0BB2dnbYsWNHk/erk4K+bt06dOrUSe0fMzs7O9X/M8awefNmfPLJJxgzZgwAYN++fejQoQMOHjyIjz76iJNcBgYG9bZYsrKycOnSJVy/fh1OTk4AgKioKFhbW+Pbb7/FtGnTOMnTUCYA+PXXXxEcHIyhQ4cCAP7+979j586dSE1N5bSgN5Tp5fXHjh2Dh4cHunTpwlmexjJ98sknGDFiBNavX69ax3WexjIBL2YsbOhxLjSW6eHDh5g1axZOnz6N9957j/dMgYGBaj9HRkYiOjoav//+O959912dZxKLxYiPj1db9/nnn+Nvf/sb7t27B1tbW51nAoCgoCAAwJ07dzh7fW0S6GnhXu6taJR7dnY2AMDDwwMxMTFo3769Vvarky73uLg49OvXD+PGjYO1tTX69OmD3bt3qx7Pzs5Gbm4uvLy8VOtEIhHc3d1x8eJFznJlZWVBJpOhc+fOmDBhAv78808AUM37XrtFp6+vD0NDQ1y4cIGzPA1lAgA3NzfExcXh4cOHYIwhISEBmZmZ8Pb25i1TbXl5eThx4gRCQ0M5zdNQJqVSiRMnTsDBwQHe3t6wtrbGgAEDEBsby1umGomJibC2toaDgwOmT59e72AYXWZSKpUICgpCWFiY6ourLmj6eaqsrMSuXbsgFovh7OzcIjIBQFFREQQCgVoPI9+ZWjy69Wu9EhIStFbMAR210P/8809s374dCxYswJIlS3D58mXMmTMHIpEIkydPRm5uLoAXM8/U1qFDB9y9e5eTTAMGDMD+/fvh4OCAvLw8rFq1CoMGDcKNGzfQrVs3yOVyLF68GDt37oSpqSkiIyORm5tbp4tZV5ksLCywdetWTJ8+HTY2NjAwMICenh6+/PJLrczS87qZatu3bx/MzMxUvSx8ZFIoFCgpKUFERARWrVqFdevW4dSpUxgzZgwSEhLg7u6u80wWFhbw9fXFuHHjIJfLkZ2djWXLlmHYsGG4cuUKRCIRL5nWrVsHAwMDzJkzh5PXf51MAHD8+HFMmDABZWVlkEqliI+Ph6WlJa+Zajx//hyLFi1CYGAgpzN+NSUTebMsWLAAn376KUxNTbFgwYIGt42MjGzaztlrKioqYgBYQUFBo9sKhUI2cOBAtXWzZ89mrq6ujDHGfvnlFwaAPXr0SG2badOmMW9vb40zVVZWstjYWFZZWanxc2qUlJSwDh06sI0bNzLGGEtNTWXOzs4MANPX12fe3t7M19eX+fr6Nmm/2sy0YcMG5uDgwOLi4thvv/3GPv/8c9amTRsWHx/PW6baHB0d2axZs5q8T21mevjwIQPAJk6cqLbNyJEj2YQJE3jJVJ9Hjx4xoVDIjh49ykum1NRU1qFDB/bw4UPV43K5nG3atKnJ+9X2cSopKWFZWVns119/ZVOnTmV2dnYsLy+P10w1+/T392d9+vRhRUVFTd4vF5mys7MZAHb16tUm77OgoIABeK33oqmaOpE7dhArmzCkWUvu2EGc59WFoUOHsidPnqj+/1WLh4dHk/etkxa6VCpFjx491NZ1794dR48eBfCf87C5ubmQSqWqbfLz8+u02rliamqKXr16qUayu7i4ID09HUVFRaisrISVlRUGDBiAfv366STPy5nKy8uxZMkSfP/996pznb1790Z6ejo+++wzeHp66jxTbefPn0dGRgYOHz6skxyvymRpaQkDA4N6P29cny55Vab6SKVSyOVyzq+ceFUmPT095Ofnq50Drq6uxscff4zNmzfr7NxsfcfJ1NQU9vb2sLe3h6urK7p27Yro6GgsXryYt0wKhQLjx49HdnY2zp07p/P5uBv7PLV0dOvX/0hISKj3/7VBJ+fQBw8ejIyMDLV1mZmZkMvlAIDOnTtDIpGoDT6prKxEUlISBg0apIuIqKiowK1bt9S+UAAvBsVYWVkhKyuL88FnDWVSKBRQKBTQ01P/lenr60OpVPKSqbbo6Gi4uLhwfq6zsUyGhobo379/g583XWeqT2FhIe7fv//Kx7nOFBQUhN9//x3p6emqRSaTISwsDKdPn+Yl06swxlTjWvjIVFPMs7KycPbsWV66vDU5ToTopIU+f/58DBo0CGvWrMH48eNx+fJl7Nq1C7t27QLw4pvXvHnzsGbNGnTt2hVdu3bFmjVrYGJiUmfUq7b8z//8D0aOHAlbW1vk5+dj1apVKC4uRnBwMADgyJEjsLKygq2tLa5du4a5c+di1KhRagP3dJmpbdu2cHd3R1hYGIyNjSGXy5GUlIT9+/c3/TyLljLVKC4uxpEjR7Bx40bOcjQlU1hYGAICAjBkyBB4eHjg1KlT+OGHH5CYmMhLppKSEoSHh2Ps2LGQSqW4c+cOlixZAktLS4wePZqXTBYWFnUKk1AohEQigaOjIy+ZSktLsXr1avj5+UEqlaKwsBBRUVF48OABxo0bx0umqqoqfPDBB0hLS8Px48dRXV2tGvNjbm7O2aWHjX3GHz9+jHv37qmuh6/5AiuRSHR+JYVG6F7uKk0ZYxQTE9OkfeukoPfv3x/ff/89Fi9ejJUrV6Jz587YvHkzJk2apNrmn//8J8rLyzFjxgw8efIEAwYMwJkzZzi7Bv3BgweYOHEiCgoKYGVlBVdXV1y6dEnVisvJycGCBQuQl5cHqVSKyZMnY9myZZxk0TTToUOHsHjxYkyaNAmPHz+GXC7H6tWr8Y9//IO3TDW5GGOYOHEiZzmakmn06NHYsWMH1q5dizlz5sDR0RFHjx7ldPBgQ5nKy8tx7do17N+/H0+fPoVUKoWHhwcOHz7M2ee7sUx8aSjT8+fP8e9//xv79u1DQUEBLCws0L9/f5w/f57TUfgNZbpz5w7i4uIAvJj1qraEhATVJaS6zAS8uHJoypQpqu0nTJgAAFi+fDnCw8M5ydQ82hil3joKulgs5mzfAsZece+5RhQXF0MsFqv+8FoChUKBkydPYsSIERAKhXzHAUCZNEWZNEOZNEOZGldYWAhLS0sUFRVxNiagpk7kBwxBW8PmtR+LK6tgffhnTvO+6ehe7oQQQt4Yrele7tpG06cSQgjhlhbPoaekpLzRLfS+ffvip59+Qvv27dGnT58GR++npaU1ad9U0AkhhHCKLlv7D39/f9XNpEaNGqXVfVNBJ4QQQnRk+fLl9f6/NlBBJ4QQwi26bK1BqampuHXrFgQCAbp37w4XF5fX2g8VdEIIIdzSxuQqraTLvbaayxN/+eUX1WQ/T58+xaBBg/Dtt9+iU6dOTdofjXInhBBCeDB16lQoFArcunULjx8/xuPHj3Hr1i0wxl5r1kpqoRNCCOEUzYdev/Pnz+PixYtqd2d0dHTE559/jsGDBzd5f1TQCSGEcIu63Otla2sLhUJRZ31VVRU6duzY5P1RlzshhBDCg/Xr12P27NlITU1FzU1bU1NTMXfuXHz22WdN3h+10AkhhHBLD1oY5a6VJLxr37692jX1paWlGDBgAAwMXpTjqqoqGBgYYOrUqU2+Tl3jgl5RUaE2hWFxcTEAqKb1bAlqcrSUPABl0hRl0gxl0gxlapwuc9CNZf5j8+bNnO1b48lZwsPDsWLFijrrDx48CBMTE60HI4QQwp2ysjIEBgbqZHKWwuleaGvYvAlpiisVsNh9hiZnaYDGBb2+FnqnTp2Qk5PTomZbi4+Px/Dhw1vEbEYAZdIUZdIMZdIMZWpcYWEhpFIpFfQWory8vE6vSVPfp8Zd7iKRSHX/2dqEQmGL+HDWRpk0Q5k0Q5k0Q5k001Iy6TQDjXKvV2lpKRYuXIjvvvsOhYWFdR6vrq5u0v5ayTADQgghLVZNQW/ugtY1feo///lPnDt3DlFRURCJRPjyyy+xYsUKyGQy7N+/v8n7o1HuhBBC3hhv+vSptf3www/Yv38/hg4diqlTp+Kdd96Bvb095HI5vvnmG0yaNKlJ+6MWOiGEEI5po3Xe+rrcHz9+jM6dOwN4cb788ePHAAA3Nzf8/PPPTd4fFXRCCCHc0tPTztLKdOnSBXfu3AEA9OjRA9999x2AFy33mslamqL1HSFCCCHkDTBlyhT89ttvAIDFixerzqXPnz8fYWFhTd4fnUMnhBDCLRrlXq/58+er/t/DwwO3bt3ClStX8NZbb8HZ2bnJ+6OCTgghhFtU0DUil8shl8tf+/nU5U4IIYTw5KeffsL777+Pt956C/b29nj//fdx9uzZ19oXFXRCCCHc0uJ16K3Jtm3b4OPjAzMzM8ydOxdz5sxB27ZtMWLECGzbtq3J+6Mud0IIIdzSxij1VjjKfe3atdi0aRNmzZqlWjdnzhwMHjwYq1evVluvidZ3hAghhLQs1EKvV3FxMXx8fOqs9/LyUs1o2hS8FPS1a9dCIBBg3rx5qnUxMTHw9vaGpaUlBAIB0tPTec2kUCiwcOFC9OrVC6amppDJZJg8eTIePXrEWybgxax33bp1g6mpKdq3bw9PT08kJyfzmqm2jz76CAKBgNMpAjXJFBISopqysWZxdXXlNRMA3Lp1C35+fhCLxTAzM4Orqyvu3bvHW6aXj1HNsmHDBt4ylZSUYNasWbCxsYGxsTG6d++O7du36yTPqzLl5eUhJCQEMpkMJiYm8PHxQVZWFmcZwsPD6/xOJBKJ6nHGGMLDwyGTyWBsbIyhQ4fixo0bnOUh3PDz88P3339fZ/2xY8cwcuTIJu9P513uKSkp2LVrF3r37q22vrS0FIMHD8a4ceMwffp03jOVlZUhLS0Ny5Ytg7OzM548eYJ58+bBz88PqampvGQCAAcHB2zbtg1dunRBeXk5Nm3aBC8vL/zxxx+wsrLiJVON2NhYJCcnQyaTcZpD00w+Pj7Yu3ev6mdDQ0NeM92+fRtubm4IDQ3FihUrIBaLcevWLRgZGfGWKScnR+3nH3/8EaGhoRg7dixvmebPn4+EhAQcOHAAdnZ2OHPmDGbMmAGZTAZ/f3+dZ2KMYdSoURAKhTh27Bjatm2LyMhIeHp64ubNmzA1NeUki5OTk9rgKH19fdX/r1+/HpGRkfjqq6/g4OCAVatWYfjw4cjIyICZmRkneZqFRrmrbN26VfX/3bt3x+rVq5GYmIiBAwcCAC5duoRffvkFH3/8cZP3rdMWeklJCSZNmoTdu3ejffv2ao8FBQXhf//3f+Hp6anLSK/MJBaLER8fj/Hjx8PR0RGurq74/PPPceXKFc5bVA0dp8DAQHh6eqJLly5wcnJCZGQkiouL8fvvv/OWCQAePnyIWbNm4ZtvvtHZLE6NZRKJRJBIJKrF3Nyc10yffPIJRowYgfXr16NPnz7o0qUL3nvvPVhbW/OWqfbxkUgkOHbsGDw8PNClSxfeMv36668IDg7G0KFDYWdnh7///e9wdnbm/Iv0qzJlZWXh0qVL2L59O/r37w9HR0dERUWhpKQE3377LWd5DAwM1H43NV/YGWPYvHkzPvnkE4wZMwY9e/bEvn37UFZWhoMHD3KWp1moy11l06ZNqiU6Ohrt27fHzZs3ER0djejoaNy4cQPt2rXDnj17mrxvnRb0mTNn4r333tN50W5IUzIVFRVBIBC81i35uMhUWVmJXbt2QSwWv9ZNCLSVSalUIigoCGFhYXBycuI0h6aZACAxMRHW1tZwcHDA9OnTkZ+fz1smpVKJEydOwMHBAd7e3rC2tsaAAQMQGxvLW6aX5eXl4cSJEwgNDeU1k5ubG+Li4vDw4UMwxpCQkIDMzEx4e3vzkqmiogIA1HpS9PX1YWhoiAsXLnCWJysrCzKZDJ07d8aECRPw559/AgCys7ORm5sLLy8v1bYikQju7u64ePEiZ3mIdmRnZ2u01Py+m0JnXe6HDh1CWloaUlJSdPWSjWpKpufPn2PRokUIDAzkdKYfTTIdP34cEyZMQFlZGaRSKeLj42FpaclbpnXr1sHAwABz5szhLENTM/n6+mLcuHGQy+XIzs7GsmXLMGzYMFy5cgUikUjnmfLz81FSUoKIiAisWrUK69atw6lTpzBmzBgkJCTA3d1d55letm/fPpiZmWHMmDGcZNE009atWzF9+nTY2NjAwMAAenp6+PLLL+Hm5sZLpm7dukEul2Px4sXYuXMnTE1NERkZidzc3DqnLLRlwIAB2L9/PxwcHJCXl4dVq1Zh0KBBuHHjBnJzcwEAHTp0UHtOhw4dcPfuXU7yNBuNcm8UYwzAi3Etr0snBf3+/fuYO3cuzpw5o5PzhZpoSiaFQoEJEyZAqVQiKiqK90weHh5IT09HQUEBdu/ejfHjxyM5OZmTrtvGMl25cgVbtmxBWlpasz6I2swEAAEBAar/79mzJ/r16we5XI4TJ05wUrAay6RUKgEA/v7+qts9vv3227h48SJ27NjBSUFv6t/dnj17MGnSJE7/RjXJtHXrVly6dAlxcXGQy+X4+eefMWPGDEilUk569xrLJBQKcfToUYSGhsLc3Bz6+vrw9PSEr6+v1rPUqL3vXr16YeDAgXjrrbewb98+1eDOl//eGGM6+xtsMjqH/kr79+/Hhg0bVIMsHRwcEBYWhqCgoCbvSydfea5cuYL8/Hy4uLjAwMAABgYGSEpKwtatW2FgYIDq6mpdxHitTAqFAuPHj0d2djbi4+M5bZ1rmsnU1BT29vZwdXVFdHQ0DAwMEB0dzUumxMRE5Ofnw9bWVvX43bt38fHHH8POzo6XTPV9nqRSKeRyOWcjkxvLZGFhAQMDA/To0UPted27d+dsTEZTjtP58+eRkZGBadOmcZJF00ylpaVYsmQJIiMjMXLkSPTu3RuzZs1CQEAAPvvsM14yVVdXw8XFBenp6Xj69ClycnJw6tQpFBYWqqa+5JqpqSl69eqFrKws1Wj3mpZ6jfz8/DqtdtKyRUZG4v/9v/+HESNG4LvvvsPhw4fh4+ODf/zjH9i0aVOT96eTFvq7776La9euqa2bMmUKunXrhoULF6qN3tQVTTLVFPOsrCwkJCTAwsKC90z1YYypzvPpOpNUKq1zbtPb2xtBQUGYMmUKL5nqO06FhYW4f/8+pFIpL5lEIhH69++PjIwMtW0yMzObde/m5mSqfZyio6Ph4uLC+ViMxjJVV1dDoVBA76XuVX19fVUvh64z1T5OYrEYwIvz26mpqfj00085yfSyiooK3Lp1C++88w46d+4MiUSC+Ph49OnTB8CL8TRJSUlYt26dTvI0mQBaaKFrJUmL8vnnn2P79u2YPHmyap2/vz+cnJwQHh6uNnmLJnRS0M3MzNCzZ0+1daamprCwsFCtf/z4Me7du6e6zrvmH76aEZ66zlRVVYUPPvgAaWlpOH78OKqrq1XfiM3NzTm5BKqxTKWlpVi9ejX8/PwglUpRWFiIqKgoPHjwAOPGjdN6Hk0yAajzRUcoFEIikcDR0ZGXTCUlJQgPD8fYsWMhlUpx584dLFmyBJaWlhg9ejQvmQAgLCwMAQEBGDJkCDw8PHDq1Cn88MMPSExM5C0T8OLmFkeOHMHGjRs5ydHUTO7u7ggLC4OxsTHkcjmSkpKwf/9+REZG8pbpyJEjsLKygq2tLa5du4a5c+di1KhRagPTtOl//ud/MHLkSNja2iI/Px+rVq1CcXExgoODVdfIr1mzBl27dkXXrl2xZs0amJiYIDAwkJM8zUZd7vXKycnBoEGD6qwfNGjQa43PaDG3fo2Li1Nr0U2YMAEAsHz5coSHh+s8z4MHDxAXFwfgxbnO2hISEjB06FCdZ9LX18e///1v7Nu3DwUFBbCwsED//v1x/vx5nY4ub+n09fVx7do17N+/H0+fPoVUKoWHhwcOHz7M6zW6o0ePxo4dO7B27VrMmTMHjo6OOHr0KKeDvTRx6NAhMMYwceJEXnPUOHToEBYvXoxJkybh8ePHkMvlWL16Nf7xj3/wliknJwcLFixAXl4epFIpJk+ejGXLlnH2eg8ePMDEiRNRUFAAKysruLq64tKlS6renH/+858oLy/HjBkz8OTJEwwYMABnzpxpmdegk1eyt7fHd999hyVLlqitP3z4MLp27drk/QlYzdC6JiouLoZYLFYVlpZAoVDg5MmTGDFihM6uhW4MZdIMZdIMZdIMZWpcYWEhLC0tUVRUxNnYoJo68XjRRLQVNa9Xs7iiEuYR33KaV9eOHj2KgIAAeHp6YvDgwRAIBLhw4QJ++uknfPfdd03uUWzd1wEQQghpAbRxU5kXXe79+/dHjx498MUXX/D7lrRg7NixuHz5MiwtLREbG4uYmBhYWlri8uXLr3V6sMV0uRNCCGmltHgOPSUlpVW00BUKBf7+979j2bJlOHDggFb2SS10QgghRMeEQmG9E7M0BxV0Qggh3KJ7uddr9OjRWr39M3W5E0II4Rbd+rVe9vb2+PTTT3Hx4kW4uLjUmbmvqbfTpoJOCCGE8ODLL79Eu3btcOXKFVy5ckXtMYFAQAWdEEJIC0M3lqlXdna26v+1MTlL6+vDIIQQ0rLQOfRXio6ORs+ePWFkZAQjIyP07NkTX3755Wvti1rohBBCCA+WLVuGTZs2Yfbs2Rg4cCAA4Ndff8X8+fNx584drFq1qkn7o4JOCCGEW9TlXq/t27dj9+7dardd9vPzQ+/evTF79mwq6IQQQloYGuVer+rqavTr16/OehcXF1RVVTV5fxoX9IqKCrUpOouLiwG8uNuNQqFo8gtzoSZHS8kDUCZNUSbNUCbNUKbG6TQHtdDr9eGHH2L79u11ZhLctWsXJk2a1OT9aTw5S3h4OFasWFFn/cGDB2FiYtLkFyaEEMKfsrIyBAYG6mZylpXT0NaomZOzPK+E+f9+2aomZ5k9ezb279+PTp06wdXVFQBw6dIl3L9/H5MnT1abxEeT6YM1Luj1tdA7deqEnJycFjXbWnx8PIYPH94iZjMCKJOmKJNmKJNmKFPjCgsLIZVKdVPQP52unYK+bHerKugeHh4abScQCHDu3LlGt9O4y10kEkEkEtVZLxQKW8SHszbKpBnKpBnKpBnKpJmWkkmnGegcer0SEhK0ur/Wd4QIIYSQ/0I0yp0QQgi3BNDCoDitJGnVqKATQgjhFo1y1wnqcieEEEJaAWqhE0II4Ra10HWCCjohhBBuCbQwyl1AHcqNoSNECCGEtALUQieEEMIt6nLXCSrohBBCuEUFXSeooBNCCOGWQK/558DpHHqj6AgRQgghrQAvBX3t2rUQCASYN2+eah1jDOHh4ZDJZDA2NsbQoUNx48YNzjJs374dvXv3Rtu2bdG2bVsMHDgQP/74o+rxvLw8hISEQCaTwcTEBD4+PsjKyuIsjyaZSkpKMGvWLNjY2MDY2Bjdu3fH9u3bec0kEAjqXTZs2MBbJgC4desW/Pz8IBaLYWZmBldXV9y7d4+3TCEhIXWOUc3sSnxlqu2jjz6CQCDA5s2bec0UHh6Obt26wdTUFO3bt4enpyeSk5N5y6RQKLBw4UL06tULpqamkMlkmDx5Mh49esRbJgCIiYmBt7c3LC0tIRAIkJ6ezmmeZtMTaGchDdJ5QU9JScGuXbvQu3dvtfXr169HZGQktm3bhpSUFEgkEgwfPhzPnj3jJIeNjQ0iIiKQmpqK1NRUDBs2DP7+/rhx4wYYYxg1ahT+/PNPHDt2DFevXoVcLoenpydKS0s5ydNYJgCYP38+Tp06hQMHDuDWrVuYP38+Zs+ejWPHjvGWKScnR23Zs2cPBAIBxo4dy1um27dvw83NDd26dUNiYiJ+++03LFu2DEZGRrxlAgAfHx+1Y3Xy5EnO8miaCQBiY2ORnJwMmUzGaR5NMjk4OGDbtm24du0aLly4ADs7O3h5eeGvv/7iJVNZWRnS0tKwbNkypKWlISYmBpmZmfDz8+MsT2OZAKC0tBSDBw9GREQEpzm0pqbLvbkLaRh7TUVFRQwAKygo0Pg5z549Y127dmXx8fHM3d2dzZ07lzHGmFKpZBKJhEVERKi2ff78OROLxWzHjh0a77+yspLFxsayyspKjZ9TW/v27dmXX37JMjIyGAB2/fp11WNVVVXM3Nyc7d69u0n71FYmxhhzcnJiK1euVHu8b9++bOnSpbxlepm/vz8bNmxYk/epzUwBAQHsww8/fK39cJUpODiY+fv7t6hMjDH24MED1rFjR3b9+nUml8vZpk2beM9UW82/M2fPnm0xmS5fvswAsLt37/KeKTs7mwFgV69ebfL+CgoKGABWVFT0Wnk0UfP7e7xpAavasbhZy+NNCzjP+6bT6VeemTNn4r333oOnp6fa+uzsbOTm5sLLy0u1TiQSwd3dHRcvXuQ8V3V1NQ4dOoTS0lIMHDhQNe977Radvr4+DA0NceHCBc7z1JcJANzc3BAXF4eHDx+CMYaEhARkZmbC29ubt0y15eXl4cSJEwgNDdVJnvoyKZVKnDhxAg4ODvD29oa1tTUGDBiA2NhY3jLVSExMhLW1NRwcHDB9+nTk5+fzmkmpVCIoKAhhYWFwcnLSWZaGMtVWWVmJXbt2QSwWw9nZuUVkAoCioiIIBAK0a9euxWRq8WpGuTd3IQ3S2Sj3Q4cOIS0tDSkpKXUey83NBQB06NBBbX2HDh1w9+5dzjJdu3YNAwcOxPPnz9GmTRt8//336NGjBxQKBeRyORYvXoydO3fC1NQUkZGRyM3NRU5ODmd5GsoEAFu3bsX06dNhY2MDAwMD6Onp4csvv4SbmxtvmWrbt28fzMzMMGbMGE7zNJQpNzcXJSUliIiIwKpVq7Bu3TqcOnUKY8aMQUJCAtzd3XWeCQB8fX0xbtw4yOVyZGdnY9myZRg2bBiuXLkCkUjES6Z169bBwMAAc+bM4ez1m5oJAI4fP44JEyagrKwMUqkU8fHxsLS05DVTjefPn2PRokUIDAxE27ZtW0SmNwLNh64TOino9+/fx9y5c3HmzJkGz2MKXvoGxhirs06bHB0dkZ6ejqdPn+Lo0aMIDg5GUlISevTogaNHjyI0NBTm5ubQ19eHp6cnfH19OcuiSaatW7fi0qVLiIuLg1wux88//4wZM2ZAKpXW6fXQVaba9uzZg0mTJnF6rrqxTDWtJn9/f8yfPx8A8Pbbb+PixYvYsWMHpwW9oeMUEBCg2q5nz57o168f5HI5Tpw4wekXoFdlKi8vx5YtW5CWlsbp31hTMtV8njw8PJCeno6CggLs3r0b48ePR3JyMqytrXnLBLwYIDdhwgQolUpERUVxlqUpmQipTScF/cqVK8jPz4eLi4tqXXV1NX7++Wds27YNGRkZAF601KVSqWqb/Pz8Oq12bTI0NIS9vT0AoF+/fkhJScGWLVuwc+dOuLi4ID09HUVFRaisrISVlRUGDBiAfv36cZanoUybN2/GkiVL8P333+O9994DAPTu3Rvp6en47LPPOC3oDR2nGufPn0dGRgYOHz7MWQ5NMn3++ecwMDCo849e9+7dOT9doslxqiGVSiGXyzm/cuJVmbp37478/HzY2tqqtq2ursbHH3+MzZs3486dOzrPVHOcTE1NYW9vD3t7e7i6uqJr166Ijo7G4sWLecukUCgwfvx4ZGdn49y5c5y3zjXJ9EZphTeWuX//PoKCgpCfnw8DAwMsW7YM48aN4zWTTgr6u+++i2vXrqmtmzJlCrp164aFCxeiS5cukEgkiI+PR58+fQC8OH+WlJSEdevW6SIigBc9AjXnz2uIxWIAQFZWFlJTU/Hpp5/qLE/tTAqFAgqFAnovdTvp6+tDqVTykqm26OhouLi46Oxc56syGRoaon///qoviTUyMzMhl8t5yVSfwsJC3L9/X+0LrC4zBQUF1fkS6O3tjaCgIEyZMoWXTK/7OBdqv2ZNMc/KykJCQgIsLCx0mqW+TG+cVnhjGQMDA2zevBlvv/028vPz0bdvX4wYMQKmpqb8ZdLFi5iZmaFnz55q60xNTWFhYaFaP2/ePKxZswZdu3ZF165dsWbNGpiYmCAwMJCTTEuWLIGvry86deqEZ8+e4dChQ0hMTMSpU6cAAEeOHIGVlRVsbW1x7do1zJ07F6NGjVIbuKfLTG3btoW7uzvCwsJgbGwMuVyOpKQk7N+/H5GRkbxkqlFcXIwjR45g48aNnOVoSqawsDAEBARgyJAh8PDwwKlTp/DDDz8gMTGRl0wlJSUIDw/H2LFjIZVKcefOHSxZsgSWlpYYPXo0L5ksLCzqFCahUAiJRAJHR0deMpWWlmL16tXw8/ODVCpFYWEhoqKi8ODBA05bPg1lqqqqwgcffIC0tDQcP34c1dXVqjE/5ubmMDQ01HkmAHj8+DHu3bunuh6+5gusRCKBRCLhJBNRJ5VKVV/Ira2tYW5ujsePH7f+gq6Jf/7znygvL8eMGTPw5MkTDBgwAGfOnIGZmRknr5eXl4egoCDk5ORALBajd+/eOHXqFIYPHw7gxfXVCxYsQF5eHqRSKSZPnoxly5ZxkkXTTIcOHcLixYsxadIkPH78GHK5HKtXr8Y//vEP3jLV5GKMYeLEiZzlaEqm0aNHY8eOHVi7di3mzJkDR0dHHD16lNPBgw1lKi8vx7Vr17B//348ffoUUqkUHh4eOHz4MGef78Yy8aWhTM+fP8e///1v7Nu3DwUFBbCwsED//v1x/vx5TkfhN5Tpzp07iIuLA/BiLEZtCQkJGDp0qM4zAUBcXJxaT8qECRMAAMuXL0d4eDgnmZpFAC10uTdt859//hkbNmzAlStXkJOTg++//x6jRo1S2yYqKgobNmxATk4OnJycsHnzZrzzzjtNjpaamgqlUolOnTo1+bnaJGCMsdd5YnFxMcRiseoPryVQKBQ4efIkRowYAaFQyHccAJRJU5RJM5RJM5SpcYWFhbC0tERRURFnYwJq6sTj7UvQ1rh5g2WLy5/D/P+twf3799XyikSieq8U+fHHH/HLL7+gb9++GDt2bJ2CfvjwYQQFBSEqKgqDBw/Gzp078eWXX+LmzZuqsSUuLi71nuY4c+aM6kZMhYWFeOedd/Dll19i0KBBzXqPzdViWuiEEEJaKS0Oinu5FfyqXglfX98Gr0yKjIxEaGgopk2bBgDYvHkzTp8+je3bt2Pt2rUAXgzobkhFRQVGjx6NxYsX817MASrohBBC3iD1tdCbqrKyEleuXMGiRYvU1nt5eWl8MzPGGEJCQjBs2DAEBQU1OQMXqKATQgjhlhZHuddMWNMcBQUFqK6urvdmZjWDHhvzyy+/4PDhw+jdu7fqTpRff/01evXq1axszUEFnRBCCLcEWpgtjYPr0JtzMzM3NzedXzLcmJZ1YR8hhBDCMUtLS+jr69dpjXN9MzOuUUEnhBDCrRY2faqhoSFcXFwQHx+vtj4+Pr5FDG57XdTlTgghhFtaHOXev39/6OvrY+bMmZg5c+YrNy8pKcEff/yh+jk7Oxvp6ekwNzeHra0tFixYgKCgIPTr1w8DBw7Erl27cO/ePU7v68E1KuiEEELeGCkpKRoNiktNTYWHh4fq5wULFgAAgoOD8dVXXyEgIACFhYVYuXIlcnJy0LNnT5w8eVLnt4jWJirohBBCuMXDvdyHDh2Kxu6bNmPGDMyYMaM5qVoUKuiEEEK4paeFUe7Nff5/ARoURwghhLQCGrfQKyoq1O5pW1xcDACqaT1bgpocLSUPQJk0RZk0Q5k0Q5kap9McrXA+9JZI48lZwsPDsWLFijrrDx48CBMTE60HI4QQwp2ysjIEBgbqZnKWfWvR1qSZk7OUPYd58GI4ODhoNMr9v5HGBb2+FnqnTp2Qk5PTomZbi4+Px/Dhw1vEbEYAZdIUZdIMZdIMZWpcYWEhpFKpbgr61xHaKehBizjN+6bTuMv9VVPUCYXCFvHhrI0yaYYyaYYyaYYyaaalZGoJGYh20Sh3Qggh3BIItHDZGp1DbwwVdEIIIdyiQXE6QZetEUIIIa0AtdAJIYRwi4c7xf03oiNECCGEWzV3imvugheTs/To0QNffPEFz2+q5aEWOiGEkDeGppOz/Deigk4IIYRb1OWuE1TQCSGEcItGuesEfeUhhBBCWgFqoRNCCOGWnt6Lpbn7IA2igk4IIYRjWuhyB3W5N0YnX3nWrl2L/v37w8zMDNbW1hg1ahQyMjLUtomJiYG3tzcsLS0hEAiQnp7OayaFQoGFCxeiV69eMDU1hUwmw+TJk/Ho0SPeMgEvZr3r1q0bTE1N0b59e3h6eiI5OZnXTLV99NFHEAgE2Lx5M6+ZQkJCIBAI1BZXV1deMwHArVu34OfnB7FYDDMzM7i6uuLevXu8ZXr5GNUsGzZs4C1TSUkJZs2aBRsbGxgbG6N79+7Yvn07J3k0zZSXl4eQkBDIZDKYmJjAx8cHWVlZnGXavn07evfujbZt26Jt27YYOHAgfvzxR9XjjDGEh4dDJpPB2NgYQ4cOxY0bNzjL02w1g+Kau5AG6eQIJSUlYebMmbh06RLi4+NRVVUFLy8vlJaWqrYpLS3F4MGDERERoYtIjWYqKytDWloali1bhrS0NMTExCAzMxN+fn68ZQIABwcHbNu2DdeuXcOFCxdgZ2cHLy8v/PXXX7xlqhEbG4vk5GTIZDJOsjQ1k4+PD3JyclTLyZMnec10+/ZtuLm5oVu3bkhMTMRvv/2GZcuWwcioebNQNSdT7eOTk5ODPXv2QCAQYOzYsbxlmj9/Pk6dOoUDBw7g1q1bmD9/PmbPno1jx47xkokxhlGjRuHPP//EsWPHcPXqVcjlcnh6etb7d6ANNjY2iIiIQGpqKlJTUzFs2DD4+/urivb69esRGRmJbdu2ISUlBRKJBMOHD8ezZ884ydOS0HXoDWCvqaioiAFgBQUFTX5ufn4+A8CSkpLqPJadnc0AsKtXrzZ5v5WVlSw2NpZVVlZqNVONy5cvMwDs7t27LSZTze/h7NmzvGZ68OAB69ixI7t+/TqTy+Vs06ZNTdqvtjMFBwczf3//Ju+Ly0wBAQHsww8/bFGZXubv78+GDRvGayYnJye2cuVKte369u3Lli5dykumjIwMBoBdv35dtU1VVRUzNzdnu3fv1kkmxhhr3749+/LLL5lSqWQSiYRFRESoHnv+/DkTi8Vsx44dGu+voKCAAWBFRUWvlUcTNf8+PY6JYlWn9zZreRwTxXneNx0vfRhFRUUAAHNzcz5evl6aZCoqKoJAIEC7du1aRKbKykrs2rULYrEYzs7OvGVSKpUICgpCWFgYnJycdJKjsUwAkJiYCGtrazg4OGD69OnIz8/nLZNSqcSJEyfg4OAAb29vWFtbY8CAAYiNjeUt08vy8vJw4sQJhIaG8prJzc0NcXFxePjwIRhjSEhIQGZmJry9vXnJVFFRAQBqPSn6+vowNDTEhQsXOM9TXV2NQ4cOobS0FAMHDkR2djZyc3Ph5eWl2kYkEsHd3R0XL17kPM9rqRkU19yFNEjnR4gxhgULFsDNzQ09e/bU9cvXS5NMz58/x6JFixAYGKiTuxQ1lOn48eNo06YNjIyMsGnTJsTHx8PS0pK3TOvWrYOBgQHmzJnDeQZNM/n6+uKbb77BuXPnsHHjRqSkpGDYsGGqf5x1nSk/Px8lJSWIiIiAj48Pzpw5g9GjR2PMmDFISkriJdPL9u3bBzMzM4wZM4bzPA1l2rp1K3r06AEbGxsYGhrCx8cHUVFRcHNz4yVTt27dIJfLsXjxYjx58gSVlZWIiIhAbm4ucnJyOMty7do1tGnTBiKRCP/4xz/w/fffo0ePHsjNzQUAdOjQQW37Dh06qB4j/510Psp91qxZ+P3333XyzVZTjWVSKBSYMGEClEoloqKieM/k4eGB9PR0FBQUYPfu3Rg/fjySk5NhbW2t80xXrlzBli1bkJaWBgEPN3541XEKCAhQ/X/Pnj3Rr18/yOVynDhxgvOCVV8mpVIJAPD398f8+fMBAG+//TYuXryIHTt2wN3dXeeZXrZnzx5MmjSJs3P6mmbaunUrLl26hLi4OMjlcvz888+YMWMGpFIpPD09dZ5JKBTi6NGjCA0Nhbm5OfT19eHp6QlfX19Oszg6OiI9PR1Pnz7F0aNHERwcrPbl7+W/N8YYL3+DGqEby+iETlvos2fPRlxcHBISEmBjY6PLl36lxjIpFAqMHz8e2dnZiI+P10nrvLFMpqamsLe3h6urK6Kjo2FgYIDo6GheMp0/fx75+fmwtbWFgYEBDAwMcPfuXXz88cews7PjJVN9pFIp5HI5pyOTG8pkaWkJAwMD9OjRQ2377t27czbKvbFMtZ0/fx4ZGRmYNm0ap1kay1ReXo4lS5YgMjISI0eORO/evTFr1iwEBATgs88+4yUTALi4uKiKa05ODk6dOoXCwkJ07tyZszyGhoawt7dHv379sHbtWjg7O2PLli2QSCQAUKc1np+fX6fV3mIIBFoY5U4FvTE6KeiMMcyaNQsxMTE4d+4cp38E2sxUU8yzsrJw9uxZWFhY8J7pVc/jqiu5sUxBQUH4/fffkZ6erlpkMhnCwsJw+vRpXjLVp7CwEPfv34dUKuUlk6GhIfr371/ncqjMzEzI5XJeMtUWHR0NFxcXzsdiNJZJoVBAoVBA76Xzpfr6+qpeDl1nqk0sFsPKygpZWVlITU2Fv78/J5lelbOiogKdO3eGRCJBfHy86rHKykokJSVh0KBBOstDWh6ddLnPnDkTBw8exLFjx2BmZqb6ZikWi2FsbAwAePz4Me7du6e6zrvmHz6JRKL6RqrLTFVVVfjggw+QlpaG48ePo7q6WrWNubk5DA0NdZ6ptLQUq1evhp+fH6RSKQoLCxEVFYUHDx5g3LhxWs+jSSYLC4s6X3SEQiEkEgkcHR15yVRSUoLw8HCMHTsWUqkUd+7cwZIlS2BpaYnRo0fzkgkAwsLCEBAQgCFDhsDDwwOnTp3CDz/8gMTERN4yAUBxcTGOHDmCjRs3cpKjKZnatm0Ld3d3hIWFwdjYGHK5HElJSdi/fz8iIyN5yQQAR44cgZWVFWxtbXHt2jXMnTsXo0aNUhuYpk1LliyBr68vOnXqhGfPnuHQoUNITEzEqVOnIBAIMG/ePKxZswZdu3ZF165dsWbNGpiYmCAwMJCTPM1GXe668brD45ty2RqAepe9e/eqttm7d2+92yxfvlzjTE25LKSxTDWXz9W3JCQk8JKpvLycjR49mslkMmZoaMikUinz8/Njly9f1jiPtjPVh+vL1hrLVFZWxry8vJiVlRUTCoXM1taWBQcHs3v37vGWqUZ0dDSzt7dnRkZGzNnZmcXGxvKeaefOnczY2Jg9ffq0SVm4ypSTk8NCQkKYTCZjRkZGzNHRkW3cuJEplUreMm3ZsoXZ2NioPk9Lly5lFRUVGudpaqapU6cyuVzODA0NmZWVFXv33XfZmTNnVI8rlUq2fPlyJpFImEgkYkOGDGHXrl1rUh6dXrZ2PJpVJXzbrOXx8Wi6bK0ROmmhM8Ya3SYkJAQhISHch/k/jWWys7PTKLc2NfZ6RkZGiImJ0VGaF17nGNy5c0f7QWppLJOxsTFn3f2voulxmjp1KqZOncpxmhc0zfT3v/8df//73zlO84ImmSQSCfbu3auDNC9okmnOnDk6vYqjsTExAoEA4eHhCA8P100g8kagC/sIIYRwS0+gnQV0p7iG0OQshBBCuKWNe7H/3/NTUlJ0crXRm4gKOiGEEG7RoDidoC53QgghpBWgFjohhBBuabHLnbwaFXRCCCGcEggEzb4tbYu9rW0LQl95CCGEkFaAWuiEEEK4RV3uOkEFnRBCCLeooOsEHSFCCCGkFaAWOiGEEG4J/nOnt2btgzRI44JeUVGhNkVncXExgP9Md9gS1ORoKXkAyqQpyqQZyqQZytQ4neagLnedEDANZ3AIDw/HihUr6qw/ePAgTExMtB6MEEIId8rKyhAYGIiioiLObqVaXFwMsViMJ+eOoG2b5tWJ4pIytB82Dg4ODtDX18fMmTMxc+ZMLSVtHTQu6PW10Dt16oScnJw682HzRaFQID4+HsOHD4dQKOQ7DgDKpCnKpBnKpBnK1LjCwkJIpVLdFPSEf2mnoHt8wGneN53GXe4ikQgikajOeqFQ2CI+nLVRJs1QJs1QJs1QJs20lEw6zSAQaKHLnc6hN4YGxRFCCOEWTc6iEzTKgBBCCGkFqIVOCCGEWzTKXSeooBNCCOGWnhauQ2/u8/8L0FceQgghpBWgFjohhBBuUZe7TlBBJ4QQwi0a5a4T9JWHEEIIaQWohU4IIYRb1OWuE1TQCSGEcIu63HVCJ1951q5di/79+8PMzAzW1tYYNWoUMjIy1LZhjCE8PBwymQzGxsYYOnQobty4wWmun3/+GSNHjoRMJoNAIEBsbKza43l5eQgJCYFMJoOJiQl8fHyQlZXFa6aSkhLMmjULNjY2MDY2Rvfu3bF9+3ZeMwkEgnqXDRs28JYJAG7dugU/Pz+IxWKYmZnB1dUV9+7d4y1TSEhInWPk6urKWR5NMtX20UcfQSAQYPPmzbxmCg8PR7du3WBqaor27dvD09MTycnJvGVSKBRYuHAhevXqBVNTU8hkMkyePBmPHj3iLRMAxMTEwNvbG5aWlhAIBEhPT+c0D2n5dFLQk5KSMHPmTFy6dAnx8fGoqqqCl5cXSktLVdusX78ekZGR2LZtG1JSUiCRSDB8+HA8e/aMs1ylpaVwdnbGtm3b6jzGGMOoUaPw559/4tixY7h69Srkcjk8PT3VcusyEwDMnz8fp06dwoEDB3Dr1i3Mnz8fs2fPxrFjx3jLlJOTo7bs2bMHAoEAY8eO5S3T7du34ebmhm7duiExMRG//fYbli1bBiMjI94yAYCPj4/asTp58iRneTTNBACxsbFITk6GTCbjNI8mmRwcHLBt2zZcu3YNFy5cgJ2dHby8vPDXX3/xkqmsrAxpaWlYtmwZ0tLSEBMTg8zMTPj5+XGWp7FMNY8PHjwYERERnObQipou9+YupGHsNRUVFTEArKCgoMnPzc/PZwBYUlISY4wxpVLJJBIJi4iIUG3z/PlzJhaL2Y4dOzTeb2VlJYuNjWWVlZVNzgSAff/996qfMzIyGAB2/fp11bqqqipmbm7Odu/ezUsmxhhzcnJiK1euVFvXt29ftnTpUt4yvczf358NGzasSfvVdqaAgAD24YcfNnlfXGYKDg5m/v7+LSoTY4w9ePCAdezYkV2/fp3J5XK2adMm3jPVVvNvzdmzZ1tMpsuXLzMA7O7du7xnys7OZgDY1atXm7TPgoICBoAVFRU1OY+man53T1LiWfWti81anqTEMwDMwcGBde/enW3bto2z3G8qXr7yFBUVAQDMzc0BANnZ2cjNzYWXl5dqG5FIBHd3d1y8eJGPiKqpYmu36PT19WFoaIgLFy7wkgkA3NzcEBcXh4cPH4IxhoSEBGRmZsLb25u3TLXl5eXhxIkTCA0N5S2DUqnEiRMn4ODgAG9vb1hbW2PAgAENdjfrSmJiIqytreHg4IDp06cjPz+f1zxKpRJBQUEICwuDk5MTr1nqU1lZiV27dkEsFsPZ2ZnvOCpFRUUQCARo164d31HeCK86LdfUBQBSUlJw8+ZNmgu9Hjov6IwxLFiwAG5ubujZsycAIDc3FwDQoUMHtW07dOigekzXunXrBrlcjsWLF+PJkyeorKxEREQEcnNzkZOTw0smANi6dSt69OgBGxsbGBoawsfHB1FRUXBzc+MtU2379u2DmZkZxowZw1uG/Px8lJSUICIiAj4+Pjhz5gxGjx6NMWPGICkpibdcvr6++Oabb3Du3Dls3LgRKSkpGDZsmOrLIx/WrVsHAwMDzJkzh7cM9Tl+/DjatGkDIyMjbNq0CfHx8bC0tOQ7FgDg+fPnWLRoEQIDA2lebtKi6HyU+6xZs/D777/X28qt+QZWgzFWZ52uCIVCHD16FKGhoTA3N4e+vj48PT3h6+vLS54aW7duxaVLlxAXFwe5XI6ff/4ZM2bMgFQqhaenJ6/ZAGDPnj2YNGkSp+eqG6NUKgEA/v7+mD9/PgDg7bffxsWLF7Fjxw64u7vzkisgIED1/z179kS/fv0gl8tx4sQJXr4AXblyBVu2bEFaWhpvf2ev4uHhgfT0dBQUFGD37t0YP348kpOTYW1tzWsuhUKBCRMmQKlUIioqitcsbxSaD10ndNpCnz17NuLi4pCQkAAbGxvVeolEAgB1WuP5+fl1Wu265OLigvT0dDx9+hQ5OTk4deoUCgsL0blzZ17ylJeXY8mSJYiMjMTIkSPRu3dvzJo1CwEBAfjss894yVTb+fPnkZGRgWnTpvGaw9LSEgYGBujRo4fa+u7du3M6yr2ppFIp5HI551dOvMr58+eRn58PW1tbGBgYwMDAAHfv3sXHH38MOzs7XjLVMDU1hb29PVxdXREdHQ0DAwNER0fzmkmhUGD8+PHIzs5GfHw8tc6bouayteYupEE6KeiMMcyaNQsxMTE4d+5cnYLYuXNnSCQSxMfHq9ZVVlYiKSkJgwYN0kXEBonFYlhZWSErKwupqanw9/fnJYdCoYBCoYCenvqvTV9fX9Uq5VN0dDRcXFx4P9dpaGiI/v3717k0MjMzE3K5nKdUdRUWFuL+/fuQSqW8vH5QUBB+//13pKenqxaZTIawsDCcPn2al0yvwhjj9dRETTHPysrC2bNnYWFhwVsWQl5FJ13uM2fOxMGDB3Hs2DGYmZmpWuJisRjGxsYQCASYN28e1qxZg65du6Jr165Ys2YNTExMEBgYyFmukpIS/PHHH6qfs7OzkZ6eDnNzc9ja2uLIkSOwsrKCra0trl27hrlz52LUqFFqg/d0ncnd3R1hYWEwNjaGXC5HUlIS9u/fj8jISN4yAUBxcTGOHDmCjRs3cpajKZnCwsIQEBCAIUOGwMPDA6dOncIPP/yAxMREXjKZm5sjPDwcY8eOhVQqxZ07d7BkyRJYWlpi9OjRvGSytbWtU5iEQiEkEgkcHR15yWRhYYHVq1fDz88PUqkUhYWFiIqKwoMHDzBu3DheMslkMnzwwQdIS0vD8ePHUV1drfo3zNzcHIaGhjrPZGtri8ePH+PevXuq6+FrvsBKJBJVr2fLoY3LzuiytUa97vD4ply2BqDeZe/evaptlEolW758OZNIJEwkErEhQ4awa9euNSlTUy8LSUhIqDdXcHAwY4yxLVu2MBsbGyYUCpmtrS1bunQpq6io4DVTTk4OCwkJYTKZjBkZGTFHR0e2ceNGplQqecvEGGM7d+5kxsbG7OnTpxrn4DpTdHQ0s7e3Z0ZGRszZ2ZnFxsbylqmsrIx5eXkxKysr1ecpODiY3bt3j7dM9dHFZWsNZSovL2ejR49mMpmMGRoaMqlUyvz8/Njly5d5y1RzWVh9S0JCAi+ZGGNs79699T6+fPlyjfavy8vWnl5NYso/rjRreXo1ifO8bzoBY4y9zheB4uJiiMViFBQUtJjuJ4VCgZMnT2LEiBEQCoV8xwFAmTRFmTRDmTRDmRpXWFgIS0tLFBUVcTYeoKZOPL2ahLZmbZq3r2claNfHndO8bzq6lzshhBBu6em9WJq7D9IgKuiEEEK4RZOz6AR95SGEEEJaAWqhE0II4RbNh64TVNAJIYRwi7rcdYIKOiGEEI4J/m9p7j5IQ6gPgxBCCGkFqIVOCCGEW9TlrhNU0AkhhHCLCrpOUJc7IYQQ0gpQC50QQgjHaFCcLlBBJ4QQwi3qctcJjQt6RUWF2nzExcXFAP4zR3dLUJOjpeQBKJOmKJNmKJNmKFPjWkoOoj0az7YWHh6OFStW1Fl/8OBBmJiYaD0YIYQQ7pSVlSEwMFA3s639O1U7s6116wcHBwfo6+tj5syZmDlzppaStg4aF/T6WuidOnXCTw490LaqirOATaEUiZCz9lNIFy+DXq2sfKJMmqFMmqnJNHz48BYxBSfwoqUXHx9PmRrR0jIVFhZCKpXqqKBf0VJBd6HpUxugcZe7SCSCSCSqs16vsgJ6lS2r60avogJ6z5/zHUMNZdIMZdKMUChsEUWhNsqkmZaSqSVkINpFg+IIIYRwiwbF6QQVdEIIIdwSQAsFXStJWjUq6IQQQjhG16HrAt0pjhBCCGkFqIVOCCGEW3QOXSeooBNCCOEYdbnrAnW5E0IIIa0AtdAJIYRwi7rcdYIKOiGEEG5RQdcJ6nInhBBCWgHeCnpaxXPMK8yHd+5DuDy6h4TyMr6iqOx5VoSgv3LxTs59eOY+wILHf+FOFb+3tT1S+gwB+TkYknMfQ3LuI+SvXPzyvJzXTLXteVYEl0f38FnRE15z7Cx+CpdH99QWr9wHvGYCgPzqKix9UoBhOQ8wKOc+Jubn4FZlJW957OzsIBAI6ix8TnJRVVWFpUuXonPnzjA2NkaXLl2wcuVKKJVK3jI9e/YM8+bNg1wuh7GxMQYNGoSUlBSdZvj5558xcuRIyGQyCAQCxMbGqj3OGEN4eDhkMhmMjY0xdOhQ3LhxQ6cZNSfQ0kIawluXezljcBAaws+kDcKeFPAVQ01aZQXGmbaBk9AQ1QC+KH6KmYX5+JeVFMZ6/Hz36aCvj9lt26GTwYtf1fGyUix4/BcOWknwltCQl0w1blRW4PuyEnQ1aBn3hH7LQIgoC2vVz/o8ZgGAYqUSUwvy0M/QCFstrGCup48H1VVoo8ffP0wpKSmorq5W/Xz9+nUMHz4c48aN4y3TunXrsGPHDuzbtw9OTk5ITU3FlClTIBaLMXfuXF4yTZs2DdevX8fXX38NmUyGAwcOwNPTEzdv3kTHjh11kqG0tBTOzs6YMmUKxo4dW+fx9evXIzIyEl999RUcHBywatUqDB8+HBkZGfj/7d1rTFRnHsfx71yYm3LpCA6MFZe1ROu9stX1EixJlw22rgk2trVtqDRZresL0o0W1yrutqg1hpLYtVbiaqPRYKylyb5YRZtijaaJtphd7W6LIaDWgSIwA8PIwMzZF1TKxcuoMM9k/H+S8+I8jDM/Ls7/PJczT2xsbFgyhurWhePDPoe4O2UFfZ7FyjyLtedEbeeu14d9igHApoRRPNtwje+6/Mw0W5RkyrT035r2T3EJHPG282+/X2lB7wgGeaflBu8kjGJPm1tZjr4MQKJBdRn/xb52Dw6DkU2PjeptcxrVLltJSkrqd75161bGjx/PggULFCWCs2fPsnjxYp577jmgZxTh0KFDnDt3Tkken8/Hp59+yueff05mZibQs310RUUFH330Ee+9915YcuTk5JCTk3Pbr2maRmlpKevXryc3NxeATz75BIfDwcGDB1mxYkVYMorIInPod9Gu9Qz5xSnqnQ8U0DSO+bz4tCDTTIN3vgunre4W5luszFZ0oXM79YFufu+6xqKGa6xrbuKq4m19T93sYFKMibXNP/Gs6yrLGq9z1NuuNFNffr+fAwcOkJ+fr7T3M3/+fE6ePMn3338PwIULFzh9+jQLFy5Ukqe7u5tAIIDF0v9v22q1cvr0aSWZBqqtrcXlcpGdnd3bZjabWbBgAWfOnFGY7A5uLYp72EPclaxyvwNN0yhxtzLDZOYJxUPbP3T5Wd7UgF/TsOp0bLcn8WuFWx8e83n5b5ef/UnJyjIMNMVk5m8xJlKNRpqDQfa0uclvcnF4dAoJejW99mvd3RzpbuOVkXHkx8Zz0d/JdncLJh08b3u4vaGHQkVFBa2trbz++utKc7z99tu43W4mTpyIwWAgEAhQXFzMyy+/rCRPbGwsc+bM4d133+XJJ5/E4XBw6NAhvv76a9LT05VkGsjlcgHgcDj6tTscDurq6lREugf5YJlwkIJ+B++7W/ih28+eRMe9HzzMfmWM4VBSMm3BICdv+ihqvUHZKIeSou4KdLPd3cLfR43GHEFXzL3TNz+bFmNiceOP/LPDy6sj45RkCgKTYkysjksAYGKMicvdXRzxtkdEQd+zZw85OTk4nU6lOcrLyzlw4AAHDx5k8uTJVFdXU1BQgNPpJC8vT0mm/fv3k5+fz5gxYzAYDMycOZNly5bxzTffKMlzJwNHVjRNi9C55qHoYUfi9xVZpKDfxjZ3M6du+ihLdOAwqP8Rxeh0jP154dkkk5lL/k4OedtYn2APe5bv/H6ag0Fe/cnV2xagZ0HhYW8bZ1PGYoiANxSrXs8TRhP1CofdEw0G0gZcdKUZY/jCp/4uhbq6Ok6cOMHRo0dVR2HNmjUUFhby0ksvATB16lTq6urYsmWLsoI+fvx4qqqq8Hq9eDweUlJSePHFF0lLS1OSZ6Dk5J7RMZfLRUpKSm97Y2PjoF67eHRExuRwhNA0jfdbm/nC52NX4mjGKF7AdCca4Nc0Ja89y2yhPCmZg32OSTEmcqw2DiYlR0Qxh56fT213l9JFctNNZuoGXFDUd3eTEgEL9/bu3cvo0aN7F6Kp1NHRgX7AOhWDwaD0trVbRowYQUpKCi0tLRw7dozFixerjgRAWloaycnJVFZW9rb5/X6qqqqYO3euwmR3IHPoYaGsYnUEg1wJ/PJm92Ogm/91+YnT6UlRVEi3ulv4l89LiT0Jm05P08+394zU67Do1Fz7fOhpZZ7ZgsNgxKsFOe7r4Ly/kx12NcPII/R6ntD3X1Ng1emI1xuUrjX4wN1CpsVKssFIczDAnjY3Xi3IIusIZZleGRHL8qYG/tHm5ndWG//x+zna0c76+PCPrPQVDAbZu3cveXl5GCPgonXRokUUFxeTmprK5MmT+fbbbykpKSE/P19ZpmPHjqFpGhMmTKCmpoY1a9YwYcIEli9fHrYM7e3t1NTU9J7X1tZSXV2N3W4nNTWVgoICNm/eTHp6Ounp6WzevBmbzcayZcvCljF0MoceDsr+N1/q8rPiRmPveYmnFYDnrSP4a5/bfMLpSEfPCuQ/9skFUJRg5w+K5jybgwE2tN6gKRBgpF5PujGGHfYkfjtgzvhR1xgI8JeWG7QGAzymNzDVZGJfYrKyi0OAySYz2+1JfOhppazNjdNo5M9xj7HQpu4iA+DEiRPU19crLZh97dixgw0bNrBq1SoaGxtxOp2sWLGCjRs3KsvkdrtZt24dV69exW63s2TJEoqLi4kJ47qVc+fOkZWV1Xv+1ltvAZCXl8e+fftYu3YtPp+PVatW0dLSwuzZszl+/HjE3YMuwkfZu91vzBbOO1NVvfxtRVoegI0Jai5u7sfuCFg4uMWeqDrCbWVarGRG2MVXdnY2mqIpm9uJjY2ltLSU0tJS1VF6LV26lKVLlyrN8Mwzz9z196TT6di0aRObNm0KX6gHJZ/lHhbqx9uEEEJENxlxDwtZFCeEEEJEAemhCyGEGGbSRQ8HKehCCCGGl8yhh4UMuQshhBBRQHroQgghhpf00MNCCroQQohhJnPo4SAFXQghxPDSMQQ99CFJEtVkDl0IIYS4T21tbTz99NPMmDGDqVOnUlZWpjqS9NCFEEIMsyicQ7fZbFRVVWGz2ejo6GDKlCnk5uYyapS6T/eUgi6EEGKYRd8cusFgwGazAXDz5k0CgYDyj1SWIXchhBBR59SpUyxatAin04lOp6OiomLQY3bu3ElaWhoWi4WMjAy++uqr+3qN1tZWpk+fzuOPP87atWtJTFS7p0TIPfTOzk46Ozt7z91uNwBtBiOo2zWzn6DRSEdHBx6jEb0pfLsi3Y1kCo1kCs2tTDdu3Ajrzl9309XVJZlCEGmZmpubAcLSq/S0tz/0kLmnvWc3TI/H06/dbDZjNpsHPd7r9TJ9+nSWL1/OkiVLBn29vLycgoICdu7cybx58/j444/Jycnh0qVLpKb2bNSVkZHRr+7dcvz4cZxOJwkJCVy4cIGGhgZyc3N54YUXcDgUblalhaioqEgD5JBDDjnkiKLj8uXLoZaB++bz+bTk5OQhyzpy5MhBbUVFRffMAWifffZZv7ZZs2ZpK1eu7Nc2ceJErbCw8IG+15UrV2qHDx9+oH87VELuoa9bt653P17oGWoYN24c9fX1xMfHh/o0w8rj8TB27FiuXLlCXFyc6jiAZAqVZAqNZAqNZLo3t9tNamoqdrt92F7DYrFQW1uL3+8fkufTNA3dgJ7+7Xrn9+L3+zl//jyFhYX92rOzszlz5kxIz9HQ0IDVaiUuLg6Px8OpU6d488037zvLUAq5oN9pWCM+Pj4i/jj7iouLk0whkEyhkUyhkUyhibRMev3wLqWyWCxYLJZhfY371dTURCAQGDQ87nA4cLlcIT3H1atXeeONN9A0DU3TWL16NdOmTRuOuCGTVe5CCCEeSQN7+7cbAbiTjIwMqqurhyHVg5NV7kIIIR4piYmJGAyGQb3xxsZGtYvaHtIDF3Sz2UxRUdEDzV8MF8kUGskUGskUGskUmkjLFGl5wslkMpGRkUFlZWW/9srKSubOnaso1cPTaZriO+GFEEKIIdbe3k5NTQ0ATz31FCUlJWRlZWG320lNTaW8vJzXXnuNXbt2MWfOHHbv3k1ZWRkXL15k3LhxitM/GCnoQgghos6XX35JVlbWoPa8vDz27dsH9HywzLZt27h+/TpTpkzhgw8+IDMzM8xJh44UdCGEECIKyKI4IYQQIgpIQRdCCCGigBR0IYQQIgpIQRdCCCGigBR0IYQQIgpIQRdCCCGigBR0IYQQIgpIQRdCCCGigBR0IYQQIgpIQRdCCCGigBR0IYQQIgpIQRdCCCGiwP8BGslXovP9bFIAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYNUlEQVR4nOzdeVwT194/8E+AEBYxyiaJSNQqoKi0oldUKmKRxVYQraJYBEXb/ty1D9dq9YqtuxWXWndqtdZqfbSIYlGsgForgoj7BWpxZymoIIsQyPn94ZNcIghBMhnkft99zetVJpPJJ0Pwm3PmzBwBY4yBEEIIIW80Pb4DEEIIIaTpqKATQgghLQAVdEIIIaQFoIJOCCGEtABU0AkhhJAWgAo6IYQQ0gJQQSeEEEJaACrohBBCSAtABZ0QQghpAaigNxMREREQCARq6zp27IjQ0NBG7ef8+fOIiIjA06dPG/W8l18rMTERAoEA//u//9uo/dSnrKwMERERSExMrPXY999/D4FAgDt37mjt9bjwzTffoEuXLjA0NIRAIMDTp0+xfPlyREdH6yxDcXExli1bhsGDB8PGxgatWrVCz549sWrVKjx//lxnOQghzYsB3wHIq/3yyy9o3bp1o55z/vx5LFmyBKGhoWjTpg2nr9VYZWVlWLJkCQBg8ODBao+9//77+OOPPyCRSDjN0BTp6emYOXMmJk+ejJCQEBgYGMDMzAzLly/Hhx9+iBEjRugkx71797B+/XoEBwdj7ty5aNWqFc6ePYuIiAjEx8cjPj6+1pdDQkjLRwW9GXvnnXc4f43y8nIYGxvr5LXqY2VlBSsrK14zNOTGjRsAgClTpuAf//gHp69VXV2NqqoqiESiWo916tQJd+7cgampqWrdkCFDYGpqivDwcPz+++9wc3PjNB8hpPmhLncexMbG4u2334ZIJEKnTp3w9ddf17ndy93gCoUCS5cuhYODA4yNjdGmTRv06tULGzZsAPCi2z48PBzAi3/0BQIBBAKBqou7Y8eO+OCDD3D48GG88847MDIyUrWYX9W9//z5c8ydOxc2NjYwNjaGu7s7Ll++rLbN4MGDa7W4ASA0NBQdO3YEANy5c0dVsJcsWaLKpnzNV3W5f/fdd3B2doaRkRHMzc0REBCAW7du1XqdVq1a4c8//8SwYcPQqlUrdOjQAZ999hkqKirqPLY1HThwAF5eXpBIJDA2Nka3bt3w+eefo7S0VO09fvTRRwCAfv36qbILBAKUlpZi9+7dqvdU81jk5ubik08+ga2tLQwNDdGpUycsWbIEVVVVqm3u3LkDgUCA1atXY+nSpejUqRNEIhESEhLqzGtqaqpWzJWUXzLu379f7/tVvt6aNWuwatUqdOzYEcbGxhg8eDAyMzMhl8vx+eefQyqVQiwWIyAgAPn5+Wr7UCgUWL16NRwdHSESiWBtbY0JEybgwYMHqm1mz54NU1NTFBcX18oQGBiIdu3aQS6Xq9YdOHAA/fv3h6mpKVq1agVvb+9an7W//voLY8eOhVQqhUgkQrt27fDee+8hPT293vdMyH8FRnTq1KlTTF9fn7m5ubHDhw+zgwcPsr59+zI7Ozv28q9DJpOxkJAQ1c8rVqxg+vr6bPHixey3335jcXFxbP369SwiIoIxxtj9+/fZjBkzGAB2+PBh9scff7A//viDFRUVqfYnkUhY586d2XfffccSEhLYxYsX63ythIQEBoB16NCB+fv7s6NHj7K9e/eyLl26sNatW7Pbt2+rtnV3d2fu7u613mtISAiTyWSMMcaeP3/O4uLiGAAWFhamyvbnn38yxhjbtWsXA8Cys7NVz1++fDkDwMaNG8diY2PZnj17WOfOnZlYLGaZmZlqr2NoaMi6devGvv76a3bq1Cn2r3/9iwkEArZkyZIGfydfffUVW7duHYuNjWWJiYls69atrFOnTszDw0O1zY0bN9jChQsZALZr1y5V9j/++IMZGxuzYcOGqd7TjRs3GGOM5eTksA4dOjCZTMa2bdvGTp06xb766ismEolYaGioat/Z2dkMAGvfvj3z8PBg//u//8tOnjypdiw0sXjxYgaAXblypd7tlK8nk8nY8OHD2bFjx9jevXtZu3btmL29PQsODmaTJk1iv/76K9u6dStr1aoVGz58uNo+Pv74YwaATZ8+ncXFxbGtW7cyKysr1qFDB/b3338zxhi7cuUKA8B27Nih9twnT54wkUjE5s6dq1q3bNkyJhAI2KRJk9ixY8fY4cOHWf/+/ZmpqanqeDLGmIODA+vSpQv74YcfWFJSEjt06BD77LPPWEJCQqOOFSEtERV0HevXrx+TSqWsvLxcta64uJiZm5s3WNA/+OAD9vbbb9e7/zVr1tQqjDX3p6+vzzIyMup8rK6C3rt3b6ZQKFTr79y5w4RCIZs8ebJqnSYFnTHG/v77bwaALV68uNa2Lxf0J0+eqAplTffu3WMikYgFBQWpvQ4A9vPPP6ttO2zYMObg4FDrteqjUCiYXC5nSUlJtYqjMmNKSorac0xNTdWOndInn3zCWrVqxe7evau2/uuvv2YAVIVKWWDfeustVllZ2ai8SleuXGHGxsYsICCgwW2Vr+fs7Myqq6tV69evX88AMD8/P7XtZ8+ezQCovhjeunWLAWBTp05V2y45OZkBYAsWLFCt6927NxswYIDadps3b2YA2LVr1xhjL36nBgYGbMaMGWrbPXv2jNnY2LAxY8YwxhgrKChgANj69esbfI+E/DeiLncdKi0tRUpKCkaOHAkjIyPVejMzMwwfPrzB5//jH//AlStXMHXqVJw4caLOrsyG9OrVC/b29hpvHxQUpDbASiaTYcCAAa/sDtaWP/74A+Xl5bVOA3To0AFDhgzBb7/9prZeIBDUOoa9evXC3bt3G3ytv/76C0FBQbCxsYG+vj6EQiHc3d0BoFb3fmMcO3YMHh4ekEqlqKqqUi2+vr4AgKSkJLXt/fz8IBQKG/06d+7cwQcffIAOHTpg586dGj9v2LBh0NP7zz8B3bp1A/BigGJNyvX37t0DANXv/uXfzT/+8Q9069ZN7XczceJEnD9/HhkZGap1u3btQt++fdGjRw8AwIkTJ1BVVYUJEyaoHScjIyO4u7urThmZm5vjrbfewpo1axAZGYnLly9DoVBo/H4JaemooOvQkydPoFAoYGNjU+uxuta9bP78+fj6669x4cIF+Pr6wsLCAu+99x5SU1M1ztDYUeSvylpYWNio/TSWcv915ZVKpbVe38TERO1LEgCIRKIGL+MqKSnBu+++i+TkZCxduhSJiYlISUnB4cOHAbwYNPi68vLycPToUQiFQrXFyckJAFBQUKC2/euM8L979y48PDxgYGCA3377Debm5ho/9+VtDQ0N612vPJaN+d2MHz8eIpEI33//PQDg5s2bSElJwcSJE1Xb5OXlAQD69u1b61gdOHBAdZwEAgF+++03eHt7Y/Xq1ejduzesrKwwc+ZMPHv2TOP3TUhLRaPcdaht27YQCATIzc2t9Vhd615mYGCAuXPnYu7cuXj69ClOnTqFBQsWwNvbG/fv34eJiUmD+2js5UyvymphYaH62cjICEVFRbW2e7lgNYZy/zk5ObUee/ToESwtLV973zWdPn0ajx49QmJioqpVDqDR1/HXxdLSEr169cKyZcvqfFwqlar93Njfzd27dzF48GAwxpCYmAhbW9vXztoYNX83L7/my7+btm3bwt/fH3v27MHSpUuxa9cuGBkZYdy4captlNv/7//+L2QyWb2vLZPJEBUVBQDIzMzEzz//jIiICFRWVmLr1q1aeX+EvKmoha5Dpqam+Mc//oHDhw+rtRyfPXuGo0ePNmpfbdq0wYcffohp06bh8ePHqtHhysucmtKyrOmnn34CY0z18927d3H+/Hm1kdwdO3ZEZmam2ojywsJCnD9/Xm1fjcnWv39/GBsbY+/evWrrHzx4gNOnT+O99957nbdTi7KIvnx52LZt2zTeh0gkqvM9ffDBB7h+/Treeust9OnTp9byckFvjHv37mHw4MGorq7G6dOnGyyE2jRkyBAAqPW7SUlJwa1bt2r9biZOnIhHjx7h+PHj2Lt3LwICAtTukeDt7Q0DAwPcvn27zuPUp0+fOnPY29tj4cKF6NmzJ9LS0rT7Jgl5A1ELXce++uor+Pj4YOjQofjss89QXV2NVatWwdTUFI8fP673ucOHD0ePHj3Qp08fWFlZ4e7du1i/fj1kMhm6du0KAOjZsycAYMOGDQgJCYFQKISDgwPMzMxeK29+fj4CAgIwZcoUFBUVYfHixTAyMsL8+fNV2wQHB2Pbtm346KOPMGXKFBQWFmL16tW1blRjZmYGmUyGI0eO4L333oO5uTksLS1Vl7bV1KZNGyxatAgLFizAhAkTMG7cOBQWFmLJkiUwMjLC4sWLX+v9vGzAgAFo27YtPv30UyxevBhCoRA//vgjrly5ovE+evbsicTERBw9ehQSiQRmZmZwcHDAl19+ifj4eAwYMAAzZ86Eg4MDnj9/jjt37uD48ePYunXra7Wq8/Pz4eHhgZycHERFRSE/P1/tsjJbW1tOW+sODg74+OOP8c0330BPTw++vr64c+cOFi1ahA4dOmDOnDlq23t5ecHW1hZTp05Fbm6uWnc78OIL4ZdffokvvvgCf/31F3x8fNC2bVvk5eXh4sWLMDU1xZIlS3D16lVMnz4do0ePRteuXWFoaIjTp0/j6tWr+Pzzzzl7v4S8MfgelfffKCYmhvXq1YsZGhoyOzs7tnLlStUlRzW9PPJ87dq1bMCAAczS0lL13LCwMHbnzh21582fP59JpVKmp6fHAKgu6ZHJZOz999+vM9OrRrn/8MMPbObMmczKyoqJRCL27rvvstTU1FrP3717N+vWrRszMjJi3bt3ZwcOHKg1yp2xF5ftvfPOO0wkEjEAqtes67I1xhjbuXOn6liJxWLm7++vdhkTYy9GuZuamtbKVNcxrcv58+dZ//79mYmJCbOysmKTJ09maWlpqkvUlF41yj09PZ0NHDiQmZiYMABqI/7//vtvNnPmTNapUycmFAqZubk5c3FxYV988QUrKSlhjP1n1PmaNWsazMrYf343r1rquoqgple9nnK/Bw8eVFtf1/uurq5mq1atYvb29kwoFDJLS0v20Ucfsfv379f5mgsWLFBdBllzZH1N0dHRzMPDg7Vu3ZqJRCImk8nYhx9+yE6dOsUYYywvL4+FhoYyR0dHZmpqylq1asV69erF1q1bx6qqqho6bIS0eALGavSnEkIIIeSNROfQCSGEkBaACjohhBBSh2PHjsHBwQFdu3Zt1D0e+EJd7oQQQshLqqqq0L17dyQkJKB169bo3bs3kpOTG3WvB12jFjohhBDykosXL8LJyQnt27eHmZkZhg0bhhMnTvAdq15U0AkhhLQ4Z86cwfDhwyGVSiEQCBAdHV1rm82bN6NTp04wMjKCi4sLzp49q3rs0aNHaN++vepnW1tbPHz4UBfRXxsVdEIIIS1OaWkpnJ2dsWnTpjofP3DgAGbPno0vvvgCly9fxrvvvgtfX1/VnAV1nY1u7N0cdU3jG8tUVFSo3QlMoVDg8ePHsLCwaPZvkhBCiDrGGJ49ewapVKo2SY+2PX/+HJWVlVrZF2OsVr0RiUS17vQIAL6+vqqJkOoSGRmJsLAwTJ48GQCwfv16nDhxAlu2bMGKFSvQvn17tRb5gwcP0K9fP628D85oesG68iYdtNBCCy20tJzlVTcD0oby8nJmAoHWsrZq1arWuoZupMQYYwDYL7/8ovq5oqKC6evrs8OHD6ttN3PmTDZo0CDGGGNyuZx16dKFPXjwgBUXF7MuXbqwgoICbR4erdO4hT5//nzMnTtX9XNRURHs7OyQmZnZbEb9yeVyJCQkwMPD47WmoeQCZdIMZdIMZdIMZWrY48ePYW9v/9q3hdZEZWUlysAQDFMYomk9uZVg+KGkBPfv31e7rXRdrfOGFBQUoLq6Gu3atVNb365dO9WEVAYGBli7di08PDygUCjwz3/+U21SquZI44L+qm4Nc3PzZvMm5XI5TExMYGFh0Sz+YADKpCnKpBnKpBnKpDldnDI1gh4Mm/g6ev93Trt169a15ol4XS+/d/ZSl76fnx/8/Py08lq6QIPiCCGE/FextLSEvr5+remh8/Pza7Xa3yRU0AkhhHBKT0uLthgaGsLFxQXx8fFq65WzI76paPpUQgghnBIIAL0m9uwLAIABffv2hb6+PqZNm4Zp06a9cvuSkhL8+eefqp+zs7ORnp4Oc3Nz2NnZYe7cuQgODkafPn3Qv39/bN++Hffu3cOnn37atKA8ooJOCCHkjZGSkqLROfTU1FR4eHioflYO6g4JCcH333+PwMBAFBYW4ssvv0ROTg569OiB48ePQyaTcZada1TQCSGEcEobXeaNff7gwYPrvDlMTVOnTsXUqVNfP1QzQwWdEEIIp/QEAug1dZQ78OLKc/JKNCiOEEIIaQGohU4IIYRTfHS5/zeigk4IIYRTeloY5U4FvWF0jAghhLwx+vbti+7du+Pbb7/lO0qzw1lBb2guWsYYIiIiIJVKYWxsjMGDB+PGjRtq21RUVGDGjBmwtLSEqakp/Pz88ODBA61lfPbsGWbPng2ZTAZjY2MMGDAAKSkpqsfz8vIQGhoKqVQKExMT+Pj4ICsrS2uv/zqZSkpKMH36dNja2sLY2BjdunXDli1beM0kEAjqXNasWcNbJgC4desW/Pz8IBaLYWZmBldXV9XUiHxkCg0NrXWMXF1dOcujSaaaPvnkEwgEAqxfv57XTBEREXB0dISpqSnatm0LT09PJCcn85ZJLpdj3rx56NmzJ0xNTSGVSjFhwgQ8evSIt0wAcPjwYXh7e8PS0hICgQDp6emc5mkKbd5YJiUlBTdv3qz3GvT/VpwV9Ibmol29ejUiIyOxadMmpKSkwMbGBkOHDsWzZ89U28yePRu//PIL9u/fj3PnzqGkpAQffPABqqurtZJx8uTJiI+Pxw8//IBr167By8sLnp6eePjwIRhjGDFiBP766y8cOXIEly9fhkwmg6enJ0pLS7Xy+o3NBABz5sxBXFwc9u7di1u3bmHOnDmYMWMGjhw5wlumnJwcteW7776DQCDAqFGjeMt0+/ZtuLm5wdHREYmJibhy5QoWLVoEIyMj3jIBgI+Pj9qxOn78OGd5NM0EANHR0UhOToZUKuU0jyaZ7O3tsWnTJly7dg3nzp1Dx44d4eXlhb///puXTGVlZUhLS8OiRYuQlpaGw4cPIzMzk/N7fDd0nEpLSzFw4ECsXLmS0xza8Kov/Y1dSANed5q2oqIiBkCj6eTw0tR1CoWC2djYsJUrV6rWPX/+nInFYrZ161bGGGNPnz5lQqGQ7d+/X7XNw4cPmZ6eHouLi6vzdSorK1l0dDSrrKxsMFNZWRnT19dnx44dU1vv7OzMvvjiC5aRkcEAsOvXr6seq6qqYubm5mzHjh0N7p+LTIwx5uTkxL788ku1x3v37s0WLlzIW6aX+fv7syFDhmich4tMgYGB7KOPPmpUBq4zhYSEMH9//2aViTHGHjx4wNq3b8+uX7/OZDIZW7duHe+ZalL+W3Pq1Klmk+nixYsMALt79y7vmbKzsxkAdvnyZY2zMMZYQUEBA8CKiooa9bzGUP7uwg3EbKGwTZOWcAMx53nfdLycQ8/OzkZubi68vLxU60QiEdzd3XH+/HkAwKVLlyCXy9W2kUql6NGjh2qbpqiqqkJ1dXWtFpuxsTHOnTuHiooKAFB7XF9fH4aGhjh37lyTX/91MgGAm5sbYmJiVL0ICQkJyMzMhLe3N2+ZasrLy0NsbCzCwsI4yaNJJoVCgdjYWNjb28Pb2xvW1tbo169frdM+usyklJiYCGtra9jb22PKlCnIz8/nNZNCoUBwcDDCw8Ph5OTEWZbGZKqpsrIS27dvh1gshrOzc7PIBLyYPlogEKBNmzbNJhMhvBR05Qw39c1Fm5ubC0NDQ7Rt2/aV2zSFmZkZ+vfvj6+++gqPHj1CdXU19u7di+TkZOTk5MDR0REymQzz58/HkydPUFlZiZUrVyI3Nxc5OTlNfv3XyQQAGzduRPfu3WFrawtDQ0P4+Phg8+bNcHNz4y1TTbt374aZmRlGjhzJSR5NMuXn56OkpAQrV66Ej48PTp48iYCAAIwcORJJSUm8ZAIAX19f/Pjjjzh9+jTWrl2LlJQUDBkyRPXlkY9Mq1atgoGBAWbOnMlJhtfJBADHjh1Dq1atYGRkhHXr1iE+Ph6Wlpa8ZlJ6/vw5Pv/8cwQFBWltGs+mZmrulKPcm7qQ+vE6yr2huWjrosk2mvrhhx/AGEP79u0hEomwceNGBAUFQV9fH0KhEIcOHUJmZibMzc1hYmKCxMRE+Pr6Ql9fXyuv39hMwIuCfuHCBcTExODSpUtYu3Ytpk6dilOnTvGWqabvvvsO48eP5/RcdUOZFAoFAMDf3x9z5szB22+/jc8//xwffPABtm7dyksmAAgMDMT777+PHj16YPjw4fj111+RmZmJ2NhYXjJdunQJGzZswPfff6/T85OafJ48PDyQnp6O8+fPw8fHB2PGjOG0N0PTz7hcLsfYsWOhUCiwefNmzvI0JtObQICmD4ijet4wXgq6jY0NANQ7F62NjQ0qKyvx5MmTV27TVG+99RaSkpJQUlKC+/fv4+LFi5DL5ejUqRMAwMXFBenp6Xj69ClycnIQFxeHwsJC1eNcqC9TeXk5FixYgMjISAwfPhy9evXC9OnTERgYiK+//pqXTDWdPXsWGRkZmDx5MmdZNMlkaWkJAwMDdO/eXe053bp143SUu6bHSUkikUAmk3F65UR9mc6ePYv8/HzY2dnBwMAABgYGuHv3Lj777DN07NiRl0xKpqam6NKlC1xdXREVFQUDAwNERUXxmkkul2PMmDHIzs5GfHw8Z63zxmT6b0SXrb0aLwW9U6dOsLGxUZuLtrKyEklJSaq5aF1cXCAUCtW2ycnJwfXr17U+X62pqSkkEgmePHmCEydOwN/fX+1xsVgMKysrZGVlITU1tdbjXKgrk1wuh1wuh56e+q+tZqtU15lqioqKgouLC2fnOjXNZGhoiL59+yIjI0Nt28zMTJ3MpNTQcVIqLCzE/fv3IZFIeMkUHByMq1evIj09XbVIpVKEh4fjxIkTvGR6FcYYZ6cmNMmkLOZZWVk4deoULCwsOM/SUKY3ifJe7k1dALpsrT6c3SmuobloZ8+ejeXLl6Nr167o2rUrli9fDhMTEwQFBQF4UUTDwsLw2WefwcLCAubm5vif//kf9OzZE56enlrJeOLECTDG4ODggD///BPh4eFwcHDAxIkTAQAHDx6ElZUV7OzscO3aNcyaNQsjRoxQG6inbfVlEgqFcHd3R3h4OIyNjSGTyZCUlIQ9e/YgMjKSl0xKxcXFOHjwINauXctZjsZkCg8PR2BgIAYNGgQPDw/ExcXh6NGjSExM5CVTSUkJIiIiMGrUKEgkEty5cwcLFiyApaUlAgICeMkkFAprFSahUAgbGxs4ODjwkqm0tBTLli2Dn58fJBIJCgsLsXnzZjx48ACjR4/mJVNVVRU+/PBDpKWl4dixY6iurlb1Lpqbm8PQ0FDnmQDg8ePHuHfvnup6eOUXWBsbG1UvaHNBt37VkdcdHt/QZWsJCQkML+bGUVtCQkIYYy8uXVu8eDGzsbFhIpGIDRo0iF27dk1tH+Xl5Wz69OnM3NycGRsbsw8++IDdu3fvlZkac1kIY4wdOHCAde7cmRkaGjIbGxs2bdo09vTpU9XjGzZsYLa2tkwoFDI7Ozu2cOFCVlFRodG+ucqUk5PDQkNDmVQqZUZGRszBwYGtXbuWKRQK3jIxxti2bduYsbFxrfV8ZoqKimJdunRhRkZGzNnZmUVHR/OWqaysjHl5eTErKyvV5ykkJKTezzPXmerC9WVrDWUqLy9nAQEBTCqVMkNDQyaRSJifnx+7ePEib5mUl4XVtSQkJPCSiTHGdu3aVWemxYsXa7R/XV62ttCwDVsqatukZaFhG7psrQECxhqYMPYViouLIRaLUVBQoNPup/rI5XIcP34cw4YNg1Ao5DsOAMqkKcqkGcqkGcrUsMLCQlhaWqKoqIiz8QDKOvEvURsYNXHg5XPG8GXFU07zvulochZCCCGcoi533aBjRAghhLQA1EInhBDCKT0IoNfEK8mp9dkwOkaEEEI4pc07xdF16K9GLXRCCCGc0uY59JSUFBoU9wrUQieEEEJaAGqhE0II4ZQ2Jleh1mfDqKATQgjh1IvJWZpW0QV4rVum/FehLz2EEEJIC0AtdEIIIZyiLnfdoIJOCCGEU3SnON2gY0QIIYS0ABq30CsqKtTmIy4uLgYA1RzdzYEyR3PJA1AmTVEmzVAmzVCmhukyB3W564bGs61FRERgyZIltdbv27cPJiYmWg9GCCGEO2VlZQgKCtLJbGsbTM1hLGhaSS5nCswqfQx7e3vo6+tj2rRpmDZtmpaStgwaF/S6WugdOnRATk5Os5o+NT4+HkOHDm0W0xMClElTlEkzlEkzlKlhhYWFkEgkb1xBp+lTX03jLneRSASRSFRrvVAobBYfzpook2Yok2Yok2Yok2aaSyZdZqAud92gUe6EEEI4Jfi/pan7IPWjgk4IIYRT1ELXDTpGhBBCSAtALXRCCCGc0oOgyfdyb+rz/xtQQSeEEMIp6nLXDTpGhBBCSAtALXRCCCGcejF9atP3QepHBZ0QQgin6LI13aAud0IIIaQFoIJOCCGEU3oCgVYWAOjbty+6d++Ob7/9lud31fzopKBXVVVh4cKF6NSpE4yNjdG5c2d8+eWXUCgUqm0OHz4Mb29vWFpaQiAQID09nddMcrkc8+bNQ8+ePWFqagqpVIoJEybg0aNHvGUCXkyS4+joCFNTU7Rt2xaenp5ITk7mNVNNn3zyCQQCAdavX89rptDQUAgEArXF1dWV10wAcOvWLfj5+UEsFsPMzAyurq64d+8eb5lePkbKZc2aNbxlKikpwfTp02FrawtjY2N069YNW7Zs4SSPppny8vIQGhoKqVQKExMT+Pj4ICsri7NMAPDs2TPMnj0bMpkMxsbGGDBgAFJSUlSPM8YQEREBqVQKY2NjDB48GDdu3OA00+sSaGkBgJSUFNy8eZMmZqmDTs6hr1q1Clu3bsXu3bvh5OSE1NRUTJw4EWKxGLNmzQIAlJaWYuDAgRg9ejSmTJnCe6aysjKkpaVh0aJFcHZ2xpMnTzB79mz4+fkhNTWVl0wAYG9vj02bNqFz584oLy/HunXr4OXlhT///BNWVla8ZFKKjo5GcnIypFKp1nO8TiYfHx/s2rVL9bOhoSGvmW7fvg03NzeEhYVhyZIlEIvFuHXrFoyMjHjLlJOTo/acX3/9FWFhYRg1ahRvmebMmYOEhATs3bsXHTt2xMmTJzF16lRIpVL4+/vrPBNjDCNGjIBQKMSRI0fQunVrREZGwtPTEzdv3oSpqanWMwHA5MmTcf36dfzwww+QSqXYu3ev6jXbt2+P1atXIzIyEt9//z3s7e2xdOlSDB06FBkZGTAzM+MkE2nm2GsqKipiAFhBQUGD277//vts0qRJautGjhzJPvroo1rbZmdnMwDs8uXLjc5UWVnJoqOjWWVlpVYzKV28eJEBYHfv3m02mZS/h1OnTvGa6cGDB6x9+/bs+vXrTCaTsXXr1mmch4tMISEhzN/fv1EZuM4UGBhY7++Sj0wv8/f3Z0OGDOE1k5OTE/vyyy/VtunduzdbuHAhL5kyMjIYAHb9+nXV41VVVczc3Jzt2LGDk0xlZWVMX1+fHTt2TG29s7Mz++KLL5hCoWA2NjZs5cqVqseeP3/OxGIx27p1q0Z5CgoKGABWVFSk8XtoLOW/T9+LLdnPbaybtHwvtuQ875tOJ13ubm5u+O2335CZmQkAuHLlCs6dO4dhw4bp4uW1lqmoqAgCgQBt2rRpFpkqKyuxfft2iMViODs785ZJoVAgODgY4eHhcHJy4iRHYzMBQGJiIqytrWFvb48pU6YgPz+ft0wKhQKxsbGwt7eHt7c3rK2t0a9fP0RHR/OW6WV5eXmIjY1FWFgYr5nc3NwQExODhw8fgjGGhIQEZGZmwtvbm5dMymmja/ak6Ovrw9DQEOfOneMkU1VVFaqrq2v13hgbG+PcuXPIzs5Gbm4uvLy8VI+JRCK4u7vj/PnznGRqCm12uZNX00mX+7x581BUVARHR0fo6+ujuroay5Ytw7hx43Tx8lrJ9Pz5c3z++ecICgribC5eTTMdO3YMY8eORVlZGSQSCeLj42FpaclbplWrVsHAwAAzZ87kJMPrZPL19cXo0aMhk8mQnZ2NRYsWYciQIbh06VKd0wBznSk/Px8lJSVYuXIlli5dilWrViEuLg4jR45EQkIC3N3ddZ7pZbt374aZmRlGjhyp9SyNybRx40ZMmTIFtra2MDAwgJ6eHnbu3Ak3NzdeMjk6OkImk2H+/PnYtm0bTE1NERkZidzc3FqnLLTFzMwM/fv3x1dffYVu3bqhXbt2+Omnn5CcnIyuXbsiNzcXANCuXTu157Vr1w53797lJFNTKMdmNGkfVNIbpJOCfuDAAezduxf79u2Dk5MT0tPTMXv2bEilUoSEhOgiQpMyyeVyjB07FgqFAps3b+Y9k4eHB9LT01FQUIAdO3ZgzJgxSE5OhrW1tc4zXbp0CRs2bEBaWlqT/2C1lQkAAgMDVdv36NEDffr0gUwmQ2xsLCcFq6FMygFW/v7+mDNnDgDg7bffxvnz57F161ZOCnpj/+6+++47jB8/nrNz+ppm2rhxIy5cuICYmBjIZDKcOXMGU6dOhUQigaenp84zCYVCHDp0CGFhYTA3N4e+vj48PT3h6+ur9Sw1/fDDD5g0aRLat28PfX199O7dG0FBQUhLS1Nt8/LfHGNMZ3+HpBl63b76xpxDt7W1ZZs2bVJb99VXXzEHB4da2+rqHLqmmSorK9mIESNYr169NHqvusj0si5durDly5fzkmndunVMIBAwfX191QKA6enpMZlMxkumV+nSpYvaOUddZqqoqGAGBgbsq6++Utvmn//8JxswYAAvmWo6c+YMA8DS09M1zsJFprKyMiYUCmudOw4LC2Pe3t68ZKrp6dOnLD8/nzHG2D/+8Q82depUTjLVVFJSwh49esQYY2zMmDFs2LBh7Pbt2wwAS0tLU9vWz8+PTZgwQaP96vIc+g9trNihtu2atPzQxorOoTdAJ+fQy8rKoKen/lL6+vqvvPRJFzTJJJfLMWbMGGRlZeHUqVOwsLDgPVNdGGOq83y6zhQcHIyrV68iPT1dtUilUoSHh+PEiRO8ZKpLYWEh7t+/D4lEwksmQ0ND9O3bFxkZGWrbZGZmQiaT8ZKppqioKLi4uHA2FkPTTHK5HHK5XKf/XjTmOInFYlhZWSErKwupqamcjLp/mampKSQSCZ48eYITJ07A398fnTp1go2NDeLj41XbVVZWIikpCQMGDOA8U2PpaWkh9dNJl/vw4cOxbNky2NnZwcnJCZcvX0ZkZCQmTZqk2ubx48e4d++e6jpv5T98NjY2sLGx0XmmqqoqfPjhh0hLS8OxY8dQXV2tOm9lbm7OySVQDWUqLS3FsmXL4OfnB4lEgsLCQmzevBkPHjzA6NGjtZ5Hk0wWFha1vugIhULY2NjAwcGBl0wlJSWIiIjAqFGjIJFIcOfOHSxYsACWlpYICAjgJRMAhIeHIzAwEIMGDYKHhwfi4uJw9OhRJCYm8pYJAIqLi3Hw4EGsXbuWkxyNydS6dWu4u7sjPDwcxsbGkMlkSEpKwp49exAZGclLJgA4ePAgrKysYGdnh2vXrmHWrFkYMWKE2qA0bTtx4gQYY3BwcMCff/6J8PBwODg4YOLEiRAIBJg9ezaWL1+Orl27omvXrli+fDlMTEwQFBTEWSbSzL1u074xXe7FxcVs1qxZzM7OjhkZGbHOnTuzL774glVUVKi22bVrFwNQa1m8eLHGmRrTpdVQJmXXf11LQkICL5nKy8tZQEAAk0qlzNDQkEkkEubn58cuXryocR5tZ6oL15etNZSprKyMeXl5MSsrKyYUCpmdnR0LCQlh9+7d4y2TUlRUFOvSpQszMjJizs7OLDo6mvdM27ZtY8bGxuzp06eNysJVppycHBYaGsqkUikzMjJiDg4ObO3atUyhUPCWacOGDczW1lb1eVq4cGG9fwNNzcQYYwcOHGCdO3dmhoaGzMbGhk2bNk3td6RQKNjixYuZjY0NE4lEbNCgQezatWsa59Fll/u+tlYs2rxdk5Z9banLvSECxhh7nS8CxcXFEIvFKCgo4LwrWlNyuRzHjx/HsGHDIBQK+Y4DgDJpijJphjJphjI1rLCwEJaWligqKuLsyh1lnfiprTVMBE3rNC9jCox7ks9p3jcdnZYghBBCWgCaPpUQQginaPpU3aCCTgghhFNU0HWDutwJIYS8MWj61FejFjohhBBO6QHQa2ITW+//hm+npKTQoLhXoIJOCCGEU4L/+6+p+yD1o4JOCCGEc1SOuUfn0AkhhJAWgFrohBBCOCUQvFiaug9SPyrohBBCOEWXrekGdbkTQgghLQC10AkhhHBKDwLoNbGN3dTn/zfQuKBXVFSozbldXFwM4D/zFzcHyhzNJQ9AmTRFmTRDmTRDmRqmyxzU5a4bGs+2FhERgSVLltRav2/fPpiYmGg9GCGEEO6UlZUhKChIJ7OtHTG3gale087wlioU8H+cS7Ot1UPjgl5XC71Dhw7IyclpVtOnxsfHY+jQoc1iekKAMmmKMmmGMmmGMjWssLAQEolEJwU9xkI7Bd2vkAp6fTTucheJRBCJRLXWC4XCZvHhrIkyaYYyaYYyaYYyaaa5ZNJlBupy1w0a5U4IIYS0ADTKnRBCCKfoXu66QQWdEEIIp/QEWphtjep5g6igE0II4RSdQ9cNOodOCCGEtADUQieEEMIpaqHrBhV0QgghnKJBcbpBXe6EEEJIC0AtdEIIIZyi+dB1g1rohBBCOKWnpQUA+vbti+7du+Pbb7/V5Vt4I+ikoFdVVWHhwoXo1KkTjI2N0blzZ3z55ZdQKBSqbRhjiIiIgFQqhbGxMQYPHowbN25wmqtjx44QCAS1lmnTpgEA8vLyEBoaCqlUChMTE/j4+CArK4vXTCUlJZg+fTpsbW1hbGyMbt26YcuWLbzlqesxgUCANWvW8JYJAG7dugU/Pz+IxWKYmZnB1dUV9+7d4y1TaGhorcdcXV05y6NJppo++eQTCAQCrF+/ntdMERERcHR0hKmpKdq2bQtPT08kJyfzlkkul2PevHno2bMnTE1NIZVKMWHCBDx69Ii3TABw+PBheHt7w9LSEgKBAOnp6ZzmaU5SUlJw8+bNOj/H/+100uW+atUqbN26Fbt374aTkxNSU1MxceJEiMVizJo1CwCwevVqREZG4vvvv4e9vT2WLl2KoUOHIiMjA2ZmZpzkSklJQXV1tern69evY+jQoRg9ejQYYxgxYgSEQiGOHDmC1q1bIzIyEp6enrh58yZMTU11ngkA5syZg4SEBOzduxcdO3bEyZMnMXXqVEilUvj7++s8T05Ojtr2v/76K8LCwjBq1CitZ9E00+3bt+Hm5oawsDAsWbIEYrEYt27dgpGREW+ZAMDHxwe7du1S/WxoaMhZHk0zAUB0dDSSk5MhlUo5zaNJJnt7e2zatAmdO3dGeXk51q1bBy8vL/z555+wsrLSeaaysjKkpaVh0aJFcHZ2xpMnTzB79mz4+fkhNTWVkzwNZQKA0tJSDBw4EKNHj8aUKVM4y6EtNMpdR9hrKioqYgBYQUFBg9u+//77bNKkSWrrRo4cyT766CPGGGMKhYLZ2NiwlStXqh5//vw5E4vFbOvWrRpnqqysZNHR0ayyslLj59Q0a9Ys9tZbbzGFQsEyMjIYAHb9+nXV41VVVczc3Jzt2LGDl0yMMebk5MS+/PJLtW169+7NFi5cqJNML+d5mb+/PxsyZEij96vNTIGBgarPVlNoM1NISAjz9/dvVpkYY+zBgwesffv27Pr160wmk7F169bxnqkm5b8zp06dajaZLl68yACwu3fv8p4pOzubAWCXL19u9D4LCgoYAFZUVNTo52pK+fv7zbo9S7bp0KTlN+v2nOd90+mky93NzQ2//fYbMjMzAQBXrlzBuXPnMGzYMABAdnY2cnNz4eXlpXqOSCSCu7s7zp8/r4uIqKysxN69ezFp0iQIBALVVLE1W3X6+vowNDTEuXPneMkEvDiWMTExePjwIRhjSEhIQGZmJry9vXnJU1NeXh5iY2MRFhbGeZZXZVIoFIiNjYW9vT28vb1hbW2Nfv36ITo6mrdMSomJibC2toa9vT2mTJmC/Px8XjMpFAoEBwcjPDwcTk5OOstSX6aXH9++fTvEYjGcnZ2bRSYAKCoqgkAgQJs2bZpNJkIAHZ1DnzdvHsaNGwdHR0cIhUK88847mD17NsaNGwcAyM3NBQC0a9dO7Xnt2rVTPca16OhoPH36FKGhoQAAR0dHyGQyzJ8/H0+ePEFlZSVWrlyJ3NzcWt3MusoEABs3bkT37t1ha2sLQ0ND+Pj4YPPmzXBzc+MlT027d++GmZkZRo4cyXmWV2XKz89HSUkJVq5cCR8fH5w8eRIBAQEYOXIkkpKSeMkEAL6+vvjxxx9x+vRprF27FikpKRgyZIjqiyMfmVatWgUDAwPMnDlTJxk0yQQAx44dQ6tWrWBkZIR169YhPj4elpaWvGZSev78OT7//HMEBQXpbE7uhjK9CQRaWkj9dHIO/cCBA9i7dy/27dsHJycnpKenY/bs2ZBKpQgJCVFt9/K3T8aYzr6RRkVFwdfXV3UeUSgU4tChQwgLC4O5uTn09fXh6ekJX19fneSpKxPwoqBfuHABMTExkMlkOHPmDKZOnQqJRAJPT0+d56npu+++w/jx4zk9V91QJuVAS39/f8yZMwcA8Pbbb+P8+fPYunUr3N3ddZ4JAAIDA1X/36NHD/Tp0wcymQyxsbE6+QL0cqZLly5hw4YNSEtL463V96rPk4eHB9LT01FQUIAdO3ZgzJgxSE5OhrW1NW+ZAEAul2Ps2LFQKBTYvHkz51k0yfSmoHPouqGTgh4eHo7PP/8cY8eOBQD07NkTd+/exYoVKxASEgIbGxsAL1rqEolE9bz8/PxarXYu3L17F6dOncLhw4fV1ru4uCA9PR1FRUWorKyElZUV+vXrhz59+vCSqby8HAsWLMAvv/yC999/HwDQq1cvpKen4+uvv+a0oL/qGCmdPXsWGRkZOHDgAGcZNMlkaWkJAwMDdO/eXW3bbt266eRUSUPHSUkikUAmk3F+1cSrMp09exb5+fmws7NTrauursZnn32G9evX486dOzrPpGRqaoouXbqgS5cucHV1RdeuXREVFYX58+fzlkkul2PMmDHIzs7G6dOnddY61/Tz1NwpR+k3dR+kfjrpci8rK4OenvpL6evrq1pTnTp1go2NDeLj41WPV1ZWIikpCQMGDOA8365du2Btba0qki8Ti8WwsrJCVlYWUlNTORlNrkkmuVwOuVxe77HUZZ6aoqKi4OLiorNzna/KZGhoiL59+yIjI0Nt28zMTMhkMl4y1aWwsBD3799X+wKry0zBwcG4evUq0tPTVYtUKkV4eDhOnDjBS6ZXYYzp5NTEqzIpi3lWVhZOnToFCwsLzrM0lImQuuikhT58+HAsW7YMdnZ2cHJywuXLlxEZGYlJkyYBePHNa/bs2Vi+fDm6du2Krl27Yvny5TAxMUFQUBCn2RQKBXbt2oWQkBAYGKgfjoMHD8LKygp2dna4du0aZs2ahREjRqgN3tNlptatW8Pd3R3h4eEwNjaGTCZDUlIS9uzZg8jISJ3nUSouLsbBgwexdu1azjI0JlN4eDgCAwMxaNAgeHh4IC4uDkePHkViYiIvmUpKShAREYFRo0ZBIpHgzp07WLBgASwtLREQEMBLJgsLi1qFSSgUwsbGBg4ODrxkKi0txbJly+Dn5weJRILCwkJs3rwZDx48qHWpna4yVVVV4cMPP0RaWhqOHTuG6upq1bgec3NzTi89rO8z/vjxY9y7d091PbzyC6yNjY2qx7M5ofnQdeR1h8c35rK14uJiNmvWLGZnZ8eMjIxY586d2RdffMEqKipU2ygUCrZ48WJmY2PDRCIRGzRoELt27VqjMr3OZSEnTpxgAFhGRkatxzZs2MBsbW2ZUChkdnZ2bOHChWqZ+ciUk5PDQkNDmVQqZUZGRszBwYGtXbv2lZfYaCNTfXkYY2zbtm3M2NiYPX36VOMMXGeKiopiXbp0YUZGRszZ2ZlFR0fzlqmsrIx5eXkxKysr1WcpJCSE3bt3j7dMddHVZWuvylReXs4CAgKYVCplhoaGTCKRMD8/P3bx4kXeMikvC6trSUhI4CUTY4zt2rWrzkyLFy/WOI8uL1s7K+3ALtvKmrSclXagy9YaIGCMsdf5IlBcXAyxWIyCggKddkHVRy6X4/jx4xg2bBiEQiHfcQBQJk1RJs1QJs1QpoYVFhbC0tISRUVFnI0JUNaJs9IOaKXXtDO8JQoF3n10n9O8bzqanIUQQginaHIW3aCCTgghhFNU0HWDZlsjhBBCWgBqoRNCCOEUXYeuG1TQCSGEcIq63HWDutwJIYSQFoBa6IQQQjhFXe66QQWdEEIIp6jLXTeooBNCCOGUnkAAvSZW5KY+/78BnUMnhBBCWgBqoRNCCOEUdbnrhsYFvaKiQm0Kw+LiYgD/mdKzOVDmaC55AMqkKcqkGcqkGcrUMF3mEEALg+JAFb0hGk/OEhERgSVLltRav2/fPpiYmGg9GCGEEO6UlZUhKChIJ5OzXOrcCa30mzg5S7UCLn9l0+Qs9dC4oNfVQu/QoQNycnKa1Wxr8fHxGDp0aLOYzQigTJqiTJqhTJqhTA0rLCyERCLRSUFP66Kdgt77Tyro9dG4y10kEkEkEtVaLxQKm8WHsybKpBnKpBnKpBnKpJnmkkmnGbRwHTqdRG8YjXInhBBCWgAa5U4IIYRTNMpdN6igE0II4dSLgt7UW79qKUwLRl3uhBBCSAtABZ0QQginlF3uTV2am4CAALRt2xYffvgh31EAUEEnhBDCMeW93Ju6NDczZ87Enj17+I6hQgWdEEIIp1pqC93DwwNmZmZ8x1Chgk4IIaTFOXPmDIYPHw6pVAqBQIDo6Oha22zevBmdOnWCkZERXFxccPbsWd0H1SIa5U4IIYRTAi3cWKaxzy8tLYWzszMmTpyIUaNG1Xr8wIEDmD17NjZv3oyBAwdi27Zt8PX1xc2bN2FnZwcAcHFxUbtDqtLJkychlUpf741wiAo6IYQQTmnzOnTlxGBKr7qLqa+vL3x9fV+5v8jISISFhWHy5MkAgPXr1+PEiRPYsmULVqxYAQC4dOlS00LrGHW5E0IIeWN06NABYrFYtSiLb2NUVlbi0qVL8PLyUlvv5eWF8+fPayuqzumsoD98+BAfffQRLCwsYGJigrffflvt28/hw4fh7e0NS0tLCAQCpKen85pJLpdj3rx56NmzJ0xNTSGVSjFhwgQ8evSIt0zAi1nvHB0dYWpqirZt28LT0xPJycm8Zqrpk08+gUAgwPr163nNFBoaqurmUy6urq68ZgKAW7duwc/PD2KxGGZmZnB1dcW9e/d4y/TyMVIua9as4S1TSUkJpk+fDltbWxgbG6Nbt27YsmULZ3k0yZSXl4fQ0FBIpVKYmJjAx8cHWVlZnOXp2LFjnb+XadOmAQAYY4iIiIBUKoWxsTEGDx6MGzducJanqbQ5KO7+/fsoKipSLfPnz290noKCAlRXV6Ndu3Zq69u1a4fc3FyN9+Pt7Y3Ro0fj+PHjsLW1RUpKSqOzaJNOutyfPHmCgQMHwsPDA7/++iusra1x+/ZttGnTRrVNaWkpBg4ciNGjR2PKlCm8ZyorK0NaWhoWLVoEZ2dnPHnyBLNnz4afnx9SU1N5yQQA9vb22LRpEzp37ozy8nKsW7cOXl5e+PPPP2FlZcVLJqXo6GgkJydzfm5J00w+Pj7YtWuX6mdDQ0NeM92+fRtubm4ICwvDkiVLIBaLcevWLRgZGfGWKScnR+05v/76K8LCwuo856irTHPmzEFCQgL27t2Ljh074uTJk5g6dSqkUin8/f11nokxhhEjRkAoFOLIkSNo3bo1IiMj4enpiZs3b8LU1FTrmVJSUlBdXa36+fr16xg6dChGjx4NAFi9ejUiIyPx/fffw97eHkuXLsXQoUORkZHRrEZdKwn0BBDoNfEcOnvx/NatW2tttrWXz8szxhp1rv7EiRNayaE17DUVFRUxAKygoKDBbefNm8fc3Nw02m92djYDwC5fvtzoTJWVlSw6OppVVlZqNZPSxYsXGQB29+7dZpNJ+Xs4deoUr5kePHjA2rdvz65fv85kMhlbt26dxnm4yBQSEsL8/f0blYHrTIGBgeyjjz5qVple5u/vz4YMGcJrJicnJ/bll1+qrevduzdbuHAhL5kyMjIYAHb9+nXVuqqqKmZubs527NjBSaaXzZo1i7311ltMoVAwhULBbGxs2MqVK1WPP3/+nInFYrZ161aN91lQUMAAsKKiokbn0ZTy36d/O3dlD3s7Nmn5t3PX184LgP3yyy+qnysqKpi+vj47fPiw2nYzZ85kgwYNaurb5o1OutxjYmLQp08fjB49GtbW1njnnXewY8cOXby0VjMVFRVBIBDU2TrlI1NlZSW2b98OsVgMZ2dn3jIpFAoEBwcjPDwcTk5OnORobCYASExMhLW1Nezt7TFlyhTk5+fzlkmhUCA2Nhb29vbw9vaGtbU1+vXrV+elNLrK9LK8vDzExsYiLCyM10xubm6IiYnBw4cPwRhDQkICMjMz4e3tzUsm5Sjnmj0p+vr6MDQ0xLlz5zjJVFNlZSX27t2LSZMmQSAQIDs7G7m5uWrnf0UiEdzd3Zvt+d/mdh26oaEhXFxcEB8fr7Y+Pj4eAwYM0N4L6drrfhNoTAtdJBIxkUjE5s+fz9LS0tjWrVuZkZER2717d61tddVCb0wmxhgrLy9nLi4ubPz48bxnOnr0KDM1NWUCgYBJpVJ28eJFXjMtX76cDR06lCkUCsYY47yFrkmm/fv3s2PHjrFr166xmJgY5uzszJycnNjz5895yZSTk8MAMBMTExYZGckuX77MVqxYwQQCAUtMTOQl08tWrVrF2rZty8rLyzXOw0WmiooKNmHCBAaAGRgYMENDQ7Znzx7eMlVWVjKZTMZGjx7NHj9+zCoqKtiKFSsYAObl5cVJppoOHDjA9PX12cOHDxljjP3+++8MgOpnpSlTpjQqjy5b6Fnv2LPcPt2atGS9Y88AMHt7e9atWze2adOmel/72bNn7PLly+zy5csMgOrvTtnDun//fiYUCllUVBS7efMmmz17NjM1NWV37tzh7HhwTScFXSgUsv79+6utmzFjBnN1da21ra4KemMyVVZWMn9/f/bOO+80+sPPRaaSkhKWlZXF/vjjDzZp0iTWsWNHlpeXx0um1NRU1q5dO7V/XLgu6I353Sk9evSICYVCdujQIV4yPXz4kAFg48aNU9tm+PDhbOzYsbxkepmDgwObPn26xlm4yrRmzRpmb2/PYmJi2JUrV9g333zDWrVqxeLj43nLlJqaypydnRkApq+vz7y9vZmvry/z9fXlJFNNXl5e7IMPPlD9rCzojx49Uttu8uTJzNvbW+P9vqkFXdO8CQkJDECtJSQkRLXNt99+y2QyGTM0NGS9e/dmSUlJHB0J3dBJl7tEIkH37t3V1nXr1o3T0b0N0TSTXC7HmDFjkJ2djfj4eK0NxmhKJlNTU3Tp0gWurq6IioqCgYEBoqKieMl09uxZ5Ofnw87ODgYGBjAwMMDdu3fx2WefoWPHjrxketVzZDIZZyOTG8pkaWkJAwMDnf4dNOY4nT17FhkZGaprcrnSUKby8nIsWLAAkZGRGD58OHr16oXp06cjMDAQX3/9NS+ZgBc3GElPT8fTp0+Rk5ODuLg4FBYWolOnTpxkUrp79y5OnTql9nuxsbEBgFqjsfPz82uN2m4u+OhyHzx4MNiLRqva8v3336u2mTp1Ku7cuYOKigpcunQJgwYN0u4b1zGdFPSBAwciIyNDbV1mZiZkMpkuXr5OmmRSFvOsrCycOnUKFhYWvGeqC2OszrsZ6SJTcHAwrl69ivT0dNUilUoRHh7O2QjQ1zlOhYWFuH//PiQSCS+ZDA0N0bdvX53+HTTmOEVFRcHFxYWzsRiaZpLL5ZDL5dDTU/+nSV9fHwqFgpdMNYnFYlhZWSErKwupqamcjLqvadeuXbC2tsb777+vWtepUyfY2Nionf+trKxEUlJSsz3/+6rLIxu7kAa8btO+MV3uFy9eZAYGBmzZsmUsKyuL/fjjj8zExITt3btXtU1hYSG7fPkyi42NZQDY/v372eXLl1lOTo7GmRrTpdVQJrlczvz8/JitrS1LT09nOTk5qqWiooKXTCUlJWz+/Pnsjz/+YHfu3GGXLl1iYWFhTCQSqY3A1WWmunDd5d5QpmfPnrHPPvuMnT9/nmVnZ7OEhATWv39/1r59e1ZcXMxLJsYYO3z4MBMKhWz79u0sKyuLffPNN0xfX5+dPXuWt0yMvfhbNjExYVu2bNE4B5eZ3N3dmZOTE0tISGB//fUX27VrFzMyMmKbN2/mLdPPP//MEhIS2O3bt1l0dDSTyWRs5MiRGudpbCbGGKuurmZ2dnZs3rx5tR5buXIlE4vF7PDhw+zatWts3LhxTCKRNOrzrcsu979cHNjf/bo3afnLxYHzvG86nRR0xl4M5OrRowcTiUTM0dGRbd++Xe3xXbt21Xm+Y/HixRpnauwfTH2ZlOfy61oSEhJ4yVReXs4CAgKYVCplhoaGTCKRMD8/P04HxTWUqS5cF/SGMpWVlTEvLy9mZWXFhEIhs7OzYyEhIezevXu8ZVKKiopiXbp0YUZGRszZ2ZlFR0fznmnbtm3M2NiYPX36tFFZuMqUk5PDQkNDmVQqZUZGRszBwYGtXbtWNeiSj0wbNmxgtra2qs/TwoULG/XF/nUynThxggFgGRkZtR5TKBRs8eLFzMbGholEIjZo0CB27dq1RuWhgt7yCBhj7HVa9sXFxRCLxSgoKOC8K1pTcrkcx48fx7BhwyAUCvmOA4AyaYoyaYYyaYYyNaywsBCWlpYoKiribGyQsk5k93GEmYF+k/b1rKoanVL/zWneNx3dy50QQgi3tDEg7v9Oofft2xfdu3fHt99+y+tbao5otjVCCCFvjJSUFGqhvwIVdEIIIZziYz70/0ZU0AkhhHBKoPdiaeo+SP3oEBFCCCEtALXQCSGEcIq63HWDCjohhBBu6QleLE3dB6kXdbkTQgh5Y9Bla69GLXRCCCHc0saE5v/3fLps7dWooBNCCOEUnUPXDSrohBBCuEXn0HVC44JeUVGhNkVncXExgP9Md9gcKHM0lzwAZdIUZdIMZdIMZWpYc8lBtEfjyVkiIiKwZMmSWuv37dsHExMTrQcjhBDCnbKyMgQFBelkcpb7g53RuomTsxRXVaND4hWanKUeGhf0ulroHTp0QE5OTrOabS0+Ph5Dhw5tFrMZAZRJU5RJM5RJM5SpYYWFhZBIJDop6A+GvK2Vgm57Op0Kej007nIXiUQQiUS11guFwmbx4ayJMmmGMmmGMmmGMmmmuWRqDhmIdtF16IQQQrjV1LlTa1z21pKuQy8tLdXq/miUOyGEEE4JBAIImjhKXdACr0Nv164dxowZg0mTJsHNza3J+6MWOiGEEMKDn376CUVFRXjvvfdgb2+PlStX4tGjR6+9PyrohBBCuKXFLveWZPjw4Th06BAePXqE//f//h9++uknyGQyfPDBBzh8+DCqqqoatT8q6IQQQrilh//cXOa1F77fBHcsLCwwZ84cXLlyBZGRkTh16hQ+/PBDSKVS/Otf/0JZWZlG+6Fz6IQQQgiPcnNzsWfPHuzatQv37t3Dhx9+iLCwMDx69AgrV67EhQsXcPLkyQb3QwWdEEIIp+he7nU7fPgwdu3ahRMnTqB79+6YNm0aPvroI7Rp00a1zdtvv4133nlHo/1RQSeEEMItupd7nSZOnIixY8fi999/R9++fevcpnPnzvjiiy802h8VdEIIIdzS4vSpLUlOTk6Dt043NjbG4sWLNdpfCx5mQAghhDRfZmZmyM/Pr7W+sLAQ+vqNv1UuFXRCCCGcEuhpZwFa1p3iXjWVSkVFBQwNDRu9P50V9IcPH+Kjjz6ChYUFTExM8Pbbb+PSpUuqxxljiIiIgFQqhbGxMQYPHowbN25wliciIkI1UEO52NjYqB7Py8tDaGgopFIpTExM4OPjg6ysLM7yaJKppKQE06dPh62tLYyNjdGtWzds2bKF10wvP6Zc1qxZw1smALh16xb8/PwgFothZmYGV1dX3Lt3j7dMoaGhtR53dXXlLI8mmWr65JNPIBAIsH79el4zRUREwNHREaampmjbti08PT2RnJzMWya5XI558+ahZ8+eMDU1hVQqxYQJE5p084+mZgJeDKby9vaGpaUlBAIB0tPTOc3TZFq8Dj0lJQU3b97EtGnTeH5Tr2/jxo3YuHEjBAIBdu7cqfp548aNWLduHaZNmwZHR8dG71cn59CfPHmCgQMHwsPDA7/++iusra1x+/ZttZF8q1evRmRkJL7//nvY29tj6dKlGDp0KDIyMmBmZsZJLicnJ5w6dUr1s7KLgzGGESNGQCgU4siRI2jdujUiIyPh6emJmzdvwtTUlJM89WUCgDlz5iAhIQF79+5Fx44dcfLkSUydOhVSqRT+/v68ZMrJyVHb9tdff0VYWBhGjRrFWZ6GMt2+fRtubm4ICwvDkiVLIBaLcevWLRgZGfGWCQB8fHywa9cu1c+v8w1c25kAIDo6GsnJyZBKpZznaSiTvb09Nm3ahM6dO6O8vBzr1q2Dl5cX/vzzT1hZWek8U1lZGdLS0rBo0SI4OzvjyZMnmD17Nvz8/JCamspZnvoyAS/uAT5w4ECMHj0aU6ZM4TQH0b5169YBeFFrtm7dqva7NTQ0RMeOHbF169ZG71cnBX3VqlXo0KGD2j9mHTt2VP0/Ywzr16/HF198gZEjRwIAdu/ejXbt2mHfvn345JNPOMllYGBQZ4slKysLFy5cwPXr1+Hk5AQA2Lx5M6ytrfHTTz9h8uTJnOSpLxMA/PHHHwgJCcHgwYMBAB9//DG2bduG1NRUTgt6fZleXn/kyBF4eHigc+fOnOVpKNMXX3yBYcOGYfXq1ap1XOdpKBPwYsbC+h7nQkOZHj58iOnTp+PEiRN4//33ec8UFBSk9nNkZCSioqJw9epVvPfeezrPJBaLER8fr7bum2++wT/+8Q/cu3cPdnZ2Os8EAMHBwQCAO3fucPb62iTQ08K93FvQKPfs7GwAgIeHBw4fPoy2bdtqZb866XKPiYlBnz59MHr0aFhbW+Odd97Bjh07VI9nZ2cjNzcXXl5eqnUikQju7u44f/48Z7mysrIglUrRqVMnjB07Fn/99RcAqOZ9r9mi09fXh6GhIc6dO8dZnvoyAYCbmxtiYmLw8OFDMMaQkJCAzMxMeHt785appry8PMTGxiIsLIzTPPVlUigUiI2Nhb29Pby9vWFtbY1+/fohOjqat0xKiYmJsLa2hr29PaZMmVLnYBhdZlIoFAgODkZ4eLjqi6suaPp5qqysxPbt2yEWi+Hs7NwsMgFAUVERBAKBWg8j35maPbr1a50SEhK0VswBHbXQ//rrL2zZsgVz587FggULcPHiRcycORMikQgTJkxAbm4ugBczz9TUrl073L17l5NM/fr1w549e2Bvb4+8vDwsXboUAwYMwI0bN+Do6AiZTIb58+dj27ZtMDU1RWRkJHJzc2t1Mesqk4WFBTZu3IgpU6bA1tYWBgYG0NPTw86dO7UyS8/rZqpp9+7dMDMzU/Wy8JFJLpejpKQEK1euxNKlS7Fq1SrExcVh5MiRSEhIgLu7u84zWVhYwNfXF6NHj4ZMJkN2djYWLVqEIUOG4NKlSxCJRLxkWrVqFQwMDDBz5kxOXv91MgHAsWPHMHbsWJSVlUEikSA+Ph6Wlpa8ZlJ6/vw5Pv/8cwQFBXE641djMpE3y9y5c/HVV1/B1NQUc+fOrXfbyMjIxu2cvaaioiIGgBUUFDS4rVAoZP3791dbN2PGDObq6soYY+z3339nANijR4/Utpk8eTLz9vbWOFNlZSWLjo5mlZWVGj9HqaSkhLVr146tXbuWMcZYamoqc3Z2ZgCYvr4+8/b2Zr6+vszX17dR+9VmpjVr1jB7e3sWExPDrly5wr755hvWqlUrFh8fz1ummhwcHNj06dMbvU9tZnr48CEDwMaNG6e2zfDhw9nYsWN5yVSXR48eMaFQyA4dOsRLptTUVNauXTv28OFD1eMymYytW7eu0fvV9nEqKSlhWVlZ7I8//mCTJk1iHTt2ZHl5ebxmUu7T39+fvfPOO6yoqKjR++UiU3Z2NgPALl++3Oh9FhQUMACv9V40pawTuaMGsLKxg5q05I4awHleXRg8eDB78uSJ6v9ftXh4eDR63zppoUskEnTv3l1tXbdu3XDo0CEA/zkPm5ubC4lEotomPz+/VqudK6ampujZs6dqJLuLiwvS09NRVFSEyspKWFlZoV+/fujTp49O8rycqby8HAsWLMAvv/yiOtfZq1cvpKen4+uvv4anp6fOM9V09uxZZGRk4MCBAzrJ8apMlpaWMDAwqPPzxvXpkldlqotEIoFMJuP8yolXZdLT00N+fr7aOeDq6mp89tlnWL9+vc7OzdZ1nExNTdGlSxd06dIFrq6u6Nq1K6KiojB//nzeMsnlcowZMwbZ2dk4ffq0zufjbujz1NzRrV//IyEhoc7/1wadnEMfOHAgMjIy1NZlZmZCJpMBADp16gQbGxu1wSeVlZVISkrCgAEDdBERFRUVuHXrltoXCuDFoBgrKytkZWVxPvisvkxyuRxyuRx6euq/Mn19fSgUCl4y1RQVFQUXFxfOz3U2lMnQ0BB9+/at9/Om60x1KSwsxP3791/5ONeZgoODcfXqVaSnp6sWqVSK8PBwnDhxgpdMr8IYU41r4SOTsphnZWXh1KlTvHR5a3KcCNFJC33OnDkYMGAAli9fjjFjxuDixYvYvn07tm/fDuDFN6/Zs2dj+fLl6Nq1K7p27Yrly5fDxMSk1qhXbfmf//kfDB8+HHZ2dsjPz8fSpUtRXFyMkJAQAMDBgwdhZWUFOzs7XLt2DbNmzcKIESPUBu7pMlPr1q3h7u6O8PBwGBsbQyaTISkpCXv27Gn8eRYtZVIqLi7GwYMHsXbtWs5yNCZTeHg4AgMDMWjQIHh4eCAuLg5Hjx5FYmIiL5lKSkoQERGBUaNGQSKR4M6dO1iwYAEsLS0REBDASyYLC4tahUkoFMLGxgYODg68ZCotLcWyZcvg5+cHiUSCwsJCbN68GQ8ePMDo0aN5yVRVVYUPP/wQaWlpOHbsGKqrq1VjfszNzTm79LChz/jjx49x79491fXwyi+wNjY2Or+SQiN0L3eVxowxOnz4cKP2rZOC3rdvX/zyyy+YP38+vvzyS3Tq1Anr16/H+PHjVdv885//RHl5OaZOnYonT56gX79+OHnyJGfXoD948ADjxo1DQUEBrKys4OrqigsXLqhacTk5OZg7dy7y8vIgkUgwYcIELFq0iJMsmmbav38/5s+fj/Hjx+Px48eQyWRYtmwZPv30U94yKXMxxjBu3DjOcjQmU0BAALZu3YoVK1Zg5syZcHBwwKFDhzgdPFhfpvLycly7dg179uzB06dPIZFI4OHhgQMHDnD2+W4oE1/qy/T8+XP8+9//xu7du1FQUAALCwv07dsXZ8+e5XQUfn2Z7ty5g5iYGAAvZr2qKSEhQXUJqS4zAS+uHJo4caJq+7FjxwIAFi9ejIiICE4yNY02Rqm3jIIuFos527eAsVfce64BxcXFEIvFqj+85kAul+P48eMYNmwYhEIh33EAUCZNUSbNUCbNUKaGFRYWwtLSEkVFRZyNCVDWifzAQWht2LT2Y3FlFawPnOE075uO7uVOCCHkjdGS7uWubTR9KiGEEG5p8Rx6SkrKG91C7927N3777Te0bdsW77zzTr2j99PS0hq1byrohBBCOEWXrf2Hv7+/6mZSI0aM0Oq+qaATQgghOrJ48eI6/18bqKATQgjhFl22Vq/U1FTcunULAoEA3bp1g4uLy2vthwo6IYQQbmljcpUW0uVek/LyxN9//1012c/Tp08xYMAA/PTTT+jQoUOj9kej3AkhhBAeTJo0CXK5HLdu3cLjx4/x+PFj3Lp1C4yx15q1klrohBBCOEXzodft7NmzOH/+vNrdGR0cHPDNN99g4MCBjd4fFXRCCCHcoi73OtnZ2UEul9daX1VVhfbt2zd6f9TlTgghhPBg9erVmDFjBlJTU6G8aWtqaipmzZqFr7/+utH7oxY6IYQQbulBC6PctZKEd23btlW7pr60tBT9+vWDgcGLclxVVQUDAwNMmjSp0depa1zQKyoq1KYwLC4uBgDVtJ7NgTJHc8kDUCZNUSbNUCbNUKaG6TIH3VjmP9avX8/ZvjWenCUiIgJLliyptX7fvn0wMTHRejBCCCHcKSsrQ1BQkE4mZymc4oXWhk2bkKa4Ug6LHSdpcpZ6aFzQ62qhd+jQATk5Oc1qtrX4+HgMHTq0WcxmBFAmTVEmzVAmzVCmhhUWFkIikVBBbybKy8tr9Zo09n1q3OUuEolU95+tSSgUNosPZ02USTOUSTOUSTOUSTPNJZNOM9Ao9zqVlpZi3rx5+Pnnn1FYWFjr8erq6kbtr4UMMyCEENJsKQt6Uxe0rOlT//nPf+L06dPYvHkzRCIRdu7ciSVLlkAqlWLPnj2N3h+NcieEEPLGeNOnT63p6NGj2LNnDwYPHoxJkybh3XffRZcuXSCTyfDjjz9i/PjxjdoftdAJIYRwTBut85bX5f748WN06tQJwIvz5Y8fPwYAuLm54cyZM43eHxV0Qggh3NLT087SwnTu3Bl37twBAHTv3h0///wzgBctd+VkLY3R8o4QIYQQ8gaYOHEirly5AgCYP3++6lz6nDlzEB4e3uj90Tl0Qggh3KJR7nWaM2eO6v89PDxw69YtXLp0CW+99RacnZ0bvT8q6IQQQrhFBV0jMpkMMpnstZ9PXe6EEEIIT3777Td88MEHeOutt9ClSxd88MEHOHXq1Gvtiwo6IYQQbmnxOvSWZNOmTfDx8YGZmRlmzZqFmTNnonXr1hg2bBg2bdrU6P1RlzshhBBuaWOUegsc5b5ixQqsW7cO06dPV62bOXMmBg4ciGXLlqmt10TLO0KEEEKaF2qh16m4uBg+Pj611nt5ealmNG0MXgr6ihUrIBAIMHv2bNW6w4cPw9vbG5aWlhAIBEhPT+c1k1wux7x589CzZ0+YmppCKpViwoQJePToEW+ZgBez3jk6OsLU1BRt27aFp6cnkpOTec1U0yeffAKBQMDpFIGaZAoNDVVN2ahcXF1dec0EALdu3YKfnx/EYjHMzMzg6uqKe/fu8Zbp5WOkXNasWcNbppKSEkyfPh22trYwNjZGt27dsGXLFp3keVWmvLw8hIaGQiqVwsTEBD4+PsjKyuIsQ0RERK3fiY2NjepxxhgiIiIglUphbGyMwYMH48aNG5zlIdzw8/PDL7/8Umv9kSNHMHz48EbvT+dd7ikpKdi+fTt69eqltr60tBQDBw7E6NGjMWXKFN4zlZWVIS0tDYsWLYKzszOePHmC2bNnw8/PD6mpqbxkAgB7e3ts2rQJnTt3Rnl5OdatWwcvLy/8+eefsLKy4iWTUnR0NJKTkyGVSjnNoWkmHx8f7Nq1S/WzoaEhr5lu374NNzc3hIWFYcmSJRCLxbh16xaMjIx4y5STk6P286+//oqwsDCMGjWKt0xz5sxBQkIC9u7di44dO+LkyZOYOnUqpFIp/P39dZ6JMYYRI0ZAKBTiyJEjaN26NSIjI+Hp6YmbN2/C1NSUkyxOTk5qg6P09fVV/7969WpERkbi+++/h729PZYuXYqhQ4ciIyMDZmZmnORpEhrlrrJx40bV/3fr1g3Lli1DYmIi+vfvDwC4cOECfv/9d3z22WeN3rdOW+glJSUYP348duzYgbZt26o9FhwcjH/961/w9PTUZaRXZhKLxYiPj8eYMWPg4OAAV1dXfPPNN7h06RLnLar6jlNQUBA8PT3RuXNnODk5ITIyEsXFxbh69SpvmQDg4cOHmD59On788UedzeLUUCaRSAQbGxvVYm5uzmumL774AsOGDcPq1avxzjvvoHPnznj//fdhbW3NW6aax8fGxgZHjhyBh4cHOnfuzFumP/74AyEhIRg8eDA6duyIjz/+GM7Ozpx/kX5VpqysLFy4cAFbtmxB37594eDggM2bN6OkpAQ//fQTZ3kMDAzUfjfKL+yMMaxfvx5ffPEFRo4ciR49emD37t0oKyvDvn37OMvTJNTlrrJu3TrVEhUVhbZt2+LmzZuIiopCVFQUbty4gTZt2uC7775r9L51WtCnTZuG999/X+dFuz6NyVRUVASBQPBat+TjIlNlZSW2b98OsVj8Wjch0FYmhUKB4OBghIeHw8nJidMcmmYCgMTERFhbW8Pe3h5TpkxBfn4+b5kUCgViY2Nhb28Pb29vWFtbo1+/foiOjuYt08vy8vIQGxuLsLAwXjO5ubkhJiYGDx8+BGMMCQkJyMzMhLe3Ny+ZKioqAECtJ0VfXx+GhoY4d+4cZ3mysrIglUrRqVMnjB07Fn/99RcAIDs7G7m5ufDy8lJtKxKJ4O7ujvPnz3OWh2hHdna2Rovy990YOuty379/P9LS0pCSkqKrl2xQYzI9f/4cn3/+OYKCgjid6UeTTMeOHcPYsWNRVlYGiUSC+Ph4WFpa8pZp1apVMDAwwMyZMznL0NhMvr6+GD16NGQyGbKzs7Fo0SIMGTIEly5dgkgk0nmm/Px8lJSUYOXKlVi6dClWrVqFuLg4jBw5EgkJCXB3d9d5ppft3r0bZmZmGDlyJCdZNM20ceNGTJkyBba2tjAwMICenh527twJNzc3XjI5OjpCJpNh/vz52LZtG0xNTREZGYnc3Nxapyy0pV+/ftizZw/s7e2Rl5eHpUuXYsCAAbhx4wZyc3MBAO3atVN7Trt27XD37l1O8jQZjXJvEGMMwItxLa9LJwX9/v37mDVrFk6ePKmT84WaaEwmuVyOsWPHQqFQYPPmzbxn8vDwQHp6OgoKCrBjxw6MGTMGycnJnHTdNpTp0qVL2LBhA9LS0pr0QdRmJgAIDAxU/X+PHj3Qp08fyGQyxMbGclKwGsqkUCgAAP7+/qrbPb799ts4f/48tm7dyklBb+zf3XfffYfx48dz+jeqSaaNGzfiwoULiImJgUwmw5kzZzB16lRIJBJOevcayiQUCnHo0CGEhYXB3Nwc+vr68PT0hK+vr9azKNXcd8+ePdG/f3+89dZb2L17t2pw58t/b4wxnf0NNhqdQ3+lPXv2YM2aNapBlvb29ggPD0dwcHCj96WTrzyXLl1Cfn4+XFxcYGBgAAMDAyQlJWHjxo0wMDBAdXW1LmK8Via5XI4xY8YgOzsb8fHxnLbONc1kamqKLl26wNXVFVFRUTAwMEBUVBQvmRITE5Gfnw87OzvV43fv3sVnn32Gjh078pKprs+TRCKBTCbjbGRyQ5ksLCxgYGCA7t27qz2vW7dunI3JaMxxOnv2LDIyMjB58mROsmiaqbS0FAsWLEBkZCSGDx+OXr16Yfr06QgMDMTXX3/NS6bq6mq4uLggPT0dT58+RU5ODuLi4lBYWKia+pJrpqam6NmzJ7KyslSj3ZUtdaX8/PxarXbSvEVGRuL//b//h2HDhuHnn3/GgQMH4OPjg08//RTr1q1r9P500kJ/7733cO3aNbV1EydOhKOjI+bNm6c2elNXNMmkLOZZWVlISEiAhYUF75nqwhhTnefTdSaJRFLr3Ka3tzeCg4MxceJEXjLVdZwKCwtx//59SCQSXjKJRCL07dsXGRkZattkZmY26d7NTclU8zhFRUXBxcWF87EYDWWqrq6GXC6H3kvdq/r6+qpeDl1nqnmcxGIxgBfnt1NTU/HVV19xkullFRUVuHXrFt5991106tQJNjY2iI+PxzvvvAPgxXiapKQkrFq1Sid5Gk0ALbTQtZKkWfnmm2+wZcsWTJgwQbXO398fTk5OiIiIUJu8RRM6KehmZmbo0aOH2jpTU1NYWFio1j9+/Bj37t1TXeet/IdPOcJT15mqqqrw4YcfIi0tDceOHUN1dbXqG7G5uTknl0A1lKm0tBTLli2Dn58fJBIJCgsLsXnzZjx48ACjR4/Weh5NMgGo9UVHKBTCxsYGDg4OvGQqKSlBREQERo0aBYlEgjt37mDBggWwtLREQEAAL5kAIDw8HIGBgRg0aBA8PDwQFxeHo0ePIjExkbdMwIubWxw8eBBr167lJEdjM7m7uyM8PBzGxsaQyWRISkrCnj17EBkZyVumgwcPwsrKCnZ2drh27RpmzZqFESNGqA1M06b/+Z//wfDhw2FnZ4f8/HwsXboUxcXFCAkJUV0jv3z5cnTt2hVdu3bF8uXLYWJigqCgIE7yNBl1udcpJycHAwYMqLV+wIABrzU+o9nc+jUmJkatRTd27FgAwOLFixEREaHzPA8ePEBMTAyAF+c6a0pISMDgwYN1nklfXx///ve/sXv3bhQUFMDCwgJ9+/bF2bNndTq6vLnT19fHtWvXsGfPHjx9+hQSiQQeHh44cOAAr9foBgQEYOvWrVixYgVmzpwJBwcHHDp0iNPBXprYv38/GGMYN24crzmU9u/fj/nz52P8+PF4/PgxZDIZli1bhk8//ZS3TDk5OZg7dy7y8vIgkUgwYcIELFq0iLPXe/DgAcaNG4eCggJYWVnB1dUVFy5cUPXm/POf/0R5eTmmTp2KJ0+eoF+/fjh58mTzvAadvFKXLl3w888/Y8GCBWrrDxw4gK5duzZ6fwKmHFrXSMXFxRCLxarC0hzI5XIcP34cw4YN09m10A2hTJqhTJqhTJqhTA0rLCyEpaUlioqKOBsbpKwTjz8fh9aipvVqFldUwnzlT5zm1bVDhw4hMDAQnp6eGDhwIAQCAc6dO4fffvsNP//8c6N7FFv2dQCEEEKaAW3cVOZFl3vfvn3RvXt3fPvtt/y+JS0YNWoULl68CEtLS0RHR+Pw4cOwtLTExYsXX+v0YLPpcieEENJCafEcekpKSotoocvlcnz88cdYtGgR9u7dq5V9UgudEEII0TGhUFjnxCxNQQWdEEIIt+he7nUKCAjQ6u2fqcudEEIIt+jWr3Xq0qULvvrqK5w/fx4uLi61Zu5r7O20qaATQgghPNi5cyfatGmDS5cu4dKlS2qPCQQCKuiEEEKaGbqxTJ2ys7NV/6+NyVlaXh8GIYSQ5oXOob9SVFQUevToASMjIxgZGaFHjx7YuXPna+2LWuiEEEIIDxYtWoR169ZhxowZ6N+/PwDgjz/+wJw5c3Dnzh0sXbq0Ufujgk4IIYRb1OVepy1btmDHjh1qt1328/NDr169MGPGDCrohBBCmhka5V6n6upq9OnTp9Z6FxcXVFVVNXp/Ghf0iooKtSk6i4uLAby4241cLm/0C3NBmaO55AEok6Yok2Yok2YoU8N0moNa6HX66KOPsGXLllozCW7fvh3jx49v9P40npwlIiICS5YsqbV+3759MDExafQLE0II4U9ZWRmCgoJ0MznLl5PR2qiJk7M8r4T5v3a2qMlZZsyYgT179qBDhw5wdXUFAFy4cAH379/HhAkT1Cbx0WT6YI0Lel0t9A4dOiAnJ6dZzbYWHx+PoUOHNovZjADKpCnKpBnKpBnK1LDCwkJIJBLdFPSvpminoC/a0aIKuoeHh0bbCQQCnD59usHtNO5yF4lEEIlEtdYLhcJm8eGsiTJphjJphjJphjJpprlk0mkGOodep4SEBK3ur+UdIUIIIeS/EI1yJ4QQwi0BtDAoTitJWjQq6IQQQrhFo9x1grrcCSGEkBaAWuiEEEK4RS10naCCTgghhFsCLYxyF1CHckPoCBFCCCEtALXQCSGEcIu63HWCCjohhBBuUUHXCSrohBBCuCXQa/o5cDqH3iA6QoQQQkgLwEtBX7FiBQQCAWbPnq1axxhDREQEpFIpjI2NMXjwYNy4cYOzDFu2bEGvXr3QunVrtG7dGv3798evv/6qejwvLw+hoaGQSqUwMTGBj48PsrKyOMujSaaSkhJMnz4dtra2MDY2Rrdu3bBlyxZeMwkEgjqXNWvW8JYJAG7dugU/Pz+IxWKYmZnB1dUV9+7d4y1TaGhorWOknF2Jr0w1ffLJJxAIBFi/fj2vmSIiIuDo6AhTU1O0bdsWnp6eSE5O5i2TXC7HvHnz0LNnT5iamkIqlWLChAl49OgRb5kA4PDhw/D29oalpSUEAgHS09M5zdNkegLtLKReOi/oKSkp2L59O3r16qW2fvXq1YiMjMSmTZuQkpICGxsbDB06FM+ePeMkh62tLVauXInU1FSkpqZiyJAh8Pf3x40bN8AYw4gRI/DXX3/hyJEjuHz5MmQyGTw9PVFaWspJnoYyAcCcOXMQFxeHvXv34tatW5gzZw5mzJiBI0eO8JYpJydHbfnuu+8gEAgwatQo3jLdvn0bbm5ucHR0RGJiIq5cuYJFixbByMiIt0wA4OPjo3asjh8/zlkeTTMBQHR0NJKTkyGVSjnNo0kme3t7bNq0CdeuXcO5c+fQsWNHeHl54e+//+YlU1lZGdLS0rBo0SKkpaXh8OHDyMzMhJ+fH2d5GsoEAKWlpRg4cCBWrlzJaQ6tUXa5N3Uh9WOvqaioiAFgBQUFGj/n2bNnrGvXriw+Pp65u7uzWbNmMcYYUygUzMbGhq1cuVK17fPnz5lYLGZbt27VeP+VlZUsOjqaVVZWavycmtq2bct27tzJMjIyGAB2/fp11WNVVVXM3Nyc7dixo1H71FYmxhhzcnJiX375pdrjvXv3ZgsXLuQt08v8/f3ZkCFDGr1PbWYKDAxkH3300Wvth6tMISEhzN/fv1llYoyxBw8esPbt27Pr168zmUzG1q1bx3ummpT/zpw6darZZLp48SIDwO7evct7puzsbAaAXb58udH7KygoYABYUVHRa+XRhPL393jdXFa1dX6Tlsfr5nKe902n068806ZNw/vvvw9PT0+19dnZ2cjNzYWXl5dqnUgkgru7O86fP895rurqauzfvx+lpaXo37+/at73mi06fX19GBoa4ty5c5znqSsTALi5uSEmJgYPHz4EYwwJCQnIzMyEt7c3b5lqysvLQ2xsLMLCwnSSp65MCoUCsbGxsLe3h7e3N6ytrdGvXz9ER0fzlkkpMTER1tbWsLe3x5QpU5Cfn89rJoVCgeDgYISHh8PJyUlnWerLVFNlZSW2b98OsVgMZ2fnZpEJAIqKiiAQCNCmTZtmk6nZU45yb+pC6qWzUe779+9HWloaUlJSaj2Wm5sLAGjXrp3a+nbt2uHu3bucZbp27Rr69++P58+fo1WrVvjll1/QvXt3yOVyyGQyzJ8/H9u2bYOpqSkiIyORm5uLnJwczvLUlwkANm7ciClTpsDW1hYGBgbQ09PDzp074ebmxlummnbv3g0zMzOMHDmS0zz1ZcrNzUVJSQlWrlyJpUuXYtWqVYiLi8PIkSORkJAAd3d3nWcCAF9fX4wePRoymQzZ2dlYtGgRhgwZgkuXLkEkEvGSadWqVTAwMMDMmTM5e/3GZgKAY8eOYezYsSgrK4NEIkF8fDwsLS15zaT0/PlzfP755wgKCkLr1q2bRaY3As2HrhM6Kej379/HrFmzcPLkyXrPYwpe+gbGGKu1TpscHByQnp6Op0+f4tChQwgJCUFSUhK6d++OQ4cOISwsDObm5tDX14enpyd8fX05y6JJpo0bN+LChQuIiYmBTCbDmTNnMHXqVEgkklq9HrrKVNN3332H8ePHc3quuqFMylaTv78/5syZAwB4++23cf78eWzdupXTgl7fcQoMDFRt16NHD/Tp0wcymQyxsbGcfgF6Vaby8nJs2LABaWlpnP6NNSaT8vPk4eGB9PR0FBQUYMeOHRgzZgySk5NhbW3NWybgxQC5sWPHQqFQYPPmzZxlaUwmQmrSSUG/dOkS8vPz4eLiolpXXV2NM2fOYNOmTcjIyADwoqUukUhU2+Tn59dqtWuToaEhunTpAgDo06cPUlJSsGHDBmzbtg0uLi5IT09HUVERKisrYWVlhX79+qFPnz6c5akv0/r167FgwQL88ssveP/99wEAvXr1Qnp6Or7++mtOC3p9x0np7NmzyMjIwIEDBzjLoUmmb775BgYGBrX+0evWrRvnp0s0OU5KEokEMpmM8ysnXpWpW7duyM/Ph52dnWrb6upqfPbZZ1i/fj3u3Lmj80zK42RqaoouXbqgS5cucHV1RdeuXREVFYX58+fzlkkul2PMmDHIzs7G6dOnOW+da5LpjdICbyxz//59BAcHIz8/HwYGBli0aBFGjx7NayadFPT33nsP165dU1s3ceJEODo6Yt68eejcuTNsbGwQHx+Pd955B8CL82dJSUlYtWqVLiICeNEjoDx/riQWiwEAWVlZSE1NxVdffaWzPDUzyeVyyOVy6L3U7aSvrw+FQsFLppqioqLg4uKis3Odr8pkaGiIvn37qr4kKmVmZkImk/GSqS6FhYW4f/++2hdYXWYKDg6u9SXQ29sbwcHBmDhxIi+ZXvdxLtR8TWUxz8rKQkJCAiwsLHSapa5Mb5wWeGMZAwMDrF+/Hm+//Tby8/PRu3dvDBs2DKampvxl0sWLmJmZoUePHmrrTE1NYWFhoVo/e/ZsLF++HF27dkXXrl2xfPlymJiYICgoiJNMCxYsgK+vLzp06IBnz55h//79SExMRFxcHADg4MGDsLKygp2dHa5du4ZZs2ZhxIgRagP3dJmpdevWcHd3R3h4OIyNjSGTyZCUlIQ9e/YgMjKSl0xKxcXFOHjwINauXctZjsZkCg8PR2BgIAYNGgQPDw/ExcXh6NGjSExM5CVTSUkJIiIiMGrUKEgkEty5cwcLFiyApaUlAgICeMlkYWFRqzAJhULY2NjAwcGBl0ylpaVYtmwZ/Pz8IJFIUFhYiM2bN+PBgwectnzqy1RVVYUPP/wQaWlpOHbsGKqrq1VjfszNzWFoaKjzTADw+PFj3Lt3T3U9vPILrI2NDWxsbDjJRNRJJBLVF3Jra2uYm5vj8ePHLb+ga+Kf//wnysvLMXXqVDx58gT9+vXDyZMnYWZmxsnr5eXlITg4GDk5ORCLxejVqxfi4uIwdOhQAC+ur547dy7y8vIgkUgwYcIELFq0iJMsmmbav38/5s+fj/Hjx+Px48eQyWRYtmwZPv30U94yKXMxxjBu3DjOcjQmU0BAALZu3YoVK1Zg5syZcHBwwKFDhzgdPFhfpvLycly7dg179uzB06dPIZFI4OHhgQMHDnD2+W4oE1/qy/T8+XP8+9//xu7du1FQUAALCwv07dsXZ8+e5XQUfn2Z7ty5g5iYGAAvxmLUlJCQgMGDB+s8EwDExMSo9aSMHTsWALB48WJERERwkqlJBNBCl3vjNj9z5gzWrFmDS5cuIScnB7/88gtGjBihts3mzZuxZs0a5OTkwMnJCevXr8e7777b6GipqalQKBTo0KFDo5+rTQLGGHudJxYXF0MsFqv+8JoDuVyO48ePY9iwYRAKhXzHAUCZNEWZNEOZNEOZGlZYWAhLS0sUFRVxNiZAWSceb1mA1sZNGyxbXP4c5v9vOe7fv6+WVyQS1XmlyK+//orff/8dvXv3xqhRo2oV9AMHDiA4OBibN2/GwIEDsW3bNuzcuRM3b95UjS1xcXGp8zTHyZMnVTdiKiwsxLvvvoudO3diwIABTXqPTdVsWuiEEEJaKC0Oinu5FfyqXglfX996r0yKjIxEWFgYJk+eDABYv349Tpw4gS1btmDFihUAXgzork9FRQUCAgIwf/583os5QAWdEELIG6SuFnpjVVZW4tKlS/j888/V1nt5eWl8MzPGGEJDQzFkyBAEBwc3OgMXqKATQgjhlhZHuSsnrGmKgoICVFdX13kzM+Wgx4b8/vvvOHDgAHr16qW6E+UPP/yAnj17NilbU1BBJ4QQwi2BFmZL4+A69KbczMzNzU3nlww3pHld2EcIIYRwzNLSEvr6+rVa41zfzIxrVNAJIYRwq5lNn2poaAgXFxfEx8errY+Pj28Wg9teF3W5E0II4ZYWR7n37dsX+vr6mDZtGqZNm/bKzUtKSvDnn3+qfs7OzkZ6ejrMzc1hZ2eHuXPnIjg4GH369EH//v2xfft23Lt3j9P7enCNCjohhJA3RkpKikaD4lJTU+Hh4aH6ee7cuQCAkJAQfP/99wgMDERhYSG+/PJL5OTkoEePHjh+/LjObxGtTVTQCSGEcIuHe7kPHjwYDd03berUqZg6dWpTUjUrVNAJIYRwS08Lo9yb+vz/AjQojhBCCGkBNG6hV1RUqN3Ttri4GABU03o2B8oczSUPQJk0RZk0Q5k0Q5kaptMcLXA+9OZI48lZIiIisGTJklrr9+3bBxMTE60HI4QQwp2ysjIEBQXpZnKW3SvQ2qSJk7OUPYd5yHzY29trNMr9v5HGBb2uFnqHDh2Qk5PTrGZbi4+Px9ChQ5vFbEYAZdIUZdIMZdIMZWpYYWEhJBKJbgr6Dyu1U9CDP+c075tO4y73V01RJxQKm8WHsybKpBnKpBnKpBnKpJnmkqk5ZCDaRaPcCSGEcEsg0MJla3QOvSFU0AkhhHCLBsXpBF22RgghhLQA1EInhBDCLR7uFPffiI4QIYQQbinvFNfUBS8mZ+nevTu+/fZbnt9U80MtdEIIIW8MTSdn+W9EBZ0QQgi3qMtdJ6igE0II4RaNctcJ+spDCCGEtADUQieEEMItPb0XS1P3QepFBZ0QQgjHtNDlDupyb4hOvvKsWLECffv2hZmZGaytrTFixAhkZGSobXP48GF4e3vD0tISAoEA6enpvGaSy+WYN28eevbsCVNTU0ilUkyYMAGPHj3iLRPwYtY7R0dHmJqaom3btvD09ERycjKvmWr65JNPIBAIsH79el4zhYaGQiAQqC2urq68ZgKAW7duwc/PD2KxGGZmZnB1dcW9e/d4y/TyMVIua9as4S1TSUkJpk+fDltbWxgbG6Nbt27YsmULJ3k0zZSXl4fQ0FBIpVKYmJjAx8cHWVlZnGXasmULevXqhdatW6N169bo378/fv31V9XjjDFERERAKpXC2NgYgwcPxo0bNzjL02TKQXFNXUi9dHKEkpKSMG3aNFy4cAHx8fGoqqqCl5cXSktLVduUlpZi4MCBWLlypS4iNZiprKwMaWlpWLRoEdLS0nD48GFkZmbCz8+Pt0wAYG9vj02bNuHatWs4d+4cOnbsCC8vL/z999+8ZVKKjo5GcnIypFIpJ1kam8nHxwc5OTmq5fjx47xmun37Ntzc3ODo6IjExERcuXIFixYtgpFR02ahakqmmscnJycH3333HQQCAUaNGsVbpjlz5iAuLg579+7FrVu3MGfOHMyYMQNHjhzhJRNjDCNGjMBff/2FI0eO4PLly5DJZPD09Kzz70AbbG1tsXLlSqSmpiI1NRVDhgyBv7+/qmivXr0akZGR2LRpE1JSUmBjY4OhQ4fi2bNnnORpTug69Hqw11RUVMQAsIKCgkY/Nz8/nwFgSUlJtR7Lzs5mANjly5cbvd/KykoWHR3NKisrtZpJ6eLFiwwAu3v3brPJpPw9nDp1itdMDx48YO3bt2fXr19nMpmMrVu3rlH71XamkJAQ5u/v3+h9cZkpMDCQffTRR80q08v8/f3ZkCFDeM3k5OTEvvzyS7XtevfuzRYuXMhLpoyMDAaAXb9+XbVNVVUVMzc3Zzt27NBJJsYYa9u2Ldu5cydTKBTMxsaGrVy5UvXY8+fPmVgsZlu3btV4fwUFBQwAKyoqeq08mlD++/T48GZWdWJXk5bHhzdznvdNx0sfRlFREQDA3Nycj5evkyaZioqKIBAI0KZNm2aRqbKyEtu3b4dYLIazszNvmRQKBYKDgxEeHg4nJyed5GgoEwAkJibC2toa9vb2mDJlCvLz83nLpFAoEBsbC3t7e3h7e8Pa2hr9+vVDdHQ0b5lelpeXh9jYWISFhfGayc3NDTExMXj48CEYY0hISEBmZia8vb15yVRRUQEAaj0p+vr6MDQ0xLlz5zjPU11djf3796O0tBT9+/dHdnY2cnNz4eXlpdpGJBLB3d0d58+f5zzPa1EOimvqQuql8yPEGMPcuXPh5uaGHj166Prl66RJpufPn+Pzzz9HUFCQTu5SVF+mY8eOoVWrVjAyMsK6desQHx8PS0tL3jKtWrUKBgYGmDlzJucZNM3k6+uLH3/8EadPn8batWuRkpKCIUOGqP5x1nWm/Px8lJSUYOXKlfDx8cHJkycREBCAkSNHIikpiZdML9u9ezfMzMwwcuRIzvPUl2njxo3o3r07bG1tYWhoCB8fH2zevBlubm68ZHJ0dIRMJsP8+fPx5MkTVFZWYuXKlcjNzUVOTg5nWa5du4ZWrVpBJBLh008/xS+//ILu3bsjNzcXANCuXTu17du1a6d6jPx30vko9+nTp+Pq1as6+WarqYYyyeVyjB07FgqFAps3b+Y9k4eHB9LT01FQUIAdO3ZgzJgxSE5OhrW1tc4zXbp0CRs2bEBaWhoEPNz44VXHKTAwUPX/PXr0QJ8+fSCTyRAbG8t5waork0KhAAD4+/tjzpw5AIC3334b58+fx9atW+Hu7q7zTC/77rvvMH78eM7O6WuaaePGjbhw4QJiYmIgk8lw5swZTJ06FRKJBJ6enjrPJBQKcejQIYSFhcHc3Bz6+vrw9PSEr68vp1kcHByQnp6Op0+f4tChQwgJCVH78vfy3xtjjJe/QY3QjWV0Qqct9BkzZiAmJgYJCQmwtbXV5Uu/UkOZ5HI5xowZg+zsbMTHx+ukdd5QJlNTU3Tp0gWurq6IioqCgYEBoqKieMl09uxZ5Ofnw87ODgYGBjAwMMDdu3fx2WefoWPHjrxkqotEIoFMJuN0ZHJ9mSwtLWFgYIDu3burbd+tWzfORrk3lKmms2fPIiMjA5MnT+Y0S0OZysvLsWDBAkRGRmL48OHo1asXpk+fjsDAQHz99de8ZAIAFxcXVXHNyclBXFwcCgsL0alTJ87yGBoaokuXLujTpw9WrFgBZ2dnbNiwATY2NgBQqzWen59fq9XebAgEWhjlTgW9ITop6IwxTJ8+HYcPH8bp06c5/SPQZiZlMc/KysKpU6dgYWHBe6ZXPY+rruSGMgUHB+Pq1atIT09XLVKpFOHh4Thx4gQvmepSWFiI+/fvQyKR8JLJ0NAQffv2rXU5VGZmJmQyGS+ZaoqKioKLiwvnYzEayiSXyyGXy6H30vlSfX19VS+HrjPVJBaLYWVlhaysLKSmpsLf35+TTK/KWVFRgU6dOsHGxgbx8fGqxyorK5GUlIQBAwboLA9pfnTS5T5t2jTs27cPR44cgZmZmeqbpVgshrGxMQDg8ePHuHfvnuo6b+U/fDY2NqpvpLrMVFVVhQ8//BBpaWk4duwYqqurVduYm5vD0NBQ55lKS0uxbNky+Pn5QSKRoLCwEJs3b8aDBw8wevRorefRJJOFhUWtLzpCoRA2NjZwcHDgJVNJSQkiIiIwatQoSCQS3LlzBwsWLIClpSUCAgJ4yQQA4eHhCAwMxKBBg+Dh4YG4uDgcPXoUiYmJvGUCgOLiYhw8eBBr167lJEdjMrVu3Rru7u4IDw+HsbExZDIZkpKSsGfPHkRGRvKSCQAOHjwIKysr2NnZ4dq1a5g1axZGjBihNjBNmxYsWABfX1906NABz549w/79+5GYmIi4uDgIBALMnj0by5cvR9euXdG1a1csX74cJiYmCAoK4iRPk1GXu2687vD4xly2BqDOZdeuXaptdu3aVec2ixcv1jhTYy4LaSiT8vK5upaEhAReMpWXl7OAgAAmlUqZoaEhk0gkzM/Pj128eFHjPNrOVBeuL1trKFNZWRnz8vJiVlZWTCgUMjs7OxYSEsLu3bvHWyalqKgo1qVLF2ZkZMScnZ1ZdHQ075m2bdvGjI2N2dOnTxuVhatMOTk5LDQ0lEmlUmZkZMQcHBzY2rVrmUKh4C3Thg0bmK2trerztHDhQlZRUaFxnsZmmjRpEpPJZMzQ0JBZWVmx9957j508eVL1uEKhYIsXL2Y2NjZMJBKxQYMGsWvXrjUqj04vWzsWxaoSfmrS8vhYFF221gCdtNAZYw1uExoaitDQUO7D/J+GMnXs2FGj3NrU0OsZGRnh8OHDOkrzwuscgzt37mg/SA0NZTI2Nuasu/9VND1OkyZNwqRJkzhO84KmmT7++GN8/PHHHKd5QZNMNjY22LVrlw7SvKBJppkzZ+r0Ko6GxsQIBAJEREQgIiJCN4HIG4Eu7COEEMItPYF2FtCd4upDk7MQQgjhljbuxf5/z09JSdHJ1UZvIirohBBCuEWD4nSCutwJIYSQFoBa6IQQQrilxS538mpU0AkhhHBKIBA0+ba0zfa2ts0IfeUhhBBCWgBqoRNCCOEWdbnrBBV0Qggh3KKCrhN0hAghhJAWgFrohBBCuCX4z53emrQPUi+NC3pFRYXaFJ3FxcUA/jPdYXOgzNFc8gCUSVOUSTOUSTOUqWE6zUFd7johYBrO4BAREYElS5bUWr9v3z6YmJhoPRghhBDulJWVISgoCEVFRZzdSrW4uBhisRhPTh9E61ZNqxPFJWVoO2Q07O3toa+vj2nTpmHatGlaStoyaFzQ62qhd+jQATk5ObXmw+aLXC5HfHw8hg4dCqFQyHccAJRJU5RJM5RJM8pMQ34/AIPq5tEirtIX4vTAQAz8cSMM5JV8x8ET6KFz9BndFPSE/9VOQff4kNO8bzqNu9xFIhFEIlGt9UKhsNn8EStRJs1QJs1QJs00x0wG1XIIm0lBVzKQVzaLgq6vyzHRAoEWutzpHHpDaFAcIYQQbtHkLDpBowwIIYSQFoBa6IQQQrhFo9x1ggo6IYQQbulp4Tr0pj7/vwB95SGEEEJaAGqhE0II4RZ1uesEFXRCCCHcolHuOkFfeQghhJAWgFrohBBCuEVd7jpBBZ0QQgi3qMtdJ3TylWfFihXo27cvzMzMYG1tjREjRiAjI0NtG8YYIiIiIJVKYWxsjMGDB+PGjRuc5jpz5gyGDx8OqVQKgUCA6Ohotcfz8vIQGhoKqVQKExMT+Pj4ICsri9dMJSUlmD59OmxtbWFsbIxu3bphy5YtvGYSCAR1LmvWrOEtEwDcunULfn5+EIvFMDMzg6urK+7du8dbptDQ0FrHyNXVlbM8mmSq6ZNPPoFAIMD69et5zRQREQFHR0eYmpqibdu28PT0RHJyMqeZzj4swIiYC7DbGQfhhiM4cjtH9Zi8WoH5527g7b2nIf72GOx2xiH0xCU8KinnNNO5wmKMTslE11OXYRZ7EUdzn6g9fiTnMUYk/xuyk2kwi72Iq0WlnOYhzZ9OCnpSUhKmTZuGCxcuID4+HlVVVfDy8kJp6X8+gKtXr0ZkZCQ2bdqElJQU2NjYYOjQoXj27BlnuUpLS+Hs7IxNmzbVeowxhhEjRuCvv/7CkSNHcPnyZchkMnh6eqrl1mUmAJgzZw7i4uKwd+9e3Lp1C3PmzMGMGTNw5MgR3jLl5OSoLd999x0EAgFGjRrFW6bbt2/Dzc0Njo6OSExMxJUrV7Bo0SIYGRnxlgkAfHx81I7V8ePHOcujaSYAiI6ORnJyMqRSKad5NMlkb2+PTZs24dq1azh37hw6duwILy8v/P3339xlklejl6UYGwb3qvVYWVU1LucX4Yt/OOBikDt+fv8fyHpaioCj3H7JKKtWoGdrE3ztJHvl467mZljiaMtpDq1Qdrk3dSH10kmXe1xcnNrPu3btgrW1NS5duoRBgwaBMYb169fjiy++wMiRIwEAu3fvRrt27bBv3z588sknnOTy9fWFr69vnY9lZWXhwoULuH79OpycnAAAmzdvhrW1NX766SdMnjxZ55kA4I8//kBISAgGDx4MAPj444+xbds2pKamwt/fn5dMNjY2aj8fOXIEHh4e6Ny5Myd5NMn0xRdfYNiwYVi9erVqHZd5NMkEvJjk6OXjxSVNMj18+BDTp0/HiRMn8P777/OeKSgoSO3nyMhIREVF4erVq3jvvfc4yeTTsR18Orar8zGxSIi4kQPU1q1374kBB87gXnEZ7FpzM320l3UbeFm3eeXj42wtAQB3yypeuU2zoaf3YmnqPgD07duXpk99BV6+8hQVFQEAzM3NAQDZ2dnIzc2Fl5eXahuRSAR3d3ecP3+ej4iqqWJrtuj09fVhaGiIc+fO8ZIJANzc3BATE4OHDx+CMYaEhARkZmbC29ubt0w15eXlITY2FmFhYbxlUCgUiI2Nhb29Pby9vWFtbY1+/frV292sK4mJibC2toa9vT2mTJmC/Px8XvMoFAoEBwcjPDxc9cW1OamsrMT27dshFovh7OzMdxyV4ko5BADaiJrX7HLN1atOyzV2AYCUlBTcvHmTinkddF7QGWOYO3cu3Nzc0KNHDwBAbm4uAKBdO/VvyO3atVM9pmuOjo6QyWSYP38+njx5gsrKSqxcuRK5ubnIyclpeAcc2bhxI7p37w5bW1sYGhrCx8cHmzdvhpubG2+Zatq9ezfMzMxUPS18yM/PR0lJCVauXAkfHx+cPHkSAQEBGDlyJJKSknjL5evrix9//BGnT5/G2rVrkZKSgiFDhqi+PPJh1apVMDAwwMyZM3nLUJdjx46hVatWMDIywrp16xAfHw9LS0u+YwEAnldVY8HvNzHWwRatqaCTZkTno9ynT5+Oq1ev1tnKVX4DU2KM1VqnK0KhEIcOHUJYWBjMzc2hr68PT0/PBrsvubZx40ZcuHABMTExkMlkOHPmDKZOnQqJRAJPT09eswHAd999h/Hjx3N6rrohCoUCAODv7485c+YAAN5++22cP38eW7duhbu7Oy+5AgMDVf/fo0cP9OnTBzKZDLGxsbx8Abp06RI2bNiAtLQ03v7OXsXDwwPp6ekoKCjAjh07MGbMGCQnJ8Pa2prXXPJqBcb/mgoFAzZ51D7fTl6B5kPXCZ220GfMmIGYmBgkJCTA1vY/AzmU5xRfbo3n5+fXarXrkouLC9LT0/H06VPk5OQgLi4OhYWF6NSpEy95ysvLsWDBAkRGRmL48OHo1asXpk+fjsDAQHz99de8ZKrp7NmzyMjI4Gx8gaYsLS1hYGCA7t27q63v1q0bp6PcG0sikUAmk3F+5cSrnD17Fvn5+bCzs4OBgQEMDAxw9+5dfPbZZ+jYsSMvmZRMTU3RpUsXuLq6IioqCgYGBoiKiuI1k7xagXG/piC7uAxxAQOodd4YysvWmrqQeumkoDPGMH36dBw+fBinT5+uVRA7deoEGxsbxMfHq9ZVVlYiKSkJAwYMeHl3OicWi2FlZYWsrCxOB581RC6XQy6XQ++lwSX6+vqqVimfoqKi4OLiwvu5TkNDQ/Tt27fWpZGZmZmQyeoeMcyHwsJC3L9/HxKJhJfXDw4OxtWrV5Genq5apFIpwsPDceLECV4yvQpjjNdTE8pi/ufTUpwIGAALY0PeshDyKjrpcp82bRr27duHI0eOwMzMTNUSF4vFMDY2hkAgwOzZs7F8+XJ07doVXbt2xfLly2FiYlJrxKs2lZSU4M8//1T9nJ2djfT0dJibm8POzg4HDx6ElZUV7OzscO3aNcyaNQsjRoxQG7yn60zu7u4IDw+HsbExZDIZkpKSsGfPHkRGRvKWCQCKi4tx8OBBrF27lrMcjckUHh6OwMBADBo0CB4eHoiLi8PRo0eRmJjISyZzc3NERERg1KhRkEgkuHPnDhYsWABLS0sEBATwksnOzg4WFhZq2wuFQtjY2MDBwYGXTBYWFli2bBn8/PwgkUhQWFiIzZs348GDBxg9ejR3mSqr8GeN67izi8qQ/ncRzEVCSFsZIfB4Ci7nP0W0nyuqGUNu6XMAgLmRIQz1uWkXlVRV46//ex3gxWj2q0WlaGtogA7GIjyurMKD8grkVMgBAFn/t207kRDtjJrbFw5tXHZGl601RCcFXXnjE+WlVkq7du1CaGgoAOCf//wnysvLMXXqVDx58gT9+vXDyZMnYWZmxlmu1NRUeHh4qH6eO3cuACAkJATff/89cnJyMHfuXOTl5UEikWDChAlYtGgRZ3k0ybR//37Mnz8f48ePx+PHjyGTybBs2TJ8+umnvGUCgP3794MxhnHjxnGWozGZAgICsHXrVqxYsQIzZ86Eg4MDDh06xOngwfoybdmyBdeuXcOePXvw9OlTSCQSeHh44MCBA7x+xvlQX6atW7fi3//+N3bv3o2CggJYWFigb9++OHv2LKej8C/lP4Xnod9VP4efvQ4ACO7WAf9ydcTRv140QvrsS1R73qlRA+Fuy81gvctFpRh24d+qn+ffenG6KMjWEtucO+N43hP8v6vZqsdDL99+sV1XKRbYN7Nr0+lOcTohYIyx13licXExxGKx6o+uOZDL5Th+/DiGDRsGobB5nN+iTJqhTJqhTJpRZvI6sxfCajnfcQAAcn0hTg76CO7ffw0DeSXfcfAYepDFXkBRURFat27NyWso68TTy0lobdaqaft6VoI277hzmvdNR/dyJ4QQwi0t3liGvBoVdEIIIdyiLnedoK88hBBCSAtALXRCCCHcovnQdYIKOiGEEG5Rl7tOUEEnhBDCMcH/LU3dB6kP9WEQQgghLQC10AkhhHCLutx1ggo6IYQQblFB1wnqcieEEEJaAGqhE0II4RgNitMFKuiEEEK4RV3uOqFxQa+oqFCbj7i4uBjAf+bobg6UOZpLHoAyaYoyaYYyaUaZpUq/eUwWA/wnS5WweUxtWk1nXFscjWdbi4iIwJIlS2qt37dvH0xMTLQejBBCCHfKysoQFBSkm9nW/p2qndnWHPvA3t4e+vr6mDZtGqZNm6alpC2DxgW9rhZ6hw4dkJOT06ymT42Pj8eQ3w/AoJlMmVilL8TpgYEY+OPGZjFlIvCihfD7+Jlw+WYF9CubR6ZqQ0NcmjEfjiu+gn5lRcNP0IFqQxH+PX8ROkYshl5F88ikEIlwJ2IJJPMXNatMOSu+apbHqTl+nprL391TPT10T7qko4J+SUsF3YWmT62Hxl3uIpEIIpGo1nqhUNhs5kBWMqiWN5s5kJUM5JXNpqAr6VdWwqCZ/GOnpF9ZAf1mUhSU9CqaZya958/5jqGmOR6n5vh5ai5/d/p6NISqpaHfKCGEEG7RoDidoIJOCCGEWwJooaBrJUmLRgWdEEIIx+g6dF2g6xYIIYSQFoBa6IQQQrhF59B1ggo6IYQQjlGXuy5QlzshhBDSAlALnRBCCLeoy10nqKATQgjhFhV0naAud0IIIaQF4K2FfubMGaxZswaXLl1CTk4OfvnlF4wYMYKvOACAVSmZ+OXPHGQ8eQZjg//f3t0HR3Hfdxx/a/ceVqeH07OEJCTz4CBAWGDVOIAhyBS32FAShKf5I5ShzrjQsQN1plhMmpBOGtdj1xDjmPLkGTqeZgK1C06T1IFOjcUYty52wATbNQ8SoGdOJ93p7qTTPWz/ECh6oj5Aut/N+fua2WF2Jd19dFr2u7/f/nZ/Ogsm5fDcQ7OYkZ2hLNOBK+0cuNLB1d6BR0VWpKdSd28JjxRkKcs01MvNLn7c1MGTRTn8XXmRshw/6ehkl8s9bFuervPBjKmKEg1oD4fZ4XZzMtBL0DQpt1r5UX4es8d4jHI8rGxvpjUSGbX9cUc6dVk5ChJB2DR5tauLX/n8uCIR8nWd1RnpbMzKQlPUKvNFouy43smxHh+d4QizDTvfL8qnKtWIW4b3vX5ebe3krL+P9lCYg/eW8mjO759hbpomLzZf5/WObjzhCPenp/L8PUVUOOKXMXYyKC4elBV0v99PVVUVGzZsoLa2VlWMYeqbO9lUNYU/KMwiHDX5walPefTI+3y87mHSrGo+qmLDxt9WTGaqY6AA/KzJxTdPX+C9xbOZmaF2lrvf+np5/XoXsxxqitNIX7HbeL28ZHBddfeTJxLhWy2tzDcM9hQVkatrXAuHydDUJXs9r4ih5fxSOMRfdnbwh6nq9qXXuj0c9vbwXEE+061Wfhfs52+uXydD01jndCrJtK21nc+D/ewoLqLAqnO0u4d1V5o5Nq2cojgdCwLRKLMdBt/Mz+LPLzSN+vorrZ3saXWza1ox0wwbO5tdPP7ZVd6vmka6rsclY6xSUlJIucuTs7v9+S8DZQV9xYoVrFixQtXbj+lXX18wbP3A8nkU73+bjzq6WVySpyTTo4XZw9a3V0zmtasdfNDlV1rQfZEomy4189KUSexsdinLMZQO5FsSZ1jIa90eiiw6Py7IH9xWongio+wRB/qDPi+luoVqm7qTsrPBPh5Oc/C1G9Mwl1it/Nrn47yiSVX6olHe9vrYO7mY+WmpAGwpyOV4j49/7urmuwXxORYsy8pgWdbYvYOmabKvzc2WkjxW3mi1vzKtmNkffc6bLi/rRxw3xJeD6kZMQvP0D8zYlm23KU4yIGKavNHSiT8S5cHsu5uK8G7VNbayPCudrznV5hiqsT/EVz+/zJILDXynqZWr/Wpn3HsnEGC2zc5ftbezuPEKtU3N/IvXqzTTUCHT5Ne9flY70pS2fuYZBv/V20fjjb/XZ8Egvw32sdih5oQ1bEIEsI/4TAxN43QgMWa4uxIM0REKU+NMG9xm1zQWZjj4H19AYbJbuDko7m4X8f9KnOZMgjFNk7+uP8+i4hwq89TOvXveG2DZqU/oi0ZJ13V+Vn0vFRmpyvIc6fRwzt/HbyqnKMsw0txUg38oKWSKzYYrHOFVl5u1Ddf4zbRysi1quh+bwmEO9fSw3pnJk1lZnAsG+ftON7aUFFZnqBuXcdM7fQF80SirHGlf/M0T6NtOJ75olJVNTegMFNPN2dk8lq7mZDFd17g/1eCnLjfT7TbyLDr/5unhTG8f99gSY6rojlAYgPwR3f/5VgvXFJ/Ijk2uoceDFPRb+M6Jjznn8nDi8cWqo3BvusF7iyvxhMK81dbFX5y9zNtfnamkqDcHQ3yvsY3DFeUYCq8Fj7Q0Y3hRut9hsPRCI296vHw7V033Y9Q0qbTb2ZIzMNhspt3Oxf4Qh7w9CVHQ3wr4WWg3yNfVHgb+3e/nlz0+XijIZ7rNxmfBIM93usm36Hxd0ef0Ukkhz7Z0sOBCAzow27DzJ84Mzveqn8d8qJElzhxjW2IYjxZ2Yv5miUQK+hg2n/iYX15u4z/XPkSpwpbwTTZNY1rawMjV+7PS+ajbz+7GNnbNiX8L+ay/F1c4wvLfXR7cFgHe7wnwWpubpvkz0ROga8yhacwwbIPduCrkW3SmjWjRTbVZOe73K0r0e63hMB8E+3gxW83YkKFe6nTzRFYWj95okX/FZqMlHOZAt0dZQS+32fj5PaUEolF8kSgFVgtPN7VSakuMQ2bBjZZ5RyhM4ZB9zBUKj2q1iy8P+csPYZomm0+c461LrfxH7SKmONV2Rd6KCQSjppL3XuJM4905w28F23y5hemGnaeLcxOimAMEo1EuBUM84FB3QjbPbtAQGn5C0dgfojgBBu79IuAjW9N4yFB/wtprmmgjdhudFKKo2ceHcmgaDk3DE4lQ7wtQV6j+BAig3G6lwGrhhMfPnBsD9/qjJqd6Anx/cqHidGOQB8vEhbIji8/n4+LFi4PrDQ0NnDlzhpycHMrKypRkevqdj/n5/zbxr6seJMNmoc0/MADGabeSqug67A8/u8bygixKDRu+cIQ3Wjo52enlyPwZSvKk6zozHcM/C4emkWPVmanw/tfn2q6zLCONYquVznCEn7rc+KJRap3qxj/8mdPJt1pa2NfVzR+lp3EuGOSNnh5+mKe2KERNk1/0+lnpSMeSAAfJpQ4H+7q6mWSxMN1q5dP+fv7J4+EbCi9L1Pv8mMBUm43G/n6eb3cx1WZlbVb89idfJEpDX//g+tVgiHP+PrItOqV2K08W5fByi4upho2pho2XW1ykahq1isf8jE2uoceDsoJ++vRpampqBtefeeYZANavX8/BgweVZNp7rhGAZW++N2z7geXzWD9LzUlGRzDEk2cu0RYMkWnRqcxwcGT+DB7OV3N/bqJqC4fZ3NxGVzhCjkVnbqrBm1NKKVE4iGmOYeflwkJ+4nbzj93dlFosPJubw8oMtXcG/Hewj7ZIhNWKB8Pd9L28XHa5u/iRy4U7EqVA13k8M4NN2epuveqJRHmxo5O2cBinrvHHGel8tyAXaxxPgM76e/nGp1cG139wtR2AP81z8sq0Ep6elEtfNMqzjW2DD5Y5XFGWcPegi/hRVtCXLl2KaarvUhsqtHm16gij7K5S+6SzWByddY/qCOwqnaQ6wpiWpjlYmqb2AUAjLTBS+bBYzQnqWNI0jW15uWwjV3WUQY85M3jMqXbg4qLMNDoenHXLr6ekpLC1tICtpQVxTHWHpMs9LtRfzBNCCJHcpMc9LhLnviMhhBBC3DFpoQshhJhg0kSPBynoQgghJpZcQ48L6XIXQgghkoC00IUQQkwsaaHHhRR0IYQQE0yuoceDFHQhhBATK4VxaKGPS5KkJtfQhRBCiNvU09PDAw88wNy5c5kzZw779+9XHUla6EIIISZYEl5DdzgcvPvuuzgcDgKBAJWVlaxZs4bcXHVPPJSCLoQQYoIl3zV0XddxOAYe69zX10ckElH+OHPpchdCCJF06uvrWbVqFcXFxaSkpHD06NFR37N7926mTJmCYRhUV1dz8uTJ23qP7u5uqqqqKC0tZevWreQpnkkx5hZ6MBgkGAwOrns8HgDcbvf4p7pDoVCIQCCAOwyWiOo0A8ImBAIButDQE+T8KYJGIBCgW9PQtcTopIloA5k8mgUtQf54Uc1CIBDAa7GgRRIkk2VIJoUzyQ01LFOCfU6JuD8lyv87jzZwPIpHq9Lr8911l7nX5xv41+sdtt1ut2O320d9v9/vp6qqig0bNlBbWzvq64cOHWLLli3s3r2bRYsWsXfvXlasWMEnn3wyOIV3dXX1sLp307FjxyguLiYrK4uzZ8/S3t7OmjVrWLt2LYWFCuejN2O0fft2E5BFFllkkSWJlkuXLsVaBm5bb2+vWVRUNG5Z09PTR23bvn37F+YAzCNHjgzbNn/+fHPjxo3DtlVUVJh1dXV39Ltu3LjRPHz48B397HiJ+TRx27Ztg3OWw0BXQ3l5OVevXsXpdMb6MhPK6/UyefJkrl27RmZmpuo4gGSKlWSKjWSKjWT6Yh6Ph7KyMnJycibsPQzDoKGhgf7+/nF5PdM0SRnR0h+rdf5F+vv7+fDDD6mrqxu2/ZFHHuHUqVMxvUZ7ezupqalkZmbi9Xqpr69n06ZNt51lPMVc0G/VreF0OhNi5xwqMzNTMsVAMsVGMsVGMsUm0TJp2sReCjQMA8MwJvQ9bpfL5SISiYzqHi8sLKStrS2m12hqauKJJ57ANE1M0+Spp57ivvvum4i4MVN/IUcIIYRQYGRrf6wegFuprq7mzJkzE5DqziXGKC0hhBAiTvLy8tB1fVRrvKOjQ+2gtrt0xwXdbrezffv2O7p+MVEkU2wkU2wkU2wkU2wSLVOi5Yknm81GdXU1x48fH7b9+PHjLFy4UFGqu5dimorvhBdCCCHGmc/n4+LFiwDMmzePHTt2UFNTQ05ODmVlZRw6dIh169axZ88eFixYwL59+9i/fz/nz5+nvLxccfo7IwVdCCFE0jlx4gQ1NTWjtq9fv56DBw8CAw+WeeGFF2htbaWyspKdO3eyZMmSOCcdP1LQhRBCiCQgg+KEEEKIJCAFXQghhEgCUtCFEEKIJCAFXQghhEgCUtCFEEKIJCAFXQghhEgCUtCFEEKIJCAFXQghhEgCUtCFEEKIJCAFXQghhEgCUtCFEEKIJCAFXQghhEgC/wdrQMW04eed0QAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbzElEQVR4nOzdeVwT194G8CdAEhYxsicRiVoEFZUqWjcqYpHFVnBfsAqKtn3dtZdr3a7YultxqXWnVmut1qtFqlbFCqi1KogoLhdQcWcpqCCLEMh5//CSEkEIksmg9/ftZz41M5PJk0nCmXPmzBwBY4yBEEIIIW80A74DEEIIIaT+qEAnhBBC3gJUoBNCCCFvASrQCSGEkLcAFeiEEELIW4AKdEIIIeQtQAU6IYQQ8hagAp0QQgh5C1CBTgghhLwFqEBvIMLCwiAQCDTmNW/eHMHBwXXaztmzZxEWFoanT5/W6Xkvv1ZsbCwEAgH+/e9/12k7NSkqKkJYWBhiY2OrLPv+++8hEAhw584dnb0eF7755hs4OjpCJBJBIBDg6dOnWLJkCSIjI/WaY+7cuejYsSMsLS1hbGyMli1b4pNPPsHdu3f1moMQ0nAY8R2AvNovv/yCxo0b1+k5Z8+excKFCxEcHIwmTZpw+lp1VVRUhIULFwIAevfurbHsww8/xJ9//gmZTMZphvpISkrC1KlTMX78eAQFBcHIyAjm5uZYsmQJhgwZggEDBugty9OnTzFy5Ei0adMG5ubmuH79OhYtWoSoqChcu3YNVlZWestCCGkYqEBvwDp27Mj5axQXF8PExEQvr1UTGxsb2NjY8JqhNteuXQMATJgwAe+99x6nr1VeXo6ysjKIxeJql3/77bcaj3v37o0WLVqgX79+OHjwIMaNG8dpPkJIw0NN7jw4fPgw3n33XYjFYrRo0QJff/11teu93AyuUqmwaNEiODs7w8TEBE2aNEGHDh2wdu1aAC+a7UNDQwEALVq0gEAggEAgUDdxN2/eHB999BEOHDiAjh07wtjYWF1jflXz/vPnzzFz5kxIpVKYmJjAw8MDly5d0lind+/eVWrcABAcHIzmzZsDAO7cuaMusBcuXKjOVvGar2py/+677+Dq6gpjY2NYWlpi4MCBuHHjRpXXadSoEW7evIl+/fqhUaNGaNasGT7//HOUlJRUu28r27t3L7y9vSGTyWBiYoI2bdrgiy++QGFhocZ7/PjjjwEAXbt2VWcXCAQoLCzEjh071O+p8r7IzMzEp59+Cnt7e4hEIrRo0QILFy5EWVmZep07d+5AIBBgxYoVWLRoEVq0aAGxWIyYmJhas1dWsX+NjGo+Tq94vZUrV2L58uVo3rw5TExM0Lt3b6SmpkKpVOKLL76AXC6HRCLBwIEDkZ2drbENlUqFFStWoHXr1hCLxbC1tcWYMWPw4MED9TrTp0+HmZkZ8vPzq2QYPnw47OzsoFQq1fP27t2L7t27w8zMDI0aNYKPj0+V79rt27cxYsQIyOVyiMVi2NnZ4YMPPkBSUlKd9hUhbyVG9OrEiRPM0NCQubu7swMHDrB9+/axLl26MAcHB/byx6FQKFhQUJD68dKlS5mhoSFbsGAB+/3339nRo0fZmjVrWFhYGGOMsfv377MpU6YwAOzAgQPszz//ZH/++SfLy8tTb08mk7GWLVuy7777jsXExLALFy5U+1oxMTEMAGvWrBkLCAhgv/76K9u1axdzdHRkjRs3Zrdu3VKv6+HhwTw8PKq816CgIKZQKBhjjD1//pwdPXqUAWAhISHqbDdv3mSMMbZ9+3YGgKWnp6ufv2TJEgaAjRw5kh0+fJjt3LmTtWzZkkkkEpaamqrxOiKRiLVp04Z9/fXX7MSJE+xf//oXEwgEbOHChbV+Jl999RVbvXo1O3z4MIuNjWWbNm1iLVq0YJ6enup1rl27xubNm8cAsO3bt6uz//nnn8zExIT169dP/Z6uXbvGGGMsIyODNWvWjCkUCrZ582Z24sQJ9tVXXzGxWMyCg4PV205PT2cAWNOmTZmnpyf797//zY4fP66xL15FqVSyoqIilpiYyHr27MmcnJzYs2fPanxOxespFArWv39/dujQIbZr1y5mZ2fHnJyc2OjRo9m4cePYb7/9xjZt2sQaNWrE+vfvr7GNTz75hAFgkydPZkePHmWbNm1iNjY2rFmzZuyvv/5ijDF2+fJlBoBt3bpV47lPnjxhYrGYzZw5Uz1v8eLFTCAQsHHjxrFDhw6xAwcOsO7duzMzMzP1/mSMMWdnZ+bo6Mh++OEHFhcXx/bv388+//xzFhMTU+u+IuRtRwW6nnXt2pXJ5XJWXFysnpefn88sLS1rLdA/+ugj9u6779a4/ZUrV1YpGCtvz9DQkKWkpFS7rLoCvVOnTkylUqnn37lzhwmFQjZ+/Hj1PG0KdMYY++uvvxgAtmDBgirrvlygP3nyRF1QVnbv3j0mFotZYGCgxusAYD///LPGuv369WPOzs5VXqsmKpWKKZVKFhcXxwCwy5cvV8kYHx+v8RwzMzONfVfh008/ZY0aNWJ3797VmP/1118zAOqCqqKAfeedd1hpaanWWTMyMhgA9dS1a1f28OHDWp9X8Xqurq6svLxcPX/NmjUMAPP399dYf/r06QyA+sDwxo0bDACbOHGixnrnz59nANicOXPU8zp16sR69Oihsd6GDRsYAJacnMwYe/GZGhkZsSlTpmis9+zZMyaVStmwYcMYY4zl5OQwAGzNmjW1vkdC/hdRk7seFRYWIj4+HoMGDYKxsbF6vrm5Ofr371/r89977z1cvnwZEydOxLFjx6ptyqxNhw4d4OTkpPX6gYGBGr3vFQoFevToUefm4Lr6888/UVxcXOU0QLNmzdCnTx/8/vvvGvMFAkGVfdihQweten3fvn0bgYGBkEqlMDQ0hFAohIeHBwBUad6vi0OHDsHT0xNyuRxlZWXqyc/PDwAQFxensb6/vz+EQqHW27e2tkZ8fDzOnDmDrVu34vHjx/D09ERGRoZWz+/Xrx8MDP7+E9CmTRsALzooVlYx/969ewCg/uxf/mzee+89tGnTRuOzGTt2LM6ePYuUlBT1vO3bt6NLly5o164dAODYsWMoKyvDmDFjNPaTsbExPDw81KeMLC0t8c4772DlypUIDw/HpUuXoFKptHqvhPwvoAJdj548eQKVSgWpVFplWXXzXjZ79mx8/fXXOHfuHPz8/GBlZYUPPvgACQkJWmeoay/yV2XNzc2t03bqqmL71eWVy+VVXt/U1FTjIAkAxGIxnj9/XuPrFBQU4P3338f58+exaNEixMbGIj4+HgcOHADwotPg68rKysKvv/4KoVCoMbm4uAAAcnJyNNav62djZGSEzp07o2fPnhg/fjxOnjyJ27dvY9myZVo939LSUuOxSCSqcX7FvqzLZzNq1CiIxWJ8//33AIDr168jPj4eY8eOVa+TlZUFAOjSpUuVfbV37171fhIIBPj999/h4+ODFStWoFOnTrCxscHUqVPx7Nkzrd4zIW8z6uWuRxYWFhAIBMjMzKyyrLp5LzMyMsLMmTMxc+ZMPH36FCdOnMCcOXPg4+OD+/fvw9TUtNZtvHyte21elbXyZVHGxsbIy8urst7LBVZdVGy/utrmo0ePYG1t/drbruzkyZN49OgRYmNj1bVyAHW+jr861tbW6NChAxYvXlztcrlcrvG4rp/Ny+zt7SGXy5Gamlqv7dSm8mdjb2+vsezlz8bCwgIBAQHYuXMnFi1ahO3bt8PY2BgjR45Ur1Ox/r///W8oFIoaX1uhUCAiIgIAkJqaip9//hlhYWEoLS3Fpk2bdPL+CHlTUQ1dj8zMzPDee+/hwIEDGjXHZ8+e4ddff63Ttpo0aYIhQ4Zg0qRJePz4sbp3eMVlTvWpWVb2008/gTGmfnz37l2cPXtWoyd38+bNkZqaqtGjPDc3F2fPntXYVl2yde/eHSYmJti1a5fG/AcPHuDkyZP44IMPXuftVFFRiL58edjmzZu13oZYLK72PX300Ue4evUq3nnnHXTu3LnK9HKBXl83b97EgwcP4OjoqNPtvqxPnz4AUOWziY+Px40bN6p8NmPHjsWjR49w5MgR7Nq1CwMHDtS4R4KPjw+MjIxw69atavdT586dq83h5OSEefPmoX379khMTNTtmyTkDUQ1dD376quv4Ovri759++Lzzz9HeXk5li9fDjMzMzx+/LjG5/bv3x/t2rVD586dYWNjg7t372LNmjVQKBRo1aoVAKB9+/YAgLVr1yIoKAhCoRDOzs4wNzd/rbzZ2dkYOHAgJkyYgLy8PCxYsADGxsaYPXu2ep3Ro0dj8+bN+PjjjzFhwgTk5uZixYoVVW5UY25uDoVCgYMHD+KDDz6ApaUlrK2t1Ze2VdakSRPMnz8fc+bMwZgxYzBy5Ejk5uZi4cKFMDY2xoIFC17r/bysR48esLCwwGeffYYFCxZAKBTixx9/xOXLl7XeRvv27REbG4tff/0VMpkM5ubmcHZ2xpdffono6Gj06NEDU6dOhbOzM54/f447d+7gyJEj2LRpU5UarjauXLmCGTNmYMiQIWjZsiUMDAyQnJyM1atXw8rKCv/4xz/qvM26cHZ2xieffIJvvvkGBgYG8PPzw507dzB//nw0a9YMM2bM0Fjf29sb9vb2mDhxIjIzMzWa24EXB4Rffvkl5s6di9u3b8PX1xcWFhbIysrChQsXYGZmhoULF+LKlSuYPHkyhg4dilatWkEkEuHkyZO4cuUKvvjiC07fMyFvBL575f0vioqKYh06dGAikYg5ODiwZcuWsQULFtTay33VqlWsR48ezNraWv3ckJAQdufOHY3nzZ49m8nlcmZgYMAAqC/pUSgU7MMPP6w206t6uf/www9s6tSpzMbGhonFYvb++++zhISEKs/fsWMHa9OmDTM2NmZt27Zle/furdLLnbEXl+117NiRicViBkD9mtVdtsYYY9u2bVPvK4lEwgICAjQuY2LsRS93MzOzKpmq26fVOXv2LOvevTszNTVlNjY2bPz48SwxMVF9iVqFV/VyT0pKYj179mSmpqYMgEaP/7/++otNnTqVtWjRggmFQmZpacnc3NzY3LlzWUFBAWPs717nK1eurDUrY4xlZmayjz/+mL3zzjvM1NSUiUQi1rJlS/bZZ5+xe/fu1fr8V71exWe+b98+jfnVve/y8nK2fPly5uTkxIRCIbO2tmYff/wxu3//frWvOWfOHPVlkJV71lcWGRnJPD09WePGjZlYLGYKhYINGTKEnThxgjHGWFZWFgsODmatW7dmZmZmrFGjRqxDhw5s9erVrKysrNb3TcjbTsBYpfZUQgghhLyR6Bw6IYQQ8hagAp0QQgipxqFDh+Ds7IxWrVph27ZtfMepFTW5E0IIIS8pKytD27ZtERMTg8aNG6NTp044f/58lfs0NCRUQyeEEEJecuHCBbi4uKBp06YwNzdHv379cOzYMb5j1YgKdEIIIW+dU6dOoX///pDL5RAIBIiMjKyyzoYNG9CiRQsYGxvDzc0Np0+fVi979OgRmjZtqn5sb2+Phw8f6iP6a6MCnRBCyFunsLAQrq6uWL9+fbXL9+7di+nTp2Pu3Lm4dOkS3n//ffj5+anHLKjubHR97+bINa1vLFNSUqJxJzCVSoXHjx/Dysqqwb9JQgghmhhjePbsGeRyucYgPbr2/PlzlJaW6mRbjLEq5Y1YLK5yp0cA8PPzUw+EVJ3w8HCEhIRg/PjxAIA1a9bg2LFj2LhxI5YuXYqmTZtq1MgfPHiArl276uR9cEbbC9YrbtJBE0000UTT2zO96mZAulBcXMxMIdBZ1kaNGlWZV91wzC8DwH755Rf145KSEmZoaMgOHDigsd7UqVNZr169GGOMKZVK5ujoyB48eMDy8/OZo6Mjy8nJ0eXu0Tmta+izZ8/GzJkz1Y/z8vLg4OCA1NTUBtPrT6lUIiYmBp6ennUahpJLlEk7lEk7lEk7lKl2jx8/hpOT02vfFlobpaWlKALDaJhBhPq15JaC4YeCAty/f1/jttLV1c5rk5OTg/LyctjZ2WnMt7OzUw9IZWRkhFWrVsHT0xMqlQr//Oc/NQalaoi0LtBf1axhaWnZYN6kUqmEqakprKysGsQPBqBM2qJM2qFM2qFM2tPHKVNjGEBUz9cx+O857caNG1cZJ+J1vfze2UtN+v7+/vD399fJa+kDdYojhBDyP8Xa2hqGhoZVhofOzs6uUmt/k1CBTgghhFMGOpp0RSQSwc3NDdHR0RrzK0ZHfFPR8KmEEEI4JRAABvVs2RcAAAO6dOkCQ0NDTJo0CZMmTXrl+gUFBbh586b6cXp6OpKSkmBpaQkHBwfMnDkTo0ePRufOndG9e3ds2bIF9+7dw2effVa/oDyiAp0QQsgbIz4+Xqtz6AkJCfD09FQ/rujUHRQUhO+//x7Dhw9Hbm4uvvzyS2RkZKBdu3Y4cuQIFAoFZ9m5RgU6IYQQTumiybyuz+/du3e1N4epbOLEiZg4ceLrh2pgqEAnhBDCKQOBAAb17eUOvLjynLwSdYojhBBC3gJUQyeEEMIpPprc/xdRgU4IIYRTBjro5U4Feu1oHxFCCHljdOnSBW3btsW3337Ld5QGh7MCvbaxaBljCAsLg1wuh4mJCXr37o1r165prFNSUoIpU6bA2toaZmZm8Pf3x4MHD3SW8dmzZ5g+fToUCgVMTEzQo0cPxMfHq5dnZWUhODgYcrkcpqam8PX1RVpams5e/3UyFRQUYPLkybC3t4eJiQnatGmDjRs38ppJIBBUO61cuZK3TABw48YN+Pv7QyKRwNzcHN26dVMPjchHpuDg4Cr7qFu3bpzl0SZTZZ9++ikEAgHWrFnDa6awsDC0bt0aZmZmsLCwgJeXF86fP89bJqVSiVmzZqF9+/YwMzODXC7HmDFj8OjRI94yAcCBAwfg4+MDa2trCAQCJCUlcZqnPnR5Y5n4+Hhcv369xmvQ/1dxVqDXNhbtihUrEB4ejvXr1yM+Ph5SqRR9+/bFs2fP1OtMnz4dv/zyC/bs2YMzZ86goKAAH330EcrLy3WScfz48YiOjsYPP/yA5ORkeHt7w8vLCw8fPgRjDAMGDMDt27dx8OBBXLp0CQqFAl5eXigsLNTJ69c1EwDMmDEDR48exa5du3Djxg3MmDEDU6ZMwcGDB3nLlJGRoTF99913EAgEGDx4MG+Zbt26BXd3d7Ru3RqxsbG4fPky5s+fD2NjY94yAYCvr6/Gvjpy5AhnebTNBACRkZE4f/485HI5p3m0yeTk5IT169cjOTkZZ86cQfPmzeHt7Y2//vqLl0xFRUVITEzE/PnzkZiYiAMHDiA1NZXze3zXtp8KCwvRs2dPLFu2jNMcuvCqg/66TqQWrztMW15eHgOg1XByeGnoOpVKxaRSKVu2bJl63vPnz5lEImGbNm1ijDH29OlTJhQK2Z49e9TrPHz4kBkYGLCjR49W+zqlpaUsMjKSlZaW1pqpqKiIGRoaskOHDmnMd3V1ZXPnzmUpKSkMALt69ap6WVlZGbO0tGRbt26tdftcZGKMMRcXF/bll19qLO/UqRObN28eb5leFhAQwPr06aN1Hi4yDR8+nH388cd1ysB1pqCgIBYQENCgMjHG2IMHD1jTpk3Z1atXmUKhYKtXr+Y9U2UVf2tOnDjRYDJduHCBAWB3797lPVN6ejoDwC5duqR1FsYYy8nJYQBYXl5enZ5XFxWfXaiRhM0TNqnXFGok4Tzvm46Xc+jp6enIzMyEt7e3ep5YLIaHhwfOnj0LALh48SKUSqXGOnK5HO3atVOvUx9lZWUoLy+vUmMzMTHBmTNnUFJSAgAayw0NDSESiXDmzJl6v/7rZAIAd3d3REVFqVsRYmJikJqaCh8fH94yVZaVlYXDhw8jJCSEkzzaZFKpVDh8+DCcnJzg4+MDW1tbdO3atcppH31mqhAbGwtbW1s4OTlhwoQJyM7O5jWTSqXC6NGjERoaChcXF86y1CVTZaWlpdiyZQskEglcXV0bRCbgxfDRAoEATZo0aTCZCOGlQK8Y4aamsWgzMzMhEolgYWHxynXqw9zcHN27d8dXX32FR48eoby8HLt27cL58+eRkZGB1q1bQ6FQYPbs2Xjy5AlKS0uxbNkyZGZmIiMjo96v/zqZAGDdunVo27Yt7O3tIRKJ4Ovriw0bNsDd3Z23TJXt2LED5ubmGDRoECd5tMmUnZ2NgoICLFu2DL6+vjh+/DgGDhyIQYMGIS4ujpdMAODn54cff/wRJ0+exKpVqxAfH48+ffqoDx75yLR8+XIYGRlh6tSpnGR4nUwAcOjQITRq1AjGxsZYvXo1oqOjYW1tzWumCs+fP8cXX3yBwMBAnQ3jWd9MDV1FL/f6TqRmvPZyr20s2upos462fvjhBzDG0LRpU4jFYqxbtw6BgYEwNDSEUCjE/v37kZqaCktLS5iamiI2NhZ+fn4wNDTUyevXNRPwokA/d+4coqKicPHiRaxatQoTJ07EiRMneMtU2XfffYdRo0Zxeq66tkwqlQoAEBAQgBkzZuDdd9/FF198gY8++gibNm3iJRMADB8+HB9++CHatWuH/v3747fffkNqaioOHz7MS6aLFy9i7dq1+P777/V6flKb75OnpyeSkpJw9uxZ+Pr6YtiwYZy2Zmj7HVcqlRgxYgRUKhU2bNjAWZ66ZHoTCFD/DnFUnteOlwJdKpUCQI1j0UqlUpSWluLJkyevXKe+3nnnHcTFxaGgoAD379/HhQsXoFQq0aJFCwCAm5sbkpKS8PTpU2RkZODo0aPIzc1VL+dCTZmKi4sxZ84chIeHo3///ujQoQMmT56M4cOH4+uvv+YlU2WnT59GSkoKxo8fz1kWbTJZW1vDyMgIbdu21XhOmzZtOO3lru1+qiCTyaBQKDi9cqKmTKdPn0Z2djYcHBxgZGQEIyMj3L17F59//jmaN2/OS6YKZmZmcHR0RLdu3RAREQEjIyNERETwmkmpVGLYsGFIT09HdHQ0Z7XzumT6X0SXrb0aLwV6ixYtIJVKNcaiLS0tRVxcnHosWjc3NwiFQo11MjIycPXqVZ2PV2tmZgaZTIYnT57g2LFjCAgI0FgukUhgY2ODtLQ0JCQkVFnOheoyKZVKKJVKGBhofmyVa6X6zlRZREQE3NzcODvXqW0mkUiELl26ICUlRWPd1NRUvYykVNt+qpCbm4v79+9DJpPxkmn06NG4cuUKkpKS1JNcLkdoaCiOHTvGS6ZXYYxxdmpCm0wVhXlaWhpOnDgBKysrzrPUlulNUnEv9/pOAF22VhPO7hRX21i006dPx5IlS9CqVSu0atUKS5YsgampKQIDAwG8KERDQkLw+eefw8rKCpaWlvjHP/6B9u3bw8vLSycZjx07BsYYnJ2dcfPmTYSGhsLZ2Rljx44FAOzbtw82NjZwcHBAcnIypk2bhgEDBmh01NO1mjIJhUJ4eHggNDQUJiYmUCgUiIuLw86dOxEeHs5Lpgr5+fnYt28fVq1axVmOumQKDQ3F8OHD0atXL3h6euLo0aP49ddfERsby0umgoIChIWFYfDgwZDJZLhz5w7mzJkDa2trDBw4kJdMQqGwSsEkFAohlUrh7OzMS6bCwkIsXrwY/v7+kMlkyM3NxYYNG/DgwQMMHTqUl0xlZWUYMmQIEhMTcejQIZSXl6tbFy0tLSESifSeCQAeP36Me/fuqa+HrziAlUql6lbQhoJu/aonr9s9vrbL1mJiYhhejI2jMQUFBTHGXly6tmDBAiaVSplYLGa9evViycnJGtsoLi5mkydPZpaWlszExIR99NFH7N69e6/MVJfLQhhjbO/evaxly5ZMJBIxqVTKJk2axJ4+fapevnbtWmZvb8+EQiFzcHBg8+bNYyUlJVptm6tMGRkZLDg4mMnlcmZsbMycnZ3ZqlWrmEql4i0TY4xt3ryZmZiYVJnPZ6aIiAjm6OjIjI2NmaurK4uMjOQtU1FREfP29mY2Njbq71NQUFCN32euM1WH68vWastUXFzMBg4cyORyOROJREwmkzF/f3924cIF3jJVXBZW3RQTE8NLJsYY2759e7WZFixYoNX29XnZ2jxRE7ZIbFGvaZ6oCV22VgsBY7UMGPsK+fn5kEgkyMnJ0WvzU02USiWOHDmCfv36QSgU8h0HAGXSFmXSDmXSDmWqXW5uLqytrZGXl8dZf4CKcuJf4iYwrmfHy+eM4cuSp5zmfdPR4CyEEEI4RU3u+kH7iBBCCHkLUA2dEEIIpwwggEE9rySn2mftaB8RQgjhlC7vFEfXob8a1dAJIYRwSpfn0OPj46lT3CtQDZ0QQgh5C1ANnRBCCKd0MbgK1T5rRwU6IYQQTr0YnKV+JboAr3XLlP8pdNBDCCGEvAWohk4IIYRT1OSuH1SgE0II4RTdKU4/aB8RQgghbwGta+glJSUa4xHn5+cDgHqM7oagIkdDyQNQJm1RJu1QJu1QptrpMwc1ueuH1qOthYWFYeHChVXm7969G6ampjoPRgghhDtFRUUIDAzUy2hra80sYSKoX5FczFSYVvgYTk5OMDQ0xKRJkzBp0iQdJX07aF2gV1dDb9asGTIyMhrU8KnR0dHo27dvgxieEKBM2qJM2qFM2qFMtcvNzYVMJnvjCnQaPvXVtG5yF4vFEIvFVeYLhcIG8eWsjDJphzJphzJphzJpp6Fk0mcGanLXD+rlTgghhFOC/0713QapGRXohBBCOEU1dP2gfUQIIYS8BaiGTgghhFMGENT7Xu71ff7/AirQCSGEcIqa3PWD9hEhhBDyFqAaOiGEEE69GD61/tsgNaMCnRBCCKfosjX9oCZ3Qggh5C1ABTohhBBOGQgEOpkAoEuXLmjbti2+/fZbnt9Vw6OXAr2srAzz5s1DixYtYGJigpYtW+LLL7+ESqVSr3PgwAH4+PjA2toaAoEASUlJvGZSKpWYNWsW2rdvDzMzM8jlcowZMwaPHj3iLRPwYpCc1q1bw8zMDBYWFvDy8sL58+d5zVTZp59+CoFAgDVr1vCaKTg4GAKBQGPq1q0br5kA4MaNG/D394dEIoG5uTm6deuGe/fu8Zbp5X1UMa1cuZK3TAUFBZg8eTLs7e1hYmKCNm3aYOPGjZzk0TZTVlYWgoODIZfLYWpqCl9fX6SlpXGWCQCePXuG6dOnQ6FQwMTEBD169EB8fLx6OWMMYWFhkMvlMDExQe/evXHt2jVOM70ugY4mAIiPj8f169dpYJZq6OUc+vLly7Fp0ybs2LEDLi4uSEhIwNixYyGRSDBt2jQAQGFhIXr27ImhQ4diwoQJvGcqKipCYmIi5s+fD1dXVzx58gTTp0+Hv78/EhISeMkEAE5OTli/fj1atmyJ4uJirF69Gt7e3rh58yZsbGx4yVQhMjIS58+fh1wu13mO18nk6+uL7du3qx+LRCJeM926dQvu7u4ICQnBwoULIZFIcOPGDRgbG/OWKSMjQ+M5v/32G0JCQjB48GDeMs2YMQMxMTHYtWsXmjdvjuPHj2PixImQy+UICAjQeybGGAYMGAChUIiDBw+icePGCA8Ph5eXF65fvw4zMzOdZwKA8ePH4+rVq/jhhx8gl8uxa9cu9Ws2bdoUK1asQHh4OL7//ns4OTlh0aJF6Nu3L1JSUmBubs5JJtLAsdeUl5fHALCcnJxa1/3www/ZuHHjNOYNGjSIffzxx1XWTU9PZwDYpUuX6pyptLSURUZGstLSUp1mqnDhwgUGgN29e7fBZKr4HE6cOMFrpgcPHrCmTZuyq1evMoVCwVavXq11Hi4yBQUFsYCAgDpl4DrT8OHDa/ws+cj0soCAANanTx9eM7m4uLAvv/xSY51OnTqxefPm8ZIpJSWFAWBXr15VLy8rK2OWlpZs69atnGQqKipihoaG7NChQxrzXV1d2dy5c5lKpWJSqZQtW7ZMvez58+dMIpGwTZs2aZUnJyeHAWB5eXlav4e6qvj79L3Emv3cxLZe0/cSa87zvun00uTu7u6O33//HampqQCAy5cv48yZM+jXr58+Xl5nmfLy8iAQCNCkSZMGkam0tBRbtmyBRCKBq6srb5lUKhVGjx6N0NBQuLi4cJKjrpkAIDY2Fra2tnBycsKECROQnZ3NWyaVSoXDhw/DyckJPj4+sLW1RdeuXREZGclbppdlZWXh8OHDCAkJ4TWTu7s7oqKi8PDhQzDGEBMTg9TUVPj4+PCSqWLY6MotKYaGhhCJRDhz5gwnmcrKylBeXl6l9cbExARnzpxBeno6MjMz4e3trV4mFovh4eGBs2fPcpKpPnTZ5E5eTS9N7rNmzUJeXh5at24NQ0NDlJeXY/HixRg5cqQ+Xl4nmZ4/f44vvvgCgYGBnI3Fq22mQ4cOYcSIESgqKoJMJkN0dDSsra15y7R8+XIYGRlh6tSpnGR4nUx+fn4YOnQoFAoF0tPTMX/+fPTp0wcXL16sdhhgrjNlZ2ejoKAAy5Ytw6JFi7B8+XIcPXoUgwYNQkxMDDw8PPSe6WU7duyAubk5Bg0apPMsdcm0bt06TJgwAfb29jAyMoKBgQG2bdsGd3d3XjK1bt0aCoUCs2fPxubNm2FmZobw8HBkZmZWOWWhK+bm5ujevTu++uortGnTBnZ2dvjpp59w/vx5tGrVCpmZmQAAOzs7jefZ2dnh7t27nGSqj4q+GfXaBhXptdJLgb53717s2rULu3fvhouLC5KSkjB9+nTI5XIEBQXpI0K9MimVSowYMQIqlQobNmzgPZOnpyeSkpKQk5ODrVu3YtiwYTh//jxsbW31nunixYtYu3YtEhMT6/2D1VUmABg+fLh6/Xbt2qFz585QKBQ4fPgwJwVWbZkqOlgFBARgxowZAIB3330XZ8+exaZNmzgp0Ov6u/vuu+8watQozs7pa5tp3bp1OHfuHKKioqBQKHDq1ClMnDgRMpkMXl5ees8kFAqxf/9+hISEwNLSEoaGhvDy8oKfn5/Os1T2ww8/YNy4cWjatCkMDQ3RqVMnBAYGIjExUb3Oy785xpjefoekAXrdtvq6nEO3t7dn69ev15j31VdfMWdn5yrr6uscuraZSktL2YABA1iHDh20eq/6yPQyR0dHtmTJEl4yrV69mgkEAmZoaKieADADAwOmUCh4yfQqjo6OGucc9ZmppKSEGRkZsa+++kpjnX/+85+sR48evGSq7NSpUwwAS0pK0joLF5mKioqYUCiscu44JCSE+fj48JKpsqdPn7Ls7GzGGGPvvfcemzhxIieZKisoKGCPHj1ijDE2bNgw1q9fP3br1i0GgCUmJmqs6+/vz8aMGaPVdvV5Dv2HJjZsv4VdvaYfmtjQOfRa6OUcelFREQwMNF/K0NDwlZc+6YM2mZRKJYYNG4a0tDScOHECVlZWvGeqDmNMfZ5P35lGjx6NK1euICkpST3J5XKEhobi2LFjvGSqTm5uLu7fvw+ZTMZLJpFIhC5duiAlJUVjndTUVCgUCl4yVRYREQE3NzfO+mJom0mpVEKpVOr170Vd9pNEIoGNjQ3S0tKQkJDASa/7l5mZmUEmk+HJkyc4duwYAgIC0KJFC0ilUkRHR6vXKy0tRVxcHHr06MF5proy0NFEaqaXJvf+/ftj8eLFcHBwgIuLCy5duoTw8HCMGzdOvc7jx49x79499XXeFX/4pFIppFKp3jOVlZVhyJAhSExMxKFDh1BeXq4+b2VpacnJJVC1ZSosLMTixYvh7+8PmUyG3NxcbNiwAQ8ePMDQoUN1nkebTFZWVlUOdIRCIaRSKZydnXnJVFBQgLCwMAwePBgymQx37tzBnDlzYG1tjYEDB/KSCQBCQ0MxfPhw9OrVC56enjh69Ch+/fVXxMbG8pYJAPLz87Fv3z6sWrWKkxx1ydS4cWN4eHggNDQUJiYmUCgUiIuLw86dOxEeHs5LJgDYt28fbGxs4ODggOTkZEybNg0DBgzQ6JSma8eOHQNjDM7Ozrh58yZCQ0Ph7OyMsWPHQiAQYPr06ViyZAlatWqFVq1aYcmSJTA1NUVgYCBnmUgD97pV+7o0uefn57Np06YxBwcHZmxszFq2bMnmzp3LSkpK1Ots376dAagyLViwQOtMdWnSqi1TRdN/dVNMTAwvmYqLi9nAgQOZXC5nIpGIyWQy5u/vzy5cuKB1Hl1nqg7Xl63VlqmoqIh5e3szGxsbJhQKmYODAwsKCmL37t3jLVOFiIgI5ujoyIyNjZmrqyuLjIzkPdPmzZuZiYkJe/r0aZ2ycJUpIyODBQcHM7lczoyNjZmzszNbtWoVU6lUvGVau3Yts7e3V3+f5s2bV+NvoL6ZGGNs7969rGXLlkwkEjGpVMomTZqk8RmpVCq2YMECJpVKmVgsZr169WLJycla59Fnk/tuCxsWaWlXr2m3BTW510bAGGOvcyCQn58PiUSCnJwczpuitaVUKnHkyBH069cPQqGQ7zgAKJO2KJN2KJN2KFPtcnNzYW1tjby8PM6u3KkoJ36ysIWpoH6N5kVMhZFPsjnN+6aj0xKEEELIW4CGTyWEEMIpGj5VP6hAJ4QQwikq0PWDmtwJIYS8MWj41FejGjohhBBOGQAwqGcV2+C/3bfj4+OpU9wrUIFOCCGEU4L//lffbZCaUYFOCCGEc1Qcc4/OoRNCCCFvAaqhE0II4ZRA8GKq7zZIzahAJ4QQwim6bE0/qMmdEEIIeQtQDZ0QQginDCCAQT3r2PV9/v8CrQv0kpISjTG38/PzAfw9fnFDUJGjoeQBKJO2KJN2KJN2KFPt9JmDmtz1Q+vR1sLCwrBw4cIq83fv3g1TU1OdByOEEMKdoqIiBAYG6mW0tYOWUpgZ1O8Mb6FKhYDHmTTaWg20LtCrq6E3a9YMGRkZDWr41OjoaPTt27dBDE8IUCZtUSbtUCbtUKba5ebmQiaT6aVAj7LSTYHun0sFek20bnIXi8UQi8VV5guFwgbx5ayMMmmHMmmHMmmHMmmnoWTSZwZqctcP6uVOCCGEvAWolzshhBBO0b3c9YMKdEIIIZwyEOhgtDUqz2tFBTohhBBO0Tl0/aBz6IQQQshbgGrohBBCOEU1dP2gAp0QQginqFOcflCTOyGEEPIWoBo6IYQQTtF46PpBNXRCCCGcMtDRBABdunRB27Zt8e233+rzLbwR9FKgl5WVYd68eWjRogVMTEzQsmVLfPnll1CpVOp1GGMICwuDXC6HiYkJevfujWvXrnGaq3nz5hAIBFWmSZMmAQCysrIQHBwMuVwOU1NT+Pr6Ii0tjddMBQUFmDx5Muzt7WFiYoI2bdpg48aNvOWpbplAIMDKlSt5ywQAN27cgL+/PyQSCczNzdGtWzfcu3ePt0zBwcFVlnXr1o2zPNpkquzTTz+FQCDAmjVreM0UFhaG1q1bw8zMDBYWFvDy8sL58+d5y6RUKjFr1iy0b98eZmZmkMvlGDNmDB49esRbJgA4cOAAfHx8YG1tDYFAgKSkJE7zNCTx8fG4fv16td/j/3V6aXJfvnw5Nm3ahB07dsDFxQUJCQkYO3YsJBIJpk2bBgBYsWIFwsPD8f3338PJyQmLFi1C3759kZKSAnNzc05yxcfHo7y8XP346tWr6Nu3L4YOHQrGGAYMGAChUIiDBw+icePGCA8Ph5eXF65fvw4zMzO9ZwKAGTNmICYmBrt27ULz5s1x/PhxTJw4EXK5HAEBAXrPk5GRobH+b7/9hpCQEAwePFjnWbTNdOvWLbi7uyMkJAQLFy6ERCLBjRs3YGxszFsmAPD19cX27dvVj0UiEWd5tM0EAJGRkTh//jzkcjmnebTJ5OTkhPXr16Nly5YoLi7G6tWr4e3tjZs3b8LGxkbvmYqKipCYmIj58+fD1dUVT548wfTp0+Hv74+EhARO8tSWCQAKCwvRs2dPDB06FBMmTOAsh65QL3c9Ya8pLy+PAWA5OTm1rvvhhx+ycePGacwbNGgQ+/jjjxljjKlUKiaVStmyZcvUy58/f84kEgnbtGmT1plKS0tZZGQkKy0t1fo5lU2bNo298847TKVSsZSUFAaAXb16Vb28rKyMWVpasq1bt/KSiTHGXFxc2JdffqmxTqdOndi8efP0kunlPC8LCAhgffr0qfN2dZlp+PDh6u9WfegyU1BQEAsICGhQmRhj7MGDB6xp06bs6tWrTKFQsNWrV/OeqbKKvzMnTpxoMJkuXLjAALC7d+/ynik9PZ0BYJcuXarzNnNychgAlpeXV+fnaqvi8/vdtik7L21Wr+l326ac533T6aXJ3d3dHb///jtSU1MBAJcvX8aZM2fQr18/AEB6ejoyMzPh7e2tfo5YLIaHhwfOnj2rj4goLS3Frl27MG7cOAgEAvVQsZVrdYaGhhCJRDhz5gwvmYAX+zIqKgoPHz4EYwwxMTFITU2Fj48PL3kqy8rKwuHDhxESEsJ5lldlUqlUOHz4MJycnODj4wNbW1t07doVkZGRvGWqEBsbC1tbWzg5OWHChAnIzs7mNZNKpcLo0aMRGhoKFxcXvWWpKdPLy7ds2QKJRAJXV9cGkQkA8vLyIBAI0KRJkwaTiRBAT+fQZ82ahZEjR6J169YQCoXo2LEjpk+fjpEjRwIAMjMzAQB2dnYaz7Ozs1Mv41pkZCSePn2K4OBgAEDr1q2hUCgwe/ZsPHnyBKWlpVi2bBkyMzOrNDPrKxMArFu3Dm3btoW9vT1EIhF8fX2xYcMGuLu785Knsh07dsDc3ByDBg3iPMurMmVnZ6OgoADLli2Dr68vjh8/joEDB2LQoEGIi4vjJRMA+Pn54ccff8TJkyexatUqxMfHo0+fPuoDRz4yLV++HEZGRpg6dapeMmiTCQAOHTqERo0awdjYGKtXr0Z0dDSsra15zVTh+fPn+OKLLxAYGKi3Mblry/QmEOhoIjXTyzn0vXv3YteuXdi9ezdcXFyQlJSE6dOnQy6XIygoSL3ey0efjDG9HZFGRETAz89PfR5RKBRi//79CAkJgaWlJQwNDeHl5QU/Pz+95KkuE/CiQD937hyioqKgUChw6tQpTJw4ETKZDF5eXnrPU9l3332HUaNGcXquurZMFR0tAwICMGPGDADAu+++i7Nnz2LTpk3w8PDQeyYAGD58uPrf7dq1Q+fOnaFQKHD48GG9HAC9nOnixYtYu3YtEhMTeav1ver75OnpiaSkJOTk5GDr1q0YNmwYzp8/D1tbW94yAYBSqcSIESOgUqmwYcMGzrNok+lNQefQ9UMvBXpoaCi++OILjBgxAgDQvn173L17F0uXLkVQUBCkUimAFzV1mUymfl52dnaVWjsX7t69ixMnTuDAgQMa893c3JCUlIS8vDyUlpbCxsYGXbt2RefOnXnJVFxcjDlz5uCXX37Bhx9+CADo0KEDkpKS8PXXX3NaoL9qH1U4ffo0UlJSsHfvXs4yaJPJ2toaRkZGaNu2rca6bdq00cupktr2UwWZTAaFQsH5VROvynT69GlkZ2fDwcFBPa+8vByff/451qxZgzt37ug9UwUzMzM4OjrC0dER3bp1Q6tWrRAREYHZs2fzlkmpVGLYsGFIT0/HyZMn9VY71/b71NBV9NKv7zZIzfTS5F5UVAQDA82XMjQ0VNemWrRoAalUiujoaPXy0tJSxMXFoUePHpzn2759O2xtbdWF5MskEglsbGyQlpaGhIQETnqTa5NJqVRCqVTWuC/1maeyiIgIuLm56e1c56syiUQidOnSBSkpKRrrpqamQqFQ8JKpOrm5ubh//77GAaw+M40ePRpXrlxBUlKSepLL5QgNDcWxY8d4yfQqjDG9nJp4VaaKwjwtLQ0nTpyAlZUV51lqy0RIdfRSQ+/fvz8WL14MBwcHuLi44NKlSwgPD8e4ceMAvDjymj59OpYsWYJWrVqhVatWWLJkCUxNTREYGMhpNpVKhe3btyMoKAhGRpq7Y9++fbCxsYGDgwOSk5Mxbdo0DBgwQKPznj4zNW7cGB4eHggNDYWJiQkUCgXi4uKwc+dOhIeH6z1Phfz8fOzbtw+rVq3iLENdMoWGhmL48OHo1asXPD09cfToUfz666+IjY3lJVNBQQHCwsIwePBgyGQy3LlzB3PmzIG1tTUGDhzISyYrK6sqBZNQKIRUKoWzszMvmQoLC7F48WL4+/tDJpMhNzcXGzZswIMHD6pcaqevTGVlZRgyZAgSExNx6NAhlJeXq/v1WFpacnrpYU3f8cePH+PevXvq6+ErDmClUqm6xbMhofHQ9eR1u8fX5bK1/Px8Nm3aNObg4MCMjY1Zy5Yt2dy5c1lJSYl6HZVKxRYsWMCkUikTi8WsV69eLDk5uU6ZXueykGPHjjEALCUlpcqytWvXMnt7eyYUCpmDgwObN2+eRmY+MmVkZLDg4GAml8uZsbExc3Z2ZqtWrXrlJTa6yFRTHsYY27x5MzMxMWFPnz7VOgPXmSIiIpijoyMzNjZmrq6uLDIykrdMRUVFzNvbm9nY2Ki/S0FBQezevXu8ZaqOvi5be1Wm4uJiNnDgQCaXy5lIJGIymYz5+/uzCxcu8Jap4rKw6qaYmBheMjHG2Pbt26vNtGDBAq3z6POytdPyZuySvaJe02l5M7psrRYCxhh7nQOB/Px8SCQS5OTk6LUJqiZKpRJHjhxBv379IBQK+Y4DgDJpizJphzJphzLVLjc3F9bW1sjLy+OsT0BFOXFa3gyNDOp3hrdApcL7j+5zmvdNR4OzEEII4RQNzqIfVKATQgjhFBXo+kGjrRFCCCFvAaqhE0II4RRdh64fVKATQgjhFDW56wc1uRNCCCFvAaqhE0II4RQ1uesHFeiEEEI4RU3u+kEFOiGEEE4ZCAQwqGeJXN/n/y+gc+iEEELIW4Bq6IQQQjhFTe76oXWBXlJSojGEYX5+PoC/h/RsCCpyNJQ8AGXSFmXSDmXSDmWqnT5zCKCDTnGgEr02Wg/OEhYWhoULF1aZv3v3bpiamuo8GCGEEO4UFRUhMDBQL4OzXGzZAo0M6zk4S7kKbrfTaXCWGmhdoFdXQ2/WrBkyMjIa1Ghr0dHR6Nu3b4MYzQigTNqiTNqhTNqhTLXLzc2FTCbTS4Ge6KibAr3TTSrQa6J1k7tYLIZYLK4yXygUNogvZ2WUSTuUSTuUSTuUSTsNJZNeM+jgOnQ6iV476uVOCCGEvAWolzshhBBOUS93/aACnRBCCKdeFOj1vfWrjsK8xajJnRBCCHkLUIFOCCGEUxVN7vWdGpqBAwfCwsICQ4YM4TsKACrQCSGEcKziXu71nRqaqVOnYufOnXzHUKMCnRBCCKfe1hq6p6cnzM3N+Y6hRgU6IYSQt86pU6fQv39/yOVyCAQCREZGVllnw4YNaNGiBYyNjeHm5obTp0/rP6gOUS93QgghnBLo4MYydX1+YWEhXF1dMXbsWAwePLjK8r1792L69OnYsGEDevbsic2bN8PPzw/Xr1+Hg4MDAMDNzU3jDqkVjh8/Drlc/npvhENUoBNCCOGULq9DrxgYrMKr7mLq5+cHPz+/V24vPDwcISEhGD9+PABgzZo1OHbsGDZu3IilS5cCAC5evFi/0HpGTe6EEELeGM2aNYNEIlFPFYVvXZSWluLixYvw9vbWmO/t7Y2zZ8/qKqre6a1Af/jwIT7++GNYWVnB1NQU7777rsbRz4EDB+Dj4wNra2sIBAIkJSXxmkmpVGLWrFlo3749zMzMIJfLMWbMGDx69Ii3TMCLUe9at24NMzMzWFhYwMvLC+fPn+c1U2WffvopBAIB1qxZw2um4OBgdTNfxdStWzdeMwHAjRs34O/vD4lEAnNzc3Tr1g337t3jLdPL+6hiWrlyJW+ZCgoKMHnyZNjb28PExARt2rTBxo0bOcujTaasrCwEBwdDLpfD1NQUvr6+SEtL4yxP8+bNq/1cJk2aBABgjCEsLAxyuRwmJibo3bs3rl27xlme+tJlp7j79+8jLy9PPc2ePbvOeXJyclBeXg47OzuN+XZ2dsjMzNR6Oz4+Phg6dCiOHDkCe3t7xMfH1zmLLumlyf3Jkyfo2bMnPD098dtvv8HW1ha3bt1CkyZN1OsUFhaiZ8+eGDp0KCZMmMB7pqKiIiQmJmL+/PlwdXXFkydPMH36dPj7+yMhIYGXTADg5OSE9evXo2XLliguLsbq1avh7e2NmzdvwsbGhpdMFSIjI3H+/HnOzy1pm8nX1xfbt29XPxaJRLxmunXrFtzd3RESEoKFCxdCIpHgxo0bMDY25i1TRkaGxnN+++03hISEVHvOUV+ZZsyYgZiYGOzatQvNmzfH8ePHMXHiRMjlcgQEBOg9E2MMAwYMgFAoxMGDB9G4cWOEh4fDy8sL169fh5mZmc4zxcfHo7y8XP346tWr6Nu3L4YOHQoAWLFiBcLDw/H999/DyckJixYtQt++fZGSktKgel1XEBgIIDCo5zl09uL5jRs31tloay+fl2eM1elc/bFjx3SSQ2fYa8rLy2MAWE5OTq3rzpo1i7m7u2u13fT0dAaAXbp0qc6ZSktLWWRkJCstLdVppgoXLlxgANjdu3cbTKaKz+HEiRO8Znrw4AFr2rQpu3r1KlMoFGz16tVa5+EiU1BQEAsICKhTBq4zDR8+nH388ccNKtPLAgICWJ8+fXjN5OLiwr788kuNeZ06dWLz5s3jJVNKSgoDwK5evaqeV1ZWxiwtLdnWrVs5yfSyadOmsXfeeYepVCqmUqmYVCply5YtUy9//vw5k0gkbNOmTVpvMycnhwFgeXl5dc6jrYq/T/9xbcUedmpdr+k/rq1eOy8A9ssvv6gfl5SUMENDQ3bgwAGN9aZOncp69epV37fNG700uUdFRaFz584YOnQobG1t0bFjR2zdulUfL63TTHl5eRAIBNXWTvnIVFpaii1btkAikcDV1ZW3TCqVCqNHj0ZoaChcXFw4yVHXTAAQGxsLW1tbODk5YcKECcjOzuYtk0qlwuHDh+Hk5AQfHx/Y2tqia9eu1V5Ko69ML8vKysLhw4cREhLCayZ3d3dERUXh4cOHYIwhJiYGqamp8PHx4SVTRS/nyi0phoaGEIlEOHPmDCeZKistLcWuXbswbtw4CAQCpKenIzMzU+P8r1gshoeHR4M9/9vQrkMXiURwc3NDdHS0xvzo6Gj06NFDdy+kb697JFCXGrpYLGZisZjNnj2bJSYmsk2bNjFjY2O2Y8eOKuvqq4Zel0yMMVZcXMzc3NzYqFGjeM/066+/MjMzMyYQCJhcLmcXLlzgNdOSJUtY3759mUqlYowxzmvo2mTas2cPO3ToEEtOTmZRUVHM1dWVubi4sOfPn/OSKSMjgwFgpqamLDw8nF26dIktXbqUCQQCFhsby0umly1fvpxZWFiw4uJirfNwkamkpISNGTOGAWBGRkZMJBKxnTt38paptLSUKRQKNnToUPb48WNWUlLCli5dygAwb29vTjJVtnfvXmZoaMgePnzIGGPsjz/+YADUjytMmDChTnn0WUNP6+jEMju3qdeU1tGJAWBOTk6sTZs2bP369TW+9rNnz9ilS5fYpUuXGAD1766ihXXPnj1MKBSyiIgIdv36dTZ9+nRmZmbG7ty5w9n+4JpeCnShUMi6d++uMW/KlCmsW7duVdbVV4Fel0ylpaUsICCAdezYsc5ffi4yFRQUsLS0NPbnn3+ycePGsebNm7OsrCxeMiUkJDA7OzuNPy5cF+h1+ewqPHr0iAmFQrZ//35eMj18+JABYCNHjtRYp3///mzEiBG8ZHqZs7Mzmzx5stZZuMq0cuVK5uTkxKKiotjly5fZN998wxo1asSio6N5y5SQkMBcXV0ZAGZoaMh8fHyYn58f8/Pz4yRTZd7e3uyjjz5SP64o0B89eqSx3vjx45mPj4/W231TC3Rt88bExDAAVaagoCD1Ot9++y1TKBRMJBKxTp06sbi4OI72hH7opcldJpOhbdu2GvPatGnDae/e2mibSalUYtiwYUhPT0d0dLTOOmPUJ5OZmRkcHR3RrVs3REREwMjICBEREbxkOn36NLKzs+Hg4AAjIyMYGRnh7t27+Pzzz9G8eXNeMr3qOQqFgrOeybVlsra2hpGRkV5/B3XZT6dPn0ZKSor6mlyu1JapuLgYc+bMQXh4OPr3748OHTpg8uTJGD58OL7++mteMgEvbjCSlJSEp0+fIiMjA0ePHkVubi5atGjBSaYKd+/exYkTJzQ+F6lUCgBVemNnZ2dX6bXdUPDR5N67d2+wF5VWjen7779XrzNx4kTcuXMHJSUluHjxInr16qXbN65neinQe/bsiZSUFI15qampUCgU+nj5ammTqaIwT0tLw4kTJ2BlZcV7puowxqq9m5E+Mo0ePRpXrlxBUlKSepLL5QgNDeWsB+jr7Kfc3Fzcv38fMpmMl0wikQhdunTR6++gLvspIiICbm5unPXF0DaTUqmEUqmEgYHmnyZDQ0OoVCpeMlUmkUhgY2ODtLQ0JCQkcNLrvrLt27fD1tYWH374oXpeixYtIJVKNc7/lpaWIi4ursGe/33V5ZF1nUgtXrdqX5cm9wsXLjAjIyO2ePFilpaWxn788UdmamrKdu3apV4nNzeXXbp0iR0+fJgBYHv27GGXLl1iGRkZWmeqS5NWbZmUSiXz9/dn9vb2LCkpiWVkZKinkpISXjIVFBSw2bNnsz///JPduXOHXbx4kYWEhDCxWKzRA1efmarDdZN7bZmePXvGPv/8c3b27FmWnp7OYmJiWPfu3VnTpk1Zfn4+L5kYY+zAgQNMKBSyLVu2sLS0NPbNN98wQ0NDdvr0ad4yMfbit2xqaso2btyodQ4uM3l4eDAXFxcWExPDbt++zbZv386MjY3Zhg0beMv0888/s5iYGHbr1i0WGRnJFAoFGzRokNZ56pqJMcbKy8uZg4MDmzVrVpVly5YtYxKJhB04cIAlJyezkSNHMplMVqfvtz6b3G+7ObO/urat13TbzZnzvG86vRTojL3oyNWuXTsmFotZ69at2ZYtWzSWb9++vdrzHQsWLNA6U11/MDVlqjiXX90UExPDS6bi4mI2cOBAJpfLmUgkYjKZjPn7+3PaKa62TNXhukCvLVNRURHz9vZmNjY2TCgUMgcHBxYUFMTu3bvHW6YKERERzNHRkRkbGzNXV1cWGRnJe6bNmzczExMT9vTp0zpl4SpTRkYGCw4OZnK5nBkbGzNnZ2e2atUqdadLPjKtXbuW2dvbq79P8+bNq9OB/etkOnbsGAPAUlJSqixTqVRswYIFTCqVMrFYzHr16sWSk5PrlIcK9LePgDHGXqdmn5+fD4lEgpycHM6borWlVCpx5MgR9OvXD0KhkO84ACiTtiiTdiiTdihT7XJzc2FtbY28vDzO+gZVlBPpnVvD3MiwXtt6VlaOFgn/4TTvm47u5U4IIYRbuugQ999T6F26dEHbtm3x7bff8vqWGiIabY0QQsgbIz4+nmror0AFOiGEEE7xMR76/yIq0AkhhHBKYPBiqu82SM1oFxFCCCFvAaqhE0II4RQ1uesHFeiEEEK4ZSB4MdV3G6RG1OROCCHkjUGXrb0a1dAJIYRwSxcDmv/3+XTZ2qtRgU4IIYRTdA5dP6hAJ4QQwi06h64XWhfoJSUlGkN05ufnA/h7uMOGoCJHQ8kDUCZtUSbtUCbtUKbaNZQcRHe0HpwlLCwMCxcurDJ/9+7dMDU11XkwQggh3CkqKkJgYKBeBme539sVjes5OEt+WTmaxV6mwVlqoHWBXl0NvVmzZsjIyGhQo61FR0ejb9++DWI0I4AyaYsyaYcyaYcy1S43NxcymUwvBfqDPu/qpEC3P5lEBXoNtG5yF4vFEIvFVeYLhcIG8eWsjDJphzJphzJphzJpp6FkaggZiG7RdeiEEEK4Vd+xUytd9vY2XYdeWFio0+1RL3dCCCGcEggEENSzl7rgLbwO3c7ODsOGDcO4cePg7u5e7+1RDZ0QQgjhwU8//YS8vDx88MEHcHJywrJly/Do0aPX3h4V6IQQQrilwyb3t0n//v2xf/9+PHr0CP/3f/+Hn376CQqFAh999BEOHDiAsrKyOm2PCnRCCCHcMsDfN5d57YnvN8EdKysrzJgxA5cvX0Z4eDhOnDiBIUOGQC6X41//+heKioq02g6dQyeEEEJ4lJmZiZ07d2L79u24d+8ehgwZgpCQEDx69AjLli3DuXPncPz48Vq3QwU6IYQQTtG93Kt34MABbN++HceOHUPbtm0xadIkfPzxx2jSpIl6nXfffRcdO3bUantUoBNCCOEW3cu9WmPHjsWIESPwxx9/oEuXLtWu07JlS8ydO1er7VGBTgghhFs6HD71bZKRkVHrrdNNTEywYMECrbb3FnczIIQQQhouc3NzZGdnV5mfm5sLQ8O63yqXCnRCCCGcEhjoZgLerjvFvWoolZKSEohEojpvT28F+sOHD/Hxxx/DysoKpqamePfdd3Hx4kX1csYYwsLCIJfLYWJigt69e+PatWuc5QkLC1N31KiYpFKpenlWVhaCg4Mhl8thamoKX19fpKWlcZZHm0wFBQWYPHky7O3tYWJigjZt2mDjxo28Znp5WcW0cuVK3jIBwI0bN+Dv7w+JRAJzc3N069YN9+7d4y1TcHBwleXdunXjLI82mSr79NNPIRAIsGbNGl4zhYWFoXXr1jAzM4OFhQW8vLxw/vx53jIplUrMmjUL7du3h5mZGeRyOcaMGVOvm3/UNxPwojOVj48PrK2tIRAIkJSUxGmeetPhdejx8fG4fv06Jk2axPOben3r1q3DunXrIBAIsG3bNvXjdevWYfXq1Zg0aRJat25d5+3q5Rz6kydP0LNnT3h6euK3336Dra0tbt26pdGTb8WKFQgPD8f3338PJycnLFq0CH379kVKSgrMzc05yeXi4oITJ06oH1c0cTDGMGDAAAiFQhw8eBCNGzdGeHg4vLy8cP36dZiZmXGSp6ZMADBjxgzExMRg165daN68OY4fP46JEydCLpcjICCAl0wZGRka6/72228ICQnB4MGDOctTW6Zbt27B3d0dISEhWLhwISQSCW7cuAFjY2PeMgGAr68vtm/frn78Okfgus4EAJGRkTh//jzkcjnneWrL5OTkhPXr16Nly5YoLi7G6tWr4e3tjZs3b8LGxkbvmYqKipCYmIj58+fD1dUVT548wfTp0+Hv74+EhATO8tSUCXhxD/CePXti6NChmDBhAqc5iO6tXr0awIuyZtOmTRqfrUgkQvPmzbFp06Y6b1cvBfry5cvRrFkzjT9mzZs3V/+bMYY1a9Zg7ty5GDRoEABgx44dsLOzw+7du/Hpp59yksvIyKjaGktaWhrOnTuHq1evwsXFBQCwYcMG2Nra4qeffsL48eM5yVNTJgD4888/ERQUhN69ewMAPvnkE2zevBkJCQmcFug1ZXp5/sGDB+Hp6YmWLVtylqe2THPnzkW/fv2wYsUK9Tyu89SWCXgxYmFNy7lQW6aHDx9i8uTJOHbsGD788EPeMwUGBmo8Dg8PR0REBK5cuYIPPvhA75kkEgmio6M15n3zzTd47733cO/ePTg4OOg9EwCMHj0aAHDnzh3OXl+XBAY6uJf7W9TLPT09HQDg6emJAwcOwMLCQifb1UuTe1RUFDp37oyhQ4fC1tYWHTt2xNatW9XL09PTkZmZCW9vb/U8sVgMDw8PnD17lrNcaWlpkMvlaNGiBUaMGIHbt28DgHrc98o1OkNDQ4hEIpw5c4azPDVlAgB3d3dERUXh4cOHYIwhJiYGqamp8PHx4S1TZVlZWTh8+DBCQkI4zVNTJpVKhcOHD8PJyQk+Pj6wtbVF165dERkZyVumCrGxsbC1tYWTkxMmTJhQbWcYfWZSqVQYPXo0QkND1Qeu+qDt96m0tBRbtmyBRCKBq6trg8gEAHl5eRAIBBotjHxnavDo1q/ViomJ0VlhDuiphn779m1s3LgRM2fOxJw5c3DhwgVMnToVYrEYY8aMQWZmJoAXI89UZmdnh7t373KSqWvXrti5cyecnJyQlZWFRYsWoUePHrh27Rpat24NhUKB2bNnY/PmzTAzM0N4eDgyMzOrNDHrK5OVlRXWrVuHCRMmwN7eHkZGRjAwMMC2bdt0MkrP62aqbMeOHTA3N1e3svCRSalUoqCgAMuWLcOiRYuwfPlyHD16FIMGDUJMTAw8PDz0nsnKygp+fn4YOnQoFAoF0tPTMX/+fPTp0wcXL16EWCzmJdPy5cthZGSEqVOncvL6r5MJAA4dOoQRI0agqKgIMpkM0dHRsLa25jVThefPn+OLL75AYGAgpyN+1SUTebPMnDkTX331FczMzDBz5swa1w0PD6/bxtlrysvLYwBYTk5OresKhULWvXt3jXlTpkxh3bp1Y4wx9scffzAA7NGjRxrrjB8/nvn4+GidqbS0lEVGRrLS0lKtn1OhoKCA2dnZsVWrVjHGGEtISGCurq4MADM0NGQ+Pj7Mz8+P+fn51Wm7usy0cuVK5uTkxKKiotjly5fZN998wxo1asSio6N5y1SZs7Mzmzx5cp23qctMDx8+ZADYyJEjNdbp378/GzFiBC+ZqvPo0SMmFArZ/v37ecmUkJDA7Ozs2MOHD9XLFQoFW716dZ23q+v9VFBQwNLS0tiff/7Jxo0bx5o3b86ysrJ4zVSxzYCAANaxY0eWl5dX5+1ykSk9PZ0BYJcuXarzNnNychiA13ov2qooJzIH92BFI3rVa8oc3IPzvPrQu3dv9uTJE/W/XzV5enrWedt6qaHLZDK0bdtWY16bNm2wf/9+AH+fh83MzIRMJlOvk52dXaXWzhUzMzO0b99e3ZPdzc0NSUlJyMvLQ2lpKWxsbNC1a1d07txZL3lezlRcXIw5c+bgl19+UZ/r7NChA5KSkvD111/Dy8tL75kqO336NFJSUrB371695HhVJmtraxgZGVX7feP6dMmrMlVHJpNBoVBwfuXEqzIZGBggOztb4xxweXk5Pv/8c6xZs0Zv52ar209mZmZwdHSEo6MjunXrhlatWiEiIgKzZ8/mLZNSqcSwYcOQnp6OkydP6n087tq+Tw0d3fr1bzExMdX+Wxf0cg69Z8+eSElJ0ZiXmpoKhUIBAGjRogWkUqlG55PS0lLExcWhR48e+oiIkpIS3LhxQ+OAAnjRKcbGxgZpaWmcdz6rKZNSqYRSqYSBgeZHZmhoCJVKxUumyiIiIuDm5sb5uc7aMolEInTp0qXG75u+M1UnNzcX9+/ff+VyrjONHj0aV65cQVJSknqSy+UIDQ3FsWPHeMn0Kowxdb8WPjJVFOZpaWk4ceIEL03e2uwnQvRSQ58xYwZ69OiBJUuWYNiwYbhw4QK2bNmCLVu2AHhx5DV9+nQsWbIErVq1QqtWrbBkyRKYmppW6fWqK//4xz/Qv39/ODg4IDs7G4sWLUJ+fj6CgoIAAPv27YONjQ0cHByQnJyMadOmYcCAARod9/SZqXHjxvDw8EBoaChMTEygUCgQFxeHnTt31v08i44yVcjPz8e+ffuwatUqznLUJVNoaCiGDx+OXr16wdPTE0ePHsWvv/6K2NhYXjIVFBQgLCwMgwcPhkwmw507dzBnzhxYW1tj4MCBvGSysrKqUjAJhUJIpVI4OzvzkqmwsBCLFy+Gv78/ZDIZcnNzsWHDBjx48ABDhw7lJVNZWRmGDBmCxMREHDp0COXl5eo+P5aWlpxdeljbd/zx48e4d++e+nr4igNYqVSq9ysptEL3clerSx+jAwcO1GnbeinQu3Tpgl9++QWzZ8/Gl19+iRYtWmDNmjUYNWqUep1//vOfKC4uxsSJE/HkyRN07doVx48f5+wa9AcPHmDkyJHIycmBjY0NunXrhnPnzqlrcRkZGZg5cyaysrIgk8kwZswYzJ8/n5Ms2mbas2cPZs+ejVGjRuHx48dQKBRYvHgxPvvsM94yVeRijGHkyJGc5ahLpoEDB2LTpk1YunQppk6dCmdnZ+zfv5/TzoM1ZSouLkZycjJ27tyJp0+fQiaTwdPTE3v37uXs+11bJr7UlOn58+f4z3/+gx07diAnJwdWVlbo0qULTp8+zWkv/Joy3blzB1FRUQBejHpVWUxMjPoSUn1mAl5cOTR27Fj1+iNGjAAALFiwAGFhYZxkqh9d9FJ/Owp0iUTC2bYFjL3i3nO1yM/Ph0QiUf/wGgKlUokjR46gX79+EAqFfMcBQJm0RZm0Q5m0Q5lql5ubC2tra+Tl5XHWJ6CinMge3guNRfWrP+aXlsF27ylO877p6F7uhBBC3hhv073cdY2GTyWEEMItHZ5Dj4+Pf6Nr6J06dcLvv/8OCwsLdOzYscbe+4mJiXXaNhXohBBCOEWXrf0tICBAfTOpAQMG6HTbVKATQggherJgwYJq/60LVKATQgjhFl22VqOEhATcuHEDAoEAbdq0gZub22tthwp0Qggh3NLF4CpvSZN7ZRWXJ/7xxx/qwX6ePn2KHj164KeffkKzZs3qtD3q5U4IIYTwYNy4cVAqlbhx4wYeP36Mx48f48aNG2CMvdaolVRDJ4QQwikaD716p0+fxtmzZzXuzujs7IxvvvkGPXv2rPP2qEAnhBDCLWpyr5aDgwOUSmWV+WVlZWjatGmdt0dN7oQQQggPVqxYgSlTpiAhIQEVN21NSEjAtGnT8PXXX9d5e1RDJ4QQwi0D6KCXu06S8M7CwkLjmvrCwkJ07doVRkYviuOysjIYGRlh3Lhxdb5OXesCvaSkRGMIw/z8fABQD+vZEFTkaCh5AMqkLcqkHcqkHcpUO33moBvL/G3NmjWcbVvrwVnCwsKwcOHCKvN3794NU1NTnQcjhBDCnaKiIgQGBuplcJbcCd5oLKrfgDT5pUpYbT1Og7PUQOsCvboaerNmzZCRkdGgRluLjo5G3759G8RoRgBl0hZl0g5l0g5lql1ubi5kMhkV6A1EcXFxlVaTur5PrZvcxWKx+v6zlQmFwgbx5ayMMmmHMmmHMmmHMmmnoWTSawbq5V6twsJCzJo1Cz///DNyc3OrLC8vL6/T9t6SbgaEEEIarIoCvb4T3q7hU//5z3/i5MmT2LBhA8RiMbZt24aFCxdCLpdj586ddd4e9XInhBDyxnjTh0+t7Ndff8XOnTvRu3dvjBs3Du+//z4cHR2hUCjw448/YtSoUXXaHtXQCSGEcEwXtfO3r8n98ePHaNGiBYAX58sfP34MAHB3d8epU6fqvD0q0AkhhHDLwEA301umZcuWuHPnDgCgbdu2+PnnnwG8qLlXDNZSF2/fHiKEEELeAGPHjsXly5cBALNnz1afS58xYwZCQ0PrvD06h04IIYRb1Mu9WjNmzFD/29PTEzdu3MDFixfxzjvvwNXVtc7bowKdEEIIt6hA14pCoYBCoXjt51OTOyGEEMKT33//HR999BHeeecdODo64qOPPsKJEydea1tUoBNCCOGWDq9Df5usX78evr6+MDc3x7Rp0zB16lQ0btwY/fr1w/r16+u8PWpyJ4QQwi1d9FJ/C3u5L126FKtXr8bkyZPV86ZOnYqePXti8eLFGvO18fbtIUIIIQ0L1dCrlZ+fD19f3yrzvb291SOa1gUvBfrSpUshEAgwffp09bwDBw7Ax8cH1tbWEAgESEpK4jWTUqnErFmz0L59e5iZmUEul2PMmDF49OgRb5mAF6PetW7dGmZmZrCwsICXlxfOnz/Pa6bKPv30UwgEAk6HCNQmU3BwsHrIxoqpW7duvGYCgBs3bsDf3x8SiQTm5ubo1q0b7t27x1uml/dRxbRy5UreMhUUFGDy5Mmwt7eHiYkJ2rRpg40bN+olz6syZWVlITg4GHK5HKampvD19UVaWhpnGcLCwqp8JlKpVL2cMYawsDDI5XKYmJigd+/euHbtGmd5CDf8/f3xyy+/VJl/8OBB9O/fv87b03uTe3x8PLZs2YIOHTpozC8sLETPnj0xdOhQTJgwgfdMRUVFSExMxPz58+Hq6oonT55g+vTp8Pf3R0JCAi+ZAMDJyQnr169Hy5YtUVxcjNWrV8Pb2xs3b96EjY0NL5kqREZG4vz585DL5Zzm0DaTr68vtm/frn4sEol4zXTr1i24u7sjJCQECxcuhEQiwY0bN2BsbMxbpoyMDI3Hv/32G0JCQjB48GDeMs2YMQMxMTHYtWsXmjdvjuPHj2PixImQy+UICAjQeybGGAYMGAChUIiDBw+icePGCA8Ph5eXF65fvw4zMzNOsri4uGh0jjI0NFT/e8WKFQgPD8f3338PJycnLFq0CH379kVKSgrMzc05yVMv1Mtdbd26dep/t2nTBosXL0ZsbCy6d+8OADh37hz++OMPfP7553Xetl5r6AUFBRg1ahS2bt0KCwsLjWWjR4/Gv/71L3h5eekz0iszSSQSREdHY9iwYXB2dka3bt3wzTff4OLFi5zXqGraT4GBgfDy8kLLli3h4uKC8PBw5Ofn48qVK7xlAoCHDx9i8uTJ+PHHH/U2ilNtmcRiMaRSqXqytLTkNdPcuXPRr18/rFixAh07dkTLli3x4YcfwtbWlrdMlfePVCrFwYMH4enpiZYtW/KW6c8//0RQUBB69+6N5s2b45NPPoGrqyvnB9KvypSWloZz585h48aN6NKlC5ydnbFhwwYUFBTgp59+4iyPkZGRxmdTccDOGMOaNWswd+5cDBo0CO3atcOOHTtQVFSE3bt3c5anXqjJXW316tXqKSIiAhYWFrh+/ToiIiIQERGBa9euoUmTJvjuu+/qvG29FuiTJk3Chx9+qPdCuyZ1yZSXlweBQPBat+TjIlNpaSm2bNkCiUTyWjch0FUmlUqF0aNHIzQ0FC4uLpzm0DYTAMTGxsLW1hZOTk6YMGECsrOzecukUqlw+PBhODk5wcfHB7a2tujatSsiIyN5y/SyrKwsHD58GCEhIbxmcnd3R1RUFB4+fAjGGGJiYpCamgofHx9eMpWUlACARkuKoaEhRCIRzpw5w1metLQ0yOVytGjRAiNGjMDt27cBAOnp6cjMzIS3t7d6XbFYDA8PD5w9e5azPEQ30tPTtZoqPu+60FuT+549e5CYmIj4+Hh9vWSt6pLp+fPn+OKLLxAYGMjpSD/aZDp06BBGjBiBoqIiyGQyREdHw9ramrdMy5cvh5GREaZOncpZhrpm8vPzw9ChQ6FQKJCeno758+ejT58+uHjxIsRisd4zZWdno6CgAMuWLcOiRYuwfPlyHD16FIMGDUJMTAw8PDz0nullO3bsgLm5OQYNGsRJFm0zrVu3DhMmTIC9vT2MjIxgYGCAbdu2wd3dnZdMrVu3hkKhwOzZs7F582aYmZkhPDwcmZmZVU5Z6ErXrl2xc+dOODk5ISsrC4sWLUKPHj1w7do1ZGZmAgDs7Ow0nmNnZ4e7d+9ykqfeqJd7rRhjAF70a3ldeinQ79+/j2nTpuH48eN6OV+ojbpkUiqVGDFiBFQqFTZs2MB7Jk9PTyQlJSEnJwdbt27FsGHDcP78eU6abmvLdPHiRaxduxaJiYn1+iLqMhMADB8+XP3vdu3aoXPnzlAoFDh8+DAnBVZtmVQqFQAgICBAfbvHd999F2fPnsWmTZs4KdDr+rv77rvvMGrUKE5/o9pkWrduHc6dO4eoqCgoFAqcOnUKEydOhEwm46R1r7ZMQqEQ+/fvR0hICCwtLWFoaAgvLy/4+fnpPEuFyttu3749unfvjnfeeQc7duxQd+58+ffGGNPbb7DO6Bz6K+3cuRMrV65Ud7J0cnJCaGgoRo8eXedt6eWQ5+LFi8jOzoabmxuMjIxgZGSEuLg4rFu3DkZGRigvL9dHjNfKpFQqMWzYMKSnpyM6OprT2rm2mczMzODo6Ihu3bohIiICRkZGiIiI4CVTbGwssrOz4eDgoF5+9+5dfP7552jevDkvmar7PslkMigUCs56JteWycrKCkZGRmjbtq3G89q0acNZn4y67KfTp08jJSUF48eP5ySLtpkKCwsxZ84chIeHo3///ujQoQMmT56M4cOH4+uvv+YlU3l5Odzc3JCUlISnT58iIyMDR48eRW5urnroS66ZmZmhffv2SEtLU/d2r6ipV8jOzq5SaycNW3h4OP7v//4P/fr1w88//4y9e/fC19cXn332GVavXl3n7emlhv7BBx8gOTlZY97YsWPRunVrzJo1S6P3pr5ok6miME9LS0NMTAysrKx4z1Qdxpj6PJ++M8lksirnNn18fDB69GiMHTuWl0zV7afc3Fzcv38fMpmMl0xisRhdunRBSkqKxjqpqan1undzfTJV3k8RERFwc3PjvC9GbZnKy8uhVCph8FLzqqGhobqVQ9+ZKu8niUQC4MX57YSEBHz11VecZHpZSUkJbty4gffffx8tWrSAVCpFdHQ0OnbsCOBFf5q4uDgsX75cL3nqTAAd1NB1kqRB+eabb7Bx40aMGTNGPS8gIAAuLi4ICwvTGLxFG3op0M3NzdGuXTuNeWZmZrCyslLPf/z4Me7du6e+zrviD19FD099ZyorK8OQIUOQmJiIQ4cOoby8XH1EbGlpycklULVlKiwsxOLFi+Hv7w+ZTIbc3Fxs2LABDx48wNChQ3WeR5tMAKoc6AiFQkilUjg7O/OSqaCgAGFhYRg8eDBkMhnu3LmDOXPmwNraGgMHDuQlEwCEhoZi+PDh6NWrFzw9PXH06FH8+uuviI2N5S0T8OLmFvv27cOqVas4yVHXTB4eHggNDYWJiQkUCgXi4uKwc+dOhIeH85Zp3759sLGxgYODA5KTkzFt2jQMGDBAo2OaLv3jH/9A//794eDggOzsbCxatAj5+fkICgpSXyO/ZMkStGrVCq1atcKSJUtgamqKwMBATvLUGzW5VysjIwM9evSoMr9Hjx6v1T+jwdz6NSoqSqNGN2LECADAggULEBYWpvc8Dx48QFRUFIAX5zori4mJQe/evfWeydDQEP/5z3+wY8cO5OTkwMrKCl26dMHp06f12ru8oTM0NERycjJ27tyJp0+fQiaTwdPTE3v37uX1Gt2BAwdi06ZNWLp0KaZOnQpnZ2fs37+f085e2tizZw8YYxg5ciSvOSrs2bMHs2fPxqhRo/D48WMoFAosXrwYn332GW+ZMjIyMHPmTGRlZUEmk2HMmDGYP38+Z6/34MEDjBw5Ejk5ObCxsUG3bt1w7tw5dWvOP//5TxQXF2PixIl48uQJunbtiuPHjzfMa9DJKzk6OuLnn3/GnDlzNObv3bsXrVq1qvP2BKyia10d5efnQyKRqAuWhkCpVOLIkSPo16+f3q6Frg1l0g5l0g5l0g5lql1ubi6sra2Rl5fHWd+ginLi8Rcj0Vhcv1bN/JJSWC77idO8+rZ//34MHz4cXl5e6NmzJwQCAc6cOYPff/8dP//8c51bFN/u6wAIIYQ0ALq4qcyLJvcuXbqgbdu2+Pbbb/l9SzowePBgXLhwAdbW1oiMjMSBAwdgbW2NCxcuvNbpwQbT5E4IIeQtpcNz6PHx8W9FDV2pVOKTTz7B/PnzsWvXLp1sk2rohBBCiJ4JhcJqB2apDyrQCSGEcIvu5V6tgQMH6vT2z9TkTgghhFt069dqOTo64quvvsLZs2fh5uZWZeS+ut5Omwp0QgghhAfbtm1DkyZNcPHiRVy8eFFjmUAgoAKdEEJIA0M3lqlWenq6+t+6GJzl7WvDIIQQ0rDQOfRXioiIQLt27WBsbAxjY2O0a9cO27Zte61tUQ2dEEII4cH8+fOxevVqTJkyBd27dwcA/Pnnn5gxYwbu3LmDRYsW1Wl7VKATQgjhFjW5V2vjxo3YunWrxm2X/f390aFDB0yZMoUKdEIIIQ0M9XKvVnl5OTp37lxlvpubG8rKyuq8Pa0L9JKSEo0hOvPz8wG8uNuNUqms8wtzoSJHQ8kDUCZtUSbtUCbtUKba6TUH1dCr9fHHH2Pjxo1VRhLcsmULRo0aVeftaT04S1hYGBYuXFhl/u7du2FqalrnFyaEEMKfoqIiBAYG6mdwli/Ho7FxPQdneV4Ky39te6sGZ5kyZQp27tyJZs2aoVu3bgCAc+fO4f79+xgzZozGID7aDB+sdYFeXQ29WbNmyMjIaFCjrUVHR6Nv374NYjQjgDJpizJphzJphzLVLjc3FzKZTD8F+lcTdFOgz9/6VhXonp6eWq0nEAhw8uTJWtfTusldLBZDLBZXmS8UChvEl7MyyqQdyqQdyqQdyqSdhpJJrxnoHHq1YmJidLq9t28PEUIIIf+DqJc7IYQQbgmgg05xOknyVqMCnRBCCLeol7teUJM7IYQQ8hagGjohhBBuUQ1dL6hAJ4QQwi2BDnq5C6hBuTa0hwghhJC3ANXQCSGEcIua3PWCCnRCCCHcogJdL6hAJ4QQwi2BQf3PgdM59FrRHiKEEELeArwU6EuXLoVAIMD06dPV8xhjCAsLg1wuh4mJCXr37o1r165xlmHjxo3o0KEDGjdujMaNG6N79+747bff1MuzsrIQHBwMuVwOU1NT+Pr6Ii0tjbM82mQqKCjA5MmTYW9vDxMTE7Rp0wYbN27kNZNAIKh2WrlyJW+ZAODGjRvw9/eHRCKBubk5unXrhnv37vGWKTg4uMo+qhhdia9MlX366acQCARYs2YNr5nCwsLQunVrmJmZwcLCAl5eXjh//jxvmZRKJWbNmoX27dvDzMwMcrkcY8aMwaNHj3jLBAAHDhyAj48PrK2tIRAIkJSUxGmeejMQ6GYiNdJ7gR4fH48tW7agQ4cOGvNXrFiB8PBwrF+/HvHx8ZBKpejbty+ePXvGSQ57e3ssW7YMCQkJSEhIQJ8+fRAQEIBr166BMYYBAwbg9u3bOHjwIC5dugSFQgEvLy8UFhZykqe2TAAwY8YMHD16FLt27cKNGzcwY8YMTJkyBQcPHuQtU0ZGhsb03XffQSAQYPDgwbxlunXrFtzd3dG6dWvExsbi8uXLmD9/PoyNjXnLBAC+vr4a++rIkSOc5dE2EwBERkbi/PnzkMvlnObRJpOTkxPWr1+P5ORknDlzBs2bN4e3tzf++usvXjIVFRUhMTER8+fPR2JiIg4cOIDU1FT4+/tzlqe2TABQWFiInj17YtmyZZzm0JmKJvf6TqRm7DXl5eUxACwnJ0fr5zx79oy1atWKRUdHMw8PDzZt2jTGGGMqlYpJpVK2bNky9brPnz9nEomEbdq0Sevtl5aWssjISFZaWqr1cyqzsLBg27ZtYykpKQwAu3r1qnpZWVkZs7S0ZFu3bq3TNnWViTHGXFxc2JdffqmxvFOnTmzevHm8ZXpZQEAA69OnT523qctMw4cPZx9//PFrbYerTEFBQSwgIKBBZWKMsQcPHrCmTZuyq1evMoVCwVavXs17psoq/s6cOHGiwWS6cOECA8Du3r3Le6b09HQGgF26dKnO28vJyWEAWF5e3mvl0UbF5/d49UxWtml2vabHq2dynvdNp9dDnkmTJuHDDz+El5eXxvz09HRkZmbC29tbPU8sFsPDwwNnz57lPFd5eTn27NmDwsJCdO/eXT3ue+UanaGhIUQiEc6cOcN5nuoyAYC7uzuioqLw8OFDMMYQExOD1NRU+Pj48JapsqysLBw+fBghISF6yVNdJpVKhcOHD8PJyQk+Pj6wtbVF165dERkZyVumCrGxsbC1tYWTkxMmTJiA7OxsXjOpVCqMHj0aoaGhcHFx0VuWmjJVVlpaii1btkAikcDV1bVBZAKAvLw8CAQCNGnSpMFkavAqernXdyI10lsv9z179iAxMRHx8fFVlmVmZgIA7OzsNObb2dnh7t27nGVKTk5G9+7d8fz5czRq1Ai//PIL2rZtC6VSCYVCgdmzZ2Pz5s0wMzNDeHg4MjMzkZGRwVmemjIBwLp16zBhwgTY29vDyMgIBgYG2LZtG9zd3XnLVNmOHTtgbm6OQYMGcZqnpkyZmZkoKCjAsmXLsGjRIixfvhxHjx7FoEGDEBMTAw8PD71nAgA/Pz8MHToUCoUC6enpmD9/Pvr06YOLFy9CLBbzkmn58uUwMjLC1KlTOXv9umYCgEOHDmHEiBEoKiqCTCZDdHQ0rK2tec1U4fnz5/jiiy8QGBiIxo0bN4hMbwQaD10v9FKg379/H9OmTcPx48drPI8peOkIjDFWZZ4uOTs7IykpCU+fPsX+/fsRFBSEuLg4tG3bFvv370dISAgsLS1haGgILy8v+Pn5cZZFm0zr1q3DuXPnEBUVBYVCgVOnTmHixImQyWRVWj30lamy7777DqNGjeL0XHVtmSpqTQEBAZgxYwYA4N1338XZs2exadMmTgv0mvbT8OHD1eu1a9cOnTt3hkKhwOHDhzk9AHpVpuLiYqxduxaJiYmc/sbqkqni++Tp6YmkpCTk5ORg69atGDZsGM6fPw9bW1veMgEvOsiNGDECKpUKGzZs4CxLXTIRUpleCvSLFy8iOzsbbm5u6nnl5eU4deoU1q9fj5SUFAAvauoymUy9TnZ2dpVauy6JRCI4OjoCADp37oz4+HisXbsWmzdvhpubG5KSkpCXl4fS0lLY2Niga9eu6Ny5M2d5asq0Zs0azJkzB7/88gs+/PBDAECHDh2QlJSEr7/+mtMCvab9VOH06dNISUnB3r17OcuhTaZvvvkGRkZGVf7otWnThvPTJdrspwoymQwKhYLzKydelalNmzbIzs6Gg4ODet3y8nJ8/vnnWLNmDe7cuaP3TBX7yczMDI6OjnB0dES3bt3QqlUrREREYPbs2bxlUiqVGDZsGNLT03Hy5EnOa+faZHqjvIU3lrl//z5Gjx6N7OxsGBkZYf78+Rg6dCivmfRSoH/wwQdITk7WmDd27Fi0bt0as2bNQsuWLSGVShEdHY2OHTsCeHH+LC4uDsuXL9dHRAAvWgQqzp9XkEgkAIC0tDQkJCTgq6++0lueypmUSiWUSiUMXmp2MjQ0hEql4iVTZREREXBzc9Pbuc5XZRKJROjSpYv6ILFCamoqFAoFL5mqk5ubi/v372scwOoz0+jRo6scBPr4+GD06NEYO3YsL5ledzkXKr9mRWGelpaGmJgYWFlZ6TVLdZneOG/hjWWMjIywZs0avPvuu8jOzkanTp3Qr18/mJmZ8ZdJHy9ibm6Odu3aacwzMzODlZWVev706dOxZMkStGrVCq1atcKSJUtgamqKwMBATjLNmTMHfn5+aNasGZ49e4Y9e/YgNjYWR48eBQDs27cPNjY2cHBwQHJyMqZNm4YBAwZodNzTZ6bGjRvDw8MDoaGhMDExgUKhQFxcHHbu3Inw8HBeMlXIz8/Hvn37sGrVKs5y1CVTaGgohg8fjl69esHT0xNHjx7Fr7/+itjYWF4yFRQUICwsDIMHD4ZMJsOdO3cwZ84cWFtbY+DAgbxksrKyqlIwCYVCSKVSODs785KpsLAQixcvhr+/P2QyGXJzc7FhwwY8ePCA05pPTZnKysowZMgQJCYm4tChQygvL1f3+bG0tIRIJNJ7JgB4/Pgx7t27p74evuIAViqVQiqVcpKJaJLJZOoDcltbW1haWuLx48dvf4GujX/+858oLi7GxIkT8eTJE3Tt2hXHjx+Hubk5J6+XlZWF0aNHIyMjAxKJBB06dMDRo0fRt29fAC+ur545cyaysrIgk8kwZswYzJ8/n5Ms2mbas2cPZs+ejVGjRuHx48dQKBRYvHgxPvvsM94yVeRijGHkyJGc5ahLpoEDB2LTpk1YunQppk6dCmdnZ+zfv5/TzoM1ZSouLkZycjJ27tyJp0+fQiaTwdPTE3v37uXs+11bJr7UlOn58+f4z3/+gx07diAnJwdWVlbo0qULTp8+zWkv/Joy3blzB1FRUQBe9MWoLCYmBr1799Z7JgCIiorSaEkZMWIEAGDBggUICwvjJFO9CKCDJve6rX7q1CmsXLkSFy9eREZGBn755RcMGDBAY50NGzZg5cqVyMjIgIuLC9asWYP333+/ztESEhKgUqnQrFmzOj9XlwSMMfY6T8zPz4dEIlH/8BoCpVKJI0eOoF+/fhAKhXzHAUCZtEWZtEOZtEOZapebmwtra2vk5eVx1iegopx4vHEOGpvUr7NsfvFzWP7fEty/f18jr1gsrvZKkd9++w1//PEHOnXqhMGDB1cp0Pfu3YvRo0djw4YN6NmzJzZv3oxt27bh+vXr6r4lbm5u1Z7mOH78uPpGTLm5uXj//fexbds29OjRo17vsb4aTA2dEELIW0qHneJergW/qlXCz8+vxiuTwsPDERISgvHjxwMA1qxZg2PHjmHjxo1YunQpgBcdumtSUlKCgQMHYvbs2bwX5gAV6IQQQt4g1dXQ66q0tBQXL17EF198oTHf29tb65uZMcYQHByMPn36YPTo0XXOwAUq0AkhhHBLh73cKwasqY+cnByUl5dXezOzik6Ptfnjjz+wd+9edOjQQX0nyh9++AHt27evV7b6oAKdEEIItwQ6GC2Ng+vQ63MzM3d3d71fMlybhnVhHyGEEMIxa2trGBoaVqmNc30zM65RgU4IIYRbDWz4VJFIBDc3N0RHR2vMj46ObhCd214XNbkTQgjhlg57uXfp0gWGhoaYNGkSJk2a9MrVCwoKcPPmTfXj9PR0JCUlwdLSEg4ODpg5cyZGjx6Nzp07o3v37tiyZQvu3bvH6X09uEYFOiGEkDdGfHy8Vp3iEhIS4OnpqX48c+ZMAEBQUBC+//57DB8+HLm5ufjyyy+RkZGBdu3a4ciRI3q/RbQuUYFOCCGEWzzcy713796o7b5pEydOxMSJE+uTqkGhAp0QQgi3DHTQy72+z/8fQJ3iCCGEkLeA1jX0kpISjXva5ufnA4B6WM+GoCJHQ8kDUCZtUSbtUCbtUKba6TXHWzgeekOk9eAsYWFhWLhwYZX5u3fvhqmpqc6DEUII4U5RURECAwP1MzjLjqVobFrPwVmKnsMyaDacnJy06uX+v0jrAr26GnqzZs2QkZHRoEZbi46ORt++fRvEaEYAZdIWZdIOZdIOZapdbm4uZDKZfgr0H5bppkAf/QWned90Wje5v2qIOqFQ2CC+nJVRJu1QJu1QJu1QJu00lEwNIQPRLerlTgghhFsCgQ4uW6Nz6LWhAp0QQgi3qFOcXtBla4QQQshbgGrohBBCuMXDneL+F9EeIoQQwq2KO8XVd8KLwVnatm2Lb7/9luc31fBQDZ0QQsgbQ9vBWf4XUYFOCCGEW9TkrhdUoBNCCOEW9XLXCzrkIYQQQt4CVEMnhBDCLQODF1N9t0FqRAU6IYQQjumgyR3U5F4bvRzyLF26FF26dIG5uTlsbW0xYMAApKSkaKxz4MAB+Pj4wNraGgKBAElJSbxmUiqVmDVrFtq3bw8zMzPI5XKMGTMGjx494i0T8GLUu9atW8PMzAwWFhbw8vLC+fPnec1U2aeffgqBQIA1a9bwmik4OBgCgUBj6tatG6+ZAODGjRvw9/eHRCKBubk5unXrhnv37vGW6eV9VDGtXLmSt0wFBQWYPHky7O3tYWJigjZt2mDjxo2c5NE2U1ZWFoKDgyGXy2FqagpfX1+kpaVxlmnjxo3o0KEDGjdujMaNG6N79+747bff1MsZYwgLC4NcLoeJiQl69+6Na9eucZan3io6xdV3IjXSyx6Ki4vDpEmTcO7cOURHR6OsrAze3t4oLCxUr1NYWIiePXti2bJl+ohUa6aioiIkJiZi/vz5SExMxIEDB5Camgp/f3/eMgGAk5MT1q9fj+TkZJw5cwbNmzeHt7c3/vrrL94yVYiMjMT58+chl8s5yVLXTL6+vsjIyFBPR44c4TXTrVu34O7ujtatWyM2NhaXL1/G/PnzYWxcv1Go6pOp8v7JyMjAd999B4FAgMGDB/OWacaMGTh69Ch27dqFGzduYMaMGZgyZQoOHjzISybGGAYMGIDbt2/j4MGDuHTpEhQKBby8vKr9HeiCvb09li1bhoSEBCQkJKBPnz4ICAhQF9orVqxAeHg41q9fj/j4eEilUvTt2xfPnj3jJE9DQteh14C9pry8PAaA5eTk1Pm52dnZDACLi4ursiw9PZ0BYJcuXarzdktLS1lkZCQrLS3VaaYKFy5cYADY3bt3G0ymis/hxIkTvGZ68OABa9q0Kbt69SpTKBRs9erVddqurjMFBQWxgICAOm+Ly0zDhw9nH3/8cYPK9LKAgADWp08fXjO5uLiwL7/8UmO9Tp06sXnz5vGSKSUlhQFgV69eVa9TVlbGLC0t2datW/WSiTHGLCws2LZt25hKpWJSqZQtW7ZMvez58+dMIpGwTZs2ab29nJwcBoDl5eW9Vh5tVPx9enxgAys7tr1e0+MDGzjP+6bjpQ0jLy8PAGBpacnHy1dLm0x5eXkQCARo0qRJg8hUWlqKLVu2QCKRwNXVlbdMKpUKo0ePRmhoKFxcXPSSo7ZMABAbGwtbW1s4OTlhwoQJyM7O5i2TSqXC4cOH4eTkBB8fH9ja2qJr166IjIzkLdPLsrKycPjwYYSEhPCayd3dHVFRUXj48CEYY4iJiUFqaip8fHx4yVRSUgIAGi0phoaGEIlEOHPmDOd5ysvLsWfPHhQWFqJ79+5IT09HZmYmvL291euIxWJ4eHjg7NmznOd5LRWd4uo7kRrpfQ8xxjBz5ky4u7ujXbt2+n75ammT6fnz5/jiiy8QGBiol7sU1ZTp0KFDaNSoEYyNjbF69WpER0fD2tqat0zLly+HkZERpk6dynkGbTP5+fnhxx9/xMmTJ7Fq1SrEx8ejT58+6j/O+s6UnZ2NgoICLFu2DL6+vjh+/DgGDhyIQYMGIS4ujpdML9uxYwfMzc0xaNAgzvPUlGndunVo27Yt7O3tIRKJ4Ovriw0bNsDd3Z2XTK1bt4ZCocDs2bPx5MkTlJaWYtmyZcjMzERGRgZnWZKTk9GoUSOIxWJ89tln+OWXX9C2bVtkZmYCAOzs7DTWt7OzUy8j/5v03st98uTJuHLlil6ObLVVWyalUokRI0ZApVJhw4YNvGfy9PREUlIScnJysHXrVgwbNgznz5+Hra2t3jNdvHgRa9euRWJiIgQ83PjhVftp+PDh6n+3a9cOnTt3hkKhwOHDhzkvsKrLpFKpAAABAQGYMWMGAODdd9/F2bNnsWnTJnh4eOg908u+++47jBo1irNz+tpmWrduHc6dO4eoqCgoFAqcOnUKEydOhEwmg5eXl94zCYVC7N+/HyEhIbC0tIShoSG8vLzg5+fHaRZnZ2ckJSXh6dOn2L9/P4KCgjQO/l7+vTHGePkNaoVuLKMXeq2hT5kyBVFRUYiJiYG9vb0+X/qVasukVCoxbNgwpKenIzo6Wi+189oymZmZwdHREd26dUNERASMjIwQERHBS6bTp08jOzsbDg4OMDIygpGREe7evYvPP/8czZs35yVTdWQyGRQKBac9k2vKZG1tDSMjI7Rt21Zj/TZt2nDWy722TJWdPn0aKSkpGD9+PKdZastUXFyMOXPmIDw8HP3790eHDh0wefJkDB8+HF9//TUvmQDAzc1NXbhmZGTg6NGjyM3NRYsWLTjLIxKJ4OjoiM6dO2Pp0qVwdXXF2rVrIZVKAaBKbTw7O7tKrb3BEAh00MudCvTa6KVAZ4xh8uTJOHDgAE6ePMnpj0CXmSoK87S0NJw4cQJWVla8Z3rV87hqSq4t0+jRo3HlyhUkJSWpJ7lcjtDQUBw7doyXTNXJzc3F/fv3IZPJeMkkEonQpUuXKpdDpaamQqFQ8JKpsoiICLi5uXHeF6O2TEqlEkqlEgYvnS81NDRUt3LoO1NlEokENjY2SEtLQ0JCAgICAjjJ9KqcJSUlaNGiBaRSKaKjo9XLSktLERcXhx49eugtD2l49NLkPmnSJOzevRsHDx6Eubm5+shSIpHAxMQEAPD48WPcu3dPfZ13xR8+qVSqPiLVZ6aysjIMGTIEiYmJOHToEMrLy9XrWFpaQiQS6T1TYWEhFi9eDH9/f8hkMuTm5mLDhg148OABhg4dqvM82mSysrKqcqAjFAohlUrh7OzMS6aCggKEhYVh8ODBkMlkuHPnDubMmQNra2sMHDiQl0wAEBoaiuHDh6NXr17w9PTE0aNH8euvvyI2Npa3TACQn5+Pffv2YdWqVZzkqEumxo0bw8PDA6GhoTAxMYFCoUBcXBx27tyJ8PBwXjIBwL59+2BjYwMHBwckJydj2rRpGDBggEbHNF2aM2cO/Pz80KxZMzx79gx79uxBbGwsjh49CoFAgOnTp2PJkiVo1aoVWrVqhSVLlsDU1BSBgYGc5Kk3anLXj9ftHl+Xy9YAVDtt375dvc727durXWfBggVaZ6rLZSG1Zaq4fK66KSYmhpdMxcXFbODAgUwulzORSMRkMhnz9/dnFy5c0DqPrjNVh+vL1mrLVFRUxLy9vZmNjQ0TCoXMwcGBBQUFsXv37vGWqUJERARzdHRkxsbGzNXVlUVGRvKeafPmzczExIQ9ffq0Tlm4ypSRkcGCg4OZXC5nxsbGzNnZma1atYqpVCreMq1du5bZ29urv0/z5s1jJSUlWuepa6Zx48YxhULBRCIRs7GxYR988AE7fvy4erlKpWILFixgUqmUicVi1qtXL5acnFynPHq9bO1QBCuL+ale0+NDEXTZWi30UkNnjNW6TnBwMIKDg7kP81+1ZWrevLlWuXWpttczNjbGgQMH9JTmhdfZB3fu3NF9kEpqy2RiYsJZc/+raLufxo0bh3HjxnGc5gVtM33yySf45JNPOE7zgjaZpFIptm/froc0L2iTaerUqXq9iqO2PjECgQBhYWEICwvTTyDyRqAL+wghhHDLQKCbCXSnuJrQ4CyEEEK4pYt7sf/3+fHx8Xq52uhNRAU6IYQQblGnOL2gJndCCCHkLUA1dEIIIdzSYZM7eTUq0AkhhHBKIBDU+7a0Dfa2tg0IHfIQQgghbwGqoRNCCOEWNbnrBRXohBBCuEUFul7QHiKEEELeAlRDJ4QQwi3B33d6q9c2SI20LtBLSko0hujMz88H8Pdwhw1BRY6GkgegTNqiTNqhTNqhTLXTaw5qctcLAdNyBIewsDAsXLiwyvzdu3fD1NRU58EIIYRwp6ioCIGBgcjLy+PsVqr5+fmQSCR4cnIfGjeqXzmRX1AEiz5D4eTkBENDQ0yaNAmTJk3SUdK3g9YFenU19GbNmiEjI6PKeNh8USqViI6ORt++fSEUCvmOA+DvTB80KYNRA2kxKmPA70+N0OfeWRixcr7jAADKBIY46dADff7YC6PyhlGDKTMU4mTP4Xh//yYYlZXyHQcAUGYkwunBn6Hr5pUwUjaQTEIRzn8aig6rFsOwtKT2J+hBuUiMK5/PhdOSL2FY0kAyicVInfMvvLNoYYPIlGdkhO6XruinQI/5t24KdM8hnOZ902nd5C4WiyEWi6vMFwqFDabwrNAQMxkJAGFDaTFSvfifESuHsIEU6BWMypUQNpACvYJRWWmDKTwrGClLYdRACs8KhqUlDaKgqsywhDK9Mke5Hn/7AoEOmtwbSI2oAaNOcYQQQrhFg7PoRUOpMxJCCCGkHqiGTgghhFvUy10vqEAnhBDCLQMdXIde3+f/D6BDHkIIIeQtQDV0Qggh3KImd72gAp0QQgi3qJe7XtAhDyGEEPIWoBo6IYQQblGTu15QgU4IIYRb1OSuF3o55Fm6dCm6dOkCc3Nz2NraYsCAAUhJSdFYhzGGsLAwyOVymJiYoHfv3rh27RqnuU6dOoX+/ftDLpdDIBAgMjJSY3lWVhaCg4Mhl8thamoKX19fpKWlcZsp6ToCZi1FswETYPT+EBw8dUFjeUFRMaau3gbFoE/Q6INAtPt4Gjb9cozTTKdvPcCArQfh8K+tEE5fg4NXbmosF05fU+206mQCd5ke5mBA1Dk4bDsK4dqDOHgro8o6Nx4/w8Co87DaeBgWGw6h595TuJdfxFmmM3/lYcgf1/DOoQsw+/cZ/PowV2P5J/GpMPv3GY2p98nLnOUBgD+eFmDE1XS0OXcdFqeu4HBO3ivXnZ76ABanrmDjg784zXSuoAjBtx/A7epN2Cel4OjTZxrLV2XkwONGOlpdSYVLchpG3LyPxMJiTjNdKCrGhPuP0ONmOhz/cxPRzwrUy5SMYUV2Dvql30P7lFvocTMd/3iUhSxlGaeZ4ouK8dnDDLjfugPn1Fs4UVCosfz4swKEPHiErjfT4Zx6Czee8387WcIvvRTocXFxmDRpEs6dO4fo6GiUlZXB29sbhYV/f0FXrFiB8PBwrF+/HvHx8ZBKpejbty+ePXtWw5brp7CwEK6urli/fn2VZYwxDBgwALdv38bBgwdx6dIlKBQKeHl5aeTWeabnz9HBsTnWzQipdvnn33yPY+eTsGP+VFzdtQbThn2EaWsjEHX6QrXr6yRTiRId5DZYO9iz2uX3v5ygMW0d2RcCATCwQyvuMinL0cFagrW9O1S7/NbTQvTedxrOlo1wYnBPXBzlibnvOcHYyJC7TGXlaC9phPCOLV+5Tl87C9z66D31dMC9LWd5AKBIpUI7MxOscGxa43qHc/Jw8VkRZCLuG+2KVCq0NRHjK3u7ape3NBZhkb0tTjg3xwFHB9iLhBh16wFyy7grQItVKrQxFmOBnU2VZc9VKlx7XoJJVhY42LwZvm0qQ3ppKT59WPUgUpeKmArOYhH+ZWv9iuUMHU2M8Q+bhjE4Vo0qmtzrO5Ea6aXJ/ejRoxqPt2/fDltbW1y8eBG9evUCYwxr1qzB3LlzMWjQIADAjh07YGdnh927d+PTTz/lJJefnx/8/PyqXZaWloZz587h6tWrcHFxAQBs2LABtra2+OmnnzB+/HhuMnXrBL9unV65/Ny1VIz29UDvju0AABP8+2LrwWgkpNyC//vvcZLJt20L+LZt8crl0sZmGo9/Tb6F3o7N0NJawkkeAPBtbgff5tUXCADwrz9vwLe5HZa5u6jntZSYvXJ9XfCRWcJHZlnjOmJDAaTGIk5zVNbXsjH6WtY8MtWjEiX+efMR/t2+BYZfTec8U5/GjdCncaNXLh9ooZl3QVMb7HmchxvFJXA35+ZPlkcjM3g0qv77YW5oiB0OmgdEC+xsMOjuAzxSKiHnaCAoDzMzeJj9N1NGVpXlAxqbAwAeNJDx1WtkYPBiqu82AHTp0oWGT30FXg558vJeNPtZWr7445eeno7MzEx4e3ur1xGLxfDw8MDZs2f5iKgeKtbY2Fg9z9DQECKRCGfOnOElEwD07NAah/5IwMO/csEYQ0ziVaTefwTv997lLVNlWc8KceT6HYzt5lL7yhxRMYYj6ZlwatII/X45C/mW39BjT1y1zfL6dvqvPCh+PQ/XowmYdDEN2c/5HcVNxRg++889TGlmgzZmxrU/Qc9KVQw/5uahsYEB2ppUHe2RL89UKggAmBtw1+LzNhEIBDqZACA+Ph7Xr1+nwrwaei/QGWOYOXMm3N3d0a7di1pmZmYmAMDOTrPGZWdnp16mb61bt4ZCocDs2bPx5MkTlJaWYtmyZcjMzERGBn8Fw5pp49CmuT0Ugz6FiecIfPiPRVg/cwLcO7ThLVNlP1y4AXNjIQZ2cOQtQ3ZRCQqU5ViRkAZvhR2ODOyBAe/IMPTQBZx6kMNbLm+pBb57zxlHerXD0g4tcPFxAfqduoqSchVvmdbc/wtGAgE+lTesZtsTeQVwupKKd66kYutfT7Db0R6WRg2jD2+JSoWVf+Wif+NGMDekZmDScOj9FzJ58mRcuXKl2lqu4KVejIyxKvP0RSgUYv/+/QgJCYGlpSUMDQ3h5eX1yiZ6ffnm30dw/loafln2BRR21jh9+QYmh2+F1NoCXp2rP5+sT9+fv4aRbq1hLOTvj6+KMQCAf0sppnd6BwDwro0Ef2Y8wZbkO+hlX/05Sa4Nafb3+VkXiRk6WpijzZF4HM18jICm+s+U9KwImx/mILZTK95+Z6/So5Epjjk3x+OycuzOzcP/3cnAr60cYM3j9wp40UFu2qMsqBiw0M6W1yxvFBoPXS/0+uuYMmUKoqKicOrUKdjb26vnS6VSAC9q6jKZTD0/Ozu7Sq1dn9zc3JCUlIS8vDyUlpbCxsYGXbt2RefOnXnJU1xSgnlbfsK/F4fiwx5uAIAOjs1xOe0Own+K4r1AP3PrIVKyn+DHoH685rA2EcPIQIA2VuYa81tbNsIfjx7zlKoqmYkIDmZi3Hz2nJfX/zOvEH8py9D+/A31vHIA825nYOPDHFzpyl+rj6mhAVoYitBCDLiZmcD9+m3seZyHyXb8tSQoGcPUh5l4oFTiB4emVDuvC7psTS/0UqAzxjBlyhT88ssviI2NRYsWmh2sWrRoAalUiujoaHTs2BEAUFpairi4OCxfvlwfEWskkbzo3JWWloaEhAR89dVXvORQlpVDWVYGg5dGHTI0NICK8ddsW+G7c1fRqZktXJtW7SmsTyJDA3S2a4KUJwUa89OeFkBhbsJTqqpyS5R4UFQCqQk3napqM9zOAh4Wmgc9Q5JvY5idBUbZWfCS6VUYgBIV4+31KwrzO6VK7HJoCgtDOndOGh69FOiTJk3C7t27cfDgQZibm6vPi0skEpiYmEAgEGD69OlYsmQJWrVqhVatWmHJkiUwNTVFYGAgZ7kKCgpw8+bf11Snp6cjKSkJlpaWcHBwwL59+2BjYwMHBwckJydj2rRpGDBggEbnPZ1nKirGzYd/9xtIz8hCUlo6LBs3goOdDXq92xZfbPgBJmIRFHY2OJV0HT8cjcPXk4O4y1RSipt/Pf070+N8JD3IhqWZMRz+2yM5/3kJ9l9Ow4qAXpzl0MhUWoabeX9fPpieV4Skv/JgKRbCobEpPu/kiMDfEvB+Uyv0trfGsbvZOHQ7CycG9+QuU1k5bhX8fb30ncLnuPy0AJYiI1iIhFh87R4G2FtBaizC3cLnCLt6F1ZiIfw5PH9dUF6O9OK/O97dfV6K5IJiNDEyRDNjESxfasI2EghgJzRCK1PuOsgVlqtwp+TvTPdLlbhW9BxNjAxhYWiIdVm56CtpBDuhEZ6UlWNHzlNkKsvwURPzGrZaz0wqFe6W/t1b/L6yDNefl6CJoQFsjYww+WEmrj0vwVZ7GVRg+Ou/l9BJDA0h4qjmWKhS4V6lTA+UStx4XgKJoQHkQiGelpcjQ1mG7P9mSf9vb3drI0PYNJD+Bn/TxWVn1CJSG7186hs3bgQA9O7dW2P+9u3bERwcDAD45z//ieLiYkycOBFPnjxB165dcfz4cZibc/cjTkhIgKfn39dWz5w5EwAQFBSE77//HhkZGZg5cyaysrIgk8kwZswYzJ8/n7M8AJCQcgteU8PUj/+xfgcAYIxvb3w3dzJ2h83A3M27MebLdXicXwCF1BpfTRiJTwdwd5Bx8V4WvL7dr34cGnkKADC6Sxt8N8oHALA3MRWMASM6OXOWQyNT9lN47f/j70ynr77I1KYZvvPuhAGOcnzbxxUr4tMwIzYZThaN8POHXeDelLvCM/HxM/iduqp+/MWVF5eAjVLYYm2nd3AtvxC7z2Yjr7QMUhMRetlIsLNba5hzeF446Vkx+l+5rX489/aLDp0j7SywwbkZZ69bk8tFzzHs1n3144WPXtzIZqhFYyxtZoebJaXYd+cRnpSVw8LQAK6mJtjfqhmcOezlnvz/7d15dFRlmgbwp1K31iRVpLISshCVgBiIGEA2kUXTxm7OaLBHR1Fk7J7GCbFt3EBsEVtEhEZPy7CIYzguzMTjELRHBokLBLQbJc0imzabJJKFbFWpVKqSqrrzR3bCUpDU/e7UPL9z6nDqJqk8CUne+y33vs1uzCo72/n85eq2zZO5lkg8FmPD5+03dZlxuqzHx72XnIhx4eagZDrk9uCh8q5My8613ajobkskXkmIwxfOJiys6roJ0O/aL22bZ4tCfsylL59UHKfcFaGRZfmq5rEcDgesVitqamoQHa2OHbKtra3YunUr7rzzTuiCdG3olerI9LMoL3QqOcFs9QOf1kvI/nEXdLJPdBwAQKtGi+2ptyC75D3ofOq4rrZVq8P2ybMwtfBPkFrFXl7WwavT48t7H8PE1UshtajjzmBevQFfzVuEUcueh9ajjkw+gwH7Fr6I6xcvUlWmo0uWIv33z6oik12SMPbI97Db7bBYLn2vgqvVUSca9u2EJfLi9x4I6LUanRgw6tag5v2/Tm3zMkREFGr68cYydHEs6EREFFycclcET3mIiIhCAEfoREQUXOyHrggWdCIiCi5OuSuCBZ2IiIJM0/7o62vQpXAOg4iIKARwhE5ERMHFKXdFsKATEVFwsaArglPuREREIYAjdCIiCjJuilMCCzoREQUXp9wVEXBB93g88HRrKOBwOAC0NR9pbVVJM432HGrJA3Rl8coAxLcsB9CeBYBXo56ezh1ZvFp1NNUBurJ4Jb3gJF06snh1KsrUnsWnD143tCvVkcVnUFEmg7oy+VTXYpX6KuBuay+88AKWLFnS6/imTZtgNgenfSAREQWHy+XC/fffr0y3tWN7+6fb2rDRSE9Ph1arRV5eHvLy8vopaWgIuKBfaISenJyMiooKVbVPLS4uxu23366q9qnFxcWYPsALSSUzRl4Z+LxBwrQzX0NSSftUr0aLL1ImYNpXhZBU0j7Vq9Xhi4n34pb/WgfJq5L2qZIeu2bOxc3rV6iqpeue3zyFkX9cCq1KWrr69AYcfGIR0l9+URWtSoG2kfkPzz6Pa19aoopMdknC+H0HFSropf1U0LPYPvUSAp5zMRgMMFxgqkin06mmeHZQYyZJA9X0Q++Y+pdkn2r6oXeQfK2q6YfeQfK2qKZ4dpBaW1TTD72DtsWjikLVndbDTBfN4VPX7z71HRdRiIgouLgpThEs6EREFFwa9ENB75ckIY0FnYiIgozXoStBLau6RERE1AccoRMRUXBxDV0RLOhERBRknHJXAqfciYiIQgBH6EREFFycclcECzoREQUXC7oiOOVOREQUAoSN0EtKSrBixQqUlpaioqICRUVFuOuuu0TFAQAsW7YMmzdvxrFjx2AymTBhwgQsX74cQ4cOFZZpXdGnWL/lU5yuPAcAGJ6WjOcevgc5424Slqm75cXf4LlPvkb+5BuxKneKsBwv/vUY/rDn+x7H4s0GlP/6DkGJ2pxt9uC5706juLIezT4/roswYe3oIRgV1bf7Wl+tkXuOoszT+9a6jwyMxsohgwQkAryyjFWVNSiqb0R1qxfxOgm/tFnw2/hohAkalTl9frxeU4vtjU2o9fkw3GjA7+NiMNJkVCzDt65m/Ht9Aw65PTjn8+HfEhNwW0R459tlWcbq2noU2h1w+P3INBrwfFwshhjU04mvCzfFKUFYQW9qakJmZibmzJmDmTNniorRw86dO5GXl4cxY8bA6/Vi0aJFyM7OxpEjRxAeHn75FwiCQXHRWDp3Fq4blAAAeGfbDuQufBV7316BG9KShWTq8O2ZSrz1l0MYkRgjNEeHG6Ijse3uCZ3PtYKn6OpbvJj+5UFMjrWiaNINiDXocNLphlUnrm3tF6OGwIeufkxHm9y4+7tTuCvWKizTmqo6vFtjx+spCUg3GnCg2Y0nzlQgUqvFr2KjhGR6trIaP3hasDIxHnGSFh/ZG/FQ2VlsS0tBgk6ZP5su2Y+hBj1yLZHIr6jq9fYN9Q0oaGjAK/FxGKzXYW1dA+aUt2WMCFPX5KtGo4Gmj7+Pff34/w+EFfScnBzk5OSI+vQXtG3bth7PCwoKEBcXh9LSUkyePFlIphkTR/d4/tK/3I/1W7Zjz+EfhBZ0p6cFs9/dhnX33oaXt+8RlqM7rUaDhHDlRlCXs+r7ciSZDFg/Jr3zWKrgfDH6nr/yr5edQ5pRj4lWMSesAFDqaka2NQLTrW2zFskGHT6qd+Cgyy0kj9vvx6eNTqxLGoixZhMA4Lex0fjM2YRNDXbMj1Wmu+St4eG4tWMgcV5Bl2UZ79TbMdcWhez2LmbL4+Mw4eRp/LejEfcNEHeCRuKo6zROZex2OwDAZrMJTtLG5/Oh8LPdaHK7Me6G9Mt/QBDlf/glcoanYfrQFKE5ujve0ISUt7ZhSEExHvifvThpbxKaZ+vZWoyKisCsvxxF6p/3YPxn+1BwslJopu5a/H58UFWPBxJsQkc/Y8JN+KqxCSfdbR3tjjS78W1TM6ZZxJxkeGXAB8Bw3vfEoNFgr6tZSKbzlbd6cc7nwySzufOYPkyDMSYj9rnFnAhdUsemuL4+6JK4y/0iZFnG/PnzMWnSJGRkZAjN8t2JHzHp0UVwt7QgwmTEh0ufxnCBo/PCv32PfeXV+Ov8fxKW4XxjE6JQkH0ThkRFoNrlxsvf/IDJH+zCgVnTEG0Ss6Z4qsmNt05WIH/IIDw5LBml9Y14cv9J6LUaPJAaLyRTd5/UOmD3+nB/vJhp7Q55cTY0+vy49dgpaNFWTJ8ZGIO7osT0vI7QhmGUyYjVNXW4Vq9HjKTFnx1OHHB7MFivjrbM59pbn0ZLPZdvYiQtzrZ6RUS6DK6hK4EF/SLmzZuHgwcPYvfu3aKjYGhKIkrfXoEGZxM279iDf166Gl+8sURIUS+rb8T8zTux9dG7YVRoLTEQdwzuXiAtGDfQhqEbP8M7R8/gdzddJySTXwZuiorAkhGDAQA3RkXgqMOFt05UqqKgv1dZh9tskRhoEFukPm5oxOZ6B1anDkS60YDDzW688FN1++Y4MVPHKwfGY0FFFSaeOA0tgBuMBsywROCwW3wf8+7OL3GyfMF3U4H+GGGzoF+Oev4iq0h+fj4+/vhjlJSUICkpSXQc6HU6XJc0EAAweth12HvsON74cCvWPvUbxbP8rawK1U4Xbv7jps5jPr+MXSd/wprdB9C0Mh9aFWzICddJyIi24HiDuGn3BJMewyzmHseGRpqxpbxWUKIuZ9wt2FHvxLvDU0VHwUtnzyEvzoZ/aB+RX28y4KcWL1ZX1Qkr6Kl6Hf4jNQkuvx9Ovx9xkoTHfqpEsk4dI/RYbdvIvMbrQ5zU9We81udDjCRu0yWJxYLejSzLyM/PR1FREXbs2IG0tDTRkS5IlmV4WnpfeqSEaekp2PfMrB7HfrWpGEPjo/DU9NGqKOYA4PH6cKy+EZMGKbOB6ULGRVvw98aea65/b2xGitkgKFGXTZV1iNVLyI4WM63dXbPfj7DzBl9aDeCH+OGmOSwM5rAw2H0+7Gpy4Zk4cT9P3SXpJMRqtfjK5cJwY9vPU4ss49tmN56MUceenx54YxlFCCvoTqcTx48f73x+6tQp7N+/HzabDSkpYjZa5eXlYdOmTfjoo48QGRmJysq2DUxWqxUmk0lIpkXr38cd40YhOS4Gja5mFH7+FXbuP4JPVi4SkifSqEfGwJ6XqYXrJUSbjb2OK+npXYfwi7QEJEeaUN3swbJvfoCjxYsHrxe31yB/SCKmfXkQK46WITc5BnvrGlFwqhJvZIlZAujgl2W8X1WP++KjIKngj+Ttlgj8qaoOg3Q6pBsNONTsxpvV9bg3WtxO7RJnE2QA1+j1+LG1Fcura3CNXoeZVuVOgJr8fpzpduJe3tqKo24PrNowJOp0eCjKivV1DRis0yFVr8P6ugYYNRr8whKpWMbAcQ1dCcIK+t69ezF16tTO5/PnzwcAzJ49Gxs3bhSSae3atQCAKVOm9DheUFCAhx9+WPlAAKrr7Xj4pTdQUVsPa7gZI65NxScrF+H2MZlC8qjVT043Zm3bi5rmFsSaDLg5IQq7//EWpJ435a2kLFsk/nP89Xj+0GksO3oGg8ONeDXzGtyXEicsEwDsqHei3NOKWfHqGMn9ISkeKypq8Gx5FWq8PiToJMyKseLxeHEniI1+P1aeq0Wl14sBYVr8LDICT8TaoFPwBOiQ24OHys92Pl92rm2p5m5LJF5JiMOvowbA45expLoG9vYby7ydNFB116CTcoQV9ClTpkBW2Q4OteUBgA0L/lV0hMv6PP+XoiPg/ZzRl38nAXISbchJVEfh7DDNFon6ySNFx+gUoQ3DkqQ4LEkSe6LT3c8tkfi54JHuzWYTvk+/9qJv12g0yI+xIV+NU+zn45S7IriGTkREwcUZd0VwboaIiCgEcIRORERBxiG6EljQiYgouLiGrghOuRMREYUAjtCJiCi4OEJXBAs6EREFGdfQlcCCTkREwaVBP4zQ+yVJSOMaOhER0RVqbGzEmDFjcOONN2LEiBHYsGGD6EgcoRMRUZCF4Bq62WzGzp07YTab4XK5kJGRgdzcXERHi2vgw4JORERBFnpr6FqtFmZzW68It9sNn88n/PbhnHInIqKQU1JSghkzZiAxMREajQZbtmzp9T5r1qxBWloajEYjsrKysGvXriv6HA0NDcjMzERSUhKefvppxMSIaygEXMEI3ePxwOPxdD632+0AgLq6uv5PdZVaW1vhcrlQW1sLnU4nOg6Arkx1Oi8klZxgemXA5ZJQ5/ZCgk90HACAF3Lb98kLSOqI1P59cqHOHwZJJee+Xn8YXC4X6hEGKUwdE2xetGVqCJOg1arjP88XJsHlcsEuSdD6VJJJUlcmh9T286PEqNLhdPZ5ytzhdLb963D0OG4wGGAwGHq9f1NTEzIzMzFnzhzMnDmz19sLCwvx+OOPY82aNZg4cSLWr1+PnJwcHDlypLOFd1ZWVo+612H79u1ITEzEgAEDcODAAVRVVSE3Nxf33HMP4uPj+/R19okcoMWLF8sA+OCDDz74CKHHiRMnAi0DV6y5uVlOSEjot6wRERG9ji1evPiyOQDIRUVFPY6NHTtWnjt3bo9jw4YNkxcsWHBVX+vcuXPlDz744Ko+tr8EfIq/cOHCzp7lQNtUQ2pqKs6cOQOr1RroywSVw+FAcnIyysrKYLFYRMcBwEyBYqbAMFNgmOny7HY7UlJSYLMFr/2q0WjEqVOn0NLS0i+vJ8syNOeN9C80Or+clpYWlJaWYsGCBT2OZ2dn4+uvvw7oNaqqqmAymWCxWOBwOFBSUoJHH330irP0p4AL+sWmNaxWqyp+OLuzWCzMFABmCgwzBYaZAqO2TGFhwV1OMhqNMBqNQf0cV6qmpgY+n6/X9Hh8fDwqKysDeo3y8nI88sgjkGUZsixj3rx5GDlyZDDiBkwdi3BEREQKO3+0f6EZgIvJysrC/v37g5Dq6qljpw8REZFCYmJioNVqe43Gq6urxW5q66OrLugGgwGLFy++qvWLYGGmwDBTYJgpMMwUGLVlUlseJen1emRlZaG4uLjH8eLiYkyYMEFQqr7TyLLgK+GJiIj6mdPpxPHjxwEAo0aNwqpVqzB16lTYbDakpKSgsLAQDz74INatW4fx48fjzTffxIYNG3D48GGkpqYKTn91WNCJiCjk7NixA1OnTu11fPbs2di4cSOAthvLvPrqq6ioqEBGRgZee+01TJ48WeGk/YcFnYiIKARwUxwREVEIYEEnIiIKASzoREREIYAFnYiIKASwoBMREYUAFnQiIqIQwIJOREQUAljQiYiIQgALOhERUQhgQSciIgoBLOhEREQhgAWdiIgoBPwvpYnwyszK914AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeIklEQVR4nOzdeVwT194G8CdACIsQ2UlEIhZBRUVFKypVschiK7jUvSqK3va6Ly91qV6xdbfiUutOrdZarVdFXKpiBZdaFVSs2wVUcGURZJE9kPP+QcklghAkk6Hc37ef+dTMTCZPJglnzpkzcwSMMQZCCCGE/K3p8B2AEEIIIfVHBTohhBDSCFCBTgghhDQCVKATQgghjQAV6IQQQkgjQAU6IYQQ0ghQgU4IIYQ0AlSgE0IIIY0AFeiEEEJII0AFegMREhICgUCgMq9FixYIDAys03YuX76MkJAQZGdn1+l5b75WdHQ0BAIB/v3vf9dpOzUpKChASEgIoqOjqyz74YcfIBAIkJycrLHX48K3334LR0dH6OvrQyAQIDs7G8uXL0d4eDhvmQoLC+Hk5ASBQIBvvvmGtxyEEH7p8R2AvN2RI0dgampap+dcvnwZS5YsQWBgIJo2bcrpa9VVQUEBlixZAgDo06ePyrKPPvoIf/zxByQSCacZ6iMuLg7Tp0/HxIkTMW7cOOjp6cHExATLly/HJ598goEDB/KSa9GiRcjPz+fltQkhDQcV6A1Yp06dOH+NwsJCGBoaauW1amJlZQUrKyteM9Tm7t27AIBJkybh/fff5/S1ysrKUFpaCpFIVON6165dw7fffouffvoJQ4cO5TQTIaRhoyZ3Hpw4cQIdO3aESCSCg4PDW5tJ32wGVygUWLp0KZydnWFoaIimTZuiQ4cO2LBhA4DyZvvg4GAAgIODAwQCAQQCgbKJu0WLFvj4449x+PBhdOrUCQYGBsoa89ua94uKijB79mzY2trC0NAQvXv3xs2bN1XW6dOnT5UaNwAEBgaiRYsWAIDk5GRlgb1kyRJltorXfFuT+/fffw9XV1cYGBjA3NwcgwYNwv3796u8TpMmTfDgwQP0798fTZo0QfPmzTFnzhwUFxdXu28rO3DgALy9vSGRSGBoaIg2bdpg3rx5KrXePn364NNPPwUAdOvWTZldIBAgPz8fu3fvVr6nyvsiNTUVn332Gezs7KCvrw8HBwcsWbIEpaWlynWSk5MhEAiwevVqLF26FA4ODhCJRIiKiqoxd0lJCSZMmIApU6agS5cutb7PN19vzZo1WLVqFVq0aAFDQ0P06dMHCQkJkMvlmDdvHqRSKcRiMQYNGoT09HSVbSgUCqxevRqtW7eGSCSCtbU1xo4di2fPninXmTlzJoyNjZGbm1slw/Dhw2FjYwO5XK6cd+DAAXTv3h3GxsZo0qQJfHx8qnzXHj16hBEjRkAqlUIkEsHGxgYffvgh4uLi1H7/hDRajGjV2bNnma6uLvPw8GCHDx9mBw8eZF27dmX29vbszY9DJpOxcePGKR+vWLGC6erqssWLF7PffvuNnTp1iq1fv56FhIQwxhh7+vQpmzZtGgPADh8+zP744w/2xx9/sJycHOX2JBIJa9myJfv+++9ZVFQUu3btWrWvFRUVxQCw5s2bs4CAAHbs2DG2d+9e5ujoyExNTdnDhw+V6/bu3Zv17t27ynsdN24ck8lkjDHGioqK2KlTpxgAFhQUpMz24MEDxhhju3btYgBYUlKS8vnLly9nANjIkSPZiRMn2J49e1jLli2ZWCxmCQkJKq+jr6/P2rRpw7755ht29uxZ9q9//YsJBAK2ZMmSWj+Tr7/+mq1bt46dOHGCRUdHs61btzIHBwfm6empXOfu3bts4cKFDADbtWuXMvsff/zBDA0NWf/+/ZXv6e7du4wxxlJSUljz5s2ZTCZj27ZtY2fPnmVff/01E4lELDAwULntpKQkBoA1a9aMeXp6sn//+9/szJkzKvuiOl9++SVr0aIFy8vLU25jzZo1tb7finVlMhkbMGAAO378ONu7dy+zsbFhTk5ObMyYMWzChAns119/ZVu3bmVNmjRhAwYMUNnGP/7xDwaATZ06lZ06dYpt3bqVWVlZsebNm7OXL18yxhi7desWA8B27Nih8tysrCwmEonY7NmzlfOWLVvGBAIBmzBhAjt+/Dg7fPgw6969OzM2NlbuT8YYc3Z2Zo6OjuzHH39k58+fZ4cOHWJz5sxhUVFRtb5vQho7KtC1rFu3bkwqlbLCwkLlvNzcXGZubl5rgf7xxx+zjh071rj9NWvWVCkYK29PV1eXxcfHV7usugK9c+fOTKFQKOcnJyczoVDIJk6cqJynToHOGGMvX75kANjixYurrPtmgZ6VlaUsKCt78uQJE4lEbNSoUSqvA4D98ssvKuv279+fOTs7V3mtmigUCiaXy9n58+cZAHbr1q0qGWNiYlSeY2xsrLLvKnz22WesSZMm7PHjxyrzv/nmGwZAWVBVFLDvvfceKykpUSvnzZs3mVAoZKdOnVLZRl0KdFdXV1ZWVqacv379egaA+fv7q6w/c+ZMBkB5YHj//n0GgE2ePFllvatXrzIAbMGCBcp5nTt3Zj169FBZb/PmzQwAu337NmOs/DPV09Nj06ZNU1nv9evXzNbWlg0bNowxxlhGRgYDwNavX1/reyTkfxE1uWtRfn4+YmJiMHjwYBgYGCjnm5iYYMCAAbU+//3338etW7cwefJknD59utqmzNp06NABTk5Oaq8/atQold73MpkMPXr0qLU5uL7++OMPFBYWVjkN0Lx5c/Tt2xe//fabynyBQFBlH3bo0AGPHz+u9bUePXqEUaNGwdbWFrq6uhAKhejduzcAVGner4vjx4/D09MTUqkUpaWlysnPzw8AcP78eZX1/f39IRQKa91uaWkpJkyYgOHDh8PHx+ed8/Xv3x86Ov/9E9CmTRsA5R0UK6uY/+TJEwBQfvZvfjbvv/8+2rRpo/LZjB8/HpcvX0Z8fLxy3q5du9C1a1e0a9cOAHD69GmUlpZi7NixKvvJwMAAvXv3Vp4yMjc3x3vvvYc1a9YgNDQUN2/ehEKheOf3T0hjQwW6FmVlZUGhUMDW1rbKsurmvWn+/Pn45ptvcOXKFfj5+cHCwgIffvghYmNj1c5Q117kb8uamZlZp+3UVcX2q8srlUqrvL6RkZHKQRIAiEQiFBUV1fg6eXl5+OCDD3D16lUsXboU0dHRiImJweHDhwGUdxp8V2lpaTh27BiEQqHK5OLiAgDIyMhQWV/dz2b9+vV49OgRFi9ejOzsbGRnZysP7oqKipCdnY2ysrJat2Nubq7yWF9fv8b5FfuyLp/N6NGjIRKJ8MMPPwAA7t27h5iYGIwfP165TlpaGgCga9euVfbVgQMHlPtJIBDgt99+g4+PD1avXo3OnTvDysoK06dPx+vXr2t9v4Q0dtTLXYvMzMwgEAiQmppaZVl1896kp6eH2bNnY/bs2cjOzsbZs2exYMEC+Pj44OnTpzAyMqp1G29e616bt2W1sLBQPjYwMEBOTk6V9d4ssOqiYvspKSlVlr148QKWlpbvvO3Kzp07hxcvXiA6OlpZKwdQ5+v4q2NpaYkOHTpg2bJl1S6XSqUqj9X9bO7cuYOcnBy0atWqyrJFixZh0aJFuHnzJjp27FjnzOqo/NnY2dmpLHvzszEzM0NAQAD27NmDpUuXYteuXTAwMMDIkSOV61Ss/+9//xsymazG15bJZAgLCwMAJCQk4JdffkFISAhKSkqwdetWjbw/Qv6uqIauRcbGxnj//fdx+PBhlZrj69evcezYsTptq2nTpvjkk08wZcoUvHr1Stk7vOIyp/rULCv7+eefwRhTPn78+DEuX76s0pO7RYsWSEhIUOlRnpmZicuXL6tsqy7ZunfvDkNDQ+zdu1dl/rNnz3Du3Dl8+OGH7/J2qqgoRN+8PGzbtm1qb0MkElX7nj7++GPcuXMH7733Hrp06VJlerNAV9e8efMQFRWlMv38888AgM8//xxRUVFwdHR8p22ro2/fvgBQ5bOJiYnB/fv3q3w248ePx4sXL3Dy5Ens3bsXgwYNUrlHgo+PD/T09PDw4cNq99PbevA7OTlh4cKFaN++PW7cuKHZN0nI3xDV0LXs66+/hq+vL/r164c5c+agrKwMq1atgrGxMV69elXjcwcMGIB27dqhS5cusLKywuPHj7F+/XrIZDJlba19+/YAgA0bNmDcuHEQCoVwdnaGiYnJO+VNT0/HoEGDMGnSJOTk5GDx4sUwMDDA/PnzleuMGTMG27Ztw6effopJkyYhMzMTq1evrnKjGhMTE8hkMhw9ehQffvghzM3NYWlpqby0rbKmTZti0aJFWLBgAcaOHYuRI0ciMzMTS5YsgYGBARYvXvxO7+dNPXr0gJmZGT7//HMsXrwYQqEQP/30E27duqX2Ntq3b4/o6GgcO3YMEokEJiYmcHZ2xldffYXIyEj06NED06dPh7OzM4qKipCcnIyTJ09i69atVWq46mjdujVat26tMq/igO69996r9hJCTXJ2dsY//vEPfPvtt9DR0YGfnx+Sk5OxaNEiNG/eHLNmzVJZ39vbG3Z2dpg8eTJSU1NVmtuB8gPCr776Cl9++SUePXoEX19fmJmZIS0tDdeuXYOxsTGWLFmCP//8E1OnTsXQoUPRqlUr6Ovr49y5c/jzzz8xb948Tt8zIX8LfPfK+18UERHBOnTowPT19Zm9vT1buXIlW7x4ca293NeuXct69OjBLC0tlc8NCgpiycnJKs+bP38+k0qlTEdHhwFQXtIjk8nYRx99VG2mt/Vy//HHH9n06dOZlZUVE4lE7IMPPmCxsbFVnr97927Wpk0bZmBgwNq2bcsOHDhQpZc7Y+WX7XXq1ImJRCIGQPma1V22xhhjO3fuVO4rsVjMAgICVC5jYqy8l7uxsXGVTNXt0+pcvnyZde/enRkZGTErKys2ceJEduPGDeUlahXe1ss9Li6O9ezZkxkZGTEAKj3+X758yaZPn84cHByYUChk5ubmzM3NjX355ZcsLy+PMVa3Hupv8y693N9ct+IzP3jwoMr86t53WVkZW7VqFXNycmJCoZBZWlqyTz/9lD19+rTa11ywYIHyMsjKPesrCw8PZ56enszU1JSJRCImk8nYJ598ws6ePcsYYywtLY0FBgay1q1bM2NjY9akSRPWoUMHtm7dOlZaWlrr+yaksRMwVqk9lRBCCCF/S3QOnRBCCGkEqEAnhBBCqnH8+HE4OzujVatW2LlzJ99xakVN7oQQQsgbSktL0bZtW0RFRcHU1BSdO3fG1atXq9ynoSGhGjohhBDyhmvXrsHFxQXNmjWDiYkJ+vfvj9OnT/Mdq0ZUoBNCCGl0Lly4gAEDBkAqlUIgECA8PLzKOps3b4aDgwMMDAzg5uaGixcvKpe9ePECzZo1Uz62s7PD8+fPtRH9nVGBTgghpNHJz8+Hq6srNm3aVO3yAwcOYObMmfjyyy9x8+ZNfPDBB/Dz81OOWVDd2ei63mlT29S+sUxxcbHKncAUCgVevXoFCwuLBv8mCSGEqGKM4fXr15BKpSqD9GhaUVERSkpKNLItxliV8kYkElW50yMA+Pn5KQdCqk5oaCiCgoIwceJEAOVjJJw+fRpbtmzBihUr0KxZM5Ua+bNnz9CtWzeNvA/OqHvBesVNOmiiiSaaaGo809tuBqQJhYWFzAgCjWVt0qRJlXnVDcf8JgDsyJEjysfFxcVMV1eXHT58WGW96dOns169ejHGGJPL5czR0ZE9e/aM5ebmMkdHR5aRkaHJ3aNxatfQ58+fj9mzZysf5+TkwN7eHgkJCQ2m159cLkdUVBQ8PT3VGoZSGyiTeiiTeiiTeihT7V69egUnJ6d3vi20OkpKSlAAhjEwhj7q15JbAoYf8/Lw9OlTldtKV1c7r01GRgbKyspgY2OjMt/GxkY5IJWenh7Wrl0LT09PKBQKfPHFFyqDUjVEahfob2vWMDc3bzBvUi6Xw8jICBYWFg3iBwNQJnVRJvVQJvVQJvVp45SpAXSgX8/X0fnrnLapqWmVcSLe1Zvvnb3RpO/v7w9/f3+NvJY2UKc4Qggh/1MsLS2hq6tbZXjo9PT0KrX2vxMq0AkhhHBKR0OTpujr68PNzQ2RkZEq8ytGR/y7ouFTCSGEcEogAHTq2bIvAAAGdO3aFbq6upgyZQqmTJny1vXz8vLw4MED5eOkpCTExcXB3Nwc9vb2mD17NsaMGYMuXbqge/fu2L59O548eYLPP/+8fkF5RAU6IYSQv42YmBi1zqHHxsbC09NT+biiU/e4cePwww8/YPjw4cjMzMRXX32FlJQUtGvXDidPnoRMJuMsO9eoQCeEEMIpTTSZ1/X5ffr0qfbmMJVNnjwZkydPfvdQDQwV6IQQQjilIxBAp7693IHyK8/JW1GnOEIIIaQRoBo6IYQQTvHR5P6/iAp0QgghnNLRQC93KtBrR/uIEELI30bXrl3Rtm1bfPfdd3xHaXA4K9BrG4uWMYaQkBBIpVIYGhqiT58+uHv3rso6xcXFmDZtGiwtLWFsbAx/f388e/ZMYxlfv36NmTNnQiaTwdDQED169EBMTIxyeVpaGgIDAyGVSmFkZARfX18kJiZq7PXfJVNeXh6mTp0KOzs7GBoaok2bNtiyZQuvmQQCQbXTmjVreMsEAPfv34e/vz/EYjFMTEzg7u6uHBqRj0yBgYFV9pG7uztnedTJVNlnn30GgUCA9evX85opJCQErVu3hrGxMczMzODl5YWrV6/ylkkul2Pu3Llo3749jI2NIZVKMXbsWLx48YK3TABw+PBh+Pj4wNLSEgKBAHFxcZzmqQ9N3lgmJiYG9+7dq/Ea9P9VnBXotY1Fu3r1aoSGhmLTpk2IiYmBra0t+vXrh9evXyvXmTlzJo4cOYL9+/fj0qVLyMvLw8cff4yysjKNZJw4cSIiIyPx448/4vbt2/D29oaXlxeeP38OxhgGDhyIR48e4ejRo7h58yZkMhm8vLyQn5+vkdevayYAmDVrFk6dOoW9e/fi/v37mDVrFqZNm4ajR4/yliklJUVl+v777yEQCDBkyBDeMj18+BAeHh5o3bo1oqOjcevWLSxatAgGBga8ZQIAX19flX118uRJzvKomwkAwsPDcfXqVUilUk7zqJPJyckJmzZtwu3bt3Hp0iW0aNEC3t7eePnyJS+ZCgoKcOPGDSxatAg3btzA4cOHkZCQwPk9vmvbT/n5+ejZsydWrlzJaQ5NeNtBf10nUot3HaYtJyeHAVBrODm8MXSdQqFgtra2bOXKlcp5RUVFTCwWs61btzLGGMvOzmZCoZDt379fuc7z58+Zjo4OO3XqVLWvU1JSwsLDw1lJSUmtmQoKCpiuri47fvy4ynxXV1f25Zdfsvj4eAaA3blzR7mstLSUmZubsx07dtS6fS4yMcaYi4sL++qrr1SWd+7cmS1cuJC3TG8KCAhgffv2VTsPF5mGDx/OPv300zpl4DrTuHHjWEBAQIPKxBhjz549Y82aNWN37txhMpmMrVu3jvdMlVX8rTl79myDyXTt2jUGgD1+/Jj3TElJSQwAu3nzptpZGGMsIyODAWA5OTl1el5dVHx2wXpitlDYtF5TsJ6Y87x/d7ycQ09KSkJqaiq8vb2V80QiEXr37o3Lly8DAK5fvw65XK6yjlQqRbt27ZTr1EdpaSnKysqq1NgMDQ1x6dIlFBcXA4DKcl1dXejr6+PSpUv1fv13yQQAHh4eiIiIULYiREVFISEhAT4+PrxlqiwtLQ0nTpxAUFAQJ3nUyaRQKHDixAk4OTnBx8cH1tbW6NatW5XTPtrMVCE6OhrW1tZwcnLCpEmTkJ6ezmsmhUKBMWPGIDg4GC4uLpxlqUumykpKSrB9+3aIxWK4uro2iExA+fDRAoEATZs2bTCZCOGlQK8Y4aamsWhTU1Ohr68PMzOzt65THyYmJujevTu+/vprvHjxAmVlZdi7dy+uXr2KlJQUtG7dGjKZDPPnz0dWVhZKSkqwcuVKpKamIiUlpd6v/y6ZAGDjxo1o27Yt7OzsoK+vD19fX2zevBkeHh68Zaps9+7dMDExweDBgznJo06m9PR05OXlYeXKlfD19cWZM2cwaNAgDB48GOfPn+clEwD4+fnhp59+wrlz57B27VrExMSgb9++yoNHPjKtWrUKenp6mD59OicZ3iUTABw/fhxNmjSBgYEB1q1bh8jISFhaWvKaqUJRURHmzZuHUaNGaWwYz/pmaugqernXdyI147WXe21j0VZHnXXU9eOPP4IxhmbNmkEkEmHjxo0YNWoUdHV1IRQKcejQISQkJMDc3BxGRkaIjo6Gn58fdHV1NfL6dc0ElBfoV65cQUREBK5fv461a9di8uTJOHv2LG+ZKvv+++8xevRoTs9V15ZJoVAAAAICAjBr1ix07NgR8+bNw8cff4ytW7fykgkAhg8fjo8++gjt2rXDgAED8OuvvyIhIQEnTpzgJdP169exYcMG/PDDD1o9P6nO98nT0xNxcXG4fPkyfH19MWzYME5bM9T9jsvlcowYMQIKhQKbN2/mLE9dMv0dCFD/DnFUnteOlwLd1tYWAGoci9bW1hYlJSXIysp66zr19d577+H8+fPIy8vD06dPce3aNcjlcjg4OAAA3NzcEBcXh+zsbKSkpODUqVPIzMxULudCTZkKCwuxYMEChIaGYsCAAejQoQOmTp2K4cOH45tvvuElU2UXL15EfHw8Jk6cyFkWdTJZWlpCT08Pbdu2VXlOmzZtOO3lru5+qiCRSCCTyTi9cqKmTBcvXkR6ejrs7e2hp6cHPT09PH78GHPmzEGLFi14yVTB2NgYjo6OcHd3R1hYGPT09BAWFsZrJrlcjmHDhiEpKQmRkZGc1c7rkul/EV229na8FOgODg6wtbVVGYu2pKQE58+fV45F6+bmBqFQqLJOSkoK7ty5o/Hxao2NjSGRSJCVlYXTp08jICBAZblYLIaVlRUSExMRGxtbZTkXqsskl8shl8uho6P6sVWulWo7U2VhYWFwc3Pj7Fynupn09fXRtWtXxMfHq6ybkJCglZGUattPFTIzM/H06VNIJBJeMo0ZMwZ//vkn4uLilJNUKkVwcDBOnz7NS6a3YYxxdmpCnUwVhXliYiLOnj0LCwsLzrPUlunvpOJe7vWdALpsrSac3SmutrFoZ86cieXLl6NVq1Zo1aoVli9fDiMjI4waNQpAeSEaFBSEOXPmwMLCAubm5vi///s/tG/fHl5eXhrJePr0aTDG4OzsjAcPHiA4OBjOzs4YP348AODgwYOwsrKCvb09bt++jRkzZmDgwIEqHfU0raZMQqEQvXv3RnBwMAwNDSGTyXD+/Hns2bMHoaGhvGSqkJubi4MHD2Lt2rWc5ahLpuDgYAwfPhy9evWCp6cnTp06hWPHjiE6OpqXTHl5eQgJCcGQIUMgkUiQnJyMBQsWwNLSEoMGDeIlk1AorFIwCYVC2NrawtnZmZdM+fn5WLZsGfz9/SGRSJCZmYnNmzfj2bNnGDp0KC+ZSktL8cknn+DGjRs4fvw4ysrKlK2L5ubm0NfX13omAHj16hWePHmivB6+4gDW1tZW2QraUNCtX7XkXbvH13bZWlRUFEP52Dgq07hx4xhj5ZeuLV68mNna2jKRSMR69erFbt++rbKNwsJCNnXqVGZubs4MDQ3Zxx9/zJ48efLWTHW5LIQxxg4cOMBatmzJ9PX1ma2tLZsyZQrLzs5WLt+wYQOzs7NjQqGQ2dvbs4ULF7Li4mK1ts1VppSUFBYYGMikUikzMDBgzs7ObO3atUyhUPCWiTHGtm3bxgwNDavM5zNTWFgYc3R0ZAYGBszV1ZWFh4fzlqmgoIB5e3szKysr5fdp3LhxNX6fuc5UHa4vW6stU2FhIRs0aBCTSqVMX1+fSSQS5u/vz65du8ZbporLwqqboqKieMnEGGO7du2qNtPixYvV2r42L1tbqN+ULRWZ1WtaqN+ULlurhYCxWgaMfYvc3FyIxWJkZGRotfmpJnK5HCdPnkT//v0hFAr5jgOAMqmLMqmHMqmHMtUuMzMTlpaWyMnJ4aw/QEU58S9RUxjUs+NlEWP4qjib07x/dzQ4CyGEEE5Rk7t20D4ihBBCGgGqoRNCCOGUDgTQqeeV5FT7rB3tI0IIIZzS5J3i6Dr0t6MaOiGEEE5p8hx6TEwMdYp7C6qhE0IIIY0A1dAJIYRwShODq1Dts3ZUoBNCCOFU+eAs9SvRBXinW6b8T6GDHkIIIaQRoBo6IYQQTlGTu3ZQgU4IIYRTdKc47aB9RAghhDQCatfQi4uLVcYjzs3NBQDlGN0NQUWOhpIHoEzqokzqoUzqoUy102YOanLXDrVHWwsJCcGSJUuqzN+3bx+MjIw0HowQQgh3CgoKMGrUKK2MtrbB2ByGgvoVyYVMgRn5r+Dk5ARdXV1MmTIFU6ZM0VDSxkHtAr26Gnrz5s2RkpLSoIZPjYyMRL9+/RrE8IQAZVIXZVIPZVIPZapdZmYmJBLJ365Ap+FT307tJneRSASRSFRlvlAobBBfzsook3ook3ook3ook3oaSiZtZqAmd+2gXu6EEEI4Jfhrqu82SM2oQCeEEMIpqqFrB+0jQgghpBGgGjohhBBO6UBQ73u51/f5/wuoQCeEEMIpanLXDtpHhBBCSCNANXRCCCGcKh8+tf7bIDWjAp0QQgin6LI17aAmd0IIIaQRoAKdEEIIp3QEAo1MANC1a1e0bdsW3333Hc/vquHRSoFeWlqKhQsXwsHBAYaGhmjZsiW++uorKBQK5TqHDx+Gj48PLC0tIRAIEBcXx2smuVyOuXPnon379jA2NoZUKsXYsWPx4sUL3jIB5YPktG7dGsbGxjAzM4OXlxeuXr3Ka6bKPvvsMwgEAqxfv57XTIGBgRAIBCqTu7s7r5kA4P79+/D394dYLIaJiQnc3d3x5MkT3jK9uY8qpjVr1vCWKS8vD1OnToWdnR0MDQ3Rpk0bbNmyhZM86mZKS0tDYGAgpFIpjIyM4Ovri8TERM4yAcDr168xc+ZMyGQyGBoaokePHoiJiVEuZ4whJCQEUqkUhoaG6NOnD+7evctppncl0NAEADExMbh37x4NzFINrZxDX7VqFbZu3Yrdu3fDxcUFsbGxGD9+PMRiMWbMmAEAyM/PR8+ePTF06FBMmjSJ90wFBQW4ceMGFi1aBFdXV2RlZWHmzJnw9/dHbGwsL5kAwMnJCZs2bULLli1RWFiIdevWwdvbGw8ePICVlRUvmSqEh4fj6tWrkEqlGs/xLpl8fX2xa9cu5WN9fX1eMz18+BAeHh4ICgrCkiVLIBaLcf/+fRgYGPCWKSUlReU5v/76K4KCgjBkyBDeMs2aNQtRUVHYu3cvWrRogTNnzmDy5MmQSqUICAjQeibGGAYOHAihUIijR4/C1NQUoaGh8PLywr1792BsbKzxTAAwceJE3LlzBz/++COkUin27t2rfM1mzZph9erVCA0NxQ8//AAnJycsXboU/fr1Q3x8PExMTDjJRBo49o5ycnIYAJaRkVHruh999BGbMGGCyrzBgwezTz/9tMq6SUlJDAC7efNmnTOVlJSw8PBwVlJSotFMFa5du8YAsMePHzeYTBWfw9mzZ3nN9OzZM9asWTN2584dJpPJ2Lp169TOw0WmcePGsYCAgDpl4DrT8OHDa/ws+cj0poCAANa3b19eM7m4uLCvvvpKZZ3OnTuzhQsX8pIpPj6eAWB37txRLi8tLWXm5uZsx44dnGQqKChgurq67Pjx4yrzXV1d2ZdffskUCgWztbVlK1euVC4rKipiYrGYbd26Va08GRkZDADLyclR+z3UVcXfpx/EluyXptb1mn4QW3Ke9+9OK03uHh4e+O2335CQkAAAuHXrFi5duoT+/ftr4+U1liknJwcCgQBNmzZtEJlKSkqwfft2iMViuLq68pZJoVBgzJgxCA4OhouLCyc56poJAKKjo2FtbQ0nJydMmjQJ6enpvGVSKBQ4ceIEnJyc4OPjA2tra3Tr1g3h4eG8ZXpTWloaTpw4gaCgIF4zeXh4ICIiAs+fPwdjDFFRUUhISICPjw8vmSqGja7ckqKrqwt9fX1cunSJk0ylpaUoKyur0npjaGiIS5cuISkpCampqfD29lYuE4lE6N27Ny5fvsxJpvrQZJM7eTutNLnPnTsXOTk5aN26NXR1dVFWVoZly5Zh5MiR2nh5jWQqKirCvHnzMGrUKM7G4lU30/HjxzFixAgUFBRAIpEgMjISlpaWvGVatWoV9PT0MH36dE4yvEsmPz8/DB06FDKZDElJSVi0aBH69u2L69evVzsMMNeZ0tPTkZeXh5UrV2Lp0qVYtWoVTp06hcGDByMqKgq9e/fWeqY37d69GyYmJhg8eLDGs9Ql08aNGzFp0iTY2dlBT08POjo62LlzJzw8PHjJ1Lp1a8hkMsyfPx/btm2DsbExQkNDkZqaWuWUhaaYmJige/fu+Prrr9GmTRvY2Njg559/xtWrV9GqVSukpqYCAGxsbFSeZ2Njg8ePH3OSqT4q+mbUaxtUpNdKKwX6gQMHsHfvXuzbtw8uLi6Ii4vDzJkzIZVKMW7cOG1EqFcmuVyOESNGQKFQYPPmzbxn8vT0RFxcHDIyMrBjxw4MGzYMV69ehbW1tdYzXb9+HRs2bMCNGzfq/YPVVCYAGD58uHL9du3aoUuXLpDJZDhx4gQnBVZtmSo6WAUEBGDWrFkAgI4dO+Ly5cvYunUrJwV6XX9333//PUaPHs3ZOX11M23cuBFXrlxBREQEZDIZLly4gMmTJ0MikcDLy0vrmYRCIQ4dOoSgoCCYm5tDV1cXXl5e8PPz03iWyn788UdMmDABzZo1g66uLjp37oxRo0bhxo0bynXe/M0xxrT2OyQN0Lu21dflHLqdnR3btGmTyryvv/6aOTs7V1lXW+fQ1c1UUlLCBg4cyDp06KDWe9VGpjc5Ojqy5cuX85Jp3bp1TCAQMF1dXeUEgOno6DCZTMZLprdxdHRUOeeozUzFxcVMT0+Pff311yrrfPHFF6xHjx68ZKrswoULDACLi4tTOwsXmQoKCphQKKxy7jgoKIj5+Pjwkqmy7Oxslp6ezhhj7P3332eTJ0/mJFNleXl57MWLF4wxxoYNG8b69+/PHj58yACwGzduqKzr7+/Pxo4dq9Z2tXkO/cemVuyQmU29ph+bWtE59Fpo5Rx6QUEBdHRUX0pXV/etlz5pgzqZ5HI5hg0bhsTERJw9exYWFha8Z6oOY0x5nk/bmcaMGYM///wTcXFxykkqlSI4OBinT5/mJVN1MjMz8fTpU0gkEl4y6evro2vXroiPj1dZJyEhATKZjJdMlYWFhcHNzY2zvhjqZpLL5ZDL5Vr9e1GX/SQWi2FlZYXExETExsZy0uv+TcbGxpBIJMjKysLp06cREBAABwcH2NraIjIyUrleSUkJzp8/jx49enCeqa50NDSRmmmlyX3AgAFYtmwZ7O3t4eLigps3byI0NBQTJkxQrvPq1Ss8efJEeZ13xR8+W1tb2Nraaj1TaWkpPvnkE9y4cQPHjx9HWVmZ8ryVubk5J5dA1ZYpPz8fy5Ytg7+/PyQSCTIzM7F582Y8e/YMQ4cO1XgedTJZWFhUOdARCoWwtbWFs7MzL5ny8vIQEhKCIUOGQCKRIDk5GQsWLIClpSUGDRrESyYACA4OxvDhw9GrVy94enri1KlTOHbsGKKjo3nLBAC5ubk4ePAg1q5dy0mOumQyNTVF7969ERwcDENDQ8hkMpw/fx579uxBaGgoL5kA4ODBg7CysoK9vT1u376NGTNmYODAgSqd0jTt9OnTYIzB2dkZDx48QHBwMJydnTF+/HgIBALMnDkTy5cvR6tWrdCqVSssX74cRkZGGDVqFGeZSAP3rlX7ujS55+bmshkzZjB7e3tmYGDAWrZsyb788ktWXFysXGfXrl0MQJVp8eLFameqS5NWbZkqmv6rm6KionjJVFhYyAYNGsSkUinT19dnEomE+fv7s2vXrqmdR9OZqsP1ZWu1ZSooKGDe3t7MysqKCYVCZm9vz8aNG8eePHnCW6YKYWFhzNHRkRkYGDBXV1cWHh7Oe6Zt27YxQ0NDlp2dXacsXGVKSUlhgYGBTCqVMgMDA+bs7MzWrl3LFAoFb5k2bNjA7OzslN+nhQsX1vgbqG8mxhg7cOAAa9myJdPX12e2trZsypQpKp+RQqFgixcvZra2tkwkErFevXqx27dvq51Hm03u+8ysWLi5Tb2mfWbU5F4bAWOMvcuBQG5uLsRiMTIyMjhvilaXXC7HyZMn0b9/fwiFQr7jAKBM6qJM6qFM6qFMtcvMzISlpSVycnI4u3Knopz42cwaRoL6NZoXMAVGZqVzmvfvjk5LEEIIIY0ADZ9KCCGEUzR8qnZQgU4IIYRTVKBrBzW5E0II+dug4VPfjmrohBBCOKUDQKeeVWydv7pvx8TEUKe4t6ACnRBCCKcEf/1X322QmlGBTgghhHNUHHOPzqETQgghjQDV0AkhhHBKICif6rsNUjMq0AkhhHCKLlvTDmpyJ4QQQhoBqqETQgjhlA4E0KlnHbu+z/9foHaBXlxcrDLmdm5uLoD/jl/cEFTkaCh5AMqkLsqkHsqkHspUO23moCZ37VB7tLWQkBAsWbKkyvx9+/bByMhI48EIIYRwp6CgAKNGjdLKaGtHzW1hrFO/M7z5CgUCXqXSaGs1ULtAr66G3rx5c6SkpDSo4VMjIyPRr1+/BjE8IUCZ1EWZ1EOZ1EOZapeZmQmJRKKVAj3CQjMFun8mFeg1UbvJXSQSQSQSVZkvFAobxJezMsqkHsqkHsqkHsqknoaSSZsZqMldO6iXOyGEENIIUC93QgghnKJ7uWsHFeiEEEI4pSPQwGhrVJ7Xigp0QgghnKJz6NpB59AJIYSQRoBq6IQQQjhFNXTtoAKdEEIIp6hTnHZQkzshhBDSCFANnRBCCKdoPHTtoBo6IYQQTuloaAKArl27om3btvjuu++0+Rb+FrRSoJeWlmLhwoVwcHCAoaEhWrZsia+++goKhUK5DmMMISEhkEqlMDQ0RJ8+fXD37l1Oc7Vo0QICgaDKNGXKFABAWloaAgMDIZVKYWRkBF9fXyQmJvKaKS8vD1OnToWdnR0MDQ3Rpk0bbNmyhbc81S0TCARYs2YNb5kA4P79+/D394dYLIaJiQnc3d3x5MkT3jIFBgZWWebu7s5ZHnUyVfbZZ59BIBBg/fr1vGYKCQlB69atYWxsDDMzM3h5eeHq1au8ZZLL5Zg7dy7at28PY2NjSKVSjB07Fi9evOAtEwAcPnwYPj4+sLS0hEAgQFxcHKd5GpKYmBjcu3ev2u/x/zqtNLmvWrUKW7duxe7du+Hi4oLY2FiMHz8eYrEYM2bMAACsXr0aoaGh+OGHH+Dk5ISlS5eiX79+iI+Ph4mJCSe5YmJiUFZWpnx8584d9OvXD0OHDgVjDAMHDoRQKMTRo0dhamqK0NBQeHl54d69ezA2NtZ6JgCYNWsWoqKisHfvXrRo0QJnzpzB5MmTIZVKERAQoPU8KSkpKuv/+uuvCAoKwpAhQzSeRd1MDx8+hIeHB4KCgrBkyRKIxWLcv38fBgYGvGUCAF9fX+zatUv5WF9fn7M86mYCgPDwcFy9ehVSqZTTPOpkcnJywqZNm9CyZUsUFhZi3bp18Pb2xoMHD2BlZaX1TAUFBbhx4wYWLVoEV1dXZGVlYebMmfD390dsbCwneWrLBAD5+fno2bMnhg4dikmTJnGWQ1Ool7uWsHeUk5PDALCMjIxa1/3oo4/YhAkTVOYNHjyYffrpp4wxxhQKBbO1tWUrV65ULi8qKmJisZht3bpV7UwlJSUsPDyclZSUqP2cymbMmMHee+89plAoWHx8PAPA7ty5o1xeWlrKzM3N2Y4dO3jJxBhjLi4u7KuvvlJZp3PnzmzhwoVayfRmnjcFBASwvn371nm7msw0fPhw5XerPjSZady4cSwgIKBBZWKMsWfPnrFmzZqxO3fuMJlMxtatW8d7psoq/s6cPXu2wWS6du0aA8AeP37Me6akpCQGgN28ebPO28zIyGAAWE5OTp2fq66Kz+8362bsqm3zek2/WTfjPO/fnVaa3D08PPDbb78hISEBAHDr1i1cunQJ/fv3BwAkJSUhNTUV3t7eyueIRCL07t0bly9f1kZElJSUYO/evZgwYQIEAoFyqNjKtTpdXV3o6+vj0qVLvGQCyvdlREQEnj9/DsYYoqKikJCQAB8fH17yVJaWloYTJ04gKCiI8yxvy6RQKHDixAk4OTnBx8cH1tbW6NatG8LDw3nLVCE6OhrW1tZwcnLCpEmTkJ6ezmsmhUKBMWPGIDg4GC4uLlrLUlOmN5dv374dYrEYrq6uDSITAOTk5EAgEKBp06YNJhMhgJbOoc+dOxcjR45E69atIRQK0alTJ8ycORMjR44EAKSmpgIAbGxsVJ5nY2OjXMa18PBwZGdnIzAwEADQunVryGQyzJ8/H1lZWSgpKcHKlSuRmppapZlZW5kAYOPGjWjbti3s7Oygr68PX19fbN68GR4eHrzkqWz37t0wMTHB4MGDOc/ytkzp6enIy8vDypUr4evrizNnzmDQoEEYPHgwzp8/z0smAPDz88NPP/2Ec+fOYe3atYiJiUHfvn2VB458ZFq1ahX09PQwffp0rWRQJxMAHD9+HE2aNIGBgQHWrVuHyMhIWFpa8pqpQlFREebNm4dRo0ZpbUzu2jL9HQg0NJGaaeUc+oEDB7B3717s27cPLi4uiIuLw8yZMyGVSjFu3Djlem8efTLGtHZEGhYWBj8/P+V5RKFQiEOHDiEoKAjm5ubQ1dWFl5cX/Pz8tJKnukxAeYF+5coVREREQCaT4cKFC5g8eTIkEgm8vLy0nqey77//HqNHj+b0XHVtmSo6WgYEBGDWrFkAgI4dO+Ly5cvYunUrevfurfVMADB8+HDlv9u1a4cuXbpAJpPhxIkTWjkAejPT9evXsWHDBty4cYO3Wt/bvk+enp6Ii4tDRkYGduzYgWHDhuHq1auwtrbmLRMAyOVyjBgxAgqFAps3b+Y8izqZ/i7oHLp2aKVADw4Oxrx58zBixAgAQPv27fH48WOsWLEC48aNg62tLYDymrpEIlE+Lz09vUqtnQuPHz/G2bNncfjwYZX5bm5uiIuLQ05ODkpKSmBlZYVu3bqhS5cuvGQqLCzEggULcOTIEXz00UcAgA4dOiAuLg7ffPMNpwX62/ZRhYsXLyI+Ph4HDhzgLIM6mSwtLaGnp4e2bduqrNumTRutnCqpbT9VkEgkkMlknF818bZMFy9eRHp6Ouzt7ZXzysrKMGfOHKxfvx7Jyclaz1TB2NgYjo6OcHR0hLu7O1q1aoWwsDDMnz+ft0xyuRzDhg1DUlISzp07p7Xaubrfp4auopd+fbdBaqaVJveCggLo6Ki+lK6urrI25eDgAFtbW0RGRiqXl5SU4Pz58+jRowfn+Xbt2gVra2tlIfkmsVgMKysrJCYmIjY2lpPe5OpkksvlkMvlNe5LbeapLCwsDG5ublo71/m2TPr6+ujatSvi4+NV1k1ISIBMJuMlU3UyMzPx9OlTlQNYbWYaM2YM/vzzT8TFxSknqVSK4OBgnD59mpdMb8MY08qpibdlqijMExMTcfbsWVhYWHCepbZMhFRHKzX0AQMGYNmyZbC3t4eLiwtu3ryJ0NBQTJgwAUD5kdfMmTOxfPlytGrVCq1atcLy5cthZGSEUaNGcZpNoVBg165dGDduHPT0VHfHwYMHYWVlBXt7e9y+fRszZszAwIEDVTrvaTOTqakpevfujeDgYBgaGkImk+H8+fPYs2cPQkNDtZ6nQm5uLg4ePIi1a9dylqEumYKDgzF8+HD06tULnp6eOHXqFI4dO4bo6GheMuXl5SEkJARDhgyBRCJBcnIyFixYAEtLSwwaNIiXTBYWFlUKJqFQCFtbWzg7O/OSKT8/H8uWLYO/vz8kEgkyMzOxefNmPHv2rMqldtrKVFpaik8++QQ3btzA8ePHUVZWpuzXY25uzumlhzV9x1+9eoUnT54or4evOIC1tbVVtng2JDQeupa8a/f4uly2lpuby2bMmMHs7e2ZgYEBa9myJfvyyy9ZcXGxch2FQsEWL17MbG1tmUgkYr169WK3b9+uU6Z3uSzk9OnTDACLj4+vsmzDhg3Mzs6OCYVCZm9vzxYuXKiSmY9MKSkpLDAwkEmlUmZgYMCcnZ3Z2rVr33qJjSYy1ZSHMca2bdvGDA0NWXZ2ttoZuM4UFhbGHB0dmYGBAXN1dWXh4eG8ZSooKGDe3t7MyspK+V0aN24ce/LkCW+ZqqOty9belqmwsJANGjSISaVSpq+vzyQSCfP392fXrl3jLVPFZWHVTVFRUbxkYoyxXbt2VZtp8eLFaufR5mVrF6XN2U07Wb2mi9LmdNlaLQSMMfYuBwK5ubkQi8XIyMjQahNUTeRyOU6ePIn+/ftDKBTyHQcAZVIXZVIPZVIPZapdZmYmLC0tkZOTw1mfgIpy4qK0OZro1O8Mb55CgQ9ePOU0798dDc5CCCGEUzQ4i3ZQgU4IIYRTVKBrB422RgghhDQCVEMnhBDCKboOXTuoQCeEEMIpanLXDmpyJ4QQQhoBqqETQgjhFDW5awcV6IQQQjhFTe7aQQU6IYQQTukIBNCpZ4lc3+f/L6Bz6IQQQkgjQDV0QgghnKImd+1Qu0AvLi5WGcIwNzcXwH+H9GwIKnI0lDwAZVIXZVIPZVIPZaqdNnMIoIFOcaASvTZqD84SEhKCJUuWVJm/b98+GBkZaTwYIYQQ7hQUFGDUqFFaGZzleksHNNGt5+AsZQq4PUqiwVlqoHaBXl0NvXnz5khJSWlQo61FRkaiX79+DWI0I4AyqYsyqYcyqYcy1S4zMxMSiUQrBfoNR80U6J0fUIFeE7Wb3EUiEUQiUZX5QqGwQXw5K6NM6qFM6qFM6qFM6mkombSaQQPXodNJ9NpRL3dCCCGkEaBe7oQQQjhFvdy1gwp0QgghnCov0Ot761cNhWnEqMmdEEIIaQSoQCeEEMKpiib3+k4NzaBBg2BmZoZPPvmE7ygAqEAnhBDCsYp7udd3amimT5+OPXv28B1DiQp0QgghnGqsNXRPT0+YmJjwHUOJCnRCCCGNzoULFzBgwABIpVIIBAKEh4dXWWfz5s1wcHCAgYEB3NzccPHiRe0H1SDq5U4IIYRTAg3cWKauz8/Pz4erqyvGjx+PIUOGVFl+4MABzJw5E5s3b0bPnj2xbds2+Pn54d69e7C3twcAuLm5qdwhtcKZM2cglUrf7Y1wiAp0QgghnNLkdegVA4NVeNtdTP38/ODn5/fW7YWGhiIoKAgTJ04EAKxfvx6nT5/Gli1bsGLFCgDA9evX6xday6jJnRBCyN9G8+bNIRaLlVNF4VsXJSUluH79Ory9vVXme3t74/Lly5qKqnVaK9CfP3+OTz/9FBYWFjAyMkLHjh1Vjn4OHz4MHx8fWFpaQiAQIC4ujtdMcrkcc+fORfv27WFsbAypVIqxY8fixYsXvGUCyke9a926NYyNjWFmZgYvLy9cvXqV10yVffbZZxAIBFi/fj2vmQIDA5XNfBWTu7s7r5kA4P79+/D394dYLIaJiQnc3d3x5MkT3jK9uY8qpjVr1vCWKS8vD1OnToWdnR0MDQ3Rpk0bbNmyhbM86mRKS0tDYGAgpFIpjIyM4Ovri8TERM7ytGjRotrPZcqUKQAAxhhCQkIglUphaGiIPn364O7du5zlqS9Ndop7+vQpcnJylNP8+fPrnCcjIwNlZWWwsbFRmW9jY4PU1FS1t+Pj44OhQ4fi5MmTsLOzQ0xMTJ2zaJJWmtyzsrLQs2dPeHp64tdff4W1tTUePnyIpk2bKtfJz89Hz549MXToUEyaNIn3TAUFBbhx4wYWLVoEV1dXZGVlYebMmfD390dsbCwvmQDAyckJmzZtQsuWLVFYWIh169bB29sbDx48gJWVFS+ZKoSHh+Pq1aucn1tSN5Ovry927dqlfKyvr89rpocPH8LDwwNBQUFYsmQJxGIx7t+/DwMDA94ypaSkqDzn119/RVBQULXnHLWVadasWYiKisLevXvRokULnDlzBpMnT4ZUKkVAQIDWMzHGMHDgQAiFQhw9ehSmpqYIDQ2Fl5cX7t27B2NjY41niomJQVlZmfLxnTt30K9fPwwdOhQAsHr1aoSGhuKHH36Ak5MTli5din79+iE+Pr5B9bquINARQKBTz3PorPz5pqamGhtt7c3z8oyxOp2rP336tEZyaAx7Rzk5OQwAy8jIqHXduXPnMg8PD7W2m5SUxACwmzdv1jlTSUkJCw8PZyUlJRrNVOHatWsMAHv8+HGDyVTxOZw9e5bXTM+ePWPNmjVjd+7cYTKZjK1bt07tPFxkGjduHAsICKhTBq4zDR8+nH366acNKtObAgICWN++fXnN5OLiwr766iuVeZ07d2YLFy7kJVN8fDwDwO7cuaOcV1payszNzdmOHTs4yfSmGTNmsPfee48pFAqmUCiYra0tW7lypXJ5UVERE4vFbOvWrWpvMyMjgwFgOTk5dc6jroq/T/9xbcWed25dr+k/rq3eOS8AduTIEeXj4uJipquryw4fPqyy3vTp01mvXr3q+7Z5o5Um94iICHTp0gVDhw6FtbU1OnXqhB07dmjjpTWaKScnBwKBoNraKR+ZSkpKsH37dojFYri6uvKWSaFQYMyYMQgODoaLiwsnOeqaCQCio6NhbW0NJycnTJo0Cenp6bxlUigUOHHiBJycnODj4wNra2t069at2ktptJXpTWlpaThx4gSCgoJ4zeTh4YGIiAg8f/4cjDFERUUhISEBPj4+vGSq6OVcuSVFV1cX+vr6uHTpEieZKispKcHevXsxYcIECAQCJCUlITU1VeX8r0gkQu/evRvs+d+Gdh26vr4+3NzcEBkZqTI/MjISPXr00NwLadu7HgnUpYYuEomYSCRi8+fPZzdu3GBbt25lBgYGbPfu3VXW1VYNvS6ZGGOssLCQubm5sdGjR/Oe6dixY8zY2JgJBAImlUrZtWvXeM20fPly1q9fP6ZQKBhjjPMaujqZ9u/fz44fP85u377NIiIimKurK3NxcWFFRUW8ZEpJSWEAmJGREQsNDWU3b95kK1asYAKBgEVHR/OS6U2rVq1iZmZmrLCwUO08XGQqLi5mY8eOZQCYnp4e09fXZ3v27OEtU0lJCZPJZGzo0KHs1atXrLi4mK1YsYIBYN7e3pxkquzAgQNMV1eXPX/+nDHG2O+//84AKB9XmDRpUp3yaLOGntjJiaV2aVOvKbGTEwPAnJycWJs2bdimTZtqfO3Xr1+zmzdvsps3bzIAyt9dRQvr/v37mVAoZGFhYezevXts5syZzNjYmCUnJ3O2P7imlQJdKBSy7t27q8ybNm0ac3d3r7Kutgr0umQqKSlhAQEBrFOnTnX+8nORKS8vjyUmJrI//viDTZgwgbVo0YKlpaXxkik2NpbZ2Nio/HHhukCvy2dX4cWLF0woFLJDhw7xkun58+cMABs5cqTKOgMGDGAjRozgJdObnJ2d2dSpU9XOwlWmNWvWMCcnJxYREcFu3brFvv32W9akSRMWGRnJW6bY2Fjm6urKADBdXV3m4+PD/Pz8mJ+fHyeZKvP29mYff/yx8nFFgf7ixQuV9SZOnMh8fHzU3u7ftUBXN29UVBQDUGUaN26ccp3vvvuOyWQypq+vzzp37szOnz/P0Z7QDq00uUskErRt21ZlXps2bTjt3VsbdTPJ5XIMGzYMSUlJiIyM1FhnjPpkMjY2hqOjI9zd3REWFgY9PT2EhYXxkunixYtIT0+Hvb099PT0oKenh8ePH2POnDlo0aIFL5ne9hyZTMZZz+TaMllaWkJPT0+rv4O67KeLFy8iPj5eeU0uV2rLVFhYiAULFiA0NBQDBgxAhw4dMHXqVAwfPhzffPMNL5mA8huMxMXFITs7GykpKTh16hQyMzPh4ODASaYKjx8/xtmzZ1U+F1tbWwCo0hs7PT29Sq/thoKPJvc+ffqAlVdaVaYffvhBuc7kyZORnJyM4uJiXL9+Hb169dLsG9cyrRToPXv2RHx8vMq8hIQEyGQybbx8tdTJVFGYJyYm4uzZs7CwsOA9U3UYY9XezUgbmcaMGYM///wTcXFxykkqlSI4OJizHqDvsp8yMzPx9OlTSCQSXjLp6+uja9euWv0d1GU/hYWFwc3NjbO+GOpmksvlkMvl0NFR/dOkq6sLhULBS6bKxGIxrKyskJiYiNjYWE563Ve2a9cuWFtb46OPPlLOc3BwgK2trcr535KSEpw/f77Bnv992+WRdZ1ILd61al+XJvdr164xPT09tmzZMpaYmMh++uknZmRkxPbu3atcJzMzk928eZOdOHGCAWD79+9nN2/eZCkpKWpnqkuTVm2Z5HI58/f3Z3Z2diwuLo6lpKQop+LiYl4y5eXlsfnz57M//viDJScns+vXr7OgoCAmEolUeuBqM1N1uG5yry3T69ev2Zw5c9jly5dZUlISi4qKYt27d2fNmjVjubm5vGRijLHDhw8zoVDItm/fzhITE9m3337LdHV12cWLF3nLxFj5b9nIyIht2bJF7RxcZurduzdzcXFhUVFR7NGjR2zXrl3MwMCAbd68mbdMv/zyC4uKimIPHz5k4eHhTCaTscGDB6udp66ZGGOsrKyM2dvbs7lz51ZZtnLlSiYWi9nhw4fZ7du32ciRI5lEIqnT91ubTe6P3JzZy25t6zU9cnPmPO/fnVYKdMbKO3K1a9eOiUQi1rp1a7Z9+3aV5bt27ar2fMfixYvVzlTXH0xNmSrO5Vc3RUVF8ZKpsLCQDRo0iEmlUqavr88kEgnz9/fntFNcbZmqw3WBXlumgoIC5u3tzaysrJhQKGT29vZs3Lhx7MmTJ7xlqhAWFsYcHR2ZgYEBc3V1ZeHh4bxn2rZtGzM0NGTZ2dl1ysJVppSUFBYYGMikUikzMDBgzs7ObO3atcpOl3xk2rBhA7Ozs1N+nxYuXFinA/t3yXT69GkGgMXHx1dZplAo2OLFi5mtrS0TiUSsV69e7Pbt23XKQwV64yNgjLF3qdnn5uZCLBYjIyOD86Zodcnlcpw8eRL9+/eHUCjkOw4AyqQuyqQeyqQeylS7zMxMWFpaIicnh7O+QRXlRFKX1jDR063Xtl6XlsEh9j+c5v27o3u5E0II4ZYmOsT9dQq9a9euaNu2Lb777jte31JDRKOtEUII+duIiYmhGvpbUIFOCCGEU3yMh/6/iAp0QgghnBLolE/13QapGe0iQgghpBGgGjohhBBOUZO7dlCBTgghhFs6gvKpvtsgNaImd0IIIX8bdNna21ENnRBCCLc0MaD5X8+ny9bejgp0QgghnKJz6NpBBTohhBBu0Tl0rVC7QC8uLlYZojM3NxfAf4c7bAgqcjSUPABlUhdlUg9lUg9lql1DyUE0R+3BWUJCQrBkyZIq8/ft2wcjIyONByOEEMKdgoICjBo1SiuDszzt4wrTeg7OkltahubRt2hwlhqoXaBXV0Nv3rw5UlJSGtRoa5GRkejXr1+DGM0IoEzqokzqoUzqoUy1y8zMhEQi0UqB/qxvR40U6Hbn4qhAr4HaTe4ikQgikajKfKFQ2CC+nJVRJvVQJvVQJvVQJvU0lEwNIQPRLLoOnRBCCLfqO3ZqpcveGtN16Pn5+RrdHvVyJ4QQwimBQABBPXupCxrhdeg2NjYYNmwYJkyYAA8Pj3pvj2rohBBCCA9+/vln5OTk4MMPP4STkxNWrlyJFy9evPP2qEAnhBDCLQ02uTcmAwYMwKFDh/DixQv885//xM8//wyZTIaPP/4Yhw8fRmlpaZ22RwU6IYQQbungvzeXeeeJ7zfBHQsLC8yaNQu3bt1CaGgozp49i08++QRSqRT/+te/UFBQoNZ26Bw6IYQQwqPU1FTs2bMHu3btwpMnT/DJJ58gKCgIL168wMqVK3HlyhWcOXOm1u1QgU4IIYRTdC/36h0+fBi7du3C6dOn0bZtW0yZMgWffvopmjZtqlynY8eO6NSpk1rbowKdEEIIt+he7tUaP348RowYgd9//x1du3atdp2WLVviyy+/VGt7VKATQgjhlgaHT21MUlJSar11uqGhIRYvXqzW9hpxNwNCCCGk4TIxMUF6enqV+ZmZmdDVrfutcqlAJ4QQwimBjmYmoHHdKe5tQ6kUFxdDX1+/ztvTWoH+/PlzfPrpp7CwsICRkRE6duyI69evK5czxhASEgKpVApDQ0P06dMHd+/e5SxPSEiIsqNGxWRra6tcnpaWhsDAQEilUhgZGcHX1xeJiYmc5VEnU15eHqZOnQo7OzsYGhqiTZs22LJlC6+Z3lxWMa1Zs4a3TABw//59+Pv7QywWw8TEBO7u7njy5AlvmQIDA6ssd3d35yyPOpkq++yzzyAQCLB+/XpeM4WEhKB169YwNjaGmZkZvLy8cPXqVd4yyeVyzJ07F+3bt4exsTGkUinGjh1br5t/1DcTUN6ZysfHB5aWlhAIBIiLi+M0T71p8Dr0mJgY3Lt3D1OmTOH5Tb27jRs3YuPGjRAIBNi5c6fy8caNG7Fu3TpMmTIFrVu3rvN2tXIOPSsrCz179oSnpyd+/fVXWFtb4+HDhyo9+VavXo3Q0FD88MMPcHJywtKlS9GvXz/Ex8fDxMSEk1wuLi44e/as8nFFEwdjDAMHDoRQKMTRo0dhamqK0NBQeHl54d69ezA2NuYkT02ZAGDWrFmIiorC3r170aJFC5w5cwaTJ0+GVCpFQEAAL5lSUlJU1v31118RFBSEIUOGcJantkwPHz6Eh4cHgoKCsGTJEojFYty/fx8GBga8ZQIAX19f7Nq1S/n4XY7ANZ0JAMLDw3H16lVIpVLO89SWycnJCZs2bULLli1RWFiIdevWwdvbGw8ePICVlZXWMxUUFODGjRtYtGgRXF1dkZWVhZkzZ8Lf3x+xsbGc5akpE1B+D/CePXti6NChmDRpEqc5iOatW7cOQHlZs3XrVpXPVl9fHy1atMDWrVvrvF2tFOirVq1C8+bNVf6YtWjRQvlvxhjWr1+PL7/8EoMHDwYA7N69GzY2Nti3bx8+++wzTnLp6elVW2NJTEzElStXcOfOHbi4uAAANm/eDGtra/z888+YOHEiJ3lqygQAf/zxB8aNG4c+ffoAAP7xj39g27ZtiI2N5bRArynTm/OPHj0KT09PtGzZkrM8tWX68ssv0b9/f6xevVo5j+s8tWUCykcsrGk5F2rL9Pz5c0ydOhWnT5/GRx99xHumUaNGqTwODQ1FWFgY/vzzT3z44YdazyQWixEZGaky79tvv8X777+PJ0+ewN7eXuuZAGDMmDEAgOTkZM5eX5MEOhq4l3sj6uWelJQEAPD09MThw4dhZmamke1qpck9IiICXbp0wdChQ2FtbY1OnTphx44dyuVJSUlITU2Ft7e3cp5IJELv3r1x+fJlznIlJiZCKpXCwcEBI0aMwKNHjwBAOe575Rqdrq4u9PX1cenSJc7y1JQJADw8PBAREYHnz5+DMYaoqCgkJCTAx8eHt0yVpaWl4cSJEwgKCuI0T02ZFAoFTpw4AScnJ/j4+MDa2hrdunVDeHg4b5kqREdHw9raGk5OTpg0aVK1nWG0mUmhUGDMmDEIDg5WHrhqg7rfp5KSEmzfvh1isRiurq4NIhMA5OTkQCAQqLQw8p2pwaNbv1YrKipKY4U5oKUa+qNHj7BlyxbMnj0bCxYswLVr1zB9+nSIRCKMHTsWqampAMpHnqnMxsYGjx8/5iRTt27dsGfPHjg5OSEtLQ1Lly5Fjx49cPfuXbRu3RoymQzz58/Htm3bYGxsjNDQUKSmplZpYtZWJgsLC2zcuBGTJk2CnZ0d9PT0oKOjg507d2pklJ53zVTZ7t27YWJiomxl4SOTXC5HXl4eVq5ciaVLl2LVqlU4deoUBg8ejKioKPTu3VvrmSwsLODn54ehQ4dCJpMhKSkJixYtQt++fXH9+nWIRCJeMq1atQp6enqYPn06J6//LpkA4Pjx4xgxYgQKCgogkUgQGRkJS0tLXjNVKCoqwrx58zBq1ChOR/yqSyby9zJ79mx8/fXXMDY2xuzZs2tcNzQ0tG4bZ+8oJyeHAWAZGRm1risUCln37t1V5k2bNo25u7szxhj7/fffGQD24sULlXUmTpzIfHx81M5UUlLCwsPDWUlJidrPqZCXl8dsbGzY2rVrGWOMxcbGMldXVwaA6erqMh8fH+bn58f8/PzqtF1NZlqzZg1zcnJiERER7NatW+zbb79lTZo0YZGRkbxlqszZ2ZlNnTq1ztvUZKbnz58zAGzkyJEq6wwYMICNGDGCl0zVefHiBRMKhezQoUO8ZIqNjWU2Njbs+fPnyuUymYytW7euztvV9H7Ky8tjiYmJ7I8//mATJkxgLVq0YGlpabxmqthmQEAA69SpE8vJyanzdrnIlJSUxACwmzdv1nmbGRkZDMA7vRd1VZQTqUN6sIIRveo1pQ7pwXlebejTpw/LyspS/vttk6enZ523rZUaukQiQdu2bVXmtWnTBocOHQLw3/OwqampkEgkynXS09Or1Nq5YmxsjPbt2yt7sru5uSEuLg45OTkoKSmBlZUVunXrhi5dumglz5uZCgsLsWDBAhw5ckR5rrNDhw6Ii4vDN998Ay8vL61nquzixYuIj4/HgQMHtJLjbZksLS2hp6dX7feN69Mlb8tUHYlEAplMxvmVE2/LpKOjg/T0dJVzwGVlZZgzZw7Wr1+vtXOz1e0nY2NjODo6wtHREe7u7mjVqhXCwsIwf/583jLJ5XIMGzYMSUlJOHfunNbH467t+9TQ0a1f/ysqKqraf2uCVs6h9+zZE/Hx8SrzEhISIJPJAAAODg6wtbVV6XxSUlKC8+fPo0ePHtqIiOLiYty/f1/lgAIo7xRjZWWFxMREzjuf1ZRJLpdDLpdDR0f1I9PV1YVCoeAlU2VhYWFwc3Pj/FxnbZn09fXRtWvXGr9v2s5UnczMTDx9+vSty7nONGbMGPz555+Ii4tTTlKpFMHBwTh9+jQvmd6GMabs18JHporCPDExEWfPnuWlyVud/USIVmros2bNQo8ePbB8+XIMGzYM165dw/bt27F9+3YA5UdeM2fOxPLly9GqVSu0atUKy5cvh5GRUZVer5ryf//3fxgwYADs7e2Rnp6OpUuXIjc3F+PGjQMAHDx4EFZWVrC3t8ft27cxY8YMDBw4UKXjnjYzmZqaonfv3ggODoahoSFkMhnOnz+PPXv21P08i4YyVcjNzcXBgwexdu1aznLUJVNwcDCGDx+OXr16wdPTE6dOncKxY8cQHR3NS6a8vDyEhIRgyJAhkEgkSE5OxoIFC2BpaYlBgwbxksnCwqJKwSQUCmFrawtnZ2deMuXn52PZsmXw9/eHRCJBZmYmNm/ejGfPnmHo0KG8ZCotLcUnn3yCGzdu4Pjx4ygrK1P2+TE3N+fs0sPavuOvXr3CkydPlNfDVxzA2traav1KCrXQvdyV6tLH6PDhw3XatlYK9K5du+LIkSOYP38+vvrqKzg4OGD9+vUYPXq0cp0vvvgChYWFmDx5MrKystCtWzecOXOGs2vQnz17hpEjRyIjIwNWVlZwd3fHlStXlLW4lJQUzJ49G2lpaZBIJBg7diwWLVrESRZ1M+3fvx/z58/H6NGj8erVK8hkMixbtgyff/45b5kqcjHGMHLkSM5y1CXToEGDsHXrVqxYsQLTp0+Hs7MzDh06xGnnwZoyFRYW4vbt29izZw+ys7MhkUjg6emJAwcOcPb9ri0TX2rKVFRUhP/85z/YvXs3MjIyYGFhga5du+LixYuc9sKvKVNycjIiIiIAlI96VVlUVJTyElJtZgLKrxwaP368cv0RI0YAABYvXoyQkBBOMtWPJnqpN44CXSwWc7ZtAWNvufdcLXJzcyEWi5U/vIZALpfj5MmT6N+/P4RCId9xAFAmdVEm9VAm9VCm2mVmZsLS0hI5OTmc9QmoKCfSh/eCqX796o+5JaWwPnCB07x/d3Qvd0IIIX8bjele7ppGw6cSQgjhlgbPocfExPyta+idO3fGb7/9BjMzM3Tq1KnG3vs3btyo07apQCeEEMIpumztvwICApQ3kxo4cKBGt00FOiGEEKIlixcvrvbfmkAFOiGEEG7RZWs1io2Nxf379yEQCNCmTRu4ubm903aoQCeEEMItTQyu0kia3CuruDzx999/Vw72k52djR49euDnn39G8+bN67Q96uVOCCGE8GDChAmQy+W4f/8+Xr16hVevXuH+/ftgjL3TqJVUQyeEEMIpGg+9ehcvXsTly5dV7s7o7OyMb7/9Fj179qzz9qhAJ4QQwi1qcq+Wvb095HJ5lfmlpaVo1qxZnbdHTe6EEEIID1avXo1p06YhNjYWFTdtjY2NxYwZM/DNN9/UeXtUQyeEEMItHWigl7tGkvDOzMxM5Zr6/Px8dOvWDXp65cVxaWkp9PT0MGHChDpfp652gV5cXKwyhGFubi4AKIf1bAgqcjSUPABlUhdlUg9lUg9lqp02c9CNZf5r/fr1nG1b7cFZQkJCsGTJkirz9+3bByMjI40HI4QQwp2CggKMGjVKK4OzZE7yhql+/QakyS2Rw2LHGRqcpQZqF+jV1dCbN2+OlJSUBjXaWmRkJPr169cgRjMCKJO6KJN6KJN6KFPtMjMzIZFIqEBvIAoLC6u0mtT1fard5C4SiZT3n61MKBQ2iC9nZZRJPZRJPZRJPZRJPQ0lk1YzUC/3auXn52Pu3Ln45ZdfkJmZWWV5WVlZnbbXSLoZEEIIabAqCvT6Tmhcw6d+8cUXOHfuHDZv3gyRSISdO3diyZIlkEql2LNnT523R73cCSGE/G383YdPrezYsWPYs2cP+vTpgwkTJuCDDz6Ao6MjZDIZfvrpJ4wePbpO26MaOiGEEI5ponbe+JrcX716BQcHBwDl58tfvXoFAPDw8MCFCxfqvD0q0AkhhHBLR0czUyPTsmVLJCcnAwDatm2LX375BUB5zb1isJa6aHx7iBBCCPkbGD9+PG7dugUAmD9/vvJc+qxZsxAcHFzn7dE5dEIIIdyiXu7VmjVrlvLfnp6euH//Pq5fv4733nsPrq6udd4eFeiEEEK4RQW6WmQyGWQy2Ts/n5rcCSGEEJ789ttv+Pjjj/Hee+/B0dERH3/8Mc6ePftO26ICnRBCCLc0eB16Y7Jp0yb4+vrCxMQEM2bMwPTp02Fqaor+/ftj06ZNdd4eNbkTQgjhliZ6qTfCXu4rVqzAunXrMHXqVOW86dOno2fPnli2bJnKfHU0vj1ECCGkYaEaerVyc3Ph6+tbZb63t7dyRNO64KVAX7FiBQQCAWbOnKmcd/jwYfj4+MDS0hICgQBxcXG8ZpLL5Zg7dy7at28PY2NjSKVSjB07Fi9evOAtE1A+6l3r1q1hbGwMMzMzeHl54erVq7xmquyzzz6DQCDgdIhAdTIFBgYqh2ysmNzd3XnNBAD379+Hv78/xGIxTExM4O7ujidPnvCW6c19VDGtWbOGt0x5eXmYOnUq7OzsYGhoiDZt2mDLli1ayfO2TGlpaQgMDIRUKoWRkRF8fX2RmJjIWYaQkJAqn4mtra1yOWMMISEhkEqlMDQ0RJ8+fXD37l3O8hBu+Pv748iRI1XmHz16FAMGDKjz9rTe5B4TE4Pt27ejQ4cOKvPz8/PRs2dPDB06FJMmTeI9U0FBAW7cuIFFixbB1dUVWVlZmDlzJvz9/REbG8tLJgBwcnLCpk2b0LJlSxQWFmLdunXw9vbGgwcPYGVlxUumCuHh4bh69SqkUimnOdTN5Ovri127dikf6+vr85rp4cOH8PDwQFBQEJYsWQKxWIz79+/DwMCAt0wpKSkqj3/99VcEBQVhyJAhvGWaNWsWoqKisHfvXrRo0QJnzpzB5MmTIZVKERAQoPVMjDEMHDgQQqEQR48ehampKUJDQ+Hl5YV79+7B2NiYkywuLi4qnaN0dXWV/169ejVCQ0Pxww8/wMnJCUuXLkW/fv0QHx8PExMTTvLUC/VyV9q4caPy323atMGyZcsQHR2N7t27AwCuXLmC33//HXPmzKnztrVaQ8/Ly8Po0aOxY8cOmJmZqSwbM2YM/vWvf8HLy0ubkd6aSSwWIzIyEsOGDYOzszPc3d3x7bff4vr165zXqGraT6NGjYKXlxdatmwJFxcXhIaGIjc3F3/++SdvmQDg+fPnmDp1Kn766SetjeJUWyaRSARbW1vlZG5uzmumL7/8Ev3798fq1avRqVMntGzZEh999BGsra15y1R5/9ja2uLo0aPw9PREy5Ytecv0xx9/YNy4cejTpw9atGiBf/zjH3B1deX8QPptmRITE3HlyhVs2bIFXbt2hbOzMzZv3oy8vDz8/PPPnOXR09NT+WwqDtgZY1i/fj2+/PJLDB48GO3atcPu3btRUFCAffv2cZanXqjJXWndunXKKSwsDGZmZrh37x7CwsIQFhaGu3fvomnTpvj+++/rvG2tFuhTpkzBRx99pPVCuyZ1yZSTkwOBQPBOt+TjIlNJSQm2b98OsVj8Tjch0FQmhUKBMWPGIDg4GC4uLpzmUDcTAERHR8Pa2hpOTk6YNGkS0tPTecukUChw4sQJODk5wcfHB9bW1ujWrRvCw8N5y/SmtLQ0nDhxAkFBQbxm8vDwQEREBJ4/fw7GGKKiopCQkAAfHx9eMhUXFwOASkuKrq4u9PX1cenSJc7yJCYmQiqVwsHBASNGjMCjR48AAElJSUhNTYW3t7dyXZFIhN69e+Py5cuc5SGakZSUpNZU8XnXhdaa3Pfv348bN24gJiZGWy9Zq7pkKioqwrx58zBq1ChOR/pRJ9Px48cxYsQIFBQUQCKRIDIyEpaWlrxlWrVqFfT09DB9+nTOMtQ1k5+fH4YOHQqZTIakpCQsWrQIffv2xfXr1yESibSeKT09HXl5eVi5ciWWLl2KVatW4dSpUxg8eDCioqLQu3dvrWd60+7du2FiYoLBgwdzkkXdTBs3bsSkSZNgZ2cHPT096OjoYOfOnfDw8OAlU+vWrSGTyTB//nxs27YNxsbGCA0NRWpqapVTFprSrVs37NmzB05OTkhLS8PSpUvRo0cP3L17F6mpqQAAGxsblefY2Njg8ePHnOSpN+rlXivGGIDyfi3vSisF+tOnTzFjxgycOXNGK+cL1VGXTHK5HCNGjIBCocDmzZt5z+Tp6Ym4uDhkZGRgx44dGDZsGK5evcpJ021tma5fv44NGzbgxo0b9foiajITAAwfPlz573bt2qFLly6QyWQ4ceIEJwVWbZkUCgUAICAgQHm7x44dO+Ly5cvYunUrJwV6XX9333//PUaPHs3pb1SdTBs3bsSVK1cQEREBmUyGCxcuYPLkyZBIJJy07tWWSSgU4tChQwgKCoK5uTl0dXXh5eUFPz8/jWepUHnb7du3R/fu3fHee+9h9+7dys6db/7eGGNa+w3WGZ1Df6s9e/ZgzZo1yk6WTk5OCA4OxpgxY+q8La0c8ly/fh3p6elwc3ODnp4e9PT0cP78eWzcuBF6enooKyvTRox3yiSXyzFs2DAkJSUhMjKS09q5upmMjY3h6OgId3d3hIWFQU9PD2FhYbxkio6ORnp6Ouzt7ZXLHz9+jDlz5qBFixa8ZKru+ySRSCCTyTjrmVxbJgsLC+jp6aFt27Yqz2vTpg1nfTLqsp8uXryI+Ph4TJw4kZMs6mbKz8/HggULEBoaigEDBqBDhw6YOnUqhg8fjm+++YaXTGVlZXBzc0NcXByys7ORkpKCU6dOITMzUzn0JdeMjY3Rvn17JCYmKnu7V9TUK6Snp1eptZOGLTQ0FP/85z/Rv39//PLLLzhw4AB8fX3x+eefY926dXXenlZq6B9++CFu376tMm/8+PFo3bo15s6dq9J7U1vUyVRRmCcmJiIqKgoWFha8Z6oOY0x5nk/bmSQSSZVzmz4+PhgzZgzGjx/PS6bq9lNmZiaePn0KiUTCSyaRSISuXbsiPj5eZZ2EhIR63bu5Ppkq76ewsDC4ublx3hejtkxlZWWQy+XQeaN5VVdXV9nKoe1MlfeTWCwGUH5+OzY2Fl9//TUnmd5UXFyM+/fv44MPPoCDgwNsbW0RGRmJTp06ASjvT3P+/HmsWrVKK3nqTAAN1NA1kqRB+fbbb7FlyxaMHTtWOS8gIAAuLi4ICQlRGbxFHVop0E1MTNCuXTuVecbGxrCwsFDOf/XqFZ48eaK8zrviD19FD09tZyotLcUnn3yCGzdu4Pjx4ygrK1MeEZubm3NyCVRtmfLz87Fs2TL4+/tDIpEgMzMTmzdvxrNnzzB06FCN51EnE4AqBzpCoRC2trZwdnbmJVNeXh5CQkIwZMgQSCQSJCcnY8GCBbC0tMSgQYN4yQQAwcHBGD58OHr16gVPT0+cOnUKx44dQ3R0NG+ZgPKbWxw8eBBr167lJEddM/Xu3RvBwcEwNDSETCbD+fPnsWfPHoSGhvKW6eDBg7CysoK9vT1u376NGTNmYODAgSod0zTp//7v/zBgwADY29sjPT0dS5cuRW5uLsaNG6e8Rn758uVo1aoVWrVqheXLl8PIyAijRo3iJE+9UZN7tVJSUtCjR48q83v06PFO/TMazK1fIyIiVGp0I0aMAAAsXrwYISEhWs/z7NkzREREACg/11lZVFQU+vTpo/VMurq6+M9//oPdu3cjIyMDFhYW6Nq1Ky5evKjV3uUNna6uLm7fvo09e/YgOzsbEokEnp6eOHDgAK/X6A4aNAhbt27FihUrMH36dDg7O+PQoUOcdvZSx/79+8EYw8iRI3nNUWH//v2YP38+Ro8ejVevXkEmk2HZsmX4/PPPecuUkpKC2bNnIy0tDRKJBGPHjsWiRYs4e71nz55h5MiRyMjIgJWVFdzd3XHlyhVla84XX3yBwsJCTJ48GVlZWejWrRvOnDnTMK9BJ2/l6OiIX375BQsWLFCZf+DAAbRq1arO2xOwiq51dZSbmwuxWKwsWBoCuVyOkydPon///lq7Fro2lEk9lEk9lEk9lKl2mZmZsLS0RE5ODmd9gyrKiVfzRsJUVL9WzdziEpiv/JnTvNp26NAhDB8+HF5eXujZsycEAgEuXbqE3377Db/88kudWxQb93UAhBBCGgBN3FSmvMm9a9euaNu2Lb777jt+35IGDBkyBNeuXYOlpSXCw8Nx+PBhWFpa4tq1a+90erDBNLkTQghppDR4Dj0mJqZR1NDlcjn+8Y9/YNGiRdi7d69Gtkk1dEIIIUTLhEJhtQOz1AcV6IQQQrhF93Kv1qBBgzR6+2dqcieEEMItuvVrtRwdHfH111/j8uXLcHNzqzJyX11vp00FOiGEEMKDnTt3omnTprh+/TquX7+uskwgEFCBTgghpIGhG8tUKykpSflvTQzO0vjaMAghhDQsdA79rcLCwtCuXTsYGBjAwMAA7dq1w86dO99pW1RDJ4QQQniwaNEirFu3DtOmTUP37t0BAH/88QdmzZqF5ORkLF26tE7bowKdEEIIt6jJvVpbtmzBjh07VG677O/vjw4dOmDatGlUoBNCCGlgqJd7tcrKytClS5cq893c3FBaWlrn7aldoBcXF6sM0Zmbmwug/G43crm8zi/MhYocDSUPQJnURZnUQ5nUQ5lqp9UcVEOv1qeffootW7ZUGUlw+/btGD16dJ23p/bgLCEhIViyZEmV+fv27YORkVGdX5gQQgh/CgoKMGrUKO0MzvLVRJga1HNwlqISmP9rZ6ManGXatGnYs2cPmjdvDnd3dwDAlStX8PTpU4wdO1ZlEB91hg9Wu0CvrobevHlzpKSkNKjR1iIjI9GvX78GMZoRQJnURZnUQ5nUQ5lql5mZCYlEop0C/etJminQF+1oVAW6p6enWusJBAKcO3eu1vXUbnIXiUQQiURV5guFwgbx5ayMMqmHMqmHMqmHMqmnoWTSagY6h16tqKgojW6v8e0hQggh5H8Q9XInhBDCLQE00ClOI0kaNSrQCSGEcIt6uWsFNbkTQgghjQDV0AkhhHCLauhaQQU6IYQQbgk00MtdQA3KtaE9RAghhDQCVEMnhBDCLWpy1woq0AkhhHCLCnStoAKdEEIItwQ69T8HTufQa0V7iBBCCGkEeCnQV6xYAYFAgJkzZyrnMcYQEhICqVQKQ0ND9OnTB3fv3uUsw5YtW9ChQweYmprC1NQU3bt3x6+//qpcnpaWhsDAQEilUhgZGcHX1xeJiYmc5VEnU15eHqZOnQo7OzsYGhqiTZs22LJlC6+ZBAJBtdOaNWt4ywQA9+/fh7+/P8RiMUxMTODu7o4nT57wlikwMLDKPqoYXYmvTJV99tlnEAgEWL9+Pa+ZQkJC0Lp1axgbG8PMzAxeXl64evUqb5nkcjnmzp2L9u3bw9jYGFKpFGPHjsWLFy94ywQAhw8fho+PDywtLSEQCBAXF8dpnnrTEWhmIjXSeoEeExOD7du3o0OHDirzV69ejdDQUGzatAkxMTGwtbVFv3798Pr1a05y2NnZYeXKlYiNjUVsbCz69u2LgIAA3L17F4wxDBw4EI8ePcLRo0dx8+ZNyGQyeHl5IT8/n5M8tWUCgFmzZuHUqVPYu3cv7t+/j1mzZmHatGk4evQob5lSUlJUpu+//x4CgQBDhgzhLdPDhw/h4eGB1q1bIzo6Grdu3cKiRYtgYGDAWyYA8PX1VdlXJ0+e5CyPupkAIDw8HFevXoVUKuU0jzqZnJycsGnTJty+fRuXLl1CixYt4O3tjZcvX/KSqaCgADdu3MCiRYtw48YNHD58GAkJCfD39+csT22ZACA/Px89e/bEypUrOc2hMRVN7vWdSM3YO8rJyWEAWEZGhtrPef36NWvVqhWLjIxkvXv3ZjNmzGCMMaZQKJitrS1buXKlct2ioiImFovZ1q1b1d5+SUkJCw8PZyUlJWo/pzIzMzO2c+dOFh8fzwCwO3fuKJeVlpYyc3NztmPHjjptU1OZGGPMxcWFffXVVyrLO3fuzBYuXMhbpjcFBASwvn371nmbmsw0fPhw9umnn77TdrjKNG7cOBYQENCgMjHG2LNnz1izZs3YnTt3mEwmY+vWreM9U2UVf2fOnj3bYDJdu3aNAWCPHz/mPVNSUhIDwG7evFnn7WVkZDAALCcn553yqKPi83u1bjYr3Tq/XtOrdbM5z/t3p9VDnilTpuCjjz6Cl5eXyvykpCSkpqbC29tbOU8kEqF37964fPky57nKysqwf/9+5Ofno3v37spx3yvX6HR1daGvr49Lly5xnqe6TADg4eGBiIgIPH/+HIwxREVFISEhAT4+PrxlqiwtLQ0nTpxAUFCQVvJUl0mhUODEiRNwcnKCj48PrK2t0a1bN4SHh/OWqUJ0dDSsra3h5OSESZMmIT09nddMCoUCY8aMQXBwMFxcXLSWpaZMlZWUlGD79u0Qi8VwdXVtEJkAICcnBwKBAE2bNm0wmRq8il7u9Z1IjbTWy33//v24ceMGYmJiqixLTU0FANjY2KjMt7GxwePHjznLdPv2bXTv3h1FRUVo0qQJjhw5grZt20Iul0Mmk2H+/PnYtm0bjI2NERoaitTUVKSkpHCWp6ZMALBx40ZMmjQJdnZ20NPTg46ODnbu3AkPDw/eMlW2e/dumJiYYPDgwZzmqSlTamoq8vLysHLlSixduhSrVq3CqVOnMHjwYERFRaF3795azwQAfn5+GDp0KGQyGZKSkrBo0SL07dsX169fh0gk4iXTqlWroKenh+nTp3P2+nXNBADHjx/HiBEjUFBQAIlEgsjISFhaWvKaqUJRURHmzZuHUaNGwdTUtEFk+lug8dC1QisF+tOnTzFjxgycOXOmxvOYgjeOwBhjVeZpkrOzM+Li4pCdnY1Dhw5h3LhxOH/+PNq2bYtDhw4hKCgI5ubm0NXVhZeXF/z8/DjLok6mjRs34sqVK4iIiIBMJsOFCxcwefJkSCSSKq0e2spU2ffff4/Ro0dzeq66tkwVtaaAgADMmjULANCxY0dcvnwZW7du5bRAr2k/DR8+XLleu3bt0KVLF8hkMpw4cYLTA6C3ZSosLMSGDRtw48YNTn9jdclU8X3y9PREXFwcMjIysGPHDgwbNgxXr16FtbU1b5mA8g5yI0aMgEKhwObNmznLUpdMhFSmlQL9+vXrSE9Ph5ubm3JeWVkZLly4gE2bNiE+Ph5AeU1dIpEo10lPT69Sa9ckfX19ODo6AgC6dOmCmJgYbNiwAdu2bYObmxvi4uKQk5ODkpISWFlZoVu3bujSpQtneWrKtH79eixYsABHjhzBRx99BADo0KED4uLi8M0333BaoNe0nypcvHgR8fHxOHDgAGc51Mn07bffQk9Pr8ofvTZt2nB+ukSd/VRBIpFAJpNxfuXE2zK1adMG6enpsLe3V65bVlaGOXPmYP369UhOTtZ6por9ZGxsDEdHRzg6OsLd3R2tWrVCWFgY5s+fz1smuVyOYcOGISkpCefOneO8dq5Opr+VRnhjmadPn2LMmDFIT0+Hnp4eFi1ahKFDh/KaSSsF+ocffojbt2+rzBs/fjxat26NuXPnomXLlrC1tUVkZCQ6deoEoPz82fnz57Fq1SptRARQ3iJQcf68glgsBgAkJiYiNjYWX3/9tdbyVM4kl8shl8uh80azk66uLhQKBS+ZKgsLC4Obm5vWznW+LZO+vj66du2qPEiskJCQAJlMxkum6mRmZuLp06cqB7DazDRmzJgqB4E+Pj4YM2YMxo8fz0umd13OhcqvWVGYJyYmIioqChYWFlrNUl2mv51GeGMZPT09rF+/Hh07dkR6ejo6d+6M/v37w9jYmL9M2ngRExMTtGvXTmWesbExLCwslPNnzpyJ5cuXo1WrVmjVqhWWL18OIyMjjBo1ipNMCxYsgJ+fH5o3b47Xr19j//79iI6OxqlTpwAABw8ehJWVFezt7XH79m3MmDEDAwcOVOm4p81Mpqam6N27N4KDg2FoaAiZTIbz589jz549CA0N5SVThdzcXBw8eBBr167lLEddMgUHB2P48OHo1asXPD09cerUKRw7dgzR0dG8ZMrLy0NISAiGDBkCiUSC5ORkLFiwAJaWlhg0aBAvmSwsLKoUTEKhELa2tnB2duYlU35+PpYtWwZ/f39IJBJkZmZi8+bNePbsGac1n5oylZaW4pNPPsGNGzdw/PhxlJWVKfv8mJubQ19fX+uZAODVq1d48uSJ8nr4igNYW1tb2NracpKJqJJIJMoDcmtra5ibm+PVq1eNv0BXxxdffIHCwkJMnjwZWVlZ6NatG86cOQMTExNOXi8tLQ1jxoxBSkoKxGIxOnTogFOnTqFfv34Ayq+vnj17NtLS0iCRSDB27FgsWrSIkyzqZtq/fz/mz5+P0aNH49WrV5DJZFi2bBk+//xz3jJV5GKMYeTIkZzlqEumQYMGYevWrVixYgWmT58OZ2dnHDp0iNPOgzVlKiwsxO3bt7Fnzx5kZ2dDIpHA09MTBw4c4Oz7XVsmvtSUqaioCP/5z3+we/duZGRkwMLCAl27dsXFixc57YVfU6bk5GREREQAKO+LUVlUVBT69Omj9UwAEBERodKSMmLECADA4sWLERISwkmmehFAA03udVv9woULWLNmDa5fv46UlBQcOXIEAwcOVFln8+bNWLNmDVJSUuDi4oL169fjgw8+qHO02NhYKBQKNG/evM7P1SQBY4y9yxNzc3MhFouVP7yGQC6X4+TJk+jfvz+EQiHfcQBQJnVRJvVQJvVQptplZmbC0tISOTk5nPUJqCgnXm1ZAFPD+nWWzS0sgvk/l+Pp06cqeUUiUbVXivz666/4/fff0blzZwwZMqRKgX7gwAGMGTMGmzdvRs+ePbFt2zbs3LkT9+7dU/YtcXNzq/Y0x5kzZ5Q3YsrMzMQHH3yAnTt3okePHvV6j/XVYGrohBBCGikNdop7sxb8tlYJPz+/Gq9MCg0NRVBQECZOnAgAWL9+PU6fPo0tW7ZgxYoVAMo7dNekuLgYgwYNwvz583kvzAEq0AkhhPyNVFdDr6uSkhJcv34d8+bNU5nv7e2t9s3MGGMIDAxE3759MWbMmDpn4AIV6IQQQrilwV7uFQPW1EdGRgbKysqqvZlZRafH2vz+++84cOAAOnTooLwT5Y8//oj27dvXK1t9UIFOCCGEWwINjJbGwXXo9bmZmYeHh9YvGa5Nw7qwjxBCCOGYpaUldHV1q9TGub6ZGdeoQCeEEMKtBjZ8qr6+Ptzc3BAZGakyPzIyskF0bntX1OROCCGEWxrs5d61a1fo6upiypQpmDJlyltXz8vLw4MHD5SPk5KSEBcXB3Nzc9jb22P27NkYM2YMunTpgu7du2P79u148uQJp/f14BoV6IQQQv42YmJi1OoUFxsbC09PT+Xj2bNnAwDGjRuHH374AcOHD0dmZia++uorpKSkoF27djh58qTWbxGtSVSgE0II4RYP93Lv06cPartv2uTJkzF58uT6pGpQqEAnhBDCLR0N9HKv7/P/B1CnOEIIIaQRULuGXlxcrHJP29zcXABQDuvZEFTkaCh5AMqkLsqkHsqkHspUO63maITjoTdEag/OEhISgiVLllSZv2/fPhgZGWk8GCGEEO4UFBRg1KhR2hmcZfcKmBrVc3CWgiKYj5sPJycntXq5/y9Su4Y+f/58ZS9BoPyDat68OXolX4K5qGGcii8V6OJcy974sPQJ9PBOg8hpXCkE+E3PHl4tmkKvgZwDKlUwnE3ORr8P3CHUaxifnby0FJEXr6Bfv34NYiQqoLwGExkZSZlqQZnU09AyZWZmau/FNHgOXd1e7v+L1P5r/rYh6vRYGYSKhlFQVfQI0AODsIEU6BX0dAQQ6jaULgvltysU6uk1mAK9glAobBB/7CqjTOqhTOppKJkaQgaiWQ3rrzkhhJDGRyDQwGVrDaTi2IBRgU4IIYRb1ClOKxpKGzAhhBBC6oFq6IQQQrjFw53i/hfRHiKEEMKtil7u9Z1QPjhL27Zt8d133/H8phoeqqETQgj526DL1t6OCnRCCCHcoiZ3raACnRBCCLeol7tW0CEPIYQQ0ghQDZ0QQgi3dHTKp/pug9SICnRCCCEc00CTO6jJvTZaOeRZde463DcchNnC7ZCGfI8hP5xEfHqWyjpHbj9E/x0RsF0cBmHwd4h7/pLTTCsPR8J97lo0/XQuJBMWYvCqnYh/nqZcLi8tw7wfI9Bx9iqYjv4CzSf9C4Eb9+LFqxzuMu34Ed2GTYK4qzdsPxiAQdPmIz7pico6S777Hm0/Hg2TLv1g0d0P3kEzcfXPu5xlWrEmFF0/8ISJjR2sZY4YOHwU4hMS37r+Z9NmQmDcFOs3beYu04oV6Nq1K0xMTGBtbY2BAwciPj5eZZ3AwEAIBAKVyd3dnddMAHD//n34+/tDLBbDxMQE7u7uePLkSTVb1E6mN/dRxbRmzRreMuXl5WHq1Kmws7ODoaEh2rRpgy1btnCSR91MaWlpCAwMhFQqhZGREXx9fZGY+PbfQX1t2bIFHTp0gKmpKUxNTdG9e3f8+uuvyuWMMYSEhEAqlcLQ0BB9+vTB3bvc/R2ot4pOcfWdSI20socuPHyBf/Zoh0tTh+DXf/ijVKFA/x0RyC/573i8+SWl6NFCgmX9u2sjEi7ce4h/+nrg9xUzcepf/0RpmQJ+X29FflH5mO8FxSW4mfQMX37ijZjVc3AweAISUl5i0MqdnGU6HxOHf44chMs/b8PpHetQWlYG30mzkV9QqFynlaw5Nn45C7eO7MaFHzdD1swWvpPm4OWrrBq2XI9Ml37HlH9MxJWoSEQeO4LS0jJ4+w9Cfn5+lXXDjx3H1ZhYSCUSTrIoM50/jylTpuDKlSuIjIxEaWkpvL29q2Ty9fVFSkqKcjp58iSvmR4+fAgPDw+0bt0a0dHRuHXrFhYtWgQDg/oNK1mfTJX3T0pKCr7//nsIBAIMGTKEt0yzZs3CqVOnsHfvXty/fx+zZs3CtGnTcPToUV4yMcYwcOBAPHr0CEePHsXNmzchk8ng5eVV7e9AE+zs7LBy5UrExsYiNjYWffv2RUBAgLLQXr16NUJDQ7Fp0ybExMTA1tYW/fr1w+vXrznJ05DQdehvp/Z46G+qGOc2ddlnsNCvW8v9y7xCSJd8j3P/HIQPWkpVliW/ykWrFT8iZuYwdGxmVaftynV0cea9vvApfVzn0dZe5uRBErQQ576ahl5t36t2nZgHT9B9XigebVkMeysz9TJBgNN6Mvi2NKvzaGsvX2XB9gN/RO3+Fr26dKx2ndy8fJh188WZsHX40L2LepnKFDj1KAv9PT3qPNray5cZsG7hiPOnT6CXR0/l/OcvXqBbby+cPnoIHw0ZhplT/omZUyervV15aSlORl1C//796zwK1MuXL2FtbY3z58+jV69eAMpr6NnZ2QgPD6/TtlQyyeU4efKkxjKNGDECQqEQP/74Y4PJ9KaBAwfi9evX+O2333jL1K5dOwwfPhyLFi1Srufm5ob+/fvj66+/1nqmhIQEODs7486dO3BxcQEAlJWVwdraGqtWrcLEiRM5zwQA5ubmWLNmDSZMmACpVIqZM2di7ty5AIDi4mLY2Nhg1apV+Oyzz9TaXmZmJiwtLbUzHvrhzTA1NqzftvILYT54Mqd5/+54acPI+asWbGZUdThWvuT8VQs2b2JU4zoCgQBN6/nFVDvT6/Kjf3Nx9V/ekhI5dhyMgNikCVydHbWTKTe3PJPZfw9oFAoFxgR9huCZ0+DSto1Wcqhkyik/DWJubq4yPzo6GtbW1nBycsKkSZOQnp7OWyaFQoETJ07AyckJPj4+sLa2Rrdu3ep1wFHfTG9KS0vDiRMnEBQUxGsmDw8PRERE4Pnz52CMISoqCgkJCfDx8eElU3Fx+d+ryi0purq60NfXx6VLlzjPU1ZWhv379yM/Px/du3dHUlISUlNT4e3trVxHJBKhd+/euHz5Mud53klFp7j6TqRGWt9DjDEEH/sdPR0kaGdroe2XrxZjDP+3Oxw9W7dEO/vqm4uLSuT4cu9xjPToDFMjbppI38w0Z/UmeHTugHatWqosOx79O0y7eMOo84dYv+cXnN4RCkuzplrJNHveAnj06I52Lm2V81etXQ89PT1Mn/w55xmqzTR7Njw8PNCuXTvlfD8/P/z00084d+4c1q5di5iYGPTt21f5x1nbmdLT05GXl4eVK1fC19cXZ86cwaBBgzB48GCcP3+el0xv2r17N0xMTDB48GDO89SUaePGjWjbti3s7Oygr68PX19fbN68GR4eHrxkat26NWQyGebPn4+srCyUlJRg5cqVSE1NRUpKCmdZbt++jSZNmkAkEuHzzz/HkSNH0LZtW6SmpgIAbGxsVNa3sbFRLiP/m7Tey336kQu4nZKJ6Mna+aOhjuk7D+H24xc4v3RGtcvlpWUYtW43FIxh06ShWsk0bek63E54iAs/Vj1P5Pl+Z9w49D0ysnOw89/HMGLOYvzx8zZYW6h3GuBdTZ0djD/v3MWls6eU867fjMOGzVtx4/J5CHi48cPUqVPx559/VqkpDR8+XPnvdu3aoUuXLpDJZDhx4gTnBVZ1mRQKBQAgICAAs2bNAgB07NgRly9fxtatW9G7d2+tZ3rT999/j9GjR3N2Tl/dTBs3bsSVK1cQEREBmUyGCxcuYPLkyZBIJPDy8tJ6JqFQiEOHDiEoKAjm5ubQ1dWFl5cX/Pz8OM3i7OyMuLg4ZGdn49ChQxg3bpzKwd+bvzfGGC+/QbXQjWW0QqsF+ozwCzh+LxnnJg+CXdMm2nzpt5oRdgjHYu8g6qtpsLNoWmW5vLQMI0J/QHL6K0SGTNFK7Xz6snU4Fv07ond/Cztb6yrLjY0M4Sizg6PMDu6uLnD2G4nvDx/HvEljOMs0bU4wIk78igtnTsCuWTPl/Iu/X0b6y5ewd/5vDausrAxz5i/E+u+2IPn+be4yTZuGiIgIXLhwAXZ2djWuK5FIIJPJOO2ZXFMmS0tL6OnpoW3btirrt2nThvNmW3X208WLFxEfH48DBw5wmqW2TIWFhViwYAGOHDmCjz76CADQoUMHxMXF4ZtvvuG0QK9pP7m5uSEuLg45OTkoKSmBlZUVunXrhi5d1Ou38i709fXh6Fh+Kq1Lly6IiYnBhg0blOfNU1NTIanUATU9Pb1Krb3BEAg0cOtXKtBro5Umd8YYph+5gPDbj3DmswA4mPPfoYExhuk7/40jV/9EZMgUONhUbf6vKMwfpLzE6X9NhoWJMeeZpi1dhyNnL+Ds9+vhYCet/Ul/Pa+40hUDms40dXYwDh89jnMnI+DQooXK8jEjR+DPq78j7o+LykkqkSB45nScPnqYu0xTp+Lw4cM4d+4cHBwcan1OZmYmnj59qvIHUJuZ9PX10bVr1yqXQyUkJEAmk/GSqbKwsDC4ubnB1dWVkyzqZpLL5ZDL5dB543yprq6uspVD25kqE4vFsLKyQmJiImJjYxEQEMBJprflLC4uhoODA2xtbREZGalcVlJSgvPnz6NHjx5ay0MaHq3U0KcduYD9NxNwOLA/TERCpOaWd/YSG4pgKCyP8KqgCE+yXiPlr2UJL7MBALYmRrA11XxBOm3nv/Hzxes4PHciTAxESM0q7+wlNjKAoUgfpWVlGPbNLtxMeoaj8yehTKFQrmPexAj6Qs3vuqlfh+Lnk2dx5NvlMDEyQurLzPJMJk1gaCBCfkEhlm/fgwGeHpBYWSAzOwdb9h/Bs7SX+MTHU+N5AGDKrP/Dvl8O4uiBfTBp0gSpqeXX6ovFpjA0NISFhTksLFQ7WQmFerC1sYazUytuMk2Zgn379uHo0aMwMTFRnjcUi8UwNDREXl4eQkJCMGTIEEgkEiQnJ2PBggWwtLTEoEGDeMkEAMHBwRg+fDh69eoFT09PnDp1CseOHUN0dDRvmYDynsgHDx7E2rVrOclRl0ympqbo3bs3goODYWhoCJlMhvPnz2PPnj0IDQ3lJRMAHDx4EFZWVrC3t8ft27cxY8YMDBw4UKVjmiYtWLAAfn5+aN68OV6/fo39+/cjOjoap06dgkAgwMyZM7F8+XK0atUKrVq1wvLly2FkZIRRo0ZxkqfeqMldK7RSoG/74w4A4MOt4Srzdw7ri3Fdy3tFH7ubhIm/nFMuG/3TGQDAon5d8S/v9zWeaevp38szLd6kMj9sykiM8+yGZ5nZOBZbntvt/1RvsnE2ZAr6tNN8YbX1QDgAoG/gdNVMS+cjcFB/6Orq4D9JT7Dn6EJkZOXAoqkpurRrg/N7NsHFsfZa6rvYsiMMANDH92OV+bu2fofAMaM5ec3aVNxkpE+fPirzd+3ahcDAQOjq6uL27dvYs2cPsrOzIZFI4OnpiQMHDsDExISXTAAwaNAgbN26FStWrMD06dPh7OyMQ4cOcdbZS51MALB//34wxjBy5EhOctQ10/79+zF//nyMHj0ar169gkwmw7Jly/D559x0ulQnU0pKCmbPno20tDRIJBKMHTtW5bI6TUtLS8OYMWOQkpICsViMDh064NSpU+jXrx8A4IsvvkBhYSEmT56MrKwsdOvWDWfOnOHs+11vNNqaVvByHTpX6nMdOlfqcx06V+pzHTpX6nMdOlfqe90wFyiTeihT7bR6HfrxMJgav/2SYLW2lV8A84+D6Dr0GjSMEoYQQkjjpSPQzAS6U1xNGkb1jBBCSOOlwSb3mJgYqqG/BRXohBBCuEWd4rSCmtwJIYSQRoBq6IQQQrhFvdy1ggp0QgghnBIIBPW+LW2Dva1tA0KHPIQQQkgjQDV0Qggh3KImd62gAp0QQgi3qEDXCtpDhBBCSCNANXRCCCHcEvz3Tm/12gapkdoFenFxMYqLi5WPc3PLRx4rFehCrqOr+WTvoFRQnqMUDeeDr8hSqmAAuBn+sa7Ks5TfP72hqMgil3MzDOy7qMhCmWpGmdTT0DJpNQc1uWuF2oOzhISEYMmSJVXm79u3D0ZG9bvpPiGEEO0qKCjAqFGjtDI4S9a5gzBtUs/BWfIKYNZ3KJycnKCrq4spU6ZgypQpGkraOKhdoFdXQ2/evDmezfgE5noNo0ZcqquHcz2Go9fR7dArbRhHwaV6QlwI+Ae67wqFnryE7zgAgFKhPv4YPxtdNq2AXkkDyaSvj9ip89Fh7TLolhTX/gQtKNMX4c85X6LNqq8bVKb7cxfBecVX0C1uIJlEIsTP/1eD3E8N8fvUUH53WTo6aBN9XTsFetS/NVOge35Co63VQO0md5FIBJFIVHUDZaUQNozyXEmvVA69Uv5/MJXpyUsaTIFeQa+kBHoN5I9dBd2S4gZTUFVokJmKG2CmhrifGmCmhvK709PRYhcqgUADTe4NrKBpgKhTHCGEEG7R4CxaQb0MCCGEkEaAauiEEEK4Rb3ctYIKdEIIIdzS0cB16PV9/v8AOuQhhBBCGgGqoRNCCOEWNblrBRXohBBCuEW93LWCDnkIIYSQRoBq6IQQQrhFTe5aQQU6IYQQblGTu1ZopUBfdS0BRx6+QPyrPBjq6aC7xBzLPVzgbG6iXIcxhq+v/Ac77zxGVlEJ3rc1w8a+rnCx4O6evZfSs7Hu/lPczMpDamEJ9n/gAn87S+XytMISLLr1CGdTs5BTUoqeVmKEdnGEowl3g9H8nvUaG5PTEJdbiNQSOX5ybYmPrZsql+eVliHkwQucSM/GK3kp7A318Vlza0xsbsVZpsu5+dj0IhO38ouQJi/FHic79Df/7+dieeVetc9bbG+NaVLLapfV15W8AmxNf4XbBUVIKy3DzhZS+DY1UVknsagYy1+8xJW8QijA4GQgwtYWUjTTF3KS6Wp+IbZnZOFOYRHSS8uwzV4Cb9MmyuX/9ywVh7Jfqzyno6EBjrzXnJM8AHCtoBA7MrNwp6gY6aVl2GJnC2+TJtWu+2VKOvZn52KhjSXGmzflLFNt+2l9WiaO5bxGirwUQoEA7Q1FmGNjiU5GBpxlqun7JGcMq1MycC43D09K5DDV0YGHiTHmS61gK+TuT2htv7vjr3KxOy0Lt/KL8Kq0DFHtW6K9MXf7iDR8WmnDuPA8A//s4IBLI3rh18E9UcoY+h+5jHz5f4fv/CY2EetvPsQGzw74Y2Qf2BobwO/wZbwu4W6QlfzSMrQ3a4JQN8cqyxhjGH7xDpLyivDLBy74w9cN9sYG+Ojcn8gvLeMsU0GZAu1MjLCmtV21y+cnPMPZjFxsb9cC13q0xWR7G3wR/xQn0rO5zWRsgFUOttUuv9vZSWXa2FIKAYAB5twdjBUoFGhrKMLXdjbVLk8uLsGgxCd4z0AfBx2b44xzC8y0sYCIw6P8QoUCbQz0sURi/dZ1ejcxwjVnB+W0SyblLA9Qvp9ai0QIsan5gO/M6zzcKiyCjR73QyHXtp8cREIskVrjVCsZDra0QzN9IcYlP0cmh8P91vR9KlQocKegCDNtLHDKqQW2OzTDo+ISTHj0jLM8QO2/u4IyBd43McIi+7d/3xqMiib3+k6kRlqpoZ8Y1EPl8c5+nSHd/itupGXjAztLMMaw8eZDzO/qhEGO5X/gvvfujGbbf8XP/3mGf3Rw4CSXj9QCPlKLapc9eF2Ia5mvEdu/C9qKjQEAG7q0guzIZfzyOB3j35NwkqmfpRj9LMV/PUqqsjwmOx+jpOb44K/WjfF2Iux69hI3cwvwUaWavCZ5mZnAy8zkrctt9FW/Rr9mvYaHqRFaGOhzkgcA+po2QV/T6muaALA6JQN9TZtgofS/f+xkIu7yAEAfE2P0MSn/ruBp9evoCwSw4rBWVyVTE2P0afJXpufVr5MqL8WS1JfYZS/FxKcp3GeqZT8FNFU9EFxoa4lfsnLxn6IS9GzCzb6r6ftkqquLnx1VW1G+trPGxwlP8LxEzlmLT22/u2FWTQEAT4oa1qBP1dLRKZ/quw0AXbt2peFT34KXQ56cv2rdZn/9wU/KLUBqQTG8ZP/94yvS00UvO0v8kfKKj4goVigAAAaVvoS6OgIIdXTwx8scXjIBgHvTJjj5MgcvikrAGMOFV6/xsKAYH3J4aqIu0ktKEZn9GqOtzXjLoGAMv+XmoaVIiNEPn8L1zgN8nPAYp95o7ubDlfxCdLn/CJ4JyZj3PA0ZHNY61aFgDHNepGGihRmcqhlNkW8lCoafs3JhoqODNgYNJ9/rMgUEAEx1qdaoDoFAoJEJAGJiYnDv3j0qzKuh9U5xjDEEX7iDnlILtLMsL4RS84sAADZGqj9YayMRnuQWajsiAMDZ1Aj2xiL861YSvn2/FYx1dbEx/hnSikqQWsjfEfHq1naYfu8J2ly8Az0BoAMBvm1rj+5mb6+tatP+jGw00dHBx+Zvr1lwLaO0DPkKhu/SX+ELW0sskFgh6nU+JiW/wC+OzdG9nuMyv6s+JsboLzZBM6EenpbIEZqeidFJzxHxXnOI6lt7eUfbMrOgJwACzcS1r6xFv+XmYfqzVBQqGKz1dPFji2Yw18LpAHUUKRRY8eIlBpqZwES3YWQiBOChQJ8e9Sduv8xB9LBeVZYJ3ji/ycBfx0ahjg72ebjgn1fj0ezQZegKAE8bM3hLzPkJ9JetT14iJicf+zu2RHMDfVzOysOc/zyFjUgIzwZQS9+Xno1PLMUqLRvapvjr/96mTTDJuvzzcjEywPX8QuzNyOatQP9Y/N+DHGcDEToYGsAjIQlRrwvgK9b+AdntwiL88CoHEQ7Nq/z2+Na9iRFOvGePrLIy7H+Vi6lPU3Dkveaw1OP3whw5Y5iSnAIFgOVv6b9BqkHjoWuFVn8dM6Ju4fijVJwb6gE7E0PlfNu/emam5hdBUqmX5suCYlgb8dfM1tncBFf9uiCnpBQlCgWsDPTR68wNdOap9llYpsBXD17gJ9eW8LEqr1G1MzHCn68L8e3jdN4L9D9y8/GgqAQ7W1XfoU9bzHV1oQfA6Y0mWkcDEWLyC/gJVQ1roR6aCYVILuGnxSe2sAiZZWX44EGycl4ZgOVpGdj1KhsXHFvwkgsAjHR00EKkjxYAOhkZwjMhGb9k5WKyFX8H1HLG8HnyCzwpkeMXx+ZUO68LumxNK7RSoDPGMCP6Txx9kIKzn3jA4a9OZhUcTI1gayTCb09eotNfHbtKyhS48CwDyz1ctBGxRuK/On09eF2AG69e41/tW/CSQ84Y5IxVGXRIVyCAgjFeMlX2U3o2XI0N0I7nS2f0dQRwNTLAw2LVgvJRcQmaCbnpwPQuskrL8EJeCiueap0DTU3Qw8hQZd74py8wUGyCT8T8t/ZUxlB+Pp0vFYV5cnEJfnFsDrMG0vxPSGVa+UsyLepP7P/PUxz2d4eJvp7ynLlYJIShni4EAgGmd3oPK6/Fw7GpMRybNsGqmAQYCfUw8i2Xb2lCnrwMD/P+e47+cV4RbmXlwVxfD82NDXD4yUtYioRobizCnex8BN94gAHNLOHFYbN7XmkZHhUW/zdTYTH+fF0AMz09NDfUh4dZEyxKeA4DHR00N9TH71l52J+SiWVOHO6nMgWSKvWkfVwsx+38Ipjp6cJOVF5Avi4tQ8SrXCyRaacZMr9MgeRKBfbTEjnuFhShqZ4umukL8f/t3Xl4VPW9x/H3ZGayz0xIQhJiVgiLEAKaBAkCBmuosXCloFXxIlCvt2ikpVQqohV5KsUHelFvlVUF7PNQwCrL9VYucSFBkQqRAAUFwhYiWYAsk2SyzEzO/SMkEMIyQOac6fT7ep7zwDkzmflkksl3fts50yJCeebUGe4KDmBYcCDbrfV8WlPHB0nuW/Nd72zh1CXLLE832znU0IRF70OIXs8bFefJtgQTYTBQ0mxnUfl5QvV6fnyN2fq3nKmlY6aSZgeHGpsI0fsQbTR2KkwGnY7uBgM93bgi4FqvUzeDnrcrKrnPHER3g4Fqp5M/V9ZQanfwgBuHJa71+xRpNPCLE2c40NDImp634VSg4sKS2xC9Hl83Xdbzeu+7KoeTkiY7ZRdey6ILfzcijIZOK0+01xXLzmQC4vWo8lNfvr91+dWP/vplh+PvZN3B5AHxADyX1psGh5Ppn++jqsnOkKhu/O2nwzC5aUkIwLeVtdz/+b72/ef3HgPg3xMjWTG0H2UNTTy/9xgVjc1E+fsyMTGSFy7kdZe9VhtjCo6278850rrWaGKPUJYmJ/DewETmFf3AU/84SZXdQay/L79LiubJGPecwAWgsK6Bcd+dat//3alyAB4Nt/BW0m0AfHTeigJMCFNnctU+WyM/O3ZxzdO8M2cBeLibmdfje5AdYmKBM4q3ys/zckkFvfx8WZEYzRA3jp8faGjksZMX14a9WnYOgAkhJl6NjuBwUzMbT5VibXHS3WAgIyiAP8VGEezGmdIHGhp5vPhM+/78itZM4y0mFkVrMwZ8rddpfnQEx5qb+bDYSpWzhRC9DykB/mxIjOk0hNKVrvX7NDMqnG3WOgBGHz7V4es29IplmJtONHW9993WylqmH7/4s32qqPU1nXVbOM/HetjadOlyV4UqBd0+Y9x176PT6Xg543Zezrjd/YEuGBkZgu2xe656+zN9Y3imr7rjwSNCTdRk3XnV2yP9jCwZkKBeIGC4JYhzQ/tf8z6TI7sxOVK9pWrDTIGUDO57zfs8GmbhUZU+YAAMDQ7kRHLvq97+fsJtqmVpMzQokGO3dz5x0tWoMW5+vddpWZx7T7ZzJdf7fbre75o7XO9991hECI+56dwT4p+Tp/XLCCGE8DZdeGIZcXVS0IUQQriXdLmrQj7yCCGEEF5AWuhCCCHcS66Hrgop6EIIIdxLutxVIQVdCCGEm+kubLf6GOJapA9DCCGE8ALSQhdCCOFe0uWuCinoQggh3EsKuiqky10IIYTwAtJCF0II4WYyKU4NUtCFEEK4l3S5q8Llgt7U1ERT08XLelqtVgAcegN2vWe80A5967fjMHjONa/bsjiM7rsc5Y1qy+Lw9aBMF7I4fd13Ra0b1ZbFIzP5eVAmPw9+nTwwk6e87xxybnSvo1MURXHljq+88grz5s3rdHzt2rUEBrrvkpRCCCG6ns1mY+LEidTU1GA2m93yHFarFYvFQvX3ezCbbu169tbaOkL6pdGnTx/0ej05OTnk5OR0UVLv4HJBv1ILPTY2ltLSUsLCwtwW8EbY7XZyc3PJysrCaPSMVrpHZxoxFKPBM0Zd7A4HuTt2cV9CCAYfD+nxaVH49GQ1P3IUY8Clt4nbOdDxmSGOe4/nYVCcWscBwKHT83nPe7h353oMTofWcYDW3rrPhz3CyM0rMDjsWscBWnvr8h/8TzJWLcZgb9Y6DlX4kPS3nSoV9IIuKuipbs37z87lv+Z+fn74XaGbz2g0ekyhaiOZXGM0GDymoLcx+Ogw6j2lK7AFAAMKRg8p6G0MihNji2cU9La1MganA6PTM4pnG4PDjsGhffG8lMHe7BEFXS+LnLyOZ/01F0II4X1kUpwqpKALIYRwLx1dUNC7JIlXk4IuhBDCzWQduhpkEEUIIYTwAtJCF0II4V4yhq4KKehCCCHcTLrc1SBd7kIIIYQXkBa6EEII95Iud1VIQRdCCOFeUtBVIV3uQgghhBfQrKDn5+czduxYoqOj0el0bNq0Saso7RYsWEB6ejomk4mIiAjGjRvH4cOHNc20dOlSUlJSMJvNmM1mMjIy+OSTTzTNdKkFixajCwphxqzZmuaY9/Z76AeM6LBFj3xQ00wAP5yv5ok3/0zElDmYJs4i9bmFFBw7rVmepD+8j3HW25226R/laZbJ0dLCyzsP0fu9bZj+tIU+723j1V3f0+LaZSbcotbuYFZBEX037yJ0ww5G5e5lz3mrqhm+qqrlkb1F9M07gCX3Wz6uqO5wu6IoLDh2hr55B4j8bC8/2XOE7+oaVM3oOl0XbeJaNOtyr6+vZ9CgQUydOpUJEyZoFaODvLw8cnJySE9Px+Fw8OKLLzJ69GgOHTpEUFCQJpliYmJ47bXXSEpKAmDNmjU8+OCD7N27lwEDBmiSqc3ugm9ZsWo1Kcna5mgzICmRbe+83r6v1/ic8FV1Nka+9CaZyb35+MVfEGEJ5ljZeUKCAjTL9PUvH8bZ0tK+f7CskvtXbuGhQUmaZVq05ygr9p/kvR/fSf9QEwUV1fzHtr2Y/Yz88o5emmR65psjHKqu592MfvQI8OMvJ8sZ88V+Ch5I57ZAdS7JanO2kGwK5PHoMCbtP9Hp9jdOlvP2qQqWDIgnKcifRcfLGFdQxJ67+2My6FXJ6CqdTofuFrvMb/Xr/xVoVtCzs7PJzs7W6umvaOvWrR32V61aRUREBAUFBYwcOVKTTGPHju2wP3/+fJYuXcquXbs0Leh1dXU8/vOnWPnWf/PqwkWa5biUQa8nqrtnXPkPYOGmz4gJ68a7ORPbjyVEaJuve3DHDxMLv/iWXmFmRvaM1igR7CqtZGyvKB5IjAIgwRLE+sMlFJRXaZKnweFk0+mzbBiRzPCIEABeGpjA/5ScY2XRGV5JSVQlR1a4haxwy4W9jgVdURSWFlfwm8Qo/i2yGwDLkuPpnXeAD8oq+XlMd1UyCs8iY+jXUFNTA0BoaKjGSVo5nU7WrVtHfX09GRkZmmbJ+fVz/OTHo7nv3kxNc1zqaHEJMZnj6DX6Zzz23FyOnz6jaZ6P9/yD1F6xPPLHVfT4+UukPbeId3K/1jTTpZodTtZ+e4Qp6bdr2vq5OzqML4rPcqSqDoB9Z2v46kwl2QlRmuRxKApOBfwv6+EJ0Pvw9dkaTTJd7mRDM+XNDu4Nu3gZUT8fH+7uFsw31fUaJruKtklxt7qJa5JZ7lehKAozZ85k+PDhJCcna5rlwIEDZGRk0NjYSHBwMBs3bqR///6a5Vn3wYd8W7if3Ts+1yzD5Yak9Gf1H16kT0Is5eer+MPyNQx//GkObHmfsBDL9R/ADY6Xn2f5tq+YMSaT2eOz2F10ihmrPsLPqGdS5hBNMl1q88HjVDc28UTa7ZrmmJXWm5omO8lrPkXvo8PZovD7Yf15tF+MJnlMRgN3hZt57eAp+poDifT3ZcOpCnafryXJpN1wyaUqmlsvUxvh2/FPeHdfA6cbtb80a2dyYhk1SEG/imeffZb9+/fz5Zdfah2Fvn37UlhYSHV1NR9++CGTJ08mLy9Pk6J+uqSEX82azbYtH+Hv76/6819N9oih7f8fCGQMGkDv+x/l/U2f8Ospj2qSqUVRSO0Zy/zHxwBwR88YDp0uY9m2rzyioK/65jvu7xtPtEWb+SFtNhz5gbXfl/Dn7DT6h5nYd7aG3+QdoEewP0/0j9Mk07tD+zHt74dJ2rwLvQ4GdzPxSHwEhRd6ETzF5T0rCqDzyMLXFS1sT/y+PIsU9CuYPn06W7ZsIT8/n5gYbVoJl/L19W2fFJeWlsbu3bt58803Wb58uepZCvYWUnH2LKnDM9uPOZ1O8r/cyVvLV9JUVYFer/2EnKDAAJL79ORocYlmGXqEmOkf27HbuF9MJB/9fb9GiS46VWXls6MlfPDE/VpHYfaOg8xK780jfVvfawPDLRRbG1i4+4hmBb2nKYBt9w2m3uHEanfQI8CPSV8dIj7YMz7ERvgaAShvshPlZ2w/fq7Z0anVLv51yE/+EoqiMH36dDZu3Mj27dtJTFRn8suNUhSFpqYmTZ77R5n3cOCbnR2OTZ2WQ78+vXl+5gyPKOYATc3NfH/8FCPuTNEsw7B+iRz+oaLDsSNnzhIX3k2jRBet2f09EcEBPHB7gtZRsDkc+FzW+tLrdJouW2sTZNATZNBT1Wzn09JKXh3cU+tIACQE+BLpa+CLSiuDzIEANLe08FVVHa/01m6C41XJiWVUoVlBr6uro6ioqH3/xIkTFBYWEhoaSlycNp/Kc3JyWLt2LZs3b8ZkMlFWVgaAxWIhIECbsbM5c+aQnZ1NbGwstbW1rFu3ju3bt3eaka8Wk8lE8oCOXf1BQYGEhYZ2Oq6mWYveZkzmMOJ6RFJRWcX8Ze9jravniXHaraT41ZhMRrz4Bgs+zOXhYYPZXVTMO59+zbJf/EyzTAAtLQprdn/HpLR+GDRe2gfwk8QoXtt9mDhzAP1DTRSereGNvUVM6R+vWabc0koUBfqYAzhW28CcwuP0NgfyRE/1JurVOZwcb7j4wf1UQxP7a210MxiIDfDl6bgIFp8op1egP70C/fivE2UE+PjwcJRnTOLtSMbQ1aBZQd+zZw+jRo1q3585cyYAkydPZvXq1ZpkWrp0KQCZmZkdjq9atYopU6aoHwgoLy9n0qRJlJaWYrFYSElJYevWrWRlZWmSx1OVlFfw+Kx5nKuqoXtoCHelDGDn2mXER2szUxogPSmOv856kpfWfsyrf/0/EiNCWTzlp0wcmaZZJoDPjp6muLqOKenaToZr8+aoFObu/I7pn++jwtZEdLA/Tw1M4KW7+mmWyWp38PK+E/xga6Kbr5FxseG8kpKI0Ue9D0B7rTbGFBxt359z5AcAJvYIZWlyAjMSImlsaeE33xVT7XCSZg5iY2qSx61BF+rRrKBnZmaieECX2qU8LQ/Au+++q3WE69q+9X+1jsBf/jhP6whXNCZtAGPSPOPEO22y+sZhX5SjdYx2Jl8jizNTWJyp3fDI5SbERTAhLkLTDCNCTdRk3XnV23U6HS/0iuaFXh7YxX456XJXhYyhCyGEcC/pcVeF9gNoQgghhLhl0kIXQgjhZtJEV4MUdCGEEO4lY+iqkC53IYQQwgtIC10IIYR7SQtdFVLQhRBCuJmMoatBCroQQgj30tEFLfQuSeLVZAxdCCGEuEG1tbWkp6czePBgBg4cyMqVK7WOJC10IYQQbuaFY+iBgYHk5eURGBiIzWYjOTmZ8ePHExYWplkmKehCCCHczPvG0PV6PYGBrVe6a2xsxOl0an76cOlyF0II4XXy8/MZO3Ys0dHR6HQ6Nm3a1Ok+S5YsITExEX9/f1JTU9mxY8cNPUd1dTWDBg0iJiaG3/72t4SHh3dR+pvjcgu9qampwzW4a2pqAKisrOz6VDfJbrdjs9k4f/48RqNR6ziAh2eqrMJo8IxOGrvDgc1mo9JqxODjGZ/EHS1KayZHo8d0ZTkAm8FGZZMDg+LUOg4ADl3b66Rg8IxIOJQLmVrA0OIZ7RZHC9hsNqrwQe8BbanqCxnUaFVa6+puucvcWlfX+q/V2uG4n58ffn5+ne5fX1/PoEGDmDp1KhMmTOh0+/r165kxYwZLlizh7rvvZvny5WRnZ3Po0KH2S3inpqZ2qHtttm3bRnR0NCEhIezbt4/y8nLGjx/PQw89RGRk5C19n7dEcdHcuXMVQDbZZJNNNi/ajh075moZuGENDQ1KVFRUl2UNDg7udGzu3LnXzQEoGzdu7HBsyJAhyrRp0zoc69evnzJ79uyb+l6nTZumbNiw4aa+tqu43PB44YUX2q9ZDq1dDfHx8RQXF2OxWFx9GLeyWq3ExsZy+vRpzGaz1nEAyeQqyeQayeQayXR9NTU1xMXFERoa6rbn8Pf358SJEzQ3N3fJ4ymKgu6ylv6VWufX09zcTEFBAbNnz+5wfPTo0ezcudOlxygvLycgIACz2YzVaiU/P5+nn376hrN0JZcL+tW6NSwWi0f8cl7KbDZLJhdIJtdIJtdIJtd4WiYfH/d2//v7++Pv7+/W57hR586dw+l0duoej4yMpKyszKXHKCkp4cknn0RRFBRF4dlnnyUlJcUdcV3mKUODQgghhKoub+1fqQfgalJTUyksLHRDqpun/cwMIYQQQkXh4eHo9fpOrfGKigptJ7Xdopsu6H5+fsydO/emxi/cRTK5RjK5RjK5RjK5xtMyeVoeNfn6+pKamkpubm6H47m5uQwbNkyjVLdOpygar4QXQgghulhdXR1FRUUA3HHHHSxevJhRo0YRGhpKXFwc69evZ9KkSSxbtoyMjAxWrFjBypUrOXjwIPHx8RqnvzlS0IUQQnid7du3M2rUqE7HJ0+ezOrVq4HWE8ssXLiQ0tJSkpOTef311xk5cqTKSbuOFHQhhBDCC8ikOCGEEMILSEEXQgghvIAUdCGEEMILSEEXQgghvIAUdCGEEMILSEEXQgghvIAUdCGEEMILSEEXQgghvIAUdCGEEMILSEEXQgghvIAUdCGEEMILSEEXQgghvMD/A114aNt254OzAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChk0lEQVR4nOzdeVwT194G8CckISxCZCcRCFAEFRUVrbhUxCKIVnDfd/S21117qfsrWncrLrXu1Gqt1Xq1iLtYwaVWBRHrVkCLO0tBBdkDOe8flJQIQpBMgt7ft5/51MxMJk8mIWfOmTNzeIwxBkIIIYS80/R0HYAQQgghdUcFOiGEEPIeoAKdEEIIeQ9QgU4IIYS8B6hAJ4QQQt4DVKATQggh7wEq0AkhhJD3ABXohBBCyHuACnRCCCHkPUAFej0RGhoKHo+nMs/R0RFjxoyp1XYuXbqE0NBQvHz5slbPe/21YmJiwOPx8N///rdW26lOfn4+QkNDERMTU2nZd999Bx6PhwcPHmjs9bjw9ddfw8XFBfr6+uDxeHj58iWWLVuGiIgIrebo2rUreDxepalHjx5azUEIqT8Eug5A3uznn3+GqalprZ5z6dIlLFq0CGPGjEHDhg05fa3ays/Px6JFiwCUFUgV9erVC7/99hskEgmnGeoiISEBU6dOxfjx4zF69GgIBAKYmJhg2bJlGDBgAPr06aPVPM7Ozvjhhx9U5tXmMyeEvF+oQK/HWrduzflrFBQUwNDQUCuvVR0rKytYWVnpNENNbt++DQCYMGECPvzwQ05fq7S0FCUlJRCJRG9cx9DQEF5eXpzmIIS8O6jJXQeOHTuGVq1aQSQSwcnJCV999VWV673eDK5QKLBkyRK4ubnB0NAQDRs2RMuWLbF+/XoAZc32ISEhAAAnJydlM2x5E7ejoyM++eQTHDp0CK1bt4aBgYGyxvym5v3CwkLMnDkTtra2MDQ0hLe3N65fv66yTteuXSvVuAFgzJgxcHR0BAA8ePBAWWAvWrRIma38Nd/U5P7tt9/Cw8MDBgYGMDc3R9++fXH37t1Kr9OgQQPcu3cPPXv2RIMGDWBvb4/PP/8cRUVFVe7bivbv3w8/Pz9IJBIYGhqiadOmmD17NvLy8lTe44gRIwAA7du3V2bn8XjIy8vDrl27lO+p4r5IS0vDp59+Cjs7O+jr68PJyQmLFi1CSUmJcp0HDx6Ax+Nh1apVWLJkCZycnCASiRAdHV1j9rdR/nqrV6/GypUr4ejoCENDQ3Tt2hVJSUmQy+WYPXs2pFIpxGIx+vbti4yMDJVtKBQKrFq1Ck2aNIFIJIK1tTVGjRqFJ0+eKNeZPn06jI2NkZOTUynD4MGDYWNjA7lcrpy3f/9+dOjQAcbGxmjQoAH8/f0rfdf+/PNPDBkyBFKpFCKRCDY2Nvj444+RkJCg2Z1EyLuIEa06c+YM4/P5rHPnzuzQoUPswIEDrF27dszBwYG9/nHIZDI2evRo5ePly5czPp/PFi5cyH755Rd28uRJtm7dOhYaGsoYY+zx48dsypQpDAA7dOgQ++2339hvv/3GsrOzlduTSCTM2dmZffvttyw6OppdvXq1yteKjo5mAJi9vT0LCgpiR44cYXv27GEuLi7M1NSU3b9/X7mut7c38/b2rvReR48ezWQyGWOMscLCQnby5EkGgAUHByuz3bt3jzHG2M6dOxkAlpKSonz+smXLGAA2dOhQduzYMbZ7927m7OzMxGIxS0pKUnkdfX191rRpU/bVV1+xM2fOsP/7v/9jPB6PLVq0qMbP5Msvv2Rr165lx44dYzExMWzLli3MycmJ+fj4KNe5ffs2mz9/PgPAdu7cqcz+22+/MUNDQ9azZ0/le7p9+zZjjLHU1FRmb2/PZDIZ27p1Kztz5gz78ssvmUgkYmPGjFFuOyUlhQFgjRo1Yj4+Puy///0vO336tMq+eJ23tzczMDBgZmZmjM/nM2dnZzZ37lyWn59f4/stfz2ZTMZ69+7Njh49yvbs2cNsbGyYq6srGzlyJBs3bhw7ceIE27JlC2vQoAHr3bu3yjb+9a9/MQBs8uTJ7OTJk2zLli3MysqK2dvbs7/++osxxtiNGzcYALZ9+3aV57548YKJRCI2c+ZM5bylS5cyHo/Hxo0bx44ePcoOHTrEOnTowIyNjZX7kzHG3NzcmIuLC/v+++/ZuXPn2MGDB9nnn3/OoqOja3zfhLzvqEDXsvbt2zOpVMoKCgqU83Jycpi5uXmNBfonn3zCWrVqVe32V69eXalgrLg9Pp/PEhMTq1xWVYHepk0bplAolPMfPHjAhEIhGz9+vHKeOgU6Y4z99ddfDABbuHBhpXVfL9BfvHihLCgrevToEROJRGzYsGEqrwOA/fTTTyrr9uzZk7m5uVV6reooFAoml8vZuXPnGAB248aNShljY2NVnmNsbKyy78p9+umnrEGDBuzhw4cq87/66isGQFlQlRewH3zwASsuLlYr57x589imTZvY2bNn2bFjx9jkyZOZQCBgXbp0YaWlpdU+t/z1PDw8VNZdt24dA8ACAwNV1p8+fToDoDwwvHv3LgPAJk6cqLLelStXGAA2d+5c5bw2bdqwjh07qqy3adMmBoDdvHmTMVb2mQoEAjZlyhSV9V69esVsbW3ZoEGDGGOMZWZmMgBs3bp16uwiQv7nUJO7FuXl5SE2Nhb9+vWDgYGBcr6JiQl69+5d4/M//PBD3LhxAxMnTsSpU6eqbMqsScuWLeHq6qr2+sOGDVPpfS+TydCxY0fOmoPL/fbbbygoKKh0GsDe3h7dunXDL7/8ojKfx+NV2octW7bEw4cPa3ytP//8E8OGDYOtrS34fD6EQiG8vb0BoFLzfm0cPXoUPj4+kEqlKCkpUU4BAQEAgHPnzqmsHxgYCKFQqNa2lyxZgn//+9/w8fFBz5498fXXX2PFihU4f/48Dh8+rNY2evbsCT29f34CmjZtCqCsg2JF5fMfPXoEAMrP/vXP5sMPP0TTpk1VPpuxY8fi0qVLSExMVM7buXMn2rVrh+bNmwMATp06hZKSEowaNUplPxkYGMDb21t5ysjc3BwffPABVq9ejbCwMFy/fh0KhUKt90rI/wIq0LXoxYsXUCgUsLW1rbSsqnmvmzNnDr766itcvnwZAQEBsLCwwMcff4y4uDi1M9S2F/mbsmZlZdVqO7VVvv2q8kql0kqvb2RkpHKQBAAikQiFhYXVvk5ubi4++ugjXLlyBUuWLEFMTAxiY2Nx6NAhAGWdBt9Weno6jhw5AqFQqDK5u7sDADIzM1XWr2sP//Jz/JcvX1ZrfXNzc5XH+vr61c4v35e1+WyGDx8OkUiE7777DgBw584dxMbGYuzYscp10tPTAQDt2rWrtK/279+v3E88Hg+//PIL/P39sWrVKrRp0wZWVlaYOnUqXr16pdZ7JuR9Rr3ctcjMzAw8Hg9paWmVllU173UCgQAzZ87EzJkz8fLlS5w5cwZz586Fv78/Hj9+DCMjoxq38fq17jV5U1YLCwvlYwMDA2RnZ1da7/UCqzbKt5+amlpp2bNnz2BpafnW267o7NmzePbsGWJiYpS1cgC1vo6/KpaWlmjZsiWWLl1a5XKpVKryuLafzZtUrHVzoeJnY2dnp7Ls9c/GzMwMQUFB2L17N5YsWYKdO3fCwMAAQ4cOVa5Tvv5///tfyGSyal9bJpMhPDwcAJCUlISffvoJoaGhKC4uxpYtWzTy/gh5V1ENXYuMjY3x4Ycf4tChQyo1x1evXuHIkSO12lbDhg0xYMAATJo0Cc+fP1f2Di+/zKkuNcuKfvzxRzDGlI8fPnyIS5cuqfTkdnR0RFJSkkqP8qysLFy6dEllW7XJ1qFDBxgaGmLPnj0q8588eYKzZ8/i448/fpu3U0l5Ifr65WFbt25VexsikajK9/TJJ5/g1q1b+OCDD9C2bdtK0+sFel3t2rULADi/lK1bt24AUOmziY2Nxd27dyt9NmPHjsWzZ89w/Phx7NmzB3379lW5Xt7f3x8CgQD379+vcj+1bdu2yhyurq6YP38+WrRogfj4eM2+SULeQVRD17Ivv/wSPXr0QPfu3fH555+jtLQUK1euhLGxMZ4/f17tc3v37o3mzZujbdu2sLKywsOHD7Fu3TrIZDI0btwYANCiRQsAwPr16zF69GgIhUK4ubnBxMTkrfJmZGSgb9++mDBhArKzs7Fw4UIYGBhgzpw5ynVGjhyJrVu3YsSIEZgwYQKysrKwatWqSjeqMTExgUwmw+HDh/Hxxx/D3NwclpaWykvbKmrYsCEWLFiAuXPnYtSoURg6dCiysrKwaNEiGBgYYOHChW/1fl7XsWNHmJmZ4bPPPsPChQshFArxww8/4MaNG2pvo0WLFoiJicGRI0cgkUhgYmICNzc3LF68GFFRUejYsSOmTp0KNzc3FBYW4sGDBzh+/Di2bNlSqYarjgsXLmDp0qXo27cvnJ2dUVhYiBMnTmDbtm3o1q2bWv0x6sLNzQ3/+te/8PXXX0NPTw8BAQF48OABFixYAHt7e8yYMUNlfT8/P9jZ2WHixIlIS0tTaW4Hyg4IFy9ejHnz5uHPP/9Ejx49YGZmhvT0dFy9ehXGxsZYtGgRfv/9d0yePBkDBw5E48aNoa+vj7Nnz+L333/H7NmzOX3PhLwTdN0r739RZGQka9myJdPX12cODg5sxYoVbOHChTX2cl+zZg3r2LEjs7S0VD43ODiYPXjwQOV5c+bMYVKplOnp6TEAykt6ZDIZ69WrV5WZ3tTL/fvvv2dTp05lVlZWTCQSsY8++ojFxcVVev6uXbtY06ZNmYGBAWvWrBnbv39/pV7ujJVdtte6dWsmEokYAOVrVnXZGmOM7dixQ7mvxGIxCwoKUrmMibGyXu7GxsaVMlW1T6ty6dIl1qFDB2ZkZMSsrKzY+PHjWXx8vPIStXJv6uWekJDAOnXqxIyMjBgAlR7/f/31F5s6dSpzcnJiQqGQmZubM09PTzZv3jyWm5vLGPun1/nq1atrzMoYY8nJyaxnz56sUaNGTCQSMQMDA9aiRQu2dOlSVlhYWOPz3/R65Z/5gQMHVOZX9b5LS0vZypUrmaurKxMKhczS0pKNGDGCPX78uMrXnDt3rvIyyDf1wo+IiGA+Pj7M1NSUiUQiJpPJ2IABA9iZM2cYY4ylp6ezMWPGsCZNmjBjY2PWoEED1rJlS7Z27VpWUlJS4/sm5H3HY6xCeyohhBBC3kl0Dp0QQgh5D1CBTgghhFTh6NGjcHNzQ+PGjbFjxw5dx6kRNbkTQgghrykpKUGzZs0QHR0NU1NTtGnTBleuXKl0n4b6hGrohBBCyGuuXr0Kd3d3NGrUCCYmJujZsydOnTql61jVogKdEELIe+f8+fPo3bs3pFIpeDweIiIiKq2zadMmODk5wcDAAJ6enrhw4YJy2bNnz9CoUSPlYzs7Ozx9+lQb0d8aFeiEEELeO3l5efDw8MDGjRurXL5//35Mnz4d8+bNw/Xr1/HRRx8hICBAOWZBVWejNXU3R66ofWOZoqIilTuBKRQKPH/+HBYWFvX+TRJCCFHFGMOrV68glUo5vV1wYWEhiouLNbItxlil8kYkElW60yMABAQEKAdCqkpYWBiCg4Mxfvx4AMC6detw6tQpbN68GcuXL0ejRo1UauRPnjxB+/btNfI+OKPuBevlN+mgiSaaaKLp/ZnedDMgTSgoKGBG4Gksa4MGDSrNq2o45tcBYD///LPycVFREePz+ezQoUMq602dOpV16dKFMcaYXC5nLi4u7MmTJywnJ4e5uLiwzMxMTe4ejVO7hj5nzhzMnDlT+Tg7OxsODg5ISkqqN73+5HI5oqOj4ePjo/YwlFyjTOqhTOqhTOqhTDV7/vw5XF1d3/q20OooLi5GPhhGwhj6qFtLbjEYvs/NxePHj1VuK11V7bwmmZmZKC0thY2Njcp8Gxsb5YBUAoEAa9asgY+PDxQKBb744guVQanqI7UL9Dc1a5ibm9ebNymXy2FkZAQLC4t68QcDUCZ1USb1UCb1UCb1aeOUqQH0oF/H19H7+5y2qalppXEi3tbr75291qQfGBiIwMBAjbyWNlCnOEIIIf9TLC0twefzKw0PnZGRUanW/i6hAp0QQgin9DQ0aYq+vj48PT0RFRWlMr98dMR3FQ2fSgghhFM8HqBXx5Z9HgAwoF27duDz+Zg0aRImTZr0xvVzc3Nx79495eOUlBQkJCTA3NwcDg4OmDlzJkaOHIm2bduiQ4cO2LZtGx49eoTPPvusbkF1iAp0Qggh74zY2Fi1zqHHxcXBx8dH+bi8U/fo0aPx3XffYfDgwcjKysLixYuRmpqK5s2b4/jx45DJZJxl5xoV6IQQQjiliSbz2j6/a9euVd4cpqKJEydi4sSJbx+qnqECnRBCCKf0eDzo1bWXO1B25Tl5I+oURwghhLwHqIZOCCGEU7pocv9fRAU6IYQQTulpoJc7Feg1o31ECCHkndGuXTs0a9YM33zzja6j1DucFeg1jUXLGENoaCikUikMDQ3RtWtX3L59W2WdoqIiTJkyBZaWljA2NkZgYCCePHmisYyvXr3C9OnTIZPJYGhoiI4dOyI2Nla5PD09HWPGjIFUKoWRkRF69OiB5ORkjb3+22TKzc3F5MmTYWdnB0NDQzRt2hSbN2/WaSYej1fltHr1ap1lAoC7d+8iMDAQYrEYJiYm8PLyUg6NqItMY8aMqbSPvLy8OMujTqaKPv30U/B4PKxbt06nmUJDQ9GkSRMYGxvDzMwMvr6+uHLlis4yyeVyzJo1Cy1atICxsTGkUilGjRqFZ8+e6SwTABw6dAj+/v6wtLQEj8dDQkICp3nqQpM3lomNjcWdO3eqvQb9fxVnBXpNY9GuWrUKYWFh2LhxI2JjY2Fra4vu3bvj1atXynWmT5+On3/+Gfv27cPFixeRm5uLTz75BKWlpRrJOH78eERFReH777/HzZs34efnB19fXzx9+hSMMfTp0wd//vknDh8+jOvXr0Mmk8HX1xd5eXkaef3aZgKAGTNm4OTJk9izZw/u3r2LGTNmYMqUKTh8+LDOMqWmpqpM3377LXg8Hvr376+zTPfv30fnzp3RpEkTxMTE4MaNG1iwYAEMDAx0lgkAevToobKvjh8/zlkedTMBQEREBK5cuQKpVMppHnUyubq6YuPGjbh58yYuXrwIR0dH+Pn54a+//tJJpvz8fMTHx2PBggWIj4/HoUOHkJSUxPk9vmvaT3l5eejUqRNWrFjBaQ5NeNNBf20nUoO3HaYtOzubAVBrODm8NnSdQqFgtra2bMWKFcp5hYWFTCwWsy1btjDGGHv58iUTCoVs3759ynWePn3K9PT02MmTJ6t8neLiYhYREcGKi4trzJSfn8/4fD47evSoynwPDw82b948lpiYyACwW7duKZeVlJQwc3Nztn379hq3z0Umxhhzd3dnixcvVlnepk0bNn/+fJ1lel1QUBDr1q2b2nm4yDR48GA2YsSIWmXgOtPo0aNZUFBQvcrEGGNPnjxhjRo1Yrdu3WIymYytXbtW55kqKv+tOXPmTL3JdPXqVQaAPXz4UOeZUlJSGAB2/fp1tbMwxlhmZiYDwLKzs2v1vNoo/+xCBGI2X9iwTlOIQMx53nedTs6hp6SkIC0tDX5+fsp5IpEI3t7euHTpEgDg2rVrkMvlKutIpVI0b95cuU5dlJSUoLS0tFKNzdDQEBcvXkRRUREAqCzn8/nQ19fHxYsX6/z6b5MJADp37ozIyEhlK0J0dDSSkpLg7++vs0wVpaen49ixYwgODuYkjzqZFAoFjh07BldXV/j7+8Pa2hrt27evdNpHm5nKxcTEwNraGq6urpgwYQIyMjJ0mkmhUGDkyJEICQmBu7s7Z1lqk6mi4uJibNu2DWKxGB4eHvUiE1A2fDSPx0PDhg3rTSZCdFKgl49wU91YtGlpadDX14eZmdkb16kLExMTdOjQAV9++SWePXuG0tJS7NmzB1euXEFqaiqaNGkCmUyGOXPm4MWLFyguLsaKFSuQlpaG1NTUOr/+22QCgA0bNqBZs2aws7ODvr4+evTogU2bNqFz5846y1TRrl27YGJign79+nGSR51MGRkZyM3NxYoVK9CjRw+cPn0affv2Rb9+/XDu3DmdZAKAgIAA/PDDDzh79izWrFmD2NhYdOvWTXnwqItMK1euhEAgwNSpUznJ8DaZAODo0aNo0KABDAwMsHbtWkRFRcHS0lKnmcoVFhZi9uzZGDZsmMaG8axrpvquvJd7XSdSPZ32cq9pLNqqqLOOur7//nswxtCoUSOIRCJs2LABw4YNA5/Ph1AoxMGDB5GUlARzc3MYGRkhJiYGAQEB4PP5Gnn92mYCygr0y5cvIzIyEteuXcOaNWswceJEnDlzRmeZKvr2228xfPhwTs9V15RJoVAAAIKCgjBjxgy0atUKs2fPxieffIItW7boJBMADB48GL169ULz5s3Ru3dvnDhxAklJSTh27JhOMl27dg3r16/Hd999p9Xzk+p8n3x8fJCQkIBLly6hR48eGDRoEKetGep+x+VyOYYMGQKFQoFNmzZxlqc2md4FPNS9QxyV5zXTSYFua2sLANWORWtra4vi4mK8ePHijevU1QcffIBz584hNzcXjx8/xtWrVyGXy+Hk5AQA8PT0REJCAl6+fInU1FScPHkSWVlZyuVcqC5TQUEB5s6di7CwMPTu3RstW7bE5MmTMXjwYHz11Vc6yVTRhQsXkJiYiPHjx3OWRZ1MlpaWEAgEaNasmcpzmjZtymkvd3X3UzmJRAKZTMbplRPVZbpw4QIyMjLg4OAAgUAAgUCAhw8f4vPPP4ejo6NOMpUzNjaGi4sLvLy8EB4eDoFAgPDwcJ1mksvlGDRoEFJSUhAVFcVZ7bw2mf4X0WVrb6aTAt3JyQm2trYqY9EWFxfj3LlzyrFoPT09IRQKVdZJTU3FrVu3ND5erbGxMSQSCV68eIFTp04hKChIZblYLIaVlRWSk5MRFxdXaTkXqsokl8shl8uhp6f6sVWslWo7U0Xh4eHw9PTk7Fynupn09fXRrl07JCYmqqyblJSklZGUatpP5bKysvD48WNIJBKdZBo5ciR+//13JCQkKCepVIqQkBCcOnVKJ5nehDHG2akJdTKVF+bJyck4c+YMLCwsOM9SU6Z3Sfm93Os6AXTZWnU4u1NcTWPRTp8+HcuWLUPjxo3RuHFjLFu2DEZGRhg2bBiAskI0ODgYn3/+OSwsLGBubo7//Oc/aNGiBXx9fTWS8dSpU2CMwc3NDffu3UNISAjc3NwwduxYAMCBAwdgZWUFBwcH3Lx5E9OmTUOfPn1UOuppWnWZhEIhvL29ERISAkNDQ8hkMpw7dw67d+9GWFiYTjKVy8nJwYEDB7BmzRrOctQmU0hICAYPHowuXbrAx8cHJ0+exJEjRxATE6OTTLm5uQgNDUX//v0hkUjw4MEDzJ07F5aWlujbt69OMgmFwkoFk1AohK2tLdzc3HSSKS8vD0uXLkVgYCAkEgmysrKwadMmPHnyBAMHDtRJppKSEgwYMADx8fE4evQoSktLla2L5ubm0NfX13omAHj+/DkePXqkvB6+/ADW1tZW2QpaX9CtX7XkbbvH13TZWnR0NEPZ2Dgq0+jRoxljZZeuLVy4kNna2jKRSMS6dOnCbt68qbKNgoICNnnyZGZubs4MDQ3ZJ598wh49evTGTLW5LIQxxvbv38+cnZ2Zvr4+s7W1ZZMmTWIvX75ULl+/fj2zs7NjQqGQOTg4sPnz57OioiK1ts1VptTUVDZmzBgmlUqZgYEBc3NzY2vWrGEKhUJnmRhjbOvWrczQ0LDSfF1mCg8PZy4uLszAwIB5eHiwiIgInWXKz89nfn5+zMrKSvl9Gj16dLXfZ64zVYXry9ZqylRQUMD69u3LpFIp09fXZxKJhAUGBrKrV6/qLFP5ZWFVTdHR0TrJxBhjO3furDLTwoUL1dq+Ni9bm6/fkC0RmdVpmq/fkC5bqwGPsRoGjH2DnJwciMViZGZmarX5qTpyuRzHjx9Hz549IRQKdR0HAGVSF2VSD2VSD2WqWVZWFiwtLZGdnc1Zf4DycuL/RA1hUMeOl4WMYXHRS07zvutocBZCCCGcoiZ37aB9RAghhLwHqIZOCCGEU3rgQa+OV5JT7bNmtI8IIYRwSpN3iqPr0N+MauiEEEI4pclz6LGxsdQp7g2ohk4IIYS8B6iGTgghhFOaGFyFap81owKdEEIIp8oGZ6lbic7DW90y5X8KHfQQQggh7wGqoRNCCOEUNblrBxXohBBCOEV3itMO2keEEELIe0DtGnpRUZHKeMQ5OTkAoByjuz4oz1Ff8gCUSV2UST2UST2UqWbazEFN7tqh9mhroaGhWLRoUaX5e/fuhZGRkcaDEUII4U5+fj6GDRumldHW1hubw5BXtyK5gCkwLe85XF1dwefzMWnSJEyaNElDSd8PahfoVdXQ7e3tkZqaWq+GT42KikL37t3rxfCEAGVSF2VSD2VSD2WqWVZWFiQSyTtXoNPwqW+mdpO7SCSCSCSqNF8oFNaLL2dFlEk9lEk9lEk9lEk99SWTNjNQk7t2UC93QgghnOL9PdV1G6R6VKATQgjhFNXQtYP2ESGEEPIeoBo6IYQQTumBV+d7udf1+f8LqEAnhBDCKWpy1w7aR4QQQsh7gGrohBBCOFU2fGrdt0GqRwU6IYQQTtFla9pBTe6EEELIe4AKdEIIIZzS4/E0MgFAu3bt0KxZM3zzzTc6flf1j1YK9JKSEsyfPx9OTk4wNDSEs7MzFi9eDIVCoVzn0KFD8Pf3h6WlJXg8HhISEnSaSS6XY9asWWjRogWMjY0hlUoxatQoPHv2TGeZgLJBcpo0aQJjY2OYmZnB19cXV65c0Wmmij799FPweDysW7dOp5nGjBkDHo+nMnl5eek0EwDcvXsXgYGBEIvFMDExgZeXFx49eqSzTK/vo/Jp9erVOsuUm5uLyZMnw87ODoaGhmjatCk2b97MSR51M6Wnp2PMmDGQSqUwMjJCjx49kJyczFkmAHj16hWmT58OmUwGQ0NDdOzYEbGxscrljDGEhoZCKpXC0NAQXbt2xe3btznN9LZ4GpoAIDY2Fnfu3KGBWaqglXPoK1euxJYtW7Br1y64u7sjLi4OY8eOhVgsxrRp0wAAeXl56NSpEwYOHIgJEyboPFN+fj7i4+OxYMECeHh44MWLF5g+fToCAwMRFxenk0wA4Orqio0bN8LZ2RkFBQVYu3Yt/Pz8cO/ePVhZWekkU7mIiAhcuXIFUqlU4zneJlOPHj2wc+dO5WN9fX2dZrp//z46d+6M4OBgLFq0CGKxGHfv3oWBgYHOMqWmpqo858SJEwgODkb//v11lmnGjBmIjo7Gnj174OjoiNOnT2PixImQSqUICgrSeibGGPr06QOhUIjDhw/D1NQUYWFh8PX1xZ07d2BsbKzxTAAwfvx43Lp1C99//z2kUin27NmjfM1GjRph1apVCAsLw3fffQdXV1csWbIE3bt3R2JiIkxMTDjJROo59pays7MZAJaZmVnjur169WLjxo1TmdevXz82YsSISuumpKQwAOz69eu1zlRcXMwiIiJYcXGxRjOVu3r1KgPAHj58WG8ylX8OZ86c0WmmJ0+esEaNGrFbt24xmUzG1q5dq3YeLjKNHj2aBQUF1SoD15kGDx5c7Wepi0yvCwoKYt26ddNpJnd3d7Z48WKVddq0acPmz5+vk0yJiYkMALt165ZyeUlJCTM3N2fbt2/nJFN+fj7j8/ns6NGjKvM9PDzYvHnzmEKhYLa2tmzFihXKZYWFhUwsFrMtW7aolSczM5MBYNnZ2Wq/h9oq/336TmzJfmpoXafpO7El53nfdVppcu/cuTN++eUXJCUlAQBu3LiBixcvomfPntp4eY1lys7OBo/HQ8OGDetFpuLiYmzbtg1isRgeHh46y6RQKDBy5EiEhITA3d2dkxy1zQQAMTExsLa2hqurKyZMmICMjAydZVIoFDh27BhcXV3h7+8Pa2trtG/fHhERETrL9Lr09HQcO3YMwcHBOs3UuXNnREZG4unTp2CMITo6GklJSfD399dJpvJhoyu2pPD5fOjr6+PixYucZCopKUFpaWml1htDQ0NcvHgRKSkpSEtLg5+fn3KZSCSCt7c3Ll26xEmmutBkkzt5M600uc+aNQvZ2dlo0qQJ+Hw+SktLsXTpUgwdOlQbL6+RTIWFhZg9ezaGDRvG2Vi86mY6evQohgwZgvz8fEgkEkRFRcHS0lJnmVauXAmBQICpU6dykuFtMgUEBGDgwIGQyWRISUnBggUL0K1bN1y7dq3KYYC5zpSRkYHc3FysWLECS5YswcqVK3Hy5En069cP0dHR8Pb21nqm1+3atQsmJibo16+fxrPUJtOGDRswYcIE2NnZQSAQQE9PDzt27EDnzp11kqlJkyaQyWSYM2cOtm7dCmNjY4SFhSEtLa3SKQtNMTExQYcOHfDll1+iadOmsLGxwY8//ogrV66gcePGSEtLAwDY2NioPM/GxgYPHz7kJFNdlPfNqNM2qEivkVYK9P3792PPnj3Yu3cv3N3dkZCQgOnTp0MqlWL06NHaiFCnTHK5HEOGDIFCocCmTZt0nsnHxwcJCQnIzMzE9u3bMWjQIFy5cgXW1tZaz3Tt2jWsX78e8fHxdf6D1VQmABg8eLBy/ebNm6Nt27aQyWQ4duwYJwVWTZnKO1gFBQVhxowZAIBWrVrh0qVL2LJlCycFem3/7r799lsMHz6cs3P66mbasGEDLl++jMjISMhkMpw/fx4TJ06ERCKBr6+v1jMJhUIcPHgQwcHBMDc3B5/Ph6+vLwICAjSepaLvv/8e48aNQ6NGjcDn89GmTRsMGzYM8fHxynVe/5tjjGnt75DUQ2/bVl+bc+h2dnZs48aNKvO+/PJL5ubmVmldbZ1DVzdTcXEx69OnD2vZsqVa71UbmV7n4uLCli1bppNMa9euZTwej/H5fOUEgOnp6TGZTKaTTG/i4uKics5Rm5mKioqYQCBgX375pco6X3zxBevYsaNOMlV0/vx5BoAlJCSonYWLTPn5+UwoFFY6dxwcHMz8/f11kqmily9fsoyMDMYYYx9++CGbOHEiJ5kqys3NZc+ePWOMMTZo0CDWs2dPdv/+fQaAxcfHq6wbGBjIRo0apdZ2tXkO/fuGVuygmU2dpu8bWtE59Bpo5Rx6fn4+9PRUX4rP57/x0idtUCeTXC7HoEGDkJycjDNnzsDCwkLnmarCGFOe59N2ppEjR+L3339HQkKCcpJKpQgJCcGpU6d0kqkqWVlZePz4MSQSiU4y6evro127dkhMTFRZJykpCTKZTCeZKgoPD4enpydnfTHUzSSXyyGXy7X6e1Gb/SQWi2FlZYXk5GTExcVx0uv+dcbGxpBIJHjx4gVOnTqFoKAgODk5wdbWFlFRUcr1iouLce7cOXTs2JHzTLWlp6GJVE8rTe69e/fG0qVL4eDgAHd3d1y/fh1hYWEYN26ccp3nz5/j0aNHyuu8y3/4bG1tYWtrq/VMJSUlGDBgAOLj43H06FGUlpYqz1uZm5tzcglUTZny8vKwdOlSBAYGQiKRICsrC5s2bcKTJ08wcOBAjedRJ5OFhUWlAx2hUAhbW1u4ubnpJFNubi5CQ0PRv39/SCQSPHjwAHPnzoWlpSX69u2rk0wAEBISgsGDB6NLly7w8fHByZMnceTIEcTExOgsEwDk5OTgwIEDWLNmDSc5apPJ1NQU3t7eCAkJgaGhIWQyGc6dO4fdu3cjLCxMJ5kA4MCBA7CysoKDgwNu3ryJadOmoU+fPiqd0jTt1KlTYIzBzc0N9+7dQ0hICNzc3DB27FjweDxMnz4dy5YtQ+PGjdG4cWMsW7YMRkZGGDZsGGeZSD33tlX72jS55+TksGnTpjEHBwdmYGDAnJ2d2bx581hRUZFynZ07dzIAlaaFCxeqnak2TVo1ZSpv+q9qio6O1kmmgoIC1rdvXyaVSpm+vj6TSCQsMDCQXb16Ve08ms5UFa4vW6spU35+PvPz82NWVlZMKBQyBwcHNnr0aPbo0SOdZSoXHh7OXFxcmIGBAfPw8GARERE6z7R161ZmaGjIXr58WassXGVKTU1lY8aMYVKplBkYGDA3Nze2Zs0aplAodJZp/fr1zM7OTvl9mj9/frV/A3XNxBhj+/fvZ87OzkxfX5/Z2tqySZMmqXxGCoWCLVy4kNna2jKRSMS6dOnCbt68qXYebTa57zWzYhHmNnWa9ppRk3tNeIwx9jYHAjk5ORCLxcjMzOS8KVpdcrkcx48fR8+ePSEUCnUdBwBlUhdlUg9lUg9lqllWVhYsLS2RnZ3N2ZU75eXEj2bWMOLVrdE8nykw9EUGp3nfdXRaghBCCHkP0PCphBBCOEXDp2oHFeiEEEI4RQW6dlCTOyGEkHcGDZ/6ZlRDJ4QQwik9AHp1rGLr/d19OzY2ljrFvQEV6IQQQjjF+/u/um6DVI8KdEIIIZyj4ph7dA6dEEIIeQ9QDZ0QQgineLyyqa7bINWjAp0QQgin6LI17aAmd0IIIeQ9QDV0QgghnNIDD3p1rGPX9fn/C9Qu0IuKilTG3M7JyQHwz/jF9UF5jvqSB6BM6qJM6qFM6qFMNdNmDmpy1w61R1sLDQ3FokWLKs3fu3cvjIyMNB6MEEIId/Lz8zFs2DCtjLZ22NwWxnp1O8Obp1Ag6HkajbZWDbUL9Kpq6Pb29khNTa1Xw6dGRUWhe/fu9WJ4QoAyqYsyqYcyqYcy1SwrKwsSiUQrBXqkhWYK9MAsKtCro3aTu0gkgkgkqjRfKBTWiy9nRZRJPZRJPZRJPZRJPfUlkzYzUJO7dlAvd0IIIeQ9QL3cCSGEcIru5a4dVKATQgjhlB5PA6OtUXleIyrQCSGEcIrOoWsHnUMnhBBC3gNUQyeEEMIpqqFrBxXohBBCOEWd4rSDmtwJIYSQ9wDV0AkhhHCKxkPXDqqhE0II4ZSehiYAaNeuHZo1a4ZvvvlGm2/hnaCVAr2kpATz58+Hk5MTDA0N4ezsjMWLF0OhUCjXYYwhNDQUUqkUhoaG6Nq1K27fvs1pLkdHR/B4vErTpEmTAADp6ekYM2YMpFIpjIyM0KNHDyQnJ+s0U25uLiZPngw7OzsYGhqiadOm2Lx5s87yVLWMx+Nh9erVOssEAHfv3kVgYCDEYjFMTEzg5eWFR48e6SzTmDFjKi3z8vLiLI86mSr69NNPwePxsG7dOp1mCg0NRZMmTWBsbAwzMzP4+vriypUrOsskl8sxa9YstGjRAsbGxpBKpRg1ahSePXums0wAcOjQIfj7+8PS0hI8Hg8JCQmc5qlPYmNjcefOnSq/x//rtNLkvnLlSmzZsgW7du2Cu7s74uLiMHbsWIjFYkybNg0AsGrVKoSFheG7776Dq6srlixZgu7duyMxMREmJiac5IqNjUVpaany8a1bt9C9e3cMHDgQjDH06dMHQqEQhw8fhqmpKcLCwuDr64s7d+7A2NhY65kAYMaMGYiOjsaePXvg6OiI06dPY+LEiZBKpQgKCtJ6ntTUVJX1T5w4geDgYPTv31/jWdTNdP/+fXTu3BnBwcFYtGgRxGIx7t69CwMDA51lAoAePXpg586dysf6+vqc5VE3EwBERETgypUrkEqlnOZRJ5Orqys2btwIZ2dnFBQUYO3atfDz88O9e/dgZWWl9Uz5+fmIj4/HggUL4OHhgRcvXmD69OkIDAxEXFwcJ3lqygQAeXl56NSpEwYOHIgJEyZwlkNTqJe7lrC3lJ2dzQCwzMzMGtft1asXGzdunMq8fv36sREjRjDGGFMoFMzW1patWLFCubywsJCJxWK2ZcsWtTMVFxeziIgIVlxcrPZzKpo2bRr74IMPmEKhYImJiQwAu3XrlnJ5SUkJMzc3Z9u3b9dJJsYYc3d3Z4sXL1ZZp02bNmz+/PlayfR6ntcFBQWxbt261Xq7msw0ePBg5XerLjSZafTo0SwoKKheZWKMsSdPnrBGjRqxW7duMZlMxtauXavzTBWV/86cOXOm3mS6evUqA8AePnyo80wpKSkMALt+/Xqtt5mZmckAsOzs7Fo/V13ln98v1o3YFVv7Ok2/WDfiPO+7TitN7p07d8Yvv/yCpKQkAMCNGzdw8eJF9OzZEwCQkpKCtLQ0+Pn5KZ8jEong7e2NS5cuaSMiiouLsWfPHowbNw48Hk85VGzFWh2fz4e+vj4uXryok0xA2b6MjIzE06dPwRhDdHQ0kpKS4O/vr5M8FaWnp+PYsWMIDg7mPMubMikUChw7dgyurq7w9/eHtbU12rdvj4iICJ1lKhcTEwNra2u4urpiwoQJyMjI0GkmhUKBkSNHIiQkBO7u7lrLUl2m15dv27YNYrEYHh4e9SITAGRnZ4PH46Fhw4b1JhMhgJbOoc+aNQtDhw5FkyZNIBQK0bp1a0yfPh1Dhw4FAKSlpQEAbGxsVJ5nY2OjXMa1iIgIvHz5EmPGjAEANGnSBDKZDHPmzMGLFy9QXFyMFStWIC0trVIzs7YyAcCGDRvQrFkz2NnZQV9fHz169MCmTZvQuXNnneSpaNeuXTAxMUG/fv04z/KmTBkZGcjNzcWKFSvQo0cPnD59Gn379kW/fv1w7tw5nWQCgICAAPzwww84e/Ys1qxZg9jYWHTr1k154KiLTCtXroRAIMDUqVO1kkGdTABw9OhRNGjQAAYGBli7di2ioqJgaWmp00zlCgsLMXv2bAwbNkxrY3LXlOldwNPQRKqnlXPo+/fvx549e7B37164u7sjISEB06dPh1QqxejRo5XrvX70yRjT2hFpeHg4AgIClOcRhUIhDh48iODgYJibm4PP58PX1xcBAQFayVNVJqCsQL98+TIiIyMhk8lw/vx5TJw4ERKJBL6+vlrPU9G3336L4cOHc3quuqZM5R0tg4KCMGPGDABAq1atcOnSJWzZsgXe3t5azwQAgwcPVv67efPmaNu2LWQyGY4dO6aVA6DXM127dg3r169HfHy8zmp9b/o++fj4ICEhAZmZmdi+fTsGDRqEK1euwNraWmeZAEAul2PIkCFQKBTYtGkT51nUyfSuoHPo2qGVAj0kJASzZ8/GkCFDAAAtWrTAw4cPsXz5cowePRq2trYAymrqEolE+byMjIxKtXYuPHz4EGfOnMGhQ4dU5nt6eiIhIQHZ2dkoLi6GlZUV2rdvj7Zt2+okU0FBAebOnYuff/4ZvXr1AgC0bNkSCQkJ+Oqrrzgt0N+0j8pduHABiYmJ2L9/P2cZ1MlkaWkJgUCAZs2aqazbtGlTrZwqqWk/lZNIJJDJZJxfNfGmTBcuXEBGRgYcHByU80pLS/H5559j3bp1ePDggdYzlTM2NoaLiwtcXFzg5eWFxo0bIzw8HHPmzNFZJrlcjkGDBiElJQVnz57VWu1c3e9TfVfeS7+u2yDV00qTe35+PvT0VF+Kz+cra1NOTk6wtbVFVFSUcnlxcTHOnTuHjh07cp5v586dsLa2VhaSrxOLxbCyskJycjLi4uI46U2uTia5XA65XF7tvtRmnorCw8Ph6emptXOdb8qkr6+Pdu3aITExUWXdpKQkyGQynWSqSlZWFh4/fqxyAKvNTCNHjsTvv/+OhIQE5SSVShESEoJTp07pJNObMMa0cmriTZnKC/Pk5GScOXMGFhYWnGepKRMhVdFKDb13795YunQpHBwc4O7ujuvXryMsLAzjxo0DUHbkNX36dCxbtgyNGzdG48aNsWzZMhgZGWHYsGGcZlMoFNi5cydGjx4NgUB1dxw4cABWVlZwcHDAzZs3MW3aNPTp00el8542M5mamsLb2xshISEwNDSETCbDuXPnsHv3boSFhWk9T7mcnBwcOHAAa9as4SxDbTKFhIRg8ODB6NKlC3x8fHDy5EkcOXIEMTExOsmUm5uL0NBQ9O/fHxKJBA8ePMDcuXNhaWmJvn376iSThYVFpYJJKBTC1tYWbm5uOsmUl5eHpUuXIjAwEBKJBFlZWdi0aROePHlS6VI7bWUqKSnBgAEDEB8fj6NHj6K0tFTZr8fc3JzTSw+r+44/f/4cjx49Ul4PX34Aa2trq2zxrE9oPHQtedvu8bW5bC0nJ4dNmzaNOTg4MAMDA+bs7MzmzZvHioqKlOsoFAq2cOFCZmtry0QiEevSpQu7efNmrTK9zWUhp06dYgBYYmJipWXr169ndnZ2TCgUMgcHBzZ//nyVzLrIlJqaysaMGcOkUikzMDBgbm5ubM2aNW+8xEYTmarLwxhjW7duZYaGhuzly5dqZ+A6U3h4OHNxcWEGBgbMw8ODRURE6CxTfn4+8/PzY1ZWVsrv0ujRo9mjR490lqkq2rps7U2ZCgoKWN++fZlUKmX6+vpMIpGwwMBAdvXqVZ1lKr8srKopOjpaJ5kYY2znzp1VZlq4cKHaebR52doFqT27bier03RBak+XrdWAxxhjb3MgkJOTA7FYjMzMTK02QVVHLpfj+PHj6NmzJ4RCoa7jAKBM6qJM6qFM6qFMNcvKyoKlpSWys7M56xNQXk5ckNqjgV7dzvDmKhT46NljTvO+62hwFkIIIZyiwVm0gwp0QgghnKICXTtotDVCCCHkPUA1dEIIIZyi69C1gwp0QgghnKImd+2gJndCCCHkPUA1dEIIIZyiJnftoAKdEEIIp6jJXTuoQCeEEMIpPR4PenUskev6/P8FdA6dEEIIeQ9QDZ0QQginqMldO9Qu0IuKilSGMMzJyQHwz5Ce9UF5jvqSB6BM6qJM6qFM6qFMNdNmDh400CkOVKLXRO3BWUJDQ7Fo0aJK8/fu3QsjIyONByOEEMKd/Px8DBs2TCuDs1xzdkIDfh0HZylVwPPPFBqcpRpqF+hV1dDt7e2Rmppar0Zbi4qKQvfu3evFaEYAZVIXZVIPZVIPZapZVlYWJBKJVgr0eBfNFOht7lGBXh21m9xFIhFEIlGl+UKhsF58OSuiTOqhTOqhTOqhTOqpL5m0mkED16HTSfSaUS93Qggh5D1AvdwJIYRwinq5awcV6IQQQjhVVqDX9davGgrzHqMmd0IIIeQ9QAU6IYQQTpU3udd1qm/69u0LMzMzDBgwQNdRAFCBTgghhGPl93Kv61TfTJ06Fbt379Z1DCUq0AkhhHDqfa2h+/j4wMTERNcxlKhAJ4QQ8t45f/48evfuDalUCh6Ph4iIiErrbNq0CU5OTjAwMICnpycuXLig/aAaRL3cCSGEcIqngRvL1Pb5eXl58PDwwNixY9G/f/9Ky/fv34/p06dj06ZN6NSpE7Zu3YqAgADcuXMHDg4OAABPT0+VO6SWO336NKRS6du9EQ5RgU4IIYRTmrwOvXxgsHJvuotpQEAAAgIC3ri9sLAwBAcHY/z48QCAdevW4dSpU9i8eTOWL18OALh27VrdQmsZNbkTQgh5Z9jb20MsFiun8sK3NoqLi3Ht2jX4+fmpzPfz88OlS5c0FVXrtFagP336FCNGjICFhQWMjIzQqlUrlaOfQ4cOwd/fH5aWluDxeEhISNBpJrlcjlmzZqFFixYwNjaGVCrFqFGj8OzZM51lAspGvWvSpAmMjY1hZmYGX19fXLlyRaeZKvr000/B4/Gwbt06nWYaM2aMspmvfPLy8tJpJgC4e/cuAgMDIRaLYWJiAi8vLzx69EhnmV7fR+XT6tWrdZYpNzcXkydPhp2dHQwNDdG0aVNs3ryZszzqZEpPT8eYMWMglUphZGSEHj16IDk5mbM8jo6OVX4ukyZNAgAwxhAaGgqpVApDQ0N07doVt2/f5ixPXWmyU9zjx4+RnZ2tnObMmVPrPJmZmSgtLYWNjY3KfBsbG6Slpam9HX9/fwwcOBDHjx+HnZ0dYmNja51Fk7TS5P7ixQt06tQJPj4+OHHiBKytrXH//n00bNhQuU5eXh46deqEgQMHYsKECTrPlJ+fj/j4eCxYsAAeHh548eIFpk+fjsDAQMTFxekkEwC4urpi48aNcHZ2RkFBAdauXQs/Pz/cu3cPVlZWOslULiIiAleuXOH83JK6mXr06IGdO3cqH+vr6+s00/3799G5c2cEBwdj0aJFEIvFuHv3LgwMDHSWKTU1VeU5J06cQHBwcJXnHLWVacaMGYiOjsaePXvg6OiI06dPY+LEiZBKpQgKCtJ6JsYY+vTpA6FQiMOHD8PU1BRhYWHw9fXFnTt3YGxsrPFMsbGxKC0tVT6+desWunfvjoEDBwIAVq1ahbCwMHz33XdwdXXFkiVL0L17dyQmJtarXtfleHo88PTqeA6dlT3f1NRUY6OtvX5enjFWq3P1p06d0kgOjWFvKTs7mwFgmZmZNa47a9Ys1rlzZ7W2m5KSwgCw69ev1zpTcXExi4iIYMXFxRrNVO7q1asMAHv48GG9yVT+OZw5c0anmZ48ecIaNWrEbt26xWQyGVu7dq3aebjINHr0aBYUFFSrDFxnGjx4MBsxYkS9yvS6oKAg1q1bN51mcnd3Z4sXL1aZ16ZNGzZ//nydZEpMTGQA2K1bt5TzSkpKmLm5Odu+fTsnmV43bdo09sEHHzCFQsEUCgWztbVlK1asUC4vLCxkYrGYbdmyRe1tZmZmMgAsOzu71nnUVf779IdHY/a0TZM6TX94NH7rvADYzz//rHxcVFTE+Hw+O3TokMp6U6dOZV26dKnr29YZrTS5R0ZGom3bthg4cCCsra3RunVrbN++XRsvrdFM2dnZ4PF4VdZOdZGpuLgY27Ztg1gshoeHh84yKRQKjBw5EiEhIXB3d+ckR20zAUBMTAysra3h6uqKCRMmICMjQ2eZFAoFjh07BldXV/j7+8Pa2hrt27ev8lIabWV6XXp6Oo4dO4bg4GCdZurcuTMiIyPx9OlTMMYQHR2NpKQk+Pv76yRTeS/nii0pfD4f+vr6uHjxIieZKiouLsaePXswbtw48Hg8pKSkIC0tTeX8r0gkgre3d709/1vfrkPX19eHp6cnoqKiVOZHRUWhY8eOmnshbXvbI4Ha1NBFIhETiURszpw5LD4+nm3ZsoUZGBiwXbt2VVpXWzX02mRijLGCggLm6enJhg8frvNMR44cYcbGxozH4zGpVMquXr2q00zLli1j3bt3ZwqFgjHGOK+hq5Np37597OjRo+zmzZssMjKSeXh4MHd3d1ZYWKiTTKmpqQwAMzIyYmFhYez69ets+fLljMfjsZiYGJ1ket3KlSuZmZkZKygoUDsPF5mKiorYqFGjGAAmEAiYvr4+2717t84yFRcXM5lMxgYOHMieP3/OioqK2PLlyxkA5ufnx0mmivbv38/4fD57+vQpY4yxX3/9lQFQPi43YcKEWuXRZg09ubUrS2vbtE5TcmtXBoC5urqypk2bso0bN1b72q9evWLXr19n169fZwCUf3flLaz79u1jQqGQhYeHszt37rDp06czY2Nj9uDBA872B9e0UqALhULWoUMHlXlTpkxhXl5eldbVVoFem0zFxcUsKCiItW7dutZffi4y5ebmsuTkZPbbb7+xcePGMUdHR5aenq6TTHFxcczGxkblx4XrAr02n125Z8+eMaFQyA4ePKiTTE+fPmUA2NChQ1XW6d27NxsyZIhOMr3Ozc2NTZ48We0sXGVavXo1c3V1ZZGRkezGjRvs66+/Zg0aNGBRUVE6yxQXF8c8PDwYAMbn85m/vz8LCAhgAQEBnGSqyM/Pj33yySfKx+UF+rNnz1TWGz9+PPP391d7u+9qga5u3ujoaAag0jR69GjlOt988w2TyWRMX1+ftWnThp07d46jPaEdWmlyl0gkaNasmcq8pk2bctq7tybqZpLL5Rg0aBBSUlIQFRWlsc4YdclkbGwMFxcXeHl5ITw8HAKBAOHh4TrJdOHCBWRkZMDBwQECgQACgQAPHz7E559/DkdHR51ketNzZDIZZz2Ta8pkaWkJgUCg1b+D2uynCxcuIDExUXlNLldqylRQUIC5c+ciLCwMvXv3RsuWLTF58mQMHjwYX331lU4yAWU3GElISMDLly+RmpqKkydPIisrC05OTpxkKvfw4UOcOXNG5XOxtbUFgEq9sTMyMir12q4vdNHk3rVrV7CySqvK9N133ynXmThxIh48eICioiJcu3YNXbp00ewb1zKtFOidOnVCYmKiyrykpCTIZDJtvHyV1MlUXpgnJyfjzJkzsLCw0HmmqjDGqrybkTYyjRw5Er///jsSEhKUk1QqRUhICGc9QN9mP2VlZeHx48eQSCQ6yaSvr4927dpp9e+gNvspPDwcnp6enPXFUDeTXC6HXC6Hnp7qTxOfz4dCodBJporEYjGsrKyQnJyMuLg4TnrdV7Rz505YW1ujV69eynlOTk6wtbVVOf9bXFyMc+fO1dvzv2+6PLK2E6nB21bta9PkfvXqVSYQCNjSpUtZcnIy++GHH5iRkRHbs2ePcp2srCx2/fp1duzYMQaA7du3j12/fp2lpqaqnak2TVo1ZZLL5SwwMJDZ2dmxhIQElpqaqpyKiop0kik3N5fNmTOH/fbbb+zBgwfs2rVrLDg4mIlEIpUeuNrMVBWum9xryvTq1Sv2+eefs0uXLrGUlBQWHR3NOnTowBo1asRycnJ0kokxxg4dOsSEQiHbtm0bS05OZl9//TXj8/nswoULOsvEWNnfspGREdu8ebPaObjM5O3tzdzd3Vl0dDT7888/2c6dO5mBgQHbtGmTzjL99NNPLDo6mt2/f59FREQwmUzG+vXrp3ae2mZijLHS0lLm4ODAZs2aVWnZihUrmFgsZocOHWI3b95kQ4cOZRKJpFbfb202uf/p6cb+at+sTtOfnm6c533XaaVAZ6ysI1fz5s2ZSCRiTZo0Ydu2bVNZvnPnzirPdyxcuFDtTLX9g6kuU/m5/Kqm6OhonWQqKChgffv2ZVKplOnr6zOJRMICAwM57RRXU6aqcF2g15QpPz+f+fn5MSsrKyYUCpmDgwMbPXo0e/Tokc4ylQsPD2cuLi7MwMCAeXh4sIiICJ1n2rp1KzM0NGQvX76sVRauMqWmprIxY8YwqVTKDAwMmJubG1uzZo2y06UuMq1fv57Z2dkpv0/z58+v1YH922Q6deoUA8ASExMrLVMoFGzhwoXM1taWiUQi1qVLF3bz5s1a5aEC/f3DY4yxt6nZ5+TkQCwWIzMzk/OmaHXJ5XIcP34cPXv2hFAo1HUcAJRJXZRJPZRJPZSpZllZWbC0tER2djZnfYPKy4mUtk1gIuDXaVuvSkrhFPcHp3nfdXQvd0IIIdzSRIe4v0+ht2vXDs2aNcM333yj07dUH9Foa4QQQt4ZsbGxVEN/AyrQCSGEcEoX46H/L6ICnRBCCKd4emVTXbdBqke7iBBCCHkPUA2dEEIIp6jJXTuoQCeEEMItPV7ZVNdtkGpRkzshhJB3Bl229mZUQyeEEMItTQxo/vfz6bK1N6MCnRBCCKfoHLp2UIFOCCGEW3QOXSvULtCLiopUhujMyckB8M9wh/VBeY76kgegTOqiTOqhTOqhTDWrLzmI5qg9OEtoaCgWLVpUaf7evXthZGSk8WCEEEK4k5+fj2HDhmllcJbHXT1gWsfBWXJKSmEfc4MGZ6mG2gV6VTV0e3t7pKam1qvR1qKiotC9e/d6MZoRQJnURZnUQ5nUQ5lqlpWVBYlEopUC/Um3Vhop0O3OJlCBXg21m9xFIhFEIlGl+UKhsF58OSuiTOqhTOqhTOqhTOqpL5nqQwaiWXQdOiGEEG7VdezUCpe9vU/Xoefl5Wl0e9TLnRBCCKd4PB54deylznsPr0O3sbHBoEGDMG7cOHTu3LnO26MaOiGEEKIDP/74I7Kzs/Hxxx/D1dUVK1aswLNnz956e1SgE0II4ZYGm9zfJ71798bBgwfx7Nkz/Pvf/8aPP/4ImUyGTz75BIcOHUJJSUmttkcFOiGEEG7p4Z+by7z1pOs3wR0LCwvMmDEDN27cQFhYGM6cOYMBAwZAKpXi//7v/5Cfn6/WdugcOiGEEKJDaWlp2L17N3bu3IlHjx5hwIABCA4OxrNnz7BixQpcvnwZp0+frnE7VKATQgjhFN3LvWqHDh3Czp07cerUKTRr1gyTJk3CiBEj0LBhQ+U6rVq1QuvWrdXaHhXohBBCuEX3cq/S2LFjMWTIEPz6669o165dles4Oztj3rx5am2PCnRCCCHc0uDwqe+T1NTUGm+dbmhoiIULF6q1vfe4mwEhhBBSf5mYmCAjI6PS/KysLPD5tb9VLhXohBBCOMXT08wEvF93invTUCpFRUXQ19ev9fa0VqA/ffoUI0aMgIWFBYyMjNCqVStcu3ZNuZwxhtDQUEilUhgaGqJr1664ffs2Z3lCQ0OVHTXKJ1tbW+Xy9PR0jBkzBlKpFEZGRujRoweSk5M5y6NOptzcXEyePBl2dnYwNDRE06ZNsXnzZp1men1Z+bR69WqdZQKAu3fvIjAwEGKxGCYmJvDy8sKjR490lmnMmDGVlnt5eXGWR51MFX366afg8XhYt26dTjOFhoaiSZMmMDY2hpmZGXx9fXHlyhWdZZLL5Zg1axZatGgBY2NjSKVSjBo1qk43/6hrJqCsM5W/vz8sLS3B4/GQkJDAaZ460+B16LGxsbhz5w4mTZqk4zf19jZs2IANGzaAx+Nhx44dyscbNmzA2rVrMWnSJDRp0qTW29XKOfQXL16gU6dO8PHxwYkTJ2BtbY379++r9ORbtWoVwsLC8N1338HV1RVLlixB9+7dkZiYCBMTE05yubu748yZM8rH5U0cjDH06dMHQqEQhw8fhqmpKcLCwuDr64s7d+7A2NiYkzzVZQKAGTNmIDo6Gnv27IGjoyNOnz6NiRMnQiqVIigoSCeZUlNTVdY9ceIEgoOD0b9/f87y1JTp/v376Ny5M4KDg7Fo0SKIxWLcvXsXBgYGOssEAD169MDOnTuVj9/mCFzTmQAgIiICV65cgVQq5TxPTZlcXV2xceNGODs7o6CgAGvXroWfnx/u3bsHKysrrWfKz89HfHw8FixYAA8PD7x48QLTp09HYGAg4uLiOMtTXSag7B7gnTp1wsCBAzFhwgROcxDNW7t2LYCysmbLli0qn62+vj4cHR2xZcuWWm9XKwX6ypUrYW9vr/Jj5ujoqPw3Ywzr1q3DvHnz0K9fPwDArl27YGNjg7179+LTTz/lJJdAIKiyxpKcnIzLly/j1q1bcHd3BwBs2rQJ1tbW+PHHHzF+/HhO8lSXCQB+++03jB49Gl27dgUA/Otf/8LWrVsRFxfHaYFeXabX5x8+fBg+Pj5wdnbmLE9NmebNm4eePXti1apVynlc56kpE1A2YmF1y7lQU6anT59i8uTJOHXqFHr16qXzTMOGDVN5HBYWhvDwcPz+++/4+OOPtZ5JLBYjKipKZd7XX3+NDz/8EI8ePYKDg4PWMwHAyJEjAQAPHjzg7PU1iaengXu5v0e93FNSUgAAPj4+OHToEMzMzDSyXa00uUdGRqJt27YYOHAgrK2t0bp1a2zfvl25PCUlBWlpafDz81POE4lE8Pb2xqVLlzjLlZycDKlUCicnJwwZMgR//vknACjHfa9Yo+Pz+dDX18fFixc5y1NdJgDo3LkzIiMj8fTpUzDGEB0djaSkJPj7++ssU0Xp6ek4duwYgoODOc1TXSaFQoFjx47B1dUV/v7+sLa2Rvv27REREaGzTOViYmJgbW0NV1dXTJgwocrOMNrMpFAoMHLkSISEhCgPXLVB3e9TcXExtm3bBrFYDA8Pj3qRCQCys7PB4/FUWhh1naneo1u/Vik6OlpjhTmgpRr6n3/+ic2bN2PmzJmYO3curl69iqlTp0IkEmHUqFFIS0sDUDbyTEU2NjZ4+PAhJ5nat2+P3bt3w9XVFenp6ViyZAk6duyI27dvo0mTJpDJZJgzZw62bt0KY2NjhIWFIS0trVITs7YyWVhYYMOGDZgwYQLs7OwgEAigp6eHHTt2aGSUnrfNVNGuXbtgYmKibGXRRSa5XI7c3FysWLECS5YswcqVK3Hy5En069cP0dHR8Pb21nomCwsLBAQEYODAgZDJZEhJScGCBQvQrVs3XLt2DSKRSCeZVq5cCYFAgKlTp3Ly+m+TCQCOHj2KIUOGID8/HxKJBFFRUbC0tNRppnKFhYWYPXs2hg0bxumIX7XJRN4tM2fOxJdffgljY2PMnDmz2nXDwsJqt3H2lrKzsxkAlpmZWeO6QqGQdejQQWXelClTmJeXF2OMsV9//ZUBYM+ePVNZZ/z48czf31/tTMXFxSwiIoIVFxer/Zxyubm5zMbGhq1Zs4YxxlhcXBzz8PBgABifz2f+/v4sICCABQQE1Gq7msy0evVq5urqyiIjI9mNGzfY119/zRo0aMCioqJ0lqkiNzc3Nnny5FpvU5OZnj59ygCwoUOHqqzTu3dvNmTIEJ1kqsqzZ8+YUChkBw8e1EmmuLg4ZmNjw54+fapcLpPJ2Nq1a2u9XU3vp9zcXJacnMx+++03Nm7cOObo6MjS09N1mql8m0FBQax169YsOzu71tvlIlNKSgoDwK5fv17rbWZmZjIAb/Ve1FVeTqT178jyh3Sp05TWvyPnebWha9eu7MWLF8p/v2ny8fGp9ba1UkOXSCRo1qyZyrymTZvi4MGDAP45D5uWlgaJRKJcJyMjo1KtnSvGxsZo0aKFsie7p6cnEhISkJ2djeLiYlhZWaF9+/Zo27atVvK8nqmgoABz587Fzz//rDzX2bJlSyQkJOCrr76Cr6+v1jNVdOHCBSQmJmL//v1ayfGmTJaWlhAIBFV+37g+XfKmTFWRSCSQyWScXznxpkx6enrIyMhQOQdcWlqKzz//HOvWrdPaudmq9pOxsTFcXFzg4uICLy8vNG7cGOHh4ZgzZ47OMsnlcgwaNAgpKSk4e/as1sfjrun7VN/RrV//ER0dXeW/NUEr59A7deqExMRElXlJSUmQyWQAACcnJ9ja2qp0PikuLsa5c+fQsWNHbUREUVER7t69q3JAAZR1irGyskJycjLnnc+qyySXyyGXy6Gnp/qR8fl8KBQKnWSqKDw8HJ6enpyf66wpk76+Ptq1a1ft903bmaqSlZWFx48fv3E515lGjhyJ33//HQkJCcpJKpUiJCQEp06d0kmmN2GMKfu16CJTeWGenJyMM2fO6KTJW539RIhWaugzZsxAx44dsWzZMgwaNAhXr17Ftm3bsG3bNgBlR17Tp0/HsmXL0LhxYzRu3BjLli2DkZFRpV6vmvKf//wHvXv3hoODAzIyMrBkyRLk5ORg9OjRAIADBw7AysoKDg4OuHnzJqZNm4Y+ffqodNzTZiZTU1N4e3sjJCQEhoaGkMlkOHfuHHbv3l378ywaylQuJycHBw4cwJo1azjLUZtMISEhGDx4MLp06QIfHx+cPHkSR44cQUxMjE4y5ebmIjQ0FP3794dEIsGDBw8wd+5cWFpaom/fvjrJZGFhUalgEgqFsLW1hZubm04y5eXlYenSpQgMDIREIkFWVhY2bdqEJ0+eYODAgTrJVFJSggEDBiA+Ph5Hjx5FaWmpss+Pubk5Z5ce1vQdf/78OR49eqS8Hr78ANbW1lbrV1Kohe7lrlSbPkaHDh2q1ba1UqC3a9cOP//8M+bMmYPFixfDyckJ69atw/Dhw5XrfPHFFygoKMDEiRPx4sULtG/fHqdPn+bsGvQnT55g6NChyMzMhJWVFby8vHD58mVlLS41NRUzZ85Eeno6JBIJRo0ahQULFnCSRd1M+/btw5w5czB8+HA8f/4cMpkMS5cuxWeffaazTOW5GGMYOnQoZzlqk6lv377YsmULli9fjqlTp8LNzQ0HDx7ktPNgdZkKCgpw8+ZN7N69Gy9fvoREIoGPjw/279/P2fe7pky6Ul2mwsJC/PHHH9i1axcyMzNhYWGBdu3a4cKFC5z2wq8u04MHDxAZGQmgbNSriqKjo5WXkGozE1B25dDYsWOV6w8ZMgQAsHDhQoSGhnKSqW400Uv9/SjQxWIxZ9vmMfaGe8/VICcnB2KxWPmHVx/I5XIcP34cPXv2hFAo1HUcAJRJXZRJPZRJPZSpZllZWbC0tER2djZnfQLKy4mMwV1gql+3+mNOcQms95/nNO+7ju7lTggh5J3xPt3LXdNo+FRCCCHc0uA59NjY2He6ht6mTRv88ssvMDMzQ+vWravtvR8fH1+rbVOBTgghhFN02do/goKClDeT6tOnj0a3TQU6IYQQoiULFy6s8t+aQAU6IYQQbtFla9WKi4vD3bt3wePx0LRpU3h6er7VdqhAJ4QQwi1NDK7ynjS5V1R+eeKvv/6qHOzn5cuX6NixI3788UfY29vXanvUy50QQgjRgXHjxkEul+Pu3bt4/vw5nj9/jrt374Ix9lajVlINnRBCCKdoPPSqXbhwAZcuXVK5O6Obmxu+/vprdOrUqdbbowKdEEIIt6jJvUoODg6Qy+WV5peUlKBRo0a13h41uRNCCCE6sGrVKkyZMgVxcXEov2lrXFwcpk2bhq+++qrW26MaOiGEEG7pQQO93DWSROfMzMxUrqnPy8tD+/btIRCUFcclJSUQCAQYN25cra9TV7tALyoqUhnCMCcnBwCUw3rWB+U56ksegDKpizKphzKphzLVTJs56MYy/1i3bh1n21Z7cJbQ0FAsWrSo0vy9e/fCyMhI48EIIYRwJz8/H8OGDdPK4CxZE/xgql+3AWlyiuWw2H6aBmephtoFelU1dHt7e6Smptar0daioqLQvXv3ejGaEUCZ1EWZ1EOZ1EOZapaVlQWJREIFej1RUFBQqdWktu9T7SZ3kUikvP9sRUKhsF58OSuiTOqhTOqhTOqhTOqpL5m0moF6uVcpLy8Ps2bNwk8//YSsrKxKy0tLS2u1vfekmwEhhJB6q7xAr+uE92v41C+++AJnz57Fpk2bIBKJsGPHDixatAhSqRS7d++u9faolzshhJB3xrs+fGpFR44cwe7du9G1a1eMGzcOH330EVxcXCCTyfDDDz9g+PDhtdoe1dAJIYRwTBO18/evyf358+dwcnICUHa+/Pnz5wCAzp074/z587XeHhXohBBCuKWnp5npPePs7IwHDx4AAJo1a4affvoJQFnNvXywltp4//YQIYQQ8g4YO3Ysbty4AQCYM2eO8lz6jBkzEBISUuvt0Tl0Qggh3KJe7lWaMWOG8t8+Pj64e/curl27hg8++AAeHh613h4V6IQQQrhFBbpaZDIZZDLZWz+fmtwJIYQQHfnll1/wySef4IMPPoCLiws++eQTnDlz5q22RQU6IYQQbmnwOvT3ycaNG9GjRw+YmJhg2rRpmDp1KkxNTdGzZ09s3Lix1tujJndCCCHc0kQv9fewl/vy5cuxdu1aTJ48WTlv6tSp6NSpE5YuXaoyXx3v3x4ihBBSv1ANvUo5OTno0aNHpfl+fn7KEU1rQycF+vLly8Hj8TB9+nTlvEOHDsHf3x+Wlpbg8XhISEjQaSa5XI5Zs2ahRYsWMDY2hlQqxahRo/Ds2TOdZQLKRr1r0qQJjI2NYWZmBl9fX1y5ckWnmSr69NNPwePxOB0iUJ1MY8aMUQ7ZWD55eXnpNBMA3L17F4GBgRCLxTAxMYGXlxcePXqks0yv76PyafXq1TrLlJubi8mTJ8POzg6GhoZo2rQpNm/erJU8b8qUnp6OMWPGQCqVwsjICD169EBycjJnGUJDQyt9Jra2tsrljDGEhoZCKpXC0NAQXbt2xe3btznLQ7gRGBiIn3/+udL8w4cPo3fv3rXentab3GNjY7Ft2za0bNlSZX5eXh46deqEgQMHYsKECTrPlJ+fj/j4eCxYsAAeHh548eIFpk+fjsDAQMTFxekkEwC4urpi48aNcHZ2RkFBAdauXQs/Pz/cu3cPVlZWOslULiIiAleuXIFUKuU0h7qZevTogZ07dyof6+vr6zTT/fv30blzZwQHB2PRokUQi8W4e/cuDAwMdJYpNTVV5fGJEycQHByM/v376yzTjBkzEB0djT179sDR0RGnT5/GxIkTIZVKERQUpPVMjDH06dMHQqEQhw8fhqmpKcLCwuDr64s7d+7A2NiYkyzu7u4qnaP4fL7y36tWrUJYWBi+++47uLq6YsmSJejevTsSExNhYmLCSZ46oV7uShs2bFD+u2nTpli6dCliYmLQoUMHAMDly5fx66+/4vPPP6/1trVaQ8/NzcXw4cOxfft2mJmZqSwbOXIk/u///g++vr7ajPTGTGKxGFFRURg0aBDc3Nzg5eWFr7/+GteuXeO8RlXdfho2bBh8fX3h7OwMd3d3hIWFIScnB7///rvOMgHA06dPMXnyZPzwww9aG8WppkwikQi2trbKydzcXKeZ5s2bh549e2LVqlVo3bo1nJ2d0atXL1hbW+ssU8X9Y2tri8OHD8PHxwfOzs46y/Tbb79h9OjR6Nq1KxwdHfGvf/0LHh4enB9IvylTcnIyLl++jM2bN6Ndu3Zwc3PDpk2bkJubix9//JGzPAKBQOWzKT9gZ4xh3bp1mDdvHvr164fmzZtj165dyM/Px969eznLUyfU5K60du1a5RQeHg4zMzPcuXMH4eHhCA8Px+3bt9GwYUN8++23td62Vgv0SZMmoVevXlovtKtTm0zZ2dng8XhvdUs+LjIVFxdj27ZtEIvFb3UTAk1lUigUGDlyJEJCQuDu7s5pDnUzAUBMTAysra3h6uqKCRMmICMjQ2eZFAoFjh07BldXV/j7+8Pa2hrt27dHRESEzjK9Lj09HceOHUNwcLBOM3Xu3BmRkZF4+vQpGGOIjo5GUlIS/P39dZKpqKgIAFRaUvh8PvT19XHx4kXO8iQnJ0MqlcLJyQlDhgzBn3/+CQBISUlBWloa/Pz8lOuKRCJ4e3vj0qVLnOUhmpGSkqLWVP5514bWmtz37duH+Ph4xMbGausla1SbTIWFhZg9ezaGDRvG6Ug/6mQ6evQohgwZgvz8fEgkEkRFRcHS0lJnmVauXAmBQICpU6dylqG2mQICAjBw4EDIZDKkpKRgwYIF6NatG65duwaRSKT1TBkZGcjNzcWKFSuwZMkSrFy5EidPnkS/fv0QHR0Nb29vrWd63a5du2BiYoJ+/fpxkkXdTBs2bMCECRNgZ2cHgUAAPT097NixA507d9ZJpiZNmkAmk2HOnDnYunUrjI2NERYWhrS0tEqnLDSlffv22L17N1xdXZGeno4lS5agY8eOuH37NtLS0gAANjY2Ks+xsbHBw4cPOclTZ9TLvUaMMQBl/VrellYK9MePH2PatGk4ffq0Vs4XqqM2meRyOYYMGQKFQoFNmzbpPJOPjw8SEhKQmZmJ7du3Y9CgQbhy5QonTbc1Zbp27RrWr1+P+Pj4On0RNZkJAAYPHqz8d/PmzdG2bVvIZDIcO3aMkwKrpkwKhQIAEBQUpLzdY6tWrXDp0iVs2bKFkwK9tn933377LYYPH87p36g6mTZs2IDLly8jMjISMpkM58+fx8SJEyGRSDhp3aspk1AoxMGDBxEcHAxzc3Pw+Xz4+voiICBA41nKVdx2ixYt0KFDB3zwwQfYtWuXsnPn639vjDGt/Q3WGp1Df6Pdu3dj9erVyk6Wrq6uCAkJwciRI2u9La0c8ly7dg0ZGRnw9PSEQCCAQCDAuXPnsGHDBggEApSWlmojxltlksvlGDRoEFJSUhAVFcVp7VzdTMbGxnBxcYGXlxfCw8MhEAgQHh6uk0wxMTHIyMiAg4ODcvnDhw/x+eefw9HRUSeZqvo+SSQSyGQyznom15TJwsICAoEAzZo1U3le06ZNOeuTUZv9dOHCBSQmJmL8+PGcZFE3U15eHubOnYuwsDD07t0bLVu2xOTJkzF48GB89dVXOslUWloKT09PJCQk4OXLl0hNTcXJkyeRlZWlHPqSa8bGxmjRogWSk5OVvd3La+rlMjIyKtXaSf0WFhaGf//73+jZsyd++ukn7N+/Hz169MBnn32GtWvX1np7Wqmhf/zxx7h586bKvLFjx6JJkyaYNWuWSu9NbVEnU3lhnpycjOjoaFhYWOg8U1UYY8rzfNrOJJFIKp3b9Pf3x8iRIzF27FidZKpqP2VlZeHx48eQSCQ6ySQSidCuXTskJiaqrJOUlFSnezfXJVPF/RQeHg5PT0/O+2LUlKm0tBRyuRx6rzWv8vl8ZSuHtjNV3E9isRhA2fntuLg4fPnll5xkel1RURHu3r2Ljz76CE5OTrC1tUVUVBRat24NoKw/zblz57By5Uqt5Kk1HjRQQ9dIknrl66+/xubNmzFq1CjlvKCgILi7uyM0NFRl8BZ1aKVANzExQfPmzVXmGRsbw8LCQjn/+fPnePTokfI67/IfvvIentrOVFJSggEDBiA+Ph5Hjx5FaWmp8ojY3Nyck0ugasqUl5eHpUuXIjAwEBKJBFlZWdi0aROePHmCgQMHajyPOpkAVDrQEQqFsLW1hZubm04y5ebmIjQ0FP3794dEIsGDBw8wd+5cWFpaom/fvjrJBAAhISEYPHgwunTpAh8fH5w8eRJHjhxBTEyMzjIBZTe3OHDgANasWcNJjtpm8vb2RkhICAwNDSGTyXDu3Dns3r0bYWFhOst04MABWFlZwcHBATdv3sS0adPQp08flY5pmvSf//wHvXv3hoODAzIyMrBkyRLk5ORg9OjRymvkly1bhsaNG6Nx48ZYtmwZjIyMMGzYME7y1Bk1uVcpNTUVHTt2rDS/Y8eOb9U/o97c+jUyMlKlRjdkyBAAwMKFCxEaGqr1PE+ePEFkZCSAsnOdFUVHR6Nr165az8Tn8/HHH39g165dyMzMhIWFBdq1a4cLFy5otXd5fcfn83Hz5k3s3r0bL1++hEQigY+PD/bv36/Ta3T79u2LLVu2YPny5Zg6dSrc3Nxw8OBBTjt7qWPfvn1gjGHo0KE6zVFu3759mDNnDoYPH47nz59DJpNh6dKl+Oyzz3SWKTU1FTNnzkR6ejokEglGjRqFBQsWcPZ6T548wdChQ5GZmQkrKyt4eXnh8uXLytacL774AgUFBZg4cSJevHiB9u3b4/Tp0/XzGnTyRi4uLvjpp58wd+5clfn79+9H48aNa709HivvWldLOTk5EIvFyoKlPpDL5Th+/Dh69uyptWuha0KZ1EOZ1EOZ1EOZapaVlQVLS0tkZ2dz1jeovJx4PnsoTEV1a9XMKSqG+YofOc2rbQcPHsTgwYPh6+uLTp06gcfj4eLFi/jll1/w008/1bpF8f2+DoAQQkg9oImbypQ1ubdr1w7NmjXDN998o9u3pAH9+/fH1atXYWlpiYiICBw6dAiWlpa4evXqW50erDdN7oQQQt5TGjyHHhsb+17U0OVyOf71r39hwYIF2LNnj0a2STV0QgghRMuEQmGVA7PUBRXohBBCuEX3cq9S3759NXr7Z2pyJ4QQwi269WuVXFxc8OWXX+LSpUvw9PSsNHJfbW+nTQU6IYQQogM7duxAw4YNce3aNVy7dk1lGY/HowKdEEJIPUM3lqlSSkqK8t+aGJzl/WvDIIQQUr/QOfQ3Cg8PR/PmzWFgYAADAwM0b94cO3bseKttUQ2dEEII0YEFCxZg7dq1mDJlCjp06AAA+O233zBjxgw8ePAAS5YsqdX2qEAnhBDCLWpyr9LmzZuxfft2ldsuBwYGomXLlpgyZQoV6IQQQuoZ6uVepdLSUrRt27bSfE9PT5SUlNR6e2oX6EVFRSpDdObk5AAou9uNXC6v9QtzoTxHfckDUCZ1USb1UCb1UKaaaTUH1dCrNGLECGzevLnSSILbtm3D8OHDa709tQdnCQ0NxaJFiyrN37t3L4yMjGr9woQQQnQnPz8fw4YN087gLIvHw9SgjoOzFBbD/P92vFeDs0yZMgW7d++Gvb09vLy8AACXL1/G48ePMWrUKJVBfNQZPljtAr2qGrq9vT1SU1Pr1WhrUVFR6N69e70YzQigTOqiTOqhTOqhTDXLysqCRCLRToH+5QTNFOgLtr9XBbqPj49a6/F4PJw9e7bG9dRucheJRBCJRJXmC4XCevHlrIgyqYcyqYcyqYcyqae+ZNJqBjqHXqXo6GiNbu/920OEEELI/yDq5U4IIYRbPGigU5xGkrzXqEAnhBDCLerlrhXU5E4IIYS8B6iGTgghhFtUQ9cKKtAJIYRwi6eBXu48alCuCe0hQggh5D1ANXRCCCHcoiZ3raACnRBCCLeoQNcKKtAJIYRwi6dX93PgdA69RrSHCCGEkPeATgr05cuXg8fjYfr06cp5jDGEhoZCKpXC0NAQXbt2xe3btznLsHnzZrRs2RKmpqYwNTVFhw4dcOLECeXy9PR0jBkzBlKpFEZGRujRoweSk5M5y6NOptzcXEyePBl2dnYwNDRE06ZNsXnzZp1m4vF4VU6rV6/WWSYAuHv3LgIDAyEWi2FiYgIvLy88evRIZ5nGjBlTaR+Vj66kq0wVffrpp+DxeFi3bp1OM4WGhqJJkyYwNjaGmZkZfH19ceXKFZ1lksvlmDVrFlq0aAFjY2NIpVKMGjUKz54901kmADh06BD8/f1haWkJHo+HhIQETvPUmR5PMxOpltYL9NjYWGzbtg0tW7ZUmb9q1SqEhYVh48aNiI2Nha2tLbp3745Xr15xksPOzg4rVqxAXFwc4uLi0K1bNwQFBeH27dtgjKFPnz74888/cfjwYVy/fh0ymQy+vr7Iy8vjJE9NmQBgxowZOHnyJPbs2YO7d+9ixowZmDJlCg4fPqyzTKmpqSrTt99+Cx6Ph/79++ss0/3799G5c2c0adIEMTExuHHjBhYsWAADAwOdZQKAHj16qOyr48ePc5ZH3UwAEBERgStXrkAqlXKaR51Mrq6u2LhxI27evImLFy/C0dERfn5++Ouvv3SSKT8/H/Hx8ViwYAHi4+Nx6NAhJCUlITAwkLM8NWUCgLy8PHTq1AkrVqzgNIfGlDe513Ui1WNvKTs7mwFgmZmZaj/n1atXrHHjxiwqKop5e3uzadOmMcYYUygUzNbWlq1YsUK5bmFhIROLxWzLli1qb7+4uJhFRESw4uJitZ9TkZmZGduxYwdLTExkANitW7eUy0pKSpi5uTnbvn17rbapqUyMMebu7s4WL16ssrxNmzZs/vz5Osv0uqCgINatW7dab1OTmQYPHsxGjBjxVtvhKtPo0aNZUFBQvcrEGGNPnjxhjRo1Yrdu3WIymYytXbtW55kqKv+dOXPmTL3JdPXqVQaAPXz4UOeZUlJSGAB2/fr1Wm8vMzOTAWDZ2dlvlUcd5Z/f87UzWcmWOXWanq+dyXned51WD3kmTZqEXr16wdfXV2V+SkoK0tLS4Ofnp5wnEong7e2NS5cucZ6rtLQU+/btQ15eHjp06KAc971ijY7P50NfXx8XL17kPE9VmQCgc+fOiIyMxNOnT8EYQ3R0NJKSkuDv76+zTBWlp6fj2LFjCA4O1kqeqjIpFAocO3YMrq6u8Pf3h7W1Ndq3b4+IiAidZSoXExMDa2truLq6YsKECcjIyNBpJoVCgZEjRyIkJATu7u5ay1JdpoqKi4uxbds2iMVieHh41ItMAJCdnQ0ej4eGDRvWm0z1Xnkv97pOpFpa6+W+b98+xMfHIzY2ttKytLQ0AICNjY3KfBsbGzx8+JCzTDdv3kSHDh1QWFiIBg0a4Oeff0azZs0gl8shk8kwZ84cbN26FcbGxggLC0NaWhpSU1M5y1NdJgDYsGEDJkyYADs7OwgEAujp6WHHjh3o3LmzzjJVtGvXLpiYmKBfv36c5qkuU1paGnJzc7FixQosWbIEK1euxMmTJ9GvXz9ER0fD29tb65kAICAgAAMHDoRMJkNKSgoWLFiAbt264dq1axCJRDrJtHLlSggEAkydOpWz169tJgA4evQohgwZgvz8fEgkEkRFRcHS0lKnmcoVFhZi9uzZGDZsGExNTetFpncCjYeuFVop0B8/foxp06bh9OnT1Z7H5L12BMYYqzRPk9zc3JCQkICXL1/i4MGDGD16NM6dO4dmzZrh4MGDCA4Ohrm5Ofh8Pnx9fREQEMBZFnUybdiwAZcvX0ZkZCRkMhnOnz+PiRMnQiKRVGr10Famir799lsMHz6c03PVNWUqrzUFBQVhxowZAIBWrVrh0qVL2LJlC6cFenX7afDgwcr1mjdvjrZt20Imk+HYsWOcHgC9KVNBQQHWr1+P+Ph4Tv/GapOp/Pvk4+ODhIQEZGZmYvv27Rg0aBCuXLkCa2trnWUCyjrIDRkyBAqFAps2beIsS20yEVKRVgr0a9euISMjA56ensp5paWlOH/+PDZu3IjExEQAZTV1iUSiXCcjI6NSrV2T9PX14eLiAgBo27YtYmNjsX79emzduhWenp5ISEhAdnY2iouLYWVlhfbt26Nt27ac5aku07p16zB37lz8/PPP6NWrFwCgZcuWSEhIwFdffcVpgV7dfip34cIFJCYmYv/+/ZzlUCfT119/DYFAUOlHr2nTppyfLlFnP5WTSCSQyWScXznxpkxNmzZFRkYGHBwclOuWlpbi888/x7p16/DgwQOtZyrfT8bGxnBxcYGLiwu8vLzQuHFjhIeHY86cOTrLJJfLMWjQIKSkpODs2bOc187VyfROeQ9vLPP48WOMHDkSGRkZEAgEWLBgAQYOHKjTTFop0D/++GPcvHlTZd7YsWPRpEkTzJo1C87OzrC1tUVUVBRat24NoOz82blz57By5UptRARQ1iJQfv68nFgsBgAkJycjLi4OX375pdbyVMwkl8shl8uh91qzE5/Ph0Kh0EmmisLDw+Hp6am1c51vyqSvr4927dopDxLLJSUlQSaT6SRTVbKysvD48WOVA1htZho5cmSlg0B/f3+MHDkSY8eO1Ummt13OhYqvWV6YJycnIzo6GhYWFlrNUlWmd857eGMZgUCAdevWoVWrVsjIyECbNm3Qs2dPGBsb6y6TNl7ExMQEzZs3V5lnbGwMCwsL5fzp06dj2bJlaNy4MRo3boxly5bByMgIw4YN4yTT3LlzERAQAHt7e7x69Qr79u1DTEwMTp48CQA4cOAArKys4ODggJs3b2LatGno06ePSsc9bWYyNTWFt7c3QkJCYGhoCJlMhnPnzmH37t0ICwvTSaZyOTk5OHDgANasWcNZjtpkCgkJweDBg9GlSxf4+Pjg5MmTOHLkCGJiYnSSKTc3F6Ghoejfvz8kEgkePHiAuXPnwtLSEn379tVJJgsLi0oFk1AohK2tLdzc3HSSKS8vD0uXLkVgYCAkEgmysrKwadMmPHnyhNOaT3WZSkpKMGDAAMTHx+Po0aMoLS1V9vkxNzeHvr6+1jMBwPPnz/Ho0SPl9fDlB7C2trawtbXlJBNRJZFIlAfk1tbWMDc3x/Pnz9//Al0dX3zxBQoKCjBx4kS8ePEC7du3x+nTp2FiYsLJ66Wnp2PkyJFITU2FWCxGy5YtcfLkSXTv3h1A2fXVM2fORHp6OiQSCUaNGoUFCxZwkkXdTPv27cOcOXMwfPhwPH/+HDKZDEuXLsVnn32ms0zluRhjGDp0KGc5apOpb9++2LJlC5YvX46pU6fCzc0NBw8e5LTzYHWZCgoKcPPmTezevRsvX76ERCKBj48P9u/fz9n3u6ZMulJdpsLCQvzxxx/YtWsXMjMzYWFhgXbt2uHChQuc9sKvLtODBw8QGRkJoKwvRkXR0dHo2rWr1jMBQGRkpEpLypAhQwAACxcuRGhoKCeZ6oQHDTS512718+fPY/Xq1bh27RpSU1Px888/o0+fPirrbNq0CatXr0Zqairc3d2xbt06fPTRR7WOFhcXB4VCAXt7+1o/V5N4jDH2Nk/MycmBWCxW/uHVB3K5HMePH0fPnj0hFAp1HQcAZVIXZVIPZVIPZapZVlYWLC0tkZ2dzVmfgPJy4vnmuTA1rFtn2ZyCQpj/exkeP36sklckElV5pciJEyfw66+/ok2bNujfv3+lAn3//v0YOXIkNm3ahE6dOmHr1q3YsWMH7ty5o+xb4unpWeVpjtOnTytvxJSVlYWPPvoIO3bsQMeOHev0Huuq3tTQCSGEvKc02Cnu9Vrwm1olAgICqr0yKSwsDMHBwRg/fjwAYN26dTh16hQ2b96M5cuXAyjr0F2doqIi9O3bF3PmzNF5YQ5QgU4IIeQdUlUNvbaKi4tx7do1zJ49W2W+n5+f2jczY4xhzJgx6NatG0aOHFnrDFygAp0QQgi3NNjLvXzAmrrIzMxEaWlplTczK+/0WJNff/0V+/fvR8uWLZV3ovz+++/RokWLOmWrCyrQCSGEcIungdHSOLgOvS43M+vcubPWLxmuSf26sI8QQgjhmKWlJfh8fqXaONc3M+MaFeiEEEK4Vc+GT9XX14enpyeioqJU5kdFRdWLzm1vi5rcCSGEcEuDvdzbtWsHPp+PSZMmYdKkSW9cPTc3F/fu3VM+TklJQUJCAszNzeHg4ICZM2di5MiRaNu2LTp06IBt27bh0aNHnN7Xg2tUoBNCCHlnxMbGqtUpLi4uDj4+PsrHM2fOBACMHj0a3333HQYPHoysrCwsXrwYqampaN68OY4fP671W0RrEhXohBBCuKWDe7l37doVNd03beLEiZg4cWJdUtUrVKATQgjhlp4GernX9fn/A6hTHCGEEPIeULuGXlRUpHJP25ycHABQDutZH5TnqC95AMqkLsqkHsqkHspUM63meA/HQ6+P1B6cJTQ0FIsWLao0f+/evTAyMtJ4MEIIIdzJz8/HsGHDtDM4y67lMDWq4+As+YUwHz0Hrq6uavVy/1+kdoFeVQ3d3t4eSb7tYYb6cbecEqE+rnwagk4/fg2BvFjXcQCUZfp16BR0PR4OQUn9ODIvEQgR0zMY3S4fgKC0RNdxAAAlfAHOeg1Et3tnIVCU6joOAKBEj4+zLt3wcW4yBPXlOw49/NKgMT42U0BQT06YlSiAX17owdfjAwj5fF3HAQDIS0tx5sZ9dP/IC0JB/egqJC8pQdSFy/UmU9bzF5A4NdZOgf79Cs0U6CNnc5r3Xaf2t+pNQ9QJSuQQKOpHoVBOIC+uNwV6OUGJHIKSepaptATC0vpxkFFOoCiFsJ4U6OUEUEBYTwr0cgI9QFhPCvRyQj6/3hTo5YQCQb0oPCuqL5nqQwaiWfSJEkII4RaPp4HL1ugcek2oQCeEEMIt6hSnFfWs0Y4QQgghb4Nq6IQQQrilgzvF/S+iPUQIIYRb5XeKq+uEssFZmjVrhm+++UbHb6r+oRo6IYSQd4a6g7P8L6ICnRBCCLeoyV0rqEAnhBDCLerlrhV0yEMIIYS8B6iGTgghhFt6emVTXbdBqkUFOiGEEI5poMkd1OReE60U6GGPMnA0MxvJBUUw0OPhQ1NjhDrZonGFm/UfyczGd6lZSHhVgOclpTjfpjFaNDDkLNNXyU9xJPUFknILYMDXQ3szEyxuZg/Xv19TrlBg8R9PcDrjJR7kF8FUwIePlRiLmtpDYqDPSaZVNx/g8KO/kJidD0OBHrysxFja5gO4io2V63yZ8CcOPMjAk/xC6OvpobW5CRa1dsaHVmJOMq28moifk58i8XkuDAV8dJCaY9lHzeFmblLl+v+OiseOmw/wVdeWmNbGhZtM0fH4+XYKEjNewlDIRweZLZYFeMHNqqFynXE/ncX38Ukqz/vQ3hq/TurHSaYVkTGIiL2FP1L/gqG+EB0ay7B8cA+4Sa1U1rv7NANz9p3E+T/+hIIxNGtkg31ThsHBsmHVG65Lpt0HEXHuMv54+BSGIn10aNEEy/89Em6yRsp1BJ2q3h8rJo7Cf4b30Xim5V9vxc8nTuOPe3/C0MAAHdu2xoq5/4Gbi7Nyndy8PMxetgaHT55B1suXcLRrhCnjRuLfo4dpPA8ALF8dhkORR/BHUnJZJq8PsfLLRXBzbaxcJz09A7MWLMTpX6LxMjsbXTp1xNdrVqGxywecZNq8PRybt4fjwaPHAAD3pk3wf7O/QIB/dwAAYwyLlq3Atm934cXLl2jfzhPfhH0F92ZNOclTZ9QpTiu0socuZedivNQCp1u54FALZ5Qwhn43U5BX+s+AF3mlCrQ3NcZCJ1ttRMKvWa8wwckGZz9yR6RXE5Qwhj6X/0BeSdnAIPmlCtzIzsMs10a40KU5fmjXGMm5BRh8NamGLb+9C+kv8ambHc739MQx31YoUTD0OpOAPPk/g5U0NjXC2g9dEde7Pc72aANZAwN8ciYBfxVyM/DL+cd/4d+tPsDFoV1xYkAnlCgYeh68iDx55QF5Dt97hqtpLyA1rtuoSjVmSknFv73ccXFSX5wI/gQlCgV6hh9FXrHqQDP+rvZ4PG+Ucjoytid3me7+iX9374BfQyfi5KxglJSWImDlt8ir8LncT8+C95db4Ca1wi/z/oX4ZdMwr083GAi5Oa4+n3Ab/+4XgF+3rcDJdQvLMs1YhLyCQuU6TyLDVaYdcyeBx+OhX1cvbjJdvoqJo4fjtyM/4fSPO1FSUgr/YcHIy89XrjMjdDlOxVzA91+vxp2Y45g+YQymLliCw6fOcJLp3MVfMelf43E5OgpRR35GSUkp/AL7Ii8vD0BZ4dlnyHD8+eABDv+0F9cvnYfMwR6+nwQp19E0u0ZSrFgcirgL0Yi7EI1u3l0QNHgYbt+5CwBYFbYeYV9vwsawVYg9fxa2Njbo3rsvXr16xUme+oSuQ38zrdTQ/9vCWeXxN672aHz5DhJe5aNTwwYAgCE2ZgCARxwVTK/72auJyuPNrZzhfDoe17Pz0NnCFGKhAJEdVI92v2rhiK4XbuNxfhHsjSqPPFdXR3xbqTze1qkp7H+6iPjnOfjo7/0zxFn1gGdV28b47l4qbr7IRTeJucYzHevfWeXxDn9PSLccQ3z6S3xkZ6mc//RVAaadTcCxfp0RFHFJ4zlUMo3rpZppgA+kS3Yh/slf+MhZqpwvEvBha2LEaZZyx2eNU3kc/q8BkExcimsPnqJLEycAwIIDpxHg4YaVQwOU6zlba/4zU2YK+z/VTHMnQ/LJWFxLvI8urdwBALYWZirrRF6IRdc2zeHciJsD6xM/hKs8/nbtcti07IBrv99GF692AIDL1xIwakAfdO3YHgDwrxGDsW3PfsTduIUgf1+NZzp5+KDK451bvoG1owuuXU9Al86dkHzvPi5fjcWt2N+UNeBN69bA2tEFPx44iPFjRmk8U++eASqPl4YuwOYd4bgcG4tmTZtg3TebMS/kc/QLCgQA7Nq2GTZOjbH3p//i0+CxGs9TZxrs5U7Xob+ZTtowckrLapxmHNVM3kbO3zVz82oy5chLwQMgFmpniMic4rJasLm+sMrlxaUKhCc/g1goQEuzBlrJlF1UVgs2M/gnk4IxjDkZh5ltXeFuqf0/tOy/DwLNXhtv+dyfzyD98js0++pHfHowBhm5BdrLlF9WCzY3LjuFo1AocDzhDzS2tUTAym8hmbgEHRZ+g8Nxt7WXKa+sFmxuWvV3Jf35Sxy/dA3jPvlYe5lyymqU5g3/OWXUqV0bHIk6i6ep6WCMIfrXy0j6MwX+XTu/aTMazpRTlsms7GCnqKgIAGBg8M/3i8/nQ1+oj4uXfuM8T2lpKfYdOIi8vHx0+PBDpDx4iLT0dPh97KNcRyQSwbtzJ1y6fIXzPG+lvFNcXSdSLa3vIcYY5t1/Bi9TIzTjuGlWXYwxzLn9EB3MTdDMtOoaXWGpAgvvPsagRhYw1cKBCGMMX8TdQ0drMdxfK6yPP8mExd5zEP8Qg6/vPMKx7q1gydF5/dczhZz7HZ0aWaC55T8/wKtjkyDQ42FKa27OJ9aY6dgldHK0RXPbf2q7PdwcsHvIxzg9IRCrenZA3JO/4Lc9EkUl3I+1zhjDf344jk6ujmhuX1bTzcjJQ25hMVYdPQf/lq44MWsc+ni6Y8D6H3Du7p/aybRhJzq1bIrmzrIq19l9IhomRobo681Nc3tVmT5ftBydP/RE8yauyvkbvpyPZo1dYN+2C0SOzREwYjy+WbYQnT9sq5VMM2fPReeOHdDcvRkAoImbK2QO9pizcBFevHiJ4uJirPhqLdLS05Gals5Zlpu3bqOBdSOIzKzx2bQZ+PnHPWjWtAnS0ste08bGWmV9G2trpKVncJaH1H9aryKH3HuG23mFONFK+z/+b/L5rQe4nZOP052aVblcrlBgzLV7UDCGsBaOWsk0/WoSbr7IxdkebSot87Yxw9VP2iGzSI5vk59h+PlbuBDQFtaG3BbqU8/ewM3MHMQM7qKcdy39Bb6Ov4erI7qBp4MbP0w9fBE3U7MQ8+8+KvMHefzTIa+5rTk87azwwcofcPyPh+jb3BlcmrorEjcfp+Lcgs+U8xSMAQAC2zTD9ICymmYrmRS/JT/Ctl+uwLspx5nCtuPm/Yc4t3npG9f57uhZDPP7CAYi7g8OAWDyvMX4/W4SLvy8V2X+hm+/x+X4BBzeuRkyOynOX4nDpLmLILG2hm+XjtxmmhmC32/dxsUzJ5XzhEIhDu79HsH/ngxzO0fw+Xz4+nRFgF93TrO4uTZGwm8X8DI7GwcjIjH603/j3MljyuW813p9M8Z08jeoFrqxjFZotUD/4t5TnMjKwXGPD9BISz8aNfnPzQc4nvYSJzs1RSPDyufF5QoFRl27h4cFRTjaoYlWauczriTh6ONMnPFvA7sqWjGMhXx8IDTCBwDaW4nh/vNv+O7eM3zB4cHGtLMJOHo/FWcHd4FdhfPSF59mISO/CM7b//kBLGUMX5z7HV/H38O98T24y3T4Io7efYCznwbBTlz9KQeJqTFkDRvgXmY2Z3kAYNquSByJv4vo+f+CncU/rRiWJkYQ8PXQtJFqrapJIyv8mviQ20xh23HkYiyiv1kCO2vLKte5kHAHiY+eYu/imZxmKTdl/pc4cvoszh3aAzvpP+frCwoKMW/FWhzasRG9fLsCAFo2a4KE23exZms4pwX6lM9DEHnsBM6fPga7Ro1Ulnm2boWEyxeRnZ2N4mI5rKws0d77Y7Rt05qzPPr6+nD5oOxAr22b1oi9Fo/1m7Zg1szpAIC09HRIJP/su4y//oKNtVVVm9I9Hk8DvdypQK+JVgp0xhi+uP8MxzKzccTjA8g4rkmqm+k/tx7iSNpzHO/QDI5GlQvO8sL8fl4hjnVoCos3nMvWZKYZV5MQ+egvnPZvAycT9S7bYwCKKlwxoOlM087ewOF7z3BmUBc4VbiEDgBGNLXHxw6qPyK9Dv6K4c0cMNq96qZdjWSKvIjDt1Nw5l+BcDKv+bx9Vl4hHmfncdZJjjGGabsjERF3B7/MmwCn1zq76QsEaOtsh6TUv1TmJ6dmQsbBJWvKTGE7EHH+Cn7ZuBhOUps3rrvz6C/wdPsAHo2dOMlSMdOU+V8i4mQUog98DycHe5Xl8pISyOVy6Omp/njz9fhQKBh3mT7/Aj9HHkXMyaNwcnR847picdlBWvK9+4iLv44vF8zjJFNVGGMoKiqCk6MMtjY2iDobg9atPAAAxcXFOHfxV6z8cpHW8pD6RysF+n/uPcN/M15gr7sjGvD1kP735UWmfD4M+WVHbS/kJXhSJEfq38uS88s6oljrC2DDQUE68+YDHHiahX3tXGEi0EP63x2rTIUCGPL1UKJgGBGXjBvZ+TjwoSsUjCnXMdMXQJ+DDhrTriRhf0o6Dvi0QAMhH2kFZftALBTAUMBHnrwUK24+wCf2lrA11MfzohJsTXyCp3lF6O9oXcPW386UswnY98cTHAr0gom+AGl5ZZ29xPpCGAr5sDAUweK1lg0hXw82xgZvvFa9zpkOX8C+hHs4NKoHTET6SHtV1tlLbKAPQ6EAuUVyLD4Th77NnSAxMcLDF68w/9RVWBoZoE9zbgqsKd8dxo+/3cChGSNhYiBC2suyzl5iIwMY/v39/U/PLhi68Ud81MQJXZs649TvSTh6/Q/8Mm8CN5nWbMOPURdwaMUcmBgZIi3rRVmmBkYwFP3zmeXk5eO/0ZewevIYTnJUNGnuIvwYcRQR326CSQNjpGWUHeCITUxgaGgAU5MG8O7wIb5YshqGBgaQ2Ulx7rdYfH8wAmv+bzY3mWb8B3t/OoDD+/fCpEEDpP19XlwsNoWhYdlB9YFDEbCytICDvT1u3r6NaSGz0ad3L/j5duMk09yFixHg5wt7u0Z49SoX+/57CDEXLuJkxEHweDxMn/RvLPtqDRq7OKPxBx9g2eowGBkaYdigAZzkqTNqctcKrRTo36ZmAQA++V218883rnYY9ndHphNZOZiU9ES5LPiPRwCAWQ7WmO2o+Utodjws6zwS8NtdlfmbWzljhL0VnhYW43j6SwBAx/O3VNY53qEpPuKgN/e2pKcAAL/T11Xnd2yKUS4S8PWApJx8DI25icwiOSxEQnhamOKXHm3QrCE3vdy33kgBAHx84ILK/B3+npzVwGuy9fIdAMDH2yJV5u8Y0BWj2zYBX4+HW2lZ2BOfiJeFxZCYGMHbWYq9w7rDhKNTPVt+Ketd/PHS7Srzw/81AKO7eAIA+rRzx6ZxfbAyMgbTdx+Bm8QKB6YNR2c3R24y/XyqLNPkBaqZ5k7G6F7/FET7z1wEYwxDunPfi3zL7h8BAD4DRqrM/zZsOcYMLrvJzY+bwjB3eRhGTPkPnr/MhqyRFEu+mIHPRg3lJNPm7WWX0nXt8YnK/J1bvsGYkcMBAKlpaZg5ex7SMzIgsbXBqGFDsGD2F5zkAYD0jAyMHP8pUtPSITY1Rcvm7jgZcRDd/+7Z/sXMaSgoLMDE6f9R3ljmdOQhmJhwcxBdZ3RjGa3gMcbeqh0rJycHYrEYf3ZtAzNF5ZuM6EKJvgi/Tp4H791rIJBr53r2mpQI9XFu1OfwjdwCQUk9ySTQx5nAz+D3648QlsprfoIWyPlCnO40FH5JURAquO+Jrg65Hh+nXbvDPzcRQnBzSqO25NDDqQZu8LdQQFhPft/kCuBUlh4C2rhCyNfOJZ01kZeW4kR8Enr6dIZQUD8uj5WXlOB49MV6kynr+QtY2jshOzubs+u6y8uJ50fDYWpct9NdOXn5MP8kmNO877p68pNACCHkvaXH08wEulNcdXR/mEgIIeT9psEmd7pT3JtRgU4IIYRb1ClOK6jJnRBCCHkPUA2dEEIIt6iXu1ZQgU4IIYRTPB6vzrelrbe3ta1H6JCHEEIIeQ9QDZ0QQgi3qMldK6hAJ4QQwi0q0LWC9hAhhBDyHqAaOiGEEG7x/rnTW522QaqldoFeVFSEoqIi5eOcnBwAQIlAiBLUj/s3lwj1Vf5fHygzCbgderU2yrOU8OvP8Vx5lhK9+vFdAv7JUlKPGrLKs5TUj1vLA/gni7y0ftyDH/gni7ykfowzAfyTpb5k0moOanLXCrUHZwkNDcWiRZXH2t27dy+MjLgZY5oQQgg38vPzMWzYMK0MzvLi7AGYNqjj4Cy5+TDrNhCurq7g8/mYNGkSJk2apKGk7we1C/Sqauj29va4/ZEnGtaT0bFK9UWInzYHHmuWgl9cVPMTtKBUX4Qbn89Di6/qV6ab/6mfmerjZ9dm/fJ6lSl+2hy037q6Xo0oeOXTEHT68et6lenXoVPQ9Xg4BCX1Y0TBEoEQMT2D0e3yAQhKdV9Lf17CYLf2J+0U6NH/1UyB7jOARlurhtptriKRCCKRqNJ8fnExBPVk+NRy/OKievMDXI5fXAR+EWWqSX397AT1LJNAXlw/M9WTAr2coEReb4YtLicoLakXwxYLtFkP4/E00ORO59BrUn9OohJCCHk/0eAsWkG9DAghhJD3ANXQCSGEcIt6uWsFFeiEEEK4paeB69Dr+vz/AXTIQwghhLwHqIZOCCGEW9TkrhVUoBNCCOEW9XLXCjrkIYQQQt4DVEMnhBDCLWpy1woq0AkhhHCLmty1QisF+vpnmTj+4hWSC4thoMdDuwaGWGBnDRfDf24lyxjDV88y8f1fL5FdUoo2DQyxXGaLJoaVbzerKZdz87E5/Tlu5hcivaQU4U5S9Ghoolz+l7wES5/9hfM5ecguVcCrgSG+tLOBswF3o7ldzs3H1r+e4/f8QmSUlGK7oxQ9xP9kyitVYHnqXziVk4sXJaWw1xdirGVDjLI001km+xuJVT5vnsQKn1mbc5apus8OAJILi7D06V+4nFsABRhcDUTY6iRFI31uRr777VU+vknNwu/5hUiXl2Cnix16mv2Taeqfz7A/K1vlOW2MDXCimRMneQDg15e5+PrJX7iRW4C04hLsaSZDL0txletOT3qCXWnPscxZgn/bWXGW6WJWDtbfT0XCyzykFcmxt21j9Jb88z1ZlvgE/32ahaeFxdDX46GV2Bj/18Qe7cwacJbpQvoLrL39CNezXiG1oBg/dW2BQIeyfSBXKBB6/U+cfJqFlNwCiIUC+EjMsaTNB5Aacff7dOFJJtbEJSE+/SVS8wrx30AvBLlIlct/Tn6K7b+nID79JbIKixE7ohtaWTfkLA+p/7TShvHbq3yMtTHD8WaOOODmgBIGDE56hLzSf8aA3JiWhS1pz7HcwQYnmznCSijAoMRHyOVwSMb8UgWaGYqwxN6m0jLGGMb9+RSPiuT41rkRTjVxRCN9IYbce4z8Uu7GrixQKNDUQIQljSpnAoBFzzIQ8yoPGxwkiG7ihPFWZvi/pxk4lf1KZ5muNftAZfrK3hY8AAFi7n6Aq/vsAOBBUTH6JD2Ci4E+/tvYHlFNHDHd1gIiDo/y80sVcDcSYblD1ZkAoJvYGDdbNVZOe10dOMsDAPkKBZobG2KVS6Nq1zuWmY1rr/Ih0ef+GD+/RIEWpkb4qoVjlctdjA2wpoUjLnu3wOlOzeBgJEKfy3/gryLu7n+eX6JAC7MGWPuha5XLrj9/hTktHXG5Vzvs69oC93LyMSD6d87yAECevAQtrcRY383jDctL0VFqgaUfuXOaQyPKm9zrOpFqaaWGvs9N9UdrvZME7gnJ+D2/EB1MjMAYw7b055gutUAv87JRdL52kqB5QjIOZeVglDU3tc9u4gbo9oZC588iOeLzC3G2iSPc/m4lWG5vg5Y37yHiRQ6GWTbkJJOPaQP4mP6d6WHl5dfyCzDA3BQd/h65aLhFQ/yQ9RK/5xfBX2xS+QlayGQtVP0anc7ORccGRpCJuGvJqO6zA4CVzzLRzbQB5jeyVs7jMg8AfNywAT5u+Hem+0+rXEefx6u0v7jU3dwU3c2rH5nqWZEcX9x7hv+2cMLgWymcZ/KzaQg/m4ZvXD7IzlLl8fJmDtj96C/czslHV6uqWxfqyr+RBfwbWVS5TKwvwPHurVXmhX3ois7H4/AotxAODQw4ydTDyRY9nGzfuHxEs7Lf1QfZeZy8vkbp6ZVNdd0GgHbt2tHwqW+gk0OeV3/XcBvyy17+YZEcGfJSdDX95wdapKeHDiZGiM0t0EVEFP89qqyowt2J+Dwe9Hk8XM3TTSYA+NDYEFHZeUiVy8EYw6XcfPxZVAxvk/oxJv1f8hKczcnFYHNufnjVoWAMv+TkwtlAiGH3HqPlzXv4JPEhTr7krhVDXZde5aPZ9SR0+P0+Zqak4i+5bkcqVDCGz/54hCn2VmhqzE3BVBfFCgV2PvoLYgEfzU3rx3ccwP+3d+fxUdT3H8dfmz2yuU9ykYMIyB3AABJAkFOjUhUFD6Ro9ecPG6iUn1qwCtpqQWxVqgUhlqMHBSuH2HoQDwgeVBINIFgkELlykzub7GZ35/dHTCAkIQtkdrbp5/l4zANnZo93knU/8z1mhkqbHR0Q7IYeja5Ap9N1ygKwb98+Dh8+LMW8DW7/NCqKwuJTRVzr70M/38YvkKYvtW5GfYvHdjMaOK1iN9vF9DKbiDUZWJpfygtxkfh6ebGmuIxiu4NiDb+En42J5BenCxlx+DgGwEunY3lsJCOu8F7DneWt8kr89F6qdrd3pNTuoNap8IeiMp6IDufJmG7sqqrlobx8/t4rjhSNDn4mBPkzNTSAWJORk7YGXjhdwh1HTpLRvwfeV9p6uUyvnCrBoNPxvzFtt0618l5ROQ9k52JxOIkyG3k7pS/h3urMfbhU9Q4HT399jLsSIwmUgi48iNs/jYtOFvGtxcqOfgmt9l04uqkorbe5i1GnIz2xO/93spABB3PRA9cF+DIh0E+jRI3WlpbzlaWOtT26E2sy8K/aOn55pogIo4HrArTNBrC5rIrbgwMxa1SgAJpmONwQ5M/DP0zKG+hrJqu2jj+XVmhW0G8LO9f13c/XzBBfM8kHcvmwoqZ5qMmdcqotrD5Tyq5reje3fjzF2LBAPhs3iLO2BtafKGF2Vi6fXDeAbhoX9Qank1mZh3AqCr+/to+mWf6jyP3Q3cKtBX3RiUI+KK9me78EYs6badzthzHF4gYHkedtL7Xbm/dpIcnXTEbfHlQ5HDQ4FcKMBm45coIkX226JuucTpYXlpDeozsTfxie6Odj5lCdldUlZZoX9H/VWDhmtbEyIVrTHKF6PQagt7nlDOTeZm++rLVoE6oNkSYjsSYjx602Td7/i8paShrsDPrXt83bHMBTxwtYdaaUA9f20yQXgJ9BT0+Dnp5+ZkaEBDDk4xw2nCzmsd4Xn9ynpgank5m7v+H7mnrenzxUWueXQk5bcwu3fCIVReHJk0W8W17Ntr4JrSYnJXgbiTDq2V1Vy6AfxvFsToUvqi08HRvR1ku6VaBeD3o4Xm9jv6Wex6PDO36SCuyKQoPSeuKDHnAqWiRqaVNZJYN8vOnvo+1YrMlLx2A/M8fqWxbK41YbsSqdsnY5yux28m12IjU6aL0rMoRxIS0nUt558DgzIkOYGaneaZCXQ1EavxO00lTMc6vr+GDKUMLMnvM5EqKJW75JFp4oZGtZFRt6xeKv92oegw7Qe+Hj5YVOp+PhyFBWFJRyldlIoreJFQVn8fHyYlqYel2RtQ4neee1jk7aGvjGUk+IQU93k5F3yqsJM+jpbjLw7zori88Uc2OQP+NU7HavdTj53nYu0ylbA4fq6gnWN2Ya6efDcwUlmL286G40sLe2jrfKq1gco955wx1lAqh2OPhnZTVPR7vnAKyjv90jEaE88n0+I0t9GBXgy66qWjIqa3ird5z7MlltfGNp/D2FGPS8eKaEm0MDiDQaOGVt4DenSwg16Fucq97ZahwO8urOZTpRb+NgTR3BBj1xZhOhFxxMGHQ6Io0GeqvYC1Vjd3C8tv5cJouVA5W1hBgNhJoMvHg0n5uigonyNlFms5N+oogz9TZuj1HnmgYANQ12jlWfm+z6fU0d+8uqCTEZifE1cc+ub/i6rJptE5JwKAqFdVYAQk1GTHp1hpdqbHZyK2qa1/Mqa8kpriDUbCI+0JeyOhsnqy0U1DT+Lr8rb3xslJ+ZKI+b4NgZp53JaWsdcUtBX19SAcDtR0622L4iMZq7fzj9a25UGPVOhV+cKKTS7uQafx82Xx2Hv16PWvZb6pmee6p5/dkzJQBMDw3klYRoihvsPHummFK7nQiDgTtDg5gfpe7koQN19cw4di7Tr/IbM90ZEsjL8dH8ISGGZQUlzDtRQIXDQazJyBPR4cwKC9YsE8COimoUBW5VsTidr6O/XWpwAMvioni16CyLTxdzldlEemKMqpMHc2rrmHbeZ3zJqWIA7goL4oUeUXxbZ+XNo5VUORxEGg2MDvBjTc/uqn7Gc6rrmHrgePP6L48XAHBPZAgr+6h3cHMxX1fUctMX57r5Fx1u/J3dGxvOiqREvqupY2NWCWdtdkKNBq4J9uOD0f3pp+Lch+yz1dyw8+vm9SeycgG4r2cUTw1O5B+nSwEY8Y99LZ73wZShjItSpzcju6icSX/f07z++O6DAMzqH8/aG4fxzvECHvogu3n/zH9+CcDTI/uyeFR/VTJdNulydwu3FPSi4R2Pxel0Oh7v3o3Hu6vX0rzQqABfzgxtf2LLgxEhPKjSOfDtSfH35dTg9jNFGA28FO/eMeqOMkHj+fAzVTyouFBHfzuAu8OCuDvMfafPjQ70u+hnfXMfdS8i05Yxwf6Uj01y+fHuGDe/LjyQ6qnXtrt/4/DWF3dR27ioEOp/PKHd/Rfbp5Zxcd1oWDCt3f2zByQwe0DrycXiv5fM6hBCCKGuTrywjGifFHQhhBDqki53t5BDHiGEEKILkBa6EEIIdcn90N1CCroQQgh1SZe7W0hBF0IIoTIdV34hbynoHZE+DCGEEKILkBa6EEIIdUmXu1tIQRdCCKEuKehuIV3uQgghRBcgLXQhhBAqk0lx7iAFXQghhLqky90tXC7oVqsVq9XavF5VVQWAw2TC7lTvblGXwmHybvGvJ5BMrpFMrmnKYjeaNE5yTlMWj8xk8Jz7ljdlses9ox1lV7S7v7xQh05RXPurPvPMMzz77LOttm/cuBFfX/VuayiEEKLzWSwW7r33XiorKwkMDFTlPaqqqggKCqLi31kEBvhf2WtV1xDcdxhXX301er2etLQ00tLSOilp1+ByQW+rhR4XF0dBQQFhYereI9xVDQ0NZGRkMHnyZIxGzzgyl0yuac503UiMBs9owTTY7WTs2euRmSYN7olRxfuoX4oGh4MP9x9jYogTg4dMs7U74aNyLybWHMWAU+s4ANjx4iP/3kzI/RiD06F1HMpsdmKfWu2mgp7dSQU9WdW8/+lc/pby9vbG27t116PRaPSYotBEMrnGIzMZDB5TPJt4ZCa93mMKehODFxg9pKA3MeDE6CEFvYnB6cDoAQXd4PSs34u4cp71LSWEEKLrkUlxbiEFXQghhLp0dEJB75QkXZoUdCGEECqT89DdwcNGvIQQQghxOaSFLoQQQl0yhu4WUtCFEEKoTLrc3UG63IUQQoguQFroQggh1CVd7m4hBV0IIYS6pKC7hXS5CyGEEF2AZgU9MzOTqVOnEhMTg06nY/v27VpFabZ06VKGDx9OQEAAERER3HbbbRw5ckTTTKtWrSIpKYnAwEACAwNJSUnhvffe0zTT+ZYuXYpOp2P+/Pma5njm+aXo/IJbLFGJV2uaCeBMfj73/eRhwuIS8Q2PZsjIMWR/naNZnsRrJ+DVvU+rJe3J1jdeche73cHTazbS6845+I+/m97TH+HXa9/EqeGlSavrrCz48ztc9egL+D/wNGOeXcW+Y6fcmmHP8XxuW/8e8c//CePC13n7UF6L/Yqi8KuMfcQ//ycCnkpn4uq3OVRU5taMrtN10iIuRrOCXltby+DBg3nttde0itDK7t27SUtLY+/evWRkZGC325kyZQq1tbWaZYqNjWXZsmVkZWWRlZXFhAkTuPXWWzl06JBmmZrs27ePNWvWkJSUpHUUAAb060fBsSPNy8EvP9c0T3l5BaMn3oDRaOC9bW9xOHsvv1v6PMFBQZpl+vLdt8j/+tPmZeff1gEw/ZYbNcu0/K/bWLP9A1YseIhvNv6eZT+dxe82bue1t97VLNPDb2zhw29yWf/IDHKWPsrkgb25YdkfOVNW6bYMtQ12kqLDWHHrmDb3/3Z3Dq98eoAVt47hi7l3EBXgS+ob/6DaanNbRlfpdLpOWcTFaTaGnpqaSmpqqlZv36b333+/xfq6deuIiIggOzubsWPHapJp6tSpLdaff/55Vq1axd69exkwYIAmmQBqamqYOXMm6enpPPfcc5rlOJ/BoCcqKlLrGM1eeOkV4mJjWbd6ZfO2HgkJGiaCbmGhLdaXvbaGnj3iGZcyQqNEsPebI/zouhHcPGoYAD2iI9iU8SnZ/z6mSZ46WwNb9x1i689nMbZvIgBL7pjEjuzDvP7Rv/j19CluyXFjn3hu7BPf5j5FUfj9ZwdZNP4abh94FQBrZ0yg+3Mb+FtOLg9f298tGYVnkTH0i6isbDwaDw0N7eCR7uFwONi0aRO1tbWkpKRomiUtLY2bb76ZSZMmaZrjfEePHSemZ18S+ydx9+yfcDzve03z7Hj3PYYNHcL0+2YTkdCLoSnXkb5ug6aZzmez2fjr1h08cNcdmrZ+Rif14+OsA3x3Mh+A/Ufz+OzAt6SmXKNJHrvDicPpxGxs2d4xmwx8duR7TTJdKK+smsJqC5N6xzVv8zboGZsYwxcnCjVM1o6mSXFXuoiLklnu7VAUhQULFjBmzBgGDhyoaZaDBw+SkpJCfX09/v7+bNu2jf79tTsC37RpE1999RX79u3TLMOFrh02jD+lr+LqXr0oKi7hueUvMmrCFA5l7SUsTJsDsuN537PqjbUsmJfGk48t4Mvsr/jZY7/A22TixzPv0STT+ba//yEVVdXcP+N2TXM8cd/tVNZYGHDvPPReXjicTn798L3cPfk6TfIE+Hgzsnc8z2//mH7dI4gM8mfT5/v58thpekeGaZLpQoU1FgAiA3xabI8I8OFkebUWkTogF5ZxByno7Zg7dy4HDhzg008/1ToKffr0IScnh4qKCrZs2cLs2bPZvXu3JkX91KlTPProo+zcuROz2ez2929P6g2Tm/97EJBy7XB6DhzKhr9uZMHP5mqSyel0Muyaofzm2cUADB0ymEPffsuqN9Z6REFfu2kLqePHEqPxMMWbH33Gxp27+cszP6d/Yhz7j+axYMVaYsJD+fFN4zXJtGHODB5K30L8vKXovbwY2iOGe1IG8/X3+Zrkac+FJU5RFA8da+6MFrYn/lyeRQp6G+bNm8eOHTvIzMwkNjZW6ziYTCZ69eoFwLBhw9i3bx8rVqxg9erVbs+SnZ1NcXExycnJzdscDgeZmZm89tprWK1W9Hq923NdyM/Pj0ED+nP02HHNMkRHRdK/b58W2/r16cOW7e9olOicE6fP8OGez9nyxqtaR+EXf9jAE/dN465JjZO/BvVM4ERhCS/8eatmBb1nZBifPPUwtfU2qurqiQ4J5J5XN9KjW4gmeS4U5e8LQGF1HdGBfs3bS2rqifD3ae9poouTMfTzKIrC3Llz2bp1Kx9//DGJiYlaR2qToihYrVZN3nvixIkcPHiQnJyc5mXYsGHMnDmTnJwcjyjmAFarlW+PfEe0hq3P0SNHcuRobott3x3NJSE+rp1nuM+6zVuJCA/j5onXax0FS70VL6+WrS+9lxdORbvT1pr4mU1EhwRSXlvHzoNH+VGyZ0w2SwwNICrAl49yz51KZ7M7yMzLJyUhSsNk7ZAxdLfQrIVeU1NDbu65L7u8vDxycnIIDQ0lPr7tmZ1qS0tLY+PGjbz99tsEBARQWNg4uSQoKAgfH22Oep988klSU1OJi4ujurqaTZs2sWvXrlYz8t0lICCg1ZwCPz8/wsLCNJ1r8Niip5h6043Ex8VSXFLKcy+8SFV1NbM17Nr++byfMmrCFH7z4u+YMe12vszKZs26Dax59RXNMkHjUMD6zVv58fTbMBi076S7ZfRwlm54i7jIcAYkxpPz3XFe2fwO9988QbNMHxz4DkVR6BPdjdyisyz823tcHR3O/WOTO35yJ6mxNpB79txpcnllVeTklxLq6018cAA/Gz2IZZ98Ta+wYHqFB/HCJ1/hazRwz5BebsvoOhlDdwfN/m/Oyspi/Phz3WkLFiwAYPbs2axfv16TTKtWrQLg+uuvb7F93bp13H///e4PBBQVFTFr1iwKCgoICgoiKSmJ999/n8mTJ3f85P8ip/Pzuef+hyg9e5Zu4eGMHDGMvZ9kkKDRwSHA8ORr2LbpLyxa/Ct+tXQ5iT0SeGX5UmbePUOzTAAf7vmck2fy+cldd2iao8mKnz/EkvSNzPvtGorLq4gJD+F/bp3C0w9M1yxTlaWeX775AafLKgn182XaiAH8evoNGA3u64HKPl3MpPRzwzOP//MLAGZdczVrZ0zgsXFDqGuwM+/tPZTXWRkRF8G7D95CgLfJbRmFZ9GsoF9//fUoiqLV27fJ0/IA/PGPf9Q6Qod27dqldQQ2bVirdYQ23ZJ6I7ekanfRlrZMGTcG5xltr4B4vgA/H16a/yAvzX9Q6yjNpo9MYvpIbS+YNK5ndxqWzWl3v06nY/Hk4SyePNyNqS6TXMvdLbTvbxNCCNG1SY+7W8ikOCGEEKILkBa6EEIIlUkT3R2koAshhFCXjKG7hXS5CyGEEF2AtNCFEEKoS1robiEFXQghhMpkDN0dpKALIYRQl45OaKF3SpIuTcbQhRBCiEtUXV3N8OHDGTJkCIMGDSI9PV3rSNJCF0IIobIuOIbu6+vL7t278fX1xWKxMHDgQKZNm0ZYWJhmmaSgCyGEUFnXG0PX6/X4+jbexra+vh6Hw6H55cOly10IIUSXk5mZydSpU4mJiUGn07F9+/ZWj1m5ciWJiYmYzWaSk5PZs2fPJb1HRUUFgwcPJjY2lieeeILw8PBOSn95XG6hW63WFvfgrqxsvK1fWVlZ56e6TA0NDVgsFs6ePYvRaNQ6DiCZXNWcqawcowfc0hOgwW733EwVlRg95N7zDQ4HFouFMpMTg4c0EexOsFi8KLPYMKD9fdUB7Hhh8bJQZrNjcGqfqdxmB9xzU6qqmpor7jKvqqlp/LeqqsV2b29vvL29Wz2+traWwYMH88ADD3DHHa3vLLh582bmz5/PypUrGT16NKtXryY1NZXDhw8338I7OTm5Rd1rsnPnTmJiYggODmb//v0UFRUxbdo07rzzTiIjI6/o57wiiouWLFmiALLIIosssnSh5dixY66WgUtWV1enREVFdVpWf3//VtuWLFnSYQ5A2bZtW4ttI0aMUObMmdNiW9++fZWFCxde1s86Z84c5c0337ys53YWl5sdixYtar5nOTR2NSQkJHDy5EmCgoJcfRlVVVVVERcXx6lTpwgMDNQ6DiCZXCWZXCOZXCOZOlZZWUl8fDyhoaGqvYfZbCYvLw+bzdYpr6coCroLWvpttc47YrPZyM7OZuHChS22T5kyhc8//9yl1ygqKsLHx4fAwECqqqrIzMzkkUceueQsncnlgt5et0ZQUJBHfDjPFxgYKJlcIJlcI5lcI5lc42mZvLzUHScxm82YzWZV3+NSlZaW4nA4WnWPR0ZGUlhY6NJrnD59mgcffBBFUVAUhblz55KUlKRGXJd5xsCgEEII4WYXtvbb6gFoT3JyMjk5OSqkunweMoVFCCGEcI/w8HD0en2r1nhxcbG2k9qu0GUXdG9vb5YsWXJZ4xdqkUyukUyukUyukUyu8bRMnpbHnUwmE8nJyWRkZLTYnpGRwahRozRKdeV0iqLxmfBCCCFEJ6upqSE3NxeAoUOH8tJLLzF+/HhCQ0OJj49n8+bNzJo1i9dff52UlBTWrFlDeno6hw4dIiEhQeP0l0cKuhBCiC5n165djB8/vtX22bNns379eqDxwjLLly+noKCAgQMH8vLLLzN27Fg3J+08UtCFEEKILkAmxQkhhBBdgBR0IYQQoguQgi6EEEJ0AVLQhRBCiC5ACroQQgjRBUhBF0IIIboAKehCCCFEFyAFXQghhOgCpKALIYQQXYAUdCGEEKILkIIuhBBCdAFS0IUQQogu4P8B1Z4vzvLQBFsAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACowklEQVR4nOzdd1wT9/8H8FfIIiCgbCISUAQEFBWteyuKA0erVuse37buUWq1WnFvHK1b3NXaVkvdG1ddOHCLqIAoS0BAdkI+vz+QlAhCkFxC/b2ffdyj5u5yeeVI8rnP5z53Hx5jjIEQQggh/2kG+g5ACCGEkIqjAp0QQgj5BFCBTgghhHwCqEAnhBBCPgFUoBNCCCGfACrQCSGEkE8AFeiEEELIJ4AKdEIIIeQTQAU6IYQQ8gmgAl0PAgICwOPx1OY5Ojpi2LBh5drO5cuXERAQgNTU1HI97/3XOnfuHHg8Hv78889ybac0WVlZCAgIwLlz54ot2759O3g8HqKiorT2elz4+eef4ezsDJFIBB6Ph9TUVCxcuBDBwcE6zXH48GEMGTIEdevWhVAoLPbZKUoul2POnDlwdHSEWCyGm5sbfv75Zx2mJYToi0DfAUiBv/76C6ampuV6zuXLlzFnzhwMGzYMVatW5fS1yisrKwtz5swBALRt21ZtWbdu3XDlyhXY2dlxmqEiwsLCMGHCBIwaNQpDhw6FQCCAiYkJFi5ciC+++AK9evXSWZa//voLV69eRYMGDSAWi3Hz5s0PrjtmzBjs2rUL8+bNQ+PGjXHixAlMnDgRb9++xYwZM3SWmRCie1SgVxINGjTg/DWys7MhkUh08lqlsbKygpWVlV4zlOXBgwcAgNGjR+Ozzz7j9LXy8/OhUCggFotLXL5582YYGBQ0po0bN+6DBfqDBw8QFBSEBQsWwN/fH0DBwVRycjLmz5+Pb775Bubm5ty8CUKI3lGTO8eOHDmC+vXrQywWw8nJCcuXLy9xvfebwZVKJebPnw9XV1dIJBJUrVoV9erVw+rVqwEUNNsX/mg7OTmBx+OBx+OpmrgdHR3RvXt3HDhwAA0aNIChoaGqxvyh5v2cnBxMmTIFtra2kEgkaNOmDW7fvq22Ttu2bYvVuAFg2LBhcHR0BABERUWpCuw5c+aoshW+5oea3Ldu3QovLy8YGhrC3NwcvXv3xqNHj4q9TpUqVfD06VN07doVVapUQY0aNTB16lTk5uaWuG+L2rdvH3x8fGBnZweJRII6derghx9+QGZmptp7HDRoEACgSZMmquw8Hg+ZmZnYsWOH6j0V3Rfx8fH4+uuvYW9vD5FIBCcnJ8yZMwcKhUK1TlRUFHg8HpYuXYr58+fDyckJYrEYISEhH8xcWJiXJTg4GIwxDB8+XG3+8OHDkZ2djePHj5f6/MJTQXfv3kXfvn1hZmYGc3NzTJkyBQqFAuHh4ejSpQtMTEzg6OiIpUuXFtvGixcvMGjQIFhbW0MsFqNOnTpYsWIFlEolgIJTAtbW1hg8eHCx56ampkIikWDKlCmqeenp6fjuu+/g5OQEkUiE6tWrY9KkSWp/LwD4448/0KRJE5iZmcHIyAg1a9bEiBEjNNpvhHwqqIbOoTNnzqBnz55o1qwZfvvtN+Tn52Pp0qVISEgo87lLly5FQEAAZs6cidatW0Mul+Px48eq8+WjRo1CSkoKfv75Zxw4cEDVfO3u7q7axq1bt/Do0SPMnDkTTk5OMDY2LvU1Z8yYgYYNG2LLli1IS0tDQEAA2rZti9u3b6NmzZoav287OzscP34cXbp0wciRIzFq1CgAKLVWvmjRIsyYMQMDBgzAokWLkJycjICAADRr1gyhoaGoXbu2al25XA4/Pz+MHDkSU6dOxYULFzBv3jyYmZnhp59+KjVbREQEunbtikmTJsHY2BiPHz/GkiVLcP36dZw9exYAsG7dOuzduxfz58/Htm3b4ObmBisrK3zzzTdo37492rVrh1mzZgGA6tRFfHw8PvvsMxgYGOCnn35CrVq1cOXKFcyfPx9RUVHYtm2bWo41a9bAxcUFy5cvh6mpqdr7+1j379+HlZUVbG1t1ebXq1dPtVwT/fr1w6BBg/D111/j1KlTWLp0KeRyOU6fPo0xY8bgu+++w549ezBt2jQ4OzujT58+AIDXr1+jefPmyMvLw7x58+Do6IjDhw/ju+++w7Nnz7Bu3ToIhUIMGjQIGzZswNq1a9VO/ezduxc5OTmqA5KsrCy0adMGL1++xIwZM1CvXj08ePAAP/30E+7du4fTp0+Dx+PhypUr6N+/P/r374+AgAAYGhoiOjpa9fck5P8NRjjTpEkTJpVKWXZ2tmpeeno6Mzc3Z+/veplMxoYOHap63L17d1a/fv1St79s2TIGgEVGRhZbJpPJGJ/PZ+Hh4SUuK/paISEhDABr2LAhUyqVqvlRUVFMKBSyUaNGqea1adOGtWnTptg2hw4dymQymerx69evGQA2e/bsYutu27ZNLfebN2+YRCJhXbt2VVvvxYsXTCwWs4EDB6q9DgD2+++/q63btWtX5urqWuy1SqNUKplcLmfnz59nANidO3eKZQwNDVV7jrGxsdq+K/T111+zKlWqsOjoaLX5y5cvZwDYgwcPGGOMRUZGMgCsVq1aLC8vr1x5GWNs7NixxT47hTp16vTBfSASidj//ve/Urc9e/ZsBoCtWLFCbX79+vUZAHbgwAHVPLlczqysrFifPn1U83744QcGgF27dk3t+d9++y3j8Xiqz+Ldu3cZALZp0ya19T777DPm7e2terxo0SJmYGBQ7G/w559/MgDs6NGjjLF/93Fqamqp74+QTx01uXMkMzMToaGh6NOnDwwNDVXzTUxM0KNHjzKf/9lnn+HOnTsYM2YMTpw4gfT09HJnqFevHlxcXDRef+DAgWo9qGUyGZo3b15qc7A2XLlyBdnZ2cVOA9SoUQPt27fHmTNn1ObzeLxi+7BevXqIjo4u87WeP3+OgQMHwtbWFnw+H0KhEG3atAGAYs375XH48GG0a9cOUqkUCoVCNfn6+gIAzp8/r7a+n58fhELhR7/eh5TWA760ZUV1795d7XGdOnXA4/FU7wUABAIBnJ2d1fb52bNn4e7uXqzPwbBhw8AYU9WY69atC29vb7VWi0ePHuH69etqzeSHDx+Gp6cn6tevr7ZPO3furHZ6qXHjxgAKWhZ+//13vHr1SqP3Scinhgp0jrx58wZKpbJY8yeAEue9b/r06Vi+fDmuXr0KX19fWFhYoEOHDrhx44bGGcrbi/xDWZOTk8u1nfIq3H5JeaVSabHXNzIyUjtIAgCxWIycnJxSXycjIwOtWrXCtWvXMH/+fJw7dw6hoaE4cOAAgIJOgx8rISEBhw4dglAoVJs8PDwAAElJSWrrc9HD38LCosS/VWZmJvLy8jTuEPf+eiKRqMR9LhKJ1PZ5cnLyB/+GhcsLjRgxAleuXMHjx48BANu2bYNYLMaAAQNU6yQkJODu3bvF9qmJiQkYY6p92rp1awQHB0OhUGDIkCGwt7eHp6cn9u7dq9H7JeRTQefQOVKtWjXweDzEx8cXW1bSvPcJBAJMmTIFU6ZMQWpqKk6fPo0ZM2agc+fOiImJgZGRUZnb0LRGVlqu+Ph4WFhYqB4bGhoiLS2t2HrvF1jlUbj9uLi4YstiY2NhaWn50dsu6uzZs4iNjcW5c+dUtXIA5b6OvySWlpaoV68eFixYUOLywkKtUHn/NpqoW7cufvvtN8THx6sdnN27dw8A4OnpqfXXLMrCwuKDf0MAan/HAQMGYMqUKdi+fTsWLFiAXbt2oVevXqhWrZpqHUtLS0gkEmzdurXE1yu6vZ49e6Jnz57Izc3F1atXsWjRIgwcOBCOjo5o1qyZtt4iIZUa1dA5YmxsjM8++wwHDhxQq8W8ffsWhw4dKte2qlatii+++AJjx45FSkqKqnd44WVOFalZFrV3714wxlSPo6OjcfnyZbWe3I6Ojnjy5Ilaj/Lk5GRcvnxZbVvlydasWTNIJBLs3r1bbf7Lly9x9uxZdOjQ4WPeTjGFhej7l4dt3LhR422IxeIS31P37t1x//591KpVC40aNSo2vV+gc6Fnz57g8XjYsWOH2vzt27dDIpGgS5cunL5+hw4d8PDhQ9y6dUtt/s6dO8Hj8dCuXTvVvGrVqqFXr17YuXMnDh8+jPj4+GK90rt3745nz57BwsKixH1aeFVFUWKxGG3atMGSJUsAoNhVGoR8yqiGzqF58+ahS5cu6NSpE6ZOnYr8/HwsWbIExsbGSElJKfW5PXr0gKenJxo1agQrKytER0dj1apVkMlkqh7RdevWBQCsXr0aQ4cOhVAohKurK0xMTD4qb2JiInr37o3Ro0cjLS0Ns2fPhqGhIaZPn65aZ/Dgwdi4cSMGDRqE0aNHIzk5GUuXLi12oxoTExPIZDL8/fff6NChA8zNzWFpaVnij3DVqlUxa9YszJgxA0OGDMGAAQOQnJyMOXPmwNDQELNnz/6o9/O+5s2bo1q1avjmm28we/ZsCIVC/Prrr7hz547G26hbty7OnTuHQ4cOwc7ODiYmJnB1dcXcuXNx6tQpNG/eHBMmTICrqytycnIQFRWFo0ePYsOGDbC3t/+o3NHR0QgNDQUAPHv2DABUd/VzdHREo0aNAAAeHh4YOXIkZs+eDT6fj8aNG+PkyZPYtGkT5s+fz/k16JMnT8bOnTvRrVs3zJ07FzKZDEeOHMG6devw7bffFuvPMWLECOzbtw/jxo2Dvb09OnbsqLZ80qRJ2L9/P1q3bo3JkyejXr16UCqVePHiBU6ePImpU6eiSZMm+Omnn/Dy5Ut06NAB9vb2SE1NxerVq9X6RxDy/4KeO+V98g4ePMjq1avHRCIRc3BwYIsXL1b1Ji7q/Z7nK1asYM2bN2eWlpaq544cOZJFRUWpPW/69OlMKpUyAwMDBoCFhISottetW7cSM32ol/uuXbvYhAkTmJWVFROLxaxVq1bsxo0bxZ6/Y8cOVqdOHWZoaMjc3d3Zvn37ivVyZ4yx06dPswYNGjCxWMwAqF7z/V7uhbZs2aLaV2ZmZqxnz56q3uGFhg4dyoyNjYtlKmmfluTy5cusWbNmzMjIiFlZWbFRo0axW7duMQBs27ZtqvU+1Ms9LCyMtWjRghkZGTEAaj3+X79+zSZMmMCcnJyYUChk5ubmzNvbm/34448sIyODMfZvL/dly5aVmfX9LCVN7/e4z8vLY7Nnz2YODg5MJBIxFxcXtmbNGo1ep3Afvn79Wm3+h/Z5mzZtmIeHh9q86OhoNnDgQGZhYcGEQiFzdXVly5YtY/n5+cWen5+fz2rUqMEAsB9//LHETBkZGWzmzJnM1dVV9bmoW7cumzx5MouPj2eMMXb48GHm6+vLqlevzkQiEbO2tmZdu3ZlFy9e1Oh9E/Kp4DFWpI2VEEIIIf9JdA6dEEII+QRQgU4IIYSU4PDhw3B1dUXt2rWxZcsWfccpEzW5E0IIIe9RKBRwd3dHSEgITE1N0bBhQ1y7dq1SD3BENXRCCCHkPdevX4eHhweqV68OExMTdO3aFSdOnNB3rFJRgU4IIeSTc+HCBfTo0QNSqRQ8Hg/BwcHF1lm3bh2cnJxgaGgIb29vXLx4UbUsNjYW1atXVz22t7ev9LcVpgKdEELIJyczMxNeXl745ZdfSly+b98+TJo0CT/++CNu376NVq1awdfXFy9evAAAlHQ2mos7PGqTxjeWyc3NVbs7mFKpREpKCiwsLCr9mySEEKKOMYa3b99CKpXCwIC7ul1OTg7y8vK0si3GWLHyRiwWF7v7IwD4+vqqDSj0vsDAQLXhnVetWoUTJ05g/fr1WLRoEapXr65WI3/58iWaNGmilffBGU0vWC+86QRNNNFEE02fzhQTE8PJTU4YYyw7O5sZgae1rFWqVCk2r6Qhmt8HgP3111+qx7m5uYzP56sNCcwYYxMmTGCtW7dmjBUMEezs7MxevnzJ0tPTmbOzM0tKStLm7tE6jWvo06dPx5QpU1SP09LS4ODggCdPnlSaXn9yuRwhISFo164dJ0NTfgzKpBnKpBnKpBnKVLaUlBS4uLh89K2iNZGXl4csMAyGMUSoWEtuHhh2ZWQgJiZG7VbTJdXOy5KUlIT8/HzY2NiozbexsVENUiUQCLBixQq0a9cOSqUS33//vdpAVZWRxgX6h5o1zM3NK82blMvlMDIygoWFRaX4wgCUSVOUSTOUSTOUSXO6OGVqCAOIKvg6Bu/OaZuamhYbO+Jjvf/e2XtN+n5+fvDz89PKa+kCdYojhBDy/4qlpSX4fH6xIaMTExOL1dr/S6hAJ4QQwikDLU3aIhKJ4O3tjVOnTqnNLxwx8b+Khk8lhBDCKR4PMKhgyz4PABjQuHFj8Pl8jB07FmPHjv3g+hkZGXj69KnqcWRkJMLCwmBubg4HBwdMmTIFgwcPRqNGjdCsWTNs2rQJL168wDfffFOxoHpEBTohhJD/jNDQUI3Ood+4cQPt2rVTPS7s1D106FBs374d/fv3R3JyMubOnYu4uDh4enri6NGjkMlknGXnGhXohBBCOKWNJvPyPr9t27Yl3hymqDFjxmDMmDEfH6qSoQKdEEIIpwx4PBhUtJc7UHDlOfkg6hRHCCGEfAKohk4IIYRT+mhy//+ICnRCCCGcMtBCL3cq0MtG+4gQQsh/RuPGjeHu7o61a9fqO0qlw1mBXtZYtIwxBAQEQCqVQiKRoG3btnjw4IHaOrm5uRg/fjwsLS1hbGwMPz8/vHz5UmsZ3759i0mTJkEmk0EikaB58+YIDQ1VLU9ISMCwYcMglUphZGSELl26ICIiQmuv/zGZMjIyMG7cONjb20MikaBOnTpYv369XjPxeLwSp2XLluktEwA8evQIfn5+MDMzg4mJCZo2baoaGlEfmYYNG1ZsHzVt2pSzPJpkKurrr78Gj8fDqlWr9JopICAAbm5uMDY2RrVq1dCxY0dcu3ZNb5nkcjmmTZuGunXrwtjYGFKpFEOGDEFsbKzeMgHAgQMH0LlzZ1haWoLH4yEsLIzTPBWhzRvLhIaG4uHDh6Veg/7/FWcFellj0S5duhSBgYH45ZdfEBoaCltbW3Tq1Alv375VrTNp0iT89ddf+O2333Dp0iVkZGSge/fuyM/P10rGUaNG4dSpU9i1axfu3bsHHx8fdOzYEa9evQJjDL169cLz58/x999/4/bt25DJZOjYsSMyMzO18vrlzQQAkydPxvHjx7F79248evQIkydPxvjx4/H333/rLVNcXJzatHXrVvB4PHz++ed6y/Ts2TO0bNkSbm5uOHfuHO7cuYNZs2bB0NBQb5kAoEuXLmr76ujRo5zl0TQTAAQHB+PatWuQSqWc5tEkk4uLC3755Rfcu3cPly5dgqOjI3x8fPD69Wu9ZMrKysKtW7cwa9Ys3Lp1CwcOHMCTJ084v8d3WfspMzMTLVq0wOLFiznNoQ0fOugv70TK8LHDtKWlpTEAGg0nh/eGrlMqlczW1pYtXrxYNS8nJ4eZmZmxDRs2MMYYS01NZUKhkP3222+qdV69esUMDAzY8ePHS3ydvLw8FhwczPLy8srMlJWVxfh8Pjt8+LDafC8vL/bjjz+y8PBwBoDdv39ftUyhUDBzc3O2efPmMrfPRSbGGPPw8GBz585VW96wYUM2c+ZMvWV6X8+ePVn79u01zsNFpv79+7NBgwaVKwPXmYYOHcp69uxZqTIxxtjLly9Z9erV2f3795lMJmMrV67Ue6aiCn9rTp8+XWkyXb9+nQFg0dHRes8UGRnJALDbt29rnIUxxpKSkhgAlpaWVq7nlUfh385fYMZmCqtWaPIXmHGe979OL+fQIyMjER8fDx8fH9U8sViMNm3a4PLlywCAmzdvQi6Xq60jlUrh6empWqciFAoF8vPzi9XYJBIJLl26hNzcXABQW87n8yESiXDp0qUKv/7HZAKAli1b4uDBg6pWhJCQEDx58gSdO3fWW6aiEhIScOTIEYwcOZKTPJpkUiqVOHLkCFxcXNC5c2dYW1ujSZMmxU776DJToXPnzsHa2houLi4YPXo0EhMT9ZpJqVRi8ODB8Pf3h4eHB2dZypOpqLy8PGzatAlmZmbw8vKqFJmAguGjeTweqlatWmkyEaKXAr1whJvSxqKNj4+HSCRCtWrVPrhORZiYmKBZs2aYN28eYmNjkZ+fj927d+PatWuIi4uDm5sbZDIZpk+fjjdv3iAvLw+LFy9GfHw84uLiKvz6H5MJANasWQN3d3fY29tDJBKhS5cuWLduHVq2bKm3TEXt2LEDJiYm6NOnDyd5NMmUmJiIjIwMLF68GF26dMHJkyfRu3dv9OnTB+fPn9dLJgDw9fXFr7/+irNnz2LFihUIDQ1F+/btVQeP+si0ZMkSCAQCTJgwgZMMH5MJAA4fPowqVarA0NAQK1euxKlTp2BpaanXTIVycnLwww8/YODAgVobxrOimSq7wl7uFZ1I6fTay72ssWhLosk6mtq1axcYY6hevTrEYjHWrFmDgQMHgs/nQygUYv/+/Xjy5AnMzc1hZGSEc+fOwdfXF3w+XyuvX95MQEGBfvXqVRw8eBA3b97EihUrMGbMGJw+fVpvmYraunUrvvrqK07PVZeVSalUAgB69uyJyZMno379+vjhhx/QvXt3bNiwQS+ZAKB///7o1q0bPD090aNHDxw7dgxPnjzBkSNH9JLp5s2bWL16NbZv367T85OafJ7atWuHsLAwXL58GV26dEG/fv04bc3Q9DMul8vx5ZdfQqlUYt26dZzlKU+m/wIeKt4hjsrzsumlQLe1tQWAUseitbW1RV5eHt68efPBdSqqVq1aOH/+PDIyMhATE4Pr169DLpfDyckJAODt7Y2wsDCkpqYiLi4Ox48fR3Jysmo5F0rLlJ2djRkzZiAwMBA9evRAvXr1MG7cOPTv3x/Lly/XS6aiLl68iPDwcIwaNYqzLJpksrS0hEAggLu7u9pz6tSpw2kvd033UyE7OzvIZDJOr5woLdPFixeRmJgIBwcHCAQCCAQCREdHY+rUqXB0dNRLpkLGxsZwdnZG06ZNERQUBIFAgKCgIL1mksvl6NevHyIjI3Hq1CnOauflyfT/EV229mF6KdCdnJxga2urNhZtXl4ezp8/rxqL1tvbG0KhUG2duLg43L9/X+vj1RobG8POzg5v3rzBiRMn0LNnT7XlZmZmsLKyQkREBG7cuFFsORdKyiSXyyGXy2FgoP5nK1or1XWmooKCguDt7c3ZuU5NM4lEIjRu3Bjh4eFq6z558kQnIymVtZ8KJScnIyYmBnZ2dnrJNHjwYNy9exdhYWGqSSqVwt/fHydOnNBLpg9hjHF2akKTTIWFeUREBE6fPg0LCwvOs5SV6b+k8F7uFZ0AumytNJzdKa6ssWgnTZqEhQsXonbt2qhduzYWLlwIIyMjDBw4EEBBITpy5EhMnToVFhYWMDc3x3fffYe6deuiY8eOWsl44sQJMMbg6uqKp0+fwt/fH66urhg+fDgA4I8//oCVlRUcHBxw7949TJw4Eb169VLrqKdtpWUSCoVo06YN/P39IZFIIJPJcP78eezcuROBgYF6yVQoPT0df/zxB1asWMFZjvJk8vf3R//+/dG6dWu0a9cOx48fx6FDh3Du3Dm9ZMrIyEBAQAA+//xz2NnZISoqCjNmzIClpSV69+6tl0xCobBYwSQUCmFrawtXV1e9ZMrMzMSCBQvg5+cHOzs7JCcnY926dXj58iX69u2rl0wKhQJffPEFbt26hcOHDyM/P1/Vumhubg6RSKTzTACQkpKCFy9eqK6HLzyAtbW1VbWCVhZ061cd+dju8WVdthYSEsJQMDaO2jR06FDGWMGla7Nnz2a2trZMLBaz1q1bs3v37qltIzs7m40bN46Zm5sziUTCunfvzl68ePHBTOW5LIQxxvbt28dq1qzJRCIRs7W1ZWPHjmWpqamq5atXr2b29vZMKBQyBwcHNnPmTJabm6vRtrnKFBcXx4YNG8akUikzNDRkrq6ubMWKFUypVOotE2OMbdy4kUkkkmLz9ZkpKCiIOTs7M0NDQ+bl5cWCg4P1likrK4v5+PgwKysr1edp6NChpX6euc5UEq4vWysrU3Z2NuvduzeTSqVMJBIxOzs75ufnx65fv663TIWXhZU0hYSE6CUTY4xt27atxEyzZ8/WaPu6vGxtpqgqmy+uVqFppqgqXbZWBh5jZQwY+wHp6ekwMzNDUlKSTpufSiOXy3H06FF07doVQqFQ33EAUCZNUSbNUCbNUKayJScnw9LSEmlpaZz1BygsJ34SV4VhBTte5jCGubmpnOb9r6PBWQghhHCKmtx1g/YRIYQQ8gmgGjohhBBOGYAHgwpeSU61z7LRPiKEEMIpbd4pjq5D/zCqoRNCCOGUNs+hh4aGUqe4D6AaOiGEEPIJoBo6IYQQTmljcBWqfZaNCnRCCCGcKhicpWIlOg8fdcuU/1fooIcQQgj5BFANnRBCCKeoyV03qEAnhBDCKbpTnG7QPiKEEEI+ARrX0HNzc9XGI05PTwcA1RjdlUFhjsqSB6BMmqJMmqFMmqFMZdNlDmpy1w2NR1sLCAjAnDlzis3fs2cPjIyMtB6MEEIId7KysjBw4ECdjLa22tgcEl7FiuRspsTEzBS4uLiAz+dj7NixGDt2rJaSfho0LtBLqqHXqFEDcXFxlWr41FOnTqFTp06VYnhCgDJpijJphjJphjKVLTk5GXZ2dv+5Ap2GT/0wjZvcxWIxxGJxsflCobBSfDiLokyaoUyaoUyaoUyaqSyZdJmBmtx1g3q5E0II4RTv3VTRbZDSUYFOCCGEU1RD1w3aR4QQQsgngGrohBBCOGUAXoXv5V7R5/9/QAU6IYQQTlGTu27QPiKEEEI+AVRDJ4QQwqmC4VMrvg1SOirQCSGEcIouW9MNanInhBBCPgFUoBNCCOGUAY+nlQkAGjduDHd3d6xdu1bP76ry0UmBrlAoMHPmTDg5OUEikaBmzZqYO3culEqlap0DBw6gc+fOsLS0BI/HQ1hYmF4zyeVyTJs2DXXr1oWxsTGkUimGDBmC2NhYvWUCCgbJcXNzg7GxMapVq4aOHTvi2rVres1U1Ndffw0ej4dVq1bpNdOwYcPA4/HUpqZNm+o1EwA8evQIfn5+MDMzg4mJCZo2bYoXL17oLdP7+6hwWrZsmd4yZWRkYNy4cbC3t4dEIkGdOnWwfv16TvJomikhIQHDhg2DVCqFkZERunTpgoiICM4yAcDbt28xadIkyGQySCQSNG/eHKGhoarljDEEBARAKpVCIpGgbdu2ePDgAaeZPhZPSxMAhIaG4uHDhzQwSwl0cg59yZIl2LBhA3bs2AEPDw/cuHEDw4cPh5mZGSZOnAgAyMzMRIsWLdC3b1+MHj1a75mysrJw69YtzJo1C15eXnjz5g0mTZoEPz8/3LhxQy+ZAMDFxQW//PILatasiezsbKxcuRI+Pj54+vQprKys9JKpUHBwMK5duwapVKr1HB+TqUuXLti2bZvqsUgk0mumZ8+eoWXLlhg5ciTmzJkDMzMzPHr0CIaGhnrLFBcXp/acY8eOYeTIkfj888/1lmny5MkICQnB7t274ejoiJMnT2LMmDGQSqXo2bOnzjMxxtCrVy8IhUL8/fffMDU1RWBgIDp27IiHDx/C2NhY65kAYNSoUbh//z527doFqVSK3bt3q16zevXqWLp0KQIDA7F9+3a4uLhg/vz56NSpE8LDw2FiYsJJJlLJsY+UlpbGALCkpKQy1+3WrRsbMWKE2rw+ffqwQYMGFVs3MjKSAWC3b98ud6a8vDwWHBzM8vLytJqp0PXr1xkAFh0dXWkyFf4dTp8+rddML1++ZNWrV2f3799nMpmMrVy5UuM8XGQaOnQo69mzZ7kycJ2pf//+pf4t9ZHpfT179mTt27fXayYPDw82d+5ctXUaNmzIZs6cqZdM4eHhDAC7f/++arlCoWDm5uZs8+bNnGTKyspifD6fHT58WG2+l5cX+/HHH5lSqWS2trZs8eLFqmU5OTnMzMyMbdiwQaM8SUlJDABLS0vT+D2UV+Hv03YzS/Z7VesKTdvNLDnP+1+nkyb3li1b4syZM3jy5AkA4M6dO7h06RK6du2qi5fXWqa0tDTweDxUrVq1UmTKy8vDpk2bYGZmBi8vL71lUiqVGDx4MPz9/eHh4cFJjvJmAoBz587B2toaLi4uGD16NBITE/WWSalU4siRI3BxcUHnzp1hbW2NJk2aIDg4WG+Z3peQkIAjR45g5MiRes3UsmVLHDx4EK9evQJjDCEhIXjy5Ak6d+6sl0yFw0YXbUnh8/kQiUS4dOkSJ5kUCgXy8/OLtd5IJBJcunQJkZGRiI+Ph4+Pj2qZWCxGmzZtcPnyZU4yVYQ2m9zJh+mkyX3atGlIS0uDm5sb+Hw+8vPzsWDBAgwYMEAXL6+VTDk5Ofjhhx8wcOBAzsbi1TTT4cOH8eWXXyIrKwt2dnY4deoULC0t9ZZpyZIlEAgEmDBhAicZPiaTr68v+vbtC5lMhsjISMyaNQvt27fHzZs3SxwGmOtMiYmJyMjIwOLFizF//nwsWbIEx48fR58+fRASEoI2bdroPNP7duzYARMTE/Tp00frWcqTac2aNRg9ejTs7e0hEAhgYGCALVu2oGXLlnrJ5ObmBplMhunTp2Pjxo0wNjZGYGAg4uPji52y0BYTExM0a9YM8+bNQ506dWBjY4O9e/fi2rVrqF27NuLj4wEANjY2as+zsbFBdHQ0J5kqorBvRoW2QUV6mXRSoO/btw+7d+/Gnj174OHhgbCwMEyaNAlSqRRDhw7VRYQKZZLL5fjyyy+hVCqxbt06vWdq164dwsLCkJSUhM2bN6Nfv364du0arK2tdZ7p5s2bWL16NW7dulXhL6y2MgFA//79Vet7enqiUaNGkMlkOHLkCCcFVlmZCjtY9ezZE5MnTwYA1K9fH5cvX8aGDRs4KdDL+73bunUrvvrqK87O6Wuaac2aNbh69SoOHjwImUyGCxcuYMyYMbCzs0PHjh11nkkoFGL//v0YOXIkzM3Nwefz0bFjR/j6+mo9S1G7du3CiBEjUL16dfD5fDRs2BADBw7ErVu3VOu8/51jjOnse0gqoY9tqy/POXR7e3v2yy+/qM2bN28ec3V1Lbaurs6ha5opLy+P9erVi9WrV0+j96qLTO9zdnZmCxcu1EumlStXMh6Px/h8vmoCwAwMDJhMJtNLpg9xdnZWO+eoy0y5ublMIBCwefPmqa3z/fffs+bNm+slU1EXLlxgAFhYWJjGWbjIlJWVxYRCYbFzxyNHjmSdO3fWS6aiUlNTWWJiImOMsc8++4yNGTOGk0xFZWRksNjYWMYYY/369WNdu3Zlz549YwDYrVu31Nb18/NjQ4YM0Wi7ujyHvquqFdtfzaZC066qVnQOvQw6OYeelZUFAwP1l+Lz+R+89EkXNMkkl8vRr18/RERE4PTp07CwsNB7ppIwxlTn+XSdafDgwbh79y7CwsJUk1Qqhb+/P06cOKGXTCVJTk5GTEwM7Ozs9JJJJBKhcePGCA8PV1vnyZMnkMlkeslUVFBQELy9vTnri6FpJrlcDrlcrtPfi/LsJzMzM1hZWSEiIgI3btzgpNf9+4yNjWFnZ4c3b97gxIkT6NmzJ5ycnGBra4tTp06p1svLy8P58+fRvHlzzjOVl4GWJlI6nTS59+jRAwsWLICDgwM8PDxw+/ZtBAYGYsSIEap1UlJS8OLFC9V13oU/fLa2trC1tdV5JoVCgS+++AK3bt3C4cOHkZ+frzpvZW5uzsklUGVlyszMxIIFC+Dn5wc7OzskJydj3bp1ePnyJfr27av1PJpksrCwKHagIxQKYWtrC1dXV71kysjIQEBAAD7//HPY2dkhKioKM2bMgKWlJXr37q2XTADg7++P/v37o3Xr1mjXrh2OHz+OQ4cO4dy5c3rLBADp6en4448/sGLFCk5ylCeTqakp2rRpA39/f0gkEshkMpw/fx47d+5EYGCgXjIBwB9//AErKys4ODjg3r17mDhxInr16qXWKU3bTpw4AcYYXF1d8fTpU/j7+8PV1RXDhw8Hj8fDpEmTsHDhQtSuXRu1a9fGwoULYWRkhIEDB3KWiVRyH1u1L0+Te3p6Ops4cSJzcHBghoaGrGbNmuzHH39kubm5qnW2bdvGABSbZs+erXGm8jRplZWpsOm/pCkkJEQvmbKzs1nv3r2ZVCplIpGI2dnZMT8/P3b9+nWN82g7U0m4vmytrExZWVnMx8eHWVlZMaFQyBwcHNjQoUPZixcv9JapUFBQEHN2dmaGhobMy8uLBQcH6z3Txo0bmUQiYampqeXKwlWmuLg4NmzYMCaVSpmhoSFzdXVlK1asYEqlUm+ZVq9ezezt7VWfp5kzZ5b6HahoJsYY27dvH6tZsyYTiUTM1taWjR07Vu1vpFQq2ezZs5mtrS0Ti8WsdevW7N69exrn0WWT+55qVizY3KZC055q1OReFh5jjH3MgUB6ejrMzMyQlJTEeVO0puRyOY4ePYquXbtCKBTqOw4AyqQpyqQZyqQZylS25ORkWFpaIi0tjbMrdwrLib3VrGHEq1ijeRZTYsCbRE7z/tfRaQlCCCHkE0DDpxJCCOEUDZ+qG1SgE0II4RQV6LpBTe6EEEL+M2j41A+jGjohhBBOGQAwqGAV2+Bd9+3Q0FDqFPcBVKATQgjhFO/dfxXdBikdFeiEEEI4R8Ux9+gcOiGEEPIJoBo6IYQQTvF4BVNFt0FKRwU6IYQQTtFla7pBTe6EEELIJ4Bq6IQQQjhlAB4MKljHrujz/z/QuEDPzc1VG3M7PT0dwL/jF1cGhTkqSx6AMmmKMmmGMmmGMpVNlzmoyV03NB5tLSAgAHPmzCk2f8+ePTAyMtJ6MEIIIdzJysrCwIEDdTLa2t/mtjA2qNgZ3kylEj1T4mm0tVJoXKCXVEOvUaMG4uLiKtXwqadOnUKnTp0qxfCEAGXSFGXSDGXSDGUqW3JyMuzs7HRSoB+00E6B7pdMBXppNG5yF4vFEIvFxeYLhcJK8eEsijJphjJphjJphjJpprJk0mUGanLXDerlTgghhHwCqJc7IYQQTtG93HWDCnRCCCGcMuBpYbQ1Ks/LRAU6IYQQTtE5dN2gc+iEEELIJ4Bq6IQQQjhFNXTdoAKdEEIIp6hTnG5QkzshhBDyCaAaOiGEEE7ReOi6QTV0QgghnDLQ0gQAjRs3hru7O9auXavLt/CfoJMCXaFQYObMmXBycoJEIkHNmjUxd+5cKJVK1TqMMQQEBEAqlUIikaBt27Z48OABp7kcHR3B4/GKTWPHjgUAJCQkYNiwYZBKpTAyMkKXLl0QERGh10wZGRkYN24c7O3tIZFIUKdOHaxfv15veUpaxuPxsGzZMr1lAoBHjx7Bz88PZmZmMDExQdOmTfHixQu9ZRo2bFixZU2bNuUsjyaZivr666/B4/GwatUqvWYKCAiAm5sbjI2NUa1aNXTs2BHXrl3TWya5XI5p06ahbt26MDY2hlQqxZAhQxAbG6u3TABw4MABdO7cGZaWluDxeAgLC+M0T2USGhqKhw8flvg5/v9OJ03uS5YswYYNG7Bjxw54eHjgxo0bGD58OMzMzDBx4kQAwNKlSxEYGIjt27fDxcUF8+fPR6dOnRAeHg4TExNOcoWGhiI/P1/1+P79++jUqRP69u0Lxhh69eoFoVCIv//+G6ampggMDETHjh3x8OFDGBsb6zwTAEyePBkhISHYvXs3HB0dcfLkSYwZMwZSqRQ9e/bUeZ64uDi19Y8dO4aRI0fi888/13oWTTM9e/YMLVu2xMiRIzFnzhyYmZnh0aNHMDQ01FsmAOjSpQu2bdumeiwSiTjLo2kmAAgODsa1a9cglUo5zaNJJhcXF/zyyy+oWbMmsrOzsXLlSvj4+ODp06ewsrLSeaasrCzcunULs2bNgpeXF968eYNJkybBz88PN27c4CRPWZkAIDMzEy1atEDfvn0xevRoznJoC/Vy1xH2kdLS0hgAlpSUVOa63bp1YyNGjFCb16dPHzZo0CDGGGNKpZLZ2tqyxYsXq5bn5OQwMzMztmHDBo0z5eXlseDgYJaXl6fxc4qaOHEiq1WrFlMqlSw8PJwBYPfv31ctVygUzNzcnG3evFkvmRhjzMPDg82dO1dtnYYNG7KZM2fqJNP7ed7Xs2dP1r59+3JvV5uZ+vfvr/psVYQ2Mw0dOpT17NmzUmVijLGXL1+y6tWrs/v37zOZTMZWrlyp90xFFf7OnD59utJkun79OgPAoqOj9Z4pMjKSAWC3b98u9zaTkpIYAJaWllbu52qq8O93xro6u2Zbo0LTGevqnOf9r9NJk3vLli1x5swZPHnyBABw584dXLp0CV27dgUAREZGIj4+Hj4+PqrniMVitGnTBpcvX9ZFROTl5WH37t0YMWIEeDyeaqjYorU6Pp8PkUiES5cu6SUTULAvDx48iFevXoExhpCQEDx58gSdO3fWS56iEhIScOTIEYwcOZLzLB/KpFQqceTIEbi4uKBz586wtrZGkyZNEBwcrLdMhc6dOwdra2u4uLhg9OjRSExM1GsmpVKJwYMHw9/fHx4eHjrLUlqm95dv2rQJZmZm8PLyqhSZACAtLQ08Hg9Vq1atNJkIAXR0Dn3atGkYMGAA3NzcIBQK0aBBA0yaNAkDBgwAAMTHxwMAbGxs1J5nY2OjWsa14OBgpKamYtiwYQAANzc3yGQyTJ8+HW/evEFeXh4WL16M+Pj4Ys3MusoEAGvWrIG7uzvs7e0hEonQpUsXrFu3Di1bttRLnqJ27NgBExMT9OnTh/MsH8qUmJiIjIwMLF68GF26dMHJkyfRu3dv9OnTB+fPn9dLJgDw9fXFr7/+irNnz2LFihUIDQ1F+/btVQeO+si0ZMkSCAQCTJgwQScZNMkEAIcPH0aVKlVgaGiIlStX4tSpU7C0tNRrpkI5OTn44YcfMHDgQJ2NyV1Wpv8CnpYmUjqdnEPft28fdu/ejT179sDDwwNhYWGYNGkSpFIphg4dqlrv/aNPxpjOjkiDgoLg6+urOo8oFAqxf/9+jBw5Eubm5uDz+ejYsSN8fX11kqekTEBBgX716lUcPHgQMpkMFy5cwJgxY2BnZ4eOHTvqPE9RW7duxVdffcXpueqyMhV2tOzZsycmT54MAKhfvz4uX76MDRs2oE2bNjrPBAD9+/dX/dvT0xONGjWCTCbDkSNHdHIA9H6mmzdvYvXq1bh165bean0f+jy1a9cOYWFhSEpKwubNm9GvXz9cu3YN1tbWessEAHK5HF9++SWUSiXWrVvHeRZNMv1X0Dl03dBJge7v748ffvgBX375JQCgbt26iI6OxqJFizB06FDY2toCKKip29nZqZ6XmJhYrNbOhejoaJw+fRoHDhxQm+/t7Y2wsDCkpaUhLy8PVlZWaNKkCRo1aqSXTNnZ2ZgxYwb++usvdOvWDQBQr149hIWFYfny5ZwW6B/aR4UuXryI8PBw7Nu3j7MMmmSytLSEQCCAu7u72rp16tTRyamSsvZTITs7O8hkMs6vmvhQposXLyIxMREODg6qefn5+Zg6dSpWrVqFqKgonWcqZGxsDGdnZzg7O6Np06aoXbs2goKCMH36dL1lksvl6NevHyIjI3H27Fmd1c41/TxVdoW99Cu6DVI6nTS5Z2VlwcBA/aX4fL6qNuXk5ARbW1ucOnVKtTwvLw/nz59H8+bNOc+3bds2WFtbqwrJ95mZmcHKygoRERG4ceMGJ73JNckkl8shl8tL3Ze6zFNUUFAQvL29dXau80OZRCIRGjdujPDwcLV1nzx5AplMppdMJUlOTkZMTIzaAawuMw0ePBh3795FWFiYapJKpfD398eJEyf0kulDGGM6OTXxoUyFhXlERAROnz4NCwsLzrOUlYmQkuikht6jRw8sWLAADg4O8PDwwO3btxEYGIgRI0YAKDjymjRpEhYuXIjatWujdu3aWLhwIYyMjDBw4EBOsymVSmzbtg1Dhw6FQKC+O/744w9YWVnBwcEB9+7dw8SJE9GrVy+1znu6zGRqaoo2bdrA398fEokEMpkM58+fx86dOxEYGKjzPIXS09Pxxx9/YMWKFZxlKE8mf39/9O/fH61bt0a7du1w/PhxHDp0COfOndNLpoyMDAQEBODzzz+HnZ0doqKiMGPGDFhaWqJ37956yWRhYVGsYBIKhbC1tYWrq6teMmVmZmLBggXw8/ODnZ0dkpOTsW7dOrx8+bLYpXa6yqRQKPDFF1/g1q1bOHz4MPLz81X9eszNzTm99LC0z3hKSgpevHihuh6+8ADW1tZW1eJZmdB46Drysd3jy3PZWnp6Ops4cSJzcHBghoaGrGbNmuzHH39kubm5qnWUSiWbPXs2s7W1ZWKxmLVu3Zrdu3evXJk+5rKQEydOMAAsPDy82LLVq1cze3t7JhQKmYODA5s5c6ZaZn1kiouLY8OGDWNSqZQZGhoyV1dXtmLFig9eYqONTKXlYYyxjRs3MolEwlJTUzXOwHWmoKAg5uzszAwNDZmXlxcLDg7WW6asrCzm4+PDrKysVJ+loUOHshcvXugtU0l0ddnahzJlZ2ez3r17M6lUykQiEbOzs2N+fn7s+vXrestUeFlYSVNISIheMjHG2LZt20rMNHv2bI3z6PKytYvSGuy2vaxC00VpDbpsrQw8xhj7mAOB9PR0mJmZISkpSadNUKWRy+U4evQounbtCqFQqO84ACiTpiiTZiiTZihT2ZKTk2FpaYm0tDTO+gQUlhMXpTVQxaBiZ3gzlEq0io3hNO9/HQ3OQgghhFM0OItuUIFOCCGEU1Sg6waNtkYIIYR8AqiGTgghhFN0HbpuUIFOCCGEU9TkrhvU5E4IIYR8AqiGTgghhFPU5K4bVKATQgjhFDW56wYV6IQQQjhlwOPBoIIlckWf//8BnUMnhBBCPgFUQyeEEMIpanLXDY0L9NzcXLUhDNPT0wH8O6RnZVCYo7LkASiTpiiTZiiTZihT2XSZgwctdIoDlehl0XhwloCAAMyZM6fY/D179sDIyEjrwQghhHAnKysLAwcO1MngLDdrOqEKv4KDs+Qr4f08kgZnKYXGBXpJNfQaNWogLi6uUo22durUKXTq1KlSjGYEUCZNUSbNUCbNUKayJScnw87OTicF+i1n7RToDZ9SgV4ajZvcxWIxxGJxsflCobBSfDiLokyaoUyaoUyaoUyaqSyZdJpBC9eh00n0slEvd0IIIeQTQL3cCSGEcIp6uesGFeiEEEI4VVCgV/TWr1oK8wmjJndCCCHkE0AFOiGEEE4VNrlXdKpsevfujWrVquGLL77QdxQAVKATQgjhWOG93Cs6VTYTJkzAzp079R1DhQp0QgghnPpUa+jt2rWDiYmJvmOoUIFOCCHkk3PhwgX06NEDUqkUPB4PwcHBxdZZt24dnJycYGhoCG9vb1y8eFH3QbWIerkTQgjhFE8LN5Yp7/MzMzPh5eWF4cOH4/PPPy+2fN++fZg0aRLWrVuHFi1aYOPGjfD19cXDhw/h4OAAAPD29la7Q2qhkydPQiqVftwb4RAV6IQQQjilzevQCwcGK/Shu5j6+vrC19f3g9sLDAzEyJEjMWrUKADAqlWrcOLECaxfvx6LFi0CANy8ebNioXWMmtwJIYT8Z9SoUQNmZmaqqbDwLY+8vDzcvHkTPj4+avN9fHxw+fJlbUXVOZ0V6K9evcKgQYNgYWEBIyMj1K9fX+3o58CBA+jcuTMsLS3B4/EQFham10xyuRzTpk1D3bp1YWxsDKlUiiFDhiA2NlZvmYCCUe/c3NxgbGyMatWqoWPHjrh27ZpeMxX19ddfg8fjYdWqVXrNNGzYMFUzX+HUtGlTvWYCgEePHsHPzw9mZmYwMTFB06ZN8eLFC71len8fFU7Lli3TW6aMjAyMGzcO9vb2kEgkqFOnDtavX89ZHk0yJSQkYNiwYZBKpTAyMkKXLl0QERHBWR5HR8cS/y5jx44FADDGEBAQAKlUColEgrZt2+LBgwec5akobXaKi4mJQVpammqaPn16ufMkJSUhPz8fNjY2avNtbGwQHx+v8XY6d+6Mvn374ujRo7C3t0doaGi5s2iTTprc37x5gxYtWqBdu3Y4duwYrK2t8ezZM1StWlW1TmZmJlq0aIG+ffti9OjRes+UlZWFW7duYdasWfDy8sKbN28wadIk+Pn54caNG3rJBAAuLi745ZdfULNmTWRnZ2PlypXw8fHB06dPYWVlpZdMhYKDg3Ht2jXOzy1pmqlLly7Ytm2b6rFIJNJrpmfPnqFly5YYOXIk5syZAzMzMzx69AiGhoZ6yxQXF6f2nGPHjmHkyJElnnPUVabJkycjJCQEu3fvhqOjI06ePIkxY8ZAKpWiZ8+eOs/EGEOvXr0gFArx999/w9TUFIGBgejYsSMePnwIY2NjrWcKDQ1Ffn6+6vH9+/fRqVMn9O3bFwCwdOlSBAYGYvv27XBxccH8+fPRqVMnhIeHV6pe14V4BjzwDCp4Dp0VPN/U1FRro629f16eMVauc/UnTpzQSg6tYR8pLS2NAWBJSUllrjtt2jTWsmVLjbYbGRnJALDbt2+XO1NeXh4LDg5meXl5Ws1U6Pr16wwAi46OrjSZCv8Op0+f1mumly9fsurVq7P79+8zmUzGVq5cqXEeLjINHTqU9ezZs1wZuM7Uv39/NmjQoEqV6X09e/Zk7du312smDw8PNnfuXLV5DRs2ZDNnztRLpvDwcAaA3b9/XzVPoVAwc3NztnnzZk4yvW/ixImsVq1aTKlUMqVSyWxtbdnixYtVy3NycpiZmRnbsGGDxttMSkpiAFhaWlq582iq8PfpsVdt9qqhW4Wmx161PzovAPbXX3+pHufm5jI+n88OHDigtt6ECRNY69atK/q29UYnTe4HDx5Eo0aN0LdvX1hbW6NBgwbYvHmzLl5aq5nS0tLA4/FKrJ3qI1NeXh42bdoEMzMzeHl56S2TUqnE4MGD4e/vDw8PD05ylDcTAJw7dw7W1tZwcXHB6NGjkZiYqLdMSqUSR44cgYuLCzp37gxra2s0adKkxEtpdJXpfQkJCThy5AhGjhyp10wtW7bEwYMH8erVKzDGEBISgidPnqBz5856yVTYy7loSwqfz4dIJMKlS5c4yVRUXl4edu/ejREjRoDH4yEyMhLx8fFq53/FYjHatGlTac//Vrbr0EUiEby9vXHq1Cm1+adOnULz5s2190K69rFHAuWpoYvFYiYWi9n06dPZrVu32IYNG5ihoSHbsWNHsXV1VUMvTybGGMvOzmbe3t7sq6++0numQ4cOMWNjY8bj8ZhUKmXXr1/Xa6aFCxeyTp06MaVSyRhjnNfQNcn022+/scOHD7N79+6xgwcPMi8vL+bh4cFycnL0kikuLo4BYEZGRiwwMJDdvn2bLVq0iPF4PHbu3Dm9ZHrfkiVLWLVq1Vh2drbGebjIlJuby4YMGcIAMIFAwEQiEdu5c6feMuXl5TGZTMb69u3LUlJSWG5uLlu0aBEDwHx8fDjJVNS+ffsYn89nr169Yowx9s8//zAAqseFRo8eXa48uqyhRzRwYfGN6lRoimjgwgAwFxcXVqdOHfbLL7+U+tpv375lt2/fZrdv32YAVN+7whbW3377jQmFQhYUFMQePnzIJk2axIyNjVlUVBRn+4NrOinQhUIha9asmdq88ePHs6ZNmxZbV1cFenky5eXlsZ49e7IGDRqU+8PPRaaMjAwWERHBrly5wkaMGMEcHR1ZQkKCXjLduHGD2djYqP24cF2gl+dvVyg2NpYJhUK2f/9+vWR69eoVA8AGDBigtk6PHj3Yl19+qZdM73N1dWXjxo3TOAtXmZYtW8ZcXFzYwYMH2Z07d9jPP//MqlSpwk6dOqW3TDdu3GBeXl4MAOPz+axz587M19eX+fr6cpKpKB8fH9a9e3fV48ICPTY2Vm29UaNGsc6dO2u83f9qga5p3pCQEAag2DR06FDVOmvXrmUymYyJRCLWsGFDdv78eY72hG7opMndzs4O7u7uavPq1KnDae/esmiaSS6Xo1+/foiMjMSpU6e01hmjIpmMjY3h7OyMpk2bIigoCAKBAEFBQXrJdPHiRSQmJsLBwQECgQACgQDR0dGYOnUqHB0d9ZLpQ8+RyWSc9UwuK5OlpSUEAoFOvwfl2U8XL15EeHi46ppcrpSVKTs7GzNmzEBgYCB69OiBevXqYdy4cejfvz+WL1+ul0xAwQ1GwsLCkJqairi4OBw/fhzJyclwcnLiJFOh6OhonD59Wu3vYmtrCwDFemMnJiYW67VdWeijyb1t27ZgBZVWtWn79u2qdcaMGYOoqCjk5ubi5s2baN26tXbfuI7ppEBv0aIFwsPD1eY9efIEMplMFy9fIk0yFRbmEREROH36NCwsLPSeqSSMsRLvZqSLTIMHD8bdu3cRFhammqRSKfz9/TnrAfox+yk5ORkxMTGws7PTSyaRSITGjRvr9HtQnv0UFBQEb29vzvpiaJpJLpdDLpfDwED9p4nP50OpVOolU1FmZmawsrJCREQEbty4wUmv+6K2bdsGa2trdOvWTTXPyckJtra2aud/8/LycP78+Up7/vdDl0eWdyJl+NiqfXma3K9fv84EAgFbsGABi4iIYL/++iszMjJiu3fvVq2TnJzMbt++zY4cOcIAsN9++43dvn2bxcXFaZypPE1aZWWSy+XMz8+P2dvbs7CwMBYXF6eacnNz9ZIpIyODTZ8+nV25coVFRUWxmzdvspEjRzKxWKzWA1eXmUrCdZN7WZnevn3Lpk6dyi5fvswiIyNZSEgIa9asGatevTpLT0/XSybGGDtw4AATCoVs06ZNLCIigv3888+Mz+ezixcv6i0TYwXfZSMjI7Z+/XqNc3CZqU2bNszDw4OFhISw58+fs23btjFDQ0O2bt06vWX6/fffWUhICHv27BkLDg5mMpmM9enTR+M85c3EGGP5+fnMwcGBTZs2rdiyxYsXMzMzM3bgwAF27949NmDAAGZnZ1euz7cum9yfe7uy103cKzQ993blPO9/nU4KdMYKOnJ5enoysVjM3Nzc2KZNm9SWb9u2rcTzHbNnz9Y4U3m/MKVlKjyXX9IUEhKil0zZ2dmsd+/eTCqVMpFIxOzs7Jifnx+nneLKylQSrgv0sjJlZWUxHx8fZmVlxYRCIXNwcGBDhw5lL1680FumQkFBQczZ2ZkZGhoyLy8vFhwcrPdMGzduZBKJhKWmppYrC1eZ4uLi2LBhw5hUKmWGhobM1dWVrVixQtXpUh+ZVq9ezezt7VWfp5kzZ5brwP5jMp04cYIBYOHh4cWWKZVKNnv2bGZra8vEYjFr3bo1u3fvXrnyUIH+6eExxtjH1OzT09NhZmaGpKQkzpuiNSWXy3H06FF07doVQqFQ33EAUCZNUSbNUCbNUKayJScnw9LSEmlpaZz1DSosJyIbucFEwK/Qtt4q8uF04zGnef/r6F7uhBBCuKWNDnHvTqE3btwY7u7uWLt2rV7fUmVEo60RQgj5zwgNDaUa+gdQgU4IIYRT+hgP/f8jKtAJIYRwimdQMFV0G6R0tIsIIYSQTwDV0AkhhHCKmtx1gwp0Qggh3DLgFUwV3QYpFTW5E0II+c+gy9Y+jGrohBBCuKWNAc3fPZ8uW/swKtAJIYRwis6h6wYV6IQQQrhF59B1QuMCPTc3V22IzvT0dAD/DndYGRTmqCx5AMqkKcqkGcqkGcpUtsqSg2iPxoOzBAQEYM6cOcXm79mzB0ZGRloPRgghhDtZWVkYOHCgTgZniWnrBdMKDs6SrshHjXN3aHCWUmhcoJdUQ69RowbiIiNgYV6Ns4DlIVcocOriVXRq1RRCQeU4m0CZNEOZNEOZNEOZypac8gZ2TrV1UqC/bF9fKwW6/dkwKtBLofGnSiwWQywWF5svFAgqxYezKMqkGcqkGcqkGcqkmcqSqTJkINpF16ETQgjhVkXHTi1y2dundB16ZmamVrdHh2iEEEI4xePxwKtgL3XeJ3gduo2NDfr164cRI0agZcuWFd4e1dAJIYQQPdi7dy/S0tLQoUMHuLi4YPHixYiNjf3o7VGBTgghhFtabHL/lPTo0QP79+9HbGwsvv32W+zduxcymQzdu3fHgQMHoFAoyrU9KtAJIYRwywD/3lzmoyd9vwnuWFhYYPLkybhz5w4CAwNx+vRpfPHFF5BKpfjpp5+QlZWl0XboHDohhBCiR/Hx8di5cye2bduGFy9e4IsvvsDIkSMRGxuLxYsX4+rVqzh58mSZ26ECnRBCCKfoXu4lO3DgALZt24YTJ07A3d0dY8eOxaBBg1C1alXVOvXr10eDBg002h4V6IQQQrhF93Iv0fDhw/Hll1/in3/+QePGjUtcp2bNmvjxxx812h4V6IQQQrilxeFTPyVxcXFl3jpdIpFg9uzZGm3vE+5mQAghhFReJiYmSExMLDY/OTkZfH75b5VLBTohhBBO8Qy0MwGf1p3iPjSUSm5uLkQiUbm3p7MC/VVsLAaN+B8sajjByNIO9Zu2xM3bYarljDEELFgEaS03SCxs0bZLNzx4+IizPAELFoFnXFVtsnVyUS1PSEjEsP99C2ktNxhZ2qFLz88R8fQZZ3k0yZSRkYFxU/xhX9sdEgtb1Gn4GdZvDtJrpveXFU7LVq7RWyYAePQ4HH59v4SZnQNMbOzRtG1HvIiJ0VumYf/7ttjypm07cpZHk0xFfT1+EnjGVbHql3V6zRSwYBHcGjSGsZUU1arL0LFbT1wLvaG3THK5HNNmzkbdxs1hbCWFtJYbhoz6GrFxcXrLBAAH/j6Izn59YOlQEzzjqgi7c5fTPBWmxevQQ0ND8fDhQ4wdO1bPb+rjrVmzBmvWrAGPx8OWLVtUj9esWYOVK1di7NixcHNzK/d2dXIO/c2bVLTo0BntWrfCsb/+hLWVJZ49j0JVMzPVOksDVyPw53XYvnEtXJydMX/pcnTq0RvhYaEwMTHhJJdHnTo4fThY9biwiYMxhl5ffgWhUIC/f98DUxMTBP68Fh2798TDm9dgbGzMSZ7SMgHA5GkzEHLhInYHbYSjzAEnz4RgzKSpkNrZomf3bnrJFPcsXG3dYydPYeSY8fi8lx9necrK9Ox5JFp26oKRQwZjzo/TYWZmhkfh4TAUG+otEwB06dQR2zb8W6v4mCNwbWcCgOBDh3Et9Aakdnac5ykrk4uzM35ZsQw1nRyRnZ2Nlb+sg49fHzy9ewtWVpY6z5SVlYVbYXcw6wd/eNX1xJvUVEz6fjr8+g7AjUvnOMtTWiYAyMzMQotmTdC3Ty+MHjuB0xxE+1auXAmgoKzZsGGD2t9WJBLB0dERGzZsKPd2dVKgLwlchRr29ti28d+jf0eZTPVvxhhWrV2PH/2nok/PgoJgx6b1sHGqjT2//4mvRw7nJJdAwIetrU2x+RFPn+Hq9VDcD70CD/c6AIB1q1bA2tEZe//Yj1HDhnCSp7RMAHDlWiiGfjUAbVu3AgD8b8QwbAzahhu3bnNaoJeW6f35fx85inatW6GmkyNnecrK9OOceejq0wlLF8xVzeM6T1mZAEAsFpW6nAtlZXoVG4txU77Hib/3o9vn/fSeaWD/vmqPAxcvQNCOXbh7/wE6tGuj80xmZmY4VaRQBYCfVyzFZ63b40VMDBxq1NB5JgAYPPBLAEBUdDRnr69NPAMt3Mv9E+rlHhkZCQBo164dDhw4gGrVtDMEuU6a3A8ePYZGDeqj76ChsJY5o0GzVti8bYdqeWRUNOITEuDToZ1qnlgsRpuWLXD56jXOckU8ew5pLTc4udfDl0NH4HlkFACoxn03NPy3Rsfn8yESinDp8hXO8pSWCQBaNm+Kg0eO4VVsLBhjCDl/AU+ePkPnjh30lqmohIREHDl+EiOHDuY0T2mZlEoljhw/CZfazujs1wfWMmc0adMBwYcO6y1ToXMXL8Fa5gwXL2+MHjsBiYmv9ZpJqVRi8Miv4T9pvOrAVRc0/Tzl5eVh09YdMDMzhVddz0qRCQDS0tLB4/HUWhj1nanSo1u/ligkJERrhTmgoxr688gorN+yFVPGj8WM76bg+s1bmPDdNIhFIgz5agDiExIAADY21mrPs7G2RvQLbs57NmnUCDs3r4eLszMSEl9j/tJlaN7eBw9uXIWbqwtkDjUwffYcbFyzCsbGRghcsxbxCQmIi0/gJE9ZmSwszLFm+RKMHjsB9rXdIRAIYGBggC1r16Bl82Z6y1TUjl/3wsSkCvr07MFZnrIyyeVyZGRkYPGKVZj/049YMi8Ax0+dQZ8BgxFy7BDatKr4iEblzWRhYQ5fn07o26cXZDVqIDI6GrPmLkD7rn64+c85iMVivWRasmIVBAIBJoz5hpPX/5hMAHD42HF8OXQksrKyYGdri1OHgmFpaaHXTIVycnLww08BGNivL6cjfpUnE/lvmTJlCubNmwdjY2NMmTKl1HUDAwPLtW2dFOhKpRKNGjbAwjk/AQAa1PfCg0ePsH7LVgz5aoBqPR7Uj8AYY5zdHci3cyfVv+sCaNakMWp5NsCOX/dgyoRx2L9nF0Z+Ow7m9o7g8/no2K4tfH06fXB7usi0Zt1GXA29gYN/7IWsRg1c+Ocyxkz+Dna2tujYvq1eMhW1dddufNW/r1rLhq4zfdn3cwBAz25dMXl8QaeZ+l71cPnaNWzYso2zAr2s/dT/iz6q5Z4e7mjUoAFkderiyPETqtNMuszUplVLrF63Abcun9fpHbg0+Ty1a90KYVcuIik5GZu37UC/wcNw7dwZWFtb6S0TUNBB7suhI6BUKrFu1XJOspQ3038G3VhG5fbt25DL5ap/f8jHfC91UqDb2drA3c1VbV4dV1fsDz4EALC1KThPFJ+QADs7W9U6ia9fw4ajL/H7jI2NUdfDHRHPngMAvBvUR9jVS0hLS0NenhxWVpZo0qYDGjXU7BZ82s6UnZ2NGQFz8ddvu9GtS2cAQL26ngi7ew/LV//MWYFeWqaiLv5zGeFPIrBvx1ad5PhQJksLCwgEArjXKf55u3Tlql4ylcTOzhYyhxqIeFrycq4zGRgYIPH1azi4/tuUnZ+fj6nTZ2LV2vWIenRP55mKznOuVRPOtWqi6WeNUbteQwTt2IXp/qXXZrjMJJfL0W/wMERGRePs0UM6H4+7rM9TZUe3fv1XSEhIif/WBp2cQ2/RtCnCI56qzXsS8RQyh4IOJU6OMtja2ODU2XOq5Xl5eTh/6R80b9pEFxGRm5uLR+FPYPdeJxQzMzNYWVki4umzgs5n3brqJM/7meRyOeRyOQx46n8yPp8PpVKpl0xFBe3YBe8G9eFVr67OspSUSSQSobF3Q4Q/iVBb58nTp5Bx2IGptEwlSU5OQczLVx9cznWmwQO+xN1r/yDsykXVJLWzg/+kCTjx9wG9ZPoQxhhy83L1lqmwMI94+hynD/+tlyZvTfYTITqpoU8ePwbN2/tg4bIV6NenN67fuIlN23Zg08+rABQceU0a+y0WLl+B2s41UbtWLSxcFggjiREG9vuCk0zfTZ+JHl27wKGGPRJfJ2H+kmVIf/sWQ9+dAvjjQDCsLC3gUKMG7j14gIn+P6BXj27w6diekzxlZTI1NUWbVi3g/+NPkEgMIXOogfMX/8HOPb8hcPECvWQqlJ6ejj/++hsrFs3nLEd5MvlPGo/+Q0agdcsWaNe6FY6fOo1DR4/j3HHuOsaVlikjIwMBCxbj815+sLO1QVT0C8wImAdLCwv09uuul0wWFubFCiahUABbG2u4utTWS6bMzEwsWLoCft18YWdrg+TkFKzbHISXr2LRt3cvvWRSKBT44qshuBV2F4f//A35+fmIf9ePxty8GmeXHpb1GU9JeYMXMTGIjYsHAFWFydbGRudXUmiEmtxV+vTpU/ZK7xw4UL6Da50U6I29G+Kv33Zj+k9zMXfRUjg5yrBq6SJ89eW/l8l8P2UisnOyMWbSd3iTmoomjb1x8uABzq5BfxkbiwHDRiEpORlWlpZo+lkjXA05BZmDAwAgLj4eU374EQmJibCztcGQgV9i1g/fc5JF00y/bd+K6bPn4KsR/0PKmzeQOdTAgtkz8c2oEXrLBAC//XkAjDEMeHf+mmtlZert1wMbVgdi0YqVmPDdNLjWdsb+PTs57TxYWqbs7Gzce/AQO/f8htS0NNjZ2qBd61bYt3MrZ5/vsjLpS2mZcnJy8PjJE+z4dS+SkpNhYW6Oxt4NcPHUMU574ZeWKSo6GgePHAMA1G/WSu15IccOqS4h1WUmADh45CiGf/PvjVW+HFrwGzB7xjQE/Didk0wVo41e6p9GgW7G4dURPPahe8+VIT09HWZmZkiKiYSFufa63VeEXKHA0ZBL6NquJYSCyjHuDGXSDGXSDGXSDGUqW3LKG1jWcEJaWhpnfQIKy4nE/q1hKqrYe07PU8B63wVO8/7X0b3cCSGE/Gd8Svdy1zb9HyYSQgj5tGnxHHpoaOh/uobesGFDnDlzBtWqVUODBg1K7b1/69atcm2bCnRCCCGcosvW/tWzZ0/VzaR69eql1W1TgU4IIYToyOzZs0v8tzZQgU4IIYRbdNlaqW7cuIFHjx6Bx+OhTp068Pb2/qjtUIFOCCGEW9oYXOUTaXIv6uXLlxgwYAD++ecfVK1aFQCQmpqK5s2bY+/evahRzpthUS93QgghRA9GjBgBuVyOR48eISUlBSkpKXj06BEYYxg5cmS5t0c1dEIIIZyi8dBLdvHiRVy+fBmurv+OPeHq6oqff/4ZLVq0KPf2qEAnhBDCLWpyL5GDg4Nq5LWiFAoFqlevXu7tUZM7IYQQogdLly7F+PHjcePGDRTetPXGjRuYOHEili8v/xC9VEMnhBDCLQNooZe7VpLoXbVq1dSuqc/MzESTJk0geHc7YIVCAYFAgBEjRpT7OnWNC/Tc3Fzk5v47hGF6ejqAgvsTyxWKcr0oVwpzVJY8AGXSFGXSDGXSDGUqmy5z0I1l/rVq1SrOtq3x4CwBAQGYM2dOsfl79uyBkZGR1oMRQgjhTlZWFgYOHKiTwVmSR/vAVCSs2Lby5LDYfJIGZymFxjX06dOnY8qUKarH6enpqFGjBloc2wHzStIUohAIcb7HKLQ7uxOC/OIdDfRBwRcipP0QtL++H4L8ynFkruALcPazz9H+wQkIlJUkk4EAZz06o/2LyxCwfH3HAQAoeHycdWiODumPIYBS33EAAAoY4IypGzrwkyDgfdRAiVqnYDycybdEBysDCCpJT2SFkuHMayU6utlDwK8cP1CKfCVOP36Jjo3rQSjg6zsOkt+k6jsCKSI7O7tYB7nyHrhoXKCLxWLV/WfVNqBQQGBQOX7sCgny5RAqKkeBXkiQr4CwkhxkFBIoFRBWkgK9kIDlQ1hJCvRCAighrCQFeiEBj0FYSQr0QgIDHoSVpEAvJOAbQFhJCvRCQgG/UhToOs1AvdxLlJmZiWnTpuH3339HcnJyseX5+eX7Laxcn3RCCCGfnsICvaITPq3hU7///nucPXsW69atg1gsxpYtWzBnzhxIpVLs3Lmz3NujXu6EEEL+M/7rw6cWdejQIezcuRNt27bFiBEj0KpVKzg7O0Mmk+HXX3/FV199Va7tUQ2dEEIIx7RRO//0mtxTUlLg5OQEoOB8eUpKCgCgZcuWuHDhQrm3RwU6IYQQbhkYaGf6xNSsWRNRUVEAAHd3d/z+++8ACmruhYO1lMent4cIIYSQ/4Dhw4fjzp07AAquJCs8lz558mT4+/uXe3t0Dp0QQgi3qJd7iSZPnqz6d7t27fDo0SPcvHkTtWrVgpeXV7m3RwU6IYQQblGBrhGZTAaZTPbRz6cmd0IIIURPzpw5g+7du6NWrVpwdnZG9+7dcfr06Y/aFhXohBBCuKXF69A/Jb/88gu6dOkCExMTTJw4ERMmTICpqSm6du2KX375pdzboyZ3Qggh3NJGL/VPsJf7okWLsHLlSowbN041b8KECWjRogUWLFigNl8Tn94eIoQQUrlQDb1E6enp6NKlS7H5Pj4+qhFNy0MvBfqy+9GQ/BqC725EqOYFv3iNHmfDYP/nJUh+DcGdlLc6zbTk9jOINh7H1H8eAQDk+UpMvxqOBn9cQtWgU5DtCsHws3cRm5mju0zXHkO4/E9MORummjf3nwfw3HoCZqv+gtXPf6Pz7xdwLa74PYA5y3ThLoSzt2HKsWslLv/24D8Qzt6G1Vce6C7TqesQTlqFKQfOqeaN+PUEhJNWqU0tVv6ms0yLD52HYMhMTNl9RG3+o1eJ6LVyN8y/noeq/5uL5nM24EVSqm4y/X4Mgm7/w5RN+1TzBN3+V+K0fP8J3WTa/jsETbpjSuAm1byMrGxMWLYesu5DUaV1H3j2/wYb9h/VSR4AWLwuCPya9TF57lLVvITXyRjuPwv2TTuhintT+A4bg4jIaM4yBCxZAQMLe7XJrk4D1XLGGAKWrEB1d28YVa+Fdn5f4MHjcM7yEG74+fnhr7/+Kjb/77//Ro8ePcq9PZ03ud9ITkfQ01jUrWqsNj9LkY9mVmbo42CNMdd0+8G8kZiGoEcvUdfcRC1PWFI6ZjSshXoWJkjNVWDq5Ufoc/wWrn7enPNMoXEp2HLnOepamanNr21ugtUd6sPJzBjZinysvhmBrn9cxONRvrAyKj54jlYzvXqNLTfDUdemWonL/34UjeuvkiA10d1wuqEv4rHlyn3UlVoWW9bZTYYtA31Uj0V83QxGEfr8JbaEhKJeDVu1+c8SktFm/mYMb+ON2b3bw8zIEI9iX8NQxP3XMPRJFLYcv4B6TvZq81/uWqb2+PjN+xi9eif6NG/IfaaHT7Al+ATqOTuqzZ+6ajPO3byHHXOmwtHOBqeu3ca4ZesgtTSHX5um3Ga6cx+bf9uPem4uqnmMMfT5ZjKEAgH+2rgSpiZVsDJoF3wGf4P7Jw/A2EjCSRYPN1ecOrBX9Zhf5PO7dM06rFy3Gdt+CYSLc00sWLEGPn0G4vG18zAxqcJJngqhXu4qa9asUf27Tp06WLBgAc6dO4dmzZoBAK5evYp//vkHU6dOLfe2dVpDz5ArMPyfh1jXxBVV3xsbd2BNW8yo64T2tiUXFlxmGnL2Dta39kA18b8/rGZiIY51b4y+tezgWrUKmthUxaoW7riVlI4Xb7O5zZSnwNCj17GhszeqidX304A6Duggs0HNqlXgYWmG5W29kJ6nwL3XqdxmypVj6P4L2ODXAtUkxQ8cXqVnYuLRq9j5eWudjW6VkZuHobuOY0P/jiVmEgv4sDU1Vk3mxobcZ8rJxZD1f2DDiF6o+t7rzfrzNHy9XLDkyy5o4ChFTWtzdKvvCmtTbn+AM7JzMGTZFmwYPxhVq6gfbNmam6lNB6+GoW09V9S0s+I2U1Y2hvy0HBtmjEfV997/1XuPMbhre7T1rgdHqQ1G9+4CL2cn3HgU8YGtaSlTZhYGT56BjQt/QjWzfw/uIyJf4Ortu1g7bwYae3nCtaYj1s6dgYysLOw9dIyzPAIBH7Y21qrJytICQMEBxuqNQZgxZTz69OgKzzpu2L52JbKys7FnfzBneSqEmtxVVq5cqZqCgoJQrVo1PHz4EEFBQQgKCsKDBw9QtWpVbN26tdzb1mmBPik0Al2qW6C9nbkuX7ZUEy49RFcHK3SwL17De19anhw8AFXfK2S1bfzp2/CtaYsOMptS18vLV2LL3ecwEwtRz6oqt5mOXIFvbXt0qCUttkypZBh24AKmNPeEh7XuDsjG/xkCX3cndHB1KHH5+acvIZ25Ee4LtuPr304j8W0W95l2HIJvfVd09HRWm69UKnH0Tjhq21rCd+l22I1dhGYBG/D3zYfcZ1q/F76N66JjA/dS10t4k46jofcwwqcF95mWrYdvi8bo+Fn9YstaeLnj8MXreJWYBMYYQm7cxZOYWPg05bbVYNzshejarhU6tlRvBcjNywMAGBYZPprP50MkFOKfG7c5yxPxPBLV3b1Rs0EzDBg1Bs+jCpr4I6NfID4hET7t2qjWFYvFaNO8Ka5cv8FZHqIdkZGRGk3Pnz8v97Z11uT+e1QCwlLe4pKvt65eskz7nsbhdlI6rvRuVua6OYp8/HjtCb50toMph02k+x7H4HbiG1wd1OGD6xx5FouvDl9DljwfdlUMceyLVrDksLl9373nuB2XjKv/K/mczrJL9yAwMMD4pqUXGFrNdCsct18m4uqUASUu71LHEV/Ud4GDuQmiktMx++hl+Kzdj2vfDYBYwM3fb9/Vu7gdHYerAd8UW5aYnomMnDwsPXwBc7/oiEX9O+PE3Sf4Ys1enJ4+Am3cnLjJdP46bj+NxtVVP5a57s4zl2EiMURvjpvb9508j9vhz3B128oSl6+a+jW+XvgzZD2GQcDnw8CAh00zJqBlfQ/OMv126Dhu33+Ma3//WmyZWy1HyKrbYcayNdiwYBaMJRKsDNqF+NdJiEtM4iRPE+8G2LF2FVycayIhMQkLAlejhW8v3P/nLOITXwMAbKzUKyHW1pZ4EfOKkzwVRr3cy8QYAwDwKtASoZMCPSYzB/43I3CofX0Y6ug8ZlliMrIx9fIjHOnWCIaC0jPJ85X46swdKAH83Iq7H5WY9CxMORuGo1+0KjVT2xrWuDGkE5KycxF0NxIDD13FP1+1hzUHTcoxaRmYcuwajg7pDENh8Y/Lzdgk/HztIa5/7VehD2K5Mr15iykHzuPot71LzAQA/Rq6qv7taWcJ7xo2qDU3CEcfRKG3l3OJz6lQpuRUTN59BMe+HwZDUfEWHOW7L6tfwzqY1KWgBlxfZocrT2Ow6ex1Tgr0mNcpmLxpH47Nm1RipvdtP/UPBrZtotG6H50p4TUmB27GsTVzYSgWlbjOz/sO4dr9cPy1fBZktta4GHYf45ath62leYk1+gpnio3H5LlLcXznerVaeCGhUIg/1q3A6B8CYNmgNfh8Pjq0aIIubbhryfDt2F7177ruQLPG3nBu1AI7fvsDTRsVHHC9/31jjFXeVmk6h/5BO3fuxLJlyxARUXBKycXFBf7+/hg8eHC5t6WTAv12ylsk5sjR/Ni/zUH5jOFSYio2PHmFtC/bgG+g2z/WrdfpSMzOQ9P9V9QyXYx7g3UPXiBjlA/4BjzI85UYcDoMUenZONmjMae181sJb5CYlYsmu86oZ3qZhHW3nyFzch/wDXgwFgngLKoC52pV0FRqgTpbjmPb/ShMa+Km/UyxyUjMzEGTjQf/zaRkuBgdj3XXH2FRx0ZIzMxGzZW/qy3//kQofr76EE8n99V+ppgEJGZkocmKPeqZnr/Cukt3kLl8PPjvHc3bmRlDVs0UT1+/0XoeALgVFYvE9Ex89tP6IpmUuBgejbWnryF9808Q8A1Qp7r6uWk3qRX+ecJNb+lbT6ORmPoWn01coJ7pfgTWHgpBVvA68N/1d7h4PwLhLxOwZ9r/OMmiyvT4KRLfpOKzYZP+zZSvxMXbD7D2z8NIOfM7Zq7fiT+X/IhuLRsDAOrVdsKdJ5EI/PUAJwX6zfsPkZicgsZ+A4tkyseF67ewdtc+ZD++Du+67rh15Hekpb9FnlwOKwtzNOs9CN51ddMqZWxshLp13BDxLBK9unYGAMQnvoad7b+n5V6/ToaNFbd9H4h2BQYGYtasWRg3bhxatGgBxhj++ecffPPNN0hKSlK717smdFKgt7OthhvdGqvN+9+Vx3A1NcJUDwedF+YA0L66BW71VT/CHn3uHlyrVsF39Z3UCvOnaVk41eMzWBiWXKPQWiaZNW4P7aQ2b9TxG3C1MIF/Y9cP7icGhlxFPjeZakpxe0wv9UzBl+BqaQb/lnVhZyJBJ+fqasu77TqJr7xqYWiD2txkcnHA7WmD1DPtOQVXm2rw79CoWGEOAMmZ2YhJfQtbU+Niy7SSyb0WwhaOV8+0+QBc7Szh3701xEIBGjlVx5M49SbaiPgkyCyqcpPJqw7C1s5Wz7RqO1ztbeH/RRdVYQ4A205egrezDF41a3CSRZWpkRfC9qjfAWvUvNVwldnDf8jnyM9XQq5QwOC9zzrfwABKJeMkU4fmTXDn2J9q80Z+/xNcaznh+6+Hq/UuNzMt6CwXERmNG/ceYs6UMZxkel9ubi4ePYlAy2afwUnmAFsba5w6dwEN6nkCAPLy8nD+8lUsnj1DJ3nKjQct1NC1kqRS+fnnn7F+/XoMGTJENa9nz57w8PBAQEBA5SzQTYQCeFRV78lqLODDXCxUzU/JlSMmMwdx2QUdUJ6kF3RgspGIYFtCD+YKZxIJ4FnkMrXCTBZiITzNTaBQKtH/VBjCktLxl29D5DOG+KxcAIC5WAgRBz25TURCeL53mZqxkA8LQxE8rcyQmafAomuP0L2WFHbGhkjOycOGsGd4+TYbn7vaf2CrFcwkFsLzvcvUjEUCWBiJVfMtjNSb+oV8A9hUkcDVUv29aC2ToQiedurnDwsyGcLTzhIZuXmYe/wqetdzhp2pMaJT0jHzyGVYGkvQq572m9sBwEQihqe9eidGI7EQFlWMVPO/69oKA9buQytXR7R1r4kTdyNw+HY4zkwfwU0mI0N4OqofbBkZimFhWkVtfnpWNv68dBPLRmm/NaVYJmMjeNZyVM8kEcPCzEQ1v3VDT/zw81ZIxCLI7Kxx4dZ97Dp2FssnjuImUxVjeLqqfy6MjSSwqGqmmv/H0ZOwMq8GB6kd7oVHYPLcpejZqR18WnFzCet3P81Dj84d4WBfHYmvk7AgcA3S32Zg6Jd9wePxMPHrkVi08hfUrumE2rWcsGjlzzCSSDDw816c5KkwanIvUVxcHJo3L/4Zat68OeLi4sq9vUpz69cjL5Pwv6uPVY+H/FPQ+/fHuo6YWY+bDkOleZmZg8PRiQCAxn9eVlt2qkdjtJFa6DwT34CH8JS32PXgCpKy82BhKEIj22oI+bItPDgqPP+L+DwD3I9Nwu7QR0jNzoWdqTHaONtjz9CuMOG4laU0vRq5Y90wPyw5fAGTdh+Bq50l/hg/AC1dHfWWCQD2nQ8FA8OXbRqXvbIO7Jk/DT+u3YEhs5cjJT0DMltrzPtmML7u46u3TPGJSfhuwQokJCXDzsoKg/t0x8xx3J2eeBUbh4GjxyEpJQVWFuZo2qghrpw4CFmNggP37yeMQXZODsZ+/yPepKahiXd9nNj/a+W8Bp18kLOzM37//XfMmKHesrJv3z7Url3+Fk4eK+xaV07p6ekwMzPDqwEdYG6g/JhNaJ1CIMKZ3t+i06kgCBVyfccBAMgFQpzqNBI+V/ZBmF9JMvGFONmsP3zuHYFQqdB3HACA3ECAk3W7wSf6IoSMm9MH5SXn8XFS1gqd0x9CiMrxGZfDACdM3dFZ8BpCHjdN0OUlZzycUFihsw0fQj2cPiuJXMlwIiEfXTwcdHZfhLLI85U4/uAFfJs1gLCMjri6kPwmFVbOnkhLS4OpqSknr1FYTqT8MACmH+gEqfG2cvNgvngvp3l1bf/+/ejfvz86duyIFi1agMfj4dKlSzhz5gx+//139O7du1zbqxyfdEIIIZ8wbdxUpuBgsXHjxnB3d8fatWv1+5a04PPPP8f169dhaWmJ4OBgHDhwAJaWlrh+/Xq5C3OgEjW5E0II+URp8Rx6aGjoJ1FDl8vl+N///odZs2Zh9+7dWtkm1dAJIYQQHRMKhSUOzFIRVKATQgjhFt3LvUS9e/dGcHCw1rZHTe6EEEK4Rbd+LZGzszPmzZuHy5cvw9vbG8bG6vfJmDBhQrm2RwU6IYQQogdbtmxB1apVcfPmTdy8eVNtGY/HowKdEEJIJUM3lilRZGSk6t/aGJzl02vDIIQQUrnQOfQPCgoKgqenJwwNDWFoaAhPT09s2bLlo7ZFNXRCCCFED2bNmoWVK1di/PjxaNasYBjvK1euYPLkyYiKisL8+fPLtT0q0AkhhHCLmtxLtH79emzevBkDBgxQzfPz80O9evUwfvx4KtAJIYRUMtTLvUT5+flo1KhRsfne3t5QKMp/W26NC/Tc3Fzk5uaqHqenpwMAFAIBFJVkPysEwoL/84V6TvKvwiwKfuU5dirMojCoRJneZVHw9H+P60KFWRSVqKtJYRYFqzy1lcIsCo6GN/0YhVkU+ZXjHvzAv1nkHA11XF46zUE19BINGjQI69evR2BgoNr8TZs24auvvir39jQenCUgIABz5swpNn/Pnj0wMjIq9wsTQgjRn6ysLAwcOFA3g7PMHQXTCo50mJ6TB/OftnxSg7OMHz8eO3fuRI0aNdC0aVMAwNWrVxETE4MhQ4ZAKPy3cvp+oV8Sjato06dPx5QpU1SP09PTUaNGDTQLDqpUo61d/OJbNN+9GgJ5nr7jAAAUQhEuD5qIZlsDK1WmKyOmoOmm5ZUq09X/fYcmG5ZWqkzXvvmeMpWhMFNl/DxVxu9dZfl9eqPLlieqoZfo/v37aNiwIQDg2bNnAAArKytYWVnh/v37qvU0vZRN4wJdLBZDLBYX30B+HgSVqFkLAATyvErxhSmq0mbKyy17RR2iTJqhTJqptN+7SpCJr8sCnc6hlygkJESr2/v09hAhhBDy/1Dl6RVFCCHk08SDFprctZLkk0YFOiGEEG7ROXSdoCZ3Qggh5BNANXRCCCHcohq6TlCBTgghhFs8LfRy51GDclloDxFCCCGfAKqhE0II4RY1uesEFeiEEEK4RQW6TlCBTgghhFs8g4qfA6dz6GWiPUQIIYR8AvRSQ1/2+CUCHkRjjLMdlnnVBAAwxrDwUQy2RsYjNS8fjc2rILBBLbibcjOS25boRAS9SMSL7IJ7T7tVkWCasxQ+1lUBAIm5cvz0OAZnk9KRJs9Hc/MqWOYhg7OxISd5AGDLy9fY+vI1XmTn/ZvJyRadLM0AABmKfAQ8jcWR16lIkSvgYCjC1w7WGGVvxVmmoNgkBMUmIybnXSYjQ3wvs0Eni4LRjqqev1Pi8+bWtMOEGtYcZUrG1rgUxOQWZhLD38EGncxNVOuEZ+UgIDIe/6Rlgr1bZ6ubA2pUcMSnj800JjwGexNT1Z7TyESCU/WdOcmjSaaiJkW8wo74FCysaYdvq1tymKn0z9OiqHgcSEzFq1w5hAY81K8iwSwnWzQyNeYsU2nfO7mSYd6zWJxKSkNUdh5MBXy0NTdBQG0p7MTcfJaAsn+fDsanYOuL1whLy0KKXIFLLT1Qj6PfSq0w4BVMFd0GKZXOC/SbKW+xLTIenmbqH77AJ6/wc0QsNjaqDecqhlj6+CV6XLyPMJ+GMBFqP2Z1QxECXO1R06iggN77KgkDbj7FpZYecKtiiAE3IyDk8bDX2xmmAj5+iUxAz2vhuN7aE8YCbsbsri4WIsC5OmpKCgbB2ROXjAF3nuNiEzfUqSLB9CcvcfFNBjZ5OMJBIsLZ5LeYGv4CdiIhur37omubVCREgJOdKtPehBQMfBCFC94uqGNsiPBm7mrrn0p5i/HhMfB7dxDCSSaxELOdbFDT8F2mxDf46mE0zjdwRh1jQ0Rm58L3znMMsq2G6TIbmPL5CM/OgSGHgzuUlQkAOlSrgrUu9qrniDg+J6hJJgA4kpSGm2+zYCfi/uegrM+Ts0SMZbWrw9FQhGwlw7qXr9Hn7nPc+qwOLDnKV9r3Tmoowp23WfCvaYe6VSRIVeTjh/AYfBn2HOebuHGSByj996mOiQSZ+Uo0rVYFve3MMf5eFGc5tIaa3HVCpwV6hiIfI0Kf4JeGzlj6OEY1nzGGtU9j4e9mj57VLQAAmxrVhtOR6/g9Jgkja9pqPYuvTVW1xz+52mPLi0SEpmZAwOMhNDUT11p5oo6JBAAQ6ClDzdO38WdcCobW4KZG7Gv1Xibn6gh6mYTQtEzUqSJBaFomBtqZo9W7GtZwezG2vXqN22+zOCvQfd8rmGc52SEoNhmh6ZmoY2wIG5FQbfnRpDS0qloFjpLiI/NpLZOF+ljIsxxtsTUuBTfeZqGOsSHmRSWgk7kJ5jrZqdZxlHBXm9IkEwCIDQyK7S99Z4rNleP7Z7H409MJ/R9EcZ+pjM9TX5tqassX1JJiV3wKHmRmo42oeMuCVjKV8r0bUkWCvxvWVlu+1LUG2oeGIyYnj7MWn9J+n+qYSDDgXStKdFblGt2O6JdOD3km336GzrbV0P69D2tUZi4ScuToUGS+mG+AlpZmuJqcznmufMbwZ2wysvKV+KxqFeQpC4aDFRdp4uHzeBAZGOBKylvO86gyxacUZDIraG5sWrUKjialITYnD4wxXEh5i2dZuejw3g83l5n2J74pyFRCE2hinhwnU9Ix2NZcJ3n+zZSKrHwlGpsYQckYTr15C2eJCJ/fi0Ttqw/RMewpjiSl6S1ToUupGah99SEa3QjHxIiXeJ2n0GsmJWP4JjwG4+2t1Grsus304c9TnlKJHXHJMOUbwLOKRGeZ3v/evS9dkQ8eADOOWupKzFTk9+k/qbCXe0UnUiqd1dD/iHmNsNRMXGzvVWxZwrtzfDZi9dqLtViIFxwegT5Iz0LHK4+Qo1SiCp+PXxs6w81EArlSCQeJCHPCX2JVXUcY8w3wS2QCEnLliM+Vc5YHAB5kZKNTaPi/mbxqwu3dj9lSV3tMePQCdS7dh4AHGICHn90d0IzjL/mDjGz43H6KHKUSxnwD7PZwhFsJBcDe+DeowuejhxV3ze2qTJk56Bz2TJVpl7sD3IwNkZAnR0a+EqtiXuNHR1sEONni9Ju3GPzoBQ7VdUILDvfVhzIBQEdzE/S0MkMNsQjROXlYGJ0Av3vPca6BM8QcngooLdOql68h4PHwtdSCs9cvMVMZn6fjyekY+TAaWUolbEUCBNerBQsOTru9n+lD37uicvKVCHgai7621WDKcYH+od+n/yQaD10ndFKgv8zKhf+dSBxs6QFDfml/FPUjMAZuD8pqVzHEpZYeSJPn42B8Cr65G4ljTdzgZiLBrobOGHc3ErJTt8HnAW0tTNFJBwVVbSMxLjZxQ5oiHwcTU/HNg2gc9a4NtyoSbIh5jdC0TPzmVRM1DEW4nJqBqY9jYCMSoh2HtfTaRmJcbORSkOl1Gr4Nf4EjXs7FCvXd8Snoa12V03PVqkwSES40dC7IlJSOMeEvcbheTVWtydfCFGPeNUvWrSLB9fQsbI1P4bRA/1AmN2ND9CnSrOtubIgGJhLUux6Okylv0YPD/gYfypSjZNj4KhnnGjiDp+OaT1mfp1ZVjXGxkQuS5QrsiEvBsEfRONPAGVYcnq4o7XtXSK5kGHE/EkowrHBz4CyLKlMpv0+ElEQnBfrtNxl4nStHy7Nhqnn5DLiUlI6Nz+IQ5tMQQEFN3a7Iuc7XuXJYi7n7EosMDFDr3Y9Iw6rGuJWWhfVRCVhd1xENzIzxTytPpMkVkCsZLMVCtPvnIRp8oBlOq5nedYRpaGqMW+lZWB/zGotd7DH3aSx+9aqJzu8KAE8TI9x9m42fXyRyWqCLDAxUHYYamBjh1tssbHj1GqtcaqjWuZyagYjsXGx1l3GWo7RMtzOysCE2GUtr2UHAK+g9XZSLkRhX07P0kmlV7erF1rUVCVFDLMSzdz2rdZ3J1UiM13IF6l5/rFo3H8DM53FY/yoJdz/jrsNXWZ8nYz4fNSV81JSI0djUGA2vP8Ku+BRMcbDhNFNJ37vVdQoKbrmSYdi954jOzsOhhrU5r52rMn3g9+k/5xO8sUxMTAwGDx6MxMRECAQCzJo1C3379tVrJp0U6G2tzXC9Y321ed/cfAoXEwmmuFSHk7EhbAyFOJuQivrvalB5SiUuJaVhnqejLiICABgYct+dPy9k9q6p72lmDm6nZWKmS/EfZ04zsYJ9IWcMcsaKdXrg83hQMqbbTAByleqvuSs+BfWrSFBXR+c6i2V6t59EBgZoUMUIEdnqp2qeZeehBocHh6VlKkmKXIFXuXLY6qBneUmZ+ltXRZv3Wiu+uB+JftbV8NV7HdM4z4Tinye15az05Vwo+rcrLMyfZeXisHdtmOv4b6bKVMLv03/GJ9jLXSAQYNWqVahfvz4SExPRsGFDdO3aFcbG3Fb6Ss2kixcxEQrgYab+UsZ8A5iLBPB4V+Md6yzF8vCXcK4iQa0qhlgW/hISvgH61eDmmtg54S/RycoM1Q1FyFDkY39cCi4mv8WBxi4AgL/iUmApEsBeIsLDt9mY9vAFuttUQwcOm93nPH2FThZmqG4oREa+EvvjU3DpzVvsb1Bw6VzLqlUwK+IVDA0MUEMiwj9vMvBbXDIWFLkUStvmPo9DR3MT1X468DoVl1IzsL9uTdU66Yp8/P06DfNr2ZWyJS1miopHx2omsBcL8TZfWZApLRN/vjv4m2BviRGPY9Dc1Bitqhrj9Ju3OJ6cjkP1apa+YY4yZeTnY0l0InpYmsJWJMSLnDzMjUqAhZCPbhy2rJSWyVwogPl756UFPB5sRALUNuLuCoXSPk+Z+flYEZ0IX0tT2IiESJErEBSbjNhcOXq91xNdm0r73imUDEPuPsedt1nYV78W8hmQ8K4fTTUhHyKOTi+V9fuUkqfAy5w8xL27nj8iIxtAQT+k9/siEW7Y2dnBzq7gN8/a2hrm5uZISUn59At0TUxxqY6cfCUmhT1Dap4Cjc1NcLClByfXoAMFN475353niM+Vw1TAh6eJEQ40dkH7dwV2fK4cMx69QGKuArZiIb60t8A0ZyknWVSZ8hT4+kGUKpOHiQT7Gzij/bsf/a11nTDn6SuMfhCFN3IFahiKMKuWFCM5vBFIolyBrx+/QEKeoiCTsSH2162JdkVuTnIgMRUMDJ9b66Zm9zpPgW/CY95lMoCHsSH+9HREu2oFmbpbmiHQOR8rY17jh+excJaIsdNdhmYcni4pLVN2vhIPM3PwW+IbpCmUsBEJ0MrMGFvr1IAJh023Ze0nfSjt85SjVOJJdi72PohCsjwf5kI+GpgY4Vh9Z0574Zf2vYvOzsXRd1dItLz2WO15hxvWVl1CqvVMZfw+HUtMxbd3I1XrDw97DgD4wVmKGTpuRdQID1poci/f6hcuXMCyZctw8+ZNxMXF4a+//kKvXr3U1lm3bh2WLVuGuLg4eHh4YNWqVWjVqlW5o924cQNKpRI1atQoe2UO6a1AP96mrtpjHo+HH90d8KM7951NAGBtPadSl3/raINvHbk7Z1eStWWcf7YRC7HOw1E3Yd75xbXsD+gwqQWG6bCn9M8atEgMsjXHIB1ePldaJgnfAPvrlv5544Im+6koLs+bFyrt82RoUNDjXddK+97JJGKkdWyowzQFyvp9+sreEl/Zc3cgr3Va7OWenq5+KbNYLIZYXLxVKTMzE15eXhg+fDg+//zzYsv37duHSZMmYd26dWjRogU2btwIX19fPHz4EA4OBeWQt7c3cnOLX2l18uRJSKUFFbzk5GQMGTIEW7Zsqdj704JKU0MnhBDyidJip7j3a8GzZ89GQEBAsdV9fX3h6+v7wc0FBgZi5MiRGDVqFABg1apVOHHiBNavX49FixYBAG7evFlqpNzcXPTu3RvTp09H8+bNy/NuOEEFOiGEkP+MmJgYmJr+2/ekpNp5WfLy8nDz5k388MMPavN9fHxw+fJljbbBGMOwYcPQvn17DB48uNwZuEAFOiGEEG5psZe7qampWoH+MZKSkpCfnw8bG/XTqjY2NoiPj9doG//88w/27duHevXqITg4GACwa9cu1K1bt/QncogKdEIIIdziaWG0NQ6uQ3//pkqMMY1vtNSyZUsoK9llhJXrwj5CCCGEY5aWluDz+cVq44mJicVq7f8lVKATQgjhVmGTe0UnLRGJRPD29sapU6fU5p86dapSdG77WNTkTgghhFta7OXeuHFj8Pl8jB07FmPHjv3g6hkZGXj69KnqcWRkJMLCwmBubg4HBwdMmTIFgwcPRqNGjdCsWTNs2rQJL168wDfffFOxnHpEBTohhJD/jNDQUI06xd24cQPt2rVTPZ4yZQoAYOjQodi+fTv69++P5ORkzJ07F3FxcfD09MTRo0chk+lmPAouUIFOCCGEW3q4l3vbtm3ByhjnYsyYMRgzZkxFUlUqVKATQgjhloEWerlX9Pn/D1CnOEIIIeQToHENPTc3V+2etoX301XwRVAYVI5r8RSCgrHUFUJRGWvqTmEWylQ6yqQZyqQZylS2fF3W5z7B8dArIx4r6yTDOwEBAZgzZ06x+Xv27IGRkZHWgxFCCOFOVlYWBg4ciLS0tArfee1D0tPTYWZmhpQdi2BqVLER89KzcmA+dDpcXFw06uX+/5HGNfTp06eregkCBX+oGjVqoK2LFOZm3I3pXB6KfCVOP36JDlYGEFSS8y0KJcOZ10p04CdBwNPo2IlzCsbDmXxLdEh/DAEqSesKDHDG1A3tX1yGgOXrOw4AQMHj46xDc7R/cAICpULfcQAACgMBznp0Rvvr+yHIrySZ+AKc/exztDu7E4J8ub7jAAAUfCFC2g9Bm0NbIFBUkkwCIc73GIVWf66HQJGn7zhIUeqwhq7Fc+ia9nL//0jjAv1DQ9QJDAwg5FeuU/ECAx6ElaRALyTgMQgrSYFeSAAlhJWkQC8kYPkQVpICvZBAqYCwkhTohQT5CggrSeFZSJAvh7CSFJ6FBAp5pSg8ixIo8iCQ6z+TgLpQfXKolzshhBBu8XhauGytclXSKiMq0AkhhHCLOsXpBLW5EEIIIZ8AqqETQgjhlh7uFPf/Ee0hQggh3Crs5V7RCQWDs7i7u2Pt2rV6flOVD9XQCSGE/GfQZWsfRgU6IYQQblGTu05QgU4IIYRb1MtdJ+iQhxBCCPkEUA2dEEIItwwMCqaKboOUigp0QgghHNNCkzuoyb0sOinQF68Lwl8nzuDx8yhIDMVo1tALi6dNgmtNR9U6B46fwaa9f+LW/UdIfpOKm4d/Q313N+4ybf8dweeu4HH0S0jEIjSrWweLxg2Dq8weACBXKDBrwy4cv3wDz1/Fw6yKMTo09sLCscMgtbLgJtPvxxB8+RYev4yHRCRCszo1sWj453C1t1WtM+fXg/j9QihiXr+BSCBAQ2cHzBvSC03canKT6dB5BN94iMdxryERCtGstgMW9feBq51Viet/uy0Ym0NuYMXArpjYpTknmZacuo6/7j5DeGIKJEIBmjnaYWGPlnC1MVetM+LXE9gV+kjteZ/JbPHP5C+5yXThLv56FI3wpNSCTDWssbBTI7hamqmt9+h1KmacuoELUfFQMgZ362rY27ctHKpW0X6ma4/x15NXCE95C4mAj2bVLbCwdV24mpuo1hEu/7PE5y5uXRdTP3PVfqbbzxAcmYDw1ExI+Hw0ta2KhU1c4Frk/WfIFfjx2hMcjEpAco4cMhMJxnnK8LWHg9bzAMCy+9EIjnmNJ+lZkPAN0MTKDAsa1IKL6b+jSCZk52Fm2DOcjktBWp4CLa2rIrBRbTibcjPS5OZncdj8PB4vsgqGrK5jaoQf6tRAZ9tqAADGGBY+isHWyHik5uWjsXkVBDaoBXeO8lQYdYrTCZ0U6Oev38S3g/ujcT0PKPLzMXP5L+gy5FvcP3kAxkYSAEBmdjZaeNfHF1074evpcznPdOH2fXz7RTc0cq8NhSIfszbsgu+EWbj323oYSwyRlZOL2+HP8OOIL1GvthPepGdgysrN6P3dPFzbsYqbTPee4Ntu7dDIxRGK/HzM2hkM35mrcG/DHBgbFgyM41LdBqu/GYCatlbIzpNjdfBp+M5ahfAtC2BlZlLGK3xEpsdR+LZjEzRyqg6FUolZf5yG79LtuLd4IozF6uM6/33zIa4/ewlpNe3nUMv07BW+bVkPjRxsoVAq8dORy+i64S/c/WEIjMVC1Xqd3WTYMtBH9VjE53OXKToe337mhkbVLaFQMvx05ia67jyBu+N6w1hUkOlZSjraBh3F8Ia18VO7BjATi/A4KRWGAm5yXYh5jW8b1EIj22oFmS7dR9c/LuLucB8Yiwq++jHfdld7zvHn8fjfiRvo7VKdk0wXY9/gWw8HeFuZQcEYZl+PQLcjN3CnX0sYCwsyfXf5Mc7HpmB7+3qQmUhwOiYZ4y89hJ2xGH6ONtrPlJiKb1yqw9vCFArGEBD2HN3PhOF2jyYwFvDBGEO/C/cg5PHwR5u6MBUKsOZRDLoWWUfbqkvEmOspQ60qBb+Pv0Ynov/lR7jcsT7cTY0Q+OQVfo6IxcZGteFcxRBLH79Ej4v3EebTECbCT7vhtXHjxjR86gfo5C9/bPs6tcdbl86BbeP2uHn/IVp/5g0AGNy74Icl6uUrXUTC0dXqBw1BsybBrstXuPn4KVo38IRZFWOc+Hm+2jqrv/sazYZPwYv4RDjYWms/07yJ6pkmD4PdwKm4+TQarT1dAAAD2jZRW2f56L7YevIS7ka+RIf6dbSfyX+oeqbRfWA3bhFuRr5Cazcn1fxXKemYsPMwjvoPhV/gLq3nKOrIN73VHm8Z2AnSmZtw62UCWtWyV80XC/iwNTXmNIsq02AftcdberWCdOle3IpNRivHghaWn87cQpfa9ljs01i1Xk1z7g5+jnzRSj1Tl8aQrjuEWwlv0KpGQQuLrbH6GNWHnsWirYMVanLQYgAAh7s1Unu8uW1dVN95Frdep6OVtKCF5WpCKga5SNFGWtASNsrdCJsfxeDm63ROCvSD7b3UHm9s5gaH/f/gdvJbtLSpiqdvs3E9KR03u30G96oFn6fVjV3gsP8Sfo9KwHBnqdYzdZWaqz0O8JRhy/N4hCa/RR0TCdY+jYW/mz16Vi/YR5sa1YbTkev4PSYJI2valrRJ/dJiL3e6Dv3D9NKGkfY2AwBgbmZWxpq6k5aRCQAwN/3wD1laRhZ4PB6qVuHmx67Y62VmF2SqUnKhlCdXYPOxizAzlsDLyb7EdbSeKTvnXaZ/m/aUSiWGbvwDU7u2hIe99n9wy85UMBRlNSP1wun805eQztwI9wXb8fVvp5H4Nkt3mXLeZZIUtKwolQxHn8TAxcIUXXeegHTpXjTfdAh/P4rWXabcgqFNqxmKSlyekJmDo8/jMLyuU4nLOcmUV5jp35aVFrbVcDg6Ea8yc8AYw7lXyYhIy4SPvaVOMqXLC4bKrSYuqO/k5hcMMWxYZJhovgEPIgMDXH6dxnmefMbwR8xrZObn4zMLE0Rl5iIhR44ONlVV64j5BmhpaYaryemc5/kohZ3iKjqRUum8bYYxhqkLVqBlowbwdHXW9cuXiDGG71ZvQQsvd3jWcixxnZzcPPy4djsGdG4D0yrcn6dijOG7zb+jhYczPB3Vmz8PX7+Lr5ZsRlZuHuzMzXB8/mRYctDcXmKmPcfQwkUGzyIF99IjFyHgG2C8TzPOM5SUyT/4AlrUlMLT7t8f/C51HPFFfRc4mJsgKjkds49ehs/a/bj23QCIBdx+7Blj8D9xHS0cbOBpU3DOMzEzGxl5Ciy9dA9z2jfEwk6NcPLpK/Tddxanh/mitSO3tSrGGPzP3UGL6hbwtCr5QHrXg2iYiAToXZub5vYSM115jBa21eBZpKViZYs6+ObCfTjtPgeBAQ8GADa08UQLu2o6yTTt5lM0tzKDx7tWClczIzgYG2JW2DP88pkrjAV8rH4cg/icPMRn53KW5X5aJtqH3EWOUokqAj72NnVDHVMjVaFtU+T0EgBYi4Wqc+7k/yedF+jjZy/CvcdPcOH37bp+6Q+asGwD7j2NwvmNS0tcLlcoMHDmUigZwy/+Y3STaf1e3It6hfPLvi+2rF09V9z8eRaS0jMQdPwiBizeiMuB02FdldtmqAk7D+NeTDzOzxytmncz8hV+PnkFoXPHgKeHGz9M2B+Ce7GvcW5iP7X5/Rr+26HL084S3jVsUGtuEI4+iEJvL24PJCccuYp7CW9wbkRX1TwlK/i/n5sDJjX3AADUt7PAlZhEbAp9zHmBPuFMGO69TsO5AW0/uM72+1EYUMeBs3P675t46RHuJ79FSM+mavN/uR+NawmpONC5IRxMJLgUl4IJlx7CzkiMDhzX0ieHRuBeaibO+DRQzRMaGGBvK098e+0xpH9eAp/HQ3vbauj8XrO4trmYSHClY32kyRUIfpWMr29E4HibukXWUP++MVTie6/QjWV0QqcF+oSAxTh05jzO/bYV9na6b5otycTlG3Do4jWEbFwMe5viPxZyhQJfzliMqNh4nFq3UCe184nr9+LQtTsIWeIPe8vitRJjQzGcpdZwllqjqVtNuI2eia0n/8EP/Xy5y7TzMA7dfoSQH0fB3vzfGt6l8GgkpmfCafJy1bx8pRL+e49hzcnLeBb4HXeZ9ofg8P3nODu+L+yrlt5CYWdmDFk1Uzx9/YazPAAw8chVHA5/gbMjusLe7N9TJZZGYggMeKjzXu3YzdIM/7xI5DbTmds4/CwWZ/u3hb1JyZ/fSy9fIzzlLX7t3qTE5do26dJDHI5OxBm/z2Bf5d9TJdmKfMy6/gR/+DRAV1lBP5V6Fia4k/wWK+9EcVqgTw59gsOvknC6UwPYv3f6pqGFCa51bYy0PAXylEpYGYrQ6vgNeJtzdxAtMjBQdYprWM0EN1MysO5pLKa4FJxeS8jNg53k39Mnr3PlsH6v1l5p8Hha6OVOBXpZdFKgM8YwIWAxgk+exdk9W+BUQzdNemVlmrh8A4LPX8GZdYvgJC1eQyoszJ/GxOL0ukWwMOO2BswYw8QNexF8JQxnFk2Fk61mP16MMeTK5dxl2nUYwTcf4sz0kXCyUq+VDGpRHx08a6nN67psO75qXh/DWjfkLtP+c/j73lOcHvcFnCzK7ouRnJmNmNS3nHWSY4xh4tGr+PvRC5we3gVO7/X0Fwn4aFTdEuFJ6uc4I5LTIeOoAxpjDBPPhOHvp69wun8bOFX98Hvfei8KDW2qwcu6KidZimaa9M8j/B2ZgFN+n8Hpvcus5EoGuZLB4L0fbz4PUIJxlmnyjQgcjHmNkx0bwPFdIVoSs3dXBzxNz8KtlLeY7cXN5aIlYQBylQyOxmLYGApxNiEV9d99dvKUSlxKSsM8T0ed5SGVj04K9HE/LcTeg8fw16ZVMKlijPjXSQAAM5MqkBgWHAmnpKbhRWwcYhNeAwDCnxd0FrK1soStlfaPyscvW4+9J87jwLKZMDE2QnxyQc3NzNgIEkMxFIp89PthEW6HP8PfK35CvlKpWsfctApEQu0fCY9ftwd7z1/HgVljYCIxRHxK2rtMEkjEImTm5GLhvqPo0cQLduZmSE7PwIYj5/Ey6Q2+aNmojK1/ZKYdh7D36l0cmPQVTAzFiE99W5DJyBASkRAWJkaweK/WJ+TzYWtm8sFr1Suc6c8Q/HbzMQ6M8oOJWIT49IIOjWaGYkhEAmTk5mHu8avoXc8ZdqbGiE5Jx8wjl2FpLEGvetw0t48/chW/3XuOAwM6wEQkRPy7Dnhm/9fencdFVe9/HH+Nw46AgbIlILngvly0xJ1UDBU19+Uapv3aUCNvmkslmaRZLl1NXK6paS51UdxywbqC5oYLamoqai6p4AoCyjq/Pwh0RHFUzjlzuZ/n43EeNd8ZZt6MM3zO93u+53xtrLD96zSifzSvR/8ft9HSx402vh5sTrrI+pMX2DpImZGVYVsPsuL3C6zq1qwgU0bBhEYnK0tsLe8Nq6dl5RB94iJT2tRXJMf9hu84xoqky0R3KDi96spfx3ydrCywtdDjaGVBK4/nGL37BLYW5fAub8v2yzdYevISXwYoc12K8ISTrPwjhR9b16W8pb7ouLiTZUEmgOhzKVSyscTLzobfbqXzwf4kQipXop2HMsPu4387R5B7BSrbWnM7N49/X7jG9qupxLSog06nI6yaJ1+duEi18rZULW/DlycuYqsvR28vdSYOPjEZcleFKgV9zvc/AvByvzeM2hdM+ZRBPbsCsHbrNoaMGl90X//hHwLwyfC3GB/+Tulniv4JgLbvjDHO9HE4oZ3bcTHlGuu27wHAf+Bwo8dsnf05bfxL/4/fnJ/iCjKNnmqcKXwQoe2boS9XjhMXrrDk511cS03HxdGextWrsG3KKOr4lP6pMwBzftlbkOnzBcaZ/q87oS2V6YE/ztxfDwPQdpbxRVH+1a89oS/VQa8rx2+XrrE04Ti37mTh4WhP62qVWRbaEYdHzPB+5kwJvxdkWrjROFO3FoQ2qg5At1o+fNM5gCnbD/P+xj3UqOjED30CaeGjzOGnuYfOFGRaGWec6ZXGhN7Xk1v5+wUMQN9ayly4xSjTsQsAtFu31zhTm7q85lcwlLy0XUM+2nOS0J8PcyMrB28HWya8WJ03a3spkmneqUsABG1NNG5vWpOBVT0AuHInmw8PJJFyNxt3GysGvODOGAV7wylZ2byRcIord7NxtLSgrqMdMS3qFM1sH1Hjee7m5ROeeJpb2bk0cXZgbYs65nsOulxYRhU6g8HwVONYaWlpODk5kXIgHheFJ2OZKicvn01Hz9PBTY9lOfPYm8vJN7A5OY8OFlex1CkzZPikcgw6NudWokPaMSzJ1zoOADmUY7NjbYLObcfSkKd1HABydHq2+LQk6MgGLPNztY4DQE45C7bU60TQrpVY5ilzmOVJ5egt2RLQh/axC7DMNZNMFpbEth9C29VRWORmax0HgFwLK35+9R0CV3yNRY72mW5QDq/o7aSmpip2XndhnbixfgGO9s82/ygtIxPnzkMUzfvfTnZ5hBBCKKucrnQ2Cq4UV7t2bb755huNfynzY6bjM0IIIcqMUhxylyvFPZoUdCGEEMqSSXGqkCF3IYQQogyQHroQQghlySx3VUhBF0IIoSidTvfMl4bW4tLS/21kl0cIIYQoA6SHLoQQQlky5K4KKehCCCGUJQVdFfIOCSGEEGWA9NCFEEIoS3fvSm/P9ByiRCYX9KysLLKysopup6UVLAOZm59PTp55XA88968cufnmcc10uJcl12A+H8bCLLlmNEBTmCVXp3/MI9VTmCW3nPns9xZmydWbUSZ9YSbzWYu7MEuuhRllsijMpMwCQU8qN1/F778MuavC5MVZIiIi+PTTT4u1L1u2DDu7Z7vovhBCCHVlZmbSv39/VRZnufnLjziWf8bFWdIzee7lXtSoUQO9Xk9YWBhhYWGllLRsMLmgP6yH7uXlxaXfD+HyXAWl8j2RnNw8tiYcpn3LplhamEcPJic3l9jtuyXTY0gm00gm00imx7t+4yYevtXVKej/+XfpFPTAnrLaWglM/lRZW1tjbW1drN3SQo+lhfkMkwJYWliYxRfmfpLJNJLJNJLJNJKp5Byq0elKYcjdfA5bmivtP1VCCCHKNlmcRRUyy0AIIYQoA6SHLoQQQlkyy10VUtCFEEIoq1wpnIf+rD//P0B2eYQQQogyQHroQgghlCVD7qqQgi6EEEJZMstdFbLLI4QQQpQB0kMXQgihLBlyV4UUdCGEEMqSIXdVqLLLM2n6LF5s2wlHbz/c/Brw6t+HcOLUaaPHGAwGIr6YyvO1/bF7viqBXXpy9PcTiuaK3/ErIT374Fm1Jjr7CsSsW290f3JyCoPefAfPqjWxq+jBK117cCrp9COeTZ1M6enpDB0xksrVa2Pr4k6tv71I1PwFmmbS2Vd46Pbl9H9qlgng+O8n6NKrL04e3ji4VaZpm3acv3BBs0yD3nyn2HvUtE07xfKYkul+bw0LR2dfgRmzZmuaKSJyEjUbNcG+kifPPe9Du05d2ZOwT7NMOTk5fPjReOo1aYZ9JU88q9bktTfe4tLly5plAli1Zi0dunSnovcL6OwrkHjosKJ5hPlTpaDH79zFu0NC2bVlLVuil5Obl0uHnv3JyMgsesyUf85m+uz5zPziM/Zu3YC7qytB3ftz+3a6YrkyMjJpUK8es6ZNKXafwWCgW98BnPnjD9b8sIyDO+Px8faiXeeuZGRkaJIJ4P0Px7IpditLF8zl+IE9vD/0XYb9YxRr1m/QLNPl0yeMtm+jZqHT6ejRrYtmmU6fOUuL9q9Qs0YNtm1cx6HdO/h49EhsrG00ywTwSvt2Ru/VT6t+VCyPqZkAYtatZ0/CPjw9PBTNY0qmGtWqMWvqlxzZu5MdsZuo4uNNUJfuXL16TZNMmZmZHEg8xMejR3Lg1zhWLV/CyaTTdOnVT7E8j8tUeH/zgJeYPCFC0RylonDI/Vk3USJVhtw3/vi90e1vZ07Dza8B+w8dplWzphgMBr6eu4CxI4bRPaQjAIu+mY57zUYsi47hrUF/VyRXcIf2BHdo/9D7TiWdZvfeBH5L2EWd2rUAmD1jKq5VqrH8x2jeGPSa6pkAdu1JIHRAP9q0agnAm4MHMXfBQvYdOEjXzp00yeTu7mZ0e82Gnwhs1ZIXfKsokseUTOM+/YyOQe2ZEjmhqE3JPKZkArC2tir2finJlEx/XrrE0BGj2Lwmmk49emueqX+fXka3p02OZMHiJRz+7ShtA1urnsnJyYnY9TFGbTOnTuHFVi9z/sIFvL28VM8EMLB/XwD+OHdOkdcvVeXKFWzP+hxAkyZNZPnUR9Bklyc1LQ0A57+WXT177jxXklMIuu/Lam1tTetmTdm1V9mhtkcpXCrWxuZej06v12NlacWOnbs0yQTQollT1m7YyJ+XLmEwGPhPXDwnk07ToV1bzTLdLzk5hQ2btjAkdKBmGfLz89mwaQs1qlejQ5fuuPpU46XWbUscblbLtu07cPWpRo0G/vxf2HBSUq5qmic/P5+BQ95iZPiwoh1Xc5Kdnc28bxfj5ORIg3p1tY5TJDU1DZ1ORwUnJ62j/FfQ6XSlsgEkJCRw7NgxKeYPoXpBNxgM/OPjCbRo+iJ1a9UE4Mpff9TcKlU0eqyra8Wi+9RW068GPt5ejBn/KTdv3iI7O5vJX03nSnIyl68ka5IJ4J9ffUHtmn5Url4bqwqVeKVbT2ZP/4oWzQI0y3S/xd8vx8GhPN27hmiWISXlKunp6UyeOoNX2rdly9pVvBrSme79BhK3fYdmuYKD2vP9t/P55ae1TJ00kYT9B3i5Y5einUctfDF1BhYWFgx/923NMjzM+o2bKO/6PDbObkyfNZvYdTFUrOiidSwA7t69y+hPIujfu5esyy3Miuqz3IeO+ojDR4+zfcOqYvfpHpjFaDAYNJvYaGlpSfSyJQx5ZyjOlaug1+tpF9iG4KCShy+V9s/Zc9mdsI+1Py7Hx8uL+F938u77H+Dh7k67l9tomg3g2yVLGdCnl9HIhtryDfkAdO3UkfeHFezFN2xQn5179jDnXwtp3bKFJrn69Oxe9P9169SmcaNG+NSqx4ZNm+neVbn5Bo+y/2AiX8+ew4GdccW+e1oLbNWSxF3buXb9OvMXLqb3wEHs2fYzrq6VNM2Vk5ND39DB5OfnM3vGV5pm+a8i66GrQtUe+rAPP2Ldpi38suYHKj/vWdTu/teX9MHe+NWr13GrpN0X2L9RQxJ37+DWpXNcPn2CTWuiuX7jBr5VfDTJc+fOHcZGTGDa5EhCOgZTv15dhr79Jn16vMpXX8/UJNP9tv+6kxMnT/FGqDLzC0xV0cUFCwsLatfyM2qv5efH+YsXNUpVnIeHOz7eXpxKOqPJ62//dScpV6/i7VcXC0cXLBxdOHf+Av8Y8xFVatXTJFMhe3t7qlV9gaYvNmFB1CwsLCxYsHiJpplycnLoPXAQZ/84R+y6GOmdP4nC09aedRMlUqWgGwwGho4ax+r1G/k5ZiW+Pt5G9/v6eOPu5krstviituzsbOJ27ibgxcZqRCyRk5MTlSpV5FTS6YLJZ506apIjJyeHnJwcyj2wp6vX68nPz9ck0/0WLF6Cf6OGNKivbTGwsrKiif/fOHHylFH7yaQkfBSawPQ0rl+/wYWLf+Kh4iS5+w3s15fDe34lcdf2os3Tw4OR4cPZvKb4CJqWDAYDWdnaHZooLOanks6wdf0aXFycNcsixKOoMuQeNnIcy6NjiFm6AIfy5bmSnAKAk6MDtra26HQ63ntrCJOmz6L6C75Ur+rLpOkzsbO1pX+PborlSk9PJ+n0vd7R2T/OkXjoMM7Oz+Ht5cWPq2KoVNEFby8vjhw9ynsjR9MtpBNB7V7WLFPrls0ZOe4TbG1t8PH2Im77r3y3bAXTJkdqlgkgLS2NH1evYeqkiYrleJJMI8OH0ee1wbRq0ZzAVi3ZFLuVdT9tYtsm5SbGlZTJ+bnniIicTI9uXfBwd+OPc+cZG/EZFV1ceLVLZ00yeXt5FStMlpYWuLu54lejuiaZXJydiZwylS6dgvFwd+P69RvMnr+Ai39eoter3TTJ5OnhQc8Br3Eg8TDr/72CvLw8rvw1j8bZ+TmsrKxUz+Tt5cWNGzc5f+ECly5fAeDEqSQA3N3cVD2TwjSlcdqZnLb2OKoU9DkLvwMgsIvx6SjfzpzGoP4Fp8mMGv4ud+7eJWzUOG7eSuUl/4Zsjv4eB4fyiuXad+AggcH3Jm+NGD0OgNAB/Vg0L4rLV64wYvQ4klNS8HB347X+ffl49CjF8piSacWibxkz/lMGDH6TGzdv4uPtReT4j3j7jcGaZQJY8e9VGAwG+vXqoViOJ8n0apcQ5nw9jUlTpzP8gw/xq16N6GXfKTp5sKRMUV9P48jRY3y3bAW3UlPxcHcjsFVLVn73LQ4ODppkKvy3U1tJmeb8czq/nzzJ4u+Xc+36dVycnWni34jtsRsVnYVfUqaIcaNZu2EjAA0DWhr93H82ris6hVTNTIvmRbF2w0+8/va9md59Qwv+Bowf+yER48YokumpyZXiVKEzGAyGp/nBtLQ0nJycuJr0Gy5/nX6mtZzcPDbuOkjHwBZYWpjHVW1zcnP56T87JNNjSCbTSCbTSKbHu37jJhW9fElNTVVsPkBhnbh1MA7HZ+ycpd1Op0Kj1orm/W+n/adKCCFE2VaKF5YRjyYFXQghhLJkyF0VsssjhBBClAHSQxdCCKEsWQ9dFVLQhRBCKEuG3FUhBV0IIYTCdH9tz/ocoiQyhiGEEEKUAdJDF0IIoSwZcleFFHQhhBDKkoKuChlyF0IIIcoA6aELIYRQmEyKU4MUdCGEEMqSIXdVmFzQs7KyyMq6tx5xWloaULAgSk5uXuknewqFOXJyczVOck9hFslUMslkGslkGsn0eOaSQ5Qek1dbi4iI4NNPPy3WvmzZMuzs7Eo9mBBCCOVkZmbSv39/dVZb+31f6ay2VrMxNWrUQK/XExYWRlhY2ON/8H+IyQX9YT10Ly8vLl++jIuLi2IBn0ROTg6xsbG0b98eS0tLreMAkslUksk0ksk0Zp2pZVOzWT7Vw7e6SgV9fykVdH9ZPrUEJn+qrK2tsba2LtZuaWlpNl+YQpLJNJLJNJLJNJLJNJYWFmZR0M0hgyhd8i8qhBBCWTIpThVS0IUQQihLRykU9FJJUqZJQRdCCKEwOQ9dDXKlOCGEEKIMkB66EEIIZckxdFVIQRdCCKEwGXJXgwy5CyGEEGWA9NCFEEIoS4bcVSEFXQghhLKkoKtChtyFEEKIMkCzgh4fH09ISAienp7odDpiYmK0ilJk0qRJNGnSBAcHB1xdXenWrRsnTpzQNFNUVBT169fH0dERR0dHAgIC2Lhxo6aZ7jdp0iR0Oh3h4eGa5oiIiECn0xlt7u7ummYC+PPPP/n73/+Oi4sLdnZ2NGzYkP3792uWp0qVKsXeJ51Op+kiF7m5uXz00Uf4+vpia2vLCy+8wIQJE8jPz9cs0+3btwkPD8fHxwdbW1uaNWtGQkKCqhnid/xKSM8+eFatic6+AjHr1hvdbzAYiIichGfVmti6uNPmlU4cPXZc1Yym05XSJkqiWUHPyMigQYMGzJo1S6sIxcTFxREWFsbu3buJjY0lNzeXoKAgMjIyNMtUuXJlJk+ezL59+9i3bx8vv/wyXbt25ejRo5plKpSQkMC8efOoX7++1lEAqFOnDpcvXy7ajhw5ommemzdv0rx5cywtLdm4cSPHjh1j6tSpVKhQQbNMCQkJRu9RbGwsAL169dIs0xdffMGcOXOYNWsWx48fZ8qUKXz55ZfMnDlTs0xvvPEGsbGxLFmyhCNHjhAUFES7du34888/VcuQkZFJg3r1mDVtykPvnzLta6bNnM2saVNIiP8Fdzc32oe8yu3bt1XLaKqH7UQ+zSZKptkx9ODgYIKDg7V6+YfatGmT0e2FCxfi6urK/v37adWqlSaZQkJCjG5HRkYSFRXF7t27qVOnjiaZANLT0xkwYADz589n4sSJmuW4n4WFhVn0ygt98cUXeHl5sXDhwqK2KlWqaBcIqFSpktHtyZMnU7VqVVq3bq1RIti1axddu3alU6dOQMF7tHz5cvbt26dJnjt37hAdHc2aNWuKvvcRERHExMQQFRWl2uc9uEN7gju0f+h9BoOBGd9EMW7kP+jetQsAi+dF4eZbnWU//Ju3hryuSkZhXuQYeglSU1MBcHZ21jhJgby8PFasWEFGRgYBAQGaZgkLC6NTp060a9dO0xz3O3XqFJ6envj6+tK3b1/OnDmjaZ61a9fSuHFjevXqhaurK40aNWL+/PmaZrpfdnY2S5cuZfDgwZr2flq0aMHPP//MyZMnATh06BA7duygY8eOmuTJzc0lLy8PGxsbo3ZbW1t27NihSaYHnf3jHFeSkwlqG1jUZm1tTesWzdm5e4+GyR6hcFLcs26iRDLL/REMBgMjRoygRYsW1K1bV9MsR44cISAggLt371K+fHlWr15N7dq1NcuzYsUKDhw4oPoxxZK89NJLfPfdd9SoUYPk5GQmTpxIs2bNOHr0KC4uLppkOnPmDFFRUYwYMYKxY8eyd+9ehg8fjrW1Na+99pomme4XExPDrVu3GDRokKY5PvzwQ1JTU6lZsyZ6vZ68vDwiIyPp16+fJnkcHBwICAjgs88+o1atWri5ubF8+XL27NlD9erVNcn0oCvJyQC4ubkatbu5unLu/AUtIj2GXFhGDVLQH2Ho0KEcPnzYLPbI/fz8SExM5NatW0RHRxMaGkpcXJwmRf3ChQu89957bNmypVgPRkv3H76pV68eAQEBVK1alcWLFzNixAhNMuXn59O4cWM+//xzABo1asTRo0eJiooyi4K+YMECgoOD8fT01DTHypUrWbp0KcuWLaNOnTokJiYSHh6Op6cnoaGhmmRasmQJgwcP5vnnn0ev1/O3v/2N/v37c+DAAU3yPIrugSJnMBjM9FhzafSwzfH3Mi9S0B9i2LBhrF27lvj4eCpXrqx1HKysrKhWrRoAjRs3JiEhga+//pq5c+eqnmX//v2kpKTg7+9f1JaXl0d8fDyzZs0iKysLvV6veq4H2dvbU69ePU6dOqVZBg8Pj2I7XbVq1SI6OlqjRPecO3eOrVu3smrVKq2jMHLkSEaPHk3fvn2Bgh2yc+fOMWnSJM0KetWqVYmLiyMjI4O0tDQ8PDzo06cPvr6+muR5kLubG1DQU/fwuDdvJOXqVdxcKz3qx0QZJ8fQ72MwGBg6dCirVq3il19+MZsv74MMBgNZWVmavHbbtm05cuQIiYmJRVvjxo0ZMGAAiYmJZlHMAbKysjh+/DgeHh6aZWjevHmx0x5PnjyJj4+PRonuKZzwWTgRTUuZmZmUK2f8p0iv12t62lohe3t7PDw8uHnzJps3b6Zr165aRwLAt4oP7m5uxP6yragtOzubuB2/0qzpS9oFexQ5hq4KzXro6enpJCUlFd0+e/YsiYmJODs74+3trUmmsLAwli1bxpo1a3BwcODKlSsAODk5YWtrq0mmsWPHEhwcjJeXF7dv32bFihVs27at2Ix8tTg4OBSbU2Bvb4+Li4umcw0++OADQkJC8Pb2JiUlhYkTJ5KWlqZZDw/g/fffp1mzZnz++ef07t2bvXv3Mm/ePObNm6dZJig4FLBw4UJCQ0OxsNB+kC4kJITIyEi8vb2pU6cOBw8eZNq0aQwePFizTJs3b8ZgMODn50dSUhIjR47Ez8+P119Xb/Z4eno6SafvTew8+8c5Eg8dxtn5Oby9vAgPe4fPv5pK9WovUL1qVT7/chp2tnb0791TtYymk2PoatDs27xv3z4CA+/N0Cw8zhkaGsqiRYs0yRQVFQVAmzZtjNoXLlyo2cSh5ORkBg4cyOXLl3FycqJ+/fps2rSJ9u0ffjrL/6qLFy/Sr18/rl27RqVKlWjatCm7d+/WtDfcpEkTVq9ezZgxY5gwYQK+vr7MmDGDAQMGaJYJYOvWrZw/f17Tgnm/mTNn8vHHH/Puu++SkpKCp6cnb731Fp988olmmVJTUxkzZgwXL17E2dmZHj16EBkZiaWlpWoZ9h04SGDwvdNWR4weB0DogH4smhfFqBHvcefuHd4N/4Cbt27xUhN/tqxdhYODg2oZhXnRrKC3adMGg8Gg1cs/lLnlgYKJS+Zu27ZtWkdgxYoVWkd4qM6dO9O5c2etYxgJCgoyq8+6g4MDM2bMYMaMGVpHKdK7d2969+6taYY2rVpiyLj1yPt1Oh0R48YQMW6MeqGellzLXRXaj7cJIYQo22TEXRUyKU4IIYQoA6SHLoQQQmHSRVeDFHQhhBDKkmPoqpAhdyGEEKIMkB66EEIIZUkPXRVS0IUQQihMjqGrQQq6EEIIZekohR56qSQp0+QYuhBCCPGEbt++TZMmTWjYsCH16tVj/vz5WkeSHroQQgiFlcFj6HZ2dsTFxWFnZ0dmZiZ169ale/fuuLi4aJZJCroQQgiFlb1j6Hq9Hjs7OwDu3r1LXl6e5pdUliF3IYQQZU58fDwhISF4enqi0+mIiYkp9pjZs2fj6+uLjY0N/v7+bN++/Yle49atWzRo0IDKlSszatQoKlasWErpn47JPfSsrCyjNbhTU1MBuHHjRumneko5OTlkZmZy/fp1VVdFKolkMo1kMo1kMo1ZZ7pxE0szWLb2xs2bgDqLUqWlpz/zkHlaenrBf9PSjNqtra2xtrYu9viMjAwaNGjA66+/To8ePYrdv3LlSsLDw5k9ezbNmzdn7ty5BAcHc+zYsaIlvP39/Y3qXqEtW7bg6elJhQoVOHToEMnJyXTv3p2ePXvi5ub2TL/nMzGYaPz48QZANtlkk022MrSdPn3a1DLwxO7cuWNwd3cvtazly5cv1jZ+/PjH5gAMq1evNmp78cUXDW+//bZRW82aNQ2jR49+qt/17bffNvzwww9P9bOlxeTdxDFjxhStWQ4FQw0+Pj6cP38eJycnU59GUWlpaXh5eXHhwgUcHR21jgNIJlNJJtNIJtNIpsdLTU3F29sbZ2dnxV7DxsaGs2fPkp2dXSrPZzAY0D3Q039Y7/xxsrOz2b9/P6NHjzZqDwoKYufOnSY9R3JyMra2tjg6OpKWlkZ8fDzvvPPOE2cpTSYX9EcNazg5OZnFh/N+jo6OkskEksk0ksk0ksk05papXDllp1LZ2NhgY2Oj6Gs8qWvXrpGXl1dseNzNzY0rV66Y9BwXL15kyJAhGAwGDAYDQ4cOpX79+krENZn2B3KEEEIIDTzY23/YCMCj+Pv7k5iYqECqpyez3IUQQvxPqVixInq9vlhvPCUlRdtJbc/oqQu6tbU148ePf6rjF0qRTKaRTKaRTKaRTKYxt0zmlkdNVlZW+Pv7Exsba9QeGxtLs2bNNEr17HQGg8ZnwgshhBClLD09naSkJAAaNWrEtGnTCAwMxNnZGW9vb1auXMnAgQOZM2cOAQEBzJs3j/nz53P06FF8fHw0Tv90pKALIYQoc7Zt20ZgYGCx9tDQUBYtWgQUXFhmypQpXL58mbp16zJ9+nRatWqlctLSIwVdCCGEKANkUpwQQghRBkhBF0IIIcoAKehCCCFEGSAFXQghhCgDpKALIYQQZYAUdCGEEKIMkIIuhBBClAFS0IUQQogyQAq6EEIIUQZIQRdCCCHKACnoQgghRBkgBV0IIYQoA/4femyj6gzRVaAAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2bElEQVR4nOzdd1gUV9/G8e8CS+8dlCqIAlbsvfeuib3Ekmb0UROTqLFFjYndxJjEXhJbEmPvvSv23gUE6VV62Xn/QFZXUCEyC/E9n+fa68nOzs7ejAu/OWfOzFFIkiQhCIIgCMJ/mk5JBxAEQRAE4e2Jgi4IgiAI7wBR0AVBEAThHSAKuiAIgiC8A0RBFwRBEIR3gCjogiAIgvAOEAVdEARBEN4BoqALgiAIwjtAFHRBEARBeAeIgl4CpkyZgkKh0Fjm7u7OoEGDirSdU6dOMWXKFBISEor0vpc/68iRIygUCv76668ibed1UlNTmTJlCkeOHMn32qpVq1AoFAQFBRXb58nhp59+wsvLC319fRQKBQkJCXz33Xds2bJFaxmSkpKYMWMGTZo0wdHREVNTUypVqsQPP/xAenp6vvWzsrKYOnUq7u7uGBgYUKFCBX766Set5RUEoeTolXQAIdc///yDubl5kd5z6tQppk6dyqBBg7C0tJT1s4oqNTWVqVOnAtCkSRON19q3b8/p06dxcnKSNcPbuHz5MiNHjmTo0KEMHDgQPT09zMzM+O677+jRowddunTRSo6QkBAWLFhA//79GTNmDKamphw/fpwpU6awf/9+9u/fr3Fw+Omnn7J27VqmTZtGzZo12bt3L//73/94+vQp48eP10pmQRBKhijopUS1atVk/4y0tDSMjIy08lmvY2dnh52dXYlmeJMbN24AMGzYMGrVqiXrZ+Xk5JCdnY2BgUG+1zw8PAgKCsLExES9rFmzZpiYmDB27FhOnjxJgwYN1JmXL1/OjBkzGDt2LJB7MBUbG8v06dP5+OOPsba2lvVnEQSh5Igud5nt3LmTqlWrYmBggIeHB3PmzClwvZe7wVUqFdOnT8fHxwcjIyMsLS2pXLkyCxcuBHK77fP+aHt4eKBQKFAoFOoubnd3dzp06MDmzZupVq0ahoaG6hbzq7r309PTGTNmDI6OjhgZGdG4cWMuXbqksU6TJk3ytbgBBg0ahLu7OwBBQUHqgj116lR1trzPfFWX+4oVK6hSpQqGhoZYW1vTtWtXbt26le9zTE1NuX//Pu3atcPU1BQXFxc+//xzMjIyCty3L9q4cSOtWrXCyckJIyMjKlasyNdff01KSorGz9ivXz8Aateurc6uUChISUlh9erV6p/pxX0RERHBRx99RNmyZdHX18fDw4OpU6eSnZ2tXicoKAiFQsGsWbOYPn06Hh4eGBgYcPjw4QLzmpiYaBTzPHkHGY8fP1Yv27JlC5Ik8cEHH2is+8EHH5CWlsaePXteu2/yTgVdvXqV9957DwsLC6ytrRkzZgzZ2dncuXOHNm3aYGZmhru7O7Nmzcq3jZCQEPr164e9vT0GBgZUrFiRuXPnolKpgNxTAvb29vTv3z/fexMSEjAyMmLMmDHqZUlJSXzxxRd4eHigr69PmTJlGDVqlMa/F8Cff/5J7dq1sbCwwNjYGE9PTwYPHvzan1cQ3jWihS6jgwcP0rlzZ+rWrcuGDRvIyclh1qxZREZGvvG9s2bNYsqUKXzzzTc0atSIrKwsbt++rT5fPnToUOLi4vjpp5/YvHmzuvva19dXvY2LFy9y69YtvvnmGzw8PAosDC8aP3481atXZ9myZSQmJjJlyhSaNGnCpUuX8PT0LPTP7eTkxJ49e2jTpg1Dhgxh6NChAK9tlc+cOZPx48fTu3dvZs6cSWxsLFOmTKFu3boEBgbi7e2tXjcrK4tOnToxZMgQPv/8c44dO8a0adOwsLBg0qRJr81279492rVrx6hRozAxMeH27dv88MMPnDt3jkOHDgGwePFi1q9fz/Tp01m5ciUVKlTAzs6Ojz/+mGbNmtG0aVMmTpwIoD51ERERQa1atdDR0WHSpEmUK1eO06dPM336dIKCgli5cqVGjh9//JHy5cszZ84czM3NNX6+wsjL6ufnp152/fp17OzscHR01Fi3cuXK6tcL4/3336dfv3589NFH7N+/n1mzZpGVlcWBAwf49NNP+eKLL1i3bh1fffUVXl5edOvWDYDo6Gjq1atHZmYm06ZNw93dnR07dvDFF1/w4MEDFi9ejFKppF+/fvz666/8/PPPGqd+1q9fT3p6uvqAJDU1lcaNGxMaGsr48eOpXLkyN27cYNKkSVy7do0DBw6gUCg4ffo0PXv2pGfPnkyZMgVDQ0OCg4PV+0gQ/t+QBNnUrl1bcnZ2ltLS0tTLkpKSJGtra+nlXe/m5iYNHDhQ/bxDhw5S1apVX7v92bNnS4D06NGjfK+5ublJurq60p07dwp87cXPOnz4sARI1atXl1QqlXp5UFCQpFQqpaFDh6qXNW7cWGrcuHG+bQ4cOFByc3NTP4+OjpYAafLkyfnWXblypUbu+Ph4ycjISGrXrp3GeiEhIZKBgYHUp08fjc8BpE2bNmms265dO8nHxyffZ72OSqWSsrKypKNHj0qAdOXKlXwZAwMDNd5jYmKise/yfPTRR5KpqakUHByssXzOnDkSIN24cUOSJEl69OiRBEjlypWTMjMzi5Q3z5UrVyQjIyOpa9euGstbtmz5yn2gr68vffjhh6/d7uTJkyVAmjt3rsbyqlWrSoC0efNm9bKsrCzJzs5O6tatm3rZ119/LQHS2bNnNd7/ySefSAqFQv1dvHr1qgRIS5Ys0VivVq1aUkBAgPr5zJkzJR0dnXz/Bn/99ZcESLt27ZIk6fk+TkhIeO3PJwjvOtHlLpOUlBQCAwPp1q0bhoaG6uVmZmZ07Njxje+vVasWV65c4dNPP2Xv3r0kJSUVOUPlypUpX758odfv06ePxgArNzc36tWr98ru4OJy+vRp0tLS8p0GcHFxoVmzZhw8eFBjuUKhyLcPK1euTHBw8Bs/6+HDh/Tp0wdHR0d0dXVRKpU0btwYIF/3flHs2LGDpk2b4uzsTHZ2tvrRtm1bAI4ePaqxfqdOnVAqlUX+nKCgIDp06ICLiwvLli3L9/rLV08U9rUXdejQQeN5xYoVUSgU6p8FQE9PDy8vL419fujQIXx9ffONORg0aBCSJKlbzJUqVSIgIECj1+LWrVucO3dOo5t8x44d+Pv7U7VqVY192rp1a43TSzVr1gRyexY2bdpEWFhYoX5OQXjXiIIuk/j4eFQqVb7uT6DAZS8bN24cc+bM4cyZM7Rt2xYbGxuaN2/O+fPnC52hqKPIX5U1Nja2SNspqrztF5TX2dk53+cbGxtrHCQBGBgYFHgZ14uSk5Np2LAhZ8+eZfr06Rw5coTAwEA2b94M5A4a/LciIyPZvn07SqVS45HXJR4TE6Ox/r8Z4R8cHEzTpk3R09Pj4MGD+Qa42djYFPhvlZKSQmZmZqEHxL28nr6+foH7XF9fX2Ofx8bGvvLfMO/1PIMHD+b06dPcvn0bgJUrV2JgYEDv3r3V60RGRnL16tV8+9TMzAxJktT7tFGjRmzZsoXs7GwGDBhA2bJl8ff3Z/369YX6eQXhXSHOocvEysoKhUJBREREvtcKWvYyPT09xowZw5gxY0hISODAgQOMHz+e1q1b8/jxY4yNjd+4jcK2yF6XKyIiAhsbG/VzQ0NDEhMT8633csEqirzth4eH53vtyZMn2Nra/uttv+jQoUM8efKEI0eOqFvlQJGv4y+Ira0tlStXZsaMGQW+nlfU8hT13yY4OJgmTZogSRJHjhyhbNmy+dapVKkSGzZsICIiQuPg7Nq1awD4+/sX6TOLysbG5pX/hoDGv2Pv3r0ZM2YMq1atYsaMGaxdu5YuXbpgZWWlXsfW1hYjIyNWrFhR4Oe9uL3OnTvTuXNnMjIyOHPmDDNnzqRPnz64u7tTt27d4voRBaFUEy10mZiYmFCrVi02b96s0Yp5+vQp27dvL9K2LC0t6dGjB8OHDycuLk49OjzvMqe3aVm+aP369UiSpH4eHBzMqVOnNEZyu7u7c/fuXY0R5bGxsZw6dUpjW0XJVrduXYyMjPj99981loeGhnLo0CGaN2/+b36cfPKK6MuXh/3222+F3oaBgUGBP1OHDh24fv065cqVo0aNGvkeLxf0oggJCaFJkybk5ORw6NAh3NzcClyvc+fOKBQKVq9erbF81apVGBkZ0aZNm3+doTCaN2/OzZs3uXjxosbyNWvWoFAoaNq0qXqZlZUVXbp0Yc2aNezYsYOIiIh8o9I7dOjAgwcPsLGxKXCf5l1V8SIDAwMaN27MDz/8AJDvKg1BeJeJFrqMpk2bRps2bWjZsiWff/45OTk5/PDDD5iYmBAXF/fa93bs2BF/f39q1KiBnZ0dwcHBLFiwADc3N/WI6EqVKgGwcOFCBg4ciFKpxMfHBzMzs3+VNyoqiq5duzJs2DASExOZPHkyhoaGjBs3Tr1O//79+e233+jXrx/Dhg0jNjaWWbNm5btRjZmZGW5ubmzdupXmzZtjbW2Nra1tgX+ELS0tmThxIuPHj2fAgAH07t2b2NhYpk6diqGhIZMnT/5XP8/L6tWrh5WVFR9//DGTJ09GqVTyxx9/cOXKlUJvo1KlShw5coTt27fj5OSEmZkZPj4+fPvtt+zfv5969eoxcuRIfHx8SE9PJygoiF27dvHrr78W2Kp+k6ioKJo2bUp4eDjLly8nKiqKqKgo9etly5ZVb9fPz48hQ4YwefJkdHV1qVmzJvv27WPJkiVMnz5d9mvQR48ezZo1a2jfvj3ffvstbm5u7Ny5k8WLF/PJJ5/kG88xePBgNm7cyGeffUbZsmVp0aKFxuujRo3i77//plGjRowePZrKlSujUqkICQlh3759fP7559SuXZtJkyYRGhpK8+bNKVu2LAkJCSxcuFBjfIQg/L9QsmPy3n3btm2TKleuLOnr60uurq7S999/rx5N/KKXR57PnTtXqlevnmRra6t+75AhQ6SgoCCN940bN05ydnaWdHR0JEA6fPiwenvt27cvMNOrRrmvXbtWGjlypGRnZycZGBhIDRs2lM6fP5/v/atXr5YqVqwoGRoaSr6+vtLGjRvzjXKXJEk6cOCAVK1aNcnAwEAC1J/58ij3PMuWLVPvKwsLC6lz587q0eF5Bg4cKJmYmOTLVNA+LcipU6ekunXrSsbGxpKdnZ00dOhQ6eLFixIgrVy5Ur3eq0a5X758Wapfv75kbGwsARoj/qOjo6WRI0dKHh4eklKplKytraWAgABpwoQJUnJysiRJz0e5z549+41ZJen5v82rHi9fRZCZmSlNnjxZcnV1lfT19aXy5ctLP/74Y6E+K28fRkdHayx/1T5v3Lix5Ofnp7EsODhY6tOnj2RjYyMplUrJx8dHmj17tpSTk5Pv/Tk5OZKLi4sESBMmTCgwU3JysvTNN99IPj4+6u9FpUqVpNGjR0sRERGSJEnSjh07pLZt20plypSR9PX1JXt7e6ldu3bS8ePHC/VzC8K7QiFJL/SxCoIgCILwnyTOoQuCIAjCO0AUdEEQBEEowI4dO/Dx8cHb27vA+z6UNqLLXRAEQRBekp2dja+vL4cPH8bc3Jzq1atz9uzZUj3BkWihC4IgCMJLzp07h5+fH2XKlMHMzIx27dqxd+/eko71WqKgC4IgCO+cY8eO0bFjR5ydnVEoFGzZsiXfOosXL8bDwwNDQ0MCAgI4fvy4+rUnT55QpkwZ9fOyZcuW+tsKi4IuCIIgvHNSUlKoUqUKixYtKvD1jRs3MmrUKCZMmMClS5do2LAhbdu2JSQkBICCzkYX9Q6P2lboG8tkZGRo3B1MpVIRFxeHjY1Nqf8hBUEQBE2SJPH06VOcnZ3R0ZGvbZeenk5mZmaxbEuSpHz1xsDAIN/dHwHatm2rMaHQy+bNm6cxvfOCBQvYu3cvv/zyCzNnzqRMmTIaLfLQ0FBq165dLD+HbAp7wXreTSfEQzzEQzzE4915PH78WJabnEiSJKWlpUnGKIotq6mpab5lBU3R/DJA+ueff9TPMzIyJF1dXY0pgSVJkkaOHCk1atRIkqTcKYK9vLyk0NBQKSkpSfLy8pJiYmKKc/cUu0K30MeNG8eYMWPUzxMTE3F1deXu1YtYvzChQknKys7m8OlAmtatiVKvdNzVVmQqHJGpcESmwinNmZrUroZSt+QzxSUk4FO15r++VXRhZGZmkopEf0zQ5+16cjORWJuczOPHjzVuNV1Q6/xNYmJiyMnJwcHBQWO5g4ODepIqPT095s6dS9OmTVGpVHz55ZcaE1WVRoX+Vr2qW8Paygob69JT0I2NjbGxtipVv8Qi05uJTIUjMhVOqc5kVXoygXbOCxuig/5bfo7Os3Pa5ubm+eaO+Lde/tmll7r0O3XqRKdOnYrls7RBDIoTBEEQ/l+xtbVFV1c335TRUVFR+Vrt/yWioAuCIAiy0immR3HR19cnICCA/fv3ayzPmzHxv6r09PsIgiAI7ySFAnTesmdfASBBzZo10dXVZfjw4QwfPvyV6ycnJ3P//n3180ePHnH58mWsra1xdXVlzJgx9O/fnxo1alC3bl2WLFlCSEgIH3/88dsFLUGioAuCIAj/GYGBgYU6h37+/HmaNm2qfp43qHvgwIGsWrWKnj17Ehsby7fffkt4eDj+/v7s2rULNzc32bLLTRR0QRAEQVbF0WVe1Pc3adKkwJvDvOjTTz/l008//fehShlR0AVBEARZ6SgU6LztKHfIvfJceCUxKE4QBEEQ3gGihS4IgiDIqiS63P8/EgVdEARBkJVOMYxyFwX9zcQ+EgRBEP4zatasia+vLz///HNJRyl1ZCvox06cpGOPnjiXq4DCxJIt23dovC5JElNmzMS5XAWMbBxp0qY9N27e0lgnIyODEZ+PxdbVExM7Zzq914vQYpyP9unTp4wa+zVuFfwxsnGkXrNWBF64qH49MjKKQR9+gnO5ChjbOtGmc3fu3X9QbJ//bzIlJyfz2ZixlPX2xcjGkYrVa/HL0uUlmklhYlngY/b8H0ssE8Ct23fo9F4vLJxcMXMoS50mLQh5/LjEMg368JN8+6hOkxay5SlMphd9NGIUChNLFixaXKKZpsyYSYVqNTGxc8aqjBst2nfmbOD5EsuUlZXFV99MplLNepjYOeNcrgIDhn7Ek/Bw+TN9NQF3v6oY25elfou2Gvtp87YdtOnyHnbu5dExt+Xy1Wuy5nkbxXljmcDAQG7evPnaa9D/v5KtoKekpFKlUiUWzZtV4Ouz5i1k3k+LWTRvFoHHDuHo4EDLjl15+vSpep1RX47jn2072bBqBSf27yY5OYUO3XuSk5NTLBmHDh/J/sNHWLvsN66dO0Wr5k1p0aELYU+eIEkSXXr15WFQEFs3rePSqWO4ubrQokNnUlJSiuXzi5oJYPRX49mz/wC/L/+NWxfPMvqzTxnx+Zds3bGzxDKFP7ij8VjxyyIUCgXdu8h3D+Q3ZXrw8BENWrahQvnyHNm9nStnTjDx67EYGhiWWCaANi1baOyrXZv/lC1PYTMBbNm+g7OB53F2cpI1T2EylffyYtHc2Vw7d4oT+/fg7uZKq07diI6OKZFMqampXLx8hYlfj+XiyaNsXr+Wu/cf0Om93rLlARg2YhQHDh9hzZLFXD19jJbNmtCyc3fCnuQeSKSkpFKvTi1mTp0oa47ioFAoiuUhvJ5CetOFeq+QlJSEhYUFMY8fvXFyFoWJJf9s+J0uHTsAua1z53IVGDX8E776fBSQ2xp38PDmh2lT+WjIByQmJmLn5sXaZb/Rs0c3AJ6Eh+NS3o9dm/+kdcvm+T4nKzubXYdP0K5pgzdOfpCWloaZQ1m2blpH+zat1cur1mlAh7ZtGNCnFz5Va3A98DR+vhUByMnJwd7dix+mTWXooAGF2k/FmWn65G/wr1GXnj26MvHrL9WvB9RvTLvWLZk26ZsSyfSyLj378PRpMgd3bStUHjky9Ro4GKWeHmuXLyl0BrkzDfrwExISE9mycV2pyQQQ9uQJtRu3YO/Wv2nf/X1GDf+EUZ8V/tpcub9PSUlJWDi5cmDHVpo3bVwqMgVeuEitRs0Ivn0NVxeXImVq26hOoTKZO7uzZf1a2rdppV5erX4T2rduxfRJ49XLgoJD8KxUnYsnDlO1cqVCZQGIjYvHzt2bxMTEYpvs5GV5dWKsngUGb1mQMySJ2dmJsub9ryuRc+iPgoKJiIykVfPnd/ExMDCgcYP6nDpzFoALly6TlZVFq+bN1Os4Oznh71uRU2fPvnWG7OxscnJy8rXYjIyMOHH6NBkZGQAYGj5/XVdXF32lPidOnX7rz/83mQAa1KvDtp271b0Ih48e4+79B7Rukf8AR1uZXhQZGcXOPfsYMrC/LHkKk0mlUrFzzz7Ke3vRulM37N28qN24eb7TPtrMlOfI8RPYu3lRvkoAw4aPJCoqukQzqVQq+g/5iLGjRqgPXOVU1O9TZmYmS1asxsLCnCqV/EtFJoDExCQUCgWWFhbyZjJ8KZOhISfPnJHlM4X/vhIp6BGRkQA4ONhrLHewtyciMurZOlHo6+tjZWX5ynXehpmZGXVr12LaD7N4Eh5OTk4Ov6/fyNnA84RHRFLBpzxuri6MmzyV+PgEMjMz+X7OfCIiIwmPiHzrz/83mQB+nPMDvhV8KOvti76lHW269GDx/Dk0qFe3xDK9aPUf6zEzM6Vb546y5ClMpqioaJKTk/l+7gLatGzOvm2b6dqxA9169+fo8RMlkgmgbauW/LFiKYd2bWPuzOkEXrhIs3ad1AePJZHph7kL0NPTY+Sn2rl/dWG/Tzt278HUvgyG1g7MX7SY/du3YGsrz1zURf2Op6en8/WkKfR5/z3ZWopmZmbUrVWT6bPmPM+0YRNnz1+Q7e+PnPJGub/tQ3i9Eh3lruD1c9EWpDDrFNbaZb8hSRJlvCpiYGXPj7/8Rp/330NXVxelUsnf69Zy9959rMu6Y2zrxJHjJ2jbqiW6urrF8vlFzQTw4+LfOBN4nm1/rufCiSPMnTmdT0d/wYFDR0os04tWrP2dvj3fy9ey0GYmlaQCoHP7doweMZyqVSrz9Rej6dC2Nb8uW1kimQB69uhG+zat8ffzpWO7tuz+5y/u3r/Pzj17SyTThUuXWbj4V1YtWazV85OF+T41bdSQy6ePc+rQPtq0bM77/QfJ2ptR2O94VlYWvQYORqVSsXjBHNnyAKxZshhJkijrUwlDW2d++nUpfd7rLuvfH7koePsBcaKev1mJFHTHZ/PN5rXU80RFR+Ngb/dsHXsyMzOJj0945Tpvq5ynB0f37iI5KozHd25w7tghsrKz8Hh2c/6AalW5fOYECU+CCX9whz1b/yY2Lg4Pd/lu3v+6TGlpaYyf8i3zvp9Bx3ZtqVzJn88+/pCe3bsyZ+FPJZLpRcdPnuLO3XsMHVi48QVyZbK1sUFPTw/fij4a76no40NIaGiJZCqIk5Mjbq4u3Lv/sEQyHT95iqjoaFx9/NEzt0HP3IbgkMd8Pu4b3CsW/lxscWbKY2Jiglc5T+rUqsnyXxahp6fH8tVrSzRTVlYW7/cfxKOgYPZv3yL7edxynh4c2b2dp+HBhNy6wtkj+59lcpX1c0s7cdnaq5VIQfdwd8PRwYH9L7QqMzMzOXriJPXq1AZyi6lSqWT/ocPqdcLDI7h+8xb1atcu1jwmJiY4OTkSH5/A3gMH6dyhncbrFhYW2NnZcu/+A85fvETn9u1esSV5M2VlZZGVlYWOQvOfTVdXF5VKVSKZXrR89VoCqlWlShEG5siRSV9fn5oB1blz957Gunfv38etkAOYijtTQWJj43gcGoaTo0OJZOrfuxdXz57k8unj6oezkxNjR41k79bNJZLpVSRJIiNTnlMThcmUV8zv3X/IgR1bsbGxlj2LRibHZ5kOHqZT+7Za++zikncv97d9gLhs7XVku1NccnIy9x88b3k8Cgrm8pWrWFtb4eriwqjhn/DdnLl4e3niXa4c382eh7GRMX3e7wHkFtEhA/vz+bhvsLG2xtrKki/GT6SSny8tmjUplox79x9EkiR8yntx/8Ejxk6YiI+3Nx/07wvAn5u3YGdrg6uLC9du3OB/Y7+mS8f2tGrR7A1blieTUqmkccP6jJ0wCSMjQ9xcXTh6/CRr1m1g3vczSiRTnqSkJP78ZytzZ06XLUdRMo0dNYKeAwbTqEF9mjZqyJ79B9i+aw9H9sg3MO51mZKTk5ky43u6d+mEk6MDQcEhjJ8yDVsbG7p26lAimZRKZb7CpFTq4ehgj0957xLJlJKSwoxZc+nUvi1Ojg7ExsaxeOlyQsOe8F7XLiWSKTs7mx59B3Dx8lV2/LWBnJwcIp6dx7a2tkJfX1+eTAcO5Wby9uL+w0d8OXEKPl5efNCvDwBxcfGEhIbyJDwCgDv3cuf+dnSwV/eClhbi1q/aIVtBP3/xEk3bPh8YNebrCQAM7NubVUt+4csx/yMtPY1PR31BfEICtWsGsG/bZszMzNTvmf/Dd+jp6fL+gEGkpaXTvEkjVi3ZUGznkBKTkhg3eSqhYU+wtrKie5dOzJj8DUqlEoDwiAjGfD2ByKgonBwdGNCnl8blYnJ4U6YNq1YwbvJU+g7+kLj4eNxcXZgx+Rs+Hjq4xDIBbPhrM5Ik0fu97rLlKEqmrp068uvCecycO5+RX3yFj7cXf69bI9vgwTdlys7O5tqNm6xZt4GExEScHB1o2qghG9es0PjOazNTSXldppycHG7fvcvqP9YTExuLjbU1NQOqcXz/bllH4b8uU1BwMNt27gagat2GGu87vHs7TRo1LGiTxZJp/JTphD55grWVJd06dWTGpAnqf7ttu/cw+JMR6vV7fzAMgElfj2XK+K9kySSUblq5Dl1binLtqbaITIUjMhWOyFQ4pTlTYa5D1wZtXoc+ycASw7cceJkuSXybkSCuQ3+Nkv9WCYIgCO800eWuHWIfCYIgCMI7QLTQBUEQBFnpoEDnLa8kF63PNxP7SBAEQZBVcd4pTlyH/mqihS4IgiDIqjjPoQcGBopBca8gWuiCIAiC8A4QLXRBEARBVsUxuYpofb6ZKOiCIAiCrHInZ3m7iq7gX90y5f8VcdAjCIIgCO8A0UIXBEEQZCW63LVDFHRBEARBVuJOcdoh9pEgCIIgvAMK3ULPyMggI+P5fMRJSUkApC+dQZp+6TguyNbRA99WpC+fQbaUU9JxAMhW6IJnYzLWzSenNGVyqknGP0vJQf551AsjGx2wrEjG/nXklJLBL9koQM+VjFPbyXnL7sLiki0BWJFx+Rg5pePXjmwVgA6ZD6+iett+1WKSrcr9DmVGhiDplo4dlZWT+7uWlZwIxTRj5NvISknS2meJLnftKPRsa1OmTGHq1Kn5lq9btw5jY+NiDyYIgiDIJzU1lT59+mhltrWFJtYYKd6uJKdJKv6XEkf58uXR1dVl+PDhDB8+vJiSvhsKXdALaqG7uLgQOmko1qWohX7ItxXNHh5FrxS1hg95NqZ5eGCpynTQqSbNE26hV4pa6ActK9I8OwS9UtRCP6jnSnODePRKR8OTbAkOZljR3EqFXun4tSNbBQfjdWjhZo5eKWqhHwhOooWvK8pS1EI/cDOEFtUroiwFLfTYhESc/QL+cwVdTJ/6aoXucjcwMMDAwCD/BlTZKFWl4xcmj56Ug1JVOopnXj+RnpSDspQU9Dx6qFCWkoKeRw8JZSkp6Hn0FKAsHXVKTU8HlKXr1w49HQXKUlLQ8yh1dUpNQc+j1NVFqVfyBV2b+0V0uWuHGOUuCIIgyErx7PG22xBeTxR0QRAEQVaiha4dYh8JgiAIwjtAtNAFQRAEWemgeOt7ub/t+/8/EAVdEARBkJXoctcOsY8EQRAE4R0gWuiCIAiCrHKnT337bQivJwq6IAiCICtx2Zp2iC53QRAEQXgHiIIuCIIgyEpHoSiWB0DNmjXx9fXl559/LuGfqvTRSpd7do6Kbw9fYv3VB0Qkp+FkZsSAqt6Mb1wVnWdDH/+5GcTSwDtcDI8hNjWDwE86U9XJRt5M+8+x/uJdIp6m4mRuwoAaFRjfvAY6OgqycnKYtOcsu28H8yg2CQsjfZp5ufBdu7o4W5jIlmnqrpOsD7xFRFJKbqY6/kxoU1e9n6buPMmmC7d5HP8UfV0dqrs6MK1jQ2p7OMuUKYepWw6z/vQVIhKTcbI0Y0CDakzo2BgdnfzHg5+s2srSI+eZ27st/2tdT75Mm/aw/vgFIhKe4mRpzoCmNZnQvZU60+BFf7DmSKDG+2p5u3Fq5mj5Mq3dwvpDZ4iIT8TJ2pIBLeszoU9Hjf10K+QJ45b/ybGrd1BJEr5uzmyY8Cmu9sX/Xc/OzmHqio2s33eMiNgEnGytGNC2KRMG9VBn0qvfrcD3fv/pAL7o20WGTNlMXbyKdbsOEBETh5OtDQM7t2HCR/3VmZJTUxk3fwlbD50gNjEJd2dHPuvbnU96di72PHmZpiz4hXVbdhIRHYuTvS0De3TmmxEfqjNFRsfy9ffz2Xf8NAlJT2lUqzo/Th2Ht4ebLJkAniYnM/H7eWzZvZeomFiq+fuxYPokalarAoAkSUyds5Cla9cTn5hI7epVWTTzW/wqlJct079VnF3ugYGB4l7ur6CVgj77xFWWnL/Niq6N8LW35MKTGIb+cxxzQ31G1vUDICUzm3qu9nT3d+fjrSflz3TkIktO32BFr+b4OlhzITSKoZsO5WZqWIXUzGwuhUUzoUUNKjvZEp+WwefbTtB11U7O/u99WTLN2n+WJcevsGJAW/ycbLkQHMGQ33djYWTAyKYBAJS3t2Lh+83xtLUkLTObhYfP03bRn9yZMgw7s+Kf9W7WzuMsORzIiqHd8Ctjz4WgMIYs/wcLI0NGtqqrse7WCzc59yAUZ0uzYs+hkWnLQZbsO8WKz/rg5+LIhQePGfLzeiyMjRjZvrF6vdZVK7B8eB/1c30Z7589a+Muluw8woovhuLnVoYL9x4xZO4KLEyMGNm1FQAPnkTReMx3fNCmEZP7d8HCxIhbIeEY6ivlyfTHPyzZspcV34zAz8OVC7fvM2TGIixMjRn5fgcAQrct13jPnjMXGTZzMd2a1JEn04r1/PbnNlbOGIdfOXfO37jDkIk/YGFmwsh+PQAYM+tnjpy7xJrvJ+Du7Mi+U+f5bMZ8nO1s6NysQbFn+uHXFfz2x5+smjsdP+9ynL92g8FjJ2FhZsr/BvdDkiS6fvg/lEo9tixdiLmpCfOWraVlvw+5sf8fTGSabXLY6K+5fucuaxbNw9nRgd//2kLL9/pz4/g+yjg5MmvRb8z/dTkrf5xNeU8PZsxfRKv3+3P71EHMTE1lySSUblop6GceR9OxgivtfFwAcLcyY+O1h1x4EqNep19VLwCC4p9qIxJngiPo6OdBu4ruuZmszdl46R4XQqMAsDAyYM+Hmi2CBV0aUu/HvwiJf4qrVfEXrTOPntCpshft/cvlZrKxYMOFW1wIjlCv07umr8Z75nRryopT17gaFk3zCsXfWjjz4DGdqlWgfVWf3Ex2Vmw4c40Lj8I01guLT2Lk7zvZ9cUAOs37vdhzaGS6E0Snmv60D8g9GHS3t2HDiYtcePBYYz0DpR6OVto5kj9z6wGd6lajfe3c1pO7oy0bDp/lwr0g9ToTV/1N21qV+WHo8wNCTyd7+TJdv0OnhrVoX69GbiYnezbsP8GF2w/U6zjaWGm8Z9vxQJpU98ezjKMsmU5fuUGnpg1o3yj3YNC9jBMbdh/i/I07z3NfucGATm1oUrMaAB++15Glf27nwo07shT0Mxev0qllU9o3a5SbyaUMG7bt5sK1mwDcexTMmUtXubZvM37lc/9OLZ4+AYeAJqzftpuhvboXe6a0tHT+3rmHLauX0KhubQCmjB3F1t37+GXV70z7+nMWLlnB+FHD6da+DQCrfpqDo39N1m3exkcD+rxu81onBsVph1bOodd3tefww3DuxiQCcCUilpPBkbT1LquNjy84k7sTh++Hcjc6ITfTkxhOBoXT9jVFMSktE4UCLI3yzzpXLJnKleXQnWDuRsblZgqN4uSDMNr6exa4fmZ2DktPXsHCyIAqZe3kyeTtxqGbD7kbkXvwdSUknJP3gmlb5Xm3nkqlYuCSv/i8bQP8yjjIkkMjU0VPDl27y90nuQdfV4LCOHn7IW2rV9RY7+iN+zgN/oaKI2bw0S8biEqU72Cxvr83hy7f5G5o7sHXlQchnLxxj7Y1KwO5+2jXuat4l3Gk7fg5OL0/krojp7H11EX5MlWuyKHzV7kb8iQ3071HnLx6i7Z1qxe4fmRcArtOXWBwh+ayZWpQrRKHzl7gblDuwdeVO/c5efEabRs+7xGoX60S24+cJCwyGkmSOHzuEneDH9Oqfk1ZMtWvUY1DJ89y92FQbqabdzhx/hJtm+QePGRkZgJg+MJsk7q6uugrlZwMvCRLpuycbHJycjQ+E8DI0JCT587zKPgxEVHRtGrSUP2agYEBjevW5nTgBVkyvQ1FMT2E19NKC31sw8okZmTh/9Pf6CoU5EgS05oH0KtyOW18fMGZmlYnMT0T/9l/oKvQIUdSMa1NHXpVK/j8U3pWNuN3n6ZX1fKYG+rLkunLlrVITMvAb9ry55k6NqRXDc1CtePaA/qu2E5qVhZO5qbsGfEetqbydPt92b4hiWnp+I37EV0dBTkqiWndm9OrTmX1OrN2HUdPR4cRLeXpps2XqUtzElPT8PvfzOeZerejV4MA9TptqlWke92quNlZ8ygqlikbdtFyys+cm/UFBsri/9p/+X47ElNS8Rs6Hl0dHXJUKqYN6kavprn7JCrhKclp6czauJNvB3Vj5pD32Xv+Gj2+XcSBWV/SuHKF4s/UryuJyan49RnxPNOHfejVsmGB66/ZfRgzYyO6Npbv3/HLIX1ITE7Bt9MAdHV1yMlRMX3kUHq3e34QsXDcSD6cMgfXFu+hp6eLjkKHJVPH0qB65dds+d/76pPBJD5NpmLzzujq6pKTk8P0L0bQu3M7ACqU88CtjDPjZy3k1+8mYWJkxLxla4iIjiE8KuYNW/93zExNqVujOtPn/0TF8l442Nmy/p9tnL14GW9PdyKiowFwsLPVeJ+9nS0hoWEFbbJEKRQKFIq3K8kKUdLfSCsFfdP1R6y78oC1PZrga2/JlfA4Pt99FiczYwZU89ZGhPyZrtxn3cW7rO3TCl8Ha648ieHzbcfVg+NelJWTQ98/9qGSJBZ1a/yKLRZDpgu3WXfuJr8P6oCvky1XQqMY8/chnC1MGVDHX71e0/IuXBg3kJiUNJafvErv5ds5NbYv9mbFP1hv09lrrDt9hd8/6oFvGXuuhEQwZt0unC3NGdCgGheCwvhp3xkCp37y1r+whc508hLrjl3g9//1x9fFkStBYYxZ+Q/O1hYMaFILgPfrP2+F+rs6UaOcC56ffMuuCzfoWqdK8Wc6eo51B0/z+9cf4evmzJUHjxnz6zqcbSwZ0LIBKil33vlOdasxqltrAKqWc+X0zfss2XlEloK+6eBJ1u07yu9TRuPr4cKVe48Ys3AFzrbWDGjXNN/6q3Ycok+rhhgayHPACrBxzyH+2LGf33/4Br9yHly+c58xPyzCyS53cBzAT3/8zdmrN9ny03e4OTlw/MIVPps+Hydba1rUrVH8mbbv4Y8tO/hj4ff4lS/H5Zt3GP3tLJwd7BjYozNKpZK/fp3H0C8nY1OlAbq6urSoX1vdgpfLmp/nMWTUl5StUgddXV2qV/KjT7dOXLx2Q73Oy79zkiRp7fdQKH20UtC/3hvI2IaV6Fkpt+u4koM1IQnJzDp+tcQK+tc7TjG2aXV6Vs39/EpONoTEP2XWoQsaBT0rJ4fea/fyKC6J/R91ka11DvDVP0f5slUtej5rkVcqY0dwXBI/7DurUdBNDPTxstfHCyvqeDhTYcpSVpy6xteti79l9dWmvXzZrhE9n7XIK7k4EhybwA87jjGgQTVO3Akm6mkKHp/PVb8nR6Vi7IY9/LjvNA/mfl78mdZu48suzenZILdoV3JzJjg6nh82H1AX9Jc5WVngZmvFvfDoYs8D8NXSjXzZsz09m+Se76zk4UJwVAw/bNjJgJYNsDU3Q09Xl4pumlcjVHBx4uSNe/Jk+nk1X/brRs8WuYWnUjk3giOi+WHt5nwF/fjlm9wJCWPdt2NkyaLONPdXvhrSh15tc1vklcp7EvIkgh+W/cHAzm1IS89gwsJl/L1wmvo8e2Wfcly+c5+5qzfKUtC/nDmPrz4ZQq9ObXMzVShPcFg43y9ezsAeueNoAir5cmn3nyQmPSUzKws7G2vqdO5DQGW/Ys+Tp5y7G0e2bCQlJZWk5GScHOzpNewzPFxdcLTLPcUWERWNk8PzcRjRMbH5Wu2lgTiHrh1aKeipWdnqawjz6OooUEmSNj6+QKlZWW/MlFfM78cksv/jLtiYGJZ4poJIEmRk58iTKSNLfclcQZn61a9Kcz/NUyft5qymb72qDGpYTaZMma/NVJDYpyk8jk3ASaZBcqkZmQX82+moM+kr9ahR3l19jj3PvbBI3GS4ZA0gNT2jgP2ko+4teNHKHQcJ8ClHFW8PWbK8mEnx0uWOurq66v2UlZ1NVnY2OoqX1tHRRaWS5+9Falr6a//tXmRhnjsY9t6jYM5fu8m3n38mS6YXmZgYY2JiTHxCInuPHOOHiV/j4eaCo70d+48ep1ql3IOKzMxMjp4+y/cTv5Y9U1Hp8PYDtsRNU95MKwW9vY8L3x+7gquFKb72llwOj2XBqRsMqv68dR6XmkFIYjLhT1MB1APoHE2NcJThcqz2FT34/tB5XK1M8XWw5nJYDAuOXWZQzdzWcXaOip5r9nApLIYtg9uTo1IRkZQCgLWxoSyXQHXwL8fMvWdwsTbHz8mWy48jWXDoPIPqVgIgJSOT7/acoWNlL5zMTYhNSefX45cITXhKj2o+xZ4HoEPVCszcfhQXawv8ythzOSScBXtPMahhbuvYxtQYm5fO3yt1dXG0MMXHSZ6Beh1q+DHz7/242Frh5+LI5UdhLNhxhEFNc1vHyWkZTN20h251KuNkZU5QVBzfrNuJrZkJXWrLcx62Q52qzNywAxd7G/zcynD5QTALNu9lUKvn56u/eK8tvb/7hYb+PjSpUoG956+x48xlDs7+Sp5M9Wsyc/VfuDjY4ufhyuW7D1mwcTuD2jfTWC8pJZW/Dp9i9meDZMmhkalxXWYuWYurkz1+5dy5dPs+89ds4oMuueerzU1NaFyjCl/N+wUjQ33cnBw5ev4ya7fvZc7Y4bJk6ti8Md/9vBTXMk74eZfj0o3bzF++lg/e66Je58+d+7CztsK1jBPXbt9j1NQf6NKqKa0ayXOvBYC9h48iSeBTzpP7QUF8OXUmPuU8+aD3eygUCv734WBmLlyMt6cH3h7uzFy4GGMjI/p06yRbJqF000pBX9i+LpMPXmDEjlNEpaTjbGbMsBo+fNOkqnqd7XdCGPrPcfXzvn8eAWBik6pMalbwqNy3ytSlIZP3nmXE5qNEJafhbG7CsDp+fNMidyRtaGIy228GAVBj/kaN9x74uAuNy5Up/kzvt2DyjhOM2HCAqORUnC1MGNagChPb5v7R0NXR4U5kHGuXbiUmJQ0bE0NquDpxZExv/Jzl6WZb2K89kzcfZMTa7UQlpeBsacawJjWZ2LmJLJ9XqExDujN5wy5GLP2LqKRknK3MGdayHhN75J6b1tVRcD3kCb8fDSQhNQ0nS3Oa+HuxfsxAzIzk6WVZ+GlfJq/+hxGL1hKVkISzjSXD2jVhYt/nlz52qR/A4pED+GHDTkb98gc+ZR35c+JwGvjLcyOQhaOHMnnpOkbMWUJUfBLOtlYM69yKiR+8p7HexgMnkCSJXi3lPScM8OP4/zFp0XI+m76AqLh4nO1s+bBHRyZ+MlC9zrrZkxi/YCn9v55BXGISbk4OTB8xlI/fl6dQ/Th1HBPnLmL4xBlExcTh7GDHh316MGnkx+p1wqOi+Xz6bCJjYnGyt6N/t45MHPGRLHnyJCY9ZfyM2YSGR2BtaUG3Dm2YMe4LlMrc+xZ8+dlHpKWnM/yrieoby+zduKZUXoOuUOQ+3mobxRPlnaaQpH/X752UlISFhQUR3wzCRr90dIZk6eixz78drR4cQqmSpwu6qLJ0dNlXrhmtn5xBKZWSTApd9jrXoXXCDZTk734tCVnosNfSj9bZwSgpuVMxL8pCwV49N1obxqMsJX9NsiTYm25FaxsVytLxa0eWCvbG6tDGwwLl2056XUyyVBJ7HiXStpI7St3SsaOyclTsvhZE25r+KGW8yVFhxcYnYFehGomJibLdeS2vTqy3ssdY8Xb/DqmSit7xUbLm/a8rHd90QRAEQRDeipg+VRAEQZCVGOWuHaKgC4IgCLISBV07RJe7IAiC8J8hpk99NdFCFwRBEGSlA7zteEmdZ2NlxfSpryYKuiAIgiArxbP/ve02hNcTBV0QBEGQnSjH8hPn0AVBEAThHSBa6IIgCIKsiuVOcaKJ/0aioAuCIAiyEpetaYfochcEQRCEd4BooQuCIAiy0kGBzlu2sd/2/f8fFLqgZ2RkkJGRoX6elJQEQHZWFlmlpKGf/exCxezoWMjJLuE0ubJ19aAcZN17gJSTVdJxAMjWVYJzHTICA8kpTZla+pGx7wA52aUkk54S2g0hfdNfZJemTJ2Gkbp0CXqlKVO3j0mZ/T162ZklHQeAbD196PEJT78ZW7oy9RzO0y8+KRWZkiXt/d0WXe7aUejZ1qZMmcLUqVPzLV+3bh3GxsU/X7kgCIIgn9TUVPr06aOV2da2WjtiovN2BxApKhWd4yLEbGuvUegW+rhx4xgzZoz6eVJSEi4uLjS6shPrUjKPY7aOHoeqd6bZmT/RK0Ut9EN13qPZ0T/QK0Wt4UON+9Jk/6pSlelIy0E02bW8VLU8j7QbQuNtS0tVpqOdhtFw86+lKtPxbh/T8K9fSkXLE3Jbw8d7fEKDjT+Xqkwneg4vNZnitdlCF6PctaLQBd3AwAADA4P8G1Blo8wpHQU9j15ONspSUqjy6OVklc5MpaQo5NHLzioVf+xeJDIVjl52JnpZItOblJZMulo8VSq63LWjdFViQRAEQRD+FTHKXRAEQZCVuJe7doiCLgiCIMhKR1EMs62Jev5GoqALgiAIshLn0LVDnEMXBEEQhHeAaKELgiAIshItdO0QBV0QBEGQlRgUpx2iy10QBEEQ3gGihS4IgiDIStwpTjtEC10QBEGQlU4xPQBq1qyJr68vP//8szZ/hP8ErbTQs1Uqvj1+nfU3gohIScfJ1JABlTwZX98PnWeHXZIkMe3EdZZdfkB8eia1nG34sVUN/OwsZMvltWwPwUmp+ZZ/XMWTn5pXJTIlnXHHr3MgOIqEjCwalrFhQbOqeFuZypdpzSGCn6blz+Tvxk+N/UnOzGb8mdtsexhJbHom7uZGDK/swcf+brLkKb/hGMHJ6fmWf1TRhR/rV8Rg2b4C3/ddLW8+r+whT6a/TxGSUkAmnzIsrO0DwO2EFCZcfMDxyHhUEvhamvB7I39cTQ1lyeSz9TQhKRn5ln/k7cyCmuUZdvoWvz+K1Hitpo0Zx1oHyJIHoOKOc4Sk5s/0YTkn5gd4aSwbcf4eKx5G8ENVTz4rX0a+TLvPF5zJ05H51cox42YIfz2OITQtA30dBVUtTZni70ZNazPZMvnuvUhIWv5MwzwcmFXJnW9vPWZvZDxBKRmYK3VpamfBt75uOBnpl0im+VU82foklhVBkVxKSCEuM5tTTSpT2dJEtjylSWBgoJic5RW0UtBnn77Fkkv3WNGhDr62FlyIiGPozrOYGygZWTP3D/CcM7dYcO42yzvUwdvajJknb9B2w2FufNgeMwOlLLlO92lKzguTzd2ISaLN3yfoUb4MkiTRfdsZlDoK/u5cB3N9JQsu3KPNX8e5OqglJkp5dt3p9+qTo3ohU1wybbadpYeXEwCfn7zJ0dBYVresipuZEfsfxzDi6HWcjQ3o5OlY7HlOdq6juY/ik2m3+wLdPRwACO7TWGP9vaExfHTsBl3dHYo9izpT+xovZUqh/YHLdHOzB+DB01Sa7bnAIG9nJlbxwFxfjzuJKRjqytchdaJ1gEamm4kptD90lW6uduplrZys+a2Oj/q5/lvOPvUmx1pUJeeFuRRvJqXQ8eh1urrYaqy3PSyGwLinshYodaZmVV7aT6l0PHGDrmVzM3mZGjG3qiceJoakqVQsuhdGp+M3uNomADuZ/g4cbVIJ1YuZklLpeOoWXZ1tSM1RcTkhha98ylLJ3ISErGy+uhbE+2dvc7xJZVnyvCkTQGq2ijrWZnR1tuGzyw9ly1FcxCh37dBKQT8TFkNH77K088o98ne3NGXjzWAuhMcBua3zHwPvMK6eH119XABY0aEOZX78h/U3g/mwmtcrt/027Iw1J5uZde4O5SxMaFTWlnsJyZwNj+PygBb42eYeDS5qXg3nX3ey4fZjhlSSp/VpZ/RSposPKGduTCNnawDORsTTv0JZGpfJ/cUe5ufK0hvBXIhOlKWg2730R372lUd4mhvRyMkKAMeX9uH24CgaO1vjaS7flLp2hpqZ5lwPxtPMiEYOlgBMufSQ1mVt+O6FVqinmZFseQrMdDMET1NDGtpbqpfp6ypwNMo/wZG2Ms29/Tg30wu9Xk9SMxhz8QFbG/nT/fgN+TO9VJTn3gnF08SQhs9+x3q+cAAE8H1lD1YHRXE9MYWmL+xLWTPdDcPTxICGtuYoFAq21/fVeH1OZQ8aH73G49QMXIzl+fd8XSaA3s/2U3ABPVWlkkKBQpxEl51WzqHXd7HjcHAkd2OTALgSGc/Jx9G0LZfb6nyUkEJESjotPJ4XJAM9XRq52nM6NFobEcnMUbHu1mMG+buhUCjIyFYBYKj3fBfp6ijQ11VwMixWe5nuhjGooov6l6GekzXbgyIJS05HkiSOhMZwLyGFli52b9ha8eRZfz+cQeXLFPjLGZmawe6QGD6Qscu2wEwPIxno5YRCoUAlSewOjcXb3JgO+y/jsuk4DXedZ1uIdr5HeZk2BEUysJyTxn46HpmA698nqbT9LJ+evUNUuvZm3MrMUbExOIoB7g7qTCpJYsi5O4zyKYuvhfa7azNVKjaGRDPA3b7A71OmSsWKR5FYKHWppKV8mSoVG0Jj6O9acCaApKxsFICFUrfUZBIE0FILfWydiiRmZOK/ZCe6OgpyVBLTGleml587ABEpueeMHUw0z2/amxgSkpiijYhsvf+EhIwsBvjlnouuYG2Gm7kx35y4weIW1TBR6rHgwj0iUjKI0NJR8daHESRkZDOgYln1sgUN/fjo8FXcVx9ET0eBDgp+a1aJBs9a8HLaFhxFQmY2/b2dC3x97b0nmOnr0sXdXvYs6kyPo3MzPTs4jErPJDk7hznXg5lS1ZMZAeXYFxZLzyPX2NuqGo0creTPFBpDQmY2/V44QG3lbEM3V3tcTQwISk7n26uPaHvwMqfa1MBAxlMBebY/iSUhK5t+Hs9Phcy9HYqeQsGnr/j3lD9TXG4mN83vy+7wOAaevUNqjgpHQ322N/DDVqbu9nyZwuNIzMqmn2vB3+H0HBWTbobwfllbzGU67VbUTP8FostdO7Tyjdx0K4R114NZ27kevrYWXImM5/MDF3EyNWJAZU/1ei8ffUqS9v4RV14Poo2HA86muV2zSl0dNnaszYf7LmK/eAe6CgXNXe1oI+O54XyZbj2mjZsdzi8c6Cy6+ohzkQn8064GrmZGHH8Sx4ij13EyNqT5S+dGiz3PnTBal7XRyPOi1XfD6FXOCUM97bRcAFbdC6d1GWucn3V95g0/6FDWjpG+rgBUsTbjTHQSS++GaaWgr34QTmsnG3UmgPdeKFp+lqZUtzHDZ+sZdj+JpYsWeldWP4yglaM1Ts+6/C/FPWXxvTBOtaxWYq2+1Y8iaeVgpc6Up5GdBadbVCU2I5uVQRH0P3uHI00rY28o/zn+NcFRtLK3KnA8QZZKxaDAu6gkmF9FnlNuRc30XyEKunZopaB/fegyY+tWpKdvbuu3kr0lIUkpzDp9kwGVPXE0yS2iEclpOJk+P9cZnZqO/SuKR3EKTkrlYEgUf3aso7E8wMGKC/2bk5iRRWaOCjtjA+qtO0yAg/xFITgplYOhMfzZ5vko6LTsHL45c4e/2gbQ7tmBRWVbc67EJDHv8kNZC3rw0zQOPYllY4uqBb5+IiKeu4mp/NGsimwZ8mVKTuNQRBwbG1dSL7M1UKKnUFDRUvMcfgULY05GJcqfKSWdQ5HxbGjo/9r1nIwMcDU25H4BVzQUt5CUdA5HJbC+3vNzwSdjkohOz8Jnxzn1shwJxl15yM93w7jVoZZ2MtWtkO81Ez1dypkaUc4UatmYUXnPBVYHRTG2QtkCtlSMmVIzOByVyLraPvley1Kp6B94l6DUDHY28NVa6/x1mf5LFMVwDl2cbngzrXwrU7Oy1Zen5dFVKNStKQ9LExxNDDkYFEE1x9yu48ycHI6FRPFd06qy51t9PQh7YwPavWJQmcWz7r578clciIxnaj3fAtcr1ky3Q7E3MqDdC93XWSoVWSrpFftSenkTxWrN3TDsDfVp94qDhlV3wqhua05lG/kuL8qX6X449ob6tC1ro16mr6tDDVsz7r50OeK9pFRctXBwuPZBOPYG+rR9wymQ2IwsQlPTcdJCq3Pto0jsDJS0cXqeqbebPU2fDSLM0/nYdXq72dNfC71Qa4OjsDNU0sbxzaeKJHLPI2slk4GSNi8dsOcV8wfJ6exq4IeNvna6/1+XSRAKopWC3t67DN+fuoGruTG+thZcjoxnwbk7DKqS292uUCgYWdOH70/dxMvKDC9rM344dRNjpR69feW5vjqPSpJYfSOY/r5u6L10GdFfd0OxMzLAxcyY6zGJjDlylc7lnGkp8x88lSSx+lYo/SuU1chkrq+kkbM1X5+6hZGeLq5mRhwLi+X3O6HMbiDfQYZKklhz7wn9vJ3z7SOApMxs/n4UwQ9abEWoJIk1D8Lp5+mYL9NoPzf6HbtOA3tLmjhase9JHDtDY9nXqpr8mR5G0NfTQSNTclY2068F0cXFDicjfYJT0pl05RE2Bko6yXyaRCVJrA2KpK+7A3ovTChtY6DE5qXz0kqFAgdDfcrLeIWCOlNwFH1d7TUypWTnMOt2KO2drHE0VBKbmc3Sh+GEpWWoL2uTM9PvIVH0dbXTyJStkuh37i6XE1P4q04FVJJE5LPBjFb6erJeeviqTABxmVmEpmYS/izL3eRn45AMlTho4SCxqMR86NqhlYK+sGUAk49dZcTe80SlZuBsasSwal5808BPvc4XdSqSlp3DiL3n1TeW2dWriWzXoOc5GBxFyNM0BhVwY5bw5HTGHrlGZGo6TiaG9PN1ZUKdirLmATj4OIaQ5DQGVczfxfhHq2pMOHOHAfsvEZeehZuZEd/W8eEjP1f58oTFEpKczkCfgkevb3oYgSRBz3LFf9ncKzOFx/E4JYOBBQzo6uxqx0+1fZh9PZjPA+9R3tyYDY39qf9Si7S4HYqI53FqBgM9nTSW6yoU3EhIYd2jSBKysnE01KexgyVr6/tiJnPX7aHIBB6nZjDAQ3tjP97kUNSzTC8dGOsqFNx9msofwVHEZmZhra9HgJUZ+xtXwlfmg4zD0Yk8Tsuk/0sD9MLSMtgZEQ9A3cNXNV7bVd+XRjLe+OpVmQB2hcfz8aUH6ueDzt8DYJxPWSZUdJEt07+l0FGgeMuKLCZneTOFJP27vtqkpCQsLCyIGNsTGz2tXP32Rlm6euyr0Z1WJ9ejzMkq6TgAZOkq2Ve/N60OrSpdmZoNosWepSizS0kmPSUH2gyjxbZf0cvW3uVcr5Otp8+BTh/TfPPiUpXpYLdPabrpp1KV6fD7I2i6YSF6WaUkk1Kfw73+R5M/5peqTEf6ji41meLQwXXLSRITE2W781penTju7ILpW/ZmJKtUNHzyWNa8/3VichZBEARBVmJyFu0QBV0QBEGQlSjo2lE6+soFQRAEQXgrooUuCIIgyEpch64doqALgiAIshJd7tohutwFQRAE4R0gWuiCIAiCrESXu3aIgi4IgiDISnS5a4co6IIgCIKsdBSKfHNQ/JttCK8nzqELgiAIwjtAtNAFQRAEWYkud+0odEHPyMggIyND/TwpKQmAbB09snRLR0M/Wyf3x8nWLT3HKXlZsnW1N+Xim+RlKZWZ9EpRJj2RqTCeZyo9s3zlZRGZXi1H0t7fbQXFMChOTM7yRoWenGXKlClMnTo13/J169ZhbCzvTEiCIAhC8UpNTaVPnz5amZzlgqcHpm/Z8EvOURHw8JGYnOU1Ct2UHTduHGPGjFE/T0pKwsXFhUaBW7DWKx1HTtm6ehyq8x7Njv6BXimZ2SxbV8mhxn1psn9Vqcp0pOUgmuxajl4pmW0tW0/JkXZDaLxtaanKdLTTMBpu/rVUZTre7WMa/vVLqZpt7XiPT2iw8edSlelEz+GlM9OGRaVitrV4LQ6hUujkPt5qG/9qXtD/Xwpd0A0MDDAwMMi/gZxslKWjnqvp5WSVmqlK8+jlZJWaqUrz6GVnlZo/dnlEpsLRy84sFUXhRSJT4ehllY5MutocE10M16GLk+hvVjpOfguCIAiC8FZKz+gxQRAE4Z0kRrlrhyjogiAIgqxyC/rb3vq1mMK8w0SXuyAIgiC8A0RBFwRBEGSV1+X+to/SpmvXrlhZWdGjR4+SjgKIgi4IgiDILO9e7m/7KG1GjhzJmjVrSjqGmijogiAIgqze1RZ606ZNMTMzK+kYaqKgC4IgCO+cY8eO0bFjR5ydnVEoFGzZsiXfOosXL8bDwwNDQ0MCAgI4fvy49oMWIzHKXRAEQZCVohhuLFPU96ekpFClShU++OADunfvnu/1jRs3MmrUKBYvXkz9+vX57bffaNu2LTdv3sTV1RWAgIAAjTlM8uzbtw9nZ+d/94PISBR0QRAEQVbFeR163sRgeV51F9O2bdvStm3bV25v3rx5DBkyhKFDhwKwYMEC9u7dyy+//MLMmTMBuHDhwtuF1jLR5S4IgiD8Z7i4uGBhYaF+5BXfosjMzOTChQu0atVKY3mrVq04depUcUXVOq210MOepjHu+HX2BkWSlp2Dt5UpS1pVJ8DBCoB/7oWx9OojLkYmEJueSWC/ZlS1t5Q3U3I6407fYm9wNGk5OXhbmLKkWWUC7C3IylEx6ewddgdH8ygpFQt9PZq52PJd3Qo4mxjKlyklnQnn7rE3NCZ3P1mY8FsjP6rb5s4uNO3CfTY9jCA0JR19HR2q2ZrzbQ0vasm4r8JSM5hw4T77wmJJy1HhbW7Mr/UqUN0m/4xHw0/fZvm9J8yu4c0IXxdZM31z+QH7nsTlZjIz4pc6FahunTtAZdjpW/z+KFLjPTVtzDjWOkC2TE9SM/jm6iP2R8STlqPCy8yIX2p4U836+aCZ20mpTLz6iBPRiagkqGhuzNq6FXCR6Tv1JC2Db64Fsz/yWSZTI34J8KKalSkAJn+fLPB90/3dGO1TVrZME2+EsD8ygTSVCi8TQxZXL0c1y9xMydk5TLoRzI7weOIys3A1NuSTco4M83CUJU9hMkWmZzLpRggHoxNIzMqhvo0Zcyp74GVqJEse3/0XCUnLf7/3Ye4OzK/sgSRJfHcnlJXBUSRkZVPDypR5lTzwNS+dM18WZwv98ePHGrOtFdQ6f5OYmBhycnJwcHDQWO7g4EBERESht9O6dWsuXrxISkoKZcuW5Z9//qFmzZpFzlNctFLQ49MzabzxKI1dbNnetR72xgY8TEzB0uD5nM4pWTnUc7ahe/kyfLz/khYyZdF48ykal7Fhe8da2Bvp8zAxFUuD3F2Smp3DpegkJtTworKtOfEZWXx+4iZdd57n7PsN5MmUkUXT7edo7GTNttbVsTPS5+Gzg4k83hYmLKhXEQ8zI9JzVPx4LZj2uy9y8/0G2BkV/zzL8RlZNN19gcaOlmxtURU7QyUPn6ZpZMqzLSSawJgknGXIoZEpM4tm+y/S2MGKLU0qY2+o5GFyOpZKzUytnKz5rY6P+rm+jnwdUvGZWTQ/dIVG9pb809A/dz8la+6nh8lptDx0hQEejkzwc8NCqcudpDQM3nJayVdnyqb5kWs0srPgn/q+2BkoeZiSjoVSV73Og/aaf3z2RcTz6YX7dCljK1umFsdu0MjOnM31KmCnr+RhagYWL/zbfX0tiGMxiSwL8MLN2ICD0YmMvvIQJ0N9OjhZaz2TJEn0PnsHPR0FG2tXwExPl58ePKHjyZucb14VEz3dN3xC0R1tVAnVCzNb33yaRsfTt+jqnPvzz7//hEUPI/i1ajm8TA2ZdTeMTqdvcal5VcxkyPO2FDoKFDpveQ5dyn2/ubl5sU2f+vJ5eUmSinSufu/evcWSo7hopaDPDrxLWTMjlreuoV7mbmGisU4/39xBCEGJKdqIxOxLDyhrasjy5lWeZ3rh6NbCQMmezrU13rOgoR/1/jpJyNM0XM2K/8h8zpVHlDUxZGlj/+eZXvqcXl5OGs9n1fFh5d0wrsU9pVkZm2LPNPd6MGVNDFha3/d5pgJaJWGpGYw+d5ftLarQ5eDVYs+hkelmCGWNDVlSp4J6mVsBmfR1FTgaFf3o/d+YdzuUssYG/Far/PNML7W6p14LopWTNTOqeKiXecjUwgOYdyeUskYG/FbD+5WZHA01D752PomjkZ0FHqby9BjMvxdGGWN9fq3u9cpMZ+Oe0sfFnkZ2FgAMNjFkxaNILsYny1LQ35Tpfko65+KTOdesiroFvKCKJx67zvNnaAyD3B3ybfNt2b3Q2AGYe/8JnsYGNLQxR5Ikfn4YwVhvZzo/K/BLqpXDc+8FNoXGMESGPO8aW1tbdHV187XGo6Ki8rXa/0u0cg59x4NwAhys6LX9LM6/7KTG2oMsu/pIGx/96kyPIgmwt6TXngs4r9hPjY3HWXYj5LXvScrMRgHqVnyxZwqJprqdOb0PXqHs74ep9c9plt8OfeX6mTkqlt0OxUJfj8o28lwLuSM0hgAbc/ocvYbLpuPU3n6O5XfDNNZRSRKDT9xgtJ8rvs+6KOW0MzSW6tZm9Dl+A9e/T1Jn93lW3H+Sb73jkQm4/n2SStvP8unZO0Slyzdl5a4nsVSzMqXfqVu4bT1D3X0XWfkgXP26SpLYEx6Pt6kRnY5ew23rGRofuMz2sBj5MoXHUc3KhH5nbuO24xx1D1xm5aNXdydGpmeyJyKegTIWhJ0R8VS3NKXfuTu47wqk3uErrAzSPDVS18acXRFxPEnLQJIkjkYncj8ljRYOliWSKSNHBYDhCz0pugoFSh0Fp2OfypLpRZkqFRtCY+jvao9CoSAoNYPIjCyav3CazUBXhwa25pyNkz/Pv1HarkPX19cnICCA/fv3ayzfv38/9erVK74P0jKtFPSHiSn8duUhXlYm7Oxenw+reDD68BXW3gzWxscXnCkpld+uB+NlYcLOjrX40M+V0cdvsPYVBTQ9O4fxp2/Tq7wz5vrKAtd5W4+eprHkVihe5sbsaBPAsAplGXP6Nr/f0yxWO0OisV51EPOVB/jpejC72gZgayhPN/ejp+ksuRNGOTNjtjevylCfMnweeI/fXyhWc64Ho6dQMLyCPOdc82VKTmPpvTC8zIzY1rQyQ72c+fzCff54+LxYtXK2YWU9X3Y3r8L31cpxITaJtgcvq/84F3+mdJY9CKecqRFbG/kztJwTX1x+yB/PCkNUehbJ2TnMvf2Ylo7WbGvkT8cyNvQ+eYvjUQnyZEpJZ9nDiNxMDXwZ6unIF5cf8UdwVIHr/xEchZmeLp1l6OnJE5SSzrJHEXiZGrG1ni9D3B0Ze/UR60Ki1evMqexOBTNjyu+9iNW2s3Q9fYv5lT2pV8CYDW1k8jEzwtXIgMk3QojPzCZTpWLu3TAiM7KIyJB/XvPt4fEkZmXTz9UOgMiMLADsX2rF2xko1a+VNsV5p7iaNWvi6+vLzz///NrPTE5O5vLly1y+fBmAR48ecfnyZUJCchtuY8aMYdmyZaxYsYJbt24xevRoQkJC+Pjjj2XdF3LSSpe7SpIIcLBieoPcruRq9pbcjHnKb1ce0d/XTRsRCs5kb8H0urndttXsLLgZl8xv14Pp/1JhyspR0XffJVSSxKIXusNlyWRrzrSauV2kVW3NuRmfwpJbj+nn/fyaxyZOVpzrWpfYjExW3A6jz8ErnOhcG3sZupdVSATYmDGterncTDZm3EpIYemdMPqVc+JibBI/3wrldIeab32daeEzQXVrM76t6pmbydqMm4kpLLn3hL6euQOn3nOzV6/vZ2lKdRszfLaeYfeTWLq42MmTycqUqZXdczNZmXIrMZVlD8Lp6+6ARO750PZlbBjhUwaAKlamnI1NYtmDCBrKMKhRJT3L5J/7O1bV0pRbSaksexhB3xf2T561QVH0dLXTaInKk8mEKc9OsVWxNOHW01SWPYqgz7OC9cuDCALjn7Kptg+uxgaciE1i9NWHOBoqaSrbfnp1JqWODn/ULs+nFx/gsisQXQU0tbOglUw9Bi9bExJFK3tLnF46aM/32yYVsOwdFBgYWKhz6OfPn6dp06bq52PGjAFg4MCBrFq1ip49exIbG8u3335LeHg4/v7+7Nq1Cze3kqlJxUErLXQnE0MqvtQlXMHGjMdJqdr4+AI5GRtS0eqlTNamPE5O01iWlaOi996LPEpKZU/n2rK1znMzGVDxpS7rCpYmPE5O11hmotTDy8KY2vaW/NbIDz0dHVbd0ewGLy6ORvpUeGm8QwULYx6n5GY6GZlIVHom3n+fwmTtYUzWHiYkJZ2vLtyj/N/yXP7haKhPRQvN0bwVLIx5nJr+ineAk5EBrsaG3H+a9sp13jZThZdGGPuYG/E4NfemFDb6SvQUCiq+vI6ZMaGp+W9cUSyZjPSpYK55jt7H7HmmF52MSeRucpqs3e0AjoZKKpi9vA+MeJyWmyktJ4cpN0OY6e9OOydr/C1M+NjTie5lbFlYwGkVbWQCqGZpyulmVQhrX5P7bWqwpZ4vcZnZuBnLO0YjJDWDw9GJDHR9fgDm8Kxl/nJrPDozK1+rvbQoiS73Jk2aIElSvseqVavU63z66acEBQWRkZHBhQsXaNSoUfH+4FqmlRZ6PWcb7sYnayy7F5+MawleYlHPyYq7CS9lSkjRGOyWV8zvJ6awv0sdbGTq1s5T18GSuy8NCryXlILrGwYoSUiydSXXtbPk7ksHXveS0tSZ+ng60szJSuP1jgcu08fTkQEvDeArvkwW3E3SLMz3ktJwfc2lX7EZWYSmpudr5RSXOrbm3HvpYOHe0zRcn/3B19fVIcDalLsvrXM/OQ0XE3mKQh0bM+491TzIuZf8PNOLVgdFUc3ShMqWJvleK+5Md5Nf3gfp6kxZKoksSeLlAdE6ityWdElkelHeyPf7yWlcjE9mYkX5Ls0EWBsShZ2BkjYOz3/H3I0NcDBQcigqkSrPDrYzVSpOxCTx7bNehtKmJO4U9/+RVlroIwO8OBsex/dnb3M/Ppn1tx6z7OojPnnWZQoQl5bJ5agEbj0bZHI3PpnLUQlEpLy61fVWmap4cDYyge/P3+d+Qgrr74ax7EYIn/i7A5CtUtFzz0UuRCeyumU1clQSESnpRKSkkylT8Rzp78bZqER+uPyQ+4mpbLgfzvLboXz87Jc0JSubiYH3OBuVQPDTNC7FJPHxsRuEpWTQ3VOea3RH+rpwLjqJH64F8SAplQ0PI1h+L4yPnl2jbGOoxM/KVOOhp6ODg5EB5S3kKQ4jKpTlXEwSs24E8+BpKhuCIllx/wkfeed2ZSdnZfP1xfuciU4kODmNY5HxdD96DRsDJZ1c5Lkca0T5MpyLfcrsmyE8eJrGxuAoVj6M4EOv56dKRvmU5e/H0ax8EM6Dp2n8eu8Ju57E8mE5eQ58Rng5cy7uKbNvP+ZBchobQ6JZ+SiSD8tpfleSsrL5JzSGQR7yj+79rJwzgXHJzL4TyoPkNDY9jmZlUCQfPrvG3FypRwMbcyZcD+ZYdCJBKen8HhzF+pBoOjoX/wj3wmQC2BwWy7HoRB6lpLMjPI5OJ2/RwclaY2BacVNJEr8/jqavix16LxzhKBQKhns6MudeGNvC47iRlMpHlx5gpKvD+2Xl+X6/LQXF0EIv6R/iP0ArLfSajtb81akOE47fYPqZ23hYmDC3SWX6VHx+NLn9YThD9z6/zV7fnecAmFinApPq+ebb5ltncrDkr7YBTDh9h+nn7+FhbsTcBr70eXZ+MzQ5ne3PBjTV2Kh5w/4DXerQWIaBQzXsLNjUsioTA+8x49JD3E2NmFOnAr2ftXR1FQruJKTw+70nxKRnYmOoT4CtOYc61MTXSp7R5TVszdnUtBITLz7guytBuJsZMruGN71lOoAoVCYbczY28mPS5Ud8dy0Id1MjZgd40ftZQdJVKLiRkMK6R5EkZGXjaKhPYwdL1tb3xUwpz1c+wNqMDfUrMulaEDNvhuBuYsisqp70euFcdaeytiys7sXc24/54vJDvM2MWFfPl3rPLs+SJVPdCky6HszMW49zM1XxoJer5vnzvx7HIAHvyTC2IF8mK1PW1/Zh8s1gvr8TipuxIT9UcqfnC5+9uqY3k2+GMOTCPeIzs3ExNmCyrytDZTodUJhMEemZjLseRFR6Fo6GSnq72PG1zINAD0cn8jgtk/6u+f9dRns5k5ajYvTVR+oby2ytW7FUXoMuaI/W7hTX3tOJ9p6vbokM9HNjoJ92ByO0d3eg/Sv+SLibG5M1vL1W8wC0d7WjfQG/wACGerpsallVu4GAdmVtaVeEI/+73eW/7KNdGVvaveLmJ0Z6umxvVqXA1+TU1tmGts6vP9Ab6OnIQC0eDLV1sqbtG67dHuzpyGBtZnK0oq2j1StfdzDUvCZcG96U6dNyTnwqU0/KqzS3tyS5U50CX1MoFEyo4MKECvJ2+RcX0eWuHeJe7oIgCIK8imNA3LN6XtjL1v4/ErOtCYIgCP8Zhb1s7f8jUdAFQRAEWYkud+0QBV0QBEGQlUIn9/G22xBeT+wiQRAEQXgHiBa6IAiCICvR5a4doqALgiAI8tJRkO/2f/9mG8JriS53QRAE4T9DXLb2aqKFLgiCIMirOCY0f/Z+cdnaq4mCLgiCIMhKnEPXDlHQBUEQBHmJc+haUeiCnpGRQUbG8/mBk5KSAMjW1SNLt3Ts6GxdvWf/X3rmBM7LUioz6ZWiTHoiU2E8zyTvVL5FkZdFZHo9dSZl6ciUI4ZQvXMUkiQVapbhKVOmMHXq1HzL161bh7Fxyc1rLgiCIBRdamoqffr0ITExUbZz0klJSVhYWPC4SRXM33ImuKTsHFyOXJE1739doVvo48aNY8yYMernSUlJuLi40OjKTqyVpeNIL1tHj0PVO9Ps5j70VNklHQd4lsm3Fc0eHkVPyinpOABkK3Q55NmY5uGBpSrTQaeaNE+4hR7yzDdfVNnocNCyIs2zQ9CjUMe9sstGwUE9V5obxKNXOjrGyJbgYIYVza1U6JWOPwVkq+BgvA4t3Mw15hIvSdkqiQPBSbTwdUWpW/I7KjYxSWufpdBRoHjLf4e3ff//B4Uu6AYGBhgYGOTfgCobZU7JfzlfpKfKRllKCnoePSkHpap0FM+8njY9KQdlKSnoefRQoSwlBT2PHhLKUlLQ8+gpQFnK/r7p6UApObZX09NRoCxlhUCpq1MqCrpSp+QzCMVL/IsKgiAI8nrbuVNfuOztXboOPSUlpVi3J0a5C4IgCLJSKIqhy/0dvA7dwcGB999/n8GDB9OgQYO33p5ooQuCIAhCCVi/fj2JiYk0b96c8uXL8/333/PkyZN/vT1R0AVBEAR5FWOX+7ukY8eO/P333zx58oRPPvmE9evX4+bmRocOHdi8eTPZ2UUbCyYKuiAIgiAvHZ7fXOZfP0r6h5CPjY0No0eP5sqVK8ybN48DBw7Qo0cPnJ2dmTRpEqmpqYXajjiHLgiCIAglKCIigjVr1rBy5UpCQkLo0aMHQ4YM4cmTJ3z//fecOXOGffv2vXE7oqALgiAIshL3ci/Y5s2bWblyJXv37sXX15fhw4fTr18/LC0t1etUrVqVatWqFWp7oqALgiAI8hL3ci/QBx98QK9evTh58iQ1a9YscB1PT08mTJhQqO2Jgi4IgiDIqxinT32XhIeHv/HW6UZGRkyePLlQ23uHhxkIgiAIQullZmZGVFRUvuWxsbHo6hb93veioAuCIAiyUugUzwPerTvFvWputIyMDPT1iz4rn9a63MOepjLu8GX2PggnLTsHb2szlrSrTYCTNZD7g007cZ1llx8Qn55JLWcbfmxVAz87C1nyfHvoItOOXNZY5mBqROiXvQGITE5j3L5ADjwIIyE9k4ZujixoXwdvG3nyAHy77xzT9gfmzzR5MADJGZmM33WGbTceEpuSjru1OcPrV+bjev6yZZq68yTTdp3SzGRmTNj3wwHQGz67wPd936UxX7SsJU+mfw4xbethzUzmpoT9+JX6+a0nUYzbtI9jd4JQSRK+zvZsGN4TVxtLeTJt3M20P/dqZrI0I2zZNAAGL/qDNUc0/21rebtxauZoWfIATF27hWm/b9XMZGVO2IaF+db9ZOEqlu46ytyPevO/bq3ky7R8A9NWbNLMZG1J2PYV6tc3HTjJ46gY9JV6VPcpx7QP+1Dbr7x8mRav5NtfVmtmsrHiyZF/yMrKZuJPy9l9/AwPw8KxMDWheZ0AZo76EGd7W9kyTZm/mG8X/qqZydaG8PO53/vNew6w5I+/uHD9JrHxCVzcuYmqfhVky/PWirHL/V24U9yPP/4I5A70W7ZsGaampurXcnJyOHbsGBUqFP3fUysFPT4tk8ZrD9DY1Z7tPZtgb2zAw4RkLA2fzzM958wtFpy7zfIOdfC2NmPmyRu03XCYGx+2x8xAnvmo/ewt2TOwjfq57rNBF5Ik0X3dAZS6OvzdpwXmBvosOHWdNqv2cHVEN0z05Zsf28/Bmj0fdnoh0/NOlM+3neTog1BW926Jm5UZ++8+ZsQ/R3E2N6aTv6d8mZxs2TvivQIzhX73ica6e24+Ytgfe+hWTb4/wAB+ZezZO3ZQgZkeRMXReMYyPmgUwOSuzbAwMuTWk2gMlfJ+3f1cHNk76dMCMwG0rlqB5cP7qJ/rv+V0koXK5FaGvd+PfSFT/j+qW09d5NzthzjLdLCTL5OHC3sXTnkh0/P9VN7FmYVjhuLp7EBaRiYLN26n7ehvubPxZ+ys5DuY9vNyZ9/SuS9kyv23SU1P5+Ktu0z4aABVfMoRn/SUMbMW0WXEeM5tXCJbHgC/8uXY//vS55lemNAlJTWNejWq0qN9Sz78Ov+01kLpNn/+fCC31vz6668a3ev6+vq4u7vz66+/vurtr6SVgj77zE3KmhmzvEMd9TJ3y+dHJJIk8WPgHcbV86OrjwsAKzrUocyP/7D+ZjAfVvOSJZeujg6OZvkHJNyLTeJsaDSXP+uKn70VAIs61MX5h/VsuPaQIQE+suTJzaTA0dykwNfOBkfQP6ACjcuVAWBYHT+WnrnBhdBoWQu6no4CRwvTAl97efm2q/dp4u2Kp62lbHlyM+ngaGlW4GsT/9pP28rl+aFna/UyT3trWfMA6Onq4Gj16paDgVLvta/LQU9XB0frVxfCsJh4Rv78O7tmfE6nSfO1lEkXRxurAl/r3aqRxvM5Iz9gxY6DXH0QTPMaleXNZGuTb7mFmalGoQdYOO5/1On9MSHhkbg6OciYSQ/HV/QC9O/WEYCgx2GyfX5xEtOnanr06BEATZs2ZfPmzVhZFfz7UFRaKeg77oXR0tOJXv+c4FhIFM5mRnxc3ZuhVXML9aOEFCJS0mnh4ah+j4GeLo1c7TkdGi1bQb8fm4Tr7PUY6OpSq6wd01oE4GltTkZO7pSihi+0oHR1dNDX1eFkcKSsBf1+TCKu01bmZnJ1YFrbOng+6+av5+HE9ptBDKpVEWdzE44+CONeTALzfN7+pv6vcy86AZfxizHQ06OWuxPTOzUssGBHJqWw6/pDVg5oK2segHuRsbiMmoWBni61PMsyvUdLPO2tUalU7Lp6ly/aNqDtnNVcDg7H3c6Kr9s3pHOAr7yZwmNwGTYJA6UetbzcmN63PZ4Oz/8gH71xH6fB32BpYkQj33JM69Mee4uCD0qKLVNYJC69R+dmquDJ9A+64+lkD4BKpWLgrCV83qMNfu5lZM2hkSk0HJdOQzDQV1LL15vpH/XFs4xjvvUys7JYunUfFqbGVPFylzdTSBhlm3XPzVSpIjNGDsPTxbnAdROfJqNQKLA0K/ggt9gyBQVTplZzDPSV1K5amRlfjsTTtaysnykbMcq9QIcPH37zSkWglYL+MCGZ3y7eY1StCnxV15fA8DhG77+Iga4u/St5EJGSBoCDiaHG++xNDAlJLN7p5fLUKmvHym6N8LY1Jyo5je+OXqHRsp1c+awrFWwtcbM05Zv951ncqT4mSj0WnLpORHIaEU/TZMkDUMvVgZW9WuBtZ0nU01S+O3ieRov+5soXfbAxMWRB54Z89Ndh3KevRk9HBx0F/PZeMxp4FPyHp1gyuTuxakBbvO2tiXyawnd7ztBwzh9c/WYwNqZGGuuuOXsdM0N9ulaVt7u9VrmyrBrWHW9HGyKTUvhu2xEaTl/K1e9GkJWdQ3J6JrN2Hufb7i2Y+V4r9l67R49FGzjw1Qc0ruAhTyZvN1aN6Iu3kx2RiU/57q99NJywkKvzv8bGzIQ21SrSvW5V3OyseRQVy5QNu2g55WfOzfoCA5lOBdSq4MmqscPwLutAZHwS363fTsPRM7i6ZAY25qbM2rQLPV1dRnRpKcvnF5jJtzyrvhmJt6szkXEJfLf6Lxp+PJ6rvy/E5tnBzY6T5+k7eR6p6Rk42VixZ8FkbC3l69moVcmXVTPGUd7NhcjYOL5bspYG/YdzbcsqbCw1ezfSMzIYv2AJvds1x9y04J604lC7aiVWz5tBeQ83ImPimPHTEup368/1/f9gY2Up2+cK8hszZgzTpk3DxMSEMWPGvHbdefPmFWnbWinoKgkCnKyZ3qQKANUcrbkZnchvF+/Rv9LzP7Av3wlIkkCuY7I25V2eP3GAOi72+Cz4izWX7jO6vj8bezXjwy0nsJ/5B7o6Cpp7OtPGW96j4zYV3J4/cbKhjrsjPjPXsub8bUY3rsqiE1c5FxLJPx+0w9XSjOOPnjDin6M4mRnT/MWfpxi19XvelV8JO+p6OFN+8lLWnL3O6OaaN0JYdfo6fWpWlP1cddvKzw8YKgF1vVwoP3Y+a05comftSgB0ql6BUa3rAVDVzYnT90NYcjhQtoLetvrz1n8loG55d8p/Np01R84xumNT3q9fXf26v6sTNcq54PnJt+y6cIOudarIk6nm8y7qSh5Q19eL8oO+ZM3+kzSq7MNPW/YT+PMUrd6Bq23d5/uhUjk36vr7UP79T1mz+zCje+WOHWla3Z8Lq+YSk5DE8u0H6D1xLqeWfo+9TIWsbcPazzPhSd0qfni368OarXsZPfB99WtZWdn0HvstKkni52/kG8wI0LZpwxcyQd3qlfFq1J7Vf29jzNABsn62LMSNZdQuXbpEVlaW+r9f5d/8XmqloDuZGlLRVvMIu4KtOf/ceQyAo0luSy8iOQ2nF1p90anp2L/UapeLib4Sf3sr7sclARDgbMuFT7uQmJ5JZk4OdiZG1PttGwFl5BvZWmAmJxvuxySQlpXNN3vO8NfAtrSr6A5AZWdbrjyJYd7Ry7IV9HyZDPTxL2PH/ah4jeXH74dyJzKOdYM7aiVHvkwuDtyPjMXWzBg9XR0qOttrrFPB2Y6Td0O0l8nQAH9XJ+6HRxf4upOVBW62Vtx7xeuyZXIvy/2wSHQUCqISnuLR7wv16zkqFWOXbuDHLft4sGaOdjIZGeLv6cr9x+Eay7zKOuFV1ok6/j5U6DmcFdsP8vWA7trJZGyEv7cn90JC1cuysrLp+cUUgsIiOLB8nqyt84IzGVOpgjf3HgVr9XOLi7j163MvdrMXd5e7Vq5Dr1fWjruxTzWW3Yt7iqtF7i+Fh6UJjiaGHAyKUL+emZPDsZAo6pa100ZEMrJzuB2ToHFAAWBhqI+diRH3YhO58CSWTi+2orWRKSoeJ3MTsnJUZOWo0HnpS62rUKB6xbWMsmTKyuZ2RGy+wXArT10lwNWBKmXtX/FOmTM9icbR0gx9PT1qeJThbniMxjr3ImJxs5VvlHSBmUIjXzkILvZpCo9jE3DS4iC5jMwsbj8Ox9Hagn4t6nHp12+58MtU9cPZxpLPe7Rl14zPtZspOPSVg+Qgd9BsxrMWjXYyZXL7YTBOzwbJ5RXz+yGh7Fs6N183vFYyZWRy6/5DnOy18/dQ+G/SSgt9ZE0fGq3dz/enbtCjgiuB4bEsu3yfX9rkXqesUCgYWdOH70/dxMvKDC9rM344dRNjpR69feUpoF/uOUcHHxdcLE2JSk5j5tErJGVk0b+aNwB/XX+EnYkhLhYmXI+MZ8zus3Su6EpLL/kGD325/SQdfN1xsTIjKjmVmQcukJSeSf8aPpgb6tPI05mvd5zCSKmHq5UZxx6E8fuFO8zuKN+guLGbD9OhkheuVma55/X3nCEpPZMBtf3U6ySlZfDXpbvM7tZEthwamTbsoUNVH1xtLIlKSua7bUdJSstgQP3cCQy+aNuA3os30dDHnSYVPdh77R47Lt/h4NeD5cu0eisdavjhamtFVOJTvvt7P0lp6QxoUovktAymbtpDtzqVcbIyJygqjm/W7cTWzIQuteUbuT12yQY61KmKq70NUQlJfLduO0mpaQxoWR8bc1NszDUPypR6ujhaWeDj4iRfpkWr6FC/Jq4OtkTFJ/Ld6r9ISkljQLsmpKSl893qv+jYoCZOtlbEJj7l1817CI2OpUfTevJlmrOYDo3r4erkQFRcPDOWrCUpJZUBnVuTnZ3Ne2Mmc+nWXbb9PJMcVQ4RMbEAWFuYo6+U5xLWL2bMoWPzJriWcSQqJo4Zi5aQlJzCwO65pyXiEhIJCQvnSVRuD8+dh0EAONrZvnJkfIkSXe5q3bp1K/S6mzdvLtK2tVLQazrb8Fe3hkw4eoXpJ67jYWnK3BbV6ePvrl7nizoVScvOYcTe8+oby+zq1US2a9DDklLo99cRYlIzsDM2pLaLHSeGdcDt2eV04cmpjN1zjsiU3NMA/ap6MaFxVVmyqDMlJtNv3T5iUtKxMzGitqsDJ0b0wO1ZK+6Pvq2YsPsMA9btJy41HTcrM75tU4eP6vq9YctvkSkhmX4rtxOTnIadqTG1PZw4+UVf3F64wc7GC7eRJIleNSrKlkMjU1wi/X79k5inqdiZGVO7nAsnJ36I27OR910CfFk8sCM/7DzGqD924uNoy5+f9aJBefl6V8JiE+i3YA0xT1OwMzeltrcbJ78bjZudNWkZmVwPecLvRwNJSE3DydKcJv5erB8zEDMj+U4phcXE02/mb8QkPcXOwozaFcpxcsE3uDmU3B/8sKhY+k2eR0ziU+wszantV56TS77HzdGe9IxM7gSHsXb3EWISk7AxN6NGRS+OLJ6On6erbJlCI6Pp+9U0YuITsbO2pHZlX079sRg3Z0eCwsLZfuQkANV7DNV438EV82lSs3CzYBVVWHgUfUZ+RUx8PHbW1tSpVonT//yOW9ncAbDb9h9h8NiJ6vV7j/gSgEn/+5gpoz8tcJslqxhGucs2okq7LCzk6+FRSK+699wbJCUlYWFhQcTYntjolY47yGbp6rGvRndaXd+FUpVd0nEAyNLRY59/O1o9OIRSlVPScQDI0tFlX7lmtH5yBqVUSjIpdNnrXIfWCTdQoirpOABkocNeSz9aZwejRHunNV4nCwV79dxobRiPspT8fcuSYG+6Fa1tVChLx58CslSwN1aHNh4WKEtJyy5LJbHnUSJtK7mj1C35HRWbkIRd1QYkJibKdue1vDoR1bMR5vpv135MyszGfuMxWfP+15X8t0oQBEEQCuldupd7cRPTpwqCIAjyKsZz6P/1e7lXr16dgwcPYmVlRbVq1V47ev/ixYtF2rYo6IIgCIKsxGVrz3Xu3BkDAwMAunTpUqzbFgVdEARBELRk8uTJBf53cRAFXRAEQZCXuGzttc6fP8+tW7dQKBRUrFiRgICAf7UdUdAFQRAEeYnJWQoUGhpK7969OXnyJJaWlgAkJCRQr1491q9fj4tL0e4AKka5C4IgCEIJGDx4MFlZWdy6dYu4uDji4uK4desWkiQxZMiQIm9PtNAFQRAEWYn50At2/PhxTp06hY/P8ym5fXx8+Omnn6hfv36RtycKuiAIgiAv0eVeIFdXV/XMay/Kzs6mTJmi32ZcdLkLgiAIQgmYNWsWI0aM4Pz58+TdtPX8+fP873//Y86cos94KFrogiAIgrx0KIZR7sWSpMRZWVlpXFOfkpJC7dq10dPLLcfZ2dno6ekxePDgIl+nXuiCnpGRQUZGhvp5UlLuvOHZOnpklYL7EkNulhf/vzRQZ1LolpovZLZCV+P/SwN1ptKyk3ieJbsUTQqRlyW7dNxaHnieJbt03IIfeJ4lW1V6dlRelqyc0rGjslTayyFuLPPcggULZNt2oSdnmTJlClOnTs23fN26dRgbGxd7MEEQBEE+qamp9OnTRyuTs8QOa4W5/tvNnJmUmYXN0n1icpbXKHRTdty4cYwZM0b9PCkpCRcXF5rWrYmNtZUs4YoqKzub/cfP0LJhHZR6paOVLjIVjshUOCJT4eRlalGvRqnKdODUeVpUr4hSt+R7x2ITEks6gvCCtLS0fAPkinrgUuhvuoGBgfr+sy9S6umVml+YPCJT4YhMhSMyFY7IVDhKXV2UeiVf0LU6hasY5V6glJQUvvrqKzZt2kRsbGy+13Nyija9dek5YSkIgiC8m/IK+ts+eLemT/3yyy85dOgQixcvxsDAgGXLljF16lScnZ1Zs2ZNkbdXug5dBUEQBOE1/uvTp75o+/btrFmzhiZNmjB48GAaNmyIl5cXbm5u/PHHH/Tt27dI2xMtdEEQBEFmxdE6f/e63OPi4vDw8AByz5fHxcUB0KBBA44dO1bk7YmCLgiCIMhLR6d4Hu8YT09PgoKCAPD19WXTpk1Abss9b7KWonj39pAgCIIg/Ad88MEHXLlyBci9kizvXPro0aMZO3ZskbcnzqELgiAI8hKj3As0evRo9X83bdqUW7duceHCBcqVK0eVKlWKvD1R0AVBEAR5iYJeKG5ubri5uf3r94sud0EQBEEoIQcPHqRDhw6UK1cOLy8vOnTowIEDB/7VtkRBFwRBEORVjNehv0sWLVpEmzZtMDMz43//+x8jR47E3Nycdu3asWjRoiJvT3S5C4IgCPIqjlHq7+Ao95kzZzJ//nw+++wz9bKRI0dSv359ZsyYobG8MN69PSQIgiCULqKFXqCkpCTatGmTb3mrVq3UM5oWRYkU9Jmz56EwsWTU2K/VyzZv3UbrTt2wdfVEYWLJ5StXSzRTVlYWX30zmUo162Fi54xzuQoMGPoRT8LDSywTwJQZM6lQrSYmds5YlXGjRfvOnA08X6KZXvTRiFEoTCxZsGhxiWYa9OEnKEwsNR51mrQo0UwAt27fodN7vbBwcsXMoSx1mrQg5PHjEsv08j7Ke8ye/2OJZUpOTuazMWMp6+2LkY0jFavX4pely7WSB2Dm3AXomNsy6qsJ6mWRUVF88PFnlCnvh4mDC227vs+9+w9kyzBl9gJ0HDw0Hk7+NdWvS5LElNkLKFO5NsZuFWjatRc3bt+VLY8gj06dOvHPP//kW75161Y6duxY5O1pvcs98MJFlqxcRWV/P43lKSmp1K9bm/e6dWHY8JElnik1NZWLl68w8euxVKnkT3xCAqO+HEen93pz/sSREskEUN7Li0VzZ+Pp4U5aWhrzFy2mVadu3L96ETs72xLJlGfL9h2cDTyPs5OTrDkKm6lNyxas/PX5/Z719fVLNNODh49o0LINQwb0Z+qEcVhYWHDrzh0MDQxLLFP4gzsaz3fv28+QT0fQvUunEss0+qvxHD52nN+X/4a7myv7Dh7m01Gf4+zkSOcO7WXPtHTVGo1MkiTRtfcAlEo9tqxfi7m5GfMW/ULLzt25ce4kJiYmsmTx8ynP/r9+Vz/XfaHLedai35j/63JW/jib8p4ezJi/iFbv9+f2qYOYmZrKkuetiFHuaj/++PxguWLFisyYMYMjR45Qt25dAM6cOcPJkyf5/PPPi7xtrbbQk5OT6Tt4GEsX/YiVlaXGa/379GLSuK9o0bSxNiO9MpOFhQX7d2zh/e5d8SnvTZ1aNflp7iwuXLose4vqdfupT8/3aNGsCZ4e7vj5VmTe9zNISkri6vUbJZYJIOzJEz4b8yV/rFiKUqmd48Q3ZTIw0MfR0UH9sNbCNL+vyzRh6jTatWrJrBnfUq1qFTw93GnfpjX29nYllunF/ePo6MDWnbto2qghnh7uJZbp9NlABvbtTZNGDXF3c+PDwYOoUsmf8xcvyZ6p39CPWfLjfKwsLdTL791/wJnA8yyeP4eaAdXx8fZm8bzZJCensP6vzbLl0dPTxdHeTv2ws7UBcg8wFi5ZwfhRw+nWvg3+FX1Y9dMcUtPSWLd5m2x53oroclebP3+++rF8+XKsrKy4efMmy5cvZ/ny5dy4cQNLS0tWrFhR5G1rtaAPH/0F7Vu3okWzJtr82NcqSqbExCQUCgWWFhZvXFcbmTIzM1myYjUWFuZUqeRfYplUKhX9h3zE2FEj8POtKGuOwmYCOHL8BPZuXpSvEsCw4SOJioousUwqlYqde/ZR3tuL1p26Ye/mRe3GzdmyfUeJZXpZZGQUO/fsY8jA/iWaqUG9OmzbuZuwJ0+QJInDR49x9/4DWrdoLmumzz7/inatW+ZrVGRkZgJg+ML00bq6uujrKzl5+qxsee49DKJM5dp41mhI7w9H8DAoBIBHwY+JiIqmVZOG6nUNDAxoXLc2pwMvyJZHKB6PHj0q1OPhw4dF3rbWutw3/Pk3Fy9fJfD4IW195BsVJVN6ejpfT5pCn/ffk3Wmn8Jk2rF7D70GDiE1NRUnR0f2b9+C7bOj95LI9MPcBejp6THy049ly1DUTG1bteS9bl1wc3HhUXAwE7+dQbN2nbhw8ggGL/xh1lamqKhokpOT+X7uAqZPmsAP06awZ/9BuvXuz+Hd22ncsIHWM71s9R/rMTMzpVvnop+7K85MP875gWHDR1LW2xc9PT10dHRY9vOPNKhXV75Mf23m4pWrnDuyP99rFcp74+bqwvip0/l1wVxMTIyZt+gXIiKjCI+IlCVP7epVWb1oLuU9PYiMjmHGgkXU79Cd68f2ERGde2Dq8NIpNns7W0JCw2TJ89bEKPc3kiQJAMVb9ERopaA/Dg3lf2O/Zt+2zRgayn++sDCKkikrK4teAwejUqlYvGBOiWdq2qghl08fJyY2lqUrV/N+/0GcPXJQlq7bN2W6cOkyCxf/ysVTR9/qi1icmQB69uim/m9/P19qVKuGW8VK7Nyzl26di//88JsyqSQVAJ3bt2P0iOEAVK1SmVNnz/LrspWyFPSi/t6tWPs7fXu+J+vvaGEy/bj4N84Enmfbn+txc3Hh2MlTfDr6C5wcHWXp3XscGsaoryawd8ufBWZSKpX8tXYlQz8bhY2bF7q6urRo0pi2LeUbZNm2eRP1f1cC6taojlftxqze9Dd1AqoB+f/wS5Kktd/BIhPn0F9pzZo1zJ49m3v37gFQvnx5xo4dS//+Re8p00pBv3DpMlHR0QQ0aKJelpOTw7ETp1j021Iy4qPQ1dXVRpQiZ8rKyuL9/oN4FBTMoV3bZW2dFzaTiYkJXuU88SrnSZ1aNfGuXJ3lq9cybuwYrWf6YdoUoqKjcfXx13j983HfsODnXwi6dU3rmQr6Pjk5OeLm6sK9+0XvxiqOTCnRT9DT08O3oo/G+yr6+HDi9JkSyfTifjp+8hR37t5j4+qin7crzkyJ4SGMn/It/2z4nfZtWgNQuZI/l69eY87Cn2Qp6BcuXyEqOpoajZ536efk5HDs5Gl+XrKM9JgnBFSryqWTR0hMTCIzKxM7W1vqNG1FQLWqxZ6nICYmxlSq6MO9h0F0adMKgIioaJwc7NXrRMfE5mu1C6XbvHnzmDhxIp999hn169dHkiROnjzJxx9/TExMjMa93gtDKwW9eZPGXDt3SmPZBx8Pp0J5b74aM0rrxbywmfKK+b37Dzm8ezs2NtYlnqkgkiSRkZlRIpmcHB3zndts3bk7/Xv35IP+fUskU0H7KTY2jsehYTg5OpRIJgMDA2oGVOfO3Xsa69y9fx83F5cSyfTiflq+ei0B1apSpXIlWbIUNlNOTg5ZWVnoKDS7V3V1dVGpVPJkatyQq2eOaywb/MkIKpT35svRIzX2k4VF7gH9vfsPOH/pMt9+M06WTC/LyMjg1r0HNKhTCw83Fxzt7dh/9DjVKuWOxs/MzOTo6bN8P7Hgy0lLnIJiaKEXS5JS5aeffuKXX35hwIAB6mWdO3fGz8+PKVOmlM6CbmZmhr+fr8YyExNjbKyt1cvj4uIJefyYJ+ERANy5dx8AR4fc0bfazpSdnU2PvgO4ePkqO/7aQE5ODhHPzpdZW1vJcgnUmzKlpKQwY9ZcOrVvi5OjA7GxcSxeupzQsCe817VLsecpTCYg34GOUqmHo4M9PuW9SyRTcnIyU2Z8T/cunXBydCAoOITxU6Zha2ND104dSiQTwNhRI+g5YDCNGtSnaaOG7Nl/gO279nBkjzwD4wqTCXJvbvHnP1uZO3O6LDmKmqlxw/qMnTAJIyND3FxdOHr8JGvWbWDe9zPky/TSYE4TE2Osra3Vy//8Zyt2tja4li3LtZs3GfXVBLp0aEer5k1lyfTFlBl0bNUc1zJliIqJYcb8RSQ9TWbg+91QKBT878PBzFy4GG9PD7w93Jm5cDHGRkb06Sb/5Yb/iuhyL1B4eDj16tXLt7xevXqE/4t7npSaW79u27mLDz4ern7ea+BgACaP/4opE7RzFPyi0LAwtu3cDUDVug01Xju8eztNGjUs6G2y0tXV5fbdu6z+Yz0xsbHYWFtTM6Aax/fv1uro8tJOV1eXazdusmbdBhISE3FydKBpo4ZsXLMCMzOzEsvVtVNHfl04j5lz5zPyi6/w8fbi73VrZB3sVRgb/tqMJEn0fq97iebIs2HVCsZNnkrfwR8SFx+Pm6sLMyZ/w8dDB5dYpvCISD4fP5HIqGicHB3o36snE78q+nXChRX2JII+H/+PmLh47GysqRNQjdO7NuPmUhaALz/7iLT0dIZ/NZH4xERqV6/K3o1rSuc16MIreXl5sWnTJsaPH6+xfOPGjXh7F71BpJDyhtYVUVJSEhYWFsQ8foSNFq7vLYys7Gx2HT5Bu6YNUOqVjmMVkalwRKbCEZkKJy9T20Z1SlWm3cfO0LamP0o97Z9mfFlsfAJ2FaqRmJgo29igvDoR93VvzA3erlczKSMT6+/Xy5pX2/7++2969uxJixYtqF+/PgqFghMnTnDw4EE2bdpE165di7S9d/s6AEEQBKEUKI6byuR2udesWRNfX19+/vnn13/kf0D37t05d+4ctra2bNmyhc2bN2Nra8u5c+eKXMyhFHW5C4IgCO+oYjyHHhgY+E600LOysvjwww+ZOHEiv//++5vfUAiihS4IgiAIWqZUKgucmOVtiIIuCIIgyEvcy71AXbt2ZcuWLcW2PdHlLgiCIMhL3Pq1QF5eXkybNo1Tp04REBCQb+a+kSOLNvOoKOiCIAiCUAKWLVuGpaUlFy5c4MIFzYl1FAqFKOiCIAhCKSNuLFOgR48eqf+7OCZneff6MARBEITSRZxDf6Xly5fj7++PoaEhhoaG+Pv7s2zZsn+1LdFCFwRBEIQSMHHiRObPn8+IESOoWzf3jpGnT59m9OjRBAUFMX160W7HLAq6IAiCIC/R5V6gX375haVLl9K7d2/1sk6dOlG5cmVGjBghCrogCIJQyohR7gXKycmhRo0a+ZYHBASQnZ1d5O0VuqBnZGSQkfF8is6kpCQg9/7EWf/ig+WQl6O05AGRqbBEpsIRmQqnVGfKySnhJLmycuSZjrZAooVeoH79+vHLL78wb948jeVLliyhb9+iTz9d6MlZpkyZwtSpU/MtX7duHcbGxkX+YEEQBKHkpKam0qdPH+1MzvLtUMwN33JylvRMrCcte6cmZxkxYgRr1qzBxcWFOnXqAHDmzBkeP37MgAEDUCqV6nVfLvoFKXRBL6iF7uLiQvije6VqtrX9x8/QsmHpmmFJZHozkalwRKbCEZneLDYuHicPb+0U9GnDiqegT1z6ThX0pk2bFmo9hULBoUOH3rheob9VBgYGGBgY5Fuu1NMrFV/OF4lMhSMyFY7IVDgiU+GUlkxazSDOoRfo8OHDxbq9d28PCYIgCML/QyV/mCgIgiC82xQUw6C4YknyThMFXRAEQZCXGOWuFaLLXRAEQRDeAaKFLgiCIMhLtNC1QhR0QRAEQV6KYhjlrhAdym8i9pAgCIIgvANEC10QBEGQl+hy1wpR0AVBEAR5iYKuFaKgC4IgCPJS6Lz9OXBxDv2NxB4SBEEQhHdAiRT0mbPnoTCxZNTYr9XLJEliyoyZOJergJGNI03atOfGzVuyZfhl6XIq16qHuaML5o4u1G3akt1796tfj4yMYtCHn+BcrgLGtk606dyde/cfyJanMJmSk5P5bMxYynr7YmTjSMXqtfhl6fISzaQwsSzwMXv+jyWWCeDW7Tt0eq8XFk6umDmUpU6TFoQ8flximQZ9+Em+fVSnSQvZ8hQm04s+GjEKhYklCxYtLtFMU2bMpEK1mpjYOWNVxo0W7TtzNvB8iWXKysriq28mU6lmPUzsnHEuV4EBQz/iSXh4iWUC2Lx1G607dcPW1ROFiSWXr1yVNc9b01EUz0N4La0X9MALF1mychWV/f00ls+at5B5Py1m0bxZBB47hKODAy07duXp06ey5Chbxpnvv53C+eOHOX/8MM0aN6Jzzz7cuHkLSZLo0qsvD4OC2LppHZdOHcPN1YUWHTqTkpIiS543ZQIY/dV49uw/wO/Lf+PWxbOM/uxTRnz+JVt37CyxTOEP7mg8VvyyCIVCQfcunUos04OHj2jQsg0VypfnyO7tXDlzgolfj8XQwLDEMgG0adlCY1/t2vynbHkKmwlgy/YdnA08j7OTk6x5CpOpvJcXi+bO5tq5U5zYvwd3N1dadepGdHRMiWRKTU3l4uUrTPx6LBdPHmXz+rXcvf+ATu/1li3PmzIBpKSkUr9ubb7/doqsOYpNXpf72z6E19LqOfTk5GT6Dh7G0kU/Mn3WbPVySZJY8PMvTBj7Od065xaC1Ut+wcHDm3Wb/uKjIR8Ue5aO7dpqPJ8xZSK/LFvOmcBAlEolZ84Fcj3wNH6+FQFYvGAu9u5erP/zb4YOGlDsed6Uyc+3IqfPBjKwb2+aNGoIwIeDB/Hb8pWcv3iJzh3al0gmR0cHjde37txF00YN8fRwlyVPYTJNmDqNdq1aMmvGt+p15MxTmEwABgb6+fZXSWcKe/KEz8Z8yd6tf9O++/slnqlPz/c0Xp/3/QyWr17L1es3aN60sdYzDfEdwP4dWzRe/2nuLGo1akbI48e4urhoPZOfb0X69+kFQFBwsCyfL/w3afWQZ/joL2jfuhUtmjXRWP4oKJiIyEhaNX8+N6yBgQGNG9Tn1JmzsufKyclhw59/k5KSSt1atdTzvhsaPm/R6erqoq/U58Sp07LnKSgTQIN6ddi2czdhT54gSRKHjx7j7v0HtG7RvMQyvSgyMoqde/YxZGB/reQpKJNKpWLnnn2U9/aidadu2Lt5Ubtxc7Zs31FimfIcOX4CezcvylcJYNjwkURFRZdoJpVKRf8hHzF21Ah1gdemN32fMjMzWbJiNRYW5lSp5F8qMgEkJiahUCiwtLAoNZlKvbxR7m/7EF5Lay30DX/+zcXLVwk8nn+S9ojISAAcHOw1ljvY2xMcIt95z2vXb1C3WSvS09MxNTXhn/W/41uxAllZWbi5ujBu8lR++3EBJibGzPvxZyIiIwmPiJQtz+syAfxfe3ceFlW9P3D8PbKDgAEyDAloKu4rmhsumJJo7rmklzDttoiVWpRaJlnuaVhe3FIzu6bXq+KO4k1xS8OFMvPnUuZSLIoKgsp6fn8YJC4wCOccos/rec5THoaZtyPMd8453zPn049n8M/Q16lWuz6WlpZUqlSJz//1Kf5t2+jWdLfl//4aR8fK9OvdU9WeopoSE5NIT09n+uwIPnr/XWZ8GE50zP/o91wwu7ZtomN7f82bAIICuzKgXx98vLw4d/48EydPoXP3XhzZvxsbGxtdmmbMjsDS0pLXR76i2uOXtAlg87ZoBoeM4ObNm5g8PIjZFIWbm6uuTflu377NuPfDGTJwAE5OTuWi6S9BroeuCU0G9IuXLvFG2Dh2bFxXaKv3XoZ7ro+nKAoGFd+V1fGtTfy3e7memsraqI2EvPwqsdFbqF+vLmtXrmDEq6NwqVYdCwsLugR0Iiiwq2ot5jR9GrmQg3GH2bjma3y8vNiz/wAjx7yFycPjvr0eWjXdbemKrxg6aECR/8ZqN1WpcmerqXeP7ox5LRSApk0ac+DQIRZ8vkzVAb2o52nQs/0KbtewQX1aNGuGT71GbIneXnCYScumW7dvMzdyAUcPxKr6O1aSpvyfp4AO7Yn/di9XUlJYvGw5A4OHcWj3/3B3r6pbE9yZIDc4ZDh5eXlERnysWktJmoS4myYD+pFj8SRfvoyff6eCdbm5uezZd4B5CxdzKv7OLNbEpCRMJo+C2yRfvoxRxV9ia2tratV8AoAWzZsRd+QocyMXsPCzCPyaNSX+4D5SU1PJysqmalU3WnV8ihbNm6nWU1RTxMxpTAifzPpVX9Gj29MANG7UkPgfjvPx3M9UHdCLep7y7d1/gFOnz7B6+VLVOsxp+mz2TCwtLalfr06h29erU4d93x7Upenu5ymfyeSBj7cXZ87+oktTvTq+JF++jHedP3dl5+bm8ub494j413x+PXlc86b858nBwYFaNZ+gVs0naP1kS2o3bs6S5SsYHzZWt6bs7GwGBg/j3K/n+WbrJtW3zs1p+kupgB8sc/HiRYKDg0lOTsbS0pKJEycyYMCA4r9RRZoM6E916sjx7w4UWvfCK6HU9a3NO2NH80SN6ngYjcR8s5tmTZsAd46fxe7bz4wPP9AiEbizRyD/+Hk+5z+Ok505+zOHjx7jw4nvatZzd1N2djbZ2dlUumemp4WFBXl5ebo03W3J8hX4NWtKk8aNNG25t8na2pqWfs05dfpMoa+fPnsWH5UmMBXX9CApKVe5eOk3TBpOkru7Kfi5wXQJ6FToa0/37k/wc4N4IXioLk1Ffj3r4V9Xw91N+YP5mbO/sGvbJlxdXTRteVDTX04F/GAZS0tLIiIiaNq0KcnJyTRv3pzu3bvj4OCgX5MWD+Lo6EjDBvULrXNwsMfVxaVg/ejQV5n68Wxq13qC2jVrMnXWHOzt7Bky8FlVmiZMmkxQYBe8qj3OjRvprPrvOnbv3Ud01FoA1qyLoqqbK95eXhw/cYI3wsbRp2cPArt0VqWnuCYnJyc6tm9H2LvvY2dni4+3F7F79/PlylXMmT5Fl6Z8aWlprFm/gdnTPlKtoyRNYaNfY9Dzw+ng346ADu2JjtnJpq3R7I5Wb2JcUU3p6emET5lO/z69MHkY+fX8BSaEf4ibqyt9ez2jS5Orq8t9A5OVlSUeRnfq+NbWpSkjI4MpM2fTq0cQJg8jKSlXiVy8hEu//c6Avn10acrJyeHZoc9zNP4HNv93Fbm5uST+MY/GxeUxrK2tNW8CuHr1GhcuXuT3hEQATp05C4CH0ajpmRR/ZyaTCdMfp3q6u7vj4uLC1atXK/6Abo63x77Brdu3GDn6La5dv06rln7s2LgOR0dHVR4vKTmZ4BdfJiExCWcnJxo3bEB01Fq6/jHTPiExkbHj3iUpORmTh5Hnhwxm4ri3VWkxt2nVF0sZP+kDhg5/iavXruHj7cWUSe/xyovDdWsCWPXfdSiKwnMD+qvWUZKmvr16smDuHKbN/oTX33qHOrVrsXbll6pOHiyq6datWxw/8RNfrlzF9dRUTB5GAjq0Z/WXS1X7+S6uSS9FNd2+fZv/O32a5f/+mispKbi6uNDSrxl7Y7apOgu/qKZfz59n45ZtADRt077Q9+3atqngFFItmwA2btnKC6+EFtx+cMid14BJE94h/N3xqjSVioEy2OVespvv2bOHWbNmceTIERISEli/fj19+vQpdJvIyEhmzZpFQkICDRo0ICIigvbtS/5vevjwYfLy8vDSeC/gvQyKoiiP8o1paWk4Oztz5eI5XF0eK+uuR5Kdk8PWXfvoHuCPlWX5eK8iTeaRJvNIk3mkqXgpV6/h5lWD1NRU1eYE5I8TV+dPwMmudJNl027dxuXVqVy8eLFQr42NzQPPFNm2bRv79++nefPm9O/f/74BffXq1QQHBxMZGUm7du1YuHAhn3/+OT/99BPe3t4A+Pn5PfAwx44dO/D09AQgJSWF9u3b8/nnn9O2bdtS/R1LS/+fKiGEEBVbGU6Ku3creNKkSYSHh99386CgIIKCgu5bn2/OnDmMGDGCF198EYCIiAi2b9/O/PnzmTZtGgBHjhwpMikzM5O+ffsyfvx43QdzkAFdCCHEX8iDttBLKisriyNHjjBu3LhC6wMDAzlw4MBDvqswRVEYNmwYnTt3JjhYuw/TKooM6EIIIdRVhrPcnZycSn2I4MqVK+Tm5mI0Fp5AaDQaSUxMNOs+9u/fz+rVq2ncuDFRUVEArFixgkaN9DnTB2RAF0IIoTZDGVwtTYXz0O/9UKWSfJiZv7+/5qcMF6d8ndgnhBBCqMzNzQ0LC4v7tsaTk5Pv22r/K5EBXQghhLrK2eVTra2t8fPzIyYmptD6mJiYcjG57VHJLnchhBDqKsNZ7i1btsTCwoLQ0FBCQ0MfevP09HTOnj1b8Odz584RHx+Pi4sL3t7ejB07luDgYFq0aEGbNm1YtGgRFy5c4JVXtL1YUVmSAV0IIcRfRlxcnFmT4g4fPkxAwJ8fojR27J1rAYSEhPDFF18waNAgUlJSmDx5MgkJCTRs2JCtW7fi4+OjWrvaZEAXQgihLh0+y71Tp04U97lpI0eOZOTIkaWpKldkQBdCCKGuSmUwy7203/83IJPihBBCiArA7C30zMzMQp9pm5aWBtz5fOLsnJyyL3sE+R3lpQekyVzSZB5pMo80FU/Tjgp4PfTyyOyLs4SHh/PBB/dfm3zlypXY29uXeZgQQgj13Lx5kyFDhmhzcZbl03CyL+XFWW7exiVkPL6+vmbNcv87MntAf9AWupeXFwnnzpSrq63F7D1I1/aty8XVjECazCVN5pEm80hT8VKuXsNUo7Y2A/qK6WUzoAePU7X3r87sn6qHXaLOytKyXPxw3k2azCNN5pEm80iTecpLU3loEGVL/kWFEEKoy2Aog9PW5Bh6cWRAF0IIoS6ZFKcJOW1NCCGEqABkC10IIYS6dPikuL8jeYaEEEKoK/+T4kq7cOfiLPXr1+df//qXzn+p8ke20IUQQvxlmHtxlr8jGdCFEEKoS3a5a0IGdCGEEOqSWe6akLc8QgghRAUgW+hCCCHUVanSnaW09yGKJAO6EEIIlZXBLndkl3txNHnLM23WHFq2D8DRWA13n1r0GTSEU6fPFLrNug0bebpXP9y8n8DgUIX473/QtSk7O5t33ptEo5ZtcajqiWfNujz/4sv8npCgWxNA+JRp1G3WEoeqnjz2uA9devTmUNxhXZvu9vJrozE4VCFiXqSuTcNeehWDQ5VCS+tOXXRtAjj5f6foNWAwziZvHI3VaN2pCxcuXtSt6d7nKH+Z9cmnujWlp6czamwY1WrXx87Vg3rNn2T+4iWq9JjblJSUzLCXXsWzZl3s3Ux0692fM2d/Vq1p/uIlNH6yLU4eXjh5eNEmoCvbtscUfF1RFMKnTMOzZl3sXD3o1K0HJ346qVpPqeVPiivtIoqkyTMUu28/oS+9yMFdMcRsWk9OTi6BvfqSkZFRcJuMjJu0a9OK6ZPDtUgqtunmzZscjf+eiePCOLo/lnVfr+D02Z/pNeA53ZoAfGvVYt7sWRz/7gD7YqKp7uNNYK9+XL58RbemfFGbNnMo7jCeJpMqLSVt6ta1Cwk/nypYtq5bo2vTz7+cw79rN+r6+rJ72ya+P7iPiePCsLUp3VWoStN09/OT8PMpls6fh8FgoH+fXro1jXlnAtExO/lqyUJOHj3EmFEjee3Nt9mweYsuTYqi0GfwUH759Vc2/Gclxw7swcfbiy7P9H7g70FZqPa4J9Mnh3N47y4O791F544d6D1oSMGgPXPOXOZ8Fsm8OTOJ2/MNHkYjXXv25caNG6r0lCdyHvrDmX351HvlXxbvysVzJb586uXLV3CvXovY7Vvo4N+u0Nd+PX+eGvWbcOzAHpo2aVyi+83OyWHrrn10D/Av8ZWEimrKF3fkKE926Mz5/zuOt5dXuWhKS0vD2eTNzs0beCqgo25Nv/3+O606dmH7hrX06D+Q0aGvMnrUSLPvt6ybhr30KtdTU4lavbJE96Vm0+CQ4VhZWrJiyaJy03SvPoOGcONGOv/bulG3poYt2jDo2b5MHPd2we382nWk+9Nd+fD99zRvOn3mLHWatuDHuG9pUL8eALm5ubhXr8WMDz/gxWHPq94E4FKtOrOmTGb488F41qzL6NBXeefN0cCdy1sba9Rmxocf8PKIF8y6v5Sr13DzqqHN5VPXReLkYFe6+8q4hUu/kXL51CLosg8jNS0NAJfHysd11MG8ptTUNAwGA1WcnctFU1ZWFouWLsfZ2YkmjRrq1pSXl0fwiJcJG/1awQuelh72PO3euw93n1r4NvHjn6Gvk5x8WbemvLw8tkTvwLd2LZ7u1Q93n1q06vgUUZs269Z0r6SkZLZE72BESLCuTf5tW7NxyzZ++/13FEVhV+weTp/9mae7PKVLU2ZmJgC2tn/uSbGwsMDaypp9B75VvSc3N5dVa9aSkXGTNk8+yblfz5OYlETgUwEFt7GxsaGjfzsOHDykes8jyZ8UV9pFFEnzZ0hRFMaOm4B/2zY0bFBf64d/IHOabt++zbj3wxkycIAm7w6Latq8LZrK7o9j62Lkk3mRxGyKws3NVbemGbMjsLS05PWRr6jeYG5TUGBX/r10Md9s3cjsaR8Rd+Qonbv3Knhx1ropOfky6enpTJ8dQbeuT7Fj4zr69nyGfs8FE7t3ny5N91r+769xdKxMv949Ve8pqunTj2dQv24dqtWuj3WVqnTr8yyRn3yMf9s2ujTVreOLj7cX4yd9wLVr18nKymL6x5+QmJREQmKSai3HfzxBZffHsXnMnVfeGMP6r7+ifr26JCbdeUyj0b3Q7Y3u7iQmJavWI8o/zWe5jxobxg8/nmDfzmitH/qhimvKzs5mcMhw8vLyiIz4WPemgA7tif92L1dSUli8bDkDg4dxaPf/cHevqnnTkWPxzI1cwNEDsRh0+OCHhz1Pg57tV/D/DRvUp0WzZvjUa8SW6O30663O8eGimvKUPAB69+jOmNdCAWjapDEHDh1iwefL6NjeX/Omey1d8RVDBw0otCWqR9OnkQs5GHeYjWu+xsfLiz37DzByzFuYPDzo0rmT5k1WVlasXbmCEa+OwqVadSwsLOgS0ImgwK6qttTxrU38t3u5nprK2qiNhLz8KrHRf84jMNwz61tRFF1+B80iHyyjCU0H9NfeDGPjlm3s2bGFao8/ruVDP1RxTdnZ2QwMHsa5X8/zzdZNmmydF9fk4OBArZpPUKvmE7R+siW1GzdnyfIVjA8bq3nT3v0HSL58Ge86f+7yz83N5c3x7xHxr/n8evK45k0PYjJ54OPtxZmzv6jWU1STm6srlpaW1K9Xp9Dt69Wpw75vD+rSdLe9+w9w6vQZVi9fqmpLcU23bt1iQvhk1q/6ih7dngagcaOGxP9wnI/nfqbqgF7U8+TXrCnxB/eRmppKVlY2Vau60arjU7Ro3ky1Hmtra2rVfAKAFs2bEXfkKHMjF/DO2NEAJCYlYTJ5FNw++fJljCq/qX9kBkMZfPSrDOjF0WSXu6IojBobxroNm/lm60ZqVK+uxcOWuil/MD9z9hd2bt6Aq6uL7k0P+77MLHV2JRfXFPzcYH44tJ/4b/cWLJ4mE2GjX2f7hnW6ND1ISspVLl76DZOHUZcma2trWvo1v+90qNNnz+Jj5gTLsm6625LlK/Br1pQmjRup0mJuU3Z2NtnZ2VS658XfwsKCvLw8XZru5uzsTNWqbpw5+zOHjx6jd4/uqjQ9rDMzM5Ma1X3wMBqJ+WZ3wdeysrKI3beftq1badYjyh9NttBDx7zFyv+sYcPqlThWrkziH8ednJ2dsLO7M/Px6tVrXLh4kd8TEgE4deYsAB5GIx4qvAgX15STk8OzQ5/naPwPbP7vKnJzcwtu4+LyGNbW1po3ZWRkMGXmbHr1CMLkYSQl5SqRi5dw6bffGdC3T5n3mNPk6upy3xsdKytLPIzu1PGtrUtTeno64VOm079PL0weRn49f4EJ4R/i5upK317P6NIEEDb6NQY9P5wO/u0I6NCe6JidbNoaze5odSbGmdMEd2Yir1m/gdnTPlKloyRNTk5OdGzfjrB338fOzhYfby9i9+7ny5WrmDN9ii5NAGvWRVHVzRVvLy+OnzjBG2Hj6NOzB4FdOqvSNGHSZIICu+BV7XFu3Ehn1X/XsXvvPqKj1mIwGBgd+ipTP55N7VpPULtmTabOmoO9nT1DBj6rSk+pyS53TWgyoOd/KESnboVfTJct+BfDgocCsHHLVl54JbTga4NDhgMwacI7hL87XvOmS7/9xsYt2wBo2qZ9odvs2raJTh0Kr9OiycLCgv87fZrl//6aKykpuLq40NKvGXtjtqk2u9ycfzutmfM8HT/xE1+uXMX11FRMHkYCOrRn9ZdLcXR01KUJoG+vniyYO4dpsz/h9bfeoU7tWqxd+aVqk73M/bdb9d91KIrCcwP6q9JR0qZVXyxl/KQPGDr8Ja5eu4aPtxdTJr3HKy8O160pITGRsePeJSk5GZOHkeeHDC50Wl1ZS0pOJvjFl0lITMLZyYnGDRsQHbWWrn/MbH977Bvcun2LkaPf4tr167Rq6ceOjetU+/kuNbnamiY0GdCVjOvF3mZY8FBNB4jimqr7+JjVXZaKezxbW1vWff2VNjF/eJTnQM3j5lB8k52dHds3qrO7/2HMfZ6GhwQzXKPTwsxtemn4MF4aPkzVlnzmNHl4GFm2UL1PGryXOU2vj3xF07M4lsyfV+TXDQYD4e+OV2VjR/x1yVseIYQQ6qpkKJsF+aS4osjFWYQQQqirDHe5x8XFySfFPYQM6EIIIdQlk+I0IbvchRBCiApAttCFEEKoS2a5a0IGdCGEEKoyGAyl/ljacvuxtuWIvOURQgghKgDZQhdCCKEu2eWuCRnQhRBCqEsGdE3IMySEEEJUALKFLoQQQl2GPz/prVT3IYpk9oCemZlJZuafl+hMS0sDIDsnh+ycnLIvewT5HeWlB6TJXNJkHmkyjzQVT9MO2eWuCYOiKIo5NwwPD+eDDz64b/3KlSuxt7cv8zAhhBDquXnzJkOGDCE1NVW1j1JNS0vD2dmZa9+swaly6caJtPSbPNZ5AL6+vlhYWBAaGkpoaGjx3/g3YvaA/qAtdC8vLxLOncHV5THVAksiOyeHmL0H6dq1K1ZWVnrnAJCdnU1MTIw0FUOazCNN5pGm4qWkpGAymbQZ0Hf9t2wG9IBnVe39qzN7l7uNjQ02Njb3rbeytMTKsnwdireysioXvzB3kybzSJN5pMk80lR0h2YMhjLY5S7H0ItTvkZiIYQQFY9cnEUTMstACCGEqABkC10IIYS6ZJa7JmRAF0IIoa5KZXAeemm//29A3vIIIYQQFYBsoQshhFCX7HLXhAzoQggh1CWz3DUhb3mEEEKICkC20IUQQqhLdrlrQgZ0IYQQ6pJd7prQ5C3PtFlzaNk+AEdjNdx9atFn0BBOnT5T6DaKohA+ZRqeNeti5+pBp249OPHTSVW79uzZQ8+ePfH09MRgMBAVFVXo60lJSQwbNgxPT0/s7e3p1q0bZ86cefCdadSUnp7OqFGjqFatGnZ2dtSrV4/58+fr2mQwGB64zJo1S7cmgJMnT9KrVy+cnZ1xdHSkdevWXLhwQbemYcOG3fcctW7dWrUec5ru9vLLL2MwGIiIiNC1KTw8nLp16+Lg4MBjjz1Gly5dOHTokG5N2dnZvPPOOzRq1AgHBwc8PT15/vnn+f3333VrAli3bh1PP/00bm5uGAwG4uPjVe0R5Z8mA3rsvv2EvvQiB3fFELNpPTk5uQT26ktGRkbBbWbOmcuczyKZN2cmcXu+wcNopGvPvty4cUO1royMDJo0acK8efPu+5qiKPTp04dffvmFDRs2cOzYMXx8fOjSpUuhbi2bAMaMGUN0dDRfffUVJ0+eZMyYMbz22mts2LBBt6aEhIRCy9KlSzEYDPTv31+3pp9//hl/f3/q1q3L7t27+f7775k4cSK2tra6NQF069at0HO1detW1XrMbQKIiori0KFDeHp6qtpjTpOvry/z5s3j+PHj7Nu3j+rVqxMYGMjly5d1abp58yZHjx5l4sSJHD16lHXr1nH69Gl69eqlWk9xTflfb9euHdOnT1e1o0zk73Iv7SKKpjyi1NRUBVCuXDynKBnXS7Qk/3pWAZTY7VsUJeO6kpd+TfEwGpXpk8MLbnP7apLi7OykLPj0E7PvNyv1ihIVFaVkZWWV+O8DKOvXry/486lTpxRA+fHHHwvW5eTkKC4uLsrixYvNvt+srKwya1IURWnQoIEyefLkQuuaN2+uvPfee7o13at3795K586dS3S/Zd00aNAg5R//+EeJ70vNppCQEKV3797lqklRFOXSpUvK448/rvz444+Kj4+P8sknn+jedLf815qdO3eWm6bvvvtOAZTz58/r3nTu3DkFUI4dO1ai+7xy5YoCKKmpqSXuMVf+v921uBgl9+SBUi3X4mIUQPH19VXq1aunzJs3T7Xuvypd3vKkpqUB4PLYncuunvv1PIlJSQQ+FVBwGxsbGzr6t+PAQXV3tT1M/qVi796is7CwwNramn379unSBODv78/GjRv57bffUBSFXbt2cfr0aZ5++mndmu6WlJTEli1bGDFihG4NeXl5bNmyBV9fX55++mnc3d1p1apVkbubtbJ7927c3d3x9fXln//8J8nJybr25OXlERwcTFhYGA0aNNC15UGysrJYtGgRzs7ONGnSRO+cAqmpqRgMBqpUqaJ3yl/Cww7LlXQBiIuL46effpJroT+A5gO6oiiMHTcB/7ZtaNigPgCJSUkAGI3uhW5rdHcnMUmfF7y6devi4+PD+PHjuXbtGllZWUyfPp3ExEQSEhJ0aQL49NNPqV+/PtWqVcPa2ppu3boRGRmJv7+/bk13W758OY6OjvTr10+3huTkZNLT05k+fTrdunVjx44d9O3bl379+hEbG6tbV1BQEP/+97/55ptvmD17NnFxcXTu3LngzaMeZsyYgaWlJa+//rpuDQ+yefNmKleujK2tLZ988gkxMTG4ubnpnQXA7du3GTduHEOGDJHrcotyRfNZ7qPGhvHDjyfYtzP6vq8ZKDyLUVGUgndlWrOysmLt2rWMGDECFxcXLCws6NKlC0FBQbr05Pv00085ePAgGzduxMfHhz179jBy5EhMJhNdunTRtQ1g6dKlDB06VNVj1cXJy8sDoHfv3owZMwaApk2bcuDAARYsWEDHjh116Ro0aFDB/zds2JAWLVrg4+PDli1bdHkDdOTIEebOncvRo0d1+z17mICAAOLj47ly5QqLFy9m4MCBHDp0CHd39+K/WUXZ2dkMHjyYvLw8IiMjdW35S5HroWtC0y30194MY+OWbezatolqjz9esN7DaAT+3FLPl3z5Mkb3qlomFuLn50d8fDzXr18nISGB6OhoUlJSqFGjhi49t27dYsKECcyZM4eePXvSuHFjRo0axaBBg/j44491abrb3r17OXXqFC+++KKuHW5ublhaWlK/fv1C6+vVq6fqLPeSMplM+Pj4qH7mxMPs3buX5ORkvL29sbS0xNLSkvPnz/Pmm29SvXp1XZryOTg4UKtWLVq3bs2SJUuwtLRkyZIlujZlZ2czcOBAzp07R0xMjGydl0T+aWulXUSRNBnQFUVh1Ngw1m3YzDdbN1LjnheLGtV98DAaiflmd8G6rKwsYvftp23rVlokFsnZ2ZmqVaty5swZDh8+TO/evXXpyM7OJjs7m0qVCv+zWVhYFGyV6mnJkiX4+fnpfqzT2tqali1bcurUqULrT58+jY+Pj05V90tJSeHixYuYTCZdHj84OJgffviB+Pj4gsXT05OwsDC2b9+uS9PDKIqi66GJ/MH8zJkz7Ny5E1dXV91ahHgYTXa5h455i5X/WcOG1StxrFyZxMQ7W+LOzk7Y2dlhMBgYHfoqUz+eTe1aT1C7Zk2mzpqDvZ09QwY+q1pXeno6Z8+eLfjzuXPniI+Px8XFBW9vb9asWUPVqlXx9vbm+PHjvPHGG/Tp04fAwEDdmjp27EhYWBh2dnb4+PgQGxvLl19+yZw5c3RrAkhLS2PNmjXMnj1btY6SNIWFhTFo0CA6dOhAQEAA0dHRbNq0id27d+vS5OLiQnh4OP3798dkMvHrr78yYcIE3Nzc6Nu3ry5N3t7e9w1MVlZWeHh4UKdOHV2aXF1dmTJlCr169cJkMpGSkkJkZCSXLl1iwIABujR5enry7LPPcvToUTZv3kxubi6JiYkAuLi4YG1trXmTt7c3V69e5cKFCwXnw+e/gfXw8MDDw0OVpkdXFqedyWlrxXrU6fElOW0NeOCybMG/Cm6Tl35NmTThHcXDaFRsbGyUDv5tlePfHSjR6XAlPW1t165dD+wKCQlRFEVR5s6dq1SrVk2xsrJSvL29lffee0/JzMws0fNU0lNVimtKSEhQhg0bpnh6eiq2trZKnTp1lNmzZyt5eXm6NSmKoixcuFCxs7NTrl+/bnaH2k1LlixRatWqpdja2ipNmjRRoqKidGu6efOmEhgYqFStWrXg5ykkJES5cOGCbk0PosVpa0U13bp1S+nbt6/i6empWFtbKyaTSenVq5fy3Xff6daUf1rYg5Zdu3bp0qQoirJs2bIHfn3SpElm3b+Wp61dPxar5J09Uqrl+rFY1Xv/6gyKoiiP8kYgLS0NZ2dnrlw8h6vLY49yF2UuOyeHrbv20b17d6ysrPTOAe7sqtu6das0FUOazCNN5pGm4qWkpODm5kZqaqpq8wHyx4nrx2Jxcqxcuvu6kU6VZh1V7f2rk89yF0IIoa5Kle4spb0PUSQZ0IUQQqhLLs6iCXnLI4QQQlQAsoUuhBBCXXI9dE3IgC6EEEJdsstdEzKgCyGEUJnhj6W09yGKIvswhBBCiApAttCFEEKoS3a5a0IGdCGEEOqSAV0TsstdCCGEqABkC10IIYTKZFKcFmRAF0IIoS7Z5a4Jswf0zMzMQtcjTktLA+5cECU7J6fsyx5Bfkd2drbOJX/Kb5GmokmTeaTJPNJUvPLSIcqO2VdbCw8P54MPPrhv/cqVK7G3ty/zMCGEEOq5efMmQ4YM0eZqa/93uGyutla3Bb6+vlhYWBAaGkpoaGgZlVYMZg/oD9pC9/LyIiEhAVdXV9UCSyI7O5uYmBi6du1aLi5PCNJkLmkyjzSZR5qKl5KSgslk0mhAP1JGA7qfXD61CGbvcrexscHGxua+9VZWVuXih/Nu0mQeaTKPNJlHmsxTXprKQ4MoWzIpTgghhLpkUpwmZEAXQgihLgNlMKCXSUmFJgO6EEIIlcl56FqQT4oTQgghKgDZQhdCCKEuOYauCRnQhRBCqEx2uWtBdrkLIYQQFYBsoQshhFCX7HLXhAzoQggh1CUDuiZkl7sQQghRAeg2oO/Zs4eePXvi6emJwWAgKipKr5QC06ZNo2XLljg6OuLu7k6fPn04deqUrk3z58+ncePGODk54eTkRJs2bdi2bZuuTXebNm0aBoOB0aNH69oRHh6OwWAotHh4eOjaBPDbb7/xj3/8A1dXV+zt7WnatClHjhzRrad69er3PU8Gg0HXi1zk5OTw3nvvUaNGDezs7HjiiSeYPHkyeXl5ujXduHGD0aNH4+Pjg52dHW3btiUuLk7ThuJeIxVFITw8HE9PT+zs7OjUqRMnTpzQtNF8hjJaRFF0G9AzMjJo0qQJ8+bN0yvhPrGxsYSGhnLw4EFiYmLIyckhMDCQjIwM3ZqqVavG9OnTOXz4MIcPH6Zz58707t27XPzixsXFsWjRIho3bqx3CgANGjQgISGhYDl+/LiuPdeuXaNdu3ZYWVmxbds2fvrpJ2bPnk2VKlV0a4qLiyv0HMXExAAwYMAA3ZpmzJjBggULmDdvHidPnmTmzJnMmjWLzz77TLemF198kZiYGFasWMHx48cJDAykS5cu/Pbbb5o1FPcaOXPmTObMmcO8efOIi4vDw8ODrl27cuPGDc0azfWgN5GPsoii6XYMPSgoiKCgIL0e/oGio6ML/XnZsmW4u7tz5MgROnTooEtTz549C/15ypQpzJ8/n4MHD9KgQQNdmgDS09MZOnQoixcv5qOPPtKt426WlpblYqs834wZM/Dy8mLZsmUF66pXr65fEFC1atVCf54+fTo1a9akY8eOOhXBt99+S+/evenRowdw5zn6+uuvOXz4sC49t27dYu3atWzYsKHg9z48PJyoqCjmz5+v2c97Ua+RiqIQERHBu+++S79+/QBYvnw5RqORlStX8vLLL2vSKMoXOYZehNTUVABcXFx0LrkjNzeXVatWkZGRQZs2bXRtCQ0NpUePHnTp0kXXjrudOXMGT09PatSoweDBg/nll1907dm4cSMtWrRgwIABuLu706xZMxYvXqxr092ysrL46quvGD58uK5bP/7+/vzvf//j9OnTAHz//ffs27eP7t2769KTk5NDbm4utra2hdbb2dmxb98+XZrude7cORITEwkMDCxYZ2NjQ8eOHTlw4ICOZQ+RPymutIsoksxyfwhFURg7diz+/v40bNhQ15bjx4/Tpk0bbt++TeXKlVm/fj3169fXrWfVqlUcPXpU82OKRWnVqhVffvklvr6+JCUl8dFHH9G2bVtOnDiBq6urLk2//PIL8+fPZ+zYsUyYMIHvvvuO119/HRsbG55//nldmu4WFRXF9evXGTZsmK4d77zzDqmpqdStWxcLCwtyc3OZMmUKzz33nC49jo6OtGnThg8//JB69ephNBr5+uuvOXToELVr19al6V6JiYkAGI3GQuuNRiPnz5/XI6kY8sEyWpAB/SFGjRrFDz/8UC7ekdepU4f4+HiuX7/O2rVrCQkJITY2VpdB/eLFi7zxxhvs2LHjvi0YPd29a7JRo0a0adOGmjVrsnz5csaOHatLU15eHi1atGDq1KkANGvWjBMnTjB//vxyMaAvWbKEoKAgPD09de1YvXo1X331FStXrqRBgwbEx8czevRoPD09CQkJ0aVpxYoVDB8+nMcffxwLCwuaN2/OkCFDOHr0qC49D3PvnhVFUcrpseay2MIuj3+v8kUG9Ad47bXX2LhxI3v27KFatWp652BtbU2tWrUAaNGiBXFxccydO5eFCxdq3nLkyBGSk5Px8/MrWJebm8uePXuYN28emZmZWFhYaN51LwcHBxo1asSZM2d0azCZTPe96apXrx5r167VqehP58+fZ+fOnaxbt07vFMLCwhg3bhyDBw8G7rwhO3/+PNOmTdNtQK9ZsyaxsbFkZGSQlpaGyWRi0KBB1KhRQ5eee+XPFUlMTMRkMhWsT05Ovm+rXfx9yDH0uyiKwqhRo1i3bh3ffPNNufnlvZeiKGRmZury2E899RTHjx8nPj6+YGnRogVDhw4lPj6+XAzmAJmZmZw8ebLQi53W2rVrd99pj6dPn8bHx0enoj/lT/jMn4imp5s3b1KpUuGXIgsLC11PW8vn4OCAyWTi2rVrbN++nd69e+udBECNGjXw8PAoOEsB7syJiI2NpW3btjqWPYQcQ9eEblvo6enpnD17tuDP586dIz4+HhcXF7y9vXVpCg0NZeXKlWzYsAFHR8eC41TOzs7Y2dnp0jRhwgSCgoLw8vLixo0brFq1it27d983I18rjo6O980pcHBwwNXVVde5Bm+99RY9e/bE29ub5ORkPvroI9LS0nTbwgMYM2YMbdu2ZerUqQwcOJDvvvuORYsWsWjRIt2a4M6hgGXLlhESEoKlpf476Xr27MmUKVPw9vamQYMGHDt2jDlz5jB8+HDdmrZv346iKNSpU4ezZ88SFhZGnTp1eOGFFzRrKO41cvTo0UydOpXatWtTu3Ztpk6dir29PUOGDNGs0XxyDF0Luv02Hz58mICAgII/5x/nDAkJ4YsvvtClaf78+QB06tSp0Pply5bpNnEoKSmJ4OBgEhIScHZ2pnHjxkRHR9O1a1ddesqrS5cu8dxzz3HlyhWqVq1K69atOXjwoK5bwy1btmT9+vWMHz+eyZMnU6NGDSIiIhg6dKhuTQA7d+7kwoULug6Yd/vss8+YOHEiI0eOJDk5GU9PT15++WXef/993ZpSU1MZP348ly5dwsXFhf79+zNlyhSsrKw0ayjuNfLtt9/m1q1bjBw5kmvXrtGqVSt27NiBo6OjZo2ifNFtQO/UqROKouj18A9U3nrgzsSl8m737t16J7Bq1Sq9Ex7omWee4ZlnntE7o5DAwMBy9bPu6OhIREQEEREReqcUGDhwIAMHDtS1objXSIPBQHh4OOHh4dpFPSr5LHdN6L+/TQghRMUme9w1IZPihBBCiApAttCFEEKoTDbRtSADuhBCCHXJMXRNyC53IYQQogKQLXQhhBDqki10TciALoQQQmVyDF0LMqALIYRQl4Ey2EIvk5IKTY6hCyGEECV048YNWrZsSdOmTWnUqBGLFy/WO0m20IUQQqisAh5Dt7e3JzY2Fnt7e27evEnDhg3p168frq6uujXJgC6EEEJlFe8YuoWFBfb29gDcvn2b3Nxc3T9SWXa5CyGEqHD27NlDz5498fT0xGAwEBUVdd9tIiMjqVGjBra2tvj5+bF3794SPcb169dp0qQJ1apV4+2338bNza2M6h+N2VvomZmZha7BnZqaCsDVq1fLvuoRZWdnc/PmTVJSUjS9KlJRpMk80mQeaTKPNBUv/7Vbi63KtPT0Uu8yT0tPv/PftLRC621sbLCxsbnv9hkZGTRp0oQXXniB/v373/f11atXM3r0aCIjI2nXrh0LFy4kKCiIn376qeAS3n5+foXGvXw7duzA09OTKlWq8P3335OUlES/fv149tlnMRqNpfp7lopipkmTJimALLLIIossFWj5+eefzR0GSuzWrVuKh4dHmbVWrlz5vnWTJk0qtgNQ1q9fX2jdk08+qbzyyiuF1tWtW1cZN27cI/1dX3nlFeU///nPI31vWTF7C338+PEF1+OFO7safHx8uHDhAs7OzubejarS0tLw8vLi4sWLODk56Z0DSJO5pMk80mQeaSpeamoq3t7euLi4qPYYtra2nDt3jqysrDK5P0VRMNyzpf+grfPiZGVlceTIEcaNG1dofWBgIAcOHDDrPpKSkrCzs8PJyYm0tDT27NnDq6++WuKWsmT2gP6w3RrOzs7l4ofzbk5OTtJkBmkyjzSZR5rMU96aKlVSdyqVra0ttra2qj5GSV25coXc3Nz7do8bjUYSExPNuo9Lly4xYsQIFEVBURRGjRpF48aN1cg1m8xyF0II8bd079b+g/YAPIyfnx/x8fEqVD06meUuhBDib8XNzQ0LC4v7tsaTk5P1ndRWSo88oNvY2DBp0qRHOn6hFmkyjzSZR5rMI03mKW9N5a1HS9bW1vj5+RETE1NofUxMDG3bttWpqvQMiqLzmfBCCCFEGUtPT+fs2bMANGvWjDlz5hAQEICLiwve3t6sXr2a4OBgFixYQJs2bVi0aBGLFy/mxIkT+Pj46Fz/aGRAF0IIUeHs3r2bgICA+9aHhITwxRdfAHc+WGbmzJkkJCTQsGFDPvnkEzp06KBxadmRAV0IIYSoAGRSnBBCCFEByIAuhBBCVAAyoAshhBAVgAzoQgghRAUgA7oQQghRAciALoQQQlQAMqALIYQQFYAM6EIIIUQFIAO6EEIIUQHIgC6EEEJUADKgCyGEEBWADOhCCCFEBfD/Fcw4HT31aGkAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrkklEQVR4nOzdd1QUVx/G8e/SixTpoBQVQbEX7Nh7wR5bLFETo0ajJsYWe4zGXmLvGluixt6wd8WCGjX2gtIUFASk7rx/IKsrKIswu8T3fjx7jszOzj4MC7+5d+7MVUiSJCEIgiAIwn+anq4DCIIgCIKQc6KgC4IgCMJnQBR0QRAEQfgMiIIuCIIgCJ8BUdAFQRAE4TMgCrogCIIgfAZEQRcEQRCEz4Ao6IIgCILwGRAFXRAEQRA+A6Kg68C4ceNQKBRqyzw8POjRo0e2tnP69GnGjRvHy5cvs/W699/r6NGjKBQKNm/enK3tfEx8fDzjxo3j6NGjGZ5btWoVCoWChw8f5tr7yWHevHl4enpiZGSEQqHg5cuX/Prrr2zbtk2rOUaNGkW5cuWwsbHBxMSEwoUL88033/Do0aMM6yYnJzN+/Hg8PDwwNjamWLFizJs3T6t5BUHQDQNdBxDS/P3331haWmbrNadPn2b8+PH06NEDa2trWd8ru+Lj4xk/fjwAtWvXVnuuWbNmnDlzBmdnZ1kz5ERQUBADBw6kd+/edO/eHQMDAywsLPj1119p164drVq10lqWly9f0qlTJ4oXL46FhQU3btzgl19+YceOHVy/fh1bW1vVuv369WPt2rVMnDgRX19f9u/fz/fff8+rV68YOXKk1jILgqB9oqDnEeXKlZP9PV6/fo2pqalW3utj7O3tsbe312mGrFy/fh2Ar7/+mkqVKsn6XqmpqaSkpGBsbJzp8/Pnz1f7unbt2hQqVIimTZuyfft2evbsqcq8fPlyJk2axNChQ1XrRkZG8ssvv/Dtt99iY2Mj6/ciCILuiC53me3evZuyZctibGxMoUKFmD59eqbrvd8NrlQq+eWXX/D29sbU1BRra2tKly7NnDlzgLRu+/Q/2oUKFUKhUKBQKFRd3B4eHjRv3pytW7dSrlw5TExMVC3mD3XvJyQkMGTIEJycnDA1NaVWrVpcvnxZbZ3atWtnaHED9OjRAw8PDwAePnyoKtjjx49XZUt/zw91ua9YsYIyZcpgYmKCjY0NrVu35ubNmxneJ1++fNy9e5emTZuSL18+XF1d+eGHH0hMTMx0375r06ZNNGzYEGdnZ0xNTSlevDjDhw8nLi5O7Xv88ssvAahcubIqu0KhIC4ujtWrV6u+p3f3RVhYGH369KFgwYIYGRlRqFAhxo8fT0pKimqdhw8folAomDp1Kr/88guFChXC2NiYI0eOZJn9Xen718Dg7TH5tm3bkCSJr776Sm3dr776itevX7Nv376PbjP9VNDVq1dp3749VlZW2NjYMGTIEFJSUrh16xaNGzfGwsICDw8Ppk6dmmEbjx8/5ssvv8TBwQFjY2OKFy/OjBkzUCqVQNopAQcHB7p27ZrhtS9fvsTU1JQhQ4aolsXExPDjjz9SqFAhjIyMKFCgAIMGDVL7eQH89ddfVK5cGSsrK8zMzChcuLDqQEcQ/m9IgmwOHjwo6evrSzVq1JC2bt0q/fXXX5Kvr6/k5uYmvb/r3d3dpe7du6u+njx5sqSvry+NHTtWOnTokLRv3z5p9uzZ0rhx4yRJkqTg4GBpwIABEiBt3bpVOnPmjHTmzBkpOjpatT1nZ2epcOHC0ooVK6QjR45I58+fz/S9jhw5IgGSq6ur1LJlS2nnzp3SH3/8IXl6ekqWlpbSvXv3VOvWqlVLqlWrVobvtXv37pK7u7skSZKUkJAg7du3TwKkXr16qbLdvXtXkiRJWrlypQRIDx48UL3+119/lQCpU6dO0u7du6U1a9ZIhQsXlqysrKTbt2+rvY+RkZFUvHhxafr06dLBgwelMWPGSAqFQho/fnyWP5OJEydKs2bNknbv3i0dPXpUWrRokVSoUCGpTp06qnWuX78u/fzzzxIgrVy5UpX9zJkzkqmpqdS0aVPV93T9+nVJkiQpNDRUcnV1ldzd3aXFixdLBw8elCZOnCgZGxtLPXr0UG37wYMHEiAVKFBAqlOnjrR582bpwIEDavviQ5KTk6X4+Hjp0qVLUvXq1SUvLy/p1atXquc7duwo2dvbZ3hdbGysBEgjRoz46PbHjh0rAZK3t7c0ceJEKSAgQPrpp58kQPruu++kYsWKSXPnzpUCAgKkr776SgKkLVu2qF4fEREhFShQQLK3t5cWLVok7du3T/ruu+8kQOrbt69qvcGDB0umpqaqz2q6BQsWSIB09epVSZIkKS4uTipbtqxkZ2cnzZw5Uzp48KA0Z84cycrKSqpbt66kVColSZKk06dPSwqFQurYsaO0Z88e6fDhw9LKlSulrl27ZrlPBeFzIgq6jCpXriy5uLhIr1+/Vi2LiYmRbGxssizozZs3l8qWLfvR7U+bNi1DYXx3e/r6+tKtW7cyfS6zgl6+fHnVH0lJkqSHDx9KhoaGUu/evVXLNCnokiRJz549kwBp7NixGdZ9v6C/ePFCVSjf9fjxY8nY2Fjq3Lmz2vsA0p9//qm2btOmTSVvb+8M7/UxSqVSSk5Olo4dOyYB0pUrVzJkDAwMVHuNubm52r5L16dPHylfvnzSo0eP1JZPnz5dAlSFP72gFylSREpKStI4a2hoqASoHpUrV5aePn2qtk6DBg0+uA+MjIykb7755qPvkV7QZ8yYoba8bNmyqgPHdMnJyZK9vb3Upk0b1bLhw4dLgHTu3Dm11/ft21dSKBSqz+LVq1clQFqyZInaepUqVZIqVKig+nry5MmSnp5ehp/B5s2bJUDas2ePJElv9/HLly8/+v0JwudOdLnLJC4ujsDAQNq0aYOJiYlquYWFBS1atMjy9ZUqVeLKlSv069eP/fv3ExMTk+0MpUuXxsvLS+P1O3furDb63t3dnWrVqmW7Ozi7zpw5w+vXrzOcBnB1daVu3bocOnRIbblCociwD0uXLp3pqO/33b9/n86dO+Pk5IS+vj6GhobUqlULIEP3fnbs2rWLOnXq4OLiQkpKiurRpEkTAI4dO6a2vr+/P4aGhhpv387OjsDAQE6ePMnSpUuJioqiTp06hIaGqq33/tUTmj73rubNm6t9Xbx4cRQKhep7gbSufk9PT7V9fvjwYXx8fDKMOejRoweSJHH48GEASpUqRYUKFVi5cqVqnZs3b3L+/Hm1bvJdu3ZRsmRJypYtq7ZPGzVqpHZ6ydfXF4AvvviCP//8k6dPn2r0fQrC50YUdJm8ePECpVKJk5NThucyW/a+ESNGMH36dM6ePUuTJk2wtbWlXr16XLhwQeMM2R1F/qGskZGR2dpOdqVvP7O8Li4uGd7fzMxM7SAJwNjYmISEhI++T2xsLH5+fpw7d45ffvmFo0ePEhgYyNatW4G0QYOfKjw8nJ07d2JoaKj2KFGiBADPnz9XWz+7PxsDAwMqVqxI9erV6d27N4cPH+b+/ftMmTJFtY6trW2mP6u4uDiSkpI0HhD3/npGRkaZ7nMjIyO1fR4ZGfnBn2H68+l69uzJmTNn+PfffwFYuXIlxsbGdOrUSbVOeHg4V69ezbBPLSwskCRJtU9r1qzJtm3bSElJoVu3bhQsWJCSJUuyYcMGjb5fQfhciFHuMsmfPz8KhYKwsLAMz2W27H0GBgYMGTKEIUOG8PLlSw4ePMjIkSNp1KgRwcHBmJmZZbkNTVtkH8sVFhamdlmUiYkJ0dHRGdZ7v2BlR/r2329tAoSEhGBnZ/fJ237X4cOHCQkJ4ejRo6pWOZDt6/gzY2dnR+nSpZk0aVKmz6cXtXTZ/dm8r2DBgri4uHD79m3VslKlSrFx40bCwsLUDs6uXbsGQMmSJXP0nlmxtbX94M8QUPs5durUiSFDhrBq1SomTZrE2rVradWqFfnz51etY2dnh6mpKStWrMj0/d7dXsuWLWnZsiWJiYmcPXuWyZMn07lzZzw8PKhatWpufYuCkKeJFrpMzM3NqVSpElu3blVrxbx69YqdO3dma1vW1ta0a9eO/v37ExUVpRodnn6ZU05alu/asGEDkiSpvn706BGnT59WG8nt4eHB7du31UaUR0ZGcvr0abVtZSdb1apVMTU15Y8//lBb/uTJEw4fPky9evU+5dvJIL2Ivn952OLFizXehrGxcabfU/Pmzfnnn38oUqQIFStWzPB4v6Dn1N27d3ny5Amenp6qZS1btkShULB69Wq1dVetWoWpqSmNGzfO1Qzvq1evHjdu3ODSpUtqy9esWYNCoaBOnTqqZfnz56dVq1asWbOGXbt2ERYWlmFUevPmzbl37x62traZ7tP0qyreZWxsTK1atfjtt98AMlylIQifM9FCl9HEiRNp3LgxDRo04IcffiA1NZXffvsNc3NzoqKiPvraFi1aULJkSSpWrIi9vT2PHj1i9uzZuLu7U7RoUSCtRQYwZ84cunfvjqGhId7e3lhYWHxS3oiICFq3bs3XX39NdHQ0Y8eOxcTEhBEjRqjW6dq1K4sXL+bLL7/k66+/JjIykqlTp2a4UY2FhQXu7u5s376devXqYWNjg52dXaZ/hK2trRk9ejQjR46kW7dudOrUicjISMaPH4+JiQljx479pO/nfdWqVSN//vx8++23jB07FkNDQ9atW8eVK1c03kapUqU4evQoO3fuxNnZGQsLC7y9vZkwYQIBAQFUq1aNgQMH4u3tTUJCAg8fPmTPnj0sWrSIggULZjvz1atXGTx4MO3ataNw4cLo6elx7do1Zs2aha2tLT/++KNq3RIlStCrVy/Gjh2Lvr4+vr6+HDhwgCVLlvDLL7/Ifg364MGDWbNmDc2aNWPChAm4u7uze/duFixYQN++fTOM5+jZsyebNm3iu+++o2DBgtSvX1/t+UGDBrFlyxZq1qzJ4MGDKV26NEqlksePH3PgwAF++OEHKleuzJgxY3jy5An16tWjYMGCvHz5kjlz5qiNjxCE/ws6HpT32duxY4dUunRpycjISHJzc5OmTJmiGk38rvdHns+YMUOqVq2aZGdnp3ptr169pIcPH6q9bsSIEZKLi4ukp6cnAdKRI0dU22vWrFmmmT40yn3t2rXSwIEDJXt7e8nY2Fjy8/OTLly4kOH1q1evlooXLy6ZmJhIPj4+0qZNmzKMcpektMv2ypUrJxkbG0uA6j0zu2xNkiRp2bJlqn1lZWUltWzZUjU6PF337t0lc3PzDJky26eZOX36tFS1alXJzMxMsre3l3r37i1dunRJdYlaug+Ncg8KCpKqV68umZmZSYDaiP9nz55JAwcOlAoVKiQZGhpKNjY2UoUKFaRRo0ZJsbGxkiS9HeU+bdq0LLNKkiSFhYVJX375pVSkSBHJzMxMMjIykgoXLix9++230uPHjzOsn5SUJI0dO1Zyc3OTjIyMJC8vL2nu3LkavVf6Pnz27Jna8g/t81q1akklSpRQW/bo0SOpc+fOkq2trWRoaCh5e3tL06ZNk1JTUzO8PjU1VXJ1dZUAadSoUZlmio2NlX7++WfJ29tb9bkoVaqUNHjwYCksLEySJEnatWuX1KRJE6lAgQKSkZGR5ODgIDVt2lQ6ceKERt+3IHwuFJL0Th+rIAiCIAj/SeIcuiAIgiB8BkRBFwRBEIRM7Nq1C29vb4oWLcqyZct0HSdLostdEARBEN6TkpKCj48PR44cwdLSkvLly3Pu3Lk8PcGRaKELgiAIwnvOnz9PiRIlKFCgABYWFjRt2pT9+/frOtZHiYIuCIIgfHaOHz9OixYtcHFxQaFQsG3btgzrLFiwgEKFCmFiYkKFChU4ceKE6rmQkBAKFCig+rpgwYJ5/rbCoqALgiAIn524uDjKlCnD77//nunzmzZtYtCgQYwaNYrLly/j5+dHkyZNePz4MQCZnY3O6R0e5abxjWUSExPV7g6mVCqJiorC1tY2z3+TgiAIgjpJknj16hUuLi7o6cnXtktISCApKSlXtiVJUoZ6Y2xsnOHujwBNmjRRm1DofTNnzqRXr1707t0bgNmzZ7N//34WLlzI5MmTKVCggFqL/MmTJ1SuXDlXvg/ZaHrBevpNJ8RDPMRDPMTj83kEBwfLcpMTSZKk169fS2Yoci1rvnz5MizLbIrm9wHS33//rfo6MTFR0tfXV5sSWJIkaeDAgVLNmjUlSUqbItjT01N68uSJFBMTI3l6ekrPnz/Pzd2T6zRuoY8YMYIhQ4aovo6OjsbNzY0fbApimJw7R185pWdsQsm5U6hxZB0Gqcm6jgNAir4hJ+t0we/4RgyUeSSTniEnanak5unNeWo/Ha/WjprntmKQmqLrOACk6BtwvHIbal7ajkFqqq7jAJCir8/x8i2peXUfBlIe2U8KA46XbkzNfw9joMwjmfQMOF6sLjXvH8NAqdR1HABS9PQ4XrgWNYPPYYDuP08vElIoPnbRJ98qWhNJSUnEI9EVc4zIWU9uEhJrY2MJDg5Wu9V0Zq3zrDx//pzU1FQcHR3Vljs6OqomqTIwMGDGjBnUqVMHpVLJTz/9pDZRVV6kcUH/ULeGYXISRgl5pKAr9DAzM8NGHwwlXadJk6yfNt2njQEY6v53GHgvUx45W/I2kyIPZVK8yaSHoSJvFIVk/TefcSM9DJV5YwhMsl5ezmSAoTJv/OIl6+mnZTIxwFDKIx9ytHNe2AQ9jHL4PnpvzmlbWlpmmDviU73/vUvvden7+/vj7++fK++lDXnjt08QBEEQtMTOzg59ff0MU0ZHRERkaLX/l4iCLgiCIMhKL5ceucXIyIgKFSoQEBCgtjx9xsT/KjF9qiAIgiArhQL0ctizrwCQwNfXF319ffr370///v0/uH5sbCx3795Vff3gwQOCgoKwsbHBzc2NIUOG0LVrVypWrEjVqlVZsmQJjx8/5ttvv81ZUB0SBV0QBEH4zwgMDNToHPqFCxeoU6eO6uv0Qd3du3dn1apVdOjQgcjISCZMmEBoaCglS5Zkz549uLu7y5ZdbqKgC4IgCLLKjS7z7L6+du3amd4c5l39+vWjX79+nx4qjxEFXRAEQZCVnkKBXk5HuUPalefCB4lBcYIgCILwGRAtdEEQBEFWuuhy/38kCrogCIIgK71cGOUuCnrWxD4SBEEQ/jN8fX3x8fFh/vz5uo6S58jWQn+kTOG0MoFQKZVYJL7QN6OYnpHqeUmSOKZM4JIyiQQkCij0aaJvhoNCX7VOiiQRoHzNP8pkUpAopDCgqb4ZlorcOQ55lZTCuIt32fEogojXSZS1tWBG1WJUtLcCIDw+kVGBdzj4NJKXicnUcM7PrKrFKGplnivv/8FM52+z/UF4WiY7S2bWKE5FB2sAYpNTGHX2FjsehBOZkIy7hSnflXKnT0n5LrV4lZTC2LP/sv1+GBHxiZS1t2JmzZL4OqZlMpy3M9PXTalenB/Ke8qUKZmxp2+y/V5oWiYHa2bWKoWvU37VOjejXjHy5HWOP3mOUgIfWws2NPXFzdJMvkwnr7P9zlMi4hMo65CfmXXL4utsA0DPPedZe/2R2msqOdtw6st6suQBeJWYzNhjV9j+b3BaJqf8zGxYEV8Xuwzr9t19lmWX7zK9QQW+r1xc3kyHLrL95iMi4hIo62zLzKaV8S1gD8CEw5f4858HBEfHYaSvR3kXWybUq0BlVwcZMyUx9kAg268/ICL2NWVd7JjZojq+rg4kp6Yy5kAge/99zIOoGKxMjKjrWZBfm1TGxVLGvwUJSYzdc5rt1+4RERtP2QIOzGxTC183JwD+vnKXpaevculJBJFxCQT+2JmyBeXbRzmRm13uml629v9ItoKehISjQp+yekb8lRqf4fnTykTOKhNpqW+GrUKfE6kJ/JESS38DS4zfjIbcr3zNbWUybfXNMFUoCEhNYENKLF8bWOR4xCTAtyeuc/1FLCtqlcTZzIQNd0NosuciQe2q4WJmTPuDQRjqKdjcoCwWhgbM+ecRTfdeJKhtNcwN5dl1fY5e43pULCvrlcHZ3Jj1t0NovDOQKx38KJDPhB9P3eTY0yhW1SuDu4UpB588Z8DxGzibm+BfSJ5bFvY5dIXrUTGsalAOZ3MT1t96QuNtZ7japTYF8pkS3LOB2vr7HkXwzaErtC7iLEsegD4BQVyPjGFVowo45zNh/c1gGm89xdVu9SiQz5R7L+Oo/edxvirhzpgqxbAyNuTfqFeYGOhnvfFPzbTvAtefx7CqaSWc85my/sYjGv95jKs9G1PAwhSARoWcWNbYV/UaI315O8n67D7L9YiXrGpZDWcLM9Zfu0/jdYe42qcFBd45sNl+K5jzIZG4vMkpa6btJ7ke/oJVbWulZbpyl8ar9nF1QBsKWJpT1M6KOc2qUCi/Ba9TUplz+jpN1+zn30HtsDeXJ1+fLce4HhbFqi/q4mxpzvrLt2m8bBdXh3xBPmNDLj99xqh65SntbMeL14n8sPMUrVfv49yAtrLkAeizMYDrYZGs+rIRzpb5WH/hJo0XbOXq8G4UsM5HXFIy1Qq50LasF99uOihbjtygUChyfM/4vHP3+7xLtr8mRfUMqatvSvF3WuXpJEninDIRPz0TiusZ4aDQp6W+GclI/KNMm+glQZK4rEyiob4phfUMcVYY0FrfjAiU3M+FWaZep6Ty98MIfq3khZ+zDZ5WZoyu4ImHhSlLbgZzJyaecxHRzKvuQ0V7K7ytzZlXrTixyalsuheW9Rt8aqb74Uyu6o2fiw2eVuaM8S2Kh4Upi68/BuBs2Eu+9C5ArQK2eFia0dvHjdK2Flx8Fi1bpq33QplczQe/ArZ4WpszprI3HpZmLL6W1tp0MjdRe+y8H0btgnYUlqkn43VKKlvvhjDZrwR+Be3wtM7HmKrF0zJdfQDAmNM3aOzhyBS/kpRzsKawlTlNCznhYJb9mZk0ypScytbbT5lcqzR+rvZ45s/HmOol8LAyZ3HQPdV6xvp6OOUzUT1sTDP+fuRephS23nzM5Hrl8HN3xNPGgjG1yuBhnY/FF2+r1nsaE8/3+wJZ06o6hjLOi63KdOMhkxv64ufhhKetJWPqlscjvwWLz/8LQKfSRahXpACFbSwp4ZCf6Y0rEZOYzLWwF/Jl+uc+k5tWwa+wC552Voxp4IuHjQWLz97AysSYfb1b0L60J9721lRxc2S2fw0uPX3G45ev5MmUlMLWq3eZ3MIPvyIF8bS3ZkyTqnjYWLL41FUAvvQtzs+Nq1DPy1WWDLkpr9369XOlk330EiWxSBTWe9vKNVAocFcYEPymWIdKKSiBwoq361go9HBAjye5UNBTlBKpkoTJey0kUwM9Toe9JCk1bXYt43ee19dTYKSn4HT4yxy/f/Yy6XP6zR+z6s752fUwgqexCUiSxNGnkdyJjqOha8Yu1FzNZJAx06nQqAzrh8cnsudRBF/5yPdHJkWpfLOf1Fvbpgb6nHoaiVKS2PMgHK/8+Wi69TQui/dQbcMxtt8NkS+TpPzwfnr6XPX1seBnuMzfgc+yvfTZf4GIuAT5Mql+dpnsp+AIAJSSRI/tpxhS1YcS9tayZVHLpPxApsfhGdZPSkll2YVbWJkYUdrJRqZMyswzGRpw6mFopq+JSUhCoQBrE3kOEFWZDDPJdP+pLO8p/PfppKDHvrl7T7733j4fesS+uXNALBL6gOl758vNFW/XyQkLIwOqOFgx+fJ9QuISSFVKrL8TwvmIaEJfJ+JtbY57PhNGB97hRWIySalKpl15QNjrJELjE3P8/h/M5GjNrxfvqTKtu/2U8+EvCY1Le89ZNXwonj8fhdYewXzJfprvCmSuXwmqO8vzx87CyIAqTvmZFHiHkNg3mf59wvmwF4RlUozW3gzGwtBA1u52CyNDqjjbMOncv4TEvk7LdDM4LVN8IhHxicQmpzA18A4NPRzY07oarTydab/rPMefPM/6DT41k4stk87cfJvp+iPOh0YRFvsagMaFnVnTrDIHvqjF1NpluBAaRcM/j5GYIs/0nhbGhlQpaMekE9cIeRVPqlLJumv3Of/0uSrTtNPXMdDTY4CvtywZMs3k6sCkY0GExLzJdOUu558+I+zV21Nzu289xvqXNeSbuJo5Z66zt3sj7MxNZMpkRBU3RyYdukhITFxapsu3OR8crpYpXUJyCiP3naNjmaJYmsjTw2JhYkQVD2cm7T9HSHRsWqYLNzn/OIywmIyZ8rr0Ue45fQgfl6cuW5PI+jyJJutoakXtUvQ5fp1CG46jr1BQzs6CjkWcuRwZg6GeHhvrl6XP8es4rT2CvkJB3QI2NCooT0s43cp6pfnmyDU81qS9Zzl7SzoWdeHy87Qu9d+vPeRc+Eu2NimPm4UpJ0NeMPDEdZzNjaknU7ZVDcvx9cEg3FcGvMlkRUfvAgRFZOzmX3XjMZ28C8h6rhpgVaMKfB1wCfdl+9MyOVjRsVhBgiKiUb45YPQv4sygN4PyyjpYcyY0iiVXH1BTrv3UtBJf7wvEfeGutEyO1nQs7kZQRFrvyhfF3vZalLS3ooJTfoos3s2e+6G09iooTyb/6ny96wzuc7amZXK2oWNJD4LCXnAxNJJ55//lfO+mWpkTW5WpbU2+/vsk7tM3oq+noJyzLR1LFSEoNFK1Tu1Czlzo24rn8Qksv3iLzpuOcOqbFjjkk+cc+qoOdfl681Hcf12blsnFjo5lihIUon4AmJyaSpcNB1FKEr+38pMliyrTl434ekMA7mOXpWUq6EDH8sUIehIh6/vKQUHOW4+inmdNJwU935s/HrEosXjnxxyHEvM3P7Z8KEgFXktKtVZ6vKTEVZE7xaKIpRkHm/sSl5xCTHIqzmbGdDl0BY83A4PK21kS2KYq0UnJJKVK2JsaUWP7WcrbWeXK+2eaycqcQ62qpGVKSsHZ3ITOBy5TyMKM1ympjD53m78al6epe9po1tK2llx5HsOsoAeyFfQiVuYcbltdPdPei3i8N1r85NNIbr2MY13jCrLkUMtkbc7h9n7qmXYH4mFphp2pMQZ6CorbWKi9plh+C06FRH5gi7mQKX8+DneqQ1xSCjFJyTjnM6XzjjN4fGAsgXM+U9wtzbn7Ila+TDYWHO7WMC1TYhLOFmZ03noCD2tzTj6OICIugcJz/1atnypJ/HTwEvPO/8vdAa1lymTJ4V5NiUtKJiYxOS3Tn0fwsM6nWsfcyBBPW0M8bS2p4upA8dmbWXnpNsNqlpEnk60Vh/u0TMuUkISzpTmd1wfgkf/tZyg5NZVO6wJ4EPWKgK9byNY6V2Wys+bwgPbEJb7JZGVO51W78bD9/x7hrelsa/+PdFLQrdEjHwruK1Nw1k+LkCpJPJJSqK+XVkydFQboAfelFEoo0n5xXklKIlBST5G7sc0NDTA3NOBFYjIBTyP5tZKX2vNWRoYA3ImO4+LzGMZWkOdSrA9mCn7O5KreJCuVJCsl9N47VtXXU6hapVrJlJDEgccRTK7uo/b8ihuPKe9gRRl7+Q54PprpUTiT/UpipK9HRcf83HqhPmDpzstY3GW6ZE0tk5EB5kZvMj0MZ3Kt0pmuF/k6keBX8TjJ1JWcaabXiRy4F8LkeuVpU8yNeoXUT40023CILqUK071MYS1kMsTcyDAt092nTG5Y8YPrSkiynZrINFN8IgduBzO5SRXgbTG/GxlNwNf+2GrhZ6bKZGyIubEhL+ITOPDvIyb7y9szIIdcu5c74rK1j5HvsjVJIoq3v4AvJSVhUgqm6GGl0KOynjEnlQnYKvSwUehzMjUBQxSUfDMq3kShoJyeEQGprzFFobpszQE9tYFyOXHgyXMkCbyszbgX/ZoR52/jZWVGdy8XALbcD8POxAjXfCb88yKWH8/8i7+7Aw1k7HY/8PgZEuBlbc696HiGn/kXL2tzunsXxFBfj5ouNgw/8y+mBnq4WZhyIiSKP249ZVq1YvJlehTxJlM+7kXHMezUDbzy56NH8bddyDFJyWy5G8rUGj4f3lBuZnoYnpYpfz7uvYxj2Il/8MpvQQ8fNwB+qOBJ5z2B+BWwo7arHfsfRrDrfhgH29WQL9ODsDeZLLj3MpZhR6/gZWNBj5IexCalMOHUdVp7FcQ5nwmPouP4+cQ/2Jka08qrgHyZ7oWkZbKx5N6LVww7dAkvW0t6lCmCob4etu+N+jfU08PR3ARvW/kOyg7ceZKWyc6Ke5ExDDsQmJapnBdxSclMPnaF5sXccLYwIzI+gUXn/+VJTDxtSxaSL9PtYCRJwsvemnuR0QzbcxYve2t6VPQmJVVJhz8CuBzyjG3dm5AqSapz6zamxhjJdHrpwM2HafvJIT/3nr9k2PYTeDnkp0fltN+xqLgEHr+IITQmDoDbb07tOFma4yTj9fGfQtz6VTtkK+ghUgprUuNUXx9QJoASyigMaWlgTjU9Y5KR2JP6mtdvbizzpUE+1TXoAI30TNEDtqTGk/zmxjItDfLlyjXoADFJKfwceIencQnYGBvSqpAjEyp6qi7dCY1P5Kdztwh/nZTWHe/pwshy8rZcopNSGH3uFk9iE7AxMaJ1YUcmVPLC8M3I9z8alOXns7fofugKUQnJuFmYMqGyF9+UcJM108+nb77JZEjrIs5MrFpMlQlg0+0QJCQ6ylicMmQ6dT0tk7EhrYu6MLGajypTK08X5tcry9TA2ww+ehWv/Pn4s3klahSwlS9TYjI/H7/Gk9jXaT87rwJM9CuFob4eKUqJf55H88eNR7xMSMI5nym1XO1Z36IKFm96gGTLdPgyT17FY2NqROtibkysXVbtZ6dt0YlJ/BxwkScxcdiYGtPax4OJ9StgqK9HqlLJrefRrN14mOfxCdiaGVOxgD1HejWlhEP+rDf+qZkSEvl533meRMdiY2ZC65KFmNioEob6+jyMimHnzYcAVJy7We11B79uQa0i8nzmoxOS+HnXKZ68jMXG3JjWpYsysVk1DN9c3bHzn3v03hCgWr/Lmr0AjG5UmTFNqsqSScjbFFJWE8Z+QExMDFZWVgy3cMAoISm3c30SPVMTyq5ZRP19SzFMSdZ1HACSDQw52PhrGhxcgWFqHsmkb0hA/Z40PLomT2U6ULsbDU+sy1uZ/LrQ8OwmDFNzfqlkbkjWN+BAlQ40vLQNQ2UeyaRnwIHyrWj4z568lalkUxreDsBQKX9XvSaS9fQ54NWAho9OYCjpPlNkYgpOw34nOjpati7s9Doxxtgakxw2xBIkiQmJL2XN+1+Xp0a5C4IgCJ8f0eWuHWIfCYIgCMJnQLTQBUEQBFnpochwdU72tyFkRewjQRAEQVa5eac4MX3qh4kWuiAIgiArMX2qdogWuiAIgiB8BkQLXRAEQZBVbkyuIlqfWRMFXRAEQZBV2uQsOavoilyYZfNzJw56BEEQBOEzIFrogiAIgqxEl7t2iIIuCIIgyErcKU47xD4SBEEQhM+Axi30xMREEhMTVV/HxMQAMPDcPmyttTf/9cckp6Zy8OINGDoZdDiblJpUJVy7j9R3BMo8kklKVcKdcJRf9iU1p/1guUSplOBJHKktO6PIG7uJVCUQBan1mpJLE/zlWKoExEFq+aooFHljkFCqlLZzUj2L5ZmBS6lvBmCl2rugQKnjNGlS37SfUk3MUEi6z5SK9iZBEl3u2qHxbGvjxo1j/PjxGZavX78eMzOzXA8mCIIgyCc+Pp7OnTtrZba1OeY2mObwSP21pOT7uCi8vLzQ19enf//+9O/fP5eSfh40LuiZtdBdXV0JuXEpz7XQ65cqrNP5nt+VnKrk4LX71C/qiEEeyZSSquTgnXDqFzTHII+00FOUEgefxFHPRsIgb+wmUpRwKEpBPfNXGOSN3USKBIfiLKhHOAZ5pIWeIik4hCP1Eu5jkEda6CkoOGRSmHovrmOQR1roKehxKH8J6oVfxCAPtNCjEpIpMGjqf66gi+lTP0zjLndjY2OMjY0zLDfU18PQQD9XQ+WUob4ehvp5K5OBvl6eOchIZ6CnwDCPFPR0BnpgmLd2EwYKMMxbuwkDhYRhHinoAEhggIRhHime6R20BijzUKY0BpIyT8yHrs2DCtHlrh1ilLsgCIIgK8WbR063IXycKOiCIAiCrEQLXTvEPhIEQRCEz4BooQuCIAiy0kOR43u55/T1/w9EQRcEQRBkJbrctUPsI0EQBEH4DIgWuiAIgiCrtOlTc74N4eNEQRcEQRBkJS5b0w7R5S4IgiAInwFR0AVBEARZ6SkUufIA8PX1xcfHh/nz5+v4u8p7tNLlnpKSwrhps1m/ZRthEc9wdnCge8d2/DxkAHp6accUW3ftY8madVy8+g+RUS+4dGg3ZUuVkDfTzN9Zv20XYRHPcXa0p3v7Vvw8sC96enokJyfz87Q57D18nPuPn2BlkY/6flWZPPwHXJwcZMs0fu5S1u/cR9izSJztbenepjmj+vdS7afxc5ewafcBgkPDMTI0pELJYkwc3I/KZUvKlCmV8YtWs37PIcIio3C2s6W7f0NGff2lKtO7vp04k6VbdjPzx358/2Vb+TIt38iGA8cJi3yJs11+ujWtw6ge7VWZev4ylzV7jqi9rlIJL04v/U2eTKmpjF+9lQ2HThMWFY2zrTXdGvox6suWavvp5qOnjFi6ieNX/0WplPDxKMDG0d/h5mgnT6YNu9hwNJCwlzE457ekW72qjPqiiSqTgX/fTF87pUdrfmzTUJ5MmwPYcPISYS9fpWWqVZFRreupMsUmJDJy/R62X7hO5Ks4POxt+K5xdb5tWC3X86gybTvKhrNXCYuOxdnagm7VyzKqRU1VpvDoWEb8FUDA9Xu8jE/Az8udOV2aUtTJVpZMAK8SEhm74wTbrtwm4lU8ZV0dmdW+Pr4ezgBIksSE3SdZdvIKL+ITqOThzLyODSnhYi9bpk+Vm13ugYGB4l7uH6CVgv7bvEUsXr2OVfNmUMK7KBeuXKPnwKFYWVrw/Tc9AYiLj6dapYq082/GN0OGy59pwTIW/7GJVbMmU8KrKBeu/kPPH0ZiZWHB9726Ef86gcv/3ODn7/tSxqcYL6KjGTxuMi179iNwz2ZZMk1dsobFG7ew8rdxlChamAvXbtJrxASsLPIxsEcnAIp6uDF3zFAKuxbgdWIis1duoPFX33H74N/Y2+bP/UwrN7J4805WThhGiSIeXLhxi15jp2GVz5yBXdQL9rbDJzl/7V9c7OX7Iwcw9Y+tLNm2nxU/D6REYTcu3rxLr1/nYWVuxsAOLVTrNapSjuWjBqi+NjKU7+M+deMuluw8zIphfSjhUYCLtx7Qa9rStExtGwFwLyScWt//wldNajK2exuszM24+TgEEyNDeTJtOcCSvSdYMag7JdxcuHj3Eb3mrsHKzJSB/nUBeLJ6itpr9l28ztfz/qBNtXLyZNpxlCUHz7Cib0dKFHTk4v0n9Fr0J1amJgxs6gfAD2t2cPT6PVb374SHfX4Crt7muxV/42JjiX/F3D9wnbrnJEuOXmBF79aUKGDPxQch9FqxDStTYwY2rIokSbSZtwFDfX22DuiEpakxs/efptH01Vyb9B3mxka5ngngmz/2cj3kOat6NMfFyoJ15/+h0ZyNXBvbmwLWFkw7cI7ZhwJZ0a0ZRR1s+HXvaRrP3cSNcV9jYZJx3g3h86eVgn72wiX8GzegWYO0PyIebq5s3LqDi0HXVOt0/aINAA8fB2sjEmcvBeHfsC7N6tVOy+RagI3bd3Px6j8AWFlacGD9CrXXzJ3wM5VbfMHjpyG4FXDJ9UxnLl/Dv14tmtWpkZapoAsbd+3nwj83Vet09m+s9poZIwax4q/tXL11h3rVKuV+pqvX8a9djWY1q6RlKuDExn1HuHDjttp6T8OfMXDKPPYu+I0WA0bmeo53nf3nFv5+lWhWvWJaJmcHNh48wcV/76mtZ2xoiJMMBzmZZrp+F/9q5WlWpWxaJid7Nh45w8XbD1TrjF7+F00ql+G3Pp1Uywq7yNPbA3D23/v4Vy5DM99SaZkcbdl4PJCLdx+p1nHKrz5T4o5zV6ldyovCTvK08s7efoR/hRI0K188LZODDRtPX+bi/Sdq63StWYHaJYoA8HX9Kiw9dJYL957IUtDP3nuCfzlvmpXxSstkl5+N565x8WEIAHfCIzl37wlXfulPiQJpP6/fuzXHeeBUNp69Rq9aFXI90+ukZLZevsXWb9tSs6gbAGOb+7Hjyh0WHbvMBH8/5h4OZETjarQu5w3Ayu7NcBk2jw2BN/jGT54Dsk8lBsVph1bOoVevXJHDJ05x+959AK78c4OT5y7QpH5tbbx95pl8K3D41Flu30/7g3vlxr+cDLxEkzq1Pvia6FevUCgUWMvU3VOjYhkOnwnk9oO0P7hXbt7m1MUrNKlVPdP1k5KSWbrpb6ws8lGmmJc8mcqV4vC5y9x+lHagdeXWPU5dvkaTGpVV6yiVSrr/PIUfu39BCU8PWXK8q3rp4hy+cJXbj5+mZbrzgFNXbtKkqvof1mOX/8G5aXeKd+hHn8nziYh6KV+mUl4cvnyD28GhaZnuPeLUtds0qVwGSNtHe85doWhBJ5oMm4pz235U7T+W7ScvyJfJx5PDV//l9tPwtEwPnnDqxj2aVMi8KIa/iGHPhWv0bCBP1zZA9WIeHP7nLrdDnqVlehTCqVsPaVKu2DvrFGLXxRs8jYpGkiSOXL/L7dDnNCzjLU+mom4cvvGA22HP0zI9DuPUncc0KZ32O5WYnDYzmsk7PTz6enoYGehz6s5jWTKlKJWkKiW190zPcOpeMA+eRxMWE0cDHw/Vc8aGBtQs6sqZe09lyZQTilx6CB+nlRb6sAF9iY55RfFq9dDX1yc1NZVfRv5IpzYttfH2mWfq15voV68oXrvZ20w/DaJTq2aZrp+QkMiIyTPp3Ko5lhb5ZMn00zfdiX4Vi0+j9ujr65GaquSXIX3p1KKR2nq7Dp+g8+BRxL9OwNnBjv2rfsfOxlqeTF91JDo2Dp9WX73N9F1POjWpq1pn6sqN6OvrM6BzG1kyZMjUtQ3RcfGU6DQAfT09UpVKJvbpQseGfqp1GlcpT9s61XB3sudBaATjlq6nwYAxnF85A2MZurh/6tg8LdNXw95m6tmOjnWrAhDxMobY1wlM3biTCV+1Y/LXHdgfeJV24+ZycMYIapUpnvuZ2jYkOu41JfqNR19PQapSYuKX/nSs5Zvp+msOn8XC1ITWVeVr3f3kX4fo+ARK/DDtbaYOjelY/e17zu7Rkj5LNuPe7xcM9PXQUyhY8k17ahQrJE+mpjXSMo38/W2mNnXpWCWtZ6OYsx3uttaM2nyQhd1bYG5syKz9ZwiLjiX05StZMlmYGFOlcAEm7TlFcSdbHC3N2Rh4g/MPQyhqb0NYTCwAjhbmaq9ztDTnUWSMLJlyQqFQoFDkrCQrREnPklYK+qZtO1m3eRvrFs2hhLcXQf/cYPDoCbg4OtK9YzttRMiYacce1m3dybp50yjhVZSgGzcZPG4yLo4OdG/fSm3d5ORkOvX/AaWkZP6kMfJl2h3Auu17+WPmL5QoWpigm7cZMmkmzg72dG/TXLVenSoVubRjHc+jXrLsz210/H4kZzavxMHWJvcz7T/Cut0H+WPySEoU8SDo1j2GTJufNmDPvxEXb9xm7vqtXNiwKMe/sJr68+BJ1u8/xh/jBuNT2I0rtx8wZM5yXOzy061p2oHGF/VrqNYvWcSdisWKULhNH/acvkDr2lVzP9ORs6w/eJo/RvbFx6MgV+49Ysj8dbjY5qdbIz+UyrS5y/2rVWBQuyYAlPV058z1OyzZeViWgv7niQusP3aeP374Ch83F648eMKQZX/hYmNFt3oZ98Gqg6fpXKuSbOf0Af48c4X1Jy7xx4DO+BR05MrDEIas2YHLm8FxAPP2nuTcncf8PfQr3O2sOXHzAd+t+Bun/BbUL5X7PVF/nv+H9Weu8keftvi4OHAlOIwh6/fiYm1JtxplMTTQ58/vOvDNiu3YfzcFfT096vkUpnGporme5V2rezSn99o9uI2Yj76egnKuTnTyLcHlx2Gqdd7/nZMk0NKvoZAHaaWg/zR+MsMG9KVja38ASvkU49GTp0yZu0BnBf2nSdMZ1q83HVumtchLFffi0ZMQpsxfolbQk5OT6dB3MA+Cn3Bo00rZWucAw36bw7A+3enYPG10cSlvTx4/DeW3xavUCrq5mSme7q54urtSpVwpvOu3YcVf2xn+7Ve5n2nWEoZ91ZGOjdMKZamihXkcGs5vKzbQ3b8RJy9dIyLqJR5N3p4XTk1V8uPMRcxZt4X7e9fnfqb5q/mpaxs6NEhrkZcq4s6jsGf8tmarqqC/z9nOBncne+686RLP9UxLNvJTx+Z0eNMiL1XYlUfhz/ltw066NfLDzsoCA319irurj70o5ubCqX9uZ7bJnGda9Tc/tW1Ih5ppLfJSHgV4FBHJb5v3ZyjoJ67f4dbTcNb/1FuWLKpMf+zip5Z16FCtbFomN2cePX/Bb9sP061WRV4nJfPzxn1s/qG76jx7aXcXrjwKYeauY7IU9GGbDvBTsxp0qJzWIi/l6sij5y/5bfcJutVIy1nBw4WLE/oSHZ9AUkoq9pbmVJ24hIoeuT+WJl0R+/wcGdKFuMQkYhKScLbKR6dl2/Cws8bJMu3vUFhMLM5Wb/8mRbyKy9BqzwvEOXTt0EpBj3/9Gr337syvr6+narXoQlom9SEE+vr6KJVK1dfpxfzOg0cc/nM1tvnlHWAVn5CIQvF+pqz3kyRJJCYly5QpAcX7+0lPT7Wfvmxen3pVyqs936TvML5s3oAeLdUH8OVepkT0MttPkvIDr4DI6BiCI57jbCfPzzA+ISnjZ1zv7c/OyNCAit6FuB0cprbOnSdhuMtwyRpAfGKS6tpdtUxSxs/TyoDTVPB0o0yhgrJkUWVKSs4805v9lJySSnJqaibrKGT7e5F5JkWm+8nKzASAO2GRXHwQwvjWmR9A5iZzYyPMjY14EZfAgRsPmNK6DoXsrHCyNOfgzYeUc3UCICklleN3gpncurbsmbJLj5wP2BI3TcmaVgp6i4b1+HX2fNwKFqCEd1EuX7vOrEXL+apTe9U6US9e8vjJU0LCIwC49WYAnZODPU6OuT8SuEX9Ovw6bzFuBZwp4VWUy//cYNbSVXzVIe08cEpKCu37DOLSPzfYuWohqamphEWkDeSxsbbCyCj3L1VpXqcGkxeuxM3FiRJFC3P5xi1mrVjPV+3Sejbi4l/z68IVtKhbE2cHOyJfRrNw3WaehEXQrkm9XM8D0LxmVSYvW4ebkwMlinhw+dZdZv2xma/eFGtbaytsrdVHShsaGOBka4O3h6s8mWr4Mnn1Zlwd7ShR2I2g2/eZvXEHPZql7YPY+NeMX76JNrWr4Gxnw8PQCH5e9Ad2Vpa0ejNaP9czVS3L5HU7cHWwo4RHAYLuPmL25n30aFxTtc6PHZrRaeLv+JX2pnZZH/YHXmXXmcscminPVQHNfUsx+a99uNrbUMLNhaD7wczefoge9dUHvcXEv2bzqUtM6ynPfQPUMpUvzuRth3G1y0+Jgo4EPXzK7N3H6VE7rRfB0syEmsULM3zdLkyNDHG3z8/xG/dYe/wi07u2yGLrn5iprDeTd53A1daaEgXsCXoUxuz9Z+jxzkjxzYHXsbMww83Gin+eRDB4/V5ali9Gw5KesmQC2H/jPpIE3o423H32guFbj+DlaEOPaqVQKBQMrOvLlH1nKOqQH097G6bsO4OZkSGdfH1kyyTkbQpJyuQwVAMxMTFYWVnx7FYQtvmtP7ruq9hYRk+ZwbY9B4h4/hwXR0c6tvFnzA8DVYVx1ca/6DlwaIbXjvnxe8b9NFijTMkpqew9f40mZT0x1NfPIlMco6fPYdu+g0Q8j8LF0YGOLZsyZlA/jIyMeBj8lMLV6mf62sN/rqZ2Vc0uEUtOTWVv0F0aF3PGUP/jx5ivYuMYM3sR2wKOEhH5AhcHOzo2b8To73pjZGRIQmIiXQb/zPmr13ke9RLb/FZULOXDqH498S2t+U14klOV7Ps3lMZu+TDMYk7DV3HxjJm/km1HThIR9RIXe1s6Nq7L6D5dMTLM/Fxr4Sad+b5L22zdWCZZKbHvcSyN7CQMszgUfxX3mrFL17Pt2DkiXkTjYpefDg38GN3zC4wMDXmdmEibYVMIun2fl7HxONvmp3aFkoz/ujOu2WgNJyth/3MFjfK9wjCL/r5X8a8Zu3IL205eIOJlDC62+elQtwqju7ZWu/595d5j/LZhJ0+eReHt6szY7m3wr675ZU/JEuyPtaCRIgxDxcd/dV/FJzB23Q62nb1CRPQrXGys6FCzIqM7NFPLtHTfCYYs+4snq3/DytxU4yxvMynYLznRKOEehny4lwTg1esExv65n22B/xARHYtLfks6VC/H6Lb1MTJIyxT2MoZRG/YScPU2UbHxuNvnp3e9ygxqWlPjcRrJ6LHfpAiNXlzTIFMiY/8+zLZLN4mIicPF2oIOlUsxumUtVaZ5AWeZsfcU4TFxOFvn48tqZfjZ/+3zGmfKX4pGYYEYSqlZrv/XxZuM2naMJy9fYWNmQpty3kxsWRMr07RegvQbyyw9EZR2Y5lCLszr0JCSBTS75DAyIQXHwdOJjo6W7UYt6XVifX57zBQ5a2PHS0o6v3gma97/Oq0UdG3JTkHXluwUdG3JTkHXluwUdG3JTkHXluwUdG3JTkHXluwUdG3JbkGXmzYL+ob8DrlS0Du9iBAF/SPyyJ9OQRAEQRByQkyfKgiCIMhKjHLXDlHQBUEQBFmJgq4dostdEARB+M8Q06d+mGihC4IgCLLSA3I6/lbvzRhQMX3qh4mCLgiCIMhK8eZfTrchfJwo6IIgCILsRDmWnziHLgiCIAifAdFCFwRBEGSlUOR8Fjgxi1zWREEXBEEQZCUuW9MO0eUuCIIgCJ8B0UIXBEEQZKWHAr0ctrFz+vr/BxoX9MTERBITE1Vfx8TEAJCsb0SyvnHuJ/sEyVIKACkWdiiyMQuSnFJSUoC7pNq7o5dHMqWmpMC/oaS6l8xbmR6fRVm8Kso8kkmZkgInzqIs1yDvZarRKu9latAl72Xy/zrvZWo/IE9kUka9gMHTtfJeostdOzSebW3cuHGMHz8+w/L169djZmaW68EEQRAE+cTHx9O5c2etzLa23cYJc72cneGNUyppGRUmZlv7CI0LemYtdFdXV0Lu3sA2f37ZAmZHckoKB89cpIFfFQzzwBEwpGUKOHFWZMqCyKQZkUkzIlPWIqNe4FyoqFYK+g7b3Cno/pGioH+Mxp8qY2NjjI0zdq0b6hvkiQ/nuwwNRCZNiEyaEZk0IzJpJq9k0mYG0eWuHWKUuyAIgiB8BnR/mCgIgiB81sS93LVDFHRBEARBVnqKXJhtTdTzLImCLgiCIMhKnEPXDnEOXRAEQRA+A6KFLgiCIMhKtNC1QxR0QRAEQVZiUJx2iC53QRAEQfgMiBa6IAiCICsxH7p2iBa6IAiCICu9XHoA+Pr64uPjw/z587X5LfwnaKWgp6Sk8PPEXylcqgJmjq4UKV2RCb9NR6lUqtaRJIlxk6dSwLskZo6u1GnWkus3/5U1l0fxUijMrTM8+g/+EYDw8Ah6fNMXlyLFMLNzpnHLtty5e0+nmWJjY/luyFAKFvXB1NaJ4uUrsXDpcp3lyew5hbk102bN1VkmgJv/3sK/fUesnN2wcCxIldr1eRwcrLNMPb7pm+G5KrXry5ZHk0zv6jNgEApza2b/vkCnmcZNmkyxcr6Y27uQv4A79Zu15FzgBZ1lSk5OZtjPYynlWw1zexdcihSjW+8+hISG6iwTwNbtO2jk3wY7t8IozK0JunJV1jx5SWBgIDdu3KB///66jpLnaKXL/bdZc1m8YjWrFs2jRLFiXLgcRM/+A7GytOD7vn0AmDp7HrPmL2Tlgnl4eRZh0rSZNGzVjn8vnMXCIp8suQKPHyE1NVX19T83btKgRSvat26JJEm06tgFQ0MDtv+5HksLC2bOm0/95i25cfEc5ubmWs8EMHjYSI4cP8Efyxfj4e7GgUNH6DfoB1ycnWjZvJnW84Teu6W2/t4DAfTqN4C2rfxzPYumme7df0CNBo3p1a0r40eNwMrKipu3bmFibKKzTACNG9Rn5aK3rQojIyPZ8miaCWDbzl2cC7yAi7OzrHk0yeTl6cnvM6ZRuJAHr1+/ZtbvC2jo34a7Vy9hb2+n9Uzx8fFcCrrC6OFDKVOqJC9evmTQTyPwb9+JCyePypInq0wAcXHxVK9amfZtWvF1/4Gy5cgtYpS7dmiloJ8NvIB/08Y0a9QQAA93NzZu3srFy1eAtNb5nIWLGfnDYNr4Nwdg1aLfcSrqw/q/ttCnZ3dZcr3/B2LKjFkUKVyIWn41uHP3HmfPB/JP4BlK+BQHYMHsGTh4eLLhry307tFN65kAzpwLpHuXTtSu6QfANz17sHj5Si5cuixLQc8qj5OTo9rz23fvoU5NPwoX8sj1LJpmGjV+Ik0bNmDqpAmqdeTMo0kmAGNjowz7S9eZnoaE8N2Qn9i/fQvN2n6h80ydO7RXe37mlEksX72Wq/9cp16dWlrPpFAoCNi1Te35eTOmUqlmXR4HB+Pm6qr1TABdO3cE4OGjR7K8f65TKFCIk+iy00qXe/UqlTl8/AS333RXX7n2DyfPnqdJw7QuxwcPHxEWHkHDurVVrzE2NqZW9WqcOX9eGxFJSkrij01/0rPblygUCtVUsSYmb1t1+vr6GBkacfL0GZ1kAqhRrQo7du/laUgIkiRx5Nhxbt+9R6P69XSS513h4RHs3neAXt27yp7lQ5mUSiW79x3Aq6gnjfzb4ODuSeVa9di2c5fOMqU7euIkDu6eeJWpwNf9BxIR8UynmZRKJV179WHooAGqg1ZtyurzlJSUxJIVq7GysqRMqZJ5IhNAdHQMCoUCayurPJNJEEBLBX3Y4IF0bNua4hWrYmTrTHm/unzf9xs6tWsDQFhEBACODg5qr3OwtycsPEIbEdm2czcvX0bT48vOABTz9sLdzZURY8fz4sVLkpKSmDJ9FmHh4YSGheskE8Dc6b/hU8ybgkV9MLK2p3GrdiyYNZ0a1arqJM+7Vq/bgIVFPtq0bCF7lg9lioh4RmxsLFNmzKZxg3oc2LGV1i2a06ZTV46dOKmTTABNGjZg3YqlHN6zgxmTfyHw4iXqNvVXHTjqItNvM2ZjYGDAwH7faiWDJpkAdu3dRz6HApjYODLr9wUE7NyGnZ2tTjOlS0hIYPiYcXT+or3W5uTOKtN/gSKXHsLHaaXLfdOWbaz7czPrli2mRHFvgq79w+DhP+Pi7ET3N11HkLFHRZIkrR2RLl+9liYN66vOIxoaGrJl/Vp69f0Om4Ie6OvrU79ObZo0bKCVPJllApi7YDFnAy+w468NuLu6cvzUafoN/hFnJyfqv9PDoa0871qx9g+6dGiv1qsht/czKaW0gZYtmzVl8IC0QTNly5Tm9LlzLFq2Uq27WVuZADq8OXgFKFnCh4rlyuFevBS79+2nTUv5xht8KNPFy0HMWbCIS6eP6azV96HPU52afgSdOcHzyEiWrlzNF117cO7oIRwc7HWWCSA5OZmO3XuiVCpZMHu67Fk0yfRfIc6ha4dWCvpPY8altdLbtQagVAkfHgUHM2XmHLp37ojTm5Z5WHgEzk5Oqtc9e/4cRy38Ej96/JiDR46ydcNateUVypUl6OxJoqOjSUpKxt7ejsq16lGxfDmdZHr9+jUjx03g741/0KxxIwBKlypJ0NVrTJ8zT9aC/qF9lO7EqdPcun2HTatXyJZBk0x2trYYGBjgU9xbbd3i3t6cPHNWJ5ky4+zshLubK3fu3tdJphOnThPx7Blu3m+7slNTU/lhxM/Mnr+QhzevaT1TOnNzczyLFMazSGGqVPKlaOnyLF+9lhFDh+gsU3JyMl907cGDh484vGen1lrnmn6e8jpFLpxDF6cbsqaVLvf4+NfoKdTfSl9PX3XZWiEPd5wcHQg4ckz1fFJSEsdOnaZqpUqy51u5dh0O9vaqIvk+Kysr7O3tuHP3Xtrgs2ZNdZIpOTmZ5OTkjPtSX1/tEkBt5XnX8tVrqVCuLGVKl5I1R1aZjIyM8K1Qnlu376ite/vuXdxlGsCUVabMREZGEfzkKc5aGCSXWaaunTpy9dwpgs6cUD1cnJ0ZOmgg+7dv1UmmD5EkicQk+U9NfChTejG/c/c+B3dtx9bWRvYsWWUShMxopYXeoklDfp0xCzfXApQoVozLV68xa/4ivnpzTkihUPB93z5MnjmbokUKU7RIYSbPmI2ZqSmd27eVNZtSqWTl2nV079IJAwP13fHX1m3Y29ni5urKtevX+X7ocFq1aEbD+nV1ksnS0pJaftUZOmoMpqYmuLu5cuzEKdas38jMKZO0niddTEwMf/29nRmTf5EtQ3YyDR00gA7delKzRnXq1PRjX8BBdu7Zx9F98g6M+1Cm2NhYxk2aQttW/jg7OfLw0WNGjpuIna0trd9c1aHtTLa2NhkKk6GhAU6ODnh7FdVJpri4OCZNnYF/syY4OzkSGRnFgqXLefI0hPatW+kkU0pKCu26dONS0FV2bd5IamoqYW/G0NjY5Jf10sOPfcajol7wODiYkNAwAG7duQuAk6OjVq+k0JSYD107tFLQ506dwuhJk+n/wzAinj3HxcmJb77qxphhb29w8dOgAbxOSKD/Dz/x4mU0lSuWZ//ff8l2DXq6g4eP8jj4CT27fZnhudCwMIYMH0V4RATOTo5069yR0cN/kjVPVpk2rlrBiLHj6dLzG6JevMDdzZVJY3/m2949dZIHYOPmrUiSRCeZD740zdTavwWL5sxk8oxZDPxxGN5FPdmyfo3sAwc/lElfX59r12+wZv1GXkZH4+zkSJ2afmxaswILCwudZNKlj+2nf2/fZvW6DTyPjMTWxgbfCuU4EbBX9lH4H8r05OlTduzeC0DZqn5qzx3Zu1N1+ag2MwHs2L2Hr759e2OVjt3Tfv/HjhzGuFEjZMv0qRR6ChQ5rMhicpasKSRJkj7lhTExMVhZWfHswW1sbfLndq5PkpySwt4T52hapwaGmbQkdSE5JYU9R06KTFkQmTQjMmlGZMpaZNQL7FwLER0dLduYgPQ6ccLFlXx6OTvDG6tU4hcSLGve/zrdf6oEQRCEz5qYnEU7REEXBEEQZCUKunaI2dYEQRAE4TMgWuiCIAiCrMR16NohCrogCIIgK9Hlrh2iy10QBEEQPgOihS4IgiDISnS5a4co6IIgCIKsRJe7doiCLgiCIMhKT6FAL4cVOaev/38gzqELgiAIwmdAtNAFQRAEWYkud+3QuKAnJiaSmPh2CsOYmBgAklNTSE5Jyf1knyA9R17JAyKTpkQmzYhMmhGZsqbNHApyYVCcmJwlSxpPzjJu3DjGjx+fYfn69esxMzPL9WCCIAiCfOLj4+ncubNWJme5WLgQ+fRzODlLqpIK9x+IyVk+QuOCnlkL3dXVldAHd/LUbGsBJ87SwK9KnpjNCEQmTYlMmhGZNCMyZS0y6gXOhYpqpaBf8sydgl7+rijoH6Pxp8rY2BhjY+MMyw0NDPLEh/NdIpNmRCbNiEyaEZk0k1cyaTVDLlyHLk6iZ02MchcEQRCEz4DuDxMFQRCEz5oY5a4doqALgiAIskor6Dm99WsuhfmMiS53QRAEQfgMiIIuCIIgyCq9yz2nj7ymdevW5M+fn3bt2uk6CiAKuiAIgiCz9Hu55/SR1wwcOJA1a9boOoaKKOiCIAiCrD7XFnqdOnWwsLDQdQwVUdAFQRCEz87x48dp0aIFLi4uKBQKtm3blmGdBQsWUKhQIUxMTKhQoQInTpzQftBcJEa5C4IgCLJS5MKNZbL7+ri4OMqUKcNXX31F27ZtMzy/adMmBg0axIIFC6hevTqLFy+mSZMm3LhxAzc3NwAqVKigdofUdAcOHMDFxeXTvhEZiYIuCIIgyCo3r0NPnxgs3YfuYtqkSROaNGnywe3NnDmTXr160bt3bwBmz57N/v37WbhwIZMnTwbg4sWLOQutZaLLXRAEQfjPcHV1xcrKSvVIL77ZkZSUxMWLF2nYsKHa8oYNG3L69Onciqp1WivoT0NC+LLnN9i6FsLMzpmyVWpw8XKQ6vmt23fQyL8Ndm6FUZhbE3Tlqk4zJScnM+znsZTyrYa5vQsuRYrRrXcfQkJDdZYJYNykyRQr54u5vQv5C7hTv1lLzgVe0Gmmd/UZMAiFuTWzf1+g00w9vumLwtxa7VGldn2dZgK4+e8t/Nt3xMrZDQvHglSpXZ/HwcE6y/T+Pkp/TJs1V2eZYmNj+W7IUAoW9cHU1oni5SuxcOly2fJokik8PIIe3/TFpUgxzOycadyyLXfu3pMtj0fxUpn+XPoP/hEASZIYN2kyLkWKYWrrRO3Gzbh+46ZseXIqNwfFBQcHEx0drXqMGDEi23meP39Oamoqjo6OassdHR0JCwvTeDuNGjWiffv27Nmzh4IFCxIYGJjtLLlJK13uL168pHq9RtSp6cfevzfjYG/HvfsPsbayUq0TFxdP9aqVad+mFV/3H6jzTPHx8VwKusLo4UMpU6okL16+ZNBPI/Bv34kLJ4/qJBOAl6cnv8+YRuFCHrx+/ZpZvy+goX8b7l69hL29nU4ypdu2cxfnAi/g4uyc6zk+JVPjBvVZuWi+6msjIyOdZrp3/wE1GjSmV7eujB81AisrK27euoWJsYnOMoXeu6X2mr0HAujVbwBtW/nrLNPgYSM5cvwEfyxfjIe7GwcOHaHfoB9wcXaiZfNmWs8kSRKtOnbB0NCA7X+ux9LCgpnz5lO/eUtuXDyHubl5rmcKPH6E1NRU1df/3LhJgxataN+6JQBTZ85h5rwFrFo8Hy9PT36ZOp0GLVpzKygwT426TqfQU6DQy+E5dCnt9ZaWlrk229r75+UlScrWufr9+/fnSo7copWC/tvM2bgWLMjKxW9bbR7u7mrrdO3cEYCHjx5pI1KWmaysrAjYtU3tNfNmTKVSzbo8Dg7GzdVV65kAOndor/b1zCmTWL56LVf/uU69OrV0kgnSWjjfDfmJ/du30KztF7me41MyGRsb4eTkmGG5rjKNGj+Rpg0bMHXSBNWywoU8dJrp/f2zffce6tT0ky2XJpnOnAuke5dO1K7pB8A3PXuwePlKLly6LEtBzyrTnbv3OHs+kH8Cz1DCpzgAC2bPwMHDkw1/baF3j265nun9g/MpM2ZRpHAhavnVQJIkZs9fyKihP9CmZdqB1+olC3EsVJT1f26mT6+vcj3P58bOzg59ff0MrfGIiIgMrfb/Eq10ue/Ys5eK5crS/svuOLh7Uq6qH0tXrtbGW+dqpujoGBQKRaatU11kSkpKYsmK1VhZWVKmVEmdZVIqlXTt1Yehgwao/uDJSdP9dPTESRzcPfEqU4Gv+w8kIuKZzjIplUp27zuAV1FPGvm3wcHdk8q16rFt5y6dZXpfeHgEu/cdoFf3rjrNVKNaFXbs3svTkBAkSeLIsePcvnuPRvXr6SRT+ihnE5O3PSn6+voYGRpx8vQZWTK9KykpiT82/UnPbl+iUCh48PARYeHhNKxXR7WOsbExtWpU5/TZc7Ln+RR57Tp0IyMjKlSoQEBAgNrygIAAqlWrlntvpGVaKej3Hzxk4bIVFC1ShP3bt/Bt754M/HEYa9Zt0Mbb50qmhIQEho8ZR+cv2udad8+nZtq1dx/5HApgYuPIrN8XELBzG3Z2tjrL9NuM2RgYGDCw37eyZPiUTE0aNmDdiqUc3rODGZN/IfDiJeo29c/0EhRtZIqIeEZsbCxTZsymcYN6HNixldYtmtOmU1eOnTipk0zvW71uAxYW+WjTsoUseTTNNHf6b/gU86ZgUR+MrO1p3KodC2ZNp0a1qjrJVMzbC3c3V0aMHc+LFy9JSkpiyvRZhIWHExoWLkumd23buZuXL6Pp8WVnAMLC097T0dFBbT1HBwfCwiNkz/MpcvNOcb6+vvj4+DB//vyPvmdsbCxBQUEEBQUB8ODBA4KCgnj8+DEAQ4YMYdmyZaxYsYKbN28yePBgHj9+zLffaufvmBy00uWuVCqpWL4cv44fA0C5smW4fvMmC5etoFuXTtqIkKNMycnJdOzeE6VSyYLZ03WeqU5NP4LOnOB5ZCRLV67mi649OHf0EA4O9lrPdPFyEHMWLOLS6WM5vs40tzIBdGjXRrV+yRI+VCxXDvfipdi9b7+qm1KbmZSSEoCWzZoyeEB/AMqWKc3pc+dYtGwltfxqaD3T+1as/YMuHdqrtUR1kWnugsWcDbzAjr824O7qyvFTp+k3+EecnZyoX7e21jMZGhqyZf1aevX9DpuCHujr61O/Tm2aNGyQ61kys3z1Wpo0rJ9hbIqCnJ3//a8KDAzUqFF14cIF6tR524sxZMgQALp3786qVavo0KEDkZGRTJgwgdDQUEqWLMmePXtwz+T03X+FVlrozk6O+BTzVltW3Nubx8FPtPH2mdI0U3JyMl907cGDh48I2LlNttZ5djKZm5vjWaQwVSr5snzh7xgYGLB89VqdZDpx6jQRz57h5l0SA0tbDCxtefQ4mB9G/IxH8VI6yZTpa5ydcHdz5c7d+zrJZGdri4GBAT7FM1nniTy/B9nZTydOnebW7Tv07p7754Ozk+n169eMHDeBmVMm0aJpE0qXKsl3335Dh7atmT5nnk4yAVQoV5agsyd5GfKI0Hu32Ld9C5FRURTykPeP/6PHjzl45KjaeXqnN+d401vq6SKePcNRhoP63KCLLvfatWsjSVKGx6pVq1Tr9OvXj4cPH5KYmMjFixepWbNm7n7jWqaVgl69ShVu3bmrtuz2nbu4u+X+wDJNaZIpvZjfuXufg7u2Y2tro/NMmZEkicQkebqSs8rUtVNHrp47RdCZE6qHi7MzQwcNZP/2rTrJlJnIyCiCnzzFWaZBclllMjIywrdCeW7dvqO+zt27uMswwFKTTO9avnotFcqVpUxpeQ7CNM2UnJxMcnIyegr1P036+voolUqdZHqXlZUV9vZ23Ll7L22QXrOmsmRKt3LtOhzs7WnWuJFqWSEPd5wcHQk4fFS1LCkpiWMnT1GtSmVZ83yq9DvF5fQhfJxWutwHD+hHtboN+XXaDL5o05rzFy6yZOVqlsybrVonKuoFj4ODCQlNG3WY/gvm5Ogoy0jlrDKlpKTQrks3LgVdZdfmjaSmphL25nyZjU1+WS6ByipTXFwck6bOwL9ZE5ydHImMjGLB0uU8eRpC+9atcj2PJplsbW0yHOgYGhrg5OiAt1dRnWSKjY1l3KQptG3lj7OTIw8fPWbkuInY2drS2r+5TjIBDB00gA7delKzRnXq1PRjX8BBdu7Zx9F98gyM0yQTpN1566+/tzNj8i+y5MhOJktLS2r5VWfoqDGYmprg7ubKsROnWLN+IzOnTNJJJoC/tm7D3s4WN1dXrl2/zvdDh9OqRTMa1q8rSyZIOxWwcu06unfphIHB2z/VCoWCQf378uv0GRT1LEzRIkX4ddpMzEzN6PxF3pjG830KcuFOcbmS5DMnfaLo6GgJkJ4HP5CkuJdZPnZu3iiV9PGRjI2NpWLeXtKS3+eoPb9y0XwJyPAYO3KYRtuX4l5KSdHPpW3btklJ0c9znOnBjSuZ5gGkI3t36iTT68gwqbV/c8nF2VkyMjKSnJ2cJP9mTaTzxw9rnCe3M2X2cHdzlWb99qvOMsU/D5Ua1qsr2dvZSYaGhpKba0Gpe5dO0uNb/+h8Py1fME/yLFJYMjExkcqUKilt27RO55kWz5stmZqaSi9DHmUri1yZQu/dknp82VlycXaWTExMJG+votKMyb9IytgXOss0Z9oUqWCBAqrP08/DfpQSX0TIup/2b98qAdKtoAsZnlPGvpDGjhwmOTk6SsbGxlLNGtWka+dPZyvP8+AHEiBFR0d/ahnQuE7cr+AtPavsk6PH/Qresuf9r1NIkiR9yoFATEwMVlZWPA9+gK1N/pweV+SK5JQU9hw5SdM6NTA0yBu3qReZNCMyaUZk0ozIlLXIqBfYuRYiOjpatrFB6XXiQcViWBjo52hbr1JSKXThX1nz/teJe7kLgiAI8sqNAXFv+tw1vWzt/5HuDxMFQRAEQUOaXrb2/0gUdEEQBEFWupgP/f+RKOiCIAiCrBR6aY+cbkP4OLGLBEEQBOEzIFrogiAIgqxEl7t2iIIuCIIgyEtPkfbI6TaEjxJd7oIgCMJ/hrhs7cNEC10QBEGQV25MaP7m9eKytQ8TBV0QBEGQlTiHrh2ioAuCIAjyEufQtULjgp6YmEhi4tspOmNiYoC0+xMnp6TkfrJPkJ4jr+QBkUlTIpNmRCbNiExZyys5hNyj8eQs48aNY/z48RmWr1+/HjMzs1wPJgiCIMgnPj6ezp07a2VyluDaZbDM4eQsMSmpuB69IiZn+QiNC3pmLXRXV1dCH9zJU7OtBZw4SwO/KnliNiMQmTQlMmlGZNKMyJS1yKgXOBcqqpWC/qRu2Vwp6AUPB4mC/hEaf6qMjY0xNjbOsNzQwCBPfDjfJTJpRmTSjMikGZFJM3klU17IIOQucR26IAiCIK+czp36zmVvn9N16HFxcbm6PXGIJgiCIMhKoVCgyOEodcVneB26o6MjX3zxBT179qRGjRo53p5ooQuCIAiCDmzYsIHo6Gjq1auHl5cXU6ZMISQk5JO3Jwq6IAiCIK9c7HL/nLRo0YItW7YQEhJC37592bBhA+7u7jRv3pytW7eSks1LC0VBFwRBEOSlx9uby3zyQ9ffhHxsbW0ZPHgwV65cYebMmRw8eJB27drh4uLCmDFjiI+P12g74hy6IAiCIOhQWFgYa9asYeXKlTx+/Jh27drRq1cvQkJCmDJlCmfPnuXAgQNZbkcUdEEQBEFW4l7umdu6dSsrV65k//79+Pj40L9/f7788kusra1V65QtW5Zy5cpptD1R0AVBEAR5iXu5Z+qrr76iY8eOnDp1Cl9f30zXKVy4MKNGjdJoe6KgC4IgCPLKxelTPyehoaFZ3jrd1NSUsWPHarS9z3iYgSAIgiDkXRYWFkRERGRYHhkZib5+9m+VKwq6IAiCICuFXu484PO6U9yHplJJTEzEyMgo29vTWkF/GhLClz2/wda1EGZ2zpStUoOLl4NUz0uSxLhJk3EpUgxTWydqN27G9Rs3ZcszbtJkFObWag+nQl6q58PDI+jxTV9cihTDzM6Zxi3bcufuPdnyaJIpNjaW74YMpWBRH0xtnShevhILly7Xaab3n0t/TJs1V2eZAG7+ewv/9h2xcnbDwrEgVWrX53FwsM4y9fimb4bnq9SuL1seTTK9q8+AQSjMrZn9+wKdZho3aTLFyvlibu9C/gLu1G/WknOBF3SWKTk5mWE/j6WUbzXM7V1wKVKMbr37EBIaqrNMAFu376CRfxvs3AqjMLcm6MpVWfPkWC5ehx4YGMiNGzfo37+/jr+pTzd37lzmzp2LQqFg2bJlqq/nzp3LrFmz6N+/P8WKFcv2drVyDv3Fi5dUr9eIOjX92Pv3Zhzs7bh3/yHWVlaqdabOnMPMeQtYtXg+Xp6e/DJ1Og1atOZWUCAWFhay5CpRvDgHd21TfZ3exSFJEq06dsHQ0IDtf67H0sKCmfPmU795S25cPIe5ubkseT6WCWDwsJEcOX6CP5YvxsPdjQOHjtBv0A+4ODvRsnkznWQKvXdLbd29BwLo1W8AbVv5y5Ynq0z37j+gRoPG9OrWlfGjRmBlZcXNW7cwMTbRWSaAxg3qs3LR21bFpxyB53YmgG07d3Eu8AIuzs6y58kqk5enJ7/PmEbhQh68fv2aWb8voKF/G+5evYS9vZ3WM8XHx3Mp6Aqjhw+lTKmSvHj5kkE/jcC/fScunDwqW56PZQKIi4unetXKtG/Tiq/7D5Q1h5D7Zs2aBaTVmkWLFqn9bI2MjPDw8GDRokXZ3q5WCvpvM2fjWrAgKxe/Pfr3cHdX/V+SJGbPX8iooT/QpmVaIVi9ZCGOhYqy/s/N9On1lSy5DAz0cXJyzLD8zt17nD0fyD+BZyjhUxyABbNn4ODhyYa/ttC7RzdZ8nwsE8CZc4F079KJ2jX9APimZw8WL1/JhUuXZS3oH8v0/vLtu/dQp6YfhQt5yJYnq0yjxk+kacMGTJ00QbVM7jxZZQIwNjb66PNyyCrT05AQvhvyE/u3b6FZ2y90nqlzh/ZqX8+cMonlq9dy9Z/r1KtTS+uZrKysCHinqALMmzGVSjXr8jg4GDdXV61nAujauSMADx89ku39c5NCLxfu5f4ZjXJ/8OABAHXq1GHr1q3kz587U5Brpct9x569VCxXlvZfdsfB3ZNyVf1YunK16vkHDx8RFh5Ow3p1VMuMjY2pVaM6p8+eky3XnXv3cSlSjEI+penYvSf3HzwEUM37bmLytkWnr6+PkaERJ0+fkS3PxzIB1KhWhR279/I0JARJkjhy7Di3796jUf16Osv0rvDwCHbvO0Cv7l1lzfOxTEqlkt37DuBV1JNG/m1wcPekcq16bNu5S2eZ0h09cRIHd0+8ylTg6/4DiYh4ptNMSqWSrr36MHTQANWBqzZo+nlKSkpiyYrVWFlZUqZUyTyRCSA6OgaFQqHWw6jrTHmeuPVrpo4cOZJrxRy01EK//+AhC5etYMiA/oz8cQjnL15i4I/DMDYyoluXToSFhwPg6Oig9jpHBwcePZbnvGflihVZs3QhXp6ehEc845ep06hWtyHXL5ylmLcX7m6ujBg7nsVzZ2NubsbMufMJCw8nNCxcljxZZbK1tWHu9N/4uv9AChb1wcDAAD09PZbNn0uNalV1luldq9dtwMIiH21atpAtT1aZkpOTiY2NZcqM2fwyZhS/TRzHvoBDtOnUlSN7d1LLL+czGmU3k62tDU0aNqB9m1a4u7ry4NEjRk+YRN2m/lw8dRRjY2OdZPptxmwMDAwY2O9bWd7/UzIB7Nq7j47dexEfH4+zkxMBO7dhZ2er00zpEhISGD5mHJ2/aC/rjF/ZyST8twwZMoSJEydibm7OkCFDPrruzJkzs7VtrRR0pVJJxfLl+HX8GADKlS3D9Zs3WbhsBd26dFKtp0D9CEySJNnuDtSkUQPV/0sBVSv7UqRkOVavW8+Qgd+xZf1aevX9DpuCHujr61O/Tm2aNGzwwe1pI9PcBYs5G3iBHX9twN3VleOnTtNv8I84OzlRv25tnWR614q1f9ClQ3u1ng1tZ+rYvi0ALZs1ZfCAtEEzZcuU5vS5cyxatlK2gp7VfurQro3q+ZIlfKhYrhzuxUuxe99+1WkmbWaq5VeDOQsWcen0Ma3egUuTz1Odmn4EnTnB88hIlq5czRdde3Du6CEcHOx1lgnSBsh17N4TpVLJgtnTZcmS3Uz/GeLGMiqXL18mOTlZ9f8P+ZTfS60UdGcnR3yKeastK+7tzZZtOwFwckw7TxQWHo6zs5NqnYhnz3CU6Zf4febm5pQq4cOde/cBqFCuLEFnTxIdHU1SUjL29nZUrlWPiuU1uwVfbmd6/fo1I8dN4O+Nf9CscSMASpcqSdDVa0yfM0+2gv6xTO86ceo0t27fYdPqFVrJ8aFMdra2GBgY4FM84+ft5JmzOsmUGWdnJ9zdXLlzN/Pn5c6kp6dHxLNnuHm/7cpOTU3lhxE/M3v+Qh7evKb1TO8u8yxSGM8ihalSyZeipcuzfPVaRgz9eGtGzkzJycl80bUHDx4+4vCenVqfjzurz1NeJ279+taRI0cy/X9u0Mo59OpVqnDrzl21Zbfv3MXdLW1ASSEPd5wcHQk4fFT1fFJSEsdOnqJalcraiEhiYiI3b93G+b1BKFZWVtjb23Hn7r20wWfNmmolz/uZkpOTSU5ORk+h/iPT19dHqVTqJNO7lq9eS4VyZSlTupTWsmSWycjICN8K5bl1+47aOrfv3sVdxgFMH8uUmcjIKIKfPP3g83Jn6tqpI1fPnSLozAnVw8XZmaGDBrJ/+1adZPoQSZJITErUWab0Yn7n7n0O7tquky5vTfaTIGilhT54QD+q1W3Ir9Nm8EWb1py/cJElK1ezZN5sIO3Ia1D/vvw6fQZFPQtTtEgRfp02EzNTMzp/0U6WTD+O+JkWTRvj5lqQiGfP+eW3acS8ekX3N6cA/tq6DXs7W9xcXbl2/TrfDx1OqxbNaFi/rix5sspkaWlJLb/qDB01BlNTE9zdXDl24hRr1m9k5pRJOsmULiYmhr/+3s6Myb/IliM7mYYOGkCHbj2pWaM6dWr6sS/gIDv37OPoPvkGxn0sU2xsLOMmTaFtK3+cnRx5+OgxI8dNxM7Wltb+zXWSydbWJkNhMjQ0wMnRAW+vojrJFBcXx6SpM/Bv1gRnJ0ciI6NYsHQ5T56G0L51K51kSklJoV2XblwKusquzRtJTU0l7M04Ghub/LJdepjVZzwq6gWPg4MJCQ0DUDWYnBwdtX4lhUZEl7tKmzZtsl7pja1bs3dwrZWC7luhPH9v/IMRYyYwYfJUCnm4M3vqZLp0fHuZzE9Dvud1wmv6DfqRFy9fUtm3Agd2bJXtGvQnISF06tGb55GR2NvZUaVSRc4eCcDdzQ2A0LAwhgwfRXhEBM5OjnTr3JHRw3+SJYummTauWsGIsePp0vMbol68wN3NlUljf+bb3j11lglg4+atSJJEpzfnr+WWVabW/i1YNGcmk2fMYuCPw/Au6smW9WtkHTz4sUyvX7/m2vUbrFm/kZfR0Tg7OVKnph+b1qyQ7fOdVSZd+VimhIQE/r19m9XrNvA8MhJbGxt8K5TjRMBeWUfhfyzTw0eP2LF7LwBlq/qpve7I3p2qS0i1mQlgx+49fPXt2xurdOye9jdg7MhhjBs1QpZMOZMbo9Q/j4JuJePVEQrpQ/eey0JMTAxWVlY8D36ArU3uDbvPieSUFPYcOUnTOjUwNMgb886ITJoRmTQjMmlGZMpaZNQL7FwLER0dLduYgPQ6EdGhJpZGOfueY5JScNh0XNa8/3XiXu6CIAjCf8bndC/33Kb7w0RBEATh85aL59ADAwP/0y308uXLc+jQIfLnz0+5cuU+Onr/0qVL2dq2KOiCIAiCrMRla2+1bNlSdTOpVq1a5eq2RUEXBEEQBC0ZO3Zspv/PDaKgC4IgCPISl6191IULF7h58yYKhYLixYtToUKFT9qOKOiCIAiCvHJjcpXPpMv9XU+ePKFTp06cOnUKa2trAF6+fEm1atXYsGEDrtm8GZYY5S4IgiAIOtCzZ0+Sk5O5efMmUVFRREVFcfPmTSRJolevXtnenmihC4IgCLIS86Fn7sSJE5w+fRpv77dzT3h7ezNv3jyqV6+e7e2Jgi4IgiDIS3S5Z8rNzU0189q7UlJSKFCgQLa3J7rcBUEQBEEHpk6dyoABA7hw4QLpN229cOEC33//PdOnZ3+KXtFCFwRBEOSlRy6Mcs+VJDqXP39+tWvq4+LiqFy5MgZvbgeckpKCgYEBPXv2zPZ16hoX9MTERBIT305hGBMTA6Tdnzg5JSVbbyqX9Bx5JQ+ITJoSmTQjMmlGZMqaNnOIG8u8NXv2bNm2rfHkLOPGjWP8+PEZlq9fvx4zM7NcDyYIgiDIJz4+ns6dO2tlcpbIrxtiaWSYs20lJWO79ICYnOUjNG6hjxgxgiFDhqi+jomJwdXVlTpVffPUbGsBJ87SwK9KnpjNCEQmTYlMmhGZNCMyZS0y6oWuIwjveP36dYYBctk9cNH4U2VsbKy6/+y7DA0M8sSH810ik2ZEJs2ITJoRmTSTVzJpNYMY5Z6puLg4hg0bxp9//klkZGSG51NTU7O1vc9kmIEgCIKQZ6UX9Jw++LymT/3pp584fPgwCxYswNjYmGXLljF+/HhcXFxYs2ZNtren+8NEQRAEQdDQf3361Hft3LmTNWvWULt2bXr27Imfnx+enp64u7uzbt06unTpkq3tiRa6IAiCILPcaJ1/fl3uUVFRFCpUCEg7Xx4VFQVAjRo1OH78eLa3Jwq6IAiCIC89vdx5fGYKFy7Mw4cPAfDx8eHPP/8E0lru6ZO1ZMfnt4cEQRAE4T/gq6++4sqVK0DalWTp59IHDx7M0KFDs709cQ5dEARBkJcY5Z6pwYMHq/5fp04dbt68ycWLFylSpAhlypTJ9vZEQRcEQRDkJQq6Rtzd3XF3d//k14sud0EQBEHQkUOHDtG8eXOKFCmCp6cnzZs35+DBg5+0LVHQBUEQBHnl4nXon5Pff/+dxo0bY2Fhwffff8/AgQOxtLSkadOm/P7779nenuhyFwRBEOSVG6PUP8NR7pMnT2bWrFl89913qmUDBw6kevXqTJo0SW25Jj6/PSQIgiDkLaKFnqmYmBgaN26cYXnDhg1VM5pmh04K+uRpM1GYWzNo6HDVsq3bd9DIvw12boVRmFsTdOWqTjMlJycz7OexlPKthrm9Cy5FitGtdx9CQkN1lglg3KTJFCvni7m9C/kLuFO/WUvOBV7QaaZ39RkwCIW5NbN/X6DTTD2+6YvC3FrtUaV2fZ1mArj57y3823fEytkNC8eCVKldn8fBwTrL9P4+Sn9MmzVXZ5liY2P5bshQChb1wdTWieLlK7Fw6XKt5PlQpvDwCHp80xeXIsUws3Omccu23Ll7T7YM4yZNzvAzcSrkpXpekiTGTZqMS5FimNo6UbtxM67fuClbHkEe/v7+/P333xmWb9++nRYtWmR7e1rvcg+8eIklK1dRumQJteVxcfFUr1qZ9m1a8XX/gTrPFB8fz6WgK4wePpQypUry4uVLBv00Av/2nbhw8qhOMgF4eXry+4xpFC7kwevXr5n1+wIa+rfh7tVL2Nvb6SRTum07d3Eu8AIuzs6y5tA0U+MG9Vm56O39no2MjHSa6d79B9Ro0Jhe3boyftQIrKysuHnrFibGJjrLFHrvltrXew8E0KvfANq28tdZpsHDRnLk+An+WL4YD3c3Dhw6Qr9BP+Di7ETL5s20nkmSJFp17IKhoQHb/1yPpYUFM+fNp37zlty4eA5zc3NZspQoXpyDu7apvtbX11f9f+rMOcyct4BVi+fj5enJL1On06BFa24FBWJhYSFLnhwRo9xV5s59e7BcvHhxJk2axNGjR6latSoAZ8+e5dSpU/zwww/Z3rZWW+ixsbF06fk1S3+fS/781mrPde3ckTEjhlG/Ti1tRvpgJisrKwJ2beOLtq3x9ipKlUq+zJsxlYuXg2RvUX1sP3Xu0J76dWtTuJAHJXyKM3PKJGJiYrj6z3WdZQJ4GhLCd0N+Yt2KpRgaauc4MatMxsZGODk5qh42Wpjm92OZRo2fSNOGDZg6aQLlypahcCEPmjVuhIODvc4yvbt/nJwc2b57D3Vq+lG4kIfOMp05F0j3Lp2oXdMPD3d3vunZgzKlSnLh0mWdZLpz9x5nzweycPZMfCuUx9urKAtmzyA2Lo4Nf22RLY+Bgb7azyb9gF2SJGbPX8iooT/QpqU/JUv4sHrJQuJfx7P+z82y5ckR0eWuMmvWLNVj+fLl5M+fnxs3brB8+XKWL1/O9evXsba2ZsWKFdnetlYLev/BP9KsUUPq162tzbf9qOxkio6OQaFQYG1llScyJSUlsWTFaqysLClTqqTOMimVSrr26sPQQQMo4VNc1hyaZgI4euIkDu6eeJWpwNf9BxIR8UxnmZRKJbv3HcCrqCeN/Nvg4O5J5Vr12LZzl84yvS88PILd+w7Qq3tXnWaqUa0KO3bv5WlICJIkceTYcW7fvUej+vV0kikxMREAE5O3PSn6+voYGRpx8vQZ2fLcuXcflyLFKORTmo7de3L/wUMAHjx8RFh4OA3r1VGta2xsTK0a1Tl99pxseYTc8eDBA40e9+/fz/a2tdblvvGvLVwKukrgicPaesssZSdTQkICw8eMo/MX7WWd6UeTTLv27qNj917Ex8fj7OREwM5t2NnZ6izTbzNmY2BgwMB+38qWIbuZmjRsQPs2rXB3deXBo0eMnjCJuk39uXjqKMbGxlrPFBHxjNjYWKbMmM0vY0bx28Rx7As4RJtOXTmydye1/GpoPdP7Vq/bgIVFPtq0zP65u9zMNHf6b3zdfyAFi/pgYGCAnp4ey+bPpUa1qjrJVMzbC3c3V0aMHc/iubMxNzdj5tz5hIWHExoWLkueyhUrsmbpQrw8PQmPeMYvU6dRrW5Drl84S1h42ns6OjqovcbRwYFHj7UzHiPbxCj3LEmSBIAiBz0RWinowU+e8P3Q4RzYsVXtKFeXspMpOTmZjt17olQqWTB7us4z1anpR9CZEzyPjGTpytV80bUH544ekqXrNqtMFy8HMWfBIi6dPpajD2JuZgLo0K6N6v8lS/hQsVw53IuXYve+/bRpmfvnh7PKpJSUALRs1pTBA/oDULZMaU6fO8eiZStlKejZ/b1bsfYPunRoL+vvqCaZ5i5YzNnAC+z4awPurq4cP3WafoN/xNnJSZbevawyGRoasmX9Wnr1/Q6bgh7o6+tTv05tmjRskOtZ0jVp9HbbpYCqlX0pUrIcq9etp0olXwAU780+JkmS1n4Hs02cQ/+gNWvWMG3aNO7cuQOAl5cXQ4cOpWvX7PeUaaWgX7wcRMSzZ1SoUVu1LDU1leMnT/P74qUkvohQG/CRlzIlJyfzRdcePHj4iMN7dsraOtc0k7m5OZ5FCuNZpDBVKvlStHR5lq9ey4ihQ7Se6beJ44h49gw375Jqz/8w4mdmz1/Iw5vXtJ4ps8+Ts7MT7m6u3Lmb/W6s3MgU9ywEAwMDfIp7q72uuLc3J8+c1Ummd/fTiVOnuXX7DptWZ/+8XW5mig59zMhxE/h74x80a9wIgNKlShJ09RrT58yTpaBrsp8qlCtL0NmTREdHk5SUjL29HZVr1aNi+XK5nicz5ubmlCrhw51792nVojkAYeHhODs7qdaJePYMR5nHYwi5a+bMmYwePZrvvvuO6tWrI0kSp06d4ttvv+X58+dq93rXhFYKer3atbh2/rTasq++7U8xr6IMGzJI68Vc00zpxfzO3fsc2bsTW1sbnWfKjCRJJCYl6iSTs5NThnObjVq2pWunDnzVtYtOMmW2nyIjowh+8hRnJ0edZDI2Nsa3Qnlu3b6jts7tu3dxd3XVSaZ399Py1WupUK4sZUqXkiWLpplSU1NJTk5GT6Hevaqvr49SqdRJpnf3k9Wb8TN37t7jwqXLTBw9SpZM70tMTOTmrdv4Va9KIQ93nBwdCTh8lHJl0ybwSEpK4tjJU/w2cbxW8mSbglxooedKkjxl3rx5LFy4kG7duqmWtWzZkhIlSjBu3Li8WdAtLCwoWcJHbZm5uRm2Njaq5VFRL3gcHExIaBgAt+7cBcDJMW2Ep7YzpaSk0K5LNy4FXWXX5o2kpqYS9uZ8mY1NflkugcoqU1xcHJOmzsC/WROcnRyJjIxiwdLlPHkaQvvWrXI9jyaZgAwHOoaGBjg5OuDtVVQnmWJjYxk3aQptW/nj7OTIw0ePGTluIna2trT2b66TTABDBw2gQ7ee1KxRnTo1/dgXcJCde/ZxdJ88A+M0yQRpN7f46+/tzJj8iyw5spupll91ho4ag6mpCe5urhw7cYo16zcyc8oknWX6a+s27O1scXN15dr163w/dDitWjSjYf26smT6ccTPtGjaGDfXgkQ8e84vv00j5tUrunfphEKhYFD/vvw6fQZFPQtTtEgRfp02EzNTMzp/0U6WPDkmutwzFRoaSrVq1TIsr1atGqGfcM+TPHPr1x279/DVt/1VX3fs3hOAsSOHMW7UCK3nefL0KTt27wWgbFU/teeO7N1J7Zp+mb1MVvr6+vx7+zar123geWQktjY2+FYox4mAvVodXZ7X6evrc+36Ddas38jL6GicnRypU9OPTWtW6PQa3db+LVg0ZyaTZ8xi4I/D8C7qyZb1a2Qd7KWJjZu3IkkSndq31WmOdBtXrWDE2PF06fkNUS9e4O7myqSxP/Nt7546yxQaFsaQ4aMIj4jA2cmRbp07Mnr4T7K935OQEDr16M3zyEjs7eyoUqkiZ48E4O7mBsBPQ77ndcJr+g36kRcvX1LZtwIHdmzNm9egCx/k6enJn3/+yciRI9WWb9q0iaJFs98gUkjpQ+uyKSYmBisrK54HP8BWC9f3aiI5JYU9R07StE4NDA3yxrGKyKQZkUkzIpNmRKasRUa9wM61ENHR0bKNDUqvE1HDO2FpnLNezZjEJGymbJA1r7Zt2bKFDh06UL9+fapXr45CoeDkyZMcOnSIP//8k9atW2dre5/3dQCCIAhCHpAbN5VJ63L39fXFx8eH+fPnf/wt/wPatm3L+fPnsbOzY9u2bWzduhU7OzvOnz+f7WIOeajLXRAEQfhM5eI59MDAwM+ihZ6cnMw333zD6NGj+eOPP3Jlm6KFLgiCIAhaZmhomOnELDkhCrogCIIgL3Ev90y1bt2abdu25dr2RJe7IAiCIC9x69dMeXp6MnHiRE6fPk2FChUyzNw3cGD2Zh4VBV0QBEEQdGDZsmVYW1tz8eJFLl68qPacQqEQBV0QBEHIY8SNZTL14MED1f9zY3KWz68PQxAEQchbxDn0D1q+fDklS5bExMQEExMTSpYsybJlyz5pW6KFLgiCIAg6MHr0aGbNmsWAAQOoWjXtjpFnzpxh8ODBPHz4kF9+yd7tmEVBFwRBEOQlutwztXDhQpYuXUqnTp1Uy/z9/SldujQDBgwQBV0QBEHIY8Qo90ylpqZSsWLFDMsrVKhASkpKtrencUFPTEwkMfHtFJ0xMTFA2v2Jkz/hjeWQniOv5AGRSVMik2ZEJs2ITFnTag7RQs/Ul19+ycKFC5k5c6ba8iVLltClS/ann9Z4cpZx48YxfnzGuXbXr1+PmZlZtt9YEARB0J34+Hg6d+6snclZJvTG0iSHk7MkJGEzZtlnNTnLgAEDWLNmDa6urlSpUgWAs2fPEhwcTLdu3TA0NFSt+37Rz4zGBT2zFrqrqyuhD+7kqdnWAk6cpYFflTwxmxGITJoSmTQjMmlGZMpaZNQLnAsV1U5Bn/h17hT00Us/q4Jep04djdZTKBQcPnw4y/U0/lQZGxtjbGycYbmhgUGe+HC+S2TSjMikGZFJMyKTZvJKJq1mEOfQM3XkyJFc3d7nt4cEQRAE4f+Q7g8TBUEQhM+bglwYFJcrST5roqALgiAI8hKj3LVCdLkLgiAIwmdAtNAFQRAEeYkWulaIgi4IgiDIS5ELo9wVokM5K2IPCYIgCMJnQLTQBUEQBHmJLnetEAVdEARBkJco6FohCrogCIIgL4Vezs+Bi3PoWRJ7SBAEQRA+Azop6JOnzURhbs2gocNVyyRJYtykybgUKYaprRO1Gzfj+o2bsmVYuHQ5pStVw9LJFUsnV6rWacDe/QGq58PDI+jxTV9cihTDzM6Zxi3bcufuPdnyaJIpNjaW74YMpWBRH0xtnShevhILly7XaSaFuXWmj2mz5uosE8DNf2/h374jVs5uWDgWpErt+jwODtZZph7f9M2wj6rUri9bHk0yvavPgEEozK2Z/fsCnWYaN2kyxcr5Ym7vQv4C7tRv1pJzgRd0lik5OZlhP4+llG81zO1dcClSjG69+xASGqqzTABbt++gkX8b7NwKozC3JujKVVnz5JieIncewkdpvaAHXrzEkpWrKF2yhNryqTPnMHPeAn6fOZXA44dxcnSkQYvWvHr1SpYcBQu4MGXCOC6cOMKFE0eoW6smLTt05vqNm0iSRKuOXbj/8CHb/1zP5dPHcXdzpX7zlsTFxcmSJ6tMAIOHjWRfwEH+WL6Ym5fOMfi7fgz44Se279qts0yh926pPVYs/B2FQkHbVv46y3Tv/gNqNGhMMS8vju7dyZWzJxk9fCgmxiY6ywTQuEF9tX21Z+tfsuXRNBPAtp27OBd4ARdnZ1nzaJLJy9OT32dM49r505wM2IeHuxsN/dvw7NlznWSKj4/nUtAVRg8fyqVTx9i6YS23797Dv30n2fJklQkgLi6e6lUrM2XCOFlz5Jr0LvecPoSP0uo59NjYWLr0/Jqlv8/ll6nTVMslSWL2/IWMGvoDbVqmFYLVSxbiWKgo6//cTJ9eX+V6lhZNm6h9PWncaBYuW87ZwEAMDQ05ez6QfwLPUMKnOAALZs/AwcOTDX9toXePbrmeJ6tMJXyKc+ZcIN27dKJ2TT8AvunZg8XLV3Lh0mVaNm+mk0xOTo5qz2/fvYc6Nf0oXMhDljyaZBo1fiJNGzZg6qQJqnXkzKNJJgBjY6MM+0vXmZ6GhPDdkJ/Yv30Lzdp+ofNMnTu0V3t+5pRJLF+9lqv/XKdenVpaz9TLpxsBu7apPT9vxlQq1azL4+Bg3FxdtZ6phE9xunbuCMDDR49keX/hv0mrhzz9B/9Is0YNqV+3ttryBw8fERYeTsN6b+eGNTY2plaN6pw+e072XKmpqWz8awtxcfFUrVRJNe+7icnbFp2+vj5GhkacPH1G9jyZZQKoUa0KO3bv5WlICJIkceTYcW7fvUej+vV0luld4eER7N53gF7du2olT2aZlEolu/cdwKuoJ4382+Dg7knlWvXYtnOXzjKlO3riJA7unniVqcDX/QcSEfFMp5mUSiVde/Vh6KABqgKvTVl9npKSkliyYjVWVpaUKVUyT2QCiI6OQaFQYG1llWcy5Xnpo9xz+hA+Smst9I1/beFS0FUCT2ScpD0sPBwAR0cHteWODg48eizfec9r/1ynat2GJCQkkC+fOX9v+AOf4sVITk7G3c2VEWPHs3jubMzNzZg5dz5h4eGEhoXLludjmQDmTv+Nr/sPpGBRHwwMDNDT02PZ/LnUqFZVZ5netXrdBiws8tGmZQtZ83wsU1hYOLGxsUyZMZtfxozit4nj2BdwiDadunJk705q+dXQeiaAJg0b0L5NK9xdXXnw6BGjJ0yiblN/Lp46irGxsU4y/TZjNgYGBgzs961s75/dTAC79u6jY/dexMfH4+zkRMDObdjZ2eo0U7qEhASGjxlH5y/aY2lpmScy/SeI+dC1QisFPfjJE74fOpwDO7aqtXrfp3hvfjxJklDIeFTm7VWUoDMneBkdzZZtO+jepy/H9u3Gp3gxtqxfS6++32FT0AN9fX3q16lNk4YNZMuiSaa5CxZzNvACO/7agLurK8dPnabf4B9xdnLK0OuhrUzvWrH2D7p0aP/Rn7Hcmayt01pNLZs1ZfCA/gCULVOa0+fOsWjZSlkL+sf2U4d2bVTrlSzhQ8Vy5XAvXord+/arTjNpM9PrhATmLFjEpdPHZP0dy06m9M9TnZp+BJ05wfPISJauXM0XXXtw7ughHBzsdZYJ0gbIdezeE6VSyYLZ02XLkp1MgvAurRT0i5eDiHj2jAo1aquWpaamcvzkaX5fvJRbQWmjWMPCw3F2dlKtE/HsGY4y/hIbGRnhWaQwABXLlyPw4iXmLFjE4nmzqVCuLEFnTxIdHU1SUjL29nZUrlWPiuXLyZbnY5lmT53MyHET+HvjHzRr3AiA0qVKEnT1GtPnzJO1oH9sP6U7ceo0t27fYdPqFbLl0CTTvBlTMTAwwKe4t9r6xb29OXnmrE4yvbuf0jk7O+Hu5sqdu/d1kqm4txcRz57h5v22Kzs1NZUfRvzM7PkLeXjzmtYzpe8nc3NzPIsUxrNIYapU8qVo6fIsX72WEUOH6CxTcnIyX3TtwYOHjzi8Z6fsrXNNMv2nfIY3lgkODqZr165ERERgYGDA6NGjad++fdYvlJFWCnq92rW4dv602rKvvu1PMa+iDBsyiMKFPHBydCTg8FHKlS0DpJ0/O3byFL9NHK+NiEBaj0D6+fN0Vm/Ok925e48Lly4zcfQoreV5N1NycjLJycnovTfSU19fH6VSqZNM71q+ei0VypWlTOlSWs3yfiYjIyN8K5Tn1u07as/fvnsXd5kGMGWVKTORkVEEP3mKsxYHyb2bqWunjtSvU1vtuUYt29K1Uwe+6tpFJ5k++nzSh5+Xw7uZ0ov5nbv3ObJ3J7a2NlrNklmm/5zP8MYyBgYGzJ49m7JlyxIREUH58uVp2rQp5ubmusukjTexsLCgZAkftWXm5mbY2tiolg/q35dfp8+gqGdhihYpwq/TZmJmakbnL9rJkmnk2Ak0aVgf14IFePUqlo2bt3L0xEn2bdsCwF9bt2FvZ4ubqyvXrl/n+6HDadWiGQ3r15UlT1aZLC0tqeVXnaGjxmBqaoK7myvHTpxizfqNzJwySSeZ0sXExPDX39uZMfkX2XJkJ9PQQQPo0K0nNWtUp05NP/YFHGTnnn0c3SffwLiPZYqNjWXcpCm0beWPs5MjDx89ZuS4idjZ2tLav7lOMtna2mQoTIaGBjg5OuDtVVQnmeLi4pg0dQb+zZrg7ORIZGQUC5Yu58nTENq3bqWTTCkpKbTr0o1LQVfZtXkjqamphL0ZR2Njkx8jIyOtZwKIinrB4+BgQkLDALh15y4ATo6OWr2S4v+Zs7Mzzm8u9XRwcMDGxoaoqKjPv6Br4qch3/M64TX9Bv3Ii5cvqexbgQM7tmJhYSHL+4VHRNC1dx9Cw8KxsrSkdMkS7Nu2hQZvRtqHhoUxZPgowiMicHZypFvnjowe/pMsWTTNtHHVCkaMHU+Xnt8Q9eIF7m6uTBr7M9/27qmzTAAbN29FkiQ6tW8rW47sZGrt34JFc2YyecYsBv44DO+inmxZv0bWwYMfy/T69WuuXb/BmvUbeRkdjbOTI3Vq+rFpzQrZPt9ZZdKVj2VKSEjg39u3Wb1uA88jI7G1scG3QjlOBOyVdRT+xzI9fPSIHbv3AlC2qp/a647s3am6hFSbmQB27N7DV9/2V63fsXva34CxI4cxbtQIWTLliIJc6HLP3urHjx9n2rRpXLx4kdDQUP7++29atWqlts6CBQuYNm0aoaGhlChRgtmzZ+Pnl/2f6YULF1AqlbhquRfwfQpJkqRPeWFMTAxWVlY8D36ArU3+3M71SZJTUthz5CRN69TA0CBvHKuITJoRmTQjMmlGZMpaZNQL7FwLER0dLduYgPQ6EbVwJJamORssG/M6AZu+vxIcHKyW19jYONMrRfbu3cupU6coX748bdu2zVDQN23aRNeuXVmwYAHVq1dn8eLFLFu2jBs3buDm5gZAhQoVMj3NceDAAVxcXACIjIzEz8+PZcuWUa1atRx9jzml+0+VIAiC8HnLxUFx77eCx44dy7hx4zKs3qRJE5o0aZJhebqZM2fSq1cvevfuDcDs2bPZv38/CxcuZPLkyQBcvHjxo5ESExNp3bo1I0aM0HkxB1HQBUEQhP+QzFro2ZWUlMTFixcZPny42vKGDRty+vTpD7xKnSRJ9OjRg7p169K1q/ZupvUxoqALgiAI8srFUe6WlpY5PkXw/PlzUlNTcXRUH0Do6OhIWFiYRts4deoUmzZtonTp0mzbtg2AtWvXUqqUbq70AVHQBUEQBLkpcmG2NBmuQ3//pkrZuZlZjRo1tH7JcFby1oV9giAIgiAzOzs79PX1M7TGIyIiMrTa/0tEQRcEQRDklcemTzUyMqJChQoEBASoLQ8ICMgTg9s+lehyFwRBEOSVi6PcfX190dfXp3///vTv3/+Dq8fGxnL37l3V1w8ePCAoKAgbGxvc3NwYMmQIXbt2pWLFilStWpUlS5bw+PFjvv1Wu5MV5SZR0AVBEIT/jMDAQI0GxV24cIE6dd7eRGnIkLS5ALp3786qVavo0KEDkZGRTJgwgdDQUEqWLMmePXtwd3eXLbvcREEXBEEQ5KWDe7nXrl2brO6b1q9fP/r165eTVHmKKOiCIAiCvPRyYZR7Tl//f0AMihMEQRCEz4DGLfTExES1e9rGxMQAafcnTk5Jyf1knyA9R17JAyKTpkQmzYhMmhGZsqbVHJ/hfOh5kcaTs4wbN47x4zPOTb5+/XrMzMxyPZggCIIgn/j4eDp37qydyVlWT8bSLIeTs8QnYNN9BF5eXhqNcv9/pHFBz6yF7urqSmhoKLa2trIFzI7k5GQCAgJo0KABhoaGuo4DiEyaEpk0IzJpJk9n8quSZ2Zbcy5UVDsFfe2U3CnoXYfLmve/TuNP1YemqDM0NMwzvzDpRCbNiEyaEZk0IzJpxtDAIE8U9LyQQchd4icqCIIgyEuhyIXL1sQ59KyIgi4IgiDISwyK0wpx2ZogCIIgfAZEC10QBEGQlw7uFPf/SOwhQRAEQV7pd4rL6YO0yVl8fHyYP3++jr+pvEe00AVBEIT/DE0nZ/l/JAq6IAiCIC/R5a4VoqALgiAI8hKj3LVCHPIIgiAIwmdAtNAFQRAEeenppT1yug3ho0RBFwRBEGSWC13uiC73rGjlkGfy5Mn4+vpiYWGBg4MDrVq14tatW2rrbN26lUaNGmFnZ4dCoSAoKEinmZKTkxk2bBilSpXC3NwcFxcXunXrRkhIiM4yQdqsd8WKFcPc3Jz/tXfvYVHW+f/HXxPHQRHjODMiI6siCoqF5olLxEWECvCQYphBWtkKmtpS6upKbipa4iEuUPkiWWa2fkUgLXRcYdCvq6KIovkTTBJ1OQTKIKAcP78/XGZBEAbhvj/Evh/XdV/FPePwdIT5zOc+zP3iiy/C09MT586d49rU1MKFCyGRSLBt2zauTcHBwZBIJM2WsWPHcm0CgOvXr8PPzw9mZmYwNTXF2LFjkZ+fz63p6eeocfn888+5NVVUVCA0NBS2traQSqUYOnQoYmJiBOnRtamoqAjBwcFQKBQwMTGBt7c3cnNzBWuKiY3DiFfGo4+sP/rI+mOcxxT8dEylvZ0xhvD1G6EY6AiphQyTvF/DtZ+vC9bTaY0HxXV2IW0S5RlSq9UICQnB2bNnoVKpUFdXBy8vL1RWVmrvU1lZiQkTJiAiIkKMpHabqqqqkJmZiTVr1iAzMxMJCQnIycmBn58ftyYAcHBwQFRUFLKzs3H69GkMGDAAXl5e+O2337g1NUpMTMS5c+egUCgEaelok7e3NwoKCrTLjz/+yLXpl19+gZubGxwdHZGWlobLly9jzZo1MDbu3FWoOtPU9PkpKCjAnj17IJFIMHPmTG5Ny5YtQ0pKCvbt24fr169j2bJlWLx4MZKSkrg0McYwbdo03Lp1C0lJSbh06RKUSiU8PT1b/T3oCrb9FIhYF44Lp1Jx4VQqJrtPhH9AoHbQ3hy5HZFfRiMqcjMy0k9CZmODKb7T8fDhQ0F6uhM6D70N7DlpNBoGgJWUlHT4zxYXFzMATK1Wt7gtLy+PAWCXLl3q8OPW1NSwxMREVlNT06VNjc6fP88AsNu3b3ebpsZ/hxMnTnBtunv3LuvXrx+7evUqUyqVbOvWrR163K5uCgoKYv7+/h1+LCGbAgIC2FtvvdWtmp7m7+/PJk+ezLXJycmJrVu3rtn9Xn75ZbZ69WouTTdu3GAA2NWrV7X3qaurY+bm5iw2NrbjTZoSxirLOry8+GJf9j/RO1hDxQMms7FhEevCtbc9vl/EzMz6sJ07tur8eCV3nrzWajSaDj9Hump8fbqfEM3qjsV3armfEC147+8dl20YGo0GAGBubs7j27dKlyaNRgOJRIK+fft2i6aamhrs3r0bZmZmcHFx4dbU0NCAefPmISwsDE5OTqJ0tNcEAGlpabC2toaDgwPee+89FBcXc2tqaGjA0aNH4eDggKlTp8La2hpjxoxBYmIit6anFRUV4ejRo1iwYAHXJjc3NyQnJ+PevXtgjCE1NRU5OTmYOnUql6bq6moAaLYlRU9PD4aGhjh9+rTgPfX19Thw8BAqK6sw7pVXkPfrbRQWFcHrjx7a+xgZGcHdbQLOnBVu91unNB4U19mFtEn0Z4gxhuXLl8PNzQ3Ozs5if/tW6dL0+PFjrFixAoGBgaJ8SlFbTUeOHEHv3r1hbGyMrVu3QqVSwdLSklvTpk2boK+vjyVLlgjeoGuTj48Pvv32W5w8eRJbtmxBRkYGJk+erH1xFrupuLgYFRUViIiIgLe3N44fP47p06djxowZUKvVXJqetnfvXpiammLGjBmC97TVtGPHDgwbNgy2trYwNDSEt7c3oqOj4ebmxqXJ0dERSqUSK1euxIMHD1BTU4OIiAgUFhaioKBAsJbsq9fQ27ofjF60xgcfLsPh7/Zh2FBHFBYVAQBsbKyb3d/G2hqFReK9aSXdj+hHuYeGhuLKlSuivLPVVXtNtbW1mDNnDhoaGhAdHc29ycPDA1lZWSgpKUFsbCxmz56Nc+fOwdraupVHErbp4sWL2L59OzIzMyHh8MEPz3qeAgICtP/v7OyMUaNGQalU4ujRo4IPWK01NTQ0AAD8/f2xbNkyAMDIkSNx5swZ7Ny5E+7u7qI3PW3Pnj2YO3euYPv0dW3asWMHzp49i+TkZCiVSqSnp2PRokWQy+Xw9PQUvcnAwACHDh3CggULYG5uDj09PXh6esLHx0fQliEOg5H1z1Mo02hwKDEZQQv/BHXKUe3tkqeO+maMcfkd1Al9sIwoRJ2hL168GMnJyUhNTYWtra2Y3/qZ2muqra3F7NmzkZeXB5VKJcrsvL2mXr16YdCgQRg7dizi4uKgr6+PuLg4Lk2nTp1CcXEx7OzsoK+vD319fdy+fRsfffQRBgwYwKWpNXK5HEqlUtAjk9tqsrS0hL6+PoYNG9bs/kOHDhXsKPf2mpo6deoUbty4gXfffVfQlvaaHj16hFWrViEyMhK+vr4YMWIEQkNDERAQgC+++IJLEwC4uroiKysLZWVlKCgoQEpKCkpLS2Fvby9Yj6GhIQYN/ANGvfwSNq5bCxdnZ2yP3gmZjQ0AaGfqjYp/+w021laC9XSKRNIFR7nTgN4eUQZ0xhhCQ0ORkJCAkydPCvpL0JVNjYN5bm4uTpw4AQsLC+5Nz/pzQm1Kbq9p3rx5uHLlCrKysrSLQqFAWFgYjh07xqWpNaWlpbhz5w7kcjmXJkNDQ4wePbrF6VA5OTlQKpVcmpqKi4uDq6ur4MditNdUW1uL2tpavPDU/lI9PT3tVg6xm5oyMzODlZUVcnNzceHCBfj7+wvS9KzO6upq2A9QQmZjA9XJNO1tNTU1UJ/+P4wfO0a0HtL9iLLJPSQkBPv370dSUhJMTU1RWFgI4Mkvh1QqBQDcv38f+fn52vO8G1/4ZDIZZDKZ6E11dXV44403kJmZiSNHjqC+vl57H3NzcxgaGoreVFlZifXr18PPzw9yuRylpaWIjo7G3bt3MWvWrC7v0aXJwsKixRsdAwMDyGQyDBkyhEtTRUUFwsPDMXPmTMjlcvz6669YtWoVLC0tMX36dC5NABAWFoaAgABMnDgRHh4eSElJwQ8//IC0tDRuTQBQXl6OgwcPYsuWLYJ0dKSpT58+cHd3R1hYGKRSKZRKJdRqNb7++mtERkZyaQKAgwcPwsrKCnZ2dsjOzsaHH36IadOmwcvLS5CmVWvXwcfLE/1t++Hhwwoc+N8EpJ06jZTEQ5BIJFga8ids+GILBg/6AwYPHIgNn0fCRGqCwNlvCNLTabTJXRzPe3h8R05bA9DqEh8fr71PfHx8q/dZu3atzk0dOVWlvabG0+daW1JTU7k0PXr0iE2fPp0pFApmaGjI5HI58/PzY+fPn9e5p6ubWiP0aWvtNVVVVTEvLy9mZWXFDAwMmJ2dHQsKCmL5+fncmhrFxcWxQYMGMWNjY+bi4sISExO5N+3atYtJpVJWVlbWoRahmgoKClhwcDBTKBTM2NiYDRkyhG3ZsoU1NDRwa9q+fTuztbXV/jytXr2aVVdX69zTrEmH09bmv/0WU9r1Z4aGhszK0pL9cZI7O558WHt7Q8UDtnbVJ0xmY8OMjIzYRLfxLPv8mQ6dBifqaWtH4lhd6nedWu4fiaPT1tohygydMdbufYKDgxEcHCx8zL+11zRgwACdurtSe9/P2NgYCQkJItU88TzPwa+//tr1IU201ySVSgXb3P8suj5P8+fPx/z58wWueULXpvfffx/vv/++wDVP6NIkk8kQHx8vQs0TujQtWbJE1LM44mKi2rxdIpEg/C8rEf6XlSIVkd8DOrGPEEKIsF6QdM0C+qS4ttDFWQghhAirKz6L/d9/PiMjQ5SzjX6PaEAnhBAiLDooThS0yZ0QQgjpAWiGTgghRFhduMmdPBsN6IQQQgQlkUg6/bG03fZjbbsRestDCCGE9AA0QyeEECIs2uQuChrQCSGECIsGdFHQM0QIIYT0ADRDJ4QQIizJfz7prVOPQdqk84BeXV3d7BKd5eXlAP5zucPuoLGju/QA1KQratINNemmWzfV1XEueULUDtrkLgoJ0/EKDuHh4fj0009brN+/fz9MTEy6PIwQQohwqqqqEBgYCI1GI9hHqZaXl8PMzAwPTh5En96dGyfKK6rw4uRZcHBwgJ6eHkJCQhASEtJFpT2DzgN6azP0/v37o6CgoMX1sHmpra2FSqXClClTYGBgwDsHADXpipp0Q026oab2lZaWQi6XizOgp/5v1wzoHm8I2vt7p/MmdyMjIxgZGbVYb2Bg0C1+OJuiJt1Qk26oSTfUpJvu0iRqg0TSBZvcaR96e+igOEIIIcKii7OIgo4yIIQQQnoAmqETQggRFh3lLgoa0AkhhAjrhS44D72zf/6/AL3lIYQQQnoAmqETQggRFm1yFwUN6IQQQoRFR7mLgt7yEEIIIT0AzdAJIYQIiza5i4IGdEIIIcKiTe6iEOUtz8aNGzF69GiYmprC2toa06ZNw40bN5rdhzGG8PBwKBQKSKVSTJo0CdeuXRO0Kz09Hb6+vlAoFJBIJEhMTGx2e1FREYKDg6FQKGBiYgJvb2/k5uZybaqoqEBoaChsbW0hlUoxdOhQxMTEcG2SSCStLp9//jm3JgC4fv06/Pz8YGZmBlNTU4wdOxb5+fncmoKDg1s8R2PHjhWsR5emphYuXAiJRIJt27ZxbQoPD4ejoyN69eqFF198EZ6enjh37hy3ptraWnzyyScYPnw4evXqBYVCgbfffhv/+te/uDUBQEJCAqZOnQpLS0tIJBJkZWUJ2kO6P1EGdLVajZCQEJw9exYqlQp1dXXw8vJCZWWl9j6bN29GZGQkoqKikJGRAZlMhilTpuDhw4eCdVVWVsLFxQVRUVEtbmOMYdq0abh16xaSkpJw6dIlKJVKeHp6NusWswkAli1bhpSUFOzbtw/Xr1/HsmXLsHjxYiQlJXFrKigoaLbs2bMHEokEM2fO5Nb0yy+/wM3NDY6OjkhLS8Ply5exZs0aGBsbc2sCAG9v72bP1Y8//ihYj65NAJCYmIhz585BoVAI2qNLk4ODA6KiopCdnY3Tp09jwIAB8PLywm+//calqaqqCpmZmVizZg0yMzORkJCAnJwc+Pn5CdbTXlPj7RMmTEBERISgHV2icZN7ZxfSNvacNBoNA8BKSko6/GeLi4sZAKZWqxljjDU0NDCZTMYiIiK093n8+DEzMzNjO3fu1Plxa2pqWGJiIqupqelwEwB2+PBh7dc3btxgANjVq1e16+rq6pi5uTmLjY3l0sQYY05OTmzdunXN1r388sts9erV3Jqe5u/vzyZPntyhx+3qpoCAAPbWW291+LGEbAoKCmL+/v7dqokxxu7evcv69evHrl69ypRKJdu6dSv3pqYaX2tOnDjRbZrOnz/PALDbt29zb8rLy2MA2KVLlzr0mCUlJQwA02g0He7RVeO/3YMMFau/fqZTy4MMFQPAHBwc2NChQ1lUVJRg3b9XXN7yaDQaAIC5uTkAIC8vD4WFhfDy8tLex8jICO7u7jhz5gyPRO2lYpvO6PT09GBoaIjTp09zaQIANzc3JCcn4969e2CMITU1FTk5OZg6dSq3pqaKiopw9OhRLFiwgFtDQ0MDjh49CgcHB0ydOhXW1tYYM2ZMm5ubxZKWlgZra2s4ODjgvffeQ3FxMdeehoYGzJs3D2FhYXBycuLa0pqamhrs3r0bZmZmcHFx4Z2jpdFoIJFI0LdvX94pvwvP2i3X0QUAMjIy8PPPP9O10Fsh+oDOGMPy5cvh5uYGZ2dnAEBhYSEAwMbGptl9bWxstLeJzdHREUqlEitXrsSDBw9QU1ODiIgIFBYWoqCggEsTAOzYsQPDhg2Dra0tDA0N4e3tjejoaLi5uXFramrv3r0wNTXFjBkzuDUUFxejoqICERER8Pb2xvHjxzF9+nTMmDEDarWaW5ePjw++/fZbnDx5Elu2bEFGRgYmT56sffPIw6ZNm6Cvr48lS5Zwa2jNkSNH0Lt3bxgbG2Pr1q1QqVSwtLTknQUAePz4MVasWIHAwEC6LjfpVkQ/yj00NBRXrlxpdZbb+A6sEWOsxTqxGBgY4NChQ1iwYAHMzc2hp6cHT09P+Pj4cOlptGPHDpw9exbJyclQKpVIT0/HokWLIJfL4enpybUNAPbs2YO5c+cKuq+6PQ0NDQAAf39/LFu2DAAwcuRInDlzBjt37oS7uzuXroCAAO3/Ozs7Y9SoUVAqlTh69CiXN0AXL17E9u3bkZmZye337Fk8PDyQlZWFkpISxMbGYvbs2Th37hysra25dtXW1mLOnDloaGhAdHQ015bfFboeuihEnaEvXrwYycnJSE1Nha2trXa9TCYDgBaz8eLi4hazdjG5uroiKysLZWVlKCgoQEpKCkpLS2Fvb8+l59GjR1i1ahUiIyPh6+uLESNGIDQ0FAEBAfjiiy+4NDV16tQp3LhxA++++y7XDktLS+jr62PYsGHN1g8dOlTQo9w7Si6XQ6lUCn7mxLOcOnUKxcXFsLOzg76+PvT19XH79m189NFHGDBgAJemRr169cKgQYMwduxYxMXFQV9fH3FxcVybamtrMXv2bOTl5UGlUtHsvCMaT1vr7ELaJMqAzhhDaGgoEhIScPLkyRYDor29PWQyGVQqlXZdTU0N1Go1xo8fL0Zim8zMzGBlZYXc3FxcuHAB/v7+XDpqa2tRW1uLF15o/s+mp6ennZXyFBcXB1dXV+77Og0NDTF69OgWp0bm5ORAqVRyqmqptLQUd+7cgVwu5/L9582bhytXriArK0u7KBQKhIWF4dixY1yanoUxxnXXRONgnpubixMnTsDCwoJbCyHPIsom95CQEOzfvx9JSUkwNTXVzsTNzMwglUohkUiwdOlSbNiwAYMHD8bgwYOxYcMGmJiYIDAwULCuiooK3Lx5U/t1Xl4esrKyYG5uDjs7Oxw8eBBWVlaws7NDdnY2PvzwQ0ybNq3ZwXtiN7m7uyMsLAxSqRRKpRJqtRpff/01IiMjuTUBQHl5OQ4ePIgtW7YI1tGRprCwMAQEBGDixInw8PBASkoKfvjhB6SlpXFpMjc3R3h4OGbOnAm5XI5ff/0Vq1atgqWlJaZPn86lyc7OrsXAZGBgAJlMhiFDhnBpsrCwwPr16+Hn5we5XI7S0lJER0fj7t27mDVrFpcmhUKBN954A5mZmThy5Ajq6+u1r2Hm5uYwNDQUvcnOzg73799Hfn6+9nz4xjewMplMu9Wz++iK087otLV2Pe/h8R05bQ1Aq0t8fLz2Pg0NDWzt2rVMJpMxIyMjNnHiRJadnd2hpo6eFpKamtpqV1BQEGOMse3btzNbW1tmYGDA7Ozs2OrVq1l1dTXXpoKCAhYcHMwUCgUzNjZmQ4YMYVu2bGENDQ3cmhhjbNeuXUwqlbKysjKdO4RuiouLY4MGDWLGxsbMxcWFJSYmcmuqqqpiXl5ezMrKSvvzFBQUxPLz87k1tUaM09baanr06BGbPn06UygUzNDQkMnlcubn58fOnz/PranxtLDWltTUVC5NjDEWHx/f6u1r167V6fHFPG2t7JKaNdy82Kml7JJa8N7fOwljjD3PG4Hy8nKYmZmhpKSk22x+qq2txY8//ohXX30VBgYGvHMAUJOuqEk31KQbampfaWkpLC0todFoBDseoHGcKLukRh/T3p17rIcV6PuSu6C9v3f0We6EEEKE9cILT5bOPgZpEw3ohBBChEUXZxEFveUhhBBCegCaoRNCCBEWXQ9dFDSgE0IIERZtchcFDeiEEEIEJvn30tnHIG2hbRiEEEJID0AzdEIIIcKiTe6ioAGdEEKIsGhAFwVtcieEEEJ6AJqhE0IIERgdFCcGGtAJIYQIiza5i0LnAb26urrZ9YjLy8sB/Oca3d1BY0d36QGoSVfUpBtq0g01ta+7dJCuo/PV1sLDw/Hpp5+2WL9//36YmJh0eRghhBDhVFVVITAwUJyrrf2/C11ztTXHUXBwcICenh5CQkIQEhLSRaU9g84Demsz9P79+6OgoKBbXT5VpVJhypQp3eLyhAA16YqadENNuqGm9pWWlkIul4s0oF/sogHdlS6f2gadN7kbGRnByMioxXoDA4Nu8cPZFDXphpp0Q026oSbddJem7tBAuhYdFEcIIURYdFCcKGhAJ4QQIiwJumBA75KSHo0GdEIIIQKj89DFQJ8URwghhPQANEMnhBAiLNqHLgoa0AkhhAiMNrmLgTa5E0IIIT0AzdAJIYQIiza5i4IGdEIIIcKiAV0UtMmdEEII6QG4Dejp6enw9fWFQqGARCJBYmIirxStjRs3YvTo0TA1NYW1tTWmTZuGGzducG2KiYnBiBEj0KdPH/Tp0wfjxo3DTz/9xLWpqY0bN0IikWDp0qVcO8LDwyGRSJotMpmMaxMA3Lt3D2+99RYsLCxgYmKCkSNH4uLFi9x6BgwY0OJ5kkgkXC9yUVdXh9WrV8Pe3h5SqRR/+MMfsG7dOjQ0NHBrevjwIZYuXQqlUgmpVIrx48cjIyND1Ib2XiMZYwgPD4dCoYBUKsWkSZNw7do1URt1J+mihbSF24BeWVkJFxcXREVF8UpoQa1WIyQkBGfPnoVKpUJdXR28vLxQWVnJrcnW1hYRERG4cOECLly4gMmTJ8Pf379b/OJmZGRg9+7dGDFiBO8UAICTkxMKCgq0S3Z2NteeBw8eYMKECTAwMMBPP/2En3/+GVu2bEHfvn25NWVkZDR7jlQqFQBg1qxZ3Jo2bdqEnTt3IioqCtevX8fmzZvx+eef48svv+TW9O6770KlUuGbb75BdnY2vLy84OnpiXv37onW0N5r5ObNmxEZGYmoqChkZGRAJpNhypQpePjwoWiNumrtTeTzLKRt3Pah+/j4wMfHh9e3b1VKSkqzr+Pj42FtbY2LFy9i4sSJXJp8fX2bfb1+/XrExMTg7NmzcHJy4tIEABUVFZg7dy5iY2Px2WefcetoSl9fv1vMyhtt2rQJ/fv3R3x8vHbdgAED+AUBsLKyavZ1REQEBg4cCHd3d05FwD//+U/4+/vjtddeA/DkOfruu+9w4cIFLj2PHj3CoUOHkJSUpP29Dw8PR2JiImJiYkT7eW/rNZIxhm3btuEvf/kLZsyYAQDYu3cvbGxssH//fixcuFCURtK90D70Nmg0GgCAubk555In6uvrceDAAVRWVmLcuHFcW0JCQvDaa6/B09OTa0dTubm5UCgUsLe3x5w5c3Dr1i2uPcnJyRg1ahRmzZoFa2trvPTSS4iNjeXa1FRNTQ327duH+fPnc539uLm54R//+AdycnIAAJcvX8bp06fx6quvcumpq6tDfX09jI2Nm62XSqU4ffo0l6an5eXlobCwEF5eXtp1RkZGcHd3x5kzZziWPUPjQXGdXUib6Cj3Z2CMYfny5XBzc4OzszPXluzsbIwbNw6PHz9G7969cfjwYQwbNoxbz4EDB5CZmSn6PsW2jBkzBl9//TUcHBxQVFSEzz77DOPHj8e1a9dgYWHBpenWrVuIiYnB8uXLsWrVKpw/fx5LliyBkZER3n77bS5NTSUmJqKsrAzBwcFcOz755BNoNBo4OjpCT08P9fX1WL9+Pd58800uPaamphg3bhz+9re/YejQobCxscF3332Hc+fOYfDgwVyanlZYWAgAsLGxabbexsYGt2/f5pHUDvpgGTHQgP4MoaGhuHLlSrd4Rz5kyBBkZWWhrKwMhw4dQlBQENRqNZdB/c6dO/jwww9x/PjxFjMYnppumhw+fDjGjRuHgQMHYu/evVi+fDmXpoaGBowaNQobNmwAALz00ku4du0aYmJiusWAHhcXBx8fHygUCq4d33//Pfbt24f9+/fDyckJWVlZWLp0KRQKBYKCgrg0ffPNN5g/fz769esHPT09vPzyywgMDERmZiaXnmd5essKY6yb7mvuihl2d/x7dS80oLdi8eLFSE5ORnp6OmxtbXnnwNDQEIMGDQIAjBo1ChkZGdi+fTt27dolesvFixdRXFwMV1dX7br6+nqkp6cjKioK1dXV0NPTE73rab169cLw4cORm5vLrUEul7d40zV06FAcOnSIU9F/3L59GydOnEBCQgLvFISFhWHFihWYM2cOgCdvyG7fvo2NGzdyG9AHDhwItVqNyspKlJeXQy6XIyAgAPb29lx6ntZ4rEhhYSHkcrl2fXFxcYtZO/nvQfvQm2CMITQ0FAkJCTh58mS3+eV9GmMM1dXVXL73H//4R2RnZyMrK0u7jBo1CnPnzkVWVla3GMwBoLq6GtevX2/2Yie2CRMmtDjtMScnB0qlklPRfzQe8Nl4IBpPVVVVeOGF5i9Fenp6XE9ba9SrVy/I5XI8ePAAx44dg7+/P+8kAIC9vT1kMpn2LAXgyTERarUa48eP51j2DLQPXRTcZugVFRW4efOm9uu8vDxkZWXB3NwcdnZ2XJpCQkKwf/9+JCUlwdTUVLufyszMDFKplEvTqlWr4OPjg/79++Phw4c4cOAA0tLSWhyRLxZTU9MWxxT06tULFhYWXI81+POf/wxfX1/Y2dmhuLgYn332GcrLy7nN8ABg2bJlGD9+PDZs2IDZs2fj/Pnz2L17N3bv3s2tCXiyKyA+Ph5BQUHQ1+e/kc7X1xfr16+HnZ0dnJyccOnSJURGRmL+/Pncmo4dOwbGGIYMGYKbN28iLCwMQ4YMwTvvvCNaQ3uvkUuXLsWGDRswePBgDB48GBs2bICJiQkCAwNFa9Qd7UMXA7ff5gsXLsDDw0P7deN+zqCgIHz11VdcmmJiYgAAkyZNarY+Pj6e24FDRUVFmDdvHgoKCmBmZoYRI0YgJSUFU6ZM4dLTXd29exdvvvkmSkpKYGVlhbFjx+Ls2bNcZ8OjR4/G4cOHsXLlSqxbtw729vbYtm0b5s6dy60JAE6cOIH8/HyuA2ZTX375JdasWYNFixahuLgYCoUCCxcuxF//+lduTRqNBitXrsTdu3dhbm6OmTNnYv369TAwMBCtob3XyI8//hiPHj3CokWL8ODBA4wZMwbHjx+HqampaI2ke+E2oE+aNAmMMV7fvlXdrQd4cuBSd5eWlsY7AQcOHOCd0KrXX38dr7/+Ou+MZry8vLrVz7qpqSm2bduGbdu28U7Rmj17NmbPns21ob3XSIlEgvDwcISHh4sX9bzos9xFwX97GyGEkJ6NtriLgg6KI4QQQnoAmqETQggRGE3RxUADOiGEEGHRPnRR0CZ3QgghpAegGTohhBBh0QxdFDSgE0IIERjtQxcDDeiEEEKEJUEXzNC7pKRHo33ohBBCSAc9fPgQo0ePxsiRIzF8+HDExsbyTqIZOiGEEIH1wH3oJiYmUKvVMDExQVVVFZydnTFjxgxYWFhwa6IBnRBCiMB63j50PT09mJiYAAAeP36M+vp67h+pTJvcCSGE9Djp6enw9fWFQqGARCJBYmJii/tER0fD3t4exsbGcHV1xalTpzr0PcrKyuDi4gJbW1t8/PHHsLS07KL656PzDL26urrZNbg1Gg0A4P79+11f9Zxqa2tRVVWF0tJSUa+K1BZq0g016YaadENN7Wt87RZjVlleUdHpTeblFRVP/lte3my9kZERjIyMWty/srISLi4ueOeddzBz5swWt3///fdYunQpoqOjMWHCBOzatQs+Pj74+eeftZfwdnV1bTbuNTp+/DgUCgX69u2Ly5cvo6ioCDNmzMAbb7wBGxubTv09O4XpaO3atQwALbTQQgstPWj55ZdfdB0GOuzRo0dMJpN1WWvv3r1brFu7dm27HQDY4cOHm6175ZVX2AcffNBsnaOjI1uxYsVz/V0/+OAD9ve///25/mxX0XmGvnLlSu31eIEnmxqUSiXy8/NhZmam68MIqry8HP3798edO3fQp08f3jkAqElX1KQbatINNbVPo9HAzs4O5ubmgn0PY2Nj5OXloaampksejzEGyVMz/dZm5+2pqanBxYsXsWLFimbrvby8cObMGZ0eo6ioCFKpFH369EF5eTnS09Pxpz/9qcMtXUnnAf1ZmzXMzMy6xQ9nU3369KEmHVCTbqhJN9Skm+7W9MILwh5KZWxsDGNjY0G/R0eVlJSgvr6+xeZxGxsbFBYW6vQYd+/exYIFC8AYA2MMoaGhGDFihBC5OqOj3AkhhPxXenq239oWgGdxdXVFVlaWAFXPj45yJ4QQ8l/F0tISenp6LWbjxcXFfA9q66TnHtCNjIywdu3a59p/IRRq0g016YaadENNuuluTd2tR0yGhoZwdXWFSqVqtl6lUmH8+PGcqjpPwhjnM+EJIYSQLlZRUYGbN28CAF566SVERkbCw8MD5ubmsLOzw/fff4958+Zh586dGDduHHbv3o3Y2Fhcu3YNSqWSc/3zoQGdEEJIj5OWlgYPD48W64OCgvDVV18BePLBMps3b0ZBQQGcnZ2xdetWTJw4UeTSrkMDOiGEENID0EFxhBBCSA9AAzohhBDSA9CATgghhPQANKATQgghPQAN6IQQQkgPQAM6IYQQ0gPQgE4IIYT0ADSgE0IIIT0ADeiEEEJID0ADOiGEENID0IBOCCGE9AA0oBNCCCE9wP8HKAJYbvD/Zi8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACaMUlEQVR4nOzdd1QU19/H8fdKlyBKXyKsBUGxt9gLil3BEnssUdNsURMTS4xoNPYaRY0taqKmaOwNY6/BQjTGny3WSFFUCKDS5vnDsBFBWWRnl/h8X545x52ZnfnssHDn3rkzV6MoioIQQggh/tMKmDuAEEIIIfJOCnQhhBDiFSAFuhBCCPEKkAJdCCGEeAVIgS6EEEK8AqRAF0IIIV4BUqALIYQQrwAp0IUQQohXgBToQgghxCtACnQzCAkJQaPRZJpXrFgxevfunavtHDlyhJCQEB48eJCr9z27r3379qHRaPjpp59ytZ0XSUpKIiQkhH379mVZ9s0336DRaLh27ZrR9qeGr776Ch8fH6ytrdFoNDx48IAvv/ySDRs2mC3Tw4cP8fX1RaPRMH369CzLU1JSGDduHMWKFcPGxobSpUvz1VdfmSGpEMLULM0dQDzx888/U6hQoVy958iRI4wbN47evXtTuHBhVfeVW0lJSYwbNw6Ahg0bZlrWqlUrjh49ilarVTVDXkRERDB48GD69etHr169sLS0xMHBgS+//JI333yTtm3bmiXXmDFjSExMfO7y/v37s2rVKr744guqV6/Ozp07+fDDD/n7778ZNWqUCZMKIUxNCvR8onLlyqrv4+HDh9jZ2ZlkXy/i6uqKq6urWTPk5Ny5cwC88847vPHGG6ruKy0tjdTUVGxsbF643q+//spXX33Fd999R8eOHbMsP3fuHEuXLmXixIkMHz4ceHIyFRsby4QJE3j//fdxcnJS5TMIIcxPmtxVtnXrVipVqoSNjQ3FixfPtpkUsjaDp6enM2HCBPz8/LCzs6Nw4cJUqFCBOXPmAE+a7TP+aBcvXhyNRoNGo9E3cRcrVozWrVuzfv16KleujK2trb7G/Lzm/UePHjFs2DA8PDyws7OjQYMGnD59OtM6DRs2zFLjBujduzfFihUD4Nq1a/oCe9y4cfpsGft8XpP7smXLqFixIra2tjg5OdGuXTvOnz+fZT+vvfYaly9fpmXLlrz22mt4eXnx0Ucf8fjx42yP7dO+//57mjZtilarxc7OjjJlyjBixIhMtd6GDRvy1ltvAVCjRg19do1GQ2JiIitWrNB/pqePRVRUFO+99x5FixbF2tqa4sWLM27cOFJTU/XrXLt2DY1Gw9SpU5kwYQLFixfHxsaGvXv3vjB3cnIyffr0YcCAAVSrVi3bdTZs2ICiKLz99tuZ5r/99ts8fPiQHTt2vHAfGZeCzpw5Q8eOHXF0dMTJyYlhw4aRmprKhQsXaN68OQ4ODhQrVoypU6dm2caNGzd46623cHNzw8bGhjJlyjBjxgzS09OBJ5cE3Nzc6NGjR5b3PnjwADs7O4YNG6afFx8fz8cff0zx4sWxtrbm9ddfZ8iQIVlaKX788Udq1KiBo6MjBQsWpESJEvTp0+eFn1eIV43U0FX0yy+/EBwcTK1atVi7di1paWlMnTqV6OjoHN87depUQkJC+Oyzz6hfvz4pKSn873//018v79evH/fu3eOrr75i/fr1+uZrf39//TZOnTrF+fPn+eyzzyhevDj29vYv3OeoUaOoUqUKS5YsIS4ujpCQEBo2bMjp06cpUaKEwZ9bq9WyY8cOmjdvTt++fenXrx/AC2vlkyZNYtSoUXTt2pVJkyYRGxtLSEgItWrVIjw8nFKlSunXTUlJISgoiL59+/LRRx9x4MABvvjiCxwdHfn8889fmO3SpUu0bNmSIUOGYG9vz//+9z+mTJnCr7/+yp49ewAIDQ1lzZo1TJgwgeXLl1O6dGlcXV15//33adSoEQEBAYwZMwZAf+kiKiqKN954gwIFCvD5559TsmRJjh49yoQJE7h27RrLly/PlGPu3Ln4+voyffp0ChUqlOnzZWf8+PEkJibyxRdfcOfOnWzX+f3333F1dcXDwyPT/AoVKuiXG6JTp0689dZbvPfee4SFhTF16lRSUlLYvXs3/fv35+OPP2b16tV8+umn+Pj40L59ewDu3LlD7dq1SU5O5osvvqBYsWJs2bKFjz/+mCtXrhAaGoqVlRVvvfUWCxcuZP78+Zku/axZs4ZHjx7pT0iSkpJo0KABt27dYtSoUVSoUIFz587x+eefc/bsWXbv3o1Go+Ho0aN07tyZzp07ExISgq2tLdevX9f/PIX4f0MRqqlRo4bi6empPHz4UD8vPj5ecXJyUp499DqdTunVq5f+devWrZVKlSq9cPvTpk1TAOXq1atZlul0OsXCwkK5cOFCtsue3tfevXsVQKlSpYqSnp6un3/t2jXFyspK6devn35egwYNlAYNGmTZZq9evRSdTqd/fefOHQVQxo4dm2Xd5cuXZ8p9//59xc7OTmnZsmWm9W7cuKHY2Ngo3bp1y7QfQPnhhx8yrduyZUvFz88vy75eJD09XUlJSVH279+vAMpvv/2WJWN4eHim99jb22c6dhnee+895bXXXlOuX7+eaf706dMVQDl37pyiKIpy9epVBVBKliypJCcnG5Tz9OnTipWVlbJjx45M25g2bVqm9Zo0afLcY2Btba28++67L9zP2LFjFUCZMWNGpvmVKlVSAGX9+vX6eSkpKYqrq6vSvn17/bwRI0YogHL8+PFM7//ggw8UjUaj/y6eOXNGAZSvv/4603pvvPGGUrVqVf3rSZMmKQUKFMjyM/jpp58UQNm2bZuiKP8e4wcPHrzw8wnxqpMmd5UkJiYSHh5O+/btsbW11c93cHCgTZs2Ob7/jTfe4LfffqN///7s3LmT+Pj4XGeoUKECvr6+Bq/frVu3TL3vdTodtWvXzrE5OK+OHj3Kw4cPs1wG8PLyolGjRvzyyy+Z5ms0mizHsEKFCly/fj3Hff35559069YNDw8PLCwssLKyokGDBgBZmvdzY8uWLQQEBODp6Ulqaqp+atGiBQD79+/PtH5QUBBWVlY5bjc1NZU+ffrQuXNnmjVrluP6z949Yeiyp7Vu3TrT6zJlyqDRaPSfBcDS0hIfH59Mx3zPnj34+/tn6XPQu3dvFEXR15jLly9P1apVM7VanD9/nl9//TVTM/mWLVsoV64clSpVynRMmzVrlunyUvXq1YEnLQs//PADf/31l0GfU4hXjRToKrl//z7p6elZmj+BbOc9a+TIkUyfPp1jx47RokULnJ2dady4MSdOnDA4Q257kT8va2xsbK62k1sZ288ur6enZ5b9FyxYMNNJEoCNjQ2PHj164X4SEhKoV68ex48fZ8KECezbt4/w8HDWr18PPOk0+LKio6PZvHkzVlZWmaayZcsCcPfu3UzrG/qzmT17Nn/++Sdjx47lwYMHPHjwQH9y9+jRIx48eEBaWhoAzs7O2f6sEhMTSU5ONrhD3LPrWVtbZ3vMra2tMx3z2NjY5/4MM5Zn6NOnD0ePHuV///sfAMuXL8fGxoauXbvq14mOjubMmTNZjqmDgwOKouiPaf369dmwYQOpqan07NmTokWLUq5cOdasWWPQ5xXiVSHX0FVSpEgRNBoNUVFRWZZlN+9ZlpaWDBs2jGHDhvHgwQN2797NqFGjaNasGTdv3qRgwYI5bsPQGtmLckVFReHs7Kx/bWtrS1xcXJb1ni2wciNj+5GRkVmW3b59GxcXl5fe9tP27NnD7du32bdvn75WDuT6Pv7suLi4UKFCBSZOnJjt8oxCLYOhP5vff/+duLi4bK+xjxkzhjFjxnD69GkqVapE+fLlWbt2LVFRUZlOzs6ePQtAuXLlDP04L8XZ2fm5P0Mg08+xa9euDBs2jG+++YaJEyeyatUq2rZtS5EiRfTruLi4YGdnx7Jly7Ld39PbCw4OJjg4mMePH3Ps2DEmTZpEt27dKFasGLVq1TLWRxQiX5Maukrs7e154403WL9+faZazN9//83mzZtzta3ChQvz5ptvMmDAAO7du6fvHZ5xm1NeapZPW7NmDYqi6F9fv36dI0eOZOrJXaxYMS5evJipR3lsbCxHjhzJtK3cZKtVqxZ2dnZ8++23mebfunWLPXv20Lhx45f5OFlkFKLP3h62aNEig7dhY2OT7Wdq3bo1v//+OyVLlqRatWpZpmcLdEONGDGCvXv3Zpoyap7vv/8+e/fuxcfHB3hSqGk0GlasWJFpG9988w12dnY0b978pTIYqnHjxvzxxx+cOnUq0/yVK1ei0WgICAjQzytSpAht27Zl5cqVbNmyhaioqCy90lu3bs2VK1dwdnbO9phm3FXxNBsbGxo0aMCUKVMAstylIcSrTGroKvriiy9o3rw5TZo04aOPPiItLY0pU6Zgb2/PvXv3XvjeNm3aUK5cOapVq4arqyvXr19n9uzZ6HQ6fW2tfPnyAMyZM4devXphZWWFn58fDg4OL5U3JiaGdu3a8c477xAXF8fYsWOxtbVl5MiR+nV69OjBokWLeOutt3jnnXeIjY1l6tSpWR5U4+DggE6nY+PGjTRu3BgnJydcXFyy/SNcuHBhxowZw6hRo+jZsyddu3YlNjaWcePGYWtry9ixY1/q8zyrdu3aFClShPfff5+xY8diZWXFd999x2+//WbwNsqXL8++ffvYvHkzWq0WBwcH/Pz8GD9+PGFhYdSuXZvBgwfj5+fHo0ePuHbtGtu2bWPhwoUULVo015lLly5N6dKlM83LOKErWbJkppOtsmXL0rdvX8aOHYuFhQXVq1dn165dfP3110yYMEH1e9CHDh3KypUradWqFePHj0en07F161ZCQ0P54IMPsvTn6NOnD99//z0DBw6kaNGiBAYGZlo+ZMgQ1q1bR/369Rk6dCgVKlQgPT2dGzdusGvXLj766CNq1KjB559/zq1bt2jcuDFFixblwYMHzJkzJ1P/CCH+XzBzp7xX3qZNm5QKFSoo1tbWire3tzJ58mR9b+KnPdvzfMaMGUrt2rUVFxcX/Xv79u2rXLt2LdP7Ro4cqXh6eioFChRQAGXv3r367bVq1SrbTM/r5b5q1Spl8ODBiqurq2JjY6PUq1dPOXHiRJb3r1ixQilTpoxia2ur+Pv7K99//32WXu6Koii7d+9WKleurNjY2CiAfp/P9nLPsGTJEv2xcnR0VIKDg/W9wzP06tVLsbe3z5Ipu2OanSNHjii1atVSChYsqLi6uir9+vVTTp06pQDK8uXL9es9r5d7RESEUqdOHaVgwYIKkKnH/507d5TBgwcrxYsXV6ysrBQnJyelatWqyujRo5WEhARFUZ7fQz03XrSN5ORkZezYsYq3t7dibW2t+Pr6KnPnzjVouxnH8M6dO5nmP++YN2jQQClbtmymedevX1e6deumODs7K1ZWVoqfn58ybdo0JS0tLcv709LSFC8vLwVQRo8enW2mhIQE5bPPPlP8/Pz034vy5csrQ4cOVaKiohRFUZQtW7YoLVq0UF5//XXF2tpacXNzU1q2bKkcPHjQoM8txKtCoyhPtbEKIYQQ4j9JrqELIYQQrwAp0IUQQohsbNmyBT8/P0qVKsWSJUvMHSdH0uQuhBBCPCM1NRV/f3/27t1LoUKFqFKlCsePH8/XAxxJDV0IIYR4xq+//krZsmV5/fXXcXBwoGXLluzcudPcsV5ICnQhhBCvnAMHDtCmTRs8PT3RaDRs2LAhyzqhoaEUL14cW1tbqlatysGDB/XLbt++zeuvv65/XbRo0Xz/WGEp0IUQQrxyEhMTqVixIvPmzct2+ffff8+QIUMYPXo0p0+fpl69erRo0YIbN24AkN3V6Nw+fdPUDH6wzOPHjzM9HSw9PZ179+7h7Oyc7z+kEEKIzBRF4e+//8bT05MCBdSr2z169Ijk5GSjbEtRlCzljY2NTZanPwK0aNEi04BCz5o5c2am4Z1nz57Nzp07WbBgAZMmTeL111/PVCO/desWNWrUMMrnUI2hN6xnPHRCJplkkkmmV2e6efOmKg85URRFefjwoVIQjdGyvvbaa1nmZTdE87MA5eeff9a/fvz4sWJhYZFpSGBFUZTBgwcr9evXVxTlyRDBPj4+yq1bt5T4+HjFx8dHuXv3rjEPj9EZXEMfOXIkw4YN07+Oi4vD29ubtwtrsXxknLOvvCpgZ0uD+dMIqFUdK8v88VTblNRU9h4Nl0w5kEyGkUyGkUw5u3f/Pr4Vqrz0o6INkZycTBIKPbDHmry15CajsCohgZs3b2Z61HR2tfOc3L17l7S0NNzd3TPNd3d31w9SZWlpyYwZMwgICCA9PZ1PPvkk00BV+ZHB36rnNWtYPkqmwKPH2bzD9Cw1BShYsCDOTkXyxS8MPPkllkw5k0yGkUyGkUyGM8UlU1sKYJ3H/RT455p2oUKFsowd8bKe/ezKM036QUFBBAUFGWVfpiCd4oQQQvy/4uLigoWFRZYho2NiYrLU2v9LpEAXQgihqgJGmozF2tqaqlWrEhYWlml+xoiJ/1X5p91HCCHEK0mjgQJ5bNnXAChQvXp1LCwsGDBgAAMGDHju+gkJCVy+fFn/+urVq0RERODk5IS3tzfDhg2jR48eVKtWjVq1avH1119z48YN3n///bwFNSMp0IUQQvxnhIeHG3QN/cSJEwQEBOhfZ3Tq7tWrF9988w2dO3cmNjaW8ePHExkZSbly5di2bRs6nU617GqTAl0IIYSqjNFkntv3N2zYMNuHwzytf//+9O/f/+VD5TNSoAshhFBVAY2GAnnt5Q5P7jwXzyWd4oQQQohXgNTQhRBCqMocTe7/H0mBLoQQQlUFjNDLXQr0nMkxEkII8Z9RvXp1/P39mT9/vrmj5DuqFei3SWM7D1lFIotI4CqpmZYrKJzgMatIZAkJbCKJe6RlWicNhUM8ZgUJLCWBHTwkgXSjZfz7778ZMnwEutLlsHP2oHajpoSfPKVfHh0dQ+93P8CzZGkKumhpHtyBS5evGG3/L5MpISGBgcOGU7SUP3bOHpSp8gYLFi81ayaNfeFsp2mz5potE8D5/10gqGMXHLXeOLgXpWbDQG7cvGm2TL3f/SDLMarZMFC1PIZketp7g4agsS/M7HmhZs0UMnESpStXx97VkyKv6whsFczx8BNmy5SSksKnn42lfPXa2Lt64lmyND37vcftyEizZQJYv3ETzYLa4+JdAo19YSJ+O6Nqnrww5oNlwsPD+eOPP154D/r/V6oV6KkoOFOAOmT/4PzfSOEMKdTBhvbYUZACbOURyU91YzzCY66RSmNsCcaOFGAHj0g3UlfHfgMGE7Z3H6uWLOLsr0do2jiAwNZt+ev2bRRFoW2X7vx57Robf1jN6SMH0Hl7Edg6mMTERKPsP7eZAIZ+OoodYbv5dukizp86ztCB/Rn00Sds3LLVbJkir1zINC1bMA+NRkOHtuo9AzmnTFf+vErdJs0p7evLvu2b+e3YIcaMGI6tja3ZMgE0bxKY6VhtW/+jankMzQSwYfMWjoefwFOrVTWPIZl8fXyYN2MaZ389wqGwHRTTedM0qD137tw1S6akpCRORfzGmBHDOXV4P+vXrOLi5SsEdeyqWp6cMgEkJiZRp1YNJo8PUTWHMWg0GqNM4sU0Sk436j1HfHw8jo6OvGPrnOPgLItIoCm2FP/nkr2CwrckUR4rKmENPKmNrySRGtjgjxWP/3kdgA0+WAGQSDrfkUQLbPHK5vK/pZ0dTdYspmVA3RwHP3j48CEO7kXZ+MNqWjVvpp9fqWZdWrdoTs9uXfCrVI3fw49S1r/Mk4xpabgV82HKF+Po17unQccpJTWVbXsPGSXThLGfUa5aLTq/2Y4xIz7RL69apwEtmzXhi88/M0umZ7Xt3I2//07gl22bDMqjRqYuvfpgZWnJqqVfG5xB7Uy93/2AB3FxbPh+db7JBPDX7dvUaBDIzo3raNWhE0MGfMCQgYbfm6v29yk+Ph5HrTe7t2ykcUCDfJEp/OQp3qjfiOv/O4u3l5dZM127fp3i/hU5feQAlSpWMCgLQOy9+7h4FScuLs5og508K6OcGG7piE0eC+THisK01DhV8/7XmeUa+t8oJKFQFAv9PAs0aLEg+p9m97ukkQ6ZCm57ClCEAkQ90zT/MlJTU0lLS8tSY7Ozs+PQ0aM8fvzkJMXW9t/lFhYWWFtZc+jI0Tzv/2UyAdStXZNNW7frWxH27j/AxctXaBbY2GyZnhYdHcPWHbvo26uHKnkMyZSens7WHbvwLeVDs6D2uOl8qNGgMRs2bzFbpgz7Dh7CTeeDb8WqvDNgMDExd8yaKT09nR5932P4kEH6E1c15fb7lJyczNfLVuDoWIiK5cvli0wAcXHxaDQaCjs65ptMQpilQE/6p8nc7pnxce3Q6JcloVAAsHlmnYJoeGiEJncHBwdq1XiDL6ZM5XZkJGlpaXy75nuOh58gMiqa0n6+6Ly9GDl2HPfvPyA5OZnJ02cRFR1NZFR0nvf/MpkA5k6fgn9pP4qW8se6sCvN275J6Kzp1K1dy2yZnrbiuzU4OLxG++A2quQxJFNMzB0SEhKYPGM2zZs0Ztem9bRr05r2XXuw/+Ahs2QCaNG0Cd8tW8yebZuYMWkC4SdP0ahlkP7k0RyZpsyYjaWlJYP7m+b51YZ+n7Zs38Frbq9j6+TOrHmhhG3egIuLOmNR5/Y7/ujRI0Z8HkK3Th1VqynmNlN+l9HLPa+TeLH/XC93Yz4oaNWSRSiKwus+ZbAp4sbcBYvo1qkjFhYWWFlZsW71Ki5euoxT0WIUdNGy7+AhWjRtgoWFRc4bVyETwNzQRRwLP8GmH9dw8tA+ZkyaQP+hH7N7zz6zZXraslXf0r1zx0wtG6bOlK486TgZ3KolQwcNoFLFCoz4eCitWzRj4ZLlZskE0PnN9rRq3oxyZf1p07IF23/+iYuXL7N1x06zZDp5OoI5oQv55utQk16fNOT7FFC/HhFHD3Jkzy6aN2lMpx69VW3NMPQ7npKSQpdefUhPTyd09nTV8uQm03+Bhrx3iJPyPGdmKdAL/vOjebam/RBFv6wgGtKBx9ms82zN/mWVLFGc/Tu3kRDzFzcvnOPXA3tISU2h+D8P569auRIRxw7x4PZ1Iq9cYMfGdcTeu0fxYuo9vP9FmR4+fMiokPHMnDyRNi1bUKF8OQa+/y6dO7Rj+pyvzJLpaQcPH+HCxUv062VY/wK1Mrk4O2NpaYl/Gb9M7ynj58eNW7fMkik7Wq0HOm8vLl3+0yyZDh4+QsydO3j7lcOykDOWhZy5fuMmH438jGJlypslUwZ7e3t8Spag5hvVWbpgHpaWlixdscqsmVJSUujUozdXr10nbPMG1a/j5vb79P+F3Lb2fGYp0B3QUBANt566Fp6GQiRpuP9zXd0FCwoAt5663S2RdO6TjgfGPUO1t7dHq/Xg/v0H7Nz9C8GtW2Za7ujoiKurC5cuX+HEqdMEt2r5nC2pmyklJYWUlBQKaDL/2CwsLEhPN97tfLnJ9LSlK1ZRtXIlKlZQrzAwJJO1tTXVq1bhwsVLmda9ePkyOgM7MBk7U3ZiY+9x89ZfaD3czZKpR9cunDl+mIijB/WTp1bL8CGD2blxvVkyPY+iKDxOVufShCGZMgrzS5f/ZPeWjTg7O6meJadM/yUZz3LP6wRy29qLqPakuBQU4p66Z/xv0rlLGjZocKAA5bHiNMk4UgBHNJwmBUs0+PwTyQYNpbHkKMnYoMEWDUdJxokCvG6kAn1n2C8oioKfrw+Xr1xl+Ogx+JUqxds9ugPw4/oNuLo44+3lxdlz5/hw+AjatmlF08BGRtl/bjNZWVnRoF4dho/+HDs7W3TeXuw/eJiVq9cyc/JEs2TKEB8fz48/b2TGpAmq5chNpuFDBtG5Zx/q161DQP167AjbzeZtO9i3Q72OcS/KlJCQQMjEyXRoG4TWw51r128wKuQLXJydaRfU2iyZrKysshRMVlaWeLi74edbyiyZEhMTmTh1BkGtWqD1cCc29h6hi5dy66/bdGzX1iyZUlNTebN7T05FnGHLT2tJS0sj6p/r2E5ORbC2tjZ5JoB79+5z4+ZNbkdGAXDh0pOxvz3c3fEwwUlibsijX01DtQL9Dmls5pH+9VGSAfDFkgBsqYgVqf88OOYxCm4UoBW2WD/VnF4LGzQks5tHpAGeWBCALQWM1OQeFx/PyLHjuPXXbZyKFKFD2yAmjv0MK6snt8lFRkUxbMRoomNi0Hq407Nbl0y3i6khp0xrv1nGyLHj6N7nXe7dv4/O24uJYz/j/X59zJYJYO1P61EUha4dO6iWIzeZ2gW1YeGcmUyaMYvBH3+KXykf1q1eqVrnwZwypaamcvbcH6xcvZYHcXFoPdwJqF+P71cuw8HBwSyZzOVFmdLS0vjfxYus+G4Nd2NjcXZyonrVyhwM265qL/wXZbp2/Tqbtm4HoFKtepnet3f7ZhrWr5fdJlXNBLBp6zbefv/fWmqXXk/+Bowd9Skho0eqkknkbya5D91UcnMfuqnk5t5TU5FMhpFMhpFMhslvmUx5H/rnNoWxzWPHy0eKwvjHD+Q+9Bcw/7dKCCHEK02a3E1DjpEQQgjxCpAauhBCCFUVQJPnvk9S+8yZHCMhhBCqMuaT4uQ+9OeTGroQQghVGfMaenh4uHSKew6poQshhBCvAKmhCyGEUJUxBleR2mfOpEAXQgihqieDs+StRNcYdWiuV5Oc9AghhBCvAKmhCyGEUJU0uZuGFOhCCCFUJU+KMw05RkIIIcQrwOAa+uPHj3n8+N9BWOLj4wEYf/4Yzk5FjJ/sJaSkphJ28Bgpqak5r2wiGVkk04tJJsNIJsNIppyZMoc0uZuGwaOthYSEMG7cuCzzV69eTcGCBY0eTAghhHqSkpLo1q2bSUZbm2PvhJ0mb0XyQyWdDxPv4evri4WFBQMGDGDAgAE5v/H/EYML9Oxq6F5eXkRevZTvauhN6tXMF8MTgmQylGQyjGQyjGTKWey9+2iLl/rPFegyfOrzGfytsrGxwcbGJst8K0vLfPHlfJpkMoxkMoxkMoxkMkx+yWTKDNLkbhrm/1YJIYR4pWn+mfK6DfFiUqALIYRQldTQTUOOkRBCCPEKkBq6EEIIVRVAk+dnuef1/f8fSIEuhBBCVdLkbhpyjIQQQohXgNTQhRBCqOrJ8Kl534Z4MSnQhRBCqEpuWzMNaXIXQgghXgFSoAshhFBVAY3GKBNA9erV8ff3Z/78+Wb+VPmPSQr01NRUPhs3geL+FbBz9qBE2YqMnzSF9PR0/TrrN26iWVB7XLxLoLEvTMRvZ8yaKSUlhU8/G0v56rWxd/XEs2RpevZ7j9uRkWbLBBAycRKlK1fH3tWTIq/rCGwVzPHwE2bN9LT3Bg1BY1+Y2fNCzZqp97sfoLEvnGmq2TDQrJkAzv/vAkEdu+Co9cbBvSg1GwZy4+ZNs2V69hhlTNNmzTVbpoSEBAYOG07RUv7YOXtQpsobLFi8VJU8hmaKjo6h97sf4FmyNAVdtDQP7sCly1dUywTw999/M2T4CHSly2Hn7EHtRk0JP3lKv1xRFEImTsKzZGnsnD1o2LwV5/44r2qml6Ux0gQQHh7OH3/8IQOzZMMk19CnzJzNwqXLWPH1AsqWKc2JUxG8/f4AHAsV4sMBHwCQmJhEnVo16Ni+Le8MGGz2TElJSZyK+I0xI4ZTsXw57j94wJBPRhLUsSsnDu0zSyYAXx8f5s2YRonixXj48CGz5oXSNKg9l8+cwtXVxSyZMmzYvIXj4Sfw1GqNnuNlMjVvEsjyhf+exVtbW5s105U/r1K3SXP69uzBuNEjcXR05PyFC9ja2JotU+SVC5nes31XGH37D6JD2yCzZRr66Sj2HjjIt0sXUUznza5f9tJ/yEd4aj0Ibt3K5JkURaFtl+5YWVmy8YfVFHJwYOZX8wlsHcwfJ49jb29v9EwA/QYM5vc/zrNqySI8tVq+Xfs9ga3b8sfJY7zu6cnUmXOY+VUo3yyaj6+PDxOmTqdJm3ZciAjHwcFBlUwifzNJgX70eDjBrVrSqnkzAIrpdKz58SdOnDqtX6dHty4AXLt+3RSRcszk6OhI2JYNmd7z1YypvFG/ETdu3sTby8vkmQC6de6Y6T0zJ09k6YpVnPn9HI0DGpglE8Bft28zcNgn7Ny4jlYdOhk9x8tksrGxxsPDXdUsuck0etwXtGzahKkTx+vnlShezKyZnj0+G7duI6B+PdVyGZLp6PFwenXvSsP69QB4t09vFi1dzolTp1Up0HPKdOnyFY79Gs7v4Ucp618GgNDZM3Ar5sOaH9fRr3dPo2d6+PAh6zZsYuMPq6lftw4AIaNHsmHzVhYsXsYXn49m9vwFjB7+Ee2Dn5x8rfh6Ae7FS7H6h594r+/bRs+UF9IpzjRM0uRet1ZNftm3n4uXLgPw25mzHDpyjJbNmppi90bLFBcXj0ajobCjY77IlJyczNfLVuDoWIiK5cuZLVN6ejo9+r7H8CGD9H/w1GTocdp38BBuOh98K1blnQGDiYm5Y7ZM6enpbN2xC99SPjQLao+bzocaDRqzYfMWs2V6VnR0DFt37KJvrx5mzVS3dk02bd3OX7dvoygKe/cf4OLlKzQLbGyWTBnDRtva/tuSYmFhgbWVNYeOHFUlU2pqKmlpaVlab+zs7Dh09ChXr10nKjqapo0D9MtsbGxoULcOR44dVyVTXhizyV08n0lq6J9+NIS4+HhKV66OhYUFaWlpTBw7hq6d3jTF7o2S6dGjR4z4PIRunTqqNhavoZm2bN9Bl159SUpKQuvhQdjmDbi4OJst05QZs7G0tGRw//dVyfAymVo0bULH9m3ReXlx9fp1xoyfSKOWQZw8vC/bYYDVzhQTc4eEhAQmz5jNhM9HM+WLEHaE/UL7rj3Yu30zDerVNXmmZ634bg0ODq/RPriN0bPkJtPc6VN4Z8Bgipbyx9LSkgIFCrBk/lzq1q5llkyl/XzReXsxcuw4Fs2djb19QWbOnU9UdDSRUdGqZHJwcKBWjTf4YspUypT2xd3NjTU//MTx8BOU8ilJVPST/bq7u2V6n7ubG9dvqNMnIy80Gg0aTd6KZI0U6TkySYH+/U/r+XbtD6xevoSyZUoTceYsQz4diafWg15vdTNFhDxlSklJoUuvPqSnpxM6e7rZMwXUr0fE0YPcjY1l8fIVdOrRm+P7fsHNzdXkmU6ejmBO6EJOHdmf519YY2UC6Pxme/365cr6U61yZXRlyrN1x059E6UpM6UrTzpYBbdqydBBTzrzVKpYgSPHj7NwyXJVCvTc/t4tW/Ut3Tt3zFQTNUemuaGLOBZ+gk0/rkHn5cWBw0foP/RjtB4eBDZqaPJMVlZWrFu9ir4fDMSpaDEsLCwIDGhIi6ZNjJ7laauWLKLPBwN43acMFhYWVKlUkW6dOnLqt9/06zxbyCmKYrLfQ5H/mKRAHz76c0Z8NIQuHTsAUL5cWa7fvMmkGbPMVqAbmiklJYVOPXpz9dp19mzbrFrtPDeZ7O3t8SlZAp+SJaj5RnVKVajC0hWrGDl8mMkzHTx8hJg7d/D2+7fJPy0tjY9Gfsbs+Qu4dv6syTNlR6v1QOftxaXLfxo9jyGZXJydsbS0xL+MX6b3lfHz49DRY2bJ9LSDh49w4eIlvl+xTJUshmZ6+PAho0LG8/Pab/XXtCuUL0fEmbNMn/OVKgW6IcepauVKRBw7RFxcHMnJKbi6ulCjQWOqVals9DwZSpYozv6d20hMTCQ+/m+0Wg8693yb4jodHu5P+j5ERUej1Xro3xNz5w7uKpzY55VcQzcNk1xDT3qYRIECmXdlUcDiubc+mYIhmTIK80uX/2T3lo04OzuZPVN2FEXhcfJjs2Tq0bULZ44fJuLoQf3kqdUyfMhgdm5cb5ZM2YmNvcfNW3+hVamTXE6ZrK2tqV61ChcuXsq0zsXLl9Gp0MHSkExPW7piFVUrV6JihfKqZDE0U0pKCikpKRTQPLOOhXp/L3JznBwdHXF1deHS5StPOum1aqlKpqfZ29uj1Xpw//4Ddu7+heDWLSle7EmhHrZnn3695ORk9h86TO2aNVTPlFsFjDSJFzNJDb1Ni+ZMnDoDb6+ilC1TmtO/nWHmvPn06fGWfp179+5z4+ZNbkdGAXDhnw4qHu7uqvRUzilTamoqb3bvyamIM2z5aS1paWlE/XO9zMmpiCq3QOWUKTExkYlTZxDUqgVaD3diY+8Rungpt/66Tcd2bY2ex5BMzs5OWU50rKws8XB3w8+3lFkyJSQkEDJxMh3aBqH1cOfa9RuMCvkCF2dn2gW1NksmgOFDBtG5Zx/q161DQP167AjbzeZtO9i3Q52OcYZkAoiPj+fHnzcyY9IEVXLkJlOhQoVoUK8Ow0d/jp2dLTpvL/YfPMzK1WuZOXmiWTIB/Lh+A64uznh7eXH23Dk+HD6Ctm1a0TSwkSqZAHaG/YKiKPj5+nD5ylWGjx6DX6lSvN2jOxqNhiEDPuDL6TMo5VOCUiVL8uW0mRS0K0g3M/ZNEuZlkgL9qxlTGTN+Iv2HfETMnbt4aj14r8/bfD7yE/06m7Zu4+33/31QQJdefQAYO+pTQkaPNHmmW3/9xaat2wGoVKtepvfu3b5Zf0uNKTNZWFjwv4sXWfHdGu7GxuLs5ET1qpU5GLZdtd7lhvzsTM2Q43T23B+sXL2WB3FxaD3cCahfj+9XLlPt/lxDjlO7oDYsnDOTSTNmMfjjT/Er5cO61StV6+xl6M9u7U/rURSFrv80OavJkExrv1nGyLHj6N7nXe7dv4/O24uJYz/j/X59zJYpMiqKYSNGEx0Tg9bDnZ7dujBmhLq/A3Hx8YwcO45bf93GqUgROrQNYuLYz7CysgLgk2Ef8vDRQ/oP+Zj7Dx5Qo3pVdm1any/vQddonkx52oZxorzSNIqiKC/zxvj4eBwdHbl78yrOTkWMneulpKSmsm3vIVoG1MXKMn+MOyOZDCOZDCOZDCOZchZ77z4uXsWJi4tTrW9QRjmxpogbBTV5azRPUtLpej9G1bz/dXJZQgghhHgFmP80UQghxCtNermbhhToQgghVCUFumlIk7sQQoj/DBk+9fmkhi6EEEJVBYACeaxiF/in+3Z4eLh0insOKdCFEEKoSvPPv7xuQ7yYFOhCCCFUJ8Wx+uQauhBCCPEKkBq6EEIIVRnlSXFSxc+RFOhCCCFUJbetmYY0uQshhBCvAKmhCyGEUFUBNBTIYx07r+///8DgAv3x48c8fvzvmNvx8fHAkwEHUlJTjZ/sJWTkyC95QDIZSjIZRjIZRjLlzJQ5pMndNAwebS0kJIRx48Zlmb969WoKFixo9GBCCCHUk5SURLdu3Uwy2tpGJw/sC+TtCm9iejrB96JktLUXMLhAz66G7uXlReTVS/lq+NSwg8doUq9mvhieECSToSSTYSSTYSRTzmLv3UdbvJRJCvRNzsYp0INipUB/EYO/VTY2NtjY2GSZb2VpmS++nE+TTIaRTIaRTIaRTIbJL5lMmUGa3E1DerkLIYQQrwDznyYKIYR4pcmz3E1DCnQhhBCqKqAxwmhrUp7nSAp0IYQQqpJr6KYh19CFEEKIV4DU0IUQQqhKauimIQW6EEIIVUmnONOQJnchhBDiFSA1dCGEEKqS8dBNQ2roQgghVFXASBNA9erV8ff3Z/78+ab8CP8JJinQU1NT+WzcBIr7V8DO2YMSZSsyftIU0tPT9esoikLIxEl4liyNnbMHDZu34twf51XNVaxMeTT2hbNMA4Z+DEB0dAy93/0Az5KlKeiipXlwBy5dvmLWTAkJCQwcNpyipfyxc/agTJU3WLB4qdnyZLdMY1+YabPmmi0TwPn/XSCoYxcctd44uBelZsNAbty8abZMvd/9IMuymg0DVctjSKanvTdoCBr7wsyeF2rWTCETJ1G6cnXsXT0p8rqOwFbBHA8/YbZMKSkpfPrZWMpXr429qyeeJUvTs9973I6MNFsmgPUbN9EsqD0u3iXQ2Bcm4rczqubJT8LDw/njjz8YMGCAuaPkOyZpcp8yczYLly5jxdcLKFumNCdORfD2+wNwLFSIDwd8AMDUmXOY+VUo3yyaj6+PDxOmTqdJm3ZciAjHwcFBlVzhB/aSlpamf/37H+dp0qYtHdsFoygKbbt0x8rKko0/rKaQgwMzv5pPYOtg/jh5HHt7e5NnAhj66Sj2HjjIt0sXUUznza5f9tJ/yEd4aj0Ibt3K5Hkir1zItP72XWH07T+IDm2DjJ7F0ExX/rxK3SbN6duzB+NGj8TR0ZHzFy5ga2NrtkwAzZsEsnzhv7UKa2tr1fIYmglgw+YtHA8/gadWq2oeQzL5+vgwb8Y0ShQvxsOHD5k1L5SmQe25fOYUrq4uJs+UlJTEqYjfGDNiOBXLl+P+gwcM+WQkQR27cuLQPlXy5JQJIDExiTq1atCxfVveGTBYtRzGIr3cTcMkBfrR4+EEt2pJq+bNACim07Hmx584ceo08KR2Pnv+AkYP/4j2wU8KghVfL8C9eClW//AT7/V9W5Vcz/6BmDxjFiVLFKdBvbpcunyFY7+G83v4Ucr6lwEgdPYM3Ir5sObHdfTr3dPkmeDJsezVvSsN69cD4N0+vVm0dDknTp1WpUDPKY+Hh3um5Ru3biOgfj1KFC9m9CyGZho97gtaNm3C1Inj9euomceQTAA2NtZZjpe5M/11+zYDh33Czo3raNWhk9kzdevcMdPymZMnsnTFKs78fo7GAQ1Mnkmj0RC2ZUOm5V/NmMob9Rtx4+ZNvL28TJ4JoEe3LgBcu35dlf0bnUaDRi6iq84kTe51a9Xkl337uXjpMgC/nTnLoSPHaNmsKQBXr10nKjqapo0D9O+xsbGhQd06HDl23BQRSU5O5tvvf6BPz7fQaDT6oWJtbf+t1VlYWGBtZc2hI0fNkgmgbu2abNq6nb9u30ZRFPbuP8DFy1doFtjYLHmeFh0dw9Ydu+jbq4fqWZ6XKT09na07duFbyodmQe1x0/lQo0FjNmzeYrZMGfYdPISbzgffilV5Z8BgYmLumDVTeno6Pfq+x/Ahg/QnraaU0/cpOTmZr5etwNGxEBXLl8sXmQDi4uLRaDQUdnTMN5mEABMV6J9+NISuHd+kdOXqWDm6ULl2fYYM+ICund4EICo6GgB3d7dM73N3cyMqOsYUEdmweSsPHsTR+61uAJT280Xn7cXIseO4f/8BycnJTJ4+i6joaCKjos2SCWDu9Cn4l/ajaCl/rAu70rztm4TOmk7d2rXMkudpK75bg4PDa7QPbqN6ludliom5Q0JCApNnzKZ5k8bs2rSedm1a075rD/YfPGSWTAAtmjbhu2WL2bNtEzMmTSD85CkatQzSnziaI9OUGbOxtLRkcP/3TZLBkEwAW7bv4DW317F1cmfWvFDCNm/AxcXZrJkyPHr0iBGfh9CtU0eTjcmdU6b/Ao2RJvFiJmly//6n9Xy79gdWL19C2TKliThzliGfjsRT60Gvp76kzz44QFEUk52RLl2xihZNA/XXEa2srFi3ehV9PxiIU9FiWFhYEBjQkBZNm5gkT3aZAOaGLuJY+Ak2/bgGnZcXBw4fof/Qj9F6eBDYqKHJ8zxt2apv6d65Y6ZWDbU9myldedLRMrhVS4YOetJpplLFChw5fpyFS5Znam42VSaAzm+21/+/XFl/qlWujK5Mebbu2Km/zGTKTCdPRzAndCGnjuw3W63ved+ngPr1iDh6kLuxsSxevoJOPXpzfN8vuLm5mi0TQEpKCl169SE9PZ3Q2dNVz2JIpv8KuYZuGiYp0IeP/pwRHw2hS8cOAJQvV5brN28yacYser3VDQ/3J9cVo6Kj0Wo99O+LuXMHdxP8El+/cYPde/exfs2qTPOrVq5ExLFDxMXFkZycgqurCzUaNKZalcpmyfTw4UNGhYzn57Xf6vsjVChfjogzZ5k+5ytVC/TnHaMMBw8f4cLFS3y/YplqGQzJ5OLsjKWlJf5l/DKtW8bPj0NHj5klU3a0Wg903l5cuvynWTIdPHyEmDt38Pb7tyk7LS2Nj0Z+xuz5C7h2/qzJM2Wwt7fHp2QJfEqWoOYb1SlVoQpLV6xi5PBhZsuUkpJCpx69uXrtOnu2bTZZ7dzQ71N+pzHCNXS53JAzkzS5Jz1MokCBzLuyKGChv22teDEdHu7uhO3Zp1+enJzM/kOHqV2zhur5lq/6DjdXV30h+SxHR0dcXV24dPnKk85nrVqaJVNKSgopKSkU0DxzLC0sMt0CaKo8T1u6YhVVK1eiYoXyqubIKZO1tTXVq1bhwsVLmda9ePkyOpU6MOWUKTuxsfe4eesvtCboJJddph5du3Dm+GEijh7UT55aLcOHDGbnxvVmyfQ8iqLwOFn9SxPPy5RRmF+6/Ce7t2zE2dlJ9Sw5ZRIiOyapobdp0ZyJU2fg7VWUsmVKc/q3M8ycN58+Pd4Cnpx5DRnwAV9On0EpnxKUKlmSL6fNpKBdQbr9c51dLenp6Sxf9R29unfF0jLz4fhx/QZcXZzx9vLi7LlzfDh8BG3btKJpYCOzZCpUqBAN6tVh+OjPsbOzReftxf6Dh1m5ei0zJ080eZ4M8fHx/PjzRmZMmqBahtxkGj5kEJ179qF+3ToE1K/HjrDdbN62g3071O0Y97xMCQkJhEycTIe2QWg93Ll2/QajQr7AxdmZdkGtzZLJ2dkpS8FkZWWJh7sbfr6lzJIpMTGRiVNnENSqBVoPd2Jj7xG6eCm3/rpNx3ZtzZIpNTWVN7v35FTEGbb8tJa0tDSi/ulD4+RURNVbD1/0Hb937z43bt7kdmQUABf+6XDs4e5u0jspDCXjoZuGSQr0r2ZMZcz4ifQf8hExd+7iqfXgvT5v8/nIT/TrfDLsQx4+ekj/IR9z/8EDalSvyq5N61W7Bz3D7j37uHHzFn16vpVlWWRUFMNGjCY6Jgathzs9u3VhzIhPstmK6TKt/WYZI8eOo3ufd7l3/z46by8mjv2M9/v1MUsegLU/rUdRFLr+c0nFFF6UqV1QGxbOmcmkGbMY/PGn+JXyYd3qlap3HHxeJgsLC86e+4OVq9fyIC4OrYc7AfXr8f3KZWb9fpvLi47T/y5eZMV3a7gbG4uzkxPVq1bmYNh21XvhPy/Trb/+YtPW7QBUqlUv07K92zfrbx81ZSaATVu38fb7/z5YpUuvJ7//Y0d9SsjokaplelmaAho0eSyRZXCWnGkURVFe5o3x8fE4Ojpy9+ZVnJ2KGDvXS0lJTWXb3kO0DKiLVTY1SXOQTIaRTIaRTIaRTDmLvXcfF6/ixMXFqdYnIKOcOOjpxWsF8naFNyE9nXq3b6qa97/O/N8qIYQQrzQZnMU0pEAXQgihKinQTUNGWxNCCCFeAVJDF0IIoSq5D900pEAXQgihKmlyNw1pchdCCCFeAVJDF0IIoSppcjcNKdCFEEKoSprcTUMKdCGEEKoqoNFQII8lcl7f//+BXEMXQgghXgFSQxdCCKEqaXI3DYML9MePH/P48b9DGMbHxwNPnk+ckppq/GQvISNHfskDkslQkskwkskwkilnpsyhwQid4mRwlhwZPDhLSEgI48aNyzJ/9erVFCxY0OjBhBBCqCcpKYlu3bqZZHCWkyWK85pFHgdnSUun6p9XZXCWFzC4QM+uhu7l5UXk1Uv5arS1sIPHaFKvZr4YzQgkk6Ekk2Ekk2EkU85i791HW7yUSQr0Uz7GKdCrXJYC/UUM/lbZ2NhgY2OTZb6VpWW++HI+TTIZRjIZRjIZRjIZJr9kMmkGI9yHLhfRcya93IUQQohXgPlPE4UQQrzSpJe7aUiBLoQQQlVPCvS8PvrVSGFeYdLkLoQQQrwCpEAXQgihqowm97xO+U27du0oUqQIb775prmjAFKgCyGEUFnGs9zzOuU3gwcPZuXKleaOoScFuhBCCFW9qjX0gIAAHBwczB1DTwp0IYQQr5wDBw7Qpk0bPD090Wg0bNiwIcs6oaGhFC9eHFtbW6pWrcrBgwdNH9SIpJe7EEIIVWmM8GCZ3L4/MTGRihUr8vbbb9OhQ4csy7///nuGDBlCaGgoderUYdGiRbRo0YI//vgDb29vAKpWrZrpCakZdu3ahaen58t9EBVJgS6EEEJVxrwPPWNgsAzPe4ppixYtaNGixXO3N3PmTPr27Uu/fv0AmD17Njt37mTBggVMmjQJgJMnT+YttIlJk7sQQoj/DC8vLxwdHfVTRuGbG8nJyZw8eZKmTZtmmt+0aVOOHDlirKgmZ7IC/a/bt3mrz7s4exWnoIuWSjXrcvJ0hH75+o2baBbUHhfvEmjsCxPx2xmzZkpJSeHTz8ZSvnpt7F098SxZmp793uN2ZKTZMgGETJxE6crVsXf1pMjrOgJbBXM8/IRZMz3tvUFD0NgXZva8ULNm6v3uB2jsC2eaajYMNGsmgPP/u0BQxy44ar1xcC9KzYaB3Lh502yZnj1GGdO0WXPNlikhIYGBw4ZTtJQ/ds4elKnyBgsWL1UtjyGZoqNj6P3uB3iWLE1BFy3Ngztw6fIV1fIUK1M+25/LgKEfA6AoCiETJ+FZsjR2zh40bN6Kc3+cVy1PXhmzU9zNmzeJi4vTTyNHjsx1nrt375KWloa7u3um+e7u7kRFRRm8nWbNmtGxY0e2bdtG0aJFCQ8Pz3UWYzJJk/v9+w+o07gZAfXrsf3nn3BzdeHKn9co7OioXycxMYk6tWrQsX1b3hkw2OyZkpKSOBXxG2NGDKdi+XLcf/CAIZ+MJKhjV04c2meWTAC+Pj7MmzGNEsWL8fDhQ2bNC6VpUHsunzmFq6uLWTJl2LB5C8fDT+Cp1Ro9x8tkat4kkOUL5+tfW1tbmzXTlT+vUrdJc/r27MG40SNxdHTk/IUL2NrYmi1T5JULmd6zfVcYffsPokPbILNlGvrpKPYeOMi3SxdRTOfNrl/20n/IR3hqPQhu3crkmRRFoW2X7lhZWbLxh9UUcnBg5lfzCWwdzB8nj2Nvb2/0TOEH9pKWlqZ//fsf52nSpi0d2wUDMHXmHGZ+Fco3i+bj6+PDhKnTadKmHRciwvNVr+sMmgIaNAXyeA1defL+QoUKGW20tWevyyuKkqtr9Tt37jRKDmMxSYE+ZeZsvIoWZfmif2ttxXS6TOv06NYFgGvXr5siUo6ZHB0dCduyIdN7vpoxlTfqN+LGzZt4e3mZPBNAt84dM72eOXkiS1es4szv52gc0MAsmeBJDWfgsE/YuXEdrTp0MnqOl8lkY2ONh4d7lvnmyjR63Be0bNqEqRPH6+eVKF7MrJmePT4bt24joH491XIZkuno8XB6de9Kw/r1AHi3T28WLV3OiVOnVSnQc8p06fIVjv0azu/hRynrXwaA0NkzcCvmw5of19Gvd0+jZ3r25HzyjFmULFGcBvXqoigKs+cvYPTwj2gf/OTEa8XXC3AvXorVP/zEe33fNnqeV42LiwsWFhZZauMxMTFZau3/JSZpct+0bTvVKlei41u9cNP5ULlWPRYvX2GKXRs1U1xcPBqNJtvaqTkyJScn8/WyFTg6FqJi+XJmy5Senk6Pvu8xfMgg/R88NRl6nPYdPISbzgffilV5Z8BgYmLumC1Teno6W3fswreUD82C2uOm86FGg8Zs2LzFbJmeFR0dw9Ydu+jbq4dZM9WtXZNNW7fz1+3bKIrC3v0HuHj5Cs0CG5slU0YvZ1vbf1tSLCwssLay5tCRo6pkelpycjLffv8DfXq+hUaj4eq160RFR9O0cYB+HRsbGxrUrcORY8dVz/My8tt96NbW1lStWpWwsLBM88PCwqhdu7bxdmRiJinQ/7x6jQVLllGqZEl2blzH+/36MPjjT1n53RpT7N4omR49esSIz0Po1qmj0Zp7XjbTlu07eM3tdWyd3Jk1L5SwzRtwcXE2W6YpM2ZjaWnJ4P7vq5LhZTK1aNqE75YtZs+2TcyYNIHwk6do1DIo21tQTJEpJuYOCQkJTJ4xm+ZNGrNr03ratWlN+6492H/wkFkyPWvFd2twcHiN9sFtVMljaKa506fgX9qPoqX8sS7sSvO2bxI6azp1a9cyS6bSfr7ovL0YOXYc9+8/IDk5mcnTZxEVHU1kVLQqmZ62YfNWHjyIo/db3QCIin6yT3d3t0zrubu5ERUdo3qel2HMJ8VVr14df39/5s+f/8J9JiQkEBERQUREBABXr14lIiKCGzduADBs2DCWLFnCsmXLOH/+PEOHDuXGjRu8/75p/o6pwSRN7unp6VSrUpkvx30OQOVKFTl3/jwLliyjZ/eupoiQp0wpKSl06dWH9PR0QmdPN3umgPr1iDh6kLuxsSxevoJOPXpzfN8vuLm5mjzTydMRzAldyKkj+/N8n6mxMgF0frO9fv1yZf2pVrkyujLl2bpjp76Z0pSZ0pV0AIJbtWTooAEAVKpYgSPHj7NwyXIa1Ktr8kzPWrbqW7p37pipJmqOTHNDF3Es/ASbflyDzsuLA4eP0H/ox2g9PAhs1NDkmaysrFi3ehV9PxiIU9FiWFhYEBjQkBZNmxg9S3aWrlhFi6aBWfqmaMjb9d//qvDwcIMqVSdOnCAg4N9WjGHDhgHQq1cvvvnmGzp37kxsbCzjx48nMjKScuXKsW3bNnTZXL77rzBJDV3r4Y5/ab9M88r4+XHj5i1T7D5bhmZKSUmhU4/eXL12nbDNG1Srnecmk729PT4lS1DzjeosXTAPS0tLlq5YZZZMBw8fIebOHbz9ymFZyBnLQs5cv3GTj0Z+RrEy5c2SKdv3aD3QeXtx6fKfZsnk4uyMpaUl/mWyWeeWOr8HuTlOBw8f4cLFS/TrZfzrwbnJ9PDhQ0aFjGfm5Im0admCCuXLMfD9d+ncoR3T53xllkwAVStXIuLYIR7cvk7klQvs2LiO2Hv3KF5M3T/+12/cYPfefZmu03v8c403o6aeIebOHdxVOKk3BnM0uTds2BBFUbJM33zzjX6d/v37c+3aNR4/fszJkyepX7++cT+4iZmkQK9TsyYXLl3ONO/ipcvovI3fscxQhmTKKMwvXf6T3Vs24uzsZPZM2VEUhcfJ6jQl55SpR9cunDl+mIijB/WTp1bL8CGD2blxvVkyZSc29h43b/2FVqVOcjllsra2pnrVKly4eCnzOpcvo1Ohg6UhmZ62dMUqqlauRMUK6pyEGZopJSWFlJQUCmgy/2mysLAgPT3dLJme5ujoiKurC5cuX3nSSa9VS1UyZVi+6jvcXF1p1byZfl7xYjo83N0J27NPPy85OZn9hw5Tu2YNVfO8rIwnxeV1Ei9mkib3oYP6U7tRU76cNoNO7dvx64mTfL18BV9/NVu/zr1797lx8ya3I5/0Osz4BfNwd1elp3JOmVJTU3mze09ORZxhy09rSUtLI+qf62VOTkVUuQUqp0yJiYlMnDqDoFYt0Hq4Ext7j9DFS7n11206tmtr9DyGZHJ2dspyomNlZYmHuxt+vqXMkikhIYGQiZPp0DYIrYc7167fYFTIF7g4O9MuqLVZMgEMHzKIzj37UL9uHQLq12NH2G42b9vBvh3qdIwzJBM8efLWjz9vZMakCarkyE2mQoUK0aBeHYaP/hw7O1t03l7sP3iYlavXMnPyRLNkAvhx/QZcXZzx9vLi7LlzfDh8BG3btKJpYCNVMsGTSwHLV31Hr+5dsbT890+1RqNhyIAP+HL6DEr5lKBUyZJ8OW0mBe0K0q1T/hjG81kajPCkOKMkecUpLykuLk4BlLs3rypK4oMcp80/rVXK+fsrNjY2Smk/X+XreXMyLV++cL4CZJnGjvrUoO0riQ+U5Li7yoYNG5TkuLt5znT1j9+yzQMoe7dvNkumh7FRSrug1oqnVqtYW1srWg8PJahVC+XXA3sMzmPsTNlNOm8vZdaUL82WKelupNK0cSPF1cVFsbKyUry9iiq9undVblz43ezHaWnoV4pPyRKKra2tUrF8OWXD99+ZPdOir2YrdnZ2yoPb13OVRa1MkVcuKL3f6qZ4arWKra2t4udbSpkxaYKSnnDfbJnmTJusFH39df336bNPP1Ye349R9Tjt3LheAZQLESeyLEtPuK+MHfWp4uHurtjY2Cj169ZWzv56JFd57t68qgBKXFzcyxYDBpcTf1b1U+7U8M/T9GdVP9Xz/tdpFEVRXuZEID4+HkdHR+7evIqzU5G8nlcYRUpqKtv2HqJlQF2sLPPHY+olk2Ekk2Ekk2EkU85i793Hxas4cXFxqvUNyignrlYrjYOlRZ629XdqGsVP/E/VvP918ix3IYQQ6jJGh7h/2twNvW3t/yPznyYKIYQQBjL0trX/j6RAF0IIoSpzjIf+/5EU6EIIIVSlKfBkyus2xIvJIRJCCCFeAVJDF0IIoSppcjcNKdCFEEKoq4DmyZTXbYgXkiZ3IYQQ/xly29rzSQ1dCCGEuowxoPk/75fb1p5PCnQhhBCqkmvopiEFuhBCCHXJNXSTMLhAf/z4MY8f/ztEZ3x8PPDk+cQpqanGT/YSMnLklzwgmQwlmQwjmQwjmXKWX3II4zF4cJaQkBDGjRuXZf7q1aspWLCg0YMJIYRQT1JSEt26dTPJ4Cw3G1akUB4HZ4lPTcNr328yOMsLGFygZ1dD9/LyIvLqpXw12lrYwWM0qVczX4xmBJLJUJLJMJLJMJIpZ7H37qMtXsokBfqtRpWMUqAX3RMhBfoLGPytsrGxwcbGJst8K0vLfPHlfJpkMoxkMoxkMoxkMkx+yZQfMgjjkvvQhRBCqCuvY6c+ddvbq3QfemJiolG3J6doQgghVKXRaNDksZe65hW8D93d3Z1OnTrRp08f6tatm+ftSQ1dCCGEMIM1a9YQFxdH48aN8fX1ZfLkydy+ffultycFuhBCCHUZscn9VdKmTRvWrVvH7du3+eCDD1izZg06nY7WrVuzfv16UnN5a6EU6EIIIdRVgH8fLvPSk7k/hHqcnZ0ZOnQov/32GzNnzmT37t28+eabeHp68vnnn5OUlGTQduQauhBCCGFGUVFRrFy5kuXLl3Pjxg3efPNN+vbty+3bt5k8eTLHjh1j165dOW5HCnQhhBCqkme5Z2/9+vUsX76cnTt34u/vz4ABA3jrrbcoXLiwfp1KlSpRuXJlg7YnBboQQgh1ybPcs/X222/TpUsXDh8+TPXq1bNdp0SJEowePdqg7UmBLoQQQl1GHD71VRIZGZnjo9Pt7OwYO3asQdt7hbsZCCGEEPmXg4MDMTExWebHxsZiYZH7R+VKgS6EEEJVmgLGmeDVelLc84ZSefz4MdbW1rnenskK9L9u3+atPu/i7FWcgi5aKtWsy8nTEfrliqIQMnESniVLY+fsQcPmrTj3x3nV8oRMnITGvnCmyaO4r355dHQMvd/9AM+SpSnooqV5cAcuXb6iWh5DMiUkJDBw2HCKlvLHztmDMlXeYMHipWbN9OyyjGnarLlmywRw/n8XCOrYBUetNw7uRanZMJAbN2+aLVPvdz/Isrxmw0DV8hiS6WnvDRqCxr4ws+eFmjVTyMRJlK5cHXtXT4q8riOwVTDHw0+YLVNKSgqffjaW8tVrY+/qiWfJ0vTs9x63IyPNlglg/cZNNAtqj4t3CTT2hYn47YyqefLMiPehh4eH88cffzBgwAAzf6iXN3fuXObOnYtGo2HJkiX613PnzmXWrFkMGDCA0qVL53q7JrmGfv/+A+o0bkZA/Xps//kn3FxduPLnNQo7OurXmTpzDjO/CuWbRfPx9fFhwtTpNGnTjgsR4Tg4OKiSq2yZMuzeskH/OqOJQ1EU2nbpjpWVJRt/WE0hBwdmfjWfwNbB/HHyOPb29qrkeVEmgKGfjmLvgYN8u3QRxXTe7PplL/2HfISn1oPg1q3MkinyyoVM627fFUbf/oPo0DZItTw5Zbry51XqNmlO3549GDd6JI6Ojpy/cAFbG1uzZQJo3iSQ5Qv/rVW8zBm4sTMBbNi8hePhJ/DUalXPk1MmXx8f5s2YRonixXj48CGz5oXSNKg9l8+cwtXVxeSZkpKSOBXxG2NGDKdi+XLcf/CAIZ+MJKhjV04c2qdanhdlAkhMTKJOrRp0bN+WdwYMVjWHML5Zs2YBT8qahQsXZvrZWltbU6xYMRYuXJjr7ZqkQJ8yczZeRYuyfNG/Z//FdDr9/xVFYfb8BYwe/hHtg58UBCu+XoB78VKs/uEn3uv7tiq5LC0t8PBwzzL/0uUrHPs1nN/Dj1LWvwwAobNn4FbMhzU/rqNf756q5HlRJoCjx8Pp1b0rDevXA+DdPr1ZtHQ5J06dVrVAf1GmZ+dv3LqNgPr1KFG8mGp5cso0etwXtGzahKkTx+vnqZ0np0wANjbWL1yuhpwy/XX7NgOHfcLOjeto1aGT2TN169wx0+uZkyeydMUqzvx+jsYBDUyeydHRkbCnClWAr2ZM5Y36jbhx8ybeXl4mzwTQo1sXAK5dv67a/o1JU8AIz3J/hXq5X716FYCAgADWr19PkSLGGYLcJE3um7Ztp1rlSnR8qxduOh8q16rH4uUr9MuvXrtOVHQ0TRsH6OfZ2NjQoG4djhw7rlquS1f+xLNkaYr7V6BLrz78efUagH7cd1vbf2t0FhYWWFtZc+jIUdXyvCgTQN3aNdm0dTt/3b6Noijs3X+Ai5ev0CywsdkyPS06OoatO3bRt1cPVfO8KFN6ejpbd+zCt5QPzYLa46bzoUaDxmzYvMVsmTLsO3gIN50PvhWr8s6AwcTE3DFrpvT0dHr0fY/hQwbpT1xNwdDvU3JyMl8vW4GjYyEqli+XLzIBxMXFo9FoMrUwmjtTviePfs3W3r17jVaYg4lq6H9evcaCJcsYNmgAoz4exq8nTzH440+xsbamZ/euREVHA+Du7pbpfe5ubly/oc51zxrVqrFy8QJ8fXyIjrnDhKnTqN2oKedOHKO0ny86by9Gjh3HormzsbcvyMy584mKjiYyKlqVPDllcnZ2Yu70KbwzYDBFS/ljaWlJgQIFWDJ/LnVr1zJbpqet+G4NDg6v0T64jWp5csqUkpJCQkICk2fMZsLno5nyRQg7wn6hfdce7N2+mQb18j6iUW4zOTs70aJpEzq2b4vOy4ur168zZvxEGrUM4uThfdjY2Jgl05QZs7G0tGRw//dV2f/LZALYsn0HXXr1JSkpCa2HB2GbN+Di4mzWTBkePXrEiM9D6Napo6ojfuUmk/hvGTZsGF988QX29vYMGzbshevOnDkzV9s2SYGenp5OtSqV+XLc5wBUrlSRc+fPs2DJMnp276pfT0PmMzBFUVR7OlCLZk30/y8P1KpRnZLlKrPiu9UMGzyQdatX0feDgTgVLYaFhQWBAQ1p0bTJc7dnikxzQxdxLPwEm35cg87LiwOHj9B/6MdoPTwIbNTQLJmetmzVt3Tv3DFTy4apM3Xp2AGA4FYtGTroSaeZShUrcOT4cRYuWa5agZ7Tcer8Znv98nJl/alWuTK6MuXZumOn/jKTKTM1qFeXOaELOXVkv0mfwGXI9ymgfj0ijh7kbmwsi5evoFOP3hzf9wtubq5mywRPOsh16dWH9PR0QmdPVyVLbjP9Z8iDZfROnz5NSkqK/v/P8zK/lyYp0LUe7viX9ss0r4yfH+s2bAbAw/3JdaKo6Gi0Wg/9OjF37uCu0i/xs+zt7Slf1p9LV/4EoGrlSkQcO0RcXBzJySm4urpQo0FjqlUx7BF8xs708OFDRoWM5+e139KqeTMAKpQvR8SZs0yf85VqBfqLMj3t4OEjXLh4ie9XLDNJjudlcnF2xtLSEv8yWb9vh44eM0um7Gi1Hui8vbh0OfvlamcqUKAAMXfu4O33b1N2WloaH438jNnzF3Dt/FmTZ3p6nk/JEviULEHNN6pTqkIVlq5YxcjhL67NqJkpJSWFTj16c/XadfZs22zy8bhz+j7ld/Lo13/t3bs32/8bg0muodepWZMLly5nmnfx0mV03k86lBQvpsPD3Z2wPfv0y5OTk9l/6DC1a9YwRUQeP37M+QsX0T7TCcXR0RFXVxcuXb7ypPNZq5YmyfNsppSUFFJSUiigyfwjs7CwID093SyZnrZ0xSqqVq5ExQrlTZYlu0zW1tZUr1qFCxcvZVrn4uXL6FTswPSiTNmJjb3HzVt/PXe52pl6dO3CmeOHiTh6UD95arUMHzKYnRvXmyXT8yiKwuPkx2bLlFGYX7r8J7u3bDRLk7chx0kIk9TQhw7qT+1GTfly2gw6tW/HrydO8vXyFXz91WzgyZnXkAEf8OX0GZTyKUGpkiX5ctpMCtoVpFunN1XJ9PHIz2jTsjneXkWJuXOXCVOmEf/33/T65xLAj+s34OrijLeXF2fPnePD4SNo26YVTQMbqZInp0yFChWiQb06DB/9OXZ2tui8vdh/8DArV69l5uSJZsmUIT4+nh9/3siMSRNUy5GbTMOHDKJzzz7Ur1uHgPr12BG2m83bdrBvh3od416UKSEhgZCJk+nQNgithzvXrt9gVMgXuDg70y6otVkyOTs7ZSmYrKws8XB3w8+3lFkyJSYmMnHqDIJatUDr4U5s7D1CFy/l1l+36diurVkypaam8mb3npyKOMOWn9aSlpZG1D/9aJyciqh262FO3/F79+5z4+ZNbkdGAegrTB7u7ia/k8Ig0uSu1759+5xX+sf69bk7uTZJgV69ahV+XvstIz8fz/hJUyleTMfsqZPo3uXf22Q+GfYhDx89pP+Qj7n/4AE1qldl16b1qt2Dfuv2bbr27sfd2FhcXVyo+UY1ju0NQ+ftDUBkVBTDRowmOiYGrYc7Pbt1YcyIT1TJYmimtd8sY+TYcXTv8y737t9H5+3FxLGf8X6/PmbLBLD2p/UoikLXf65fqy2nTO2C2rBwzkwmzZjF4I8/xa+UD+tWr1S18+CLMj18+JCz5/5g5eq1PIiLQ+vhTkD9eny/cplq3++cMpnLizI9evSI/128yIrv1nA3NhZnJyeqV63MwbDtqvbCf1Gma9evs2nrdgAq1aqX6X17t2/W30JqykwAm7Zu4+33/32wSpdeT/4GjB31KSGjR6qSKW+M0Uv91SjQHVW8O0KjPO/ZczmIj4/H0dGRuzev4uxkvG73eZGSmsq2vYdoGVAXK8v8Me6MZDKMZDKMZDKMZMpZ7L37uHgVJy4uTrU+ARnlREzn+hSyzttnjk9Oxe37A6rm/a+TZ7kLIYT4z3iVnuVubOY/TRRCCPFqM+I19PDw8P90Db1KlSr88ssvFClShMqVK7+w9/6pU6dytW0p0IUQQqhKblv7V3BwsP5hUm3btjXqtqVAF0IIIUxk7Nix2f7fGKRAF0IIoS65be2FTpw4wfnz59FoNJQpU4aqVau+1HakQBdCCKEuYwyu8oo0uT/t1q1bdO3alcOHD1O4cGEAHjx4QO3atVmzZg1euXwYlvRyF0IIIcygT58+pKSkcP78ee7du8e9e/c4f/48iqLQt2/fXG9PauhCCCFUJeOhZ+/gwYMcOXIEP79/x57w8/Pjq6++ok6dOrnenhToQggh1CVN7tny9vbWj7z2tNTUVF5//fVcb0+a3IUQQggzmDp1KoMGDeLEiRNkPLT1xIkTfPjhh0yfnvsheqWGLoQQQl0FMEIvd6MkMbsiRYpkuqc+MTGRGjVqYPnP44BTU1OxtLSkT58+ub5P3eAC/fHjxzx+/O8QhvHx8cCT5xOnpKbmaqdqyciRX/KAZDKUZDKMZDKMZMqZKXPIg2X+NXv2bNW2bfDgLCEhIYwbNy7L/NWrV1OwYEGjBxNCCKGepKQkunXrZpLBWWLfaUoha6u8bSs5BefFu2RwlhcwuIY+cuRIhg0bpn8dHx+Pl5cXAbWq56vR1sIOHqNJvZr5YjQjkEyGkkyGkUyGkUw5i71339wRxFMePnyYpYNcbk9cDP5W2djY6J8/+zQrS8t88eV8mmQyjGQyjGQyjGQyTH7JZNIM0ss9W4mJiXz66af88MMPxMbGZlmelpaWq+29It0MhBBC5FsZBXpeJ16t4VM/+eQT9uzZQ2hoKDY2NixZsoRx48bh6enJypUrc709858mCiGEEAb6rw+f+rTNmzezcuVKGjZsSJ8+fahXrx4+Pj7odDq+++47unfvnqvtSQ1dCCGEyoxRO3/1mtzv3btH8eLFgSfXy+/duwdA3bp1OXDgQK63JwW6EEIIdRUoYJzpFVOiRAmuXbsGgL+/Pz/88APwpOaeMVhLbrx6R0gIIYT4D3j77bf57bffgCd3kmVcSx86dCjDhw/P9fbkGroQQgh1SS/3bA0dOlT//4CAAM6fP8/JkycpWbIkFStWzPX2pEAXQgihLinQDaLT6dDpdC/9fmlyF0IIIczkl19+oXXr1pQsWRIfHx9at27N7t27X2pbUqALIYRQlxHvQ3+VzJs3j+bNm+Pg4MCHH37I4MGDKVSoEC1btmTevHm53p40uQshhFCXMXqpv4K93CdNmsSsWbMYOHCgft7gwYOpU6cOEydOzDTfEK/eERJCCJG/SA09W/Hx8TRv3jzL/KZNm+pHNM0NsxTok6bNRGNfmCHDR+jnrd+4iWZB7XHxLoHGvjARv50xa6aUlBQ+/Wws5avXxt7VE8+SpenZ7z1uR0aaLRNAyMRJlK5cHXtXT4q8riOwVTDHw0+YNdPT3hs0BI19YWbPCzVrpt7vfoDGvnCmqWbDQLNmAjj/vwsEdeyCo9YbB/ei1GwYyI2bN82W6dljlDFNmzXXbJkSEhIYOGw4RUv5Y+fsQZkqb7Bg8VKT5HlepujoGHq/+wGeJUtT0EVL8+AOXLp8RbUMIRMnZfmZeBT31S9XFIWQiZPwLFkaO2cPGjZvxbk/zquWR6gjKCiIn3/+Ocv8jRs30qZNm1xvz+RN7uEnT/H18m+oUK5spvmJiUnUqVWDju3b8s6AwWbPlJSUxKmI3xgzYjgVy5fj/oMHDPlkJEEdu3Li0D6zZALw9fFh3oxplChejIcPHzJrXihNg9pz+cwpXF1dzJIpw4bNWzgefgJPrVbVHIZmat4kkOUL/33es7W1tVkzXfnzKnWbNKdvzx6MGz0SR0dHzl+4gK2NrdkyRV65kOn19l1h9O0/iA5tg8yWaeino9h74CDfLl1EMZ03u37ZS/8hH+Gp9SC4dSuTZ1IUhbZdumNlZcnGH1ZTyMGBmV/NJ7B1MH+cPI69vb0qWcqWKcPuLRv0ry0sLPT/nzpzDjO/CuWbRfPx9fFhwtTpNGnTjgsR4Tg4OKiSJ0+kl7ve3Ln/niyXKVOGiRMnsm/fPmrVqgXAsWPHOHz4MB999FGut23SGnpCQgLd+7zD4nlzKVKkcKZlPbp14fORnxIY0MCUkZ6bydHRkbAtG+jUoR1+vqWo+UZ1vpoxlZOnI1SvUb3oOHXr3JHARg0pUbwYZf3LMHPyROLj4znz+zmzZQL46/ZtBg77hO+WLcbKyjTniTllsrGxxsPDXT85mWCY3xdlGj3uC1o2bcLUieOpXKkiJYoXo1XzZri5uZot09PHx8PDnY1btxFQvx4lihczW6ajx8Pp1b0rDevXo5hOx7t9elOxfDlOnDptlkyXLl/h2K/hLJg9k+pVq+DnW4rQ2TNISExkzY/rVMtjaWmR6WeTccKuKAqz5y9g9PCPaB8cRLmy/qz4egFJD5NY/cNPquXJE2ly15s1a5Z+Wrp0KUWKFOGPP/5g6dKlLF26lHPnzlG4cGGWLVuW622btEAfMPRjWjVrSmCjhqbc7QvlJlNcXDwajYbCjo75IlNycjJfL1uBo2MhKpYvZ7ZM6enp9Oj7HsOHDKKsfxlVcxiaCWDfwUO46XzwrViVdwYMJibmjtkypaens3XHLnxL+dAsqD1uOh9qNGjMhs1bzJbpWdHRMWzdsYu+vXqYNVPd2jXZtHU7f92+jaIo7N1/gIuXr9AssLFZMj1+/BgAW9t/W1IsLCywtrLm0JGjquW5dOVPPEuWprh/Bbr06sOfV68BcPXadaKio2naOEC/ro2NDQ3q1uHIseOq5RHGcfXqVYOmP//8M9fbNlmT+9of13Eq4gzhB/eYapc5yk2mR48eMeLzELp16qjqSD+GZNqyfQddevUlKSkJrYcHYZs34OLibLZMU2bMxtLSksH931ctQ24ztWjahI7t26Lz8uLq9euMGT+RRi2DOHl4HzY2NibPFBNzh4SEBCbPmM2Ez0cz5YsQdoT9QvuuPdi7fTMN6tU1eaZnrfhuDQ4Or9E+OPfX7oyZae70KbwzYDBFS/ljaWlJgQIFWDJ/LnVr1zJLptJ+vui8vRg5dhyL5s7G3r4gM+fOJyo6msioaFXy1KhWjZWLF+Dr40N0zB0mTJ1G7UZNOXfiGFHRT/bp7u6W6T3ubm5cv2Ga/hi5Jr3cc6QoCgCaPLREmKRAv3nrFh8OH8GuTeszneWaU24ypaSk0KVXH9LT0wmdPd3smQLq1yPi6EHuxsayePkKOvXozfF9v6jSdJtTppOnI5gTupBTR/bn6YtozEwAnd9sr/9/ubL+VKtcGV2Z8mzdsZP2wca/PpxTpnQlHYDgVi0ZOmgAAJUqVuDI8eMsXLJclQI9t793y1Z9S/fOHVX9HTUk09zQRRwLP8GmH9eg8/LiwOEj9B/6MVoPD1Va93LKZGVlxbrVq+j7wUCcihbDwsKCwICGtGjaxOhZMrRo9u+2ywO1alSnZLnKrPhuNTXfqA6A5pnRxxRFMdnvYK7JNfTnWrlyJdOmTePSpUsA+Pr6Mnz4cHr0yH1LmUkK9JOnI4i5c4eqdRvq56WlpXHg0BHmLVrM4/sxmTp85KdMKSkpdOrRm6vXrrNn22ZVa+eGZrK3t8enZAl8Spag5hvVKVWhCktXrGLk8GEmzzTlixBi7tzB269cpuUfjfyM2fMXcO38WZNnyu77pNV6oPP24tLl3DdjGSNT4p3bWFpa4l/GL9P7yvj5cejoMbNkevo4HTx8hAsXL/H9itxftzNmprjIG4wKGc/Pa7+lVfNmAFQoX46IM2eZPucrVQp0Q45T1cqViDh2iLi4OJKTU3B1daFGg8ZUq1LZ6HmyY29vT/my/ly68idt27QGICo6Gq3WQ79OzJ07uKvcH0MY18yZMxkzZgwDBw6kTp06KIrC4cOHef/997l7926mZ70bwiQFeuOGDTj765FM895+fwClfUvx6bAhJi/MDc2UUZhfuvwne7dvxtnZyeyZsqMoCo+TH5slk9bDI8u1zWbBHejRtTNv9+hulkzZHafY2HvcvPUXWg93s2SysbGhetUqXLh4KdM6Fy9fRuflZZZMTx+npStWUbVyJSpWKK9KFkMzpaWlkZKSQgFN5uZVCwsL0tPTzZLp6ePk+E//mUuXr3Di1Gm+GDNalUzPevz4MecvXKRenVoUL6bDw92dsD37qFzpyQAeycnJ7D90mClfjDNJnlzTYIQaulGS5CtfffUVCxYsoGfPnvp5wcHBlC1blpCQkPxZoDs4OFCurH+mefb2BXF2ctLPv3fvPjdu3uR2ZBQAFy5dBsDD/UkPT1NnSk1N5c3uPTkVcYYtP60lLS2NqH+ulzk5FVHlFqicMiUmJjJx6gyCWrVA6+FObOw9Qhcv5dZft+nYrq3R8xiSCchyomNlZYmHuxt+vqXMkikhIYGQiZPp0DYIrYc7167fYFTIF7g4O9MuqLVZMgEMHzKIzj37UL9uHQLq12NH2G42b9vBvh3qdIwzJBM8ebjFjz9vZMakCarkyG2mBvXqMHz059jZ2aLz9mL/wcOsXL2WmZMnmi3Tj+s34OrijLeXF2fPnePD4SNo26YVTQMbqZLp45Gf0aZlc7y9ihJz5y4Tpkwj/u+/6dW9KxqNhiEDPuDL6TMo5VOCUiVL8uW0mRS0K0i3Tm+qkifPpMk9W5GRkdSuXTvL/Nq1axP5Es88yTePft20dRtvvz9A/7pLrz4AjB31KSGjR5o8z62//mLT1u0AVKpVL9Oyvds307B+vezepioLCwv+d/EiK75bw93YWJydnKhetTIHw7abtHd5fmdhYcHZc3+wcvVaHsTFofVwJ6B+Pb5fucys9+i2C2rDwjkzmTRjFoM//hS/Uj6sW71S1c5ehlj703oURaFrxw5mzZFh7TfLGDl2HN37vMu9+/fReXsxcexnvN+vj9kyRUZFMWzEaKJjYtB6uNOzWxfGjPhEtf3dun2brr37cTc2FlcXF2q+UY1je8PQeXsD8MmwD3n46CH9h3zM/QcPqFG9Krs2rc+f96CL5/Lx8eGHH35g1KhRmeZ///33lCqV+wqRRsnoWpdL8fHxODo6cvfmVZxNcH+vIVJSU9m29xAtA+piZZk/zlUkk2Ekk2Ekk2EkU85i793Hxas4cXFxqvUNyign7o3oSiGbvLVqxj9OxmnyGlXzmtq6devo3LkzgYGB1KlTB41Gw6FDh/jll1/44YcfaNeuXa6292rfByCEECIfMMZDZZ40uVevXh1/f3/mz5//4l3+B3To0IFff/0VFxcXNmzYwPr163FxceHXX3/NdWEO+ajJXQghxCvKiNfQw8PDX4kaekpKCu+++y5jxozh22+/Nco2pYYuhBBCmJiVlVW2A7PkhRToQggh1CXPcs9Wu3bt2LBhg9G2J03uQggh1CWPfs2Wj48PX3zxBUeOHKFq1apZRu4bPDh3I49KgS6EEEKYwZIlSyhcuDAnT57k5MmTmZZpNBop0IUQQuQz8mCZbF29elX/f2MMzvLqtWEIIYTIX+Qa+nMtXbqUcuXKYWtri62tLeXKlWPJkiUvtS2poQshhBBmMGbMGGbNmsWgQYOoVevJEyOPHj3K0KFDuXbtGhMm5O5xzFKgCyGEUJc0uWdrwYIFLF68mK5du+rnBQUFUaFCBQYNGiQFuhBCiHxGerlnKy0tjWrVqmWZX7VqVVJTU3O9PYML9MePH/P48b9DdMbHxwNPnk+c8hI7VkNGjvySBySToSSTYSSTYSRTzkyaQ2ro2XrrrbdYsGABM2fOzDT/66+/pnv33A8/bfDgLCEhIYwbl3Ws3dWrV1OwYMFc71gIIYT5JCUl0a1bN9MMzjK+H4Vs8zg4y6NknD5f8koNzjJo0CBWrlyJl5cXNWvWBODYsWPcvHmTnj17YmVlpV/32UI/OwYX6NnV0L28vIi8eilfjbYWdvAYTZo0yXQgzCklJYWwsDDJlAPJZBjJZBjJlLPY2Fi0Wq1pCvQv3jFOgT5m8StVoAcEBBi0nkajYc+ePTmuZ3CTu42NDTY2NlnmW1la5ouhAJ9mZWWVL35hniaZDCOZDCOZDCOZXpzDZOQaerb27t1r1O29ekdICCGE+H8of1WthRBCvHo0GKFTnFGSvNKkQBdCCKEu6eVuEtLkLoQQQrwCpIYuhBBCXVJDNwkp0IUQQqhLY4Re7hppUM6JHCEhhBDiFSA1dCGEEOqSJneTkAJdCCGEuqRANwkp0IUQQqhLUyDv18DlGnqO5AgJIYQQrwCzFOiTps1EY1+YIcNH6OcpikLIxEl4liyNnbMHDZu34twf51XLsGDBAipUqEChQoUoVKgQtWrVYvv27frl0dHR9O7dG09PTwoWLEjz5s25dOmSankMyZSQkMDAgQMpWrQodnZ2lClThgULFpg1k0ajyXaaNm2a2TIBnD9/nqCgIBwdHXFwcKBmzZrcuHHDbJl69+6d5RhljK5krkxPe++999BoNMyePdusmUJCQihdujT29vYUKVKEwMBAjh8/brZMKSkpfPrpp5QvXx57e3s8PT3p2bMnt2/fNlsmgPXr19OsWTNcXFzQaDRERESomifPCmiMM4kXMnmBHn7yFF8v/4YK5cpmmj915hxmfhXKvJlTCT+wBw93d5q0acfff/+tSo6iRYsyefJkTpw4wYkTJ2jUqBHBwcGcO3cORVFo27Ytf/75Jxs3buT06dPodDoCAwNJTExUJU9OmQCGDh3Kjh07+Pbbbzl//jxDhw5l0KBBbNy40WyZIiMjM03Lli1Do9HQoUMHs2W6cuUKdevWpXTp0uzbt4/ffvuNMWPGYGtra7ZMAM2bN890rLZt26ZaHkMzAWzYsIHjx4/j6empah5DMvn6+jJv3jzOnj3LoUOHKFasGE2bNuXOnTtmyZSUlMSpU6cYM2YMp06dYv369Vy8eJGgoCDV8uSUCSAxMZE6deowefJkVXMYTUaTe14n8WLKS4qLi1MA5e7Nq4qS+MCg6e/oW0opn5JK2OYNSoN6dZQP+7+vKIkPlPSE+4qHu7syeXyIft1H96IVR8dCysK5swzefnLcXWXDhg1KcnLyS32mIkWKKEuWLFEuXLigAMrvv/+uX5aamqo4OTkpixcvztU2k5OTjZJJURSlbNmyyvjx4zMtr1KlivLZZ5+ZLdOzgoODlUaNGuV6m8bM1LlzZ+Wtt956qe2olalXr15KcHBwvsqkKIpy69Yt5fXXX1d+//13RafTKbNmzTJ7pqdl/J3ZvXt3vsn066+/KoBy/fp1s2e6evWqAiinT5/O9fbu3r2rAEpcXNxL5TFExs/v3qxhSurCkXma7s0apnre/zqTnvIMGPoxrZo1JbBRw0zzr167TlR0NE0b/zs2rI2NDQ3q1uHIMXWb2wDS0tJYu3YtiYmJ1KpVSz/u+9M1OgsLC6ytrTl06JDqebLLBFC3bl02bdrEX3/9haIo7N27l4sXL9KsWTOzZXpadHQ0W7dupW/fvibJk12m9PR0tm7diq+vL82aNcPNzY0aNWqwYcMGs2XKsG/fPtzc3PD19eWdd94hJibGrJnS09Pp0aMHw4cPp2zZsjlswTSZnpacnMzXX3+No6MjFStWzBeZAOLi4tBoNBQuXDjfZMr3Mnq553USL2SyXu5rf1zHqYgzhB/MOkh7VHQ0AO7ubpnmu7u5cf3GTdUynT17llq1avHo0SNee+01fv75Z/z9/UlJSUGn0zFy5EgWLVqEvb09M2fOJCoqisjISNXyvCgTwNy5c3nnnXcoWrQolpaWFChQgCVLllC3bl2zZXraihUrcHBwoH379qrmeVGmqKgoEhISmDx5MhMmTGDKlCns2LGD9u3bs3fvXho0aGDyTAAtWrSgY8eO6HQ6rl69ypgxY2jUqBEnT57ExsbGLJmmTJmCpaUlgwcPVm3/uc0EsGXLFrp06UJSUhJarZawsDBcXFzMminDo0ePGDFiBN26daNQoUL5ItN/goyHbhImKdBv3rrFh8NHsGvT+hdex9Q8Mz6eoihoVDwr8/PzIyIiggcPHrBu3Tp69erF/v378ff3Z926dfTt2xcnJycsLCwIDAykRYsWqmUxJNPcuXM5duwYmzZtQqfTceDAAfr3749WqyUwMNAsmZ62bNkyunfvruq16pwyZdSagoODGTp0KACVKlXiyJEjLFy4UNUC/UXHqXPnzvr1ypUrR7Vq1dDpdGzdulXVE6DnZXr48CFz5szh1KlTqv6O5SZTxvcpICCAiIgI7t69y+LFi+nUqRPHjx/Hzc0thy2rlwmedJDr0qUL6enphIaGqpYlN5mEeJpJCvSTpyOIuXOHqnUb6uelpaVx4NAR5i1azIWIE8CTmrpW66FfJ+bOHdzdXFXLZW1tjY+PDwDVqlUjPDycOXPmsGjRIqpWrUpERARxcXEkJyfj6upKjRo1qFatmmp5XpRp9uzZjBo1ip9//plWrVoBUKFCBSIiIpg+fbqqBfqLjlOGgwcPcuHCBb7//nvVchiS6auvvsLS0jLLH70yZcqofrnEkOOUQavVotPpVL9z4nmZypQpQ0xMDN7e3vp109LS+Oijj5g9ezbXrl0zeaaM42Rvb4+Pjw8+Pj7UrFmTUqVKsXTpUkaOHGm2TCkpKXTq1ImrV6+yZ88e1WvnhmT6T3kFHyxz8+ZNevToQUxMDJaWlowZM4aOHTuaNZNJCvTGDRtw9tcjmea9/f4ASvuW4tNhQyhRvBge7u6E7dlH5UpPrpUlJyez/9BhpnwxzhQRgSctAhnXzzM4OjoCcOnSJU6cOMEXX3xhsjxPZ0pJSSElJYUCzzQ7WVhYkJ6ebpZMT1u6dClVq1Y12bXO52WytramevXqXLhwIdPyixcvotPpzJIpO7Gxsdy8eROtVmuWTD169MhyEtisWTN69OjB22+/bZZML7tcDU/vM6Mwv3TpEnv37sXZ2dmkWbLL9J/zCj5YxtLSktmzZ1OpUiViYmKoUqUKLVu2xN7e3nyZTLETBwcHypXNXGOyty+Is5OTfv6QAR/w5fQZlPIpQamSJfly2kwK2hWkW6c3Vck0atQoWrRogZeXF3///Tdr165l37597NixA4Aff/wRV1dXvL29OXv2LB9++CFt27aladOmquTJKVOhQoVo0KABw4cPx87ODp1Ox/79+1m5ciUzZ840S6YM8fHx/Pjjj8yYMUO1HLnJNHz4cDp37kz9+vUJCAhgx44dbN68mX379pklU0JCAiEhIXTo0AGtVsu1a9cYNWoULi4utGvXziyZnJ2dsxRMVlZWeHh44OfnZ5ZMiYmJTJw4kaCgILRaLbGxsYSGhnLr1i1Vaz4vypSamsqbb77JqVOn2LJlC2lpaURFRQHg5OSEtbW1yTMB3Lt3jxs3bujvh884gfXw8MDDw+O52xXGo9Vq9Sfkbm5uODk5ce/evVe/QDfEJ8M+5OGjh/Qf8jH3HzygRvWq7Nq0HgcHB1X2Fx0dTY8ePYiMjMTR0ZEKFSqwY8cOmjRpAjy5v3rYsGFER0ej1Wrp2bMnY8aMUSWLoZnWrl3LyJEj6d69O/fu3UOn0zFx4kTef/99s2XKyKUoCl27dlUtR24ytWvXjoULFzJp0iQGDx6Mn58f69atU7Xz4IsyPXz4kLNnz7Jy5UoePHiAVqslICCA77//XrXvd06ZzOVFmR49esT//vc/VqxYwd27d3F2dqZ69eocPHhQ1V74L8p07do1Nm3aBDzpi/G0vXv30rBhQ5NnAti0aVOmlpQuXboAMHbsWEJCQlTJlCcajNDknrvVDxw4wLRp0zh58iSRkZH8/PPPtG3bNtM6oaGhTJs2jcjISMqWLcvs2bOpV69erqOdOHGC9PR0vLy8cv1eY9IoiqK8zBvj4+NxdHTk7s2rODsVMXaul5KSmsq2vYdo2bIlVlZW5o4DPGmu27Ztm2TKgWQyjGQyjGTKWWxsLC4uLsTFxanWJyCjnLi3YBSF7PLWWTb+4SOcPviSmzdvZsprY2OT7Z0i27dv5/Dhw1SpUoUOHTpkKdC///57evToQWhoKHXq1GHRokUsWbKEP/74Q9+3pGrVqtle5ti1a5f+QUyxsbHUq1ePJUuWULt27Tx9xrzKNzV0IYQQrygjdop7thb8vFaJFi1avPDOpJkzZ9K3b1/69esHwOzZs9m5cycLFixg0qRJAJw8efKFkR4/fky7du0YOXKk2QtzkAJdCCHEf0h2NfTcSk5O5uTJk4wYMSLT/KZNm3LkyJHnvCszRVHo3bs3jRo1okePHrnOoAYp0IUQQqjLiL3cMwasyYu7d++SlpaGu7t7pvnu7u76To85OXz4MN9//z0VKlTQP4ly1apVlC9fPk/Z8kIKdCGEEOrSGGG0NBXuQ3/2oUq5eZhZ3bp1TX7LcE7y1419QgghhMpcXFywsLDIUhuPiYnJUmv/L5ECXQghhLry2fCp1tbWVK1albCwsEzzw8LC8kXntpclTe5CCCHUZcRe7tWrV8fCwoIBAwYwYMCA566ekJDA5cuX9a+vXr1KREQETk5OeHt7M2zYMHr06EG1atWoVasWX3/9NTdu3FD1uR5qkwJdCCHEf0Z4eLhBneJOnDhBQMC/Q3IPGzYMgF69evHNN9/QuXNnYmNjGT9+PJGRkZQrV45t27aZ/BHRxiQFuhBCCHWZ4VnuDRs2JKfnpvXv35/+/fvnJVW+IgW6EEIIdRUwQi/3vL7//wHpFCeEEEK8AgyuoT9+/DjTM23j4+OBJ89PT0lNNX6yl5CRIyUlxcxJ/pWRRTK9mGQyjGQyjGTKmUlzvILjoedHBg/OEhISwrhxWccmX716NQULFjR6MCGEEOpJSkqiW7duphmcZcUkChXM4+AsSY9w6jUSX19fg3q5/39kcIGeXQ3dy8uLyMjILOMqm0tKSgphYWE0adIkX4xmBJLJUJLJMJLJMJIpZ7GxsWi1WtMU6KsmG6dA7zFC1bz/dQY3uT9viDorK6t88eV8mmQyjGQyjGQyjGQyTH7JlB8yCOOSXu5CCCHUpdEY4bY1uYaeEynQhRBCqEs6xZmE3LYmhBBCvAKkhi6EEEJdZnhS3P9HcoSEEEKoK+NJcXmdeDI4i7+/P/Pnzzfzh8p/pIYuhBDiP8PQwVn+P5ICXQghhLqkyd0kpEAXQgihLunlbhJyyiOEEEK8AqSGLoQQQl0FCjyZ8roN8UJSoAshhFCZEZrckSb3nJjklGfSpElUr14dBwcH3NzcaNu2LRcuXMi0zvr162nWrBkuLi5oNBoiIiLMmiklJYVPP/2U8uXLY29vj6enJz179uT27dtmywRPRr0rXbo09vb2FClShMDAQI4fP27WTE9777330Gg0zJ4926yZevfujUajyTTVrFnTrJkAzp8/T1BQEI6Ojjg4OFCzZk1u3LhhtkzPHqOMadq0aWbLlJCQwMCBAylatCh2dnaUKVOGBQsWqJLH0EzR0dH07t0bT09PChYsSPPmzbl06ZJqmRYsWECFChUoVKgQhQoVolatWmzfvl2/XFEUQkJC8PT0xM7OjoYNG3Lu3DnV8uRZRqe4vE7ihUxyhPbv38+AAQM4duwYYWFhpKam0rRpUxITE/XrJCYmUqdOHSZPnmyKSDlmSkpK4tSpU4wZM4ZTp06xfv16Ll68SFBQkNkyAfj6+jJv3jzOnj3LoUOHKFasGE2bNuXOnTtmy5Rhw4YNHD9+HE9PT1Wy5DZT8+bNiYyM1E/btm0za6YrV65Qt25dSpcuzb59+/jtt98YM2YMtrZ5G4UqL5mePj6RkZEsW7YMjUZDhw4dzJZp6NCh7Nixg2+//Zbz588zdOhQBg0axMaNG82SSVEU2rZty59//snGjRs5ffo0Op2OwMDAbH8PjKFo0aJMnjyZEydOcOLECRo1akRwcLC+0J46dSozZ85k3rx5hIeH4+HhQZMmTfj7779VyZOfyH3oL6C8pLi4OAVQ7t69m+v3xsTEKICyf//+LMuuXr2qAMrp06dzvd3k5GRlw4YNSnJyslEzZfj1118VQLl+/Xq+yZTxc9i9e7dZM926dUt5/fXXld9//13R6XTKrFmzcrVdY2fq1auXEhwcnOttqZmpc+fOyltvvZWvMj0rODhYadSokVkzlS1bVhk/fnym9apUqaJ89tlnZsl04cIFBVB+//13/TqpqamKk5OTsnjxYpNkUhRFKVKkiLJkyRIlPT1d8fDwUCZPnqxf9ujRI8XR0VFZuHChwdu7e/euAihxcXEvlccQGX+f7q0PVVJ3Ls/TdG99qOp5/+vM0oYRFxcHgJOTkzl2ny1DMsXFxaHRaChcuHC+yJScnMzXX3+No6MjFStWNFum9PR0evTowfDhwylbtqxJcuSUCWDfvn24ubnh6+vLO++8Q0xMjNkypaens3XrVnx9fWnWrBlubm7UqFGDDRs2mC3Ts6Kjo9m6dSt9+/Y1a6a6deuyadMm/vrrLxRFYe/evVy8eJFmzZqZJdPjx48BMrWkWFhYYG1tzaFDh1TPk5aWxtq1a0lMTKRWrVpcvXqVqKgomjZtql/HxsaGBg0acOTIEdXzvJSMTnF5ncQLmfwIKYrCsGHDqFu3LuXKlTP17rNlSKZHjx4xYsQIunXrZpKnFL0o05YtW3jttdewtbVl1qxZhIWF4eLiYrZMU6ZMwdLSksGDB6uewdBMLVq04LvvvmPPnj3MmDGD8PBwGjVqpP/jbOpMMTExJCQkMHnyZJo3b86uXbto164d7du3Z//+/WbJ9KwVK1bg4OBA+/btVc/zokxz587F39+fokWLYm1tTfPmzQkNDaVu3bpmyVS6dGl0Oh0jR47k/v37JCcnM3nyZKKiooiMjFQty9mzZ3nttdewsbHh/fff5+eff8bf35+oqCgA3N3dM63v7u6uXyb+fzJ5L/eBAwdy5swZk5zZGiqnTCkpKXTp0oX09HRCQ0PNnikgIICIiAju3r3L4sWL6dSpE8ePH8fNzc3kmU6ePMmcOXM4deoUGjM8+OF5x6lz5876/5crV45q1aqh0+nYunWr6gVWdpnS09MBCA4OZujQoQBUqlSJI0eOsHDhQho0aGDyTM9atmwZ3bt3V+2avqGZ5s6dy7Fjx9i0aRM6nY4DBw7Qv39/tFotgYGBJs9kZWXFunXr6Nu3L05OTlhYWBAYGEiLFi1UzeLn50dERAQPHjxg3bp19OrVK9PJ37O/b4qimOV30CDyYBmTMGkNfdCgQWzatIm9e/dStGhRU+76uXLKlJKSQqdOnbh69SphYWEmqZ3nlMne3h4fHx9q1qzJ0qVLsbS0ZOnSpWbJdPDgQWJiYvD29sbS0hJLS0uuX7/ORx99RLFixcySKTtarRadTqdqz+QXZXJxccHS0hJ/f/9M65cpU0a1Xu45ZXrawYMHuXDhAv369VM1S06ZHj58yKhRo5g5cyZt2rShQoUKDBw4kM6dOzN9+nSzZAKoWrWqvnCNjIxkx44dxMbGUrx4cdXyWFtb4+PjQ7Vq1Zg0aRIVK1Zkzpw5eHh4AGSpjcfExGSptecbGo0RerlLgZ4TkxToiqIwcOBA1q9fz549e1T9JTBmpozC/NKlS+zevRtnZ2ezZ3re+9RqSs4pU48ePThz5gwRERH6ydPTk+HDh7Nz506zZMpObGwsN2/eRKvVmiWTtbU11atXz3I71MWLF9HpdGbJ9LSlS5dStWpV1fti5JQpJSWFlJQUCjxzvdTCwkLfymHqTE9zdHTE1dWVS5cuceLECYKDg1XJ9Lycjx8/pnjx4nh4eBAWFqZflpyczP79+6ldu7bJ8oj8xyRN7gMGDGD16tVs3LgRBwcH/Zmlo6MjdnZ2ANy7d48bN27o7/PO+MPn4eGhPyM1ZabU1FTefPNNTp06xZYtW0hLS9Ov4+TkhLW1tckzJSYmMnHiRIKCgtBqtcTGxhIaGsqtW7fo2LGj0fMYksnZ2TnLiY6VlRUeHh74+fmZJVNCQgIhISF06NABrVbLtWvXGDVqFC4uLrRr184smQCGDx9O586dqV+/PgEBAezYsYPNmzezb98+s2UCiI+P58cff2TGjBmq5MhNpkKFCtGgQQOGDx+OnZ0dOp2O/fv3s3LlSmbOnGmWTAA//vgjrq6ueHt7c/bsWT788EPatm2bqWOaMY0aNYoWLVrg5eXF33//zdq1a9m3bx87duxAo9EwZMgQvvzyS0qVKkWpUqX48ssvKViwIN26dVMlT55Jk7tpvGz3+NzctgZkOy1fvly/zvLly7NdZ+zYsQZnys1tITllyrh9Lrtp7969Zsn08OFDpV27doqnp6dibW2taLVaJSgoSPn1118NzmPsTNlR+7a1nDIlJSUpTZs2VVxdXRUrKyvF29tb6dWrl3Ljxg2zZcqwdOlSxcfHR7G1tVUqVqyobNiwweyZFi1apNjZ2SkPHjzIVRa1MkVGRiq9e/dWPD09FVtbW8XPz0+ZMWOGkp6ebrZMc+bMUYoWLar/Pn322WfK48ePDc6T20x9+vRRdDqdYm1trbi6uiqNGzdWdu3apV+enp6ujB07VvHw8FBsbGyU+vXrK2fPns1VHpPetrZlqZK6d02epntblsptazkwSQ1dUZQc1+nduze9e/dWP8w/cspUrFgxg3IbU077s7W1Zf369SZK88TLHINr164ZP8hTcspkZ2enWnP/8xh6nPr06UOfPn1UTvOEoZneffdd3n33XZXTPGFIJg8PD5YvX26CNE8Ykmnw4MEmvYsjpz4xGo2GkJAQQkJCTBNI/CfIjX1CCCHUVUBjnAl5UtyLyOAsQggh1GWMZ7H/8/7w8HCT3G30XyQFuhBCCHVJpziTkCZ3IYQQ4hUgNXQhhBDqMmKTu3g+KdCFEEKoSqPR5PmxtPn2sbb5iJzyCCGEEK8AqaELIYRQlzS5m4QU6EIIIdQlBbpJyBESQgghXgFSQxdCCKEuzb9PesvTNsQLGVygP378ONMQnfHx8cC/wx3mBxk58ksekEyGkkyGkUyGkUw5M2kOaXI3CY1i4AgOISEhjBs3Lsv81atXU7BgQaMHE0IIoZ6kpCS6detGXFycao9SjY+Px9HRkft7fqTQa3krJ+ITkijSqCO+vr5YWFgwYMAABgwYYKSkrwaDC/TsauheXl5ERkZmGQ/bXFJSUggLC6NJkyZYWVmZOw4gmQwlmQwjmQwjmXIWGxuLVqs1TYG+9yfjFOgBb6qa97/O4CZ3GxsbbGxsssy3srLKF1/Op0kmw0gmw0gmw0gmw+SXTCbNoNEYocldrqHnRDrFCSGEUJcMzmIS0stACCGEeAVIDV0IIYS6pJe7SUiBLoQQQl0FjHAfel7f//+AnPIIIYQQrwCpoQshhFCXNLmbhBToQggh1CW93E1CTnmEEEKIV4DU0IUQQqhLmtxNQgp0IYQQ6pImd5MwySnPpEmTqF69Og4ODri5udG2bVsuXLiQaR1FUQgJCcHT0xM7OzsaNmzIuXPnVM114MAB2rRpg6enJxqNhg0bNmRaHh0dTe/evfH09KRgwYI0b96cS5cumTVTQkICAwcOpGjRotjZ2VGmTBkWLFhg1kwajSbbadq0aWbLBHD+/HmCgoJwdHTEwcGBmjVrcuPGDbNl6t27d5ZjVLNmTdXyGJLpae+99x4ajYbZs2ebNVNISAilS5fG3t6eIkWKEBgYyPHjx82WKSUlhU8//ZTy5ctjb2+Pp6cnPXv25Pbt22bLBLB+/XqaNWuGi4sLGo2GiIgIVfOI/M8kBfr+/fsZMGAAx44dIywsjNTUVJo2bUpiYqJ+nalTpzJz5kzmzZtHeHg4Hh4eNGnShL///lu1XImJiVSsWJF58+ZlWaYoCm3btuXPP/9k48aNnD59Gp1OR2BgYKbcpswEMHToUHbs2MG3337L+fPnGTp0KIMGDWLjxo1myxQZGZlpWrZsGRqNhg4dOpgt05UrV6hbty6lS5dm3759/Pbbb4wZMwZbW1uzZQJo3rx5pmO1bds21fIYmglgw4YNHD9+HE9PT1XzGJLJ19eXefPmcfbsWQ4dOkSxYsVo2rQpd+7cMUumpKQkTp06xZgxYzh16hTr16/n4sWLBAUFqZYnp0wZy+vUqcPkyZNVzWEUGU3ueZ3EiykvKS4uTgGUu3fv5vq9MTExCqDs379fURRFSU9PVzw8PJTJkyfr13n06JHi6OioLFy40ODtJicnKxs2bFCSk5NznQlQfv75Z/3rCxcuKIDy+++/6+elpqYqTk5OyuLFi82SSVEUpWzZssr48eMzzatSpYry2WefmS3Ts4KDg5VGjRrlarvGztS5c2flrbfeyvW21MzUq1cvJTg4OF9lUhRFuXXrlvL6668rv//+u6LT6ZRZs2aZPdPTMv7W7N69O99k+vXXXxVAuX79utkzXb16VQGU06dP52qbd+/eVQAlLi4u13kMlfGzux8epqSdP5Kn6X54mAIovr6+SpkyZZR58+aplvu/yiynPHFxcQA4OTkBcPXqVaKiomjatKl+HRsbGxo0aMCRI0fMEVE/VOzTNToLCwusra05dOiQWTIB1K1bl02bNvHXX3+hKAp79+7l4sWLNGvWzGyZnhYdHc3WrVvp27ev2TKkp6ezdetWfH19adasGW5ubtSoUeOFzc2msm/fPtzc3PD19eWdd94hJibGrHnS09Pp0aMHw4cPp2zZsmbNkp3k5GS+/vprHB0dqVixornj6MXFxaHRaChcuLC5o/wnPO+yXG4ngPDwcP744w8ZCz0bJi/QFUVh2LBh1K1bl3LlygEQFRUFgLu7e6Z13d3d9ctMrXTp0uh0OkaOHMn9+/dJTk5m8uTJREVFERkZaZZMAHPnzsXf35+iRYtibW1N8+bNCQ0NpW7dumbL9LQVK1bg4OBA+/btzZYhJiaGhIQEJk+eTPPmzdm1axft2rWjffv27N+/32y5WrRowXfffceePXuYMWMG4eHhNGrUSH/yaA5TpkzB0tKSwYMHmy1DdrZs2cJrr72Gra0ts2bNIiwsDBcXF3PHAuDRo0eMGDGCbt26ybjcIl8xeS/3gQMHcubMmWxruRlnYBkURckyz1SsrKxYt24dffv2xcnJCQsLCwIDA2nRooVZ8mSYO3cux44dY9OmTeh0Og4cOED//v3RarUEBgaaNRvAsmXL6N69u6rXqnOSnp4OQHBwMEOHDgWgUqVKHDlyhIULF9KgQQOz5OrcubP+/+XKlaNatWrodDq2bt1qlhOgkydPMmfOHE6dOmW237PnCQgIICIigrt377J48WI6derE8ePHcXNzM2uulJQUunTpQnp6OqGhoWbN8p8i46GbhElr6IMGDWLTpk3s3buXokWL6ud7eHgAZKmNx8TEZKm1m1LVqlWJiIjgwYMHREZGsmPHDmJjYylevLhZ8jx8+JBRo0Yxc+ZM2rRpQ4UKFRg4cCCdO3dm+vTpZsn0tIMHD3LhwgX69etn1hwuLi5YWlri7++faX6ZMmVU7eWeW1qtFp1Op/qdE89z8OBBYmJi8Pb2xtLSEktLS65fv85HH31EsWLFzJIpg729PT4+PtSsWZOlS5diaWnJ0qVLzZopJSWFTp06cfXqVcLCwqR2nhsZt63ldRIvZJICXVEUBg4cyPr169mzZ0+WArF48eJ4eHgQFhamn5ecnMz+/fupXbu2KSK+kKOjI66urly6dIkTJ04QHBxslhwpKSmkpKRQoEDmH5uFhYW+VmpOS5cupWrVqma/1mltbU316tWz3Bp58eJFdDqdmVJlFRsby82bN9FqtWbZf48ePThz5gwRERH6ydPTk+HDh7Nz506zZHoeRVHMemkiozC/dOkSu3fvxtnZ2WxZhHgekzS5DxgwgNWrV7Nx40YcHP6vvTuPierq3wD+jJRlUMAMIMwUBqkiWhS0YC1oUFolQcV9xVrUNtGKrdQUq9YW6iu4NFKMRBRicAtijYq2qQu2AjXWCiiWoG+VSkUMS0Rh2ESF+/vDH1QEZURmzrzT55OcmDngnQcy3O+c5c61ah2J29jYQC6XQyaTITw8HDExMXBzc4ObmxtiYmJgaWmJkJAQneWqra1FYWFh6+OioiLk5eVBoVBArVbj0KFDsLe3h1qtRn5+PpYvX44pU6a02byn70yjR49GREQE5HI5XFxckJmZib179yI2NlZYJgDQaDQ4dOgQtmzZorMcL5MpIiICs2fPhr+/PwICAnDy5En88MMPyMjIEJJJoVAgKioK06dPh1KpxN9//401a9bAzs4OU6dOFZJJrVa3K0ympqZwdHSEu7u7kEy2traIjo7GpEmToFQqUVlZie3bt6OkpAQzZ84UkkmlUmHGjBm4dOkSfvzxRzQ1NbWewxQKBczMzPSeSa1W4969eyguLm69Hr7lDayjo2PrrKfh6I7LznjZWqe6uj3+ZS5bA9BhS05Obv2e5uZmKTIyUnJ0dJTMzc0lf39/KT8//6UyvexlIWfPnu0wV2hoqCRJkrR161bJyclJMjU1ldRqtbR27VqpsbFRaKbS0lJpwYIFkkqlkiwsLCR3d3dpy5YtUnNzs7BMkiRJO3fulORyuVRVVaV1Dl1n2rVrl9S/f3/JwsJC8vLyktLS0oRlqq+vlwIDAyV7e/vW11NoaKhUXFwsLFNH9HHZ2osyNTQ0SFOnTpVUKpVkZmYmKZVKadKkSdLFixeFZWq5LKyjdvbsWSGZJEmSkpOTO/x6ZGSkVsfX52VrVZczpebC3FdqVZczdZ73f51MkiSpK28ENBoNbGxscPfuXYOZfnr06BF++uknjB8/HqampqLjAGAmbTGTdphJO8zUucrKStjZ2aG6ulpn+wFa6kTV5UxYW/V6tWPV1KL3sNE6zfu/jp/lTkREutWjx5P2qsegF2JBJyIi3eLNWfSCb3mIiIiMAEfoRESkW7wful6woBMRkW5xyl0vWNCJiEjHZP/fXvUY9CKcwyAiIjICHKETEZFuccpdL1jQiYhIt1jQ9YJT7kREREaAI3QiItIxborTBxZ0IiLSLU6564XWBb2xsbHN/Yg1Gg2Af+7RbQhachhKHoCZtMVM2mEm7TBT5wwlB3Ufre+2FhUVhW+++aZdf0pKCiwtLbs9GBER6U59fT1CQkL0c7e1/+Z0z93WBvpgwIABMDExQVhYGMLCwropqXHQuqB3NEJ3dnZGaWmpQd0+NT09HePGjTOI2xMCzKQtZtIOM2mHmTpXWVkJpVKpp4Ke200F3Zu3T30Brafczc3NYW5u3q7f1NTUIF6cT2Mm7TCTdphJO8ykHUPJZAgZqHtxUxwREekWN8XpBQs6ERHplgzdUNC7JYlRY0EnIiId43Xo+sBPiiMiIjICHKETEZFucQ1dL1jQiYhIxzjlrg+cciciIjICHKETEZFuccpdL1jQiYhIt1jQ9YJT7kREREZAWEHPyspCcHAwVCoVZDIZ0tLSREVptWHDBgwfPhxWVlbo06cPpkyZgj///FNopoSEBHh6esLa2hrW1tbw9fXFiRMnhGZ62oYNGyCTyRAeHi40R1RUFGQyWZvm6OgoNBMA3LlzB++//z5sbW1haWmJoUOHIjc3V1ievn37tvs9yWQyoTe5ePz4MdauXQtXV1fI5XK88cYbWLduHZqbm4VlqqmpQXh4OFxcXCCXy+Hn54fs7Gy9ZujsHClJEqKioqBSqSCXyzFmzBgUFBToNaP2ZN3U6EWEFfS6ujp4eXkhPj5eVIR2MjMzERYWhgsXLiA9PR2PHz9GYGAg6urqhGVycnLCxo0bkZOTg5ycHLz77ruYPHmyQfzhZmdnIzExEZ6enqKjAAA8PDxQWlra2vLz84XmuX//PkaOHAlTU1OcOHECV69exZYtW9C7d29hmbKzs9v8jtLT0wEAM2fOFJZp06ZN2LFjB+Lj43Ht2jVs3rwZ3377LbZt2yYs00cffYT09HTs27cP+fn5CAwMxNixY3Hnzh29ZejsHLl582bExsYiPj4e2dnZcHR0xLhx41BTU6O3jNrq6E1kVxq9mLA19KCgIAQFBYl6+g6dPHmyzePk5GT06dMHubm58Pf3F5IpODi4zePo6GgkJCTgwoUL8PDwEJIJAGprazFv3jwkJSVh/fr1wnI87bXXXjOIUXmLTZs2wdnZGcnJya19ffv2FRcIgL29fZvHGzduRL9+/TB69GhBiYDffvsNkydPxoQJEwA8+R0dOHAAOTk5QvI0NDTg8OHDOHbsWOvffVRUFNLS0pCQkKC31/uLzpGSJCEuLg5ffvklpk2bBgDYs2cPHBwckJKSgsWLF+slIxkWrqG/QHV1NQBAoVAITvJEU1MTUlNTUVdXB19fX6FZwsLCMGHCBIwdO1ZojqfduHEDKpUKrq6umDNnDm7evCk0z/Hjx+Hj44OZM2eiT58+GDZsGJKSkoRmetrDhw+xf/9+LFq0SOjoZ9SoUfj5559x/fp1AMCVK1dw7tw5jB8/Xkiex48fo6mpCRYWFm365XI5zp07JyTTs4qKilBWVobAwMDWPnNzc4wePRrnz58XmOw5WjbFvWqjF+Iu9+eQJAkrVqzAqFGjMHjwYKFZ8vPz4evriwcPHqBXr144evQo3nzzTWF5UlNTcenSJb2vKb7IiBEjsHfvXgwYMADl5eVYv349/Pz8UFBQAFtbWyGZbt68iYSEBKxYsQJr1qzBxYsX8emnn8Lc3BwffPCBkExPS0tLQ1VVFRYsWCA0xxdffIHq6moMHDgQJiYmaGpqQnR0NObOnSskj5WVFXx9ffGf//wHgwYNgoODAw4cOIDff/8dbm5uQjI9q6ysDADg4ODQpt/BwQG3bt0SEakT/GAZfWBBf45ly5bhjz/+MIh35O7u7sjLy0NVVRUOHz6M0NBQZGZmCinqt2/fxvLly3H69Ol2IxiRnp6aHDJkCHx9fdGvXz/s2bMHK1asEJKpubkZPj4+iImJAQAMGzYMBQUFSEhIMIiCvmvXLgQFBUGlUgnNcfDgQezfvx8pKSnw8PBAXl4ewsPDoVKpEBoaKiTTvn37sGjRIrz++uswMTHBW2+9hZCQEFy6dElInud5dmZFkiQDXWvujhG2If5choUFvQOffPIJjh8/jqysLDg5OYmOAzMzM/Tv3x8A4OPjg+zsbGzduhU7d+7Ue5bc3FxUVFTA29u7ta+pqQlZWVmIj49HY2MjTExM9J7rWT179sSQIUNw48YNYRmUSmW7N12DBg3C4cOHBSX6x61bt3DmzBkcOXJEdBRERERg1apVmDNnDoAnb8hu3bqFDRs2CCvo/fr1Q2ZmJurq6qDRaKBUKjF79my4uroKyfOslr0iZWVlUCqVrf0VFRXtRu3078E19KdIkoRly5bhyJEj+OWXXwzmj/dZkiShsbFRyHO/9957yM/PR15eXmvz8fHBvHnzkJeXZxDFHAAaGxtx7dq1Nic7fRs5cmS7yx6vX78OFxcXQYn+0bLhs2Ujmkj19fXo0aPtqcjExEToZWstevbsCaVSifv37+PUqVOYPHmy6EgAAFdXVzg6OrZepQA82RORmZkJPz8/gcmeg2voeiFshF5bW4vCwsLWx0VFRcjLy4NCoYBarRaSKSwsDCkpKTh27BisrKxa16lsbGwgl8uFZFqzZg2CgoLg7OyMmpoapKamIiMjo92OfH2xsrJqt6egZ8+esLW1FbrX4PPPP0dwcDDUajUqKiqwfv16aDQaYSM8APjss8/g5+eHmJgYzJo1CxcvXkRiYiISExOFZQKeLAUkJycjNDQUr70mfpIuODgY0dHRUKvV8PDwwOXLlxEbG4tFixYJy3Tq1ClIkgR3d3cUFhYiIiIC7u7uWLhwod4ydHaODA8PR0xMDNzc3ODm5oaYmBhYWloiJCREbxm1xzV0fRD215yTk4OAgIDWxy3rnKGhodi9e7eQTAkJCQCAMWPGtOlPTk4WtnGovLwc8+fPR2lpKWxsbODp6YmTJ09i3LhxQvIYqpKSEsydOxd3796Fvb093nnnHVy4cEHoaHj48OE4evQoVq9ejXXr1sHV1RVxcXGYN2+esEwAcObMGRQXFwstmE/btm0bvvrqKyxduhQVFRVQqVRYvHgxvv76a2GZqqursXr1apSUlEChUGD69OmIjo6Gqamp3jJ0do5cuXIlGhoasHTpUty/fx8jRozA6dOnYWVlpbeMZFiEFfQxY8ZAkiRRT98hQ8sDPNm4ZOgyMjJER0BqaqroCB2aOHEiJk6cKDpGG4GBgQb1WreyskJcXBzi4uJER2k1a9YszJo1S2iGzs6RMpkMUVFRiIqK0l+oruJnueuF+Pk2IiIybpxx1wtuiiMiIjICHKETEZGOcYiuDyzoRESkW1xD1wtOuRMRERkBjtCJiEi3OELXCxZ0IiLSMa6h6wMLOhER6ZYM3TBC75YkRo1r6ERERC+ppqYGw4cPx9ChQzFkyBAkJSWJjsQROhER6ZgRrqFbWloiMzMTlpaWqK+vx+DBgzFt2jTY2toKy8SCTkREOmZ8a+gmJiawtLQEADx48ABNTU3CP1KZU+5ERGR0srKyEBwcDJVKBZlMhrS0tHbfs337dri6usLCwgLe3t749ddfX+o5qqqq4OXlBScnJ6xcuRJ2dnbdlL5rtB6hNzY2trkHd3V1NQDg3r173Z+qix49eoT6+npUVlbq9a5IL8JM2mEm7TCTdpipcy3nbn2MKjW1ta88Za6prX3yr0bTpt/c3Bzm5ubtvr+urg5eXl5YuHAhpk+f3u7rBw8eRHh4OLZv346RI0di586dCAoKwtWrV1tv4e3t7d2m7rU4ffo0VCoVevfujStXrqC8vBzTpk3DjBkz4ODg8Eo/5yuRtBQZGSkBYGNjY2MzovbXX39pWwZeWkNDg+To6NhtWXv16tWuLzIystMcAKSjR4+26Xv77belJUuWtOkbOHCgtGrVqi79rEuWLJG+//77Lv3f7qL1CH316tWt9+MFnkw1uLi4oLi4GDY2NtoeRqc0Gg2cnZ1x+/ZtWFtbi44DgJm0xUzaYSbtMFPnqquroVaroVAodPYcFhYWKCoqwsOHD7vleJIkQfbMSL+j0XlnHj58iNzcXKxatapNf2BgIM6fP6/VMcrLyyGXy2FtbQ2NRoOsrCx8/PHHL52lO2ld0J83rWFjY2MQL86nWVtbM5MWmEk7zKQdZtKOoWXq0UO3W6ksLCxgYWGh0+d4WXfv3kVTU1O76XEHBweUlZVpdYySkhJ8+OGHkCQJkiRh2bJl8PT01EVcrXGXOxER/Ss9O9rvaAbgeby9vZGXl6eDVF3HXe5ERPSvYmdnBxMTk3aj8YqKCrGb2l5Rlwu6ubk5IiMju7R+oSvMpB1m0g4zaYeZtGNomQwtjz6ZmZnB29sb6enpbfrT09Ph5+cnKNWrk0mS4CvhiYiIulltbS0KCwsBAMOGDUNsbCwCAgKgUCigVqtx8OBBzJ8/Hzt27ICvry8SExORlJSEgoICuLi4CE7fNSzoRERkdDIyMhAQENCuPzQ0FLt37wbw5INlNm/ejNLSUgwePBjfffcd/P399Zy0+7CgExERGQFuiiMiIjICLOhERERGgAWdiIjICLCgExERGQEWdCIiIiPAgk5ERGQEWNCJiIiMAAs6ERGREWBBJyIiMgIs6EREREaABZ2IiMgIsKATEREZgf8DMzDHC8plXTIAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZzUlEQVR4nOzdd1yV5f/H8deRLSHKPigcB4J7hOYeKO4ER+5Q06YrtShHJpbmxpHh1tQyzTT3wtw5Qo008+vKmQxFhcDBun9/GCcRlIOc+xzy93n6uB8Puc997vPm5sDnXNd93felURRFQQghhBD/aUXMHUAIIYQQBScFXQghhHgBSEEXQgghXgBS0IUQQogXgBR0IYQQ4gUgBV0IIYR4AUhBF0IIIV4AUtCFEEKIF4AUdCGEEOIFIAXdDMLCwtBoNNnWlS5dmr59++ZrP4cOHSIsLIy7d+/m63lPvtbevXvRaDT88MMP+drPs9y7d4+wsDD27t2b47Gvv/4ajUbD5cuXjfZ6avjyyy/x8fHB2toajUbD3bt3+eKLL1i/fr1JczRt2hSNRpNjad26dY5t09LSGDduHKVLl8bGxoYKFSrw5ZdfmjSvEMI8LM0dQDzy448/UqxYsXw959ChQ4wbN46+fftSvHhxVV8rv+7du8e4ceOARwXpce3atePw4cNotVpVMxREdHQ0Q4YM4c0336RPnz5YWlri4ODAF198wWuvvUaHDh1Mmqds2bJ8++232dbl9jMfMGAAK1as4PPPP6d27drs2LGD999/n7///ptRo0aZKK0QwhykoBcSNWvWVP017t+/j52dnUle61lcXV1xdXU1a4a8nD59GoC33nqLV155RdXXysjIID09HRsbm6duY2dnR926dZ+5n9OnT7N48WImTJhAaGgo8OjDVEJCAuPHj+fdd9/FycnJqNmFEIWHdLmrbMuWLdSoUQMbGxvKlCnDtGnTct3uyW7wzMxMxo8fj5+fH3Z2dhQvXpxq1aoxa9Ys4FG3fdYf7TJlyui7YbO6uEuXLs2rr77KunXrqFmzJra2tvoW89O69x88eMDw4cPx8PDAzs6OJk2a8Ouvv2bbpmnTpjla3AB9+/aldOnSAFy+fFlfsMeNG6fPlvWaT+tyX7JkCdWrV8fW1hYnJyc6duzImTNncrzOSy+9xIULF2jbti0vvfQSXl5efPDBBzx8+DDXY/u41atX07JlS7RaLXZ2dlSsWJERI0aQkpKS7Xt8/fXXAahTp44+u0ajISUlhWXLlum/p8ePRWxsLO+88w6lSpXC2tqaMmXKMG7cONLT0/XbXL58GY1Gw5QpUxg/fjxlypTBxsaGPXv25Jk9L+vXr0dRFN54441s69944w3u37/P9u3bn/n8rFNBJ0+epEuXLjg6OuLk5MTw4cNJT0/n7NmztG7dGgcHB0qXLs2UKVNy7OPq1au8/vrruLm5YWNjQ8WKFZk+fTqZmZnAo1MCbm5uhISE5Hju3bt3sbOzY/jw4fp1SUlJfPjhh5QpUwZra2tKlizJ0KFDs/28ANasWUOdOnVwdHSkaNGilC1bln79+hl87IR4IShCNbt27VIsLCyUhg0bKuvWrVPWrFmj1K5dW/H29laePPQ6nU7p06eP/uuJEycqFhYWytixY5WffvpJ2b59uzJz5kwlLCxMURRFuXbtmjJ48GAFUNatW6ccPnxYOXz4sJKYmKjfn1arVcqWLassWbJE2bNnj/LLL7/k+lp79uxRAMXLy0sJDg5WNm3apHzzzTeKj4+PUqxYMeXixYv6bZs0aaI0adIkx/fap08fRafTKYqiKA8ePFC2b9+uAEr//v312S5cuKAoiqIsXbpUAZRLly7pn//FF18ogNKjRw9ly5YtyvLly5WyZcsqjo6Oyrlz57K9jrW1tVKxYkVl2rRpyq5du5RPP/1U0Wg0yrhx4/L8mXz++efKjBkzlC1btih79+5V5s2bp5QpU0YJCAjQb3P69Gnlk08+UQBl6dKl+uyHDx9W7OzslLZt2+q/p9OnTyuKoigxMTGKl5eXotPplPnz5yu7du1SPv/8c8XGxkbp27evft+XLl1SAKVkyZJKQECA8sMPPyg7d+7Mdiye1KRJE8XW1lYpUaKEYmFhoZQtW1YZNWqUcu/evWzbde/eXXF1dc3x/OTkZAVQRo4c+cxjM3bsWAVQ/Pz8lM8//1yJjIxUPvroIwVQBg0apFSoUEGZPXu2EhkZqbzxxhsKoKxdu1b//Pj4eKVkyZKKq6urMm/ePGX79u3KoEGDFEB577339NsNGzZMsbOz079Xs0RERCiAcvLkSUVRFCUlJUWpUaOG4uLiooSHhyu7du1SZs2apTg6OirNmjVTMjMzFUVRlEOHDikajUbp3r27snXrVmX37t3K0qVLlZCQkGd+v0K8aKSgq6hOnTqKp6encv/+ff26pKQkxcnJKc+C/uqrryo1atR45v6nTp2aozA+vj8LCwvl7NmzuT6WW0F/+eWX9X8kFUVRLl++rFhZWSlvvvmmfp0hBV1RFOXmzZsKoIwdOzbHtk8W9Dt37ugL5eOuXr2q2NjYKD179sz2OoDy/fffZ9u2bdu2ip+fX47XepbMzEwlLS1N2bdvnwIov/32W46MUVFR2Z5jb2+f7dhleeedd5SXXnpJuXLlSrb106ZNUwB94c8q6OXKlVNSU1MNyjl69GglIiJC2b17t7JlyxZl0KBBiqWlpdK4cWMlIyNDv12LFi2eegysra2Vt99++5mvk1XQp0+fnm19jRo19B8cs6SlpSmurq5Kp06d9OtGjBihAMrRo0ezPf+9995TNBqN/r148uRJBVAWLFiQbbtXXnlF8ff31389ceJEpUiRIjl+Bj/88IMCKFu3blUU5d9jfPfu3Wd+f0K86KTLXSUpKSlERUXRqVMnbG1t9esdHBxo3759ns9/5ZVX+O233xgwYAA7duwgKSkp3xmqVauGr6+vwdv37Nkz2+h7nU5H/fr1jdId/CyHDx/m/v37OU4DeHl50axZM3766ads6zUaTY5jWK1aNa5cuZLna/3555/07NkTDw8PLCwssLKyokmTJgA5uvfzY/PmzQQEBODp6Ul6erp+adOmDQD79u3Ltn1QUBBWVlYG7Xv8+PG89957BAQE0LZtW7788ksmTZrE/v372bBhQ7Ztn7x6wtDHHvfqq69m+7pixYpoNBr99wJgaWmJj49PtmO+e/duKlWqlGPMQd++fVEUhd27dwNQtWpV/P39Wbp0qX6bM2fO8Msvv2TrJt+8eTNVqlShRo0a2Y5pq1atsp1eql27NgBdu3bl+++/56+//jLo+xTiRSMFXSV37twhMzMTDw+PHI/ltu5JI0eOZNq0aRw5coQ2bdrg7OxM8+bNOXbsmMEZ8juK/GlZExIS8rWf/Mraf255PT09c7x+0aJFs31IArCxseHBgwfPfJ3k5GQaNWrE0aNHGT9+PHv37iUqKop169YBjwYNPq+4uDg2bdqElZVVtqVy5coA3Lp1K9v2BR3hn3WO/8iRI/p1zs7Ouf6sUlJSSE1NNXhA3JPbWVtb53rMra2tsx3zhISEp/4Msx7P0q9fPw4fPsz//vc/AJYuXYqNjQ09evTQbxMXF8fJkydzHFMHBwcURdEf08aNG7N+/XrS09Pp3bs3pUqVokqVKnz33XcGfb9CvChklLtKSpQogUajITY2Nsdjua17kqWlJcOHD2f48OHcvXuXXbt2MWrUKFq1asW1a9coWrRonvswtEX2rFyxsbE4Ozvrv7a1tSUxMTHHdk8WrPzI2n9MTEyOx27cuIGLi8tz7/txu3fv5saNG+zdu1ffKgfyfR1/blxcXKhWrRoTJkzI9fGsopYlvz+bpylS5N/P5FWrVmXVqlXExsZm+3B26tQpAKpUqWKU13waZ2fnp/4MgWw/xx49ejB8+HC+/vprJkyYwIoVK+jQoQMlSpTQb+Pi4oKdnR1LlizJ9fUe319wcDDBwcE8fPiQI0eOMHHiRHr27Enp0qWpV6+esb5FIQo1aaGrxN7enldeeYV169Zla8X8/fffbNq0KV/7Kl68OK+99hoDBw7k9u3b+tHhWZc5FaRl+bjvvvsORVH0X1+5coVDhw5lG8ldunRpzp07l21EeUJCAocOHcq2r/xkq1evHnZ2dnzzzTfZ1l+/fp3du3fTvHnz5/l2csgqok9eHjZ//nyD92FjY5Pr9/Tqq6/y+++/U65cOWrVqpVjebKgF9SyZcsAsl3KFhwcjEaj0T+W5euvv8bOzi7XG9EYU/Pmzfnjjz84ceJEtvXLly9Ho9EQEBCgX1eiRAk6dOjA8uXL2bx5M7GxsTlGpb/66qtcvHgRZ2fnXI9p1lUVj7OxsaFJkyZMnjwZIMdVGkK8yKSFrqLPP/+c1q1b06JFCz744AMyMjKYPHky9vb23L59+5nPbd++PVWqVKFWrVq4urpy5coVZs6ciU6no3z58sCjFhnArFmz6NOnD1ZWVvj5+eHg4PBceePj4+nYsSNvvfUWiYmJjB07FltbW0aOHKnfJiQkhPnz5/P666/z1ltvkZCQwJQpU3LcqMbBwQGdTseGDRto3rw5Tk5OuLi45PpHuHjx4owZM4ZRo0bRu3dvevToQUJCAuPGjcPW1paxY8c+1/fzpPr161OiRAneffddxo4di5WVFd9++y2//fabwfuoWrUqe/fuZdOmTWi1WhwcHPDz8+Ozzz4jMjKS+vXrM2TIEPz8/Hjw4AGXL19m69atzJs3j1KlSuU784EDB5gwYQIdO3akbNmyPHjwgG3btrFgwQKaNWuWbSxB5cqV6d+/P2PHjsXCwoLatWuzc+dOFixYwPjx41W/Bn3YsGEsX76cdu3a8dlnn6HT6diyZQsRERG89957OcZz9OvXj9WrVzNo0CBKlSpFYGBgtseHDh3K2rVrady4McOGDaNatWpkZmZy9epVdu7cyQcffECdOnX49NNPuX79Os2bN6dUqVLcvXuXWbNmZRsfIcT/C2YelPfC27hxo1KtWjXF2tpa8fb2ViZNmqQfTfy4J0eeT58+Xalfv77i4uKif27//v2Vy5cvZ3veyJEjFU9PT6VIkSIKoOzZs0e/v3bt2uWa6Wmj3FesWKEMGTJEcXV1VWxsbJRGjRopx44dy/H8ZcuWKRUrVlRsbW2VSpUqKatXr84xyl1RHl22V7NmTcXGxkYB9K+Z22VriqIoixYt0h8rR0dHJTg4WD86PEufPn0Ue3v7HJlyO6a5OXTokFKvXj2laNGiiqurq/Lmm28qJ06c0F+iluVpo9yjo6OVBg0aKEWLFlWAbCP+b968qQwZMkQpU6aMYmVlpTg5OSn+/v7K6NGjleTkZEVR/h3lPnXq1DyzKoqinD9/Xmnbtq1SsmRJxcbGRrG1tVWqVq2qTJgwQXnw4EGO7VNTU5WxY8cq3t7eirW1teLr66vMnj3boNfKOoY3b97Mtv5px7xJkyZK5cqVs627cuWK0rNnT8XZ2VmxsrJS/Pz8lKlTp2YbjZ8lIyND8fLyUgBl9OjRuWZKTk5WPvnkE8XPz0//vqhataoybNgwJTY2VlEURdm8ebPSpk0bpWTJkoq1tbXi5uamtG3bVjlw4IBB37cQLwqNojzWxyqEEEKI/yQ5hy6EEEK8AKSgCyGEELnYvHkzfn5+lC9fnkWLFpk7Tp6ky10IIYR4Qnp6OpUqVWLPnj0UK1aMl19+maNHjxbqCY6khS6EEEI84ZdffqFy5cqULFkSBwcH2rZty44dO8wd65mkoAshhHjh7N+/n/bt2+Pp6YlGo2H9+vU5tomIiKBMmTLY2tri7+/PgQMH9I/duHGDkiVL6r8uVapUob+tsBR0IYQQL5yUlBSqV6/OnDlzcn189erVDB06lNGjR/Prr7/SqFEj2rRpw9WrVwHI7Wy0se7wqBaDbyzz8OHDbHcHy8zM5Pbt2zg7Oxf6b1IIIUR2iqLw999/4+npme0Wwsb24MEDUlNTjbIvRVFy1BsbG5scd38EaNOmTbYJhZ4UHh5O//79efPNNwGYOXMmO3bsYO7cuUycOJGSJUtma5Ffv36dOnXqGOX7UI2hF6xn3XRCFllkkUWWF2e5du2aKjc5URRFuX//vlIUjdGyvvTSSznW5TZF85MA5ccff9R//fDhQ8XCwiLblMCKoihDhgxRGjdurCjKoymCfXx8lOvXrytJSUmKj4+PcuvWLWMeHqMzuIU+cuRIhg8frv86MTERb29v3iiuxfKBcT59FVQRO1uafDWVgHq1sbIsHHe1TUtPZ8/hKMmUB8lkGMlkGMmUt9t37uBb7eXnvlW0IVJTU7mHQgj2WFOwntxUFFYkJ3Pt2rVst5rOrXWel1u3bpGRkYG7u3u29e7u7vpJqiwtLZk+fToBAQFkZmby0UcfZZuoqjAy+F31tG4NywepFHnwMJdnmJ6lpghFixbF2alEofiFgUe/xJIpb5LJMJLJMJLJcKY4ZWpLEawL+DpF/jmnXaxYsRxzRzyvJ7935Yku/aCgIIKCgozyWqYgg+KEEEL8v+Li4oKFhUWOKaPj4+NztNr/S6SgCyGEUFURIy3GYm1tjb+/P5GRkdnWZ82Y+F9VePp9hBBCvJA0GihSwJ59DYACtWvXxsLCgoEDBzJw4MCnbp+cnMyFCxf0X1+6dIno6GicnJzw9vZm+PDhhISEUKtWLerVq8eCBQu4evUq7777bsGCmpEUdCGEEP8ZUVFRBp1DP3bsGAEBAfqvswZ19+nTh6+//ppu3bqRkJDAZ599RkxMDFWqVGHr1q3odDrVsqtNCroQQghVGaPLPL/Pb9q0aa43h3ncgAEDGDBgwPOHKmSkoAshhFBVEY2GIgUd5Q6PrjwXTyWD4oQQQogXgLTQhRBCqMocXe7/H0lBF0IIoaoiRhjlLgU9b3KMhBBC/GfUrl2bSpUq8dVXX5k7SqGjWkG/QQbbuM8KUphPMpdIz/a4gsIxHrKCFBaRzEbucZuMbNtkoHCQhywjmcUks537JJNptIx///03Q0NHoKtQBTtnD+o3a0nU8RP6x+Pi4un79nt4lqtAURctrYM7c/7CRaO9/vNkSk5OZtDwUEqVr4SdswcVX36FuQsXmzWTxr54rsvUGbPNlgngzP/OEtSlO45abxzcS1G3aSBXr10zW6a+b7+X4xjVbRqoWh5DMj3uncFD0dgXZ+acCLNmCpswkQo1a2Pv6kmJkjoC2wVzNOqY2TKlpaXx8SdjqVq7PvaunniWq0DvN9/hRkyM2TIBrNuwkVZBnXDxLovGvjjRv51UNU9BGPPGMlFRUfzxxx/PvAb9/yvVCno6Cs4UoQG53zj/N9I4SRoNsKETdhSlCFt4QOpjwxgP8ZDLpNMcW4KxIw3YzgMyjTTU8c2BQ4jcs5cVi+Zz6pdDtGweQOCrHfjrxg0URaFD9178efkyG75fya+H9qPz9iLw1WBSUlKM8vr5zQQw7ONRbI/cxTeL53PmxFGGDRrA4A8+YsPmLWbLFHPxbLZlydw5aDQaOndQ7x7IeWW6+OclGrZoTQVfX/Zu28RvRw4yZkQotja2ZssE0LpFYLZjtXXdGtXyGJoJYP2mzRyNOoanVqtqHkMy+fr4MGf6VE79coiDkdsprfOmZVAnbt68ZZZM9+7d40T0b4wZEcqJn/ex7rsVnLtwkaAuPVTLk1cmgJSUezSoV4dJn4WpmsMYNBqNURbxbBolrwv1niIpKQlHR0fesnXOc3KW+STTElvK/HPKXkHhG+5RFStqYA08ao0vJ4U62FAJKx7+83UANvhgBUAKmXzLPdpgi1cup/8t7exo8d1C2gY0zHPyg/v37+PgXooN36+kXetW+vU16jbk1Tat6d2zO341avF71GEqV6r4KGNGBm6lfZj8+Tje7NvboOOUlp7O1j0HjZJp/NhPqFKrHt1e68iYER/pH/dv0IS2rVrw+aefmCXTkzp068nffyfz09aNBuVRI1P3Pv2wsrRkxeIFBmdQO1Pft9/jbmIi61evLDSZAP66cYM6TQLZsWEt7Tp3ZejA9xg6yPBrc9V+PyUlJeGo9WbX5g00D2hSKDJFHT/BK42bceV/p/D28jJrpstXrlCmUnV+PbSfGtWrGZQFIOH2HVy8ypCYmGi0yU6elFUnQi0dsSlgQX6oKExNT1Q173+dWc6h/43CPRRKYaFfZ4EGLRbE/dPtfosMMiFb4banCCUoQuwTXfPPIz09nYyMjBwtNjs7Ow4ePszDh48+pNja/vu4hYUF1lbWHDx0uMCv/zyZABrWr8vGLdv0vQh79u3n3IWLtApsbrZMj4uLi2fL9p307xOiSh5DMmVmZrJl+058y/vQKqgTbjof6jRpzvpNm82WKcveAwdx0/ngW92ftwYOIT7+plkzZWZmEtL/HUKHDtZ/cFVTft9PqampLFiyDEfHYlSvWqVQZAJITExCo9FQ3NGx0GQSwiwF/d4/XeZ2T8yPa4dG/9g9FIoANk9sUxQN943Q5e7g4EC9Oq/w+eQp3IiJISMjg2++W83RqGPExMZRwc8XnbcXI8eO486du6SmpjJp2gxi4+KIiY0r8Os/TyaA2dMmU6mCH6XKV8K6uCutO7xGxIxpNKxfz2yZHrfs2+9wcHiJTsHtVcljSKb4+JskJyczafpMWrdozs6N6+jY/lU69Qhh34GDZskE0KZlC75dspDdWzcyfeJ4oo6foFnbIP2HR3Nkmjx9JpaWlgwZYJr7Vxv6ftq8bTsvuZXE1smdGXMiiNy0HhcXdeaizu97/MGDB4z4NIyeXbuo1lLMb6bCLmuUe0EX8Wz/uVHuxrxR0IpF81EUhZI+FbEp4cbsufPp2bULFhYWWFlZsXblCs6dv4BTqdIUddGy98BB2rRsgYWFRd47VyETwOyI+RyJOsbGNd9x/OBepk8cz4BhH7Jr916zZXrckhXf0Ktbl2w9G6bOlKk8GjgZ3K4twwYPpEb1aoz4cBivtmnFvEVLzZIJoNtrnWjXuhVVKleifds2bPvxB85duMCW7TvMkun4r9HMipjH1wsiTHp+0pD3U0DjRkQfPsCh3Ttp3aI5XUP6qtqbYeh7PC0tje59+pGZmUnEzGmq5clPpv8CDQUfECf1PG9mKehF//nRPNnSvo+if6woGjKBh7ls82TL/nmVK1uGfTu2khz/F9fOnuaX/btJS0+jzD835/evWYPoIwe5e+MKMRfPsn3DWhJu36ZMafVu3v+sTPfv32dU2GeET5pA+7ZtqFa1CoPefZtunTsybdaXZsn0uAM/H+LsufO82cew8QVqZXJxdsbS0pJKFf2yPaeinx9Xr183S6bcaLUe6Ly9OH/hT7NkOvDzIeJv3sTbrwqWxZyxLObMlavX+GDkJ5SuWNUsmbLY29vjU64sdV+pzeK5c7C0tGTxshVmzZSWlkbXkL5cunyFyE3rVT+Pm9/30/8Xctna05mloDugoSgarj92LjwDhRgycP/nvLoLFhQBrj92uVsKmdwhEw+M+wnV3t4erdaDO3fusmPXTwS/2jbb446Ojri6unD+wkWOnfiV4HZtn7IndTOlpaWRlpZGEU32H5uFhQWZmca7nC8/mR63eNkK/GvWoHo19YqBIZmsra2p7f8yZ8+dz7btuQsX0Bk4gMnYmXKTkHCba9f/QuvhbpZMIT26c/Loz0QfPqBfPLVaQocOYceGdWbJ9DSKovAwVZ1TE4Zkyirm5y/8ya7NG3B2dlI9S16Z/kuy7uVe0AXksrVnUe1OcWkoJD52zfjfZHKLDGzQ4EARqmLFr6TiSBEc0fAraViiweefSDZoqIAlh0nFBg22aDhMKk4UoaSRCvqOyJ9QFAU/Xx8uXLxE6Ogx+JUvzxshvQBYs249ri7OeHt5cer0ad4PHUGH9u1oGdjMKK+f30xWVlY0adSA0NGfYmdni87bi30Hfmb5ylWET5pglkxZkpKSWPPjBqZPHK9ajvxkCh06mG69+9G4YQMCGjdie+QuNm3dzt7t6g2Me1am5ORkwiZMonOHILQe7ly+cpVRYZ/j4uxMx6BXzZLJysoqR2GysrLEw90NP9/yZsmUkpLChCnTCWrXBq2HOwkJt4lYuJjrf92gS8cOZsmUnp7Oa716cyL6JJt/WEVGRgax/5zHdnIqgbW1tckzAdy+fYer165xIyYWgLPnH8397eHujocJPiTmh9z61TRUK+g3yWATD/RfHyYVAF8sCcCW6liR/s+NYx6i4EYR2mGL9WPd6fWwQUMqu3hABuCJBQHYUsRIXe6JSUmMHDuO63/dwKlECTp3CGLC2E+wsnp0mVxMbCzDR4wmLj4erYc7vXt2z3a5mBryyrTq6yWMHDuOXv3e5vadO+i8vZgw9hPefbOf2TIBrPphHYqi0KNLZ9Vy5CdTx6D2zJsVzsTpMxjy4cf4lfdh7crlqg0ezCtTeno6p07/wfKVq7ibmIjWw52Axo1YvXwJDg4OZslkLs/KlJGRwf/OnWPZt99xKyEBZycnavvX5EDkNlVH4T8r0+UrV9i4ZRsANeo1yva8Pds20bRxo9x2qWomgI1btvLGu/+2Urv3efQ3YOyojwkbPVKVTKJwM8l16KaSn+vQTSU/156aimQyjGQyjGQyTGHLZMrr0D+1KY5tAQdePlAUPnt4V65Dfwbzv6uEEEK80KTL3TTkGAkhhBAvAGmhCyGEUFURNAUe+yStz7zJMRJCCKEqY94pTq5DfzppoQshhFCVMc+hR0VFyaC4p5AWuhBCCPECkBa6EEIIVRljchVpfeZNCroQQghVPZqcpWAVXWPUqbleTPKhRwghhHgBSAtdCCGEqqTL3TSkoAshhFCV3CnONOQYCSGEEC8Ag1voDx8+5OHDfydhSUpKAuCzM0dwdiph/GTPIS09ncgDR0hLT897YxPJyiKZnk0yGUYyGUYy5c2UOaTL3TQMnm0tLCyMcePG5Vi/cuVKihYtavRgQggh1HPv3j169uxpktnWZtk7YacpWEm+r2TyfsptfH19sbCwYODAgQwcODDvJ/4/YnBBz62F7uXlRcyl84Wuhd6iUd1CMT0hSCZDSSbDSCbDSKa8Jdy+g7ZM+f9cQZfpU5/O4HeVjY0NNjY2OdZbWVoWijfn4ySTYSSTYSSTYSSTYQpLJlNmkC530zD/u0oIIcQLTfPPUtB9iGeTgi6EEEJV0kI3DTlGQgghxAtAWuhCCCFUVQRNge/lXtDn/38gBV0IIYSqpMvdNOQYCSGEEC8AaaELIYRQ1aPpUwu+D/FsUtCFEEKoSi5bMw3pchdCCCFeAFLQhRBCqKqIRmOUBaB27dpUqlSJr776yszfVeFjkoKenp7OJ+PGU6ZSNeycPShbuTqfTZxMZmamfpt1GzbSKqgTLt5l0dgXJ/q3k2bNlJaWxsefjKVq7frYu3riWa4Cvd98hxsxMWbLBBA2YSIVatbG3tWTEiV1BLYL5mjUMbNmetw7g4eisS/OzDkRZs3U9+330NgXz7bUbRpo1kwAZ/53lqAu3XHUeuPgXoq6TQO5eu2a2TI9eYyylqkzZpstU3JyMoOGh1KqfCXsnD2o+PIrzF24WJU8hmaKi4un79vv4VmuAkVdtLQO7sz5CxdVywTw999/MzR0BLoKVbBz9qB+s5ZEHT+hf1xRFMImTMSzXAXsnD1o2rodp/84o2qm56Ux0gIQFRXFH3/8IROz5MIk59Anh89k3uIlLFswl8oVK3DsRDRvvDsQx2LFeH/gewCkpNyjQb06dOnUgbcGDjF7pnv37nEi+jfGjAiletUq3Ll7l6EfjSSoSw+OHdxrlkwAvj4+zJk+lbJlSnP//n1mzImgZVAnLpw8gauri1kyZVm/aTNHo47hqdUaPcfzZGrdIpCl8/79FG9tbW3WTBf/vETDFq3p3zuEcaNH4ujoyJmzZ7G1sTVbppiLZ7M9Z9vOSPoPGEznDkFmyzTs41Hs2X+AbxbPp7TOm50/7WHA0A/w1HoQ/Go7k2dSFIUO3XthZWXJhu9XUszBgfAvvyLw1WD+OH4Ue3t7o2cCeHPgEH7/4wwrFs3HU6vlm1WrCXy1A38cP0JJT0+mhM8i/MsIvp7/Fb4+PoyfMo0W7TtyNjoKBwcHVTKJws0kBf3w0SiC27WlXetWAJTW6fhuzQ8cO/GrfpuQnt0BuHzliiki5ZnJ0dGRyM3rsz3ny+lTeKVxM65eu4a3l5fJMwH07NYl23PCJ01g8bIVnPz9NM0DmpglE8BfN24waPhH7Niwlnaduxo9x/NksrGxxsPDXdUs+ck0etzntG3ZgikTPtOvK1umtFkzPXl8NmzZSkDjRqrlMiTT4aNR9OnVg6aNGwHwdr++zF+8lGMnflWloOeV6fyFixz5JYrfow5TuVJFACJmTsettA/frVnLm317Gz3T/fv3Wbt+Ixu+X0njhg0ACBs9kvWbtjB34RI+/3Q0M7+ay+jQD+gU/OjD17IFc3EvU56V3//AO/3fMHqmgpBBcaZhki73hvXq8tPefZw7fwGA306e4uChI7Rt1dIUL2+0TImJSWg0Goo7OhaKTKmpqSxYsgxHx2JUr1rFbJkyMzMJ6f8OoUMH6//gqcnQ47T3wEHcdD74VvfnrYFDiI+/abZMmZmZbNm+E9/yPrQK6oSbzoc6TZqzftNms2V6UlxcPFu276R/nxCzZmpYvy4bt2zjrxs3UBSFPfv2c+7CRVoFNjdLpqxpo21t/+1JsbCwwNrKmoOHDquSKT09nYyMjBy9N3Z2dhw8fJhLl68QGxdHy+YB+sdsbGxo0rABh44cVSVTQRizy108nUla6B9/MJTEpCQq1KyNhYUFGRkZTBg7hh5dXzPFyxsl04MHDxjxaRg9u3ZRbS5eQzNt3rad7n36c+/ePbQeHkRuWo+Li7PZMk2ePhNLS0uGDHhXlQzPk6lNyxZ06dQBnZcXl65cYcxnE2jWNojjP+/NdRpgtTPFx98kOTmZSdNnMv7T0Uz+PIztkT/RqUcIe7ZtokmjhibP9KRl336Hg8NLdApub/Qs+ck0e9pk3ho4hFLlK2FpaUmRIkVY9NVsGtavZ5ZMFfx80Xl7MXLsOObPnom9fVHCZ39FbFwcMbFxqmRycHCgXp1X+HzyFCpW8MXdzY3vvv+Bo1HHKO9Tjti4R6/r7u6W7Xnubm5cuarOmIyC0Gg0aDQFK8kaKel5MklBX/3DOr5Z9T0rly6icsUKRJ88xdCPR+Kp9aDP6z1NEaFAmdLS0ujepx+ZmZlEzJxm9kwBjRsRffgAtxISWLh0GV1D+nJ070+4ubmaPNPxX6OZFTGPE4f2FfgX1liZALq91km/fZXKlahVsya6ilXZsn2HvovSlJkylUcDrILbtWXY4EeDeWpUr8aho0eZt2ipKgU9v793S1Z8Q69uXbK1RM2RaXbEfI5EHWPjmu/QeXmx/+dDDBj2IVoPDwKbNTV5JisrK9auXEH/9wbhVKo0FhYWBAY0pU3LFkbP8rgVi+bT772BlPSpiIWFBS/XqE7Prl048dtv+m2eLHKKopjs91AUPiYp6KGjP2XEB0Pp3qUzAFWrVObKtWtMnD7DbAXd0ExpaWl0DenLpctX2L11k2qt8/xksre3x6dcWXzKlaXuK7UpX+1lFi9bwcjQ4SbPdODnQ8TfvIm3379d/hkZGXww8hNmfjWXy2dOmTxTbrRaD3TeXpy/8KfR8xiSycXZGUtLSypV9Mv2vIp+fhw8fMQsmR534OdDnD13ntXLlqiSxdBM9+/fZ1TYZ/y46hv9Oe1qVasQffIU02Z9qUpBN+Q4+desQfSRgyQmJpKamoarqwt1mjSn1ss1jZ4nS7myZdi3YyspKSkkJf2NVutBt95vUEanw8P90diH2Lg4tFoP/XPib97EXYUP9gUl59BNwyTn0O/dv0eRItlfyqKIxVMvfTIFQzJlFfPzF/5k1+YNODs7mT1TbhRF4WHqQ7NkCunRnZNHfyb68AH94qnVEjp0CDs2rDNLptwkJNzm2vW/0Ko0SC6vTNbW1tT2f5mz585n2+bchQvoVBhgaUimxy1etgL/mjWoXq2qKlkMzZSWlkZaWhpFNE9sY6He34v8HCdHR0dcXV04f+Hio0F67dqqkulx9vb2aLUe3Llzlx27fiL41baUKf2oqEfu3qvfLjU1lX0Hf6Z+3TqqZ8qvIkZaxLOZpIXevk1rJkyZjrdXKSpXrMCvv50kfM5X9At5Xb/N7dt3uHrtGjdiYgE4+88AFQ93d1VGKueVKT09ndd69eZE9Ek2/7CKjIwMYv85X+bkVEKVS6DyypSSksKEKdMJatcGrYc7CQm3iVi4mOt/3aBLxw5Gz2NIJmdnpxwfdKysLPFwd8PPt7xZMiUnJxM2YRKdOwSh9XDn8pWrjAr7HBdnZzoGvWqWTAChQwfTrXc/GjdsQEDjRmyP3MWmrdvZu12dgXGGZAJISkpizY8bmD5xvCo58pOpWLFiNGnUgNDRn2JnZ4vO24t9B35m+cpVhE+aYJZMAGvWrcfVxRlvLy9OnT7N+6Ej6NC+HS0Dm6mSCWBH5E8oioKfrw8XLl4idPQY/MqX542QXmg0GoYOfI8vpk2nvE9ZypcrxxdTwylqV5SeZhybJMzLJAX9y+lTGPPZBAYM/YD4m7fw1HrwTr83+HTkR/ptNm7Zyhvv/nujgO59+gEwdtTHhI0eafJM1//6i41btgFQo16jbM/ds22T/pIaU2aysLDgf+fOsezb77iVkICzkxO1/WtyIHKbaqPLDfnZmZohx+nU6T9YvnIVdxMT0Xq4E9C4EauXL1Ht+lxDjlPHoPbMmxXOxOkzGPLhx/iV92HtyuWqDfYy9Ge36od1KIpCj3+6nNVkSKZVXy9h5Nhx9Or3Nrfv3EHn7cWEsZ/w7pv9zJYpJjaW4SNGExcfj9bDnd49uzNmhLq/A4lJSYwcO47rf93AqUQJOncIYsLYT7CysgLgo+Hvc//BfQYM/ZA7d+9Sp7Y/OzeuK5TXoGs0j5YC7cM4UV5oGkVRlOd5YlJSEo6Ojty6dglnpxLGzvVc0tLT2brnIG0DGmJlWTjmnZFMhpFMhpFMhpFMeUu4fQcXrzIkJiaqNjYoq058V8KNopqCdZrfUzLpcSde1bz/dXJaQgghhHgBmP9johBCiBeajHI3DSnoQgghVCUF3TSky10IIcR/hkyf+nTSQhdCCKGqIkCRAjaxi/wzfDsqKkoGxT2FFHQhhBCq0vzzr6D7EM8mBV0IIYTqpByrT86hCyGEEC8AaaELIYRQlVHuFCdN/DxJQRdCCKEquWzNNKTLXQghhHgBSAtdCCGEqoqgoUgB29gFff7/BwYX9IcPH/Lw4b9zbiclJQGPJhxIS083frLnkJWjsOQByWQoyWQYyWQYyZQ3U+aQLnfTMHi2tbCwMMaNG5dj/cqVKylatKjRgwkhhFDPvXv36Nmzp0lmW9vg5IF9kYKd4U3JzCT4dqzMtvYMBhf03FroXl5exFw6X6imT408cIQWjeoWiukJQTIZSjIZRjIZRjLlLeH2HbRlypukoG90Nk5BD0qQgv4sBr+rbGxssLGxybHeytKyULw5HyeZDCOZDCOZDCOZDFNYMpkyg3S5m4aMchdCCCFeAOb/mCiEEOKFJvdyNw0p6EIIIVRVRGOE2daknudJCroQQghVyTl005Bz6EIIIcQLQFroQgghVCUtdNOQgi6EEEJVMijONKTLXQghhHgBSAtdCCGEqmQ+dNOQFroQQghVFTHSAlC7dm0qVarEV199Zcpv4T/BJAU9PT2dT8aNp0ylatg5e1C2cnU+mziZzMxM/TaKohA2YSKe5Spg5+xB09btOP3HGVVzla5YFY198RzLwGEfAhAXF0/ft9/Ds1wFirpoaR3cmfMXLpo1U3JyMoOGh1KqfCXsnD2o+PIrzF242Gx5cntMY1+cqTNmmy0TwJn/nSWoS3cctd44uJeibtNArl67ZrZMfd9+L8djdZsGqpbHkEyPe2fwUDT2xZk5J8KsmcImTKRCzdrYu3pSoqSOwHbBHI06ZrZMaWlpfPzJWKrWro+9qyee5SrQ+813uBETY7ZMAOs2bKRVUCdcvMuisS9O9G8nVc1TmERFRfHHH38wcOBAc0cpdEzS5T45fCbzFi9h2YK5VK5YgWMnonnj3YE4FivG+wPfA2BK+CzCv4zg6/lf4evjw/gp02jRviNno6NwcHBQJVfU/j1kZGTov/79jzO0aN+BLh2DURSFDt17YWVlyYbvV1LMwYHwL78i8NVg/jh+FHt7e5NnAhj28Sj27D/AN4vnU1rnzc6f9jBg6Ad4aj0IfrWdyfPEXDybbfttOyPpP2AwnTsEGT2LoZku/nmJhi1a0793CONGj8TR0ZEzZ89ia2NrtkwArVsEsnTev60Ka2tr1fIYmglg/abNHI06hqdWq2oeQzL5+vgwZ/pUypYpzf3795kxJ4KWQZ24cPIErq4uJs907949TkT/xpgRoVSvWoU7d+8y9KORBHXpwbGDe1XJk1cmgJSUezSoV4cunTrw1sAhquUwFhnlbhomKeiHj0YR3K4t7Vq3AqC0Tsd3a37g2IlfgUet85lfzWV06Ad0Cn5UCJYtmIt7mfKs/P4H3un/hiq5nvwDMWn6DMqVLUOTRg05f+EiR36J4veow1SuVBGAiJnTcSvtw3dr1vJm394mzwSPjmWfXj1o2rgRAG/368v8xUs5duJXVQp6Xnk8PNyzPb5hy1YCGjeibJnSRs9iaKbR4z6nbcsWTJnwmX4bNfMYkgnAxsY6x/Eyd6a/btxg0PCP2LFhLe06dzV7pp7dumR7PHzSBBYvW8HJ30/TPKCJyTNpNBoiN6/P9viX06fwSuNmXL12DW8vL5NnAgjp2R2Ay1euqPL6RqfRoJGT6KozSZd7w3p1+WnvPs6dvwDAbydPcfDQEdq2agnApctXiI2Lo2XzAP1zbGxsaNKwAYeOHDVFRFJTU/lm9ff06/06Go1GP1Wsre2/rToLCwusraw5eOiwWTIBNKxfl41btvHXjRsoisKeffs5d+EirQKbmyXP4+Li4tmyfSf9+4SonuVpmTIzM9myfSe+5X1oFdQJN50PdZo0Z/2mzWbLlGXvgYO46Xzwre7PWwOHEB9/06yZMjMzCen/DqFDB+s/tJpSXu+n1NRUFixZhqNjMapXrVIoMgEkJiah0Wgo7uhYaDIJASYq6B9/MJQeXV6jQs3aWDm6ULN+Y4YOfI8eXV8DIDYuDgB3d7dsz3N3cyM2Lt4UEVm/aQt37ybS9/WeAFTw80Xn7cXIseO4c+cuqampTJo2g9i4OGJi48ySCWD2tMlUquBHqfKVsC7uSusOrxExYxoN69czS57HLfv2OxwcXqJTcHvVszwtU3z8TZKTk5k0fSatWzRn58Z1dGz/Kp16hLDvwEGzZAJo07IF3y5ZyO6tG5k+cTxRx0/QrG2Q/oOjOTJNnj4TS0tLhgx41yQZDMkEsHnbdl5yK4mtkzsz5kQQuWk9Li7OZs2U5cGDB4z4NIyeXbuYbE7uvDL9F2iMtIhnM0mX++of1vHNqu9ZuXQRlStWIPrkKYZ+PBJPrQd9HnuTPnnjAEVRTPaJdPGyFbRpGag/j2hlZcXalSvo/94gnEqVxsLCgsCAprRp2cIkeXLLBDA7Yj5Hoo6xcc136Ly82P/zIQYM+xCthweBzZqaPM/jlqz4hl7dumTr1VDbk5kylUcDLYPbtWXY4EeDZmpUr8aho0eZt2hptu5mU2UC6PZaJ/3/q1SuRK2aNdFVrMqW7Tv0p5lMmen4r9HMipjHiUP7zNbqe9r7KaBxI6IPH+BWQgILly6ja0hfju79CTc3V7NlAkhLS6N7n35kZmYSMXOa6lkMyfRfIefQTcMkBT109KeM+GAo3bt0BqBqlcpcuXaNidNn0Of1nni4PzqvGBsXh1broX9e/M2buJvgl/jK1avs2rOXdd+tyLbev2YNoo8cJDExkdTUNFxdXajTpDm1Xq5plkz3799nVNhn/LjqG/14hGpVqxB98hTTZn2pakF/2jHKcuDnQ5w9d57Vy5aolsGQTC7OzlhaWlKpol+2bSv6+XHw8BGzZMqNVuuBztuL8xf+NEumAz8fIv7mTbz9/u3KzsjI4IORnzDzq7lcPnPK5Jmy2Nvb41OuLD7lylL3ldqUr/Yyi5etYGTocLNlSktLo2tIXy5dvsLurZtM1jo39P1U2GmMcA5dTjfkzSRd7vfu36NIkewvZVHEQn/ZWpnSOjzc3YncvVf/eGpqKvsO/kz9unVUz7d0xbe4ubrqi+STHB0dcXV14fyFi48Gn7Vra5ZMaWlppKWlUUTzxLG0sMh2CaCp8jxu8bIV+NesQfVqVVXNkVcma2travu/zNlz57Nte+7CBXQqDWDKK1NuEhJuc+36X2hNMEgut0whPbpz8ujPRB8+oF88tVpChw5hx4Z1Zsn0NIqi8DBV/VMTT8uUVczPX/iTXZs34OzspHqWvDIJkRuTtNDbt2nNhCnT8fYqReWKFfj1t5OEz/mKfiGvA48+eQ0d+B5fTJtOeZ+ylC9Xji+mhlPUrig9/znPrpbMzEyWrviWPr16YGmZ/XCsWbceVxdnvL28OHX6NO+HjqBD+3a0DGxmlkzFihWjSaMGhI7+FDs7W3TeXuw78DPLV64ifNIEk+fJkpSUxJofNzB94njVMuQnU+jQwXTr3Y/GDRsQ0LgR2yN3sWnrdvZuV3dg3NMyJScnEzZhEp07BKH1cOfylauMCvscF2dnOga9apZMzs5OOQqTlZUlHu5u+PmWN0umlJQUJkyZTlC7Nmg93ElIuE3EwsVc/+sGXTp2MEum9PR0XuvVmxPRJ9n8wyoyMjKI/WcMjZNTCVUvPXzWe/z27TtcvXaNGzGxAJz9Z8Cxh7u7Sa+kMJTMh24aJinoX06fwpjPJjBg6AfE37yFp9aDd/q9wacjP9Jv89Hw97n/4D4Dhn7Inbt3qVPbn50b16l2DXqWXbv3cvXadfr1fj3HYzGxsQwfMZq4+Hi0Hu707tmdMSM+ymUvpsu06usljBw7jl793ub2nTvovL2YMPYT3n2zn1nyAKz6YR2KotDjn1MqpvCsTB2D2jNvVjgTp89gyIcf41feh7Url6s+cPBpmSwsLDh1+g+Wr1zF3cREtB7uBDRuxOrlS8z6/jaXZx2n/507x7Jvv+NWQgLOTk7U9q/Jgchtqo/Cf1qm63/9xcYt2wCoUa9Rtsf2bNukv3zUlJkANm7Zyhvv/ntjle59Hv3+jx31MWGjR6qW6XlpimjQFLAiy+QsedMoiqI8zxOTkpJwdHTk1rVLODuVMHau55KWns7WPQdpG9AQq1xakuYgmQwjmQwjmQwjmfKWcPsOLl5lSExMVG1MQFadOODpxUtFCnaGNzkzk0Y3rqma97/O/O8qIYQQLzSZnMU0pKALIYRQlRR005DZ1oQQQogXgLTQhRBCqEquQzcNKehCCCFUJV3upiFd7kIIIcQLQFroQgghVCVd7qYhBV0IIYSqpMvdNKSgCyGEUFURjYYiBazIBX3+/wdyDl0IIYR4AUgLXQghhKqky900DC7oDx8+5OHDf6cwTEpKAh7dnzgtPd34yZ5DVo7Ckgckk6Ekk2Ekk2EkU95MmUODEQbFyeQseTJ4cpawsDDGjRuXY/3KlSspWrSo0YMJIYRQz7179+jZs6dJJmc5XrYML1kUcHKWjEz8/7wkk7M8g8EFPbcWupeXFzGXzheq2dYiDxyhRaO6hWI2I5BMhpJMhpFMhpFMeUu4fQdtmfImKegnfIxT0F++IAX9WQx+V9nY2GBjY5NjvZWlZaF4cz5OMhlGMhlGMhlGMhmmsGQyaQYjXIcuJ9HzJqPchRBCiBeA+T8mCiGEeKHJKHfTkIIuhBBCVY8KekFv/WqkMC8w6XIXQgghXgBS0IUQQqgqq8u9oEth07FjR0qUKMFrr71m7iiAFHQhhBAqy7qXe0GXwmbIkCEsX77c3DH0pKALIYRQ1YvaQg8ICMDBwcHcMfSkoAshhHjh7N+/n/bt2+Pp6YlGo2H9+vU5tomIiKBMmTLY2tri7+/PgQMHTB/UiGSUuxBCCFVpjHBjmfw+PyUlherVq/PGG2/QuXPnHI+vXr2aoUOHEhERQYMGDZg/fz5t2rThjz/+wNvbGwB/f/9sd0jNsnPnTjw9PZ/vG1GRFHQhhBCqMuZ16FkTg2V52l1M27RpQ5s2bZ66v/DwcPr378+bb74JwMyZM9mxYwdz585l4sSJABw/frxgoU1MutyFEEL8Z3h5eeHo6KhfsopvfqSmpnL8+HFatmyZbX3Lli05dOiQsaKanMkK+l83bvB6v7dx9ipDURctNeo25Piv0frH123YSKugTrh4l0VjX5zo306aNVNaWhoffzKWqrXrY+/qiWe5CvR+8x1uxMSYLRNA2ISJVKhZG3tXT0qU1BHYLpijUcfMmulx7wweisa+ODPnRJg1U9+330NjXzzbUrdpoFkzAZz531mCunTHUeuNg3sp6jYN5Oq1a2bL9OQxylqmzphttkzJyckMGh5KqfKVsHP2oOLLrzB34WLV8hiSKS4unr5vv4dnuQoUddHSOrgz5y9cVC1P6YpVc/25DBz2IQCKohA2YSKe5Spg5+xB09btOP3HGdXyFJQxB8Vdu3aNxMRE/TJy5Mh857l16xYZGRm4u7tnW+/u7k5sbKzB+2nVqhVdunRh69atlCpViqioqHxnMSaTdLnfuXOXBs1bEdC4Edt+/AE3Vxcu/nmZ4o6O+m1SUu7RoF4dunTqwFsDh5g907179zgR/RtjRoRSvWoV7ty9y9CPRhLUpQfHDu41SyYAXx8f5kyfStkypbl//z4z5kTQMqgTF06ewNXVxSyZsqzftJmjUcfw1GqNnuN5MrVuEcjSeV/pv7a2tjZrpot/XqJhi9b07x3CuNEjcXR05MzZs9ja2JotU8zFs9mes21nJP0HDKZzhyCzZRr28Sj27D/AN4vnU1rnzc6f9jBg6Ad4aj0IfrWdyTMpikKH7r2wsrJkw/crKebgQPiXXxH4ajB/HD+Kvb290TNF7d9DRkaG/uvf/zhDi/Yd6NIxGIAp4bMI/zKCr+d/ha+PD+OnTKNF+46cjY4qVKOus2iKaNAUKeA5dOXR84sVK2a02daePC+vKEq+ztXv2LHDKDmMxSQFfXL4TLxKlWLp/H9bbaV1umzbhPTsDsDlK1dMESnPTI6OjkRuXp/tOV9On8IrjZtx9do1vL28TJ4JoGe3Ltm+Dp80gcXLVnDy99M0D2hilkzwqIUzaPhH7Niwlnaduxo9x/NksrGxxsPDPcd6c2UaPe5z2rZswZQJn+nXlS1T2qyZnjw+G7ZsJaBxI9VyGZLp8NEo+vTqQdPGjQB4u19f5i9eyrETv6pS0PPKdP7CRY78EsXvUYepXKkiABEzp+NW2ofv1qzlzb69jZ7pyQ/nk6bPoFzZMjRp1BBFUZj51VxGh35Ap+BHH7yWLZiLe5nyrPz+B97p/4bR87xoXFxcsLCwyNEaj4+Pz9Fq/y8xSZf7xq3bqFWzBl1e74Obzoea9RqxcOkyU7y0UTMlJiah0WhybZ2aI1NqaioLlizD0bEY1atWMVumzMxMQvq/Q+jQwfo/eGoy9DjtPXAQN50PvtX9eWvgEOLjb5otU2ZmJlu278S3vA+tgjrhpvOhTpPmrN+02WyZnhQXF8+W7Tvp3yfErJka1q/Lxi3b+OvGDRRFYc++/Zy7cJFWgc3NkilrlLOt7b89KRYWFlhbWXPw0GFVMj0uNTWVb1Z/T7/er6PRaLh0+QqxcXG0bB6g38bGxoYmDRtw6MhR1fM8j8J2Hbq1tTX+/v5ERkZmWx8ZGUn9+vWN90ImZpKC/uely8xdtITy5cqxY8Na3n2zH0M+/Jjl335nipc3SqYHDx4w4tMwenbtYrTunufNtHnbdl5yK4mtkzsz5kQQuWk9Li7OZss0efpMLC0tGTLgXVUyPE+mNi1b8O2ShezeupHpE8cTdfwEzdoG5XoJiikyxcffJDk5mUnTZ9K6RXN2blxHx/av0qlHCPsOHDRLpict+/Y7HBxeolNwe1XyGJpp9rTJVKrgR6nylbAu7krrDq8RMWMaDevXM0umCn6+6Ly9GDl2HHfu3CU1NZVJ02YQGxdHTGycKpket37TFu7eTaTv6z0BiI179Jru7m7ZtnN3cyM2Ll71PM/DmHeKq127NpUqVeKrr7565msmJycTHR1NdHQ0AJcuXSI6OpqrV68CMHz4cBYtWsSSJUs4c+YMw4YN4+rVq7z7rmn+jqnBJF3umZmZ1Hq5Jl+M+xSAmjWqc/rMGeYuWkLvXj1MEaFAmdLS0ujepx+ZmZlEzJxm9kwBjRsRffgAtxISWLh0GV1D+nJ070+4ubmaPNPxX6OZFTGPE4f2Ffg6U2NlAuj2Wif99lUqV6JWzZroKlZly/Yd+m5KU2bKVDIBCG7XlmGDBwJQo3o1Dh09yrxFS2nSqKHJMz1pyYpv6NWtS7aWqDkyzY6Yz5GoY2xc8x06Ly/2/3yIAcM+ROvhQWCzpibPZGVlxdqVK+j/3iCcSpXGwsKCwICmtGnZwuhZcrN42QratAzMMTZFQ8HO//5XRUVFGdSoOnbsGAEB//ZiDB8+HIA+ffrw9ddf061bNxISEvjss8+IiYmhSpUqbN26FV0up+/+K0zSQtd6uFOpgl+2dRX9/Lh67bopXj5XhmZKS0uja0hfLl2+QuSm9aq1zvOTyd7eHp9yZan7Sm0Wz52DpaUli5etMEumAz8fIv7mTbz9qmBZzBnLYs5cuXqND0Z+QumKVc2SKdfnaD3QeXtx/sKfZsnk4uyMpaUllSrmss11dX4P8nOcDvx8iLPnzvNmH+OfD85Ppvv37zMq7DPCJ02gfds2VKtahUHvvk23zh2ZNutLs2QC8K9Zg+gjB7l74woxF8+yfcNaEm7fpkxpdf/4X7l6lV179mY7T+/xzznerJZ6lvibN3FX4UO9MZijy71p06YoipJj+frrr/XbDBgwgMuXL/Pw4UOOHz9O48aNjfuNm5hJCnqDunU5e/5CtnXnzl9A5238gWWGMiRTVjE/f+FPdm3egLOzk9kz5UZRFB6mqtOVnFemkB7dOXn0Z6IPH9AvnlotoUOHsGPDOrNkyk1Cwm2uXf8LrUqD5PLKZG1tTW3/lzl77nz2bS5cQKfCAEtDMj1u8bIV+NesQfVq6nwIMzRTWloaaWlpFNFk/9NkYWFBZmamWTI9ztHREVdXF85fuPhokF67tqpkyrJ0xbe4ubrSrnUr/boypXV4uLsTuXuvfl1qair7Dv5M/bp1VM3zvLLuFFfQRTybSbrchw0eQP1mLfli6nS6durIL8eOs2DpMhZ8OVO/ze3bd7h67Ro3Yh6NOsz6BfNwd1dlpHJemdLT03mtV29ORJ9k8w+ryMjIIPaf82VOTiVUuQQqr0wpKSlMmDKdoHZt0Hq4k5Bwm4iFi7n+1w26dOxg9DyGZHJ2dsrxQcfKyhIPdzf8fMubJVNycjJhEybRuUMQWg93Ll+5yqiwz3FxdqZj0KtmyQQQOnQw3Xr3o3HDBgQ0bsT2yF1s2rqdvdvVGRhnSCZ4dOetNT9uYPrE8arkyE+mYsWK0aRRA0JHf4qdnS06by/2HfiZ5StXET5pglkyAaxZtx5XF2e8vbw4dfo074eOoEP7drQMbKZKJnh0KmDpim/p06sHlpb//qnWaDQMHfgeX0ybTnmfspQvV44vpoZT1K4oPbsWjmk8n6TBCHeKM0qSF5zynBITExVAuXXtkqKk3M1z2fTDKqVKpUqKjY2NUsHPV1kwZ1a2x5fO+0oBcixjR31s0P6VlLtKauItZf369Upq4q0CZ7r0x2+55gGUPds2mSXT/YRYpWPQq4qnVqtYW1srWg8PJahdG+WX/bsNzmPsTLktOm8vZcbkL8yW6d6tGKVl82aKq4uLYmVlpXh7lVL69OqhXD37u9mP0+KILxWfcmUVW1tbpXrVKsr61d+aPdP8L2cqdnZ2yt0bV/KVRa1MMRfPKn1f76l4arWKra2t4udbXpk+cbySmXzHbJlmTZ2klCpZUv9++uTjD5WHd+JVPU47NqxTAOVs9LEcj2Um31HGjvpY8XB3V2xsbJTGDesrp345lK88t65dUgAlMTHxecuAwXXiT38/5WadSgVa/vT3Uz3vf51GURTleT4IJCUl4ejoyK1rl3B2KlHQzxVGkZaeztY9B2kb0BAry8Jxm3rJZBjJZBjJZBjJlLeE23dw8SpDYmKiamODsurEpVoVcLC0KNC+/k7PoMyx/6ma979O7uUuhBBCXcYYEPdPn7uhl639f2T+j4lCCCGEgQy9bO3/IynoQgghVGWO+dD/P5KCLoQQQlWaIo+Wgu5DPJscIiGEEOIFIC10IYQQqpIud9OQgi6EEEJdRTSPloLuQzyTdLkLIYT4z5DL1p5OWuhCCCHUZYwJzf95vly29nRS0IUQQqhKzqGbhhR0IYQQ6pJz6CZhcEF/+PAhDx/+O0VnUlIS8Oj+xGnp6cZP9hyychSWPCCZDCWZDCOZDCOZ8lZYcgjjMXhylrCwMMaNG5dj/cqVKylatKjRgwkhhFDPvXv36Nmzp0kmZ7nWtDrFCjg5S1J6Bl57f5PJWZ7B4IKeWwvdy8uLmEvnC9Vsa5EHjtCiUd1CMZsRSCZDSSbDSCbDSKa8Jdy+g7ZMeZMU9OvNahiloJfaHS0F/RkMflfZ2NhgY2OTY72VpWWheHM+TjIZRjIZRjIZRjIZprBkKgwZhHHJdehCCCHUVdC5Ux+77O1Fug49JSXFqPuTj2hCCCFUpdFo0BRwlLrmBbwO3d3dna5du9KvXz8aNmxY4P1JC10IIYQwg++++47ExESaN2+Or68vkyZN4saNG8+9PynoQggh1GXELvcXSfv27Vm7di03btzgvffe47vvvkOn0/Hqq6+ybt060vN5aaEUdCGEEOoqwr83l3nuxdzfhHqcnZ0ZNmwYv/32G+Hh4ezatYvXXnsNT09PPv30U+7du2fQfuQcuhBCCGFGsbGxLF++nKVLl3L16lVee+01+vfvz40bN5g0aRJHjhxh586dee5HCroQQghVyb3cc7du3TqWLl3Kjh07qFSpEgMHDuT111+nePHi+m1q1KhBzZo1DdqfFHQhhBDqknu55+qNN96ge/fu/Pzzz9SuXTvXbcqWLcvo0aMN2p8UdCGEEOoy4vSpL5KYmJg8b51uZ2fH2LFjDdrfCzzMQAghhCi8HBwciI+Pz7E+ISEBC4v83ypXCroQQghVaYoYZ4EX605xT5tK5eHDh1hbW+d7fyYr6H/duMHr/d7G2asMRV201KjbkOO/RusfVxSFsAkT8SxXATtnD5q2bsfpP86olidswkQ09sWzLR5lfPWPx8XF0/ft9/AsV4GiLlpaB3fm/IWLquUxJFNycjKDhodSqnwl7Jw9qPjyK8xduNismZ58LGuZOmO22TIBnPnfWYK6dMdR642DeynqNg3k6rVrZsvU9+33cjxet2mgankMyfS4dwYPRWNfnJlzIsyaKWzCRCrUrI29qyclSuoIbBfM0ahjZsuUlpbGx5+MpWrt+ti7euJZrgK933yHGzExZssEsG7DRloFdcLFuywa++JE/3ZS1TwFZsTr0KOiovjjjz8YOHCgmb+p5zd79mxmz56NRqNh0aJF+q9nz57NjBkzGDhwIBUqVMj3fk1yDv3Onbs0aN6KgMaN2PbjD7i5unDxz8sUd3TUbzMlfBbhX0bw9fyv8PXxYfyUabRo35Gz0VE4ODiokqtyxYrs2rxe/3VWF4eiKHTo3gsrK0s2fL+SYg4OhH/5FYGvBvPH8aPY29urkudZmQCGfTyKPfsP8M3i+ZTWebPzpz0MGPoBnloPgl9tZ5ZMMRfPZtt2285I+g8YTOcOQarlySvTxT8v0bBFa/r3DmHc6JE4Ojpy5uxZbG1szZYJoHWLQJbO+7dV8TyfwI2dCWD9ps0cjTqGp1arep68Mvn6+DBn+lTKlinN/fv3mTEngpZBnbhw8gSuri4mz3Tv3j1ORP/GmBGhVK9ahTt37zL0o5EEdenBsYN7VcvzrEwAKSn3aFCvDl06deCtgUNUzSGMb8aMGcCjWjNv3rxsP1tra2tKly7NvHnz8r1fkxT0yeEz8SpViqXz//30X1qn0/9fURRmfjWX0aEf0Cn4USFYtmAu7mXKs/L7H3in/xuq5LK0tMDDwz3H+vMXLnLklyh+jzpM5UoVAYiYOR230j58t2Ytb/btrUqeZ2UCOHw0ij69etC0cSMA3u7Xl/mLl3LsxK+qFvRnZXpy/YYtWwlo3IiyZUqrlievTKPHfU7bli2YMuEz/Tq18+SVCcDGxvqZj6shr0x/3bjBoOEfsWPDWtp17mr2TD27dcn2dfikCSxetoKTv5+meUATk2dydHQk8rGiCvDl9Cm80rgZV69dw9vLy+SZAEJ6dgfg8pUrqr2+MWmKGOFe7i/QKPdLly4BEBAQwLp16yhRwjhTkJuky33j1m3UqlmDLq/3wU3nQ816jVi4dJn+8UuXrxAbF0fL5gH6dTY2NjRp2IBDR46qluv8xT/xLFeBMpWq0b1PP/68dBlAP++7re2/LToLCwusraw5eOiwanmelQmgYf26bNyyjb9u3EBRFPbs28+5CxdpFdjcbJkeFxcXz5btO+nfJ0TVPM/KlJmZyZbtO/Et70OroE646Xyo06Q56zdtNlumLHsPHMRN54NvdX/eGjiE+PibZs2UmZlJSP93CB06WP/B1RQMfT+lpqayYMkyHB2LUb1qlUKRCSAxMQmNRpOth9HcmQo9ufVrrvbs2WO0Yg4maqH/eekycxctYfjggYz6cDi/HD/BkA8/xsbamt69ehAbFweAu7tbtue5u7lx5ao65z3r1KrF8oVz8fXxIS7+JuOnTKV+s5acPnaECn6+6Ly9GDl2HPNnz8Tevijhs78iNi6OmNg4VfLklcnZ2YnZ0ybz1sAhlCpfCUtLS4oUKcKir2bTsH49s2V63LJvv8PB4SU6BbdXLU9emdLS0khOTmbS9JmM/3Q0kz8PY3vkT3TqEcKebZto0qjgMxrlN5OzsxNtWragS6cO6Ly8uHTlCmM+m0CztkEc/3kvNjY2Zsk0efpMLC0tGTLgXVVe/3kyAWzetp3uffpz7949tB4eRG5aj4uLs1kzZXnw4AEjPg2jZ9cuqs74lZ9M4r9l+PDhfP7559jb2zN8+PBnbhseHp6vfZukoGdmZlLr5Zp8Me5TAGrWqM7pM2eYu2gJvXv10G+nIfsnMEVRVLs7UJtWLfT/rwrUq1ObclVqsuzblQwfMoi1K1fQ/71BOJUqjYWFBYEBTWnTssVT92eKTLMj5nMk6hgb13yHzsuL/T8fYsCwD9F6eBDYrKlZMj1uyYpv6NWtS7aeDVNn6t6lMwDB7doybPCjQTM1qlfj0NGjzFu0VLWCntdx6vZaJ/3jVSpXolbNmugqVmXL9h3600ymzNSkUUNmRczjxKF9Jr0DlyHvp4DGjYg+fIBbCQksXLqMriF9Obr3J9zcXM2WCR4NkOvepx+ZmZlEzJymSpb8ZvrPkBvL6P3666+kpaXp//80z/N7aZKCrvVwp1IFv2zrKvr5sXb9JgA83B+dJ4qNi0Or9dBvE3/zJu4q/RI/yd7enqqVK3H+4p8A+NesQfSRgyQmJpKamoarqwt1mjSn1suG3YLP2Jnu37/PqLDP+HHVN7Rr3QqAalWrEH3yFNNmfalaQX9Wpscd+PkQZ8+dZ/WyJSbJ8bRMLs7OWFpaUqlizvfbwcNHzJIpN1qtBzpvL85fyP1xtTMVKVKE+Js38fb7tys7IyODD0Z+wsyv5nL5zCmTZ3p8nU+5sviUK0vdV2pTvtrLLF62gpGhz27NqJkpLS2NriF9uXT5Cru3bjL5fNx5vZ8KO7n167/27NmT6/+NwSTn0BvUrcvZ8xeyrTt3/gI670cDSsqU1uHh7k7k7r36x1NTU9l38Gfq161jiog8fPiQM2fPoX1iEIqjoyOuri6cv3Dx0eCzdm1NkufJTGlpaaSlpVFEk/1HZmFhQWZmplkyPW7xshX416xB9WpVTZYlt0zW1tbU9n+Zs+fOZ9vm3IUL6FQcwPSsTLlJSLjNtet/PfVxtTOF9OjOyaM/E334gH7x1GoJHTqEHRvWmSXT0yiKwsPUh2bLlFXMz1/4k12bN5ily9uQ4ySESVrowwYPoH6zlnwxdTpdO3Xkl2PHWbB0GQu+nAk8+uQ1dOB7fDFtOuV9ylK+XDm+mBpOUbui9Oz6miqZPhz5Ce3btsbbqxTxN28xfvJUkv7+mz7/nAJYs249ri7OeHt5cer0ad4PHUGH9u1oGdhMlTx5ZSpWrBhNGjUgdPSn2NnZovP2Yt+Bn1m+chXhkyaYJVOWpKQk1vy4gekTx6uWIz+ZQocOplvvfjRu2ICAxo3YHrmLTVu3s3e7egPjnpUpOTmZsAmT6NwhCK2HO5evXGVU2Oe4ODvTMehVs2RydnbKUZisrCzxcHfDz7e8WTKlpKQwYcp0gtq1QevhTkLCbSIWLub6Xzfo0rGDWTKlp6fzWq/enIg+yeYfVpGRkUHsP+NonJxKqHbpYV7v8du373D12jVuxMQC6BtMHu7uJr+SwiDS5a7XqVOnvDf6x7p1+ftwbZKCXtv/ZX5c9Q0jP/2MzyZOoUxpHTOnTKRX938vk/lo+Pvcf3CfAUM/5M7du9Sp7c/OjetUuwb9+o0b9Oj7JrcSEnB1caHuK7U4sicSnbc3ADGxsQwfMZq4+Hi0Hu707tmdMSM+UiWLoZlWfb2EkWPH0avf29y+cwedtxcTxn7Cu2/2M1smgFU/rENRFHr8c/5abXll6hjUnnmzwpk4fQZDPvwYv/I+rF25XNXBg8/KdP/+fU6d/oPlK1dxNzERrYc7AY0bsXr5EtXe33llMpdnZXrw4AH/O3eOZd9+x62EBJydnKjtX5MDkdtUHYX/rEyXr1xh45ZtANSo1yjb8/Zs26S/hNSUmQA2btnKG+/+e2OV7n0e/Q0YO+pjwkaPVCVTwRhjlPqLUdAdVbw6QqM87d5zeUhKSsLR0ZFb1y7h7GS8YfcFkZaeztY9B2kb0BAry8Ix74xkMoxkMoxkMoxkylvC7Tu4eJUhMTFRtTEBWXUivltjilkX7HtOSk3HbfV+VfP+18m93IUQQvxnvEj3cjc2839MFEII8WIz4jn0qKio/3QL/eWXX+ann36iRIkS1KxZ85mj90+cOJGvfUtBF0IIoSq5bO1fwcHB+ptJdejQwaj7loIuhBBCmMjYsWNz/b8xSEEXQgihLrls7ZmOHTvGmTNn0Gg0VKxYEX9//+fajxR0IYQQ6jLG5CovSJf7465fv06PHj34+eefKV68OAB3796lfv36fPfdd3jl82ZYMspdCCGEMIN+/fqRlpbGmTNnuH37Nrdv3+bMmTMoikL//v3zvT9poQshhFCVzIeeuwMHDnDo0CH8/P6de8LPz48vv/ySBg0a5Ht/UtCFEEKoS7rcc+Xt7a2fee1x6enplCxZMt/7ky53IYQQwgymTJnC4MGDOXbsGFk3bT127Bjvv/8+06blf4peaaELIYRQVxGMMMrdKEnMrkSJEtmuqU9JSaFOnTpY/nM74PT0dCwtLenXr1++r1M3uKA/fPiQhw//ncIwKSkJeHR/4rT09Hy9qFqychSWPCCZDCWZDCOZDCOZ8mbKHHJjmX/NnDlTtX0bPDlLWFgY48aNy7F+5cqVFC1a1OjBhBBCqOfevXv07NnTJJOzJLzVkmLWVgXbV2oazgt3yuQsz2BwC33kyJEMHz5c/3VSUhJeXl4EBATg7OysSrj8SktLIzIykhYtWmBlVbA3j7FIJsNIJsNIJsMU6kyN6haa2dZE4XH//v0cA+Ty+8HF4HeVjY2N/v6zj7Oysio0vzBZJJNhJJNhJJNhJJNhrCwtC0VBN2kGGeWeq5SUFD7++GO+//57EhIScjyekZGRr/29IMMMhBBCFFpZBb2gCy/W9KkfffQRu3fvJiIiAhsbGxYtWsS4cePw9PRk+fLl+d6f+T8mCiGEEAb6r0+f+rhNmzaxfPlymjZtSr9+/WjUqBE+Pj7odDq+/fZbevXqla/9SQtdCCGEyozROn/xutxv375NmTJlgEfny2/fvg1Aw4YN2b9/f773JwVdCCGEuooUMc7ygilbtiyXL18GoFKlSnz//ffAo5Z71mQt+fHiHSEhhBDiP+CNN97gt99+Ax5dSZZ1Ln3YsGGEhobme39yDl0IIYS6ZJR7roYNG6b/f0BAAGfOnOH48eOUK1eO6tWr53t/UtCFEEKoSwq6QXQ6HTqd7rmfL13uQgghhJn89NNPvPrqq5QrVw4fHx9effVVdu3a9Vz7koIuhBBCXUa8Dv1FMmfOHFq3bo2DgwPvv/8+Q4YMoVixYrRt25Y5c+bke3/S5S6EEEJdxhil/gKOcp84cSIzZsxg0KBB+nVDhgyhQYMGTJgwIdt6Q7x4R0gIIUThIi30XCUlJdG6desc61u2bKmf0TQ/zFLQJ06ciEajYejQofp169ato1WrVri4uKDRaIiOjjZrprS0ND7++GOqVq2Kvb09np6e9O7dmxs3bpgtEzya9a5ChQrY29tTokQJAgMDOXr0qFkzPe6dd95Bo9GoOkWgIZn69u2rn7Ixa6lbt65ZMwGcOXOGoKAgHB0dcXBwoG7duly9etVsmZ48RlnL1KlTzZYpOTmZQYMGUapUKezs7KhYsSJz5841SZ6nZYqLi6Nv3754enpStGhRWrduzfnz51XLEDZhIhr74tkWjzK++scVRSFswkQ8y1XAztmDpq3bcfqPM6rlEeoICgrixx9/zLF+w4YNtG/fPt/7M3mXe1RUFAsWLKBatWrZ1qekpNCgQQO6dOnCW2+9ZfZM9+7d48SJE4wZM4bq1atz584dhg4dSlBQEMeOHTNLJgBfX1/mzJlD2bJluX//PjNmzKBly5ZcuHABV1dXs2TKsn79eo4ePYqnp6eqOQzN1Lp1a5YuXar/2tra2qyZLl68SMOGDenfvz/jxo3D0dGRM2fOYGtra7ZMMTEx2b7etm0b/fv3p3PnzmbLNGzYMPbs2cM333xD6dKl2blzJwMGDMDT05Pg4GCTZ1IUhQ4dOmBlZcWGDRsoVqwY4eHhBAYG8scff2Bvb69KlsoVK7Jr83r91xYWFvr/TwmfRfiXEXw9/yt8fXwYP2UaLdp35Gx0FA4ODqrkKRAZ5a43e/Zs/f8rVqzIhAkT2Lt3L/Xq1QPgyJEj/Pzzz3zwwQf53rdJW+jJycn06tWLhQsXUqJEiWyPhYSE8OmnnxIYGGjKSE/N5OjoSGRkJF27dsXPz4+6devy5Zdfcvz4cdVbVM86Tj179iQwMJCyZctSuXJlwsPDSUpK4uTJk2bLBPDXX38xaNAgvv32W5PNbpVXJhsbGzw8PPSLk5OTWTONHj2atm3bMmXKFGrWrEnZsmVp164dbm5uZsv0+PHx8PBgw4YNBAQEULZsWbNlOnz4MH369KFp06aULl2at99+m+rVq6v+Qfppmc6fP8+RI0eYO3cutWvXxs/Pj4iICJKTk/nuu+9Uy2NpaYGHh7t+cXV1AR59wJj51VxGh35Ap+AgqlSuxLIFc7l3/x4rv/9BtTwFIl3uejNmzNAvixcvpkSJEvzxxx8sXryYxYsXc/r0aYoXL86SJUvyvW+TFvSBAwfSrl07kxftZ8lPpsTERDQazXPdkk+NTKmpqSxYsABHR8fnugmBsTJlZmYSEhJCaGgolStXVjWHoZkA9u7di5ubG76+vrz11lvEx8ebLVNmZiZbtmzB19eXVq1a4ebmRp06dVi/fr3ZMj0pLi6OLVu20L9/f7NmatiwIRs3buSvv/5CURT27NnDuXPnaNWqlVkyPXz4ECBbT4qFhQXW1tYcPHhQtTznL/6JZ7kKlKlUje59+vHnpcsAXLp8hdi4OFo2D9Bva2NjQ5OGDTh0xHSn38TzuXTpkkHLn3/+me99m6zLfdWqVZw4cYKoqChTvWSe8pPpwYMHjBgxgp49e6o6048hmTZv3kz37t25d+8eWq2WyMhIXFxczJZp8uTJWFpaMmTIENUy5DdTmzZt6NKlCzqdjkuXLjFmzBiaNWvG8ePHsbGxMXmm+Ph4kpOTmTRpEuPHj2fy5Mls376dTp06sWfPHpo0aWLyTE9atmwZDg4OdOrUSZUshmaaPXs2b731FqVKlcLS0pIiRYqwaNEiGjZsaJZMFSpUQKfTMXLkSObPn4+9vT3h4eHExsbmOGVhLHVq1WL5wrn4+vgQF3+T8VOmUr9ZS04fO0JsXBwA7u7Ze3bc3dy4cvWaKnkKTEa550lRFODRuJbnZZKCfu3aNd5//3127txpkvOFhshPprS0NLp3705mZiYRERFmzxQQEEB0dDS3bt1i4cKFdO3alaNHj6rSdZtXpuPHjzNr1ixOnDhRoDeiMTMBdOvWTf//KlWqUKtWLXQ6HVu2bFGlYOWVKTMzE4Dg4GD97R5r1KjBoUOHmDdvnioFPb+/d0uWLKFXr16q/o4akmn27NkcOXKEjRs3otPp2L9/PwMGDECr1arSu5dXJisrK9auXUv//v1xcnLCwsKCwMBA2rRpY/QsWdq0aqH/f1WgXp3alKtSk2XfrqTuK7UB0Dwx+5iiKCb7Hcw3OYf+VMuXL2fq1Kn6QZa+vr6EhoYSEhKS732Z5CPP8ePHiY+Px9/fH0tLSywtLdm3bx+zZ8/G0tKSjIwMU8R4rkxpaWl07dqVS5cuERkZqWrr3NBM9vb2+Pj4ULduXRYvXoylpSWLFy82S6a9e/cSHx+Pt7e3/vErV67wwQcfULp0abNkyu39pNVq0el0qo1MziuTs7MzlpaWVKpUKdvzKlasqNqYjPwcpwMHDnD27FnefPNNVbIYmiklJYVRo0YRHh5O+/btqVatGoMGDaJbt25MmzbNLJkyMjLw9/cnOjqau3fvEhMTw/bt20lISNBPfak2e3t7qlauxPmLf+Lh7g6gb6lnib95E3c3dQfGCuMKDw/nvffeo23btnz//fesXr2a1q1b8+677zJjxox8788kLfTmzZtz6tSpbOveeOMNKlSowMcff5xt9KapGJIpq5ifP3+ePXv24OzsbPZMuVEURX+ez9SZtFptjnObrVq1IiQkhDfeeMMsmXI7TgkJCVy7dg2tVmuWTDY2NtSuXZuzZ89m2+bcuXMFundzQTI9fpwWL16Mv7+/6mMx8sqUkZFBWloaRZ7oXrWwsND3cpg60+PHydHREXg0UO7YsWN8/vnnqmR60sOHDzlz9hyNGtSjTGkdHu7uRO7eS80aj35eqamp7Dv4M5M/H2eSPPmmwQgtdKMkKVS+/PJL5s6dS+/evfXrgoODqVy5MmFhYdkmbzGESQq6g4MDVapUybbO3t4eZ2dn/frbt29z9epV/XXeWX/4skbfmjpTeno6r732GidOnGDz5s1kZGQQGxsLgJOTkyqXQOWVKSUlhQkTJhAUFIRWqyUhIYGIiAiuX79Oly5djJ7HkExAjg86VlZWeHh44OfnZ5ZMycnJhIWF0blzZ7RaLZcvX2bUqFG4uLjQsWNHs2QCCA0NpVu3bjRu3JiAgAC2b9/Opk2b2Lt3r9kywaObW6xZs4bp06erkiO/mZo0aUJoaCh2dnbodDr27dvH8uXLCQ8PN1umNWvW4Orqire3N6dOneL999+nQ4cOtGzZUpVMH478hPZtW+PtVYr4m7cYP3kqSX//TZ9ePR5dIz/wPb6YNp3yPmUpX64cX0wNp6hdUXp2fU2VPAUmXe65iomJoX79+jnW169f/7nGZxSaW79u3LgxW4uue/fuAIwdO5awsDCT57l+/TobN24EHp3rfNyePXto2rSpyTNZWFjwv//9j2XLlnHr1i2cnZ2pXbs2Bw4cMOno8sLOwsKCU6dOsXz5cu7evYtWqyUgIIDVq1eb9Rrdjh07Mm/ePCZOnMiQIUPw8/Nj7dq1qg72MsSqVatQFIUePXqYNUeWVatWMXLkSHr16sXt27fR6XRMmDCBd99912yZYmJiGD58OHFxcWi1Wnr37s2YMWNUe73rN27Qo++b3EpIwNXFhbqv1OLInkh03t4AfDT8fe4/uM+AoR9y5+5d6tT2Z+fGdYXzGnTxVD4+Pnz//feMGjUq2/rVq1dTvnz5fO9Po2QNrcunpKQkHB0d9YWlMEhLS2Pr1q20bdvWZNdC50UyGUYyGUYyGaZQZwpoiJWl+dtSCbfv4OJVhsTERNXGBmXVidsjelDMpmC9mkkPU3Ga9J2qeU1t7dq1dOvWjcDAQBo0aIBGo+HgwYP89NNPfP/99/nuUXyxrwMQQghRCBjjpjKPutxr165NpUqV+Oqrr8z7LRlB586d+eWXX3BxcWH9+vWsW7cOFxcXfvnll+c6PWj+j4lCCCFebEY8hx4VFfVCtNDT0tJ4++23GTNmDN98841R9iktdCGEEMLErKyscp2YpSCkoAshhFCX3Ms9Vx07djTq7Z+ly10IIYS65NavufLx8eHzzz/n0KFD+Pv755i5L7+305aCLoQQQpjBokWLKF68OMePH+f48ePZHtNoNFLQhRBCFDJyY5lcXbp0Sf9/Y0zO8uL1YQghhChc5Bz6Uy1evJgqVapga2uLra0tVapUYdGiRc+1L2mhCyGEEGYwZswYZsyYweDBg6lXrx4Ahw8fZtiwYVy+fJnx48fna39S0IUQQqhLutxzNXfuXBYuXJjttstBQUFUq1aNwYMHS0EXQghRyMgo91xlZGRQq1atHOv9/f1JT0/P9/4MLugPHz7MNkVnUlIS8OhuN2lpafl+YTVk5SgseUAyGUoyGUYyGaZQZ3qOP9RqMGkOaaHn6vXXX2fu3Lk5ZhJcsGABvXr1yvf+DJ6cJSwsjHHjcs61u3LlSooWLZrvFxZCCGE+9+7do2fPnqaZnOWzNylmW8DJWR6k4vTpohdqcpbBgwezfPlyvLy8qFu3LgBHjhzh2rVr9O7dO9vEQoZMH2xwQc+the7l5UVMTEyhmm0tMjKSFi1aFKoZliRT3iSTYSSTYSRT3hISEtBqtaYp6J+/ZZyCPmbhC1XQAwICDNpOo9Gwe/fuPLczuMvdxsYGGxubHOutrKwKxZvzcZLJMJLJMJLJMJLJMIUlk0kzyDn0XO3Zs8eo+3vxjpAQQgjx/5CMchdCCKEuDUYYFGeUJC80KehCCCHUJaPcTUK63IUQQogXgLTQhRBCqEta6CYhBV0IIYS6NEYY5a6RDuW8yBESQgghXgDSQhdCCKEu6XI3CSnoQggh1CUF3SSkoAshhFCXpkjBz4HLOfQ8yRESQgghXgBmKegTJ05Eo9EwdOhQ/TpFUQgLC8PT0xM7OzuaNm3K6dOnVcswd+5cqlWrRrFixShWrBj16tVj27Zt+sfj4uLo27cvnp6eFC1alNatW3P+/HnV8hiSKTk5mUGDBlGqVCns7OyoWLEic+fONWsmjUaT6zJ16lSzZQI4c+YMQUFBODo64uDgQN26dbl69arZMvXt2zfHMcqaXclcmR73zjvvoNFomDlzplkzhYWFUaFCBezt7SlRogSBgYEcPXrUbJnS0tL4+OOPqVq1Kvb29nh6etK7d29u3LhhtkwA69ato1WrVri4uKDRaIiOjlY1T4EV0RhnEc9k8oIeFRXFggULqFatWrb1U6ZMITw8nDlz5hAVFYWHhwctWrTg77//ViVHqVKlmDRpEseOHePYsWM0a9aM4OBgTp8+jaIodOjQgT///JMNGzbw66+/otPpCAwMJCUlRZU8eWUCGDZsGNu3b+ebb77hzJkzDBs2jMGDB7NhwwazZYqJicm2LFmyBI1GQ+fOnc2W6eLFizRs2JAKFSqwd+9efvvtN8aMGYOtra3ZMgG0bt0627HaunWrankMzQSwfv16jh49iqenp6p5DMnk6+vLnDlzOHXqFAcPHqR06dK0bNmSmzdvmiXTvXv3OHHiBGPGjOHEiROsW7eOc+fOERQUpFqevDIBpKSk0KBBAyZNmqRqDqPJ6nIv6CKeTXlOiYmJCqDcunXL4Of8/fffSvny5ZXIyEilSZMmyvvvv68oiqJkZmYqHh4eyqRJk/TbPnjwQHF0dFTmzZtn8P5TU1OV9evXK6mpqQY/53ElSpRQFi1apJw9e1YBlN9//13/WHp6uuLk5KQsXLgwX/s0ViZFUZTKlSsrn332WbbHX375ZeWTTz4xW6YnBQcHK82aNcv3Po2ZqVu3bsrrr7/+XPtRK1OfPn2U4ODgQpVJURTl+vXrSsmSJZXff/9d0el0yowZM8ye6XFZf2d27dpVaDL98ssvCqBcuXLF7JkuXbqkAMqvv/6a7/3dunVLAZTExMTnymOIrJ/f7RnDlfR5Iwu03J4xXPW8/3Um/cgzcOBA2rVrR2BgYLb1ly5dIjY2lpYtW+rX2djY0KRJEw4dOqR6royMDFatWkVKSgr16tXTz/v+eIvOwsICa2trDh48qHqe3DIBNGzYkI0bN/LXX3+hKAp79uzh3LlztGrVymyZHhcXF8eWLVvo37+/SfLklikzM5MtW7bg6+tLq1atcHNzo06dOqxfv95smbLs3bsXNzc3fH19eeutt4iPjzdrpszMTEJCQggNDaVy5comy/KsTI9LTU1lwYIFODo6Ur169UKRCSAxMRGNRkPx4sULTaZCL2uUe0EX8UwmG+W+atUqTpw4QVRUVI7HYmNjAXB3d8+23t3dnStXrqiW6dSpU9SrV48HDx7w0ksv8eOPP1KpUiXS0tLQ6XSMHDmS+fPnY29vT3h4OLGxscTExKiW51mZAGbPns1bb71FqVKlsLS0pEiRIixatIiGDRuaLdPjli1bhoODA506dVI1z7MyxcbGkpyczKRJkxg/fjyTJ09m+/btdOrUiT179tCkSROTZwJo06YNXbp0QafTcenSJcaMGUOzZs04fvw4NjY2Zsk0efJkLC0tGTJkiGqvn99MAJs3b6Z79+7cu3cPrVZLZGQkLi4uZs2U5cGDB4wYMYKePXtSrFixQpHpP0HmQzcJkxT0a9eu8f7777Nz585nnsfUPPEJTFGUHOuMyc/Pj+joaO7evcvatWvp06cP+/bto1KlSqxdu5b+/fvj5OSEhYUFgYGBtGnTRrUshmSaPXs2R44cYePGjeh0Ovbv38+AAQPQarU5ej1MlelxS5YsoVevXqqeq84rU1arKTg4mGHDhgFQo0YNDh06xLx581Qt6M86Tt26ddNvV6VKFWrVqoVOp2PLli2qfgB6Wqb79+8za9YsTpw4oervWH4yZb2fAgICiI6O5tatWyxcuJCuXbty9OhR3NzczJYJHg2Q6969O5mZmURERKiWJT+ZhHicSQr68ePHiY+Px9/fX78uIyOD/fv3M2fOHM6ePQs8aqlrtVr9NvHx8Tla7cZkbW2Nj48PALVq1SIqKopZs2Yxf/58/P39iY6OJjExkdTUVFxdXalTpw61atVSLc+zMs2cOZNRo0bx448/0q5dOwCqVatGdHQ006ZNU7WgP+s4ZTlw4ABnz55l9erVquUwJNOXX36JpaVljj96FStWVP10iSHHKYtWq0Wn06l+5cTTMlWsWJH4+Hi8vb3122ZkZPDBBx8wc+ZMLl++bPJMWcfJ3t4eHx8ffHx8qFu3LuXLl2fx4sWMHDnSbJnS0tLo2rUrly5dYvfu3aq3zg3J9J/yAt5Y5tq1a4SEhBAfH4+lpSVjxoyhS5cuZs1kkoLevHlzTp06lW3dG2+8QYUKFfj4448pW7YsHh4eREZGUrNmTeDR+bN9+/YxefJkU0QEHvUIZJ0/z+Lo6AjA+fPnOXbsGJ9//rnJ8jyeKS0tjbS0NIo80e1kYWFBZmamWTI9bvHixfj7+5vsXOfTMllbW1O7dm39h8Qs586dQ6fTmSVTbhISErh27Vq2D7CmzBQSEpLjQ2CrVq0ICQnhjTfeMEum531cDY+/ZlYxP3/+PHv27MHZ2dmkWXLL9J/zAt5YxtLSkpkzZ1KjRg3i4+N5+eWXadu2Lfb29ubLZIoXcXBwoEqVKtnW2dvb4+zsrF8/dOhQvvjiC8qXL0/58uX54osvKFq0KD179lQl06hRo2jTpg1eXl78/fffrFq1ir1797J9+3YA1qxZg6urK97e3pw6dYr333+fDh06ZBu4Z8pMxYoVo0mTJoSGhmJnZ4dOp2Pfvn0sX76c8PBws2TKkpSUxJo1a5g+fbpqOfKTKTQ0lG7dutG4cWMCAgLYvn07mzZtYu/evWbJlJycTFhYGJ07d0ar1XL58mVGjRqFi4sLHTt2NEsmZ2fnHIXJysoKDw8P/Pz8zJIpJSWFCRMmEBQUhFarJSEhgYiICK5fv65qy+dZmdLT03nttdc4ceIEmzdvJiMjQz/mx8nJCWtra5NnArh9+zZXr17VXw+f9QHWw8MDDw8PVTKJ7LRarf4DuZubG05OTty+ffvFL+iG+Oijj7h//z4DBgzgzp071KlTh507d+Lg4KDK68XFxRESEkJMTAyOjo5Uq1aN7du306JFC+DR9dXDhw8nLi4OrVZL7969GTNmjCpZDM20atUqRo4cSa9evbh9+zY6nY4JEybw7rvvmi1TVi5FUejRo4dqOfKTqWPHjsybN4+JEycyZMgQ/Pz8WLt2raqDB5+V6f79+5w6dYrly5dz9+5dtFotAQEBrF69WrX3d16ZzOVZmR48eMD//vc/li1bxq1bt3B2dqZ27docOHBA1VH4z8p0+fJlNm7cCDwai/G4PXv20LRpU5NnAti4cWO2npTu3bsDMHbsWMLCwlTJVCAajNDlnr/N9+/fz9SpUzl+/DgxMTH8+OOPdOjQIds2ERERTJ06lZiYGCpXrszMmTNp1KhRvqMdO3aMzMxMvLy88v1cY9IoiqI8zxOTkpJwdHTU/+IVBmlpaWzdupW2bdtiZWVl7jiAZDKUZDKMZDKMZMpbQkICLi4uJCYmqjYmIKtO3J47imJ2BRssm3T/AU7vfcG1a9ey5bWxscn1SpFt27bx888/8/LLL9O5c+ccBX316tWEhIQQERFBgwYNmD9/PosWLeKPP/7Qjy3x9/fP9TTHzp079TdiSkhIoFGjRixatIj69esX6HssqELTQhdCCPGCMuKguCdbwU/rlWjTps0zr0wKDw+nf//+vPnmmwDMnDmTHTt2MHfuXCZOnAg8GtD9LA8fPqRjx46MHDnS7MUcpKALIYT4D8mthZ5fqampHD9+nBEjRmRb37JlS4NvZqYoCn379qVZs2aEhITkO4MapKALIYRQlxFHuWdNWFMQt27dIiMjI9ebmWUNeszLzz//zOrVq6lWrZr+TpQrVqygatWqBcpWEFLQhRBCqEtjhNnSVLgOvSA3M2vYsKHJLxnOS+G6sE8IIYRQmYuLCxYWFjla42rfzExtUtCFEEKoq5BNn2ptbY2/vz+RkZHZ1kdGRhaKwW3PS7rchRBCqMuIo9xr166NhYUFAwcOZODAgU/dPDk5mQsXLui/vnTpEtHR0Tg5OeHt7c3w4cMJCQmhVq1a1KtXjwULFnD16lVV7+uhNinoQggh/jOioqIMGhR37NgxAgIC9F8PHz4cgD59+vD111/TrVs3EhIS+Oyzz4iJiaFKlSps3brV5LeINiYp6EIIIdRlhnu5N23alLzumzZgwAAGDBhQkFSFihR0IYQQ6ipihFHuBX3+/wMyKE4IIYR4ARjcQn/48GG2e9omJSUB6Kf1LAyychSWPCCZDCWZDCOZDCOZ8mbSHC/gfOiFkcGTs4SFhTFu3Lgc61euXEnRokWNHkwIIYR67t27R8+ePU0zOcuyiRQrWsDJWe49wKnPSHx9fQ0a5f7/kcEFPbcWupeXFzExMYVqtrXIyEhatGhRKGYzAslkKMlkGMlkGMmUt4SEBLRarWkK+opJxinoISNUzftfZ3CX+9OmqLOysioUb87HSSbDSCbDSCbDSCbDFJZMhSGDMC4Z5S6EEEJdGo0RLluTc+h5kYIuhBBCXTIoziTksjUhhBDiBSAtdCGEEOoyw53i/j+SIySEEEJdWXeKK+jCo8lZKlWqxFdffWXmb6rwkRa6EEKI/wxDJ2f5/0gKuhBCCHVJl7tJSEEXQgihLhnlbhLykUcIIYR4AUgLXQghhLqKFHm0FHQf4pmkoAshhFCZEbrckS73vJjkI8/EiROpXbs2Dg4OuLm50aFDB86ePZttm3Xr1tGqVStcXFzQaDRER0ebNVNaWhoff/wxVatWxd7eHk9PT3r37s2NGzfMlgkezXpXoUIF7O3tKVGiBIGBgRw9etSsmR73zjvvoNFomDlzplkz9e3bF41Gk22pW7euWTMBnDlzhqCgIBwdHXFwcKBu3bpcvXrVbJmePEZZy9SpU82WKTk5mUGDBlGqVCns7OyoWLEic+fOVSWPoZni4uLo27cvnp6eFC1alNatW3P+/HnVMs2dO5dq1apRrFgxihUrRr169di2bZv+cUVRCAsLw9PTEzs7O5o2bcrp06dVy1NgWYPiCrqIZzLJEdq3bx8DBw7kyJEjREZGkp6eTsuWLUlJSdFvk5KSQoMGDZg0aZIpIuWZ6d69e5w4cYIxY8Zw4sQJ1q1bx7lz5wgKCjJbJgBfX1/mzJnDqVOnOHjwIKVLl6Zly5bcvHnTbJmyrF+/nqNHj+Lp6alKlvxmat26NTExMfpl69atZs108eJFGjZsSIUKFdi7dy+//fYbY8aMwda2YLNQFSTT48cnJiaGJUuWoNFo6Ny5s9kyDRs2jO3bt/PNN99w5swZhg0bxuDBg9mwYYNZMimKQocOHfjzzz/ZsGEDv/76KzqdjsDAwFx/D4yhVKlSTJo0iWPHjnHs2DGaNWtGcHCwvmhPmTKF8PBw5syZQ1RUFB4eHrRo0YK///5blTyFiVyH/gzKc0pMTFQA5datW/l+bnx8vAIo+/bty/HYpUuXFED59ddf873f1NRUZf369UpqaqpRM2X55ZdfFEC5cuVKocmU9XPYtWuXWTNdv35dKVmypPL7778rOp1OmTFjRr72a+xMffr0UYKDg/O9LzUzdevWTXn99dcLVaYnBQcHK82aNTNrpsqVKyufffZZtu1efvll5ZNPPjFLprNnzyqA8vvvv+u3SU9PV5ycnJSFCxeaJJOiKEqJEiWURYsWKZmZmYqHh4cyadIk/WMPHjxQHB0dlXnz5hm8v1u3bimAkpiY+Fx5DJH19+n2ugglfcfSAi2310Wonve/zix9GImJiQA4OTmZ4+VzZUimxMRENBoNxYsXLxSZUlNTWbBgAY6OjlSvXt1smTIzMwkJCSE0NJTKlSubJEdemQD27t2Lm5sbvr6+vPXWW8THx5stU2ZmJlu2bMHX15dWrVrh5uZGnTp1WL9+vdkyPSkuLo4tW7bQv39/s2Zq2LAhGzdu5K+//kJRFPbs2cO5c+do1aqVWTI9fPgQIFtPioWFBdbW1hw8eFD1PBkZGaxatYqUlBTq1avHpUuXiI2NpWXLlvptbGxsaNKkCYcOHVI9z3PJGhRX0EU8k8mPkKIoDB8+nIYNG1KlShVTv3yuDMn04MEDRowYQc+ePU1yl6JnZdq8eTMvvfQStra2zJgxg8jISFxcXMyWafLkyVhaWjJkyBDVMxiaqU2bNnz77bfs3r2b6dOnExUVRbNmzfR/nE2dKT4+nuTkZCZNmkTr1q3ZuXMnHTt2pFOnTuzbt88smZ60bNkyHBwc6NSpk+p5npVp9uzZVKpUiVKlSmFtbU3r1q2JiIigYcOGZslUoUIFdDodI0eO5M6dO6SmpjJp0iRiY2OJiYlRLcupU6d46aWXsLGx4d133+XHH3+kUqVKxMbGAuDu7p5te3d3d/1j4v8nk49yHzRoECdPnjTJJ1tD5ZUpLS2N7t27k5mZSUREhNkzBQQEEB0dza1bt1i4cCFdu3bl6NGjuLm5mTzT8ePHmTVrFidOnEBjhhs/PO04devWTf//KlWqUKtWLXQ6HVu2bFG9YOWWKTMzE4Dg4GCGDRsGQI0aNTh06BDz5s2jSZMmJs/0pCVLltCrVy/Vzukbmmn27NkcOXKEjRs3otPp2L9/PwMGDECr1RIYGGjyTFZWVqxdu5b+/fvj5OSEhYUFgYGBtGnTRtUsfn5+REdHc/fuXdauXUufPn2yffh78vdNURSz/A4aRG4sYxImbaEPHjyYjRs3smfPHkqVKmXKl36qvDKlpaXRtWtXLl26RGRkpEla53llsre3x8fHh7p167J48WIsLS1ZvHixWTIdOHCA+Ph4vL29sbS0xNLSkitXrvDBBx9QunRps2TKjVarRafTqToy+VmZXFxcsLS0pFKlStm2r1ixomqj3PPK9LgDBw5w9uxZ3nzzTVWz5JXp/v37jBo1ivDwcNq3b0+1atUYNGgQ3bp1Y9q0aWbJBODv768vrjExMWzfvp2EhATKlCmjWh5ra2t8fHyoVasWEydOpHr16syaNQsPDw+AHK3x+Pj4HK32QkOjMcIodynoeTFJQVcUhUGDBrFu3Tp2796t6i+BMTNlFfPz58+za9cunJ2dzZ7pac9Tqys5r0whISGcPHmS6Oho/eLp6UloaCg7duwwS6bcJCQkcO3aNbRarVkyWVtbU7t27RyXQ507dw6dTmeWTI9bvHgx/v7+qo/FyCtTWloaaWlpFHnifKmFhYW+l8PUmR7n6OiIq6sr58+f59ixYwQHB6uS6Wk5Hz58SJkyZfDw8CAyMlL/WGpqKvv27aN+/fomyyMKH5N0uQ8cOJCVK1eyYcMGHBwc9J8sHR0dsbOzA+D27dtcvXpVf5131h8+Dw8P/SdSU2ZKT0/ntdde48SJE2zevJmMjAz9Nk5OTlhbW5s8U0pKChMmTCAoKAitVktCQgIRERFcv36dLl26GD2PIZmcnZ1zfNCxsrLCw8MDPz8/s2RKTk4mLCyMzp07o9VquXz5MqNGjcLFxYWOHTuaJRNAaGgo3bp1o3HjxgQEBLB9+3Y2bdrE3r17zZYJICkpiTVr1jB9+nRVcuQnU7FixWjSpAmhoaHY2dmh0+nYt28fy5cvJzw83CyZANasWYOrqyve3t6cOnWK999/nw4dOmQbmGZMo0aNok2bNnh5efH333+zatUq9u7dy/bt29FoNAwdOpQvvviC8uXLU758eb744guKFi1Kz549VclTYNLlbhrPOzw+P5etAbkuS5cu1W+zdOnSXLcZO3aswZnyc1lIXpmyLp/LbdmzZ49ZMt2/f1/p2LGj4unpqVhbWytarVYJCgpSfvnlF4PzGDtTbtS+bC2vTPfu3VNatmypuLq6KlZWVoq3t7fSp08f5erVq2bLlGXx4sWKj4+PYmtrq1SvXl1Zv3692TPNnz9fsbOzU+7evZuvLGpliomJUfr27at4enoqtra2ip+fnzJ9+nQlMzPTbJlmzZqllCpVSv9++uSTT5SHDx8anCe/mfr166fodDrF2tpacXV1VZo3b67s3LlT/3hmZqYyduxYxcPDQ7GxsVEaN26snDp1Kl95THrZ2ubFSvqe7wq03N68WC5by4NJWuiKouS5Td++fenbt6/6Yf6RV6bSpUsblNuY8no9W1tb1q1bZ6I0jzzPMbh8+bLxgzwmr0x2dnaqdfc/jaHHqV+/fvTr10/lNI8Ymuntt9/m7bffVjnNI4Zk8vDwYOnSpSZI84ghmYYMGWLSqzjyGhOj0WgICwsjLCzMNIHEf4Jc2CeEEEJdRTTGWZA7xT2LTM4ihBBCXca4F/s/z4+KijLJ1Ub/RVLQhRBCqEsGxZmEdLkLIYQQLwBpoQshhFCXEbvcxdNJQRdCCKEqjUZT4NvSFtrb2hYi8pFHCCGEeAFIC10IIYS6pMvdJKSgCyGEUJcUdJOQIySEEEK8AKSFLoQQQl2af+/0VqB9iGcyuKA/fPgw2xSdSUlJwL/THRYGWTkKSx6QTIaSTIaRTIaRTHkzaQ7pcjcJjWLgDA5hYWGMGzcux/qVK1dStGhRowcTQgihnnv37tGzZ08SExNVu5VqUlISjo6O3Nm9hmIvFaxOJCXfo0SzLvj6+mJhYcHAgQMZOHCgkZK+GAwu6Lm10L28vIiJickxH7a5pKWlERkZSYsWLbCysjJ3HEAyGUoyGUYyGUYy5S0hIQGtVmuagr7nB+MU9IDXVM37X2dwl7uNjQ02NjY51ltZWRWKN+fjJJNhJJNhJJNhJJNhCksmk2bQaIzQ5S7n0PMig+KEEEKoSyZnMQkZZSCEEEK8AKSFLoQQQl0yyt0kpKALIYRQVxEjXIde0Of/PyAfeYQQQogXgLTQhRBCqEu63E1CCroQQgh1ySh3k5CPPEIIIcQLQFroQggh1CVd7iYhBV0IIYS6pMvdJEzykWfixInUrl0bBwcH3Nzc6NChA2fPns22jaIohIWF4enpiZ2dHU2bNuX06dOq5tq/fz/t27fH09MTjUbD+vXrsz0eFxdH37598fT0pGjRorRu3Zrz58+bNVNycjKDBg2iVKlS2NnZUbFiRebOnWvWTBqNJtdl6tSpZssEcObMGYKCgnB0dMTBwYG6dety9epVs2Xq27dvjmNUt25d1fIYkulx77zzDhqNhpkzZ5o1U1hYGBUqVMDe3p4SJUoQGBjI0aNHzZYpLS2Njz/+mKpVq2Jvb4+npye9e/fmxo0bZssEsG7dOlq1aoWLiwsajYbo6GhV84jCzyQFfd++fQwcOJAjR44QGRlJeno6LVu2JCUlRb/NlClTCA8PZ86cOURFReHh4UGLFi34+++/VcuVkpJC9erVmTNnTo7HFEWhQ4cO/Pnnn2zYsIFff/0VnU5HYGBgttymzAQwbNgwtm/fzjfffMOZM2cYNmwYgwcPZsOGDWbLFBMTk21ZsmQJGo2Gzp07my3TxYsXadiwIRUqVGDv3r389ttvjBkzBltbW7NlAmjdunW2Y7V161bV8hiaCWD9+vUcPXoUT09PVfMYksnX15c5c+Zw6tQpDh48SOnSpWnZsiU3b940S6Z79+5x4sQJxowZw4kTJ1i3bh3nzp0jKChItTx5Zcp6vEGDBkyaNEnVHEaR1eVe0EU8m/KcEhMTFUC5detWvp8bHx+vAMq+ffsURVGUzMxMxcPDQ5k0aZJ+mwcPHiiOjo7KvHnzDN5vamqqsn79eiU1NTXfmQDlxx9/1H999uxZBVB+//13/br09HTFyclJWbhwoVkyKYqiVK5cWfnss8+yrXv55ZeVTz75xGyZnhQcHKw0a9YsX/s1dqZu3bopr7/+er73pWamPn36KMHBwYUqk6IoyvXr15WSJUsqv//+u6LT6ZQZM2aYPdPjsv7W7Nq1q9Bk+uWXXxRAuXLlitkzXbp0SQGUX3/9NV/7vHXrlgIoiYmJ+c5jqKyf3Z2oSCXjzKECLXeiIhVA8fX1VSpWrKjMmTNHtdz/VWb5yJOYmAiAk5MTAJcuXSI2NpaWLVvqt7GxsaFJkyYcOnTIHBH1U8U+3qKzsLDA2tqagwcPmiUTQMOGDdm4cSN//fUXiqKwZ88ezp07R6tWrcyW6XFxcXFs2bKF/v37my1DZmYmW7ZswdfXl1atWuHm5kadOnWe2d1sKnv37sXNzQ1fX1/eeust4uPjzZonMzOTkJAQQkNDqVy5slmz5CY1NZUFCxbg6OhI9erVzR1HLzExEY1GQ/Hixc0d5T/haafl8rsAREVF8ccff8hc6LkweUFXFIXhw4fTsGFDqlSpAkBsbCwA7u7u2bZ1d3fXP2ZqFSpUQKfTMXLkSO7cuUNqaiqTJk0iNjaWmJgYs2QCmD17NpUqVaJUqVJYW1vTunVrIiIiaNiwodkyPW7ZsmU4ODjQqVMns2WIj48nOTmZSZMm0bp1a3bu3EnHjh3p1KkT+/btM1uuNm3a8O2337J7926mT59OVFQUzZo10394NIfJkydjaWnJkCFDzJYhN5s3b+all17C1taWGTNmEBkZiYuLi7ljAfDgwQNGjBhBz549ZV5uUaiYfJT7oEGDOHnyZK6t3KxPYFkURcmxzlSsrKxYu3Yt/fv3x8nJCQsLCwIDA2nTpo1Z8mSZPXs2R44cYePGjeh0Ovbv38+AAQPQarUEBgaaNRvAkiVL6NWrl6rnqvOSmZkJQHBwMMOGDQOgRo0aHDp0iHnz5tGkSROz5OrWrZv+/1WqVKFWrVrodDq2bNlilg9Ax48fZ9asWZw4ccJsv2dPExAQQHR0NLdu3WLhwoV07dqVo0eP4ubmZtZcaWlpdO/enczMTCIiIsya5T9F5kM3CZO20AcPHszGjRvZs2cPpUqV0q/38PAAyNEaj4+Pz9FqNyV/f3+io6O5e/cuMTExbN++nYSEBMqUKWOWPPfv32fUqFGEh4fTvn17qlWrxqBBg+jWrRvTpk0zS6bHHThwgLNnz/Lmm2+aNYeLiwuWlpZUqlQp2/qKFSuqOso9v7RaLTqdTvUrJ57mwIEDxMfH4+3tjaWlJZaWlly5coUPPviA0qVLmyVTFnt7e3x8fKhbty6LFy/G0tKSxYsXmzVTWloaXbt25dKlS0RGRkrrPD+yLlsr6CKeySQFXVEUBg0axLp169i9e3eOglimTBk8PDyIjIzUr0tNTWXfvn3Ur1/fFBGfydHREVdXV86fP8+xY8cIDg42S460tDTS0tIoUiT7j83CwkLfKjWnxYsX4+/vb/ZzndbW1tSuXTvHpZHnzp1Dp9OZKVVOCQkJXLt2Da1Wa5bXDwkJ4eTJk0RHR+sXT09PQkND2bFjh1kyPY2iKGY9NZFVzM+fP8+uXbtwdnY2WxYhnsYkXe4DBw5k5cqVbNiwAQcHB31L3NHRETs7OzQaDUOHDuWLL76gfPnylC9fni+++IKiRYvSs2dP1XIlJydz4cIF/deXLl0iOjoaJycnvL29WbNmDa6urnh7e3Pq1Cnef/99OnTokG3wnqkzNWnShNDQUOzs7NDpdOzbt4/ly5cTHh5utkwASUlJrFmzhunTp6uWIz+ZQkND6datG40bNyYgIIDt27ezadMm9u7da5ZMTk5OhIWF0blzZ7RaLZcvX2bUqFH8X3t3HhPVtccB/DsiDKCAARSYwiB1QYuCFqwFjUurJKhoXetSi9omWrEtNdWqtYVawaXRYiSiEINWg9hERdPUBVuFGmsFFEvQV7UaEcMSURg2UeG8P3xQEYQrMvfMm34/yYmZA975Qob7m7Pcuc7Ozpg8ebKUTHq9vllhsrS0hKurK7y9vaVkcnJyQnR0NCZOnAg3NzeUlpZi27ZtKCgowPTp06Vk0ul0mDZtGi5cuICffvoJdXV1jecwR0dHWFlZqZ5Jr9fj3r17yM/Pb7wevuENrKura+Osp+noiMvOeNlam9q7Pf5FLlsD0GJLSkpq/J76+noRGRkpXF1dhVarFSNGjBC5ubkvlOlFLws5depUi7nCwsKEEEJs2bJFuLu7C0tLS6HX68Xq1atFbW2t1EyFhYVi3rx5QqfTCWtra+Ht7S02bdok6uvrpWUSQogdO3YIGxsbUVZWpjiHsTPt3LlT9O7dW1hbWws/Pz+RmpoqLVN1dbUIDg4W3bt3b3w9hYWFifz8fGmZWqLGZWutZaqpqRGTJ08WOp1OWFlZCTc3NzFx4kRx/vx5aZkaLgtrqZ06dUpKJiGESEpKavHrkZGRio6v5mVrZRfTRf317JdqZRfTjZ73/51GCCHa80bAYDDAwcEBd+/eNZnpp0ePHuHnn3/GuHHjYGlpKTsOAGZSipmUYSZlmKltpaWlcHZ2Rnl5udH2AzTUibKL6bC36/pyx6qoRLfBI42a9/8dP8udiIiMq1OnJ+1lj0GtYkEnIiLj4s1ZVMG3PERERGaAI3QiIjIu3g9dFSzoRERkXJxyVwULOhERGZnmf+1lj0Gt4RwGERGRGeAInYiIjItT7qpgQSciIuNiQVcFp9yJiIjMAEfoRERkZNwUpwYWdCIiMi5OuatCcUGvra1tcj9ig8EA4J97dJuChhymkgdgJqWYSRlmUoaZ2mYqOajjKL7bWlRUFL755ptm/cnJybC1te3wYEREZDzV1dWYPXu2Ondb+09Wx9xtrV8A+vbtCwsLC4SHhyM8PLyDkpoHxQW9pRG6h4cHCgsLTer2qWlpaRg7dqxJ3J4QYCalmEkZZlKGmdpWWloKNzc3lQp6dgcVdH/ePrUViqfctVottFpts35LS0uTeHE+jZmUYSZlmEkZZlLGVDKZQgbqWNwUR0RExsVNcapgQSciIuPSoAMKeockMWss6EREZGS8Dl0N/KQ4IiIiM8AROhERGRfX0FXBgk5EREbGKXc1cMqdiIjIDHCETkRExsUpd1WwoBMRkXGxoKuCU+5ERERmQFpBz8jIQGhoKHQ6HTQaDVJTU2VFabRu3ToMGTIEdnZ26NGjB9555x389ddfUjPFx8fD19cX9vb2sLe3R2BgII4ePSo109PWrVsHjUaDiIgIqTmioqKg0WiaNFdXV6mZAODOnTt477334OTkBFtbWwwaNAjZ2dnS8vTs2bPZ70mj0Ui9ycXjx4+xevVqeHl5wcbGBq+++irWrFmD+vp6aZkqKioQEREBT09P2NjYICgoCJmZmapmaOscKYRAVFQUdDodbGxsMGrUKOTl5amaUTlNBzVqjbSCXlVVBT8/P8TFxcmK0Ex6ejrCw8Nx7tw5pKWl4fHjxwgODkZVVZW0TO7u7li/fj2ysrKQlZWFt956C5MmTTKJP9zMzEwkJCTA19dXdhQAgI+PDwoLCxtbbm6u1Dz379/HsGHDYGlpiaNHj+Ly5cvYtGkTunXrJi1TZmZmk99RWloaAGD69OnSMm3YsAHbt29HXFwcrly5go0bN+K7777D1q1bpWX68MMPkZaWhj179iA3NxfBwcEYM2YM7ty5o1qGts6RGzduxObNmxEXF4fMzEy4urpi7NixqKioUC2jUi29iWxPo9ZJW0MPCQlBSEiIrKdv0bFjx5o8TkpKQo8ePZCdnY0RI0ZIyRQaGtrkcXR0NOLj43Hu3Dn4+PhIyQQAlZWVmDNnDhITE7F27VppOZ7WuXNnkxiVN9iwYQM8PDyQlJTU2NezZ095gQB07969yeP169ejV69eGDlypKREwO+//45JkyZh/PjxAJ78jvbt24esrCwpeWpqanDgwAEcPny48e8+KioKqampiI+PV+313to5UgiB2NhYfPnll5gyZQoAYPfu3XBxcUFycjIWLlyoSkYyLVxDb0V5eTkAwNHRUXKSJ+rq6pCSkoKqqioEBgZKzRIeHo7x48djzJgxUnM87dq1a9DpdPDy8sLMmTNx48YNqXmOHDmCgIAATJ8+HT169MDgwYORmJgoNdPTHj58iL1792LBggVSRz/Dhw/HL7/8gqtXrwIALl26hDNnzmDcuHFS8jx+/Bh1dXWwtrZu0m9jY4MzZ85IyfSsmzdvoqioCMHBwY19Wq0WI0eOxNmzZyUme46GTXEv26hV3OX+HEIILF26FMOHD8eAAQOkZsnNzUVgYCAePHiArl274tChQ3jttdek5UlJScGFCxdUX1NszdChQ/HDDz+gb9++KC4uxtq1axEUFIS8vDw4OTlJyXTjxg3Ex8dj6dKlWLVqFc6fP49PPvkEWq0W77//vpRMT0tNTUVZWRnmzZsnNccXX3yB8vJy9OvXDxYWFqirq0N0dDRmzZolJY+dnR0CAwPx7bffon///nBxccG+ffvwxx9/oE+fPlIyPauoqAgA4OLi0qTfxcUFt27dkhGpDfxgGTWwoD/HkiVL8Oeff5rEO3Jvb2/k5OSgrKwMBw4cQFhYGNLT06UU9du3b+PTTz/FiRMnmo1gZHp6anLgwIEIDAxEr169sHv3bixdulRKpvr6egQEBCAmJgYAMHjwYOTl5SE+Pt4kCvrOnTsREhICnU4nNcf+/fuxd+9eJCcnw8fHBzk5OYiIiIBOp0NYWJiUTHv27MGCBQvwyiuvwMLCAq+//jpmz56NCxcuSMnzPM/OrAghTHStuSNG2Kb4c5kWFvQWfPzxxzhy5AgyMjLg7u4uOw6srKzQu3dvAEBAQAAyMzOxZcsW7NixQ/Us2dnZKCkpgb+/f2NfXV0dMjIyEBcXh9raWlhYWKie61ldunTBwIEDce3aNWkZ3Nzcmr3p6t+/Pw4cOCAp0T9u3bqFkydP4uDBg7KjYNmyZVixYgVmzpwJ4Mkbslu3bmHdunXSCnqvXr2Qnp6OqqoqGAwGuLm54d1334WXl5eUPM9q2CtSVFQENze3xv6SkpJmo3b69+Aa+lOEEFiyZAkOHjyIX3/91WT+eJ8lhEBtba2U53777beRm5uLnJycxhYQEIA5c+YgJyfHJIo5ANTW1uLKlStNTnZqGzZsWLPLHq9evQpPT09Jif7RsOGzYSOaTNXV1ejUqempyMLCQuplaw26dOkCNzc33L9/H8ePH8ekSZNkRwIAeHl5wdXVtfEqBeDJnoj09HQEBQVJTPYcXENXhbQRemVlJa5fv974+ObNm8jJyYGjoyP0er2UTOHh4UhOTsbhw4dhZ2fXuE7l4OAAGxsbKZlWrVqFkJAQeHh4oKKiAikpKTh9+nSzHflqsbOza7anoEuXLnBycpK61+Dzzz9HaGgo9Ho9SkpKsHbtWhgMBmkjPAD47LPPEBQUhJiYGMyYMQPnz59HQkICEhISpGUCniwFJCUlISwsDJ07y5+kCw0NRXR0NPR6PXx8fHDx4kVs3rwZCxYskJbp+PHjEELA29sb169fx7Jly+Dt7Y358+erlqGtc2RERARiYmLQp08f9OnTBzExMbC1tcXs2bNVy6gc19DVIO2vOSsrC6NHj2583LDOGRYWhl27dknJFB8fDwAYNWpUk/6kpCRpG4eKi4sxd+5cFBYWwsHBAb6+vjh27BjGjh0rJY+pKigowKxZs3D37l10794db775Js6dOyd1NDxkyBAcOnQIK1euxJo1a+Dl5YXY2FjMmTNHWiYAOHnyJPLz86UWzKdt3boVX331FRYvXoySkhLodDosXLgQX3/9tbRM5eXlWLlyJQoKCuDo6IipU6ciOjoalpaWqmVo6xy5fPly1NTUYPHixbh//z6GDh2KEydOwM7OTrWMZFqkFfRRo0ZBCCHr6VtkanmAJxuXTN3p06dlR0BKSorsCC2aMGECJkyYIDtGE8HBwSb1Wrezs0NsbCxiY2NlR2k0Y8YMzJgxQ2qGts6RGo0GUVFRiIqKUi9Ue/Gz3FUhf76NiIjMG2fcVcFNcURERGaAI3QiIjIyDtHVwIJORETGxTV0VXDKnYiIyAxwhE5ERMbFEboqWNCJiMjIuIauBhZ0IiIyLg06YITeIUnMGtfQiYiIXlBFRQWGDBmCQYMGYeDAgUhMTJQdiSN0IiIyMjNcQ7e1tUV6ejpsbW1RXV2NAQMGYMqUKXBycpKWiQWdiIiMzPzW0C0sLGBrawsAePDgAerq6qR/pDKn3ImIyOxkZGQgNDQUOp0OGo0Gqampzb5n27Zt8PLygrW1Nfz9/fHbb7+90HOUlZXBz88P7u7uWL58OZydnTsoffsoHqHX1tY2uQd3eXk5AODevXsdn6qdHj16hOrqapSWlqp6V6TWMJMyzKQMMynDTG1rOHerMao0VFa+9JS5obLyyb8GQ5N+rVYLrVbb7Purqqrg5+eH+fPnY+rUqc2+vn//fkRERGDbtm0YNmwYduzYgZCQEFy+fLnxFt7+/v5N6l6DEydOQKfToVu3brh06RKKi4sxZcoUTJs2DS4uLi/1c74UoVBkZKQAwMbGxsZmRu3vv/9WWgZeWE1NjXB1de2wrF27dm3WFxkZ2WYOAOLQoUNN+t544w2xaNGiJn39+vUTK1asaNfPumjRIvHjjz+26/92FMUj9JUrVzbejxd4MtXg6emJ/Px8ODg4KD2MURkMBnh4eOD27duwt7eXHQcAMynFTMowkzLM1Lby8nLo9Xo4Ojoa7Tmsra1x8+ZNPHz4sEOOJ4SA5pmRfkuj87Y8fPgQ2dnZWLFiRZP+4OBgnD17VtExiouLYWNjA3t7exgMBmRkZOCjjz564SwdSXFBf960hoODg0m8OJ9mb2/PTAowkzLMpAwzKWNqmTp1Mu5WKmtra1hbWxv1OV7U3bt3UVdX12x63MXFBUVFRYqOUVBQgA8++ABCCAghsGTJEvj6+hojrmLc5U5ERP9Kz472W5oBeB5/f3/k5OQYIVX7cZc7ERH9qzg7O8PCwqLZaLykpETupraX1O6CrtVqERkZ2a71C2NhJmWYSRlmUoaZlDG1TKaWR01WVlbw9/dHWlpak/60tDQEBQVJSvXyNEJIvhKeiIiog1VWVuL69esAgMGDB2Pz5s0YPXo0HB0dodfrsX//fsydOxfbt29HYGAgEhISkJiYiLy8PHh6ekpO3z4s6EREZHZOnz6N0aNHN+sPCwvDrl27ADz5YJmNGzeisLAQAwYMwPfff48RI0aonLTjsKATERGZAW6KIyIiMgMs6ERERGaABZ2IiMgMsKATERGZARZ0IiIiM8CCTkREZAZY0ImIiMwACzoREZEZYEEnIiIyAyzoREREZoAFnYiIyAywoBMREZmB/wIf90m3n8r0kgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX00lEQVR4nOzde1yMef8/8NdU01GGTpqRBpuKEGKFVrLpYFeJJbIp4rY/rNPe3Q7LLdYha+Ww1jmntZb1lUQWWdWyFiXZHDaxOXfYQumgpubz+8Pd3I1Sk+aaK93v5z6ux2O75pprXnM1ec/nc32u6yNgjDEQQggh5J2mxXcAQgghhDQeFXRCCCGkGaCCTgghhDQDVNAJIYSQZoAKOiGEENIMUEEnhBBCmgEq6IQQQkgzQAWdEEIIaQaooBNCCCHNABV0joWFhUEgECita9++PYKDgxu0nwsXLiAsLAzPnz9v0PNef62EhAQIBAL83//9X4P2U5eSkhKEhYUhISGhxmO7d++GQCDAvXv31PZ6XPj2229hY2MDXV1dCAQCPH/+HCtWrEB0dLRGcxw/fhzjx49Ht27dIBQKa3x2qpPJZFiyZAnat28PPT092Nvb49tvv61127/++gsjRoxAq1at0KJFCwwZMgQpKSlcvQ1CCA+ooPPgyJEjWLRoUYOec+HCBSxZsqTBBf1tXquhSkpKsGTJkloL+kcffYTff/8dYrGY0wyNkZqaihkzZsDNzQ1nz57F77//DmNjY14K+pEjR3Dx4kV06dIFjo6OdW47depUrFy5EtOmTcOpU6fg5+eHmTNnYsWKFUrb/f333/jggw9w+/Zt7Ny5Ez/99BNevnyJQYMGIT09ncu3QwjRIB2+A/wv6tmzJ+evUVpaCgMDA428Vl3Mzc1hbm7Oa4b63LhxAwAwefJkvP/++5y+VmVlJSoqKqCnp1fr49u3b4eW1qvv2dOnT8eVK1dq3e7GjRuIjIzE8uXLERoaCgAYNGgQ8vPzsWzZMnz22WcwMTEBAKxevRp///03Lly4AKlUCgBwcXHBe++9h3//+984ePCgut8mIYQH1EJXo9jYWPTo0QN6enro0KEDvvnmm1q3e70bXC6XY9myZbCzs4OBgQFatWqF7t27Y/369QBeddtX/aPdoUMHCAQCCAQCRYu4ffv2+PjjjxEVFYWePXtCX18fS5YsqfW1qrx8+RJz5syBpaUlDAwM4OrqiqtXryptM2jQIAwaNKjGc4ODg9G+fXsAwL179xQFe8mSJYpsVa/5pi73nTt3wtHREfr6+jAxMYGfnx9u3bpV43VatGiBO3fuYOjQoWjRogXatWuHL774AmVlZbUe2+oOHjwIDw8PiMViGBgYoHPnzpg3bx6Ki4uV3uOnn34KAOjbt68iu0AgQHFxMfbs2aN4T9WPRXZ2NqZMmQIrKyvo6uqiQ4cOWLJkCSoqKhTb3Lt3DwKBAF9//TWWLVuGDh06QE9PD/Hx8W/MXFXM6xMdHQ3GGCZMmKC0fsKECSgtLcXJkycV644cOYLBgwcrijkAtGzZEiNGjMCxY8eUMtem6vN1/Phx9OzZU3Esjx8/DuDV77hz584wMjLC+++/j+Tk5Br7iImJQb9+/WBoaAhjY2MMGTIEv//+u9L7EQgE+OWXX2o8d/PmzRAIBPjjjz8U65KTk+Hj4wMTExPo6+ujZ8+e+Omnn5SeV1JSgn/+85/o0KGD4nPWu3dv/Pjjj3W+X0LeWYyoxZkzZ5i2tjZzcXFhUVFR7NChQ6xPnz7M2tqavX6YpVIpCwoKUvy8cuVKpq2tzRYvXsx++eUXdvLkSbZu3ToWFhbGGGPs4cOH7PPPP2cAWFRUFPv999/Z77//zgoKChT7E4vFrGPHjmznzp0sPj6eXb58udbXio+PZwBYu3btmK+vLzt27Bjbt28fs7GxYS1btmR3795VbOvq6spcXV1rvNegoCAmlUoZY4y9fPmSnTx5kgFgISEhimx37txhjDG2a9cuBoBlZmYqnr9ixQoGgI0dO5bFxsayvXv3so4dOzKRSMRu376t9Dq6urqsc+fO7JtvvmFnzpxh//73v5lAIGBLliyp93fy1VdfsbVr17LY2FiWkJDAtmzZwjp06MDc3NwU29y4cYMtXLiQAWC7du1SZP/999+ZgYEBGzp0qOI93bhxgzHGWFZWFmvXrh2TSqVs69at7MyZM+yrr75ienp6LDg4WLHvzMxMBoC1bduWubm5sf/7v/9jp0+fVjoWdZk2bVqNz06VMWPGMHNz8xrri4qKGAA2f/58xhhjJSUlTCAQsNDQ0Brbbty4kQFg6enpdeaQSqXMysqKde3alf3444/sxIkTrG/fvkwoFLJ///vfbMCAASwqKoodOXKE2drasjZt2rCSkhLF83/44QcGgHl4eLDo6Gh28OBB5uTkxHR1ddm5c+cYY4zJZDJmYWHBxo0bV+P133//fdarVy/Fz2fPnmW6urrsgw8+YAcPHmQnT55kwcHBit9hlSlTpjBDQ0MWERHB4uPj2fHjx1l4eDj79ttv63y/hLyrqKCrSd++fZlEImGlpaWKdYWFhczExKTegv7xxx+zHj161Ln/1atX1yiM1fenra1d6z/MbyrovXr1YnK5XLH+3r17TCgUskmTJinWqVLQGWPs77//ZgDY4sWLa2z7ekF/9uyZolBW9+DBA6anp8cCAgKUXgcA++mnn5S2HTp0KLOzs6vxWnWRy+VMJpOxxMREBoBdu3atRsakpCSl5xgZGSkduypTpkxhLVq0YPfv31da/8033zAAisJfVdDfe+89Vl5e3qC8jNVd0IcMGfLGY6Crq8v+8Y9/MMYYe/z4MQPAVq5cWWO7/fv3MwDswoULdeaQSqXMwMCAPXr0SLEuNTWVAWBisZgVFxcr1kdHRzMALCYmhjHGWGVlJZNIJKxbt26ssrJSsd2LFy+YhYUF69+/v2LdnDlzmIGBAXv+/Lli3c2bNxkApSJsb2/PevbsyWQymVLOjz/+mInFYsXrdO3alQ0fPrzO90ZIc0Jd7mpQXFyMpKQkjBgxAvr6+or1xsbGGDZsWL3Pf//993Ht2jVMnToVp06dQmFhYYMzdO/eHba2tipvHxAQoDSCWiqVon///nV2B6vD77//jtLS0hqnAdq1a4fBgwfX6HIVCAQ1jmH37t1x//79el/rr7/+QkBAACwtLaGtrQ2hUAhXV1cAqNG93xDHjx+Hm5sbJBIJKioqFIu3tzcAIDExUWl7Hx8fCIXCt369N6lrBPzrjzVk29r06NEDbdu2VfzcuXNnAK9OWRgaGtZYX/X7SU9Px5MnTxAYGKh0OqFFixYYOXIkLl68iJKSEgDAxIkTUVpaqnROf9euXdDT00NAQAAA4M6dO/jzzz8xbtw4AFA6/kOHDkVWVpZioN/777+Pn3/+GfPmzUNCQgJKS0vrfZ+EvMuooKvBs2fPIJfLYWlpWeOx2ta9bv78+fjmm29w8eJFeHt7w9TUFB9++GGt5yLfpKGjyN+UNT8/v0H7aaiq/deWVyKR1Hh9Q0NDpS9JAKCnp4eXL1/W+TpFRUX44IMPcOnSJSxbtgwJCQlISkpCVFQUADTqH/ecnBwcO3YMQqFQaXFwcAAA5OXlKW3PxQh/U1PTWn9XxcXFKC8vVwyIa926NQQCQa3bPn36FAAU29bl9W10dXXrXF/1+6nv9y2Xy/Hs2TMAgIODA/r06YNdu3YBeDWAcN++ffD19VW8Tk5ODgDgn//8Z43jP3XqVAD/Pf4bNmzA3LlzER0dDTc3N5iYmGD48OHIyMio9/0S8i6iUe5qUPWPZnZ2do3Halv3Oh0dHcyZMwdz5szB8+fPcebMGSxYsACenp54+PChUgvoTVRpZdWXKzs7G6ampoqf9fX1UVBQUGO71wtWQ1TtPysrq8ZjT548gZmZ2Vvvu7qzZ8/iyZMnSEhIULTKATT4sr/amJmZoXv37li+fHmtj0skEqWfG/q7UUW3bt1w4MABZGdnK305S0tLAwB07doVAGBgYAAbGxvF+urS0tJgYGCAjh07qj1flfp+31paWmjdurVi3YQJEzB16lTcunULf/31F7KyspQG/lV9PubPn48RI0bU+pp2dnYAACMjIyxZsgRLlixBTk6OorU+bNgw/Pnnn2p7j4Q0FdRCV4Oq0b1RUVFKLccXL17g2LFjDdpXq1at8Mknn2DatGl4+vSpYnR41WVO6uo2/PHHH8EYU/x8//59XLhwQWkkd/v27XH79m2lEeX5+fm4cOGC0r4akq1fv34wMDDAvn37lNY/evQIZ8+exYcffvg2b6eGqiL6+uVhW7duVXkfenp6tb6njz/+GNevX8d7772H3r1711heL+hc8PX1hUAgwJ49e5TW7969GwYGBvDy8lKs8/Pzw9mzZ/Hw4UPFuhcvXiAqKgo+Pj7Q0eHue72dnR3atm2L/fv3K33eiouLcfjwYcXI9ypjx46Fvr4+du/ejd27d6Nt27bw8PBQ2l+nTp1w7dq1Wo997969YWxsXCNHmzZtEBwcjLFjxyI9PV3RzU9Ic0ItdDX56quv4OXlhSFDhuCLL75AZWUlVq1aBSMjI0XX5psMGzYMXbt2Re/evWFubo779+9j3bp1kEql6NSpE4BXLTIAWL9+PYKCgiAUCmFnZ1frP16qyM3NhZ+fHyZPnoyCggIsXrwY+vr6mD9/vmKbwMBAbN26FZ9++ikmT56M/Px8fP3112jZsqXSvoyNjSGVSnH06FF8+OGHMDExgZmZmeLStupatWqFRYsWYcGCBRg/fjzGjh2L/Px8LFmyBPr6+li8ePFbvZ/X9e/fH61bt8Znn32GxYsXQygU4ocffsC1a9dU3ke3bt2QkJCAY8eOQSwWw9jYGHZ2dli6dCni4uLQv39/zJgxA3Z2dnj58iXu3buHEydOYMuWLbCysnqr3Pfv30dSUhIA4O7duwCguKtf+/bt0bt3bwCvuqdDQkKwePFiaGtro0+fPjh9+jS2bduGZcuWKXWF//Of/8T333+Pjz76CEuXLoWenh7Cw8Px8uVLhIWFvVVOVWlpaeHrr7/GuHHj8PHHH2PKlCkoKyvD6tWr8fz5c4SHhytt36pVK/j5+WH37t14/vw5/vnPf9a4lG/r1q3w9vaGp6cngoOD0bZtWzx9+hS3bt1CSkoKDh06BODVZYgff/wxunfvjtatW+PWrVv4/vvva3yJIKTZ4HtUXnMSExPDunfvznR1dZm1tTULDw9nixcvrneU+5o1a1j//v2ZmZmZ4rkhISHs3r17Ss+bP38+k0gkTEtLiwFg8fHxiv199NFHtWZ60yj377//ns2YMYOZm5szPT099sEHH7Dk5OQaz9+zZw/r3Lkz09fXZ126dGEHDx6sMcqdsVeX7fXs2ZPp6ekxAIrXrO2yNcYY27Fjh+JYiUQi5uvrqxgdXiUoKIgZGRnVyFTbMa3NhQsXWL9+/ZihoSEzNzdnkyZNYikpKTUub3rTKPfU1FQ2YMAAZmhoyAAojfj/+++/2YwZM1iHDh2YUChkJiYmzMnJiX355ZesqKiIMfbfUe6rV6+uN+vrWWpbXh9xX15ezhYvXsysra2Zrq4us7W1ZRs2bKh1v3fu3GHDhw9nLVu2ZIaGhuzDDz9kV65cUSnTmz5fANi0adOU1r3pPUdHR7O+ffsyfX19ZmRkxD788EP222+/1fp6p0+fVrzn6pcxVnft2jU2evRoZmFhwYRCIbO0tGSDBw9mW7ZsUWwzb9481rt3b9a6dWump6fHOnbsyGbPns3y8vJUet+EvGsEjFXrByOEEELIO4nOoRNCCCHNABV0QgghpBbHjx9XDMTcsWMH33HqRV3uhBBCyGsqKirQpUsXxMfHo2XLlujVqxcuXbqk0n0b+EItdEIIIeQ1ly9fhoODA9q2bQtjY2MMHToUp06d4jtWnaigE0IIaXZ+/fVXDBs2DBKJBAKBANHR0TW22bRpk2I2PicnJ5w7d07x2JMnT5Rud2xlZYXHjx9rIvpbo4JOCCGk2SkuLoajoyM2btxY6+MHDx7ErFmz8OWXX+Lq1av44IMP4O3tjQcPHgAAajsbzcVdH9VJ5RvLlJWVKd0xTC6X4+nTpzA1NW3yb5IQQogyxhhevHgBiURS4+Y96vTy5UuUl5erZV+MsRr1Rk9Pr8YdIQHA29tbMWFSbSIiIhASEoJJkyYBANatW4dTp05h8+bNWLlyJdq2bavUIn/06BH69u2rlvfBGVUvWK+6mQcttNBCCy3NZ3n48CEnNzlhjLHS0lJmCIHasrZo0aLGutqmbX4dAHbkyBHFz2VlZUxbW5tFRUUpbTdjxgw2cOBAxhhjMpmM2djYsEePHrHCwkJmY2PT5G9KpHILff78+ZgzZ47i54KCAlhbW2NCKzF0Xqrn21djaRnow/W71XBzc+Nkusq3IZPJEB8fT5nqQZlUQ5lUQ5nq9/TpU9ja2r717aNVUV5ejhIwBMIIumhcT245GL4vKsLDhw+Vbj9dW+u8Pnl5eaisrESbNm2U1rdp00YxcZWOjg7WrFkDNzc3yOVy/Otf/1KavKopUrmgv6lbQ+dlObReltXyDM3TEWjB0NAQpqamTeIPBnj1R0yZ6keZVEOZVEOZVKeJU6b60IJuI19H6z/ntFu2bFljPom39fp7Z6916fv4+MDHx0ctr6UJNCiOEELI/xQzMzNoa2vXmEY6Nze3Rqv9XUIFnRBCCKe01LSoi66uLpycnBAXF6e0vmoWxXcVTZ9KCCGEUwIBoNXInn0BADCgT58+0NbWxrRp0zBt2rQ3bl9UVIQ7d+4ofs7MzERqaipMTExgbW2NOXPmIDAwEL1790a/fv2wbds2PHjwAJ999lnjgvKICjohhJB3RlJSkkrn0JOTk+Hm5qb4uWpQd1BQEHbv3g1/f3/k5+dj6dKlyMrKQteuXXHixAlIpVLOsnONCjohhBBOqaPLvKHPHzRoUK03h6lu6tSpmDp16tuHamKooBNCCOGUlkAArcaOcgdeXXlO3ogGxRFCCCHNALXQCSGEcIqPLvf/RVTQCSGEcEpLDaPcqaDXj44RIYSQd0afPn3QpUsXfPfdd3xHaXI4K+hPUImfUYrvUYytKEImKpQeZ2BIRhm+RzF2oAgxKMFTVCptUwmG8yjDHhQhEkU4iVIUQa62jC9evMCsWbMglUphYGCA/v37IykpSfF4Tk4OgoODIZFIYGhoCC8vL2RkZKjt9d8mU1FREaZPnw4rKysYGBigc+fO2Lx5M6+ZBAJBrcvq1at5ywQAt27dgo+PD0QiEYyNjeHs7KyYGpGPTMHBwTWOkbOzM2d5VMlU3ZQpUyAQCLBu3TpeM4WFhcHe3h5GRkZo3bo13N3dcenSJd4yyWQyzJ07F926dYORkREkEgnGjx+PJ0+e8JYJAKKiouDp6QkzMzMIBAKkpqZymqcx1HljmaSkJNy8ebPOa9D/V3FW0CvAYAotDEDtN86/Bhn+gAwDoIcRMIAhtBCLlyivNozxAspwDxX4EPrwhQFkAE7iJeRqGuo4adIkxMXF4fvvv0daWho8PDzg7u6Ox48fgzGG4cOH46+//sLRo0dx9epVSKVSuLu7o7i4WC2v39BMADB79mycPHkS+/btw61btzB79mx8/vnnOHr0KG+ZsrKylJadO3dCIBBg5MiRvGW6e/cuXFxcYG9vj4SEBFy7dg2LFi2Cvr4+b5kAwMvLS+lYnThxgrM8qmYCgOjoaFy6dAkSiYTTPKpksrW1xcaNG5GWlobz58+jffv28PDwwN9//81LppKSEqSkpGDRokVISUlBVFQUbt++zfk9vus7TsXFxRgwYADCw8M5zaEOb/rS39CF1ONtp2krKChgANhkfVM2BS3qXAAwD+grfv4HjJghBKwvdBXrJsGI6QLsA+ixKWjBgmHEtAD24X9+noIW7FMYMgHAhlbbV/VlmoE5i46OZuXl5fXmLykpYdra2uz48eNK6x0dHdmXX37J0tPTGQB2/fp1xWMVFRXMxMSEbd++XeXjVF5errZMjDHm4ODAli5dqvR4r1692MKFC3nL9DpfX182ePBglfNwkcnf3599+umnDcrAdaagoCDm6+vbpDIxxtijR49Y27Zt2fXr15lUKmVr167lPVN1Vf/WnDlzpslkunz5MgPA7t+/z3umzMxMBoBdvXpV5SyMMZaXl8cAsIKCggY9ryGqfnehOiK2UNiqUUuojojzvO86Xs6hvwBDCRisoK1Ypw0BxNBGzn+63fNQCTmAdtXG7RlBC62hhezXuubfRkVFBSorK2u02AwMDHD+/HmUlb2aQa7649ra2tDV1cX58+cb/fpvkwkAXFxcEBMTo+hFiI+Px+3bt+Hp6clbpupycnIQGxuLkJAQTvKokkkulyM2Nha2trbw9PSEhYUF+vbti+joaN4yVUlISICFhQVsbW0xefJk5Obm8ppJLpcjMDAQoaGhcHBw4CxLQzJVV15ejm3btkEkEsHR0bFJZAJeTR8tEAjQqlWrJpOJEF4Kesl/uswNXpsf1wACxWMlYNACoPfaNoYQoFQNXe7Gxsbo168fvvrqKzx58gSVlZXYt28fLl26hKysLNjb20MqlWL+/Pl49uwZysvLER4ejuzsbGRlZTX69d8mEwBs2LABXbp0gZWVFXR1deHl5YVNmzbBxcWFt0zV7dmzB8bGxhgxYgQneVTJlJubi6KiIoSHh8PLywunT5+Gn58fRowYgcTERF4yAYC3tzd++OEHnD17FmvWrEFSUhIGDx6s+PLIR6ZVq1ZBR0cHM2bM4CTD22QCgOPHj6NFixbQ19fH2rVrERcXBzMzM14zVXn58iXmzZuHgIAAtU3j2dhMTV3VKPfGLqRu79wod3XeKOj7778HYwxt27aFnp4eNmzYgICAAGhra0MoFOLw4cO4ffs2TExMYGhoiISEBHh7e0NbW7v+nXOQCXhV0C9evIiYmBhcuXIFa9aswdSpU3HmzBneMlW3c+dOjBs3jtNz1fVlkstfDZz09fXF7Nmz0aNHD8ybNw8ff/wxtmzZwksmAPD398dHH32Erl27YtiwYfj5559x+/ZtxMbG8pLpypUrWL9+PXbv3q3R85OqfJ7c3NyQmpqKCxcuwMvLC6NHj+a0N0PVz7hMJsOYMWMgl8uxadMmzvI0JNO7QIDGD4ijel4/Xgq64X9+Na+3tEvBFI8ZQgA5gLJatnm9Zf+23nvvPSQmJqKoqAgPHz7E5cuXIZPJ0KFDBwCAk5MTUlNT8fz5c2RlZeHkyZPIz89XPM6FujKVlpZiwYIFiIiIwLBhw9C9e3dMnz4d/v7++Oabb3jJVN25c+eQnp6OSZMmcZZFlUxmZmbQ0dFBly5dlJ7TuXNnTke5q3qcqojFYkilUk6vnKgr07lz55Cbmwtra2vo6OhAR0cH9+/fxxdffIH27dvzkqmKkZERbGxs4OzsjMjISOjo6CAyMpLXTDKZDKNHj0ZmZibi4uI4a503JNP/Irps7c14KejGEMAQAjyqdi68EgxZqESb/5xXN4M2tAA8qna5WzHkeAY5LKHeb6hGRkYQi8V49uwZTp06BV9fX6XHRSIRzM3NkZGRgeTk5BqPc6G2TDKZDDKZDFpayr+26q1STWeqLjIyEk5OTpyd61Q1k66uLvr06YP09HSlbW/fvq2RmZTqO05V8vPz8fDhQ4jFYl4yBQYG4o8//kBqaqpikUgkCA0NxalTp3jJ9CaMMc5OTaiSqaqYZ2Rk4MyZMzA1NeU8S32Z3iVV93Jv7ALQZWt14exOcTIwFFS7ZvwF5MhDJfQggDG00A1CXEU5RNCCCAJchQw6EMDmP5H0IIA9dPA7yqEHAfQhwO8ohwm00FZNBf3UqVNgjMHOzg537txBaGgo7OzsMGHCBADAoUOHYG5uDmtra6SlpWHmzJkYPnw4PDw81PL6Dc0kFArh6uqK0NBQGBgYQCqVIjExEXv37kVERAQvmaoUFhbi0KFDWLNmDWc5GpIpNDQU/v7+GDhwINzc3HDy5EkcO3YMCQkJvGQqKipCWFgYRo4cCbFYjHv37mHBggUwMzODn58fL5mEQmGNwiQUCmFpaQk7OzteMhUXF2P58uXw8fGBWCxGfn4+Nm3ahEePHmHUqFG8ZKqoqMAnn3yClJQUHD9+HJWVlcjOzgYAmJiYQFdXV+OZAODp06d48OCB4nr4qi+wlpaWsLS05CTT26Jbv2oGZwX9b1TiGF4qfv4d5QAAW+jADfpwhBAV/7lxTBkYLKCFj6AP3Wrd6f2gBwHKcQYvUQlAAm24QR9aaupyLygowPz58/Ho0SOYmJhg5MiRWL58OYRCIYBX11fPmTMHOTk5EIvFGD9+PBYtWqSW137bTAcOHMD8+fMxbtw4PH36FFKpFMuXL8dnn33GW6aqXIwxjB07lrMcDcnk5+eHLVu2YOXKlZgxYwbs7Oxw+PBhzgYP1pepoqICaWlp2Lt3L54/fw6xWAw3NzccPHgQxsbGvGTiS12ZKisr8eeff2LPnj3Iy8uDqakp+vTpg3PnznE6Cr+uTPfu3UNMTAwAoEePHkrPi4+Px6BBgzSeCQBiYmKUvlSPGTMGALB48WKEhYVxkok0bQLG6pkw9g0KCwshEokwWd8UWi+57wpThY6BAYb8uB1Dhw7l9R+s6mQyGU6cOEGZ6kGZVEOZVEOZ6pefnw8zMzMUFBRwNh6gqk78W68V9Bs58PIlY1ha9pzTvO86mpyFEEIIp6jLXTPoGBFCCCHNALXQCSGEcEoLgkaPfaLWZ/3oGBFCCOGUOu8UR9ehvxm10AkhhHBKnefQk5KSaFDcG1ALnRBCCGkGqIVOCCGEU+qYXIVan/Wjgk4IIYRTryZnaVxFF6h1aq7mib70EEIIIc0AtdAJIYRwirrcNYMKOiGEEE7RneI0g44RIYQQ0gyo3EIvKytTmo+4sLAQALA087pG5waui0wmQ1xcHGQyGd9RFKqyUKa6USbVUCbVUKb6aTIHdblrhsqzrYWFhWHJkiU11u/fvx+GhoZqD0YIIYQ7JSUlCAgI0Mhsa+uNTGAgaFxJLmVyzCx+CltbW2hra2PatGmYNm2ampI2DyoX9Npa6O3atUNWVlaTa6EPGTKkSUxPCFAmVVEm1VAm1VCm+uXn50MsFr9zBZ2mT30zlbvc9fT0oKenV2O9UChsEh/O6iiTaiiTaiiTaiiTappKJk1moC53zaBR7oQQQjgl+M/S2H2QulFBJ4QQwilqoWsGHSNCCCGkGaAWOiGEEE5pQdDoe7k39vn/C6igE0II4RR1uWsGHSNCCCGkGaAWOiGEEE69mj618fsgdaOCTgghhFN02ZpmUJc7IYQQ0gxQQSeEEMIpLYFALQsA9OnTB126dMF3333H87tqejRS0CsqKrBw4UJ06NABBgYG6NixI5YuXQq5XK7YJioqCp6enjAzM4NAIEBqaiqvmWQyGebOnYtu3brByMgIEokE48ePx5MnT3jLBLyaJMfe3h5GRkZo3bo13N3dcenSJV4zVTdlyhQIBAKsW7eO10zBwcEQCARKi7OzM6+ZAODWrVvw8fGBSCSCsbExnJ2d8eDBA94yvX6MqpbVq1fzlqmoqAjTp0+HlZUVDAwM0LlzZ2zevJmTPKpmysnJQXBwMCQSCQwNDeHl5YWMjAzOMgHAixcvMGvWLEilUhgYGKB///5ISkpSPM4YQ1hYGCQSCQwMDDBo0CDcuHGD00xvS6CmBQCSkpJw8+ZNmpilFho5h75q1Sps2bIFe/bsgYODA5KTkzFhwgSIRCLMnDkTAFBcXIwBAwZg1KhRmDx5Mu+ZSkpKkJKSgkWLFsHR0RHPnj3DrFmz4OPjg+TkZF4yAYCtrS02btyIjh07orS0FGvXroWHhwfu3LkDc3NzXjJViY6OxqVLlyCRSNSe420yeXl5YdeuXYqfdXV1ec109+5duLi4ICQkBEuWLIFIJMKtW7egr6/PW6asrCyl5/z8888ICQnByJEjecs0e/ZsxMfHY9++fWjfvj1Onz6NqVOnQiKRwNfXV+OZGGMYPnw4hEIhjh49ipYtWyIiIgLu7u64efMmjIyM1J4JACZNmoTr16/j+++/h0Qiwb59+xSv2bZtW3z99deIiIjA7t27YWtri2XLlmHIkCFIT0+HsbExJ5lIE8feUkFBAQPA8vLy6t32o48+YhMnTlRaN2LECPbpp5/W2DYzM5MBYFevXm1wpvLychYdHc3Ky8vVmqnK5cuXGQB2//79JpOp6vdw5swZXjM9evSItW3bll2/fp1JpVK2du1alfNwkSkoKIj5+vo2KAPXmfz9/ev8XfKR6XW+vr5s8ODBvGZycHBgS5cuVdqmV69ebOHChbxkSk9PZwDY9evXFY9XVFQwExMTtn37dk4ylZSUMG1tbXb8+HGl9Y6OjuzLL79kcrmcWVpasvDwcMVjL1++ZCKRiG3ZskWlPHl5eQwAKygoUPk9NFTVv0+7RWbsp1YWjVp2i8w4z/uu00iXu4uLC3755Rfcvn0bAHDt2jWcP38eQ4cO1cTLqy1TQUEBBAIBWrVq1SQylZeXY9u2bRCJRHB0dOQtk1wuR2BgIEJDQ+Hg4MBJjoZmAoCEhARYWFjA1tYWkydPRm5uLm+Z5HI5YmNjYWtrC09PT1hYWKBv376Ijo7mLdPrcnJyEBsbi5CQEF4zubi4ICYmBo8fPwZjDPHx8bh9+zY8PT15yVQ1bXT1nhRtbW3o6uri/PnznGSqqKhAZWVljd4bAwMDnD9/HpmZmcjOzoaHh4fiMT09Pbi6uuLChQucZGoMdXa5kzfTSJf73LlzUVBQAHt7e2hra6OyshLLly/H2LFjNfHyasn08uVLzJs3DwEBAZzNxatqpuPHj2PMmDEoKSmBWCxGXFwczMzMeMu0atUq6OjoYMaMGZxkeJtM3t7eGDVqFKRSKTIzM7Fo0SIMHjwYV65cqXUaYK4z5ebmoqioCOHh4Vi2bBlWrVqFkydPYsSIEYiPj4erq6vGM71uz549MDY2xogRI9SepSGZNmzYgMmTJ8PKygo6OjrQ0tLCjh074OLiwksme3t7SKVSzJ8/H1u3boWRkREiIiKQnZ1d45SFuhgbG6Nfv3746quv0LlzZ7Rp0wY//vgjLl26hE6dOiE7OxsA0KZNG6XntWnTBvfv3+ckU2NUjc1o1D6opNdLIwX94MGD2LdvH/bv3w8HBwekpqZi1qxZkEgkCAoK0kSERmWSyWQYM2YM5HI5Nm3axHsmNzc3pKamIi8vD9u3b8fo0aNx6dIlWFhYaDzTlStXsH79eqSkpDT6D1ZdmQDA399fsX3Xrl3Ru3dvSKVSxMbGclKw6stUNcDK19cXs2fPBgD06NEDFy5cwJYtWzgp6A39u9u5cyfGjRvH2Tl9VTNt2LABFy9eRExMDKRSKX799VdMnToVYrEY7u7uGs8kFApx+PBhhISEwMTEBNra2nB3d4e3t7fas1T3/fffY+LEiWjbti20tbXRq1cvBAQEICUlRbHN639zjDGN/R2SJuht++obcg7dysqKbdy4UWndV199xezs7Gpsq6lz6KpmKi8vZ8OHD2fdu3dX6b1qItPrbGxs2IoVK3jJtHbtWiYQCJi2trZiAcC0tLSYVCrlJdOb2NjYKJ1z1GSmsrIypqOjw7766iulbf71r3+x/v3785Kpul9//ZUBYKmpqSpn4SJTSUkJEwqFNc4dh4SEME9PT14yVff8+XOWm5vLGGPs/fffZ1OnTuUkU3VFRUXsyZMnjDHGRo8ezYYOHcru3r3LALCUlBSlbX18fNj48eNV2q8mz6F/38qcHW7dplHL963M6Rx6PTRyDr2kpARaWsovpa2t/cZLnzRBlUwymQyjR49GRkYGzpw5A1NTU94z1YYxpjjPp+lMgYGB+OOPP5CamqpYJBIJQkNDcerUKV4y1SY/Px8PHz6EWCzmJZOuri769OmD9PR0pW1u374NqVTKS6bqIiMj4eTkxNlYDFUzyWQyyGQyjf570ZDjJBKJYG5ujoyMDCQnJ3My6v51RkZGEIvFePbsGU6dOgVfX1906NABlpaWiIuLU2xXXl6OxMRE9O/fn/NMDaWlpoXUTSNd7sOGDcPy5cthbW0NBwcHXL16FREREZg4caJim6dPn+LBgweK67yr/uGztLSEpaWlxjNVVFTgk08+QUpKCo4fP47KykrFeSsTExNOLoGqL1NxcTGWL18OHx8fiMVi5OfnY9OmTXj06BFGjRql9jyqZDI1Na3xRUcoFMLS0hJ2dna8ZCoqKkJYWBhGjhwJsViMe/fuYcGCBTAzM4Ofnx8vmQAgNDQU/v7+GDhwINzc3HDy5EkcO3YMCQkJvGUCgMLCQhw6dAhr1qzhJEdDMrVs2RKurq4IDQ2FgYEBpFIpEhMTsXfvXkRERPCSCQAOHToEc3NzWFtbIy0tDTNnzsTw4cOVBqWp26lTp8AYg52dHe7cuYPQ0FDY2dlhwoQJEAgEmDVrFlasWIFOnTqhU6dOWLFiBQwNDREQEMBZJtLEvW3TviFd7oWFhWzmzJnM2tqa6evrs44dO7Ivv/ySlZWVKbbZtWsXA1BjWbx4scqZGtKlVV+mqq7/2pb4+HheMpWWljI/Pz8mkUiYrq4uE4vFzMfHh12+fFnlPOrOVBuuL1urL1NJSQnz8PBg5ubmTCgUMmtraxYUFMQePHjAW6YqkZGRzMbGhunr6zNHR0cWHR3Ne6atW7cyAwMD9vz58wZl4SpTVlYWCw4OZhKJhOnr6zM7Ozu2Zs0aJpfLecu0fv16ZmVlpfg8LVy4sM6/gcZmYoyxgwcPso4dOzJdXV1maWnJpk2bpvQ7ksvlbPHixczS0pLp6emxgQMHsrS0NJXzaLLLfX9rcxZt0qZRy/7W1OVeHwFjjL3NF4HCwkKIRCLk5eVx3hWtKplMhhMnTmDo0KEQCoV8xwFAmVRFmVRDmVRDmeqXn58PMzMzFBQUcHblTlWd+LG1BQwFjes0L2FyjH2Wy2nedx2dliCEEEKaAZo+lRBCCKdo+lTNoIJOCCGEU1TQNYO63AkhhLwzaPrUN6MWOiGEEE5pAdBqZBNb6z/Dt5OSkmhQ3BtQQSeEEMIpwX/+a+w+SN2ooBNCCOEclWPu0Tl0QgghpBmgFjohhBBOCQSvlsbug9SNCjohhBBO0WVrmkFd7oQQQkgzQC10QgghnNKCAFqNbGM39vn/C1Qu6GVlZUpzbhcWFgL47/zFTUFVjqaSB6BMqqJMqqFMqqFM9dNkDupy1wyVZ1sLCwvDkiVLaqzfv38/DA0N1R6MEEIId0pKShAQEKCR2daOmljCSKtxZ3iL5XL4Ps2m2dbqoHJBr62F3q5dO2RlZTWp6VPj4uIwZMiQJjE9IUCZVEWZVEOZVEOZ6pefnw+xWKyRgh5jqp6C7pNPBb0uKne56+npQU9Pr8Z6oVDYJD6c1VEm1VAm1VAm1VAm1TSVTJrMQF3umkGj3AkhhJBmgEa5E0II4RTdy10zqKATQgjhlJZADbOtUT2vFxV0QgghnKJz6JpB59AJIYSQZoBa6IQQQjhFLXTNoIJOCCGEUzQoTjOoy50QQghpBqiFTgghhFM0H7pmUAudEEIIp7TUtABAnz590KVLF3z33XeafAvvBI0U9IqKCixcuBAdOnSAgYEBOnbsiKVLl0Iulyu2YYwhLCwMEokEBgYGGDRoEG7cuMFprvbt20MgENRYpk2bBgDIyclBcHAwJBIJDA0N4eXlhYyMDF4zFRUVYfr06bCysoKBgQE6d+6MzZs385antscEAgFWr17NWyYAuHXrFnx8fCASiWBsbAxnZ2c8ePCAt0zBwcE1HnN2duYsjyqZqpsyZQoEAgHWrVvHa6awsDDY29vDyMgIrVu3hru7Oy5dusRbJplMhrlz56Jbt24wMjKCRCLB+PHj8eTJE94yAUBUVBQ8PT1hZmYGgUCA1NRUTvM0JUlJSbh582atn+P/dRrpcl+1ahW2bNmCPXv2wMHBAcnJyZgwYQJEIhFmzpwJAPj6668RERGB3bt3w9bWFsuWLcOQIUOQnp4OY2NjTnIlJSWhsrJS8fP169cxZMgQjBo1CowxDB8+HEKhEEePHkXLli0REREBd3d33Lx5E0ZGRhrPBACzZ89GfHw89u3bh/bt2+P06dOYOnUqJBIJfH19NZ4nKytLafuff/4ZISEhGDlypNqzqJrp7t27cHFxQUhICJYsWQKRSIRbt25BX1+ft0wA4OXlhV27dil+1tXV5SyPqpkAIDo6GpcuXYJEIuE0jyqZbG1tsXHjRnTs2BGlpaVYu3YtPDw8cOfOHZibm2s8U0lJCVJSUrBo0SI4Ojri2bNnmDVrFnx8fJCcnMxJnvoyAUBxcTEGDBiAUaNGYfLkyZzlUBca5a4h7C0VFBQwACwvL6/ebT/66CM2ceJEpXUjRoxgn376KWOMMblcziwtLVl4eLji8ZcvXzKRSMS2bNmicqby8nIWHR3NysvLVX5OdTNnzmTvvfcek8vlLD09nQFg169fVzxeUVHBTExM2Pbt23nJxBhjDg4ObOnSpUrb9OrViy1cuFAjmV7P8zpfX182ePDgBu9XnZn8/f0Vn63GUGemoKAg5uvr26QyMcbYo0ePWNu2bdn169eZVCpla9eu5T1TdVX/zpw5c6bJZLp8+TIDwO7fv897pszMTAaAXb16tcH7zMvLYwBYQUFBg5+rqqrf3y8Wbdkly3aNWn6xaMt53nedRrrcXVxc8Msvv+D27dsAgGvXruH8+fMYOnQoACAzMxPZ2dnw8PBQPEdPTw+urq64cOGCJiKivLwc+/btw8SJEyEQCBRTxVZv1Wlra0NXVxfnz5/nJRPw6ljGxMTg8ePHYIwhPj4et2/fhqenJy95qsvJyUFsbCxCQkI4z/KmTHK5HLGxsbC1tYWnpycsLCzQt29fREdH85apSkJCAiwsLGBra4vJkycjNzeX10xyuRyBgYEIDQ2Fg4ODxrLUlen1x7dt2waRSARHR8cmkQkACgoKIBAI0KpVqyaTiRBAQ+fQ586di7Fjx8Le3h5CoRA9e/bErFmzMHbsWABAdnY2AKBNmzZKz2vTpo3iMa5FR0fj+fPnCA4OBgDY29tDKpVi/vz5ePbsGcrLyxEeHo7s7Owa3cyaygQAGzZsQJcuXWBlZQVdXV14eXlh06ZNcHFx4SVPdXv27IGxsTFGjBjBeZY3ZcrNzUVRURHCw8Ph5eWF06dPw8/PDyNGjEBiYiIvmQDA29sbP/zwA86ePYs1a9YgKSkJgwcPVnxx5CPTqlWroKOjgxkzZmgkgyqZAOD48eNo0aIF9PX1sXbtWsTFxcHMzIzXTFVevnyJefPmISAgQGNzcteX6V0gUNNC6qaRc+gHDx7Evn37sH//fjg4OCA1NRWzZs2CRCJBUFCQYrvXv30yxjT2jTQyMhLe3t6K84hCoRCHDx9GSEgITExMoK2tDXd3d3h7e2skT22ZgFcF/eLFi4iJiYFUKsWvv/6KqVOnQiwWw93dXeN5qtu5cyfGjRvH6bnq+jJVDbT09fXF7NmzAQA9evTAhQsXsGXLFri6umo8EwD4+/sr/r9r167o3bs3pFIpYmNjNfIF6PVMV65cwfr165GSksJbq+9Nnyc3NzekpqYiLy8P27dvx+jRo3Hp0iVYWFjwlgkAZDIZxowZA7lcjk2bNnGeRZVM7wo6h64ZGinooaGhmDdvHsaMGQMA6NatG+7fv4+VK1ciKCgIlpaWAF611MViseJ5ubm5NVrtXLh//z7OnDmDqKgopfVOTk5ITU1FQUEBysvLYW5ujr59+6J37968ZCotLcWCBQtw5MgRfPTRRwCA7t27IzU1Fd988w2nBf1Nx6jKuXPnkJ6ejoMHD3KWQZVMZmZm0NHRQZcuXZS27dy5s0ZOldR3nKqIxWJIpVLOr5p4U6Zz584hNzcX1tbWinWVlZX44osvsG7dOty7d0/jmaoYGRnBxsYGNjY2cHZ2RqdOnRAZGYn58+fzlkkmk2H06NHIzMzE2bNnNdY6V/Xz1NRVjdJv7D5I3TTS5V5SUgItLeWX0tbWVrSmOnToAEtLS8TFxSkeLy8vR2JiIvr37895vl27dsHCwkJRJF8nEolgbm6OjIwMJCcnczKaXJVMMpkMMpmszmOpyTzVRUZGwsnJSWPnOt+USVdXF3369EF6errStrdv34ZUKuUlU23y8/Px8OFDpS+wmswUGBiIP/74A6mpqYpFIpEgNDQUp06d4iXTmzDGNHJq4k2Zqop5RkYGzpw5A1NTU86z1JeJkNpopIU+bNgwLF++HNbW1nBwcMDVq1cRERGBiRMnAnj1zWvWrFlYsWIFOnXqhE6dOmHFihUwNDREQEAAp9nkcjl27dqFoKAg6OgoH45Dhw7B3Nwc1tbWSEtLw8yZMzF8+HClwXuazNSyZUu4uroiNDQUBgYGkEqlSExMxN69exEREaHxPFUKCwtx6NAhrFmzhrMMDckUGhoKf39/DBw4EG5ubjh58iSOHTuGhIQEXjIVFRUhLCwMI0eOhFgsxr1797BgwQKYmZnBz8+Pl0ympqY1CpNQKISlpSXs7Ox4yVRcXIzly5fDx8cHYrEY+fn52LRpEx49elTjUjtNZaqoqMAnn3yClJQUHD9+HJWVlYpxPSYmJpxeeljXZ/zp06d48OCB4nr4qi+wlpaWih7PpoTmQ9eQtx0e35DL1goLC9nMmTOZtbU109fXZx07dmRffvklKysrU2wjl8vZ4sWLmaWlJdPT02MDBw5kaWlpDcr0NpeFnDp1igFg6enpNR5bv349s7KyYkKhkFlbW7OFCxcqZeYjU1ZWFgsODmYSiYTp6+szOzs7tmbNmjdeYqOOTHXlYYyxrVu3MgMDA/b8+XOVM3CdKTIyktnY2DB9fX3m6OjIoqOjectUUlLCPDw8mLm5ueKzFBQUxB48eMBbptpo6rK1N2UqLS1lfn5+TCKRMF1dXSYWi5mPjw+7fPkyb5mqLgurbYmPj+clE2OM7dq1q9ZMixcvVjmPJi9bOydpx65aSRu1nJO0o8vW6iFgjLG3+SJQWFgIkUiEvLw8jXZB1UUmk+HEiRMYOnQohEIh33EAUCZVUSbVUCbVUKb65efnw8zMDAUFBZyNCaiqE+ck7dBCq3FneIvkcnzw5CGned91NDkLIYQQTtHkLJpBBZ0QQginqKBrBs22RgghhDQD1EInhBDCKboOXTOooBNCCOEUdblrBnW5E0IIIc0AtdAJIYRwirrcNYMKOiGEEE5Rl7tmUEEnhBDCKS2BAFqNrMiNff7/AjqHTgghhDQD1EInhBDCKepy1wyVC3pZWZnSFIaFhYUA/julZ1NQlaOp5AEok6ook2ook2ooU/00mUMANQyKA1X0+qg8OUtYWBiWLFlSY/3+/fthaGio9mCEEEK4U1JSgoCAAI1MznKlYwe00G7k5CyVcjj9lUmTs9RB5YJeWwu9Xbt2yMrKalKzrcXFxWHIkCFNYjYjgDKpijKphjKphjLVLz8/H2KxWCMFPcVGPQW91x0q6HVRuctdT08Penp6NdYLhcIm8eGsjjKphjKphjKphjKppqlk0mgGNVyHTifR60ej3AkhhJBmgEa5E0II4RSNctcMKuiEEEI49aqgN/bWr2oK04xRlzshhBDSDFBBJ4QQwqmqLvfGLk2Nn58fWrdujU8++YTvKACooBNCCOFY1b3cG7s0NTNmzMDevXv5jqFABZ0QQginmmsL3c3NDcbGxnzHUKCCTgghpNn59ddfMWzYMEgkEggEAkRHR9fYZtOmTejQoQP09fXh5OSEc+fOaT6oGtEod0IIIZwSqOHGMg19fnFxMRwdHTFhwgSMHDmyxuMHDx7ErFmzsGnTJgwYMABbt26Ft7c3bt68CWtrawCAk5OT0h1Sq5w+fRoSieTt3giHqKATQgjhlDqvQ6+aGKzKm+5i6u3tDW9v7zfuLyIiAiEhIZg0aRIAYN26dTh16hQ2b96MlStXAgCuXLnSuNAaRl3uhBBC3hnt2rWDSCRSLFXFtyHKy8tx5coVeHh4KK338PDAhQsX1BVV4zRW0B8/foxPP/0UpqamMDQ0RI8ePZS+/URFRcHT0xNmZmYQCARITU3lNZNMJsPcuXPRrVs3GBkZQSKRYPz48Xjy5AlvmYBXs97Z29vDyMgIrVu3hru7Oy5dusRrpuqmTJkCgUCAdevW8ZopODhY0c1XtTg7O/OaCQBu3boFHx8fiEQiGBsbw9nZGQ8ePOAt0+vHqGpZvXo1b5mKioowffp0WFlZwcDAAJ07d8bmzZs5y6NKppycHAQHB0MikcDQ0BBeXl7IyMjgLE/79u1r/b1MmzYNAMAYQ1hYGCQSCQwMDDBo0CDcuHGDszyNpc5BcQ8fPkRBQYFimT9/foPz5OXlobKyEm3atFFa36ZNG2RnZ6u8H09PT4waNQonTpyAlZUVkpKSGpxFnTTS5f7s2TMMGDAAbm5u+Pnnn2FhYYG7d++iVatWim2Ki4sxYMAAjBo1CpMnT+Y9U0lJCVJSUrBo0SI4Ojri2bNnmDVrFnx8fJCcnMxLJgCwtbXFxo0b0bFjR5SWlmLt2rXw8PDAnTt3YG5uzkumKtHR0bh06RLn55ZUzeTl5YVdu3YpftbV1eU10927d+Hi4oKQkBAsWbIEIpEIt27dgr6+Pm+ZsrKylJ7z888/IyQkpNZzjprKNHv2bMTHx2Pfvn1o3749Tp8+jalTp0IikcDX11fjmRhjGD58OIRCIY4ePYqWLVsiIiIC7u7uuHnzJoyMjNSeKSkpCZWVlYqfr1+/jiFDhmDUqFEAgK+//hoRERHYvXs3bG1tsWzZMgwZMgTp6elNatR1FYGWAAKtRp5DZ6+e37JlS7XNtvb6eXnGWIPO1Z86dUotOdSGvaWCggIGgOXl5dW77dy5c5mLi4tK+83MzGQA2NWrVxucqby8nEVHR7Py8nK1Zqpy+fJlBoDdv3+/yWSq+j2cOXOG10yPHj1ibdu2ZdevX2dSqZStXbtW5TxcZAoKCmK+vr4NysB1Jn9/f/bpp582qUyv8/X1ZYMHD+Y1k4ODA1u6dKnSul69erGFCxfykik9PZ0BYNevX1esq6ioYCYmJmz79u2cZHrdzJkz2XvvvcfkcjmTy+XM0tKShYeHKx5/+fIlE4lEbMuWLSrvMy8vjwFgBQUFDc6jqqp/n/507MQe97Jv1PKnY6e3zguAHTlyRPFzWVkZ09bWZlFRUUrbzZgxgw0cOLCxb5s3Gulyj4mJQe/evTFq1ChYWFigZ8+e2L59uyZeWq2ZCgoKIBAIam2d8pGpvLwc27Ztg0gkgqOjI2+Z5HI5AgMDERoaCgcHB05yNDQTACQkJMDCwgK2traYPHkycnNzecskl8sRGxsLW1tbeHp6wsLCAn379q31UhpNZXpdTk4OYmNjERISwmsmFxcXxMTE4PHjx2CMIT4+Hrdv34anpycvmapGOVfvSdHW1oauri7Onz/PSabqysvLsW/fPkycOBECgQCZmZnIzs5WOv+rp6cHV1fXJnv+t6ldh66rqwsnJyfExcUprY+Li0P//v3V90Ka9rbfBBrSQtfT02N6enps/vz5LCUlhW3ZsoXp6+uzPXv21NhWUy30hmRijLHS0lLm5OTExo0bx3umY8eOMSMjIyYQCJhEImGXL1/mNdOKFSvYkCFDmFwuZ4wxzlvoqmQ6cOAAO378OEtLS2MxMTHM0dGROTg4sJcvX/KSKSsriwFghoaGLCIigl29epWtXLmSCQQClpCQwEum161atYq1bt2alZaWqpyHi0xlZWVs/PjxDADT0dFhurq6bO/evbxlKi8vZ1KplI0aNYo9ffqUlZWVsZUrVzIAzMPDg5NM1R08eJBpa2uzx48fM8YY++233xgAxc9VJk+e3KA8mmyhZ/S0Zdm9OzdqyehpywAwW1tb1rlzZ7Zx48Y6X/vFixfs6tWr7OrVqwyA4u+uqof1wIEDTCgUssjISHbz5k02a9YsZmRkxO7du8fZ8eCaRgq6UChk/fr1U1r3+eefM2dn5xrbaqqgNyRTeXk58/X1ZT179mzwh5+LTEVFRSwjI4P9/vvvbOLEiax9+/YsJyeHl0zJycmsTZs2Sv+4cF3QG/K7q/LkyRMmFArZ4cOHecn0+PFjBoCNHTtWaZthw4axMWPG8JLpdXZ2dmz69OkqZ+Eq0+rVq5mtrS2LiYlh165dY99++y1r0aIFi4uL4y1TcnIyc3R0ZACYtrY28/T0ZN7e3szb25uTTNV5eHiwjz/+WPFzVUF/8uSJ0naTJk1inp6eKu/3XS3oquaNj49nAGosQUFBim2+++47JpVKma6uLuvVqxdLTEzk6Ehohka63MViMbp06aK0rnPnzpyO7q2PqplkMhlGjx6NzMxMxMXFqW0wRmMyGRkZwcbGBs7OzoiMjISOjg4iIyN5yXTu3Dnk5ubC2toaOjo60NHRwf379/HFF1+gffv2vGR603OkUilnI5Pry2RmZgYdHR2N/h005DidO3cO6enpimtyuVJfptLSUixYsAAREREYNmwYunfvjunTp8Pf3x/ffPMNL5mAVzcYSU1NxfPnz5GVlYWTJ08iPz8fHTp04CRTlfv37+PMmTNKvxdLS0sAqDEaOzc3t8ao7aaCjy73QYMGgb1qtCotu3fvVmwzdepU3Lt3D2VlZbhy5QoGDhyo3jeuYRop6AMGDEB6errSutu3b0MqlWri5WulSqaqYp6RkYEzZ87A1NSU90y1YYzVejcjTWQKDAzEH3/8gdTUVMUikUgQGhrK2QjQtzlO+fn5ePjwIcRiMS+ZdHV10adPH43+HTTkOEVGRsLJyYmzsRiqZpLJZJDJZNDSUv6nSVtbG3K5nJdM1YlEIpibmyMjIwPJycmcjLqvbteuXbCwsMBHH32kWNehQwdYWloqnf8tLy9HYmJikz3/+6bLIxu6kHq8bdO+IV3uly9fZjo6Omz58uUsIyOD/fDDD8zQ0JDt27dPsU1+fj67evUqi42NZQDYgQMH2NWrV1lWVpbKmRrSpVVfJplMxnx8fJiVlRVLTU1lWVlZiqWsrIyXTEVFRWz+/Pns999/Z/fu3WNXrlxhISEhTE9PT2kEriYz1YbrLvf6Mr148YJ98cUX7MKFCywzM5PFx8ezfv36sbZt27LCwkJeMjHGWFRUFBMKhWzbtm0sIyODffvtt0xbW5udO3eOt0yMvfpbNjQ0ZJs3b1Y5B5eZXF1dmYODA4uPj2d//fUX27VrF9PX12ebNm3iLdNPP/3E4uPj2d27d1l0dDSTSqVsxIgRKudpaCbGGKusrGTW1tZs7ty5NR4LDw9nIpGIRUVFsbS0NDZ27FgmFosb9PnWZJf7X0527O++XRq1/OVkx3ned51GCjpjrwZyde3alenp6TF7e3u2bds2pcd37dpV6/mOxYsXq5ypoX8wdWWqOpdf2xIfH89LptLSUubn58ckEgnT1dVlYrGY+fj4cDoorr5MteG6oNeXqaSkhHl4eDBzc3MmFAqZtbU1CwoKYg8ePOAtU5XIyEhmY2PD9PX1maOjI4uOjuY909atW5mBgQF7/vx5g7JwlSkrK4sFBwcziUTC9PX1mZ2dHVuzZo1i0CUfmdavX8+srKwUn6eFCxc26Iv922Q6deoUA8DS09NrPCaXy9nixYuZpaUl09PTYwMHDmRpaWkNykMFvfkRMMbY27TsCwsLIRKJkJeXx3lXtKpkMhlOnDiBoUOHQigU8h0HAGVSFWVSDWVSDWWqX35+PszMzFBQUMDZ2KCqOpHZ2x7GOtqN2teLikp0SP6T07zvOrqXOyGEEG6pY0Dcf06h9+nTB126dMF3333H61tqimi2NUIIIe+MpKQkaqG/ARV0QgghnOJjPvT/RVTQCSGEcEqg9Wpp7D5I3egQEUIIIc0AtdAJIYRwirrcNYMKOiGEEG5pCV4tjd0HqRN1uRNCCHln0GVrb0YtdEIIIdxSx4Tm/3k+Xbb2ZlTQCSGEcIrOoWsGFXRCCCHconPoGqFyQS8rK1OaorOwsBDAf6c7bAqqcjSVPABlUhVlUg1lUg1lql9TyUHUR+XJWcLCwrBkyZIa6/fv3w9DQ0O1ByOEEMKdkpISBAQEaGRyloeDHNGykZOzFFZUol3CNZqcpQ4qF/TaWujt2rVDVlZWk5ptLS4uDkOGDGkSsxkBlElVlEk1lEk1lKl++fn5EIvFGinojwb3UEtBtzqbSgW9Dip3uevp6UFPT6/GeqFQ2CQ+nNVRJtVQJtVQJtVQJtU0lUxNIQNRL7oOnRBCCLcaO3dqtcvemtN16MXFxWrdH41yJ4QQwimBQABBI0epC5rhdeht2rTB6NGjMXHiRLi4uDR6f9RCJ4QQQnjw448/oqCgAB9++CFsbW0RHh6OJ0+evPX+qKATQgjhlhq73JuTYcOG4fDhw3jy5An+3//7f/jxxx8hlUrx8ccfIyoqChUVFQ3aHxV0Qggh3NLCf28u89YL32+CO6amppg9ezauXbuGiIgInDlzBp988gkkEgn+/e9/o6SkRKX90Dl0QgghhEfZ2dnYu3cvdu3ahQcPHuCTTz5BSEgInjx5gvDwcFy8eBGnT5+udz9U0AkhhHCK7uVeu6ioKOzatQunTp1Cly5dMG3aNHz66ado1aqVYpsePXqgZ8+eKu2PCjohhBBu0b3cazVhwgSMGTMGv/32G/r06VPrNh07dsSXX36p0v6ooBNCCOGWGqdPbU6ysrLqvXW6gYEBFi9erNL+mvEwA0IIIaTpMjY2Rm5ubo31+fn50NZu+K1yqaATQgjhlEBLPQvQvO4U96apVMrKyqCrq9vg/WmsoD9+/BiffvopTE1NYWhoiB49euDKlSuKxxljCAsLg0QigYGBAQYNGoQbN25wlicsLEwxUKNqsbS0VDyek5OD4OBgSCQSGBoawsvLCxkZGZzlUSVTUVERpk+fDisrKxgYGKBz587YvHkzr5lef6xqWb16NW+ZAODWrVvw8fGBSCSCsbExnJ2d8eDBA94yBQcH13jc2dmZszyqZKpuypQpEAgEWLduHa+ZwsLCYG9vDyMjI7Ru3Rru7u64dOkSb5lkMhnmzp2Lbt26wcjICBKJBOPHj2/UzT8amwl4NZjK09MTZmZmEAgESE1N5TRPo6nxOvSkpCTcvHkT06ZN4/lNvb0NGzZgw4YNEAgE2LFjh+LnDRs2YO3atZg2bRrs7e0bvF+NnEN/9uwZBgwYADc3N/z888+wsLDA3bt3lUbyff3114iIiMDu3btha2uLZcuWYciQIUhPT4exsTEnuRwcHHDmzBnFz1VdHIwxDB8+HEKhEEePHkXLli0REREBd3d33Lx5E0ZGRpzkqSsTAMyePRvx8fHYt28f2rdvj9OnT2Pq1KmQSCTw9fXlJVNWVpbStj///DNCQkIwcuRIzvLUl+nu3btwcXFBSEgIlixZApFIhFu3bkFfX5+3TADg5eWFXbt2KX5+m2/g6s4EANHR0bh06RIkEgnneerLZGtri40bN6Jjx44oLS3F2rVr4eHhgTt37sDc3FzjmUpKSpCSkoJFixbB0dERz549w6xZs+Dj44Pk5GTO8tSVCXh1D/ABAwZg1KhRmDx5Mqc5iPqtXbsWwKtas2XLFqXfra6uLtq3b48tW7Y0eL8aKeirVq1Cu3btlP4xa9++veL/GWNYt24dvvzyS4wYMQIAsGfPHrRp0wb79+/HlClTOMmlo6NTa4slIyMDFy9exPXr1+Hg4AAA2LRpEywsLPDjjz9i0qRJnOSpKxMA/P777wgKCsKgQYMAAP/4xz+wdetWJCcnc1rQ68r0+vqjR4/Czc0NHTt25CxPfZm+/PJLDB06FF9//bViHdd56ssEvJqxsK7HuVBfpsePH2P69Ok4deoUPvroI94zBQQEKP0cERGByMhI/PHHH/jwww81nkkkEiEuLk5p3bfffov3338fDx48gLW1tcYzAUBgYCAA4N69e5y9vjoJtNRwL/dmNMo9MzMTAODm5oaoqCi0bt1aLfvVSJd7TEwMevfujVGjRsHCwgI9e/bE9u3bFY9nZmYiOzsbHh4einV6enpwdXXFhQsXOMuVkZEBiUSCDh06YMyYMfjrr78AQDHve/UWnba2NnR1dXH+/HnO8tSVCQBcXFwQExODx48fgzGG+Ph43L59G56enrxlqi4nJwexsbEICQnhNE9dmeRyOWJjY2FrawtPT09YWFigb9++iI6O5i1TlYSEBFhYWMDW1haTJ0+udTCMJjPJ5XIEBgYiNDRU8cVVE1T9PJWXl2Pbtm0QiURwdHRsEpkAoKCgAAKBQKmHke9MTR7d+rVW8fHxaivmgIZa6H/99Rc2b96MOXPmYMGCBbh8+TJmzJgBPT09jB8/HtnZ2QBezTxTXZs2bXD//n1OMvXt2xd79+6Fra0tcnJysGzZMvTv3x83btyAvb09pFIp5s+fj61bt8LIyAgRERHIzs6u0cWsqUympqbYsGEDJk+eDCsrK+jo6EBLSws7duxQyyw9b5upuj179sDY2FjRy8JHJplMhqKiIoSHh2PZsmVYtWoVTp48iREjRiA+Ph6urq4az2Rqagpvb2+MGjUKUqkUmZmZWLRoEQYPHowrV65AT0+Pl0yrVq2Cjo4OZsyYwcnrv00mADh+/DjGjBmDkpISiMVixMXFwczMjNdMVV6+fIl58+YhICCA0xm/GpKJvFvmzJmDr776CkZGRpgzZ06d20ZERDRs5+wtFRQUMAAsLy+v3m2FQiHr16+f0rrPP/+cOTs7M8YY++233xgA9uTJE6VtJk2axDw9PVXOVF5ezqKjo1l5ebnKz6lSVFTE2rRpw9asWcMYYyw5OZk5OjoyAExbW5t5enoyb29v5u3t3aD9qjPT6tWrma2tLYuJiWHXrl1j3377LWvRogWLi4vjLVN1dnZ2bPr06Q3epzozPX78mAFgY8eOVdpm2LBhbMyYMbxkqs2TJ0+YUChkhw8f5iVTcnIya9OmDXv8+LHicalUytauXdvg/ar7OBUVFbGMjAz2+++/s4kTJ7L27duznJwcXjNV7dPX15f17NmTFRQUNHi/XGTKzMxkANjVq1cbvM+8vDwG4K3ei6qq6kT2yP6sZMzARi3ZI/tznlcTBg0axJ49e6b4/zctbm5uDd63RlroYrEYXbp0UVrXuXNnHD58GMB/z8NmZ2dDLBYrtsnNza3RaueKkZERunXrphjJ7uTkhNTUVBQUFKC8vBzm5ubo27cvevfurZE8r2cqLS3FggULcOTIEcW5zu7duyM1NRXffPMN3N3dNZ6punPnziE9PR0HDx7USI43ZTIzM4OOjk6tnzeuT5e8KVNtxGIxpFIp51dOvCmTlpYWcnNzlc4BV1ZW4osvvsC6des0dm62tuNkZGQEGxsb2NjYwNnZGZ06dUJkZCTmz5/PWyaZTIbRo0cjMzMTZ8+e1fh83PV9npo6uvXrf8XHx9f6/+qgkXPoAwYMQHp6utK627dvQyqVAgA6dOgAS0tLpcEn5eXlSExMRP/+/TUREWVlZbh165bSFwrg1aAYc3NzZGRkcD74rK5MMpkMMpkMWlrKvzJtbW3I5XJeMlUXGRkJJycnzs911pdJV1cXffr0qfPzpulMtcnPz8fDhw/f+DjXmQIDA/HHH38gNTVVsUgkEoSGhuLUqVO8ZHoTxphiXAsfmaqKeUZGBs6cOcNLl7cqx4kQjbTQZ8+ejf79+2PFihUYPXo0Ll++jG3btmHbtm0AXn3zmjVrFlasWIFOnTqhU6dOWLFiBQwNDWuMelWXf/7znxg2bBisra2Rm5uLZcuWobCwEEFBQQCAQ4cOwdzcHNbW1khLS8PMmTMxfPhwpYF7mszUsmVLuLq6IjQ0FAYGBpBKpUhMTMTevXsbfp5FTZmqFBYW4tChQ1izZg1nORqSKTQ0FP7+/hg4cCDc3Nxw8uRJHDt2DAkJCbxkKioqQlhYGEaOHAmxWIx79+5hwYIFMDMzg5+fHy+ZTE1NaxQmoVAIS0tL2NnZ8ZKpuLgYy5cvh4+PD8RiMfLz87Fp0yY8evQIo0aN4iVTRUUFPvnkE6SkpOD48eOorKxUjPkxMTHh7NLD+j7jT58+xYMHDxTXw1d9gbW0tNT4lRQqoXu5KzRkjFFUVFSD9q2Rgt6nTx8cOXIE8+fPx9KlS9GhQwesW7cO48aNU2zzr3/9C6WlpZg6dSqePXuGvn374vTp05xdg/7o0SOMHTsWeXl5MDc3h7OzMy5evKhoxWVlZWHOnDnIycmBWCzG+PHjsWjRIk6yqJrpwIEDmD9/PsaNG4enT59CKpVi+fLl+Oyzz3jLVJWLMYaxY8dylqMhmfz8/LBlyxasXLkSM2bMgJ2dHQ4fPszp4MG6MpWWliItLQ179+7F8+fPIRaL4ebmhoMHD3L2+a4vE1/qyvTy5Uv8+eef2LNnD/Ly8mBqaoo+ffrg3LlznI7CryvTvXv3EBMTA+DVrFfVxcfHKy4h1WQm4NWVQxMmTFBsP2bMGADA4sWLERYWxkmmxlHHKPXmUdBFIhFn+xYw9oZ7z9WjsLAQIpFI8YfXFMhkMpw4cQJDhw6FUCjkOw4AyqQqyqQayqQaylS//Px8mJmZoaCggLMxAVV1Itd/IFrqNq79WFheAYuDv3Ka911H93InhBDyzmhO93JXN5o+lRBCCLfUeA49KSnpnW6h9+rVC7/88gtat26Nnj171jl6PyUlpUH7poJOCCGEU3TZ2n/5+voqbiY1fPhwte6bCjohhBCiIYsXL671/9WBCjohhBBu0WVrdUpOTsatW7cgEAjQuXNnODk5vdV+qKATQgjhljomV2kmXe7VVV2e+Ntvvykm+3n+/Dn69++PH3/8Ee3atWvQ/miUOyGEEMKDiRMnQiaT4datW3j69CmePn2KW7dugTH2VrNWUgudEEIIp2g+9NqdO3cOFy5cULo7o52dHb799lsMGDCgwfujgk4IIYRb1OVeK2tra8hkshrrKyoq0LZt2wbvj7rcCSGEEB58/fXX+Pzzz5GcnIyqm7YmJydj5syZ+Oabbxq8P2qhE0II4ZYW1DDKXS1JeNe6dWula+qLi4vRt29f6Oi8KscVFRXQ0dHBxIkTG3ydusoFvaysTGkKw8LCQgBQTOvZFFTlaCp5AMqkKsqkGsqkGspUP03moBvL/Ne6des427fKk7OEhYVhyZIlNdbv378fhoaGag9GCCGEOyUlJQgICNDI5Cz5kz3QUrdxE9IUlstguv00Tc5SB5ULem0t9Hbt2iErK6tJzbYWFxeHIUOGNInZjADKpCrKpBrKpBrKVL/8/HyIxWIq6E1EaWlpjV6Thr5Plbvc9fT0FPefrU4oFDaJD2d1lEk1lEk1lEk1lEk1TSWTRjPQKPdaFRcXY+7cufjpp5+Qn59f4/HKysoG7a+ZDDMghBDSZFUV9MYuaF7Tp/7rX//C2bNnsWnTJujp6WHHjh1YsmQJJBIJ9u7d2+D90Sh3Qggh74x3ffrU6o4dO4a9e/di0KBBmDhxIj744APY2NhAKpXihx9+wLhx4xq0P2qhE0II4Zg6WufNr8v96dOn6NChA4BX58ufPn0KAHBxccGvv/7a4P1RQSeEEMItLS31LM1Mx44dce/ePQBAly5d8NNPPwF41XKvmqylIZrfESKEEELeARMmTMC1a9cAAPPnz1ecS589ezZCQ0MbvD86h04IIYRbNMq9VrNnz1b8v5ubG27duoUrV67gvffeg6OjY4P3RwWdEEIIt6igq0QqlUIqlb7186nLnRBCCOHJL7/8go8//hjvvfcebGxs8PHHH+PMmTNvtS8q6IQQQrilxuvQm5ONGzfCy8sLxsbGmDlzJmbMmIGWLVti6NCh2LhxY4P3R13uhBBCuKWOUerNcJT7ypUrsXbtWkyfPl2xbsaMGRgwYACWL1+utF4Vze8IEUIIaVqohV6rwsJCeHl51Vjv4eGhmNG0IXgp6CtXroRAIMCsWbMU66KiouDp6QkzMzMIBAKkpqbymkkmk2Hu3Lno1q0bjIyMIJFIMH78eDx58oS3TMCrWe/s7e1hZGSE1q1bw93dHZcuXeI1U3VTpkyBQCDgdIpAVTIFBwcrpmysWpydnXnNBAC3bt2Cj48PRCIRjI2N4ezsjAcPHvCW6fVjVLWsXr2at0xFRUWYPn06rKysYGBggM6dO2Pz5s0ayfOmTDk5OQgODoZEIoGhoSG8vLyQkZHBWYawsLAavxNLS0vF44wxhIWFQSKRwMDAAIMGDcKNGzc4y0O44ePjgyNHjtRYf/ToUQwbNqzB+9N4l3tSUhK2bduG7t27K60vLi7GgAEDMGrUKEyePJn3TCUlJUhJScGiRYvg6OiIZ8+eYdasWfDx8UFycjIvmQDA1tYWGzduRMeOHVFaWoq1a9fCw8MDd+7cgbm5OS+ZqkRHR+PSpUuQSCSc5lA1k5eXF3bt2qX4WVdXl9dMd+/ehYuLC0JCQrBkyRKIRCLcunUL+vr6vGXKyspS+vnnn39GSEgIRo4cyVum2bNnIz4+Hvv27UP79u1x+vRpTJ06FRKJBL6+vhrPxBjD8OHDIRQKcfToUbRs2RIRERFwd3fHzZs3YWRkxEkWBwcHpcFR2traiv//+uuvERERgd27d8PW1hbLli3DkCFDkJ6eDmNjY07yNAqNclfYsGGD4v87d+6M5cuXIyEhAf369QMAXLx4Eb/99hu++OKLBu9boy30oqIijBs3Dtu3b0fr1q2VHgsMDMS///1vuLu7azLSGzOJRCLExcVh9OjRsLOzg7OzM7799ltcuXKF8xZVXccpICAA7u7u6NixIxwcHBAREYHCwkL88ccfvGUCgMePH2P69On44YcfNDaLU32Z9PT0YGlpqVhMTEx4zfTll19i6NCh+Prrr9GzZ0907NgRH330ESwsLHjLVP34WFpa4ujRo3Bzc0PHjh15y/T7778jKCgIgwYNQvv27fGPf/wDjo6OnH+RflOmjIwMXLx4EZs3b0afPn1gZ2eHTZs2oaioCD/++CNneXR0dJR+N1Vf2BljWLduHb788kuMGDECXbt2xZ49e1BSUoL9+/dzlqdRqMtdYe3atYolMjISrVu3xs2bNxEZGYnIyEjcuHEDrVq1ws6dOxu8b40W9GnTpuGjjz7SeNGuS0MyFRQUQCAQvNUt+bjIVF5ejm3btkEkEr3VTQjUlUkulyMwMBChoaFwcHDgNIeqmQAgISEBFhYWsLW1xeTJk5Gbm8tbJrlcjtjYWNja2sLT0xMWFhbo27cvoqOjecv0upycHMTGxiIkJITXTC4uLoiJicHjx4/BGEN8fDxu374NT09PXjKVlZUBgFJPira2NnR1dXH+/HnO8mRkZEAikaBDhw4YM2YM/vrrLwBAZmYmsrOz4eHhodhWT08Prq6uuHDhAmd5iHpkZmaqtFT9vhtCY13uBw4cQEpKCpKSkjT1kvVqSKaXL19i3rx5CAgI4HSmH1UyHT9+HGPGjEFJSQnEYjHi4uJgZmbGW6ZVq1ZBR0cHM2bM4CxDQzN5e3tj1KhRkEqlyMzMxKJFizB48GBcuXIFenp6Gs+Um5uLoqIihIeHY9myZVi1ahVOnjyJESNGID4+Hq6urhrP9Lo9e/bA2NgYI0aM4CSLqpk2bNiAyZMnw8rKCjo6OtDS0sKOHTvg4uLCSyZ7e3tIpVLMnz8fW7duhZGRESIiIpCdnV3jlIW69O3bF3v37oWtrS1ycnKwbNky9O/fHzdu3EB2djYAoE2bNkrPadOmDe7fv89JnkajUe71YowBeDWu5W1ppKA/fPgQM2fOxOnTpzVyvlAVDckkk8kwZswYyOVybNq0ifdMbm5uSE1NRV5eHrZv347Ro0fj0qVLnHTd1pfpypUrWL9+PVJSUhr1QVRnJgDw9/dX/H/Xrl3Ru3dvSKVSxMbGclKw6sskl8sBAL6+vorbPfbo0QMXLlzAli1bOCnoDf2727lzJ8aNG8fp36gqmTZs2ICLFy8iJiYGUqkUv/76K6ZOnQqxWMxJ7159mYRCIQ4fPoyQkBCYmJhAW1sb7u7u8Pb2VnuWKtX33a1bN/Tr1w/vvfce9uzZoxjc+frfG2NMY3+DDUbn0N9o7969WL16tWKQpa2tLUJDQxEYGNjgfWnkK8+VK1eQm5sLJycn6OjoQEdHB4mJidiwYQN0dHRQWVmpiRhvlUkmk2H06NHIzMxEXFwcp61zVTMZGRnBxsYGzs7OiIyMhI6ODiIjI3nJlJCQgNzcXFhbWysev3//Pr744gu0b9+el0y1fZ7EYjGkUilnI5Pry2RqagodHR106dJF6XmdO3fmbExGQ47TuXPnkJ6ejkmTJnGSRdVMxcXFWLBgASIiIjBs2DB0794d06dPh7+/P7755hteMlVWVsLJyQmpqal4/vw5srKycPLkSeTn5yumvuSakZERunXrhoyMDMVo96qWepXc3NwarXbStEVEROD//b//h6FDh+Knn37CwYMH4eXlhc8++wxr165t8P400kL/8MMPkZaWprRuwoQJsLe3x9y5c5VGb2qKKpmqinlGRgbi4+NhamrKe6baMMYU5/k0nUksFtc4t+np6YnAwEBMmDCBl0y1Haf8/Hw8fPgQYrGYl0x6enro06cP0tPTlba5fft2o+7d3JhM1Y9TZGQknJycOB+LUV+myspKyGQyaL3Wvaqtra3o5dB0purHSSQSAXh1fjs5ORlfffUVJ5leV1ZWhlu3buGDDz5Ahw4dYGlpibi4OPTs2RPAq/E0iYmJWLVqlUbyNJgAamihqyVJk/Ltt99i8+bNGD9+vGKdr68vHBwcEBYWpjR5iyo0UtCNjY3RtWtXpXVGRkYwNTVVrH/69CkePHiguM676h++qhGems5UUVGBTz75BCkpKTh+/DgqKysV34hNTEw4uQSqvkzFxcVYvnw5fHx8IBaLkZ+fj02bNuHRo0cYNWqU2vOokglAjS86QqEQlpaWsLOz4yVTUVERwsLCMHLkSIjFYty7dw8LFiyAmZkZ/Pz8eMkEAKGhofD398fAgQPh5uaGkydP4tixY0hISOAtE/Dq5haHDh3CmjVrOMnR0Eyurq4IDQ2FgYEBpFIpEhMTsXfvXkRERPCW6dChQzA3N4e1tTXS0tIwc+ZMDB8+XGlgmjr985//xLBhw2BtbY3c3FwsW7YMhYWFCAoKUlwjv2LFCnTq1AmdOnXCihUrYGhoiICAAE7yNBp1udcqKysL/fv3r7G+f//+bzU+o8nc+jUmJkapRTdmzBgAwOLFixEWFqbxPI8ePUJMTAyAV+c6q4uPj8egQYM0nklbWxt//vkn9uzZg7y8PJiamqJPnz44d+6cRkeXN3Xa2tpIS0vD3r178fz5c4jFYri5ueHgwYO8XqPr5+eHLVu2YOXKlZgxYwbs7Oxw+PBhTgd7qeLAgQNgjGHs2LG85qhy4MABzJ8/H+PGjcPTp08hlUqxfPlyfPbZZ7xlysrKwpw5c5CTkwOxWIzx48dj0aJFnL3eo0ePMHbsWOTl5cHc3BzOzs64ePGiojfnX//6F0pLSzF16lQ8e/YMffv2xenTp5vmNejkjWxsbPDTTz9hwYIFSusPHjyITp06NXh/AlY1tK6BCgsLIRKJFIWlKZDJZDhx4gSGDh2qsWuh60OZVEOZVEOZVEOZ6pefnw8zMzMUFBRwNjaoqk48nTcWLfUa16tZWFYOk/AfOc2raYcPH4a/vz/c3d0xYMAACAQCnD9/Hr/88gt++umnBvcoNu/rAAghhDQB6ripzKsu9z59+qBLly747rvv+H1LajBy5EhcvnwZZmZmiI6ORlRUFMzMzHD58uW3Oj3YZLrcCSGENFNqPIeelJTULFroMpkM//jHP7Bo0SLs27dPLfukFjohhBCiYUKhsNaJWRqDCjohhBBu0b3ca+Xn56fW2z9TlzshhBBu0a1fa2VjY4OvvvoKFy5cgJOTU42Z+xp6O20q6IQQQggPduzYgVatWuHKlSu4cuWK0mMCgYAKOiGEkCaGbixTq8zMTMX/q2NylubXh0EIIaRpoXPobxQZGYmuXbtCX18f+vr66Nq1K3bs2PFW+6IWOiGEEMKDRYsWYe3atfj888/Rr18/AMDvv/+O2bNn4969e1i2bFmD9kcFnRBCCLeoy71Wmzdvxvbt25Vuu+zj44Pu3bvj888/p4JOCCGkiaFR7rWqrKxE7969a6x3cnJCRUVFg/enckEvKytTmqKzsLAQwKu73chksga/MBeqcjSVPABlUhVlUg1lUg1lqp9Gc1ALvVaffvopNm/eXGMmwW3btmHcuHEN3p/Kk7OEhYVhyZIlNdbv378fhoaGDX5hQggh/CkpKUFAQIBmJmdZOgkt9Rs5OcvLcpj8e0ezmpzl888/x969e9GuXTs4OzsDAC5evIiHDx9i/PjxSpP4qDJ9sMoFvbYWert27ZCVldWkZluLi4vDkCFDmsRsRgBlUhVlUg1lUg1lql9+fj7EYrFmCvpXk9VT0Bdtb1YF3c3NTaXtBAIBzp49W+92Kne56+npQU9Pr8Z6oVDYJD6c1VEm1VAm1VAm1VAm1TSVTBrNQOfQaxUfH6/W/TW/I0QIIYT8D6JR7oQQQrglgBoGxaklSbNGBZ0QQgi3aJS7RlCXOyGEENIMUAudEEIIt6iFrhFU0AkhhHBLoIZR7gLqUK4PHSFCCCGkGaAWOiGEEG5Rl7tGUEEnhBDCLSroGkEFnRBCCLcEWo0/B07n0OtFR4gQQghpBngp6CtXroRAIMCsWbMU6xhjCAsLg0QigYGBAQYNGoQbN25wlmHz5s3o3r07WrZsiZYtW6Jfv374+eefFY/n5OQgODgYEokEhoaG8PLyQkZGBmd5VMlUVFSE6dOnw8rKCgYGBujcuTM2b97MayaBQFDrsnr1at4yAcCtW7fg4+MDkUgEY2NjODs748GDB7xlCg4OrnGMqmZX4itTdVOmTIFAIMC6det4zRQWFgZ7e3sYGRmhdevWcHd3x6VLl3jLJJPJMHfuXHTr1g1GRkaQSCQYP348njx5wlsmAIiKioKnpyfMzMwgEAiQmprKaZ5G0xKoZyF10nhBT0pKwrZt29C9e3el9V9//TUiIiKwceNGJCUlwdLSEkOGDMGLFy84yWFlZYXw8HAkJycjOTkZgwcPhq+vL27cuAHGGIYPH46//voLR48exdWrVyGVSuHu7o7i4mJO8tSXCQBmz56NkydPYt++fbh16xZmz56Nzz//HEePHuUtU1ZWltKyc+dOCAQCjBw5krdMd+/ehYuLC+zt7ZGQkIBr165h0aJF0NfX5y0TAHh5eSkdqxMnTnCWR9VMABAdHY1Lly5BIpFwmkeVTLa2tti4cSPS0tJw/vx5tG/fHh4eHvj77795yVRSUoKUlBQsWrQIKSkpiIqKwu3bt+Hj48NZnvoyAUBxcTEGDBiA8PBwTnOoTVWXe2MXUjf2lgoKChgAlpeXp/JzXrx4wTp16sTi4uKYq6srmzlzJmOMMblcziwtLVl4eLhi25cvXzKRSMS2bNmi8v7Ly8tZdHQ0Ky8vV/k51bVu3Zrt2LGDpaenMwDs+vXriscqKiqYiYkJ2759e4P2qa5MjDHm4ODAli5dqvR4r1692MKFC3nL9DpfX182ePDgBu9TnZn8/f3Zp59++lb74SpTUFAQ8/X1bVKZGGPs0aNHrG3btuz69etMKpWytWvX8p6puqp/Z86cOdNkMl2+fJkBYPfv3+c9U2ZmJgPArl692uD95eXlMQCsoKDgrfKoour393TtHFaxZX6jlqdr53Ce912n0a8806ZNw0cffQR3d3el9ZmZmcjOzoaHh4dinZ6eHlxdXXHhwgXOc1VWVuLAgQMoLi5Gv379FPO+V2/RaWtrQ1dXF+fPn+c8T22ZAMDFxQUxMTF4/PgxGGOIj4/H7du34enpyVum6nJychAbG4uQkBCN5Kktk1wuR2xsLGxtbeHp6QkLCwv07dsX0dHRvGWqkpCQAAsLC9ja2mLy5MnIzc3lNZNcLkdgYCBCQ0Ph4OCgsSx1ZaquvLwc27Ztg0gkgqOjY5PIBAAFBQUQCARo1apVk8nU5FWNcm/sQuqksVHuBw4cQEpKCpKSkmo8lp2dDQBo06aN0vo2bdrg/v37nGVKS0tDv3798PLlS7Ro0QJHjhxBly5dIJPJIJVKMX/+fGzduhVGRkaIiIhAdnY2srKyOMtTVyYA2LBhAyZPngwrKyvo6OhAS0sLO3bsgIuLC2+ZqtuzZw+MjY0xYsQITvPUlSk7OxtFRUUIDw/HsmXLsGrVKpw8eRIjRoxAfHw8XF1dNZ4JALy9vTFq1ChIpVJkZmZi0aJFGDx4MK5cuQI9PT1eMq1atQo6OjqYMWMGZ6/f0EwAcPz4cYwZMwYlJSUQi8WIi4uDmZkZr5mqvHz5EvPmzUNAQABatmzZJDK9E2g+dI3QSEF/+PAhZs6cidOnT9d5HlPw2jcwxliNdepkZ2eH1NRUPH/+HIcPH0ZQUBASExPRpUsXHD58GCEhITAxMYG2tjbc3d3h7e3NWRZVMm3YsAEXL15ETEwMpFIpfv31V0ydOhVisbhGr4emMlW3c+dOjBs3jtNz1fVlqmo1+fr6Yvbs2QCAHj164MKFC9iyZQunBb2u4+Tv76/YrmvXrujduzekUiliY2M5/QL0pkylpaVYv349UlJSOP0ba0imqs+Tm5sbUlNTkZeXh+3bt2P06NG4dOkSLCwseMsEvBogN2bMGMjlcmzatImzLA3JREh1GinoV65cQW5uLpycnBTrKisr8euvv2Ljxo1IT08H8KqlLhaLFdvk5ubWaLWrk66uLmxsbAAAvXv3RlJSEtavX4+tW7fCyckJqampKCgoQHl5OczNzdG3b1/07t2bszx1ZVq3bh0WLFiAI0eO4KOPPgIAdO/eHampqfjmm284Leh1Hacq586dQ3p6Og4ePMhZDlUyffvtt9DR0anxj17nzp05P12iynGqIhaLIZVKOb9y4k2ZOnfujNzcXFhbWyu2raysxBdffIF169bh3r17Gs9UdZyMjIxgY2MDGxsbODs7o1OnToiMjMT8+fN5yySTyTB69GhkZmbi7NmznLfOVcn0TmmGN5Z5+PAhAgMDkZubCx0dHSxatAijRo3iNZNGCvqHH36ItLQ0pXUTJkyAvb095s6di44dO8LS0hJxcXHo2bMngFfnzxITE7Fq1SpNRATwqkeg6vx5FZFIBADIyMhAcnIyvvrqK43lqZ5JJpNBJpNB67VuJ21tbcjlcl4yVRcZGQknJyeNnet8UyZdXV306dNH8SWxyu3btyGVSnnJVJv8/Hw8fPhQ6QusJjMFBgbW+BLo6emJwMBATJgwgZdMb/s4F6q/ZlUxz8jIQHx8PExNTTWapbZM75xmeGMZHR0drFu3Dj169EBubi569eqFoUOHwsjIiL9MmngRY2NjdO3aVWmdkZERTE1NFetnzZqFFStWoFOnTujUqRNWrFgBQ0NDBAQEcJJpwYIF8Pb2Rrt27fDixQscOHAACQkJOHnyJADg0KFDMDc3h7W1NdLS0jBz5kwMHz5caeCeJjO1bNkSrq6uCA0NhYGBAaRSKRITE7F3715ERETwkqlKYWEhDh06hDVr1nCWoyGZQkND4e/vj4EDB8LNzQ0nT57EsWPHkJCQwEumoqIihIWFYeTIkRCLxbh37x4WLFgAMzMz+Pn58ZLJ1NS0RmESCoWwtLSEnZ0dL5mKi4uxfPly+Pj4QCwWIz8/H5s2bcKjR484bfnUlamiogKffPIJUlJScPz4cVRWVirG/JiYmEBXV1fjmQDg6dOnePDggeJ6+KovsJaWlrC0tOQkE1EmFosVX8gtLCxgYmKCp0+fNv+Crop//etfKC0txdSpU/Hs2TP07dsXp0+fhrGxMSevl5OTg8DAQGRlZUEkEqF79+44efIkhgwZAuDV9dVz5sxBTk4OxGIxxo8fj0WLFnGSRdVMBw4cwPz58zFu3Dg8ffoUUqkUy5cvx2effcZbpqpcjDGMHTuWsxwNyeTn54ctW7Zg5cqVmDFjBuzs7HD48GFOBw/Wlam0tBRpaWnYu3cvnj9/DrFYDDc3Nxw8eJCzz3d9mfhSV6aXL1/izz//xJ49e5CXlwdTU1P06dMH586d43QUfl2Z7t27h5iYGACvxmJUFx8fj0GDBmk8EwDExMQo9aSMGTMGALB48WKEhYVxkqlRBFBDl3vDNv/111+xevVqXLlyBVlZWThy5AiGDx+utM2mTZuwevVqZGVlwcHBAevWrcMHH3zQ4GjJycmQy+Vo165dg5+rTgLGGHubJxYWFkIkEin+8JoCmUyGEydOYOjQoRAKhXzHAUCZVEWZVEOZVEOZ6pefnw8zMzMUFBRwNiagqk483bwALQ0aN1i2sPQlTP7fCjx8+FApr56eXq1Xivz888/47bff0KtXL4wcObJGQT948CACAwOxadMmDBgwAFu3bsWOHTtw8+ZNxdgSJyenWk9znD59WnEjpvz8fHzwwQfYsWMH+vfv36j32FhNpoVOCCGkmVLjoLjXW8Fv6pXw9vau88qkiIgIhISEYNKkSQCAdevW4dSpU9i8eTNWrlwJ4NWA7rqUlZXBz88P8+fP572YA1TQCSGEvENqa6E3VHl5Oa5cuYJ58+Yprffw8FD5ZmaMMQQHB2Pw4MEIDAxscAYuUEEnhBDCLTWOcq+asKYx8vLyUFlZWevNzKoGPdbnt99+w8GDB9G9e3fFnSi///57dOvWrVHZGoMKOiGEEG4J1DBbGgfXoTfmZmYuLi4av2S4Pk3rwj5CCCGEY2ZmZtDW1q7RGuf6ZmZco4JOCCGEW01s+lRdXV04OTkhLi5OaX1cXFyTGNz2tqjLnRBCCLfUOMq9T58+0NbWxrRp0zBt2rQ3bl5UVIQ7d+4ofs7MzERqaipMTExgbW2NOXPmIDAwEL1790a/fv2wbds2PHjwgNP7enCNCjohhJB3RlJSkkqD4pKTk+Hm5qb4ec6cOQCAoKAg7N69G/7+/sjPz8fSpUuRlZWFrl274sSJExq/RbQ6UUEnhBDCLR7u5T5o0CDUd9+0qVOnYurUqY1J1aRQQSeEEMItLTWMcm/s8/8H0KA4QgghpBlQuYVeVlamdE/bwsJCAFBM69kUVOVoKnkAyqQqyqQayqQaylQ/jeZohvOhN0UqT84SFhaGJUuW1Fi/f/9+GBoaqj0YIYQQ7pSUlCAgIEAzk7PsWYmWho2cnKXkJUyC5sPW1lalUe7/i1Qu6LW10Nu1a4esrKwmNdtaXFwchgwZ0iRmMwIok6ook2ook2ooU/3y8/MhFos1U9C/D1dPQQ+cx2ned53KXe5vmqJOKBQ2iQ9ndZRJNZRJNZRJNZRJNU0lU1PIQNSLRrkTQgjhlkCghsvW6Bx6faigE0II4RYNitMIumyNEEIIaQaohU4IIYRbPNwp7n8RHSFCCCHcqrpTXGMXvJqcpUuXLvjuu+94flNND7XQCSGEvDNUnZzlfxEVdEIIIdyiLneNoIJOCCGEWzTKXSPoKw8hhBDSDFALnRBCCLe0tF4tjd0HqRMVdEIIIRxTQ5c7qMu9Phr5yrNy5Ur06dMHxsbGsLCwwPDhw5Genq60TVRUFDw9PWFmZgaBQIDU1FReM8lkMsydOxfdunWDkZERJBIJxo8fjydPnvCWCXg16529vT2MjIzQunVruLu749KlS7xmqm7KlCkQCARYt24dr5mCg4MhEAiUFmdnZ14zAcCtW7fg4+MDkUgEY2NjODs748GDB7xlev0YVS2rV6/mLVNRURGmT58OKysrGBgYoHPnzti8eTMneVTNlJOTg+DgYEgkEhgaGsLLywsZGRmcZdq8eTO6d++Oli1bomXLlujXrx9+/vlnxeOMMYSFhUEikcDAwACDBg3CjRs3OMvTaFWD4hq7kDpp5AglJiZi2rRpuHjxIuLi4lBRUQEPDw8UFxcrtikuLsaAAQMQHh6uiUj1ZiopKUFKSgoWLVqElJQUREVF4fbt2/Dx8eEtEwDY2tpi48aNSEtLw/nz59G+fXt4eHjg77//5i1TlejoaFy6dAkSiYSTLA3N5OXlhaysLMVy4sQJXjPdvXsXLi4usLe3R0JCAq5du4ZFixZBX79xs1A1JlP145OVlYWdO3dCIBBg5MiRvGWaPXs2Tp48iX379uHWrVuYPXs2Pv/8cxw9epSXTIwxDB8+HH/99ReOHj2Kq1evQiqVwt3dvda/A3WwsrJCeHg4kpOTkZycjMGDB8PX11dRtL/++mtERERg48aNSEpKgqWlJYYMGYIXL15wkqcpoevQ68DeUkFBAQPA8vLyGvzc3NxcBoAlJibWeCwzM5MBYFevXm3wfsvLy1l0dDQrLy9Xa6Yqly9fZgDY/fv3m0ymqt/DmTNneM306NEj1rZtW3b9+nUmlUrZ2rVrG7RfdWcKCgpivr6+Dd4Xl5n8/f3Zp59+2qQyvc7X15cNHjyY10wODg5s6dKlStv16tWLLVy4kJdM6enpDAC7fv26YpuKigpmYmLCtm/frpFMjDHWunVrtmPHDiaXy5mlpSULDw9XPPby5UsmEonYli1bVN5fXl4eA8AKCgreKo8qqv59ehq1iVWc2tWo5WnUJs7zvut46cMoKCgAAJiYmPDx8rVSJVNBQQEEAgFatWrVJDKVl5dj27ZtEIlEcHR05C2TXC5HYGAgQkND4eDgoJEc9WUCgISEBFhYWMDW1haTJ09Gbm4ub5nkcjliY2Nha2sLT09PWFhYoG/fvoiOjuYt0+tycnIQGxuLkJAQXjO5uLggJiYGjx8/BmMM8fHxuH37Njw9PXnJVFZWBgBKPSna2trQ1dXF+fPnOc9TWVmJAwcOoLi4GP369UNmZiays7Ph4eGh2EZPTw+urq64cOEC53neStWguMYupE4aP0KMMcyZMwcuLi7o2rWrpl++VqpkevnyJebNm4eAgACN3KWorkzHjx9HixYtoK+vj7Vr1yIuLg5mZma8ZVq1ahV0dHQwY8YMzjOomsnb2xs//PADzp49izVr1iApKQmDBw9W/OOs6Uy5ubkoKipCeHg4vLy8cPr0afj5+WHEiBFITEzkJdPr9uzZA2NjY4wYMYLzPHVl2rBhA7p06QIrKyvo6urCy8sLmzZtgouLCy+Z7O3tIZVKMX/+fDx79gzl5eUIDw9HdnY2srKyOMuSlpaGFi1aQE9PD5999hmOHDmCLl26IDs7GwDQpk0bpe3btGmjeIz8b9L4KPfp06fjjz/+0Mg3W1XVl0kmk2HMmDGQy+XYtGkT75nc3NyQmpqKvLw8bN++HaNHj8alS5dgYWGh8UxXrlzB+vXrkZKSAgEPN35403Hy9/dX/H/Xrl3Ru3dvSKVSxMbGcl6wasskl8sBAL6+vpg9ezYAoEePHrhw4QK2bNkCV1dXjWd63c6dOzFu3DjOzumrmmnDhg24ePEiYmJiIJVK8euvv2Lq1KkQi8Vwd3fXeCahUIjDhw8jJCQEJiYm0NbWhru7O7y9vTnNYmdnh9TUVDx//hyHDx9GUFCQ0pe/1//eGGO8/A2qhG4soxEabaF//vnniImJQXx8PKysrDT50m9UXyaZTIbRo0cjMzMTcXFxGmmd15fJyMgINjY2cHZ2RmRkJHR0dBAZGclLpnPnziE3NxfW1tbQ0dGBjo4O7t+/jy+++ALt27fnJVNtxGIxpFIppyOT68pkZmYGHR0ddOnSRWn7zp07czbKvb5M1Z07dw7p6emYNGkSp1nqy1RaWooFCxYgIiICw4YNQ/fu3TF9+nT4+/vjm2++4SUTADg5OSmKa1ZWFk6ePIn8/Hx06NCBszy6urqwsbFB7969sXLlSjg6OmL9+vWwtLQEgBqt8dzc3Bqt9iZDIFDDKHcq6PXRSEFnjGH69OmIiorC2bNnOf0jUGemqmKekZGBM2fOwNTUlPdMb3oeV13J9WUKDAzEH3/8gdTUVMUikUgQGhqKU6dO8ZKpNvn5+Xj48CHEYjEvmXR1ddGnT58al0Pdvn0bUqmUl0zVRUZGwsnJifOxGPVlkslkkMlk0HrtfKm2trail0PTmaoTiUQwNzdHRkYGkpOT4evry0mmN+UsKytDhw4dYGlpibi4OMVj5eXlSExMRP/+/TWWhzQ9GulynzZtGvbv34+jR4/C2NhY8c1SJBLBwMAAAPD06VM8ePBAcZ131T98lpaWim+kmsxUUVGBTz75BCkpKTh+/DgqKysV25iYmEBXV1fjmYqLi7F8+XL4+PhALBYjPz8fmzZtwqNHjzBq1Ci151Elk6mpaY0vOkKhEJaWlrCzs+MlU1FREcLCwjBy5EiIxWLcu3cPCxYsgJmZGfz8/HjJBAChoaHw9/fHwIED4ebmhpMnT+LYsWNISEjgLRMAFBYW4tChQ1izZg0nORqSqWXLlnB1dUVoaCgMDAwglUqRmJiIvXv3IiIigpdMAHDo0CGYm5vD2toaaWlpmDlzJoYPH640ME2dFixYAG9vb7Rr1w4vXrzAgQMHkJCQgJMnT0IgEGDWrFlYsWIFOnXqhE6dOmHFihUwNDREQEAAJ3kajbrcNeNth8c35LI1ALUuu3btUmyza9euWrdZvHixypkacllIfZmqLp+rbYmPj+clU2lpKfPz82MSiYTp6uoysVjMfHx82OXLl1XOo+5MteH6srX6MpWUlDAPDw9mbm7OhEIhs7a2ZkFBQezBgwe8ZaoSGRnJbGxsmL6+PnN0dGTR0dG8Z9q6dSszMDBgz58/b1AWrjJlZWWx4OBgJpFImL6+PrOzs2Nr1qxhcrmct0zr169nVlZWis/TwoULWVlZmcp5Gppp4sSJTCqVMl1dXWZubs4+/PBDdvr0acXjcrmcLV68mFlaWjI9PT02cOBAlpaW1qA8Gr1s7Xgkq4j/sVHL0+ORdNlaPTTSQmeM1btNcHAwgoODuQ/zH/Vlat++vUq51am+19PX10dUVJSG0rzyNsfg3r176g9STX2ZDAwMOOvufxNVj9PEiRMxceJEjtO8omqmf/zjH/jHP/7BcZpXVMlkaWmJXbt2aSDNK6pkmjFjhkav4qhvTIxAIEBYWBjCwsI0E4i8E+jCPkIIIdzSEqhnAd0pri40OQshhBBuqeNe7P95flJSkkauNnoXUUEnhBDCLRoUpxHU5U4IIYQ0A9RCJ4QQwi01drmTN6OCTgghhFMCgaDRt6Vtsre1bULoKw8hhBDSDFALnRBCCLeoy10jqKATQgjhFhV0jaAjRAghhDQD1EInhBDCLcF/7/TWqH2QOqlc0MvKypSm6CwsLATw3+kOm4KqHE0lD0CZVEWZVEOZVEOZ6qfRHNTlrhECpuIMDmFhYViyZEmN9fv374ehoaHagxFCCOFOSUkJAgICUFBQwNmtVAsLCyESifDs7CG0bNG4OlFYVILWg0fB1tYW2tramDZtGqZNm6ampM2DygW9thZ6u3btkJWVVWM+bL7IZDLExcVhyJAhEAqFfMcBQJlURZlUQ5lUQ5nql5+fD7FYrJmCHv9/6inobp9wmvddp3KXu56eHvT09GqsFwqFTeLDWR1lUg1lUg1lUg1lUk1TyaTRDAKBGrrc6Rx6fWhQHCGEEG7R5CwaQaMMCCGEkGaAWuiEEEK4RaPcNYIKOiGEEG5pqeE69MY+/38AfeUhhBBCmgFqoRNCCOEWdblrBBV0Qggh3KJR7hpBX3kIIYSQZoBa6IQQQrhFXe4aQQWdEEIIt6jLXSM08pVn5cqV6NOnD4yNjWFhYYHhw4cjPT1daRvGGMLCwiCRSGBgYIBBgwbhxo0bnOb69ddfMWzYMEgkEggEAkRHRys9npOTg+DgYEgkEhgaGsLLywsZGRm8ZioqKsL06dNhZWUFAwMDdO7cGZs3b+Y1k0AgqHVZvXo1b5kA4NatW/Dx8YFIJIKxsTGcnZ3x4MED3jIFBwfXOEbOzs6c5VElU3VTpkyBQCDAunXreM0UFhYGe3t7GBkZoXXr1nB3d8elS5d4yySTyTB37lx069YNRkZGkEgkGD9+PJ48ecJbJgCIioqCp6cnzMzMIBAIkJqaymke0vRppKAnJiZi2rRpuHjxIuLi4lBRUQEPDw8UFxcrtvn6668RERGBjRs3IikpCZaWlhgyZAhevHjBWa7i4mI4Ojpi48aNNR5jjGH48OH466+/cPToUVy9ehVSqRTu7u5KuTWZCQBmz56NkydPYt++fbh16xZmz56Nzz//HEePHuUtU1ZWltKyc+dOCAQCjBw5krdMd+/ehYuLC+zt7ZGQkIBr165h0aJF0NfX5y0TAHh5eSkdqxMnTnCWR9VMABAdHY1Lly5BIpFwmkeVTLa2tti4cSPS0tJw/vx5tG/fHh4eHvj77795yVRSUoKUlBQsWrQIKSkpiIqKwu3bt+Hj48NZnvoyVT0+YMAAhIeHc5pDLaq63Bu7kLqxt1RQUMAAsLy8vAY/Nzc3lwFgiYmJjDHG5HI5s7S0ZOHh4YptXr58yUQiEduyZYvK+y0vL2fR0dGsvLy8wZkAsCNHjih+Tk9PZwDY9evXFesqKiqYiYkJ2759Oy+ZGGPMwcGBLV26VGldr1692MKFC3nL9DpfX182ePDgBu1X3Zn8/f3Zp59+2uB9cZkpKCiI+fr6NqlMjDH26NEj1rZtW3b9+nUmlUrZ2rVrec9UXdW/NWfOnGkymS5fvswAsPv37/OeKTMzkwFgV69ebdA+8/LyGABWUFDQ4DyqqvrdPUuKY5W3LjRqeZYUxwAwW1tb1rlzZ7Zx40bOcr+rePnKU1BQAAAwMTEBAGRmZiI7OxseHh6KbfT09ODq6ooLFy7wEVExVWz1Fp22tjZ0dXVx/vx5XjIBgIuLC2JiYvD48WMwxhAfH4/bt2/D09OTt0zV5eTkIDY2FiEhIbxlkMvliI2Nha2tLTw9PWFhYYG+ffvW2d2sKQkJCbCwsICtrS0mT56M3NxcXvPI5XIEBgYiNDQUDg4OvGapTXl5ObZt2waRSARHR0e+4ygUFBRAIBCgVatWfEd5J7zptFxDFwBISkrCzZs3aS70Wmi8oDPGMGfOHLi4uKBr164AgOzsbABAmzZtlLZt06aN4jFNs7e3h1Qqxfz58/Hs2TOUl5cjPDwc2dnZyMrK4iUTAGzYsAFdunSBlZUVdHV14eXlhU2bNsHFxYW3TNXt2bMHxsbGGDFiBG8ZcnNzUVRUhPDwcHh5eeH06dPw8/PDiBEjkJiYyFsub29v/PDDDzh79izWrFmDpKQkDB48WPHlkQ+rVq2Cjo4OZsyYwVuG2hw/fhwtWrSAvr4+1q5di7i4OJiZmfEdCwDw8uVLzJs3DwEBATQvN2lSND7Kffr06fjjjz9qbeVWfQOrwhirsU5ThEIhDh8+jJCQEJiYmEBbWxvu7u7w9vbmJU+VDRs24OLFi4iJiYFUKsWvv/6KqVOnQiwWw93dnddsALBz506MGzeO03PV9ZHL5QAAX19fzJ49GwDQo0cPXLhwAVu2bIGrqysvufz9/RX/37VrV/Tu3RtSqRSxsbG8fAG6cuUK1q9fj5SUFN7+zt7Ezc0NqampyMvLw/bt2zF69GhcunQJFhYWvOaSyWQYM2YM5HI5Nm3axGuWdwrNh64RGm2hf/7554iJiUF8fDysrKwU6y0tLQGgRms8Nze3Rqtdk5ycnJCamornz58jKysLJ0+eRH5+Pjp06MBLntLSUixYsAAREREYNmwYunfvjunTp8Pf3x/ffPMNL5mqO3fuHNLT0zFp0iRec5iZmUFHRwddunRRWt+5c2dOR7k3lFgshlQq5fzKiTc5d+4ccnNzYW1tDR0dHejo6OD+/fv44osv0L59e14yVTEyMoKNjQ2cnZ0RGRkJHR0dREZG8ppJJpNh9OjRyMzMRFxcHLXOG6LqsrXGLqROGinojDFMnz4dUVFROHv2bI2C2KFDB1haWiIuLk6xrry8HImJiejfv78mItZJJBLB3NwcGRkZSE5Ohq+vLy85ZDIZZDIZtLSUf23a2tqKVimfIiMj4eTkxPu5Tl1dXfTp06fGpZG3b9+GVCrlKVVN+fn5ePjwIcRiMS+vHxgYiD/++AOpqamKRSKRIDQ0FKdOneIl05swxng9NVFVzDMyMnDmzBmYmpryloWQN9FIl/u0adOwf/9+HD16FMbGxoqWuEgkgoGBAQQCAWbNmoUVK1agU6dO6NSpE1asWAFDQ0MEBARwlquoqAh37txR/JyZmYnU1FSYmJjA2toahw4dgrm5OaytrZGWloaZM2di+PDhSoP3NJ3J1dUVoaGhMDAwgFQqRWJiIvbu3YuIiAjeMgFAYWEhDh06hDVr1nCWoyGZQkND4e/vj4EDB8LNzQ0nT57EsWPHkJCQwEsmExMThIWFYeTIkRCLxbh37x4WLFgAMzMz+Pn58ZLJ2tq6RmESCoWwtLSEnZ0dL5lMTU2xfPly+Pj4QCwWIz8/H5s2bcKjR48watQoXjJJJBJ88sknSElJwfHjx1FZWan4N8zExAS6uroaz2RtbY2nT5/iwYMHiuvhq77AWlpaKno9mw51XHZGl63V622HxzfksjUAtS67du1SbCOXy9nixYuZpaUl09PTYwMHDmRpaWkNytTQy0Li4+NrzRUUFMQYY2z9+vXMysqKCYVCZm1tzRYuXMjKysp4zZSVlcWCg4OZRCJh+vr6zM7Ojq1Zs4bJ5XLeMjHG2NatW5mBgQF7/vy5yjm4zhQZGclsbGyYvr4+c3R0ZNHR0bxlKikpYR4eHszc3FzxeQoKCmIPHjzgLVNtNHHZWl2ZSktLmZ+fH5NIJExXV5eJxWLm4+PDLl++zFumqsvCalvi4+N5ycQYY7t27ar18cWLF6u0f01etvb8aiKT37nSqOX51UTO877rBIwx9jZfBAoLCyESiZCXl9dkup9kMhlOnDiBoUOHQigU8h0HAGVSFWVSDWVSDWWqX35+PszMzFBQUMDZeICqOvH8aiJaGrdo3L5eFKFVT1dO877r6F7uhBBCuKWl9Wpp7D5InaigE0II4RZNzqIR9JWHEEIIaQaohU4IIYRbNB+6RlBBJ4QQwi3qctcIKuiEEEI4JvjP0th9kLpQHwYhhBDSDFALnRBCCLeoy10jqKATQgjhFhV0jaAud0IIIaQZoBY6IYQQjtGgOE2ggk4IIYRb1OWuESoX9LKyMqX5iAsLCwH8d47upqAqR1PJA1AmVVEm1VAm1VCm+jWVHER9VJ5tLSwsDEuWLKmxfv/+/TA0NFR7MEIIIdwpKSlBQECAZmZb+zNZPbOt2feGra0ttLW1MW3aNEybNk1NSZsHlQt6bS30du3aISsrq0lNnxoXF4chQ4Y0iekJAcqkKsqkGsqkGspUv/z8/P/f3r3HVF3+cQB/HxEPFwEHyuXERSJC4yYBGeBUStlIGQ2TVDKS2jShIpYGdoEZF6VFNJlHYQ1Nh9CGoP+oYA3IGQkYxtClJENxXGZxByHw+/uDwQ9E5Yic85yd3q/tmTuPcL7vw875fs5zOecLGxsbDRX0mlkq6N68fOpjqDzlLpfLIZfLp/Tr6+trxZNzImZSDTOphplUw0yq0ZZM2pCBZhc3xRERkXpxU5xGsKATEZF6yTALBX1Wkug0FnQiIlIzfg5dE/hNcURERDqAI3QiIlIvrqFrBAs6ERGpGafcNYFT7kRERDqAI3QiIlIvTrlrBAs6ERGpFwu6RnDKnYiISAcIK+gVFRUICQmBQqGATCZDcXGxqCjj0tLS4OvrCxMTE1haWuL111/Hn3/+KTSTUqmEh4cHTE1NYWpqCj8/P5w5c0ZoponS0tIgk8kQGxsrNEdSUhJkMtmkZm1tLTQTANy5cwdvvfUWLCwsYGRkhGXLlqGmpkZYnsWLF0/5O8lkMqEXuRgeHsbnn38OR0dHGBoa4tlnn8XevXtx//59YZl6enoQGxsLBwcHGBoawt/fH1VVVRrNMN05UpIkJCUlQaFQwNDQEKtXr0Z9fb1GM6pONkuNHkdYQe/r64OnpyeysrJERZiivLwc0dHRqKysRGlpKYaHhxEUFIS+vj5hmWxtbbFv3z5UV1ejuroar7zyCkJDQ7XihVtVVYXs7Gx4eHiIjgIAcHV1RUtLy3irq6sTmqejowMBAQHQ19fHmTNncPXqVXzzzTdYsGCBsExVVVWT/kalpaUAgI0bNwrLtH//fhw6dAhZWVm4du0a0tPT8fXXX+PAgQPCMr333nsoLS3FsWPHUFdXh6CgIKxZswZ37tzRWIbpzpHp6enIyMhAVlYWqqqqYG1tjbVr16Knp0djGVX1sDeRM2n0eMLW0IODgxEcHCzq8A919uzZSbdzc3NhaWmJmpoarFy5UkimkJCQSbdTUlKgVCpRWVkJV1dXIZkAoLe3FxEREcjJyUFycrKwHBPNnTtXK0blY/bv3w87Ozvk5uaO9y1evFhcIACLFi2adHvfvn1wcnLCqlWrBCUCfv31V4SGhmLdunUARv9GJ06cQHV1tZA8AwMDKCwsxKlTp8Zf90lJSSguLoZSqdTY8/1x50hJkpCZmYnPPvsMYWFhAICjR4/CysoKeXl52L59u0YyknbhGvpjdHV1AQDMzc0FJxk1MjKC/Px89PX1wc/PT2iW6OhorFu3DmvWrBGaY6IbN25AoVDA0dERmzZtws2bN4XmOX36NHx8fLBx40ZYWlrCy8sLOTk5QjNNNDQ0hOPHjyMqKkro6GfFihX46aefcP36dQDAlStXcOHCBbz22mtC8gwPD2NkZAQGBgaT+g0NDXHhwgUhmR7U2NiI1tZWBAUFjffJ5XKsWrUKFy9eFJjsEcY2xT1to8fiLvdHkCQJcXFxWLFiBdzc3IRmqaurg5+fH+7du4f58+ejqKgIL7zwgrA8+fn5uHz5ssbXFB9n+fLl+OGHH/D888+jra0NycnJ8Pf3R319PSwsLIRkunnzJpRKJeLi4rBnzx5cunQJH374IeRyOd5++20hmSYqLi5GZ2cn3nnnHaE5Pv30U3R1dWHJkiXQ09PDyMgIUlJSsHnzZiF5TExM4Ofnh6+++gpLly6FlZUVTpw4gd9++w3Ozs5CMj2otbUVAGBlZTWp38rKCk1NTSIiTYNfLKMJLOiPEBMTgz/++EMr3pG7uLigtrYWnZ2dKCwsRGRkJMrLy4UU9du3b+Ojjz5CSUnJlBGMSBOnJt3d3eHn5wcnJyccPXoUcXFxQjLdv38fPj4+SE1NBQB4eXmhvr4eSqVSKwr6999/j+DgYCgUCqE5CgoKcPz4ceTl5cHV1RW1tbWIjY2FQqFAZGSkkEzHjh1DVFQUnnnmGejp6eHFF1/Eli1bcPnyZSF5HuXBmRVJkrR0rXk2Rtja+Li0Cwv6Q3zwwQc4ffo0KioqYGtrKzoO5s2bh+eeew4A4OPjg6qqKnz33Xc4fPiwxrPU1NSgvb0d3t7e430jIyOoqKhAVlYWBgcHoaenp/FcDzI2Noa7uztu3LghLIONjc2UN11Lly5FYWGhoET/19TUhPPnz+PkyZOio2DXrl2Ij4/Hpk2bAIy+IWtqakJaWpqwgu7k5ITy8nL09fWhu7sbNjY2ePPNN+Ho6Cgkz4PG9oq0trbCxsZmvL+9vX3KqJ3+O7iGPoEkSYiJicHJkyfx888/a82L90GSJGFwcFDIsV999VXU1dWhtrZ2vPn4+CAiIgK1tbVaUcwBYHBwENeuXZt0stO0gICAKR97vH79OhwcHAQl+r+xDZ9jG9FE6u/vx5w5k09Fenp6Qj+2NsbY2Bg2Njbo6OjAuXPnEBoaKjoSAMDR0RHW1tbjn1IARvdElJeXw9/fX2CyR+AaukYIG6H39vaioaFh/HZjYyNqa2thbm4Oe3t7IZmio6ORl5eHU6dOwcTEZHydyszMDIaGhkIy7dmzB8HBwbCzs0NPTw/y8/NRVlY2ZUe+ppiYmEzZU2BsbAwLCwuhew0++eQThISEwN7eHu3t7UhOTkZ3d7ewER4AfPzxx/D390dqairCw8Nx6dIlZGdnIzs7W1gmYHQpIDc3F5GRkZg7V/wkXUhICFJSUmBvbw9XV1f8/vvvyMjIQFRUlLBM586dgyRJcHFxQUNDA3bt2gUXFxds27ZNYxmmO0fGxsYiNTUVzs7OcHZ2RmpqKoyMjLBlyxaNZVQd19A1Qdirubq6GoGBgeO3x9Y5IyMjceTIESGZlEolAGD16tWT+nNzc4VtHGpra8PWrVvR0tICMzMzeHh44OzZs1i7dq2QPNqqubkZmzdvxt27d7Fo0SK8/PLLqKysFDoa9vX1RVFRERISErB37144OjoiMzMTERERwjIBwPnz53Hr1i2hBXOiAwcO4IsvvsDOnTvR3t4OhUKB7du348svvxSWqaurCwkJCWhuboa5uTk2bNiAlJQU6OvrayzDdOfI3bt3Y2BgADt37kRHRweWL1+OkpISmJiYaCwjaRdhBX316tWQJEnU4R9K2/IAoxuXtF1ZWZnoCMjPzxcd4aHWr1+P9evXi44xSVBQkFY9101MTJCZmYnMzEzRUcaFh4cjPDxcaIbpzpEymQxJSUlISkrSXKiZ4ne5a4T4+TYiItJtnHHXCG6KIyIi0gEcoRMRkZpxiK4JLOhERKReXEPXCE65ExER6QCO0ImISL04QtcIFnQiIlIzrqFrAgs6ERGplwyzMEKflSQ6jWvoRERET6inpwe+vr5YtmwZ3N3dkZOTIzoSR+hERKRmOriGbmRkhPLychgZGaG/vx9ubm4ICwuDhYWFsEws6EREpGa6t4aup6cHIyMjAMC9e/cwMjIi/CuVOeVOREQ6p6KiAiEhIVAoFJDJZCguLp7yMwcPHoSjoyMMDAzg7e2NX3755YmO0dnZCU9PT9ja2mL37t1YuHDhLKWfGZVH6IODg5Ouwd3V1QUA+Oeff2Y/1Qz9+++/6O/vx99//63RqyI9DjOphplUw0yqYabpjZ27NTGq7O7tfeop8+7e3tF/u7sn9cvlcsjl8ik/39fXB09PT2zbtg0bNmyY8v8FBQWIjY3FwYMHERAQgMOHDyM4OBhXr14dv4S3t7f3pLo3pqSkBAqFAgsWLMCVK1fQ1taGsLAwvPHGG7Cysnqqx/lUJBUlJiZKANjY2NjYdKj99ddfqpaBJzYwMCBZW1vPWtb58+dP6UtMTJw2BwCpqKhoUt9LL70k7dixY1LfkiVLpPj4+Bk91h07dkg//vjjjH53tqg8Qk9ISBi/Hi8wOtXg4OCAW7duwczMTNW7Uavu7m7Y2dnh9u3bMDU1FR0HADOpiplUw0yqYabpdXV1wd7eHubm5mo7hoGBARobGzE0NDQr9ydJEmQPjPQfNjqfztDQEGpqahAfHz+pPygoCBcvXlTpPtra2mBoaAhTU1N0d3ejoqIC77///hNnmU0qF/RHTWuYmZlpxZNzIlNTU2ZSATOphplUw0yq0bZMc+aodyuVgYEBDAwM1HqMJ3X37l2MjIxMmR63srJCa2urSvfR3NyMd999F5IkQZIkxMTEwMPDQx1xVcZd7kRE9J/04Gj/YTMAj+Lt7Y3a2lo1pJo57nInIqL/lIULF0JPT2/KaLy9vV3spranNOOCLpfLkZiYOKP1C3VhJtUwk2qYSTXMpBpty6RteTRp3rx58Pb2Rmlp6aT+0tJS+Pv7C0r19GSSJPiT8ERERLOst7cXDQ0NAAAvLy9kZGQgMDAQ5ubmsLe3R0FBAbZu3YpDhw7Bz88P2dnZyMnJQX19PRwcHASnnxkWdCIi0jllZWUIDAyc0h8ZGYkjR44AGP1imfT0dLS0tMDNzQ3ffvstVq5cqeGks4cFnYiISAdwUxwREZEOYEEnIiLSASzoREREOoAFnYiISAewoBMREekAFnQiIiIdwIJORESkA1jQiYiIdAALOhERkQ5gQSciItIBLOhEREQ6gAWdiIhIB/wPMY1xjv7fuHIAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n", + "│ caller = npyinitialize() at numpy.jl:67\n", + "└ @ PyCall /Users/stevenj/.julia/packages/PyCall/L0fLP/src/numpy.jl:67\n" + ] + } + ], + "source": [ + "fig = figure()\n", + "# using Interact\n", + "# @manipulate for n in slider(1:100, value=1) \n", + "for n in (1,2,3,4,5,10,20,30,40,50,100)\n", + " display(\n", + " withfig(fig) do\n", + " plotchutes(M^n*e₁)\n", + " title(\"distribution after $n moves\")\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a boring game: you move forward monotonically along the board until you reach the end. After 100 moves, the probability of having reached the end is 100%, because on each turn you move at least 1 space forward:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "101-element Vector{Float64}:\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ⋮\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.9999999999999983" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "M^100*e₁" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the probability $e_{101}^T M^n e_1$ of finishing the game after $≤ n$ steps (with a single player) as a function of $n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkbElEQVR4nO3dd1iT19sH8G8IWwQZyhAFFBXcittaV8UqjjperaM4f666wNa6Wmerta2rVdRqpdZRbUW7XFRx1bYO0FrFPQAFEaxiRRnhvH+kiYQgJpLN93NdXElOTp7cuUnCzTnneR6JEEKAiIiIyEJYGTsAIiIiIl1icUNEREQWhcUNERERWRQWN0RERGRRWNwQERGRRWFxQ0RERBaFxQ0RERFZFBY3REREZFFY3BAREZFFYXFjYebMmQOJRIKMjAyDPF+7du3Qrl07gzzXy2jXrh3q1q2r021u2bIFy5Yt0+k2tfH06VNMnz4d/v7+cHBwQGBgIMaOHavVNoYOHQp/f3+dxqXpe+HQoUOQSCQ4dOiQTp+/tIYPH47XX3/d2GEUS5Gz77//XmfbvHPnDubMmYMzZ87obJumQCKRYM6cOTrb3s2bNyGRSBAdHf3Cvvr4XGni8uXLsLW1RXx8vMGf21RZGzsAMm+rVq0ydggGt2XLFvz999+YPHmyUZ5/6tSpiIqKwoIFC9C0aVNcunQJ69atM0osliIhIQFff/01/vzzT2OHYjB37tzB3Llz4e/vj4YNGxo7HCqFmjVrYtCgQYiIiMDhw4eNHY5JYHFDLyU7OxuOjo6oXbu2sUMpc7Zt24Y+ffrgvffeAwB06NBB65EbS6J4L5bGokWL0KxZMzRp0kRHUZG+5OXlQSKRwNra8v98PXnyBA4ODhr1HT9+PJo0aYLjx4+jVatWeo7M9HFaykIlJyejd+/ecHZ2houLCwYPHox79+6p9CkoKMDixYsRFBQEOzs7VKpUCeHh4UhJSVHpp5jaOXLkCFq1agVHR0cMHz5ceV/hqQjFEO6nn36KJUuWICAgAE5OTmjZsiX++OMPtTi//PJL1KxZE3Z2dqhduza2bNmi1dDuli1b0LJlSzg5OcHJyQkNGzbE+vXr1fqdPHkSbdq0gaOjI6pVq4ZFixahoKBAeX90dDQkEglu3ryp8riiUyjt2rXDL7/8glu3bkEikSh/FHJzc7FgwQJlTitWrIhhw4ap5f7gwYNo164d3N3d4eDggKpVq6JPnz7Izs5+4WuWSqW4cuUKdH3O25UrV+LVV19FpUqVUK5cOdSrVw+LFy9GXl6eSj8hBBYvXgw/Pz/Y29ujcePG2LNnT7HbvHjxIl5//XU4OjrCw8MDY8aMwaNHj4rt++uvv6Jjx45wdnaGo6MjWrdujQMHDqj0UUy7xsfHo2/fvnB1dUX16tUBANevX8ebb74JHx8f2NnZwdPTEx07dnzhtMvdu3exc+dOvPXWWyrtit/91q1bMXPmTPj4+MDZ2RmvvfYaLl26pLadr776Cg0aNIC9vT3c3NzQq1cvJCYmlvjcCrdv38aoUaNQpUoV2NrawsfHB3379sXdu3dV+uXl5b0wFn9/fwwdOlTtOQp/Vg8dOoSmTZsCAIYNG6Z8Hxeezjl16hR69OgBNzc32Nvbo1GjRti+fbvKNrOzs/HOO+8gICBA+bqbNGmCrVu3vvA1//333+jZsydcXV1hb2+Phg0b4uuvv1bpo/gdfPPNN5gyZQoqV64MOzs7XL169YXbV7h37x7GjRuH2rVrw8nJCZUqVUKHDh1w9OhRtb537txBv379UL58ebi4uKB///5IS0srdrvR0dGoVasW7OzsEBwcjI0bNxbbT9PvBH9/f3Tr1g0xMTFo1KgR7O3tMXfuXADAd999h+bNm8PFxUX5Hab4DlYICQlBcHAwVq9erXFuLJnll75lVK9evdCvXz+MGTMG58+fx/vvv48LFy7gzz//hI2NDQBg7NixWLt2LcaPH49u3brh5s2beP/993Ho0CHEx8fDw8NDub3U1FQMHjwYU6dOxUcffQQrq5Lr4pUrVyIoKEi5NuX9999H165dcePGDbi4uAAA1q5di9GjR6NPnz5YunQpHj58iLlz5yInJ0ej1/jBBx9g/vz56N27N6ZMmQIXFxf8/fffuHXrlkq/tLQ0DBo0CFOmTMHs2bOxc+dOTJ8+HT4+PggPD9c0pQDk03CjRo3CtWvXsHPnTpX7CgoK0LNnTxw9ehRTp05Fq1atcOvWLcyePRvt2rXDqVOn4ODggJs3byIsLAxt2rTBV199hQoVKuD27dvYu3cvcnNzXzgKMWrUKMydOxfvvvsuPv30U63iL8m1a9cwcOBABAQEwNbWFmfPnsWHH36Iixcv4quvvlL2mzt3LubOnYsRI0agb9++SE5Oxv/+9z/IZDLUqlVL2e/u3bto27YtbGxssGrVKnh6emLz5s0YP3682nNv2rQJ4eHh6NmzJ77++mvY2NhgzZo16Ny5M/bt24eOHTuq9O/duzfefPNNjBkzBo8fPwYAdO3aFTKZDIsXL0bVqlWRkZGB48eP48GDByW+7v379yMvLw/t27cv9v4ZM2agdevWWLduHbKysvDee++he/fuSExMhFQqBQAsXLgQM2bMwIABA7Bw4UJkZmZizpw5aNmyJU6ePIkaNWo89/lv376Npk2bIi8vDzNmzED9+vWRmZmJffv24Z9//oGnp6dWsWiicePG2LBhA4YNG4ZZs2YhLCwMAODr6wsAiIuLw+uvv47mzZtj9erVcHFxwbfffov+/fsjOztbWTxFRkbim2++wYIFC9CoUSM8fvwYf//9NzIzM0t8/kuXLqFVq1aoVKkSVqxYAXd3d2zatAlDhw7F3bt3MXXqVJX+06dPR8uWLbF69WpYWVmhUqVKGr/W+/fvAwBmz54NLy8v/Pvvv9i5cyfatWuHAwcOKAu+J0+e4LXXXsOdO3ewcOFC1KxZE7/88gv69++vts3o6GgMGzYMPXv2xGeffYaHDx9izpw5yMnJUflu1PQ7QSE+Ph6JiYmYNWsWAgICUK5cOfz+++/o378/+vfvjzlz5sDe3h63bt3CwYMH1eJq164dvvvuOwghVP7pKpMEWZTZs2cLACIiIkKlffPmzQKA2LRpkxBCiMTERAFAjBs3TqXfn3/+KQCIGTNmKNvatm0rAIgDBw6oPV/btm1F27Ztlbdv3LghAIh69eqJ/Px8ZfuJEycEALF161YhhBAymUx4eXmJ5s2bq2zv1q1bwsbGRvj5+ZX4Oq9fvy6kUqkYNGhQif0Usf/5558q7bVr1xadO3dW3t6wYYMAIG7cuKHSLy4uTgAQcXFxyrawsLBi49u6dasAIHbs2KHSfvLkSQFArFq1SgghxPfffy8AiDNnzpQYe3GysrJEjx49RK1atdR+T9oYMmRIiTmWyWQiLy9PbNy4UUilUnH//n0hhBD//POPsLe3F7169VLp/9tvvwkAKu+F9957T0gkErXX2alTJ5WcPn78WLi5uYnu3burxdCgQQPRrFkzZZvi/f3BBx+o9M3IyBAAxLJlyzRNgdLYsWOFg4ODKCgoUGlX/O67du2q0r59+3YBQPz+++9CCHlOHBwc1PolJSUJOzs7MXDgwBKff/jw4cLGxkZcuHDhuX00jUUIIfz8/MSQIUPUtlH0s6p4X27YsEGtb1BQkGjUqJHIy8tTae/WrZvw9vYWMplMCCFE3bp1xRtvvFHi6yvOm2++Kezs7ERSUpJKe5cuXYSjo6N48OCBEOLZ63711Vc13jYAMXv27Ofen5+fL/Ly8kTHjh1V3sdRUVECgPjhhx9U+v/vf/9TyZNMJhM+Pj6icePGKu+Zmzdvqn13afqdIIT89yaVSsWlS5dU+n766acCgDInJfnyyy8FAJGYmPjCvpaO01IWatCgQSq3+/XrB2tra8TFxQGA8rLo8HWzZs0QHBysNh3g6uqKDh06aPz8YWFhKv9J1q9fHwCUoyqXLl1CWloa+vXrp/K4qlWronXr1i/cfmxsLGQyGd5+++0X9vXy8kKzZs1U2urXr682wlNaP//8MypUqIDu3bsjPz9f+dOwYUN4eXkpp7YaNmwIW1tbjBo1Cl9//TWuX7+u8XMMGDAAd+7cwdmzZ7FgwQJ89NFH+OCDD5T3p6SkQCKRYMOGDVrHn5CQgB49esDd3R1SqRQ2NjYIDw+HTCbD5cuXAQC///47nj59qvb+atWqFfz8/FTa4uLiUKdOHTRo0EClfeDAgSq3jx8/jvv372PIkCEqeSsoKMDrr7+OkydPKkdnFPr06aNy283NDdWrV8cnn3yCJUuWICEhQWXasSR37txBxYoVn/ufbo8ePVRuF30v//7773jy5InaZ6lKlSro0KGD2mepqD179qB9+/YIDg5+YawvikUXrl69iosXLyp/x4V/J127dkVqaqpyKqxZs2bYs2cPpk2bhkOHDuHJkycaPcfBgwfRsWNHVKlSRaV96NChyM7Oxu+//67SXvT3ra3Vq1ejcePGsLe3h7W1NWxsbHDgwAGVacO4uDiUL19eLcdF36+XLl3CnTt3MHDgQJX3jJ+fn9paF02/ExTq16+PmjVrqrQppg/79euH7du34/bt2899nYoRrZL6lBUsbiyUl5eXym1ra2u4u7srh4sVl97e3mqP9fHxURtWLq5fSdzd3VVu29nZAYDyy0+x/cJD7grFtRWlmK9WDKNrE4siHk2/iDV19+5dPHjwALa2trCxsVH5SUtLU+6eX716dfz666+oVKkS3n77bVSvXh3Vq1fH8uXLS9z+yZMn8csvv2DatGmws7PDzJkz8dFHH2H+/PnKuflDhw5BKpWic+fOWsWelJSENm3a4Pbt21i+fDmOHj2KkydPYuXKlQDUf29F31/FtWVmZmrUT7GupG/fvmp5+/jjjyGEUE4tKBR9P0okEhw4cACdO3fG4sWL0bhxY1SsWBETJ0587hofhSdPnsDe3v6592v6Xtb0s1TUvXv3NHofaxKLLih+H++8847a72PcuHEAoHwvr1ixAu+99x527dqF9u3bw83NDW+88QauXLlS4nNkZmY+N1+K+wvT9vunsCVLlmDs2LFo3rw5duzYgT/++AMnT57E66+/rpK3zMzMYr97intfF9deXJum3wklvc5XX30Vu3btQn5+PsLDw+Hr64u6desWu65J8T7W9XebOeKaGwuVlpaGypUrK2/n5+cjMzNT+eWouExNTVX7Yr1z547KehsAOp+/VTx/0QWTithfpGLFigDkIxVF//t7GYovhaLrfbQ5XpCHhwfc3d2xd+/eYu8vX7688nqbNm3Qpk0byGQynDp1Cp9//jkmT54MT09PvPnmm8U+/tq1awAAZ2dnZdv06dNhZWWFadOmoaCgAFu2bMHw4cOVfyQ0tWvXLjx+/BgxMTEqIzBFF+Mqfm/F/Y7S0tJUFoK7u7s/t19hivfa559/jhYtWhQbX9E/OsW9H/38/JSLyS9fvozt27djzpw5yM3NLXGRpYeHR6mOD1L4s1RUcZ+loipWrKi2iL807O3ti123lpGR8cJYgGe/j+nTp6N3797F9lGsrSpXrpxyDdbdu3eVozjdu3fHxYsXn/sc7u7uz81X4RgUSvP9s2nTJrRr1w5RUVEq7UWLXnd3d5w4cULt8UXfry/6DBSmzXcC8PzX2bNnT/Ts2RM5OTn4448/sHDhQgwcOBD+/v5o2bKlsp/inwBNfs+WjiM3Fmrz5s0qt7dv3478/Hzl4jnFFNOmTZtU+p08eRKJiYlqCzh1rVatWvDy8lLb+yIpKQnHjx9/4eNDQ0MhlUrVvrBeluKP8l9//aXS/uOPP6r1fd6oT7du3ZCZmQmZTIYmTZqo/RRebKsglUrRvHlz5QhJSX9kFQcjLLpXxnvvvYcPP/wQ8+bNQ3p6Oj755JOSX2wxFF+qipEAQL5X1JdffqnSr0WLFrC3t1d7fx0/flxtaqR9+/Y4f/48zp49q9K+ZcsWldutW7dGhQoVcOHChWLz1qRJE9ja2mr1emrWrIlZs2ahXr16LyxcgoKCkJmZiYcPH2r1HAotW7aEg4OD2mcpJSVFOf1Ski5duiAuLq7YPbBehr+/v9r7+PLly2rbf96oT61atVCjRg2cPXv2ub+Pon+UAXkBOnToUAwYMACXLl0qcc+/jh074uDBg8piRmHjxo1wdHR8bpH7MiQSicr7GpB/zotOfbVv3x6PHj1S+8wXfb/WqlUL3t7e2Lp1q8oei7du3VL77nqZ74SS2NnZoW3btvj4448ByKeSC7t+/TqsrKy03q4l4siNhYqJiYG1tTU6deqk3FuqQYMGyjUutWrVwqhRo/D555/DysoKXbp0Ue4tVaVKFUREROg1PisrK8ydOxejR49G3759MXz4cDx48ABz586Ft7f3C/fG8vf3x4wZMzB//nw8efIEAwYMgIuLCy5cuICMjAzlNI2mmjZtilq1auGdd95Bfn4+XF1dsXPnThw7dkytb7169RATE4OoqCiEhITAysoKTZo0wZtvvonNmzeja9eumDRpEpo1awYbGxukpKQgLi4OPXv2RK9evbB69WocPHgQYWFhqFq1Kp4+farcG+m11157box169bF2LFjERUVhaysLISHh8PFxQXnz5/HunXr4Ovri9u3b+P999/HihUrtHr9nTp1gq2tLQYMGICpU6fi6dOniIqKwj///KPSz9XVFe+88w4WLFiAkSNH4v/+7/+QnJyMOXPmqA3JT548GV999RXCwsKwYMEC5d5SRf+jd3Jywueff44hQ4bg/v376Nu3LypVqoR79+7h7NmzuHfv3guL2L/++gvjx4/H//3f/6FGjRqwtbXFwYMH8ddff2HatGklPrZdu3YQQuDPP/9EaGioFlmTq1ChAt5//33MmDED4eHhGDBgADIzMzF37lzY29tj9uzZJT5+3rx52LNnD1599VXMmDED9erVw4MHD7B3715ERkYiKChIq3jeeustDB48GOPGjUOfPn1w69YtLF68WDnaqVC9enU4ODhg8+bNCA4OhpOTE3x8fODj44M1a9agS5cu6Ny5M4YOHYrKlSvj/v37SExMRHx8PL777jsAQPPmzdGtWzfUr18frq6uSExMxDfffIOWLVuWuNff7Nmz8fPPP6N9+/b44IMP4Obmhs2bN+OXX37B4sWLlXtU6kK3bt0wf/58zJ49G23btsWlS5cwb948BAQEID8/X9kvPDwcS5cuRXh4OD788EPUqFEDu3fvxr59+1S2Z2Vlhfnz52PkyJHo1asX/ve//+HBgwfFfgY0/U4oyQcffICUlBR07NgRvr6+ePDgAZYvXw4bGxu0bdtWpe8ff/yBhg0bwtXVtZRZswDGXc9MuqbYm+T06dOie/fuwsnJSZQvX14MGDBA3L17V6WvTCYTH3/8sahZs6awsbERHh4eYvDgwSI5OVmlX9u2bUWdOnWKfb7n7S31ySefqPVFMXsxrF27VgQGBgpbW1tRs2ZN8dVXX4mePXuKRo0aafR6N27cKJo2bSrs7e2Fk5OTaNSokcreH8+Lvbi9hS5fvixCQ0OFs7OzqFixopgwYYL45Zdf1PaWun//vujbt6+oUKGCkEgkovDHKC8vT3z66aeiQYMGypiCgoLE6NGjxZUrV4QQQvz++++iV69ews/PT9jZ2Ql3d3fRtm1b8eOPP77w9RYUFIj169eLZs2aCQcHB2Fvby8aNGggFi1aJB4/fiw+++yzYveW0+T1//TTT8q4K1euLN59912xZ88etddfUFAgFi5cKKpUqSJsbW1F/fr1xU8//aT2XhBCiAsXLohOnToJe3t74ebmJkaMGCF++OEHtW0KIcThw4dFWFiYcHNzEzY2NqJy5coiLCxMfPfdd8o+ivf3vXv3VB579+5dMXToUBEUFCTKlSsnnJycRP369cXSpUtV9torjkwmE/7+/mp7Dir21Cn8/EI8e48X3cto3bp1on79+sLW1la4uLiInj17ivPnz5f43ArJycli+PDhwsvLS9jY2AgfHx/Rr18/5WdWm1gKCgrE4sWLRbVq1YS9vb1o0qSJOHjwYLG/n61bt4qgoCBhY2Oj9vk8e/as6Nevn6hUqZKwsbERXl5eokOHDmL16tXKPtOmTRNNmjQRrq6uws7OTlSrVk1ERESIjIyMF77mc+fOie7duwsXFxdha2srGjRooJbT573ukhR9HTk5OeKdd94RlStXFvb29qJx48Zi165dxX4GUlJSRJ8+fZTfm3369BHHjx9/7u+7Ro0aKt9dxW1Tk+8EIeR7S4WFham9np9//ll06dJFVK5cWdja2opKlSqJrl27iqNHj6r0e/TokXB0dBSfffaZxrmyZBIhdHwkMKJSePDgAWrWrIk33ngDa9euNXY4VEZ89tln+PDDD3H79m2NjwhLZErWr1+PSZMmITk5mSM3AFjckNGkpaXhww8/RPv27eHu7o5bt25h6dKluHjxIk6dOoU6deoYO0QqI54+fYrg4GC8/fbbeOedd4wdDpFW8vPzUbt2bQwZMgQzZ840djgmgWtuyGjs7Oxw8+ZNjBs3Dvfv31cuJFy9ejULGzIoe3t7fPPNN2oLNInMQXJyMgYPHowpU6YYOxSTwZEbIiIisijcFZyIiIgsCosbIiIisigsboiIiMiilLkFxQUFBbhz5w7Kly/PU8ITERGZCSEEHj16BB8fnxce6LXMFTd37tzRybmIiIiIyPCSk5NfeLLZMlfcKM6JkpycrHICQl3Iy8vD/v37ERoaChsbG51um55hng2DeTYM5tlwmGvD0Fees7KyUKVKlWLPbVZUmStuFFNRzs7OeiluHB0d4ezszA+OHjHPhsE8GwbzbDjMtWHoO8+aLCnhgmIiIiKyKCxuiIiIyKKwuCEiIiKLwuKGiIiILAqLGyIiIrIoLG6IiIjIorC4ISIiIovC4oaIiIgsCosbIiIisigsboiIiMiiGLW4OXLkCLp37w4fHx9IJBLs2rXrhY85fPgwQkJCYG9vj2rVqmH16tX6D5SIiIjMhlGLm8ePH6NBgwb44osvNOp/48YNdO3aFW3atEFCQgJmzJiBiRMnYseOHXqOlMiypKQAcXHyy+e1paQA5855vLCPJtthn9Ll2RRitJQ+hXNtCvFYap+i72mDEyYCgNi5c2eJfaZOnSqCgoJU2kaPHi1atGih8fM8fPhQABAPHz58mTBLlJubK3bt2iVyc3N1vm16hnkuWXKyEAcPyi+La1u3TggrKyEA+eW6dUKsXava1r+/EFZWBf/dLhCffCLE4sWqffr0Ub398cfyH/bRts+zPBfXxzRitJQ+z3JtGvFYap9neV63Tnffbdr8/ZYIIYQRaysliUSCnTt34o033nhun1dffRWNGjXC8uXLlW07d+5Ev379kJ2dXezZR3NycpCTk6O8rThlekZGhl7OCh4bG4tOnTrxjLN6xDw/34YNEowdK0VBgQRWVgKffSbDzZsSrFhhBSEkABQf98Jn1RVFbhMR6YZUKnDlSj58fUu/raysLHh4eODhw4cv/PttXfqnM5y0tDR4enqqtHl6eiI/Px8ZGRnw9vZWe8zChQsxd+5ctfb9+/fD0dFRL3HGxsbqZbukinlWlZFhjzFjQv8rYoCCAgkiIop+xIsrYljYEJF+yGQSbN78J+rVyyz1trKzszXua1bFDSAf4SlMMfBUtF1h+vTpiIyMVN5WjNyEhoZy5MZMMc+qUlKAy5clOHtWoixstGFlJf8MFRQ8fzSHfYzXx9jPzz7sU5o+UqnAoEHNdTZyozHdzYaVDjRYc9OmTRsxceJElbaYmBhhbW2t8foLrrkxf8zzM19+KYREIp/zLu7HyurZnLjiRyIRQiqVX5dK5Wtu1q1TbRsyRAiptOC/2wUl9NFkO+xTmjybRoyW0udZrk0jHkvto/qe1hVt/n6bVXEzdepUERwcrNI2ZswYLiguY5hnuaSk4gsbRTHzvC+kdevkC4vj4tQXHRduu349V8yff1Rcv5773D6abId9Sp9nY8doKX2K5trY8Vhqn+Le07pgNsXNo0ePREJCgkhISBAAxJIlS0RCQoK4deuWEEKIadOmibfeekvZ//r168LR0VFERESICxcuiPXr1wsbGxvx/fffa/ycLG7MH/Ms99ZbxY/WbN/+4i8kTTDPhsE8Gw5zbRj6yrM2f7+Nuubm1KlTaN++vfK2Ym3MkCFDEB0djdTUVCQlJSnvDwgIwO7duxEREYGVK1fCx8cHK1asQJ8+fQweO5ExpKQAV64Ae/YA33yjfr9UCrRsCbX5bV9f9TYiIktl1OKmXbt2ygXBxYmOjlZra9u2LeLj4/UYFZFpWr8eGDUKKCh41ta3L7BzJyCTyQubNWtYxBARmd3eUkRlUUqKemEjkQBLl8p/rl4FAgNZ2BARASxuiMzClSuqhQ0gX2Fz9SrQrh2LGiKiwnhWcCIzUKOGfKSmMKlUPlpDRESqWNwQmQF7e8DW9tltrq8hIno+TksRmYFPPwVycoB69YDly+UjOSxsiIiKx+KGyMSlpwOffy6//tFHQKGjJxARUTE4LUVk4j75BMjOBpo2BcLCjB0NEZHpY3FDZMISEoAVK+TX58xRX1RMRETqWNwQmaj164GQECA3V377zh3jxkNEZC5Y3BCZIMVB+wofwHvMGHk7ERGVjMUNkQkq7qB9Mpn8oH1ERFQyFjdEJqhGDfU2HrSPiEgzLG6ITJC7O2Bj8+w2D9pHRKQ5HueGyAQdPgzk5QFeXsCWLTxoHxGRNljcEJmgPXvkl92786B9RETa4rQUkQnavVt+2aWLceMgIjJHLG6ITMzVq/IfGxugY0djR0NEZH5Y3BCZGMWU1CuvAM7Oxo2FiMgcsbghMjGKKamuXY0bBxGRuWJxQ2RCsrOBQ4fk17nehojo5bC4ITIhhw4BT58CVasCtWsbOxoiIvPE4obIhCjW23TpwjOAExG9LBY3RCZCCO4CTkSkCyxuiEzE0aPA9euAtTV3ASciKg0WN0QmYP16oF07+fX8fGDbNqOGQ0Rk1ljcEBlZSgowapR8Wkph9Gh5OxERaY/FDZGRXbkCFBSotslk8qMUExGR9ljcEBlZjRqAVZFPolQKBAYaJx4iInPH4obIyHx9gYkTn92WSoE1a+TtRESkPWtjB0BEgJeX/LJ9e2DjRhY2RESlwZEbIhPw11/yy06dWNgQEZUWixsiE6AoburXN24cRESWgMUNkZHl5AAXL8qvs7ghIio9FjdERnbxovzAfRUqcEqKiEgXWNwQGVnhKSmeLJOIqPRY3BAZ2dmz8ssGDYwbBxGRpdC6uHny5Amys7OVt2/duoVly5Zh//79Og2MqKzgYmIiIt3Surjp2bMnNm7cCAB48OABmjdvjs8++ww9e/ZEVFSUzgMksnQsboiIdEvr4iY+Ph5t2rQBAHz//ffw9PTErVu3sHHjRqxYsULnARJZsrt35T8SCVCnjrGjISKyDFoXN9nZ2ShfvjwAYP/+/ejduzesrKzQokUL3Lp1S+cBElmyc+fkl4GBQLlyxo2FiMhSaF3cBAYGYteuXUhOTsa+ffsQGhoKAEhPT4ezs7POAySyZJySIiLSPa2Lmw8++ADvvPMO/P390axZM7Rs2RKAfBSnUaNGOg+QyJKxuCEi0j2tT5zZt29fvPLKK0hNTUWDQvuuduzYEb169dJpcESWTrEbOIsbIiLdeanj3Hh5eaF8+fKIjY3FkydPAABNmzZFUFCQToMjsmR5ecCFC/LrPMYNEZHuaF3cZGZmomPHjqhZsya6du2K1NRUAMDIkSMxZcoUnQdIZKkuXwZyc4Hy5QE/P2NHQ0RkObQubiIiImBjY4OkpCQ4Ojoq2/v374+9e/fqNDgiS6ZYb1OvHmDFY4UTEemM1mtu9u/fj3379sG3yBn+atSowV3BibTAxcRERPqh9f+Ljx8/VhmxUcjIyICdnZ1OgiIqC1jcEBHph9bFzauvvqo8/QIASCQSFBQU4JNPPkH79u11GhyRJYuPl196eRk3DiIiS6P1tNQnn3yCdu3a4dSpU8jNzcXUqVNx/vx53L9/H7/99ps+YiSyOMuXA2lp8ut9+wJr1wIjRhg3JiIiS6H1yE3t2rXx119/oVmzZujUqRMeP36M3r17IyEhAdWrV9dHjEQWJSUFiIx8drugABg9Wt5ORESlp/XIDSA/zs3cuXN1HQtRmXDlirygKUwmA65eBYqs0yciopeg9chNQEAA3n//fVy6dEkf8RBZvBo15GcBL0wqlZ88k4iISk/r4mbChAnYu3cvgoODERISgmXLlikP5EdEL+brCzRr9uy2VAqsWcNRGyIiXdG6uImMjMTJkydx8eJFdOvWDVFRUahatSpCQ0NV9qIioueTSuWXs2cDN29yMTERkS699HFRa9asiblz5+LSpUs4evQo7t27h2HDhukyNiKLdfOm/DIsjCM2RES6VqqDvp84cQKTJ09Gr169cOnSJfTt21frbaxatQoBAQGwt7dHSEgIjh49WmL/zZs3o0GDBnB0dIS3tzeGDRuGzMzMl30JRAb39Clw5478ur+/UUMhIrJIWhc3ly9fxuzZs1GjRg20bt0aFy5cwKJFi3D37l1s27ZNq21t27YNkydPxsyZM5GQkIA2bdqgS5cuSEpKKrb/sWPHEB4ejhEjRuD8+fP47rvvcPLkSYwcOVLbl0FkNIq3d7lygIeHcWMhIrJEWhc3QUFB2LNnD95++20kJydj//79GDJkCMqXL6/1ky9ZsgQjRozAyJEjERwcjGXLlqFKlSqIiooqtv8ff/wBf39/TJw4EQEBAXjllVcwevRonDp1SuvnJjIWxZSUv7/6XlNERFR6Wh/n5uLFi6hZs2apnzg3NxenT5/GtGnTVNpDQ0Nx/PjxYh/TqlUrzJw5E7t370aXLl2Qnp6O77//HmFhYc99npycHOTk5ChvZ2VlAQDy8vKQl5dX6tdRmGJ7ut4uqTL3PF+9agVACj+/AuTlyYwdznOZe57NBfNsOMy1Yegrz9psT+viRlHYnD59GomJiZBIJAgODkbjxo212k5GRgZkMhk8PT1V2j09PZGmOC59Ea1atcLmzZvRv39/PH36FPn5+ejRowc+//zz5z7PwoULiz3g4P79+4s9AaguxMbG6mW7pMpc83zwYDCAmgBuYvfuc8YO54XMNc/mhnk2HObaMHSd5+zsbI37al3cpKen480338ShQ4dQoUIFCCHw8OFDtG/fHt9++y0qVqyo1fYkRcblhRBqbQoXLlzAxIkT8cEHH6Bz585ITU3Fu+++izFjxmD9+vXFPmb69OmILHSs+6ysLFSpUgWhoaFwdnbWKtYXycvLQ2xsLDp16gQbGxudbpueMfc8b9ki3w+8bVs/dO1axcjRPJ+559lcMM+Gw1wbhr7yrJh50YTWxc2ECROQlZWF8+fPIzg4GIC86BgyZAgmTpyIrVu3arQdDw8PSKVStVGa9PR0tdEchYULF6J169Z49913AQD169dHuXLl0KZNGyxYsADe3t5qj7Gzs4OdnZ1au42Njd7e3PrcNj1jrnlWLCiuXl0KGxupcYPRgLnm2dwwz4bDXBuGrvOszba0XlC8d+9eREVFKQsbQH4yzZUrV2LPnj0ab8fW1hYhISFqw1axsbFo1apVsY/Jzs6GlZVqyNL/joYmhND4uYmM6cYN+SV3Ayci0g+ti5uCgoJiqycbGxsUFD0b4AtERkZi3bp1+Oqrr5CYmIiIiAgkJSVhzJgxAORTSuHh4cr+3bt3R0xMDKKionD9+nX89ttvmDhxIpo1awYfHx9tXwqRwT15Aty9K78eEGDcWIiILJXW01IdOnTApEmTsHXrVmVBcfv2bURERKBjx45abat///7IzMzEvHnzkJqairp162L37t3w8/MDAKSmpqoc82bo0KF49OgRvvjiC0yZMgUVKlRAhw4d8PHHH2v7MoiM4tYt+WX58oCrq3FjISKyVFoXN1988QV69uwJf39/VKlSBRKJBElJSahXrx42bdqkdQDjxo3DuHHjir0vOjparW3ChAmYMGGC1s9DZAp4jBsiIv3TuripUqUK4uPjERsbi4sXL0IIgdq1a+O1117TR3xEFkWx3oZTUkRE+qN1caPQqVMndOrUSZexEFm8wiM3RESkHy9V3Jw4cQKHDh1Cenq62iLiJUuW6CQwIkvE4oaISP+0Lm4++ugjzJo1C7Vq1YKnp6fKAfeed/A9IpLjbuBERPqndXGzfPlyfPXVVxg6dKgewiGybIqRG665ISLSH62Pc2NlZYXWrVvrIxYii/b4MXDvnvw6R26IiPRH6+ImIiICK1eu1EcsRBZNcYwbFxegQgWjhkJEZNG0npZ65513EBYWhurVq6N27dpqRyuOiYnRWXBEloS7gRMRGcZLnTgzLi4O7du3h7u7OxcRE2mIe0oRERmG1sXNxo0bsWPHDoSFhekjHiKLxeKGiMgwtF5z4+bmhurVq+sjFiKLxuKGiMgwtC5u5syZg9mzZyM7O1sf8RBZLK65ISIyDK2npVasWIFr167B09MT/v7+aguK4+PjdRYckSXhyA0RkWFoXdy88cYbegiDyLI9egRkZsqvs7ghItIvrYub2bNn6yMOIoumGLVxcwOcnY0aChGRxdN6zQ0RaY9TUkREhsPihsgAWNwQERkOixsiAzh3Tn7p7m7cOIiIygIWN0R6tn498OWX8uvr1slvExGR/rC4IdKjlBRg1Khnt4UARo+WtxMRkX5ovbeUTCZDdHQ0Dhw4gPT0dBQUFKjcf/DgQZ0FR2TurlwBinxEIJMBV68Cvr7GiYmIyNJpXdxMmjQJ0dHRCAsLQ926dXniTKIS1KgBWFmpFjhSKRAYaLyYiIgsndbFzbfffovt27eja9eu+oiHyKL4+gIffwy8+678tlQKrFnDURsiIn3SurixtbVFIP/tJNJYu3bySw8PICGBhQ0Rkb5pvaB4ypQpWL58OYQQ+oiHyOLcuSO/9PdnYUNEZAhaj9wcO3YMcXFx2LNnD+rUqaN24syYmBidBUdkCVJT5Zc+PsaNg4iorNC6uKlQoQJ69eqlj1iILJKiuPH2Nm4cRERlhdbFzYYNG/QRB5HFUkxLsbghIjIMHsSPSM84LUVEZFgsboj0jCM3RESGxeKGSM84ckNEZFgsboj0SCYD7t6VX+fIDRGRYbC4IdKj9HT5qResrIBKlYwdDRFR2aBVcSOEwM6dO/H48WNl28OHD7Fz5078+++/PMYNURGKKSlPT/mpF4iISP+0Km4kEglmzpyJn3/+Wdn2/fffY/78+bh9+zb+7//+T+cBEpkzLiYmIjI8raelunbtit27dytv79mzR3kSTZ6SgUgVFxMTERme1sVNly5dsG/fPgBAfn4+Dhw4gC5dugCQj+wQ0TMcuSEiMjytj1Dcpk0bPH78GKdOnUJ2djYkEglatmyJK1eu6CM+IrPGUy8QERme1sWNra0tOnTogN27d+Pp06fo1KkTrKy40xVRcTgtRURkeFoXN4B8aio6Oho5OTmYNGmSrmMishicliIiMryXGnLp0qULTp48iXPnzuH111/XdUxEFoMjN0REhvdSIzd+fn6oWbMmHBwc4OXlpWzn3lJEz8hkQFqa/DpHboiIDOelihsAWLt2LaSFjkrm7e2NDRs26CQoIkuQkSEvcCQS+UH8iIjIMF66uGnTpo3KbWdnZwwZMqTUARFZCsWUVKVKgPVLf9KIiEhb3M2JSE+4mJiIyDhY3BDpCRcTExEZB4sbIj3hyA0RkXGwuCHSE47cEBEZB4sbIj3hqReIiIzjpfbhOHDgAA4cOID09HQUFBSo3PfVV1/pJDAic8dpKSIi49C6uJk7dy7mzZuHJk2awNvbm2cCJ3oOTksRERmH1sXN6tWrER0djbfeeksf8RBZhIICTksRERmL1mtucnNz0apVK33EQmQxMjOB/Hz59UJnKCEiIgPQurgZOXIktmzZoo9YiCyGYr1NxYqAjY1xYyEiKmu0npZ6+vQp1q5di19//RX169eHTZFv7iVLlugsOCJzxSkpIiLj0bq4+euvv9CwYUMAwN9//61yHxcXE8lxMTERkfFoXdzExcXpNIBVq1bhk08+QWpqKurUqYNly5apnZSzsJycHMybNw+bNm1CWloafH19MXPmTAwfPlyncRGVBncDJyIyHqOeq3jbtm2YPHkyVq1ahdatW2PNmjXo0qULLly4gKpVqxb7mH79+uHu3btYv349AgMDkZ6ejnzFyk0iE8GRGyIi49GouOnduzeio6Ph7OyM3r17l9g3JiZG4ydfsmQJRowYgZEjRwIAli1bhn379iEqKgoLFy5U6793714cPnwY169fh5ubGwDA399f4+cjMhSO3BARGY9GxY2Li4tyPY2Li4tOnjg3NxenT5/GtGnTVNpDQ0Nx/PjxYh/z448/okmTJli8eDG++eYblCtXDj169MD8+fPh4OBQ7GNycnKQk5OjvJ2VlQUAyMvLQ15enk5ei4Jie7reLqkyhzzfuSMFYIWKFfORlyeMHc5LMYc8WwLm2XCYa8PQV5612Z5Gxc2GDRuKvV4aGRkZkMlk8PT0VGn39PREWlpasY+5fv06jh07Bnt7e+zcuRMZGRkYN24c7t+//9zTPixcuBBz585Va9+/fz8cHR1L/0KKERsbq5ftkipTzvP1650AOOLmzePYvfsfY4dTKqacZ0vCPBsOc20Yus5zdna2xn2NuuYGUN/DSgjx3L2uCgoKIJFIsHnzZuUI0pIlS9C3b1+sXLmy2NGb6dOnIzIyUnk7KysLVapUQWhoKJydnXX4SuRVZWxsLDp16qS2izzpjqnnWQjg4UP5R6t375bw8zNyQC/J1PNsKZhnw2GuDUNfeVbMvGjCaMWNh4cHpFKp2ihNenq62miOgre3NypXrqwyNRYcHAwhBFJSUlCjRg21x9jZ2cHOzk6t3cbGRm9vbn1um54x1TxnZgK5ufLrEomN2R/Ez1TzbGmYZ8Nhrg1D13nWZltaH6FYV2xtbRESEqI2bBUbG/vc0zu0bt0ad+7cwb///qtsu3z5MqysrODr66vXeIk09cUXz67XrAmsX2+8WIiIyiKjFTcAEBkZiXXr1uGrr75CYmIiIiIikJSUhDFjxgCQTymFh4cr+w8cOBDu7u4YNmwYLly4gCNHjuDdd9/F8OHDn7ugmMiQUlKAefOe3S4oAEaPlrcTEZFhGHXNTf/+/ZGZmYl58+YhNTUVdevWxe7du+H33yKF1NRUJCUlKfs7OTkhNjYWEyZMQJMmTeDu7o5+/fphwYIFxnoJRCquXJEXNIXJZMDVqwAHF4mIDEPr4mbFihXFtkskEtjb2yMwMBCvvvoqpFKpRtsbN24cxo0bV+x90dHRam1BQUFc6U4mq0YNQCKRLypWkEqBwEDjxUREVNZoXdwsXboU9+7dQ3Z2NlxdXSGEwIMHD+Do6AgnJyekp6ejWrVqiIuLQ5UqVfQRM5HJ8vUFOnUC9u+X35ZKgTVrOGpDRGRIWq+5+eijj9C0aVNcuXIFmZmZuH//Pi5fvozmzZtj+fLlSEpKgpeXFyIiIvQRL5HJU+zsN2oUcPMmMGKEUcMhIipztB65mTVrFnbs2IHq1asr2wIDA/Hpp5+iT58+uH79OhYvXow+ffroNFAic3H3rvyyVSuO2BARGYPWIzepqanFnqgyPz9fecwaHx8fPHr0qPTREZkhRXHznMM1ERGRnmld3LRv3x6jR49GQkKCsi0hIQFjx45Fhw4dAADnzp1DQECA7qIkMiOK4qZSJePGQURUVmld3Kxfvx5ubm4ICQlRHv23SZMmcHNzw/r/jlbm5OSEzz77TOfBEpm6ggLg3j35dY7cEBEZh9Zrbry8vBAbG4uLFy/i8uXLEEIgKCgItWrVUvZp3769ToMkMhf378uPawMAFSsaNxYiorLqpQ/iFxQUhKCgIF3GQmT2FFNSrq6Ara1xYyEiKqu0Lm5kMhmio6Nx4MABpKeno6DI4VgPHjyos+CIzA0XExMRGZ/Wxc2kSZMQHR2NsLAw1K1bFxKJRB9xEZml9HT5JYsbIiLj0bq4+fbbb7F9+3Z07dpVH/EQmTWO3BARGZ/We0vZ2toikCfKISoWdwMnIjI+rYubKVOmYPny5RCFzwxIRAA4LUVEZAq0npY6duwY4uLisGfPHtSpUwc2NjYq98fExOgsOCJzw2kpIiLj07q4qVChAnr16qWPWIjMHqeliIiMT+viZsOGDfqIg8gicOSGiMj4tF5zQ0TFE4JrboiITIFGIzeNGzfGgQMH4OrqikaNGpV4bJv4+HidBUdkTh49Ap4+lV/ntBQRkfFoVNz07NkTdnZ2AIA33nhDn/EQmS3FlFS5cvIfIiIyDo2Km9mzZxd7nYie4XobIiLT8NInzszNzS323FJVq1YtdVBE5ojrbYiITIPWxc3ly5cxYsQIHD9+XKVdCAGJRAKZTKaz4IjMCXcDJyIyDVoXN8OGDYO1tTV+/vlneHt788SZRP/htBQRkWnQurg5c+YMTp8+jaCgIH3EQ2S2OC1FRGQatD7OTe3atZGRkaGPWIjMGkduiIhMg0bFTVZWlvLn448/xtSpU3Ho0CFkZmaq3JeVlaXveIlMFtfcEBGZBo2mpSpUqKCytkYIgY4dO6r04YJiKus4ckNEZBo0Km7i4uL0HQeR2eOaGyIi06BRcdO2bVt9x0Fk1p4+BRSzspyWIiIyLq0XFO/duxfHjh1T3l65ciUaNmyIgQMH4p9//tFpcETmQjElZWsLVKhg1FCIiMo8rYubd999V7lw+Ny5c4iMjETXrl1x/fp1REZG6jxAInNQeDExD/1ERGRcWh/n5saNG6hduzYAYMeOHejevTs++ugjxMfHo2vXrjoPkMgccL0NEZHp0HrkxtbWFtnZ2QCAX3/9FaGhoQAANzc37gpOZRZ3AyciMh1aj9y88soriIyMROvWrXHixAls27YNgPycU76+vjoPkMgccDdwIiLTofXIzRdffAFra2t8//33iIqKQuXKlQEAe/bsweuvv67zAInMAaeliIhMh9YjN1WrVsXPP/+s1r506VKdBERkjjgtRURkOjQqbrKysuDs7Ky8XhJFP6KyhNNSRESmQ6PixtXVFampqahUqZLaqRgUePoFKstY3BARmQ6NipuDBw/Czc0NAE/FQFQcrrkhIjIdWp9+gadiIFKVnw9kZsqvc80NEZHxab2gGAAePHiAEydOID09HQUFBSr3hYeH6yQwInNx7x4gBGBlBXh4GDsaIiLSurj56aefMGjQIDx+/Bjly5dXWX8jkUhY3FCZo1hv4+EBSKXGjYWIiF7iODdTpkzB8OHD8ejRIzx48AD//POP8uf+/fv6iJHIpCnW23BKiojINGhd3Ny+fRsTJ06Eo6OjPuIhMjvcU4qIyLRoXdx07twZp06d0kcsRGaJxQ0RkWnRes1NWFgY3n33XVy4cAH16tWDjY2Nyv09evTQWXBE5oC7gRMRmRati5v//e9/AIB58+ap3ceD+FFZdP26/NLOzrhxEBGRnNbTUgUFBc/9YWFDZc369cCOHfLrH38sv01ERMaldXFDRHIpKcCoUc9uCwGMHi1vJyIi49FoWmrFihUYNWoU7O3tsWLFihL7Tpw4USeBEZm6K1eAIsewhEwGXL0K+PoaJyYiItKwuFm6dCkGDRoEe3t7LF269Ln9JBIJixsqM2rUkB+VuHCBI5UCgYHGi4mIiDQsbs6cOQMXFxcAwI0bN/QaEJG58PUFPvsMiIiQ35ZKgTVrOGpDRGRsGq25cXNzQ/p/+7t26NABDx480GdMRGbjtdfkl+XLAzdvAiNGGDUcIiKChsWNk5MTMv877fGhQ4eQl5en16CIzIXiAH6+vhyxISIyFRpNS7322mto3749goODAQC9evWCra1tsX0PHjyou+iITFxamvzSy8u4cRAR0TMaFTebNm3C119/jWvXruHw4cOoU6cOzy1FBJ56gYjIFGlU3Dg4OGDMmDEAgFOnTuHjjz9GhQoVdBLAqlWr8MknnyA1NRV16tTBsmXL0KZNmxc+7rfffkPbtm1Rt25dnDlzRiexEGmLxQ0RkenR+iB+cXFxOitstm3bhsmTJ2PmzJlISEhAmzZt0KVLFyQlJZX4uIcPHyI8PBwdO3bUSRxEL4vTUkREpseoRyhesmQJRowYgZEjRyI4OBjLli1DlSpVEBUVVeLjRo8ejYEDB6Jly5YGipSoeBy5ISIyPUYrbnJzc3H69GmEhoaqtIeGhuL48ePPfdyGDRtw7do1zJ49W98hEr2QorjhyA0RkenQ+qzgupKRkQGZTAbPIv/yenp6Ik0x1l/ElStXMG3aNBw9ehTW1pqFnpOTg5ycHOXtrKwsAEBeXp7Od2lXbI+7yuuXKeU5Lc0agATu7nkwgXB0ypTybMmYZ8Nhrg1DX3nWZnsaVQi9e/dGdHQ0nJ2dsXHjRvTv3x92dnYvHWBhEolE5bYQQq0NAGQyGQYOHIi5c+eiZs2aGm9/4cKFmDt3rlr7/v379bbHV2xsrF62S6qMnWeZDEhP7w5Agr//PojU1KdGjUdfjJ3nsoJ5Nhzm2jB0nefs7GyN+0qEEOJFnWxtbXHr1i14e3tDKpUiNTUVlSpVKlWQubm5cHR0xHfffYdevXop2ydNmoQzZ87g8OHDKv0fPHgAV1dXSKVSZVtBQQGEEJBKpdi/fz86dOig9jzFjdxUqVIFGRkZcHZ2LtVrKCovLw+xsbHo1KkTbGxsdLptesZU8pyeDvj6yp//8eM8WNqv3FTybOmYZ8Nhrg1DX3nOysqCh4cHHj58+MK/3xqN3AQFBWH69Olo3749hBDYvn37czccHh6uUZC2trYICQlBbGysSnETGxuLnj17qvV3dnbGuXPnVNpWrVqFgwcP4vvvv0dAQECxz2NnZ1fsKJONjY3e3tz63DY9Y+w8378vv3R3BxwdLff3bew8lxXMs+Ew14ah6zxrsy2NipvVq1cjMjISv/zyCyQSCWbNmlXs1JFEItG4uAGAyMhIvPXWW2jSpAlatmyJtWvXIikpSXlMnenTp+P27dvYuHEjrKysULduXZXHV6pUCfb29mrtRIbAxcRERKZJo+KmVatW+OOPPwAAVlZWuHz5cqmnpQCgf//+yMzMxLx585Camoq6deti9+7d8PPzAwCkpqa+8Jg3RMaiWPfO3cCJiEyL1ntL3bhxAxUrVtRZAOPGjcO4ceOKvS86OrrEx86ZMwdz5szRWSxE2uAxboiITJPWxY2fnx8ePHiA9evXIzExERKJBMHBwRgxYgRcXFz0ESORSeLRiYmITJPWB/E7deoUqlevjqVLl+L+/fvIyMjA0qVLUb16dcTHx+sjRiKTxJEbIiLTpPXITUREBHr06IEvv/xSeSC9/Px8jBw5EpMnT8aRI0d0HiSRKWJxQ0RkmrQubk6dOqVS2ACAtbU1pk6diiZNmug0OCJTxmkpIiLTpPW0lLOzc7F7MCUnJ6N8+fI6CYrIHHDkhojINGld3PTv3x8jRozAtm3bkJycjJSUFHz77bcYOXIkBgwYoI8YiUyOTAbcuye/zpEbIiLTovW01Keffqo8WF9+fj4A+VEDx44di0WLFuk8QCJTlJEBFBQAEgmgwyMjEBGRDmhd3Nja2mL58uVYuHAhrl27BiEEAgMD9XYSSiJTpJiScncHNDxBPRERGchLfy07OjqiXr16uoyFyGxwMTERkenSes0NEXExMRGRKWNxQ/QSeNJMIiLTxeKG6CXwpJlERKZL6+Lm8ePH+oiDyKxwWoqIyHRpXdx4enpi+PDhOHbsmD7iITILnJYiIjJdWhc3W7duxcOHD9GxY0fUrFkTixYtwp07d/QRG5HJ4rQUEZHp0rq46d69O3bs2IE7d+5g7Nix2Lp1K/z8/NCtWzfExMQoD+xHZMk4ckNEZLpeekGxu7s7IiIicPbsWSxZsgS//vor+vbtCx8fH3zwwQfIzs7WZZxEJiM//9mpFzhyQ0Rkel76IH5paWnYuHEjNmzYgKSkJPTt2xcjRozAnTt3sGjRIvzxxx/Yv3+/LmMlMgkZGYAQ8lMveHgYOxoiIipK6+ImJiYGGzZswL59+1C7dm28/fbbGDx4MCpUqKDs07BhQzRq1EiXcRKZDMWUVMWKPPUCEZEp0vqrediwYXjzzTfx22+/oWnTpsX2qVatGmbOnFnq4IhMERcTExGZNq2Lm9TU1BeeJNPBwQGzZ89+6aCITBmPcUNEZNq0XlBcvnx5pKenq7VnZmZCKpXqJCgiU8Y9pYiITJvWxY0Qotj2nJwc2NraljogIlPHaSkiItOm8bTUihUrAAASiQTr1q2Dk5OT8j6ZTIYjR44gKChI9xESmRiO3BARmTaNi5ulS5cCkI/crF69WmUKytbWFv7+/li9erXuIyQyMRy5ISIybRoXNzdu3AAAtG/fHjExMXB1ddVbUESmjAuKiYhMm9Z7S8XFxekjDiKzwWkpIiLTplFxExkZifnz56NcuXKIjIwsse+SJUt0EhiRKcrPlx+hGODIDRGRqdKouElISEBeXp7y+vNIJBLdREVkou7de3bqhadPjR0NEREVR6PipvBUFKelqCxTrJkXAqhWDVi7FhgxwrgxERGRqpc+KzhRWZOSAsyf/+x2QQEwerS8nYiITIdGIze9e/fWeIMxMTEvHQyRKbtyRT5iU5hMBly9Cvj6GicmIiJSp1Fx4+Liou84iExejRrytTaFCxypFAgMNF5MRESkTqPiZsOGDfqOg8jk+foCbdoAR47Ib0ulwJo1HLUhIjI1XHNDpAXFWUfeeQe4eZOLiYmITJFGIzeNGzfGgQMH4OrqikaNGpW4y3d8fLzOgiMyNYrFwx07csSGiMhUaVTc9OzZE3Z2dgCAN954Q5/xEJk0RXHDwoaIyHRpVNzMnj272OtEZUl2NnD/vvw6ixsiItOl9bmlFE6dOoXExERIJBIEBwcjJCREl3ERmZzbt+WX5coB3IGQiMh0aV3cpKSkYMCAAfjtt99QoUIFAMCDBw/QqlUrbN26FVWqVNF1jEQmofCUFM80QkRkurTeW2r48OHIy8tDYmIi7t+/j/v37yMxMRFCCIzgriNkwZKT5Zes34mITJvWIzdHjx7F8ePHUatWLWVbrVq18Pnnn6N169Y6DY7IlHAxMRGRedB65KZq1arKM4QXlp+fj8qVK+skKCJTxOKGiMg8aF3cLF68GBMmTMCpU6cg/jsO/alTpzBp0iR8+umnOg+QyFSwuCEiMg8aTUu5urqqHLjv8ePHaN68Oayt5Q/Pz8+HtbU1hg8fzuPgkMVicUNEZB40Km6WLVum5zCITB+LGyIi86BRcTNkyBB9x0Fk0p4+Be7dk19ncUNEZNpe+iB+APDkyRO1xcXOzs6lCojIFN25I7+0twfc3IwbCxERlUzrBcWPHz/G+PHjUalSJTg5OcHV1VXlh8gSFT7GDQ/gR0Rk2rQubqZOnYqDBw9i1apVsLOzw7p16zB37lz4+Phg48aN+oiRyOi43oaIyHxoPS31008/YePGjWjXrh2GDx+ONm3aIDAwEH5+fti8eTMGDRqkjziJjIrFDRGR+dB65Ob+/fsICAgAIF9fc/+/0yS/8sorOHLkiG6jIzIRLG6IiMyH1sVNtWrVcPPmTQBA7dq1sX37dgDyER3FiTSJLA2LGyIi86F1cTNs2DCcPXsWADB9+nTl2puIiAi8++67Og+QyBSwuCEiMh9ar7mJiIhQXm/fvj0SExNx+vRpVK9eHQ0aNNBpcESmgsUNEZH5KNVxbgDAz88Pfn5+uoiFyCTl5gJ378qvs7ghIjJ9Wk9LAcCBAwfQrVs3VK9eHYGBgejWrRt+/fXXlwpg1apVCAgIgL29PUJCQnD06NHn9o2JiUGnTp1QsWJFODs7o2XLlti3b99LPS+Rpu7cAYQAbG2BihWNHQ0REb2I1sXNF198gddffx3ly5fHpEmTMHHiRDg7O6Nr16744osvtNrWtm3bMHnyZMycORMJCQlo06YNunTpgqSkpGL7HzlyBJ06dcLu3btx+vRptG/fHt27d0dCQoK2L4NIY4WnpHgAPyIi06f1tNTChQuxdOlSjB8/Xtk2ceJEtG7dGh9++KFK+4ssWbIEI0aMwMiRIwHIT9C5b98+REVFYeHChWr9i57A86OPPsIPP/yAn376CY0aNdL2pRBphOttiIjMi9YjN1lZWXj99dfV2kNDQ5GVlaXxdnJzc3H69GmEhoaqbef48eMabaOgoACPHj2CG0/2Q3rE4oaIyLxoPXLTo0cP7Ny5U2237x9++AHdu3fXeDsZGRmQyWTw9PRUaff09ERaWppG2/jss8/w+PFj9OvX77l9cnJykJOTo7ytKMDy8vLUTvpZWort6Xq7pMrQeU5KsgIghbe3DHl5BQZ5TlPA97NhMM+Gw1wbhr7yrM32NCpuVqxYobweHByMDz/8EIcOHULLli0BAH/88Qd+++03TJkyRctQAUmRRQxCCLW24mzduhVz5szBDz/8gEqVKj2338KFCzF37ly19v3798PR0VHreDURGxurl+2SKkPl+dSppgB88PDheezefcMgz2lK+H42DObZcJhrw9B1nrOzszXuKxFCiBd1Upxu4YUbk0hw/fp1jfrm5ubC0dER3333HXr16qVsnzRpEs6cOYPDhw8/97Hbtm3DsGHD8N133yEsLKzE5ylu5KZKlSrIyMiAs7OzRrFqKi8vD7GxsejUqRNsbGx0um16xtB5fuUVKU6csML27fl4440XflwsBt/PhsE8Gw5zbRj6ynNWVhY8PDzw8OHDF/791mjk5sYN3f+3amtri5CQEMTGxqoUN7GxsejZs+dzH7d161YMHz4cW7dufWFhAwB2dnaws7NTa7exsdHbm1uf26ZnDJVnxZqbgABrlMVfK9/PhsE8Gw5zbRi6zrM22yrVQfwUgz6aTCMVJzIyEm+99RaaNGmCli1bYu3atUhKSsKYMWMAyE/vcPv2bWzcuBGAvLAJDw/H8uXL0aJFC+XaHAcHB7i4uJTmpRAVKy8PSE2VX+eCYiIi8/BSB/HbuHEj6tWrBwcHBzg4OKB+/fr45ptvtN5O//79sWzZMsybNw8NGzbEkSNHsHv3buURj1NTU1WOebNmzRrk5+fj7bffhre3t/Jn0qRJL/MyiF4oLU1+AD9ra6CEpV1ERGRCtB65WbJkCd5//32MHz8erVu3hhACv/32G8aMGYOMjAyVc09pYty4cRg3blyx90VHR6vcPnTokLbhEpWKYkqqcmXA6qX+FSAiIkPTurj5/PPPERUVhfDwcGVbz549UadOHcyZM0fr4obIlPEYN0RE5kfr/0VTU1PRqlUrtfZWrVohVbE4gchCsLghIjI/Whc3gYGB2L59u1r7tm3bUKNGDZ0ERWQqEhPll1yvTkRkPrSelpo7dy769++PI0eOoHXr1pBIJDh27BgOHDhQbNFDZK7Wrwe+/FJ+/csvgWbNgBEjjBsTERG9mNYjN3369MGJEyfg4eGBXbt2ISYmBh4eHjhx4oTK8WqIzFlKCjBq1LPbQgCjRz+bpiIiItOl1chNXl4eRo0ahffffx+bNm3SV0xERnflClBQ5DRSMhlw9SrX3xARmTqtRm5sbGywc+dOfcVCZDJq1FDf9VsqBQIDjRMPERFpTutpqV69emHXrl16CIXIdPj6AtOnP7stlQJr1nDUhojIHGi9oDgwMBDz58/H8ePHERISgnLlyqncP3HiRJ0FR2RMNWvKLxs2BH76iYUNEZG50Lq4WbduHSpUqIDTp0/j9OnTKvdJJBIWN2QxFLuBt2zJwoaIyJxoXdzo4wzhRKbo4kX5ZXCwceMgIiLtlOpsOUII5ZnBiSyNYuQmKMi4cRARkXZeqrhZv3496tatC3t7e9jb26Nu3bpYt26drmMjMpq8PODaNfl1jtwQEZkXrael3n//fSxduhQTJkxAy5YtAQC///47IiIicPPmTSxYsEDnQRIZ2rVrQH4+UK6c/IzgRERkPrQubqKiovDll19iwIAByrYePXqgfv36mDBhAosbsgiFp6QkEuPGQkRE2tF6Wkomk6FJkyZq7SEhIcjPz9dJUETGxsXERETmS+viZvDgwYiKilJrX7t2LQYNGqSToIiMTVHccDExEZH50XpaCpAvKN6/fz9atGgBAPjjjz+QnJyM8PBwREZGKvstWbJEN1ESGZhiWoojN0RE5kfr4ubvv/9G48aNAQDX/tudpGLFiqhYsSL+/vtvZT8JFyqQmRKCIzdEROZM6+ImLi5OH3EQmYw7d4BHj3iiTCIic1Wqg/gRWSLFqE316oCtrXFjISIi7bG4ISqCU1JEROaNxQ1REVxMTERk3ljcEBXBkRsiIvPG4oaoCBY3RETmjcUNUSFZWcDt2/LrLG6IiMwTixuiQi5dkl96eQEVKhg1FCIiekksbogK4WJiIiLzx+KGqBCutyEiMn8sbogKYXFDRGT+WNwQFcJpKSIi88fihug/eXnAlSvy6y4uxo2FiIheHosbov8sXgzIZPLrLVsC69cbNx4iIno5LG6IAKSkAO+//+x2QQEwerS8nYiIzAuLGyLIp6OEUG2TyYCrV40TDxERvTwWN0QAatRQb5NKgcBAw8dCRESlw+KGCPJpqMKkUmDNGsDX1zjxEBHRy7M2dgBEpmD/fvllSAjw6afyERsWNkRE5onFDRGAffvkl927A+3aGTUUIiIqJU5LUZmXnw/8+qv8eufOxo2FiIhKj8UNlXknTwIPHgCurkDTpsaOhoiISovFDZV5ivU2r70mX0hMRETmjcUNlXmK9TahocaNg4iIdIPFDZVp//wD/Pmn/DrX2xARWQYWN1SmHTggP8ZNcDBQpYqxoyEiIl1gcUNlmmK9DaekiIgsB4sbKrOEeLbehlNSRESWg8UNlVmHDwNJSYCtLdC2rbGjISIiXWFxQ2XS+vVAhw7y67m5wNatxo2HiIh0h8UNlTkpKcCoUfJpKYXRo+XtRERk/ljcUJlz5Yr6WcBlMuDqVePEQ0REusXihsqcgAD1NqlUfiZwIiIyfyxuqMz58UfV21IpsGYN4OtrnHiIiEi3rI0dAJEhpaYCs2bJry9cCLRoIR+xYWFDRGQ5WNxQmTJlCvDoEdCsGTB1KmDFsUsiIovDr3YqM7Zulf9IJEBUFAsbIiJLxa93KhOiooCBA5/dTkgwXixERKRfRi9uVq1ahYCAANjb2yMkJARHjx4tsf/hw4cREhICe3t7VKtWDatXrzZQpGROUlKAuDggORn44gtg3Lhn9wnB49oQEVkyoxY327Ztw+TJkzFz5kwkJCSgTZs26NKlC5KSkortf+PGDXTt2hVt2rRBQkICZsyYgYkTJ2LHjh0Gjrx4KSnAuXMeyj+aij+whf+IFm3TVR99btsU+xTOc9E+69cDfn7yIxBXrQpMmAA1PK4NEZEFE0bUrFkzMWbMGJW2oKAgMW3atGL7T506VQQFBam0jR49WrRo0ULj53z48KEAIB4+fKh9wCVYu1YIK6sCAcgv+/QRwspK/HdbiI8/lv8UbtNVH31u29T69O6tmucPPhBi5sxnfZ73I5Go3pZKhUhO1ulbwOLk5uaKXbt2idzcXGOHYtGYZ8Nhrg1DX3nW5u+3RIjCB6E3nNzcXDg6OuK7775Dr169lO2TJk3CmTNncPjwYbXHvPrqq2jUqBGWL1+ubNu5cyf69euH7Oxs2NjYqD0mJycHOTk5yttZWVmoUqUKMjIy4OzsrJPXkpICBAZao6BAopPtke5FRsqwfLkVZDIJpFKBVatkGDbMKG99s5GXl4fY2Fh06tSp2M8W6QbzbDjMtWHoK89ZWVnw8PDAw4cPX/j322i7gmdkZEAmk8HT01Ol3dPTE2lpacU+Ji0trdj++fn5yMjIgLe3t9pjFi5ciLlz56q179+/H46OjqV4Bc+cO+eBgoLWOtkW6Z6VVQFq1/4Va9YAqanl4O39GB4eT7F7t7EjMw+xsbHGDqFMYJ4Nh7k2DF3nOTs7W+O+Rj/OjUSiOtohhFBre1H/4toVpk+fjsjISOVtxchNaGiozkZu6tcHZs8WRUZuBIBnt62s5HHqo48+t22OfSQSASsrFBqlKUB4eAeQdvhfrmEwz4bDXBuGPkduNGW04sbDwwNSqVRtlCY9PV1tdEbBy8ur2P7W1tZwd3cv9jF2dnaws7NTa7exsdFZ0gMCgLVrgdGjhfIP6uDBEmzaJF+4Kj+8v/yP7+jRz9p01Uef2zbNPs/y/Lx8dO4sXzAcGCiBr6/Ra3izpsvPCj0f82w4zLVh6DrPWm1Lp6t9tNSsWTMxduxYlbbg4OASFxQHBwertI0ZM8YkFhQLIcT167li/vyj4vp1+SKq5GQh4uJUF64WbdNVH31u29T6FM3z8x5HpcPFl4bBPBsOc20YprCg2KjFzbfffitsbGzE+vXrxYULF8TkyZNFuXLlxM2bN4UQQkybNk289dZbyv7Xr18Xjo6OIiIiQly4cEGsX79e2NjYiO+//17j59RnccMPjmEwz4bBPBsG82w4zLVhmEJxY9Tx+v79+yMzMxPz5s1Damoq6tati927d8PPzw8AkJqaqnLMm4CAAOzevRsRERFYuXIlfHx8sGLFCvTp08dYL4GIiIhMjNEXI4wbNw7jCh8+tpDo6Gi1trZt2yI+Pl7PUREREZG5MvrpF4iIiIh0icUNERERWRQWN0RERGRRWNwQERGRRWFxQ0RERBaFxQ0RERFZFBY3REREZFFY3BAREZFFYXFDREREFsXoRyg2NCEEAO1Ona6pvLw8ZGdnIysri2ec1SPm2TCYZ8Ngng2HuTYMfeVZ8Xdb8Xe8JGWuuHn06BEAoEqVKkaOhIiIiLT16NEjuLi4lNhHIjQpgSxIQUEB7ty5g/Lly0Mikeh021lZWahSpQqSk5Ph7Oys023TM8yzYTDPhsE8Gw5zbRj6yrMQAo8ePYKPjw+srEpeVVPmRm6srKzg6+ur1+dwdnbmB8cAmGfDYJ4Ng3k2HObaMPSR5xeN2ChwQTERERFZFBY3REREZFFY3OiQnZ0dZs+eDTs7O2OHYtGYZ8Ngng2DeTYc5towTCHPZW5BMREREVk2jtwQERGRRWFxQ0RERBaFxQ0RERFZFBY3REREZFFY3OjIqlWrEBAQAHt7e4SEhODo0aPGDsmsLVy4EE2bNkX58uVRqVIlvPHGG7h06ZJKHyEE5syZAx8fHzg4OKBdu3Y4f/68kSK2DAsXLoREIsHkyZOVbcyz7ty+fRuDBw+Gu7s7HB0d0bBhQ5w+fVp5P3Ndevn5+Zg1axYCAgLg4OCAatWqYd68eSgoKFD2YZ61d+TIEXTv3h0+Pj6QSCTYtWuXyv2a5DQnJwcTJkyAh4cHypUrhx49eiAlJUU/AQsqtW+//VbY2NiIL7/8Uly4cEFMmjRJlCtXTty6dcvYoZmtzp07iw0bNoi///5bnDlzRoSFhYmqVauKf//9V9ln0aJFonz58mLHjh3i3Llzon///sLb21tkZWUZMXLzdeLECeHv7y/q168vJk2apGxnnnXj/v37ws/PTwwdOlT8+eef4saNG+LXX38VV69eVfZhrktvwYIFwt3dXfz888/ixo0b4rvvvhNOTk5i2bJlyj7Ms/Z2794tZs6cKXbs2CEAiJ07d6rcr0lOx4wZIypXrixiY2NFfHy8aN++vWjQoIHIz8/XebwsbnSgWbNmYsyYMSptQUFBYtq0aUaKyPKkp6cLAOLw4cNCCCEKCgqEl5eXWLRokbLP06dPhYuLi1i9erWxwjRbjx49EjVq1BCxsbGibdu2yuKGedad9957T7zyyivPvZ+51o2wsDAxfPhwlbbevXuLwYMHCyGYZ10oWtxoktMHDx4IGxsb8e233yr73L59W1hZWYm9e/fqPEZOS5VSbm4uTp8+jdDQUJX20NBQHD9+3EhRWZ6HDx8CANzc3AAAN27cQFpamkre7ezs0LZtW+b9Jbz99tsICwvDa6+9ptLOPOvOjz/+iCZNmuD//u//UKlSJTRq1Ahffvml8n7mWjdeeeUVHDhwAJcvXwYAnD17FseOHUPXrl0BMM/6oElOT58+jby8PJU+Pj4+qFu3rl7yXuZOnKlrGRkZkMlk8PT0VGn39PREWlqakaKyLEIIREZG4pVXXkHdunUBQJnb4vJ+69Ytg8dozr799lvEx8fj5MmTavcxz7pz/fp1REVFITIyEjNmzMCJEycwceJE2NnZITw8nLnWkffeew8PHz5EUFAQpFIpZDIZPvzwQwwYMAAA39P6oElO09LSYGtrC1dXV7U++vhbyeJGRyQSicptIYRaG72c8ePH46+//sKxY8fU7mPeSyc5ORmTJk3C/v37YW9v/9x+zHPpFRQUoEmTJvjoo48AAI0aNcL58+cRFRWF8PBwZT/munS2bduGTZs2YcuWLahTpw7OnDmDyZMnw8fHB0OGDFH2Y55172Vyqq+8c1qqlDw8PCCVStUqz/T0dLUqlrQ3YcIE/Pjjj4iLi4Ovr6+y3cvLCwCY91I6ffo00tPTERISAmtra1hbW+Pw4cNYsWIFrK2tlblknkvP29sbtWvXVmkLDg5GUlISAL6ndeXdd9/FtGnT8Oabb6JevXp46623EBERgYULFwJgnvVBk5x6eXkhNzcX//zzz3P76BKLm1KytbVFSEgIYmNjVdpjY2PRqlUrI0Vl/oQQGD9+PGJiYnDw4EEEBASo3B8QEAAvLy+VvOfm5uLw4cPMuxY6duyIc+fO4cyZM8qfJk2aYNCgQThz5gyqVavGPOtI69at1Q5ncPnyZfj5+QHge1pXsrOzYWWl+qdNKpUqdwVnnnVPk5yGhITAxsZGpU9qair+/vtv/eRd50uUyyDFruDr168XFy5cEJMnTxblypUTN2/eNHZoZmvs2LHCxcVFHDp0SKSmpip/srOzlX0WLVokXFxcRExMjDh37pwYMGAAd+fUgcJ7SwnBPOvKiRMnhLW1tfjwww/FlStXxObNm4Wjo6PYtGmTsg9zXXpDhgwRlStXVu4KHhMTIzw8PMTUqVOVfZhn7T169EgkJCSIhIQEAUAsWbJEJCQkKA95oklOx4wZI3x9fcWvv/4q4uPjRYcOHbgruKlbuXKl8PPzE7a2tqJx48bKXZbp5QAo9mfDhg3KPgUFBWL27NnCy8tL2NnZiVdffVWcO3fOeEFbiKLFDfOsOz/99JOoW7eusLOzE0FBQWLt2rUq9zPXpZeVlSUmTZokqlatKuzt7UW1atXEzJkzRU5OjrIP86y9uLi4Yr+ThwwZIoTQLKdPnjwR48ePF25ubsLBwUF069ZNJCUl6SVeiRBC6H48iIiIiMg4uOaGiIiILAqLGyIiIrIoLG6IiIjIorC4ISIiIovC4oaIiIgsCosbIiIisigsboiIiMiisLgholJr164dJk+ebOwwlIQQGDVqFNzc3CCRSHDmzBljh0REBsSzghORxdm7dy+io6Nx6NAhVKtWDR4eHsYOiYgMiMUNEZkkmUwGiUSidhJETVy7dg3e3t48ESJRGcVpKSIL0a5dO0ycOBFTp06Fm5sbvLy8MGfOHOX9N2/eVJuiefDgASQSCQ4dOgQAOHToECQSCfbt24dGjRrBwcEBHTp0QHp6Ovbs2YPg4GA4OztjwIAByM7OVnn+/Px8jB8/HhUqVIC7uztmzZqFwmd3yc3NxdSpU1G5cmWUK1cOzZs3Vz4vAERHR6NChQr4+eefUbt2bdjZ2eHWrVvFvtbDhw+jWbNmsLOzg7e3N6ZNm4b8/HwAwNChQzFhwgQkJSVBIpHA39+/2G0Ufr5atWrB0dERffv2xePHj/H111/D398frq6umDBhAmQymfJx//zzD8LDw+Hq6gpHR0d06dIFV65cAQA8fPgQDg4O2Lt3r8pzxcTEoFy5cvj3338BALdv30b//v3h6uoKd3d39OzZEzdv3lT2P3ToEJo1a4Zy5cqhQoUKaN269XNzofi9xsTEoH379nB0dESDBg3w+++/F9ufqEzQyxmriMjg2rZtK5ydncWcOXPE5cuXxddffy0kEonYv3+/EEKIGzduCAAiISFB+Zh//vlHABBxcXFCiGcnx2vRooU4duyYiI+PF4GBgaJt27YiNDRUxMfHiyNHjgh3d3exaNEiled2cnISkyZNEhcvXhSbNm0Sjo6OKieGHDhwoGjVqpU4cuSIuHr1qvjkk0+EnZ2duHz5shBCiA0bNggbGxvRqlUr8dtvv4mLFy+Kf//9V+11pqSkCEdHRzFu3DiRmJgodu7cKTw8PMTs2bOFEEI8ePBAzJs3T/j6+orU1FSRnp5ebL4Uz9epUycRHx8vDh8+LNzd3UVoaKjo16+fOH/+vPjpp5+Era2t+Pbbb5WP69GjhwgODhZHjhwRZ86cEZ07dxaBgYEiNzdXCCFEnz59xODBg1Weq0+fPmLAgAFCCCEeP34satSoIYYPHy7++usvceHCBTFw4EBRq1YtkZOTI/Ly8oSLi4t45513xNWrV8WFCxdEdHS08uzLRSl+r0FBQeLnn38Wly5dEn379hV+fn4iLy+v2McQWToWN0QWom3btuKVV15RaWvatKl47733hBDaFTe//vqrss/ChQsFAHHt2jVl2+jRo0Xnzp1Vnjs4OFgUFBQo29577z0RHBwshBDi6tWrQiKRiNu3b6vE17FjRzF9+nQhhLzYACDOnDlT4uucMWOGqFWrlspzrVy5Ujg5OQmZTCaEEGLp0qXCz8+vxO0onu/q1asqr8vR0VE8evRI2da5c2cxevRoIYQQly9fFgDEb7/9prw/IyNDODg4iO3btwshhIiJiRFOTk7i8ePHQgghHj58KOzt7cUvv/wihBBi/fr1avHn5OQIBwcHsW/fPpGZmSkAiEOHDpUYv4Li97pu3Tpl2/nz5wUAkZiYqNE2iCwNp6WILEj9+vVVbnt7eyM9Pb1U2/H09ISjoyOqVaum0lZ0uy1atIBEIlHebtmyJa5cuQKZTIb4+HgIIVCzZk04OTkpfw4fPoxr164pH2Nra6v2GopKTExEy5YtVZ6rdevW+Pfff5GSkqLV63R0dET16tVVXpe/vz+cnJyKfa2JiYmwtrZG8+bNlfe7u7ujVq1aSExMBACEhYXB2toaP/74IwBgx44dKF++PEJDQwEAp0+fxtWrV1G+fHllHtzc3PD06VNcu3YNbm5uGDp0KDp37ozu3btj+fLlSE1NfeFrKZw3b29vAHip3z2RJeCCYiILYmNjo3JbIpGgoKAAAJQLc0WhdTB5eXkv3I5EIilxu5ooKCiAVCrF6dOnIZVKVe4rXEg4ODioFC3FEUKo9VG8phc9tqjiXldJr7Vw7p4Xk62tLfr27YstW7bgzTffxJYtW9C/f39YW8u/bgsKChASEoLNmzerbadixYoAgA0bNmDixInYu3cvtm3bhlmzZiE2NhYtWrTQ6LUoYtHmd0RkSThyQ1RGKP5wFh4F0OXxX/744w+12zVq1IBUKkWjRo0gk8mQnp6OwMBAlR8vLy+tnqd27do4fvy4SqFx/PhxlC9fHpUrV9bJaynpufPz8/Hnn38q2zIzM3H58mUEBwcr2wYNGoS9e/fi/PnziIuLw6BBg5T3NW7cGFeuXEGlSpXUcuHi4qLs16hRI0yfPh3Hjx9H3bp1sWXLFr2+NiJLwuKGqIxwcHBAixYtsGjRIly4cAFHjhzBrFmzdLb95ORkREZG4tKlS9i6dSs+//xzTJo0CQBQs2ZNDBo0COHh4YiJicGNGzdw8uRJfPzxx9i9e7dWzzNu3DgkJydjwoQJuHjxIn744QfMnj0bkZGRL7XbuDZq1KiBnj174n//+x+OHTuGs2fPYvDgwahcuTJ69uyp7Ne2bVt4enpi0KBB8Pf3VxlxGTRoEDw8PNCzZ08cPXoUN27cwOHDhzFp0iSkpKTgxo0bmD59On7//XfcunUL+/fvVyueiKhkLG6IypCvvvoKeXl5aNKkCSZNmoQFCxbobNvh4eF48uQJmjVrhrfffhsTJkzAqFGjlPdv2LAB4eHhmDJlCmrVqoUePXrgzz//RJUqVbR6nsqVK2P37t04ceIEGjRogDFjxmDEiBE6LdRKsmHDBoSEhKBbt25o2bIlhBDYvXu32rTQgAEDcPbsWZVRG0C+zufIkSOoWrUqevfujeDgYAwfPhxPnjyBs7MzHB0dcfHiRfTp0wc1a9bEqFGjMH78eIwePdogr4/IEkjE8yaRiYiIiMwQR26IiIjIorC4ISIiIovC4oaIiIgsCosbIiIisigsboiIiMiisLghIiIii8LihoiIiCwKixsiIiKyKCxuiIiIyKKwuCEiIiKLwuKGiIiILAqLGyIiIrIo/w8IPc3S1tbHJAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'boring chutes & ladders (no chutes or ladders)')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(0:100, [(M^n * e₁)[end] for n = 0:100], \"b.-\")\n", + "xlabel(\"number of moves n\")\n", + "ylabel(\"probability of finishing in ≤ n moves\")\n", + "grid()\n", + "title(\"boring chutes & ladders (no chutes or ladders)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If $p(n) = e_{101}^T M^n e_1$ is the probability of finishing in $≤ n$ moves, then the probability of finishing in exactly $n$ moves is $p(n) - p(n-1)$. The Julia `diff` function will compute this difference for us given a vector of $p$ values:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1pklEQVR4nO3deVxUVf8H8M8wDAyIKIKCCwLiAuaSQRqauSXmnsvPJZVKzYVygcw0NZcyzcyt3EPNx720nqciBRXNNXOtFPcFFwhBERWFYTi/P6YZGWbEGbizAJ/368Vr5p45c+93zgzDl3POPVcmhBAgIiIiKkMcbB0AERERkbUxASIiIqIyhwkQERERlTlMgIiIiKjMYQJEREREZQ4TICIiIipzmAARERFRmcMEiIiIiMocJkBERERU5jABKoOmTZsGmUyGtLQ0qxyvdevWaN26tVWOVRStW7dGgwYNJN3nhg0bsGDBAkn3aY7Hjx9j4sSJ8Pf3h4uLC2rXro2RI0eatY+33noL/v7+ksZl6mdhz549kMlk2LNnj6THL67Bgwfjtddes3UYRmnb7Pvvv5dsn7du3cK0adNw8uRJyfZpD2QyGaZNmybZ/q5evQqZTIY1a9Y8s64lfq9Mcf78eTg5OeH48eNWP7a9crR1AFT6LVmyxNYhWN2GDRvw999/Y+zYsTY5/vjx47F06VJ8+umnePHFF3Hu3Dl88803NomltDhx4gS+/fZb/P7777YOxWpu3bqF6dOnw9/fH88//7ytw6FiqFu3LgYMGICoqCjs3bvX1uHYBSZAZDFZWVlwdXVF/fr1bR1KmbN582b06tULH374IQCgbdu2ZvcAlSbaz2JxzJ49G02bNkVoaKhEUZGlqFQqyGQyODqW/j9xjx49gouLi0l133vvPYSGhuLgwYNo3ry5hSOzfxwCK8OuX7+Onj17wt3dHRUqVMDAgQNx+/ZtvTp5eXmYM2cOgoKC4OzsjCpVqiAiIgI3btzQq6cdRvrtt9/QvHlzuLq6YvDgwbrH8g97aLuL586di3nz5iEgIABubm4ICwvD4cOHDeJcuXIl6tatC2dnZ9SvXx8bNmwwqxt5w4YNCAsLg5ubG9zc3PD8888jJibGoN4ff/yBli1bwtXVFbVq1cLs2bORl5ene3zNmjWQyWS4evWq3vMKDte0bt0av/zyC65duwaZTKb70crJycGnn36qa9PKlSvj7bffNmj73bt3o3Xr1vD09ISLiwtq1qyJXr16ISsr65mvWS6X48KFC5D6WseLFy/GK6+8gipVqqBcuXJo2LAh5syZA5VKpVdPCIE5c+bAz88PSqUSL7zwAn799Vej+zx79ixee+01uLq6wsvLCyNGjMD9+/eN1t25cyfatWsHd3d3uLq6okWLFti1a5deHe0Q7/Hjx9G7d294eHggMDAQAHD58mX069cP1apVg7OzM7y9vdGuXbtnDvH8888/+OGHHzBo0CC9cu17v3HjRkyaNAnVqlWDu7s7Xn31VZw7d85gP6tWrULjxo2hVCpRqVIl9OjRA4mJiYUeW+vmzZsYNmwYfH194eTkhGrVqqF37974559/9OqpVKpnxuLv74+33nrL4Bj5f1f37NmDF198EQDw9ttv6z7H+YeOjh49im7duqFSpUpQKpVo0qQJtmzZorfPrKwsjBs3DgEBAbrXHRoaio0bNz7zNf/999/o3r07PDw8oFQq8fzzz+Pbb7/Vq6N9D/7zn//g/fffR/Xq1eHs7IyLFy8+c/9at2/fRmRkJOrXrw83NzdUqVIFbdu2xb59+wzq3rp1C3369EH58uVRoUIF9O3bFykpKUb3u2bNGtSrVw/Ozs4IDg7G2rVrjdYz9TvB398fXbp0wbZt29CkSRMolUpMnz4dAPDdd9+hWbNmqFChgu47TPsdrBUSEoLg4GAsW7bM5LYpzUp/ekxP1aNHD/Tp0wcjRozA6dOnMWXKFJw5cwa///47FAoFAGDkyJFYsWIF3nvvPXTp0gVXr17FlClTsGfPHhw/fhxeXl66/SUnJ2PgwIEYP348PvvsMzg4FJ5fL168GEFBQbq5MlOmTEGnTp1w5coVVKhQAQCwYsUKDB8+HL169cL8+fNx7949TJ8+HdnZ2Sa9xo8//hiffPIJevbsiffffx8VKlTA33//jWvXrunVS0lJwYABA/D+++9j6tSp+OGHHzBx4kRUq1YNERERpjYpAM2Q37Bhw3Dp0iX88MMPeo/l5eWhe/fu2LdvH8aPH4/mzZvj2rVrmDp1Klq3bo2jR4/CxcUFV69eRefOndGyZUusWrUKFStWxM2bN7F9+3bk5OQ8szdj2LBhmD59Oj744APMnTvXrPgLc+nSJbzxxhsICAiAk5MTTp06hZkzZ+Ls2bNYtWqVrt706dMxffp0DBkyBL1798b169fxzjvvQK1Wo169erp6//zzD1q1agWFQoElS5bA29sb69evx3vvvWdw7HXr1iEiIgLdu3fHt99+C4VCgeXLl6NDhw7YsWMH2rVrp1e/Z8+e6NevH0aMGIGHDx8CADp16gS1Wo05c+agZs2aSEtLw8GDB5GRkVHo646Li4NKpUKbNm2MPv7RRx+hRYsW+Oabb5CZmYkPP/wQXbt2RWJiIuRyOQBg1qxZ+Oijj9C/f3/MmjUL6enpmDZtGsLCwvDHH3+gTp06Tz3+zZs38eKLL0KlUuGjjz5Co0aNkJ6ejh07duDu3bvw9vY2KxZTvPDCC1i9ejXefvttTJ48GZ07dwYA1KhRAwCQkJCA1157Dc2aNcOyZctQoUIFbNq0CX379kVWVpYuwYqOjsZ//vMffPrpp2jSpAkePnyIv//+G+np6YUe/9y5c2jevDmqVKmCRYsWwdPTE+vWrcNbb72Ff/75B+PHj9erP3HiRISFhWHZsmVwcHBAlSpVTH6td+7cAQBMnToVPj4+ePDgAX744Qe0bt0au3bt0iWFjx49wquvvopbt25h1qxZqFu3Ln755Rf07dvXYJ9r1qzB22+/je7du+PLL7/EvXv3MG3aNGRnZ+t9N5r6naB1/PhxJCYmYvLkyQgICEC5cuVw6NAh9O3bF3379sW0adOgVCpx7do17N692yCu1q1b47vvvoMQQu8fszJJUJkzdepUAUBERUXpla9fv14AEOvWrRNCCJGYmCgAiMjISL16v//+uwAgPvroI11Zq1atBACxa9cug+O1atVKtGrVSrd95coVAUA0bNhQ5Obm6sqPHDkiAIiNGzcKIYRQq9XCx8dHNGvWTG9/165dEwqFQvj5+RX6Oi9fvizkcrkYMGBAofW0sf/+++965fXr1xcdOnTQba9evVoAEFeuXNGrl5CQIACIhIQEXVnnzp2Nxrdx40YBQGzdulWv/I8//hAAxJIlS4QQQnz//fcCgDh58mShsRuTmZkpunXrJurVq2fwPpnjzTffLLSN1Wq1UKlUYu3atUIul4s7d+4IIYS4e/euUCqVokePHnr1Dxw4IADofRY+/PBDIZPJDF5n+/bt9dr04cOHolKlSqJr164GMTRu3Fg0bdpUV6b9fH/88cd6ddPS0gQAsWDBAlObQGfkyJHCxcVF5OXl6ZVr3/tOnTrplW/ZskUAEIcOHRJCaNrExcXFoF5SUpJwdnYWb7zxRqHHHzx4sFAoFOLMmTNPrWNqLEII4efnJ958802DfRT8XdV+LlevXm1QNygoSDRp0kSoVCq98i5duoiqVasKtVothBCiQYMG4vXXXy/09RnTr18/4ezsLJKSkvTKO3bsKFxdXUVGRoYQ4snrfuWVV0zeNwAxderUpz6em5srVCqVaNeund7neOnSpQKA+O9//6tX/5133tFrJ7VaLapVqyZeeOEFvc/M1atXDb67TP1OEELzvsnlcnHu3Dm9unPnzhUAdG1SmJUrVwoAIjEx8Zl1SzsOgZVhAwYM0Nvu06cPHB0dkZCQAAC624Jd5U2bNkVwcLDB0IOHhwfatm1r8vE7d+6s9x9po0aNAEDXO3Pu3DmkpKSgT58+es+rWbMmWrRo8cz9x8fHQ61W4913331mXR8fHzRt2lSvrFGjRgY9RcX1888/o2LFiujatStyc3N1P88//zx8fHx0w2jPP/88nJycMGzYMHz77be4fPmyycfo378/bt26hVOnTuHTTz/FZ599ho8//lj3+I0bNyCTybB69Wqz4z9x4gS6desGT09PyOVyKBQKREREQK1W4/z58wCAQ4cO4fHjxwafr+bNm8PPz0+vLCEhAc899xwaN26sV/7GG2/obR88eBB37tzBm2++qddueXl5eO211/DHH3/oenm0evXqpbddqVIlBAYG4osvvsC8efNw4sQJvSHOwty6dQuVK1d+6n/M3bp109su+Fk+dOgQHj16ZPC75Ovri7Zt2xr8LhX066+/ok2bNggODn5mrM+KRQoXL17E2bNnde9x/vekU6dOSE5O1g27NW3aFL/++ismTJiAPXv24NGjRyYdY/fu3WjXrh18fX31yt966y1kZWXh0KFDeuUF329zLVu2DC+88AKUSiUcHR2hUCiwa9cuvSHKhIQElC9f3qCNC35ez507h1u3buGNN97Q+8z4+fkZzL0x9TtBq1GjRqhbt65emXaosk+fPtiyZQtu3rz51Nep7RkrrE5ZwQSoDPPx8dHbdnR0hKenp65rWntbtWpVg+dWq1bNoAvbWL3CeHp66m07OzsDgO4LUrv//N37WsbKCtKOn2u77M2JRRuPqV/Wpvrnn3+QkZEBJycnKBQKvZ+UlBTd0gSBgYHYuXMnqlSpgnfffReBgYEIDAzEwoULC93/H3/8gV9++QUTJkyAs7MzJk2ahM8++wyffPKJbq7Anj17IJfL0aFDB7NiT0pKQsuWLXHz5k0sXLgQ+/btwx9//IHFixcDMHzfCn6+jJWlp6ebVE87z6V3794G7fb5559DCKEbxtAq+HmUyWTYtWsXOnTogDlz5uCFF15A5cqVMXr06KfOOdJ69OgRlErlUx839bNs6u9SQbdv3zbpc2xKLFLQvh/jxo0zeD8iIyMBQPdZXrRoET788EP8+OOPaNOmDSpVqoTXX38dFy5cKPQY6enpT20v7eP5mfv9k9+8efMwcuRINGvWDFu3bsXhw4fxxx9/4LXXXtNrt/T0dKPfPcY+18bKjZWZ+p1Q2Ot85ZVX8OOPPyI3NxcRERGoUaMGGjRoYHSelfZzLPV3W0nEOUBlWEpKCqpXr67bzs3NRXp6uu4LVHubnJxs8OV769Ytvfk/ACQfT9Yev+AkT23sz1K5cmUAmh6Pgv9FFoX2i6Pg/CNz1lPy8vKCp6cntm/fbvTx8uXL6+63bNkSLVu2hFqtxtGjR/HVV19h7Nix8Pb2Rr9+/Yw+/9KlSwAAd3d3XdnEiRPh4OCACRMmIC8vDxs2bMDgwYN1f0hM9eOPP+Lhw4fYtm2bXk9OwQnE2vfN2HuUkpKiN3nd09PzqfXy037WvvrqK7z00ktG4yv4h8nY59HPz083Af78+fPYsmULpk2bhpycnEInhnp5eRVr/ZT8v0sFGftdKqhy5coGJx4Uh1KpNDqPLi0t7ZmxAE/ej4kTJ6Jnz55G62jnepUrV043J+yff/7R9QZ17doVZ8+efeoxPD09n9pe+WPQKs73z7p169C6dWssXbpUr7xgYuzp6YkjR44YPL/g5/VZvwP5mfOdADz9dXbv3h3du3dHdnY2Dh8+jFmzZuGNN96Av78/wsLCdPW0/yiY8j6XduwBKsPWr1+vt71lyxbk5ubqJvxph7PWrVunV++PP/5AYmKiwaRTqdWrVw8+Pj4GZ5UkJSXh4MGDz3x+eHg45HK5wZdaUWn/cP/555965f/73/8M6j6t96hLly5IT0+HWq1GaGiowU/+CcJacrkczZo10/W0FPaHWLugY8GzTT788EPMnDkTM2bMQGpqKr744ovCX6wR2i9ebY8CoDnba+XKlXr1XnrpJSiVSoPP18GDBw2GYdq0aYPTp0/j1KlTeuUbNmzQ227RogUqVqyIM2fOGG230NBQODk5mfV66tati8mTJ6Nhw4bPTG6CgoKQnp6Oe/fumXUMrbCwMLi4uBj8Lt24cUM31FOYjh07IiEhweiZZUXh7+9v8Dk+f/68wf6f1ntUr1491KlTB6dOnXrq+1HwDzegSVLfeust9O/fH+fOnSv0jMZ27dph9+7duoRHa+3atXB1dX1qIlwUMplM73MNaH7PCw6ztWnTBvfv3zf4nS/4ea1Xrx6qVq2KjRs36p2Jee3aNYPvrqJ8JxTG2dkZrVq1wueffw5AM2yd3+XLl+Hg4GD2fksj9gCVYdu2bYOjoyPat2+vOwuscePGujk39erVw7Bhw/DVV1/BwcEBHTt21J0F5uvri6ioKIvG5+DggOnTp2P48OHo3bs3Bg8ejIyMDEyfPh1Vq1Z95llm/v7++Oijj/DJJ5/g0aNH6N+/PypUqIAzZ84gLS1NNyRkqhdffBH16tXDuHHjkJubCw8PD/zwww/Yv3+/Qd2GDRti27ZtWLp0KUJCQuDg4IDQ0FD069cP69evR6dOnTBmzBg0bdoUCoUCN27cQEJCArp3744ePXpg2bJl2L17Nzp37oyaNWvi8ePHurOsXn311afG2KBBA4wcORJLly5FZmYmIiIiUKFCBZw+fRrffPMNatSogZs3b2LKlClYtGiRWa+/ffv2cHJyQv/+/TF+/Hg8fvwYS5cuxd27d/XqeXh4YNy4cfj0008xdOhQ/N///R+uX7+OadOmGXT/jx07FqtWrULnzp3x6aef6s4CK9gz4Obmhq+++gpvvvkm7ty5g969e6NKlSq4ffs2Tp06hdu3bz8z0f3zzz/x3nvv4f/+7/9Qp04dODk5Yffu3fjzzz8xYcKEQp/bunVrCCHw+++/Izw83IxW06hYsSKmTJmCjz76CBEREejfvz/S09Mxffp0KJVKTJ06tdDnz5gxA7/++iteeeUVfPTRR2jYsCEyMjKwfft2REdHIygoyKx4Bg0ahIEDByIyMhK9evXCtWvXMGfOHF2vqVZgYCBcXFywfv16BAcHw83NDdWqVUO1atWwfPlydOzYER06dMBbb72F6tWr486dO0hMTMTx48fx3XffAQCaNWuGLl26oFGjRvDw8EBiYiL+85//ICwsrNCzGadOnYqff/4Zbdq0wccff4xKlSph/fr1+OWXXzBnzhzdmaJS6NKlCz755BNMnToVrVq1wrlz5zBjxgwEBAQgNzdXVy8iIgLz589HREQEZs6ciTp16iA2NhY7duzQ25+DgwM++eQTDB06FD169MA777yDjIwMo78Dpn4nFObjjz/GjRs30K5dO9SoUQMZGRlYuHAhFAoFWrVqpVf38OHDeP755+Hh4VHMVisFbDsHm2xBe5bMsWPHRNeuXYWbm5soX7686N+/v/jnn3/06qrVavH555+LunXrCoVCIby8vMTAgQPF9evX9eq1atVKPPfcc0aP97SzwL744guDujBydsaKFStE7dq1hZOTk6hbt65YtWqV6N69u2jSpIlJr3ft2rXixRdfFEqlUri5uYkmTZrondXytNiNnQV1/vx5ER4eLtzd3UXlypXFqFGjxC+//GJwFtidO3dE7969RcWKFYVMJhP5f9VUKpWYO3euaNy4sS6moKAgMXz4cHHhwgUhhBCHDh0SPXr0EH5+fsLZ2Vl4enqKVq1aif/973/PfL15eXkiJiZGNG3aVLi4uAilUikaN24sZs+eLR4+fCi+/PJLo2cBmvL6f/rpJ13c1atXFx988IH49ddfDV5/Xl6emDVrlvD19RVOTk6iUaNG4qeffjL4LAghxJkzZ0T79u2FUqkUlSpVEkOGDBH//e9/DfYphBB79+4VnTt3FpUqVRIKhUJUr15ddO7cWXz33Xe6OtrP9+3bt/We+88//4i33npLBAUFiXLlygk3NzfRqFEjMX/+fL2zEY1Rq9XC39/f4IxI7RlI+Y8vxJPPeMGzp7755hvRqFEj4eTkJCpUqCC6d+8uTp8+Xeixta5fvy4GDx4sfHx8hEKhENWqVRN9+vTR/c6aE0teXp6YM2eOqFWrllAqlSI0NFTs3r3b6PuzceNGERQUJBQKhcHv56lTp0SfPn1ElSpVhEKhED4+PqJt27Zi2bJlujoTJkwQoaGhwsPDQzg7O4tatWqJqKgokZaW9szX/Ndff4muXbuKChUqCCcnJ9G4cWODNn3a6y5MwdeRnZ0txo0bJ6pXry6USqV44YUXxI8//mj0d+DGjRuiV69euu/NXr16iYMHDz71/a5Tp47ed5exfZrynSCE5iywzp07G7yen3/+WXTs2FFUr15dODk5iSpVqohOnTqJffv26dW7f/++cHV1FV9++aXJbVWayYSQeKU0IgvLyMhA3bp18frrr2PFihW2DofKiC+//BIzZ87EzZs3TV55l8iexMTEYMyYMbh+/Tp7gAAwASK7lpKSgpkzZ6JNmzbw9PTEtWvXMH/+fJw9exZHjx7Fc889Z+sQqYx4/PgxgoOD8e6772LcuHG2DofILLm5uahfvz7efPNNTJo0ydbh2AXOASK75uzsjKtXryIyMhJ37tzRTX5ctmwZkx+yKqVSif/85z8Gk0qJSoLr169j4MCBeP/9920dit1gDxARERGVOTwNnoiIiMocJkBERERU5jABIiIiojKHk6CNyMvLw61bt1C+fHnJL+9AREREliGEwP3791GtWrVnLpbLBMiIW7duSXLtKCIiIrK+69evP/MCwkyAjNBew+b69et6F5U0l0qlQlxcHMLDw6FQKKQKj4xgW1sP29q62N7Ww7a2Hku1dWZmJnx9fY1ei64gJkBGaIe93N3di50Aubq6wt3dnb9MFsa2th62tXWxva2HbW09lm5rU6avcBI0ERERlTlMgIiIiKjMYQJEREREZQ4TICIiIipzmAARERFRmcMEiIiIiMocJkBERERU5jABIiIiojKHCRARERGVOUyAiIiIqMxhAkRERERlDhMgIiu5cQNISNDcEhGRbTEBIrKCmBjAzw9o21ZzGxNj64iIiMo2JkBEFnbjBjBsGJCXp9nOywOGD2dPEBGRLTEBIrKwCxeeJD9aajVw8aJt4iEiIiZARBZXpw4gk+mXyeVA7dq2iYeIiJgAEVmcUgkoFPply5cDNWrYJh4iImICRGRxixYBOTlAuXKa7Zo1gSFDbBsTEVFZxwSIyIIyM4GvvtLc//RTze2tW5o5QEREZDtMgIgsaPlyICMDCAoC3n1XMxSWmwvcvGnryIiIyjYmQEQWcvEiMGuW5v6ECZrkp2ZNzfaVK7aLi4iImAARWURMDFC3LnD3rmY7O1tzGxCguWUCRERkW0yAiCSmXfhQiCdlkZGacm0CdPWqTUIjIqJ/MQEiklhhCx+yB4iIyD442joAotJGu/Bh/h4g7cKHycmabSZARES2xR4gIonVqAG88caTbbn8ycKH7AEiIrIPTICILKBOHc1t166a+T7ahQ+1CdDNm08mRhMRkfUxASKygNRUzW3jxvqXvKhSBXBx0QyPXb9um9iIiIgJEJFF3L6tua1cWb9cJgP8/TX3OQxGRGQ7TICILOBpCRDAeUBERPaACRCRBTABIiKyb0yAiCxAmwBVqWL4GBdDJCKyPSZARBLLywPS0zX32QNERGSfmAARSezuXc3KzwDg5WX4OCdBExHZHhMgIolpT4GvWFFzBfiCtD1AqanAw4dWC4uIiPKxeQK0ZMkSBAQEQKlUIiQkBPv27Xtq3eTkZLzxxhuoV68eHBwcMHbs2EL3vWnTJshkMrz++uvSBk1UiMImQAOAhwdQoYLmPucBERHZhk0ToM2bN2Ps2LGYNGkSTpw4gZYtW6Jjx45ISkoyWj87OxuVK1fGpEmT0Lhx40L3fe3aNYwbNw4tW7a0ROhET/WsBAjgRGgiIluzaQI0b948DBkyBEOHDkVwcDAWLFgAX19fLF261Gh9f39/LFy4EBEREaig/RfaCLVajQEDBmD69OmoVauWpcInMsqUBIjzgIiIbMtmV4PPycnBsWPHMGHCBL3y8PBwHDx4sFj7njFjBipXrowhQ4YUOqSmlZ2djex8F2bKzMwEAKhUKqhUqiLHoX1ucfZBprGntk5JcQAgh6dnHlQqtdE6fn6aOpcuqaFS5Vk1vuKyp7YuC9je1sO2th5LtbU5+7NZApSWlga1Wg1vb2+9cm9vb6SkpBR5vwcOHEBMTAxOnjxp8nNmzZqF6dOnG5THxcXB1dW1yLFoxcfHF3sfZBp7aOujRxsCqIXMzIuIjU00WufhwwAAjXD48D+Ijf3DqvFJxR7auixhe1sP29p6pG7rrKwsk+vaLAHSkslkettCCIMyU92/fx8DBw7EypUr4WXs/OOnmDhxIqKjo3XbmZmZ8PX1RXh4ONzd3YsUC6DJROPj49G+fXsojJ0ORJKxp7besEEOAHjppUB06hRgtI4QMnzzDfD4cVV06tTJmuEVmz21dVnA9rYetrX1WKqttSM4prBZAuTl5QW5XG7Q25OammrQK2SqS5cu4erVq+jatauuLC9PM7zg6OiIc+fOITAw0OB5zs7OcHZ2NihXKBSSvDFS7YeezR7aWrsIoo+PHAqF3GidOnU0t1evymweb1HZQ1uXJWxv62FbW4/UbW3Ovmw2CdrJyQkhISEG3V/x8fFo3rx5kfYZFBSEv/76CydPntT9dOvWDW3atMHJkyfh6+srRehEhdKuA1TYJGg/P81tRobmh4iIrMumQ2DR0dEYNGgQQkNDERYWhhUrViApKQkjRowAoBmaunnzJtauXat7jnZuz4MHD3D79m2cPHkSTk5OqF+/PpRKJRo0aKB3jIoVKwKAQTmRpZhyFpibm+bx27c1Z4I1aWKd2IiISMOmCVDfvn2Rnp6OGTNmIDk5GQ0aNEBsbCz8/v33ODk52WBNoCb5/lIcO3YMGzZsgJ+fH65yQRWyA0IAaWma+4UlQIBmLSAmQEREtmHzSdCRkZGIjIw0+tiaNWsMyoQQZu3f2D6ILCUjA8jN1dw3JQE6coSLIRIR2YLNL4VBVJpoh7/KlweMzKvXo10Net8+4MYNy8ZFRET6mAARSUibAFWp8uy6N29qbn/8UTMpOibGYmEREVEBTICIJGTKBGhA0+Ozfv2T7bw8YPhw9gQREVkLEyAiCZmaAF24oEl68lOrgYsXLRMXERHpYwJEJCFT1gACNAshOhT47ZPLgdq1LRMXERHpYwJEJCFTe4Bq1ACWLXuyLZcDy5dryomIyPKYABFJyNQECADeeQf4d51OxMUBQ4ZYLCwiIiqACRCRhMxJgABAe81eJyfLxENERMYxASKSkLkJkKen5lZ7AVUiIrIOJkBEEjJnHSAAqFRJc3vnjmXiISIi45gAEUlECPN7gJgAERHZBhMgIolkZgI5OZr7TICIiOwbEyAiiWh7f8qVA1xcTHsOEyAiIttgAkQkEXOHvwBOgiYishUmQEQSKUoCxB4gIiLbYAJEJBEmQEREJQcTICKJMAEiIio5mAARScTcNYAAJkBERLbCBIhIIsWZBH3//pNT6ImIyPLMToAePXqErKws3fa1a9ewYMECxMXFSRoYUUmTmqq5NScBqlABkMk09+/elT4mIiIyzuwEqHv37li7di0AICMjA82aNcOXX36J7t27Y+nSpZIHSFRSFKUHSC5/ckV4DoMREVmP2QnQ8ePH0bJlSwDA999/D29vb1y7dg1r167FokWLJA+QqKQoSgIEcB4QEZEtmJ0AZWVloXz58gCAuLg49OzZEw4ODnjppZdw7do1yQMkKgmKch0wLSZARETWZ3YCVLt2bfz444+4fv06duzYgfDwcABAamoq3N3dJQ+QqCR4+BB4/Fhz39wESDsRmgkQEZH1mJ0Affzxxxg3bhz8/f3RtGlThIWFAdD0BjVp0kTyAIlKAm3vj1KpuRaYObQ9QLwcBhGR9Tia+4TevXvj5ZdfRnJyMho3bqwrb9euHXr06CFpcEQlRf7hL+1ZXabiEBgRkfUVaR0gHx8flC9fHvHx8Xj06BEA4MUXX0RQUJCkwRGVFNpT4M1ZBFGLCRARkfWZnQClp6ejXbt2qFu3Ljp16oTk5GQAwNChQ/H+++9LHiBRSVDUCdAAEyAiIlswOwGKioqCQqFAUlISXF1ddeV9+/bF9u3bJQ2OqKQoTgLESdBERNZn9hyguLg47NixAzVq1NArr1OnDk+DpzJLih4gToImIrIes3uAHj58qNfzo5WWlgZnZ2dJgiIqaa5e1dw6OZn/XA6BERFZn9kJ0CuvvKK7FAYAyGQy5OXl4YsvvkCbNm0kDY6oJIiJAb7/XnP/88812+ZgAkREZH1mD4F98cUXaN26NY4ePYqcnByMHz8ep0+fxp07d3DgwAFLxEhkt27cAIYNe7ItBDB8ONChA1BglPiptAlQZiagUgEKhfRxEhGRPrN7gOrXr48///wTTZs2Rfv27fHw4UP07NkTJ06cQGBgoNkBLFmyBAEBAVAqlQgJCcG+ffueWjc5ORlvvPEG6tWrBwcHB4wdO9agzsqVK9GyZUt4eHjAw8MDr776Ko4cOWJ2XESmuHAByMvTL1OrgYsXTd+Hh8eT+xkZkoRFRETPYHYPEKBZB2j69OnFPvjmzZsxduxYLFmyBC1atMDy5cvRsWNHnDlzBjVr1jSon52djcqVK2PSpEmYP3++0X3u2bMH/fv3R/PmzaFUKjFnzhyEh4fj9OnTqF69erFjJsqvTh3AwUE/CZLLgdq1Td+H9orwGRmaidBFmUhNRETmMbsHKCAgAFOmTMG5c+eKffB58+ZhyJAhGDp0KIKDg7FgwQL4+vpi6dKlRuv7+/tj4cKFiIiIQIUKFYzWWb9+PSIjI/H8888jKCgIK1euRF5eHnbt2lXseIkKqlEDWLHiybZcDixfbvrwlxbnARERWZfZPUCjRo3Cxo0bMXPmTDRp0gSDBg1C3759UbVqVbP2k5OTg2PHjmHChAl65eHh4Th48KC5YT1VVlYWVCoVKmn/whiRnZ2N7Oxs3XZmZiYAQKVSQaVSFfnY2ucWZx9kGlu2df/+wNChmok7R46o0LChZi6POTw85AAckJqaC5VKSB+khPi5ti62t/Wwra3HUm1tzv7MToCio6MRHR2N8+fPY/369Vi6dCk++OADtGnTBgMHDkRERIRJ+0lLS4NarYa3t7deube3N1JSUswN66kmTJiA6tWr49VXX31qnVmzZhkd0ouLizN6yr+54uPji70PMo0t2vr+fQWATgCAK1d+xfXr5icwanUYgCrYs+dPyGTXpQ3QQvi5ti62t/Wwra1H6rbOysoyuW6R5gABQN26dTF9+nRMnz4dhw8fxsiRI/H222+bnABpyQpcOVIIYVBWVHPmzMHGjRuxZ88eKJXKp9abOHEioqOjdduZmZnw9fVFeHg43N3di3x8lUqF+Ph4tG/fHgqe2mNRtmxr7RpALi4C3bp1LNI+Nm6U4+RJwNe3MTp1aihZbJbAz7V1sb2th21tPZZqa+0IjimKnAABwJEjR7BhwwZs3rwZ9+7dQ+/evU1+rpeXF+RyuUFvT2pqqkGvUFHMnTsXn332GXbu3IlGjRoVWtfZ2dnoIo4KhUKSN0aq/dCz2aKt/70eMNzdZUU+tpeX5jYjQw6FQi5RZJbFz7V1sb2th21tPVK3tTn7MnsS9Pnz5zF16lTUqVMHLVq0wJkzZzB79mz8888/2Lx5s8n7cXJyQkhIiEH3V3x8PJo3b25uWHq++OILfPLJJ9i+fTtCQ0OLtS+iZ9H+w1GMzkJOgiYisjKze4CCgoIQGhqKd999F/369YOPj0+RDx4dHY1BgwYhNDQUYWFhWLFiBZKSkjBixAgAmqGpmzdv6q08ffLkSQDAgwcPcPv2bZw8eRJOTk6oX78+AM2w15QpU7Bhwwb4+/vrepjc3Nzg5uZW5FiJnoYJEBFRyWN2AnT27FnUrVtXkoP37dsX6enpmDFjBpKTk9GgQQPExsbCz88PgGbhw6SkJL3nNGnSRHf/2LFj2LBhA/z8/HD134kYS5YsQU5OjsFw3NSpUzFt2jRJ4ibK7949zS0TICKiksPsBEib/Bw7dgyJiYmQyWQIDg7GCy+8UKQAIiMjERkZafSxNWvWGJQJUfgZNtpEiMhatD1AT1mayiSenppbJkBERNZhdgKUmpqKfv36Yc+ePahYsSKEELh37x7atGmDTZs2oTKXsaUyRsohsPT04sdDRETPZvYk6FGjRiEzM1N3AdS7d+/i77//RmZmJkaPHm2JGInsGucAERGVPGb3AG3fvh07d+5EcHCwrqx+/fpYvHgxwsPDJQ2OqCSQMgG6dw/IzQUci7VABRERPYvZPUB5eXlGz7NXKBTIK3hZbKIyQIpJ0LwiPBGRdZmdALVt2xZjxozBrVu3dGU3b95EVFQU2rVrJ2lwRCWBFD1Ajo5PJlFzGIyIyPLMToC+/vpr3L9/H/7+/ggMDETt2rUREBCA+/fv46uvvrJEjER2TYqzwABOhCYisiazZxr4+vri+PHjiI+Px9mzZyGEQP369Qu92ChRaSZFDxCgSYCuXGEPEBGRNRR5qmX79u3Rvn17KWMhKpGkTIAAJkBERNZQpAToyJEj2LNnD1JTUw0mPs+bN0+SwIhKCiZAREQlj9kJ0GeffYbJkyejXr168Pb2hkwm0z2W/z5RWSHFWWAAV4MmIrImsxOghQsXYtWqVXjrrbcsEA5RyZKbC2Rlae6zB4iIqOQw+ywwBwcHtGjRwhKxEJU49+8/uS9VAsSzwIiILM/sBCgqKgqLFy+2RCxEJY52/o9SCTg5FW9f7AEiIrIes4fAxo0bh86dOyMwMBD169c3WBV627ZtkgVHZO+kmgANMAEiIrImsxOgUaNGISEhAW3atIGnpycnPlOZJtUEaIAJEBGRNZmdAK1duxZbt25F586dLREPUYkiZQ8QzwIjIrIes+cAVapUCYGBgZaIhajEkeoyGMCTHqCMDECtLv7+iIjo6cxOgKZNm4apU6ciS3vuL1EZJmUPkPaK8ELwivBERJZm9hDYokWLcOnSJXh7e8Pf399gEvTx48clC47I3kmZACkUQPnymlPr79x5MiRGRETSMzsBev311y0QBlHJJOUkaEAzDKZNgIiIyHLMToCmTp1qiTiISiQpe4AATa/PtWtMgIiILM3sOUBE9ITUCZCrq+b2wgVp9kdERMYxASIqBinPAouJAfbv19wfO1azTURElsEEiKgYpOoBunEDGDbsybYQwPDhmnIiIpIeEyCiYpAqAbpwAcjL0y9Tq4GLF4u3XyIiMo4JEFExSHUWWJ06gEOB30a5HKhdu3j7JSIi48w+C0ytVmPNmjXYtWsXUlNTkVfg39bdu3dLFhyRvZOqB6hGDWDFCs0wWF4eIJMBy5dryomISHpmJ0BjxozBmjVr0LlzZzRo0IAXQ6UyTcqzwIYMAVQqYORI4MUXNdtERGQZZidAmzZtwpYtW9CpUydLxENUYqjVwMOHmvtSnAUGPBnyevRImv0REZFxZs8BcnJyQm1OTCDC/ftP7pcvL80+K1bU3N69K83+iIjIOLMToPfffx8LFy6EEMIS8RCVGNoJ0M7Omh8paBMgXgyViMiyzB4C279/PxISEvDrr7/iueeeM7gY6rZt2yQLjsieSb0KNPDkivAPHmjmAxX49SIiIomYnQBVrFgRPXr0sEQsRCWKJRKg/HOJ7t0DvLyk2zcRET1hdgK0evVqSQNYsmQJvvjiCyQnJ+O5557DggUL0LJlS6N1k5OT8f777+PYsWO4cOECRo8ejQULFhjU27p1K6ZMmYJLly4hMDAQM2fOZNJGkpPyMhhajo6a+UT372uGwZgAERFZhk0XQty8eTPGjh2LSZMm4cSJE2jZsiU6duyIpKQko/Wzs7NRuXJlTJo0CY0bNzZa59ChQ+jbty8GDRqEU6dOYdCgQejTpw9+//13S74UKoMs0QMEcCI0EZE12DQBmjdvHoYMGYKhQ4ciODgYCxYsgK+vL5YuXWq0vr+/PxYuXIiIiAhUeMq/3QsWLED79u0xceJEBAUFYeLEiWjXrp3RniKi4rBUAqSdB8SJ0ERElmOzBCgnJwfHjh1DeHi4Xnl4eDgOHjxY5P0eOnTIYJ8dOnQo1j6JjJHqMhgFsQeIiMjyzJ4DJJW0tDSo1Wp4e3vrlXt7eyMlJaXI+01JSTF7n9nZ2cjOztZtZ/77r71KpYJKpSpyLNrnFmcfZBpbtPXduw4A5HBzU0OlyntmfVO5u8sBOCA9PRcqlf0tN8HPtXWxva2HbW09lmprc/ZnswRIq+ClNIQQxb68hrn7nDVrFqZPn25QHhcXB1dX12LFAgDx8fHF3geZxppt/eefDQAE4vbtS4iNTZRsvw8fNgFQE4cPn0O1avZ7OXh+rq2L7W09bGvrkbqts7KyTK5bpARo165dT70Y6qpVq0zah5eXF+RyuUHPTGpqqkEPjjl8fHzM3ufEiRMRHR2t287MzISvry/Cw8PhXozxDZVKhfj4eLRv395gvSSSli3a+ocf5ACAJk0C0alTgGT73bXLAQkJgLd3EDp1qivZfqXCz7V1sb2th21tPZZqa+0IjinMToCmT5+OGTNmIDQ0FFWrVi1yb42TkxNCQkIQHx+vd4p6fHw8unfvXqR9AkBYWBji4+MRFRWlK4uLi0Pz5s2f+hxnZ2c4G1nKV6FQSPLGSLUfejZrtvWDB5pbDw85FAq5ZPv19NTc3r8v7X6lxs+1dbG9rYdtbT1St7U5+zI7AVq2bBnWrFmDQYMGmftUA9HR0Rg0aBBCQ0MRFhaGFStWICkpCSNGjACg6Zm5efMm1q5dq3vOyZMnAQAPHjzA7du3cfLkSTg5OaF+/foANFerf+WVV/D555+je/fu+O9//4udO3di//79xY6XKD9OgiYiKrnMToBycnIK7U0xR9++fZGeno4ZM2YgOTkZDRo0QGxsLPz8/ABoFj4suCZQkyZNdPePHTuGDRs2wM/PD1evXgUANG/eHJs2bcLkyZMxZcoUBAYGYvPmzWjWrJkkMRNp8TR4IqKSy+wEaOjQodiwYQOmTJkiSQCRkZGIjIw0+tiaNWsMyky5CGvv3r3Ru3fv4oZGVCguhEhEVHKZnQA9fvwYK1aswM6dO9GoUSOD8bZ58+ZJFhyRPbN0AsQeICIiyzE7Afrzzz/x/PPPAwD+/vtvvceKe/o6UUliiWuBAU+GwNgDRERkOWYnQAkJCZaIg6hEUaufnAVmyR4gIQD+X0FEJD2bXguMqKS6f//JfUtNglapADPW9CIiIjOY1APUs2dPrFmzBu7u7ujZs2ehdbdt2yZJYET2TDv85eQEGFlCqljKlQPkck0vU0aGZpuIiKRlUgJUoUIF3fyep12FnagssdQEaEAz5OXhAaSlaRKg6tWlPwYRUVlnUgK0evVqo/eJyipLTYDWqlhRkwBxIjQRkWVwDhBREViyBwjgqfBERJbGBIioCCx1GQwtngpPRGRZTICIioA9QEREJRsTIKIisHQCxB4gIiLLYgJEVATsASIiKtnMXgl60aJFRstlMhmUSiVq166NV155BXK5vNjBEdkrS58FxivCExFZltkJ0Pz583H79m1kZWXBw8MDQghkZGTA1dUVbm5uSE1NRa1atZCQkABfX19LxExkc9bqAeIQGBGRZZg9BPbZZ5/hxRdfxIULF5Ceno47d+7g/PnzaNasGRYuXIikpCT4+PggKirKEvES2QVLnwXGITAiIssyuwdo8uTJ2Lp1KwIDA3VltWvXxty5c9GrVy9cvnwZc+bMQa9evSQNlMiecBI0EVHJZnYPUHJyMnJzcw3Kc3NzkZKSAgCoVq0a7ue/WiRRKcNJ0EREJZvZCVCbNm0wfPhwnDhxQld24sQJjBw5Em3btgUA/PXXXwgICJAuSiI7wx4gIqKSzewEKCYmBpUqVUJISAicnZ3h7OyM0NBQVKpUCTExMQAANzc3fPnll5IHS2QvrHEtMO1x1GrLHIOIqCwzew6Qj48P4uPjcfbsWZw/fx5CCAQFBaFevXq6Om3atJE0SCJ7Y61J0IAmCdL2CBERkTTMToC0goKCEBQUJGUsRCWCWg08eKC5b6kEyMkJcHUFsrI0w2BMgIiIpGV2AqRWq7FmzRrs2rULqampyMvL03t89+7dkgVHZI+0yQ9guQQI0CQ9WVmcCE1EZAlmJ0BjxozBmjVr0LlzZzRo0AAymcwScRHZLe38H4UCcHa23HEqVgRu3uREaCIiSzA7Adq0aRO2bNmCTp06WSIeIruXfwK0JfN/ngpPRGQ5Zp8F5uTkhNq1a1siFqISQTsBWqEAbtyw3HF4KjwRkeWYnQC9//77WLhwIYQQloiHyO59953mNjkZ8PMD/l39QXLsASIishyzh8D279+PhIQE/Prrr3juueegUCj0Ht+2bZtkwRHZmxs3gIULn2zn5QHDhwMdOgA1akh7LF4RnojIcsxOgCpWrIgePXpYIhYiu3fhAlCw81OtBi5elD4B4hXhiYgsx+wEaPXq1ZaIg6hEqFNHM/E5fxIklwOWmBbHHiAiIssxew4QUVlWowbQpcuTbbkcWL5c+t4fgD1ARESWZFIP0AsvvIBdu3bBw8MDTZo0KXTtn+PHj0sWHJE9CgzU3PbvD8yZY5nkB+AkaCIiSzIpAerevTuc/13x7fXXX7dkPER2T3safMOGlkt+AJ4GT0RkSSYlQFOnTjV6n6gs0i6EaMnLYADsASIisqQiXww1JyfH6LXAatasWeygiOyZtRIg9gAREVmO2ZOgz58/j5YtW8LFxQV+fn4ICAhAQEAA/P39ERAQYHYAS5YsQUBAAJRKJUJCQrBv375C6+/duxchISFQKpWoVasWli1bZlBnwYIFqFevHlxcXODr64uoqCg8fvzY7NiIjNEOgVWoYNnjaHuAsrMBfnyJiKRldg/Q22+/DUdHR/z888+oWrVqsS6GunnzZowdOxZLlixBixYtsHz5cnTs2BFnzpwx2pN05coVdOrUCe+88w7WrVuHAwcOIDIyEpUrV0avXr0AAOvXr8eECROwatUqNG/eHOfPn8dbb70FAJg/f36RYyXSslYPUPnygIODZrHFjAzAx8eyxyMiKkvMToBOnjyJY8eOISgoqNgHnzdvHoYMGYKhQ4cC0PTc7NixA0uXLsWsWbMM6i9btgw1a9bEggULAADBwcE4evQo5s6dq0uADh06hBYtWuCNN94AAPj7+6N///44cuRIseMlAp70AFk6AXJw0PQy3b2r+WECREQkHbMToPr16yMtLa3YB87JycGxY8cwYcIEvfLw8HAcPHjQ6HMOHTqE8PBwvbIOHTogJiYGKpUKCoUCL7/8MtatW4cjR46gadOmuHz5MmJjY/Hmm28+NZbs7GxkZ2frtjP//RdfpVJBpVIV9SXqnlucfZBprNnWmZmOAGRwdVXB0oerWNERd+/KkJaWC5XKPq6/x8+1dbG9rYdtbT2Wamtz9mdSAqRNCADg888/x/jx4/HZZ5+hYcOGBtcCczfx3+K0tDSo1Wp4e3vrlXt7eyMlJcXoc1JSUozWz83NRVpaGqpWrYp+/frh9u3bePnllyGEQG5uLkaOHGmQaOU3a9YsTJ8+3aA8Li4Orq6uJr2ewsTHxxd7H2QaS7e1Wg08fNgdAHDkyE6cO5dj0ePJZK0AVERc3B+4cyfVoscyFz/X1sX2th62tfVI3dZZWVkm1zUpAapYsaLeXB8hBNq1a6dXRwgBmUwGtVpt8sEBGMwh0u7HnPr5y/fs2YOZM2diyZIlaNasGS5evIgxY8agatWqmDJlitF9Tpw4EdHR0brtzMxM+Pr6Ijw83OSEzhiVSoX4+Hi0b9/eIFEkaVmrrfOfkdWz56v4d3ksi1m4UI7Ll4E6dV5Ep0720wPEz7X1sL2th21tPZZq6/wdNs9iUgKUkJBQ5GCexsvLC3K53KC3JzU11aCXR8vHx8dofUdHR3h6egIApkyZgkGDBunmFTVs2BAPHz7EsGHDMGnSJDg4GJ745uzsrFvoMT+FQiHJGyPVfujZLN3Wjx5pbp2dATc3y7+nlSppbu/fd4S9fYT4ubYutrf1sK2tR+q2NmdfJiVArVq1KnIwT+Pk5ISQkBDEx8frXV0+Pj4e3bt3N/qcsLAw/PTTT3plcXFxCA0N1b3orKwsgyRHLpdDCKHrLSIqKmudAabFxRCJiCzD7HWAtm/fjv379+u2Fy9ejOeffx5vvPEG7pq5Ylt0dDS++eYbrFq1ComJiYiKikJSUhJGjBgBQDM0FRERoas/YsQIXLt2DdHR0UhMTMSqVasQExODcePG6ep07doVS5cuxaZNm3DlyhXEx8djypQp6NatG+Ryubkvl0iPtdYA0uIV4YmILMPss8A++OADfP755wCAv/76C9HR0Xj//fexe/duREdHY/Xq1Sbvq2/fvkhPT8eMGTOQnJyMBg0aIDY2Fn5+fgCA5ORkJCUl6eoHBAQgNjYWUVFRWLx4MapVq4ZFixbpToEHgMmTJ0Mmk2Hy5Mm4efMmKleujK5du2LmzJnmvlQiA7bqAeJq0ERE0jI7Abpy5Qrq168PANi6dSu6du2Kzz77DMePH0enTp3MDiAyMhKRkZFGH1uzZo1BWatWrQq94ryjoyOmTp3Ka5aRRVhrDSAtDoEREVmG2UNgTk5OutPMdu7cqVuXp1KlSmbNviYqibQfcWsPgbEHiIhIWmb3AL388suIjo5GixYtcOTIEWzevBmA5hphNWrUkDxAInvCSdBERKWD2T1AX3/9NRwdHfH9999j6dKlqF69OgDg119/xWuvvSZ5gET2xNpDYOwBIiKyDLN7gGrWrImff/7ZoJwXGqWywNpDYNoeoNu3gRs3AHayEhFJw+RLYWhXRH7WPJ/irJxMZO+sPQT266+a2wcPAD8/YMUKYMgQ6xybiKg0MykB8vDwQHJyMqpUqWJwWQytol4Kg6gkseY6QDduAB988GQ7Lw8YPhzo0IE9QURExWVSArR7925U+ndNfktcFoOopLBmD9CFC5qkJz+1Grh4kQkQEVFxmX0pDEtcFoOopLBmAlSnDuDgoJ8EyeVA7dqWPzYRUWln9iRoAMjIyMCRI0eQmpqKvAL/oua/dAVRaWPNIbAaNTRzfv69ri8cHIDly9n7Q0QkBbMToJ9++gkDBgzAw4cPUb58eb35QDKZjAkQlWrWngQ9ZAiwahVw8CAwfz4nQBMRScXsdYDef/99DB48GPfv30dGRgbu3r2r+7lz544lYiSyG9ZeBwgA/l1qi4iIJGR2AnTz5k2MHj0arq6uloiHyG7l5ACPH2vuW2sdIADw9NTcpqdb75hERKWd2QlQhw4dcPToUUvEQmTX7t9/cr98eesdlwkQEZH0zJ4D1LlzZ3zwwQc4c+YMGjZsCIVCofd4t27dJAuOyJ5oh79cXIACH3uLYgJERCQ9sxOgd955BwAwY8YMg8e4ECKVZta+DIYWEyAiIumZnQAVPO2dqKyw9hlgWkyAiIikZ/YcIKKyypprAOXHBIiISHom9QAtWrQIw4YNg1KpxKJFiwqtO3r0aEkCI7I37AEiIio9TEqA5s+fjwEDBkCpVGL+/PlPrSeTyZgAUall6wTowQPNqfhOTtY9PhFRaWRSAnTy5ElU+Lff/8qVKxYNiMhe2WoIrGLFJ9cES08Hqla17vGJiEojk+YAVapUCampqQCAtm3bIiMjw5IxEdklW/UAOTgAHh6a+xwGIyKShkkJkJubG9L//ebds2cPVCqVRYMiske2uAyGFucBERFJy6QhsFdffRVt2rRBcHAwAKBHjx5wespEhN27d0sXHZEdsdU6QAATICIiqZmUAK1btw7ffvstLl26hL179+K5557jtcCozLHVEBjABIiISGomJUAuLi4YMWIEAODo0aP4/PPPUbFiRUvGRWR3OARGRFR6mL0SdEJCgiXiILJ7HAIjIio9uBI0kYk4BEZEVHowASIyka3WAQKeJEB37lj/2EREpRETICITsQeIiKj0MCkB6tmzJzL//fZfu3YtsrOzLRoUkb15/FhzGQqACRARUWlgUgL0888/4+HDhwCAt99+G/e0YwFEZYS29wcAype3/vGZABERScuks8CCgoIwceJEtGnTBkIIbNmyBe5P+Tc4IiJC0gCJ7IE2AXJzA+Ry6x8//xwgIQCZzPoxEBGVJiYlQMuWLUN0dDR++eUXyGQyTJ48GTIj38AymYwJEJVKtlwDCHiSAOXmapIxW0zEJiIqTUwaAmvevDkOHz6M27dvQwiB8+fP4+7duwY/d4pwisqSJUsQEBAApVKJkJAQ7Nu3r9D6e/fuRUhICJRKJWrVqoVly5YZ1MnIyMC7776LqlWrQqlUIjg4GLGxsWbHRqRlyzWAAECpBLSLr3MYjIio+Mw+C+zKlSuoXLmyJAffvHkzxo4di0mTJuHEiRNo2bIlOnbsiKSkpKceu1OnTmjZsiVOnDiBjz76CKNHj8bWrVt1dXJyctC+fXtcvXoV33//Pc6dO4eVK1eievXqksRMZZMtzwDT4jwgIiLpmL0StJ+fHzIyMhATE4PExETIZDIEBwdjyJAhqGDmv8fz5s3DkCFDMHToUADAggULsGPHDixduhSzZs0yqL9s2TLUrFkTCxYsAAAEBwfj6NGjmDt3Lnr16gUAWLVqFe7cuYODBw9CoVDoYiYqDlsPgQGaBOj6dSZARERSMLsH6OjRowgMDMT8+fNx584dpKWlYf78+QgMDMTx48dN3k9OTg6OHTuG8PBwvfLw8HAcPHjQ6HMOHTpkUL9Dhw44evQoVCoVAOB///sfwsLC8O6778Lb2xsNGjTAZ599BrVabeYrJXrC1kNgAHuAiIikZHYPUFRUFLp164aVK1fC0VHz9NzcXAwdOhRjx47Fb7/9ZtJ+0tLSoFar4e3trVfu7e2NlJQUo89JSUkxWj83NxdpaWmoWrUqLl++jN27d2PAgAGIjY3FhQsX8O677yI3Nxcff/yx0f1mZ2frrW2kXfNIpVLpEqui0D63OPsg01i6re/edQAgh5tbHlQq2yTTHh5yAA5ITVVDpcqzSQwAP9fWxva2Hra19Viqrc3Zn9kJ0NGjR/WSHwBwdHTE+PHjERoaau7uDM4mE0IYPcOssPr5y/Py8lClShWsWLECcrkcISEhuHXrFr744ounJkCzZs3C9OnTDcrj4uLgqp15Wgzx8fHF3geZxlJtfeJEfQB1cOfOZcTGnrbIMZ7lwYNGAALw++8XUKvWOZvEkB8/19bF9rYetrX1SN3WWVlZJtc1OwFyd3dHUlISgoKC9MqvX7+O8masEOfl5QW5XG7Q25OammrQy6Pl4+NjtL6joyM8/x0fqFq1KhQKBeT5FmsJDg5GSkoKcnJy4OTkZLDfiRMnIjo6WredmZkJX19fhIeHP3W9I1OoVCrEx8ejffv2uvlIZBmWbuvYWM1ocaNGAejUyTZzyg4fdsD27UClSnXQqVOgTWIA+Lm2Nra39bCtrcdSbZ2Zf9XaZzA7Aerbty+GDBmCuXPnonnz5pDJZNi/fz8++OAD9O/f3+T9ODk5ISQkBPHx8ejRo4euPD4+Ht27dzf6nLCwMPz00096ZXFxcQgNDdU1YIsWLbBhwwbk5eXBwUHzR+v8+fOoWrWq0eQHAJydneHs7GxQrlAoJHljpNoPPZul2vr+fc2th4ccCoUNVkIEUKWK5vbuXdvFkB8/19bF9rYetrX1SN3W5uzL7ARo7ty5ugUPc3NzdQccOXIkZs+ebda+oqOjMWjQIISGhiIsLAwrVqxAUlISRowYAUDTM3Pz5k2sXbsWADBixAh8/fXXiI6OxjvvvINDhw4hJiYGGzdu1O1z5MiR+OqrrzBmzBiMGjUKFy5cwGeffYbRo0eb+1KJdDgJmoiodDE7AXJycsLChQsxa9YsXLp0CUII1K5du0hzZfr27Yv09HTMmDEDycnJaNCgAWJjY3WnrScnJ+utCRQQEIDY2FhERUVh8eLFqFatGhYtWqQ7BR4AfH19ERcXh6ioKDRq1AjVq1fHmDFj8OGHH5odH5EW1wEiIipdzE6AtFxdXdGwYcNiBxAZGYnIyEijj61Zs8agrFWrVs883T4sLAyHDx8udmxEWvayDhDABIiISApmrwNEVBZxCIyIqHRhAkRkAnsaAnvwAMjJsV0cRESlARMgomcQwj6GwCpWBP49sZG9QERExWR2AvTw4UNLxEFktx49ArRXUrHlEJiDA+DhobnPBIiIqHjMToC8vb0xePBg7N+/3xLxENkd7fCXTAaUK2fbWDgPiIhIGmYnQBs3bsS9e/fQrl071K1bF7Nnz8atW7csERuRXcg//OVg40FjJkBERNIw++u8a9eu2Lp1K27duoWRI0di48aN8PPzQ5cuXbBt2zbd4ohEpYU9TIDWYgJERCSNIv8/6+npiaioKJw6dQrz5s3Dzp070bt3b1SrVg0ff/yxWRckI7Jn9jABWosJEBGRNIq8EGJKSgrWrl2L1atXIykpCb1798aQIUNw69YtzJ49G4cPH0ZcXJyUsRLZhD2sAaTFBIiISBpmJ0Dbtm3D6tWrsWPHDtSvXx/vvvsuBg4ciIoVK+rqPP/882jSpImUcRLZjD0Ogd25Y9s4iIhKOrMToLfffhv9+vXDgQMH8OKLLxqtU6tWLUyaNKnYwRHZAw6BERGVPmYnQMnJyc+88KmLiwumTp1a5KCI7AmHwIiISh+zJ0GXL18eqampBuXp6emQy+WSBEVkT+xxCIwJEBFR8ZidAAkhjJZnZ2fDycmp2AER2RsOgRERlT4mD4EtWrQIACCTyfDNN9/Azc1N95harcZvv/2GoKAg6SMksjF7HAK7c0dzjTKZzLbxEBGVVCYnQPPnzweg6QFatmyZ3nCXk5MT/P39sWzZMukjJLIxe+wBys3VJGb2kJQREZVEJidAV65cAQC0adMG27Ztg4f2qoxEpdzt25pbe1jkXKkEXF2BrCzNMBgTICKiojF7DlBCQgKTHyozYmKAY8c090eM0GzbGucBEREVn0k9QNHR0fjkk09Qrlw5REdHF1p33rx5kgRGZGs3bgDDhj3ZzssDhg8HOnQAatSwXVyensD160yAiIiKw6QE6MSJE1CpVLr7TyPjjEwqRS5c0CQ9+anVwMWLtk+AACZARETFYVIClJCQYPQ+UWlWpw7g4KCfBMnlQO3atosJeJIAHT4MtGpl22SMiKikKvLV4IlKuxo1gDlznmzL5cDy5bZPOLTrkH79NeDnZx/zkoiIShqTeoB69uxp8g63bdtW5GCI7E379prbChWAv/+2ffJz4wawd++TbXuZl0REVNKYlABV4Lm2VEalpWluq1WzjwTjwgXNAoj52cO8JCKiksakBGj16tWWjoPILmknGmvn3dhanTqa1Z/zJ0H2MC+JiKik4RwgokJoe4C8vGwbh1aNGsCECU+27WVeEhFRSWNSD9ALL7yAXbt2wcPDA02aNCn0dPfjx49LFhyRrdlbAgRo5vzMmgU4OgKXLwO+vraOiIio5DEpAerevTucnZ0BAK+//rol4yGyK/aYAPn4aG5zc4Fy5WwbCxFRSWVSAjR16lSj94lKO3ubAwQAzs6ahCwtDbh1C6hUydYRERGVPCZfDLWgo0ePIjExETKZDMHBwQgJCZEyLiK7YI89QIDmrDRtAtSgga2jISIqecxOgG7cuIH+/fvjwIEDqFixIgAgIyMDzZs3x8aNG+HLCQlUithzAvTnn5oEiIiIzGf2WWCDBw+GSqVCYmIi7ty5gzt37iAxMRFCCAwZMsQSMRLZjD0nQAATICKiojK7B2jfvn04ePAg6tWrpyurV68evvrqK7Ro0ULS4IhszR7nAAFMgIiIisvsHqCaNWvqrgyfX25uLqpXry5JUET24PFj4MEDzX32ABERlS5mJ0Bz5szBqFGjcPToUYh/l6M9evQoxowZg7lz55odwJIlSxAQEAClUomQkBDs27ev0Pp79+5FSEgIlEolatWqhWXLlj217qZNmyCTyXjqPhWJtvdHLtdcC8yeMAEiIioek4bAPDw89BY/fPjwIZo1awZHR83Tc3Nz4ejoiMGDB5uVbGzevBljx47FkiVL0KJFCyxfvhwdO3bEmTNnULNmTYP6V65cQadOnfDOO+9g3bp1OHDgACIjI1G5cmX06tVLr+61a9cwbtw4tGzZ0uR4iPLTzv/x9AQc7GzNdCZARETFY1ICtGDBAoscfN68eRgyZAiGDh2qO86OHTuwdOlSzJo1y6D+smXLULNmTV08wcHBOHr0KObOnauXAKnVagwYMADTp0/Hvn37kJGRYZH4qXSz1/k/wJMEKDlZc0V4e0vQiIjsnUkJ0Jtvvin5gXNycnDs2DFMyH9hIwDh4eE4ePCg0eccOnQI4eHhemUdOnRATEwMVCoVFAoFAGDGjBmoXLkyhgwZ8swhNQDIzs5Gdna2bjszMxMAoFKpjM53MpX2ucXZB5nGEm2dkiID4AhPzzyoVGrJ9iuFSpUAmcwRubkyJCerUKWK9Y7Nz7V1sb2th21tPZZqa3P2V+SFEAHg0aNHBgdzd3c36blpaWlQq9Xw9vbWK/f29kZKSorR56SkpBitn5ubi7S0NFStWhUHDhxATEwMTp48afLrmDVrFqZPn25QHhcXB1dXV5P38zTx8fHF3geZRsq23rvXH0Bj5OamIDb2D8n2K5WKFTvg7l0ltmzZj1q1Mq1+fH6urYvtbT1sa+uRuq2zsrJMrmt2AvTw4UN8+OGH2LJlC9K1YwT5qNXm/adc8MKqQohCL7ZqrL62/P79+xg4cCBWrlwJLzNO25k4cSKio6N125mZmfD19UV4eLjJCZ0xKpUK8fHxaN++va53iizDEm19/LhmXOm553zQqVMnSfYpJX9/R9y9CwQGtkTHjsJqx+Xn2rrY3tbDtrYeS7W1dgTHFGYnQOPHj0dCQgKWLFmCiIgILF68GDdv3sTy5csxe/Zsk/fj5eUFuVxu0NuTmppq0Muj5ePjY7S+o6MjPD09cfr0aVy9ehVdu3bVPZ6XlwcAcHR0xLlz5xAYGGiwX2dnZ93FXvNTKBSSvDFS7YeeTcq21k4dq1zZAQqF/U2yqVYNOHECSE11hC0+XvxcWxfb23rY1tYjdVubsy+zE6CffvoJa9euRevWrTF48GC0bNkStWvXhp+fH9avX48BAwaYtB8nJyeEhIQgPj4ePXr00JXHx8eje/fuRp8TFhaGn376Sa8sLi4OoaGhUCgUCAoKwl9//aX3+OTJk3H//n0sXLiQl+kgs9jrKtBaPBOMiKjozE6A7ty5g4CAAACa+T537twBALz88ssYOXKkWfuKjo7GoEGDEBoairCwMKxYsQJJSUkYMWIEAM3Q1M2bN7F27VoAwIgRI/D1118jOjoa77zzDg4dOoSYmBhs3LgRAKBUKtGgwJUhtdcrK1hO9CxMgIiISi+zE6BatWrh6tWr8PPzQ/369bFlyxY0bdoUP/30ky7ZMFXfvn2Rnp6OGTNmIDk5GQ0aNEBsbCz8/PwAAMnJyUhKStLVDwgIQGxsLKKiorB48WJUq1YNixYtMlgDiEgKTICIiEovsxOgt99+G6dOnUKrVq0wceJEdO7cGV999RVyc3Mxb948swOIjIxEZGSk0cfWrFljUNaqVSscP37c5P0b2weRKbRz/JkAERGVPmYnQFFRUbr7bdq0QWJiIo4dO4bAwEA0btxY0uCIbCn/StD2iAkQEVHRFWsdIADw8/PTDVkRlRaPHgEPH2ru23sP0D//ALm5gGOxf5uJiMqOIp3bu2vXLnTp0gWBgYGoXbs2unTpgp07d0odG5HN2POFULUqV9bEl5cHpKbaOhoiopLF7ATo66+/xmuvvYby5ctjzJgxGD16NNzd3dGpUyd8/fXXloiRyOryz/8pZF1Om5LLAR8fzX0OgxERmcfsTvNZs2Zh/vz5eO+993Rlo0ePRosWLTBz5ky9cqKSyt7n/2hVqwbcvMkEiIjIXGb3AGVmZuK1114zKA8PDzdrCWoie2bvp8BrcSI0EVHRmJ0AdevWDT/88INB+X//+1+9S1AQlWRMgIiISjeThsAWLVqkux8cHIyZM2diz549CAsLAwAcPnwYBw4cwPvvv2+ZKImszN7XANJiAkREVDQmJUDz58/X2/bw8MCZM2dw5swZXVnFihWxatUqTJ48WdoIiWygJM0BApgAERGZy6QE6MqVK5aOg8iucAiMiKh0K9I6QFpCCAghpIqFyG4wASIiKt2KlACtXbsWDRs2hIuLC1xcXNCoUSP85z//kTo2IpspaXOAbt8GcnJsGwsRUUli9jpA8+bNw5QpU/Dee++hRYsWEELgwIEDGDFiBNLS0vSuFUZUUpWUOUCenoBCAahUQEoKULOmrSMiIioZzE6AvvrqKyxduhQRERG6su7du+O5557DtGnTmABRqVBShsBkMk0v0LVrmmEwJkBERKYxewgsOTkZzZs3Nyhv3rw5kpOTJQmKyJYePQKysjT37T0BAjgPiIioKMxOgGrXro0tW7YYlG/evBl16tSRJCgiW9LO/3F0BNzdbRuLKZgAERGZz+whsOnTp6Nv37747bff0KJFC8hkMuzfvx+7du0ymhgRlTT55//Y64VQ82MCRERkPrN7gHr16oUjR47Ay8sLP/74I7Zt2wYvLy8cOXIEPXr0sESMRFZVUub/aDEBIiIyn1k9QCqVCsOGDcOUKVOwbt06S8VEZFNMgIiISj+zeoAUCoXRC6ESlSYlZQ0gLSZARETmM3sIrEePHvjxxx8tEAqRfSgpawBpaROga9eAGzdsGwsRUUlh9iTo2rVr45NPPsHBgwcREhKCcuXK6T0+evRoyYIjsoWSNgS2a5fm9sEDwM8PWLECGDLEtjEREdk7sxOgb775BhUrVsSxY8dw7NgxvcdkMhkTICrxSlICdOMGMHbsk+28PGD4cKBDB6BGDZuFRURk98xOgHhleCrtStIcoAsXNElPfmo1cPEiEyAiosLwavBEBZSkOUB16gAOBX6L5XKgdm3bxENEVFIUKQGKiYlBgwYNoFQqoVQq0aBBA3zzzTdSx0ZkEyVpCKxGDc2cH+2CjTIZsHw5e3+IiJ7F7CGwKVOmYP78+Rg1ahTCwsIAAIcOHUJUVBSuXr2KTz/9VPIgiaypJCVAgGbCc1YWMHo0EBrKCdBERKYwOwFaunQpVq5cif79++vKunXrhkaNGmHUqFFMgKhEy8rSXAwVKDkJEAC8/LLmllP0iIhMY/YQmFqtRmhoqEF5SEgIcnNzJQmKyFbyXwi1fHnbxmKOunU1t2lpT3qwiIjo6cxOgAYOHIilS5calK9YsQIDBgyQJCgiW8k//FUSLoSqVa6cZg0gAEhMtG0sREQlgdlDYIBmEnRcXBxeeuklAMDhw4dx/fp1REREIDo6Wldv3rx50kRJZCXaBEip1KyxU5ImEwcHa1aDTkwEWra0dTRERPbN7ATo77//xgsvvAAAuHTpEgCgcuXKqFy5Mv7++29dPVlJ+veZ6F/ff6+5vXq15K2qHBwMbN/OHiAiIlOYnQAlJCRYIg4im7txA1i58sl2SVtVOThYc8sEiIjo2Yq1EKIUlixZgoCAACiVSoSEhGDfvn2F1t+7dy9CQkKgVCpRq1YtLFu2TO/xlStXomXLlvDw8ICHhwdeffVVHDlyxJIvgUqJCxeAgut6aldVLgmYABERmc6mCdDmzZsxduxYTJo0CSdOnEDLli3RsWNHJCUlGa1/5coVdOrUCS1btsSJEyfw0UcfYfTo0di6dauuzp49e9C/f38kJCTg0KFDqFmzJsLDw3Hz5k1rvSwqoerUMSwrSasqaxOgpCTNhVGJiOjpbJoAzZs3D0OGDMHQoUMRHByMBQsWwNfX1+hZZgCwbNky1KxZEwsWLEBwcDCGDh2KwYMHY+7cubo669evR2RkJJ5//nkEBQVh5cqVyMvLwy7tJbOJnqJGDaB69SfbcnnJWlXZ0xOoXFlz/9w528ZCRGTvinQWmBRycnJw7NgxTJgwQa88PDwcBw8eNPqcQ4cOITw8XK+sQ4cOiImJgUqlgkKhMHhOVlYWVCoVKlWq9NRYsrOzkZ2drdvOzMwEAKhUKqhUKpNfU0Ha5xZnH2QaKdpaCODOHUcAMqxalYvWrQVq1ABK0tsXFCTH7dsO+OuvXDRqZJnr9PFzbV1sb+thW1uPpdranP3ZLAFKS0uDWq2Gt7e3Xrm3tzdSUlKMPiclJcVo/dzcXKSlpaFq1aoGz5kwYQKqV6+OV1999amxzJo1C9OnTzcoj4uLg6urqykvp1Dx8fHF3geZpjhtfeeOEo8edYCDQx7Kl4/Fn38K/PmnhMFZgatrIwAB+OWXy/DwsOxkIH6urYvtbT1sa+uRuq2zsrJMrmuzBEir4OnyQohCT6E3Vt9YOQDMmTMHGzduxJ49e6BUKp+6z4kTJ+qtX5SZmQlfX1+Eh4fD3d3dpNdhjEqlQnx8PNq3b2+0d4qkI0Vb//ab5jPk7y9D9+4dpQzPai5dcsCOHUBubm106hRgkWPwc21dbG/rYVtbj6XaWjuCYwqbJUBeXl6Qy+UGvT2pqakGvTxaPj4+Rus7OjrC09NTr3zu3Ln47LPPsHPnTjRq1KjQWJydneHs7GxQrlAoJHljpNoPPVtx2vrqVc1tnTqyEvt+Pfec5vbcOQcoFJad4sfPtXWxva2HbW09Ure1Ofuy2SRoJycnhISEGHR/xcfHo3nz5kafExYWZlA/Li4OoaGhei/6iy++wCeffILt27cbvW4ZkTEXLmhuS8pZX8ZozwS7cKFkzV0iIrI2m54FFh0djW+++QarVq1CYmIioqKikJSUhBEjRgDQDE1FRETo6o8YMQLXrl1DdHQ0EhMTsWrVKsTExGDcuHG6OnPmzMHkyZOxatUq+Pv7IyUlBSkpKXjA84LpGbTr/Rg7Hb6k8PXVXBcsNxf4d6F2IiIywqZzgPr27Yv09HTMmDEDycnJaNCgAWJjY+H371Udk5OT9dYECggIQGxsLKKiorB48WJUq1YNixYtQq9evXR1lixZgpycHPTu3VvvWFOnTsW0adOs8rqoZCoNPUAyGRAUBBw7plkQMSjI1hEREdknm0+CjoyMRGRkpNHH1qxZY1DWqlUrHD9+/Kn7u6qdyEFkBiFKRw8QoBkG0yZAPXrYOhoiIvtk80thENmDlBQgKwtwcAD8/W0dTfHwkhhERM/GBIgIT4a//PwAJyfbxlJcTICIiJ6NCRARSs/wF/AkATp7VnNFeyIiMsQEiAilYwK0VmAg4OgIPHwI3Lhh62iIiOwTEyAilK4eIIXiyevYtIlJEBGRMUyAiFC6eoAAwMVFc/vhh5p5TTExto2HiMjeMAGiMq80nQIPaHp8Tpx4sp2XBwwfzp4gIqL8mABRmffPP5r5Mg4OQIBlrh9qVRcuaJK6/NTqJ0keERExASIqVafAA5peLIcCv9lyeekZ3iMikgITICrztD0jpSVBqFEDWLHiybaDA7B8uaaciIg0mABRmaftASoN83+0hgwBRo3S3O/aVbNNRERPMAGiMq+09QBp9emjud2/XzMHiIiInmACRGVeaTsFXuull4AKFYD0dODoUVtHQ0RkX5gAUZlW2k6Bz8/REWjfXnP/119tGwsRkb1hAkRlWmoq8OBB6TkFvqCOHTW327fbNg4iInvDBIjKNO3wV82agLOzbWOxhA4dNLdHjgBpabaNhYjInjABojKttE6A1qpeHWjUSDPUFx9v62iIiOwHEyAq00rjKfAFvfaa5pbzgIiInmACRGXan39qbr28bBuHJWnnAe3YobkuGBERMQGiMiwmBvj5Z839Tz8tvVdMb94ccHPTTPjOf5FUIqKyjAkQlUk3bgDDhj3ZFqL0XjHdyQl49VXN/SVLSudrJCIyFxMgKpMuXDAcDirNV0wvX15zu2qV5qKvpbW3i4jIVEyAqEyqUweQyfTLSusV02/cANavf7Kdl1d6e7uIiEzFBIjKpCpVABeXJ9tyeem9YnpZ6+0iIjKFo60DILKFX38FsrI0idCGDUC9eqUz+QE0vV0ODvpJUGnt7SIiMhV7gKhMWrdOcztoENCuXelNfgDNa1uxQpP0aLVqVbpfMxHRszABojInIwP46SfN/YEDbRqK1QwZAly9Cnz5pWb7t9+Ac+dsGhIRkU0xAaIyZ+tWIDsbeO45oHFjW0djPTVqANHRQJcuQG4uMH68rSMiIrIdJkBU5miHvwYONDwTrCz44gvNcNj//gfs2WPraIiIbIMJEJUpSUlP/ugPGGDTUGwmKEhzGjwAjBoF7NrFU+KJqOxhAkRlyoYNmtvWrQFfX5uGYlPTpgHOzsDff2tWiebiiERU1jABojLj+nVg2TLN/bIy+flpsrOBnJwn21wckYjKGiZAVCbExAD+/sC1a5rtrCybhmNzFy5orn+Wn1oNHDgAJCQwESKi0o8JEJV62guf5l8IMCqqbP+R1y6OWFC/fkDbthwSI6LSz+YJ0JIlSxAQEAClUomQkBDs27ev0Pp79+5FSEgIlEolatWqhWXaMY18tm7divr168PZ2Rn169fHDz/8YKnwyY7duKHpzfj6a14KoqCCiyMWPBsu/5CYth3LcsJIRKWPTROgzZs3Y+zYsZg0aRJOnDiBli1bomPHjkhKSjJa/8qVK+jUqRNatmyJEydO4KOPPsLo0aOxdetWXZ1Dhw6hb9++GDRoEE6dOoVBgwahT58++P333631sgpV8I+JsT8uRaljyX2XlBj/+stLtx0To+nFaNsW+PxzGOClIJ4sjpiQAGzaZPi4Wg106ADUrKnfK1SwrQH7+6zZw+dRyhjzt7e9xlgS2tGU59mqrW3dRraIseD3iNUJG2ratKkYMWKEXllQUJCYMGGC0frjx48XQUFBemXDhw8XL730km67T58+4rXXXtOr06FDB9GvXz+T47p3754AIO7du2fyc4zJyckRP/74o8jJyRFCCLF0qRAODkIAmttevfS3P/9c82NunaI+z5p1LLnv118XwsEhTwBCyGR5okMHIWQyzeP5f7TPkcuF+OabYr21pc7160/a59k/T9p66FAh3ntP//34+GMhpk/XL+vZU3971iwhZs8unZ9H6WPM+7csz45jLAntaMrzbNPWtm4j28T4pK2l/D425++3TIiCUyGtIycnB66urvjuu+/Qo0cPXfmYMWNw8uRJ7N271+A5r7zyCpo0aYKFCxfqyn744Qf06dMHWVlZUCgUqFmzJqKiohAVFaWrM3/+fCxYsADXtDNgC8jOzkZ2drZuOzMzE76+vkhLS4O7u3uRX6NKpUJ8fDzat2+Pf/5RoHZtR+TllcGV9+zEhg25qFwZCAwUvA6WEatXyxAZKYdaLYNcLtCrVx62bJE/+4lERMUglwtcuJAryfdyZmYmvLy8cO/evWf+/XYs/uGKJi0tDWq1Gt7e3nrl3t7eSElJMfqclJQUo/Vzc3ORlpaGqlWrPrXO0/YJALNmzcL06dMNyuPi4uDq6mrqS3qq+Ph4/PWXF/LyWhR7X2QqAeBJsungkIesrF14+PAx/vwT+PNP20Vmr7y9geXLlUhOLoeqVR8CAL77LhxCMGknIstRq2VYv/53NGyYXux9ZZlxiq/NEiAtWYHZl0IIg7Jn1S9Ybu4+J06ciOjoaN22tgcoPDxcsh6gRo0UmDpVFOgBKvhHWvNazK1T1OdZs441jy+XC3z6qRqTJz/pzViyJA8REW1B5lGr1bpeIQcH8e8gmP281yXh88gYGSNjLLyOXC4wYEAzyXqATGWzSdBeXl6Qy+UGPTOpqakGPThaPj4+Rus7OjrC09Oz0DpP2ycAODs7w93dXe8HABQKRbF/tPsJCFBgxQqZ7qwbuRx480397RUrZEWqU9TnWbOO5Y8v/t0WWL5chgkTHHH1qgwJCcDVqzIMG+YoyftZ1n6GDXvSjteuybBypX5b8/NojRiftLf9xlgS2tGU59mmrW3dRraJUf87OyBAuu8tk0k39ch8TZs2FSNHjtQrCw4OLnQSdHBwsF7ZiBEjDCZBd+zYUa/Oa6+9ZheToIXQTDZNSNDcGtsuah1L7rskxHj5co745JN94vLlJ21NlmGsre3ts2brz6OUMRZsb3uMsSS0oynPs2Vb27qNrB2jpb6zzfn7bdMEaNOmTUKhUIiYmBhx5swZMXbsWFGuXDlx9epVIYQQEyZMEIMGDdLVv3z5snB1dRVRUVHizJkzIiYmRigUCvH999/r6hw4cEDI5XIxe/ZskZiYKGbPni0cHR3F4cOHTY7LkgkQWQbb2nrY1tbF9rYetrX1WKqtzfn7bdM5QH379kV6ejpmzJiB5ORkNGjQALGxsfDz8wMAJCcn660JFBAQgNjYWERFRWHx4sWoVq0aFi1ahF69eunqNG/eHJs2bcLkyZMxZcoUBAYGYvPmzWjWrJnVXx8RERHZJ5tPgo6MjERkZKTRx9asWWNQ1qpVKxw/frzQffbu3Ru9e/eWIjwiIiIqhWx+KQwiIiIia2MCRERERGUOEyAiIiIqc5gAERERUZnDBIiIiIjKHCZAREREVOYwASIiIqIyhwkQERERlTlMgIiIiKjMsflK0PZICM1VajMzM4u1H5VKhaysLGRmZpp3hVoyG9vaetjW1sX2th62tfVYqq21f7e1f8cLwwTIiPv37wMAfH19bRwJERERmev+/fuoUKFCoXVkwpQ0qYzJy8vDrVu3UL58echksiLvJzMzE76+vrh+/Trc3d0ljJAKYltbD9vautje1sO2th5LtbUQAvfv30e1atXg4FD4LB/2ABnh4OCAGjVqSLY/d3d3/jJZCdvaetjW1sX2th62tfVYoq2f1fOjxUnQREREVOYwASIiIqIyhwmQBTk7O2Pq1Klwdna2dSilHtvaetjW1sX2th62tfXYQ1tzEjQRERGVOewBIiIiojKHCRARERGVOUyAiIiIqMxhAkRERERlDhMgC1qyZAkCAgKgVCoREhKCffv22TqkEm3WrFl48cUXUb58eVSpUgWvv/46zp07p1dHCIFp06ahWrVqcHFxQevWrXH69GkbRVx6zJo1CzKZDGPHjtWVsa2ldfPmTQwcOBCenp5wdXXF888/j2PHjukeZ3tLIzc3F5MnT0ZAQABcXFxQq1YtzJgxA3l5ebo6bOui+e2339C1a1dUq1YNMpkMP/74o97jprRrdnY2Ro0aBS8vL5QrVw7dunXDjRs3LBOwIIvYtGmTUCgUYuXKleLMmTNizJgxoly5cuLatWu2Dq3E6tChg1i9erX4+++/xcmTJ0Xnzp1FzZo1xYMHD3R1Zs+eLcqXLy+2bt0q/vrrL9G3b19RtWpVkZmZacPIS7YjR44If39/0ahRIzFmzBhdOdtaOnfu3BF+fn7irbfeEr///ru4cuWK2Llzp7h48aKuDttbGp9++qnw9PQUP//8s7hy5Yr47rvvhJubm1iwYIGuDtu6aGJjY8WkSZPE1q1bBQDxww8/6D1uSruOGDFCVK9eXcTHx4vjx4+LNm3aiMaNG4vc3FzJ42UCZCFNmzYVI0aM0CsLCgoSEyZMsFFEpU9qaqoAIPbu3SuEECIvL0/4+PiI2bNn6+o8fvxYVKhQQSxbtsxWYZZo9+/fF3Xq1BHx8fGiVatWugSIbS2tDz/8ULz88stPfZztLZ3OnTuLwYMH65X17NlTDBw4UAjBtpZKwQTIlHbNyMgQCoVCbNq0SVfn5s2bwsHBQWzfvl3yGDkEZgE5OTk4duwYwsPD9crDw8Nx8OBBG0VV+ty7dw8AUKlSJQDAlStXkJKSotfuzs7OaNWqFdu9iN5991107twZr776ql4521pa//vf/xAaGor/+7//Q5UqVdCkSROsXLlS9zjbWzovv/wydu3ahfPnzwMATp06hf3796NTp04A2NaWYkq7Hjt2DCqVSq9OtWrV0KBBA4u0PS+GagFpaWlQq9Xw9vbWK/f29kZKSoqNoipdhBCIjo7Gyy+/jAYNGgCArm2Ntfu1a9esHmNJt2nTJhw/fhx//PGHwWNsa2ldvnwZS5cuRXR0ND766CMcOXIEo0ePhrOzMyIiItjeEvrwww9x7949BAUFQS6XQ61WY+bMmejfvz8AfrYtxZR2TUlJgZOTEzw8PAzqWOJvJxMgC5LJZHrbQgiDMiqa9957D3/++Sf2799v8BjbvfiuX7+OMWPGIC4uDkql8qn12NbSyMvLQ2hoKD777DMAQJMmTXD69GksXboUERERunps7+LbvHkz1q1bhw0bNuC5557DyZMnMXbsWFSrVg1vvvmmrh7b2jKK0q6WansOgVmAl5cX5HK5QcaamppqkP2S+UaNGoX//e9/SEhIQI0aNXTlPj4+AMB2l8CxY8eQmpqKkJAQODo6wtHREXv37sWiRYvg6Oioa0+2tTSqVq2K+vXr65UFBwcjKSkJAD/bUvrggw8wYcIE9OvXDw0bNsSgQYMQFRWFWbNmAWBbW4op7erj44OcnBzcvXv3qXWkxATIApycnBASEoL4+Hi98vj4eDRv3txGUZV8Qgi899572LZtG3bv3o2AgAC9xwMCAuDj46PX7jk5Odi7dy/b3Uzt2rXDX3/9hZMnT+p+QkNDMWDAAJw8eRK1atViW0uoRYsWBks6nD9/Hn5+fgD42ZZSVlYWHBz0//TJ5XLdafBsa8swpV1DQkKgUCj06iQnJ+Pvv/+2TNtLPq2ahBBPToOPiYkRZ86cEWPHjhXlypUTV69etXVoJdbIkSNFhQoVxJ49e0RycrLuJysrS1dn9uzZokKFCmLbtm3ir7/+Ev379+fpqxLJfxaYEGxrKR05ckQ4OjqKmTNnigsXLoj169cLV1dXsW7dOl0dtrc03nzzTVG9enXdafDbtm0TXl5eYvz48bo6bOuiuX//vjhx4oQ4ceKEACDmzZsnTpw4oVv+xZR2HTFihKhRo4bYuXOnOH78uGjbti1Pgy+JFi9eLPz8/ISTk5N44YUXdKdrU9EAMPqzevVqXZ28vDwxdepU4ePjI5ydncUrr7wi/vrrL9sFXYoUTIDY1tL66aefRIMGDYSzs7MICgoSK1as0Huc7S2NzMxMMWbMGFGzZk2hVCpFrVq1xKRJk0R2drauDtu6aBISEox+R7/55ptCCNPa9dGjR+K9994TlSpVEi4uLqJLly4iKSnJIvHKhBBC+n4lIiIiIvvFOUBERERU5jABIiIiojKHCRARERGVOUyAiIiIqMxhAkRERERlDhMgIiIiKnOYABEREVGZwwSIiKyidevWGDt2rK3D0BFCYNiwYahUqRJkMhlOnjxp65CIyIp4NXgiKpO2b9+ONWvWYM+ePahVqxa8vLxsHRIRWRETICIqsdRqNWQymcHFLU1x6dIlVK1alRe4JCqjOARGVIa0bt0ao0ePxvjx41GpUiX4+Phg2rRpusevXr1qMByUkZEBmUyGPXv2AAD27NkDmUyGHTt2oEmTJnBxcUHbtm2RmpqKX3/9FcHBwXB3d0f//v2RlZWld/zc3Fy89957qFixIjw9PTF58mTkvxpPTk4Oxo8fj+rVq6NcuXJo1qyZ7rgAsGbNGlSsWBE///wz6tevD2dnZ1y7ds3oa927dy+aNm0KZ2dnVK1aFRMmTEBubi4A4K233sKoUaOQlJQEmUwGf39/o/vIf7x69erB1dUVvXv3xsOHD/Htt9/C398fHh4eGDVqFNRqte55d+/eRUREBDw8PODq6oqOHTviwoULAIB79+7BxcUF27dv1zvWtm3bUK5cOTx48AAAcPPmTfTt2xceHh7w9PRE9+7dcfXqVV39PXv2oGnTpihXrhwqVqyIFi1aPLUttO/rtm3b0KZNG7i6uqJx48Y4dOiQ0fpEZYJFrjBGRHapVatWwt3dXUybNk2cP39efPvtt0Imk4m4uDghhBBXrlwRAMSJEyd0z7l7964AIBISEoQQTy54+NJLL4n9+/eL48ePi9q1a4tWrVqJ8PBwcfz4cfHbb78JT09PMXv2bL1ju7m5iTFjxoizZ8+KdevWCVdXV72Lfr7xxhuiefPm4rfffhMXL14UX3zxhXB2dhbnz58XQgixevVqoVAoRPPmzcWBAwfE2bNnxYMHDwxe540bN4Srq6uIjIwUiYmJ4ocffhBeXl5i6tSpQgghMjIyxIwZM0SNGjVEcnKySE1NNdpe2uO1b99eHD9+XOzdu1d4enqK8PBw0adPH3H69Gnx008/CScnJ7Fp0ybd87p16yaCg4PFb7/9Jk6ePCk6dOggateuLXJycoQQQvTq1UsMHDhQ71i9evUS/fv3F0II8fDhQ1GnTh0xePBg8eeff4ozZ86IN954Q9SrV09kZ2cLlUolKlSoIMaNGycuXrwozpw5I9asWaO76nZB2vc1KChI/Pzzz+LcuXOid+/ews/PT6hUKqPPISrtmAARlSGtWrUSL7/8sl7Ziy++KD788EMhhHkJ0M6dO3V1Zs2aJQCIS5cu6cqGDx8uOnTooHfs4OBgkZeXpyv78MMPRXBwsBBCiIsXLwqZTCZu3rypF1+7du3ExIkThRCahASAOHnyZKGv86OPPhL16tXTO9bixYuFm5ubUKvVQggh5s+fL/z8/Ardj/Z4Fy9e1Htdrq6u4v79+7qyDh06iOHDhwshhDh//rwAIA4cOKB7PC0tTbi4uIgtW7YIIYTYtm2bcHNzEw8fPhRCCHHv3j2hVCrFL7/8IoQQIiYmxiD+7Oxs4eLiInbs2CHS09MFALFnz55C49fSvq/ffPONruz06dMCgEhMTDRpH0SlDYfAiMqYRo0a6W1XrVoVqampxdqPt7c3XF1dUatWLb2ygvt96aWXIJPJdNthYWG4cOEC1Go1jh8/DiEE6tatCzc3N93P3r17cenSJd1znJycDF5DQYmJiQgLC9M7VosWLfDgwQPcuHHDrNfp6uqKwMBAvdfl7+8PNzc3o681MTERjo6OaNasme5xT09P1KtXD4mJiQCAzp07w9HREf/73/8AAFu3bkX58uURHh4OADh27BguXryI8uXL69qhUqVKePz4MS5duoRKlSrhrbfeQocOHdC1a1csXLgQycnJz3wt+dutatWqAFCk956oNOAkaKIyRqFQ6G3LZDLk5eUBgG4yscg3L0elUj1zPzKZrND9miIvLw9yuRzHjh2DXC7Xeyx/suHi4qKX2BgjhDCoo31Nz3puQcZeV2GvNX/bPS0mJycn9O7dGxs2bEC/fv2wYcMG9O3bF46Omq/kvLw8hISEYP369Qb7qVy5MgBg9erVGD16NLZv347Nmzdj8uTJiI+Px0svvWTSa9HGYs57RFSasAeIiHS0f1zz9yZIuT7O4cOHDbbr1KkDuVyOJk2aQK1WIzU1FbVr19b78fHxMes49evXx8GDB/WSkYMHD6J8+fKoXr26JK+lsGPn5ubi999/15Wlp6fj/PnzCA4O1pUNGDAA27dvx+nTp5GQkIABAwboHnvhhRdw4cIFVKlSxaAtKlSooKvXpEkTTJw4EQcPHkSDBg2wYcMGi742otKECRAR6bi4uOCll17C7NmzcebMGfz222+YPHmyZPu/fv06oqOjce7cOWzcuBFfffUVxowZAwCoW7cuBgwYgIiICGzbtg1XrlzBH3/8gc8//xyxsbFmHScyMhLXr1/HqFGjcPbsWfz3v//F1KlTER0dXaRT5s1Rp04ddO/eHe+88w7279+PU6dOYeDAgahevTq6d++uq9eqVSt4e3tjwIAB8Pf31+u5GTBgALy8vNC9e3fs27cPV65cwd69ezFmzBjcuHEDV65cwcSJE3Ho0CFcu3YNcXFxBgkWERWOCRAR6Vm1ahVUKhVCQ0MxZswYfPrpp5LtOyIiAo8ePULTpk3x7rvvYtSoURg2bJju8dWrVyMiIgLvv/8+6tWrh27duuH333+Hr6+vWcepXr06YmNjceTIETRu3BgjRozAkCFDJE3mCrN69WqEhISgS5cuCAsLgxACsbGxBkNQ/fv3x6lTp/R6fwDNvKPffvsNNWvWRM+ePREcHIzBgwfj0aNHcHd3h6urK86ePYtevXqhbt26GDZsGN577z0MHz7cKq+PqDSQiacNWBMRERGVUuwBIiIiojKHCRARERGVOUyAiIiIqMxhAkRERERlDhMgIiIiKnOYABEREVGZwwSIiIiIyhwmQERERFTmMAEiIiKiMocJEBEREZU5TICIiIiozGECRERERGXO/wOIRoTZwCtHgAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'boring chutes & ladders (no chutes or ladders)')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(1:100, diff([(M^n * e₁)[end] for n = 0:100]), \"b.-\")\n", + "xlabel(\"number of moves n\")\n", + "ylabel(\"probability of finishing in n moves\")\n", + "grid()\n", + "title(\"boring chutes & ladders (no chutes or ladders)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And the expected number of moves is\n", + "\n", + "$$\n", + "\\sum_{n=1}^\\infty n [p(n)-p(n-1)]\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "29.04761904761901" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum((1:100) .* diff([(M^n * e₁)[end] for n = 0:100]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding chutes and ladders\n", + "\n", + "Now, we will add in the effect of chutes and ladders. After you make each move represented by $M$ above, then we additionally go up a ladder or down a chute if we landed on one. We represent this by a transition matrix $T$, where $T_{ij} = 1$ if there is a ladder/chute from $j$ to $i$. For positions $j$ with no chute or ladder, we set $T_{jj}=1$.\n", + "\n", + "The following is the list of chutes and ladders from the game board shown at the top:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "T = zeros(101,101)\n", + "\n", + "for t in (1=>39, 4=>14, 9=>31, 28=>84, 36=>44, 51=>67, 80=>100, 71=>91, # ladders\n", + " 16=>6, 47=>26, 49=>11, 56=>53, 64=>60, 92=>73, 95=>75, 98=>78) # chutes\n", + " T[t[2]+1,t[1]+1] = 1\n", + "end\n", + "\n", + "# Set T[j,j] = 1 in spaces with no chute/ladder\n", + "for j = 1:101\n", + " if all(T[:,j] .== 0)\n", + " T[j,j] = 1\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The matrix T is also a Markov matrix!" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1×101 Matrix{Float64}:\n", + " 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(T,dims=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Making the move $M$ followed by the transition $T$ is represented by their product $TM$, which is also a Markov matrix. (The product of any Markov matrices is also a Markov matrix.)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1×101 Matrix{Float64}:\n", + " 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(T*M, dims=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After a single move, the probability distribution is $TM e_1$, and we see the effect of the two ladders that can be reached in a single move:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACboklEQVR4nOzdeVgT1/4/8HeAsApRNpOIBC0CioqKXlGpiEUWreBSxWIRFK297raXul+xdbfiUosrbrVW60+LVFsVK7jUqiBStXqRWhQXkIIKZRECOb8//CaXyBYkk0Hu5+Uzz2NmJjNvJgMn58yZOQLGGAMhhBBC3mh6fAcghBBCSONRgU4IIYQ0A1SgE0IIIc0AFeiEEEJIM0AFOiGEENIMUIFOCCGENANUoBNCCCHNABXohBBCSDNABTohhBDSDFCB3kBJSUkQCAT4f//v/2ltm7t374ZAIEBKSkq964aHh8PBwUFtnoODA8LDw1Wv7927B4FAgN27d6vmXbx4EVFRUXj+/Ll2QtdjwIABGDBgQJ2ZNLF//36sX7++Qe+paV9RUVEQCATIy8tr0LbqcuvWLURFReHevXvVltX0OTU15eXl+OijjyCRSKCvr49u3brh8ePHiIqKQlpamk6zrF+/HiNGjEC7du0gEAjUzh1CiGaoQH/DLFq0CN9//32d60gkEvz6668YMmSIat7FixexZMkSnRXommTSxOsU6K+7r4a6desWlixZUmOBrsnnxLfNmzdj69atWLBgAS5cuICvv/4ajx8/xpIlS3ReoG/ZsgX379/HwIEDYWNjo9N9E9JcGPAdoCkoLS2FiYkJ3zE08tZbb9W7jpGRETw8PHSQRnO6yFRZWYmKioom8fNr8jnx7ebNmzAxMcG0adNU8zRpJXodpaWlMDY2hkAgqHH5rVu3oKf3sn7RuXNnTjIQ0tw1ixq6sjn12rVrGDFiBCwsLCASifDBBx/gr7/+UlvXwcEB7777Lo4cOYLu3bvD2NgYS5YsAfDyD1xQUBBatWoFY2NjdOvWDXv27Klxny9evMDHH38MsVgMExMTeHl54dq1a2rrpKSkYMyYMXBwcICJiQkcHBzw/vvv4/79+zVu89mzZxg/fjwsLS1hZmaGoUOH4s8//1RbR5Om3FebnKOiohAZGQkAqiZNgUCApKQkREREwNLSEiUlJdW2M3DgQLi6uta5L8YYVq9eDZlMBmNjY/To0QM//fRTvZkA4K+//sKHH36Itm3bwsjICDY2NujXrx9Onz4N4GWz/fHjx3H//n1VZmWBoNze6tWrsXTpUrRr1w5GRkZITEyss3n/wYMH9Z4jAoEAUVFR1d5b9dLG7t27MWrUKACAt7e3KptynzV9Ti9evMC8efPQrl07GBoaok2bNpg6dWq1VhPlOXrixAn06NEDJiYmcHFxwc6dO2v5FNQtWbIEvXv3hqWlJSwsLNCjRw/Exsai6jhMAoEAO3bsQGlpqVr2Xr16AQDGjx+vml/1WKSkpCAwMBCWlpYwNjZG9+7d8d1336ntX3kJ6dSpU5gwYQJsbGxgamqKsrKyWjMrC/PXodzfmTNnMGnSJFhZWcHCwgLjxo1DcXExcnJyMHr0aLRs2RISiQT/+te/IJfL1bbx9OlTTJkyBW3atIGhoSHat2+PBQsWqGXu3r073n777Wr7r6ysRJs2bTBixAjVvPLycixduhQuLi6qc3v8+PHVzjVCtKlZ1dCHDx+O0aNH46OPPsLvv/+ORYsW4datW7h8+TKEQqFqvdTUVNy+fRsLFy5Eu3btYGZmhvT0dPTt2xe2trbYuHEjrKyssG/fPoSHh+PJkyf49NNP1fY1f/589OjRAzt27EBBQQGioqIwYMAAXLt2De3btwfwstBxdnbGmDFjYGlpiezsbGzevBm9evXCrVu3YG1trbbNiIgIDBo0CPv378eDBw+wcOFCDBgwANevX0fLli1f+7hMnDgRT58+xZdffokjR45AIpEAADp16gRLS0vs3LkT+/fvx8SJE1XvuXXrFhITE/HVV1/Vue0lS5ZgyZIliIiIwHvvvYcHDx5g0qRJqKyshLOzc53vDQ0NRWpqKpYtWwYnJyc8f/4cqampyM/PBwDExMTgww8/xN27d2ttvt64cSOcnJzwxRdfwMLCAh06dKhzn5qeI/UZMmQIli9fjvnz5+Orr75Cjx49ANReM2eMYdiwYfj5558xb948vP3227h+/ToWL16MX3/9Fb/++iuMjIxU6//222/45JNPMHfuXLRu3Ro7duxAREQEHB0d0b9//zqz3bt3D5MnT4a9vT0A4NKlS5g+fToePXqEf//73wCAX3/9FZ9//jkSExNx5swZAC8vVezatQvjx4/HwoULVZcs7OzsAACJiYnw9/dH7969sWXLFohEIhw4cADBwcEoKSlR68cBABMmTMCQIUPw9ddfo7i4uEHH93VMnDgRI0aMwIEDB3Dt2jXMnz8fFRUVSE9Px4gRI/Dhhx/i9OnTWLVqFaRSKT7++GMAL79oeXt74+7du1iyZAm6du2K8+fPY8WKFUhLS8Px48cBvPySM3PmTGRkZKidZ6dOncLjx48xfvx4AIBCoUBQUBDOnz+PTz/9FH379sX9+/exePFiDBgwACkpKW9MiyB5w7BmYPHixQwAmz17ttr8b775hgFg+/btU82TyWRMX1+fpaenq607ZswYZmRkxLKystTmBwQEMFNTU/b8+XPGGGOJiYkMAOvRowdTKBSq9e7du8eEQiGbOHFirTkrKipYUVERMzMzYxs2bFDN37VrFwPAhg8frrb+L7/8wgCwpUuXquaFhYUxmUymtp5MJmNhYWGq15mZmQwA27Vrl2remjVrGACWmZlZLZeXlxfr1q2b2rx//vOfzMLCgv3999+1/jzPnj1jxsbGteb28vKqM1OLFi3YrFmzat0+Y4wNGTKk2s9bdXtvvfUWKy8vr3FZ1X015BwBwBYvXlxtn68e50OHDjEALDExsdq6r35OJ06cYADY6tWr1dY7ePAgA8C2bdumth9jY2N2//591bzS0lJmaWnJJk+eXG1fdamsrGRyuZx99tlnzMrKSu2cDQsLY2ZmZmrrJycnVzt2Si4uLqx79+5MLperzX/33XeZRCJhlZWVjLH/ns/jxo1rUFYlV1dXtXOnPsr9TZ8+XW3+sGHDGAAWHR2tNr9bt26sR48eqtdbtmxhANh3332ntt6qVasYAHbq1CnGGGN5eXnM0NCQzZ8/X2290aNHs9atW6uOy7fffssAsMOHD6utpzy2MTExGv9shDREs2hyVxo7dqza69GjR8PAwACJiYlq87t27QonJye1eWfOnME777yDtm3bqs0PDw9HSUkJfv31V7X5ISEhatcDZTIZ+vbtq7avoqIizJkzB46OjjAwMICBgQFatGiB4uJi3L59u978ffv2hUwmq5Zf22bOnIm0tDT88ssvAIDCwkJ8/fXXCAsLQ4sWLWp936+//ooXL17Umrs+//jHP7B7924sXboUly5dqtYMqonAwMAG1fw0PUe0TVkLfrUWO2rUKJiZmeHnn39Wm9+tWzdVDRsAjI2N4eTkVOvlmlf35ePjA5FIBH19fQiFQvz73/9Gfn4+cnNzXyv/H3/8gf/85z+q41dRUaGaBg8ejOzsbKSnp6u9Z+TIka+1r9f17rvvqr3u2LEjAFTrHNmxY0e143jmzBmYmZnhvffeU1tP+VkpPxsrKysMHToUe/bsgUKhAPDyMtnRo0cxbtw4GBi8bPA8duwYWrZsiaFDh6odp27dukEsFiMpKUlrPzMhVTWrAl0sFqu9NjAwgJWVlaoJV0nZ5FxVfn5+jfOlUqlqeV37Us6rul5ISAg2bdqEiRMn4uTJk7hy5QqSk5NhY2OD0tLSevPXtE0uBAUFwcHBQdW8vnv3bhQXF2Pq1Kl1vk+Zq7bc9Tl48CDCwsKwY8cO9OnTB5aWlhg3bhxycnI0zl7TZ1YXTc8RbcvPz4eBgUG1HtwCgaDGz9jKyqraNoyMjGo8b6q6cuUKfH19AQDbt2/HL7/8guTkZCxYsAAA6n1/bZ48eQIA+Ne//gWhUKg2TZkyBQCq3RLY0M+msSwtLdVeGxoa1jr/xYsXqtf5+fkQi8XVOuzZ2trCwMBA7bOZMGECHj16hISEBADAt99+i7KyMrUvak+ePMHz589haGhY7Vjl5ORo9dZJQqpqVtfQc3Jy0KZNG9XriooK5OfnV/vjWFNPWysrK2RnZ1eb//jxYwCodr27pkInJydHta+CggIcO3YMixcvxty5c1XrlJWV4enTp7Xmr2meo6Njjetri56eHqZOnYr58+dj7dq1iImJwTvvvFPvNXDlz1pb7vo671lbW2P9+vVYv349srKyEB8fj7lz5yI3NxcnTpzQKHttvaZro8k5YmRkVGMHrsYU+lZWVqioqMBff/2lVqgzxpCTk6PqjNZYBw4cgFAoxLFjx2BsbKyaHxcX16jtKs//efPmqXX+qurV86Whnw1frKyscPnyZTDG1DLn5uaioqJC7Xffz88PUqkUu3btgp+fH3bt2oXevXujU6dOqnWsra1hZWVV6zlsbm7O3Q9D/qc1qxr6N998o/b6u+++Q0VFhUYPqXjnnXdw5swZVQGutHfvXpiamla7Derbb79V6zV8//59XLx4UbUvgUAAxphaRycA2LFjByorKzXKf/HiRdy/f18rD9lQ5qithjZx4kQYGhpi7NixSE9PV7uVqTYeHh4wNjauNXdD2NvbY9q0aRg0aBBSU1PVcr9urbImmpwjDg4OuH79utp6Z86cQVFRkdq8+o5pVe+88w4AYN++fWrzDx8+jOLiYtXyxhIIBDAwMIC+vr5qXmlpKb7++muN3l/bz+Ts7IwOHTrgt99+Q8+ePWuc3tSC6p133kFRUVG1Lz179+5VLVfS19dHaGgo4uLicP78eaSkpGDChAlq73v33XeRn5+PysrKGo9TfV+UCXldzaqGfuTIERgYGGDQoEGqHsxubm4YPXp0ve9dvHgxjh07Bm9vb/z73/+GpaUlvvnmGxw/fhyrV6+GSCRSWz83NxfDhw/HpEmTUFBQgMWLF8PY2Bjz5s0DAFhYWKB///5Ys2YNrK2t4eDggLNnzyI2NrbWHuspKSmYOHEiRo0ahQcPHmDBggVo06aNqkmzMbp06QIA2LBhA8LCwiAUCuHs7Kz6I9yyZUuMGzcOmzdvhkwmw9ChQ+vdZqtWrfCvf/0LS5cuVcsdFRVVb5N7QUEBvL29ERISAhcXF5ibmyM5ORknTpxQqwF26dIFR44cwebNm+Hu7g49PT307NnztY+DJudIaGgoFi1ahH//+9/w8vLCrVu3sGnTpmrngPJ+6W3btsHc3BzGxsZo165djc3lgwYNgp+fH+bMmYPCwkL069dP1cu9e/fuCA0Nfe2fqaohQ4YgOjoaISEh+PDDD5Gfn48vvvii2hfL2rz11lswMTHBN998g44dO6JFixaQSqWQSqXYunUrAgIC4Ofnh/DwcLRp0wZPnz7F7du3kZqaikOHDr127pSUFNUDegoLC8EYUz2NsVevXhr1yXhd48aNw1dffYWwsDDcu3cPXbp0wYULF7B8+XIMHjwYPj4+autPmDABq1atQkhICExMTBAcHKy2fMyYMfjmm28wePBgzJw5E//4xz8gFArx8OFDJCYmIigoCMOHD+fs5yH/w3jtkqclyh7MV69eZUOHDmUtWrRg5ubm7P3332dPnjxRW1cmk7EhQ4bUuJ0bN26woUOHMpFIxAwNDZmbm1u13r7KXu5ff/01mzFjBrOxsWFGRkbs7bffZikpKWrrPnz4kI0cOZK1atWKmZubM39/f3bz5s1qvaWVvXRPnTrFQkNDWcuWLZmJiQkbPHgwy8jIUNvm6/ZyZ4yxefPmMalUyvT09GrsnZ2UlMQAsJUrV9Z4fGqiUCjYihUrWNu2bZmhoSHr2rUr++GHH5iXl1edvdxfvHjBPvroI9a1a1dmYWHBTExMmLOzM1u8eDErLi5Wve/p06fsvffeYy1btmQCgYApT1nl9tasWVMtU1293DU5R8rKytinn37K2rZty0xMTJiXlxdLS0urdpwZY2z9+vWsXbt2TF9fX22fNX1OpaWlbM6cOUwmkzGhUMgkEgn75z//yZ49e6a2Xm3n6KvHtDY7d+5kzs7OzMjIiLVv356tWLGCxcbGVrvLoaZe7oy97KXt4uLChEJhtR7/v/32Gxs9ejSztbVlQqGQicViNnDgQLZlyxbVOsrzOTk5ud6sVbMAqHGqqcd9VbXtT/mZ//XXX9X29erPnZ+fzz766CMmkUiYgYEBk8lkbN68eezFixc17rNv374MABs7dmyNy+VyOfviiy+Ym5sbMzY2Zi1atGAuLi5s8uTJ1X6nCdEWAWNV2o3fUFFRUViyZAn++uuvate6ieY++eQTbN68GQ8ePKixlkkIIaTpalZN7uT1XLp0CXfu3EFMTAwmT55MhTkhhLyBmlWnOPJ6+vTpg3/+85949913sXTpUr7jEEJIk3Ds2DFVh9AdO3bwHadezaLJnRBCCNGmiooKdOrUCYmJiaoxES5fvlztuQZNCdXQCSGEkFdcuXIFrq6uaNOmDczNzTF48GCcPHmS71h1ogKdEEJIs3Pu3DkMHToUUqkUAoGgxocrxcTEoF27djA2Noa7uzvOnz+vWvb48WO1h1DZ2dnh0aNHuoj+2qhAJ4QQ0uwUFxfDzc0NmzZtqnH5wYMHMWvWLCxYsADXrl3D22+/jYCAAGRlZQEAaroa3dSffqhxL/eysjK1x2EqFAo8ffoUVlZWTf6HJIQQoo4xhr///htSqbRR49HX58WLFygvL9fKttgrj+cFXj7dsKYHJwUEBCAgIKDWbUVHRyMiIkI1bPT69etx8uRJbN68GStWrECbNm3UauQPHz5E7969tfJzcEbTG9aVD2mgiSaaaKKp+UwPHjzg5CEnjL18mJIpBFrL2qJFi2rzahrq+FUA2Pfff696XVZWxvT19dmRI0fU1psxYwbr378/Y+zlw4EcHR3Zw4cPWWFhIXN0dGR5eXnaPDxap3ENfd68efj4449VrwsKCmBvb487d+40mV5/crkciYmJ8Pb2btCQmlyiTJqhTJqhTJqhTPV7+vQpnJycOH0Gf3l5OUrAEAozGKJxLbnlYPi6qAgPHjyAhYWFar6mjzWuKi8vD5WVlWjdurXa/NatW6sGmzIwMMDatWvh7e0NhUKBTz/9tMk/o0PjAr22Zg1LS8sm80PK5XKYmprCysqqSfzCAJRJU5RJM5RJM5RJc7q4ZGoMPRg2cj96/3dN28LCQq1Ab4xXf3b2SpN+YGAgAgMDtbIvXaBOcYQQQv6nWFtbQ19fv9rQz7m5udVq7W8SKtAJIYRwSk9Lk7YYGhrC3d0dCQkJavMTEhLQt29fLe5Jt+hZ7oQQQjglEAB6jWzZFwAAezmcrr6+PqZOnYqpU6fWun5RURH++OMP1evMzEykpaXB0tIS9vb2+PjjjxEaGoqePXuiT58+2LZtG7KysvDRRx81LiiPqEAnhBDyxkhOTtboGnpKSgq8vb1Vr5WdusPCwrB7924EBwcjPz8fn332GbKzs9G5c2f8+OOPkMlknGXnGhXohBBCOKWNJvOGvn/AgAE1PhymqilTpmDKlCmvH6qJoQKdEEIIp/QEAug1tpc78PLOc1Ir6hRHCCGENANUQyeEEMIpPprc/xdRgU4IIYRTelro5U4Fev3oGBFCCHlj9OrVC506dcJXX33Fd5Qmh7MCvb6xaBljiIqKglQqhYmJCQYMGIDff/9dbZ2ysjJMnz4d1tbWMDMzQ2BgIB4+fKi1jH///TdmzZoFmUwGExMT9O3bF8nJyarlT548QXh4OKRSKUxNTeHv74+MjAyt7f91MhUVFWHatGmws7ODiYkJOnbsiM2bN/OaSSAQ1DitWbOGt0wAcPv2bQQGBkIkEsHc3BweHh6qoRH5yBQeHl7tGHl4eHCWR5NMVU2ePBkCgQDr16/nNVNUVBRcXFxgZmaGVq1awcfHB5cvX+Ytk1wux5w5c9ClSxeYmZlBKpVi3LhxePz4MW+ZAODIkSPw8/ODtbU1BAIB0tLSOM3TGNp8sExycjJu3bpV5z3o/6s4K9DrG4t29erViI6OxqZNm5CcnAyxWIxBgwbh77//Vq0za9YsfP/99zhw4AAuXLiAoqIivPvuu6isrNRKxokTJyIhIQFff/01bty4AV9fX/j4+ODRo0dgjGHYsGH4888/cfToUVy7dg0ymQw+Pj4oLi7Wyv4bmgkAZs+ejRMnTmDfvn24ffs2Zs+ejenTp+Po0aO8ZcrOzlabdu7cCYFAgJEjR/KW6e7du/D09ISLiwuSkpLw22+/YdGiRTA2NuYtEwD4+/urHasff/yRszyaZgKAuLg4XL58GVKplNM8mmRycnLCpk2bcOPGDVy4cAEODg7w9fXFX3/9xUumkpISpKamYtGiRUhNTcWRI0dw584dzp/xXd9xKi4uRr9+/bBy5UpOc2hDbV/6GzqRerzuMG0FBQUMgEbDyeGVoesUCgUTi8Vs5cqVqnkvXrxgIpGIbdmyhTHG2PPnz5lQKGQHDhxQrfPo0SOmp6fHTpw4UeN+ysvLWVxcHCsvL683U0lJCdPX12fHjh1Tm+/m5sYWLFjA0tPTGQB28+ZN1bKKigpmaWnJtm/fXu/2ucjEGGOurq7ss88+U1veo0cPtnDhQt4yvSooKIgNHDhQ4zxcZAoODmYffPBBgzJwnSksLIwFBQU1qUyMMfbw4UPWpk0bdvPmTSaTydi6det4z1SV8m/N6dOnm0ymK1euMADs/v37vGfKzMxkANi1a9c0zsIYY3l5eQwAKygoaND7GkL52UUaiNhCYctGTZEGIs7zvul4uYaemZmJnJwc+Pr6quYZGRnBy8sLFy9eBABcvXoVcrlcbR2pVIrOnTur1mmMiooKVFZWVquxmZiY4MKFCygrKwMAteX6+vowNDTEhQsXGr3/18kEAJ6enoiPj1e1IiQmJuLOnTvw8/PjLVNVT548wfHjxxEREcFJHk0yKRQKHD9+HE5OTvDz84OtrS169+5d7bKPLjMpJSUlwdbWFk5OTpg0aRJyc3N5zaRQKBAaGorIyEi4urpylqUhmaoqLy/Htm3bIBKJ4Obm1iQyAS+HjxYIBGjZsmWTyUQILwW6coSbusaizcnJgaGhIVq1alXrOo1hbm6OPn364PPPP8fjx49RWVmJffv24fLly8jOzoaLiwtkMhnmzZuHZ8+eoby8HCtXrkROTg6ys7Mbvf/XyQQAGzduRKdOnWBnZwdDQ0P4+/sjJiYGnp6evGWqas+ePTA3N8eIESM4yaNJptzcXBQVFWHlypXw9/fHqVOnMHz4cIwYMQJnz57lJRMABAQE4JtvvsGZM2ewdu1aJCcnY+DAgaovj3xkWrVqFQwMDDBjxgxOMrxOJgA4duwYWrRoAWNjY6xbtw4JCQmwtrbmNZPSixcvMHfuXISEhGhtGM/GZmrqlL3cGzuRuvHay72+sWhrosk6mvr666/BGEObNm1gZGSEjRs3IiQkBPr6+hAKhTh8+DDu3LkDS0tLmJqaIikpCQEBAdDX19fK/huaCXhZoF+6dAnx8fG4evUq1q5diylTpuD06dO8Zapq586dGDt2LKfXquvLpFAoAABBQUGYPXs2unXrhrlz5+Ldd9/Fli1beMkEAMHBwRgyZAg6d+6MoUOH4qeffsKdO3dw/PhxXjJdvXoVGzZswO7du3V6fVKT88nb2xtpaWm4ePEi/P39MXr0aE5bMzQ9x+VyOcaMGQOFQoGYmBjO8jQk05tAgMZ3iKPyvH68FOhisRgA6hyLViwWo7y8HM+ePat1ncZ66623cPbsWRQVFeHBgwe4cuUK5HI52rVrBwBwd3dHWloanj9/juzsbJw4cQL5+fmq5VyoK1NpaSnmz5+P6OhoDB06FF27dsW0adMQHByML774gpdMVZ0/fx7p6emYOHEiZ1k0yWRtbQ0DAwN06tRJ7T0dO3bktJe7psdJSSKRQCaTcXrnRF2Zzp8/j9zcXNjb28PAwAAGBga4f/8+PvnkEzg4OPCSScnMzAyOjo7w8PBAbGwsDAwMEBsby2smuVyO0aNHIzMzEwkJCZzVzhuS6X8R3bZWO14K9Hbt2kEsFquNRVteXo6zZ8+qxqJ1d3eHUChUWyc7Oxs3b97U+ni1ZmZmkEgkePbsGU6ePImgoCC15SKRCDY2NsjIyEBKSkq15VyoKZNcLodcLoeenvrHVrVWqutMVcXGxsLd3Z2za52aZjI0NESvXr2Qnp6utu6dO3d0MpJSfcdJKT8/Hw8ePIBEIuElU2hoKK5fv460tDTVJJVKERkZiZMnT/KSqTaMMc4uTWiSSVmYZ2Rk4PTp07CysuI8S32Z3iTKZ7k3dgLotrW6cPakuPrGop01axaWL1+ODh06oEOHDli+fDlMTU0REhIC4GUhGhERgU8++QRWVlawtLTEv/71L3Tp0gU+Pj5ayXjy5EkwxuDs7Iw//vgDkZGRcHZ2xvjx4wEAhw4dgo2NDezt7XHjxg3MnDkTw4YNU+uop211ZRIKhfDy8kJkZCRMTEwgk8lw9uxZ7N27F9HR0bxkUiosLMShQ4ewdu1aznI0JFNkZCSCg4PRv39/eHt748SJE/jhhx+QlJTES6aioiJERUVh5MiRkEgkuHfvHubPnw9ra2sMHz6cl0xCobBawSQUCiEWi+Hs7MxLpuLiYixbtgyBgYGQSCTIz89HTEwMHj58iFGjRvGSqaKiAu+99x5SU1Nx7NgxVFZWqloXLS0tYWhoqPNMAPD06VNkZWWp7odXfoEVi8WqVtCmgh79qiOv2z2+vtvWEhMTGV6OjaM2hYWFMcZe3rq2ePFiJhaLmZGREevfvz+7ceOG2jZKS0vZtGnTmKWlJTMxMWHvvvsuy8rKqjVTQ24LYYyxgwcPsvbt2zNDQ0MmFovZ1KlT2fPnz1XLN2zYwOzs7JhQKGT29vZs4cKFrKysTKNtc5UpOzubhYeHM6lUyoyNjZmzszNbu3YtUygUvGVijLGtW7cyExOTavP5zBQbG8scHR2ZsbExc3NzY3FxcbxlKikpYb6+vszGxkZ1PoWFhdV5PnOdqSZc37ZWX6bS0lI2fPhwJpVKmaGhIZNIJCwwMJBduXKFt0zK28JqmhITE3nJxBhju3btqjHT4sWLNdq+Lm9bW2jYki01atWoaaFhS7ptrR4CxuoZMLYWhYWFEIlEyMvL02nzU13kcjl+/PFHDB48GEKhkO84ACiTpiiTZiiTZihT/fLz82FtbY2CggLO+gMoy4l/G7WEcSM7Xr5gDJ+VPec075uOBmchhBDCKWpy1w06RoQQQkgzQDV0QgghnNKDAHqNvJOcap/1o2NECCGEU9p8Uhzdh147qqETQgjhlDavoScnJ1OnuFpQDZ0QQghpBqiGTgghhFPaGFyFap/1owKdEEIIp14OztK4El2A13pkyv8U+tJDCCGENANUQyeEEMIpanLXDSrQCSGEcIqeFKcbdIwIIYSQZkDjGnpZWZnaeMSFhYUAoBqjuylQ5mgqeQDKpCnKpBnKpBnKVD9d5qAmd93QeLS1qKgoLFmypNr8/fv3w9TUVOvBCCGEcKekpAQhISE6GW1tg5klTASNK5JLmQIzi5/CyckJ+vr6mDp1KqZOnaqlpM2DxgV6TTX0tm3bIjs7u0kNn5qQkIBBgwY1ieEJAcqkKcqkGcqkGcpUv/z8fEgkkjeuQKfhU2uncZO7kZERjIyMqs0XCoVN4uSsijJphjJphjJphjJppqlk0mUGanLXDerlTgghhFOC/5sauw1SNyrQCSGEcIpq6LpBx4gQQghpBqiGTgghhFN6EDT6We6Nff//AirQCSGEcIqa3HWDjhEhhBDSDFANnRBCCKdeDp/a+G2QulGBTgghhFN025puUJM7IYQQ0gxQgU4IIYRTegKBViYA6NWrFzp16oSvvvqK55+q6dFJgV5RUYGFCxeiXbt2MDExQfv27fHZZ59BoVCo1jly5Aj8/PxgbW0NgUCAtLQ0XjPJ5XLMmTMHXbp0gZmZGaRSKcaNG4fHjx/zlgl4OUiOi4sLzMzM0KpVK/j4+ODy5cu8Zqpq8uTJEAgEWL9+Pa+ZwsPDIRAI1CYPDw9eMwHA7du3ERgYCJFIBHNzc3h4eCArK4u3TK8eI+W0Zs0a3jIVFRVh2rRpsLOzg4mJCTp27IjNmzdzkkfTTE+ePEF4eDikUilMTU3h7++PjIwMzjIBwN9//41Zs2ZBJpPBxMQEffv2RXJysmo5YwxRUVGQSqUwMTHBgAED8Pvvv3Oa6XUJtDQBQHJyMm7dukUDs9RAJ9fQV61ahS1btmDPnj1wdXVFSkoKxo8fD5FIhJkzZwIAiouL0a9fP4waNQqTJk3iPVNJSQlSU1OxaNEiuLm54dmzZ5g1axYCAwORkpLCSyYAcHJywqZNm9C+fXuUlpZi3bp18PX1xR9//AEbGxteMinFxcXh8uXLkEqlWs/xOpn8/f2xa9cu1WtDQ0NeM929exeenp6IiIjAkiVLIBKJcPv2bRgbG/OWKTs7W+09P/30EyIiIjBy5EjeMs2ePRuJiYnYt28fHBwccOrUKUyZMgVSqRRBQUE6z8QYw7BhwyAUCnH06FFYWFggOjoaPj4+uHXrFszMzLSeCQAmTpyImzdv4uuvv4ZUKsW+fftU+2zTpg1Wr16N6Oho7N69G05OTli6dCkGDRqE9PR0mJubc5KJNHHsNRUUFDAALC8vr951hwwZwiZMmKA2b8SIEeyDDz6otm5mZiYDwK5du9bgTOXl5SwuLo6Vl5drNZPSlStXGAB2//79JpNJ+TmcPn2a10wPHz5kbdq0YTdv3mQymYytW7dO4zxcZAoLC2NBQUENysB1puDg4Do/Sz4yvSooKIgNHDiQ10yurq7ss88+U1unR48ebOHChbxkSk9PZwDYzZs3VcsrKiqYpaUl2759OyeZSkpKmL6+Pjt27JjafDc3N7ZgwQKmUCiYWCxmK1euVC178eIFE4lEbMuWLRrlycvLYwBYQUGBxj9DQyn/Pu0WWbPvWto2atotsuY875tOJ03unp6e+Pnnn3Hnzh0AwG+//YYLFy5g8ODButi91jIVFBRAIBCgZcuWTSJTeXk5tm3bBpFIBDc3N94yKRQKhIaGIjIyEq6urpzkaGgmAEhKSoKtrS2cnJwwadIk5Obm8pZJoVDg+PHjcHJygp+fH2xtbdG7d2/ExcXxlulVT548wfHjxxEREcFrJk9PT8THx+PRo0dgjCExMRF37tyBn58fL5mUw0ZXbUnR19eHoaEhLly4wEmmiooKVFZWVmu9MTExwYULF5CZmYmcnBz4+vqqlhkZGcHLywsXL17kJFNjaLPJndROJ03uc+bMQUFBAVxcXKCvr4/KykosW7YM77//vi52r5VML168wNy5cxESEsLZWLyaZjp27BjGjBmDkpISSCQSJCQkwNramrdMq1atgoGBAWbMmMFJhtfJFBAQgFGjRkEmkyEzMxOLFi3CwIEDcfXq1RqHAeY6U25uLoqKirBy5UosXboUq1atwokTJzBixAgkJibCy8tL55letWfPHpibm2PEiBFaz9KQTBs3bsSkSZNgZ2cHAwMD6OnpYceOHfD09OQlk4uLC2QyGebNm4etW7fCzMwM0dHRyMnJqXbJQlvMzc3Rp08ffP755+jYsSNat26Nb7/9FpcvX0aHDh2Qk5MDAGjdurXa+1q3bo379+9zkqkxlH0zGrUNKtLrpZMC/eDBg9i3bx/2798PV1dXpKWlYdasWZBKpQgLC9NFhEZlksvlGDNmDBQKBWJiYnjP5O3tjbS0NOTl5WH79u0YPXo0Ll++DFtbW51nunr1KjZs2IDU1NRG/8JqKxMABAcHq9bv3LkzevbsCZlMhuPHj3NSYNWXSdnBKigoCLNnzwYAdOvWDRcvXsSWLVs4KdAb+nu3c+dOjB07lrNr+ppm2rhxIy5duoT4+HjIZDKcO3cOU6ZMgUQigY+Pj84zCYVCHD58GBEREbC0tIS+vj58fHwQEBCg9SxVff3115gwYQLatGkDfX199OjRAyEhIUhNTVWt8+rvHGNMZ7+HpAl63bb6hlxDt7OzY5s2bVKb9/nnnzNnZ+dq6+rqGrqmmcrLy9mwYcNY165dNfpZdZHpVY6Ojmz58uW8ZFq3bh0TCARMX19fNQFgenp6TCaT8ZKpNo6OjmrXHHWZqaysjBkYGLDPP/9cbZ1PP/2U9e3bl5dMVZ07d44BYGlpaRpn4SJTSUkJEwqF1a4dR0REMD8/P14yVfX8+XOWm5vLGGPsH//4B5syZQonmaoqKipijx8/ZowxNnr0aDZ48GB29+5dBoClpqaqrRsYGMjGjRun0XZ1eQ3965Y27HCr1o2avm5pQ9fQ66GTa+glJSXQ01Pflb6+fq23PumCJpnkcjlGjx6NjIwMnD59GlZWVrxnqgljTHWdT9eZQkNDcf36daSlpakmqVSKyMhInDx5kpdMNcnPz8eDBw8gkUh4yWRoaIhevXohPT1dbZ07d+5AJpPxkqmq2NhYuLu7c9YXQ9NMcrkccrlcp38vGnKcRCIRbGxskJGRgZSUFE563b/KzMwMEokEz549w8mTJxEUFIR27dpBLBYjISFBtV55eTnOnj2Lvn37cp6pofS0NJG66aTJfejQoVi2bBns7e3h6uqKa9euITo6GhMmTFCt8/TpU2RlZanu81b+4ROLxRCLxTrPVFFRgffeew+pqak4duwYKisrVdetLC0tObkFqr5MxcXFWLZsGQIDAyGRSJCfn4+YmBg8fPgQo0aN0noeTTJZWVlV+6IjFAohFovh7OzMS6aioiJERUVh5MiRkEgkuHfvHubPnw9ra2sMHz6cl0wAEBkZieDgYPTv3x/e3t44ceIEfvjhByQlJfGWCQAKCwtx6NAhrF27lpMcDclkYWEBLy8vREZGwsTEBDKZDGfPnsXevXsRHR3NSyYAOHToEGxsbGBvb48bN25g5syZGDZsmFqnNG07efIkGGNwdnbGH3/8gcjISDg7O2P8+PEQCASYNWsWli9fjg4dOqBDhw5Yvnw5TE1NERISwlkm0sS9btW+IU3uhYWFbObMmcze3p4ZGxuz9u3bswULFrCysjLVOrt27WIAqk2LFy/WOFNDmrTqy6Rs+q9pSkxM5CVTaWkpGz58OJNKpczQ0JBJJBIWGBjIrly5onEebWeqCde3rdWXqaSkhPn6+jIbGxsmFAqZvb09CwsLY1lZWbxlUoqNjWWOjo7M2NiYubm5sbi4ON4zbd26lZmYmLDnz583KAtXmbKzs1l4eDiTSqXM2NiYOTs7s7Vr1zKFQsFbpg0bNjA7OzvV+bRw4cI6fwcam4kxxg4ePMjat2/PDA0NmVgsZlOnTlX7jBQKBVu8eDETi8XMyMiI9e/fn924cUPjPLpsct/fyobFWbZu1LS/FTW510fAGGOv80WgsLAQIpEIeXl5nDdFa0oul+PHH3/E4MGDIRQK+Y4DgDJpijJphjJphjLVLz8/H9bW1igoKODszh1lOfFtK1uYChrXaF7CFHj/WS6ned90dFmCEEIIaQZo+FRCCCGcouFTdYMKdEIIIZyiAl03qMmdEELIG4OGT60d1dAJIYRwSg+AXiOr2Hr/1307OTmZOsXVggp0QgghnBL837/GboPUjQp0QgghnKPimHt0DZ0QQghpBqiGTgghhFMCwcupsdsgdaMCnRBCCKfotjXdoCZ3QgghpBmgGjohhBBO6UEAvUbWsRv7/v8FGhfoZWVlamNuFxYWAvjv+MVNgTJHU8kDUCZNUSbNUCbNUKb66TIHNbnrhsajrUVFRWHJkiXV5u/fvx+mpqZaD0YIIYQ7JSUlCAkJ0cloa0ctxTDTa9wV3mKFAkFPc2i0tTpoXKDXVENv27YtsrOzm9TwqQkJCRg0aFCTGJ4QoEyaokyaoUyaoUz1y8/Ph0Qi0UmBHm+lnQI9MJ8K9Lpo3ORuZGQEIyOjavOFQmGTODmrokyaoUyaoUyaoUyaaSqZdJmBmtx1g3q5E0IIIc0A9XInhBDCKXqWu25QgU4IIYRTegItjLZG5Xm9qEAnhBDCKbqGrht0DZ0QQghpBqiGTgghhFNUQ9cNKtAJIYRwijrF6QY1uRNCCCHNANXQCSGEcIrGQ9cNqqETQgjhlJ6WJgDo1asXOnXqhK+++kqXP8IbQScFekVFBRYuXIh27drBxMQE7du3x2effQaFQqFahzGGqKgoSKVSmJiYYMCAAfj99985zeXg4ACBQFBtmjp1KgDgyZMnCA8Ph1QqhampKfz9/ZGRkcFrpqKiIkybNg12dnYwMTFBx44dsXnzZt7y1LRMIBBgzZo1vGUCgNu3byMwMBAikQjm5ubw8PBAVlYWb5nCw8OrLfPw8OAsjyaZqpo8eTIEAgHWr1/Pa6aoqCi4uLjAzMwMrVq1go+PDy5fvsxbJrlcjjlz5qBLly4wMzODVCrFuHHj8PjxY94yAcCRI0fg5+cHa2trCAQCpKWlcZqnKUlOTsatW7dqPI//1+mkyX3VqlXYsmUL9uzZA1dXV6SkpGD8+PEQiUSYOXMmAGD16tWIjo7G7t274eTkhKVLl2LQoEFIT0+Hubk5J7mSk5NRWVmpen3z5k0MGjQIo0aNAmMMw4YNg1AoxNGjR2FhYYHo6Gj4+Pjg1q1bMDMz03kmAJg9ezYSExOxb98+ODg44NSpU5gyZQqkUimCgoJ0nic7O1tt/Z9++gkREREYOXKk1rNomunu3bvw9PREREQElixZApFIhNu3b8PY2Ji3TADg7++PXbt2qV4bGhpylkfTTAAQFxeHy5cvQyqVcppHk0xOTk7YtGkT2rdvj9LSUqxbtw6+vr74448/YGNjo/NMJSUlSE1NxaJFi+Dm5oZnz55h1qxZCAwMREpKCid56ssEAMXFxejXrx9GjRqFSZMmcZZDW6iXu46w11RQUMAAsLy8vHrXHTJkCJswYYLavBEjRrAPPviAMcaYQqFgYrGYrVy5UrX8xYsXTCQSsS1btmicqby8nMXFxbHy8nKN31PVzJkz2VtvvcUUCgVLT09nANjNmzdVyysqKpilpSXbvn07L5kYY8zV1ZV99tlnauv06NGDLVy4UCeZXs3zqqCgIDZw4MAGb1ebmYKDg1XnVmNoM1NYWBgLCgpqUpkYY+zhw4esTZs27ObNm0wmk7F169bxnqkq5d+Z06dPN5lMV65cYQDY/fv3ec+UmZnJALBr1641eJt5eXkMACsoKGjwezWl/Px+tm3DLovbNmr62bYN53nfdDppcvf09MTPP/+MO3fuAAB+++03XLhwAYMHDwYAZGZmIicnB76+vqr3GBkZwcvLCxcvXtRFRJSXl2Pfvn2YMGECBAKBaqjYqrU6fX19GBoa4sKFC7xkAl4ey/j4eDx69AiMMSQmJuLOnTvw8/PjJU9VT548wfHjxxEREcF5ltoyKRQKHD9+HE5OTvDz84OtrS169+6NuLg43jIpJSUlwdbWFk5OTpg0aRJyc3N5zaRQKBAaGorIyEi4urrqLEtdmV5dvm3bNohEIri5uTWJTABQUFAAgUCAli1bNplMhAA6uoY+Z84cvP/++3BxcYFQKET37t0xa9YsvP/++wCAnJwcAEDr1q3V3te6dWvVMq7FxcXh+fPnCA8PBwC4uLhAJpNh3rx5ePbsGcrLy7Fy5Urk5ORUa2bWVSYA2LhxIzp16gQ7OzsYGhrC398fMTEx8PT05CVPVXv27IG5uTlGjBjBeZbaMuXm5qKoqAgrV66Ev78/Tp06heHDh2PEiBE4e/YsL5kAICAgAN988w3OnDmDtWvXIjk5GQMHDlR9ceQj06pVq2BgYIAZM2boJIMmmQDg2LFjaNGiBYyNjbFu3TokJCTA2tqa10xKL168wNy5cxESEqKzMbnry/QmEGhpInXTyTX0gwcPYt++fdi/fz9cXV2RlpaGWbNmQSqVIiwsTLXeq98+GWM6+0YaGxuLgIAA1XVEoVCIw4cPIyIiApaWltDX14ePjw8CAgJ0kqemTMDLAv3SpUuIj4+HTCbDuXPnMGXKFEgkEvj4+Og8T1U7d+7E2LFjOb1WXV8mZUfLoKAgzJ49GwDQrVs3XLx4EVu2bIGXl5fOMwFAcHCw6v+dO3dGz549IZPJcPz4cZ18AXo109WrV7FhwwakpqbyVuur7Xzy9vZGWloa8vLysH37dowePRqXL1+Gra0tb5kAQC6XY8yYMVAoFIiJieE8iyaZ3hR0DV03dFKgR0ZGYu7cuRgzZgwAoEuXLrh//z5WrFiBsLAwiMViAC9r6hKJRPW+3NzcarV2Lty/fx+nT5/GkSNH1Oa7u7sjLS0NBQUFKC8vh42NDXr37o2ePXvykqm0tBTz58/H999/jyFDhgAAunbtirS0NHzxxRecFui1HSOl8+fPIz09HQcPHuQsgyaZrK2tYWBggE6dOqmt27FjR51cKqnvOClJJBLIZDLO75qoLdP58+eRm5sLe3t71bzKykp88sknWL9+Pe7du6fzTEpmZmZwdHSEo6MjPDw80KFDB8TGxmLevHm8ZZLL5Rg9ejQyMzNx5swZndXONT2fmjplL/3GboPUTSdN7iUlJdDTU9+Vvr6+qjbVrl07iMViJCQkqJaXl5fj7Nmz6Nu3L+f5du3aBVtbW1Uh+SqRSAQbGxtkZGQgJSWFk97kmmSSy+WQy+V1Hktd5qkqNjYW7u7uOrvWWVsmQ0ND9OrVC+np6Wrr3rlzBzKZjJdMNcnPz8eDBw/UvsDqMlNoaCiuX7+OtLQ01SSVShEZGYmTJ0/ykqk2jDGdXJqoLZOyMM/IyMDp06dhZWXFeZb6MhFSE53U0IcOHYply5bB3t4erq6uuHbtGqKjozFhwgQAL795zZo1C8uXL0eHDh3QoUMHLF++HKampggJCeE0m0KhwK5duxAWFgYDA/XDcejQIdjY2MDe3h43btzAzJkzMWzYMLXOe7rMZGFhAS8vL0RGRsLExAQymQxnz57F3r17ER0drfM8SoWFhTh06BDWrl3LWYaGZIqMjERwcDD69+8Pb29vnDhxAj/88AOSkpJ4yVRUVISoqCiMHDkSEokE9+7dw/z582FtbY3hw4fzksnKyqpawSQUCiEWi+Hs7MxLpuLiYixbtgyBgYGQSCTIz89HTEwMHj58WO1WO11lqqiowHvvvYfU1FQcO3YMlZWVqn49lpaWnN56WNc5/vTpU2RlZanuh1d+gRWLxaoWz6aExkPXkdftHt+Q29YKCwvZzJkzmb29PTM2Nmbt27dnCxYsYGVlZap1FAoFW7x4MROLxczIyIj179+f3bhxo0GZXue2kJMnTzIALD09vdqyDRs2MDs7OyYUCpm9vT1buHChWmY+MmVnZ7Pw8HAmlUqZsbExc3Z2ZmvXrq31FhttZKorD2OMbd26lZmYmLDnz59rnIHrTLGxsczR0ZEZGxszNzc3FhcXx1umkpIS5uvry2xsbFTnUlhYGMvKyuItU010ddtabZlKS0vZ8OHDmVQqZYaGhkwikbDAwEB25coV3jIpbwuraUpMTOQlE2OM7dq1q8ZMixcv1jiPLm9bOy9ty67ZyRo1nZe2pdvW6iFgjLHX+SJQWFgIkUiEvLw8nTZB1UUul+PHH3/E4MGDIRQK+Y4DgDJpijJphjJphjLVLz8/H9bW1igoKOCsT4CynDgvbYsWeo27wlukUODtxw84zfumo8FZCCGEcIoGZ9ENKtAJIYRwigp03aDR1gghhJBmgGrohBBCOEX3oesGFeiEEEI4RU3uukFN7oQQQkgzQDV0QgghnKImd92gAp0QQginqMldN6hAJ4QQwik9gQB6jSyRG/v+/wV0DZ0QQghpBqiGTgghhFPU5K4bGhfoZWVlakMYFhYWAvjvkJ5NgTJHU8kDUCZNUSbNUCbNUKb66TKHAFroFAcq0euj8eAsUVFRWLJkSbX5+/fvh6mpqdaDEUII4U5JSQlCQkJ0MjjL1fbt0EK/kYOzVCrg/mcmDc5SB40L9Jpq6G3btkV2dnaTGm0tISEBgwYNahKjGQGUSVOUSTOUSTOUqX75+fmQSCQ6KdBTHbVToPf4gwr0umjc5G5kZAQjI6Nq84VCYZM4OauiTJqhTJqhTJqhTJppKpl0mkEL96HTRfT6US93QgghpBmgXu6EEEI4Rb3cdYMKdEIIIZx6WaA39tGvWgrTjFGTOyGEENIMUIFOCCGEU8om98ZOTc3w4cPRqlUrvPfee3xHAUAFOiGEEI4pn+Xe2KmpmTFjBvbu3ct3DBUq0AkhhHCqudbQvb29YW5uzncMFSrQCSGENDvnzp3D0KFDIZVKIRAIEBcXV22dmJgYtGvXDsbGxnB3d8f58+d1H1SLqJc7IYQQTgm08GCZhr6/uLgYbm5uGD9+PEaOHFlt+cGDBzFr1izExMSgX79+2Lp1KwICAnDr1i3Y29sDANzd3dWekKp06tQpSKXS1/tBOEQFOiGEEE5p8z505cBgSrU9xTQgIAABAQG1bi86OhoRERGYOHEiAGD9+vU4efIkNm/ejBUrVgAArl692rjQOkZN7oQQQt4Ybdu2hUgkUk3KwrchysvLcfXqVfj6+qrN9/X1xcWLF7UVVed0VqA/evQIH3zwAaysrGBqaopu3bqpffs5cuQI/Pz8YG1tDYFAgLS0NF4zyeVyzJkzB126dIGZmRmkUinGjRuHx48f85YJeDnqnYuLC8zMzNCqVSv4+Pjg8uXLvGaqavLkyRAIBFi/fj2vmcLDw1XNfMrJw8OD10wAcPv2bQQGBkIkEsHc3BweHh7IysriLdOrx0g5rVmzhrdMRUVFmDZtGuzs7GBiYoKOHTti8+bNnOXRJNOTJ08QHh4OqVQKU1NT+Pv7IyMjg7M8Dg4ONX4uU6dOBQAwxhAVFQWpVAoTExMMGDAAv//+O2d5GkubneIePHiAgoIC1TRv3rwG58nLy0NlZSVat26tNr9169bIycnReDt+fn4YNWoUfvzxR9jZ2SE5ObnBWbRJJ03uz549Q79+/eDt7Y2ffvoJtra2uHv3Llq2bKlap7i4GP369cOoUaMwadIk3jOVlJQgNTUVixYtgpubG549e4ZZs2YhMDAQKSkpvGQCACcnJ2zatAnt27dHaWkp1q1bB19fX/zxxx+wsbHhJZNSXFwcLl++zPm1JU0z+fv7Y9euXarXhoaGvGa6e/cuPD09ERERgSVLlkAkEuH27dswNjbmLVN2drbae3766SdERETUeM1RV5lmz56NxMRE7Nu3Dw4ODjh16hSmTJkCqVSKoKAgnWdijGHYsGEQCoU4evQoLCwsEB0dDR8fH9y6dQtmZmZaz5ScnIzKykrV65s3b2LQoEEYNWoUAGD16tWIjo7G7t274eTkhKVLl2LQoEFIT09vUr2ulQR6Agj0GnkNnb18v4WFhdZGW3v1ujxjrEHX6k+ePKmVHFrDXlNBQQEDwPLy8updd86cOczT01Oj7WZmZjIA7Nq1aw3OVF5ezuLi4lh5eblWMylduXKFAWD3799vMpmUn8Pp06d5zfTw4UPWpk0bdvPmTSaTydi6des0zsNFprCwMBYUFNSgDFxnCg4OZh988EGTyvSqoKAgNnDgQF4zubq6ss8++0xtXo8ePdjChQt5yZSens4AsJs3b6rmVVRUMEtLS7Z9+3ZOMr1q5syZ7K233mIKhYIpFAomFovZypUrVctfvHjBRCIR27Jli8bbzMvLYwBYQUFBg/NoSvn36T9uHdijHi6Nmv7j1uG18wJg33//vep1WVkZ09fXZ0eOHFFbb8aMGax///6N/bF5o5Mm9/j4ePTs2ROjRo2Cra0tunfvju3bt+ti11rNVFBQAIFAUGPtlI9M5eXl2LZtG0QiEdzc3HjLpFAoEBoaisjISLi6unKSo6GZACApKQm2trZwcnLCpEmTkJuby1smhUKB48ePw8nJCX5+frC1tUXv3r1rvJVGV5le9eTJExw/fhwRERG8ZvL09ER8fDwePXoExhgSExNx584d+Pn58ZJJ2cu5akuKvr4+DA0NceHCBU4yVVVeXo59+/ZhwoQJEAgEyMzMRE5Ojtr1XyMjI3h5eTXZ679N7T50Q0NDuLu7IyEhQW1+QkIC+vbtq70d6drrfhNoSA3dyMiIGRkZsXnz5rHU1FS2ZcsWZmxszPbs2VNtXV3V0BuSiTHGSktLmbu7Oxs7dizvmX744QdmZmbGBAIBk0ql7MqVK7xmWr58ORs0aBBTKBSMMcZ5DV2TTAcOHGDHjh1jN27cYPHx8czNzY25urqyFy9e8JIpOzubAWCmpqYsOjqaXbt2ja1YsYIJBAKWlJTES6ZXrVq1irVq1YqVlpZqnIeLTGVlZWzcuHEMADMwMGCGhoZs7969vGUqLy9nMpmMjRo1ij19+pSVlZWxFStWMADM19eXk0xVHTx4kOnr67NHjx4xxhj75ZdfGADVa6VJkyY1KI8ua+gZ3Z1YTs+OjZoyujsxAMzJyYl17NiRbdq0qc59//333+zatWvs2rVrDIDq907ZwnrgwAEmFApZbGwsu3XrFps1axYzMzNj9+7d4+x4cE0nBbpQKGR9+vRRmzd9+nTm4eFRbV1dFegNyVReXs6CgoJY9+7dG3zyc5GpqKiIZWRksF9//ZVNmDCBOTg4sCdPnvCSKSUlhbVu3VrtjwvXBXpDPjulx48fM6FQyA4fPsxLpkePHjEA7P3331dbZ+jQoWzMmDG8ZHqVs7MzmzZtmsZZuMq0Zs0a5uTkxOLj49lvv/3GvvzyS9aiRQuWkJDAW6aUlBTm5ubGADB9fX3m5+fHAgICWEBAACeZqvL19WXvvvuu6rWyQH/8+LHaehMnTmR+fn4ab/dNLdA1zZuYmMgAVJvCwsJU63z11VdMJpMxQ0ND1qNHD3b27FmOjoRu6KTJXSKRoFOnTmrzOnbsyGnv3vpomkkul2P06NHIzMxEQkKC1jpjNCaTmZkZHB0d4eHhgdjYWBgYGCA2NpaXTOfPn0dubi7s7e1hYGAAAwMD3L9/H5988gkcHBx4yVTbe2QyGWc9k+vLZG1tDQMDA53+HjTkOJ0/fx7p6emqe3K5Ul+m0tJSzJ8/H9HR0Rg6dCi6du2KadOmITg4GF988QUvmYCXDxhJS0vD8+fPkZ2djRMnTiA/Px/t2rXjJJPS/fv3cfr0abXPRSwWA0C13ti5ubnVem03FXw0uQ8YMADsZaVVbdq9e7dqnSlTpuDevXsoKyvD1atX0b9/f+3+4DqmkwK9X79+SE9PV5t3584dyGQyXey+RppkUhbmGRkZOH36NKysrHjPVBPGWI1PM9JFptDQUFy/fh1paWmqSSqVIjIykrMeoK9znPLz8/HgwQNIJBJeMhkaGqJXr146/T1oyHGKjY2Fu7s7Z30xNM0kl8shl8uhp6f+p0lfXx8KhYKXTFWJRCLY2NggIyMDKSkpnPS6r2rXrl2wtbXFkCFDVPPatWsHsVisdv23vLwcZ8+ebbLXf2u7PbKhE6nH61btG9LkfuXKFWZgYMCWLVvGMjIy2DfffMNMTU3Zvn37VOvk5+eza9eusePHjzMA7MCBA+zatWssOztb40wNadKqL5NcLmeBgYHMzs6OpaWlsezsbNVUVlbGS6aioiI2b9489uuvv7J79+6xq1evsoiICGZkZKTWA1eXmWrCdZN7fZn+/vtv9sknn7CLFy+yzMxMlpiYyPr06cPatGnDCgsLecnEGGNHjhxhQqGQbdu2jWVkZLAvv/yS6evrs/Pnz/OWibGXv8umpqZs8+bNGufgMpOXlxdzdXVliYmJ7M8//2S7du1ixsbGLCYmhrdM3333HUtMTGR3795lcXFxTCaTsREjRmicp6GZGGOssrKS2dvbszlz5lRbtnLlSiYSidiRI0fYjRs32Pvvv88kEkmDzm9dNrn/6e7M/urdqVHTn+7OnOd90+mkQGfsZUeuzp07MyMjI+bi4sK2bdumtnzXrl01Xu9YvHixxpka+gtTVybltfyapsTERF4ylZaWsuHDhzOpVMoMDQ2ZRCJhgYGBnHaKqy9TTbgu0OvLVFJSwnx9fZmNjQ0TCoXM3t6ehYWFsaysLN4yKcXGxjJHR0dmbGzM3NzcWFxcHO+Ztm7dykxMTNjz588blIWrTNnZ2Sw8PJxJpVJmbGzMnJ2d2dq1a1WdLvnItGHDBmZnZ6c6nxYuXNigL/avk+nkyZMMAEtPT6+2TKFQsMWLFzOxWMyMjIxY//792Y0bNxqUhwr05kfAGGOvU7MvLCyESCRCXl4e503RmpLL5fjxxx8xePBgCIVCvuMAoEyaokyaoUyaoUz1y8/Ph7W1NQoKCjjrG6QsJzJ7usDcQL9R2/q7ohLtUv7Dad43HT3LnRBCCLe00SHu/y6h9+rVC506dcJXX33F64/UFNFoa4QQQt4YycnJVEOvBRXohBBCOMXHeOj/i6hAJ4QQwimB3supsdsgdaNDRAghhDQDVEMnhBDCKWpy1w0q0AkhhHBLT/Byauw2SJ2oyZ0QQsgbg25bqx3V0AkhhHBLGwOa/9/76ba12lGBTgghhFN0DV03qEAnhBDCLbqGrhMaF+hlZWVqQ3QWFhYC+O9wh02BMkdTyQNQJk1RJs1QJs1Qpvo1lRxEezQenCUqKgpLliypNn///v0wNTXVejBCCCHcKSkpQUhIiE4GZ3kwwA0WjRycpbCiEm2TfqPBWeqgcYFeUw29bdu2yM7OblKjrSUkJGDQoEFNYjQjgDJpijJphjJphjLVLz8/HxKJRCcF+sOB3bRSoNudSaMCvQ4aN7kbGRnByMio2nyhUNgkTs6qKJNmKJNmKJNmKJNmmkqmppCBaBfdh04IIYRbjR07tcptb83pPvTi4mKtbo96uRNCCOGUQCCAoJG91AXN8D701q1bY/To0ZgwYQI8PT0bvT2qoRNCCCE8+Pbbb1FQUIB33nkHTk5OWLlyJR4/fvza26MCnRBCCLe02OTenAwdOhSHDx/G48eP8c9//hPffvstZDIZ3n33XRw5cgQVFRUN2h4V6IQQQrilh/8+XOa1J75/CO5YWVlh9uzZ+O233xAdHY3Tp0/jvffeg1Qqxb///W+UlJRotB26hk4IIYTwKCcnB3v37sWuXbuQlZWF9957DxEREXj8+DFWrlyJS5cu4dSpU/Vuhwp0QgghnKJnudfsyJEj2LVrF06ePIlOnTph6tSp+OCDD9CyZUvVOt26dUP37t012h4V6IQQQrhFz3Kv0fjx4zFmzBj88ssv6NWrV43rtG/fHgsWLNBoe1SgE0II4ZYWh09tTrKzs+t9dLqJiQkWL16s0faacTcDQgghpOkyNzdHbm5utfn5+fnQ12/4o3KpQCeEEMIpgZ52JqB5PSmutqFUysrKYGho2ODt6axAf/ToET744ANYWVnB1NQU3bp1w9WrV1XLGWOIioqCVCqFiYkJBgwYgN9//52zPFFRUaqOGspJLBarlj958gTh4eGQSqUwNTWFv78/MjIyOMujSaaioiJMmzYNdnZ2MDExQceOHbF582ZeM726TDmtWbOGt0wAcPv2bQQGBkIkEsHc3BweHh7IysriLVN4eHi15R4eHpzl0SRTVZMnT4ZAIMD69et5zRQVFQUXFxeYmZmhVatW8PHxweXLl3nLJJfLMWfOHHTp0gVmZmaQSqUYN25cox7+0dhMwMvOVH5+frC2toZAIEBaWhqneRpNi/ehJycn49atW5g6dSrPP9Tr27hxIzZu3AiBQIAdO3aoXm/cuBHr1q3D1KlT4eLi0uDt6uQa+rNnz9CvXz94e3vjp59+gq2tLe7evavWk2/16tWIjo7G7t274eTkhKVLl2LQoEFIT0+Hubk5J7lcXV1x+vRp1WtlEwdjDMOGDYNQKMTRo0dhYWGB6Oho+Pj44NatWzAzM+MkT12ZAGD27NlITEzEvn374ODggFOnTmHKlCmQSqUICgriJVN2drbauj/99BMiIiIwcuRIzvLUl+nu3bvw9PREREQElixZApFIhNu3b8PY2Ji3TADg7++PXbt2qV6/zjdwbWcCgLi4OFy+fBlSqZTzPPVlcnJywqZNm9C+fXuUlpZi3bp18PX1xR9//AEbGxudZyopKUFqaioWLVoENzc3PHv2DLNmzUJgYCBSUlI4y1NXJuDlM8D79euHUaNGYdKkSZzmINq3bt06AC/Lmi1btqh9toaGhnBwcMCWLVsavF2dFOirVq1C27Zt1f6YOTg4qP7PGMP69euxYMECjBgxAgCwZ88etG7dGvv378fkyZM5yWVgYFBjjSUjIwOXLl3CzZs34erqCgCIiYmBra0tvv32W0ycOJGTPHVlAoBff/0VYWFhGDBgAADgww8/xNatW5GSksJpgV5XplfnHz16FN7e3mjfvj1neerLtGDBAgwePBirV69WzeM6T32ZgJcjFta1nAv1ZXr06BGmTZuGkydPYsiQIbxnCgkJUXsdHR2N2NhYXL9+He+8847OM4lEIiQkJKjN+/LLL/GPf/wDWVlZsLe313kmAAgNDQUA3Lt3j7P9a5NATwvPcm9GvdwzMzMBAN7e3jhy5AhatWqlle3qpMk9Pj4ePXv2xKhRo2Bra4vu3btj+/btquWZmZnIycmBr6+vap6RkRG8vLxw8eJFznJlZGRAKpWiXbt2GDNmDP78808AUI37XrVGp6+vD0NDQ1y4cIGzPHVlAgBPT0/Ex8fj0aNHYIwhMTERd+7cgZ+fH2+Zqnry5AmOHz+OiIgITvPUlUmhUOD48eNwcnKCn58fbG1t0bt3b8TFxfGWSSkpKQm2trZwcnLCpEmTauwMo8tMCoUCoaGhiIyMVH1x1QVNz6fy8nJs27YNIpEIbm5uTSITABQUFEAgEKi1MPKdqcmjR7/WKDExUWuFOaCjGvqff/6JzZs34+OPP8b8+fNx5coVzJgxA0ZGRhg3bhxycnIAvBx5pqrWrVvj/v37nGTq3bs39u7dCycnJzx58gRLly5F37598fvvv8PFxQUymQzz5s3D1q1bYWZmhujoaOTk5FRrYtZVJisrK2zcuBGTJk2CnZ0dDAwMoKenhx07dmhllJ7XzVTVnj17YG5urmpl4SOTXC5HUVERVq5ciaVLl2LVqlU4ceIERowYgcTERHh5eek8k5WVFQICAjBq1CjIZDJkZmZi0aJFGDhwIK5evQojIyNeMq1atQoGBgaYMWMGJ/t/nUwAcOzYMYwZMwYlJSWQSCRISEiAtbU1r5mUXrx4gblz5yIkJITTEb8akom8WT7++GN8/vnnMDMzw8cff1znutHR0Q3bOHtNBQUFDADLy8urd12hUMj69OmjNm/69OnMw8ODMcbYL7/8wgCwx48fq60zceJE5ufnp3Gm8vJyFhcXx8rLyzV+j1JRURFr3bo1W7t2LWOMsZSUFObm5sYAMH19febn58cCAgJYQEBAg7arzUxr1qxhTk5OLD4+nv3222/syy+/ZC1atGAJCQm8ZarK2dmZTZs2rcHb1GamR48eMQDs/fffV1tn6NChbMyYMbxkqsnjx4+ZUChkhw8f5iVTSkoKa926NXv06JFquUwmY+vWrWvwdrV9nIqKilhGRgb79ddf2YQJE5iDgwN78uQJr5mU2wwKCmLdu3dnBQUFDd4uF5kyMzMZAHbt2rUGbzMvL48BeK2fRVPKciJnZF9WMqZ/o6ackX05z6sLAwYMYM+ePVP9v7bJ29u7wdvWSQ1dIpGgU6dOavM6duyIw4cPA/jvddicnBxIJBLVOrm5udVq7VwxMzNDly5dVD3Z3d3dkZaWhoKCApSXl8PGxga9e/dGz549dZLn1UylpaWYP38+vv/+e9W1zq5duyItLQ1ffPEFfHx8dJ6pqvPnzyM9PR0HDx7USY7aMllbW8PAwKDG843ryyW1ZaqJRCKBTCbj/M6J2jLp6ekhNzdX7RpwZWUlPvnkE6xfv15n12ZrOk5mZmZwdHSEo6MjPDw80KFDB8TGxmLevHm8ZZLL5Rg9ejQyMzNx5swZnY/HXd/51NTRo1//KzExscb/a4NOrqH369cP6enpavPu3LkDmUwGAGjXrh3EYrFa55Py8nKcPXsWffv21UVElJWV4fbt22pfKICXnWJsbGyQkZHBeeezujLJ5XLI5XLo6al/ZPr6+lAoFLxkqio2Nhbu7u6cX+usL5OhoSF69epV5/mm60w1yc/Px4MHD2pdznWm0NBQXL9+HWlpaapJKpUiMjISJ0+e5CVTbRhjqn4tfGRSFuYZGRk4ffo0L03emhwnQnRSQ589ezb69u2L5cuXY/To0bhy5Qq2bduGbdu2AXj5zWvWrFlYvnw5OnTogA4dOmD58uUwNTWt1utVW/71r39h6NChsLe3R25uLpYuXYrCwkKEhYUBAA4dOgQbGxvY29vjxo0bmDlzJoYNG6bWcU+XmSwsLODl5YXIyEiYmJhAJpPh7Nmz2Lt3b8Ovs2gpk1JhYSEOHTqEtWvXcpajIZkiIyMRHByM/v37w9vbGydOnMAPP/yApKQkXjIVFRUhKioKI0eOhEQiwb179zB//nxYW1tj+PDhvGSysrKqVjAJhUKIxWI4Ozvzkqm4uBjLli1DYGAgJBIJ8vPzERMTg4cPH2LUqFG8ZKqoqMB7772H1NRUHDt2DJWVlao+P5aWlpzdeljfOf706VNkZWWp7odXfoEVi8U6v5NCI/Qsd5WG9DE6cuRIg7atkwK9V69e+P777zFv3jx89tlnaNeuHdavX4+xY8eq1vn0009RWlqKKVOm4NmzZ+jduzdOnTrF2T3oDx8+xPvvv4+8vDzY2NjAw8MDly5dUtXisrOz8fHHH+PJkyeQSCQYN24cFi1axEkWTTMdOHAA8+bNw9ixY/H06VPIZDIsW7YMH330EW+ZlLkYY3j//fc5y9GQTMOHD8eWLVuwYsUKzJgxA87Ozjh8+DCnnQfrylRaWoobN25g7969eP78OSQSCby9vXHw4EHOzu/6MvGlrkwvXrzAf/7zH+zZswd5eXmwsrJCr169cP78eU574deV6d69e4iPjwfwctSrqhITE1W3kOoyE/DyzqHx48er1h8zZgwAYPHixYiKiuIkU+Noo5d68yjQRSIRZ9sWMFbLs+fqUVhYCJFIpPrFawrkcjl+/PFHDB48GEKhkO84ACiTpiiTZiiTZihT/fLz82FtbY2CggLO+gQoy4nc4P6wMGxc/bGwvAK2B89xmvdNR89yJ4QQ8sZoTs9y1zYaPpUQQgi3tHgNPTk5+Y2uoffo0QM///wzWrVqhe7du9fZez81NbVB26YCnRBCCKfotrX/CgoKUj1MatiwYVrdNhXohBBCiI4sXry4xv9rAxXohBBCuEW3rdUpJSUFt2/fhkAgQMeOHeHu7v5a26ECnRBCCLe0MbhKM2lyr0p5e+Ivv/yiGuzn+fPn6Nu3L7799lu0bdu2QdujXu6EEEIIDyZMmAC5XI7bt2/j6dOnePr0KW7fvg3G2GuNWkk1dEIIIZyi8dBrdv78eVy8eFHt6YzOzs748ssv0a9fvwZvjwp0Qggh3KIm9xrZ29tDLpdXm19RUYE2bdo0eHvU5E4IIYTwYPXq1Zg+fTpSUlKgfGhrSkoKZs6ciS+++KLB26MaOiGEEG7pQQu93LWShHetWrVSu6e+uLgYvXv3hoHBy+K4oqICBgYGmDBhQoPvU9e4QC8rK1MbwrCwsBAAVMN6NgXKHE0lD0CZNEWZNEOZNEOZ6qfLHPRgmf9av349Z9vWeHCWqKgoLFmypNr8/fv3w9TUVOvBCCGEcKekpAQhISE6GZwlf5IvLAwbNyBNYbkcVttP0eAsddC4QK+pht62bVtkZ2c3qdHWEhISMGjQoCYxmhFAmTRFmTRDmTRDmeqXn58PiURCBXoTUVpaWq3VpKE/p8ZN7kZGRqrnz1YlFAqbxMlZFWXSDGXSDGXSDGXSTFPJpNMM1Mu9RsXFxZgzZw6+++475OfnV1teWVnZoO01k24GhBBCmixlgd7YCc1r+NRPP/0UZ86cQUxMDIyMjLBjxw4sWbIEUqkUe/fubfD2qJc7IYSQN8abPnxqVT/88AP27t2LAQMGYMKECXj77bfh6OgImUyGb775BmPHjm3Q9qiGTgghhGPaqJ03vyb3p0+fol27dgBeXi9/+vQpAMDT0xPnzp1r8PaoQCeEEMItPT3tTM1M+/btce/ePQBAp06d8N133wF4WXNXDtbSEM3vCBFCCCFvgPHjx+O3334DAMybN091LX327NmIjIxs8PboGjohhBBuUS/3Gs2ePVv1f29vb9y+fRtXr17FW2+9BTc3twZvjwp0Qggh3KICXSMymQwymey1309N7oQQQghPfv75Z7z77rt466234OjoiHfffRenT59+rW1RgU4IIYRbWrwPvTnZtGkT/P39YW5ujpkzZ2LGjBmwsLDA4MGDsWnTpgZvj5rcCSGEcEsbvdSbYS/3FStWYN26dZg2bZpq3owZM9CvXz8sW7ZMbb4mmt8RIoQQ0rRQDb1GhYWF8Pf3rzbf19dXNaJpQ/BSoK9YsQICgQCzZs1SzTty5Aj8/PxgbW0NgUCAtLQ0XjPJ5XLMmTMHXbp0gZmZGaRSKcaNG4fHjx/zlgl4Oeqdi4sLzMzM0KpVK/j4+ODy5cu8Zqpq8uTJEAgEnA4RqEmm8PBw1ZCNysnDw4PXTABw+/ZtBAYGQiQSwdzcHB4eHsjKyuIt06vHSDmtWbOGt0xFRUWYNm0a7OzsYGJigo4dO2Lz5s06yVNbpidPniA8PBxSqRSmpqbw9/dHRkYGZxmioqKqfSZisVi1nDGGqKgoSKVSmJiYYMCAAfj99985y0O4ERgYiO+//77a/KNHj2Lo0KEN3p7Om9yTk5Oxbds2dO3aVW1+cXEx+vXrh1GjRmHSpEm8ZyopKUFqaioWLVoENzc3PHv2DLNmzUJgYCBSUlJ4yQQATk5O2LRpE9q3b4/S0lKsW7cOvr6++OOPP2BjY8NLJqW4uDhcvnwZUqmU0xyaZvL398euXbtUrw0NDXnNdPfuXXh6eiIiIgJLliyBSCTC7du3YWxszFum7Oxstdc//fQTIiIiMHLkSN4yzZ49G4mJidi3bx8cHBxw6tQpTJkyBVKpFEFBQTrPxBjDsGHDIBQKcfToUVhYWCA6Oho+Pj64desWzMzMOMni6uqq1jlKX19f9f/Vq1cjOjoau3fvhpOTE5YuXYpBgwYhPT0d5ubmnORpFOrlrrJx40bV/zt27Ihly5YhKSkJffr0AQBcunQJv/zyCz755JMGb1unNfSioiKMHTsW27dvR6tWrdSWhYaG4t///jd8fHx0GanWTCKRCAkJCRg9ejScnZ3h4eGBL7/8ElevXuW8RlXXcQoJCYGPjw/at28PV1dXREdHo7CwENevX+ctEwA8evQI06ZNwzfffKOzUZzqy2RkZASxWKyaLC0tec20YMECDB48GKtXr0b37t3Rvn17DBkyBLa2trxlqnp8xGIxjh49Cm9vb7Rv3563TL/++ivCwsIwYMAAODg44MMPP4SbmxvnX6Rry5SRkYFLly5h8+bN6NWrF5ydnRETE4OioiJ8++23nOUxMDBQ+2yUX9gZY1i/fj0WLFiAESNGoHPnztizZw9KSkqwf/9+zvI0CjW5q6xbt041xcbGolWrVrh16xZiY2MRGxuL33//HS1btsTOnTsbvG2dFuhTp07FkCFDdF5o16UhmQoKCiAQCF7rkXxcZCovL8e2bdsgEole6yEE2sqkUCgQGhqKyMhIuLq6cppD00wAkJSUBFtbWzg5OWHSpEnIzc3lLZNCocDx48fh5OQEPz8/2Nraonfv3oiLi+Mt06uePHmC48ePIyIigtdMnp6eiI+Px6NHj8AYQ2JiIu7cuQM/Pz9eMpWVlQGAWkuKvr4+DA0NceHCBc7yZGRkQCqVol27dhgzZgz+/PNPAEBmZiZycnLg6+urWtfIyAheXl64ePEiZ3mIdmRmZmo0KT/vhtBZk/uBAweQmpqK5ORkXe2yXg3J9OLFC8ydOxchISGcjvSjSaZjx45hzJgxKCkpgUQiQUJCAqytrXnLtGrVKhgYGGDGjBmcZWhopoCAAIwaNQoymQyZmZlYtGgRBg4ciKtXr8LIyEjnmXJzc1FUVISVK1di6dKlWLVqFU6cOIERI0YgMTERXl5eOs/0qj179sDc3BwjRozgJIummTZu3IhJkybBzs4OBgYG0NPTw44dO+Dp6clLJhcXF8hkMsybNw9bt26FmZkZoqOjkZOTU+2Shbb07t0be/fuhZOTE548eYKlS5eib9+++P3335GTkwMAaN26tdp7Wrdujfv373OSp9Gol3u9GGMAXvZreV06KdAfPHiAmTNn4tSpUzq5XqiJhmSSy+UYM2YMFAoFYmJieM/k7e2NtLQ05OXlYfv27Rg9ejQuX77MSdNtfZmuXr2KDRs2IDU1tVEnojYzAUBwcLDq/507d0bPnj0hk8lw/PhxTgqs+jIpFAoAQFBQkOpxj926dcPFixexZcsWTgr0hv7e7dy5E2PHjuX0d1STTBs3bsSlS5cQHx8PmUyGc+fOYcqUKZBIJJy07tWXSSgU4vDhw4iIiIClpSX09fXh4+ODgIAArWdRqrrtLl26oE+fPnjrrbewZ88eVefOV3/fGGM6+x1sMLqGXqu9e/dizZo1qk6WTk5OiIyMRGhoaIO3pZOvPFevXkVubi7c3d1hYGAAAwMDnD17Fhs3boSBgQEqKyt1EeO1MsnlcowePRqZmZlISEjgtHauaSYzMzM4OjrCw8MDsbGxMDAwQGxsLC+ZkpKSkJubC3t7e9Xy+/fv45NPPoGDgwMvmWo6nyQSCWQyGWc9k+vLZGVlBQMDA3Tq1EntfR07duSsT0ZDjtP58+eRnp6OiRMncpJF00zFxcWYP38+oqOjMXToUHTt2hXTpk1DcHAwvvjiC14yVVZWwt3dHWlpaXj+/Dmys7Nx4sQJ5Ofnq4a+5JqZmRm6dOmCjIwMVW93ZU1dKTc3t1qtnTRt0dHR+Oc//4nBgwfju+++w8GDB+Hv74+PPvoI69ata/D2dFJDf+edd3Djxg21eePHj4eLiwvmzJmj1ntTVzTJpCzMMzIykJiYCCsrK94z1YQxprrOp+tMEomk2rVNPz8/hIaGYvz48bxkquk45efn48GDB5BIJLxkMjIyQq9evZCenq62zp07dxr17ObGZKp6nGJjY+Hu7s55X4z6MlVWVkIul0PvleZVfX19VSuHrjNVPU4ikQjAy+vbKSkp+PzzzznJ9KqysjLcvn0bb7/9Ntq1awexWIyEhAR0794dwMv+NGfPnsWqVat0kqfBBNBCDV0rSZqUL7/8Eps3b8a4ceNU84KCguDq6oqoqCi1wVs0oZMC3dzcHJ07d1abZ2ZmBisrK9X8p0+fIisrS3Wft/IPn7KHp64zVVRU4L333kNqaiqOHTuGyspK1TdiS0tLTm6Bqi9TcXExli1bhsDAQEgkEuTn5yMmJgYPHz7EqFGjtJ5Hk0wAqn3REQqFEIvFcHZ25iVTUVERoqKiMHLkSEgkEty7dw/z58+HtbU1hg8fzksmAIiMjERwcDD69+8Pb29vnDhxAj/88AOSkpJ4ywS8fLjFoUOHsHbtWk5yNDSTl5cXIiMjYWJiAplMhrNnz2Lv3r2Ijo7mLdOhQ4dgY2MDe3t73LhxAzNnzsSwYcPUOqZp07/+9S8MHToU9vb2yM3NxdKlS1FYWIiwsDDVPfLLly9Hhw4d0KFDByxfvhympqYICQnhJE+jUZN7jbKzs9G3b99q8/v27fta/TOazKNf4+Pj1Wp0Y8aMAQAsXrwYUVFROs/z8OFDxMfHA3h5rbOqxMREDBgwQOeZ9PX18Z///Ad79uxBXl4erKys0KtXL5w/f16nvcubOn19fdy4cQN79+7F8+fPIZFI4O3tjYMHD/J6j+7w4cOxZcsWrFixAjNmzICzszMOHz7MaWcvTRw4cACMMbz//vu85lA6cOAA5s2bh7Fjx+Lp06eQyWRYtmwZPvroI94yZWdn4+OPP8aTJ08gkUgwbtw4LFq0iLP9PXz4EO+//z7y8vJgY2MDDw8PXLp0SdWa8+mnn6K0tBRTpkzBs2fP0Lt3b5w6dapp3oNOauXo6IjvvvsO8+fPV5t/8OBBdOjQocHbEzBl17oGKiwshEgkUhUsTYFcLsePP/6IwYMH6+xe6PpQJs1QJs1QJs1Qpvrl5+fD2toaBQUFnPUNUpYTT+e+DwujxrVqFpaVw3Llt5zm1bXDhw8jODgYPj4+6NevHwQCAS5cuICff/4Z3333XYNbFJv3fQCEEEKaAG08VOZlk3uvXr3QqVMnfPXVV/z+SFowcuRIXLlyBdbW1oiLi8ORI0dgbW2NK1euvNblwSbT5E4IIaSZ0uI19OTk5GZRQ5fL5fjwww+xaNEi7Nu3TyvbpBo6IYQQomNCobDGgVkagwp0Qggh3KJnuddo+PDhWn38MzW5E0II4RY9+rVGjo6O+Pzzz3Hx4kW4u7tXG7mvoY/TpgKdEEII4cGOHTvQsmVLXL16FVevXlVbJhAIqEAnhBDSxNCDZWqUmZmp+r82Bmdpfm0YhBBCmha6hl6r2NhYdO7cGcbGxjA2Nkbnzp2xY8eO19oW1dAJIYQQHixatAjr1q3D9OnT0adPHwDAr7/+itmzZ+PevXtYunRpg7ZHBTohhBBuUZN7jTZv3ozt27erPXY5MDAQXbt2xfTp06lAJ4QQ0sRQL/caVVZWomfPntXmu7u7o6KiosHb07hALysrUxuis7CwEMDLp93I5fIG75gLyhxNJQ9AmTRFmTRDmTRDmeqn0xxUQ6/RBx98gM2bN1cbSXDbtm0YO3Zsg7en8eAsUVFRWLJkSbX5+/fvh6mpaYN3TAghhD8lJSUICQnRzeAsn02EhXEjB2d5UQ7Lf+9oVoOzTJ8+HXv37kXbtm3h4eEBALh06RIePHiAcePGqQ3io8nwwRoX6DXV0Nu2bYvs7OwmNdpaQkICJPMWQa9KVj4pjIyQveJzDBo0qEmMsAT89zhRprpRJs1QJs00tUz5+fmQSCS6KdA/n6SdAn3R9mZVoHt7e2u0nkAgwJkzZ+pdT+MmdyMjIxgZGVWbLxQKm8TJWZVeWRn0XrzgO4aapnicKJNmKJNmKJNmmkomnWaga+g1SkxM1Or2mt8RIoQQQv4HUS93Qggh3BJAC53itJKkWaMCnRBCCLeol7tOUJM7IYQQ0gxQDZ0QQgi3qIauE1SgE0II4ZZAC73cBdSgXB86QoQQQkgzQDV0Qggh3KImd52gAp0QQgi3qEDXCSrQCSGEcEug1/hr4HQNvV50hAghhJBmgJcCfcWKFRAIBJg1a5ZqHmMMUVFRkEqlMDExwYABA/D7779zluFQ8d8Izs1G/+wH6J/9AOF/5eCXF6Wq5fmVlVj8LB9+OY/QN/sBpuXnIquC2+EGN2/ejK5du8LCwgIWFhbo06cPfvrpJ9XyoqIiTJs2DXZ2djAxMUHHjh2xefNmXjMJBIIapzVr1vCWCQBu376NwMBAiEQimJubw8PDA1lZWbxlCg8Pr3aMlKMr8ZWpqsmTJ0MgEGD9+vW8ZoqKioKLiwvMzMzQqlUr+Pj44PLly7xlksvlmDNnDrp06QIzMzNIpVKMGzcOjx8/5i0TABw5cgR+fn6wtraGQCBAWloap3kaTU+gnYnUSecFenJyMrZt24auXbuqzV+9ejWio6OxadMmJCcnQywWY9CgQfj77785ydFaXx/TLVriaxsxvrYRo5eRMT5++hfuysvBGMMnT//Co8oKRFtaY7+NGBJ9A/wzPxelCgUneQDAzs4OK1euREpKClJSUjBw4EAEBQWpvtjMnj0bJ06cwL59+3D79m3Mnj0b06dPx9GjR3nLlJ2drTbt3LkTAoEAI0eO5C3T3bt34enpCRcXFyQlJeG3337DokWLYGxszFsmAPD391c7Vj/++CNneTTNBABxcXG4fPkypFIpp3k0yeTk5IRNmzbhxo0buHDhAhwcHODr64u//vqLl0wlJSVITU3FokWLkJqaiiNHjuDOnTsIDAzkLE99mQCguLgY/fr1w8qVKznNoTXKJvfGTqROOr2GXlRUhLFjx2L79u1YunSpaj5jDOvXr8eCBQswYsQIAMCePXvQunVr7N+/H5MnT9Z6lv7G6mO4T7Voif9XXIQb5eUwEAhwQ16O72zEeEv4csi/uaJWGJRTghOlJRhu1kLreQBg6NChaq+XLVuGzZs349KlS3B1dcWvv/6KsLAwDBgwAADw4YcfYuvWrUhJSUFQUBAvmcRisdryo0ePwtvbG+3bt+ckjyaZFixYgMGDB2P16tWqdbjMo0km4OWIha8eL74zPXr0CNOmTcPJkycxZMgQ3jOFhISoLY+OjkZsbCyuX7+Od955R+eZIiIikJCQoLb8yy+/xD/+8Q9kZWXB3t5e55lcXV0RGhoKALh37x4n+ydvJp1+5Zk6dSqGDBkCHx8ftfmZmZnIycmBr6+vap6RkRG8vLxw8eJFznNVMoaTpcUoZQp0NTRC+f8NEW9YpVelvkAAAwGQVq6bcdYrKytx4MABFBcXo0+fPgAAT09PxMfH49GjR2CMITExEXfu3IGfnx9vmap68uQJjh8/joiICJ3kqSmTQqHA8ePH4eTkBD8/P9ja2qJ3796Ii4vjLZNSUlISbG1t4eTkhEmTJiE3N5fXTAqFAqGhoYiMjFQV8LpU3/lUXl6Obdu2QSQSwc3NrUlkAoCCggIIBAK0bNmyyWRq8pS93Bs7kTrprIZ+4MABpKamIjk5udqynJwcAEDr1q3V5rdu3Rr379/nLFOGvBzj856gnDGYCAT4wtIG7YVCyBmDRF8fmwoLsKClJUwEAuwrKkS+QoE8RSVneQDgxo0b6NOnD168eIEWLVrg+++/R6dOnQAAGzduxKRJk2BnZwcDAwPo6elhx44d8PT05C1TVXv27IG5ubmqlYWPTDk5OSgqKsLKlSuxdOlSrFq1CidOnMCIESOQmJgILy8vnWcCgICAAIwaNQoymQyZmZlYtGgRBg4ciKtXr8LIyIiXTKtWrYKBgQFmzJjB2f4bmgkAjh07hjFjxqCkpAQSiQQJCQmwtrbmNZPSixcvMHfuXISEhMDCwqJJZHoj0HjoOqGTAv3BgweYOXMmTp06Ved1TMEr38AYY9XmaZODgRDf2ojxt0KBn1+UYvHzfGy3ao32QiHWtLLBZ8/z4Z3zEPoA/mFkjH5G3F2DVXJ2dkZaWhqeP3+Ow4cPIywsDGfPnkWnTp2wceNGXLp0CfHx8ZDJZDh37hymTJkCiURSrdVDV5mq2rlzJ8aOHcvpter6MilrTUFBQZg9ezYAoFu3brh48SK2bNnCaYFe13EKDg5Wrde5c2f07NkTMpkMx48f5/QLUG2ZSktLsWHDBqSmpnL6O9aQTMrzydvbG2lpacjLy8P27dsxevRoXL58Gba2trxlAl52kBszZgwUCgViYmI4y9KQTIRUpZMC/erVq8jNzYW7u7tqXmVlJc6dO4dNmzYhPT0dwMuaukQiUa2Tm5tbrdauTUKBAG0NhACAToZGuFVehm+L/8aClpboaGiIb20l+FuhQAVjaKWvj3F/5aDT/11T54qhoSEcHR0BAD179kRycjI2bNiA9evXY/78+fj+++9V1zq7du2KtLQ0fPHFF5wW6LVl2rp1q2qd8+fPIz09HQcPHuQshyaZvvzySxgYGFT7o9exY0dcuHCBl0xVj5OSRCKBTCZDRkYGL5k6duyI3NxctWvAlZWV+OSTT7B+/XpOr83Wd5zMzMzg6OgIR0dHeHh4oEOHDoiNjcW8efN4yySXyzF69GhkZmbizJkznNfONcn0RmmGD5Z58OABQkNDkZubCwMDAyxatAijRo3iNZNOCvR33nkHN27cUJs3fvx4uLi4YM6cOWjfvj3EYjESEhLQvXt3AC+vn509exarVq3SRUQAAANU18+VzP+vmSerQo7b8nL801ykszzAy1aKsrIyyOVyyOVy6L3S7KSvrw8Fhz3v68pUVWxsLNzd3XV2rbO2TIaGhujVq5fqS6LSnTt3IJPJeMlUk/z8fDx48EDtC6wuM4WGhlb7Eujn54fQ0FCMHz+el0yvu5wLVfepLMwzMjKQmJgIKysrnWapKdMbpxk+WMbAwADr169Ht27dkJubix49emDw4MEwMzPjL5MudmJubo7OnTurzTMzM4OVlZVq/qxZs7B8+XJ06NABHTp0wPLly2Fqalqt16u2bCp8jn5Gxmitb4BipsCp0hJcLS/Dl5Yvv3knlJaglZ4exPoG+ENeji8Kn2GAsQn6GJtwkgcA5s+fj4CAALRt2xZ///03Dhw4gKSkJJw4cQIWFhbw8vJCZGQkTExMIJPJcPbsWezduxfR0dG8ZFIqLCzEoUOHsHbtWs5yNCRTZGQkgoOD0b9/f3h7e+PEiRP44YcfkJSUxEumoqIiREVFYeTIkZBIJLh37x7mz58Pa2trDB8+nJdMVlZW1QomoVAIsVgMZ2dnXjIVFxdj2bJlCAwMhEQiQX5+PmJiYvDw4UNOaz51ZaqoqMB7772H1NRUHDt2DJWVlao+P5aWljA05KbFrr5z/OnTp8jKylLdD6/8AisWi3V6J8X/MolEovpCbmtrC0tLSzx9+rT5F+ia+PTTT1FaWoopU6bg2bNn6N27N06dOgVzc3NO9vdUUYlFz/ORV1mJFnp66GAgxJeWNvD4vwI7r7IS6wqeIV9RCWt9fQwxMcMkjmvnT548QWhoKLKzsyESidC1a1ecOHECgwYNAvCyY+G8efMwduxYPH36FDKZDMuWLcNHH33EWyZlLsYY3n//fc5yNCTT8OHDsWXLFqxYsQIzZsyAs7MzDh8+zGnnwboylZaW4saNG9i7dy+eP38OiUQCb29vHDx4kLPzu75MfKkr04sXL/Cf//wHe/bsQV5eHqysrNCrVy+cP3+e0174dWW6d+8e4uPjAbzsi1FVYmKi6hZSXWYCgPj4eLWWlDFjxgAAFi9ejKioKE4yNYoAWmhyb9jq586dw5o1a3D16lVkZ2fj+++/x7Bhw9TWiYmJwZo1a5CdnQ1XV1esX78eb7/9doOjpaSkQKFQoG3btg1+rzYJGHuljVlDhYWFEIlEql+8pkAul+PHH39Em48/hd6LF3zHAQAojI3xKHo1Bg8eDKFQyHccAP89TpSpbpRJM5RJM00tU35+PqytrVFQUMBZnwBlOfF083xYmDSus2xh6QtY/nM5Hjx4oJbXyMioxjtFfvrpJ/zyyy/o0aMHRo4cWa1AP3jwIEJDQxETE4N+/fph69at2LFjB27duqXqW+Lu7l7jZY5Tp06pHsSUn5+Pt99+Gzt27EDfvn0b9TM2VpOpoRNCCGmmtNgp7tVacG2tEgEBAQgICKh1c9HR0YiIiMDEiRMBAOvXr8fJkyexefNmrFixAsDLDt11KSsrw/DhwzFv3jzeC3OACnRCCCFvkJpq6A1VXl6Oq1evYu7cuWrzfX19NX6YGWMM4eHhGDhwoOrJfXyjAp0QQgi3tNjLXTlgTWPk5eWhsrKyxoeZKTs91ueXX37BwYMH0bVrV9WTKL/++mt06dKlUdkagwp0Qggh3BJoYbQ0Du5Db8zDzDw9PXV+y3B9mtaNfYQQQgjHrK2toa+vX602zvXDzLhGBTohhBBuNbHhUw0NDeHu7l5tJL2EhIQm0bntdVGTOyGEEG5psZd7r169oK+vj6lTp2Lq1Km1rl5UVIQ//vhD9TozMxNpaWmwtLSEvb09Pv74Y4SGhqJnz57o06cPtm3bhqysLE6f68E1KtAJIYS8MZKTkzXqFJeSkgJvb2/V648//hgAEBYWht27dyM4OBj5+fn47LPPkJ2djc6dO+PHH3/U+SOitYkKdEIIIdzi4VnuAwYMQH3PTZsyZQqmTJnSmFRNChXohBBCuKWnhV7ujX3//wDqFEcIIYQ0AxrX0MvKytSeaVtYWAgAqmE9mwJlDsVrPDmIK8osTeUYAf/NQpnqRpk0Q5k009Qy6TRHMxwPvSnSeHCWqKgoLFmypNr8/fv3w9TUVOvBCCGEcKekpAQhISG6GZxlzwpYmDZycJaSF7AMmwcnJyeNern/L9K4QK+pht62bVtkZ2c3qdHWEhISMGjQoCYxmhFAmTRFmTRDmTRDmeqXn58PiUSimwL965XaKdBD53Ka902ncZN7bUPUCYXCJnFyVkWZNEOZNEOZNEOZNNNUMjWFDES7qJc7IYQQbgkEWrhtja6h14cKdEIIIdyiTnE6QbetEUIIIc0A1dAJIYRwi4cnxf0voiNECCGEW8onxTV2wsvBWTp16oSvvvqK5x+q6aEaOiGEkDeGpoOz/C+iAp0QQgi3qMldJ6hAJ4QQwi3q5a4T9JWHEEIIaQaohk4IIYRbenovp8Zug9SJCnRCCCEc00KTO6jJvT46+cqzYsUK9OrVC+bm5rC1tcWwYcOQnp6uts6RI0fg5+cHa2trCAQCpKWl8ZpJLpdjzpw56NKlC8zMzCCVSjFu3Dg8fvyYt0zAy1HvXFxcYGZmhlatWsHHxweXL1/mNVNVkydPhkAgwPr163nNFB4eDoFAoDZ5eHjwmgkAbt++jcDAQIhEIpibm8PDwwNZWVm8ZXr1GCmnNWvW8JapqKgI06ZNg52dHUxMTNCxY0ds3ryZkzyaZnry5AnCw8MhlUphamoKf39/ZGRkcJZp8+bN6Nq1KywsLGBhYYE+ffrgp59+Ui1njCEqKgpSqRQmJiYYMGAAfv/9d87yNJqyU1xjJ1InnRyhs2fPYurUqbh06RISEhJQUVEBX19fFBcXq9YpLi5Gv379sHLlSl1EqjdTSUkJUlNTsWjRIqSmpuLIkSO4c+cOAgMDecsEAE5OTti0aRNu3LiBCxcuwMHBAb6+vvjrr794y6QUFxeHy5cvQyqVcpKloZn8/f2RnZ2tmn788UdeM929exeenp5wcXFBUlISfvvtNyxatAjGxo0bhaoxmaoen+zsbOzcuRMCgQAjR47kLdPs2bNx4sQJ7Nu3D7dv38bs2bMxffp0HD16lJdMjDEMGzYMf/75J44ePYpr165BJpPBx8enxt8DbbCzs8PKlSuRkpKClJQUDBw4EEFBQapCe/Xq1YiOjsamTZuQnJwMsViMQYMG4e+//+YkT1NC96HXgb2mgoICBoDl5eU1+L25ubkMADt79my1ZZmZmQwAu3btWoO3W15ezuLi4lh5eblWMylduXKFAWD3799vMpmUn8Pp06d5zfTw4UPWpk0bdvPmTSaTydi6desatF1tZwoLC2NBQUEN3haXmYKDg9kHH3zQpDK9KigoiA0cOJDXTK6uruyzzz5TW69Hjx5s4cKFvGRKT09nANjNmzdV61RUVDBLS0u2fft2nWRijLFWrVqxHTt2MIVCwcRiMVu5cqVq2YsXL5hIJGJbtmzReHt5eXkMACsoKHitPJpQ/n16eiSGVZzc1ajp6ZEYzvO+6XhpwygoKAAAWFpa8rH7GmmSqaCgAAKBAC1btmwSmcrLy7Ft2zaIRCK4ubnxlkmhUCA0NBSRkZFwdXXVSY76MgFAUlISbG1t4eTkhEmTJiE3N5e3TAqFAsePH4eTkxP8/Pxga2uL3r17Iy4ujrdMr3ry5AmOHz+OiIgIXjN5enoiPj4ejx49AmMMiYmJuHPnDvz8/HjJVFZWBgBqLSn6+vowNDTEhQsXOM9TWVmJAwcOoLi4GH369EFmZiZycnLg6+urWsfIyAheXl64ePEi53lei7JTXGMnUiedHyHGGD7++GN4enqic+fOut59jTTJ9OLFC8ydOxchISE6eUpRXZmOHTuGFi1awNjYGOvWrUNCQgKsra15y7Rq1SoYGBhgxowZnGfQNFNAQAC++eYbnDlzBmvXrkVycjIGDhyo+uOs60y5ubkoKirCypUr4e/vj1OnTmH48OEYMWIEzp49y0umV+3Zswfm5uYYMWIE53nqyrRx40Z06tQJdnZ2MDQ0hL+/P2JiYuDp6clLJhcXF8hkMsybNw/Pnj1DeXk5Vq5ciZycHGRnZ3OW5caNG2jRogWMjIzw0Ucf4fvvv0enTp2Qk5MDAGjdurXa+q1bt1YtI/+bdN7Lfdq0abh+/bpOvtlqqr5McrkcY8aMgUKhQExMDO+ZvL29kZaWhry8PGzfvh2jR4/G5cuXYWtrq/NMV69exYYNG5CamgoBDw9+qO04BQcHq/7fuXNn9OzZEzKZDMePH+e8wKopk0KhAAAEBQVh9uzZAIBu3brh4sWL2LJlC7y8vHSe6VU7d+7E2LFjObumr2mmjRs34tKlS4iPj4dMJsO5c+cwZcoUSCQS+Pj46DyTUCjE4cOHERERAUtLS+jr68PHxwcBAQGcZnF2dkZaWhqeP3+Ow4cPIywsTO3L36u/b4wxXn4HNUIPltEJndbQp0+fjvj4eCQmJsLOzk6Xu65VfZnkcjlGjx6NzMxMJCQk6KR2Xl8mMzMzODo6wsPDA7GxsTAwMEBsbCwvmc6fP4/c3FzY29vDwMAABgYGuH//Pj755BM4ODjwkqkmEokEMpmM057JdWWytraGgYEBOnXqpLZ+x44dOevlXl+mqs6fP4/09HRMnDiR0yz1ZSotLcX8+fMRHR2NoUOHomvXrpg2bRqCg4PxxRdf8JIJANzd3VWFa3Z2Nk6cOIH8/Hy0a9eOszyGhoZwdHREz549sWLFCri5uWHDhg0Qi8UAUK02npubW63W3mQIBFro5U4Fen10UqAzxjBt2jQcOXIEZ86c4fSXQJuZlIV5RkYGTp8+DSsrK94z1fY+rpqS68sUGhqK69evIy0tTTVJpVJERkbi5MmTvGSqSX5+Ph48eACJRMJLJkNDQ/Tq1ava7VB37tyBTCbjJVNVsbGxcHd357wvRn2Z5HI55HI59F65Xqqvr69q5dB1pqpEIhFsbGyQkZGBlJQUBAUFcZKptpxlZWVo164dxGIxEhISVMvKy8tx9uxZ9O3bV2d5SNOjkyb3qVOnYv/+/Th69CjMzc1V3yxFIhFMTEwAAE+fPkVWVpbqPm/lHz6xWKz6RqrLTBUVFXjvvfeQmpqKY8eOobKyUrWOpaUlDA0NdZ6puLgYy5YtQ2BgICQSCfLz8xETE4OHDx9i1KhRWs+jSSYrK6tqX3SEQiHEYjGcnZ15yVRUVISoqCiMHDkSEokE9+7dw/z582FtbY3hw4fzkgkAIiMjERwcjP79+8Pb2xsnTpzADz/8gKSkJN4yAUBhYSEOHTqEtWvXcpKjIZksLCzg5eWFyMhImJiYQCaT4ezZs9i7dy+io6N5yQQAhw4dgo2NDezt7XHjxg3MnDkTw4YNU+uYpk3z589HQEAA2rZti7///hsHDhxAUlISTpw4AYFAgFmzZmH58uXo0KEDOnTogOXLl8PU1BQhISGc5Gk0anLXjdftHt+Q29YA1Djt2rVLtc6uXbtqXGfx4sUaZ2rIbSH1ZVLePlfTlJiYyEum0tJSNnz4cCaVSpmhoSGTSCQsMDCQXblyReM82s5UE65vW6svU0lJCfP19WU2NjZMKBQye3t7FhYWxrKysnjLpBQbG8scHR2ZsbExc3NzY3Fxcbxn2rp1KzMxMWHPnz9vUBauMmVnZ7Pw8HAmlUqZsbExc3Z2ZmvXrmUKhYK3TBs2bGB2dnaq82nhwoWsrKxM4zwNzTRhwgQmk8mYoaEhs7GxYe+88w47deqUarlCoWCLFy9mYrGYGRkZsf79+7MbN240KI9Ob1s7FssqEr9t1PT0WCzdtlYPndTQGWP1rhMeHo7w8HDuw/yf+jI5ODholFub6tufsbExjhw5oqM0L73OMbh37572g1RRXyYTExPOmvtro+lxmjBhAiZMmMBxmpc0zfThhx/iww8/5DjNS5pkEovF2LVrlw7SvKRJphkzZuj0Lo76+sQIBAJERUUhKipKN4HIG4Fu7COEEMItPYF2JtCT4upCg7MQQgjhljaexf5/709OTtbJ3UZvIirQCSGEcIs6xekENbkTQgghzQDV0AkhhHBLi03upHZUoBNCCOGUQCBo9GNpm+xjbZsQ+spDCCGENANUQyeEEMItanLXCSrQCSGEcIsKdJ2gI0QIIYQ0A1RDJ4QQwi3Bf5/01qhtkDppXKCXlZWpDdFZWFgI4L/DHTYFyhxNJQ9AmTRFmTRDmTRDmeqn0xzU5K4TAqbhCA5RUVFYsmRJtfn79++Hqamp1oMRQgjhTklJCUJCQlBQUMDZo1QLCwshEonw7MwhWLRoXDlRWFSCVgNHwcnJCfr6+pg6dSqmTp2qpaTNg8YFek019LZt2yI7O7vaeNh8kcvlSEhIwKBBgyAUCvmOA4AyaYoyaUaZSTJvEfSq/D7ySWFkhOwVnzfJ40SZapefnw+JRKKbAj3x/2mnQPd+j9O8bzqNm9yNjIxgZGRUbb5QKGwSJ2dVlEkzlEkzTTGTXlkZ9F684DuGmqZ4nChT3Tl0RiDQQpM7XUOvD3WKI4QQwi0anEUnqJcBIYQQ0gxQDZ0QQgi3qJe7TlCBTgghhFt6WrgPvbHv/x9AX3kIIYSQZoBq6IQQQrhFTe46QQU6IYQQblEvd52grzyEEEJIM0A1dEIIIdyiJnedoAKdEEIIt6jJXSd08pVnxYoV6NWrF8zNzWFra4thw4YhPT1dbR3GGKKioiCVSmFiYoIBAwbg999/5zTXuXPnMHToUEilUggEAsTFxaktf/LkCcLDwyGVSmFqagp/f39kZGTwmqmoqAjTpk2DnZ0dTExM0LFjR2zevJnXTAKBoMZpzZo1vGUCgNu3byMwMBAikQjm5ubw8PBAVlYWb5nCw8OrHSMPDw/O8gBAatkLzMrPhV/OI7g/zkJiaUmt6y57/hTuj7Owv6iQ00z1HaeoqCi4uLjAzMwMrVq1go+PDy5fvsxbJrlcjjlz5qBLly4wMzODVCrFuHHj8PjxY94yAcCRI0fg5+cHa2trCAQCpKWlcZqHNH06KdDPnj2LqVOn4tKlS0hISEBFRQV8fX1RXFysWmf16tWIjo7Gpk2bkJycDLFYjEGDBuHvv//mLFdxcTHc3NywadOmassYYxg2bBj+/PNPHD16FNeuXYNMJoOPj49abl1mAoDZs2fjxIkT2LdvH27fvo3Zs2dj+vTpOHr0KG+ZsrOz1aadO3dCIBBg5MiRvGW6e/cuPD094eLigqSkJPz2229YtGgRjI2NecsEAP7+/mrH6scff+QsDwCUMgYnoSHmiFrVuV5iaQlulpfBRk+f0zxA/cfJyckJmzZtwo0bN3DhwgU4ODjA19cXf/31Fy+ZSkpKkJqaikWLFiE1NRVHjhzBnTt3EBgYyFme+jIpl/fr1w8rV67kNIdWKJvcGzuROumkyf3EiRNqr3ft2gVbW1tcvXoV/fv3B2MM69evx4IFCzBixAgAwJ49e9C6dWvs378fkydP5iRXQEAAAgICalyWkZGBS5cu4ebNm3B1dQUAxMTEwNbWFt9++y0mTpyo80wA8OuvvyIsLAwDBgwAAHz44YfYunUrUlJSEBQUxEsmsVis9vro0aPw9vZG+/btOcmjSaYFCxZg8ODBWL16tWoel3k0yQS8HOTo1ePFpX7GJuhnbPLyxbOa18mtrMDqgmfYZGWDmU+5KzSV6jtOISEhaq+jo6MRGxuL69ev45133tF5JpFIhISEBLV5X375Jf7xj38gKysL9vb2Os8EAKGhoQCAe/fucbJ/rdLTezk1dhsAevXqRcOn1oKXrzwFBQUAAEtLSwBAZmYmcnJy4Ovrq1rHyMgIXl5euHjxIh8RVUPFVq3R6evrw9DQEBcuXOAlEwB4enoiPj4ejx49AmMMiYmJuHPnDvz8/HjLVNWTJ09w/PhxRERE8JZBoVDg+PHjcHJygp+fH2xtbdG7d+8am+V1LSkpCba2tnBycsKkSZOQm5vLax4FY1j0LB+hLczxltCQ1yw1KS8vx7Zt2yASieDm5sZ3HJWCggIIBAK0bNmS7yhvhNouyzV0AoDk5GTcunWLCvMa6LxAZ4zh448/hqenJzp37gwAyMnJAQC0bt1abd3WrVurlumai4sLZDIZ5s2bh2fPnqG8vBwrV65ETk4OsrOzeckEABs3bkSnTp1gZ2cHQ0ND+Pv7IyYmBp6enrxlqmrPnj0wNzdXtbTwITc3F0VFRVi5ciX8/f1x6tQpDB8+HCNGjMDZs2d5yxUQEIBvvvkGZ86cwdq1a5GcnIyBAweqvjzyYXdRIfQFArxvZs5bhpocO3YMLVq0gLGxMdatW4eEhARYW1vzHQsA8OLFC8ydOxchISE0LjdpUnTey33atGm4fv16jbVc5TcwJcZYtXm6IhQKcfjwYURERMDS0hL6+vrw8fGpt0mVaxs3bsSlS5cQHx8PmUyGc+fOYcqUKZBIJPDx8eE1GwDs3LkTY8eO5fRadX0UCgUAICgoCLNnzwYAdOvWDRcvXsSWLVvg5eXFS67g4GDV/zt37oyePXtCJpPh+PHjvHwBul1ejgPFf+MbGzFvv2e18fb2RlpaGvLy8rB9+3aMHj0aly9fhq2tLa+55HI5xowZA4VCgZiYGF6zvFFoPHSd0GmBPn36dMTHx+PcuXOws7NTzVdeU8zJyYFEIlHNz83NrVZr1yV3d3ekpaWhoKAA5eXlsLGxQe/evdGzZ09e8pSWlmL+/Pn4/vvvMWTIEABA165dkZaWhi+++IL3Av38+fNIT0/HwYMHec1hbW0NAwMDdOrUSW1+x44deb1c8iqJRAKZTMb5nRO1uVb+Ak8VCgx58t/e2pUA1hU+x/7iv3GsdRtecgGAmZkZHB0d4ejoCA8PD3To0AGxsbGYN28eb5nkcjlGjx6NzMxMnDlzhmrnDUG3remETgp0xhimT5+O77//HklJSWjXrp3a8nbt2kEsFiMhIQHdu3cH8PLa2dmzZ7Fq1SpdRKyTSCQC8LKjXEpKCj7//HNecsjlcsjlcui90rlEX19fVSvlU2xsLNzd3Xm/1mloaIhevXpVuzXyzp07kMlkPKWqLj8/Hw8ePFD7EqtLg03N8A8j9ZaUafl/YbCpGQJNzXjJVBvGGK+XJpSFeUZGBhITE2FlZcVbFkJqo5MCferUqdi/fz+OHj0Kc3Nz1XVxkUgEExMTCAQCzJo1C8uXL0eHDh3QoUMHLF++HKamptV6vGpTUVER/vjjD9XrzMxMpKWlwdLSEvb29jh06BBsbGxgb2+PGzduYObMmRg2bJha5z1dZ/Ly8kJkZCRMTEwgk8lw9uxZ7N27F9HR0bxlAoDCwkIcOnQIa9eu5SxHQzJFRkYiODgY/fv3h7e3N06cOIEffvgBSUlJvGSytLREVFQURo4cCYlEgnv37mH+/PmwtrbG8OHDOctUolDgQWWF6vXjygqky8thIdCDxMAALV+5Tc1AAFjr6cHBQMhZprqOk5WVFZYtW4bAwP/f3p0HR1XteQD/djrpJZDFTkKnGwgGZNEAUeMyoBNghEwFXqRkU2GskGgNSJwixSsQRjRRWZTSiCODQIqXUFAgPsRYZVkPgg8SGSwNgVAsb/RhZQjxZTFbd5amm3Sf+SMvkexN0n1Pv/b7qbp/9E1z+9sL93fPuefe8zRMJhPq6+uxe/duVFZWYunSpVIymc1mLFmyBBcuXMCXX34Jp9PZtQ8zGAzQaLwzmHCw33hDQwMqKiq6rofvPICNjo5W9EoK93jisjNetjYoMUQWi0UAEHV1dYM+F0CfS15eXtdzXC6XyMrKEtHR0UKr1YrExERx+fLlu8rkcDhEQUGBcDgcbj3/9OnTfeZKTU0VQgjx4YcfijFjxoigoCARExMjNm/eLOx2u9RMVVVVYuXKlcJsNgudTicmT54s3n//feFyuaRlEkKIvXv3Cr1eL5qamtzO4e1M+/fvF/fdd5/Q6XQiPj5eFBQUSMvU1tYmkpKSRFRUVNfvKTU1VVRUVAwpU8n4SaLUHDPosjdiVJ+Zfqcf0efzTWq1+H1ouFvb7lxKxk/y2Odks9nEM888I8xms9BoNMJkMomnn35afP/990P6nDyRqby8vN992OnTp6VkEkKIvLy8Pv+elZXl1vbr6uoEAGGxWNx+D3ers040XSwSruulw1qaLhZ5Pe8/OpUQQgzlQMBqtSIsLAx1dXU+0/10+/ZtfPXVV5g/fz6CgrzXwrgbzOQeZnJPZ6bR6zYg4NYt2XEAAC6dDj/n7PDJz4mZ+ldfX4/IyEhYLBavjQforBNNF4sQGjJyeNtqbkH4Q7O8mvcfHe/lTkRE3uXBG8tQ/1jQiYjIuzjKXRE85CEiIvIDbKETEZF3cT50RbCgExGRd7HLXREs6ERE5GWqvy/D3QYNhH0YREREfoAtdCIi8i52uSuCBZ2IiLyLBV0R7HInIiLyA2yhExGRl3FQnBJY0ImIyLvY5a4Itwu63W7vNh+x1WoF8Osc3b6gM4ev5AGYyV3M5J7OLC6tVnKSX3Vm8cXPiZn65ys5yHPcnm0tOzsbb775Zq/1hw8fRnBwsMeDERGR97S1tWH58uXKzLb2v+c9M9valEcwadIkqNVqZGRkICMjw0NJ/YPbBb2vFvrYsWNRVVXlU9OnFhYWwrTpdQTckVUml1aLqu1v+2SmefPm+cQ0jgC/O3f58nfHTAPztUz19fUwmUwKFfRSDxX0BE6fOgC3u9y1Wi20fXTzBQUF+cSP804BdrvPzBXdyRcz8btzjy9m8sXvjpnc4yuZfCEDeRYHxRERkXdxUJwiWNCJiMi7VPBAQfdIEr/Ggk5ERF7G69CVwDvFERER+QG20ImIyLt4Dl0RLOhERORl7HJXArvciYiI/ABb6ERE5F3sclcECzoREXkXC7oi2OVORETkB6QV9OLiYqSkpMBsNkOlUqGgoEBWlC5/aLbghV+q8c9VNzG3uhLrGn7B/7XLnZHoj63NeLa2ColVN5FYdRMrf6nG/9yySc10p+3bt0OlUiEzM1Nqjr3WJiT8raLbklRdKTUTANQ627G5sQ7/UlWJmVU38XxtFf7icEjLc++990KlUvVaZE5y0d7ejs2bNyM2NhZ6vR7jx4/HW2+9BZfLJS1Tc3MzMjMzMW7cOOj1esycORMlJSWKZhhsHymEQHZ2NsxmM/R6PWbPno2rV68qmtF9Kg8tNBBpXe6tra2Ij49HWloaFi9eLCtGNxccdiwdMRJxQRo4Afy3tQkZ9bU4FmWCPkDOsY9RrcZ/hIZjbGDHV/VlWyvWNfyCw1HRmBCkkZKpU0lJCfbt24fp06dLzdFpQmAQdkeM6nqslpgFAKwuF9LravCIRof/ioiCIUCNSmc7RgbI2zGVlJTA6XR2Pb5y5QrmzZuHpUuXSsv07rvvYs+ePThw4ADi4uJw/vx5pKWlISwsDGvXrpWS6aWXXsKVK1dw8OBBmM1mHDp0CHPnzsW1a9cwevRoRTIMto/csWMHcnJykJ+fj0mTJmHLli2YN28efvjhB4SEhCiS0V2dB47D3QYNTFpBT05ORnJysqyX79OuO4oBAGSHR2Buzc/4y20HHtbqpGRK1HWfmjYjNBzHWltw2eGQWtBbWlqwYsUK5ObmYsuWLdJy3EkNIFItu4z/Kr/FCqM6ENn3/DoboTlQ7rCVqKiobo/feecdTJgwAbNmzZKUCPj222+xcOFCLFiwAEBHL8KRI0dw/vx5KXlsNhs+++wzfPHFF0hMTATQMX10QUEBPv74Y8V+7wPtI4UQ2LlzJ1577TUsWrQIAHDgwAEYjUYcPnwYq1atUiQj+RaeQx9Ai+jo8guV1DrvySkETthaYRMuTNf0nvlOSRkZGViwYAHmzp0rNcedKpzt+Nfqn5FS8zM2NdShsr1dap7iW214IEiDDQ2/YG51JZbXVuF4a4vUTHdyOBw4dOgQ0tPTpbZ+nnzySXz99df48ccfAQCXLl3C2bNnMX/+fCl52tvb4XQ6odN1P4jX6/U4e/aslEw9lZeXo7q6GklJSV3rtFotZs2ahXPnzklM1o/OQXHDXWhAHOXeDyEEcixNeFCjxX2Su7b/etuBtLoaOISAXqXCe4YojJc49eEnn3yCCxcuKH5OcSBTNVq8FaRBTGAgGlwu7G+2IL2uGp+OMiE8QE6r/ef2dhxrb8aKkaFIDwnDVYcd71kaoVEBvwse3tzQnlBQUICmpiasXLlSao5XX30VFosFU6ZMgVqthtPpxNatW/H8889LyRMSEoIZM2bg7bffxv333w+j0YgjR47gu+++w8SJE6Vk6qm6uhoAYDQau603Go24ceOGjEiD4I1llMCC3o93LY34a7sD+yONgz/Zy+4NDMKRqGg0u1z4+pYNWU31yI0wSinqN2/exNq1a3Hy5MleLRiZntDpuz2eHqTBwtq/4cu2VvzbyFApmVwAHgjS4JXQcADAlCANfmq/jWOtLT5R0Pfv34/k5GSYzWapOY4ePYpDhw7h8OHDiIuLQ1lZGTIzM2E2m5Gamiol08GDB5Geno7Ro0dDrVbj4YcfxvLly3HhwgUpefrTs2dFCOGj55o90cL2xfflW1jQ+7DD0oDiWzbkRhphVMv/iIJUKowN7CjeD2i0uOaw40hrM14LNyiepbS0FLW1tUhISOha53Q6UVxcjF27dsFut0PtA+ex9QEBuC9QgwqJ3e6RajViexx0xQYG4c82+Vcp3LhxA6dOncLx48dlR8H69euxceNGPPfccwCAadOm4caNG9i+fbu0gj5hwgQUFRWhtbUVVqsVJpMJzz77LGJjY6Xk6Sk6OhpAR0vdZDJ1ra+tre3VaqffDt84OewjhBB4t6kBf7bZsCdyFEZLHsDUHwHAIYSU137qqadw+fJllJWVdS2PPPIIVqxYgbKyMp8o5kDH51PeflvqILl4jRY3ehxQVLS3w+QDn1FeXh5GjRrVNRBNpra2NgT0GKeiVqulXrbWacSIETCZTGhsbMSJEyewcOFC2ZEAALGxsYiOjkZhYWHXOofDgaKiIsycOVNisn7wHLoipFWslpYWXL9+vetxeXk5ysrKYDAYEBMTIyXTO5ZG/MnWihxDFIJVAaj7++U9IwNU0KnkHPvssjbhCa0ORnUgWoULJ21tKHXY8ZFBTjdySEgIpk6d2m3diBEjEBER0Wu9kj6wNCJRp0e0OhANLif2N1vQKlxI0Y+QlmnFiBCk1dXgD80WzNMH44rDgeNtLXgtTPmelTu5XC7k5eUhNTUVgT5w0JqSkoKtW7ciJiYGcXFxuHjxInJycpCeni4t04kTJyCEwOTJk3H9+nWsX78ekydPRlpammIZBttHZmZmYtu2bZg4cSImTpyIbdu2ITg4GMuXL1cso/t4Dl0J0v43nz9/HnPmzOl6vG7dOgBAamoq8vPzpWQ61tYxAvnf62u7rc8KN+BpSec8G1xOvN5UjzqnEyMDAjAxMAgfGaLwTz3OGf/W1Tqd+M/GejS5nLgnQI1pGg3yI6Nhkliw4jRavGeIwi5rE3KbLTAHBuL3ofdgfrC8gwwAOHXqFCoqKqQWzDt99NFHeP3117FmzRrU1tbCbDZj1apVeOONN6Rlslgs2LRpEyorK2EwGLB48WJs3boVQQqOWxlsH7lhwwbYbDasWbMGjY2NePzxx3Hy5EmfuwadlCNtbzd79mwISd3G/Sk1y+kZGMgb4RGDP0myM2fOyI6A7YZI2RH6lKjTI9HHDr6SkpJ86v9eSEgIdu7ciZ07d8qO0mXZsmVYtmyZ1AyD7SNVKhWys7ORnZ2tXKih4r3cFSG/v42IiPwbe9wVwUFxREREfoAtdCIi8jI20ZXAgk5ERN7Fc+iKYJc7ERGRH2ALnYiIvIstdEWwoBMRkZfxHLoSWNCJiMi7VPBAC90jSfwaz6ETERHdpebmZjz66KN48MEHMW3aNOTm5sqOxBY6ERF5mR+eQw8ODkZRURGCg4PR1taGqVOnYtGiRYiIkHd3TxZ0IiLyMv87h65WqxEcHAwAuHXrFpxOp/RbKrPLnYiI/E5xcTFSUlJgNpuhUqlQUFDQ6zm7d+9GbGwsdDodEhIS8M0339zVazQ1NSE+Ph5jxozBhg0bEBkpd04Jt1vodrsddru967HFYgEANDQ0eD7VEN2+fRttbW2wBgYiQKPcrEgDcQUG+mym+vp6RWePGgi/O/f48nfHTAPztUyd+24lWpXWlpZhd5lbWzpmw7Rard3Wa7VaaLXaXs9vbW1FfHw80tLSsHjx4l5/P3r0KDIzM7F792488cQT2Lt3L5KTk3Ht2rWuKbwTEhK61b1OJ0+ehNlsRnh4OC5duoSamhosWrQIS5YsgdFoHNb7HBbhpqysLAGACxcuXLj40fLTTz+5Wwbums1mE9HR0R7LOnLkyF7rsrKyBs0BQHz++efd1j322GNi9erV3dZNmTJFbNy4cUjvdfXq1eLTTz8d0r/1FLdb6Js2beqajxfo6GoYN24cKioqEBYW5u5mvMpqtWLs2LG4efMmQkNDZccBwEzuYib3MJN7mGlwFosFMTExMBgMXnsNnU6H8vJyOBwOj2xPCAFVj5Z+X63zwTgcDpSWlmLjxo3d1iclJeHcuXNubaOmpgZ6vR6hoaGwWq0oLi7Gyy+/fNdZPMntgt5ft0ZYWJhP/DjvFBoaykxuYCb3MJN7mMk9vpYpIMC7Q6l0Oh10Op1XX+Nu1dXVwel09uoeNxqNqK6udmsblZWVePHFFyGEgBACr7zyCqZPn+6NuG7jKHciIvpN6tna76sHoD8JCQkoKyvzQqqh4yh3IiL6TYmMjIRare7VGq+trZU7qG2YhlzQtVotsrKyhnT+wluYyT3M5B5mcg8zucfXMvlaHiVpNBokJCSgsLCw2/rCwkLMnDlTUqrhUwkh+Up4IiIiD2tpacH169cBAA899BBycnIwZ84cGAwGxMTE4OjRo3jhhRewZ88ezJgxA/v27UNubi6uXr2KcePGSU4/NCzoRETkd86cOYM5c+b0Wp+amor8/HwAHTeW2bFjB6qqqjB16lR88MEHSExMVDip57CgExER+QEOiiMiIvIDLOhERER+gAWdiIjID7CgExER+QEWdCIiIj/Agk5EROQHWNCJiIj8AAs6ERGRH2BBJyIi8gMs6ERERH6ABZ2IiMgPsKATERH5gf8HvAeIu6greMgAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'probability distribution after 1 move')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plotchutes(T*M*e₁)\n", + "title(\"probability distribution after 1 move\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As above, the probability distribution after $n$ moves is $(TM)^n e_1$, and it is interesting to plot this:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXeElEQVR4nOzdeVgT1/4/8HeAEBYxyppEJGoRUFSqaEWlIhZZbAWXKopFULS9X3ftj+t+xdbdiku9uBWt1tpar4hUrYoVUGtVEGndLlCL4gJSUEEWIZDz+8NLLhGEIJkMcj+vPvM8zWQyeTMEPzlnzswRMMYYCCGEEPJG0+M7ACGEEEKajgo6IYQQ0gJQQSeEEEJaACrohBBCSAtABZ0QQghpAaigE0IIIS0AFXRCCCGkBaCCTgghhLQAVNAJIYSQFoAKejMREREBgUCgtq5Dhw4IDQ1t1H4uXLiAiIgIPH36tFGve/m9EhMTIRAI8K9//atR+6lPaWkpIiIikJiYWOu5r7/+GgKBAHfu3NHa+3Hhyy+/hL29PQwNDSEQCPD06VOsXLkSsbGxOs1x9OhRTJgwAd27d4dQKKz12SGE/O8x4DsAebXDhw+jdevWjXrNhQsXsGzZMoSGhqJNmzacvldjlZaWYtmyZQCAQYMGqT33/vvv49dff4VUKuU0Q1OkpaVh5syZmDx5MkJCQmBgYAAzMzOsXLkSH374IYYPH66zLIcPH8bFixfRs2dPiEQiXLlyRWfvTQhpnqigN2M9e/bk/D3KyspgbGysk/eqj5WVFaysrHjN0JAbN24AAKZMmYJ33nmH0/eqqqpCZWUlRCJRnc/v3LkTenovOtimT59OBZ0QQl3ufDh27BjefvttiEQidOzYEV988UWd273cDa5UKrF8+XI4OjrC2NgYbdq0QY8ePbBp0yYAL7rtw8PDAQAdO3aEQCCAQCBQdXF36NABH3zwAWJiYtCzZ08YGRmpWsyv6t5//vw55s6dC4lEAmNjY3h4eODq1atq2wwaNKhWixsAQkND0aFDBwDAnTt3VAV72bJlqmzV7/mqLvddu3bBxcUFRkZGMDc3x4gRI3Dr1q1a79OqVSv88ccfGDp0KFq1aoX27dvj008/RXl5eZ3HtqYDBw7A29sbUqkUxsbG6NKlC+bPn4+SkhK1n/Gjjz4CAPTt21eVXSAQoKSkBHv27FH9TDWPRW5uLj755BPY2trC0NAQHTt2xLJly1BZWana5s6dOxAIBFi7di2WL1+Ojh07QiQSISEh4ZWZq4v566h+v3Xr1mHNmjXo0KEDjI2NMWjQIGRkZEChUGD+/PmQyWQQi8UYMWIE8vLy1PahVCqxdu1aODk5QSQSwdraGhMmTMD9+/dV28yePRumpqYoKiqqlSEwMBA2NjZQKBSqdQcOHEC/fv1gamqKVq1awcfHp9Zn7c8//8TYsWMhk8kgEolgY2OD9957D2lpaa99PAhpMRjRqdOnTzN9fX3m7u7OYmJi2MGDB1mfPn2YnZ0de/nXIZfLWUhIiOrxqlWrmL6+Plu6dCn7+eef2YkTJ9jGjRtZREQEY4yxe/fusRkzZjAALCYmhv3666/s119/ZYWFhar9SaVS1qlTJ7Zr1y6WkJDALl++XOd7JSQkMACsffv2LCAggP34449s3759zN7enrVu3Zrdvn1bta2Hhwfz8PCo9bOGhIQwuVzOGGPs+fPn7MSJEwwACwsLU2X7448/GGOM7d69mwFgWVlZqtevXLmSAWDjxo1jx44dY3v37mWdOnViYrGYZWRkqL2PoaEh69KlC/viiy/Y6dOn2T/+8Q8mEAjYsmXLGvydfP7552zDhg3s2LFjLDExkW3bto117NiReXp6qra5ceMGW7x4MQPAdu/ercr+66+/MmNjYzZ06FDVz3Tjxg3GGGM5OTmsffv2TC6Xs+3bt7PTp0+zzz//nIlEIhYaGqrad1ZWFgPA2rVrxzw9Pdm//vUvdurUKbVjUZ9p06bV+uzUp/r95HI5GzZsGDt69Cjbt28fs7GxYQ4ODiw4OJhNmjSJ/fTTT2zbtm2sVatWbNiwYWr7+PjjjxkANn36dHbixAm2bds2ZmVlxdq3b8/++usvxhhjv/32GwPAdu7cqfbaJ0+eMJFIxObOnatat2LFCiYQCNikSZPY0aNHWUxMDOvXrx8zNTVVHU/GGHN0dGT29vbsm2++YUlJSezQoUPs008/ZQkJCRr//IS0VFTQdaxv375MJpOxsrIy1bqioiJmbm7eYEH/4IMP2Ntvv13v/tetW1erMNbcn76+PktPT6/zuboKeq9evZhSqVStv3PnDhMKhWzy5MmqdZoUdMYY++uvvxgAtnTp0lrbvlzQnzx5oiqUNWVnZzORSMSCgoLU3gcA++GHH9S2HTp0KHN0dKz1XvVRKpVMoVCwpKQkBoD99ttvtTImJyervcbU1FTt2FX75JNPWKtWrdjdu3fV1n/xxRcMgKpQVRfYt956i1VUVDQqL2OvX9BdXFxYVVWVav3GjRsZAObv76+2/ezZsxkA1RfDW7duMQBs6tSpattdunSJAWALFy5UrevVqxfr37+/2nZRUVEMALt27Rpj7MXv1MDAgM2YMUNtu2fPnjGJRMLGjBnDGGMsPz+fAWAbN27U+Gcl5H8JdbnrUElJCZKTkzFy5EgYGRmp1puZmWHYsGENvv6dd97Bb7/9hqlTp+LkyZN1dmU2pEePHnBwcNB4+6CgILUR1HK5HP3796+3O1gbfv31V5SVldU6DdC+fXsMHjwYP//8s9p6gUBQ6xj26NEDd+/ebfC9/vzzTwQFBUEikUBfXx9CoRAeHh4AUKt7vzGOHj0KT09PyGQyVFZWqhY/Pz8AQFJSktr2/v7+EAqFr/1+jTV06FC1rvsuXboAeDFAsabq9dnZ2QCg+t2//Lt555130KVLF7XfzcSJE3HhwgWkp6er1u3evRt9+vRBt27dAAAnT55EZWUlJkyYoHacjIyM4OHhoTplZG5ujrfeegvr1q1DZGQkrl69CqVSqYUjQUjLQAVdh548eQKlUgmJRFLrubrWvWzBggX44osvcPHiRfj5+cHCwgLvvfceUlJSNM7Q2FHkr8paUFDQqP00VvX+68ork8lqvb+JiYnalyQAEIlEeP78eb3vU1xcjHfffReXLl3C8uXLkZiYiOTkZMTExAB4MWjwdT169Ag//vgjhEKh2uLs7AwAyM/PV9te1yP8zc3N1R4bGhrWu776WDbmdzN+/HiIRCJ8/fXXAICbN28iOTkZEydOVG3z6NEjAECfPn1qHasDBw6ojpNAIMDPP/8MHx8frF27Fr169YKVlRVmzpyJZ8+evfZxIKSloFHuOtS2bVsIBALk5ubWeq6udS8zMDDA3LlzMXfuXDx9+hSnT5/GwoUL4ePjg3v37sHExKTBfTT2euVXZbWwsFA9NjIyQmFhYa3tXi5YjVG9/5ycnFrPPXz4EJaWlq+975rOnDmDhw8fIjExUdUqB9Do6/jrYmlpiR49emDFihV1Pi+TydQevynXktf83dja2qo99/Lvpm3btggICMDevXuxfPly7N69G0ZGRhg3bpxqm+rt//Wvf0Eul9f73nK5HNHR0QCAjIwM/PDDD4iIiEBFRQW2bdumlZ+PkDcVtdB1yNTUFO+88w5iYmLUWo7Pnj3Djz/+2Kh9tWnTBh9++CGmTZuGx48fq0aHV1/m1JSWZU3fffcdGGOqx3fv3sWFCxfURnJ36NABGRkZaiPKCwoKcOHCBbV9NSZbv379YGxsjH379qmtv3//Ps6cOYP33nvvdX6cWqqL6MuXh23fvl3jfYhEojp/pg8++ADXr1/HW2+9hd69e9daXi7ob4rBgwcDQK3fTXJyMm7dulXrdzNx4kQ8fPgQx48fx759+zBixAi1eyT4+PjAwMAAt2/frvM49e7du84cDg4OWLx4Mbp3747U1FTt/pCEvIGoha5jn3/+OXx9fTFkyBB8+umnqKqqwpo1a2BqaorHjx/X+9phw4ahW7du6N27N6ysrHD37l1s3LgRcrkcnTt3BgB0794dALBp0yaEhIRAKBTC0dERZmZmr5U3Ly8PI0aMwJQpU1BYWIilS5fCyMgICxYsUG0THByM7du346OPPsKUKVNQUFCAtWvX1rpRjZmZGeRyOY4cOYL33nsP5ubmsLS0VF3aVlObNm2wZMkSLFy4EBMmTMC4ceNQUFCAZcuWwcjICEuXLn2tn+dl/fv3R9u2bfG3v/0NS5cuhVAoxLfffovffvtN4310794diYmJ+PHHHyGVSmFmZgZHR0d89tlniI+PR//+/TFz5kw4Ojri+fPnuHPnDo4fP45t27bVauFq6u7du0hOTgYA3L59GwBUd/Xr0KHDK4ugNjg6OuLjjz/Gl19+CT09Pfj5+eHOnTtYsmQJ2rdvjzlz5qht7+3tDVtbW0ydOhW5ublq3e3VeT/77DMsWrQIf/75J3x9fdG2bVs8evQIly9fhqmpKZYtW4bff/8d06dPx+jRo9G5c2cYGhrizJkz+P333zF//nzOfl5C3hh8j8r7XxQXF8d69OjBDA0NmZ2dHVu9ejVbunRpg6Pc169fz/r3788sLS1Vrw0LC2N37txRe92CBQuYTCZjenp6DIDqkh65XM7ef//9OjO9apT7N998w2bOnMmsrKyYSCRi7777LktJSan1+j179rAuXbowIyMj1rVrV3bgwIFao9wZe3HZXs+ePZlIJGIAVO9Z12VrjDH21VdfqY6VWCxmAQEBapcxMfZilLupqWmtTHUd07pcuHCB9evXj5mYmDArKys2efJklpqaqrpErdqrRrmnpaWxAQMGMBMTEwZAbcT/X3/9xWbOnMk6duzIhEIhMzc3Z66urmzRokWsuLiYMfbfUefr1q1rMOvLWepa6hpxX9Or3q/6d37w4ME636vmz11VVcXWrFnDHBwcmFAoZJaWluyjjz5i9+7dq/M9Fy5cqLoMsubI+ppiY2OZp6cna926NROJREwul7MPP/yQnT59mjHG2KNHj1hoaChzcnJipqamrFWrVqxHjx5sw4YNrLKysqFDRkiLJ2CsRn8qIYQQQt5IdA6dEEIIaQGooBNCCCF1OHr0KBwdHdG5c2d89dVXfMdpEHW5E0IIIS+prKxE165dkZCQgNatW6NXr164dOlSrfs0NCfUQieEEEJecvnyZTg7O6Ndu3YwMzPD0KFDcfLkSb5j1YsKOiGEkBbn7NmzGDZsGGQyGQQCAWJjY2ttExUVhY4dO8LIyAiurq44d+6c6rmHDx+iXbt2qse2trZ48OCBLqK/NirohBBCWpySkhK4uLhgy5YtdT5/4MABzJ49G4sWLcLVq1fx7rvvws/PTzVnQV1no5v73Rw1vrFMeXm52p3AlEolHj9+DAsLi2b/QxJCCFHHGMOzZ88gk8nUJunRtufPn6OiokIr+2KM1ao3IpGo1p0eAcDPz081EVJdIiMjERYWhsmTJwMANm7ciJMnT2Lr1q1YtWoV2rVrp9Yiv3//Pvr27auVn4Mzml6wXn2TDlpooYUWWlrO8qqbAWlDWVkZM4FAa1lbtWpVa11d0zG/DAA7fPiw6nF5eTnT19dnMTExatvNnDmTDRw4kDHGmEKhYPb29uz+/fusqKiI2dvbs/z8fG0eHq3TuIW+YMECzJ07V/W4sLAQdnZ2yMjIaDaj/hQKBRISEuDp6anTaSjrQ5k0Q5k0Q5k0Q5ka9vjxYzg4OLz2baE1UVFRgVIwBMMUhmhaT24FGL4pLsa9e/fUbitdV+u8Ifn5+aiqqoKNjY3aehsbG9WEVAYGBli/fj08PT2hVCrx97//XW1SquZI44L+qm4Nc3PzZvNDKhQKmJiYwMLColn8wQCUSVOUSTOUSTOUSXO6OGVqBD0YNvF99P5zTrt169a15ol4XS//7OylLn1/f3/4+/tr5b10gQbFEUII+Z9iaWkJfX39WtND5+Xl1Wq1v0mooBNCCOGUnpYWbTE0NISrqyvi4+PV1lfPjvimoulTCSGEcEogAPSa2LMvAAAG9OnTB/r6+pg2bRqmTZv2yu2Li4vxxx9/qB5nZWUhLS0N5ubmsLOzw9y5cxEcHIzevXujX79+2LFjB7Kzs/G3v/2taUF5RAWdEELIGyM5OVmjc+gpKSnw9PRUPa4e1B0SEoKvv/4agYGBKCgowGeffYacnBx069YNx48fh1wu5yw716igE0II4ZQ2uswb+/pBgwbVeXOYmqZOnYqpU6e+fqhmhgo6IYQQTukJBNBr6ih34MWV5+SVaFAcIYQQ0gJQC50QQgin+Ohy/19EBZ0QQgin9LQwyp0KesPoGBFCCHlj9OnTB127dsU///lPvqM0O5wV9IbmomWMISIiAjKZDMbGxhg0aBBu3Lihtk15eTlmzJgBS0tLmJqawt/fH/fv39daxmfPnmH27NmQy+UwNjZG//79kZycrHr+0aNHCA0NhUwmg4mJCXx9fZGZmam193+dTMXFxZg+fTpsbW1hbGyMLl26YOvWrbxmEggEdS7r1q3jLRMA3Lp1C/7+/hCLxTAzM4Obm5tqakQ+MoWGhtY6Rm5ubpzl0SRTTZ988gkEAgE2btzIa6aIiAg4OTnB1NQUbdu2hZeXFy5dusRbJoVCgXnz5qF79+4wNTWFTCbDhAkT8PDhQ94yAUBMTAx8fHxgaWkJgUCAtLQ0TvM0hTZvLJOcnIybN2/Wew36/yrOCnpDc9GuXbsWkZGR2LJlC5KTkyGRSDBkyBA8e/ZMtc3s2bNx+PBhfP/99zh//jyKi4vxwQcfoKqqSisZJ0+ejPj4eHzzzTe4du0avL294eXlhQcPHoAxhuHDh+PPP//EkSNHcPXqVcjlcnh5eaGkpEQr79/YTAAwZ84cnDhxAvv27cOtW7cwZ84czJgxA0eOHOEtU05Ojtqya9cuCAQCjBo1irdMt2/fhru7O5ycnJCYmIjffvsNS5YsgZGREW+ZAMDX11ftWB0/fpyzPJpmAoDY2FhcunQJMpmM0zyaZHJwcMCWLVtw7do1nD9/Hh06dIC3tzf++usvXjKVlpYiNTUVS5YsQWpqKmJiYpCRkcH5Pb4bOk4lJSUYMGAAVq9ezWkObXjVl/7GLqQBrztNW2FhIQOg0XRyeGnqOqVSySQSCVu9erVq3fPnz5lYLGbbtm1jjDH29OlTJhQK2ffff6/a5sGDB0xPT4+dOHGizvepqKhgsbGxrKKiosFMpaWlTF9fnx09elRtvYuLC1u0aBFLT09nANj169dVz1VWVjJzc3O2c+fOBvfPRSbGGHN2dmafffaZ2vO9evViixcv5i3TywICAtjgwYM1zsNFpsDAQPbRRx81KgPXmUJCQlhAQECzysQYY/fv32ft2rVj169fZ3K5nG3YsIH3TDVV/1tz+vTpZpPp8uXLDAC7e/cu75mysrIYAHb16lWNszDGWH5+PgPACgsLG/W6xqj+3YUbiNliYZsmLeEGYs7zvul4OYeelZWF3NxceHt7q9aJRCJ4eHjgwoULAIArV65AoVCobSOTydCtWzfVNk1RWVmJqqqqWi02Y2NjnD9/HuXl5QCg9ry+vj4MDQ1x/vz5Jr//62QCAHd3d8TFxal6ERISEpCRkQEfHx/eMtX06NEjHDt2DGFhYZzk0SSTUqnEsWPH4ODgAB8fH1hbW6Nv3761TvvoMlO1xMREWFtbw8HBAVOmTEFeXh6vmZRKJYKDgxEeHg5nZ2fOsjQmU00VFRXYsWMHxGIxXFxcmkUm4MX00QKBAG3atGk2mQjhpaBXz3BT31y0ubm5MDQ0RNu2bV+5TVOYmZmhX79++Pzzz/Hw4UNUVVVh3759uHTpEnJycuDk5AS5XI4FCxbgyZMnqKiowOrVq5Gbm4ucnJwmv//rZAKAzZs3o2vXrrC1tYWhoSF8fX0RFRUFd3d33jLVtGfPHpiZmWHkyJGc5NEkU15eHoqLi7F69Wr4+vri1KlTGDFiBEaOHImkpCReMgGAn58fvv32W5w5cwbr169HcnIyBg8erPryyEemNWvWwMDAADNnzuQkw+tkAoCjR4+iVatWMDIywoYNGxAfHw9LS0teM1V7/vw55s+fj6CgIK1N49nUTM1d9Sj3pi6kfryOcm9oLtq6aLKNpr755hswxtCuXTuIRCJs3rwZQUFB0NfXh1AoxKFDh5CRkQFzc3OYmJggMTERfn5+0NfX18r7NzYT8KKgX7x4EXFxcbhy5QrWr1+PqVOn4vTp07xlqmnXrl0YP348p+eqG8qkVCoBAAEBAZgzZw7efvttzJ8/Hx988AG2bdvGSyYACAwMxPvvv49u3bph2LBh+Omnn5CRkYFjx47xkunKlSvYtGkTvv76a52en9Tk8+Tp6Ym0tDRcuHABvr6+GDNmDKe9GZp+xhUKBcaOHQulUomoqCjO8jQm05tAgKYPiKN63jBeCrpEIgGAeueilUgkqKiowJMnT165TVO99dZbSEpKQnFxMe7du4fLly9DoVCgY8eOAABXV1ekpaXh6dOnyMnJwYkTJ1BQUKB6ngv1ZSorK8PChQsRGRmJYcOGoUePHpg+fToCAwPxxRdf8JKppnPnziE9PR2TJ0/mLIsmmSwtLWFgYICuXbuqvaZLly6cjnLX9DhVk0qlkMvlnF45UV+mc+fOIS8vD3Z2djAwMICBgQHu3r2LTz/9FB06dOAlUzVTU1PY29vDzc0N0dHRMDAwQHR0NK+ZFAoFxowZg6ysLMTHx3PWOm9Mpv9FdNnaq/FS0Dt27AiJRKI2F21FRQWSkpJUc9G6urpCKBSqbZOTk4Pr169rfb5aU1NTSKVSPHnyBCdPnkRAQIDa82KxGFZWVsjMzERKSkqt57lQVyaFQgGFQgE9PfVfW81Wqa4z1RQdHQ1XV1fOznVqmsnQ0BB9+vRBenq62rYZGRk6mUmpoeNUraCgAPfu3YNUKuUlU3BwMH7//XekpaWpFplMhvDwcJw8eZKXTK/CGOPs1IQmmaqLeWZmJk6fPg0LCwvOszSU6U1SfS/3pi4AXbZWH87uFNfQXLSzZ8/GypUr0blzZ3Tu3BkrV66EiYkJgoKCALwoomFhYfj0009hYWEBc3Nz/L//9//QvXt3eHl5aSXjyZMnwRiDo6Mj/vjjD4SHh8PR0RETJ04EABw8eBBWVlaws7PDtWvXMGvWLAwfPlxtoJ621ZdJKBTCw8MD4eHhMDY2hlwuR1JSEvbu3YvIyEheMlUrKirCwYMHsX79es5yNCZTeHg4AgMDMXDgQHh6euLEiRP48ccfkZiYyEum4uJiREREYNSoUZBKpbhz5w4WLlwIS0tLjBgxgpdMQqGwVmESCoWQSCRwdHTkJVNJSQlWrFgBf39/SKVSFBQUICoqCvfv38fo0aN5yVRZWYkPP/wQqampOHr0KKqqqlS9i+bm5jA0NNR5JgB4/PgxsrOzVdfDV3+BlUgkql7Q5oJu/aojrzs8vqHL1hISEhhezI2jtoSEhDDGXly6tnTpUiaRSJhIJGIDBw5k165dU9tHWVkZmz59OjM3N2fGxsbsgw8+YNnZ2a/M1JjLQhhj7MCBA6xTp07M0NCQSSQSNm3aNPb06VPV85s2bWK2trZMKBQyOzs7tnjxYlZeXq7RvrnKlJOTw0JDQ5lMJmNGRkbM0dGRrV+/nimVSt4yMcbY9u3bmbGxca31fGaKjo5m9vb2zMjIiLm4uLDY2FjeMpWWljJvb29mZWWl+jyFhITU+3nmOlNduL5sraFMZWVlbMSIEUwmkzFDQ0MmlUqZv78/u3z5Mm+Zqi8Lq2tJSEjgJRNjjO3evbvOTEuXLtVo/7q8bG2xYRu2XNS2SctiwzZ02VoDBIw1MGHsKxQVFUEsFiM/P1+n3U/1USgUOH78OIYOHQqhUMh3HACUSVOUSTOUSTOUqWEFBQWwtLREYWEhZ+MBquvEP0RtYNTEgZfPGcNn5U85zfumo8lZCCGEcIq63HWDjhEhhBDSAlALnRBCCKf0IIBeE68kp9Znw+gYEUII4ZQ27xRH16G/GrXQCSGEcEqb59CTk5NpUNwrUAudEEIIaQGohU4IIYRT2phchVqfDaOCTgghhFMvJmdpWkUX4LVumfI/hb70EEIIIS0AtdAJIYRwirrcdYMKOiGEEE7RneJ0g44RIYQQ0gJo3EIvLy9Xm4+4qKgIAFRzdDcH1TmaSx6AMmmKMmmGMmmGMjVMlzmoy103NJ5tLSIiAsuWLau1fv/+/TAxMdF6MEIIIdwpLS1FUFCQTmZb22RqDmNB00pyGVNiVsljODg4QF9fH9OmTcO0adO0lLRl0Lig19VCb9++PXJycprV9Knx8fEYMmRIs5ieEKBMmqJMmqFMmqFMDSsoKIBUKn3jCjpNn/pqGne5i0QiiESiWuuFQmGz+HDWRJk0Q5k0Q5k0Q5k001wy6TIDdbnrBo1yJ4QQwinBf5am7oPUjwo6IYQQTlELXTfoGBFCCCEtALXQCSGEcEoPgibfy72pr/9fQAWdEEIIp6jLXTfoGBFCCCEtALXQCSGEcOrF9KlN3wepHxV0QgghnKLL1nSDutwJIYSQFoAKOiGEEE7pCQRaWQCgT58+6Nq1K/75z3/y/FM1Pzop6JWVlVi8eDE6duwIY2NjdOrUCZ999hmUSqVqm5iYGPj4+MDS0hICgQBpaWm8ZlIoFJg3bx66d+8OU1NTyGQyTJgwAQ8fPuQtE/BikhwnJyeYmpqibdu28PLywqVLl3jNVNMnn3wCgUCAjRs38popNDQUAoFAbXFzc+M1EwDcunUL/v7+EIvFMDMzg5ubG7Kzs3nL9PIxql7WrVvHW6bi4mJMnz4dtra2MDY2RpcuXbB161ZO8mia6dGjRwgNDYVMJoOJiQl8fX2RmZnJWSYAePbsGWbPng25XA5jY2P0798fycnJqucZY4iIiIBMJoOxsTEGDRqEGzducJrpdQm0tABAcnIybt68SROz1EEn59DXrFmDbdu2Yc+ePXB2dkZKSgomTpwIsViMWbNmAQBKSkowYMAAjB49GlOmTOE9U2lpKVJTU7FkyRK4uLjgyZMnmD17Nvz9/ZGSksJLJgBwcHDAli1b0KlTJ5SVlWHDhg3w9vbGH3/8ASsrK14yVYuNjcWlS5cgk8m0nuN1Mvn6+mL37t2qx4aGhrxmun37Ntzd3REWFoZly5ZBLBbj1q1bMDIy4i1TTk6O2mt++uknhIWFYdSoUbxlmjNnDhISErBv3z506NABp06dwtSpUyGTyRAQEKDzTIwxDB8+HEKhEEeOHEHr1q0RGRkJLy8v3Lx5E6amplrPBACTJ0/G9evX8c0330Amk2Hfvn2q92zXrh3Wrl2LyMhIfP3113BwcMDy5csxZMgQpKenw8zMjJNMpJljr6mwsJABYPn5+Q1u+/7777NJkyaprRs5ciT76KOPam2blZXFALCrV682OlNFRQWLjY1lFRUVWs1U7fLlywwAu3v3brPJVP17OH36NK+Z7t+/z9q1a8euX7/O5HI527Bhg8Z5uMgUEhLCAgICGpWB60yBgYH1/i75yPSygIAANnjwYF4zOTs7s88++0xtm169erHFixfzkik9PZ0BYNevX1c9X1lZyczNzdnOnTs5yVRaWsr09fXZ0aNH1da7uLiwRYsWMaVSySQSCVu9erXquefPnzOxWMy2bdumUZ78/HwGgBUWFmr8MzRW9b9PX4st2Q9trJu0fC225Dzvm04nXe7u7u74+eefkZGRAQD47bffcP78eQwdOlQXb6+1TIWFhRAIBGjTpk2zyFRRUYEdO3ZALBbDxcWFt0xKpRLBwcEIDw+Hs7MzJzkamwkAEhMTYW1tDQcHB0yZMgV5eXm8ZVIqlTh27BgcHBzg4+MDa2tr9O3bF7GxsbxletmjR49w7NgxhIWF8ZrJ3d0dcXFxePDgARhjSEhIQEZGBnx8fHjJVD1tdM2eFH19fRgaGuL8+fOcZKqsrERVVVWt3htjY2OcP38eWVlZyM3Nhbe3t+o5kUgEDw8PXLhwgZNMTaHNLnfyajrpcp83bx4KCwvh5OQEfX19VFVVYcWKFRg3bpwu3l4rmZ4/f4758+cjKCiIs7l4Nc109OhRjB07FqWlpZBKpYiPj4elpSVvmdasWQMDAwPMnDmTkwyvk8nPzw+jR4+GXC5HVlYWlixZgsGDB+PKlSt1TgPMdaa8vDwUFxdj9erVWL58OdasWYMTJ05g5MiRSEhIgIeHh84zvWzPnj0wMzPDyJEjtZ6lMZk2b96MKVOmwNbWFgYGBtDT08NXX30Fd3d3XjI5OTlBLpdjwYIF2L59O0xNTREZGYnc3Nxapyy0xczMDP369cPnn3+OLl26wMbGBt999x0uXbqEzp07Izc3FwBgY2Oj9jobGxvcvXuXk0xNUT02o0n7oJLeIJ0U9AMHDmDfvn3Yv38/nJ2dkZaWhtmzZ0MmkyEkJEQXEZqUSaFQYOzYsVAqlYiKiuI9k6enJ9LS0pCfn4+dO3dizJgxuHTpEqytrXWe6cqVK9i0aRNSU1Ob/AerrUwAEBgYqNq+W7du6N27N+RyOY4dO8ZJwWooU/UAq4CAAMyZMwcA8Pbbb+PChQvYtm0bJwW9sX93u3btwvjx4zk7p69pps2bN+PixYuIi4uDXC7H2bNnMXXqVEilUnh5eek8k1AoxKFDhxAWFgZzc3Po6+vDy8sLfn5+Ws9S0zfffINJkyahXbt20NfXR69evRAUFITU1FTVNi//zTHGdPZ3SJqh1+2rb8w5dFtbW7Zlyxa1dZ9//jlzdHSsta2uzqFrmqmiooINHz6c9ejRQ6OfVReZXmZvb89WrlzJS6YNGzYwgUDA9PX1VQsApqenx+RyOS+ZXsXe3l7tnKMuM5WXlzMDAwP2+eefq23z97//nfXv35+XTDWdPXuWAWBpaWkaZ+EiU2lpKRMKhbXOHYeFhTEfHx9eMtX09OlTlpeXxxhj7J133mFTp07lJFNNxcXF7OHDh4wxxsaMGcOGDh3Kbt++zQCw1NRUtW39/f3ZhAkTNNqvLs+hf9PGih1qa9Ok5Zs2VnQOvQE6OYdeWloKPT31t9LX13/lpU+6oEkmhUKBMWPGIDMzE6dPn4aFhQXvmerCGFOd59N1puDgYPz+++9IS0tTLTKZDOHh4Th58iQvmepSUFCAe/fuQSqV8pLJ0NAQffr0QXp6uto2GRkZkMvlvGSqKTo6Gq6urpyNxdA0k0KhgEKh0Om/F405TmKxGFZWVsjMzERKSgono+5fZmpqCqlUiidPnuDkyZMICAhAx44dIZFIEB8fr9quoqICSUlJ6N+/P+eZGktPSwupn0663IcNG4YVK1bAzs4Ozs7OuHr1KiIjIzFp0iTVNo8fP0Z2drbqOu/qf/gkEgkkEonOM1VWVuLDDz9Eamoqjh49iqqqKtV5K3Nzc04ugWooU0lJCVasWAF/f39IpVIUFBQgKioK9+/fx+jRo7WeR5NMFhYWtb7oCIVCSCQSODo68pKpuLgYERERGDVqFKRSKe7cuYOFCxfC0tISI0aM4CUTAISHhyMwMBADBw6Ep6cnTpw4gR9//BGJiYm8ZQKAoqIiHDx4EOvXr+ckR2MytW7dGh4eHggPD4exsTHkcjmSkpKwd+9eREZG8pIJAA4ePAgrKyvY2dnh2rVrmDVrFoYPH642KE3bTp48CcYYHB0d8ccffyA8PByOjo6YOHEiBAIBZs+ejZUrV6Jz587o3LkzVq5cCRMTEwQFBXGWiTRzr9u0b0yXe1FREZs1axazs7NjRkZGrFOnTmzRokWsvLxctc3u3bsZgFrL0qVLNc7UmC6thjJVd/3XtSQkJPCSqaysjI0YMYLJZDJmaGjIpFIp8/f3Z5cvX9Y4j7Yz1YXry9YaylRaWsq8vb2ZlZUVEwqFzM7OjoWEhLDs7GzeMlWLjo5m9vb2zMjIiLm4uLDY2FjeM23fvp0ZGxuzp0+fNioLV5lycnJYaGgok8lkzMjIiDk6OrL169czpVLJW6ZNmzYxW1tb1edp8eLF9f4NNDUTY4wdOHCAderUiRkaGjKJRMKmTZum9jtSKpVs6dKlTCKRMJFIxAYOHMiuXbumcR5ddrnvb2vFYs1tmrTsb0td7g0RMMbY63wRKCoqglgsRn5+Pudd0ZpSKBQ4fvw4hg4dCqFQyHccAJRJU5RJM5RJM5SpYQUFBbC0tERhYSFnV+5U14nv2lrDRNC0TvNSpsS4J3mc5n3T0WkJQgghpAWg6VMJIYRwiqZP1Q0q6IQQQjhFBV03qMudEELIG4OmT301aqETQgjhlB4AvSY2sfX+M3w7OTmZBsW9AhV0QgghnBL857+m7oPUjwo6IYQQzlE55h6dQyeEEEJaAGqhE0II4ZRA8GJp6j5I/aigE0II4RRdtqYb1OVOCCGEtADUQieEEMIpPQig18Q2dlNf/79A44JeXl6uNud2UVERgP/OX9wcVOdoLnkAyqQpyqQZyqQZytQwXeagLnfd0Hi2tYiICCxbtqzW+v3798PExETrwQghhHCntLQUQUFBOplt7Yi5BKZ6TTvDW6JUIuBxLs22Vg+NC3pdLfT27dsjJyenWU2fGh8fjyFDhjSL6QkByqQpyqQZyqQZytSwgoICSKVSnRT0OAvtFHT/Airo9dG4y10kEkEkEtVaLxQKm8WHsybKpBnKpBnKpBnKpJnmkkmXGajLXTdolDshhBDSAtAod0IIIZyie7nrBhV0QgghnNITaGG2NarnDaKCTgghhFN0Dl036Bw6IYQQ0gJQC50QQginqIWuG1TQCSGEcIoGxekGdbkTQgghLQC10AkhhHCK5kPXDWqhE0II4ZSelhYA6NOnD7p27Yp//vOfuvwR3gg6KeiVlZVYvHgxOnbsCGNjY3Tq1AmfffYZlEqlahvGGCIiIiCTyWBsbIxBgwbhxo0bnObq0KEDBAJBrWXatGkAgEePHiE0NBQymQwmJibw9fVFZmYmr5mKi4sxffp02NrawtjYGF26dMHWrVt5y1PXcwKBAOvWreMtEwDcunUL/v7+EIvFMDMzg5ubG7Kzs3nLFBoaWus5Nzc3zvJokqmmTz75BAKBABs3buQ1U0REBJycnGBqaoq2bdvCy8sLly5d4i2TQqHAvHnz0L17d5iamkImk2HChAl4+PAhb5kAICYmBj4+PrC0tIRAIEBaWhqneZqT5ORk3Lx5s87P8f86nXS5r1mzBtu2bcOePXvg7OyMlJQUTJw4EWKxGLNmzQIArF27FpGRkfj666/h4OCA5cuXY8iQIUhPT4eZmRknuZKTk1FVVaV6fP36dQwZMgSjR48GYwzDhw+HUCjEkSNH0Lp1a0RGRsLLyws3b96EqampzjMBwJw5c5CQkIB9+/ahQ4cOOHXqFKZOnQqZTIaAgACd58nJyVHb/qeffkJYWBhGjRql9SyaZrp9+zbc3d0RFhaGZcuWQSwW49atWzAyMuItEwD4+vpi9+7dqseGhoac5dE0EwDExsbi0qVLkMlknObRJJODgwO2bNmCTp06oaysDBs2bIC3tzf++OMPWFlZ6TxTaWkpUlNTsWTJEri4uODJkyeYPXs2/P39kZKSwkmehjIBQElJCQYMGIDRo0djypQpnOXQFhrlriPsNRUWFjIALD8/v8Ft33//fTZp0iS1dSNHjmQfffQRY4wxpVLJJBIJW716ter558+fM7FYzLZt26ZxpoqKChYbG8sqKio0fk1Ns2bNYm+99RZTKpUsPT2dAWDXr19XPV9ZWcnMzc3Zzp07ecnEGGPOzs7ss88+U9umV69ebPHixTrJ9HKelwUEBLDBgwc3er/azBQYGKj6bDWFNjOFhISwgICAZpWJMcbu37/P2rVrx65fv87kcjnbsGED75lqqv535vTp080m0+XLlxkAdvfuXd4zZWVlMQDs6tWrjd5nfn4+A8AKCwsb/VpNVf/+frZuxy5J2jdp+dm6Hed533Q66XJ3d3fHzz//jIyMDADAb7/9hvPnz2Po0KEAgKysLOTm5sLb21v1GpFIBA8PD1y4cEEXEVFRUYF9+/Zh0qRJEAgEqqlia7bq9PX1YWhoiPPnz/OSCXhxLOPi4vDgwQMwxpCQkICMjAz4+PjwkqemR48e4dixYwgLC+M8y6syKZVKHDt2DA4ODvDx8YG1tTX69u2L2NhY3jJVS0xMhLW1NRwcHDBlyhTk5eXxmkmpVCI4OBjh4eFwdnbWWZb6Mr38/I4dOyAWi+Hi4tIsMgFAYWEhBAIB2rRp02wyEQLo6Bz6vHnzMG7cODg5OUEoFKJnz56YPXs2xo0bBwDIzc0FANjY2Ki9zsbGRvUc12JjY/H06VOEhoYCAJycnCCXy7FgwQI8efIEFRUVWL16NXJzc2t1M+sqEwBs3rwZXbt2ha2tLQwNDeHr64uoqCi4u7vzkqemPXv2wMzMDCNHjuQ8y6sy5eXlobi4GKtXr4avry9OnTqFESNGYOTIkUhKSuIlEwD4+fnh22+/xZkzZ7B+/XokJydj8ODBqi+OfGRas2YNDAwMMHPmTJ1k0CQTABw9ehStWrWCkZERNmzYgPj4eFhaWvKaqdrz588xf/58BAUF6WxO7oYyvQkEWlpI/XRyDv3AgQPYt28f9u/fD2dnZ6SlpWH27NmQyWQICQlRbffyt0/GmM6+kUZHR8PPz091HlEoFOLQoUMICwuDubk59PX14eXlBT8/P53kqSsT8KKgX7x4EXFxcZDL5Th79iymTp0KqVQKLy8vneepadeuXRg/fjyn56obylQ90DIgIABz5swBALz99tu4cOECtm3bBg8PD51nAoDAwEDV/3fr1g29e/eGXC7HsWPHdPIF6OVMV65cwaZNm5Camspbq+9VnydPT0+kpaUhPz8fO3fuxJgxY3Dp0iVYW1vzlgkAFAoFxo4dC6VSiaioKM6zaJLpTUHn0HVDJwU9PDwc8+fPx9ixYwEA3bt3x927d7Fq1SqEhIRAIpEAeNFSl0qlqtfl5eXVarVz4e7duzh9+jRiYmLU1ru6uiItLQ2FhYWoqKiAlZUV+vbti969e/OSqaysDAsXLsThw4fx/vvvAwB69OiBtLQ0fPHFF5wW9Fcdo2rnzp1Deno6Dhw4wFkGTTJZWlrCwMAAXbt2Vdu2S5cuOjlV0tBxqiaVSiGXyzm/auJVmc6dO4e8vDzY2dmp1lVVVeHTTz/Fxo0bcefOHZ1nqmZqagp7e3vY29vDzc0NnTt3RnR0NBYsWMBbJoVCgTFjxiArKwtnzpzRWetc089Tc1c9Sr+p+yD100mXe2lpKfT01N9KX19f1Zrq2LEjJBIJ4uPjVc9XVFQgKSkJ/fv35zzf7t27YW1trSqSLxOLxbCyskJmZiZSUlI4GU2uSSaFQgGFQlHvsdRlnpqio6Ph6uqqs3Odr8pkaGiIPn36ID09XW3bjIwMyOVyXjLVpaCgAPfu3VP7AqvLTMHBwfj999+RlpamWmQyGcLDw3Hy5EleMr0KY0wnpyZelam6mGdmZuL06dOwsLDgPEtDmQipi05a6MOGDcOKFStgZ2cHZ2dnXL16FZGRkZg0aRKAF9+8Zs+ejZUrV6Jz587o3LkzVq5cCRMTEwQFBXGaTalUYvfu3QgJCYGBgfrhOHjwIKysrGBnZ4dr165h1qxZGD58uNrgPV1mat26NTw8PBAeHg5jY2PI5XIkJSVh7969iIyM1HmeakVFRTh48CDWr1/PWYbGZAoPD0dgYCAGDhwIT09PnDhxAj/++CMSExN5yVRcXIyIiAiMGjUKUqkUd+7cwcKFC2FpaYkRI0bwksnCwqJWYRIKhZBIJHB0dOQlU0lJCVasWAF/f39IpVIUFBQgKioK9+/fr3Wpna4yVVZW4sMPP0RqaiqOHj2Kqqoq1bgec3NzTi89rO8z/vjxY2RnZ6uuh6/+AiuRSFQ9ns0JzYeuI687PL4xl60VFRWxWbNmMTs7O2ZkZMQ6derEFi1axMrLy1XbKJVKtnTpUiaRSJhIJGIDBw5k165da1Sm17ks5OTJkwwAS09Pr/Xcpk2bmK2tLRMKhczOzo4tXrxYLTMfmXJyclhoaCiTyWTMyMiIOTo6svXr17/yEhttZKovD2OMbd++nRkbG7OnT59qnIHrTNHR0cze3p4ZGRkxFxcXFhsby1um0tJS5u3tzaysrFSfpZCQEJadnc1bprro6rK1V2UqKytjI0aMYDKZjBkaGjKpVMr8/f3Z5cuXectUfVlYXUtCQgIvmRhjbPfu3XVmWrp0qcZ5dHnZ2jlZe3bVVt6k5ZysPV221gABY4y9zheBoqIiiMVi5Ofn67QLqj4KhQLHjx/H0KFDIRQK+Y4DgDJpijJphjJphjI1rKCgAJaWligsLORsTEB1nTgna49Wek07w1usVOLdh/c4zfumo8lZCCGEcIomZ9ENKuiEEEI4RQVdN2i2NUIIIaQFoBY6IYQQTtF16LpBBZ0QQginqMtdN6jLnRBCCGkBqIVOCCGEU9TlrhtU0AkhhHCKutx1gwo6IYQQTukJBNBrYkVu6uv/F9A5dEIIIaQFoBY6IYQQTlGXu25oXNDLy8vVpjAsKioC8N8pPZuD6hzNJQ9AmTRFmTRDmTRDmRqmyxwCaGFQHKiiN0TjyVkiIiKwbNmyWuv3798PExMTrQcjhBDCndLSUgQFBelkcpYrnTqilX4TJ2epUsL1zyyanKUeGhf0ulro7du3R05OTrOabS0+Ph5DhgxpFrMZAZRJU5RJM5RJM5SpYQUFBZBKpTop6Kn22inovf6ggl4fjbvcRSIRRCJRrfVCobBZfDhrokyaoUyaoUyaoUyaaS6ZdJpBC9eh00n0htEod0IIIaQFoFHuhBBCOEWj3HWDCjohhBBOvSjoTb31q5bCtGDU5U4IIYS0AFTQCSGEcKq6y72pS3MzYsQItG3bFh9++CHfUQBQQSeEEMKx6nu5N3VpbmbOnIm9e/fyHUOFCjohhBBOtdQWuqenJ8zMzPiOoUIFnRBCSItz9uxZDBs2DDKZDAKBALGxsbW2iYqKQseOHWFkZARXV1ecO3dO90G1iEa5E0II4ZRACzeWaezrS0pK4OLigokTJ2LUqFG1nj9w4ABmz56NqKgoDBgwANu3b4efnx9u3rwJOzs7AICrq6vaHVKrnTp1CjKZ7PV+EA5RQSeEEMIpbV6HXj0xWLVX3cXUz88Pfn5+r9xfZGQkwsLCMHnyZADAxo0bcfLkSWzduhWrVq0CAFy5cqVpoXWMutwJIYS8Mdq3bw+xWKxaqotvY1RUVODKlSvw9vZWW+/t7Y0LFy5oK6rO6aygP3jwAB999BEsLCxgYmKCt99+W+3bT0xMDHx8fGBpaQmBQIC0tDReMykUCsybNw/du3eHqakpZDIZJkyYgIcPH/KWCXgx652TkxNMTU3Rtm1beHl54dKlS7xmqumTTz6BQCDAxo0bec0UGhqq6uarXtzc3HjNBAC3bt2Cv78/xGIxzMzM4ObmhuzsbN4yvXyMqpd169bxlqm4uBjTp0+Hra0tjI2N0aVLF2zdupWzPJpkevToEUJDQyGTyWBiYgJfX19kZmZylqdDhw51/l6mTZsGAGCMISIiAjKZDMbGxhg0aBBu3LjBWZ6m0uaguHv37qGwsFC1LFiwoNF58vPzUVVVBRsbG7X1NjY2yM3N1Xg/Pj4+GD16NI4fPw5bW1skJyc3Oos26aTL/cmTJxgwYAA8PT3x008/wdraGrdv30abNm1U25SUlGDAgAEYPXo0pkyZwnum0tJSpKamYsmSJXBxccGTJ08we/Zs+Pv7IyUlhZdMAODg4IAtW7agU6dOKCsrw4YNG+Dt7Y0//vgDVlZWvGSqFhsbi0uXLnF+bknTTL6+vti9e7fqsaGhIa+Zbt++DXd3d4SFhWHZsmUQi8W4desWjIyMeMuUk5Oj9pqffvoJYWFhdZ5z1FWmOXPmICEhAfv27UOHDh1w6tQpTJ06FTKZDAEBATrPxBjD8OHDIRQKceTIEbRu3RqRkZHw8vLCzZs3YWpqqvVMycnJqKqqUj2+fv06hgwZgtGjRwMA1q5di8jISHz99ddwcHDA8uXLMWTIEKSnpzerUdfVBHoCCPSaeA6dvXh969attTbb2svn5RljjTpXf/LkSa3k0Br2mgoLCxkAlp+f3+C28+bNY+7u7hrtNysriwFgV69ebXSmiooKFhsbyyoqKrSaqdrly5cZAHb37t1mk6n693D69GleM92/f5+1a9eOXb9+ncnlcrZhwwaN83CRKSQkhAUEBDQqA9eZAgMD2UcffdSsMr0sICCADR48mNdMzs7O7LPPPlNb16tXL7Z48WJeMqWnpzMA7Pr166p1lZWVzNzcnO3cuZOTTC+bNWsWe+utt5hSqWRKpZJJJBK2evVq1fPPnz9nYrGYbdu2TeN95ufnMwCssLCw0Xk0Vf3v079dOrMHvZyatPzbpfNr5wXADh8+rHpcXl7O9PX1WUxMjNp2M2fOZAMHDmzqj80bnXS5x8XFoXfv3hg9ejSsra3Rs2dP7Ny5UxdvrdVMhYWFEAgEdbZO+chUUVGBHTt2QCwWw8XFhbdMSqUSwcHBCA8Ph7OzMyc5GpsJABITE2FtbQ0HBwdMmTIFeXl5vGVSKpU4duwYHBwc4OPjA2tra/Tt27fOS2l0lelljx49wrFjxxAWFsZrJnd3d8TFxeHBgwdgjCEhIQEZGRnw8fHhJVP1KOeaPSn6+vowNDTE+fPnOclUU0VFBfbt24dJkyZBIBAgKysLubm5aud/RSIRPDw8mu353+Z2HbqhoSFcXV0RHx+vtj4+Ph79+/fX3hvp2ut+E2hMC10kEjGRSMQWLFjAUlNT2bZt25iRkRHbs2dPrW111UJvTCbGGCsrK2Ourq5s/PjxvGf68ccfmampKRMIBEwmk7HLly/zmmnlypVsyJAhTKlUMsYY5y10TTJ9//337OjRo+zatWssLi6Oubi4MGdnZ/b8+XNeMuXk5DAAzMTEhEVGRrKrV6+yVatWMYFAwBITE3nJ9LI1a9awtm3bsrKyMo3zcJGpvLycTZgwgQFgBgYGzNDQkO3du5e3TBUVFUwul7PRo0ezx48fs/LycrZq1SoGgHl7e3OSqaYDBw4wfX199uDBA8YYY7/88gsDoHpcbcqUKY3Ko8sWemZPB5bbu0uTlsyeDgwAc3BwYF26dGFbtmyp972fPXvGrl69yq5evcoAqP7uqntYv//+eyYUCll0dDS7efMmmz17NjM1NWV37tzh7HhwTScFXSgUsn79+qmtmzFjBnNzc6u1ra4KemMyVVRUsICAANazZ89Gf/i5yFRcXMwyMzPZr7/+yiZNmsQ6dOjAHj16xEumlJQUZmNjo/aPC9cFvTG/u2oPHz5kQqGQHTp0iJdMDx48YADYuHHj1LYZNmwYGzt2LC+ZXubo6MimT5+ucRauMq1bt445ODiwuLg49ttvv7Evv/yStWrVisXHx/OWKSUlhbm4uDAATF9fn/n4+DA/Pz/m5+fHSaaavL292QcffKB6XF3QHz58qLbd5MmTmY+Pj8b7fVMLuqZ5ExISGIBaS0hIiGqbf/7zn0wulzNDQ0PWq1cvlpSUxNGR0A2ddLlLpVJ07dpVbV2XLl04Hd3bEE0zKRQKjBkzBllZWYiPj9faYIymZDI1NYW9vT3c3NwQHR0NAwMDREdH85Lp3LlzyMvLg52dHQwMDGBgYIC7d+/i008/RYcOHXjJ9KrXyOVyzkYmN5TJ0tISBgYGOv07aMxxOnfuHNLT01XX5HKloUxlZWVYuHAhIiMjMWzYMPTo0QPTp09HYGAgvvjiC14yAS9uMJKWloanT58iJycHJ06cQEFBATp27MhJpmp3797F6dOn1X4vEokEAGqNxs7Ly6s1aru54KPLfdCgQWAvGq1qy9dff63aZurUqbhz5w7Ky8tx5coVDBw4ULs/uI7ppKAPGDAA6enpausyMjIgl8t18fZ10iRTdTHPzMzE6dOnYWFhwXumujDG6rybkS4yBQcH4/fff0daWppqkclkCA8P52wE6Oscp4KCAty7dw9SqZSXTIaGhujTp49O/w4ac5yio6Ph6urK2VgMTTMpFAooFAro6an/06Svrw+lUslLpprEYjGsrKyQmZmJlJQUTkbd17R7925YW1vj/fffV63r2LEjJBKJ2vnfiooKJCUlNdvzv6+6PLKxC2nA6zbtG9PlfvnyZWZgYMBWrFjBMjMz2bfffstMTEzYvn37VNsUFBSwq1evsmPHjjEA7Pvvv2dXr15lOTk5GmdqTJdWQ5kUCgXz9/dntra2LC0tjeXk5KiW8vJyXjIVFxezBQsWsF9//ZXduXOHXblyhYWFhTGRSKQ2AleXmerCdZd7Q5mePXvGPv30U3bhwgWWlZXFEhISWL9+/Vi7du1YUVERL5kYYywmJoYJhUK2Y8cOlpmZyb788kumr6/Pzp07x1smxl78LZuYmLCtW7dqnIPLTB4eHszZ2ZklJCSwP//8k+3evZsZGRmxqKgo3jL98MMPLCEhgd2+fZvFxsYyuVzORo4cqXGexmZijLGqqipmZ2fH5s2bV+u51atXM7FYzGJiYti1a9fYuHHjmFQqbdTnW5dd7n+6OrK/+nZt0vKnqyPned90OinojL0YyNWtWzcmEomYk5MT27Fjh9rzu3fvrvN8x9KlSzXO1Ng/mPoyVZ/Lr2tJSEjgJVNZWRkbMWIEk8lkzNDQkEmlUubv78/poLiGMtWF64LeUKbS0lLm7e3NrKysmFAoZHZ2diwkJIRlZ2fzlqladHQ0s7e3Z0ZGRszFxYXFxsbynmn79u3M2NiYPX36tFFZuMqUk5PDQkNDmUwmY0ZGRszR0ZGtX79eNeiSj0ybNm1itra2qs/T4sWLG/XF/nUynTx5kgFg6enptZ5TKpVs6dKlTCKRMJFIxAYOHMiuXbvWqDxU0FseAWOMvU7LvqioCGKxGPn5+Zx3RWtKoVDg+PHjGDp0KIRCId9xAFAmTVEmzVAmzVCmhhUUFMDS0hKFhYWcjQ2qrhNZvZ1gZqDfpH09q6xCx5R/c5r3TUf3cieEEMItbQyI+88p9D59+qBr16745z//yeuP1BzRbGuEEELeGMnJydRCfwUq6IQQQjjFx3zo/4uooBNCCOGUQO/F0tR9kPrRISKEEEJaAGqhE0II4RR1uesGFXRCCCHc0hO8WJq6D1Iv6nInhBDyxqDL1l6NWuiEEEK4pY0Jzf/zerps7dWooBNCCOEUnUPXDSrohBBCuEXn0HVC44JeXl6uNkVnUVERgP9Od9gcVOdoLnkAyqQpyqQZyqQZytSw5pKDaI/Gk7NERERg2bJltdbv378fJiYmWg9GCCGEO6WlpQgKCtLJ5Cz3BrmgdRMnZymqrEL7xN9ocpZ6aFzQ62qht2/fHjk5Oc1qtrX4+HgMGTKkWcxmBFAmTVEmzVAmzVCmhhUUFEAqleqkoN8f/LZWCrrtmTQq6PXQuMtdJBJBJBLVWi8UCpvFh7MmyqQZyqQZyqQZyqSZ5pKpOWQg2kXXoRNCCOFWU+dOrXHZW0u6Dr2kpESr+6NR7oQQQjglEAggaOIodUELvA7dxsYGY8aMwaRJk+Du7t7k/VELnRBCCOHBd999h8LCQrz33ntwcHDA6tWr8fDhw9feHxV0Qggh3NJil3tLMmzYMBw6dAgPHz7E//3f/+G7776DXC7HBx98gJiYGFRWVjZqf1TQCSGEcEsP/725zGsvfP8Q3LGwsMCcOXPw22+/ITIyEqdPn8aHH34ImUyGf/zjHygtLdVoP3QOnRBCCOFRbm4u9u7di927dyM7OxsffvghwsLC8PDhQ6xevRoXL17EqVOnGtwPFXRCCCGconu51y0mJga7d+/GyZMn0bVrV0ybNg0fffQR2rRpo9rm7bffRs+ePTXaHxV0Qggh3KJ7uddp4sSJGDt2LH755Rf06dOnzm06deqERYsWabQ/KuiEEEK4pcXpU1uSnJycBm+dbmxsjKVLl2q0vxY8zIAQQghpvszMzJCXl1drfUFBAfT1G3+rXCrohBBCOCXQ084CtKw7xb1qKpXy8nIYGho2en86K+gPHjzARx99BAsLC5iYmODtt9/GlStXVM8zxhAREQGZTAZjY2MMGjQIN27c4CxPRESEaqBG9SKRSFTPP3r0CKGhoZDJZDAxMYGvry8yMzM5y6NJpuLiYkyfPh22trYwNjZGly5dsHXrVl4zvfxc9bJu3TreMgHArVu34O/vD7FYDDMzM7i5uSE7O5u3TKGhobWed3Nz4yyPJplq+uSTTyAQCLBx40ZeM0VERMDJyQmmpqZo27YtvLy8cOnSJd4yKRQKzJs3D927d4epqSlkMhkmTJjQpJt/NDUT8GIwlY+PDywtLSEQCJCWlsZpnibT4nXoycnJuHnzJqZNm8bzD/X6Nm/ejM2bN0MgEOCrr75SPd68eTM2bNiAadOmwcnJqdH71ck59CdPnmDAgAHw9PTETz/9BGtra9y+fVttJN/atWsRGRmJr7/+Gg4ODli+fDmGDBmC9PR0mJmZcZLL2dkZp0+fVj2u7uJgjGH48OEQCoU4cuQIWrdujcjISHh5eeHmzZswNTXlJE99mQBgzpw5SEhIwL59+9ChQwecOnUKU6dOhUwmQ0BAAC+ZcnJy1Lb96aefEBYWhlGjRnGWp6FMt2/fhru7O8LCwrBs2TKIxWLcunULRkZGvGUCAF9fX+zevVv1+HW+gWs7EwDExsbi0qVLkMlknOdpKJODgwO2bNmCTp06oaysDBs2bIC3tzf++OMPWFlZ6TxTaWkpUlNTsWTJEri4uODJkyeYPXs2/P39kZKSwlme+jIBL+4BPmDAAIwePRpTpkzhNAfRvg0bNgB4UWu2bdum9rs1NDREhw4dsG3btkbvVycFfc2aNWjfvr3aP2YdOnRQ/T9jDBs3bsSiRYswcuRIAMCePXtgY2OD/fv345NPPuEkl4GBQZ0tlszMTFy8eBHXr1+Hs7MzACAqKgrW1tb47rvvMHnyZE7y1JcJAH799VeEhIRg0KBBAICPP/4Y27dvR0pKCqcFvb5ML68/cuQIPD090alTJ87yNJRp0aJFGDp0KNauXatax3WehjIBL2YsrO95LjSU6cGDB5g+fTpOnjyJ999/n/dMQUFBao8jIyMRHR2N33//He+9957OM4nFYsTHx6ut+/LLL/HOO+8gOzsbdnZ2Os8EAMHBwQCAO3fucPb+2iTQ08K93FvQKPesrCwAgKenJ2JiYtC2bVut7FcnXe5xcXHo3bs3Ro8eDWtra/Ts2RM7d+5UPZ+VlYXc3Fx4e3ur1olEInh4eODChQuc5crMzIRMJkPHjh0xduxY/PnnnwCgmve9ZotOX18fhoaGOH/+PGd56ssEAO7u7oiLi8ODBw/AGENCQgIyMjLg4+PDW6aaHj16hGPHjiEsLIzTPPVlUiqVOHbsGBwcHODj4wNra2v07dsXsbGxvGWqlpiYCGtrazg4OGDKlCl1DobRZSalUong4GCEh4ervrjqgqafp4qKCuzYsQNisRguLi7NIhMAFBYWQiAQqPUw8p2p2aNbv9YpISFBa8Uc0FEL/c8//8TWrVsxd+5cLFy4EJcvX8bMmTMhEokwYcIE5ObmAngx80xNNjY2uHv3LieZ+vbti71798LBwQGPHj3C8uXL0b9/f9y4cQNOTk6Qy+VYsGABtm/fDlNTU0RGRiI3N7dWF7OuMllYWGDz5s2YMmUKbG1tYWBgAD09PXz11VdamaXndTPVtGfPHpiZmal6WfjIpFAoUFxcjNWrV2P58uVYs2YNTpw4gZEjRyIhIQEeHh46z2RhYQE/Pz+MHj0acrkcWVlZWLJkCQYPHowrV65AJBLxkmnNmjUwMDDAzJkzOXn/18kEAEePHsXYsWNRWloKqVSK+Ph4WFpa8pqp2vPnzzF//nwEBQVxOuNXYzKRN8vcuXPx+eefw9TUFHPnzq1328jIyMbtnL2mwsJCBoDl5+c3uK1QKGT9+vVTWzdjxgzm5ubGGGPsl19+YQDYw4cP1baZPHky8/Hx0ThTRUUFi42NZRUVFRq/plpxcTGzsbFh69evZ4wxlpKSwlxcXBgApq+vz3x8fJifnx/z8/Nr1H61mWndunXMwcGBxcXFsd9++419+eWXrFWrViw+Pp63TDU5Ojqy6dOnN3qf2sz04MEDBoCNGzdObZthw4axsWPH8pKpLg8fPmRCoZAdOnSIl0wpKSnMxsaGPXjwQPW8XC5nGzZsaPR+tX2ciouLWWZmJvv111/ZpEmTWIcOHdijR494zVS9z4CAANazZ09WWFjY6P1ykSkrK4sBYFevXm30PvPz8xmA1/pZNFVdJ3JH9WelYwc2ackd1Z/zvLowaNAg9uTJE9X/v2rx9PRs9L510kKXSqXo2rWr2rouXbrg0KFDAP57HjY3NxdSqVS1TV5eXq1WO1dMTU3RvXt31Uh2V1dXpKWlobCwEBUVFbCyskLfvn3Ru3dvneR5OVNZWRkWLlyIw4cPq8519ujRA2lpafjiiy/g5eWl80w1nTt3Dunp6Thw4IBOcrwqk6WlJQwMDOr8vHF9uuRVmeoilUohl8s5v3LiVZn09PSQl5endg64qqoKn376KTZu3Kizc7N1HSdTU1PY29vD3t4ebm5u6Ny5M6Kjo7FgwQLeMikUCowZMwZZWVk4c+aMzufjbujz1NzRrV//KyEhoc7/1wadnEMfMGAA0tPT1dZlZGRALpcDADp27AiJRKI2+KSiogJJSUno37+/LiKivLwct27dUvtCAbwYFGNlZYXMzEzOB5/Vl0mhUEChUEBPT/1Xpq+vD6VSyUummqKjo+Hq6sr5uc6GMhkaGqJPnz71ft50nakuBQUFuHfv3iuf5zpTcHAwfv/9d6SlpakWmUyG8PBwnDx5kpdMr8IYU41r4SNTdTHPzMzE6dOneeny1uQ4EaKTFvqcOXPQv39/rFy5EmPGjMHly5exY8cO7NixA8CLb16zZ8/GypUr0blzZ3Tu3BkrV66EiYlJrVGv2vL//t//w7Bhw2BnZ4e8vDwsX74cRUVFCAkJAQAcPHgQVlZWsLOzw7Vr1zBr1iwMHz5cbeCeLjO1bt0aHh4eCA8Ph7GxMeRyOZKSkrB3797Gn2fRUqZqRUVFOHjwINavX89ZjsZkCg8PR2BgIAYOHAhPT0+cOHECP/74IxITE3nJVFxcjIiICIwaNQpSqRR37tzBwoULYWlpiREjRvCSycLColZhEgqFkEgkcHR05CVTSUkJVqxYAX9/f0ilUhQUFCAqKgr379/H6NGjeclUWVmJDz/8EKmpqTh69CiqqqpUY37Mzc05u/Swoc/448ePkZ2drboevvoLrEQi0fmVFBqhe7mrNGaMUUxMTKP2rZOC3qdPHxw+fBgLFizAZ599ho4dO2Ljxo0YP368apu///3vKCsrw9SpU/HkyRP07dsXp06d4uwa9Pv372PcuHHIz8+HlZUV3NzccPHiRVUrLicnB3PnzsWjR48glUoxYcIELFmyhJMsmmb6/vvvsWDBAowfPx6PHz+GXC7HihUr8Le//Y23TNW5GGMYN24cZzkak2nEiBHYtm0bVq1ahZkzZ8LR0RGHDh3idPBgfZnKyspw7do17N27F0+fPoVUKoWnpycOHDjA2ee7oUx8qS/T8+fP8e9//xt79uxBfn4+LCws0KdPH5w7d47TUfj1Zbpz5w7i4uIAvJj1qqaEhATVJaS6zAS8uHJo4sSJqu3Hjh0LAFi6dCkiIiI4ydQ02hil3jIKulgs5mzfAsZece+5BhQVFUEsFqv+8JoDhUKB48ePY+jQoRAKhXzHAUCZNEWZNEOZNEOZGlZQUABLS0sUFhZyNiaguk7kBQ5Ea8OmtR+LKiphfeAsp3nfdHQvd0IIIW+MlnQvd22j6VMJIYRwS4vn0JOTk9/oFnqvXr3w888/o23btujZs2e9o/dTU1MbtW8q6IQQQjhFl639V0BAgOpmUsOHD9fqvqmgE0IIITqydOnSOv9fG6igE0II4RZdtlavlJQU3Lp1CwKBAF26dIGrq+tr7YcKOiGEEG5pY3KVFtLlXlP15Ym//PKLarKfp0+fon///vjuu+/Qvn37Ru2PRrkTQgghPJg0aRIUCgVu3bqFx48f4/Hjx7h16xYYY681ayW10AkhhHCK5kOv27lz53DhwgW1uzM6Ojriyy+/xIABAxq9PyrohBBCuEVd7nWys7ODQqGotb6yshLt2rVr9P6oy50QQgjhwdq1azFjxgykpKSg+qatKSkpmDVrFr744otG749a6IQQQrilBy2MctdKEt61bdtW7Zr6kpIS9O3bFwYGL8pxZWUlDAwMMGnSpEZfp65xQS8vL1ebwrCoqAgAVNN6NgfVOZpLHoAyaYoyaYYyaYYyNUyXOejGMv+1ceNGzvat8eQsERERWLZsWa31+/fvh4mJidaDEUII4U5paSmCgoJ0MjlLwRRvtDZs2oQ0RRUKWOw8RZOz1EPjgl5XC719+/bIyclpVrOtxcfHY8iQIc1iNiOAMmmKMmmGMmmGMjWsoKAAUqmUCnozUVZWVqvXpLE/p8Zd7iKRSHX/2ZqEQmGz+HDWRJk0Q5k0Q5k0Q5k001wy6TQDjXKvU0lJCebNm4cffvgBBQUFtZ6vqqpq1P5ayDADQgghzVZ1QW/qgpY1ferf//53nDlzBlFRURCJRPjqq6+wbNkyyGQy7N27t9H7o1HuhBBC3hhv+vSpNf3444/Yu3cvBg0ahEmTJuHdd9+Fvb095HI5vv32W4wfP75R+6MWOiGEEI5po3Xe8rrcHz9+jI4dOwJ4cb788ePHAAB3d3ecPXu20fujgk4IIYRbenraWVqYTp064c6dOwCArl274ocffgDwouVePVlLY7S8I0QIIYS8ASZOnIjffvsNALBgwQLVufQ5c+YgPDy80fujc+iEEEK4RaPc6zRnzhzV/3t6euLWrVu4cuUK3nrrLbi4uDR6f1TQCSGEcIsKukbkcjnkcvlrv5663AkhhBCe/Pzzz/jggw/w1ltvwd7eHh988AFOnz79Wvuigk4IIYRbWrwOvSXZsmULfH19YWZmhlmzZmHmzJlo3bo1hg4dii1btjR6f9TlTgghhFvaGKXeAke5r1q1Chs2bMD06dNV62bOnIkBAwZgxYoVaus10fKOECGEkOaFWuh1Kioqgq+vb6313t7eqhlNG4OXgr5q1SoIBALMnj1btS4mJgY+Pj6wtLSEQCBAWloar5kUCgXmzZuH7t27w9TUFDKZDBMmTMDDhw95ywS8mPXOyckJpqamaNu2Lby8vHDp0iVeM9X0ySefQCAQcDpFoCaZQkNDVVM2Vi9ubm68ZgKAW7duwd/fH2KxGGZmZnBzc0N2djZvmV4+RtXLunXreMtUXFyM6dOnw9bWFsbGxujSpQu2bt2qkzyvyvTo0SOEhoZCJpPBxMQEvr6+yMzM5CxDRERErd+JRCJRPc8YQ0REBGQyGYyNjTFo0CDcuHGDszyEG/7+/jh8+HCt9UeOHMGwYcMavT+dd7knJydjx44d6NGjh9r6kpISDBgwAKNHj8aUKVN4z1RaWorU1FQsWbIELi4uePLkCWbPng1/f3+kpKTwkgkAHBwcsGXLFnTq1AllZWXYsGEDvL298ccff8DKyoqXTNViY2Nx6dIlyGQyTnNomsnX1xe7d+9WPTY0NOQ10+3bt+Hu7o6wsDAsW7YMYrEYt27dgpGREW+ZcnJy1B7/9NNPCAsLw6hRo3jLNGfOHCQkJGDfvn3o0KEDTp06halTp0ImkyEgIEDnmRhjGD58OIRCIY4cOYLWrVsjMjISXl5euHnzJkxNTTnJ4uzsrDY4Sl9fX/X/a9euRWRkJL7++ms4ODhg+fLlGDJkCNLT02FmZsZJniahUe4qmzdvVv1/ly5dsGLFCiQmJqJfv34AgIsXL+KXX37Bp59+2uh967SFXlxcjPHjx2Pnzp1o27at2nPBwcH4xz/+AS8vL11GemUmsViM+Ph4jBkzBo6OjnBzc8OXX36JK1eucN6iqu84BQUFwcvLC506dYKzszMiIyNRVFSE33//nbdMAPDgwQNMnz4d3377rc5mcWook0gkgkQiUS3m5ua8Zlq0aBGGDh2KtWvXomfPnujUqRPef/99WFtb85ap5vGRSCQ4cuQIPD090alTJ94y/frrrwgJCcGgQYPQoUMHfPzxx3BxceH8i/SrMmVmZuLixYvYunUr+vTpA0dHR0RFRaG4uBjfffcdZ3kMDAzUfjfVX9gZY9i4cSMWLVqEkSNHolu3btizZw9KS0uxf/9+zvI0CXW5q2zYsEG1REdHo23btrh58yaio6MRHR2NGzduoE2bNti1a1ej963Tgj5t2jS8//77Oi/a9WlMpsLCQggEgte6JR8XmSoqKrBjxw6IxeLXugmBtjIplUoEBwcjPDwczs7OnObQNBMAJCYmwtraGg4ODpgyZQry8vJ4y6RUKnHs2DE4ODjAx8cH1tbW6Nu3L2JjY3nL9LJHjx7h2LFjCAsL4zWTu7s74uLi8ODBAzDGkJCQgIyMDPj4+PCSqby8HADUelL09fVhaGiI8+fPc5YnMzMTMpkMHTt2xNixY/Hnn38CALKyspCbmwtvb2/VtiKRCB4eHrhw4QJneYh2ZGVlabRU/74bQ2dd7t9//z1SU1ORnJysq7dsUGMyPX/+HPPnz0dQUBCnM/1okuno0aMYO3YsSktLIZVKER8fD0tLS94yrVmzBgYGBpg5cyZnGRqbyc/PD6NHj4ZcLkdWVhaWLFmCwYMH48qVKxCJRDrPlJeXh+LiYqxevRrLly/HmjVrcOLECYwcORIJCQnw8PDQeaaX7dmzB2ZmZhg5ciQnWTTNtHnzZkyZMgW2trYwMDCAnp4evvrqK7i7u/OSycnJCXK5HAsWLMD27dthamqKyMhI5Obm1jploS19+/bF3r174eDggEePHmH58uXo378/bty4gdzcXACAjY2N2mtsbGxw9+5dTvI0GY1ybxBjDMCLcS2vSycF/d69e5g1axZOnTqlk/OFmmhMJoVCgbFjx0KpVCIqKor3TJ6enkhLS0N+fj527tyJMWPG4NKlS5x03TaU6cqVK9i0aRNSU1Ob9EHUZiYACAwMVP1/t27d0Lt3b8jlchw7doyTgtVQJqVSCQAICAhQ3e7x7bffxoULF7Bt2zZOCnpj/+527dqF8ePHc/o3qkmmzZs34+LFi4iLi4NcLsfZs2cxdepUSKVSTnr3GsokFApx6NAhhIWFwdzcHPr6+vDy8oKfn5/Ws1Srue/u3bujX79+eOutt7Bnzx7V4M6X/94YYzr7G2w0Oof+Snv37sW6detUgywdHBwQHh6O4ODgRu9LJ195rly5gry8PLi6usLAwAAGBgZISkrC5s2bYWBggKqqKl3EeK1MCoUCY8aMQVZWFuLj4zltnWuaydTUFPb29nBzc0N0dDQMDAwQHR3NS6bExETk5eXBzs5O9fzdu3fx6aefokOHDrxkquvzJJVKIZfLORuZ3FAmCwsLGBgYoGvXrmqv69KlC2djMhpznM6dO4f09HRMnjyZkyyaZiopKcHChQsRGRmJYcOGoUePHpg+fToCAwPxxRdf8JKpqqoKrq6uSEtLw9OnT5GTk4MTJ06goKBANfUl10xNTdG9e3dkZmaqRrtXt9Sr5eXl1Wq1k+YtMjIS//d//4ehQ4fihx9+wIEDB+Dr64u//e1v2LBhQ6P3p5MW+nvvvYdr166prZs4cSKcnJwwb948tdGbuqJJpupinpmZiYSEBFhYWPCeqS6MMdV5Pl1nkkqltc5t+vj4IDg4GBMnTuQlU13HqaCgAPfu3YNUKuUlk0gkQp8+fZCenq62TUZGRpPu3dyUTDWPU3R0NFxdXTkfi9FQpqqqKigUCui91L2qr6+v6uXQdaaax0ksFgN4cX47JSUFn3/+OSeZXlZeXo5bt27h3XffRceOHSGRSBAfH4+ePXsCeDGeJikpCWvWrNFJnkYTQAstdK0kaVa+/PJLbN26FRMmTFCtCwgIgLOzMyIiItQmb9GETgq6mZkZunXrprbO1NQUFhYWqvWPHz9Gdna26jrv6n/4qkd46jpTZWUlPvzwQ6SmpuLo0aOoqqpSfSM2Nzfn5BKohjKVlJRgxYoV8Pf3h1QqRUFBAaKionD//n2MHj1a63k0yQSg1hcdoVAIiUQCR0dHXjIVFxcjIiICo0aNglQqxZ07d7Bw4UJYWlpixIgRvGQCgPDwcAQGBmLgwIHw9PTEiRMn8OOPPyIxMZG3TMCLm1scPHgQ69ev5yRHYzN5eHggPDwcxsbGkMvlSEpKwt69exEZGclbpoMHD8LKygp2dna4du0aZs2aheHDh6sNTNOm//f//h+GDRsGOzs75OXlYfny5SgqKkJISIjqGvmVK1eic+fO6Ny5M1auXAkTExMEBQVxkqfJqMu9Tjk5Oejfv3+t9f3793+t8RnN5tavcXFxai26sWPHAgCWLl2KiIgInee5f/8+4uLiALw411lTQkICBg0apPNM+vr6+Pe//409e/YgPz8fFhYW6NOnD86dO6fT0eXNnb6+Pq5du4a9e/fi6dOnkEql8PT0xIEDB3i9RnfEiBHYtm0bVq1ahZkzZ8LR0RGHDh3idLCXJr7//nswxjBu3Dhec1T7/vvvsWDBAowfPx6PHz+GXC7HihUr8Le//Y23TDk5OZg7dy4ePXoEqVSKCRMmYMmSJZy93/379zFu3Djk5+fDysoKbm5uuHjxoqo35+9//zvKysowdepUPHnyBH379sWpU6ea5zXo5JXs7e3xww8/YOHChWrrDxw4gM6dOzd6fwJWPbSukYqKiiAWi1WFpTlQKBQ4fvw4hg4dqrNroRtCmTRDmTRDmTRDmRpWUFAAS0tLFBYWcjY2qLpOPJ4/Dq1FTevVLCqvgPnq7zjNq2uHDh1CYGAgvLy8MGDAAAgEApw/fx4///wzfvjhh0b3KLbs6wAIIYQ0A9q4qcyLLvc+ffqga9eu+Oc//8nvj6QFo0aNwuXLl2FpaYnY2FjExMTA0tISly9ffq3Tg82my50QQkgLpcVz6MnJyS2iha5QKPDxxx9jyZIl2Ldvn1b2SS10QgghRMeEQmGdE7M0BRV0Qggh3KJ7uddpxIgRWr39M3W5E0II4Rbd+rVO9vb2+Pzzz3HhwgW4urrWmrmvsbfTpoJOCCGE8OCrr75CmzZtcOXKFVy5ckXtOYFAQAWdEEJIM0M3lqlTVlaW6v+1MTlLy+vDIIQQ0rzQOfRXio6ORrdu3WBkZAQjIyN069YNX3311Wvti1rohBBCCA+WLFmCDRs2YMaMGejXrx8A4Ndff8WcOXNw584dLF++vFH7o4JOCCGEW9TlXqetW7di586dardd9vf3R48ePTBjxgwq6IQQQpoZGuVep6qqKvTu3bvWeldXV1RWVjZ6fxoX9PLycrUpOouKigC8uNuNQqFo9BtzoTpHc8kDUCZNUSbNUCbNUKaG6TQHtdDr9NFHH2Hr1q21ZhLcsWMHxo8f3+j9aTw5S0REBJYtW1Zr/f79+2FiYtLoNyaEEMKf0tJSBAUF6WZyls8mo7VREydneV4B83981aImZ5kxYwb27t2L9u3bw83NDQBw8eJF3Lt3DxMmTFCbxEeT6YM1Luh1tdDbt2+PnJycZjXbWnx8PKQLlkCvRlY+KUUi5Kz6HEOGDGkWMywB/z1OlKl+lEkzlEkzzS1TQUEBpFKpbgr651O0U9CX7GxRBd3T01Oj7QQCAc6cOdPgdhp3uYtEIohEolrrhUJhs/hw1qRXXg6958/5jqGmOR4nyqQZyqQZyqSZ5pJJpxnoHHqdEhIStLq/lneECCGEkP9BNMqdEEIItwTQwqA4rSRp0aigE0II4RaNctcJ6nInhBBCWgBqoRNCCOEWtdB1ggo6IYQQbgm0MMpdQB3KDaEjRAghhLQA1EInhBDCLepy1wkq6IQQQrhFBV0nqKATQgjhlkCv6efA6Rx6g+gIEUIIIS0ALwV91apVEAgEmD17tmodYwwRERGQyWQwNjbGoEGDcOPGDc4yHCx5hsC8HAzMuYeBOfcQ+lcufnlepnq+oKoKS58UwCf3Afrn3MP0gjxkV3I73eDWrVvRo0cPtG7dGq1bt0a/fv3w008/qZ4vLi7G9OnTYWtrC2NjY3Tp0gVbt27lNZNAIKhzWbduHW+ZAODWrVvw9/eHWCyGmZkZ3NzckJ2dzVum0NDQWseoenYlvjLV9Mknn0AgEGDjxo28ZoqIiICTkxNMTU3Rtm1beHl54dKlS7xlUigUmDdvHrp37w5TU1PIZDJMmDABDx8+5C0TAMTExMDHxweWlpYQCARIS0vjNE+T6Qm0s5B66bygJycnY8eOHejRo4fa+rVr1yIyMhJbtmxBcnIyJBIJhgwZgmfPnnGSw0ZfHzNat8E3VhJ8YyVBH5ER5j7+C7cVFWCM4dPHf+FBVSUizS2x30oCqb4B/q8gD2VKJSd5AMDW1harV69GSkoKUlJSMHjwYAQEBKi+2MyZMwcnTpzAvn37cOvWLcyZMwczZszAkSNHeMuUk5OjtuzatQsCgQCjRo3iLdPt27fh7u4OJycnJCYm4rfffsOSJUtgZGTEWyYA8PX1VTtWx48f5yyPppkAIDY2FpcuXYJMJuM0jyaZHBwcsGXLFly7dg3nz59Hhw4d4O3tjb/++ouXTKWlpUhNTcWSJUuQmpqKmJgYZGRkwN/fn7M8DWUCgJKSEgwYMACrV6/mNIfWVHe5N3Uh9dLpOfTi4mKMHz8eO3fuxPLly1XrGWPYuHEjFi1ahJEjRwIA9uzZAxsbG+zfvx+ffPKJ1rMMNFKfw31a6zb4V0kxrlVUwEAgwDVFBX6wkuAt4Ysp/+aL22JIbilOlJVihGkrrecBgGHDhqk9XrFiBbZu3YqLFy/C2dkZv/76K0JCQjBo0CAAwMcff4zt27cjJSUFAQEBvGSSSCRqzx85cgSenp7o1KkTJ3k0ybRo0SIMHToUa9euVW3DZR5NMgEvZix8+XjxnenBgweYPn06Tp48iffff5/3TEFBQWrPR0ZGIjo6Gr///jvee+89nWcKCwtDfHy82vNffvkl3nnnHWRnZ8POzk7nmZydnREcHAwAuHPnDifvT95MOv3KM23aNLz//vvw8vJSW5+VlYXc3Fx4e3ur1olEInh4eODChQuc56piDCfLSlDGlOhhKELFf6aIN6wxqlJfIICBAEir0M0861VVVfj+++9RUlKCfv36AQDc3d0RFxeHBw8egDGGhIQEZGRkwMfHh7dMNT169AjHjh1DWFiYTvLUlUmpVOLYsWNwcHCAj48PrK2t0bdvX8TGxvKWqVpiYiKsra3h4OCAKVOmIC8vj9dMSqUSwcHBCA8PVxV4XWro81RRUYEdO3ZALBbDxcWlWWQCgMLCQggEArRp06bZZGr2qke5N3Uh9dJZC/37779HamoqkpOTaz2Xm5sLALCxsVFbb2Njg7t373KWKVNRgYn5j1DBGIwFAnxhboVOQiEUjEGqr48tRYVY1MYcxgIB9hUXoUCpRL6yirM8AHDt2jX069cPz58/R6tWrXD48GF07doVALB582ZMmTIFtra2MDAwgJ6eHr766iu4u7vzlqmmPXv2wMzMTNXLwkem3NxcFBcXY/Xq1Vi+fDnWrFmDEydOYOTIkUhISICHh4fOMwGAn58fRo8eDblcjqysLCxZsgSDBw/GlStXIBKJeMm0Zs0aGBgYYObMmZy9f2MzAcDRo0cxduxYlJaWQiqVIj4+HpaWlrxmqvb8+XPMnz8fQUFBaN26dbPI9Eag+dB1QicF/d69e5g1axZOnTpV73lMwUvfwBhjtdZpUwcDIb6zkuCZUomfn5dh6dMC7LSwQSehEOvaWuGzpwXwzL0PfQDviIwwQMTdOdhqjo6OSEtLw9OnT3Ho0CGEhIQgKSkJXbt2xebNm3Hx4kXExcVBLpfj7NmzmDp1KqRSaa1eD11lqmnXrl0YP348p+eqG8pU3WoKCAjAnDlzAABvv/02Lly4gG3btnFa0Os7ToGBgartunXrht69e0Mul+PYsWOcfgF6VaaysjJs2rQJqampnP6NNSZT9efJ09MTaWlpyM/Px86dOzFmzBhcunQJ1tbWvGUCXgyQGzt2LJRKJaKiojjL0phMhNSkk4J+5coV5OXlwdXVVbWuqqoKZ8+exZYtW5Ceng7gRUtdKpWqtsnLy6vVatcmoUCA9gZCAEBXQxFuVpTju5JnWNTGHF0MDfGdtRTPlEpUMoa2+vqY8Fcuuv7nnDpXDA0NYW9vDwDo3bs3kpOTsWnTJmzcuBELFy7E4cOHVec6e/TogbS0NHzxxRecFvRXZdq+fbtqm3PnziE9PR0HDhzgLIcmmb788ksYGBjU+kevS5cuOH/+PC+Zah6nalKpFHK5HJmZmbxk6tKlC/Ly8tTOAVdVVeHTTz/Fxo0bOT0329BxMjU1hb29Pezt7eHm5obOnTsjOjoaCxYs4C2TQqHAmDFjkJWVhTNnznDeOtck0xulBd5Y5t69ewgODkZeXh4MDAywZMkSjB49mtdMOino7733Hq5du6a2buLEiXBycsK8efPQqVMnSCQSxMfHo2fPngBenD9LSkrCmjVrdBERAMAA1fnzamb/6ebJrlTglqIC/2cm1lke4EUvRXl5ORQKBRQKBfRe6nbS19eHksOR9/Vlqik6Ohqurq46O9f5qkyGhobo06eP6ktitYyMDMjlcl4y1aWgoAD37t1T+wKry0zBwcG1vgT6+PggODgYEydO5CXT6z7PhZrvWV3MMzMzkZCQAAsLC51mqSvTG6cF3ljGwMAAGzduxNtvv428vDz06tULQ4cOhampKX+ZdPEmZmZm6Natm9o6U1NTWFhYqNbPnj0bK1euROfOndG5c2esXLkSJiYmtUa9asuWoqcYIDKCjb4BSpgSp8pKcaWiHF+av/jmHV9WirZ6epDoG+APRQW+KHqCQUbG6GdkzEkeAFi4cCH8/PzQvn17PHv2DN9//z0SExNx4sQJtG7dGh4eHggPD4exsTHkcjmSkpKwd+9eREZG8pKpWlFREQ4ePIj169dzlqMxmcLDwxEYGIiBAwfC09MTJ06cwI8//ojExEReMhUXFyMiIgKjRo2CVCrFnTt3sHDhQlhaWmLEiBG8ZLKwsKhVmIRCISQSCRwdHXnJVFJSghUrVsDf3x9SqRQFBQWIiorC/fv3OW351JepsrISH374IVJTU3H06FFUVVWpxvyYm5vD0JCbHruGPuOPHz9Gdna26nr46i+wEolEp1dS/C+TSqWqL+TW1tYwNzfH48ePW35B18Tf//53lJWVYerUqXjy5An69u2LU6dOwczMjJP3e6yswpKnBcivqkIrPT10NhDiS3MruP2nYOdXVWFD4RMUKKtgqa+P941NMYXj1vmjR48QHByMnJwciMVi9OjRAydOnMCQIUMAvBhYuGDBAowfPx6PHz+GXC7HihUr8Le//Y23TNW5GGMYN24cZzkak2nEiBHYtm0bVq1ahZkzZ8LR0RGHDh3idPBgfZnKyspw7do17N27F0+fPoVUKoWnpycOHDjA2ee7oUx8qS/T8+fP8e9//xt79uxBfn4+LCws0KdPH5w7d47TUfj1Zbpz5w7i4uIAvBiLUVNCQoLqElJdZgKAuLg4tZ6UsWPHAgCWLl2KiIgITjI1iQBa6HJv3OZnz57FunXrcOXKFeTk5ODw4cMYPny42jZRUVFYt24dcnJy4OzsjI0bN+Ldd99tdLSUlBQolUq0b9++0a/VJgFjL/Uxa6ioqAhisVj1h9ccKBQKHD9+HO3m/h16z5/zHQcAoDQywoPItRg6dCiEQiHfcQD89zhRpvpRJs1QJs00t0wFBQWwtLREYWEhZ2MCquvE460L0dq4aYNli8qew/z/VuLevXtqeUUiUZ1Xivz000/45Zdf0KtXL4waNapWQT9w4ACCg4MRFRWFAQMGYPv27fjqq69w8+ZN1dgSV1fXOk9znDp1SnUjpoKCArz77rv46quv0L9//yb9jE3VbFrohBBCWigtDop7uRX8ql4JPz8/+Pn5vXJ3kZGRCAsLw+TJkwEAGzduxMmTJ7F161asWrUKwIsB3fUpLy/HiBEjsGDBAt6LOUAFnRBCyBukrhZ6Y1VUVODKlSuYP3++2npvb2+Nb2bGGENoaCgGDx6sunMf36igE0II4ZYWR7lXT1jTFPn5+aiqqqrzZmbVgx4b8ssvv+DAgQPo0aOH6k6U33zzDbp3796kbE1BBZ0QQgi3BFqYLY2D69CbcjMzd3d3nV8y3JDmdWEfIYQQwjFLS0vo6+vXao1zfTMzrlFBJ4QQwq1mNn2qoaEhXF1da82kFx8f3ywGt70u6nInhBDCLS2Ocu/Tpw/09fUxbdo0TJs27ZWbFxcX448//lA9zsrKQlpaGszNzWFnZ4e5c+ciODgYvXv3Rr9+/bBjxw5kZ2dzel8PrlFBJ4QQ8sZITk7WaFBcSkoKPD09VY/nzp0LAAgJCcHXX3+NwMBAFBQU4LPPPkNOTg66deuG48eP6/wW0dpEBZ0QQgi3eLiX+6BBg9DQfdOmTp2KqVOnNiVVs0IFnRBCCLf0tDDKvamv/x9Ag+IIIYSQFkDjFnp5ebnaPW2LiooAQDWtZ3NQnUP5GncO4kp1luZyjID/ZqFM9aNMmqFMmmlumXSaowXOh94caTw5S0REBJYtW1Zr/f79+2FiYqL1YIQQQrhTWlqKoKAg3UzOsmcVWps0cXKW0ucwD1kABwcHjUa5/y/SuKDX1UJv3749cnJymtVsa/Hx8RgyZEizmM0IoEyaokyaoUyaoUwNKygogFQq1U1B/2a1dgp68HxO877pNO5yf9UUdUKhsFl8OGuiTJqhTJqhTJqhTJppLpmaQwaiXTTKnRBCCLcEAi1ctkbn0BtCBZ0QQgi3aFCcTtBla4QQQkgLQC10Qggh3OLhTnH/i+gIEUII4Vb1neKauuDF5Cxdu3bFP//5T55/qOaHWuiEEELeGJpOzvK/iAo6IYQQblGXu05QQSeEEMItGuWuE/SVhxBCCGkBqIVOCCGEW3p6L5am7oPUiwo6IYQQjmmhyx3U5d4QnXzlWbVqFfr06QMzMzNYW1tj+PDhSE9PV9smJiYGPj4+sLS0hEAgQFpaGq+ZFAoF5s2bh+7du8PU1BQymQwTJkzAw4cPecsEvJj1zsnJCaampmjbti28vLxw6dIlXjPV9Mknn0AgEGDjxo28ZgoNDYVAIFBb3NzceM0EALdu3YK/vz/EYjHMzMzg5uaG7Oxs3jK9fIyql3Xr1vGWqbi4GNOnT4etrS2MjY3RpUsXbN26lZM8mmZ69OgRQkNDIZPJYGJiAl9fX2RmZnKWaevWrejRowdat26N1q1bo1+/fvjpp59UzzPGEBERAZlMBmNjYwwaNAg3btzgLE+TVQ+Ka+pC6qWTI5SUlIRp06bh4sWLiI+PR2VlJby9vVFSUqLapqSkBAMGDMDq1at1EanBTKWlpUhNTcWSJUuQmpqKmJgYZGRkwN/fn7dMAODg4IAtW7bg2rVrOH/+PDp06ABvb2/89ddfvGWqFhsbi0uXLkEmk3GSpbGZfH19kZOTo1qOHz/Oa6bbt2/D3d0dTk5OSExMxG+//YYlS5bAyKhps1A1JVPN45OTk4Ndu3ZBIBBg1KhRvGWaM2cOTpw4gX379uHWrVuYM2cOZsyYgSNHjvCSiTGG4cOH488//8SRI0dw9epVyOVyeHl51fl3oA22trZYvXo1UlJSkJKSgsGDByMgIEBVtNeuXYvIyEhs2bIFycnJkEgkGDJkCJ49e8ZJnuaErkOvB3tNhYWFDADLz89v9Gvz8vIYAJaUlFTruaysLAaAXb16tdH7raioYLGxsayiokKrmapdvnyZAWB3795tNpmqfw+nT5/mNdP9+/dZu3bt2PXr15lcLmcbNmxo1H61nSkkJIQFBAQ0el9cZgoMDGQfffRRs8r0soCAADZ48GBeMzk7O7PPPvtMbbtevXqxxYsX85IpPT2dAWDXr19XbVNZWcnMzc3Zzp07dZKJMcbatm3LvvrqK6ZUKplEImGrV69WPff8+XMmFovZtm3bNN5ffn4+A8AKCwtfK48mqv99ehwTxSpP7m7S8jgmivO8bzpe+jAKCwsBAObm5ny8fZ00yVRYWAiBQIA2bdo0i0wVFRXYsWMHxGIxXFxceMukVCoRHByM8PBwODs76yRHQ5kAIDExEdbW1nBwcMCUKVOQl5fHWyalUoljx47BwcEBPj4+sLa2Rt++fREbG8tbppc9evQIx44dQ1hYGK+Z3N3dERcXhwcPHoAxhoSEBGRkZMDHx4eXTOXl5QCg1pOir68PQ0NDnD9/nvM8VVVV+P7771FSUoJ+/fohKysLubm58Pb2Vm0jEong4eGBCxcucJ7ntVQPimvqQuql8yPEGMPcuXPh7u6Obt266frt66RJpufPn2P+/PkICgrSyV2K6st09OhRtGrVCkZGRtiwYQPi4+NhaWnJW6Y1a9bAwMAAM2fO5DyDppn8/Pzw7bff4syZM1i/fj2Sk5MxePBg1T/Ous6Ul5eH4uJirF69Gr6+vjh16hRGjBiBkSNHIikpiZdML9uzZw/MzMwwcuRIzvPUl2nz5s3o2rUrbG1tYWhoCF9fX0RFRcHd3Z2XTE5OTpDL5ViwYAGePHmCiooKrF69Grm5ucjJyeEsy7Vr19CqVSuIRCL87W9/w+HDh9G1a1fk5uYCAGxsbNS2t7GxUT1H/jfpfJT79OnT8fvvv+vkm62mGsqkUCgwduxYKJVKREVF8Z7J09MTaWlpyM/Px86dOzFmzBhcunQJ1tbWOs905coVbNq0CampqRDwcOOHVx2nwMBA1f9369YNvXv3hlwux7FjxzgvWHVlUiqVAICAgADMmTMHAPD222/jwoUL2LZtGzw8PHSe6WW7du3C+PHjOTunr2mmzZs34+LFi4iLi4NcLsfZs2cxdepUSKVSeHl56TyTUCjEoUOHEBYWBnNzc+jr68PLywt+fn6cZnF0dERaWhqePn2KQ4cOISQkRO3L38t/b4wxXv4GNUI3ltEJnbbQZ8yYgbi4OCQkJMDW1laXb/1KDWVSKBQYM2YMsrKyEB8fr5PWeUOZTE1NYW9vDzc3N0RHR8PAwADR0dG8ZDp37hzy8vJgZ2cHAwMDGBgY4O7du/j000/RoUMHXjLVRSqVQi6Xczoyub5MlpaWMDAwQNeuXdW279KlC2ej3BvKVNO5c+eQnp6OyZMnc5qloUxlZWVYuHAhIiMjMWzYMPTo0QPTp09HYGAgvvjiC14yAYCrq6uquObk5ODEiRMoKChAx44dOctjaGgIe3t79O7dG6tWrYKLiws2bdoEiUQCALVa43l5ebVa7c2GQKCFUe5U0Buik4LOGMP06dMRExODM2fOcPpHoM1M1cU8MzMTp0+fhoWFBe+ZXvU6rrqSG8oUHByM33//HWlpaapFJpMhPDwcJ0+e5CVTXQoKCnDv3j1IpVJeMhkaGqJPnz61LofKyMiAXC7nJVNN0dHRcHV15XwsRkOZFAoFFAoF9F46X6qvr6/q5dB1pprEYjGsrKyQmZmJlJQUBAQEcJLpVTnLy8vRsWNHSCQSxMfHq56rqKhAUlIS+vfvr7M8pPnRSZf7tGnTsH//fhw5cgRmZmaqb5ZisRjGxsYAgMePHyM7O1t1nXf1P3wSiUT1jVSXmSorK/Hhhx8iNTUVR48eRVVVlWobc3NzGBoa6jxTSUkJVqxYAX9/f0ilUhQUFCAqKgr379/H6NGjtZ5Hk0wWFha1vugIhUJIJBI4Ojrykqm4uBgREREYNWoUpFIp7ty5g4ULF8LS0hIjRozgJRMAhIeHIzAwEAMHDoSnpydOnDiBH3/8EYmJibxlAoCioiIcPHgQ69ev5yRHYzK1bt0aHh4eCA8Ph7GxMeRyOZKSkrB3715ERkbykgkADh48CCsrK9jZ2eHatWuYNWsWhg8frjYwTZsWLlwIPz8/tG/fHs+ePcP333+PxMREnDhxAgKBALNnz8bKlSvRuXNndO7cGStXroSJiQmCgoI4ydNk1OWuG687PL4xl60BqHPZvXu3apvdu3fXuc3SpUs1ztSYy0IaylR9+VxdS0JCAi+ZysrK2IgRI5hMJmOGhoZMKpUyf39/dvnyZY3zaDtTXbi+bK2hTKWlpczb25tZWVkxoVDI7OzsWEhICMvOzuYtU7Xo6Ghmb2/PjIyMmIuLC4uNjeU90/bt25mxsTF7+vRpo7JwlSknJ4eFhoYymUzGjIyMmKOjI1u/fj1TKpW8Zdq0aROztbVVfZ4WL17MysvLNc7T2EyTJk1icrmcGRoaMisrK/bee++xU6dOqZ5XKpVs6dKlTCKRMJFIxAYOHMiuXbvWqDw6vWztaDSrTPiuScvjo9F02VoDdNJCZ4w1uE1oaChCQ0O5D/MfDWXq0KGDRrm1qaH3MzIyQkxMjI7SvPA6x+DOnTvaD1JDQ5mMjY056+5/FU2P06RJkzBp0iSO07ygaaaPP/4YH3/8McdpXtAkk0Qiwe7du3WQ5gVNMs2cOVOnV3E0NCZGIBAgIiICERERuglE3gh0YR8hhBBu6Qm0s4DuFFcfmpyFEEIIt7RxL/b/vD45OVknVxu9iaigE0II4RYNitMJ6nInhBBCWgBqoRNCCOGWFrvcyatRQSeEEMIpgUDQ5NvSNtvb2jYj9JWHEEIIaQGohU4IIYRb1OWuE1TQCSGEcIsKuk7QESKEEEJaAGqhE0II4Zbgv3d6a9I+SL00Lujl5eVqU3QWFRUB+O90h81BdY7mkgegTJqiTJqhTJqhTA3TaQ7qctcJAdNwBoeIiAgsW7as1vr9+/fDxMRE68EIIYRwp7S0FEFBQSgsLOTsVqpFRUUQi8V4cuYgWrdqWp0oKi5F28Gj4eDgAH19fUybNg3Tpk3TUtKWQeOCXlcLvX379sjJyak1HzZfFAoF4uPjMWTIEAiFQr7jAKBMmqJMmqnOJF2wBHo1/h75pBSJkLPq82Z5nCjTqxUUFEAqleqmoCf8SzsF3fNDTvO+6TTucheJRBCJRLXWC4XCZvHhrIkyaYYyaaY5ZtIrL4fe8+d8x1DTHI8TZao/h84IBFrocqdz6A2hQXGEEEK4RZOz6ASNMiCEEEJaAGqhE0II4RaNctcJKuiEEEK4paeF69Cb+vr/AfSVhxBCCGkBqIVOCCGEW9TlrhNU0AkhhHCLRrnrBH3lIYQQQloAaqETQgjhFnW56wQVdEIIIdyiLned0MlXnlWrVqFPnz4wMzODtbU1hg8fjvT0dLVtGGOIiIiATCaDsbExBg0ahBs3bnCa6+zZsxg2bBhkMhkEAgFiY2PVnn/06BFCQ0Mhk8lgYmICX19fZGZm8pqpuLgY06dPh62tLYyNjdGlSxds3bqV10wCgaDOZd26dbxlAoBbt27B398fYrEYZmZmcHNzQ3Z2Nm+ZQkNDax0jNzc3zvIAQGr5c8wuyINP7gO4PsxGQlnpK7dd8fQxXB9mY39xEaeZGjpOERERcHJygqmpKdq2bQsvLy9cunSJt0wKhQLz5s1D9+7dYWpqCplMhgkTJuDhw4e8ZQKAmJgY+Pj4wNLSEgKBAGlpaZzmIc2fTgp6UlISpk2bhosXLyI+Ph6VlZXw9vZGSUmJapu1a9ciMjISW7ZsQXJyMiQSCYYMGYJnz55xlqukpAQuLi7YsmVLrecYYxg+fDj+/PNPHDlyBFevXoVcLoeXl5dabl1mAoA5c+bgxIkT2LdvH27duoU5c+ZgxowZOHLkCG+ZcnJy1JZdu3ZBIBBg1KhRvGW6ffs23N3d4eTkhMTERPz2229YsmQJjIyMeMsEAL6+vmrH6vjx45zlAYAyxuAgNMQ8cdt6t0soK8X1inJY6elzmgdo+Dg5ODhgy5YtuHbtGs6fP48OHTrA29sbf/31Fy+ZSktLkZqaiiVLliA1NRUxMTHIyMiAv78/Z3kaylT9/IABA7B69WpOc2hFdZd7UxdSL510uZ84cULt8e7du2FtbY0rV65g4MCBYIxh48aNWLRoEUaOHAkA2LNnD2xsbLB//3588sknnOTy8/ODn59fnc9lZmbi4sWLuH79OpydnQEAUVFRsLa2xnfffYfJkyfrPBMA/PrrrwgJCcGgQYMAAB9//DG2b9+OlJQUBAQE8JJJIpGoPT5y5Ag8PT3RqVMnTvJokmnRokUYOnQo1q5dq1rHZR5NMgEvJjl6+XhxaYCRMQYYGb948KTubfKqKrG28Am2WFhh1mPuima1ho5TUFCQ2uPIyEhER0fj999/x3vvvafzTGKxGPHx8WrrvvzyS7zzzjvIzs6GnZ2dzjMBQHBwMADgzp07nLy/VunpvViaug8Affr0oelTX4GXrzyFhYUAAHNzcwBAVlYWcnNz4e3trdpGJBLBw8MDFy5c4COiaqrYmi06fX19GBoa4vz587xkAgB3d3fExcXhwYMHYIwhISEBGRkZ8PHx4S1TTY8ePcKxY8cQFhbGWwalUoljx47BwcEBPj4+sLa2Rt++fevslte1xMREWFtbw8HBAVOmTEFeXh6veZSMYcmTAgS3MsNbQkNes9SloqICO3bsgFgshouLC99xVAoLCyEQCNCmTRu+o7wRXnVarrELACQnJ+PmzZtUzOug84LOGMPcuXPh7u6Obt26AQByc3MBADY2Nmrb2tjYqJ7TNScnJ8jlcixYsABPnjxBRUUFVq9ejdzcXOTk5PCSCQA2b96Mrl27wtbWFoaGhvD19UVUVBTc3d15y1TTnj17YGZmpupp4UNeXh6Ki4uxevVq+Pr64tSpUxgxYgRGjhyJpKQk3nL5+fnh22+/xZkzZ7B+/XokJydj8ODBqi+PfPi6uAj6AgHGmZrxlqEuR48eRatWrWBkZIQNGzYgPj4elpaWfMcCADx//hzz589HUFAQzctNmhWdj3KfPn06fv/99zpbudXfwKoxxmqt0xWhUIhDhw4hLCwM5ubm0NfXh5eXV4NdqlzbvHkzLl68iLi4OMjlcpw9exZTp06FVCqFl5cXr9kAYNeuXRg/fjyn56obolQqAQABAQGYM2cOAODtt9/GhQsXsG3bNnh4ePCSKzAwUPX/3bp1Q+/evSGXy3Hs2DFevgDdqqjA9yXP8K2VhLe/s1fx9PREWloa8vPzsXPnTowZMwaXLl2CtbU1r7kUCgXGjh0LpVKJqKgoXrO8UWg+dJ3QaUGfMWMG4uLicPbsWdja2qrWV59TzM3NhVQqVa3Py8ur1WrXJVdXV6SlpaGwsBAVFRWwsrJC37590bt3b17ylJWVYeHChTh8+DDef/99AECPHj2QlpaGL774gveCfu7cOaSnp+PAgQO85rC0tISBgQG6du2qtr5Lly68ni55mVQqhVwu5/zKiVe5WvEcj5VKvP/ov6O1qwBsKHqK/SXPcNSmHS+5AMDU1BT29vawt7eHm5sbOnfujOjoaCxYsIC3TAqFAmPGjEFWVhbOnDlDrfPGoMvWdEInBZ0xhhkzZuDw4cNITExEx44d1Z7v2LEjJBIJ4uPj0bNnTwAvzp0lJSVhzZo1uohYL7FYDODFQLmUlBR8/vnnvORQKBRQKBTQe2lwib6+vqpVyqfo6Gi4urryfq7T0NAQffr0qXVpZEZGBuRyOU+paisoKMC9e/fUvsTq0lATU7wjUu9JmV7wF4aamMLfxJSXTK/CGOP11ER1Mc/MzERCQgIsLCx4y0LIq+ikoE+bNg379+/HkSNHYGZmpjovLhaLYWxsDIFAgNmzZ2PlypXo3LkzOnfujJUrV8LExKTWiFdtKi4uxh9//KF6nJWVhbS0NJibm8POzg4HDx6ElZUV7OzscO3aNcyaNQvDhw9XG7yn60weHh4IDw+HsbEx5HI5kpKSsHfvXkRGRvKWCQCKiopw8OBBrF+/nrMcjckUHh6OwMBADBw4EJ6enjhx4gR+/PFHJCYm8pLJ3NwcERERGDVqFKRSKe7cuYOFCxfC0tISI0aM4CxTqVKJe1WVqscPqyqRrqhAa4EepAYGaPPSZWoGAsBSTw8dDIScZarvOFlYWGDFihXw9/eHVCpFQUEBoqKicP/+fYwePZqXTDKZDB9++CFSU1Nx9OhRVFVVqf4NMzc3h6EhN4MJG/qMP378GNnZ2arr4au/wEokEp1eSaEZbVx2RpetNYi9psLCQgaA5efnN7gtgDqX3bt3q7ZRKpVs6dKlTCKRMJFIxAYOHMiuXbvWqEwVFRUsNjaWVVRUaLR9QkJCnblCQkIYY4xt2rSJ2draMqFQyOzs7NjixYtZeXk5r5lycnJYaGgok8lkzMjIiDk6OrL169czpVLJWybGGNu+fTszNjZmT58+1TgH15mio6OZvb09MzIyYi4uLiw2Npa3TKWlpczb25tZWVmpPk8hISEsOzv7tTIld3JgV2R2DS7bLazrzPSBsWmd20v19dmnrdtotO/qJbmTg9aOU1lZGRsxYgSTyWTM0NCQSaVS5u/vzy5fvvxax0kbmbKysl75b1hCQgIvmRhjbPfu3XU+v3TpUo32n5+fzwCwwsJCjX+GxqquE0+vJjHlH1eatDy9msR53jedgDHGXueLQFFREcRiMfLz85tN95NCocDx48cxdOhQCIXctTAagzJphjJppjpTu7l/h97z53zHAQAojYzwIHJtszxOlOnVCgoKYGlpicLCQs7GA1TXiadXk9DarFXT9vWsGG16enCa901H93InhBDCLS3eWIa8GhV0Qggh3KJR7jpBX3kIIYSQFoBa6IQQQrhF86HrBBV0Qggh3KIud52ggk4IIYRjgv8sTd0HqQ/1YRBCCCEtALXQCSGEcIu63HWCCjohhBBuUUHXCepyJ4QQQloAaqETQgjhGA2K0wUq6IQQQrhFXe46oXFBLy8vV5uPuKioCMB/5+huDqpzNJc8AGXSFGXSTHUWpUjEc5L/qs7SHI8TZXq15pKDaI/Gs61FRERg2bJltdbv378fJiYmWg9GCCGEO6WlpQgKCtLNbGv/TtHObGtOveHg4AB9fX1MmzYN06ZN01LSlkHjgl5XC719+/bIyclpVtOnxsfHQ7pgCfRqZOWTUiRCzqrPm2WmIUOGNItpHAH63WmqOf/uKFP9mlumgoICSKVSHRX0K1oq6K40fWo9NO5yF4lEENXRzScUCpvFh7MmvfLyZjNXdLXmmIl+d5ppjpma4++OMmmmuWRqDhmIdtGgOEIIIdyiQXE6QQWdEEIItwTQQkHXSpIWjQo6IYQQjtF16LpAd4ojhBBCWgBqoRNCCOEWnUPXCSrohBBCOEZd7rpAXe6EEEJIC0AtdEIIIdyiLnedoIJOCCGEW1TQdYK63AkhhJAWgLeCfvbsWQwbNgwymQwCgQCxsbF8RVHZ9awQwX/l4t2ce/DKvY+5j//CnUp+ZyQ6WPIMgXk5GJhzDwNz7iH0r1z88ryM10w1rVq1CgKBALNnz+Y1x/aip3B9mK22eP//9u49Jsp7z+P4e5hhLiiXDuDAWLHUQ7UFpS29rNignKob6rom0NpWt6HQ5mi1G0k3Wl3bQlq11TTUrK61EleMRktjLU3OHyvaE6XGpvFSTNWT9tgQlB5hDgIzMCDjzDznD44cAYVRYX6T6feVPH88P8eZD7fn+/wuM7+mRqWZABw+L++0tfD7K41kX7nMy44r/NnjUZbngQceQKfTDTpUbnLh9Xp55513SE1NxWKx8OCDD/L+++/j9/uVZero6KCkpISJEydisVjIzs7m5MmTQc0w3DVS0zTKysqw2+1YLBZmzZrF+fPng5oxcLoROsRQlA25u91uMjMzKSoqoqCgQFWMfs54enhhzFjSI434gP91tbP8qoMDiclYItTc+9j0ev4zJo4Jht4f1R+73LzV+jf2JSYxKdKoJNMNJ0+eZMeOHUybNk1pjhsmGSLZFj+u71yvMAuAy++nuKWZJ4xm/ic+EWuEnkafl7ER6i5MJ0+exOfz9Z2fO3eOOXPm8MILLyjLtHHjRrZv387u3btJT0/n1KlTFBUVERsby4oVK5Rkev311zl37hx79uzBbrezd+9eZs+ezYULFxg/fnxQMgx3jdy0aRPl5eVUVlby0EMPsW7dOubMmcNPP/1EdHR0UDIG6saN470+hxiasoKel5dHXl6eqpe/pa03FQOAsrh4Zjf/yp+ve3jcZFaSKcfcf2va5TFxHHB38qPHo7Sgd3Z2snjxYioqKli3bp2yHDfTAwl61WX8nyo7Xdj0Bsru++duhHaD2mUriYmJ/c4/+ugjJk2axMyZMxUlgu+++44FCxYwb948oHcUYf/+/Zw6dUpJnu7ubr788ku+/vprcnJygN7to6urq/n000+D9vs+1DVS0zQ2b97M2rVryc/PB2D37t3YbDb27dvHkiVLgpJRhBaZQx9Cp9Y75BejqHc+kE/TONTtplvzM804eOe7YFq+fDnz5s1j9uzZSnPc7JLPy782/cr85l9Z09pCo9erNE/ttS4eiTSyqvVvzG5qZJHjCgfdnUoz3czj8bB3716Ki4uV9n6eeeYZvvnmG37++WcAzp49y/Hjx3nuueeU5PF6vfh8Pszm/jfxFouF48ePK8k0UH19PU1NTcydO7evzWQyMXPmTE6cOKEw2W3cWBR3r4cYkqxyvw1N0yh3tvOo0cTvFA9t/+W6h6KWZjyahkWn42NrIg8q3Prw888/58yZM0GfUxxKhtHE+5FGUgwGWv1+dnY4KW5p4otxycRFqOm1/+r1csDbweKxMRRHx3Le08PHzjaMOvi3qHvbG3okVFdX097ezquvvqo0x9tvv43T6WTKlCno9Xp8Ph/r16/n5ZdfVpInOjqa6dOn88EHH/Dwww9js9nYv38/33//PWlpaUoyDdTU1ASAzWbr126z2WhoaFARaRjywTLBIAX9NjY62/iL18POBNvwDx5lDxgi2Z+YRIffzzfXuiltv0pFvE1JUb98+TIrVqygpqZmUA9GpRlmS7/zaZFGFjj+yh+73PzH2BglmfzAI5FG3oyJA2BKpJFfvNc54O4MiYK+c+dO8vLysNvtSnNUVVWxd+9e9u3bR3p6OnV1dZSUlGC32yksLFSSac+ePRQXFzN+/Hj0ej2PP/44ixYt4syZM0ry3M7AkRVN00J0rnkketih+HWFFinot7DJ2UrttW4qEmzY9Oq/RZE6HRMMvcX7EaOJC54e9rs7WBtnDXqW06dP43A4yMrK6mvz+XzU1taydetWenp60IfAPLYlIoLfGYxcUjjsnqDXkzrgpivVEMmfutW/S6GhoYEjR45w8OBB1VFYuXIlq1ev5qWXXgJg6tSpNDQ08OGHHyor6JMmTeLYsWO43W5cLhfJycm8+OKLpKamKskzUFJSEtDbU09OTu5rdzgcg3rt4rcjNCaHQ4SmaWxsb+VP3d1sTxjHeMULmG5HAzyapuS1n332WX788Ufq6ur6jieeeILFixdTV1cXEsUcer8/9d7rShfJZRpNNAy4objk9ZIcAt+jXbt2MW7cuL6FaCp1dXURMWCdil6vV/q2tRvGjBlDcnIybW1tHDp0iAULFqiOBEBqaipJSUkcPny4r83j8XDs2DGys7MVJrsNmUMPCmUVq7Ozk4sXL/ad19fXU1dXh9VqJSUlRUmmj5xt/H+3m3JrIlG6CFr+8faesRE6zDo19z5bXe3MMJmx6Q24NT813V2c9vSwxapmGDk6OpqMjIx+bWPGjCE+Pn5QezB94mwjx2whSW+g1e9jZ4cTt+ZnvmWMskyLx0RT1NLM/3U4mWOJ4pzHw8GuTtbGBn9k5WZ+v59du3ZRWFiIIQRuWufPn8/69etJSUkhPT2dH374gfLycoqLi5VlOnToEJqmMXnyZC5evMjKlSuZPHkyRUVFQcsw3DWypKSEDRs2kJaWRlpaGhs2bCAqKopFixYFLWPgZA49GJT9NZ86dYrc3Ny+87feeguAwsJCKisrlWQ60NW7AvkPVx392kvjrPy7ojnPVr+Pd9uv0uLzMTYigjRDJFusifzLgDnj3zqHz8d/t12l3e/jvgg9U41GKhOSSFZYsNKNJj62JrLV1U5FhxO7wcB/xdzHc1HqbjIAjhw5wqVLl5QWzJtt2bKFd999l2XLluFwOLDb7SxZsoT33ntPWSan08maNWtobGzEarVSUFDA+vXriQziupXhrpGrVq2iu7ubZcuW0dbWxtNPP01NTU3IvQddBI+yq92sWbPQFA0b385pu5qRgaG8Fxc//IMUO3r0qOoIfGhNUB3hlnLMFnJC7OZr7ty5IfW3Fx0dzebNm9m8ebPqKH0WLlzIwoULlWYY7hqp0+koKyujrKwseKHulnyWe1CoH28TQggR3mTEPShkUZwQQggRBqSHLoQQYpRJFz0YpKALIYQYXTKHHhQy5C6EEEKEAemhCyGEGF3SQw8KKehCCCFGmcyhB4MUdCGEEKNLxwj00EckSViTOXQhhBDiDnV0dPDkk0/y6KOPMnXqVCoqKlRHkh66EEKIURaGc+hRUVEcO3aMqKgourq6yMjIID8/n/h4dZ/uKQVdCCHEKAu/OXS9Xk9UVBQA165dw+fzKf9IZRlyF0IIEXZqa2uZP38+drsdnU5HdXX1oMds27aN1NRUzGYzWVlZfPvtt3f0Gu3t7WRmZnL//fezatUqEhLU7ikRcA+9p6eHnp6evnOn0wlAa2vryKe6S9evX6erqwuXwUCEMXi7Ig3FbzCEbKarV68GdfeoocjPLjCh/LOTTEMLtUw3rt3B6FW6Ojvvecjc1dm7G6bL5erXbjKZMJlMgx7vdrvJzMykqKiIgoKCQf9eVVVFSUkJ27ZtY8aMGXz22Wfk5eVx4cKFvi28s7Ky+tW9G2pqarDb7cTFxXH27Fmam5vJz8/n+eefx2az3dPXeU+0AJWWlmqAHHLIIYccYXT88ssvgZaBO9bd3a0lJSWNWNaxY8cOaistLR02B6B99dVX/dqeeuopbenSpf3apkyZoq1evfquvtalS5dqX3zxxV3935EScA99zZo1ffvxQu9Qw8SJE7l06RKxsbGBPs2ocrlcTJgwgcuXLxMTE6M6DiCZAiWZAiOZAiOZhud0OklJScFqtY7aa5jNZurr6/F4PCPyfJqmoRvQ079V73w4Ho+H06dPs3r16n7tc+fO5cSJEwE9R3NzMxaLhZiYGFwuF7W1tbzxxht3nGUkBVzQbzesERsbGxK/nDeLiYmRTAGQTIGRTIGRTIEJtUwREaO7lMpsNmM2m0f1Ne5US0sLPp9v0PC4zWajqakpoOdobGzktddeQ9M0NE3jzTffZNq0aaMRN2Cyyl0IIcRv0sDe/q1GAG4nKyuLurq6UUh192SVuxBCiN+UhIQE9Hr9oN64w+FQu6jtHt11QTeZTJSWlt7V/MVokUyBkUyBkUyBkUyBCbVMoZYnmIxGI1lZWRw+fLhf++HDh8nOzlaU6t7pNE3xO+GFEEKIEdbZ2cnFixcBeOyxxygvLyc3Nxer1UpKSgpVVVW88sorbN++nenTp7Njxw4qKio4f/48EydOVJz+7khBF0IIEXaOHj1Kbm7uoPbCwkIqKyuB3g+W2bRpE1euXCEjI4NPPvmEnJycICcdOVLQhRBCiDAgi+KEEEKIMCAFXQghhAgDUtCFEEKIMCAFXQghhAgDUtCFEEKIMCAFXQghhAgDUtCFEEKIMCAFXQghhAgDUtCFEEKIMCAFXQghhAgDUtCFEEKIMCAFXQghhAgDfwd4m5TWeIJwaAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbR0lEQVR4nOzdeVwT1/438E+AJECEKHsiErUIIioqWjcqYpHFVhCtexUq2vZx115u6/YTW3crLrXu1Gq9rdar4r5gBdwVRNwvoKK4sBRUkEUI5Dx/eEmJIATJZKj3++5rXpWZyeSTSeDknDlnjoAxxkAIIYSQvzUDvgMQQgghpP6oQCeEEELeAVSgE0IIIe8AKtAJIYSQdwAV6IQQQsg7gAp0Qggh5B1ABTohhBDyDqACnRBCCHkHUIFOCCGEvAOoQG8gwsPDIRAINNY1b94cISEhdTrOuXPnEB4ejufPn9fpca8/V2xsLAQCAf7973/X6Tg1KSoqQnh4OGJjY6ts+/nnnyEQCHD//n2dPR8XfvjhBzg6OkIkEkEgEOD58+dYuHAhoqKi9JYhPz8fCxYsQO/evWFnZ4dGjRqhXbt2WLJkCV6+fKm3HISQhsWI7wDkzfbu3Qtzc/M6PebcuXOYN28eQkJC0LhxY06fq66Kioowb948AEDv3r01tn300Uc4f/48ZDIZpxnqIykpCZMnT8bYsWMRHBwMIyMjmJmZYeHChfjkk08wYMAAveRIT0/HypUrMWrUKEyfPh2NGjXC6dOnER4ejujoaERHR1f5ckgIefdRgd6AdezYkfPnKC4uhomJiV6eqybW1tawtrbmNUNtbt68CQAYN24c3n//fU6fq7y8HGVlZRCLxVW2tWjRAvfv34dEIlGv69OnDyQSCcLCwnD27Fl4eHhwmo8Q0vBQkzsPDh06hA4dOkAsFqNFixb4/vvvq93v9WZwlUqF+fPnw9nZGSYmJmjcuDHat2+PVatWAXjVbB8WFgbg1R99gUAAgUCgbuJu3rw5Pv74Y+zZswcdO3aEsbGxusb8pub9ly9fYvr06bCzs4OJiQk8PT1x5coVjX169+5dpcYNACEhIWjevDkA4P79++oCe968eepsFc/5pib3n376CW5ubjA2NoaFhQWCgoJw+/btKs/TqFEj3LlzB/369UOjRo3QrFkzfPXVVygpKan23Fa2c+dO+Pj4QCaTwcTEBC4uLvjmm29QWFio8Ro//fRTAEDXrl3V2QUCAQoLC7F161b1a6p8LjIzM/HFF1/A3t4eIpEILVq0wLx581BWVqbe5/79+xAIBFi6dCnmz5+PFi1aQCwWIyYmptq8EolEozCvUPEl4+HDhzW+3ornW7ZsGZYsWYLmzZvDxMQEvXv3RkpKCpRKJb755hvI5XJIpVIEBQUhOztb4xgqlQpLly5F69atIRaLYWNjg9GjR+PRo0fqfaZOnQqJRIL8/PwqGYYOHQpbW1solUr1up07d6J79+6QSCRo1KgRfH19q3zW7t27h2HDhkEul0MsFsPW1hYffvghkpKSanzNhPxPYESvTpw4wQwNDZmHhwfbs2cP27VrF+vSpQtzcHBgr78dCoWCBQcHq39etGgRMzQ0ZHPnzmV//PEHO3r0KFu5ciULDw9njDH28OFDNmnSJAaA7dmzh50/f56dP3+e5eXlqY8nk8lYy5Yt2U8//cRiYmLYpUuXqn2umJgYBoA1a9aMBQYGsgMHDrDt27czR0dHZm5uzu7evave19PTk3l6elZ5rcHBwUyhUDDGGHv58iU7evQoA8BCQ0PV2e7cucMYY2zLli0MAEtLS1M/fuHChQwAGz58ODt06BDbtm0ba9myJZNKpSwlJUXjeUQiEXNxcWHff/89O3HiBPu///s/JhAI2Lx582p9T7777ju2YsUKdujQIRYbG8vWr1/PWrRowby8vNT73Lx5k82ePZsBYFu2bFFnP3/+PDMxMWH9+vVTv6abN28yxhjLyMhgzZo1YwqFgm3YsIGdOHGCfffdd0wsFrOQkBD1sdPS0hgA1rRpU+bl5cX+/e9/s+PHj2ucC23MnTuXAWBXr16tcb+K51MoFKx///7s4MGDbPv27czW1pY5OTmxUaNGsTFjxrAjR46w9evXs0aNGrH+/ftrHOPzzz9nANjEiRPZ0aNH2fr165m1tTVr1qwZ+/PPPxljjF29epUBYJs2bdJ47LNnz5hYLGbTp09Xr1uwYAETCARszJgx7ODBg2zPnj2se/fuTCKRqM8nY4w5OzszR0dH9ssvv7C4uDi2e/du9tVXX7GYmJg6nStC3kVUoOtZ165dmVwuZ8XFxep1+fn5zMLCotYC/eOPP2YdOnSo8fjLli2rUjBWPp6hoSFLTk6udlt1BXqnTp2YSqVSr79//z4TCoVs7Nix6nXaFOiMMfbnn38yAGzu3LlV9n29QH/27Jm6oKwsPT2dicViNmLECI3nAcB+//13jX379evHnJ2dqzxXTVQqFVMqlSwuLq5K4ViRMT4+XuMxEolE49xV+OKLL1ijRo3YgwcPNNZ///33DIC6oKooYN977z1WWlpap7wVrl69ykxMTFhQUFCt+1Y8n5ubGysvL1evX7lyJQPAAgICNPafOnUqA6D+Ynj79m0GgI0fP15jv4sXLzIAbObMmep1nTp1Yj169NDYb+3atQwAu379OmPs1XtqZGTEJk2apLHfixcvmJ2dHRsyZAhjjLGcnBwGgK1cubLW10jI/yJqctejwsJCxMfHY+DAgTA2NlavNzMzQ//+/Wt9/Pvvv4+rV69i/PjxOHbsWLVNmbVp3749nJyctN5/xIgRGh2sFAoFevTo8cbmYF05f/48iouLq1wGaNasGfr06YM//vhDY71AIKhyDtu3b48HDx7U+lz37t3DiBEjYGdnB0NDQwiFQnh6egJAleb9ujh48CC8vLwgl8tRVlamXvz9/QEAcXFxGvsHBARAKBTW+Xnu37+Pjz/+GM2aNcPmzZu1fly/fv1gYPDXnwAXFxcArzooVlaxPj09HQDU7/3r7837778PFxcXjffms88+w7lz55CcnKxet2XLFnTp0gVt27YFABw7dgxlZWUYPXq0xnkyNjaGp6en+pKRhYUF3nvvPSxbtgwRERG4cuUKVCqV1q+XkHcdFeh69OzZM6hUKtjZ2VXZVt26182YMQPff/89Lly4AH9/f1haWuLDDz9EQkKC1hnq2ov8TVlzc3PrdJy6qjh+dXnlcnmV5zc1NdX4kgQAYrG41mFcBQUF+OCDD3Dx4kXMnz8fsbGxiI+Px549ewC86jT4trKysnDgwAEIhUKNxdXVFQCQk5Ojsf/b9PB/8OABvLy8YGRkhD/++AMWFhZaP/b1fUUiUY3rK85lXd6bkSNHQiwW4+effwYA3Lp1C/Hx8fjss8/U+2RlZQEAunTpUuVc7dy5U32eBAIB/vjjD/j6+mLp0qXo1KkTrK2tMXnyZLx48ULr103Iu4p6uetRkyZNIBAIkJmZWWVbdeteZ2RkhOnTp2P69Ol4/vw5Tpw4gZkzZ8LX1xcPHz6Eqalprceo63CmN2W1tLRU/2xsbIy8vLwq+71eYNVFxfEzMjKqbHvy5AmsrKze+tiVnTx5Ek+ePEFsbKy6Vg6gzuP4q2NlZYX27dtjwYIF1W6Xy+UaP9f1vXnw4AF69+4NxhhiY2Nhb2//1lnrovJ78/pzvv7eNGnSBIGBgdi2bRvmz5+PLVu2wNjYGMOHD1fvU7H/v//9bygUihqfW6FQIDIyEgCQkpKC33//HeHh4SgtLcX69et18voI+buiGroeSSQSvP/++9izZ49GzfHFixc4cOBAnY7VuHFjfPLJJ5gwYQKePn2q7h1eMcypPjXLyn777TcwxtQ/P3jwAOfOndPoyd28eXOkpKRo9CjPzc3FuXPnNI5Vl2zdu3eHiYkJtm/frrH+0aNHOHnyJD788MO3eTlVVBSirw8P27Bhg9bHEIvF1b6mjz/+GDdu3MB7772Hzp07V1leL9DrIj09Hb1790Z5eTlOnjxZa0GoS3369AGAKu9NfHw8bt++XeW9+eyzz/DkyRMcPnwY27dvR1BQkMY9Enx9fWFkZIS7d+9We546d+5cbQ4nJyfMnj0b7dq1Q2Jiom5fJCF/Q1RD17PvvvsOfn5+6Nu3L7766iuUl5djyZIlkEgkePr0aY2P7d+/P9q2bYvOnTvD2toaDx48wMqVK6FQKNCqVSsAQLt27QAAq1atQnBwMIRCIZydnWFmZvZWebOzsxEUFIRx48YhLy8Pc+fOhbGxMWbMmKHeZ9SoUdiwYQM+/fRTjBs3Drm5uVi6dGmVG9WYmZlBoVBg3759+PDDD2FhYQErKyv10LbKGjdujDlz5mDmzJkYPXo0hg8fjtzcXMybNw/GxsaYO3fuW72e1/Xo0QNNmjTBl19+iblz50IoFOJf//oXrl69qvUx2rVrh9jYWBw4cAAymQxmZmZwdnbGt99+i+joaPTo0QOTJ0+Gs7MzXr58ifv37+Pw4cNYv379W9Wqs7Oz4eXlhYyMDERGRiI7O1tjWJm9vT2ntXVnZ2d8/vnn+OGHH2BgYAB/f3/cv38fc+bMQbNmzTBt2jSN/X18fGBvb4/x48cjMzNTo7kdePWF8Ntvv8WsWbNw7949+Pn5oUmTJsjKysKlS5cgkUgwb948XLt2DRMnTsTgwYPRqlUriEQinDx5EteuXcM333zD2esl5G+D7155/4v279/P2rdvz0QiEXNwcGCLFy9WDzmq7PWe58uXL2c9evRgVlZW6seGhoay+/fvazxuxowZTC6XMwMDAwZAPaRHoVCwjz76qNpMb+rl/ssvv7DJkycza2trJhaL2QcffMASEhKqPH7r1q3MxcWFGRsbszZt2rCdO3dW6eXO2Kthex07dmRisZgBUD9ndcPWGGNs8+bN6nMllUpZYGCgxjAmxl71cpdIJFUyVXdOq3Pu3DnWvXt3ZmpqyqytrdnYsWNZYmKieohahTf1ck9KSmI9e/ZkpqamDIBGj/8///yTTZ48mbVo0YIJhUJmYWHB3N3d2axZs1hBQQFj7K9e58uWLas1K2N/vTdvWqobRVDZm56v4ri7du3SWF/d6y4vL2dLlixhTk5OTCgUMisrK/bpp5+yhw8fVvucM2fOVA+DrNyzvrKoqCjm5eXFzM3NmVgsZgqFgn3yySfsxIkTjDHGsrKyWEhICGvdujWTSCSsUaNGrH379mzFihWsrKysttNGyDtPwFil9lRCCCGE/C3RNXRCCCHkHUAFOiGEEFKNgwcPwtnZGa1atarTPR74Qk3uhBBCyGvKysrQpk0bxMTEwNzcHJ06dcLFixfrdK8HfaMaOiGEEPKaS5cuwdXVFU2bNoWZmRn69euHY8eO8R2rRlSgE0IIeeecOnUK/fv3h1wuh0AgQFRUVJV91q5dixYtWsDY2Bju7u44ffq0etuTJ0/QtGlT9c/29vZ4/PixPqK/NSrQCSGEvHMKCwvh5uaGNWvWVLt9586dmDp1KmbNmoUrV67ggw8+gL+/v3rOguquRtf1bo76pvWNZUpKSjTuBKZSqfD06VNYWlo2+BdJCCFEE2MML168gFwu15ikR9devnyJ0tJSnRyLMValvBGLxVXu9AgA/v7+6omQqhMREYHQ0FCMHTsWALBy5UocO3YM69atw6JFi9C0aVONGvmjR4/QtWtXnbwOzmg7YL3iJh200EILLbS8O8ubbgakC8XFxcwUAp1lbdSoUZV1td1IiTHGALC9e/eqfy4pKWGGhoZsz549GvtNnjyZ9erVizHGmFKpZI6OjuzRo0csPz+fOTo6spycHF2eHp3TuoY+Y8YMTJ8+Xf1zXl4eHBwckJKS0mB6/SmVSsTExMDLy+utpqHkAmXSDmXSDmXSDmWq3dOnT+Hk5PTWt4XWRmlpKYrAMAoSiFC/ltxSMPxSUICHDx9q3Fa6utp5bXJyclBeXg5bW1uN9ba2tuoJqYyMjLB8+XJ4eXlBpVLhn//8p8akVA2R1gX6m5o1LCwsGsyLVCqVMDU1haWlZYP4hQEok7Yok3Yok3Yok/b0ccnUGAYQ1fN5DP57Tdvc3LzKPBFv6/XXzl5r0g8ICEBAQIBOnksfqFMcIYSQ/ylWVlYwNDSsMj10dnZ2lVr73wkV6IQQQjhloKNFV0QiEdzd3REdHa2xvmJ2xL8rmj6VEEIIpwQCwKCeLfsCAGBAly5dYGhoiAkTJmDChAlv3L+goAB37txR/5yWloakpCRYWFjAwcEB06dPx6hRo9C5c2d0794dGzduRHp6Or788sv6BeURFeiEEEL+NuLj47W6hp6QkAAvLy/1zxWduoODg/Hzzz9j6NChyM3NxbfffouMjAy0bdsWhw8fhkKh4Cw716hAJ4QQwildNJnX9fG9e/eu9uYwlY0fPx7jx49/+1ANDBXohBBCOGUgEMCgvr3cgVcjz8kbUac4Qggh5B1ANXRCCCGc4qPJ/X8RFeiEEEI4ZaCDXu5UoNeOzhEhhJC/jS5duqBNmzb48ccf+Y7S4HBWoNc2Fy1jDOHh4ZDL5TAxMUHv3r1x8+ZNjX1KSkowadIkWFlZQSKRICAgAI8ePdJZxhcvXmDq1KlQKBQwMTFBjx49EB8fr96elZWFkJAQyOVymJqaws/PD6mpqTp7/rfJVFBQgIkTJ8Le3h4mJiZwcXHBunXreM0kEAiqXZYtW8ZbJgC4ffs2AgICIJVKYWZmhm7duqmnRuQjU0hISJVz1K1bN87yaJOpsi+++AICgQArV67kNVN4eDhat24NiUSCJk2awNvbGxcvXuQtk1KpxNdff4127dpBIpFALpdj9OjRePLkCW+ZAGDPnj3w9fWFlZUVBAIBkpKSOM1TH7q8sUx8fDxu3bpV4xj0/1WcFei1zUW7dOlSREREYM2aNYiPj4ednR369u2LFy9eqPeZOnUq9u7dix07duDMmTMoKCjAxx9/jPLycp1kHDt2LKKjo/HLL7/g+vXr8PHxgbe3Nx4/fgzGGAYMGIB79+5h3759uHLlChQKBby9vVFYWKiT569rJgCYNm0ajh49iu3bt+P27duYNm0aJk2ahH379vGWKSMjQ2P56aefIBAIMGjQIN4y3b17Fx4eHmjdujViY2Nx9epVzJkzB8bGxrxlAgA/Pz+Nc3X48GHO8mibCQCioqJw8eJFyOVyTvNok8nJyQlr1qzB9evXcebMGTRv3hw+Pj74888/eclUVFSExMREzJkzB4mJidizZw9SUlI4v8d3beepsLAQPXv2xOLFiznNoQtv+tJf14XU4m2nacvLy2MAtJpODq9NXadSqZidnR1bvHixet3Lly+ZVCpl69evZ4wx9vz5cyYUCtmOHTvU+zx+/JgZGBiwo0ePVvs8paWlLCoqipWWltaaqaioiBkaGrKDBw9qrHdzc2OzZs1iycnJDAC7ceOGeltZWRmzsLBgmzZtqvX4XGRijDFXV1f27bffamzv1KkTmz17Nm+ZXhcYGMj69OmjdR4uMg0dOpR9+umndcrAdabg4GAWGBjYoDIxxtijR49Y06ZN2Y0bN5hCoWArVqzgPVNlFX9rTpw40WAyXbp0iQFgDx484D1TWloaA8CuXLmidRbGGMvJyWEAWF5eXp0eVxcV712YkZTNFjau1xJmJOU8798dL9fQ09LSkJmZCR8fH/U6sVgMT09PnDt3DgBw+fJlKJVKjX3kcjnatm2r3qc+ysrKUF5eXqXGZmJigjNnzqCkpAQANLYbGhpCJBLhzJkz9X7+t8kEAB4eHti/f7+6FSEmJgYpKSnw9fXlLVNlWVlZOHToEEJDQznJo00mlUqFQ4cOwcnJCb6+vrCxsUHXrl2rXPbRZ6YKsbGxsLGxgZOTE8aNG4fs7GxeM6lUKowaNQphYWFwdXXlLEtdMlVWWlqKjRs3QiqVws3NrUFkAl5NHy0QCNC4ceMGk4kQXgr0ihluapqLNjMzEyKRCE2aNHnjPvVhZmaG7t2747vvvsOTJ09QXl6O7du34+LFi8jIyEDr1q2hUCgwY8YMPHv2DKWlpVi8eDEyMzORkZFR7+d/m0wAsHr1arRp0wb29vYQiUTw8/PD2rVr4eHhwVumyrZu3QozMzMMHDiQkzzaZMrOzkZBQQEWL14MPz8/HD9+HEFBQRg4cCDi4uJ4yQQA/v7++Ne//oWTJ09i+fLliI+PR58+fdRfHvnItGTJEhgZGWHy5MmcZHibTABw8OBBNGrUCMbGxlixYgWio6NhZWXFa6YKL1++xDfffIMRI0bobBrP+mZq6Cp6udd3ITXjtZd7bXPRVkebfbT1yy+/gDGGpk2bQiwWY/Xq1RgxYgQMDQ0hFAqxe/dupKSkwMLCAqampoiNjYW/vz8MDQ118vx1zQS8KtAvXLiA/fv34/Lly1i+fDnGjx+PEydO8Japsp9++gkjR47k9Fp1bZlUKhUAIDAwENOmTUOHDh3wzTff4OOPP8b69et5yQQAQ4cOxUcffYS2bduif//+OHLkCFJSUnDo0CFeMl2+fBmrVq3Czz//rNfrk9p8nry8vJCUlIRz587Bz88PQ4YM4bQ1Q9vPuFKpxLBhw6BSqbB27VrO8tQl09+BAPXvEEflee14KdDt7OwAoMa5aO3s7FBaWopnz569cZ/6eu+99xAXF4eCggI8fPgQly5dglKpRIsWLQAA7u7uSEpKwvPnz5GRkYGjR48iNzdXvZ0LNWUqLi7GzJkzERERgf79+6N9+/aYOHEihg4diu+//56XTJWdPn0aycnJGDt2LGdZtMlkZWUFIyMjtGnTRuMxLi4unPZy1/Y8VZDJZFAoFJyOnKgp0+nTp5GdnQ0HBwcYGRnByMgIDx48wFdffYXmzZvzkqmCRCKBo6MjunXrhsjISBgZGSEyMpLXTEqlEkOGDEFaWhqio6M5q53XJdP/Ihq29ma8FOgtWrSAnZ2dxly0paWliIuLU89F6+7uDqFQqLFPRkYGbty4ofP5aiUSCWQyGZ49e4Zjx44hMDBQY7tUKoW1tTVSU1ORkJBQZTsXqsukVCqhVCphYKD5tlWuleo7U2WRkZFwd3fn7FqntplEIhG6dOmC5ORkjX1TUlL0MpNSbeepQm5uLh4+fAiZTMZLplGjRuHatWtISkpSL3K5HGFhYTh27Bgvmd6EMcbZpQltMlUU5qmpqThx4gQsLS05z1Jbpr+Tinu513cBaNhaTTi7U1xtc9FOnToVCxcuRKtWrdCqVSssXLgQpqamGDFiBIBXhWhoaCi++uorWFpawsLCAv/4xz/Qrl07eHt76yTjsWPHwBiDs7Mz7ty5g7CwMDg7O+Ozzz4DAOzatQvW1tZwcHDA9evXMWXKFAwYMECjo56u1ZRJKBTC09MTYWFhMDExgUKhQFxcHLZt24aIiAheMlXIz8/Hrl27sHz5cs5y1CVTWFgYhg4dil69esHLywtHjx7FgQMHEBsby0umgoIChIeHY9CgQZDJZLh//z5mzpwJKysrBAUF8ZJJKBRWKZiEQiHs7Ozg7OzMS6bCwkIsWLAAAQEBkMlkyM3Nxdq1a/Ho0SMMHjyYl0xlZWX45JNPkJiYiIMHD6K8vFzdumhhYQGRSKT3TADw9OlTpKenq8fDV3yBtbOzU7eCNhR061c9edvu8bUNW4uJiWF4NTeOxhIcHMwYezV0be7cuczOzo6JxWLWq1cvdv36dY1jFBcXs4kTJzILCwtmYmLCPv74Y5aenv7GTHUZFsIYYzt37mQtW7ZkIpGI2dnZsQkTJrDnz5+rt69atYrZ29szoVDIHBwc2OzZs1lJSYlWx+YqU0ZGBgsJCWFyuZwZGxszZ2dntnz5cqZSqXjLxBhjGzZsYCYmJlXW85kpMjKSOTo6MmNjY+bm5saioqJ4y1RUVMR8fHyYtbW1+vMUHBxc4+eZ60zV4XrYWm2ZiouLWVBQEJPL5UwkEjGZTMYCAgLYpUuXeMtUMSysuiUmJoaXTIwxtmXLlmozzZ07V6vj63PY2mxRYzZf3KRey2xRYxq2VgsBY7VMGPsG+fn5kEqlyMnJ0WvzU02USiUOHz6Mfv36QSgU8h0HAGXSFmXSDmXSDmWqXW5uLqysrJCXl8dZf4CKcuL/xI1hXM+Oly8Zw7clzznN+3dHk7MQQgjhFDW56wedI0IIIeQdQDV0QgghnDKAAAb1HElOtc/a0TkihBDCKV3eKY7Gob8Z1dAJIYRwSpfX0OPj46lT3BtQDZ0QQgh5B1ANnRBCCKd0MbkK1T5rRwU6IYQQTr2anKV+JboAb3XLlP8p9KWHEEIIeQdQDZ0QQginqMldP6hAJ4QQwim6U5x+0DkihBBC3gFa19BLSko05iPOz88HAPUc3Q1BRY6GkgegTNqiTNqhTNqhTLXTZw5qctcPrWdbCw8Px7x586qs//XXX2FqaqrzYIQQQrhTVFSEESNG6GW2tVUSC5gI6lckFzMVphQ+hZOTEwwNDTFhwgRMmDBBR0nfDVoX6NXV0Js1a4aMjIwGNX1qdHQ0+vbt2yCmJwQok7Yok3Yok3YoU+1yc3Mhk8n+dgU6TZ/6Zlo3uYvFYojF4irrhUJhg/hwVkaZtEOZtEOZtEOZtNNQMukzAzW56wf1cieEEMIpwX+X+h6D1IwKdEIIIZyiGrp+0DkihBBC3gFUQyeEEMIpAwjqfS/3+j7+fwEV6IQQQjhFTe76QeeIEEIIeQdQDZ0QQginXk2fWv9jkJpRgU4IIYRTNGxNP6jJnRBCCHkHUIFOCCGEUwYCgU4WAOjSpQvatGmDH3/8kedX1fDopUAvKyvD7Nmz0aJFC5iYmKBly5b49ttvoVKp1Pvs2bMHvr6+sLKygkAgQFJSEq+ZlEolvv76a7Rr1w4SiQRyuRyjR4/GkydPeMsEvJokp3Xr1pBIJGjSpAm8vb1x8eJFXjNV9sUXX0AgEGDlypW8ZgoJCYFAINBYunXrxmsmALh9+zYCAgIglUphZmaGbt26IT09nbdMr5+jimXZsmW8ZSooKMDEiRNhb28PExMTuLi4YN26dZzk0TZTVlYWQkJCIJfLYWpqCj8/P6SmpnKWCQBevHiBqVOnQqFQwMTEBD169EB8fLx6O2MM4eHhkMvlMDExQe/evXHz5k1OM70tgY4WAIiPj8etW7doYpZq6OUa+pIlS7B+/Xps3boVrq6uSEhIwGeffQapVIopU6YAAAoLC9GzZ08MHjwY48aN4z1TUVEREhMTMWfOHLi5ueHZs2eYOnUqAgICkJCQwEsmAHBycsKaNWvQsmVLFBcXY8WKFfDx8cGdO3dgbW3NS6YKUVFRuHjxIuRyuc5zvE0mPz8/bNmyRf2zSCTiNdPdu3fh4eGB0NBQzJs3D1KpFLdv34axsTFvmTIyMjQec+TIEYSGhmLQoEG8ZZo2bRpiYmKwfft2NG/eHMePH8f48eMhl8sRGBio90yMMQwYMABCoRD79u2Dubk5IiIi4O3tjVu3bkEikeg8EwCMHTsWN27cwC+//AK5XI7t27ern7Np06ZYunQpIiIi8PPPP8PJyQnz589H3759kZycDDMzM04ykQaOvaW8vDwGgOXk5NS670cffcTGjBmjsW7gwIHs008/rbJvWloaA8CuXLlS50ylpaUsKiqKlZaW6jRThUuXLjEA7MGDBw0mU8X7cOLECV4zPXr0iDVt2pTduHGDKRQKtmLFCq3zcJEpODiYBQYG1ikD15mGDh1a43vJR6bXBQYGsj59+vCaydXVlX377bca+3Tq1InNnj2bl0zJyckMALtx44Z6e1lZGbOwsGCbNm3iJFNRUREzNDRkBw8e1Fjv5ubGZs2axVQqFbOzs2OLFy9Wb3v58iWTSqVs/fr1WuXJyclhAFheXp7Wr6GuKv4+/Sy1Yr83tqnX8rPUivO8f3d6aXL38PDAH3/8gZSUFADA1atXcebMGfTr108fT6+zTHl5eRAIBGjcuHGDyFRaWoqNGzdCKpXCzc2Nt0wqlQqjRo1CWFgYXF1dOclR10wAEBsbCxsbGzg5OWHcuHHIzs7mLZNKpcKhQ4fg5OQEX19f2NjYoGvXroiKiuIt0+uysrJw6NAhhIaG8prJw8MD+/fvx+PHj8EYQ0xMDFJSUuDr68tLpoppoyu3pBgaGkIkEuHMmTOcZCorK0N5eXmV1hsTExOcOXMGaWlpyMzMhI+Pj3qbWCyGp6cnzp07x0mm+tBlkzt5M700uX/99dfIy8tD69atYWhoiPLycixYsADDhw/Xx9PrJNPLly/xzTffYMSIEZzNxattpoMHD2LYsGEoKiqCTCZDdHQ0rKyseMu0ZMkSGBkZYfLkyZxkeJtM/v7+GDx4MBQKBdLS0jBnzhz06dMHly9frnYaYK4zZWdno6CgAIsXL8b8+fOxZMkSHD16FAMHDkRMTAw8PT31nul1W7duhZmZGQYOHKjzLHXJtHr1aowbNw729vYwMjKCgYEBNm/eDA8PD14ytW7dGgqFAjNmzMCGDRsgkUgQERGBzMzMKpcsdMXMzAzdu3fHd999BxcXF9ja2uK3337DxYsX0apVK2RmZgIAbG1tNR5na2uLBw8ecJKpPir6ZtTrGFSk10ovBfrOnTuxfft2/Prrr3B1dUVSUhKmTp0KuVyO4OBgfUSoVyalUolhw4ZBpVJh7dq1vGfy8vJCUlIScnJysGnTJgwZMgQXL16EjY2N3jNdvnwZq1atQmJiYr1/YXWVCQCGDh2q3r9t27bo3LkzFAoFDh06xEmBVVumig5WgYGBmDZtGgCgQ4cOOHfuHNavX89JgV7X37uffvoJI0eO5OyavraZVq9ejQsXLmD//v1QKBQ4deoUxo8fD5lMBm9vb71nEgqF2L17N0JDQ2FhYQFDQ0N4e3vD399f51kq++WXXzBmzBg0bdoUhoaG6NSpE0aMGIHExET1Pq//zjHG9PZ7SBqgt22rr8s1dHt7e7ZmzRqNdd999x1zdnausq++rqFrm6m0tJQNGDCAtW/fXqvXqo9Mr3N0dGQLFy7kJdOKFSuYQCBghoaG6gUAMzAwYAqFgpdMb+Lo6KhxzVGfmUpKSpiRkRH77rvvNPb55z//yXr06MFLpspOnTrFALCkpCSts3CRqaioiAmFwirXjkNDQ5mvry8vmSp7/vw5y87OZowx9v7777Px48dzkqmygoIC9uTJE8YYY0OGDGH9+vVjd+/eZQBYYmKixr4BAQFs9OjRWh1Xn9fQf2lszXY3sa3X8ktja7qGXgu9XEMvKiqCgYHmUxkaGr5x6JM+aJNJqVRiyJAhSE1NxYkTJ2Bpacl7puowxtTX+fSdadSoUbh27RqSkpLUi1wuR1hYGI4dO8ZLpurk5ubi4cOHkMlkvGQSiUTo0qULkpOTNfZJSUmBQqHgJVNlkZGRcHd356wvhraZlEollEqlXv9e1OU8SaVSWFtbIzU1FQkJCZz0un+dRCKBTCbDs2fPcOzYMQQGBqJFixaws7NDdHS0er/S0lLExcWhR48enGeqKwMdLaRmemly79+/PxYsWAAHBwe4urriypUriIiIwJgxY9T7PH36FOnp6epx3hV/+Ozs7GBnZ6f3TGVlZfjkk0+QmJiIgwcPory8XH3dysLCgpMhULVlKiwsxIIFCxAQEACZTIbc3FysXbsWjx49wuDBg3WeR5tMlpaWVb7oCIVC2NnZwdnZmZdMBQUFCA8Px6BBgyCTyXD//n3MnDkTVlZWCAoK4iUTAISFhWHo0KHo1asXvLy8cPToURw4cACxsbG8ZQKA/Px87Nq1C8uXL+ckR10ymZubw9PTE2FhYTAxMYFCoUBcXBy2bduGiIgIXjIBwK5du2BtbQ0HBwdcv34dU6ZMwYABAzQ6penasWPHwBiDs7Mz7ty5g7CwMDg7O+Ozzz6DQCDA1KlTsXDhQrRq1QqtWrXCwoULYWpqihEjRnCWiTRwb1u1r0uTe35+PpsyZQpzcHBgxsbGrGXLlmzWrFmspKREvc+WLVsYgCrL3Llztc5Ulyat2jJVNP1Xt8TExPCSqbi4mAUFBTG5XM5EIhGTyWQsICCAXbp0Ses8us5UHa6HrdWWqaioiPn4+DBra2smFAqZg4MDCw4OZunp6bxlqhAZGckcHR2ZsbExc3NzY1FRUbxn2rBhAzMxMWHPnz+vUxauMmVkZLCQkBAml8uZsbExc3Z2ZsuXL2cqlYq3TKtWrWL29vbqz9Ps2bNr/B2obybGGNu5cydr2bIlE4lEzM7Ojk2YMEHjPVKpVGzu3LnMzs6OicVi1qtXL3b9+nWt8+izyf3XJtYsysK2XsuvTajJvTYCxhh7my8C+fn5kEqlyMnJ4bwpWltKpRKHDx9Gv379IBQK+Y4DgDJpizJphzJphzLVLjc3F1ZWVsjLy+Ns5E5FOfFbExuYCurXaF7EVBj+LJvTvH93dFmCEEIIeQfQ9KmEEEI4RdOn6gcV6IQQQjhFBbp+UJM7IYSQvw2aPvXNqIZOCCGEUwYADOpZxTb4b/ft+Ph46hT3BlSgE0II4ZTgv//V9xikZlSgE0II4RwVx9yja+iEEELIO4Bq6IQQQjglELxa6nsMUjMq0AkhhHCKhq3pBzW5E0IIIe8AqqETQgjhlAEEMKhnHbu+j/9foHWBXlJSojHndn5+PoC/5i9uCCpyNJQ8AGXSFmXSDmXSDmWqnT5zUJO7fmg921p4eDjmzZtXZf2vv/4KU1NTnQcjhBDCnaKiIowYMUIvs63ts7CDxKB+V3gLVSoEPs2k2dZqoHWBXl0NvVmzZsjIyGhQ06dGR0ejb9++DWJ6QoAyaYsyaYcyaYcy1S43NxcymUwvBfp+S90U6AG5VKDXROsmd7FYDLFYXGW9UChsEB/OyiiTdiiTdiiTdiiTdhpKJn1moCZ3/aBe7oQQQsg7gHq5E0II4RTdy10/qEAnhBDCKQOBDmZbo/K8VlSgE0II4RRdQ9cPuoZOCCGEvAOohk4IIYRTVEPXDyrQCSGEcIo6xekHNbkTQggh7wCqoRNCCOEUzYeuH1RDJ4QQwikDHS0A0KVLF7Rp0wY//vijPl/C34JeCvSysjLMnj0bLVq0gImJCVq2bIlvv/0WKpVKvQ9jDOHh4ZDL5TAxMUHv3r1x8+ZNTnM1b94cAoGgyjJhwgQAQFZWFkJCQiCXy2Fqago/Pz+kpqbymqmgoAATJ06Evb09TExM4OLignXr1vGWp7ptAoEAy5Yt4y0TANy+fRsBAQGQSqUwMzNDt27dkJ6ezlumkJCQKtu6devGWR5tMlX2xRdfQCAQYOXKlbxmCg8PR+vWrSGRSNCkSRN4e3vj4sWLvGVSKpX4+uuv0a5dO0gkEsjlcowePRpPnjzhLRMA7NmzB76+vrCysoJAIEBSUhKneRqS+Ph43Lp1q9rP8f86vTS5L1myBOvXr8fWrVvh6uqKhIQEfPbZZ5BKpZgyZQoAYOnSpYiIiMDPP/8MJycnzJ8/H3379kVycjLMzMw4yRUfH4/y8nL1zzdu3EDfvn0xePBgMMYwYMAACIVC7Nu3D+bm5oiIiIC3tzdu3boFiUSi90wAMG3aNMTExGD79u1o3rw5jh8/jvHjx0MulyMwMFDveTIyMjT2P3LkCEJDQzFo0CCdZ9E20927d+Hh4YHQ0FDMmzcPUqkUt2/fhrGxMW+ZAMDPzw9btmxR/ywSiTjLo20mAIiKisLFixchl8s5zaNNJicnJ6xZswYtW7ZEcXExVqxYAR8fH9y5cwfW1tZ6z1RUVITExETMmTMHbm5uePbsGaZOnYqAgAAkJCRwkqe2TABQWFiInj17YvDgwRg3bhxnOXSFernrCXtLeXl5DADLycmpdd+PPvqIjRkzRmPdwIED2aeffsoYY0ylUjE7Ozu2ePFi9faXL18yqVTK1q9fr3Wm0tJSFhUVxUpLS7V+TGVTpkxh7733HlOpVCw5OZkBYDdu3FBvLysrYxYWFmzTpk28ZGKMMVdXV/btt99q7NOpUyc2e/ZsvWR6Pc/rAgMDWZ8+fep8XF1mGjp0qPqzVR+6zBQcHMwCAwMbVCbGGHv06BFr2rQpu3HjBlMoFGzFihW8Z6qs4u/MiRMnGkymS5cuMQDswYMHvGdKS0tjANiVK1fqfMycnBwGgOXl5dX5sdqqeP/+sGnKLto1q9fyh01TzvP+3emlyd3DwwN//PEHUlJSAABXr17FmTNn0K9fPwBAWloaMjMz4ePjo36MWCyGp6cnzp07p4+IKC0txfbt2zFmzBgIBAL1VLGVa3WGhoYQiUQ4c+YML5mAV+dy//79ePz4MRhjiImJQUpKCnx9fXnJU1lWVhYOHTqE0NBQzrO8KZNKpcKhQ4fg5OQEX19f2NjYoGvXroiKiuItU4XY2FjY2NjAyckJ48aNQ3Z2Nq+ZVCoVRo0ahbCwMLi6uuotS02ZXt++ceNGSKVSuLm5NYhMAJCXlweBQIDGjRs3mEyEAHq6hv71119j+PDhaN26NYRCITp27IipU6di+PDhAIDMzEwAgK2trcbjbG1t1du4FhUVhefPnyMkJAQA0Lp1aygUCsyYMQPPnj1DaWkpFi9ejMzMzCrNzPrKBACrV69GmzZtYG9vD5FIBD8/P6xduxYeHh685Kls69atMDMzw8CBAznP8qZM2dnZKCgowOLFi+Hn54fjx48jKCgIAwcORFxcHC+ZAMDf3x//+te/cPLkSSxfvhzx8fHo06eP+osjH5mWLFkCIyMjTJ48WS8ZtMkEAAcPHkSjRo1gbGyMFStWIDo6GlZWVrxmqvDy5Ut88803GDFihN7m5K4t09+BQEcLqZlerqHv3LkT27dvx6+//gpXV1ckJSVh6tSpkMvlCA4OVu/3+rdPxpjevpFGRkbC399ffR1RKBRi9+7dCA0NhYWFBQwNDeHt7Q1/f3+95KkuE/CqQL9w4QL2798PhUKBU6dOYfz48ZDJZPD29tZ7nsp++uknjBw5ktNr1bVlquhoGRgYiGnTpgEAOnTogHPnzmH9+vXw9PTUeyYAGDp0qPrfbdu2RefOnaFQKHDo0CG9fAF6PdPly5exatUqJCYm8lbre9PnycvLC0lJScjJycGmTZswZMgQXLx4ETY2NrxlAgClUolhw4ZBpVJh7dq1nGfRJtPfBV1D1w+9FOhhYWH45ptvMGzYMABAu3bt8ODBAyxatAjBwcGws7MD8KqmLpPJ1I/Lzs6uUmvnwoMHD3DixAns2bNHY727uzuSkpKQl5eH0tJSWFtbo2vXrujcuTMvmYqLizFz5kzs3bsXH330EQCgffv2SEpKwvfff89pgf6mc1Th9OnTSE5Oxs6dOznLoE0mKysrGBkZoU2bNhr7uri46OVSSW3nqYJMJoNCoeB81MSbMp0+fRrZ2dlwcHBQrysvL8dXX32FlStX4v79+3rPVEEikcDR0RGOjo7o1q0bWrVqhcjISMyYMYO3TEqlEkOGDEFaWhpOnjypt9q5tp+nhq6il359j0Fqppcm96KiIhgYaD6VoaGhujbVokUL2NnZITo6Wr29tLQUcXFx6NGjB+f5tmzZAhsbG3Uh+TqpVApra2ukpqYiISGBk97k2mRSKpVQKpU1nkt95qksMjIS7u7uervW+aZMIpEIXbp0QXJyssa+KSkpUCgUvGSqTm5uLh4+fKjxBVafmUaNGoVr164hKSlJvcjlcoSFheHYsWO8ZHoTxpheLk28KVNFYZ6amooTJ07A0tKS8yy1ZSKkOnqpoffv3x8LFiyAg4MDXF1dceXKFURERGDMmDEAXn3zmjp1KhYuXIhWrVqhVatWWLhwIUxNTTFixAhOs6lUKmzZsgXBwcEwMtI8Hbt27YK1tTUcHBxw/fp1TJkyBQMGDNDovKfPTObm5vD09ERYWBhMTEygUCgQFxeHbdu2ISIiQu95KuTn52PXrl1Yvnw5ZxnqkiksLAxDhw5Fr1694OXlhaNHj+LAgQOIjY3lJVNBQQHCw8MxaNAgyGQy3L9/HzNnzoSVlRWCgoJ4yWRpaVmlYBIKhbCzs4OzszMvmQoLC7FgwQIEBARAJpMhNzcXa9euxaNHj6oMtdNXprKyMnzyySdITEzEwYMHUV5eru7XY2FhwenQw5o+40+fPkV6erp6PHzFF1g7Ozt1i2dDQvOh68nbdo+vy7C1/Px8NmXKFObg4MCMjY1Zy5Yt2axZs1hJSYl6H5VKxebOncvs7OyYWCxmvXr1YtevX69TprcZFnLs2DEGgCUnJ1fZtmrVKmZvb8+EQiFzcHBgs2fP1sjMR6aMjAwWEhLC5HI5MzY2Zs7Ozmz58uVvHGKji0w15WGMsQ0bNjATExP2/PlzrTNwnSkyMpI5OjoyY2Nj5ubmxqKionjLVFRUxHx8fJi1tbX6sxQcHMzS09N5y1QdfQ1be1Om4uJiFhQUxORyOROJREwmk7GAgAB26dIl3jJVDAurbomJieElE2OMbdmypdpMc+fO1TqPPoetnZY3Y1fsFfVaTsub0bC1WggYY+xtvgjk5+dDKpUiJydHr01QNVEqlTh8+DD69esHoVDIdxwAlElblEk7lEk7lKl2ubm5sLKyQl5eHmd9AirKidPyZmhkUL8rvAUqFT548pDTvH93NDkLIYQQTtHkLPpBBTohhBBOUYGuHzTbGiGEEPIOoBo6IYQQTtE4dP2gAp0QQginqMldP6jJnRBCCHkHUA2dEEIIp6jJXT+oQCeEEMIpanLXDyrQCSGEcMpAIIBBPUvk+j7+fwFdQyeEEELeAVRDJ4QQwilqctcPrQv0kpISjSkM8/PzAfw1pWdDUJGjoeQBKJO2KJN2KJN2KFPt9JlDAB10igOV6LXRenKW8PBwzJs3r8r6X3/9FaampjoPRgghhDtFRUUYMWKEXiZnudyyBRoZ1nNylnIV3O+l0eQsNdC6QK+uht6sWTNkZGQ0qNnWoqOj0bdv3wYxmxFAmbRFmbRDmbRDmWqXm5sLmUymlwI90VE3BXqnO1Sg10TrJnexWAyxWFxlvVAobBAfzsook3Yok3Yok3Yok3YaSia9ZtDBOHS6iF476uVOCCGEvAOolzshhBBOUS93/aACnRBCCKdeFej1vfWrjsK8w6jJnRBCCHkHUIFOCCGEUxVN7vVdGpqgoCA0adIEn3zyCd9RAFCBTgghhGMV93Kv79LQTJ48Gdu2beM7hhoV6IQQQjj1rtbQvby8YGZmxncMNSrQCSGEvHNOnTqF/v37Qy6XQyAQICoqqso+a9euRYsWLWBsbAx3d3ecPn1a/0F1iHq5E0II4ZRABzeWqevjCwsL4ebmhs8++wyDBg2qsn3nzp2YOnUq1q5di549e2LDhg3w9/fHrVu34ODgAABwd3fXuENqhePHj0Mul7/dC+EQFeiEEEI4pctx6BUTg1V4011M/f394e/v/8bjRUREIDQ0FGPHjgUArFy5EseOHcO6deuwaNEiAMDly5frF1rPqMmdEELI30azZs0glUrVS0XhWxelpaW4fPkyfHx8NNb7+Pjg3Llzuoqqd3or0B8/foxPP/0UlpaWMDU1RYcOHTS+/ezZswe+vr6wsrKCQCBAUlISr5mUSiW+/vprtGvXDhKJBHK5HKNHj8aTJ094ywS8mvWudevWkEgkaNKkCby9vXHx4kVeM1X2xRdfQCAQYOXKlbxmCgkJUTfzVSzdunXjNRMA3L59GwEBAZBKpTAzM0O3bt2Qnp7OW6bXz1HFsmzZMt4yFRQUYOLEibC3t4eJiQlcXFywbt06zvJokykrKwshISGQy+UwNTWFn58fUlNTOcvTvHnzat+XCRMmAAAYYwgPD4dcLoeJiQl69+6NmzdvcpanvnTZKe7hw4fIy8tTLzNmzKhznpycHJSXl8PW1lZjva2tLTIzM7U+jq+vLwYPHozDhw/D3t4e8fHxdc6iS3ppcn/27Bl69uwJLy8vHDlyBDY2Nrh79y4aN26s3qewsBA9e/bE4MGDMW7cON4zFRUVITExEXPmzIGbmxuePXuGqVOnIiAgAAkJCbxkAgAnJyesWbMGLVu2RHFxMVasWAEfHx/cuXMH1tbWvGSqEBUVhYsXL3J+bUnbTH5+ftiyZYv6Z5FIxGumu3fvwsPDA6GhoZg3bx6kUilu374NY2Nj3jJlZGRoPObIkSMIDQ2t9pqjvjJNmzYNMTEx2L59O5o3b47jx49j/PjxkMvlCAwM1HsmxhgGDBgAoVCIffv2wdzcHBEREfD29satW7cgkUh0nik+Ph7l5eXqn2/cuIG+ffti8ODBAIClS5ciIiICP//8M5ycnDB//nz07dsXycnJDarXdQWBgQACg3peQ2evHm9ubq6z2dZevy7PGKvTtfpjx47pJIfOsLeUl5fHALCcnJxa9/3666+Zh4eHVsdNS0tjANiVK1fqnKm0tJRFRUWx0tJSnWaqcOnSJQaAPXjwoMFkqngfTpw4wWumR48esaZNm7IbN24whULBVqxYoXUeLjIFBwezwMDAOmXgOtPQoUPZp59+2qAyvS4wMJD16dOH10yurq7s22+/1VjXqVMnNnv2bF4yJScnMwDsxo0b6nVlZWXMwsKCbdq0iZNMr5syZQp77733mEqlYiqVitnZ2bHFixert798+ZJJpVK2fv16rY+Zk5PDALC8vLw659FWxd+n/7i1Yo87ta7X8h+3Vm+dFwDbu3ev+ueSkhJmaGjI9uzZo7Hf5MmTWa9ever7snmjlyb3/fv3o3Pnzhg8eDBsbGzQsWNHbNq0SR9PrdNMeXl5EAgE1dZO+chUWlqKjRs3QiqVws3NjbdMKpUKo0aNQlhYGFxdXTnJUddMABAbGwsbGxs4OTlh3LhxyM7O5i2TSqXCoUOH4OTkBF9fX9jY2KBr167VDqXRV6bXZWVl4dChQwgNDeU1k4eHB/bv34/Hjx+DMYaYmBikpKTA19eXl0wVvZwrt6QYGhpCJBLhzJkznGSqrLS0FNu3b8eYMWMgEAiQlpaGzMxMjeu/YrEYnp6eDfb6b0Mbhy4SieDu7o7o6GiN9dHR0ejRo4funkjf3vabQF1q6GKxmInFYjZjxgyWmJjI1q9fz4yNjdnWrVur7KuvGnpdMjHGWHFxMXN3d2cjR47kPdOBAweYRCJhAoGAyeVydunSJV4zLVy4kPXt25epVCrGGOO8hq5Nph07drCDBw+y69evs/379zM3Nzfm6urKXr58yUumjIwMBoCZmpqyiIgIduXKFbZo0SImEAhYbGwsL5let2TJEtakSRNWXFysdR4uMpWUlLDRo0czAMzIyIiJRCK2bds23jKVlpYyhULBBg8ezJ4+fcpKSkrYokWLGADm4+PDSabKdu7cyQwNDdnjx48ZY4ydPXuWAVD/XGHcuHF1yqPPGnpqRyeW2dmlXktqRycGgDk5OTEXFxe2Zs2aGp/7xYsX7MqVK+zKlSsMgPr3rqKFdceOHUwoFLLIyEh269YtNnXqVCaRSNj9+/c5Ox9c00uBLhQKWffu3TXWTZo0iXXr1q3Kvvoq0OuSqbS0lAUGBrKOHTvW+cPPRaaCggKWmprKzp8/z8aMGcOaN2/OsrKyeMmUkJDAbG1tNf64cF2g1+W9q/DkyRMmFArZ7t27ecn0+PFjBoANHz5cY5/+/fuzYcOG8ZLpdc7OzmzixIlaZ+Eq07Jly5iTkxPbv38/u3r1Kvvhhx9Yo0aNWHR0NG+ZEhISmJubGwPADA0Nma+vL/P392f+/v6cZKrMx8eHffzxx+qfKwr0J0+eaOw3duxY5uvrq/Vx/64FurZ5Y2JiGIAqS3BwsHqfH3/8kSkUCiYSiVinTp1YXFwcR2dCP/TS5C6TydCmTRuNdS4uLpz27q2NtpmUSiWGDBmCtLQ0REdH66wzRn0ySSQSODo6olu3boiMjISRkREiIyN5yXT69GlkZ2fDwcEBRkZGMDIywoMHD/DVV1+hefPmvGR602MUCgVnPZNry2RlZQUjIyO9/h7U5TydPn0aycnJ6jG5XKktU3FxMWbOnImIiAj0798f7du3x8SJEzF06FB8//33vGQCXt1gJCkpCc+fP0dGRgaOHj2K3NxctGjRgpNMFR48eIATJ05ovC92dnYAUKU3dnZ2dpVe2w0FH03uvXv3BntVadVYfv75Z/U+48ePx/3791FSUoLLly+jV69eun3heqaXAr1nz55ITk7WWJeSkgKFQqGPp6+WNpkqCvPU1FScOHEClpaWvGeqDmOs2rsZ6SPTqFGjcO3aNSQlJakXuVyOsLAwznqAvs15ys3NxcOHDyGTyXjJJBKJ0KVLF73+HtTlPEVGRsLd3Z2zvhjaZlIqlVAqlTAw0PzTZGhoCJVKxUumyqRSKaytrZGamoqEhAROet1XtmXLFtjY2OCjjz5Sr2vRogXs7Ow0rv+WlpYiLi6uwV7/fdPwyLoupBZvW7WvS5P7pUuXmJGREVuwYAFLTU1l//rXv5ipqSnbvn27ep/c3Fx25coVdujQIQaA7dixg125coVlZGRonakuTVq1ZVIqlSwgIIDZ29uzpKQklpGRoV5KSkp4yVRQUMBmzJjBzp8/z+7fv88uX77MQkNDmVgs1uiBq89M1eG6yb22TC9evGBfffUVO3fuHEtLS2MxMTGse/furGnTpiw/P5+XTIwxtmfPHiYUCtnGjRtZamoq++GHH5ihoSE7ffo0b5kYe/W7bGpqytatW6d1Di4zeXp6MldXVxYTE8Pu3bvHtmzZwoyNjdnatWt5y/T777+zmJgYdvfuXRYVFcUUCgUbOHCg1nnqmokxxsrLy5mDgwP7+uuvq2xbvHgxk0qlbM+ePez69ets+PDhTCaT1enzrc8m93vuzuzPrm3qtdxzd+Y879+dXgp0xl515Grbti0Ti8WsdevWbOPGjRrbt2zZUu31jrlz52qdqa6/MDVlqriWX90SExPDS6bi4mIWFBTE5HI5E4lETCaTsYCAAE47xdWWqTpcF+i1ZSoqKmI+Pj7M2tqaCYVC5uDgwIKDg1l6ejpvmSpERkYyR0dHZmxszNzc3FhUVBTvmTZs2MBMTEzY8+fP65SFq0wZGRksJCSEyeVyZmxszJydndny5cvVnS75yLRq1Spmb2+v/jzNnj27Tl/s3ybTsWPHGACWnJxcZZtKpWJz585ldnZ2TCwWs169erHr16/XKQ8V6O8eAWOMvU3NPj8/H1KpFDk5OZw3RWtLqVTi8OHD6NevH4RCId9xAFAmbVEm7VAm7VCm2uXm5sLKygp5eXmc9Q2qKCfSOreGmZFhvY71oqwcLRL+w2nevzu6lzshhBBu6aJD3H8voXfp0gVt2rTBjz/+yOtLaohotjVCCCF/G/Hx8VRDfwMq0AkhhHCKj/nQ/xdRgU4IIYRTAoNXS32PQWpGp4gQQgh5B1ANnRBCCKeoyV0/qEAnhBDCLQPBq6W+xyA1oiZ3Qgghfxs0bO3NqIZOCCGEW7qY0Py/j6dha29GBTohhBBO0TV0/aACnRBCCLfoGrpeaF2gl5SUaEzRmZ+fD+Cv6Q4bgoocDSUPQJm0RZm0Q5m0Q5lq11ByEN3RenKW8PBwzJs3r8r6X3/9FaampjoPRgghhDtFRUUYMWKEXiZnedjbDeb1nJwlv6wczWKv0uQsNdC6QK+uht6sWTNkZGQ0qNnWoqOj0bdv3wYxmxFAmbRFmbRDmbRDmWqXm5sLmUymlwL9UZ8OOinQ7U8mUYFeA62b3MViMcRicZX1QqGwQXw4K6NM2qFM2qFM2qFM2mkomRpCBqJbNA6dEEIIt+o7d2qlYW/v0jj0wsJCnR6PerkTQgjhlEAggKCevdQF7+A4dFtbWwwZMgRjxoyBh4dHvY9HNXRCCCGEB7/99hvy8vLw4YcfwsnJCYsXL8aTJ0/e+nhUoBNCCOGWDpvc3yX9+/fH7t278eTJE/y///f/8Ntvv0GhUODjjz/Gnj17UFZWVqfjUYFOCCGEWwb46+Yyb73w/SK4Y2lpiWnTpuHq1auIiIjAiRMn8Mknn0Aul+P//u//UFRUpNVx6Bo6IYQQwqPMzExs27YNW7ZsQXp6Oj755BOEhobiyZMnWLx4MS5cuIDjx4/Xehwq0AkhhHCK7uVevT179mDLli04duwY2rRpgwkTJuDTTz9F48aN1ft06NABHTt21Op4VKATQgjhFt3LvVqfffYZhg0bhrNnz6JLly7V7tOyZUvMmjVLq+NRgU4IIYRbOpw+9V2SkZFR663TTUxMMHfuXK2O9w53MyCEEEIaLjMzM2RnZ1dZn5ubC0PDut8qlwp0QgghnBIY6GYB3q07xb1pKpWSkhKIRKI6H09vBfrjx4/x6aefwtLSEqampujQoQMuX76s3s4YQ3h4OORyOUxMTNC7d2/cvHmTszzh4eHqjhoVi52dnXp7VlYWQkJCIJfLYWpqCj8/P6SmpnKWR5tMBQUFmDhxIuzt7WFiYgIXFxesW7eO10yvb6tYli1bxlsmALh9+zYCAgIglUphZmaGbt26IT09nbdMISEhVbZ369aNszzaZKrsiy++gEAgwMqVK3nNFB4ejtatW0MikaBJkybw9vbGxYsXecukVCrx9ddfo127dpBIJJDL5Rg9enS9bv5R30zAq85Uvr6+sLKygkAgQFJSEqd56k2H49Dj4+Nx69YtTJgwgecX9fZWr16N1atXQyAQYPPmzeqfV69ejRUrVmDChAlo3bp1nY+rl2voz549Q8+ePeHl5YUjR47AxsYGd+/e1ejJt3TpUkRERODnn3+Gk5MT5s+fj759+yI5ORlmZmac5HJ1dcWJEyfUP1c0cTDGMGDAAAiFQuzbtw/m5uaIiIiAt7c3bt26BYlEwkmemjIBwLRp0xATE4Pt27ejefPmOH78OMaPHw+5XI7AwEBeMmVkZGjse+TIEYSGhmLQoEGc5akt0927d+Hh4YHQ0FDMmzcPUqkUt2/fhrGxMW+ZAMDPzw9btmxR//w238B1nQkAoqKicPHiRcjlcs7z1JbJyckJa9asQcuWLVFcXIwVK1bAx8cHd+7cgbW1td4zFRUVITExEXPmzIGbmxuePXuGqVOnIiAgAAkJCZzlqSkT8Ooe4D179sTgwYMxbtw4TnMQ3VuxYgWAV2XN+vXrNd5bkUiE5s2bY/369XU+rl4K9CVLlqBZs2Yaf8yaN2+u/jdjDCtXrsSsWbMwcOBAAMDWrVtha2uLX3/9FV988QUnuYyMjKqtsaSmpuLChQu4ceMGXF1dAQBr166FjY0NfvvtN4wdO5aTPDVlAoDz588jODgYvXv3BgB8/vnn2LBhAxISEjgt0GvK9Pr6ffv2wcvLCy1btuQsT22ZZs2ahX79+mHp0qXqdVznqS0T8GrGwpq2c6G2TI8fP8bEiRNx7NgxfPTRR7xnGjFihMbPERERiIyMxLVr1/Dhhx/qPZNUKkV0dLTGuh9++AHvv/8+0tPT4eDgoPdMADBq1CgAwP379zl7fl0SGOjgXu7vUC/3tLQ0AICXlxf27NmDJk2a6OS4emly379/Pzp37ozBgwfDxsYGHTt2xKZNm9Tb09LSkJmZCR8fH/U6sVgMT09PnDt3jrNcqampkMvlaNGiBYYNG4Z79+4BgHre98o1OkNDQ4hEIpw5c4azPDVlAgAPDw/s378fjx8/BmMMMTExSElJga+vL2+ZKsvKysKhQ4cQGhrKaZ6aMqlUKhw6dAhOTk7w9fWFjY0NunbtiqioKN4yVYiNjYWNjQ2cnJwwbty4ajvD6DOTSqXCqFGjEBYWpv7iqg/afp5KS0uxceNGSKVSuLm5NYhMAJCXlweBQKDRwsh3pgaPbv1arZiYGJ0V5oCeauj37t3DunXrMH36dMycOROXLl3C5MmTIRaLMXr0aGRmZgJ4NfNMZba2tnjw4AEnmbp27Ypt27bByckJWVlZmD9/Pnr06IGbN2+idevWUCgUmDFjBjZs2ACJRIKIiAhkZmZWaWLWVyZLS0usXr0a48aNg729PYyMjGBgYIDNmzfrZJaet81U2datW2FmZqZuZeEjk1KpREFBARYvXoz58+djyZIlOHr0KAYOHIiYmBh4enrqPZOlpSX8/f0xePBgKBQKpKWlYc6cOejTpw8uX74MsVjMS6YlS5bAyMgIkydP5uT53yYTABw8eBDDhg1DUVERZDIZoqOjYWVlxWumCi9fvsQ333yDESNGcDrjV10ykb+X6dOn47vvvoNEIsH06dNr3DciIqJuB2dvKS8vjwFgOTk5te4rFApZ9+7dNdZNmjSJdevWjTHG2NmzZxkA9uTJE419xo4dy3x9fbXOVFpayqKiolhpaanWj6lQUFDAbG1t2fLlyxljjCUkJDA3NzcGgBkaGjJfX1/m7+/P/P3963RcXWZatmwZc3JyYvv372dXr15lP/zwA2vUqBGLjo7mLVNlzs7ObOLEiXU+pi4zPX78mAFgw4cP19inf//+bNiwYbxkqs6TJ0+YUChku3fv5iVTQkICs7W1ZY8fP1ZvVygUbMWKFXU+rq7PU0FBAUtNTWXnz59nY8aMYc2bN2dZWVm8Zqo4ZmBgIOvYsSPLy8ur83G5yJSWlsYAsCtXrtT5mDk5OQzAW70WbVWUE5mDerCiYb3qtWQO6sF5Xn3o3bs3e/bsmfrfb1q8vLzqfGy91NBlMhnatGmjsc7FxQW7d+8G8Nd12MzMTMhkMvU+2dnZVWrtXJFIJGjXrp26J7u7uzuSkpKQl5eH0tJSWFtbo2vXrujcubNe8ryeqbi4GDNnzsTevXvV1zrbt2+PpKQkfP/99/D29tZ7pspOnz6N5ORk7Ny5Uy853pTJysoKRkZG1X7euL5c8qZM1ZHJZFAoFJyPnHhTJgMDA2RnZ2tcAy4vL8dXX32FlStX6u3abHXnSSKRwNHREY6OjujWrRtatWqFyMhIzJgxg7dMSqUSQ4YMQVpaGk6ePKn3+bhr+zw1dHTr17/ExMRU+29d0Ms19J49eyI5OVljXUpKChQKBQCgRYsWsLOz0+h8Ulpairi4OPTo0UMfEVFSUoLbt29rfKEAXnWKsba2RmpqKuedz2rKpFQqoVQqYWCg+ZYZGhpCpVLxkqmyyMhIuLu7c36ts7ZMIpEIXbp0qfHzpu9M1cnNzcXDhw/fuJ3rTKNGjcK1a9eQlJSkXuRyOcLCwnDs2DFeMr0JY0zdr4WPTBWFeWpqKk6cOMFLk7c254kQvdTQp02bhh49emDhwoUYMmQILl26hI0bN2Ljxo0AXn3zmjp1KhYuXIhWrVqhVatWWLhwIUxNTav0etWVf/zjH+jfvz8cHByQnZ2N+fPnIz8/H8HBwQCAXbt2wdraGg4ODrh+/TqmTJmCAQMGaHTc02cmc3NzeHp6IiwsDCYmJlAoFIiLi8O2bdvqfp1FR5kq5OfnY9euXVi+fDlnOeqSKSwsDEOHDkWvXr3g5eWFo0eP4sCBA4iNjeUlU0FBAcLDwzFo0CDIZDLcv38fM2fOhJWVFYKCgnjJZGlpWaVgEgqFsLOzg7OzMy+ZCgsLsWDBAgQEBEAmkyE3Nxdr167Fo0ePMHjwYF4ylZWV4ZNPPkFiYiIOHjyI8vJydZ8fCwsLzoYe1vYZf/r0KdLT09Xj4Su+wNrZ2el9JIVW6F7uanXpY7Rnz546HVsvBXqXLl2wd+9ezJgxA99++y1atGiBlStXYuTIkep9/vnPf6K4uBjjx4/Hs2fP0LVrVxw/fpyzMeiPHj3C8OHDkZOTA2tra3Tr1g0XLlxQ1+IyMjIwffp0ZGVlQSaTYfTo0ZgzZw4nWbTNtGPHDsyYMQMjR47E06dPoVAosGDBAnz55Ze8ZarIxRjD8OHDOctRl0xBQUFYv349Fi1ahMmTJ8PZ2Rm7d+/mtPNgTZmKi4tx/fp1bNu2Dc+fP4dMJoOXlxd27tzJ2ee7tkx8qSnTy5cv8Z///Adbt25FTk4OLC0t0aVLF5w+fZrTXvg1Zbp//z72798P4NWsV5XFxMSoh5DqMxPwauTQZ599pt5/2LBhAIC5c+ciPDyck0z1o4te6u9GgS6VSjk7toCxN9x7rhb5+fmQSqXqX7yGQKlU4vDhw+jXrx+EQiHfcQBQJm1RJu1QJu1Qptrl5ubCysoKeXl5nPUJqCgnsof2grmofvXH/NIy2Ow8xWnevzu6lzshhJC/jXfpXu66RtOnEkII4ZYOr6HHx8f/rWvonTp1wh9//IEmTZqgY8eONfbeT0xMrNOxqUAnhBDCKRq29pfAwED1zaQGDBig02NTgU4IIYToydy5c6v9ty5QgU4IIYRbNGytRgkJCbh9+zYEAgFcXFzg7u7+VsehAp0QQgi3dDG5yjvS5F5ZxfDEs2fPqif7ef78OXr06IHffvsNzZo1q9PxqJc7IYQQwoMxY8ZAqVTi9u3bePr0KZ4+fYrbt2+DMfZWs1ZSDZ0QQginaD706p0+fRrnzp3TuDujs7MzfvjhB/Ts2bPOx6MCnRBCCLeoyb1aDg4OUCqVVdaXlZWhadOmdT4eNbkTQgghPFi6dCkmTZqEhIQEVNy0NSEhAVOmTMH3339f5+NRDZ0QQgi3DKCDXu46ScK7Jk2aaIypLywsRNeuXWFk9Ko4Lisrg5GREcaMGVPncepaF+glJSUaUxjm5+cDgHpaz4agIkdDyQNQJm1RJu1QJu1QptrpMwfdWOYvK1eu5OzYWk/OEh4ejnnz5lVZ/+uvv8LU1FTnwQghhHCnqKgII0aM0MvkLLnjfGAuqt+ENPmlSlhuOk6Ts9RA6xr6jBkzMH36dPXP+fn5aNasGXpd2AOLBtJwX2YoxMmeQ9Hn7E4YlTeMb8GUSTsNOVPfvn0bxOxYwKtaVXR0NGWqBWWqXW5uLt8RSCXFxcVVWk3q+sVF66JYLBar7z+rcYByJYQNrCXEqFwJYQMpFCpQJu00xExCobBB/AGujDJphzLVnENvqJd7tQoLC/H111/j999/r/YLVnl5eZ2O9450MyCEENJgVRTo9V3wbk2f+s9//hMnT57E2rVrIRaLsXnzZsybNw9yuRzbtm2r8/EaSGM5IYQQUru/+/SplR04cADbtm1D7969MWbMGHzwwQdwdHSEQqHAv/71L4wcObJOx6MaOiGEEI7ponb+7jW5P336FC1atADw6nr506dPAQAeHh44depUnY9HBTohhBBuGRjoZnnHtGzZEvfv3wcAtGnTBr///juAVzX3isla6uLdO0OEEELI38Bnn32Gq1evAng1kqziWvq0adMQFhZW5+PRNXRCCCHcol7u1Zo2bZr6315eXrh9+zYuX76M9957D25ubnU+HhXohBBCuEUFulYUCgUUCsVbP56a3AkhhBCe/PHHH/j444/x3nvvwdHRER9//DFOnDjxVseiAp0QQgi3dDgO/V2yZs0a+Pn5wczMDFOmTMHkyZNhbm6Ofv36Yc2aNXU+HjW5E0II4ZYueqm/g73cFy1ahBUrVmDixInqdZMnT0bPnj2xYMECjfXaePfOECGEkIaFaujVys/Ph5+fX5X1Pj4+6hlN64KXAn1JfAqEq/Zhetx19bq9d56g395zsNtwBMJV+5D0Zx6vmZTlKsw4cxMdtp+E9MeDcNh8FCHHLuNJQTFvmQDg2wv/Qdttf0D640FYrz8M3z1ncTHzKa+ZKvt/fyRBuGofVl25y2umMccTIVy1T2PpubPuN2p4W4sWLYJAIMDUqVM11t++fRsBAQGQSqUwMzNDt27dkJ6ezlumimktX1+WLVvGW6aCggJMnDgR9vb2MDExgYuLC9atW6eXPG/KlJWVhZCQEMjlcpiamsLPzw+pqamcZQgPD6/yntjZ2am3M8YQHh4OuVwOExMT9O7dGzdv3uQsD+FGQEAA9u7dW2X9vn370L9//zofT+9N7vGZz7D5xgO0s9K8dV+hshw95JYY1KopvvwjifdMRWXluJKdh1nvO6O9tTmevVTiq1M3EHTgIi4O781LJgBo1bgRVvVuhxZSCYrLyrHqyl3023se/wn2hrVp1clz9JGpwr67GbiU+QxyiTGnObTN5Kuwwea+HdU/iwz18/01Pj4eGzduRPv27TXW3717Fx4eHggNDcW8efMglUpx+/ZtGBtzf77elCkjI0Pj5yNHjiA0NBSDBg3iLdO0adMQExOD7du3o3nz5jh+/DjGjx8PuVyOwMBAvWdijGHAgAEQCoXYt28fzM3NERERAW9vb9y6dQsSiYSTLK6urhqdowwNDdX/Xrp0KSIiIvDzzz/DyckJ8+fPR9++fZGcnAwzMzNO8tQL9XJXW716tfrfLi4uWLBgAWJjY9G9e3cAwIULF3D27Fl89dVXdT62XmvoBaVlCD52Ges/dEMTseZMP5+6NMPsrs740MFan5HemEkqFuLowB4Y7NQUzk3M0E1mgZWe7ZCYnYf0/CJeMgHA8Nb2+NDBBi2lErhamuP7D9oiv7QM13Pq3jyjq0wA8LigGFNir2GbnzuEBvr5xastk9jQAHYSY/ViYSziPlNBAUaOHIlNmzahSZMmGttmzZqFfv36YenSpejYsSNatmyJjz76CDY2NrxlsrOz01j27dsHLy8vtGzZkrdM58+fR3BwMHr37o3mzZvj888/h5ubGxISEnjJlJqaigsXLmDdunXo0qULnJ2dsXbtWhQUFOC3337jLI+RkZHGe2Nt/epvI2MMK1euxKxZszBw4EC0bdsWW7duRVFREX799VfO8tQLNbmrrVixQr1ERkaiSZMmuHXrFiIjIxEZGYmbN2+icePG+Omnn+p8bL0W6JNir8G/uS0+dOD2D1hd1CVTfqkSAgCNqyk8+MhUWq7C5hsPIBUZob01t5MV1JRJxRhCjiVieidHuFrqb9KE2s5T3KMcyDceQZutJ/DFiSRkF5VwnmnChAn46KOP4O3trbFepVLh0KFDcHJygq+vL2xsbNC1a1dERUXxlul1WVlZOHToEEJDQ3nN5OHhgf379+Px48dgjCEmJgYpKSnw9fXlJVNJyavPTeWWFENDQ4hEIpw5c4azPKmpqZDL5WjRogWGDRuGe/fuAQDS0tKQmZkJHx8f9b5isRienp44d+4cZ3mIbqSlpWm1VLzfdaG3JvedyY9wJfs5Lgzz1NdT1qoumV6WlWPm2VsY5mwPcw4LdG0yHbqXiZFHE1CkLIdMYowjQT1gZcJdc3ttmZYlpMLIQIBJHbit1dUlk19zW3zSSg4HM1Pczy/C3PO34bPnLC4O84TYyLDax9TXjh07kJiYiPj4+CrbsrOzUVBQgMWLF2P+/PlYsmQJjh49ioEDByImJgaentz8XtSU6XVbt26FmZkZBg4cyEkWbTOtXr0a48aNg729PYyMjGBgYIDNmzfDw8ODl0ytW7eGQqHAjBkzsGHDBkgkEkRERCAzM7PKJQtd6dq1K7Zt2wYnJydkZWVh/vz56NGjB27evInMzEwAgK2trcZjbG1t8eDBA07y1Bv1cq8VYwzAq34tb0svBfrDF8WYHncDh4O6w5ijP6Z1VZdMynIVRh5JgIoBa7za17ivPjL1bmaFhBG9kVNcisgbDzDiSALODu0FGw6uodeW6XLWc/yQdA+XhnvW64Ooy0wAMMSpqfrfba3M4W7bGO/9dByH72chyFGu+0wPH2LKlCk4fvx4tdfEVSoVACAwMFB9u8cOHTrg3LlzWL9+PScFem2ZXvfTTz9h5MiRnF7T1ybT6tWrceHCBezfvx8KhQKnTp3C+PHjIZPJam1l4CKTUCjE7t27ERoaCgsLCxgaGsLb2xv+/v46z1Kh8rHbtWuH7t2747333sPWrVvRrVs3AFX/8DPG9PY7WGd0Df2Ntm3bhmXLlqk7WTo5OSEsLAyjRo2q87H0UqAnZj9HdnEJuv4Wp15XzhhOP87F2qtpKJzYH4Z6uu5a10zKchWGH4lHWn4Rogf25LR2rm0midAIjo0bwbEx0E1mAZefT2DLzQf4uouT3jMt8miD7KIStPwpWmP7P0/fwA9X7uLOGJ/qDstppuo+TzKJMRRmprjzvFDneQDg8uXLyM7Ohru7+1+Zystx6tQprFmzBoWFhTAyMkKbNm00Hufi4sJZs21tmUpKStQdrU6fPo3k5GTs3LmTkyzaZsrLy8PMmTOxd+9efPTRRwCA9u3bIykpCd9//z0nBbo258nd3R1JSUnIy8tDaWkprK2t0bVrV3Tu3FnneaojkUjQrl07pKamYsCAAQCAzMxMyGQy9T7Z2dlVau2kYYuIiMCcOXMwceJE9OzZE4wxnD17Fl9++SVycnI07vWuDb0U6H2aWeHKSC+NdWOjr8DZohHC3FvpvTDXNlNFYX7neSGiB/aEpQm3nare9jwxACXlKl4yySTG6PvaNeyPos5jZGt7BLs68JKpuvOUW1yKhwXFsJNwc2niww8/xPXrmkP5PvvsM7Ru3Rpff/01xGIxunTpguTkZI19UlJS6nXv5vpkqtxrOjIyEu7u7m81IYQuM5WXl0OpVMLgteZVQ0NDdSuHvjNVPk9SqRTAq+vbCQkJ+O677zjJ9LqSkhLcvn0bH3zwAVq0aAE7OztER0ejY8dXozhKS0sRFxeHJUuW6CVPnQmggxq6TpI0KD/88APWrVuH0aNHq9cFBgbC1dUV4eHhDbNANxMJ0dZKs2YrERrC0liEtv8dbvT0ZSnSXxQjo+AlACDlWQEAwM5UDDsOhkHVlqlMpcLQw/G4kv0cUQHdUM4YMgtfZbMwFnEyBKq2TIXKMiy6lIKPW9pBJjFG7stSrL+WhkcFxRjUSvfNyNpkAlDli47QQABbiTGcm3AzfKa2TAWlZfj24n8Q5CiHTGKMB/lFmH3uFqxMRBjwnuwNR61nJjMztG3bVjOTRAJLS0v1+rCwMAwdOhS9evWCl5cXjh49igMHDiA2Npa3TMCrm1vs2rULy5cv5yRHXTN5enoiLCwMJiYmUCgUiIuLw7Zt2xAREcFbpl27dsHa2hoODg64fv06pkyZggEDBmh0TNOlf/zjH+jfvz8cHByQnZ2N+fPnIz8/H8HBweox8gsXLkSrVq3QqlUrLFy4EKamphgxYgQneeqNmtyrlZGRgR49elRZ36NHj7fqn9Fgbv164F4mxkZfUf888sirISpzujrj/7q11nueRwUvceDeq84nnX+N1dh2YlBPeNpb6T2ToUCA5GcF+OVQPHJelsLSWIjOtk0Q84mHXnuXN3SGBgLcyMnH9tsP8bxECZnEGJ72VvjVvwvMRNyOUKhJUFAQ1q9fj0WLFmHy5MlwdnbG7t27Oe3spY0dO3aAMYbhw4fzmqPCjh07MGPGDIwcORJPnz6FQqHAggUL8OWXX/KWKSMjA9OnT0dWVhZkMhlGjx6NOXPmcPZ8jx49wvDhw5GTkwNra2t069YNFy5cULfm/POf/0RxcTHGjx+PZ8+eoWvXrjh+/HjDHINO3sjR0RG///47Zs6cqbF+586daNWqVZ2PJ2AVXevqKD8/H1KpFJkTAmHZQL4WKA2FON7rU/ic2g5huZLvOAAok7YacqZ+/fpBKOTvi0BlSqUShw8fpky1oEy1y83NhZWVFfLy8mBuzk2FoKKcePrNcJiL63fJMr+kFBaLf+M0r77t3r0bQ4cOhbe3N3r27AmBQIAzZ87gjz/+wO+//46goKA6He/dHgdACCGkAdDFTWVeNbl36dIFbdq0wY8//sjvS9KBQYMG4dKlS7CyskJUVBT27NkDKysrXLp0qc6FOdCAmtwJIYS8o3R4DT0+Pv6dqKErlUp8/vnnmDNnDrZv366TY1INnRBCCNEzoVBY7cQs9UEFOiGEEG7RvdyrFRQUpNPbP1OTOyGEEG7RrV+r5ejoiO+++w7nzp2Du7t7lZn7Jk+eXKfjUYFOCCGE8GDz5s1o3LgxLl++jMuXL2tsEwgEVKATQghpYOjGMtVKS0tT/1sXk7O8e20YhBBCGha6hv5GkZGRaNu2LYyNjWFsbIy2bdti8+bNb3UsqqETQgghPJgzZw5WrFiBSZMmoXv37gCA8+fPY9q0abh//z7mz59fp+NRgU4IIYRb1ORerXXr1mHTpk0at10OCAhA+/btMWnSJCrQCSGENDDUy71a5eXl1U7B6+7ujrKysjofT+sCvaSkBCUlJeqf8/PzAQBlhkIoDd/0KP0qMxRq/L8hoEzaaciZlMqGcW954K8slKlmlKl2es1BNfRqffrpp1i3bl2VmQQ3btyIkSNH1vl4Wk/OEh4ejnnz5lVZ/+uvv8LU1LTOT0wIIYQ/RUVFGDFihH4mZ/l2LMyN6zk5y8tSWPzf5ndqcpZJkyZh27ZtaNasGbp16wYAuHDhAh4+fIjRo0drTOKjzfTBWtfQZ8yYgenTp6t/zs/PR7NmzdDrwh5YNJCG+zJDIU72HIq+ffs2iNmMgFffgqOjoylTLSiTdiiTdhpyJvcfFsGwtJTvOHiuzyZsqqFX68aNG+jUqRMA4O7duwAAa2trWFtb48aNG+r9tB3KpnVRLBaLIRaLqx6gXAlhAzvPQqGwwfwSV6BM2qFM2qFM2mmImQxLS2FUWlL7jlznMNBjTYyuoVcrJiZGp8d7984QIYQQ8j+ogTSWE0IIeWcJoIMmd50keadRgU4IIYRbdA1dL6jJnRBCCHkHUA2dEEIIt6iGrhdUoBNCCOGWQAe93AXUoFwbOkOEEELIO4Bq6IQQQrhFTe56QQU6IYQQblGBrhdUoBNCCOGWwKD+18DpGnqt6AwRQggh7wBeCvQl8SkQrtqH6XHX1esYY/j2wn/gsPkozNYcwIf/PoObufmcZVi3bh3at28Pc3NzmJubo3v37jhy5Ih6e1ZWFkJCQiCXy2Fqago/Pz+kpqZylkebTAUFBZg4cSLs7e1hYmICFxcXrFu3jtdMAoGg2mXZsmW8ZQKA27dvIyAgAFKpFGZmZujWrRvS09N5yxQSElLlHFXMrsRXpsq++OILCAQCrFy5ktdM4eHhaN26NSQSCZo0aQJvb29cvHiRt0xKpRJff/012rVrB4lEArlcjtGjR+PJkyecZtqS9RSe1+6iZfx/0DL+P/C/mYY/nr9Qbz/4NB9D/vMArS8nw+biLVwvfMlpnnozEOhmITXSe4Een/kMm288QDsrzenvvr98Byuv3MWq3u1xfpgn7CTG8N97Di9KuZmz197eHosXL0ZCQgISEhLQp08fBAYG4ubNm2CMYcCAAbh37x727duHK1euQKFQwNvbG4WFhZzkqS0TAEybNg1Hjx7F9u3bcfv2bUybNg2TJk3Cvn37eMuUkZGhsfz0008QCAQYNGgQb5nu3r0LDw8PtG7dGrGxsbh69SrmzJkDY2Nj3jIBgJ+fn8a5Onz4MGd5tM0EAFFRUbh48SLkcjmnebTJ5OTkhDVr1uD69es4c+YMmjdvDh8fH/z555+8ZCoqKkJiYiLmzJmDxMRE7NmzBykpKQgICOAsDwDIRULMcbBBdNsWiG7bAh+YSzA65SH+U/Sq4C4qV+H9RqaY3cyG0xw6U9HkXt+F1Eiv19ALSssQfOwy1n/ohoWXUtTrGWNYfeUuZnRxQpDjqz8qP/XtiKabjuK35Mf4vF1znWfp37+/xs8LFizAunXrcOHCBQiFQly4cAE3btyAq6srAGDt2rWwsbHBb7/9hrFjx+o8T22ZXF1dcf78eQQHB6N3794AgM8//xwbNmxAQkICAgMDeclkZ2ensX3fvn3w8vJCy5YtOcmjTaZZs2ahX79+WLp0qXofLvNokwl4NWPh6+eL70yPHz/GxIkTcezYMXz00Ue8ZxoxYoTG9oiICERGRuLatWv48MMP9Z4pNDQU0dHRGtt/+OEHvP/++0hPT4eDgwMnmXybmGn8PLOZDX7OeorLBcVobWqMIdaNAQDpJfxPw0oaDr1+5ZkUew3+zW3xoYPmt8q0/CJkFpXA28FavU5sZIhe9lY4n/GU81zl5eXYsWMHCgsL0b17d5SUvJrasHKNztDQECKRCGfOnOE8T3WZAMDDwwP79+/H48ePwRhDTEwMUlJS4Ovry1umyrKysnDo0CGEhobqJU91mVQqFQ4dOgQnJyf4+vrCxsYGXbt2RVRUFG+ZKsTGxsLGxgZOTk4YN24csrOzec2kUqkwatQohIWFqQt4fart81RaWoqNGzdCKpXCzc2tQWQCgLy8PAgEAjRu3Fg/mRjD3tw8FKkYOjcy1ctz6lxFL/f6LqRGequh70x+hCvZz3FhmGeVbZmFrwpQW1PN+dZtTMVIzy/iLNP169fRvXt3vHz5Eo0aNcLevXvRpk0bKJVKKBQKzJgxAxs2bIBEIkFERAQyMzORkZHBWZ6aMgHA6tWrMW7cONjb28PIyAgGBgbYvHkzPDw8eMtU2datW2FmZoaBAwdymqemTJmZmSgoKMDixYsxf/58LFmyBEePHsXAgQMRExMDT8+qnz+uMwGAv78/Bg8eDIVCgbS0NMyZMwd9+vTB5cuXIRaLazkyN5mWLFkCIyMjTJ48mbPnr2smADh48CCGDRuGoqIiyGQyREdHw8rKitdMFV6+fIlvvvkGI0aMgLm5eTVH0p1bRS/R72YaSlQMEkMD/OxkD2dT7j4rnKL50PVCLwX6wxfFmB53A4eDusPYyPCN+wle+wbGWNV1uuTs7IykpCQ8f/4cu3fvRnBwMOLi4tCmTRvs3r0boaGhsLCwgKGhIby9veHv789ZFm0yrV69GhcuXMD+/fuhUChw6tQpjB8/HjKZDN7e3rxkquynn37CyJEjOb1WXVumilpTYGAgpk2bBgDo0KEDzp07h/Xr13NaoNd0noYOHarer23btujcuTMUCgUOHTrE6RegN2UqLi7GqlWrkJiYyOnvWF0yVXyevLy8kJSUhJycHGzatAlDhgzBxYsXYWPD3fVibT7jSqUSw4YNg0qlwtq1aznLUsHRWIyT7d5Dflk5Dj7Nx6S7TxDl0vzvW6gTzumlQE/Mfo7s4hJ0/S1Ova6cMZx+nIu1V9Nwc/Sra2OZhS8hk/xVGPxZXAIbDj+8IpEIjo6OAIDOnTsjPj4eq1atwoYNG+Du7o6kpCTk5eWhtLQU1tbW6Nq1Kzp37sxZnpoyrVy5EjNnzsTevXvV1zrbt2+PpKQkfP/995wW6DWdpwqnT59GcnIydu7cyVkObTL98MMPMDIyqvJlw8XFhfPLJdqcpwoymQwKhYLzkRNvyuTi4oLs7GyNa8Dl5eX46quvsHLlSty/f1/vmSrOk0QigaOjIxwdHdGtWze0atUKkZGRmDFjBm+ZlEolhgwZgrS0NJw8eZLz2jkAiAwEaGksAgB0aGSCK4UvsTErF8tbcN95UefewRvLPHz4EKNGjUJ2djaMjIwwZ84cDB48mNdMeinQ+zSzwpWRXhrrxkZfgbNFI4S5t0JLqSnsTMX4I/1PdLRpDAAoLVfh1KMcLPTQ37U9xpj6+nkFqVQKAEhNTUVCQgK+++47veWpnEmpVEKpVMLgtWYnQ0NDqFQqXjJVFhkZCXd3d71d63xTJpFIhC5duiA5OVlje0pKChQKBS+ZqpObm4uHDx9CJpPxkmnUqFFVvgT6+vpi1KhR+Oyzz3jJ9LbbuVD5OSsK89TUVMTExMDS0lKvWSqlQqmK8fTc9fQO3ljGyMgIK1euRIcOHZCdnY1OnTqhX79+kEgk/GXSx5OYiYRoayXUWCcRGsLSWIS2/x2+Nrnje1gcnwLHxhI4Nm6EJfEpMBUaYrhzU04yzZw5E/7+/mjWrBlevHiBHTt2IDY2FkePHgUA7Nq1C9bW1nBwcMD169cxZcoUDBgwAD4+PpzkqS2Tubk5PD09ERYWBhMTEygUCsTFxWHbtm2IiIjgJVOF/Px87Nq1C8uXL+csR10yhYWFYejQoejVqxe8vLxw9OhRHDhwALGxsbxkKigoQHh4OAYNGgSZTIb79+9j5syZsLKyQlBQEC+ZLC0tqxRMQqEQdnZ2cHZ25iVTYWEhFixYgICAAMhkMuTm5mLt2rV49OgRpzWfmjKVlZXhk08+QWJiIg4ePIjy8nJkZmYCACwsLCASiTjJtOBhFj6UNoJcLERBuQpRufk4m1+EHa1ftag8KyvHoxIlspSvhvXeffnqy4eN0Ai2IroBqD7IZDL1F3IbGxtYWFjg6dOn736Bro1/uDuiuKwck2Ku4VmJEu/bNcHhAT1gJhLW/uC3kJWVhVGjRiEjIwNSqRTt27fH0aNH0bdvXwCvxldPnz4dWVlZkMlkGD16NObMmcNJFm0z7dixAzNmzMDIkSPx9OlTKBQKLFiwAF9++SVvmSpyMcYwfPhwznLUJVNQUBDWr1+PRYsWYfLkyXB2dsbu3bs57TxYU6bi4mJcv34d27Ztw/PnzyGTyeDl5YWdO3fCzMys9oNzkIkvNWV6+fIl/vOf/2Dr1q3IycmBpaUlunTpgtOnT3PaC7+mTPfv38f+/fsBvOqLUVlMTIx6CKmu/aksx4S7T5ClLIO5oQFcTI2xo7UDeksbAQCOPXuByff+urnN53ceAwD+0dQK/7RvgGPTBdBBk3vddj916hSWLVuGy5cvIyMjA3v37sWAAQM09lm7di2WLVuGjIwMuLq6YuXKlfjggw/qHC0hIQEqlQrNmjWr82N1ScAYe6s2nPz8fEilUmROCIRlA/laoDQU4nivT9GvXz8Ihdx8EagrpVKJw4cPU6ZaUCbtUCbtNORM7y+fB6NS/V5CqM4zAyM4n7+GvLw8zvoEVJQTT9fNhLlJ/TrL5he/hMX/W4iHDx9q5BWLxdWOFDly5AjOnj2LTp06YdCgQVUK9J07d2LUqFFYu3YtevbsiQ0bNmDz5s24deuWum+Ju7t7tZd7jh8/rr4RU25uLj744ANs3rwZPXr0qNdrrK8GUhQTQgh5Z+mwU9zrteC5c+ciPDy8yu7+/v41jkyKiIhAaGio+kZhK1euxLFjx7Bu3TosWrQIAHD58uUaI5WUlCAoKAgzZszgvTAHqEAnhBDyN1JdDb2uSktLcfnyZXzzzTca6318fHDu3DmtjsEYQ0hICPr06YNRo0bVOQMXqEAnhBDCLR32cq+YRKc+cnJyUF5eDltbW431tra26k6PtTl79ix27tyJ9u3bq+9E+csvv6Bdu3b1ylYfVKATQgjhlkAHs6VxMA696s3MmNY3WvLw8ND7kOHaNKyBfYQQQgjHrKysYGhoWKU2np2dXaXW/ndCBTohhBBuNbDpU0UiEdzd3avMpBcdHd0gOre9LWpyJ4QQwi0d9nLv0qULDA0NMWHCBEyYMOGNuxcUFODOnTvqn9PS0pCUlAQLCws4ODhg+vTpGDVqFDp37ozu3btj48aNSE9P5/S+HlyjAp0QQsjfRnx8vFad4hISEuDl9dctx6dPnw4ACA4Oxs8//4yhQ4ciNzcX3377LTIyMtC2bVscPnxY77eI1iUq0AkhhHCLh3u59+7dG7XdN238+PEYP358fVI1KFSgE0II4ZaBDnq51/fx/wOoUxwhhBDyDtC6hl5SUqJxT9v8/HwAQJmhEEpD3Qd7G2WGr+7ZrPzvDEQNQUUWylQzyqQdyqSdhpypnKMZ2uqq3ECP9bl3cD70hkjryVnCw8Mxb968Kut//fVXmJqa6jwYIYQQ7hQVFWHEiBH6mZxl6yKYm9Zzcpail7AIngEnJyetern/L9K6QK+uht6sWTNkZGRUmVeZL0qlEtHR0ejbt2+DmmGJMtWOMmmHMmmHMtUuNzcXMplMPwX6L4t1U6CP+obTvH93Wje5v2mKOqFQ2CA+nJVRJu1QJu1QJu1QJu00lEwNIQPRLerlTgghhFsCgQ6GrdE19NpQgU4IIYRb1ClOL2jYGiGEEPIOoBo6IYQQbvFwp7j/RXSGCCGEcKviTnH1XfBqcpY2bdrgxx9/5PlFNTxUQyeEEPK3oe3kLP+LqEAnhBDCLWpy1wsq0AkhhHCLernrBX3lIYQQQt4BVEMnhBDCLQODV0t9j0FqRAU6IYQQjumgyR3U5F4bvXzlWbRoEbp06QIzMzPY2NhgwIABSE5O1thnz5498PX1hZWVFQQCAZKSknjNpFQq8fXXX6Ndu3aQSCSQy+UYPXo0njx5wlsm4NWsd61bt4ZEIkGTJk3g7e2Nixcv8pqpsi+++AICgQArV67kNVNISAgEAoHG0q1bN14zAcDt27cREBAAqVQKMzMzdOvWDenp6bxlev0cVSzLli3jLVNBQQEmTpwIe3t7mJiYwMXFBevWreMkj7aZsrKyEBISArlcDlNTU/j5+SE1NZWzTOvWrUP79u1hbm4Oc3NzdO/eHUeOHFFvZ4whPDwccrkcJiYm6N27N27evMlZnnqr6BRX34XUSC9nKC4uDhMmTMCFCxcQHR2NsrIy+Pj4oLCwUL1PYWEhevbsicWLF+sjUq2ZioqKkJiYiDlz5iAxMRF79uxBSkoKAgICeMsEAE5OTlizZg2uX7+OM2fOoHnz5vDx8cGff/7JW6YKUVFRuHjxIuRyOSdZ6prJz88PGRkZ6uXw4cO8Zrp79y48PDzQunVrxMbG4urVq5gzZw6Mjes3C1V9MlU+PxkZGfjpp58gEAgwaNAg3jJNmzYNR48exfbt23H79m1MmzYNkyZNwr59+3jJxBjDgAEDcO/ePezbtw9XrlyBQqGAt7d3tb8HumBvb4/FixcjISEBCQkJ6NOnDwIDA9WF9tKlSxEREYE1a9YgPj4ednZ26Nu3L168eMFJnoaExqHXgL2lvLw8BoDl5OTU+bHZ2dkMAIuLi6uyLS0tjQFgV65cqfNxS0tLWVRUFCstLdVppgqXLl1iANiDBw8aTKaK9+HEiRO8Znr06BFr2rQpu3HjBlMoFGzFihV1Oq6uMwUHB7PAwMA6H4vLTEOHDmWffvppg8r0usDAQNanTx9eM7m6urJvv/1WY79OnTqx2bNn85IpOTmZAWA3btxQ71NWVsYsLCzYpk2b9JKJMcaaNGnCNm/ezFQqFbOzs2OLFy9Wb3v58iWTSqVs/fr1Wh8vJyeHAWB5eXlvlUcbFX+fnu5Zy8qObanX8nTPWs7z/t3x0oaRl5cHALCwsODj6aulTaa8vDwIBAI0bty4QWQqLS3Fxo0bIZVK4ebmxlsmlUqFUaNGISwsDK6urnrJUVsmAIiNjYWNjQ2cnJwwbtw4ZGdn85ZJpVLh0KFDcHJygq+vL2xsbNC1a1dERUXxlul1WVlZOHToEEJDQ3nN5OHhgf379+Px48dgjCEmJgYpKSnw9fXlJVNJSQkAaLSkGBoaQiQS4cyZM5znKS8vx44dO1BYWIju3bsjLS0NmZmZ8PHxUe8jFovh6emJc+fOcZ7nrVR0iqvvQmqk9zPEGMP06dPh4eGBtm3b6vvpq6VNppcvX+Kbb77BiBEj9HKXopoyHTx4EI0aNYKxsTFWrFiB6OhoWFlZ8ZZpyZIlMDIywuTJkznPoG0mf39//Otf/8LJkyexfPlyxMfHo0+fPuo/zvrOlJ2djYKCAixevBh+fn44fvw4goKCMHDgQMTFxfGS6XVbt26FmZkZBg4cyHmemjKtXr0abdq0gb29PUQiEfz8/LB27Vp4eHjwkql169ZQKBSYMWMGnj17htLSUixevBiZmZnIyMjgLMv169fRqFEjiMVifPnll9i7dy/atGmDzMxMAICtra3G/ra2tupt5H+T3nu5T5w4EdeuXdPLN1tt1ZZJqVRi2LBhUKlUWLt2Le+ZvLy8kJSUhJycHGzatAlDhgzBxYsXYWNjo/dMly9fxqpVq5CYmAgBDzd+eNN5Gjp0qPrfbdu2RefOnaFQKHDo0CHOC6zqMqlUKgBAYGAgpk2bBgDo0KEDzp07h/Xr18PT01PvmV73008/YeTIkZxd09c20+rVq3HhwgXs378fCoUCp06dwvjx4yGTyeDt7a33TEKhELt370ZoaCgsLCxgaGgIb29v+Pv7c5rF2dkZSUlJeP78OXbv3o3g4GCNL3+v/74xxnj5HdQK3VhGL/RaQ580aRL279+PmJgY2Nvb6/Op36i2TEqlEkOGDEFaWhqio6P1UjuvLZNEIoGjoyO6deuGyMhIGBkZITIykpdMp0+fRnZ2NhwcHGBkZAQjIyM8ePAAX331FZo3b85LpurIZDIoFApOeybXlMnKygpGRkZo06aNxv4uLi6c9XKvLVNlp0+fRnJyMsaOHctpltoyFRcXY+bMmYiIiED//v3Rvn17TJw4EUOHDsX333/PSyYAcHd3VxeuGRkZOHr0KHJzc9GiRQvO8ohEIjg6OqJz585YtGgR3NzcsGrVKtjZ2QFAldp4dnZ2lVp7gyEQ6KCXOxXotdFLgc4Yw8SJE7Fnzx6cPHmS018CXWaqKMxTU1Nx4sQJWFpa8p7pTY/jqim5tkyjRo3CtWvXkJSUpF7kcjnCwsJw7NgxXjJVJzc3Fw8fPoRMJuMlk0gkQpcuXaoMh0pJSYFCoeAlU2WRkZFwd3fnvC9GbZmUSiWUSiUMXrteamhoqG7l0HemyqRSKaytrZGamoqEhAQEBgZykulNOUtKStCiRQvY2dkhOjpava20tBRxcXHo0aOH3vKQhkcvTe4TJkzAr7/+in379sHMzEz9zVIqlcLExAQA8PTpU6Snp6vHeVf84bOzs1N/I9VnprKyMnzyySdITEzEwYMHUV5ert7HwsICIpFI75kKCwuxYMECBAQEQCaTITc3F2vXrsWjR48wePBgnefRJpOlpWWVLzpCoRB2dnZwdnbmJVNBQQHCw8MxaNAgyGQy3L9/HzNnzoSVlRWCgoJ4yQQAYWFhGDp0KHr16gUvLy8cPXoUBw4cQGxsLG+ZACA/Px+7du3C8uXLOclRl0zm5ubw9PREWFgYTExMoFAoEBcXh23btiEiIoKXTACwa9cuWFtbw8HBAdevX8eUKVMwYMAAjY5pujRz5kz4+/ujWbNmePHiBXbs2IHY2FgcPXoUAoEAU6dOxcKFC9GqVSu0atUKCxcuhKmpKUaMGMFJnnqjJnf9eNvu8XUZtgag2mXLli3qfbZs2VLtPnPnztU6U12GhdSWqWL4XHVLTEwML5mKi4tZUFAQk8vlTCQSMZlMxgICAtilS5e0zqPrTNXhethabZmKioqYj48Ps7a2ZkKhkDk4OLDg4GCWnp7OW6YKkZGRzNHRkRkbGzM3NzcWFRXFe6YNGzYwExMT9vz58zpl4SpTRkYGCwkJYXK5nBkbGzNnZ2e2fPlyplKpeMu0atUqZm9vr/48zZ49m5WUlGidp66ZxowZwxQKBROJRMza2pp9+OGH7Pjx4+rtKpWKzZ07l9nZ2TGxWMx69erFrl+/Xqc8eh22djCSlcX8Vq/l6cFIGrZWC73U0Bljte4TEhKCkJAQ7sP8V22ZmjdvrlVuXart+YyNjbFnzx49pXnlbc7B/fv3dR+kktoymZiYcNbc/ybanqcxY8ZgzJgxHKd5RdtMn3/+OT7//HOO07yiTSY7Ozts2bJFD2le0SbT5MmT9TqKo7Y+MQKBAOHh4QgPD9dPIPK3QAP7CCGEcMtAoJsFdKe4mtDkLIQQQrili3ux//fx8fHxehlt9HdEBTohhBBuUac4vaAmd0IIIeQdQDV0Qggh3NJhkzt5MyrQCSGEcEogENT7trQN9ra2DQh95SGEEELeAVRDJ4QQwi1qctcLKtAJIYRwiwp0vaAzRAghhLwDqIZOCCGEW4K/7vRWr2OQGmldoJeUlGhM0Zmfnw/gr+kOG4KKHA0lD0CZtEWZtEOZtEOZaqfXHNTkrhcCpuUMDuHh4Zg3b16V9b/++itMTU11HowQQgh3ioqKMGLECOTl5XF2K9X8/HxIpVI8O7kL5o3qV07kFxShSZ/BcHJygqGhISZMmIAJEyboKOm7QesCvboaerNmzfBo8iewaCAN92WGQpzsORR9zu6EUXnD+BZMmbRTkalv374QCoV8xwHwqgYTHR3dIM9Tz3+thpGylO84AIAyoQhnR06m964WDe29ewYDtIw6pZ8CPebfuinQvT7hNO/fndZFsVgshlgsrnqAciWEDezShlG5EsIG8ktcgTJpRygUNphCoUJDPE9GytIGUShURu+ddhrKe2eozz7RAoEOmtwbWEHTADWQujUhhJB3Fk3OohfUy4AQQgh5B1ANnRBCCLeol7teUIFOCCGEWwY6GIde38f/D6CvPIQQQsg7gGrohBBCuEVN7npBBTohhBBuUS93vaCvPIQQQsg7gGrohBBCuEVN7npBBTohhBBuUZO7XuilQF8Sn4K9dzKQ/OwFTIwM0V1mgYUebeDcxEy9D2MM311MxuYb9/HspRLv2zXBaq/2cLXk7p69px/nYPnlO0jMfo6MwhL8++P3EfieTL09q/AlZpy9hRPp2XheUoYPmlpipWc7tGrSiLdMBaVlmHn2Fvbfy0BucSmam5tiQoeW+LJ9C94yCVftq/Zxiz3a4Cv3VpxkOnXqFJYtW4bLly8jIyMDe/fuxYABAzT2uX37Nr7++mvExcVBpVLB1dUVv//+OxwcHDjJVNt5GnM8Eb/cfqjxmPftmuDs0F6c5AGAM7n5WHUvE0l5hcgsUeJX91bob9ek2n0nX0/DlvQ/sbiNAya0sOMsU23vXXh4OHbs2IGHDx9CJBLB3d0dCxYsQNeuXTnLVNN7pyxX4f/O38aR+1lIyyuCVGyEPs2ssbBnG8gbmXCWqbb3bl/GU2xJz8aVvCI8VZbhrIcr2kslnOUhDZ9e2jBOPc7F/3NrgTNDe+FIUA+UqRj67T2PQmWZep/vL9/Byit3sap3e5wf5gk7iTH8957Di1Lu7sNcqCxHeyspVvVuX2UbYwyDDl5CWl4Rdn/cFfEjPOFgZgK/vec0cuszEwB8deoGjj/IxlZfd1wf/SEmd3wPU2OvY//dDN4yPRzrq7Fs8u4AAYAgRzl3mQoL4ebmhjVr1lS7/e7du/Dw8EDr1q0RGxuLq1evYs6cOTA2NuYuUy3nCQB8FTYa5+pAYDfO8gBAUbkK7cxN8b2rosb9DmQ+Q8LzQsjE3N+Lvbb3zsnJCWvWrMH169dx5swZNG/eHD4+Pvjzzz+5y1TDe1dUVo4r2XmY9b4zLo3wxO8fvY/U54UIOnCRszxA7e9dUbkK3SzMMK+1Pac5dKKiyb2+C6mRXmrohwZ01/h5c9+OkG86isTs5/igqRUYY1h95S5mdHFSFwI/9e2IppuO4rfkx/i8XXNOcvk1t4Vfc9tqt6U+L8TFzGdI+tRL3UqwxssN8k1HsCP5MULb1vwHkotMAHAx8ylGuTSDp70VAGBcu+bYdOM+Lmc/R0Cl2qA+M9lJNAvJA/cy0dveCi05rC34+/vD39//jdtnzZqFfv36YenSpep1LVu25CwPUPt5AgCxoUGV88UlH5vG8LFpXOM+T16W4h837yPqfWd8Ep/Ceaba3rsRI0Zo/BwREYHIyEhcu3YNH374ISeZanrvpGIhjg7sobFupWc79Nh5Cun5RXAw52b66Nreu+H//RvwoKjkjfs0GAYGr5b6HgNAly5daPrUN+DlK0/ef2vdTcQiAEBafhEyi0rg7WCt3kdsZIhe9lY4n/GUj4goKVcBAIwNDdXrDA0EEBkY4OyTXF4yAUAPmSUO3MvE44JiMMYQ+/BPpD4rQF8HG94yVZZV+BKH72fhs1pqhFxSqVQ4dOgQnJyc4OvrCxsbG3Tt2hVRUVG8ZaoQ9ygH8o1H0GbrCXxxIgnZPP8xVjGGcUl3MaWlDC5m3BRM9VFaWoqNGzdCKpXCzc2N7zhq+aVKCAA01kOLxrtAIBDoZAGA+Ph43Lp1iwrzaui9QGeMIezUTfSUW6Ct1auab2bhqz9qtqaa07PamIqRVfhS3xEBAK2bNILCzASzz93Cs5elKC1XYWl8CjKLSpDJUyYAWNm7HVwszdA88jhM1xzAR/su4AcvN3g0teQtU2W/3H4IM6ERghy5aS3QRnZ2NgoKCrB48WL4+fnh+PHjCAoKwsCBAxEXF8dbLr/mttjm547jA3ti6QdtkZD1DD57zqKkrJy3TBF3M2AkEOD/1dKyoG8HDx5Eo0aNYGxsjBUrViA6OhpWVlZ8xwIAvCwrx8yztzDM2R7mVKCTBkTvvdwnx17D9Zw8xA7+oMo2wWu9GBmruk5fhIYG2PnR+/j8xBXYbDgCQ4EAHzpYw0/Bb014TdI9XMp4ir39u8LBzASnn+RiUsxVyCRifNgAauk/30rH8Nb2MDYyrH1njqhUr1pXAgMDMW3aNABAhw4dcO7cOaxfvx6enp685Bri1FT977ZW5nC3bYz3fjqOw/ezOO1v8CZX8gqx7n4Wzni48vZ79iZeXl5ISkpCTk4ONm3ahCFDhuDixYuwseH3M64sV2HkkQSoGLDG6819JchraD50vdBrgT4l9hoO3svEyU88YG/2V+9QO8mrmnlm4UvIKl1f/LO4BDav1dr1yd22MS6P9EJeiRKl5SpYm4rRY0cc3G0b85KnuKwcs8/dwr8/fh/9/tsLub21FFf/zENE4l3eC/Qzj3OR/KwA//LvzGsOKysrGBkZoU2bNhrrXVxccObMGZ5SVSWTGENhZoo7zwt5ef5zT1/gzxIlXE4mqdeVM2DmrXSsTcvEzT4deMkFABKJBI6OjnB0dES3bt3QqlUrREZGYsaMGbxlUparMPxIPNLyixA9sCfVzuuChq3phV4KdMYYpsRex767GTgxqCdavNZZqoW5KexMxfgj/U90/G8nkNJyFU49ysFCD1d9RKyR9L+/uKnPCnA5+znmdXfhJYeyXAWlisHgtQ+2oUAAFWO8ZKrsp5sP0MlGCjdrKa85RCIRunTpguTkZI31KSkpUCj4u7b/utziUjwsKFZ/odW3YU0t4WWlOSx0wMVkDLO3wqf2DaN5uwJjDCUl/PU3qCjM7zwvRPTAnrA0EfGWhZA30UuBPinmGnYkP8Ke/l1hJjJSX4OWioUwMTKEQCDA5I7vYXF8ChwbS+DYuBGWxKfAVGiI4c5Nazn62ysoLcOdvL9qR2l5RUj6Mw8WYiEczE3x79THsDYRo5mZCW7k5GN63HUEtpShL4fN7rVl6tXUEt+cuQkTI0M4mJng1ONcbL/9EMt6teUtEwDklyixO/UJln6gny9gBQUFuHPnzl+Z0tKQlJQECwsLODg4ICwsDEOHDkWvXr3g5eWFo0eP4sCBA4iNjeUuUw3nycJYhG8v/gdBjnLIJMZ4kF+E2eduwcpEhAEcjU4AgIKyctyr1OfjQVEJruUVoonICM1MxLAUadYyhQYC2IqFcOJwfHVN752lpSUWLFiAgIAAyGQy5ObmYu3atXj06BEGDx7MXaYa3jt5I2MMPRyPK9nPERXQDeWMqf+GWRiLIDLkpitSbe/d09IyPCouQUbJq07Gqf/d11YshK1xQ/vCoYthZzRsrTZ6KdA3XL8PAPhw91mN9Zv7dkRwm1c3+fiHuyOKy8oxKeYanpW8urHM4QE9YCbirlnrcvZzeFfKFHb6BgBglEsz/OTTCRmFLxF26gayikogkxjjU5dmmPW+M2d5tMn0L//OmHX2FkYfvYynL0uhMDfFtz1c8AVHQ/u0yQQAO1MegwEY5qyfMbEJCQnw8vJS/zx9+nQAQHBwMH7++WcEBQVh/fr1WLRoESZPngzn/9/evUc1eeZ5AP+GJCSBJFyCgIAwXrGKUovYeqnVaj2LjmNXrHMW21Vsz1k72K3jTrva7lR7bOseO9Pu6eyIl3NWe7RWnbHFdu1Wcaxg7dYLSLUFrSitULkIQkII5Ma7f1AoEcEoJM+76fdzzns4eQPJl7xJfnkueZ/kZBw4cADTpk3zWaa+Hqc/P5qKr+st2F1WiSa7E4NDtXgkIQp7MtJ9+hw/Z27B3C8vdl1eW3YNAJCVEIWtqb79Gl9v+jp2W7ZswcWLF/Huu++ivr4eJpMJ6enpOHHiBMaO9d2Hxb6O3SsPjcbHV2sAABP3HPf4u6OZU7u+QjrQ7nTsPqltxLPnK7quX3buSsfvjYzDS6Nk9t10drn7hUKS7q2v1mKxICwsDDU5C2CSyQlknUo1jkx/EnMKd0Pt9t0Jae4GM3mnM9PcuXOhVstjbNLpdOKTTz6R5eP0yM4/QOV0iI4DAHCpg1Gw7Hc8dncgt2N3E0FIOvQlzGYzjEbfnJGzs040nSuA0dC/M2xamq0In/CIT/P+fyeTUkxERAFrAE8sQ71jQSciIt9il7tf8CMPERFRAGALnYiIfIvrofsFCzoREfkWu9z9ggWdiIh8TPHj1t/boL6wD4OIiCgAsIVORES+xS53v2BBJyIi32JB9wt2uRMREQUAttCJiMjHOCnOH1jQiYjIt9jl7hdeF3S73e6xHrHFYgEAuJRqOJUDH+xeuJRqj59ywEze6czidMpjIQ3gpyxyfJxcavksj9mZhceub3I7dm6OuAYcr1dbW79+PV599dUe+/fs2YOQkJABD0ZERL5js9mQlZXln9XWLp4dmNXWRk/EqFGjoFQqkZOTg5ycnAFKGhi8Lui3a6EPGTIE1dXVMJlMPgt4N5xOJ/Lz8/HYY4/JahnH/Px8PHpyH1QyWcbRpVTj2NRfy/JxmvreO7JYWhLoaEmdXPLPGL1xA5QO+53/wA/cwRpcXPt7ZrqDzkx8jveuEUEYllfop4JeNEAFPY3Lp/bB6y53jUYDjUbTY79arZbNC6aTHDOp3E7ZrMvcSZaPk9Mhize77pQOO5R2eRSqTszkHT7He6dkl3vA4aQ4IiLyLU6K8wsWdCIi8i0FBqCgD0iSgMaCTkREPsbvofsDB1GIiIgCAFvoRETkWxxD9wsWdCIi8jF2ufsDu9yJiIgCAFvoRETkW+xy9wsWdCIi8i0WdL9glzsREVEAEFbQCwsLMX/+fMTFxUGhUCAvL09UlC4bN25Eeno6DAYDoqOj8fjjj+PSpUtCM205X4EJuz9DZO4hROYewrR9hfj0u1qhmbrbuHEjFAoFVq1aJTTHG99WwXDotMc2/Og5oZkAoMbpwm9/qMEDl65gTFk55l35Hhda24TlefhyBYaVXu6xvVJdJyyTS5Lwx7p6TL9cgfvKyvHI5Qq8c6MB7d4tM+ETzc3NWLVqFZKSkqDT6TBlyhScOXPGrxk+b7DgiTPfYuTRczAcOo2Paxo9rpckCW98W4WRR89h0P+cQcb/lqGs2ebXjN5TDNBGfRHW5d7S0oLU1FRkZ2cjMzNTVAwPBQUFyMnJQXp6OlwuF15++WXMmTMHpaWlCA0NFZIpQa/DG1PHYHh4x/3vKruGhR+fwpmsGRhrErtAwZkzZ7Bt2zaMHz9eaI5O9+l1+PjB5K7LQYK76MxuN574rhIPheiwIzEeJqUS3zucMCrFdYzlDR2C9m6XL7U58I/XfsBcY/8WzuiPrfWN2NNoxptxsRilCcb5tjb86/VaGIKCkG2KEJLpmWeewddff41du3YhLi4Ou3fvxuzZs1FaWor4+Hi/ZLC52zHOGIInE6LwZHF5j+vfvlqN/6yoQe74YRip12LT5ev41alLKJ4xHgaVTNa0/pFCoYCin6/H/v79z4Gwgp6RkYGMjAxRd39bn376qcflHTt2IDo6GkVFRZg+fbqQTL8cFutxecOUMdh6/jucqm4UWtCtViuWLFmC7du347XXXhOWoztVkAIxWnmsNQ0AW+obMVilwpvxPx3DhGCxC4WYVJ4v+VxrI5LUajwYohOUCChubcVsgx6PGjo+tCYEq/GxuRkX2sQs9NLa2ooDBw7g4MGDXa/79evXIy8vD7m5uX57vs+JDsec6PDbXidJEjZX1OJ3I+KwYHAkAGBr6jAMP3oOf/mhAcuTov2SkeSFY+h9MJvNAIDIyEjBSTq42yXsu1SFFpcbDw0W03LplJOTg3nz5mH27NlCc3R3paUNI4+eQ8qxEiwrLkeFTVzXNgD8rbkF43Ra5FRWI/3SVfzy6jXsbTQLzdSdQ5Jw0GzBonCj0NbPxBAdvmix4aq9YwWysjY7ztraMEMvplfM5XLB7XZDq9V67NfpdPj888+FZLrVd6121NqdmBUV1rVPowzCVJMBXzY2C0zWi85Jcf3dqE+c5d4LSZKwevVqTJs2DSkpKUKzXKi34OH9hWhztUOvVuKv8yZhjMDW+d69e1FcXOz3McW+TAzXY1vqMIwI1aLO4cSmy9cx+4synJ6eApOgVvE1pxPvNZrxdGQ4fhMVga/a7Hi15gaCFQosDBe/nnO+xQqLux2LBGdZYYpAs7sdj135HkoAbgD/Em3Cr8IMQvIYDAZMnjwZGzZswH333YeYmBi8//77OHXqFEaOHCkk061q2zqWYo7WeD63o4PVqGyV1xK2HXhiGX9gQe/FypUrcf78eVl8Ik+O0ONs1gw02Z34sLway/OL8bfMqUKKemVlJZ5//nkcOXKkRwtGpO5dk2MBTArXY/zx89hTVY/nhg0WkkmSJIzTafFCTFRHLp0Wl+12vNdolkVB399kwSP6UMSoxb4N/LfFioPmZvxHfCxGaoJR1mbHhtobiFGpkCnocdq1axeWL1+O+Ph4KJVKPPDAA8jKykJxcbGQPL25tcRJkOtY80C0sOX4f8kLu9xv47nnnsNHH32Ezz77DAkJCaLjIFgZhBHhekyMicDrU8dgfJQRfyq5KiRLUVER6urqkJaWBpVKBZVKhYKCArzzzjtQqVRwu91Cct0qVKXEWIMOV1rEtVYGqVUYofEc0x8eHIzrTqegRD/5weHEyRYbfh0h/oPFv9fW45+iIjA/zIDRWg3+PtyI5ZERyK2/KSzT8OHDUVBQAKvVisrKSpw+fRpOpxNDhw4Vlqm7GG1Hy7zW7vlcuuFwYlAw22k/Vyzo3UiShJUrV+KDDz7AsWPHZPPivZUkAXZ3+51/0QdmzZqFCxcuoKSkpGubOHEilixZgpKSEiiV8phda3e345K1FbFacZPQ0nTarnHhThUOJ+LVYifGAcBfmiwwqZSYKWicurtWqb3HG1GQAhDzDPcUGhqKwYMHo7GxEYcPH8aCBQtERwIA/EKnQYxGjWP1lq59jvZ2nGxoxkMRYoYq+sQxdL8Q9lHOarWivPynr2JUVFSgpKQEkZGRSExMFJIpJycHe/bswcGDB2EwGFBTUwMACAsLg04nZhbwv50sxd/9IgYJBh2aHS7s/7YKBT/U49CCyULyGAyGHnMKQkNDYTKZhM41eKn0GubGhCNBp8ENuxObyq+j2eVGVnyUsEzLTRF4oqISf75xE/PC9PiqtQ17G814PU7sDOR2ScJfzRYsDDNCJYM3yVn6UGyub0ScWo1RmmB802bHfzU0CR3bP3z4MCRJQnJyMsrLy/HCCy8gOTkZ2dnZfstgdblxteWniZ3f2+w4b25BRLAKQ3Qa/GZoDP5Yfh3DQzUYEarFH8qvQ6cMwhPxJr9l9B7H0P1BWEE/e/YsZs6c2XV59erVAIClS5di586dQjLl5uYCAGbMmOGxf8eOHVi2bJn/AwGotdmx7HARqm12hAWrMC7KiEMLJmM2v5bi4XqbA9nnrqDB4UJUsArpEXocmzIWiSEaYZlSdVrkDhmMN+sa8Kf6mxiiVuH3sYPweJjYbu6TLTZcd7rwhAzG8QFgXWw03rrRgFdq6tDgciNGpcI/RBjx3CBxhclsNmPt2rWoqqpCZGQkMjMz8frrr0Ptx96Vc+YWzP3yYtfltWXXAABZCVHYmjoMvx02GG3udqz++ns0OV2YGK7HwQeTZfcddPIfYQV9xowZkASeCep25JYHALY/NkF0hDs6fvy46AjY+cAI0RFua5ZBj1kGcSdtuZ2H9aG4OkYes7UBQK8Mwiuxg/BK7CDRUbosXrwYixcvFprhYZMRzfMm9Xq9QqHAS6MS8NIo8fN87ojncvcLzp4gIiLfYo+7X3BSHBERUQBgC52IiHyMTXR/YEEnIiLf4hi6X7DLnYiIKACwhU5ERL7FFrpfsKATEZGPcQzdH1jQiYjItxQYgBb6gCQJaBxDJyIiukvNzc1IT0/H/fffj3HjxmH79u2iI7GFTkREPhaAY+ghISEoKChASEgIbDYbUlJSsHDhQphM4k5ZzIJOREQ+Fnhj6EqlEiEhIQCAtrY2uN1u4acPZ5c7EREFnMLCQsyfPx9xcXFQKBTIy8vr8TubN2/G0KFDodVqkZaWhhMnTtzVfTQ1NSE1NRUJCQl48cUXERUlbnVH4C5a6Ha7HXa7veuy2WwGANy8eXPgU90jp9MJm82GhoYGv66K1JfOTDddgMotOk0HlwTZPk6NCIJSJp8z3QiCzWaDOUiFIJkcvPYgFTN5oTMTn+O9a/oxgz9alRartd9d5harteOnxeKxX6PRQKPpuapiS0sLUlNTkZ2djczMzB7X79u3D6tWrcLmzZsxdepUbN26FRkZGSgtLe1awjstLc2j7nU6cuQI4uLiEB4ejq+++gq1tbVYuHAhFi1ahJiYmH79n/0ieWndunUSAG7cuHHjFkDblStXvC0Dd621tVWKjY0dsKx6vb7HvnXr1t0xBwDpww8/9Ng3adIkacWKFR77Ro8eLa1Zs+ae/tcVK1ZI+/fvv6e/HShet9DXrl3btWY50NHVkJSUhGvXriEsLMzbm/Epi8WCIUOGoLKyEkajPNZ6ZibvMJN3mMk7zHRnZrMZiYmJiIyM9Nl9aLVaVFRUwOFwDMjtSZIExS0t/du1zu/E4XCgqKgIa9as8dg/Z84cfPHFF17dRm1tLXQ6HYxGIywWCwoLC/Hss8/edZaB5HVB761bIywsTBZPzu6MRiMzeYGZvMNM3mEm78gtU1CQb7v/tVottFqtT+/jbtXX18PtdvfoHo+JiUFNTY1Xt1FVVYWnn34akiRBkiSsXLkS48eP90Vcr3GWOxER/Szd2tq/XQ9Ab9LS0lBSUuKDVPdO/MwMIiIiP4qKioJSqezRGq+rqxM7qa2f7rmgazQarFu37p7GL3yFmbzDTN5hJu8wk3fklkluefwpODgYaWlpyM/P99ifn5+PKVOmCErVfwpJEvxNeCIiogFmtVpRXl4OAJgwYQLeeustzJw5E5GRkUhMTMS+ffvw1FNPYcuWLZg8eTK2bduG7du345tvvkFSUpLg9PeGBZ2IiALO8ePHMXPmzB77ly5dip07dwLoOLHMpk2bUF1djZSUFLz99tuYPn26n5MOHBZ0IiKiAMBJcURERAGABZ2IiCgAsKATEREFABZ0IiKiAMCCTkREFABY0ImIiAIACzoREVEAYEEnIiIKACzoREREAYAFnYiIKACwoBMREQUAFnQiIqIA8H95nV3h30JgxQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACooElEQVR4nOzdd1xTV/8H8E+AhCWg7EQggggoONG6qIoiQ6uIWxyoaO3j1v6odT2idVtx1Lqto9ZRq+IeWAG1LhCxrgIqioNRkCFDCOT8/uAhNbKC5CZov+++7qvm3pObDzeBk3PuuffwGGMMhBBCCPmoaag7ACGEEEJqjyp0Qggh5BNAFTohhBDyCaAKnRBCCPkEUIVOCCGEfAKoQieEEEI+AVShE0IIIZ8AqtAJIYSQTwBV6IQQQsgngCr0OiI4OBg8Hk9uXaNGjTB69Oga7efq1asIDg5GVlZWjZ73/mtFRESAx+Pht99+q9F+qpKfn4/g4GBERESU27Zr1y7weDw8ffpUaa/HhR9++AH29vYQCATg8XjIysrC0qVLERoaqtIcc+fORevWrWFsbAwdHR3Y2dnhyy+/xLNnz1SagxBSd2ipOwCp3NGjR2FoaFij51y9ehULFy7E6NGjUb9+fU5fq6by8/OxcOFCAEC3bt3ktvXu3RvXrl2DUCjkNENtxMbGYurUqRg3bhwCAgKgpaUFAwMDLF26FAMHDkS/fv1UliUrKwvDhg1D06ZNYWBggAcPHmDx4sU4fvw47t+/DxMTE5VlIYTUDVSh12GtW7fm/DUKCgqgq6urkteqipmZGczMzNSaoTr3798HAIwfPx6fffYZp69VUlKC4uJiaGtrV7j9xx9/lHvcrVs32NraolevXjh27BjGjh3LaT5CSN1DXe5qcOrUKbRq1Qra2tqwtbXF999/X2G597vBpVIpFi9eDEdHR+jq6qJ+/fpo0aIF1q1bB6C02z4oKAgAYGtrCx6PBx6PJ+vibtSoEb744gscOXIErVu3ho6OjqzFXFn3/tu3bzFz5kxYWlpCV1cXXbt2xe3bt+XKdOvWrVyLGwBGjx6NRo0aAQCePn0qq7AXLlwoy1b2mpV1uf/0009o2bIldHR0YGxsDD8/Pzx8+LDc69SrVw+PHj1Cr169UK9ePVhbW+Prr79GYWFhhcf2XQcPHoSnpyeEQiF0dXXRtGlTfPvtt8jLy5P7GUeMGAEAaN++vSw7j8dDXl4edu/eLfuZ3j0WKSkpmDBhAqysrCAQCGBra4uFCxeiuLhYVubp06fg8XhYuXIlFi9eDFtbW2hrayM8PLza7O8qO75aWlV/Ty97vVWrVmHFihVo1KgRdHV10a1bN8THx0MikeDbb7+FSCSCkZER/Pz8kJaWJrcPqVSKlStXwsnJCdra2jA3N8eoUaPw4sULWZnp06dDX18fOTk55TIMGTIEFhYWkEgksnUHDx5Ex44doa+vj3r16sHLy6vcZ+3JkycYOnQoRCIRtLW1YWFhgR49eiA2NrZGx4qQTxIjKnXhwgWmqanJ3Nzc2JEjR9ihQ4dYu3btmI2NDXv/7RCLxSwgIED2eNmyZUxTU5MtWLCA/f777+zs2bNs7dq1LDg4mDHG2PPnz9mUKVMYAHbkyBF27do1du3aNZadnS3bn1AoZHZ2duynn35i4eHh7ObNmxW+Vnh4OAPArK2tma+vLztx4gTbu3cvs7e3Z4aGhuzx48eysl27dmVdu3Yt97MGBAQwsVjMGGPs7du37OzZswwACwwMlGV79OgRY4yxnTt3MgAsMTFR9vylS5cyAGzYsGHs1KlTbM+ePczOzo4ZGRmx+Ph4udcRCASsadOm7Pvvv2cXLlxg//3vfxmPx2MLFy6s9j357rvv2Jo1a9ipU6dYREQE27x5M7O1tWXu7u6yMvfv32fz5s1jANjOnTtl2a9du8Z0dXVZr169ZD/T/fv3GWOMJScnM2trayYWi9mWLVvYhQsX2Hfffce0tbXZ6NGjZftOTExkAFjDhg2Zu7s7++2339j58+fljkVlJBIJy8/PZzExMaxz587MwcGBvXnzpsrnlL2eWCxmffr0YSdPnmR79+5lFhYWzMHBgY0cOZKNHTuWnTlzhm3evJnVq1eP9enTR24fX375JQPAJk+ezM6ePcs2b97MzMzMmLW1Nfv7778ZY4zduXOHAWDbtm2Te25mZibT1tZmM2fOlK1bsmQJ4/F4bOzYsezkyZPsyJEjrGPHjkxfX192PBljzNHRkdnb27Off/6ZRUZGssOHD7Ovv/6ahYeHV3usCPnUUYWuYu3bt2cikYgVFBTI1uXk5DBjY+NqK/QvvviCtWrVqsr9r1q1qlzF+O7+NDU1WVxcXIXbKqrQ27Rpw6RSqWz906dPGZ/PZ+PGjZOtU6RCZ4yxv//+mwFgCxYsKFf2/Qo9MzNTVlG+KykpiWlrazN/f3+51wHAfv31V7myvXr1Yo6OjuVeqypSqZRJJBIWGRnJALA7d+6UyxgVFSX3HH19fbljV2bChAmsXr167NmzZ3Lrv//+ewZAVlGVVbCNGzdmRUVFCmdNTk5mAGRL+/bt2cuXL6t9XtnrtWzZkpWUlMjWr127lgFgffv2lSs/ffp0BkD2xfDhw4cMAJs4caJcuRs3bjAAbM6cObJ1bdq0YZ06dZIrt3HjRgaA3b17lzFW+p5qaWmxKVOmyJV78+YNs7S0ZIMHD2aMMZaens4AsLVr11b7MxLyb0Rd7iqUl5eHqKgo9O/fHzo6OrL1BgYG6NOnT7XP/+yzz3Dnzh1MnDgR586dq7ArszotWrSAg4ODwuX9/f3lRt+LxWJ06tSpxt3BNXXt2jUUFBSUOw1gbW2N7t274/fff5dbz+Pxyh3DFi1aKDTq+8mTJ/D394elpSU0NTXB5/PRtWtXACjXvV8TJ0+ehLu7O0QiEYqLi2WLj48PACAyMlKufN++fcHn8xXev6mpKaKionDlyhVs27YNr1+/hru7O5KTkxV6fq9evaCh8c+fgKZNmwIoHaD4rrL1SUlJACB7799/bz777DM0bdpU7r0ZM2YMrl69iri4ONm6nTt3ol27dnBxcQEAnDt3DsXFxRg1apTccdLR0UHXrl1lp4yMjY3RuHFjrFq1CiEhIbh9+zakUqlCPysh/wZUoatQZmYmpFIpLC0ty22raN37Zs+eje+//x7Xr1+Hj48PTExM0KNHD0RHRyucoaajyCvLmpGRUaP91FTZ/ivKKxKJyr2+np6e3JckANDW1sbbt2+rfJ3c3Fx8/vnnuHHjBhYvXoyIiAhERUXhyJEjAEoHDX6o1NRUnDhxAnw+X25xdnYGAKSnp8uVr+l7o6WlhbZt26Jz584YN24cLl68iCdPnmD58uUKPd/Y2FjusUAgqHJ92bGsyXszfPhwaGtrY9euXQCABw8eICoqCmPGjJGVSU1NBQC0a9eu3LE6ePCg7DjxeDz8/vvv8PLywsqVK9GmTRuYmZlh6tSpePPmjUI/MyGfMhrlrkINGjQAj8dDSkpKuW0VrXuflpYWZs6ciZkzZyIrKwsXLlzAnDlz4OXlhefPn0NPT6/afbx/rXt1Ksv67mVROjo6yM7OLlfu/QqrJsr2X1Fr89WrVzA1Nf3gfb/r4sWLePXqFSIiImStcgA1vo6/IqampmjRogWWLFlS4XaRSCT3uKbvzfusrKwgEokQHx9fq/1U5933xsrKSm7b++9NgwYN4Ovriz179mDx4sXYuXMndHR0MGzYMFmZsvK//fYbxGJxla8tFouxY8cOAEB8fDx+/fVXBAcHo6ioCJs3b1bKz0fIx4pa6Cqkr6+Pzz77DEeOHJFrOb558wYnTpyo0b7q16+PgQMHYtKkSXj9+rVsdHjZZU61aVm+a//+/WCMyR4/e/YMV69elRvJ3ahRI8THx8uNKM/IyMDVq1fl9lWTbB07doSuri727t0rt/7Fixe4ePEievTo8SE/Tjlllej7l4dt2bJF4X1oa2tX+DN98cUXuHfvHho3boy2bduWW96v0Gvr0aNHePHiBezt7ZW63/d1794dAMq9N1FRUXj48GG592bMmDF49eoVTp8+jb1798LPz0/uHgleXl7Q0tLC48ePKzxObdu2rTCHg4MD5s2bh+bNmyMmJka5PyQhHyFqoavYd999B29vb/Ts2RNff/01SkpKsGLFCujr6+P169dVPrdPnz5wcXFB27ZtYWZmhmfPnmHt2rUQi8Vo0qQJAKB58+YAgHXr1iEgIAB8Ph+Ojo4wMDD4oLxpaWnw8/PD+PHjkZ2djQULFkBHRwezZ8+WlRk5ciS2bNmCESNGYPz48cjIyMDKlSvL3ajGwMAAYrEYx44dQ48ePWBsbAxTU1PZpW3vql+/PubPn485c+Zg1KhRGDZsGDIyMrBw4ULo6OhgwYIFH/TzvK9Tp05o0KABvvrqKyxYsAB8Ph+//PIL7ty5o/A+mjdvjoiICJw4cQJCoRAGBgZwdHTEokWLEBYWhk6dOmHq1KlwdHTE27dv8fTpU5w+fRqbN28u18JVxJ9//okZM2Zg4MCBsLOzg4aGBu7evYs1a9bAxMQE//d//1fjfdaEo6MjvvzyS/zwww/Q0NCAj48Pnj59ivnz58Pa2hozZsyQK+/p6QkrKytMnDgRKSkpct3tQOkXwkWLFmHu3Ll48uQJvL290aBBA6SmpuLmzZvQ19fHwoUL8eeff2Ly5MkYNGgQmjRpAoFAgIsXL+LPP//Et99+y+nPTMhHQd2j8v6Njh8/zlq0aMEEAgGzsbFhy5cvZwsWLKh2lPvq1atZp06dmKmpqey5gYGB7OnTp3LPmz17NhOJRExDQ4MBkF3SIxaLWe/evSvMVNko959//plNnTqVmZmZMW1tbfb555+z6Ojocs/fvXs3a9q0KdPR0WHNmjVjBw8eLDfKnbHSy/Zat27NtLW1GQDZa1Z02RpjjG3fvl12rIyMjJivr6/cZUyMlY5y19fXL5epomNakatXr7KOHTsyPT09ZmZmxsaNG8diYmJkl6iVqWyUe2xsLOvcuTPT09NjAORG/P/9999s6tSpzNbWlvH5fGZsbMxcXV3Z3LlzWW5uLmPsn1Hnq1atqjYrY4ylpKSwESNGsMaNGzM9PT0mEAiYnZ0d++qrr1hSUlK1z6/s9cre80OHDsmtr+jnLikpYStWrGAODg6Mz+czU1NTNmLECPb8+fMKX3POnDmyyyDfHVn/rtDQUObu7s4MDQ2ZtrY2E4vFbODAgezChQuMMcZSU1PZ6NGjmZOTE9PX12f16tVjLVq0YGvWrGHFxcXV/tyEfOp4jL3Tn0oIIYSQjxKdQyeEEEI+AVShE0IIIRU4efIkHB0d0aRJE2zfvl3dcapFXe6EEELIe4qLi9GsWTOEh4fD0NAQbdq0wY0bN8rdp6EuoRY6IYQQ8p6bN2/C2dkZDRs2hIGBAXr16oVz586pO1aVqEInhBDyybl06RL69OkDkUgEHo+H0NDQcmU2btwIW1tb6OjowNXVFZcvX5Zte/XqFRo2bCh7bGVlhZcvX6oi+gejCp0QQsgnJy8vDy1btsSGDRsq3H7w4EFMnz4dc+fOxe3bt/H555/Dx8dHNmdBRWeja3s3R64pfGOZwsJCuTuBSaVSvH79GiYmJnX+hySEECKPMYY3b95AJBLJTdKjbG/fvkVRUZFS9sUYK1ffaGtrl7vTIwD4+PjIJkKqSEhICAIDAzFu3DgAwNq1a3Hu3Dls2rQJy5YtQ8OGDeVa5C9evED79u2V8nNwRtEL1stu0kELLbTQQsuns1R2MyBlKCgoYHrgKS1rvXr1yq2raDrm9wFgR48elT0uLCxkmpqa7MiRI3Llpk6dyrp06cIYY0wikTB7e3v24sULlpOTw+zt7Vl6eroyD4/SKdxCnz17NmbOnCl7nJ2dDRsbG8THx9eZUX8SiQTh4eFwd3ev0TSUXKJMiqFMiqFMiqFM1Xv9+jUcHBw++LbQiigqKkI+GEZCHwLUrie3CAw/5+bi+fPncreVrqh1Xp309HSUlJTAwsJCbr2FhYVsQiotLS2sXr0a7u7ukEql+Oabb+QmpaqLFK7QK+vWMDY2rjM/pEQigZ6eHkxMTOrELwxAmRRFmRRDmRRDmRSnilOmOtCAoJavo/G/c9qGhobl5on4UO//7Oy9Lv2+ffuib9++SnktVaBBcYQQQv5VTE1NoampWW566LS0tHKt9o8JVeiEEEI4paGkRVkEAgFcXV0RFhYmt75sdsSPFU2fSgghhFM8HqBRy559HgAwoF27dtDU1MSkSZMwadKkSsvn5ubi0aNHsseJiYmIjY2FsbExbGxsMHPmTIwcORJt27ZFx44dsXXrViQlJeGrr76qXVA1ogqdEELIRyMqKkqhc+jR0dFwd3eXPS4b1B0QEIBdu3ZhyJAhyMjIwKJFi5CcnAwXFxecPn0aYrGYs+xcowqdEEIIp5TRZV7T53fr1q3Cm8O8a+LEiZg4ceKHh6pjqEInhBDCKQ0eDxq1HeUOlF55TipFg+IIIYSQTwC10AkhhHBKHV3u/0ZUoRNCCOGUhhJGuVOFXj06RoQQQj4a7dq1Q7NmzfDjjz+qO0qdw1mFXt1ctIwxBAcHQyQSQVdXF926dcP9+/flyhQWFmLKlCkwNTWFvr4++vbtixcvXigt45s3bzB9+nSIxWLo6uqiU6dOiIqKkm1PTU3F6NGjIRKJoKenB29vbyQkJCjt9T8kU25uLiZPngwrKyvo6uqiadOm2LRpk1oz8Xi8CpdVq1apLRMAPHz4EH379oWRkREMDAzQoUMH2dSI6sg0evTocseoQ4cOnOVRJNO7JkyYAB6Ph7Vr16o1U3BwMJycnKCvr48GDRrAw8MDN27cUFsmiUSCWbNmoXnz5tDX14dIJMKoUaPw6tUrtWUCgCNHjsDLywumpqbg8XiIjY3lNE9tKPPGMlFRUXjw4EGV16D/W3FWoVc3F+3KlSsREhKCDRs2ICoqCpaWlujZsyfevHkjKzN9+nQcPXoUBw4cwJUrV5Cbm4svvvgCJSUlSsk4btw4hIWF4eeff8bdu3fh6ekJDw8PvHz5Eowx9OvXD0+ePMGxY8dw+/ZtiMVieHh4IC8vTymvX9NMADBjxgycPXsWe/fuxcOHDzFjxgxMmTIFx44dU1um5ORkueWnn34Cj8fDgAED1Jbp8ePHcHNzg5OTEyIiInDnzh3Mnz8fOjo6assEAN7e3nLH6vTp05zlUTQTAISGhuLGjRsQiUSc5lEkk4ODAzZs2IC7d+/iypUraNSoETw9PfH333+rJVN+fj5iYmIwf/58xMTE4MiRI4iPj+f8Ht/VHae8vDx07twZy5cv5zSHMlT2pb+mC6nGh07Tlp2dzQAoNJ0c3pu6TiqVMktLS7Z8+XLZurdv3zIjIyO2efNmxhhjWVlZjM/nswMHDsjKvHz5kmloaLCzZ89W+DpFRUUsNDSUFRUVVZspPz+faWpqspMnT8qtb9myJZs7dy6Li4tjANi9e/dk24qLi5mxsTHbtm1btfvnIhNjjDk7O7NFixbJbW/Tpg2bN2+e2jK9z9fXl3Xv3l3hPFxkGjJkCBsxYkSNMnCdKSAggPn6+tapTIwx9uLFC9awYUN27949JhaL2Zo1a9Se6V1lf2suXLhQZzLdvHmTAWDPnj1Te6bExEQGgN2+fVvhLIwxlp6ezgCw7OzsGj2vJsreuyAtIzaPX79WS5CWEed5P3ZqOYeemJiIlJQUeHp6ytZpa2uja9euuHr1KgDg1q1bkEgkcmVEIhFcXFxkZWqjuLgYJSUl5Vpsurq6uHLlCgoLCwFAbrumpiYEAgGuXLlS69f/kEwA4ObmhuPHj8t6EcLDwxEfHw8vLy+1ZXpXamoqTp06hcDAQE7yKJJJKpXi1KlTcHBwgJeXF8zNzdG+fftyp31UmalMREQEzM3N4eDggPHjxyMtLU2tmaRSKUaOHImgoCA4OztzlqUmmd5VVFSErVu3wsjICC1btqwTmYDS6aN5PB7q169fZzIRopYKvWyGm6rmok1JSYFAIECDBg0qLVMbBgYG6NixI7777ju8evUKJSUl2Lt3L27cuIHk5GQ4OTlBLBZj9uzZyMzMRFFREZYvX46UlBQkJyfX+vU/JBMArF+/Hs2aNYOVlRUEAgG8vb2xceNGuLm5qS3Tu3bv3g0DAwP079+fkzyKZEpLS0Nubi6WL18Ob29vnD9/Hn5+fujfvz8iIyPVkgkAfHx88Msvv+DixYtYvXo1oqKi0L17d9mXR3VkWrFiBbS0tDB16lROMnxIJgA4efIk6tWrBx0dHaxZswZhYWEwNTVVa6Yyb9++xbfffgt/f3+lTeNZ20x1Xdko99oupGpqHeVe3Vy0FVGkjKJ+/vlnMMbQsGFDaGtrY/369fD394empib4fD4OHz6M+Ph4GBsbQ09PDxEREfDx8YGmpqZSXr+mmYDSCv369es4fvw4bt26hdWrV2PixIm4cOGC2jK966effsLw4cM5PVddXSapVAoA8PX1xYwZM9CqVSt8++23+OKLL7B582a1ZAKAIUOGoHfv3nBxcUGfPn1w5swZxMfH49SpU2rJdOvWLaxbtw67du1S6flJRT5P7u7uiI2NxdWrV+Ht7Y3Bgwdz2puh6GdcIpFg6NChkEql2LhxI2d5apLpY8BD7QfEUX1ePbVU6JaWlgBQ5Vy0lpaWKCoqQmZmZqVlaqtx48aIjIxEbm4unj9/jps3b0IikcDW1hYA4OrqitjYWGRlZSE5ORlnz55FRkaGbDsXqspUUFCAOXPmICQkBH369EGLFi0wefJkDBkyBN9//71aMr3r8uXLiIuLw7hx4zjLokgmU1NTaGlpoVmzZnLPadq0Kaej3BU9TmWEQiHEYjGnV05Uleny5ctIS0uDjY0NtLS0oKWlhWfPnuHrr79Go0aN1JKpjL6+Puzt7dGhQwfs2LEDWlpa2LFjh1ozSSQSDB48GImJiQgLC+OsdV6TTP9GdNla5dRSodva2sLS0lJuLtqioiJERkbK5qJ1dXUFn8+XK5OcnIx79+4pfb5afX19CIVCZGZm4ty5c/D19ZXbbmRkBDMzMyQkJCA6Orrcdi5UlEkikUAikUBDQ/5te7dVqupM79qxYwdcXV05O9epaCaBQIB27dohLi5Ormx8fLxKZlKq7jiVycjIwPPnzyEUCtWSaeTIkfjzzz8RGxsrW0QiEYKCgnDu3Dm1ZKoMY4yzUxOKZCqrzBMSEnDhwgWYmJhwnqW6TB+Tsnu513YB6LK1qnB2p7jq5qKdPn06li5diiZNmqBJkyZYunQp9PT04O/vD6C0Eg0MDMTXX38NExMTGBsb4//+7//QvHlzeHh4KCXjuXPnwBiDo6MjHj16hKCgIDg6OmLMmDEAgEOHDsHMzAw2Nja4e/cupk2bhn79+skN1FO2qjLx+Xx07doVQUFB0NXVhVgsRmRkJPbs2YOQkBC1ZCqTk5ODQ4cOYfXq1ZzlqEmmoKAgDBkyBF26dIG7uzvOnj2LEydOICIiQi2ZcnNzERwcjAEDBkAoFOLp06eYM2cOTE1N4efnp5ZMfD6/XMXE5/NhaWkJR0dHtWTKy8vDkiVL0LdvXwiFQmRkZGDjxo148eIFBg0apJZMxcXFGDhwIGJiYnDy5EmUlJTIeheNjY0hEAhUngkAXr9+jaSkJNn18GVfYC0tLWW9oHUF3fpVRT50eHx1l62Fh4czlM6NI7cEBAQwxkovXVuwYAGztLRk2trarEuXLuzu3bty+ygoKGCTJ09mxsbGTFdXl33xxRcsKSmp0kw1uSyEMcYOHjzI7OzsmEAgYJaWlmzSpEksKytLtn3dunXMysqK8fl8ZmNjw+bNm8cKCwsV2jdXmZKTk9no0aOZSCRiOjo6zNHRka1evZpJpVK1ZWKMsS1btjBdXd1y69WZaceOHcze3p7p6Oiwli1bstDQULVlys/PZ56enszMzEz2eQoICKjy88x1popwfdladZkKCgqYn58fE4lETCAQMKFQyPr27ctu3ryptkxll4VVtISHh6slE2OM7dy5s8JMCxYsUGj/qrxsbZ6gPlus3aBWyzxBfbpsrRo8xqqZMLYSOTk5MDIyQnp6ukq7n6oikUhw+vRp9OrVC3w+X91xAFAmRVEmxVAmxVCm6mVkZMDU1BTZ2dmcjQcoqyf+q10fOrUcePmWMSwqzOI078eOJmchhBDCKepyVw06RoQQQsgngFrohBBCOKUBHjRqeSU5tT6rR8eIEEIIp5R5pzi6Dr1y1EInhBDCKWWeQ4+KiqJBcZWgFjohhBDyCaAWOiGEEE4pY3IVan1Wjyp0QgghnCqdnKV2NToPH3TLlH8V+tJDCCGEfAKohU4IIYRT1OWuGlShE0II4RTdKU416BgRQgghnwCFW+iFhYVy8xHn5OQAgGyO7rqgLEddyQNQJkVRJsVQJsVQpuqpMgd1uauGwrOtBQcHY+HCheXW79u3D3p6ekoPRgghhDv5+fnw9/dXyWxr6/SNocurXZVcwKSYlvcaDg4O0NTUxKRJkzBp0iQlJf00KFyhV9RCt7a2RnJycp2aPjUsLAw9e/asE9MTApRJUZRJMZRJMZSpehkZGRAKhR9dhU7Tp1ZO4S53bW1taGtrl1vP5/PrxIfzXZRJMZRJMZRJMZRJMXUlkyozUJe7atAod0IIIZzi/W+p7T5I1ahCJ4QQwilqoasGHSNCCCHkE0AtdEIIIZzSAK/W93Kv7fP/DahCJ4QQwinqclcNOkaEEELIJ4Ba6IQQQjhVOn1q7fdBqkYVOiGEEE7RZWuqQV3uhBBCyCeAKnRCCCGc0uDxlLIAQLt27dCsWTP8+OOPav6p6h6VVOjFxcWYN28ebG1toaurCzs7OyxatAhSqVRW5siRI/Dy8oKpqSl4PB5iY2PVmkkikWDWrFlo3rw59PX1IRKJMGrUKLx69UptmYDSSXKcnJygr6+PBg0awMPDAzdu3FBrpndNmDABPB4Pa9euVWum0aNHg8fjyS0dOnRQayYAePjwIfr27QsjIyMYGBigQ4cOSEpKUlum949R2bJq1Sq1ZcrNzcXkyZNhZWUFXV1dNG3aFJs2beIkj6KZUlNTMXr0aIhEIujp6cHb2xsJCQmcZQKAN2/eYPr06RCLxdDV1UWnTp0QFRUl284YQ3BwMEQiEXR1ddGtWzfcv3+f00wfiqekBQCioqLw4MEDmpilAio5h75ixQps3rwZu3fvhrOzM6KjozFmzBgYGRlh2rRpAIC8vDx07twZgwYNwvjx49WeKT8/HzExMZg/fz5atmyJzMxMTJ8+HX379kV0dLRaMgGAg4MDNmzYADs7OxQUFGDNmjXw9PTEo0ePYGZmppZMZUJDQ3Hjxg2IRCKl5/iQTN7e3ti5c6fssUAgUGumx48fw83NDYGBgVi4cCGMjIzw8OFD6OjoqC1TcnKy3HPOnDmDwMBADBgwQG2ZZsyYgfDwcOzduxeNGjXC+fPnMXHiRIhEIvj6+qo8E2MM/fr1A5/Px7Fjx2BoaIiQkBB4eHjgwYMH0NfXV3omABg3bhzu3buHn3/+GSKRCHv37pW9ZsOGDbFy5UqEhIRg165dcHBwwOLFi9GzZ0/ExcXBwMCAk0ykjmMfKDs7mwFg6enp1Zbt3bs3Gzt2rNy6/v37sxEjRpQrm5iYyACw27dv1zhTUVERCw0NZUVFRUrNVObmzZsMAHv27FmdyVT2Ply4cEGtmV68eMEaNmzI7t27x8RiMVuzZo3CebjIFBAQwHx9fWuUgetMQ4YMqfK9VEem9/n6+rLu3burNZOzszNbtGiRXJk2bdqwefPmqSVTXFwcA8Du3bsn215cXMyMjY3Ztm3bOMmUn5/PNDU12cmTJ+XWt2zZks2dO5dJpVJmaWnJli9fLtv29u1bZmRkxDZv3qxQnvT0dAaAZWdnK/wz1FTZ36ddRqbs1/rmtVp2GZlynvdjp5Iudzc3N/z++++Ij48HANy5cwdXrlxBr169VPHySsuUnZ0NHo+H+vXr14lMRUVF2Lp1K4yMjNCyZUu1ZZJKpRg5ciSCgoLg7OzMSY6aZgKAiIgImJubw8HBAePHj0daWpraMkmlUpw6dQoODg7w8vKCubk52rdvj9DQULVlel9qaipOnTqFwMBAtWZyc3PD8ePH8fLlSzDGEB4ejvj4eHh5eaklU9m00e/2pGhqakIgEODKlSucZCouLkZJSUm53htdXV1cuXIFiYmJSElJgaenp2ybtrY2unbtiqtXr3KSqTaU2eVOKqeSLvdZs2YhOzsbTk5O0NTURElJCZYsWYJhw4ap4uWVkunt27f49ttv4e/vz9lcvIpmOnnyJIYOHYr8/HwIhUKEhYXB1NRUbZlWrFgBLS0tTJ06lZMMH5LJx8cHgwYNglgsRmJiIubPn4/u3bvj1q1bFU4DzHWmtLQ05ObmYvny5Vi8eDFWrFiBs2fPon///ggPD0fXrl1Vnul9u3fvhoGBAfr376/0LDXJtH79eowfPx5WVlbQ0tKChoYGtm/fDjc3N7VkcnJyglgsxuzZs7Flyxbo6+sjJCQEKSkp5U5ZKIuBgQE6duyI7777Dk2bNoWFhQX279+PGzduoEmTJkhJSQEAWFhYyD3PwsICz5494yRTbZSNzajVPqhKr5ZKKvSDBw9i79692LdvH5ydnREbG4vp06dDJBIhICBAFRFqlUkikWDo0KGQSqXYuHGj2jO5u7sjNjYW6enp2LZtGwYPHowbN27A3Nxc5Zlu3bqFdevWISYmpta/sMrKBABDhgyRlXdxcUHbtm0hFotx6tQpTiqs6jKVDbDy9fXFjBkzAACtWrXC1atXsXnzZk4q9Jr+3v30008YPnw4Z+f0Fc20fv16XL9+HcePH4dYLMalS5cwceJECIVCeHh4qDwTn8/H4cOHERgYCGNjY2hqasLDwwM+Pj5Kz/Kun3/+GWPHjkXDhg2hqamJNm3awN/fHzExMbIy7//OMcZU9ntI6qAP7auvyTl0KysrtmHDBrl13333HXN0dCxXVlXn0BXNVFRUxPr168datGih0M+qikzvs7e3Z0uXLlVLpjVr1jAej8c0NTVlCwCmoaHBxGKxWjJVxt7eXu6coyozFRYWMi0tLfbdd9/Jlfnmm29Yp06d1JLpXZcuXWIAWGxsrMJZuMiUn5/P+Hx+uXPHgYGBzMvLSy2Z3pWVlcXS0tIYY4x99tlnbOLEiZxkeldubi579eoVY4yxwYMHs169erHHjx8zACwmJkaubN++fdmoUaMU2q8qz6H/XN+MHW5gUavl5/pmdA69Gio5h56fnw8NDfmX0tTUrPTSJ1VQJJNEIsHgwYORkJCACxcuwMTERO2ZKsIYk53nU3WmkSNH4s8//0RsbKxsEYlECAoKwrlz59SSqSIZGRl4/vw5hEKhWjIJBAK0a9cOcXFxcmXi4+MhFovVkuldO3bsgKurK2djMRTNJJFIIJFIVPr3oibHycjICGZmZkhISEB0dDQno+7fp6+vD6FQiMzMTJw7dw6+vr6wtbWFpaUlwsLCZOWKiooQGRmJTp06cZ6ppjSUtJCqqaTLvU+fPliyZAlsbGzg7OyM27dvIyQkBGPHjpWVef36NZKSkmTXeZf94bO0tISlpaXKMxUXF2PgwIGIiYnByZMnUVJSIjtvZWxszMklUNVlysvLw5IlS9C3b18IhUJkZGRg48aNePHiBQYNGqT0PIpkMjExKfdFh8/nw9LSEo6OjmrJlJubi+DgYAwYMABCoRBPnz7FnDlzYGpqCj8/P7VkAoCgoCAMGTIEXbp0gbu7O86ePYsTJ04gIiJCbZkAICcnB4cOHcLq1as5yVGTTIaGhujatSuCgoKgq6sLsViMyMhI7NmzByEhIWrJBACHDh2CmZkZbGxscPfuXUybNg39+vWTG5SmbOfOnQNjDI6Ojnj06BGCgoLg6OiIMWPGgMfjYfr06Vi6dCmaNGmCJk2aYOnSpdDT04O/vz9nmUgd96FN+5p0uefk5LBp06YxGxsbpqOjw+zs7NjcuXNZYWGhrMzOnTsZgHLLggULFM5Uky6t6jKVdf1XtISHh6slU0FBAfPz82MikYgJBAImFApZ37592c2bNxXOo+xMFeH6srXqMuXn5zNPT09mZmbG+Hw+s7GxYQEBASwpKUltmcrs2LGD2dvbMx0dHdayZUsWGhqq9kxbtmxhurq6LCsrq0ZZuMqUnJzMRo8ezUQiEdPR0WGOjo5s9erVTCqVqi3TunXrmJWVlezzNG/evCp/B2qbiTHGDh48yOzs7JhAIGCWlpZs0qRJcu+RVCplCxYsYJaWlkxbW5t16dKF3b17V+E8quxy39fAjIUaW9Rq2deAutyrw2OMsQ/5IpCTkwMjIyOkp6dz3hWtKIlEgtOnT6NXr17g8/nqjgOAMimKMimGMimGMlUvIyMDpqamyM7O5uzKnbJ6Yn8Dc+jxatdpns+kGJaZxmnejx2dliCEEEI+ATR9KiGEEE7R9KmqQRU6IYQQTlGFrhrU5U4IIeSjQdOnVo5a6IQQQjilAUCjlk1sjf8N346KiqJBcZWgCp0QQgineP/7r7b7IFWjCp0QQgjnqDrmHp1DJ4QQQj4B1EInhBDCKR6vdKntPkjVqEInhBDCKbpsTTWoy50QQgj5BFALnRBCCKc0wINGLdvYtX3+v4HCFXphYaHcnNs5OTkA/pm/uC4oy1FX8gCUSVGUSTGUSTGUqXqqzEFd7qqh8GxrwcHBWLhwYbn1+/btg56entKDEUII4U5+fj78/f1VMtvaMWNL6GvU7gxvnlQK39cpNNtaFRSu0CtqoVtbWyM5OblOTZ8aFhaGnj171onpCQHKpCjKpBjKpBjKVL2MjAwIhUKVVOjHTZRToffNoAq9Kgp3uWtra0NbW7vcej6fXyc+nO+iTIqhTIqhTIqhTIqpK5lUmYG63FWDRrkTQgghnwAa5U4IIYRTdC931aAKnRBCCKc0eEqYbY3q82pRhU4IIYRTdA5dNegcOiGEEPIJoBY6IYQQTlELXTWoQieEEMIpGhSnGtTlTgghhHwCqIVOCCGEUzQfumpQC50QQginNJS0AEC7du3QrFkz/Pjjj6r8ET4KKqnQi4uLMW/ePNja2kJXVxd2dnZYtGgRpFKprAxjDMHBwRCJRNDV1UW3bt1w//59TnM1atQIPB6v3DJp0iQAQGpqKkaPHg2RSAQ9PT14e3sjISFBrZlyc3MxefJkWFlZQVdXF02bNsWmTZvUlqeibTweD6tWrVJbJgB4+PAh+vbtCyMjIxgYGKBDhw5ISkpSW6bRo0eX29ahQwfO8iiS6V0TJkwAj8fD2rVr1ZopODgYTk5O0NfXR4MGDeDh4YEbN26oLZNEIsGsWbPQvHlz6OvrQyQSYdSoUXj16pXaMgHAkSNH4OXlBVNTU/B4PMTGxnKapy6JiorCgwcPKvwc/9uppMt9xYoV2Lx5M3bv3g1nZ2dER0djzJgxMDIywrRp0wAAK1euREhICHbt2gUHBwcsXrwYPXv2RFxcHAwMDDjJFRUVhZKSEtnje/fuoWfPnhg0aBAYY+jXrx/4fD6OHTsGQ0NDhISEwMPDAw8ePIC+vr7KMwHAjBkzEB4ejr1796JRo0Y4f/48Jk6cCJFIBF9fX5XnSU5Olit/5swZBAYGYsCAAUrPomimx48fw83NDYGBgVi4cCGMjIzw8OFD6OjoqC0TAHh7e2Pnzp2yxwKBgLM8imYCgNDQUNy4cQMikYjTPIpkcnBwwIYNG2BnZ4eCggKsWbMGnp6eePToEczMzFSeKT8/HzExMZg/fz5atmyJzMxMTJ8+HX379kV0dDQnearLBAB5eXno3LkzBg0ahPHjx3OWQ1lolLuKsA+UnZ3NALD09PRqy/bu3ZuNHTtWbl3//v3ZiBEjGGOMSaVSZmlpyZYvXy7b/vbtW2ZkZMQ2b96scKaioiIWGhrKioqKFH7Ou6ZNm8YaN27MpFIpi4uLYwDYvXv3ZNuLi4uZsbEx27Ztm1oyMcaYs7MzW7RokVyZNm3asHnz5qkk0/t53ufr68u6d+9e4/0qM9OQIUNkn63aUGamgIAA5uvrW6cyMcbYixcvWMOGDdm9e/eYWCxma9asUXumd5X9nblw4UKdyXTz5k0GgD179kztmRITExkAdvv27RrvMz09nQFg2dnZNX6uosrev9/NG7Iblta1Wn43b8h53o+dSrrc3dzc8PvvvyM+Ph4AcOfOHVy5cgW9evUCACQmJiIlJQWenp6y52hra6Nr1664evWqKiKiqKgIe/fuxdixY8Hj8WRTxb7bqtPU1IRAIMCVK1fUkgkoPZbHjx/Hy5cvwRhDeHg44uPj4eXlpZY870pNTcWpU6cQGBjIeZbKMkmlUpw6dQoODg7w8vKCubk52rdvj9DQULVlKhMREQFzc3M4ODhg/PjxSEtLU2smqVSKkSNHIigoCM7OzirLUlWm97dv3boVRkZGaNmyZZ3IBADZ2dng8XioX79+nclECKCic+izZs3CsGHD4OTkBD6fj9atW2P69OkYNmwYACAlJQUAYGFhIfc8CwsL2TauhYaGIisrC6NHjwYAODk5QSwWY/bs2cjMzERRURGWL1+OlJSUct3MqsoEAOvXr0ezZs1gZWUFgUAAb29vbNy4EW5ubmrJ867du3fDwMAA/fv35zxLZZnS0tKQm5uL5cuXw9vbG+fPn4efnx/69++PyMhItWQCAB8fH/zyyy+4ePEiVq9ejaioKHTv3l32xVEdmVasWAEtLS1MnTpVJRkUyQQAJ0+eRL169aCjo4M1a9YgLCwMpqamas1U5u3bt/j222/h7++vsjm5q8v0MeApaSFVU8k59IMHD2Lv3r3Yt28fnJ2dERsbi+nTp0MkEiEgIEBW7v1vn4wxlX0j3bFjB3x8fGTnEfl8Pg4fPozAwEAYGxtDU1MTHh4e8PHxUUmeijIBpRX69evXcfz4cYjFYly6dAkTJ06EUCiEh4eHyvO866effsLw4cM5PVddXaaygZa+vr6YMWMGAKBVq1a4evUqNm/ejK5du6o8EwAMGTJE9m8XFxe0bdsWYrEYp06dUskXoPcz3bp1C+vWrUNMTIzaWn2VfZ7c3d0RGxuL9PR0bNu2DYMHD8aNGzdgbm6utkwAIJFIMHToUEilUmzcuJHzLIpk+ljQOXTVUEmFHhQUhG+//RZDhw4FADRv3hzPnj3DsmXLEBAQAEtLSwClLXWhUCh7XlpaWrlWOxeePXuGCxcu4MiRI3LrXV1dERsbi+zsbBQVFcHMzAzt27dH27Zt1ZKpoKAAc+bMwdGjR9G7d28AQIsWLRAbG4vvv/+e0wq9smNU5vLly4iLi8PBgwc5y6BIJlNTU2hpaaFZs2ZyZZs2baqSUyXVHacyQqEQYrGY86smKst0+fJlpKWlwcbGRraupKQEX3/9NdauXYunT5+qPFMZfX192Nvbw97eHh06dECTJk2wY8cOzJ49W22ZJBIJBg8ejMTERFy8eFFlrXNFP091Xdko/drug1RNJV3u+fn50NCQfylNTU1Za8rW1haWlpYICwuTbS8qKkJkZCQ6derEeb6dO3fC3NxcVkm+z8jICGZmZkhISEB0dDQno8kVySSRSCCRSKo8lqrM864dO3bA1dVVZec6K8skEAjQrl07xMXFyZWNj4+HWCxWS6aKZGRk4Pnz53JfYFWZaeTIkfjzzz8RGxsrW0QiEYKCgnDu3Dm1ZKoMY0wlpyYqy1RWmSckJODChQswMTHhPEt1mQipiEpa6H369MGSJUtgY2MDZ2dn3L59GyEhIRg7diyA0m9e06dPx9KlS9GkSRM0adIES5cuhZ6eHvz9/TnNJpVKsXPnTgQEBEBLS/5wHDp0CGZmZrCxscHdu3cxbdo09OvXT27wniozGRoaomvXrggKCoKuri7EYjEiIyOxZ88ehISEqDxPmZycHBw6dAirV6/mLENNMgUFBWHIkCHo0qUL3N3dcfbsWZw4cQIRERFqyZSbm4vg4GAMGDAAQqEQT58+xZw5c2Bqago/Pz+1ZDIxMSlXMfH5fFhaWsLR0VEtmfLy8rBkyRL07dsXQqEQGRkZ2LhxI168eFHuUjtVZSouLsbAgQMRExODkydPoqSkRDaux9jYmNNLD6v6jL9+/RpJSUmy6+HLvsBaWlrKejzrEpoPXUU+dHh8TS5by8nJYdOmTWM2NjZMR0eH2dnZsblz57LCwkJZGalUyhYsWMAsLS2ZtrY269KlC7t7926NMn3IZSHnzp1jAFhcXFy5bevWrWNWVlaMz+czGxsbNm/ePLnM6siUnJzMRo8ezUQiEdPR0WGOjo5s9erVlV5io4xMVeVhjLEtW7YwXV1dlpWVpXAGrjPt2LGD2dvbMx0dHdayZUsWGhqqtkz5+fnM09OTmZmZyT5LAQEBLCkpSW2ZKqKqy9Yqy1RQUMD8/PyYSCRiAoGACYVC1rdvX3bz5k21ZSq7LKyiJTw8XC2ZGGNs586dFWZasGCBwnlUednaZZE1u20lrtVyWWRNl61Vg8cYYx/yRSAnJwdGRkZIT09XaRdUVSQSCU6fPo1evXqBz+erOw4AyqQoyqQYyqQYylS9jIwMmJqaIjs7m7MxAWX1xGWRNepp1O4Mb65Uis9fPec078eOJmchhBDCKZqcRTWoQieEEMIpqtBVg2ZbI4QQQj4B1EInhBDCKboOXTWoQieEEMIp6nJXDepyJ4QQQj4B1EInhBDCKepyVw2q0AkhhHCKutxVgyp0QgghnNLg8aBRyxq5ts//N6Bz6IQQQsgngFrohBBCOEVd7qqhcIVeWFgoN4VhTk4OgH+m9KwLynLUlTwAZVIUZVIMZVIMZaqeKnPwoIRBcaAavToKT84SHByMhQsXllu/b98+6OnpKT0YIYQQ7uTn58Pf318lk7PcsrNFPc1aTs5SIoXrk0SanKUKClfoFbXQra2tkZycXKdmWwsLC0PPnj3rxGxGAGVSFGVSTFmmHvWLoVVHGizFDPg9S6tOHifKVLmMjAwIhUKVVOgx9sqp0Ns8ogq9Kgp3uWtra0NbW7vcej6fXyc+nO+iTIqhTIqpi5m0eAC/rgxplZb+ry4eJ8pUdQ6VUcJ16HQSvXp15U8CIYQQQmqBRrkTQgjhFI1yVw2q0AkhhHCqtEKv7a1flRTmE0Zd7oQQQsgngCp0QgghnCrrcq/tUtf4+fmhQYMGGDhwoLqjAKAKnRBCCMfK7uVe26WumTp1Kvbs2aPuGDJUoRNCCOHUp9pCd3d3h4GBgbpjyFCFTggh5JNz6dIl9OnTByKRCDweD6GhoeXKbNy4Eba2ttDR0YGrqysuX76s+qBKRKPcCSGEcIqnhBvL1PT5eXl5aNmyJcaMGYMBAwaU237w4EFMnz4dGzduROfOnbFlyxb4+PjgwYMHsLGxAQC4urrK3SG1zPnz5yESiT7sB+EQVeiEEEI4pczr0MsmBitT2V1MfXx84OPjU+n+QkJCEBgYiHHjxgEA1q5di3PnzmHTpk1YtmwZAODWrVu1C61i1OVOCCHko2FtbQ0jIyPZUlb51kRRURFu3boFT09PufWenp64evWqsqKqnMoq9JcvX2LEiBEwMTGBnp4eWrVqJfft58iRI/Dy8oKpqSl4PB5iY2PVmkkikWDWrFlo3rw59PX1IRKJMGrUKLx69UptmYDSWe+cnJygr6+PBg0awMPDAzdu3FBrpndNmDABPB4Pa9euVWum0aNHy7r5ypYOHTqoNRMAPHz4EH379oWRkREMDAzQoUMHJCUlcZfp7wyMWrQO5r1Hw8DDH65j/g+34h7Ltmt9PrDC5ft9x7jLVM1xys3NxeTJk2FlZQVdXV00bdoUmzZt4iyPIplSU1MxevRoiEQi6OnpwdvbGwkJCZzladSoUbnPL4/Hw6RJkwAAjDEEBwdDJBJBV1cX3bp1w/379znLU1vKHBT3/PlzZGdny5bZs2fXOE96ejpKSkpgYWEht97CwgIpKSkK78fLywuDBg3C6dOnYWVlhaioqBpnUSaVdLlnZmaic+fOcHd3x5kzZ2Bubo7Hjx+jfv36sjJ5eXno3LkzBg0ahPHjx6s9U35+PmJiYjB//ny0bNkSmZmZmD59Ovr27Yvo6Gi1ZAIABwcHbNiwAXZ2digoKMCaNWvg6emJR48ewczMTC2ZyoSGhuLGjRucn1tSNJO3tzd27twpeywQCNSa6fHjx3Bzc0NgYCAWLlwIIyMjPHz4EDo6OtxkepOLLhPnoVtrF5xcNRfmDYzw+GUK6tfTl5V5EbpN7jlnr9/G+BWb0L8bN19+FDlOM2bMQHh4OPbu3YtGjRrh/PnzmDhxIkQiEXx9fVWeiTGGfv36gc/n49ixYzA0NERISAg8PDzw4MED6OvrV/0CHyAqKgolJSWyx/fu3UPPnj0xaNAgAMDKlSsREhKCXbt2wcHBAYsXL0bPnj0RFxdXp0Zdl+Fp8MDTqOU5dFb6fENDQ6XNtvb+eXnGWI3O1Z87d04pOZRFJRX6ihUrYG1tLffHtVGjRnJlRo4cCQB4+vSpKiJVm8nIyAhhYWFyz/nhhx/w2WefISkpSTZoQpWZAMDf31/ucUhICHbs2IE///wTPXr0UEsmoLSFM3nyZJw7dw69e/dWeo4PyaStrQ1LS0tOs9Qk09y5c9GrVy+sXLlSts7Ozo6zTCt/CYWVuQl2zJn0TyahuVwZS5MGco+PX4lCt9bOsBPJt1yURZHjdO3aNQQEBKBbt24AgC+//BJbtmxBdHQ0JxV6dZkSEhJw/fp13Lt3D87OzgBKR0ebm5tj//79snOwyvT+l/Ply5ejcePG6Nq1KxhjWLt2LebOnYv+/fsDAHbv3g0LCwvs27cPEyZMUHqeT42pqSk0NTXLtcbT0tLKtdo/Jirpcj9+/Djatm2LQYMGwdzcHK1bt8a2bduqf2Idy5SdnQ0ej1dh61QdmYqKirB161YYGRmhZcuWassklUoxcuRIBAUFyf7gcUnR4xQREQFzc3M4ODhg/PjxSEtLU1smqVSKU6dOwcHBAV5eXjA3N0f79u0rvJRGWU5eiYarY2MMmf89hH3Gou3Y/8P242GVlk99nYXT12Iw9gvlfzEso8h75+bmhuPHj+Ply5dgjCE8PBzx8fHw8vJSS6ayUc7v9qRoampCIBDgypUrnGR6V1FREfbu3YuxY8eCx+MhMTERKSkpcud/tbW10bVr1zp7/reuXYcuEAjg6upartEWFhaGTp06Ke+FVEwlFfqTJ0+wadMmNGnSBOfOncNXX32l9jvs1DTT27dv8e2338Lf319p3T0fmunkyZOoV68edHR0sGbNGoSFhcHU1FRtmVasWAEtLS1MnTqVkwwfksnHxwe//PILLl68iNWrVyMqKgrdu3ev8BIUVWRKS0tDbm4uli9fDm9vb5w/fx5+fn7o378/IiMjucmUnIotx87D3kqI06vn4UtfT0xftxM/n42osPyeMxEw0NOFX5f2nOQBFHvv1q9fj2bNmsHKygoCgQDe3t7YuHEj3Nzc1JLJyckJYrEYs2fPRmZmJoqKirB8+XKkpKQgOTmZk0zvCg0NRVZWFkaPHg0AslZlbc//qpIy7xTXrl07NGvWDD/++GOVr5mbm4vY2FjZeKzExETExsbKxqzMnDkT27dvx08//YSHDx9ixowZSEpKwldffcXpseCSSrrcpVIp2rZti6VLlwIAWrdujfv372PTpk0YNWqUKiLUKpNEIsHQoUMhlUqxceNGtWdyd3dHbGws0tPTsW3bNgwePBg3btyAubl5ZbvmLNOtW7ewbt06xMTE1Po6U2VlAoAhQ4bIyru4uKBt27YQi8U4deqUrJtSlZmkUikAwNfXFzNmzAAAtGrVClevXsXmzZvRtWtXDjIxuDrZYcmE4aWZHOzwIPE5Noeex0jvbuXK7zp9Ef49P4eONndjDRR579avX4/r16/j+PHjEIvFuHTpEiZOnAihUAgPDw+VZ+Lz+Th8+DACAwNhbGwMTU1NeHh4VHlJlDLt2LEDPj4+5cam1Pb878cqKipKoUZVdHQ03N3dZY9nzpwJAAgICMCuXbswZMgQZGRkYNGiRUhOToaLiwtOnz4NsVjMWXauqaSFLhQK0axZM7l1TZs25XR0b3UUzSSRSDB48GAkJiYiLCyMs9Z5TTLp6+vD3t4eHTp0wI4dO6ClpYUdO3aoJdPly5eRlpYGGxsbaGlpQUtLC8+ePcPXX39d4XltVWSq7DlisZizkcnVZTI1NYWWlpZKfw+EJvXRTGwtt85JbIXnqenlyl6+8wBxSa8wtg933e1A9cepoKAAc+bMQUhICPr06YMWLVpg8uTJGDJkCL7//nu1ZAJKbzASGxuLrKwsJCcn4+zZs8jIyICtrS0nmco8e/YMFy5ckDtPXzYu5GM6/6uOLvdu3bqBMVZu2bVrl6zMxIkT8fTpUxQWFuLWrVvo0qWLcn9wFVNJhd65c2fExcXJrYuPj1frNyFFMpVV5gkJCbhw4QJMTEzUnqkijDHOupKryzRy5Ej8+eefsq6t2NhYiEQiBAUFcTYC9EOOU0ZGBp4/fw6hUKiWTAKBAO3atVPp70Gn5k6Ie/5S/vWev4KNZfnTMztPXoSrox1a2jfiJEuZ6o6TRCKBRCKBhob8nyZNTU1ZL4eqM73LyMgIZmZmSEhI4GyQ3rt27twJc3NzuYGmtra2sLS0lDv/W1RUhMjIyDp7/reiS/A+ZCFVU0mX+4wZM9CpUycsXboUgwcPxs2bN7F161Zs3bpVVub169dISkqSXedd9gtmaWnJyUjl6jIVFxdj4MCBiImJwcmTJ1FSUiL7RmxsbMzJJVDVZcrLy8OSJUvQt29fCIVCZGRkYOPGjXjx4oXschZVZzIxMSn3RYfP58PS0hKOjo5qyZSbm4vg4GAMGDAAQqEQT58+xZw5c2Bqago/Pz+1ZAKAoKAgDBkyBF26dIG7uzvOnj2LEydOICIigpNM0wZ/gc//MxfL9hzGoO6dEPXwEbafuIDNQfKjoHPy8vFbxDWsmsT96a/qjpOhoSG6du2KoKAg6OrqQiwWIzIyEnv27EFISIhaMgHAoUOHYGZmBhsbG9y9exfTpk1Dv379yt2YRJmkUil27tyJgIAAaGn986eax+Nh+vTpWLp0KZo0aYImTZpg6dKl0NPTK3cVTF3BgxLuFKeUJJ849oGys7MZAJaenq5Q+RMnTjAXFxemra3NnJyc2NatW+W279y5kwEotyxYsEDhTEVFRSw0NJQVFRXVOlNiYmKFeQCw8PBwtWQqKChgfn5+TCQSMYFAwIRCIevbty+7efOmwnmUnakiYrGYrVmzRm2Z8vPzmaenJzMzM2N8Pp/Z2NiwgIAAlpSUpLZMZXbs2MHs7e2Zjo4Oa9myJQsNDf2gTAWRv7Hiy9Uvocu/ZS52NkxbwGdO4oZsc9CEcmU2BU1gutoClnFmt0L7fH8piPxNqccpOTmZjR49molEIqajo8McHR3Z6tWrmVQqrfFxUlamdevWMSsrK9nnad68eaywsFDhPB+S6dy5cwwAi4uLK7dNKpWyBQsWMEtLS6atrc26dOnC7t69W6M86enpDADLzs6u0fNqoqyeeOLqyP5u36xWyxNXR87zfux4jDH2IV8EcnJyYGRkhPT0dM67ohUlkUhw+vRp9OrVC3w+X91xAFAmRVEmxZRl8mpQDH4duXGzRAqcy9Sqk8eJMlUuIyMDpqamyM7O5mxsUFk9kdjWCQZamrXa15viEthG/8Vp3o9dHfmTQAgh5JOljAFx/+tzV/SytX8jmm2NEELIR0PRy9b+jahCJ4QQwil1zIf+b0QVOiGEEE7xNEqX2u6DVI0OESGEEPIJoBY6IYQQTlGXu2pQhU4IIYRbGrzSpbb7IFWiLndCCCEfDbpsrXLUQieEEMItZUxo/r/n02VrlaMKnRBCCKfoHLpqUIVOCCGEW3QOXSUUrtALCwvlpujMyckB8M90h3VBWY66kgegTIqiTIopy1LMAHAzm2iNFf9vNoi6eJwoU+XqSg6iPApPzhIcHIyFCxeWW79v3z7o6ekpPRghhBDu5Ofnw9/fXyWTszzv1hKGtZycJae4BNYRd2hyliooXKFX1EK3trZGcnJynZptLSwsDD179qwTsxkBlElRlEkxlEkxlKl6GRkZEAqFKqnQX3RvpZQK3epiLFXoVVC4y11bWxva2trl1vP5/Drx4XwXZVIMZVIMZVIMZVJMXclUFzIQ5aLr0AkhhHCrtnOnvnPZ26d0HXpeXp5S90ej3AkhhHCKx+OBV8tR6rxP8Dp0CwsLDB48GGPHjoWbm1ut90ctdEIIIUQN9u/fj+zsbPTo0QMODg5Yvnw5Xr169cH7owqdEEIIt5TY5f4p6dOnDw4fPoxXr17hP//5D/bv3w+xWIwvvvgCR44cQXFxcY32RxU6IYQQbmngn5vLfPCi7h+COyYmJpgxYwbu3LmDkJAQXLhwAQMHDoRIJMJ///tf5OfnK7QfOodOCCGEqFFKSgr27NmDnTt3IikpCQMHDkRgYCBevXqF5cuX4/r16zh//ny1+6EKnRBCCKfoXu4VO3LkCHbu3Ilz586hWbNmmDRpEkaMGIH69evLyrRq1QqtW7dWaH9UoRNCCOEW3cu9QmPGjMHQoUPxxx9/oF27dhWWsbOzw9y5cxXaH1XohBBCuKXE6VM/JcnJydXeOl1XVxcLFixQaH+f8DADQgghpO4yMDBAWlpaufUZGRnQ1Kz5rXKpQieEEMIpnoZyFuDTulNcZVOpFBYWQiAQ1Hh/KqvQX758iREjRsDExAR6enpo1aoVbt26JdvOGENwcDBEIhF0dXXRrVs33L9/n7M8wcHBsoEaZYulpaVse2pqKkaPHg2RSAQ9PT14e3sjISGBszyKZMrNzcXkyZNhZWUFXV1dNG3aFJs2bVJrpve3lS2rVq1SWyYAePjwIfr27QsjIyMYGBigQ4cOSEpKUlum0aNHl9veoUMHzvIokuldEyZMAI/Hw9q1a9WaKTg4GE5OTtDX10eDBg3g4eGBGzduqC2TRCLBrFmz0Lx5c+jr60MkEmHUqFG1uvlHbTMBpYOpvLy8YGpqCh6Ph9jYWE7z1JoSr0OPiorCgwcPMGnSJDX/UB9u/fr1WL9+PXg8HrZv3y57vH79eqxZswaTJk2Ck5NTjferknPomZmZ6Ny5M9zd3XHmzBmYm5vj8ePHciP5Vq5ciZCQEOzatQsODg5YvHgxevbsibi4OBgYGHCSy9nZGRcuXJA9LuviYIyhX79+4PP5OHbsGAwNDRESEgIPDw88ePAA+vr6nOSpKhMAzJgxA+Hh4di7dy8aNWqE8+fPY+LEiRCJRPD19VVLpuTkZLmyZ86cQWBgIAYMGMBZnuoyPX78GG5ubggMDMTChQthZGSEhw8fQkdHR22ZAMDb2xs7d+6UPf6Qb+DKzgQAoaGhuHHjBkQiEed5qsvk4OCADRs2wM7ODgUFBVizZg08PT3x6NEjmJmZqTxTfn4+YmJiMH/+fLRs2RKZmZmYPn06+vbti+joaM7yVJUJKL0HeOfOnTFo0CCMHz+e0xxE+dasWQOgtK7ZvHmz3HsrEAjQqFEjbN68ucb7VUmFvmLFClhbW8v9MWvUqJHs34wxrF27FnPnzkX//v0BALt374aFhQX27duHCRMmcJJLS0urwhZLQkICrl+/jnv37sHZ2RkAsHHjRpibm2P//v0YN24cJ3mqygQA165dQ0BAALp16wYA+PLLL7FlyxZER0dzWqFXlen99ceOHYO7uzvs7Ow4y1Ndprlz56JXr15YuXKlbB3XearLBJTOWFjVdi5Ul+nly5eYPHkyzp07h969e6s9k7+/v9zjkJAQ7NixA3/++Sd69Oih8kxGRkYICwuTW/fDDz/gs88+Q1JSEmxsbFSeCQBGjhwJAHj69Clnr69MPA0l3Mv9ExrlnpiYCABwd3fHkSNH0KBBA6XsVyVd7sePH0fbtm0xaNAgmJubo3Xr1ti2bZtse2JiIlJSUuDp6Slbp62tja5du+Lq1auc5UpISIBIJIKtrS2GDh2KJ0+eAIBs3vd3W3SampoQCAS4cuUKZ3mqygQAbm5uOH78OF6+fAnGGMLDwxEfHw8vLy+1ZXpXamoqTp06hcDAQE7zVJVJKpXi1KlTcHBwgJeXF8zNzdG+fXuEhoaqLVOZiIgImJubw8HBAePHj69wMIwqM0mlUowcORJBQUGyL66qoOjnqaioCFu3boWRkRFatmxZJzIBQHZ2Nng8nlwPo7oz1Xl069cKhYeHK60yB1TUQn/y5Ak2bdqEmTNnYs6cObh58yamTp0KbW1tjBo1CikpKQBKZ555l4WFBZ49e8ZJpvbt22PPnj1wcHBAamoqFi9ejE6dOuH+/ftwcnKCWCzG7NmzsWXLFujr6yMkJAQpKSnluphVlcnExATr16/H+PHjYWVlBS0tLWhoaGD79u1KmaXnQzO9a/fu3TAwMJD1sqgjk0QiQW5uLpYvX47FixdjxYoVOHv2LPr374/w8HB07dpV5ZlMTEzg4+ODQYMGQSwWIzExEfPnz0f37t1x69YtaGtrqyXTihUroKWlhalTp3Ly+h+SCQBOnjyJoUOHIj8/H0KhEGFhYTA1NVVrpjJv377Ft99+C39/f05n/KpJJvJxmTlzJr777jvo6+tj5syZVZYNCQmp2c7ZB8rOzmYAWHp6erVl+Xw+69ixo9y6KVOmsA4dOjDGGPvjjz8YAPbq1Su5MuPGjWNeXl4KZyoqKmKhoaGsqKhI4eeUyc3NZRYWFmz16tWMMcaio6NZy5YtGQCmqanJvLy8mI+PD/Px8anRfpWZadWqVczBwYEdP36c3blzh/3www+sXr16LCwsTG2Z3uXo6MgmT55c430qM9PLly8ZADZs2DC5Mn369GFDhw5VS6aKvHr1ivH5fHb48GG1ZIqOjmYWFhbs5cuXsu1isZitWbOmxvtV9nHKzc1lCQkJ7Nq1a2zs2LGsUaNGLDU1Va2Zyvbp6+vLWrduzbKzs2u8Xy4yJSYmMgDs9u3bNd5neno6A/BBP4uiyuqJlAGdWP7QLrVaUgZ04jyvKnTr1o1lZmbK/l3Z4u7uXuN9q6SFLhQK0axZM7l1TZs2xeHDhwH8cx42JSUFQqFQViYtLa1cq50r+vr6aN68uWwku6urK2JjY5GdnY2ioiKYmZmhffv2aNu2rUryvJ+poKAAc+bMwdGjR2XnOlu0aIHY2Fh8//338PDwUHmmd12+fBlxcXE4ePCgSnJUlsnU1BRaWloVft64Pl1SWaaKCIVCiMVizq+cqCyThoYG0tLS5M4Bl5SU4Ouvv8batWtVdm62ouOkr68Pe3t72Nvbo0OHDmjSpAl27NiB2bNnqy2TRCLB4MGDkZiYiIsXL6p8Pu7qPk91Hd369R/h4eEV/lsZVHIOvXPnzoiLi5NbFx8fD7FYDACwtbWFpaWl3OCToqIiREZGolOnTqqIiMLCQjx8+FDuCwVQOijGzMwMCQkJnA8+qyqTRCKBRCKBhob8W6apqQmpVKqWTO/asWMHXF1dOT/XWV0mgUCAdu3aVfl5U3WmimRkZOD58+eVbuc608iRI/Hnn38iNjZWtohEIgQFBeHcuXNqyVQZxphsXIs6MpVV5gkJCbhw4YJaurwVOU6EqKSFPmPGDHTq1AlLly7F4MGDcfPmTWzduhVbt24FUPrNa/r06Vi6dCmaNGmCJk2aYOnSpdDT0ys36lVZ/u///g99+vSBjY0N0tLSsHjxYuTk5CAgIAAAcOjQIZiZmcHGxgZ3797FtGnT0K9fP7mBe6rMZGhoiK5duyIoKAi6uroQi8WIjIzEnj17an6eRUmZyuTk5ODQoUNYvXo1ZzlqkikoKAhDhgxBly5d4O7ujrNnz+LEiROIiIhQS6bc3FwEBwdjwIABEAqFePr0KebMmQNTU1P4+fmpJZOJiUm5ionP58PS0hKOjo5qyZSXl4clS5agb9++EAqFyMjIwMaNG/HixQsMGjRILZmKi4sxcOBAxMTE4OTJkygpKZGN+TE2Nubs0sPqPuOvX79GUlKS7Hr4si+wlpaWKr+SQiF0L3eZmowxOnLkSI32rZIKvV27djh69Chmz56NRYsWwdbWFmvXrsXw4cNlZb755hsUFBRg4sSJyMzMRPv27XH+/HnOrkF/8eIFhg0bhvT0dJiZmaFDhw64fv26rBWXnJyMmTNnIjU1FUKhEKNGjcL8+fM5yaJopgMHDmD27NkYPnw4Xr9+DbFYjCVLluCrr75SW6ayXIwxDBs2jLMcNcnk5+eHzZs3Y9myZZg6dSocHR1x+PBhTgcPVpWpoKAAd+/exZ49e5CVlQWhUAh3d3ccPHiQs893dZnUpapMb9++xV9//YXdu3cjPT0dJiYmaNeuHS5fvszpKPyqMj19+hTHjx8HUDrr1bvCw8Nll5CqMhNQeuXQmDFjZOWHDh0KAFiwYAGCg4M5yVQ7yhil/mlU6EZGRpztm8dYJfeeq0ZOTg6MjIxkv3h1gUQiwenTp9GrVy/w+Xx1xwFAmRRFmRRDmRRDmaqXkZEBU1NTZGdnczYmoKyeSBvSBYaC2rUfc4qKYX7wEqd5P3Z0L3dCCCEfjU/pXu7KRtOnEkII4ZYSz6FHRUV91C30Nm3a4Pfff0eDBg3QunXrKkfvx8TE1GjfVKETQgjhFF229g9fX1/ZzaT69eun1H1ThU4IIYSoyIIFCyr8tzJQhU4IIYRbdNlalaKjo/Hw4UPweDw0bdoUrq6uH7QfqtAJIYRwSxmTq3wiXe7vKrs88Y8//pBN9pOVlYVOnTph//79sLa2rtH+aJQ7IYQQogZjx46FRCLBw4cP8fr1a7x+/RoPHz4EY+yDZq2kFjohhBBO0XzoFbt8+TKuXr0qd3dGR0dH/PDDD+jcuXON90cVOiGEEG5Rl3uFbGxsIJFIyq0vLi5Gw4YNa7w/6nInhBBC1GDlypWYMmUKoqOjUXbT1ujoaEybNg3ff/99jfdHLXRCCCHc0oASRrkrJYnaNWjQQO6a+ry8PLRv3x5aWqXVcXFxMbS0tDB27NgaX6eucIVeWFgoN4VhTk4OAMim9awLynLUlTwAZVIUZVIMZVIMZaqeKnPQjWX+sXbtWs72rfDkLMHBwVi4cGG59fv27YOenp7SgxFCCOFOfn4+/P39VTI5S8Z4TxgKajchTU6RBCbbztPkLFVQuIU+e/ZszJw5U/Y4JycH1tbW6GpUDON6xZyEq6liBvyepYUeb+KhBam64wAAiqGB3w0c0D3pKrRYibrjAACKeZq4aNMJ7uE/Q6ukbrQWijX5CHcfie63QqElrSOfJw0tXHTth+5/HKxTx+li5yHo2bNnnZixCyht6YWFhaH7g/N1671r5lknj1Nd+fv0uqBI3RHIOwoKCsr1mtT0i4vCFbq2trbs/rNyO+AB/LpybuN/vyNakIJfB35h3qXFSsCvIxV6Ga0SCfh1pKIqoyUtBr+kblQKZericeLz+XWmoiqjJS0Gv45U6GXq5HGqI3+fVPqlgka5VygvLw+zZs3Cr7/+ioyMjHLbS0pqVmfUlaqYEELIp6qsQq/tgk9r+tRvvvkGFy9exMaNG6GtrY3t27dj4cKFEIlE2LNnT433R6PcCSGEfDQ+9ulT33XixAns2bMH3bp1w9ixY/H555/D3t4eYrEYv/zyC4YPH16j/VELnRBCCMeU0Tr/9LrcX79+DVtbWwCl58tfv34NAHBzc8OlS5dqvD+q0AkhhHBLQ0M5yyfGzs4OT58+BQA0a9YMv/76K4DSlnvZZC018ekdIUIIIeQjMGbMGNy5cwdA6ZVkZefSZ8yYgaCgoBrvj86hE0II4RaNcq/QjBkzZP92d3fHw4cPcevWLTRu3BgtW7as8f6oQieEEMItqtAVIhaLIRaLP/j51OVOCCGEqMnvv/+OL774Ao0bN4a9vT2++OILXLhw4YP2RRU6IYQQbinxOvRPyYYNG+Dt7Q0DAwNMmzYNU6dOhaGhIXr16oUNGzbUeH/U5U4IIYRbyhil/gmOcl+2bBnWrFmDyZMny9ZNnToVnTt3xpIlS+TWK+LTO0KEEELqFmqhVygnJwfe3t7l1nt6espmNK0JtVToy38+Aq3PB2Lm+p2ydUcjr8Nn5new+GIMtD4fiNiERNVmOh4BrZFzMHPvSQCApLgE3x44i1az18EwcAGspyzD6M2H8Cqz5gf5Q60Iuwn+9LWYeSRCtm7RmWtwWbobRt9sgNnsTfDaeBg3niarLlPMYwg2ncHXVx5UuH1i5D0INp3B+juqe/9WXHsA/vIDmHkhRrZu7Mnr4C8/ILd03hOmukxR8eCvO4aZkXfl1j98/QZ+x2/AZNMpNNh4Ep0PXkJSTr5KMi1btgw8Hg/Tp0+XrSub1vL9ZdWqVSrJtOLSHfD/+xNmnr4uW5dbKMHUk9fQ6PsDMFi0G83XH8bmmw9Vkgeo+DilpqZi9OjREIlE0NPTg7e3NxISEjjLsPDIBWiNnCO3NJy8VLadMYaFRy7Aesoy1Bv7X3Rfsg33X6Rylodwo2/fvjh69Gi59ceOHUOfPn1qvD+Vd7lHPXyE7ScuoEVj+ZF8eQWF6NTcCQPdO2LCys2qzfTkBbaHR6GFtaVsXX6RBLefvsLcfu5oYSNEZl4BZu49Bb81P+PGokncZ0pKwfZr99BcZCq3vol5A6wb4A5bEyMUSIqxLjIGvTYfxV/zRsOsHrfT2EanZWHHg+dobmJQ4fZjiam4mZoFkX75SXy4EpWcge2xj9HcrH65bV52Qmzv9ZnssUBTNd9fo1Iysf3eMzQ3lb895eOsPHQ7dBljnMX4bwdHGGnz8dfrN9DR0uQ+U1QUtm7dihYtWsitT06W/zJ45swZBAYGYsCAAdxnevk3tkfHoblFA7n1X5+9gcjEZOwe0BXi+vUQ9vglppy8BpGBHvo2/fARwAplquA4McbQr18/8Pl8HDt2DIaGhggJCYGHhwcePHgAfX19TrI4NzTHuW8DZY81Nf5poa46dQlrz/yBn74cgCaWplh6LBzeK37Cg5UzYaCrut8/hdEod5n169fL/t20aVMsWbIEERER6NixIwDg+vXr+OOPP/D111/XeN8qbaHn5hdg1KJ12PzNV6hvIP9LMMK7K+aPGYQebVtU8myOMr0txKhNB7E50A/19XVl6430dHDu27EY1L4FHIVm6GBvg3Wj+uBW4kskpWdxm6mwCAE/n8XmIR5o8N4v5zBXJ/RwtIGdqRGchSb4vl8X5Lwtwt1X6dxmkhRj1IU72NTNBQ20y89e9TL3LaZfvo/dHi3BV9G5rtwiCQKOX8dmn3ZooFM+k7amBizr6coWYxX8ocstKkbAuVvY3KNlueP032sP4d3IAsvdnNHavD7sjPTRy9YS5nrc5srNzcXw4cOxbds2NGggX3laWlrKLceOHYO7uzvs7Oy4zVQoQcBvkdjs27ncZ/zG8zSMbNUEXW2FaNTAAOPbOqGFhTFucf0Zr+Q4JSQk4Pr169i0aRPatWsHR0dHbNy4Ebm5udi/fz9nebQ0NWFZ30C2mBnWA1D6BWP92auY7dsNfu1c4GJtiZ0TBiG/SIL912I5y1Mr1OUus2bNGtmyY8cONGjQAA8ePMCOHTuwY8cO3L9/H/Xr18dPP/1U432rtEKfsmY7fDq2gYeKK+2qTNl9HD4tneDhYl9t2ez8t+DxeKivr8Ntpt/C4dPMFj0cbaosV1Rcgu1X78FIR4AWIjNOM0299AC9xOboYWVabpuUMYz5/Q5mtrKDs3HFrXcuTDl/Cz6NhejRyLLC7ZFJaRCtP4pmW05hwpmbSMt7y32miD/h08gCPWzM5dZLGcPpxBQ41K+HXkevQrT1DDodiMSxx9yfLpk0aRJ69+4NDw+PKsulpqbi1KlTCAwMrLKcMkw5dQ0+Dtbo0bhhuW2dbCxw4q8kvMzJA2MMEU+SkZCRjZ725csqU2XHqbCwEACgo/PP772mpiYEAgGuXLnCWZ6ElHRYT1kG+xmr4L9hP56kld7nO/HvTKRkv0FPlyaystp8LXRxssW1hCTO8hDlSExMVGh58uRJjfetsi73gxeu4HZ8Iq5vXa6ql6zWwWt3cPvpK1xfOLHasm+LJJj76zkM69gShrrcVegHY+Jw+0Uars8cVmmZU/efYPjuM8iXSCA01MeZif1hWk+30vK1zpTwCrfTs3FtQKcKt6+6/QRaGjxMbs5td6hcpgfPcDs1E9cDPCvc7t1YhIFONrAx0sPTrDwsuHwXnvvDcWO0J7Q56uI+GPcCt9OycH1o13Lb0vILkSspwcroBCzs2BRL3Zxx/mkqBp28iQsDOqNLBV+UlOHAgQOIiYlBVFRUtWV3794NAwMD9O/fn5MsZQ7efYLbrzJwfULF5wjX9uqACcf/QKPvD0JLgwcNHg9bfN3gJq74i5syVHWcnJycIBaLMXv2bGzZsgX6+voICQlBSkpKuVMWyvJZY2vs+moQmliaIjU7F0uPhePzRZvx57LpSMl6AwCwMKon9xwLw3p4lpHFSZ5ao1Hu1WKMASgd1/KhVHKEnqemY8b6ndg9fyp0tAWqeMlqPc/Iwoy9J7H7q8HQEZTvrn2XpLgE/j8egFTKsGF0X+4yZb7BzCOR2D3CGzr8yr9rdbO3RnTQcFyaNgSeTo3gv+s00t5wM7DqeW4Bvv7jIXb1aFnhud6Yv7Ox4c+n2N69Ra0+iDXKlJOHmRdisPuLDpWefx7c1Aa97EVwMauPL5o0xMnBXRH/+g1OP37FTaY3BZgZeQ+7vVwrzCT93y9rXztLTG/TGK3MjPBNOwf0trXE1rtPucn0/DmmTZuGvXv3yrUuK/PTTz9h+PDhCpX94EzZuZh5+jp2D+xS6Wd8w/UHuPk8DUf9PXDjK1+s9P4MU05exe+PX3KTqZrjxOfzcfjwYcTHx8PY2Bh6enqIiIiAj48PNDW5+XLo09IR/du5oLm1JTxc7HHi6wAAwJ4r/wz8fP/XjYHV3fnIqMu9Unv27EHz5s2hq6sLXV1dtGjRAj///PMH7UslLfSYuCdIy8zGZ+O+ka0rKZHi8p2H+PHIGeT/vp+zX4xKMyW+QlpOHj7774//ZJJKcTnuKX4Mu478nYugqaEBSXEJhm7Yj6d/ZyJs9jhOW+cxz1ORlpuP9qv3vZOJ4fKTl9h45Q7yvp8CTQ0N6GvzYW9WH/Zm9dGhkRBNF+/Czuv3MKvnZ1Xs/QMz/Z2DtIIidPjt6j+ZGMPlV6+x8V4SlnZwRFpBERr/HCG3/Ztrf+GHu8+QMKKb8jOlZCItvxDtd52Xz/T8b2y8lYC8oEHQfO/bvLCeLsRGeniUmav0PAAQk5aFtIJCtN8fKZ/pZQY23klE9sTe0NLgoel7AwqdjOvhj1evOcl069YtpKWlwdXV9Z9MJSW4dOkSNmzYgMLCQtnv3eXLlxEXF4eDBw9ykqVMzKsMpOW9RfvNx//JJGW4/CwFG28+RMacEZj3+y38NrQHejlaAwBaWBrjTvJrhPxxr8Iu+tpS5Di5uroiNjYW2dnZKCoqgpmZGdq3b4+2bdsqPU9F9HUEcLGyxKOUdPi6NgMApGTlQlj/n4GXaTl55VrtpG4LCQnB/PnzMXnyZHTu3BmMMfzxxx/46quvkJ6eLnevd0WopELv3rY5YneHyK0bt+xHONo0RNDwfiqvzAGgu3NjxC6dKp9p22E4iswQ1LuLXGX+KCUdF+aMg4kBt6PIuzvY4PasEfKZ9oXB0aIBgnq0LVdJlWFgKCwu4SZTQxPEDHaTWzc+/C4cG+jj/1rZQaivjZ7W8t3FX5yKgr9DQwQ4cnPOs7vYArcD5a/dHHfqJhxNDBDUoWmFxymjoBDPc/JhydH4h+7Wprg93F0+U9htOBrXQ5BrE2hraaKtRX3EvfeFIiErF2IDbk6X9OjRA3fvyl82N2bMGDg5OWHWrFlyv3c7duyAq6vrB00IURPd7US4PclPbt24o5fhaGaEILcWKJEySEqk0HivMaapwZP1cihbTY6TkZERgNKBctHR0fjuu+84yfS+Qkkx/nqVBjdHMWzNGsDSyAAX7j1C60YiAEBRcTEu/ZWIZUO8VJKnxnhQwih3pSSpU3744Qds2rQJo0aNkq3z9fWFs7MzgoOD62aFbqCnCxc7+QFeejraMDEykK1/nfMGSanpeJWeCQCITyrtGrU0rg9LE/mRuUrJpKsNF2v5c3J62gKY1NODi7UliktKMPiHfbj99BWOzRyFEimTnbsyrqcLgZbyD52BjgAuQvnKUV+gBRM9HbgITZFXKMGysJv4wsUOQkN9ZOS9xeY/7uBFVi4GtHJQeh4AMBBoweW9VqU+XxMm2nzZehMd+dMofA0NWOoK4NiAm9aCgTYfLu9dpqbP14SJrjZczOojt0iCRVfuwc/RGkJ9HTzLzsO8S3/CVE8b/RysuMkk4MPFVP7UjT5fEyY6Arj87/K1r9vYw/9MND5vaIJuVqY49ywNJ5+k4sKAztxkMjCAi4uLfCZ9fZiYmMitz8nJwaFDh7B69WpOcshl0ubD5b3L1PQFWqXv3f/Wd2lkiW/PR0GXrwWb+vVw6WkK9sY+wipv5fdAAYodp0OHDsHMzAw2Nja4e/cupk2bhn79+sHTs+IxHLUVtO80vmjtBBuT+kjLycPSY+HIKSjEqM/bgMfjYap3Jyw/EYEmliawtzDB8hMR0BPwMaxjK07y1Bpdtlah5ORkdOpUfmxSp06dPmh8Rp259euJK9EIXPZP97d/8BoAwPwxg7Bg7BCV53nxOgcnYkpvZuE67we5bRfmjEO3ptxe1lMRTQ0e4tJe4+edD5Ce+xYm+jpoa2OB8KmD4Cw0UXmeukqTx8O9v7Ox995TZL2VQFhPB11tzLHPtxMMKrjkTlX62YvwY/eWWBmVgBkRd+HQoB5+7d0Obg3V+94dOHAAjDEMG1b5QExV+mVQN8y9cAujfovE64JCiOvXw6IerpjQzkltmZKTkzFz5kykpqZCKBRi1KhRmD9/Pmev9/J1NkZsPIj0N/kwM9RH+8bW+CP4K4hNS7/0BPXugoIiCSbvOo7M/AJ8ZmeFM9+MqZvXoJNK2dvb49dff8WcOXPk1h88eBBNmjSp5FmV4zH2Yf1YOTk5MDIyQurpPZx3RStKIgXOZWrB681f4EOq7jgAAAk0cM7ACZ7PLoPPuOkWrykJTxPnxZ+j54WfwC+RqDsOAECiyUeYx1h4Rv0GfkmxuuMAACSaWjjfbiA8L+2tU8fpfJcR6NWrF/h89X05eZdEIsHp06fhee80+NI68t5paOG8S686eZzqyt+njIIiWHwZjOzsbBgaGlb/hA9QVk+8/nYYDGs5IDqnsAjGy/dzmlfVDh8+jCFDhsDDwwOdO3cGj8fDlStX8Pvvv+PXX3+Fn59f9Tt5x6d9HQAhhJA6QBkj3Eu73Nu1a4dmzZrhxx9/rPolPwIDBgzAzZs3YWpqitDQUBw5cgSmpqa4efNmjStzoA51uRNCCPlEKfEcelRU1CfRQpdIJPjyyy8xf/587N27Vyn7pBY6IYQQomJ8Pr/CiVlqgyp0Qggh3KIby1TIz88PoaGhStsfdbkTQgjhFt36tUL29vb47rvvcPXqVbi6upabuW/q1KmVPLNiVKETQggharB9+3bUr18ft27dwq1bt+S28Xg8qtAJIYTUMXRjmQolJibK/v3RTM5CCCHkX4zOoVdqx44dcHFxgY6ODnR0dODi4oLt27d/0L6ohU4IIYSowfz587FmzRpMmTIFHTt2BABcu3YNM2bMwNOnT7F48eIa7Y8qdEIIIdyiLvcKbdq0Cdu2bZO77XLfvn3RokULTJkyhSp0QgghdQyNcq9QSUlJhVPwurq6ori45rdRVrhCLywsRGFhoexxTk4OAKCYld5DvS4o/t9d6Yvr0NCAsizFPNVPEVuZsizFmnXjHtfAP1mKNerOd8yyLHXxOEkkdePe8sA/Werie1cnj1Md+fuk0hzUQq/QiBEjsGnTJoSEyE8vvnXrVgwfPrzG+1N4cpbg4GAsXLiw3Pp9+/ZBT69uTM5CCCFEMfn5+fD391fN5CyLxsFQp5aTs7wtgvF/t39Sk7NMmTIFe/bsgbW1NTp06AAAuH79Op4/f45Ro0bJTSz0fqVfEYUr9Ipa6NbW1khOToaJSd2YulMikSAsLAw9e/asUzMs1dVM3ZOuQquOzABXzNPERZtOdJyqUXacKFPV6nKm9ltWQUtSpO44yIQGHC7cUE2F/t145VTo87d9UhW6u7u7QuV4PB4uXrxYbTmF+8i0tbWhrV1+rl0+n19n/gCXoUyK0WIldWZK1zJ0nBRDmRRTJzNJiqBVVFh9Qa5zqPIUCZ1Dr1B4eLhS9/fpHSFCCCHkX6jujGIhhBDyaeJBCYPilJLkk0YVOiGEEG7RKHeVoC53Qggh5BNALXRCCCHcoha6SlCFTgghhFs8JYxy51GHcnXoCBFCCCGfAGqhE0II4RZ1uasEVeiEEEK4RRW6SlCFTgghhFs8jdqfA6dz6NWiI0QIIYR8AtTSQl+2bBnmzJmDadOmYe3atQAAxhgWLlyIrVu3IjMzE+3bt8ePP/4IZ2dnTjJs2rQJmzZtwtOnTwEAzs7O+O9//wsfHx8AQGpqKmbNmoXz588jKysLXbp0wQ8//IAmTZpwkkeRTLm5ufj2228RGhqKjIwMNGrUCFOnTsV//vMfzjJtvnIHW/64i2evS6fLbWZpjHle7eHdzBYAwJ++tsLnLe/rhq+7l5/nVxmqO04A8PDhQ8yaNQuRkZGQSqVwdnbGr7/+ChsbG04yVXecxv5yDj9HPZR7zmdiS/wxYygneRTJ9K7/HLyA7dfu4ft+XTCtWxu1ZVp05hp+vR2P51lvINDURBtrcyzq1QntGwnVkklSUoL/nrqKMw+fIjEjG0Y62ujuYIOlfTpDZFSPs0w7XmXgp+QMPH9bOomLk54OgsTm6GlcOinJifRs7ErOQOybArwuLsGlNk3QvJ4uZ3lqTYNXutR2H6RKKq/Qo6KisHXrVrRo0UJu/cqVKxESEoJdu3bBwcEBixcvRs+ePREXFwcDAwOl57CyssLy5cthb28PANi9ezd8fX1x+/ZtNGvWDP369QOfz8exY8dgaGiIkJAQeHh44MGDB9DX11d6nuoyOTs7Y8aMGQgPD8fevXvRqFEjnD9/HhMnToRIJIKvry83meobYGmfzmhsWh8A8HPUA/TfcQJR/zcczkITPF80Xq782YdP8eWBMPi14O6LT3XH6fHjx3Bzc0NgYCAWLlwIIyMjPHz4EDo6OtxlquY4AYCXkxjb/T1lzxFoanKWR9FMAHDsz0e4+SwFIiNuPtc1ydTEvAHWDXCHrYkRCiTFWBcZg16bj+KveaNhVo+baZqrymRVvx5uv/gbcz3bo4XIFJkFhfj6aCT8th/Hja/9OckDACJtPhbYWsJOp3RCrP2pmRh+/xki2zRBU30d5JVI0d5QH76mRpiW8JKzHEpDXe4qodIKPTc3F8OHD8e2bduwePFi2XrGGNauXYu5c+eif//+AEr/SFtYWGDfvn2YMGGC0rP06dNH7vGSJUuwadMmXL9+HXw+H9evX8e9e/dkPQQbN26Eubk59u/fj3Hjxik9T3WZnJ2dce3aNQQEBKBbt24AgC+//BJbtmxBdHQ0ZxX6Fy52co+/690ZW/74EzeeJcNZaAJLQ/lK4MTdx+hmbw07UyNO8gDVH6e5c+eiV69eWLlypayMnZ3d+7tRquqOEwBoa2mWO17qzvQyKxfTDkfg1Fd+8N0aqvZMw1yd5LZ/368Ldl6/j7uv0tHdgZvelaozueDsxP5y29cO6IZOIQeQlJkDmwbcTOPpYyK/3/m2lvgpOQPROfloqq+DoRYNAABJb9U/DSupO1T6lWfSpEno3bs3PDw85NYnJiYiJSUFnp7/tF60tbXRtWtXXL16lfNcJSUlOHDgAPLy8tCxY0fZvO/vtug0NTUhEAhw5coVzvNUlAkA3NzccPz4cbx8+RKMMYSHhyM+Ph5eXl6qySSV4mBMHPIKi9Ghgi7Q1Dd5OP3gKcZ04OY0SYWZ3jtOUqkUp06dgoODA7y8vGBubo727dsjNDRUdZkqOU6Rj15ANG8Lmi3ZhQkHLiDtTb5aM0mlDKN/OYuZ3V3lWuzqzPSuouISbL96D0Y6ArQQmdWJTACQU1AEHg+or1t+OmlOMjGGw2lZyC+Rop0hN70UnCsb5V7bhVRJZS30AwcOICYmBlFRUeW2paSkAAAsLCzk1ltYWODZs2ecZbp79y46duyIt2/fol69ejh69CiaNWsGiUQCsViM2bNnY8uWLdDX10dISAhSUlKQnJzMWZ6qMgHA+vXrMX78eFhZWUFLSwsaGhrYvn073NzcuM30Kh2frz2It8XFqCfg47fAL9DMsnwF8PPNhzDQ4cOvhT2neYDKj1NKSgpyc3OxfPlyLF68GCtWrMDZs2fRv39/hIeHo2vXrtxlquI4eTdthIGtHGBjbICnGTlYcPoqPH88jBv/NwzaWtz9GlaVadXvUdDS0MCULq04e/2aZgKAU/efYPjuM8iXSCA01MeZif1hyvH5YUU/428lxZhz8gqGtnGCoQ63Ffr9vAJ43X6Mt1Ip9DU18LOzGE763J024hTNh64SKqnQnz9/jmnTpuH8+fNVnsfkvfcNjDFWbp0yOTo6IjY2FllZWTh8+DACAgIQGRmJZs2a4fDhwwgMDISxsTE0NTXh4eEhN+hKHZnWr1+P69ev4/jx4xCLxbh06RImTpwIoVBYrtdDqZnMGyA6aDiyCgpx9E4Cxv5yHr9PGVjuD96uG/cxzNUJOnzuP1aVHaf69esDAHx9fTFjxgwAQKtWrXD16lVs3ryZ0wq9quM0uI2jrJyL0BSu1hZovGgHTt9/Cr+W3H0BqixTgaQYP1yKxc3/8+f0d6wmmco+T93srREdNBzpeQXYce0e/Hedxh8zhsLcgLvWqSKfcUlJCYbvPg0pY9gwyJ2zLGWa6GrjkmsTZBeX4Hh6NibGPcfJFo0/3kqdcE4lFfqtW7eQlpYGV1dX2bqSkhJcunQJGzZsQFxcHIDSlrpQ+E83V1paWrlWuzIJBALZwKq2bdsiKioK69atw5YtW+Dq6orY2FhkZ2ejqKgIZmZmaN++Pdq25WbkdnWZ1q5dizlz5uDo0aPo3bs3AKBFixaIjY3F999/z2mFLtDShL1Z/dJMNhaIfp6KHyJvY9OQf17zyuOXiEvLxC8BvTjLIZepkuP0ww8/QEtLS9arUaZp06acny5R5DiVERrpQ9zAEI/+zlRLJicLY6Tl5sNu4Q5Z2RIpwzfHLuOHyNt4tCBQ5ZnKjpO+Nh/2ZvVhb1YfHRoJ0XTxLuy8fg+zen6mtkySkhIM23Uaia9zEDZpAOetcwAQaGjA7n/d+q0N9HD7TQE2v0zHWgcrzl9b6T7BG8s8f/4cI0eORFpaGrS0tDB//nwMGjRIrZlUUqH36NEDd+/elVs3ZswYODk5YdasWbCzs4OlpSXCwsLQunVrAEBRUREiIyOxYsUKVUQEUNojUHb+vIyRUengroSEBERHR+O7775TWZ53M0kkEkgkEmi81+2kqakJqVSq4kxAYXGJ3Lqfrt9DG2tztGyomnOd5TOVHieBQIB27drJviSWiY+Ph1gsVnGm8sepTEZeAZ5nvVHpILl3M41o1xQ9HOUHmfXefBTD2zZFwGfNKnk2t5kq3Q5W5XYuvJuprDJ/9HcWwiYPgIm+ei4PYwCKGFPLa9faJzjKXUtLC2vXrkWrVq2QlpaGNm3aoFevXpxdBaVQJlW8iIGBAVxcXOTW6evrw8TERLZ++vTpWLp0KZo0aYImTZpg6dKl0NPTg78/N5eGzJkzBz4+PrC2tsabN29w4MABRERE4OzZswCAQ4cOwczMDDY2Nrh79y6mTZuGfv36yQ3cU2UmQ0NDdO3aFUFBQdDV1YVYLEZkZCT27NmDkJAQzjLNO/kHvJs2glX9enhTKMGvt+MQ+egFTn3VT1Ym520hDt9JwErfLpzleFd1711QUBCGDBmCLl26wN3dHWfPnsWJEycQERHBWaaqjlNuYREWnb0Ovxb2EBrq49nrHMw7dRWm+rrox+F4g6oymejrlquY+BoasDDQg6OFsVoy5RVKsCzsJr5wsYPQUB8ZeW+x+Y87eJGViwGtHNSSqbhEiiE7T+H2izSEjvdFiZQhJScPAGCspwOBFjeXHi5KTIaHsSGstPl4U1KCI2nZuJKVi9+al16vnykpxotCCZKLJACAhPzShoi5QAsWAj4nmYg8oVAo61E2NzeHsbExXr9+/elX6Ir45ptvUFBQgIkTJ8puLHP+/HlOrkEHSm8cM3LkSCQnJ8PIyAgtWrTA2bNn0bNnTwBAcnIyZs6cidTUVAiFQowaNQrz58/nJIuimQ4cOIDZs2dj+PDheP36NcRiMZYsWYKvvvqKu0xv8jF671kk5+TDSFeA5iJTnPqqHzwc/2ntHoyJB2PA0HfOE3OpuuPk5+eHzZs3Y9myZZg6dSocHR1x+PBhTgcPVnWcCoqKce9VOvZGPURWQSGEhvroam+FfQG9YKAjUEsmdakq01tJMeLSXuPnnQ+QnvsWJvo6aGtjgfCpgzgdhV9VpqcZ2Thx7wkAoO2qX+Sed2HSAHRtYs1Jpr+LivHVX0lILSqGoZYGnPV18VtzW7g3KP17eCYjB5PiX8jKB/6VBACYZWOObxtZcpKpVnhQQpd7zYpfunQJq1atwq1bt5CcnIyjR4+iX79+cmU2btyIVatWITk5Gc7Ozli7di0+//zzGkeLjo6GVCqFtTU3nwdF8Rj7sD6cnJwcGBkZIT09HSYmqr/kpSISiQSnT59Gr169wOfXjW+pdTmT57PL4DPVdmVWRsLTxHnx53ScqlF2nChT1epyps4blkCrqLD6J3AsU0MLdhExyM7OhqEhN9fTl9UTrzfNgaFu7Qbz5RS8hfF/luL58+dyebW1taGtXX5Mw5kzZ/DHH3+gTZs2GDBgQLkK/eDBgxg5ciQ2btyIzp07Y8uWLdi+fTsePHggu6Okq6trudOwAHD+/HmIRCIAQEZGBj7//HNs374dnTp1qtXPWFt1poVOCCHkE6XEQXHvt4IXLFiA4ODgcsV9fHyqvDIpJCQEgYGBshuFrV27FufOncOmTZuwbNkyAKUDuqtSWFgIPz8/zJ49W+2VOUAVOiGEkI9IRS30mioqKsKtW7fw7bffyq339PRU+GZmjDGMHj0a3bt3x8iRI2ucgQtUoRNCCOGWEke5Gxoa1voUQXp6OkpKSiq8mVnZjc6q88cff+DgwYNo0aKF7E6UP//8M5o3b16rbLVBFTohhBBu8ZQw2xoH16HX5mZmbm5uKr9kuDp168I+QgghhGOmpqbQ1NQs1xrn+mZmXKMKnRBCCLfKutxruyiJQCCAq6srwsLC5NaHhYXVicFtH4q63AkhhHBLiaPc27VrB01NTUyaNAmTJk2qtHhubi4ePXoke5yYmIjY2FgYGxvDxsYGM2fOxMiRI9G2bVt07NgRW7duRVJSEqf39eAaVeiEEEI+GlFRUQoNiouOjoa7+z+T6MycORMAEBAQgF27dmHIkCHIyMjAokWLkJycDBcXF5w+fVrlt4hWJqrQCSGEcEsN93Lv1q0bqrtv2sSJEzFx4sTapKpTqEInhBDCLQ0ljHKv7fP/BWhQHCGEEPIJULiFXlhYKHdP25ycHACQTetZF5TlqCt5gLqdqZjHzUxRH6IsCx2nqpVloUxVq9OZ+NxNyFMTxapsz32C86HXRQpPzhIcHIyFCxeWW79v3z7o6ekpPRghhBDu5Ofnw9/fXzWTs+xeBkO9Wk7Okv8WxgGz4eDgoNAo938jhVvos2fPlo0SBErfKGtra3SJPQljft3ouS/W0MJF137o/uA8tKTF6o4D4H+ZmnnWzUxJV6FVR2aiKuZp4qJNJ/R4Ew8t1I27LxVDA78bOKD7HwehVVI3eg6KNfm42HkIevbsWadmpQsLC6NM1ahrmTIyMlT3Yko8h67oKPd/I4Ur9MqmqNOSFoNfUjcq9DJa0mLw60jlWaZOZmIldWZqyTJakIJfRyr0MlolEvDrSIVehs/n14lK4V2USTF1JVNdyECUi0a5E0II4RaPp4TL1ugcenWoQieEEMItGhSnEnWrr5wQQgghH4Ra6IQQQrilhjvF/RvRESKEEMKtslHutV1QOjlLs2bN8OOPP6r5h6p7qIVOCCHko0GXrVWOKnRCCCHcoi53laAKnRBCCLdolLtK0FceQggh5BNALXRCCCHc0tAoXWq7D1IlqtAJIYRwTAld7qAu9+qo5CvPimsP0GHXeTQI+Q2i9Ucx4PBlxGXkyJU5GvccvQ5GwHLdEfCXH0Bsaia3mS7dQYfNx9Fg8R6IVuzDgH0XEJeeLdsuKZFi9vkotNpwFEbf7YHNqv0YfTgSr3Ly1ZYJABZdjIHL+sMw+m4PzJbuhdeuM7jxPI27TGE30WH1fjSY9SNE87ZgwPbjiEt9XWn5/xy8AP70tVgXEcNZpuXHI9Dhvz+i/vhgCCcuQf81PyMu+W+5MmO3/AatkXPklk7BmzjLtCIqHh32R6LBxpMQbT2DASduIC7zTblyD1+/gd/xGzDZdAoNNp5E54OXkMTRZ2rZsmVo164dDAwMYG5ujn79+iEuLk6uDI/Hq3BZtWqV2jLl5uZi8uTJsLKygq6uLpo2bYpNm7h77xTJlJqaitGjR0MkEkFPTw/e3t5ISEjgLNOmTZvQokULGBoawtDQEB07dsSZM2dk2xljCA4Ohkgkgq6uLrp164b79+9zlqfWygbF1XYhVVLJEbqUlIb/tLHHlZE9cWZINxRLGXodjEBe0T+TleRJitGpoSmWdGupiki49DQF/2nfFFe+7IMzAV6lmXafRV5R6SQc+ZJi3H6VgbndWuLmf3zx69AeSMjIgd++MLVlAoAmpkZY17sDbk/qh4hxvSGub4Bee87h77wCbjI9fon/uLXAlelDceY//UszbT6KvMLyk5Uc+/MRbj5LgchIn5Msskx/JeI/Hh3wx4L/4OyssSiWSuGzYify3hbJlfNq4YAXP8yWLSf/L4C7TC8z8J+WtrgypAvO+HUqPU5HryFP8s9n/HFWHrodugxH43q4MKAzbg13x9zPHKCjxc2c3ZGRkZg0aRKuX7+OsLAwFBcXw9PTE3l5ebIyycnJcstPP/0EHo+HAQMGqC3TjBkzcPbsWezduxcPHz7EjBkzMGXKFBw7dkwtmRhj6NevH548eYJjx47h9u3bEIvF8PDwkMutTFZWVli+fDmio6MRHR2N7t27w9fXV1Zpr1y5EiEhIdiwYQOioqJgaWmJnj174s2b8l8iPzV0HXrlVNLlfmpIN7nH23t/BtH6UMSkvMbnNuYAgBEutgCAp1m5qoiEU6O85DP5uUG0Yj9iXmXg80aWMNIR4Oxob7kya3t3QKctJ5CUlQub+vVUngkAhrVoLFfme+/PsDMmHndTMtG9sa7yM33lJ5/JvydE87Yi5kUqPm9sJVv/MisX0w5H4NRXfvDdGqr0HO86/c0Yucc7xg+AcNJS3Hr6El2cbGXrtbU0YVnfgNMsZU716yj3eHvP1hBtO4uYtCx83tAUAPDfaw/h3cgCy92cZeXsOPzyc/bsWbnHO3fuhLm5OW7duoUuXboAACwtLeXKHDt2DO7u7rCzs1NbpmvXriEgIADdunUDAHz55ZfYsmULoqOj4evrq/JMCQkJuH79Ou7duwdn59L3buPGjTA3N8f+/fsxbtw4pWfq06eP3OMlS5Zg06ZNuH79Opo1a4a1a9di7ty56N+/PwBg9+7dsLCwwL59+zBhwgSl56k1JY5yp+vQK6eWPozs/7XuGugK1PHyFcp+W5ap/BSxZXLeFoHHA+rrqCZ3dZmKikuwPToORjoCtLA0Vk2mgtJWcAM9Hdk6qZRh9C9nMbO7K5yFJirJIZ+pEABgrC//hSbyr0QIJy5B06DVmLDjCNKyVfNlEQCy/9er0kC79LMiZQynE1PgUL8eeh29CtHWM+h0IBLHHierLlN26ekbY+OKPyupqak4deoUAgMD1ZrJzc0Nx48fx8uXL8EYQ3h4OOLj4+Hl5VXZbjjNVFhY+vnS0fnnM6+pqQmBQIArV65wnqekpAQHDhxAXl4eOnbsiMTERKSkpMDT01NWRltbG127dsXVq1c5z/NBygbF1XYhVVL5EWKMIej32+hsZQoXs/qqfvkKMcYQdPYGOttYwMWiQYVl3kqKMScsGkObN4ahCir0qjKdiktC/cV7UO+73Vh37T7OBHjBVF+nkj0pOVPoJXS2E8FFaCpbv+r3KGhpaGBKl1acZ6go0//9cgqdHcRwsf6ntend0gF7/jMYYbMDsXJYL0Q/eYmey7ajUML9nPSMMQRduo/OImO4mJa2JNLyC5ErKcHK6AR4ii1w2q8T+jUWYtDJm7j0Il0lmWbOnAk3Nze4uLhUWGb37t0wMDCQtfrUlWn9+vVo1qwZrKysIBAI4O3tjY0bN8LNzU0tmZycnCAWizF79mxkZmaiqKgIy5cvR0pKCpKTuftCdvfuXdSrVw/a2tr46quvcPToUTRr1gwpKSkAAAsLC7nyFhYWsm3k30nlo9ynht3C3bQsRIzwUPVLV2rqqWu4m5qJiMDeFW6XlEgx/FAEpAzY8EXHCsuoMlM3WyGi/9MP6flvseNWHPwPhuOPL/vAvJ7yu9zlMh0Ox91XfyNi2mDZulvPU/HDpVjc/D9/8NRw44epu4/j7vMURM6X72Yc3KGF7N8u1pZoa9cQdtNX4XTsX/BrV3GFprRMEX/ibno2IgZ9LlsnZQwA0NfOEtPblJ42aWVmhGvJmdh69ym6WJlWuC9lmTx5Mv78888qW5Q//fQThg8fLtcSVUem9evX4/r16zh+/DjEYjEuXbqEiRMnQigUwsOD278bFWXi8/k4fPgwAgMDYWxsDE1NTXh4eMDHx4fTLI6OjoiNjUVWVhYOHz6MgIAAREZGyra///vGGFPL76BC6MYyKqHSCn3a+Vs4mfASF4f3gJWhnipfulLTTl3Dyb+e42JgL1hVcD5TUiLFsF8vIjHzDcLG+KikdV5dJn0BH/YmfNibGKKDtTmarv0NO2PiMasLdwMKpx0Ox8l7T3BxyiBYvXNe+srjl0jLzYfdwh2ydSVShm+OXcYPkbfxaAF33bfT9hzHidt/IXzueFgZG1VZVljfEGLT+khIzeAsDwBMi/gTJ5+k4OJAN1gZ/PMFy1RXG1oaPDQ1kT+n72RcD3+8qvyqAWWYMmUKjh8/jkuXLsHKyqrCMpcvX0ZcXBwOHjzIaZbqMhUUFGDOnDk4evQoevcu/TLbokULxMbG4vvvv+e0Qq/qOLm6uiI2NhbZ2dkoKiqCmZkZ2rdvj7Zt23KWRyAQwN7eHgDQtm1bREVFYd26dZg1axYAICUlBUKhUFY+LS2tXKu9zuDxlHDrV6rQq6OSCp0xhmlhMTgW/wIX/LvDloMBZR+U6dR1HHv4DBfG+sC2QfnBU2WV+aOMHISN8YGJHrctF0UyVfg8MBQWl3CX6XAEjt19hAuTB8LWRL7iHNGuKXo42sit6735KIa3bYqAz5pxl2nPCYTeeoDf54yDrXn14wcy3uTj+etsCDkaJMcYw7SIuzj2OBkXBnSG7XtfxASaGmhrUR9xmfLn8ROyciE24KZnhTGGKVOm4OjRo4iIiICtrW2lZXfs2AFXV1e0bMntVSbVZZJIJJBIJNB473yppqYmpFKpWjK9y8io9POfkJCA6OhofPfdd5xkqghjDIWFhbC1tYWlpSXCwsLQunVrAEBRUREiIyOxYsUKleUhdY9KKvQp52/hwINnODLgcxgItJCSW3qJlZE2H7r80givCwqRlJOP5P9ti39devmFpb4OLDnoSp5y8hoO3H2CI8N6wEDAR8qb0muBjXQE0OVrobhEiiEHL+L2qwyEjvBAiZTJyhjrakPAwaVG1WXKK5JgWeQdfOFkA6GBHjLy32Lzzb/wIicfA1wq/yNUq0y/hePArb9wZFxfGGgLkJKT979M2tAVaMFEXxcm7w1G42towMJAD44W3AzUm7L7OPZfu4Mj00fAQEcbKVmlnxUjPR3oCvjIfVuIhUd+R/92LhDWN8DT9EzM+/U8TOvpoZ+rczV7/8BM4X/iQNwLHOnTvvQznve2NJM2H7r/+6x83cYe/mei8XlDE3SzMsW5Z2k4+SQVFwZ05iTTpEmTsG/fPhw7dgwGBgay86tGRkbQ1f3nPcvJycGhQ4ewevVqTnLUJJOhoSG6du2KoKAg6OrqQiwWIzIyEnv27EFISIhaMgHAoUOHYGZmBhsbG9y9exfTpk1Dv3795AamKdOcOXPg4+MDa2trvHnzBgcOHEBERATOnj0LHo+H6dOnY+nSpWjSpAmaNGmCpUuXQk9PD/7+/pzkqTXqclcJlVToW24/AgD02HdRbv32Xp8hoEXp5TEnEl5i3Ombsm3Dj5WO1pzf2Rn//by58jNF/VWaaecZufXb/T5HQOsmeJGThxN/JQEA2m6Uv/71whgfdLUVQtmqy6TJ4yEuPRs/H7iI9Py3MNHTRtuGZggP7AVn84oH89U60x9/lmba8Jt8pmE9EdCem8qxOpt/vwEA6LF0u9z6HeMHIKCLKzQ1NHDvRSr2XrmNrPy3ENY3QLemdtg/eSgMqriKoTa23H1amunwH3Lrt/dsjYBmpT0Y/exF+LF7S6yMSsCMiLtwaFAPv/ZuB7eG3FwZUHYzlrLLv8rs3LkTo0ePlj0+cOAAGGMYNmwYJzlqmunAgQOYPXs2hg8fjtevX0MsFmPJkiX46quv1JYpOTkZM2fORGpqKoRCIUaNGoX58+dzkgcoveJg5MiRSE5OhpGREVq0aIGzZ8+iZ8+eAIBvvvkGBQUFmDhxIjIzM9G+fXucP38eBgaquUyzxmi2NZXgMfa/0To1lJOTAyMjI6T832CYaNWNAy3R1ML5dgPhee80+FLuRzMrQqKhhfMuvepmpmeXwWfcdNXXlISnifPiz+H15i/wwU3Xak1JoIFzBk7wvLQX/JLyN9JRB4kmH+e7jECvXr3A5/PVHQdAaTf56dOnKVM16lqmjIwMmJqaIjs7m7Prusvqidcnd8BQv3bjpnLy8mH8RSCneT92daMmJoQQ8unS4ClnAd0prio0OQshhBBuKbHLne4UVzmq0AkhhHCLBsWpBHW5E0IIIZ8AaqETQgjhFo1yVwmq0AkhhHCKx+PV+ra0dfa2tnUIfeUhhBBCPgHUQieEEMIt6nJXCarQCSGEcIsqdJWgI0QIIYR8AqiFTgj5//buPDyKKu37+LfT3dmTDknIvrAEwhIIEFCDgCAEiMqwKSoOw4DO8+oTUMSXGZGZQV5HUdwdFUZcQBwERwThUREUEkAclkBYRANhTSALkLWz9fr+ERISQkIkqa5+MvfnuurSquru/Oik+65z6lQdIZSluXqnt1a9hmhWiwt6dXU11dXVdeulpaUAWFx0mLXO0dC3uOga/NcZOHUmTdvPGHezarNYnKjTqDaLRav+fbdr1WYxm53j3vJwNYtkap6zZXJoDulyd4gWT87y7LPPsmjRokbbV69ejadn6266L4QQwrEqKiqYOnWqQyZnKdr2L3y9Wzk5i7GCDnfeR/fu3dFqtaSkpJCSktJGSduHFhf067XQIyMjyXn8XvydpPFp0erZdvv93Jm+AZ2TzGxmcdGxLWGCc2b6YS06J5lFrPZ3l5SU5BQzUUFNC2br1q2M2L7Kqd6n7SOmMXTdMnQWk9pxALDoXNk5+VEGr3wdndlJMuld2T39SW5d+hI6k5NkcnVlz2N/ov8bi9Gaqm/8BIUVu2iJ25XumIK+/fO2Kegj7pXZ1prR4lLs5uaGm1vjuaR1VjN6Jzu1obNZ0Fudo3jWcspMVrPTTAtaS6/XO01Br+WM75POYnKa4llLZ3bCTCYTOiconvVpTdVOkUnryNOAGk0bdLk7WaFxQk7SthZCCNFuyeQsDiGjDIQQQoh2QFroQgghlCWj3B1CCroQQghlubTBdeitff5/ADnkEUIIIdoBaaELIYRQlnS5O4QUdCGEEMqSUe4OIYc8QgghRDsgLXQhhBDKki53h5CCLoQQQlnS5e4QDinoL+07zvqsXDKLyvDQaUkM9eeFIb2I7eBT9xi73c5zezJ5/+gZiqrM3BLSgbdG9KV3gHL37N15roBX9/zCgfxCco1VfD5pCOO7R9Ttzy+vYv72DL47k0dxlZmhkR15IymBbv4+zbyqspmMJjPPpB5m44kcLlea6GTwIiWhG48O6KZcpvOXeDU9iwMFxeSWV/P5Pbcwvmto3X79m19e93kvDunFUwnK5NqxYwcvv/wy6enp5Obmsn79eiZMmNDgMT///DN/+tOfSEtLw2az0bt3bz777DOioqIUybTzQiGvZpzi4MVSciuq+dfYAYzvHFy3/+Fth1mVeb7Bc24JMrBr8mBF8gDsuljCG8dzOFhUTl6ViTWJPRkXHnDdx85Oz+LD03m8FN+ZWd3CFcv0Q2EZb57JJ6O0grxqM6v7deWeYL+6/S9kXWBdXiHnq8y4ajT08/XkL93CGeTnpVymknL+fv4Sh4yV5JktfNIjiruvfPeYbXb+di6frUVlnK0y4avVcoefNwujgwl1U+42xT+WVfBu3mUOV1SRb7bwUdcIkut9Z35VVMqqi8Ucrqii0GLlu16difN0VyyPcH4O6cPYcf4yj8V3Ztf9w/hm4mAsNjt3rf+RcvPVe5u/kp7FGwdP8ubwvvz4wB2EeLmTvH43ZSbl7qFdbrbQN9iPN5MSGu2z2+1MXreT08XlrJs8lH0zxhBl8GLsmu2Um5S7J3tzmQCe+v4gW07lsvKe2zjySDKPD+rOnK0H2Hg8R8FMVvoGGnhzeN/r7s9+ZEyDZfmofmiAiTFhymUqLyc+Pp633377uvtPnjzJkCFD6NGjB6mpqRw6dIi//OUvuLsr94VXbrbSN8CXN4b2avIxYyIDOTf9zrpl490DFcsDUG6x0sfgzWv9uzT7uE3nL7OvsIxQd1dF8wCUW23E+XjwSs/I6+6P8XTnlZ5R/Di4F9/eGkuUhysT049zScHvggqbjTgvd5bUO1Ctv++wsZJ5kUGkxsfwcc8oTlZWM/Xns4rlqf25vT3deCEquIn9dgZ5e7AgvKOiOdpEbZd7axfRLIe00L+akNhg/f2k/oQt38yBgmKGhgdit9t56+BJ5g/qXlcEPkzqT/jyzXyaeZ7/6tNJkVxju4Yxtuv1i86JojL2XLhMxsPJ9O5oAODt0QmEvbWBNT+f5eH4rg7PBLDn/GWm9enEHdE1H/I/9Ith+cGTpOcV8pt6Lfk2zdQpmLGdrv+lAhDi1bBIbjqVx/CIQLoYlGtRJScnk5yc3OT+BQsWcNddd7FkyZK6bV26NF/UWmtsdEfGRjf/5eqqdSHEs/EkR0oZE+rPmFD/Zh9zobKauRkn+XJIbyb/cEzxTKM7Ghh95TN1PVPCGuZ9oUckH5+/zNGySoYHKNMiTurgQ1Jd6ze7wT6DTsv6uM4Ntr3UJZSRh0+RXW0i0k2Zg6CRBm9GGryvrJ1vtP++gJr38Fy1c02Ic10uLjVLa18DGDRokEyf2gRVDnlKrhxpd7jyQThdWkFeRTWjoq5+GbrptAyLCOTH3EI1IlJtsQHgrrv6FmldXHDVuvBD9kVVMgEMjghk04kLnC+rwG63k3o2nxNFZSR1btyyUEN+eRVfn8lnRu9o1TLYbDa++uorunfvzpgxYwgKCuLWW29lw4YNqmWqteNCIeEffU+v1Wk8mnqEggp1Z92y2e08vPc4c7qH00vBA7CbZbLZWJF9EYNOSx+f1k2/2ZZKrTY0gEGrVTvK/woajaZNFoB9+/Zx7NgxKebX4fCCbrfbmbfjJ24P8ycusOYcVV55zZda8DUtlyBPN/LLqxwdEYAeAb5E+3ry57TDFFWZMFmtLPnxGHnlVeSplAngjaQB9Az0pdM7G/F8+TPu/iyNv49OYEikc3S7rfo5Gx+9jokx6h1gFBQUYDQaefHFFxk7dixbtmxh4sSJTJo0ibS0NNVyjYnqyMpR8Xz7m1tYMrgH+wtKGL1xL9VWq2qZXs3MQafR8N8Knh65Gd8UFBP63UE6bj3IO2cL2DCwGwGuzjGGt8pmY9GZPO7taMBXJwVdOA+Hf0IeTz3MkUslpN43tNE+zTWjGO32xtscRa91Ye2kIfzX13sJeuMLtBoNIzsFM7aLui3ht/efYO+Fy6yfPJQogxc7swuYvSWdUG8PRnYKUTUbwIpj53iwRwTuKn7R2Ww1vSvjx4/nySefBKBfv37s3r2bZcuWcccdd6iSa0q9g5y4AB8SOhqI+SSVr89eZGIXx//uDhYZeffEBXaP6qfa56wpw/x92JXYk8tmCytzLvH7Q6fYdmsPOio4CK0lzDY7D2dmYwNe6eJcB0FOTeZDdwiHFvQnUg/zP6fy2HbvECJ8POq2h3jVtMzzyqsIrXc+9mJlNUEOPN94rYQQf9JnjqWkyoTJZqOjpzuDV24h4QbnJJVSabbw57TDfD5pCHddaVH1DfLjUH4xr+35RfWCvuv8ZTKLjPwzWdmBXjcSGBiITqejV6+Gg9N69uzJrl27VErVWKiXO9E+HmSVlKvy83+4VMLFajOxX++r22a1w/xDp3nnxAV+vmuQKrkAvHRauuq0dAVu8fOm386jfHz+Ek+peEBtttmZkXmOs1VmNsZ1ktb5ryGXrTmEQwq63W7nidQjfHkyl+8m307na87Vdfb1JMTTje/PXaR/kB8AJquNHTmXeGFIb0dEbJbhysjfE4VlpOcVsWhYH1VymG12zDZbo0mHtC4abHa7Kpnq+/CnswwIMhDfzIAnR3B1dWXQoEFkZmY22H78+HGio9U7t3+ty1Umso1VhKh0qdGDUUGMuPJ5qzV+5088GB3EtE5BqmRqit0O1Tb1/sZri/nJKhOb4jrjr3eO7n8h6nPIX+Xs7YdZk5nDF+NuxcdVV3cO2uCmx0OnRaPR8Hj/rry47zgxfl7E+Hnz0r7jeOq1PBir3PWwRpOZrCJj3frp4nIy8ovwd3clyuDF57+co6OHG5EGL44WFDP3uwOM7xau6AC0G2UaFtmRp7cfwkOnJcrgxY5zBXxy9Awv39lPwUyWBq3I0yUVZFwswd9NT5RvzUCl0moz605cYMlQxxyAGY1GsrKyrmY6fZqMjAz8/f2Jiopi3rx53H///QwbNowRI0awefNmNm3aRGpqqnKZzBaySirq1s+UVpBxqRR/Nz3+7nqe25fFxC7BhHi6cbaskr/sOU6gu54JnZu+gqDVmSxWThorr2Yqr+JQsRF/Vx2Rnu4EXNOFrXfREOyup7uCA9CMFiun6g0GPFNZzeHSCjrodfjrtbxyKo/kIAMhbnoKzVbeP1fAhWoTE0M6KJfJauV05dXR4merTBwxVuKn1xLqqmd65jkOGStZ0ysaq91Ofu3AXp0W19aO3m5CudXG6Xoj2M9VmzhaUYWfVkuEm54ii5XzJjN5Vy6jzaqqeWyQXkeQ0x1wtMVlZ3LZ2o045Lf+jyNnABi57ocG299P6s/0XjU3+fi/CTFUWqzM3n6YouqaG8t8PWEwPq7KnTNLzy1k1Kfb69bnbTsIwLS4Tnx4z23kGquY9/1B8surCfV257dxnVhwu7IF60aZ/jl+MAvSDvO7Tf+msMpEtK8n/29YH/5P/xjlMhUUM6re727ezqM1mXpG8uHoAQCsPX4eO/BArDKXzl1r//79jBgxom597ty5AEyfPp0VK1YwceJEli1bxuLFi3n88ceJjY1l3bp1DBkyRLFM6QUlJG3cW7c+b/cvAEyLDeftYb05WljGJ5nnKTaZCfV0447wAP45uh8+Cg72OlBYRvKOo3XrTx8+DcBD0UG8N6i7Yj+3OQdLK7h73/G69Wcya+6hMDUsgDd6RXG8vIrVGZe5bLLg76pjgK8nm2+Jpae3R1Mv2WoZxkrGHT1Tt77gTB4ADwb58XRkEN8UlgEwLONkg+dtiuvEkLpLy9o4U3klk4+fq1tfmFMAwJQAA291DuPb4jLmnMmt2//oqZpL254KDWSes12bLl3uDuGQgm5+YvwNH6PRaPjrbT346209HJCoxh3RwZiffqDJ/bMHdmf2QMd+6d0oU4i3Bx/cfasDE8EdEYE3/B3+oU8n/qDQ/QKuZ/jw4dhvcJph5syZzJw500GJ4I7wAEyPNX1t/Ff3OP6c9LAgP8rvbflBjCPOmw/196F0zPVvnATwz/7K3OOhOUMM3hTdHtfk/ub2KeV2Xy/yBvZscv8DgX48EOjnuEDC6Tlbv4wQQoj2pg1vLCOaJgVdCCGEsqTL3SHkkEcIIYRoB6SFLoQQQlkyH7pDSEEXQgihLOlydwgp6EIIIRSmubK09jVEc6QPQwghhGgHpIUuhBBCWdLl7hBS0IUQQihLCrpDSJe7EEII0Q5IC10IIYTCZFCcI0hBF0IIoSzpcneIFhf06upqqquvTnlYWloKgEWrx6xt+2A3w6KtmZnN4uI8xym1WZwyk1a5mex+rdosZrNZ5SRX1WZxxvfJonNVOclVtVkseifKdCWLxdWJMl3JYnV1UzlJDauLk3xxizajsd9oyqornn32WRYtWtRo++rVq/H0VG7uZCGEEG2voqKCqVOnUlJSgq+vryI/o7S0FIPBQPEv+/H1ad00s6VlRvx6DKR79+5otVpSUlJISUlpo6TtQ4sL+vVa6JGRkeTm5hIQEKBYwF/DbDazdetWkpKS0Oudo1UlmVqmNtNIPws6J+lZs9jh+2IdQ9a+g85iUjsOUNMa3nV/CiO2r0JndY7eDItWz/YR05zyfXLGv/HED15FZ1b/fSrChZjNPzqooKe3UUFPUDTv/3Yt7gd2c3PDza1xV5Fer3eaD0wtydQyzphJpwG9s1x7Yav5j85icoov4Pp0VjN6JynotZzxfXLKv3GzCZ1J/fdJK9ORtjvOc2JXCCFE+ySD4hxCCroQQghlaWiDgt4mSdo1KehCCCEUJtehO4KcRBFCCCHaAWmhCyGEUJacQ3cIKehCCCEUJl3ujiBd7kIIIUQ7IC10IYQQypIud4eQgi6EEEJZUtAdQrrchRBCiHZAtYK+Y8cOxo0bR1hYGBqNhg0bNqgVpc7ixYsZNGgQPj4+BAUFMWHCBDIzM1XNtHTpUvr27Yuvry++vr4kJibyzTffqJqpvsWLF6PRaJgzZ46qORZ9uBbd0HsbLOHjH1E1E8CFymoe3n+CqK/20XHTHhK3HeJgsVG1PN0+ScV16TeNlsd3/KRaJovNzqJj5+i95QCBG/9N3JYDLP4lG1vLpplQRFlZGXPmzCE6OhoPDw8GDx7Mvn37HJrhhyIj9x86SeyuIxi2HeR/LhY32G+321l8KpfYXUcITs3g7gMn+NlY6dCMLadpo0U0R7Uu9/LycuLj45kxYwaTJ09WK0YDaWlppKSkMGjQICwWCwsWLGD06NEcO3YMLy8vVTJFRETw4osvEhMTA8DKlSsZP348Bw8epHfv3qpkqrVv3z7ee+89+vbtq2qOWr07R/Lt63+tW1f7XtVFJgujdvzEsI6+fDG4Bx1d9ZyqqMagV+9M1+7JiVjr1cmfCstI3rSPyV1DVMv02onzfHAmn/cGxNDTx4MDxeU8djALX72OlK6hqmR65JFHOHr0KKtWrSIsLIxPPvmEUaNGcezYMcLDwx2SocJmJc7bg4dCA5h29HSj/W+cK+Cd7ALe7RlNjKcbL5/JY0JGFvtv64WPzrmmRtVoNGha2WXe2uf/J1DtmyU5OZnk5GS1fvx1bd68ucH6Rx99RFBQEOnp6QwbNkyVTOPGjWuw/vzzz7N06VL+/e9/q1rQjUYjDz30EMuXL+dvf/ubajnq02m1hAR0UDtGnddPnCfc05VlA2LqtkV7uauYCDp6NJxg6eUDJ+nq68mwMH+VEsHewjLuCenA2JCa3120lzv/yrnEwSJ1ejIqKytZt24dX375Zd3n/tlnn2XDhg0sXbrUYX/vSQEGkgIM191nt9tZml3AU51C+E2QHwDLekXTbddR/pVfxMzwQIdkFM5FzqE3o6SkBAB/f/W+7OqzWq2sWbOG8vJyEhMTVc2SkpLC3XffzahRo1TNUd+JnFwiJ/yBmCn/zdSFr3HqQr6qeb7KK2KAnze/3ZtJp6/3MXj7IT46o26m+kxWG6tPXGB6jwhVWz+JAb6kXizlxJXu4iMl5fxYWMboEHUOziwWC1arFXf3hgdfHh4e7Nq1S5VM1zpTZSLfZOFOf5+6bW4uLtzu583eknIVkzWhdlBcaxfRLBnl3gS73c7cuXMZMmQIcXFxqmY5cuQIiYmJVFVV4e3tzfr16+nVq5dqedasWcOBAwccfk6xObf06saKBbPpFhlKflEJL6z8nKGPLeDwx68TYPC58Qso4Ex5Fe+fzmN2TBjzukewv8jIvMOncXNxYWpUR1Uy1ffl6XyKqy38rodjupCbMrdbGKVmCwO+y0Cr0WC121nYK4opEeq0Mn18fEhMTOS5556jZ8+eBAcH8+mnn7Jnzx66deumSqZrFZhqps4Ncm04NWxHVx3ZVepPzdqY3FjGEaSgN2HWrFkcPnzYKY7IY2NjycjIoLi4mHXr1jF9+nTS0tJUKerZ2dk88cQTbNmypVELRk3Jtw2o+/8+QGLv7nR/YBYff5PKkw+Ma/qJCrLZYUAHL57tFQVAvJ8XP5dV8P7pPKco6Ct+yWFMVCBhKp8G+Pz8ZdbkXOLDgd3o6ePBkZIK/nTkDKHueh6KClIl06pVq5g5cybh4eFotVoGDBjA1KlTOXDggCp5mnJtibPbnbXstUUL2zn/Zc5EutyvY/bs2WzcuJHt27cTERGhdhxcXV2JiYlh4MCBLF68mPj4eN58801VsqSnp1NQUEBCQgI6nQ6dTkdaWhpvvfUWOp0Oq9WqSq5reXm4E9cliqycXNUyhLjr6eHj2WBbrI8H2ZXVKiW66mxZJd/nXGJmz0i1o/Dnn84yt1s490UEEmfw4sGojqTEhPLK8fOqZeratStpaWkYjUays7PZu3cvZrOZzp07q5apvtqWef6VlnqtS2ZLo1a7+M8hBb0eu93OrFmz+OKLL9i2bZvTfHivZbfbqa5WpyiMHDmSI0eOkJGRUbcMHDiQhx56iIyMDLRa5xhdW20y88vZHFUHyd0W4MPxay4jyjJWEeXp1sQzHGflLzkEebhxV7T6PQWVFhsu1zS+tBoNKl61VsfLy4vQ0FCKior49ttvGT9+vNqRAOjk7kqwq47thWV120w2Gz8UG7nFoM4VOc2Sc+gOoVqXu9FoJCsrq2799OnTZGRk4O/vT1RUlCqZUlJSWL16NV9++SU+Pj7k5eUBYDAY8PDwUCXTM888Q3JyMpGRkZSVlbFmzRpSU1Mbjch3FB8fn0ZjCry8vAgICFB1rMG8d1Zyz+CBRAUHUlBUwgsfr6O0vJLfJQ9XLdOsrmGM3HGUlzNzmBQeQHqRkY/O5PP3fl1UywRgs9v5+Jccfhsbjk7lS/sAkkM68HLmeSI93Ojp48GhknL+nnWB30Wr090O8O2332K324mNjSUrK4t58+YRGxvLjBkzHJbBaLFyql5vztlKE4fLKuig1xHp7spjkUG8djafrp5udPVw49Wz+Xi4aLgv2Hmu9LhKzqE7gmoFff/+/YwYMaJufe7cuQBMnz6dFStWqJJp6dKlAAwfPrzB9o8++ojf//73jg8E5OfnM23aNHJzczEYDPTt25fNmzeTlJSkSh5ndb7gMr9d9AaXSsro6OfLrb278cOyF4gOUa8FmtDBm09vjWXhsbO8mJlDtKc7L/XpxP2R6raKv8+5xDljFb/vof7pJIBX+nbmuZ/P8eShU1ysNhPq7srMTsHMVzFfSUkJ8+fPJycnB39/fyZPnszzzz+PXu+47uyDZRXcc/Bqo+eZrJpTEFND/FnaK5o5UUFUWW08lZlNscXKQF8v1veLcbpr0IXjqFbQhw8fjt0Z+tTqcbY8AB988IHaEW4oNTVV7QisXjRX7QjXlRzSgWSVLr9qSlJkR0yPOc89IHz0Wpb07cySvs5zimvKlClMmTJF1QxDO/hQcmf/JvdrNBrmdwllfhd1br7zq8i93B1CRrkLIYRQlvS4O4T6J9CEEEII0WrSQhdCCKEwaaI7ghR0IYQQypJz6A4hXe5CCCFEOyAtdCGEEMqSFrpDSEEXQgihMDmH7ghS0IUQQihLQxu00NskSbsm59CFEEKIX6msrIxBgwbRr18/+vTpw/Lly9WOJC10IYQQCmuH59A9PT1JS0vD09OTiooK4uLimDRpEgEBAaplkoIuhBBCYe3vHLpWq8XTs2Z65KqqKqxWq+q3D5cudyGEEO3Ojh07GDduHGFhYWg0GjZs2NDoMe+++y6dO3fG3d2dhIQEdu7c+at+RnFxMfHx8URERPDHP/6RwMDANkp/c1rcQq+urm4wB3dJSQkAhYWFbZ/qJpnNZioqKrh8+bJDZ0VqjmRqmdpMhXoLOic5ELfYoaJCR5HdBa2THPta7S4175MFdDa109SoeZ8qnPJ9csa/8SJc0DrBtLXFV35XjmhVlhqNre4yLzUaa/5bWtpgu5ubG25ubo0eX15eTnx8PDNmzGDy5MmN9q9du5Y5c+bw7rvvcvvtt/OPf/yD5ORkjh07VjeFd0JCQoO6V2vLli2EhYXh5+fHoUOHyM/PZ9KkSdx7770EBwe36t/ZKvYWWrhwoR2QRRZZZJGlHS0nT55saRn41SorK+0hISFtltXb27vRtoULF94wB2Bfv359g2233HKL/dFHH22wrUePHvann376pv6tjz76qP2zzz67qee2lRa30OfPn183ZznUdDVER0dz7tw5DAZDS19GUaWlpURGRpKdnY2vr6/acQDJ1FKSqWUkU8tIphsrKSkhKioKf39/xX6Gu7s7p0+fxmQytcnr2e12NNe09K/XOr8Rk8lEeno6Tz/9dIPto0ePZvfu3S16jfz8fDw8PPD19aW0tJQdO3bw2GOP/eosbanFBb2pbg2DweAUf5z1+fr6SqYWkEwtI5laRjK1jLNlclG4+9/d3R13d3dFf8avdenSJaxWa6Pu8eDgYPLy8lr0Gjk5OTz88MPY7XbsdjuzZs2ib9++SsRtMRnlLoQQ4j/Sta396/UANCUhIYGMjAwFUt089UdmCCGEEA4UGBiIVqtt1BovKChQd1BbK910QXdzc2PhwoU3df5CKZKpZSRTy0imlpFMLeNsmZwtjyO5urqSkJDA1q1bG2zfunUrgwcPVilV62nsdpWvhBdCCCHamNFoJCsrC4D+/fvz2muvMWLECPz9/YmKimLt2rVMmzaNZcuWkZiYyHvvvcfy5cv56aefiI6OVjn9zZGCLoQQot1JTU1lxIgRjbZPnz6dFStWADU3llmyZAm5ubnExcXx+uuvM2zYMAcnbTtS0IUQQoh2QAbFCSGEEO2AFHQhhBCiHZCCLoQQQrQDUtCFEEKIdkAKuhBCCNEOSEEXQggh2gEp6EIIIUQ7IAVdCCGEaAekoAshhBDtgBR0IYQQoh2Qgi6EEEK0A1LQhRBCiHbg/wNC0t70NRvB8QAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0xElEQVR4nOzdd1wUx8PH8c/BHVVA6aCAKIKCHY29YEdj772nqDFqHhNrLLEb0WhiiyWWWGLsXVTsDQvGFnuXEpEiRThgnz8IpycoIOxx8TfvvPYVb3dv78temZ3Z2R2FJEkSgiAIgiD8pxkUdABBEARBEPJOFOiCIAiC8BEQBbogCIIgfAREgS4IgiAIHwFRoAuCIAjCR0AU6IIgCILwERAFuiAIgiB8BESBLgiCIAgfAVGgC4IgCMJHQBToemLixIkoFAqtecWLF6dPnz652s6pU6eYOHEi0dHRuXre26915MgRFAoFf/75Z6628z4JCQlMnDiRI0eOZFr222+/oVAoePDgQb69nhwWLFiAh4cHRkZGKBQKoqOjmTZtGtu2bSuwTImJiXh6eqJQKPjxxx8LLIcgCAVLWdABhHfbunUrlpaWuXrOqVOnmDRpEn369KFw4cKyvlZuJSQkMGnSJADq16+vtaxFixacPn0aJycnWTPkRUhICEOHDmXAgAH07t0bpVKJhYUF06ZNo0OHDrRp06ZAco0fP574+PgCeW1BEPSHKND1WKVKlWR/jcTERExNTXXyWu9jZ2eHnZ1dgWbIzrVr1wAYOHAgn3zyiayvlZqaSkpKCsbGxu9d79y5cyxYsIDff/+djh07yppJEAT9JprcC8Du3bupWLEixsbGuLu7v7OZ9O1m8LS0NKZMmYKXlxempqYULlyY8uXL89NPPwHpzfYjR44EwN3dHYVCgUKh0DRxFy9enE8//ZQtW7ZQqVIlTExMNDXmdzXvv3r1ihEjRuDo6IipqSn16tXj0qVLWuvUr18/U40boE+fPhQvXhyABw8eaArsSZMmabJlvOa7mtxXrFhBhQoVMDExwdramrZt23Ljxo1Mr1OoUCHu3LlD8+bNKVSoEC4uLnzzzTckJSVluW/ftHHjRpo0aYKTkxOmpqaUKVOGUaNGadV669evT48ePQCoVq2aJrtCoSA+Pp5Vq1Zp/qY390VYWBiff/45xYoVw8jICHd3dyZNmkRKSopmnQcPHqBQKJg1axZTpkzB3d0dY2NjgoKC3ps7OTmZfv36MXjwYKpUqZLt3/n2682ePZuZM2dSvHhxTE1NqV+/Prdu3UKtVjNq1CicnZ2xsrKibdu2REREaG0jLS2NWbNmUbp0aYyNjbG3t6dXr148efJEs86wYcMwNzcnNjY2U4bOnTvj4OCAWq3WzNu4cSM1atTA3NycQoUK0bRp00yftXv37tGlSxecnZ0xNjbGwcGBhg0bEhISkuO/XxA+WpKgUwcPHpQMDQ2l2rVrS1u2bJE2bdokVa1aVXJ1dZXefjvc3Nyk3r17ax5Pnz5dMjQ0lCZMmCAdOnRI2rdvnzRv3jxp4sSJkiRJ0uPHj6WvvvpKAqQtW7ZIp0+flk6fPi3FxMRotufk5CSVKFFCWrFihRQUFCSdO3cuy9cKCgqSAMnFxUVq3bq1tHPnTmnt2rWSh4eHZGlpKd29e1ezbr169aR69epl+lt79+4tubm5SZIkSa9evZL27dsnAVL//v012e7cuSNJkiStXLlSAqT79+9rnj9t2jQJkLp27Srt3r1bWr16tVSiRAnJyspKunXrltbrGBkZSWXKlJF+/PFH6eDBg9L3338vKRQKadKkSdm+Jz/88IM0d+5caffu3dKRI0ekxYsXS+7u7pKfn59mnWvXrknjxo2TAGnlypWa7KdPn5ZMTU2l5s2ba/6ma9euSZIkSaGhoZKLi4vk5uYmLVmyRDp48KD0ww8/SMbGxlKfPn00275//74ESEWLFpX8/PykP//8Uzpw4IDWvsjK2LFjpeLFi0txcXGabcyePTvbvzdjXTc3N6lly5bSrl27pLVr10oODg6Sp6en1LNnT6lfv37S3r17pcWLF0uFChWSWrZsqbWNzz77TAKkIUOGSPv27ZMWL14s2dnZSS4uLtI///wjSZIkXb58WQKkX3/9Veu5UVFRkrGxsTRixAjNvKlTp0oKhULq16+ftGvXLmnLli1SjRo1JHNzc83+lCRJ8vLykjw8PKQ1a9ZIR48elTZv3ix98803UlBQULZ/tyB87ESBrmPVqlWTnJ2dpcTERM282NhYydraOtsC/dNPP5UqVqz43u3Pnj07U8H45vYMDQ2lmzdvZrksqwK9cuXKUlpammb+gwcPJJVKJQ0YMEAzLycFuiRJ0j///CMB0oQJEzKt+3aBHhUVpSko3/To0SPJ2NhY6tatm9brANIff/yhtW7z5s0lLy+vTK/1PmlpaZJarZaOHj0qAdLly5czZQwODtZ6jrm5uda+y/D5559LhQoVkh4+fKg1/8cff5QATUGVUcCWLFlSSk5OzlHOS5cuSSqVStq3b5/WNnJToFeoUEFKTU3VzJ83b54ESK1atdJaf9iwYRKgOTC8ceOGBEiDBg3SWu/s2bMSII0ZM0Yzr3LlylLNmjW11lu4cKEESFeuXJEkKf09VSqV0ldffaW13suXLyVHR0epU6dOkiRJ0vPnzyVAmjdvXrZ/oyD8LxJN7joUHx9PcHAw7dq1w8TERDPfwsKCli1bZvv8Tz75hMuXLzNo0CD279+fZVNmdsqXL4+np2eO1+/WrZtW73s3Nzdq1qyZbXNwXp0+fZrExMRMpwFcXFxo0KABhw4d0pqvUCgy7cPy5cvz8OHDbF/r3r17dOvWDUdHRwwNDVGpVNSrVw8gU/N+buzatQs/Pz+cnZ1JSUnRTP7+/gAcPXpUa/1WrVqhUqmy3W5KSgr9+vWjc+fONG3a9IPzNW/eHAOD1z8BZcqUAdI7KL4pY/6jR48ANO/92+/NJ598QpkyZbTem759+3Lq1Clu3rypmbdy5UqqVq1K2bJlAdi/fz8pKSn06tVLaz+ZmJhQr149zSkja2trSpYsyezZswkICODSpUukpaV98N8vCB8bUaDrUFRUFGlpaTg6OmZaltW8t40ePZoff/yRM2fO4O/vj42NDQ0bNuT8+fM5zpDbXuTvyhoZGZmr7eRWxvazyuvs7Jzp9c3MzLQOkgCMjY159erVe18nLi6OOnXqcPbsWaZMmcKRI0cIDg5my5YtQHqnwQ8VHh7Ozp07UalUWpOPjw8Az58/11o/p+/NvHnzuHfvHhMmTCA6Opro6GjNwd2rV6+Ijo4mNTU12+1YW1trPTYyMnrv/Ix9mZv3pnv37hgbG/Pbb78BcP36dYKDg+nbt69mnfDwcACqVq2aaV9t3LhRs58UCgWHDh2iadOmzJo1i8qVK2NnZ8fQoUN5+fJltn+vIHzsRC93HSpSpAgKhYKwsLBMy7Ka9zalUsmIESMYMWIE0dHRHDx4kDFjxtC0aVMeP36MmZlZttt4+1r37Lwrq42NjeaxiYkJMTExmdZ7u8DKjYzth4aGZlr27NkzbG1tP3jbbzp8+DDPnj3jyJEjmlo5kOvr+LNia2tL+fLlmTp1apbLnZ2dtR7n9L25evUqMTExlCpVKtOy8ePHM378eC5dukTFihVznTkn3nxvihUrprXs7femSJEitG7dmtWrVzNlyhRWrlyJiYkJXbt21ayTsf6ff/6Jm5vbe1/bzc2N5cuXA3Dr1i3++OMPJk6cSHJyMosXL86Xv08Q/qtEDV2HzM3N+eSTT9iyZYtWzfHly5fs3LkzV9sqXLgwHTp0YPDgwbx48ULTOzzjMqe81CzftH79eiRJ0jx++PAhp06d0urJXbx4cW7duqXVozwyMpJTp05pbSs32WrUqIGpqSlr167Vmv/kyRMOHz5Mw4YNP+TPySSjEH378rAlS5bkeBvGxsZZ/k2ffvopV69epWTJklSpUiXT9HaBnlOjRo0iKChIa1q/fj0AX3zxBUFBQXh4eHzQtnOiQYMGAJnem+DgYG7cuJHpvenbty/Pnj1jz549rF27lrZt22rdI6Fp06YolUru3r2b5X56Vw9+T09Pxo0bR7ly5bh48WL+/pGC8B8kaug69sMPP9CsWTMaN27MN998Q2pqKjNnzsTc3JwXL16897ktW7akbNmyVKlSBTs7Ox4+fMi8efNwc3PT1NbKlSsHwE8//UTv3r1RqVR4eXlhYWHxQXkjIiJo27YtAwcOJCYmhgkTJmBiYsLo0aM16/Ts2ZMlS5bQo0cPBg4cSGRkJLNmzcp0oxoLCwvc3NzYvn07DRs2xNraGltbW82lbW8qXLgw48ePZ8yYMfTq1YuuXbsSGRnJpEmTMDExYcKECR/097ytZs2aFClShC+++IIJEyagUqn4/fffuXz5co63Ua5cOY4cOcLOnTtxcnLCwsICLy8vJk+eTGBgIDVr1mTo0KF4eXnx6tUrHjx4wJ49e1i8eHGmGm5OlC5dmtKlS2vNyzigK1myZJaXEOYnLy8vPvvsMxYsWICBgQH+/v48ePCA8ePH4+LiwvDhw7XWb9KkCcWKFWPQoEGEhYVpNbdD+gHh5MmTGTt2LPfu3aNZs2YUKVKE8PBwzp07h7m5OZMmTeKvv/5iyJAhdOzYkVKlSmFkZMThw4f566+/GDVqlKx/syD8JxR0r7z/RTt27JDKly8vGRkZSa6urtKMGTOkCRMmZNvLfc6cOVLNmjUlW1tbzXP79+8vPXjwQOt5o0ePlpydnSUDAwMJ0FzS4+bmJrVo0SLLTO/q5b5mzRpp6NChkp2dnWRsbCzVqVNHOn/+fKbnr1q1SipTpoxkYmIieXt7Sxs3bszUy12S0i/bq1SpkmRsbCwBmtfM6rI1SZKkZcuWafaVlZWV1Lp1a63LmCQpvZe7ubl5pkxZ7dOsnDp1SqpRo4ZkZmYm2dnZSQMGDJAuXryouUQtw7t6uYeEhEi1atWSzMzMJECrx/8///wjDR06VHJ3d5dUKpVkbW0t+fr6SmPHjpXi4uIkScpdD/V3+ZBe7m+vm/Geb9q0SWt+Vn93amqqNHPmTMnT01NSqVSSra2t1KNHD+nx48dZvuaYMWM0l0G+2bP+Tdu2bZP8/PwkS0tLydjYWHJzc5M6dOggHTx4UJIkSQoPD5f69OkjlS5dWjI3N5cKFSoklS9fXpo7d66UkpKS7d8tCB87hSS90Z4qCIIgCMJ/kjiHLgiCIAgfAVGgC4IgCEIWdu3ahZeXF6VKlWLZsmUFHSdbosldEARBEN6SkpKCt7c3QUFBWFpaUrlyZc6ePZvpPg36RNTQBUEQBOEt586dw8fHh6JFi2JhYUHz5s3Zv39/Qcd6L1GgC4IgCB+dY8eO0bJlS5ydnVEoFGzbti3TOgsXLsTd3R0TExN8fX05fvy4ZtmzZ88oWrSo5nGxYsV4+vSpLqJ/MFGgC4IgCB+d+Ph4KlSowM8//5zl8o0bNzJs2DDGjh3LpUuXqFOnDv7+/poxC7I6G53bO23qWo5vLJOUlKR1J7C0tDRevHiBjY2N3v+RgiAIgjZJknj58iXOzs5ag/Tkt1evXpGcnJwv25IkKVN5Y2xsnOlOjwD+/v6agZCyEhAQQP/+/RkwYACQPkbC/v37WbRoEdOnT6do0aJaNfInT55QrVq1fPk7ZJPTC9YzbtIhJjGJSUxi+nimd90MKD8kJiZKZijyLWuhQoUyzctqOOa3AdLWrVs1j5OSkiRDQ0Npy5YtWusNHTpUqlu3riRJkqRWqyUPDw/pyZMnUmxsrOTh4SE9f/48P3dPvstxDX306NGMGDFC8zgmJgZXV1du3bqlN73+1Go1QUFB+Pn55WgYSl0QmXJGZMoZkSln9DpTjaqolAV/1+0XUVF4lq/8wbeFzonk5GQSkOiJOUbkrSU3GYk1cXE8fvxY67bSWdXOs/P8+XNSU1NxcHDQmu/g4KAZkEqpVDJnzhz8/PxIS0vj22+/1RqUSh/l+FP1rmYNa2trvfkj1Wo1ZmZm2NjY6NWXWGTKnsiUMyJTzuh1JusielGgZ9DFKVMTDDDK4+sY/HtO29LSMtM4ER/q7b9deqtJv1WrVrRq1SpfXksXRKc4QRAE4X+Kra0thoaGmYaHjoiIyFRr/y8RBbogCIIgK4N8mvKLkZERvr6+BAYGas3PGB3xv0p/2n0EQRCEj5JCAQZ5bNlXAEhQtWpVDA0NGTx4MIMHD37n+nFxcdy5c0fz+P79+4SEhGBtbY2rqysjRoygZ8+eVKlShRo1arB06VIePXrEF198kbegBUgU6IIgCMJ/RnBwcI7OoZ8/fx4/Pz/N44xO3b179+a3336jc+fOREZGMnnyZEJDQylbtix79uzBzc1NtuxyEwW6IAiCIKv8aDLP7fPr16+f5c1h3jRo0CAGDRr04aH0jCjQBUEQBFkZKBQY5LWXO6RfeS68k+gUJwiCIAgfAVFDFwRBEGRVEE3u/4tEgS4IgiDIyiAfermLAj17Yh8JgiAI/xlVq1bF29ubX375paCj6B3ZCvTsxqKVJImJEyfi7OyMqakp9evX59q1a1rrJCUl8dVXX2Fra4u5uTmtWrXiyZMn+Zbx5cuXDBs2DDc3N0xNTalZsybBwcGa5eHh4fTp0wdnZ2fMzMxo1qwZt2/fzrfX/5BMcXFxDBkyhGLFimFqakqZMmVYtGhRgWZSKBRZTrNnzy6wTAA3btygVatWWFlZYWFhQfXq1TVDIxZEpj59+mTaR9WrV5ctT04yvenzzz9HoVAwb968As00ceJESpcujbm5OUWKFKFRo0acPXu2wDKp1Wq+++47ypUrh7m5Oc7OzvTq1Ytnz57Jn2nkKNxKl8XUxpGaDZoQfOGiZvmW7Tto2qodtq4lUJgXJuTyX7LmyYv8vLFMcHAw169ff+816P+rZCvQsxuLdtasWQQEBPDzzz8THByMo6MjjRs35uXLl5p1hg0bxtatW9mwYQMnTpwgLi6OTz/9lNTU1HzJOGDAAAIDA1mzZg1XrlyhSZMmNGrUiKdPnyJJEm3atOHevXts376dS5cu4ebmRqNGjYiPj8+X189tJoDhw4ezb98+1q5dy40bNxg+fDhfffUV27dvL7BMoaGhWtOKFStQKBS0b9++wDLdvXuX2rVrU7p0aY4cOcLly5cZP348JiYmBZYJoFmzZlr7as+ePbLlyWkmgG3btnH27FmcnZ1lzZOTTJ6envz8889cuXKFEydOULx4cZo0acI///xTIJkSEhK4ePEi48eP5+LFi2zZsoVbt27Jfo/vAYOHEhh0hDXLlnDl3CmaNPSj0adtePrvgUR8fAK1alRjxuSJsubID+866M/tJGTjQ4dpi4mJkYAcDSfHW0PXpaWlSY6OjtKMGTM08169eiVZWVlJixcvliRJkqKjoyWVSiVt2LBBs87Tp08lAwMDad++fVm+TnJysrRt2zYpOTk520wJCQmSoaGhtGvXLq35FSpUkMaOHSvdvHlTAqSrV69qlqWkpEjW1tbSr7/+mu325cgkSZLk4+MjTZ48WWt55cqVpXHjxhVYpre1bt1aatCgQY7zyJGpc+fOUo8ePXKVQe5MvXv3llq3bq1XmSRJkp48eSIVLVpUunr1quTm5ibNnTu3wDO9KeO35uDBg3qT6dy5cxIgPXz4MPeZYp5LUnz0e6eE56HpmTZv1JpfoVxZaey3/6c17/71yxIgXTp1LNvtvjk9f3xfAqSYmJgc/w25lfHejVRaSeNUhfM0jVRayZ73v65AzqHfv3+fsLAwmjRpoplnbGxMvXr1OHXqFAAXLlxArVZrrePs7EzZsmU16+RFSkoKqampmWpspqamnDhxgqSkJACt5YaGhhgZGXHixIk8v/6HZAKoXbs2O3bs0LQiBAUFcevWLZo2bVpgmd4UHh7O7t276d+/vyx5cpIpLS2N3bt34+npSdOmTbG3t6datWqZTvvoMlOGI0eOYG9vj6enJwMHDiQiIqJAM6WlpdGzZ09GjhyJj4+PbFlyk+lNycnJLF26FCsrKypUqKAXmSB9+GiFQkHhwoXlzWScRabTp2V5TeG/r0AK9IwRbt43Fm1YWBhGRkYUKVLknevkhYWFBTVq1OCHH37g2bNnpKamsnbtWs6ePUtoaCilS5fGzc2N0aNHExUVRXJyMjNmzCAsLIzQ0NA8v/6HZAKYP38+3t7eFCtWDCMjI5o1a8bChQupXbt2gWV606pVq7CwsKBdu3ay5MlJpoiICOLi4pgxYwbNmjXjwIEDtG3blnbt2nH06NECyQTg7+/P77//zuHDh5kzZw7BwcE0aNBAc/BYEJlmzpyJUqlk6NChsmT4kEwAu3btolChQpiYmDB37lwCAwOxtbUt0EwZXr16xahRo+jWrVu+DeOZZaZqn/DDzFk8Cw1Nz7R+I2eDzxMaFi7La8opo5d7Xifh/Qq0l3t2Y9FmJSfr5NSaNWuQJImiRYtibGzM/Pnz6datG4aGhqhUKjZv3sytW7ewtrbGzMyMI0eO4O/vj6GhYb68fm4zQXqBfubMGXbs2MGFCxeYM2cOgwYN4uDBgwWW6U0rVqyge/fusp6rzi5TWloaAK1bt2b48OFUrFiRUaNG8emnn7J48eICyQTQuXNnWrRoQdmyZWnZsiV79+7l1q1b7N69u0AyXbhwgZ9++onffvtNp+cnc/J58vPzIyQkhFOnTtGsWTM6deoka2tGTj/jarWaLl26kJaWxsKFC2XLA7Bm2ZL0TB5lMC5iz/xFS+jWqaOsvz9yUZD3DnGiPM9egRTojo6OAO8di9bR0ZHk5GSioqLeuU5elSxZkqNHjxIXF8fjx485d+4carUad3d3AHx9fQkJCSE6OprQ0FD27dtHZGSkZrkc3pcpMTGRMWPGEBAQQMuWLSlfvjxDhgyhc+fO/PjjjwWS6U3Hjx/n5s2bDBgwQLYsOclka2uLUqnE29tb6zllypSRtZd7TvdTBicnJ9zc3GS9cuJ9mY4fP05ERASurq4olUqUSiUPHz7km2++oXjx4gWSKYO5uTkeHh5Ur16d5cuXo1QqWb58eYFmUqvVdOrUifv37xMYGChb7VyTqYQ7R/fvIS7iKY9vXuPcscOoU9S4/4cHD8kP4rK1dyuQAt3d3R1HR0etsWiTk5M5evSoZixaX19fVCqV1jqhoaFcvXo138erNTc3x8nJiaioKPbv30/r1q21lltZWWFnZ8ft27c5f/58puVyyCqTWq1GrVZjYKD9tr1ZK9V1pjctX74cX19f2c515jSTkZERVatW5ebNm1rr3rp1SycjKWW3nzJERkby+PFjnJycCiRTz549+euvvwgJCdFMzs7OjBw5kv379xdIpneRJEm2UxM5yZRRmN++fZuDBw9iY2MjexbtTI5ERUWz/+AhWn/aXGevnV8y7uWe1wnEZWvvI9ud4rIbi3bYsGFMmzaNUqVKUapUKaZNm4aZmRndunUD0gvR/v37880332BjY4O1tTX/93//R7ly5WjUqFG+ZNy/fz+SJOHl5cWdO3cYOXIkXl5e9O3bF4BNmzZhZ2eHq6srV65c4euvv6ZNmzZaHfXy2/syqVQq6tWrx8iRIzE1NcXNzY2jR4+yevVqAgICCiRThtjYWDZt2sScOXNky5GbTCNHjqRz587UrVsXPz8/9u3bx86dOzly5EiBZIqLi2PixIm0b98eJycnHjx4wJgxY7C1taVt27YFkkmlUmUqmFQqFY6Ojnh5eRVIpvj4eKZOnUqrVq1wcnIiMjKShQsX8uTJEzp27FggmVJSUujQoQMXL15k165dpKamaloXra2tMTIykidT4KH0TJ4e3Ll7n5Fjx+NVqhR9e3YH4MWLKB49fsyz0PQsN2+n/946Ojjg6Jg/rZj5Rdz6VUc+tHt8dpetBQUFSaSPjaM19e7dW5Kk9EvXJkyYIDk6OkrGxsZS3bp1pStXrmhtIzExURoyZIhkbW0tmZqaSp9++qn06NGjd2bKzaUqkiRJGzdulEqUKCEZGRlJjo6O0uDBg6Xo6GjN8p9++kkqVqyYpFKpJFdXV2ncuHFSUlJSjrYtV6bQ0FCpT58+krOzs2RiYiJ5eXlJc+bMkdLS0goskyRJ0pIlSyRTU9NM8wsy0/LlyyUPDw/JxMREqlChgrRt27YCy5SQkCA1adJEsrOz03yeevfu/d7Ps9yZsiL3ZWvZZUpMTJTatm0rOTs7S0ZGRpKTk5PUqlUr6dy5cwWW6f79+1n+lgFSUFBQ7jPl4LI1KT5a2rh6pVTCvXh6JgcHafDnA6XoZw81y1cu/iXLTBPGfKd3l62NMyosTTEukqdpnFFhcdlaNhSSlM2Ase8QGxuLlZUVz58/12nz0/uo1Wr27NlD8+bNUalUBR0HEJlySmTKGZEpZ/Q6k19tVMqCH0Yj8kUUti7uxMTEyNYfIKOc+N64MCZ57Hj5SpKYnBQta97/uoL/VAmCIAgfNdHkrhtiHwmCIAjCR0DU0AVBEARZGaDAII9XkovaZ/bEPhIEQRBklZ93ihPXob+bqKELgiAIssrPc+jBwcGiU9w7iBq6IAiCIHwERA1dEARBkFV+DK4iap/ZEwW6IAiCIKv0wVnyVqIr+KBbpvxPEQc9giAIgvAREDV0QRAEQVaiyV03RIEuCIIgyErcKU43xD4SBEEQhI9AjmvoSUlJWuMRx8bGAmjG6NYHGTn0JQ/od6ZXv4wmRUot4DTpUhSG4F5HL/eTyPR+IlPOaDIpTUEPBoxRKxN19lqiyV03cjza2sSJE5k0aVKm+evWrcPMzCzfgwmCIAjySUhIoFu3bjoZbe0nc2tMFXkrkhOlNL6Of4GnpyeGhoYMHjyYwYMH51PSj0OOC/SsauguLi6Ehobq1fCpgYGBNG7cWK+GTNTXTA3uH0epRzX0w+519HI/iUzvJzLljL5lioyMxMnJ6T9XoIvhU98tx03uxsbGGBsbZ5qvUqn04sP5JpEpZ5RSKio9KdAz6ON+EplyRmTKGX3JpMsMosldN0Qvd0EQBEFWin+nvG5DeD9RoAuCIAiyEjV03RD7SBAEQRA+AqKGLgiCIMjKAEWe7+We1+f/LxAFuiAIgiAr0eSuG2IfCYIgCMJHQNTQBUEQBFmlD5+a920I7ycKdEEQBEFW4rI13RBN7oIgCILwERAFuiAIgiArA4UiXyaAqlWr4u3tzS+//FLAf5X+0UmBnpKSwrhx43B3d8fU1JQSJUowefJk0tLSNOts2bKFpk2bYmtri0KhICQkpEAzqdVqvvvuO8qVK4e5uTnOzs706tWLZ8+eFVgmSB8kp3Tp0pibm1OkSBEaNWrE2bNn5cuUmsb3e09TauoqLL5biOfUVUw5cI60tKyHAPhy02FU3yzgp2Mh8mXKwX7q06cPCoVCa6pevXqBZgK4ceMGrVq1wsrKCgsLC6pXr86jR48KLNPb+yhjmj17doFliouLY8iQIRQrVgxTU1PKlCnDokWLZMmT00zh4eH06dMHZ2dnzMzMaNasGbdv35YtE8DLly8ZNmwYbm5umJqaUrNmTYKDgzXLJUli4sSJODs7Y2pqSv369bl27ZqsmT6UIp8mgODgYK5fvy4GZsmCTs6hz5w5k8WLF7Nq1Sp8fHw4f/48ffv2xcrKiq+//hqA+Ph4atWqRceOHRk4cGCBZ0pISODixYuMHz+eChUqEBUVxbBhw2jVqhXnz58vkEwAnp6e/Pzzz5QoUYLExETmzp1LkyZNuHPnDnZ2dvmeaXbQBZaeusqKro3wdrThwuMIBmw8iKWJEUPrVtRad/uVu5x7FI6zpXm+53hTTvYTQLNmzVi5cqXmsZGRUYFmunv3LrVr16Z///5MmjQJKysrbty4gYmJSYFlCg0N1XrO3r176d+/P+3bty+wTMOHDycoKIi1a9dSvHhxDhw4wKBBg3B2dqZ169Y6zyRJEm3atEGlUrF9+3YsLS0JCAigUaNGXL9+HXNzeT7vAwYM4OrVq6xZswZnZ2fWrl2rec2iRYsya9YsAgIC+O233/D09GTKlCk0btyYmzdvYmFhIUsmQb/ppEA/ffo0rVu3pkWLFgAUL16c9evXaxWMPXv2BODBgwe6iJRtJisrKwIDA7Wes2DBAj755BMePXqEq6urzjMBdOvWTes5AQEBLF++nL/++ouGDRvme6YzD8JoWbYEzb3d0zNZW7Lx0i0uPInQWu9pTBxfbz3K7s9a03rZznzP8aac7CdIH1DI0dFR1iy5yTR27FiaN2/OrFmzNPNKlChRoJne3j/bt2/Hz89Ptlw5yXT69Gl69+5N/fr1Afjss89YsmQJ58+fl6VAzy7T7du3OXPmDFevXsXHxweAhQsXYm9vz/r16xkwYEC+Z0pMTGTz5s1s376dunXrAumtc9u2bWPRokX88MMPzJs3j7Fjx9KuXTsAVq1ahYODA+vWrePzzz/P90x5ITrF6YZOmtxr167NoUOHuHXrFgCXL1/mxIkTNG/eXBcvn2+ZYmJiUCgUFC5cWC8yJScns3TpUqysrKhQoYIsmWq5OxF0+zG3/olKz/TsH07ef4Z/6eKaddLSJPqsC2RE/cr4OMo/lG5O99ORI0ewt7fH09OTgQMHEhERkdXmdJIpLS2N3bt34+npSdOmTbG3t6datWps27atwDK9LTw8nN27d9O/f/8CzVS7dm127NjB06dPkSSJoKAgbt26RdOmTQskU8aw0W+2pBgaGmJkZMSJEydkyZSSkkJqamqm1htTU1NOnDjB/fv3CQsLo0mTJpplxsbG1KtXj1OnTsmSKS/ys8ldeDed1NC/++47YmJiKF26NIaGhqSmpjJ16lS6du2qi5fPl0yvXr1i1KhRdOvWTbaxeHOaadeuXXTp0oWEhAScnJwIDAzE1tZWlkwjG/gS8yqZsjPXYqgwIFVK4wf/GnSp7KlZZ3bQBZQGCr6qI89Bxdtysp/8/f3p2LEjbm5u3L9/n/Hjx9OgQQMuXLiQ5TDAcmeKiIggLi6OGTNmMGXKFGbOnMm+ffto164dQUFB1KtXT+eZ3rZq1SosLCw0NT455CTT/PnzGThwIMWKFUOpVGJgYMCyZcuoXbt2gWQqXbo0bm5ujB49miVLlmBubk5AQABhYWGZTlnkFwsLC2rUqMEPP/xAmTJlcHBwYP369Zw9e5ZSpUoRFhYGgIODg9bzHBwcePjwoSyZ8iKjb0aetiGK9GzppEDfuHEja9euZd26dfj4+BASEsKwYcNwdnamd+/euoiQp0xqtZouXbqQlpbGwoULCzyTn58fISEhPH/+nF9//ZVOnTpx9uxZ7O3t8z3THyG3WXfhJmu6N8Xb0ZrLT5/zzfbjOFma06tqGS48jmDB8cucG945z1/YnMrJfurcubNm/bJly1KlShXc3NzYvXu3LAVWdpkyOli1bt2a4cOHA1CxYkVOnTrF4sWLZSnQc/u9W7FiBd27d5ftnH5OM82fP58zZ86wY8cO3NzcOHbsGIMGDcLJyYlGjRrpPJNKpWLz5s30798fa2trDA0NadSoEf7+/vme5U1r1qyhX79+FC1aFENDQypXrky3bt24ePGiZp23v3OSJOnseyjoH50U6CNHjmTUqFF06dIFgHLlyvHw4UOmT59eYAV6TjOp1Wo6derE/fv3OXz4sGy189xkMjc3x8PDAw8PD6pXr06pUqVYvnw5o0ePzvdMo3aeZGQDXzpXSq+Rl3Oy5VHUS2YdOk+vqmU4cf8ZEXEJlJjym+Y5qWkS3+44wYJjIdwZ1yffM33I58nJyQk3NzfZeiZnl8nW1halUom3t7fW88qUKSNbs21u9tPx48e5efMmGzdulCVLTjMlJiYyZswYtm7dqjmnXb58eUJCQvjxxx9lKdBzsp98fX0JCQkhJiaG5ORk7OzsqFatGlWqVMn3PBlKlizJ0aNHiY+PJzY2FicnJzp37oy7u7um70NYWBhOTk6a50RERGSqtesDcQ5dN3RSoCckJGBgoH263tDQMNMlPbqUk0wZhfnt27cJCgrCxkbe88Mfup8kSdKc58v3TOoUDN4aVcHQQEHGVWs9fL1oWMpFa3mLpdvp7utF70+0C698y/QB+ykyMpLHjx9r/fjpMpORkRFVq1bl5s2bWuvcunULNze3Asn0puXLl+Pr6ytbX4ycZlKr1ajVap3+XuRmP1lZWQHpHeXOnz/PDz/8IEumN5mbm2Nubk5UVBT79+9n1qxZmkI9MDCQSpUqAel9ao4ePcrMmTNlz5RbBuS9w5a4aUr2dFKgt2zZkqlTp+Lq6oqPjw+XLl0iICCAfv36adZ58eIFjx490lznnfHD5+joKEtP5ewypaSk0KFDBy5evMiuXbtITU3VnLeytraW5RKo7DLFx8czdepUWrVqhZOTE5GRkSxcuJAnT57QsWPHfM8D0MK7ODMOBuNauBDejjaEPP2HeUcv0effwtrG3BQbc1Ot56gMDXCwNMfLvogsmbLbT3FxcUycOJH27dvj5OTEgwcPGDNmDLa2trRt27ZAMkF6TbBz587UrVsXPz8/9u3bx86dOzly5EiBZQKIjY1l06ZNzJkzR5YcuclkaWlJvXr1GDlyJKampri5uXH06FFWr15NQEBAgWQC2LRpE3Z2dri6unLlyhW+/vpr2rRpo9UpLb/t378fSZLw8vLizp07jBw5Ei8vL/r27YtCoWDYsGFMmzaNUqVKUapUKaZNm4aZmVmmK2GE/x06KdAXLFjA+PHjGTRoEBERETg7O/P555/z/fffa9bZsWMHffv21TzOaP6aMGECEydO1HmmJ0+esGPHDiD9XOebgoKCNJfU6DKToaEhf//9N6tWreL58+fY2NhQtWpVjh8/rrmcJr/91LYeE/ad4astR4l4mYCzlTkDa5RlXONPZHm9nMjJfrpy5QqrV68mOjoaJycn/Pz82Lhxo2zX5+bkM962bVsWL17M9OnTGTp0KF5eXmzevFm2zl45yQSwYcMGJEnSSSfVnGTasGEDo0ePpnv37rx48QI3NzemTp3KF198UWCZQkNDGTFiBOHh4Tg5OdGrVy/Gjx8vS54MMTExjB49midPnmBtbU379u2ZOnUqKpUKgG+//ZbExEQGDRpEVFQU1apV48CBA3p5DbpCkT7laRv5E+WjppAkKetbfmUjNjYWKysrTcGiD9RqNXv27KF58+aaD31B0+dMTe4dQSWlFnQcANQKQw6UqK+X+0lkej+RKWf0LVNkZCS2trbExMTI1jcoo5xYX8QeM0XeGs0TpDS6RkXImve/TpyWEARBEISPgBg+VRAEQZCV6OWuG6JAFwRBEGQlCnTdEE3ugiAIwn+GGD713UQNXRAEQZCVAWCQxyq2wb/dt4ODg0WnuHcQBbogCIIgK8W//+V1G8L7iQJdEARBkJ0ojuUnzqELgiAIwkdA1NAFQRAEWeXLneJEFT9bokAXBEEQZCUuW9MN0eQuCIIgCB8BUUMXBEEQZGWAAoM81rHz+vz/BTku0JOSkrTG3I6NjQVej1+sDzJy6Ese0O9M0udTkfRgkAgASa2GwEC93E8i0/tpMr18AUr9qCOoU1LS/6+PmfTkvdNlDtHkrhs5Hm1t4sSJTJo0KdP8devWYWZmlu/BBEEQBPkkJCTQrVs3nYy2tt3aEXODvJ3hjU9Lo/WLMDHa2nvkuEDPqobu4uJCaGioXg2fGhgYSOPGjfVieEIQmXJKZMoZvc5UpzoqPaoNBx4/o5+Z9OS9i4yMxMnJSScF+g6b/CnQW0WKAv19cvxJNzY2xtjYONN8lUqlFx/ON4lMOSMy5YzIlDMqpVJvCs8MeplJT947XWYQTe66IXq5C4IgCMJHQL8OXQVBEISPjriXu26IAl0QBEGQlYEiH0ZbE+V5tkSBLgiCIMhKnEPXDXEOXRAEQRA+AqKGLgiCIMhK1NB1QxTogiAIgqxEpzjdEE3ugiAIgvAREDV0QRAEQVZiPHTdEDV0QRAEQVYG+TQBVK1aFW9vb3755Rdd/gn/CTop0FNSUhg3bhzu7u6YmppSokQJJk+eTFpammYdSZKYOHEizs7OmJqaUr9+fa5duyZrruLFi6NQKDJNgwcPBiA8PJw+ffrg7OyMmZkZzZo14/bt2wWaKS4ujiFDhlCsWDFMTU0pU6YMixYtKrA8WS1TKBTMnj27wDIB3Lhxg1atWmFlZYWFhQXVq1fn0aNHBZapT58+mZZVr15dtjw5yfSmzz//HIVCwbx58+TNVKYcCvPCmabBw/8PgIlTp1O6UlXM7ZwpUtSNRi1aczb4fIFlUqvVfDduAuWq1sTczhnnkqXpNeBznoWGypspm/duy5YtNG3aFFtbWxQKBSEhIbLm0SfBwcFcv349y8/x/zqdNLnPnDmTxYsXs2rVKnx8fDh//jx9+/bFysqKr7/+GoBZs2YREBDAb7/9hqenJ1OmTKFx48bcvHkTCwsLWXIFBweTmpqqeXz16lUaN25Mx44dkSSJNm3aoFKp2L59O5aWlgQEBNCoUSOuX7+Oubm5zjMBDB8+nKCgINauXUvx4sU5cOAAgwYNwtnZmdatW+s8T+hbP2x79+6lf//+tG/fPt+z5DTT3bt3qV27Nv3792fSpElYWVlx48YNTExMCiwTQLNmzVi5cqXmsZGRkWx5cpoJYNu2bZw9exZnZ2dZ8wAEHwvSznT9Bo1btqFj2/TPrqeHBz/PmU0J9+IkJiYy9+eFNGnVjjt/XcTOzlbnmRISErgYcpnxo0ZSoVxZoqKjGfbtaFp17Mr5E0dkyQPZv3fx8fHUqlWLjh07MnDgQNly5BfRy103dFKgnz59mtatW9OiRQsg/ehz/fr1nD+ffuQtSRLz5s1j7NixtGvXDoBVq1bh4ODAunXr+Pzzz2XJZWdnp/V4xowZlCxZknr16nH79m3OnDnD1atX8fHxAWDhwoXY29uzfv16BgwYoPNMkL4ve/fuTf369QH47LPPWLJkCefPn5elQM8uj6Ojo9by7du34+fnR4kSJfI9S04zjR07lubNmzNr1izNOnLmyUkmSB/g6O39VdCZnj59ypAhQ9i/f7/m+ylvJu1CecacuZQs4U69OrUB6NZZ+2AjYMZUlq9aw19Xr9HQrx5yeF8mhUJB4K5tWssXzJnFJ3Ub8OjxY1xdXGTK9P73rmfPngA8ePBAltfPd/+2MOR1G8L76aTJvXbt2hw6dIhbt24BcPnyZU6cOEHz5s0BuH//PmFhYTRp0kTzHGNjY+rVq8epU6d0EZHk5GTWrl1Lv379UCgUmqFi36zVGRoaYmRkxIkTJwokE6Tvyx07dvD06VMkSSIoKIhbt27RtGnTAsnzpvDwcHbv3k3//v1lz/KuTGlpaezevRtPT0+aNm2Kvb091apVY9u2bQWWKcORI0ewt7fH09OTgQMHEhERUaCZ0tLS6NmzJyNHjtQctOpScnIyazf+Qb9ePbL8PCUnJ7N0xSqsrCypUK6sXmQCiImJRaFQUNjKSneZ3vO9E4QMOinQv/vuO7p27Urp0qVRqVRUqlSJYcOG0bVrVwDCwsIAcHBw0Hqeg4ODZpnctm3bRnR0NH369AGgdOnSuLm5MXr0aKKiokhOTmbGjBmEhYVlambWVSaA+fPn4+3tTbFixTAyMqJZs2YsXLiQ2rVrF0ieN61atQoLCwtNK4suvJ0pIiKCuLg4ZsyYQbNmzThw4ABt27alXbt2HD16tEAyAfj7+/P7779z+PBh5syZQ3BwMA0aNNAcOBZEppkzZ6JUKhk6dKhOMmTKtHM30dEx9OnRTWv+rr37KGRfFBNrB+b+vJDAnduwtbUp0EwZXr16xajvJ9KtU0edjcmd3ffuv0CRT5Pwfjppct+4cSNr165l3bp1+Pj4EBISwrBhw3B2dqZ3796a9d4++pQkSWdHpMuXL8ff319zHlGlUrF582b69++PtbU1hoaGNGrUCH9/f53kySoTpBfoZ86cYceOHbi5uXHs2DEGDRqEk5MTjRo10nmeN61YsYLu3bvLeq46u0wZHS1bt27N8OHDAahYsSKnTp1i8eLFWs3NusoE0LlzZ82/y5YtS5UqVXBzc2P37t06OQB6O9OFCxf46aefuHjxYoHV+pavWoN/k0Y4OzlpzferW4eQ08d5HhnJrytX0alnH84eOYS9vd07tiR/JgC1Wk2X3v1IS0tj4bwfZc+iyZTN9+6/QJxD1w2dFOgjR45k1KhRdOnSBYBy5crx8OFDpk+fTu/evTXnFcPCwnB644sUERGRqdYuh4cPH3Lw4EG2bNmiNd/X15eQkBBiYmJITk7Gzs6OatWqUaVKlQLJlJiYyJgxY9i6davmfGf58uUJCQnhxx9/lLVAf9c+ynD8+HFu3rzJxo0bZcuQk0y2trYolUq8vb211i1TpoxOTpVkt58yODk54ebmJvtVE+/KdPz4cSIiInB1ddXMS01N5ZtvvmHevHmyn5t9+OgRB4OOsGX9mkzLzM3N8ShZAo+SJaj+SVVKla/M8lVrGD1yRIFlUqvVdOrZh/sPHnJ4z06d1c5z+nnSd4p8OIcuTjdkTydN7gkJCRgYaL+UoaGhpjbl7u6Oo6MjgYGBmuXJyckcPXqUmjVryp5v5cqV2Nvbv7NTkJWVFXZ2dty+fVu2zmc5yaRWq1Gr1e/dl7rM86bly5fj6+tLhQoVZM2RXSYjIyOqVq3KzZs3tda9desWbm5uBZIpK5GRkTx+/FjrAFaXmXr27Mlff/1FSEiIZnJ2dmbkyJHs379f/kxrfsfezo4WzbLv+yFJEknJ8p+aeFemjML89p17HNy1HRsba9mzaDLl8PMkCKCjGnrLli2ZOnUqrq6u+Pj4cOnSJQICAujXrx+QfuQ1bNgwpk2bRqlSpShVqhTTpk3DzMyMbt2yPpeVX9LS0li5ciW9e/dGqdTeHZs2bcLOzg5XV1euXLnC119/TZs2bbQ67+kyk6WlJfXq1WPkyJGYmpri5ubG0aNHWb16NQEBATrPkyE2NpZNmzYxZ84c2TLkJtPIkSPp3LkzdevWxc/Pj3379rFz506OHDlSIJni4uKYOHEi7du3x8nJiQcPHjBmzBhsbW1p27ZtgWSysbHBxkb7vLRKpcLR0REvLy/5M635nd7du2plio+PZ+qsObRq4Y+TowORkS9Y+Otynjx9Rse2bQokU0pKCh269+JiyF/s+nMDqamphIWFA2BtXUTWSw/f9xl/8eIFjx494tmzZwCaA1hHR0edXkmRU2I8dN3QSYG+YMECxo8fz6BBg4iIiMDZ2ZnPP/+c77//XrPOt99+S2JiIoMGDSIqKopq1apx4MAB2a5Bz3Dw4EEePXqkObh4U2hoKCNGjCA8PBwnJyd69erF+PHjZc2TXaYNGzYwevRounfvzosXL3Bzc2Pq1Kl88cUXBZInI5MkSZpOjrrwvkxt27Zl8eLFTJ8+naFDh+Ll5cXmzZtl7zj4rkyGhoZcuXKF1atXEx0djZOTE35+fmzcuLFAP98F5eDhIzx6/IR+vXpozTc0NOTvW7dY9ft6nkdGYmNtTVXfShwP3IuPd5kCyfTk6VN27N4LQMUadbSWBe3dSf262vPyNdN73rsdO3bQt29fzeOM05kTJkxg4sSJsmX6UAoDBYo8lshicJbsKSRJkj7kibGxsVhZWfH8+fNMR/oFRa1Ws2fPHpo3b45KpSroOIDIlFMiU87odSa/2qiyaMEpCOqUFPYEndDPTHry3kVGRmJra0tMTIxsfQIyyonjzi4UMsjbGd64tDTqPHssa97/Ov34pAuCIAgfLTE4i26IAl0QBEGQlSjQdUOMtiYIgiAIHwFRQxcEQRBkJa5D1w1RoAuCIAiyEk3uuiGa3AVBEAThIyBq6IIgCIKsRJO7bogCXRAEQZCVaHLXDVGgC4IgCLIyUCgwyGOJnNfn/y8Q59AFQRAE4SMgauiCIAiCrESTu27kuEBPSkoiKen1EIaxsbHA6yE99UFGDn3JAyJTTolMOaPXmVJSCjjJaxlZ9DKTnrx3usyhIB86xYnBWbKV48FZJk6cyKRJkzLNX7duHWZmZvkeTBAEQZBPQkIC3bp108ngLBdKuFPIMI+Ds6Sm4Xvvvhic5T1yXKBnVUN3cXEhNDRUr0ZbCwwMpHHjxnoxmhGITDklMuVMRqaGT86glFILOg4AKQpDDhWrTuM61fVqZLPA42dEpveIfBGFk3spnRToFz3yp0CvfEcU6O+T40+VsbExxsbGmearVCq9+bHLIDLljMiUM/qYSSmlotKTAj2DSqnUi4LqTSLT+3PoTD5chy5OomdP9HIXBEEQhI9AwR8mCoIgCB810ctdN0SBLgiCIMgqvUDP661f8ynMR0w0uQuCIAjCR0AU6IIgCIKsMprc8zrpm7Zt21KkSBE6dOhQ0FEAUaALgiAIMsu4l3teJ30zdOhQVq9eXdAxNESBLgiCIMjqY62h+/n5YWFhUdAxNESBLgiCIHx0jh07RsuWLXF2dkahULBt27ZM6yxcuBB3d3dMTEzw9fXl+PHjug+aj0Qvd0EQBEFWiny4sUxunx8fH0+FChXo27cv7du3z7R848aNDBs2jIULF1KrVi2WLFmCv78/169fx9XVFQBfX1+tO6RmOHDgAM7Ozh/2h8hIFOiCIAiCrPLzOvSMgcEyvOsupv7+/vj7+79zewEBAfTv358BAwYAMG/ePPbv38+iRYuYPn06ABcuXMhbaB0TTe6CIAjCf4aLiwtWVlaaKaPwzY3k5GQuXLhAkyZNtOY3adKEU6dO5VdUndNZgf706VN69OiBjY0NZmZmVKxYUevoZ8uWLTRt2hRbW1sUCgUhISEFmkmtVvPdd99Rrlw5zM3NcXZ2plevXjx79qzAMkH6qHelS5fG3NycIkWK0KhRI86ePVugmd70+eefo1AomDdvXoFm6tOnj6aZL2OqXr16gWYCuHHjBq1atcLKygoLCwuqV6/Oo0eP5MsU/ZJeq/dgP2ohFt/Mx3fmGi48CtcsVw4NyHL68VCwfJmePaNHv8+wcXHHzNaJitVrc+FSiGZ5XFwcQ0aMpFgpb0xtHClT+RMW/bpctjw5yRQeHkGfz77EuWRpzGydaNa6Pbfv3JUtT/Ey5VCYF840DR7+fwBIksTEqdNxLlkaUxtH6jdrwbXrN2TLk1f52Snu8ePHxMTEaKbRo0fnOs/z589JTU3FwcFBa76DgwNhYWE53k7Tpk3p2LEje/bsoVixYgQHy/e9yQmdNLlHRUVRq1Yt/Pz82Lt3L/b29ty9e5fChQtr1omPj6dWrVp07NiRgQMHFnimhIQELl68yPjx46lQoQJRUVEMGzaMVq1acf78+QLJBODp6cnPP/9MiRIlSExMZO7cuTRp0oQ7d+5gZ2dXIJkybNu2jbNnz8p+bimnmZo1a8bKlSs1j42MjAo00927d6lduzb9+/dn0qRJWFlZcePGDUxMTOTJlPCKuvM2Ur+UC7u+bIt9ITPuPo+hsOnr5sknUz7Xes6+6/cZuP4A7SqUkidTVDS1GjbFr24d9m79E3s7W+7ee0BhKyvNOsO/G0PQseOsXb6E4m6uHDgUxKBh3+Ds5EjrT1voPJMkSbTp0h2VSsn2P9ZhaWFBwIJfaPRpa65fOIu5uXm+Zwo+FkRq6uvBd65ev0Hjlm3o2LY1ALMCfiJgwUJ+W/ILnh4eTJn1I41btuVmSLBe9brOoDBQoDDI4zl0Kf35lpaW+Tba2tvn5SVJytW5+v379+dLjvyikwJ95syZuLi4aP24Fi9eXGudnj17AvDgwQNdRMo2k5WVFYGBgVrPWbBgAZ988gmPHj3SdJrQZSaAbt26aT0OCAhg+fLl/PXXXzRs2LBAMkF67XTIkCHs37+fFi3y/0f3QzIZGxvj6Ogoa5bcZBo7dizNmzdn1qxZmnklSpSQLdOsg8EUK2zB8u5NX2eysdJax9FSuzDaceUu9Uu5UMK2sCyZZgbMw6VYMVYuWfg6k5ub1jqnzwbTu3tX6tetA8Bn/fqwZPlKzl+8JEuBnl2m23fucuZcMFeDT+PjXQaAhfPmYF/cg/WbNjOgT698z2RnZ6v1eMacuZQs4U69OrWRJIl5vyxi7MhvaNe6FQCrli7Cwb0U6/74k8/79833PB8bW1tbDA0NM9XGIyIiMtXa/0t00uS+Y8cOqlSpQseOHbG3t6dSpUr8+uuvunjpfM0UExODQqHIsnZaEJmSk5NZunQpVlZWVKhQocAypaWl0bNnT0aOHImPj48sOXKbCeDIkSPY29vj6enJwIEDiYiIKLBMaWlp7N69G09PT5o2bYq9vT3VqlXL8lKa/LLryl18XR3ovGInTmMWUWXmGpad+uud64fHxrPn2n36VS8rW6Yde/ZSpVJFOvbojb2bB5Vq1OHXlau01qldszo7du/l6bNnSJJE0NFj3Lpzl6aN8v+ANSeZMno5v9mSYmhoiJHKiBOnTsuS6U3Jycms3fgH/Xr1QKFQcP/BQ8LCw2nS0E+zjrGxMfVq1+LUGXlPv30ofbsO3cjICF9f30yVtsDAQGrWrJl/L6RjOinQ7927x6JFiyhVqhT79+/niy++KPA77OQ206tXrxg1ahTdunXLt+aeD820a9cuChUqhImJCXPnziUwMBBbW9t3bFX+TDNnzkSpVDJ06FBZMnxIJn9/f37//XcOHz7MnDlzCA4OpkGDBllegqKLTBEREcTFxTFjxgyaNWvGgQMHaNu2Le3atePo0aPyZIqMYcmJy3jYFWHPl+35rHYFhm0OYs2561muv/rcdSxMVLSVqbkd4N79ByxatoJSJUuyf/tmvhjQj6H/9x2rf1+vWWf+jzPxLu1FsVLeGBW2o1mbDiyc+yO1a9YokEylvTxxc3Vh9IRJREVFk5yczIwf5xIWHk5oWHg2W8+7bTt3Ex0dQ58e6a1zYeHpr+ngYK+1noO9PWHh8h205kV+3imuatWqeHt788svv7z3NePi4ggJCdH0x7p//z4hISGaPisjRoxg2bJlrFixghs3bjB8+HAePXrEF198Ieu+kJNOmtzT0tKoUqUK06ZNA6BSpUpcu3aNRYsW0atX/jdX5XcmtVpNly5dSEtLY+HChVltTqeZ/Pz8CAkJ4fnz5/z666906tSJs2fPYm9v/65Ny5bpwoUL/PTTT1y8eDHP15nmVyaAzp07a9YvW7YsVapUwc3Njd27d9OuXTudZ0pLSwOgdevWDB8+HICKFSty6tQpFi9eTL169fI/kyTh6+LA1Ja10zO52HM99DmLT1ym5yfemdb/7cxVulUpg4lKvp+FtLQ0qlSuxLRJ36dnqliBazdusGjZCnp17wrA/IVLOBN8nh2b1uPm4sKxk6cYNPz/cHJ0pFGD+jrPpFKp2LxuDf2/HIJ1seIYGhrSyK8+/k0a53uWrCxftQb/Jo1wdnLSmq8gb+d//6uCg4NzVKk6f/48fn6vWzFGjBgBQO/evfntt9/o3LkzkZGRTJ48mdDQUMqWLcuePXtwe+sU0H+JTmroTk5OeHtr/4CUKVNG1t692clpJrVaTadOnbh//z6BgYGy1c5zk8nc3BwPDw+qV6/O8uXLUSqVLF8uTy/g7DIdP36ciIgIXF1dUSqVKJVKHj58yDfffJPleW1dZHrXc9zc3Lh9+3aBZLK1tUWpVOr0e+BkaY63o43WvNIONjyOis207vG7T7gZEUW/GuVkyaLJ5OiAd2kvrXllvLx49PgJAImJiYyZOJmAGVNp2dyf8uXKMuSLz+jcvi0//rSgQDIB+FaqSMiZE0Q/e0jo3Zvs276ZyBcvcC8u74//w0ePOBh0ROs8veO/53gzauoZIv75Bwf7/O8Ymx8Kosm9fv36SJKUafrtt9806wwaNIgHDx6QlJTEhQsXqFu3bv7+4TqmkwK9Vq1a3Lx5U2verVu3CvRIKCeZMgrz27dvc/DgQWxsbN7ejM4zZUWSJNmakrPL1LNnT/766y9N01ZISAjOzs6MHDlSth6gH7KfIiMjefz4MU5v1XJ0lcnIyIiqVavq9HtQs4QzNyOitF/vnyhci2Q+KF15+iq+Lg5UKCpvgVCrenVu3r6jnen2HdxcXYD075xarcZAof3TZGhoqGnl0HWmN1lZWWFnZ8vtO3fTO+m1aC5Lpgwr1/yOvZ0dLZq97tjoXtwNRwcHAg8f0cxLTk7m6ImT1KxeTdY8H+rtS0g/dBLeTydN7sOHD6dmzZpMmzaNTp06ce7cOZYuXcrSpUs167x48YJHjx5prvPO+OFzdHSUpadydplSUlLo0KEDFy9eZNeuXaSmpmp6RFpbW8tyCVR2meLj45k6dSqtWrXCycmJyMhIFi5cyJMnT+jYsWO+58lJJhsbm0wHOiqVCkdHR7y8vLLapOyZ4uLimDhxIu3bt8fJyYkHDx4wZswYbG1tadu2bYFkAhg5ciSdO3embt26+Pn5sW/fPnbu3MmRI0dkyfR1fV/qzN3A9ANn6VjJk+CHYSw79ReLO2s3FccmJvFnyC1mt8n/Zv+3Df9qEDUbNGHa7Dl0ateWc+cvsHTlKpYumAekX5JUr04tRo79HlNTE9xcXTh6/CSr120gYMbUAskEsGnLNuxsbXB1ceHKtWt8PXIUbVq2oEmjBrJkgvRTASvX/E7v7l1RKl//VCsUCoYN/pJpP86hlEcJSpUsybTZAZiZmtGtk34M4/k2Bflwp7h8SfJx00mBXrVqVbZu3cro0aOZPHky7u7uzJs3j+7du2vW2bFjB337vr7cokuXLgBMmDCBiRMn6jzTkydP2LFjB5B+rvNNQUFB1K9fX+eZDA0N+fvvv1m1ahXPnz/HxsaGqlWrcvz4cdl6l+fkvdO1nOynK1eusHr1aqKjo3FycsLPz4+NGzfKdo1uTvZT27ZtWbx4MdOnT2fo0KF4eXmxefNmateuLU8mN0f+HNCKcTuPM2XfGdxtrAhoV59uVctorbfx4k0kCbr4lpYlh1Ym38ps3bCW0d9PZvL0WbgXd2PerOl079JJs86G31YwesIkuvf7jBdRUbi5ujB1wji+GNCvwDKFhoUxYtRYwiMicHJ0oFe3Lowf9a0seTIcPHyER4+f0K9Xj0zLvh3xNYmvEhk07P+Iio6mWlVfDuzYopfXoAu6o5AkSfqQJ8bGxmJlZaUpWPSBWq1mz549NG/eHJVKVdBxAJEpp0SmnMnI1PTxSVRSavZP0AG1wpD9LrVo7lcblVI/hodQp6SwJ+iEyPQekS+isHVxJyYmRra+QRnlxP0qpbFQGuZpWy9TUnE//7esef/rxL3cBUEQBHnlR4e4f9vcc3rZ2v+igj9MFARBEIQcyulla/+LRIEuCIIgyKogxkP/XyQKdEEQBEFWCoP0Ka/bEN5P7CJBEARB+AiIGrogCIIgK9HkrhuiQBcEQRDkZaBIn/K6DeG9RJO7IAiC8J8hLlt7N1FDFwRBEOSVHwOa//t8cdnau4kCXRAEQZCVOIeuG6JAFwRBEOQlzqHrRI4L9KSkJK0hOmNj08dUzhjuUB9k5NCXPCAy5ZTIlDMZWVIUebsvdn7KyKJOSSngJK9lZBGZ3k1fcgj5J8eDs0ycOJFJkyZlmr9u3TrMzMzyPZggCIIgn4SEBLp166aTwVke16+AZR4HZ4lNScXlyGUxOMt75LhAz6qG7uLiQmhoqF6NthYYGEjjxo31anQskSl7+pypka83KkP9qBGrU1M5eOE6DQunoNSTFsgUCQ5FK2mofIFS8UGDN+a7FEnBoRRrGr68hZK0go4DQAoGHLLw1JvPeGRkJE5OTjop0J80qJgvBXqxwyGiQH+PHDe5GxsbY2xsnGm+SqXSiw/nm0SmnBGZckZlaIgqjz9G+U2pAJW+XHT6b3mpVEio9KRAz6AkDZWeFOgZ9OUzrg8ZhPylLz8JgiAIwscqr2OnvnHZ28d0HXp8fHy+bk/0chcEQRBkpVAoUOSxl7riI7wO3cHBgU6dOtGvXz9q166d5+2JGrogCIIgFID169cTExNDw4YN8fT0ZMaMGTx79uyDtycKdEEQBEFe+djk/jFp2bIlmzdv5tmzZ3z55ZesX78eNzc3Pv30U7Zs2UJKLi8tFAW6IAiCIC8DXt9c5oOngv4j5GNjY8Pw4cO5fPkyAQEBHDx4kA4dOuDs7Mz3339PQkJCjrYjzqELgiAIQgEKCwtj9erVrFy5kkePHtGhQwf69+/Ps2fPmDFjBmfOnOHAgQPZbkcU6IIgCIKsxL3cs7ZlyxZWrlzJ/v378fb2ZvDgwfTo0YPChQtr1qlYsSKVKlXK0fZEgS4IgiDIS9zLPUt9+/alS5cunDx5kqpVq2a5TokSJRg7dmyOticKdEEQBEFe+Th86sckNDQ021unm5qaMmHChBxt7yPuZiAIgiAI+svCwoKIiIhM8yMjIzH8gNtNiwJdEARBkJXCIH8m+LjuFPeuoVSSkpIwMjLK9fZ0VqA/ffqUHj16YGNjg5mZGRUrVuTChQua5ZIkMXHiRJydnTE1NaV+/fpcu3ZNtjwTJ07UdNTImBwdHTXLw8PD6dOnD87OzpiZmdGsWTNu374tW56cZIqLi2PIkCEUK1YMU1NTypQpw6JFiwo009vLMqbZs2cXWCaAGzdu0KpVK6ysrLCwsKB69eo8evRIvkyz5mJgX1xrcvKpolne96tvMi2v4d9GtjwAk1ZsRFmng9ZUtPWALNf9cvYSlHU68NMfu+TNtHY7yuYDtKai3UdoLff5bByWbQdh22koTcbM4ezf9+TNtOUgyp5jtKaiQ6YBoE5JZdSGfVQc/ROW/Sfg8tV0+izexLOoWFkzZfcZ37JlC02bNsXW1haFQkFISIisefIsH69DDw4O5vr16wwePLiA/6gPN3/+fObPn49CoWDZsmWax/Pnz2fu3LkMHjyY0qVL53q7OjmHHhUVRa1atfDz82Pv3r3Y29tz9+5drZ58s2bNIiAggN9++w1PT0+mTJlC48aNuXnzJhYWFrLk8vHx4eDBg5rHGU0ckiTRpk0bVCoV27dvx9LSkoCAABo1asT169cxNzeXJc/7MgEMHz6coKAg1q5dS/HixTlw4ACDBg3C2dmZ1q1bF0im0NBQrXX37t1L//79ad++vWx5sst09+5dateuTf/+/Zk0aRJWVlbcuHEDExMTeTOV9iRw09osMwE0a1CPFT+9PtD5kCPwXGdyd2H/3O9fZzLIfAy//dg5zl2/jbOttex5AHzcnNk/9ZvXmQxfZ/Is6shPX3ajhKMdicnJ/LQ1EP9xc7m5fBp2VvL8DgD4FLVn/6j+rzP92wErIVnNpQfPGNvGj/KuTkTFJzJi7W7azl3D2cnyFijv+4zHx8dTq1YtOnbsyMCBA2XNIeS/uXPnAullzeLFi7XeWyMjI4oXL87ixYtzvV2dFOgzZ87ExcWFlStXauYVL15c829Jkpg3bx5jx46lXbt2AKxatQoHBwfWrVvH559/LksupVKZqWYHcPv2bc6cOcPVq1fx8fEBYOHChdjb27N+/XoGDMi6liNnJoDTp0/Tu3dv6tevD8Bnn33GkiVLOH/+vKwF+vsyvT1/+/bt+Pn5UaJECdnyZJdp7NixNG/enFmzZmnmyZ0HQGloiKOD/TuXGxsZvXe5HJSGhjjaFHnn8qf/RDJ03jL2zBlPq2+n6S6TtVWWy7r6VdN6/ONnnVlx4AR/3X9Cw4pl5M1UOPMBg5WZCftH9dOa91OvltSYsJBHz6NxtS0sX6b3fMZ79uwJwIMHD2R7/fykMMiHe7l/RL3c79+/D4Cfnx9btmyhSJF3f0dzQydN7jt27KBKlSp07NgRe3t7KlWqxK+//qpZfv/+fcLCwmjSpIlmnrGxMfXq1ePUqVOy5bp9+zbOzs64u7vTpUsX7t1Lb9rLGPf9zRqdoaEhRkZGnDhxQrY878sEULt2bXbs2MHTp0+RJImgoCBu3bpF06ZNCyzTm8LDw9m9ezf9+/fPcrkuMqWlpbF79248PT1p2rQp9vb2VKtWjW3btsmf6f4Dipb7hBJVatP1syHce6DdxH/k1BkcvH3xqu7HwBGjiPjnufyZnoTi0mYgHp0G0W1CAPeehWuWpaWl0XvKAr7p2hofdxfZs2gyPQ3Hpcc3ePQdRbcZS7gX+k+W6yWrU/h17zGszE2p4F5M3kxhz3H5ajoew2fT7ef13It48c51YxJeoVAoKGwub4tPTr93/wni1q9ZCgoKyrfCHHRUQ7937x6LFi1ixIgRjBkzhnPnzjF06FCMjY3p1asXYWFhQPrIM29ycHDg4cOHsmSqVq0aq1evxtPTk/DwcKZMmULNmjW5du0apUuXxs3NjdGjR7NkyRLMzc0JCAggLCwsUxOzrjLZ2Ngwf/58Bg4cSLFixVAqlRgYGLBs2bJ8GaXnQzO9adWqVVhYWGhaWQoik1qtJi4ujhkzZjBlyhRmzpzJvn37aNeuHUFBQdSrV0+eTL4VWbUgAM+S7oT/85ypcxdQq0U7rh4PxMa6CM0a1qdDqxa4FSvK/UeP+X7GHBq278b5wJ0YGxvLkukT71L8NvYrSrk4ER4Vw7RVf1Lny7H8tXouNlYWzPp9G0pDA77q0FyW188yk1cJfvumP6WKOhAeHcu0Dbuo83/T+WvRZGwsCwGw6+xlus9cSkJSMk7WVuybOgJbGZvbPynpwm9fdKSUoy3hMXFM2x5EncmL+Wv6MGwstC8pepWsZuwf++laowKWpvIV6Ln53gn/LSNGjOCHH37A3NycESNGvHfdgICAXG1bJwV6WloaVapUYdq09Ca9SpUqce3aNRYtWkSvXr006719JyBJkmS7O5C/v7/m3+XKlaNGjRqULFmSVatWMWLECDZv3kz//v2xtrbG0NCQRo0aaT2nIDLNnz+fM2fOsGPHDtzc3Dh27BiDBg3CycmJRo0aFUimN61YsYLu3bvLfq76fZm6dOkCQOvWrRk+fDiQfqelU6dOsXjxYtkKdP+Gfq8zATWqVMbjk7qs2riZEV8OoHOblprlZct4UaVieYpXrsXuwCDafdpMnkzVK2tn8vHEs8sQVu89Qt1K3iz4cw/By2fp9A5c/lXLaWcqUxLP/qNZffAUw9ult9D5VSjNhZ+/53lsHMv3Hafr9CWcmjsG+8LyDJnpX8HrdSYXqOHhiuf//cjqExcZ7v/6YFmdkkq3XzaQlibxc59WsmTRZMrF9+4/QdxYRuPSpUuo1WrNv9/lQ76XOinQnZyc8Pb21ppXpkwZNm/eDLw+DxsWFoaTk5NmnYiIiEy1drmYm5tTrlw5TU92X19fQkJCiImJITk5GTs7O6pVq0aVKlWy2ZI8mRITExkzZgxbt26lRYsWAJQvX56QkBB+/PFH2Qr092V60/Hjx7l58yYbN27USY53ZbK1tUWpVGb5eZP7dIl2JjPKlSnN7Xv3s1zu5GCPW7Gi71wuSyZTE8qWcOXOk1AMDBRERMXg3uELzfLU1DRG/rKa+Zt2c3eTvFdPaDKZGFPWrSh33jgVYG5ijIezAx7ODlQvXZLSA8awYv8JRnXWTUuCuYkRZYs5cifs9SkRdUoqXX5ez4N/oggcPUDW2nmWmd7xvfuvELd+fS0oKCjLf+cHnZxDr1WrFjdv3tSad+vWLdzc3ABwd3fH0dGRwMBAzfLk5GSOHj1KzZo1dRGRpKQkbty4oXVAAWBlZYWdnR23b9+WvfPZ+zKp1WrUajUGb/VSNjQ0JC0trUAyvWn58uX4+vpSoUIFnWXJKpORkRFVq1Z97+dNZ5lu38HpHZ3gIl9E8fjZs3culyVTspq/Hz7B0aYIPZrW49Jvc7iw4kfN5GxrzTddW7FnzjjdZVKr+ftxGI7Whd+5jiRJJP1bo9FNphT+fhah6SSXUZjfCXvO/lH9MjXD6yTTO753gvAmndTQhw8fTs2aNZk2bRqdOnXi3LlzLF26lKVLlwLpR17Dhg1j2rRplCpVilKlSjFt2jTMzMzo1q2bLJn+7//+j5YtW+Lq6kpERARTpkwhNjaW3r17A7Bp0ybs7OxwdXXlypUrfP3117Rp00ar454uM1laWlKvXj1GjhyJqakpbm5uHD16lNWrV+f6PEt+ZcoQGxvLpk2bmDNnjmw5cpNp5MiRdO7cmbp16+Ln58e+ffvYuXMnR44ckS/ThKm0bNoQ16JFiXj+nKlzfyb2ZRy9O7cnLi6eibPn0f7TZjg52PPg8RPGTp2NrbU1bVvI16Fx5C+r+LRmFVwdbImIimHa6s3ExifSy78+NlYW2Lx1XlqlNMTRujBerkXly7TsDz6tVgFXO2siol8ybcMuYhMS6dWwJvGvkpi2YTctq1fAqUhhIl/GsXhXEE+eR9GhjnwtYyPX7eHTSqVxtSlMRGw807YHEZuYRK86lUlJTaXTgnVcevCM7SN6kZomERb9EgDrQqYYKeX5Cc3uM/7ixQsePXrEs2fPADQHsI6Oju/sGV+gRJO7Rm76GG3ZsiVX29ZJgV61alW2bt3K6NGjmTx5Mu7u7sybN4/u3btr1vn2229JTExk0KBBREVFUa1aNQ4cOCDbNehPnjyha9euPH/+HDs7O6pXr86ZM2c0tbjQ0FBGjBhBeHg4Tk5O9OrVi/Hjx8uSJaeZNmzYwOjRo+nevTsvXrzAzc2NqVOn8sUXX2SzZfkyZeSSJImuXbvKliM3mdq2bcvixYuZPn06Q4cOxcvLi82bN8vaefBpaCjdPh/K8xdR2NlYU923Eqf3bsXNpRiJia+4euNv1mzaQnRMLE4O9vjVqs6GX3/GolAh+TJFRNJj0jyex7zErrAl1XxKcXLxNNwc7WR7zWwzPY+ix8ylPI+Nw87KgmpeJTg5dwxuDja8SlZz80koa6ae4nlMHDaW5lTxdOfI7O/wcZPvIOPpixh6LNzI85cJ2FmaU62kCycnfoGbbREe/BPFzos3APAdt0DreQfHDKB+GXkuh8zuM75jxw769u2rWT+j78iECROYOHGiLJnyJj96qX8cBbqVVdaXbOYHhfSue89lIzY2FisrK54/f643vS7VajV79uyhefPmqFSqgo4DiEw5pc+Z/D8ph0qZ+/sqy0Gdksrec1doWiQFlZ7cuFmdBvujlDRVRaJSfNDPSb5TSwr2q21o+vJvVOjulNT7qDFgv0VpvfmMR0ZGYmtrS0xMDJaW8nQ4zCgnIjrXxdIob/XH2OQU7DcekzXvf52e/CQIgiAIQvY+pnu55zcxfKogCIIgr3w8hx4cHPyfrqFXrlyZQ4cOUaRIESpVqvTe3vsXL17M1bZFgS4IgiDISly29lrr1q01N5Nq06ZNvm5bFOiCIAiCoCMTJkzI8t/5QRTogiAIgrzEZWvvdf78eW7cuIFCoaBMmTL4+vp+0HZEgS4IgiDIKz8GV/lImtzflHF54smTJzXDiUdHR1OzZk3Wr1+Pi0vuBk0SvdwFQRAEoQD069cPtVrNjRs3ePHiBS9evODGjRtIkvRBo1aKGrogCIIgKzEeetaOHz/OqVOn8PJ6PUCQl5cXCxYsoFatWrnenijQBUEQBHmJJvcsubq6akZee1NKSgpFi+b+7oiiyV0QBEEQCsCsWbP46quvOH/+PBk3bT1//jxff/01P/74Y663J2rogiAIgrwMyIde7vmSpMAVKVJE65r6+Ph4qlWrhvLfgX5SUlJQKpX069cv19ep57hAT0pKIikpSfM4NjYWQDOspz7IyKEveUBkyim9zpSaWsBJXsvIkiKBntyiPD0LkCLpT5NoRpYUPSoFMrLoy2dclznEjWVemzdvnmzbzvHgLBMnTmTSpEmZ5q9btw4zM92PDywIgiB8uISEBLp166aTwVkiBzbB0ihvA9LEJqux+fWAGJzlPXJcQx89ejQjRozQPI6NjcXFxYV6VilYF0qRJVxupUhwKFpJo+KFUepJj8iUNImDD6JpWDgFpX5E0uynBuc2o0zVk/fOUMnhT9rTMOoaSj2peqZgwKEiPjR4dAqlpB+19BSFIYdda9K4cWO9GLEL0mt6gYGBNPg7EGWanuwnA0MOl26sn/vp9mG92E8vkvXjuy+kS0xMzNRqktsDlxwX6MbGxpr7z2ptQIHeDOOYUQ4oDRSoDPUrlF7up9QUVKn60fyXQUma3gx3mUEppaLSkwI9g0ql0puCKoMyLRVVmn4VEmI/vS+HDr9nopd7luLj4/nuu+/4448/iIyMzLQ8NZen+/SliBEEQRA+VhkFel4nPq7hU7/99lsOHz7MwoULMTY2ZtmyZUyaNAlnZ2dWr16d6+2JXu6CIAjCf8Z/ffjUN+3cuZPVq1dTv359+vXrR506dfDw8MDNzY3ff/+d7t2752p7ooYuCIIgyCw/aucfX5P7ixcvcHd3B9LPl7948QKA2rVrc+zYsVxvTxTogiAIgrwMDPJn+siUKFGCBw8eAODt7c0ff/wBpNfcMwZryY2Pbw8JgiAIwn9A3759uXz5MpB+JVnGufThw4czcuTIXG9PnEMXBEEQ5CV6uWdp+PDhmn/7+flx48YNLly4QMmSJalQoUKutycKdEEQBEFeokDPETc3N9zc3D74+aLJXRAEQRAKyKFDh/j0008pWbIkHh4efPrppxw8ePCDtiUKdEEQBEFe+Xgd+sfk559/plmzZlhYWPD1118zdOhQLC0tad68OT///HOutyea3AVBEAR55Ucv9Y+wl/v06dOZO3cuQ4YM0cwbOnQotWrVYurUqVrzc+Lj20OCIAiCfhE19CzFxsbSrFmzTPObNGmiGdE0NwqkQJ+xZgvKOh0YMX+lZt7Wo2fwH/EDDp/2RVmnAyG37+s2069rMPSpw/Dp8wFQq1MYNWcRFdr0xqJKY4rVb0Pv0VN4FvFcd5my2E+TVmzEp/tQLBt3x9a/N02GTeLstVs6yzTz7N+ofvyTEYdDslz+5YELqH78k58u3NZZphm7jqHsO4ER6/Zq5vVbthVl3wlaU80fftVZppmB51ANm8eILUe05t8Ie0HbX3dgM2ohRb77hVpzN/AoKvdf3A8xffp0FAoFw4YN08zLGNby7Wn27Nk6yTTzaAiqccsYsfu0Zl5ckpqhO09RfNY6LCaupNxPm1h89rpO8kDW+yk8PJw+ffrg7OyMmZkZzZo14/Zt+T7jkw+eRzV6idZUbOrrW4FKksTkg+dxnbYGi/HLaLh0B9fCX8iWR5BHq1at2Lp1a6b527dvp2XLlrnens6b3INv3GHZzoOUL6ndky8+MYma5UrTwa8Gn89arNtMV27w66adlPcsqZmX8OoVF2/cYuwXvang5UFU7EtGzJhPmyGjOPfHMvkzvWM/ebo489PwAZRwdiAxKZmfNu7C/5sp3Fy/ALsiVvJmCn3Bssv3KGeX9etsv/2Uc6EvcC5kImsOrUz3nrLs6AXKuzhkWta0nAfL+7fRPDYyNNRNpkdhLDt9lXLOtlrz7z6Ppv78P+hb3Yfv/atjZWLM3+EvMFHK/zUMDg5m6dKllC9fXmt+aGio1uO9e/fSv39/2rdvL3+mJ/+wLPhvyjlaa83/Zs8Zjt4PZVWH+rgVsSDwzlO+2nkSZ0tzWpX58B7AOcqUxX6SJIk2bdqgUqnYvn07lpaWBAQE0KhRI65fv465ubksWXwcirCv/6eax4Zv1FB/PHaZeSf+YnmH+pSyLcz0oIv4L9/NtW86Y2FsJEuePBG93DXmz5+v+XeZMmWYOnUqR44coUaNGgCcOXOGkydP8s033+R62zqtocclJNJr8k8s/vYLCltofwl6NKvH+L4daVil/DueLVOm+AR6fjeZJZO+pYiVhWa+lUUhDiybS6dmDfByd6V6BR9+GjOMC9du8uhZuLyZ3rOfujauQ6Mq5Snh7ICPuws/ftWb2PgE/rr7UN5MySn03nOOxU19KWKcefSqpy8T+fpQCKtbfIJKR+e64l4l0WvpZhb3aUVhM9NMy42VShytLDSTdSEz+TMlJdN7zT4Wd25EEVPt0Qm/332KZt7FmdGqDpWK2VPC1ormPu7YW8ibKy4uju7du/Prr79SpEgRrWWOjo5a0/bt2/Hz86NEiRLyZkpS03tTEIvb1KGIiXYBdPZxBD0rlaJeCWeKF7FgYNXSlHe05sLTf+TN9I79dPv2bc6cOcOiRYuoWrUqXl5eLFy4kLi4ONavXy9bHkMDAxwtzDSTXaH0z7gkScw/eYXRfpVpW7YEZR2tWdHRjwR1CutD7siWJ09Ek7vG3LlzNdPy5cspUqQI169fZ/ny5Sxfvpxr165RuHBhVqxYkett67RA/2ruMvxrVKaRjgvt9xkyZS7N69agUY0q2a4bExePQqGgsGUhWTPldD8lq9X8uiMQq0JmVPAoLm+mg5fwL+FIQ7fMNeE0SaLPnnOMqOqJj628rQRamdbsxr9CKRr5lMxy+dG/H+A0dBZlRs3n85XbiYiNkz/Tn0H4e7vT0MtVa35amsSe6/fxtCtC80VbcB63hJoB69n+l/w/wIMHD6ZFixY0atToveuFh4eze/du+vfvL3umr3aewt/LlYYeRTMtq+nmwM6/H/I0Nh5Jkjhy7xm3n8fS2KOYrJnetZ+SkpIAMDF53fJkaGiIkZERJ06ckC3PnecxuE5bQ6lZ6+i+/iD3XqSfmrkf9ZKwlwk0KvV6fxgrDanr7sTph/JWNoS8u3//fo6me/fu5XrbOmty33jwBJdu3efM0hm6eslsbdhzkEs3bnF249Js132VlMSYuYvp2qIRloXkaWKDnO2nXSfP033SPBJeJeFkU4R9Ad9jW1i+0Yc2/v2YSxFRnOnRMMvls8/dRGmg4KvKHrJlyJTp7BUuPQzlzITPslzerFwp2lf1wc3GivvPo5m45TCNZ63i3ITPMVbJ87HfePEml55EcGZE10zLIuISiEtSM+tQMJOa12Ray9oc+PshHVfu4uDgDtSVqbDasGEDFy9eJDg4ONt1V61ahYWFBe3atZMlS4aNf93lUuhzznzROsvl81rU4PNtJyg+az1KAwUGCgVL2tShdnFH2TK9bz+VLl0aNzc3Ro8ezZIlSzA3NycgIICwsLBMpyzyyycu9qzs5EcpWysi4hKZdvgidRdt4/KwToS9TADAoZB2q5R9IVMeRct/0PpBRC/3bEmSBKT3a/lQOinQH4c/Z/j8lewNGI+JnpzfeRwazvAZ89m3NAATY+P3rqtWp9D1/yaSlpbGL+Nzf14jx5lyuJ/8KpflworZPI95yfKdB+k6IYBTS6ZjL8M59MexCYw4HMKeDnUwUWY+B30hLIoFF25zrlejPH0Qc5UpMobh6/ay95temKgyN/8DdKpWVvPvssUcqFLcmRL/N5c9l2/Rtop3/meKesmILUfZ82VbTLI4YEj798vaqmxJhtWvDEDFYvacvh/K0pN/yVKgP378mK+//poDBw5o1S7fZcWKFXTv3j1H635wpug4Ruw+zZ4+/lnuJ4Cfz1zj3JMItvZojGvhQhx/EMZXO0/hZGGWZY0+z5my2U8qlYrNmzfTv39/rK2tMTQ0pFGjRvj7++d7lgzN3mrhqe7qgNfs9ay+eItqrvZA5rHHpCzm6Q1xDv2dVq9ezezZszWdLD09PRk5ciQ9e/bM9bZ0UqBfvHmPiKgYPhnwrWZeamoaxy/f4Jcte0k4tB5DHXVYynDh+k0iIqOo2mnAG5lSOXb+Mr+s30LipUMYGhqiVqfQ+ZvvefAklIMrf5K1dp7T/WRuaoJHMSc8ijlR3ceT0l2HsGLXIUb1zP+a1cXwKCISkqi25tDrTJLE8SfPWXjpLtPrliMiIYkSS/ZoLf/2yGUWXLjNnc+a53+mh8+IiI3nk0lLXr9mWhrHbz3kl0PnSPh1PIZvHc07FbbAzcaK2+GR+Z4H4OLjcCLiEqg2Z90bmSSO33vKwhOXiZk1GKWBAWXe6gBW2qEIJ+8/kyXThQsXiIiIwNfX93Wm1FSOHTvGzz//TFJSkuZ7d/z4cW7evMnGjRtlyZLh4rPnRMS/otqiba8zpUkcfxjGwrPXiRzXi3GB5/mzWyOa/1uolXe04XJoJAEnr8hSoOdkP/n6+hISEkJMTAzJycnY2dlRrVo1qlTJ/lRdfjA3UlHW0Zo7kTG09ikOQFhcIk6Wr3+P/olLxF4H/USE/BMQEMD48eMZMmQItWrVQpIkTp48yRdffMHz58+17vWeEzop0BtUKUfIqgCteQOm/4KXa1FGdm+j88IcoGH1KlzetkprXv+x0/Eq4cq3/btrFeZ3Hj7h0MqfsCks7/nhD91PkgRJarU8mdzsudS7sXamfefxsrFgZFUvnAqZ0Li49nn1FpuP093bjd5li8uTqUwJQn4YpJ1p+Ta8nGwZ2bx2psIcIDIugccvYnEqbJFpWb5k8nTl0nc9tDOtC8TLoQgjG1bBWKmkiqsDNyOitNa5/U80bkXkOV3SsGFDrly5ojWvb9++lC5dmu+++07r87R8+XJ8fX0/aECI3GhQ0plLX2kfeA7Ycgwv28KMrFue1DQJdWoaBm/VxgwVBqSlSbJkys1+srJK/w24ffs258+f54cffpAl09uSUlL5OyKa2sWdcC9igaOFGYduP6HSv1dSJKekcux+KNOaVdNJnlxTkA819HxJolcWLFjAokWL6NWrl2Ze69at8fHxYeLEifpZoFuYmVK2hHYTkpmJMTZWFpr5L2Jf8ij8Oc+ep//g3XqUXmtxtC6Mo412z9x8yWRuRtlS2j15zc1MsLGyomypEqSkpNBx+Hgu3bjFjl9mkpqaRtg/6bU7aytLjIyyburNU6Zs9lN84iumrd5My9pVcbIpQmTMSxZv3c+TfyLp4Fcz3/MAWBipKPvWZWrmKkNsTIw0823e6s2tMjDAwdwEL2t5Ck8LU2PKFtM+iDAzNsKmkBllizkQ9yqJSduO0K6KN06FC/HgeTTj/jyErYUZbSqXkSeTiRFlnbQvUzM3UmJjZqKZ/00DX7qt2kOdkkWp7+HC/r8fsOvaPQ4O6SBPJgsLypYtqzXP3NwcGxsbrfmxsbFs2rSJOXPmyJJDK5OxEWUdtFspzFVKbMyMNfPrFndk1L5zmCoNcS1swbEHoawNuc1sf3kKq5zsp02bNmFnZ4erqytXrlzh66+/pk2bNjRp0kSWTN/uOc2npd1wKVyIiLhEpgddJDYpmZ6VPVEoFAytVY4ZRy7hYWuFh40VM49cwkylpGtF3fVjyRXR5J6l0NBQatbM/Ntds2bND+qfoTe3ft154jz9p/+iedxt4lwAxvftyIR+nXWe50n4P+wMSu/BWrl9X61lh1bOp/4nlXSeydDAgJuPnrJm3FGex8RiY2lBlTIlOfLzD/i4u+g8j74yNDDg6pNw1p66THTCK5wKF6J+aXfWf9kRC9P395eQU5vyHvzSsSGzDgYzfMsRPO2K8EffT6ldIv+bkXNjw4YNSJJE166ZO/MVhN87N2DsgWB6bTrCi8Qk3AoXYnLjKnz+iTwHYzkRGhrKiBEjCA8Px8nJiV69ejF+/HjZXu9pTDw9NhziecIr7MxNqObiwIkv2+JWJP0g+f/qViBRncJX208QlZjEJy727OnXQj+vQRfeycPDgz/++IMxY8Zozd+4cSOlSpXK9fYUUkbXulyKjY3FysqK8D2rsZH5OtqcUqfB/iglzUoUQWWoHz0i1alp7LsXRdMiKaj0I5JmPzU5vRFVqjxN9bmlNlRxoEZnmkZdQUVaQccBQI0B+4uUo8nD46ik1IKOA4BaYcgBtzo0b94c1Ts6BOqaWq1mz549NLm+D1VaSkHHAUBtoOSAdzP93E83A/ViP0Ump+E44VdiYmKwtJTntE9GOfFiVFcs83iwEZuUjPWM9bLm1bXNmzfTuXNnGjVqRK1atVAoFJw4cYJDhw7xxx9/0LZt21xtT0+KGEEQBOHjlR83lUlvcq9atSre3t788ssv73/J/4D27dtz7tw5bG1t2bZtG1u2bMHW1pZz587lujAHPWpyFwRBED5S+XgOPTg4+KOooavVaj777DPGjx/P2rVr82WbooYuCIIgCDqmUqmyHJglL0SBLgiCIMhL3Ms9S23btmXbtm35tj3R5C4IgiDIS9z6NUseHh788MMPnDp1Cl9f30wj9w0dOjRX2xMFuiAIgiAUgGXLllG4cGEuXLjAhQsXtJYpFApRoAuCIAh6RtxYJkv379/X/Ds/Bmf5+NowBEEQBP0izqG/0/LlyylbtiwmJiaYmJhQtmxZli1b9kHbEjV0QRAEQSgA48ePZ+7cuXz11VfUqFEDgNOnTzN8+HAePHjAlClTcrU9UaALgiAI8hJN7llatGgRv/76q9Ztl1u1akX58uX56quvRIEuCIIg6BnRyz1LqampWQ7B6+vrS0pK7m8PnOMCPSkpiaSkJM3j2NhYAFKk9HuD64OUf+9Kn5ImgZ7cDzzl3yEfU/Qn0uv9ZKg/x3MZWVL0qFtHRpYUhe6H932XjCxqmYbL/RAZWVIM9Gg/GYj9lJ0UAx3eT17U0LPUo0cPFi1aRECA9rDZS5cupXv37rneXo4HZ5k4cSKTJk3KNH/dunWYmenH4CyCIAhCziQkJNCtWzfdDM4yeQCWJnkcnOVVMtbfL/uoBmf56quvWL16NS4uLlSvXh2AM2fO8PjxY3r16qU1sNDbhX5WclxFGz16NCNGjNA8jo2NxcXFhXqEY41Jbv4G2aSg4BCONHx5C6WeVIdTMOCQhScN/7mIUtKTTAoDDtlVpsHl3Sj1YNQngBQDJYcrtKBx48Z6NTpWYGAgDa4f0K/95N2EBncOo0zTjxHgUgwMOezRgAaPTqHUk1HpUhSGHHatqZ/76fh6lHowyuELXX6kRQ09S1evXqVy5coA3L17FwA7Ozvs7Oy4evWqZr2cXsqW4wLd2NgYY+PMY0krkVApPmgE1vz3bwwlaXozBGcGpZSGSk8K9AzKtBS9GMbxTSqVSm8K9Az6uJ+Uaamo9KSgyqCUUvVmmNkMermfUtV6MWyxUpe7RZxDz1JQUFC+bu/j20OCIAiC8D9If3pFCYIgCB8nBfnQ5J4vST5qokAXBEEQ5CXOoeuEaHIXBEEQhI+AqKELgiAI8hI1dJ0QBbogCIIgL0U+9HJXiAbl7Ig9JAiCIAgfAVFDFwRBEOQlmtx1QhTogiAIgrxEga4TokAXBEEQ5KUwyPs5cHEOPVtiDwmCIAjCR6BAaugz/tzHuDU7GNrSj4ABHQGQJInJG3azbP9JouIT+MSzOAs+74yPq7MsGRYfPMOSw+d48E8UAN7F7BnXpgH+FbwACI95yegN+wm8epvohFfU8SrOT71aUsrRVpY8AIuPXmDJ0Ys8iIxJz+Rkx7hPa+NftiQAca+SGbM1iO0ht4iMT6S4jRVDGlThi3q+8mU6f5MlF27xMDo+PZOdFePqlqeZR1EAVD+syfJ5MxpW5puaPrJkWrRoEYsWLeLBgwcA+Pj48P333+Pv769Z58aNG3z33XccPXqUtLQ0fHx8+OOPP3B1dZUl0+JzN1gS/DcPo+MA8LYrzLj6FWnm6QJAvy3HWBNyR+s5nxSz4+RnLWXJA7D4zDWWnLnGw6iX6ZkcrBnX0JdmXpn3wZdbjrLs3A1+/LQmX9cuL1+mE5dZcvIKD1+kD7/s7WjNuKbVaObtDsDkvaf549ItHke/xMjQkMou9kxuXpNqxZ3ky/Se/aROTeX7A8Hs/fsR91/EYmViRAOPYkzzr4azpbl8ma48YMmVBzyMTUzPZGPBuKqlaFbcAYCtd0L59dpDLkZEE/lKTXCXulS0s5ItT54ZKNKnvG5DeC+dF+jBtx+wbP9JyhcvqjV/9pZA5m0/zIqve1LK2YFpf+yl2fcLuL5wAhZm+T+aW1FrK6Z2aoqHgw0Aq09cpN3ctZyfMgTvova0m7cWlaEhW4b3xNLUmHl7T9B0xgquzBiGeR6HAXxnpsKWTG3rh4d9kfRMp6/QbuEmzo/rj4+zHd9sOsiRmw9Z1a8VxW2sCLx+nyHr9+FsZUGrip6yZCpmaca0BpUpaW0BwJrLd2m38QjBA1vgY1+Yx8M7aK2/785TPtt5mrZl5Ck4AYoVK8aMGTPw8PAAYNWqVbRu3ZpLly7h4+PD3bt3qV27Nv3792fSpElYWVlx48YNTEzkGxWwmKU50xpXoaR1+rCOa0Ju0279IYK/bI3Pv+9nU4+iLGtbR/McI0N5x8UuZmnOtGbVKGmT/kO/5uJN2q3eR/DQDvg4WGvW237tPuceR+BsKf8wyMUKWzCtZS1K2hZOzxR8nXbLdxL8f93xcbKhlH0Rfmrvh7uNFYnqFH46epHmi7fy97g+2BWSJ9/79lMxK3MuPf2HsQ0rU97JlqjEJL7ZeZK2q/Zx9qv2suQBKFbIhGk1y1DSKv2gYc3fj2m3O5jgLvXwsbEgPiWFmk7WtPdw4ovDf8mWI9+IJned0GmBHpf4il4Bv7F4cHembdqrmS9JEvN3HmZ0x2a0rVEJgJXDeuHcexTrjwXzWbM679rkB2tZuYzW4ykdm7Dk0FnO3nmMytCQs3cec3n61/gUSz8i/rlPa5wGT2XDmcv0r1813/MAtKxQSjtTm/osOXqRs/ee4uNsx5l7T+hZoxz1vdwAGFi3Er8ev8T5h6GyFeif/lvDzPBDg0osuXCLs0//wce+MI6FTLWW77z5mPrFHSlRxEKWPAAtW2rXaqdOncqiRYs4c+YMPj4+jB07lubNmzNr1izNOiVKlJAtD8CnpbUPYH5oVIUlwX9z9vE/mgLdWGmIo4X8haYmk3dx7UxNq7HkzHXOPgrXFOhPY+L4evsJdvdvQeuVe+TPVFb7ffihRS2WnPyLsw9D8XGyoatvaa3lP7apy8oz17jy7DkNPOU5SHzvfqpahn0DtD9v81rVpuYvW3gU/RLXwvJ8zj91d9TOVKMMS6485GxYFD42FvQonf69fBCbIMvrC/9NOj3k+WrJRvx9y9KoovaX9n54JGFRsTSu9LqQNVapqOtTitN/35M9V2paGhtPXyY+KZnqpVxISkkfKtNE9fp4x9DAACNDJSdvPpQ9jyZT8DXik9VUL5HemlHLw4Vdl2/zNOolkiQRdPMBt8Jf0MRH3sJKK9PV+8SrU6hezC7T8vC4RPbceUrfih46yQOQmprKhg0biI+Pp0aNGqSlpbF79248PT1p2rQp9vb2VKtWjW3btukuU1oaG6/cIz45heour/fT0QdhOM9ch/dPf/L59hNExCXqNtPlO+mfJ9f0g9S0NIk+Gw8zom4FrRq7TjNdvEl8UgrVs2hST05JZdmpq1iZGFHeOfPnTbZMb+2nt8W+SkahgMImmYeTlieTxMZbT4lXp1LdqYhOXjPfZfRyz+skvJfOaugbj53n0r3HnPnxu0zLwqLSzxk7WGkf7ToUtuBhxAvZMl15HEbtSYt5pU6hkIkRf37dA++iDqhTUnGzLczYP/azqF9bzI1VzN17krCYl4TGvJQtD8CVpxHUnrkqPZOxEX9+0R7vf3/M5nVuwudr9uA2agFKAwMMDBQs7dmc2h4u2Ww1j5nCo6izch+vUlIpZKTkz4718bYrnGm9NX/dw8JIJWtzuybTlSvUqFGDV69eUahQIbZu3Yq3tzdhYWHExcUxY8YMpkyZwsyZM9m3bx/t2rUjKCiIevXqyZcp/AV1ft31735S8WfXhnj/WztvVqoYHXzccS1ciAdRL5lw+CJNftvL2S9aY6yUr+n9SlgkdRZufZ2pZ1O8/y28Zx+9hNLQgK9qlZPt9bPM9Ow5deZt5FVKSnqm/p/i7WijWb772j26r9pLglqNk6U5ewe1w/atlqB8z/Se/fSmV+oUxuw7S5cKpbCU6dSbJtPzWOr8eYJXKWkUUhnyZ4sqeFvL1/IlKzEeuk7opEB//M8Lhi/bxN5JX2FipHrneoq3jsAkKfO8/OTlZMuFqV8RHZ/IluBr9Fu6icNjB+Jd1IE/hnbns2VbsPviBwwNDGjoU5Jm5eVp1tbK5GDDhXH9iU5IYsulv+n3204Of9MDb2c7FhwO5uz9p2wd1BE3GyuO337EkHX7cbQqRKMy7vJlsrXk/GctiH6lZuuNh/TbcZJDvZpkKtR/C7lD13LumMhYQGkyeXkREhJCdHQ0mzdvpnfv3hw9epTChdMztW7dmuHDhwNQsWJFTp06xeLFi2Ut0L1srDj/ZRuiXyWz9foD+m05zqF+/njbF6FTudetKGUdiuBb1JaSAX+w59Zj2r7V5JuvmWwLc35oR6JfJbH16n36bQri0GetSFSnsuDkFc4N7SDrdyzLTPZFOD+yO9GJSWy9fJt+vx/g0FcdNIV6fQ8Xzo/szvP4RJafvkq33/ZwcngX7GU8XfGu/fRmoa5OTaX7+oOkSRI/t8n/04CZMhUpxPku9YhOUrP1bij9AkM41L7mf7dQF2SnkwL94t1HRMS85JMRMzTzUtPSOH7tDr/sPsr1hRMACIuOxcn6dU/NiJiXOMh0jgrASKnUdIqrUqIY5+8/YcH+Uyzq1xZf96JcmPoVMQmvSE5Jwc6yEDUmLKSKe9FstprXTIZ42Kf/iFQp7sT5B6EsOBxMQKfGjNt2hD+/7ECLculN2uWL2XP5cTgBB87KWqAbGRri8W9nryrONpwPjWTBub9Z1KK6Zp0Tj8K5GRnL7+3k/6EDMDIy0nSKq1KlCsHBwfz0008sWLAApVKJt7e31vplypThxIkT8mZSGuJh8+9+KmrL+af/sODMdRa1qpVpXScLM9ysCnEnMlb+TLbp36kqxew5/ySCBSevUNq+CBHxiZSYsVazbmqaxLe7T7PgxF/cGdVD3kz/HgxWcXXg/ONwFhy9xKLOjQAwN1bhYVcYD7vCVC/uRJkpv7HyzFW+a/yJvJmy2E+L2qUfAKpTU+n6eyD3X7wkcGBL2WvnAEaGBngUTu8UV8WhMOfDo1kQco9FDSrI/tr57iO8sczjx4/p2bMnERERKJVKxo8fT8eOHQs0k04K9AblSxMyf5zWvAHzV+NVzJGR7ZpQwtEWxyKWHAy5QaUS6c3HyeoUjl27zfRebXQREUjvnJekTtWaZ/VvD/vbYc+5cP8pkzo01lkeTaaUVNSpaahT0zB460NtaKAgTZJ0nAmSUrT304pLd6jsZE0FR92fi03PJJGUlISRkRFVq1bl5s2bWstv3bqFm5ubjjNl3k8ZIhNe8Tg2HkcLeZuS35WpRyVPGnoU01rWYsUuulfypHeV0u94tryZ3rkc6b3L5fBmpozC/E5kDIEDW2FjLt/VEu/NBCSlphXIa+fZR9jLXalUMm/ePCpWrEhERASVK1emefPmmJvLdzljtpl08SIWZiaUddO+ntzMxBgbC3PN/KEtGzDjz/2UcrLHw9meGX/uw8zIiK515elRPvaP/TSr4ImLdWFevkpi45m/OHrjPrtH9gHgz7NXsLU0x9WmMFcfhzF87S5a+3rTpFyp9284L5m2HqFZ2RK4FLHkZVIyG4Ovc/TWI3YP7YKlqTF1PV0ZtfkQpiolbjZWHLv1iDVnrvJjx4ayZRp3+BLNPJwpZmnOyyQ1f1x7wNGH4ezu1kCzTmxSMptvPGRW4yqy5XjTmDFj8Pf3x8XFhZcvX7JhwwaOHDnCvn37ABg5ciSdO3embt26+Pn5sW/fPnbu3MmRI0dkyzQu8DzNShWjmJU5L5PV/HHlHkcfhLG7ZxPiktRMDrpEW+/iOFmY8jA6jnEHL2BrZkybMsXly7TvLM28XF9nunyHo/eesbtfc2zMTTIVTCoDAxwszPDKon9EvmXadZJmZYpTrHCh9M/TpZscvfOE3V+0IT5JzfTAc3xatgROluZExr9i8cnLPImOo71MV3HA+/dTSmoandcGcunZP2zr7U+qJBH2Mr1nubWpMUYynV4ad+oGzdzsKWZhysvkFP64/ZSjT5+zu1V6q9iLV8k8eplIaPwrAG5Fpd//wNHMGMcCOuD4X+Pk5ISTU3pnTnt7e6ytrXnx4sXHX6DnxMh2jUlMTmbIkg1ExaXfWGbvpK9kuQYdICImjj6LNxEa/RIrUxPKuTqye2QfGv9bYIdGv+T/1u0hPCYOp8IW9KhdiXFt/GTJosn0Mp4+K3cSGhOHlakx5Yras3toFxr/e9ONdQPaMHbrEXqt2M6L+Fe4WVvyQ+t6fF63smyZwuMT6bPtJKFxiVgZqyjnUITd3RrQqMTrA7SN1x4gSdDFp7hsObQyhYfTs2dPQkNDsbKyonz58uzbt4/GjdNbT9q2bcvixYuZPn06Q4cOxcvLi82bN1O7dm35MsUn0mfLMUJfJmBlYpS+n3o2oZFHURLVKVwNj2Lt5TtEv0rGqZAp9dydWNepPhbG7+5TkudMcYn02XjodSYnG3b3a06jUvJ2onxvppcJ9Fm7j9DYBKxMjSjnbMvuL9rQyMuNV+oUbka8YM3K6zyPe4WNuQlVXB0IGtoRHyeb7Df+oZnes58evIhl540HAFSZ/6fW8w4ObEm9kvKcggtPTKJP4CVC45OwMlZSzsaS3a2q08g1vYPszvvhDDgYolm/+/6LAIz/xJPvq3nJkilPFORDk3vuVj927BizZ8/mwoULhIaGsnXrVtq0aaO1zsKFC5k9ezahoaH4+Pgwb9486tTJ/WnD8+fPk5aWhotLwX23ABSS9GHttbGxsVhZWRG+LqDAmqDeppYU7MeJpi//RoV+NE2pMWC/RWmaRpxHJelJJoUB++2r0OTSdlRpKQUdBwC1gZIDlVrTvHlzVCr5CrncUKvV7NmzhyZX9+jXfirbnCa3AlGl6bYZ+l3UBoYc8GxMk4fHUUl6kklhyAG3Ovq5n46sRpWqLug4RKaA46KdxMTEYGlpKctrZJQTLxaNwdI0b+VEbOIrrL+cxuPHj7XyGhsbY2yc+RLCvXv3cvLkSSpXrkz79u0zFegbN26kZ8+eLFy4kFq1arFkyRKWLVvG9evXNXeU9PX1JSkpKdO2Dxw4gLNzeqUmMjKSOnXqsGzZMmrWrJmnvzGv9KaGLgiCIHyk8rFT3Nu14AkTJjBx4sRMq/v7+2vdDvptAQEB9O/fnwEDBgAwb9489u/fz6JFi5g+fToAFy5ceG+kpKQk2rZty+jRowu8MAdRoAuCIAj/IVnV0HMrOTmZCxcuMGrUKK35TZo04dSpUznahiRJ9OnThwYNGtCzZ89cZ5CDKNAFQRAEeeVjL3dLS8s8nyJ4/vw5qampODho3w3QwcGBsLCwHG3j5MmTbNy4kfLly2vuRLlmzRrKldPtjZreJAp0QRAEQV6KfBhtTYbr0DPfzEzK8Y2WateuTVqafvSLyqBfF/YJgiAIgsxsbW0xNDTMVBuPiIjIVGv/LxEFuiAIgiCvjCb3vE75xMjICF9fXwIDA7XmBwYG6kXntg8lmtwFQRAEeeVjL/eqVatiaGjI4MGDGTx48DtXj4uL486dO5rH9+/fJyQkBGtra1xdXRkxYgQ9e/akSpUq1KhRg6VLl/Lo0SO++OKLvOUsQKJAFwRBEP4zgoODc9Qp7vz58/j5vb4Z2IgRIwDo3bs3v/32G507dyYyMpLJkycTGhpK2bJl2bNnj85vEZ2fRIEuCIIgyKsA7uVev359srtv2qBBgxg0aFBeUukVUaALgiAI8jLIh17ueX3+/wDRKU4QBEEQPgI5rqEnJSVp3dM2NjZ9HOcUFKgl/ThySvn37v0penSckpElRY+G/svIkmKgPw00GVnU6oK/x3WGjCz6uJ9SDOQZ5etDZGRJUehRpn+z6OV+MtSPsQpSdDnq8kc4Hro+yvHgLBMnTmTSpEmZ5q9btw4zM7N8DyYIgiDIJyEhgW7duulmcJZV07HM48iZsQmvsO49Gk9Pzxz1cv9flOOqx+jRozW9BCH9jXJxcaHu5d1Yq/Sj9plioORw5dY0uLwbpZ6MjpVioORwhRY0OL9VvzJVaUuDi9v1K5Oevnf1969AmaIfLQcpShVHmvajwfUD+rWfvJvQuHFjvRopLzAwkIb/XESpJ6McpigMOGRXmYaJd1Giy+px1l4kZh5FTDb5eA49p73c/xfluEB/1xB1yrQUVKn6UaBnUKal6M1wlxnS95PIlB29fO9S1HpToGfQx/2kUqn0pkDPoJTS9GbY4gxKJL0Y3lkfDiqE/KU/JwcFQRCEj5NCkQ+XrYlz6NkRBbogCIIgL9EpTif0q61cEARBEIQPImrogiAIgrwK4E5x/4vEHhIEQRDkldHLPa8T6YOzeHt788svvxTwH6V/RA1dEARB+M8Ql629myjQBUEQBHmJJnedEAW6IAiCIC/Ry10nxCGPIAiCIHwERA1dEARBkJeBQfqU120I7yUKdEEQBEFm+dDkjmhyz45OCvSZp66x9eYTbr6IxVRpSI2itkzzq4iXzeueiltvPubXS3e4GPaCyMRkgvs1o6JDEfkynbjC1r8fczMyJj1TMTumNayMl60VAOrUNL4PCmHvnafcj36JlbERDdydmNawEs4W8owuN/P0dbbeesLNFy9f76d65bX20+QTV/njxiMev0zAyMCAyo7WTK5bjmrONvJkysF796Yv955jWchdfmxYia8/KS1PpmzeO4B+20+y5q97Ws/7pKgtJ/v5y5Jp1l/32f7wH25Gx2OqNKC6fWGmVvHA08pca72/o+MZe/42x8OiSJPAu4g5a+uXx7VQ3kaiysrMY5fZev0hN59HY6pSUsPFnmlNqmrtJ9X3K7J87owmVfmmdrl8zzR9+nS2bNnC33//jampKTVr1mTmzJl4eXlp1omLi2PUqFFs27aNyMhIihcvztChQ/nyyy/zPQ/AjL2n2HbpJn+HRWJqpKRGiWJMb+eHl+Pr71R4bByjtwQReP0+0QmvqFPKlZ+6NKGUg7UsmRYHnmZJ4GkePI8CwLuYA+PaNcK/Yvp3SpIkJm8OZNmhs0TFJ/KJhysL+rbBx8VRljx5JjrF6YRO9tCxRxF86VuKE72asLeLHylpEs03BBGf/HpwifjkFGoWs2Nq/Yq6iJSeqaoXJ/r6s7d7I1IkiebrDhGfnD4IR4I6hUthkYytU45zA1rwR8d63H4RS9uNQfJlevwPX1YuxYkejdjbuR4paWk0/+Oo1n4qZW3BT40rc6lfM450b4iblRnNNx7ln4RX8mTKwXuXYfutJ5x7FolzIVNZsmhles97l6FpSWceD++gmXZ2bSBbpuNh0XxeuhjHPq3K7qaVSUmTaLH/0v+3d9/xUVX5/8dfk5n0MpCENFKI9JAEMBSBJIDUgCygrojIxrK6Kk1Z2RXdVfyuiKuuCrpiBxtFRZoIUhOkSwodQqgBU4CQ3qb9/ggJDEkgSu7c2fw+z8djHnrvncy8uXNnPvece+69lBpMtc85UVTGnT/upaPenfUJMewZ05uZXW/DRavM13Dr6Rye7N2ZbY+PYm3isOrP7vN1Vuspa8b9Vo+Px8Si0cDYiDBFMiUnJzNp0iR27drFhg0bMBqNDB06lNLS0trnPPPMM6xbt46vvvqKI0eO8MwzzzBlyhRWrlypSKatGWd5ckAM259LZN208RjNZhLmLqa0sgqoLp53v7+MkxcK+P6pe9n7j0cJ8/Fi2DuLap/T1Fp765k9PoHds6eye/ZUBnZpx91vfs6hrBwA3lidxDs//sy8h8ewa/ZUAlp4MvzVjykuV+Z3wJ7IeegNs0kLfc39A62mP7mrN0Fzl5Oak09cqB8AD0aFA3C6oMQWkVjzwCDrTKP6EvTWt6Rm5xMX5o/exYl1Dw6xes47w3vS99O1nC0sJfS6lleTZLqvv3WmEb0Ienclqbn5xIVUr6fx1/3QvnlndxbsP8WBvELubNP0rbzGfHYA54vLmLZ+L2vGDWT0t8lNnsMq000+uxrOWgcCFN65qLF6aHer6Y/iIghZvJXUS0XEBVT3NM1KPcGwYB9e7dm+9nm3KdTbA7DmT8Ospj8ZG0vQvxeT+usl4tpUt+QCrnv/1UfPMqBNILd5K3Oe77p166ymFyxYgJ+fHykpKcTHxwOwc+dOEhMTGTBgAACPP/44H374IXv37mX06NFNnunHafdbTX+aOJLAZ+eSciaH+A6hHM/LZ/ep8+x76TG6BLUC4L0HhhP47FyW/HKYR2O7NXmmUTERVtOvjBvOhxt2sjvzLBHB/sxbu42ZY+5kbK/qXpQFT44j6In/Y/H2dB4ffEeT57llTTjKXc5Db5gqfRiFFdUthJauTmq8fb0Kr+xp3yhTUYUBDdDCxTa3iCysvLKeXOrPVGUy8Un6CfTOjkT7tbBNpno+O7PFwkOrdzK9d2e6tNI39KfKZWrgs0s+k0vQf74h4r8r+MsPO8krLbdZpqIrPRjeztXbitliYW3WRdp7uXHXT6mELE4mbvUeVp3Js1mmq59d3dsgA+SWlPNjRhYPx3SwXabCQgC8va92XcfGxrJq1SrOnz+PxWJhy5YtZGRkMGzYsIZepmkzXblPuLd79Q5ypbG6l8XF8Wr7R+vggJPWge2ZWYrnMZnNLN2RTmllFXe0D+NUXj45BcUMibr6OTk76ojvfBs7M84onud3qRkUd6sPcUM2HxRnsViYsSmNfsGtiGzVwtZvXy+LxcKM9Sn0C/Ej0q/+4/YVRhPPb07l/shwvJyV3xGxWCzM2JxOv2DfOutpTeavTFi1kzKDkUAPV9aO64+vW/0/0k2eqZ7P7o2dh9FpHJjSw3aFwCpTPZ/d8HatuTcijFC9O6cLSngpaR9Dv9zA7j+PxFmnVTzT3/Zk0Ne/BV1aegCQV15FidHEmwdOM+v2tszu0Z715y8xbvN+fkqIIT5AufEiNZlmrNtNv1B/IhsYm/Jl2nE8nR0Z21mZ7vb6Mk2fPp3Y2FgiIyNr58+bN4/HHnuM4OBgdDodDg4OfPLJJ8TGxtok07PfbqJfu2AiW1f3QHUK8CHMR88Ly7cwf0IC7s5OvL1xNzlFpWQXKtejeOBsNrEv/pcKgxEPFye+m/4nIoL92ZFxGgB/vYfV8/31Hpy5WKBYHmH/bF7Qp65P4cCFApIeHGzrt27Q1HV7OJB3maSH6m8BGExmJizbitkC743oZZtMG1I5kFdA0oRBdZYNCPVj78NDuVhWyaf7TvLAyp1snzgYP/em73K3ylTPZ5eSnc+7ezPY8/AwNCpc+KGhz+6+Lm1q/z/SryUxgT60nbecH4+fZ2znUEUzPb3rGAcul7B5RI/aeeYr/70rtBVTu1QXzK4+nuzKK+Djo+cUL+hT1+zkQO5lkh4d2eBzFqYdZ3x0W6uWqJImT57M/v372bZtm9X8efPmsWvXLlatWkVYWBhbt27lqaeeIjAwkMGDlf3dmLr4Jw6czyN5xsTaeY5aLd/85W4e/2INraa/jdZBw6BO4QyPbKtolo5BrUh57WkKSsv5fs9BHpn/DZtffKJ2+fXfN4vFjseBy4VlbMKmBX3a+r38cPw8mx8cRLCXcscOf4tp6/bwQ8Y5Nv9pKMFedY+LG0xmxi/byqmCUjZMHGKT1vm0DSn8kHmezQ/cWe96cnfS0c7Jk3YtPbmjtS+dP1rDgv0n+XufiHperYkyNfDZbcvKI6+0gtv+u6p2nsli4W+b03l3bwaZT/1BuUw3+eyuFejpRlgLdzLzixTLA/DMrqP8cPYCG0f0IPiaHSxfZ0d0Gg2drxt70Unvzva8AkUzTVuzkx+OZrH50REENzD2Y9vpHI5dLOTr+wYomqXGlClTWLVqFVu3biU4OLh2fnl5Oc8//zzLly9n5MjqnY/o6GjS09N58803FS3o0xb/xOr9x9ny7ESCW1ofo40JCyTln3+msLyCKqOJVp7u9JmzkB5hyo0qd9LpaBfgC0CPtiHsPZnFu+u2MWPUAAByCooJvCZnXlEJ/npPxfLcEo2mCUa5S0G/GZsUdIvFwrT1KazMOMfGCYMIb+Fx8z+yRaZ1v7Dy2Fk2ThxKeMu6X4SaYp6ZX8SGiUPxUbhb22KxMG1jKiszzrNx/MBGryeLBSpN5ps/8fdmusFn92BkOIPCrX/URi5JYkJkGxKjb1Mu000+u+tdKqskq7BUsUFyFouFZ3YdY9XZC6wfHkO4p/X7OGkd6OHrRUZRmdX840VlipyyVpNp2ppdrDxyho2PJNxwPX2WmsHtQT50DVDm9MdrM02ZMoXly5eTlJREeHi41XKDwYDBYMDhuuOlWq0Ws1nBbXzJelakH2PT9AcJ923R4HP1rtWf1fHcfFLOZPPy6HhFMtXHYoFKg5FwP28CWniy8cBxuoe3BqDKaGTrkZPMGT/CZnmE/bFJQZ/y016WHD7D9/fG4+mkI6ekenCS3tkR1yvde/nllZwtKiO7uHpZxqXqllSAu4siP8JT1u5hycFTfD9uIJ7OjnUyGc1mxn2XTFpOPivGDcRksdQ+x9vVCSdt0x+HnbIhhSWHz/L93bH1rqfSKiNzdh7mrnZBBHq4cqm8kg/SMjlXXMY9HUOaPA/c/LPzcXOus6PjqHXA392lwXPVbznTTT67kioD/5e8n7GdQwn0cOVMQQn/2JKOr5sLYzop090+bdcxlp7M4dtBXfFw1JJTVj2wSu+kw/XKMftnosJ4MOkAsf4tGRDYkvXnLrEm6yLrE2IUyTTlh50sOXCS78cPwtPJkZzi6p0JvYtT7fcOoKiiimWHTvP6cOUPJ02aNIlFixaxcuVKPD09ycmpPg1Lr9fj6uqKl5cX/fv3Z8aMGbi6uhIWFkZycjJffPEFb731liKZpiz+icV7DvH9U/fi6eJEzpXj4npXZ1ydqgc1fpdyBF8PN0K9vTh4/gLPfLOB0d06MDRCmZ3WF5asZXi3ToT46Ckur2Tpzn0kHz7BmuceRaPRMDUhltdWbqZ9oC/tAnx5bcVm3JwcGd+vmyJ5bpl0uduETQr6h2mZAAz6epPV/E9G9q5txa0+fp4/r9ldu2zCyh0A/DM2khfjmv4CFx+mZFRn+mK9daY/9CWxa1vOFZWxOuMcAD0+XmP1nI0Th9C/TdN3tX2YdqI602Lrc90/GdGLxKhwtA4ajuUX8eWK01wsr8TH1YkeAd5smXCnYqPLG/PZ2drNPjutRsPBvMt8tf8EBRUGAj1d6R/mz6K74/B0VuYMhY+OVm8rQ9emWM+PjeBP7YMAGB3mx7t9OvHG/tP8dfcxOujdWDIwin7+LRTJ9OEvRwEYtGCt1fxPxsaR2P3qqXNLD57EgoX7o5T/POfPnw9Qe0pajQULFvDQQw8BsGTJEmbOnMmECRPIz88nLCyM2bNn88QTT6CED5JTARj0n6+t5n+aeBeJfaMByC4s4dlvN5JbVEqg3oMH74jiHyOVG6SXV1jCQ/9dQnZBEXo3F6JCA1nz3KMMia4eeDpj1ADKqwxM/mx59YVl2oaw9vnH8HRVdhzN7yYXlrEJjcVisfyePywqKkKv15MzYxw+OvtY0QatjvU97mFo2koczXUvfKIGg4OO9d1HM3TPtzia7CSTVsf6Xn9k6N5l9pXJTj+7wWs+RGc03PwPbMCoc2TjyL8w9OCP9rWeIkcwYsQIHB1tc0rnzRgMBn788UeG5e3F0aJMV/1vZdA48JNfD4aVZ+KI+pkulVXh/+g/KCwsVOy87po6kf/Dp3i539q4qaLSMrzvelTRvP/r7KMSCyGEaL4cNE3zQK4UdyNycxYhhBDKasIud7lSXMOkoAshhFCWDIqzCelyF0IIIZoBaaELIYRQloxytwkp6EIIIRSl0Whu+dLQalxa+n+N7PIIIYQQzYC00IUQQihLutxtQgq6EEIIZUlBtwlZQ0IIIUQzIC10IYQQytJcvdLbLb2GuKFGF/TKykoqKytrp4uKqu+GZnTQYdDaR0Pf6KCz+q89kEyNY9eZdPZxfXK4msUe15PBYB/Xu4erWYx21E1bk8WIBnvoHK3OYSPS5W4Tjb45y6xZs3j55ZfrzF+0aBFubrd20X0hhBC2VVZWxgMPPGCTm7Nc3vwtXh63eHOWkjJa3vlHOnTogFarZdKkSUyaNKmJkjYPjd7NnzlzJtOnT6+dLioqIiQkhPiUlXjbyd3WjFodm3vdw8AtX6Iz2Udrwah1ZMvAifRf86ld3bEreeSjxC79LzpjldpxADDqnNg2bhJDhgyxqzt2bdiwgX5fz0NnsJP15OjE9glT6fvVXLvKtOPBacQuec+uMm27fzJx3823q23853ufpN/id+1iPV22ZS9BE176Va7l3rBGF3RnZ2ecnZ3rvoDJhKPG1KShbpXOZMDRTgp6DZ3RYDc/LDV0xiq7+GG5lqOjo90U9Bo6g/2tJ8nUOPa4jdvLetLavKDfape7HEO/Gfs5ECeEEKJ5kpuz2IR99JULIYQQ4pZIC10IIYSyZJS7TUhBF0IIoSyHJjgP/Vb//v8DsssjhBBCNAPSQhdCCKEs6XK3CSnoQgghlCWj3G1CdnmEEEKIZkBa6EIIIZQlXe42IQVdCCGEsqTL3SZsUtD/vfsoyzPOcyy/GFedlj6tfXg1PoqO3p61z7FYLPxrx2E+2X+Ky5VV9ArwZt7g7nTx1SuW6+df8/lP+knSLhSRXVbJt8NvZ3S4f+3y3LJKnt91jI1ZFymoMhAX6M3bsRG0b+GuWKZtuZd5+9BZUvOLySmvYmn/KP4Q2qp2eYnByD/STrA66yL5lQbC3F14qlMwj3cMVi7TxSLmHv+VtMIScioMLO7VkVFB3rXLPVbsrPfvXukSytPtWyuSaevWrbzxxhukpKSQnZ3N8uXLGTNmjNVzjhw5wt///neSk5Mxm8106dKFb775htDQUEUybbtUxNyTOaQXlpJTaWBRTHtGBbSsXf6XfSdZdO6i1d/0aOHOln5dFMkDsD2/mLkns0kvLKvOdHs77rom07WmHTjNgqwLzOkcwqTwAMUybbtUxNzMX0krqF5Pi3t2YFTg1e1p9tEsvvv1EufLq3By0NBN785LnUPo2dLzBq96i5kuFPJOxnnSCqq38SV3dGJUax8ADGYzLx86y085lzldWoGXo5aBfi34V2QYga51L4fdZJkuFTH3RDbpV9bToh7trdbTyux8FpzJI62glHyDke3xkUTrlfttEvbPJn0YW7Mu8GT3tmybMJC1f4zDaDYz4tufKa0y1j7nzT3HeCflOHMHdWfnhEEEuLuQ8O3PFFcpd032UoOJaB8v3omLqLPMYrFw77pUThWVsSzhdvbc249QT1cSVu+h1GCs59WaKJPRTFRLD97u1aHe5X/be5wNv+azoF8E6X/ozZTOIUz/5Tirsy4olqnMZCJS78Z/osPrXX5ieIzVY373tmiA0UE+imUqLS2la9euvPfee/VnOnGC2NhYOnXqRFJSEvv27eOf//wnLi4uimUqM5mJ8nLjzS5hDT5nSCs9mYO61T6W9eyoWB6AUqOJSE833uxy452YH3Ius7eghEBn5a+jX2Y0Eenlzn+i6t+e2nu48lZUOLsHRLO+XxfC3JwZvfMoFyoV/C0wmYlq4c5b3drWzWsyk15QwnOdQ9g+qCuL7+hMZkk5f9xxRLE8AGXGK9tTVJsGlpu4w9uDlzuHKJqjSdR0ud/qQ9yQTVroa+6Ns5r+ZHhPgt5fTWruZeJCWmGxWJiXmsnM3p0Y26G6RfdZQk9az/+BxUeyeLzrbYrkGh7WiuFhrepddrywjN25BaSNi6XLlZ6Ed+O60HrhJpYez+aRCGW+RMNa+zCsdcOFcPeFIh68LYD4K62sRzu05tPjv5J6qZhRIfX/W27VUP+WDPWvv1UH4O/iZDW9JjufeF8vwt2VK54JCQkkJCQ0uPyFF15gxIgRvP7667XzbrtNme2oxlC/Fgz1a3HD5zg5aOqsLyVZZzpR73N+raji2cNnWN6zI3/cm6F8pptsT/cF+1pNz+kSxudnL3CwqIyBrZTpsRsW0JJhDfRc6B11/BAXaTXvP11vI37LfrLKKglxU6aVPtS/BUP9WzS4fPyV7/uZskpF3r9JOThUP271NYCePXvK7VMboMouT+GVPe2WV37YThWWklNaweA2V7u7nXVa4oN92Xn+khoRqTSZAXDRXl1FWgcNTloHtudcViUTQF8/PT+cu8j5skosFgvJOZc5XlTG4Gu6wNWUW1HFutwCEsP8VMtgNptZs2YNHTp0YNiwYfj5+dG7d29WrFihWqYa2y4VE74hlW5J+5i8/5Sirc7GMFssPL7vJFPDA+js6apqlvpUmc0sOJOHXqclyuvW7qfdlAoNJjSA3lGrdpT/CRqNpkkeUH371MOHD0sxr4fNC7rFYmFG0j76tfYh8sredk5pBQD+17Xo/NxdyC2rsHVEADq1cCfM05V/7M7gcqWBKpOZ11NPkFNWSY6Ke8T/6dmBznp32i3bjtfXSfxhUzpze3eg301ahrayKOsCnjoH/qBgd/vN5OXlUVJSwmuvvcbw4cNZv349Y8eO5e677yY5OVm1XENb6fmkW1vW3NGJVzuHklpYyshdR2t3HtXw9olstBoNT16zM20P1uZcxn/NHnx+2MN7J7NZ1aczvjY4HNAYFSYzLx48zX0hrfBylHHFwn7YfGucuimdAxcKSRo/oM6y68cwWix159mKo9aBpcO68/iWA/h/thGtRsOgYB+GhyrTrd1Y/z16jj0Xi/huQDShHi5syy1g2u4MAlyduTNQ/Vb6F2fyuC+4lVXPhq2ZzdUFcvTo0TzzzDMAdOvWjR07dvDBBx/Qv39/VXLdc81OToSnG7fr3YnYvI91eQWMVuGzSyssZf7pXH6O7VLb+rEX8b5e7OgfzaUqAwvP5vGnlONsiYvET+WibjCbSdx9DDPwTndlD+E0K3I/dJuwaUGftimNH078yuZxAwj2vNp9FnClZZ5TWkGgx9VuvwtlFfi5KXcc9mZub6Vn732xFFYaqDKbaeXqTL9lO4hR6DjezZQbTbyUfoKl/aNIuHKcMaqlB/svF/PO4bOqF/TtF4s4XlLBFz3V624H8PX1RafTERFhPdixc+fObNu2TaVUdQW4OBHq6sQJlXqhduQXc6HKSMSWfbXzTBZ44UgW80/ncnBgV1VyAbjrtLT10NIWF3p5e9J1UzpfnM3jWYXOmmgMg9nMxN3HOF1WwY9xkdI6/y3ktDWbsMkWabFYmLYpnZWZ59k4rj/h1532Fa53J8DdhU1n8uh+ZbBMlcnM1nMXeTU+yhYRb0h/pVVwvKCUlAuFzOrVXpUcBrMFg9mCw3UbtlajwWyxqJLpWl+cyaN7C3eiVD51xsnJiZ49e3Ls2DGr+RkZGYSFNTwC3dYuVRk4V1FFgLPtBsld6/7Wvgz09bKaN3ZPBve39uHB6wamqc1isah6aKKmmGeWVLA2PhIfO+n+F+JaNinoUzamseRoFt+P6Yunk2PtMXO9kyOujlo0Gg1Tb2/Ha7uP0q6lB+1aePDv3Udx02kZr+ApGSUGI5mFZbXTp4vKSL9YhLezI6Gernx3IptWLk6EeLpy8FIxf91+hD+08WeIQqPJazKdKC6/mqmknH35xbR0diTU3YU4/xY8n5KJq9aBUHcXfs4r4OuTOfw7pp1ymYwmTpZcbUWeKatgf0EpLZ10tSN8iwxGlv96iVcjbVMwS0pKyMzMrJ0+deoU6enpeHt7ExoayowZMxg3bhzx8fEMHDiQdevWsXr1apKSkpTLZDRxsvTa9VTJ/sLq9dTSUcerGecZHdiSAGcnzpZXMuvoOXycdFbnqiuS6ZoxH6fLK9lfVEZLRy0hrs74OFn/BDg6aPBzdqS9h3ID5BpcT446vJ10vHH8PCP8WxLg4kR+lZGPT+dwvqKKsQqOyygxmjhRcs33rqyCfQUleDs5EujixIRdx0gvKOG7vhGYLBZyKqoA8HbS4XSro7dvkKmh9RTi5kx+lZFz5ZVkV1QPrDx+5Tvq7+xo0zMpGqcpTjuT09ZuxiYF/cN9JwEYtNR6QNInw3uQGNkGgGd7daTcaGLKxjQuV1TRK9CbH++Nw9NJuT3hlLxChqzaUzs9Y8dRACZ2bM2nd0aTU1rJ37YfJbe8kkA3ZyZ0bM0LChZOgNRLxQzbkFY7/feU6qL14G0BfNwvgi/iuvBi2gke2naIy1VGQt1dmNXtNh7roFxXZOrlEkZsP1w7/dzBMwBMCGnFh1fWx3fnL2EB/mijlt3evXsZOHBg7fT06dMBSExMZOHChYwdO5YPPviAOXPmMHXqVDp27MiyZcuIjY1VLFNaYSkjdh2tnZ555CwADwT78k5kGw4Xl7H4/EUKDSYCXByJ8/Hi89vb4qlTbqR0WmEpI3df7al4/khWdabWPnyg0OmgN5NaUMKIa87hfu5Qzfbky9zo2zhWXM7XWRe4VGXE21FHTEsP1vfrQoSCo9xTL5eQsPXg1Uz7T1dnCvPjhc4hrMnOB6DPpnSrv1sbH0m8Qofg0gpKGbHz6nqaefjq9vRh97b8mHuZJ9NP1i5/KLX6t2Jmh9Y8r+CFpn4X6XK3CZsUdMOz9970ORqNhhf7deFFBa+adb3+rX2oerLhc5knR7dhcnQbm+UBiA9oSfnEOxtcHuDqzEd9614IR0nxrfSUjOlzw+c80safR2w4UnrAgAFYbnKY4ZFHHuGRRx6xUSKI8/GieGSvBpev6N3JZllqxPl4UTSiZ6Ofb4vj5vG+ekr+cEeDyxf3UvZiO/WJb6Wn9J5+DS6/0TKlxPl6UTyqd4PLHwxpxYMK9haK/z0yqkMIIYSymvDCMqJhUtCFEEIoS7rcbUJ2eYQQQohmQFroQgghlCX3Q7cJKehCCCGUJV3uNiEFXQghhMI03PqFvKWg34z0YQghhBDNgLTQhRBCKEu63G1CCroQQghlSUG3CelyF0IIIZoBaaELIYRQmAyKswUp6EIIIZQlXe420eiCXllZSWXl1dswFhUVAWDUajFo7aPn3qjVXfmv/dyruCaLUWdHmXQ1meznFos1WQwGg8pJrqrJYnS0o/V0JYtkurHaTHa4jdvLejLJEddmR2O52S2rrpg1axYvv/xynfmLFi3CzU252xoKIYRoemVlZTzwwAMUFhbi5eWlyHsUFRWh1+spOLoXL0+PW3ut4hJadOpBhw4d0Gq1TJo0iUmTJjVR0uah0QW9vhZ6SEgI2dnZ+Pj4KBbwtzAYDGzYsIEhQ4bg6GgfLWLJ1Dj2nKnPgrfQGarUjgNUt+52PjydQcUZ6DCrHQcAIw5s8uzAnad+RmcxqR0HAKNGy+bwOLvcnu5MWYHObFQ7DvkGM8GvL7JRQU9pooIeo2je/3WN7nJ3dnbG2dm5znxHR0e7+cLUkEyNI5kaR2eospuCXkOHGUc7Keg1dBYTjnZS0GvY5fZkNuJoUr+g68z2tf2IWyeD4oQQQihLBsXZhBR0IYQQytLQBAW9SZI0a1LQhRBCKEzOQ7cFOW9BCCGEaAakhS6EEEJZcgzdJqSgCyGEUJh0uduCdLkLIYQQzYC00IUQQihLutxtQgq6EEIIZUlBtwnpchdCCCGaAdUK+tatWxk1ahRBQUFoNBpWrFihVpRac+bMoWfPnnh6euLn58eYMWM4duyYqpnmz59PdHQ0Xl5eeHl50adPH9auXatqpmvNmTMHjUbD008/rWqOWbNmodForB4BAQGqZgL4taKKxw6cok3SPgI2pRG78whpRWWq5Wn7zOvoJj5f5zFl4UrVMhlNZl5cu5P2sz/H8+/v02H257yyfg9mc6NuM6GI4uJinn76acLCwnB1daVv37788ssvNs3w89k8xny7ldD3VuD42hJWZpyzWm6xWPi/nw8Q+t4KPN/8lkFfb+LQhUKbZmw8TRM9xI2o1uVeWlpK165defjhh7nnnnvUimElOTmZSZMm0bNnT4xGIy+88AJDhw7l8OHDuLu7q5IpODiY1157jXbt2gHw+eefM3r0aNLS0ujSpYsqmWr88ssvfPTRR0RHR6uao0aXLl3YuHFj7bRWq1UxDVw2GBn2SwZx3h4s694OXycdp8oq0evUy7Xr5acwXVMoD57LZfi/P+Oe3lGqZXpjSwof7TjIZ+MHExHgQ0pWHn9euhEvFyemxndTJdOf//xnDh48yJdffklQUBBfffUVgwcP5vDhw7Ru3domGUoNRqL9W5AYHc59y7fXWf7m7qO888sxPh3Zm/benszZcZiEpVs49NhIPJ3t6/r1NTvZt/oa4sZUK+gJCQkkJCSo9fb1WrdundX0ggUL8PPzIyUlhfj4eFUyjRo1ymp69uzZzJ8/n127dqla0EtKSpgwYQIff/wxr7zyimo5rqXT6eyiVV7jndO5tHZx5P0ubWrnhbnWvcGRLbXysr7j1es/JNPWz5v+ncJVSgS7TucwKvI2RkRUZ2jj7cXStAxSzuWpkqe8vJxly5axcuXK2u/9rFmzWLFiBfPnz7fZ9j68bRDD2wbVu8xisTDvl2PM7NuFsR1DAPhsZG9av7uCxYfP8Hj3djbJKOyLHEO/gcLC6u4rb29vlZNUM5lMLFmyhNLSUvr06aNqlkmTJjFy5EgGDx6sao5rHT9+nKCgIMLDw7n//vs5efKkqnnWXiiku5c7f9p3krZJ+4nddYSF5y6qmulaVUYjX29P56H+PVRt/fQLD2TL8SwyLlwGYN+vF9h+6lcSOrVRJY/RaMRkMuHi4mI139XVlW3btqmS6XqnCkvJKa1gcJurO7DOOi3xIX7sPG8/21itmkFxt/oQNySj3BtgsViYPn06sbGxREZGqprlwIED9OnTh4qKCjw8PFi+fDkRERGq5VmyZAmpqak2P6Z4I7179+aLL76gQ4cO5Obm8sorr9C3b18OHTqEj4+PKplOl1fy6bkLTAr146/hAaQUlfL3Y1k4O2gYH6ROpmutTDlMQVkFiXG3q5pjxp0xFFZUEfnvr9BqHDBZzPwroQ/3395BlTyenp706dOHf/3rX3Tu3Bl/f38WL17M7t27ad++vSqZrpdTUgGAv7v1ToefuzNnVRyj0TC5sIwtSEFvwOTJk9m/f79d7JF37NiR9PR0CgoKWLZsGYmJiSQnJ6tS1LOyspg2bRrr16+v04JR07WHb6KioujTpw9t27bl888/Z/r06apkMlugu5cbL7WvPuba1cuNoyUVfHruol0U9M+SUxge3YGgll6q5vgm/TiLUo7x5YRhRAR4s+/8Rf668mcCvdz5U8/OqmT68ssveeSRR2jdujVarZbbb7+dBx54gNTUVFXyNOT6RqsFey17TdHCts9/mT2RLvd6TJkyhVWrVrFlyxaCg4PVjoOTkxPt2rWjR48ezJkzh65duzJ37lxVsqSkpJCXl0dMTAw6nQ6dTkdycjLz5s1Dp9NhMplUyXU9d3d3oqKiOH78uGoZApwd6XhdC6qDuwvnKqpUSnTVmYuX2XQwk0cH9FA7Cs+t3s6MO2MY170DUYG+PNijE9Piu/H6pr2qZWrbti3JycmUlJSQlZXFnj17MBgMhIerN9bgWgEe1dtVTUu9xoXSSvzc7WdHW9iWFPRrWCwWJk+ezPfff8/mzZvt5st7PYvFQmVlpSrvPWjQIA4cOEB6enrto0ePHkyYMIH09HTVR5bXqKys5MiRIwQGBqqWoXcLdzLLrH9wT5RVEuLipFKiqxZuTcHPy4MR3TqqHYUygxEHB+vWl9ZBg4pnrdVyd3cnMDCQy5cv89NPPzF69Gi1IwEQrncnwN2FTadzaudVmUxszcqjT2tfFZM1QI6h24RqXe4lJSVkZmbWTp86dYr09HS8vb0JDQ1VJdOkSZNYtGgRK1euxNPTk5yc6i+LXq/H1dVVlUzPP/88CQkJhISEUFxczJIlS0hKSqozIt9WPD0964wpcHd3x8fHR9WxBs8++yyjRo0iNDSUvLw8XnnlFYqKikhMTFQt01Ohfgz95RhvnsphrH8LUgvLWHjuInMj1Nm+a5jNZj7fmsrEuO7o7GAHbGREG17b+AuhLTyICPAh/fwF3klO46Fe6o0T+emnn7BYLHTs2JHMzExmzJhBx44defjhh22WoaTKQOblktrpUwWlpOdextvFiVC9O1N7duS1nYdp19KTdt4e/HvnYdwctYyPCLNZxsaTY+i2oFpB37t3LwMHDqydrjnOmZiYyMKFC1XJNH/+fAAGDBhgNX/BggU89NBDtg8E5ObmMnHiRLKzs9Hr9URHR7Nu3TqGDBmiSh57de7cOcaPH8/Fixdp1aoVd9xxB7t27SIsTL0ftxi9O193bcvLmed5/WQ2Ya5OzOkYzH2B6p41sfHQCc5eKuDhePW72wHmju3PS+t2MeX7ZPKKywjSu/NYn0j+MaSXapkKCwuZOXMm586dw9vbm3vuuYfZs2fj6Gi787tTsvMZvHhL7fSMzWkATIxsw2d33cGzvTtRbjAyZf1eLldU0SvIhx/HDbC7c9CF7ahW0AcMGIDFYgd9atewtzwAn376qdoRbiopKUntCCxZskTtCPUa3krP8FZ6tWNYGRrVHuOXr6odo5anixNvjYnnrTHqXOuhPvfddx/33Xefqhn6h/ljeO7+BpdrNBpejIvixTj1LgrUaHItd5uQUe5CCCGUJT3uNiGD4oQQQohmQFroQgghFCZNdFuQgi6EEEJZcgzdJqTLXQghhGgGpIUuhBBCWdJCtwkp6EIIIRQmx9BtQQq6EEIIZWloghZ6kyRp1uQYuhBCCPEbFRcX07NnT7p160ZUVBQff/yx2pGkhS6EEEJhzfAYupubG8nJybi5uVFWVkZkZCR33303Pj7q3RpZCroQQgiFNb9j6FqtFjc3NwAqKiowmUyqXz5cutyFEEI0O1u3bmXUqFEEBQWh0WhYsWJFnee8//77hIeH4+LiQkxMDD///PNveo+CggK6du1KcHAwf/vb3/D1VffWtY1uoVdWVlrdg7uwsBCA/Pz8pk/1OxkMBsrKyrh06ZJN74p0I5Kpcew502Uc0NrJvq8JB8rKysgvr0KHWe04ABhxoExbRn6lEZ3FpHYcAIwai91uT/kGMzqz+p/dZUN1a9IWrcqikpJb7jIvKqm+lWxRUZHVfGdnZ5ydnes8v7S0lK5du/Lwww9zzz331Fm+dOlSnn76ad5//3369evHhx9+SEJCAocPH669hXdMTIxV3auxfv16goKCaNGiBfv27SM3N5e7776be++9F39//1v6d94SSyO99NJLFkAe8pCHPOTRjB4nTpxobBn4zcrLyy0BAQFNltXDw6POvJdeeummOQDL8uXLreb16tXL8sQTT1jN69Spk+W55577Xf/WJ554wvLNN9/8rr9tKo1uoc+cObP2nuVQ3dUQFhbG2bNn0ev1jX0ZRRUVFRESEkJWVhZeXl5qxwEkU2NJpsaRTI0jmW6usLCQ0NBQvL29FXsPFxcXTp06RVVVVZO8nsViQXNdS7++1vnNVFVVkZKSwnPPPWc1f+jQoezYsaNRr5Gbm4urqyteXl4UFRWxdetWnnzyyd+cpSk1uqA31K2h1+vtYuO8lpeXl2RqBMnUOJKpcSRT49hbJgcHZQ8nubi44OLiouh7/FYXL17EZDLV6R739/cnJyenUa9x7tw5Hn30USwWCxaLhcmTJxMdHa1E3EaTUe5CCCH+v3R9a7++HoCGxMTEkJ6erkCq388+RvoIIYQQNuLr64tWq63TGs/Ly1N3UNst+t0F3dnZmZdeeul3Hb9QimRqHMnUOJKpcSRT49hbJnvLY0tOTk7ExMSwYcMGq/kbNmygb9++KqW6dRqLReUz4YUQQogmVlJSQmZmJgDdu3fnrbfeYuDAgXh7exMaGsrSpUuZOHEiH3zwAX369OGjjz7i448/5tChQ4SFhamc/veRgi6EEKLZSUpKYuDAgXXmJyYmsnDhQqD6wjKvv/462dnZREZG8vbbbxMfH2/jpE1HCroQQgjRDMigOCGEEKIZkIIuhBBCNANS0IUQQohmQAq6EEII0QxIQRdCCCGaASnoQgghRDMgBV0IIYRoBqSgCyGEEM2AFHQhhBCiGZCCLoQQQjQDUtCFEEKIZkAKuhBCCNEM/D/rdpCGHvgXrwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7MklEQVR4nOydd1gUV99Az9KLFOmggCCCgh17x469966JibHnNfbYe49GMfYeY++9d8HeO1YQQQUBgQXm+4OwuoICyiwbv3t85nncmTt3Dndm9ze3zFyFJEkSAoFAIBAI/tPo5LSAQCAQCASCb0cEdIFAIBAIvgNEQBcIBAKB4DtABHSBQCAQCL4DREAXCAQCgeA7QAR0gUAgEAi+A0RAFwgEAoHgO0AEdIFAIBAIvgNEQBcIBAKB4DtABHQtYfTo0SgUCrV1+fLlo0uXLlnK5/Tp04wePZq3b99mab9Pj3X06FEUCgUbN27MUj5fIjY2ltGjR3P06NE025YvX45CoSA4ODjbjicHc+fOxcPDAwMDAxQKBW/fvmXixIls3bpVox7VqlVDoVCkWerWratRD4FAoD3o5bSA4PNs2bIFc3PzLO1z+vRpxowZQ5cuXbC0tJT1WFklNjaWMWPGACkB6WPq16/PmTNncHR0lNXhW7h8+TJ9+/alR48edO7cGT09PczMzJg4cSItWrSgSZMmGvVxd3dnzZo1auuycs4FAsH3hQjoWkyJEiVkP8b79+8xNjbWyLG+hK2tLba2tjnqkBE3btwA4IcffqBMmTKyHispKYnExEQMDQ0/m8bY2Jhy5crJ6iEQCP47iCb3HGDXrl0UL14cQ0ND3NzcmD59errpPm0GT05OZvz48Xh5eWFsbIylpSVFixZlzpw5QEqz/aBBgwBwc3NTNcOmNnHny5ePBg0asHnzZkqUKIGRkZGqxvy55v24uDgGDhyIg4MDxsbGVK1alUuXLqmlqVatWpoaN0CXLl3Ily8fAMHBwaqAPWbMGJVb6jE/1+S+dOlSihUrhpGREVZWVjRt2pRbt26lOU6uXLm4f/8+9erVI1euXDg7O/Prr78SHx+fbtl+zPr166lduzaOjo4YGxtTqFAhhgwZQkxMjNrf2KFDBwDKli2rclcoFMTExLBixQrV3/RxWYSGhtKzZ0/y5s2LgYEBbm5ujBkzhsTERFWa4OBgFAoFU6dOZfz48bi5uWFoaMiRI0cydP8aUo83bdo0pkyZQr58+TA2NqZatWrcvXsXpVLJkCFDcHJywsLCgqZNmxIWFqaWR3JyMlOnTqVgwYIYGhpiZ2dHp06dePbsmSpN//79MTU1JSoqKo1D69atsbe3R6lUqtatX7+e8uXLY2pqSq5cuahTp06aa+3hw4e0adMGJycnDA0Nsbe3p0aNGly+fDl7C0kg+C8iCTTKwYMHJV1dXalSpUrS5s2bpQ0bNkilS5eWXFxcpE9Ph6urq9S5c2fV50mTJkm6urrSqFGjpEOHDkl79+6VZs+eLY0ePVqSJEl6+vSp1KdPHwmQNm/eLJ05c0Y6c+aMFBkZqcrP0dFRcnd3l5YuXSodOXJEOn/+fLrHOnLkiARIzs7OUuPGjaUdO3ZIq1evljw8PCRzc3PpwYMHqrRVq1aVqlatmuZv7dy5s+Tq6ipJkiTFxcVJe/fulQCpe/fuKrf79+9LkiRJy5YtkwDp0aNHqv0nTpwoAVLbtm2lXbt2SStXrpTc3d0lCwsL6e7du2rHMTAwkAoVKiRNnz5dOnjwoPT7779LCoVCGjNmTIbnZNy4cdKsWbOkXbt2SUePHpUCAgIkNzc3yc/PT5Xmxo0b0ogRIyRAWrZsmcr9zJkzkrGxsVSvXj3V33Tjxg1JkiQpJCREcnZ2llxdXaWFCxdKBw8elMaNGycZGhpKXbp0UeX96NEjCZDy5Mkj+fn5SRs3bpT279+vVhafUrVqVcnIyEjKnTu3pKurK7m7u0vDhg2TYmNjM/x7U4/n6uoqNWzYUNq5c6e0evVqyd7eXvL09JQ6duwodevWTdqzZ48UEBAg5cqVS2rYsKFaHj/++KMESL1795b27t0rBQQESLa2tpKzs7P06tUrSZIk6cqVKxIgLVq0SG3fN2/eSIaGhtLAgQNV6yZMmCApFAqpW7du0s6dO6XNmzdL5cuXl0xNTVXlKUmS5OXlJXl4eEirVq2Sjh07Jm3atEn69ddfpSNHjmT4dwsE3zsioGuYsmXLSk5OTtL79+9V66KioiQrK6sMA3qDBg2k4sWLfzH/adOmpQmMH+enq6sr3blzJ91t6QX0kiVLSsnJyar1wcHBkr6+vtSjRw/VuswEdEmSpFevXkmANGrUqDRpPw3ob968UQXKj3ny5IlkaGgotWvXTu04gPTPP/+opa1Xr57k5eWV5lhfIjk5WVIqldKxY8ckQLpy5Uoax8DAQLV9TE1N1coulZ49e0q5cuWSHj9+rLZ++vTpEqAKVKkBNn/+/FJCQkKmPIcPHy7Nnz9fOnz4sLRr1y6pd+/ekp6enlSlShUpKSnpi/umHq9YsWJqaWfPni0BUqNGjdTS9+/fXwJUN4a3bt2SAKlXr15q6c6dOycB0rBhw1TrSpYsKVWoUEEt3fz58yVAunbtmiRJKedUT09P6tOnj1q6d+/eSQ4ODlKrVq0kSZKk8PBwCZBmz56dmSISCP7fIZrcNUhMTAyBgYE0a9YMIyMj1XozMzMaNmyY4f5lypThypUr9OrVi3379qXblJkRRYsWxdPTM9Pp27Vrpzb63tXVlQoVKsjWHJzKmTNneP/+fZpuAGdnZ6pXr86hQ4fU1isUijRlWLRoUR4/fpzhsR4+fEi7du1wcHBAV1cXfX19qlatCpCmeT8r7Ny5Ez8/P5ycnEhMTFQt/v7+ABw7dkwtfaNGjdDX189U3uPHj+fnn3/Gz8+PevXqMXfuXCZPnszx48fZtm1bpvKoV68eOjoffgIKFSoEpAxQ/JjU9U+ePAFQnftPz02ZMmUoVKiQ2rnp2rUrp0+f5s6dO6p1y5Yto3Tp0hQuXBiAffv2kZiYSKdOndTKycjIiKpVq6q6jKysrMifPz/Tpk1j5syZXLp0ieTk5Ez9rQLB/wdEQNcgb968ITk5GQcHhzTb0lv3KUOHDmX69OmcPXsWf39/rK2tqVGjBkFBQZl2yOoo8s+5RkREZCmfrJKaf3q+Tk5OaY5vYmKidpMEYGhoSFxc3BePEx0dTeXKlTl37hzjx4/n6NGjBAYGsnnzZiBl0ODX8vLlS3bs2IG+vr7a4uPjA0B4eLha+m8d4Z/ax3/27NlMpbeyslL7bGBg8MX1qWWZlXPTvn17DA0NWb58OQA3b94kMDCQrl27qtK8fPkSgNKlS6cpq/Xr16vKSaFQcOjQIerUqcPUqVMpWbIktra29O3bl3fv3mXqbxYIvmfEKHcNkjt3bhQKBaGhoWm2pbfuU/T09Bg4cCADBw7k7du3HDx4kGHDhlGnTh2ePn2KiYlJhnl8+qx7RnzO1draWvXZyMiIyMjINOk+DVhZITX/kJCQNNtevHiBjY3NV+f9MYcPH+bFixccPXpUVSsHsvwcf3rY2NhQtGhRJkyYkO52Jycntc9ZPTef4+Natxx8fG7y5s2rtu3Tc5M7d24aN27MypUrGT9+PMuWLcPIyIi2bduq0qSm37hxI66url88tqurK0uWLAHg7t27/PPPP4wePZqEhAQCAgKy5e8TCP6riBq6BjE1NaVMmTJs3rxZreb47t07duzYkaW8LC0tadGiBb/88guvX79WjQ5PfczpW2qWH7Nu3TokSVJ9fvz4MadPn1YbyZ0vXz7u3r2rNqI8IiKC06dPq+WVFbfy5ctjbGzM6tWr1dY/e/aMw4cPU6NGja/5c9KQGkQ/fTxs4cKFmc7D0NAw3b+pQYMGXL9+nfz581OqVKk0y6cB/VtZsWIFgOyPslWvXh0gzbkJDAzk1q1bac5N165defHiBbt372b16tU0bdpU7Xn5OnXqoKenx4MHD9Itp1KlSqXr4enpyYgRIyhSpAgXL17M3j9SIPgPImroGmbcuHHUrVuXWrVq8euvv5KUlMSUKVMwNTXl9evXX9y3YcOGFC5cmFKlSmFra8vjx4+ZPXs2rq6uFChQAIAiRYoAMGfOHDp37oy+vj5eXl6YmZl9lW9YWBhNmzblhx9+IDIyklGjRmFkZMTQoUNVaTp27MjChQvp0KEDP/zwAxEREUydOjXNi2rMzMxwdXVl27Zt1KhRAysrK2xsbFSPtn2MpaUlI0eOZNiwYXTq1Im2bdsSERHBmDFjMDIyYtSoUV/193xKhQoVyJ07Nz/99BOjRo1CX1+fNWvWcOXKlUznUaRIEY4ePcqOHTtwdHTEzMwMLy8vxo4dy4EDB6hQoQJ9+/bFy8uLuLg4goOD2b17NwEBAWlquJnhxIkTTJgwgaZNm+Lu7k5cXBx79uzhr7/+onr16pkaj/EteHl58eOPPzJ37lx0dHTw9/cnODiYkSNH4uzszIABA9TS165dm7x589KrVy9CQ0PVmtsh5YZw7NixDB8+nIcPH1K3bl1y587Ny5cvOX/+PKampowZM4arV6/Su3dvWrZsSYECBTAwMODw4cNcvXqVIUOGyPo3CwT/CXJ6VN7/R7Zv3y4VLVpUMjAwkFxcXKTJkydLo0aNynCU+4wZM6QKFSpINjY2qn27d+8uBQcHq+03dOhQycnJSdLR0ZEA1SM9rq6uUv369dN1+two91WrVkl9+/aVbG1tJUNDQ6ly5cpSUFBQmv1XrFghFSpUSDIyMpK8vb2l9evXpxnlLkkpj+2VKFFCMjQ0lADVMdN7bE2SJGnx4sWqsrKwsJAaN26s9hiTJKWMcjc1NU3jlF6Zpsfp06el8uXLSyYmJpKtra3Uo0cP6eLFi6pH1FL53Cj3y5cvSxUrVpRMTEwkQG3E/6tXr6S+fftKbm5ukr6+vmRlZSX5+vpKw4cPl6KjoyVJ+jDqfNq0aRm6SpIk3bt3T6pXr56UJ08eydDQUDIyMpKKFCkiTZgwQYqLi8tw/88dL/Wcb9iwQW19en93UlKSNGXKFMnT01PS19eXbGxspA4dOkhPnz5N95jDhg1TPQb5uVH4W7dulfz8/CRzc3PJ0NBQcnV1lVq0aCEdPHhQkiRJevnypdSlSxepYMGCkqmpqZQrVy6paNGi0qxZs6TExMQM/26B4HtHIUkftacKBAKBQCD4TyL60AUCgUAg+A4QAV0gEAgEgnTYuXMnXl5eFChQgMWLF+e0ToaIJneBQCAQCD4hMTERb29vjhw5grm5OSVLluTcuXNp3tOgTYgaukAgEAgEn3D+/Hl8fHzIkycPZmZm1KtXj3379uW01hcRAV0gEAgE3x3Hjx+nYcOGODk5oVAo2Lp1a5o08+fPx83NDSMjI3x9fTlx4oRq24sXL8iTJ4/qc968eXn+/Lkm1L8aEdAFAoFA8N0RExNDsWLFmDdvXrrb169fT//+/Rk+fDiXLl2icuXK+Pv7q+YsSK83Orve5igXmX6xTHx8vNqbwJKTk3n9+jXW1tZa/0cKBAKBQB1Jknj37h1OTk6yvi44Li6OhISEbMlLkqQ08cbQ0DDNmx4B/P39VRMhpcfMmTPp3r07PXr0AGD27Nns27ePBQsWMGnSJPLkyaNWI3/27Blly5bNlr9DNjL7wHrqSzrEIhaxiEUs38/yuZcBZQfv37+XTFBkm2uuXLnSrEtvOuZPAaQtW7aoPsfHx0u6urrS5s2b1dL17dtXqlKliiRJkqRUKiUPDw/p2bNnUlRUlOTh4SGFh4dnZ/FkO5muoQ8dOpSBAweqPkdGRuLi4sLdu3e1ZtSfUqnkyJEj+Pn5ZXoaSrnRaqfypdHX0463/yoTEzlyJlA7ncS5+yLi3GWO1HNXzcMePd2c7+18E/kOr+qNvvq10JkhISGBWCQ6YooB39aSm4DEquhonj59qvZa6fRq5xkRHh5OUlIS9vb2auvt7e1VE1Lp6ekxY8YM/Pz8SE5O5rffflOblEobyfS373PNGlZWVlrzRyqVSkxMTLC2ttaqL7HWOlnl1qofYK11Eufui4hzlzlSz52VhTn6WhDQU9FEl6kROhh843F0/u3TNjc3TzNPxNfy6d8ufdKk36hRIxo1apQtx9IE2nNVCQQCgUCgAWxsbNDV1U0zPXRYWFiaWvt/CRHQBQKBQCArOtm0ZBcGBgb4+vpy4MABtfWpsyP+V9GO9jGBQCAQfLcoFKDzjS37CgAJSpcuja6uLr/88gu//PLLZ9NHR0dz//591edHjx5x+fJlrKyscHFxYeDAgXTs2JFSpUpRvnx5/vrrL548ecJPP/30baI5iAjoAoFAIPjPEBgYmKk+9KCgIPz8/FSfUwd1d+7cmeXLl9O6dWsiIiIYO3YsISEhFC5cmN27d+Pq6iqbu9yIgC4QCAQCWcmOJvOs7l+tWrV0Xw7zMb169aJXr15fL6VliIAuEAgEAlnRUSjQ+dZR7pDy5Lngs4hBcQKBQCAQfAeIGrpAIBAIZCUnmtz/PyICukAgEAhkRScbRrmLgJ4xoowEAoFA8J+hdOnSeHt78+eff+a0itYhW0DPaC5aSZIYPXo0Tk5OGBsbU61aNW7cuKGWJj4+nj59+mBjY4OpqSmNGjXi2bNn2eb47t07+vfvj6urK8bGxlSoUIHAwEDV9pcvX9KlSxecnJwwMTGhbt263Lt3L9uO/zVO0dHR9O7dm7x582JsbEyhQoVYsGCB/E6DhuBasDDG1g5UqF6bwAsXVdsVppbpLtNm/ZFjTgC3bt+hUcs2WDi6YGafl3LVavLk6VN5nb5w7rp06YJCoVBbypUrJ5uPyimDckqlZ5/+KEwtmT1vfo46jZ4wiYIlSmNq60TuPK7UrN+Yc4FB8jt95twplUoGDx5MkSJFMDU1xcnJiU6dOvHixQt5naJjGDB+Om5V6mPqU4FKLbsSePXDb+TmfYep2+UX7EpXR9fDl8s378jq8y1k54tlAgMDuXnz5hefQf//imwBPaO5aKdOncrMmTOZN28egYGBODg4UKtWLd69e6dK079/f7Zs2cLff//NyZMniY6OpkGDBiQlJWWLY48ePThw4ACrVq3i2rVr1K5dm5o1a/L8+XMkSaJJkyY8fPiQbdu2cenSJVxdXalZsyYxMTHZcvysOgEMGDCAvXv3snr1am7dusWAAQPo06cP27Ztk8/pl74cOHKUVYsXcu38aWrX8KNmgyY8//cHLeTBHbVl6YJ5KBQKmjeR7x3IGTk9ePiISrXqUtDTk6N7dnDl7ElGDhmEkaGRfE4ZnDuAunXrEhISolp2794tmw9kXE6pbN2xk3OBQTg5OsrqkxknTw8P5s2YxrXzpzl5YC/5XF2o3agZr16Fy+f0hXMXGxvLxYsXGTlyJBcvXmTz5s3cvXtX9nd8/zBsHAdPnmPF9HFc2bWeWpXKUbvTzzwPDQMgJvY9FX2LMfF/fWT1yA4+vZH92kWQAV87TVtkZKQEZGo6OT6Zui45OVlycHCQJk+erFoXFxcnWVhYSAEBAZIkSdLbt28lfX196e+//1alef78uaSjoyPt3bs33eMkJCRIW7dulRISEjJ0io2NlXR1daWdO3eqrS9WrJg0fPhw6c6dOxIgXb9+XbUtMTFRsrKykhYtWpRh/nI4SZIk+fj4SGPHjlXbXrJkSWnEiBFZd4oMl6SYt19cYsNDUpw2rVdbX6xIYWn4b/9Ld5/GDepJ1atWyTDvj5eEyPBsdWrdopnUoU2rLDl81imbzl3nzp2lxo0bZ/o8aercPbt3U8rj5CRdDzwjubo4S7OmTMzRc/fpEhnyRAKkgzu35di5+5Tz589LgPT48eMsn7u4O4FS0v0LX1yir5+SdHV1pe2LZqutL1bIUxrWq7vaugdHd0iAdGH72gzz/XgJu3BEAqTIyMhM/w1ZJTVODNKzkEboW37TMkjPQnbf/zo50of+6NEjQkNDqV27tmqdoaEhVatW5fTp0wBcuHABpVKplsbJyYnChQur0nwLiYmJJCUlYWSkXmMzNjbm5MmTxMfHA6ht19XVxcDAgJMnT37z8b/GCaBSpUps375d1Ypw5MgR7t69S506deR1MkzH6cyZNOlfvgxj1979dO/cURafzDglJyeza+9+PAt4UKdRM+xcPShbtQZbd+yU3+kL5w7g6NGj2NnZ4enpyQ8//EBYWJj8Tl84d8nJyXTs3pNB/fvg411INpesOH1MQkICfy1dgYWFOcWKFJbXKYNz9zGRkZEoFAosLS1lckr6t5zUZ7g0NjTkVNBlWY4p+O+TIwE9dYabL81FGxoaioGBAblz5/5smm/BzMyM8uXLM27cOF68eEFSUhKrV6/m3LlzhISEULBgQVxdXRk6dChv3rwhISGByZMnExoaSkhIyDcf/2ucAP744w+8vb3JmzcvBgYG1K1bl/nz51OpUiX5nMqWYdyUqbwICUlxWreec4FBhIS+TJN+xZp1mJnlolnjhrL4ZMYpLOwV0dHRTJ4xm7q1arB/+2aaNmxAs7YdOXZCnpuxzJw7f39/1qxZw+HDh5kxYwaBgYFUr15ddfMoi1MG527KjNno6enRt5dm3l+d2etp55695LLLg5GVPbPmzefAjq3Y2MgzTXNmzt3HxMXFMWTIENq1a5dt03imccplSvkSRZkwbzEvXr5Kcdq6m3NXrhMiY9eDXKSOcv/WRfBlcnSUe0Zz0aZHZtJkllWrViFJEnny5MHQ0JA//viDdu3aoauri76+Pps2beLu3btYWVlhYmLC0aNH8ff3R1dXN1uOn1UnSAnoZ8+eZfv27Vy4cIEZM2bQq1cvDh48KJ/T4oUpTh6FMMxtxx8LFtKuVct0y2HpqtW0b90yTW1Hk07JUjIAjevXY0CfXyherChD/jeABv51CFi8TD6nDM5d69atqV+/PoULF6Zhw4bs2bOHu3fvsmvXLvmcvlBOFy5dZs78AJb/NV+j/ZOZuZ78qlTm8pkTnD68n7q1atCqYxfCwl7J55TBuUtFqVTSpk0bkpOTmT9f3sGDK6aPRZIknCvWxdi7PPNW/k3bhnXR1fnvPZyk4NsHxIl4njE5cmU4ODgAfHEuWgcHBxISEnjz5s1n03wr+fPn59ixY0RHR/P06VPOnz+PUqnEzc0NAF9fXy5fvszbt28JCQlh7969REREqLbLwZec3r9/z7Bhw5g5cyYNGzakaNGi9O7dm9atWzN9+nT5nNzdOLZvN9Fhz3l65wbnjx9GmajE7ZNJDE6cOs2du/fo0bmTbC6ZcbKxtkZPTw/vQl5q+xTy8uJJNj4lkcYpg+vpUxwdHXF1dZX1yYkvldOJU6cJe/UKF6/C6Jlbo2duzeMnT/l16AjyFSqSI06pmJqa4pHfnXJlSrNkwTz09PRYsmKVfE6ZOHdKpZJWrVrx6NEjDhw4IFvtXOXk6syRdYuIunqSxyd2cXbzSpSJieRzdpL1uNqOeGzt8+RIQHdzc8PBwUFtLtqEhASOHTummovW19cXfX19tTQhISFcv3492+erNTU1xdHRkTdv3rBv3z4aN26stt3CwgJbW1vu3btHUFBQmu1ykJ6TUqlEqVSi88kduq6uLsnJyRpycuDNm7fsO3iIxg3qqW1fsmIVviWKU6yofMEgM04GBgaU9i3JnbvqgfLu/fu4OjtryOnz11MqERERPH36FEcNjCxPr5w6tm3D1XOnuHzmhGpxcnRkUP++7Nu2OUecPockScQnyNM1kdYp7blLDeb37t3j4MGDWFvL0/yfrpOJMY52tryJjGL/iTM0qllNY8fOLlLf5f6tC4jH1r6EbG+Ky2gu2v79+zNx4kQKFChAgQIFmDhxIiYmJrRr1w5ICaLdu3fn119/xdraGisrK/73v/9RpEgRatasmS2O+/btQ5IkvLy8uH//PoMGDcLLy4uuXbsCsGHDBmxtbXFxceHatWv069ePJk2aqA3Uy26+5KSvr0/VqlUZNGgQxsbGuLq6cuzYMVauXMnMmTPlczpwKMXJ04P7Dx4xaPhIvAoUoGvH9qo0UVFRbNiyjRmTxsvmkRWnQf370LpTN6pUqohflcrsPXCQHbv3cnSvfAPjvnTuoqOjGT16NM2bN8fR0ZHg4GCGDRuGjY0NTZs2lc/pC+Wkr6+PtbWVWnp9fT0c7O3w8iyQI04xMTFMmDqDRvX9cXSwJyLiNfMXLeHZ8xe0bNpEPqcvnLvExERatGjBxYsX2blzJ0lJSarWRSsrKwwMDORxOn4aSQIvd1fuP37K4Clz8HJ3pWvzlPEpr99G8uRFKC/+7Yq48+gxAA621jjY2sji9LWIV79qBtkCekZz0f7222+8f/+eXr168ebNG8qWLcv+/fsxMzNT7TNr1iz09PRo1aoV79+/p0aNGixfvjzb+rAjIyMZOnQoz549w8rKiubNmzNhwgT09fWBlBaBgQMH8vLlSxwdHenUqRMjR47MlmN/rdPff//N0KFDad++Pa9fv8bV1ZUJEybw00/yDWqKjIpi6KgxPHv+AqvcuWnepBETRo1QOQH8vXEzkiTRtmVz2Tyy4tS0UUMC5sxk0oxZ9P3fYLwKeLBp7UoqVSgvn9MXzl1iYiLXrl1j5cqVvH37FkdHR/z8/Fi/fr3aNZ/tTpk4d5rmS05JSUncvnuXFWvWER4RgbWVFaV9S3DiwB5ZR+F/6dwFBwezfft2AIoXL66235EjR6hWrZo8Tu+iGT59Hs9Cw7CyNKdZnRqM/7WX6txtP3SM7oPHqNK36zcUgN/7/Miofj1lcRJoNwpJymDC2M8QFRWFhYUF4eHhGm1++hJKpZLdu3dTr169HP3B+hitdvKrhL6edrzOX5mYyO4jJ7XTSZy7LyLOXeZIPXd1C+VBXzfn65sRkVHY+foRGRkp23iA1Djxu6ElRt848DJOkhgb/1ZW3/862vHtEwgEAsF3i2hy1wyijAQCgUAg+A4QNXSBQCAQyIoOCnS+8UlyUfvMGFFGAoFAIJCV7HxTnHgO/fOIGrpAIBAIZCU7+9ADAwPFoLjPIGroAoFAIBB8B4gaukAgEAhkJTsmVxG1z4wRAV0gEAgEspIyOcu3RXQFX/XKlP9XiJsegUAgEAi+A0QNXSAQCASyIprcNYMI6AKBQCCQFfGmOM0gykggEAgEgu+ATNfQ4+PjiY//MB9xVFQUgGqObm0g1UNbfEC7neKm/UpicmIO26SQqKMHpZqSEBJMshZMXAGQmJQyx3zCw6va56SN5aSNTlp47hIlBUjf2P6cDSRq0EE0uWuGTM+2Nnr0aMaMGZNm/dq1azExMcl2MYFAIBDIR2xsLO3atdPIbGtzTK0wVnxbSH4vJdMv5jWenp7o6uryyy+/8Msvv2ST6fdBpgN6ejV0Z2dnQkJCtGr61AMHDlCrVi2tmjJRW52qB21BT4tq6IdLNaVmwbzoaVGN6uDtZ8IpA4RT5tA2p9eRUTiVqvafC+hi+tTPk+kmd0NDQwwNDdOs19fX15pAlYpwyhx6yYnoJ2lHQE9FT1dHK+aK/hjhlDmEU+bQFic9Hc05iCZ3zSBGuQsEAoFAVhT/Lt+ah+DLiIAuEAgEAlkRNXTNIMpIIBAIBILvAFFDFwgEAoGs6KD45ne5f+v+/x8QAV0gEAgEsiKa3DWDKCOBQCAQCL4DRA1dIBAIBLKSMn3qt+ch+DIioAsEAoFAVsRja5pBNLkLBAKBQPAdIAK6QCAQCGRFR6HIlgWgdOnSeHt78+eff+bwX6V9aCSgJyYmMmLECNzc3DA2Nsbd3Z2xY8eSnJysSrN582bq1KmDjY0NCoWCy5cv56iTUqlk8ODBFClSBFNTU5ycnOjUqRMvXrzIMSdImSSnYMGCmJqakjt3bmrWrMm5c+fkc0pO5vfj1ygQsBOzGRvxDNjJ+FM3SP7MFAA/7w1Ef8p65gTekc8pMZGRM+aRv0o9TAuVxaNqfcb9sVCtnLoOGomue3G1pUKzjjnqBHDr/kMa/9CP3EUrYVGkAhWadeTJ85Acc/q0jFKX6X8tzzGn6JhY+oyahEuF2pgWKotPraYsWP2PLD6ZdXr5KoKug0aSt1wtcnmXw79LL+49eiybE8C76BgGjJ2KWyV/TAuVpVKLTgReua7aLkkSY2YvIG+5WpgWKkv1tt25cfe+rE5fiyKbFoDAwEBu3rwpJmZJB430oU+ZMoWAgABWrFiBj48PQUFBdO3aFQsLC/r16wdATEwMFStWpGXLlvzwww857hQbG8vFixcZOXIkxYoV482bN/Tv359GjRoRFBSUI04Anp6ezJs3D3d3d96/f8+sWbOoXbs29+/fx9bWNtudpp29zV+X77O0flm8bSy4EPKaHnvOY26oT99Snmppt919xvmQ1zjlMs52j4+ZunAZC9duZNm0sfh45ifo6k26Dx6FhVku+nZtr0pXp2pFlk79MEOggYzv0s+M04PHT6nSqivdWjVhdP+fsTDLxa37DzFKZ44ETTk9P3dQbZ89R0/yw5AxNKtbM8ecBo6fxtGzQaycOYF8eZ3Yf+IMvX+fhJO9LY1r+WncSZIkmv00AH09PbYsnIW5WS5mLVlF7Y4/cX3/ZkxN5Lnefxg6hht377Ni5nic7GxZs3XXv8fcRB4He6YtXM6spatZOnUsnm6uTPhzEXU6/cytg1sxy2Uqi5NAu9FIQD9z5gyNGzemfv36AOTLl49169apBcaOHVNqT8HBwZpQytDJwsKCAwcOqO0zd+5cypQpw5MnT3BxcdG4E0C7du3U9pk5cyZLlizh6tWr1KhRI9udzr4Ip6FHHurld0pxsjBl/a0nXAh9rZbu+btY+h24yK5WVWm88Xi2e3zMmYtXaVSzGvWrV0lxypuHv3fsJejaTbV0hgb6ONjayOqSFacRM+bhX60SU4YMUK1zd8mbo06fls/2g0fxK1daNq/MOJ29dJVOzRpSrVxpAH5s24JF6zZx4dpNWQJ6Rk73Hj3h7KWrXN27ER9PDwD+HDsMh9LVWbdjDz1aN8t2p/dxcWzee4gtC2dRpYwvAKP6/8y2A0cIWLOBsQN/Yc6yNQzr1YNmdVO+98unjcOxTHXWbt9Dz3Ytst3pWxCD4jSDRprcK1WqxKFDh7h79y4AV65c4eTJk9SrV08Th882p8jISBQKBZaWllrhlJCQwF9//YWFhQXFihWTxaliXluOPH7J3dfvUpzC3nDq2Sv83R1VaZIliS47zzGwbEF8bC1k8fiYSqVKcPj0Oe4+TGnyvHLrDqeCLuFfrZJaumNng3Ao7UfB6o34cegYwsJfp5edRpySk5PZfeQEnm6u1O38Mw6l/SjftANb9x/OMadPefkqgt1HTtK1VZMcdaroW4IdB4/yPPQlkiRx5Ewgdx89pnblCjniFJ+QAKDWkqKrq4uBvj6ngi7J4pSYmERSUlKa1htjIyNOBV3i0dPnhL4Kp1bl8qpthoYGVClbijMXL8vi9C1kZ5O74PNopIY+ePBgIiMjKViwILq6uiQlJTFhwgTatm2ricNni1NcXBxDhgyhXbt2ss3Fm1mnnTt30qZNG2JjY3F0dOTAgQPY2MhTEx1UtiCR8UoKL9qNro6CpGSJcVWK0MbbVZVm2tlb6Oko6ONbQBaHT/ntp65EvovGu1YTVTmN/7U3bRv5q9LUrVqJFv61cM3jxKNnzxk1809qdviBwG3rMDQ00LhTWMRromNimRKwlHEDf2Hy4H7sO3aaFj//yqG1i6hatpTGnT5l5ebtmJmaqGp8cpAZpzmjBvPjsDG4VKiDnp4eOjoK/po0ikqlS+SIU8H8+XDN48iwaX8QMGEkpsbGzFqyitBX4YSEhcviZJbLlPIlizJh3l8U8nDD3saadTv2cu7yNQrkcyH0Vcpx7W2s1Pazt7HisUxjMr4FhUKBQvFtIVkhQnqGaCSgr1+/ntWrV7N27Vp8fHy4fPky/fv3x8nJic6dO2tC4ZuclEolbdq0ITk5mfnz5+e4k5+fH5cvXyY8PJxFixbRqlUrzp07h52dXbY7/XPrKWtvBLOqYXm8bc258vItvx66hGMuYzoVceNC6GvmXrjH+c61v/kLm1nW79zHmm27WD17Ej4F8nP51h0GjpuGo70tnZs3AqB1gzqq9IW9PChVxBu3yv7sOnJCloCVkVPqAKtGNavRv3tK91Jx74KcvniFhWs2yhLQM1NOH7NswzbaNa4nW59+Zp3mrljLuUvX2LpoDq5OjpwIvEjv3yfiaGtDzUrlNO6kr6/Phvkz+GHIaGxKVEFXV5caFctSt2rFbHf5mBUzJtBj8Gicy9dGV1eXkj4FadvIn0s3bqvSfPqdkyRJY99DgfahkYA+aNAghgwZQps2bQAoUqQIjx8/ZtKkSTkW0DPrpFQqadWqFY8ePeLw4cOy1c6z4mRqaoqHhwceHh6UK1eOAgUKsGTJEoYOHZrtTkOOXmZQuUK09k4ZM1DE1pInUTFMPXuLTkXcOPn0FWExcbgv2KHaJ0mS+O3IFeYG3eX+zw2z3Wnw5FkM7tmVNg3rpjgVLMCT5yFMWbA03UAF4Ghni6uTI/eDn2S7T2acbHLnRk9PD+8C+dX2K5TfjVMX5Gm2zUo5nTh/kTsPg1k3d4osLpl1eh8Xx/Dpc9m0YKaqT7toIU8u37zDjMUrZQnomSkn3yLeXNz1D5FR70hQKrG1tqJ80w74FvHOdp9U8rs6c+TvJcTEvicqOhpHO1va9PmNfHmdVGMfQl9F4Gj3YTBsWMSbNLV2bUD0oWsGjQT02NhYdHTUu+t1dXXTPNKjSTLjlBrM7927x5EjR7C2ts5xp/SQJIn4+Hh5nJRJquc/VU4KheqxtQ6F81Ejn73a9vr/HKe9jyudi7jJ4/Q+DsWn5aSj88VyinjzlqchL3Gwk6drIiMnAwN9Shf15s7DYLU0d4Mf4+LkiBxkpZyWbtiCb2FvihXyksUls05KZSJKZWI634Mvn185nT7GwtwMgHuPHhN07SZjBvaSxeljTE2MMTUx5k1kFPuPn2bykP64OefBwdaGgyfPUMKnIAAJCUqOnwti0uD+sjtlFR2+fcCWeGlKxmgkoDds2JAJEybg4uKCj48Ply5dYubMmXTr1k2V5vXr1zx58kT1nPedOynPMTs4OODg4KBxp8TERFq0aMHFixfZuXMnSUlJhIaGAmBlZYWBQfb3w2bkFBMTw4QJE2jUqBGOjo5EREQwf/58nj17RsuWLbPdB6C+hxOTT9/ExdwEbxsLLr98w+zAu3QpmhKsrY0NsTZWb6LV11Fgb2qEl7U8rRkNalRh0vzFuDg54OOZn0s37jBr6Wq6tmgMpDzHPGZOAM3q1sDRzobgZy8YMX0uNlaWNK1dPUecAH79oQtt+/5G5TIl8StXmn3HT7Pz0HEOr12cY04AUe+i2bj7ANOG/SqLR1aczM1yUbWsL4Mnz8LYyBDXPE4cOxfEqs07mT5cHr/MlNOG3fuxtcqNi5Mj1+7cY8DYqTSu5SfbQD2AfcdPI0kSXu75uB/8hMGTZ+Hlno+uLRqjUCjo17U9k+YvwSOfKwXyuTBp/mJMjI1p95kxEoLvH40E9Llz5zJy5Eh69epFWFgYTk5O9OzZk99//12VZvv27XTt2lX1ObXZedSoUYwePVrjTs+ePWP79u0AFC9eXG3fI0eOUK1aNY076erqcvv2bVasWEF4eDjW1taULl2aEydO4OPjk+0+AHNqlmTUiWv02X+BsNh4nHIZ8UPx/IyoKF9TY0b8MWoIv8/8k96/TyIs4jVO9rb82LY5I/v0BFJqc9fu3GPVlh28jXqHo60t1cqXYt0fU2V7PjcjJ4Cmdaozf9wIpixYQv8xU/Fyd2XD/OmyDfbKjBPA3zv3IknQ9t8mZznJjNPaP6YwbOofdBwwjNdvo3DN48j4X3vzU3t5bloz4xQaFs7/JszgZXgEjra2dGzWgBG9f5TFJ5XId+8YPm0uz0JfYmVhQbO6NRj/a2/0/32fwqCeXXgfF0fv3yfyJjKKssWLsHfFAq18Bl2hSFm+KY/sUfmuUUjSZ175lQFRUVFYWFioAos2oFQq2b17N/Xq1VNd9DmNNjvVPr8B/aTEnNYBQKmrx/4yLanr44K+rnY0rimTktl744lwygDhlDm0zSnibRR2JasQGRkp29ig1DixLrcdJopv+5tjpWTavgmT1fe/Ts5fVQKBQCAQCL4ZMX2qQCAQCGRFjHLXDCKgCwQCgUBWREDXDKLJXSAQCAT/GcT0qZ9H1NAFAoFAICs6gM43VrF1/h2+HRgYKAbFfQYR0AUCgUAgK4p//31rHoIvIwK6QCAQCGRHhGP5EX3oAoFAIBB8B4gaukAgEAhkJVveFCeq+BkiArpAIBAIZEU8tqYZRJO7QCAQCATfAaKGLhAIBAJZ0UGBzjfWsb91//8PZDqgx8fHq825HRUVBaRM9KFUKrPf7CtI9VC+ew162nGvokxMmfxEG52kX2cgaYmTlJgIJ86SZOWEjpY4JSUmAk+EUwakOiW+jwUtmHQEIDEpZS7zRKUSkrXLKcnJCx0tmKgpyThCY8cSTe6aIdOzrY0ePZoxY8akWb927VpMTEyyXUwgEAgE8hEbG0u7du00MtvaNisHTHW+7cYqJjmZxq9DxWxrXyDTAT29GrqzszMhISFaNX3qgQMHqFW5HPpaUntRJiZy4MRZ4ZQBwilzaLNTTXcb9LSohn7wYTg1PR21y+luCLVq1dKKqZQjIiJwdHTUSEDfbp09Ab1RhAjoXyLTvwiGhoYYGhqmWa+vr68VF+fH6Ovpac2PXSrCKXMIp8yhjU56ujpaMc/3x2ijk7b8ZmrSQTS5awbtutIFAoFAIBB8Fdp1iy8QCASC7w7xLnfNIAK6QCAQCGRFR5ENs62JeJ4hIqALBAKBQFZEH7pmEH3oAoFAIBB8B4gaukAgEAhkRdTQNYMI6AKBQCCQFTEoTjOIJneBQCAQCL4DRA1dIBAIBLIi5kPXDKKGLhAIBAJZ0cmmBaB06dJ4e3vz559/avJP+E+gkYCemJjIiBEjcHNzw9jYGHd3d8aOHUtycrIqjSRJjB49GicnJ4yNjalWrRo3btyQ1StfoSIoTC3TLL8M+B8AL1+G0eXHn3HKXxATG0fqNm7OvfsPctQpOjqa3gMHkbeAN8bWDhQqWYYFi5bkmE962xSmlkyb9UeOOQHcun2HRi3bYOHogpl9XspVq8mTp09zzKnLjz+n2VauWk3ZfDLj9DE9+/RHYWrJ7HnzZXVyr94E3YLl0iy9x04DYMzcRXj7t8asRDWsy9SidtfenLtyXV6nqg3Q9fBNs/QeNRmlUsmQqX9QrF4rzIpUJG+FOnT+3++8ePlKVqd8+fKhUCjSLL/88gsAmzdvpk6dOtjY2KBQKLh8+bKsPtpEYGAgN2/eVJWF4AMaaXKfMmUKAQEBrFixAh8fH4KCgujatSsWFhb069cPgKlTpzJz5kyWL1+Op6cn48ePp1atWty5cwczMzNZvAKPHyEpKUn1+frNW9Rq2ISWTRsjSRJN2rRHX1+Pbf+sxdzMjJlz/6Rmg8bcvHAOU1NTjTsBDBg8jCPHT7B6yULyubqw/9ARevX/FSdHBxo3qK9xn5AHd9TS79l/gO69+tC8SaNsd8ms04OHj6hUqy7dO3VkzPChWFhYcOvOHYwMjXLMCaBurZosC/hQqzAwMJDNJ7NOAFt37ORcYBBOjo6y+gCc27iMpKQPN/LX7z2gTre+tKhTHYAC+Vz4Y+SvuDvn4X1cPLNXrKNu937c3b8RW6vc8jhtXkVS8kfldPcBdTr3ooV/TWLj4rh44zbDf+lBsUKevIl8x8Dx02nScwDnt66WxQdSgpbaubt+nVq1atGyZUsAYmJiqFixIi1btuSHH36QzSO7EKPcNYNGAvqZM2do3Lgx9eunBJx8+fKxbt06goKCgJTa+ezZsxk+fDjNmjUDYMWKFdjb27N27Vp69uwpi5etrY3a58kzZpHf3Y2qlStx7/4Dzp4P5HrgGXy8CwEwf/YM7PJ5sG7DJnp06aRxJ4Az5wLp3L4t1apUBuDHbl1YuGQZQRcvyRLQM/JxcLBX275t1278qlTG3S1ftrtk1mn4mHHUq12LqRPGqtLI6ZMZJwBDQ4M05ZXTTs9fvKD3wN/Yt20T9Zu3kt/pk6A8ZdFK8rvkpWqZkgC0a1hHbfuMIf1ZunEHV+/cp0b50vI4WX/itHB5ilNZXxQKBftXqLdazBn1G+WadeLJixBcnOS5CbK1tVX7PHnyZPLnz0/VqlUB6NixIwDBwcGyHD/b+beF4VvzEHwZjTS5V6pUiUOHDnH37l0Arly5wsmTJ6lXrx4Ajx49IjQ0lNq1a6v2MTQ0pGrVqpw+fVoTiiQkJLB6/T9069QBhUKhmirWyOhDrU5XVxcDfQNOnj6TI04AlSqUY/uuPTx/8QJJkjhy7Dh37z+gTs0aOeLzMS9fhrFr7366d+4ou8vnnJKTk9m1dz+eBTyo06gZdq4elK1ag607duaYUypHT5zEztUDz2K+/PBLX8LC5G22zcgpOTmZjt17Mqh/H9VNqyZJSFCyZvteujZrkO71lJCgZNH6rViY5aJYwQKac9q2m64tGn82AEW+i0ahUGApU8thWqcEVq9eTbdu3b49KAq+azQS0AcPHkzbtm0pWLAg+vr6lChRgv79+9O2bVsAQkNDAbC3V6+92Nvbq7bJzdYdu3j7NpIuHdoBUNDLE1cXZ4aOGsObN29JSEhg8vRZhL58SUjoyxxxAvhj+hS8C3qRt4A3Bpa21G3SgvmzplOpQvkc8fmYFWvWYWaWi2aNG8ru8jmnsLBXREdHM3nGbOrWqsH+7Ztp2rABzdp25NiJkzniBOBfuxZrli7i8O7tzJg0nsALF6ler5HqxjEnnKbMmI2enh59e/2kEYc0ToeO8fZdNJ2bqrcs7TxyEvOSfpgUq8LsFX+zb+kf2OS21IzTgSO8jYqmc/P0r+G4+HiGTZtL24Z1MTfLpRmnrVt5+/YtXbp00cjx5ECRTYvgy2ikyX39+vWsXr2atWvX4uPjw+XLl+nfvz9OTk507txZle7Tu09JkjR2R7pkxSr8a9dU9SPq6+uzae0quv/cG6u8+dDV1aWmXzX8a9fSiE96TgB/zF/I2cAgtm9Yh6uzM8dPnabXgP/h6OBAzerVNO7zMUtXraZ965ZqrRpy86lTspTSP9u4fj0G9EkZNFO8WFFOnztHwOJlas3NmnICaN2imer/hX28KVWiBK6FirBr7z6aNZZvvMHnnC5cusyc+QFcPH0sx2p9SzfuoG7lcjjZqzcv+5X15eKWlYS/iWTxhm206T+cM/8swc7aSn6nDduoW6VCGicApVJJ235DSU5O5s8xQ2R3SWXJkiX4+/vj5OSksWNmN6IPXTNoJKAPGjSIIUOG0KZNGwCKFCnC48ePmTRpEp07d8bBwQFIqak7fvQjGBYWlqbWLgePnzzh4JGjbF63Sm29b4niXD57ksjISBISlNja2lC2ag1KlSyRI07v379n2OixbPl7NfXrpvQ1Fi1SmMtXrzF9zlxZA/rnyiiVE6dOc+fuPdavWCqbQ2acbKyt0dPTw7uQl1raQl5enDxzNkec0sPR0QFXF2fu3X+YI04nTp0m7NUrXLwKq9YlJSXx69ARzP5zAcG3rsnr9DyEQ2cC2Th3cpptpibGeLg64+HqTLnihfGq04KlG3cwpGfndHLKZqfT59n457Q025RKJa37DiH42QsOrgrQWO388ePHHDx4kM2bN2vkeHKhyIY+dNHdkDEaaXKPjY1FR0f9ULq6uqrH1tzc3HBwcODAgQOq7QkJCRw7dowKFSrI7rds1RrsbG1VQfJTLCwssLW14d79BymDz+rXyxEnpVKJUqlER/H5stSkz8csWbEK3xLFKVa0iKweGTkZGBhQ2rckd+7eU0t79/59XJ2dc8QpPSIiXvP02XMcNTBILj2njm3bcPXcKS6fOaFanBwdGdS/L/u2yR88lm/eiZ11bupXzfj7LUkQn5Agv9PG7SlOfuqtOKnB/H7wU/avWIC1hpr/AZYtW4adnZ1qQLFA8CU0UkNv2LAhEyZMwMXFBR8fHy5dusTMmTPp1q0bkHLn1b9/fyZOnEiBAgUoUKAAEydOxMTEhHbt0u+vzS6Sk5NZtmoNndu3RU9PvTg2bN6KrY01Ls7OXLtxg36DhtCkYX1q16yeI07m5uZUrVyRQcN/x9jYCFcXZ46dOMXKtX8zc/IEjfukEhUVxYYt25gxabxsDllxGtS/D607daNKpYr4VanM3gMH2bF7L0f3yjsw7nNO0dHRjJ4wmeZNGuHoYE/w4ycMGz0OG2trmjZqkCNO1tZWWH/ShK2vr4eDvR1envIOQEtOTmb5ll10alJPzSkm9j0TA5bTsHplHG2tiXgbyYJ1m3gWGkaLuvIO+kxOTmb5pu10atpAzSkxMZGWvQdz6cZtti+aTVJyEqGvwgGwsrDAwEBfVqdly5bRuXPnNNf469evefLkCS9evADgzp2Ux0cdHBxULZ7ahJgPXTNoJKDPnTuXkSNH0qtXL8LCwnBycqJnz578/vvvqjS//fYb79+/p1evXrx584ayZcuyf/9+2Z5BT+Xg4aM8efqMbp06pNkWEhrKwCHDeRkWhqODPZ3atWHkkN9k9cnI6e/lSxk6agztu/3I6zdvcHVxZsKoEfzUo1uO+AD8vXEzkiTRtmVz2Ryy4tS0UUMC5sxk0oxZ9P3fYLwKeLBp7UrZBw5+zklXV5drN26ycu3fvI2MxNHBHr8qlVm/cmmOXt85xcHTgTx5EUrXZuoDz3R1dbj9KJiVfXcT/uYt1pYWlCpSiGNrAvAp4C6v06lzKU4t1Z/RfxYaxo5DxwAo2bCt2rZDqxdSrVwp+ZwOHuTJkyeqis/HbN++na5du6o+p3Znjho1itGjR8vm9LUodBQovjEii8lZMkYhSZL0NTtGRUVhYWFBeHg41tbW2e31VSiVSnbv3k09v0rop1OTzAmUiYnsPnJSOGWAcMoc2uxUt4Ad+rra8TZpZVIye++FUbdQHu1yuvWcevXqoa8vX80+s0RERGBjY0NkZCTm5uayHCM1TpxwciaXzredh+jkZCq/eCqr738d7fhFEAgEAsF3i5icRTOIgC4QCAQCWREBXTNoR1uUQCAQCASCb0LU0AUCgUAgK+I5dM0gArpAIBAIZEU0uWsG0eQuEAgEAsF3gKihCwQCgUBWRJO7ZhABXSAQCASyIprcNYMI6AKBQCCQFR2FAp1vjMjfuv//B0QfukAgEAgE3wGihi4QCAQCWRFN7poh0wE9Pj6e+Ph41eeoqCjgw5Se2kCqhzIxMYdNPpDqIpy+jHDKHNrslJgk7xS+WSHVRRudtO33UhMoyIZBcWJylgzJ9OQso0ePZsyYMWnWr127FhMTk2wXEwgEAoF8xMbG0q5dO41MznLB3Y1c3zhJTnRSMr4PH4nJWb5ApgN6ejV0Z2dnQh7dw9oqt2yCWUGZmMiBE2epVauWVsxmBCl3wQcOHBBOGSCcMkeqU423t9BDO2qfiehwyLIQNQvn06qZzQ5eD6amt4t2Od18Qs2CedHTAqfXkVE4laqmkYB+0SN7AnrJ+yKgf4lMN7kbGhpiaGiYZr2+np7WTOOYir6+vtb8AKcinDKHcMoceiSjryUBPRV9XR30dXVzWkONFKecD54fo6clTnrfOJ1plsiG59BFJ3rG5PxVJRAIBAKB4JvRrqq1QCAQCL47xCh3zSACukAgEAhkJSWgf+urX7NJ5jtGNLkLBAKBQPAdIAK6QCAQCGQltcn9Wxdto2nTpuTOnZsWLVrktAogArpAIBAIZCb1Xe7fumgbffv2ZeXKlTmtoUIEdIFAIBDIyvdaQ/fz88PMzCynNVSIgC4QCASC747jx4/TsGFDnJycUCgUbN26NU2a+fPn4+bmhpGREb6+vpw4cULzotmIGOUuEAgEAllRZMOLZbK6f0xMDMWKFaNr1640b948zfb169fTv39/5s+fT8WKFVm4cCH+/v7cvHkTFxcXAHx9fdXekJrK/v37cXJy+ro/REZEQBcIBAKBrGTnc+ipE4Ol8rm3mPr7++Pv7//Z/GbOnEn37t3p0aMHALNnz2bfvn0sWLCASZMmAXDhwoVvk9YwosldIBAIBP8ZnJ2dsbCwUC2pwTcrJCQkcOHCBWrXrq22vnbt2pw+fTq7VDWOxgL68xcv6NDtR6yd3TCxcaR4uUpcuHRZtX3ztu3UadQMGxd3FKaWXL5yVX6n58/p0KED1tbWmJiYULx4cdUdmVKpZPDgwRQpUgRTU1OcnJzo1KkTL168yDEnSJn1rmDBgpiampI7d25q1qzJuXPnctTpY3r27IlCoWD27Nk56tSlSxdVM1/qUq5cuRx1Arh16xaNGjXCwsICMzMzypUrx5MnT+RzehNFp4UbsPtlImY/jsV35J9cCH6u2q7XZWS6y/TdJ+VzCn1Jx36DsSlaAVNPX0rUbcaFqzdU26NjYug9cjzOZapjUqAk3tUbsmDV37L5qJz6D8WmeGVMC5ahhH9LLly7qdr+8lUEXX8dQZ4yNTAtWAb/Tj9x79Fj2XzcK/uj6148zdL794kASJLEmNkLyFuuFqaFylK9bXdu3L0vm8+3kp2D4p4+fUpkZKRqGTp0aJZ9wsPDSUpKwt7eXm29vb09oaGhmc6nTp06tGzZkt27d5M3b14CAwOz7JKdaKTJ/c2bt1SsUQe/KpXZs2UjdrY2PHgYjKWFhSpNTEwsFcuXpWWzJvzwS18NOL2hYsWK+Pn5sWfPHuzs7Hjw4AGWlpZAytSCFy9eZOTIkRQrVow3b97Qv39/GjVqRFBQUI44AXh6ejJv3jzc3d15//49s2bNonbt2ty/fx9bW9sccUpl69atnDt3Tva+pcw61a1bl2XLlqk+GxgY5KjTgwcPqFSpEt27d2fMmDFYWFhw69YtjIyM5HGKeU+V8YuoVsiNnb92ws7MlAevXmNpYqxK82z2b2r77L12jx+WbqVZKW95nN5GUqlZB/zKl2H3ygDsrK158PgpluYfRgoPGDOFo2fOs2rOZPLlzcP+46f4ZcR4nOztaFy7evY7RUZRqXln/MqXZvfy+dhZW/HgyQcnSZJo+mM/9PX12LpoDua5TJm5eBW1OvzIjQNbMJVh+uhzW9eQlPxh8p3rd+5Tp9NPtKhXC4BpC5cza+lqlk4di6ebKxP+XESdTj9z6+BWzHKZZrvPt6LQUaDQ+cY+dCllf3Nz82ybbe3TfnlJkrLUV79v375s8cguNBLQp8ycjXPevCxbOF+1Lp+rq1qaju3aABD8WL67XjWnKVNwdnZW+8HPly+f6v8WFhYcOHBAbZ+5c+dSpkwZnjx5oho0oUkngHbt2ql9njlzJkuWLOHq1avUqFEjR5wgpXbau3dv9u3bR/369bPd42ucDA0NcXBwkNUlK07Dhw+nXr16TJ06VbXO3d1dNqepu06Q19qCJT2afXCyVZ/q2MFS/ZGb7RdvUa2gG+52VrI4TVmwBGdHB5bOmPDByTmPWpqzF6/QqUVjqpUvA8CP7Vvx15oNBF29LktAn7JgKc5O9iydPi5dp3uPHnP20lWu7d+Mj6cHAPPHD8fetxrrtu+hR5u0A66+FVtr9fKfsmAp+V2dqVq2FJIkMWfZGob16kGzuinf+eXTxuFYpjprt++hZzvteMmJNmNjY4Ourm6a2nhYWFiaWvt/CY00uW/fvYdSJYrTskNn7Fw9KFG+MouWrdDEoT/vtH07pUqVomXLltjZ2VGiRAkWLVr0xX0iIyNRKBTp1k5zwikhIYG//voLCwsLihUrlmNOycnJdOzYkUGDBuHj4yOLR1adAI4ePYqdnR2enp788MMPhIWF5ZhTcnIyu3btwtPTkzp16mBnZ0fZsmXTfZQmu9h5+Ta++ZxoPe9vHPtMptTvf7L46Odbl15GRrP76l26VSkpm9OOA0fwLepDq58GYF+iMiX9m7No7Qa1NBVLl2THgSM8D32JJEkcOX2Ou4+CqVOlojxOB4/iW8SHVr1+xd63KiXrtWLRuo2q7fEJCQAYfTTwSldXFwN9fU4FXpLF6WMSEpSs2babri0ao1AoePT0OaGvwqlVubwqjaGhAVXKluLMxcuy+3wN2vYcuoGBAb6+vmkqbQcOHKBChQrZdyANo5GA/vBRMAsWL6VA/vzs27aJn3p0o+//BrNyzTpNHD59p4cPWbBgAQUKFGDfvn389NNPX3zrT1xcHEOGDKFdu3bZ1tzztU47d+4kV65cGBkZMWvWLA4cOICNjU2OOU2ZMgU9PT369pW/qySzTv7+/qxZs4bDhw8zY8YMAgMDqV69erqPoGjCKSwsjOjoaCZPnkzdunXZv38/TZs2pVmzZhw7dkwep7A3LDwciIeDNbv/14kf/crQf80uVp1KPwitPHUJMyNDmvrK09wO8PDpMwJWr8fDzZW9q/6iZ/vW9Bs1iZUbt6nS/DFmKN4F8uNcpjqG+Yvj36knf44fSaUyvvI4PXlGwOp/8Mjnwt4VAfRs35J+o6ewctN2AArmd8M1jxPDps7hTWQUCQlKJs9fQuircELCwmVx+pitBw7zNuodnVs0AiD0Vcox7W3Ua/H2NlaEvoqQ3edryM43xZUuXRpvb2/+/PPPLx4zOjqay5cvc/nyZQAePXrE5cuXVWNWBg4cyOLFi1m6dCm3bt1iwIABPHnyhJ9++knWspATjTS5JycnU6pkCSaO+R2AEsWLcePWLRYsXkqn9m01oZC+U6lSTJyYMsikRIkS3LhxgwULFtCpUye1tEqlkjZt2pCcnMz8+fPTy06jTn5+fly+fJnw8HAWLVpEq1atOHfuHHZ2dhp3unDhAnPmzOHixYvf/JxpdjkBtG7dWpW+cOHClCpVCldXV3bt2kWzZs3SzVdOp+R/+0MbN27MgAEDAChevDinT58mICCAqlWrZr+TJOHr5sSEFin9riVcnbj5PIyAw4F0rFgiTfrlxy/SrlxRjAz0s91F5ZScTKmihZk4uH+KU+FC3Lh7n4DV6+nUojEAfyxbw9lLV9m2ZB6ueZ04fi6IX0aMw9HOlpof1UqzzUlKplQRHyb+1u+D070HBKz+h07NG6Gvr8/GgJn0+G0U1sUqoaurS82KZfGvVinbXdJj6T9bqVu1Ik726t/vb+3//a8SGBiYqUpVUFAQfn5+qs8DBw4EoHPnzixfvpzWrVsTERHB2LFjCQkJoXDhwuzevRvXT7qD/0topIbu6GCPd0EvtXWFvLx48vSZJg6fLo6Ojnh7q9dEChUqlGbEsVKppFWrVjx69IgDBw7IVjvPipOpqSkeHh6UK1eOJUuWoKenx5IlS3LE6cSJE4SFheHi4oKenh56eno8fvyYX3/9Nd1+bU04fW4fV1dX7t27lyNONjY26OnpZdn7m5wsc+HtpB4ECjrZ8jTibZq0J+4Ecyc0nG5V5akFq5zsbClUIL/aukIF3HnyPASA93FxDJ86mxkjf6NhLT+KFvKid5f2tGroz4y/lqWXZTY5qY9lKJTfjScvPvSv+hbx5tKeDby5eooX5w+xZ2UAEW/epun/z24eP3/BoVPn6N66qWqdg21Ka9yntfGwiDdpau3aQk40uVerVg1JktIsy5cvV6Xp1asXwcHBxMfHc+HCBapUqZK9f7iG0UhAr1iuHHfuqT9ScffefVxdnDVx+HSpWLEid+7cUVt39+5dtbuz1GB+7949Dh48iLW1dY47pYckSbI1JWfk1LFjR65evapq2rp8+TJOTk4MGjRIthGgX1NOERERPH36FEdHxxxxMjAwoHTp0l91fr+WCgVcuBOq3iR8NzQcFxvLNGmXHb+Ibz4nirnIUz6pVCxVgrsPHqk7PQzGNW/KkxFKZSJKZSI6Ouo/Tbo6OiQnS/I4+Rbn7sNgdadHj3HNk7YsLMzNsLW24t6jxwRdu0njWn5p0mQnyzdsw87aivp+lVXr3Jzz4GBrw8GTZ1TrEhKUHD8XRPmSxWX1+Vo+fYT0axfBl9FIk/uAPr2oUL02E6fNoFWzppwPusBfy1bw19zZqjSvX7/hydOnvAhJuStOvQFwsLfHwSH7Rx0OGDCAChUqMHHiRFq1asX58+f566+/+OuvvwBITEykRYsWXLx4kZ07d5KUlKQaEWllZSXLI1AZOcXExDBhwgQaNWqEo6MjERERzJ8/n2fPntGyZcts98mMk7W1dZobHX19fRwcHPDy8kovS9mdoqOjGT16NM2bN8fR0ZHg4GCGDRuGjY0NTZs2zSB3eZwABg0aROvWralSpQp+fn7s3buXHTt2cPToUVmc+tWuQOUJi5i04xgtyxQm8OEzFh8NIqBLY7V0Ue/j2Bh4nWlt6sri8TH9e3SiYtMOTJz3F60a1OH85WssWruRhZNHA2Bulouq5Urz24TpGBsZ4prHiWPnAlm1aTszfv/ty5l/rVP3jlRs3omJfy6iVf06nL9yjUXrNrJw0ihVmg279mNrlRuXPI5cu32P/mOm0KS2H7WryDeAKjk5meUbt9OpWUP09D78VCsUCvp1bc+k+UvwyOdKgXwuTJq/GBNjY9o1+vyb0XISBdnwprhsMfm+0UhAL+1bki1/r2bo72MZO2kqbvlcmT11Eu3btFKl2b5rN11/+kX1uU3nbgCMGjaY0cOz/uKADJ1Kl2bLli0MHTqUsWPH4ubmxuzZs2nfvj0Az549Y/v2lEExxYsXV9v3yJEjVKtWTeNOurq63L59mxUrVhAeHo61tTWlS5fmxIkTso0uz8gpJ8hMOV27do2VK1fy9u1bHB0d8fPzY/369bLNjJSZcmratCkBAQFMmjSJvn374uXlxaZNm6hUSZ6+2NLuednYpx0jNu5n/LajuNlaMrNdPdpVUH8iYv25a0hAm3JFZfFQcypWhM1/zWHYlNmMm7MAN+e8zBo1mPZNG6jSrJs3jWFTZtOh72Bev43ENa8T43/ry08dWn8h529xKszmhbMYNnUO4+YsxM05D7N+/432TT48fhkS9opfx0/jZXgEjna2dGzWkJF9esrik8rBU2d58iKEri2bpNk2qGcX3sfF0fv3ibyJjKJs8SLsXbFAK59BF2gOhSRJX9WOFRUVhYWFBeFPH2FtlTvjHTSAMjGR3UdOUq9ePfT15RvYkxWUSiW7d+8WThkgnDJHqlOdtzfQJznjHTSAEh32WfrgX8wdfV3dnNYBQJmUxJ4rD/Evkg99Xe14w7UyKZk914Kp6+OiFU4Rb6OwK1mFyMhI2cYGpcaJR6UKYqb3bdfGu8Qk3IJuy+r7XyfnryqBQCAQfN9kx4C4f9vcM/vY2v9HxGxrAoFAIPjPkNnH1v4/IgK6QCAQCGQlJ+ZD//+ICOgCgUAgkBWFTsryrXkIvowoIoFAIBAIvgNEDV0gEAgEsiKa3DWDCOgCgUAgkBcdRcryrXkIvohochcIBALBfwbx2NrnETV0gUAgEMhLdkxo/u/+4rG1zyMCukAgEAhkRfShawYR0AUCgUAgL6IPXSNkOqDHx8erTdEZFRUFpLw/XZmYmP1mX0Gqh1KpzGGTD6S6CKcvI5wyR6pLohYNf0l1USZpx7vl4YOLNjolaolTYrJ2eAiyj0xPzjJ69GjGjBmTZv3atWsxMTHJdjGBQCAQyEdsbCzt2rXTyOQsT6sVw/wbJ2eJSkzC+egVMTnLF8h0QE+vhu7s7MyLR3exzq09s60dPHmOmkXctWI2I0i5Kz947SE1nYzQ05Imo8RkiYMv4rTSqVatWlo1s9mBAweoofcaPcVXTUqY7SRKCg4lWlEj7iF6aIkTCg4ZuVP9yWn0pKSc1gEgUaHLYZcK1Ih/pF3lZOimNdd4REQEjo6OGgnoz6oXz5aAnvfwZRHQv0Cmm9wNDQ0xNDRMs15fVw99Pe3qitfX1dGaaRxT0dNRoK8lwTMVbXTS19fXih+7j9FTSOhrSUBPRQ9Ja6ZPTX36VU9KQl9LAnoqKeWkXedOW65xbXAQZC/aUY0VCAQCwffLt86d+tFjb9/Tc+gxMTHZmp92Va0FAoFA8N2hUChQfGNroOI7fA7d3t6eVq1a0a1bNypVqvTN+YkaukAgEAgEOcC6deuIjIykRo0aeHp6MnnyZF68ePHV+YmALhAIBAJ5ycYm9++Jhg0bsmnTJl68eMHPP//MunXrcHV1pUGDBmzevJnELD4SLgK6QCAQCORFhw8vl/nqJaf/CPmwtrZmwIABXLlyhZkzZ3Lw4EFatGiBk5MTv//+O7GxsZnKR/ShCwQCgUCQg4SGhrJy5UqWLVvGkydPaNGiBd27d+fFixdMnjyZs2fPsn///gzzEQFdIBAIBLIi3uWePps3b2bZsmXs27cPb29vfvnlFzp06IClpaUqTfHixSlRokSm8hMBXSAQCATyIt7lni5du3alTZs2nDp1itKlS6ebxt3dneHDh2cqPxHQBQKBQCAv2Th96vdESEhIhq9ONzY2ZtSoUZnK7zseZiAQCAQCgfZiZmZGWFhYmvURERHofsXbTkVAFwgEAoGsKHSyZ4Hv601xn5tKJT4+HgMDgyznp7Em9+cvXjBk5Gj2HDjI+/dxeHrkZ/H8ufiWKA6k/GFjJk5h0bIVvHn7lrKlfJk3cxo+3oVk8Rk9cx5jZ6lfEPa2NoRcPAHAy1fhDJk4g/3HT/E26h1Vypbij3HDKeCWTxYfgDEBKxn712p1J+vcvDiwHoDo2PcM/WMJ246eJiIyinyO9vRu24SfWzbMMSfdkrXT3W9Kvx78r3MrWZzSm/nP3t6e0NBQ1edbt24xePBgjh07RnJyMj4+Pvzzzz+4uLjI4jRm9TbGrd2h7pTbnOdrZgLQbeZSVh48rba9jJc7p2cNk8UHYMyG/YzbdEDdySIXzxembb77edFGFh06x4xOjehXr7JsTmP3nGHcvnPqTmYmPBv3o2r7P5fu8vTtOwx0dSnpbMfYehUom89RNqcxG/YxbqP6CGJ7CzOe/zUaZWISI9fvYe+lWzwMe42FiRE1ChdgYrv6OFlZyOaU0TW+efNmFi5cyIULF4iIiODSpUsUL15cNp9vJhub3L+HN8X98ccfQMpAv8WLF5MrVy7VtqSkJI4fP07BggWznK9GAvqbN2+pVLMuflUqs3vzBuxsbXnw8BGWFh++EFNnzWHWvPksC/gTT4/8TJg6ndqNmnH70nnMzMxk8fLx9ODAuqWqz6lNHJIk0bRHb/T19Ni65E/MzXIxc9FyarXtxo3DOzGVcbpYn/yu7F8w5SOnD40oA2cEcDTwCivHDyafkz37z1yg9+S5ONla07hahRxxer7/b7W0e04F8sPYmTSrIV9QAPDx8eHgwYMfOX1onnrw4AGVKlWie/fujBkzBgsLC27duoWRkZG8Tq5O7Jvw60dO6g1gdXwLs2RAV9VnA335JxDyyWvPvhE/fnDSSdsoty3wOufvP8Ept2Z+JH0crNnbq9lHTh9+6AvY5WZOcz/crC14r0xkzrGL1AvYwu0RXbDNJeP3Lq8D+0b2/MgppZxiExK49OgZw5vXoqirE2+i3zNwxVaaTlvKuUkDZPOBL1/jMTExVKxYkZYtW/LDDz/I6iHIfmbNmgWkxJqAgAC1c2tgYEC+fPkICAjIcr4aCehTZs3GOU8elgZ8qBHnc/1QU5IkiTl/BjBs0ECaNU6pbS7/awEO7p6s/WcjPbt3TZNndqCnp4eDnW2a9fceBXP24hWuHdyOj1cBAOZP+B374hVZt20XPdq2lMUHQE9XFwcbq3S3nb16k04Na1KtVDEAfmxen0WbdnHh5l1ZA/qXnD5dv/3YafxKFcM9r3w1Kvj33Dk4pLtt+PDh1KtXj6lTp6rWubu7y+oD/5bTF2pthvp6X9wuB3q6OjhYfj5QP38dSd9lW9k9tAeNpiz9bLrsRFdHgYO5abrb2vqq10qmN6nCsrM3uPYinOqe8rSuwOfLycLEmH0jflJbN6drU8oPn8OT8De42Mg3dfSXrvGOHTsCEBwcLNvxsxOFTja8y/07GuX+6NEjAPz8/Ni8eTO5s2kKco30oe/YtRffkiVo1aEL9vkKULJCFRYtW6Ha/ij4MaEvX1K7RnXVOkNDQ6pWqsiZc+dl87r36DF5fKvgXqEmbXsN5OHjpwDExysBMPpoulhdXV0MDPQ5df6ibD4A9548J2/tNuRv0JG2Qybw8FmIalvF4oXZcewsz8PCkSSJI4GXufvkObXLl8oxp495GfGG3SfP07VJXVl9AO7du4eTkxNubm60adOGhw8fApCcnMyuXbvw9PSkTp062NnZUbZsWbZu3Sq/0/OXOHf4FY+uQ2g3eSEPQ16pbT927Q6ObQdQqMdwes5ZQdjbKPmdQsNx/nkcHn0m0m7Oah6+jFBtS05OpvOf6/i1QVV8nNMPHHJwP/wtLr8vosDYpbRfsZuH4ZHppktITGLx6etYGBlQ1CntjXd2ci80HOefxuDRewLtZq9SK6dPiYyNQ6FQYGliLK/TZ67x/yTi1a/pcuTIkWwL5qChGvrD4GACFi9lQJ9eDB00kPNBF+g3aAiGhoZ0ateG0JcvAbD/pLZsZ2vHk6dPZXEqW6IoK2ZPxtMtHy/Dw5nwRwAVm7bj+qHtFPRwwzWvE8OmzCJg0mhMTYyZuWgFoWHhhIS9yjjzr6RMkYIsH/cbni55efn6DRMXr6VS1/5c27AIa0tz5vzWix/HzcKlbjv09HTRUejw18gBVCpROMecPmbljgOYmZjQrPq3zxr0JcqWLcvKlSvx9PTk5cuXjB8/ngoVKnDjxg2USiXR0dFMnjyZ8ePHM2XKFPbu3UuzZs04cuQIVatWlcWpjJc7y3/tToE89rx8G8XEv3dS+X+TuLpgLNbmuajrW5jmlUrhamfNo5evGL1qG7WGTuf8HyMxlGle6jIeLizv1YYCjra8jHzHxM2HqPz7PK5O/x/WZqZM3X4UPR0d+vjLe77UnFwdWNa+DgVscxP2LpaJ+89RZc56rgzpiLVpSoDcdeMh7VfsIVapxNHclD29mmGTS77gWcbDheW/tE0pp7fvmLjlIJVHzuXqjEFYm6m3JMQlKBm+bhdtK5bA3ES+LpwvXePW1tayHVcgPwMHDmTcuHGYmpoycODAL6adOXNmlvLWSEBPTk6mVMniTBz9OwAlihXlxq3bBCxeSqd2bVTpPn0TkIQk29uB/P2qqP5fBE/K+xbHo1IdVmzYxsAfu7Bx4R/0GDQC6yLl0NXVpWal8vj7ydsv7F+xzEdObpQvWogCjbqwcud+BnRowdx1Wzl37TZbZ43B1dGeExev0XvyXBxtrahZtmSOOH3Msu17aedfHSPDrI/OzJKTv/8HpyJFKF++PPnz52fFihW0aZNyPTVu3JgBA1L6OIsXL87p06cJCAiQLaD7ly7ywQkoXyg/nt2HsvLgaQY0q02rqh/KsXC+PJQqkA/3LoPZff4qTSv6yuNU4kPzdREcKV8gH579JrHyeBBVCuVn7p4TBE7qr9E3cNX1dlP7XC6fI17jl7Hy/C0G+KVcw9U8nAka1J7wmPcsOXOddst3c2pAG+zM5OlD9y/xYeBtERdHynu64tl3EiuPBTGgwYfrRZmYRLs5q0hOlpjXvbksLiqnL1zjGQUBrUS8WEbFpUuXUCqVqv9/jq/5XmokoDs62FPokxF7hbw82bwtZVSwg709AKEvw3D8qM/o1atXaWrtcmFqYkKRggW49ygYAN+iPlzat4XIqHckKJXYWltRrmFrfIv6aMQHwNTYmMIe+bj35AXv4+IZPm8Zm2aMon7lsgAU9XTn8t0HzFi5UbaA/iWnjzlx8Rp3gp+xbnLm3miUrU6mphQpUoR79+5hY2ODnp4e3t7eamkKFSrEyZMnNedkZEhh1zzcf/Ey3e2OVpa42llz70XaZ1DlczKgsIsj90PC0VHoEBYVg1vviartScnJDFq1gz92n+DBPPlG36s5GepT2NGG+6/eqK3zsLXEw9aScvkcKTR+OcvOXmdwrTJfyCkbnYwMKeziwP3QD61xysQk2sxeSXDYaw78/rOstfN0nT66xv+LiFe/fuDIkSPp/j870EgfesVyZbl7V/1CvHv/Aa4ueQFwy+eKg709Bw5/+OMSEhI4dvIU5ctq5kscH5/ArXsPcbRXv4GwMDfD1tqKe4+CCbp6nca1a2jEByA+IYHbj57iaGOFMjERZWIiOp/cperq6JAsJeeI08cs3bYX30IFKOaZX2MuKqf4eG7duoWjoyMGBgaULl2aO3fuqKW5e/curq6umnNSKrn9NBQHK8t0t0dERfP01WscNThILl6ZyO3nYTjkNqdD5ZJcmjqQC1MGqBan3Ob82rAau4f10JxTYiK3X77G8TOD5CClpS4+MUlzTqnl9G+XUmowvx8Szr6RP6VphteI00fXuEDwOTRSQ+/fuxcVa9Rh4rQZtGrWlPMXLrBo2QoWzk0Zuq9QKOj3y09Mmj6TAvnzUyC/O5Omz8TE2IR2rVpkkPvX8b9xU2lYsxoueZwIi4hgwh8BREVH07lFEwA27NyLrbUVLk6OXLt9l/6jJ9KkTg1qV60oiw/AoFl/0aBKOVwcbAl7/ZYJi9cSFRNLpwa1MM9lSlXfogyevQhjQ0NcHe04duEaq3YdZPrAnhlnLoNTKlHRMWw8cJxpMnp8zP/+9z8aNmyIi4sLYWFhjB8/nqioKDp37pziPGgQrVu3pkqVKvj5+bF371527NjB0aNHZXMatPgfGpQthoutFWFv3zHx751Exb6nU40KRL+PY8ya7TSr6IujlQXBL8MZsWILNuZmNCkvX8vKoFU7aODrjYtNbsIio5m45SBR7+PoVKUU1mamaQKTvq4uDpZmeDnZyeb027bjNPBxxzm3GWHvYpl04DxRcQl0LONNTLySSQfO06CwO47mpkTExBFw6grP3kbTvLinbE6DVm2nga8PLjaWKeW0+d9yqlqKxKQkWs1awaVHz9j2Ww+SkpMJ/Xcwo1UuEwz05PkJzegaf/36NU+ePOHFi5SWstQbWAcHh8+OjM9RRJO7imbNmmWc6F82b96cpbw1EtBL+5Zk87pVDBs1lnGTp+Hm6sqsKRNp3/rDi0d+G9CP9+/j+GXA/1Qvltm3bZNsz6A/DwmlXe//Ef7mLbZWuSlXshhntv2Na948AISEveLXsVN4GR6Bo50NHZs3ZmS/n2VxSeXZy1e0HzqR8LdR2Oa2oGyRQpxeMQdXp5QuibWThjFs7lI6Dp/M66h3uDraMf6XLvzUokGOOQH8ve8oEtC2jp9sHmpOz57Rtm1bwsPDsbW1pVy5cpw9e1ZVA2/atCkBAQFMmjSJvn374uXlxaZNm6hUSb7BX8/D39Bhyl+ER0Vja2FGWS93Ts0ahqu9Ne/jE7ge/JzVh87wNiYWx9wWVCtWkHVDemImY9Pt89eRdJi7lvCoGGzNTSlbwIVT4/rgaivfo1YZOr2NpsPKPYTHvMc2lzFlXR05OaA1rlbmxCkTuRP2mlXLbhIeHYe1qRGlXOw50rclPo7yDQR7HhFJhz9Wf1ROrpwa3xdXWyuCw16zI+gGAL6DZ6jtd/D3n6nm4yGLU0bX+Pbt2+na9cPjvKljR0aNGsXo0aNlcfo2smOU+vcR0C0s5GuVU0ife/dcBkRFRWFhYcGrJw+xtsq5H4iPUSYmsufoKfyLe6D/Fe/BlQNlUhJ7Lt+nbl5j9LXkDlOZLLH32XutdKpXrx76Mo36zipKpZLdu3dTRz8CfcVXfU2yHaWkYJ/SmjpxD9BHc10tX0KJDvuM8lP78Qn0Jc01jX8JpUKX/a6VqRP/EH205NyhYJ+hu9Zc4xEREdjY2BAZGSnbm9dS40RY6yqYG3xb/TEqIRG79cdl9f2vI97lLhAIBIL/DN/Tu9yzGzF9qkAgEAjkJRv70P/r73IvWbIkhw4dInfu3JQoUeKLo/cvXszai8xEQBcIBAKBrIjH1j7QuHFjDP99C2mTJk2yNW8R0AUCgUAg0BCjRo1K9//ZgQjoAoFAIJAX8djaFwkKCuLWrVsoFAoKFSqEr+/XvT1SBHSBQCAQyEs2zof+PZH6eOKpU6ewtLQE4O3bt1SoUIF169bh7OycpfzEKHeBQCAQCHKAbt26oVQquXXrFq9fv+b169fcunULSZLo3r17lvMTNXSBQCAQyIqYDz19Tpw4wenTp/Hy8lKt8/LyYu7cuVSsmPW3koqALhAIBAJ5EU3u6eLi4qKaee1jEhMTyZMnT5bzE03uAoFAIBDkAFOnTqVPnz4EBQWR+tLWoKAg+vXrx/Tp07Ocn6ihCwQCgUBedMiGUe7ZYpLj5M6dW+2Z+piYGMqWLYvevxP9JCYmoqenR7du3bL8nHqmA3p8fDzx8fGqz1FRKTMOKZNSpvXUBlI9lEna8Y5r+OCSmKwd75OGDy7a6JRe81NOkeqSKGlPU1+qSyIKtOUXLvHfSTMSFdoxfwJ8cEnUogk9Ul205RrXpId4scwHZs+eLVvemZ6cZfTo0YwZMybN+rVr12JiYpLtYgKBQCCQj9jYWNq1a6eRyVkifqiNucG3TUgTlaDEetF+MTnLF8h0DX3o0KEMHDhQ9TkqKgpnZ2eqRlzFKibnZw4CSFTocMimBDViH6CnJTNRJaLDIZP81Hh3V7uczDypHrQFvWTtaF1J1NHjcKmm1Ii+p13llKuAVjrVqlVLK2bsgpSa3oEDB6gRdVu7ysm8oHaWU/gl9KScL6fXcdrRUiBI4f3792laTbJ645LpgG5oaKh6/6xaBlIy+lpwcX6MHslaM7VkKlrplJyIfpJ2BPRUtLKctNBJX19fawJVKqKcMoe2/GZq9KZCjHJPl5iYGAYPHsw///xDREREmu1JSVmbjlg7OuEEAoFA8P2SGtC/deH7mj71t99+4/Dhw8yfPx9DQ0MWL17MmDFjcHJyYuXKlVnOT4xyFwgEAsF/hv/69Kkfs2PHDlauXEm1atXo1q0blStXxsPDA1dXV9asWUP79u2zlJ+ooQsEAoFAZrKjdv79Nbm/fv0aNzc3IKW//PXr1wBUqlSJ48ePZzk/EdAFAoFAIC86OtmzfGe4u7sTHBwMgLe3N//88w+QUnNPnawlK3x/JSQQCAQCwX+Arl27cuXKFSDlSbLUvvQBAwYwaNCgLOcn+tAFAoFAIC9ilHu6DBgwQPV/Pz8/bt26xYULF8ifPz/FihXLcn4ioAsEAoFAXkRAzxSurq64urp+9f6iyV0gEAgEghzi0KFDNGjQgPz58+Ph4UGDBg04ePDgV+UlArpAIBAI5CUbn0P/npg3bx5169bFzMyMfv360bdvX8zNzalXrx7z5s3Lcn6iyV0gEAgE8pIdo9S/w1HukyZNYtasWfTu3Vu1rm/fvlSsWJEJEyaorc8M318JCQQCgUC7EDX0dImKiqJu3bpp1teuXVs1o2lWyJGAPnnPKfR+nMDA9ftV67ZcvI3/7HXYD5iJ3o8TuPw0VLNO246g124wA1duB0CZmMSQdbspPngW5l1H4NxrPF3mr+fFm6wX8lc7bT+KXsdhDFy9U7VuzOaD+Pw2E/Puo7DpOZbak5dw7v5TjTlNOXMT/SnrGXjwYrrbf94biP6U9cwJvKMxp8nbj6LXYSgDV+1Qreu2cAN6HYaqLRVGzc9RJ4Bbz8NoMmMlVj+MxrLHKCqMms+T8LcacZo0aRIKhYL+/fur1qVOa/npMm3aNI04Td5xDL1OIxi4epdqXXRcPH1X7sC131RydR9N4cFzCDh0TiM+kH45vXz5ki5duuDk5ISJiQl169bl3r17sjmM2X4cvR8nqC15/jdbtV2SJMZsP47zoDnk+mUK1aev4saLV7L5COShUaNGbNmyJc36bdu20bBhwyznp/Em98DgFyw+fomiee3U1sfEK6ngkZcWvgXpuWq3Zp0ePGXx4XMUdXFUrYtNSODSo+cMb1qdoi5OvImJZeCqHTSdvpxzE/rK7/TwGYuPBFLU2UFtvaeDDXM6NcLdzor3CUrm7D2F/9Sl3Jn+K7bmueR1Colg8ZWHFLG1SHf7trvPOB/yGqdcxrJ6qDk9eMriI+cp6uKQZludop4s+bGF6rOBnmbm6/6c04OXEVQdF0DXqqUZ1bwmFiZG3HoehpG+/F/DwMBA/vrrL4oWLaq2PiQkRO3znj176N69O82bN5ff6TPX+K9rdnP01iNW/NSCfDa5OXD9Pr1X7MDJ0pxGvoXkdUqnnCRJokmTJujr67Nt2zbMzc2ZOXMmNWvW5ObNm5iamsri4uNky74B7VSfdXU+1FCn7TvD7IPnWNqlIQXsrZi46xR1Z63l5rifMDNKO4lWjiNGuav4448/VP8vVKgQEyZM4OjRo5QvXx6As2fPcurUKX799dcs563RGnp0XAKdFm8joGN9LE2M1LZ1KF+EkQ0qU6OQmyaViI6Lp9OffxPQozmWph8CkYWJMfuG/UDLcsXwcrKlXAFX5nRuzIVHz3kS/kZ+pwXrCejeVM0JoG2F4tQs7IG7nRU+ee2Z3r4eUe/juSpzi0Z0gpLOO84SULcUuY0M0mx//i6WfgcusrJBOfR1NPPF+1BOzbA0SXsTYaivh4OlmWqxymWSo04jN+zHv5gXU9r6UyKfE+52VtQvURA7C3lvxKKjo2nfvj2LFi0id+7catscHBzUlm3btuHn54e7u7u8TnHxdFqwgYBuTbA0Vf8tOHv/KR0rlaBaIXfy2ebmB7/SFHNxIOjRc3mdPlNO9+7d4+zZsyxYsIDSpUvj5eXF/PnziY6OZt26dbL56OkocLDIpVpszVJuHCRJ4o+D5xlaryJNSxakcB47lnVtSGyCknXnbsjm802IJncVs2bNUi1Lliwhd+7c3Lx5kyVLlrBkyRJu3LiBpaUlS5cuzXLeGg3ofdbtxb+IBzW9NRu0v0SfZVvxL1GQmkUKZJg2MjYOhUKRbvDIVqcV2/EvVpCahT2+mC4hMZFFhwOxMDGi2EetC7I4HbiIf34nauRLWxNOliS67DzHwLIF8flM7V0Wp+Xb8C/++XI6dushjr3GU+h/0+m5eDNhkdE55pScnMzuy7cp4GCD/5SlOPYaT/lRf7ItSP4f4F9++YX69etTs2bNL6Z7+fIlu3btonv37rI79VmxA//iXumeu4qeruy8dJvnr6OQJIkjNx9yNzSc2kW+/H34Vj5XTvHx8QAYGX248dDV1cXAwICTJ0/K5nMv7A3Og+bgMXQe7f7awsNXKRWJR+FvCY2KoZb3h5suQ309qni6cObhM9l8BNnDo0ePMrU8fPgwy3lrrMl9/fkbXHocytnh3TR1yAxZf/oyl4JfcHZcxiMJ4xKUDP97D20rFMf8k9aFbHU6cyXFaUyvz6bZeek27f/8m9gEJY6WZuwd3A0bM3ma/QDW33zCpdA3nO1cK93t087eQk9HQR/fjG+Kss0ptZzG/pLu9rrFvGhepgiuNpY8evWG0RsPUGvSYs6P642hTE3cX3IKi4ohOi6BqTuPMbZFbSa1qcu+K3dpMWcNB4f1oGoheWrEf//9NxcvXiQwMDDDtCtWrMDMzIxmzZrJ4pLK+rNXufQ4hLOjf0p3++yO9em5ZCuu/aeip6uDjkLBX92bUMkrn2xOXyqnggUL4urqytChQ1m4cCGmpqbMnDmT0NDQNF0W2UUZNyeWd21EAXsrXkbFMHH3SSpPWcHV0T8SGhUDgL25+nfe3tyUxxGaG+OTJcQo9wyRJAlIGdfytWgkoD99HcWA9QfY07+tRvoLM8PTiLcMWLmDPUO7Y2Sg/8W0ysQk2s1dS7IkMa9rE3mdVu9kz2/dvujkV8idCxP6EP4uhiVHAmk7dx2nR/8sS9Pt06hYBh66yO7WVTFKpw/6Quhr5l64x/nOtb/pQsySU8RbBqzayZ7Bny+nVuU+9IEWdnaglFse3PtPZffl2zQtXVjjTsn/flkblfSmv38lAIq7OnHm3hP+OnROloD+9OlT+vXrx/79+9Vql59j6dKltG/fPlNpv9op4i0DVu9iz29dPnvu5u4/y7kHz9gyoAOu1pacuBNM7xU7cLAwy7DV6qucMignfX19Nm3aRPfu3bGyskJXV5eaNWvi7++f7S6p+H/UGlEEKJ8/D57D57PyzDXKuucB0s49Jkla3Cot+tA/y8qVK5k2bZpqkKWnpyeDBg2iY8eOWc5LI9H14uMQwt7FUGbCEtW6pGSJE/ee8OeRIGLnD0FXw3dfFx8+JywqmjLD537klMyJ24/4c/8ZYldOQFdHB2ViEm3+WEPwqzccGP6DrLXzi49eEBYVQ5nf/1R3uhPMnwfOErtsLLo6OpgaGeBhZI2HvTXlPFwo+L8ZLD0WxJBG1bLfKfQ1YbHxlF1+4IOTJHHi6SvmX7zPpGpFCYuJw33BDrXtvx25wtygu9z/OesjNTN0evTvuRv54cULauW0fFya68kxtzmuNpbcC43Idp/MOEUtGYOerg6F8qgPBi2Yx5ZTdx7L4nThwgXCwsLw9fX94JSUxPHjx5k3bx7x8fHo6qbcpJ04cYI7d+6wfv16WVxSuRiceo0v+OCUnMyJO4/58+A5Xi8cwYgNB9jYrx31i3sBUNTFgStPQpi555QsAT0z5eTr68vly5eJjIwkISEBW1tbypYtS6lSpbLdJz1MDQ0onMeO+2GvaVzcE4DQqBgcLc1UacLexaSptQu0m5kzZzJy5Eh69+5NxYoVkSSJU6dO8dNPPxEeHq72rvfMoJGAXr1QPi6P+kFtXY/lO/FysGZQ3fIaD+YA1Qt7cHmKemH1WLgBLydbBjWsphbM74eGc3DEj1jL2KwNUN0nP5cnqo+g77FoU4pT/SqfLSdJkohPTJTHydWeS93qqDvtPo+XtTmDyhbEMZcxtdzU+9Xr/3Oc9j6udC4iz1iJ6j4eXJ7UT93pr40p5dSgarrlFPEuhqevI9V+ADXpZKivRyn3vNwNUX+06F5IOK42lrI41ahRg2vXrqmt69q1KwULFmTw4MGqYA6wZMkSfH19v2pCiKxQ3Ts/lyf2UVvXY9FmvBxtGNSgCknJySiTktD5pDamq6MgWUqWxSkr5WRhkTJG5N69ewQFBTFu3DhZnD4lXpnI7ZBwKhVwxs3GEgdzUw7efESJf5+kSEhM4vjdJ0xqVl0jPllGQTbU0LPFRKuYO3cuCxYsoFOnTqp1jRs3xsfHh9GjR2tnQDczMqTwJzUTE0N9rHMZq9a/jnnPk9eRvHibMnDpbmjKRO8O5ikjPLPdydiQwp88LmNiaIB1LhMKOzuQmJREqzmrufToOdsGdSEpWSL07TsArHIZY6CX/UWXkVNMXAITtx+hYclCOFqaEREdS8DBczx7E0WLMkWy3QfAzFCfwraWautM9fWwNjJQrbc2Vn9MRl9Hgb2pEV7W5vI4ZVBO0XHxjNl8iGalfXC0NCf41RtGbNiHTS4TmpTyyREngP/Vq0LbeeuoXNCNaoXc2Xf1Ljsv3ebQ8B/Sy/LbnczMKFxYvXvB1NQUa2trtfVRUVFs2LCBGTNmyOKh5mRsSOG89mrrUn4LTFTrqxTMx5C/92JsoIerjSXHbwez6uRlpreTp4k7M+W0YcMGbG1tcXFx4dq1a/Tr148mTZpQu3ZtWZwGbThIg6IFcLG2IOzfPvSouHg6lS+KQqGgb80yTN5zigL2ufGws2LyntOYGOjTtqw81/c3I5rc0yUkJIQKFSqkWV+hQoWvGp+hHR3awI4rd+m+/MMLVNotSnnYfmSDyoxqVEXjPs9eR7Ljwk0AfIfOUdt2cMSPVPPOr3EnXR0Fd0JeseqPS4S/i8E6lwml3PNydMSP+HzyI/n/GV0dHa4/DWX1yYu8jYnD0dKMat7urOvdFjPjnHtGt0lpH+Z3a8KU7Ufpv3IHXo62bOjXXtbBXpnh77//RpIk2rZtm6Meqazt1ZrhG/bTKWADr6Pf42pjybgWtehZvUyOOYWEhDBw4EBevnyJo6MjnTp1YuTIkbId7/mbd3RYvJXw6FhszUwo65aHU0O64Gqd0kIwqE553ick0nvNXt7ExlHGLQ97+rfVzmfQBZ/Fw8ODf/75h2HDhqmtX79+PQUKZH2QsUJKHVqXRaKiorCwsODlH79hbfTlQWWaQqnQYZ+tL3Vi76GPPM1zWUWJDvtMClDn3W3tcjIrSO3zG9BPkqepPqsodfXYX6YldaLvaFc55fLSSqd69eqhr68l3zulkt27d1Mn6qZ2lZO5t3aW06sL6MvUfZAVIuKU2PedSmRkJObm8rSmpcaJ10PaYm6Y9v0VWcorPgGryetk9dU0mzZtonXr1tSsWZOKFSuiUCg4efIkhw4d4p9//qFp06ZZyu/7fg5AIBAIBFpAdrxUJqXJvXTp0nh7e/Pnn39++ZD/AZo3b8758+exsbFh69atbN68GRsbG86fP5/lYA5a1OQuEAgEgu+UbOxDDwwM/C5q6Eqlkh9//JGRI0eyevXqbMlT1NAFAoFAINAw+vr66U7M8i2IgC4QCAQCeRHvck+Xpk2bsnXr1mzLTzS5CwQCgUBexKtf08XDw4Nx48Zx+vRpfH1908zc17dv1mb2FAFdIBAIBIIcYPHixVhaWnLhwgUuXLigtk2hUIiALhAIBAItQ7xYJl0ePXqk+n92TM7y/bVhCAQCgUC7EH3on2XJkiUULlwYIyMjjIyMKFy4MIsXL/6qvEQNXSAQCASCHGDkyJHMmjWLPn36UL58eQDOnDnDgAEDCA4OZvz48VnKTwR0gUAgEMiLaHJPlwULFrBo0SK11y43atSIokWL0qdPHxHQBQKBQKBliFHu6ZKUlJTuFLy+vr4kfsUMmpkO6PHx8cTHx6s+R0VFAZCo0EGp0I6CTvzXI1GLhgakumilk4723M+lumhlOWmhk1KpzGGTD6S6iHL6Mqpy0rLfS40gaujp0qFDBxYsWMDMmTPV1v/111+0b98+y/llenKW0aNHM2bMmDTr165di4mJSZYPLBAIBIKcIzY2lnbt2mlmcpaxPTA3+sbJWeISsPp98Xc1OUufPn1YuXIlzs7OlCtXDoCzZ8/y9OlTOnXqpDax0KdBPz0yXUUbOnQoAwcOVH2OiorC2dmZqiEXsDLSjppeokKXQ05lqP70DHpSUk7rAClOh53LU/3xKe1ycq1I9QdHtcspfzVq1aqlVbNjHThwQCvLqcazs1rldChvOao/Oa1VToddKlD99gH0krXESUeXwwVrUf3YGvSScr7l4LUmJ1oUNfR0uX79OiVLlgTgwYMHANja2mJra8v169dV6TL7KFumI7GhoSGGhmnn2tWTktCXtKugU5y040ucitY6acmPXWprrb6+vtYE9FS0sZy09nrSNqfkJPSTtWOK4FT0kpToa0FA19PkqRJ96Oly5MiRbM3v+yshgUAgEAj+H6IdbeUCgUAg+H5RkA1N7tli8l0jArpAIBAI5EX0oWsE0eQuEAgEAsF3gKihCwQCgUBeRA1dI4iALhAIBAJ5UWTDKHcteSGPNiNKSCAQCASC7wBRQxcIBAKBvIgmd40gArpAIBAI5EUEdI0gArpAIBAI5EWh8+194KIPPUNECQkEAoFA8B2QIzX0yfvOMWLHCfpWK8nMFtUBkCSJsbtPs/jUVd68j6eMqwNzW9fEx9FGFoeAk1dYePIqj1+nTAPr7WjNiDplqevtBsDLqBiG7jjJwduPefs+nsr58zC7uR8F7HLL4gMQcOoqC09d5fHrdylODlYpToXyARAdn8CwnafYfu0hEbHvyZfbnF+qFOenikXlczpznYVnrvP4zb9O9laMqFmKugVdAdD/bX66+02uV55fq5WQxWnBggUsWLCA4OBgAHx8fPj999/x9/dXpbl16xaDBw/m2LFjJCcn4+Pjwz///IOLi4ssThmVU7f1h1h14Y7aPmVc7DnVu7ksPgABJ66w8NQVgiM+usbrlsP/32v8Y37++wCLTl9jRtNq9PMrKZ/TySssPHXtw/cu9Rr/12nsnjP8c+kuT9++w0BXl5LOdoytV4Gy+Rzlczp3k4Xnb/H4bXSKk11uRviVoK6nM8qkZH4/GMSeu0959PodFkYGVM/vxMTapXEyN5XP6fpjFl5/zOOo9ylOVrkYUboAdV3tANjyIIRFN55w8VUkEXFKAltVorithWw+34yOImX51jwEX0TjAT3wcQiLT1+haB5btfXTDp5n9pELLO1QlwJ2uZm49yx1527g5u/dMfvGaffSI69lLiY2rER+W0sAVp2/SbPF2wkc1B5vB2uaL9mBvq4Om3o0wtzIgNlHL1J3/iauDu2MqaE8k4fktcjFxAYVyW/zr1PgLZot2UHgr+3wcbTm163HOXb/GSs61MHVypwDtx/TZ9MRnMxNaVQkv3xO/uXJb5PyY7Hqwm2ardhDYL9W+DhY8XRkF7X0e28/5seNR2haxF0WH4C8efMyefJkPDw8AFixYgWNGzfm0qVL+Pj48ODBAypVqkT37t0ZM2YMFhYW3Lp1CyMjI/mcMigngDpeLixuVV21j4GuvA1keSxzMaFhJTxsU25CV56/QbNF2wj6rYPajfK2q/c5/zgUJwv5AlQqeS3NmNjw42v8Zso1/r/2+DhaU8AuN3Oa++FmbcF7ZSJzjl2kXsAWbo/ogm0ueaZpzmthysTaZchvnTIl56pLd2m25gCBvZqS18KUSy/CGV6tBEUdrHgTl8Cvu87QdPUBzvVqIosPQF5TIyaWK0h+y5S/edXtZzTbHURgq8r4WJsRk5hEBUcrmns48tORa7J5ZBuiyV0jaDSgR8cn0Gn5bgLa1mHi3jOq9ZIk8ceRiwytU5amxT0BWNbRH6dhC1gXdIsfKxXLdpcGhdUD4LgGFVl46grngkPR19XlXHAIl4d0VP3wzWtZHafhC/n74m26ly+S7T4pTupBcFz9Ciw8fZVzj0PwcbTmXHAoHUsXoqpHXgB+qFCERWeuc+FpmGwBvYF3PnWnuuVYeOYG556E4uNghYOZ+o/sjpvBVMufB3dr+WoLDRs2VPs8YcIEFixYwNmzZ/Hx8WH48OHUq1ePqVOnqtK4u8t3gwEZlxOAoZ5umvKSk4afXBPjG1Ri4ckrnAsOUV3Xz9++o++Gw+zu1YxGC7fK7pT2Gq/IwlMfrvG2vgXVtk9vUoVlZ29w7UU41T3laV1p8G8risqpVmkWnr/Nuadh+Nh7sbdrPbXtsxtUoELANp68jcbFMpc8Tm726k7lCrLw+hPOvXyDj7UZHbxSfgOCo2JlOb7gv4lGb3n6rD+If2F3an7yBXoUEUloVAy1CuZTrTPU16OKR17OPHwuu1dScjLrL94hJj6Rcm6OxCemzCtopP/hfkdXRwcDPR1OPXwhu08ap3+bGyu4ObLj+kOev41GkiSO3nvKvVdvqFVQnh+6dJ0u3yMmQUk5V4c021++i2X3rcd0LV1IIz4ASUlJ/P3338TExFC+fHmSk5PZtWsXnp6e1KlTBzs7O8qWLcvWrVs15/SZcjr24DlOY5bhPXUNPTceISxacz/GScnJrL9w+9/ryQmA5GSJzqv28muNUrJ1bWXo9Mk1/jEJiUksPn0dCyMDijrZppODTE5XH6ScOxe7dNNExSWgUIClDC2H6TtJrL/3ghhlEuUc5Ovyk5XUUe7fugi+iMZq6OuDbnPpaRhnf+uQZltoVAwA9mbqTX72ZqaqvjY5uPYinMqz/iYuMZFchgZs7N4QbwdrlElJuFqZM2LHSea3rompgT6zj1wgNCpW5Sqr05x/UpwM9NnYrT7eDtYAzG5WjZ7rD5FvzBL0dHTQUShY2LoGldzzyOsUEkHlPzcRl5iU4tTJH297qzTpVl24g5mhPk0Ly1sbBrh27Rrly5cnLi6OXLlysWXLFry9vQkNDSU6OprJkyczfvx4pkyZwt69e2nWrBlHjhyhatWq8jl9oZzqernQomh+XHKbEfz6HaP2naP2wu2c69cSQz1d+ZxevKLSzI+u8R4N8XZMuZ6mHgxET0eHPlXlGevweadwKs9e/+Ea795AdY0D7LrxkPYr9hCrVOJobsqeXs2wyWUsr1Poayr/tf3DuWtXC+90xsvEKRMZtj+QNkXzYy5zQL8WEUXljaeJS0oml74uG/198bYyk/WYsiHmQ9cIGgnoT99EMWDTYfb80kKt1vspn96ASUiy3pR52eUm6LcOvH0fx5Yr9+m2Zh+H+rbE28Ga9d0a8OO6A9gNXYCujoIani6qwWly4mWXm6D/tePt+3i2XL1Pt7UHONS7Od4O1sw7cZnzj0PY0r0hLlZmnHjwgj6bjuBobkoNL/lq6V62lgT1b53idP0B3f45xKGfmqQJ6ssDb9G2hOcXz3G2OXl5cfnyZd6+fcumTZvo3Lkzx44dw9LSEoDGjRszYMAAAIoXL87p06cJCAiQNaB/qZxaFS+gSlfYwRrfvLbkn7SK3beCaSpTdwmAl50VFwZ34O37eDZfvke31fs43LcV75WJzD12kcDfOqDQcM3Hyy43QYPap5TTlXt0W7OfQ31aqIJ6NQ9ngga1JzzmPUvOXKfd8t2cGtAGOxm7K7xsLAj6pSlv4xLYciOYbpuOcahHfbWgrkxKpv0/R0iWJOY1rCibi8rJMhdBrSvzNkHJlgehdDt0hUNNy/13g7pAdjQS0C8+eUnYu1jKTF2lWpeULHHiwTP+PH6JmyO7Ayk1dUeLD31SYe9isZfxS2ygp4vHv4PiSrk4EPQklLnHLrGgdU18ne258FsHIt/Hk5CUhG0uEyrMXIevs/2XM81WJ3uCnrxk7vHLzGxSlRG7TrOxawPq+aSMCC7qZMuV56+YefSirAHdQE8Xj38He5VytiPo6SvmnrzKgubVVGlOPnrBnVdvWdO+tmweak4GBqpBcaVKlSIwMJA5c+Ywd+5c9PT08Pb2VktfqFAhTp48Ka9TJsopFUdzU1wtzbgfHim/07+D4lKu8ZfMPXaRgvbWhEXH4jZqkSptUrLEoK3H+OPYRR6M7iGzk+W/TvYEPX2p+t4BmBrq42FriYetJeXyOVJo/HKWnb3O4Fpl5HX6d9xHqTy2BD17xdzTN1jQpBKQEszb/n2IR2/ecaBbPdlr55AyaNLDMqXVspSdJUFhb5l7JZgFfvKM4ZGV7/DFMk+fPqVjx46EhYWhp6fHyJEjadmyZY46aSSgV/dy5fKwzmrreqzei5e9NYNqlcbdxgIHc1MO3n5MiX8DZkJiEsfvP2NS4yqaUARAklD1n6diYWwIwL2wN1x48pIx9SpozAdSWiniE5NQJiehTEpG55NHN3R1FCQnSzni9DFLz9+iZB5bijlpvi8WUgZWxsfHY2BgQOnSpblzR/0Rsbt37+Lq6vqZvWVySqecUomIieNpZDQO5pobJPexU4cyhdLcBNZbsIn2pb3pUtZHs07pfO/Utn+hHOVCAuKTUo6ZGszvR0RxoHs9rE3ke1rii04SxCcn58ixv5nvcJS7np4es2fPpnjx4oSFhVGyZEnq1auHqan8T4t81kkTBzEzMqDwJ4NaTAz0sTY1Uq3v61eSyfvPUcAuNx62lkzedw4TfT3alpJngNWIHSep652PvJZmvItX8s/FOxy7/4xdPzUFYOOlu9jmMsY5txnXQyIYuPkojYvkp1ZB+YLCiF2nqFswH3lzm/EuLoF/Lt3l2P3n7OrZGHMjQ6rkz8OQ7Scx1tfDJbcZxx88Z3XQLabJeNMzYs9Z6hZ0Ia9FrpRyunKPYw9esKt7A1WaqLgENl19wNQGmrnZGTZsGP7+/jg7O/Pu3Tv+/vtvjh49yt69ewEYNGgQrVu3pkqVKvj5+bF371527NjB0aNHZXP6UjlFxysZe+A8TYvkx9HMhMdv3jFi71lsTI1o4iPfeIPh/17jzpZmvItPYP3FOxy794xdPzfD2tQYa1P1fml9XV0czEzxSmd8RHYxYucp6hbKR17Lf8vpUur3rgkx8UomHThPg8LuOJqbEhETR8CpKzx7G03zf59+kcVpfyB1PZ3Ja2Ga4nTtAccehbCrcx0Sk5Jpve4gl15EsLVjbZKSJULfpQxmtDI2xECm8Q8jztymrqsdeXMZ8U6ZyD/3XnDsRQS7Gqa0UryOS+DJu/eExMQDcPdtytgeBxNDHExz5obj/xuOjo44OqYM5rSzs8PKyorXr19//wE9MwyqWYb3CYn0Xn+QN7FxlMnnyJ7eLWR5Bh1SRmR3Wb2PkMgYLIwNKOJkw66fmqpG4IdExTBo6zFevovF0dyUDqW9GV6nrCwuak5r9hESFZvi5GjDrp6NqemV4rSmkz/Dd52i0+q9vI6NwzW3OWPrVaBnBfma4F5Gx9Ll70OERMVgYWRIEUdrdnVvQE1PZ1Wa9ZfvIQFtPuonlpOXL1/SsWNHQkJCsLCwoGjRouzdu5datWoB0LRpUwICApg0aRJ9+/bFy8uLTZs2UalSJfmcvlBO75WJXA99zeoLd3kbF4+jmQlV8+dhbfvasl3fAGHvYuiyau9H17gtu35uJutNaUakfO/2frjGnWzY9VMTanq5EqdM5E7Ya1Ytu0l4dBzWpkaUcrHnSN+W+DhaZ5z51zpFv6fLxqOEvIvFwsiAIvZW7Opch5oeeQl+844dt58AUOrPLWr7HexWj6ruTvI4vY+ny8HLhMTEY2GoRxFrM3Y1LENN55QK0I5HL+lx+Koqffv9lwAYWboAv5eR7+bnq1GQDU3uWUt+/Phxpk2bxoULFwgJCWHLli00adJELc38+fOZNm0aISEh+Pj4MHv2bCpXrpxltaCgIJKTk3F2ds44sYwoJEn6qvbaqKgoLCwseDm9P9ZG2nFfoFTosi/P/7V33/FR1Pkfx1+b3fQGCYQQUkACoYRQQoAQWuhF+ikKIpbTAxFRfoeKnoJ3KpY723kigqLicYAiRSkSBBKqhJBQQwkECJgC6T27m/n9ERJYQkI0md293Of5eOxDd3ayeTM72c98v/Od+YYz/PJebBXzdtHVRK/Rst2/H8MvxlhXptYDGJ70M7blVpLJRsv2wCGMHj0aW1t1btzzW+n1erZs2WKV22lEyj6r2p9+8otg+KU9VpVpe0B/hp/ahm25wdJxANDb6NjeaSTDd36JrVFv6ThkGsB76WZyc3Nxc3NT5XdU1omsJS/h5li/noO84hI8Zr1JSkqKSV57e3vs7e2rrb9161b27dtHjx49mDx5crWCvmbNGqZPn84nn3xCREQES5cuZfny5Zw6darqjpKhoaGUlpZWe+/t27fj41NxMJeZmUn//v1Zvnw5ffua95Ts7ayjEgshhGi8GnBQ3O2t4IULF7Jo0aJqq48aNcrkdtC3e++993j88cf54x8rBoB+8MEH/PTTTyxZsoTFixcDEBcXV2uk0tJSJk6cyIIFCyxezEEKuhBCiP8id2qh/1ZlZWXExcXx4osvmiwfPnw4+/fvr9N7KIrCI488wuDBg5k+ffpvzqAGKehCCCHU1YCj3N3c3Op9iuD69esYjUZatDC9DLlFixakpaXV6T327dvHmjVrCAkJqboT5cqVK+nSxXKXFUpBF0IIoS5NA8y2psJ16LffVElRlDrfaKlfv36UW9llhNZ1YZ8QQgihsmbNmqHVaqu1xjMyMqq12v+bSEEXQgihrsou9/o+GoidnR2hoaFERUWZLI+KirKKwW2/l3S5CyGEUFcDjnIPCwtDq9Uye/ZsZs+eXePqBQUFJCUlVT1PTk4mISEBDw8P/P39mTdvHtOnT6dnz56Eh4fz2WefcfnyZWbOnFm/nBYkBV0IIcR/jdjY2DoNijt8+DCRkZFVz+fNmwfAjBkz+PLLL5kyZQqZmZn89a9/JTU1leDgYLZs2WL2W0Q3JCnoQggh1GWBe7kPGjSIu9037amnnuKpp56qTyqrIgVdCCGEumwaYJR7fX/+f4AMihNCCCEagTq30EtLS03uaZuXlweAQaNFr1FnxqHfynAjh8FK8sB/QSYrOaSrzKTXW/4e15Uqs1jjdrLa/clKVGWysaJMN7IYtNYxV4HBnLMuN8L50K1RnSdnWbRoEa+99lq15atWrcLJybxzOgshhKifoqIipk6dap7JWb5ajFs955HPKyrBY8YC2rdvX6dR7v+L6txCX7BgQdUoQaj4oPz8/OgfvQoPKzkINmht2TVkBoP3rUFnBbMZQUWmnRFTiNy10qoy7YqczuD9a9AZrWMmKoNWx86+Uxgcu866MoVNJnLn19b12Q1+2Cq307Bhw6xqpryoqCgGH9uCzkpmWzPY6NgZMprBiVFWkSmrzIx3OWvAc+h1HeX+v6jOBb2mKep0Rj225uy6qQOdUW8V0xPeyjozGaw0k+W/7G6lM+qxNch2uhtbW1urKeiVdOUGq5k+tZK1ZNJZ2W1LRf3JKHchhBDq0mga4LI1OYd+N1LQhRBCqEsGxZmFlYzdFUIIIUR9SAtdCCGEuixwp7j/RbKFhBBCqKtylHt9H1RMztKpUyf+9a9/WfgfZX2khS6EEOK/hly2VjMp6EIIIdQlXe5mIQVdCCGEumSUu1nIIY8QQgjRCEgLXQghhLpsbCoe9X0PUSsp6EIIIVTWAF3uSJf73ZiloL8df4ENF9M5k1OIo1ZLnxZNeLN3e4KaOFetsz45neWJKRy5lkdmqZ5Dk8Lp1ky9kYxvx55lfVIqZ7LzcdRpCW/pwZv9OhHU1BUAvbGcVw8ksvViOsm5Rbjb6xjs15w3Izrh4+KoTqYj59lwIZ0zOQUV28m7CW/2CSKoqUvVOn+NPcfapFSuFJRgZ6OhR3N3/tq7Pb1aNFEn06GzrD//K2eyCnDU2dzYTp0J8nC94/qzdiSw/MRF/j4gmLk9AtXJdDCR9eeuciYzH0dbLeE+nrw5MMQk02NbDrHy5CWTn+vV0oN9Dw1RJ1P8eTYk37KPe1fu4y4m6yVmF/DSL2fYk5pNuaLQqakLq4Z2w9+14fepumwn23e/vePPvjUwhP/rFdTgmRYvXsz333/P6dOncXR0pG/fvrz99tsEBd38XQUFBbz44ots2LCBzMxMWrduzTPPPMOsWbMaPA/A23uPs/70Zc5cz8VRpyPcrzlvDulBUDP3qnXSC4pZ8PMRdpz/lZySMvoHtOCDkb1o56nOd9SnhxJZeiiRSzkFAHTyasJfBnVnZHs/ABRF4W+74ll++AzZxaX08m3OR/f2pXOLpqrkqTcZFGcWZtlCe1KzmNXJnz3j+7BlTChGRWHMlsMU6m9OUFCoNxLeoglv9G5vjkjEXM1kVtc27J0ygK0T+2IoVxi9/kBVpiKDkfiMXF7uFcShqQNZO6YX53IKmfjDL6pl2vNrFrOC/dkzKZwtY8MqttOPsSbbqZ27Mx/278SRKf3YNbEPAa6OjP4xlmvFpbW88+8Xc/U6s0LasPeBAWydFIFBURi9fr9Jpkobk37lUFoWPs71mybxrplSrjGreyB7HxrM1vsGVHx238ZQWGaaaUQbb1Jmja16/DC5v2qZ9vyazazO/uyZ0Ict9/bEWK4wZrPpPn4+t4jIjb8Q1MSFqLG9OPyHCF7q0RYHnTp/hnXZTrdun5RZY1k2sicaYGL7Vqpkio6OZvbs2Rw8eJCoqCgMBgPDhw+nsLCwap3nnnuObdu28c0335CYmMhzzz3HnDlz2LhxoyqZYi6lM6tnEHsfG83Wh4ZiKC9n9L93UFhWMSGPoihMXrOL5Ox81k2JJPbJe/F3d2bkN1FV6zQ0Xzdn3hwexsGZ4zk4czyRbXyYtGoHJ9OzAfj7nmN8sP8EH44J58DMcXi7ODLqq23kl5apkseayHXoNTNLC/3H0T1Nni8bGEyrlbs4cj2P/i09AHiovQ8AF/OLzRGJzRPCTZ4vH9Ydn2XbOJKRQ/9WzXC3t2XbpL4m63wwsAt918RwOa8If7eGnwP+x3vDTJ4vi+xCqy93cuRaHv19KrbTgze2U6V3Izqw4vQVjmfmM9i3+mx49bV5ouk2WD6sBz6fbeVIeg79fZtVLb9aUMzc3cfYPLEv4zccaPAcJpnuG2CaaVQYPv/axJH0bPr7Na9abq+1wdtF3YOLSj+OuW0fH9SFVl+bfnavxp5lpH9z3upzszV6jwr7UaW6bKfbt88PSb8yyN+Le27rWWgo27ZtM3m+YsUKvLy8iIuLY8CAirwHDhxgxowZDBo0CIAnn3ySpUuXcvjwYcaPH9/gmTZPG2ryfPm4CHz+sZYjqVn0D2jBuax8frl6nYSZ4+js1QSAj0f3xucfa1l94iKP92jX4Jnu7eBv8vxvw3qyNDaRX65k0MmrCR8dOMmCAV2Z2Lk1AF9MHkirt1fxn2MXeDKsQ4PnqbcGHOUu16HXzCJ9GLk3jmqb2lvPVIs3M9nVuE5emR4N0MRMuXNvtKRq2k5lxnKWn0rB3U5HiEpdf9Uz3dhODje3U7mi8Mi2OOaFtqOzmXKYZCqtngkgOuUaPv/aRKflW/nTT4fJKCwxX6aq7VTx2ZUrClsvX6OduxNjNsfS6qudRKw/wMbkdPNlqmE7VUovLGHLhVQe7dLGfJlycwHw8PCoWtavXz82bdrE1atXURSFXbt2cfbsWUaMGGGeTDdauU0dK7ZTqcEIgINOW7WO1sYGO62WfSkZqucxlpez5th5CssM9PHzIjk7n7SCYoYG3uxFsddpGdDamwOXzbc//SaVg+Lq+xC1MvugOEVRmH/gDBHeTQiu4TysuSmKwvyYk0T4eBBcw3n7EoORl/ad4oEgX9zMUNAVRWH+vtNEeDcl2NN0O22+mMFDUQkUGYy0dLZn69gwmjnWfCDSoJliThDh42mynd6NPYfORsOcbveonuGOmXYlENGqGcHNb57zHHlPS/4Q5Ie/mxMXcwtZuPcEw9dG88v0odjf8sWsWqYDNz67G/t4RnEZBXoj7yYk81pYO97oHcT2lOvcvz2eqLG9GODjcZd3bYBMd9hOt1p54iKudjrVutvvlGnevHn069eP4ODgquUfffQRTzzxBL6+vuh0OmxsbFi+fDn9+vUzS6b52w8T4edFsFfF+egOzdwJcHfmLzuP8MmYPjjb6fjgwCnSCopJyy9SLcvxtCz6L/uBEoMRFztbvps6lE5eTdl/o2i3uG0sj5eLI5dvnHMX/5vMXtDn7kvkRFY+u8b1NvevrtEzu49x/Houu++78zlWvbGcaVsPU67Ax5EhZsk0d8+piu00ofp2GtTKg9j7I8gsLuPzxCtM3Z7A3knheDk1fJf7rZ7ZdYzj13LZff/Nrty49Bz+mXCeQ1MHobHAjR+e2RFfkWlqpMny+zv4Vf1/cHN3Qr2b0nbpZrZcSGVie19VM83dm8iJzHx2je9TtaxcUQAY29qLuSGtAejWzI0D6dl8duqy6gW9pu10qy9PXOTBjgEmLVE1Pf300xw7doy9e/eaLP/oo484ePAgmzZtIiAggJiYGJ566ilatmzJ0KFDa3i3hvHM1kMcT89m96Mjq5bZam1Yc98gnvxhP17vrkGr0TDknpaMDFT3wCeomTuHn5pITkkp609e5LF1Mfz8+Oiq12//e1MUxXrHgcuNZczCrAX92X2J/HjpGj+PDcPXTOc272bu7mP8eCGNnX/oh+8dRhrrjeU8uDWW5LwioiZFmKV1/uyeU/x4MYOfJ/TG9w4j6p1tdQS66wh0d6a3d1M6rYpmxekrvNCjrWqZ5u46WrGd7jPdTnuvXiejqJR7Pt9etcyoKDy/5wT/jD9P0uPqdZPO3RHPj+d/ZecDkfi61n4uuqWLIwFuziRlq9uCeXbvKX68lMHP43qZ7OPNHOzQ2Wjo2NT03HSHJi7sT8tWNVNdttPeK9c4k5XPv8f2uePrDW3OnDls2rSJmJgYfH1vHmAVFxfz0ksvsX79esaMGQNASEgICQkJ/P3vf1e1oM/d+gs/nk1h54wR+Lo5m7wW6uNJ3J/GkltSRpmxnObODvRdvoVQH0/V8tjptATeOIXVs1VzDl+9zj8PnGR+/4pGRVp+ES1v+TyvFZbgpdIVOPWm0TTAKHcp6HdjloKuKArP7ktk48UMosaG0UbFgUC/JdPc3cfZeD6VHZMjaOPuXG2dymKelFNI1KQIPFXu1lYUhWf3nmJjcjpR43rXeTspCpQay1XLNHf3MTYmpbLjD/2qbaeHOvozxN/LZNmY9fuZ1tGPGZ1MB/Y0aKaf49l47io7HhhEmybVP7vbZRaXkpJfhLdKI/Cr9vHkdKLG9ar22dlpbejZ3J2zOYUmy8/lFqpyyVplprpupy+OJdOjRVO63hj0pRZFUZgzZw7r169n9+7dtGljer5er9ej1+uxue18qVarpbxcxX182yE2nr7MjodH0KZpzacC3W+MPziXmUdcaiavRXZTJdOdKCiUGstp09QVbxdHfj7/K919KgamlhmMxFxM483hYXd5F9GYmaWgP7MvkdVJqawb3h1XWx1pRRWXWLnb6XC80b2XVVLG5YISUm+8dja34ovP28kebxW6kufsOsbqM1f4fmxvXO10pN0YMOVub4ujTouhvJwpW2KJz8hhw7g+GBWlah0PBzvstA0/QOOZPadYfe5X1o3qUZHptu1UqDewOO48Y1t74e3sQFZJGZ+euMyVwhImt/Vu8DxwYzudTuH7cX3uuJ08He2qHejY2mho4WRf47Xq9c60I57ViZf5fmIErra2pBXckslWS0GZgb/uO8nE9r60dHHgUm4hf9lzgmaO9kxQ6fzwM3tPVezjI3rUuI/P69qGaTsS6N+yKQN9PNiecp3Nl66xY2wvVTLdbTtVyivVs+7sFd4Z1FWVHLeaPXs2q1atYuPGjbi6upKWllaRyd0dR0dH3NzcGDhwIPPnz8fR0ZGAgACio6P5+uuvee+991TJNGfrL6w+nsz3UyJxtbclraDiSpuK7VTxFfndqYs0d3LAz92ZExnZzNsWy/ggP4a19antrX+3v0QdZmQ7X3zdnckv1bP2+AWik9PY/PAINBoNz4R35q2YowR6uhHo6cbb0UdxstXxYIj5x7HUiXS5m4VZCvrSUykADP0x1mT58oHBPBxU8QX746Vr/DH6RNVrD/18DIC/9GjLqz0b/gYlS49fBGDIun2mmYZ1Z0Ynf64UlPDDhYovm56rdpuss2NyBANvuWSrwTKdvAzA0I2HTDNFduHhDr5oNRrO5BTyzfZ4rheX4elgR6iXO7sm9KazSsVz6bFkAIZ8Z3qec/mw7szoHKDK77ybpQnnARiyerfJ8uWjwpgR3BqtRsOJ67l8c+oSOSVltHRxZKBfc1aN7YOrnTqnTKr28R9u++wGBfNwUEWX8oQ2LfhX/868E3+B5/Yl0r6JM2uGdyOipTo3A7nbdqq05nQKigIPdFSnR+VWS5YsAai6JK3SihUreOSRRwBYvXo1CxYsYNq0aWRlZREQEMAbb7zBzJkzVcm09PBZAIZ8vd1k+fJxfZnRreK7JzW/mPnbD5NeUEJLV0ceCrmHlweoN54mvaCYR9ZFk5pfhLuDHV1aeLD54RFVI9v/3D+EYoOROT/sJ7ukjF6+zdkyYwSutVylY1FyYxmzMEtBL3vy7udRHw5qVVXczUE/t/brWVu7Od11nYZWNmtUra876LR8O7KHmdJU0D874Tf/jJrnzQH08++r9XVHWy1bbrsGW21lfxp595WARzr48kgHdQflVbrbdqr0RNd7eKKreVp2yo3BgbXx9vZmxYoVZkhTQf/qw3ddZ07vjszp3dEMaSosm1j7TZA0Gg2vDu7Bq4PN+30grJsc8gghhFCXjaZhHsid4mojk7MIIYRQVwN2ucud4momBV0IIYS6ZFCcWUiXuxBCCNEISAtdCCGEumSUu1lIQRdCCKEqjUZT71tDW+LW0v9t5JBHCCGEaASkhS6EEEJd0uVuFlLQhRBCqEsKulnIFhJCCCEaAWmhCyGEUJfm5p3e6vUeolZ1LuilpaWUlpZWPc/LywPAoLVFr63pp8zLoLU1+a81sO5M1nM8V5nFOjPJZ1ebyix6vd7CSW6qzGKwsaLtdCOLtWQy2KgzHe0dSZe7WWiUusyWACxatIjXXnut2vJVq1bh5GT5+c2FEELUXVFREVOnTiU3N1e1W6nm5eXh7u5O9s5vcXOpX53IKyii6eD7aN++PVqtltmzZzN79uwGSto41Lmg36mF7ufnx+VHRuJhJQdOBp0tu0c/zsBNy9AZrKO1YNDZEj3uCQZs/MyqMsWMf5IB65daV6aJf2LYsGHY2lpHi1iv1xMVFcWgLZ9b1XbaPfpxInetRGe0kkxaW3ZFTmdw7Dp0RoOl4wAVvQY7wyYzeP8a68rUdwqDo/9tFZ9dlgF8P9lgnoK+67uGKeiRf1A173+7Ovf92NvbY29vX/0NDAZ05uy6qQOdQY/OUGbpGCYkU93Y2tpaTUGvZI3bSWfUY2sFReFWOqMBWyspnpUqMlnbdrKOz05nNOMv02gaoMtdzqHfjXWczBFCCNF4yeQsZmElneVCCCGEqA9poQshhFCXjHI3CynoQggh1GXTANeh1/fn/wfIIY8QQgjRCEgLXQghhLqky90spKALIYRQl4xyNws55BFCCCEaAWmhCyGEUJd0uZuFFHQhhBDqki53szBLQX/n+EU2Xr7GmdwiHHU29Gnuzhs92tLe3blqHUVReP1oMl+c+5XsMgNhzdz4sHd7OjVxUS3X3owc3j+VwpHsfNKKy1jTvzPj/JpXvZ5eXMZfEs6zIy2b3DID/bzceS+0HYFu6k1Gszcjh/cTU4jPLiCtuIzV/TszzrdZ1esFeiOvHL3AD1euk1VmIMDZgVntW/FkOx91M525QnxWAWklZayO6GSSyWlNzB1/7o2ubXiug58qmWJiYnj33XeJi4sjNTWV9evXM2HCBJN1EhMTeeGFF4iOjqa8vJzOnTuzdu1a/P39Vcm0Jz2b909eJj4zn9TiMtYO6sI4/5v70x/3neKb82kmP9OrmRsxo3uqkgdgz69Z/CPhAvHX8kgtKuXbkT0Y36bFHdd9KvoEy0+l8Pe+HXimaxv1MqVc4x+xZziSlk1qYQnfTejL+Hatql7/676TrD2dQkp+EXY2NvRo0ZS/9g+mt4+nepmuXOcfcec4kpFbkeneXowPrPib0hvLeXV/IlsvppOcW4i7vS2D/ZvzZkQnfFwc1cv0ayb/iL9QkamolO9GhTL+Hu+q19efT2XZycscuZZLZome2Pv70a25u2p5hPUzSx/GnvQc/hTkS8zoUDYP7YahXGHMjgQK9TdvJvyPk5f5KDGF93u1Z9/onng72jEmKoF8vXr3hi40GOnS1Jn3e7ar9pqiKNwfc4LkghK+HRDMwVE98Xd2YPTOoxQa1LsJckUmF94LDbzj68/HJxGVmsUX4R2JHx3G00Gt+L+4c/xw5bp6mYzldGniXGOmC+P6mDw+DWuPBphwS9Fv8EyFhXTt2pWPP/74jq+fP3+efv360aFDB3bv3s3Ro0d55ZVXcHBwUC1TkaGcLk1deL9X+xrXGe7jwcX7IqoeG4Z0VS0PQKHeSIinGx/071TrehuT0zmUnoOPc/X5Gho+k4GQ5k34cGj3O77erqkrHw7pTvwjw9k9NZIAd2dGfxvDtaLSO67fMJmMhDR358PIkGqvFRmMxF/L4eXeQRyaOoi19/biXHYBEzf9olqeqkyebnw4oPOdXzcY6dvSgzfCO6iao0FUdrnX9yFqZZYW+g9Du5k8/yyiI35r93IkK4/+LZqiKAofJ6bwQpfWTAjwAmB5RCf81+5ldXI6T7RvdYd3rb8RPp6MqOGoPym/mEOZecSNDqNTk4qehA97tsf/+32svZjOo4HqtIhrywRw6Hoe09p4M6BFEwAeD/Th86RUjmTlM1alAjqipQcjWnrU+Lq3o53J8x9/zWSgVxPaqNh6GTVqFKNGjarx9ZdffpnRo0fzzjvvVC275557VMsDMKKVJyNa1d6KtNfa4O2oftGsNDKgOSMDmte6ztWCEp7dc5If7w1jwpY49TPd05KR97Ss8fUHO5n2oPw9sisrjidz/FoOgwPu3LtQ70xtWjCyhp4Ld3tbtk2KMFn2waAQ+q6O5nJeEf4q9diNDPBi5I3vwzt5KMgXgIt5Rar8/gZlY1PxqO97AGFhYTJ9ag0scsiTV1bR6vawq5hVK7mghLTiMobeUjTstTb0b9GEgxm5lohIaXnFDHIO2pubSGujwc7Ghv3XLJMJILy5O5uvZnK1qBRFUYhOzyYpv5hhtRRcc0ovKWPbr1nMuKVr0NzKy8vZvHkz7du3Z8SIEXh5edG7d282bNhgsUyVYtJy8Fu7h+D1B5i1P5GMYsvO4lauKDz681HmdbuHzh6uFs1yJ2XGcpYfvYC7vS0hzZtYOk6VvDI9GqCJvXXNDGitNBpNgzwAYmNjOXXqlBTzOzB7QVcUhecPJ9HXy53OTSvOj6ff+FLzuq2l5+VoV/WauQW5OeHvbM8rRy+QXaanzFjOuycvkVZSRpoFv4T/0SOQjm5OtNt4EPc1exi/+zgf9GxHXys5d/bv5HRcbbWMV7G7/W4yMjIoKCjgrbfeYuTIkWzfvp2JEycyadIkoqOjLZZrhI8nX/bvxLZh3Xm7ZzviMvMZGRVPqdFy0w+/G38BnY2Gp7sEWCzDnWw+/ytNPvgel/fW8WHcWbbeN4BmTubr2ahNicHIS3tP8UAHX9ykoAsrYvZR7s8eOsvx7AJ2juxR7bXbxzAqimKxgY22Njb8p38wsw6exue7fWg1MNi7aa1dz+bwydmrHMrM49sBnfF3cmDvtVyePXwOb0c7Bns3tWg2gK+T05ji72XSs2Fu5Td6V8aPH89zzz0HQLdu3di/fz+ffvopAwcOtEiu+27p0u3c1IUenq60/34/W69crzrVZE5HruXy8bGL/HJfRFXrx1oM8vPi8IzhXC8u5fNjF5j6wwH2TRuCl7N6YyDqQm8sZ9qWWMoVhY8j1R3/0KjIfOhmYdaC/twvZ/kx5To7RvTA95Y/zBY3WubpxWW0vOUo/FqJHi8Hu2rvYy49PFz5ZXQYuWUGysrLae5gR/+f4gi1UNdkscHIwmPJrO7XmVE3ztV2aerCsewCPkhMsXhB33ctl7P5xXwd3tGiOZo1a4ZOp6NTJ9OBYB07dmTv3r0WSlVdSyd7/J0dSMovtsjv3/trFhnFZbRdubtqmVFReP7Aaf55/BLnHhpkkVwAznY6Au1cCGzqQh8fTzou28qK48m80Mdy+5beWM6DW2JJzisianI/aZ3/FnLZmlmYpaArisJzh86y6fI1to/oQRtX08FSbVwc8Ha04+fULLp5VhTLMmM5e9JzeD20rTki1srdrmIzJeUVcSQrn4Uh6l3SUxu9oqAvV6pNOqTVaFAsksjUVxfS6N7UhZCm6l1qWBd2dnaEhYVx5swZk+Vnz54lIMB6upYzS/RcKSytNqjQXKYFtWLwbadG7t0cy9T2rZgRpM5A1N9LQbHoqYnKYp6UU0DU5H54WugzE6I2Zinoc385y5rkdL6N7IKLrZa04orLT9xtdTjqtGg0Gp7u6Mc7xy8R6OZEoKsjbx+/hJPOhgdqGHnaEAr0Bs4X3GwdXSws4Wh2Pk3tbPF3dmDd5Qya29vi5+zAiZxC/hx3jrG+zUwG7zV8JqNJpksFJRzNLsDDToefswP9vdx5OeECjlot/s727MnIZdXFdN7qrt6BT7VMhaaZAPL0Br5PucbibuqOJK/KVFBAUlJS1fPk5GQSEhLw8PDA39+f+fPnM2XKFAYMGEBkZCTbtm3jhx9+YPfu3epl0hs4f0tr+2JBMUezKvYnD3sdrx9NZkKAF96OdlwqKGFh/HmaOdgy3r/2Uej1zZSUe3MU9MW8IhKu5+Fhb4u/qyOet/WA2drY4O1oR5CKB2UFZQaSsguqnifnFpKQnoOHox2eDnYsPpjIvYE+tHR2ILOkjE/jz3Mlv5jJN0Z1q5Yp55ZMeUUkZOTg4WCHj4sDUzYfIj4jlw3j+2BUFNIKSwDwcLDDTqXTSwVlBpJyC00zXcvFw8EOf1dHskrKuJxfTGphxffp2ZyKdb2d7PG28KmJ6hrisjO5bO1uzFLQPzt7FYDh2+NNl/ftyMOBFZev/F9nf4oNRub+cobsUgNhzd34cWg3XG3Vi3gkK58RPx+tev7CkfMAPNSmBcvCO5JWXMYLR86TUVKGt4Md09p4syBY3Rbekax8Ru68JVP8zUyf9enAV3078erRCzx6IJHsMgP+TvYsCmnNE4E1XwZU70zZ+YzcdexmpoQLFZlat+Cz3kEAfHv5Ggpwv795zgUfPnyYyMjIqufz5s0DYMaMGXz55ZdMnDiRTz/9lMWLF/PMM88QFBTEunXr6Nevn2qZ4jLzGXHLPv784YoDjofaevPP3kGcyC7k3xeOkVNmwNvRjoHeTVk5IFjVfTwuI5dhmw5VPZ+//zQA04Na8fng6tdcm0NcWhZD19wcnDh/V8X+Pr1zAJ8MD+VMVj4rN+7nenEZng529Gzpwa4HI+ncTL2Bn3Hp2Qxdt+9mppgTFZk6+vFqnw78cKHihkA9/73L5Od2TI5goJ86B2Rx13IZuuHgzUz7EisydfDliyFd+SE5nT/uvPl3Oe3GvvdKWDtereVeCBYhXe5moVEU5Xf11ubl5eHu7s6vDw3Fw8ZyXWG3Mujs2DFuJkO+/wSdwbKXA1Uy6Oz4edJTDF73L6vKtHPybAZ/+7F1ZbrvaUaPHo2trXWcm9Tr9WzZsoWhmz61qu20Y9xMhu34Aluj3tJxANBrbYka+hjDD67B1qjejaB+C71Wx/Y+Uxi+599WtZ2295/G8J1fWkWmTAN4L91Mbm4ubm5uqvyOyjqREx+Nm2v9en3y8gto0n2gqnn/28m93IUQQqirAW8sI2omBV0IIYS6pMvdLOSQRwghhGgEpIUuhBBCXTIfullIQRdCCKEu6XI3CynoQgghVKah+s29f897iNpIH4YQQgjRCEgLXQghhLqky90spKALIYRQlxR0s5AudyGEEKIRkBa6EEIIlcmgOHOQgi6EEEJd0uVuFnUu6KWlpZSWllY9z8vLA8Cg02Gwko57g87W5L/WQDLVTWUWvd7yk1ZUqsxijdvJoLWiTNrKTNbTPqjMYp2ZrOOzM/yuabmENavzbGuLFi3itddeq7Z81apVODk5NXgwIYQQ6ikqKmLq1KnmmW3t9OGGmW2tQ0/at2+PVqtl9uzZzJ49u4GSNg51Luh3aqH7+fmRmpqKp6enagF/C71eT1RUFMOGDbOqKTgl091Zc6b+3y2xqulT9/xhFkOyTqDDSqYtxoafPYIZkh6HTrGSTBobfm4RapX70+BL+9ApRkvHIavUgO8LH5mpoMc1UEEPlelTa1Hn/ih7e3vs7e2rLbe1tbWaP5hKkqluJFPd6Axl6PTWUdAr6SjH1koKeiWdUo6tFRSqW1nl/qQYrWI7WcNBhWhY1nOCSQghROMkg+LMQgq6EEIIdWlogILeIEkaNSnoQgghVCbXoZuDlVxwJoQQQoj6kBa6EEIIdck5dLOQgi6EEEJl0uVuDtLlLoQQQjQC0kIXQgihLulyNwsp6EIIIdQlBd0spMtdCCGEaAQsVtBjYmIYO3YsPj4+aDQaNmzYYKkoVRYvXkxYWBiurq54eXkxYcIEzpw5Y9FMS5YsISQkBDc3N9zc3AgPD2fr1q0WzXSrxYsXo9FoePbZZy2aY9GiRWg0GpOHt7e3RTMB/FpcymOHzuL3wy8023CAPjsSiM8usFietvPfR/fYomqPOSs3WyyTwVjOKxtjCPzLElye+Tvt/rKEv23eS3m55aYDy8/P59lnnyUgIABHR0f69u1LbGysWTPsOX+VCcs24b9wObbPfcjG4+dNXlcUhb9uO4j/wuW4Pv8xQz7+jpOpmWbNWHeaBnqI2lisy72wsJCuXbvy6KOPMnnyZEvFMBEdHc3s2bMJCwvDYDDw8ssvM3z4cE6dOoWzs7NFMvn6+vLWW28RGBgIwFdffcX48eOJj4+nc+fOFslUKTY2ls8++4yQkBCL5qjUuXNnduzYUfVcq9VaMA1klxkYsvs4A5q7sz6iE83tbblQWIK7reVyHXzlSYy3TKBy4koGI/+xkslhnSyW6Z3tB/lsTzxfzBhDZ59mxF1K4/Gvt+DuaM8zg8MskumPf/wjJ06cYOXKlfj4+PDNN98wdOhQTp06RatWrcySobBMT0irZszo3Yn7V1Q/4Pr7zjg+2B3P51OH0a55ExZHxTLq0/WcXPAwrg52ZslYV5UH2fV9D1E7ixX0UaNGMWrUKEv9+jvatm2byfMVK1bg5eVFXFwcAwYMsEimsWPHmjx/4403WLJkCQcPHrRoQS8oKGDatGksW7aM119/3WI5bqXT6ayiVV7pvTNX8HW0Z2nPdlXLApwdLJgImruZHpi+s3kvbb2aMjCotWUCAQcvXGVc13aM6VJx0NraswmrY08RdynNInmKi4tZt24dGzdurPq7X7RoERs2bGDJkiVm299HdmzNyI6t7/iaoih8FB3PgmFhTAyp2G5fTB1Gq1eW8Z8jZ3iybxezZBTWRc6h1yI3NxcADw8PCyepYDQaWb16NYWFhYSHh1s0y+zZsxkzZgxDhw61aI5bnTt3Dh8fH9q0acMDDzzAhQsXLJpnS2oW3Zs689DB0wT8eIjwHQmsSLZMkbqTMoOBfx88xiP9ulu09RMR6MvO0xc5m54FwNEr6ew7f4VRwW0tksdgMGA0GnFwMD34cnR0ZO/evRbJdLvkzDzS8osYGuRftcxep2NAoC8HklMtmKwGlYPi6vsQtZJR7jVQFIV58+bRr18/goODLZrl+PHjhIeHU1JSgouLC+vXr6dTJ8t1ka5evZojR46Y/ZxibXr37s3XX39N+/btSU9P5/XXX6dv376cPHkST09Pi2RKLixh+YU05rRrxZ87+BKXVcCfE5Kxs7FhWoCXRTLdauOR0+QUlTAjoptFczw/vA+5xaV0fu0ztBobjEo5fxs3kAcsdBrA1dWV8PBw/va3v9GxY0datGjBf/7zH3755RfatWt39zcwg7T8QgBauDqZLPdyceJydp4lIt2F3FjGHKSg1+Dpp5/m2LFjVnFEHhQUREJCAjk5Oaxbt44ZM2YQHR1tkaKekpLC3Llz2b59e7UWjCXdevqmS5cuhIeH07ZtW7766ivmzZtnkUzlCvRo6sJrwQEAdGviQmJeEcsvpFlFQf9iTzwju7TDp6mbRXOsPZzIqkMn+ebRcXTyacbRKxnM+3YHPu4uPBxuma7jlStX8thjj9GqVSu0Wi09evRg6tSpHDlyxCJ5aqK5rcgpKFZ6rrkhWtjW+O+yLtLlfgdz5sxh06ZN7Nq1C19fX0vHwc7OjsDAQHr27MnixYvp2rUrH374oUWyxMXFkZGRQWhoKDqdDp1OR3R0NB999BE6nQ6j0WiRXLdzdnamS5cunDt3zmIZvB3t6ODmaLIsyNWRlKJSCyW66dL1HH4+dYHHB/SwdBReWL+L54f3YUpYJ7q08uKh3sHMHRzG2z8dsFimtm3bEh0dTUFBASkpKRw6dAi9Xk+bNm0slulW3q4VYyEqW+qVrhUU4+XidKcfEf8DpKDfQlEUnn76ab7//nt27txpNX+8t1MUhdJSyxSFIUOGcPz4cRISEqoePXv2ZNq0aSQkJFh8ZHml0tJSEhMTadmypcUy9PF05Vx+icmycwXF+DvZWyjRTV/ujcfLzZnRIZbvQi4q02NzW+tNa2NDuWK5y9YqOTs707JlS7Kzs/npp58YP368pSMB0MbTDW9XJ34+c7lqWZnBSEzSFcLbWG6fr5GcQzcLi3W5FxQUkJSUVPU8OTmZhIQEPDw88Pf3r+Un1TN79mxWrVrFxo0bcXV1JS2tYgCTu7s7jo6Od/lpdbz00kuMGjUKPz8/8vPzWb16Nbt37642It9cXF1dq40pcHZ2xtPT06JjDf785z8zduxY/P39ycjI4PXXXycvL48ZM2ZYLNOcQB8G7z7Ou6dTmOTbjMNZBaxITuefPSwz2KtSeXk5X+1LYHrfruis4ADs3i6BLN52AD8PNzr7NCMhJZ0Pfj7EI30tdznkTz/9hKIoBAUFkZSUxPz58wkKCuLRRx81W4aC0jKSrudWPU/OzCXh6jU8nOzxb+rGMwO789aOWAKbNyGweRPe3hGLk50tD/YIMlvGupNz6OZgsYJ++PBhIiMjq55XnuecMWMGX375pUUyLVmyBIBBgwaZLF+xYgWPPPKI+QMB6enpTJ8+ndTUVNzd3QkJCWHbtm0MGzbMInms1ZUrV3jwwQe5fv06zZs3p0+fPhw8eJCAgACLZQr1cGV1eAdePXGJxYkptHZ24J2ubXjA37Lnz3ecusDlzFwe7d/dojkqfThlGAs37WHO6u1k5Bfh4+7CE/2688qYCItlys3NZcGCBVy5cgUPDw8mT57MG2+8ga2trdkyxKVkMPRf66qez9+4B4DpYR35Yupw/jw4lGK9gTnf7SK7uJReAd5smTnB6q5BF+ZjsYI+aNAgFCvoUruVteUB+Pzzzy0d4a52795t6QisXr3a0hHuaFRLD0a1tI7LHisNDw7E8MUiS8eo4upgz3v3D+W9+63nEsj777+f+++/36IZBgb6on9/bo2vazQaXh3Zh1dH9jFjqt9J7uVuFjLKXQghhLqkx90sZFCcEEII0QhIC10IIYTKpIluDlLQhRBCqEvOoZuFdLkLIYQQjYC00IUQQqhLWuhmIQVdCCGEyuQcujlIQRdCCKEuDQ3QQm+QJI2anEMXQgghfqP8/HzCwsLo1q0bXbp0YdmyZZaOJC10IYQQKmuE59CdnJyIjo7GycmJoqIigoODmTRpEp6enhbLJAVdCCGEyhrfOXStVouTU8VUtSUlJRiNRovfPly63IUQQjQ6MTExjB07Fh8fHzQaDRs2bKi2zieffEKbNm1wcHAgNDSUPXv2/KbfkZOTQ9euXfH19eX555+nWbNmDZT+96lzC720tNRkDu7c3Ipp/bKysho+1e+k1+spKioiMzPTrLMi1UYy1Y01Z8oqt0FnJce+hnKbikzFZegot3QcAAzcyFSiR6dYSSZNufXuT6UGdIrR0nHILjUA5pmUKq+goN5d5nkFBRX/zcszWW5vb4+9vX219QsLC+natSuPPvookydPrvb6mjVrePbZZ/nkk0+IiIhg6dKljBo1ilOnTlVN4R0aGmpS9ypt374dHx8fmjRpwtGjR0lPT2fSpEn84Q9/oEWLFvX6d9aLUkcLFy5UAHnIQx7ykEcjepw/f76uZeA3Ky4uVry9vRssq4uLS7VlCxcuvGsOQFm/fr3Jsl69eikzZ840WdahQwflxRdf/F3/1pkzZypr1679XT/bUOrcQl+wYEHVnOVQ0dUQEBDA5cuXcXd3r+vbqCovLw8/Pz9SUlJwc3OzdBxAMtWVZKobyVQ3kunucnNz8ff3x8NDvel9HRwcSE5OpqysrEHeT1EUNLe19O/UOr+bsrIy4uLiePHFF02WDx8+nP3799fpPdLT03F0dMTNzY28vDxiYmKYNWvWb87SkOpc0Gvq1nB3d7eKnfNWbm5ukqkOJFPdSKa6kUx1Y22ZbGzUPZ3k4OCAg4ODqr/jt7p+/TpGo7Fa93iLFi1IS0ur03tcuXKFxx9/HEVRUBSFp59+mpCQEDXi1pmMchdCCPE/6fbW/p16AGoSGhpKQkKCCql+P+sY6SOEEEKYSbNmzdBqtdVa4xkZGZYd1FZPv7ug29vbs3Dhwt91/kItkqluJFPdSKa6kUx1Y22ZrC2POdnZ2REaGkpUVJTJ8qioKPr27WuhVPWnURQLXwkvhBBCNLCCggKSkpIA6N69O++99x6RkZF4eHjg7+/PmjVrmD59Op9++inh4eF89tlnLFu2jJMnTxIQEGDh9L+PFHQhhBCNzu7du4mMjKy2fMaMGXz55ZdAxY1l3nnnHVJTUwkODub9999nwIABZk7acKSgCyGEEI2ADIoTQgghGgEp6EIIIUQjIAVdCCGEaASkoAshhBCNgBR0IYQQohGQgi6EEEI0AlLQhRBCiEZACroQQgjRCEhBF0IIIRoBKehCCCFEIyAFXQghhGgEpKALIYQQjcD/A+lQx2GhPFKdAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKGElEQVR4nOydd1wUx/vH3wccVXpHaYqiYsfeO/YWE0vsJRqjxhJjbLFrNMZoNGqMXWNLYteIvXfsvaOigIKA9Dtuf3+cnJ6gorLnff3NO699xZ2dnf0wO3vPzjPPzigkSZIQCAQCgUDwP43JxxYgEAgEAoHgwxEGXSAQCASCTwBh0AUCgUAg+AQQBl0gEAgEgk8AYdAFAoFAIPgEEAZdIBAIBIJPAGHQBQKBQCD4BBAGXSAQCASCTwBh0AUCgUAg+AQQBv0jMGbMGBQKhV6an58fXbp0eadyjhw5wpgxY4iLi3un81691r59+1AoFPzzzz/vVM6bSE5OZsyYMezbty/LsSVLlqBQKLh7926uXU8OZs2aRUBAAObm5igUCuLi4pg0aRIbNmwwqI4tW7bQqVMnihcvjlKpzNJ2XkalUjF27Fj8/PywsLCgcOHCzJo1y4BqBQLBx8LsYwsQaFm/fj12dnbvdM6RI0cYO3YsXbp0wcHBQdZrvSvJycmMHTsWgJo1a+oda9y4MUePHsXT01NWDR/C2bNn6d+/Pz169KBz586YmZlha2vLpEmTaN26NS1atDCYlvXr13Ps2DFKly6NhYUFYWFhr83bp08fli9fzvjx4ylXrhyhoaF8++23PHv2jOHDhxtMs0AgMDzCoBsJpUuXlv0aKSkpWFlZGeRab8LV1RVXV9ePquFtXLp0CYCePXtSvnx5Wa+VkZGBWq3GwsIi2+N//vknJiZaZ1rfvn1fa9AvXbrEwoULmThxIkOGDAG0L1MxMTFMmDCB3r174+TkJM8fIRAIPjrC5S4zW7dupVSpUlhYWODv78+0adOyzfeqG1yj0TBhwgQCAwOxsrLCwcGBEiVKMHPmTEDrts/80fb390ehUKBQKHQubj8/P5o0acK6desoXbo0lpaWuh7z69z7qampDBo0CA8PD6ysrKhRowZnzpzRy1OzZs0sPW6ALl264OfnB8Ddu3d1Bnvs2LE6bZnXfJ3LfdGiRZQsWRJLS0ucnJxo2bIlV65cyXKdPHnycPPmTRo1akSePHnw9vZm8ODBpKWlZVu3L7NmzRrq16+Pp6cnVlZWFClShB9++IGkpCS9v7FDhw4AVKhQQaddoVCQlJTE0qVLdX/Ty3URGRlJr169yJcvH+bm5vj7+zN27FjUarUuz927d1EoFEydOpUJEybg7++PhYUFe/fufa3mTGP+NjZs2IAkSXTt2lUvvWvXrqSkpLB9+/Y3np85FHT+/Hk+//xz7O3tcXJyYtCgQajVaq5du0aDBg2wtbXFz8+PqVOnZinj3r17dOjQATc3NywsLChSpAi//PILGo0G0A4JuLm50bFjxyznxsXFYWVlxaBBg3RpCQkJfPfdd/j7+2Nubk7evHkZMGCA3v0C+Pvvv6lQoQL29vZYW1uTP39+unXrlqN6Ewg+FUQPXUZ2795N8+bNqVSpEqtXryYjI4OpU6cSFRX11nOnTp3KmDFjGDlyJNWrV0elUnH16lXdeHmPHj2IjY1l1qxZrFu3Tue+Llq0qK6M06dPc+XKFUaOHIm/vz82NjZvvObw4cMpU6YMCxYsID4+njFjxlCzZk3OnDlD/vz5c/x3e3p6sn37dho0aED37t3p0aMHwBt75ZMnT2b48OG0a9eOyZMnExMTw5gxY6hUqRInT56kYMGCurwqlYpmzZrRvXt3Bg8ezIEDBxg/fjz29vb8+OOPb9R248YNGjVqxIABA7CxseHq1atMmTKFEydOsGfPHgDmzJnDqlWrmDBhAosXL6Zw4cK4urrSu3dvateuTa1atRg1ahSAbugiMjKS8uXLY2Jiwo8//kiBAgU4evQoEyZM4O7duyxevFhPx2+//UahQoWYNm0adnZ2en/f+3Lx4kVcXV3x8PDQSy9RooTueE744osv6NChA7169WLnzp1MnToVlUrFrl276NOnD9999x0rV65k6NChBAQE0KpVKwAeP35M5cqVSU9PZ/z48fj5+bFlyxa+++47bt26xZw5c1AqlXTo0IF58+bx+++/6w39rFq1itTUVN0LSXJyMjVq1ODBgwcMHz6cEiVKcOnSJX788UcuXLjArl27UCgUHD16lDZt2tCmTRvGjBmDpaUl4eHhuvspEPy/QRLIRoUKFSQvLy8pJSVFl5aQkCA5OTlJr1a9r6+v1LlzZ91+kyZNpFKlSr2x/J9//lkCpDt37mQ55uvrK5mamkrXrl3L9tjL19q7d68ESGXKlJE0Go0u/e7du5JSqZR69OihS6tRo4ZUo0aNLGV27txZ8vX11e0/fvxYAqTRo0dnybt48WI93U+fPpWsrKykRo0a6eW7d++eZGFhIbVv317vOoC0du1avbyNGjWSAgMDs1zrTWg0GkmlUkn79++XAOncuXNZNJ48eVLvHBsbG726y6RXr15Snjx5pPDwcL30adOmSYB06dIlSZIk6c6dOxIgFShQQEpPT38nvZIkSd98802WtpNJvXr1XlsH5ubm0ldfffXGskePHi0B0i+//KKXXqpUKQmQ1q1bp0tTqVSSq6ur1KpVK13aDz/8IAHS8ePH9c7/+uuvJYVCoWuL58+flwBp/vz5evnKly8vBQcH6/YnT54smZiYZLkH//zzjwRI27ZtkyTpRR3HxcW98e8TCD51hMtdJpKSkjh58iStWrXC0tJSl25ra0vTpk3fen758uU5d+4cffr0ITQ0lISEhHfWUKJECQoVKpTj/O3bt9eLoPb19aVy5cpvdAfnBkePHiUlJSXLMIC3tze1a9dm9+7deukKhSJLHZYoUYLw8PC3Xuv27du0b98eDw8PTE1NUSqV1KhRAyCLe/9d2LJlC7Vq1cLLywu1Wq3bGjZsCMD+/fv18jdr1gylUvne13sdb4qAf9Oxl2nSpInefpEiRVAoFLq/BcDMzIyAgAC9Ot+zZw9FixbNEnPQpUsXJEnS9ZiLFy9OcHCwntfiypUrnDhxQs9NvmXLFooVK0apUqX06jQkJERveKlcuXKA1rOwdu1aIiIicvR3CgSfGsKgy8TTp0/RaDRZ3J9AtmmvMmzYMKZNm8axY8do2LAhzs7O1KlTh1OnTuVYw7tGkb9Oa0xMzDuV865klp+dXi8vryzXt7a21ntJArCwsCA1NfWN10lMTKRatWocP36cCRMmsG/fPk6ePMm6desAbdDg+xIVFcXmzZtRKpV6W1BQEABPnjzRyy9HhL+zs3O29yopKYn09PQcB8S9ms/c3DzbOjc3N9er85iYmNfew8zjmXTr1o2jR49y9epVABYvXoyFhQXt2rXT5YmKiuL8+fNZ6tTW1hZJknR1Wr16dTZs2IBaraZTp07ky5ePYsWKsWrVqhz9vQLBp4IYQ5cJR0dHFAoFkZGRWY5ll/YqZmZmDBo0iEGDBhEXF8euXbsYPnw4ISEh3L9/H2tr67eWkdMe2Zt0RUZG4uzsrNu3tLQkPj4+S75XDda7kFn+o0ePshx7+PAhLi4u7132y+zZs4eHDx+yb98+Xa8ceOfv+LPDxcWFEiVKMHHixGyPZxq1TN713uSE4sWLs3r1aiIjI/Vezi5cuABAsWLFcv2aL+Ps7Pzaewjo3cd27doxaNAglixZwsSJE1m+fDktWrTA0dFRl8fFxQUrKysWLVqU7fVeLq958+Y0b96ctLQ0jh07xuTJk2nfvj1+fn5UqlQpt/5EgcCoET10mbCxsaF8+fKsW7dOrxfz7NkzNm/e/E5lOTg40Lp1a7755htiY2N10eGZnzl9SM/yZVatWoUkSbr98PBwjhw5ohfJ7efnx/Xr1/UiymNiYjhy5IheWe+irVKlSlhZWbFixQq99AcPHrBnzx7q1KnzPn9OFjKN6Kufh/3xxx85LsPCwiLbv6lJkyZcvHiRAgUKULZs2SzbqwZdDpo3b45CoWDp0qV66UuWLMHKyooGDRrIev06depw+fJlTp8+rZe+bNkyFAoFtWrV0qU5OjrSokULli1bxpYtW4iMjMwSld6kSRNu3bqFs7NztnWa+VXFy1hYWFCjRg2mTJkCkOUrDYHgU0b00GVk/PjxNGjQgHr16jF48GAyMjKYMmUKNjY2xMbGvvHcpk2bUqxYMcqWLYurqyvh4eHMmDEDX19fXUR08eLFAZg5cyadO3dGqVQSGBiIra3te+mNjo6mZcuW9OzZk/j4eEaPHo2lpSXDhg3T5enYsSN//PEHHTp0oGfPnsTExDB16tQsE9XY2tri6+vLxo0bqVOnDk5OTri4uGT7I+zg4MCoUaMYPnw4nTp1ol27dsTExDB27FgsLS0ZPXr0e/09r1K5cmUcHR3p3bs3o0ePRqlU8tdff3Hu3Lkcl1G8eHH27dvH5s2b8fT0xNbWlsDAQMaNG8fOnTupXLky/fv3JzAwkNTUVO7evcu2bduYN28e+fLley/d4eHhnDx5EoBbt24B6Gb18/Pzo2zZsgAEBQXRvXt3Ro8ejampKeXKlWPHjh3Mnz+fCRMmyP4N+sCBA1m2bBmNGzdm3Lhx+Pr6snXrVubMmcPXX3+dJZ6jW7durFmzhr59+5IvXz7q1q2rd3zAgAH8+++/VK9enYEDB1KiRAk0Gg337t1jx44dDB48mAoVKvDjjz/y4MED6tSpQ758+YiLi2PmzJl68RECwf8LPnJQ3ifPpk2bpBIlSkjm5uaSj4+P9NNPP+miiV/m1cjzX375RapcubLk4uKiO7d79+7S3bt39c4bNmyY5OXlJZmYmEiAtHfvXl15jRs3zlbT66Lcly9fLvXv319ydXWVLCwspGrVqkmnTp3Kcv7SpUulIkWKSJaWllLRokWlNWvWZIlylyRJ2rVrl1S6dGnJwsJCAnTXfDXKPZMFCxbo6sre3l5q3ry5Ljo8k86dO0s2NjZZNGVXp9lx5MgRqVKlSpK1tbXk6uoq9ejRQzp9+rQESIsXL9ble12U+9mzZ6UqVapI1tbWEqAX8f/48WOpf//+kr+/v6RUKiUnJycpODhYGjFihJSYmChJ0oso959//vmtWl/Vkt32asR9enq6NHr0aMnHx0cyNzeXChUqJP322285uk5mHT5+/Fgv/XV1XqNGDSkoKEgvLTw8XGrfvr3k7OwsKZVKKTAwUPr555+ljIyMLOdnZGRI3t7eEiCNGDEiW02JiYnSyJEjpcDAQF27KF68uDRw4EApMjJSkiRJ2rJli9SwYUMpb968krm5ueTm5iY1atRIOnjwYI7+boHgU0EhSS/5WAUCgUAgEPxPIsbQBQKBQCD4BBAGXSAQCASCbNiyZQuBgYEULFiQBQsWfGw5b0W43AUCgUAgeAW1Wk3RokXZu3cvdnZ2lClThuPHjxv1Akeihy4QCAQCwSucOHGCoKAg8ubNi62tLY0aNSI0NPRjy3ojwqALBAKB4JPjwIEDNG3aFC8vLxQKBRs2bMiSZ86cOfj7+2NpaUlwcDAHDx7UHXv48CF58+bV7efLl8/opxUWBl0gEAgEnxxJSUmULFmS2bNnZ3t8zZo1DBgwgBEjRnDmzBmqVatGw4YNuXfvHgDZjUbLMcNjbpLjiWXS0tL0ZgfTaDTExsbi7Oxs9H+kQCAQCPSRJIlnz57h5eWFiYl8fbvU1FTS09NzpSxJkrLYGwsLiyyzPwI0bNhQb0GhV5k+fbre8s4zZswgNDSUuXPnMnnyZPLmzavXI3/w4AEVKlTIlb9DNnL6wXrmpBNiE5vYxCa2T2e7f/++LJOcSJIkpaSkSNYock1rnjx5sqRlt0TzqwDS+vXrdftpaWmSqamp3pLAkiRJ/fv3l6pXry5JknaJ4ICAAOnBgwdSQkKCFBAQID158iQ3qyfXyXEPfdiwYQwaNEi3Hx8fj4+PD5fa18XRSBz3ajMzDtXvRA0nMDMWTRrYHwu1atWSZbnM90GlUrF3715qmMdhZiTOFbUE+9MdqMEjzJA+thwA1CjYj6dx3rtn1zFD87HlAKDGhP22hagRf824NNkHGuW9q35zP2aajI8th6fpGRSZtPi9p4rOCenp6SQj0REbzPmwH5t0JJYnJnL//n29qaaz652/jSdPnpCRkYG7u7teuru7u26RKjMzM3755Rdq1aqFRqPh+++/11uoyhjJsUF/nVvD0QScTIzkITbRLq3pZAtKE+OwVCqNhHWqdiUqY/phsba2xskyDaVxVBMqCaxTrXHCEqWRGHQVCqyxNs57pzZHaSTGU4WJVlO68WkyyntnbopSYxxtHAwzLmyJCeYfeB2T52PadnZ2WdaOeF9e/dulV1z6zZo1o1mzZrlyLUNgJP1YgUAgEAgMg4uLC6amplmWjI6Ojs7Sa/9fQhh0gUAgEMiKSS5tuYW5uTnBwcHs3LlTLz1zxcT/VcTyqQKBQCCQFYUCPnQUVAEgQbly5TA1NeWbb77hm2++eW3+xMREbt68qdu/c+cOZ8+excnJCR8fHwYNGkTHjh0pW7YslSpVYv78+dy7d4/evXt/mNCPiDDoAoFAIPif4eTJkzkaQz916hS1atXS7WcGdXfu3JklS5bQpk0bYmJiGDduHI8ePaJYsWJs27YNX19f2bTLjTDoAoFAIJCV3HCZv+v5NWvWzHZymJfp06cPffr0eX9RRoYw6AKBQCCQFROFApMPjXIHjOQDGKNFBMUJBAKBQPAJIHroAoFAIJCVj+Fy//+IMOgCgUAgkBWTXIhyFwb97Yg6EggEAsH/DOXKlaNo0aL8/vvvH1uK0SGbQT8Y9ZRWe87h//chLJftYdO9x3rHJUli/Nnb+P99CIe/9lEv9DSX4xL18qRlaBh4/Dp51xzEaeU+PttzngdJqbmm8VlSMoN+XUD+lj3IU+Nzqvb8npOXb+iOR8XG0W38TLybdsG25uc0GjCGG/cf5tr1s9X07BkDBgzA19cXKysrKleuzMmTJ3XHExMT6du3L/ny5cPKyooiRYowd+5ceTUlpzBo7kryd/yOPE2/ouqACZy8dlt33Cyka7bbtL//k09TSiqDFvxD/p6jyPPFQKoO/YWTN8L18ly5H0mLifNwav8dDm0HU/n7adx7HCufprfcuy5duqBQKPS2ihUryqYH4FlKGoNWbCX/wJ/J030MVcf9wcnbD7LN+/XiDZh1GsnM7Ufk1/TXNvIPnkaenmOpOmG+nqax6/cQ9MNM7L4ah0ufidSfupjjt+7Lq+kN906lUjF06FCKFy+OjY0NXl5edOrUiYcPZf4tSEtn0JYjFJi6EtsfF1Jt3kZOPojWHV9/8Q6NFm/DY8JSlMPnc/bhE1n1fAi5ObHMyZMnuXz58hu/Qf//imwGPVmtobhjHn4tXyjb479cusdvV+7za/lCHG5UFg8rcxrvPMszlVqX57uTN9h0/zHLqgWxJySYRLWaVnvOk5FL8yB/NXk2u06eZcmPAzm74jfqVShNSP8fiYiOQZIkWg2dxO2HkaybMoJTS3/F18ONkP4/kpSSey8Vr9KjRw927tzJ8uXLuXDhAvXr16du3bq6ZfwGDhzI9u3bWbFiBVeuXGHgwIH069ePjRs3yqbpq18Xs+v0JZZ835Oz88ZTL7gYIT9MI+LJUwAerJqhty0Y1A2FQkGrqsHyaZq9kl3nrrJkQGfOzhxOvVKFCRk9i4iYOABuPXpMjeHTCczrwe4J33J6xjBGfNEASxnn9X7bvQNo0KABjx490m3btm2TTQ/AVwvXs+vSLZb0as3ZSf2oVyyAkCmLiYhN0Mu3MewyJ249wMtRvoU6dJoWb2DXpZss+ao1Zyf0pV5QACE/LyHiqVZTIQ9nZnZswtkJfdk/ogd+Lo40nLaUxwlJsml6071LTk7m9OnTjBo1itOnT7Nu3TquX78u+xzfvdYdYPfNCJZ8Xosz37amXkBeGizcSkS8th6SVCoq+7gzMcTIl/SELC+y77sJ3oxsBj0krzNjSxegha9blmOSJDH7yn2GFvejha8bQY55WFClKMlqDavvRAEQn65myc2H/BQcQB0vJ0o527K4ahAX4xLZ8+jDe1kpqWms23eUyd90oXrpIAK8PRndox3+Xu7MW/8fN+4/5PjFa/w+5GvKFS1IoG8+Zg/pRWJyKqt3Hvjg62erKSWFf//9l6lTp1K9enUCAgIYM2YM/v7+ul740aNH6dy5MzVr1sTPz4+vvvqKkiVLcurUKXk0paWz7lAYk3t8QfXigQTkdWd0xxb4e7gwb8seADyc7PW2TUfPULNkYfJ7Zr33uabp6Fkmd25B9aAAAjxdGd2uMf5uzszbfhCAUX9tpmGZIKZ0aUHp/N7k93ChcdliuDnIY7Bycu9Au8iRh4eHbnNycpJFD0BKuop1py4zuU0I1Qv7E+DuzOhWdfB3dWTenuO6fBGxCfRftoVlvT9HaWoqmx49TV+EUD3QT6upZW38XRyZt+cEAO0qlaRuUAHyuzkRlNedae0akJCSxvkHkW8p/T01veXe2dvbs3PnTr744gsCAwOpWLEis2bNIiwsjHv37smjSaVm3aU7TG5QgWr+ngQ42/Nj3bL4Odnxx/HLAHQoXYiRdYKpE5BXFg25ibFN/fqp8lHq6E5iKpEp6dT1fPFjZmFqQjV3B45FxwNwOiYBlUairteLPF7WFgQ55OHo4/gP1qDOyCAjQ4OluX6PzdLCnMPnrpCWrtLuv3Tc1NQUc6UZh89d+eDrZ6tJrSYjIwNLS0u9dCsrKw4dOgRA1apV2bRpExEREUiSxN69e7l+/TohISHyaMrIIEPzmnq6dCNL/qin8Ww7cZ5uIdVk0QOg1mi0mpSvalJy+PItNBoN205doqCXGw3HzMaz8w9UGvIzG4+dk09TDu4dwL59+3Bzc6NQoUL07NmT6OjoV4vKPU0ZmfWkH/tqqVRy+Lp2eEKj0dD5j78Z3KgqQfnkX5RCp8n8FU3mLzS9TLpazZ/7TmFvZUlJbw95NOXw3r1MfHw8CoUCBwcHeTRpNGRoJCzN9F+wrMxMORwuz4uN4H+fj2LQo1LSAXCzMtdLd7My1x2LSknH3ESBo4X+j7abpVKX50OwtbGmYrFAJi5ey8PHMWRkZPDX9n2cuHSdyJhYCvvlw9fDjRFzl/M0IZF0lYopy/4hMuYpj2LkGYe1tbWlUqVKjB8/nocPH5KRkcGKFSs4fvw4jx49AuC3336jaNGi5MuXD3Nzcxo0aMCcOXOoWrWqPJqsrahYpAATV27iYcxTMjI0/LX7CCeu3iYyNuuL1bKdh7G1sqRl1bKy6AGwtbKkYqA/E9f+x8PYOK2mfSc4cT2cyKcJRMcnkpiaxtR1OwkpU5T/RvelRcWStJ6ygP0Xs76E5IqmHNy7hg0b8tdff7Fnzx5++eUXTp48Se3atUlLS5NHk5UFFQO8mbhxLw+fJpCh0fDX4bOcuP2AyOfxKlO3HsTM1IR+9SvJouH1mva90HTkuab4Z7p8W85ew77XeGx6jmNm6BG2D+mMi62NPJpycO9eJjU1lR9++IH27dvn2jKeWTRZmFPRx52Je0/zMCFJW09nbnDiQTSRz5JluaacZEa5f+gmeDMf1Yvx6v3RrkX75nMkeGuenLJ09EAkScKnWTesa7Rm1tottKtfHVMTE5RmZqydPJQb9x/iGvIltrW+YP/pizSoFIypiXxuyeXLlyNJEnnz5sXCwoLffvuN9u3bY/rcFfrbb79x7NgxNm3aRFhYGL/88gt9+vRh165dsmla+v1XSBL4tB+EdZOezNqwi3a1KmBqkrX5LAk9SPvaFbP06HNd04BOSIBPt5FYfz6AWVv30656WUxNTNBI2jW5m5UvzoBmtSmVPx9DP6tP47JBzA/NvseVG7zt3rVp04bGjRtTrFgxmjZtyn///cf169fZunWrbJqW9mqtvXffTsW62xhm7TxKu0olMDVREHYnglk7jrKo52cGHZ9c+lVr7b0b+DPWPcYya+cx2lUsrteeahXxJ2xcHw6O6ElI8YK0m7OG6ITE1xf6gbzt3mWiUqlo27YtGo2GOXPmyKYHYMnntZAk8P3pL2x+XMjsoxdpWzIA0//BsWQFH+5u/9/7qw3PR/kO3f15zzwqJR1Pawtd+uNUFW6W5ro86RqJp2kqvV7641QVFV3tc0VHgXye7J07iaSUVBKSkvF0caLdyKn4eWldj8GFAwhbNoP4xCTSVWpcHe2p1P07yhYOyJXrZ6upQAH2799PUlISCQkJeHp60qZNG/z9/UlJSWH48OGsX7+exo0bA1CiRAnOnj3LtGnTqFu3rjyavNzYO+0HklLTSEhKwdPZgXYT5+Dn4aKX7+CF61x7EMnK4V/LokNPk6creycO0GpKTsXTyZ52Py/Cz90ZF9s8mJmaUMTbU++cwvk8OHzl9mtKzAVNb7h32eHp6Ymvry83bsjjNQAo4O7M3hE9SEpLJyElDU8HW9rNXo2fqyOHroUTnZCE/8BpuvwZGg1DVv3HbzuOcGv6d/JocnNi77Du+prmrMHPxVGXx8bCnAB3ZwLcnakY4E3hob+y6EAYPzSpIY+mHNw7lUrFF198wZ07d9izZ49svXOdJmc79nzVlKR0FQmpKjztrGm/ahd+TvIHLhozOV1t7f8jH8Wg++exxMPKnN2PYinlrG2c6RkaDkbFMSG4AABlnO1QmijY/SiW1n5aA/soOY1LcYlMKlMgV/XYWFliY2XJ04REdhw/y0/fdNY7bp9H6+q7cf8hYVdvMfarL3P1+tlqsrHBxsaGp0+fEhoaytSpU1GpVKhUKkxe6Rmbmpqi0Wjk12RpgY2lBU+fJbEj7CI/9fhC7/ji0AMEF/SjZAEf2bVk0ZSYzI4zV/ipc3PMlWaUDfDlekSUXt4bD6PxdXV8TUm5qCmbe5cdMTEx3L9/H09Pz2yP56omC3NsLMx5mpTCjos3+alNCK3KBlGnmP6z1OjnJXxZuRRdqpcxrKYLN/mpTf3X5pUkSFNlyK/pNfcu05jfuHGDvXv34uzsLLsWnSZzJTbmSp6mpLHjxgMmNzD+qPZXybW53Mn5amv/H5HNoCeq1Nx6lqLbv5uYwrnYZziaK/HJY0nfIt5MvRBOgJ01AbZWTLkQjrWZCW39tcbb3tyMLgFeDD11EycLJU7mSn4Iu0kxhzzUfimY7kMIPXYaSYJA37zcfPCIH2YvoZCPF12a1AHgn92HcXG0w8fdlYu3whn46wKaV69A/Qqlc+X62WoKDUWSJAIDA7l58yZDhgwhMDCQrl27olQqqVGjBkOGDMHKygpfX1/279/PsmXLmD59unyaTl3Q1pO3BzcjovlhwRoK5fOkS/0X4/YJSSn8c+AkP3/VVjYdeprOXNZqyuvGzUeP+WHJBgrldaNLHe1Y8Hct69Ju2iKqBQVQs3ghQk9fZsvJi+ye8K18mt5w7xITExkzZgyfffYZnp6e3L17l+HDh+Pi4kLLli3l03T+BhISgZ4u3IyK5YfV2ynk4UKXamVQmpnibGutl19paoqHvS2Bnq7yabpwQ3vvPF24GRXDD2tCKeTpQpeqZUhKS2fS5v00LVUYTwdbYhKTmbfnBA9iE2hdPkg+TW+4d2q1mtatW3P69Gm2bNlCRkYGkZHawDQnJyfMzc3fUvr7seP6fSSgkIs9t2ISGLr9OIVc7OkSHAhAbHIq9+ISefR8TP36E21Mi4etNR6v3NePjZj61TDIZtDDYp4RsuOMbv/7U9qF5jsU8GBBlaIMDvIhRZ3Bt8ev8TRNTTlXO7bULYXtSxG5P5cLwEyhoMP+i6RkaKjl6cifVbTjf7lBQmIyI+Yt50H0E5zsbGlVsxLje3dAaabV8Cgmlu9+W0hUbDyeLo50aFCLkd2+eEupH0Z8fDzDhg3jwYMHODk58dlnnzFx4kSUzyO6V69ezbBhw/jyyy+JjY3F19eXiRMn0rt3b9k0JSSlMGLxPzx48hQnWxtaVQlmfNfPdPUEsGb/cSSgbS3D9B4SklIZsXwTD2LicLK1plWlUoz/sinK51HBLSqWZE7vtkz5dwcDFvxDoJcbfw/tQdWiuevdeZk33Tu1Ws2FCxdYtmwZcXFxeHp6UqtWLdasWYOtrXwu1ISUVEb8vYMHsQk42VjRqlwQ41vX09XTx0CraScPnj7XVDaI8Z/VRWlmSoZGw7VHj1l+6AxPEpNxzmNNWf+87BvenaC88kXhv+ne3b17l02bNgFQqlQpvfP27t1LzZo15dGUms7IHSd4EJ+Ek7UFLYP8GV+/PEpTrWnbfCWcHv/u1+X/cvVuAEbVLsOPdeULShUYLwrpbQvGvoaEhATs7e152KEuTibyu3tzgtrMnF3NehPiCkojCYlUaSRCH0OjRo10Rvljo1Kp2LZtGyGWT1EaRzWhkiA01ZEQIlAayRqJKhSEktc4713CZZQYx3OnwoRQu6KExF0yLk0OQUZ57+pf3YFSo377CTITk67BY8wC4uPjZXNhZ9qJHy0csPxAl3uqJDEuLU5Wvf/riMVZBAKBQCArwuVuGEQdCQQCgUDwCSB66AKBQCCQFRMUmHzgl+Si9/l2RB0JBAKBQFZyc6Y4sXzq6xE9dIFAIBDISm6OoYvv0F+P6KELBAKBQPAJIHroAoFAIJCV3FhcRfQ+344w6AKBQCCQFe3iLB9m0RVGMj+FMSNeegQCgUAg+AQQPXSBQCAQyIpwuRsGYdAFAoFAICtipjjDIOpIIBAIBIJPgBz30NPS0khLS9PtJyQkACC1+hwpj1XuK3sPJAlIAbVaYzSvKmoNgAlpx7eRYVSaQHV4P5IRLBIBoDYxg+AWqNUZYCTBL2oUYAZp638nw5g0WfijNpYGDjotao2E8dw7rY60pRPIkIxjwRi1wgRcy5Bh54BCkn9t97eRkWq4Z1+43A1DjldbGzNmDGPHjs2SvnLlSqytjWvtXYFAIBC8meTkZNq3b2+Q1dZm2jhhpfgwk5wiafg2KZZChQphamrKN998wzfffJNLSj8NctxDHzZsGIMGDdLtJyQk4O3tTQ3LZzhZG0kvT4LdKXbUcdRgZiSvc2oN7H5qQh1njEtTDNQO24CZEfXQ9wS3oI76HmZG08tTsNvMhzppd4xLk4U/dRKuYmYkS5WqMWG3XWHqxF40Lk1Oxajz+DRmRtRD3+1ahjoPT2BmBD30WAP20HMTMVPc68mxQbewsMDCwiJrAQqMZk3tTMxMQGkkxjMTrSZjqSitcTLTqFFmGNdDbYZkNOuhZ2KcmjRGs/Z4JkapSdKgNBKDnomZlIHSCAy6IV8qhMvdMIgod4FAIBDIiuL59qFlCN6MMOgCgUAgkBXRQzcMoo4EAoFAIPgEED10gUAgEMiKCYoPnsv9Q8///4Aw6AKBQCCQFeFyNwyijgQCgUAg+AQQPXSBQCAQyIp2+dQPL0PwZoRBFwgEAoGsiM/WDINwuQsEAoFA8AkgDLpAIBAIZMVEociVDaBcuXIULVqU33///SP/VcaHQVzu6owMxi5bz6o9R4iMjcfTyYFO9asx4stmmJho3ynWHzzJ/K17OX3jLjEJiZyaO55SAb7yaVJnMHbRGlbtOEBkTByeLo50aliLEV1aY2JigkqtZtT8lWw/eprbD6Owt7GmTrkSTOrdES9XJ/k0LVzFqtD9LzQ1qs2Irl/o6mnsglWs3XmQ+9FPMFeaUSawAON7d6BCUKA8mjQaxh26yKpL4UQmpeJpY0mn4v4MrxKke8Be5uvtJ1lw9hbT6pTm23IyacrIYOza7aw6GEZk3DM8HezoVKscIz6rr6unbrP/Ytm+k3rnlS/oy5HJA+XT9PcOVh06TWRcAp6OdnSqUY4RrerqNAFceRDFsJVbOHD5NhpJomg+d1YP7ISPi6M8mtbvYdWRc0TGJ+LpYEunaqUZ0aymTpNZp5HZnvtTmxC+a1xNHk0b97Hq2AWtJvs8dKpaihFNqus0JaamMfyfXWw8c5WYxBT8XBzoW7cCvWuVy3U9Wk0axm4+wKoTl4hMSNJqqlScEY2qYvI8NDsqIZFh6/ay8/Id4pJTqVbQh5lt61PQXZ7fAoBnqemM3nKIDeduEJ2YQql8bvzauhblfD0BkCSJcduOsODweZ6mpFHe14NZbeoS5Okim6b3JTdd7mIu99djEIM+dfVW5m/Zw6LvvyLINy9h1+/QfdoC7G2s6N8qBICk1HQqBxWidfXy9Pp1kfya/lrP/A2hLBrZjyB/H8Ku3qT7xNnY57Gm/xdNSE5N48y124zo8jklAvx4+iyRQTMX0XLoZI4v+lkeTSv+Zf767SwaNYCg/N6EXblJ94m/YZ/Hhv5tmgJQyNuLmYO/In9eD1LS0pm5eiMNvx3Dtb/n4epon+uafj52hflnbrKocUWKutgRFvmUHtuOY2ehpP8rBnvj9QeceBiDl8zL6U7dsJv5O46wqG97grw9CLt1n+6/r8Le2or+jWvo8oWUKszCb9rr9s3NTOXTtHEv83cdYVGfdgTl8yDs9n26z12DvbUl/RtVB+BW5BNqjJ5N11rlGf15CPbWVlyJiMJSKc9jOHXrQebvOcmirz4jKK8bYXci6L5gHfZWlvQPqQzAg9+G6p2z/fx1ei7cQKtyQfJo2naY+ftOsah7S4LyuhJ29yHdF27UaqpXEYDBq0PZd/UOS3u2ws/FgZ0Xb9F3xVa8HGxpVrpw7msKPcr8A2dY1LUpQZ4uhIU/ovvSrdhbWdC/TnkkSaLVnH9Rmpqwrk9r7CwtmLHrOCEzVnJhzFfYWJjnuiaAr1aGcunhE5Z0boSXfR7+OnGZkFl/c2FkV/I62PLzrhPM2BvGog4NKOjmyKTtx2gw628u/9gdW0t5NAmMG4MY9GNXbtCschkaVygFgJ+HK6v3HiPs+h1dng71qgBwN/KxISRx7OI1mlUrT+PKZbWaPN1YvfMQYVdvAWCfx4bQmWP0zpk5qAeVegzlXuRjfDxcc1/ThWs0q1aBxlUyNbmzeudBwq7e1OVpF1JD75xp33Zn0eZdnL95lzrlSua+pogYmhbMS6MAL60mhzysuRxOWGSsXr6IZ8l8uzOMrV/UpPnf+3Ndh56ma3dpVq4YjYO1RsfPzZnVh04Tduu+Xj4LpRkejoZ5kz924y7NyhajcZmizzU5sfrwGcJuP9DlGbX6PxqWLsKUDk11afndnWXUdJ9mZQrTuJT2xcvP1ZHVx84TdidCl8fDwVbvnE2nr1KziD/53eTpeR67dZ9mpQrTuGQhrSYXR1Yfv0jY3Yd6eTpWLkXNwv4A9KxZlj/3h3HqzkNZDPqx2xE0K1WIxsUDnmtyYPXJy4SFRwJwIzqW43ciODe6J0Fe2ud+dvsGeH43k9UnL9O9aqlc15SSrmLd2eus+6oF1QO8ARjduAqbzt9k3sFzjGtShd/2nmZYSAValtLW5eKODfEaPpdVp67wVdXc/y34EERQnGEwyBh6lWKF2HPmMtcfPALg3K17HL54nYblP16jq1KiCHtOnef6Pe0Pybkbdzh8/goNK5V57TnxickoFAocbG3k0VQyU1PEC03nLtOwUnC2+dNVKv7cEIp9HhtKFvSXR1M+F/bejeJ6bIJWU9RTDj94TMMCXro8Gkmiy+ZjDCpfmCDX3PcSZNFUJD97Llzn+sNoraa7ERy+epuGZYro5dt/6Sae3UZSpN9Ees1dTXT8M/k0Bfqz5+INrj98/FzTQw5fu0PD5wZIo9Gw7cwVCnq60nDiH3j2HE2lETPZePKCfJoK+bDn8m2uP3qi1XTvEYevh9PwuTF9laj4RLadu0a36tm3t1zRVNCHPVducz0yU1Mkh2/co2Hxgnp5tpy9RsTTBCRJYu+VO1yPjKF+sQLyaArIx56rd7keFaPVdD+Kwzfv0/D59dLU2lXJXvakmJqYYG5qwuGb97MWmAuoNRIZGimL98ZSacbhWw+4ExNPZEIS9Qr76Y5ZKM2oHpCPo7cjMDYUubQJ3oxBeujft2lCfFIKQd1+wNTEhAyNhvFdW9O2diVDXD57TR1aEp+YTFD7fi80fdWetvWyHzdMTUtnxNwVtKtXDTsba3k0dfxMq6ntNy809epA2/rV9fJtOXSSL3+cRnJqGp7OjmyfORYXB3l6okMqFiE+TUWx+dswNVGQoZEYX6MEbYu+iG/4+dgVzEwU9CubvaHIbb5vUYf45BSCvp38QlO7RrSt+sIQNShdhM8qlcLX1Yk70TGMWb2NemN+58TU77CQwcX9ffPaxCenEjRoygtNbRrStor2BTE6IZHE1DSmbtzDuDYNmPxlE0LPXqX1L0vZ9ePX1Cia+8bq+ybViU9JI+iHmS80ta5L20rZv0gvO3QGW0sLWpYtmutadJoaVdVqGjH7RRtvVYe2FYvr8sxo35BeSzbjO3g6ZqYmmCgUzO/SjKqF5Imp+T6kklbT6D8wVZiQIWkY37wmbctrPUCFPZzxdbZnxPq9zP2yITYW5vy66ziRCUk8ik+URZOtpTkV/b2Y+N9Rirg7425nzepTVzkR/oiCro5EJiQB4P5K58Ld1obw5y/fxoRCoUCRTczNO5UhTPpbMYhBX7vvOCt3H2HFsK8p6peXczfvMWjuCryctcFxH4O1uw+zcsd+VowZSFF/b87duMOgmYvwcnGiU6NaenlVajXtR09HI2mY/d1X8mnadZCVoftYMXYQRf19tJpmLNRqalxbl69WcHHCls7gSXwCCzfuoN3IqRxZ8DNuTg65r+nKPVZeusvyZpUo6mLPueinDN51Bs88VnQq7k9YZCyzTl3nRJeQD35gc6zp8BlWHghjxbcdKertwbm7EQxavB4vJ3s61SwPwBdVXnhaivl4UraAN/m/Hse2sEu0rJj7nqG1R86y8lAYK/p9+ULT0o14OWmD4zQa7XrqzcoGMeD5OH8pv7wcvX6X+TuPyGLQ1x6/wMojZ1nx9ecUzevGuXuPGLRiG14OtnSqltUTteRAGO0rlcTSXJnrWnSaTlxk5dHzrPjqs+eaIhm0artWU5VSAMzadZzjtx6wvn87fJ3tOXg9nL7Lt+Jhn4e6QTLU06nLrDx+kRXdm1PUy5Vz96MYtHYXXg556FSpBEpTU9b2asVXy7biOuhXTE0U1CnsTwOZPAaZLO3UiB5/bcdn5DxMTRSU9nanXdkinLkfpcvz6iMnIWVJE/z/wSAGfeifq/m+TRPa1NIGvRT39yY8+glTVm/5aAZ96O9L+b5DK9rUrarVVMCX8MjHTFm+Ts+gq9Rq2o6axt1HUez8bZxsvXOAobOX8H3Hz2hTT9sjLx7gp9W07B89g25jZUmAtycB3p5ULBZI4c97s2jzLn7o3DrXNf2w9yxDKhalzfMeeXE3B+7FJzP16GU6Fffn0P3HRCelkn/OJt05GZLE93vOMuvkNW72aZbrmoYu38T3LerQpqrWKBX39SL88VOmrNulM+iv4uloj6+LIzceyROjMfSvzXzfvDZtqpTWavLx1GrasJtONcrhYmeDmakJRfK6651XOK87h6/eya7ID9e0ejvfN6lOm4oltJq8PQh/EseULQeyGPSD1+5y7dETVn7TRhYtOk1rd/J9o6q0qaDtkRfP5054TBxTth6kU5VSpKSrGPnvbv7p21Y3zl7C24Nz9yKZHnpEFoM+9N89fB9SiTbPAwGL53UjPCaeKf8doVMlbd0F+3oSNqoH8SmppKszcLW1odLkJZT19ch1PZkUcHVg74C2JKWlk5Cajqd9Htot2oyfsz0edtqeeWZUfibRz5Jxt5XvN+p9EWPohsEgBj05NU33+UcmpiYmaDQaQ1w+W16rSXqhKdOY37z/iF2zxuFsb/tqMbmsKV3vE6cXmqQ3nidJEmkqlTyaVBlZFlUwNVHwvMNJh2J+1PHTN1KN1+zny2J+dC4uz7h+clp6NvdO8cZ6inmWxP2YODxlCpJLTlNhonj9vTM3M6NsAW+uv/JCcePRY3xdc/+TtReasnvustbT4v1hBPt5UdLHUxYtOk3pqtc8d1pNqowMVBma7HW/5Tl4f03q12jKmtfeyhKAG1GxhIU/Ymzz6lkz5TI2FubYWJjzNDmVHVfu8lPz6vg/N+q7roZT2lv7/KWrMzhw8wGTDaDpXTHhwwO2xKQpb8cgBr1JxdJMXrkJbzdngnzzcvZmODP+3U6XkBcNLzYhkXvRMTyMiQPQBdB5ONnjIYMruUmVckxe+g/e7i4E+ftw9vptZqzZTJfnPWG1OoMvRvzMmeu32Th1OBkaDZExTwFwssuDuTL33ZJNqpZj8pK/8XZ3JSi/N2ev3WbG6o10aVIXgKSUVCYt+Zum1crj6exITMIz5v27jQePY2hdu0qu6wFoHODFT0cv42NnQ1EXO85GxTHjxDW6lNAaa2crC5ytLPTOUZoocLexJNBZHuPZpGwQk//dibeLI0HeHpy9E8GMLfvoUqsCAIkpaYxdu51WFUvg6WjH3ehYRq7cioutDS0qlJBHU3BRJq/fhbeLA0H5PDh7N4IZW/fTpdYLj8F3TWvRbsZyqhXJT82gAELPXmVL2GV2j/5aHk2lCzN50368nR0IyuvG2fBHzNh+mC6vBL0lpKTyz4mL/Ny+oSw69DSVKsTkLQfwdrInKK8rZ8MjmRF6lC7VtJ4NOytLqgf68sPfO7AyN8PX2YED1+6y/Mg5prUNkUdTiQAmbzui1eTpwtn7UczYdZwulV8MzfwTdgWXPNb4ONlxMeIxA9fupHmpQtQvml8WTQChl+8gAYFujtx8HMcPG/ZTyM2RLpWKoVAo6F+rDD/tOE5BN0cCXB34KfQ41koz2pUt8tayBZ8mBjHoM/t2ZPSSf+n321Ki4xLwcnakZ+NajOrQQpdn89EzdJ/2p26//cQ5AIzq2ILRnVrlvqaBPRj950r6TZtP9NMEvFwc6dm8PqO6fg7Ag8cxbD6knZgkuMtgvXN3zRpHzTLFcl/ToJ6Mnr+SftPmER0bj5erEz1bhDCqm9YNampiwrXwByzftocn8Qk429tStkhB9s2dTFB+n1zXAzCzXjCjD16g345TRCen4ZXHkp6lCzCyijzfKedIU/fPGL16G/3+/IfohES8HO3oWa8yo1prf/BNTRRcvPeQFftPEpecgqeDHTWLBbBqUGdsn/ewcl1T15aMXrOdfgvXER3/DC8ne3rWrcSo1vV0eVqUL86cnp8xZcMeBixeT6CXG38P6kzVwvIYhZkdmzD63130W7qJ6IQkvBxt6VmrHKNa6MeIrDl2AQloW1Gelx09Te0bMXr9Hvqt2KrV5GBLz5rBjGr24nPMlb1bM+Kf3XSav47YpBR8ne0Z36o2vWqWlUdT2/qM3niAfiu3E/0sGS/7PPSsVppRTV4MBz6KT+S7v3cR9dzF3aFicUY2riqLnkwSUtMYsekgD+IScbK2pFWpgoxvWg2lqXY+hSF1y5OSrqbvml08TU6lvJ8n//VtbZTfoCsUWcf737mM3JHySaOQpPfzYyUkJGBvb0/U+j9wlnkikZyikiA02Y4QZw1KI/HPqDQQGmNCiKu252oMqDQSoY+h/sl/UGaoP7YcAFSmZuwo15oQdThK5HGtvisqFISa+RKSdtu4NFnkJyThMko+3pDVy6gwIdSuKCGx541Lk1MJQqJPoZSMRJPChFC3soREHEUpZXxsOcSkqnH/bgbx8fGyzbyWaSdWObphrfiwH+VkSUO7p9Gy6v1fx0jMnkAgEAgEgg9BLJ8qEAgEAlkRUe6GQRh0gUAgEMiKMOiGQbjcBQKBQPA/g1g+9fWIHrpAIBAIZMUEssxn8c5lPI9LFcunvh5h0AUCgUAgK4rn/31oGYI3Iwy6QCAQCGRHmGP5EWPoAoFAIBB8AogeukAgEAhkJVdmihNd/LciDLpAIBAIZEV8tmYYhMtdIBAIBIJPANFDFwgEAoGsmKDA5AP72B96/v8HcmzQ09LSSEtL0+0nJCQAoKnYDI2zc+4rew80KhXs3Ik6OgKMZDENNQow9UZ95QwYySIRaoUJuJQmo1JtFArjqKcMSQFqUFvagpFoUj/XpIp8hGQEi2kAqBWm4JsftXs+o/FBqiUgBVQxT5A0RlJPJqbgBGrvAsZVT2mg6fIjGhmWX35XNDEx8N0Mg1xLuNwNQ45XWxszZgxjx47Nkr5y5Uqsra1zXZhAIBAI5CM5OZn27dsbZLW1jU4e2Jh82AhvkkZD89hIsdraG8ixQc+uh+7t7c2jR49wNpIeukqlYufOndTJuI+ZEfXQd5t6U+fJGcyMqIe+26U0dcxiMTOi3vButZNRaqodfhgzI+qh7/GtQh2rBMyMpMuilmB3ih21b+zBzIh66HsK1qaOxVPjqqc0R+rVq4fSCHroMTExeHp6GsSgb3LOHYPeLEYY9DeRY5e7hYUFFhYWWdKVSqVRNM6XMUMymvWrMzGTNEazLnMmZgoJpZEYz0yMUpOUYRTrV7+MmQKURmKoMjHTZKDUqD+2DD2MsZ6M5TfTkBqEy90wiCh3gUAgEAg+AUSUu0AgEAhkRczlbhiEQRcIBAKBrJgocmG1NWHP34ow6AKBQCCQFTGGbhjEGLpAIBAIBJ8AoocuEAgEAlkRPXTDIAy6QCAQCGRFBMUZBuFyFwgEAoHgE0D00AUCgUAgK2I9dMMgeugCgUAgkBWTXNoAypUrR9GiRfn9998N+Sf8T2CQHrparWbMmDH89ddfREZG4unpSZcuXRg5ciQmz+f3lSSJsWPHMn/+fJ4+fUqFChX4/fffCQoKkk1Xgd5jCX8cmyX96wZVmdXzc6LiEhi2fDM7z10lLimFakULMLP7ZxT0cpNP07DZhMfEZ9VUM5hZ7RuQmJrO8HV72Hj2OjFJKfg529O3djl61wyWR0+XoYRHx2TV07gWs775ErNGPbI976durfmudYOPogngyr2HDFv8LwcuXEcjaSjqk5fVw3rh4ybPugMB4xYR/vRZlvTeVUowq3Utuq3cwfKTV/SOlff14PCANrLoASjQYRDhUU+ypH/dtA6z+nfWT5uxmD+37uWXr9vzbSt57htAwJS/CI9LzJLeu2JRZjWvxrhdp1h7/hb34xIxNzWhTF5XxtUvRwUfd9k0Fej0HeFR2bSnprWZ3rsdo5asY/vJ89x+9Bh7G2vqlC7KpO6t8XJ2lE2Tn58f4eHhWdL79OnD77//zrp16/jjjz8ICwsjJiaGM2fOUKpUKdn0GBMnT54Uc7m/BoMY9ClTpjBv3jyWLl1KUFAQp06domvXrtjb2/Ptt98CMHXqVKZPn86SJUsoVKgQEyZMoF69ely7dg1bW1tZdB2bMpgMzYv51S/ee0SDcXP4rFIpJEmi1ZSFKE1NWfdDD+ysLJmxeR8hY+dwYeYwbCyzzmufK5qGdyVD82Iu84sRj2kwYyWfBRcBYPDaney7Fs7S7s3xc7Zn5+Xb9F25HS+HPDQrFZj7emaOJCPjpToKj6DBiOl8Vk37AvFgxS96+befukDPmUtpVUWeF4ycaLr1KJoaQ6bQtX5VRndojr21FVfuP8LSXL65q48Oaqt33y49iqHBvPW0LlVQlxZS2JcF7erp9s1NTWXTA3Bs9hj99n33AQ2GTuWzGuX18m08HMaJK7dkNVCZHP2mFRkvrQd1KSqWBgu30rp4AQAKutgzs1kV/J3sSFGpmXnoAo0WbePqd21xzWMli6Zjv/2o/8zdfUCDYdP4rFo5ktPSOXMznBHtm1EivzdPE5MZNG8lLUf/xvHZo2XRA1qjlZHxYv2AixcvUq9ePT7//HMAkpKSqFKlCp9//jk9e/aUTUduIaLcDYNBDPrRo0dp3rw5jRs3BrRvn6tWreLUqVOAtnc+Y8YMRowYQatWrQBYunQp7u7urFy5kl69esmiy9U+j97+1PW7KODhQo2gAG48eszx63c59+sPBPl4AjC75+d4dhvB6kOn6V63kjyabG30NW0/QgFXR2oU8gHg2O0IOlYqTs1AXwB6Vi/DnwfOcCr8kSwG3dVe/2Vq6t//UcDTlRrFtdfycLLXO77p2Flqlggkv6drrmvJqaZRS9fTsGxxpnT/XJdHTj0Arnn0lxCeuvsUBVzsqV4gry7NwswUDzubV0+VT5ODfi9m6uotFPByo0aJwrq0iCex9J+9jG2Th9Bs5HT5Nb1ilKfuO0MBJzuq+2ufsXYvvQABTGtcicWnrnIhMobaAfnk0fRqPa3ZSgFPN2qUCEShUBD60xC94zP7fEml/uO5Fx0jm8fH1VW/vf70008UKFCAGjVqANCxY0cA7t69K8v1cx2FAoUYRJcdg4yhV61ald27d3P9+nUAzp07x6FDh2jUqBEAd+7cITIykvr16+vOsbCwoEaNGhw5csQQEklXqfnrwCm61K6AQqEgTaVdNerlXp2pqQnmZmYcvnLbMJrUGfx17CJdqpTUPQxVAvKx5dwNIp4mIEkSe6/e5XpULPWLFpBfj0rNX3uP0aV+1Wwfzqin8Ww7eYFu9avJruV1mjQaDdtOnqdgXncajvwVz3YDqTRgIhuPnDGcJnUGK8Ou0qV8Ub162n/zAV6j5lN00lJ6rdlF9LNkw2lSqflr9xG6hFTXadJoNHSe8geDP29EkJ88xvKNmtQZrDx7ky5lA7NtT+nqDBacuIK9pTklPA2zRHO6Ss1fe47SJaTaaw1QfFIKCoUCBxvrbI/nuqb0dFasWEG3bt0+3CgKPmkM0kMfOnQo8fHxFC5cGFNTUzIyMpg4cSLt2rUDIDIyEgB3d/1xMnd392zHkeRg44kLxCWl0LlWBQAK53XH19WJESs2M7d3G2wszPl1814i4xJ49DTBMJrOXiMuJZXOlUvo0ma0DaHX8q34Dp2FmYkJJiYK5ndsTNWC3vLrOXqGuMRkOtetku3xZbuOYGtlQcsqZWTX8jpN0XHPSExJY+rf/zGuUwsmd/2M0LCLtJ44h10/fafrxcuq6cIt4lLS6FS+qC6tQRE/WpcsiI+TLXdjEhj931Hqz1nH8cFtsTCT/zHceCRMW08vvWxNXbMVMxNT+rWs/4YzZdR0+S5xqWl0Cta/J1uvhPPl6l0kq9R42lrzX7fGuNjI427PounI6ef1lH0bT01XMWLRP7SrVQE7A2nasGEDcXFxdOnSxSDXkwPhcjcMBjHoa9asYcWKFaxcuZKgoCDOnj3LgAED8PLyonPnF8E5r759SpJksDfSRbuP0aB0Ebyeu5CVZqasHdKNr+aswrXzMExNTKhTohANShcxiB6ARYfO0aBYAbwcXriYZ+05yfHbEaz/5nN8ne05eP0efVdux8M+D3WL+surZ8chGpQthpezQ7bHl+w8TPtaFWUdq36bJs3z8dlmFUsx4LmhKlXAh6NXbjF/236DGPTFxy/RoLAfXi8N6XxRupDu38U8XQj2dqfA+EVsu3yXliUCZNe06L/9NChfAi8X7Th52PU7zFq/g5Nzxn20Xt/iU1dpUMgbr1eGIWoW8OJUv9Y8SU5l4ckrtF+1i8N9WuIm0xj6yywKPUCDcsWzjSdQqdW0nzQXjaRhdt9OsmvJZOHChTRs2BAvLy+DXTO3EQbdMBjE5T5kyBB++OEH2rZtS/HixenYsSMDBw5k8uTJAHh4eAAveuqZREdHZ+m1y0F4dCy7L1zLMi4eXMCbsF++J2bZTzxYMJ5to74mJjEZf3f53X/hMfHsvnKH7lVL6dJS0lWMXL+Xnz+vS9OShSiRz51vapfji3JFmL7zmLx6omLYffYy3UOyd6cfvHidaw8i6faa44bS5GKXBzNTU4r46P/4Ffb25F42kfG5rik2gd3X79Ot4pu/zvC0t8HX0Zabj+Pk1xT1hN1nLtG9YQ1d2qGL14iOS8D/y4FYhHTBIqQL4VFPGPLHKgp0GCS/pqfP2H0zgm7lsr4g25grCXCxp6KPO39+VhMzEwWLT12VX1PUE3afuUz3BtWzHFOp1bSdOJe7kU/YPnmIwXrn4eHh7Nq1ix49sv+a5H8FxfMx9A/dBG/GID305ORk3edpmZiamqJ5HoHr7++Ph4cHO3fupHTp0oB23Gj//v1MmTJFdn1L9h7Hzc6WRsFFsz1u//zhvfEwmrBb9xjbtpH8mg6fw83WmkbFXwQJqTI0qDI0mLzSsE0VJmheitKVRc/OQ7jZ29GofIlsjy/ecYjgAF9K5pff9f8mTeZKM8oW8uP6A/2XwxsRUfjKFMD0MktPXMYtjxWN3uItiUlK4X5cokGC5JaEHsDNwY5GFUrp0jrUrUKd0sX08jUa9jNf1q1Ml5CsBi23WRp2TVtPgT5vzStJkKbOeGu+D2XJjkPP66mkXnqmMb8ZEcWuqd/jbJfnNSXkPosXL8bNzU0XUCwQvAmDGPSmTZsyceJEfHx8CAoK4syZM0yfPp1u3boB2re3AQMGMGnSJAoWLEjBggWZNGkS1tbWtG/fXlZtGo2GpXuO07FmOcxe+YzonyNncLHLg4+LIxfvPWLgonU0L1ec+qUKv6a03NIksfTIOTpWLoGZ6YsXITsrC6oX8uGHf/dgZa7E19meA9fDWX7sAtM+ryujHg1Ldx6mY91KWeoIICE5hX8OnuLnHl/IpuFdNH33WQjtfvqDasULUbNEIKFhl9hy/By7pwx5TWm5pUli6YnLdCxXRO++JaalM277cVqWDMDTzobw2ARGbj2Ci40VLYrLG8yo0WhYGnqQjvWq6tWTs50tznb6XwsozUzxcLIn0NtTZk0SS8Ou0bFMIb16SkpXMXnvaZoU8cPT1pqY5FTmHbvMg4QkPiueX2ZNGpbuOETHulX06kmdkcEX43/nzM1wNo4bQIZGIjJWO0+Ek60N5kr5fkI1Gg2LFy+mc+fOmL0SZxEbG8u9e/d4+PAhANeuXQO03s5Mj6cxIdZDNwwGMeizZs1i1KhR9OnTh+joaLy8vOjVqxc//vijLs/3339PSkoKffr00U0ss2PHDtm+Qc9k1/nr3HvylK51KmY59uhpAt8t2UBU/DM8HezoULMcI1uHyKoHYNeVO9yLTaBrlZJZjq3s2ZIR6/fSaeEGYpNS8XWyZ3yLmvSqIV8g2q6zV7j3OJau9apme3zN/hNIQNua5bM9bmhNLSqXYU7fjkxZu40B81YRmM+Dv0d8TdWggtmUlHvsvn6Pe0+f0aWCvrvdVGHCxUdPWHHqCnEpaXja2VAjIB8rOzXE1tJcVk27Tl/iXnQMXbNxI38sdt98wL24RLq8EgxnqlBw7XEcy0/v4ElSKs7WlpTN58rer5oR5O4kq6ZdZy5r6+mVIaMHj5+y+dhZAIL76H93vmvqUGqWlO/lfteuXdy7d0/X8XmZTZs20bVrV91+27ZtARg9ejRjxoyRTdP7ojBRoPhAiywWZ3k7CkmS3stXm5CQgL29PU+ePMHZ2TCflLwNlUrFtm3bCMm4hxJ5XdA5RYWCUFMfQh6HoZQ0bz/BAKgUJoS6BhOijEGpMJJ6khSEqpyNUlP9uwdQSvK7fHOCSmHKDr/qhFgnoDSS3zeVBKHJdtS/thOlRv2x5QCgMjFjR2A9QiyfGlc9pTrSqFEjlErDBY6+jpiYGFxcXIiPj5dt5rVMO3HQy5s8Jh8WspWo0VDt4X1Z9f6vIxZnEQgEAoGsiMVZDIMw6AKBQCCQFWHQDYNYbU0gEAgEgk8A0UMXCAQCgazkxnfk4jv0tyMMukAgEAhkRbjcDYNwuQsEAoFA8AkgeugCgUAgkBXhcjcMwqALBAKBQFaEy90wCIMuEAgEAlkxUSiyrEHxPmUI3owYQxcIBAKB4BNA9NAFAoFAICvC5W4YcmzQ09LSSEtL0+0nJCQA2vnTVSpV7it7DzJ1qI1oEv9MLWqF8ThDMrWoJSOqp+dajFKTIusKcx+LTC1q45juHnihRW1iRPVkYrz1ZGy/l4ZAQS4ExRnR77qxkuPFWcaMGcPYsWOzpK9cuRJra+tcFyYQCAQC+UhOTqZ9+/YGWZwlLL8/eUw/cHGWDA3Bt++IxVneQI576MOGDWPQoEG6/YSEBLy9valhEY+TVbos4t4VtQS7Ux2oY5WAmZG8zKkl2J1iRx3TJ5gZySpiaknB7gwX6tWrZxSrPoG2t7Bz507qWMYZ171LdTBKTbVv78fMSFaAUytM2ZO/BnXMYo2rjaudjFOTeaxRtKdYdYrBrqUw0W4fVIZx3EajJscG3cLCAgsLi6wFKDCa5QkzMU5NktEsC5qJUqk0GoOeiXHeOyPUJGWg1BiHQc8MrTXGNm6cmjAKTQYNoMqF79DFIPrbMZ6BXYFAIBAIBO+NiHIXCAQCgayIKHfDIAy6QCAQCGRFa9A/dOrXXBLzCSNc7gKBQCAQfAIIgy4QCAQCWcl0uX/oZmy0bNkSR0dHWrdu/bGlAMKgCwQCgUBmMudy/9DN2Ojfvz/Lli372DJ0CIMuEAgEAln5VHvotWrVwtbW9mPL0CEMukAgEAg+OQ4cOEDTpk3x8vJCoVCwYcOGLHnmzJmDv78/lpaWBAcHc/DgQcMLzUVElLtAIBAIZEWRCxPLvOv5SUlJlCxZkq5du/LZZ59lOb5mzRoGDBjAnDlzqFKlCn/88QcNGzbk8uXL+Pj4ABAcHKy3hkkmO3bswMvL6/3+EBkRBl0gEAgEspKb36FnLgyWyetmMW3YsCENGzZ8bXnTp0+ne/fu9OjRA4AZM2YQGhrK3LlzmTx5MgBhYWEfJtrACJe7QCAQCP5n8Pb2xt7eXrdlGt93IT09nbCwMOrXr6+XXr9+fY4cOZJbUg2OwXroEU+eMmzBWrafPE9KuopCed2ZP6g7wYX8AFh/6BTzt+7j9I27xCQkcmruWEoV8JVZU6xW04lzzzV5MH9wd4IL+aNSqxm1+F+2nzjH7cho7K2tqVMmiEndv8DLxVFGTU8Ztngd28MukpKeTiEvd+Z/25nggtq6GPvXJtYeOMn9x08xNzOjTIAP4zu1oELh/PJpiohg6NCh/Pfff6SkpFCoUCEWLlxIcHBwlry9evVi/vz5/PrrrwwYMEA+TW9pT91+/pNlOw/rnVO+cH6O/PbjR9MEcOXeQ4YtWMuB89fQSBJFfb1YPfIbfNyc5dEUn8iwrUcJvRZOiiqDgi72zP+iNsH53ABQDvk92/N+alyJwTXLyKPpyVOGLf6H7acuvqinbzsTXNAPgMSUVIYv/peNR88S8ywRP3dn+jarQ+/GtWTRkxNNUU/jGbb4X3aevkRcUgrVihVkZu/2FMzrLoueAp2+Jzw6Jkv6101qMatvByRJYtyKTSz4bz9PE5MpH5ifWd98SZBfXln0fCi52UO/f/++3mpr2fXO38aTJ0/IyMjA3V3//rm7uxMZGZnjckJCQjh9+jRJSUnky5eP9evXU65cuXfWk1sYxKA/fZZE9YETqFmyCFsmDsbNwZZbjx7jkOfFsqtJqWlUDipI6+rl6PXrYsNoGvBc06TvcHOw49bDaJ2m5LR0zty8y4gOzSmR34enz5IYNPcvWv74K8fnjJNP05Cp1CwRyJax/V+qJytdnkJ53ZnZux35PVxJSVcxc8MuGo6awbUFE3G1z/1oy6dPn1KlShVq1arFf//9h5ubG7du3cLBwSFL3g0bNnD8+HHZx5Zy0p4AQsoWZ+F33XX75mbyNfecaLr1MJoaAyfStUF1Rndqib2NFVfuPcRSpgVynianUuP3ddQokJfN3ZvilseK2zHxOFi++AG8P6qL3jnbr93jq7/30LJ4AXk0PUui+nc/adv4uG+1z90r9TR4/hr2nb/K0iHd8XN3YefpS/T9/S+8nBxoVqm0wTVJkkSr8b+jNDVl3Y99sbO2Ysb6HYQM/4ULf4zHxvLdDcrbOPbbKDI0Gt3+xbsRNBj+C59VKwvAz3//x4z1O1g0qBsF87kzadUWGgz/hcsLJmJrbfW6Yj8aChMFCpMPHEOXtOfb2dnl2vKpr47LS5L0TmP1oaGhuaIjtzCIQZ+6div5XJ1Z+F0PXZqfh6teng51qwBwN/KxISQxdc0W8rk6sXBIz2w12dtYEzplqN45M/t2pFLfMdyLfoKPm0vua/onlHyujiwc2OWFJnf967SrWUFvf1rPz1m04xDn7zygTqkiua5pypQpeHt7s3jxi5csPz+/LPkiIiLo27cvoaGhNG7cONd1vExO2hOAhdIMDycHWbW8i6ZRi/+hYfkSTOnZRpeW39NNNk0/7ztDPoc8LGxT54UmJ/0fQg87G739zZfuULNAXvI728uiaeo//2mfu0HdXmh6pY0fu3qLjnUqU7NEYQB6NqzBn//t59SNcFkM+ts03YiI4vjV25ybO5YgX20PeHafDni2H8jqfcfp3qB6rmtyddB/OZ+6dhsFPN2oUSIQSZL4bf0uhrVtTMuqWi/Z4sHd8Wo3kFV7j/NV45q5rudTw8XFBVNT0yy98ejo6Cy99v8lDDKGvuXoWYIL+tFm/Gw8P+9H2a9/ZMG2fYa49Bs0nSG4kD9txs3C8/NvKNt7JAu27X3jOfFJySgUChxsbN6Y7701HT9HcIAvbSbNw7P9YMr2G8+C7a//jCJdpebP/w5ib2NFSf98smjatGkTZcuW5fPPP8fNzY3SpUvz559/6uXRaDR07NiRIUOGEBQUJIuOl8lpe9p//iqen/ejSNeh9Pp1EdFPE7IWZiBNGo2GbSfOUzCvBw2HTcPz835U6jeOjYflC7rZcukOwfncaLt8O15jFlH21zUsOH7ptfmjniWz7Uo4XcsXlU/TsXMEF/SlzaS5eLYbSNm+Y1mw/YBenipFC7Ll+DkinjxFkiT2nrvK9Ygo6gfL07bepilNpQbA0vyFJ8XU1ARzMzMOX74pi6aXSVep+WvPMbqEVEWhUHAn8gmRT+OpV+ZFfViYK6lePJCjV27Jrud9MLbv0M3NzQkODmbnzp166Tt37qRy5cq5dyEDYxCDfvtRNH9s2UNAXg+2Tf6OrxrXYsCcv1j+yhinIbn96DF/bM7UNISvmtRmwO8rWL7zULb5U9PTGbFgLe1qV8LORh6X1u3Ix/yxbT8Bed3ZNv5bvmpUnQF/rGb57qN6+bacOI/9Z/2wafkNMzfuYvuEgbjI4G4HuH37NnPnzqVgwYKEhobSu3fvLLMjTZkyBTMzM/r37y+LhiyactCeGpQrwbIferFz6lCmftWWU9fuUO/7KaSlqz6Kpui4BBJTUpm6ZishZYvz30/f0aJKGVqPm83+81fl0RSbwB9HLxLgYs/Wnk35qmIQAzccZPmp7K+3/NRVbC2UtCwmXzzG7cjH/LF1HwFe7mybMJCvGtVkwLxVLN/9IhBpRu92FPHxxLfTEKya9abxqBnM7tOBqkEFP4qmwt4e+Lo5M2LxOp4+SyJdpWbK2m1EPo3nUWy8LJpeZuPRM8QlJtO5ntbQRD7VXtPdUd/b4u5oR6QB9LwPuTlTXLly5ShatCi//559/EcmiYmJnD17lrNnzwJw584dzp49y7179wAYNGgQCxYsYNGiRVy5coWBAwdy7949evfuLWtdyIlBXO4aSSK4kD8Tu2nnuy0d4Mvl8AjmbdlDx3pVDCEhG00arabunz/X5KfVtHk3HetV1curUqtpP3EOGklidr/OMmqSCA7wZWLnllpNBXy4HP6Iedv207FOJV2+WiUCCZs1iicJiSzcfpB2P/3BkenDcHPInXElPU0aDWXLlmXSpElaTaVLc+nSJebOnUunTp0ICwtj5syZnD59+oO/M82xphy0py9eGpoo5p+PsoX8yd9xMNtOnKNl1bIG16SRJACaVS7DgM9CAChVwJejl28yf8teajx3L+e6pnxuTGiobTul87pyOSqWP45epGPZrNdbcvIK7coUwlIp38+CRpIILujHxC6ttJoK+HD5XgTztu6jYx2twZq1aTfHr95m/ei++Lo5c/DiDfrOWYGHkz11S+e+9+BtmpRmZqwd8TVfzVyKa5tvMTUxoU7pIjQoWyzXtWTHou0HaVCuOF7O+sG4Cj5s/Pd/lZMnT+ZoDP3UqVPUqvUikHLQoEEAdO7cmSVLltCmTRtiYmIYN24cjx49olixYmzbtg1fX3mDseXEID10TycHivroB0oV9vHifjZRnIZCq0k/IlSrKVYvTaVW03bC79yNfMz2Kd/L1jsH8HS0z1pP3h7cf6yvycbSggAvNyoWzs+fAzpjZmrKoh3yeDs8PT0pWlT/R7RIkSK6t9yDBw8SHR2Nj48PZmZmmJmZER4ezuDBg7Mda88VTe/RnjydHfB1c+FGRNRH0eRiZ4uZqSlFsslzT6bnwNPWmiLu+kagsJsT9+MSs+Q9dPsh1x7H0U1Gdzs8b+PenvqavD11bTwlLZ2RS9fxc882NK1QihL+3nzTtDZfVCvH9HXyBCC9TRNAcEE/wmaPJubv33jw1y9sGz+QmIQk/N2zxm7kJuFRT9h99jLdG1TTpXk4auMbMnvqmUTHPcvSazcWPobLvWbNmkiSlGVbsmSJLk+fPn24e/cuaWlphIWFUb167sdDGBKDGPTKQQW59kA/+OD6g0h83HM/sCynaDU90kvTanrx+VCmMb8ZEUnolKE428k7Z2/logFci3ilniKi8HF1euN5kiSRppLHlVylShWuXbumr+n6dd1bbMeOHTl//rzOtXX27Fm8vLwYMmSIbBGg79OeYhISuf84Bk+ZguTepslcaUbZQH+uv9LmbjyIxFem56CynyfXH8fpX+9JHD6OWdvxohNXKJPPlZJe8j6T2jau/1J1PSJK99meKiMDlTojy0IcpqYmaDTSR9H0MvY21rja23IjIoqwm3dpWqmULJoyWbLjMG72djQqX0KX5u/hgoejPbvOXNalpavUHLhwjUpF5Pk64UPJnCnuQzfBmzGIQf+2VX2OX7nF5FWbuRkRxao9R1mwbR99mtbW5YlNSOTsrXAu33sIwPX7kZy9FU5kbJw8mj5roNW0ctNzTUdYsG0vfZrVBUCdkcEX42YRdv0Oy374mgyNhsjYOCJj40h/HiST65pa1OX41dtMXrONmw+jWbXvOAu2H6RPE63bKCk1jRFL13Ps6m3Co2M4fTOcr2Yu48GTp7SWwY0MMHDgQI4dO8akSZO4efMmK1euZP78+XzzzTcAODs7U6xYMb1NqVTi4eFBYGCgLJre1p4SU1IZMn81Ry/f5G7kY/adu0LzH2fgYm9LiyryfFudkzb+XeuGrN1/ggXb9nEzIorfN+5iy7Gz9H4pT27Sv3pJjodH8dPuU9x8EseqM9dZcOwSX1fWdxUnpKbz7/mbsvfOAb5tWe95G9/KzYdRrNp7nAX/HdC1cTtrK6oXL8QPi/5m3/mr3Il8zNKdh1m++ygtKud+hHtONAH8c/AU+85f5fajx2w6eoYGI6bTvGJp6peRLwhUo9GwdOchOtarjJmpqS5doVDQv2Vdflq9lQ2HT3Px7gO6/bIIawtz2tWq8IYSPx4KcqGH/rH/iP8BFJIkvddrb0JCAvb29kStm4tznre7obccO8vIRf9wIyISfw9XBnwWQo9GNXXHl+44SPdpC7OcN6pDc0Z3apkjTSoJQlMcCLFOQJmDu7/l2BlGLvybGxFR+Hu4MKB1A3o00j7EdyMfE9BxcLbn7Zo2jJolc/aJmEqC0GQ7Qsweo1S8vaq3nDjPyCXruPEwGn93Fwa0rEeP5+621HQVHaYu4MT1OzyJT8TZzoayBf0Y3rYx5V6avOTtmhSEql1p1KgRyhx8A71lyxaGDRvGjRs38Pf3Z9CgQfTs2fO1+f38/BgwYMA7TSyjUqnYtm0bIVZxObx3r29PKWnptBrzG2dvhhOXlIynkwM1SxZmbOdWeL/DBC669pQLmjJZvP0AU1Zv5cGTWALzeTC6U0uaVc75S0ampvq39qDUZLw1/9bLdxnx31FuPonH38mOb6uXpEcFfSP057FLDN50iPujumBv9e7fVKtMTNlRoDYhypictfHj55638efPXcv69Hjp06/I2HhGLPmXnWcuE/ssCV83Z3o0qM6AlvVy3EtTSQpCVc65pmnWxl388m8oUXEJeDra06FOZUa2a4L5O8Qb6DRZxOZI046wizQa8SuXF0ykUD4PvWOZE8v8uW0/TxOTKF9YO7FMMb+cf+0Sk5iKe+tviI+Pz7Xvul8l007cDg7E1sz07Se8gWfqDPKHXZNV7/86BjPohuBdDboheFeDbgje1aAbgnc16IbgXQ26IXhXg24I3tWgG4J3NeiG4F0NutwY0qDfKVs4Vwy6/6mrwqC/ATGXu0AgEAjkJTcC4p6/VOf0s7X/j4jV1gQCgUDwP0NOP1v7/4gw6AKBQCCQlY+xHvr/R4RBFwgEAoGsKEy024eWIXgzoooEAoFAIPgEED10gUAgEMiKcLkbBmHQBQKBQCAvJgrt9qFlCN6IcLkLBAKB4H8G8dna6xE9dIFAIBDIS24saP78fPHZ2usRBl0gEAgEsiLG0A2DMOgCgUAgkBcxhm4QcmzQ09LSSEtL0+0nJCQAoJa080sbA2pJ///GwAtNxtMYM7WoZFpy9X3I1GKc9+7j6ngZnSaFqdFEwKgV2jm6jbGNG6cmMIa1w+RZM1LwMcmxQZ88eTJjx47Nkr4/zR5rU+tcFfWh7E4xvvGV3Rkfb+3317Fz586PLSELu1MdPraELBijpj35a3xsCVnYrXb62BKyYJSa0o1DU3J6suEulotj6ILXk2ODPmzYMAYNGqTbT0hIwNvbmxpPzuFkaRwrdqkVJux2LUMds1jMjGA1I9C+le9WO1HH5LFxadK4UscyDjMjeUbUktZw1qtXz6hWgNu5cyd1iMQMI7l3KNiNB3VSbxuXJsv81A4/jJlkHCvAqRWm7PGtQh3VXeOqJ6Wf0bTxmJgYg11LYaJA8YEu8w89//8DOTboFhYWWFhkXSvZTNKglDS5KupDMVNIRrE84csYpyaMZlnQTJRKpVH82L2MGUZ0757LMENCibE8d1rfv5mUgdJIDHom2noyknv3HGNp48agQZC7GMkonEAgEAg+WT507dSXXPaf0nfoSUlJuVqeiHIXCAQCgawoFLngcv8Ev0N3d3fniy++oFu3blStWvWDyxM9dIFAIBAIPgKrVq0iPj6eOnXqUKhQIX766ScePnz43uUJgy4QCAQCeclFl/unRNOmTfn33395+PAhX3/9NatWrcLX15cmTZqwbt061Op3+7hQGHSBQCAQyIsJLyaXee/tY/8R8uHs7MzAgQM5d+4c06dPZ9euXbRu3RovLy9+/PFHkpNz9omhGEMXCAQCgeAjEhkZybJly1i8eDH37t2jdevWdO/enYcPH/LTTz9x7NgxduzY8dZyhEEXCAQCgayIudyzZ926dSxevJjQ0FCKFi3KN998Q4cOHXBwcNDlKVWqFKVLl85RecKgCwQCgUBexFzu2dK1a1fatm3L4cOHKVeuXLZ58ufPz4gRI3JUnjDoAoFAIJAXMfVrtjx69Ahr6zdPnW5lZcXo0aNzVN4nHGYgEAgEAoHxYmtrS3R0dJb0mJgYTE1N37k8YdAFAoFAICsKk9zZ4NOaKU6Ssp+WOC0tDXNz83cuz2Au94inzxi2bg/bL90mJV1FIXcn5ndqTLCvJ6D9w8ZtOciCg2d5mpxKeX8vZrULIcjLVRY9Y1dsZPzKzXpp7o52RPw1HYCop/EMW/wvO09fIi4phWrFCjKzd3sK5nWXRQ/A2L82M37VFn1NDnZErPgZgMSUVIYvWc/GY2eJeZaEn5szfZvVpncj+VbeGrtsPeNXbNTX5GhHxJrfADCr3yXb837q8QXffdFIFk1jxozJsvKfu7s7kZGRuv0rV64wdOhQ9u/fj0ajISgoiLVr1+Lj4yOLprGrtjB+9TZ9TQ52RCz9CYBuM5exbM8xvePlC/lx5OfvZdEDMPbvHYz/V39FPXf7PET8kdV99/Wf//Dn7uP80qkZ3zaqJpumcduPMT70uL4mW2sejOupO772zHXuxz3D3NSUMvncGNe4MhV8PWTTNHbtdsb/rR9B7G5vS8SCsajUGYxavY3tp69wOzoWe2tL6hQvxKQvG+PlZC+bpre18XXr1vHHH38QFhZGTEwMZ86coVSpUrLp+WBy0eX+KcwU99tv2t9PhULBggULyJMnj+5YRkYGBw4coHDhwu9crkEM+tOkFKr/vIyahXzZ0q8NbrbW3Hr8FAdrS12en0OPMWPXCRZ1bkJBdycmbTtMgxmruDyuF7aWWReFyQ2CfL0InThYt29qqn0FlCSJVuN/R2lqyrof+2JnbcWM9TsIGf4LF/4Yj41MegCCfLwInTjghSaTF06UwX/+zb4L11g6uBt+7s7sPHOZvnNW4eVkT7OKpeTT5JuX0ClDstX0YPUMvbzbT16g5/RFtKpWVjY9AEFBQezateuFppfcU7du3aJq1ap0796dsWPHYm9vz5UrV7C0tMyuqNzT5ONJ6Lj+LzSZ6DvAQsoUZWH/jrp9czP5H7+gfO6EjvzqtZoANp68yImb9/ByNMyPZJCHM9u/bvmSphc/9AVdHZjZqib+zvakqNTM3H+GRvPWc3VEZ1zzyLdMc5C3B6Gjer+kSVtPyWnpnLkdwYjW9Snh68XTpGQGLdlAyykLOT5l0OuKyx1Nb2jjSUlJVKlShc8//5yePXvKqkOQ+/z666+A1tbMmzdP796am5vj5+fHvHnz3rlcgxj0qaHHyOdoy8IuTXRpfi4Oun9LksRvu08wrGEVWpbRvpUs7tIUryEzWXXiEl9VLyOLLjNTUzyyecu+ERHF8au3OTd3LEG+eQGY3acDnu0Hsnrfcbo3qC6LHq0mEzwcs3/zP3b1Nh1rV6JmiUAAejaozp//HeTUjXBZDbqZqQkeTg7ZHns1fdOR09QsWZj8nm6y6QEwMzPDwyP7XtuIESNo1KgRU6dO1aXlz59fVj3wvD295t4BWCjN3nhcDsxMTfBweL2hjoiNp//iDWwb1oNmUxYZRJOpiQIPO5tsj7UL1u+VTGtRjcXHL3Hh4RNqF5LHuwJgZmKCRzYvNPY2VoT+2FsvbWa3VlQaNoN7j5/i4+oon6Y3tPGOHbUvhnfv3pXt+rmJWD5Vnzt37gBQq1Yt1q1bh6Nj7rQjg4yhbzl/nWBfT9r8sQ7P72ZQdsJCFhw8ozt+50kckQlJ1Cvqr0uzUJpRvZAPR29FyKbrRkQU3h0GE9D1B9r/9Ae3Hz0GIE2lnW7P0vzF8oKmpiaYm5lx+PJN2fQA3HgYjXen7wnoPpz2U/7kduRj3bEqRQPYcuIcEU+eIkkSe89f4/rDKOqXCZJXU0QU3m0HENDxO9pPnMPtR1mDOEA7TLHtxHm6yfjCo9N04wZeXl74+/vTtm1bbt++DYBGo2Hr1q0UKlSIkJAQ3NzcqFChAhs2bJBf08NovLsMI6DnKNr/vJDbkU/0ju+/eAPPTt9T5Osx9Jr9F9Fxz+TXFPkE76/HE9BvEu1nruB21Is1sDUaDZ1/X8XgJjUI8pbPpf0qN5/E4TN6AQXHL+bLZf9x+0l8tvnS1RksOHoRe0tzSsg09JbJjcgneH81hoA+E2j/6zK9enqV+ORUFAoFDjZW8mp6TRv/n0RM/Zote/fuzTVjDgbqod9+HMcf+08zoG4FfmhYmZN3HzJgzU4szMzoWKk4kQnaJeTcX3lrd7e1ITw2+4f9QykfmJ8lg7tTMK87UXEJTFq9hWrfTeb83HEU9vbA182ZEYvXMbdfR2wsLfh1/Q4in8bzSCY9Wk3+LBnU9SVN26j23VTOzxmNs10eZvRqQ69Zy/Ht8gNmpiaYKEyY378jVYMC5NNUuABLvu9JwXweRD1NYNLKTVQbMIHzf07C2S6PXt5lOw9ja21Jy6rBsukBqFChAsuWLaNQoUJERUUxYcIEKleuzKVLl1CpVCQmJvLTTz8xYcIEpkyZwvbt22nVqhV79+6lRg154g3KF/JnyYDOFPRyIyruGZP+/o9qQ6dxftZInO3y0KBMUT6rUhpfV2fuRD1hzMot1Bs1gxPTf8BCpnWpywf4sKRPWwp6uhIV/4xJ63ZT7cfZnJ/2Hc62NkzdtA8zExP6NfzwVZ5yrMnXg8Xt61PQ1ZHoZ8lM2nmC6r+t5dzQDjg/N5BbL93my2XbSVap8LSz4b+vW+KSRz7jWb6gL0v6tnteT4lM+ncn1Ub8xvlfv8fZVv83KTVdxYi/ttCuamnsrOUbwnlTG3d2dpbtugL5GTRoEOPHj8fGxoZBg948bDN9+vR3KtsgBl0jSQT7ejKxZU0ASvt4cPnhE+btP03HSsV1+V6dCUgCFMjzVtaw3IvrFgcqFSlAoe7DWLbrCANb1WftiK/5auZSXNt8i6mJCXVKF6FB2WKyaNFpeqn84uSlUuH8FOoxkmW7jzKwZT1mbd7D8Wt3WD+qD75uzhy8eIO+c1fi4WRP3VJF5NFUvsQLTf5QqUgAhboMYdmOQwxs3UAv75LtB2hfuyKW7xGd+U6aGjZ8oal4cSpVqkSBAgVYunQpbdu2BaB58+YMHDgQ0M60dOTIEebNmyebQW8Y/MJLUhyoVNifQr1Gs2zvcQY2r8MXL8UUFPP1omyAL/l7jmTbqYu0rJSzWaDeWVPpF+7r4nhSqaAfhb6dzLIDp6hepACz/jvIyckDDDoDV4Mifnr7Ff08CZy4hGUnrzCwpnZorWaAN6e+a8+TpBQWHrtI+6X/cXiANvZGDhqWfvHsFAcqFfKlUN9JLNt3koFNa+qOqdQZtJ+xHI0kMbtHa1m06DS9oY2/zQgYJWJiGR1nzpxBpVLp/v063ue5NIhB97TPQ1FPF720wp7OrDtzFUA3nhYZn4in/YteX/SzpCy9drmwsbSgmG9ebj6MAiC4oB9hs0cTn5RMujoDV3tbKg2YSNmCfgbRo9Pkl5ebD6NJSUtn5LIN/DPiaxo/fxkp4Z+Pc3fuM33dDtkMehZNVhYU8/PW1VMmBy9c49qDSFaO6GMQHXqabGwoXrw4N27cwMXFBTMzM4oWLaqXp0iRIhw6dMhwmiwtKObrxc2H2Q9PeDrZ4+vqxI2Hj7M9Lo8mc4r5eHLz0RNMFCZEJyTh33eS7niGRsOQ5Zv5bdtBbs0ebhhNFkqKeTpz83GcXlqAqwMBrg5U9POkyMQlLD5+iaF1s59JK9c1WVro6ikTlTqDttOXcjc6hp2j+8jaO89W00tt/H8RMfXrC/bu3Zvtv3MDg4yhVy6Qj2uvjEldj4rF53lAmr+LAx52Nuy6ckd3PF2dwYHr96hUIK8hJJKmUnH1fmSWIC97G2tc7W25ERFF2M27NK1UyiB6Xmh6hIeTPaqMDFTqDExeadSmJiZoXvMtoyya0lVcvf8wSz0t3n6A4IJ+lCwgX+DSazWlpXHlyhU8PT0xNzenXLlyXLt2TS/P9evX8fX1NZwmlYqrDyJfGwQXk5DI/SdP8TRQZLlWk5qrEdF4ONrRoVoZzkwdRNiUgbrNy9GOwU1rsm14D8NpUqu5GvUUzze8uEtAmjrDcJpUaq5GROHhaAu8MOY3I58QOurrLG54g2h6qY0LBK/DID30b+uWp9qUZUzedpjPyxbh5N1HLDh4lnkdtG4lhUJB/zrl+em/IxR0cyLAzZGf/juCtbmSduXlCfgasmAtTSqUxMfViei4Z0xavYWE5BQ61akMwD8HT+FinwcfV2cu3n3AwD9W07xiaVkD0IYs/Icm5UtoNcU/Y9LqrSQkp9KpTiXsrK2oXqwQPyz6FytzJb5uzhy4eJ3le44xrcfn8mmav5omFUvh4+pMdJx2DD0hOYVO9aro8iQkpfDPgZP83KutbDpe5rvvvqNp06b4+PgQHR3NhAkTSEhIoHPnzlrNQ4bQpk0bqlevTq1atdi+fTubN29m3759smkasvhfmpQr/qI9/f2f9t7VrkBiSipjV2+lVaXSeDraczc6hpHLN+Jil4cWMn6dMGT5ZpoEF8XHxZHo+EQmrd9FQkoqnaqXxdnWJothUpqa4uFgS6CXfF8ofL/xIE2C/PF2tCU6MYXJO06QkJpOx3JFSEpTMXnXCZoE5cfTzoaYpFTmHT7Pg7hEPitZUDZNQ5ZtelFPCdox9ISUVDrVLIc6I4MvflnCmTsRbPyhOxkaDZFPEwBwymONuVKen9C3tfHY2Fju3bvHw4cPAXQvsB4eHq+NjP+oCJe7jlatWuU477p1696pbIMY9HJ+Xvzz9WeMXL+PCVsP4e/iwPQv6tK+wosx4yEhFUlRqei7crtuYpn/vm0r2zfoEU+e0mHKfJ4kJOJqb0uFwPwc/nU4vu7agJNHsXF89+caouIS8HS0p0Odyoxs1+QtpeaCpp8XaDXZ2VKhsD+HfxmKr5tW08qhPRixdD2dpi0iNjEJXzcnxndsTq+G8kWVRzyOpcOkeTxJeKatpyIFODxzFL7uL4ZQ1uw7jgS0rVVRNh0v8+DBA9q1a8eTJ09wdXWlYsWKHDt2TNcDb9myJfPmzWPy5Mn079+fwMBA/v33X6pWlS/4K+JJHB2mLebJs0Rc7fJQIdCfw1OH4OvmTEpaOhfvPmTF3uPEJaXg6WhPzeKFWDWkO7Yyum4jYuPpMGslTxKScLWzoUJBHw6P74evjJ9avVVTfCIdlm/nSVIKrnmsqODrwaEBX+DrZEeqSs21qKcsP7mVJ4mpONtYUtbHnb39WhPkKV8gWERMHB1mrnhRT4V8OTzxW3xdnbgbHcvmU5cACB7yi955u8b0oaZMAalva+ObNm2ia9euuvyZsSOjR49mzJgxsmj6MHIjSv3TMOj29vJ9uqqQXjf33FtISEjA3t6eqJlDcLaUJ0r3XVEpTAh1K0uIMgalwnBu6DehkhSEqpwJMY02Lk0ZboRYxaE0kmdEJUFoigONGjVCKVPU97uiUqnYtm0bITwyrnuHJyGpt1Ci+dhyAFBhQqhlAerfPYBSMpxr/E2oFKbs8KtOiOoOSozk3qEgVOlvNG08JiYGFxcX4uPjZZt5LdNORLepjp35h/UfE9LVuK05IKve/3XEXO4CgUAg+J/hU5rLPbcRy6cKBAKBQF5ycQz9f30u9zJlyrB7924cHR0pXbr0G6P3T58+/U5lC4MuEAgEAlkRn629oHnz5lhYaGPDWrRokatlC4MuEAgEAoGBGD16dLb/zg2EQRcIBAKBvIjP1t7IqVOnuHLlCgqFgiJFihAc/H7TZwuDLhAIBAJ5ycX10D8lMj9PPHz4MA4ODgDExcVRuXJlVq1ahbe39zuVJ6LcBQKBQCD4CHTr1g2VSsWVK1eIjY0lNjaWK1euIEkS3bt3f+fyRA9dIBAIBLIi1kPPnoMHD3LkyBECAwN1aYGBgcyaNYsqVaq84czsEQZdIBAIBPIiXO7Z4uPjo1t57WXUajV58777OibC5S4QCAQCwUdg6tSp9OvXj1OnTpE5aeupU6f49ttvmTZt2juXJ3roAoFAIJAXE3Ihyj1XlHx0HB0d9b6pT0pKokKFCpiZac2xWq3GzMyMbt26vfN36jk26GlpaaSlpen2ExK0Kw6pFSaoFMZR0+rnOtSS8bhmMrUYp6aPLOQlMrVk5376WGRqUaPASKYD12rR/d9InrtMTQrTj6zkBZla1Ea0oEemFmNp44bUISaWecGMGTNkKzvHi7OMGTOGsWPHZklfuXIl1tbWuS5MIBAIBPKRnJxM+/btDbI4S0zP+tiZf9iCNAnpKpz/3CEWZ3kDOe6hDxs2jEGDBun2ExIS8Pb2pvq1vTiZG0lPwcSMPUXqUfvWPsyMZNUntcKUPQVqUvvKTsw06o8tB3hRT9XX/4GZ2jh6C2ozJQda9qL2ua3GVU8lG1P7/Dbj0lSiEfXq1TOKFbtA29PbuXOnUbZxo6wnI/l9ik0zjnsl0JKSkpLFa/KuLy45NugWFha6+Wf1CtCoUWqMw6BnYiZloNR8/AcG0HlFtfVkXA+QmVqFmTr9Y8vQwyjryQg1KZVKozFUmYh6yhnG8vtkJhlw+V0R5Z4tSUlJDB06lLVr1xITE5PleEbGu7UT47LEAoFAIPj0yDToH7rxaS2f+v3337Nnzx7mzJmDhYUFCxYsYOzYsXh5ebFs2bJ3Lk9EuQsEAoHgf4b/9eVTX2bz5s0sW7aMmjVr0q1bN6pVq0ZAQAC+vr789ddffPnll+9UnuihCwQCgUBmcqN3/um53GNjY/H39we04+WxsbEAVK1alQMHDrxzecKgCwQCgUBeTExyZ/vEyJ8/P3fv3gWgaNGirF27FtD23DMXa3kXPr0aEggEAoHgf4CuXbty7tw5QPslWeZY+sCBAxkyZMg7lyfG0AUCgUAgLyLKPVsGDhyo+3etWrW4cuUKYWFhFChQgJIlS75zecKgCwQCgUBehEHPEb6+vvj6+r73+cLlLhAIBALBR2L37t00adKEAgUKEBAQQJMmTdi1a9d7lSUMukAgEAjkJRe/Q/+UmD17Ng0aNMDW1pZvv/2W/v37Y2dnR6NGjZg9e/Y7lydc7gKBQCCQl9yIUv8Eo9wnT57Mr7/+St++fXVp/fv3p0qVKkycOFEvPSd8ejUkEAgEAuNC9NCzJSEhgQYNGmRJr1+/vm5F03fhoxj0KfvPoRy1kEHbjunS1l+6S6Ol2/GYvALlqIWcfZR1XltZNe0JQ/n9HAZtOgSAKiODYduOUmr6auxHzMdn/BK6rN7Fw/gkw2nKpp7G7TlNsZn/YD9uKa4TlxOy+D+O3482mKafL9/Des0Bhpy+le3xvievY73mALOvPTCYpimHLqAcv5xBoSd1ad02HkY5frneVmXRf4bVNG6ZniaAK4/jaLl6D85TVuH400qqLNzGvfhEg2iaPHkyCoWCAQMG6NIyl7V8dfv5558Noim7Np6YpqL/liP4/bwK27FLKD7zH+aduGIQPZB9PUVFRdGlSxe8vLywtramQYMG3LhxQzYN43acQPn9HL0t37jFuuOSJDFuxwl8xi/Bdvgf1Jm3gUuRsbLpEchDs2bNWL9+fZb0jRs30rRp03cuz+Au95MPHrPg1FWKuzvppSepVFT2ceezIH96bzxkWE33o1hw/DLFPZ11acnpas5EPGZEnbKU8HTmaUoagzcfpuWSbRz/9nP5Nb2mngo62zOzSSX8HW1JUWUw8+hFGi3dztWBn+NqYyWrplMxz1h0+xHF7W2yPb7pwRNOxj7D08pcVh0vc/LhExacuUFxN8csx0IKeLGgWWXdvrmpYd5fT0Y8YcHpGxR319d0K/YZNZdsp2upgvxYoyT2luZcfRyPpZn864ifPHmS+fPnU6JECb30R48e6e3/999/dO/enc8++0x+Ta9p44P/O8b+O49Y2romvg552Hkzgn5bjuBla02zIu8fAZwjTdnUkyRJtGjRAqVSycaNG7Gzs2P69OnUrVuXy5cvY2OT/fPwoQS5O7H9q2a6fdOXeqjT9p1hxsFzLPyiNgVdHZi8O4yGf27i0pD22Foa7vnLMSLKXcdvv/2m+3eRIkWYOHEi+/bto1KlSgAcO3aMw4cPM3jw4Hcu26A99MQ0FZ3/2ce8FlVxfOVHv0OpgoysVZo6BbwMKUmradUu5rWuiaPVi9Xk7K0s2N6zGZ+XDCDQzZGKvh7MaF6V0xGPuff0mfyaXlNP7UoWoE6BvOR3siPI3ZFpDSqQkKbiQuRTeTWpMuh27Cq/ly2Eg3nW98CI5DQGnb7J4oqFURrowUtMV9F5/SHmNa6UpZ4ALExN8MhjpducrLKuFiiPpoPMa1IRx1d+WH/ce4YGAfn4qV4wpT2dye9oS6NC+XCT+UUsMTGRL7/8kj///BNHR/2XDA8PD71t48aN1KpVi/z588ur6Q1t/Pj9aDqWKkgNf0/8HG3pWa4wJTycCIt4Iq+m19TTjRs3OHbsGHPnzqVcuXIEBgYyZ84cEhMTWbVqlWx6TE0UeNha6zbXPNp2IkkSvx06z7DawbQsXoBiHs4salOHZJWaVWfl8xp8EMLlruPXX3/VbQsXLsTR0ZHLly+zcOFCFi5cyKVLl3BwcGDRokXvXLZBDXq/LUdoWMibOgXyGvKyb6TfhgM0LOxLnYLeb82bkJqOQgEOMhuGnNZTujqDBaeuYW9pTgkPpzfm/VAGnr5BAy8nantk7QlrJIkex68ysLA3RV/Te5eDfv+doGHBvNTJ75nt8f3hUXj9spaiv2+g15ajRCelyK9p23EaFsxHnfz6L6YaSWLbjQcUcraj0YqdeE1bS+UF29h49Z7smr755hsaN25M3bp135gvKiqKrVu30r17d9k1vamNV/b1YPO1e0QkJCFJEvtuP+TGkwTqFZT3d+N19ZSWlgaApaWlLs3U1BRzc3MOHZLPm3jzSTw+45dQcPJyvvxrB7dj4gG4E5tA5LNk6hZ68ZtlYWZK9fxeHA2PlE2PIHe4c+dOjrbbt2+/c9kGc7mvOX+LMw9jONa72dszG4g1Z29wJuIxx/q1fmveVJWa4duO0bZUQexkdGnlpJ62XrvHl2v3kqxS45nHmv86N8DFxvK1+T+Uv+9Fc/ZpIgfrlcn2+C9X7mOmUNCnoOG8K2su3uHMo1iO9WiU7fEGAXlpXdQXH3sb7sYlMnrfOeov38nxHo2xkMnFvebiHc5ExnKsR+Msx6KTUklMVzP18EXG1irFpLrB7LgZwedr97GrU32q+3nIomn16tWcPn2akydPvjXv0qVLsbW1pVWrVrJoyeRtbXxGo4r02ngIv59XY2aiwESh4I8WVanqK08dwZvrqXDhwvj6+jJs2DD++OMPbGxsmD59OpGRkVmGLHKL8j7uLG5bh4IuDkQnJjNpdxjVf1/HucHtiHyWDIB7Hmu9c9zyWHMvTl7v4XsjotzfiiRJgDau5X0xSA3dj09k0LZjLG1dA0ulcXwpdz/uGYM2HWJp27pv1aTKyODLlTvRSBKzW9aQT1MO66mmvyen+rTkQM+m1C+Yj/Zr9hCdKE/v80FyKkNO32JhhcJYZjMGfTr2Gb/fiOCPCoEf1BDfhfvxSQzacYqlLaq8dvz5iyA/GhXMRzE3R5oU8mZLu9pcj3nGthsR8mkKPcnSFlWz1aR5/rA2C8zHgIpFKeXhxPdVi9O4UD7mh12XR9P9+3z77besWLFCr3f5OhYtWsSXX36Zo7zvrSkHbXz2scucuP+Y9V/W4/jXLZjaoAL9Nh9l9y2Z7t1b6kmpVPLvv/9y/fp1nJycsLa2Zt++fTRs2BBTU3leDhsU9qVV8QIU93SmTkFvNnXTviQuC7uqy/Pq4yYhGe96ZMLl/lqWLVtG8eLFsbKywsrKihIlSrB8+fL3Kssg1vV0xBOik1KpMG+jLi1DI3EwPJI5xy+TNLoLpgZ++zr94DHRiSlU+O1vfU13HjLnyAWSJvXC1MQEVUYG7Vbs4E5sAju/ai5r7zyn9WRjriTAWUmAsx0Vvd0o8uvfLA67ztAa7z7371s1xSYSnaaiys7TLzRJcOhxPPNuRjChRH4ep6oI3Hxc7/gP524z+3oEV5tWyH1Nj2K09bRg20vXlDgYHsWck9dIGt4+S3vytLXG18GGm7Hv/inIO2n6c2tWTSeuEj+sPWYmCoq4OOidV9jFnsP35PlKISwsjOjoaIKDg19oysjgwIEDzJ49m7S0NJ1BOnjwINeuXWPNmjWyaMnkbW08ZkRHRu46xT/t6tAo0AeAEh5OnIuMYfqhC7IM1+WknoKDgzl79izx8fGkp6fj6upKhQoVKFu2bK7ryQ4bcyXFPJ25+SSe5kHa5TYjnyXjafdiiOtxYgputtavK0JghEyfPp1Ro0bRt29fqlSpgiRJHD58mN69e/PkyRO9ud5zgkEMeu0CXpzp21Ivrcf6gwS62DOkWgmDG3OA2gH5ODOojb6mtXsIdHNkSM3Sesb85pN4dvZqjrOMbm14/3qSkEjLyJBFUy13B06GBOul9TpxjUA7awYV9sbDypy6r4yrNztwgfa+7nT0d5dFU21/T870aqKX1mPTUQJd7BhSOSjbeopJTuN+fBIeeeQJQKvt78mZ3vqfmfTYdIRAZ3uGVAnCwsyUsl4uXIvRf6G4EZOAr4M8cQd16tThwoULemldu3alcOHCDB06VK93uXDhQoKDg99rQYh34W1tPEMjocrQYPJKb8xUodB5OXKbd6kne3t7QBsod+rUKcaPHy+LpldJU2dwNfopVf088Xeyw8PWmt03HlA6ryugjac5cPshkxpVMoied0ZBLkS554oSo2LWrFnMnTuXTp066dKaN29OUFAQY8aMMU6DbmthTrFXPk2xUZrhbG2pS49NTuNefCKPno8PXX+iDQDxyGOFhwxvnbaW5hTzcNZLszFXajV5OKPO0NBmeShnIh6zoWtjMiRJN3blZGWBuQzjsG+rp6R0FZP3n6NJYR88ba2ISU5j3okrPEhI5rPnb+25rklpRpCDfjOxMTPFyVxJ0HND5Gyh1DuuVChwt1RSyE6e3oKthZJir3ymZmNuhrOVBcXcHElMVzFu/3laFvHBM48V4XGJjNx7FhdrS1oU9jGcJqUZztYWuvTBlYNo/88Bqvm6UdPPg9CbD9ly/QG7OteXR5OtLcWKFdPXZGODs7OzXnpCQgJ///03v/zyiyw69DTl4Legup8HP4SewEppho9DHg7cecSKszf5uWHue3sgZ/X0999/4+rqio+PDxcuXODbb7+lRYsW1K8vz737fsthmhTxw9vRlujEFCbvPkVCajodyxZGoVDQv2oJftoTRoCLPQEu9kzZcxprpRntShWURc8HIz5by5ZHjx5RuXLlLOmVK1d+r/gM4xjQBjZfDafH+oO6/S/X7gVgVK3S/Fg7+2AsOXkQn8jmy3cBKDtjrd6xXb2aU+MjROqbKhRcexzH8jM3eJKcirO1JWXzurC3e2OCXvnm+f8zpgoFF6OfsuL8LeJSVXjaWlHD152Vraph+8rLhyFpUdiH3xtXYOrhiwzcfpJCznas/aIGVX3k8WTklNWrVyNJEu3atfuoOjL564tajNh5ik5/7yM2JQ1fhzyMqxtMr3KFP5qmR48eMWjQIKKiovD09KRTp06MGjVKtutFxCfRYeVOniSn4mpjRQUfdw71/QxfR1sAvqtZmhSVmn7rD/A0JY3y3u5s69nUOL9BF7yWgIAA1q5dy/Dhw/XS16xZQ8GC7/5yppCk9/NjJSQkYG9vT+SorjibG0f0ocrEjB1BDal/czdKjTwu6HdFZWLKjoA61L/0H0qN+mPLAV7UU+2/Z2OmTv/YcgBQm5mz5/O+1D+z0bjqqXRz6p/dZFyaSjWjUaNGKJUf7+XkZVQqFdu2bTPKNm6U9WQkv08x6Rl4jPyD+Ph47OzsZLlGpp2I/aEddhYf9rKRkJaO00+rZNVraP7991/atGlD3bp1qVKlCgqFgkOHDrF7927Wrl1Ly5Yt317ISxiHJRYIBALBJ0xuRLhrXe7lypWjaNGi/P777x/3T8oFPvvsM06cOIGLiwsbNmxg3bp1uLi4cOLEiXc25mBELneBQCAQfKLk4hj6yZMnP4keukql4quvvmLUqFGsWLEiV8oUPXSBQCAQCAyMUqnMdmGWD0EYdIFAIBDIi5hYJltatmzJhg0bcq084XIXCAQCgbyIqV+zJSAggPHjx3PkyBGCg4OzrNzXv3//dypPGHSBQCAQCD4CCxYswMHBgbCwMMLCwvSOKRQKYdAFAoFAYGSIiWWy5c6dO7p//88sziIQCASC/8eIMfTXsnDhQooVK4alpSWWlpYUK1aMBQsWvFdZoocuEAgEAsFHYNSoUfz666/069ePSpW08/AfPXqUgQMHcvfuXSZMmPBO5QmDLhAIBAJ5ES73bJk7dy5//vmn3rTLzZo1o0SJEvTr108YdIFAIBAYGSLKPVsyMjKyXYI3ODgYtfrdp1HOsUFPS0sjLS1Nt5+QoF0GUm1ihspIKlptov1z1ApTo4kOUCu0q7JlajMGdPVkZhxzXMMLLUZZT0aoSaVSfWQlL8jUIurpzejqyUh+n9QKeZajzRbRQ8+WDh06MHfuXKZPn66XPn/+fL788st3Li/Hi7OMGTOGsWPHZklfuXIl1tbyLJMpEAgEAnlITk6mffv2hlmcZVwP7D5wJbiE1HScflzwSS3O0q9fP5YtW4a3tzcVK1YE4NixY9y/f59OnTrpLSz0qtHPjhy/Ug8bNoxBgwbp9hMSEvD29qb6ld04Gclqa2oTM/YEhVD73FbMjGTVJ7WJGXtKNqb26U3GpalMM2qHbTAuTcEtqFevnlGtjrVz505qH1mDWYaR1JOpGXsqt6H26Y3Gde/KNDfONn5qvXFpKtvSaDTFqjSGu5jooWfLxYsXKVNGuzz4rVu3AHB1dcXV1ZWLFy/q8uX0U7YcG3QLCwssLCyyFqBRo9QYh0HPRKvp4z8wL2O0mozEUGWiVCqNxqBnYpahRplhPK5bMM57J9p4zjAWTWYaA7rcxRh6tuzduzdXy/v0akggEAgEgv+HGE8Ui0AgEAg+TRTkgss9V5R80giDLhAIBAJ5EWPoBkG43AUCgUAg+AQQPXSB4P/au++wKK6+jePfZZdepYMIYkNBsWAXC3YssaaosRsTY42JT9SYqEmMJqYYk9cSNbbEqE/sJSgaAbuCosSOoqJSFKS3hd33D5orqCQyuxue87muvZKdGXZvZ2f3N+fMmRlBEKQlWuhaIQq6IAiCIC1ZJYxyl4kO5RcRa0gQBEEQqgDRQhcEQRCkJbrctUIUdEEQBEFaoqBrhSjogiAIgrRkBi9/DFwcQ38hsYYEQRAEoQrQSQv9y7CLzDkcweTW3nwb2AoAtVrNZyGRrI64xuPsPFq6ObC0d2t8HKtJkmFF+DVWRlznTkomAN4O1szp4EvPOtUBSMjIZtbhcxy6FUdKTh7tPZxY0qMFde2ku8vPiogbrDx3gzupGaWZ/BvRs7YrABl5SmYfiWT39XskZedR09qcic29eMevrnSZzt1g5flo7qQWrSd7a+a08ynJZLhoc7l/tyigMe+3aiBJpuXLl7N8+XJu374NgI+PD5988gmBgYEly1y5coUPP/yQ0NBQVCoVPj4+bN26FXd3d0kyrbgQw8qoGO6kZQHgbWvJnFb16enpBMCYAxFsvBKr8Tctnatx/I2OkuSBos/u3A3Nz86/Ycln96QJf5xhdeRNvu7SlKkt60uX6QXb+KdhF9l6+S6x6ZkYyQ1o5mzLpx0b06q6vXSZzkeX3cbb+tCztgvKAhWfHI3ij5txxKRmYG1sSGcPJ77o2BhXS1OdZALYce0eqyJvci4hmaTsPM6O6k4TJ2l+KyuFgazw8bKvITyX1gv62fsPWR1xjUZPbXxfH4tiyclLrOnvT107axaGXSBwwwEuTR6EpXHl36zDzcqMLzo3o7atJQAbL9xk4JYQzr7VG28HawZtDcFQbsC21zthZWTIktNX6PnrIS6+0xdzI2luHuJmZcoXAY2pXa0oU1QMA/8bxtmxPfFxsOH9Q+cIvZPA+lfa4mFtTnBMPJODzuJqacor9dykyWRpxhedGlO7mkVRptsM3HaMs6N74ONgTeykfhrLB92KY/z+MwzwqiFJHgA3NzcWLVpEnTp1AFi/fj39+vXj/Pnz+Pj4cPPmTfz9/Rk7dizz58/H2tqaK1euYGJiIl0mSxO+aOdNbZui9XT5LgP3nOLssAB8inYCe3g4srp7s5K/MZJL20FW+Nk1Kf3s/oph4O9HOTumJz4O1iXL7bp+jzMPknC1kK5AlWR6wTZe186K73s0x9PGguz8fL4/c41em49w9Z2+OJhL8/m5WZryRUff0kx/xTBw+zHOjuqOm5Up5+Mf81Fbb3wdbXick8f7h88zYPtRTo/sLkmeF2XycbAmU5lPWzd7BtV3452gcMlyVBrR5a4VWi3oGblKRm4LY8Ur7fgi7ELJdLVazdJTl5nV3pcB3jUB+HlAe6ov3sxvF28yvkXltxj61NMsOJ91bsrKiOucvv8QQ7kBp+8/IvLtvvg42gDwY2BLXL/9L5sv3WZsU2laxH3qahblzzo1ZuW5G5y+n4SPgw2n7z1ieCNPOnoUtvrealqHVedvEBGXJFlB71O3umamjr6sPB/N6QeP8HGwxvmpIrDnxn06eThSq6iwSaFv374azxcsWMDy5cs5deoUPj4+fPTRR/Tq1YuvvvqqZJlatWpJlgegTy0XjeeftfNm5cUYTscllxR0Y7kBzhIVpXIzlfnsGrPyXOlnB3A/PYupB8PZ93oA/f4bqoVMz9/Gh/jU1Jj/dddmrL1wk6jEFDp7OkuTqc5T66mDLyvP3+T0gyR8HGoR9EYnjflLujWj7YZD3E3LxN3KXAeZrHmzYU0Abhe14AUBtHwMffK+kwTWdaPLU11+MY8ziM/IpusTG7GxQk4HDydOxiZKnqtApWLLXzFkKvNp7eZAbn4BACYKeckycgMDjORyjt+VPk9Jpku3CzMVdTe2reHAnhv3uZ+ehVqtJuR2AjeS0+n2VDGRNNPlOxqZnpSQmcP+mw8Y7Stt8dTIVFDA5s2byczMpE2bNqhUKvbt20e9evXo0aMHjo6OtGrVip07d2ovk0rNlmv3yMwvoLWLbcn00HuPcF25H+91wbx96DyJWblazFT2s1Op1Yzac5LprRpotNi1mumpbfxJeQUFrD4fjbWxIb5ONtrLdPluUSa7cpdJy1UiA2yMjfQmk94rHuX+sg/hubTWQt8SdYvzcUmcGt+3zLz4jMLjjk7mmq09RwtT7qZkSJYpKuEx7dcGkZNfgIWRgt9f7YS3gw3KAhUe1ubM+fM8y3q3wtxIwZJTV4jPyCY+I1uyPABRiSm0X3+wNNOg9ngX/dgu6e7H2/vPUPOHnSgMZBjIZKzs1Qr/Go7SZ9p4qDTTQH+87csWgI1RMVgaGUra3V6SKSqKNm3akJOTg4WFBTt27MDb25v4+HgyMjJYtGgRn3/+OV9++SVBQUEMHDiQI0eO0LGjdMesox6l0n5LGDn5KiwM5fzepyXeRa3znjWdGFyvOu6WZtxOy2TuiSt033aM00M6YfzEjmOlZ0pMof2G4Cc+u/Yln93ik5dRyAyY3LyeZO//zEzP2MYB9t24z7Cdx8lS5uNiYcofQzpjbyZtz0bUwxTabzxcmmlAu3K38Zz8AmaHXuQNbw+sJDgU+E8y/SuI+6FrhVYKemxqBtP/OM3+ET0wMXz2Wz69A6ZWg0zCvTIveyvCx/cmJUfJjit3GLP7OIdHdMfbwYYtr3Zk/J6TOH69FblMRpdaLvSsU3YwUaVnsrMkfGwgKbl57Lgay5g9pzj8Zle8Haz58ex1ztx/xI5XO+Bubc7Ru4lMPnAWFwtTukjUHVmSaUyPwvV0LZYxe09zeFjnMj8u6y7eYoi3h0bPhmSZvLyIjIwkJSWFbdu2MXLkSEJDQ7GxsQGgX79+vPfeewA0adKEEydOsGLFCkkLulc1S8KHBZCSq2THjQeMOXiOw4P98baz4jWv0q7mhvZW+DlVo/aaA+y/ncAACberws+uZ+H2dC2WMXtPcfjNLmQrC/gh/DpnRveQ9Dv2zEzP2MYBOnk4ET42kEfZuayJjGbojmMcH9UDRwkPV3jZWhI+unvhNn79HmP2neHw0ACNbVxZoGLY7pOo1Gp+7O4nWZa/k0kQnqSVgn7uQRKJmTm0Wrm7ZFqBSs3RO/EsO3OFS5MHAhCfkY2LpVnJMg8zsyX9EhvJ5dSxLWxBNXe1IzwuiR/OXGV579b4udgRMb4PqTl55BWocDA3oe2a/fi5StvlVZipcCBMc5eiTGev8W23ZswJucDvg9vTq+jQhK9jNS4kpPDt6SuSFnQjuZw61Yoz2RIel8wP4ddZ3rNFyTLHYhO5lpzOr/3aSpZDI5ORUcmguObNm3P27Fm+//57fvjhBxQKBd7e3hrLN2jQgGPHjkmbSW5AnaKxA82dqhGekMIP52+xvGuTMsu6mJvgYWVG9GPpeqAKMz29PSXzw9lr1LezIjEzh1r/98R3Uq3mP39G8kP4daLffUWLmQq38eW9WgJgbqSgjq0ldbCkdXV7GizfzdoLN/mwrY+0mZ6zjSsLVAzZdYKYlAyChwRI3jqvSKZ/lSp4YZnY2FiGDx9OYmIiCoWCjz/+mFdffVWnmbRS0DvXcuX8u/01po3beQwve2tm+DeiVjVLnC1MOXzzAU1dCgtmXn4BYXcS+KKr9HvCxdRqSo6fF7M2KTxOdiMpjYi4ZOZ3aqK1PCWZCgpQqtQoVSoMntqo5TIZKrVau5lQl1lPP1+4RTPnajTW0akzarWa3NxcjIyMaNGiBdeuXdOYf/36dTw8PLSbCTW5BQXlzkvKziM2PVurg+SgeHtS8WZDzzI7gb03hzCsYU1GanEMRGmm8tcTgJqy30upFX52KqC0mEc/Tid4SAB2psZazVJepn+dKjjKXaFQsGTJEpo0aUJiYiLNmjWjV69emJtLM1CyQpm08SaWxoY0fOqH3txIgZ2Zccn0Ka29WXT0InXsrKhja8WXRy9iZihniG9tSTLN+fM8Peu44mZlTnqukq2XbhN6J4F9QzsD8PvlOziYGVPD2py/ElOYfuAs/bxq0K2cc3grLVNIJD1rueJmZUZ6Xj5bL98h9G4i+97ohJWxIR3cHZl5+DymCjnu1uaE3U3kl79iWNyl2Ytf/J9mCr1Az1ouuFkWZbpyl9C7D9n3WmnXdVqukm3XYvmqc1PJcjxp9uzZBAYGUqNGDdLT09m8eTMhISEEBQUBMGPGDF5//XU6dOhAQEAAQUFB7Nmzh5CQEMkyzTl+mZ41HXGzMCVdmc/Wa/cJvfeIff3bkpGXz6enrjKgjisu5sbcSctizokr2Jsa0b+OdAMa54RcoGftJz+7ou3p9Y7YmRljZ6ZZmAzlBjiZm+Al4bUWnreNZ+bls/DEX/Sp64aLhSlJ2bmsiLjBvbQsBjWQ5voBAHNCLxZu41ZmpOcpS7fxVzuQr1Lx+s7jnE94zM7B7SlQqUvG0diaGmEkl+bw0vMyASRn53I3LYu4oizXk9MBcDY3KXPmiSANFxcXXFwKv7+Ojo7Y2tqSnJxc9Qt6RXzg34js/AIm7z3J45w8Wla3Z//wHpKcgw6QkJnNqJ3HicvIxtrYkEZO1dg3tDNdaxUW7LiMLGYEh5OQkYOLpSlvNqrFRx0aSZKlNFMOo/acLM3kaMO+NzrR1bNwo/m1fzs+CrnAiF0nSM7Jw8PKnE87+vJ2szoSZzpFXGZOYSYHG/a91pGuT7Tutly5g1oNb0j4o6uRKSGB4cOHExcXh7W1Nb6+vgQFBdGtWzcABgwYwIoVK1i4cCFTpkzBy8uLbdu24e/vL12mrBxGBUUQl5WLtZGCRvbW7Ovflq4ejmTnF/DXozR+uXKXlFwlLuYmdHSzZ1Ov5lhKdE0DeOKze3J7er1jyfakC8/bxnPyC7j2KI2NF4/yKDsXO1NjmrvYcmR4N3wcbKTNtPepbfzVDnT1dOZ2aiZ7oh8A0HztQY2/OzQkgI7u0gxIfV4mgD3RDxi3/0zJ8sN2nwTg43Y+fOLfUJJML0VGJXS5/73Fw8LCWLx4MREREcTFxbFjxw769++vscyyZctYvHgxcXFx+Pj4sGTJEtq3b/+3o4WHh6NSqahRQ/oBwc+js4J+eHSgxnOZTMYnAU35JEA7rbxVfZ9/rHdyywZMbinNlc6eZVXv1s+d72xhypo+z1+msq3q1eqFy7zVpA5vNZFup+Jpa9aseeEyY8aMYcyYMVpIU2hVt2f3kpgq5OwfqJ2xBU9a1fvFn92TpDxuXux527iJQs5/B3eQPMPTVhUduy9PTWtzlB++rsU0hZ6XCWBkI09GNvLUUppKUImj3NPS0jQmGxsbY2xc9jBIZmYmjRs3ZvTo0QwaNKjM/C1btjBt2jSWLVtGu3btWLlyJYGBgVy+fLnkipJ+fn7k5pY9vfTgwYO4uhY2/pKSkhgxYgSrV69+uX9fJdCbFrogCIJQRVXioLinW8Fz585l3rx5ZRYPDAzUuBz007799lvGjh3LuHHjAFiyZAkHDhxg+fLlLFy4EICIiIjnRsrNzWXAgAHMmjWLtm21v9P+NFHQBUEQhH+N2NhYrKxKx3mU1zp/kby8PCIiIpg5c6bG9O7du3PixIkKvYZarWbUqFF07tyZ4cOH/+0MUhAFXRAEQZBWJY5yt7Ky0ijo/8SjR48oKCjAyclJY7qTkxPx8fEVeo3jx4+zZcsWfH19S65EuXHjRho1knas1fOIgi4IgiBIS1YJd1uT4Dz0py+qpFarK3yhJX9/f1Qq/TqNUL9O7BMEQRAEidnb2yOXy8u0xhMTE8u02v9NREEXBEEQpFXc5f6yj0piZGSEn58fwcHBGtODg4P1YnDbPyW63AVBEARpVeIo9xYtWiCXy5k4cSITJ0585uIZGRlER0eXPI+JiSEyMhJbW1vc3d2ZPn06w4cPp3nz5rRp04affvqJu3fv8s4777xcTh0SBV0QBEH41zh79myFBsWFh4cTEBBQ8nz69OkAjBw5knXr1vH666+TlJTEp59+SlxcHA0bNmT//v1av0R0ZRIFXRAEQZCWDq7l3qlTJ9QvuM/Fu+++y7vvvvsyqfSKKOiCIAiCtAwqYZT7y/79/wAxKE4QBEEQqoAKt9Bzc3M1rmlbfD3dfAMFype9Rm8lyTdQaPxXH4hMFVOcRalU6jhJqeIs+XI9Wk9y/f3sRKbn07dM+do8h7oK3g9dH8nULzrIUGTevHnMnz+/zPRNmzZhZmZW6cEEQRAE6WRlZTF06FBSU1Nf+sprz5KWloa1tTXJ6xdiZWbycq+VlYPtyFnUq1evQqPc/xdVeFdx1qxZJaMEofCDqlGjBh2Vd7FV/v1r6UohHxmHDWvSJTcGBRXaT5FcPjIOG3vSJeUKCvTjqkL5GHDYpgFdkv/Sr0y2Deny6DwKtZ5kkhlw2L4pAX9uQFGgHz0H+XJDjnQeQecbf6JQFeg6DgD5BnL+rNuZbt26YWgo3e1g/w6lUklwcDCdrx/Wr/VUrwudLx1AocrXdRyS87T4PavEY+gVHeX+v6jCBf1Zt6hToMZQT4pnMf3MpMJQT4pnMb3MpFZhqCcFvZiiQIlhvn4U9GIKVQGGelAUnmRoaKg3Bb2YPq4nhSpfLzIp9OyypcLL04+DOYIgCELVJZNVwmlr4hj6i4iCLgiCIEhLDIrTCv0Yni4IgiAIwksRLXRBEARBWjq4Utz/IrGGBEEQBGkVj3J/2QeFN2fx9vbm//7v/3T8j9I/ooUuCIIg/GuI09aeTRR0QRAEQVqiy10rREEXBEEQpCVGuWuF2OURBEEQhCpAtNAFQRAEaRkYFD5e9jWE5xIFXRAEQZBYJXS5I7rcX0QrBX3RjkPsPB3F1fuJmBoZ0sarJguH9cGrumPJMjtOX+Sn4JOcu3WPpPRMwr96nyae1SXMdJidZ6K4+qAoUz2PwkyuhZmU+QV8vOUPgs5f4VZiMtZmJnRpWJcvhvbG1dZamkx7Q9kZcYWrcQ8xNTSkTZ0aLHytO14uDiXLzN/xJ1tPRxGbnIqRQk6zmq58NqgrrWrXkCbTvqNFmR5haqQozDS4G14u9uUuP2H9HlaFRvDNGz2Y2r2NNJn+OM7Oc9e4Gp9UmKmWGwsHdcbL2a5kmTFr97Dh5EWNv2vp6cqJWaMlyfTl+ZvsjEngWkompnI5rZ1t+KJVPbxsLDSWu/I4g9mnr3E07jEqtRrvahZs6toEd0vTys8Ucp4df8Vw7WEKpoZy2ng480XPVng52JQsYzhrZbl/uyiwFe93aFLpmRYuXMj27du5evUqpqamtG3bli+//BIvL6+SZTIyMpg5cyY7d+4kKSmJmjVrMmXKFCZMmFDpeaBoPV26Xbqe3J3KrKeE9CxmHTjDoRv3SMnJpX1NF5b0bUdde2l+C1acucrK8KvcSckAwNvBhjmdmtCzrhsAarWaz0IiWR1xjcfZebR0c2Bp79b4OFaTJM9LE4PitEIrayjs0k0m9GjH8S+mEvTx2+QXqAj8fCWZOaX3V8/MyaOtV02+GNZbG5EIu3KTCT3acvzzKQR99Db5KhWBC34qyZSVl8f5mHt8NKgbZxe9x3+nj+J63EMGLP5ZukxXbzOhc0uOfzyeoBkjCzN9vZ7M3LySZeo52/H98D5Efj6J0I/GUdO+GoFfr+dhWqY0ma7dZkLnFhyfM46g90cUfnbfbtTIVGzXuSucuXUPVxtLSbKUZLp+lwkBfhyfNYqgaUML19OSTWUy9fCpxb3FU0see6e8IVmmow8eM8HHnaP9W7O/T3MKVGp67wsnU1l6E46bqVkE7DqNl40FwX1bEj64HbOb1cZEIc3XMOzWAya08eHYu/35Y2wf8gtU9Pp5H5l5pTeaiZ09XOOxalBHZDIY0LCWJJlCQ0OZOHEip06dIjg4mPz8fLp3705mZun2+9577xEUFMQvv/zClStXeO+995g8eTK7du2SJFNYTBwTWntzbEI//hjTm3yVml5r95esJ7VazaBfDhKTnMa24d05O2kQ7jYW9HxqXVYmN2szvujqx6nxfTk1vi8Bni4M/O0wlxIfA/D1sSiWnLzE971ac3J8X5wtTAnccID0XP26iZAUxHnoz6aVFvr+OW9rPF/z7hu4jPuEiFv36OBdG4A3OzYH4HZisjYisX/2eM1ME97A5a25JZmszUw5MOcdjWW+Hz2ANh99z91Hj3G3r/w94f0fjNTMNHYgLlMWEXH7AR28agIwpE1jjWW+HtKTn8MiuHgvni5F67JSM00frplpTH9cpi3WyARw/3EaU37dz/7pw3llya+VnkMj09QhmplG9cHl/SVE3ImnQz33kunGCgXO1hZP/7kk9vZurvF8VadGVN/wJ+ceptHe1RaAT85ep6e7A4tal7ZGa1mZSZZp3xjNnePVgzvhumAD5+4/pL2nKwDOlprvv+fKHTrVcqWWrTTn+QYFBWk8X7t2LY6OjkRERNChQwcATp48yciRI+nUqRMA48ePZ+XKlYSHh9OvX79Kz7RvdC+N56sHdcT1i42cu/+I9p4u3EhK5XRsIpFTB+PjVPhZ/tjPH9cFG9l84SZjW9Sv9Ex9vNw1nn/W1Y+V4Vc5HfsQbwcblp66zKz2vgzwrgnAzwPaU33xZn67eJPxEuR5aZU4yl2ch/5sOunDSM3KBsDWQrofs78rNSsHeH6m1KwcZDIZNmaV3z1a7vtlF2UyL//98vLzWRUSjrWpCY1rOOssk0qlYuSq7bzfsx0+TxxG0ZbU7NyiTCYa00Ov38Hl/e9oMGc5b2/YR6JEvRjlZipquVUzKbydqEqt5o+7D6lrbUbvfWepvv5P2u04ya6YBO1lyinswahmalLu/IT0LPZfvcvo5torCKmpqQDY2tqWTPP392f37t3cv38ftVrNkSNHuH79Oj169NBOptzi9VR4u+jc/MLbjJooSts/cgMDjBQGHL8TL3meApWKLVG3yMzLp3UNR2IeZxCfkU3XOqWHJI0Vcjp4OHEyNlHyPP9I8aC4l30Iz6X1QXFqtZoP1u+mXX1PGrq7aPvty6VWq/lgw67nZsrJU/LRb/sY0q4pVmbl/yBWeqbf/qBdPQ8aujlpzNsbeY1hy7eSlafExdqCoBkjsbc0106mLQdoV9ddI9NXfxxHITdgctdWkmcoN9PWQ7SrU4OGT+xM9GxYm0F+9fGwsybmUQrzdoXS7dtfOfPRGIwNpd3s1Wo1M05epZ1zNRraFh5+SMzOI0NZwOLIGOa3qMuCVl4cjH3EawfPE9y3JR1cbV/wqpWQaf9J2tV0pqFz+e+18dx1LI0NGeDjKWmWJzNNnz4df39/GjZsWDJ96dKlvPXWW7i5uaFQKDAwMGD16tX4+/trJdOMfSdp51G6nuo72OBhY8GcA2dYNqA95oYKlhyPIj49m/j0LMmyRCUk0371PnLyC7AwMuT3Nzrj7WjDibuFO4FOT+3oO1qYcrfomLvwv0nrBX3Kmu1E3X1A6GeTtf3WzzTl5+1E3Y0jdP6kcucr8wsY+v1GVCo1P44dpJ1MG/cSFZtA6EfjyswLaOBJxKfv8ig9izWh4QxZtoUTn7yNo5W03ctTftlfmGnWmJJpEbcf8EPwKc7OfRuZDi78MOW3A0TdTyT0PyM0pr/Wwrvk/xtWd6S5hwu1Zv3I/qhoBjSTtgU69dgV/kpK50i/1iXTVGo1AH1rOjLVtyYATeytOJnwmJ8u35W8oE/ZfYyouCRC3nl2l/W6iGsMaVIHE4l3eIpNmjSJixcvcuzYMY3pS5cu5dSpU+zevRsPDw/CwsJ49913cXFxoWvXrpJmmrL7OFHxyYS8/UrJNEO5AVuGdWP89jAcP1uP3EBGl9rV6VlPmoGoxbzsrAl/px8pOXnsuHybMTuOcviJwwNPf93UanTyHawQcWEZrdBqQZ+6Zjt7wi9xZP5E3OxstPnWzzT15+3sibjEkXnlZ1LmF/DGkg3cTkwm+JMJWmmdT924lz2RVzkyaxxu5YyoNzc2oo6THXWc7Ghdpwb1P/yOn8MimNmno3SZft3PnshrHJk5WiPTset3SEzPxHPGdyXTClRqZmw5yNLgU9xc/J50mX47wJ4L1zkyYwRu1Z5/TM3FxhIPO2tuSDxGY9qxy+y9k8jhV1riZlG6rdibGKEwkNGgmuZOV30bC07EP5Y009Tdx9h75Q5/jn8Ft2eMKTgWE8e1hyn8OkTaglls8uTJ7N69m7CwMNzc3EqmZ2dnM3v2bHbs2EHv3oVjAHx9fYmMjOTrr7+WtKBP3X2cvVfv8OdbfcusJ7/qDkRMHkRqTh55+QU4WJjSdtkO/Ko7POPVXp6RQk4du8Ltunl1e8IfPOKHU5eY4e8LQHxGNi5PjIF4mJmNo7n0v0//iExWCaPcRUF/Ea0UdLVazdQ129l5JorD8yfi6WT34j/SRqa1OwozzX0XT8eymYqLeXTcIw7NnYCdxN3aarWaqb/sY2fEZQ7PHIunQ8UG3qnVkKsskC7Tr/vZee4qhz8cVSbTm20b08Vbc0R0r29/YVgbX0b5N5Uu028H2Bl5jcPvD8fT3uaFf5OUkUVschouEg2SU6vVTDt+hV0xCQS/0hLPpwa7GckNaO5gzfUUzeP4N1IzJTllrTjT1N3H2XU5hkNvvYLncwa6/Rx+lWbV7WnsIu13U61WM3nyZHbs2EFISAienprd+0qlEqVSicFTx0vlcjkqlUqyTFP3HGfX5dscGtf3uevJ2sQIgBuPUom4/4j53VpIkqk8ajXkFqjwrGaBs4Uph28+oGnR55WXX0DYnQS+6OqntTyC/tFKQZ+8ehu/HTvH9v+MwdLEmPjHaQBYm5lgalz4BUlOz+TuoxQePC4cJHP9QeHgDmcbS5xf0Pr6R5nWbOe34+fYPmMMlqbGxKcUZzLF1MiQ/IICXvtuPedj7rHrP+MoUKlKlrG1MMNIUfmrbvLGvfx28iLbpw7F0sSI+JT0okwmmBoZkpmbxxd7QunbpD4uNpYkZWSx4s8z3EtOY3BLn0rPAzD5l338diqK7VOGFGZKLcpkWpjJzsIMu6cGEhrKDXC2tnjmueovnWlTEL+ducT2d18typRRlMkYUyNDMnLymL8njIHN6uNibcHtpFTm7DiCvYUZ/Zt6veDV/5kpxy6zOTqObT2aYWmoID6rcKCetZECU4UcgOmNPRl2KJL2LtXo6GrLwdhH7LvzkEN9W0qSafKuY2y+EM324T2wNDYsOd5rbWKE6RPd6mk5eWyLusVXvaW5bsCTJk6cyKZNm9i1axeWlpbExxcOKrO2tsbU1BQrKys6duzIjBkzMDU1xcPDg9DQUDZs2MC3334rSabJu48Xrqc3uz9zPf0edQsHcxNq2FjwV3wy0/eeoJ+3B93quj3vpf+xOYci6Fm3Om5W5qTnKdkaFUPo7Xj2De+GTCZjSmtvFh29SB07K+rYWvHl0YuYGcoZ4lv5Z7pUCtHlrhVaKegrDp4AoMu8ZRrT17z7BiMDCn/M9oRfYuyyzSXzhi7ZCMDHr3Zn7ms9Kz9TcFGm+U9lmvA6Izu15F5SKnvCLwHg9+E3Gssc+mQCnXzqVH6mP88UZlqkea77mrEDGNm+GXKZjGtxD9l47DyPMrKwszCjuWd1QmaPxae6U3kv+fKZjoQXZvpynWamMf0YKVEL/EVWhJ4DoMs3v2hMXzOqDyPbNkZuIOOv+w/55VQUKVk5uFhb0MmrJr+NH4ilibEkmVZejgWg654zGtNXd2rICK/CH/3+nk78X3sfvjp/i/eOX6GejTlbujehnYs0FwNZefoyAF1W7dHMNLgTI/1Kd2y2XIxGDbzRWPpisHz5coCSU9KKrV27llGjRgGwefNmZs2axbBhw0hOTsbDw4MFCxbwzjvvIIWS9bR6r8b01YM6lqynuPQsZuw/SUJRN/ebTevyUUAzSfIAJGRkM2r7UeLSs7A2MaKRUzX2De9G19qFI9s/8G9Edn4Bk/ee5HFOHi2r27O/aMdNL4kLy2iFTK0uGq3zN6WlpWFtbU3C+oXYmUnzI/l3KZFxwNCTHrm3MOQf/bMqnRIZB4xr0SPlEoZI02X4dykx4ICNDz2SL+pXJltfejyMwFCtJ5lkBhxw8KNb8BoM8/Xjgh1KhSHB3cbS/Vowhqr8F/+BFigNFBz06kavXr0wNNSPgqJUKtm/fz/drx7Ur/VUvzvdo/bpRaakPBXOC9aTmpoq2XndxXUiee8arMxf7jTltMwsbPuMlTTvv53Y5REEQRCkZSCrnAfiSnHPI27OIgiCIEirErvcxZXink0UdEEQBEFaYlCcVogud0EQBEGoAkQLXRAEQZCWGOWuFaKgC4IgCJKSyWQvfVlavb2srR4RuzyCIAiCUAWIFrogCIIgLdHlrhWioAuCIAjSEgVdK8QaEgRBEIQqQLTQBUEQBGnJSq/09lKvITxXhQt6bm4uubm5Jc/T0grvPJaPDCX6saLzi3Lk60keeDKT/nSGFGfRy0x61K1WnCVfrh/XJ4fSLPkGch0nKVWcRanUj+vdQ2kWfVxP+Qb60Y7KN9DiPRNEl7tWVPjmLPPmzWP+/Pllpm/atAkzs5e76L4gCIKgXVlZWQwdOlQrN2d5/Od/sbJ4yZuzZGRRrfOr1KtXD7lczsSJE5k4cWIlJa0aKryrOGvWLKZPn17yPC0tjRo1atAxPxbbfBNJwv1d+cg4rHCni/o+Cj2521o+Mg7LqtOFB/qVCVe6ZN1EoSd3W8vHgMNmtenWrZte3bErODiYLsrb+vXZGdakC/H6lQlnuiiSUcj0JJNaxuF8W7qQoF+ZcKJz5F4UenC3teQ8bbbQK+/Sr+Ja7s9W4YJubGyMsXHZ26QqQG9uVVpMgVpkqgAFKr25fWoxQ0NDvSnoxfTzs1NjqCeFqnjVKGR6lKmI3mVSg0KVrxe3T1Vo8zbFMlkldLnrz6FUfaUfB3MEQRCEqkvcnEUrxCgDQRAEQagCRAtdEARBkJYY5a4VoqALgiAI0jKohPPQX/bv/weIXR5BEARBqAJEC10QBEGQluhy1wpR0AVBEARpiVHuWiF2eQRBEAShChAtdEEQBEFaostdK0RBFwRBEKQluty1QisFfdH2YHaevsjV+4mYGhnSxqsmC9/si1d1p5Jl1Go1n24NYvWhkzzOzKZlHXd+eGswPjVcJMsVdimab3Ye5tzNu8Q9TmPbzHH0a9W4ZH5CShqzNuwiOPIqKZnZtPepw/fjBlPX1VHaTDsOPZHpLfq1Ls2UkZ3L7I272HX6IknpmdR0tGVS7068E9heukxXbvHN3jDOxdwjLiWdbe+NoF8Ln5L5iqEflvt3i4b04oO+HaXJFBbG4sWLiYiIIC4ujh07dtC/f3+NZa5cucKHH35IaGgoKpUKHx8ftm7diru7uzSZLt/km91HOHfrXuFnN2M0/Vo2Kpk/5sff2BB6VuNvWtZ158QX0yTJAxB26Qbf7AjmXHQscY9T2TZrPP1aNyl32QnLNrHqwDG+GTuYqa90li5T1HW+2RbEueg7xCWnsm3ORPq1bVoyf/4vu9gadpbYh8kYGSpoVseDz0YMoFX9WtJl+qtoPd28W5hp9tsl60mZX8DHv+wmKOIvbsU/wtrclC6N6/PFiP642tlIlunonQS+OXWZc3HJxGVk8/urHennVaNk/o6rd1l17gbn4pJJys7l7LheNHG2lSyPoP+00ocRdvkmE3r6c3zhNII+mUB+gYrAz1aQmVN6O9bFOw+zZG8IS8cO4tSi6TjbWNHz0+WkZ+dIliszJxffmtVZ+tarZeap1WoGLlzFrYQkts8aT/i3H+LhYEuPeT9q5JYkk2d1lo5/rdz57/+8jQPnLrN+2gj++mEOU/sGMHXVf9l9+qJ0mXLz8PVwYemo/uXOv7dsjsZj9fjByGQyBrZsKF2mzEwaN27Mjz/+WO78mzdv4u/vT/369QkJCeHChQt8/PHHmJhIdyOhwvXkytKxA5+5TI8m9bn307ySx95Zb0mWByAzJw/fmm4sfbv87anYrlORnLl+G1dba0nzFGbKxdezBksnDC13fr3qznw/YSiRy+YTuvhDajraETjnOx6mpkuXKbf4e/d6mXlZuXmcv3mXj17vxdnvZvHfmeO5fj+BAQuWS5YHIFOZj69jNb7v2aL8+Xn5tHVzYEHnJpLmqBTFXe4v+xCeSyst9P1z3tF4vmbiUFzGziHi1j06eNdGrVazdF8YswZ2Y0BRa3Tt5GG4jp3Db0cjGN+9nSS5Av18CPTzKXfejQcPOX39Nhe+n42Pe2EvwY/jX8Nl1Cw2H41gbLe2Ws8EcOpaDMMDWtGpUT0A3urhz6oDxwmPvssrrXylydSkPoFN6j9zvrONpcbz3RGX6eRdi1pOdpLkAQgMDCQwMPCZ8z/66CN69erFV199VTKtVi3pWngAgU0bENi0wXOXMTZU4FxNe3eKetH2BHA/KYUpP21l/7xJvPLZMukztWhEYItGz5w/JKCVxvOvx7/OzwePcTHmHl2aPH/9/uNMfg0J9Ct/B9Ta3JQDn03VmPb926/T5v0vufswGXcHaVrFPetUp2ed6s+c/6Zv4fZ8OyVDkvevVAYGhY+XfQ2gRYsW4vapz6CTXZ7UrGwAbIvujxuTmER8ShrdGpcWDWNDBR2863Dy2m1dRCQ3v/BuSCaGpfs8crkBRoYKjl+5qZNMAO0a1GLv2SjuJ6WgVqs5EnWd6w8S6f6CQqItCanp7I+8yphO5bcqtEGlUrFv3z7q1atHjx49cHR0pFWrVuzcuVNnmYqFXorGZewnNJiykLdXbCFRwlZnRahUKkZ+t473B3TFx91Vp1nKk6fMZ9UfYVibm9LY003XcUqkZmYjk8mwMTfVdZR/BZlMVikPKLx96uXLl0UxL4fWC7pareaD9TtpV78WDYtavvGPC3/UnJ5q6TnZWBKfkqbtiADUr+6Eh4MtH/2yh8cZWeQp8/ly20HiH6cR91g3mQCWjHuVBjWc8Rg7B9PBU+k9fxk/vv06/t61dZbpSRvCIrA0MWZAC+m6218kMTGRjIwMFi1aRM+ePTl48CADBgxg4MCBhIaG6ixXz6b12TDlTYLnTuCrEa8QHh1Lt/nLyVXq7laaX20/iEJuwOQ+ATrLUJ69py9gPXAi5v0n8P3OYIIWTMfe2vLFf6gFOXlKPtqwkyEdWmBlJgq6oD+0Psp9yuptRN15QOjnU8vMe3oQo1qtLtkr0zZDhZytH45l/I+bcBj+IXIDA7o09qJnM2+d5Cn2w74QTl+7zY7Zb+PhaMvRS9FMWrkFZ1srujZ+dre4tqwLCWdou6aYGOnunuYqVeF9nvv168d7770HQJMmTThx4gQrVqygY0dpBuq9yGvtSgd+NXR3oXntGtSa8Bn7z11mgESHS54nIvouP+wJ4ey3M3X2PXuWgMb1ifjxEx6lZbAm6ChDFq7kxHezcbTR3uGK8ijzCxi6eA0qlZofJ7yh0yz/KuJ+6Fqh1YI+dc029oT/xZFPJ+P2xOhQ52qFe97xj9NxqVY6KCcxNQMnHe6V+9V2J+K7maRmZpOXn4+DtSVt/vM1zWtLM0r6RbJz85jzyx5+n/kWvZsXtoB9a1bnQsw9vt15WOcF/ejVGK7FPWTTlPIHO2mLvb09CoUCb2/Nna8GDRpw7NgxHaUqy6WaFR4O1bgR91An73/scjSJqel4jptTMq1ApWLG2m0s3fMnN1d9rpNcAOYmxtRxdaKOqxOt69em/rjZ/HzgGDNf76WzTMr8At74ahW3Ex4R/Pk00Tr/O8Rpa1qhlYKuVquZumYbO89EcXj+JDyfGizl6WiHs40Vhy5eo2mtwuNkecp8wi5Hs/DNvtqI+FzWRcfJbjxIJOLmXeYP7a2THMqCApT5BRg8tWHLDQxQqdQ6yfSktSFn8fOsTmMP3R6LNTIyokWLFly7dk1j+vXr1/Hw8NBRqrKS0jOJTUrBRYuD5J70ZqeWdHlqJ7DXvB8Y1qkVo7q00UmmZ1Gr1eQqlTp7/+JiHv0gkUML3sPOykJnWQThWbRS0Cev/p3fjkaw/cNxWJoYE190DNrazARTYyNkMhlTendg0fZg6ro4UMfFgUXbgzEzNmJIez/JcmVk5xIdX9o6iklIIjLmHrYWZrg72PL78fPYW1vgbl+Nv+484L012+jX0pfuEo20Lcn0RIstJjGJyFv3sLUszNTBpw4z1+/E1MgQD0dbwv6KZmPIGb4e/exTpV46U04u0fFJpZkeJhN5+wG2Fqa421cDIC0rh99PX2TxsD6S5dDIlJFBdHR0aaaYGCIjI7G1tcXd3Z0ZM2bw+uuv06FDBwICAggKCmLPnj2EhIRIlyk7l+j4R6WZEpOJjLmPrYUZthZmzP/vAQa28sWlmhW3HyYzZ9N+7C3N6d/y2SO+Xz5Tjub2lJBE5K1YbC3NcXewLVOYDBVynKtZ4eXm9PRLVW6mB4lPZHpI5M272FqaY2dlwReb99G3dWNcqtmQlJ7Bir1HuPfoMYPbN5c20zPWk6utNa8t+onzt2LZ9fG7FKhUxD9OBcDWwhwjQ2l+RjPylEQnlw6ajEnJIDI+GVtTY9ytzUnOzuVuaiZxGYWDjK8nFf6uOluY4myhb70HlXHamTht7UW0UtBXHDgOQJe5mucMr5k4hJFFp6jM6N+F7Dwlk1b9zuPMLFrW9eCPjydgaSrdecPhN+/S9eOlJc8/WLsDgBEBLfl5ynDiHqfywdrtJKSm41LNijc7tWTOqz0lywMQHn1HM9PP24syteLnqcPZ9MEYPtq4ixHfrSc5IwsPB1s+G9aHt3v6S5fp1j26fv5TaaZf9hZm6uDHz+8Unt+85eQF1Gp4o23jcl+j0jOFhxMQUDqQa/r06QCMHDmSdevWMWDAAFasWMHChQuZMmUKXl5ebNu2DX9/KddTLF3nlZ729cH6XQCM6NiC/3trEH/djeOX0HBSMrNxqWZFJ586/PbecGm38ei7dJ2zpDTTz9sKM3Vuzc9TR0j2vs/NdOM2XWd+XZpp1dbCTF3bsmzScK7di2PjghM8Ss3Azsqc5vU8CVn8IT4ezz6F66UzRd+l60fflWZa83thps6t+WRIH/acKbzOg9/UBRp/d2jBeyWnkFa2iAdJdP3lUMnzGcERAAz3rcXPr7Rlz/V7jNtzsmT+sB2Fh5M+bt+ITzpq53tYYaLLXStkarX6H/XVpqWlYW1tTcKGL7EzM67sXP+IEhkHFB70UN/DEN13QUNRJpkbPbivX5moTo+sGxii0nUcAJQYcMCsLr169cLQUHcD6p6kVCrZv38/PZQx+vXZGXrSgzgMZXqSSS3jAC70MEzSr0xKO3rI4vUrk9qZ7ud2YqjS3ZkNxZKUKpy/3ERqaipWVtIc9imuEynnQ7GyfLnDFGnpGdg07Shp3n87cS13QRAEQVqVeGEZ4dlEQRcEQRCkJbrctULs8giCIAhCFSBa6IIgCIK0xP3QtUIUdEEQBEFaostdK0RBFwRBECQmK3q87GsIzyP6MARBEAShChAtdEEQBEFaostdK0RBFwRBEKQlCrpWiC53QRAEQagCRAtdEARBkJgYFKcNoqALgiAI0hJd7lpR4YKem5tLbm5uyfO0tMJb9eVTeMMIfZBflCNfT/KAvmfSnyMuxVmUOrzn9dOKs+jnZydDT+4XU5pJrUfrSa3HmQz0ox2VL9OPGzMJlafCd1ubN28e8+fPLzN906ZNmJmZVXowQRAEQTpZWVkMHTpUO3dbuxpeOXdbq9+cevXqIZfLmThxIhMnTqykpFVDhQt6eS30GjVqEBcXh52dnWQB/w6lUklwcDDdunXTq1twikwvps+ZuqRfR6Ent5nNx4DDlvXo2qQuhnK5ruMAoCwo4FDkDbr61MRQrh+9PsoCFYcu3dbL7alrXScUerCeklPTcW3VVUsFPaKSCrqfuH3qc1S478fY2Bhj47L3PTc0NNSbL0wxkaliRKaKUaDSm/vGFzOUy/WmoBczlBvoTUEvppfbk56sJ4Vcfw5HCJVDPw7mCIIgCFWXGBSnFaKgC4IgCNKSUQkFvVKSVGmioAuCIAgSE+eha4PuD+QIgiAIgvDSRAtdEARBkJY4hq4VoqALgiAIEhNd7togutwFQRAEoQoQLXRBEARBWqLLXStEQRcEQRCkJQq6Vogud0EQBEGoAnRW0MPCwujbty+urq7IZDJ27typqyglFi5cSIsWLbC0tMTR0ZH+/ftz7do1nWZavnw5vr6+WFlZYWVlRZs2bfjjjz90mulJCxcuRCaTMW3aNJ3mmDdvHjKZTOPh7Oys00wA95NTGbF8K44TPsNy7Fz8PvqBiJj7Osvj2bITBq51yzwmzpqns0z5+fnMWbyUWu16YFbPj9r+Pfn0++WoVLq73G56ejrTpk3Dw8MDU1NT2rZty9mzZ7WaIezMOV4Z/x5u7QKR123BzuAQjflqtZr5S3/CrV0g5g396TzsbS7duKnVjBUnq6SH8Dw6K+iZmZk0btyYH3/8UVcRyggNDWXixImcOnWK4OBg8vPz6d69O5mZmTrL5ObmxqJFiwgPDyc8PJzOnTvTr18/Ll26pLNMxc6ePctPP/2Er6+vrqMA4OPjQ1xcXMkjKipKp3keZ2bT4bOVGMoN2PvBKKIWTeOroYHYmJnoLNOZP7bxIPJEyePg5nUAvNo3UGeZvly+hpW/buWHT2dz+fBuvpw1na9XruWHdb/qLNO4ceMIDg5m48aNREVF0b17d7p27cr9+9rbGcvMzqZx/Xos/WRGufMX/7SB737exNJPZnB6+zqcHOzoMWoS6Rm6+716lqd3tv/pQ3g+nR1DDwwMJDBQdz8i5QkKCtJ4vnbtWhwdHYmIiKBDhw46ydS3b1+N5wsWLGD58uWcOnUKHx8fnWQCyMjIYNiwYaxatYrPP/9cZzmepFAo9KJVXuyrvaG42VqzZvzgkmk1HarpMBE4PHVnxEU/rqR2TXc6tmmpo0Rw6twFXukWQO8uHQGoWaM6m3fvJ+KibnZas7Oz2bZtG7t27Sr53s+bN4+dO3eyfPlyrW3vgR3bEdixXbnz1Go136//jdkTRjOwR2cA1n05D5c2Pdi05wBvDxmolYyCfhHH0J8jNTUVAFtbWx0nKVRQUMDmzZvJzMykTZs2Os0yceJEevfuTdeuXXWa40k3btzA1dUVT09P3njjDW7duqXTPHvPXcHP043Xl27C5d0FNJ/zA6uPaLfb9nny8vL4ddtuRr8xWKetn3YtmvHnidNcv3UbgAuXr3Is/ByBAbrZic7Pz6egoAATE82eFFNTU44dO6aTTE+Lib1P/MMkuvm3LplmbGxEh5bNOHn+og6TPUPxoLiXfQjPJUa5P4NarWb69On4+/vTsGFDnWaJioqiTZs25OTkYGFhwY4dO/D29tZZns2bN3Pu3DmtH1N8nlatWrFhwwbq1atHQkICn3/+OW3btuXSpUvYPdUq1ZZbDx+z8s/TTOvZjpmvdOLsrVimbdyDsaGc4f7NdJLpSTuDDpGSlsao13TbmvtwwlhS09Np0LkvcrmcgoICPp8xhSH9eukkj6WlJW3atOGzzz6jQYMGODk58dtvv3H69Gnq1q2rk0xPi3+UBICTvWZjw8neljv343UR6QXEhWW0QRT0Z5g0aRIXL17Uiz1yLy8vIiMjSUlJYdu2bYwcOZLQ0FCdFPXY2FimTp3KwYMHy7RgdOnJwzeNGjWiTZs21K5dm/Xr1zN9+nSdZFKp1Ph5VmfBaz0AaFrTlcv3Ellx+LReFPSff/svgQEdcHV20mmOLXv+4Ncde/l16Zf41KtD5OWrvDf/S1ydHBk5uJ9OMm3cuJExY8ZQvXp15HI5zZo1Y+jQoZw7d04neZ7l6Z4VtVqtpw3Zymhh6+U/TK+ILvdyTJ48md27d3PkyBHc3Nx0HQcjIyPq1KlD8+bNWbhwIY0bN+b777/XSZaIiAgSExPx8/NDoVCgUCgIDQ1l6dKlKBQKCgoKdJLraebm5jRq1IgbN27oLIOLjSXe1R01ptV3dSA2KVVHiUrduXefQ0dPMHboa7qOwn+++IYPJ4zjjVd60ah+PYYPfIVpY0ewaNlqnWWqXbs2oaGhZGRkEBsby5kzZ1AqlXh6euos05Oc7Qt7neIfJmlMT0x6jJO9bnqkBN0TBf0JarWaSZMmsX37dv7880+9+fI+Ta1Wk5ubq5P37tKlC1FRUURGRpY8mjdvzrBhw4iMjEQul+sk19Nyc3O5cuUKLi4uOsvQtp471+Ieaky7Hp+Eu52NbgI9Ye3mbTja29G7ayddRyErOwcDA83Wl1xuoNPT1oqZm5vj4uLC48ePOXDgAP366abH4GmeNarj7GDHoeOnS6bl5SkJO3OONk3146wTDeIYulborMs9IyOD6OjokucxMTFERkZia2uLu7u7TjJNnDiRTZs2sWvXLiwtLYmPLzwWZW1tjampqU4yzZ49m8DAQGrUqEF6ejqbN28mJCSkzIh8bbG0tCwzpsDc3Bw7OzudjjX44IMP6Nu3L+7u7iQmJvL555+TlpbGyJEjdZZpak9/2n+6goW7Q3i1VSPO3oxl9ZEzrBgzQGeZAFQqFeu2bGPEqwNQKHR/1K1v10588eMq3F1d8KlXh/OXrvDd6g2Mfk136+nAgQOo1Wq8vLyIjo5mxowZeHl5MXr0aK1lyMjMIvpObMnz2/ceEHn5GrY21ri7OjN15BAWrlhLnZo1qFuzBguXr8PM1IShfXtoLWPFiWPo2qCzb3N4eDgBAQElz4uPc44cOZJ169bpJNPy5csB6NSpk8b0tWvXMmrUKO0HAhISEhg+fDhxcXFYW1vj6+tLUFAQ3bp100kefXXv3j2GDBnCo0ePcHBwoHXr1pw6dQoPDw+dZWpRy43fp77JnK0H+Hznn3g6VOPbN/swtF0TnWUCOBR2nLv3HzDmjcEvXlgLls6fzcff/MDEjz8n8VEyrk4OjB/6Kp9MnaCzTKmpqcyaNYt79+5ha2vLoEGDWLBgAYaGhlrLEP7XFbq8+U7J8/e/+A6AEQN6s/arecwYP4Ls3FwmzfuSx6nptGrsQ9DaH7C0MNdaRkG/6Kygd+rUCbVarau3L5e+5QFYs2aNriO8UEhIiK4jsHnzZl1HKFefpvXp07S+rmNo6N6pPaoHuhtb8DRLC3OWzJ3JkrkzdR2lxGuvvcZrr+l2fEGnVn4U3Hj2mSQymYy5U8Yzd8p4Lab6h8S13LVC9/1tgiAIQtUmety1QgyKEwRBEIQqQLTQBUEQBImJJro2iIIuCIIgSEscQ9cK0eUuCIIgCFWAaKELgiAI0hItdK0QBV0QBEGQmDiGrg2ioAuCIAjSklEJLfRKSVKliWPogiAIgvA3paen06JFC5o0aUKjRo1YtWqVriOJFrogCIIgsSp4DN3MzIzQ0FDMzMzIysqiYcOGDBw4EDs73d3tThR0QRAEQWJV7xi6XC7HzMwMgJycHAoKCnR++XDR5S4IgiBUOWFhYfTt2xdXV1dkMhk7d+4ss8yyZcvw9PTExMQEPz8/jh49+rfeIyUlhcaNG+Pm5sZ//vMf7O3tKyn9P1PhFnpubq7GPbhTU1MBSE5OrvxU/5BSqSQrK4ukpCSt3hXpeUSmitHnTMnZeSjQ/b25AfIxIEueRVJKKoZ6cu95ZUFB4WeXkoahXD/aCMoClf5uT6npKOS6b20+Ts0AtHNTqrSMjJfuMk/LKMyblpamMd3Y2BhjY+Myy2dmZtK4cWNGjx7NoEGDyszfsmUL06ZNY9myZbRr146VK1cSGBjI5cuXS27h7efnp1H3ih08eBBXV1dsbGy4cOECCQkJDBw4kMGDB+Pk5PRS/86Xoq6guXPnqgHxEA/xEA/xqEKPmzdvVrQM/G3Z2dlqZ2fnSstqYWFRZtrcuXNfmANQ79ixQ2Nay5Yt1e+8847GtPr166tnzpz5j/6t77zzjnrr1q3/6G8rS4Vb6LNmzSq5ZzkUdjV4eHhw9+5drK2tK/oykkpLS6NGjRrExsZiZWWl6ziAyFRRIlPFiEwVIzK9WGpqKu7u7tja2kr2HiYmJsTExJCXl1cpr6dWq5E91dIvr3X+Inl5eURERDBzpuYte7t3786JEycq9BoJCQmYmppiZWVFWloaYWFhTJgw4W9nqUwVLujP6tawtrbWi43zSVZWViJTBYhMFSMyVYzIVDH6lsnAQNrDJCYmJpiYmEj6Hn/Xo0ePKCgoKNM97uTkRHx8fIVe4969e4wdOxa1Wo1arWbSpEn4+vpKEbfCxCh3QRAE4X/S06398noAnsXPz4/IyEgJUv1z+jGCRRAEQRC0xN7eHrlcXqY1npiYqNtBbS/pHxd0Y2Nj5s6d+4+OX0hFZKoYkaliRKaKEZkqRt8y6VsebTIyMsLPz4/g4GCN6cHBwbRt21ZHqV6eTK3W8ZnwgiAIglDJMjIyiI6OBqBp06Z8++23BAQEYGtri7u7O1u2bGH48OGsWLGCNm3a8NNPP7Fq1SouXbqEh4eHjtP/M6KgC4IgCFVOSEgIAQEBZaaPHDmSdevWAYUXlvnqq6+Ii4ujYcOGfPfdd3To0EHLSSuPKOiCIAiCUAWIQXGCIAiCUAWIgi4IgiAIVYAo6IIgCIJQBYiCLgiCIAhVgCjogiAIglAFiIIuCIIgCFWAKOiCIAiCUAWIgi4IgiAIVYAo6IIgCIJQBYiCLgiCIAhVgCjogiAIglAFiIIuCIIgCFXA/wPjF1X83gNhWwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFtUlEQVR4nOyddXwUx9+An4u7O8QgJJDgwd0huLUUiktpKaVAS4sWKE4pxa24Q1u8QAjuFtyDBA+BKBGSu9y+f4QcHAmQlOxxP955+rlPud253Scze/fdkZ1RSJIkIRAIBAKB4H8ag48tIBAIBAKB4MMRAV0gEAgEgk8AEdAFAoFAIPgEEAFdIBAIBIJPABHQBQKBQCD4BBABXSAQCASCTwAR0AUCgUAg+AQQAV0gEAgEgk8AEdAFAoFAIPgEEAH9IzBq1CgUCoXWNh8fH7p27Zqn4xw9epRRo0YRHx+fp8+9ea79+/ejUCj4+++/83Scd5GSksKoUaPYv39/tn1Lly5FoVAQGRmZb+eTg5kzZ+Ln54eJiQkKhYL4+HjGjx/Ppk2bdOaQmJjIuHHjqFWrFm5ublhZWVGiRAkmTZrEixcvsqVXKpWMHj0aHx8fTE1NKVq0KDNnztSZr0Ag+HgYfWwBQSYbN27ExsYmT585evQoo0ePpmvXrtjZ2cl6rrySkpLC6NGjAahVq5bWviZNmnDs2DHc3d1ldfgQzp07R79+/ejZsyddunTByMgIa2trxo8fT9u2bWnZsqVOPO7du8e0adPo1KkTAwcOxMrKikOHDjFq1CjCwsIICwvTujns06cPK1asYMyYMZQvX57Q0FC+//57nj9/ztChQ3XiLBAIPg4ioOsJZcqUkf0cqampmJub6+Rc78LZ2RlnZ+eP6vA+Ll++DECvXr2oUKGCrOfKyMhApVJhamqabZ+vry+RkZFYWlpqttWpUwdLS0sGDRrEkSNHqFatmsZ50aJFjBs3jkGDBgGZN1MxMTGMHTuWr7/+GgcHB1n/FoFA8PEQTe4y8++//1K6dGlMTU3x9fVlypQpOaZ7sxlcrVYzduxYAgICMDc3x87OjpIlSzJ9+nQgs9k+60fb19cXhUKBQqHQNHH7+PjQtGlTNmzYQJkyZTAzM9PUmN/WvP/ixQsGDhyIm5sb5ubm1KxZk7Nnz2qlqVWrVrYaN0DXrl3x8fEBIDIyUhOwR48erXHLOufbmtwXL15MqVKlMDMzw8HBgVatWnH16tVs57GysuLmzZs0btwYKysrPD09+eGHH0hLS8sxb19n3bp1NGjQAHd3d8zNzSlWrBiDBw8mOTlZ62/s2LEjABUrVtS4KxQKkpOTWbZsmeZvej0voqKi6N27NwULFsTExARfX19Gjx6NSqXSpImMjEShUDB58mTGjh2Lr68vpqam7Nu3L0dfS0tLrWCeRdZNxv379zXbNm3ahCRJdOvWTSttt27dSE1NZefOne/Mm6yuoAsXLvDZZ59ha2uLg4MDAwcORKVScf36dRo1aoS1tTU+Pj5Mnjw52zHu3btHx44dcXFxwdTUlGLFivH777+jVquBzC4BFxcXOnXqlO2z8fHxmJubM3DgQM22xMREfvzxR3x9fTExMaFAgQL0799fq7wA/vrrLypWrIitrS0WFhYUKlSI7t27v/PvFQg+NUQNXUb27NlDixYtqFy5MmvXriUjI4PJkyfz5MmT93528uTJjBo1iuHDh1OjRg2USiXXrl3T9Jf37NmT2NhYZs6cyYYNGzTN14GBgZpjnDlzhqtXrzJ8+HB8fX1zDAyvM3ToUMqWLcvChQtJSEhg1KhR1KpVi7Nnz1KoUKFc/93u7u7s3LmTRo0a0aNHD3r27Anwzlr5hAkTGDp0KO3bt2fChAnExMQwatQoKleuzKlTpyhSpIgmrVKppHnz5vTo0YMffviBgwcPMmbMGGxtbfnll1/e6RYREUHjxo3p378/lpaWXLt2jUmTJnHy5En27t0LwJw5c1izZg1jx45lyZIlFC1aFGdnZ77++mvq1KlD7dq1GTFiBICm6yIqKooKFSpgYGDAL7/8QuHChTl27Bhjx44lMjKSJUuWaHnMmDEDf39/pkyZgo2NjdbflxuyXIOCgjTbLl26hLOzM25ublppS5YsqdmfGz7//HM6duxI7969CQsLY/LkySiVSnbv3k2fPn348ccfWb16NT///DN+fn60bt0agKdPn1KlShXS09MZM2YMPj4+bNu2jR9//JFbt24xZ84cjI2N6dixI/PmzWP27NlaXT9r1qzhxYsXmhuSlJQUatasyYMHDxg6dCglS5bk8uXL/PLLL1y8eJHdu3ejUCg4duwY7dq1o127dowaNQozMzPu3r2rySOB4P8NkkA2KlasKHl4eEipqamabYmJiZKDg4P0ZtZ7e3tLXbp00bxv2rSpVLp06Xce/7fffpMA6c6dO9n2eXt7S4aGhtL169dz3Pf6ufbt2ycBUtmyZSW1Wq3ZHhkZKRkbG0s9e/bUbKtZs6ZUs2bNbMfs0qWL5O3trXn/9OlTCZBGjhyZLe2SJUu0vOPi4iRzc3OpcePGWunu3bsnmZqaSh06dNA6DyCtX79eK23jxo2lgICAbOd6F2q1WlIqldKBAwckQDp//nw2x1OnTml9xtLSUivvsujdu7dkZWUl3b17V2v7lClTJEC6fPmyJEmSdOfOHQmQChcuLKWnp+fJN4vz589L5ubmUqtWrbS2169f/615YGJiIn311VfvPO7IkSMlQPr999+1tpcuXVoCpA0bNmi2KZVKydnZWWrdurVm2+DBgyVAOnHihNbnv/nmG0mhUGiuxQsXLkiAtGDBAq10FSpUkIKDgzXvJ0yYIBkYGGQrg7///lsCpO3bt0uS9CqP4+Pj3/n3CQSfOqLJXSaSk5M5deoUrVu3xszMTLPd2tqaZs2avffzFSpU4Pz58/Tp04fQ0FASExPz7FCyZEn8/f1znb5Dhw5aA6y8vb2pUqXKW5uD84tjx46RmpqarRvA09OTOnXqsGfPHq3tCoUiWx6WLFmSu3fvvvdct2/fpkOHDri5uWFoaIixsTE1a9YEyNa8nxe2bdtG7dq18fDwQKVSaV4hISEAHDhwQCt98+bNMTY2zvN5IiMjadq0KZ6enixcuDDb/jefnsjtvtdp2rSp1vtixYqhUCg0fwuAkZERfn5+Wnm+d+9eAgMDs4056Nq1K5IkaWrMJUqUIDg4WKvV4urVq5w8eVKrmXzbtm0UL16c0qVLa+Vpw4YNtbqXypcvD2S2LKxfv56HDx/m6u8UCD41RECXibi4ONRqdbbmTyDHbW8yZMgQpkyZwvHjxwkJCcHR0ZG6dety+vTpXDvkdRT521xjYmLydJy8knX8nHw9PDyynd/CwkLrJgnA1NQ0x8e4XicpKYnq1atz4sQJxo4dy/79+zl16hQbNmwAMgcN/leePHnC1q1bMTY21nplNYk/e/ZMK/1/GeF/9+5dateujZGREXv27Mk2wM3R0THHskpOTiY9PT3XA+LeTGdiYpJjnpuYmGjleUxMzFvLMGt/Ft27d+fYsWNcu3YNgCVLlmBqakr79u01aZ48ecKFCxey5am1tTWSJGnytEaNGmzatAmVSkXnzp0pWLAgxYsXZ82aNbn6ewWCTwXRhy4T9vb2KBQKoqKisu3LadubGBkZMXDgQAYOHEh8fDy7d+9m6NChNGzYkPv372NhYfHeY+S2RvYur6ioKBwdHTXvzczMSEhIyJbuzYCVF7KO//jx42z7Hj16hJOT038+9uvs3buXR48esX//fk2tHMjzc/w54eTkRMmSJRk3blyO+7OCWhZ5LZu7d+9Sq1YtJEli//79FCxYMFuaEiVKsHbtWqKiorRuzi5evAhA8eLF83TOvOLo6PjWMgS0yrF9+/YMHDiQpUuXMm7cOFasWEHLli2xt7fXpHFycsLc3JzFixfneL7Xj9eiRQtatGhBWloax48fZ8KECXTo0AEfHx8qV66cX3+iQKDXiBq6TFhaWlKhQgU2bNigVYt5/vw5W7duzdOx7OzsaNu2Ld9++y2xsbGa0eFZjzl9SM3yddasWYMkSZr3d+/e5ejRo1ojuX18fLhx44bWiPKYmBiOHj2qday8uFWuXBlzc3NWrlyptf3Bgwfs3buXunXr/pc/JxtZQfTNx8Pmz5+f62OYmprm+Dc1bdqUS5cuUbhwYcqVK5ft9WZAzwv37t2jVq1aZGRksHfvXry9vXNM16JFCxQKBcuWLdPavnTpUszNzWnUqNF/dsgNdevW5cqVK5w5c0Zr+/Lly1EoFNSuXVuzzd7enpYtW7J8+XK2bdtGVFRUtlHpTZs25datWzg6OuaYp1lPVbyOqakpNWvWZNKkSQDZntIQCD5lRA1dRsaMGUOjRo2oX78+P/zwAxkZGUyaNAlLS0tiY2Pf+dlmzZpRvHhxypUrh7OzM3fv3mXatGl4e3trRkSXKFECgOnTp9OlSxeMjY0JCAjA2tr6P/lGR0fTqlUrevXqRUJCAiNHjsTMzIwhQ4Zo0nTq1In58+fTsWNHevXqRUxMDJMnT842UY21tTXe3t5s3ryZunXr4uDggJOTU44/wnZ2dowYMYKhQ4fSuXNn2rdvT0xMDKNHj8bMzIyRI0f+p7/nTapUqYK9vT1ff/01I0eOxNjYmFWrVnH+/PlcH6NEiRLs37+frVu34u7ujrW1NQEBAfz666+EhYVRpUoV+vXrR0BAAC9evCAyMpLt27czb968HGvV7yM6OpratWvz+PFjFi1aRHR0NNHR0Zr9BQsW1Bw3KCiIHj16MHLkSAwNDSlfvjy7du1iwYIFjB07VvZn0AcMGMDy5ctp0qQJv/76K97e3vz777/MmTOHb775Jtt4ju7du7Nu3Tr69u1LwYIFqVevntb+/v37888//1CjRg0GDBhAyZIlUavV3Lt3j127dvHDDz9QsWJFfvnlFx48eEDdunUpWLAg8fHxTJ8+XWt8hEDw/4KPOybv02fLli1SyZIlJRMTE8nLy0uaOHGiZjTx67w58vz333+XqlSpIjk5OWk+26NHDykyMlLrc0OGDJE8PDwkAwMDCZD27dunOV6TJk1ydHrbKPcVK1ZI/fr1k5ydnSVTU1OpevXq0unTp7N9ftmyZVKxYsUkMzMzKTAwUFq3bl22Ue6SJEm7d++WypQpI5mamkqA5pxvjnLPYuHChZq8srW1lVq0aKEZHZ5Fly5dJEtLy2xOOeVpThw9elSqXLmyZGFhITk7O0s9e/aUzpw5IwHSkiVLNOneNsr93LlzUtWqVSULCwsJ0Brx//TpU6lfv36Sr6+vZGxsLDk4OEjBwcHSsGHDpKSkJEmSXo1y/+23397rKkmvyuZtrzefIkhPT5dGjhwpeXl5SSYmJpK/v780Y8aMXJ0rKw+fPn2qtf1teV6zZk0pKChIa9vdu3elDh06SI6OjpKxsbEUEBAg/fbbb1JGRka2z2dkZEienp4SIA0bNixHp6SkJGn48OFSQECA5rooUaKENGDAACkqKkqSJEnatm2bFBISIhUoUEAyMTGRXFxcpMaNG0uHDh3K1d8tEHwqKCTptTZWgUAgEAgE/5OIPnSBQCAQCD4BREAXCAQCgSAHtm3bRkBAAEWKFMlx3gd9QzS5CwQCgUDwBiqVisDAQPbt24eNjQ1ly5blxIkTer3AkaihCwQCgUDwBidPniQoKIgCBQpgbW1N48aNCQ0N/dha70QEdIFAIBB8chw8eJBmzZrh4eGBQqFg06ZN2dLMmTMHX19fzMzMCA4O5tChQ5p9jx49okCBApr3BQsW1PtphUVAFwgEAsEnR3JyMqVKlWLWrFk57l+3bh39+/dn2LBhnD17lurVqxMSEsK9e/cAyKk3Oq8zPOqaXE8sk5aWpjU7mFqtJjY2FkdHR73/IwUCgUCgjSRJPH/+HA8PDwwM5KvbvXjxgvT09Hw5liRJ2eKNqalpttkfAUJCQrQWFHqTqVOnai3vPG3aNEJDQ5k7dy4TJkygQIECWjXyBw8eULFixXz5O2Qjtw+sZ006IV7iJV7iJV6fzuv+/fuyTHIiSZKUmpoqWaDIN1crK6ts23JaovlNAGnjxo2a92lpaZKhoaHWksCSJEn9+vWTatSoIUlS5hLBfn5+0oMHD6TExETJz89PevbsWX5mT76T6xr6kCFDGDhwoOZ9QkICXl5eLPD0xTxdmdvDyIuZKYYTxlBTeoQR0se2AUCFggMKD2rXrv2flsuUA6VSyb59+6j5/AZGqD+2DgAqDDhg7U/N+Kv65WRXTD/LLuoMRlLGx9YBQKUw5IBbWb100seyq3F+O0Zq1cfWIU6ppti09f95qujckJ6eTgoSnbDEhA9ryU1HYkVSEvfv39eaajqn2vn7ePbsGRkZGbi6umptd3V11SxSZWRkxO+//07t2rVRq9X89NNPWgtV6SO5Duhva9YwT1dikU/NKR+MgQGGFhY4SGYY60lAV6LAQmGBo6OjXv2wWFhY4KAywVhPgqcSg0ynNP1z0suyMzPCWNKPri6lwlBvnfSy7IwNMFbrz/AlXXSZmmGAyQeex+Bln7aNjU22tSP+K2/+7dIbTfrNmzenefPm+XIuXaA/V5VAIBAIBDrAyckJQ0PDbEtGR0dHZ6u1/y8hArpAIBAIZMUgn175hYmJCcHBwYSFhWltz1ox8X8VsXyqQCAQCGRFoQCDD2zZVwBIUL58eQwNDfn222/59ttv35o+KSmJmzdvat7fuXOHc+fO4eDggJeXFwMHDqRTp06UK1eOypUrs2DBAu7du8fXX3/9YaIfERHQBQKBQPA/w6lTp3LVh3769Glq166teZ81qLtLly4sXbqUdu3aERMTw6+//srjx48pXrw427dvx9vbWzZ3uREBXSAQCASykh9N5nn9fK1atXKcHOZ1+vTpQ58+ff67lJ4hArpAIBAIZMVAocDgQ0e5A3ry8JLeIgbFCQQCgUDwCSBq6AKBQCCQlY/R5P7/ERHQBQKBQCArBvkwyl0E9Pcj8kggEAgE/zOUL1+ewMBAZs+e/bFV9A7ZauiXlelsTkvhtkpFnKTmJ0tbKpq8mjpWkiTWv0gmLO0FyZKaIkbG9LSwxsvwlZJSkliWmsTh9BekSxIljE34ysIaRwPDfHF8nvqCkav/ZdOJ80QnJFHatyB/9GhD+SKZjy08iU9kyPLNhJ27RnxyKtWD/Jjesy1FPFzy5fw5Oj1/zogRI9i4cSPR0dGUKVOG6dOnU758eSDz2crBgwezadMmYmJi8PHxoV+/fnzzzTfyOaWmMfKf3WwKv0J0YjKlvd35o2MTyhcqCIBR5+E5fm5iu4b82KS6fE4b97LpzNVMJy93/ugQQvlCr9YvvvroKUP+CuPg9UjUkkSghwtr+3yGl6OdPE7vKbuuXbuybNkyrc9UrFiR48ePy+ID8PxFOiO3HWbTuQiik1IoXdCFPz6rQ3lv92xpv1kdyp9HLvB7m9p8X6fcR3Ma/e8R1odf437cc0wMDSjr5cqYZtWp6Oshn9M7yk6pVDJ8+HC2b9/O7du3sbW1pV69ekycOBEPDxmd0pSMPHiBzdfvE52SRmlXe6bWD6a8R+Z84huv3efPsxGciYojJjWNUz1CKO1qL5vPh5CfTe65fWzt/yOyBfQ0JHwMjahjYsZvyYnZ9m9KS2Hri1T6WlrjYWjE36nJ/Po8npm2DpgrMotucUoSp5VpDLC0xVqhYFlqEuOTEphsbY9hPsw//NXs1Vy+95il33fGw8GWVQdO0XDULC7OGIaHgy2tJ/yJsZEhG4Z8hY2FGdO27NPstzTL+4IAuaFnz55cunSJFStW4OHhwcqVK6lXrx5XrlyhQIECDBgwgH379rFy5Up8fHzYtWsXffr0wcPDgxYtWsji9NWijVx+GM3S3m3xsLdh1ZFzNJy0hIsTvqeAgw0PZvyslX7nhRv0WrSJ1uWDZPEB+GrJ5kynXq3xsLNm1bELNJyyjIvj+lLA3oZb0bHUHL+IbjXKMrJlbWzNTbn6+BlmxvL1Mr2v7AAaNWrEkiVLNJ8xMTGRzQfgq1U7ufzoGUu7NMbD1opVp67QcMZ6Lo7oTgG7V4tybD4fwcnIx3jYWsnqkxsnfxd7pn9el0JOdqSmq5i+7zQhs/7i+qheOFtbyOL0rrKzsrLizJkzjBgxglKlShEXF0f//v1p3rw5p0+flsUHoPf2E1x+msDS5lVwtzJn9aU7NFqzlwtfNaGAtQXJShVVCjrTppgXX28/KZtHfqBQKD54znj9WCVAv5Gtyb2ssSkdzK2oZGKWbZ8kSWx7kUobcwsqmZjhZWjEd5Y2pCFxKD1zzfVkSc3e9FS6WlhRytiEQkbGfG9pw70MFRdUH74YTGpaOhuOnWdC5xbUCPLDz92ZkV80xtfFkXk7DxPx6CknbkQyu3c7yhfxJqCAK7O++pyk1DTWHgr/4PPn6JSayj///MPkyZOpUaMGfn5+jBo1Cl9fX+bOnQvAsWPH6NKlC7Vq1cLHx4evvvqKUqVKyfbDkpquZMPpK0xo15AaRX3xc3VkZOu6+DrbM2/vCQDc7Ky1XlvOXKNWMV8KuTjI5xR+lQmfN6BGgE+mU8va+DrZM2/vKQBG/LOHkJJFmPR5A8p4u1PIxYEmpfxxsZEnYOWm7CBzkSM3NzfNy8FBnjyCl/l07gYTWtWkRhFP/FzsGdmkKr6Otsw7dE6T7mH8c/qt383yrk0xNpS3Fy43Tu3LB1KvqA+FnOwI8nBiSuvaJL5I58LDp/I4vafsbG1tCQsL4/PPPycgIIBKlSoxc+ZMwsPDuXfvnjxOShUbrt1nQp3SVPdywc/Bml9qlMTH1pL54REAdCzhy/DqJajr4yaLQ36ib1O/fqp8lDx6olYTL6kpZfSqdmKsUBBkZMx1VeZSrLdVKlSglcbBwBBPQyNNmg9BpVaToVZjZqK9EpOZiTFHrt4iTZW5vOHrNTpDQwNMjI04cvXWB58/RyeVioyMDMzMtG+CzM3NOXz4MADVqlVjy5YtPHz4EEmS2LdvHzdu3KBhw4byOGW8zKc3arZmxsYcuXE3W/onCUlsP3+d7jWCZfF5p5OJEUci7qFWq9l+4QZF3BwJmbIc936TqTxmAZvPXJXPKRdlB7B//35cXFzw9/enV69eREdHy+eklshQS5gZ5ZBPtx4CoFZLdFm2nR/qVSDIw0k2l7w4vU66KoM/j5zH1tyUUgWd5XHKZdm9TkJCAgqFAjs7O3mc1BIZkoSZoXb3ormxIUceyHNjI/jf56ME9Hgpc3lMOwPt09sqDIhTqzVpjACrN9LYKRTEqz98eU1rczMqBfgybv1OHsUmkJGhZtX+U5yMuEtUXCJFC7ji7ezAsJVbiUtKIV2pYtI/u4iKS+RxXPYuhPzA2tqaypUrM2bMGB49ekRGRgYrV67kxIkTPH78GIAZM2YQGBhIwYIFMTExoVGjRsyZM4dq1arJ42RuSiU/T8Zt3sejuEQy1GpWHTnHydsPiIpPypZ++eGzWJuZ0qpcoCw+GqfCnozbcuCV09HznLz9kKiE50Q/TybpRTqT/z1MwxJ+7PixEy3LFqPtrHUcuBYpj1Muyi4kJIRVq1axd+9efv/9d06dOkWdOnVIS0uTx8nMhEq+HozbeYxH8UmZ+XTyMicjHxOVkFl2k8NOYGSg4LtaZWVx+C9OANsu3sJ2wDQs+09l+t5wdn73GU5W8jS356bsXufFixcMHjyYDh06yNaXa21qTKUCTow7colHz1My8+nSHU4+jCEqKVWWc8pJ1ij3D30J3s1HbcXIqXzeV2ZSLtLklmXfd0KSwKvHcCw+H8DMf/fTvnowhgYGGBsZsv7nHkQ8isa5089Yf/EDBy7fpFHZQAwN5Mu2FStWIEkSBQoUwNTUlBkzZtChQwcMX96pz5gxg+PHj7NlyxbCw8P5/fff6dOnD7t375bNaVnvtpn59P1kLLqPYmbYMdpXLolhDt+wpQfD6VC5VLaWj3x3+qo1EhJeA3/HotcYZu4+QfuKJTA0MECtzpxOqnmZovRvWIXSXu783KQ6TUr5s2D/Kdmc3ld27dq1o0mTJhQvXpxmzZqxY8cObty4wb///iub07IujZEkCa9hc7H4fioz95+hfbliGBoYEH4vipn7wlncqbFO1sTOjVMWtf09CR/ShUM/fEnDQF/aL9pK9PNk2ZzeV3ZZKJVKvvjiC9RqNXPmzJHNB2Bp88pIEnjP3ITlpHXMOnWdL4J88mX8kK5R8OHN7f97f7Xu+SjPodu9HPQWp1Zj/9qI9QRJram12ykMUAFJarVWLT1BkgjIp4Ba2N2ZfeO+J/lFGokpL3B3sKX9lMX4uGb2awYX9iL8j8EkJKeSrlLhbGtN5Z+mUK6wV76cP0enwoU5cOAAycnJJCYm4u7uTrt27fD19SU1NZWhQ4eyceNGmjRpAkDJkiU5d+4cU6ZMoV69evI4uTqyb1hPktPSSUxNw93Omvaz1uLjrD2i9tD1SK4/fsbqb9vJ4qHl5OLAvsHdtZ3mrMfHyQ4nawuMDA0o5qHdRFvU3YkjEfL0ecK7yy4n3N3d8fb2JiIiQj4nZ3v2DWifmU8v0nG3taL9oi34ONpy+OYDopNS8B0xT5M+Qy0xaMN+ZuwL59aY3jp3ysLS1AQ/FxP8sKeSrwdFR/3J4qMXGdywkjxOuSg7pVLJ559/zp07d9i7d6/sI60L21uzt1M9ktNVJKYrcbcyp8PGw/jYyT9wUZ/J7Wpr/x/5KAHd1cAAO4UBF1TpFDLKrMkpJYnLKiWdzDMv1kJGRhgB51XpVH05sC5OncH9DBWdzC3z1cfSzBRLM1PiklLYdfYaE7tojxa3tTQHIOJRNOG37jG6Q5N8PX+OTpaWWFpaEhcXR2hoKJMnT0apVKJUKjF444bG0NAQdT50Q7zXydQES1MT4pJT2XXpJhPbaffbLzkQTrCPB6W8sj8SpRunW0z8vD4mRkaU8ynAjahnWmkjnsTgLdMja1pOOZRdTsTExHD//n3c3eXPL00+pbxg19VIJrasSevS/tQtqr2yVONZf/NlhUC6Vi7xUZzehiRBmipDfqe3lF1WMI+IiGDfvn04OjrK7qJxMjHC0sSIuNR0dt1+zIQ6ZXR27vwi3+ZyRzy29i5kC+ipkpqojFdfwGh1BndUSqwMDHA2MKSpmTn/vEjB3cAId0ND/klNxhQF1V8+q26pMKCOiTnLUpKwVhhgpVCwPDUJL0MjShrlz6M+oWevIkkSAQVcuPn4GYOXbcK/gAtd62TWAv4+chYnWyu8nOy5dPcRAxb9Q4sKJWlQuli+nD9Hp9DQTKeAAG7evMmgQYMICAigW7duGBsbU7NmTQYNGoS5uTne3t4cOHCA5cuXM3XqVPmcLkQgIRHg7sTNJ7EMXrsTfzcnulZ/1e+amPqCv09e4rcOIbJ5aDldvJnp5ObEzehYBq/bhb+7I12rZf7Y/RhSlfZz/6J6gDe1ivoSevEm287dYM/PXeVzekfZJSUlMWrUKNq0aYO7uzuRkZEMHToUJycnWrVqJZ/TlTtIEgS42nPzaTyDN+7H38WBrpWLY2xoiKOVuVZ6Y0MD3GwsCXCVb/T9u5yS09IZv/M4zUr64W5jSUzyC+YdOsuD+Oe0LRMgn9M7yk6lUtG2bVvOnDnDtm3byMjIICoqCgAHBwfZHj3cdfsRkgT+jjbcinvOz3vO4u9oQ9eShQCITU3jXmIKj5+nAHAjJnNsj5ulGW5vlOvHRkz9qhtkC+i3VCpGJsVr3i9NzRzwUsvEjO8sbWhpakG6JLEg5blmYplfrO00z6ADdLOwwjAVfk9O0EwsM8TSJt/6kBJTUhm2YisPYuJxsLagdaVSjPmyGcZGmd0Aj+MS+HHJBp4kPMfd3oaOtSow/LNG+XLut5GQkMCQIUN48OABDg4OtGnThnHjxmFsnNmSsXbtWoYMGcKXX35JbGws3t7ejBs3jq+//lo2p8TUFwz7axcPYhNxsDSndfkgxrStr8kngHXHLyIBX1QqKZtHNqe/d/Mg7qVTcCBj2tTVOLUMLsaczk2Z9O8h+q/aQYCbE399245q/vKtdfyuslOpVFy8eJHly5cTHx+Pu7s7tWvXZt26dVhbW7//4P+RxNQ0hm05yIP4JBwszGhd2p8xzatjbJg/kzPlt1OGWuL6k1hW/LmZZ8mpOFqaUc7Lnf0D28s6Cv9dZRcZGcmWLVsAKF26tNbn9u3bR61ateRxeqFk+P7zPHiegoOZCa2KejKmZinNo4VbIx7Sc9urSYm+3HQEgBHVivNLDd18DwX6hUJ634KxbyExMRFbW1tWuBbEIv3DnwvPF8zMMJw7g4bSA4z1ZJ09JQpCFQVp3LixJih/bJRKJdu3b6dh4hWMkb+pPjcoMSDUJpCGcRf1y8m+hH6W3aPjGEvyN0HnBqXCkFCPSnrppI9l1+D0BozVqo+tQ4xSjdtva0lISJCtCTsrTvxiaofZB1bEXkgSv6bFy+r7v45YnEUgEAgEsiKa3HWDyCOBQCAQCD4BRA1dIBAIBLJigAKDD3ySXNQ+34/II4FAIBDISn7OFCeWT307ooYuEAgEAlkRy6fqBlFDFwgEAoHgE0DU0AUCgUAgK/mxuIqofb4fEdAFAoFAICuZi7N8WERX6MncIvqMuOkRCAQCgeATQNTQBQKBQCArosldN4iALhAIBAJZETPF6QaRRwKBQCAQfALkuoaelpZGWlqa5n1iYuZSfbUHtsHBTD8q+iqFIXsB1eNHoCeLRKgUhuBRkLSFo8jQK6cKKO/fR9KDRSIAVAZGEBSI6sUL/So7IG3JGDIk/VgwRqUwANdglBkS/3FdpXxHpcj00EenF/OGo9Kn68mrCioXN724xlUvdPfdF03uuiHXq62NGjWK0aNHZ9u+evVqLCws8l1MIBAIBPKRkpJChw4ddLLa2nRLB62lsf8LqZKa75Nj8ff3x9DQkG+//ZZvv/02n0w/DXJdtR4yZAgDBw7UvE9MTMTT05Ma90/oVw3dqwp1H53ESA/ugCHTaY9HBb10qnM5FCM9qqHvDWpI3cen9Cuf3MtT90k4RnpUQ9/jGkyd+8f0Kp/2elbWT6d7R/XLyauK3jjF6rCGnp+ImeLeTq4jsampKaampjkcIANj6QPbUvIZIylDb9ZlzkIvndQqvViX+XX0Mp8ktR466WM+CafcoC9ORujOQTS56wb9qFoLBAKB4JNF8fL1occQvBsR0AUCgUAgK6KGrhtEHgkEAoFA8AkgaugCgUAgkBUDFB88l/uHfv7/AyKgCwQCgUBWRJO7bhB5JBAIBALBJ4CooQsEAoFAVjKXT/3wYwjejQjoAoFAIJAV8diabhBN7gKBQCAQfAKIgC4QCAQCWTFQKPLlBVC+fHkCAwOZPXv2R/6r9A+dNLmrMtT8uvM4a8KvEfU8GXcbSzqXD2Rog4oYvBz6uPH8Tf48eoEzD6KJSX7BqR87ULqgi6xOo7cfZc3pK0QlpmQ6VQpiWMPKGBgoUGZkMGLrYXZevsPtmHhszUypW9Sb8c1r4GFn9VGcAEb/e4T1Z65zPy4RE0NDynq5MqZZdSr6uMvm9Ov+s6y5cJuopFTcrc3pXLoIQ2uU0ji9zjdbjrAw/AZTGlXg+8pBsjmN3n6ENaeuEpX48nqqVJxhjV7lU/fl21l+4rLW5yr4uHN0UEf5nLYdZs2py6+cKpdgWEhVrXy6+vgZQzbu52DEfdSSRKC7E2t7tcDLwVYWp193HmPN6de+dxWCtL53xt//keNnJzavzg91y30Up6S0dIZuPcyWC7eISUnFx8GWb2uU5utqpfLd55XTu3+fnjxPZsiWw+y+fo/41DSqFy7AtDa1KOJsL4sTwPMX6YzcfpTNF28RnZRC6QIuTG1dk/JebgBIksSYncdZeOwScakvqODlxoy2dQhyd5TN6b+Sn03uYi73t6OTgP7bntMsOHqBxR0aEujmQPj9aHqu2YWNuSn9apYBIDldSRVfD9qU9ufrdbtld5ocdpIFh8+zuFMjgtydCL8XRY+VO7E1M6Vf7WBS0lWcvR/NsJBKlCzgQlzKCwb+s49W8zdy4udOH8UJwN/Fgemf1aWQky2pShXT94YTMusvro/sibN1/q9699vhiyw4fZ3FraoT6GxH+KMYem46hI2pMf3eCNibr97l5MNneMjg8TqTw06w4NB5FncOycynu1H0WLkDW/NX+QTQMNCXRR0bad6bGBnK57TrOAsOnWVxlyYEebx0Wr4906lOeQBuPY2j5u8r6ValFCObVcPWzIyrUc8wM5Lna/jbnlMsOHKBxV82JNDNkfD7T+i5ehc2Zib0q1UWgPtjvtL6zM4rkXy1dhetSvl9NKcfNh7gQMR9lnVqhLeDDWHX7/LdX3vxsLWieYnCMji9+/dJkiTaLNyKsaEh//Rsho2pCdP2n6HRnA1cGNwZS1PjfHcC6L02jMtRMSzt2BB3GytWn76qOWcBOyum7DnNtP1nWdShAUVc7Jiw6yQhczdweWgXrM1MZHES6Dc6CejHIx/TrHhhGgf5AuDjaMu6M9cJv/9Ek6Zj+WIARMYk6EKJ43ce0bxkYZoUL6xxWnv6GuH3Mp1szU0J/e4zrc9M/6wOlX9bxb3YRLwc8v8O8X1OAO1f5lMWU1rXYvGxi1x49JS6Ad757/QgmmYBXjT298x0srdm3cXbhD+K0Ur3MDGZ77cf599ODWixSt4bssx88tPOp/CrhN+N0kpnamSIm608rSnZnG4/pHmpIjQp4ffSyY61p65oOY3YfJCQoMJMal1bs62Qs518TneyvneFXjrZsi5c+3vnZmOp9Zmtl25Ry8+TQk7yeOXG6cSdx3SqEEjNIpnXXK8qJfnzyEXC7z2RJaC/7/cp4mk8J+5Gce7nTpra76zP6uAxfAFrz1ynR+Xi+e6Umq5iw4WbbOjRnOqFCwLwS0hlNl+8xfwjFxjduDIzDp5lSP3ympuvxV82oMDwBawJv8ZXVUvmu9OHIAbF6Qad9KFXLeTBvhv3uBEdB8D5h085cvsRIcV8dHH6nJ0KF2Dv9XvceBKb6fQgmiO3HxLy8kudEwmp6SgUYGeefdW5j+GUrsrgzyMXsDU3pVQBZ3mcvFzZd+cxN55l3midj4rlyL0nhPgX1KRRqyW6bjjIwCrFCXKRrwlS41S4IHuv39XOp1sPCSleSCvdgYj7uP88m2KjF9J7VSjRz5Plc/IryN5rka85PeHIrQeEvLzpUKsltl+6RRFXB0JmrMN90AwqT1rG5nM35HMq5MG+iPvZv3eBOV9PTxKT2X75Dt0q5X+AyotTlUIebL14m4fxSUiSxP6I+0Q8jaN+0fy/YdU4veP3KU2VuSqZmfGrFh5DAwNMjAw4cvuhLE4qtZoMtaR1TgBzYyOO3H7InZhEohJTqPdanpgaGVHDryDHIh/L4vQhKPLpJXg3OqmhD6pbjoTUNIpPWIahwoAMSc2YxlX4IrioLk6fIz/Vr0BCahpBYxe/cmpanS/KFcsx/QulimGbD9K+XDFsZArouXXadvEWXy7ZRopSibuNFTv7tsXJSp5m7kHVSpDwIp3iszZgqFCQIUmMqRPMFyVeBc/fDl/EyMCA7yoFyuLwJpp8GrPoVT41086nRkGFaFM2AG8HG+7EJDBq62HqT1/PyZ87YWqc/5f9Tw0qZTqNXvDKqXlNviifmSfRz5NJSktncuhxfm1enQmtahF65TZtF2xgd/8O1PT3ynenQfXKZ5bd+KWvnJpUfev3bsWpK1ibGcvW3J5bp2ltatN7bRg+I//EyMAAA4WC+e3rUa1wAXmc3vP7VNTVHm97a4ZvO8Kcz+tiaWLMtP1niEpMISpRnptEazMTKvm4My70BEVdHXC1tmDtmeucvBdFESd7ol7enLq+0b3lYm3BvdhEWZw+BIVCgULxYSFZIUL6e9FJQF9/9garw6+xolMIgW6OnH/4lB82HsDd1orOFXQTBLI5hV9n9amrrOzSlEB3R84/jGbg3/vwsM0cYPU6yowMOizZhlqSmPV5vY/uVNvfk/AhnXmWlMqioxdov3grR3/8Ehdry3cc/T86XbrD6gu3WNGmJoEudpyPiuWHHSdxt8kcHBf+6BkzT1zhZO/mH/yFzbVT+DVWn7zCyq5NCXR34vyDaAb+k9nHmpVPn78WIIp7OFPOy41CI+az/fJtWpX2z3+n01dZffIyK7s1J9DjpdNfuzOdKpdALUkANC9ZhP51KwBQ2tOVY7cesuDQWVkC+vqzN1h9+iorOjd++b2L5ocNB3C3zRyI9iZLj1+mfXAxzGS44cmL06yDZzl5N4qNvZrjZW/DoVsP+e6vvbjbWMrSrfS+3ydjQ0PWdW/KV2vCcBk6D0MDBXX9vWgkcwvj0o4N6bUmDO+RCzE0UFCmoAtflC3KuQfRmjRvBjlJQmffQ4H+oZOAPnjLIQbVLU+7sgEAlPBw4l5cIpN3n/poAf3nTQf4qX4F2pXL/OEvUcCZu7GJTAo7qRU8lRkZfLFoK5ExCYR997lstfO8OFmamuDnbIKfsz2VfD0oOnohi49eYnDDivnuNHjXKQZVK0m7lzXyEq4O3ItPYvKhi3QuXYTDd58QnZxKoT/Waz6ToZb4KfQUM49f4eaAz9526P/MzxsP8FODCrR7WSPX5NOuE9luxrJwt7XC28GGiJfNqvnvtI+fGlSi3csaeYkCLtyNSWBS6DE6Vy6Bk5UFRgYGFHtjBHJRd0eO3Hwgi9PgzQcZVO+N713scyaHncoW0A/fesD16DhWdW0ii0tunVLTVQzfdoS/ezTT9LOXLODM+YdPmbo3XJaAnpvfp2BPV8J/6khCahrpGRk4W1lQZeoagr1c890ni8JOduz97jOS05QkvkjH3daSDkv/xcfRBreXN+9Rz5Nxt311I/80KQUXmQel/hdEH7pu0ElAT0lXZZuY31Ch0NRaPgYp6cpsj10ZKgxQq185ZQXzm0/j2N2vHY5W5h/dKSckCdJUKnmclBma5z+1nF6WXcdShalbyENrf5MVu/iyVGG6lCkik5Myu5PBu6+nmKRU7sc91/rxy1en9JycXuWTiZEh5XzcNX3sWUQ8icVbhkfWMp1Uuc6nxccvU9bTRbaxGLl1UqozUGao81y+H+6kve1tv0+2L2/oI57GEX4/mtGNq8ji9DqWpsZYmhoTl/KCXdfuMqF5dXwdbXCzsWDP9XuUefl4b7oqg4M3HzC+WTXZnfKKAR8+YEtMmvJ+dBLQmwT5MjHsFF72NgS6OXDu4VOm7T9L14qvauexyS+4F5fI45d9UlkDVNxsLLONxM0PmpYozITQ43jaWxPk7sS5B9FM23eari9reKoMNZ8v3MLZ+9Fs/roVGZKk6S9zsDCT5RGo9zklp6UzPvQEzUoUxt3WkpjkF8w7eI4H8c9p+7J2kd80CfBk4qHzeNlZEuhsx7moWKYdu0TXl8Ha0cIMRwszrc8YGxrgamVOgJM8gapp8Zf55GCTmU/3nzBt72m6Vi4BQNKLdEZvP0Lr0v6421oRGZPA8C2HcLIyp2Wp/G9uB2hawo8JO49lOnm8dNpzkq5VXo02/rF+Bdov3Ez1Ip7U8vcm9Mpttl28yZ4BHWRxalK8EBN3ncTL3ppAN0fOPXjKtH1n6FpJu3ae+CKNf87dYHKLGrJ45MXJxsyUGn4FGbz5EObGRng52HDw5gNWnrrCby1ryuOUi9+nv8/dwNnSHE97Gy49fsbADftpUaKwbAP1AHZdjUQC/F3sufUsnp83H8LfxZ6uFQNRKBT0q1GGiWEn8XO2w8/Zjklhp7AwMab9RxybJPi46CSgT29Tm5Hbj/Ld33uJTkrBw8aKXlVKMPy1JuKtl27Rc02Y5v2Xy3cAMKJhRX4JqZz/Tp/VZeS2w3y3bjfRSal42FrSq2opRrw814P452y9eAuA4InLtT67u9/n1JKhz/N9ToYGBlx/EsuKE5d5lpyKo4UZ5bzd2D/gC4LcnfLdB2B640qM3HuG77YdIzr5BR7WFvQqF8DwmqVlOV+unD6vl5lPa3dnXk+2lvSqVooRIZm1JUMDBZcePWPliSvEp77A3caKWv6erOnRTLbnc6e3q8/ILYf4bu0uop+n4GFrRa9qZRjRpKomTcvSAczp0JBJO4/Tf/1uAlwd+OurVlTz85THKet799dr37uqJRjesJJWunVnriNJ6GSQam6cVnVpzLCth+m8YgexKS/wtrfh1yZV6S3To1i5+X16nJDMoE0HefI8c8KnjuWLMaxB/ndxvU7Ci3SGbzvCg/gkHCxNaVWyCGOaVMHYMLMy8WPdcqQqVXz3917iUtKo4O3G9m9a6eUz6ApF5uuDjpE/Kp80Ckn6b+1YiYmJ2NraEjWpL46m+rHGi1JhyC7v6jR8eAxjKeNj6wCZTqEFKuulU4OL/2KslqepPq8oDYzYVaIJDR8d16988qhEw6hT+uXkVp4G9w7rldMur2r66XT3kH45eVfXG6eYNBVuP88iISFBtpnXsuLEGnsXLBQf1mieIqlpHxctq+//OqJbQiAQCASCTwD9qFoLBAKB4JNFjHLXDSKgCwQCgUBWREDXDaLJXSAQCAT/M4jlU9+OqKELBAKBQFYMINuz/nk+xsvh22L51LcjArpAIBAIZEXx8r8PPYbg3YiALhAIBALZEeFYfkQfukAgEAgEnwCihi4QCAQCWcmXmeJEFf+9iIAuEAgEAlkRj63pBtHkLhAIBALBJ4CooQsEAoFAVgxQYPCBdewP/fz/B3Id0NPS0khLS9O8T0xMBEDqPAzJ0TH/zf4DklIJYWEoU1KR1B9/8QMAlUHmykjKJ0+R9GQhFJWBERSADCcXFHqwSARAhiIzn1SGxiDl/9K0/wXVy8UklI8e61fZuUGGnRMK1B9bB4CMlw19qmcxoE/55AUZHp4okGcd9byS8TIgST1/RTI2/sg2IMXEwM+zdHIu0eSuG3K92tqoUaMYPXp0tu2rV6/GwsIi38UEAoFAIB8pKSl06NBBJ6utbXZww9Lgw3p4k9VqWsRGidXW3kGuA3pONXRPT08eP36Mo57U0JVKJWFhYdSJ2IuRHtXQ9xapQ50zWzDSo9rL3rLNqfv4FEZ6UkNXKQzZ416euk/CMZL0o+apUhiwxzVYP8su8RpGelJDV2HAHpui1DmzWc/yqQV1lZEY6UkNXYWCPcY+1K9fH2M9qKHHxMTg7u6uk4C+xTF/AnrzGBHQ30Wum9xNTU0xNTXNtt3Y2FgvLs7XMVJn6M0631kYqVX65yRl6MW6zK9jJKn1z0kfyw41xnoS0LMwUqswztC3fJIw1pOAnoW+/Gbq0kE0uesGMcpdIBAIBIJPADHKXSAQCASyIuZy1w0ioAsEAoFAVgwU+bDamojn70UEdIFAIBDIiuhD1w2iD10gEAgEgk8AUUMXCAQCgayIGrpuEAFdIBAIBLIiBsXpBtHkLhAIBALBJ4CooQsEAoFAVsR66LpB1NAFAoFAICsG+fQCKF++PIGBgcyePVuXf8L/BDqpoatUKkaNGsWqVauIiorC3d2drl27Mnz4cAxezu8rSRKjR49mwYIFxMXFUbFiRWbPnk1QUJBsXn6TVnE3Pinb9q8rBTKzRXWePE9hyM4T7I54QPyLdKr7uDGteTWKONnK5zR7M3cTkrM7lS3CzEblSUpXMnTfObbceEBMajo+tpZ8Wy6Ar4OLyOJTeMR87sYmZtv+TY3SzGxXH6Nvf8vxcxNb1uTH+hXkcRo25y1OZZnZvgEAVx8/Y8jG/RyMuI9akgh0d2JtrxZ4OchTdu8rt+5bj7Hi4h2tfRU8HDnStaEsPgCFB07h7rP4bNu/qVuRmV2aaW9bsok/953m9w6N+b5RFdmc/OZseXs+NSzHr4cusv7KXe4/T8HE0ICybg78WqMkFQs4yeZUuM8Y7j6Ny7b9m4ZVmdq1JSPWbmfnmavcjo7F1sKMuiX8Gf9lEzxkupYAfHx8uHv3brbtffr0Yfbs2WzYsIH58+cTHh5OTEwMZ8+epXTp0rL56BOnTp0Sc7m/BZ0E9EmTJjFv3jyWLVtGUFAQp0+fplu3btja2vL9998DMHnyZKZOncrSpUvx9/dn7Nix1K9fn+vXr2NtbS2L17FvW5Px2to0l5/E0mjRv7QtURhJkmizIhRjQwP+6dQQGzMTph2+QKNF27gw4HMsTeSZB/lY14baTk8TaLRmL22LeQHww+4zHLj7hGXNq+Bta0nYnSi+23kKD2tzmvsXzHef4z91IkP9as7wS4+f0WjmX7QpEwDAg/HfaKXfeeUOvVbtpHUZ/3x30TgN7qrt9OgZjWaspU1wptOtp3HU/H0l3aqUYmSzatiamXE16hlmRvJd7u8rN4CGhdxZ2LSS5r2JobwNZMdHfaOdTw+e0GjyUtpU0L5J3hx+hZO3HuBhL8/37HWOdW1AhvqNfFq7j7ZFPQEo4mDN9Abl8LWzIlWVwfRT12i8bj/Xvm6Ks4WZLE7HJwzQzqf7UTQaM482lUuRkpbO2dsPGda2ASW9PYhLTmHg0k20mrSIE5MGyuIDmUErI+PVmgaXLl2ifv36fPbZZwAkJydTtWpVPvvsM3r16iWbR34hRrnrBp0E9GPHjtGiRQuaNGkCZN59rlmzhtOnTwOZtfNp06YxbNgwWrduDcCyZctwdXVl9erV9O7dWxYvZytzrfeT95+lsIMNNXzdiXiWwIn70Zzr/xlBrg4AzGpRDY+xy1l7/iY9yheTx8lS+0dr8rErFLa3ooaXCwAnHjyjUwlfanq7AtCrjB9/no0g/HGMLAHd2Vp7adzJYScp7GRHzSKZP8ButlZa+7dcuEmtIl4UcrLLd5e3OoUep7CzHTWLZAbPEZsPEhJUmEmta2vSFHKWzwfeX24ApkaGuL1xzcnqZGOp7bTtIIVdHKhZ1Fez7WFsIv2Wb2P7oC40n7pCfieLHPLJ7lU+tQ/y0do/pW5Zlpy/zcXoeOr4uMnj9MY1PHnTHgq7OlIzsDAKhYLQX77W2j+9e2sqD5nGvadxeDnby+Pk7Kz1fuLEiRQuXJiaNWsC0KlTJwAiIyNlOX++o1CgEJ3osqOTPvRq1aqxZ88ebty4AcD58+c5fPgwjRs3BuDOnTtERUXRoEEDzWdMTU2pWbMmR48e1YUi6aoMVp+7SddyASgUCtJe3h2bGRlq0hgaGGBiZMiRyCjdOGVksPpSJF1LFtZ8Gap4OrM14iEPn6cgSRL7I58QEfuc+oXc5fdRZbDq5BW6Vi6R45fzSWIy2y/dpnuVErK7aDtdpmvlkigUCtRqie2XblHE1YGQGetwHzSDypOWsfncDd055VBuAAfuPsFj2j8EzttK7+0niE5+oTsnlYpVR8/TtUZZjZNarabL/L/4oXE1ggq66sxF45SRwerLkXQtVSjH6yk9I4OF525ia2pMSRd5Ame2cypVrDp0hq51Kr41ACWkvEChUGBnqZubs/T0dFauXEn37t0/PCgKPml0UkP/+eefSUhIoGjRohgaGpKRkcG4ceNo3749AFFRmQHS1VX7R8XV1TXHfiQ52HwlkvgXaXR+2Wxb1NkObzsrhoeeZE6rGlgaGzHt8AWinqcQ9TxFN07XM/vuO5d8VaOa1iCY3ttP4jNzE0YGCgwUCuY3rkg1T5d3HCmffM5HEJ/6gi6Viue4f/mJS1ibmdCqtHzN7dmdbmQ6Vc68iYh+nkxSWjqTQ4/za/PqTGhVi9Art2m7YAO7+3egpr/Xuw+YH045lFujwh60LeaFl40lkQlJjDxwgQar9nCieyNMX7tplM0p/CrxKS/oUr2sZtvkfw9hZGjAdw0qy37+HJ1uPCT+hZLOJXy1tv8b8ZAvNx8lRanC3cqcHV/Uxski+9LNsjidukR8cipdapXPcf+LdCXDVm2jfbUy2MjUBfAmmzZtIj4+nq5du+rkfHIgmtx1g04C+rp161i5ciWrV68mKCiIc+fO0b9/fzw8POjSpYsm3Zt3n5Ik6eyOdMnpazTy98TjZTOlsaEh6zo24Kt/DuDy61IMDRTULVyARv6eOvEBWHL+Fo0Ku+PxWhPzrFM3OPnwGRs/q4GXrSWH7kXzXegp3K3MqesrT5NkFouPXaRRYCE87Kxy3L/02CU6lC+GmbHunoZcfOQCjYIK4WGX2f+rftmP3bxkEfrXzRyUV9rTlWO3HrLg0FmdBPScyu3zQG/Nv4u72BHs7kjhWZvZfvMRrYrKf00tPhBOo5JF8LDPHEwUfuchM3cd49SvfT5arS+nfAKo5e3K6e6NeJaaxqJzt+iw6QhHujTAxVL+ALp47wkalSma44A3pSqDDtNWoJYkZvVsK7tLFosWLSIkJAQPDw+dnTO/EQFdN+jkl3fQoEEMHjyYL774AoASJUpw9+5dJkyYQJcuXXBzywxEWSPgs4iOjs5Wa5eDu3HP2XPzIX91bKC1PbiAM+H92pLwIo10lRpnK3OqzN5IcEH5RtxqnBKS2RP5hL/aVNdsS1WqGL7/PH+3rU5jvwIAlHSx5/yTeKaeuCprQL8bk8Cea3f5u1eLHPcfuvmA609iWd29WY775XOK5O/erTTbnKwsMDIwoJi7o1baou6OHLn5QH6nHMotJ9ytzPG2teBm3HP5nZ7FsefyLf7u10Gz7fD1u0QnJuM7YIpmW4ZazaA1O5ix6yi3pv4or1NWPrWulm2fpYkRfg7W+GFNpQJOFJu3lSXnb/FzFfmeeAG4+zSWPRdu8Pegbtn2KVUZfDF1GZHRMYSN7KOz2vndu3fZvXs3GzZs0Mn55EKRD33oorvh/egkoKekpGgeT8vC0NAQ9cuRpb6+vri5uREWFkaZMmWAzH6jAwcOMGnSJNn9loVfx8XKnMYBOdfebM0ym/siniUQ/vApo+uXk9/p/C1cLExp7PfqrlypllCq1Ri8cWEbKhSamqlcLD1+CRdrCxoXL5zj/iVHLxDs5UqpgvI3/Wucjl146eSn2WZiZEg5H3duPInVShvxJBZvGR8zyiKncsuJmJQ07iem4GYlf2BYevAMLjaWNH6tK6Rj1dLUfaMsG/+2lC+rlKZrjbJvHiLfWXbhdq7yCUCSIC1D/d50H8rSfSdxsbWicVntAa9Zwfxm1DN2j+yDo7XlW46Q/yxZsgQXFxfNgGKB4F3oJKA3a9aMcePG4eXlRVBQEGfPnmXq1Kl0794dyLzz6t+/P+PHj6dIkSIUKVKE8ePHY2FhQYcOHd5z9A9DrZZYFn6dTmX9MXrjMaK/L97C2dIcTzsrLkXFMnDrEVoE+lBf5mZ3tSSx7MJtOpUshNFrN0I2psbU8HJh8J6zmBsZ4mVrycF70ay8dIff6sr3I6xWSyw7dolOFYOy5RFAYmoaf5+9wW+ta8nmkLPTRTpVKpHN6cf6FWi/cDPVi3hSy9+b0Cu32XbxJnsGyHwtvaXcktKV/HroIq0CPHG3MuduQjLD95/HycKUlnJfS2o1yw6doVO1MhgZvuqrd7S2wPGNpm5jQ0PcbK0JcHd+8zD565SVTyV8tfIpOV3FhKOXaVqkAO5W5sSkpjHvTAQPnqfQpqi8XSVqtZpl+07RqWZ5rXxSZWTw+e9LOXvnIZsH9yBDrSYqLnMOBAcrC0xk7F5Sq9UsWbKELl26YPTGI5exsbHcu3ePR48eAXD9+nUA3NzcNC2e+oRYD1036CSgz5w5kxEjRtCnTx+io6Px8PCgd+/e/PLLL5o0P/30E6mpqfTp00czscyuXbtkewY9iz03H3AvPomuLwfDvc7jxBQG/XuMJ0mpuFtb0LGMP8PqyF972XMninuJKXQtWSjbvlUtqzJs/3k6bz5K7It0vG0s+bVmSXqX9cvhSPnD7uuR3ItLpFvlnEevrwu/hiRJfFFOnkf5cnS6Fsm92ES6VSmZbV/L0gHM6dCQSTuP03/9bgJcHfjrq1ZU85M3eL6t3AwVCi5Fx7Py4h3iXyhxtzKjprcrq1tVxdpUnvkMsth9+Rb3YhLoViNY1vPkhbfmk4GC6zGJrLh4h2epaTiam1LO3YF9HesR5Cxv68ruixHcexZHtzrakyE9iElg6+nLAAQP+l37M6P6UCtIxu/d7t3cu3dPU/F5nS1bttCt26uugazuzJEjRzJq1CjZnP4rCgMFig+MyGJxlvejkKT/1labmJiIra0tz549w9HR8f0f0AFKpZLt27fT4HoYxmrVx9YBQGlgxK6A+jQ4vUG/nMq1puGj4xhLGe//gA5QKgwJ9ahEw6hT+uXkVl4/yy7xCsbI3wydG5QYEGoTSIPT/2CcoSf5ZGjErnJtaKi8gzHydkflFiUKQo19ady4McbG8t7I5YaYmBicnJxISEiQbea1rDhxyMMTK4MPe0o6Sa2m+qP7svr+ryMWZxEIBAKBrIjFWXSDCOgCgUAgkBUR0HWDWG1NIBAIBIJPAFFDFwgEAoGsiOfQdYMI6AKBQCCQFdHkrhtEk7tAIBAIBJ8AooYuEAgEAlkRTe66QQR0gUAgEMiKaHLXDSKgCwQCgUBWDBSKbGtQ/JdjCN6N6EMXCAQCgeATQNTQBQKBQCArosldN+Q6oKelpZGWlqZ5n5iYueKQUqlEqVTmv9l/IMtDZWD4npS6I8tFZaA/905ZLiqFHuXTSxeVQn8ajbJc9LLs9KhxLctFP/NJf6JAlou+/V7qAgX5MChOj8pSX8n14iyjRo1i9OjR2bavXr0aCwuLHD4hEAgEAn0lJSWFDh066GRxlvBCvljlsPRyXkjKUBN8+45YnOUd5PqWesiQIQwcOFDzPjExEU9PT2qaxOFg+kIWubyikmBPugN1DZ9hpNCPFZZUkoI9GU7UzbiPkZ6s+qRCwR5DT+rXr68Xqz5BZm0hLCyMutJD/conRQHqqu7pl5ORF3WfhGMk6cdqayqFAXtcg/Uzn5SR+uVk7KM3TrHKtPcnyicUBpmvDzrGx88yvSfXAd3U1BRTU9McD2CsNzmd2SRjpJD0yCkTIyS9WcYxC2NjY70J6FnoYz7ppZOk1ptlZrPQy3wSTu/00Bn58By66ER/P/rTEScQCAQCgeA/oz+jWAQCgUDwSSJGuesGEdAFAoFAICuZAf1Dp37NJ5lPGNHkLhAIBALBJ4AI6AKBQCCQlawm9w996RutWrXC3t6etm3bfmwVQAR0gUAgEMhM1lzuH/rSN/r168fy5cs/toYGEdAFAoFAICufag29du3aWFtbf2wNDSKgCwQCgeCT4+DBgzRr1gwPDw8UCgWbNm3KlmbOnDn4+vpiZmZGcHAwhw4d0r1oPiJGuQsEAoFAVhT5MLFMXj+fnJxMqVKl6NatG23atMm2f926dfTv3585c+ZQtWpV5s+fT0hICFeuXMHLywuA4OBgrTVMsti1axceHh7/7Q+RERHQBQKBQCAr+fkcetbCYFm8bRbTkJAQQkJC3nq8qVOn0qNHD3r27AnAtGnTCA0NZe7cuUyYMAGA8PDwD5PWMaLJXSAQCAT/M3h6emJra6t5ZQXfvJCenk54eDgNGjTQ2t6gQQOOHj2aX6o6R2c19IfP4hiy6G92nr5IaroS/wKuLBjQleAiPgBsPBzOgu0HOHPzLjGJSZyePZLShb3kd1qygZ3hl0hNT8ffw5UF33chuIg3SpWKEcs3s/P0RW5HPcPW0py6pYsxvmtrPBzt5HOKiWfIyi3sPHM1M588XFjQpz3BhT0BGL1uB+sPn+F+TDwmRoaULeTJmA5NqOjvI5/Tw4f8/PPP7Nixg9TUVPz9/Vm0aBHBwcHZ0vbu3ZsFCxbwxx9/0L9/f/mcYuIZsnwzO89ceZVPfTsQ/PKa6T5jBcv3ndT6TAV/H45O+kFep5Vb2Xk2q+ycWfDNq7IDuPogiiErt3Lwyi3UaolATzfWDuyKl7O9PE7xzxmycT87L98iNV2Fv6sDCzo2JtjbDQCjbybm+LmJrWrzY4OK8ji9J5+SUtMYumorm09eJCYpBR9ne/o2rsHXDavJ4qNxWrWNnWevZTq5O7Pgm3YapyfxzxmychthF64Tn5xK9WKFmN6jNUXcnWXxKdxnDHefxmXb/k3Dqszs2QZJkvj1r1AW7j5OXFIKFYp4M7NnG4I83WTx+VDys4Z+//59rdXWcqqdv49nz56RkZGBq6ur1nZXV1eioqJyfZyGDRty5swZkpOTKViwIBs3bqR8+fJ59skvdBLQ454nU2PgBGqVKsq2sf1xsbXh1uNo7CxfLbua/CKNKkF+tK1ejt7Tl+nGadBkapUMYNvofrjYWXPr8VPsrMwBSElL5+ytewxr35SSvgWJS0ph4IJ1tPp1NiemD5PHKSmFGsOmU6u4H9uGf42LrRW3op5hZ2muSePv4cz0nm0p5OpIarqS6dv2EzJmLtdnjcDZ1ir/neLiqFq1KrVr12bHjh24uLhw69Yt7OzssqXdtGkTJ06ckL1vKS4phRpD/qBWiSJsG/FNZtlFPcPOwlwrXcMyxVj0XUfNexMj+dZ/j0tKocbw6dQqXoRtw3q/LLsYrbK7FfWMmsNn0K1uJUZ+HoKtpRlXHzzBzESer2Fc8gtq/LaCWgHebOv7OS7WFtx6Go+dxasfwAcT+2p9Zufl2/RauZ3WZQLkccpFPv2wdCP7L99kWb+O+Lg4EHb+On3//BsPe1uaVyghj9OImdQK8mPb0F642Fpz68mr750kSbSevBhjI0M2/NQdG3Mzpm3bT8Nf53Hxj5+wNMt7QHkfxycMIEP9ajW9S/ejaDRmHm0qlwLgt817mbbtAIu/bU8Rd2fG/xNGozHzuDJ9MNbmZvnu86EoDBQoDD6wD13K/LyNjU2+LZ/6Zr+8JEl56qsPDQ3NF4/8QicBffJfOyjo7MCiH7prtvm4OWml6VivCgCRUc90ocTkv0Mp6GzPogFdXzm5vnKytbQgdNwArc9M/7o9lQeM5150DF4ujvnvtHE3BZ3sWNT3y1dOb5ynffVyWu+ndG3F4j3HuXD3IXVL5v+P8KRJk/D09GTJkiWvnHx8sqV7+PAhffv2JTQ0lCZNmuS7x+tM3hCWmU+vBes38wnA1NgIN3vdrJs8edMeCjras+jbDm91GrH6X0LKBjKpU3PNtkKu2t+DfHXadZyC9jYs6vyqPHzeaF1ye+MmcMuFCGr5e1PIWTtdvjnlIp+O34ikU83y1CpeBIBe9avwZ9hRTt+6L0tAn7xpLwUd7Vj0bfvXnBw0/454/JQTEXc5P/UnTQ14Vs+2uPf8hbVHztKjbqV8d3rz5nzypj0UdnWkZmBhJElixr8HGdK6Hq0qlgRgSd8OePT8hTWHz/BV/Sr57vOp4eTkhKGhYbbaeHR0dLZa+/8SOulD33b8HMH+PrQbOwf3dv0p9+0oFu44oItTv93pxHmC/bxpN34e7h1+oNx3Y1i4892PLCQkp6BQKLCzsnhnuv/sdPoSwYU9aTdlCe7dhlHux8ksDHt7f066UsWfYUextTCnlE8BWZy2bNlCuXLl+Oyzz3BxcaFMmTL8+eefWmnUajWdOnVi0KBBBAUFyeLxOttOXSLYz4t2kxfh3mUI5QZOYuGuI9nSHbh0E/cuQyjW51d6z15NdPxz+ZxeL7vuwyn3428sDDum2a9Wq9l+5gpF3J0JGTMX9+7DqTx4KptPXpDP6UIEwd5utPtzI+6DZlBu3GIWHj731vRPEpPZfvEW3auUlM/pPfkEULVoIbadvsTDmHgkSWLfpQhuPHpKg9JFZXK6nOn0+zLce/xCuUG/s3D3K6c0pQoAM+NX9R9DQwNMjAw5cvWOLE6vk65UserQGbrWqYhCoeBOdCxR8c+pX+rVDbypsRE1Agtz7Hqk7D7/BX17Dt3ExITg4GDCwsK0toeFhVGlyv/uDZFOAvrtx0+Zv20ffgVc2T5uAF81rkX/uWtYsfvjDT64HfWU+dsPZDqN+Z6vGteg//y1rNhzLMf0L9KVDFu6kfY1K2DzRtNuvjk9iWF+6BH83J3YPuIbvmpQlf6LN7Biv3Zf8LbTl7D9chCW7X9k+rb97Bz5DU42+d/cDnD79m3mzp1LkSJFCA0N5euvv842O9KkSZMwMjKiX79+sjhkc3ryjPk7D+Pn4cz2kX34qmFV+i/6hxX7TmjSNCobyPIBnQn79Tsmd2vF6Zv3qP/LTNKUSpmcYpi/6wh+7s5sH/41XzWoQv8lr8ouOiGJpBdpTN60h4ali7FjxNe0rFiStr8t4cDlm/I4PYtn/sGz+Dk7sL3f53xVowz91+9mxfGLOaZffvwi1mYmtJKpuR3en08A07q3plhBN7x7j8L8ix9oMnYes3q1pVqxQvI4Rccwf9fRzO/d8K/4qkFl+i/eyIoDpwAoWsAVb2d7hq3+l7ikFNKVKiZt3ENU/HMexye+5+gfzuZTl4hPTqVLrcy+2aiX53S11Z7QxNXWmigZb1o/hPycKa58+fIEBgYye/bsd54zKSmJc+fOce7cOQDu3LnDuXPnuHfvHgADBw5k4cKFLF68mKtXrzJgwADu3bvH119/LWteyIlOmtzVkkRwER/Gdct8FrCMnzdX7j5i3rZ9dKr3ce6G1JJEsJ8347q0ynQq7MWVu4+Zt/0AnepW1kqrVKnoMGkBaknNrNeaCmVxKuzJuC+bZToVKsiV+1HMCz1Cp1oVNOlqFy9C+JSfePY8mUVhR2n/+1KOThyIi23+z1ikVqspV64c48ePz3QqU4bLly8zd+5cOnfuTHh4ONOnT+fMmTMf/Jxprp0kieDCXozrmNl0XaaQZ2Y+7TxMp9qZA7k+r/ZqwF5xbw/KFfaiUO+RbD99mVaVS8vjVMiTcV82fen0sux2ZZadWpIAaF6+OP2b1QKgtG9Bjl2/w4JdR6gZ5CePk7c741rWzHTydOPKo2fMO3iWTpWyN10vPXqBDhUCtWqisji9I58AZm4/yImISDYO7om3kwOHrt6i759/42ZvQz0ZupXU6pffuw6ZXRNlfLO+d0fpVLM8xkaGrP+hK1/NXYdzt+EYGhhQt0QRGpWRp8XgTRbvPUGjMkXxcLDV2p6t/xcJPZxMLd85depUrvrQT58+Te3atTXvBw4cCECXLl1YunQp7dq1IyYmhl9//ZXHjx9TvHhxtm/fjre3t2zucqOTGrq7gy2BXtoDpYp6uXP/aawuTp8j7vY5OHm6ZXNSqlR8MXEBkU9i2Dl2gGy1cwB3OxsCC2qPUi1awJX7z7RHu1qameLn7kwlfx/+/LYDRgYGLN5zXB4nd3cCAwO1thUrVkxzl3vo0CGio6Px8vLCyMgIIyMj7t69yw8//JBjX3u+ONnbEPjGaN6iBbPnk9ZnHGzxdnYg4vFTeZzs3uYUD4CTtSVGhgYUy6F8771Mk+9OtlYEumn3Txd1c+R+bPZa5aGI+1x/Ekv3qqVkcdE4vSefUtPSGb7mX37r0pJm5YpT0seDb0Oq83nVMkzdsk8eJ3sbAgtq95u++b0LLuxJ+JQfiVk6jgcLRrF9eG9inqfgK8NYmte5+zSWPRduaPXTu9llBrOoN1oHohOScLXTn2lIX+djNLnXqlULSZKyvZYuXapJ06dPHyIjI0lLSyM8PJwaNWrk7x+uY3QS0KsEFuH6A+3BBzcePpFlYFluqRLox/WHOTg5vxoMkxXMbz6KJnTcABxlatbWOBX15fqjaG2nx9HvfaRJ4lU/X35TtWpVrl+/ru1044bmLrZTp05cuHBB07R17tw5PDw8GDRokGwjQKsULcT1h0+0nR5Fa5Xdm8QkJnP/WRzuMg2Sq1LUl+sP3yi7R0/xcsosOxNjI8oV9uLGG+Ub8fgp3jI9slalUEGuP9G+Qb0RHYuXo222tEuOnifYy41SBeUdEPS+fFJmqFGqMrItxGFooECtluRxCvDJ4Xv3NMfrydbSHGdbKyIePyX81n2alS8ui1MWS/edxMXWisZli2m2+bo44GZnze4LNzTb0pUqDl65ReUAH1l9/itZM8V96EvwbnQS0L9vVZ8T124zYe2/3Hz0hDX7jrNw+wH6NKujSRP7PIlzt+5x5d4jAG48iOLcrXtExSbI49SyXqbTuu3cfBTNmv0nWLjzEH2aZjbRqDIy+Hz8fMIj7rL8xx5kZKiJik0gKjaBdJmC5/fNanHiRiQT/tnFzcdPWXPoNAvDjtGnUXUg89G+Yau2cvxGJHejYzlz+z5fzVnDg5h42srQjAwwYMAAjh8/zvjx47l58yarV69mwYIFfPvttwA4OjpSvHhxrZexsTFubm4EBMjTF/t9s9qZ+fR3aGY+HTzNwl1H6ROSmU9JqWkMWrqRY9fuEBkdw/5LEbQYPx8nGytaVpKnBvp901qciIhkwj9hL8sunIW7j9Gn0atnp39sUYf1R8+yMOwYNx8/ZfaOQ2w7fVm256u/r1ueE3ceMWHHUW5Gx7Hm5GUWHj5Pn5pltdIlpqbx95nrstfO4f35ZGNhRo3AwgxesYX9lyK48ySGZftOsOLAaVpWzP8R7plONTkRcZcJG3a/5nScPo2qatL8fewc+y/f5PaTGLacukSjMfNoUaE4DUrJN95ArVazbN8pOtUsj5Hhq0cuFQoF/ZrUYOKG3Ww6cYFL9x7TffYaLExNaF+t7DuO+PFQkA819I/9R/wPoJAk6T/d9iYmJmJra8uTv2fjaPX+5x63nTjP8CX/EPHwCb5uzvRvXZ+eITU1+5ftOkyPqUuyfW7El80Z2alFrpyUkoLQNAcaGj3FWPH+P2vbyQsMX7qBiEfR+Lo60b9VfXq+DJ6RT57h131ojp/bPeEHauWyL08pKQhVOdMw4x7G5MLp9CWGr9pGxOOn+Lo40r9ZLXq+fAzlRbqSjtOWczLiLs8Sk3C0tqScnxdD2zagvF/u+32UKAg19KJx48YYGxu/32nbNoYMGUJERAS+vr4MHDiQXr16vTW9j48P/fv3z9PEMkqlku3bt9NQepC7fDp1ieErt7zKp+a16dkg8wc4NS2d1hP/5NztB8SnpOJub0Ot4kUY3aEpnk65rw0rURCqKEhD1d1clt1lhq/OKjsH+jetTc/62uMxluw5zqSNu3kQm0CAhzMjPw/J06NYShSEGnnTMOoUxlLG+50u3mT4pgNERMfi62RH/7rl6VmttFaaPw+dY+Bfu3kwqS+2/+EZZqXCkFC38vmWT1FxiQxbvY2w89eJTUrB28menvUr079prVzX0jT5pLyTO6fwywxf9S8RUc9eOtWkZ71XTjO3H+T3Lft5Ev8cd3sbOtYsx/A29THJw3gDJQpCjX1z7bTr/HUaj53PlemD8fdw0dqXNbHMn2HHiEtOpYKfFzN7tqG4l3uufWJS0nDtMoSEhIR8e677TbLixO3gAKw/cB6I56oMCoVfl9X3fx2dBXRdkNeArgvyGtB1QV4Dui7Ia0DXBXkN6LogrwFdF+Q1oOuCvAZ0XZDXgC43ugzod8oVzZeA7nv6mgjo70DM5S4QCAQCecmPAXEvG2dy+9ja/0fEamsCgUAg+J8ht4+t/X9EBHSBQCAQyMrHWA/9/yMioAsEAoFAVhQGma8PPYbg3YgsEggEAoHgE0DU0AUCgUAgK6LJXTeIgC4QCAQCeTFQZL4+9BiCdyKa3AUCgUDwP4N4bO3tiBq6QCAQCOQlPxY0f/l58dja2xEBXSAQCASyIvrQdYMI6AKBQCCQF9GHrhNyHdDT0tJIS0vTvE9MzFyLV0XmfOX6gErK+r9++MArF5UerRWU5aJUKj+yySuyXPQxn/TSSY8eys1y0ct8Ek5vRV88BPlHrgP6hAkTGD16dLbtB9LtsTCyyFepD2VPhtPHVsjGHkPPj62QjbCwsI+tkI09igIfWyEbe4y8PrZCNva4Bn9shWzoZT4Z+3xshWzoi1OKcYruTpaPfeiCt5PrgD5kyBAGDhyoeZ+YmIinpyc1H4fjYKYfLfcqhSF7PCpQ1zoFIz0pe5UEe55bUNc2Tb+cEkyp66TASE+asVRqiT3PJOrXr69XK8CFhYVR116NkZ5UiFVq2BNnoJ/XU+otjPRgFTHIrH3uMS9MXRcj/brGo1V6c43HxMTo7FwKAwWKDyyHD/38/wdyHYlNTU0xNTXNfgApA2M9auIGMFKAsX4p6aeTgQJjvfqSSBgbG+vFj93rGBmAsZ4E9Cz08npCwhj1x9Z4SWaB6d81jt5c4/rgIMhf9OxnSiAQCASfHB+6duprTfaf0nPoycnJ+Xo8/WgrFwgEAsEni0KRD03un+Bz6K6urnz++ed0796datWqffDxRA1dIBAIBIKPwJo1a0hISKBu3br4+/szceJEHj169J+PJwK6QCAQCOQlH5vcPyWaNWvGP//8w6NHj/jmm29Ys2YN3t7eNG3alA0bNqBSqfJ0PBHQBQKBQCAvBryaXOY/vz72HyEfjo6ODBgwgPPnzzN16lR2795N27Zt8fDw4JdffiElJXePGIo+dIFAIBAIPiJRUVEsX76cJUuWcO/ePdq2bUuPHj149OgREydO5Pjx4+zateu9xxEBXSAQCASyIuZyz5kNGzawZMkSQkNDCQwM5Ntvv6Vjx47Y2dlp0pQuXZoyZcrk6ngioAsEAoFAXsRc7jnSrVs3vvjiC44cOUL58uVzTFOoUCGGDRuWq+OJgC4QCAQCeRFTv+bI48ePsbB499Tp5ubmjBw5MlfH+4SHGQgEAoFAoL9YW1sTHR2dbXtMTAyGhoZ5Pp4I6AKBQCCQFYVB/rzg05opTpJyXvsgLS0NExOTPB9PZ03uD+OfM2TzQXZevkOqUoW/iz0LvmxIsJcbkPmH/br9KAuPXCAuNY0K3m7MbFePIHd5Vk4bvfRvxizboLXN1d6WhxvmAvAkNoEhC9YQdvoC8UkpVC9ZlOn9ulCkoLssPgCjl/zFmKV/azs52PJw4wIAklJeMHTBajYfPkVMwnN83Jzp2yaEr1s2kM/pz9WMWbTmDSc7Hm5fAYBRpWY5fm5i32782LG1LE6jRo3KtvKfq6srUVFRmvdXr17l559/5sCBA6jVaoKCgli/fj1eXvKsCDZ60VrGLF6v7eRgx8OtiwHoPnYmy3fs09pfIbAIR/+cJIsPvP96ep1vpizgz617+L1vZ77/rIl8Tn/vYsw/u7WdbK14OO8Xzf71x85zPyYeEyMjyvoWYEy7RlT0k28lt9ELVjJm4WptJwd7Hu5chVKlYsTc5ew8eorbD6OwtbKkbvnSjO/bDQ9nR9mc3neNb9iwgfnz5xMeHk5MTAxnz56ldOnSsvl8MPnY5P4pzBQ3Y8YMIHOg38KFC7GystLsy8jI4ODBgxQtWjTPx9VJQI9LeUGNqWuoVcSTbX3a4GJtwa1n8diZm2nS/Lb7JNP2hbO4YyOKuNgzfudxGs38iyu/9MDaLO93KrkhyKcgob8P1bw3NMi8BZQkidYjfsfYyIgNY3/AxsKcaX9tp+GPE7i4ZDKWr3nnu5NvQUJ/H/HKyfBVI8oPs5ax/9xllg3ri4+bM2GnLtB32iI8nOxpXi3nARX54lTIi9CZY185GbxyevDvcq20O4+F02vcDFrXriKbD0BQUBC7d78KDK83T926dYtq1arRo0cPRo8eja2tLVevXsXMTL5yAwjy9SR0+qhXTgbaDWANK5Vh0dC+mvcmxvJ//d51PWWx+dApTl69iYeTvew+AEEFXQkd9tUrp9cGO/m7OzO9a0sKuTiQmq5k+o5DhIxfyPVpP+FsY5XT4fLHqZA3obPGvXJ6eT2lvEjj7PWbDOvenpL+hYhLTGLgH/Np9cNoTiyfIZsPvPsaT05OpmrVqnz22Wf06tVLVg9B/vPHH38AmbFm3rx5WmVrYmKCj48P8+bNy/NxdRLQJ4edpKC9NYs6hWi2+Tjaav4tSRIz9p1hSMOKtCrtD8CSTiF4DJ3LmtNX+apaKVm8jAwNcXOwy7Y94kEUJ67c5PziyQT5FgRgVv/uuLf+mrV7j9GjSW1ZfDROjtmdAI5fuUGnhjWpVSYIgF7N6/Hn1t2cvn5b1oCe6ZTzj/2b27ccPE6t4BIUKuAmmw+AkZERbm45n2PYsGE0btyYyZMna7YVKlRIVh94dz4BmBobv3O/HLzregJ4+DSWftMXs/23oTQfLF9rgbaTAW521jnua19V+/GcKR2bsXjfKS7ce0zd4kVkdDLEzckh23ZbK0tCZ43X2jb9x2+o3LU/96Ki8XJzkc/pHdd4p06dAIiMjJTt/PmJWD5Vmzt37gBQu3ZtNmzYgL19/vwu6KQPfdvFmwR7udFu0RbcB8+m3MTlLDxyQbP/TkwCUYnJ1C/qo9lmamxEDb+CHLv9UDaviIdReLbtg1/77+nw6wxuP3oCQJpSCYCZyavlBQ0NDTAxMuLIxeuy+UDmzYRn66/xa9eXDqOnaZwAqpYoyrYjp3n4NBZJkth35hI37j+mQXl5bng0Tvcf4dm0C36tetBh+GRuP4zKMd2TmDi2HzlN92b1ZfUBiIiIwMPDA19fX7744gtu374NgFqt5t9//8Xf35+GDRvi4uJCxYoV2bRpk/xODx7j2bwHfm2/psMvv2fLpwNnL+HepCvFvviW3hPnEB0XrwOnt19ParWaLuNm8cMXzQjy9ZTdReMU9QzPb8bg128CHWas4vaTnNflTlep+HPvCWwtzCjl5SGv0/2HeDbuiF+LbnQYNpHbDx+/NW1CUjIKhQI7K/laDODt1/j/JGLq1xzZt29fvgVz0FEN/fazBOYfOkf/OuUY3KAip+5G0f/vvZgaGdKpYhBRiZlLyLlaW2p9ztXakruxibI4VSjmx9LB31DE040ncQmMX7GJ6n1HcWHJZIp6eeDt6sSwP9cy94ceWJqZ8cdf24mKjedxTJwsPhqnod9SpKA7T+LiGb9iI9W/HcGFpb/jaGvNtH7d6P3bfLzbfoORoSEGBgoWDOpNtZJ572vJtVOQP0t/GUARrwI8iY1n/JJ1VO81iAtrZuNoq92PtXz7XqwtzWlVS97m9ooVK7J8+XL8/f158uQJY8eOpUqVKly+fBmlUklSUhITJ05k7NixTJo0iZ07d9K6dWv27dtHzZo1ZXGqEOjP0uH9KOLlkZlPy/6m+tdDubByOo621jSqVIY2dSrj7ebMnUfRjPpzDfW/G8nJxVMwNZFnXer3XU+TV2/GyNCQ79qEvP9g+eXk58XSb76giLsTTxKSGL9xD9VHzubCbz/g+PL7v+3MFb6csZqUdCXudtbsHNoLJxvL9xz5A5yKB7B01A+vrvHFa6ne40curJ2Lo532Nf4iLZ1hs5bQvmEtbKze/bjRh/Cua9zRUb6+e4H8DBw4kDFjxmBpacnAgQPfmXbq1Kl5OrZOArpakgj2cmNc8+oAlPF05crjZ8w7dI5OFYM06d68AZOQZLspC6lYWvPvEkDlwCL4fzmA5aEHGfB5E9aP7s9Xv/2Jc/OvMDQwoG5wcRpVlLcmHFLpVXNjCbyoHOSPf4d+LN95gAHtmjLznx2cuBLBxvE/4e3mxKHzV+n7xyLcHO2oV66kPE5Vyr3mBJVLFMW/TS+W/7uXAR1aaqVdui2MDg1qYWYqz5gHjVPIqwBUokQJKleuTOHChVm2bBlffPEFAC1atGDAgAFA5kxLR48eZd68ebIF9JDKZV85FfamcvEA/D/vw/Id+xjwRXM+r/dqacTihbwpV7Qwhdp8zfaj4bSqVUkep3dcTzVKBzLznx2c+nOiTmfgCin96uazBFC5iDf+/Sey/GA4A5rUAKB2oB/hE/vz7Hkyi/aepP30lRwd8x0utvLUiEOqvOquyrzGi+HfqgfL/93NgC9fDexUqlR0GDYRtSQx66dvZXHROL3jGn9fENBLxMQyGs6ePYvyZSvw2bNn35ruv3wvdRLQ3W0sCXTTvqss6ubIhnMRALi9vPuOSkzG/bUvbfTzFFyt5bsLfh1LczOKF/Lk5stm0uCAQoQvnEBCUgrpKhXOdjZU/mYE5QLk74vVcvL14uaDKFLT0hn+5xr+HvsjTV4Gj5KFvTl/M5Kp67bJFtBzdCrsw8372kv8HTp3met3H7J67M868dBysrSkRIkSRERE4OTkhJGREYGBgVppihUrxuHDh3XnZG5G8UJe3Lyfc9Otu5MD3m7ORDz470sl/ienl9eTgYGC6LhEfD9/FZgyMtQMmrOCGX/v4Na6WbpxMjOhuKc7N6OeaW3zc3PCz82JSkW8KTpgEov3nWRwyzq6cTI3o7ift9Y1rlSp+GLIBCIfPSFszgRZa+c5Or12jf8vIqZ+fcW+ffty/Hd+oJM+9CqFCnA9OlZr243oOLwcMpuzfB1tcbOxZPe1u5r96aoMDt58QOVCBXShSFq6kmt3H+HmoN2fYWtlgbOdDREPHhN+4zbNqgbrxEfjdO8hbo52KFUqlKoMDN64qA0NDFCrc36WUTanyPu4vTEiesmWXQQX9aNUEV+duWic0tK4evUq7u7umJiYUL58ea5f1x7rcOPGDby9vXXnlK7k2t0Hbx0EF5PwnPvRz3DX4SC516+njg1qcHbxZMIXTtK8PJzs+eGL5mz/bej7D5ZfTkoV1x5Fv3WQHIAkQVoel5H8ICfNNZ45SC4rmN+8/4jQ2eOzNcPrxOm1a1wgeBs6qaF/XyeY6r+vYULocT4rG8CpyCgWHjnPvPaZz08rFAr61S7LxF0nKOJij5+zHRNDT2BhbET7csVkcRo0dxVNK5fFy9WR6LhExq/cSGJKKp0bZnYL/L3/OE52Nni5OHLp9n0GzFpOi6rlaFBevprwoDkraFolGC9XJ6LjEhi/fAOJyal0blQTG0sLapQOZPC8lZibmuDt5szBc1dYEXqQKd92ls9pxiKaVquAl5sz0bEJjF+yjsTkFDo3rqtJk5icwt97j/Bbvx6yebzOjz/+SLNmzfDy8iI6OpqxY8eSmJhIly5dMp0HDaJdu3bUqFGD2rVrs3PnTrZu3cr+/ftlcxo0aylNq5Z/VXbL/s4su8a1SEpJZfTidbSuVRl3R3siH0czfP4qnGytaVlDnuZ2ePf15GhrjaOtdhA1NjLCzcGWABkHoA1auY2mZYvh5WRPdGJmH3pi6gs61yhH8ot0xm/aQ7PgQNztbIhJSmZe2DEexCbQtqKM37vpC2lavSJers5Ex2X2oScmp9C5SV1Uqgw+Hzyes9dusnnqKDIyMoh6llk5cbC1xsRYnvEP77vGY2NjuXfvHo8eZbYiZN3Aurm5vXVk/EdFNLlraN069/NzbNiw4f2JXkMnAb28tzt/92rB8C2HGLvjGL6OtkxtU4cO5V81iw6qV4HUdBV91+0mLuUFFXzc2dG3rWzPoD98GkPHsTN5lvAcZzsbKhbz48js0Xi7OQPwOCaeH+es5ElcAu6O9nRsUI3hneSZKEXL6dcZPEtIzHQKLMKRuWM1Tqt/+Z5hC1bTeexMYhOT8HZzZkzPL+jdQr5R5Q+jY+j4yxSexSfibG9DxaAAjiyagrf7q8d11oUdRJIkvmhQQzaP13nw4AHt27fn2bNnODs7U6lSJY4fP66pgbdq1Yp58+YxYcIE+vXrR0BAAP/88w/VqlV7z5H/Ow+jY+g4cuqr6ynInyMLJuLt5kJqWhqXbt1j5Y79xCel4O5oR62yJVjz6w9YW5rL5/Se6+lj8DA2gY4zV/PseQrONpZULOLFkV/74u1sz4t0JdcfPWXFwRU8e56Mo5UF5Qp7sn/kNwR5yhekHkY/o+PwSS+vcVsqFg/gyKI/8HZ3JfLRE7YePA5AcMe+Wp/bPXcitYLludF43zW+ZcsWunXrpkmfNXZk5MiRjBo1ShanDyM/Rql/GgHd1tb2/Yn+IwrpbXPPvYfExERsbW15MqU/jmb6scaLUmFIaIHKNLRJwVhPyl4pQWiiBQ3t0vTLKd6Uhi4GGOvJXa9SLREaraZx48YYy1TryStKpZLt27fT0FGNsZ5MkqxUQ2iMgX5eT6k3MUb9sXUAUGJAqLkfDd2M9esaj1LqzTUeExODk5MTCQkJss28lhUnotvVwMbkw+JEYroKl3UHZfX9X0dPfqYEAoFAIHg/n9Jc7vmNflStBQKBQPDpko996P/rc7mXLVuWPXv2YG9vT5kyZd45ev/MmTN5OrYI6AKBQCCQFfHY2itatGiBqakpAC1btszXY4uALhAIBAKBjhg5cmSO/84PREAXCAQCgbyIx9beyenTp7l69SoKhYJixYoRHPzf5jsRAV0gEAgE8pKP66F/SmQ9nnjkyBHs7OwAiI+Pp0qVKqxZswZPz7wtmiRGuQsEAoFA8BHo3r07SqWSq1evEhsbS2xsLFevXkWSJHr0yPtEXaKGLhAIBAJZEeuh58yhQ4c4evQoAQEBmm0BAQHMnDmTqlWr5vl4IqALBAKBQF5Ek3uOeHl5aVZeex2VSkWBAnlfx0Q0uQsEAoFA8BGYPHky3333HadPnyZr0tbTp0/z/fffM2XKlDwfT9TQBQKBQCAvBuTDKPd8Mfno2Nvbaz1Tn5ycTMWKFTEyygzHKpUKIyMjunfvnufn1HMd0NPS0khLS9O8T0xMzDy5whClwjBPJ5UL1UsPle5WE30vWS566aTDZVffR5ZLTs1PH4ssF5V+TE8OvHLRy+sJBfryq6t6uZCHuMbfji49xMQyr5g2bZpsx8714iyjRo1i9OjR2bavXr0aCwuLfBcTCAQCgXykpKTQoUMHnSzOEtOrATYmH7YgTWK6Esc/d4nFWd5BrmvoQ4YMYeDAgZr3iYmJeHp6UtMyGQcr/bgLVkmwJ8mSutYpGOnJzZxKgj3PLahrEqtfTukO1H10EiMp42PrAJmtK3s8KlBXeogRenI9oWCPogB1Vff0y8nIi/r16+vFil2QWdMLCwvTy7LTy3wyeIqR4uPnU6zBi4+tIHiN1NTUbK0meb1xyXVANzU11cw/q3UABXqzjGMW+uv08b/EmWRmjpGUgbGeBPQsjJAw1pOgkIU+OhkbG+tNoMpC5FPuMFJIevFboNObCjHKPUeSk5P5+eefWb9+PTExMdn2Z2Tk7fdZPzq8BAKBQPDpkhXQP/TFp7V86k8//cTevXuZM2cOpqamLFy4kNGjR+Ph4cHy5cvzfDwxyl0gEAgE/zP8ry+f+jpbt25l+fLl1KpVi+7du1O9enX8/Pzw9vZm1apVfPnll3k6nqihCwQCgUBm8qN2/uk1ucfGxuLr6wtk9pfHxsYCUK1aNQ4ePJjn44mALhAIBAJ5MTDIn9cnRqFChYiMjAQgMDCQ9evXA5k196zFWvLCp5dDAoFAIBD8D9CtWzfOnz8PZD5JltWXPmDAAAYNGpTn44k+dIFAIBDIixjlniMDBgzQ/Lt27dpcvXqV8PBwChcuTKlSpfJ8PBHQBQKBQCAvIqDnCm9vb7y9vf/z50WTu0AgEAgEH4k9e/bQtGlTChcujJ+fH02bNmX37t3/6VgioAsEAoFAXvLxOfRPiVmzZtGoUSOsra35/vvv6devHzY2NjRu3JhZs2bl+XiiyV0gEAgE8pIfo9Q/wVHuEyZM4I8//qBv376abf369aNq1aqMGzdOa3tu+PRySCAQCAT6haih50hiYiKNGjXKtr1BgwaaFU3zwkcJ6BNXb8aozpcMnLVCs23jwVOE/DQR15a9MarzJeduRurWadVmjGp3YOCszOn2lCoVg+evoXT3n7EJ6YZn2z50HT+HR8/idOe09l+MGvVg4Lw1mm2jV2wmqOcwbFp8g1Pb72gweAonrt3WnVPoCYz6TmHg33tz3P/Nml0Y9Z3C9H3hunP6ZxdGrb5j4KJ/NNu6z1iBUavvtF5Vfv5dd04bwjBq25+BSzZobb/6IIqWE//EofNg7Dr+TJUhf3DvqW6uqQkTJqBQKOjfv79mW9aylm++fvvtN5045VR2Salp9FuwHu+eI7BqN5Difccyb+chnfhAzvn05MkTunbtioeHBxYWFjRq1IiIiAjZHEav2opR095arwIdXz3GJEkSo1dtxbPzT1i17kudwb9z+e4j2XwE8tC8eXM2btyYbfvmzZtp1qxZno+n8yb3U9dusXDbPkoW8tLanvziBVWK+9O2ZkV6/77wIzjt1XJKeZHO2Yg7DOvUipKFvYhLSmbgrBW0GjaFE/PHye90/Q4LdxykpG9Bre3+BV2Z3udLCrk7k5qWzvSNYYQMncr1xRNwtrOW1+nuYxYePU/JAs457t98PoKTkY/xsLWS1UPLKeIuC3cdoaSPR7Z9DcsUY9F3HTXvTYwMdeN08x4Ldx+jpLe2062oZ9QcPoNudSsx8vMQbC3NuPrgCWYm8n8NT506xYIFCyhZsqTW9sePH2u937FjBz169KBNmzbyO72l7H5Y/A/7L0WwrH9nfFwcCDt3jb7z1+Nhb0vziiXfcrR8csohnyRJomXLlhgbG7N582ZsbGyYOnUq9erV48qVK1haWsriEuTlQei4/pr3hq81Of/2TyjTNu1m8YAuFPFwZfy67TQaMY0r837F2sJMFp8PQoxy1zBjxgzNv4sVK8a4cePYv38/lStXBuD48eMcOXKEH374Ic/H1mkNPSn1BZ3Hz2HeDz2xs9b+EnRsUJ0RnVtTN7i4LpUyncbNZt6P2k62VhaEThnKZ7UrEeDlQaXAIkzv14XwG3e49+SZ/E6T/2Te912ws9LOp/a1K1GvbCCF3J0J8inAlK/akZiSyoU79+V1Skun89LtzGvfEDvz7KvuPYx/Tr+/9rC8axOMDXVzWSWlptH5j2XM69MeO0uLbPtNjY1ws7fRvBys5fnhzeY0fQXzvm6HnaW51r4Rq/8lpGwgkzo1p0yhghRydaJJcBAutvLeiCUlJfHll1/y559/Ym9vr7XPzc1N67V582Zq165NoUKF5HV6R9kdvx5Jp9oVqVW8CD4ujvRqUJVSPgU4feuevE5vyaeIiAiOHz/O3LlzKV++PAEBAcyZM4ekpCTWrFnzjiN+GEaGBrjZ22pezi+vE0mSmLF5D0PahdCqSlmK+xRgycCupKSls+bASdl8PgjR5K7hjz/+0LwWLVqEvb09V65cYdGiRSxatIjLly9jZ2fH4sWL83xsnQb076YvJaRiaerpOGi/i++mLSGkUhnqBZd4b9qE5BQUCgV2VtmDR746zV5FSIWS1Csb+M506UoVf+44gK2lOaUKecrrtG43IcULUa9o9mck1WqJLsu380Pd8gS5O8nqoeW0YD0h5YKoV6pojvsPXLqJe5chFOvzK71nryY6/rn8Tgv/JqRsIPVKBmhtV6vVbD9zhSLuzoSMmYt79+FUHjyVzScvyO707bff0qRJE+rVq/fOdE+ePOHff/+lR48esju9q+yqFivEtlMXeRgTjyRJ7Lt4gxuPomlQupisTm/Lp7S0NADMzF7VfA0NDTExMeHw4cOy+UQ8isaz80/49RhKh0l/cjvqKQB3njwjKi6R+mVe/T6YGhtTo7g/x67eks1HkD/cuXMnV6/bt/PelaqzJvd1e49xNuIOx+eO0dUp38u6vUc5GxHJ8Xnvd3qRns6wBWtpX7cKNjnUBvPNaf8Jzt68y/EZI96aZtuJ83w5YT4paem4O9iyc/wPOMlYy1t3+hpn70dz/KeOOe6fHHYSIwMDvqtVVjaHbE6Hwjl7+z7Hf8t5esRGZQNpU6UM3s4O3ImOYdTqf6n/y0xO/j4IU5nWx153+Axn7zzg+MSB2fZFJySR9CKNyZv28OsXjZnQsRmh567R9rcl7B71LTWD/GRxWrt2LWfOnOHUqVPvTbts2TKsra1p3bq1LC5ZvK/spvVsS+85a/DuOQIjQwMMFAYs+LY91QILy+b0rnwqWrQo3t7eDBkyhPnz52NpacnUqVOJiorK1mWRX1QI8GXpwG4UKeDKk/hExq/dTvUfJ3Nhzkii4jIHS7naaa845mpnzd3oWFl8Phgxyv29SFLm+vSKD2iJ0ElAvx8dw4DZy9kxeTBmJia6OOV7uR8dw4BZy9kxech7nZQqFR1+nYlakpjVv5t8Tk9jGTBvLTvGD8TM5O1Bp3apooTPGcmzhCQW7ThI+/HzODp9GC52+b+k4P24RAb8s5cd37bFzDj75RJ+L4qZ+8M59XPnD7oQ8+T0LI4Bi/5hx8g+b82nz6sFa/5d3NuDcoW9KNR7JNtPX6ZV5dLyOC3ZwI4R3+TopH75ZW1evjj9m9UCoLRvQY5dv8OCXUdkCej379/n+++/Z9euXVq1y7exePFivvzyy1yl/c9OuSi7mf8e4MSNSDYO/QpvZwcOXblJ3/nrcbO3eWtrzAc5vSefjI2N+eeff+jRowcODg4YGhpSr149QkJC8t0li5Byr1oxS1CAykUL4d9zOMv3HKNi0czukDe/b5Kkx63Sog/9rSxfvpzffvtNM8jS39+fQYMG0alTpzwfSycB/cyNO0THJVKh93DNtgy1mkMXrjF70y5SQpdhqKN+11dOt186DcvutHEXKbuWY2hogFKl4ovRM4h8/JSwqcNkrZ2fiYgkOj6RCn1/1Xa6dIPZW/aSsnU+hoYGWJqZ4ufhip+HK5WKFaZo9yEs3nmIwV80yX+ne0+Ifp5ChcmvnkjIUEscuvWA2QfPMqFFDaKTUvD9Zb7W/kEb9jNjXzi3fv0q/51u3SM64TkVfnw1EjtDrebQlVvM3n6QlPV/ZLue3B1s8XZ2IOLx03z3AThz+z7RCUlU+OnVSPoMtZpDV28ze8dhEldNxsjQgGIF3bQ+V7SAK0eu3ZHFKTw8nOjoaIKDX93cZGRkcPDgQWbNmkVaWhqGhpkDBQ8dOsT169dZt26dLC5ZvK/sYldNZviqrfz9c0+avAxqJX0KcP7OQ6Zu3itLQM9NPgUHB3Pu3DkSEhJIT0/H2dmZihUrUq5cuXz3yQlLM1OK+xTg5qNoWry8IY2KS8DdwVaTJjrhebZau0C/mTp1KiNGjKBv375UrVoVSZI4cuQIX3/9Nc+ePdOa6z036CSg1ykbxLlFE7W29Zy8gABPdwa1b6bzYJ7pVJxziydpO02aT4CXh8YpK5jffBDF7j+G4yjz4KU6pYtxbt5obafflxDg6cagz0Pemk+SBGlKlTxOAd6cG9pF22nlTgJcHRlUvzzuNlY0KOajtb/x7H/4skIgXSvJM1aiTskAzk0bou00axUBBVwZ1KpejvkUk5jM/WdxuNvL84NXp4Q/56b+rO00e3WmU8u6mBobUa6wFzceRWuliXj8FG9n7YFq+UXdunW5ePGi1rZu3bpRtGhRfv75Z00wB1i0aBHBwcH/aUGIvPC+sstQq1GqMjB4ozZmaGCAWi3J4pSXfLK1zQygERERnD59mjFjdNOFmKZUcu3+Y6oF+eHr6oSbvQ27z16lTOHMJ3PSlSoOXrrBhK7ydpf8ZxTkQw09X0z0ipkzZzJ37lw6d+6s2daiRQuCgoIYNWqUfgZ0awtzivtqD9qyMDPF0cZasz02MYl70c949CwegBv3M/um3BzscHOw06GTFcV9PVFlZPD5yOmcjbjD5vGDyFCriYrNdHOwtsIkh+bnfHHy0X5MTePkU5DkF2mMX7ONZpVK4+5gS0xiMvO27ePBs1jaVpenpmBtZkJxD+3H1CxMjHG0NNNsd7TSHs1tbGiAm40lAa4O8jiZm1H8jUfCLExNcLS2pLi3B0mpaYxet53WlUrj7mBDZHQsw1duxcnGipaV5AlY1uZmFPdyz8HJQrP9xxZ1aP/HMqoXK0yt4n6EnrvGttOX2TM6b7NB5drJ2prixbVvqiwtLXF0dNTanpiYyF9//cXvv8v/nP77yg6gRpAfg5dtxtzUBG9new5evsmK/SeZ0q2VPE65yKe//voLZ2dnvLy8uHjxIt9//z0tW7akQYMGsjgNWvQ3TSuUxMvZgeiE54xf+y+JKS/oXLcyCoWCfi3qMvGvHRTxcMHPw4WJf+3AwtSE9jUryOLzwYgm9xx5/PgxVapUyba9SpUq/2l8ht5M/br1aDg9Ji/QvO8wJnMe2xGdWzOyq/zPxL7Jg6exbD2aOTlKcC/tGsXuP4ZTq/S7R6DLgaGBAdfvR7Fi9xyeJSbhaG1JOX9f9k8ZTJBPAZ376CuGBgou3X3Eyn0niU9Jxd3ehlrFi7Dmx25Ym3+8Z3RbVizJnF6fMWnjbvov2UCAhzN//diNasXkfUTsfaxduxZJkmjfvv1H9chi9Q/dGLZyC53/WEZsUgrezvaM6dCU3g2rfTSnx48fM3DgQJ48eYK7uzudO3dmxIi3D1z9UB4+i6Pjbwt5lpiEs401FYv6cuT3n/F2cQRgUJuGpKYp6Tt3NXFJKVQI8GXHr9/r5zPogrfi5+fH+vXrGTp0qNb2devWUaRIkTwfTyFlDa3LI4mJidja2vJky584yvwYV25RShD63JKGNikY68nNnFKC0EQLGprGYqyQp8kwryglBaFpDjR8eAxjKeNj6wCgVBgSWqAyDaUHGKMn+YSCUEVBGqru6peTkTeNGzfGWKbR+nlFqVSyfft2vSw7vcwnw2i9+C2ISX6Ba7vvSUhIwMZGnq6orDgRO7g9NqYfNiA6MS0dh4lrZPXVNf/88w/t2rWjXr16VK1aFYVCweHDh9mzZw/r16+nVau8tUp92s8BCAQCgUAPyI9JZTJraeXLlycwMJDZs2d/3D8pH2jTpg0nT57EycmJTZs2sWHDBpycnDh58mSegznoUZO7QCAQCD5R8rEP/dSpU59EDV2pVPLVV18xYsQIVq5cmS/HFDV0gUAgEAh0jLGxcY4Ls3wIIqALBAKBQF7EXO450qpVKzZt2pRvxxNN7gKBQCCQFzH1a474+fkxZswYjh49SnBwcLaV+/r165en44mALhAIBALBR2DhwoXY2dkRHh5OeHi41j6FQiECukAgEAj0DDGxTI7cufNq2uf8WJzl02vDEAgEAoF+IfrQ38qiRYsoXrw4ZmZmmJmZUbx4cRYuXPifjiVq6AKBQCAQfARGjBjBH3/8wXfffUflypUBOHbsGAMGDCAyMpKxY8fm6XgioAsEAoFAXkSTe47MnTuXP//8U2va5ebNm1OyZEm+++47EdAFAoFAoGeIUe45kpGRkeMSvMHBwahUeV9BM9cBPS0tjbS0NM37xMREAFRS5nzl+oBK0v6/PqDtpB93mBonheG7E+qQLBeVnuQRvHLRRyelUvmRTV6R5SLy6d1o8knSj3zSqYeooedIx44dmTt3LlOnTtXavmDBAr788ss8Hy/XAX3ChAmMHj062/YDyZZYSPqxOEsWe57rlw/AnnR5lhL9EPZ46N9Si3sU+rdq3B4jr4+tkI2wsLCPrZANfSw7vcwntfP7E+mAFHXKx1YQkDkobteuXVSqVAmA48ePc//+fTp37szAgQM16d4M+jmR64A+ZMgQrYMnJibi6elJTYskHKz0Y8UulQR7kq2pa/kcIz25mdM4mcXrl9MLO+qaxumXU5o99evX16vVscLCwqjLE4z0YHUsyKxV7cFVP68nfXTSx7KTHmKkB6vSxUovdHcyUUPPkUuXLlG2bFkAbt26BYCzszPOzs5cunRJky63j7LlOqCbmppiamqa/QAK9Gap0iyEU+7QRydjY2O9CehZGCkkvVjuUoOkn2Wnn056WHZIerHMrE5vKkQfeo7s27cvX4/36eWQQCAQCAT/DxGj3AUCgUAgLwryock9X0w+aURAFwgEAoG8iD50nSCa3AUCgUAg+AQQNXSBQCAQyIuooesEEdAFAoFAIC+KfBjlrhANyu9D5JBAIBAIBJ8AooYuEAgEAnkRTe46QQR0gUAgEMiLCOg6QQR0gUAgEMiLwuDD+8BFH/p7ETkkEAgEAsEnwEepoU9cvYXhi/6iX+uGTP22IwCSJPHr8o0s/Hcfcc+TqVCsMDP7dSHIp6AsDvO27Gb+lr1EPnkKQKB3QYZ3aklIxVIAPIlNYMifawkLv0R8UgrVSwYwvW9nihR0k8UHYN7WvczftpfIJ89eOhVg+JctCKlQEoCk1BcMXfQXm4+eISYxCR9XJ/q2rM/XzerI6/TvvjecmhNSPtPJqGG3HD83sefn/PhZiCxOc+fOZe7cuURGRgIQFBTEL7/8QkjIq/NdvXqVn3/+mQMHDqBWqwkKCmL9+vV4ecmzctq87QeYv+MQkdExAAR6uTP8i8aEBBcHoPu0ZSzfe1zrMxX8fTg65WdZfOD919PrfDNtKX9u38/vX7fn+9YNP5rT6OUbWb//BPefxmJibETZIj6M6dqGisUKy+f0jrJTqjIYsXILO8MvcTvqGbaW5tQtVZTxnVvi4Wgnn9POQ8zfeZjI6NhMJ083hn/eiJDgIAA2HjvHgl1HOHPrPjHPkzk99WdK+8rzW5kvGCgyXx96DME70XlAP3XtNgv/3UfJQp5a239b+y/T/t7B4p++okhBN8av3EyjnyZxZelkrC3M892jgJMD43p9jp+HKwDLdx2m9S9/cHr+WAK9C9D6l2kYGxmy4dcB2FiaM+2vHTQcNJGLiydiaW6W7z6ZTvaM6/HZK6eww7QeNZ3Tc34lyKcAP8xbzf7z11j281f4uDoRFn6ZvjOX4+FoR/MqZeVxcnZgXPe2rzkdofWoGZyePZognwI8WDNNK/3OUxfo9ccSWlcLlsUHoGDBgkycOBE/Pz8Ali1bRosWLTh79ixBQUHcunWLatWq0aNHD0aPHo2trS1Xr17FzEyecoOXZdelJX7umUtjLt97nNbj5nF62lCCvDwAaFg2kEXfd9Z8xsRI3q/f+66nLDYfCefktVuyBqjcOvkXdGN6304UcncmNU3J9A2hhAyZwvWlk3C2s5HP6S1lV9DRnrO37jGsXWNK+hQgLimFgQv/4v/au+/4nO7+j+OvyEYSksggQ6zYVKIVYs9Qsy2l1OpdKvZojSpaxN7EpqjRKjEbjZHEKLekTamtokYzkD1kXr8/QrgkISTnuq7b7/N8PM6jvc45ua63c53kc77f8z3ndJ/ly7lFkxTJA1DBqgyz+nWhit2TTCfO0WPOOkIWfkUtJ3uS09JpXL0SHzZ+hyGrdiiWo9hIl7tGaLSgJ6U+5tPZvqweO5jZP+zLna9SqVi2x59JfbrSvWlDADZ9NYTyHw5nx7Hf+FyBFmjnFwrgzMEfsebAMc5dvomhvj7nrtzkzw0+uT0EK0YNwP4Db3YeP8vgTi2KPQ9AZ4931DMN/JA1B09w7spNalWswNnLf9OvTRNa1KsBwH86tWDdoROEXA9XrKB3blT/hUwf5GS6+je1KlbAztJCbfn+3/6gRb3qVLK3USQPQOfOndVez5o1C19fX86ePUutWrWYMmUKHTt2ZN68ebnrVKpUSbE8AJ1faPXO7NeVNb8Ec+5qeG5BNzY0xK6sRX4/rkymV+xPAPcfxjJy5TYOzx5Pl6mvft6y0pl6t/JQW75gSG82+gdzIfwerd+pqUyml3137cpz5LtRasuXDumFx7i53HkQg1M5S2UyNayjnqlvZ9YcOcW567ep5WRP3xbvAuT2KggBGj6HPmLp93g1qkebJ92QT4VHPCAyJp627s/mGxsZ0qxedX67dEPxXFlZ2ew6/hvJj9NoVLMqaRmZAJgYPXuMp75+CYwM9Tn91zXF8+RmOnH2SaaclmiT2lU5eDaM+w9jUalUnAi7wvX7UbRzr/OKdyvGTIHnSE5Lo1E+XaBRsfEc/u8FBrVvqpE8OZmy2LlzJ8nJyXh4eJCdnc2hQ4eoVq0a7du3x8bGhvfeew8/Pz8NZspmV/B5kh+n06j6swOJoL+uY99vAjWGTmPIim1ExyVoNtML+1N2djb9565l3Edeai12bWZ6XnpGJusOB2JRypR6L/ToKZopn+/uefHJqejp6VGmVPH3HBaY6WRoTibXihr5zGL3dJR7USfxUhproe86/ht/3LzN2VUz8iyLjI0DwPaF1ottWXP+iVLuCPTirbt4jpjB4/QMSpuasHvGKGpWrEBGZibOttZMWf8jvmMGUcrEmMW7fyEyJp6ImHjF8gBcDL+L56iZTzIZs3vaCGo65/yxXTKsL0MWb8K5zxgM9PUpUUKPtWMG4lm7mvKZRs96lumb4bmZnrcl4DRmpiZ093RXNA/AxYsX8fDw4PHjx5QuXZq9e/dSs2ZNIiMjSUpKYs6cOcycOZO5c+fi7+9Pjx49OHHiBM2bN1cu0+37eH45/9l2mjyEmk72AHRwq8UHTRrgbGNJeNQjpv9wgLZfL+G/iydhrODz31+2P83bdRgD/RKM6NZWsc9/3UwAB8+G8clsX1LS0rG3tMB/zgSsLcyUzfSS7+55j9MzmLLFj97NGmKuwKlAtUz//IvnxIU8Ts+ktIkxuyd+Rk3HvJn+J8jz0DVCIwX9bvQjxqzcxi/zvsTEyKjA9fReOAJTqZQ9KHN1tCd07SzikpLZc/I8g+au5fiiKdSsWIEfp4/k8wXrKddtKPolStDarRYd8hlMVOyZHOwJ9f2WuOQU9pwMYdD89RxfMJGazhVY7hfAuat/s3fGKJxtrTl58RrDl2/FzrIMbRrUUjbTqhk5mU6FMGjBeo7Pn5inqG8+cpI+rRqp9WwolsnVlbCwMOLi4vj555/p378/QUFBlClTBoCuXbsyZswYAOrXr8+ZM2dYvXq1ogXdtYItoUsmE5ecyp4zfzBoyfccnz2Wmk729Gz67CCntnMF3Ks4U+mzKRw+/xfdG7/zknctYqYC9qfUtAyW+/3K+VUz8vzeKe1l+zhAy3o1CPX9locJiWw4HETvmas4s+wbbMoqcw4dXv7dPZWRmUWf+RvIzlax4ouPFcuSm6m8DaGLJuZk+i2MQcu2cXzmyP/doi4Up5GC/vv1cKLjEnh36De587Kyszl54Ror/QK4/H3Ouc7ImDjsnxuYEx2XgG0Z5c45GhkaUKVCzuAcd9dKhFwLZ/meI/iOHYRbNRdC184iPimF9MxMypUxx8N7Gu7VXBTLkydTNRdCroezfG8Ai77ow9ebdrN72gg6vVcfgLqVHPnz7zss2v2LogU9T6Zrt1nuF4DvqAG565y8eJ1r9yLZPvkLxXKoZTIyyh0U5+7uzvnz51m6dCnLly/HwMCAmjXVz7fWqFGDU6dOKZvJ0IAq5XPGDrhXdSbk5m2WHziOr/cneda1t7TAuZwlNyKilc+Uz/5U3cme6LhEXD4Zl7tuVnY2E9buZNneX/l760KNZ/IdPQCAUqbGVKlgS5UKtjSqUYXqA75io38wE3u/r2yml3x3GZlZfDxvHbejHhIwc7TirfPcTE8G6rlXcSLk5j8sPxiErwYOJordW3hjmbt379KvXz+io6MxMDBg6tSpfPTRR1rNpJGC3qpBLcLWz1ab99n8dbg6lmfCx52oZG+DnaUFR0P/4p2qFYGc82fBf17F5z+9NBERyBmcl5aRoTbPonRJAG7ciyT0ejgzBn6osTzPZ8rIzCIjM4sSL4z01C9RguxslWYzocodZ/DUpiPBuFWtSL3KylwW9spMKhVpaWkYGRnRsGFDrl1TH+tw/fp1nJ2dNZyJPNvpqUcJSdx9GIu9BgfJ5WTK2Z/6tmlC63fUDwI7Tl7AJ20aM6Cd5sZAPJ+pwOW8fLkSnv/unhbzm/9Gc3TWGKzMS2s0i3omzW6HYvMWjnI3MDBgyZIl1K9fn+joaBo0aEDHjh0pVaqU9jJp4kPMSppS20V9UEtJE2OszEvnzh/ZowNzth+gqoMdVSrYMmf7AUqaGNG7tUd+b1lkU9b/SId36+FoY0liymN2nThL0J9XOOQzAYDdQeewtjDHycaKv8LvMmblNro2cVN0ANqUjbvp0LAOjuUsSUx9zK7AcwRduMqhWeMwL2VKs7quTFy3C1NjQ5xtrAm+eJWtR0+zYEhvhTPVfZIplV2B/83JNPNZyy4hOZXdweeZ/7lmWg6TJ0/Gy8sLR0dHEhMT2blzJ4GBgfj7+wMwYcIEevXqRbNmzWjZsiX+/v4cOHCAwMBAxTJN2eJHB7daOFo/+e5OhhD013UOTRtBUupjZuw4RI/G72Bf1oLb0Y/4eus+rM1L0+2FqwiKNdNL9icr89J5CpOhgT52ZS1wVbBL92WZklPTmL3jAJ096mNvWYZHCUmsPnCcew9i+LDZu8plesl3l5mVRc85a/nj1l32TR1GVnY2kbE542gsS5fCyFCZP6FTtu2nQ4OaOFqXJTE1jV0nQwm6dINDU4cBEJOYzJ2Hsfz7ZEzP9ftRANiVMcdOwVMT4hl7e3vs7XN+V2xsbLC0tCQmJubtL+iFMeHjTqSmpzN86WZiE1N4t0Ylfpn7pSLXoANEx8YzYM5qImLisChlSp1KThzymUDbJwU74lEc4323ExUbj71lGfq28+Trvt0UyaKWad5aImLisShpSp1KjhyaNY62T64K2D75C6Zs3M2nc9YQk5iMs40V3w34gCHvt1QuU1wCA+Y/l8nFkUMzx9HW7VnrblfQOVTAxy3fUyzH86KioujXrx8RERFYWFhQt25d/P39ads2Z3BX9+7dWb16NT4+PowcORJXV1d+/vlnPD09FcsUHZfIgMWbiYhJwKKUCXUqVuDQtBG0facGqWnp/PXPfbadOEtccir2ZS1oUacaOyYMxqykctfGv2p/0oaXZXqcns61uxFsDTjFw4QkrMxK4+7qQuCiyYqOwn/Zd3c76hEH/nsBALdRs9R+7uisMbSoo8yA1Oi4RAYs2UpEbAIWJU2oU7E8h6YOo2396gAcOH+Rwct/yF2/z8LNAEzt5cW0jzsqkqlI9CiGLvfXWz04OJj58+cTGhpKREQEe/fupVu3bmrrrFq1ivnz5xMREUGtWrVYsmQJTZu+fg9VSEgI2dnZODpq5mqMguipVKo36q9NSEjAwsKCqH1rsSqtmcs3XiVDBUeSzGhfOhFDHTndkpvJNE63MqWWob1JrG5lelyWjh07YqjgqO/XkZGRweHDh2mvF4mhnmZPaxQkQ6XHEZWdbu5PuphJF7871T0M0X6mRymPsf1kAvHx8ZibK9Oqf1onYnwnY17EG3IlpD7G8ovZ3L17Vy2vsbExxsbGedb/5ZdfOH36NA0aNOCDDz7IU9B37dpFv379WLVqFU2aNGHNmjWsX7+ey5cv595R0s3NjbS0tDzv/euvv1K+fM79JR49ekTTpk1Zv349jRs3LtK/sah0poUuhBDiLVWMg+JebAVPmzaN6dOn51ndy8tL7XbQL1q0aBGDBw/ms88+A2DJkiUcOXIEX19ffHx8AAgNDX1ppLS0NLp3786kSZO0XsxBCroQQoj/Ifm10F9Xeno6oaGhTJw4UW1+u3btOHPmTKHeQ6VSMWDAAFq1akW/fv1eO4MSpKALIYRQVjGOcjc3Ny/yKYKHDx+SlZWFra2t2nxbW1siIyML9R6nT59m165d1K1bN/dOlFu3bqVOHc3cuTM/UtCFEEIoS68YnramwHXoeW9mpir0jZY8PT3Jzs4u9kxFoVsX9gkhhBAKs7a2Rl9fP09rPDo6Ok+r/X+JFHQhhBDKetrlXtSpmBgZGeHm5kZAQIDa/ICAAJ0Y3PampMtdCCGEsopxlHvDhg3R19fH29sbb2/vAldPSkri5s2bua/Dw8MJCwvD0tISJycnxo4dS79+/XB3d8fDw4O1a9dy584dhg4dWrScWiQFXQghxP+M8+fPF2pQXEhICC1bPrvp1tixYwHo378/mzdvplevXjx69Ihvv/2WiIgIateuzeHDhzV+i+jiJAVdCCGEsrRwL/cWLVrwqvumDRs2jGHDhhUllU6Rgi6EEEJZJYphlHtRf/7/ARkUJ4QQQrwFCt1CT0tLU7unbUJCAgCZqpz7JuuCTJX6f3WBZCqcp1kydOjxkE+zZKp0p2XwNIsufne6mUkHv7vXfcqIQjSa4y18HrouKnRB9/HxYcaMGXnmB6WUpiQlizVUUR1LNtN2hDyOPS6j7Qh5HEsrq+0Iebx4GYkuOIYtOvAsDTU6uT/pYiZd/O70lHty3OtI0UvR3IcV4zn0wo5y//+o0AV90qRJuaMEIaeF7ujoSAtHMyxfeK6ytmRmqzj6TwJtKpbBQEfOt2Rmqzh6O47W9sY6lelYRJpuZrIz1K1MkRm0jgzBQKUbd4TK1CvBMTt3WpvEYaAbm4lMVU4xb9u2rU49KS8gIIDWpRJ1azslm+nMdxeTlaq5DyvGc+iFHeX+/1GhC3pBj6gzKKGHoY78AX5KMhWOZCocA1U2hqosbcdQY6CHzjyq9ClDQ0OdKehP6eJ20pVMunBQIYqXjHIXQgihLD29YuhylyOQV5GCLoQQQlkyKE4j5LI1IYQQ4i0gLXQhhBDK0sKd4v4/ki0khBBCWU9HuRd1IueytZo1a7Jy5Uot/6N0j7TQhRBC/M+Qy9YKJgVdCCGEsqTLXSOkoAshhFCWjHLXCDnkEUIIId4C0kIXQgihrBIlcqaivod4KSnoQgghFFYMXe468pQ6XaaRgj5n/Q/sPRrM1fA7mJoY41GvFnPGDMHVxSl3nT1Hg1n70wF+v3yNR3EJhP60jvrVqyqXad22J5n+yclUvzZzxgzNzZSRkcnU5ev45eRZbt2LwKJ0KVo3csdnzBDK21grk2njTvxOnObq7buYGhvhUbcmPiMH41rRMXedGWu28uORQO5GPcDI0JAGNarw3bCBvFenutYyPe+LWUtZt+cwC8cNYVSfHspk2rTrSaZ7zzKNGIRrRYfcdQZNX8iWg0fVfu7d2q6c2bxEmUz+v+EXdp2rUTGYGhrgUakCPt2b42prpbbelYiHTPILIvjGHbJVUNPeip2fdcPJsvhH7c7ZcRC/06FcvRuBqZEhHjWr4PNZT1wd7XPXMWg3IP+f/awn43t2LPZMPj4+7Nmzh6tXr2Jqakrjxo2ZO3curq6uueskJSUxceJE/Pz8ePToERUrVmTkyJF88cUXxZ4HYM72/fidCuHqnQhMjQ3xqFkVn88/VttOUTHxTFq3k4DQv4hLSqFpXVeWDv+Uqg52imRafeA4aw4e53bUQwBqOlfg60+64vVuXQBUKhXfbvVj/eEgYpOSebd6JZYP/5RaFXXjSW55yKA4jdDIFgoKCeOLj7tx5odVHFm7gMysLDoMmUByyrOn/SSnPqZJ/drMHv25JiLlZOrdnTPbV3Nk7SIyM7Po8Pm43Ewpjx/z++UbTBnSn5Af17N7yUxu/HOXbsMnKZYp+PcLfPFRZ05vXoL/Kh8ys7Lw8p5Mcurj3HWqOVVg6VfehO1aQ9CGhVS0t8PLexIPYuO0lumpfSfO8N+/rlK+nFU+71ScmS7mZNq0GP+Vs3MyDZ+SJ1P7xu7c8/8hdzq49DvlMt28yxfNG3B6Ql/8R/YiMzsbr+U/kpyWnrvO3w9iab7oB1xtLTk2pg+/TxnIFK8mmBjqK5Pp4lW+6NKK00un4j9nQk6mSQtITk3LXefeziVq0/pxg9HT06NHU3dFMgUFBeHt7c3Zs2cJCAggMzOTdu3akZycnLvOmDFj8Pf3Z9u2bVy5coUxY8YwYsQI9u3bp0im4AtX+aJLG06vmIb/vK/IzMrG68u5ufuTSqWixzdLuBXxgD3fjiFkzUycbaxpP2FOvr8HxaGCdVlmDf6Icyumc27FdFrWr0GP6Uu5dPs+APN/PMySPUdYNrwvZ5dPw66sBR0mzicxRYNPUNMSuQ69YHoqleqNnhackJCAhYUF0acPYvWaj099EBOHXfNunNi0lGbu9dSW3b4fQeUOvd+ohZ6RrcI/PJ4Olcq+9hO7HsTEYdesCyc2L6OZe/181zl/8QqNeg8hPOAnnOxtC5/pViztK5i8fqbYOOzb9OL4ugU0a1An33USkpKxbN6DI75zaP3uO4XOdOT+42LNdD/6IY37j+Lwill0GfUNI/t0e60Wem6m8kZvlqltb46vnZebadD0hcQlJrNn4Tev9V55Mv2bTvuI/77209YeJKZg/9Vyjo/pQ7OqOb0ZfTbsw1Bfn+8HvP/mmfT0OWL/Lu1N4177iV0P4hKw7zmS4wsm0ayua77r9Ji2lMTUxwTM+6rwmVRwJLUMHTt2fO2nrT148AAbGxuCgoJo1qwZALVr16ZXr15MnTo1dz03Nzc6duzId98V7qAsIyODw4cP07504pttpw+8Ob54Cs3qVuf63QhqDviSPzf4UOtJL1BWVjb2H3jj859eDO7UonCZVHAkyeyNvjuAch94M/ezngzs0AzH3qMZ2b0dX/bqBEBaegble43EZ3BPPn+/ZaHe71FSKrY9viA+Pl6x67qf1omYPaswL2VatPdKTsWyxzBF8/6v00ofRnxSEgCWFmba+Ph8PctU8I4Sn5SMnp4eZcw08/z3+KScVoulef7bKT0jg3V7DmNRuhT1qlbSWqbs7Gz6T53HuH4fUqtyRY3kUM+UkicTQFDoBezbfkyNHp8xZOZSomPiNJfpSSvYspQJANnZKg7/dYuqNmXxWr4L+y+X4zFvC/vCrmsuU3JO683SrFS+y6Ni4zn83wsM6tBMc5ni43MyWVrmzvP09GT//v3cv38flUrFiRMnuH79Ou3bt9dMphe2U1pGJgAmRs8OVvT1S2BkqM/pv64pnicrK5tdJ86S/DiNRjWrEB75gMiYeNq61c5dx9jIkGZ1q/Pb5ZuK53kjTwfFFXUSL6XxLaRSqRg3fxWeDepQW0NF6FVUKhXj5q3As0HdAjM9Tktj8uI19O7YBvPS+f9BLO5M4xetpUn9WtSuUlFt2cHgs1h4dqWUR2eWbt+L/yofrMtaaC3TvM0/YqCvz4je3RTPUNhMHRq7s2XmlwT4zmHe6M8IuXydtkMnkpaeXvCbFWemn4/TpLIDtcuXAyA6MZmktHTm/XqO9jUr8cuInnSrV40P1+0l6PodzWRas4MmtatR28Uh33W2BJzGrKQJ3T3dFM/zNNPYsWPx9PSkdu1nxWnZsmXUrFkTBwcHjIyM6NChA6tWrcLT01Mjmcb7/vBkO+X0rFR3ssfZ1pop638kNjGZ9IxM5u44QGRMPBEx8YpluRh+F4suQyjZ6TOGLfue3dNGUNO5ApFPPtO2rHrjw7aMOZGxyuURuk/jo9xHzFrKxet/E/z9ck1/dIFGzFrMxeu3CN6yIt/lGRmZ9J4wg2xVNiunjtVIppFzV3LxRjhBGxbmWdayYX1Cd6ziYVwCG/b+Qu+Jszjz/TJsLMtoPFPolRss3+nH+R9WoqeFGz+MnLeKizfDCVq/QG1+z3bNc/+/dpWKuNesRqX3+3P41Hm6t2qibKZdAVy8H03QuE9y52U/ObPVpW4VRrduCEB9R1t+u3WftafCaF7NKd/3KrZMK7ZyMfwuQYumFLjOZv9g+rRqhImRkaJZnho+fDgXLlzg1KlTavOXLVvG2bNn2b9/P87OzgQHBzNs2DDs7e1p06aNoplGLvuei7fuErT0WXe/oYEBP04fyecL1lOu21D0S5SgtVstOjwZoKYUVwd7Qn2/JS45hT0nQxg0fz3HF0zMXa73wqhvFSrdvfeK3FhGIzRa0EfOXsqBwNMEbl6Gg52NJj+6QCNnL+HAidMEfr8830wZGZn0GjeN2/ciOLpxiUZa56PmreRA8G+cWLcQB9tyeZaXMjWhimMFqjhWoFGdGlTvNpCNfv5MHPSxxjOd+uMi0TFxuHTqmzsvKyubCYvXsWy7H38f3KJgplUcCD7LibXz891Oz7O3tsTZ3oYbd+4rlgdg1K4ADly4yYmxfXB4rgVlXbokBiVKUMNe/QqJ6nZWnP77nrKZVm7lwG9hnFg4CYdylvmuc/LiNa7di2T7lGGKZnlqxIgR7N+/n+DgYBwcnvUYpKamMnnyZPbu3UunTjnnh+vWrUtYWBgLFixQtKCPWr6FA7/9wYnFU/JsJ7dqLoSunUV8UgrpmZmUK2OOh/c03Ku5KJbHyNCAKhVyxuq4V3Mh5Ho4y/cGMKFXztUHkbHx2FuVyV0/Oi4R2zLK99S9ET29YhjlLgX9VTRS0FUqFSNnL8Xv+CmOb1yCi4P9q39II5mW4HfsJMc3LcXFoXyedZ4W85t37nFs41KsFP5lUalUjJq3Er8TZzi2dj4uFQp3SYxKpSItI0Mrmfp2bEPrdxuozes4fDKfdGzNgC7tFMzki1/gGY6tmVuo7fQoLoG7UQ+wt86/oBVLph+P4hd2nWNjeuNiXUZtuZGBPu7OdlyPilGbfyM6BmcFLlnLzbRyG36nQzm2YCIu9gUf9GzyD8atakXqVVa2p0ClUjFixAj27t1LYGAgLi7qBTEjI4OMjAxKvHC+VF9fn+zsbMUyjVq+Bb9ToRxbNBkX+4IbGxalSwJw414kodfDmTHwQ0Uy5efp77mLXTnsLC04+vsl3qniDEB6RibBF67iM7inxvII3aORgj581hJ2HD7K3qWzMCtlSuTDRwBYlC6NqYkxADHxCdyJiOLf6Jxl127fBcDO2hI76+K/DGr4zMU5mZbNxqxUyTyZMjMz+WjsVP64fJ39K+eSlZ2Vu46lhTlGrzmatzBGzFnBDv8T7Fk0HbOSpkQ+jHmSqRSmJsYkpz5m9obtdG7ugb21JY/iElj900HuRT/kwzZNiz1PYTJZlTHHqox6QTI0MMDOumyB16oXOdPclezwD2TPwm/yzZSUksqMtdvo0coTe2tLbv8bxderNmNdxpxuLRsrk2lnADtCLrNnSA/MjI2IjM8ZZGlhaozpk8FU49u+R+8N+2haxYEW1Zw5cvkWBy/e5NjoPspkWr6VHSd+Y8+MUZiZmhD5ZFCgRamSmBo/61ZPSE5ld/B55g9RrofnKW9vb7Zv386+ffswMzMjMjIyJ5OFBaamppibm9O8eXMmTJiAqakpzs7OBAUFsWXLFhYtWqRIphHLvmfHsd/Y891ozErmv512B53D2sIcJxsr/gq/y5iV2+jaxI127vlffVJUUzbupkPDOjiWsyQx9TG7As8RdOEqh2aNQ09Pj5Hd2zFnxwGqlrelSgVb5uw8SEljY3q3aqRIniKTLneN0EhBX70r5/rRVoNGq83f8N1XDOjmBcD+E6cZPHVu7rI+E74F4Jsv+jNt2EAFMvnlZBo4Uj3TzEkM6ObFvagHHDhxGoAGHw5SW+fYxqW0KOQlYq+VafdBAFp/PkE907Rx9O/SDv0SJbh2+x5bD37Hw7gErCzMcK9VjcD1CxUbXf6qTNqwevchAFoPUb+0asO0sfTv3Bb9EiX46+Ztth06RlxiMvbWlrRwr8uO2ZMwK1VSmUwn/8jJtGSHeqZ+HenvkfNHv1v9aqzq3Z65R84y+qdjuNpa8tN/uuNZJf9BakXOdPB4Tqbxc9QzjR9M/3bPDgB3BZ5DBXzcUvli4OvrC0CLFi3U5m/atIkBAwYAsHPnTiZNmsQnn3xCTEwMzs7OzJo1i6FDhyqSafX+YwC0Hjtbbf6GCf+h/5MR/xGP4hjvu52o2HjsLcvQt50nX/ftpkgegOjYeAbMW0tETDwWJU2pU8mRQ7PG5Y5sn9CzI6lp6QxfsYXYxGTerV6ZX3zGY1ayaJeGKUZuLKMRWrkOXSlFuQ5dKUW5Dl0pRbkOXSlFuQ5dKUW5Dl0pRbkOXSlFuQ5dKUW5Dl0pRb0Ovbhp9Dr0gxswL+LBdEJyCpbvD5br0F9CDnmEEEIoq4Re8UzIneJeRh7OIoQQQlnF2OV+/vx5aaEXQAq6EEIIZcmgOI2QLnchhBDiLSAtdCGEEMqSUe4aIQVdCCGEovT09Ip8a2ht3Fr6f40c8gghhBBvAWmhCyGEUJZ0uWuEFHQhhBDKkoKuEbKFhBBCiLeAtNCFEEIoS+/Znd6K9B7ipQpd0NPS0khLS8t9nZCQAEBmtoqM7De6HXyxy3ySI1NH8oBkKiydzqRDXX1Ps2TqzmbKzZKh0CN838TTLLq4nXQlk0ZzSJe7RhT64SzTp09nxowZeeZv376dkiWVeYKVEEIIZaSkpNCnTx+NPJwl9vhPmJcu4sNZklIo2+ojqlWrhr6+Pt7e3nh7exdT0rdDoVvokyZNYuzYsbmvExIScHR0pIWTBZY68rS1zGwVR2/H0aZiGQx05IldupypdbkSOpXp2INs2rZtq1NP7AoICKBNhZI6tZ2O3k/Ryf2pTRUbDPR1oxWVmZXN0ZvRtHEpi0EJHcmUnc3R8FhaJ93AgGxtxyEmJV1zH1aMt36Ve7kXrNAF3djYGGNj47xvUEJPZx53+ZTOZtKRP3Y8+WOii9vJ0NBQZwr6U7q4nXQyk34JHdrHcxiU0MFMZGOoAwVdowcVenrF0OWuW/u7LpJBcUIIIZQlD2fRCN06dBVCCCHEG5EWuhBCCGXJKHeNkIIuhBBCWSWK4Tp0HRszoovkkEcIIYR4C0gLXQghhLKky10jpKALIYRQloxy1wg55BFCCCHeAtJCF0IIoSzpctcIKehCCCGUJV3uGqGRQ54567bxXq/PsXi3PXbNutB95GSuhd9RW0elUjFj5UYcWnanlFsbWg0YyaWb4YrmCg4Jo4v3RBxadke/djP8jp1UWx71MIaBU2bj0LI7pd3b4jVkPDf+uat8pmFf4dCiG/q1muJ3LFhteVJyCiNmLsapVQ9KNWhNrc598d25V9lMf/xF13EzcOz0KQbvvc++oN/Ulhu8936+04KtPyuXKTiYzp07U758efT09PDz88uzzpUrV+jSpQsWFhaYmZnRqFEj7ty5k/fNiitT6AW6jPoah7a90H+nDX4nTqstH/jNPPTfaaM2Nf50uGJ54NX7+POGzpiPfu1mLN36o7KZzv9OlyFjcfDsiH61d/ELCFRbPmPZWmq2/wizes2wcm9Nu/7enPvzL2UzhYTRZdiXODTvgn7NJvgdffZ7l5GRycSFq6jXtR9mbq1xaN6F/hO/49/oB8pmuhpO14Xf4zh8NgZ9J7Ev5JLa8r3n/8Jr7kZsh36HQd9JhP3zr6J5hO7TSEEPCgnji97dObN9NUfWLiIzM4sOn48jOSU1d535G7ezeMuPLJs8mnM712JrbUn7/4wlMTlFsVzJqY+p51qZZZNH51mmUqnoMWoK4ff+Ze+y2YT+tAHn8ra0+2ysWm5lMlVh2ZQx+S4fO3c5R06dY8ucqVw6sI1R/XoyavZS9h0v+A91cWSqW7USy8YPzXf5vcNb1ab1X49CT0+PHq2aKJcpOZl69eqxYsWKfJf//fffeHp6Ur16dQIDA/nzzz+ZOnUqJiYmymVKfUy9apVYNrHgIt2+cUPuB/yYOx1cPluxPLmZCtjHn+d37CT/vXCF8jbWiuYBSE55TL3qVVk2dUK+y6u6OLHsmwn8eWAHwTvW4lzBng4DR/AgJlbBTKk5v3dfj82zLOXxY36/fI0pQwcQsnsju5fN5sbtO3Tz/kqxPADJaenUdbJnWf8uBS5vXM2Z2b06KJqjWDztci/qJF5KI13uv6xZoPZ648xJ2DXrQujlazRzr49KpWLp1p+Y/Hk/erRtDsDm2ZOxb96N7YcCGNKzqyK5vJo2wqtpo3yX3fjnHmf/vMQFv++pVcUFgJVfj8WuWVd2HD7GZx++r/FMAGf/vMSnXTvQ4t13APi8ZxfW/bSP0L+u0bVVU2UyNXbHq7F7gcvtrMqqvd4ffI4WbnWoVMFOkTwAXl5eeHl5Fbh8ypQpdOzYkXnz5uXOq1SpkmJ5ALw838XL892XrmNsZIidtaWiOZ73qv0J4H7UA0bOXsIvaxbQeZiyRQrAq3ljvJo3LnB5n87qBWrh5NFs3L2fC1dv0Lrxy7fvG2dq5oFXM498l1mYlebXDUvV5i2dMpZGvT7jzr+ROJVXZj/3queKVz3XApf39WwAwO0Hyh3oFJsSJXKmor4H0LBhQ3l8agG0csgTn5QEgKVFziPwwu9FEPkwhraNG+auY2xkRDP3evwWpmxXW0HS0nMeLWhiZJQ7T19fHyNDA07/cUErmQCaNKjLgROnuR/1AJVKxYlzv3P99l3aNVHmD93rinoUy+HT5xnUpZ3WMmRnZ3Po0CGqVatG+/btsbGx4b333su3W17TgkL+xK7Vh1Tv2p/Pv11ItIKtzsLIzs6m/6SZjB/wce6Bqy5JT89g3S4/LMxKU696NW3HyRWfmISenh5lzM20HeV/gp6eXrFMkPP41MuXL0sxz4fGC7pKpWLcvBV4NqhL7ao5LabIh48AsLVSb7nYWlkS+TBG0xEBqO7ijHN5OyYvXUtsfCLpGRnMXb+NyIcxRDx4pJVMAEsnjaJG5Yo4teqBSf2WdBwynhVTx+LpVldrmZ635fAxzEqZ0r1FwS0wpUVHR5OUlMScOXPo0KEDv/76K927d6dHjx4EBQVpLVeHJg3ZOnsSR9fOZ/7YoYRcuk6bzyfkHjxqw7wN29HX12dE3w+1liE/B0+cxLx+c0rW8WTJph0c2bQCa8sy2o4FwOO0NCYv9qV3p7aYly6l7ThC5NL4KPcRsxZz8fotgrfkPff54iBGlUqVe1SmaYaGBvy0+Dv+881crJt0Ql9fn9aN3OjQ9D2t5Hlq+Q+7OXfhEn4r5uBc3paTIX8y/LtF2Jezpo1Hwd3imrL5wFH6tG+BibHRq1dWSHZ2znOeu3btypgxOWMR6tevz5kzZ1i9ejXNmzfXSq5e7Vvm/n/tKi6416yGS8dPOHTyHD1aK3O65GVCL11j2bbdhPy0Xmu/ZwVp+Z47v+/bxsPYONb/6MfHoyfx20+bsLHS3OmK/GRkZNJ73DSys1Ws/Ga8VrP8T5HnoWuERgv6yNlLOHDiNIHfL8fBziZ3vp21FQCRD2OwL/dsUE50TCy2L5yf1SS3Wq78/vNG4hOTSM/IpJxlGTx6D8GtVsHntZSU+jiNKUvW8vOyWXR6cg6yrmsVwq7dYOGmHVov6Cf/+Itr/9xj+8wvtZrD2toaAwMDatasqTa/Ro0anDp1Skup8rIvZ4WzvS0379zXyuef+v1PomNiqdj2o9x5WVlZjJ+/iqVbd3PrV2VHu79MqZKmVHF2pIqzI43q18G17Qds/Gk/E4cO0FqmjIxMeo2dyu37ERzdtExa569DLlvTCI0UdJVKxcjZS/A7dpLjm5bi4lBebbmLgz121pYc/S2Ed2rknCdLz8ggOORPfMYM0UTEl7IwKw3AjX/uEnLpGjOGD9ZKjozMTDIyMynxwuAS/RL6ZKtUWsn0vE0HAnCrXoV61ZQdfPYqRkZGNGzYkGvXrqnNv379Os7OzlpKldejuHjuRkVrdJDc8/p2bk/rRuoHgV5DxtO3czsGdOuolUwFUalUWj018bSY3/znLsc2L8eqjIXWsghREI0U9OEzF7Pj8FH2LpuNWamSuefMLUqXxtTEGD09PUb1+wifdduo4uRAVWcHfNZto6SJMX06tVUsV1JKilrr6Pb9CMKu3sDSwhwne1t+OnKCcmXL4GRvy8UbfzNmznK6tvJUdABaUvILme5FEHblSabytjRvWJ+vFqzC1NgY5/K2BJ0PY+t+fxZ8qdz1zEkpqdy8F5H7OvzfKMKu38LSvDROT3paEpJS2H3sFPNHaeZgJykpiZs3bz7LFB5OWFgYlpaWODk5MWHCBHr16kWzZs1o2bIl/v7+HDhwgMDAQOUypaRy8+4L+9O1m1iam2FpYc6M1Vvo0bop9uUsuf1vJF8v34h1GQu6t/JUMNPL9/EXC5OhgQF21pa4ujgplyk5hZv/3HuW6d6/hF2+jmUZc6zKWDDbdxOdWzfFvpw1j+Li8f1hN/cio/nQq7Wyme48l+n+v4RduY6lhTnlbaz5aPQU/rhynf2r5pGVlU3kk3E0lhbmGBkZKpPpcRo3o56N1wl/EEvYP/9iWaokTtZliElK4c6jOP6NTQDgesRDAOwszLAro2uD9YrjsjO5bO1VNFLQV+/yA6DVwJFq8zfMnMSAbjmXHk0Y1IfUx2kMn7mI2IQk3qtbA/+1CzErVVKxXCF/XaP1oFG5r8fNyzmv/2nXDmyaNZnIB48YP28FUY9isS9nRb8u7fl6aH/F8gCEXLpG6+e2k1qm2VPYPn86k5esod9X3xITn4BzeTtmjvwPQ3t1Uy7TlRu0GTY59/X4JetzMnVqzcZvcs5R7woIRqWCj9tp5vx0SEgILVs+Oyc9dmzO9cP9+/dn8+bNdO/endWrV+Pj48PIkSNxdXXl559/xtNTueIZcvkarf/z7LzquIWrAfi0cztWTR7FxZu32HowgLjEJOytLWnRsD475n6t1X1cG0L+ukLrfl88y+SzJCdT9074fjuRq7dus2XvIR7GxmFV1gL3OjUJ2r6WWlUrK5fp0lVaDxjxLNPc5TmZunkxzXswB07knKpp0GOA2s8d27ycFu82UCbTrfu0mb0u9/X4Hw7lZGragI1DPuLA71cYvHZ37vI+K3YAMLV7a6Z90EaRTG9Mutw1Qk+lerO+2oSEBCwsLIg+cxgr89LFneuNZGSr8L8VS4dKZTEsoRtfvlomfd04wszIysb/ViztbfV1ajsdicqiY8eOGBoq0+J5XRkZGRw+fJgOjqV0ajv5303WzX3c1U639vFrkXSobKVbmf5+RPukaxiSre04PEpJx/bzacTHx2Nubq7IZzytE3F/BGFuVrQ6kZCYRJl3miua93+d3MtdCCGEsorxxjKiYFLQhRBCKEu63DVCDnmEEEKIt4C00IUQQihLnoeuEVLQhRBCKEu63DVCCroQQgiF6T2Zivoe4mWkD0MIIYR4C0gLXQghhLKky10jpKALIYRQlhR0jZAudyGEEOItIC10IYQQCpNBcZogBV0IIYSypMtdIwpd0NPS0khLS8t9nZCQ88i+zGwVGdnafxY35GR5/r+6QD2T9h/IALq9nTIyMrSc5JmnWXRxO+lkpizd2L/hWZbMbB3K9CRLpo6c6dSVHKL4FPppa9OnT2fGjBl55m/fvp2SJZV7/KMQQojil5KSQp8+fTTztLWrIcXztLXq7lSrVg19fX28vb3x9vYupqRvh0IX9Pxa6I6OjkRERGBlZaVYwNeRkZFBQEAAbdu21alHcEqmV9PlTK2twEBHGjOZ2XDsEbRt2ghDA904Y5aRmUnAybO6mUkH96c2jd11Yjs9io2lfOUaGiroocVU0N3k8akvUei9ytjYGGNj4zzzDQ0NdeYX5inJVDiSqXAMSqAzzx6HnONvQwMDnSgKz9PJTDq4P+nKdjLU134GUbzkGxVCCKEsGRSnEVLQhRBCKEuPYijoxZLkrSYFXQghhMLkOnRN0JGhPkIIIYQoCmmhCyGEUJacQ9cIKehCCCEUJl3umiBd7kIIIcRbQFroQgghlCVd7hohBV0IIYSypKBrhHS5CyGEEG8BrRX04OBgOnfuTPny5dHT08PPz09bUXL5+PjQsGFDzMzMsLGxoVu3bly7dk2rmXx9falbty7m5uaYm5vj4eHBL7/8otVMz/Px8UFPT4/Ro0drNcf06dPR09NTm+zs7LSaCeB+9CM+nb4Im/Z9MWvxEW6fjib06k2t5alYow56pcrkmbzHjNdapszMTL6eMROXmnUxtbKjUq16fOszl2wtPiktMTGR0aNH4+zsjKmpKY0bN+b8+fMazRB8+gxdevahQrValDC3xu/gYbXlKpWK6bPnUqFaLUraONCyYxcuXbmq0YyFp1dMk3gZrRX05ORk6tWrx4oVK7QVIY+goCC8vb05e/YsAQEBZGZm0q5dO5KTk7WWycHBgTlz5hASEkJISAitWrWia9euXLp0SWuZnjp//jxr166lbt262o4CQK1atYiIiMidLl68qNU8sQlJNBsyEUMDfQ4u+oaLO1Ywb8RAypQupbVM54NPEPH3tdwp4IAfAB9176q1THMXLWH1ho2sWDSfK7+fY97Mb5m/ZDnLfddoLdNnn31GQEAAW7du5eLFi7Rr1442bdpw//59jWVITk6hbu3aLF8wN9/l85YsZ/FKX5YvmMt/AwOws7GhXdcPSExM1FjGwnrxYPtNJ/FyWjuH7uXlhZeXl7Y+Pl/+/v5qrzdt2oSNjQ2hoaE0a9ZMK5k6d+6s9nrWrFn4+vpy9uxZatWqpZVMAElJSXzyySesW7eOmTNnai3H8wwMDHSiVf7UvG0/42BrzYavR+XOq2hvq8VEUK6ctdrrOQsXU7mSC82bemopEfx27jxdO3WkU4f2AFR0dmbHT7sJ+f0PreRJTU3l559/Zt++fbm/99OnT8fPzw9fX1+N7e9e7drg1a5NvstUKhVLV61m8vix9OjyPgCb16zErkoNtv/0M0MGDdBIRqFb5Bz6S8THxwNgaWmp5SQ5srKy2LlzJ8nJyXh4eGg1i7e3N506daJNm/z/4GjDjRs3KF++PC4uLnz88cfcunVLq3kOnvwvbtUr02vyXOw7for7p6NZv+9XrWZ6Xnp6Ott2/cigT/tqtfXj6dGIY4FBXL+RcyrizwsXOXXmLB3bt9NKnszMTLKysjAxMVGbb2pqyqlTp7SS6UXht/8hMiqadq1a5M4zNjameZPG/HZOs6cGCuXpoLiiTuKlZJR7AVQqFWPHjsXT05PatWtrNcvFixfx8PDg8ePHlC5dmr1791KzZk2t5dm5cye///67xs8pvsx7773Hli1bqFatGlFRUcycOZPGjRtz6dIlrKystJLp1r9RrNnrz+iPuzKx/0ecv3yd0YvWYWxoQL+OrbSS6Xl+Bw4RFxfPgL59tJrjq3GjiU9IoPo7DdHX1ycrK4tZ06bSu+eHWsljZmaGh4cH3333HTVq1MDW1pYdO3Zw7tw5qlatqpVML4qMjgbA1qac2nwbm3LcuXNPG5FeQW4sowlS0AswfPhwLly4oBNH5K6uroSFhREXF8fPP/9M//79CQoK0kpRv3v3LqNGjeLXX3/N04LRpudP39SpUwcPDw8qV67M999/z9ixY7WSKTtbhVv1ysz6oh8A77hW4nL4HVbv9deJgr7h+614tWtDeXt7rebYtXsP23b+yPZN66lVozphFy4y+qtJlLe3o7+WDja2bt3KoEGDqFChAvr6+jRo0IA+ffrw+++/ayVPQV7sWVGpVDp6rrk4Wti6+O/SLVLQ8zFixAj2799PcHAwDg4O2o6DkZERVapUAcDd3Z3z58+zdOlS1qzR/KCh0NBQoqOjcXNzy52XlZVFcHAwK1asIC0tDX19fY3nelGpUqWoU6cON27c0FoGe+uy1HRxVJtXvaIje078pqVEz/xz5w5HTwSyZ8dWbUdhwpRvmDhuNB9/9AEAdWrX4p+7d/FZuFhrBb1y5coEBQWRnJxMQkIC9vb29OrVCxcXF63keZGdjQ0AkVHR2D83buTBg4d5Wu3i/w85h/4clUrF8OHD2bNnD8ePH9eZX94XqVQq0tLStPLZrVu35uLFi4SFheVO7u7ufPLJJ4SFhelEMQdIS0vjypUr2Gux9dm4Tg2u3flXbd71O/dxstP+H9xNW3/Aply53IFo2pSSmkKJEup/ivRL6Gv1srWnSpUqhb29PbGxsRw5coSuXbV3NcDzXCo6Y2drQ8CJwNx56enpBJ0+g8d7DbUXrCByDl0jtNZCT0pK4ubNZ9fjhoeHExYWhqWlJU5OTlrJ5O3tzfbt29m3bx9mZmZERkYCYGFhgampqVYyTZ48GS8vLxwdHUlMTGTnzp0EBgbmGZGvKWZmZnnGFJQqVQorKyutjjUYP348nTt3xsnJiejoaGbOnElCQgL9+/fXWqZRH3eh6edf4bP5Jz5q7cn5y9dZv+9XVk8cprVMANnZ2Wza+gP9P+mNgYH2O+k6e3Vg1ryFODk6UKtGdf748wKLVqxkUL++Wst05MgRVCoVrq6u3Lx5kwkTJuDq6srAgQM1liEpKYmbt8JzX4ff/oewCxexLFsWJ0cHRg0bis/CJVStXJmqlSvhs2AxJU1N6fOkp0O3yDl0TdDab3NISAgtW7bMff30PGf//v3ZvHmzVjL5+voC0KJFC7X5mzZtYsCAAZoPBERFRdGvXz8iIiKwsLCgbt26+Pv707ZtW63k0VX37t2jd+/ePHz4kHLlytGoUSPOnj2Ls7Oz1jI1rFmV3XMm8bXvVmZu2oWLvS2LRn9Gn/YttJYJ4OjxQO7cvcegT7VXMJ+3fOE8pn47i2GjxxH94CHl7e0YMmgg30z6UmuZ4uPjmTRpEvfu3cPS0pIPPviAWbNmYWhoqLEMIX+E0apTt9zX4yZPBaB/n4/ZtHoFX44eQWpqKt5jJxAbF8977g044rcbMzMzjWUUukVrBb1FixaoVCptfXy+dC0PwIYNG7Qd4ZUCAwO1HYGdO3dqO0K+3vdsyPueutUF2q5NK1TJcdqOkcvMzIwl8+ewZP4cbUfJ1bNnT3r27KnVDC2aepKd8LDA5Xp6ekyf/BXTJ3+lwVRvSO7lrhHa728TQgjxdpMed42QQXFCCCHEW0Ba6EIIIRQmTXRNkIIuhBBCWXIOXSOky10IIYR4C0gLXQghhLKkha4RUtCFEEIoTM6ha4IUdCGEEMrSoxha6MWS5K0m59CFEEKI15SYmEjDhg2pX78+derUYd26ddqOJC10IYQQCnsLz6GXLFmSoKAgSpYsSUpKCrVr16ZHjx5YWVlpLZMUdCGEEAp7+86h6+vrU7JkSQAeP35MVlaW1m8fLl3uQggh3jrBwcF07tyZ8uXLo6enh5+fX551Vq1ahYuLCyYmJri5uXHy5MnX+oy4uDjq1auHg4MDX375JdbW1sWU/s0UuoWelpam9gzu+Ph4AGJiYoo/1RvKyMggJSWFR48eafSpSC8jmQpHlzPFJIKBjhz6ZmZDSgo8ionFUAcefQqQkZmZ893pYiYd3J8excZiqK/97RQTFwdo5qFUCUlJRe4yT0hKyvlvQoLafGNjY4yNjfOsn5ycTL169Rg4cCAffJD3kbK7du1i9OjRrFq1iiZNmrBmzRq8vLy4fPly7iO83dzc1OreU7/++ivly5enTJky/Pnnn0RFRdGjRw8+/PBDbG1ti/TvLBJVIU2bNk0FyCSTTDLJ9BZNf//9d2HLwGtLTU1V2dnZFVvW0qVL55k3bdq0V+YAVHv37lWb9+6776qGDh2qNq969eqqiRMnvtG/dejQoaoff/zxjX62uBT6MHHSpEm5zyyHnK4GZ2dn7ty5g4WFRWHfRlEJCQk4Ojpy9+5dzM3NtR0HkEyFJZkKRzIVjmR6tfj4eJycnLC0tFTsM0xMTAgPDyc9Pb1Y3k+lUqH3Qks/v9b5q6SnpxMaGsrEiRPV5rdr144zZ84U6j2ioqIwNTXF3NychIQEgoOD+eKLL147S3EqdEEvqFvDwsJCJ3bO55mbm0umQpBMhSOZCkcyFY6uZSpRQtnzSSYmJpiYmCj6Ga/r4cOHZGVl5eket7W1JTIyslDvce/ePQYPHoxKpUKlUjF8+HDq1q2rRNxC0/6JHCGEEEILXmzt59cDUBA3NzfCwsIUSPXmdGSojxBCCKEZ1tbW6Ovr52mNR0dHa3dQWxG9cUE3NjZm2rRpb3T+QimSqXAkU+FIpsKRTIWja5l0LY8mGRkZ4ebmRkBAgNr8gIAAGjdurKVURaenUmn5SnghhBCimCUlJXHz5k0A3nnnHRYtWkTLli2xtLTEycmJXbt20a9fP1avXo2Hhwdr165l3bp1XLp0CWdnZy2nfzNS0IUQQrx1AgMDadmyZZ75/fv3Z/PmzUDOjWXmzZtHREQEtWvXZvHixTRr1kzDSYuPFHQhhBDiLSCD4oQQQoi3gBR0IYQQ4i0gBV0IIYR4C0hBF0IIId4CUtCFEEKIt4AUdCGEEOItIAVdCCGEeAtIQRdCCCHeAlLQhRBCiLeAFHQhhBDiLSAFXQghhHgLSEEXQggh3gL/B0i55gjkcY/3AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGWElEQVR4nOyddVgU2/+A32UpQUJKQlIUBRu5dnBN7O7uvva1uzuu3d1eW7Hj2t1dWIgigiC98/sDWV3BhFn36++8PvM87syZmZdzzu5nzpkzcxSSJEkIBAKBQCD4n0bvVwsIBAKBQCBIOyKgCwQCgUDwGyACukAgEAgEvwEioAsEAoFA8BsgArpAIBAIBL8BIqALBAKBQPAbIAK6QCAQCAS/ASKgCwQCgUDwGyACukAgEAgEvwEioP8Chg0bhkKh0Fjn5uZGixYtfug4J06cYNiwYbx9+/aH9vv8XIcPH0ahULBx48YfOs7XeP/+PcOGDePw4cMpti1duhSFQsGjR4/S7XxyMHPmTDw9PTE0NEShUPD27VvGjBnDli1btOoxcOBA8ufPj5WVFcbGxnh4eNCuXTseP36cIm18fDzDhw/Hzc0NIyMjcuTIwcyZM7XqKxAIfg36v1pAkMS///6Lubn5D+1z4sQJhg8fTosWLbC0tJT1XD/K+/fvGT58OAClS5fW2Fa5cmVOnjyJg4ODrA5p4dKlS3Tr1o02bdrQvHlz9PX1MTMzY8yYMdSpU4caNWpozeXt27c0bNiQnDlzYmZmxo0bNxg1ahTbtm3j+vXrWFtbq9N26tSJFStWMHLkSPz8/AgMDOSvv/7i3bt3DBgwQGvOAoFA+4iAriPkz59f9nNER0eTIUMGrZzra9ja2mJra/tLHb7F9evXAWjbti1//PGHrOdKTEwkISEBIyOjVLfPmjVL43Pp0qVxd3enUqVKbN26lVatWqmdFy1axOjRo+nTp486bWhoKKNGjaJDhw5YWVnJ+rcIBIJfh+hyl5mdO3eSL18+jIyMcHd3Z9KkSamm+7wbXKVSMWrUKLy8vMiQIQOWlpbkyZOH6dOnA0nd9sk/2u7u7igUChQKhbqL283NjSpVqrB582by58+PsbGxusX8pe79mJgYevbsib29PRkyZKBUqVJcvHhRI03p0qVTtLgBWrRogZubGwCPHj1SB+zhw4er3ZLP+aUu98WLF5M3b16MjY2xsrKiZs2a3Lx5M8V5MmbMyL1796hUqRIZM2bE2dmZXr16ERsbm2refsq6desoX748Dg4OZMiQgZw5c9KvXz+ioqI0/sYmTZoAUKhQIbW7QqEgKiqKZcuWqf+mT/MiODiY9u3bkyVLFgwNDXF3d2f48OEkJCSo0zx69AiFQsGECRMYNWoU7u7uGBkZcejQoW+6f0py/urrf7wm37JlC5Ik0bJlS420LVu2JDo6mj179nz1mMm3gq5cuULdunWxsLDAysqKnj17kpCQwO3bt6lYsSJmZma4ubkxYcKEFMcICgqiSZMm2NnZYWRkRM6cOZk8eTIqlQpIuiVgZ2dH06ZNU+z79u1bMmTIQM+ePdXrIiIi6N27N+7u7hgaGuLk5ET37t01ygtgw4YNFCpUCAsLC0xMTPDw8FBf6AgE/2+QBLKxf/9+SalUSsWLF5c2b94sbdiwQfLz85NcXFykz7Pe1dVVat68ufrz2LFjJaVSKQ0dOlQ6cOCAtGfPHmnatGnSsGHDJEmSpCdPnkhdu3aVAGnz5s3SyZMnpZMnT0rh4eHq4zk4OEgeHh7S4sWLpUOHDklnzpxJ9VyHDh2SAMnZ2VmqXr26tH37dmnlypWSp6enZG5uLt2/f1+dtlSpUlKpUqVS/K3NmzeXXF1dJUmSpJiYGGnPnj0SILVu3Vrtdu/ePUmSJGnJkiUSID18+FC9/5gxYyRAatiwobRz505p+fLlkoeHh2RhYSHduXNH4zyGhoZSzpw5pUmTJkn79++XhgwZIikUCmn48OHfLJORI0dKU6dOlXbu3CkdPnxYmjt3ruTu7i75+/ur01y/fl0aNGiQBEhLlixRu588eVLKkCGDVKlSJfXfdP36dUmSJOnFixeSs7Oz5OrqKs2bN0/av3+/NHLkSMnIyEhq0aKF+tgPHz6UAMnJyUny9/eXNm7cKO3du1cjL75EfHy89P79e+nChQtSsWLFpOzZs0vv3r1Tb2/QoIFka2ubYr/IyEgJkPr37//V4w8dOlQCJC8vL2nkyJHSvn37pL59+0qA1KVLFylHjhzSjBkzpH379kktW7aUAGnTpk3q/UNCQiQnJyfJ1tZWmjt3rrRnzx6pS5cuEiB17NhRna5Hjx5ShgwZ1HU1mdmzZ0uAdOXKFUmSJCkqKkrKly+fZGNjI02ZMkXav3+/NH36dMnCwkL6888/JZVKJUmSJJ04cUJSKBRSgwYNpF27dkkHDx6UlixZIjVt2vSbeSoQ/E6IgC4jhQoVkhwdHaXo6Gj1uoiICMnKyuqbAb1KlSpSvnz5vnr8iRMnpgiMnx5PqVRKt2/fTnVbagG9QIEC6h9JSZKkR48eSQYGBlKbNm3U674noEuSJL169UoCpKFDh6ZI+3lADwsLUwfKTwkKCpKMjIykRo0aaZwHkNavX6+RtlKlSpKXl1eKc30NlUolxcfHS0eOHJEA6fLlyykcz549q7GPqampRt4l0759eyljxozS48ePNdZPmjRJAtSBPzmgZ82aVYqLi/tu1xcvXkiAeilUqJD07NkzjTTlypX7Yh4YGhpK7dq1++o5kgP65MmTNdbny5dPfeGYTHx8vGRrayvVqlVLva5fv34SIJ0+fVpj/44dO0oKhUJdF69cuSIB0vz58zXS/fHHH5Kvr6/689ixYyU9Pb0UZbBx40YJkHbt2iVJ0sc8fvv27Vf/PoHgd0d0uctEVFQUZ8+epVatWhgbG6vXm5mZUbVq1W/u/8cff3D58mU6depEYGAgERERP+yQJ08esmfP/t3pGzVqpDH63tXVlaJFi/5wd/CPcvLkSaKjo1PcBnB2dubPP//kwIEDGusVCkWKPMyTJ0+qo74/58GDBzRq1Ah7e3uUSiUGBgaUKlUKIEX3/o+wY8cO/P39cXR0JCEhQb0EBAQAcOTIEY301apVw8DA4LuPb2Njw9mzZ/nvv/9YsGABb968wd/fnxcvXmik+/zpie/d9ilVqlTR+JwzZ04UCoX6b4Gkrn5PT0+NPD948CDe3t4pxhy0aNECSZI4ePAgALlz58bX15clS5ao09y8eZMzZ85odJPv2LGDXLlykS9fPo08rVChgsbtJT8/PwDq1avH+vXrefbs2Xf9nQLB74YI6DIRFhaGSqXC3t4+xbbU1n1O//79mTRpEqdOnSIgIABra2vKlCnDuXPnvtvhR0eRf8k1NDT0h47zoyQfPzVfR0fHFOc3MTHRuEgCMDIyIiYm5qvniYyMpESJEpw+fZpRo0Zx+PBhzp49y+bNm4GkQYM/y8uXL9m+fTsGBgYai4+PDwCvX7/WSP+jZaOvr0/BggUpVqwYbdq04eDBgzx48IBx48ap01hbW6daVlFRUcTFxX33gLjP0xkaGqaa54aGhhp5Hhoa+sUyTN6eTKtWrTh58iS3bt0CYMmSJRgZGdGwYUN1mpcvX3LlypUUeWpmZoYkSeo8LVmyJFu2bCEhIYFmzZqRJUsWcuXKxZo1a77r7xUIfhfEKHeZyJQpEwqFguDg4BTbUlv3Ofr6+vTs2ZOePXvy9u1b9u/fz4ABA6hQoQJPnjzBxMTkm8f43hbZ17yCg4M1HosyNjYmPDw8RbrPA9aPkHz8z1ubAM+fP8fGxuanj/0pBw8e5Pnz5xw+fFjdKgd++Dn+1LCxsSFPnjyMHj061e3JQS2ZHy2bz8mSJQuOjo7cuXNHvS537tysXbuW4OBgjYuzq1evApArV640nfNbWFtbf7EMAY1ybNiwIT179mTp0qWMHj2aFStWUKNGDTJlyqROY2NjQ4YMGVi8eHGq5/v0eNWrV6d69erExsZy6tQpxo4dS6NGjXBzc6NIkSLp9ScKBDqNaKHLhKmpKX/88QebN2/WaMW8e/eO7du3/9CxLC0tqVOnDp07d+bNmzfq0eHJjzmlpWX5KWvWrEGSJPXnx48fc+LECY2R3G5ubty5c0djRHloaCgnTpzQONaPuBUpUoQMGTKwcuVKjfVPnz7l4MGDlClT5mf+nBQkB9HPHw+bN2/edx/DyMgo1b+pSpUqXLt2jaxZs1KwYMEUy+cBPa3cu3ePp0+f4unpqV5XvXp1FAoFy5Yt00i7dOlSMmTIQMWKFdPV4XPKlCnDjRs3uHDhgsb65cuXo1Ao8Pf3V6/LlCkTNWrUYPny5ezYsYPg4OAUo9KrVKnC/fv3sba2TjVPk5+q+BQjIyNKlSrF+PHjAVI8pSEQ/M6IFrqMjBw5kooVK1KuXDl69epFYmIi48ePx9TUlDdv3nx136pVq5IrVy4KFiyIra0tjx8/Ztq0abi6upItWzYgqUUGMH36dJo3b46BgQFeXl6YmZn9lG9ISAg1a9akbdu2hIeHM3ToUIyNjenfv786TdOmTZk3bx5NmjShbdu2hIaGMmHChBQvqjEzM8PV1ZWtW7dSpkwZrKyssLGxSfVH2NLSksGDBzNgwACaNWtGw4YNCQ0NZfjw4RgbGzN06NCf+ns+p2jRomTKlIkOHTowdOhQDAwMWLVqFZcvX/7uY+TOnZvDhw+zfft2HBwcMDMzw8vLixEjRrBv3z6KFi1Kt27d8PLyIiYmhkePHrFr1y7mzp1LlixZftj5ypUr9OjRgzp16uDh4YGenh5Xr15l6tSpWFtb07t3b3VaHx8fWrduzdChQ1Eqlfj5+bF3717mz5/PqFGjZH8GvUePHixfvpzKlSszYsQIXF1d2blzJ7Nnz6Zjx44pxnO0atWKdevW0aVLF7JkyULZsmU1tnfv3p1NmzZRsmRJevToQZ48eVCpVAQFBbF371569epFoUKFGDJkCE+fPqVMmTJkyZKFt2/fMn36dI3xEQLB/wt+8aC8355t27ZJefLkkQwNDSUXFxdp3Lhx6tHEn/L5yPPJkydLRYsWlWxsbNT7tm7dWnr06JHGfv3795ccHR0lPT09CZAOHTqkPl7lypVTdfrSKPcVK1ZI3bp1k2xtbSUjIyOpRIkS0rlz51Lsv2zZMilnzpySsbGx5O3tLa1bty7FKHdJSnpsL3/+/JKRkZEEqM+Z2mNrkiRJCxcuVOeVhYWFVL16dfXo8GSaN28umZqapnBKLU9T48SJE1KRIkUkExMTydbWVmrTpo104cIF9SNqyXxplPulS5ekYsWKSSYmJhKgMeL/1atXUrdu3SR3d3fJwMBAsrKyknx9faWBAwdKkZGRkiR9HOU+ceLEb7pKkiQFBwdLTZo0kbJmzSqZmJhIhoaGkoeHh9ShQwcpKCgoRfq4uDhp6NChkouLi2RoaChlz55dmjFjxnedKzkPX716pbH+S3leqlQpycfHR2Pd48ePpUaNGknW1taSgYGB5OXlJU2cOFFKTExMsX9iYqLk7OwsAdLAgQNTdYqMjJQGDRokeXl5qetF7ty5pR49ekjBwcGSJEnSjh07pICAAMnJyUkyNDSU7OzspEqVKknHjh37rr9bIPhdUEjSJ32sAoFAIBAI/icR99AFAoFAIPgNEAFdIBAIBIJU2LFjB15eXmTLlo2FCxf+ap1vIrrcBQKBQCD4jISEBLy9vTl06BDm5uYUKFCA06dP6/QER6KFLhAIBALBZ5w5cwYfHx+cnJwwMzOjUqVKBAYG/mqtryICukAgEAh+O44ePUrVqlVxdHREoVCwZcuWFGlmz56Nu7s7xsbG+Pr6cuzYMfW258+f4+TkpP6cJUsWnX+tsAjoAoFAIPjtiIqKIm/evPzzzz+pbl+3bh3du3dn4MCBXLx4kRIlShAQEEBQUBAAqd2NTusbHuXmu18sExsbq/F2MJVKxZs3b7C2ttb5P1IgEAgEmkiSxLt373B0dERPT762XUxMDHFxcelyLEmSUsQbIyOjFG9/BAgICNCYUOhzpkyZQuvWrWnTpg0A06ZNIzAwkDlz5jB27FicnJw0WuRPnz6lUKFC6fJ3yMb3PrCe/NIJsYhFLGIRy++zPHnyRJaXnEiSJEVHR0smKNLNNWPGjCnWpTZF8+cA0r///qv+HBsbKymVSo0pgSVJkrp16yaVLFlSkqSkKYI9PT2lp0+fShEREZKnp6f0+vXr9MyedOe7W+j9+/enZ8+e6s/h4eG4uLjwt3UWDOLT5+orregZGZNj+jhKGb5FX0c6DRIkOBJnib+//w9Nlykn8fHxHDp0iFK8QB/pV+sAkICCIzhQKvGpbjkps+hm2UXeQx/Vr9YBIAE9jmT0pNS7O7rlZJZdN8vu2Vn0pcRfrUNYbAI5Bs/+6VdFfw9xcXG8R6IpphiSth/lOCRWREby5MkTjVdNp9Y6/xavX78mMTGRzJkza6zPnDmzepIqfX19Jk+ejL+/PyqVir59+2pMVKWLfHdA/1K3hkF8HIYxOhLQFXqYmJhgZRyLgY4E9HgJTGJMsLa21qkfFhMTE6wwxkBHgmc8CkwwwSpRx5yUOlp2iYYY6EjwjOfD9y5B95x0suyM9TGQdOQHCu3cFzZGD8M0nkfvwz1tc3PzFHNH/Cyf/+3SZ1361apVo1q1aulyLm0gBsUJBAKB4P8VNjY2KJXKFFNGh4SEpGi1/y8hArpAIBAIZEUvnZb0wtDQEF9fX/bt26exPnnGxP9VxPSpAoFAIJAVhQL00tizrwCQwM/PD6VSSefOnencufMX00dGRnLv3j3154cPH3Lp0iWsrKxwcXGhZ8+eNG3alIIFC1KkSBHmz59PUFAQHTp0SJvoL0QEdIFAIBD8z3D27Nnvuod+7tw5/P391Z+TB3U3b96cpUuXUr9+fUJDQxkxYgQvXrwgV65c7Nq1C1dXV9nc5UYEdIFAIBDISnp0mf/o/qVLl0715TCf0qlTJzp16vTzUjqGCOgCgUAgkBU9hQK9tI5yB3TkARidRQyKEwgEAoHgN0C00AUCgUAgK7+iy/3/IyKgCwQCgUBW9NJhlLsI6N9G5JFAIBAI/mfw8/PD29ubWbNm/WoVnUO2FvojVQL/JcbwQkrkHRIN9U3IqWeo3i5JEocSYziviiMaiSwKJVWUJtjpKdVpEiSJwMRorqriiUfCQ6FPFX0TLBTpcx3y7n00Q5f9y5YTFwh5G0G+rC5M7dgIPy8PAF6GhdN/0Qb2nb/O26j3lMiVnemdG5PNyT5dzp+q07t3DB48mH///ZeQkBDy58/P9OnT8fPzA5KerezXrx9btmwhNDQUNzc3unXrRseOHeVzio5h6KodbDl9mZDwSPK5Z2Fqmzr4ZUt6vEO/RpdU9xvXvAa9a5aVz2nNLracvkJIRCT53J2Y2qoWfp4fHzm5+TSY/iu2c/TGPVQqCW9ne9b2aoGLrZU8Tt8ouxYtWrBs2TKNfQoVKsSpU6dk8QF4Fx3L0E372HLuRlI+uToytWkV/DyypEjbcfG/LDh0lsmNK/NXxWIyO+1ny/kbhEREkc/VgalNKqudhm8+wPrTV3kSGo6hvpICbo6MrFuOQlmd5XP6StnFx8czaNAgdu3axYMHD7CwsKBs2bKMGzcOR0dH+Zxi4hi68zhbrtwjJPI9+ZzsmFrbHz/XpN+ffy/fZf7xK1x48pLQqBjO9W1Cvix2svmkhfTscv/ex9b+PyJbQI9Dwl6hpIDSkLUJ71Ns/08Vy0lVLDX1TbBGyRFVDMsSIulmYI7Rh9GQuxOjua2Kp66+CSYo2JMYw6qESDrom6V5xCRAu6lLuP7oGUv7tsXRypJVB09Sod8kri4YjaO1JbWGz8RAqWTzsK6Ym2Rg2uZA9XZT4x+fEOB7aNOmDdeuXWPFihU4OjqycuVKypYty40bN3BycqJHjx4cOnSIlStX4ubmxt69e+nUqROOjo5Ur15dFqd2/6zmetBzlnZvjqOVBasOn6HC0JlcnTkIJ2tLni4Zo5F+z4XrtP1nNbWK5JPFB6Dd7LVcD3rB0m5NkpyOnqPC8NlcndYfJ2tL7ge/ptTA6bQsU5ih9QOwMDHm5rOXGBvK917vb5UdQMWKFVmyZIl6H0NDwy8dLl1ot2gz15++ZGmHujhmMmfV8YtUGLeIq+O642RloU639dwNztx/imMm+X8o2y36l+vPQljavs4Hp0tUGL+Eq2P/wsnKnOz2NkxvWgUPOyui4+KZHniCgAlLuT2xJ7bmprI4fa3sMmbMyIULFxg8eDB58+YlLCyM7t27U61aNc6dOyeLD0C7NXu5/iKUpU0DcLQwZdXZm1SYtZGrA5rjZGlGVGw8Rd0dqZMvO+3X7vv2AX8hCoUize+M15233+susnW5Z9czoKx+Brz1Uv5gSZLEycRYSiqN8dYzJLOeklpKE+KRuKJKmuglRpK4oIqjgjIDWfUMcNDTp7a+CS8lFfelhDT7RcfGsfm/84xtU4+Sub3wdMrM0KY1cLe3Ye6Og9x99pLTN+8zq2sz/Lw88HJ24J8uzYiMjmHtIXlaVNHR0WzatIkJEyZQsmRJPD09GTZsGO7u7syZMweAkydP0rx5c0qXLo2bmxvt2rUjb968sv2wRMfGsfnkJcY2r0FJH088HWwZ2rAy7nbWzN1zDAD7TOYay7bTVymdKxse9jbyOZ26zNhm1T461Q9Icgo8DsDg1TsIKODN+GbVye+RBQ97Gyr7+mBnIc/MUt9TdpA0yZG9vb16sbKSp7cAIDouns1nrzO2QUVK5nDHM7M1Q2uVxd3WirkHTqvTPXsTTrfl21jesR4GSnnvwkXHxbP53A3G1q/wiVMZ3G0zMfdgklPDonkpm8sTDzsrfLJkZlKjACKiY7nyJPgbR/9Jp2+UnYWFBfv27aNevXp4eXlRuHBhZs6cyfnz5wkKCpLHKS6ezZfvMrZ6CUp6ZsHTNhNDKxXF3dqCuf9dAaDJH94MDihCGS8XWRzSE1179evvyi/JozBURCLhqfjYQaCvUOCm0OfJh2D9XEogEfDU+5jGXKGHnUKPJ6q0B/SExEQSVaoULTZjI0OOX79LbHx80udPtiuVehga6HP8+t00nz9Vp4QEEhMTMTY21lifIUMG/vvvPwCKFy/Otm3bePbsWdJti0OHuHPnDhUqVJDHSaVKyieDz/PJgOM37qdI//JtBLvOX6NV2SKy+Gg6aXYwGRsacPzWA1QqFbvO3yCbox0BI+bg0HIgRfpNYevpK/I5fUfZARw+fBg7OzuyZ89O27ZtCQkJkc8p8Uv5pM/xO48BUKlUNJ+7gV6VS+CTRf5JKb7oZGCgdvqUuIQEFhw6h4WJMXld5LnV9b1l9ynh4eEoFAosLS3lcVJJJKokjPU/zyd9jj94Jss5Bf/7/JKAHvnh7T2mn90LN1Xo8e7DtkhJQglk+CxNRvSITIe3C5iZZKBwzqyMXr2N56FhJCaqWHXgBGduPSD4TTg5nB1wzWzNwMUbCXsXRVx8AuPX7ST4TTgv3rxN8/lTdTIzo0iRIowcOZLnz5+TmJjIypUrOX36NC9evABgxowZeHt7kyVLFgwNDalYsSKzZ8+mePHi8jhlMKawlzuj1+/m+Zu3Sfl0+Axn7jwmOCwiRfrlB09jlsGYmjJ2tyc5uTF6416evwlPcjpyljN3k5xCwiOJjIllwr/7qZA/B7uHdKTGH7mpM3ExR67f+/YJfsbpO8ouICCAVatWcfDgQSZPnszZs2f5888/iY2NlccpgxGFPV0YveUQz8MiSFSpWHX8ImfuPyX47TsAJuw4ir5Sj67ltTMhRZKTM6O3fup0iTMPnhL8NlKdbsfFW1i0HYFp6+FMDzzOnr4tsDGTp7v9e8ruU2JiYujXrx+NGjWS7V6umbEhhd0cGB14iufhkUn5dPYGZx6/IDgiSpZzyknyKPe0LoKv80t7MVIrn2+VWXq+KGhZ33ZIErg06olJlbbM3LKfhv6FUOrpYaCvz/rBXbj7LBjbOl0wq9aeI5dvUdEvN0o9+bJtxYoVSJKEk5MTRkZGzJgxg0aNGqFUJg0WnDFjBqdOnWLbtm2cP3+eyZMn06lTJ/bv3y+b07LuzZAAl1aDMKnbnZk7j9CwZMFU82HpgVM0KllQ1nvVAMu6NUWSJFzaDsGkQS9m7jpKwxIFUOopUH24KKzml4vuVf3J556Fv2uVo7KvD/M/dMnLwbfKrn79+lSuXJlcuXJRtWpVdu/ezZ07d9i5c6dsTss61E3Kp27jMGk5hJl7T9KwSF6UegrOP3zGzL0nWNyujlbmxFY7ta+T9L37awImrYYxc99JGhbJg/KTX2x/bw/Oj+rMscHtqJA7Gw3/WUtIROSXD5pGvlV2ycTHx9OgQQNUKhWzZ8+WzQdgWdOApLIbPB+TntOZeeQiDX1zoNRiWaUXCtLe3f6/91drn1/yHHrGDxUyUlJh9kkLPEpSqbdlVChIBKIllUYrPQoVLmh+yX6WrI52HJrUj6iYWCKionGwtqTh6Nm4fbj365vNjfNzRhAe9Z64+ARsLc0p0m0kBbO7pcv5U3XKmpUjR44QFRVFREQEDg4O1K9fH3d3d6KjoxkwYAD//vsvlStXBiBPnjxcunSJSZMmUbasPCPKszrYcmh096R8eh+Dg5UFDScuxi2ztUa6Y9fvcfvZS1b3bimLh4aTvQ2HRnZLcoqOwSGTBQ0nL8XNzhobM1P0lXrkdNbsos2RJTPHbz6Qz+krZZcaDg4OuLq6cveuPLdwALJmtubQoHZExcQRERODg6U5Df9Zg5utFf/dfkRIRBTu3Seo0yeqVPRZvYsZgce5P7WvfE4D2xAVG0dEdCwOlmY0/GctbraZ1GlMjQzxzGyNZ2ZrCns6k6PPVBYfOU+/qqXkcfqOsouPj6devXo8fPiQgwcPyj7SOqutJYf+qk9UbDwRMbE4WGSk4ZIduFlbfHvn35jvnW3t/yO/JKBnQo+MKLgnJeDwQSFBkngkJVBOLwMAjgp9lMB9VQK5lEkD695JKkIkFeWV6attamyEqbERYe+i2Hv+GuPa1NPYbmFqAsDdZ8Gcv/uQ4c1rpuv5U3UyNcXU1JSwsDACAwOZMGEC8fHxxMfHo/dZy1ipVKJSqeR3Ss6nyPfsvXiTcc01R9Uv2X8S36zO5HVP+UiUVpwu3WJc02oYGuhT0NOFO88070/ffR6C6ydBQzanVMouNUJDQ3ny5AkODg7yOxkbYmpsSFhUNHuv3mVc/YrU8stFGZ+sGukqTVxK42L5aFHSV34nI0NMjT44XbvHuPpfHgciSRKx8WkfO/NNpy+UXXIwv3v3LocOHcLa2vobR0pHJyMDTI0MCHsfw95bjxlXrYTWzp1epNu73BGPrX0N2QJ6rCTxRkpUfw6TVLxQJZBBoYelQo8iSiOOJcZgrdDDGiVHVTEYoCDPh1HxxgoFBfQM2ZMYTQaFQv3YWmaFHlkV6aMdeO4qkgRezvbcexZCv4XryJ7FgRblk+5Hbzx6FhsLM1zsrLj28Ck95q6mepEClPfNlS7nT9UpMBBJkvDy8uLevXv06dMHLy8vWrZsiYGBAaVKlaJPnz5kyJABV1dXjhw5wvLly5kyZYp8ThdvJOWTkx33Xryi39ItZHeyo0WZjwPfIt5Hs/HERSa2lP9iJ8npJhLg5WjHveBX9Fu+Lcnpz0IA9K7+Jw2nLKOEd1ZK58pG4MWb7Dh3nQMjUn9mPl2cvlJ2kZGRDBs2jNq1a+Pg4MCjR48YMGAANjY21KwpX54FXrmTlE/2Ntx7GUq/tXvIbm9Di5K+GOgrsTYz0UhvoNTD3sIMLwdbGZ3uIiHh5WDDvZdvPjqVKEBUbBxjth2mav6cOFhmJDQymrkHTvM0LII6f/ya711CQgJ16tThwoUL7Nixg8TERIKDk0bcW1lZyfboYeDNR0lOma249+ot/bYeJbtdJloU9gHgTVQ0QWHveB6edCviTkgYAPbmptjL9HjfzyJe/aodZAvoz6UEliR8HLyxJzEGgHx6BtTSN6W4nhHxksSOhGhikHBSKGmmn1H9DDpARWUG9ID1Ce9JQMJdoU8t/Yzp8gw6QERUNAOXbOTp6zCszEypVcyXkS1rY/BhZOmLN2/pPW8NL99G4GBlSZOyRRnUqFq6nPtLhIeH079/f54+fYqVlRW1a9dm9OjRGHwYZb527Vr69+9P48aNefPmDa6urowePZoOHTrI5hQRFcPAFdt4GvoWKzMTahXJx8jGVTHQ/3jrY92x80iSRIMSBWXz0HB6H8PAVduTnDKaUqtwXkY2qqx2qlEoL7Pb1WP85n10X7wZL0c7NvRpRfGcWb9x5J/na2WXkJDA1atXWb58OW/fvsXBwQF/f3/WrVuHmZk8j9IBRETHMHD9Xp6+CcfK1IRafj6MrFteo+y0TUR0DAM37OXpmwisTDMkOdUph4G+kkSVitvPX7Piv9W8fvce64wmFHR34vDANrKOwv9a2T169Iht27YBkC9fPo39Dh06ROnSpWVxioiOZeD2/3j6NhIrU2Nq5fVkZJXiGHy4r7/92gNarwpUp2+0NGksxuCKhRlaSTuDHAW6hUL61oSxXyAiIgILCwsGmdthGBOX3l4/hV4GY3Itm0sF4zAMdGQERbwEgTGZqFSpkjoo/2ri4+PZtWsXFXiGgY7MRxiPgkCcqJAYpFtOShfdLLt3tzBA/tss30M8egSa5aBCxA3dcjL31s2ye3Icg096L38VoTEJZO47g/DwcNm6sJPjxBAjS4zT2BCLkSRGxL6V1fd/HTE5i0AgEAhkRXS5aweRRwKBQCAQ/AaIFrpAIBAIZEUPBXppfJJctD6/jcgjgUAgEMhKer4pTkyf+mVEC10gEAgEsiKmT9UOooUuEAgEAsFvgGihCwQCgUBW0mNyFdH6/DYioAsEAoFAVpImZ0lbRFfoyPspdBlx0SMQCAQCwW+AaKELBAKBQFZEl7t2EAFdIBAIBLIi3hSnHUQeCQQCgUDwG/DdLfTY2FhiY2PVnyMiIgDoOLETVhnkmT7wR0lAjwNAQtgb0JEBFAkoIEMmYtdPJ1FHJq5IQA8yZiPhdQhIOuKk0AMbJxJi40GX8skEYjf/Q6Iu1SdjDxISJXSnjid5JKgUkMaBT+lFwgeP2FUTdet7l8mHBFMLdKGOJyi1N6mW6HLXDt8929qwYcMYPnx4ivWrV6/GxMQklT0EAoFAoKu8f/+eRo0aaWW2temmVmRQpC0kR0sq/op6Q/bs2VEqlXTu3JnOnTunk+nvwXe30Pv370/Pnj3VnyMiInB2dqbUuztYJehQC908B2Wi76OvM60XBQcyZKVM5F30deCqHD7kU8ZslHl9EX0daqEfsMlPmff3dSufTLJSJuaBbtUnYw/KvL2pW/lkmVM3ncKu65ZTJh/KvLmmE05vonVj2usfRbwp7st8d0A3MjLCyMgolQOodGYO5GT0kXTIKemqVCfzSVJhoCMBPRmdzCdRn74L4fR96IqTNi8qRJe7dhCj3AUCgUAgK+kxukI3RmfoNiKgCwQCgUBWRAtdO4g8EggEAoHgN0C00AUCgUAgK3oo0vwu97Tu//8BEdAFAoFAICuiy107iDwSCAQCgeA3QLTQBQKBQCArSdOnpv0Ygq8jArpAIBAIZEU8tqYdRJe7QCAQCAS/ASKgCwQCgUBW9BSKdFkA/Pz88Pb2ZtasWb/4r9I9tNLlnpCYyPB/D7LmxGWCwyNxsDSjWYn8DKxWGj29pGuKf89eZ/6hs1x49JzQyPecG9mZfK4O8jpt3Mea4xcJfvsOh0zmNCvpy8CaZdDT0yM+IZHB6wPZc+kWD0JCschgTJnc2RjTIABHKwv5nDYfYM2JS0lOlmZJTtX91fk0fNN+1p+6wpM3bzFUKing7sTIuuUp5Okik5OK4duPsub0NYIjonCwyEizonkYWKk4eqkMW+24YhcLjl1kcr1y/FX2D5mcEhm+af/HsrM0p1kpXwbW+FOdT63mrmf50fMa+/3h6cyJEV3kc9q4jzX/XfhYn0oVVNenZG4+e0n/1bs4euMBKknCO0tm1nZvgotNJnmcthxizclPvnfF8zOwaim1k36LwanuO65eBXpXKv5LnCJjYhmwYR9bL9wkNPI9bjaWdClXhA5/ylifthxmzakrH52K5WNg1ZJqp5fhkfTfsI991+/z9n0MJbK7Mr1xJbLZW8viBPAuOpah/x5ky8VbhEREkc/FnqmNAvBzdwJAkiRGbD3MwiPnCXsfwx8eTsxsUhkfJzvZnH6W9OxyF+9y/zJaCegTdh5j/sGzLG5XGx8nO84/fEbrhZuxyGBMtwpFAYiKi6Nodhfq/JGL9ou3yO+07TDz959iccf6+Dhn5vyDp7Seux4Lkwx0CyjO+7g4Lj58xsCaZcjj6kBYVDQ9l2+n5qSlnB7zlzxOO44y/8BpFrevi0+WzJx/+JTW8zcm5VPFYgBkd7BhevNqeNhZER0Xz/Td/xEwfjG3J/fG1jxj+jvtOcH8IxdY3LIqPo62nH/8gtZLd2CRwYhuZTR/YLdevM2Zh89wtEx/Dw2n7Uc+lF29pHx68JTW8zYk5VPAxyBUIW92FrWvp/5sqK+Uz2nbYebvP8nijg0+Os1dn+RUqQQA94NfU2robFr6+zG0TnksTIy5+SwEYwMDeZx2HmP+obMsblMr6Xv36BmtF/2b5FS+CABPp/XV2GfP1bu0XbyFWgW9f5lTr9W7OXzrIcva1cHNxpJ91+/RZfkOHC3NqFYgZ/o77fqP+YfPsbhNTXycbDn/8DmtF29JquPliyBJErVmrsFAqWRz14aYZzBiWuAJKkxaxtXRXTA1kmdyqnZLt3H9WQhL29TE0dKMVSevUGHScq6O6oxTJnMm7j7OtL0nWdy6BtkyWzNmx1EqTlrOjTFdMcuQct4Nwe+PVgL6qbtPqFYgB5XzeQHgZpuJtaeucP7hM3WaJsXyA/DoVZg2lDh19zHVCvpQ+cMPhJutFWtPXOL8g6cAWJhkIHBgW419preoTpFBMwl6HSZLi+rU3cdU8/Wmcv4cH5wysfbkZc4/fKpO07BoPo19JjWuzOIj57gSFEyZXJ7p7/TgGdXyZadynmxJTjaWrD1znfOPXmikexYWQbc1gezq3pBqM9elu4eG093HVCvoTeX8n5adZj4BGOnrY29pJquL2unOY6r5flKf7KxYe+Kiuj4BDF63h4B8ORjfuIp6nUdm+Vp4p+4/oVr+z793VzW+d5/nz7YLNymdwx0PO6tf5nTq/hOaFstH6ZzuALQt7ceCQ+c49/CZLAH91P2nVMvvReW82ZOcbDKx9vRVzj96DsDdl6Gcvv+Uy6M6q1u//zSrgkO3Caw9dZXWpXzT3Sk6Lp7N52+wuWtDSnq5ATC0hj/bLt5i7qGzjKj5JzP2naJ/lZLU9E26+FrSuiaO3Sey5vRV2pUumO5OaUEMitMOWrmHXiy7CwdvPODOi9cAXA56wfE7jwn48AX6FRTzcufgtXvcefEqyenxc47fekTAhx+a1Ah/H4NCocDSJIM8TtndOHj9U6cXHL/9mIC8qTvFJSSw4NAZLEyMySvT7Ylins4cvPWIOy9Dk5yevOT4vacE5P548aBSSTRfvI1eFQrj42gri4eGk5cbB6/d1yy7248IyJdDI92Rmw9w6DCCnD0n0n7BRkLCI+VzyuGWVJ+ef+b04eJMpVKx6+ItsjnYEDBmAQ7thlFk4Ay2nr0mn1M216TvXfAn37u7X/7evQyPZNeVO7QqWeCXOhXL5sqOS7d5FhaBJEkcuvmAOy9fUz53NpmcXDh44+EnTsEcvxtEQJ4kp9j4RACMDT62f5R6ehjqKzl+N0gWp4REFYkqSeOcAMaGBhy/G8TDV2EEh0dSzierepuRgT4lvdw4ee+JLE5pQZFOi+DraKWF3rdKScKjY/HpNx2lnoJElcTIOmVpUCSvNk6fulO10oS/j8Gn16SPTvUq0OBDT8HnxMTFM3DNLhoWzYe5ibE8TlVLER4dg0/fqR+d6panwWet8h0Xb9L4n7W8j4vHwdKMPX+3wsbMVB6nikWSym7IXJQKPRIlFSNrlKbBHz7qNBMCT6Cvp0fXP/1kcUjhVPVD2fWerFl2n+RTxbxe1C6UG1ebTDwMecOwjXspN3o+Z0Z3w8gg/at932r+H+rTxI9O9Suq61NIRCSRMbFM2HaIEfUqMrZRJQIv36bOlOXsH9yeUt5Zv3GGn3CqXCKpPvWf8dGpdhkaFM6Tavrlxy9iZmykbvHJwfc4TWtSifZLtuLaYyL6Sj30FArmt6xB8eyu8jhVKp5UdgP++ehU608aFM4NQA4HG1ytLRm4cT9zmlfF1MiAqYEnCQ6P5MXbd7I4mWUwonDWLIzefoScDjZktsjI2tNXOfPgKdnsrAmOSLo4zWyu+b3PbG7K49BwWZzSgkKhQKFIW0hWiJD+TbQS0NefvsrqE5dY2bEu3k52XA56Qc+Vu3C0NKNZCflaA191OnmZ1f9dYGWXhnhnyczlx8/puXw7jh8GM31KfEIijWauRiVJ/NOqpnxOp66w+vglVnaq/9FpZdK9w2YlP3br+efMyvnRXXkd+Z5Fh87S8J81nBjWCTuL9L93vf7sDVafvsrK1jXwdrTl8pOX9Fy/D0cLM5oVzcP5xy+YeeAsZwe1TvMX9rudTl5m9X8XWdm5wYd8ekHPFR/K7kM+1fvkYjGXsz0FPbLg0W0cuy7eouYfueRxOnaBlV0bJTk9ek7P5dvU9UmlkgCo5utD98olAcjn5sTJO4+Zv/+ULAF9/emrrD55mZXt63z43gXTc/UuHC3NaVY85YXr0qMXaFQ4D8aG8tzT/16nmftOcfr+E/79qzGuNpYcu/2ILiu2Y29pRlkfGfLpzDVWn7zCyva18Xa04/KTYHqu3v3BKR8G+krWd6lPu8Vbse0yDqWeHmW8PagoU49BMsva1qLN4q249JqCUk9BflcHGhbKzcXHH293ff6dkwAtfQ0FOohWAvrfa/fQt0pJ6n+4Cs/tbM/j128Zv+PoLwvof6/aSd/q/tT/0KrL7eLA41dvGb/tkEZAj09IpMH0lTwKecO+Qe1ka50D/L1mN32rlqL+h2CkzqftRzQCuqmxIZ72NngChT1dyNFrEouPnKNftdLp77TpAH0rFqX+hxZ57ix2PH4TzvjdJ2hWNA//3X1CyLso3PvNVO+TqJLos2E/Mw6c4f7Y9B9V/vfqXfStVlqz7F6HMX7rIY18+hSHTOa42lhy90O3aro7rdyRsj69DmP81oM0K1UQG3NT9JV65MySWWO/HI52HL/9UB6n9YH0rfTZ9y70w/fus4B+7PYjbge/ZnWneqkdSmtO0XHxDNq4n41dG6rvs+dxtudyUDBTdv8nS0D/e91e+lYuTv1CuT84ZU763u08RrPi+QDwdXPk/IiOhL+PIS4hEVtzU4qMnE9BN8d090kmq50Vh/q1JCo2jojoWBwszWg4ZwNutpmw/zAANnlUfjIhEVFklmFwbFoR99C1g1YC+vvYePUzhMko9fTUrZZfwfu41JwUGk7Jwfxe8Gv2D26PtUzd2h+d4lLPJ0n11f0kSSI2PkEmp4TU80lKyqcmhXNRJqebxvZK09fQuHBuWhSV55ZK6mWnp3ZKjdB3UTx5E67x46cVpw/1yVBfn4Iezup77MncDX6FqwwDLOHD907vy2X3KUuOXsDXzZG8LvI9Kvo9TvGJicQnJn63d7o4fem3IJXzWXy4oL8bHMr5h88ZXvNPWZw+xdTIEFMjQ8Kiotl77R7j6pbD3TYT9hYZ2X/jPvk/jJ+JS0jg6O1HjK1bTnanH0WPtA/YEi9N+TZaCehV8udg7LYjOFtb4uNkx6XHL5i25zgtPmlNvYl8T1BoOM/fRgCoB9DZW2SUZaRylQI5GbvlYJKTc2YuPXrOtF3HaFE66T5wQmIi9aat4OLDZ2zt25JElUTwh/tlVhkzYKif/llXJX9Oxm49lOSU5YPT7v9o8WEUbVRMHGO2HqKqb04cLM0IffeeuftP8TQsgjofWhfp7pQnG2N3HcfZyhwfR1suPQlm2r4ztCiWFKytM5pgndFEYx8DpRJ784x4yfSMbpUCORm79SDONp/k065jtPgwsjcyJpbhm/ZRyy83DpnMePQqjEHr9mBjZkINv/Tvblc7bTmIs02mD07PmLbzqLo+AfSuWoqG01dRIqcHpX2yEnjpNjvO3+TAkA7yOOXLwdjtR3C2skj63gW9YFrgCVp81isWER3DxrPXmNigoiweP+JknsGYkl5u9FsXSAYDA1xtLDl66yErjl9iUsMAmZy8GLvj2IffJ1suPQ5mWuBJWpT42Iux8ex1bMxMcLGy4NrTEHqs3k31AjkoL8OTJckEXruHJEl42dtwL+QN/dbvJbu9DS2K50ehUNCtXGHG7ThGNjtrPDNbMW7nMUwMDWgo02+BQPfRSkCf3rQKQzftp+uybYREROGYyYy2/n4MruGvTrP94i1aL9is/txodtKjT4Nr+DO0Vpn0d2pRnaHr99J1yb+EhEfimMmctmUKMbh2WQCevgln+/kbAPj2m6ax7/7B7Sktwz3P6c2qMXTjXrou3UpIxAenP/9g8IdWgFJPwe0Xr1gx/QKv30VhndGEgh5ZODyoHT6fdeWmm1PD8gzdeoSuq/cQ8u49jhYZaVsyP4OrlJDlfN/l1Lw6QzcE0nXJFs2y+1BPlHp6XAsKZuWxC7yNisEhkxmlvbOypltj2Z7Pnd6yBkPXB9J18eaPTmULq+sTQI0/cjO7TS3Gbz1E96Vb8HK0ZUPPphTP4S6PU5PKDN18gK4rtid97yzNaFvaj8HVS2ukW3f6KhJ8cbCctp1Wd6zHwI37aDZvA2+ionG1tmRk7bK095dn0OX0xpUY+u9Buq7Y8YlTQQZXL6VO8+LtO3qv2cPLiCgcLDPSpGheBlUr9ZWjpp2I9zEM3HSAp2ERWJlmoJZvTkbWKoPBh/cp9AkoRnRcPF1W7iQsKpo/PLKwu1dTnXwGXaFI+7190eX+bRSS9HP9WBEREVhYWPBy3hCsM8jzYoUfJR49As29qRB9DwO+3k2tLeLRIzCDJxUib+uWU0YvKrw6j8E3uvO1RbxCj0BbXyq8v6tb+WSSjQox93XLyTgrFd5e1y0nSx/ddAq7qltOmXJT4c0VnXAKjY4jc+cxhIeHy/bmteQ4sSaTHSaKtHWav5dUNAwLkdX3fx1xW0IgEAgEgt8AMX2qQCAQCGRFjHLXDiKgCwQCgUBWREDXDqLLXSAQCAT/M4jpU7+MaKELBAKBQFb0gFRmW/6xY3wYvi2mT/0yIqALBAKBQFYUH/6l9RiCryMCukAgEAhkR4Rj+RH30AUCgUAg+A0QLXSBQCAQyEq6vClONPG/iQjoAoFAIJAV8diadhBd7gKBQCAQ/AaIFrpAIBAIZEUPBXppbGOndf//D3x3QI+NjSU2Nlb9OSIiaZpTVbWOqKzlmSbzR1HFx8O+fSREvwcdmPwAIAE9yADxoa+RpMRfrQNAgkIJGb1IsLEHft2c9J+S8OHLmpDREhQ64iQpQAXxIS91q+xcspKQ1Udn+tcSVEAoxL+L0K18soTEwhVQKHUjoxITVXD7Oar6vVAZGPxqHVShodB5jFbOJbrctcN3z7Y2bNgwhg8fnmL96tWrMTExSWUPgUAgEOgq79+/p1GjRlqZbW2rlT2memm7sIpSqaj+JljMtvYVvjugp9ZCd3Z25sWLF1jrSAs9Pj6effv2UebNFfR1qIV+wCoPfz4+jr4OtV4OuhajjPQMfR1qoR9QOFFG7xX6OtRCP6Cy5c+gE7pVdi5FKWMN+rrR8CRBBQdC4c8nJ3Urn5yLUNbLEX0daaEnJKrYf/s55cqVw0AHWuihoaE4ODhoJaBvs06fgF4tVAT0r/HdXe5GRkYYGRmlWG9gYKATlfNT9FHpzDzfyf1E+lIiBjryY5eMPhIGOhLQk9FXSBjoSEBPRifLTg8M0vouzXQjqbx0Mp+UehjoSEBPRld+M7XpILrctYNu1XSBQCAQCAQ/hRjlLhAIBAJZEe9y1w4ioAsEAoFAVvQU6TDbmojn30QEdIFAIBDIiriHrh3EPXSBQCAQCH4DRAtdIBAIBLIiWujaQQR0gUAgEMiKGBSnHUSXu0AgEAgEvwGihS4QCAQCWRHzoWsH0UIXCAQCgazopdMC4Ofnh7e3N7NmzdLmn/A/gVZa6AkJCQwbNoxVq1YRHByMg4MDLVq0YNCgQeh9eL+vJEkMHz6c+fPnExYWRqFChZg1axY+Pj6yeWXtO53HoeEp1nf0L8jMJpV4GR5J/40H2Hf9Pm+jYyiR3ZXpjSqSLbN87673HLGYx2HvUqzvUCwPM+v4Exkbx4Adx9l29QGh76Nxy2RO55L56FAsjyw+WdsN5fGrNynWd6xYgpnt66Ffs2uq+41rVp3eNcvK49RqAI9DQlM6VS7FzI6NALj55AX9l2zm6LU7qCQJbxdH1v7dDhc7K1mcPIcvSr3ciudhZp0/abUqkBVnb2ps+8PVnuM9GsjiA5C1ZlseB4ekWN+xVgAz+3TQXDduNgu2BjL5r9b81aCabE6ewxfx+E1EivUdiudlZt0/GbH7JOsv3ObJ23cYKpUUcLZjROViFHJzkM3Jo2RlHj97kWJ9xyZ1mTqoN4OnzGb34eM8ePIUC7OMlClaiLF9u+GY2VY2Jzc3Nx4/fpxifadOnZg1axabN29m3rx5nD9/ntDQUC5evEi+fPlk89Elzp49K97l/gW0EtDHjx/P3LlzWbZsGT4+Ppw7d46WLVtiYWHBX3/9BcCECROYMmUKS5cuJXv27IwaNYpy5cpx+/ZtzMzMZPE6NbgNiaqP7w2/9iyEipNXUrugN5IkUeufdRgolWzuWh/zDEZM23uKCpNWcnVUR0yNDGVxOtmzgYbT9RehVJz7L3XyZQOg15ajHLn3lGVNKuBqZc6+W4/puukQjuamVMudNd19Tk3srZlHQc+pOGwWtYvlB+Dp4tEa6fdcuEHbWaupVSRfuruonab2J1H18V391x4/p+KgadQu5gvA/RevKNV3Ii3LFWNo46pYmGbg5pNgjA3lq+4nezVMWW5zNlMnbzb1ugo5XFnYqLz6s6FSKZsPwKnFkzTz6f5jKv41lNplimmk23rkFGdu3MHRRp6LnU9JmU+vqTh7s7p+Z7PNxPQ6/rhbWxAdn8D0wxepNGcztwa3xDajPLM6nv53JYmqj++gv3bnPhWadaROQDnex8Rw4fotBnZpQ96c2QkLj6DnqEnUaNedM1tXyeIDSUErMfETp2vXKFeuHHXr1gUgKiqKYsWKUbduXdq2bSubR3ohRrlrB60E9JMnT1K9enUqV64MJF19rlmzhnPnzgFJrfNp06YxcOBAatWqBcCyZcvInDkzq1evpn379rJ42ZqZanyesOs4We0yUcrLlbsv33D6wTMuj+iAj5MdAP80qYRD98msPX2N1iULyOP02Y/WhAPnyGpjQcmsTgCcfhRMU7+clPLMAkDborlZcPIa55+EyBLQbS00L6YmbN5HVnsbSvl4AmCfSfNKeduZK5TOlQ0Pe5t0d/mi04Y9ZHWwpVTu7AAMXr6FgIK5GN+qtjqNh718rSlIpdz2n00qtw/lBGCkr8Te3PTzXeVzymSh6bR8E1md7CmVP5d63bOQULpNns+uacOo1muk/E7fyKeGBXNobJ9UsyRLTl3j6rPX/OnlIo+TdSaNz+PnLiGrSxZKFfJFoVCwd/kcje3Th/5N4ZpNCXr+AhdHeXoObG016+u4cePImjUrpUqVAqBp06YAPHr0SJbzpzsKBQpxE112tHIPvXjx4hw4cIA7d+4AcPnyZf777z8qVaoEwMOHDwkODqZ8+Y+tFyMjI0qVKsWJEye0oUhcQiKrTl2hRfF8KBQKYhMSADA2+HjNo9TTw1BfyfG7T7TmtPr8LVr84a3+MhR1d2D7tQc8exuJJEkcvvuEu6/CKJdDnh87DZ/4BFYdOUuLMoVT/XK+fBvBrvPXaVW2iOwuGk6HT9OiXFEUCgUqlYpd566SzTEzAYOn49C4N0V6jmXryUvac0out0I+Gvl05N5THAfNw3v0Utqv3U/Iu/fac4qPZ1XgYVpUKat2UqlUNB8xlV6Na+LjIX/9SeGUkMjqczdpUShXqvUpLiGRhSeuYpHBiDxO8l6Qqc8ZF8+qrbtpWbf6FwNQ+LtIFAoFljL1HKZ0imPlypW0atUq7UFR8FujlRb633//TXh4ODly5ECpVJKYmMjo0aNp2LAhAMHBwQBkzpxZY7/MmTOneh9JDrZevMXb9zE0L5oPgBz2NrhaWzBw00HmNKuMqZEhU/eeJDg8khfhKe+VyuJ09T5vo2Np9oe3et20WqVpv+4AbsMXoa+nh55Cwbz6ZSju4SS/z5krvI2KpvmfhVPdvvzQGcwyGFOzcF7ZXdROpy7xNjKa5mWKAhAS/o7I6FgmbNzDiKbVGduyFoHnr1NnzFz2j+mpbsXL6pRKuVXM6UadfNlxsTLjUWgEQ3edoPysTZzu3RAjffm/hluPnOZtZBTNK/+pXjdhxWb0lUq61qsi+/lTdbp6LymfCnlrrN957QGNl+3ifXw8Duam7O5YC5uMGbTitGXfId5GvKN57dTHEcTExjJgwgwaVquIuVlG7Tht2cLbt29p0aKFVs4nB6LLXTtoJaCvW7eOlStXsnr1anx8fLh06RLdu3fH0dGR5s2bq9N9fvUpSZLWrkgXH7tIxdyeOGZKuuo20FeyvlNd2i3djm23iSj1FJTx9qBibk+t+AAsOX2dijnccLT4+MPxz7FLnHn8gn9bV8XFyoxj95/TddMhHMxNKSNTl2Qyi/efpGIBbxytLFLdvvTASRqVLIixofbmWV689zgVfX1wtLYEQPXh/my1wnnpXiNpUF4+D2dO3rzP/N1HtRLQl5y6RsWcmuVWr4CX+v+5HGzwdc5M1hGL2HX9ETXzyl+nFu/YR8XCvjjaJg3oPH/rHjPXb+fs0im/rNW35NT1FPkEUDqbM+f6NuF1VDSLTlyl0dKdHO/ZEDszee6hf8riDVuoWKpoqgPe4uPjaditPypJYtbw/rK7JLNo0SICAgJwdHTU2jnTGxHQtYNWutz79OlDv379aNCgAblz56Zp06b06NGDsWPHAmBvbw98bKknExISkqLVLgePX7/lwI2HtC6heV/c182R88PaEzqzL0+n9GRXj8aERr7H3cZSfqc3ERy484RWhT+O8o+OS2DQzhNMrF6SKrk8yONoS+cSeambLztTDl+Q1yfkDQeu3Kb1F7rTj924x+1nIVrtbn8cEsqByzdpXaG4ep2NeUb0lXrkdNa8t5nD2Z6gVEbrp7uTutxyfTWdg4UprpnMufcqTH6nFyEcOHuF1tXKqdf9d+kGIWHhuNdsg1HxmhgVr8nj4BD6zFxC1pryD7J6/CaCA7eDaFUkd4ptpkYGeNpaUtjNgQWNyqOvp8eSU9fkd3r2nAPHz9C6Xs0U2+Lj46nftR+Pnj4jcNlsrbXOHz9+zP79+2nTpo1WzicXig/30NO6CL6OVlro79+/Vz+eloxSqUT1YQSuu7s79vb27Nu3j/z5k0ZPx8XFceTIEcaPHy+739Ljl7AzN6VSnmypbrcwMQbg7stQzj96wfAa/rI7LTtzA7uMGajk7a5eF69KJD5Rhd5n8wgq9RTqlqlcLD14CjsLMyoVTP0xwiX7T+Kb1Zm87llS3S6L074TSU5+H4OCoYE+BbO5cefZS420d5+F4CrTI2ufsuz0dezMNMstNUKjonny9p1WBskt3XkAu0wWVCpaUL2uSUBpyvhp3hqp1H0YjQNK06JyGdmdvjefACQkYhMSv5kurSzduA07aysq+xfXWJ8czO89CuLAqvlYZ7KU3SWZJUuWYGdnpx5QLBB8Da0E9KpVqzJ69GhcXFzw8fHh4sWLTJkyhVatWgFJV2/du3dnzJgxZMuWjWzZsjFmzBhMTExo1KiRrG4qlcSy/y7TtGge9JWaFx0bz97AxswEF2sLrj0NoceaPVTP70X5XOk/mjyF05kbNPXLqeFkbmxEyaxO9Nv2HxkM9HHJZMbR+89Yee4mE6uXlNFHxbKDp2ha+g/0U3nUKuJ9NBtPXGJii5QtG1md9p+gaZkiKZx61ypPwwkLKOGTjdJ5vAg8f50dZ65wYGwvmZ2Sy81bo9wiY+MYsecUNfN44mBuyuM3EQzaeQIb0wzUyCNvd7tKpWLZzgM0reSPvv7HfLK2MMfaQvMJBQN9feytMuHlKu9FmUolsez09RT5FBUbz9i9p6mSOysO5qaERkUz978rPH0bSe18qV9sp5+TiqUbt9GsVhX0PxnTkJCQQN0ufbl47RbbFk4nUZVI8KvXAFhZWGAo4+0llUrFkiVLaN68uYYTwJs3bwgKCuL58+cA3L59G0jq7Uzu8dQlxHzo2kErAX3mzJkMHjyYTp06ERISgqOjI+3bt2fIkCHqNH379iU6OppOnTqpXyyzd+9e2Z5BT2b/jQcEvQmnZfH8Kba9CH9H73V7eRkRiYOFGU2K5mFQVfkCZzIH7gQRFPaOFoVStoZXNQtg4M7jNFu5hzfvY3DNZM6ISkVpXzRl12V6sf/KbYJehdGyTOrd6ev+u4AkSTQo4SubQwqnS7cIevWGluWKpdhWo2h+ZndqzPgNe+g+fx1eTpnZMKA9xX3kDZ5fKjelQo9rz1+z8uxN3kbH4mBuSinPLKxuXgkzY3neZ5DM/rOXCQp+Rcsq8rzk52dQ59NntyWUegpuh4SxYvF2XkfGYG1qTEGXzBzqVg8fB/kegwTYf/w0Qc+DaVm3usb6p8EhbN9/BIACVTRfAnRg1XxKFy6IXOzfv5+goCB1w+dTtm3bRsuWLdWfGzRIchs6dCjDhg2TzelnUegpUKQxIovJWb6NQpKkn+qrjYiIwMLCgtevX2NtLd+b036E+Ph4du3aRYU3lzCQVN/eQQvEK/QItMpH+UdHMZDk7zb8HuIVSva6laSC9BQD5O2q/17iURCoyEIFZQgGCh1xkhQEJtpR/vEx3So71xJUsAUDHWmyxKskAl9B+aD/dCufXIpT0TsLBkqtDBX6JvGJKvbceEqlSpUwMNDewNEvERoaio2NDeHh4bK9eS05ThxzdCajXtrKIVKlosTzJ7L6/q8jJmcRCAQCgayIyVm0gwjoAoFAIJAVEdC1g270RQkEAoFAIEgTooUuEAgEAllJj+fIxXPo30YEdIFAIBDIiuhy1w6iy10gEAgEgt8A0UIXCAQCgayILnftIAK6QCAQCGRFdLlrBxHQBQKBQCAregoFemmMyGnd//8D4h66QCAQCAS/AaKFLhAIBAJZEV3u2uG7A3psbCyxsbHqzxEREUDS+9Pj4+PT3+wnSPZIQA9deY9/wodOkARFylnKfhXJLgm6kkl8dEmQdMjpg4tOlp0K0JH38Cd8mDZBJ/MpUTfmdICPLrr2e6kNFKTDoDgd+r3SVb57cpZhw4YxfPjwFOtXr16NiYlJuosJBAKBQD7ev39Po0aNtDI5y3kPdzKmcZKcyEQVvg8eislZvsJ3B/TUWujOzs48v3ISa0sL2QR/hPjERPZfvk/Z3B46NcPS/qsPKJvTOcV867+KhEQV+28+oVy5cjox6xMktRb27dtHWR9X3Sq7648p6+2iW043gihjp4++jsy2lqCSOBCSoJN1vGyOLLrldOupzji9CY/AsWBprQT0C57pE9AL3BMB/Wt8d5e7kZERRkZGKdYbKJUYKHWnqw3AQKmnc076Sj2dCQrJGBgY6ExAT8ZAF/NJB5309RQ6M31qMrpYx4XTVzzSOJ3pD5EOz6GLm+jf5tfXKoFAIBAIBGlGjHIXCAQCgayIUe7aQQR0gUAgEMhKUkBP66tf00nmN0Z0uQsEAoFA8BsgArpAIBAIZCW5yz2ti65Rs2ZNMmXKRJ06dX61CiACukAgEAhkJvld7mlddI1u3bqxfPnyX62hRgR0gUAgEMjK79pC9/f3x8zM7FdrqBEBXSAQCAS/HUePHqVq1ao4OjqiUCjYsmVLijSzZ8/G3d0dY2NjfH19OXbsmPZF0xExyl0gEAgEsqJIhxfL/Oj+UVFR5M2bl5YtW1K7du0U29etW0f37t2ZPXs2xYoVY968eQQEBHDjxg1cXFwA8PX11XhDajJ79+7F0dHx5/4QGREBXSAQCASykp7PoSdPDJbMl95iGhAQQEBAwBePN2XKFFq3bk2bNm0AmDZtGoGBgcyZM4exY8cCcP78+bRJaxnR5S4QCASC/xmcnZ2xsLBQL8nB90eIi4vj/PnzlC9fXmN9+fLlOXHiRHqpah2tBfRnL17StGtvbHwKYZo1L/nLVef8lWvq7Zt37aVio9bY5iqEnpMXl67d1I5Tt77Y5C6Mabb85K9Qk/NXrgNJk4X8PWYSecpWI2P2Ajj5lqR59795Hhwir1PwS5p2749t/pJkzFmIApXqcf7qDfX24dPm4F2mOmbehbDOW5zyTdpx+uIVeZ2ePaNJkyZYW1tjYmJCvnz5vnjl2r59exQKBdOmTZPXKfglTf/qh03e4ph6+ZE/oA7nr15Xb2/ZayB6rrk1liI1Gsvv1L0/NvlKYJrjD/IH1NUoO4Cb9x5QvU1XLHMXxdynMEVqNCbo2Qv5nEJe02zIROzK1sesRE18G3fh/M276u36f1RKdZm0YqN8Tt+o45FR7+k6ZAwuRcphmuMPfMrWYM7K9bL5qJ16DMC2QCkyehemQGVNp5evQmnZZzBZCpcjo3dhAlp04u7Dx7L5eJQIQOmRL8XSZcgYACRJYvi0OWQpXA7TnIX4s2Frrt+5J5tPWknPQXFPnjwhPDxcvfTv3/+HfV6/fk1iYiKZM2fWWJ85c2aCg4O/+zgVKlSgbt267Nq1iyxZsnD27NkfdklPtNLlHvY2nOI1GuJftBC7Vi7AzsaK+4+eYPnJjDlR799T1C8/dapUpF2fQdpxqtUI/yKF2LV8PnY21tx/HISledKIxffRMVy8doNBf3Ukr3cOwsLD6TFsLNVbdeLsLnl+7MLCIyhRpwWlixRk55JZSfn0+KnaCSCbuyszhvfHwyUL0TExTFu0korNO3Ln0HZsra3S3yksjGLFiuHv78/u3buxs7Pj/v37WFpapki7ZcsWTp8+Lfu9pbDwcIrXboZ/ET92LZuDnbUV9x9r1ieAiqWKsXjSKPVnQ0P5JqIJC4+geO3mSU5LZyc5BT3RKLv7j59Qok5zWtWvybDunbAwN+PmvQcYGxnK4xTxjpJte1PaNw87po/ALpMl95++wNIsozrN010rNfbZc/IcbUdNp9afxeRx+o463nPkRA6fOsvyqWNwy+LI3qMn6TJkDI52tlQv7y+PU90WlC7sx84l/3yoTx+dJEmiVoceGOjr8++8qZibZWTqohWUb9qBa3s3Y2qSId2dTm9ZRaLq41zu127fo0KzDtSpVA6AifOWMnXxShZPGEF2d1dGz1pAhWYdubl/C2YZTdPdJ60o9BQo0jiZkEJK2t/c3DzdZlv7/L68JEk/dK8+MDAwXTzSC60E9PGzF+DsaM/iqR+7Rtycs2ikaVqnBgCPnjzVhhLj5yzE2cGBxVPGfOLkpP6/hbkZe1cv1thnxohBFKpaj6Bnz3FxSv+gNWHuYpwdMrN44siPTlmcNNI0ql5J4/PkQb1ZvP5frty6S5lihdLdafz48Tg7O7NkyZKPTm5uKdI9e/aMLl26EBgYSOXKldPdQ8NpzmKcHew1gvWnZZeMkZEh9nY2srpoODlmZvGkT8ruM6dBE2dSyb8EE/r3VK/zcNH8HqQnE5ZvJIudLYuGfDyfm6Nmi8TeRvMicNuRU5T2zYOHk4M8Tt9Rx09dvEyzWlUpXdgPgHaN6rBgzUbOX70uS0CfMHdJUn2aOCJVp7sPgzh18QpX9mzEJ7snALNGDMDe70/WbN9Nm/q10t3p84vz8XMWk9XVmVKFCiJJEtOXrGJApzbUqlgGgKUTR+Lwx5+s3rab9o104yUnuoyNjQ1KpTJFazwkJCRFq/1/Ca10uW/fexDfPLmo164bmfMUoUD5GixYJW8X2jed9h3CN48P9Tp0J3O+YhSoWIsFq7/uFP7uHQqFIkVLMN2c9h9JcurUG/uCpfGtXI8FazZ9MX1cXDwL1mzCwsyMvDmzy+K0bds2ChYsSN26dbGzsyN//vwsWLBAI41KpaJp06b06dMHHx8fWTw+Zfu+w/jm8aZex55kLlCKAgF1WbAmZa/J4VPnyFygFF6lq9D272GEvA6Vz2n/YXxz+1CvUy8y+5aiQKV6Gk4qlYqdh46Szd2Vik07kNm3FIWrN2JL4EHZnHYcO4VvzmzU7zcGhwoNKdikCwu37Pli+pehYew6fpZW1cp/MU1a+Z46XqxgfrYfOMKz4JdIksShk2e48/Ax5UsWlcfpwBF8c3tTr3Nv7P388a1SnwVrPzrFxsUBYPzJwCulUomhgQHHz12UxelT4uLiWbV1Fy3rVEehUPDwyTOCX72mXIki6jRGRoaULFSQkxcuye7zM+jac+iGhob4+vqyb98+jfX79u2jaFF56pk20EpAfxD0hLkr1uDp7sae1Yto37QBfw0ZxfINW7Rx+i87rVyLp5sre1YuoH2T+vw1ZAzLN6buFBMTS/+xU2hUowrmn3RZpq/TU+auXE82dxd2L5tDu8Z16T58PMs3bddIt+PAEcx9CmOSw49pi1cQuGIuNlaZ5HF68IA5c+aQLVs2AgMD6dChQ4q3I40fPx59fX26desmi0MKpydJ+eTp7sqe5XNp36Qufw0dx/JN29RpKpYuwcpp4ziwZiGTBvXm3JVrlGnYhtjYOHmcPpSdp5sLe5bNpX3juvw1bLzaKeT1GyKj3jN+ziIqlCpG4PJ51KhQhtodenDk1Dl5nJ4FM2/zTjxdHNk1YxTtalWi++S5rNh5INX0y3fux8w0AzX95eluh++r49OH9iOnpwcuRcpjnL0glVp04p8RAyjuV0A+p1UbyObmwu6lc2jXqC7dh09g+eYkpxxZ3XB1cmDAxBmEhUcQFxfP+DmLCX71mhchr2Vx+pQt+w7yNuIdzetUAyD4VdI5M3/Wu5LZxorgV/JdtKaF9HxTnJ+fH97e3syaNeur54yMjOTSpUtcunQJgIcPH3Lp0iWCgoIA6NmzJwsXLmTx4sXcvHmTHj16EBQURIcOHWTNCznRSpe7SiVRME8uxnzoasyfy5vrd+4xd/kamtWtoQ2FLzj5MKZfD02nFWtpVkfTKT4+noade6GSVMwaPUQ+J0lFwdw+jO6TFBjz++Tkxp37zFu1nma1q6rT+Rfx48LO9bwOe8vCtZto0KUPJ/9diZ2Ndfo7qVQULFiQMWOSbk3kz5+f69evM2fOHJo1a8b58+eZPn06Fy5cSPNzpj/klNuHMX3/SnLKlZPrd+4zd8U6mtVO+tGrX7WiOn0ur2wUzO2DW7Hy7Dx4lFoBZdPfSUrF6e595q5cT7Pa1VBJSfdDq5fzp0ebpgDk88nByQuXmLdqPaUKF0x/J5WEb85sjO7UIsnJKys3HgQxd9NOmlYukyL90u37aFTBX7Z7+vB9dXzm0tWcvniFLQum4+rkyLEz5+kyZAwOdraULV5YJifvT5xycOPufeat2kCzWlUxMDBgw+zJtO03DJv8JVEqlZQpVoiKpeS78PmUxeu3ULFUMRwz22msT+v93/9Vzp49+1330M+dO4e//8dbND17JsWf5s2bs3TpUurXr09oaCgjRozgxYsX5MqVi127duHq6iqbu9xopYXuYGdLzuxZNdbl9PQg6PlzbZw+VRzsbMiZLRWnz0Ycx8fHU79jDx4+ecre1Ytka50DONjaktPTQ2NdDk8Pgp5rOpmamODp5kLh/HlYOH44+vr6LF6/RR4nBwe8vb011uXMmVN9lXvs2DFCQkJwcXFBX18ffX19Hj9+TK9evVK9154uTna2qZfd8y+PTnXIbIurkyN3H8kzMjnJSbPscmZ1VzvZZMqEvr5+Cu8cWb/unSYnm0x4uztrns/NmScvX6VIe+ziNW4/fkqr6hVkcVE7faOOR8fEMHDSDCYN6k3VsqXJkzM7nZs3pF7lCkxesExGp8/LxV3je+eb25sLO9fz5tIxnp3ax+6ls3nzNhz3VMZupCePnz3nwPHTtK5fU73O3jZpXMjnrfGQ0LAUrXZd4Vd0uZcuXRpJklIsS5cuVafp1KkTjx49IjY2lvPnz1OyZMn0/cO1jFYCejG/Aty5/1Bj3Z0Hj3B1kvfL8DWKFSzAnfuPNNbdefAI1ywfB7slB/O7Dx+zb81irDPJ062dTNGC+bjzQNPp7sPHuH5jAJ4kSer7fOlNsWLFuH37tsa6O3fuqK9imzZtypUrV9RdW5cuXcLR0ZE+ffrINgK0mG/KfLrz8BGuXxnIFRr2licvgnGws9Wi02O1k6GhAX55fL5QvvIMQCuax5vbj59pOgU9w8XeLkXaJdv24pvDk7zZPVJsS1enb9Tx+PgE4uMT0NPT/GlSKvVQfTLqO12dfPN+d7lYmJtha23F3YePOXf1BtXKlZbFKZmlG7ZiZ21FZf8S6nXuzk7Y29qw/7+T6nVxcfEcPX2OIgXyyerzsyS/KS6ti+DraCWgd2/bnFMXLjNmxlzuPXzM6n+3s2DVejq1aKRO8ybsLZeu3eTGnfsA3L7/kEvXbhIckrI1kS5ObZpz6uJlxsyc98FpBwtWb6BT8ySnhIQE6rbvzrkr11k5cyKJiYkEh7wiOOQVcTIFz+6tmnDq0lXGzlrIvUdBrN66iwVrNtKxaX0g6dG+gRNncOriFR4/fc6Fazdp+/cwnr54qX6cJb3p0aMHp06dYsyYMdy7d4/Vq1czf/58OnfuDIC1tTW5cuXSWAwMDLC3t8fLy0sWp+5tmnHq4hXG/LMgKZ+27GTB6k10atYASHqOufeoSZw8f4lHT55x+ORZqrXqgk0mS2pWSNnVnC5OrZty6uJVxsz64LR1JwvWbFQ7AfRu14J1O/awYM1G7j0K4p9la9h+4Ii6fNObvxrV5PS1W4xdso57T56zZs8hFm7ZTae6VTTSRUS+Z+OBY7K3zuHbddzcLCOlChXk77FTOHzqLA+fPGXpxq2s2LyDGnKVXWpOazfRscnHctmway+HT53lQdBTtu47RIVmHahezp/yJeQbQKVSqVi6cRvNalVFX//j3VGFQsFfLRszdvYi/g08yLXb92jZZzAmGTLQqNqX34z2K1GQDi30X/1H/A+glXvofvnysHnhPwwYN4WR02bh7pyFqcMH0LhWNXWabXsP0qrnxxcENOyUdG97SM8uDOvVVQan3GxeMIMB46YycvrsJKdh/WhcM+k+3tMXL9m2L2kEcv4KNTX2Pbh+GaWL/JH+TnlzsWnuFAZOnMHIGfNwd3ZiyuC+NK6R9BiYUqnk1v2HLN+0jddhb7G2tKRgHh+OrF+ifpwm3Z38/Pj333/p378/I0aMwN3dnWnTptG4sbwvafmqU95cbJ4/jQHjpzFyxlzcszgxdWhfGtdMClRKpR7Xbt9lxebtvI2IwMHOFv8ifqydNUm2Z3T98uZi87ypDJgwnZHTk8pu6pCPZQdQs2IZ5owezLjZi/hr2Hi8PNzYOGeKbIO9/Lyzs3HCIAbNXsqoRatxd7RnSs/2NKqo+ejXun1HkCRoUKG0LB4aTt+o4wCrZ45nwITpNO3enzdvI3B1cmBU7y50aFxXPqc5H5xmzv/g1EfDKTjkNb1HT+bl61AcbG1pWqsKg7q0k8Unmf3HTxH0/AUtUxln1Kd9C6JjYugyZAxh4REUypebPcvm6OQz6ALtoZAkSfqZHSMiIrCwsODV9TNYW1qkt9dPEZ+YyO4LdwjI54mBUvmrdYAPTpfuUTGXKwZK3XjTbnyiij3XHlOpUiUMDOR72cqPEB8fz65duwjI465T+bT7ykMCcrvpltPVR1SwN8AgjS/qSC/iVRKBwfE6Wccr+rjoltP1IJ1xCn0bgV2BkoSHh6fbi1o+JzlOPCyYAzP9tP0mv0tIxP3cLVl9/9f59bVKIBAIBL836TEg7sP16/c+tvb/ETHbmkAgEAj+Z/jex9b+PyICukAgEAhk5VfMh/7/ERHQBQKBQCArCr2kJa3HEHwdkUUCgUAgEPwGiBa6QCAQCGRFdLlrBxHQBQKBQCAveoqkJa3HEHwV0eUuEAgEgv8ZxGNrX0a00AUCgUAgL+kxofmH/cVja19GBHSBQCAQyIq4h64dREAXCAQCgbyIe+ha4bsDemxsLLGxserPERERQNK7yuMTE9Pf7CdI9ohPlGeaxZ8h2SVBh5ySXeLj43+xyUeSXXSx7HTRKUH1U1MwyEKyiy7WceH0ZRJkmo5W8Ov47slZhg0bxvDhw1OsX716NSYmJukuJhAIBAL5eP/+PY0aNdLK5CxPSufFPI2Ts0QkJOJ8+LKYnOUrfHcLvX///vTs2VP9OSIiAmdnZ0pZK7Ay043B8gkqiQOvJcrm89Kp2db2X7pN2fw5dMvp4i3K+uXBII1fsvQiPiGR/WevUK5cOZ2aAW7fvn2U9fXWrbI7f0M365N7JvT1dOW3QMX+h2GU9curY3X8ss7U8dDQUK2dS6GnQJHGLvO07v//ge8O6EZGRhgZGaU8gJ5CZ6ZxTELCQKnUmS9xMjrppK+DTgYGOvFj9yk6WXY66KSvp6cT04J+iqjjX/cQ/F7o1rdPIBAIBL8faZ079ZPH3n6n59CjoqLS9XhilLtAIBAIZEWhSIcu99/wOfTMmTNTr149WrVqRfHixdN8PNFCFwgEAoHgF7BmzRrCw8MpU6YM2bNnZ9y4cTx//vynjycCukAgEAjkJR273H8nqlatyqZNm3j+/DkdO3ZkzZo1uLq6UqVKFTZv3kxCQsIPHU8EdIFAIBDIix4fXy7z08uv/iPkw9ramh49enD58mWmTJnC/v37qVOnDo6OjgwZMoT3799/13HEPXSBQCAQCH4hwcHBLF++nCVLlhAUFESdOnVo3bo1z58/Z9y4cZw6dYq9e/d+8zgioAsEAoFAVsS73FNn8+bNLFmyhMDAQLy9vencuTNNmjTB0tJSnSZfvnzkz5//u44nArpAIBAI5EW8yz1VWrZsSYMGDTh+/Dh+fn6ppvHw8GDgwIHfdTwR0AUCgUAgL+k4fervxIsXL7756vQMGTIwdOjQ7zrebzzMQCAQCAQC3cXMzIyQkJAU60NDQ1H+xKudRUAXCAQCgawo9NJngd/rTXFfmhstNjYWQ0PDHz6e1gL6s5BQmg2djF35RpiVqo1v026cv3VPvV2SJIYvWI1zleZkLFWbPzv25/qDx7L5DJs0HT2HrBqLQ55C6u0vX72m5V99cMpXBFN3HwIatuDug4ey+QAMmzgNPXsPjcUh9x/q7ZFRUXTpPxTn/EUxccuJd4lyzFm6Ul6n8ZPRs86isTjk/DhA4/NtycvEmXPkcxo2TD3IJnmxt7fXSHPz5k2qVauGhYUFZmZmFC5cmKCgIPmcJkxFz85NY3HwKaje3rJrrxTbiwTUkM0Hvl2fPqV9n4Ho2Xswbf5iWZ2G/7MIpXcxjcWxRFWN7d6VG2LmWwbrwhUp3+ovTl++LqtTUh130lgccuYDkibo+XvYaPIUL0NGZ0+cvAvQvGM3nr8IltfpG3V88+bNVKhQARsbGxQKBZcuXZLVJ82k43PoZ8+e5caNG3Tu3PkX/1E/z4wZM5gxYwYKhYKFCxeqP8+YMYOpU6fSuXNncuTI8cPH1co99LCISEq260tp39zsmDoMu0wW3H8WjGVGU3WaiSs2MW3NFhYP7k42FyfGLFlHxW5DuLFuDmam8kzP6uOVjX3rV6g/Kz/MFCVJEjVbdsBAX58tS+dhnjEjU+Ytoly9Zlw/GoipjNPF+nhlZ9+GlE4APYaM4vDxU6z4ZwpuzlnYe+QYnfsNwdE+M9UrlpPPKYcX+zav+ej0SVfQ8xsXNNLu3n+INn/1pnbVSrL5APj4+LB///5Une7fv0/x4sVp3bo1w4cPx8LCgps3b2JsbCyvU47s7Nvw8QLr8y6zin+WYvH0ierPP3MF/sNOX6lPyWzZvZczFy7haJ9Zdh8AH0939i6a/tHpkwldsrk5M2NgTzycHYmOiWXa8nVUbNuDO3vWYWuVST6nHF7s27z2E6eksnsfHc3FK1cZ1Psv8vp4E/Y2nB4Dh1K9cUvOHtwtmw98vY5HRUVRrFgx6tatS9u2bWX1EKQ/U6dOBZJizdy5czXK1tDQEDc3N+bOnfvDx9VKQJ+wYiNZMtuwaHB39To3x48/HpIkMWPdNvq3qEdN/6IALBnSA8dKTVmz9wjtagbI4qWvr4+9nW2K9XcfPOLU+YtcPbwbH6/sAMweN4LMuf9gzb/badO4viw+SU7KVJ0ATp27SLN6tShdrDAA7Zo2ZP6KNZy7fFXWgK6vr8Q+s12q2z5fv233XvyLF8XDzVU2nyQn/RSt8mQGDhxIpUqVmDBhgnqdh4eHrD4A+sov5xOAkaHhV7fLwdfqE8CzF8F0HTCMPWuWUqVJa+04KZXY21qnuq1RlfIanyf/3Y3Fm3Zw5fZ9yhQpmOo+6eL0hTpuYW7O3k8CPcCMcaMoVK4yQU+f4ZLFSUanL9fxpk2bAvDo0SPZzp+eiOlTNXn4MKm319/fn82bN5MpU/pcrGqly33HsTP45vSk/oBxOAQ0oWCzv1i4JVC9/eHzlwSHhlGu0MeuXCNDA0rmz8XJq7dk87r74BFO+Yrg8UcpGnboxoPHSV2ysXFxABh/Ml2sUqnE0MCA42fOyeajdspbGA+/kjRs/9EJoFghX7YH7ufZi2AkSeLQfye5c/8hFUqXkNnpIU7evnjkL0LDNp148Cj1WyEvQ16xc98BWjVpIKsPwN27d3F0dMTd3Z0GDRrw4MEDAFQqFTt37iR79uxUqFABOzs7ChUqxJYtW+R3evgIp9x/4FGwOA3bdeHBI80u/sMnTpHZ2xevwv607dmPkFev5Xf6Sn1SqVQ069KL3p3a4pMju+wuaqegp2QpVY2s5erQsNcQHjx5lmq6uLh4FqzfioVZRvLm8JTX6cFDnLwL4JG/MA3bdPxiHQcIj4hAoVBgKfMEIV+q4/+TiFe/psqhQ4fSLZiDllroD54HM2/zbro3rEG/5nU5e+MO3afOx8jQgKaV/iQ4NAyAzFaWGvtltrLkcXDKEYDpQaH8eVk2YxLZs7rz8tVrRk+bRbGqdbl2eA85PD1wzeLEgDGTmDthFKYmGZgybzHBIa948fKVLD4AhQrkY9nMT5ymzqJYlTpcOxKItVUmZowaSrteA3DOXxR9fX309PRYMHksxQul/vxiujj55mfZrGlk9/TgZchrRk+ZTrGAGlw7fhDrz7pAl63dgFlGU2pVkadHRe1UqBDLly8ne/bsvHz5klGjRlG0aFGuX79OfHw8kZGRjBs3jlGjRjF+/Hj27NlDrVq1OHToEKVKlZLHyTcfy2ZO+aTsZlKsci2uHduHtVUmKpYpTZ1qlXHN4sTDoCcMGTeZMrUbcW7fdow+uXBMV6dv1Kfx/8xFX19JtzYtZDl/avyRx5ulYweR3c2Fl6/fMGbeMoo36sDV7SuxtrQAYMfh4zTqNZT3MTE42FoTuHAaNpksZXNKquPTP9TxV4yeMoNiAdU/1HErjbQxMTH0HzGWRrVrYm5uJp/TV+q4tXXqvRuC/w169uzJyJEjMTU1pWfPnl9NO2XKlB86tlYCukol4ZvTk9EdmwGQ3ysrNx4EMXfzLppW+lOd7vM3AUmSJNvbgQLKlFb/P3dOL4oUzI9nYX+Wrd9Mzw6t2bhwFm169cc6ZwGUSiVlSxQl4E95gkHqTlDEtwCehUuzbP0menZow4yFyzh14SJbly/ANYsjR0+epXO/IThktqVsybRPvZeqU9mP5ZPbG4r4+eJZsBjL1m6gZ6d2GmmXrFpHozo1Zb9XHRDw8YIhd+7cFClShKxZs7Js2TIaNEjqHahevTo9evQAkt60dOLECebOnStbQA8o4//RCShSsACef5Rk2bpN9OzYhvo1Pg78ypXTi4L58uBWoBg79x2iVpWKMjmV/uj0WX0qVaQQMxYs5fy+7Vp9A1dAySIfnbJnpUi+XGSrUI/lW3bTo0VS2fn/UYALm5fy+u1bFm7YToOegzm5dgF21vLcQ9es4zkp4lcQz4JFP9Tx9upt8fHxNGzTCZWkYtbEMbK4qJ2+Use/FQR0EvFiGTUXL14kPj5e/f8v8TPfS60EdAebTHi7OWusy+HmzObDJwCw//BFDQ4Nw8Hm4xVxSFh4ila7XJiamJA7pxd3Hz4CwDdvbi7u30F4xDvi4uKwtbGmcKVa+ObNrRUfAFPTD04PHhEdHcPAsZPYvHgOlcsl/QDl8c7Jpes3mDxnoWwBPXWnHNy9rzni/9jJ09y+d5+1i+Qb3f5lJ1Ny587N3bt3sbGxQV9fH29vb400OXPm5L///tOi04d8+sKTEQ6Z7XDN4iT7kxMpnZLqk56eHiGvQ3H1/VhvEhMT6T1sDNPnL+HhuWPacTLJQK7sHtx9/ERjnadrFjxds1A4by68KtZn8abt9GvXTDtOqdTx+Ph46rfqwMOgIA5sWS9r6zx1p491/H8R8erXjxw6dCjV/6cHWrmHXjRPTm4Had4nu/PkGS72SYNQ3B0zY2+dif1nLqm3x8XHc/TiNYrk/vGh+z9DbGwsN+/ex+GzgTEW5mbY2lhz98HDpMFnFcpqxedzp/iEeOLj49H7bJSyUqlEpVJp1+nOXRzsNfNp8cq1+ObNQ95c3l/YU2anmzdxcHDA0NAQPz8/bt++rZHmzp07uLrKO1AvhdPdeynqUzKhb8J48vz5F7fL55RUn5rWqcnlg7u4uH+HenG0z0zvTm3Zs3aZ9pzi4rj14DEOXxgkB0k9dbFx8dpzUtfxpIG7ycH87oOH7Nu8LkU3vNacPtRxgeBLaKWF/leD6pRo25exS9dTt0xxzt64w8Itgczt1wVIuvLqVr8a45ZtIJuzI57Ojoxbth4TYyMalpeni7T38DFULVcGlyyOhLwOZfS0WUS8i6R53VoAbNi+C1trK1ycHLl68zbdB4+kRsVylJdxAFrvYWOoWr4MLk6OhISGMnrqP0lO9WpjbmZGqSKF6DtiHBmMjXHN4sSRk6dZsWEzk4d933t+f8ppyEiqViiLSxYnQl69ZvSUGUlODeqq00REvGPDth1MGjFENg8Np969qVq1Ki4uLoSEhDBq1CgiIiJo3rw5AH369KF+/fqULFkSf39/9uzZw/bt2zl8+LB8TkNHU7VCGVycnAh5/fpj2dWvTWRkFMMmTqN2lYo4ZLbj0ZOnDBw9ERsrK2pWriCf01fqk7VVphRjIAw+PPXh5SnfEwF9JvxDFf9iuDhkJiQ0jNHzlhERGUWz6pWIeh/NmHnLqPpncRxsbAgND2fOms08ffmKOhX8v33wn6T3kBFUrVDukzo+XV3HExISqNuiHReuXGX7mmUkJiYS/DJpXI9VJkvZHj38Vh1/8+YNQUFBPH/+HEB9AWtvb//FkfG/FNHlrqZWrVrfnXbz5s0/dGytBHQ/7+xsHD+AQXOWM2rxWtwdMjOle1saVSytTtOnaW2iY+PoMnEOYe8i+cMnO7unj5DtGfRnL4Jp1Kk7r9+EYWttReEC+Ti5YyOuzkmPobx4GUKvYaN5+SoUBztbmtatyeAeXWRx0XDq+NdHJ998nNy5Se20Zt4MBoyeQJPOPXjz9i2uWZwY1a8XHZo3ls/p+Qsate3C6zdvkpwKFuBk4DZcnbOo06z9dyuSJNGwdnXZPD7l6dOnNGzYkNevX2Nra0vhwoU5deqUugVes2ZN5s6dy9ixY+nWrRteXl5s2rSJ4sXluy3x7MULGrXv9knZ5efk7n9xdc5CdHQM127eYsWGzbwNj8Ahsx3+xQqzdsE/mGXMKKPT1+vTr+DpyxAa9x7K67BwbK0sKZTXhxNr5uPqZE9MbCy3Hj5m+V+7eR0WjrWlOQVz5eTIitn4ZJPvIiOpjnf+UMetP9Tx7bg6Z+FR0BO27UmatjJ/Kc1H6g5u3UDp4kVlcfpWHd+2bRstW7ZUp08eOzJ06FCGDRsmi1PaSI9R6r9HQLewsJDt2ArpS++e+wYRERFYWFjwct9arM1Mv72DFohXSQSGqAjw9cZA/8ffgysH8QmJ7D5/g4CCPrrldO46AUXy65bTyYtUqlQJAwODX60DJHW17tq1i4A/cutWPp25qpP1qWJWawyUWrmL903iE1XsuR9KQJECupVPJy/oTB0PDQ3FxsaG8PBwzGV6BC85ToTUL4m5YdrajxFxCditOyqr7/86uvHtEwgEAoHgO/id3uWe3ojpUwUCgUAgL+l4D/3s2bP/0y30AgUKcODAATJlykT+/Pm/Onr/woULX9yWGiKgCwQCgUBWxGNrH6levbr6ZVI1atRI12OLgC4QCAQCgZYYOnRoqv9PD0RAFwgEAoG8iMfWvsq5c+e4efMmCoWCnDlz4uvr+1PHEQFdIBAIBPKSHpOr/CZd7p+S/Hji8ePHsbS0BODt27cULVqUNWvW4Ozs/PUDfIYY5S4QCAQCwS+gVatWxMfHc/PmTd68ecObN2+4efMmkiTRuvWPT2csWugCgUAgkBUxH3rqHDt2jBMnTuDl5aVe5+XlxcyZMylWrNgPH08EdIFAIBDIi+hyTxUXFxf1zGufkpCQgJPTj7/RUXS5CwQCgUDwC5gwYQJdu3bl3LlzJL+09dy5c/z1119MmjTph48nWugCgUAgkBc90mGUe7qY/HIyZcqk8Ux9VFQUhQoVQl8/KRwnJCSgr69Pq1atfvg59e8O6LGxscTGxqo/R0REJJ1cJRGv+qnXwac7CR884hMTf7HJR5JddNIpQYecPrik1v30q0h20cmy00GnBC1O4/stkl1EHf8y2vQQL5b5yLRp02Q79ndPzjJs2DCGDx+eYv3q1asxMZFnRjSBQCAQyMP79+9p1KiRViZnCW1bHnPDtE1IExEXj/WCvWJylq/w3S30/v3707NnT/XniIgInJ2dKZ07K9aW8k0H9yPEJyay/9JdyubzwkCpIzMsJSay/9Jtyub20KmZqPZffUAZKwl93VAiQQUH3igo6+WIvo7kU0Kiiv23n1M2W2bdcrr7knLlyunEjF2Q1NLbt28fZXNk0a18uvVUN/PJx00nfgtC30b8agXBJ0RHR6foNfnRC5fvDuhGRkbq989+ioFSqTPBMxkDpVJnpkxMxkCpp3P5pK8HBr/+d0UDfaWeTvzYfYouOhkYGOhMoEpG5NP3YaAj+aRVBzHKPVWioqL4+++/Wb9+PaGhoSm2J/7grbVfX6sEAoFA8HuTHNDTuvB7TZ/at29fDh48yOzZszEyMmLhwoUMHz4cR0dHli9f/sPHE6PcBQKBQPA/w//69Kmfsn37dpYvX07p0qVp1aoVJUqUwNPTE1dXV1atWkXjxo1/6HiihS4QCAQCmUmP1vnv1+X+5s0b3N3dgaT75W/evAGgePHiHD169IePJwK6QCAQCORFTy99lt8MDw8PHj16BIC3tzfr168HklruyZO1/Ai/Xw4JBAKBQPA/QMuWLbl8+TKQ9CRZ8r30Hj160KdPnx8+nriHLhAIBAJ5EaPcU6VHjx7q//v7+3Pz5k3Onz9P1qxZyZs37w8fTwR0gUAgEMiLCOjfhaurK66urj+9v+hyFwgEAoHgF3HgwAGqVKlC1qxZ8fT0pEqVKuzfv/+njiUCukAgEAjkJR2fQ/+d+Oeff6hYsSJmZmb89ddfdOvWDXNzcypVqsQ///zzw8cTXe4CgUAgkJf0GKX+G45yHzt2LFOnTqVLly7qdd26daNYsWKMHj1aY/338PvlkEAgEAh0C9FCT5WIiAgqVqyYYn358uXVM5r+CL8koI+dORc9x2x0HzJKvW7zrkAqNmyJrc8f6Dlm49K1G9p1mjEHPYesdB88EkiaSOHvUePJ4x9ARo9cOOUrQvOuvXge/FJ7Tv/MR885J92HjVGvGzblH3KWrkTG7AWwylWIcg1bcvriZa05jVu+Cf2iNek5bVGq2zuOn4N+0ZpMX7dde05zFqPMWoAeIyeq17XsMxRl1gIaS9HazbTnNHcJymx+9Bg1WWP9zXsPqd6+J5nyl8YiXymK1mlJ0PNgrTiNHTsWhUJB9+7d1euSp7X8fJk4ceKXD5SOjJu9CKVHPnqMmKBeFxn1nq5Dx+JStDymOQvhU64mc1au14oPpJ5PL1++pEWLFjg6OmJiYkLFihW5e/eubA7Dps5CzzWXxuJQsJR6uyRJDJs6Cyc/f0yy++JfvwXX79yTzUcgD9WqVePff/9NsX7r1q1UrVr1h4+n9S73s5eusGDlOvJ459BYH/U+mqJ+BahTJYB2fQb+Aqe1Gk7vo2O4ePU6g3p0Ia93TsLCw+kxZBTVm7fjbOBWLThdZcHq9eTJ6aWxPru7GzNHDsLDxZnomBimLlxGhcZtuHssEFtrK3mdbtxl4da95PF0S3X71iOnOXPjDo428npoOF25zoK1m8mTI1uKbRVKFmXxhGHqz4ZamqTj7JXrLFi3JYXT/cdPKdmwLa3qVGNYt/ZYmJly8/4jjI0M5Xc6e5b58+eTJ08ejfUvXrzQ+Lx7925at25N7dq15Xe6fI0FazeRJ0d2jfU9R03k8KlzLJ8yGrcsjuw9dpIuQ8bimNmW6uX85XVKJZ8kSaJGjRoYGBiwdetWzM3NmTJlCmXLluXGjRuYmprK4uKT3ZN9qxaqPys/mUxlwtzFTF24nCWTRpHdw43RM+dRvnFbbh3agVlGeXzShBjlrmbGjBnq/+fMmZPRo0dz+PBhihQpAsCpU6c4fvw4vXr1+uFja7WFHhkVRZMuvZg/cRSZLDTfxdu0Tg2G9OxK2ZJFtamU5NS5B/MnjSGTxcdpYC3Mzdi7bjn1qlXGy9ODwr75mTF6KOevXCPo6XP5nbr1Yf74ESnyqVHNKpQtURQPV2d8vLIxZUg/It5FcuXmbXmd3kfTbPhU5vbrhKVZyh+MZ69C6TZlAcuH9tDaTHeRUe9p2mMg88YMTpFPAEaGhtjb2qgXKy1M8xsZ9Z6mvYYwb9QAMpmbaWwbNHU2AaWKMv7vbuT38cLDJQuV/YtjJ/OFWGRkJI0bN2bBggVkypRJY5u9vb3GsnXrVvz9/fHw8JDXKeo9TXsMYN6YIWSy0MynUxev0KxWVUoX9sMtixPtGtYhb87snL8qb6/dl/Lp7t27nDp1ijlz5uDn54eXlxezZ88mMjKSNWvWyOajr6/E3s5GvSRfsEuSxPRFKxjQpR21AsqRyysbSyeP4X1MDKu37pTNJ02ILnc1U6dOVS+LFi0iU6ZM3Lhxg0WLFrFo0SKuX7+OpaUlixcv/uFjazWgdxkwnEplSlO2ZDFtnvardOk/lEpl/L/LKTziHQqFAsvPfoDS3WnQSCr9WYqyJb5+cRMXF8f8VeuxMDcj72c9HulN18nzCShakLJ+KV92oFKpaD58Gr0aVcfHw0VWj0/pMnQclfyLU7ZYoVS3Hzl9Dnu/MuQoU4N2/UcS8vqN/E7DJ1CpdLEUTiqVil2Hj5PdzYWKLbtiX6g8RWq3YMu+w7I7de7cmcqVK1O2bNmvpnv58iU7d+6kdevWsjt1GTqGSv4lKFu8cIptxXzzs33/YZ4Fv0SSJA6dPMudh48p/43vQ1r5Uj7FxsYCYGxsrF6nVCoxNDTkv//+k83n7sMgnPz88ShWgYZdevMg6AkAD588JfjVa438MDIypFShgpw8f0k2H0H68PDhw+9aHjx48MPH1lqX+9otO7hw9Tpndm3W1im/ydot25Ocdm/5ZtqYmFj6j55Ao5rVMDeTL6Cv3bqTC1dvcGbHhi+m2bH/EA079+Z9dDQOdrbsXbUIG6tMX0yfVtbtO8bF2w84tSj1+6oTVv6LvlJJ13pVZHP4nLXbA7l4/Rant6xIdXvFUkWpU6ksro4OPHz6jKFT51C2SXvObl2FkUxd3Gt37E1y2rwsxbaQ0DdERr1n/PxljOzRkXF9uhB47CR1OvflwIo5lCrkK4/T2rVcuHCBs2fPfjPtsmXLMDMzo1atWrK4qJ227+HitVuc3roq1e3Th/5NuwHDcSlaAX19ffT0FMwfO5Tifvnlc/pKPuXIkQNXV1f69+/PvHnzMDU1ZcqUKQQHB6e4ZZFeFMqXh2VTxpDdw5WXr0MZPXMexWo14dq+rQSHvAYgs621xj52NtYEPZO39/CnEaPcv4kkSUDSuJafRSsB/cmzF3QfMorANUswNjbSxim/yZNnz+k+eCSBa5d90yk+Pp6GHbqhUknMGjdcPqfnL+g+bCyBqxZ+1cm/aCEu7tnM67AwFqzeQP1OPTi1bR12NtZf3OennV6+pse0ReyeNjTVe73nb91n5vodnF0yOU0V8YecngfTY+RE9iybjbFR6vlUv0oF9f9zeXlSMLc37iUrs/PwMWpVKJP+Ti+C6TFqMnuWzEzVSaVK+rJWK1OK7i0bAZDP24sTF64wb81mWQL6kydP+Ouvv9i7d69G6/JLLF68mMaNG39X2p92eh5MjxET2LN8zhfLbuay1Zy+eJUtC6bj6ujAsbMX6DJkDA62Nqm26NPs9I18MjAwYNOmTbRu3RorKyuUSiVly5YlICAg3V2SCfAvof5/bqBIgbx4lgxg2catFM6fdH9f8dnsY5Ikae07+MOIe+hfZPny5UycOFE9yDJ79uz06dOHpk2b/vCxtBLQz1+5RsjrUApWrKlel5iYyNFTZ5m1ZCUxj66jVGrnvmsKpwrVP3M6w6wlK4h5fBOlUkl8fDz123Xl4ZOnHNiwUtbW+fkr15OcKtXRdDp9jllLVxNz/zJKpRJTExM83V3xdHelcIF8ZC9RgUVrN9G/S7t0d7pw6z4hYeH80ar3J04qjl26waxNuxjbsRkhYeG412qrsb3PzKXMWLed+5vnp7vT+Ws3CQl9g1/1j3MFJyYmcvTMBWatWE/0zVMp6pODnS2ujg7ce/Qk3X2SnG4lOdX8OJI+MTGRo2cvMmvlBt5dPoq+vhJvT3eN/XJmdee4TN2k58+fJyQkBF/fjxcLiYmJHD16lH/++YfY2Fh1Ph07dozbt2+zbt06WVzUTtduJOVTtUaaTmcuMGvFOsIu/8fASTPZNGcKlf8sCUCenNm5dOM2kxculyWgf08++fr6cunSJcLDw4mLi8PW1pZChQpRsGDBdPdJDVMTE3J7ZePuo8fUqPAnAMGvXuOQ2Vad5lXoGzLLcFEvkI8pU6YwePBgunTpQrFixZAkiePHj9OhQwdev36t8a7370ErAb1MiSJcOag5WKNVj37k8PSgb+d2Wg/mSU5FuXJol6ZT97/J4ZmVvl3aaQTzuw8fcXDjKqxl7NYGKFO8CFf2aY6gb9VrIDk83enbsc0X80mSIDYuThanPwvm4dKKaRrr2oz+By9XJ/o0qYmDTSbKF8qnsb1SjxE0rliKFpXTvyUMUKboH1zepfkYU+u/h+GV1Y2+7Vqkmk+hYW958uIl9rY28jgV8ePyTs0BUq37jcDLw42+7ZphZGSIX25vbj98rJHmzqMgXBwd5HEqU4arV69qrGvZsiU5cuTg77//1sinRYsW4evr+1MTQvyQU9FCXN69UWNd675D8MrqTt/2LUlMTCQ+PgG9z7pXlUo9VCqVPE4/kE8WHwbO3r17l3PnzjFy5EhZnD4nNjaOm/ceUvwPX9yds2Bva8O+/06SP1dOAOLi4jly+hzj+v1YANAaCtKhhZ4uJjrFzJkzmTNnDs2afWwIVK9eHR8fH4YNG6abAd0sY0ZyffZoiqlJBqwyWarXvwl7S9Cz5zx/GQLA7fsPAbC3s8Xezpb0JslJ85EwUxOTD05eJCQkULdtFy5cvcb25QtJVKkIDnkFgJWlBYaG6X8f1iyj6VfzKer9e0bPmEe18v442NkSGvaW2cvX8DQ4mLqVK3zhqGl0Ms1ArqyakwWYZDDC2sJMvd76sxHmBvpK7K0z4eXqJI9TRlNyeXlqrDM1yYC1pQW5vDyJjHrP8OnzqFXxTxzsbHn09DmDJv2DjZUlNcvL89iTWUZTcmX/zCnDB6cP63u1aUrD7gMo4Zcf/8IFCTx6kh0Hj3Fw5Vx5nMzMyJUrl6aTqSnW1tYa6yMiItiwYQOTJ0/+/BDp7/SNsgMoVciXv8dNJYOxEa5Ojhw5fY4Vm3cwaeCPP8bzXU7fkU8bNmzA1tYWFxcXrl69yl9//UWNGjUoX768LE69R02katnSuDg6EBL6htEz5xERGUnz2tVRKBT81bopY2ctIJubC9ncXRn7zwJMjI1pVL2yLD5pRnS5p8qLFy8oWjTlYM+iRYv+1PgMnXn167a9B2jVo5/6c8OO3QEY0rMrw3p307rP0xfBbAtMekF+/rKag70OblpF6aLp3/X3LZR6Sm7ff0Cddlt4HRaGtaUlfnlzc3TjSny8Uj6H/f8VpVKPq3fusuLfHbx99w4HWxtKF/ZjzYxxv/QZ3Zrl/Zk9vD/j5y2l+8jJeLm7sOGf8RQvmO+XOUHSgDBJkmjYsOEv9Uhm9YzxDJgwg6Y9BvDmbQSuTg6M6tWFDo3r/jKnFy9e0LNnT16+fImDgwPNmjVj8ODBsp3vWfBLGnXty+uwMGytrCicPw8n/12NaxZHAPp2aEV0TAydB40iLCKCQvnyELhyvm4+gy74Ip6enqxfv54BAwZorF+3bh3Zsv34b7pCSh5a94NERERgYWHBqxvnsNbC873fQ3xiIrvP3yLA11trz0J/i/iERHafv0FAPk8MfsGthdSIT0xk96V7VLCRMNCRgaPxKgh8raCidxYMlLohFZ+oYs+Np1TM4aBbTrdeUKlSJQy09KKcbxEfH8+uXbuo6OOiW/l0PUgn8ykgj4dO5FPo2whs8xYlPDwcc/OU73FID5LjxJt+DTFP49MlEbFxWI1bI6uvttm0aRP169enbNmyFCtWDIVCwX///ceBAwdYv349NWvW/PZBPuHX1yqBQCAQ/Oakx0tlkrrc/fz88Pb2ZtasWb/2T0oHateuzZkzZ7CxsWHLli1s3rwZGxsbzpw588PBHHSoy10gEAgEvynpeA/97Nmzv0ULPT4+nnbt2jF48GBWrlyZLscULXSBQCAQCLSMgYFBqhOzpAUR0AUCgUAgL+Jd7qlSs2ZNtmzZkm7HE13uAoFAIJAX8erXVPH09GTkyJGcOHECX1/fFDP3dev2Y094iYAuEAgEAsEvYOHChVhaWnL+/HnOnz+vsU2hUIiALhAIBAIdQ7xYJlUePnyo/n96TM7y+/VhCAQCgUC3EPfQv8iiRYvIlSsXxsbGGBsbkytXLhYuXPhTxxItdIFAIBAIfgGDBw9m6tSpdO3alSJFigBw8uRJevTowaNHjxg1atQPHU8EdIFAIBDIi+hyT5U5c+awYMECjdcuV6tWjTx58tC1a1cR0AUCgUCgY4hR7qmSmJiY6hS8vr6+JCQk/PDxvjugx8bGEhsbq/4cEREBJL0XPD4x8YdPLAfJHrriA586yTP148+Q7JKgO0pqlwQdyqdkF110io+P/8UmH0l2Efn0dZJddOW3QKseooWeKk2aNGHOnDlMmTJFY/38+fNp3LjxDx/vuydnGTZsGMOHD0+xfvXq1ZiYmPzwiQUCgUDw63j//j2NGjXSzuQsI9pgbpzGyVli4rAasvC3mpyla9euLF++HGdnZwoXTprB89SpUzx58oRmzZppTCz0edBPje9uoffv35+ePXuqP0dERODs7Ezp3Fl1ara1/ZfuUjZfNp2a2Wz/pbuUzatbs63tv3yPsnk8dMvpygPKlSunU7Nj7du3j7I+bjoxOxYktar2X3+km/VJF510sexyOqOvA05vwiO0dzLRQk+Va9euUaBAAQDu378PgK2tLba2tly7dk2d7nsfZfvugG5kZISRkVGK9QZKpc58iZMRTt+HTjoZGOhMQE/GQKmnM0EhGZ0sO5100r2y09cRJ31t3pMW99BT5dChQ+l6vN8vhwQCgUAg+H+IGOUuEAgEAnlRkA5d7uli8lsjArpAIBAI5EXcQ9cKostdIBAIBILfANFCFwgEAoG8iBa6VhABXSAQCATyokiHUe4K0aH8LUQOCQQCgUDwGyBa6AKBQCCQF9HlrhVEQBcIBAKBvIiArhVEQBcIBAKBvCj00n4PXNxD/yYihwQCgUAg+A34JQF97My56Dlmo/uQj5O3S5LEsEkzcMpfDBOPXPjXbsz123dlc5izbBV5y1TBIns+LLLno2jVuuw+eES9/eWr17Ts3hen/MUw9chNQKNW3H3wSDafJKfV5C1bFQuv/Fh45ado1XoaTpFRUXQZOBxn3xKYZM2Nd6mKzFm2Wl6n5WvIW7YaFjl8scjhS9Fq9dl98Kh6u16WHKkuE+csks9pzhzy5MmDubk55ubmFClShN27d2ukuXnzJtWqVcPCwgIzMzMKFy5MUFCQfE4r1pK3Qk0sfAph4VOIojUas/vQMfX2lr0GoueaS2MpUqORbD7w7fr0Ke37DkbPKTvTFiz9pU7DJs8gZ8kKZPTMi5V3QcrVb87pC5fldfpK2cXHx/P32CnkKV+TjDn8cPLzp3mP/jx/GSKv08r15KtYB8vcRbHMXZRitZqy+/B/6u2b9+ynYrMO2BUohdI9L5du3JLVJ83oKdJnEXwVrXe5n710hQUr15HHO4fG+gmz5jN1/mKWTBtPdg93Rk+bTfkGLbh1LBCzjBnT3SPL/7V353E1pv8fx1+pJFSUVi2yFJUs2SJL9hhL9n2fGWTflzGYYbKvQ2FsY5CxRSgylLUhhMHXbmyphFLRen5/pMNREnWfc6bf9Xw87sf3233fznnPfU597uu6r/u+zM3wnjaBiuVsANi8cy8dBw7j4pF9ONhVxHPQMLS1tPDf6IN+yZIsWbuBFt37cy00kBISTRdraW6G99TxipkGDefiYX8c7SsxdtYvhJz5my0rF1HOqixHQk/hNW02FmYmdGjVXKJMppmZbK3fZfKn42AvLgbtwdG+Ek8vnlTYP/D4CYZM+IHObVpKkgfA0tKSefPmUbFixcxMmzfToUMHLl26hKOjI3fv3sXNzY3Bgwcze/ZsDAwMuHHjBsWKFZMuk7kZ3pPHUrHcu+O0ax8dvx3JxUO7cLTLzNm6sRsbFr0/iS1aVNpJaD73fcriHxTMuUuXsTAzkTRPXjLZlbdl5ZwfKW9jxZu3ySxdt5FWvQZy+/RRjI0Mpcv0ic/O0syUS/9c54dR31Otij0v4+IZ+9N8OgwewfkDf0qSB8DSzIRfJo+moo0VAL/vDsDzu9FcOLADR7uKJCa9oUGt6nRp05Lvp2af1lrtiC53pVBqQU9ITKTPiPGsXTiHuctXy9fLZDKW/7aZaaOG0alNKwA2LZ+PWTVXtu0N4Pu+PQs8S7uWzRR+njtlHL6/byPsQgTaWlqEXYjg6vFD8j98q71nY+pcj+17DzCkd7cCz5OZqWn2TFu2E3YxAkf7SoRdiKBfF0+a1K8LwHd9erD2jx2EX/5HsoLersVHmSaPxfd3P8IuXsbRvhJmJsYK2/cfOYZ7/bqUf/eHSJJM7dopZpo7Fx8fH8LCwnB0dGT69Om0adOGBQsWyPcpX768ZHkA2jVvophp0mh8/9iReZzeFXQdnaKYmZSRNIdCps98nwCeRD5j5PSfCNq2gW/6fafyTL08FT/bJTOnsWH7Lq5c/x/NGtaXJlMun93gHp05svU3he0rZk+lbvuePHwSiXVZc6VkmjNxJL5b/yTs0hUc7SrSt1PmcXrw+Ikk7y/8Nyn1lGfEtNm0adaE5o0aKKy///ARz6JjaNnYTb5OR0eHxvXqcDb8kuS50tPT8fM/QGJSEq61qpOckgJAMZ2i8n00NTUpqq3N6fPhkueRZ9r3LpNLDQAa1HYhIPgvnkQ+QyaTcfx0GLfuPaBVE7fPvFpBZjpI4pskXF2qZ9seFfOcg3+FMqhHZ6XkkWfy8yMxMRFXV1cyMjI4ePAgdnZ2tGrVChMTE+rWrYu/v79yM+0/ROKbN7jWrC5fHxJ2HtOajbBv0pZvJ88k+nmscjN99H3KyMig36hJTBg2RKHFrspMH0pJSWHt1h0Y6OtRzbFyDq8gUaYcPrsPxb1OQENDg1L6esrLFBD4LlM1pbxngcsa5Z7fRciV0lrofv4HuHj1GucO7cm27Vn0cwBMjRVbLybGZXgo4Rno1Rs3qd+uG2+TkylZojh71q/Gwa4Sqamp2FiWZZr3Ynzn/0yJ4rosWbORZ9ExREbFSJZHnql99/eZfluFw7sW3oqff+C7iT9gVasRWlpaFCmiwbqFc3GrU0v6TB16vs+07ld5pg9t3umPXokSdPKQrrtdnunqVVxdXXn79i0lS5Zk7969ODg48OzZMxISEpg3bx5z5sxh/vz5BAUF0alTJ44fP07jxo2ly/S/W9T37M3b5JTM47RmOQ52FQBo3cSNLm1aYmNpwf1HT/hx8Uqa9RxM+IE/0fngxLHAM+XyfZq/ai1aWpqMGtxPsvf/0kwAB4KP03P4WJLevMHc1Jgj2zdSxlCa7nZ5plw+uw+9fZvM1HlL6dWhDfp6BX8pUDHTbRp07puZqXhxdvsuxaFS9kz/CWI+dKVQSkF/9CSSMT/O4fD2jRQrpvPJ/TQ+OgOTyWTZ1hUk+wq2XArez6v4eHYfPMyA0ZMI2bMVB7tK7PrtV4aMm4qRQy00NTVp3rA+Hk2lKwYKmY7sy8x06DADxkwmZPdWHOwqsmLDFsIuXmbfRl9sLC048fd5vKbNxtzEOFuvR4FnOrz3XaYjDBg7hZBdW7IV9Y07dtPL85tcP+MCy2RvT0REBK9evWL37t3079+f0NBQSpUqBUCHDh0YO3YsANWrV+fMmTP4+vpKWtDty9tyKXB35nEKDGbA+OmE7NiEg10FurfzkO/nZF+JWlUdKdegBQePhdLJo4V0mT7xfXrz9i0r1v/OhaC9kv6OfUmmrO+Te4O6XDqyj+cvXrJu2590HzqGsAM7MSljJF2mXD67LKmpqfQcOZGMDBmr5syQLMv7TOW4ePBPXsW/Zk/QUQZOmMFxv/X/3aIuSE4pBf3ClX+Ifh5Lrdae8nXp6emcCDvPqo1/8L+ThwF4Fh2Duen7gTkxz2OztdoLUtGiRalomzk4p1a1qoRHXGX5b5tZs2AOLs5OXDoaQFz8a1JSUzA2MqJe2864OFeVLE9umZbNns70eUvY89uvtG3uDoCzQ2Uirt1g8ZoNkhb0bJku/8Py9b+zZv5P8n1O/h3Ozbv38fNZKlmObJneDYqrVasW58+fZ/ny5axcuRItLS0cHBwU9q9SpQqnTp3K6aUKMJO2fGBVLWcnwi9fY/nGP1jjPTPbvuamxtiUteD2A+lG3mdmyvn7VKVSBaKfx2JTp4l83/T0dCb8NI/lv23m/t/HlZ5pzYKfAShRvDgVbW2oaGtDPZfq2DVowfrtO5k6cqiEmXL/7FJTU+nuNZ77jx7z1/YNkrfOs2dyJPzKNVZs3IrvLz9K/t4FrhA+WObRo0f07duX6OhotLS0mDFjBl27dlVpJqUU9GYNXbly7KDCukFjp1C5YnkmeX1HeRtrzEyMCT5xmhpVHYHM62ehYeeYN32iMiICIENGyrvr51kM3l0nu33vAeGX/+GniWOUlgcyeylSUlJITUsjNTWVIh91O2kW0SQjI0MlmT60wW8XLs6OVHNQzrXOnDIlJydTtGhRateuzc2bNxW237p1CxsbG6Vn+vg4ZYl9+YpHkc8wV+IguQ8z9e3cgeYfDTJr3XsQfTp3YGA35Y2B+DDTJ7cjk49rUZYPM2UV89v3H3LMbwNGpUspNcuHmZJTUlXy3vlWCEe5a2lpsWzZMqpXr050dDQ1a9akTZs2lChRQnWZlPEmeiVL4lTZTmFdieK6GJYuJV8/ekh/vFf6Uql8OSrZlsN7hQ/FdXWzjXotKNO8F+PRtBFWFua8TkjEb99BQs78TeDWzPundwYEYmxkiHVZc67euMWYH+fQsXVzWjZpKEmeT2Y6e47ArevR1ytJY9c6TJqzAN1ixbCxtCD07Hm27PZn8Y9Tpcs0bwke7o2wsjDLzLT/UGamP9bJ94l/ncDOA4dZ9ONkyXIoZJo2DQ8PD6ysrHj9+jV+fn6EhIQQFBQEwMSJE+nevTuNGjXC3d2doKAgAgICCAkJkS7TgmV4NGmIlbkZrxMT8dsfSEjYeQJ/9yUhMYlZS1fR2aMF5ibGPHj8hOkLllOmdGk8Jbo7AXL/PhkZlsbIsLTC/tpa2pgZG2NfUbo7AnLLlJiUxNzlPrRv2QxzU2NiX75i9eatPI58RtdvPD7/4l+bKZfPLi0tja7DxnHxn+sEbFhFenqGfMyPYSkDyW49nL5wBa0bu2FlYcrrhCR2BAQREhbOoU2Zdwe9eBXHw6eRPH03pufmu2dkmBmXwUzCXk3hPXNzc8zNM+9yMDExwdDQkBcvXhT+gp4Xk7y+483bZLymzuJlXBx1a1Tj8PaNktyDDpkjsvuNnEhkdDQGeno4V6lM4Nb1tHg30j4yKprxs34h6nks5ibG9O3akRljvCTJIs/0PJZ+oyZ9kMk+M9O77vTtq5cyzXsxfUaO58WrOGzKWjBn0liG9iv42/rkmWJi6Td6EpHRMe8z/bFOngnAb99BZDIZPTu0lSyHQqaoKPr27UtkZCQGBgY4OzsTFBREixaZ16I9PT3x9fXF29ubUaNGYW9vz+7du3Fzk+5ugKiYWPqNnfr+OFW2I/B3X1o0rM+bt2/55+ZttuwJ4FV8POYmxri71sFv1SL0Skr3y/+575Mq5Jbp7dtkbt69R5fv9vL8xUuMSpemdrWqnNizTdJR+Ll9dg8ePWF/cOblhxoeXRT+3TG/DTRxrSNNpuex9B83nciYGAz0SuJc2Y5Dm1bToqErAPuPhjB44vuu914jM0+mfxw9lJljhkmSKV80KIAu9y/b/cSJEyxcuJALFy4QGRnJ3r176dixo8I+q1evZuHChURGRuLo6MiyZcto2PDLG23h4eFkZGRgZSXd7bp5oSGTyWRf8w/j4+MxMDAg5no4RqUMCjrXV0lNTyfwwv/wcKmMtqamquMAH2Sqaa9emS7exKNGJfXKdOk2bdq0QVtb2geu5FVqaiqHDh3Cw7k82prq0d2Xmp5B4JV76vl9UsdMavjZtXayUYtMsa/iManRkLi4OPT19SV5j6w68cJnGvq6+XuwU/ybtxgO+4VHjx4p5NXR0UFHJ/tA3MDAQE6fPk3NmjXp3LlztoK+Y8cO+vbty+rVq2nQoAFr1qzht99+4/r161hbZ45dcHFxITk5OdtrHzlyBAsLCwBiY2Np2LAhv/32G/XrS/OshLxSmxa6IAiCUEgV4KC4j1vBM2fOZNasWdl29/DwwMPj05dqlixZwuDBgxkyZAgAy5Yt4/Dhw/j4+ODt7Q3AhQsXco2UnJyMp6cnU6dOVXkxB1HQBUEQhP+QnFroXyolJYULFy4wZcoUhfUtW7bkzJkzeXoNmUzGgAEDaNq0KX379v3iDFIQBV0QBEGQVgGOcs+alCk/nj9/Tnp6OqampgrrTU1NefbsWZ5e4/Tp0+zYsQNnZ2f5kyi3bNlC1arS3tqcG1HQBUEQBGlpFMBsaRLch56fh5m5ubkp/Zbhz1H9yAxBEARBUKIyZcqgqamZrTUeHR2drdX+XyIKuiAIgiCtrC73/C4FpGjRori4uBAcHKywPjg4WC0Gt30t0eUuCIIgSKsAR7nXrl0bTU1NvLy88PL69LNBEhISuHPnjvzn+/fvExERgaGhIdbW1owbN46+fftSq1YtXF1dWbt2LQ8fPmToUOkeMSw1UdAFQRCE/4zz58/naVBceHg47u7u8p/HjRsHQP/+/dm0aRPdu3cnNjaWn376icjISJycnDh06JDSHxFdkERBFwRBEKSlgme5N2nShM89N2348OEMHz48P6nUiijogiAIgrSKFMAo9/z++/8HxKA4QRAEQSgE8txCT05OVnimbXx8PJD5zOTU9PSCT/YVsnKoSx4QmfJKnilVfaaHzMqSmq4+95pmZVHLz04tM6nfZ5emJpnSlHkPdSGcD10d5XlyllmzZjF79uxs67dt20bx4sULPJggCIIgnaSkJHr16qWcyVk2e6NfPJ+TsyS9xbD/VOzs7PI0yv3/ozwX9Jxa6FZWVjy9dxOj0qVz+ZfKk5qWxtHT52juVhdtLfUYHpCalsbRU3/TvF5NtLXUZCaqtHSOhl2kuauLemU6e0Etj1OzMhpoqcn1u7QMGX89l9G8unrNlHc04jYtWrRQq5nygoODaV7dTs2O0y2aV6uoFpliX8Vh4VxPOQV9y7yCKeh9p0ia978uz1XvU1PUaWtqqU3xzKKtpY6ZNEWmPFDHTFpFNNBWk4KeSYa2pqZaFIUPaWtrq01Bz6Ktqak2J4hZ1OWzU4cMQsFSr7+cgiAIQuGjoVEAt62p00m1ehIFXRAEQZCWGBSnFOK2NUEQBEEoBEQLXRAEQZCWCp4U9/+ROEKCIAiCtLKeFJffhczJWRwcHFi1apWK/6PUj2ihC4IgCP8ZeZ2c5f8jUdAFQRAEaYkud6UQBV0QBEGQlhjlrhTilEcQBEEQCgHRQhcEQRCkVaRI5pLf1xByJQq6IAiCILEC6HJHdLl/jlJOebwXLaVO42bom1tjamuHZ48+3Lx1W2GfPfsCaN2xM8Y2FSmiZ0jElasSZ1pCnUZN0TezwrRcJTx79FbIlJqayuQZM3GuU5+SJmUpW7EK/b8dytPISOkyLVlOHfdW6FuWx7SiA569+nPz9h2FfWZ5L6RK7QaUtCiHoY0dLTp04e/wC9JlWrycOk1aol/WFtMKDnj26pct04e+Hz2eIgYmLFu9RrpMeThOA4eNokgpU4XFtbmHZJnmbd5JvYFjKdW0G+Yefeg0aQ43/32cbb8b9x/RccLPGDbrTqmm3ag/eAIPn0VLksl7pS91PDqhX6k6plXr4jlwGDfv3FPYp4hFpRyXhavXSZPJ25vatWujp6eHiYkJHTt25ObNmwr7JCQkMGLECCwtLdHV1aVKlSr4+PhIkgfAe4UPdVp7ol+xGqZOdfAcMDTbcYqKec7A0ZMoW70+JWyd8Og5kNv3HkiWyWfzNqo1b4eBfQ0M7GtQv103Ao+FyrfLZDJmLV5B2ZpuFK9QFfcufbh283Yur6hiWYPi8rsIuVLKETpx+jTDvx3M2WOHObJ/D2lpabTq2JnExET5PolJSdSvVxfv2T8qIxInTp1h+HdDOHvsCEcC3mXq0EmeKSkpiUsRV/hh8kQunAph97bfuXXnLh269ZIu0+mzDB8ykLPBhziydydp6Wm08uyucJzsKpZn5cJfuHImhJNB+7GxtqJVp+7EPH8uUaYzDP92EGePBnLE/0/S0tJp5dlNIVMW/wOHOHfhIhbmZpJkeZ/p88cJoHXzpjy9eVW+HNy5TbpMl/5hWOe2nP5tIUErfiYtPR2P0T+S+OatfJ+7jyNp/P1k7G0s+Wv1L1zcsoLpg7pTrGhRaTKdPcfwAb05e2AnR/w2ZR6nngNJTEqS7/M04ozCsn6JNxoaGnRu20qSTKGhoXh5eREWFkZwcDBpaWm0bNlS4bMbO3YsQUFB/PHHH9y4cYOxY8cycuRI9u3bJ0mmE2fPMXxgH84e3MmRHZtJS0+nVY8B8uMkk8nwHDiUe/8+wn+TLxeD92NtWZYW3fopHMuCZGluhvfU8Zw/tIfzh/bg3qAeHQcNlxftBavXsXTtRlbOmcG5g7sxMy5Dy54DeZ2QIEkedSLuQ/+0PE+f+rGsafFi/r2LkeGXTZ8aE/Mc0/J2hAQeoJFbfYVtD/59SHmn6lw8HUp156pf9LqpaWkEhp7Bo0mDL56xKybmOaa2lQgJOkAjtwY57nP+wkXqNm7GgxtXsLayynumkNN4uNX+8kzPn2Na0ZGQg/40auCa4z7x8a8pZV2R4H07ada4Ud4znTqPR8M6X5epggMhh/YpZHryNJJ6zVoTtGcH33Trzehh3zFm+Pd5ft3UtDQCT54rsOM0cNgoXsXFsXfb5i96rWyZTp2nlUmRL55tLeZlHOYefTjm402jGk4A9PphAdpammyeNf7rM2XIOBydgYdL5S+eLSsmNhbTqvUI2bOVRvXq5LiP58BhvE5M5Oifv+c9U3o6gRf+R5s2bb54trWYmBhMTEwIDQ2lUaPM76+TkxPdu3dnxowZ8v1cXFxo06YNP//8c94ypaZy6NAhPFyqfPFsazHPYzGtWpeQPdto5FqHW3fvU9mtBVdDDuFobwdAeno6plXrMm/6RIb07p63TGnpBF64gUdN+6+a6czIsTYLfpjEoB5dKFvTjdFD+jPZ6zsAkpNTMKvuyrxpE/m+b488vV7sqziMHWsrZ/rUPavRL6Gbv9dKfINhp+Fi+tRcqKQPIy4+HgBDw1KqePscyTPlMrd7XHw8GhoalDIwUFKm1+8ylcpxe0pKCms3b8FAX59qTo7KyRSXdZzeZ8rIyKDfd15MGOWFY5XKSsmhkOkTxynk1BlMKzpg7+LKt6PGER0To7xMCZktTkN9PSDzGB06E04l67J4jP4Rc48+uA4az77Qs8rLFJ/ZejMsVSrH7VExzzn4VwiDenRRXqa4uMxMhobydW5ubuzfv58nT54gk8k4fvw4t27dolUraXoNsmV6rfh9Sk5JAaDYB9NHa2pqUlRbm9PnpLvclSU9PR2/fQdITErC1aUG9x8+4ll0DC0bu8n30dEpSuN6dTgbflHyPF8la1BcfhchV0o/QjKZjPFTf8DNtR5ODg7KfvscZWaanpnJMedMb9++ZeqPs+nVrYtSzg5lMhnjp/2Im2tdnByqKGw7EHQEvbK26Jpas2z1Go74/0kZIyPlZJo+M1um+UtXoqWlyaih30qeIcdMORyn1i2a8se61fy1fzeL5swi/GIEzdp3Jjk5WSmZJixfT4NqDjhVsAEg+mUcCUlvWPD7LlrVq0ng8p/o2KQeXaZ4E3pR2vEiWZnGz/oFtzq1cKpsl+M+m//cg17JEnRqo5zCKZPJGDduHG5ubjg5OcnXr1ixAgcHBywtLSlatCitW7dm9erVuLm55fJqBZfp4+NUuWJ5bCzLMu2XRbx8FUdKSgrzVvryLDqGyChpxj8AXL1xE71K1Slm68SwKTPZ89sqHOwq8iw68/KaaRnF33kTYyOexUhz6U34b1D6KPcR4ydx5do1Th45pOy3/qQR4yZy5Z9rnAwOzHF7amoqPQcMJiMjg1VLFykn08SpXLl2g5NB+7Ntc2/YgEsnj/E8NpZ1m/+g+4BvCfsrEBNjY2kzTZjClWvXORkUIF934dJlVviu5cKJv9BQwYMfPnWcunfqKP//Tg5VqFWjOuWqunDw8FE6tW8raaZRi3y5eucBoWvny9dlZGQA0L5RXcb0zMxW3a48Z6/8j7V7g2hc88suL32pEdNmc+XGTU76b//kPhv9dtPLsz3Fiul8cp8CzTRiBFeuXOHUqVMK61esWEFYWBj79+/HxsaGEydOMHz4cMzNzWnevLm0mabN4sr1m5zc5ydfp62tza7fVjFk/FSMqrigqalJ84b18WjaWNIs9hVsuXRkH6/i49l96DADxkwmZPdW+faPf99kMplKfgfzRDxYRimUWtBHTphMwKFAQoMOYlm2rDLf+pNGjp+UmenwoRwzpaam0r3vQO4/+Je/Du5XSut85MSpBAQeJvSgP5ZlLbJtL1GiBBXL21KxvC31atfCrmY91m/ZxtRxo6XPdGifQqaTZ8OIjnmOjWMN+br09HQmTJ/Jcp+13L8qXZfk547Th8zNTLGxsuT2vXu57pdfoxetIeDkOY77emNpUka+vkwpfbQ0NalSzlph/8rlrDh9+bqkmUZO/4mAI38RuncblhbmOe5z8u/z3Lx7Dz/fZZJmkWcaOZL9+/dz4sQJLC0t5evfvHnDtGnT2Lt3L23bZp54OTs7ExERwaJFiyQt6COnz353nLZnO04u1Zy4dDSAuPjXpKSkYFzGiHptOuNSzekTr5Z/RYsWpaJtZg9PrWpVCY+4yvLfNjPZK7Mn7FnMc8xNTeT7xzx/ka3VrjY0NArg0a+ioH+OUgq6TCZj5ITJ+Acc5Pih/diWs1HG234+0/hJmZkCA3LMlFXMb9+9y7FDARgZGebwSgWcadI0/A8c4viBvXk+TjKZjOTkFOkyTZyamemgf7ZMfXt0pXkTxcF4rTt1p0/3rgzs01O6TF94nGJfvODRk6eYm5pKlmn04jX4h57lr1Xe2FoojvQvqq1NLYdK3HqoeCvb7UdPsDGXpmdFJpMxcvpP+AcFc3zXH9haf3og54btO3FxdqKaY5VP7lNgmUaOZO/evYSEhGBra6uwPTU1ldTUVIp8dL1UU1NT3sshSabps/EPDOb47q25HieDd2Mibt97QPjlq/w0aYwkmXIik8lISUnB1toKMxNjgk+cpoZT5iXClJQUQsPOMW/aRKXlEdSPUgq617iJbN+5C3+/rejpleRZVBQABvr66Opmjnx88eIlDx8/5mnkMwBu3s68PcPM1AQzCf4Ie42d8C7TthwzpaWl0bVPfy5GXCZglx/pGenyfQxLl6aoBLcaeU2Ywvade/Dfthm9kiV59u76nIG+Hrq6uiQmJjJ38TLae7TC3NSU2BcvWb1+I4+fRtK1Y7sCzwPgNX4y23ftwX/b7+iVLJHtOBkZGmJkqHiio62tjZmpCfaVKkqT6TPHKSEhkVnzFtK5fVvMTU158PAR03/+hTJGhnh+00aSTCMX+rD9yAn2LJiOXgldnsW+zMxUoji677qwJ/TuRM8fFtCwuhNNXKpyOOwiB06d469Vv0iSyWvaLLbvDcB/o0/mZxedOSjQQE8PXd1i8v3iX79mZ0AQi2ZOkSSHQiYvL7Zt28a+ffvQ09Pj2bPM33cDAwN0dXXR19encePGTJw4EV1dXWxsbAgNDeX3339nyZIl0mSaOvPdcfL95HHaGXAIYyNDrMtacPXGTcbMmEPH1i1o2aShJJmmeS/Go2kjrCzMeZ2QiN++g4ScPUfg1vVoaGgwekh/vFf6UsnWhkq25fBe6UtxXV16eX4jSZ58E13uSqGUgu772wYA3D0Ui84Gn18Z0Cfzvu79hwIZNGyEfFvPAUMA+HHqJGZNK/g/NO8zKf4CbPBdxYA+vXj85Cn7D2ZeU6/hqtgCPXYogCaNCn6Aju/6TZmZvvFUzLRqOQN690BTU5Obt+7QZfufPI99gZFhaWrXqM6JwH2SjS6XZ2rbUTHT6hUM6J2322MK2uePUxH+uX6DLX5/8iouHnNTU9wbNsBvw1r09EpKk2lP5nel2fBpCuvX/zCa/t9kdhN3bOLK6snDmb95J2OWrsXeuiw7vafiVl2aOxR8N2fed+/euY/C+g1L5zGge2f5z377DiKTyegp0Unhh7IeENOkSROF9Rs3bmTAgAGZefz8mDp1Kr179+bFixfY2Ngwd+5chg4dKkmm98ept8L6Dcvmy49TZFQM42f9QlRMLOYmxvTt6smMsV6S5AGIeh5Lv1GTiIyOxkBPD+cq9gRuXU+LRpm31E4a/i1v3r7Fa9psXsbFUbdGNQ5v24BeSWm+3/kmZltTCpXchy6V/NyHLpX83Iculfzchy6V/NyHLpX83Iculfzchy6V/NyHLpX83Iculfzeh17QlHof+oH16Jconr/XSkzC8JvB4j70XIhTHkEQBEFaRTQKZkE8KS436tEUEgRBEAqvAuxyP3/+vGihf4Io6IIgCIK0xKA4pRBd7oIgCIJQCIgWuiAIgiAtMcpdKURBFwRBECSloaGR78fSqu1jbdWIOOURBEEQhEJAtNAFQRAEaYkud6UQBV0QBEGQlijoSiGOkCAIgiAUAqKFLgiCIEhL4/2T3vL1GkKu8lzQk5OTSU5Olv8cHx8PQGp6GqlpaQWf7Ctk5VCXPPBhpnQVJ3kvK4vIlLusLGkZXzXdgSSysqSmq9FxepclNTVVxUney8qilsdJTTIpNYfocleKPE/OMmvWLGbPnp1t/bZt2yhePH8P3RcEQRCUKykpiV69eillcpaXx3aiXzKfk7MkJFG6aVfs7OzQ1NTEy8sLLy/pZrz7L8pzQc+phW5lZcXTezcxKq0+s60dPX2O5m511WrGrqOn/lbPTLWrqdVMVEfPX6ZFixZqNWNXcHAwzV1d1Os4nb1A8wbqNVPe0dPnaNGwnlplCj4ZppaZmpcrhZYazN73Ij4BC7e2yinox3cVTEF37yJmW8tFnr/pOjo66OjoZFuvramlNr8wWbS1RKa80NbSVJtClUVbW1ttCnqWzOOkbp+dOn6fRKa80Cqigbam6ruPlXpSoaFRAF3uqj8JUnfq9U0XBEEQCh8xOYtSqP40URAEQRCEfBMtdEEQBEFaYpS7UoiCLgiCIEirSAHch64GAwnVnTjlEQRBEIRCQLTQBUEQBGmJLnelEAVdEARBkJYY5a4U4pRHEARBEAoB0UIXBEEQpCW63JVCFHRBEARBWqLLXSmUcsrjvWgpdRo3Q9/cGlNbOzx79OHmrdsK+8hkMmb9Mo+ylRwobmyBu0c7rt24IWmuE6dO075rD8pWrEKRkqXxDziosD0qKpqB3w+nbMUqlDC2wKNjF27fuavSTAkJCYwYNxErO0eKlzHHoWZdfNatlzbTmTDa9+pPWYeaFDEqi//BIIXtRYzK5rgsXOkjXaYTJ2jXrh0WFhZoaGjg7++fbZ8bN27Qvn17DAwM0NPTo169ejx8+FC6TKfP0r57H8raV6WIgQn+Bw4pbB84bCRFDEwUFtdmHpLlAThx6gztu/akbCUHiugZZvs+fej7UWMpomfIslXSfW6ZmU7Trkt3LCpURqNEKfwDDihsnzXXm8o1alPC2ILSZW1o3rYDf58PV1mm1NRUJv8wk6q161PC2AKLCpXpN+R7nkZGSpspPIL2wydj2aQjmo4N8f/rhML2PcGhtP52HCYNvkHTsSERN25/4pWE/y+UUtBPnD7N8G8Hc/bYYY7s30NaWhqtOnYmMTFRvs+CpStY+utqVi6az7nQo5iZmtCyfWdev34tWa7EpCScnZxYuXhBtm0ymQzPnn24d/8B/ju2cvF0KNZWlrRo11EhtzIzAYydMp3DR/9iy29ruH7hb8aMGMaoCZPZ91HxKPBMjg6snD8nx+1Pr19SWNavWIKGhgad27WRLlNiItWqVePXX3/Ncfvdu3dxc3OjcuXKhISEcPnyZWbMmEGxYsWky5SUhLOTIysXen9yn9bNm/L01lX5cnDnNsnyZGZKxLmqEysXzc91P/+Ag5wLv4CFubmkeQASE5OoVrUqvy7J+TtuV7Eivy5eyNVzZzgVHEQ5G2tatu9ETMxzlWRKSkriYsRlZkyZyMXToezZvoVbd+7SvmtPyfIAJL55SzX7iqyYPvYT29/QoEZVfhn7vaQ5CkRWl3t+FyFXSulyD9y7S+HnDT6/YlrejguXLtPIrT4ymYzlq32ZNmE8nTq0A2DTmtWYVbBn287dfD9ogCS5PFq2wKNlixy33b5zl7Bz57l67gyODlUAWL1sMaa2ldi+czdDBvRTeiaAsL/P0a9XT5o0cgPgu0EDWLthE+EXL9HhG2kKqEfzpng0b/rJ7WamJgo/7w88jLtbfcqXs5EkD4CHhwceHp9u3U6fPp02bdqwYMH7P9Dly5eXLA+AR4tmeLRolus+OjpFMTM1lTTHhz73fQJ48vQpIydMIsh/F9906SF9plYt8Gj16Uy9undV+HnJvLms37yFK/9co5l7Y6VnMjAwIPiAv8K6lYsXUKdRUx4+eoS1lZU0mRrWw6NhvU9u79u+NQAPnkjbU1AgihTJXPL7GkDt2rXF9KmfoJJTnrj4eAAMDUsBcP/BvzyLiqJlM3f5Pjo6OjRu0ICzYedUEVE+VeyHLTpNTU2Kahfl9NkwlWQCaOBaj4BDgTx5+hSZTMbx0JPcunOXVrkUXGWKio7hYPBfDOojbeslNxkZGRw8eBA7OztatWqFiYkJdevWzbFbXtlCTp3BtIID9jXr8e3IcUTHxKg0T0ZGBv2+HcaE0SNxrFJFpVlykpKSwtoNmzEw0KdaVSdVx5GLi4tHQ0ODUgYGqo7yn6ChoVEgC8D58+e5fv26KOY5UHpBl8lkjJ/6A26u9XBycADgWVQUAKYmxgr7mpgY8yw6StkRAahsb4eNtRXTZv7Ey5evSElJYd7ipTyLiiLymWoyAaxYNB+HyvZY2TmiU9oED88urFq6ELf6rirL9KHNfjvRK1mSTt9Ie204N9HR0SQkJDBv3jxat27NkSNH8PT0pFOnToSGhqosV+vmzfhjnQ9/Bexm0dzZhF+6RLN2neUnj6owf8lytLQ0GTVMvbptDwQGUdKkLMUMTVn662qCA/wpU8ZI1bEAePv2LVN+nEWvbl3FvNyCWlH6KPcR4ydx5do1Th7Jfs1X46NRjDKZLNs6ZdHW1mbX1t8ZMnwkRla2aGpq0ty9CR4tm6skT5YVPmsIOx/Ovj+3YWNtxYlTZ/AaOxFzMzOauzdRaTaAjVv96NXFU9Jr1Z+TkZEBQIcOHRg7NvP6Y/Xq1Tlz5gy+vr40bixNt+3ndO/cUf7/nRyqUKtGdco51eTg4WA6tf9G6XkuXIpghc8aLpw6rrLfs09xb9SQiLMneR4by7qNm+nWdwB/h/yFyUcn/cqWmppKj/6DyMjIYPWyRSrN8p8i5kNXCqW20EdOmEzAoUCOHdyPZdmy8vVZ1xSfRUUr7B8T8xxTY8Xrs8rkUqM6l86e5OWTBzy98z8C/XcR++Il5Wykuzacmzdv3jB91s8s9p5DuzYeODs5MWLod3Tr7Mni5TkPDlOmk2f/5uaduwzpq7rudoAyZcqgpaWFw7seoCxVqlSRdJT7lzI3M8XGypLbd++p5P1PnjlLdEwMNlWc0S5ljHYpY/59+IgJ02Zg61hNJZmylChRgooVylOvTm3W+/yKlpYW6zdvUWmm1NRUuvUdwP0H/xIc4C9a518i67a1/C5CrpRS0GUyGSPGT2Lv/gP8dWAfth8NlrItZ4OZqSnBx0Lk61JSUgg9fRrXenWUETFXBgYGGBuX4fadu5IOPvuc1NRUUlNTKfLR4BLNIkXkrVJV2vDHdlyqOVPNyVGlOYoWLUrt2rW5efOmwvpbt25ho6KTsZzEvnjBoydPMTdT3iC5D/Xt0Z3LYSe5dCZUvliYmzNh9EiCPhrIqmoymYzkFNVdmsgq5rfv3OPogX0YGRmqLIsgfIpSuty9xk1k+85d+PttRU+vpPyauYG+Prq6umhoaDB6+FC8Fy+hUoXyVKpYHu9FSymuW5xeXTtLlishIYE79+7Lf77/779EXLmKYelSWFtZsXOPP8ZlymBtZcnVa9cZM2kKHb9pS8tm0g1A+1ymxm4NmDT9R3SL6WJjbUXoqdNs2b6Dxd4531JWMJkSuXP/g0wPHxJx9R8MS5fG2jKzpyU+/jU79x9g0U8/SpZDMVMCd+7ceZ/p/n0iIiIwNDTE2tqaiRMn0r17dxo1aoS7uztBQUEEBAQQEhIibSaFz+7hu8+uNIalSzHLeyGdO3yDuakpDx4+YvpPcyljZIjnN22VmOlfeSZrK8tshUlbWwszUxPs7SpJm+mDXon7D/4l4vIVDA1LY2RoyNwFi2nf1gNzM1NiY1+wet16Hj95SlfPjirJZGFuTpfe/bgYcYUDu/xIT0/n2btxNIaGpSlatKg0mRKTuPPwifznB48jibhxG0MDfawtTHnxKp6HkVE8fXc7380Hmb1PZmUMMTNWj/EG7xXEbWfitrXPUUpB9/1tAwDuHu0U1m/w+ZUBfXoBMGnsKN68fYPXuIm8fPWKurVcOLxvF3p6epLlCr8YQdM27zONnzIdgP69e7JxzWoin0Uxfup0oqJjMDczpW/PHsyYMlGyPHnJtH3zeqbN/Ik+g7/jxcuX2FhZMWfmDwwdMki6TBGXadrh/a1E43+YnZmpR1c2rloGgN/efchkMnp+cJ1YSuHh4bi7v78rYty4cZmZ+vdn06ZNeHp64uvri7e3N6NGjcLe3p7du3fj5uYmXaZLl2n6jaf85/HTMk9u+vfqzuolC/jn+g22+O3kVVwc5mamuDdsgN/GdejplZQwUwRN27R/n2nqD+8y9WTjmlWSvW+umS5eUvhbMO6D77jviqX879YtNm/dzvPYWIwMDantUoOTwYHy20eVnWnW9CnsPxgIQHXXhgr/7nhgAE0aKa4rsEzXbtJs4Cj5z+MXZF5W69ehNRt/mc7+46cY/MP7Zx70mjALgB+HD2Sml3R/D76KeFKcUmjIZDLZ1/zD+Ph4DAwMiPn3LkaGpQs611dJTUsjMPQMHk0aoK2lHk+1TU1LIzDktHpmcq2JtpamquMAkJqWTuDZi7Rp0wZtbW1VxwEyu1kPHTqER8M66vXZnTyHR+P66pUp9Axt3N3UKtOh46fUMlPr8qXR1lR9azM27jUm9dsQFxcn2XiArDrx6lIo+vk8cY1/nUCpGo0lzftfpx7fdEEQBKHwKsAHywifJgq6IAiCIC3R5a4U4pRHEARBEAoB0UIXBEEQpCXmQ1cKUdAFQRAEaYkud6UQBV0QBEGQmMa7Jb+vIeRG9GEIgiAIQiEgWuiCIAiCtESXu1KIgi4IgiBISxR0pRBd7oIgCIJQCIgWuiAIgiAxMShOGURBFwRBEKQlutyVIs8FPTk5meTk9/MRx8fHA5CankZqWlrBJ/sKWTnUJQ+oe6Z0FSd5LytLamqqipO8l5VFLY+TWn6fRKbcZGVJy5ABGaoNI88hFCZ5nm1t1qxZzJ49O9v6bdu2Ubx48QIPJgiCIEgnKSmJXr16KWe2tf+FF8xsa5VrYWdnh6amJl5eXnh5eRVQ0sIhzwU9pxa6lZUVkZGRGBkZSRbwS6SmphIcHEyLFi3UagpOkenz1DlT81pV1Wqa2aPhV2nRsJ5aTQsafDJMPTOp4fdJXY5T7IuXmNtWUlJBv1BABd1FTJ+aizx/q3R0dNDR0cm2XltbW21+YbKITHkjMuWNtpam2hT0LNpaWmpRFD6klpnU8vukHsdJHTIIBUt8ooIgCIK0xKA4pRAFXRAEQZCWBgVQ0AskSaEmCrogCIIgMXEfujKIJ8UJgiAIQiEgWuiCIAiCtMQ1dKUQBV0QBEGQmOhyVwbR5S4IgiAIhYBooQuCIAjSEl3uSiEKuiAIgiAtUdCVQnS5C4IgCEIhoLKCfuLECdq1a4eFhQUaGhr4+/urKoqct7c3tWvXRk9PDxMTEzp27MjNmzdVmsnHxwdnZ2f09fXR19fH1dWVwMBAlWb6kLe3NxoaGowZM0alOWbNmoWGhobCYmZmptJMAE8iI+k7dBRlKlWlhFUlajRpxYWIKyrLU65KVTRKlMq2eI2doLJMaWlp/DB7DrYOzugamVHesRo/ec8nI0N1M5K9fv2aMWPGYGNjg66uLvXr1+f8+fNKzXDi1GnademORYXKaJQohX/AAYXtMpmMWXO9sahQGV0jM5q0bsu16zeUmjHvNApoEXKjsoKemJhItWrV+PXXX1UVIZvQ0FC8vLwICwsjODiYtLQ0WrZsSWJiosoyWVpaMm/ePMLDwwkPD6dp06Z06NCBa9euqSxTlvPnz7N27VqcnZ1VHQUAR0dHIiMj5cvVq1dVmuflq1e4temEtrYWh3b8zrXTx1j00wxKGahuYonzJ44TefemfAkO8Aegq2cHlWWav2QZvus38OuShdy4+DcL5vzEwmUrWemzRmWZhgwZQnBwMFu2bOHq1au0bNmS5s2b8+TJE6VlSExMolrVqvy6ZEGO2xcsWc6Slav5dckCzp84hpmpKS3aefL69WulZcyrj0+2v3YRcqeya+geHh54eHio6u1zFBQUpPDzxo0bMTEx4cKFCzRq1Eglmdq1a6fw89y5c/Hx8SEsLAxHR0eVZAJISEigd+/erFu3jjlz5qgsx4e0tLTUolWeZf4KH6zKmrNh5RL5unLWVipMBMbGZRR+nrd4KRXK29K4oZuKEsHZv8/ToW0b2rZuBUA5Gxu279xF+MVLKsnz5s0bdu/ezb59++S/97NmzcLf3x8fHx+lfd89WrXAo1WLHLfJZDKWrfJh+sTxdOrQHoDNa30wta3Etj938f3ggUrJKKgXcQ09F3FxcQAYGhqqOEmm9PR0/Pz8SExMxNXVVaVZvLy8aNu2Lc2bN1dpjg/dvn0bCwsLbG1t6dGjB/fu3VNpnoCgYFyqOdNt0FBMK1enpntr1v2+TaWZPpSSksIfO/5kUL8+Km39uLnW46+QUG7dvgPA5StXOXUmjDatWqokT1paGunp6RQrVkxhva6uLqdOnVJJpo/df/Avz6KiaNnMXb5OR0eHxm4NOBP2twqTfULWoLj8LkKuxCj3T5DJZIwbNw43NzecnJxUmuXq1au4urry9u1bSpYsyd69e3FwcFBZHj8/Py5evKj0a4q5qVu3Lr///jt2dnZERUUxZ84c6tevz7Vr1zAyMlJJpnv/PsR30x+MHTaEqWNGcO5iBKOn/YiOTlH6de+ikkwf8g84yKtXcQzo00ulOSaPH0NcfDyVa9RGU1OT9PR05s6cQc9uqjlGenp6uLq68vPPP1OlShVMTU3Zvn07f//9N5UqVVJJpo89i4oCwNTURGG9qYkJ/z58pIpInyEeLKMMoqB/wogRI7hy5YpanJHb29sTERHBq1ev2L17N/379yc0NFQlRf3Ro0eMHj2aI0eOZGvBqNKHl2+qVq2Kq6srFSpUYPPmzYwbN04lmTIyMqhV3ZlffpgCQA1nJ67dvIXvxi1qUdDXb96CR8vmWJibqzTHjl17+MPvT7Zt/A3HKpWJuHKVMZOnYmFuRn8VnWxs2bKFQYMGUbZsWTQ1NalZsya9evXi4sWLKsnzKRofFTmZTKam15oLooWtjv9d6kV0uedg5MiR7N+/n+PHj2NpaanqOBQtWpSKFStSq1YtvL29qVatGsuXL1dJlgsXLhAdHY2LiwtaWlpoaWkRGhrKihUr0NLSIj09XSW5PlaiRAmqVq3K7du3VZbB3NSEKnaKLboqlSry8LHyBlZ9yr8PH3L0eAhDBvRTdRQmTv+RKePH0KNrZ6o6OdK3Vw/GjhiO9+KlKstUoUIFQkNDSUhI4NGjR5w7d47U1FRsbW1VlulDZqamwPuWepbomBhMTYxVEUlQA6Kgf0AmkzFixAj27NnDsWPH1OaX92MymYzk5GSVvHezZs24evUqERER8qVWrVr07t2biIgINDU1VZLrY8nJydy4cQNzFbY+G9Spxa27dxXW3bp7Dxsr1Z8kbtyyFRNjY/lANFVKepNEkSKKf4o0i2iq9La1LCVKlMDc3JyXL19y+PBhOnRQ3d0AH7ItZ4OZqSnBx0Lk61JSUgg9dZr69eqqLtiniGvoSqGyLveEhATu3Lkj//n+/ftERERgaGiItbW1SjJ5eXmxbds29u3bh56eHs+ePQPAwMAAXV1dlWSaNm0aHh4eWFlZ8fr1a/z8/AgJCck2Il9Z9PT0so0pKFGiBEZGRiodazBhwgTatWuHtbU10dHRzJkzh/j4ePr376+yTGOGDqFBG09+WbqSbh2+4dzFCNZt2caaxfNVlgkyLwVs3LKV/r17oqWl+qtu7TxaM3fBYqytLHGsUplLl6+w5NdVDOrbR2WZDh8+jEwmw97enjt37jBx4kTs7e0ZOFB5o8cTEhK4c/f9wM77D/4l4vIVDA1LY21lxRivYfyyaDGVKpanUoUK/LJwCcV1i9NLRWMPcieuoSuDyn6bw8PDcXd/P0Iz6zpn//792bRpk0oy+fj4ANCkSROF9Rs3bmTAgAHKDwRERUXRt29fIiMjMTAwwNnZmaCgIFq0yPl2lv+vHj9+TM+ePXn+/DnGxsbUq1ePsLAwbGxsVJapds3q7Nm8jmlz5vHzouXYWluxdM4senf1VFkmgKPHQnj46DGD+qmuYH5o5eIFzPhpLsPHjCc65jkW5mZ8P2ggP06dpLJMcXFxTJ06lcePH2NoaEjnzp2ZO3cu2traSssQfvES7h7vb1sdN2U6AP1792TTWh8mjRvNm7dvGD5mAi9fvaJubReO7N+Dnp6e0jIK6kVlBb1JkybIZDJVvX2O1C0PwPr161Ud4bNCQkJUHQE/Pz9VR8jRN62a800r9bm1D6Bl86bIEl+pOoacnp4eyxbOY9nCeaqOItetWze6deum0gxNGjXM9XPS0NBg1vSpzJo+VXmhvpZ4lrtSqL6/TRAEQSjcRI+7UohBcYIgCIJQCIgWuiAIgiAx0URXBlHQBUEQBGmJa+hKIbrcBUEQBKEQEC10QRAEQVqiha4UoqALgiAIEhPX0JVBFHRBEARBWhoUQAu9QJIUauIauiAIgiB8odevX1O7dm2qV69O1apVWbdunaojiRa6IAiCILFCeA29ePHihIaGUrx4cZKSknBycqJTp04YGRmpLJMo6IIgCILECt81dE1NTYoXLw7A27dvSU9PV/njw0WXuyAIglDonDhxgnbt2mFhYYGGhgb+/v7Z9lm9ejW2trYUK1YMFxcXTp48+UXv8erVK6pVq4alpSWTJk2iTJkyBZT+6+S5hZ6cnKwwB3dcXBwAL168KPhUXyk1NZWkpCRiY2OVOitSbkSmvFHrTC9foa2lHvO8p6alZ2Z68RJtNZj6FCA1LU19M6nj90lNjtOLly8B5UxKFZ+QkO8u8/iEhMz/jY9XWK+jo4OOjk62/RMTE6lWrRoDBw6kc+fO2bbv2LGDMWPGsHr1aho0aMCaNWvw8PDg+vXr8im8XVxcFOpeliNHjmBhYUGpUqW4fPkyUVFRdOrUiS5dumBqapqv/858keXRzJkzZYBYxCIWsYilEC13797Naxn4Ym/evJGZmZkVWNaSJUtmWzdz5szP5gBke/fuVVhXp04d2dChQxXWVa5cWTZlypSv+m8dOnSo7M8///yqf1tQ8nyaOHXqVPmc5ZDZ1WBjY8PDhw8xMDDI68tIKj4+HisrKx49eoS+vr6q4wAiU16JTHkjMuWNyPR5cXFxWFtbY2hoKNl7FCtWjPv375OSklIgryeTydD4qKWfU+v8c1JSUrhw4QJTpkxRWN+yZUvOnDmTp9eIiopCV1cXfX194uPjOXHiBMOGDfviLAUpzwX9U90aBgYGavHl/JC+vr7IlAciU96ITHkjMuWNumUqUkTaoVTFihWjWLFikr7Hl3r+/Dnp6enZusdNTU159uxZnl7j8ePHDB48GJlMhkwmY8SIETg7O0sRN89UfyFHEARBEFTg49Z+Tj0An+Li4kJERIQEqb6eGOUuCIIg/L9SpkwZNDU1s7XGo6OjVTuoLZ++uqDr6Ogwc+bMr7p+IRWRKW9EprwRmfJGZMobdcukbnmUqWjRori4uBAcHKywPjg4mPr166soVf5pyGQqvhNeEARBEApYQkICd+7cAaBGjRosWbIEd3d3DA0Nsba2ZseOHfTt2xdfX19cXV1Zu3Yt69at49q1a9jY2Kg4/dcRBV0QBEEodEJCQnB3d8+2vn///mzatAnIfLDMggULiIyMxMnJiaVLl9KoUSMlJy04oqALgiAIQiEgBsUJgiAIQiEgCrogCIIgFAKioAuCIAhCISAKuiAIgiAUAqKgC4IgCEIhIAq6IAiCIBQCoqALgiAIQiEgCrogCIIgFAKioAuCIAhCISAKuiAIgiAUAqKgC4IgCEIhIAq6IAiCIBQC/weVMvMbMW9cdQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0wUlEQVR4nOydd1gUV99Az9KLiNJBAVEUBXvvih17771HE6NGY48Ye++9d42xd1GxNyyoMcbeFVEQkCIs7Hx/IKsrSFFm2dfvHp95HnfmzszZe4f9zS0zVyFJkoRAIBAIBIL/afSyWkAgEAgEAsH3IwK6QCAQCAQ/ACKgCwQCgUDwAyACukAgEAgEPwAioAsEAoFA8AMgArpAIBAIBD8AIqALBAKBQPADIAK6QCAQCAQ/ACKgCwQCgUDwAyACehbg6+uLQqHQWJcnTx66du2aoeOcO3cOX19fwsLCMrTfl+c6ceIECoWCv//+O0PHSY3o6Gh8fX05ceJEsm1r1qxBoVDw+PHjTDufHMyfPx93d3eMjIxQKBSEhYUxadIkdu3alWVOMTExFChQAIVCwYwZM5JtVyqVjBs3jjx58mBsbEzBggWZP39+FpgKBAJtY5DVAoJEdu7cSfbs2TO0z7lz5xg3bhxdu3YlR44csp4ro0RHRzNu3DgAqlevrrGtQYMGnD9/HkdHR1kdvofAwEAGDBhAz5496dKlCwYGBlhYWDBp0iRatmxJ06ZNs8RrzJgxREVFfXV7v379WL9+PePHj6dMmTIcPnyYX3/9lffv3zNy5EgtmgoEAm0jArqOUKJECdnPERMTg6mpqVbOlRq2trbY2tpmqUNa3Lp1C4BevXpRtmxZWc+VkJBAfHw8xsbGqaa7dOkS8+fPZ+PGjbRq1SrZ9lu3brFy5UomTpzI0KFDgcSbqZCQECZMmEDfvn2xsrKS5TsIBIKsRzS5y8z+/fspXrw4xsbGuLm5pdhMCsmbwVUqFRMmTMDDwwNTU1Ny5MhB0aJFmTt3LpDYbJ/0o+3m5oZCoUChUKibuPPkyUPDhg3ZsWMHJUqUwMTERF1j/lrz/ocPHxg8eDAODg6YmppSrVo1rl27ppGmevXqyWrcAF27diVPnjwAPH78WB2wx40bp3ZLOufXmtxXrVpFsWLFMDExwcrKimbNmnH79u1k58mWLRv379+nfv36ZMuWDWdnZ3777TdiY2NTzNvP2bp1K3Xq1MHR0RFTU1MKFSrE8OHDNWq91atXp2PHjgCUK1dO7a5QKIiKimLt2rXq7/R5XgQFBdGnTx9y586NkZERbm5ujBs3jvj4eHWax48fo1AomDZtGhMmTMDNzQ1jY2P8/f1T9Y6Li6N79+7079+f0qVLp5hm165dSJJEt27dNNZ369aNmJgYDh06lOo5krqCbty4QatWrbC0tMTKyorBgwcTHx/PnTt3qFevHhYWFuTJk4dp06YlO8bTp0/p2LEjdnZ2GBsbU6hQIWbOnIlKpQISuwTs7Ozo1KlTsn3DwsIwNTVl8ODB6nUREREMGTIENzc3jIyMyJUrFwMHDkzWSrFt2zbKlSuHpaUlZmZm5M2bl+7du6f6fQWCHw1RQ5eRY8eO0aRJEypUqMCWLVtISEhg2rRpvH79Os19p02bhq+vL6NHj6Zq1aoolUr+++8/dX95z549CQ0NZf78+ezYsUPdfO3p6ak+xtWrV7l9+zajR4/Gzc0Nc3PzVM85cuRISpYsyYoVKwgPD8fX15fq1atz7do18ubNm+7v7ejoyKFDh6hXrx49evSgZ8+eAKnWyidPnszIkSNp164dkydPJiQkBF9fXypUqEBAQAD58+dXp1UqlTRu3JgePXrw22+/cerUKcaPH4+lpSV//PFHqm737t2jfv36DBw4EHNzc/777z+mTp3KpUuXOH78OACLFi1i8+bNTJgwgdWrV1OwYEFsbW3p27cvNWrUwNvbmzFjxgCouy6CgoIoW7Ysenp6/PHHH+TLl4/z588zYcIEHj9+zOrVqzU85s2bR4ECBZgxYwbZs2fX+H4p8eeffxIVFcX48eN58+ZNimn++ecfbG1tcXBw0FhftGhR9fb00Lp1azp27EifPn3w8/Nj2rRpKJVKjh49Sr9+/RgyZAibNm1i2LBhuLu707x5cwDevHlDxYoViYuLY/z48eTJk4d9+/YxZMgQHjx4wKJFizA0NKRjx44sWbKEhQsXanT9bN68mQ8fPqhvSKKjo6lWrRrPnz9n5MiRFC1alFu3bvHHH39w8+ZNjh49ikKh4Pz587Rp04Y2bdrg6+uLiYkJT548UZenQPD/BkkgG+XKlZOcnJykmJgY9bqIiAjJyspK+jLrXV1dpS5duqg/N2zYUCpevHiqx58+fboESI8ePUq2zdXVVdLX15fu3LmT4rbPz+Xv7y8BUsmSJSWVSqVe//jxY8nQ0FDq2bOnel21atWkatWqJTtmly5dJFdXV/XnN2/eSIA0duzYZGlXr16t4f3u3TvJ1NRUql+/vka6p0+fSsbGxlL79u01zgNIf/31l0ba+vXrSx4eHsnOlRoqlUpSKpXSyZMnJUC6fv16MseAgACNfczNzTXyLok+ffpI2bJlk548eaKxfsaMGRIg3bp1S5IkSXr06JEESPny5ZPi4uLS5Xnt2jXJ0NBQOnTokMYxpk+frpGudu3aX80DIyMjqXfv3qmeZ+zYsRIgzZw5U2N98eLFJUDasWOHep1SqZRsbW2l5s2bq9cNHz5cAqSLFy9q7P/TTz9JCoVCfS3euHFDAqRly5ZppCtbtqxUqlQp9efJkydLenp6ycrg77//lgDpwIEDkiR9yuOwsLBUv59A8KMjmtxlIioqioCAAJo3b46JiYl6vYWFBY0aNUpz/7Jly3L9+nX69evH4cOHiYiIyLBD0aJFKVCgQLrTt2/fXmP0vaurKxUrVkyzOfh7OX/+PDExMcm6AZydnalRowbHjh3TWK9QKJLlYdGiRXny5Ema53r48CHt27fHwcEBfX19DA0NqVatGkCy5v2MsG/fPry9vXFyciI+Pl69+Pj4AHDy5EmN9I0bN8bQ0DDN48bHx9O9e3fatGlD3bp100z/5dMT6d32OQ0bNtT4XKhQIRQKhfq7ABgYGODu7q6R58ePH8fT0zPZmIOuXbsiSZK6xlykSBFKlSql0Wpx+/ZtLl26pNFMvm/fPgoXLkzx4sU18rRu3boa3UtlypQBElsW/vrrL168eJGu7ykQ/GiIgC4T7969Q6VSJWv+BFJc9yUjRoxgxowZXLhwAR8fH6ytralZsyaXL19Ot0NGR5F/zTUkJCRDx8koScdPydfJySnZ+c3MzDRukgCMjY358OFDqueJjIykSpUqXLx4kQkTJnDixAkCAgLYsWMHkDho8Ft5/fo1e/fuxdDQUGPx8vIC4O3btxrp01s2c+bM4eHDh4wdO5awsDDCwsLUN3cfPnwgLCyMhIQEAKytrVMsq6ioKOLi4tI9IO7LdEZGRinmuZGRkUaeh4SEfLUMk7Yn0b17d86fP89///0HwOrVqzE2NqZdu3bqNK9fv+bGjRvJ8tTCwgJJktR5WrVqVXbt2kV8fDydO3cmd+7cFC5cmM2bN6fr+woEPwqiD10mcubMiUKhICgoKNm2lNZ9iYGBAYMHD2bw4MGEhYVx9OhRRo4cSd26dXn27BlmZmZpHiO9NbLUvIKCgrC2tlZ/NjExITw8PFm6LwNWRkg6/qtXr5Jte/nyJTY2Nt987M85fvw4L1++5MSJE+paOZDh5/hTwsbGhqJFizJx4sQUtycFtSTSWzb//PMP4eHhKfaxjxkzhjFjxnDt2jWKFy9OkSJF2LJlC0FBQRo3Zzdv3gSgcOHC6f0634S1tfVXyxDQKMd27doxePBg1qxZw8SJE1m/fj1NmzYlZ86c6jQ2NjaYmpqyatWqFM/3+fGaNGlCkyZNiI2N5cKFC0yePJn27duTJ08eKlSokFlfUSDQaUQNXSbMzc0pW7YsO3bs0KjFvH//nr1792boWDly5KBly5b079+f0NBQ9ejwpMecvqdm+TmbN29GkiT15ydPnnDu3DmNkdx58uTh7t27GiPKQ0JCOHfunMaxMuJWoUIFTE1N2bBhg8b658+fc/z4cWrWrPktXycZSUH0y8fDli5dmu5jGBsbp/idGjZsyD///EO+fPkoXbp0suXLgJ5ehg8fjr+/v8aSVPPs27cv/v7+uLu7A4lBTaFQsHbtWo1jrFmzBlNTU+rVq/dNDumlZs2a/Pvvv1y9elVj/bp161AoFHh7e6vX5cyZk6ZNm7Ju3Tr27dtHUFBQslHpDRs25MGDB1hbW6eYp0lPVXyOsbEx1apVY+rUqQDJntIQCH5kRA1dRsaPH0+9evWoXbs2v/32GwkJCUydOhVzc3NCQ0NT3bdRo0YULlyY0qVLY2try5MnT5gzZw6urq7q2lqRIkUAmDt3Ll26dMHQ0BAPDw8sLCy+yTc4OJhmzZrRq1cvwsPDGTt2LCYmJowYMUKdplOnTixdupSOHTvSq1cvQkJCmDZtWrIX1VhYWODq6sru3bupWbMmVlZW2NjYpPgjnCNHDsaMGcPIkSPp3Lkz7dq1IyQkhHHjxmFiYsLYsWO/6ft8ScWKFcmZMyd9+/Zl7NixGBoasnHjRq5fv57uYxQpUoQTJ06wd+9eHB0dsbCwwMPDgz///BM/Pz8qVqzIgAED8PDw4MOHDzx+/JgDBw6wZMkScufOnWHnggULUrBgQY11STd0+fLl07jZ8vLyokePHowdOxZ9fX3KlCnDkSNHWLZsGRMmTJD9GfRBgwaxbt06GjRowJ9//omrqyv79+9n0aJF/PTTT8nGc3Tv3p2tW7fy888/kzt3bmrVqqWxfeDAgWzfvp2qVasyaNAgihYtikql4unTpxw5coTffvuNcuXK8ccff/D8+XNq1qxJ7ty5CQsLY+7cuRrjIwSC/xdk8aC8H549e/ZIRYsWlYyMjCQXFxdpypQp6tHEn/PlyPOZM2dKFStWlGxsbNT79ujRQ3r8+LHGfiNGjJCcnJwkPT09CZD8/f3Vx2vQoEGKTl8b5b5+/XppwIABkq2trWRsbCxVqVJFunz5crL9165dKxUqVEgyMTGRPD09pa1btyYb5S5JknT06FGpRIkSkrGxsQSoz/nlKPckVqxYoc4rS0tLqUmTJurR4Ul06dJFMjc3T+aUUp6mxLlz56QKFSpIZmZmkq2trdSzZ0/p6tWrEiCtXr1ane5ro9wDAwOlSpUqSWZmZhKgMeL/zZs30oABAyQ3NzfJ0NBQsrKykkqVKiWNGjVKioyMlCTp6yPUM0Jqx4iLi5PGjh0rubi4SEZGRlKBAgWkefPmpeu4SXn45s0bjfVfy/Nq1apJXl5eGuuePHkitW/fXrK2tpYMDQ0lDw8Pafr06VJCQkKy/RMSEiRnZ2cJkEaNGpWiU2RkpDR69GjJw8NDfV0UKVJEGjRokBQUFCRJkiTt27dP8vHxkXLlyiUZGRlJdnZ2Uv369aXTp0+n63sLBD8KCkn6rI1VIBAIBALB/ySiD10gEAgEgh8AEdAFAoFAIEiBffv24eHhQf78+VmxYkVW66SJaHIXCAQCgeAL4uPj8fT0xN/fn+zZs1OyZEkuXryo0xMciRq6QCAQCARfcOnSJby8vMiVKxcWFhbUr1+fw4cPZ7VWqoiALhAIBIIfjlOnTtGoUSOcnJxQKBTs2rUrWZpFixbh5uaGiYkJpUqV4vTp0+ptL1++JFeuXOrPuXPn1vnXCouALhAIBIIfjqioKIoVK8aCBQtS3L5161YGDhzIqFGjuHbtGlWqVMHHx4enT58CkFJvdEbfvqlt0v1imdjYWI23g6lUKkJDQ7G2ttb5LykQCAQCTSRJ4v379zg5OaGnJ1/d7sOHD8TFxWXKsSRJShZvjI2Nk739EcDHx0djQqEvmTVrlsb0znPmzOHw4cMsXryYyZMnkytXLo0a+fPnzylXrlymfA/ZSO8D60kvnRCLWMQiFrH8OMuzZ89kecmJJElSTEyMZIYi01yzZcuWbF1KUzR/CSDt3LlT/Tk2NlbS19fXmBJYkiRpwIABUtWqVSVJSpwi2N3dXXr+/LkUEREhubu7S2/fvs3M7Ml00l1DHzFiBIMHD1Z/Dg8Px8XFhb45nTCIzZy7r+9F38SEcgumUT2PFQYy3nFmhHiVihOPQ/H29k7XdJnaQKlU4u/vT3UnMwz0dKN1JV4lceJlNNUdjHXLKShWJ8uuWg4VBrpxiROvgpNhelSzjMdAN4qOeAlOhhvoZtkZhelEPr2LiqFg59+++VXR6SEuLo5oJDphjhHf96XjkFgfGcmzZ880XjWdUu08Ld6+fUtCQgL29vYa6+3t7dWTVBkYGDBz5ky8vb1RqVT8/vvvGhNV6SLpDuhfa9YwiI3D4IOOBHSFHmZmZlhlt8BQXzd+7ZQJKszMPmBtba1TPyyJ+ZQNQx0JnkqVhFkYWGU31S2nCH3dLDsLFYa6cYmjVIFZnB5W2eJ1y0lpoJtlZxKLoW5c4oB2+oVN0MPoO8+j97FPO3v27MnmjvhWvvzu0hdN+o0bN6Zx48aZci5toCN/fgKBQCAQaAcbGxv09fWTTRkdHBycrNb+v4QI6AKBQCCQFb1MWjILIyMjSpUqhZ+fn8b6pBkT/1cR06cKBAKBQFYUCvjenjQFgARlypRBX1+f/v37079//6+mj4yM5P79++rPjx49IjAwECsrK1xcXBg8eDCdOnWidOnSVKhQgWXLlvH06VP69u37faJZiAjoAoFAIPifISAgIF196JcvX8bb21v9OWlQd5cuXVizZg1t2rQhJCSEP//8k1evXlG4cGEOHDiAq6urbO5yIwK6QCAQCGQlM5rMM7p/9erVU3w5zOf069ePfv36fbuUjiECukAgEAhkRU+hQO97R7lD4pPngq8iBsUJBAKBQPADIGroAoFAIJCVrGhy//+ICOgCgUAgkBW9TBjlLgJ62og8EggEAsH/DGXKlMHT05OFCxdmtYrOIVtAfy7Fs1sVzXLVe+aoIrgvKTW2S5LEedUHlqveM18VwTZVFCFSgkaaeEnCXxXDEtV7Fqgi2KOK5r2kyjTH91FRDJo0G7cazTAvXo3K7XoRcPNf9fbXb0PpNmI8uas2IluJ6vj0Gsi9x88y7fwpOr1/z8CBA3F1dcXU1JSKFSsSEBCg3h4ZGcnPP/9M7ty5MTU1pVChQixevFhep6hoBk1biJtPO8zL+VC58y8E/POfert+8ZopLjPWbJXXafpi3Op3xLxCQyp3HUjArTsaaW4/fEqTgX+Qs2pTLCs3oWLnATx9FSyfUxpl17VrVxQKhcZSvnx52XwA3kfFMHjOSvI2700277ZU7jOCgNv3Ukz707TFGFRqztyte+V1io5h8LzV5G3Zl2w121P5p5EE3P70vPC4VVvx6jCA7LU7YOPThToDx3Hx1l15nVIpO6VSybBhwyhSpAjm5uY4OTnRuXNnXr58Ka9TdAyDF28ib6chZGvUm8oDJxBw56F6+84zl/EZOQP7Vr9gULcbgQ+eyurzPWTmi2UCAgL4999/U30G/f8rsgV0JRK26OGtMElx+2XiuEYc3goT2inMMUfBDimauM8eMzgpfeAB8dRXmNJaYU4cErulaFRpPIqQXnqNnszRcwGsnfoH13dvoHalctTpPoAXr4ORJInmPw/j0bOX7Fw4lSs71uLq5ECd7gOIio7JlPOnRM+ePfHz82P9+vXcvHmTOnXqUKtWLfU0foMGDeLQoUNs2LCB27dvM2jQIH755Rd2794tm1OvcTM5euEKayeM4Pq2FdSuUJo6fX/nxes3ALw4uk1jWeE7FIVCQfNaVeRz+nM2Ry9eZe3437m+dSm1y5ekzk/DeBH8FoAHz15StccgCuZx5viyGVzbsoRRvTpgYizfe73TKjuAevXq8erVK/Vy4MAB2XwAek9ZyNGAG6z541cC18+mdtli1P11HC/ehGik233qIpdu3cPJxkpWH4DeUxdzNOA6a0YPIHDtTGqXKUbdQX+qnQo4OzF3UE8C187i5KIJ5HGww+e3Cbx5Fy6bU2plFx0dzdWrVxkzZgxXr15lx44d3L17V/Z3fPeevZqjV2+x5vdeBC4ZT+1Shak7fAYv3r4DIOpDHBU98zOpe0tZPTKDL29kv3URpI5sAd1NYUhFPRPcFcl/QCVJ4poURxmFMe4KQ2wU+tRRmKJE4j8Sa/KxksQtlFRRmOCiMMBOoU89hSkhqHhKQrJjZpSYDx/Y4XeCKUP6U7VMCdxdnRn7c0/ccjuxZPNO7j1+xoXr/7Bw7FDKFPHEw82VhX8MJTI6ms37/dI+wbc4xcSwfft2pk2bRtWqVXF3d8fX1xc3Nzd1Lfz8+fN06dKF6tWrkydPHnr37k2xYsW4fPmyPE4fYtlx7BRTBvamaqmiuLvkYuxPXXBzcmDJtsSanIONlcay58RZvMsUJ29uJ/mcjp9myq89Pzn17azhNHrhanwqlWXqwF6UKOhO3tyONKhSDjurnPI4paPsIHGSIwcHB/ViZSVfAI2JjWXHyQtM7t+JqsW9cM/tyNgebXFztGPJzsPqdC/ehDBg1nLWjR2IoYG+bD4aTj91ompxz0Sn7m0SnXYdAaBd7SrUKl2UvE72eLk5M+OXLkRERXPjwRN5nNIoO0tLS/z8/GjdujUeHh6UL1+e+fPnc+XKFZ4+ladWHBMbx44zV5jcszVVi3jgnsuesZ2a4uZgw5J9xwHoWKsiYzo2oWYJL1kcMhNde/Xrj0qW5FEEEtFIuH42Js9AoSA3Brz62OweTAIq0EiTTaGHNXq8kuK/2yE+IYGEhARMjI001psaG3P26nVilYkzyH2+XV9fHyNDQ85evf7d50/RKT4+0clEs1XD1NSUM2fOAFC5cmX27NnDixcvkCQJf39/7t69S926deVxSkggIUGVPJ9MjDh77Z9k6V+HhHLgzEW6NfWRxUfDySiFsgu8hUql4sCZSxRwzUW9fiNwqNmKCp1/YZf/Wfmc0lF2ACdOnMDOzo4CBQrQq1cvgoPl6wKIj1elmE8mxkacvXEbAJVKRZc/5/Jb+6Z45XWRzUXtlJDkpHmj/7nT58QplSzf44dlNjOKueeRxymdZfc54eHhKBQKcuTIIY9TQgIJqq/k062Uu0wEgiwJ6FEk9oObfTE/rhkK9bYoJPQBE0VKab6/yd3C3JwKxQszcfFqXga/ISEhgQ17DnHxxi1evQmhoFseXJ0cGDl7Me/CI4iLUzJ1+TqC3obw6ovmyszCwsKCChUqMH78eF6+fJnotGEDFy9e5NWrVwDMmzcPT09PcufOjZGREfXq1WPRokVUrlxZHidzMyoU9WTisg28DE6cQ3jDfj8u3vyPV2+T58O6PUewMDOjeU35mtvVTis28vJNyEeno1z85z9evQ0lODSMyOgYpq7eSr2KpTm0aApNvSvRcsifnLxyQx6ndJSdj48PGzdu5Pjx48ycOZOAgABq1KhBbGysPE7mppQv7MHENdt4+SaUhIQENh4+yaV/7xH0sdl22oadGOjr80urBrI4JHMyM6V84QJMXPs3L98mOZ1KdAoJU6fbd/YylnU6Yl6zPXP/2s+hWX9gkyNzpsxM5pSOsvucDx8+MHz4cNq3b59p03gmczIzpXyhfEzctIeXIe9ISFCx8dg5Lv33kKBQ+boe5CJplPv3LoLUydJWjJTKJz1lllnlunbqWCRJwrlaY0yLVWPBhr9o17AO+vp6GBoasG3eZO49foZN+bpkK+nNiUtXqVelAvp68mXb+vXrkSSJXLlyYWxszLx582jfvj36+olNofPmzePChQvs2bOHK1euMHPmTPr168fRo0dlc1o7cQQSEs512mBath4LNu2knU8N9FOYc3717kO0r18zWY0+053G/55YdnXbYVq+AQu27KZdPW/09fTUYywaV6/IwI4tKO6Rj2Hd2tKgSjmW/r1PNqe0yq5NmzY0aNCAwoUL06hRIw4ePMjdu3fZv3+/bE5rx/yKJEm4NO2JmXcb5m/bT7vaVdDX1+PKfw+Yv20/q0b9otX+ybWjByBJ4NKsN2Y12zF/+wHa1aqs8XflXbIwV1ZN5/TiidQtV5x2Y2cRLGMfelpll4RSqaRt27aoVCoWLVokmw/A2t97J+ZT+8GYNezF/F1HaeddTtbfH7lQ8P3N7SKep02WPIdu/vE+IgoJ88/WRyNh9nGbOQoSgA+SpFFLj0bCMZOKNp9LbvzXLyYqOoaIyCgc7WxoO2g0eXIl9v2W8irI1Z3rCH8fSZxSia1VTiq06UEpr4KZcv4UnfLl4+TJk0RFRREREYGjoyNt2rTBzc2NmJgYRo4cyc6dO2nQILFGVbRoUQIDA5kxYwa1atWSx8nZCf+Vs4mKiSEiMhpHW2va/j6ePE6OGulOX73BncfP2Dx1jCweyZxWzNR0GjaRPLkcsMmRHQMDfTy/aEIu5ObC2cDk3QSZ5pRK2aWEo6Mjrq6u3LsnXxNqvtwO+C+cQFTMByKionG0saLdmBnkcbTjzPV/CX4XjluL3ur0CQkqhi5Yy7y/9vFg+1J5nHI54L/gz49OMTja5KTd2FnkcbRTpzE3NcE9tyPuuR0p71WAgu1+ZtW+Ywzv1Fwep3SUnVKppHXr1jx69Ijjx4/LVjtXOznZ4T9jOFEfYhPzyToH7SYuIo+Djazn1XXSO9va/0eyJKBnR4EZCp4Sjx2Jd8AJksRz4qn8cVS8HfroAU+JpwCJ/UhRkooQVFRWZK62uZkp5mamvAuP4MjZi0wZonmRWFpkA+De42dc/uc/xg3ondJhMtfJ3Bxzc3PevXvH4cOHmTZtGkqlEqVSid4Xd+j6+vqoVJn3ON9XnUxNMTc15V3Ee46cC2DKQM18WLXzIKU8C1DMI5/sLik6nb/MlF97YmRoSBlPD+48fq6R9u7T57g42svvlELZpURISAjPnj3D0dExxe2Z6mRqgrmpCe8iIjlyKZAp/TrTvHoFapYpqpGu/qDxdKhXja71a2jP6f1Hp586fTWtJEGsUvnV7Znm9JWySwrm9+7dw9/fH2tra9ld1E4mxpibGPPufRRHrvzDlJ6ttXbuzCLT3uVO+mdb+/+IbAE9TpII41OQiUBFsJSACQqyK/QogRGXpFhyoEcO9AiQYjFEQcGPwdtYocBLMuSU9AETFJig4LT0AWv0cCFzRuIePnMBSZLwcHPl/pPnDJuxAA83F7o1awjAtkPHsLXKiYujPTfvPmDQpNk0qVmVOpXKZcr5U3Q6fDjRycOD+/fvM3ToUDw8POjWrRuGhoZUq1aNoUOHYmpqiqurKydPnmTdunXMmjVLPqdzAYlOeZy5//QFw2YvwyOPM92a1FOniYiM4m+/U0z/TTtzCR8+d/mjU27uP3vJsDnL8ciTm26NEwcH/ta5Je2GT6JKySJ4ly7G4XOX2XfqAseXzZDPKZWyi4yMxNfXlxYtWuDo6Mjjx48ZOXIkNjY2NGvWTD6ni9cSnVxycf/5K4YvXEcBl1x0bVADQwMDrC0tNNIbGujjYJUDD9dcMjoFIiHh4ezE/RdBDF+0ngLOTnSt701UzAcmrdtOo8plcLTOSUj4e5bsPMzzNyG09K4on1MqZRcfH0/Lli25evUq+/btIyEhgaCgIACsrKwwMpKne+nw5ZtIEng4O3D/RTDDV2ylQG5HutZJHC8TGhHJ0zehvAxJHA9x91lif79DTkscrCxlcfpWxKtftYNsAf01CWyXotWfT0mxQCyFMKSuwpTSGBGPxHHpA7FIOKBPM4UZRp/dxVVTmKAnfeCAFEM8Es4Y0ERh+t13ekmEv49k1OwlPA8KxsoyO83rVGfCwL4YGiZmS9CbEIZMncfrkFAcbWzo1KQeo3/qninn/qpTeDgjRozg+fPnWFlZ0aJFCyZOnIihYeKNzpYtWxgxYgQdOnQgNDQUV1dXJk6cSN++8gXS8PdRjJq/guev32JlaUHzmlWY8HN3dT4BbDnkj4REu3reqRwpE50ioxi1YNUnpxqVmdC/m9qpWY3KLBo5gKmrtzBw+iI8XHOzbfofVC5RWD6nVMouPj6emzdvsm7dOsLCwnB0dMTb25utW7diYWGR9sG/kYjIaEYt2cDzNyFYZc9G82oVGN+nPYYGWffW54ioaEYt3ZjoZJGN5tXLM75XOwwNDEhIUHHn6QvWjz7J2/AIrLNbULpQPk4sGI+Xm7NsTqmV3ePHj9mzZw8AxYsX19jP39+f6tWry+IUERXDqNV/8/ztO6wszGleqRTju7VQl93eC4H0mLlSnb795CUAjOnYhLGdmsriJNBtFFJaE8Z+hYiICCwtLfnZzAaDD3GZ7fVN6JuaUGXjMuq522KYwoCtrECZoOLQ/TfUr19fHZSzGqVSyYEDB6jnkg1DHRk6qlRJHHoaSb3cprrl9DxGJ8uurrUKQ924xFGq4HCIHnVzxuuW0zsD3Sw7k3cY6sAlHhIZg32LfoSHh8vWhJ0UJ/4wzpHsiaWM8kGS+DM2TFbf/3XE5CwCgUAgkBXR5K4dRB4JBAKBQPADIGroAoFAIJAVPRTofefjxqL2mTYijwQCgUAgK5n5pjgxferXETV0gUAgEMhKZvahi+fQv46ooQsEAoFA8AMgaugCgUAgkJXMmFxF1D7TRgR0gUAgEMhK4uQs3xfRFZkwy+aPjrjpEQgEAoHgB0DU0AUCgUAgK6LJXTuIgC4QCAQCWRFvitMOIo8EAoFAIPgBSHcNPTY2ltjYWPXniIgIAEZsn4uVhVnmm30D8So4FgrK8BAkHZngI16VOJAj9uIBEnTk9in+46y2ynfBSLqRTcRLAGYoP3zQvbILOESCjjnFJyTw2ezEWUpi2ekRL0k65gSxZ3eSoBtF99HJmHgjU75zfFimEG+kvUFmosldO6Q7oE+ePJlx48YlW3/ynQKzWB24Oj/j2Bsd+VX5jGMhWW2QnGPvdeNG7HOOvZVAx0az6uT1FKYbM4h9jk46hRtntUIyjkWYZLUCANHR2ruuM+fVr4n7lylTBn19ffr370///v0zQ++HId0BfcSIEQwePFj9OSIiAmdnZ6rllLCy0I0f4MQauoKatnoY6FCN6tgbFTWtwUBHbjHjVYk3GDUtojHQjWwiXkq8wahpo9Ctsnsr6eb1lEOpW2UXZqibTpaxuuUUbkzN7B90wilU/0NWK3wT4k1xXyfdAd3Y2Bhj4+R3uwZ66MwcyEkY6Cl0Zk7tJBLzSVecEm/ADBToxLzMn6N7ZSfpoJOOlp1wShe64qTNmwrR5K4dxCh3gUAgEMiKgu8fNqAD90A6jwjoAoFAIJAVUUPXDiKPBAKBQCD4ARA1dIFAIBDISmaOchd8HRHQBQKBQCArosldO4g8EggEAoHgB0DU0AUCgUAgK4nTp37/MQSpIwK6QCAQCGRFPLamHUSTu0AgEAgEPwAioAsEAoFAVvQUikxZIPFd7p6enixcuDCLv5XuoZUm9/j4BMat3MLmI6cICgnD0SYnnet7M6prK/T0Eu8pdp44z7JdR7h65wEh4e+5vGYWxQu4yeu0YhObD50gKPQdjtY56dygFqO6t0FPTw9lfDxjlqzn0LnLPHwRhGU2c2qWKcak/l1xsrWWz2nlZjYfPvlZPtVgVLfW6nwat2Izf/md5lnwW4wMDSjpkY/xfTtSzstDHqeEBMat2c7mo2cJCg3D0ToHnetWY1Snpmqnz/lp5gqW7zvOzP6d+LWljzxOSWV3+MRHp5x0blCTUd3aqJ26/zmbdQeOa+xX1suDcytnyOv0lespiduPnjFi4WpOXf0HlSTh6ebClknDcHGwk8dp9V9s9jv9KZ98qjOqcwu1k0HVVinuO+Wnjgxp1yRLnCKjYxi5dCO7zwQQEv6ePA52/NzSh75N62a6j9ppzTY2+5355FSvGqM6N1c7vQ4NY8TSTfgF3CAsMooqxQox99du5M/tKIsTwPvoGMau/ItdZwIIfhdO8fx5mP1LV8oUzAeAJEn8ueZvVuw7zrv3kZQt5M78gd3xcnOWzelbycwmd/Eu96+jlYA+bcMOlu06zKrRA/DK68KV2/fpMWk+luZmDGjTCIComFgqFi1IyxoV6TNlkfxO6/9m2Y6DrPpj0Eene/SYMBfLbGYMaNuE6A+xXLvzgFHd21I0vxvvIiIZPHs5zYaM5+LaOfI4bdjOsp2HWDVmIF55nRPzaeI8LLOZq/OpgLMTc3/rTd5cDsTExjF3y258fvXlzrYl2Oa0zHynzXtZtucoq4b/hJdbbq7ceUiPqUuxNDdlwBcBe/eZAC7dfoCTTc5M99BwWv83y3Z+LDs3F678d/9j2ZkzoE1jdbq65UuycsxA9WcjA/ku97SuJ4AHz19RrffvdGtcm7G9OmCZzZzbj55hYmQkj9OmXSzb48eqkf3xyuPMlTsP6DF5UeLfXasGADzfuUxjn0MXA+k1dTHNq5XPMqffFqzlxLV/WDt6AHkcbPELuM7Ps1fgZG1F4yplMt9p8+7Ea3xEP7zyfLzGpyxOLLuW9ZEkieajZmBooM+OiUPIbm7GnL/2UXfwBG6unYm5qTyzp/WevpRbj56zZmR/nKxzstHvNHV/m8DNNTPJZWvF9M17mLPtAKuG/0T+3I5MWr+DekMm8e/6WViYmcriJNBttBLQL/xzh8ZVytKgUmkA8jjaseXoaa7890CdpqNPdQAevwrWhhIXbv5H46rlaFA58Qcij5M9W46c4srt+wBYZjPn8PwJGvvMHdKHCt0G8zQoWJYa1YWbd2hcpdxn+WTPFr/TXPnvvjpNu7rVNPaZ8WsPVu09yo37j6lZpljmO926R+NKpWlQoUSik4MtW46d48rdRxrpXrwJZcDctRyYNpzGI6ZluoeG0z//0bhqeRpU+rzsTnLl9j2NdMZGhjhYy3tzoXZK43oCGLN4HT4VSzP1l+7qdXlzOcjndOvux7IrlejkaMeWo2e5cufT392X+bPnTADVS3iR18k+y5wu3LpLp3rVqV7CC4BejWuzfI8fl+88kCWgf7rGS35yOnaWK/89BODe81dc/Pce19fMUNd+FwzqiWPTXmw5dpYeDWtmulNMbBw7Tl5ix8QhVC1WCICx3Vqx58xlluz2488erZn390FGdGxKs6plAVg9oh9Ozfqw+ehZejeulelO34MYFKcdtNKHXqloIY5fvsHdpy8AuH7vEWev38bn4x91VlCpmCfHL1//5HT3IWev/4tPxdJf3Sc8MhqFQkGObNlkckopn/79aj7FKZUs33UYy2zmFMsvT/dEpSIeHL/6D3efvUp0uv+Es//cwadccXUalUpFl8mL+K1NA7zccsvioeFUzJPjAdeTX09flN3Jq//g6NORQq360GfSfIJDw+R1SuV6UqlUHDh3mfwuTvgMGINjvQ5U6D6Y3SfPy+dUpODHsnuZ6HT/MWdv/odP+ZIppn8dGsaB81fp3qBGljpVKlKQfWcv8+JNCJIk4f/x+qtTNvNvWBPP55GC0x18yifexMbGxQNgYvRpvnd9fT2MDAw4e/OOLE7xCQkkqFQa5wQwMTbi7M3/ePQqmKDQMGqXKareZmxkSNXihTh/664sTt+DIpMWQepopYb+e6fmhEdF49XuF/T19EhQqRjfpwNt61TRxulTdurckvDIKLxa9/3k1LcTbb+oASfxITaOUQvX0K5uNbJnM5PHqVMLwiOj8Wrb/7N86kjbOlU10u07E0CHP2YQ/SEWR+ucHJo7Dpsc8vQp/d6uUWLZdRnyyalHa9rWrKhOM23zXgz09fmlRT1ZHJI5dWqZmE9tftIsuzqfyq5ehdK0qFkZVwc7Hr18je+yDdT+eRSX1szB+IsfyUxxSuN6Cn4XTmR0DNPW/c2ffTsx+eduHD5/hZbDJnF00SSqlSyS+U4dmiaWXceBn5x6taNtrcoppl936CQWZiY0q1ou010y4jTn1270mbYU1xZ9MdDXR09PwbLf+1K5aCF5nNo3SXTqNPiTU882tK1VCYCCrk64OtgyatlmFg/phbmJCbP/2kdQaBivQt7J4mRhZkp5r/xMXLeDQq65sM+Zgy3HznLp9n3y53Yg6OPNqf0X3Wz2OS158vqtLE7fg0KhQKH4vpCsECE9TbQS0P86eoZNh0+ywXcQnnlduH73EYPnrsTp46CvrOAvv1NsOnSCDX8OwTOvK9fvPmTw7OU42VrTuYFmE5oyPp72o6ehkiQWDO0nn9PR02w6fIIN4wbj6ebC9XuPGDxnJU42VnT+rNbkXaoIV9bO4W14BCt3H6Hd6GmcWzEdO6scme/kf55NfmfYMLo/nnlyc/3+EwYvXI+TdU4616vKlTsPmb/9EAHLJn33H2y6nY6e/lR2bi5cv/eQwbNXfMynxLJrXfvTzWLhfK6ULuRO3qY9OHA2gGbeFb926G93SuN6UqlUADSuWp6B7ZoCULxAXs7fvM2yHQdlCeh/HT/HpiOn2fDHrx/L7jGD569JLLuPXVyfs+bAcdrXroKJsTx9+ul1mv/3QS7+e5edk4fh6mDL6cB/+XnWChysc1KrdNHUT/DNTmfYMOYXPPM4JzotWJt4PdWrhqGBAX/9OZje05Zg27AH+vp61CxVhHqftVLJwdqR/ek5bSkuLfuhr6dHiQJutKtZiWv3PnV3ffk3J0ki8P1/RisBfdjCtfzeqTltPv7IFsnnypOgN0xdtyPLAvqw+av5vXNL2nys1RVxz8OToGCmrt2mEdCV8fG0HTmFxy+D8Fs0SbbaOcCwBWv4vVML2tSu+pnTG6au+1sjoJubmuDu7Ii7syPlC3tQsFVfVu09yvAuLTPfackmfm/XmDY1EoNgkbwuPHn9lqmbdtO5XlXO3LxDcFgEbm1+Ue+ToFIxdPEG5v19kAdb5mW+U1LZfZ5Pr94wdd22ZDdjSTjaWOHqYMu9j82qsjl95XqyyZEdA319Cn0xArlgHmfOXv9XHqdF6/m9Q1Pa1EysaSb+3b1l6sadyQL66eu3ufP0JZt8B8nikl6nmNhYRi/fxN8Th6r72Yvmc+X6/cfM2rJHloA+bPFGfu/Q5DMnF568fsPUjbvoXC+xPEt55OXKymmER0YTFx+PbY7sVOg7itIeeTPdJ4l8uRzwnzuWqJgPRETH4Gidk3bj5pDH0Q6HjzfvSaPykwgOC8feKvMHx34vog9dO2gloEd/iEVPodldr6+vh0pSaeP0KRL9ITbZY1f6enrqmhR8Cub3n73k6KLJWFvK+6hE9Ie4lJ0kKdX9JEkiVqmUxyk2Dr0vZlX43Klj7crULFVYY3v936fQoXZlutZLufviu50+xKqfSVU76euhUn09n0LCI3gW/BZHGyv5nFK5nowMDSntmZ+7T15opLn39AWuMgywBIiOjU1edl/Jp9X7j1HKIy/F3PPI4pJeJ2V8Asr4hOS/F3qpl+93O315PX3lfJYfb+jvPX/FlTsPGNejtSxOn2NuaoK5qQnv3kdy5NINpvRtj9vHoH708k1KfBw/E6eM51TgbSb3aS+7U0bR4/sHbImXpqSNVgJ6w8plmLz2b5ztbfDK60Lg3YfM2bKHrp/VpkIj3vM06C0v34YCqAcXOVjnkGWkcsMqZZm8eivO9rYfnR4wZ/MuujaqDSQ+m9p6+GSu3XnA7pl/kKBSEfSxv8wqezaMDDO/H7Zh5TJMXrPto5MzgXceMmfLbro2TByxGhXzgUlrttGoSlkcrXMSEvGeJdsP8PxNCC1rVMp0H4CGFUoyecNunO1s8HLLTeC9x8zZdoCuH2t41pYWWFtaaOxjqK+Pg1UOPFyc5HGqXIbJa/7C2cEWL7eP19PmXXRtmFh2kdExjFuxiebelXC0zsnjV8GMXrIOG8vsNJXpcay0rieAIR2b027UNKqU8KJ6qaIcvnCFfWcucWzRZHmcKpZi8vodiX93eZwJvPeIOVv30vWLVrGIqGj+PnGB6f07y+KREafs5mZULe7J8MXrMTU2wtXehlPX/2X94ZPM+LmLfE4bdn50+niN/7WfrvW91Wn+9j+PTY7suNjb8M/Dpwyav5YmlctQR4YnS5I4fOk6kiTh4eLE/RdBDF+8kQIujnT1qY5CoWBASx+mbNhF/twOuOdyZMrGnZiZGNOuljy/BQLdRyFJaVT/vkJERASWlpa8PrwRa4vUm6HfR8Uwdvkmdp28SPC7cJxsctKmdhXGdG+tDoxr9x+nx8T5yfYd070NY3u2TZeTUgWH3yqoa6+PYRpz9b2Pimbs0g3sOnn+o5MVbepUY0yPthgZGvL45Wvcm/VIcd+jiyZRvVT6mv6UKonDrxOoa0v6nJZtYtepCwSHhuNka/Uxn9pgZGjIh9g4Oo6dyaVbd3kbHoG1pQWlC+VnZNfWlPHMny4ftdMbqJs9GsM02rHeR8cwdtU2dp25/KnsalRkTOfmGBmmfD+Yr+0ABrT0ydCLZZQSHI4wo66dXjrzaaNm2dWuqi67mA+xNB82kcC7Dwl7H4WjTU6qlyzCuD4dcba3Tb+TSuJwsCpTrqckVu85wtS123j+JgQPl1yM7dWBxhm4yVBfTzmV6Su7FVvYdfrSJ6ealRjTtaWG0/I9fgyev4bnO5dhmc083S5qJwkOvzPMNKegkHeMWrYJv4DrhEZE4upgS89GtRjYumG6x2monXLEps9p5VZ2nQ74zKkiY7q0VF/j8/8+yMwte3n9LrGJu2Pdqozu3OKrfwNfdQozpq7lhzSdALb5n2fU8s08fxOKlUU2mlcty/iebdWtBEkvllm+9xjv3kdR1tOd+b92p3De9L1YJiQyGvuG3QkPD5ftRS1JcWJTTlvMFN9Xx46WVLR/90ZW3/91tBLQtUVGArq2yEhA1xYZCejaIiMBXVtkJKBri4wEdG2RkYCuLTIS0LVFRgO63GgzoG/OaZcpAb3du2AR0FNBdEsIBAKBQPADIKZPFQgEAoGsiFHu2kEEdIFAIBDIigjo2kE0uQsEAoHgfwYxferXETV0gUAgEMiKHvC940r1Pg7fFtOnfh0R0AUCgUAgK4qP/773GILUEQFdIBAIBLIjwrH8iD50gUAgEAh+AEQNXSAQCASyolAkLt97DEHqiIAuEAgEAlkRj61pB9HkLhAIBALBD4CooQsEAoFAVvRQoPeddezv3f//A+kO6LGxscTGxqo/R0REAKAqWgOVtXXmm30DKqUS/PyIj4nSmfaZeAnAhPg3r0Ehz3zOGSVeUgD2JOR0QKEjk44kqCSIiCAhW04UerrRcJSgUkFwCPFvda3sbEhwLYyevn5W6wCQkJAA7+4Q//69juWTFaoi1VAZ6Ea9RRUfD6cvoCrbCJUM0y9n2CckRGvnEk3u2iHds635+voybty4ZOs3bdqEmZluzLYmEAgEgvQRHR1N+/bttTLb2m4rB8y/80Y9SqWiSWiQmG0tFdId0FOqoTs7O/Pq1SusdaSGrlQq8fPzo2b2DxjoyO1cvATHIkyoyWsMdKj2cgx7arlmx0BHaujxKomjTyKoldcaAx2pocerVBx9GEJN/be6VXYJNtQq7oGhjtTQlQkJHA28Q02DUN3Kp3gralcpj6GO1NCV8fH4nb5A7dq1MdSBGnpISAiOjo5aCeh7rDMnoDcOEQE9NdJ9pRsbG2NsbJxsvaGhoU5cnJ9joEAn5hv+HAOFhKGO/NgBIIGBnkJn5vlOwkBPD0N93QjoSehc2QGG+voYGuhGQE9CJ/PJwEBnAnoSuvKbqU0H0eSuHXTrl1MgEAgEAsE3oVu3rgKBQCD44RDvctcOIqALBAKBQFb0FJkw25qI52kiArpAIBAIZEX0oWsH0YcuEAgEAsEPgKihCwQCgUBWRA1dO4iALhAIBAJZEYPitINochcIBAKB4AdA1NAFAoFAICtiPnTtIGroAoFAIJAVvUxaAMqUKYOnpycLFy7U5lf4n0ArNfT4+Hh8fX3ZuHEjQUFBODo60rVrV0aPHo3ex/f7SpLEuHHjWLZsGe/evaNcuXIsXLgQLy8v2bzytfmZJ6/fJlv/U9M6zB/YndehYYxYugm/yzcJi4yiStFCzP21K/lzO8rn1HMUT4JDkzvVr8r8vu2IjPnAyLW72H3xOiHvo8hjZ83PDavTt341WXzy1m3Dk5evk/u0acqC0QPRL1I9xf2mDu7LkG5t5XGq2YwnL4OSO7VrzoI/hgJw+8Fjhs9cyKmAa6hUEl7ubmyZPQEXJwdZnPJ1G8GT4OSzV/3UoDrz+7Wn+6zVrDt2XmNbWQ83zs0aIYsPgFuZqjx5/iK5U9eOLJysOdFSn6GjWL5hC7PGjWZg726yOeXrOuwr+eTN/P4dGLdhN3+dCuDZm1CMDA0o6e7K+M7NKFcwr2xOeQoV4cnTZ8nW9+vdkznTJjN63AQOHPbj4ePHWGbPTi3vakwZ74uTo3y/A3ny5OHJkyfJnfr1Y+HChezYsYOlS5dy5coVQkJCuHbtGsWLF5fNR5cICAgQ73L/CloJ6FOnTmXJkiWsXbsWLy8vLl++TLdu3bC0tOTXX38FYNq0acyaNYs1a9ZQoEABJkyYQO3atblz5w4WFhayeF1YOomEBJX68z+PnlFvyERaVCuHJEk0Hz0TQwN9dkwcQnYzU+Zs20/d3yZyc80MzE1N5HGaOTxx2s4kpycvqffHPFpUKgXAbyv/5sSNu6wd3I08dtb4XfuXn5dswckqB43LF8t0n4ubl5KgSvjkc+8RdXsPoWXdxBuIF/7bNdIfPH2JXmOn0bxW1Ux3UTttW6VZbvceULfHr7SsVxOAB0+fU7VDH7q3aITvzz2xtMjG7QePMTE2ks3pwpyRmk5PXlBv9BxaVC6lXle3lBcrB3ZVfzYylPfP79LBnZrX0n93qdOmM60a+Wik23XwCJeuXcfJwV5WH4ALc0cnz6dRs2hRJTGfCuRyYO5P7cnrYEtMXBxzd/rhM3o2d1ZOwtZSnt+BgFP+iVPAJjn9e5vajZrSqlkToqOjuRp4nTHDh1KsSGHehYUx8PcRNG7VjstnTsjiA4lBS8Ppn3+oXbs2rVq1AiAqKopKlSrRqlUrevXqJZtHZiFGuWsHrQT08+fP06RJExo0aAAk3n1u3ryZy5cvA4m18zlz5jBq1CiaN28OwNq1a7G3t2fTpk306dNHFi/bHJp3edM27Safkz3Vinty7/krLv57j+urp+Pl5gzAgoE9cGzWmy3HztGjYQ15nL740Zr292HyOdhSrXB+AC7895BONcpTvUgBAHrVq8Lyw6e5fP+JLAHd1iqHxuepKzeRz9mJaqWLA+BgoznT3h7/M3iXLUFeZ6dMd/nklFPTafk68rnkolqZEgCMnrMUn6oVmTr0Z3WavM65ZPOBlMrtEPkcban2sZwAjA0NcLCylNVDw+mLspkyfwn58rhQrUI59boXr4L4ZdQ4Dm1eTcOOPeV3+jKfth38mE8eALTzLqexfUbvNqw6coYbj55Ts3gheZxsbTQ+T5k5m3x53ahWpTIKhQK/fbs0ts+fOY2yVWvw9NkzXJydZXKy1XSaMoV8+fJRrVrijXSnTp0AePz4sSznz3QUChSiE112tNKHXrlyZY4dO8bdu3cBuH79OmfOnKF+/foAPHr0iKCgIOrUqaPex9jYmGrVqnHu3DltKBKnjGej3xm61q+OQqEgVhkPgInRpxmJ9PX1MDIw4OzN/7TndOISXWtVUP8xVPJ0Z9+lG7wICUOSJPxv3OHuy2DqlPTUgo+Sjfv86Nasfop/nK/fhnLg9AW6Nasvu4vaKU7Jxr2H6da8IQqFApVKxYGT5yiQx5l6PQfiUKk+Fdr0YNfRk9pzUsaz0f8CXWtX0sinkzfv4tj+Nwr1Gk2feesIDovQnlNcHBu376Zb21ZqJ5VKRedffmPITz3x8iiQxhFkcErKpzqVU7ye4pTxLD94CktzU4q55daOU1wcG7b+RffOHb8agMLDI1AoFOSw1M7NWVxcHBs2bKB79+7fHxQFPzRaqaEPGzaM8PBwChYsiL6+PgkJCUycOJF27doBEBSU2B9qb6/Z5Gdvb59iP5Ic7D4TQFhkFF3qJd4BF3RxwtXehlHLt7D4t56Ym5gw+6/9BIWG8So0TDtOF68TFhVDl5oV1Ovm9GpNnwUbcO02AgN9PfQUeiz7pSOVPd1l99l17Axh7yPp0qReitvX7TmMhZkZzWtVkd3lk9PJRKdmia0/wSHviIyOZuqK9Ywf0Jspv/Xj8JkLtBwwgmNrFlCtbEnZnXZfCCQsMoYutSqq19UrXZgWlUvhamfNo9dv8V2/m9ojZ3Fp7iiMtTCN5a5DfoRFRNC1TQv1uqkLlmKgb8CAnl1lP39K7D5/jbDIaLrUqqSxft/F63SYuozo2DgcrSw5NHEwNjI1t3/Jrr37CQsLp2vH9ilu//DhA8P/8KV961Za68fdtWsXYWFhdO3aVSvnkwPR5K4dtBLQt27dyoYNG9i0aRNeXl4EBgYycOBAnJyc6NKlizrdl3efkiRp7Y501QF/6pUrjpONFZA4j/Jffw6m97Sl2Dbqib6eHjVLFaFeueJa8QFY5XeWeqW8cLLOoV43f58/F+8+Yufon3C1teL0rfv8vGQzDjmzU0umJkm1z84D1KtcDic7mxS3r955gPYNamFibCyrh4bT9n3Uq1IeJ7vEJkqVlNg/27hGFQZ2TbxhLF6oAOeu3WTp1l1aCeirjpyhXunCGuXWumoZ9f8L58lF6fyu5O02ggOXbtKskhacNm3Dp0Y1dT/5les3mbdiDVeO7MmyWl9K+QTgXawgVxb8wduISFYeOk27yUs5N3skdjnkD6Ar167Hp06tFAe8KZVK2nbpjkqlYtGcGbK7qJ1WrsTHxwcnJ/m6seRGBHTtoJUm96FDhzJ8+HDatm1LkSJF6NSpE4MGDWLy5MkAODgkjjxOqqknERwcnKzWLgdPgt5w7MpNejTQ7Bcv5ZGXKyunErJvFc93LOHA9BGERLzHzdFOfqfgEI5d/48etT/VXmJi4xi9fjfTu7ekUdmiFHXLTf+G1WlduRSzdh6V1+dlEMcuXKFH8wYpbj995QZ3Hj+jR4uUt8vi9OIVx84H0KNlY/U6mxw5MDDQxzOfm0baQnnz8OxV8pHxme4UHMKxwNv0qFM51XSOVjlwtbPm3stg+Z2eveDo6bP0aN9ave70xcsEvw3BtXQVDHMXwDB3AZ48f8GQcZNwKyPfgEa10+sQjgX+S4+6yVtzzE2McXeyp3zBfCwf2BUDfT1WHT4jv9PTpxz1P0HPrp2TbVMqlbTu1JVHj5/gt3eX1mrnT5484ejRo/TsKf/4BjlRfOxD/95FkDpaqaFHR0erH09LQl9fH9XHEbhubm44ODjg5+dHiRKJA5vi4uI4efIkU6dOld1vzcET2OWwpH75Eilut8xmBsC956+4cuch47q3TjFdpjodPY+dpQX1yxRWr1MmJKCMT0Dvi3kE9fX0UEmSvD67DmJnlYMGVcunuH3Vjv2U8ixAMQ/5m/7VTjv3Y2eVkwbVPjVtGxkZUqZwIe48eqqR9u7jp7I9sqbh5Hc2sdzKFkk1XUhEJM/ehOKohUFyq7f+jZ2NNQ1qeavXdWrZlFpVK2qkq9euGx1bNqVbm5ayO63xO4OdZXbqly2aZlpJkohVKmV3Wr1+I3a2tjSoV1djfVIwv3f/If4H92JtbSW7i9pp9Wrs7OzUA4oFgtTQSkBv1KgREydOxMXFBS8vL65du8asWbPo3r07kHj3NnDgQCZNmkT+/PnJnz8/kyZNwszMjPbtU+7LyixUKhVrD52kU92qGBjoa2z7+8QFbCwtcLG34Z+Hzxg0fw1NKpehTpnMH02ezOnYeTrVKI+B/ien7GamVC2cn+Grd2BqZISrrRWnbt1jvf9FZnRvkcoRv99nza5DdG5cFwOD5JdMRGQUf/udZPqQn2RzSNFpx346N62fzOm37h1o99sYqpQujne5khw+c4F9J85yfK28L6JQqVSs9TtHp5oVNcotMuYD4zbupXmlkjhaWfL4dQij1+7EJns2mlZI+SYyM53WbPmbzq2ba+STtVVOrL94WsDQwAAHW1s83OV75jvJaa3fWTrVqqCRT1EfYpm0ZT+NyhfDMWcOQt5HsmSfP8/fvqNlldKyO61ev5EuHdpp5FN8fDwtO3TmauAN9v29hYSEBIKCEt/LYGWVEyMj+R6FVKlUrF69mi5duiS7xkNDQ3n69CkvX74E4M6dO0Bia2dSi6cuIeZD1w5aCejz589nzJgx9OvXj+DgYJycnOjTpw9//PGHOs3vv/9OTEwM/fr1U79Y5siRI7I9g57E0Ss3efr6Ld3qV0+27VXIO4YsXMfrd+E4WuekY50qjO4sX+BUO13/j6dvQulWq2KybZuG9mDUut10nrmK0MhoXG2tGN+xMX185GsmPXrhCk9fvf7q6PUtB48jSRLtfGrK5pDM6XwAT18F0a15w2TbmtWuzqKxvzN12ToGTpqFh5sr2+ZOonIpeW/EjgbeTiy3OpqDvPT19PjnyQs2HL9AWFQ0jjktqV7Ug83De2NhJs/7DNROp87y9MVLurdtJet5MoI6n2prdkvo6+lx5/kr1k88x9vwSKyzm1O6gBsnpg/Dy1Xexw6PHj/B02fP6d65o8b65y9esGf/QQCKV9DsHvA/uJfqVeUbAHr06FGePn2qrvh8zp49e+jW7dMLgNq2TXyJ09ixY/H19ZXN6VtR6ClQfGdEFpOzpI1Ckr6trTYiIgJLS0vevn2LtbV12jtoAaVSyYEDB6hr+QFDHSl7pQSHw02oqwjCUCFvs3h6UUoKDksO1HOzxFBHbnuVKolDj8Kp526Lob5uvJFYmaDi0P031DV4o1tlF2+LTylPDL9oUcoqlPEJHLzyL3UNQ3Qrn5TW1PeujGEKrUpZgTI+ngP+iY/rGmrhyYa0CAkJwcbGhvDwcNnGBCTFidNOzmTT+76/60iViiovn8nq+7+OblzpAoFAIPhhEZOzaAcR0AUCgUAgKyKgawfdaNsUCAQCgUDwXYgaukAgEAhkJTOeIxfPoaeNCOgCgUAgkBXR5K4dRJO7QCAQCAQ/AKKGLhAIBAJZEU3u2kEEdIFAIBDIimhy1w4ioAsEAoFAVvQUCvS+MyJ/7/7/HxB96AKBQCAQ/ACIGrpAIBAIZEU0uWuHdAf02NhYYmNj1Z8jIiKAxPenK7UwtWF6SPKI143XSQOfXOIl3bkak1ziVbqTUUku8R+n1NUFklx0seyUCQlZbPKJJBedzKf4+Cw2+USSi679XmoDBZkwKE5MzpIm6Z6cxdfXl3HjxiVbv2nTJszMzDJdTCAQCATyER0dTfv27bUyOcuVvG5k+85JlyITVJR6+EhMzpIK6Q7oKdXQnZ2defXoXrJ5lbMKZXw8fqcvULtKeZ2aYUlnnWrX1olZnyCxtuDn56eb+aSDTrXKFdep2daOXgzUyXwSTl8nJPQdjm75tRLQr7pnTkAveV8E9NRI91VlbGyMsbFxsvWGBgY6cXF+jnBKH4aGhjoT0JPQyXzSSSd9HXTSxXwSTql5aI1MeA5ddKKnjRjlLhAIBALBD0DW3yYKBAKB4IdGjHLXDiKgCwQCgUBWEgP69776NZNkfmBEk7tAIBAIBD8AIqALBAKBQFaSmty/d9E1mjVrRs6cOWnZsmVWqwAioAsEAoFAZpLe5f69i64xYMAA1q1bl9UaakRAFwgEAoGs/Kg1dG9vbywsLLJaQ40I6AKBQCD44Th16hSNGjXCyckJhULBrl27kqVZtGgRbm5umJiYUKpUKU6fPq190UxEjHIXCAQCgawoMuHFMhndPyoqimLFitGtWzdatGiRbPvWrVsZOHAgixYtolKlSixduhQfHx/+/fdfXFxcAChVqpTGG1KTOHLkCE5OTt/2RWREBHSBQCAQyEpmPoeeNDFYEl97i6mPjw8+Pj5fPd6sWbPo0aMHPXv2BGDOnDkcPnyYxYsXM3nyZACuXLnyfdJaRjS5CwQCgeB/BmdnZywtLdVLUvDNCHFxcVy5coU6deporK9Tpw7nzp3LLFWto7WA/uLlSzp27421sxtmNo4UL1+ZK9cC1dt37N5D3cbNsXHJi8I8B4HXb2Spk1KpZNjosRQpUxFzWyec8hWkc88+vHz1KsucAHwnTqZgiTKY2zqRM5crtRo04WLAZXmdXrygY8eOWFtbY2ZmRvHixb9659qnTx8UCgVz5syR1ymNfOra+ycU5jk0lvLVa2WpE8Dt/+7QuFVbLB1dsLDPTfnqtXj67JmMTq/o1Ls/Nnk9MXdyo0SVWlwJvK7erpfTMcVl+rxFMjqlnk+RkZH8PHgoufN7YmrtQKGSZVm8fKVsPulxev06mK69f8IpX0HMbByp16QF9+4/kM0nT6Eiya5fhXkO+g8aAoAkSfhOnIxTvoKYWjtQvV4Dbv17Wzaf7yUzB8U9e/aM8PBw9TJixIgM+7x9+5aEhATs7e011tvb2xMUFJTu49StW5dWrVpx4MABcufOTUBAQIZdMhOtNLm/exdGpZp18a5ahYM7/8bO1oYHDx+Tw9JSnSYqKppKFcrRqnlTevUfkOVO0dHRXA28zpjhQylWpDDvwsIY+PsIGrdqx+UzJ7LECaCAuzsLZk4nr1seYmJimL1gEXUaN+f+javY2trI4PSOSpUq4e3tzcGDB7Gzs+PBgwfkyJEjWdpdu3Zx8eJF2fuW0pNPAPVq12L1koXqz0ZGRlnq9ODhIyrXrkePzp0YN2oElpaW3L5zBxNjE3mcwsKoXK8x3lUqcWDbxkSnR5pOL/+7rrHPwaPH6fnLYFo0biCPUzryadCwkfifOs2GlUvJ4+rCkWP+9Bv4G06ODjRpmPleaTlJkkTTth0wNDRg91+byG5hwaz5C6nVsAn/XrmIubl5pjsFnPIn4bM57//59za1GzWlVbMmAEybNZdZ8xexZulCCri7M2HaDGo3asadwACdGnWdhEJPgULvO/vQP85xnz179kybbe3LfnlJkjLUV3/48OFM8cgstBLQp86ag3Pu3Kxe+umuP4+rq0aaTu3bAvD4yRNtKKXpZGlpid++XRr7zJ85jbJVa/D02TNcnJ217gTQvk0rjc+zpkxk5dr13PjnFjW9q2W+09SpODs7s3r16k9OefIkS/fixQt+/vlnDh8+TIMG8gQDtVM68gnA2NgIBwf7ZOuzymnUuPHUr1ObaRP/VK/L65ZHPqc5C3HO5cSqhXM+ObloXrcO9nYan/ccOIR3lUrkzZM8PzPFKR35dP5iAF06tKN61SoA9O7elaUrV3P56jVZAnpaTvfuP+DCpQD+CTiPl2chABbNmYldHnc2b9tOz66dM93py5vzKTNnky+vG9WqVEaSJOYsXMyoob/RvEljANYuW4y9W342/fU3fXp0y3SfHw0bGxv09fWT1caDg4OT1dr/l9BKk/ueAwcpXaI4rTp2wc7VnRIVqrB89VptnDpTncLDI1AoFMlqglnlFBcXx7JVa7G0zE6xIoXlcdqzh9KlS9OqVSvs7OwoUaIEy5cv10ijUqno1KkTQ4cOxcvLSxYPDad05tOJ02ewc3WnQLFS9Oo/gODgN1nmpFKp2H/oCAXyu1O3cXPsXN0pV60mu/buk81p76HDlCpRjNZde2GfvzAlq9Zm+doNX03/OvgN+48co3vHdrI5pafsKlcsz579B3nx8iWSJOF/8hR37z+gbq2aWeKUNMrZxORTS4q+vj5GhkacOXdeFqfPiYuLY8PWv+jeuSMKhYJHj58Q9Po1dWp6q9MYGxtTrXIlzl24KLvPt6Brz6EbGRlRqlQp/Pz8NNb7+flRsWLFzDuRltFKQH/46DGLV6wif758HN69nb49uzNgyDDWbdysjdNnitOHDx8Y/ocv7Vu3yrTmnm912nfwENnscmFiZc/sBYvw27sLGxtreZwePmTx4sXkz5+fw4cP07dv32RvR5o6dSoGBgYMGCB/VwmkL5986tRm46rlHD+wh5mTJxBw5So16jdO8REUbTgFB78hMjKSKTPnUK92TY7s2UGzRg1p3q4TJ0+fkcfp8VOWrFqHe143Dm3fTJ9unfh1+BjWbfkrxfRrN/+FRbZsNG9UXxYfSF/ZzZsxFc+CHuTO74lRDlvqNW3JotkzqFyxQpY4FfQogKuLMyPGjuPduzDi4uKYMmM2Qa9f8yrotSxOn7Nr737CwsLp2rE9AEGvE89p/0Xrir2dHUGvg2X3+RYy801xZcqUwdPTk4ULF6Z6zsjISAIDAwkMDATg0aNHBAYG8vTpUwAGDx7MihUrWLVqFbdv32bQoEE8ffqUvn37ypoXcqKVJneVSkXpkiWYNO4PAEoUL8at27dZvGIVnTvIVxvILCelUknbLt1RqVQsmjMjy528q1Yh8Pxp3oaEsHz1Wlp36srFE8ews7OVx6l0aSZNmpToVKIEt27dYvHixXTu3JkrV64wd+5crl69+t3PmWbIKY18atOyuTp9YS9PSpcogWuhIuw/dFjdTKlNJ5WkAqBJg/oM+qU/AMWLFeXcxYssWbGaalUqy+NUvBiT/hiZ6FS0CLf+u8uSVevo3LZ1svSrN26mfavmGjVRWZzSKLt5i5ZyIeAye7ZtxtXZmVNnz9Fv0BAcHRyoVaO61p0MDQ3Zvmk9PX76GavcedDX16eWd3V86tTOdJeUWLl2PT51auHk6KixXsH39f/+rxIQEJCuStXly5fx9v7UijF48GAAunTpwpo1a2jTpg0hISH8+eefvHr1isKFC3PgwAFcU+i++19BKzV0Rwd7PAt6aKwr5OHB02fPtXH6FEmvk1KppHWnrjx6/AS/vbtkq51nxMnc3Bz3fHkpX7YMKxcvwMDAgJVr18vj5OiIp6enplOhQuq73NOnTxMcHIyLiwsGBgYYGBjw5MkTfvvttxT72jPF6RuuJ0dHB1xdnLl3/2GWONlYW2NgYIBnoRTSPJfn78DR3o5CBQtonq9Afp4+f5Es7elzF7hz7wE9O7WXxUXtlEY+xcTEMNL3T2ZNmUij+j4ULVKYn/v2pk2LZsyYOz9LnABKlShO4IUzhL18wqsHdzi0ezshoaG4yTTWIIknT59y1P+ERj+9w8c+3qSaehLBb95gL8NNfWaQFU3u1atXR5KkZMuaNWvUafr168fjx4+JjY3lypUrVK1aNXO/uJbRSkCvVL48d+7d11h39959XF0yf2BZekmPU1Iwv3f/IUf37cba2irLnVJCkiRi4+RpSq5UqRJ37tzRdLp7V30X26lTJ27cuKFu2goMDMTJyYmhQ4fKNgL0W/IpJCSUZ89f4CjTILm0nIyMjChTqiR37t7TTHP/Pq4yDLAEqFSuLHe/dHrwANfcuZOlXbVhM6WKF6VYEXnHQKSVT0qlEqVSiZ5C86dJX18flUqVJU6fY2lpia2tDffuP0gcpNdAvu4JgNXrN2Jna0uDenXV69zyuOJgb4/f8RPqdXFxcZw8c5aK5cvJ6vOtJL0p7nsXQepopcl90C/9qFijDpOmz6R182ZcunyFZavXsmz+HHWa0NB3PH32jJevEkcdJv2BOdjbyzJSOS2n+Ph4WnbozNXAG+z7ewsJCQkEfewvs7LKKcsjUGk5RUVFMXHaTBo38MHRwZ6QkFAWLV/J8xcvadWsaab7AAwaNIiKFSsyadIkWrduzaVLl1i2bBnLli0DwNraGmtrzf57Q0NDHBwc8PDwSOmQ3++URj5FRkbiO3EKLZo2xtHBnsdPnjLSdzw21tY0a9wwS5wAhg78hTadu1O1ciW8q1bhkN9R9h44xIlD8gyMG9ivN5XqNmLSzLm0btaYS1eusXztBpbOnq6RLiLiPdt272XG+LGyeHxOWvmUPXt2qlWpxNBRf2BqaoKrizMnT59l3aYtzJoyMUucALbt2IWtjTUuzs7cvHWLX4cOp2mjBtSpVUMWJ0jsCli9fiNdOrTDwODTT7VCoWBg/5+YNGMm+d3zkj9fPiZNn4WZqRntW+vGNJ5foiAT3hSXKSY/ONI3Eh4eLgHS22ePJCkqLM1l799bpMKenpKxsbFU0KOAtGzBXI3tq5cslIBky9iRw9J1fCkqTIoLfyvt2rVLigt/+91Oj/69nqIPIPkf3JslTjEhQVKzxg0lJ0dHycjISHJ0cJAaN/CRLp06nm4fDae4uHSV9d69e6XChQsnOhUsKC1btizV9K6urtLs2bMzdD3FxcVlWj5Fv30l1alZQ7K1sZEMDQ0lF+fcUpcO7aSnd/75tnzKBKekZeWi+ZJ7vrySiYmJVKxIYWnX1o3f5BT75pmkevcqzWXP5nVS4UIFE50KuEtL50xPlmbJ7GmSqamJ9O7xnXQd88sl9s2zTM2nVw/uSF07tpecHB0lExMTyaNAfmnm5AmSKvJdlpXd3OlTpNy5cqmvp9HDhkix74JlvZ4O794hAdKdwMvJtqki30ljRw6THOztJWNjY6lq5YrSzUvnMuTz9tkjCZDCw8Mz9LeaEZLixMNSHtKbcp7ftTws5SG77/86CkmSpG+5EYiIiMDS0pK3zx5hbZXze+8rMgVlfDwH/M9Q37syhga68Zp6nXaqXx9DQ8Os1gESm1oPHDigm/mkg04+lUrplNPBs1d0Mp+E09cJCX2HjbMb4eHhso0NSooTj0oXxMJA/7uO9T4+AbfL/8nq+7+OeJe7QCAQCOQlMwbEfWxzT+9ja/8fyfrbRIFAIBAI0kl6H1v7/4gI6AKBQCCQlayYD/3/IyKgCwQCgUBWFHqJy/ceQ5A6IosEAoFAIPgBEDV0gUAgEMiKaHLXDiKgCwQCgUBe9BSJy/ceQ5AqosldIBAIBP8ziMfWvo6ooQsEAoFAXjJjQvOP+4vH1r6OCOgCgUAgkBXRh64dREAXCAQCgbyIPnStkO6AHhsbS2zspyk6IyIigMT3Eyvj4zPf7BtI8tAVH9BxJ6Uyi00+keSik/mkk04JWWzyiSQX3cwn4fQ1dMVDkHmke3IWX19fxo0bl2z9pk2bMDMzy3QxgUAgEMhHdHQ07du318rkLM+qFyP7d07OEhGfgPOJ62JyllRId0BPqYbu7OzMy/9uYJ0zh1x+GUIZn8DRgOvUrlJeJ2YzgsS7YL/TF4RTGqidatfWqRng/Pz8dDOfhFOq6LSTjlzjISEhODo6aiWgP69RPFMCeu7jgSKgp0K6r3RjY2OMjY2TrTc00MfwOwsqszE0MNCZP+IkhFP6MDQ01Ikfu8/RyXwSTulCJ5105BrXBQdB5iKeQxcIBAKBvHzv3KmfPfb2Iz2HHhUVlanH061bV4FAIBD8cCgUChTfOUpd8QM+h25vb0/r1q3p3r07lStX/u7jiRq6QCAQCARZwObNmwkPD6dmzZoUKFCAKVOm8PLly28+ngjoAoFAIJCXTGxy/5Fo1KgR27dv5+XLl/z0009s3rwZV1dXGjZsyI4dO4jP4KOFIqALBAKBQF70+PRymW9esvpLyIe1tTWDBg3i+vXrzJo1i6NHj9KyZUucnJz4448/iI6OTtdxRB+6QCAQCARZSFBQEOvWrWP16tU8ffqUli1b0qNHD16+fMmUKVO4cOECR44cSfM4IqALBAKBQFbEu9xTZseOHaxevZrDhw/j6elJ//796dixIzly5FCnKV68OCVKlEjX8URAFwgEAoG8iHe5p0i3bt1o27YtZ8+epUyZMimmyZs3L6NGjUrX8URAFwgEAoG8ZOL0qT8Sr169SvPV6aampowdOzZdx/uBhxkIBAKBQKC7WFhYEBwcnGx9SEgI+voZfwOrCOgCgUAgkBWFXuYs8GO9Ke5rU6nExsZiZGSU4eNpLaC/ePmKTn1+wcbdC/Pc+ShRrTZXAm+ot0uShO/UmeTyLIlZrnx4N27Jrf/uyObjO3EyCvMcGouDWwH19tevg+na+yec8hXEzMaRek1acO/+A9l80uMUGRnJz4OHkju/J6bWDhQqWZbFy1dmqdOX25KW6bPnyefk66seZJO0ODg4aKS5ffs2jRs3xtLSEgsLC8qXL8/Tp0/lc0ojn7r2/inZ9vLVa8nmkx6nz+nzy0AU5jmYs2BRljr5TpxMwRJlMLd1ImcuV2o1aMLFgMtZ5qRUKhk2eixFylTE3NYJp3wF6dyzDy9fvZLXKY1rfMeOHdStWxcbGxsUCgWBgYGy+nw3mfgcekBAAP/++y/9+/fP4i/17cybN4958+ahUChYsWKF+vO8efOYPXs2/fv3p2DBghk+rlb60N+FhVG5flO8K1fkwNYN2Nna8ODRY3JYfnp937R5i5i9aBmrF8ymgHteJs6cS53m7fjv4iksLLLJ4uVVqBBH9+1Sf05q4pAkiaZtO2BoaMDuvzaR3cKCWfMXUqthE/69chFzc3NZfFJzAhg0bCT+p06zYeVS8ri6cOSYP/0G/oaTowNNGjbIEqdXDzRvug4e8aNHv19o0bSxbD4AXl5eHD16NEWnBw8eULlyZXr06MG4ceOwtLTk9u3bmJiYyOuUSj4B1Ktdi9VLPtUqvuUOPLOdAHbt3cfFgMs4OTrK7pOWUwF3dxbMnE5etzzExMQwe8Ei6jRuzv0bV7G1tdG6U3R0NFcDrzNm+FCKFSnMu7AwBv4+gsat2nH5zAnZfCD1azwqKopKlSrRqlUrevXqJauHIPOZPXs2kBhrlixZolG2RkZG5MmThyVLlmT4uFoJ6FPnLsI5lxOrFsxWr8vj4qz+vyRJzF26gpGDB9C8UX0A1iycg0PB4mzavpM+XTvJ4mVgoI+Dg32y9ffuP+DCpQD+CTiPl2chABbNmYldHnc2b9tOz66dZfFJzQng/MUAunRoR/WqVQDo3b0rS1eu5vLVa7IG9NScvly/e/8BvKtWIa9bHtl8Ep0MktXKkxg1ahT169dn2rRp6nV58+aV1SfR6ev5BGBsbJTqdjlIy+nFy5f8PPh3Du/eToMWrbPcqX2bVhqfZ02ZyMq167nxzy1qelfTupOlpSV+nwV6gPkzp1G2ag2ePnuGi7Nzsn0yz+nr13inTom/iY8fP5bt/JmJQi8T3uX+A41yf/ToEQDe3t7s2LGDnDlzZspxtdLkvvfQEUoVL0rrbr2x9yhKyep1WL5uo3r7oydPCXodTJ3P/mCNjY2pVrE85y/J19x278FDnPIVxM2zKG27dOfho8cA6nnfP6/R6evrY2RoxJlz52XzSc0JoHLF8uzZf5AXL18iSRL+J09x9/4D6taqmWVOn/P6dTD7Dx2hRxd5bsA0nO7dw8nJCTc3N9q2bcvDhw8BUKlU7N+/nwIFClC3bl3s7OwoV64cu3btkt8pjXw6cfoMdq7uFChWil79BxAc/CZLnVQqFZ169GHowF/UN67aIL3XU1xcHMtWrcXSMjvFihTWCSeA8PAIFAoFOSwt5XX6yjX+P4l49WuK+Pv7Z1owBy3V0B8+ecqS1esZ9FMvRgwawKWr1/h1xB8YGxnRuW0rgj6O8rP/oknNzs6Wp8+ey+JUrnRp1i1fTAF3d14Hv2HCtOlUrFGHW5cvUNCjAK4uzowYO46l8+Zgbm7GrHkLCXr9mldBr2XxScvJ2tqKeTOm0qv/AHLn98TAwAA9PT1WLJxH5YoVsszpc9Zu3IyFRTaaN2kkmw9AuXLlWLduHQUKFOD169dMmDCBihUrcuvWLZRKJZGRkUyZMoUJEyYwdepUDh06RPPmzfH396daNXlqeWnlk0+d2rRq3hRXZ2cePXnCmD8nUqN+Y66cPYGxsXGWOE2dOQcDAwMG9Osry/m/xQlg38FDtO3Sg+joaBwdHPDbuwsbG+ssdUriw4cPDP/Dl/atW8k641dq17i1tXx5IZCfwYMHM378eMzNzRk8eHCqaWfNmpWhY2sloKtUKkoXL8qkMSMAKFG0MLf+u8uS1evo3PZTE9uXbwKSJEm2twP51K2t/n8RoEK5MuQrXIK1GzcxeMDPbN+0nh4//YxV7jzo6+tTy7s6PnVqf/V42nCat2gpFwIus2fbZlydnTl19hz9Bg3B0cGBWjWqZ4nT56xav4EObVrJ3lft4+PzyalIESpUqEC+fPlYu3Ytbdu2BaBJkyYMGjQISHzT0rlz51iyZIlsAT2tfGrTsrl6e2EvT0qXKIFroSLsP3SY5k3kGW+QmlO1KpWZu2gJV8+d1OobuNJzPXlXrULg+dO8DQlh+eq1tO7UlYsnjmFnZ5tlTpA4QK5tl+6oVCoWzZkhi4vaKZVrPK0goJOIF8uouXbtGkqlUv3/r/Etf5daCeiO9nYU8tAcXVuogDs79h4AwMHODoCg4Dc4ftaP9ebN22S1drkwNzeniJcn9x4kNmuVKlGcwAtnCA8PJy5Oia2tDeWq1aR0yfS9gi+znWJiYhjp+yc7t2ygQb26ABQtUpjAGzeZMXe+bAE9NafPOX32HHfu3mPr2lVa8UjmVKQI9+7dw8bGBgMDAzw9PTXSFCpUiDNnzmjXKYV8SsLR0QFXF2fu3ddeM+rnTnp6egS/eYOLx6em7ISEBH4bMZo5Cxfz+PZNrTt9vs49X17c8+WlfNky5C9akpVr1zNiqHYCWUpOSqWS1p268ujxE44f2Kv1+bg/v8b/FxGvfv2Ev79/iv/PDLTSh16pXBnufvHI190HD3F1zgWAm6sLDvZ2+J04pd4eFxfHyXMXqFC2tDYUiY2N5faduxo3FJA4KMbW1oZ79x8kDj5rUF8rPl86KZVKlEolegrNItPX10elUmWJ0+esXLueUiWKU6xoEa25aDjdvo2joyNGRkaUKVOGO3c0R9/fvXsXV1dX7TqlkE9JhISE8uz5i69ul9upU7u23Lh4lsDzp9WLk6MjQwcO4PDuHVni9DUkSSI2LjbLnJKC+b37Dzm6b3eyZnitOX28xgWCr6GVGvrAvr2o5NOESbPm0bppIy5dDWT5uo0snZU4ClmhUPBrn55Mnj2f/HndyJ/Pjcmz52Nmakr7Fs1kcRoyYjSN6tfDxTk3wW/eMmHqdCLev6dLh3YAbNuxC1sba1ycnbl56xa/Dh1O00YNqFOrhiw+aTllz56dalUqMXTUH5iamuDq4szJ02dZt2kLs6ZMzBKnJCIiIti2czczJ0+QzUPDacgQGjVqhIuLC8HBwUyYMIGIiAi6dOkCwNChQ2nTpg1Vq1bF29ubQ4cOsXfvXk6cOCGfUyr5FBkZie/EKbRo2hhHB3seP3nKSN/x2Fhb06xxwyxxsra2ShaYDA0NcLC3w6NA/ixxioqKYuK0mTRu4IOjgz0hIaEsWr6S5y9e0qpZ0yxxio+Pp2WHzlwNvMG+v7eQkJBA0MdxNFZWOWV79DCtazw0NJSnT5/y8uVLAPUNrIODw1dHxmcposldTfPmzdNO9JEdOzJ2c62VgF6mZHF2rFvByPFTGD9jDm4uzsyeOI4OrT59sd8H9CPmwwf6/z6Sd2HhlCtVgsPbN8n2DPrzly9p17Unb0NCsLWxoXzZ0lzw98PVxQWAV0FBDB4+itfBwTg62NO5fVvGDP9dFpf0Om1Zs4oRY8fRoXtvQt+9w9XFmYljR9O3Z/cscwLY8vcOJEmiXasWsnloOD1/Trt27Xj79i22traUL1+eCxcuqGvgzZo1Y8mSJUyePJkBAwbg4eHB9u3bqVy5snxOqeRTTEwMN2/9y7pNWwgLD8fRwR7vqlXYum4VFhYWWeKUVaTm9OHDB/67e5e1GzfzNiQEaysrypQqwWm/g7KOwk/N6fGTJ+zZfxCA4hWqaOznf3Cv+hHSTHdK4xrfs2cP3bp1U6dPGjsyduxYfH19ZXH6PjJjlPqPEdAtZXw6QiF97d1zaRAREYGlpSVv7t/COmeOTNb6NpTxCRw8f5X63pUxNNCNeWeU8fEc8D8jnNJA7VS/PoaGhlmtAyQ2tR44cEA380k4pYpOO+nINR4SEoKNjQ3h4eGyjQlIihPBbaqS3ej7yiEiLh67radk9f1fR7zLXSAQCAT/M/xI73LPbHTj1lUgEAgEPy6Z2IceEBDwP11DL1myJMeOHSNnzpyUKFEi1dH7V69ezdCxRUAXCAQCgayIx9Y+0aRJE/XLpJo2bZqpxxYBXSAQCAQCLTF27NgU/58ZiIAuEAgEAnkRj62lyuXLl7l9+zYKhYJChQpRqlSpbzqOCOgCgUAgkJfMmFzlB2ly/5ykxxPPnj1Ljhw5AAgLC6NixYps3rwZ5wzO5idGuQsEAoFAkAV0794dpVLJ7du3CQ0NJTQ0lNu3byNJEj169Mjw8UQNXSAQCASyIuZDT5nTp09z7tw5PDw81Os8PDyYP38+lSpVyvDxREAXCAQCgbyIJvcUcXFxUc+89jnx8fHkypUrw8cTTe4CgUAgEGQB06ZN45dffuHy5cskvbT18uXL/Prrr8yYkfEpekUNXSAQCATyokcmjHLPFJMsJ2fOnBrP1EdFRVGuXDkMPr6iOD4+HgMDA7p3757h59TTHdBjY2OJjf00hWFERASQ+P50ZXxChk4qF0keyvj4LDb5RJKLcEodtVMKzU9ZRZKLTuaTcEoVnXbSkWtcmx7ixTKfmDNnjmzHTvfkLL6+vowbNy7Z+k2bNmFmZpbpYgKBQCCQj+joaNq3b6+VyVlCetUhu9H3TUgTEafEevkRMTlLKqS7hj5ixAgGDx6s/hwREYGzszPeFcpgbZVTFrmMooyPx+/0BWpXKa9TMyzpqlOtUoUxNNDPah0gsXXl6JV/dDKfdNKpdm2dmLELEmt6fn5+Ip/SQNfyKST0XVYrCD4jJiYmWatJRm9c0n1VGRsbq98/+zmGBgY6cXF+jnBKH4YG+joT0JPQzXzSQSdDQ50JVEmIfEofupJPWnUQo9xTJCoqimHDhvHXX38REhKSbHtCQsa6s3+QYQYCgUAg0FmSAvr3LvxY06f+/vvvHD9+nEWLFmFsbMyKFSsYN24cTk5OrFu3LsPHy/rbRIFAIBAI0sn/+vSpn7N3717WrVtH9erV6d69O1WqVMHd3R1XV1c2btxIhw4dMnQ8UUMXCAQCgcxkRu38x2tyDw0Nxc3NDUjsLw8NDQWgcuXKnDp1KsPHEwFdIBAIBPKip5c5yw9G3rx5efz4MQCenp789ddfQGLNPWmylozw4+WQQCAQCAT/A3Tr1o3r168DiU+SJfWlDxo0iKFDh2b4eKIPXSAQCATyIka5p8igQYPU//f29ub27dtcuXKFfPnyUaxYsQwfTwR0gUAgEMiLCOjpwtXVFVdX12/eXzS5CwQCgUCQRRw7doyGDRuSL18+3N3dadiwIUePHv2mY4mALhAIBAJ5ycTn0H8kFixYQL169bCwsODXX39lwIABZM+enfr167NgwYIMH080uQsEAoFAXjJjlPoPOMp98uTJzJ49m59//lm9bsCAAVSqVImJEydqrE8PP14OCQQCgUC3EDX0FImIiKBevXrJ1tepU0c9o2lGyJKAPnn6LBTmORg4dLh63Y7de6jbuDk2LnlRmOcg8PqNLHVSKpUMGz2WImUqYm7rhFO+gnTu2YeXr15lmROA78TJFCxRBnNbJ3LmcqVWgyZcDLisPac5C9CzdWHgKN8Ut/f5bTh6ti7MWbJCe04p5FPX3j+hMM+hsZSvXitLnQBu/3eHxq3aYunogoV9bspXr8XTZ8+04zR5MgqFgoEDB6rXJU1r+eUyffp07TilkE+RkZH8PHgoufN7YmrtQKGSZVm8fKVWfCDlfHr9+jVdu3bFyckJMzMz6tWrx71792Rz8J04Odn16+BWQL1dkiR8J07GKV9BTK0dqF6vAbf+vS2bj0AeGjduzM6dO5Ot3717N40aNcrw8bTe5B5w5SrLVq+haGEvjfVRUdFUqlCOVs2b0qv/gCx3io6O5mrgdcYMH0qxIoV5FxbGwN9H0LhVOy6fOZElTgAF3N1ZMHM6ed3yEBMTw+wFi6jTuDn3b1zF1tZGXqdr11m+fjNFvQqluH3XgcNcuhKIk4O9rB4aTl/JJ4B6tWuxesmn9z0bGRllqdODh4+oXLsePTp3YtyoEVhaWnL7zh1MjE3kdwoIYNmyZRQtWlRj/asvblAPHjxIjx49aNGihfxOX8mnQcNG4n/qNBtWLiWPqwtHjvnTb+BvODk60KRhA3mdUsgnSZJo2rQphoaG7N69m+zZszNr1ixq1arFv//+i7m5uSwuXoUKcXTfLvVnff1PEylNmzWXWfMXsWbpQgq4uzNh2gxqN2rGncAALCwsZPH5LsQodzXz5s1T/79QoUJMnDiREydOUKFCBQAuXLjA2bNn+e233zJ8bK3W0CMjI+nQvRfLF8wjZ84cGts6tW/LHyOGUcu7mjaVvupkaWmJ375dtG7RDI8C+SlftgzzZ07jyrVA2WtUqeVT+zatqFWjOnnd8uDlWYhZUyYSERHBjX9uyewURce+A1g2awo5LS2TbX/xKohfho9hw5K5WpvdKrV8AjA2NsLBwV69WGlhmt/UnEaNG0/9OrWZNvFPShQvRl63PDSoVxc7O1v5nTp0YPny5eTMqZkHDg4OGsvu3bvx9vYmb9688jt9JZ/OXwygS4d2VK9ahTyurvTu3pViRQpz+eo1+Z1SyKd79+5x4cIFFi9eTJkyZfDw8GDRokVERkayefNm2XwMDPQ1rt+kG3ZJkpizcDGjhv5G8yaNKezlydpli4mOiWbTX3/L5vNdiCZ3NbNnz1YvK1euJGfOnPz777+sXLmSlStXcuvWLXLkyMGqVasyfGytBvT+g4bQoG4datWors3TpkpGnMLDI1AoFORIIaBlhVNcXBzLVq3F0jI7xYoUltXp52GjqV+7BrWqVUm2TaVS0bnfQIb074NXQQ9ZPT4nrXw6cfoMdq7uFChWil79BxAc/CbLnFQqFfsPHaFAfnfqNm6Onas75arVZNfeffI79e9PgwYNqFUr9S6H169fs3//fnr06CG/UyplV7liefbsP8iLly+RJAn/k6e4e/8BdWvVlNfpK/kUGxsLgInJp5YUfX19jIyMOHPmjGw+9x48xClfQdw8i9K2S3cePnoMwKPHTwh6/Zo6Nb3VaY2NjalWuRLnLlyUzUeQOTx69Chdy8OHDzN8bK01uW/Ztp2rgTcIOH1cW6dMk4w4ffjwgeF/+NK+dStZZ/pJj9O+g4do26UH0dHRODo44Ld3FzY21vI57dzD1Zv/cOnI3hS3T523CAMDfQb07i6bQzKnNPLJp05tWjVviquzM4+ePGHMnxOpUb8xV86ewNjYWOtOwcFviIyMZMrMOUz4YxRTx/tyyO8Yzdt1wv/gXqpVqSyP05YtXL16lYCAgDTTrl27FgsLC5o3by6Li9opjbKbN2MqvfoPIHd+TwwMDNDT02PFwnlUrlhBPqdU8qlgwYK4uroyYsQIli5dirm5ObNmzSIoKChZl0VmUa50adYtX0wBd3deB79hwrTpVKxRh1uXLxD0+jUA9vZ2GvvY29nx5Kl2xmNkGDHKPU0kSQISx7V8K1oJ6M+eP+fXocM5smeHxl1uVpIRJ6VSSdsu3VGpVCyaMyPLnbyrViHw/GnehoSwfPVaWnfqysUTx2Rpun324iUDR/ly+K8NKTpduX6DectWc+X4/u+6EDPklI58atPyU1Aq7OVJ6RIlcC1UhP2HDtO8SWOtO6kkFQBNGtRn0C/9ASherCjnLl5kyYrVsgT0Z8+e8euvv3LkyJF0/d2tWrWKDh06yPo3mp6ym7doKRcCLrNn22ZcnZ05dfYc/QYNwdHBQZbWvbTyydDQkO3bt9OjRw+srKzQ19enVq1a+Pj4ZLpLEj51a6v/XwSoUK4M+QqXYO3GTZQvWwYAxRezj0mSpLW/wQwj+tC/yrp165g+fbp6kGWBAgUYOnQonTp1yvCxtBLQr1wLJPjNG0pVrq5el5CQwKkz51iwdDmx74I1BnzokpNSqaR1p648evyE4wf2ylo7T6+Tubk57vny4p4vL+XLliF/0ZKsXLueEUMHZ77T9ZsEv3lL6VqfBiMlJCRw6vxFFq5cy5Q/RhD89i2uxStobB8ydgJzl63i0dVzme/0DdeTo6MDri7O3Luf8WaszHCKevMSAwMDPAtpdkkU8vDgzPkL8jhduUJwcDClSpXSdDp1igULFhAbG6vOp9OnT3Pnzh22bt0qi4vaKY18Cn/1lJG+f7JzywYa1KsLQNEihQm8cZMZc+fLEtDTk0+lSpUiMDCQ8PBw4uLisLW1pVy5cpQuXTrTfVLC3NycIl6e3HvwkKaNGgIQ9Po1jo4O6jTBb95gL/N4DEHmMmvWLMaMGcPPP/9MpUqVkCSJs2fP0rdvX96+favxrvf0oJWAXrN6NW5e0vxh79a3PwUL5GfY4IFaD+bpdUoK5vfuP8T/4F6sra2y3CklJEkiNi5WHqeqlbhxyk9jXfcBv1Ewfz5+/6UfjvZ21P1iIGO91h3p2Ko53dq3lsfpG/IpJCSUZ89f4CjTCPy0nIyNjSlTqiR37mo+6nT3/n1cnZ3lcapZk5s3b2o6detGwYIFGTZsmEY+rVy5klKlSn3ThBAZckojnxISElAqlegpNJtX9fX1UalU8jhlIJ8sP46fuXfvHpcvX2b8+PGyOH1JbGwst+/cpUqlCrjlccXB3h6/4ycoUTyxvOLi4jh55ixTx4/Tik+GUZAJNfRMMdEp5s+fz+LFi+ncubN6XZMmTfDy8sLX11c3A7qFhQWFvTw11pmbm2FtZaVeHxr6jqfPnvHyVRAAd+7dB8DBPnGEp7ad4uPjadmhM1cDb7Dv7y0kJCQQFJTYd2VllVOWR6DScoqKimLitJk0buCDo4M9ISGhLFq+kucvXtKqWdNM9wGwyJaNwl/UKs3NzLDKmVO93vqL0eOGhoY42Nni4Z5PHqc08ikyMhLfiVNo0bQxjg72PH7ylJG+47GxtqZZ44ZZ4gQwdOAvtOncnaqVK+FdtQqH/I6y98AhThySZ2CchYUFhQtrDpY0NzfH2tpaY31ERATbtm1j5syZsngkc0ojn6pVqcTQUX9gamqCq4szJ0+fZd2mLcyaMlE+pzTyadu2bdja2uLi4sLNmzf59ddfadq0KXXq1JHFaciI0TSqXw8X59wEv3nLhKnTiXj/ni4d2iU+I9//JybNmEl+97zkz5ePSdNnYWZqRvvWLWXx+W5Ek3uKvHr1iooVKyZbX7FixW8an6Ezr37ds/8A3fr2V39u2yVxgNXYkcPwHTVC6z7PX7xgz/6DABSvoDmy2//gXqpXTT7aW2709fX57+5d1m7czNuQEKytrChTqgSn/Q7i5Znys+H/H9HX1+fmrX9Zt2kLYeHhODrY4121ClvXrcrSZ3SbNW7EkrmzmDxzNgOGDMMjvzvbN62TdbBXetiyZQuSJNGuXbss9Uhiy5pVjBg7jg7dexP67h2uLs5MHDuavj21N+jyS169esXgwYN5/fo1jo6OdO7cmTFjxsh2vucvX9Kua0/ehoRga2ND+bKlueDvh6uLCwC/D/6VmA8x9Bs4hHdhYZQrU4oje3bo5jPogq/i7u7OX3/9xciRIzXWb926lfz582f4eAopaWhdBomIiMDS0pK3zx4lq6FlFcr4eA74n6G+d2UMDXTjXkWXnXzKFcPQQPvdHSmhjE/g4MXrOplPOulUv77WnvdPC6VSyYEDB0Q+pYGu5VNI6DtsnN0IDw+XbWxQUpwIHd6O7Mbf16oZERuH1ZTNsvpqm+3bt9OmTRtq1apFpUqVUCgUnDlzhmPHjvHXX3/RrFmzDB3vx34OQCAQCAQ6QGa8VCaxyb1MmTJ4enqycOHC1E/5P0CLFi24dOkSNjY27Nq1ix07dmBjY8OlS5cyHMxBh5rcBQKBQPCDkol96AEBAT9EDV2pVNK7d2/GjBnDhg0bMuWYooYuEAgEAoGWMTQ0THFilu9BBHSBQCAQyIt4l3uKNGvWjF27dmXa8USTu0AgEAjkRbz6NUXc3d0ZP348586do1SpUslm7hswIGMzj4qALhAIBAJBFrBixQpy5MjBlStXuHLlisY2hUIhArpAIBAIdAzxYpkUefTokfr/mTE5y4/XhiEQCAQC3UL0oX+VlStXUrhwYUxMTDAxMaFw4cKsWLHim44laugCgUAgEGQBY8aMYfbs2fzyyy9UqJD4xsjz588zaNAgHj9+zIQJEzJ0PBHQBQKBQCAvosk9RRYvXszy5cs1XrvcuHFjihYtyi+//CICukAgEAh0DDHKPUUSEhJSnIK3VKlSxMfHZ/h46Q7osbGxxMZ+mqIzIiICSHxnsvIbTiwHSR664gO67pSQxSafSHLRzXzSQSelMotNPpHkIvIpdXQtn7TqIWroKdKxY0cWL17MrFmzNNYvW7aMDh06ZPh46Z6cxdfXl3Hjks+1u2nTJszMzDJ8YoFAIBBkHdHR0bRv3147k7P82ZPsJt85OcuHOKz+WPFDTc7yyy+/sG7dOpydnSlfvjwAFy5c4NmzZ3Tu3FljYqEvg35KpDugp1RDd3Z25tWjezo125rf6QvUrlJeJ2YzAuGUXtROtWvr1OxYfn5+uplPwilVhFPahIS+w9Etv3YC+vhemRPQxyz/oQK6t7d3utIpFAqOHz+eZrp0X1XGxsYYGxsnW29oYKATF+fnCKf0oZNOhoY6E9CT0Ml8Ek7pQjil7qE1RB96ivj7+2fq8X68HBIIBAKB4P8hWX+bKBAIBIIfGwWZMCguU0x+aERAFwgEAoG8iFHuWkE0uQsEAoFA8AMgaugCgUAgkBdRQ9cKIqALBAKBQF4UmTDKXSEalNNC5JBAIBAIBD8AooYuEAgEAnkRTe5aQQR0gUAgEMiLCOhaQQR0gUAgEMiLQu/7+8BFH3qaiBwSCAQCgeAHIEsC+uTps1CY52Dg0OHqdZIk4TtxMk75CmJq7UD1eg249e9t2RwWL19J0bIVye7gTHYHZyp41+bgYT/19tevg+na+yec8hXEzMaRek1acO/+A9l80uMUGRnJz4OHkju/J6bWDhQqWZbFy1dmqZPCPEeKy/TZ8+RzWryYokWLkj17drJnz06FChU4ePCgRprbt2/TuHFjLC0tsbCwoHz58jx9+lQ+pzTyqWvvn5LlUfnqtWTzSY/T5/T5ZSAK8xzMWbAoS518J06mYIkymNs6kTOXK7UaNOFiwOUsc1IqlQwbPZYiZSpibuuEU76CdO7Zh5evXmWZE8CO3Xuo27g5Ni55UZjnIPD6DVl9vhs9ReYsglTRekAPuHKVZavXULSwl8b6abPmMmv+IhbMmkbAqeM42NtTu1Ez3r9/L4tH7lxOTPnTl8un/bl82p8a1arSpE17bv17G0mSaNq2Aw8fP2b3X5u4du4Uri7O1GrYhKioKFl80nICGDRsJIf8jrJh5VJuX73IoJ/78ctvv7N73/4sc3r14I7GsmrxAhQKBS2aNpbPKXdupkyZwuXLl7l8+TI1atSgSZMm3Lp1C4AHDx5QuXJlChYsyIkTJ7h+/TpjxozBxMREPqc08gmgXu1aGnl1YMc22XzS6wSwa+8+LgZcxsnRUVaf9DgVcHdnwczp3Lx0jjN+h8jj6kKdxs158+ZtljhFR0dzNfA6Y4YP5erZk+zYvJ679x/QuFU72XzScgKIioqmUoVyTPnTV1aPTCOpyf17F0GqaLUPPTIykg7de7F8wTwmTJuuXi9JEnMWLmbU0N9o3iQxEKxdthh7t/xs+utv+vTolukujer7aHye6DuGxStWciEgAENDQy5cCuCfgPN4eRYCYNGcmdjlcWfztu307No5033ScvLyLMT5iwF06dCO6lWrANC7e1eWrlzN5avXaNKwQZY4OTjYa2zfvf8A3lWrkNctjyw+AI0aNdJ0mjiRxYsXc+HCBby8vBg1ahT169dn2rRp6jR58+aVzQfSzicAY2OjZPmV1U4vXr7k58G/c3j3dhq0aJ3lTu3btNLYPmvKRFauXc+Nf25R07ua1p16eHbGb98uje3zZ06jbNUaPH32DBdnZ607eXkWolP7tgA8fvJElvML/jfR6i1P/0FDaFC3DrVqVNdY/+jxE4Jev6ZOzU9zwxobG1OtciXOXbgou1dCQgJbtm0nKiqaCmXLqud9/7xGp6+vj5GhEWfOnZfdJyUngMoVy7Nn/0FevHyJJEn4nzzF3fsPqFurZpY5fc7r18HsP3SEHl06acVH7bRlC1FRUVSoUAGVSsX+/fspUKAAdevWxc7OjnLlyrFr1y7tOqWQTydOn8HO1Z0CxUrRq/8AgoPfZKmTSqWiU48+DB34izrAa5O0rqe4uDiWrVqLpWV2ihUprBNOAOHhESgUCnJYWuqMk86TNMr9exdBqmithr5l23auBt4g4HTySdqDXr8GwN7eTmO9vZ0dT54+k83p5j+3qFCjDh8+fCBbNnN2bt6AZ6GCKJVKXF2cGTF2HEvnzcHc3IxZ8xYS9Po1r4Jey+aTmhPAvBlT6dV/ALnze2JgYICenh4rFs6jcsUKWeb0OWs3bsbCIhvNmzRK4SiZ7HTzJhUqVPjolI2dO3fi6elJUFAQkZGRTJkyhQkTJjB16lQOHTpE8+bN8ff3p1o1eWp5kHo++dSpTavmTXF1dubRkyeM+XMiNeo35srZExgbG2eJ09SZczAwMGBAv76ynT+jTgD7Dh6ibZceREdH4+jggN/eXdjYWGepUxIfPnxg+B++tG/diuzZs+uE0/8EYj50raCVgP7s+XN+HTqcI3t2pNqPqfhifjxJklDIeFfmUSA/gedPExYezvZde+jS5ydOHtqPZ6GCbN+0nh4//YxV7jzo6+tTy7s6PnVqy+aSHqd5i5ZyIeAye7ZtxtXZmVNnz9Fv0BAcHRyStXpoy+lzVq3fQIc2rWTtq1Y7eXgQGBhIWFgY27dvp0uXLpw8eZIcOXIA0KRJEwYNGgRA8eLFOXfuHEuWLJE1oKeWT21aNlenK+zlSekSJXAtVIT9hw6ru5m06RTz4QNzFy3h6rmTsv6NZcQp6XryrlqFwPOneRsSwvLVa2ndqSsXTxzDzs42y5wgcYBc2y7dUalULJozQzaXjDgJBJ+jlYB+5VogwW/eUKpydfW6hIQETp05x4Kly7kTmDiKNej1axwdHdRpgt+8wV7GP2IjIyPc8yX2rZYuWYKAK1eZu2gJS+fPoVSJ4gReOEN4eDhxcUpsbW0oV60mpUuWkM0nNac50yYz0vdPdm7ZQIN6dQEoWqQwgTduMmPufFkDemr5lMTps+e4c/ceW9euks0jmZO7e6JT6dIEBAQwd+5c5s+fj4GBAZ6enhrpCxUqxJkzZ+R3SiOfknB0dMDVxZl79x9miVMhjwIEv3mDi8enpuyEhAR+GzGaOQsX8/j2Ta07JeWTubk57vny4p4vL+XLliF/0ZKsXLueEUMHZ5mTUqmkdaeuPHr8hOMH9speO0+P0/8UP+CLZZ49e0anTp0IDg7GwMCAMWPG0KpVq7R3lBGtBPSa1atx89I5jXXd+vanYIH8DBs8kLxueXCwt8fv+AlKFC8GJPafnTxzlqnjx2lDEUhsEUjqP0/C8mM/2b37D7h89Rrjx4zSms/nTkqlEqVSid4XIz319fVRqVRZ4vQ5K9eup1SJ4hQrWkSrLl86GRkZUaZMGe7cuaOx/e7du7i6umaJU0qEhITy7PkLHLU4SO5zp07t2lLLu7rGtrpNWtCpXRu6deqQJU6pbo/7+nY5+NwpKZjfu/8Q/4N7sba20qpLSk7/c/yAL5YxMDBgzpw5FC9enODgYEqWLEn9+vUxNzfPOidtnMTCwoLCXpo1JnNzM6ytrNTrB/b/iUkzZpLfPS/58+Vj0vRZmJma0b51S1mcRo79E586tXDOnYv37yPZ8vcOTpw+w6Fd2wHYtmMXtjbWuDg7c/PWLX4dOpymjRpQp1YNWXzScsqePTvVqlRi6Kg/MDU1wdXFmZOnz7Ju0xZmTZmYJU5JREREsG3nbmZOniCbh4bTyJH4+Pjg7OzM+/fv2bJlCydOnODQoUMADB06lDZt2lC1alW8vb05dOgQe/fu5cSJE/I5pZJPkZGR+E6cQoumjXF0sOfxk6eM9B2PjbU1zRo3zBIna2urZIHJ0NAAB3s7PArkzxKnqKgoJk6bSeMGPjg62BMSEsqi5St5/uIlrZo1zRKn+Ph4WnbozNXAG+z7ewsJCQkEfRxHY2WVEyMjI607AYSGvuPps2e8fBUEwJ179wFwsLfX6pMU/59xdHTE8eOjnnZ2dlhZWREaGvrjB/T08PvgX4n5EEO/gUN4FxZGuTKlOLJnBxYWFrKc73VwMJ169uFV0Gsss2enaGEvDu3aTu2PI+1fBQUxePgoXgcH4+hgT+f2bRkz/HdZXNLrtGXNKkaMHUeH7r0JffcOVxdnJo4dTd+e3bPMCWDL3zuQJIl2rVrI5qHh9Po1nTp14tWrV1haWlK0aFEOHTpE7dqJYxyaNWvGkiVLmDx5MgMGDMDDw4Pt27dTuXJl+ZxSyaeYmBhu3vqXdZu2EBYejqODPd5Vq7B13SrZru+0nLKK1Jw+fPjAf3fvsnbjZt6GhGBtZUWZUiU47XdQ1lH4qTk9fvKEPfsTX1pUvEIVjf38D+5VP0KqTSeAPfsP0K1vf3X6tl0SfwPGjhyG76gRsjh9Fwoyock9Y8lPnTrF9OnTuXLlCq9evWLnzp00bdpUI82iRYuYPn06r169wsvLizlz5lClSsbL9PLly6hUKpxleowxvSgkSZK+ZceIiAgsLS15++wR1lY5M9vrm1DGx3PA/wz1vStjaKAb9yrCKX2onerXx9DQMKt1gMSm1gMHDuhmPgmnVBFOaRMS+g4bZzfCw8NlGxOQFCdCF48ku+n3DZaNiPmA1U+TePbsmYavsbFxik+KHDx4kLNnz1KyZElatGiRLKBv3bqVTp06sWjRIipVqsTSpUtZsWIF//77Ly4uLgCUKlUqxW6OI0eO4OTkBEBISAhVqlRhxYoVVKxY8bu+4/eS9VeVQCAQCH5sMnFQ3Je14LFjx+Lr65ssuY+PDz4+PsnWJzFr1ix69OhBz549AZgzZw6HDx9m8eLFTJ48GeD/2rvzuKjKvo/jn5FdBRSQAWQR9x0NSTFcMEXR3M31Nsx6SkVLLUttkUrTNM3KxPRRM7tNKxVwl24VXNJQI73NR8XcY3EFAWM9zx/GKIowKmfORL/363VexZnDzNeLgd+5rnPNuTh06FCpkXJycujbty9TpkzRvJiDFHQhhBB/IyX10B9Wbm4uhw4dYvLkycX2h4SEsG/fvgd8V3GKojBixAg6derE8OGmu5lWaaSgCyGEUFc5znIvWpTpcVy5coWCggL0+uITCPV6PSkpKUY9x969e1mzZg3Nmzc33Ily5cqVNGumzSd9QAq6EEIItenKYbU0FT6Hfu9NlR7mZmZBQUEm/8hwWczrg31CCCGEylxcXLCwsLivN56WlnZfr/3vRAq6EEIIdZnZ8qnW1tb4+/sTGxtbbH9sbKxZTG57VDLkLoQQQl3lOMs9ICAACwsLwsPDCQ8Pf+DhmZmZJCUlGb4+c+YMiYmJODk54e3tzcSJExk+fDitWrUiMDCQxYsXc/78eUaNMu1iReVJCroQQoi/jYSEBKMmxR08eJDg4Ds3UZo48fZaAGFhYXz11VcMGjSIq1ev8v7775OcnEzTpk3ZvHmzyW8RXZ6koAshhFCXBvdy79ixI2XdN23MmDGMGTPmcVKZFSnoQggh1FWpHGa5P+73/wPIpDghhBCiAjC6h56Tk1PsnrYZGRnA7fsT5+Xnl3+yR1CUw1zygGQyliFTXp7GSe4oymKW7SSZSiWZymbSHBVwPXRzZPTiLBEREbz33v1rk69atYrKlSuXezAhhBDqyc7OZujQoaZZnGXFTBwqP+biLNl/4hQ2hfr16xs1y/2fyOiCXlIP3cvLi+Qzp8xqtbXY3fvp0q6NWaxmBJLJWOacqXOAH1aWFlrHASAvv4AfE341y3bq0qWLWa2UFxsba57tZCaZrl67jrtvPdMU9JWzyqegD5+sat6/O6PfVQ9aos7K0tIs3px3k0zGkUzGsbK0MJuCXsQs28nKymwKehGzbCczyWQOGUT5kp+oEEIIdel05fCxNbmGXhYp6EIIIdQlk+JMQj62JoQQQlQA0kMXQgihLg3uFPdPJC0khBBCXUV3invcjduLszRu3JgvvvhC43+U+ZEeuhBCiL8NYxdn+SeSgi6EEEJdMuRuElLQhRBCqEtmuZuEnPIIIYQQFYD00IUQQqirUqXb2+M+hyiVFHQhhBAqK4chd2TIvSwmOeWZOWceAe2Csdd74upTlz6DhnLi5Klix6yLjqFrr364eNdGV6Uaib8e0TRTXl4eb749jWYBbalSwwOPOg157sWX+SM5WbNMABEzZtKwZQBVanhQvaYPnXv05kDCQU0z3e3lcePRVanG/AULNc004qXR6KpUK7a16dhZvUyffM6TT3fHwbs++gbN6fuvkZw4lXTfccdPnKL3sBFUq9UQB+/6BIY8w/mLl9TJZEQ73dtGRducTz5TJ9PMmQQEBGBvb4+rqyt9+vThxIkTxY7JzMxk7NixeHp6YmdnR6NGjYiMjFQlDxjXTqmpaYx4aTQedRpS2cWdbr37cyrptGqZIpcspfmTbXFw88LBzYvA4C5s2RZreFxRFCJmzMSjTkPsnN3o2K0Hx347rlqex1Y0Ke5xN1Eqk7RQ3J69hL/0Ivt3xhK7YT35+QWE9OpLVlaW4ZisrGyeCmzNrPcjTBGpzEzZ2dkcTvyVdyZP4vDeONZ9u5KTSafp9ewQzTIB1K9blwVz53D0533sid1KLR9vQnr14/LlK5plKhK1YSMHEg7i4e6uSpaHzdStS2eST58wbJvXfa9apvh9+xnzQhg/bd/A9rXfkl+QT9cBQ8nKyjYcc/rMWdr16EODenXZGfMDifGxvP36eGxLWPSoPBjTTne3T/LpEyyLXIBOp6N/n17qZIqLIzw8nP379xMbG0t+fj4hISHFMk2YMIGtW7fyzTffcPz4cSZMmMC4ceOIjo5WJ1MZ7aQoCn0GD+P3s2eJ/m4Vv+yLx8fbi87P9C7x96A8eNb0YNb7ERzcvZODu3fSqUN7eg8aaijas+d9yrzPF7Jg3mwS4nfgptfTpWdfbt68qUoecyKfQ38wo5dPvVfRsnhXLpx56OVTL1++gmutusRt20T7oKeKPXb23Dl8G/vxy754Wvg1f6jnzcvPZ/POPXQPDnrolYRKy1Qk4dBhnmzfiXP/dxRvLy+zyJSRkYGjuzc/bozm6eAOmmW69McftO7QmW3Ra+nRfyDjw0czfuwYo5+3vDONeGk0N9LTiVqz6qGeq6RMoYFPPPRqa5evXEXfoDm7Nqylfds2AAx5cTRWlpZ8vejzx8hUwJafDqv2fuozaCg3b2byn80xD5Hpr59d9+4Pvdra5cuXcXV1JS4ujvbt2wPQtGlTBg0axDvvvGM4zt/fn+7du/PBBx8Ylykvj82bN5dLO508lUSDFq34b8JPNGncCICCggJca9Xlow/e48URzxmX6THe4wBOnrWYM+N9Rj43HI86DRkfPpo3XxsP3F7eWu9bj48+eI+XX3jeqOe7eu06Ll6+plk+dd1CHKrYPd5zZd3Cqd8YWT61FJqMYaRnZADgVN081lEH4zKlp2eg0+mo5uhoFplyc3NZvGwFjo4O+DVrqlmmwsJChr/wMpPGjzP8wTOlB7XTrt17cPWpS30/f/4n/BXS0i5rkKkacLuNNm3/D/Xq1qbbgKHoGzSnTZdniNq0VYNMJb+fUlPT2LR1Oy+EDTddpvT025mcnAz7goKCiImJ4dKlSyiKws6dOzl58iRdu3Y1TaZ72iknJwcAW9s763lbWFhgbWXNnn0/qZ6noKCA1d+vJSsrm8Ann+TM2XOkpKYS8nSw4RgbGxs6BD3Fvv0HVM/zSIomxT3uJkpl8hZSFIWJk6cS1DaQpk0am/rlS2RMpj///JPJ70YwdOCzJjk7LC3Txi1bqepaE1snPZ8sWEjshihcXJw1y/TR3PlYWlryyphRqmcwNlNoSBf+vWwJOzbHMHfmdBIOHaZT916GP85qZ3rtnfcIavMkTRs1BCDt8hUys7L46NMv6Pp0R7b9sIo+PbrRP+xF4vaqXxSMeY+v+Pe32NtXpV/vnqrnMWSaOJGgoCCaNr1zQvrZZ5/RuHFjPD09sba2plu3bixcuJCgoCDTZLqnnRo2qI+PtxdTpr3H9es3yM3NZdbHn5CSmkpySqpqWY7+9xhVXWtiU92VUa9OYP2339C4UUNSUm+/pl7vWux4vasrKalpquUR5s/ks9zHTpzEkf8eY8+PpuuZlKWsTHl5eQwOG0lhYSEL53+seabg9u1I/Gk3V65eZcnyFQwcPoIDu/6Dq2sNk2c69Esiny5cxOF9ceg0uPHDg9pp0IB+hv9v2qQxrVq2xKdRMzZt3Ua/3upcHzZkeuMtjhw7zu5N6w37CgsLAegd2pUJo18CoEWzpvyUcJAvv1pJh6cC1c1kxO/dspXfMGzQs8V6oqpmGjuWI0eOsGfPnmL7P/vsM/bv309MTAw+Pj7Ex8czZswY3N3d6dxZvYmNUHI7WVlZsXbVSl4YPRYnz1pYWFjQObgjoSFdVM3SoH49En/azY30dNZGxRD28mjitm4yPK67Z9a3oiia/A4aRW4sYxImLejjXptEzKYtxG/fhGfNmqZ86QcqK1NeXh4Dh4/gzNlz7Ni8wSS987IyValShbp1alO3Tm3aPBlAveZPsHTFSqZMmmjyTLv37iPt8mW8G9zpYRUUFPDalLeZ/0UkZ48fNXmmkri7u+Hj7cWppN9VywMw7s232bB1O3Eb1+FZ08Ow38XZCUtLSxrVr1fs+Ib16rH3wM/qZjKinXbv3ceJk6dYs2KZqlkMmcaNIyYmhvj4eDw9PQ37b926xdSpU1m/fj09evQAoHnz5iQmJvLxxx+rWtBLayf/li1I3L+H9PR0cnPzqFHDhdYdnqbVEy1Vy2NtbU3dOrUBaPVESxIOHebThYt4c+J4AFJSU3F3dzMcn3b5MnqVT+ofmU5XDrd+lYJeFpMMuSuKwtiJk1gXvZEdm2PwrVXLFC/72JmKivmppN/5cWM0zs5O9z+RiTM96PtyctUZSi4r0/AhgzlyYC+JP+02bB7u7kwa/wrbotdpkqkkV69e48LFS7i76dXL9MZbrN+4hf9EfYevj3exx62trQlo6cfJez7qdOr07/h4eaKGh2mnpStW4t+yBX7Nm6mSpVimsWNZt24dO3bswNfXt9jjeXl55OXlUeme66UWFhaGUQ5VMhnZTo6OjtSo4cKppNMcPPwLvXt0VyXTg3Lm5OTgW8sHN72e2B27DI/l5uYSt2cvbdu0NlkeYX5M0kMPn/A6q777nug1q7CvWpWUv647OTo6YGd3e+bjtWvXOX/hAn8kpwAYPsPrptfjpsIf4bIy5efnM2DYcxxOPMLGH1ZTUFBgOMbJqTrW1tYmz5SVlcWM2XPp1SMUdzc9V69eY+GSpVy89AfP9u1T7nmMyeTs7HTfiY6VlSVuelca3NMbNVWmzMxMImbMon+fXri76Tl77jxTIz7AxdmZvr2eUSfTpKl8uzaKqG+W3c7017VMRwd7w3v89bGjGfziaNq1bUNwUFu2/mcXG7bFsjPmB3UyGfF7B7dnIn+/Ppq5M6erkqNYpvBwVq1aRXR0NPb29qSkpPyVyRE7OzscHBzo0KEDkyZNws7ODh8fH+Li4vj666+ZN2+eOpmMaKfv10VRw8UZby8vjh47xquTJtOnZw9COndSJdPUae8TGtIZL8+a3LyZyeof1rFr9x62Rq1Fp9MxPnw0H348l3p1a1OvTh0+nDOPynaVGTpwgCp5HpsMuZuESQp65JKlAHTsVvyP6fJFXzBi+DAAYjZt5vlR4YbHBoeNBGDa1DeJeGuKyTNdvHSJmE1bAGgR2K7YMTu3bKBj++L7TJHJwsKC/zt5khX//pYrV6/i7OREgH9LdsduUW12uTE/O1Mzpp2OHvuNr1et5kZ6Ou5ueoLbt2PN18uwt7dXJdOi5V8DENyr+B/UZZ/PY8TQQQD0fSaUyLmzmDX/c16d8i4N6tbmh6+WENTmSVUyGfuzW/3DOhRFYciz/VXJUSzTXzeI6dixY/FMy5czYsSI23lWr2bKlCkMGzaMa9eu4ePjw4wZMxg1Sp1Jl8a0U3JKChMnv0VqWhrubnqeGzqYdya/oUoegNS0NIa/+DLJKak4OjjQvGkTtkatpctfM9vfmPgqt/68xZjxr3P9xg1aB/izPWadau/vxyarrZmESQq6knWjzGNGDB9m0gJRVqZaPj5G5S5PZb2era0t6779xjRh/vIobaDmdXMoO5OdnR3bYtQZ7n+QwqvG3e1t5LDBjBw2WOU0txn7s3tp5AheGjlC1SxFjLnthZubG8uXLzdBmtuMaadXxowy6ac4lkYuKPVxnU5HxFtTVOnsiL8vOeURQgihrkq68tmQO8WVRhZnEUIIoa5yHHJPSEiQO8U9gBR0IYQQ6pJJcSYhQ+5CCCFEBSA9dCGEEOqSWe4mIQVdCCGEqnQ63WPfltZsb2trRuSURwghhKgApIcuhBBCXTLkbhJS0IUQQqhLCrpJSAsJIYQQFYD00IUQQqhLd+dOb4/1HKJURhf0nJwccnLuLNGZkZEBQF5+Pnn5+eWf7BEU5TCXPCCZjGXemQo0TnJHURazbKe8PI2T3FGUxSzbyUwymTSHDLmbhE4xZrUEICIigvfee+++/atWraJy5crlHkwIIYR6srOzGTp0KOnp6ardSjUjIwNHR0eu7/geh6qPVycyMrOp3ulZ6tevj4WFBeHh4YSHh5f9jf8gRhf0knroXl5eJJ85hbNTddUCPoy8/Hxid++nS7s2WFmax9UEyWQcQ6YuXbCystI6DnC7lxcbG2ue7SSZSmXOmToHtTaLTFevX8fDt75pCvrOH8qnoAcPUDXv353R7yobGxtsbGzu229laWkWb867SSbjmGUmKyuzKehFzLKdJJNRJFMpOSxMmEGnK4chd7mGXhbt31VCCCEqNlmcxSRkloEQQghRAUgPXQghhLpklrtJSEEXQgihrkrl8Dn0x/3+fwA55RFCCCEqAOmhCyGEUJcMuZuEFHQhhBDqklnuJiGnPEIIIUQFID10IYQQ6pIhd5OQgi6EEEJdMuRuEiY55Zk5Zx4B7YKx13vi6lOXPoOGcuLkqWLHKIpCxIyZeNRpiJ2zGx279eDYb8dVzRW/Zy89BwzCo05DdFWqEbVhY7HHU1PTGPHSaDzqNKSyizvdevfnVNJpTTNlZmYyduIkPOs1xs7ZjUZPPEnkkqWaZtJVqVbiNueTz9TLFB9Pz5498fDwQKfTERUVdd8xx48fp1evXjg6OmJvb0+bNm04f/68epnKaKcRL42+r43adOysWh5jMt3t5XHj0VWpxvwFCzXNFDFjJg1bBlClhgfVa/rQuUdvDiQc1CxTXl4eb749jWYBbalSwwOPOg157sWX+SM5WfVMvZ4dTM26jahUtTpRGzYVe3xd9Aa69e5PDe86VKpancQjR1XNI8yfSQp63J69hL/0Ivt3xhK7YT35+QWE9OpLVlaW4ZjZ8z5l3ucLWTBvNgnxO3DT6+nSsy83b95ULVdWVjZ+zZqxYN7s+x5TFIU+g4fx+9mzRH+3il/2xePj7UXnZ3oXy23KTAAT3pzK1tgf+Wbplxw/fIAJY8cw7rU3iN64qcTjTZEp+fSJYtuyyAXodDr69+mlYqYs/Pz8WLBgQYmPnz59mqCgIBo2bMiuXbv49ddfeeedd7C1tVUxU+ntBNCtS+dibbV53feq5TE2E0DUho0cSDiIh7u7qnmMyVS/bl0WzJ3D0Z/3sSd2K7V8vAnp1Y/Ll69okik7O5vDib/yzuRJHN4bx7pvV3Iy6TS9nh2iWh6ArOxsmjdtyudzS26nrOws2rZpzcz3p6mao1wUDbk/7iZKZZIh963Ra4t9vXzRF7jWqsuhXxJpH/QUiqIw/4tI3pr0Gv163y4CKxZHovetx6rvfuDlF55XJVdo1y6Edu1S4mOnkk6z/+cE/pvwE00aNwJg4fy5uNaqy7ffr+XFEc+ZPBPATwcSCBs2hI7t2wHw0sgRfLl0OQcP/0LvZ3poksnNTV/s6+hNmwlu347avrVUyQMQGhpKaGjoAx9/66236N69O7Nn3/ljWLt2bdXyQNntBGBjY31fe6nJmEyX/viDsRPfYFv0Wnr0H6h5pqGDni329bxZM1i6YiVH/nuMp4M7mDyTo6MjsRujiu37fO5snmzfifMXLuDt5aVOppAuhIY8uJ2GDxkMwNlz6o06lZtKlW5vj/scQEBAgCyf+gCanPKkZ2QA4FT99rKrZ86eIyU1lZCngw3H2NjY0CHoKfbtP6BFRMNSsXf36CwsLLC2smbPvp80yQQQ1LYNMZu2cOmPP1AUhZ1x8ZxMOk3Xzk9rluluqalpbNq6nRfChmuWobCwkE2bNlG/fn26du2Kq6srrVu3LnFY3tR27d6Dq09d6vv58z/hr5CWdlnTPIWFhQx/4WUmjR9nOHE1J7m5uSxetgJHRwf8mjXVOo5BenoGOp2Oao6OWkf5W9DpdOWyASQkJPDbb79JMS+ByQu6oihMnDyVoLaBNG3SGICU1FQA9HrXYsfqXV1JSU0zdUQAGjaoj4+3F1Omvcf16zfIzc1l1sefkJKaSnJKqiaZAD77+CMaN2yAZ73GWFerQbc+A1j4yccEtQ3ULNPdVvz7W+ztq9Kvd0/NMqSlpZGZmcmsWbPo1q0b27dvp2/fvvTr14+4uDjNcoWGdOHfy5awY3MMc2dOJ+HQYTp172U4edTCR3PnY2lpyStjRmmWoSQbt2ylqmtNbJ30fLJgIbEbonBxcdY6FgB//vknk9+NYOjAZ2VdbmFWTD7LfezESRz57zH2/Lj1vsd0FJ/FqCiK4azM1KysrFi7aiUvjB6Lk2ctLCws6BzcsdQhMFP4bOGX7E84SMz33+Lj5UX83n2MmfA67m5udO7UUdNsAMtWfsOwQc+qeq26LIWFhQD07t2bCRMmANCiRQv27dvHokWL6NBBnWHbsgwa0M/w/02bNKZVy5b4NGrGpq3bDJeaTOnQL4l8unARh/fFafZ79iDB7duR+NNurly9ypLlKxg4fAQHdv0HV9camubKy8tjcNhICgsLWTj/Y02z/K3IeugmYdIe+rjXJhGzaQs7t2zAs2ZNw343/e1rikU99SJply+j1/AX2L9lCxL37+HGH+dIPn2CrdFruXrtGr61fDTJc+vWLaZGvM+8WTPo2T2U5s2aMnbUSwzq35ePP/1ck0x32713HydOnuLFMHXmFxjLxcUFS0tLGjduXGx/o0aNVJ3l/rDc3d3w8fbiVNLvmrz+7r37SLt8Ge8GTbF0cMbSwZlz5y/w2pS3qdWomSaZilSpUoW6dWrT5skAlkYuwNLSkqUrVmqaKS8vj4HDR3Dm7DliN0RJ7/xhFH1s7XE3USqTFHRFURg7cRLrojeyY3MMvrVqFXvct5YPbno9sTt2Gfbl5uYSt2cvbdu0NkXEUjk6OlKjhgunkk7fnnzWo7smOfLy8sjLy6PSPWe6FhYWhl6plpauWIl/yxb4Nde2GFhbWxMQEMCJEyeK7T958iQ+PtqcjJXk6tVrXLh4CXcTTpK72/AhgzlyYC+JP+02bB7u7kwa/wrbotdpkulBFEUhJ1e7SxNFxfxU0u/8uDEaZ2cnzbII8SAmGXIPn/A6q777nug1q7CvWpWUv65BOzo6YGdnh06nY3z4aD78eC716tamXp06fDhnHpXtKjN04ADVcmVmZpJ0+k7v6MzZcyT+egQnp+p4e3nx/booarg44+3lxdFjx3h10mT69OxBSOdOmmXq0O4pJr31LnZ2tvh4exG3ey9fr1rNvFkzNMsEkJGRwffro5k7c7pqOe7LlJR0J9OZMyQmJuLk5IS3tzeTJk1i0KBBtG/fnuDgYLZu3cqGDRvYtWuXupke0E5O1asTMWMW/fv0wt1Nz9lz55ka8QEuzs707fWMJpm8vbzuK0xWVpa46V1pUL+eJpmcnZyYMXsuvXqE4u6m5+rVayxcspSLl/7g2b59NMnk4e7OgGHPcTjxCBt/WE1BQYHhb5iTU3Wsra3Vy/T7mTuZzp0j8chRnKpXw9vLi2vXrnP+4kXD5+GL7u3hpnc1jHqaj/L42Jl8bK1MyiNKT09XAOXKhTOKknWj1A0ocVu+6AvDMYWZ15VpU99U3PR6xcbGRmkf1FY5+vO+Mp/77i03/YoSFRWl5KZfMer4nVs2lJgrbNgQRcm6oXw6Z5biWbOmYmVlpXh7eSpvv/m6knM9TdNMyadPKCP+NVTxcHdXbG1tlQb16ylzZ05XCjOva5ZJybqhfPn5fMXOzk658ce5h2qf+zLl5hr1/tu5c2fJmcLCDMcsXbpUqVu3rmJra6v4+fkpUVFRD/Uez83NLbd2yr6SrIQ83Ump4eJieD+FDRuinD/xX03fT/duPt5eyicffahZpltXU5S+vZ5RPNzdFWtra8XdzU3p1SNU+Tl+h2aZzvz26wP/hu3csuGhM+XcuKwUZl4vc9ux+cGZCjOvK8sWfVHi4+9OedOo5798/ncFUNLT0x/q9+JhFNWJG7/EKYVJhx5ru/FLnOp5/+50iqIoj3IikJGRgaOjI1cunMHZqfqjPEW5y8vPZ/POPXQPDsLK0jzuaiuZjGPI1L07VlZWWscBbg+zbt682TzbSTKVypwzhXZ8yiwyXb12nRretUlPT1dtPkBRnbjxSxwO9lUf77luZlKtZQdV8/7daf+uEkIIUbGV441lxINJQRdCCKEuWZzFJOSURwghhKgApIcuhBBCXbIeuklIQRdCCKEuGXI3CSnoQgghVKb7a3vc5xClkTEMIYQQogKQHroQQgh1yZC7SUhBF0IIoS4p6CYhQ+5CCCFEBSA9dCGEECqTSXGmIAVdCCGEumTI3SSMLug5OTnk5NxZjzgjIwO4veBAXn5++Sd7BEU5zCUPSCZjGTLl5Wmc5I6iLGbZTpKpVJKpbHkF5pFDlB+jV1uLiIjgvffeu2//qlWrqFy5crkHE0IIoZ7s7GyGDh1qmtXW/u9g+ay21rAV9evXx8LCgvDwcMLDw8spacVgdEEvqYfu5eVFcnIyzs7OqgV8GHl5ecTGxtKlSxezWoJTMpXNrDO1a2MWy13C7d5d7O79kqkMhkzyfnqgq9eu4+5bz0QF/VA5FXR/WT61FEa/q2xsbLCxsblvv5WVldn8whSRTMaRTMaxsrQ0iz/Ad5NMxpH3U+k5RMUiP1EhhBDqkklxJiEFXQghhLp0lENBL5ckFZoUdCGEECqTz6GbgtwpTgghhKgApIcuhBBCXXIN3SSkoAshhFCZDLmbggy5CyGEEBWA9NCFEEKoS4bcTUIKuhBCCHVJQTcJGXIXQgghKgDNCnp8fDw9e/bEw8MDnU5HVFSUVlEMZs6cSUBAAPb29ri6utKnTx9OnDihaabIyEiaN2+Og4MDDg4OBAYGsmXLFk0z3W3mzJnodDrGjx+vaY6IiAh0Ol2xzc3NTdNMAJf++IN/jXwJZy9fKru406JNEId+SdQsT61GzdBVqXbfFj7hdc0y5efn8/Z70/Ft3Bw7ZzdqN/Hj/ZkfUVhYqFmmmzdvMn78eHx8fLCzs6Nt27YkJCSYNEP8nr30HDAIjzoN0VWpRtSGjcUeVxSFiBkz8ajTEDtnNzp268Gx346bNKPxdOW0idJoVtCzsrLw8/NjwYIFWkW4T1xcHOHh4ezfv5/Y2Fjy8/MJCQkhKytLs0yenp7MmjWLgwcPcvDgQTp16kTv3r05duyYZpmKJCQksHjxYpo3b651FACaNGlCcnKyYTt69Kimea5fv8FTT3fFysqSLet/4LdD+5k7cwbVHB01y5QQv5Pk0ycMW+yGKACe7dtbs0wfzZvPoqXLWDBvDscPH2D29PeZM/9zPo/8UrNML774IrGxsaxcuZKjR48SEhJC586duXTpkskyZGVl49esGQvmzS7x8dnzPmXe5wtZMG82CfE7cNPr6dKzLzdv3jRZRmPde7L9qJsonWbX0ENDQwkNDdXq5Uu0devWYl8vX74cV1dXDh06RPv27TXJ1LNnz2Jfz5gxg8jISPbv30+TJk00yQSQmZnJsGHDWLJkCdOnT9csx90sLS3Nolde5KN58/Hy9GT5lwsN+2r5+GiYCGrUcCn29ay5n1Cnti8d2gVplAh+OpBA7x7d6dGtK3C7jb79/gcOHv5Fkzy3bt1i7dq1REdHG37vIyIiiIqKIjIy0mTv99CuXQjt2qXExxRFYf4Xkbw16TX69e4FwIrFkeh967Hqux94+YXnTZJRmBe5hl6K9PR0AJycnDROcltBQQGrV68mKyuLwMBATbOEh4fTo0cPOnfurGmOu506dQoPDw98fX0ZPHgwv//+u6Z5YjZvoVXLFjz7rzBcferSMrAdS5av0DTT3XJzc/lmzXeMfO5fmvZ+ggLb8J9dcZw8lQTAr0eOsmfffrp3DdEkT35+PgUFBdja2hbbb2dnx549ezTJdK8zZ8+RkppKyNPBhn02NjZ0CHqKffsPaJjsAYomxT3uJkols9wfQFEUJk6cSFBQEE2bNtU0y9GjRwkMDOTPP/+katWqrF+/nsaNG2uWZ/Xq1Rw+fNjk1xRL07p1a77++mvq169Pamoq06dPp23bthw7dgxnZ2dNMv1+5iyR/7uMiePCmfr6RH4+dJhXXn8TG2trnhs2RJNMd4vasIkbN9IZ8a+hmuZ487XxpGdk0LBlABYWFhQUFDBj2jsMGThAkzz29vYEBgbywQcf0KhRI/R6Pd9++y0HDhygXr16mmS6V0pqKgB6vWux/XpXV86dv6BFpDLIjWVMQQr6A4wdO5YjR46YxRl5gwYNSExM5MaNG6xdu5awsDDi4uI0KeoXLlzg1VdfZfv27ff1YLR09+WbZs2aERgYSJ06dVixYgUTJ07UJFNhYSGtnmjJh++9C0DLFn4cO36cyP9dZhYFfemKlYSGdMbD3V3THGt+WMc3q79j1fL/pUmjhiQeOcr4N6fg4e5GmEYnGytXrmTkyJHUrFkTCwsLnnjiCYYOHcrhw4c1yfMgunuKnKIoZnqtuTx62Ob47zIvMuRegnHjxhETE8POnTvx9PTUOg7W1tbUrVuXVq1aMXPmTPz8/Pj00081yXLo0CHS0tLw9/fH0tISS0tL4uLi+Oyzz7C0tKSgoECTXPeqUqUKzZo149SpU5plcHfT07hhg2L7GjVowPkLFzVKdMe58+f5cecuXhzxnNZRmPTWu0x+bTyDn+1Ps6ZNGD50MBPGjmHm3E80y1SnTh3i4uLIzMzkwoUL/Pzzz+Tl5eHr66tZpru56fXAnZ56kbTLl9G71tAikjADUtDvoigKY8eOZd26dezYscNsfnnvpSgKOTk5mrz2008/zdGjR0lMTDRsrVq1YtiwYSQmJmJhYaFJrnvl5ORw/Phx3DXsfT7Vpg0n/rouXOTkqSR8vL00SnTH8pX/xrVGDcNENC1l38qmUqXif4osKllo+rG1IlWqVMHd3Z3r16+zbds2evfW7tMAd/Ot5YObXk/sjl2Gfbm5ucTt2UvbNq21C/Ygcg3dJDQbcs/MzCQp6c4fuzNnzpCYmIiTkxPe3t6aZAoPD2fVqlVER0djb29PSkoKAI6OjtjZ2WmSaerUqYSGhuLl5cXNmzdZvXo1u3btum9GvqnY29vfN6egSpUqODs7azrX4PXXX6dnz554e3uTlpbG9OnTycjIICwsTLNME8aNoW2nED6cM5eB/fry88FDLF6+gsWfz9csE9y+FLB85b8JGzYES0vtr7r1DO3GjNlz8fbypEmjhvzy6xHmLfiCkcP/pVmmbdu2oSgKDRo0ICkpiUmTJtGgQQOef950s8czMzNJOn1nYueZs+dI/PUITk7V8fbyYnz4aD78eC716tamXp06fDhnHpXtKjNUo7kHpZNr6Kag2W/zwYMHCQ6+M0Oz6DpnWFgYX331lSaZIiMjAejYsWOx/cuXL2fEiBGmDwSkpqYyfPhwkpOTcXR0pHnz5mzdupUuXUr+OMs/1cWLFxkyZAhXrlyhRo0atGnThv379+Oj4cfEAvyfYP3qb5jy7vu8P3M2vrV8mD97JsMGD9QsE8CPO3Zx/sJFRj6nXcG82+dzZ/PO+zMYM/410i5fwcPdjZdHPs+7U97QLFN6ejpTpkzh4sWLODk50b9/f2bMmIGVlZXJMhw8/AvBoXc+tjpx8lsAhA0bwleLI3lj4qvc+vMWY8a/zvUbN2gd4M/2mHXY29ubLKMwL5oV9I4dO6IoilYvXyJzywOwdOlSrSOUadeuXVpHYPXq1VpHKNEzod14JrSb1jGKCencCSXrhtYxDOzt7Zk/Zxbz58zSOorBwIEDGThQ2xOvju3blfpz0ul0RLw1hYi3ppgu1KOSe7mbhPbjbUIIISo2GXE3CZkUJ4QQQlQA0kMXQgihMumim4IUdCGEEOqSa+gmIUPuQgghRAUgPXQhhBDqkh66SUhBF0IIoTK5hm4KUtCFEEKoS0c59NDLJUmFJtfQhRBCiId08+ZNAgICaNGiBc2aNWPJkiVaR5IeuhBCCJVVwGvolStXJi4ujsqVK5OdnU3Tpk3p168fzs7OmmWSgi6EEEJlFe8auoWFBZUrVwbgzz//pKCgQPPbh8uQuxBCiAonPj6enj174uHhgU6nIyoq6r5jFi5ciK+vL7a2tvj7+7N79+6Heo0bN27g5+eHp6cnb7zxBi4uLuWU/tEY3UPPyckptgZ3eno6ANeuXSv/VI8oLy+P7Oxsrl69atJVkUojmYxj1pmuXcfKDJYZBcjLz5dMRjBkkvfTA127fh0wzaJUGZmZjz1knpGZefu/GRnF9tvY2GBjY3Pf8VlZWfj5+fH888/Tv3//+x5fs2YN48ePZ+HChTz11FN8+eWXhIaG8ttvvxmW8Pb39y9W94ps374dDw8PqlWrxq+//kpqair9+vVjwIAB6PX6x/p3PhbFSNOmTVMA2WSTTTbZKtB2+vRpY8vAQ7t165bi5uZWblmrVq16375p06aVmQNQ1q9fX2zfk08+qYwaNarYvoYNGyqTJ09+pH/rqFGjlO++++6Rvre8GH2aOGXKFMOa5XB7qMHHx4fz58/j6Oho7NOoKiMjAy8vLy5cuICDg4PWcQDJZCzJZBzJZBzJVLb09HS8vb1xcnJS7TVsbW05c+YMubm55fJ8iqKgu6enX1LvvCy5ubkcOnSIyZMnF9sfEhLCvn37jHqO1NRU7OzscHBwICMjg/j4eEaPHv3QWcqT0QX9QcMajo6OZvHmvJuDg4NkMoJkMo5kMo5kMo65ZapUSd2pVLa2ttja2qr6Gg/rypUrFBQU3Dc8rtfrSUlJMeo5Ll68yAsvvICiKCiKwtixY2nevLkacY2m/YUcIYQQQgP39vZLGgF4EH9/fxITE1VI9ehklrsQQoh/FBcXFywsLO7rjaelpWk7qe0xPXJBt7GxYdq0aY90/UItksk4ksk4ksk4ksk45pbJ3PKYkrW1Nf7+/sTGxhbbHxsbS9u2bTVK9fh0iqLxJ+GFEEKIcpaZmUlSUhIALVu2ZN68eQQHB+Pk5IS3tzdr1qxh+PDhLFq0iMDAQBYvXsySJUs4duwYPj4+Gqd/NFLQhRBCVDi7du0iODj4vv1hYWF89dVXwO0by8yePZvk5GSaNm3KJ598Qvv27U2ctPxIQRdCCCEqAJkUJ4QQQlQAUtCFEEKICkAKuhBCCFEBSEEXQgghKgAp6EIIIUQFIAVdCCGEqACkoAshhBAVgBR0IYQQogKQgi6EEEJUAFLQhRBCiApACroQQghRAUhBF0IIISqA/wcTNjXmazRhNAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACu1ElEQVR4nOydd1gU19tAz9JLEKWD0lEUexB7Q7FgLzG22E1ibFETe4zYe++9tyQae8PYO6ioUX/2TlNUEFFYYL4/kNUVBJSdZeN3T5554s7cmTm8M7vv3Dt35iokSZIQCAQCgUDwn0YvrwUEAoFAIBDkHpHQBQKBQCD4AhAJXSAQCASCLwCR0AUCgUAg+AIQCV0gEAgEgi8AkdAFAoFAIPgCEAldIBAIBIIvAJHQBQKBQCD4AhAJXSAQCASCLwCR0POAoKAgFAqF2jw3Nzc6d+78Sds5efIkQUFBvHjx4pPW+3Bfhw8fRqFQ8Ndff33SdrIiISGBoKAgDh8+nGHZypUrUSgU3Lt3T2P7k4M5c+bg5eWFkZERCoWCFy9eMH78eLZu3apVj5o1a6JQKDJM9evXz1BWqVQyatQo3NzcMDY2pmjRosyZM0ervgKBIG8wyGsBQRp///03+fLl+6R1Tp48yahRo+jcuTP58+eXdV+fSkJCAqNGjQLSEtL7NGzYkFOnTuHo6CirQ24ICwujb9++dO/enU6dOmFgYICFhQXjx4/nm2++oVmzZlr18fDwYN26dWrzMjvmPXv2ZM2aNYwZMwY/Pz/27dvHzz//zMuXLxk2bJiWbAUCQV4gErqOULZsWdn38fr1a0xNTbWyr6ywtbXF1tY2Tx2y48qVKwB8//33lC9fXtZ9paSkkJycjLGx8UfLmJqaUrFixSy3c+XKFZYtW8a4ceMYOHAgkHYxFRMTw9ixY+nRowdWVlYadRcIBLqDaHKXmV27dlGmTBmMjY1xd3dn6tSpmZb7sBk8NTWVsWPH4u3tjampKfnz56dUqVLMmjULSGu2T//Rdnd3VzXDpjdxu7m50ahRI7Zs2ULZsmUxMTFR1Zg/1rz/5s0bBgwYgIODA6amptSoUYMLFy6olalZs2aGGjdA586dcXNzA+DevXuqhD1q1CiVW/o+P9bkvnz5ckqXLo2JiQlWVlY0b96ca9euZdjPV199xa1bt2jQoAFfffUVzs7O/PLLLyQmJmYa2/fZtGkTdevWxdHREVNTU4oVK8aQIUN49eqV2t/43XffAVChQgWVu0Kh4NWrV6xatUr1N70fi8jISH788UcKFSqEkZER7u7ujBo1iuTkZFWZe/fuoVAomDx5MmPHjsXd3R1jY2MOHTqUrXt2bN26FUmS6NKli9r8Ll268Pr1a/bu3Zvl+um3gi5dukSrVq2wtLTEysqKAQMGkJyczPXr16lfvz4WFha4ubkxefLkDNt48OAB3333HXZ2dhgbG1OsWDGmTZtGamoqkHZLwM7Ojg4dOmRY98WLF5iamjJgwADVvLi4OH799Vfc3d0xMjKiYMGC9OvXT+14Afz5559UqFABS0tLzMzM8PDwoGvXrjmOnUDwRSAJZOPAgQOSvr6+VLVqVWnLli3Sn3/+Kfn5+UkuLi7Sh6F3dXWVOnXqpPo8YcIESV9fXxo5cqT0zz//SHv37pVmzpwpBQUFSZIkSQ8fPpT69OkjAdKWLVukU6dOSadOnZJiY2NV23N0dJQ8PDyk5cuXS4cOHZLOnj2b6b4OHTokAZKzs7PUtGlTaceOHdLatWslLy8vKV++fNLt27dVZWvUqCHVqFEjw9/aqVMnydXVVZIkSXrz5o20d+9eCZC6deumcrt165YkSZK0YsUKCZDu3r2rWn/8+PESILVt21batWuXtHr1asnDw0OytLSUbty4obYfIyMjqVixYtLUqVOlAwcOSL///rukUCikUaNGZXtMxowZI82YMUPatWuXdPjwYWnhwoWSu7u75O/vrypz5coV6bfffpMAacWKFSr3U6dOSaamplKDBg1Uf9OVK1ckSZKkiIgIydnZWXJ1dZUWLVokHThwQBozZoxkbGwsde7cWbXtu3fvSoBUsGBByd/fX/rrr7+k/fv3q8XiQ2rUqCGZmJhIBQoUkPT19SUPDw9p2LBhUkJCglq5Nm3aSLa2thnWj4+PlwBp6NChWcZm5MiREiB5e3tLY8aMkYKDg6VBgwZJgNS7d2+paNGi0uzZs6Xg4GCpS5cuEiBt3rxZtX50dLRUsGBBydbWVlq4cKG0d+9eqXfv3hIg/fTTT6py/fv3l0xNTVXnajrz58+XAOnSpUuSJEnSq1evpDJlykg2NjbS9OnTpQMHDkizZs2SLC0tpVq1akmpqamSJEnSyZMnJYVCIbVp00bavXu3dPDgQWnFihVShw4dsvx7BYIvDZHQZaRChQqSk5OT9Pr1a9W8uLg4ycrKKtuE3qhRI6lMmTJZbn/KlCkZEuP729PX15euX7+e6bLMEvrXX3+t+pGUJEm6d++eZGhoKHXv3l01LycJXZIk6cmTJxIgjRw5MkPZDxP68+fPVYnyfR48eCAZGxtL7dq1U9sPIP3xxx9qZRs0aCB5e3tn2FdWpKamSkqlUjpy5IgESBcvXszgGBISoraOubm5WuzS+fHHH6WvvvpKun//vtr8qVOnSoAq8acndE9PTykpKSlHnsOHD5fmz58vHTx4UNq1a5fUu3dvycDAQKpevbqUkpKiKlenTp2PxsDIyEj64YcfstxPekKfNm2a2vwyZcqoLhzTUSqVkq2trdSiRQvVvCFDhkiAdObMGbX1f/rpJ0mhUKjOxUuXLkmAtHjxYrVy5cuXl3x9fVWfJ0yYIOnp6WU4Bn/99ZcESLt375Yk6V2MX7x4keXfJxB86Ygmd5l49eoVISEhtGjRAhMTE9V8CwsLGjdunO365cuX5+LFi/Ts2ZN9+/YRFxf3yQ6lSpWiSJEiOS7frl07td73rq6uVK5cWSPNwVlx6tQpXr9+neE2gLOzM7Vq1eKff/5Rm69QKDLEsFSpUty/fz/bfd25c4d27drh4OCAvr4+hoaG1KhRAyBD8/6nsHPnTvz9/XFyciI5OVk1BQYGAnDkyBG18k2aNMHQ0DBH2x47diw//fQT/v7+NGjQgDlz5jBx4kSOHj3Ktm3b1Mp++PRETpe9T6NGjdQ+FytWDIVCofpbAAwMDPDy8lKL+cGDB/Hx8cnQ56Bz585IksTBgwcBKFmyJL6+vqxYsUJV5tq1a5w9e1atmXznzp2UKFGCMmXKqMW0Xr16areX/Pz8APj222/5448/ePz4cY7+ToHgS0MkdJl4/vw5qampODg4ZFiW2bwPGTp0KFOnTuX06dMEBgZibW1N7dq1CQ0NzbHDp/Yi/5hrTEzMJ23nU0nffma+Tk5OGfZvZmamdpEEYGxszJs3b7LcT3x8PNWqVePMmTOMHTuWw4cPExISwpYtW4C0ToOfS1RUFDt27MDQ0FBtKl68OABPnz5VK5/bHv7p9/hPnz6tmmdtbZ3psXr16hVJSUk57hD3YTkjI6NMY25kZKQW85iYmI8ew/Tl6XTt2pVTp07xv//9D4AVK1ZgbGxM27ZtVWWioqK4dOlShphaWFggSZIqptWrV2fr1q0kJyfTsWNHChUqRIkSJdiwYUOO/l6B4EtB9HKXiQIFCqBQKIiMjMywLLN5H2JgYMCAAQMYMGAAL1684MCBAwwbNox69erx8OFDzMzMst1GTmtkWXlFRkZibW2t+mxiYkJsbGyGch8mrE8hffsREREZloWHh2NjY/PZ236fgwcPEh4ezuHDh1W1cuCTn+PPDBsbG0qVKsW4ceMyXZ6e1NL51GPzMfT03l2TlyxZko0bNxIZGal2cXb58mUASpQooZF9fgxra+uPHkNA7Ti2bduWAQMGsHLlSsaNG8eaNWto1qwZBQoUUJWxsbHB1NSU5cuXZ7q/97fXtGlTmjZtSmJiIqdPn2bChAm0a9cONzc3KlWqpKk/USDQaUQNXSbMzc0pX748W7ZsUavFvHz5kh07dnzStvLnz88333xDr169ePbsmap3ePpjTrmpWb7Phg0bkCRJ9fn+/fucPHlSrSe3m5sbN27cUOtRHhMTw8mTJ9W29SlulSpVwtTUlLVr16rNf/ToEQcPHqR27dqf8+dkID2Jfvh42KJFi3K8DWNj40z/pkaNGvHvv//i6elJuXLlMkwfJvTcsmrVKgC1R9maNm2KQqFQLUtn5cqVmJqaZvoiGk1Su3Ztrl69yvnz59Xmr169GoVCgb+/v2pegQIFaNasGatXr2bnzp1ERkZm6JXeqFEjbt++jbW1daYxTX+q4n2MjY2pUaMGkyZNAsjwlIZA8CUjaugyMmbMGOrXr0+dOnX45ZdfSElJYdKkSZibm/Ps2bMs123cuDElSpSgXLly2Nracv/+fWbOnImrqyuFCxcG0mpkALNmzaJTp04YGhri7e2NhYXFZ/lGR0fTvHlzvv/+e2JjYxk5ciQmJiYMHTpUVaZDhw4sWrSI7777ju+//56YmBgmT56c4UU1FhYWuLq6sm3bNmrXro2VlRU2NjaZ/gjnz5+fESNGMGzYMDp27Ejbtm2JiYlh1KhRmJiYMHLkyM/6ez6kcuXKFChQgB49ejBy5EgMDQ1Zt24dFy9ezPE2SpYsyeHDh9mxYweOjo5YWFjg7e3N6NGjCQ4OpnLlyvTt2xdvb2/evHnDvXv32L17NwsXLqRQoUKf7Hzs2DHGjRtH8+bN8fDw4M2bN+zZs4fFixdTq1Yttb4ExYsXp1u3bowcORJ9fX38/PzYv38/ixcvZuzYsbI/g96/f39Wr15Nw4YNGT16NK6uruzatYv58+fz008/ZejP0bVrVzZt2kTv3r0pVKgQAQEBasv79evH5s2bqV69Ov3796dUqVKkpqby4MED9u/fzy+//EKFChX4/fffefToEbVr16ZQoUK8ePGCWbNmqfWPEAj+X5DHnfK+eLZv3y6VKlVKMjIyklxcXKSJEyeqehO/z4c9z6dNmyZVrlxZsrGxUa3brVs36d69e2rrDR06VHJycpL09PQkQDp06JBqew0bNszU6WO93NesWSP17dtXsrW1lYyNjaVq1apJoaGhGdZftWqVVKxYMcnExETy8fGRNm3alKGXuySlPbZXtmxZydjYWAJU+8zssTVJkqSlS5eqYmVpaSk1bdpU1Ts8nU6dOknm5uYZnDKLaWacPHlSqlSpkmRmZibZ2tpK3bt3l86fP696RC2dj/VyDwsLk6pUqSKZmZlJgFqP/ydPnkh9+/aV3N3dJUNDQ8nKykry9fWVhg8fLsXHx0uS9K6X+5QpU7J1lSRJunnzptSgQQOpYMGCkrGxsWRiYiKVLFlSGjdunPTmzZsM5ZOSkqSRI0dKLi4ukpGRkVSkSBFp9uzZOdpXegyfPHmiNv9jMa9Ro4ZUvHhxtXn379+X2rVrJ1lbW0uGhoaSt7e3NGXKFLXe+OmkpKRIzs7OEiANHz48U6f4+Hjpt99+k7y9vVXnRcmSJaX+/ftLkZGRkiRJ0s6dO6XAwECpYMGCkpGRkWRnZyc1aNBAOnbsWI7+boHgS0EhSe+1sQoEAoFAIPhPIu6hCwQCgUDwBSASukAgEAgEmbBz5068vb0pXLgwS5cuzWudbBFN7gKBQCAQfEBycjI+Pj4cOnSIfPny8fXXX3PmzBmdHuBI1NAFAoFAIPiAs2fPUrx4cQoWLIiFhQUNGjRg3759ea2VJSKhCwQCgeCL4+jRozRu3BgnJycUCgVbt27NUGb+/Pm4u7tjYmKCr68vx44dUy0LDw+nYMGCqs+FChXS+dcKi4QuEAgEgi+OV69eUbp0aebOnZvp8k2bNtGvXz+GDx/OhQsXqFatGoGBgTx48ACAzO5Ga+oNj3KR4xfLJCYmqr0dLDU1lWfPnmFtba3zf6RAIBAI1JEkiZcvX+Lk5KT2CmFN8+bNG5KSkjSyLUmSMuQbY2PjDG9/BAgMDFQbUOhDpk+fTrdu3ejevTsAM2fOZN++fSxYsIAJEyZQsGBBtRr5o0ePqFChgkb+DtnI6QPr6S+dEJOYxCQmMX0508OHD2V5yYkkSdLr168lMxQac/3qq68yzMtsiOYPAaS///5b9TkxMVHS19dXGxJYkiSpb9++UvXq1SVJShsi2MvLS3r06JEUFxcneXl5SU+fPtVkeDROjmvoQ4cOZcCAAarPsbGxuLi40C2/IwZvNHP1lVv0TE2oNm8KNf1KY2ign9c6ACiTUzgcchF/f/8cD5cpN0qlkkOHDlHz6+K6FafzV6hZpqhuOYX9TzePXQkPDPV1JE4pKRz+945OOunksfMuiIGMNeKc8jzuJd41Gnz2q6JzQlJSEglIdMAcI3LXkpuExJr4eB4+fKj2qunMaufZ8fTpU1JSUrC3t1ebb29vrxqkysDAgGnTpuHv709qaiqDBg1SG6hKF8lxQv9Ys4bBmyT0dSSh6yv0MDMzw7pAfgwNdOM19crk5DQna2ud+mF5Fycd+QFOTtFdJ108dvktdSp56qyTDh47K8t8GOrnfUJPRxu3TE3QwyiX+9F7e087X758GcaO+Fw+/NulD5r0mzRpQpMmTTSyL22gO2eVQCAQCARawMbGBn19/QxDRkdHR2eotf+XEAldIBAIBLKip6FJUxgZGeHr60twcLDa/PQRE/+r6Ea7tEAgEAi+WBQK0Mtly74CQAI/Pz/09fXp1asXvXr1+mj5+Ph4bt26pfp89+5dwsLCsLKywsXFhQEDBtChQwfKlStHpUqVWLx4MQ8ePKBHjx65E81DREIXCAQCwX+GkJCQHN1DDw0Nxd/fX/U5vVN3p06dWLlyJa1btyYmJobRo0cTERFBiRIl2L17N66urrK5y41I6AKBQCCQFU00mX/q+jVr1sz05TDv07NnT3r27Pn5UjqGSOgCgUAgkBU9hQK93PZyh7QnzwUfRXSKEwgEAoHgC0DU0AUCgUAgK3nR5P7/EZHQBQKBQCArehro5S4SevaIGAkEAoHgP4Ofnx8+Pj7Mmzcvr1V0DtkSejjJ7CKBlcQzn5fcQam2XELiLImsJJ5FvGQrCTwjRa1MChLHeMNy4lnMS3aTQDypGnN8+TKefkN+w62EL2YOrlSp25CQ8xdUy6Oio+nyU18KFi2FuaMbgS3bcPP2HY3tP3Onl/Tr1w9XV1dMTU2pXLkyISEhquXx8fH07t2bQoUKYWpqSrFixViwYIHMTvH0GzYSt9IVMCvoSZX6TQk5H6ZarmddKNNpyhz5vF7Gx9Nv+CjcylbGzLkIVRo0J+TCRbUy127cpOl33cjvUYJ8bj5Uqt+MB4/kG884u2PXuXNnFAqF2lSxYkXZfOBtnH4fh1v5mph5lqRKk9aEhF3KtOyPg0agV7AIM5eszFOnoGmzKVa9Hl95lcbKpxx1WnfizPmLWWxRA05ZHDulUsngwYMpWbIk5ubmODk50bFjR8LDw+V1in9F/9GTca9SH/Oi5anasiMhF/9VLd+y9wD1O/bA7usa6LuXJuzq/2T1yQ2afLFMSEgIV69ezfIZ9P+vyJbQlYAN+lQj8xfnXyCJiyRRDWO+wQwzFGznNUnvdWM8TiJ3SKYOJjTHDCWwi9ekaqir4/d9+3Pg8FFWL5rLpZOHqeNfkzrNWvE4PAJJkmjevjN37t1n6/pVnD96ABfnQtRp2opXr15pZP+Z0b17d4KDg1mzZg2XL1+mbt26BAQEqIbx69+/P3v37mXt2rVcu3aN/v3706dPH7Zt2yab0/f9BnLg8DFWL5jFpWMHqONfnTot2vI4PAKA8Kvn1aZls6ehUCho2biBjE6DOXDkGKvnzeDSkf3UqVmdOi3b8zgi7VWOt+/ep1qjb/Au7MmhrRsJO7yX3wb0weQzBnLIKdkdO4D69esTERGhmnbv3i2bD8D3vw7nwLETrJ49hUsHdlKnRhXqtOmsilM6W/cGc/bCRZwc7GT1yYlTEQ935oz9nUv/7ODY3xtwdS5IvXZdeBLzTDanrI5dQkIC58+fZ8SIEZw/f54tW7Zw48YN2d/x/f2QIA4cP8Wq6eO4uPcv6lSrRN0OP/I4MgqAVwmvqVKuDOMH/Syrhyb48EL2cydB1siW0F0xoALGeJJxYAQJiUso8cUITwyxRp/amJCMxM23NflEJK6hpDLGOGOALfoEYMIzUnn0QU3+c3j9+jWbt+9i0qgRVK9SCS8Pd4KGDsTdxYUFy1dy8/YdToecY/70Sfh9XRbvwl7MnzaJ+Fev2LD571zv/6NOmzczefJkqlevjpeXF0FBQbi7u6tq4adOnaJTp07UrFkTNzc3fvjhB0qXLk1oaKh8Tjt2MyloONUrV0yL0+BfcHd1ZsGKNQA42NupTdv37Me/amU83OR5QcPr12/YvHMPk34fSvXKFfDycCNoUH/cXd45/TZ+Cg0C/Jk8chhlS5XAw82FhnVrY2drI5NT9scO0gY5cnBwUE1WVlay+KQ5vWHz7v1MGj6Q6hX98HJ3JeiXvrg7F2LB6g2qco8jIukzfDRr507D0EDegUxy4tSueWMCqlfBw9WF4t6FmT5yGHEv47kkUw00u2NnaWlJcHAw3377Ld7e3lSsWJE5c+Zw7tw5Hjx4II/Tmzds2fsPE4f0p3oFX7zcXBjZ7yfcCxVk4do/AejQojEj+vYgoKqOj9GN7r369UslT2IUh0QCEs7v9cnTR4ETBkS+TdZPSCEV1MqYo4cVeqoyuSE5OYWUlBRMTNRrbKamJpw4dZbExEQATExM3jnq62NkZMiJU2dzvf/MnZLfOpmozTc1NeX48eMAVK1ale3bt/P48WMkSeLQoUPcuHGDevXqyeT0Nk4f1GxNTUw4cSZjHKKin7Ar+B+6ftdGFh+A5JTkjxw7Y06cCSU1NZVdwQcp7OlO/VYdsC/2NRXrNWXr7n3yOeXg2AEcPnwYOzs7ihQpwvfff090dLR8TulxyuzYhZwDIDU1lY59B/HrT90p7l1YNpdPcXqfpKQkFq/bhGU+C0oXLyqPUw6P3fvExsaiUCjInz+/TE4f+94ZcyL0wkfWEvx/J08SesLbJnOzD8bHNUOhWpaAhB5g8kEZ0/fK5AYLi6+oVL4cYyfPIDwikpSUFNZu+oszoeeJiIqiaJHCuDo7M2zUOJ6/eEFSUhITZ8wmMiqaiKioXO8/cycLKlWqxJgxYwgPD09zWruWM2fOEBGR1rw9e/ZsfHx8KFSoEEZGRtSvX5/58+dTtWpVmZy+opKfL2OnzXwXpz82c+bcBSIiMyajVRv/xOIrc1o0CpTFB8Diq6+o5Pc1Y6fNITwyKs3pzy2cORdGRFQ00U+eEv/qFZNmL6Be7Rrs+2MNzRrUo2XnHzly4rQ8Tjk4doGBgaxbt46DBw8ybdo0QkJCqFWrluriUeNOX31FJd+yjJ01/12cNm/jzIWLREQ9AWDSvMUYGOjTt1tHWRw+xwlgZ/AhLAqXwdSjJDOXrGD/hhXYyNSakZNj9z5v3rxhyJAhtGvXTmPDeGZw+sqcSl+XZtycxYRHRac5/b2TM2GXiYh+kv0GdIz0Xu65nQRZo1OtGNp+CdDqRfOQJIlCxUpjYufMnEVLaNeqBfr6+hgaGvLXmmXcuHUbazdvzB3dOHL8JIF1aqMv45jPa9asQZIkChYsiLGxMbNnz6Zdu3aqfc6ePZvTp0+zfft2zp07x7Rp0+jZsycHDhyQzWn1gllpcSpRDhNHD+YsXk67ls0yjcOKdZto903zDLUdjTvNm5nmVLI8JgULM2fJStq1bIq+vh6pb1/32LR+Hfr36E6ZksUZ8nNPGtWtzaJV62Rzyu7YtW7dmoYNG1KiRAkaN27Mnj17uHHjBrt27ZLNafXsKWlx8q2GiXsJ5ixfTbvmjdHX1+PcpX+ZvWw1K2ZM1Or9yayc0vGvUoEL+7dxYtsm6tWsTuse/Yh+GiObU3bHLh2lUkmbNm1ITU1l/vz5svkArJo+DkmScK5YB1NvP+auXE/bJoGy/v7IhYLcN7eLfJ49eZLQ02vmH9a0XyOplpmhIBV4k0WZ3OLp7sbh3Vt5+fgOD65c4MzBfSiVStxdXQDwLVOaC8cP8vz+TcKvX2LP5o3EPHuG29vlcuDp6cmRI0eIj4/n4cOHnD17Ns3J3Z3Xr18zbNgwpk+fTuPGjSlVqhS9e/emdevWTJ06VT4ndzcO79jMywc3eHDpLGcO7EKZnIy7q7NauWOnznD91m26d2gnm8s7J1cOb/+Dl/eu8SDsFGf2b0epTMbdxRkbqwIYGBhQrIh6E3LRIl6y9nLP6thlhqOjI66urty8eVM+JzcXDm9ex8ubYTwIOcKZXZvTnJwLcexMKNFPY3AtXxNDl2IYuhTj/qPH/Dp6Iu4V/LPfuAxO6ZibmeHl7kpF3zIsmzYeA319lm34Uz6nHBw7pVLJt99+y927dwkODpatdq5ycnXm0KblxF05xf2T+zi9bT3K5GTcnAvKul9dRzy29nHyJKHnQ4EZCh6RrJqXgkQ4yTiQdvVpiz56oFbmFak8I1VVRlOYm5vj6GDP8xcv2PfPYZo0UL8fbWmZD1sbG27evkPohYs0bVBfo/v/qJOjI8+fP2ffvn00bdoUpVKJUqlET0/9sOnr65OaqrnH+T7uZPYuTgeP0CSwrtry5Ws34lu6FKVL+MjuktEpln2HjtIksC5GRkb4lS3FjQ8eMbx5+y6uWvgxzOzYZUZMTAwPHz7E0dFRficzMxzt7dLidOQ4TerVpkPLplw8sIML+7epJicHO379qRt71y3LE6ePISGRmJQkv9NHjl16Mr958yYHDhzA2tpadheVk5kZjna2PI+NY//RUzQJqKm1fWuK9He553YC8dhaVsj2pjglErHvPTP+EomnpGCMAgv0KIUh50jCEj0s0eM8SRigoPDbXvHGKCiGISdIxAQFxig4SSJW6FFIQwl93z+HkCQJby9Pbt29x6ARo/Au7EmX9m0B+HPrdmytrXFxLsjlK9foN2QEzRoGUrdWTY3sP1OnffvSnLy9uXXrFgMHDsTb25suXbpgaGhIjRo1GDhwIKampri6unLkyBFWr17N9OnT5XM6ePhdnO7cY1DQWLy9POjSrrWqTFzcS/7cvpOpo3+XzUPd6chbJw9u3b3PoKDxaU5tWwHwa68fafN9b6pVqoB/lUrsPXiYHfsOcGjrJvmcsjh28fHxBAUF0bJlSxwdHbl37x7Dhg3DxsaG5s2by+d0+Fiak6c7t+49YNCYSXh7utOldUsMDQ2xtiqgVt7QwBAHW1u8vTzyxOlVQgLjZi2gSd3aONrbEvP8BfNXreNRRCStZOyXkdWxS05O5ptvvuH8+fPs3LmTlJQUIiPTHrGzsrLCyMhIHqcjJ5AAbw9Xbt17yOAJM/D2cKVLq7SLjGcvYnkQHkH4274H1+/cA8DB1gYHmZ7m+FzEq1+1g2wJPZoUtvFa9fkEaR1/vDGgNqaUxYhk4CiJJCJhjz6NMcXoveb0KhijB+zjNSlAQfRpgCl6Gmpyj42LY9iocTwKj8CqQH5aNGnEuN+GYmiYdlERERnFL8NHEhX9BEd7ezq0acWIQQM0su+POsXGMnToUB49eoSVlRUtW7Zk3LhxKqeNGzcydOhQ2rdvz7Nnz3B1dWXcuHH06NFDPqe4lwwbM/FdnBoFMu63wSongI1/b0OSJNq2zLw2KovTuEk8Co/EKr9lmtPwgSqn5g3rs2DKOCbOms/Pw0bi7enJXysWUrWin3xOWRy75ORkLl++zOrVq3nx4gWOjo74+/uzadMmLCws5HOKe8mwidN4FBGJVf78tGhQl3GDB6gdO22TlVNKSirXb9/hmx/+5umz51gXKIBf6ZIc3bJe1l74WR27e/fusX37dgDKlCmjtt6hQ4eoWbOmPE4v4xk+ZTaPIqOwsrSkRf3ajP21j+rYbT9wmG4D311At+szGIDff+7ByH4/yeIk0G0UUnYDxn6EuLg4LC0t+dHEGv038jeF5QR9UxNqb1hCYFU/DA104zX1yuRk9hwPoUGDBnn6I/o+SqWS3bt3E1ipLIYGutHBRpmcwp5TFwisUEq3nM5c0s1j97U3hjrSOUqZksKe89d10kkXj139Eq4Y6ud9fTPmRRx2ZasRGxsrW3+A9Dzxu3F+THLZ8fKNJDE68YWsvv91dCPrCQQCgeCLRTS5awcRI4FAIBAIvgBEDV0gEAgEsqKHItd9n0TtM3tEjAQCgUAgK5p8U5x4Dv3jiBq6QCAQCGRFk/fQQ0JCRKe4jyBq6AKBQCAQfAGIGrpAIBAIZEUTg6uI2mf2iIQuEAgEAllJG5wldxldofXhu/57iIsegUAgEAi+AEQNXSAQCASyIprctYNI6AKBQCCQFfGmOO0gYiQQCAQCwRdAjmvoiYmJJCYmqj7HxcUBMDJkD9b5LTVv9hkoU1I4EHYDZUI86NAgEQBJ4beRdMxJGR8LOjBIBIAyJW2oXWVSEqToVpySIu/q3rFLSQYd6SSkckpWgpSaTWntoDp2D/+HpGPneLJCH4Ui752SFdo7p0WTu3bI8WhrQUFBjBo1KsP89evXY2ZmpnExgUAgEMhHQkIC7dq108poa7PMrTDN5UXMaymVn189o0iRIujr69OrVy969eqlIdMvgxwn9Mxq6M7OzoRfPqtzNfSAr4vp1DCOB85fI6CMbg0teSDsOgElPXRiGEdIq70cuHyHgLJFdStOF/6nm+dTaU/dcrp4m4BSHrrldOmObp7jOuIU8yIOpzKV/3MJXQyf+nFy3ORubGyMsbFxhvmG+vo6M351OsIpZxjq6+nMD3A6uhknHXXSxWOnc066eI7rhpM2LypEk7t2EL3cBQKBQCArirdTbrchyBqR0AUCgUAgK6KGrh1EjAQCgUAg+AIQNXSBQCAQyIoeily/yz236/9/QCR0gUAgEMiKaHLXDiJGAoFAIBB8AYgaukAgEAhkJW341NxvQ5A1IqELBAKBQFbEY2vaQTS5CwQCgUDwBSASukAgEAhkRU+h0MgE4Ofnh4+PD/Pmzcvjv0r30EpCT05O5reJ0/EoXxMz9+J4VvBn9PQ5pKa+G5lpy6591G/TGVsfP/QcvQj796r8ThOm4lGuGmauRfH0q87oabNVTkqlksFjJlKqRn2+cvOhYKkKdOo9gPDIKHmdJk7Do3wNzNx98KxQM0OcgqbOoljVOnzlUQKromWp820HzpwPk9dp8kw8Kgdg5lUGzyp1GD1znprT+/w4ZCR6zsWYuXSVvE4Tp+HhVx0zt2J4lq+hduwAuvQdiJ6Dh9pUqUELeZ2yOJ/SuXbjFk07dCe/VynyeZSgUmBzHjx6LJ/TpBl4VKyFmWcpPCvVZvSMuWpOegW9M52mLFgqn9PkmXhUqo2ZZ2k8Kwcweob6+RT/6hW9h4/GuVwNzDxL41OzAQtWb5DFR80pi3M86slTuvQfSkHf6pgXLkvgd99z8+492ZwAXsa/ol/QeNwq1sLMqwxVmrUlJOyyarkkSQRNn0tB3+qYeZXBv1VHrly/KavT56LQ0AQQEhLC1atXxcAsmaCVe+iT5i5m0eoNrJw9meLehQm9eJmu/YZgaWHBz993BuBVQgKVy/vyTeNAfvh1uPxOcxayaPV6Vs6eSnHvIoRevETXnwelOf3QhYTXr7lw6V9+G9Cb0sWL8fxFHP1HjKZpx+8J2b9dHqe5i97Gacp7cRqMpcVX/Px9FwCKeLgzZ3wQHq7OvH7zhhmLV1CvTSdunjyIrY215p3mL2XR2k2snDGB4kUKE3rpX7r+MiwtTt06qpXduvcAZy9cwsneTuMeak5zF6Udu1lT3h27foOxzGehihNAff8aLJ81WfXZyNBQPqdszieA2/fuU61JK7q2+5agQf2xtLDg2s1bmGQyRoJGnOYtYdGajaycOYni3l6EXvyXrgOGpjl17wRA+IXjauvsOXSU7r8Mp2WDevI4zV/61mkixYu8dUo/n7qnnU/9gyZy+OQZ1syejJtzQfYfOUGv4aNxsrejab3a8jhlcY5LkkTz7r0xNDBg67J55LP4iulLVlKnbVeuHNyJuUyjTX4/8Df+vXGT1TMn4WRvx9q/d1CnXVeu/LOTgo72TF6wlBlLVrJi+niKuLsxbvZC6rbrxv+O7MHiK3NZnAS6jVYS+ulzF2hSvzYNA/wBcHMuxMa/d3Lu4rurzQ6tmgNw7+EjbShxOvQCTerVoWGdWmlOLoXY+PcOzl28BIBlvnzs/3Ot2jqzxwdRoX4zHjx6jEuhgpp3OneBJvUDPojTDs5d/FdVpl2LJmrrTA8axvL1f3Dp2v+oXa2K5p3Oh9Gkbi0a1q751qkgG7ft4tylf9XKPY6Ios+Isexdu4RGnXto3EPNKfQ8TeoFqB+7rTvUzicAY2MjHOxsZXV555T1+QTw2/ipNKhdk8m/D1XN83Bzkc/pXBhN6tWmYUDNNCfnQmnH7r3z6cP4bN/3D/6VK+Dh6iyT0wWa1K393vlUKMP5dPp8GB1bNaNm5QoA/PBdaxav20TopX9lSejZneM3797j9PmLXD6wneLehQGYP+537MtUYcO2XXRv20rjTq9fv2HznmC2LptL9Yp+AAQN6M22ff+wYM0Gxgz8mVnLVjOsz4+0CKwLwMoZE3H4uirrt+7kx+9aa9wpN4hOcdpBK03uVcr7cvDYKW7cvgvAxSvXOH42lMC3X6C8oEqFchw8foIbt++8dbrK8TMhBNb2/+g6sXEvUSgU5LeUZ+i+KuXLcfDYyUziVCPT8klJSSxeuxHLfBaU9ikmj5OfLwdPnObGnbdOV//H8ZDzBPq/c0pNTaVjv8H82qOr6gdPTqpUSI9T+rG7xvEzGc+nwydPY1/cD+/Ktfj+l6FEP3kqr1MW51Nqaiq7DhyisKc79Vt3xN6nHBXrN2Pr7v3yOZX35eDx0++dT//j+NlzHz2fop48Zdc/R+ja9hv5nPx8OXjiVMbzqVb198p8zY7ggzyOiEKSJA6dOM2NO/eoV6OqjE4fP8cTE5UAai0p+vr6GBkZcuLseVmcklNSSElJydB6Y2pizImQ89x98IjI6KfUrf7uIt7Y2IgaFfw4de6CLE65QZNN7oKPo5Ua+uDePxIb95Ji1eqir69PSkoKY4cMoG3zxtrYfeZOfXqkOVUJeOc09FfaflADTufNm0SGjptMuxZNyGdhIY+TKk513ovTL7Rtru60M/ggbXv8TMLr1zja27F/02psrK3kcerZndiXLylWs+E7p0H9aNusoarMpPlLMdDXp2/XDrI4ZHDq/fbYVX0vTkPV41S/Vg2+aRyIa6GC3H34iN8nTaf2N98Run9bpsMA59opm/Mp+mkM8a9eMWn2QsYM+YWJI4aw9+ARWnbtwcEt66lRuaLmnXp9n3bsagS+cxrcn7bNGmVaftWff2PxlbmqxicH75wavOfUT81p9ujh/DBoBM5+NTAwMEBPT8GSyWOpWt5XHqdszvGiXu64FnJi2KQZLJwQhLmZKdOXrCIy+ikR0U9kcbL4ypxKvmUYO2sBxbw8sbe1ZsO2XZy5cInC7q5Evr04tbexUVvPztaaB4/CZXHKDQqFAoUidylZIVJ6tmgloW/atot1W7axbv4MinsXJuzfq/QfOQ4nB3s6fStfR6UsnbbuZN3mraxbMCvN6cpV+o8Yk+bUuqVaWaVSSdsf+5Camsq8SWPkc9q2k3Vbtr6NU5G3cRqLk4Mdnb595+RfpSIXDuzg6bPnLFm3idY/9OH07s3YffDl1ojT9t2s27KDdXOmULxIYcKuXqN/0ASc7O3o1KoZ5y5dYfbyNZzbvTnXX9gcO23bybrN21i3YObb8+ka/X8fg5P9u2PX+r0EUaKYN+VKl8StXDV2HThEi4b1Ne+UzfmU3sGqaf069O/RDYAyJXw4FXKORavkSeibtu9m3ebtrJs3jeJFvAi7co3+I98eu2+bZyi/YuNm2jVvjImJPPf0VU5bdrBu7tS3Tv+jf9D4t+dTmtPs5Ws4ff4i21bMx7VgQY6eCaHX8FE42tsSUK2yfE4fOccNDQ35a9Fsug/8DeuSFdHX1yegaiUC/atp3OV9Vs+cRLdfh1PIrwb6+vp8XcKHds0acf69DsMffuUkSdLa91Cge2gloQ8aM5HBvX+kzdsf2ZLFvLn/KJyJsxfmWUIfNHoCg/v0oM3bVoKSPkW5//AxE2fPV0voSqWS1t/35u6Dh/yzeb1stXNIj1MP2jR761TMm/uPHr+N0zsnczMzvNzd8HJ3o6JvWYpUrsWy9X8ytO9PmncaN5XBPbvTpmnDt05F0o7dvMV0atWMY2dDiX4ag2vFWqp1UlJS+HXMZGYtW83dU/9o3ml0+vmUHqeiaXGasyDDxVg6jvZ2uBZy4uadexr3SXPK+nyysSqAgYEBxYp4qa1XtIgXJ86EyuM0ZjKDe//w3rF7+72buyhDQj92JpTrt++yccFMWVxUTmOnMLjX9+pOj8OZOHcxnVo15/XrNwyfNJMtS+eo7mmX8vEm7Mr/mLZwuSwJPbtzHMC3VHEu7Pub2LiXJCmV2FpbUbFxa3xLFde4Tzqebi4c/msNrxISiHsZj6O9HW1+6o+7c0EcbNMu3iOfPMXxvU6oT54+w95W851jc4u4h64dtJLQE16/QU9P/Xa9vr4eqVLmjz5pg4TXrzNx0ld7VCU9md+8c4+DW9ZjbVVAZqfM4qSfbZwkSSIxKUkmp6zj1KFlEwKqVlJbXv+77/muZRO6yHSxlrmT3kcfpQOIefach+ERaj9+8ju9i5ORkRF+ZUqp7rGnc/P2XVxl6GCZ5vRG9eyuupOUoezyDX/hW6o4pYsXlcXlnVPWx06ZnIxSqURPob3fi5z8FqRjmS/tgv7m3XuEXvqX0b/2lcXpfczNzDA3M+P5i1j2HT3BpGG/4u5SCAc7G4KPnaRsCR8grU/NkTMhTBz6i+xOn4oeue+wJV6akj1aSeiN69Ri/Kz5uBR0orh3YS5cvsqMRcvp8l7v0GfPX/DgcTjhUdEAXH/bkcfBzlaWnsqN69Zm/Mx5b52KcOHfK8xYtEzllJycTKtuPTl/+Qo71i4lJTWVyLf3y6zyW2JkZKR5pwxxuvI2TmmdlF4lJDBu5nya1KuNo50dMc+fM3/VOh5FRNKqcaDGfQAaB/gzfs4iXAo6UrxIYS78e5UZS1bSpXVasrYuUADrAuoXOoaGBjjY2uDt6S6PU53a78Xp7bFb+C5O8a9eETRlFi0b1cfRzo57Dx8xfMJUbKysaN5AnvvD2Z1PAL/2+oE2P/ShWsXy+FetxN6DR9ix/x8O/S3PM9aN6/gzfvbCt05eXPj3GjMWr6BLG/VWjLiX8fy5cy9Tfx8si0fmTo4UL5LutJIub1tW8ll8RY2KfgwaNwVTE2NcCxXkyOmzrPlrG9NGDpHHKZtzHODPnXuxtbbCxcmRy/+7Qb+g8TSrV5u6NTT/ZEk6+w4fR5IkvD3duXXvPoPGTcXbw50u3zZHoVDwc7eOTJi7mMJurhR2d2XC3MWYmZjQ7iN9JARfPlpJ6LPH/c6ISTPpNWQk0TExONnb8UOHtvw+oLeqzPb9/9C137sflLY9fgbg91/6EPTrz5p3Gh/EiInT6TVkBNFPY3Cyt09z+iXtivtReCTb9x0AoGythmrrHtyygZpVNH/Pc/a4kYyYNINeQ35/Gyd7fujQht8H9AFAX0+f67du882fW3j67DnWBfLjV6YUR7duorh3EY37AMwe8xsjps6i1/DRRD99lnbs2n/L7/16yrK/HDmNH8mISdPV49SxrVqc/v3fddb8+Tcv4uJwtLPFv0olNi6ajcVXX8nklPX5BNC8QT0WTB7LxNkL+Pm3UXh7evDXsvlUreAnj9PY3xgxeRa9ho169737rjW/91d/IcfGbbuQJOmjneU06jTmN0ZMmU2vYaPT4uTw1um982nD/OkMmzid7/oM5NmLWFwLOTF2cD96dGgjn1M253hE9BN+GT2JqKcxONrZ0KFlU0b8rPlbXO8T+/IlwybO4FFkJFb5LWkRWJdxg/ph+PZ9CoN+6s7rN4n0+m00z2PjqFCmFPvWLdXJZ9AVioz3+z95G5pR+aJRSJKUsf0tB8TFxWFpacmTq+ewLmCpaa/PQpmcwp5z1wj0K4GhgX5e6wBvnUL+JdDXR7eczl0lsIwXhvo64pSSwp6wWwSWK65bcQq9opvn09dFdOvYnb9BYNnCuuV04aZunuM64hTzIhbbkhWJjY0lXz55HsVNzxMbCthhpshdo3mClErb59Gy+v7XEbclBAKBQCD4AhDDpwoEAoFAVkQvd+0gErpAIBAIZEUkdO0gmtwFAoFA8J9BDJ/6cUQNXSAQCASyogfo5bKKrfe2+3ZISIjoFPcRREIXCAQCgawo3v6X220IskYkdIFAIBDIjkjH8iPuoQsEAoFA8AUgaugCgUAgkBWNvClOVPGzRSR0gUAgEMiKeGxNO4gmd4FAIBAIvgBEDV0gEAgEsqKHAr1c1rFzu/7/B3Kc0BMTE0lMTFR9jouLAyC5gBPJ1taaN/sMkpVK4BrKNwmgrxuND8qUt+M8xz5F0hGn5HQno69AhwYdAVAamoCBblxnKhXJaf+PjdG5Y5dsboVCR+KUnPw2Tq9f616cLGx0LE63SLZ1R/F2xLQ89TGI0dq+RJO7dsjxaGtBQUGMGjUqw/z169djZmamcTGBQCAQyEdCQgLt2rXTymhr26wcMNfL3cXeq9RUmj6LFKOtZUGOE3pmNXRnZ2ciIiKw1pEaulKpJDg4mICSHhjqSE1BmZLKgct3CPCyw0BHnJJTUjlwK5qA8mV0aljQA2fDCKjki6GO1KiUyckcOHWOgCKOunXsbkRQp1pFnYpT8LHTBBQtpFtx+t8jnYxTnTp1VGOa5yUxMTE4OjpqJaFvt9ZMQm8SIxJ6VuT4TDc2NsbY2DjDfENDQ504Od/HUF9PJ8Ybfh8DfT2duchIx9BAX2cSejqGBgY68wOcjm4eOxGnnKCLcdKV30xtOogmd+2gW98+gUAgEAgEn4VuXboKBAKB4ItDvMtdO4iELhAIBAJZ0VNoYLQ1kc+zRSR0gUAgEMiKuIeuHcQ9dIFAIBAIvgBEDV0gEAgEsiJq6NpBJHSBQCAQyIroFKcdRJO7QCAQCARfAKKGLhAIBAJZEeOhawdRQxcIBAKBrOhpaALw8/PDx8eHefPmafNP+E+glYSenJzMb7/9hru7O6ampnh4eDB69GhSU1NVZSRJIigoCCcnJ0xNTalZsyZXrlyR1cu9Um30nItlmHoNHw1A1JOndOk/lIK+1TEvXJbA777n5t17sjp5+DdFv0j5DFPvoMkAxL9KoM+oKbhUa4R5yWoUr/8tC9b/JZuPe+ny6Fk5ZZh6DRwKkOkyPSsnpsyeL59Tya/Rs7TNMPX6ZZCqzLXrN2ja5jvyO3uQr6AblWrX58HDR7I5edRohL6Xb4ap98iJAHQZNDLDssotO8nmA+BWrCQK8/wZpl79f81Q9sc+/VCY52fmXPmOG4BHtUD0PcpkmHr/Ph6AUTMX4BPQDIviFbEuU4263/3ImbDLsjplFSelUsng30ZS0q8y5rZOOHkWpWP3HwmPiJDXyc0NhUKRYerVqxcAW7ZsoV69etjY2KBQKAgLC5PVR5cICQnh6tWrqlgI3qGVJvdJkyaxcOFCVq1aRfHixQkNDaVLly5YWlry888/AzB58mSmT5/OypUrKVKkCGPHjqVOnTpcv34dCwsLWbzO7vyTlJQU1ed/r9+kbrtutGpUH0mSaN69N4YGBmxdNo98Fl8xfclK6rTtypWDOzGXaYS5M5tXqjvduEO9Lr35JrA2AAPGz+DwmXOsnjoKt4KO7D9+ht6jJuNkZ0vTgBoa9zn7zx51n2v/o26LNrRq2hiA8GthauX3HDhI976/0LJJQ427qJwO7Vd3uvo/6jb7hlbNmgJw+85dqtVrRNcO7QkaOgjLfPm4duMGJiYZxyLQFGe2rCEl9f3jdpt6nXryTWCAal696pVZPmmk6rORzO/SDjl66IM4XaNO42a0at5UrdzWHTs5ExKKk6OjrD4AZ7auI+W9C/l/r9+iXscefNOgDgCF3V2ZHTQED5dCvH7zhpnL11G/40/cOLQdW2srWZyyilNCQgLnwy4yYshASpcswfMXL+g3aChNWrUl9PhhWXwgLWmpOf37L3Xq1KFVq1YAvHr1iipVqtCqVSu+//572Tw0hejlrh20ktBPnTpF06ZNadgw7Ufezc2NDRs2EBoaCqTVzmfOnMnw4cNp0aIFAKtWrcLe3p7169fz448/yuL14Q/ExPlL8HR1oUZFP27evcfp8xe5fGA7xb0LAzB/3O/Yl6nChm276N62lTxOVgXUPk9avBpPl0LUKP81AKfDLtOxeUNqVvAF4Ic2zVmy6W/O/XtNloRua6M+kt7EmXPxdHejRpVKADjY26kt375nH/7VquDh5qpxl3dONupOM2anOVWtDMBvY8bToG4Ak8e8S54e7m6y+QDYWn9w3BatTDtub48TgLGRIQ62Nh+uKp/TB/uaOG0Gnh7u1KhWVTXvcXg4vQcMYt+2zTRs+a38Th985yYtWI6nqzM1KpQDoF3TBmrLpw3/heV//M2l/92kdpUK8jhlESeFQkHwzq1qy+dMm0z56rV48PAhLs7OMjnZqjtNnIinpyc1aqR9xzt06ADAvXv3ZNm/xnnbwpDbbQiyRitN7lWrVuWff/7hxo0bAFy8eJHjx4/ToEHal/fu3btERkZSt25d1TrGxsbUqFGDkydPakORpKQk1m3ZQZfWLVAoFCQmKgEweW+EOX19fYyMDDlx9ryWnJSs27aHLi0bq74MVXxLs+OfozyOjEaSJA6dDuXGvQfUrVpRCz5JrPtzM13at8n0yxkV/YRd+/+h63dtZHdRc9r0F12+a4dCoSA1NZVd+4Mp7OVJ/eatsPcsRsVa9di6c7cWnZSs27abLt80VYvTkTPncCgfQNGA5vwwbAzRMc+06JTE2k1/0LXjdyqn1NRUOnT7kYH9+lDcp5jWXN45ZR6n95cv2bgZS4uvKF2siJacMsbpQ2Jj41AoFOS3tNSe09q1dO3aNfdJUfBFo5WEPnjwYNq2bUvRokUxNDSkbNmy9OvXj7Zt2wIQGRkJgL29vdp69vb2qmVys3XfP7yIe0nnVs0BKOrljmshJ4ZNmsHzF7EkJSUxcd4SIqOfEhH9RDtOBw7z4mU8nVo0Us2b9duvFPNyx6V6I0yKV6ZBt5+ZO3IQVcuVkd9n115exMbRuW3mNblVG//A4quvaNGoQabLZXHauZsXsbF0bp92LkU/eUJ8/CsmzZhNvYDa7Pv7D5o1akDL7zpz5PgJ7TgFH+JFXDydWjZWzatfowprpo/lwNqFTBnan9DLVwn4rgeJiUnacdqxixcvYun8XTvVvEnTZmJgYEDfnj204pDBKfggL+Je0umbJmrzd/5zlHwlKmFWrDwzl69l3+qF2HzQciWbUyZxep83b94w5Pcg2n3bSmtjcm/dupUXL17QuXNnrexPDhQamgRZo5Um902bNrF27VrWr19P8eLFCQsLo1+/fjg5OdGp07uOQR9efUqSpLUr0uUbNxPoXw0nh7QmZENDQ/5aNJvuA3/DumRF9PX1CahaiUD/alrxAVj+13bqV6+Ek/275rc5azZx5uK/bF04DVcnB46FXKD3qMk42toQUKW8vD5rNxAY4I+To0Omy1es20i7Vs0xMTGR1UPNac06AuvUVjmlpkoANG1Qn/690hJVmVIlOXU2hEXLV1GjahX5nf7cRv3qldWOW+uG71qfShTxolzJYrjXaMSuw8dpUa+W7E7LVq0hsG6A6j75uQthzJq/kPMnj+RZrW/5H1upX6MKTh/ctvGv5Mf5nZt4+vwFSzduoU2fQZzashY7G3nuob/Ph3F6H6VSSZtOXUlNTWX+zKmyu6icli0jMDAQJycnre1T04h76NpBKwl94MCBDBkyhDZt0ppiS5Ysyf3795kwYQKdOnXCwSHtxzgyMhLH975I0dHRGWrtcnD/0WMOHD/F5sWz1eb7lirOhX1/Exv3kiSlEltrKyo2bo1vqeLyOz2O4J+TIfw1d5Jq3us3bxg+fT6b506moX/afdBSRQsTdu0G05avlTWh33/4iANHjrF59dJMlx87dYbrN2+zcdlC2RwyOD14yIHDR9m8dqVqno21FQYGBhQrqt5EW7RIEU6cPi2/0+MI/jl5lr/mTcmynKOdLa5Ojty690B+pwcPOHDoMFs2rFHNO3biJNFPnuDiXUI1LyUlhV+G/sbMeQu4d03enuX3H4fzz4kz/LVgWoZl5mameLm54OXmQsWypfD2b8zyP/5mSM9u8jplEqd0lEol33bozN179zm4e4fWauf379/nwIEDbNmyRSv7kwuFBu6hi9sN2aOVJveEhAT09NR3pa+vr3pszd3dHQcHB4KDg1XLk5KSOHLkCJUrV5bdb8Uff2NnY0XD2pl3KrPMZ4GttRU3794j9NK/NK1bW3anlZt3YGddgIY139UolcnJKJXJH4mlJKvPinUbsbO1oWHdgEyXL1+7Ad8ypShdQv6LnXdOG9Kc6tVRzTMyMsLv67LcuHlbrezN27dxlakD0/us/Gt72nHzr5pluZjnL3gYEYWDnfyd5FasWYedrS0N69dTzevQtg2Xzpwg7NQx1eTk6MjAfn3Zt03+5LHyz23YWVvRMActXhKQmCT/rYnM4gTvkvnNW3c4sHMb1jL1ts/UacUK7OzsVB2KBYKs0EoNvXHjxowbNw4XFxeKFy/OhQsXmD59Ol27dgXSrrz69evH+PHjKVy4MIULF2b8+PGYmZnRrl3m97I0RWpqKiv/2ELHb5phYKAejj937sXW2goXJ0cu/+8G/YLG06xeberWkLfZNjU1lZVbdtKxWUM1p3xffUWN8l8zePJsTE2McXVy4EjIBdZs3c3UoT/L67N+Ex3btMoQI4C4uJf8uW0HU9/rVS43qamprFy3gY5tW2dw+rVvL9p0+Z5qlSvhX60Ke/85yI49+zi0a6v8Tpu307F5IzWn+FcJjJq9iBb1auNoZ8O9R+H8Nm0eNgXy07yOv+xOK9aso1P7tmpO1tZWGRKToaEBDvZ2eBcpLLvTyr+207FFYzWnVwmvGT9vCY0DauJoZ0PM81gWrP2DRxFRqsfa5HTKLE7Jycl8074j58MusfOvjaSkpBAZGQWAlVUBjIyM5HVasYJOnTplOMefPXvGgwcPCA8PB+D69esAODg4qFo8dQkxHrp20EpCnzNnDiNGjKBnz55ER0fj5OTEjz/+yO+//64qM2jQIF6/fk3Pnj15/vw5FSpUYP/+/bI9g57OgWOnePA4gq6tW2RYFhH9hF9GTyLqaQyOdjZ0aNmUET//JKsPwIGTZ3kQHkmXbxpnWLZ+xliGTZtPh19+51lsHK5ODozt34MebVvK53P4KA8ePaZr+8x7r2/csg1JkmjbsplsDhmcDh3hwcNHdO3QPsOy5o0bsmDGFCZOn8XPg4fhXdiTv9asoGoleZ8EOHDiTNpxa6X+nLe+vh6Xr99izd+7ePHyJY62NtSsWI4NsyZg8ZW5vE4HD6fFqeN3su7nUzhw4jQPwiPo0qqZ2nx9fT3+d/seq7f8wtPnL7DOn59ypYpzZNNyihfxktfpI3F69Pgx23ftAaBMJfXWhEN7dlCzunx9ag4cOMCDBw9UFZ/32b59O126dFF9Tr+dOXLkSIKCgmRz+lwUegoUuczIYnCW7FFIkvRZbbVxcXFYWlry9OlTrK2ts19BCyiVSnbv3k1gGS8M9fXzWgcAZUoKe8JuUd/bAUN93XjTrjIllb3XIwms7IuhgY7EKTmFPSfPEVitAoaZtALkBcrkZPYcO0P9YgV169hde0wD/6o6Fafdh45Tv7iLbsXpygOdjFODBg0wlPmlQjkhJiYGGxsbYmNjZesTkJ4njjk585Ve7s6N+NRUqoU/lNX3v45unOkCgUAg+GIRg7NoB5HQBQKBQCArIqFrB91oHxMIBAKBQJArRA1dIBAIBLIinkPXDiKhCwQCgUBWRJO7dhBN7gKBQCAQfAGIGrpAIBAIZEU0uWsHkdAFAoFAICuiyV07iIQuEAgEAlnRUyjQy2VGzu36/x8Q99AFAoFAIPgCEDV0gUAgEMiKaHLXDjlO6ImJiSQmJqo+x8XFAWnvT1cqlZo3+wzSPZQpqXls8o50l2Qdckp3USan5LHJO9JdlMnJeWzyjnQX3Tx2Ik5Zoctx0rXfS22gQAOd4sTgLNmS48FZgoKCGDVqVIb569evx8zMTONiAoFAIJCPhIQE2rVrp5XBWc55uPNVLgfuiU9JxffOXTE4SxbkOKFnVkN3dnYm4u5NrK0KyCb4KSiTkwk+dpo61Srq1AhLOutUp45OjPoEabWF4OBg3YyTcMoS4ZQzdM0p5tlzHN0LayWhn/fSTEL/+pZI6FmR47PK2NgYY2PjDPMNDQx04uR8H+GUMwwNDXUmoaejk3ESTjlCOOUMXXHSqoMGnkMXN9GzR/RyFwgEAoHgCyDvLxMFAoFA8EUjerlrB5HQBQKBQCAraQk9t69+1ZDMF4xochcIBAKB4AtAJHSBQCAQyEp6k3tuJ12jefPmFChQgG+++SavVQCR0AUCgUAgM+nvcs/tpGv07duX1atX57WGCpHQBQKBQCArX2oN3d/fHwsLi7zWUCESukAgEAi+OI4ePUrjxo1xcnJCoVCwdevWDGXmz5+Pu7s7JiYm+Pr6cuzYMe2LahDRy10gEAgEsqLQwItlPnX9V69eUbp0abp06ULLli0zLN+0aRP9+vVj/vz5VKlShUWLFhEYGMjVq1dxcXEBwNfXV+0Nqens378fJyenz/tDZEQkdIFAIBDIiiafQ08fGCydj73FNDAwkMDAwI9ub/r06XTr1o3u3bsDMHPmTPbt28eCBQuYMGECAOfOncudtJYRTe4CgUAg+M/g7OyMpaWlakpPvp9CUlIS586do27dumrz69aty8mTJzWlqnW0ltAfh4fzXdcfsHZ2x8zGkTIVq3LuQphq+ZZt26nXpAU2Lh4ozPMTdvFSnjoplUoG/zaSkn6VMbd1wsmzKB27/0h4RESeOQEEjZtA0bJ+mNs6UaCgKwENm3ImJFRep8eP+e6777C2tsbMzIwyZcp89Mr1xx9/RKFQMHPmTHmdsolT5x9+QmGeX22qWDMgT50Arv3vOk1atcHS0QUL+0JUrBnAg4cP88zpwxilT1NmzM4zp/j4eHoPGEihwj6YWjtQ7OvyLFiyTDafnDhFRUXT+YefcPIsipmNI/WbtuTmrduy+bgVK5npcenV/1cAJEkiaNwEnDyLYmrtQM36Dbly9ZpsPrlFk53iHj58SGxsrGoaOnToJ/s8ffqUlJQU7O3t1ebb29sTGRmZ4+3Uq1ePVq1asXv3bgoVKkRISMgnu2gSrTS5P3/+giq16+FfvRp7/v4LO1sbbt+5R35LS1WZV68SqFKpAq1aNOP7Xn3z3CkhIYHzYRcZMWQgpUuW4PmLF/QbNJQmrdoSevxwnjgBFPHyYu60KXi4u/H69WtmzJ1P3SYtuHXpPLa2NjI4PadKlSr4+/uzZ88e7OzsuH37Nvnz589QduvWrZw5c0b2e0s5iRNA/ToBrFg4T/XZyMgoT51u37lL1Tr16daxA6OGD8XS0pJr169jYmySZ04Rt6+rrbNnfzDdevahZbMmeebUf/AwDh09xtpli3BzdWH/P4fo2e8XnBwdaNqoodadJEmiWZv2GBoasO2P9eSzsGD6nHkENGrK1XNnMDc317hTyNFDpKSkqD7/e/UadRo3o1XzpgBMnj6L6XPms3LRPIp4eTF28lTqNG7O9bAQnep1nY5CT4FCL5f30KW09fPly6ex0dY+vC8vSdIn3avft2+fRjw0hVYS+qTpM3EuVIgVi+ar5rm5uqqV6dCuDQD37t/XhlK2TpaWlgTv3Kq2zpxpkylfvRYPHj7ExdlZ604A7Vq3Uvs8feI4lq1aw6V/r1Dbv4bmnSZNwtnZmRUrVrxzcnPLUO7x48f07t2bffv20bCh5n901ZxyECcAY2MjHBzsM8zPK6fho8bQoG4dJo8brZrn4e6Wp04fxmfbrt34V68mm1dOnE6dCaFT+7bUrF4NgB+6dmbRshWEnr8gS0LPzunmrducPhvCvyGnKO5TDID5M6dh5+bFhj83071zR407fXhxPnHaDDw93KlRrSqSJDFz3gKGD/yFFk3TLrxWLV6AvXth1v/xFz9266Jxny8NGxsb9PX1M9TGo6OjM9Ta/0topcl9++49lCtbhlbfdcLO1YuylaqxZMUqbexao06xsXEoFIoMNcG8ckpKSmLx8lVYWuajdMkS8jht3065cuVo1aoVdnZ2lC1bliVLlqiVSU1NpUOHDgwcOJDixYvL4qHmlMM4HT52HDtXL4qU9uX7Xn2Jjn6SZ06pqans2rufIoW9qNekBXauXlSoUZutO3bmmdOHREVFs2vvfrp16pCnTlUrV2T7rj08Dg9HkiQOHTnKjVu3qRdQO0+c0ns5m5i8a0nR19fHyNCI4ydPyeL0PklJSazd9AddO36HQqHg7r37REZFUbe2v6qMsbExNapW4eTpM7L7fA669hy6kZERvr6+BAcHq80PDg6mcuXKmtuRltFKQr9z9x4Lli6nsKcn+7Ztpkf3rvT9dTCr123Qxu414vTmzRuG/B5Eu29baay553Oddu7Zy1d2BTGxsmfG3PkE79iKjY21PE537rBgwQIKFy7Mvn376NGjR4a3I02aNAkDAwP69pX/VgnkLE6BdeuwbvkSDu7ezrQJYwk5d55aDZpk+giKNpyio58QHx/PxGkzqV+nNvu3b6F540a0aNuBI8eO54nTh6xatwELi69o0bSxLD45dZo9dRI+Rb0pVNgHo/y21G/2DfNnTKVq5Up54lTUuwiuLs4MHTmK589fkJSUxMSpM4iMiiIiMkoWp/fZumMXL17E0vm7dgBERqXt097eTq2cvZ0dkVHRsvt8Dpp8U5yfnx8+Pj7Mmzcvy33Gx8cTFhZGWFgYAHfv3iUsLIwHDx4AMGDAAJYuXcry5cu5du0a/fv358GDB/To0UPWWMiJVprcU1NTKfd1WcaP+h2AsmVKc+XaNRYsXU7H9m21oZArJ6VSSZtOXUlNTWX+zKl57uRfvRphp47xNCaGJStW8W2Hzpw5/A92drbyOJUrx/jx49OcypblypUrLFiwgI4dO3Lu3DlmzZrF+fPnc/2c6Sc5ZROn1t+0UJUvUdyHcmXL4lqsJLv27lM1U2rTKVVKBaBpwwb079MLgDKlS3HyzBkWLl1BjWpVte70IcvXrKV961ZqNdG8cJo9fxGnQ0LZ/ucGXJ2dOXriJD37/4qjgwMBtWpq3cnQ0JDN69fQ7afeWBVyQ19fnwD/mgTWraNxl8xYtmoNgXUDcHJ0VJuvIHf3f/+rhISE5KhSFRoair//u1aMAQMGANCpUydWrlxJ69atiYmJYfTo0URERFCiRAl2796Naya37/4raKWG7uhgj09Rb7V5xby9efDwkTZ2nyk5dVIqlXzboTN3790neMdW2Wrnn+Jkbm6Ol6cHFcv7sWzBXAwMDFi2ao08To6O+Pj4qDsVK6a6yj127BjR0dG4uLhgYGCAgYEB9+/f55dffsn0XrtGnD7jfHJ0dMDVxZmbt+7kiZONtTUGBgb4FMukzCN5vgefEqdjJ05y/cZNunfS/P3gT3F6/fo1w4JGM33iOBo3CKRUyRL07vEDrVs2Z+qsOXniBOBbtgxhp4/zIvw+Ebevs3fbZmKePcPdTd4f//sPHnDg0GG1+/QOb+/xptfU04l+8gR7GS7qNUFeNLnXrFkTSZIyTCtXrlSV6dmzJ/fu3SMxMZFz585RvXp1zf7hWkYrCb1KxYpcv3lLbd6Nm7dwddF8x7KckhOn9GR+89YdDuzchrW1VZ47ZYYkSSQmydOUXKVKFa5fV+8JfePGDdVVbIcOHbh06ZKqaSssLAwnJycGDhwoWw/Qz4lTTMwzHj56jKNMneSyczIyMsLP92uu37ipXubWLVxl6GCZE6f3WbZqDb5ly1C6VElZXHLqpFQqUSqV6CnUf5r09fVJTU3NE6f3sbS0xNbWhpu3bqd10mvYQBandFasWYedrS0N69dTzXN3c8XB3p7gg4dV85KSkjhy/ASVK1aQ1edzSX9TXG4nQdZopcm9f5+eVK5Vl/FTpvFti+acDT3H4hWrWDxnpqrMs2fPefDwIeERab0O079gDvb2svRUzs4pOTmZb9p35HzYJXb+tZGUlBQi394vs7IqIMsjUNk5vXr1inGTp9GkYSCODvbExDxj/pJlPHocTqvmzTTuA9C/f38qV67M+PHj+fbbbzl79iyLFy9m8eLFAFhbW2NtrX7/3tDQEAcHB7y9vTPbZO6dsolTfHw8QeMm0rJZExwd7Ll3/wHDgsZgY21N8yaN8sQJYGC/PrTu2JXqVavgX70ae4MPsGP3Xg7vladjXE6cIO3NW3/+vY1pE8bK4vEpTvny5aNGtSoMHP47pqYmuLo4c+TYCVav38j0iePyxAngzy1bsbWxxsXZmctXrvDzwCE0a9yQugG1ZHGCtFsBK9aso1P7thgYvPupVigU9Ov1E+OnTqOwlweFPT0ZP2U6ZqZmtPtWN4bx/BAFGnhTnEZMvnCkzyQ2NlYCpKcP70rSqxfZTjv+2iiV8PGRjI2NpaLeRaTFc2epLV+xcJ4EZJhGDhuco+1Lr15ISbFPpa1bt0pJsU9z7XT36sVMfQDp0J4deeL0OiZSat6kkeTk6CgZGRlJjg4OUpOGgdLZowdz7KPmlJSUo2O9Y8cOqUSJEmlORYtKixcvzrK8q6urNGPGjE86n5KSkjQWp4SnEVLd2rUkWxsbydDQUHJxLiR1at9WenD938+Lkwac0qdl8+dIXp4ekomJiVS6ZAlp66Z1ee60aM5MydTUVHoRfv+TXORyirh9Xer8XTvJydFRMjExkbyLFJamTRgrpcY/zzOnWVMmSoUKFlSdT78N/lVKfB4ta5z2bdsiAdL1sNAMy1Ljn0sjhw2WHOztJWNjY6l61crS5bMnP8nn6cO7EiDFxsZ+0nf1U0jPE3d8vaUnFXxyNd3x9Zbd97+OQpIk6XMuBOLi4rC0tOTpw7tYWxXI7XWFRlAmJ7P70HEa+FfF0EA3XlOv004NGmBoaJjXOkBaU+vu3bt1M07CKUuEU87QNaeYZ8+xcXYnNjZWtr5B6XnibrmiWBjo52pbL5NTcA/9n6y+/3XEu9wFAoFAIC+a6BD3ts09p4+t/X8k7y8TBQKBQCDIITl9bO3/IyKhCwQCgUBW8mI89P+PiIQuEAgEAllR6KVNud2GIGtEiAQCgUAg+AIQNXSBQCAQyIpoctcOIqELBAKBQF70FGlTbrchyBLR5C4QCASC/wzisbWPI2roAoFAIJAXTQxo/nZ98djaxxEJXSAQCASyIu6haweR0AUCgUAgL+IeulbIcUJPTEwkMfHdEJ1xcXFA2vuJlcnJmjf7DNI9dMUHdNxJqcxjk3eku+hknIRTlginnKFrTrriIdAcOR6cJSgoiFGjRmWYv379eszMzDQuJhAIBAL5SEhIoF27dloZnOVhzdLky+XgLHHJKTgfvigGZ8mCHCf0zGrozs7ORNy9qVOjrQUfO02dahV1YjQjEE45ReVUp45OjQAXHBysm3ESTlmi0046co7HxMTg6OiolYT+qFYZjST0QgfDRELPghyf6cbGxhgbG2eYb2hgoDNfmHSEU87QSSdDQ534sXsfnYyTcMoROumkI+e4LjgINIt4Dl0gEAgE8pLbsVPfe+ztS3oO/dWrVxrdnm5dugoEAoHgi0OhUKDIZS91xRf4HLq9vT3ffvstXbt2pWrVqrnenqihCwQCgUCQB2zYsIHY2Fhq165NkSJFmDhxIuHh4Z+9PZHQBQKBQCAvGmxy/5Jo3LgxmzdvJjw8nJ9++okNGzbg6upKo0aN2LJlC8mf+GihSOgCgUAgkBc93r1c5rOnvP4j5MPa2pr+/ftz8eJFpk+fzoEDB/jmm29wcnLi999/JyEhIUfbEffQBQKBQCDIQyIjI1m9ejUrVqzgwYMHfPPNN3Tr1o3w8HAmTpzI6dOn2b9/f7bbEQldIBAIBLIi3uWeOVu2bGHFihXs27cPHx8fevXqxXfffUf+/PlVZcqUKUPZsmVztD2R0AUCgUAgL+Jd7pnSpUsX2rRpw4kTJ/Dz88u0jIeHB8OHD8/R9kRCFwgEAoG8aHD41C+JiIiIbF+dbmpqysiRI3O0vS+4m4FAIBAIBLqLhYUF0dHRGebHxMSgr//pr8oVCV0gEAgEsqLQ08wEX9ab4j42lEpiYiJGRkafvD2tJfTH4eF81/UHrJ3dMbNxpEzFqpy7EKZaLkkSQeMm4ORZFFNrB2rWb8iVq9dk8wkaNwGFeX61ycG9iGp5VFQ0nX/4CSfPopjZOFK/aUtu3rotm09OnOLj4+k9YCCFCvtgau1Asa/Ls2DJsjx1+nBZ+jRlxmz5nIKCVJ1s0icHBwe1MteuXaNJkyZYWlpiYWFBxYoVefDggXxO2cSp8w8/ZVhesWaAbD45cXqfH/v0Q2Gen5lz5+epU9C4CRQt64e5rRMFCroS0LApZ0JC88xJqVQy+LeRlPSrjLmtE06eRenY/UfCIyLkdcrmHN+yZQv16tXDxsYGhUJBWFiYrD65RoPPoYeEhHD16lV69eqVx3/U5zN79mxmz56NQqFg6dKlqs+zZ89mxowZ9OrVi6JFi37ydrVyD/358xdUqV0P/+rV2PP3X9jZ2nD7zj3yW1qqykyePovpc+azctE8inh5MXbyVOo0bs71sBAsLCxk8SperBgHdm5VfU5v4pAkiWZt2mNoaMC2P9aTz8KC6XPmEdCoKVfPncHc3FwWn6ycAPoPHsaho8dYu2wRbq4u7P/nED37/YKTowNNGzXME6eI29fVyu7ZH0y3nn1o2ayJbD4AxYsX58CBA5k63b59m6pVq9KtWzdGjRqFpaUl165dw8TERF6nLOIEUL9OACsWvqtVfM4VuKadALbu2MmZkFCcHB1l98nOqYiXF3OnTcHD3Y3Xr18zY+586jZpwa1L57G1tdG6U0JCAufDLjJiyEBKlyzB8xcv6DdoKE1atSX0+GHZfCDrc/zVq1dUqVKFVq1a8f3338vqIdA8M2bMANJyzcKFC9WOrZGREW5ubixcuPCTt6uVhD5p+kycCxVixaJ3V/9urq6qf0uSxMx5Cxg+8BdaNE1LBKsWL8DevTDr//iLH7t1kcXLwEAfBwf7DPNv3rrN6bMh/BtyiuI+xQCYP3Madm5ebPhzM907d5TFJysngFNnQujUvi01q1cD4IeunVm0bAWh5y/ImtCzcvpw/rZdu/GvXg0PdzfZfNKcDDLUytMZPnw4DRo0YPLkyap5Hh4esvqkOX08TgDGxkZZLpeD7Jweh4fTe8Ag9m3bTMOW3+a5U7vWrdQ+T584jmWr1nDp3yvU9q+hdSdLS0uC30v0AHOmTaZ89Vo8ePgQF2dnGZ0+fo536NABgHv37sm2f02i0NPAu9y/oF7ud+/eBcDf358tW7ZQoIBmhiDXSpP79t17KFe2DK2+64SdqxdlK1VjyYpVquV3790nMiqKurX9VfOMjY2pUbUKJ0+fkc3r5u07OHkWxd2nFG06deXO3XsAqnHf36/R6evrY2RoxPGTp2TzycoJoGrlimzftYfH4eFIksShI0e5ces29QJq55nT+0RFRbNr7366deogqw/AzZs3cXJywt3dnTZt2nDnzh0AUlNT2bVrF0WKFKFevXrY2dlRoUIFtm7dKr9TNnE6fOw4dq5eFCnty/e9+hId/SRPnVJTU+nQ7UcG9uujunDVBjk9n5KSkli8fBWWlvkoXbKETjgBxMbGoVAo1FoYZXH6yDn+n0S8+jVTDh06pLFkDlqqod+5e48FS5czoE8vhv06gLPnztP318EYGxnRsX1bIqOiALC3t1Nbz97OjvsPHsriVKFcOVYvWUARLy+iop8wdvIUKteqy5XQ0xT1LoKrizNDR45i0eyZmJubMX32PCKjooiIjJLFJzsna2srZk+dxPe9+lKosA8GBgbo6emxdN5sqlaulGdO77Nq3QYsLL6iRdPGsvkAVKhQgdWrV1OkSBGioqIYO3YslStX5sqVKyiVSuLj45k4cSJjx45l0qRJ7N27lxYtWnDo0CFq1JCnlpddnALr1qFVi2a4Ojtz9/59RoweR60GTTh34jDGxsZ54jRp2kwMDAzo27OHLPv/HCeAnXv20qZTNxISEnB0cCB4x1ZsbKzz1CmdN2/eMOT3INp920rWEb+yOsetreWLhUB+BgwYwJgxYzA3N2fAgAFZlp0+ffonbVsrCT01NZVyX5dl/KjfAShbpjRXrl1jwdLldGzfVlVOgfoVmCRJsr0dKLBeHdW/SwKVKvjhWaIsq9atZ0Df3mxev4ZuP/XGqpAb+vr6BPjXJLBunY9uTxtOs+cv4nRIKNv/3ICrszNHT5ykZ/9fcXRwIKBWzTxxep/la9bSvnUr2e9VBwYGvnMqWZJKlSrh6enJqlWraNOmDQBNmzalf//+QNqblk6ePMnChQtlS+jZxan1Ny1Uy0sU96Fc2bK4FivJrr37VLeZtOlUo1pVZs1fyPmTR7T6Bq6cnE/+1asRduoYT2NiWLJiFd926MyZw/9gZ2ebZ06Q1kGuTaeupKamMn/mVFlcVE5ZnOPZJQGdRLxYRsWFCxdQKpWqf3+Mz/leaiWhOzrY41PUW21eMW9vNm/dAYCDfdq9q8ioKBwd390zin7yBHuZvsQfYm5uTsniPty8ndas5Vu2DGGnjxMbG0tSkhJbWxsq1KhNua9z9go+TTu9fv2aYUGj+XvjWhrWrwdAqZIlCLt0mamz5siW0LNyep9jJ05y/cZNNq1arhWPDE4lS3Lz5k1sbGwwMDDAx8dHrUyxYsU4fvy4dp0yiVM6jo4OuLo4c/OW9ppR33fS09Mj+skTXLzfNWWnpKTwy9DfmDlvAfeuXda60/vzvDw98PL0oGJ5PwqX+pplq9YwdKB2EllmTkqlkm87dObuvfsc3L1D6+Nxv3+O/xcRr359x6FDhzL9tybQyj30KhUrcv3mLbV5N27ewtUlrUOJu5srDvb2BB88rFqelJTEkeMnqFyxgjYUSUxM5Nr1Gzh+0DHG0tISW1sbbt66ndb5rGEDrfh86KRUKlEqlegp1A+Zvr4+qampeeL0PstWrcG3bBlKlyqpNRc1p2vXcHR0xMjICD8/P65fV+99f+PGDVzf64ipFadM4pROTMwzHj56/NHlcjt1aNuGS2dOEHbqmGpycnRkYL++7Nu2JU+cPoYkSSQmJeaZU3oyv3nrDgd2bsvQDK81p7fnuEDwMbRSQ+/fpyeVa9Vl/JRpfNuiOWdDz7F4xSoWz5kJpF159ev1E+OnTqOwlweFPT0ZP2U6ZqZmtPv2G1mcfh36G40b1MfFuRDRT54ydtIU4l6+pNPbWwB/btmKrY01Ls7OXL5yhZ8HDqFZ44bUDagli092Tvny5aNGtSoMHP47pqYmuLo4c+TYCVav38j0iePyxCmduLg4/vx7G9MmjJXNQ83p119p3LgxLi4uREdHM3bsWOLi4ujUqRMAAwcOpHXr1lSvXh1/f3/27t3Ljh07OHz4sHxOWcQpPj6eoHETadmsCY4O9ty7/4BhQWOwsbameZNGeeJkbW2VITEZGhrgYG+Hd5HCeeL06tUrxk2eRpOGgTg62BMT84z5S5bx6HE4rZo3yxOn5ORkvmnfkfNhl9j510ZSUlKIfNuPxsqqgGyPHmZ3jj979owHDx4QHh4OoLqAdXBw+GjP+DxFNLmraNGiRfaF3rJly6ddXGslofv5fs3fG9cy9PfRjJ4wGXc3V2ZOnkD7Nu8ekxk04Gdev3lNz36/8vzFCyr4+bJ/+xbZnkF/FB5O287deRoTg62NDRXLl+P0oWBcXVwAiIiMZMCQ4URFR+PoYE/Hdm0YMWSQLC45ddq4cjlDR46ifdcfePb8Oa4uzowb+Rs9unfNMyeAjX9tQZIk2rZqKZuHmtOjR7Rt25anT59ia2tLxYoVOX36tKoG3rx5cxYuXMiECRPo27cv3t7ebN68mapVq8rnlEWcXr9+zeUrV1m9fiMvYmNxdLDHv3o1Nq1eLtv5nZ1TXpGV05s3b/jfjRusWreBpzExWFtZ4edblmPBe2TthZ+V073799m+aw8AZSpVU1vv0J4dqkdINe6UzTm+fft2unR59zhvet+RkSNHEhQUJItT7tBEL/UvI6Fbyvh0hEL62LvnsiEuLg5LS0uePryLtZXmut3nBmVyMrsPHaeBf1UMDXRj3BnhlDNUTg0aYGhomNc6QFpT6+7du3UzTsIpS3TaSUfO8ZiYGGxsbIiNjZWtT0B6nohuXZ18Rrk7DnFJydhtOiqr738d8S53gUAgEPxn+JLe5a5pdOPSVSAQCARfLhq8hx4SEvKfrqF//fXX/PPPPxQoUICyZctm2Xv//Pnzn7RtkdAFAoFAICvisbV3NG3aVPUyqWbNmml02yKhCwQCgUCgJUaOHJnpvzWBSOgCgUAgkBfx2FqWhIaGcu3aNRQKBcWKFcPX1/eztiMSukAgEAjkRRODq3whTe7vk/544okTJ8ifPz8AL168oHLlymzYsAHnTxzNT/RyFwgEAoEgD+jatStKpZJr167x7Nkznj17xrVr15AkiW7dun3y9kQNXSAQCASyIsZDz5xjx45x8uRJvL3fjXXi7e3NnDlzqFKlyidvTyR0gUAgEMiLaHLPFBcXF9XIa++TnJxMwYIFP3l7osldIBAIBII8YPLkyfTp04fQ0FDSX9oaGhrKzz//zNSpnz5Er6ihCwQCgUBe9NBAL3eNmOQ5BQoUUHum/tWrV1SoUAGDt68oTk5OxsDAgK5du37yc+o5TuiJiYkkJr4bwjAuLg5Iez+xMjn5k3YqF+keuuIDwimnqJwyaX7KK9JddDJOwilLdNpJR85xbXqIF8u8Y+bMmbJtO8eDswQFBTFq1KgM89evX4+ZmZnGxQQCgUAgHwkJCbRr104rg7PEfF+XfEa5G5AmLkmJ9ZL9YnCWLMhxDX3o0KEMGDBA9TkuLg5nZ2f8K/np1GhrwcdOU6daRZ0aYUk4ZY9wyhkqpzp1dGLELkir6QUHB4s4ZYOuxSnm2fO8VhC8x+vXrzO0mnzqhUuOzypjY2PV+2ffx9DAQCdOzvcRTjlDOOUMnXQyNNSZRJWOiFPO0JU4adVB9HLPlFevXjF48GD++OMPYmJiMixPSUn5pO19Id0MBAKBQKCzpCf03E58WcOnDho0iIMHDzJ//nyMjY1ZunQpo0aNwsnJidWrV3/y9vL+MlEgEAgEghzyXx8+9X127NjB6tWrqVmzJl27dqVatWp4eXnh6urKunXraN++/SdtT9TQBQKBQCAzmqidf3lN7s+ePcPd3R1Iu1/+7NkzAKpWrcrRo0c/eXsioQsEAoFAXvT0NDN9YXh4eHDv3j0AfHx8+OOPP4C0mnv6YC2fwpcXIYFAIBAI/gN06dKFixcvAmlPkqXfS+/fvz8DBw785O2Je+gCgUAgkBfRyz1T+vfvr/q3v78/165d49y5c3h6elK6dOlP3p5I6AKBQCCQF5HQc4Srqyuurq6fvb5ochcIBAKBII/4559/aNSoEZ6ennh5edGoUSMOHDjwWdsSCV0gEAgE8qLB59C/JObOnUv9+vWxsLDg559/pm/fvuTLl48GDRowd+7cT96eaHIXCAQCgbxoopf6F9jLfcKECcyYMYPevXur5vXt25cqVaowbtw4tfk54cuLkEAgEAh0C1FDz5S4uDjq16+fYX7dunVVI5p+CnmS0CdMmY7CPD/9Bg5RzduybTv1mrTAxsUDhXl+wi5eylMnpVLJ4N9GUtKvMua2Tjh5FqVj9x8Jj4jIMyeAoHETKFrWD3NbJwoUdCWgYVPOhITmqdP7/NinHwrz/MycOz9PnTr/8BMK8/xqU8WaAXnqBHDtf9dp0qoNlo4uWNgXomLNAB48fKgdpwkTUCgU9OvXTzUvfVjLD6cpU6ZoxymTOMXHx9N7wEAKFfbB1NqBYl+XZ8GSZVrxgczjFBUVRefOnXFycsLMzIz69etz8+ZN2RyCxk3IcP46uBdRLZckiaBxE3DyLIqptQM16zfkytVrsvkI5KFJkyb8/fffGeZv27aNxo0bf/L2tN7kHnLuPItXrKRUieJq81+9SqBKpQq0atGM73v1zXOnhIQEzoddZMSQgZQuWYLnL17Qb9BQmrRqS+jxw3niBFDEy4u506bg4e7G69evmTF3PnWbtODWpfPY2trkiVM6W3fs5ExIKE6OjrJ65NSpfp0AVix8975nIyOjPHW6fecuVevUp1vHDowaPhRLS0uuXb+OibGJ/E4hISxevJhSpUqpzY/44AJ1z549dOvWjZYtW8rv9JE49R88jENHj7F22SLcXF3Y/88hevb7BSdHB5o2aiivUyZxkiSJZs2aYWhoyLZt28iXLx/Tp08nICCAq1evYm5uLotL8WLFOLBzq+qzvr6+6t+Tp89i+pz5rFw0jyJeXoydPJU6jZtzPSwECwsLWXxyhejlrmL27NmqfxcrVoxx48Zx+PBhKlWqBMDp06c5ceIEv/zyyydvW6s19Pj4eNp3/Z4lc2dToEB+tWUd2rXh96GDCfCvoU2ljzpZWloSvHMr37ZsjneRwlQs78ecaZM5dyFM9hpVVnFq17oVAbVq4uHuRnGfYkyfOI64uDgu/Xslz5wAHoeH03vAINYtX4KhoXauE7NzMjY2wsHBXjVZaWGY36ycho8aQ4O6dZg8bjRly5TGw92NhvXrYWdnK79T+/YsWbKEAgXUY+Dg4KA2bdu2DX9/fzw8POR3+kicTp0JoVP7ttSsXg03V1d+6NqZ0iVLEHr+gvxOmcTp5s2bnD59mgULFuDn54e3tzfz588nPj6eDRs2yOZjYKCvdv6mX7BLksTMeQsYPvAXWjRtQoniPqxavICE1wms/+Mv2XxyhWhyVzFjxgzVtGzZMgoUKMDVq1dZtmwZy5Yt48qVK+TPn5/ly5d/8ra1mtB79f+VhvXqElCrpjZ3myWf4hQbG4dCoSC/paVOOCUlJbF4+SosLfNRumSJPHNKTU2lQ7cfGdivD8V9isnqkVMngMPHjmPn6kWR0r5836sv0dFP8swpNTWVXXv3U6SwF/WatMDO1YsKNWqzdcdO+Z169aJhw4YEBGR9yyEqKopdu3bRrVs3+Z2yOHZVK1dk+649PA4PR5IkDh05yo1bt6kXUFtep4/EKTExEQATk3ctKfr6+hgZGXH8+HHZfG7evoOTZ1HcfUrRplNX7ty9B8Dde/eJjIqibm1/VVljY2NqVK3CydNnZPMRaIa7d+/maLpz584nb1trTe4b/9zM+bBLhBw7qK1dZsunOL1584YhvwfR7ttWso70kxOnnXv20qZTNxISEnB0cCB4x1ZsbKzzzGnStJkYGBjQt2cP2Rw+1Smwbh1atWiGq7Mzd+/fZ8TocdRq0IRzJw5jbGysdafo6CfEx8czcdpMxv4+nEljgtgb/A8t2nbg0J4d1KhWVR6njRs5f/48ISEh2ZZdtWoVFhYWtGjRQhYXlVM2x2721El836svhQr7YGBggJ6eHkvnzaZq5UryOWURp6JFi+Lq6srQoUNZtGgR5ubmTJ8+ncjIyAy3LDRFhXLlWL1kAUW8vIiKfsLYyVOoXKsuV0JPExkVBYC9vZ3aOvZ2dtx/oJ3+GJ+M6OWeLZIkAWn9Wj4XrST0h48e8fPAIezfvkXtKjcv+RQnpVJJm05dSU1NZf7MqXnu5F+9GmGnjvE0JoYlK1bxbYfOnDn8jyxNt9k5nbsQxqz5Czl/8kiuTkRNOgG0/uZdUipR3IdyZcviWqwku/buo0XTJlp3SpVSAWjasAH9+/QCoEzpUpw8c4aFS1fIktAfPnzIzz//zP79+3P0vVu+fDnt27eX9Tuak2M3e/4iToeEsv3PDbg6O3P0xEl69v8VRwcHWVr3souToaEhmzdvplu3blhZWaGvr09AQACBgYEad0knsF4d1b9LApUq+OFZoiyr1q2nYnk/ABQfjD4mSZLWvoOfjLiH/lFWr17NlClTVJ0sixQpwsCBA+nQocMnb0srCf3chTCinzzBt2pN1byUlBSOHj/J3EVLSHwerdbhQ5eclEol33bozN179zm4e4estfOcOpmbm+Pl6YGXpwcVy/tRuNTXLFu1hqEDB2jdadKYIKKfPMHFu4Ta8l+G/sbMeQu4d+2y1p0yO58cHR1wdXHm5q1Pb8bShNOrJ+EYGBjgU8xbbb1i3t4cP3VaHqdz54iOjsbX11fd6ehR5s6dS2JioipOx44d4/r162zatEkWF5VTNnGKjXjAsKDR/L1xLQ3r1wOgVMkShF26zNRZc2RJ6DmJk6+vL2FhYcTGxpKUlIStrS0VKlSgXLlyGvfJDHNzc0oW9+Hm7Ts0a9wIgMioKBwdHVRlop88wV7m/hgCzTJ9+nRGjBhB7969qVKlCpIkceLECXr06MHTp0/V3vWeE7SS0GvXrMHlsyfV5nXp0YuiRQozeEA/rSfznDqlJ/Obt+5waM8OrK2t8twpMyRJIjEpMU+cHB0cMtzbrNe0JR3atqZLh/Z54pRZnGJinvHw0WMcHezzxMnY2Bg/36+5fkP9Uacbt27h6uwsj1Pt2ly+rH5B1aVLF4oWLcrgwYPV4rRs2TJ8fX0/a0CIT3LKJk4pKSkolUr0FOrNq/r6+qSmpsrj9Alxsnzbf+bmzZuEhoYyZswYWZw+JDExkWvXb1CtSiXc3VxxsLcn+OBhypZJO15JSUkcOX6CSWNGacXnk1GggRq6Rkx0ijlz5rBgwQI6duyomte0aVOKFy9OUFCQbiZ0CwsLShT3UZtnbm6GtZWVav6zZ8958PAh4RGRAFy/eQsAB/u0Hp7adkpOTuab9h05H3aJnX9tJCUlhcjItHtXVlYFZHkEKjunV69eMW7yNJo0DMTRwZ6YmGfMX7KMR4/DadW8mcZ9cuIEZLjQMTQ0wMHeDu8ihfPEKT4+nqBxE2nZrAmODvbcu/+AYUFjsLG2pnmTRnniBDCwXx9ad+xK9apV8K9ejb3BB9ixey+H98rTMc7CwoISJdQ7S5qbm2Ntba02Py4ujj///JNp06bJ4pHBKZs41ahWhYHDf8fU1ARXF2eOHDvB6vUbmT5xnHxO2cTpzz//xNbWFhcXFy5fvszPP/9Ms2bNqFu3rixOvw79jcYN6uPiXIjoJ08ZO2kKcS9f0ql927Rn5Hv9xPip0yjs5UFhT0/GT5mOmakZ7b79RhafXCOa3DMlIiKCypUrZ5hfuXLlz+qfoTOvft2+azddevRSfW7TqSsAI4cNJmj4UK37PHr8mO279gBQplI1tWWH9uygZvVqma0mK/r6+vzvxg1WrdvA05gYrK2s8PMty7HgPVrtXa7r6Ovrc/nKVVav38iL2FgcHezxr16NTauX5+kzus2bNGbhrOlMmDaDvr8OxruwF5vXr5a1s1dO2LhxI5Ik0bZt2zz1SGfjyuUMHTmK9l1/4Nnz57i6ODNu5G/06N41z5wiIiIYMGAAUVFRODo60rFjR0aMGCHb/h6Fh9O2c3eexsRga2NDxfLlOH0oGFcXFwAGDfiZ129e07Pfrzx/8YIKfr7s375FN59BF3wULy8v/vjjD4YNG6Y2f9OmTRQu/OkVIoWU3rXuE4mLi8PS0pKnD+9irYXne3OCMjmZ3YeO08C/KoYGunGtIpxyhnDKGSqnBg0wNDTMax0grdPo7t27RZyyQdfiFPPsOTbO7sTGxsrWNyg9Tzwb0pZ8xrlr1YxLTMJq4gZZfbXN5s2bad26NQEBAVSpUgWFQsHx48f5559/+OOPP2jevPknbe/Lfg5AIBAIBDqAJl4qk9bk7ufnh4+PD/Pmzct6l/8BWrZsydmzZ7GxsWHr1q1s2bIFGxsbzp49+8nJHHSoyV0gEAgEXygavIceEhLyRdTQlUolP/zwAyNGjGDt2rUa2aaooQsEAoFAoGUMDQ0zHZglN4iELhAIBAJ5Ee9yz5TmzZuzdetWjW1PNLkLBAKBQF7Eq18zxcvLizFjxnDy5El8fX0zjNzXt++njTwqErpAIBAIBHnA0qVLyZ8/P+fOnePcuXNqyxQKhUjoAoFAINAxxItlMuXu3buqf2ticJYvrw1DIBAIBLqFuIf+UZYtW0aJEiUwMTHBxMSEEiVKsHTp0s/alqihCwQCgUCQB4wYMYIZM2bQp08fKlVKe2PkqVOn6N+/P/fu3WPs2LGftD2R0AUCgUAgL6LJPVMWLFjAkiVL1F673KRJE0qVKkWfPn1EQhcIBAKBjiF6uWdKSkpKpkPw+vr6kpyc/Mnby3FCT0xMJDHx3RCdcXFxQNo7k5WfsWM5SPfQFR8QTjlFOOUMlZNSmccm70h3EXHKGl2Lk1Y9RA09U7777jsWLFjA9OnT1eYvXryY9u0/ffjpHA/OEhQUxKhRGcfaXb9+PWZmZp+8Y4FAIBDkHQkJCbRr1047g7OM7k4+k1wOzvImCavfl35Rg7P06dOH1atX4+zsTMWKFQE4ffo0Dx8+pGPHjmoDC32Y9DMjxwk9sxq6s7MzEXdv6tRoa8HHTlOnWkWdGM0IhFNOUTnVqaNTo2MFBwfrZpyEU5YIp+yJefYcR/fC2knoY77XTEIfseSLSuj+/v45KqdQKDh48GC25XJ8VhkbG2NsbJxhvqGBgU6cnO8jnHKGTjoZGupMQk9HJ+MknHKEcMraQ2uIe+iZcujQIY1u78uLkEAgEAgE/w/J+8tEgUAgEHzZKNBApziNmHzRiIQuEAgEAnkRvdy1gmhyFwgEAoHgC0DU0AUCgUAgL6KGrhVEQhcIBAKBvCg00MtdIRqUs0NESCAQCASCLwBRQxcIBAKBvIgmd60gErpAIBAI5EUkdK0gErpAIBAI5EWhl/t74OIeeraICAkEAoFA8AWQJwl9wpTpKMzz02/gENU8SZIIGjcBJ8+imFo7ULN+Q65cvSabw4IlyyhVvjL5HJzJ5+BMJf867NkXrFoeFRVN5x9+wsmzKGY2jtRv2pKbt27L5pMTp/j4eHoPGEihwj6YWjtQ7OvyLFiyLE+dFOb5M52mzJgtn9OCBZQqVYp8+fKRL18+KlWqxJ49e9TKXLt2jSZNmmBpaYmFhQUVK1bkwYMH8jllE6fOP/yUIUYVawbI5pMTp/f5sU8/FOb5mTl3fp46BY2bQNGyfpjbOlGgoCsBDZtyJiQ0z5yUSiWDfxtJSb/KmNs64eRZlI7dfyQ8IiLPnAC2bNtOvSYtsHHxQGGen7CLl2T1yTV6Cs1MgizRekIPOXeexStWUqpEcbX5k6fPYvqc+cydPpmQowdxsLenTuPmvHz5UhaPQgWdmDg6iNBjhwg9dohaNarTtHU7rly9hiRJNGvTnjv37rHtj/VcOHkUVxdnAho15dWrV7L4ZOcE0H/wMPYGH2DtskVcO3+G/r170ueXQWzbuSvPnCJuX1ebli+Yi0KhoGWzJvI5FSrExIkTCQ0NJTQ0lFq1atG0aVOuXLkCwO3bt6latSpFixbl8OHDXLx4kREjRmBiYiKfUzZxAqhfJ0AtVru3/CmbT06dALbu2MmZkFCcHB1l9cmJUxEvL+ZOm8Llsyc5HrwXN1cX6jZpwZMnT/PEKSEhgfNhFxkxZCDnTxxhy4Y13Lh1myat2srmk50TwKtXCVSpVIGJo4Nk9dAY6U3uuZ0EWaLVe+jx8fG07/o9S+bOZuzkKar5kiQxc94Chg/8hRZN0xLBqsULsHcvzPo//uLHbl007tK4QaDa53FBI1iwdBmnQ0IwNDTk9NkQ/g05RXGfYgDMnzkNOzcvNvy5me6dO2rcJzun4j7FOHUmhE7t21KzejUAfujamUXLVhB6/gJNGzXMEycHB3u15dt27ca/ejU83N1k8QFo3LixutO4cSxYsIDTp09TvHhxhg8fToMGDZg8ebKqjIeHh2w+kH2cAIyNjTLEK6+dHoeH03vAIPZt20zDlt/muVO71q3Ulk+fOI5lq9Zw6d8r1PavoXWnbj4dCd65VW35nGmTKV+9Fg8ePsTF2VnrTsV9itGhXRsA7t2/L8v+Bf9NtHrJ06v/rzSsV5eAWjXV5t+9d5/IqCjq1n43NqyxsTE1qlbh5OkzsnulpKSw8c/NvHqVQKXy5VXjvr9fo9PX18fI0IjjJ0/J7pOZE0DVyhXZvmsPj8PDkSSJQ0eOcuPWbeoF1M4zp/eJiopm1979dOvUQSs+KqeNG3n16hWVKlUiNTWVXbt2UaRIEerVq4ednR0VKlRg69at2nXKJE6Hjx3HztWLIqV9+b5XX6Kjn+SpU2pqKh26/cjAfn1UCV6bZHc+JSUlsXj5Kiwt81G6ZAmdcAKIjY1DoVCQ39JSZ5x0nvRe7rmdBFmitRr6xj83cz7sEiHHMg7SHhkVBYC9vZ3afHs7O+4/eCib0+V/r1CpVl3evHnDV1+Z8/eGtfgUK4pSqcTVxZmhI0exaPZMzM3NmD57HpFRUURERsnmk5UTwOypk/i+V18KFfbBwMAAPT09ls6bTdXKlfLM6X1WrduAhcVXtGjaOJOtaNjp8mUqVar01ukr/v77b3x8fIiMjCQ+Pp6JEycyduxYJk2axN69e2nRogWHDh2iRg15anmQdZwC69ahVYtmuDo7c/f+fUaMHketBk04d+IwxsbGeeI0adpMDAwM6Nuzh2z7/1QngJ179tKmUzcSEhJwdHAgeMdWbGys89QpnTdv3jDk9yDafduKfPny6YTTfwIxHrpW0EpCf/joET8PHML+7VuyvI+p+GB8PEmSUMh4VeZdpDBhp47xIjaWzVu30+nHnziydxc+xYqyef0auv3UG6tCbujr6xPgX5PAunVkc8mJ0+z5izgdEsr2Pzfg6uzM0RMn6dn/VxwdHDK0emjL6X2Wr1lL+9atZL1XrXLy9iYsLIwXL16wefNmOnXqxJEjR8ifPz8ATZs2pX///gCUKVOGkydPsnDhQlkTelZxav1NC1W5EsV9KFe2LK7FSrJr7z7VbSZtOr1+84ZZ8xdy/uQRWb9jn+KUfj75V69G2KljPI2JYcmKVXzboTNnDv+DnZ1tnjlBWge5Np26kpqayvyZU2Vz+RQngeB9tJLQz10II/rJE3yr1lTNS0lJ4ejxk8xdtITrYWm9WCOjonB0dFCViX7yBHsZv8RGRkZ4eabdWy33dVlCzp1n1vyFLJozE9+yZQg7fZzY2FiSkpTY2tpQoUZtyn1dVjafrJxmTp7AsKDR/L1xLQ3r1wOgVMkShF26zNRZc2RN6FnFKZ1jJ05y/cZNNq1aLptHBicvrzSncuUICQlh1qxZzJkzBwMDA3x8fNTKFytWjOPHj8vvlE2c0nF0dMDVxZmbt+7kiVMx7yJEP3mCi/e7puyUlBR+GfobM+ct4N61y1p3So+Tubk5Xp4eeHl6ULG8H4VLfc2yVWsYOnBAnjkplUq+7dCZu/fuc3D3Dtlr5zlx+k/xBb5Y5uHDh3To0IHo6GgMDAwYMWIErVq1yn5FGdFKQq9dswaXz55Um9elRy+KFinM4AH98HB3w8HenuCDhylbpjSQdv/syPETTBozShuKQFqLQPr983Qs394nu3nrNqHnLzBmxHCt+bzvpFQqUSqV6H3Q01NfX5/U1NQ8cXqfZavW4Fu2DKVLldSqy4dORkZG+Pn5cf36dbXlN27cwNXVNU+cMiMm5hkPHz3GUYud5N536tC2DQH+NdWW1Wvakg5tW9OlQ/s8ccpyedLHl8vB+07pyfzmrTsc2rMDa2srrbpk5vSf4wt8sYyBgQEzZ86kTJkyREdH8/XXX9OgQQPMzc3zzkkbO7GwsKBEcfUak7m5GdZWVqr5/Xr9xPip0yjs5UFhT0/GT5mOmakZ7b79RhanYSNHE1g3AOdCBXn5Mp6Nf23h8LHj7N26GYA/t2zF1sYaF2dnLl+5ws8Dh9CscUPqBtSSxSc7p3z58lGjWhUGDv8dU1MTXF2cOXLsBKvXb2T6xHF54pROXFwcf/69jWkTxsrmoeY0bBiBgYE4Ozvz8uVLNm7cyOHDh9m7dy8AAwcOpHXr1lSvXh1/f3/27t3Ljh07OHz4sHxOWcQpPj6eoHETadmsCY4O9ty7/4BhQWOwsbameZNGeeJkbW2VITEZGhrgYG+Hd5HCeeL06tUrxk2eRpOGgTg62BMT84z5S5bx6HE4rZo3yxOn5ORkvmnfkfNhl9j510ZSUlKIfNuPxsqqAEZGRlp3Anj27DkPHj4kPCISgOs3bwHgYG+v1Scp/j/j6OiI49tHPe3s7LCysuLZs2dffkLPCYMG/MzrN6/p2e9Xnr94QQU/X/Zv34KFhYUs+4uKjqZD9x+JiIzCMl8+SpUozt6tm6nztqd9RGQkA4YMJyo6GkcHezq2a8OIIYNkccmp08aVyxk6chTtu/7As+fPcXVxZtzI3+jRvWueOQFs/GsLkiTRtlVL2TzUnKKi6NChAxEREVhaWlKqVCn27t1LnTppfRyaN2/OwoULmTBhAn379sXb25vNmzdTtWpV+ZyyiNPr16+5fOUqq9dv5EVsLI4O9vhXr8am1ctlO7+zc8orsnJ68+YN/7txg1XrNvA0JgZrKyv8fMtyLHiPrL3ws3K6d/8+23elvbSoTKVqausd2rND9QipNp0Atu/aTZcevVTl23RK+w0YOWwwQcOHyuKUKxRooMn904ofPXqUKVOmcO7cOSIiIvj7779p1qyZWpn58+czZcoUIiIiKF68ODNnzqRatU8/pqGhoaSmpuIs02OMOUUhSZL0OSvGxcVhaWnJ04d3sbYqoGmvz0KZnMzuQ8dp4F8VQwPduFYRTjlD5dSgAYaGhnmtA6Q1te7evVs34yScskQ4ZU/Ms+fYOLsTGxsrW5+A9DzxbMEw8pnmrrNs3Os3WP00nocPH6r5GhsbZ/qkyJ49ezhx4gRff/01LVu2zJDQN23aRIcOHZg/fz5VqlRh0aJFLF26lKtXr+Li4gKAr69vprc59u/fj5OTEwAxMTFUq1aNpUuXUrly5Vz9jbkl788qgUAgEHzZaLBT3Ie14JEjRxIUFJSheGBgIIGBgRnmpzN9+nS6detG9+7dAZg5cyb79u1jwYIFTJgwAYBz585lqZSYmEjz5s0ZOnRonidzEAldIBAIBP8hMquhfypJSUmcO3eOIUOGqM2vW7cuJ0+e/Mha6kiSROfOnalVqxYdOmjvZVpZIRK6QCAQCORFg73c0wdlyg1Pnz4lJSUFe3v1DoT29vZERkbmaBsnTpxg06ZNlCpVSvUmyjVr1lCyZN486QMioQsEAoFAbhQaGC1NhufQP3yp0qe8zKxq1apaf2Q4O3TrwT6BQCAQCGTGxsYGfX39DLXx6OjoDLX2/xIioQsEAoFAXnRs+FQjIyN8fX0JDg5Wmx8cHKwTnds+F9HkLhAIBAJ50WAvdz8/P/T19enVqxe9evX6aPH4+Hhu3bql+nz37l3CwsKwsrLCxcWFAQMG0KFDB8qVK0elSpVYvHgxDx48oEcP7Q5WpElEQhcIBALBf4aQkJAcdYoLDQ3F3//dS5QGDEgbC6BTp06sXLmS1q1bExMTw+jRo4mIiKBEiRLs3r1b66+I1iQioQsEAoFAXvLgXe41a9Yku/em9ezZk549e+bGSqcQCV0gEAgE8qKngV7uuV3//wGiU5xAIBAIBF8AOa6hJyYmqr3TNi4uDkh7P7EyOVnzZp9Buoeu+IBwyikqJ6Uyj03eke6ik3ESTlkinLJHqx5f4HjoukiOB2cJCgpi1KiMY5OvX78eMzMzjYsJBAKBQD4SEhJo166ddgZnWTWBfGa5HJwl4Q1WnYZSpEiRHPVy//9IjhN6ZjV0Z2dnIu7e1KnR1oKPnaZOtYo6MZoRCKecIpxyhk471amjUyPlBQcH62acdMQp5tlzHN0Layehr5momYTeYYisvv91cnxWfWyIOkMDA504Od9HOOUM4ZQzhFPOMDQ01JmEno5OxklHnHTBQaBZxBEVCAQCgbwoFBp4bE3cQ88OkdAFAoFAIC+iU5xWEI+tCQQCgUDwBSBq6AKBQCCQlzx4U9z/R0SEBAKBQCAv6W+Ky+1E2uAsPj4+zJs3L4//KN1D1NAFAoFA8J8hp4Oz/H9EJHSBQCAQyItoctcKIqELBAKBQF5EL3etIC55BAKBQCD4AhA1dIFAIBDIi55e2pTbbQiyRCR0gUAgEMiMBprcEU3u2aGVS54JU6bjV80fC/tC2Ll60ax1O67fuKlWZsu27dRr0gIbFw8U5vkJu3gpT52USiWDfxtJSb/KmNs64eRZlI7dfyQ8IiLPnACCxk2gaFk/zG2dKFDQlYCGTTkTEpqnTu/zY59+KMzzM3Pu/Dx16vzDTyjM86tNFWsG5KkTwLX/XadJqzZYOrpgYV+IijUDePDwYZ45fRij9GnKjNnyOE2YgJ+fHxYWFtjZ2dGsWTOuX7+uViY+Pp7evXtTqFAhTE1NKVasGAsWLJDFB3IWp6ioaDr/8BNOnkUxs3GkftOW3Lx1WzanBUuWUap8ZfI5OJPPwZlK/nXYsy9YtVySJILGTcDJsyim1g7UrN+QK1evyeaTa9I7xeV2EmSJViJ05PgJev3QndOHggne8TfJySnUbdKcV69eqcq8epVAlUoVmDg6SBtK2TolJCRwPuwiI4YM5PyJI2zZsIYbt27TpFXbPHMCKOLlxdxpU7h89iTHg/fi5upC3SYtePLkaZ45pbN1x07OhITi5Ogoi8unOtWvE0DE7euqafeWP/PU6fadu1StU5+iRYpweM8OLp4+zoghAzExzt0oVLlxej8+Ebevs3zBXBQKBS2bNZHH6cgRevXqxenTpwkODiY5OZm6deuqOfXv35+9e/eydu1arl27Rv/+/enTpw/btm2TxymbOEmSRLM27blz7x7b/ljPhZNHcXVxJqBR00y/B5qgUEEnJo4OIvTYIUKPHeL/2rvzuKjq/fHjr4ldBQyQAWQR9x0NTTFEcUfDPddrmPUrFS2yKLXb1UrTLMnK1PSamWW2qIAbSlcBlzRcSLO+KuaugBsgqKzn94eBIgqjcs7hct/Px+M8ijPjzMvjDJ+zzZwunQLoN3RE8aA9J+ITIj5bwPyIOSQmbMXFaKR78ACuXbumSk9lIp9Dvz+TL596t6LL4l06c+KBL5968eIlnOvUJ37zBgL8nypx28lTp/Bu6sOBXQm08mn5QI+bl5/Pxm076B3o/8BXEiqrqUjivv08GdCFU/93CE8Pj0rRlJmZib2rJz+vj6JrYCfdms6dP0+7Tt3YHLWaPoOGEBY6jrAJ401+3IpuGv3iONIzMoj8fuUDPZaaTcNCxmBhbs6KpYsrTdPd+g8dwbVrWfxnY/SDN/Xu/cBXW7t48SLOzs7Ex8cTEBAAQPPmzRk6dChvv/128f18fX3p3bs37733nmlNeXls3LixQpbT0WPJNGrVht8Tf6FZ0yYAFBQU4FynPh+89w4vjH7WtKZH+LcDcHCvw4cz32XMs6Nwq9eYsNBxvPlaGHDr8tZG7wZ88N47vPT8cyY93uUrV3Hy8Nbm8qlrFmBX3ebRHiv7Bg4Dx8vlU8ugyz6MjMxMABwerxzXUQfTmjIyMjEYDNS0t68UTbm5uSz+cjn29nb4tGiuW1NhYSGjnn+J8LCJxb/wtHS/5RS3fQfOXvVp6OPL/wt9mbS0i7o1FRYWsiFmCw0b1Kdn34E4e9WnXaeuRK5br1vT3VJT09gQs4XnQ0Zp15SRcavJwaF4nr+/P9HR0Zw7dw5FUdi2bRtHjx6lZ8+e2jTdtZxycnIAsLa+vSfFzMwMSwtLduz6RfWegoICVv24muzs6/g9+SQnTp4iJTWVHl0Di+9jZWVFJ/+n2LV7j+o9D6XopLhHnUSZNF9CiqIwafJU/Dv40bxZU62f/p5Mabp58yaT/zWdEUOe0WTtsKym9ZtiqOFcG2sHIx/PX0DsukicnBx1a/pg7jzMzc15efxY1RtMbQrq0Z1vv1zC1o3RzJ01g8R9++nSu2/xL2etm9LSLpKVlcXsufPo1b0rW6LXMCD4aQYOH0X89h26NN1t+bffYWtbg4H9glXvKW6aNAl/f3+aN7+9Qvrpp5/StGlT3N3dsbS0pFevXixYsAB/f39tmu5aTo0bNcTL04Mp097h6tV0cnNzmf3Rx6SkpnIhJVW1lkO/H6aGc22sHndm7Cuvsva7b2japDEpqbee02h0LnF/o7MzKalpqvWIyk/zs9wnTArn4O+H2fFzjNZPfV/lNeXl5TEsZAyFhYUsmPeR7k2BAR1J+mU7ly5fZsmy5QwZNZo9cf/B2bmW5k37DiTxyYJF7N8Vj0GHL36433IaOnhg8f83b9aUNq1b49WkBRtiNjOwnzrHh8tqKlQKAejXpzevTgwFoJVPS3bt2cOify+jU0d1BytT3ndfrviGkUOfKbElqmrThAkcPHiQHTtKrtB8+umn7N69m+joaLy8vEhISGD8+PG4urrSrZt6JzbCvZeThYUFq1eu4PlxE3Bwr4OZmRndAjsT1KO7qi2NGjYg6ZftpGdksDoympCXxhEfs6H4dsNdZ30riqLLe9Ak8sUymtB0QJ/4WjjRGzaRsGUD7rVra/nU91VeU15eHkNGjebEyVNs3bhOk63z8pqqV69O/Xp1qV+vLu2fbEuDlk+wdPkKpoRP0rxp+85dpF28iGej21tYBQUFvDbln8z7fCEn/zykedO9uLq64OXpwbHkv1TrKavJydERc3NzmjZpVOL+TRo1Yscvu3VputP2nbs4cvQY3y//UtWW4qaJE4mOjiYhIQF3d/fi+Tdu3GDq1KmsXbuWPn36ANCyZUuSkpL46KOPVB3Qy1pOvq1bkbR7BxkZGeTm5lGrlhPtOnWlzROtVeuxtLSkfr26ALR5ojWJ+/bzyYJFvDkpDICU1FRcXV2K75928SJGlVfqH5rBUAFf/SoDenk02eWuKAoTJoWzJmo9WzdG412njhZP+8hNRYP5seS/+Hl9FI6ODqUfSOOm+/25nFx1diWX1zRq+DAO7tlJ0i/biyc3V1fCw15mc9QaXZru5fLlK5w5ew5XF6MuTZaWlrT1faLUx6GOJifjZeIJlhXddKely1fg27oVPi1bqNJSomnCBNasWcPWrVvx9vYucXteXh55eXk8dtfxUjMzMwoLC9VrMnE52dvbU6uWE8eSj7N3/wH69emtStP9OnNycvCu44WL0Ujs1rji23Jzc4nfsZMO7dtp1iMqH0220ENffZ2VP/xI1Pcrsa1Rg5S/jzvZ29thY3PrzMcrV65y+swZzl9IAeDIsWQAXIxGXFT4JVxeU35+PoNHPsv+pIOs/2kVBQUFxfdxcHgcS0tLzZuys7OZOWcuffsE4epi5PLlKyxYspSz587zzID+Fd5jSpOjo0OpFR0LC3NcjM40athAl6asrCymz5zNoP59cXUxcvLUaaZOfw8nR0cG9H1alyaA8LCJDH12DAH+TxEY0JGY2J9ZtzGGuBh1TowzpQlunYn849oo5s6aoUpHiabQUFauXElUVBS2trakpKT83WSPjY0NdnZ2dOrUifDwcGxsbPDy8iI+Pp6vv/6aiIgIdZpMWE4/romklpMjnh4eHDp8mFfCJ9M/uA89unVRpWnqtHcJ6tEND/faXLuWxaqf1hC3fQcxkasxGAyEhY7j/Y/m0qB+XRrUq8f7H0ZQzaYaI4YMVqXnkckud01oMqAvXLIUgM69Sv4yXbboc0aPGglA9IaNPDc2tPi2YSFjAJg29U2mvzVF86az584RvWETAK38Opa4z7ZN6+gcUHKeFk1mZmb839GjLP/2Oy5dvoyjgwNtfVuzPXaTameXm/JvpzVTltOhw3/w9cpVpGdk4OpiJDCgI99//SW2tra6NAEM6BvMok8imDX3Y15+/U0aNajP6pVf49/BT7cmgFU/rUFRFIY/M0iVjhJNf39BTOfOnUs2LVvG6NGjb/WsWsWUKVMYOXIkV65cwcvLi5kzZzJ2rDonXZqynC6kpDBp8lukpqXh6mLk2RHDeHvyG6r0AKSmpTHqhZe4kJKKvZ0dLZs3IyZyNd3/PrP9jUmvcOPmDcaHvc7V9HTatfVlS/Qa1V7fj0yutqYJTQZ0JTu93PuMHjVS0wGivKY6Xl4mdVek8p7P2tqaNd99o03M3x5mGah53BzKb7KxsWFztDq7++/H1OU0JmQUYzT6WJipTS+OGc2LY0ar2lLElK+9cHFxYdmyZRrU3GLKcnp5/FhNP8WxdOH8Mm83GAxMf2uKKhs74r+XrPIIIYRQ12OGipmQb4ori1ycRQghhLoqcJd7YmKifFPcfciALoQQQl1yUpwmZJe7EEIIUQXIFroQQgh1yVnumpABXQghhKoMBsMjfy1tpf1a20pEVnmEEEKIKkC20IUQQqhLdrlrQgZ0IYQQ6pIBXROyhIQQQogqQLbQhRBCqMtw+5veHukxRJlMHtBzcnLIybl9ic7MzEwA8vLzycvPr/iyh1DUUVl6QJpMJU2mqdRNeXk6l9xW1FIpl1MladK0Q3a5a8KgmHK1BGD69Om88847peavXLmSatWqVXiYEEII9Vy/fp0RI0aQkZGh2lepZmZmYm9vz9WtP2JX49HGicys6zze5RkaNmyImZkZoaGhhIaGlv8H/4eYPKDfawvdw8ODCyeO4ejwuGqBDyIvP5/Y7bvp3rE9FuaV42iCNJmmuKl7dywsLPTOAW5t5cXGxlbO5SRNZZKm8l2+chVX7wbaDOjbfqqYAT1wsKq9/+1MflVZWVlhZWVVar6FuXmleHHeSZpMUymbLCwqzYBepFIuJ2kyiTSV3aEZg6ECdrnLMfTy6P+qEkIIUbXJxVk0IWcZCCGEEFWAbKELIYRQl5zlrgkZ0IUQQqjrsQr4HPqj/vn/AbLKI4QQQlQBsoUuhBBCXbLLXRMyoAshhFCXnOWuCVnlEUIIIaoA2UIXQgihLtnlrgkZ0IUQQqhLdrlrQpNVnlkfRtC2YyC2RnecverTf+gIjhw9VuI+iqIwfeYs3Oo1xsbRhc69+nD4jz9V7UrYsZPgwUNxq9cYQ/WaRK5bX+L21NQ0Rr84Drd6janm5EqvfoM4lnxc16asrCwmTArHvUFTbBxdaPLEkyxcslTXJkP1mvecPvz4U/WaEhIIDg7Gzc0Ng8FAZGRkqfv8+eef9O3bF3t7e2xtbWnfvj2nT59Wr6mc5TT6xXGlllH7zt1U6zGl6U4vTQzDUL0m8+Yv0LVp+sxZNG7dluq13Hi8thfd+vRjT+Je3Zry8vJ485/TaNG2A9VrueFWrzHPvvAS5y9c0K0JYE1UND37DsTJsy6G6jVJ+u2gqj2i8tNkQI/fsZPQF19g97ZYYtetJT+/gB59B5CdnV18nzkRnxDx2QLmR8whMWErLkYj3YMHcO3aNdW6srOv49OiBfMj5pS6TVEU+g8byV8nTxL1w0oO7ErAy9ODbk/3K9GtZRPAq29OJSb2Z75Z+gV/7t/DqxPGM/G1N4hav0G3pgvHj5SYvlw4H4PBwKD+fVVsysbHx4f58+ff8/bjx4/j7+9P48aNiYuL47fffuPtt9/G2tpaxaaylxNAr+7dSiyrjWt+VK3H1CaAyHXr2ZO4FzdXV1V7TGlqWL8+8+d+yKFfd7EjNoY6Xp706DuQixcv6dJ0/fp19if9xtuTw9m/M541363gaPJx+j4zXLWe8pqKbn/Krx2z352uakeFKNrl/qiTKJMmu9xjolaX+HnZos9xrlOffQeSCPB/CkVRmPf5Qt4Kf42B/W4NAssXL8To3YCVP/zES88/p0pXUM/uBPXsfs/bjiUfZ/evifye+AvNmjYBYMG8uTjXqc93P67mhdHPat4E8MueREJGDqdzQEcAXhwzmi+WLmPv/gP0e7qPLk0uLsYSP0dt2EhgQEfqetdRpQcgKCiIoKCg+97+1ltv0bt3b+bMuf3LsG7duqr1QPnLCcDKyrLU8lKTKU3nzp9nwqQ32By1mj6DhujeNGLoMyV+jpg9k6XLV3Dw98N0DeykeZO9vT2x6yNLzPts7hyeDOjC6TNn8PTw0LwJYNSIYQCcPHVKleevUI89dmt61McA2rZtK5dPvQ9dVnkyMjMBcHj81mVXT5w8RUpqKj26Bhbfx8rKik7+T7Fr9x49EosvFXvnFp2ZmRmWFpbs2PWLLk0A/h3aE71hE+fOn0dRFLbFJ3A0+Tg9u3XVrelOqalpbIjZwvMho3RrKCwsZMOGDTRs2JCePXvi7OxMu3bt7rlbXmtx23fg7FWfhj6+/L/Ql0lLu6hrT2FhIaOef4nwsInFK66VSW5uLou/XI69vR0+LZrrnVMsIyMTg8FATXt7vVP+KxgMhgqZABITE/njjz9kML8HzQd0RVGYNHkq/h38aN6sKQApqakAGI3OJe5rdHYmJTVN60QAGjdqiJenB1OmvcPVq+nk5uYy+6OPSUlN5UJKqi5NAJ9+9AFNGzfCvUFTLGvWolf/wSz4+CP8O/jp1nSn5d9+h61tDQb2C9atIS0tjaysLGbPnk2vXr3YsmULAwYMYODAgcTHx+vWFdSjO99+uYStG6OZO2sGifv206V33+KVRz18MHce5ubmvDx+rG4N97J+Uww1nGtj7WDk4/kLiF0XiZOTo95ZANy8eZPJ/5rOiCHPyHW5RaWi+VnuEyaFc/D3w+z4OabUbQZKnsWoKErxWpnWLCwsWL1yBc+Pm4CDex3MzMzoFtiZoB5l775U26cLvmB34l6if/wOLw8PEnbuYvyrr+Pq4kK3Lp11bQP4csU3jBz6jKrHqstTWFgIQL9+/Xj11VcBaNWqFbt27WLRokV06qTObtvyDB08sPj/mzdrSpvWrfFq0oINMZuLDzVpad+BJD5ZsIj9u+J1e5/dT2BAR5J+2c6ly5dZsmw5Q0aNZk/cf3B2rqVrV15eHsNCxlBYWMiCeR/p2vJfRa6HrglNt9AnvhZO9IZNbNu0DvfatYvnuxhvHVMs2lIvknbxIkYd38C+rVuRtHsH6edPceH4EWKiVnP5yhW863jp0nPjxg2mTn+XiNkzCe4dRMsWzZkw9kWGDhrAR598pkvTnbbv3MWRo8d4IUSd8wtM5eTkhLm5OU2bNi0xv0mTJqqe5f6gXF1d8PL04FjyX7o8//adu0i7eBHPRs0xt3PE3M6RU6fP8NqUf1KnSQtdmopUr16d+vXq0v7JtixdOB9zc3OWLl+ha1NeXh5DRo3mxMlTxK6LlK3zB1H0sbVHnUSZNBnQFUVhwqRw1kStZ+vGaLzr1Clxu3cdL1yMRmK3xhXPy83NJX7HTjq0b6dFYpns7e2pVcuJY8nHb5181qe3Lh15eXnk5eXx2F1rumZmZsVbpXpaunwFvq1b4dNS38HA0tKStm3bcuTIkRLzjx49ipeXPitj93L58hXOnD2Hq4Ynyd1p1PBhHNyzk6RfthdPbq6uhIe9zOaoNbo03Y+iKOTk6ndoomgwP5b8Fz+vj8LR0UG3FiHuR5Nd7qGvvs7KH34k6vuV2NaoQcrfx6Dt7e2wsbHBYDAQFjqO9z+aS4P6dWlQrx7vfxhBNZtqjBgyWLWurKwsko/f3jo6cfIUSb8dxMHhcTw9PPhxTSS1nBzx9PDg0OHDvBI+mf7BfejRrYtuTZ06PkX4W//CxsYaL08P4rfv5OuVq4iYPVO3JoDMzEx+XBvF3FkzVOso1ZScfLvpxAmSkpJwcHDA09OT8PBwhg4dSkBAAIGBgcTExLBu3Tri4uLUbbrPcnJ4/HGmz5zNoP59cXUxcvLUaaZOfw8nR0cG9H1alyZPD49SA5OFhTkuRmcaNWygS5OjgwMz58ylb58gXF2MXL58hQVLlnL23HmeGdBflyY3V1cGj3yW/UkHWf/TKgoKCop/hzk4PI6lpaXmTZ4eHly5cpXTZ85w/kIKAEeO3Xo/uBiNmn6SwjQV8bEz+dhauZSHlJGRoQDKpTMnFCU7vcwJuOe0bNHnxfcpzLqqTJv6puJiNCpWVlZKgH8H5dCvu8p97Dun3IxLSmRkpJKbccmk+2/btO6eXSEjhytKdrryyYezFffatRULCwvF08Nd+eebrys5V9N0bbpw/Igy+h8jFDdXV8Xa2lpp1LCBMnfWDKUw66puTUp2uvLFZ/MUGxsbJf38qQdaPqWacnNNev1t27bt3k0hIcX3Wbp0qVK/fn3F2tpa8fHxUSIjIx/oNZ6bm1thy+n6pQtKj65dlFpOTsWvp5CRw5XTR37X9fV09+Tl6aF8/MH7ujXduJyiDOj7tOLm6qpYWloqri4uSt8+QcqvCVt1azrxx2/3/R22bdM63f7tli36/J63T5v6pkmPf+nMCQVQMjIyHuh98SCKxon0A/FKYfK+R5rSD8Sr3vvfzqAoivIwKwKZmZnY29tz6cwJHB0ef5iHqHB5+fls3LaD3oH+WJhXjm+1lSbTFDf17o2FhYXeOcCt3awbN26snMtJmsokTeW7fOUqTh7eZGRkqHY+QNE4kX4gHjvbGo/2WNeyqNm6k6q9/+30f1UJIYSo2irwi2XE/cmALoQQQl1ycRZNyCqPEEIIUQXIFroQQgh1yfXQNSEDuhBCCHXJLndNyIAuhBBCZYa/p0d9DFEW2YchhBBCVAGyhS6EEEJdsstdEzKgCyGEUJcM6JqQXe5CCCFEFSBb6EIIIVQmJ8VpQQZ0IYQQ6pJd7poweUDPyckhJ+f29YgzMzOBWxccyMvPr/iyh1DUUVl6QJpMVdyUl6dzyW1FLZVyOUlTmaSpfJWlQ1Qck6+2Nn36dN55551S81euXEm1atUqPEwIIYR6rl+/zogRI7S52tr/7a2Yq601bkPDhg0xMzMjNDSU0NDQCiqtGkwe0O+1he7h4cGFCxdwdHRULfBB5OXlERsbS/fu3SvVJTilqXyVuqlj+0pxuUu4tVUVu323NJWjuEleT/d1+cpVXL0baDSg76ugAd1XLp9aBpNfVVZWVlhZWZWab2FhUWneMEWkyTTSZBoLc/NK8Qv4TtJkGnk9ld0hqhb5FxVCCKEuOSlOEzKgCyGEUJeBChjQK6SkSpMBXQghhMrkc+hakG+KE0IIIaoA2UIXQgihLjmGrgkZ0IUQQqhMdrlrQXa5CyGEEFWAbKELIYRQl+xy14QM6EIIIdQlA7omZJe7EEIIUQXoNqAnJCQQHByMm5sbBoOByMhIvVKKzZo1i7Zt22Jra4uzszP9+/fnyJEjujYtXLiQli1bYmdnh52dHX5+fmzatEnXpjvNmjULg8FAWFiYrh3Tp0/HYDCUmFxcXHRtAjh3/jz/GPMijh7eVHNypVV7f/YdSNKtp06TFhiq1yw1hb76um5N+fn5/POdGXg3bYmNowt1m/nw7qwPKCws1K3p2rVrhIWF4eXlhY2NDR06dCAxMVHThoQdOwkePBS3eo0xVK9J5Lr1JW5XFIXpM2fhVq8xNo4udO7Vh8N//Klpo+kMFTSJsug2oGdnZ+Pj48P8+fP1SiglPj6e0NBQdu/eTWxsLPn5+fTo0YPs7Gzdmtzd3Zk9ezZ79+5l7969dOnShX79+nH48GHdmookJiayePFiWrZsqXcKAM2aNePChQvF06FDh3TtuXo1nae69sTCwpxNa3/ij327mTtrJjXt7XVrSkzYxoXjR4qn2HWRADwzoJ9uTR9EzGPR0i+ZH/Ehf+7fw5wZ7/LhvM/4bOEXujW98MILxMbGsmLFCg4dOkSPHj3o1q0b586d06whO/s6Pi1aMD9izj1vnxPxCRGfLWB+xBwSE7biYjTSPXgA165d06zRVHevbD/sJMqm2zH0oKAggoKC9Hr6e4qJiSnx87Jly3B2dmbfvn0EBATo0hQcHFzi55kzZ7Jw4UJ2795Ns2bNdGkCyMrKYuTIkSxZsoQZM2bo1nEnc3PzSrFVXuSDiHl4uLuz7IsFxfPqeHnpWAS1ajmV+Hn23I+pV9ebTh39dSqCX/Yk0q9Pb/r06gncWkbf/fgTe/cf0KXnxo0brF69mqioqOL3/fTp04mMjGThwoWavd6DenYnqGf3e96mKArzPl/IW+GvMbBfXwCWL16I0bsBK3/4iZeef06TRlG5yDH0MmRkZADg4OCgc8ktBQUFrFq1iuzsbPz8/HRtCQ0NpU+fPnTr1k3XjjsdO3YMNzc3vL29GTZsGH/99ZeuPdEbN9GmdSue+UcIzl71ae3XkSXLluvadKfc3Fy++f4Hxjz7D123fvz92vOfuHiOHksG4LeDh9ixaze9e/bQpSc/P5+CggKsra1LzLexsWHHjh26NN3txMlTpKSm0qNrYPE8KysrOvk/xa7de3Qsu4+ik+IedRJlkrPc70NRFCZNmoS/vz/NmzfXteXQoUP4+flx8+ZNatSowdq1a2natKluPatWrWL//v2aH1MsS7t27fj6669p2LAhqampzJgxgw4dOnD48GEcHR11afrrxEkW/vtLJk0MZerrk/h1335efv1NrCwteXbkcF2a7hS5bgPp6RmM/scIXTvefC2MjMxMGrdui5mZGQUFBcyc9jbDhwzWpcfW1hY/Pz/ee+89mjRpgtFo5LvvvmPPnj00aNBAl6a7paSmAmA0OpeYb3R25tTpM3oklUO+WEYLMqDfx4QJEzh48GClWCNv1KgRSUlJpKens3r1akJCQoiPj9dlUD9z5gyvvPIKW7ZsKbUFo6c7D9+0aNECPz8/6tWrx/Lly5k0aZIuTYWFhbR5ojXvv/MvAFq38uHwn3+y8N9fVooBfenyFQT16Iabq6uuHd//tIZvVv3AymX/plmTxiQdPETYm1Nwc3UhRKeVjRUrVjBmzBhq166NmZkZTzzxBCNGjGD//v269NyP4a5BTlGUSnqsuSK2sCvj36tykV3u9zBx4kSio6PZtm0b7u7ueudgaWlJ/fr1adOmDbNmzcLHx4dPPvlEl5Z9+/aRlpaGr68v5ubmmJubEx8fz6effoq5uTkFBQW6dN2tevXqtGjRgmPHjunW4OpipGnjRiXmNWnUiNNnzupUdNup06f5eVscL4x+Vu8Uwt/6F5NfC2PYM4No0bwZo0YM49UJ45k192PdmurVq0d8fDxZWVmcOXOGX3/9lby8PLy9vXVrupOL0Qjc3lIvknbxIkbnWnokiUpABvQ7KIrChAkTWLNmDVu3bq00b967KYpCTk6OLs/dtWtXDh06RFJSUvHUpk0bRo4cSVJSEmZmZrp03S0nJ4c///wTVx23Pp9q354jfx8XLnL0WDJenh46Fd22bMW3ONeqVXwimp6u37jOY4+V/FVk9piZrh9bK1K9enVcXV25evUqmzdvpl8//T4NcCfvOl64GI3Ebo0rnpebm0v8jp10aN9Ov7D7kWPomtBtl3tWVhbJybd/2Z04cYKkpCQcHBzw9PTUpSk0NJSVK1cSFRWFra0tKSkpANjb22NjY6NL09SpUwkKCsLDw4Nr166xatUq4uLiSp2RrxVbW9tS5xRUr14dR0dHXc81eP311wkODsbT05O0tDRmzJhBZmYmISEhujW9OnE8Hbr04P0P5zJk4AB+3buPxcuWs/izebo1wa1DActWfEvIyOGYm+t/1C04qBcz58zF08OdZk0ac+C3g0TM/5wxo/6hW9PmzZtRFIVGjRqRnJxMeHg4jRo14rnntDt7PCsri+Tjt0/sPHHyFEm/HcTB4XE8PTwICx3H+x/NpUH9ujSoV4/3P4ygmk01Ruh07kHZ5Bi6FnR7N+/du5fAwNtnaBYd5wwJCeGrr77SpWnhwoUAdO7cucT8ZcuWMXr0aO2DgNTUVEaNGsWFCxewt7enZcuWxMTE0L37vT/O8r/q7NmzDB8+nEuXLlGrVi3at2/P7t278dLxY2JtfZ9g7apvmPKvd3l31hy863gxb84sRg4bolsTwM9b4zh95ixjntVvwLzTZ3Pn8Pa7Mxkf9hppFy/h5urCS2Oe419T3tCtKSMjgylTpnD27FkcHBwYNGgQM2fOxMLCQrOGvfsPEBh0+2Orkya/BUDIyOF8tXghb0x6hRs3bzA+7HWupqfTrq0vW6LXYGtrq1mjqFx0G9A7d+6Moih6Pf09VbYegKVLl+qdUK64uDi9E1i1apXeCff0dFAvng7qpXdGCT26dUHJTtc7o5itrS3zPpzNvA9n651SbMiQIQwZou+KV+eAjmX+OxkMBqa/NYXpb03RLuphyXe5a0L//W1CCCGqNtnjrgk5KU4IIYSoAmQLXQghhMpkE10LMqALIYRQlxxD14TschdCCCGqANlCF0IIoS7ZQteEDOhCCCFUJsfQtSADuhBCCHUZqIAt9AopqdLkGLoQQgjxgK5du0bbtm1p1aoVLVq0YMmSJXonyRa6EEIIlVXBY+jVqlUjPj6eatWqcf36dZo3b87AgQNxdHTUrUkGdCGEECqresfQzczMqFatGgA3b96koKBA968Pl13uQgghqpyEhASCg4Nxc3PDYDAQGRlZ6j4LFizA29sba2trfH192b59+wM9R3p6Oj4+Pri7u/PGG2/g5ORUQfUPx+Qt9JycnBLX4M7IyADgypUrFV/1kPLy8rh+/TqXL1/W9KpIZZEm01TqpitXsagElxkFyMvPlyYTFDfJ6+m+rly9CmhzUarMrKxH3mWemZV167+ZmSXmW1lZYWVlVer+2dnZ+Pj48NxzzzFo0KBSt3///feEhYWxYMECnnrqKb744guCgoL4448/ii/h7evrW2LcK7Jlyxbc3NyoWbMmv/32G6mpqQwcOJDBgwdjNBof6e/5SBQTTZs2TQFkkkkmmWSqQtPx48dNHQYe2I0bNxQXF5cKa61Ro0apedOmTSu3A1DWrl1bYt6TTz6pjB07tsS8xo0bK5MnT36ov+vYsWOVH3744aH+bEUxeTVxypQpxdcsh1u7Gry8vDh9+jT29vamPoyqMjMz8fDw4MyZM9jZ2emdA0iTqaTJNNJkGmkqX0ZGBp6enjg4OKj2HNbW1pw4cYLc3NwKeTxFUTDctaV/r63z8uTm5rJv3z4mT55cYn6PHj3YtWuXSY+RmpqKjY0NdnZ2ZGZmkpCQwLhx4x64pSKZPKDfb7eGvb19pXhx3snOzk6aTCBNppEm00iTaSpb02OPqXsqlbW1NdbW1qo+x4O6dOkSBQUFpXaPG41GUlJSTHqMs2fP8vzzz6MoCoqiMGHCBFq2bKlGrsn0P5AjhBBC6ODurf177QG4H19fX5KSklSoenhylrsQQoj/KU5OTpiZmZXaGk9LS9P3pLZH9NADupWVFdOmTXuo4xdqkSbTSJNppMk00mSaytZU2Xq0ZGlpia+vL7GxsSXmx8bG0qFDB52qHp1BUXT+JLwQQghRwbKyskhOTgagdevWREREEBgYiIODA56ennz//feMGjWKRYsW4efnx+LFi1myZAmHDx/Gy8tL5/qHIwO6EEKIKicuLo7AwMBS80NCQvjqq6+AW18sM2fOHC5cuEDz5s35+OOPCQgI0Li04siALoQQQlQBclKcEEIIUQXIgC6EEEJUATKgCyGEEFWADOhCCCFEFSADuhBCCFEFyIAuhBBCVAEyoAshhBBVgAzoQgghRBUgA7oQQghRBciALoQQQlQBMqALIYQQVYAM6EIIIUQV8P8BIZc0A2nm1aMAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGkCAYAAADHWNd9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjvklEQVR4nOzdeVxU1f/H8dfILiEKyKaAC4rinpobLrivuOUerpWlaWpRLpmYmuaemUum5pJLpblvmPsaapSZX7fcZVFUCFAY4P7+IEZHEAaZO0P+Ps8e95HcuXPnPWcGzj3nnnuPRlEUBSGEEEL8pxUydwAhhBBC5J9U6EIIIcRLQCp0IYQQ4iUgFboQQgjxEpAKXQghhHgJSIUuhBBCvASkQhdCCCFeAlKhCyGEEC8BqdCFEEKIl4BU6CoLDQ1Fo9HorStVqhT9+/fP036OHTtGaGgoDx8+zNPznn2tAwcOoNFo+Omnn/K0n5wkJSURGhrKgQMHsjz23XffodFouHbtmtFeTw1fffUVvr6+WFtbo9FoePjwIZ9//jmbNm0yaY5t27bRt29fqlSpgpWVVZbvztO0Wi0TJ06kVKlS2NjYUKFCBb766qtst/3777/p0qULRYsW5ZVXXqFFixacOXNGrbchhDADqdDN4Oeff2b8+PF5es6xY8eYOHFiniv0F3mtvEpKSmLixInZVujt2rXj+PHjeHh4qJohPyIiIhg+fDiBgYHs27eP48eP4+DgYJYK/eeff+bEiRP4+/tTrVq1HLcdMmQIU6dOZejQoezevZvOnTvz/vvv8/nnn+ttd/fuXRo2bMjFixdZtmwZP/zwA48fP6ZJkyZcuHBBzbcjhDAhS3MH+P+oRo0aqr/Go0ePsLOzM8lr5aR48eIUL17crBlyc+7cOQDeeustXnvtNVVfKy0tjdTUVGxsbLJ9fMmSJRQqlHGc/d5773H69Olstzt37hxLly5lypQphISEANCkSRNiY2OZPHky77zzDk5OTgDMmDGDu3fvcuzYMXx8fAAICAigbNmyfPrpp6xfv97Yb1MIYQbSQjei7du3U716dWxsbChdujQzZ87Mdrtnu8HT09OZPHkyfn5+2NnZUbRoUapWrcqXX34JZHTbZ/7RLl26NBqNBo1Go2sRlypVivbt27Nx40Zq1KiBra0tEydOzPa1Mj1+/JhRo0bh7u6OnZ0djRs35rffftPbpkmTJjRp0iTLc/v370+pUqUAuHbtmq7Cnjhxoi5b5ms+r8t92bJlVKtWDVtbW5ycnOjcuTPnz5/P8jqvvPIKly9fpm3btrzyyit4eXnxwQcfkJycnG3ZPm39+vW0bNkSDw8P7OzsqFixIqNHjyYxMVHvPb7xxhsA1KlTR5ddo9GQmJjIihUrdO/p6bKIiopi8ODBlCxZEmtra0qXLs3EiRNJTU3VbXPt2jU0Gg3Tp09n8uTJlC5dGhsbG/bv3//czJmVeW42bdqEoigMGDBAb/2AAQN49OgRu3bt0q37+eefadq0qa4yByhSpAhdunRh69atepmzk/n92rZtGzVq1NCV5bZt24CMz7hixYrY29vz2muvcerUqSz72LJlC/Xq1aNw4cI4ODjQokULjh8/rvd+NBoNv/zyS5bnLly4EI1Gwx9//KFbd+rUKYKCgnBycsLW1pYaNWrwww8/6D0vKSmJDz/8kNKlS+u+Z7Vq1WLt2rU5vl8h/rMUYRR79+5VLCwslICAAGXjxo3Kjz/+qNSuXVvx9vZWni1mHx8fpV+/frqfp06dqlhYWCgTJkxQfvnlF2XXrl3K3LlzldDQUEVRFOXmzZvKsGHDFEDZuHGjcvz4ceX48eNKXFycbn8eHh5KmTJllGXLlin79+9Xfv3112xfa//+/QqgeHl5KR07dlS2bt2qrF69WvH19VWKFCmiXLlyRbdt48aNlcaNG2d5r/369VN8fHwURVGUx48fK7t27VIAZdCgQbpsly9fVhRFUZYvX64AytWrV3XP//zzzxVA6dWrl7J9+3Zl5cqVSpkyZRRHR0fl4sWLeq9jbW2tVKxYUZk5c6ayd+9e5dNPP1U0Go0yceLEXD+TSZMmKXPmzFG2b9+uHDhwQFm0aJFSunRpJTAwULfNuXPnlE8++UQBlOXLl+uyHz9+XLGzs1Patm2re0/nzp1TFEVRIiMjFS8vL8XHx0dZvHixsnfvXmXSpEmKjY2N0r9/f92+r169qgBKiRIllMDAQOWnn35S9uzZo1cWORk6dGiW706mnj17KsWLF8+yPiEhQQGUMWPGKIqiKElJSYpGo1FCQkKybDt//nwFUC5cuJBjDh8fH6VkyZJK5cqVlbVr1yo7duxQ6tSpo1hZWSmffvqp0qBBA2Xjxo3Kzz//rJQvX15xc3NTkpKSdM///vvvFUBp2bKlsmnTJmX9+vVKzZo1FWtra+Xw4cOKoiiKVqtVXF1dlT59+mR5/ddee0159dVXdT/v27dPsba2Vho2bKisX79e2bVrl9K/f3/dZ5hp8ODBSuHChZXZs2cr+/fvV7Zt26ZMmzZN+eqrr3J8v0L8V0mFbiR16tRRPD09lUePHunWxcfHK05OTrlW6O3bt1eqV6+e4/5nzJiRpWJ8en8WFhbZ/mF+XoX+6quvKunp6br1165dU6ysrJQ333xTt86QCl1RFOXu3bsKoEyYMCHLts9W6A8ePNBVlE+7ceOGYmNjo/Tu3VvvdQDlhx9+0Nu2bdu2ip+fX5bXykl6erqi1WqVgwcPKoDy+++/Z8kYHh6u9xx7e3u9sss0ePBg5ZVXXlGuX7+ut37mzJkKoKv4Myv0smXLKikpKXnKqyg5V+gtWrR4bhlYW1srb7/9tqIoinL79m0FUKZOnZpluzVr1iiAcuzYsRxz+Pj4KHZ2dsqtW7d06yIiIhRA8fDwUBITE3XrN23apADKli1bFEVRlLS0NMXT01OpUqWKkpaWptvun3/+UVxdXZX69evr1o0aNUqxs7NTHj58qFv3119/KYBeJVyhQgWlRo0ailar1cvZvn17xcPDQ/c6lStXVjp16pTjexPiZSJd7kaQmJhIeHg4Xbp0wdbWVrfewcGBDh065Pr81157jd9//50hQ4awe/du4uPj85yhatWqlC9f3uDte/furTeC2sfHh/r16+fYHWwMx48f59GjR1lOA3h5edG0adMsXa4ajSZLGVatWpXr16/n+lp///03vXv3xt3dHQsLC6ysrGjcuDFAlu79vNi2bRuBgYF4enqSmpqqW9q0aQPAwYMH9bYPCgrCysrqhV/veXIaAf/sY3nZNjvVq1enRIkSup8rVqwIZJyyKFy4cJb1mZ/PhQsXuHPnDsHBwXqnE1555RW6du3KiRMnSEpKAmDgwIE8evRI75z+8uXLsbGxoXfv3gBcvnyZ//3vf/Tp0wdAr/zbtm1LZGSkbqDfa6+9xs6dOxk9ejQHDhzg0aNHub5PIf7LpEI3ggcPHpCeno67u3uWx7Jb96wxY8Ywc+ZMTpw4QZs2bXB2dqZZs2bZnot8nryOIn9e1tjY2DztJ68y959dXk9PzyyvX7hwYb2DJAAbGxseP36c4+skJCTQsGFDTp48yeTJkzlw4ADh4eFs3LgRIF9/3KOjo9m6dStWVlZ6S6VKlQC4d++e3vZqjPB3dnbO9rNKTEwkJSVFNyCuWLFiaDSabLe9f/8+gG7bnDy7jbW1dY7rMz+f3D7v9PR0Hjx4AEClSpWoXbs2y5cvBzIGEK5evZqOHTvqXic6OhqADz/8MEv5DxkyBHhS/vPmzePjjz9m06ZNBAYG4uTkRKdOnbh06VKu71eI/yIZ5W4EmX80o6KisjyW3bpnWVpaMmrUKEaNGsXDhw/Zu3cvY8eOpVWrVty8eVOvBfQ8hrSycssVFRWFs7Oz7mdbW1vi4uKybPdshZUXmfuPjIzM8tidO3dwcXF54X0/bd++fdy5c4cDBw7oWuVAni/7y46LiwtVq1ZlypQp2T7u6emp93NePxtDVKlShXXr1hEVFaV3cHb27FkAKleuDICdnR2+vr669U87e/YsdnZ2lClTxuj5MuX2eRcqVIhixYrp1g0YMIAhQ4Zw/vx5/v77byIjI/UG/mV+P8aMGUOXLl2yfU0/Pz8A7O3tmThxIhMnTiQ6OlrXWu/QoQP/+9//jPYehSgopIVuBJmjezdu3KjXcvznn3/YunVrnvZVtGhRXn/9dYYOHcr9+/d1o8MzL3MyVrfh2rVrURRF9/P169c5duyY3kjuUqVKcfHiRb0R5bGxsRw7dkxvX3nJVq9ePezs7Fi9erXe+lu3brFv3z6aNWv2Im8ni8xK9NnLwxYvXmzwPmxsbLJ9T+3bt+fPP/+kbNmy1KpVK8vybIWuho4dO6LRaFixYoXe+u+++w47Oztat26tW9e5c2f27dvHzZs3dev++ecfNm7cSFBQEJaW6h3X+/n5UaJECdasWaP3fUtMTGTDhg26ke+ZevXqha2tLd999x3fffcdJUqUoGXLlnr7K1euHL///nu2ZV+rVi0cHByy5HBzc6N///706tWLCxcu6Lr5hXiZSAvdSCZNmkTr1q1p0aIFH3zwAWlpaXzxxRfY29vrujafp0OHDlSuXJlatWpRvHhxrl+/zty5c/Hx8aFcuXJARosM4Msvv6Rfv35YWVnh5+eX7R8vQ8TExNC5c2feeust4uLimDBhAra2towZM0a3TXBwMIsXL+aNN97grbfeIjY2lunTp1OkSBG9fTk4OODj48PmzZtp1qwZTk5OuLi46C5te1rRokUZP348Y8eOpW/fvvTq1YvY2FgmTpyIra0tEyZMeKH386z69etTrFgx3nnnHSZMmICVlRXff/89v//+u8H7qFKlCgcOHGDr1q14eHjg4OCAn58fn332GWFhYdSvX5/hw4fj5+fH48ePuXbtGjt27GDRokWULFnyhXJfv36d8PBwAK5cuQKgu6tfqVKlqFWrFpDRPT1o0CAmTJiAhYUFtWvXZs+ePXzzzTdMnjxZryv8ww8/ZNWqVbRr147PPvsMGxsbpk2bxuPHjwkNDX2hnIYqVKgQ06dPp0+fPrRv357BgweTnJzMjBkzePjwIdOmTdPbvmjRonTu3JnvvvuOhw8f8uGHH2a5lG/x4sW0adOGVq1a0b9/f0qUKMH9+/c5f/48Z86c4ccffwQyLkNs3749VatWpVixYpw/f55Vq1ZlOYgQ4qVh7lF5L5MtW7YoVatWVaytrRVvb29l2rRpyoQJE3Id5T5r1iylfv36iouLi+65gwYNUq5du6b3vDFjxiienp5KoUKFFEDZv3+/bn/t2rXLNtPzRrmvWrVKGT58uFK8eHHFxsZGadiwoXLq1Kksz1+xYoVSsWJFxdbWVvH391fWr1+fZZS7omRctlejRg3FxsZGAXSvmd1la4qiKN9++62urBwdHZWOHTvqRodn6tevn2Jvb58lU3Zlmp1jx44p9erVUwoXLqwUL15cefPNN5UzZ85kubzpeaPcIyIilAYNGiiFCxdWAL0R/3fv3lWGDx+ulC5dWrGyslKcnJyUmjVrKuPGjVMSEhIURXkyyn3GjBm5Zn02S3bLsyPuU1JSlAkTJije3t6KtbW1Ur58eWXevHnZ7vfy5ctKp06dlCJFiiiFCxdWmjVrppw+fdqgTM/7fgHK0KFD9dY97z1v2rRJqVOnjmJra6vY29srzZo1U44ePZrt6+3Zs0f3np++jPFpv//+u9K9e3fF1dVVsbKyUtzd3ZWmTZsqixYt0m0zevRopVatWkqxYsUUGxsbpUyZMsrIkSOVe/fuGfS+hfiv0SjKU/1gQgghhPhPknPoQgghxEtAKnQhhBAiG9u2bdMNxPz222/NHSdX0uUuhBBCPCM1NRV/f3/2799PkSJFePXVVzl58qRB920wF2mhCyGEEM/49ddfqVSpEiVKlMDBwYG2bduye/duc8fKkVToQgghXjqHDh2iQ4cOeHp6otFo2LRpU5ZtFixYoJuNr2bNmhw+fFj32J07d/Rud1yyZElu375tiugvTCp0IYQQL53ExESqVavG/Pnzs318/fr1jBgxgnHjxvHbb7/RsGFD2rRpw40bNwDI7my0Gnd9NCaDbyyTnJysd8ew9PR07t+/j7Ozc4F/k0IIIfQpisI///yDp6dnlpv3GNPjx49JSUkxyr4URclS39jY2GS5IyRAmzZtdBMmZWf27NkMGjSIN998E4C5c+eye/duFi5cyNSpUylRooRei/zWrVvUqVPHKO9DNYZesJ55Mw9ZZJFFFllenuXmzZuq3OREURTl0aNHSmE0Rsv6yiuvZFmX3bTNzwKUn3/+WfdzcnKyYmFhoWzcuFFvu+HDhyuNGjVSFEVRtFqt4uvrq9y6dUuJj49XfH19C/xNiQxuoY8ZM4ZRo0bpfo6Li8Pb25sBRT2wfGyco6/8KmRnS+OvZxBYrzZWKt6fOi+0qansPx5OYGCgKlNovgitVsv+/fsLZjkVxEzy2eVIPjvDFLTP7v6DB5Sv+uoL3z7aECkpKSShEIw91uSvJzcFhVUJCdy8eVPv9tPZtc5zc+/ePdLS0nBzc9Nb7+bmppu4ytLSklmzZhEYGEh6ejofffSR3uRVBZHB36rndWtYPk6h0OPkbJ5hepaaQhQuXBhnp2IF4hcGMv6wFC5cGGdn5wL1h6XAllNBzCSfXY7kszNMQfzswDTnhW0phHU+X6fQv+e0ixQpkmU+iRf17HtXnunSDwoKIigoyCivZQoyKE4IIcT/Ky4uLlhYWGSZRjomJiZLq/2/RCp0IYQQqipkpMVYrK2tqVmzJmFhYXrrM2dR/K8qOP0+QgghXkoaDRTKZ8++BkCB2rVrY2FhwdChQxk6dOhzt09ISODy5cu6n69evUpERAROTk54e3szatQogoODqVWrFvXq1eObb77hxo0bvPPOO/kLakZSoQshhPjPCA8PN+gc+qlTpwgMDNT9nDmou1+/fnz33Xf06NGD2NhYPvvsMyIjI6lcuTI7duzAx8dHtexqkwpdCCGEqozRZZ7X5zdp0iTbm8M8bciQIQwZMuTFQxUwUqELIYRQVSGNhkL5HeUOGVeei+eSQXFCCCHES0Ba6EIIIVRlji73/4+kQhdCCKGqQkYY5S4Veu6kjIQQQvxn1K5dG39/f77++mtzRylwVKvQ75DGTh6xikQWk8BVUvUeV1A4RTKrSORbEthCEvdJ09smDYUjJLOCBJaSwC4ekUC60TL+888/jAgZjU+Fytg5u1O/aUvCT5/RPR4dHUP/t9/Fs2wFCrt40LpjVy5dvmK0139uphEj8PHxwc7Ojvr16xMeHq57PCEhgffee4+SJUtiZ2dHxYoVWbhwofqZcignjX3RbJcZc+aZLRPA+f9dIKhbTxw9vHFwK0ndJs25cfOmuply+Oz69++PRqPRW+rWrataHl2mXMop0+BhI9DYF2Xu/AVmzRQ6ZSoVatTGvrgnxUr40LxdR06Gn1I/03M+O61Wy8cff0yVKlWwt7fH09OTvn37cufOHfUz5VBOGzdvoVVQF1y8y6CxL0rE73+omic/jHljmfDwcP76668cr0H//0q1Cj0VBWcK0YDsb5z/O1r+QEsDbOiCHYUpxHYek/LUMMZjJHONVJphS0fs0AK7eEy6kYY6vjl0OGH7D7Dq28Wc/fUYLZsF0rx9J27fuYOiKHTq2Ye/r11j8w9r+O3YIXy8vWjeviOJiYlGef1sM735JmFhYaxatYqzZ8/SsmVLmjdvrpvGb+TIkezatYvVq1dz/vx5Ro4cybBhw9i8ebN6mXIoJ4DIKxf0lmUL56PRaOjaSb17IOeW6crfVwlo0ZoK5ctzYOdWfj9xhPGjQ7C1sVUvUy6fHUDr1q2JjIzULTt27FAtD+ReTpk2bd3GyfBTeHp4qJrHkEzlfX2ZP2sGZ389xpGwXZTy8aZlUBfu3r2nXqYcPrukpCTOnDnD+PHjOXPmDBs3buTixYuq3+M7t3JKTEyiQb06TPssVNUcxvDsgeyLLiJnGiW3C/WeIz4+HkdHR96ydc51cpbFJNASW0r/e8peQWE1SVTBiupYAxmt8ZUkUgcb/LEi+d+fA7HBl4zJFRJJ53uSaIMtXtmc/re0s6PF2iW0DQzIdfKDR48e4eBWks0/rKFd61a69dXrBtC+TWv69u6JX/Va/Bl+nEr+FTMypqXhWsqXLyZN5M3+fQ0qJ21qKjv2H6Ft27a5ThLx6NEjHBwc2Lx5M+3atXuSqXp12rdvz+TJk6lcuTI9evRg/Pjxusdr1qxJ27ZtmTRpkmGZtFp27NhhlHKaPOGTLM/p1KM3//yTwC87thiUB54qJyNl6tlvIFaWlqxa+o3BGZ6byUifXf/+/Xn48CGbNm168UwqfHa379yhTuPm7N68gXZduzNi6LuMeM/wa3ON/dk9Kz4+HkcPb/Zu20yzwMZ5y2Skz+5Z4eHhvPbaa1y/fh1vb2/DMqn0e3ft+nVK+1fjt2OHqF6tqkFZAGLvP8DFqzRxcXFGm+zkWZn1RIilIzb5rJCTFYUZqXGq5v2vM8s59H9QSEKhJBa6dRZo8MCC6H+73e+RRjroVdz2FKIYhYh6pmv+RaSmppKWlpalxWZnZ8eR48dJTs44SLG1ffK4hYUF1lbWHDl2PN+vn2Mm22wyHTkCQEBAAFu2bOH27dsoisL+/fu5ePEirVq1ym6Xxsv0nHJ6VnR0DNt37WFQv2BV8hiSKT09ne279lC+nC+tgrrg6uNLncbN2LR1m/qZcvjsAA4cOICrqyvly5fnrbfeIiYmRv1MOXx26enpBA8aTMiIYboDVzXl9fuUkpLCN8tW4OhYhGpVKqubKZfP7mlxcXFoNBqKFi2qbiYDy0kIMFOFnvRvl7ndM/Pj2qHRPZaEQiHA5pltCqPhkRG63B0cHKhX5zUmfTGdO5GRpKWlsXrtek6GnyIyKpoKfuXx8fZizISJPHjwkJSUFKbNnENUdDSRUdH5fv3nZqpXj0mTJnHnzp2MTKtXc/LkSSIjIwGYN28e/v7+lCxZEmtra1q3bs2CBQsICAhQL1MO5fSsFd+vxcHhFbp07KBKHkMyxcTcJSEhgWmz5tK6RTP2bNlI5w7t6dIrmIOHs/8DbZRMuXx2bdq04fvvv2ffvn3MmjWL8PBwmjZtqjt4VCVTLp/dF7PmYmlpyfAhprl/taHfp207d/GKawlsndyYM38BYVs34eKizlzUhnx2T3v8+DGjR4+md+/eqrUU8/p7V9BljnLP7yJy9p8b5W7MGwWt+nYxiqJQwrciNsVcmbdwMb27d8PCwgIrKys2rFnFxUuXcSpZisIuHhw4fIQ2LVtgYWGR+85fNNOqVRmZSpTAxsaGefPm0bt3b91rzps3jxMnTrBlyxZOnz7NrFmzGDJkCHv37lUvUw7l9Kxlq1bTp0e3LK0dU2ZKVzIGTnZs15aRw4ZSvVpVRn84kvZtWrHo2+XqZcrls+vRowft2rWjcuXKdOjQgZ07d3Lx4kW2b9+uXqYcyun0bxF8uWAR332zwKTnJw35PgU2akjE8cMc27eH1i2a0T24PzExd9XLlMtnl0mr1dKzZ0/S09NZsEDdwYN5+b0r6DTkf0Cc1Oe5M0uFXvjfj+bZlvYjFN1jhdGQDiRns82zLfsXVbZMaQ7u3kFCzG1uXjjHr4f2oU3VUvrfm/PXrFGdiBNHeHjnOpFXLrBr8wZi79+ndCn1bt5ftmxZDh48SEJCAjdv3uTXX39Fq9VSunRpHj16xNixY5k9ezYdOnSgatWqvPfee/To0YOZM2eqlymXcsp0+OgxLly8xJv9DBtfoFYmF2dnLC0t8a/op/ecin5+3Lh1S71MOXx22fHw8MDHx4dLly6plymHcjp89Bgxd+/i7VcZyyLOWBZx5vqNm3ww5hNKVaxilkyZ7O3t8S1bhrqv1WbpwvlYWlqydMUq9TIZ8NlptVq6d+/O1atXCQsLU/08rqG/d//fyGVrz2eWCt0BDYXRcOupc+FpKESShtu/59VdsKAQcOupy90SSecB6bhj3CNUe3t7PDzcefDgIbv3/kLH9m31Hnd0dKR4cRcuXb7CqTO/0bFd2+fsydiZPHjw4AG7d++mY8eOaLVatFothQrpf2wWFhakpxvvcr6cMz2/nJauWEXNGtWpVlW9ysCQTNbW1tSu+SoXLupXlBcvX8bHy8tEmfQ/u+zExsZy8+ZNPEwwsjy7cgru1ZM/Th4l4vhh3eLp4UHIiOHs3rzRLJmeR1EUklPUOTWRNVPWzy6zMr906RJ79+7F2Vmd7v/nZzKsnAqqzHu553cBuWwtJ6rdKU6LQtxT14z/Qzr3SMMGDQ4UogpW/EYKjhTCEQ2/ocUSDb7/RrJBQwUsOU4KNmiwRcNxUnCiECWMVKHvDvsFRVHwK+/L5StXCRk3Hr9y5RgQ3AeAHzduoriLM95eXpw9d473Q0bTqUM7WjZvapTXzzbT7t0Zmfz8uHz5MiEhIfj5+TFgwACsrKxo3LgxISEh2NnZ4ePjw8GDB1m5ciWzZ89WL1Mu5QQZo1l//Hkzs6ZmHRFsjkwhI4bRo+9AGgU0ILBRQ3aF7WXrjl0c2KXewLicPruEhARCQ0Pp2rUrHh4eXLt2jbFjx+Li4kLnzp3Vy5RDOVlZWeHs7KS3vZWVJe5urviVL2eWTImJiUyZPougdm3wcHcjNvY+C5Ys5dbtO3Tr3Em9TDl8dqmpqbz++uucOXOGbdu2kZaWRlRUFABOTk5YW1urkymX7/j9+w+4cfMmdyIzsly4lDH3t7ubG+7ubqpkelFy61fTUK1Cv0saW3ms+/k4KQCUx5JAbKmGFan/3jgmGQVXCtEOW6yf6k6vhw0aUtjLY9IATywIxJZCRupyj4uPZ8yEidy6fQenYsXo2imIKRM+0V3mEhkVxajR44iOicHD3Y2+vXsyfvRHRnnt52aKi2PMmDHcunULJycnunbtypQpU3SZ1q1bx5gxY+jTpw/379/Hx8eHKVOm8M476g1qyq2cANb9tBFFUejVratqOfKSqXNQBxZ9OZups+Yw/MOP8Svny4Y1KwmoX0+9TDl8dqmpqZw9e5aVK1fy8OFDPDw8CAwMZP369Tg4OKiXyYDPztRyypSWlsb/Ll5kxfdruRcbi7OTE7Vr1uBw2E5VR+Hn9Nldu3aNLVsyLsGsXr263vP2799PkyZN1MmUy2e3ZfsOBrzzpJXas99AACaM/ZjQcWNUySQKNpNch24qebkO3VTycj2sqeTlelhTycu1zKYin51h5LMzTEH77Ex5HfqnNkWxzefAy8eKwmfJD+U69ByY/1slhBDipSZd7qYhZSSEEEK8BKSFLoQQQlWF0OR77JO0PnMnZSSEEEJVxrxTnFyH/nzSQhdCCKEqY55DDw8Pl0FxzyEtdCGEEOIlIC10IYQQqjLG5CrS+sydVOhCCCFUlTE5S/5qdI1Rp+Z6OclBjxBCCPESkBa6EEIIVUmXu2lIhS6EEEJVcqc405AyEkIIIV4CBrfQk5OTSU5+MglLfHw8AJ+dP4GzUzHjJ3sB2tRUwg6fQJuamvvGJpKZRfvPfSgAEzLAU5kKYjkVxEzy2eWoQGeSz+65TJlDutxNw+DZ1kJDQ5k4cWKW9WvWrKFw4cJGDyaEEEI9SUlJ9O7d2ySzrX1p74SdJn9V8iMlnfcT71O+fHksLCwYOnQoQ4cOzf2J/48YXKFn10L38vIi8uqlAtdCb9GwboGYnhAkk6Ekk2Ekk2EkU+5i7z/Ao3S5/1yFLtOnPp/B3yobGxtsbGyyrLeytCwQX86nSSbDSCbDSCbDSCbDFJRMpswgXe6mYf5vlRBCiJea5t8lv/sQOZMKXQghhKqkhW4aUkZCCCHES0Ba6EIIIVRVCE2+7+We3+f/fyAVuhBCCFVJl7tpSBkJIYQQLwFpoQshhFBVxvSp+d+HyJlU6EIIIVQll62ZhnS5CyGEEC8BqdCFEEKoqpBGY5QFoHbt2vj7+/P111+b+V0VPCap0FNTU/lk4mRK+1fFztmdMpWq8dnUL0hPT9dts3HzFloFdcHFuwwa+6JE/P6HWTNptVo+/mQCVWrXx764J55lK9D3zcHciYw0WyaA0ClTqVCjNvbFPSlWwofm7TpyMvyUWTM9bfCwEWjsizJ3/gKzZur/9rto7IvqLXWbNDdrJoDz/7tAULeeOHp44+BWkrpNmnPj5k2zZXq2jDKXGXPmmS1TQkIC740KoWQ5f+yc3an46mssXLJUlTyGZoqOjqH/2+/iWbYChV08aN2xK5cuX1EtE8A///zDiJDR+FSojJ2zO/WbtiT89Bnd44qiEDplKp5lK2Dn7E6T1u0499d5VTO9KI2RFoDw8HD++usvmZglGyY5h/7F7LksWrqMFd8spFLFCpw6E8GAd4biWKQI7w99F4DExCQa1KtDty6deGvocLNnSkpK4kzE74wfHUK1KpV58PAhIz4aQ1C3Xpw6csAsmQDK+/oyf9YMypQuxaNHj5gzfwEtg7pw+Y8zFC/uYpZMmTZt3cbJ8FN4engYPceLZGrdojnLFz05ire2tjZrpit/XyWgRWsG9Q1m4rgxODo6cv7CBWxtbM2WKfLKBb3n7NwTxqAhw+jaKchsmUZ+PJb9hw6zeuliSvl4s+eX/QwZ8QGeHu50bN/O5JkURaFTzz5YWVmy+Yc1FHFwYPZXX9O8fUf+On0Se3t7o2cCeHPocP786zyrvl2Mp4cHq9etp3n7Tvx1+gQlPD2ZPvtLZn+1gO8Wf015X18mT59Jiw6duRARjoODgyqZRMFmkgr9+MlwOrZrS7vWrQAo5ePD2h9/4tSZ33TbBPfuCcC169dNESnXTI6OjoRt26T3nK9mTee1Rk25cfMm3l5eJs8E0LtHN73nzJ42haUrVvHHn+doFtjYLJkAbt+5w3ujPmL35g2069rd6DleJJONjTXu7m6qZslLpnETJ9G2ZQumT/lMt65M6VJmzfRs+WzevoPARg1Vy2VIpuMnw+nXpxdNGjUE4O2B/Vm8dDmnzvymSoWeW6ZLl69w4tdw/gw/TiX/igAsmDsL11K+rP1xA2/272v0TI8ePWLDpi1s/mENjQIaABA6bgybtm5n4ZJlTPp0HHO/Xsi4kA/o0jHj4GvFNwtxK12ONT/8xOBBA4yeKT9kUJxpmKTLPaBeXX45cJCLly4D8PsfZzly7ARtW7U0xcsbLVNcXDwajYaijo4FIlNKSgrfLFuBo2MRqlWpbLZM6enpBA8aTMiIYbo/eGoytJwOHD6Cq48v5avV5K2hw4mJuWu2TOnp6WzftYfy5XxpFdQFVx9f6jRuxqat28yW6VnR0TFs37WHQf2CzZopoH5dtmzfye07d1AUhf0HD3Hx8hVaNW9mlkyZ00bb2j7pSbGwsMDaypojx46rkik1NZW0tLQsvTd2dnYcOX6cq9euExUdTctmgbrHbGxsaBzQgGMnTqqSKT+M2eUuns8kLfSPPxhBXHw8FWrUxsLCgrS0NKZMGE+v7q+b4uWNkunx48eM/jSU3t27qTYXr6GZtu3cRc9+g0hKSsLD3Z2wrZtwcXE2W6YvZs3F0tKS4UPeUSXDi2Rq07IF3bp0wsfLi6vXrzP+syk0bRvE6aMHsp0GWO1MMTF3SUhIYNqsuUz+dBxfTAplV9gvdOkVzP6dW2ncMMDkmZ614vu1ODi8QpeOHYyeJS+Z5s38greGDqdkOX8sLS0pVKgQ3349j4D69cySqYJfeXy8vRgzYSKL583F3r4ws+d9TVR0NJFR0apkcnBwoF6d15j0xXQqViiPm6sra3/4iZPhpyjnW5ao6IzXdXNz1Xuem6sr12+oMyYjPzQaDRpN/qpkjVTpuTJJhb7+p42sXvcDa5Z/S6WKFYj44ywjPh6Dp4c7/d7obYoI+cqk1Wrp2W8g6enpLJg70+yZAhs1JOL4Ye7FxrJk+Qq6B/fn5IFfcHUtbvJMp3+L4MsFizhz7GC+f2GNlQmgx+tddNtXruRPrRo18KlYhe27duu6KE2ZKV3JGGDVsV1bRg7LGMxTvVpVjp08yaJvl6tSoef1927ZqtX06dFNryVqjkzzFizmRPgptvy4Fh8vLw4dPcaQkR/i4e5O86ZNTJ7JysqKDWtWMejd93AqWQoLCwuaBzahTcsWRs/ytFXfLmbgu0Mp4VsRCwsLXq1ejd7du3Hm99912zxbySmKYrLfQ1HwmKRCDxn3KaM/GEHPbl0BqFK5Etdv3mTqrDlmq9ANzaTVauke3J+r166zb8dW1Vrneclkb2+Pb9ky+JYtQ93XalOu6qssXbGKMSGjTJ7p8NFjxNy9i7ffky7/tLQ0PhjzCXO/Xsi182dNnik7Hh7u+Hh7ceny30bPY0gmF2dnLC0t8a/op/e8in5+HDl+wiyZnnb46DEuXLzE+hXLVMliaKZHjx4xNvQzfl63WndOu2qVykT8cZaZX36lSoVuSDnVrFGdiBNHiIuLIyVFS/HiLtRp3Ixar9Ywep5MZcuU5uDuHSQmJhIf/w8eHu706DuA0j4+uLtljH2Iio7Gw8Nd95yYu3dxU+HAPr/kHLppmOQcetKjJAoV0n8pi0IWz730yRQMyZRZmV+6/Dd7t23G2dnJ7JmyoygKySnJZskU3Ksnf5w8SsTxw7rF08ODkBHD2b15o1kyZSc29j43b93GQ6VBcrllsra2pnbNV7lw8ZLeNhcvX8ZHhQGWhmR62tIVq6hZozrVqlZRJYuhmbRaLVqtlkKaZ7axUO/vRV7KydHRkeLFXbh0+UrGIL12bVXJ9DR7e3s8PNx58OAhu/f+Qsf2bSldKqNSD9t3QLddSkoKB48cpX7dOqpnyqtCRlpEzkzSQu/QpjVTps/C26sklSpW4Lff/2D2/K8ZGPyGbpv79x9w4+ZN7kRGAXDh3wEq7m5uqoxUzi1Tamoqr/fpy5mIP9j20zrS0tKI+vd8mZNTMVUugcotU2JiIlOmzyKoXRs83N2Ijb3PgiVLuXX7Dt06dzJ6HkMyOTs7ZTnQsbKyxN3NFb/y5cySKSEhgdAp0+jaKQgPdzeuXb/B2NBJuDg70zmovVkyAYSMGEaPvgNpFNCAwEYN2RW2l607dnFglzoD4wzJBBAfH8+PP29m1tTJquTIS6YiRYrQuGEDQsZ9ip2dLT7eXhw8fJSVa9Yxe9oUs2QC+HHjJoq7OOPt5cXZc+d4P2Q0nTq0o2XzpqpkAtgd9guKouBX3pfLV64SMm48fuXKMSC4DxqNhhFD3+XzmbMo51uGcmXL8vmM2RS2K0xvM45NEuZlkgr9q1nTGf/ZFIaM+ICYu/fw9HBn8MABfDrmI902W7bvYMA7T24U0LPfQAAmjP2Y0HFjTJ7p1u3bbNm+E4Dq9RrqPXf/zq26S2pMmcnCwoL/XbzIiu/Xci82FmcnJ2rXrMHhsJ2qjS435LMzNUPK6ey5v1i5Zh0P4+LwcHcjsFFD1q9cptr1uYaUU+egDiz6cjZTZ81h+Icf41fOlw1rVqo22MvQz27dTxtRFIVe/3Y5q8mQTOu+W8aYCRPpM/Bt7j94gI+3F1MmfMI7bw40W6bIqChGjR5HdEwMHu5u9O3dk/Gj1f0diIuPZ8yEidy6fQenYsXo2imIKRM+wcrKCoCPRr3Po8ePGDLiQx48fEid2jXZs2VjgbwGXaPJWPK1D+NEealpFEVRXuSJ8fHxODo6cu/mVZydihk71wvRpqayY/8R2gYGYGVZMOadkUyGkUyGkUyGkUy5i73/ABev0sTFxak2NiiznlhbzJXCmvx1micp6fR6EKNq3v86OS0hhBBCvATMf5gohBDipSaj3E1DKnQhhBCqkgrdNKTLXQghxH+GTJ/6fNJCF0IIoapCQKF8NrEL/Tt8Ozw8XAbFPYdU6EIIIVSl+fe//O5D5EwqdCGEEKqT6lh9cg5dCCGEeAlIC10IIYSqjHKnOGni50oqdCGEEKqSy9ZMQ7rchRBCiJeAtNCFEEKoqhAaCuWzjZ3f5/9/YHCFnpycTHLykzm34+PjAdBa2qK1Kmz8ZC9Aizbj/6mpZk7yRGYWyZQzyWQYyWSYAp3J0g7+nTHNnLSWj0z2WtLlbhoGz7YWGhrKxIkTs6xfs2YNhQsXjApdCCGEYZKSkujdu7dJZlvb7OSOfaH8neFNTE+n4/0omW0tBwZX6Nm10L28vIiMjMTZ2Vm1gHmh1WoJCwujRcO6BWJ6Qsg4Kg87fEIy5UIyGUYyGaZAZ2rRQjenuTnFxsbi4eFhkgp9i7NxKvSgWKnQc2LwN93GxgYbG5ss662srArEl/NpVpaWBeaXOJNkMoxkMoxkMkyBzFRA/maaMoN0uZuGjHIXQgghXgIF69BVCCHES0fu5W4aUqELIYRQVSGNEWZbk/o8V1KhCyGEUJWcQzcNOYcuhBBCvASkhS6EEEJV0kI3DanQhRBCqEoGxZmGdLkLIYQQLwFpoQshhFCVzIduGtJCF0IIoapCRloAateujb+/P19//bUp38J/gkkq9NTUVD755BNKly6NnZ0dZcqU4bPPPiM9PV23jaIohIaG4unpiZ2dHU2aNOHcuXOq5ipVsQoa+6JZlqEjPwQgOjqG/m+/i2fZChR28aB1x65cunzFrJkSEhJ4b1QIJcv5Y+fsTsVXX2PhkqVmy5PdYxr7osyYM89smQDO/+8CQd164ujhjYNbSeo2ac6NmzfNlqn/2+9meaxuk+aq5TEk09MGDxuBxr4oc+cvMGum0ClTqVCjNvbFPSlWwofm7TpyMvyU2TJptVo+/mQCVWrXx764J55lK9D3zcHciYxUN1OpUmg0mizL0KFDAdi4cSOtWrXCxcUFjUZDRESEqnkKkvDwcP766y9dWYgnTNLl/sUXX7Bo0SJWrFhBpUqVOHXqFAMGDMDR0ZH3338fgOnTpzN79my+++47ypcvz+TJk2nRogUXLlzAwcFBlVzhh/aTlpam+/nPv87TokMnunXuiKIodOrZBysrSzb/sIYiDg7M/uprmrfvyF+nT2Jvb2/yTAAjPx7L/kOHWb10MaV8vNnzy36GjPgATw93OrZvZ/I8kVcu6G2/c08Yg4YMo2unIKNnMTTTlb+vEtCiNYP6BjNx3BgcHR05f+ECtja2ZssE0LpFc5YvetKqsLa2Vi2PoZkANm3dxsnwU3h6eKiax5BM5X19mT9rBmVKl+LRo0fMmb+AlkFduPzHGYoXdzF5pqSkJM5E/M740SFUq1KZBw8fMuKjMQR168WpIwdUyQMZlZZepj//pEWLFnTr1g2AxMREGjRoQLdu3XjrrbdUy2EsMsrdNExSoR8/fpyOHTvSrl1GhVOqVCnWrl3LqVMZR96KojB37lzGjRtHly5dAFixYgVubm6sWbOGwYMHq5Lr2T8Q02bNoWyZ0jRuGMCly1c48Ws4f4Yfp5J/RQAWzJ2Faylf1v64gTf79zV5JoDjJ8Pp16cXTRo1BODtgf1ZvHQ5p878pkqFnlsed3c3vcc3b99BYKOGlCldyuhZDM00buIk2rZswfQpn+m2UTOPIZkAbGyss5SXuTPdvnOH90Z9xO7NG2jXtbvZM/Xu0U3v8dnTprB0xSr++PMczQIbmzyTRqMhbNsmvce/mjWd1xo15cbNm3h7eamUqbh+pmnTKFu2LI0bZ5RBcHAwANeuXVPl9Y3u3x6G/O5D5MwkXe4BAQH88ssvXLx4EYDff/+dI0eO0LZtWwCuXr1KVFQULVu21D3HxsaGxo0bc+zYMVNEJCUlhdXrf2Bg3zfQaDS6qWJtbZ+06iwsLLC2subIseNmyQQQUL8uW7bv5PadOyiKwv6Dh7h4+QqtmjczS56nRUfHsH3XHgb1C1Y9y/Mypaens33XHsqX86VVUBdcfXyp07gZm7ZuM1umTAcOH8HVx5fy1Wry1tDhxMTcNWum9PR0ggcNJmTEMN1Bqynl9n1KSUnhm2UrcHQsQrUqlQtEJoC4uHg0Gg1FHR1Nl2n1agYOHJj/SlG81ExSoX/88cf06tWLChUqYGVlRY0aNRgxYgS9evUCICoqCgA3N/3Wi5ubm+4xtW3aup2HD+Po/0ZvACr4lcfH24sxEyby4MFDUlJSmDZzDlHR0URGRZslE8C8mV/gX8GPkuX8sS5anNadXmfBnJkE1K9nljxPW/H9WhwcXqFLxw6qZ3leppiYuyQkJDBt1lxat2jGni0b6dyhPV16BXPw8BGzZAJo07IF3y9bwr4dW5g1dTLhp8/QtG2Q7sDRHJm+mDUXS0tLhg95xyQZDMkEsG3nLl5xLYGtkxtz5i8gbOsmXFyczZop0+PHjxn9aSi9u3cz2ZzcmzZt4uHDh/Tv398kr6cGjZEWkTOTdLmvX7+e1atXs2bNGipVqkRERAQjRozA09OTfv366bZ79uhTURSTHZEuXbGKNi2b684jWllZsWHNKga9+x5OJUthYWFB88AmtGnZwiR5sssEMG/BYk6En2LLj2vx8fLi0NFjDBn5IR7u7jRv2sTkeZ62bNVq+vTopterobZnM6UrGQMtO7Zry8hhGYNmqleryrGTJ1n07XK97mZTZQLo8XoX3b8rV/KnVo0a+FSswvZdu+nSUb3xBs/LdPq3CL5csIgzxw6ardX3vO9TYKOGRBw/zL3YWJYsX0H34P6cPPALrq7Fn7Mn9TMBaLVaevYbSHp6OgvmzlQ9iy7T0qW0adMGT09Pk72msck5dNMwSYUeEhLC6NGj6dmzJwBVqlTh+vXrTJ06lX79+uHu7g5ktNQ9nvpFiomJydJqV8P1GzfYu/8AG9eu0ltfs0Z1Ik4cIS4ujpQULcWLu1CncTNqvVrDLJkePXrE2NDP+Hndatq1bgVA1SqVifjjLDO//ErVCv15ZZTp8NFjXLh4ifUrlqmWwZBMLs7OWFpa4l/RT2/bin5+HDl+wiyZsuPh4Y6PtxeXLv9tlkyHjx4j5u5dvP2edGWnpaXxwZhPmPv1Qq6dP2vyTJns7e3xLVsG37JlqPtabcpVfZWlK1YxJmSU2TJptVq6B/fn6rXr7Nux1WSt8+vXr7N37142btxoktdTi8YI59DldEPuTNLlnpSURKFC+i9lYWGhu2ytdOnSuLu7ExYWpns8JSWFgwcPUr9+fdXzLV/1Pa7Fi+sqyWc5OjpSvLgLly5fyRh81q6tWTJptVq0Wi2FNM8vS1PmedrSFauoWaM61apWUTVHbpmsra2pXfNVLly8pLftxcuX8VFpAFNumbITG3ufm7du42GCQXLZZQru1ZM/Th4l4vhh3eLp4UHIiOHs3qx+5WFoOUFGT11yivqnJp6XKbMyv3T5b/Zu24yzs5PqWXSZli/H1dVVN6BYiJyYpIXeoUMHpkyZgre3N5UqVeK3335j9uzZDBw4EMg48hoxYgSff/455cqVo1y5cnz++ecULlyY3r2zP5dlLOnp6Sxf9T39+vTC0lK/OH7cuIniLs54e3lx9tw53g8ZTacO7WjZvKlZMhUpUoTGDRsQMu5T7Oxs8fH24uDho6xcs47Z06aYPE+m+Ph4fvx5M7OmTlYtQ14yhYwYRo++A2kU0IDARg3ZFbaXrTt2cWCXugPjnpcpISGB0CnT6NopCA93N65dv8HY0Em4ODvTOai9WTI5OztlqZisrCxxd3PFr3w5s2RKTExkyvRZBLVrg4e7G7Gx91mwZCm3bt+hW+dOZsmUmprK6336cibiD7b9tI60tDSi/h1D4+RUTNVLD9PT01m+fDn9+vXL8h2/f/8+N27c4M6dOwBcuJBx+ai7u7uux7MgkfnQTcMkFfpXX33F+PHjGTJkCDExMXh6ejJ48GA+/fRT3TYfffQRjx49YsiQITx48IA6deqwZ88e1a5Bz7R33wFu3LzFwL5vZHksMiqKUaPHER0Tg4e7G31792T86I9UzZNbpnXfLWPMhIn0Gfg29x88wMfbiykTPuGdNweaJQ/Aup82oigKvbp1VS1DXjJ1DurAoi9nM3XWHIZ/+DF+5XzZsGal6gMHn5fJwsKCs+f+YuWadTyMi8PD3Y3ARg1Zv3KZWb/f5pJTOf3v4kVWfL+We7GxODs5UbtmDQ6H7VR9FP7zMt26fZst23cCUL1eQ73H9u/cqrt8VJVMe/dy48YNXcPnaVu2bGHAgAG6nzNPZ06YMIHQ0FDVMr0oTSENmnzWyDI5S+40iqIoL/LE+Ph4HB0duXfvHs7OphmBmhutVsuOHTtoGxiAVTYtSXPQpqayY/8RyZQLyWQYyWSYAp2pbVusrKzMHYfY2FhcXFyIi4tTbUxAZj1x2NOLVwrl7wxvQno6De/cVDXvf13B+KYLIYR4acnkLKYhFboQQghVSYVuGjLbmhBCCPESkBa6EEIIVcl16KYhFboQQghVSZe7aUiXuxBCCPESkBa6EEIIVUmXu2lIhS6EEEJV0uVuGlKhCyGEUFUhjYZC+ayR8/v8/w/kHLoQQgjxEpAWuhBCCFVJl7tpGFyhJycnk5z8ZArD+Ph44MmUngVBZg5taqqZkzyRmUUy5UwyGUYyGaZAZypgfy9NQYMRBsXJ5Cy5MnhyltDQUCZOnJhl/Zo1ayhcuLDRgwkhhFBPUlISvXv3NsnkLKfLlOYVi3xOzpKWTs2/r8rkLDkwuELProXu5eVF5NVLODsVUy1gXmhTUwk7fIIWDesWqBmWCmymFi0KxKxPkNFaCAsLK5jlJJlyJJkMU9Ayxd5/gEfpciap0M/4GqdCf/WyVOg5MfhbZWNjg42NTZb1VpaWBeLL+TTJZBgrK6sCU6FnKpDlJJkMIpkMU1AymTSDEa5Dl5PouZNR7kIIIcRLwPyHiUIIIV5qMsrdNKRCF0IIoaqMCj2/t341UpiXmHS5CyGEEC8BqdCFEEKoKrPLPb9LQdO5c2eKFSvG66+/bu4ogFToQgghVJZ5L/f8LgXN8OHDWblypblj6EiFLoQQQlUvaws9MDAQBwcHc8fQkQpdCCHES+fQoUN06NABT09PNBoNmzZtyrLNggULKF26NLa2ttSsWZPDhw+bPqgRySh3IYQQqtIY4cYyeX1+YmIi1apVY8CAAXTt2jXL4+vXr2fEiBEsWLCABg0asHjxYtq0acNff/2Ft7c3ADVr1tS7Q2qmPXv24Onp+WJvREVSoQshhFCVMa9Dz5wYLNPz7mLapk0b2rRp89z9zZ49m0GDBvHmm28CMHfuXHbv3s3ChQuZOnUqAKdPn85faBOTLnchhBD/GV5eXjg6OuqWzMo3L1JSUjh9+jQtW7bUW9+yZUuOHTtmrKgmZ7IK/fadO7wx8G2cvUpT2MWD6nUDOP1bhO7xjZu30CqoCy7eZdDYFyXi9z/Mmkmr1fLxJxOoUrs+9sU98Sxbgb5vDuZOZKTZMgGETplKhRq1sS/uSbESPjRv15GT4afUzXT7Nm+88QbOzs4ULlyY6tWrP/fIdfDgwWg0GubOnatuplzKqf/b76KxL6q31G3S3KyZAM7/7wJB3Xri6OGNg1tJ6jZpzo2bN82W6dkyylxmzJlntkwJCQm8NyqEkuX8sXN2p+Krr7FwyVLV8hiSKTo6hv5vv4tn2QoUdvGgdceuXLp8RbU8pSpWyfZzGTryQwAURSF0ylQ8y1bAztmdJq3bce6v86rlyS9jDoq7efMmcXFxumXMmDF5znPv3j3S0tJwc3PTW+/m5kZUVJTB+2nVqhXdunVjx44dlCxZkvDw8DxnMSaTdLk/ePCQBs1aEdioITt//gnX4i5c+fsaRR0dddskJibRoF4dunXpxFtDh5s9U1JSEmcifmf86BCqVanMg4cPGfHRGIK69eLUkQNmyQRQ3teX+bNmUKZ0KR49esSc+QtoGdSFy3+coXhxFxUyPaBBgwYEBgayc+dOXF1duXLlCkWLFs2y7aZNmzh58qTq55YMKSeA1i2as3zR17qfra2tzZrpyt9XCWjRmkF9g5k4bgyOjo6cv3ABWxtbs2WKvHJB7zk794QxaMgwunYKMlumkR+PZf+hw6xeuphSPt7s+WU/Q0Z8gKeHOx3btzN5JkVR6NSzD1ZWlmz+YQ1FHByY/dXXNG/fkb9On8Te3t7omcIP7SctLU33859/nadFh05069wRgOmzv2T2Vwv4bvHXlPf1ZfL0mbTo0JkLEeEFatR1Jk0hDZpC+TyHrmQ8v0iRIkabbe3Z8/KKouTpXP3u3buNksNYTFKhfzF7Ll4lS7J88QLdulI+PnrbBPfuCcC169dNESnXTI6OjoRt26T3nK9mTee1Rk25cfMm3l5eJs8E0LtHN72fZ0+bwtIVq/jjz3M0C2xs/ExffIGXlxfLly9/kqlUqSzb3b59m/fee4/du3fTrp3x/+jqZTKgnABsbKxxd3fLst5cmcZNnETbli2YPuUz3boypUuZNdOz5bN5+w4CGzVULZchmY6fDKdfn140adQQgLcH9mfx0uWcOvObKhV6bpkuXb7CiV/D+TP8OJX8KwKwYO4sXEv5svbHDbzZv6/RMz17cD5t1hzKlilN44YBKIrC3K8XMi7kA7p0zDjwWvHNQtxKl2PNDz8xeNAAo+d52bi4uGBhYZGlNR4TE5Ol1f5fYpIu9y07dlKrRnW6vdEPVx9fatRryJLlK0zx0kbNFBcXj0ajydISNFemlJQUvlm2AkfHIlSrUlmdTFu2UKtWLbp164arqys1atRgyZIletukp6cTHBxMSEgIlSpVUiWHXiYDy+nA4SO4+vhSvlpN3ho6nJiYu2bLlJ6ezvZdeyhfzpdWQV1w9fGlTuNmbNq6zWyZnhUdHcP2XXsY1C/YrJkC6tdly/ad3L5zB0VR2H/wEBcvX6FV82ZmyZQ5ytnW9klPioWFBdZW1hw5dlyVTE9LSUlh9fofGNj3DTQaDVevXScqOpqWzQJ129jY2NA4oAHHTpxUPc+LKGjXoVtbW1OzZk3CwsL01oeFhVG/fn3jvZCJmaRC//vqNRZ+u4xyZcuye/MG3nlzIMM//JiV3681xcsbJdPjx48Z/Wkovbt3M1p3z4tm2rZzF6+4lsDWyY058xcQtnUTLi7O6mT6+28WLlxIuXLl2L17N++8806WuyN98cUXWFpaMny4+qdKwLByatOyBd8vW8K+HVuYNXUy4afP0LRtULaXoJgiU0zMXRISEpg2ay6tWzRjz5aNdO7Qni69gjl4+IhZMj1rxfdrcXB4hS4dO6iSx9BM82Z+gX8FP0qW88e6aHFad3qdBXNmElC/nlkyVfArj4+3F2MmTOTBg4ekpKQwbeYcoqKjiYyKViXT0zZt3c7Dh3H0f6M3AFHRGa/p5uaqt52bqytR0TGq53kRxrxTXO3atfH39+frr7/O8TUTEhKIiIggIiICgKtXrxIREcGNGzcAGDVqFN9++y3Lli3j/PnzjBw5khs3bvDOO++oWhZqMkmXe3p6OrVercHnEz8FoEb1apw7f56F3y6jb59epoiQr0xarZae/QaSnp7OgrkzzZ4psFFDIo4f5l5sLEuWr6B7cH9OHvgFV9fi6mSqVYvPP/88I1ONGpw7d46FCxfSt29fTp8+zZdffsmZM2fyfZ1pnjLlUk49Xu+i275yJX9q1aiBT8UqbN+1W9dNacpM6Uo6AB3btWXksKEAVK9WlWMnT7Lo2+U0bhhg8kzPWrZqNX16dNNriZoj07wFizkRfootP67Fx8uLQ0ePMWTkh3i4u9O8aROTZ7KysmLDmlUMevc9nEqWwsLCguaBTWjTsoXRs2Rn6YpVtGnZHE8PD731GvJ3/ve/Kjw83KBG1alTpwgMfNKLMWrUKAD69evHd999R48ePYiNjeWzzz4jMjKSypUrs2PHDnyyOX33X2GSFrqHuxv+Ffz01lX08+PGzVumePlsGZpJq9XSPbg/V69dJ2zrJtVa53nJZG9vj2/ZMtR9rTZLF87H0tKSpStWqZPJwwN/f3/9TBUr6o5yDx8+TExMDN7e3lhaWmJpacn169f54IMPsj3XbpRML/B98vBwx8fbi0uX/zZLJhdnZywtLfGvmM02t9T5PchLOR0+eowLFy/xZj/jnw/OS6ZHjx4xNvQzZk+bQoe2bahapTLvvfM2Pbp2ZuaXX5klE0DNGtWJOHGEh3euE3nlArs2byD2/n1Kl1L3j//1GzfYu/+A3nl693/P8Wa21DPF3L2LmwoH9cZgji73Jk2aoChKluW7777TbTNkyBCuXbtGcnIyp0+fplGjRsZ94yZmkgq9Qd26XLh0WW/dxUuX8fE2/sAyQxmSKbMyv3T5b/Zu24yzs5PZM2VHURSSU9TpSm7QoAEXLuiPhL548aLuKDY4OJg//vhD17UVERGBp6cnISEhqo0AfZFyio29z81bt/FQaZBcbpmsra2pXfNVLly8pL/N5cv4qDDA0pBMT1u6YhU1a1SnWtUqqmQxNJNWq0Wr1VJIo/+nycLCgvT0dLNkepqjoyPFi7tw6fKVjEF67dqqkinT8lXf41q8OO1at9KtK13KB3c3N8L2HdCtS0lJ4eCRo9SvW0fVPC8q805x+V1EzkzS5T5y2BDqN23J5zNm0b1LZ349dZpvlq/gm6/m6ra5f/8BN27e5E5kxqjDzF8wdzc3VUYq55YpNTWV1/v05UzEH2z7aR1paWlE/Xu+zMmpmCqXQOWWKTExkSnTZxHUrg0e7m7Ext5nwZKl3Lp9h26dOxk9D8DIkSOpX78+n3/+Od27d+fXX3/lm2++4ZtvvgHA2dkZZ2f98/dWVla4u7vj5+eX3S7znymXckpISCB0yjS6dgrCw92Na9dvMDZ0Ei7OznQOam+WTAAhI4bRo+9AGgU0ILBRQ3aF7WXrjl0c2KXOwDhDMkHGnbd+/Hkzs6ZOViVHXjIVKVKExg0bEDLuU+zsbPHx9uLg4aOsXLOO2dOmmCUTwI8bN1HcxRlvLy/OnjvH+yGj6dShHS2bN1UlE2ScCli+6nv69emFpeWTP9UajYYRQ9/l85mzKOdbhnJly/L5jNkUtitM7+4FYxrPZ2kwwp3ijJLkJae8oLi4OAVQ7t28qiiJD3Ndtv60Tqns76/Y2NgoFfzKK9/M/1Lv8eWLvlaALMuEsR8btH8l8aGSEndP2bRpk5ISdy/fma7+9Xu2eQBl/86tZsn0KDZK6RzUXvH08FCsra0VD3d3JahdG+XXQ/sMzqOXKSXFoM9669atSuXKlTMyVaigfPPNNzlu7+Pjo8yZMydP36eUlBSjlVPSvUilZbOmSnEXF8XKykrx9iqp9OvTS7lx4c8XKycjZMpcli74SvEtW0axtbVVqlWprGxa/73ZMy3+aq5iZ2enPLxzPU9Z1MoUeeWC0v+N3oqnh4dia2ur+JUvp8yaOllJT3hgtkxfzpimlCxRQvd9+uTjD5XkBzGqltPuzRsVQLkQcSrLY+kJD5QJYz9W3N3cFBsbG6VRQH3l7K/H8pTn3s2rCqDExcXl6Xc1LzLrib9r+il36/jna/m7pp/qef/rNIqiKC9yIBAfH4+joyP3bl7F2alYfo8rjEKbmsqO/UdoGxiAlWXBuE19gc7Uti1WVlbmjgNkdLXu2LGjYJaTZMqRZDJMQcsUe/8BLl6liYuLU21sUGY9cbVWBRwsLfK1r39S0yh96n+q5v2vk3u5CyGEUJcxBsT92+du6GVr/x+Z/zBRCCGEMJChl639fyQVuhBCCFWZYz70/4+kQhdCCKEqTaGMJb/7EDmTIhJCCCFeAtJCF0IIoSrpcjcNqdCFEEKoq5AmY8nvPkSOpMtdCCHEf4ZctvZ80kIXQgihLmNMaP7v8+WyteeTCl0IIYSq5By6aUiFLoQQQl1yDt0kDK7Qk5OTSU5+MkVnfHw8kHF/Ym1qqvGTvYDMHAUlDxTwTFqtmZM8kZmlQJaTZMqRZDJMQctUUHII4zF4cpbQ0FAmTpyYZf2aNWsoXLiw0YMJIYRQT1JSEr179zbJ5Cw3m1SjSD4nZ4lPTcPrwO8yOUsODK7Qs2uhe3l5EXn1UoGabS3s8AlaNKxbIGYzAslkKF2mFi0K1AxwYWFhBbOcJFOOCnSmAvIdj42NxcPDwyQV+q2m1Y1SoZfcFyEVeg4M/qbb2NhgY2OTZb2VpWWB+YXJJJkMUyAzWVkViD92TyuQ5SSZDFIgMxWQ73hByCCMS65DF0IIoa78zp361GVvL9N16ImJiUbdX8E6dBVCCPHS0Wg0aPI5Sl3zEl6H7ubmRvfu3Rk4cCABAQH53p+00IUQQggzWLt2LXFxcTRr1ozy5cszbdo07ty588L7kwpdCCGEuozY5f4y6dChAxs2bODOnTu8++67rF27Fh8fH9q3b8/GjRtJzeOlhVKhCyGEUFchntxc5oUXc78J9Tg7OzNy5Eh+//13Zs+ezd69e3n99dfx9PTk008/JSkpyaD9yDl0IYQQwoyioqJYuXIly5cv58aNG7z++usMGjSIO3fuMG3aNE6cOMGePXty3Y9U6EIIIVQl93LP3saNG1m+fDm7d+/G39+foUOH8sYbb1C0aFHdNtWrV6dGjRoG7U8qdCGEEOqSe7lna8CAAfTs2ZOjR49Su3btbLcpU6YM48aNM2h/UqELIYRQlxGnT32ZREZG5nrrdDs7OyZMmGDQ/l7iYQZCCCFEweXg4EBMTEyW9bGxsVhY5P1WuVKhCyGEUJWmkHEWeLnuFPe8qVSSk5OxtrbO8/5MVqHfvnOHNwa+jbNXaQq7eFC9bgCnf4vQPa4oCqFTpuJZtgJ2zu40ad2Oc3+dVy1P6JSpaOyL6i3upcvrHo+OjqH/2+/iWbYChV08aN2xK5cuX1EtjyGZEhISeG9UCCXL+WPn7E7FV19j4ZKlZs307GOZy4w589TLFBqqG2STubi7u+ttc/78eYKCgnB0dMTBwYG6dety48YN9TLlUk793343y+N1mzRXLY8hmZ42eNgINPZFmTt/gVkzhU6ZSoUatbEv7kmxEj40b9eRk+GnzJZJq9Xy8ScTqFK7PvbFPfEsW4G+bw7mTmSkuply+Y5v3LiRVq1a4eLigkajISIiQtU8+WbE69DDw8P566+/GDp0qJnf1IubN28e8+bNQ6PR8O233+p+njdvHnPmzGHo0KFUqFAhz/s1yTn0Bw8e0qBZKwIbNWTnzz/hWtyFK39fo6ijo26b6bO/ZPZXC/hu8deU9/Vl8vSZtOjQmQsR4Tg4OKiSq1LFiuzdtkn3c2YXh6IodOrZBysrSzb/sIYiDg7M/uprmrfvyF+nT2Jvb69KnpwyAYz8eCz7Dx1m9dLFlPLxZs8v+xky4gM8Pdzp2L6dWTJFXrmgt+3OPWEMGjKMrp2CVMsDUKlSJfbu3ZttpitXrhAQEMCgQYOYOHEijo6OnD9/HltbW3Uz5VBOAK1bNGf5oietihc5Ajd2JoBNW7dxMvwUnh4equfJLVN5X1/mz5pBmdKlePToEXPmL6BlUBcu/3GG4sVdTJ4pKSmJMxG/M350CNWqVObBw4eM+GgMQd16cerIAdXyQM7f8cTERBo0aEC3bt146623VM0hjG/OnDlARl2zaNEivc/W2tqaUqVKsWjRojzv1yQV+hez5+JVsiTLFz85+i/l46P7t6IozP16IeNCPqBLx4yKYMU3C3ErXY41P/zE4EEDVMllaWmBu7tblvWXLl/hxK/h/Bl+nEr+FQFYMHcWrqV8WfvjBt7s31eVPDllAjh+Mpx+fXrRpFFDAN4e2J/FS5dz6sxvqlboOWV6dv3m7TsIbNSQMqVLqZYnI5NlllZ5pnHjxtG2bVumT5+uW1emTBlV82Rken45AdjYWOf4uBpyy3T7zh3eG/URuzdvoF3X7mbP1LtHN72fZ0+bwtIVq/jjz3M0C2xs8kyOjo6EPVXRA3w1azqvNWrKjZs38fbyUjHT87/jwcHBAFy7dk211zcmTSEj3Mv9JRrlfvXqVQACAwPZuHEjxYoZZwpyk3S5b9mxk1o1qtPtjX64+vhSo15DlixfoXv86rXrREVH07JZoG6djY0NjQMacOzESdVyXbryN55lK1Davyo9+w3k76vXAHTzvj/dorOwsMDaypojx46rlienTAAB9euyZftObt+5g6Io7D94iIuXr9CqeTOzZXpadHQM23ftYVC/YFXzAFy6dAlPT09Kly5Nz549+fvvvwFIT09n+/btlC9fnlatWuHq6kqdOnXYtGmT+plyKacDh4/g6uNL+Wo1eWvocGJi7po1U3p6OsGDBhMyYpjuwNUUDP0+paSk8M2yFTg6FqFalcoFIhNAXFw8Go1Gr4dRlUzP+Y7/J8mtX7O1f/9+o1XmYKIW+t9Xr7Hw22WMGjaUsR+O4tfTZxj+4cfYWFvTt08voqKjAXBzc9V7npurK9dv3FQlU51atVi5ZCHlfX2JjrnL5OkzqN+0JedOnaCCX3l8vL0YM2Eii+fNxd6+MLPnfU1UdDSRUdGq5Mktk7OzE/NmfsFbQ4dTspw/lpaWFCpUiG+/nkdA/Xpmy/S0Fd+vxcHhFbp07KBaHoA6deqwcuVKypcvT3R0NJMnT6Z+/fqcO3cOrVZLQkIC06ZNY/LkyXzxxRfs2rWLLl26sH//fho3VqeVl1s5tWnZgm5dOuHj5cXV69cZ/9kUmrYN4vTRA9jY2Jgl0xez5mJpacnwIe+o8vovkglg285d9Ow3iKSkJDzc3QnbugkXF2ezZsr0+PFjRn8aSu/u3VSd8Sun77izs3plIdQ3atQoJk2ahL29PaNGjcpx29mzZ+dp3yap0NPT06n1ag0+n/gpADWqV+Pc+fMs/HYZffv00m2nQf8ITFEU1e4O1KZVC92/qwD16tSmbOUarPh+DaOGv8eGNasY9O57OJUshYWFBc0Dm9CmZYvn7s8UmeYtWMyJ8FNs+XEtPl5eHDp6jCEjP8TD3Z3mTZuYJdPTlq1aTZ8e3VQ/V92mTZsnmapUoV69epQtW5YVK1bQs2dPADp27MjIkSOBjDstHTt2jEWLFqlWoedWTj1e76J7vHIlf2rVqIFPxSps37Vbd5rJlJkaNwzgywWLOHPsoEnvwGXI9ymwUUMijh/mXmwsS5avoHtwf04e+AVX1+JmywQZA+R69htIeno6C+bOVCWLLlMO3/HcKoECSW4so/Pbb7+h1Wp1/36eF/m9NEmF7uHuhn8FP711Ff382LBpKwDubhnnrqKio/HweHLOKObuXdxU+iV+lr29PVUq+XPpSka3Vs0a1Yk4cYS4uDhSUrQUL+5CncbNqPWqYbfgM3amR48eMTb0M35et5p2rVsBULVKZSL+OMvML79SrULPKdPTDh89xoWLl1i/YplJcmTJVKUKly5dwsXFBUtLS/z9/fW2qVixIkeOHDFtpmzKKZOHhzs+3l5cumy6btSnMxUqVIiYu3fx9nvSlZ2WlsYHYz5h7tcLuXb+rMkzPb3Ot2wZfMuWoe5rtSlX9VWWrljFmBDTVGTZZdJqtXQP7s/Va9fZt2Oryefjfvo7/l8kt359Yv/+/dn+2xhMcg69Qd26XLh0WW/dxUuX8fHOGFBSupQP7m5uhO07oHs8JSWFg0eOUr9uHVNEJDk5mfMXLuLxzMAYR0dHihd34dLlKxmDz9q1NUmeZzNptVq0Wi2FNPofmYWFBenp6WbJ9LSlK1ZRs0Z1qlWtYrIsepnOn8fDwwNra2tq167NhQv6o+8vXryIz1MDMU2SKZtyyhQbe5+bt24/93G1MwX36skfJ48ScfywbvH08CBkxHB2b95olkzPoygKySnJZsuUWZlfuvw3e7dtztINb7JM/37HhXgek7TQRw4bQv2mLfl8xiy6d+nMr6dO883yFXzz1Vwg48hrxNB3+XzmLMr5lqFc2bJ8PmM2he0K07v766pk+nDMJ3Ro2xpvr5LE3L3H5C9mEP/PP/T79xTAjxs3UdzFGW8vL86eO8f7IaPp1KEdLZs3VSVPbpmKFClC44YNCBn3KXZ2tvh4e3Hw8FFWrlnH7GlTzJIpU3x8PD/+vJlZUyerlkMv04cf0qFDB7y9vYmJiWHy5MnEx8fTr18/AEJCQujRoweNGjUiMDCQXbt2sXXrVg4cOKBephzKKSEhgdAp0+jaKQgPdzeuXb/B2NBJuDg70zmovVkyOTs7ZamYrKwscXdzxa98ObNkSkxMZMr0WQS1a4OHuxuxsfdZsGQpt27foVvnTmbJlJqayut9+nIm4g+2/bSOtLQ0ov4dR+PkVEy1Sw9z+47fv3+fGzducOfOHQDdAay7u/tzR8ablXS563Tp0iX3jf61cWPeDq5NUqHXrvkqP69bzZhPP+OzqdMpXcqHudOn0qfnk8tkPhr1Po8eP2LIiA958PAhdWrXZM+Wjapdg37rzh169X+Te7GxFHdxoe5rtTixPwwfb28AIqOiGDV6HNExMXi4u9G3d0/Gj/5IlSyGZlr33TLGTJhIn4Fvc//BA3y8vZgy4RPeeXOg2TIBrPtpI4qi0KtbV9Vy6GW6dYtevXpx7949ihcvTt26dTlx4oSuBd65c2cWLVrE1KlTGT58OH5+fmzYsIGAgAD1MuVQTo8ePeLsub9YuWYdD+Pi8HB3I7BRQ9avXKba9zu3TOaSU6bHjx/zv4sXWfH9Wu7FxuLs5ETtmjU4HLZT1VH4OWW6dv06W7bvBKB6vYZ6z9u/c6vuElKjZ8rlO75lyxYGDHhyOW/m2JEJEyYQGhqqSqb8McYo9ZejQndU8eoIjfK8e8/lIj4+HkdHR+7dvIqzk/GG3eeHNjWVHfuP0DYwACvLgjHvjGQyjC5T27ZYWVmZOw6Q0dW6Y8eOgllOkilHBTpTAfmOx8bG4uLiQlxcnGpjAjLriZgejShinb/PIT4lFdf1h1TN+18n93IXQgjxn/Ey3cvd2ArGoasQQoiXlxHPoYeHh/+nW+ivvvoqv/zyC8WKFaNGjRo5jt4/c+ZMnvYtFboQQghVyWVrT3Ts2FF3M6lOnToZdd9SoQshhBAmMmHChGz/bQxSoQshhFCXXLaWo1OnTnH+/Hk0Gg0VK1akZs2aL7QfqdCFEEKoyxiTq7wkXe5Py7w88ejRoxQtWhSAhw8fUr9+fdauXYtXHmfzk1HuQgghhBkMHDgQrVbL+fPnuX//Pvfv3+f8+fMoisKgQYPyvD9poQshhFCVzIeevcOHD3Ps2DH8/J7MdeLn58dXX31FgwYN8rw/qdCFEEKoS7rcs+Xt7a2bee1pqamplChRIs/7ky53IYQQwgymT5/OsGHDOHXqFJk3bT116hTvv/8+M2fmfYpeaaELIYRQVyGMMMrdKEnMrlixYnrX1CcmJlKnTh0s/71FcWpqKpaWlgwcODDP16kbXKEnJyeTnPxkCsP4+Hgg4/7E2tTUPL2oWjJzFJQ8IJkMpcuUTfeTuWRmKZDlJJlyVKAzFZDvuClzyI1lnpg7d65q+zZ4cpbQ0FAmTpyYZf2aNWsoXLiw0YMJIYRQT1JSEr179zbJ5Cyxb7WkiHX+JqSJT9HivGSPTM6SA4Nb6GPGjGHUqFG6n+Pj4/Hy8iKwXu0CNdta2OETtGhYt0DNsCSZcieZDKPL1KJFgZixCzJaemFhYVJOuSho5RR7/4G5I4inPHr0KEuvSV4PXAz+VtnY2OjuP/s0K0vLAvHlfJpkMoxkMkyBzGRlVWAqqkxSToYpKOVk0gwyyj1biYmJfPzxx/zwww/ExsZmeTwtLS1P+3tJhhkIIYQosDIr9PwuvFzTp3700Ufs27ePBQsWYGNjw7fffsvEiRPx9PRk5cqVed6f+Q8ThRBCCAP916dPfdrWrVtZuXIlTZo0YeDAgTRs2BBfX198fHz4/vvv6dOnT572Jy10IYQQKjNG6/zl63K/f/8+pUuXBjLOl9+/fx+AgIAADh06lOf9SYUuhBBCXYUKGWd5yZQpU4Zr164B4O/vzw8//ABktNwzJ2vJi5evhIQQQoj/gAEDBvD7778DGVeSZZ5LHzlyJCEhIXnen5xDF0IIoS4Z5Z6tkSNH6v4dGBjI+fPnOX36NGXLlqVatWp53p9U6EIIIdQlFbpBfHx88PHxeeHnS5e7EEIIYSa//PIL7du3p2zZsvj6+tK+fXv27t37QvuSCl0IIYS6jHgd+stk/vz5tG7dGgcHB95//32GDx9OkSJFaNu2LfPnz8/z/qTLXQghhLqMMUr9JRzlPnXqVObMmcN7772nWzd8+HAaNGjAlClT9NYb4uUrISGEEAWLtNCzFR8fT+vWrbOsb9mypW5G07wwS4U+dcZsNPZFGREyWrdu4+YttArqgot3GTT2RYn4/Q+zZtJqtXz8yQSq1K6PfXFPPMtWoO+bg7kTGWm2TAChU6ZSoUZt7It7UqyED83bdeRk+CmzZnra4GEj0NgXZe78BWbN1P/td9HYF9Vb6jZpbtZMAOf/d4Ggbj1x9PDGwa0kdZs058bNm6bJNHUqGo2GESNG6NZlTmv57DJjxgzTZMqmnBISEnhvVAgly/lj5+xOxVdfY+GSpSbJA9mXU3R0NP3798fT05PChQvTunVrLl26pFqG0ClTs3x/3UuX1z2uKAqhU6biWbYCds7uNGndjnN/nVctj1BHUFAQP//8c5b1mzdvpkOHDnnen8m73MNPn+Gb5d9RtXIlvfWJiUk0qFeHbl068dbQ4WbPlJSUxJmI3xk/OoRqVSrz4OFDRnw0hqBuvTh15IBZMgGU9/Vl/qwZlCldikePHjFn/gJaBnXh8h9nKF7cxSyZMm3auo2T4afw9PBQNYehmVq3aM7yRU/u92xtbW3WTFf+vkpAi9YM6hvMxHFjcHR05PyFC9ja2KqfKTycb775hqpVq+qtj3zmAHXnzp0MGjSIrl27qp/pOeU08uOx7D90mNVLF1PKx5s9v+xnyIgP8PRwp2P7dupmyqacFEWhU6dOWFlZsXnzZooUKcLs2bNp3rw5f/31F/b29qpkqVSxInu3bdL9bGFhofv39NlfMvurBXy3+GvK+/oyefpMWnTozIWIcBwcHFTJky8yyl1n3rx5un9XrFiRKVOmcODAAerVqwfAiRMnOHr0KB988EGe923SFnpCQgJ9Br7FkvnzKFasqN5jwb178umYj2ke2NiUkZ6bydHRkbBtm+jetTN+5ctR97XafDVrOqd/i1C9RZVTOfXu0Y3mTZtQpnQpKvlXZPa0KcTHx/PHn+fMlgng9p07vDfqI75ftgQrK9McJ+aWycbGGnd3N93iZIJpfnPKNG7iJNq2bMH0KZ9Ro3o1ypQuRbvWrXB1La5+pj59WLJkCcWK6ZeBu7u73rJ582YCAwMpU6aM+pmeU07HT4bTr08vmjRqSCkfH94e2J9qVSpz6sxv6mfKppwuXbrEiRMnWLhwIbVr18bPz48FCxaQkJDA2rVrVctjaWmh9/3NPGBXFIW5Xy9kXMgHdOkYROVK/qz4ZiFJj5JY88NPquXJF+ly15kzZ45uWbp0KcWKFeOvv/5i6dKlLF26lHPnzlG0aFGWLVuW532btEIfOvJD2rVqSfOmTUz5sjnKS6a4uHg0Gg1FHR0LRKaUlBS+WbYCR8ciVKtS2WyZ0tPTCR40mJARw6jkX1HVHIZmAjhw+AiuPr6Ur1aTt4YOJybmrtkypaens33XHsqX86VVUBdcfXyp07gZm7ZuUz/T0KG0a9eO5s1zPuUQHR3N9u3bGTRokPqZcvjsAurXZcv2ndy+cwdFUdh/8BAXL1+hVfNm6mZ6TjklJycDYGv7pCfFwsICa2trjhw5olqeS1f+xrNsBUr7V6Vnv4H8ffUaAFevXScqOpqWzQJ129rY2NA4oAHHTpxULY8wjqtXrxq0/P3333net8m63Nf9uIEzEX8QfnifqV4yV3nJ9PjxY0Z/Gkrv7t1UnenHkEzbdu6iZ79BJCUl4eHuTtjWTbi4OJst0xez5mJpacnwIe+oliGvmdq0bEG3Lp3w8fLi6vXrjP9sCk3bBnH66AFsbGxMnikm5i4JCQlMmzWXyZ+O44tJoewK+4UuvYLZv3MrjRsGqJNp3TrOnDlDeHh4rtuuWLECBwcHunTpokoWXaZcPrt5M7/graHDKVnOH0tLSwoVKsS3X88joH499TLlUE4VKlTAx8eHMWPGsHjxYuzt7Zk9ezZRUVFZTlkYS51atVi5ZCHlfX2JjrnL5OkzqN+0JedOnSAqOhoANzdXvee4ubpy/YZpxmPkmYxyz5WiKEDGuJYXZZIK/eatW7wfMpo9WzbqHeWaU14yabVaevYbSHp6OgvmzjR7psBGDYk4fph7sbEsWb6C7sH9OXngF1W6bnPLdPq3CL5csIgzxw7m64tozEwAPV5/UilVruRPrRo18KlYhe27dtOlY5DJM6Ur6QB0bNeWkcOGAlC9WlWOnTzJom+Xq1Kh37x5k/fff589e/YY9Hu3bNky+vTpo+rvqCGf3bwFizkRfootP67Fx8uLQ0ePMWTkh3i4u6vSu5dbOVlZWbFhwwYGDRqEk5MTFhYWNG/enDZt2hg9S6Y2rVro/l0FqFenNmUr12DF92uo+1ptADTPzD6mKIrJfgfzTM6hP9fKlSuZMWOGbpBl+fLlCQkJITg4OM/7MkmFfvq3CGLu3qVmQBPdurS0NA4dOcb8xUtIfhCjN+CjIGXSarV0D+7P1WvX2bdjq6qtc0Mz2dvb41u2DL5ly1D3tdqUq/oqS1esYkzIKJNn+mJSKDF37+LtV1nv8Q/GfMLcrxdy7fxZk2fK7vvk4eGOj7cXly7nvRvLGJkS797B0tIS/4p+es+r6OfHkeMn1Ml0+jQxMTHUrFlTP9OhQ8yfP5/k5GRdOR0+fJgLFy6wfv16VbLoMuVSTnGRNxgb+hk/r1tNu9atAKhapTIRf5xl5pdfqVKhG1JONWvWJCIigri4OFJSUihevDh16tShVq1aRs+THXt7e6pU8ufSlb/p1KE9AFHR0Xh4uOu2ibl7FzeVx2MI45o9ezbjx4/nvffeo0GDBiiKwtGjR3nnnXe4d++e3r3eDWGSCr1Zk8ac/fWY3roB7wylQvlyfDxqhMkrc0MzZVbmly7/zf6dW3F2djJ7puwoikJySrJZMnm4u2c5t9mqY1eCe/VgQHAfs2TKrpxiY+9z89ZtPNzdzJLJxsaG2jVf5cJF/UudLl6+jI+XlzqZmjXj7Fn9A6oBAwZQoUIFPv74Y71yWrp0KTVr1nyhCSHylCmXckpLS0Or1VJIo9+9amFhQXp6ujqZ8lBOjv+On7l06RKnTp1i0qRJqmR6VnJyMucvXKRhg3qULuWDu5sbYfsOUKN6xueVkpLCwSNH+WLSRJPkyTMNRmihGyVJgfLVV1+xcOFC+vbtq1vXsWNHKlWqRGhoaMGs0B0cHKhcyV9vnb19YZydnHTr799/wI2bN7kTGQXAhUuXAXB3yxjhaepMqampvN6nL2ci/mDbT+tIS0sjKirj3JWTUzFVLoHKLVNiYiJTps8iqF0bPNzdiI29z4IlS7l1+w7dOncyeh5DMgFZDnSsrCxxd3PFr3w5s2RKSEggdMo0unYKwsPdjWvXbzA2dBIuzs50DmpvlkwAISOG0aPvQBoFNCCwUUN2he1l645dHNilzsA4BwcHKlfWHyxpb2+Ps7Oz3vr4+Hh+/PFHZs2apUqOLJlyKafGDRsQMu5T7Oxs8fH24uDho6xcs47Z06aolymXcvrxxx8pXrw43t7enD17lvfff59OnTrRsmVLVTJ9OOYTOrRtjbdXSWLu3mPyFzOI/+cf+vXplXGN/NB3+XzmLMr5lqFc2bJ8PmM2he0K07v766rkyTfpcs9WZGQk9evXz7K+fv36LzQ+o8Dc+nXL9h0MeGeo7uee/QYCMGHsx4SOG2PyPLdu32bL9p0AVK/XUO+x/Tu30qRRw+yepioLCwv+d/EiK75fy73YWJydnKhdswaHw3aadHR5QWdhYcHZc3+xcs06HsbF4eHuRmCjhqxfucys1+h2DurAoi9nM3XWHIZ/+DF+5XzZsGalqoO9DLFu3ToURaFXr15mzZFp3XfLGDNhIn0Gvs39Bw/w8fZiyoRPeOfNgWbLFBkZyahRo4iOjsbDw4O+ffsyfvx41V7v1p079Or/JvdiYynu4kLd12pxYn8YPt7eAHw06n0ePX7EkBEf8uDhQ+rUrsmeLRsL5jXo4rl8fX354YcfGDt2rN769evXU65c3htEGiVzaF0excfH4+joyL2bV3E2wfW9htCmprJj/xHaBgZgZVkwjlUkk2Ekk2F0mdq2xcrKytxxgIxBozt27JByykVBK6fY+w9w8SpNXFycamODMuuJ+6N7UcQmf72a8ckpOE1bq2peU9uwYQM9evSgefPmNGjQAI1Gw5EjR/jll1/44Ycf6Ny5c57293JfByCEEKIAMMZNZTK63GvXro2/vz9ff/11zi/5H9C1a1d+/fVXXFxc2LRpExs3bsTFxYVff/01z5U5FKAudyGEEC8pI55DDw8Pfyla6Fqtlrfffpvx48ezevVqo+xTWuhCCCGEiVlZWWU7MUt+SIUuhBBCXXIv92x17tyZTZs2GW1/0uUuhBBCXXLr12z5+voyadIkjh07Rs2aNbPM3Dd8eN5mHpUKXQghhDCDb7/9lqJFi3L69GlOnz6t95hGo5EKXQghRAEjN5bJ1tWrV3X/NsbkLC9fH4YQQoiCRc6hP9fSpUupXLkytra22NraUrlyZb799tsX2pe00IUQQggzGD9+PHPmzGHYsGHUq5dxx8jjx48zcuRIrl27xuTJk/O0P6nQhRBCqEu63LO1cOFClixZonfb5aCgIKpWrcqwYcOkQhdCCFHAyCj3bKWlpWU7BW/NmjVJTU3N8/4MrtCTk5NJTn4yRWd8fDyQcc9k7Qu8sBoycxSUPCCZDCWZDKPLpNWaOckTmVmknHJW0MrJpDmkhZ6tN954g4ULFzJ79my99d988w19+uR9+mmDJ2cJDQ1l4sSsc+2uWbOGwoUL5/mFhRBCmE9SUhK9e/c2zeQsn71JEdt8Ts7yOAWnT799qSZnGTZsGCtXrsTLy4u6desCcOLECW7evEnfvn31JhZ6ttLPjsEVenYtdC8vLyKvXipQs62FHT5Bi4Z1C8RsRiCZDKXL1KJFgZodKywsrGCWk2TKkWTKXez9B3iULmeaCn3SW8ap0Mcveakq9MDAQIO202g07Nu3L9ftDP5W2djYYGNjk2W9laVlgfhyPk0yGaZAZrKyKjAVeqYCWU6SySCSKeccJiPn0LO1f/9+o+7v5SshIYQQ4v8h8x8mCiGEeLlpMMKgOKMkealJhS6EEEJdMsrdJKTLXQghhHgJSAtdCCGEuqSFbhJSoQshhFCXxgij3DXSoZwbKSEhhBDiJSAtdCGEEOqSLneTkApdCCGEuqRCNwmp0IUQQqhLUyj/58DlHHqupISEEEKIl4BZKvSpM2ajsS/KiJDRunWKohA6ZSqeZStg5+xOk9btOPfXedUyLFyylKqv1aeIuxdF3L2oF9iCnbvDdI9HR8fQ/+138SxbgcIuHrTu2JVLl6+olseQTAkJCbw3KoSS5fyxc3an4quvsXDJUrNm0tgXzXaZMWeeepkWLqRq1aoUKVKEIkWKUK9ePXbu3Km3zfnz5wkKCsLR0REHBwfq1q3LjRs31MuUSzn1f/vdLGVUt0lz1fIYkulpg4eNQGNflLnzF5g1U+iUqVSoURv74p4UK+FD83YdORl+ymyZtFotH38ygSq162Nf3BPPshXo++Zg7kRGmi0TwMbNW2gV1AUX7zJo7IsS8fsfqubJt0Ia4ywiRyav0MNPn+Gb5d9RtXIlvfXTZ3/J7K8WMH/2dMIP7cPdzY0WHTrzzz//qJKjZAlPpn0WyqnD+zl1eD9NGzeiY4/enPvrPIqi0KlnH/6+do3NP6zht2OH8PH2onn7jiQmJqqSJ7dMACM/HsuusL2sXrqY82dOMvK9IQz74CM2b9tutkyRVy7oLcsWzkej0dC1U5B6mUqWZNq0aZw6dYpTp07RtGlTOnbsyLlz5wC4cuUKAQEBVKhQgQMHDvD7778zfvx4bG1t1cuUSzkBtG7RXK+sdmz8UbU8hmYC2LR1GyfDT+Hp4aFqHkMylff1Zf6sGZz99RhHwnZRyseblkFduHv3nlkyJSUlcSbid8aPDuHM0YNsXLuKi5evENStl2p5cssEkJiYRIN6dZj2WaiqOYwms8s9v4vIkUnPoSckJNBn4FssmT+PydNn6NYrisLcrxcyLuQDunTMqAhWfLMQt9LlWPPDTwweNMDoWTq0baP385TQ8Sz8diknwsOxsrLixK/h/Bl+nEr+FQFYMHcWrqV8WfvjBt7s39foeXLLVMm/IsdPhtOvTy+aNGoIwNsD+7N46XJOnfmNju3bmSWTu7ub3uObt+8gsFFDypQupUoegA4dOuhnmjKFhQsXcuLECSpVqsS4ceNo27Yt06dP121TpkwZ1fJA7uUEYGNjnaW8zJ3p9p07vDfqI3Zv3kC7rt3Nnql3j256j8+eNoWlK1bxx5/naBbY2OSZBvn3JWzbJr3Hv5o1ndcaNeXGzZt4e3mZPFMl/4oE9+4JwLXr11V5ffHfZNJDnqEjP6Rdq5Y0b9pEb/3Va9eJio6mZbMnc8Pa2NjQOKABx06cVD1XWloa637cQGJiEvVee0037/vTLToLCwusraw5cuy46nmyywQQUL8uW7bv5PadOyiKwv6Dh7h4+QqtmjczW6anRUfHsH3XHgb1CzZJHl2mdetITEykXr16pKens337dsqXL0+rVq1wdXWlTp06bNq0ybSZsimnA4eP4OrjS/lqNXlr6HBiYu6aNVN6ejrBgwYTMmKYroI3pdy+TykpKXyzbAWOjkWoVqVygcgEEBcXj0ajoaijY4HJVOBljnLP7yJyZLIW+rofN3Am4g/CD2edpD0qOhoANzdXvfVurq5cv3FTtUxn/zxHvaYtefz4Ma+8Ys/Pa1fjX7ECWq0WH28vxkyYyOJ5c7G3L8zseV8TFR1NZFS0anlyygQwb+YXvDV0OCXL+WNpaUmhQoX49ut5BNSvZ7ZMT1vx/VocHF6hS8cO2ezFyJnOnqVevXr/ZnqFn3/+GX9/f6KiokhISGDatGlMnjyZL774gl27dtGlSxf2799P48bqtPIg53Jq07IF3bp0wsfLi6vXrzP+syk0bRvE6aMHsLGxMUumL2bNxdLSkuFD3lHt9fOaCWDbzl307DeIpKQkPNzdCdu6CRcXZ7NmyvT48WNGfxpK7+7dKFKkSIHI9J8g86GbhEkq9Ju3bvF+yGj2bNmY43lMzTPz4ymKgkbFozK/8uWIOH6Yh3FxbNi0hX6D3+Xgru34V6zAhjWrGPTueziVLIWFhQXNA5vQpmUL1bIYkmnegsWcCD/Flh/X4uPlxaGjxxgy8kM83N2z9HqYKtPTlq1aTZ8e3VQ9V63L5OdHREQEDx8+ZMOGDfTr14+DBw9StGhRADp27MjIkSMBqF69OseOHWPRokWqVug5lVOP17votqtcyZ9aNWrgU7EK23ft1p1mMmWmR48f8+WCRZw5dlDV37G8ZMr8PgU2akjE8cPci41lyfIVdA/uz8kDv+DqWtxsmSBjgFzPfgNJT09nwdyZqmXJSyYhnmaSCv30bxHE3L1LzYAmunVpaWkcOnKM+YuXcCEiYxRrVHQ0Hh7uum1i7t7FTcVfYmtra3zLZpxbrfVqDcJPn+HLBYtY/NVcataoTsSJI8TFxZGSoqV4cRfqNG5GrVdrqJYnp0xzp09lbOhn/LxuNe1atwKgapXKRPxxlplffqVqhZ5TOWU6fPQYFy5eYv2KZarlyJLJ1zcjU61ahIeH8+WXX/LVV19haWmJv7+/3vYVK1bkyJEj6mfKpZwyeXi44+PtxaXLf5slU0W/8sTcvYu335Ou7LS0ND4Y8wlzv17ItfNnTZ4ps5zs7e3xLVsG37JlqPtabcpVfZWlK1YxJmSU2TJptVq6B/fn6rXr7NuxVfXWuSGZ/lNewhvL3Lx5k+DgYGJiYrC0tGT8+PF069Yt9yeqyCQVerMmjTn76zG9dQPeGUqF8uX4eNQIypQuhbubG2H7DlCjejUg4/zZwSNH+WLSRFNEBDJ6BDLPn2dy/Pc82aXLVzh15jcmjR9nsjxPZ9JqtWi1Wgo9M9LTwsKC9PR0s2R62tIVq6hZozrVqlYxaZZnM1lbW1O7dm0uXLig9/jFixfx8fExS6bsxMbe5+at23iYcJDc05mCe/WkeWATvcdadexKcK8eDAjuY5ZMOT6e8vzH1fB0pszK/NLlv9m/cyvOzk4mzZJdpv+cl/DGMpaWlsydO5fq1asTExPDq6++Stu2bbG3tzdfJlO8iIODA5Ur6beY7O0L4+zkpFs/Yui7fD5zFuV8y1CubFk+nzGbwnaF6d39dVUyjZ3wGW1aNserZAn++SeBdT9t5MDhI+zatAGAHzduoriLM95eXpw9d473Q0bTqUM7WjZvqkqe3DIVKVKExg0bEDLuU+zsbPHx9uLg4aOsXLOO2dOmmCVTpvj4eH78eTOzpk5WLYdeprFjadOmDV5eXvzzzz+sW7eOAwcOsGvXLgBCQkLo0aMHjRo1IjAwkF27drF161YOHDigXqYcyikhIYHQKdPo2ikID3c3rl2/wdjQSbg4O9M5qL1ZMjk7O2WpmKysLHF3c8WvfDmzZEpMTGTK9FkEtWuDh7sbsbH3WbBkKbdu36Fb505myZSamsrrffpyJuIPtv20jrS0NKL+HUfj5FQMa2trk2cCuH//ATdu3uROZBQAFy5dBsDdzc2kV1L8f+bh4YHHv5d6urq64uTkxP3791/+Ct0QH416n0ePHzFkxIc8ePiQOrVrsmfLRhwcHFR5veiYGILfHExkVDSORYpQtXIldm3aQIt/R9pHRkUxavQ4omNi8HB3o2/vnowf/ZEqWQzNtO67ZYyZMJE+A9/m/oMH+Hh7MWXCJ7zz5kCzZQJY99NGFEWhV7euquXQyxQdTXBwMJGRkTg6OlK1alV27dpFixYZYxw6d+7MokWLmDp1KsOHD8fPz48NGzYQEBCgXqYcyunRo0ecPfcXK9es42FcHB7ubgQ2asj6lctU+37nlslccsr0+PFj/nfxIiu+X8u92FicnZyoXbMGh8N2qjoKP6dM165fZ8v2jJsWVa/XUO95+3du1V1CaspMAFu272DAO0N12/fsl/E3YMLYjwkdN0aVTPmiwQhd7nnb/NChQ8yYMYPTp08TGRnJzz//TKdOnfS2WbBgATNmzCAyMpJKlSoxd+5cGjbM+2d66tQp0tPT8VLpMkZDaRRFUV7kifHx8Tg6OnLv5lWcnYoZO9cL0aamsmP/EdoGBmBlWTCOVSSTYXSZ2rbFysrK3HGAjK7WHTt2FMxykkw5kky5i73/ABev0sTFxak2JiCznri/cCxF7PI3WDb+0WOc3v2cmzdv6uW1sbHJ9kqRnTt3cvToUV599VW6du2apUJfv349wcHBLFiwgAYNGrB48WK+/fZb/vrrL7y9vQGoWbNmtqc59uzZg6enJwCxsbE0bNiQb7/9lvr16+frPeaX+b9VQgghXm5GHBT3bCt4woQJhIaGZtm8TZs2tGnTJsv6TLNnz2bQoEG8+eabAMydO5fdu3ezcOFCpk6dCsDp06dzjJScnEznzp0ZM2aM2StzkApdCCHEf0h2LfS8SklJ4fTp04wePVpvfcuWLTl27NhznqVPURT69+9P06ZNCQ423c20ciIVuhBCCHUZcZR75qRM+XHv3j3S0tJwc9MfQOjm5kZUVJRB+zh69Cjr16+natWqujtRrlq1iipVzHOlD0iFLoQQQm0aI8yWpsJ16M/eVCkvNzMLCAgw+SXDuSlYF/YJIYQQKnNxccHCwiJLazwmJiZLq/2/RCp0IYQQ6ipg06daW1tTs2ZNwsLC9NaHhYUViMFtL0q63IUQQqjLiKPca9eujYWFBUOHDmXo0KHP3TwhIYHLly/rfr569SoRERE4OTnh7e3NqFGjCA4OplatWtSrV49vvvmGGzdu8M47pp2syJikQhdCCPGfER4ebtCguFOnThEY+OQmSqNGZcwF0K9fP7777jt69OhBbGwsn332GZGRkVSuXJkdO3aY/BbRxiQVuhBCCHWZ4V7uTZo0Ibf7pg0ZMoQhQ4bkJ1WBIhW6EEIIdRUywij3/D7//wEZFCeEEEK8BAxuoScnJ+vd0zY+Ph7IuD+xNjXV+MleQGaOgpIHJJOhdJm0WjMneSIzS4EsJ8mUI8mUO5PmeAnnQy+IDJ6cJTQ0lIkTs85NvmbNGgoXLmz0YEIIIdSTlJRE7969TTM5y4qpFCmcz8lZkh7j1G8M5cuXN2iU+/9HBlfo2bXQvby8iLx6qUDNthZ2+AQtGtYtELMZgWQylGQyTIHO1KJFgZopLywsrGCWUwHJFHv/AR6ly5mmQl81zTgVevBoVfP+1xn8rXreFHVWlpYF4sv5NMlkGMlkGMlkGCsrqwJToWcqkOVUQDIVhAzCuOQTFUIIoS6NxgiXrck59NxIhS6EEEJdMijOJOSyNSGEEOIlIC10IYQQ6jLDneL+P5ISEkIIoa7MO8XldyFjchZ/f3++/vprM7+pgkda6EIIIf4zDJ2c5f8jqdCFEEKoS7rcTUIqdCGEEOqSUe4mIYc8QgghxEtAWuhCCCHUVahQxpLffYgcSYUuhBBCZUbocke63HNjkkOeqTNmU7thIA5uJXH18aVTj95cuHhJb5uNm7fQKqgLLt5l0NgXJeL3P8yaSavV8vEnE6hSuz72xT3xLFuBvm8O5k5kpNkyAYROmUqFGrWxL+5JsRI+NG/XkZPhp8ya6WmDh41AY1+UufMXmDVT/7ffRWNfVG+p26S5WTMBnP/fBYK69cTRwxsHt5LUbdKcGzdvmi3Ts2WUucyYM0+dTFOnUrt2bRwcHHB1daVTp05cuHBBb5uEhATee+89SpYsiZ2dHRUrVmThwoWq5AHDyik6Oob+b7+LZ9kKFHbxoHXHrly6fEW1TAuXLKXqa/Up4u5FEXcv6gW2YOfuMN3jiqIQOmUqnmUrYOfsTpPW7Tj313nV8uRb5qC4/C4iRyYpoYNHjjL07Tc5sT+MsK0/k5qaRsugziQmJuq2SUxMokG9Okz7LNQUkXLNlJSUxJmI3xk/OoQzRw+yce0qLl6+QlC3XmbLBFDe15f5s2Zw9tdjHAnbRSkfb1oGdeHu3Xtmy5Rp09ZtnAw/haeHhypZ8pqpdYvmRF65oFt2bPzRrJmu/H2VgBatqVC+PAd2buX3E0cYPzoEW5v8zUKVn0xPl0/klQssWzgfjUZD105B6mQ6eJChQ4dy4sQJwsLCSE1NpWXLlnqZRo4cya5du1i9ejXnz59n5MiRDBs2jM2bN6uTKZdyUhSFTj378Pe1a2z+YQ2/HTuEj7cXzdt3zPb3wBhKlvBk2mehnDq8n1OH99O0cSM69uitq7Snz/6S2V8tYP7s6YQf2oe7mxstOnTmn3/+USVPQSLXoT+fwdOnPitzWrx7N6/mefrUu3fv4VrKl4O7t9MooIHeY9euX6e0fzV+O3aI6tWq5mm/2tRUduw/QtvAgDzPJJRTpkzhp8/wWqOmXP/fWby9vApEpvj4eBw9vNm7bTPNAhubLdPtO3eo07g5uzdvoF3X7owY+i4j3hti8H6Nnan/2+/yMC6OTevX5Glfambq2W8gVpaWrFr6TYHJ9KxOPXrzzz8J/LJjS94ztW2b59nW7t69i6urKwcPHqRRo0YAVK5cmR49ejB+/HjddjVr1qRt27ZMmjTJsExaLTt27DBKOV28dBm/6rX4M/w4lfwrApCWloZrKV++mDSRN/v3NSxTPj47AKeSpZgx5TMG9g3Gs2wFRgx9l48/GAFkTG/tVrocX0yayOBBAwzaX+z9B7h4lTbN9KkbF1DE3i5/+0p8hFOXITJ9ag7M0ocRFx8PgFOxgjGPOhiWKS4uHo1GQ1FHxwKRKSUlhW+WrcDRsQjVqlQ2W6b09HSCBw0mZMQw3R88U3peOR04fARXH1/KV6vJW0OHExNz12yZ0tPT2b5rD+XL+dIqqAuuPr7UadyMTVu3mS3Ts6KjY9i+aw+D+gWbLlNcXEYmJyfduoCAALZs2cLt27dRFIX9+/dz8eJFWrVqZZpMz5RTcnIyALa2T3pSLCwssLay5six46rnSUtLY92PG0hMTKLea69x9dp1oqKjadksULeNjY0NjQMacOzESdXzvJDMQXH5XUSOTF5CiqIwavRYAurXo3Ilf1O/fLYMyfT48WNGfxpK7+7dTHJ0mFOmbTt38YprCWyd3JgzfwFhWzfh4uJstkxfzJqLpaUlw4e8o3oGQzO1admC75ctYd+OLcyaOpnw02do2jZI98fZ1JliYu6SkJDAtFlzad2iGXu2bKRzh/Z06RXMwcNHzJLpWSu+X4uDwyt06dhB9Ty6TKNGERAQQOXKTw5I582bh7+/PyVLlsTa2prWrVuzYMECAgICTJPpmXKq4FceH28vxkyYyIMHD0lJSWHazDlERUcTGRWtWpazf57jFdcS2BRz5Z33R/Lz2tX4V6xAVHTGa7q5uept7+bqSlR0jGp5RMFn8lHu740K4Y8/z3Fk7y5Tv/Rz5ZZJq9XSs99A0tPTWTB3ptkzBTZqSMTxw9yLjWXJ8hV0D+7PyQO/4Opa3OSZTv8WwZcLFnHm2EE0Zrjxw/PKqcfrXXT/rlzJn1o1auBTsQrbd+2mS0d1zg/nlCldSQegY7u2jBw2FIDq1apy7ORJFn27nMYN1a2sDPm9W7ZqNX16dNNriaqa6b33+OOPPzhyRP+AZt68eZw4cYItW7bg4+PDoUOHGDJkCB4eHjRvrt7ARsi+nKysrNiwZhWD3n0Pp5KlsLCwoHlgE9q0bKFqFr/y5Yg4fpiHcXFs2LSFfoPf5eCu7brHNc+M+lYUxSy/gwaRG8uYhEkr9GEfhLBl+04O7dlOyRIlTPnSz5VbJq1WS/fg/ly9dp19O7aapHWeWyZ7e3t8y5bBt2wZ6r5Wm3JVX2XpilWMCRll8kyHjx4j5u5dvP2etLDS0tL4YMwnzP16IdfOnzV5pux4eLjj4+3Fpct/q5Ynp0wuzs5YWlriX9FPb/uKfn4cOX7CLJmedvjoMS5cvMT6FctUzaLLNGwYW7Zs4dChQ5QsWVK3/tGjR4wdO5aff/6Zdu3aAVC1alUiIiKYOXOmqhV6TuVUs0Z1Ik4cIS4ujpQULcWLu1CncTNqvVpDtTzW1tb4li0DQK1XaxB++gxfLljEx6NGABAVHY2Hh7tu+5i7d3FT+aD+hWk0Rrj1q1TouTFJl7uiKLw3KoSNm7exb8cWSpcqZYqXzXemzMr80uW/2bttM87OTll3ZOJMz3tecoo6Xcm5ZQru1ZM/Th4l4vhh3eLp4UHIiOHs3rzRLJmyExt7n5u3buPh7maWTNbW1tSu+WqWy6EuXr6Mj4EDLI2d6WlLV6yiZo3qVKtaRZUsepnee4+NGzeyb98+Spcurfe4VqtFq9VS6JnzpRYWFqSnp6uXycBycnR0pHhxFy5dvsKpM7/RsV1bVTI9L2dycjKlS/ng7uZG2L4DusdSUlI4eOQo9evWMVkeUfCYpIU+dOSHrPnhRzavX4PDK68Q9e95J0fHItjZZYx8vH//ATdu3uROZBQAFy5dBsDdzQ13Ff4I55YpNTWV1/v05UzEH2z7aR1paWm6bZycimFtbW3yTImJiUyZPougdm3wcHcjNvY+C5Ys5dbtO3Tr3MnoeQzJ5OzslOVAx8rKEnc3V/zKlzNLpoSEBEKnTKNrpyA83N24dv0GY0Mn4eLsTOeg9mbJBBAyYhg9+g6kUUADAhs1ZFfYXrbu2MWBXeoMjDMkE2SMRP7x583MmjpZlRx6mYYOZc2aNWzevBkHBweioqL+zeSInZ0dRYoUoXHjxoSEhGBnZ4ePjw8HDx5k5cqVzJ49W51MBpTTjxs3UdzFGW8vL86eO8f7IaPp1KEdLZs3VSXT2Amf0aZlc7xKluCffxJY99NGDhw+wq5NG9BoNIwY+i6fz5xFOd8ylCtbls9nzKawXWF6d39dlTz5Jl3uJmGSCn3hkqUANGmt/8d0+aKv6R/cB4At23cw4J2husd69hsIwISxHxM6bozJM926fZst23cCUL1eQ71t9u/cSpNG+utMkcnCwoL/XbzIiu/Xci82FmcnJ2rXrMHhsJ2qjS435LMzNUPK6ey5v1i5Zh0P4+LwcHcjsFFD1q9choODg1kyAXQO6sCiL2czddYchn/4MX7lfNmwZiUB9euZLRPAup82oigKvbp1VSWHXqZ/bxDTpEkT/UzLl9O/f/+MPOvWMWbMGPr06cP9+/fx8fFhypQpvPOOOoMuDSmnyKgoRo0eR3RMDB7ubvTt3ZPxoz9SJQ9AdEwMwW8OJjIqGsciRahauRK7Nm2gxb8j2z8a9T6PHj9iyIgPefDwIXVq12TPlo2qfb/zTWZbMwmTVOhK4sNct+kf3MekFURumUr5+BiU25hyez1bW1s2rl1tmjD/epEyUPO8OeSeyc7Ojt1b1Onufx5Dy2lgv2AGmuiyMEMzvT2wP28P7K9qlkyG3PbC3d2d5cuXmyBNBkPKafiQd0x6FcfShfNzfFyj0RA6bowqjR3x3yWHPEIIIdRVSGOcBblTXE5kchYhhBDqMmKXe3h4uNwp7jmkQhdCCKEuGRRnEtLlLoQQQrwEpIUuhBBCXTLK3SSkQhdCCKEqjUaT79vSFtjb2hYgcsgjhBBCvASkhS6EEEJd0uVuElKhCyGEUJdU6CYhJSSEEEK8BKSFLoQQQl2aJ3d6y9c+RI4MrtCTk5NJTn4yRWd8fDwA2tRUtKmpxk/2AjJzFJQ8IJkMJZkMU6AzabVmTvJEZpYCWU4FJJNJc0iXu0loFENmSwBCQ0OZOHFilvVr1qyhcOHCRg8mhBBCPUlJSfTu3Zu4uDjVbqUaHx+Po6MjD/b9SJFX8ldPxCckUaxpN8qXL4+FhQVDhw5l6NChuT/x/xGDK/TsWuheXl5EXr2Es1Mx1QLmhTY1lbDDJ2jRsC5WlgXjbIJkMowuU4sWWFlZmTsOkNHKCwsLK5jlJJlyJJlyF3v/AR6ly5mmQt//k3Eq9MDXVc37X2fwt8rGxgYbG5ss660sLQvEl/NpkskwBTKTlVWBqdAzFchykkwGkUw55zAZjcYIXe5yDj035v9WCSGEeLnJ5CwmIaMMhBBCiJeAtNCFEEKoS0a5m4RU6EIIIdRVyAjXoef3+f8PyCGPEEII8RKQFroQQgh1SZe7SUiFLoQQQl0yyt0k5JBHCCGEeAlIC10IIYS6pMvdJKRCF0IIoS7pcjcJkxzyTJ0xm9oNA3FwK4mrjy+devTmwsVLetsoikLolKl4lq2AnbM7TVq349xf51XNdejIUTq83gPPshXQ2Bdl09Zt/9fencdFVe8NHP9M7CJggAyQgLhviIamqJm4oGi4Zy4ZZj1t6A1Ny+WW1tUwTLQ0cblmXrumloqaKz0KuKTignrVx8RcMBHcAMEFhPP84QVBEEdl5sflft+v13kVZ8aZj+MMv/mdc2ZOsctTU9MY9vZ7uNduQBVnN7r16seppNNKm7Kyshgxeiw16jbCxsmVhs+/QNTCRUqbdLbVSl2mz/zGeE3x8QQHB+Pu7o5OpyM6OrrEdU6cOEHPnj1xcHDAzs6O1q1bc/78eeM1PeJxGvb2eyUeo9YdOhutx5Cmot4ZGYbOthqz5sxV2jR5ajgNmrfEtro7zz7nRecevdibsF9ZU25uLh//dRI+LdtgW90d99oNeP2td7iYkqKsCWD12nV07dkXZ89a6GyrkXj4iFF7RMVnkgE9bucuQt9+iz3bY4hZv4a7d/MI7NmH7OzswutERH5N5Oy5zImMICF+G656PV2C+3Djxg2jdWVn38TXx4c5kRElLtM0jd4Dh/DH2bOsXbmMQ7vj8fL0oPPLvYp1m7IJYNTHE9gc8ys/LJrPiYN7GTXifUZ++BFrf9mgrCnl9Mliy3dRc9DpdPTr3dOITdn4+voyZ86cUi8/ffo07dq1o0GDBsTGxnL48GE++eQTrK2tjdhU9uME0K1L52KP1cbVPxmtx9AmgOj1v7A3YT/ubm5G7TGkqV6dOsyZMZ2j+3azM2YzNb08CezZl8uXryhpunnzJgcTD/PJuLEc3BXH6h+X8nvSaXq+MshoPY9qKri8rX8rpn0+2agd5aJgk/vTLqJMJtnkvnntqmI/L573LS4163DgUCLt27VF0zRmfRvFxLEf0rfXvUFgyYIo9N51WbbyZ9558w2jdAV17UJQ1y6lXnYq6TR79iXwr4TfaNyoIQBzZ83ApWYdfvxpFW8Ne93kTQC/7U0gZMggOrR/EYC3hw9j/qLF7D94iF4v91DS5OqqL/bz2g0bCWj/IrW8axqlByAoKIigoKCHXj5x4kS6d+9ORMT9X4a1atUyWg88+nECsLKyLPF4GZMhTX9evMiI0R+xZe0qevQboLxp8KuvFPs5ctpUFi1ZypF/HaNTwEsmb3JwcCDml+hi62bPiOCF9h05n5yMp4eHyZsAhg4eCMDZc+eMcv/l6pln7i1PextAy5Yt5fSpD6HkLU9GZiYAjs/eO+3qmbPnuJSaSmCngMLrWFlZ8VK7tuzes1dFYuGpYovO6MzMzLC0sGTn7t+UNAG0a9OadRs28efFi2iaxva4eH5POk3Xzp2UNRWVmprGhs1beTNkqLKG/Px8NmzYQL169ejatSsuLi60atWq1M3ypha7YycuXnWo5+vH/4T+hbS0y0p78vPzGfrmO4wNG1n4xrUiycnJYcF3S3BwsMfXp4nqnEIZGZnodDqqOTioTvmPoNPpymUBSEhI4Pjx4zKYl8LkA7qmaYweN4F2bfxp0rgRAJdSUwHQ612KXVfv4sKl1DRTJwLQoH49vDw9GD/pM65fTycnJ4dpX83kUmoqKZdSlTQBfPPVlzRqUJ8adRthWa063Xr3Z+7Mr2jXxl9ZU1FL/vkjdnZV6dsrWFlDWloaWVlZTJs2jW7durF161b69OlD3759iYuLU9YVFNiFf363kG0b1zEjfAoJBw7SsXvPwjePKnw5Yxbm5ub85f13lTWU5pdNm6nq8hzWjnpmzplLzPponJ2dVGcBcPv2bcZ9OpnBA16R83KLCsXkR7mPGD2WI/86xs5fN5e4TEfxoxg1TSt8V2ZqFhYWrFq2lDffG4FjjZqYmZnROaADQYFlb740tm/mzmdPwn7W/fQjXh4exO/azfujxuDm6krnjh2UtgF8t/QHhrz6ilH3VT9Kfn4+AL169WLUqFEANGvWjN27dzNv3jxeesk4m20f5dX+fQv/v0njRrRo3hyvhj5s2LylcFeTKR04lMjXc+dxcHecstfZwwS0f5HE33Zw5epVFi5ewoChw9gb+7+4uFRX2pWbm8vAkOHk5+czd9ZXSlv+o8j50E3CpDP0kR+OZd2GTWzftJ4azz1XuN5Vf2+fYsFMvUDa5cvoFb6A/Zo3I3HPTtIvniPl9Ek2r13F1WvX8K7ppaTn1q1bTJj8OZHTphLcPYimPk0Y8e7bvNqvD199PVtJU1E7du3m5O+neCvEOMcXGMrZ2Rlzc3MaNWpUbH3Dhg2NepT743Jzc8XL04NTSX8ouf8du3aTdvkynvWbYG7vhLm9E+fOJ/Ph+L9Ss6GPkqYCtra21Kldi9YvtGRR1BzMzc1ZtGSp0qbc3FwGDB3GmbPniFkfLbPzx1HwsbWnXUSZTDKga5rGiNFjWb32F7ZtXId3zZrFLveu6YWrXk/MttjCdTk5OcTt3EWb1q1MkVgmBwcHqld35lTS6XsHn/XorqQjNzeX3Nxcnnngna6ZmVnhrFSlRUuW4te8Gb5N1Q4GlpaWtGzZkpMnTxZb//vvv+PlpebNWGmuXr1G8oU/cTPhQXJFDR00kCN7d5H4247Cxd3NjbFhf2HL2tVKmh5G0zTu5KjbNVEwmJ9K+oNff1mLk5OjshYhHsYkm9xDR41h2cqfWLtiGXZVq3Lp3/ugHRzssbGxQafTERb6Hl98NYO6dWpRt3ZtvpgeSRWbKgwe0N9oXVlZWSSdvj87OnP2HImHj+Do+CyeHh78tDqa6s5OeHp4cPTYMT4YO47ewT0I7NxRWdNLL7Zl7MRPsbGxxsvTg7gdu/jHsuVETpuqrAkgMzOTn9asZUb4FKN1lGhKSrrfdOYMiYmJODo64unpydixY3n11Vdp3749AQEBbN68mfXr1xMbG2vcpoc8To7PPsvkqdPo17snbq56zp47z4TJf8PZyYk+PV9W0uTp4VFiYLKwMMdV70L9enWVNDk5OjI1YgY9ewTh5qrn6tVrzF24iAt/XuSVPr2VNLm7udF/yOscTDzCLz8vJy8vr/B3mKPjs1haWpq8ydPDg2vXrnM+OZmLKZcAOHnq3uvBVa836ScpDFMeHzuTj609kvaEMjIyNEC7knxG07LTy1yAUpfF874tvE5+1nVt0oSPNVe9XrOystLat2ujHd23+5G3XXTJybiiRUdHazkZVwy6/vZN60vtChkySNOy07Wvp0/Tajz3nGZhYaF5etTQ/vrxGO3O9TSlTSmnT2rDXhusubu5adbW1lr9enW1GeFTtPys68qatOx0bf7sWZqNjY2WfvHcYz0+JZpycgx6/m3fvr30ppCQwussWrRIq1OnjmZtba35+vpq0dHRj/Ucz8nJKbfH6eaVFC2wU0eturNz4fMpZMgg7fzJfyl9Pj24eHl6aDO//EJZ062rl7Q+PV/W3N3cNEtLS83N1VXr2SNI2xe/TVnTmeOHH/o7bPum9cr+7RbP+7bUyydN+Nig27+SfEYDtIyMjMd6XTyOgnEi/VCclp904KmW9ENxRu/9T6fTNE17kjcCmZmZODg4cCX5DE6Ozz7JTZS73Lt32bh9J90D2mFhXjG+1VaaDFPY1L07FhYWqnOAe5tZN27cWDEfJ2kqkzQ92tVr13H28CYjI8NoxwMUjBPph+Kwt6v6dLd1I4tqzV8yau9/OvXPKiGEEJVbOX6xjHg4GdCFEEIYl5ycxSTkLY8QQghRCcgMXQghhHHJ+dBNQgZ0IYQQxiWb3E1CBnQhhBBGpvv38rS3Icoi2zCEEEKISkBm6EIIIYxLNrmbhAzoQgghjEsGdJOQTe5CCCFEJSAzdCGEEEYmB8WZggzoQgghjEs2uZuEwQP6nTt3uHPn/vmIMzMzgXsnHMi9e7f8y55AQUdF6QFpMlRhU26u4pL7Cloq5OMkTWWSpkerKB2i/Bh8trXJkyfz2WeflVi/bNkyqlSpUu5hQgghjOfmzZsMHjzYNGdb+7/95XO2tQYtqFevHmZmZoSGhhIaGlpOpZWDwQN6aTN0Dw8PUlJScHJyMlrg48jNzSUmJoYuXbpUqFNwStOjVeimF1tXiNNdwr1ZVcyOPdL0CIVN8nx6qKvXruPmXddEA/qBchrQ/eT0qWUw+FllZWWFlZVVifUWFhYV5gVTQJoMI02GsTA3rxC/gIuSJsPI86nsDlG5yL+oEEII45KD4kxCBnQhhBDGpaMcBvRyKanUZEAXQghhZPI5dFOQb4oTQgghKgGZoQshhDAu2YduEjKgCyGEMDLZ5G4KssldCCGEqARkhi6EEMK4ZJO7SciALoQQwrhkQDcJ2eQuhBBCVALKBvT4+HiCg4Nxd3dHp9MRHR2tKqVQeHg4LVu2xM7ODhcXF3r37s3JkyeVNkVFRdG0aVPs7e2xt7fH39+fTZs2KW0qKjw8HJ1OR1hYmNKOyZMno9Ppii2urq5KmwD+vHiR14a/jZOHN1Wc3WjWuh0HDiUq66nZ0AedbbUSS+ioMcqa7t69y18/m4J3o6bYOLlSq7Evn4d/SX5+vrKmGzduEBYWhpeXFzY2NrRp04aEhASTNsTv3EVw/1dxr90AnW01otf/UuxyTdOYPDUc99oNsHFypUO3Hhw7fsKkjYbTldMiyqJsQM/OzsbX15c5c+aoSighLi6O0NBQ9uzZQ0xMDHfv3iUwMJDs7GxlTTVq1GDatGns37+f/fv307FjR3r16sWxY8eUNRVISEhgwYIFNG3aVHUKAI0bNyYlJaVwOXr0qNKe69fTadupKxYW5mxa8zPHD+xhRvhUqjk4KGtKiN9OyumThUvM+mgAXunTS1nTl5GzmLfoO+ZETufEwb1ETPmc6bNmMztqvrKmt956i5iYGJYuXcrRo0cJDAykc+fO/PnnnyZryM6+ia+PD3MiI0q9PCLyayJnz2VOZAQJ8dtw1evpEtyHGzdumKzRUA++2X7SRZRN2T70oKAggoKCVN19qTZv3lzs58WLF+Pi4sKBAwdo3769kqbg4OBiP0+dOpWoqCj27NlD48aNlTQBZGVlMWTIEBYuXMiUKVOUdRRlbm5eIWblBb6MnIVHjRosnj+3cF1NLy+FRVC9unOxn6fNmEntWt689GI7RUXw294EevXoTo9uXYF7j9GPP/3M/oOHlPTcunWLVatWsXbt2sLX/eTJk4mOjiYqKspkz/egrl0I6tql1Ms0TWPWt1FMHPshfXv1BGDJgij03nVZtvJn3nnzDZM0iopF9qGXISMjAwBHR0fFJffk5eWxfPlysrOz8ff3V9oSGhpKjx496Ny5s9KOok6dOoW7uzve3t4MHDiQP/74Q2nPuo2baNG8Ga+8FoKLVx2a+7/IwsVLlDYVlZOTww8rVjL89deUzn7a+bfmf2Pj+P1UEgCHjxxl5+49dO8aqKTn7t275OXlYW1tXWy9jY0NO3fuVNL0oDNnz3EpNZXATgGF66ysrHipXVt279mrsOwhCg6Ke9pFlEmOcn8ITdMYPXo07dq1o0mTJkpbjh49ir+/P7dv36Zq1aqsWbOGRo0aKetZvnw5Bw8eNPk+xbK0atWKf/zjH9SrV4/U1FSmTJlCmzZtOHbsGE5OTkqa/jhzlqi/f8fokaFMGDOafQcO8pcxH2NlacnrQwYpaSoqev0G0tMzGPbaYKUdH38YRkZmJg2at8TMzIy8vDymTvqEQQP6K+mxs7PD39+fv/3tbzRs2BC9Xs+PP/7I3r17qVu3rpKmB11KTQVAr3cptl7v4sK588kqkh5BvljGFGRAf4gRI0Zw5MiRCvGOvH79+iQmJpKens6qVasICQkhLi5OyaCenJzMBx98wNatW0vMYFQquvvGx8cHf39/ateuzZIlSxg9erSSpvz8fFo835wvPvsUgObNfDl24gRRf/+uQgzoi5YsJSiwM+5ubko7Vvy8mh+Wr2TZ4r/TuGEDEo8cJezj8bi7uRKi6M3G0qVLGT58OM899xxmZmY8//zzDB48mIMHDyrpeRjdA4OcpmkVdF9zecywK+Lfq2KRTe6lGDlyJOvWrWP79u3UqFFDdQ6WlpbUqVOHFi1aEB4ejq+vL19//bWSlgMHDpCWloafnx/m5uaYm5sTFxfHN998g7m5OXl5eUq6HmRra4uPjw+nTp1S1uDmqqdRg/rF1jWsX5/zyRcUFd137vx5ft0ey1vDXledwtiJnzLuwzAGvtIPnyaNGTp4IKNGvE/4jJnKmmrXrk1cXBxZWVkkJyezb98+cnNz8fb2VtZUlKteD9yfqRdIu3wZvUt1FUmiApABvQhN0xgxYgSrV69m27ZtFebF+yBN07hz546S++7UqRNHjx4lMTGxcGnRogVDhgwhMTERMzMzJV0PunPnDidOnMBN4eyzbevWnPz3fuECv59KwsvTQ1HRfYuX/hOX6tULD0RT6eatmzzzTPFfRWbPmCn92FoBW1tb3NzcuH79Olu2bKFXL3WfBijKu6YXrno9MdtiC9fl5OQQt3MXbVq3Uhf2MLIP3SSUbXLPysoiKen+L7szZ86QmJiIo6Mjnp6eSppCQ0NZtmwZa9euxc7OjkuXLgHg4OCAjY2NkqYJEyYQFBSEh4cHN27cYPny5cTGxpY4It9U7OzsShxTYGtri5OTk9JjDcaMGUNwcDCenp6kpaUxZcoUMjMzCQkJUdY0auT7tOkYyBfTZzCgbx/27T/AgsVLWDB7lrImuLcrYPHSfxIyZBDm5ur3ugUHdWNqxAw8PWrQuGEDDh0+QuScbxk+9DVlTVu2bEHTNOrXr09SUhJjx46lfv36vPGG6Y4ez8rKIun0/QM7z5w9R+LhIzg6Pounhwdhoe/xxVczqFunFnVr1+aL6ZFUsanCYEXHHpRN9qGbgrJX8/79+wkIuH+EZsF+zpCQEL7//nslTVFRUQB06NCh2PrFixczbNgw0wcBqampDB06lJSUFBwcHGjatCmbN2+mS5fSP87y3+rChQsMGjSIK1euUL16dVq3bs2ePXvwUvgxsZZ+z7Nm+Q+M//RzPg+PwLumF7MiwhkycICyJoBft8VyPvkCw19XN2AWNXtGBJ98PpX3wz4k7fIV3N1ceWf4G3w6/iNlTRkZGYwfP54LFy7g6OhIv379mDp1KhYWFiZr2H/wEAFB9z+2OnrcRABChgzi+wVRfDT6A27dvsX7YWO4np5Oq5Z+bF23Gjs7O5M1iopF2YDeoUMHNE1Tdfelqmg9AIsWLVKd8EixsbGqE1i+fLnqhFK9HNSNl4O6qc4oJrBzR7TsdNUZhezs7Jg1fRqzpk9TnVJowIABDBig9o1Xh/YvlvnvpNPpmDxxPJMnjjdd1JOS73I3CfXb24QQQlRussXdJOSgOCGEEKISkBm6EEIII5MpuinIgC6EEMK4ZB+6ScgmdyGEEKISkBm6EEII45IZuknIgC6EEMLIZB+6KciALoQQwrh0lMMMvVxKKjXZhy6EEEI8phs3btCyZUuaNWuGj48PCxcuVJ0kM3QhhBBGVgn3oVepUoW4uDiqVKnCzZs3adKkCX379sXJyUlZkwzoQgghjKzy7UM3MzOjSpUqANy+fZu8vDzlXx8um9yFEEJUOvHx8QQHB+Pu7o5OpyM6OrrEdebOnYu3tzfW1tb4+fmxY8eOx7qP9PR0fH19qVGjBh999BHOzs7lVP9kDJ6h37lzp9g5uDMyMgC4du1a+Vc9odzcXG7evMnVq1dNelakskiTYSp007XrWFSA04wC5N69K00GKGyS59NDXbt+HTDNSakys7KeepN5ZlbWvf9mZhZbb2VlhZWVVYnrZ2dn4+vryxtvvEG/fv1KXL5ixQrCwsKYO3cubdu2Zf78+QQFBXH8+PHCU3j7+fkVG/cKbN26FXd3d6pVq8bhw4dJTU2lb9++9O/fH71e/1R/z6eiGWjSpEkaIIssssgiSyVaTp8+begw8Nhu3bqlubq6lltr1apVS6ybNGnSIzsAbc2aNcXWvfDCC9q7775bbF2DBg20cePGPdHf9d1339VWrlz5RH+2vBj8NnH8+PGF5yyHe5savLy8OH/+PA4ODobejFFlZmbi4eFBcnIy9vb2qnMAaTKUNBlGmgwjTY+WkZGBp6cnjo6ORrsPa2trzpw5Q05OTrncnqZp6B6Y6Zc2O3+UnJwcDhw4wLhx44qtDwwMZPfu3QbdRmpqKjY2Ntjb25OZmUl8fDzvvffeY7eUJ4MH9Idt1nBwcKgQT86i7O3tpckA0mQYaTKMNBmmojU984xxD6WytrbG2traqPfxuK5cuUJeXl6JzeN6vZ5Lly4ZdBsXLlzgzTffRNM0NE1jxIgRNG3a1Bi5BlO/I0cIIYRQ4MHZfmlbAB7Gz8+PxMREI1Q9OTnKXQghxH8VZ2dnzMzMSszG09LS1B7U9pSeeEC3srJi0qRJT7T/wlikyTDSZBhpMow0GaaiNVW0HlOytLTEz8+PmJiYYutjYmJo06aNoqqnp9M0xZ+EF0IIIcpZVlYWSUlJADRv3pzIyEgCAgJwdHTE09OTFStWMHToUObNm4e/vz8LFixg4cKFHDt2DC8vL8X1T0YGdCGEEJVObGwsAQEBJdaHhITw/fffA/e+WCYiIoKUlBSaNGnCzJkzad++vYlLy48M6EIIIUQlIAfFCSGEEJWADOhCCCFEJSADuhBCCFEJyIAuhBBCVAIyoAshhBCVgAzoQgghRCUgA7oQQghRCciALoQQQlQCMqALIYQQlYAM6EIIIUQlIAO6EEIIUQnIgC6EEEJUAv8Pn1ajpcTrso4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = figure()\n", + "# using Interact\n", + "# @manipulate for n in slider(1:100, value=1)\n", + "for n in (1,2,3,4,5,10,20,30,40,50,100)\n", + " display(\n", + " withfig(fig) do\n", + " plotchutes((T*M)^n*e₁)\n", + " title(\"distribution after $n moves\")\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Games can end much more quickly because of the ladders, but they can also take much longer because of the chutes. Let's plot the probability distribution vs. $n$ as before:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ1UlEQVR4nOzdd1hT1xsH8G8Ie4kMAWWKA9wK1aq1OCruOlu1VRyoVeoCR7VqXXUPHD+3uGpddbVaqqCCE7XiVupGRKGICqjISs7vj9tEQgIkcDMg7+d5eJJ7cnLuySEkL+eeIWCMMRBCCCGE6BEDbVeAEEIIIUTTKAAihBBCiN6hAIgQQggheocCIEIIIYToHQqACCGEEKJ3KAAihBBCiN6hAIgQQggheocCIEIIIYToHQqACCGEEKJ3KAAi5VJMTAwEAgH279+v7aooJSEhAV26dIGtrS0EAgHGjx+v7SrpjAsXLmDWrFlIT0/nvey9e/eibt26MDMzg0AgwPXr1zFr1iwIBIJSlSd538XExKj0PA8PD3Tt2rVU51SWQCDA6NGjeS1z/vz5OHz4MK9lqiIpKQn9+vVDlSpVYGVlhcaNG2Pt2rUqleHh4YHBgwfzWi+BQIBZs2aVmK8s7zWifhQAEaIBISEhuHTpErZs2YLY2FiEhIRou0o648KFC5g9ezbvAdDLly8xcOBAeHl54dixY4iNjUWtWrUwbNgwxMbGlqrMJk2aIDY2Fk2aNOG1rrpKmwGQWCxGt27dcObMGSxduhQHDhxA7969cf78ea3Uh1Q8htquACG67MOHDzA1NS3zf3G3b99G06ZN0aNHD34qRkp0//595OXlYcCAAfD395emm5ubw8XFpVRlWltb49NPP+WriqQY9+7dw/Xr17Fu3ToEBgYCAAICArRcK+3KysqCubm5tqtRYVAPECmRpBv3zp076N+/PypVqgRHR0cMHToUGRkZ0nwJCQkQCATYtm2bXBmFu4wlZd68eRNfffUVKlWqBFtbW4SGhiI/Px/37t1Dx44dYWVlBQ8PDyxevFhh3bKzsxEaGgonJyeYmZnB398f165dk8t35coVfPnll7C1tYWpqSkaN26Mffv2yeTZtm0bBAIBIiMjMXToUDg4OMDc3Bw5OTlFtk1iYiIGDBiAKlWqwMTEBD4+Pli2bBnEYjGAj5dMHj58iL/++gsCgQACgQAJCQlFlim5lLF161bUrl0bZmZm8PPzw8WLF8EYw5IlS+Dp6QlLS0u0bdsWDx8+lCtjy5YtaNiwIUxNTWFra4uePXsiPj5e+viKFSuk9Srshx9+gLGxMdLS0qRpJ06cQLt27WBtbQ1zc3O0bNkSJ0+elHney5cvMWLECLi6usLExAQODg5o2bIlTpw4UeRrnTVrFiZNmgQA8PT0lLaP5BKTWCzG4sWL4e3tDRMTE1SpUgWBgYFISkoqskwAGDx4MD777DMAQN++fSEQCNC6dWvpOQsHtJJLVMeOHUOTJk1gZmYGb29vbNmyRSafoktgjx8/Rr9+/VC1alWYmJjA0dER7dq1w/Xr1+XqVVL5RcnJycGcOXPg4+MDU1NT2NnZoU2bNrhw4YJc3l9++QU+Pj4wNzdHw4YNcfToUbm28fDwkHte4XYRCAR4//49tm/fLv29SNoQAFJSUvDdd9/BxcUFxsbG8PT0xOzZs5Gfny9T7rp169CwYUNYWlrCysoK3t7e+PHHH0t8zUKhEAAXCPEpOzsbEyZMQKNGjaSfO82bN8fvv/8ulzczMxPDhw+HnZ0dLC0t0bFjR9y/f19huX/++ScaNWoEExMTeHp6YunSpQrzMcawdu1aNGrUCGZmZqhcuTL69OmDx48fy+Rr3bo16tWrhzNnzqBFixYwNzfH0KFDAQCnTp1C69atYWdnBzMzM7i5uaF3797IysoqY+voGUZICWbOnMkAsNq1a7OffvqJRUVFseXLlzMTExM2ZMgQab4nT54wAGzr1q1yZQBgM2fOVFjm3LlzWVRUFJs8eTIDwEaPHs28vb3ZqlWrWFRUFBsyZAgDwA4cOCB9fnR0NAPAXF1dWffu3dmRI0fYzp07WY0aNZi1tTV79OiRNO+pU6eYsbExa9WqFdu7dy87duwYGzx4sFxdt27dygCwatWqsREjRrC//vqL7d+/n+Xn5ytsl9TUVFatWjXm4ODA1q9fz44dO8ZGjx7NALBRo0YxxhjLyMhgsbGxzMnJibVs2ZLFxsay2NhYlp2dXWR7A2Du7u6sRYsW7ODBg+zQoUOsVq1azNbWloWEhLDu3buzo0ePsl9//ZU5OjqyBg0aMLFYLH3+/PnzGQDWv39/9ueff7IdO3aw6tWrs0qVKrH79+8zxhh7+fIlMzY2ZtOmTZM5d35+PqtatSrr1auXNO2XX35hAoGA9ejRgx08eJAdOXKEde3alQmFQnbixAlpvg4dOjAHBwe2ceNGFhMTww4fPsx++ukntmfPniJf67Nnz9iYMWMYAHbw4EFp+2RkZDDGGBsxYoT0PXHs2DG2fv165uDgwFxdXdnLly+LLPfhw4dszZo1DACbP38+i42NZXfu3GGMfXzvFeTu7s5cXFxYnTp12I4dO9jx48fZV199xQCw06dPS/NJ3nfR0dHStNq1a7MaNWqwX375hZ0+fZodOHCATZgwQSaPsuUrkpeXx9q0acMMDQ3ZxIkTWUREBPvjjz/Yjz/+yHbv3i3NB4B5eHiwpk2bsn379rGIiAjWunVrZmhoKPP3MGjQIObu7i53nsLtEhsby8zMzFjnzp2lvxdJGyYnJzNXV1fm7u7ONmzYwE6cOMHmzp3LTExM2ODBg6Vl7N69mwFgY8aMYZGRkezEiRNs/fr1bOzYscW+ZonWrVszoVDIDh06pFR+Rdzd3dmgQYOkx+np6Wzw4MHsl19+YadOnWLHjh1jEydOZAYGBmz79u3SfGKxmLVp04aZmJiwefPmscjISDZz5kxWvXp1uc+zEydOMKFQyD777DN28OBB9ttvv7FPPvmEubm5yb3Xhg8fzoyMjNiECRPYsWPH2K5du5i3tzdzdHRkKSkp0nz+/v7M1taWubq6stWrV7Po6Gh2+vRp9uTJE2Zqasrat2/PDh8+zGJiYtivv/7KBg4cyN68eVPqdtJHFACREkk+GBcvXiyTHhwczExNTaVfvqUJgJYtWyaTr1GjRtIvQ4m8vDzm4OAg86Us+SJq0qSJzJd/QkICMzIyYsOGDZOmeXt7s8aNG7O8vDyZc3Xt2pU5OzszkUjEGPsYAAUGBirVLlOmTGEA2KVLl2TSR40axQQCAbt37540zd3dnXXp0kWpcgEwJycn9u7dO2na4cOHGQDWqFEjmde7YsUKBoDdvHmTMcbYmzdvpF9aBSUmJjITExP2zTffSNN69erFXFxcpK+fMcYiIiIYAHbkyBHGGGPv379ntra2rFu3bjLliUQi1rBhQ9a0aVNpmqWlJRs/frxSr7GgJUuWMADsyZMnMunx8fEMAAsODpZJv3TpEgPAfvzxx2LLlbxHfvvtN5n0ogIgU1NT9vTpU2nahw8fmK2tLfvuu+/kypQEN2lpaQwAW7FiRbF1UbZ8RXbs2MEAsE2bNhWbDwBzdHRkmZmZ0rSUlBRmYGDAFixYIE1TNgBijDELCwuZ4EHiu+++Y5aWljKvhzHGli5dygBIA6XRo0czGxubYutdlHv37jFvb29Wq1YtZmxszI4ePVqqcgoHQIXl5+ezvLw8FhQUxBo3bixN/+uvvxgAtnLlSpn88+bNk/s8a9asGatatSr78OGDNC0zM5PZ2trKBZWKPveePXvGzMzM2OTJk6Vp/v7+DAA7efKkTN79+/czAOz69etKvX5SNLoERpT25Zdfyhw3aNAA2dnZSE1NLXWZhWfG+Pj4QCAQoFOnTtI0Q0ND1KhRA0+fPpV7/jfffCPTbe/u7o4WLVogOjoaAPDw4UP8888/+PbbbwEA+fn50p/OnTsjOTlZrou9d+/eStX91KlTqFOnDpo2bSqTPnjwYDDGcOrUKaXKUaRNmzawsLCQHvv4+AAAOnXqJPN6JemStomNjcWHDx/kZr24urqibdu2MpethgwZgqSkJJlLVFu3boWTk5O0/S9cuIDXr19j0KBBMm0nFovRsWNH/P3333j//j0AoGnTpti2bRt+/vlnXLx4EXl5eaV+/QCkv8PCr6Vp06bw8fGRuwRXVo0aNYKbm5v02NTUFLVq1VL4vpOwtbWFl5cXlixZguXLl+PatWvSy598lA8Af/31F0xNTaWXP4rTpk0bWFlZSY8dHR1RpUqVEs+hqqNHj6JNmzaoWrWqzPtC8r45ffo0AO53lZ6ejv79++P333+XuaxanNevX+OLL75A+/btcevWLQQEBKB3797466+/pHl27twJgUCAJ0+eqFz/3377DS1btoSlpSUMDQ1hZGSE8PBwmcvEkvef5LND4ptvvpE5fv/+Pf7++2/06tULpqam0nQrKyt069ZNJu/Ro0chEAgwYMAAmXZzcnJCw4YN5WYXVq5cGW3btpVJa9SoEYyNjTFixAhs375d7tIZUR4FQERpdnZ2MscmJiYAuIHCpWVraytzbGxsDHNzc5kPEkl6dna23POdnJwUpr169QoA8O+//wIAJk6cCCMjI5mf4OBgAJD7UHZ2dlaq7q9evVKYt2rVqtLHS0tRuxSXLmkbyTmLqlfBOnXq1AnOzs7YunUrAODNmzf4448/EBgYKB1/IWm/Pn36yLXfokWLwBjD69evAXBTzgcNGoTNmzejefPmsLW1RWBgIFJSUkrVBqq8Fj4Ufn8D3Hu8uPe3QCDAyZMn0aFDByxevBhNmjSBg4MDxo4di7dv35a5fIAbW1W1alUYGJT8cV3ac6jq33//xZEjR+TeE3Xr1gXw8W9q4MCB2LJlC54+fYrevXujSpUqaNasGaKioootPzw8HM+ePcNPP/0EY2NjHDhwAAEBAejZsyeOHz8OgBuP5ePjA09PT5XqfvDgQXz99deoVq0adu7cidjYWPz9998YOnSozGfMq1evYGhoKNemhT9z3rx5A7FYXORnUUH//vsvGGNwdHSUa7uLFy8q9Vnk5eWFEydOoEqVKvj+++/h5eUFLy8vrFy5UqV2IDQLjPBIErQUHjTM9xdVQYq+XFNSUqQfWvb29gCAqVOnolevXgrLqF27tsyxsjO+7OzskJycLJf+4sULmXNrkuR1F1WvgnUSCoUYOHAgVq1ahfT0dOzatQs5OTkYMmSINI8k/+rVq4uc/eTo6CjNu2LFCqxYsQKJiYn4448/MGXKFKSmpuLYsWNlei2FZ20Vfi3a5O7ujvDwcADczLN9+/Zh1qxZyM3Nxfr168tcvoODA86dOwexWKxUEFQSU1NThQP7le2dAbjfdYMGDTBv3jyFj0v+CQC4nsYhQ4bg/fv3OHPmDGbOnImuXbvi/v37cHd3V/j8R48eQSgUwtLSEgAX6O/fvx9fffUVevTogWXLlmHHjh0KJ1yUZOfOnfD09MTevXtl/tYLt4mdnR3y8/Px6tUrmSCo8GdO5cqVIRAIivwsKsje3h4CgQBnz56V/gNZUOG0oj6LWrVqhVatWkEkEuHKlStYvXo1xo8fD0dHR/Tr16+IV04Kox4gwhtHR0eYmpri5s2bMumKZlfwZffu3WCMSY+fPn2KCxcuSGer1K5dGzVr1sSNGzfg5+en8KfgJQNVtGvXDnfv3sXVq1dl0nfs2AGBQIA2bdqU+nWVVvPmzWFmZoadO3fKpCclJeHUqVNo166dTPqQIUOQnZ2N3bt3Y9u2bWjevDm8vb2lj7ds2RI2Nja4e/duke0n6YUqyM3NDaNHj0b79u3l2qewonoSJV3/hV/L33//jfj4eLnXogtq1aqF6dOno379+iW+bmV16tQJ2dnZpfqyV8TDwwOpqanS3j0AyM3NlfasFFRU71HXrl1x+/ZteHl5KXxPFAyAJCwsLNCpUydMmzYNubm5uHPnTpF1rFevHkQiEX799VdpmiQIatu2Lb7//nu0aNFC7nKUMgQCAYyNjWWCi5SUFLnPKcnfb8E6AMCuXbvkXlfTpk1x8OBBmR6kt2/f4siRIzJ5u3btCsYYnj9/rrDd6tevr9JrEQqFaNasGdasWQMAvL3n9AX1ABHeSK5tb9myBV5eXmjYsCEuX74s94HBp9TUVPTs2RPDhw9HRkYGZs6cCVNTU0ydOlWaZ8OGDejUqRM6dOiAwYMHo1q1anj9+jXi4+Nx9epV/Pbbb6U6d0hICHbs2IEuXbpgzpw5cHd3x59//om1a9di1KhRqFWrFl8vU2k2NjaYMWMGfvzxRwQGBqJ///549eoVZs+eDVNTU8ycOVMmv7e3N5o3b44FCxbg2bNn2Lhxo8zjlpaWWL16NQYNGoTXr1+jT58+qFKlCl6+fIkbN27g5cuXWLduHTIyMtCmTRt888038Pb2hpWVFf7++28cO3asyJ43CcmH/sqVKzFo0CAYGRmhdu3aqF27NkaMGIHVq1fDwMAAnTp1QkJCAmbMmAFXV1edWEzy5s2bGD16NL766ivUrFkTxsbGOHXqFG7evIkpU6bwco7+/ftj69atGDlyJO7du4c2bdpALBbj0qVL8PHxUfk//r59++Knn35Cv379MGnSJGRnZ2PVqlUQiURyeevXr4+YmBgcOXIEzs7OsLKyQu3atTFnzhxERUWhRYsWGDt2LGrXro3s7GwkJCQgIiIC69evh4uLC4YPHw4zMzO0bNkSzs7OSElJwYIFC1CpUiV88sknRdYxKCgIW7duxahRo3Dr1i106NABIpEIsbGxOHv2LFxdXXHu3Dns27cPX3/9tUqvv2vXrjh48CCCg4PRp08fPHv2DHPnzoWzszMePHggzRcQEIDPP/8ckydPxvv37+Hn54fz58/jl19+kStz7ty56NixI9q3b48JEyZAJBJh0aJFsLCwkF4iBrh/KEaMGIEhQ4bgypUr+Pzzz2FhYYHk5GScO3cO9evXx6hRo4qt//r163Hq1Cl06dIFbm5uyM7Oli6n8MUXX6jUFnpPq0OwSbkgmR1SeNqxZNZUwdk7GRkZbNiwYczR0ZFZWFiwbt26sYSEhCJngRUuc9CgQczCwkKuDv7+/qxu3brSY8lsnF9++YWNHTuWOTg4MBMTE9aqVSt25coVueffuHGDff3116xKlSrMyMiIOTk5sbZt27L169fLvZ6///5b6bZ5+vQp++abb5idnR0zMjJitWvXZkuWLJGZWcWY6rPAvv/+e5k0yQy7JUuWyKQXNdNp8+bNrEGDBszY2JhVqlSJde/eXTozp7CNGzcyAMzMzEw6/byw06dPsy5dujBbW1tmZGTEqlWrxrp06SI9b3Z2Nhs5ciRr0KABs7a2ZmZmZqx27dps5syZ7P379yW+5qlTp7KqVasyAwMDmVlWIpGILVq0iNWqVYsZGRkxe3t7NmDAAPbs2bMSy1R1Fpii34+/vz/z9/eXK1NSv3///ZcNHjyYeXt7MwsLC2ZpackaNGjAwsLCZJZPULb8onz48IH99NNPrGbNmszY2JjZ2dmxtm3bsgsXLkjzKHrfSM5deBZUREQEa9SoETMzM2PVq1dn//vf/xS2y/Xr11nLli2Zubk5AyBT15cvX7KxY8cyT09PZmRkxGxtbZmvry+bNm2adAbj9u3bWZs2bZijoyMzNjZmVatWZV9//bV01mJx3r17x6ZPny793VtbW7M2bdqwXbt2sfz8fNajRw9maGgoszyGIope/8KFC5mHhwczMTFhPj4+bNOmTQpff3p6Ohs6dCizsbFh5ubmrH379uyff/6R+zxjjLE//vhD+jfn5ubGFi5cqLBMxhjbsmULa9asGbOwsGBmZmbMy8uLBQYGynx2Ff7Mk4iNjWU9e/Zk7u7uzMTEhNnZ2TF/f3/2xx9/lNCipDABYwWuHxBCCCGE6AEaA0QIIYQQvUMBECGEEEL0DgVAhBBCCNE7FAARQgghRO9QAEQIIYQQvUMBECGEEEL0Di2EqIBYLMaLFy9gZWWl9LYIhBBCCNEuxhjevn2r1P55FAAp8OLFC7i6umq7GoQQQggphWfPnsntIVgYBUAKSPaGevbsGaytrUtdTl5eHiIjIxEQEAAjIyO+qkcUoLbWHGprzaL21hxqa81RV1tnZmbC1dVVqT0eKQBSQHLZy9rauswBkLm5OaytremPSc2orTWH2lqzqL01h9pac9Td1soMX6FB0IQQQgjROxQAEUIIIUTvUABECCGEEL1DY4AIIYRAJBIhLy9P29XQqry8PBgaGiI7OxsikUjb1anQytLWxsbGJU5xVwYFQIQQoscYY0hJSUF6erq2q6J1jDE4OTnh2bNntAacmpWlrQ0MDODp6QljY+My1YECIEII0WOS4KdKlSowNzfX6y9+sViMd+/ewdLSkpceBlK00ra1ZKHi5ORkuLm5len9SgEQIYToKZFIJA1+7OzstF0drROLxcjNzYWpqSkFQGpWlrZ2cHDAixcvkJ+fX6Yp9PQbJoQQPSUZ82Nubq7lmhCiPMmlr7KO06IAiBBC9Jw+X/Yi5Q9f71cKgAghhBCidygAIoQQUqEkJCRAIBDg+vXr2q6K2gkEAhw+fLhMZcyaNQuNGjUqNs/gwYPRo0ePMp1H11AARIimJCUB0dHcLSFE52nyS3/ZsmXw8PCAmZkZateujY0bN2rkvPqMAiBCNCE8HHB3B9q25W7Dw7VdI0KIjjhz5gwmTpyICRMmID4+Hps3b4aDg4O2q8Urxhjy8/O1XQ0ZFAARom5JScCIEYBYzB2LxcB331FPEKlwNNnJKRaLsWjRItSoUQMmJiZwc3PDvHnzZPI8fvwYbdq0gbm5ORo2bIjY2FjpY4ou+6xcuRINGjSQPr59+3b8/vvvEAgEEAgEiImJAQA8f/4cffv2ReXKlWFnZ4fu3bsjISFBWk5MTAyaNm0KCwsL2NjYoGXLlnj69GmRr8XAwABCoRBBQUHw8PBAq1at0LNnz1K1yw8//IBatWrB3Nwc1atXx4wZM+RW+F64cCEcHR1hZWWFoKAgZGdnyzwuEokQGhoKGxsb2NnZYfLkyWCMyeRhjGHx4sWoXr06zMzM0LBhQ+zfv1+mDQQCAY4fPw4/Pz+YmJjg7NmzuHHjBtq0aYNKlSrBzc0Nn3zyCa5cuVKq11pWFAARom4PHnwMfiREIuDhQ+3Uh5BiMAa8f6/6z9q1sp2ca9eqXkah79hiTZ06FYsWLcKMGTNw9+5d7Nq1C46OjjJ5pk2bhokTJ+L69euoVasW+vfvr3QvxMSJE/H111+jY8eOSE5ORnJyMlq0aIGsrCy0adMGlpaWOHPmDM6dOwdLS0t07NgRubm5yM/PR48ePeDv74+bN28iNjYWI0aMKHbmUuPGjVGtWjUEBwdDXPizQkVWVlbYtm0b7t69i5UrV2LTpk0ICwuTPr5v3z7MnDkT8+bNw5UrV+Ds7Iy1a9fKlLFs2TJs2bIF4eHhOHfuHF6/fo1Dhw7J5Jk+fTq2bt2KdevW4c6dOwgJCcGAAQNw+vRpmXyTJ0/GggULEB8fjwYNGuDbb7+Fi4sLLl26hOjoaEyePLlMa/mUCSNyMjIyGACWkZFRpnJyc3PZ4cOHWW5uLk81I0XR6bZ+9owxAwPGuM937kco5NLLIZ1u6wpIne394cMHdvfuXfbhwwdp2rt3sm9VTf68e6dcvTMzM5mJiQnbtGmTwsefPHnCALDNmzdL0+7cucMAsPj4eMYYYzNnzmQNGzaUed7y5cuZq6srE4lEjDHGBg0axLp37y6TJzw8nNWuXZuJxWJpWk5ODjMzM2PHjx9nr169YgBYTEyMUq9FJBKxdu3asW7durHu3buzvn37spycHOnjdevWZUuXLi3y+QDYoUOHinx88eLFzNfXV3rcvHlzNnLkSJk8zZo1k2kLZ2dntnDhQulxXl4ec3FxkbbFu3fvmKmpKbtw4YJMOUFBQax///6MMcaio6MZAHb48GGZPFZWVmzbtm1MJBKxN2/eSNtaFYretxKqfH9TDxAh6ubiAmzcCBRc7XTDBi6dEKKy+Ph45OTkoF27dsXmk1zOAgBnZ2cAQGpqapnOHRcXh4cPH8LKygqWlpawtLSEra0tsrOz8ejRI9ja2mLw4MHo0KEDunXrhpUrVyI5ObnI8o4dO4bz589j27Zt2Lt3L169eoVu3brh/fv30jI/++wzpeu3f/9+fPbZZ3BycoKlpSVmzJiBxMRE6ePx8fFo3ry5zHMKHmdkZCA5OVkmzdDQEH5+ftLju3fvIjs7G+3bt5e2gaWlJXbs2IFHjx7JlF3weQAQGhqKYcOGISAgAGFhYXL5NYkCIELUbfNmwMoK2LOHO3Z3B4KCtFsnQopgbg68e6faz717svE9AAiFXLoq5Si7ILWZmZlS+QpeWpFcgpJcYjIwMJAb11J4rIwiYrEYvr6+uH79uszP/fv38c033wAAtm7ditjYWLRo0QJ79+5FrVq1cPHiRYXl3bx5E25ubrC1tYWJiQkOHz6Md+/eoV27dlixYgWqV6+Opk2bKvV6L168iH79+qFTp044evQorl27hmnTpiE3N1ep5ytL0oZ//vmnTBvcvXtXZhwQAFhYWMgcz5o1C3fu3EHnzp1x9uxZ1KtXT+7ymqZQAESIOr19C0yaBPTtC7x8yaW9eMGNASJEBwkEgIWFaj+1anGdnEIhV4ZQyHVy1qqlWjnKLvBbs2ZNmJmZ4eTJk6V+nQ4ODkhJSZEJggqvG2RsbCy33UKTJk3w4MEDVKlSBTVq1JD5qVSpkjRf48aNMXXqVFy4cAH16tXDrl27FNajWrVqePLkCZL+GzluYWGBiIgI5ObmYurUqfj555+VXvn4/PnzcHd3x7Rp0+Dn54eaNWvKDb728fGRC8YKHleqVAnOzs4yafn5+YiLi5Me16lTByYmJkhMTJRrA1dX1xLrWatWLYwfPx4HDx5Ez549sXXrVqVeH98oACJEndavB9LTAW9vYPhwwMgIyMsDnj/Xds0I4VVQEJCQwM0CS0hQbyenqakpfvjhB0yePFl62eXixYsIV2F5idatW+Ply5dYvHgxHj16hDVr1uDYsWMyeTw8PHDz5k3cu3cPaWlpyMvLw7fffgt7e3t0794dZ8+exZMnT3D69GmMGzcOSUlJePLkCaZOnYrY2Fg8ffoUkZGRuH//Pnx8fBTWo3fv3nBzc0OXLl1w4sQJPHz4EEeOHEFycjIsLCywZcsWpQdG16hRA4mJidizZw8ePXqEVatWyfWujBs3Dlu2bMGWLVtw//59zJw5E3fu3JHLs3DhQhw6dAj//PMPgoODkZ6eLn3cysoKEydOREhICLZv345Hjx7h2rVrWLNmDbZv315k/T58+IDRo0cjJiYGT58+xcWLF3HlypUi20btVB59pAdoEHT5o5Nt/eABY5Urc6M7t23j0jp3ZqxbN8YePtRu3cpAJ9u6AtP0IOjyQiQSsZ9//pm5u7szIyMj5ubmxubPn88Y+zgI+tq1a9L8b968YQBYdHS0NG3dunXM1dWVWVhYsMDAQPbzzz/LDIJOTU1l7du3Z5aWljLPTU5OZoGBgcze3p6ZmJiw6tWrs+HDh7OMjAyWkpLCevTowZydnZmxsTFzd3dnP/30U7GDff/99182dOhQ5uLiwkxMTFiTJk3Yjh072N27d5mVlRUbM2ZMkc9FoUHQkyZNYnZ2dszS0pL17duXhYWFsUqVKsk8Z968ecze3p5ZWlqyQYMGscmTJ8sMgs7Ly2Pjxo1j1tbWzMbGhoWGhrLAwECZAeFisZitXLmS1a5dmxkZGTEHBwfWoUMHdvr0acbYx0HQb968kT4nJyeH9evXj7m6ujJjY2Pm7OzMvv/+e5Xff3wNghYwpsrEQ/2QmZmJSpUqISMjA9bW1qUuJy8vDxEREejcubP2pvnpCZ1r6/BwrsdH8ue1YQO3FlAFoHNtXcGps72zs7Px5MkTeHp6wtTUlNeyyyOxWIzMzExYW1vDoPCgJsKrsrR1ce9bVb6/6TdMCN8kCx8W/N8iOJgWPiSEEB1CARAhfCtp4UPGgA8fNF8vQgghUhQAEcK3mjUVzwmuUQOIiAAqVQI6dtRO3QghhACgAIgQ/kkWPiw8J9jFBbC15abGP3mi3ToSQoieM9R2BQipkIKCgA4duMteNWp8XPXZ05O7TUoCcnMBY2Pt1ZEQQvQYBUCEqIuLi/x2F1WqAGZm3BigxEQuOCKEEKJxdAmMEHUYMABwdgZ+/VU2XSAAPDy4+3QZjBBCtIYCIELU4flzICVFfjA08PEyGAVAhBCiNRQAEaIOkn2/HBzkH5MEQAkJGqsOIYQQWRQAEaIOqancraIAqGlToGtXoHZtzdaJEFIms2bNQqNGjbRdDaXExMRAIBDI7OFVGq1bt8b48eOLzePh4YEVK1aU6TzaQAEQIXwTi4FXr7j7igKgwEDgyBFg0CDN1osQohMEAgEOHz6slrJbt26N9evXq6XsioYCIEL49vr1x5Wg7e21WxdCiN54/fo1Lly4gG7dumm7KirJy8vTynkpACKEb5LxP5UqFb3OD2NcoJSfr7l6EaJuSUlAdLRG9r1r3bo1xo4di8mTJ8PW1hZOTk6YNWuWTJ7ExER0794dlpaWsLa2xtdff41///232HKfP3+O/v37w9bWFhYWFvDz88OlS5dk8vzyyy/w8PBApUqV0K9fP7x9+1b6mKLLQY0aNZLWzeO/WaA9e/aEQCCQHgPAkSNH4OvrC1NTU1SvXh2zZ89GfoHPiFmzZsHNzQ0mJiaoWrUqxo4dK3OeP//8Ew0bNkS1atXkXterV6/Qv39/uLi4wNzcHPXr18fu3btl8rx//x6BgYGwtLSEs7Mzli1bJldOamoqunXrBjMzM3h6euLXwjNdAWRkZGDEiBGoUqUKrK2t0bZtW9y4cUPmdTRp0gQ7d+5EjRo1YGJiAsYY9u/fj/r168PMzAx2dnb44osv8P79e7ny+aL1AGjt2rXSHV19fX1x9uzZIvMmJyfjm2++Qe3atWFgYFDidck9e/ZAIBCgR48e/FaakJJ8/jnQvHnRj3t4AHZ2wP37GqsSISp5/77on+xs+bxr1wLu7kDbttzt2rVceuF974oqsxS2b98OCwsLXLp0CYsXL8acOXMQFRUFAGCMoUePHnj9+jVOnz6NqKgoPHr0CH379i2yvHfv3qFr165ITk7GH3/8gRs3bmDy5MkQF9jb79GjRzh8+DCOHj2Ko0eP4vTp01i4cKHSdf77778BAFu3bkVycrL0+Pjx4xgwYADGjh2Lu3fvYsOGDdi2bRvmzZsHANi/fz/CwsKwYcMGPHjwAIcPH0b9+vVlyv7jjz/QvXt3hefNzs6Gr68vjh49itu3b2PEiBEYOHCgTHA3adIkREdH49ChQ4iMjERMTAzi4uJkyhk8eDASEhJw6tQp7N+/H2vXrkWqZMwjuHbv0qULUlJSEBERgbi4ODRp0gTt2rXD69evpfkePnyIw4cP47fffsP169eRkpKC/v37Y+jQoYiPj0dMTAx69eoFVnBTab4xLdqzZw8zMjJimzZtYnfv3mXjxo1jFhYW7OnTpwrzP3nyhI0dO5Zt376dNWrUiI0bN67IshMSEli1atVYq1atWPfu3VWqV0ZGBgPAMjIyVHpeYbm5uezw4cMsNze3TOWQkpW7tm7YkDGAsaNHtV0TlZW7ti7n1NneHz58YHfv3mUfPnyQf5Drp1T807mzbF5T06Lz+vvL5rW3V5xPRf7+/uyzzz6TSfvkk0/YDz/8wBhjLDIykgmFQpaYmCh9/M6dOwwAu3z5ssIy161bx6ysrNjLly8VPj5z5kxmbm7OMjMzpWmTJk1izZo1kx67u7uzsLAwmec1bNiQzZw5U3oMgB06dEgmT6tWrdj8+fNl0n755Rfm7OzMGGNs2bJlrFatWkW+D7Kzs5mVlRW7efMmY4yx6OhoBoC9efNGYX7GGOvcuTObMGECY4yxt2/fMmNjY7Znzx7p469evWJmZmbS79p79+4xAOzixYvSPPHx8QyA9DWfPHmSWVtbs+zsbJlzeXl5sQ0bNjDGuHY0MjJiDx48YCKRiDHGWFxcHAPAEhISiqyvRHHvW1W+v7XaA7R8+XIEBQVh2LBh8PHxwYoVK+Dq6op169YpzO/h4YGVK1ciMDAQlSpVKrJckUiEb7/9FrNnz0b16tXVVX1CSo/WAiIViTr/Sy9GgwYNZI6dnZ2lvRHx8fFwdXWFq6ur9PE6derAxsYG8fHxCsu7ceMG6tevD1tb2yLP6eHhASsrK4XnLIu4uDjMmTMHlpaW0p/hw4cjOTkZWVlZ+Oqrr/DhwwdUr14dw4cPx6FDh2Quj506dQp2dnZyvUISIpEI8+bNQ4MGDWBnZwdLS0tERkYiMTERANezlZubi+YFeq5tbW1Ru8Bs1fj4eBgaGsLPz0+a5u3tDRsbG5nX8e7dO+k5JD9PnjzBo0ePpPnc3d1hX2CMZMOGDdGuXTvUr18fX331FTZt2oQ3b96UvkGVoLWtMHJzcxEXF4cpU6bIpAcEBODChQtlKnvOnDlwcHBAUFBQsZfUJHJycpCTkyM9zszMBMANzCrL4CzJc7U1wEuflLe2NnB3hxCA6PFjiMtJnSXKW1uXd+ps77y8PDDGIBaLZS7zAAD++xxUSCj8ONAfAK5fh6BuXQgKpDGhEOz2bcDVVTbv48eKyyx8fiUYGhrK1VskEklfj0AgkHucMSZ9zYWZmppK8yh6nDEGIyMjuccKtp+BgYFcexZsZ0XPkRzPmjULPXv2lDuvsbExqlWrhvj4eERFReHkyZMIDg7GkiVLEB0dDSMjI/z+++/48ssvpWUWvBWLxVi6dCnCwsKwfPly1K9fHxYWFggJCUFOTg7EYjFEIpHCehVsD0keRe1TMI+zszNOnTol9zpsbGwgFovBGIOFhYXM8wQCAY4fP44LFy4gKioKq1evxrRp0xAbGwtPyT+MBdqKMYa8vDwIJZtOF2hrZWktAEpLS4NIJIKjo6NMuqOjI1JSUkpd7vnz5xEeHo7r168r/ZwFCxZg9uzZcumRkZEwNzcvdV0kJNekifrpQlvX3bIFLmfO4EHv3nhcxGwMz/fv0QDAv7Gx+DsiQrMV5IkutLU+UUd7GxoawsnJCe/evUNubq7yTxSJuM18JZycYLxiBcxCQiAQicCEQnwIC0OukxOQl8f9lKS4gEuB/Px85ObmSv9hlaTl5eUhMzMT7u7uSExMxN27d+Hy3558//zzDzIyMuDm5ibzPIlatWohPDwciYmJqFy5stzjOTk5EIlEMs/Nzs6GWCyWptna2iIhIUF6nJmZiSdPniAnJ0eaZmRkhHfv3smU06BBA9y+fRvfffed3HnfvXsnvd+6dWu0bt0agYGBaNq0KS5evIgGDRrgyJEjWLdunbTMrKwsAMDbt29hYGCA6OhodOrUCV9++SUALoi4f/8+atWqhczMTFSpUgVGRkaIjo6WBmHp6em4f/8+Pv30U2RmZsLV1RX5+fk4ffo0fH19AQAPHjxAeno6srOzkZmZidq1ayMlJQXZ2dlwc3OTey2ZmZnSdpTUr6D69eujfv36GDduHBo0aIA9e/bg+++/l8mTm5uLDx8+4MyZMzK9YAVftzK0vhmqQCCQOWaMyaUp6+3btxgwYAA2bdok07VWkqlTpyI0NFR6LPlFBwQEwNraulR1AbhINCoqCu3bt4eRkVGpyyEl06W2Fu7aBYP0dNTx8YF3584K8wgYAzZvhnN2NjoXkUdX6VJb6wN1tnd2djaePXsGS0tLae9HqX3/PVj37mAPHwI1asDUxQVlLLFYhoaGMDY2lvmMNjQ0hJGREaytrfHll1+iQYMGCA4OxvLly5Gfn4/Ro0fD398f/v7+CsscPHgwli9fjsDAQMyfPx/Ozs64du0aqlatiubNm8PExARCoVDmnKampjAwMJCmffHFF9i+fTt69+6NypUr46effoJQKISJiYk0j4eHB2JjY/HFF1/AxMQElStXxqxZs/Dll1+ievXq6NOnDwwMDHDz5k3cvn0bc+fOxbZt2yASidCsWTOYm5vj8OHDMDMzQ506dfDgwQNkZWWhY8eOMDTkvtYl/7xbWVnB2toa3t7eOHjwIG7fvo3KlSsjLCwMqampqFOnDqytrWFtbY2hQ4di1qxZcHFxgaOjI6ZPnw4DAwNpO/v6+qJDhw4IDQ3F+vXrYWhoiNDQUJiZmcHU1FTa7s2bN0dgYCAWLFiA2rVr48WLF/jrr7/QvXt3+Pn5SdtRUj+BQIBLly7h1KlTaN++PapUqYJLly4hLS0NjRo1kvsezs7OhpmZGT7//HO5962iwLbI95DSOXlmb28PoVAo19uTmpoq1yukrEePHiEhIUFmDQRJN52hoSHu3bsHLy8vueeZmJjAxMRELt3IyIiXDxy+yiEl04m2/m8RRKGTE4RF1eW/XeAFCQnar28p6URb6xF1tLdIJIJAIICBgQEMFO1bpyo3N+5HQyR1L3hcMO3w4cMYM2YMWrduDQMDA3Ts2BGrV68u8rWamJjgwIEDmD17Nrp27Yr8/HzUqVMHa9asgYGBgfSf88LnLJj2448/4smTJ/jyyy9RqVIlzJ07FwkJCTL1WrZsGUJDQ7F582ZUq1YNCQkJ6NSpE44ePYo5c+ZgyZIlMDIygre3N4YNGwYDAwPY2tpi4cKFmDhxIkQiEerXr48jR47AwcEBq1atQpcuXWBcYNkNybkkv9uffvpJeh5zc3OMGDECPXr0QEZGhjTv0qVL8f79e/To0QNWVlaYMGECMjMzZeq+bds2DBs2DG3atIGjoyN+/vlnzJgxQyZPREQEpk2bhmHDhuHly5dwcnLC559/DmdnZ5l2LPg7tLGxwdmzZ7Fy5UppD96yZcvQpUsXud+TpAxFfxMq/Y2UOExajZo2bcpGjRolk+bj48OmTJlS4nP9/f3lZoF9+PCB3bp1S+ane/furG3btuzWrVssJydHqXrRLLDyR6faukEDblbL8eNF53n3jrEuXRgbPZqxvDzN1Y0HOtXWekBrs8D0kEgkYm/evJHOTCov6tevz/bu3avtaqikLG3N1ywwrV4CCw0NxcCBA+Hn54fmzZtj48aNSExMxMiRIwFwl6aeP3+OHTt2SJ8jGdvz7t07vHz5EtevX4exsTHq1KkDU1NT1KtXT+YcktHphdMJUZvi9gGTsLAAjh7VTH0IIRVWbm4uevfujU6dOmm7KuWOVgOgvn374tWrV5gzZw6Sk5NRr149REREwN3dHQC38KFkip5E48aNpffj4uKwa9cuuLu7I4F21ia6gDEgLY27X1wARAghPDA2NsbMmTO1XY1ySeuDoIODgxEcHKzwsW3btsmlMRXXm1BUBiFqk57+cXuLkgIgxoA3b7gZNRQsEUKIRml9KwxCKpScHMDfH/jkE0DBwHoZM2dy22GMGKGRvZMIIYR8RAEQIXxycgJiYoDLl0vOK7lse/gwt3dSeLgaK0ZI0VTtWSdEm/h6v1IARIg2JCUBBXdRFouB776jniCiUZIpw6osHkeItkkW7Sy8CrSqtD4GiBC99OCB/NL/IhHw8CHw36q1hKibUCiEjY2NdC8rc3PzUi9EWxGIxWLk5uYiOzubn3WRSJFK29ZisRgvX76Eubm5dNHH0qIAiBA+LVoEhIVx43rmzCk6X82agIGBbBAkFEoXSCREU5ycnACAlw09yzvGGD58+AAzMzO9DgQ1oSxtbWBgADc3tzL/jigAIoRPycnAv//K7pOkiIsLsH49FygBXPCzYQP1/hCNEwgEcHZ2RpUqVfR+g9u8vDycOXMGn3/+Oa1yrmZlaWtjY2NeeugoACKETy9fcrfKTGsfPhyYPJmbOh8ZCbRtq9aqEVIcoVBY5jEV5Z1QKER+fj5MTU0pAFIzXWhrCoAI4ZMqARAADBzI7ZStYI86Qggh6kMBECF8UjUAWrVKfXUhhBBSJBrmTgiflNkHjBBCiNZRAEQIXxhTvQdILAZevwYyMtRXL0IIIXIoACKELzk5QMuWQN26ygdA48dz22EsXqzWqhFCCJFFY4AI4YupKRAdrdpzbG2529ev+a8PIYSQIlEPECHaZGfH3b56pd16EEKInqEAiBBtoh4gQgjRCgqACOHL9u2AoyMQHKz8cygAIoQQraAAiBC+JCdz0+BV2VmbAiBCCNEKCoAI4YuqU+CBj2OAKAAihBCNollghPClNAGQgwPw9ddcIMQYQDtQE0KIRqgcAH348AGMMZibmwMAnj59ikOHDqFOnToICAjgvYKElBulCYAqVQL27lVPfQghhBRJ5Utg3bt3x44dOwAA6enpaNasGZYtW4bu3btj3bp1vFeQkHJDEgBVqaLdehBCCCmRygHQ1atX0apVKwDA/v374ejoiKdPn2LHjh1YRRs7En1W2n3ARCJuHaDsbP7rRAghRCGVA6CsrCxYWVkBACIjI9GrVy8YGBjg008/xdOnT3mvICHlRv36QL16gJOTas9r0QKwtweiotRTL0IIIXJUDoBq1KiBw4cP49mzZzh+/Lh03E9qaiqsra15ryAh5caffwK3bgFubqo9r3Jl7pZmghFCiMaoHAD99NNPmDhxIjw8PNC0aVM0b94cANcb1LhxY94rSEiFR2sBEUKIxqk8C6xPnz747LPPkJycjIYNG0rT27Vrh549e/JaOUL0Au0HRgghGleqhRCdnJxgZWWFqKgofPjwAQDwySefwNvbm9fKEVJuHDvGzf76+mvVn0s9QIQQonEqB0CvXr1Cu3btUKtWLXTu3BnJyckAgGHDhmHChAm8V5CQciElhZsG//at6s+lAIgQQjRO5QAoJCQERkZGSExMlC6GCAB9+/bFsWPHeK0cIeVGaRZBlKAAiBBCNE7lMUCRkZE4fvw4XFxcZNJr1qxJ0+CJ/irtGkAAUKsWd+mMJhEQQojGqBwAvX//XqbnRyItLQ0mJia8VIqQcichgbs1Nlb9uc2a0XYYhBCiYSpfAvv888+lW2EAgEAggFgsxpIlS9CmTRteK0dIuRAeDuzfz91ftIg7JoQQotNU7gFasmQJWrdujStXriA3NxeTJ0/GnTt38Pr1a5w/f14ddSREdyUlASNGfDxmDPjuO6BDB6DQZeJiiURAejq3KKJBqSZnEkIIUYHKn7R16tTBzZs30bRpU7Rv3x7v379Hr169cO3aNXh5ealcgbVr18LT0xOmpqbw9fXF2bNni8ybnJyMb775BrVr14aBgQHGjx8vl2fTpk1o1aoVKleujMqVK+OLL77A5cuXVa4XIUp58AAQi2XTRCLg4UPlyxCJABMTbjuMtDR+60cIIUQhlXuAAG4doNmzZ5f55Hv37sX48eOxdu1atGzZEhs2bECnTp1w9+5duCnYTiAnJwcODg6YNm0awsLCFJYZExOD/v37o0WLFjA1NcXixYsREBCAO3fuoFq1amWuMyEyatbkemwKBkFCIVCjhvJlCIWAlRXXA/T6Ne0mTwghGqByD5CnpydmzJiBe/fulfnky5cvR1BQEIYNGwYfHx+sWLECrq6uWLduncL8Hh4eWLlyJQIDA1GpUiWFeX799VcEBwejUaNG8Pb2xqZNmyAWi3Hy5Mky15cQOS4uwMaNXBADcLcbNqh2+QugqfCEEKJhKvcAjRkzBrt378a8efPQuHFjDBw4EH379oWzs7NK5eTm5iIuLg5TpkyRSQ8ICMCFCxdUrVaRsrKykJeXB1vJF4wCOTk5yMnJkR5nZmYCAPLy8pCXl1fqc0ueW5YyiHK02taBgUDbthA8egTm5cUFPyrWQ1i5MgwA5Kemgun4+4Xe15pF7a051Naao662VqU8lQOg0NBQhIaG4v79+/j111+xbt06TJo0CW3atMGAAQMQGBioVDlpaWkQiURwdHSUSXd0dERKSoqq1SrSlClTUK1aNXzxxRdF5lmwYIHCS3qRkZEKp/yrKioqqsxlEOVoo62N3r1D29GjkW9ujlOrV4PdvKlyGZ+KxXAEcDM6Gs8EAv4rqQb0vtYsam/NobbWHL7bOisrS+m8pRoDBAC1atXC7NmzMXv2bFy8eBGjRo3CkCFDlA6AJASFPuwZY3JppbV48WLs3r0bMTExMDU1LTLf1KlTERoaKj3OzMyEq6srAgICYG1tXerz5+XlISoqCu3bt4eRkVGpyyEl02pbJyTAKD0dLDsbnbp1K1URwt27gWvX0NDVFfU7d+a5gvyi97VmUXtrDrW15qirrSVXcJRR6gAIAC5fvoxdu3Zh7969yMjIQJ8+fZR+rr29PYRCoVxvT2pqqlyvUGksXboU8+fPx4kTJ9CgQYNi85qYmChcxNHIyIiXXwxf5ZCSaaWt/9sQWGBtXfpz29sDAIQZGRCWk/cKva81i9pbc6itNYfvtlalLJUHQd+/fx8zZ85EzZo10bJlS9y9excLFy7Ev//+i70qrGZrbGwMX19fue6vqKgotGjRQtVqyViyZAnmzp2LY8eOwc/Pr0xlEVIiyX8cZegtRNOmQN++QN26/NSJEEJIsVTuAfL29oafnx++//579OvXD05OTqU+eWhoKAYOHAg/Pz80b94cGzduRGJiIkaOHAmAuzT1/PlzmZWnr1+/DgB49+4dXr58ievXr8PY2Bh16tQBwF32mjFjBnbt2gUPDw9pD5OlpSUsLS1LXVdCiiQJgIqYmaiUwEDuhxBCiEaoHAD9888/qFWrFi8n79u3L169eoU5c+YgOTkZ9erVQ0REBNzd3QFwCx8mJibKPKdxgQ0j4+LisGvXLri7uyPhv72Y1q5di9zcXLnLcTNnzsSsWbN4qTchMjIyuNuy9AARQgjRKJUDIEnwExcXh/j4eAgEAvj4+KBJkyalqkBwcDCCg4MVPrZt2za5NMZYseVJAiFCNIaPS2AAtyL0u3dl60kihBCiFJUDoNTUVPTr1w8xMTGwsbEBYwwZGRlo06YN9uzZAwcHB3XUkxDdZWUFNGgAlGIrGKlLl4BPPwWqVwcePeKvboQQQhRSeRD0mDFjkJmZKd0A9c2bN7h9+zYyMzMxduxYddSREN32zTfAjRvAsmWlL8PGhrt99YqXKhFCCCmeyj1Ax44dw4kTJ+Dj4yNNq1OnDtasWYOAgABeK0eI3pCsVJ6RAeTnA4ZlWqGCEEJICVTuARKLxQrn2RsZGUFceFdsQohyKlf+eD89XWvVIIQQfaFyANS2bVuMGzcOL168kKY9f/4cISEhaNeuHa+VI6RcGD4c8PYGDhwofRmGhh8HUdOGqIQQonYqB0D/+9//8PbtW3h4eMDLyws1atSAp6cn3r59i9WrV6ujjoTotidPgHv3gAIb6paKnR13SwEQIYSoncoDDVxdXXH16lVERUXhn3/+AWMMderUKXazUUIqNL6mwdvacsEUDYQmhBC1K/VIy/bt26N9+/Z81oWQ8omvAKh9e6BGDem+YIQQQtSnVAHQ5cuXERMTg9TUVLmBz8uXL+elYoSUG3wFQAsWlL0uhBBClKJyADR//nxMnz4dtWvXhqOjIwQCgfSxgvcJ0Rt8BUCEEEI0RuUAaOXKldiyZQsGDx6shuoQUs6IRMD799x9PrawEIm4wdTm5mUvixBCSJFUngVmYGCAli1bqqMuhJQ/Hz4A9esD7u7clhhlsWYNNx1+2DB+6kYIIaRIKgdAISEhWLNmjTrqQkj5Y2kJ3LwJJCQAxsZlK0sSQNE0eEIIUTuVL4FNnDgRXbp0gZeXF+rUqSO3KvTBgwd5qxwhekWyHQZNgyeEELVTOQAaM2YMoqOj0aZNG9jZ2dHAZ0L4IgmAqAeIEELUTuUAaMeOHThw4AC6dOmijvoQUr5ERwOjRgFNmwI7dpStLAqACCFEY1QOgGxtbeHl5aWOuhBS/qSmcttgODuXvSxJAJSezs0GEwrLXiYhhBCFVB4EPWvWLMycORNZWVnqqA8h5UtGBnfLxxR4SQAE0I7whBCiZir3AK1atQqPHj2Co6MjPDw85AZBX716lbfKEaLz+FwE0dAQ6N4dMDMDCq2wTgghhF8qB0A9evRQQzUIKaf4XgX68GF+yiGEEFIslQOgmTNnqqMehJRPkktgtA0GIYSUKyqPASKEFMB3D1BSEnDiBPD4MT/lEUIIUYgCIELKwsYGcHMDqlQpe1nh4VxZ7dsDNWpwx4QQQtSCAiBCyiIsDHj6FBg6tGzlJCUBI0YAjHHHjAHffcelE0II4R0FQIToggcP5Gd+iUTAw4faqQ8hhFRwFAARogtq1gQMCv05CoXcpTBCCCG8U3kWmEgkwrZt23Dy5EmkpqZCXOi/1lOnTvFWOUJ0nr8/kJ0N/Ppr2YIVFxdg40buMphYDAgEwIYNXDohhBDeqRwAjRs3Dtu2bUOXLl1Qr1492gyV6Le4OOD9ey5gKaugICAvj9tb7JNPuGNCCCFqoXIAtGfPHuzbtw+dO3dWR30IKT9EIi74AfibBi/ZZ4+2miGEELVSOQAyNjZGDRqXQAjw9u3H+3wFQC4uQIcONPaHEELUTOVB0BMmTMDKlSvBJNN1CdFXkkUQTUy4Hz74+ADHjgH/+x8/5RFCCFFI5R6gc+fOITo6Gn/99Rfq1q0rtxnqwYMHeascITqN71WgCSGEaIzKAZCNjQ169uypjroQUr5I9gGrVIn/skUibmB14anxhBBCeKFyALR161ZeK7B27VosWbIEycnJqFu3LlasWIFWrVopzJucnIwJEyYgLi4ODx48wNixY7FixQq5fAcOHMCMGTPw6NEjeHl5Yd68eRS0Ef6JxYCrK1CtGr/lurgAz58D9+9z6wMRQgjhnVb/vdy7dy/Gjx+PadOm4dq1a2jVqhU6deqExMREhflzcnLg4OCAadOmoWHDhgrzxMbGom/fvhg4cCBu3LiBgQMH4uuvv8alS5fU+VKIPmrVCkhMBGJi+C1X0uuTns5vuYQQQqS0GgAtX74cQUFBGDZsGHx8fLBixQq4urpi3bp1CvN7eHhg5cqVCAwMRKUiLjusWLEC7du3x9SpU+Ht7Y2pU6eiXbt2CnuKCNFJlStzt2/eaLcehBBSgWktAMrNzUVcXBwCAgJk0gMCAnDhwoVSlxsbGytXZocOHcpUJiEaZWPD3VIPECGEqI3KY4D4kpaWBpFIBEdHR5l0R0dHpKSklLrclJQUlcvMyclBTk6O9Djzv9k9eXl5yMvLK3VdJM8tSxlEOdpoa4N16yD49Vewb76BODiYt3KFlSrBAIAoLQ1iHXzv0Ptas6i9NYfaWnPU1daqlKe1AEii8FYajLEyb6+hapkLFizA7Nmz5dIjIyNhbm5eproAQFRUVJnLIMrRZFvXO3ECXpcv476rK+I9PHgrt/G7d3AD8M+lS3jI9wBrHtH7WrOovTWH2lpz+G7rLBVW0S9VAHTy5MkiN0PdsmWLUmXY29tDKBTK9cykpqbK9eCowsnJSeUyp06ditDQUOlxZmYmXF1dERAQAOsyrPGSl5eHqKgotG/fXm69JMIvbbS18NAhAIBX48bw5HFrGIOTJ4HoaHhXqYJaOrjlDL2vNYvaW3OorTVHXW0tuYKjDJUDoNmzZ2POnDnw8/ODs7NzqXtrjI2N4evri6ioKJkp6lFRUejevXupygSA5s2bIyoqCiEhIdK0yMhItGjRosjnmJiYwETBSr5GRka8/GL4KoeUTKNt/e4dAEBYuTKEfJ6zYUOgQwcIa9fmt1ye0ftas6i9NYfaWnP4bmtVylI5AFq/fj22bduGgQMHqvpUOaGhoRg4cCD8/PzQvHlzbNy4EYmJiRg5ciQArmfm+fPn2LFjh/Q5169fBwC8e/cOL1++xPXr12FsbIw6deoA4Har//zzz7Fo0SJ0794dv//+O06cOIFz586Vub6EyFDXStBBQbQTPCGEqJnKAVBubm6xvSmq6Nu3L169eoU5c+YgOTkZ9erVQ0REBNzd3QFwCx8WXhOocePG0vtxcXHYtWsX3N3dkZCQAABo0aIF9uzZg+nTp2PGjBnw8vLC3r170axZM17qTIgUbYVBCCHllsoB0LBhw7Br1y7MmDGDlwoEBwcjuIgZNNu2bZNLU2YT1j59+qBPnz5lrRohxZMEQOrYCgPgVpqmrTAIIUQtVA6AsrOzsXHjRpw4cQINGjSQu962fPly3ipHiE6ztOSCH757gC5dAgICAGdn4J9/+C2bEEIIgFIEQDdv3kSjRo0AALdv35Z5rKzT1wkpVy5fVk+55uZc75KCgfmEEEL4oXIAFB0drY56EEIkCq4EzRi3KzwhhBBe0QADQnSNZC+wvDxAhUW9CCGEKE+pHqBevXph27ZtsLa2Rq9evYrNe/DgQV4qRohOe/EC6N0bsLcHjhzht2wLC0AoBEQirhfIwoLf8gkhhCgXAFWqVEk6vqeoXdgJ0SuvXwMXL3IBEN8EAq4XKC2N2xFeh7fDIISQ8kqpAGjr1q0K7xOit9Q9Bd7GhguAaEd4QghRC61vhkpIuaTuRRA/+wzw8gLMzNRTPiGE6DkKgAgpjYwM7lZdARD1tBJCiFrRLDBCSoO2wSCEkHKNAiBCSkNTAZASW78QQghRHQVAhJQGY1zwo65B0AsWcGVPnKie8gkhRM+pPAZo1apVCtMFAgFMTU1Ro0YNfP755xAKhWWuHCE6a+JE7kddPTQCAdfL9Pq1esonhBA9p3IAFBYWhpcvXyIrKwuVK1cGYwzp6ekwNzeHpaUlUlNTUb16dURHR8PV1VUddSZEd6hrm4qC22EQQgjhncqXwObPn49PPvkEDx48wKtXr/D69Wvcv38fzZo1w8qVK5GYmAgnJyeEhISoo76E6AfJdhhv3mi3HoQQUkGpHABNnz4dYWFh8PLykqbVqFEDS5cuxdSpU+Hi4oLFixfj/PnzvFaUEJ0yfjzQsSNw5ox6yqceIEIIUSuVA6Dk5GTk5+fLpefn5yMlJQUAULVqVbx9+7bstSNEV128CBw/rr4AhXqACCFErVQOgNq0aYPvvvsO165dk6Zdu3YNo0aNQtu2bQEAt27dgqenJ3+1JETXqHsaPPUAEUKIWqkcAIWHh8PW1ha+vr4wMTGBiYkJ/Pz8YGtri/DwcACApaUlli1bxntlCdEZ6g6A7OyApk2BFi1oLSBCCFEDlWeBOTk5ISoqCv/88w/u378Pxhi8vb1Ru3ZtaZ42bdrwWklCdI4mAqBLl9RTNiGEkNLvBebt7Q1vb28+60JI+SAWA5IxbupaCJEQQohaqRwAiUQibNu2DSdPnkRqairEYrHM46dOneKtcoTopIID/GkvMEIIKZdUDoDGjRuHbdu2oUuXLqhXrx4E6loIjhBd9f49YGUF5OYCJibqO0+HDtxss0OHgP8mGBBCCOGHygHQnj17sG/fPnTu3Fkd9SFE91Wtyo0BKtT7ybusLO48NBWeEEJ4p/IsMGNjY9SoUUMddSGk/EhKAk6f5m7VRTIVngIgQgjhncoB0IQJE7By5UowmppL9FV4OODuzl2WcnfnjtVBshgirQVECCG8U/kS2Llz5xAdHY2//voLdevWhZGRkczjBw8e5K1yhOicpCRgxIiPl7/EYuC777jxOi4u/J6LeoAIIURtVA6AbGxs0LNnT3XUhRDd9+CB/NgfkQh4+JD/AIh6gAghRG1UDoC2bt2qjnoQUj7UrAkIBLKrMwuFgDrGxVEPECGEqI3KY4AI0WsuLkDXrh+PhUJgwwb+e38AwMOD2w6jenX+yyaEED2nVA9QkyZNcPLkSVSuXBmNGzcudu2fq1ev8lY5QnSSlxd3278/sHixeoIfAOjZk/shhBDCO6UCoO7du8PkvwXfevTooc76EKL7MjK42/r11Rf8EEIIUSulAqCZM2cqvE+IXlL3RqiEEELUrtSboebm5ircC8zNza3MlSJEp+XmcrfqDoCSk4FPPwU+fABSU9V7LkII0TMqD4K+f/8+WrVqBTMzM7i7u8PT0xOenp7w8PCAp6enyhVYu3YtPD09YWpqCl9fX5w9e7bY/KdPn4avry9MTU1RvXp1rF+/Xi7PihUrULt2bZiZmcHV1RUhISHIzs5WuW6EKPTHH0B+PjcGSJ3MzYHERODlSy4IIoQQwhuVe4CGDBkCQ0NDHD16FM7OzmXaDHXv3r0YP3481q5di5YtW2LDhg3o1KkT7t69q7An6cmTJ+jcuTOGDx+OnTt34vz58wgODoaDgwN69+4NAPj1118xZcoUbNmyBS1atMD9+/cxePBgAEBYWFip60qIDKFQ/eewsgIMDLh1h9LTATMz9Z+TEEL0hMoB0PXr1xEXFwdvb+8yn3z58uUICgrCsGHDAHA9N8ePH8e6deuwYMECufzr16+Hm5sbVqxYAQDw8fHBlStXsHTpUmkAFBsbi5YtW+Kbb74BAHh4eKB///64fPlymetLiEYZGACVKnHrAKWnA87O2q4RIYRUGCoHQHXq1EFaWlqZT5ybm4u4uDhMmTJFJj0gIAAXLlxQ+JzY2FgEBATIpHXo0AHh4eHIy8uDkZERPvvsM+zcuROXL19G06ZN8fjxY0RERGDQoEFF1iUnJwc5OTnS48z/Brnm5eUhLy+vtC9R+tyylEGUo8m2FvbpA5iYQLRiBeDgoNZzGVauDMGbN8h/+RJMRzYhpve1ZlF7aw61teaoq61VKU+pAEgSEADAokWLMHnyZMyfPx/169eX2wvMWsmBoWlpaRCJRHB0dJRJd3R0REpKisLnpKSkKMyfn5+PtLQ0ODs7o1+/fnj58iU+++wzMMaQn5+PUaNGyQVaBS1YsACzZ8+WS4+MjIS5ublSr6c4UVFRZS6DKEftbS0SofsffwAAjnftitxKldR6On8ANgD+jopCqo6tCE3va82i9tYcamvN4buts7KylM6rVABkY2MjM9aHMYZ27drJ5GGMQSAQQCQSKX1yAHJjiCTlqJK/YHpMTAzmzZuHtWvXolmzZnj48CHGjRsHZ2dnzJgxQ2GZU6dORWhoqPQ4MzMTrq6uCAgIUDqgUyQvLw9RUVFo3769XKBI+KWxti4QhHzRqxfw3/pY6iJctQp4/Bif1KgB1rmzWs+lLHpfaxa1t+ZQW2uOutq6YIdNSZQKgKKjo0tdmaLY29tDKBTK9fakpqbK9fJIODk5KcxvaGgIOzs7AMCMGTMwcOBA6bii+vXr4/379xgxYgSmTZsGAwP5iW8mJibShR4LMjIy4uUXw1c5pGRqb2vJbCwTExhZWqrvPBL16gHv3sGwcmVAx95D9L7WLGpvzaG21hy+21qVspQKgPz9/UtdmaIYGxvD19cXUVFRMrvLR0VFoXv37gqf07x5cxw5ckQmLTIyEn5+ftIXnZWVJRfkCIVCMMakvUWElJrkvws1X/qSWrlSM+chhBA9o/I6QMeOHcO5c+ekx2vWrEGjRo3wzTff4I2KYxRCQ0OxefNmbNmyBfHx8QgJCUFiYiJGjhwJgLs0FRgYKM0/cuRIPH36FKGhoYiPj8eWLVsQHh6OiRMnSvN069YN69atw549e/DkyRNERUVhxowZ+PLLLyHUxNRlUrHRKtCEEFIhqDwLbNKkSVi0aBEA4NatWwgNDcWECRNw6tQphIaGYuvWrUqX1bdvX7x69Qpz5sxBcnIy6tWrh4iICLi7uwMAkpOTkZiYKM3v6emJiIgIhISEYM2aNahatSpWrVolnQIPANOnT4dAIMD06dPx/PlzODg4oFu3bpg3b56qL5UQeZJ9wDTVA0QIIUQtVA6Anjx5gjp16gAADhw4gG7dumH+/Pm4evUqOpdikGZwcDCCg4MVPrZt2za5NH9//2J3nDc0NMTMmTNpzzKiHu/fc7ea6gHauxeYPBnw9wd27NDMOQkhRA+oHAAZGxtLp5mdOHFCeonK1tZWpdHXhJRLX30F5OUBBdaNUiuRiNsO4/lzzZyPEEL0hMoB0GeffYbQ0FC0bNkSly9fxt69ewFwe4S5uLjwXkFCdI6hIfejCTY23K2OrQFECCHlncqDoP/3v//B0NAQ+/fvx7p161CtWjUAwF9//YWOHTvyXkFC9FrlytxterpWq0EIIRWNyv/Gurm54ejRo3LptNEo0QsbNgAxMUC/fkARyzXwStID9PIlkJQEUC8rIYTwQqkeoIJjezIzM4v9IaRCi40F9uwB7t3TzPn++ou7ffcOcHcHwsM1c15CCKnglOoBqly5MpKTk1GlShW5bTEkSrsVBiHlimQavCZmgSUlAZMmfTwWi4HvvgM6dKCeIEIIKSOlAqBTp07B1tYWgHq2xSCk3NDkStAPHnBBT0EiEfDwIQVAhBBSRipvhaGObTEIKTc0uRJ0zZqAgYFsECQUAjVqqP/chBBSwZVqLm96ejouX76M1NRUiAv9h1pw6wpCKhxNXgJzcQE2buQue4lEXPCzYQP1/hBCCA9UDoCOHDmCb7/9Fu/fv4eVlZXMeCCBQEABEKnYNL0XWFAQN+bn4UOu54eCH0II4YXK6wBNmDABQ4cOxdu3b5Geno43b95If16/fq2OOhKiOzS9GzwArF4NDBoE/Pmn5s5JCCEVnMo9QM+fP8fYsWNhbm6ujvoQotsyM4G3bzW7G3xmJrcdxosXmjsnIYRUcCr3AHXo0AFXrlxRR10I0X2GhtzqzEKh5s5pZ8fdvnqluXMSQkgFp3IPUJcuXTBp0iTcvXsX9evXh5GRkczjX375JW+VI4SAAiBCCFEDlQOg4cOHAwDmzJkj9xgthEgqtMePgWnTADc3YNEizZ2XAiBCCOGdypfAxGJxkT8U/JAKLSmJ2wbj9981e14KgAghhHcqB0CE6C1NT4GXoACIEEJ4p9QlsFWrVmHEiBEwNTXFqlWris07duxYXipGiM7R5CKIBVWpwq0K7eqq2fMSQkgFplQAFBYWhm+//RampqYICwsrMp9AIKAAiFRc2lgDCACqVwfu39fsOQkhpIJTKgC6fv06Kv33of/kyRO1VogQnaWtHiBCCCG8U2oMkK2tLVJTUwEAbdu2RXp6ujrrRIhu0tYYIEIIIbxTKgCytLTEq/8GYMbExCAvL0+tlSJEJ2kzAOrVC3B3B86f1/y5CSGkAlLqEtgXX3yBNm3awMfHBwDQs2dPGBsbK8x76tQp/mpHiC5ZsQKYM4dbDVrTUlK47TD+/Vfz5yaEkApIqU/ynTt3Yvv27Xj06BFOnz6NunXr0l5gRP8YGgK2tto5N02FJ4QQXikVAJmZmWHkyJEAgCtXrmDRokWwsbFRZ70IIQVRAEQIIbxSeSHE6OhoCn6IfvrxR2DkSOCffzR/bgqACCGEV7QSNCHK2rcP2LBBO0EIBUCEEMIrCoAIUZZkHSBNL4QIUABECCE8owCIEGVpcxp8tWrcdhhOTpo/NyGEVEBKBUC9evVC5n8f/jt27EBOTo5aK0WIzsnJAXJzufva6AHq2pXbDmPDBs2fmxBCKiClAqCjR4/i/fv3AIAhQ4YgQ3IpgBB9Ien9AQBLS+3VgxBCCC+Umgbv7e2NqVOnok2bNmCMYd++fbAu4jJAYGAgrxUkRCdIgn4rK0Ao1G5dCCGElJlSAdD69esRGhqKP//8EwKBANOnT4dAIJDLJxAIKAAiFZO29wHLzwc++YQbBH3zJkBLURBCSJkodQmsRYsWuHjxIl6+fAnGGO7fv483b97I/bx+/VrlCqxduxaenp4wNTWFr68vzp49W2z+06dPw9fXF6ampqhevTrWr18vlyc9PR3ff/89nJ2dYWpqCh8fH0RERKhcN0KkGjYE0tKAixe1c35DQ24M0LNnNBOMEEJ4oPIssCdPnsDBwYGXk+/duxfjx4/HtGnTcO3aNbRq1QqdOnVCYmJikefu3LkzWrVqhWvXruHHH3/E2LFjceDAAWme3NxctG/fHgkJCdi/fz/u3buHTZs2oVq1arzUmegpoZCbiu7ior060FR4Qgjhjcq7Orq7uyM9PR3h4eGIj4+HQCCAj48PgoKCUEnF2THLly9HUFAQhg0bBgBYsWIFjh8/jnXr1mHBggVy+devXw83NzesWLECAODj44MrV65g6dKl6N27NwBgy5YteP36NS5cuAAjIyNpnQkp9+zsuB6gUvS0EkIIkaVyD9CVK1fg5eWFsLAwvH79GmlpaQgLC4OXlxeuXr2qdDm5ubmIi4tDQECATHpAQAAuXLig8DmxsbFy+Tt06IArV64gLy8PAPDHH3+gefPm+P777+Ho6Ih69eph/vz5EIlEKr5SQgqIjARGjQJ+/VV7daAeIEII4Y3KPUAhISH48ssvsWnTJhgack/Pz8/HsGHDMH78eJw5c0apctLS0iASieDo6CiT7ujoiJSUFIXPSUlJUZg/Pz8faWlpcHZ2xuPHj3Hq1Cl8++23iIiIwIMHD/D9998jPz8fP/30k8Jyc3JyZNY2kqx5lJeXJw2sSkPy3LKUQZSj7rY2uHQJwvXrIc7Jgejrr9VyjpIIbWxgAECUmgqxFt9T9L7WLGpvzaG21hx1tbUq5akcAF25ckUm+AEAQ0NDTJ48GX5+fqoWJzebjDGmcIZZcfkLpovFYlSpUgUbN26EUCiEr68vXrx4gSVLlhQZAC1YsACzZ8+WS4+MjIS5ublKr0eRqKioMpdBlKOutq5z7RpqAnj86hXuaGlAfYP37+EJ4MGlS7hXvbpW6lAQva81i9pbc6itNYfvts7KylI6r8oBkLW1NRITE+Ht7S2T/uzZM1hZWSldjr29PYRCoVxvT2pqqlwvj4STk5PC/IaGhrD77/KAs7MzjIyMICywVouPjw9SUlKQm5sLY2NjuXKnTp2K0NBQ6XFmZiZcXV0REBBQ5HpHysjLy0NUVBTat28vHY9E1EPdbW3wX9Dj2bAh3Dt35r18pepw+zbYo0eo2bgxvLRUB4De15pG7a051Naao662ziy4aG0JVA6A+vbti6CgICxduhQtWrSAQCDAuXPnMGnSJPTv31/pcoyNjeHr64uoqCj07NlTmh4VFYXu3bsrfE7z5s1x5MgRmbTIyEj4+flJG7Bly5bYtWsXxGIxDAy4IU7379+Hs7OzwuAHAExMTGBiYiKXbmRkxMsvhq9ySMnU1tbv3gEAhJUrQ6it3+W0acC0aRAC0IWlGOl9rVnU3ppDba05fLe1KmWpHAAtXbpUuuBhfn6+9ISjRo3CwoULVSorNDQUAwcOhJ+fH5o3b46NGzciMTERI0eOBMD1zDx//hw7duwAAIwcORL/+9//EBoaiuHDhyM2Nhbh4eHYvXu3tMxRo0Zh9erVGDduHMaMGYMHDx5g/vz5GDt2rKovlZCPJCtBa2shREIIIbxSOQAyNjbGypUrsWDBAjx69AiMMdSoUaNUY2X69u2LV69eYc6cOUhOTka9evUQEREhnbaenJwssyaQp6cnIiIiEBISgjVr1qBq1apYtWqVdAo8ALi6uiIyMhIhISFo0KABqlWrhnHjxuGHH35QuX6ESGl7JWhCCCG8UjkAkjA3N0f9+vXLXIHg4GAEBwcrfGzbtm1yaf7+/iVOt2/evDkuamvFXlIxSXqAtLETvER8PNC/P2BuDhSxVAQhhBDllDoAIkSvREcD6elAEQP0NcLQELhxg3ajJ4QQHlAARIgybG25H22SLIT47h2QmwsUMaifEEJIyVReCZoQoiU2NsB/MxtpNWhCCCkblQOg9+/fq6MehOiu7GwgOBiYMgXQ5gqxBgZA5crcfQqACCGkTFQOgBwdHTF06FCcO3dOHfUhRPekpwPr1gGLF3PjcLSJ9gMjhBBeqBwA7d69GxkZGWjXrh1q1aqFhQsX4sWLF+qoGyG6oeAU+GK2adEICoAIIYQXKgdA3bp1w4EDB/DixQuMGjUKu3fvhru7O7p27YqDBw9KF0ckpMLQhSnwEl5eQK1agFAX1oImhJDyq9SDoO3s7BASEoIbN25g+fLlOHHiBPr06YOqVavip59+UmlDMkJ0mi4tgvjLL8C9e0AR28UQQghRTqkHNKSkpGDHjh3YunUrEhMT0adPHwQFBeHFixdYuHAhLl68iMjISD7rSoh26FIARAghhBcqB0AHDx7E1q1bcfz4cdSpUwfff/89BgwYABsbG2meRo0aoXHjxnzWkxDt0aVLYIQQQnih8iWwIUOGoGrVqjh//jyuX7+O0aNHywQ/AFC9enVMmzaNrzoSol261AN09CjQqBEwfLi2a0IIIeWayj1AycnJJW58amZmhpkzZ5a6UoTolKFDgS5ddGPl5exsbjsMKytt14QQQso1lXuArKyskJqaKpf+6tUrCGlmCqmILC252VeurtquCU2DJ4QQnqgcADHGFKbn5OTAWBf+QyakIqMAiBBCeKH0JbBVq1YBAAQCATZv3gzLAjtSi0QinDlzBt7e3vzXkBBt27IFePAA6NUL+OQT7dZFEgC9fg0wpv2FGQkhpJxSOgAKCwsDwPUArV+/XuZyl7GxMTw8PLB+/Xr+a0iItu3fD/z1F7cAoa4EQPn53OBsmplGCCGlonQA9OTJEwBAmzZtcPDgQVSWbMpISEUnGfOmC6ucm5oC5uZAVhZ3GYwCIEIIKRWVZ4FFR0erox6E6KbwcCAujrs/ciS3I3tQkHbrVKsWFwDl5Gi3HoQQUo4pFQCFhoZi7ty5sLCwQGhoaLF5ly9fzkvFCNG6pCRgxIiPx2Ix8N13QIcOgIuL9up17Zr2zk0IIRWEUgHQtWvXkJeXJ71fFAENyCQVyYMHXNBTkEgEPHyo3QCIEEJImSkVABW87EWXwIjeqFmTu+RVMAgSCoEaNbRXJ4mkJC5Aq1mTgjFCCCmFUu8GT0iF5+ICLF788VgoBDZs0H7A0a8ftyhj27aAuzs3TokQQohKlOoB6tWrl9IFHjx4sNSVIUTnjBsHNG8O3L4NdO6s/eAnKQnYt+/jsa6MSyKEkHJGqQCoEk21JfrK0BBo0YL70QUPHnALIBZE45IIIURlSgVAW7duVXc9CCHKqFmTW/25YBCkK+OSCCGkHKExQIQUJyYGmDIF+P13bdeE4+IC/PDDx2NdGZdECCHljFI9QE2aNMHJkydRuXJlNG7cuNjp7levXuWtcoRo3blzwKJFwPDhQPfu2q4N57vvgIULuctzjx/rxi71hBBSzigVAHXv3h0mJiYAgB49eqizPoTolrQ07layB5cucHbmbvPzuW0xCCGEqEypAGjmzJkK7xNS4UkCIHt77dajIBMTwMuLu83M1K3gjBBCygmV9wKTuHLlCuLj4yEQCODj4wNfX18+60WIbtDFAAjgZn0RQggpNZUDoKSkJPTv3x/nz5+HjY0NACA9PR0tWrTA7t274UrjEUhF8uoVd0u9LIQQUqGoPAts6NChyMvLQ3x8PF6/fo3Xr18jPj4ejDEEaXuXbEL4pqs9QIQQQspE5QDo7NmzWLduHWrXri1Nq127NlavXo2zZ8/yWjlCtE5XA6Bt24AGDYCpU7VdE0IIKZdUvgTm5uYm3Rm+oPz8fFSrVo2XShGiM27e5C6DublpuyaysrKAW7doAURCCCkllXuAFi9ejDFjxuDKlStg/61Ge+XKFYwbNw5Lly5VuQJr166Fp6cnTE1N4evrW2Iv0unTp+Hr6wtTU1NUr14d69evLzLvnj17IBAIaOo+KT1PT8DPDzA21nZNZFWtyt2+eKHdehBCSDmlVA9Q5cqVZRY/fP/+PZo1awZDQ+7p+fn5MDQ0xNChQ1UKNvbu3Yvx48dj7dq1aNmyJTZs2IBOnTrh7t27cFPwH/eTJ0/QuXNnDB8+HDt37sT58+cRHBwMBwcH9O7dWybv06dPMXHiRLRq1Urp+hBSblAARAghZaJUALRixQq1nHz58uUICgrCsGHDpOc5fvw41q1bhwULFsjlX79+Pdzc3KT18fHxwZUrV7B06VKZAEgkEuHbb7/F7NmzcfbsWaSnp6ul/qSCi48Htm8HvL2BwYO1XRtZkgAoOZnbEd6AdrUhhBBVKBUADRo0iPcT5+bmIi4uDlOmTJFJDwgIwIULFxQ+JzY2FgEBATJpHTp0QHh4OPLy8mBkZAQAmDNnDhwcHBAUFKTUwOycnBzk5ORIjzMzMwEAeXl5Csc7KUvy3LKUQZSjjrYWXLsGw0WLIG7VCqJvv+WtXF7Y2sJQIIAgPx95yclAlSoaOzW9rzWL2ltzqK01R11trUp5pV4IEQA+fPggdzJra2ulnpuWlgaRSARHR0eZdEdHR6SkpCh8TkpKisL8+fn5SEtLg7OzM86fP4/w8HBcv35d6dexYMECzJ49Wy49MjIS5jxsNRAVFVXmMohy+Gxrj9On0RBASl4e/o6I4K1cvnSoVAmm6ek4t28fMqtX1/j56X2tWdTemkNtrTl8t3VWVpbSeVUOgN6/f48ffvgB+/btwyvJInEFiEQilcorvLEqY6zYzVYV5Zekv337FgMGDMCmTZtgr8K05alTpyI0NFR6nJmZCVdXVwQEBCgd0CmSl5eHqKgotG/fXto7RdRDHW1t8N/Gvk5166Jz5868lMknYaNGYKmpaNW0KVjTpho7L72vNYvaW3OorTVHXW0tuYKjDJUDoMmTJyM6Ohpr165FYGAg1qxZg+fPn2PDhg1YuHCh0uXY29tDKBTK9fakpqbK9fJIODk5KcxvaGgIOzs73LlzBwkJCejWrZv0cbFYDAAwNDTEvXv34OXlJVeuiYmJdLPXgoyMjHj5xfBVDikZr23939gxgypVYKCLv7/oaABl7MYtA3pfaxa1t+ZQW2sO322tSlkqf3YeOXIEO3bsQOvWrTF06FC0atUKNWrUgLu7O3799Vd8q+RYCWNjY/j6+iIqKgo9e/aUpkdFRaF79+4Kn9O8eXMcOXJEJi0yMhJ+fn4wMjKCt7c3bt26JfP49OnT8fbtW6xcuZK26SCq0dVFEAkhhJSZygHQ69ev4enpCYAb7/P69WsAwGeffYZRo0apVFZoaCgGDhwIPz8/NG/eHBs3bkRiYiJGjhwJgLs09fz5c+zYsQMAMHLkSPzvf/9DaGgohg8fjtjYWISHh2P37t0AAFNTU9SrV0/mHJL9ygqnE1IiCoAIIaTCUnnubPXq1ZGQkAAAqFOnDvbt2weA6xmSBBvK6tu3L1asWIE5c+agUaNGOHPmDCIiIuDu7g4ASE5ORmJiojS/p6cnIiIiEBMTg0aNGmHu3LlYtWqV3BpAhABAUhJ3lSgpSfFxiSQBkK5uhBoRwW2HMXCgtmtCCCHljso9QEOGDMGNGzfg7++PqVOnokuXLli9ejXy8/OxfPlylSsQHByM4OBghY9t27ZNLs3f3x9X/xucqgxFZZCKJykJuHXLHg0acIs3h4cDI0Z8XCJnwABg586Pxxs3AkFB3PMePABq1gRcXAoV+vvvwL//AgrGjekEsZjbDkPXVqkmhJByQOUAKCQkRHq/TZs2iI+PR1xcHLy8vNCwYUNeK0dIUQoGLgcPAiEhhhCLW+KnnxgaNABu3PiYVywG/ruKKj0eNgxYtYqLHxgrKihygYtv4ahIh9Bq0IQQUmplnkDi7u4uvWRFiCasXg2MG8cFLh9xyyMwJpAJfopz8+bH+2IxMHw4cOcOsHKlfE+RTpIEQP/+C+TnA4bamg9GCCHlT6nWzz958iS6du0KLy8v1KhRA127dsWJEyf4rhshAD6O3blxAxgzBhg7tnDwI6+YpaSKfJwxICyMC34q4zXmi3/A3eFhyo8Z0jQHB0Ao5Cqcmqrt2hBCSLmicgD0v//9Dx07doSVlRXGjRuHsWPHwtraGp07d8b//vc/ddSR6LHwcMDdHWjbFmjUCFDmLSYUAosXc7eS40GDZI8XLSp++yxXPMMPWIxJbBFiY1UcPK0pQiHg5MTdp8tghBCiEpX7zBcsWICwsDCMHj1amjZ27Fi0bNkS8+bNk0knpCySkj4OZC5IIJDtARIIAAMDBpFIAKGQYcMGAYKCgH79gIcPgRo1uAHOP/8se2xrC3z3HSAScbHEggXAlCnc+ezBzQB7BTt8/TV3Hp28JFa1KvD8OQVAhBCiIpV7gDIzM9GxY0e59ICAAJWWoCakJH/8IR/8AMCECbK9OZs2AQ8e5GPu3HN48CBfGqC4uACtW3+c3VX4OCgISEjgencSEoBJk7gARyj8GACl4eMaQGIxFzDpVE+Qjw9Qr17J1/wIIYTIUDkA+vLLL3Ho0CG59N9//11mCwpCSispCViyhAt0ChMKuQHQBQOXoCAuqKlf/5X8VPYSFBUUzR3H7XNXMAACuN6iI0dKsaaQumzfzk1lo789QghRiVKXwFatWiW97+Pjg3nz5iEmJgbNmzcHAFy8eBHnz5/HBEXfWISoIDycm40lucTl7MyN75VcptqwQbZHRx1cXADYSi6Bya8CHRwMfP+9/PR5Qggh5YdSAVBYWJjMceXKlXH37l3cvXtXmmZjY4MtW7Zg+vTp/NaQ6I2kJNngB+CCn9hY4P37j2N3NOK/VaCbdraD8PjHAKxBA+DatY91lFwW69BBg3UjhBBSZkoFQE+ePFF3PQjB7t3y09tFIi74ad1aw5X5LwBq1M4eCRs+Dp5+8ICbkVa4jidOcLPVFK4orU5//w0MHcpt1xETo8ETE0JI+VamldPYf99WAhqAScooLg6YNUs+XSjkAg+NW76cG4Tk7AyXqrJBjYGB/ODsIUM+PqbRS2ImJsDt29yaQIQQQpRWqoUQd+zYgfr168PMzAxmZmZo0KABfvnlF77rRvRAUhLwyy9AQACQlcVNaio4w6vgmB+NcnICfH0/rrb8HxeXjzPFAPnJVxqfKSap38uXQG6uhk5KCCHln8o9QMuXL8eMGTMwevRotGzZEowxnD9/HiNHjkRaWprMXmGEFKfghqUA4OYGXLwIZGbKrteja4KCuDE/Dx9yY5T69pV9XCQCDh0CevYsZqNVvtjZAUZGQF4ekJLCNSIhhJASqRwArV69GuvWrUNgYKA0rXv37qhbty5mzZpFARBRiqJFDp8/54IfFxcdCHx+/BGwseGmfFlayj0sqWNSkuJLYmPHftyvTK2XxQQCrhfo6VNuMUQKgAghRCkqXwJLTk5GixYt5NJbtGiB5ORkXipFyh9l18VJSgJOnQKmT5cPGkQirldF6z584JaF/uEHrlLFKHxJTCjkrpwB8jPF1HZZjHaFJ4QQlakcANWoUQP79u2TS9+7dy9q1qzJS6VI+VJwvy53d+4YkA+KJPnatePW7ytMawOeC3vFLYIIQ0PA2rrE7IVXlF6yRD6PSAT17SlGARAhhKhM5Utgs2fPRt++fXHmzBm0bNkSAoEA586dw8mTJxUGRqRiK3wpSyzm1vLZuRM4fZrrBREIgLp1uclKBXF7eCle5FCr/psCD3t7pbeYKHzZTtFlMbXtKebtDdSvD5ib81QgIYRUfCr3APXu3RuXL1+Gvb09Dh8+jIMHD8Le3h6XL19Gz5491VFHosMePJD/omeMW5JGcgmIMfngR5K+e7fslhY6oWAAVAqFL4sVxvslsZ9/Bm7e5NYDIoQQohSVeoDy8vIwYsQIzJgxAzt37lRXnUg5YmWlfN7Cu7gLhUDz5jrS61OQ5BKYnV2pi1BmptjDhzr42gkhRE+o1ANkZGSkcCNUon+Skrip3v37y6YLhcDixdxlHkXpOrHGT0nK2AMkIdlotUUL+fYAgKNHgcREHdlUlRBC9IzKl8B69uyJw4cPq6EqpLyQDGbu1YvrxbCxAc6f/3gpa9Ik+ZlRGzYAEyfK7+Kuk3gKgCSKWjxx2TLFg8dVlpgI1K7NDYamSIoQQpSi8iDoGjVqYO7cubhw4QJ8fX1hYWEh8/jYsWN5qxzRPYrW78nM5JafKdibU/ASUMEFDXVijZ+SjB4NdOum1AwwZRVujz17uEBRokybqv7+O3D/Pnff3Z22pyeEECWoHABt3rwZNjY2iIuLQ1xcnMxjAoGAAqAKTtGgZ7FY8XiWchHsKGJnV6bxP0Up2B6StYIKKtW4oKQkYPz4j8e0PT0hhChF5QCIdobXb4qWetKZ9XvKkZo1FU+V//VXLhCqXVvJ+EVRREojrAkhpESl2gxVgjEm3RGe6IcPH2SPdXowc2mtWMGN2FbjeJqixgVt3gx88YUKY4IkkVRBFJESQkiJShUAhYeHo169ejA1NYWpqSnq1auHzZs38103ooM2bOBu27QpB4OZS2v5cm4bDDWvrFxwBelLl2TXXBSLubFWJcZgkkhK8mSBoAJGpIQQwj+VL4HNmDEDYWFhGDNmDJo3bw4AiI2NRUhICBISEvDzzz/zXkmiGz58ALZu5e6HhnJTvCskyTpAPM0CK45kXFB0tOwaSQAXBG3axK2sXeyu8kFBwPv33O6rfn4VMCIlhBD+qRwArVu3Dps2bUL/AgvAfPnll2jQoAHGjBlDAVAFtn8/8Po1N+OrUydt10ZNsrK4H0AjAZBEUWOC5swB5s5VYld5f3/Axwdo0EAj9SWEkPJO5UtgIpEIfn5+cum+vr7Iz8/npVJEN61bx92OGFH0Ng/lnqT3x8hItWWuy0jRrvKSHjaldpVv2BC4e5cbREQIIaREKgdAAwYMwDrJN2EBGzduxLfffstLpYjuuXGD283c0LCCX2GRLIJoZ6f0Rqh8Kbyr/E8/yeeRTPAihBBSNipfAgO4QdCRkZH49NNPAQAXL17Es2fPEBgYiNDQUGm+5cuX81NLolVJScCMGdz9Xr0AJyft1ketJD1ApqbcC9fwYGJldpU/fBjw9AQeP1YwLogxIDsbMDPTRHUJIaTcUrkH6Pbt22jSpAkcHBzw6NEjPHr0CA4ODmjSpAlu376Na9eu4dq1a7h+/boaqks0TbLtxZEj3LGbm3bro3a//cbdJiSUcX+KsitqqvzKlYCHh4ItNMLCuNWrf/xRG9UlhJByReUeoOjoaHXUg+ggRdtehIVxk40q5CzrpCTZMTQ6sKpy4S00Dh0CCi62LlNFS0vg3TsgPl4rdSWEkPKkTAsh8mHt2rXw9PSEqakpfH19cfbs2WLznz59Gr6+vjA1NUX16tWxfv16mcc3bdqEVq1aoXLlyqhcuTK++OILXL58WZ0vocIqbpHhCklHX7BkV3kXF6BePfnHRSLg9Gng6gcfLoECIEIIKZFWA6C9e/di/PjxmDZtGq5du4ZWrVqhU6dOSExMVJj/yZMn6Ny5M1q1aoVr167hxx9/xNixY3HgwAFpnpiYGPTv3x/R0dGIjY2Fm5sbAgIC8Pz5c029rApD7xYZLgcvWFEVAWDAAKD9uP8CoMRErieIEEJIkbQaAC1fvhxBQUEYNmwYfHx8sGLFCri6uiqcZQYA69evh5ubG1asWAEfHx8MGzYMQ4cOxdKlS6V5fv31VwQHB6NRo0bw9vbGpk2bIBaLcfLkSU29rArDxQXo2PHjcYXc9qIgFxega9ePg2108AUXNS4IAF7DDqlwAAD8e+aeFmpHCCHlR6lmgfEhNzcXcXFxmDJlikx6QEAALly4oPA5sbGxCAgIkEnr0KEDwsPDkZeXByMjI7nnZGVlIS8vD7a2tkXWJScnBzk5OdLjzMxMAEBeXh7y8vKUfk2FSZ5bljK0SSwGbt0yBCDAjBkiDBkihosLoIsvh5e2ZgyGUVEQMIb8rVvB/P2hiy84MJAbAP3okQCpqcC33378M46HD6rgJZ5E3EaWTwM8fChAjRqM1xiuvL+vyxtqb82httYcdbW1KuVpLQBKS0uDSCSCo6OjTLqjoyNSUlIUPiclJUVh/vz8fKSlpcHZ2VnuOVOmTEG1atXwxRdfFFmXBQsWYPbs2XLpkZGRMDc3V+blFCsqKqrMZWjDrVv2ePasJczN81C//jHcvCnGzZvarlXxytLWpq9eocOHDxAbGCDCygrs5k3o+gv+8MEUAkEAGOO6gv6BN/xxBjHr4vHjWkMwJoBAwBAcfB3t2yu+tFxa5fV9XV5Re2sOtbXm8N3WWZKV/JWgtQBIQlBosTnGmFxaSfkVpQPA4sWLsXv3bsTExMDU1LTIMqdOnSqzflFmZiZcXV0REBAAa2trpV6HInl5eYiKikL79u0V9k7puoMHuess33xjgB49OpaQW7v4aGvBmTPcracnOn35JZ/VUyuRSITgYCFEIgEuCFrC0zgZd3LqgoH7m2BMgPXrG2HChHq89ASV9/d1eUPtrTnU1pqjrraWXMFRhtYCIHt7ewiFQrnentTUVLleHgknJyeF+Q0NDWFnZyeTvnTpUsyfPx8nTpxAgxL2RzIxMYGJiYlcupGRES+/GL7K0aSsLODgQe7+oEFCGBmVj70vytTWCQkAAEGNGuXq9zViBNC5s2SqfCDu3g3Ezg6yeUQiAa5cMUJCQjGbqqqoPL6vyzNqb82httYcvttalbK0Ngja2NgYvr6+ct1fUVFRaNGihcLnNG/eXC5/ZGQk/Pz8ZF70kiVLMHfuXBw7dkzhvmWkZIcPcxOJPD2Bli21XRsNefCAu61ZU7v1KIWCU+Xr1FE8U+zrrxUsnkgIIXpKq7PAQkNDsXnzZmzZsgXx8fEICQlBYmIiRo4cCYC7NBUYGCjNP3LkSDx9+hShoaGIj4/Hli1bEB4ejokTJ0rzLF68GNOnT8eWLVvg4eGBlJQUpKSk4B1NC1bJjh3c7cCBGt8SS3sk6/3o0LT30nCpxrBjyb+wMniv8PFiN1UlhBA9odUxQH379sWrV68wZ84cJCcno169eoiIiIC7uzsAIDk5WWZNIE9PT0RERCAkJARr1qxB1apVsWrVKvTu3VuaZ+3atcjNzUWfPn1kzjVz5kzMmjVLI6+rvEtOBiQdbQMHarcuGlWOe4BktGuHb6Oj0WHjAdyu2QupqUDfvrJZRCIgLo67/+ABf5fFCCGkvND6IOjg4GAEBwcrfGzbtm1yaf7+/rh69WqR5SX8N46DlN7atVwvQZMm5b4zRDVnzwKPHgHVq2u7JmVTrRoAwP7lP2g9nOvpUbSp6rffcmO9GOMe37iR23qDEEL0gda3wiC6JTwc+Pln7v61a3o2VsTaGmjcGKhUSds1KRsf2S0xCi+eaGAAODoC799zwQ9Al8UIIfqHAiAiJdn8VIIx+lIsl3zk9wQLCuImuUVHA0+ffhzjVZBkT7HoaPqdE0IqPq1fAiO6o7i9QCv8+JDjx4Hffwfatwd69tR2bcpGEgD98w/3C/1vSpiLi+zvUdFlsQEDPj5Gl8QIIRUZ9QARKQsL+TQd2wtUfWJigHXrgBMntF2TsvPyAgwNuWtcRXTlFLenGMAFRiNGcE9PSqJeIUJIxUMBEJHat0/2WAf3AlUfyRT48j4DDACMjD5GrXv2FBm5FLwstmeP/ONiMdC9O7duEK0fRAipaCgAIgCAjAyuRwAAtm/nvhQTEvToEkgFWQNIytub69b54YdiIxfJAootWihePPHq1Y+XyWigNCGkIqEAiADggp+3b7lVhAcO/LiqsF5grOKsAQRwEcoff6g0xavwJTGhECi0lBYAbkzYhQsC3LplT4EQIaRcowCIIDcXWLmSuz9xoh6t/Czx77/ceBkDA27vj/KuuNHsxSh4SSwhAQgLU9wrNGCAEDNmtESNGoZ0SYwQUm5RAESwdy/w/Dng5AR88422a6MFkt4fd3fA2Fi7deFDzZrykYuSo9kL7ilWuFfoIy5CFosFGDECePaMBkoTQsofCoD03LNnwMyZ3P2xYwETE+3WRyskq4dXlPE/kshFwsCg1KPZC/YK7d0r/7hYDDRvTgOlCSHlDwVAeiw8HPDwAJ484Y4VTYPXCwMHAq9fA5s3a7sm/AkKAkaP5u5361am0ewlDZR+/lzxQGnqFSKE6DIKgPSUZNXngkNFQkP1+MuqcmXAzU3bteDX119zt2fPcmOAyujjJTFucLVQyPDdd/L5RCJg1CjqFSKE6DYKgPRUKcfJkvKkeXNuX7PXr4ErV3gpMigIePAgH3PnnsODB/mYPl1xr9DRo/K9Qn//TT1ChBDdQQGQnqpZU362l96s+lwQY0CPHsCYMUB6urZrwy9DQ+CLL7j7f/3FW7EuLkD9+q8UDpQWCrlLZYWJRECzZtQjRAjRHRQA6SkjI9n/3PVq1eeCUlO5PcDWrAHMzLRdG/516sTd8hgAFVZ4+vzevYp7hRQtS0TjhAgh2kIBkJ5au5b7r7xxYz1c9bkgyRR4N7eKOQWuQwfu9u+/gbQ0tZ2muOnzitaVEomAQYNonBAhRHtoN3g99OEDFwABwNSp3BeX3qpIe4Ap4uICbNkCfPopYGensdMGBXGx18OH3OzCTz+VH3N26tTH+5JeoQYNgHfvuF+H3vVGEkI0inqA9NDOnVxngLs70LOntmujZRVtDzBFhgwBfHw0vsS3pFfok0/kxwm1ayefv6hxQnSZjBCiDtQDpGcY47Y4ALiFDw31/R1w4wZ36+Cg3XpUcAV7hCSxpru7fK9QwXFCklWm587ljg0MuEBKLy/VEkJ4Rz1AembnTiA+nrssofdfJOHh3HxtAPj554o9CGXPHm5doOvXtVaF4sYJKRo0LRYDs2fTdHpCiHpQAKRHwsOBwEDuflYWsH+/duujVZKVICUYK3HH9HJt717gt9+A1at15jUWnD128aLiIKgwukxGCOELBUB6Qt++70ukbytBWllxt1u26NSUq+LGCS1eXPJ0+uHDgYkTaTYZIUR1FADpCX37vi9RGXZML3eSkoBff/14XHAhHh1SeD2hSZNKnk7PGLBsGV0mI4SojgIgPaFoiZuK+n2vFEdHYNUq2S6HiroSZDmKfguOEwJkg6JLl5S/TNa06cceoY0buXS6TEYIKYgCID2xc6fscUX+vldKRATXxTB4cMVfCbKc93aV5jKZhKRHqE4dbq1LGjtECJHQ90nQeiElhRv6AQD79nEzvmvU0OPgB+Aiwg8fABubir8SpGTK1XfffdwV3t+/XL4BCk+nd3EBbG0/vjQDA/nOLoCb+SghFgPDhnHjwk+elJ1i36ED12FGCzESUvFRAKQHwsKAnBxuc/A+fTS+Hp7uSU8Hjhzh7g8YoNWqaIwkcti3j4uGp0/Xdo1KTTKNXqKkVacFgo8DpwuKivp4XxIUSfIWXHMoKYmCIkIqIroEVsG9eQOsW8fdnzqVgh8AwIEDXERYty7QsKG2a6M5Li5AaChw8ybQpo22a8Or4i6TLVokf5msqL+DgjPMhg3j/mkofOlM0WUzupRGSPlDPUAV3Jo1wNu3QP36QJcu2q6NjpAMiBowQD8jwoLRAGMVrg1KukwmFAILFgBTpii+XFbQxYsf70uCIgmBgFul2sEBGDWKLqURUt5QAFSBPXgALFnC3Z8yRbkZNBVeYiIQE8Pd/+YbrVZFq7KyuPnjf/4JzJsH1K5dob6pi7tMVtTYIcZkL5UVdelMgjH5K4mStYkkjxd3KY0urRGiXfSVWEGFh3PfaZmZ3PG7d9qtj87YvZu79ffnrm3oq3fvuMDn0iXgiy/0YgXB4qbYP30KbNpU8qUzZRQMpCS9Rk2ayF5K++orxYs3FnV57dYte7q8RgjPqAeoApKs+lzwv9fgYKBzZz3/TzMpCfD05AZDNW2q7dpoV24u9yMhmS/eoYNevUkK9hSVppdIEiCVdCnt2rWP98Vi2W1oJL1Gu3cDp0597DlatgywtAS++84QYnFLzJzJiry8Rr1LhKiOAqAK6MKFote909sPw/BwLiosOFBDnz14IH99RyQCzp8HqlTR22/Oki6dHT8uO5ZowwYuX1kupQHc4ydPfjwWi4GQEGkJ/6UJZGaqCQTAjz9yu5z8+OPHt/bAgcAvv8i+1ZW9BEeBE9EnFABVMK9eAdOmyaeXo3Xv+CfpEiu8X4Ke9XbIkCyOWDhS7tePuy34zannSuolAooPkpQdcK0sSTDFGHcVsyCxGNi+XfZ4+HDg6FHg998/9i51784dF/5/oPD/CMr0NilKK20eQjSKadmaNWuYh4cHMzExYU2aNGFnzpwpNn9MTAxr0qQJMzExYZ6enmzdunVyefbv3898fHyYsbEx8/HxYQcPHlSpThkZGQwAy8jIUOl5heXm5rLDhw+z3NzcMpWjrHv3GPPx4f7/tLFhTCjk7guFjG3erJEqaI3Ctn72jLFTpxj74QfJP+WyP9HRWquvTti8+eObRCCQbx+hkGtDSTs+e8YY0/z7ujx69ox7e/3XZDJNLRQyNmiQ7PHixYwZGMg2v4GBfJqmfyRvC4GAsYEDGRs+/GOagQFjc+YwtmjRx3oaGHCvreDx5s3cT0l5JO1W4K0md1zaPMo+7/HjXDZ37jn2+HEu7+cnstT1OaLK97dWA6A9e/YwIyMjtmnTJnb37l02btw4ZmFhwZ4+faow/+PHj5m5uTkbN24cu3v3Ltu0aRMzMjJi+/fvl+a5cOECEwqFbP78+Sw+Pp7Nnz+fGRoasosXLypdL3UGQC8uP2NXl51iLy4/U3hc2jxLlzJWDc9Ya5xi1fCMzZnD5bm2XPZ5avuE4fNTqBR5ch8/ZufmzmW5jx9zjxf8xFX0I/ly13eSb+q9exW3k6+v7Dfe5s3ybS0pR1Pvo3LwflSUp/DfY+HjzZsZczPg/obdDJ5JAwc3g0TWGqeYqyCRCQSyf+eSIKlgGiB/rCiNrzx8lC0QMNa5M2Mu/6W54Blr1erjsavgGZs0ibGpUxlzFXxM69VL9njNGsbWr5dNk7RjwbRBg4rK87Gti86jTDmyacp8hitK07U8fJb99PxjtmPIKvb0fIHPER6UmwCoadOmbOTIkTJp3t7ebMqUKQrzT548mXl7e8ukfffdd+zTTz+VHn/99desY8eOMnk6dOjA+vXrp3S91BUARQ/YzPLBfSnnw4Cdr9pb5ji60yIW1W1liXmiOy2SSRtvvZkNw0aZtN/Qm4kL/osVFib/b1jv3rLHixbJ/zsXGFhynsL/zinKs2gRY8uXy6b16cNP2b16SV+r2MCAsY4dFfdoSJ6jD11iqnr2TD5gVNSGABNLbov69/6nnxibPVs2rV8/2eOFC7mf4t6Pmzdz32bF5Vm5snTv640b5dMUnV+ZssPCVD9/Ee9rmffxsmWMbd4sk/aoieznwaXei9il3rKfB2e8Bsl+ZnRexCZDNs8WyOaZhEVsUqE8+yB7rqHYzEKwtMTnKVP23kJlj8dypc4/FJuLzTMJi1hQoc9CZV/bGKwoNs8wbFDq/IXPtRP9ZY631VnEtteVzbPWbzNb5ydb9onKsmXvabKIbft0nUzaKVvZPPubLmIHmsmW/Zej7O/jUPNF7HAL2TxRjt/KHB9ptYgdabVILu3o57JpJ5xlnxfRehGLaF2o7Gqy5/+r7SL2V9tC79lB/H0eq/L9LWCMMW1cesvNzYW5uTl+++039OzZU5o+btw4XL9+HadPn5Z7zueff47GjRtj5cqV0rRDhw7h66+/RlZWFoyMjODm5oaQkBCEfBxBiLCwMKxYsQJPnz5VWJecnBzk5ORIjzMzM+Hq6oq0tDRYW1uX+jXm5eUhKioK7du3R9r1f1GtZQ0IUfxAADEEMIBqv5J8GEAAFFs2AwADAwhUHIjAIBmCWbY8ivLxVbay5ebv2gU4OIB5edGgAwUEW7dCGBwMgUgEJhRCPHAghNu2Ffsc9t80qJLeV8q+R+TKZgyCYj6iSv2+VuI5an1tSjxHF/5mC8qHAYQQa/RvtvD5S/qcAwDRf/VURT4MYABxsevCKHv+wvh8baX5flDX+4HPsvMhxIvzD+D8Sdk/lzMzM2Fvb4+MjIwSv7+1Ngg6LS0NIpEIjo6OMumOjo5ISUlR+JyUlBSF+fPz85GWlgZnZ+ci8xRVJgAsWLAAs2fPlkuPjIyEubm5si+pSFFRUcj8PREDlfjDUfXNDQCGSpQrAEo1ClOZPwpl/3AK5+OrbEXlFv6jExsY4GRWFrLfv+e2grh5U4mS9YyjI0w3bIBFcjLeOzsDAAK2by82AFH2y7k0H67KlF3q97UyZavztSmbR8t/swUp8zlT2vMr8xxlz69qgKJs2cqevzA+X1tpvh/U9X7gs2xDiHA6/CisX5Z9bbasrCyl82p9Fpig0DL8jDG5tJLyF05XtcypU6ciNDRUeizpAQoICOCvB8jhX4i2jpf54yz8Ja3ovwBl8uTDAAYCwIAV/TxF/81qNI8mzy8UQvTzzxBOn/6xN2PtWrQNDARRjUgk+tgrpKBHRuu/6/LwfqQ6KpeHAYJiPsPEAu6zT9U8pX2euvIU9Rlems9+TeZRb9lC+Ad15a0HSFlaWwna3t4eQqFQrmcmNTVVrgdHwsnJSWF+Q0ND2NnZFZunqDIBwMTEBNbW1jI/AGBkZFTmH0k5bi08cWHQRuSDW2o2H0Kc8xokcxw7aGOp8sQO2giDTRvB/lvGlgmFEAwaJLOsrWDjRggK7RKp0TxqPr/Ma9+wAYZTpkDw3zK/goQEGI4YwcvvU99+DEeM+NiOT59CsGmTbFtr4XddHt6PfNZRb/6uFXyGFTw22FS6PKV9Hl95HrRQ7jNcXd8PfH7PqK/sDXBr4cnb55bSeBt5VApNmzZlo0aNkknz8fEpdhC0j4+PTNrIkSPlBkF36tRJJk/Hjh11YhA0Y//N/AiLlp0JUuC4tHkYY/JzbwsfazuPGsvOffyYnS08M4mohcK21rX3mpbfj3zWUa69dbCO5aEdlXmeutpa2c9wdX0/8Pk9w1fZT88/ZjuG6vEsMMk0+PDwcHb37l02fvx4ZmFhwRISEhhjjE2ZMoUNHDhQml8yDT4kJITdvXuXhYeHy02DP3/+PBMKhWzhwoUsPj6eLVy4UKemwRP1oLbWHGprzaL21hxqa83RhXWAtDoGqG/fvnj16hXmzJmD5ORk1KtXDxEREXB3dwcAJCcnIzExUZrf09MTERERCAkJwZo1a1C1alWsWrUKvXv3luZp0aIF9uzZg+nTp2PGjBnw8vLC3r170axZM42/PkIIIYToJq0Pgg4ODkZwcLDCx7YpmILr7++Pq1evFltmnz590KdPHz6qRwghhJAKSGuDoAkhhBBCtIUCIEIIIYToHQqACCGEEKJ3KAAihBBCiN6hAIgQQggheocCIEIIIYToHQqACCGEEKJ3KAAihBBCiN6hAIgQQgghekfrK0HrIsYYACAzM7NM5eTl5SErKwuZmZmq7VBLVEZtrTnU1ppF7a051Naao662lnxvS77Hi0MBkAJv374FALi6umq5JoQQQghR1du3b1GpUqVi8wiYMmGSnhGLxXjx4gWsrKwgEAhKXU5mZiZcXV3x7NkzWFtb81hDUhi1teZQW2sWtbfmUFtrjrramjGGt2/fomrVqjAwKH6UD/UAKWBgYAAXFxfeyrO2tqY/Jg2httYcamvNovbWHGprzVFHW5fU8yNBg6AJIYQQoncoACKEEEKI3qEASI1MTEwwc+ZMmJiYaLsqFR61teZQW2sWtbfmUFtrji60NQ2CJoQQQojeoR4gQgghhOgdCoAIIYQQoncoACKEEEKI3qEAiBBCCCF6hwIgNVq7di08PT1hamoKX19fnD17VttVKtcWLFiATz75BFZWVqhSpQp69OiBe/fuyeRhjGHWrFmoWrUqzMzM0Lp1a9y5c0dLNa44FixYAIFAgPHjx0vTqK359fz5cwwYMAB2dnYwNzdHo0aNEBcXJ32c2psf+fn5mD59Ojw9PWFmZobq1atjzpw5EIvF0jzU1qVz5swZdOvWDVWrVoVAIMDhw4dlHlemXXNycjBmzBjY29vDwsICX375JZKSktRTYUbUYs+ePczIyIht2rSJ3b17l40bN45ZWFiwp0+fartq5VaHDh3Y1q1b2e3bt9n169dZly5dmJubG3v37p00z8KFC5mVlRU7cOAAu3XrFuvbty9zdnZmmZmZWqx5+Xb58mXm4eHBGjRowMaNGydNp7bmz+vXr5m7uzsbPHgwu3TpEnvy5Ak7ceIEe/jwoTQPtTc/fv75Z2ZnZ8eOHj3Knjx5wn777TdmaWnJVqxYIc1DbV06ERERbNq0aezAgQMMADt06JDM48q068iRI1m1atVYVFQUu3r1KmvTpg1r2LAhy8/P572+FACpSdOmTdnIkSNl0ry9vdmUKVO0VKOKJzU1lQFgp0+fZowxJhaLmZOTE1u4cKE0T3Z2NqtUqRJbv369tqpZrr19+5bVrFmTRUVFMX9/f2kARG3Nrx9++IF99tlnRT5O7c2fLl26sKFDh8qk9erViw0YMIAxRm3Nl8IBkDLtmp6ezoyMjNiePXukeZ4/f84MDAzYsWPHeK8jXQJTg9zcXMTFxSEgIEAmPSAgABcuXNBSrSqejIwMAICtrS0A4MmTJ0hJSZFpdxMTE/j7+1O7l9L333+PLl264IsvvpBJp7bm1x9//AE/Pz989dVXqFKlCho3boxNmzZJH6f25s9nn32GkydP4v79+wCAGzdu4Ny5c+jcuTMAamt1UaZd4+LikJeXJ5OnatWqqFevnlranjZDVYO0tDSIRCI4OjrKpDs6OiIlJUVLtapYGGMIDQ3FZ599hnr16gGAtG0VtfvTp081Xsfybs+ePbh69Sr+/vtvuceorfn1+PFjrFu3DqGhofjxxx9x+fJljB07FiYmJggMDKT25tEPP/yAjIwMeHt7QygUQiQSYd68eejfvz8Aem+rizLtmpKSAmNjY1SuXFkujzq+OykAUiOBQCBzzBiTSyOlM3r0aNy8eRPnzp2Te4zaveyePXuGcePGITIyEqampkXmo7bmh1gshp+fH+bPnw8AaNy4Me7cuYN169YhMDBQmo/au+z27t2LnTt3YteuXahbty6uX7+O8ePHo2rVqhg0aJA0H7W1epSmXdXV9nQJTA3s7e0hFArlItbU1FS56JeobsyYMfjjjz8QHR0NFxcXabqTkxMAULvzIC4uDqmpqfD19YWhoSEMDQ1x+vRprFq1CoaGhtL2pLbmh7OzM+rUqSOT5uPjg8TERAD03ubTpEmTMGXKFPTr1w/169fHwIEDERISggULFgCgtlYXZdrVyckJubm5ePPmTZF5+EQBkBoYGxvD19cXUVFRMulRUVFo0aKFlmpV/jHGMHr0aBw8eBCnTp2Cp6enzOOenp5wcnKSaffc3FycPn2a2l1F7dq1w61bt3D9+nXpj5+fH7799ltcv34d1atXp7bmUcuWLeWWdLh//z7c3d0B0HubT1lZWTAwkP3qEwqF0mnw1NbqoUy7+vr6wsjISCZPcnIybt++rZ62531YNWGMfZwGHx4ezu7evcvGjx/PLCwsWEJCgrarVm6NGjWKVapUicXExLDk5GTpT1ZWljTPwoULWaVKldjBgwfZrVu3WP/+/Wn6Kk8KzgJjjNqaT5cvX2aGhoZs3rx57MGDB+zXX39l5ubmbOfOndI81N78GDRoEKtWrZp0GvzBgweZvb09mzx5sjQPtXXpvH37ll27do1du3aNAWDLly9n165dky7/oky7jhw5krm4uLATJ06wq1evsrZt29I0+PJozZo1zN3dnRkbG7MmTZpIp2uT0gGg8Gfr1q3SPGKxmM2cOZM5OTkxExMT9vnnn7Nbt25pr9IVSOEAiNqaX0eOHGH16tVjJiYmzNvbm23cuFHmcWpvfmRmZrJx48YxNzc3ZmpqyqpXr86mTZvGcnJypHmorUsnOjpa4Wf0oEGDGGPKteuHDx/Y6NGjma2tLTMzM2Ndu3ZliYmJaqmvgDHG+O9XIoQQQgjRXTQGiBBCCCF6hwIgQgghhOgdCoAIIYQQoncoACKEEEKI3qEAiBBCCCF6hwIgQgghhOgdCoAIIYQQoncoACKEaETr1q0xfvx4bVdDijGGESNGwNbWFgKBANevX9d2lQghGkS7wRNC9NKxY8ewbds2xMTEoHr16rC3t9d2lQghGkQBECGk3BKJRPh/e/caEkXbxgH8P3hqx/W4loqVUuq2EolZHgM7kBKVQkqmKyJGGuYBLDRDUCLI6ENE9K1SoaweyKjM1AJ185CFpoGuhxU1DUESlTTzeD0fwnndNMvn7Xl5ca8f7Ie575n7muse2L2YGb0FQViyuOXv6O7uhqOjIy9wyZiB4kdgjBmQvXv3IjU1FRkZGbC1tYWDgwNyc3Ol/t7e3iWPg0ZHRyEIAqqqqgAAVVVVEAQB5eXl8PLygkwmw/79+zE0NIQXL15ApVLB0tISUVFR+Pr1q1782dlZJCcnw9raGgqFAtnZ2Vi8Gs/09DQyMjLg5OQEc3Nz+Pr6SnEBoKCgANbW1igpKYGHhwfMzMzQ19e3bK7V1dXw8fGBmZkZHB0dcf78eczOzgIA4uLikJKSgo8fP0IQBLi4uCw7xuJ4SqUSoigiIiICExMTKCwshIuLC2xsbJCSkoK5uTnpuJGREcTGxsLGxgaiKOLQoUPo6uoCAIyNjUEmk6GsrEwvVnFxMczNzTE+Pg4A+PTpEyIjI2FjYwOFQoGwsDD09vZK+1dVVcHHxwfm5uawtrZGYGDgT+di4boWFxdj3759EEURnp6eqK+vX3Z/xgzCv7LCGGPs/1JQUBBZWlpSbm4udXZ2UmFhIQmCQBUVFURE1NPTQwDo/fv30jEjIyMEgCorK4noPwse+vn5UU1NDTU1NZGrqysFBQVRcHAwNTU1kUajIYVCQXl5eXqx5XI5paWlUXt7O929e5dEUdRb9DM6OpoCAgJIo9GQTqejq1evkpmZGXV2dhIRUX5+PpmYmFBAQADV1tZSe3s7jY+PL8lzYGCARFGkpKQk0mq19PjxY7Kzs6OcnBwiIhodHaWLFy/Sxo0baXBwkIaGhpadr4V4Bw8epKamJqquriaFQkHBwcF0/Phxam1tpWfPnpGpqSk9ePBAOi40NJRUKhVpNBpqbm6mkJAQcnV1penpaSIiCg8Pp5iYGL1Y4eHhFBUVRUREExMT5ObmRvHx8fThwwdqa2uj6OhoUiqVNDU1RTMzM2RlZUXnzp0jnU5HbW1tVFBQIK26/aOF67pt2zYqKSmhjo4OioiIIGdnZ5qZmVn2GMbWOi6AGDMgQUFBtGfPHr223bt3U2ZmJhGtrgB69eqVtM/ly5cJAHV3d0ttiYmJFBISohdbpVLR/Py81JaZmUkqlYqIiHQ6HQmCQJ8+fdI7vwMHDlBWVhYRfS9IAFBzc/OKeV64cIGUSqVerJs3b5JcLqe5uTkiIrp27Ro5OzuvOM5CPJ1Op5eXKIr05csXqS0kJIQSExOJiKizs5MAUG1trdT/+fNnkslk9NdffxERUXFxMcnlcpqYmCAiorGxMVq3bh09f/6ciIhu37695PynpqZIJpNReXk5DQ8PEwCqqqpa8fwXLFzXW7duSW2tra0EgLRa7W+Nwdhaw4/AGDMwO3bs0Nt2dHTE0NDQfzWOvb09RFHEli1b9Np+HNfPzw+CIEjb/v7+6OrqwtzcHJqamkBEcHd3h1wulz7V1dXo7u6WjjE1NV2Sw4+0Wi38/f31YgUGBmJ8fBwDAwOrylMURWzdulUvLxcXF8jl8mVz1Wq1MDY2hq+vr9SvUCigVCqh1WoBAIcPH4axsTGePn0KAHj06BEsLCwQHBwMAGhsbIROp4OFhYU0D7a2tvj27Ru6u7tha2uLuLg4hISE4OjRo7h+/ToGBwd/mcvieXN0dASAf3TtGVsL+CVoxgyMiYmJ3rYgCJifnwcA6WViWvRezszMzC/HEQRhxXF/x/z8PIyMjNDY2AgjIyO9vsXFhkwm0ytslkNES/ZZyOlXx/5oubxWynXx3P3snExNTREREYGioiKcOHECRUVFiIyMhLHx96/k+fl5eHt74969e0vGWb9+PQAgPz8fqampKCsrw8OHD5GdnY2XL1/Cz8/vt3JZOJfVXCPG1hK+A8QYkyz8uC6+m/An/z/Omzdvlmy7ubnByMgIXl5emJubw9DQEFxdXfU+Dg4Oq4rj4eGBuro6vWKkrq4OFhYWcHJy+iO5rBR7dnYWDQ0NUtvw8DA6OzuhUqmkNrVajbKyMrS2tqKyshJqtVrq27lzJ7q6urBhw4Ylc2FlZSXt5+XlhaysLNTV1WH79u0oKir6V3NjbC3hAogxJpHJZPDz80NeXh7a2tqg0WiQnZ39x8bv7+9Heno6Ojo6cP/+fdy4cQNpaWkAAHd3d6jVasTGxqK4uBg9PT149+4drly5gtLS0lXFSUpKQn9/P1JSUtDe3o4nT54gJycH6enp/+hP5lfDzc0NYWFhOHXqFGpqatDS0oKYmBg4OTkhLCxM2i8oKAj29vZQq9VwcXHRu3OjVqthZ2eHsLAwvH79Gj09PaiurkZaWhoGBgbQ09ODrKws1NfXo6+vDxUVFUsKLMbYyrgAYozpuXPnDmZmZrBr1y6kpaXh0qVLf2zs2NhYTE5OwsfHB2fOnEFKSgoSEhKk/vz8fMTGxuLs2bNQKpUIDQ1FQ0MDNm3atKo4Tk5OKC0txdu3b+Hp6YnTp0/j5MmTf7SYW0l+fj68vb1x5MgR+Pv7g4hQWlq65BFUVFQUWlpa9O7+AN/fO9JoNNi8eTOOHTsGlUqF+Ph4TE5OwtLSEqIoor29HeHh4XB3d0dCQgKSk5ORmJj4P8mPsbVAoJ89sGaMMcYYW6P4DhBjjDHGDA4XQIwxxhgzOFwAMcYYY8zgcAHEGGOMMYPDBRBjjDHGDA4XQIwxxhgzOFwAMcYYY8zgcAHEGGOMMYPDBRBjjDHGDA4XQIwxxhgzOFwAMcYYY8zgcAHEGGOMMYPzNzwA3SNa9ZIbAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(1:100, diff([((T*M)^n * e₁)[end] for n = 0:100]), \"b.-\")\n", + "plot(1:100, diff([(M^n * e₁)[end] for n = 0:100]), \"r.--\")\n", + "xlabel(\"number of moves n\")\n", + "ylabel(\"probability of finishing in n moves\")\n", + "grid()\n", + "title(\"number of moves to finish chutes & ladders\")\n", + "legend([\"chutes & ladders\", \"no chutes/ladders\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The expected number of moves (for a single player) is:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "27.130202016993284" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum((1:1000) .* diff([((T*M)^n * e₁)[end] for n = 0:1000]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Amazingly, this is about the same as the 29 moves expected when there are no chutes and ladders, but the variance is much larger!\n", + "\n", + "(In principle, we should actually sum for `n=0` to `∞`, but because the probability $p(n)-p(n-1)$ decays exponentially for large `n` we can just truncate the sum.)\n", + "\n", + "And unlike the boring version, the probability of the game finishing never reaches 100%. If you are unlucky, you could be trapped playing chutes and ladders for all eternity! Let's plot $1-p(n)$ vs. $n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHFCAYAAAAJ2AY0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtVUlEQVR4nO3deVxU1fsH8M+VfVUQRRFE1NwVFc0tFywxzA01t1RMTMlyQ8L16xaElltf+6qopZaZW2hllmKCaGoFSpaaWyiYKOGGYiLL+f0xv5kcZgbu4AzLzOf9evHKuXPmznPuDPp0zrnPkYQQAkRERESkUqW8AyAiIiKqaJggERERERXBBImIiIioCCZIREREREUwQSIiIiIqggkSERERURFMkIiIiIiKYIJEREREVAQTJCIiIqIimCBRpbd582ZIkoSkpKTyDqXc/fDDD2jXrh0cHBwgSRL27t2rtd3Vq1chSRI2b95cpvEZgyRJePvttw16zvfee0/ntSsL169fx/Dhw1GzZk04OTmhTZs2WLNmjV7nqFevHsaOHWvQuCRJwsKFC0tst3DhQkiSZND3JiprTJCITIQQAkOHDoWVlRW+/vprnDhxAt27dy/vsCql8kyQCgsL0a9fPyQmJmLZsmX48ssvMXjwYPz444/lEg+RubIs7wCIyDBu3LiBO3fuICgoCC+++GJ5h0OldOHCBaSkpGDt2rUYM2YMACAgIKCcoypfjx49gr29fXmHQWaGI0hU4f3xxx8YMWIE3N3dYWNjg7p162LMmDHIzc1Va/fgwQO8+eabcHNzQ/Xq1TFo0CDcuHFDrc2OHTsQEBCA2rVrw87ODk2bNsWsWbOQk5Oj1m7s2LFwdHTE5cuX0adPHzg6OsLLywszZszQeN/c3FwsXrwYTZs2ha2tLapXrw5/f38cP35c1UYIgTVr1qB169aws7ODi4sLhgwZgj///FPWNTh27BhefPFFODk5wd7eHp07d8a3336ren7hwoXw9PQEAMycOROSJKFevXqyzq3P+wD/TmnGx8eXeL1zc3MxY8YM1KpVC/b29ujWrRuSk5NlT//IubZKn332GZo2bQp7e3v4+vpi3759as+PHTtW6zUpOh0kSRJycnKwZcsWSJIESZLQo0cP1fM3b97ExIkT4enpCWtra/j4+GDRokXIz89XO+/atWvh6+sLR0dHODk5oUmTJpgzZ06JfbawsACgSJQM6fHjx5gxYwZat26NqlWrwtXVFZ06dcJXX32l0TY7OxtvvPEGqlevDkdHR7z88su4ePGi1vN+++23aN26NWxsbODj44Nly5ZpbSf3d6BHjx5o0aIFEhMT0blzZ9jb22PcuHEAgMOHD6NHjx6oXr067OzsULduXQwePBiPHj0qtu9yv4d///03Jk2ahGbNmsHR0RE1a9ZEz549cfToUbXzKaeoP/jgAyxduhT16tWDnZ0devTogYsXLyIvLw+zZs2Ch4cHqlatiqCgIGRmZmrEtWPHDnTq1AkODg5wdHRE7969cfr06WL7QmVIEFVgKSkpwtHRUdSrV0+sW7dO/PDDD2Lr1q1i6NChIjs7WwghxKZNmwQAUb9+fTF58mRx4MABsXHjRuHi4iL8/f3Vzvfuu++KlStXim+//VYkJCSIdevWCR8fH412wcHBwtraWjRt2lQsW7ZMHDp0SMyfP19IkiQWLVqkapeXlyf8/f2FpaWlCA8PF/v37xdff/21mDNnjvjiiy9U7d544w1hZWUlZsyYIb7//nuxbds20aRJE+Hu7i5u3rxZ7DVISEgQVlZWws/PT+zYsUPs3btXBAQECEmSxPbt24UQQqSnp4vY2FgBQEyePFmcOHFCnDp1Suc5U1NTBQCxadMmvd5H3+s9YsQIUaVKFTFr1ixx8OBBsWrVKuHl5SWqVq0qgoODi+233GsLQNSrV088//zzYufOnWL//v2iR48ewtLSUly5ckXVLjg4WHh7e2u8z4IFC8TTfxWeOHFC2NnZiT59+ogTJ06IEydOiLNnzwohhMjIyBBeXl7C29tbxMTEiEOHDol3331X2NjYiLFjx6rO8cUXX6g+i4MHD4pDhw6JdevWiSlTphTbZ6UePXoICwsLsWfPHlnttfH29la7xvfu3RNjx44Vn332mTh8+LD4/vvvRXh4uKhSpYrYsmWLql1hYaHw9/cXNjY2IioqShw8eFAsWLBA1K9fXwAQCxYsULU9dOiQsLCwEC+88IKIjY0Vu3btEu3btxd169YVRf95kfs70L17d+Hq6iq8vLzE6tWrRXx8vDhy5IhITU0Vtra2olevXmLv3r0iISFBfP7552L06NHi7t27xV4Lud/DP/74Q7z55pti+/btIiEhQezbt0+EhISIKlWqiPj4eFU75e+Pt7e36Nevn9i3b5/YunWrcHd3F40aNRKjR48W48aNE999951Yt26dcHR0FP369VOLKSoqSkiSJMaNGyf27dsnYmNjRadOnYSDg4Pq+0bliwkSVWg9e/YU1apVE5mZmTrbKP/BnjRpktrx999/XwAQGRkZWl9XWFgo8vLyxJEjRwQA8euvv6qeCw4OFgDEzp071V7Tp08f0bhxY9XjTz/9VAAQGzZs0BnfiRMnBACxfPlytePp6enCzs5ORERE6HytEEJ07NhR1KxZUzx48EB1LD8/X7Ro0UJ4enqKwsJCIcS/f2l/8MEHxZ7v6bZPJ0hy30fu9T579qwAIGbOnKnWTpk8lJQgybm2QigSJHd3d1XCLIQQN2/eFFWqVBHR0dGqY3ITJCGEcHBw0BrfxIkThaOjo7h27Zra8WXLlgkAqn/Y3n77bVGtWrVi49blwoULokmTJqJRo0bC2tpa7Nu3r1TnKZogFZWfny/y8vJESEiIaNOmjer4d999JwCIDz/8UK19VFSURoLUoUMH4eHhIf755x/VsezsbOHq6qqRdMr9HejevbsAIH744Qe1trt37xYAREpKiqz+Kz3L91B5jV588UURFBSkOq78/fH19RUFBQWq46tWrRIARP/+/dXOM23aNAFA3L9/XwghRFpamrC0tBSTJ09Wa/fgwQNRq1YtMXToUL36SMbBKTaqsB49eoQjR45g6NChqFGjRont+/fvr/a4VatWAIBr166pjv35558YOXIkatWqBQsLC1hZWakWMp8/f17t9ZIkoV+/fhrnfPp83333HWxtbVVTANrs27cPkiRh1KhRyM/PV/3UqlULvr6+SEhI0PnanJwc/PTTTxgyZAgcHR1Vxy0sLDB69Ghcv37dIFMxpXmfkq73kSNHAABDhw5VazdkyBBYWpa8/FHOtVXy9/eHk5OT6rG7uztq1qyp9lkZwr59++Dv7w8PDw+1zzIwMBDAv31+/vnnce/ePYwYMQJfffUVsrKyZJ3/zp07eOmll9CrVy/89ttvCAgIwODBg/Hdd9+p2mzduhWSJCE1NVXv+Hft2oUuXbrA0dERlpaWsLKywscff6z23Y+PjwcAvPbaa2qvHTlypNrjnJwc/PLLLxg0aBBsbW1Vx52cnDR+b/T9HXBxcUHPnj3VjrVu3RrW1taYMGECtmzZInt6Wt/v4bp169C2bVvY2tqqrtEPP/yg8fcDAPTp0wdVqvz7z2jTpk0BAK+88opaO+XxtLQ0AMCBAweQn5+PMWPGqF0PW1tbdO/evdi/E6jsMEGiCuvu3bsoKChQra0pSfXq1dUe29jYAAD++ecfAMDDhw/RtWtX/PTTT4iMjERCQgJ++eUXxMbGqrVTsre3V/uLX3nOx48fqx7//fff8PDwUPtLsqhbt25BCAF3d3dYWVmp/Zw8ebLYfzzv3r0LIQRq166t8ZyHhwcA4Pbt2zpfL1dp3qek661s7+7urtbO0tJS47XayLm2umJRxlP0M31Wt27dwjfffKPxOTZv3hwAVJ/l6NGj8cknn+DatWsYPHgwatasiQ4dOiAuLq7Y83/88cdIT0/H/PnzYW1tjS+//BIBAQEICgrCgQMHAAAJCQlo2rQpfHx89Io9NjYWQ4cORZ06dbB161acOHECv/zyC8aNG6f2nb59+7bWz6hWrVpqj+/evYvCwkKN49ra6vs7oO172KBBAxw6dAg1a9bEW2+9hQYNGqBBgwb48MMPi+23Pt/DFStW4M0330SHDh3w5Zdf4uTJk/jll1/w8ssva/0uubq6qj22trYu9rjyOt+6dQsA0L59e43rsWPHDtkJNRkX72KjCsvV1RUWFha4fv26Qc53+PBh3LhxAwkJCWq3v9+7d6/U56xRowaOHTuGwsJCnf+Qu7m5QZIkHD16VJVEPE3bMSUXFxdUqVIFGRkZGs8pF0S7ubmVMnrjvo/yH59bt26hTp06quP5+fmykjo511Yftra2GgvsAej1j5GbmxtatWqFqKgorc8rk0kAeP311/H6668jJycHiYmJWLBgAfr27YuLFy/C29tb6+uvXLkCCwsL1SietbU1du/ejVdffRUDBw7E8uXL8emnn5aqftXWrVvh4+ODHTt2qC1KL3pNqlevrvqMnk4gbt68qdbOxcUFkiRpHNfWVt/fAV01lLp27YquXbuioKAASUlJWL16NaZNmwZ3d3cMHz5c62v0+R5u3boVPXr0wNq1a9WOP3jwQOu5S0v5u7R7926d3wUqfxxBogrLzs4O3bt3x65duwzyf1TKv3SL/mUcExNT6nMGBgbi8ePHxf6D1bdvXwgh8Ndff6Fdu3YaPy1bttT5WgcHB3To0AGxsbFq/wdbWFiIrVu3wtPTE40aNSp1/MZ8n27dugFQ3KnztN27d2vc8aWNnGurj3r16iEzM1P1f+8A8OTJE9XIzNN0jT717dsXv//+Oxo0aKD1s3w6QVJycHBAYGAg5s6diydPnuDs2bM6Y2zRogUKCgrw+eefq44pk6SePXvirbfeQufOnTWmu+SQJAnW1tZqycfNmzc17mLz9/cHALUYAGDbtm0a/Xr++ecRGxurNgL14MEDfPPNN2ptn+V3QBsLCwt06NAB//vf/wAAp06d0tlWn++hJEkafz+cOXMGJ06c0Cu+kvTu3RuWlpa4cuWK1uvRrl07g74flQ5HkKhCW7FiBV544QV06NABs2bNQsOGDXHr1i18/fXXiImJUVt3UpLOnTvDxcUFoaGhWLBgAaysrPD555/j119/LXV8I0aMwKZNmxAaGooLFy7A398fhYWF+Omnn9C0aVMMHz4cXbp0wYQJE/D6668jKSkJ3bp1g4ODAzIyMnDs2DG0bNkSb775ps73iI6ORq9eveDv74/w8HBYW1tjzZo1+P333/HFF18YrGKxod+nefPmGDFiBJYvXw4LCwv07NkTZ8+exfLly1G1atUSR4XkXFt9DBs2DPPnz8fw4cPxzjvv4PHjx/jvf/+LgoICjbYtW7ZEQkICvvnmG9SuXRtOTk5o3LgxFi9ejLi4OHTu3BlTpkxB48aN8fjxY1y9ehX79+/HunXr4OnpiTfeeAN2dnbo0qULateujZs3byI6OhpVq1ZF+/btdcYYEhKCTZs24c0338Rvv/2G3r17o6CgACdOnMDRo0fh5eWFY8eOYefOnRprakrSt29fxMbGYtKkSRgyZAjS09Px7rvvonbt2rh06ZKqXUBAALp164aIiAjk5OSgXbt2+PHHH/HZZ59pnPPdd9/Fyy+/jF69emHGjBkoKCjA0qVL4eDggDt37qjaPevvAKBYG3T48GG88sorqFu3Lh4/foxPPvkEAPDSSy/pfJ0+38O+ffvi3XffxYIFC9C9e3dcuHABixcvho+Pj6ykXq569eph8eLFmDt3Lv7880+8/PLLcHFxwa1bt/Dzzz/DwcEBixYtMtj7USmV5wpxIjnOnTsnXn31VVG9enVhbW0t6tatK8aOHSseP34shPj3rqpffvlF7XXx8fECgNrtucePHxedOnUS9vb2okaNGmL8+PHi1KlTGnd0BQcHCwcHB41YtN3x9M8//4j58+eL5557TlhbW4vq1auLnj17iuPHj6u1++STT0SHDh2Eg4ODsLOzEw0aNBBjxowRSUlJJV6Do0ePip49e6pe27FjR/HNN9+otXnWu9jkvo8+1/vx48ciLCxM1KxZU9ja2oqOHTuKEydOiKpVq4rp06eXGKecawtAvPXWWxqv1XYX1/79+0Xr1q2FnZ2dqF+/vvjoo4+0fqYpKSmiS5cuwt7eXgAQ3bt3Vz33999/iylTpggfHx9hZWUlXF1dhZ+fn5g7d654+PChEEKILVu2CH9/f+Hu7i6sra2Fh4eHGDp0qDhz5kyJfX748KGYN2+eaNSokbCyshLOzs7C399fbNu2TeTn54uBAwcKS0tL8eWXXxZ7Hm39X7JkiahXr56wsbERTZs2FRs2bNDa/3v37olx48aJatWqCXt7e9GrVy/xxx9/aNzFJoQQX3/9tWjVqpXqd3PJkiVazymEvN+B7t27i+bNm2u89sSJEyIoKEh4e3sLGxsbUb16ddG9e3fx9ddfl3BF5X8Pc3NzRXh4uKhTp46wtbUVbdu2FXv37tW4A1LX75ryd2DXrl1qx3X9zuzdu1f4+/sLZ2dnYWNjI7y9vcWQIUPEoUOHSuwTGZ8khBBlnpURkdk6fvw4unTpgs8//7xUU0VEhsDvIZWECRIRGU1cXBxOnDgBPz8/2NnZ4ddff8WSJUtQtWpVnDlzRuMuQSJj4PeQSoNrkIjIaJydnXHw4EGsWrUKDx48gJubGwIDAxEdHc1/lKjM8HtIpcERJCIiIqIieJs/ERERURFMkIiIiIiKYIJEREREVAQXaZdSYWEhbty4AScnJ4MV6iMiIiLjEkLgwYMHJe71yASplG7cuAEvL6/yDoOIiIhKIT09vdjN0JkglZJyi4v09HQ4Ozsb9Nx5eXk4ePAgAgICYGVlZdBzVwbsv3n3H+A1MPf+A7wG7L/x+p+dnQ0vL68St6piglRKymk1Z2dnoyRI9vb2cHZ2NttfDPbffPsP8BqYe/8BXgP23/j9L2l5DBdpExERERXBBImIiIioCCZIREREREUwQSIiIiIqggkSERERURFMkIiIiIiKYIJEREREVAQTJCIiIqIizDpB2rdvHxo3boznnnsOGzduLO9wiIiIqIIw20ra+fn5CAsLQ3x8PJydndG2bVsMGjQIrq6u5R0aERERlTOzHUH6+eef0bx5c9SpUwdOTk7o06cPDhw4UN5hERERUQVQaUeQEhMT8cEHHyA5ORkZGRnYs2cPBg4cqNZmzZo1+OCDD5CRkYHmzZtj1apV6Nq1KwDgxo0bqFOnjqqtp6cn/vrrr7Lsgk7XrwPHjnkgLU2CpSVQvTrg4wOkpgK3b2s+BhTHOncGitmYmIiIiGSqtAlSTk4OfH198frrr2Pw4MEaz+/YsQPTpk3DmjVr0KVLF8TExCAwMBDnzp1D3bp1IYTQeE1JG9eVhf/+F5g2zRJCtC/V6ydOBHx9/02iHj4EnnuOiRMREZE+Km2CFBgYiMDAQJ3Pr1ixAiEhIRg/fjwAYNWqVThw4ADWrl2L6Oho1KlTR23E6Pr16+jQoYPO8+Xm5iI3N1f1ODs7G4Bix+G8vLxn7c7/xwBMnWoJoPSJWkzM04/E/59L4I03CjF7dmGlSJSU19NQ17WyMff+A7wG5t5/gNeA/Tde/+WeUxLahlIqGUmS1KbYnjx5Ant7e+zatQtBQUGqdlOnTkVKSgqOHDmC/Px8NG3aFAkJCapF2idPnkT16tW1vsfChQuxaNEijePbtm2Dvb29Qfrx229u+M9/uhjkXNoJDBlyAb6+t1G79kO4uT024nsRERFVPI8ePcLIkSNx//59ODs762xXaUeQipOVlYWCggK4u7urHXd3d8fNmzcBAJaWlli+fDn8/f1RWFiIiIgInckRAMyePRthYWGqx9nZ2fDy8kJAQECxF1gfrVoB8+cLCGGsqT4Ju3c3xu7dFXtUKS8vD3FxcejVqxesrKzKO5wyZ+79B3gNzL3/AK8B+2+8/itngEpikgmSUtE1RUIItWP9+/dH//79ZZ3LxsYGNjY2GsetrKwM9uH5+AAbNgBvvGHcJEn53w0bLLBhgwUmTgR69qx4i7wNeW0rI3PvP8BrYO79B3gN2H/D91/u+UwyQXJzc4OFhYVqtEgpMzNTY1SpogkJAXr2zMeaNafh7d0WlpaWqF4dqFcPuHr137vYnn4MAL/+qlh/VJoJ05iYf9cuvf8+8M47hukLERFRZWWSCZK1tTX8/PwQFxentgYpLi4OAwYMKMfI5PH0BF54IQN9+gg8nei2L3JjW9HHc+cCJ078m0T9+isQFaXfe0dEAOnpQFAQ734jIiLzVWkTpIcPH+Ly5cuqx6mpqUhJSYGrqyvq1q2LsLAwjB49Gu3atUOnTp2wfv16pKWlITQ0tByjNi5PT+DVV/99/OqrQGioIklavx4oLJR3ntWrFT+SBCxdyhElIiIyP5U2QUpKSoK/v7/qsXIBdXBwMDZv3oxhw4bh9u3bWLx4MTIyMtCiRQvs378f3t7e5RVyufD0BNauVYwuXb4MHDoEvPeevKk4ITiiRERE5qnSJkg9evTQWuzxaZMmTcKkSZPKKKKKzdNT8dOjh2JU6cQJ4PBhYN26kl/LESUiIjI3ZrsXmzlTTsWtXasYHRo1St7rlCNK8+YZNz4iIqLyxgTJzHl6Ap99BnzwAVBF5rchKopJEhERmTYmSAQACA8Hrl0D4uOByZNLbh8VpRh52rlTsUUKERGRKWGCRCrKNUr//a+8EaXPPweGDQO8vBTtiYiITAUTJNJK3xGliAjF4m+OJhERkSlggkQ6PT2iNHduye1jYoC6dTmaRERElR8TJJIlMlKR+EglbBHHO92IiMgUMEEi2cLDgbQ0xX9LwjvdiIioMmOCRHrx9FSMJKWnK9YcFTeixDvdiIiosmKCRKWi3MIkLQ2YOFF3O97pRkRElRETJHomnp6K7UrkLOLmnW5ERFRZMEEig4iM5J1uRERkOpggkcHwTjciIjIVTJDIoPS9041TbkREVBExQSKD0+dON065ERFRRcQEiYxG7p1unHIjIqKKhgkSGZ3cO91YXJKIiCoKy/IOgMxHZCRQrZpitEgI7W2iooBbt6qgY0fbMo2NiIjoaRxBojKlXMRd3JTbxo0WGD8+ACtWlHA7HBERkZEwQaIyJ2/KTcKsWRacciMionLBBInKTcnFJSWWAiAionLBBInKlZzikiwFQEREZY0JEpU7OeuSWAqAiIjKEu9iowpBuS7JzQ2IihIAtA8pRUUB2dlAUBDw3HOK1xERERkaR5CoQomMBKKjCwDoqAMAYPVqoGdPTrsREZHxMEGiCmfGDIGNGw/ijTcKim3HaTciIjIWvROkU6dO4bffflM9/uqrrzBw4EDMmTMHT548MWhwZL7c3B7jf/8rLLH6NsBNb4mIyPD0TpAmTpyIixcvAgD+/PNPDB8+HPb29ti1axciIiIMHiCZt5JLASjwTjciIjIkvROkixcvonXr1gCAXbt2oVu3bti2bRs2b96ML7/80tDxEalKAVQp4dvKKTciIjIUvRMkIQQKCwsBAIcOHUKfPn0AAF5eXsjKyjJsdET/LzwcuHYNiI8HJk8uvi03vSUiomel923+7dq1Q2RkJF566SUcOXIEa9euBQCkpqbC3d3d4AESKXl6Kn569FBMp5W06W1WliJRYikAIiLSl94jSKtWrcKpU6fw9ttvY+7cuWjYsCEAYPfu3ejcubPBAzSW9PR09OjRA82aNUOrVq2wa9eu8g6J9CCnuCTXJRERUWnpPYLUqlUrtbvYlD744ANYWFgYJKiyYGlpiVWrVqF169bIzMxE27Zt0adPHzg4OJR3aCSTenFJ7W2U65Lu31esZSIiIpKjVHWQ7t27h40bN2L27Nm4c+cOAODcuXPIzMw0aHDGVLt2bdVi85o1a8LV1VXVF6pc5NzpxlIARESkD70TpDNnzuC5557D0qVLsWzZMty7dw8AsGfPHsyePdtggSUmJqJfv37w8PCAJEnYu3evRps1a9bAx8cHtra28PPzw9GjR0v1XklJSSgsLISXl9czRk3lhZveEhGRIemdIIWFheH111/HpUuXYGtrqzoeGBiIxMREgwWWk5MDX19ffPTRR1qf37FjB6ZNm4a5c+fi9OnT6Nq1KwIDA5GWlqZq4+fnhxYtWmj83LhxQ9Xm9u3bGDNmDNavX2+w2Kl8cNNbIiIyFL3XIP3yyy+IiYnROF6nTh3cvHnTIEEBioQrMDBQ5/MrVqxASEgIxo8fD0CxePzAgQNYu3YtoqOjAQDJycnFvkdubi6CgoIwe/bsEheY5+bmIjc3V/U4OzsbAJCXl4e8vDxZfZJLeT5Dn7eyeJb+u7sr9mpzcZGwZIkFdG96K1BQUIDFi3Xv+VZezP3zB3gNzL3/AK8B+2+8/ss9p94Jkq2trSo5eNqFCxdQo0YNfU9XKk+ePEFycjJmzZqldjwgIADHjx+XdQ4hBMaOHYuePXti9OjRJbaPjo7GokWLNI4fPHgQ9vb28gLXU1xcnFHOW1k8S/87dgSCgxtgy5bm0J4kKRKoU6euYujQi3Bze1zq9zIWc//8AV4Dc+8/wGvA/hu+/48ePZLVThJCVyUZ7SZMmIC///4bO3fuhKurK86cOQMLCwsMHDgQ3bp1w6pVq0oTb/FBShL27NmDgQMHAgBu3LiBOnXq4Mcff1Qb+XnvvfewZcsWXLhwocRzHjt2DN26dUOrVq1Uxz777DO0bNlSa3ttI0jK4pjOzs6l7Jl2eXl5iIuLQ69evWBlZWXQc1cGhuz/9etAdHQVbNhQBbpGkyRJIDq6AGFhFWM0ydw/f4DXwNz7D/AasP/G6392djbc3Nxw//79Yv/91nsEadmyZejTpw9q1qyJf/75B927d8fNmzfRqVMnROm619pIpCIrcoUQGsd0eeGFF1QVweWwsbGBjY2NxnErKyujfXmNee7KwBD99/EB1q8HatYsrhSAhFmzLPHgQcUqBWDunz/Aa2Du/Qd4Ddh/w/df7vn0TpCcnZ1x7NgxHD58GKdOnUJhYSHatm2Ll156Se8gS8vNzQ0WFhYaa54yMzNZzZu0UiY+xeXwrL5NRERKet/FdvXqVQBAz549ER4ejoiIiDJNjgDA2toafn5+GnOTcXFxlaqaN5UtlgIgIiK59E6Q6tevjxdeeAExMTFGLaz48OFDpKSkICUlBYBir7eUlBTVbfxhYWHYuHEjPvnkE5w/fx7Tp09HWloaQkNDjRYTVX4sBUBERHLonSAlJSWhU6dOiIyMhIeHBwYMGIBdu3apLWA2hKSkJLRp0wZt2rQBoEiI2rRpg/nz5wMAhg0bhlWrVmHx4sVo3bo1EhMTsX//fnh7exs0DjI9yi1K5FTfXrasbGIiIqKKRe8EqW3btvjggw+QlpaG7777DjVr1sTEiRNRs2ZNjBs3zmCB9ejRA0IIjZ/Nmzer2kyaNAlXr15Fbm4ukpOT0a1bN4O9P5k+OVNuERHcnoSIyByVai82QHEHmb+/PzZs2IBDhw6hfv362LJliyFjIzK6kqbchABmzGCSRERkbkqdIKWnp+P9999H69at0b59ezg4OOjcFoSoIitpym3nTi7cJiIyN3rf5r9+/Xp8/vnn+PHHH9G4cWO89tpr2Lt3L+rVq2eE8IjKTmSk4jZ/LTvpqBZu379fsWolERGRceg9gvTuu+/i+eefR1JSEs6ePYs5c+YwOSKTMW8eUKWY34qoKCA0lFNuRESmTu8EKS0tDR988AFat25thHCIypenp6LydnFJEmslERGZPr2n2CRJwr179/Dxxx/j/PnzkCQJTZs2RUhICKpWrWqMGInKVEgI0Lu3YipN23QbwCk3IiJTV6o6SA0aNMDKlStx584dZGVlYeXKlWjQoAFOnTpljBiJypw+tZJYUJKIyPTonSBNnz4d/fv3x9WrVxEbG4s9e/YgNTUVffv2xbRp04wQIlH5kVMrieuSiIhMT6lGkGbOnAlLy39n5ywtLREREYGkpCSDBkdUEcjZnoTrkoiITIveCZKzs7NqP7Snpaenw8nJySBBEVU0cqbcuIcbEZHp0DtBGjZsGEJCQrBjxw6kp6fj+vXr2L59O8aPH48RI0YYI0aiCiMyUt66JE65ERFVbnrfxbZs2TJIkoQxY8YgPz8fAGBlZYU333wTS5YsMXiARBVNZCRQrZpitEgI7W1iYhTlApYuBd55p0zDIyIiA9B7BMna2hoffvgh7t69i5SUFJw+fRp37tzBypUrYWNjY4wYiSocOeuSOOVGRFR56T2CpGRvb4+WLVsaMhaiSkW5LsnNTTGtpovyOdZLIiKqPPROkB4/fozVq1cjPj4emZmZKCwsVHuetZDI3MiZcouKUuzzNm+eIrEiIqKKTe8Eady4cYiLi8OQIUPw/PPPQyquQAyRmQgPB4YPL776NtclERFVHnonSN9++y3279+PLl26GCMeokpLzpQbtyghIqoc9F6kXadOHdY7IioGSwEQEVV+eidIy5cvx8yZM3Ht2jVjxENkEuRsUcLq20REFZfeCVK7du3w+PFj1K9fH05OTnB1dVX7ISIFlgIgIqq89F6DNGLECPz1119477334O7uzkXaRMVgKQAiospJ7wTp+PHjOHHiBHx9fY0RD5FJ0qcUwMyZZRoaERFpofcUW5MmTfDPP/8YIxYikyZnyi0mBmjQwBJ79jQou8CIiEiD3gnSkiVLMGPGDCQkJOD27dvIzs5W+yEi3ZRTbsXd5SaEhC1bmmP+fE5fExGVF72n2F5++WUAwIsvvqh2XAgBSZJQUFBgmMiITJhyrZHudUkSliyxwN27rL5NRFQe9E6Q4uPjjREHkdkpeV2SxOrbRETlRO8EqXv37saIg8gsydmiRFkKQJIU7YmIyPj0XoNERIYlZ10SoEiSWHmbiKhsMEEiqiD+rb6tvQ6AEMCMGUySiIjKAhMkogokPBy4ciUfvXunAtBMlHbu5PYkRERlgQkSUQXj6Qm8+eYZjB9fqPV5bk9CRGR8TJCIKqg5cwpRpZjf0KgoJklERMaid4J069YtjB49Gh4eHrC0tISFhYXaT2Xz6NEjeHt7I5y3B1EF4+mpuMW/pCQpNJTrkoiIDE3v2/zHjh2LtLQ0/Oc//0Ht2rUr/Wa1UVFR6NChQ3mHQaRVSAjQu3fxZQBYK4mIyPD0TpCOHTuGo0ePonXr1kYIp2xdunQJf/zxB/r164fff/+9vMMh0kpZBsDNTXflbeW6pPv3/63STUREpaf3FJuXlxeEru3IDSgxMRH9+vWDh4cHJEnC3r17NdqsWbMGPj4+sLW1hZ+fH44eParXe4SHhyM6OtpAERMZV2RkybWSOOVGRGQYeidIq1atwqxZs3D16lUjhPOvnJwc+Pr64qOPPtL6/I4dOzBt2jTMnTsXp0+fRteuXREYGIi0tDRVGz8/P7Ro0ULj58aNG/jqq6/QqFEjNGrUyKj9IDKkf2sl6W4TE8NSAEREz0rvKbZhw4bh0aNHaNCgAezt7WFlZaX2/J07dwwSWGBgIAIDA3U+v2LFCoSEhGD8+PEAFInbgQMHsHbtWtWoUHJyss7Xnzx5Etu3b8euXbvw8OFD5OXlwdnZGfPnz9faPjc3F7m5uarH2dnZAIC8vDzk5eXp3b/iKM9n6PNWFux/8f2fOhUYPBiIjq6CDRuqANDMlhRTbgJ37hRg8WLjj/gaGr8D5t1/gNeA/Tde/+WeUxJ6zpdt2bKl2OeDg4P1OZ0skiRhz549GDhwIADgyZMnsLe3x65duxAUFKRqN3XqVKSkpODIkSN6nX/z5s34/fffsWzZMp1tFi5ciEWLFmkc37ZtG+zt7fV6PyJD2bq1MXbvbgxtSZKCwJAhFzBq1IWyDIuIqMJ69OgRRo4cifv378PZ2VlnO71HkIyRAOkrKysLBQUFcHd3Vzvu7u6OmzdvGuU9Z8+ejbCwMNXj7OxseHl5ISAgoNgLXBp5eXmIi4tDr169NEbozAH7L7//ffoAfn4FmDPHAkJoS5Ik7N7dGNWqPYc5cwrh6WmcmA2N3wHz7j/Aa8D+G6//yhmgkuidIFUkRUsMCCFKVXZg7NixJbaxsbGBjY2NxnErKyujfXmNee7KgP2X1/9Zs4BRo4orBSBh40YLfPyxRaUrBcDvgHn3H+A1YP8N33+556uUlbTd3NxgYWGhMVqUmZmpMapEZA6UpQCKu8uNW5QQEclXKRMka2tr+Pn5IS4uTu14XFwcOnfuXE5REZU/lgIgIjKMCpsgPXz4ECkpKUhJSQEApKamIiUlRXUbf1hYGDZu3IhPPvkE58+fx/Tp05GWlobQ0NByjJqo/LEUABHRs6uwa5CSkpLg7++veqxcIB0cHIzNmzdj2LBhuH37NhYvXoyMjAy0aNEC+/fvh7e3d3mFTFRhhIcDw4cXv0UJq28TEemmd4KUk5ODJUuW4IcffkBmZiYKCwvVnv/zzz8NEliPHj1KrNg9adIkTJo0ySDvR2Rq5GxRAiieq1ZNkVQREZGC3gnS+PHjceTIEYwePdokNqslMnWRkYoEKCJCMWqkTUSEYsSpspQBICIyNr0TpO+++w7ffvstunTpYox4iMgISppyEwKYMQNYvpxJEhERUIpF2i4uLnB1dTVGLERkRCWVAti5kwu3iYiU9E6Q3n33XcyfPx+PHj0yRjxEZGSRkcDEidqfY60kIiIFvafYli9fjitXrsDd3R316tXTqEh56tQpgwVHRMYxbx6wYQNQ5B4LlagoICtL0Y5TbkRkjvROkJQbxhJR5eXpCaxfD0yYoDtJiolRtKls25MQERmC3gnSggULjBEHEZWxkBCgd2/WSiIi0qbCVtImIuOTs4cboJhy47okIjInskaQXF1dcfHiRbi5ucHFxaXY2kd37twxWHBEVDbk1EriuiQiMieyEqSVK1fCyckJALBq1SpjxkNE5UTO9iRcl0RE5kJWghQcHKz1z0RkWuRsT8J1SURkDrgGiYg0REbKW5cUGgpcv142MRERlSUmSESkVWSkoqp2cdstxsSw+jYRmSYmSESkU3g4kJamu/I2wOrbRGSamCARUbFYCoCIzBETJCKSRc6UG9clEZGp0LuSdlBQkNY6SJIkwdbWFg0bNsTIkSPRuHFjgwRIRBWH3FIAGzYoygGEhJRtfEREhqL3CFLVqlVx+PBhnDp1SpUonT59GocPH0Z+fj527NgBX19f/PjjjwYPlojKn5wpt8JCxT5vHEkiospK7wSpVq1aGDlyJP788098+eWXiI2NxZUrVzBq1Cg0aNAA58+fR3BwMGbOnGmMeImogiipFEBhIeskEVHlpXeC9PHHH2PatGmoUuXfl1apUgWTJ0/G+vXrIUkS3n77bfz+++8GDZSIKp6S1iXFxHBNEhFVTnonSPn5+fjjjz80jv/xxx8oKCgAANja2ha7XxsRmQ5lKYChQ7U/z1pJRFQZ6b1Ie/To0QgJCcGcOXPQvn17SJKEn3/+Ge+99x7GjBkDADhy5AiaN29u8GCJqGLy9ASWLwd27dK+2S23JyGiykbvBGnlypVwd3fH+++/j1u3bgEA3N3dMX36dNW6o4CAALz88suGjZSIKjRPT8UmthERutso93djkkREFZ3eCZKFhQXmzp2LuXPnIjs7GwDg7Oys1qZu3bqGiY6IKpV33lGsR4qI0D6SBCiSpKwsRVFJT8+yjY+ISK5nKhTp7OyskRwRkXmTsz0J1yURUUWnd4J069YtjB49Gh4eHrC0tISFhYXaDxGRnFpJ3MONiCoyvafYxo4di7S0NPznP/9B7dq1ebcaEemkXGukXHukDafciKgi0jtBOnbsGI4ePYrWrVsbIRwiMjWRkUC1asWvS4qJUWxNsnSpYh0TEVF503uKzcvLC0LX33JERFrIWZfEKTciqkj0TpBWrVqFWbNm4erVq0YIh4hMlZx1SYBiym3+fE7dE1H50nuKbdiwYXj06BEaNGgAe3t7WFlZqT1/584dgwVHRKZHzpTbkiUWCAhohVatAB+fMg2PiAhAKRKkVatWGSGM8pGamopx48bh1q1bsLCwwMmTJ+Hg4FDeYRGZvPBwYPhwRbIUE6OthYSDB33QoIHguiQiKhd6J0jBwcHGiKNcjB07FpGRkejatSvu3LkDGxub8g6JyGwop9zc3HTf5SaEhIgIRfHJ8PCyjY+IzJusBCk7O1tVEFJZPVuXylI48uzZs7CyskLXrl0BAK6uruUcEZF5klMKICJCMeLEMgBEVFZkLdJ2cXFBZmYmAKBatWpwcXHR+FEeN5TExET069cPHh4ekCQJe/fu1WizZs0a+Pj4wNbWFn5+fjh69Kjs81+6dAmOjo7o378/2rZti/fee89gsRORfiIjFVW1dZVVEwKYMQO4fr1s4yIi8yVrBOnw4cOqEZb4+HijBqSUk5MDX19fvP766xg8eLDG8zt27MC0adOwZs0adOnSBTExMQgMDMS5c+dUe8H5+fkhNzdX47UHDx5EXl4ejh49ipSUFNSsWRMvv/wy2rdvj169ehm9b0SkSX1dkgCgni3t3Ans2sVaSURUNmQlSN27d9f6Z2MKDAxEYGCgzudXrFiBkJAQjB8/HoBi8fiBAwewdu1aREdHAwCSk5N1vt7T0xPt27eHl5cXAKBPnz5ISUnRmSDl5uaqJVvKqca8vDzk5eXp17kSKM9n6PNWFuy/+fbf3R1YvRrIzwc+/thK43lFrSSBO3cKsHix6dZjM+fvgJK5XwP233j9l3tOSZSi6uO9e/fw888/IzMzE4WFhWrPjRkzRt/TlUiSJOzZswcDBw4EADx58gT29vbYtWsXgoKCVO2mTp2KlJQUHDlypMRz5ufno3379jh8+DCqVq2KAQMGYOLEiejbt6/W9gsXLsSiRYs0jm/btg329val6xgRaZWVZYs33giAELrqIQkEBFzF0KEX4eb2uExjI6LK7dGjRxg5ciTu379f7Lppve9i++abb/Daa68hJycHTk5OanuxSZJklASpqKysLBQUFMDd3V3tuLu7O27evCnrHJaWlnjvvffQrVs3CCEQEBCgMzkCgNmzZyMsLEz1ODs7G15eXggICDD4wvS8vDzExcWhV69eGnWmzAH7b979BxTX4PTpFKxd2xqFhdqSJEUZgLi4eoiOLkBYmGmNJvE7wGvA/huv/yXdbKakd4I0Y8YMjBs3Du+99165j5wU3ShXCKHX5rklTeM9zcbGRmsZACsrK6N9eY157sqA/Tfv/vfqlYYZM1pg6VIrHbWSFGUAZs2yxIMH/94NZ0rM/TsA8Bqw/4bvv9zz6b3VyF9//YUpU6aUa3Lk5uYGCwsLjdGizMxMjVElIqq89NmehHu4EZEh6Z0g9e7dG0lJScaIRTZra2v4+fkhLi5O7XhcXBw6d+5cTlERkbGUVAYAUCRJoaEsBUBEhiFriu3rr79W/fmVV17BO++8g3PnzqFly5YaQ1X9+/c3SGAPHz7E5cuXVY9TU1ORkpICV1dX1K1bF2FhYRg9ejTatWuHTp06Yf369UhLS0NoaKhB3p+IKpaStydRHF+/nqUAiOjZyUqQlHePPW3x4sUaxyRJQkFBwTMHBQBJSUnw9/dXPVYukA4ODsbmzZsxbNgw3L59G4sXL0ZGRgZatGiB/fv3w9vb2yDvT0QVj7ztSRSVt+/fN811SURUNmQlSEVv5S8LPXr0QEkVCCZNmoRJkyaVUUREVFHI2Z4kKgrIylKsTeIWJUSkL73XIGlz7949Q5yGiEg2OeuSYmKAunUV7YiI9KF3grR06VLs2LFD9fjVV1+Fq6sr6tSpg19//dWgwRERFSc8HEhLAyZO1N1GOeXGu9yISB96J0gxMTGq7Tni4uJw6NAhfP/99wgMDMQ7XBVJRGVMn1IAy5aVTUxEVPnpXSgyIyNDlSDt27cPQ4cORUBAAOrVq4cOHToYPEAiIjkiI4Fq1RSjRbqWL0ZEKO6E45okIiqJ3iNILi4uSE9PBwB8//33eOmllwAoqlgb6g42IqLSKGnKTQhgxgzWSiKikumdIA0aNAgjR45Er169cPv2bdVWHSkpKWjYsKHBAyQi0kdJU247d3LhNhGVTO8ptpUrV6JevXpIT0/H+++/D0dHRwCKqTfeck9EFUVkpOI2f21FJVkriYhKoneCZGVlhfDwcI3j06ZNM0Q8REQGM28esGEDoKuUG2slEZEusrcaCQwMhJWVldq2I9oYaqsRIqJn5emp2HpkwgTdSRK3JyEibWRvNXLz5k3UrFlT67YjSobcaoSIyBBCQoDevYvfw41TbkRUlN5bjZTHtiNERM9Czh5uwL/PMUkiIoNsNUJEVBnI2Z4kKgoIDWUpACJzp/cibQD44Ycf8MMPPyAzM1NjROmTTz4xSGBERMYQHq4oFlnclBvXJRGR3iNIixYtQkBAAH744QdkZWXh7t27aj9ERBWdnO1JuIcbkXnTewRp3bp12Lx5M0aPHm2MeIiIyoxyrVFJ65JYCoDI/Og9gvTkyRN07tzZGLEQEZU5OeuSYmJYfZvI3OidII0fPx7btm0zRixEROWipD3cAE65EZkbvafYHj9+jPXr1+PQoUNo1aoVrKys1J5fsWKFwYIjIior+pQCqFZNkVQRkenSO0E6c+YMWrduDQD4/fff1Z6TihujJiKqBCIjFQlQRIRi1EibiAjFnXBck0RkuvROkOLj440RBxFRhVFSKQAhgBkzgOXLmSQRmSoWiiQi0qKkUgA7d3LhNpEpkzWCNGjQIGzevBnOzs4YNGhQsW1jY2MNEhgRUUUQGam4zV/XSBL3cCMyTbISpKpVq6rWFzk7O3OtERGZlXnzgA0bAF1bUbJWEpHpkZUgBQUFwdbWFgCwefNmY8ZDRFTheHoqth6ZMEF3ksTtSYhMi6w1SEFBQbh37x4AwMLCApmZmcaMiYiowgkJAa5dY60kInMhK0GqUaMGTp48CQAQQnCKjYjMkpw93ADFlBuTJKLKTVaCFBoaigEDBsDCwgKSJKFWrVqwsLDQ+kNEZOrkbE8SFQWEhgLXr5ddXERkOLLWIC1cuBDDhw/H5cuX0b9/f2zatAnVqlUzcmhERBVXSbWSAK5LIqrMZBeKbNKkCZo0aYIFCxbg1Vdfhb29vTHjIiKq8ORsT8JSAESVk96FIhcsWMDkiIjoKZGR8tYlccqNqPJgJW0iIgOQsy4pJobVt4kqCyZIREQGEh4OpKXJKwWwbFnZxUVE+jPrBGnlypVo3rw5mjVrhilTpkDo2rqbiEgmuaUAIiI43UZUkclOkHr27KkqFmkK/v77b3z00UdITk7Gb7/9huTkZFWtJyKiZ1XSlJsQXLRNVJHJTpASEhLw5MkTY8ZS5vLz8/H48WPk5eUhLy8PNWvWLO+QiMiElDTlFhPDhdtEFVWFnWJLTExEv3794OHhAUmSsHfvXo02a9asgY+PD2xtbeHn54ejR4/KPn+NGjUQHh6OunXrwsPDAy+99BIaNGhgwB4QEf075VZcksSF20QVj14J0oMHD5CdnV3sj6Hk5OTA19cXH330kdbnd+zYgWnTpmHu3Lk4ffo0unbtisDAQKSlpana+Pn5oUWLFho/N27cwN27d7Fv3z5cvXoVf/31F44fP47ExESDxU9E9LR584qfbuMebkQVi+xCkQDQqFEjnc8p92grKCh45qAAIDAwEIGBgTqfX7FiBUJCQjB+/HgAwKpVq3DgwAGsXbsW0dHRAIDk5GSdr9+1axcaNmwIV1dXAMArr7yCkydPolu3blrb5+bmIjc3V/VYmQwqp+cMSXk+Q5+3smD/zbv/gGleA3d3IDpawqxZFgC0Z0pRUQK3bhUiIiIfgGn1X1+m+B3QB/tvvP7LPadeCdLu3btVCUV5evLkCZKTkzFr1iy14wEBATh+/Lisc3h5eeH48eN4/PgxrKyskJCQgAkTJuhsHx0djUWLFmkcP3jwoNEKZ8bFxRnlvJUF+2/e/QdM7xo0aQIEBzfAli3NoT1JkrBxowU2brRFcHADAKbV/9Iwte+Avth/w/f/0aNHstrplSB16dKlQixkzsrKQkFBAdzd3dWOu7u74+bNm7LO0bFjR/Tp0wdt2rRBlSpV8OKLL6J///4628+ePRthYWGqx9nZ2fDy8kJAQACcnZ1L1xEd8vLyEBcXh169esHKysqg564M2H/z7j9g2tegTx9gwYJ8REdXwYYNVaArUdqypTnc3RshMrKYypMmzJS/A3Kw/8brv9zlQHolSBWNVGRCXznNJ1dUVBSidG2gVISNjQ1sbGw0jltZWRnty2vMc1cG7L959x8w3Wvg46PYxLZmTd17uAES3n/fClZWklmXAzDV74Bc7L/h+y/3fLIXaXt7e8PCwqLUARmSm5sbLCwsNEaLMjMzNUaViIgqqpK3J5G4hxtROZGdIKWmpqJ69eoAgDNnzmD37t348ssvcebMGaMFp4u1tTX8/Pw05ibj4uLQuXPnMo+HiKi05GxPwlIARGVPrym2n3/+GSEhITh37pxqWw5JktC8eXN8/PHHaN++vcECe/jwIS5fvqx6nJqaipSUFLi6uqJu3boICwvD6NGj0a5dO3Tq1Anr169HWloaQkNDDRYDEVFZUNZKcnPTPeWmLAVw/z4rcBOVBdkJ0rlz5/Diiy+iadOm2Lp1K5o2bQohBM6fP4+VK1fixRdfxMmTJ9GsWTODBJaUlAR/f3/VY+UC6eDgYGzevBnDhg3D7du3sXjxYmRkZKBFixbYv38/vL29DfL+RERlTZn4REUJ6C4FAGRlKWomeXqWXWxE5kZ2grRgwQL06tULX375pdpC6DZt2mDEiBEYNGgQFi5ciJ07dxoksB49epS4eeykSZMwadIkg7wfEVFFEBkJODoWYPZs3fWSYmKADRsUC71DQso2PiJzoddebHPmzNF6l5gkSZgzZw7i4+MNGhwRkTmaMUNg48aDeOMN3YV3CwuBCRO4eJvIWGQnSA8ePCj2DrFatWrhwYMHBgmKiMjcubk9xv/+V4i5c3W3KSzkeiQiY5GdINWrVw8///yzzud/+uknrv8hIjKwkkoBxMRwDzciY5CdIA0bNgxhYWH4/fffNZ777bffEB4ejuHDhxs0OCIi+rcUwNCh2p9nrSQiw5OdIM2ePRuenp5o3bo1AgMDERYWhrCwMLz88sto06YNPDw8MHv2bGPGSkRktjw9geXLix9JYq0kIsORnSDZ2toiPj4eUVFRyMjIwLp167Bu3TrcvHkTkZGRiI+Ph62trTFjJSIya56ewNKlup9X1krilBvRs9OrUKS1tTVmzpyJmTNnGiseIiIqxjvvKIpFFreNJGslET072SNIRERUMZS8hxun3IielewRJB8fH601kJ4mSRKuXLnyzEEREVHxwsOB4cMVyVJMjPY23J6EqPRkJ0jTpk3T+dzVq1cRExOD3NxcQ8REREQyyNnDDeCUG1FpyE6Qpk6dqnHszp07ePfdd7F27Vp06NABS4tbPUhEREYRGQlUq6YYLdK1Q1NMjGJrkqVLFeuYiKh4pVqD9M8//yAqKgr169dHfHw8YmNjceTIEXTs2NHQ8RERkQzKWkkTJ+puw7vciOTT6y62goICbNiwAYsWLYKtrS1Wr16NUaNGlbg2iYiIjE+fKTeA65KIiiM7Qdq5cyfmzZuH+/fvY86cOXjzzTdhbW1tzNiIiKgU5Ey5RUUp2oSHl2VkRJWH7ARp+PDhsLOzw4gRI3Dt2jXMmjVLa7sVK1YYLDgiIiodOXe5RUQA3bsD7duXbWxElYHsBKlbt24l3sbPqTYiooqjpCk3IYAOHbhwm0gb2QlSQkKCEcMgIiJjUa410pUksVYSkSZW0iYiMgMlVd+OigJCQ4Hr18s2LqKKigkSEZGZCA8HfvpJd5LE7UmI/sUEiYjIjLRvr1hzpAtrJREpMEEiIjIz77wDzJ1bfJuoKCZJZN5kJUiDBg1CdnY2AODTTz/lnmtERJVcSWuSAK5LIvMmK0Hat28fcnJyAACvv/467t+/b9SgiIjI+ORsT8J1SWSuZN3m36RJE8yePRv+/v4QQmDnzp1wdnbW2nbMmDEGDZCIiIxHzvYkLAVA5khWgrRu3TqEhYXh22+/hSRJmDdvntaikJIkMUEiIqqEiquVpBQVBWRlKdYmeXqWTVxE5UXWFFvnzp1x8uRJ/P333xBC4OLFi7h7967Gz507d4wdLxERGYmcdUmcciNzofddbKmpqahRo4YxYiEionImZ10SSwGQOZC91YiSt7c37t27h48//hjnz5+HJElo2rQpQkJCULVqVWPESEREZUjOuiRA8Vy1aoqkisjU6D2ClJSUhAYNGmDlypW4c+cOsrKysHLlSjRo0ACnTp0yRoxERFQO5Ey5RUSwDACZJr0TpOnTp6N///64evUqYmNjsWfPHqSmpqJv376YNm2aEUIkIqLyUtKUmxDAjBlMksj0lGoEaebMmbC0/Hd2ztLSEhEREUhKSjJocEREVP6UU266qm/v3MmF22R69E6QnJ2dkZaWpnE8PT0dTk5OBgnK0IKCguDi4oIhQ4ZoPLdv3z40btwYzz33HDZu3FgO0RERVQ6RkcWPJHHhNpkSvROkYcOGISQkBDt27EB6ejquX7+O7du3Y/z48RgxYoQxYnxmU6ZMwaeffqpxPD8/H2FhYTh8+DBOnTqFpUuXslQBEVEx5s0DqhTzLwe3JyFToXeCtGzZMgwaNAhjxoxBvXr14O3tjbFjx2LIkCFYWtwW0eXI399f6+jWzz//jObNm6NOnTpwcnJCnz59cODAgXKIkIiocvD0BNavLz5JYq0kMgV6J0jW1tb48MMPcffuXaSkpOD06dO4c+cOVq5cCRsbG70DSExMRL9+/eDh4QFJkrB3716NNmvWrIGPjw9sbW3h5+eHo0eP6v0+2ty4cQN16tRRPfb09MRff/1lkHMTEZmqkBDg2jXWSiLTpncdJCV7e3u0bNnymQPIycmBr68vXn/9dQwePFjj+R07dmDatGlYs2YNunTpgpiYGAQGBuLcuXOoW7cuAMDPzw+5ubkarz148CA8PDx0vrcQQuOYti1UiIhInT61kgDu4UaVT6kTJEMJDAxEYGCgzudXrFiBkJAQjB8/HgCwatUqHDhwAGvXrkV0dDQAIDk5uVTvXadOHbURo+vXr6NDhw5a2+bm5qolYdnZ2QCAvLw85OXller9dVGez9DnrSzYf/PuP8BrUJn6v2AB4OgoYc4cCwih/X8wo6IEbt0qxJw5hbL3cKtM18AY2H/j9V/uOSWhbRilnEiShD179mDgwIEAgCdPnsDe3h67du1CUFCQqt3UqVORkpKCI0eOyD53QkICPvroI+zevVt1LD8/H02bNkVCQgKcnZ3Rtm1bnDx5EtWrV9d4/cKFC7Fo0SKN49u2bYO9vb0evSQiMj1ZWbbYtasRDhyoB0DXSLxAcPBZBAVdKcPIiNQ9evQII0eOxP379+Hs7KyzXbmPIBUnKysLBQUFcHd3Vzvu7u6Omzdvyj5P7969cerUKeTk5MDT0xN79uxB+/btYWlpieXLl8Pf3x+FhYWIiIjQmhwBwOzZsxEWFqZ6nJ2dDS8vLwQEBBR7gUsjLy8PcXFx6NWrF6ysrAx67sqA/Tfv/gO8BpW1/2PGAPPnF2DJEgtoT5IkbNnSHLVrN8HixcX/v3llvQaGwv4br//KGaCS6J0g5eTkwMHBQe+AnkXRdUFCCL3WChV3Z1r//v3Rv3//Es9hY2OjdRG6lZWV0b68xjx3ZcD+m3f/AV6Dytj/6GjAwqK4dUkSliyxxN27igXcJU25VcZrYEjsv+H7L/d8et/F5u7ujnHjxuHYsWN6B6UvNzc3WFhYaIwWZWZmaowqERFRxSBnDzeWAqCKTu8E6YsvvsD9+/fx4osvolGjRliyZAlu3LhhjNhgbW0NPz8/xMXFqR2Pi4tD586djfKeRET07Eraww34txTAsmVlFxeRXHonSP369cOXX36JGzdu4M0338QXX3wBb29v9O3bF7GxscjPz9frfA8fPkRKSgpSUlIAAKmpqUhJSVFtZxIWFoaNGzfik08+wfnz5zF9+nSkpaUhNDRU39CJiKgMlbSHm1JEBCtvU8Wjd4KkVL16dUyfPh2//vorVqxYgUOHDmHIkCHw8PDA/Pnz8ejRI1nnSUpKQps2bdCmTRsAioSoTZs2mD9/PgDF1iarVq3C4sWL0bp1ayQmJmL//v3w9vYubehERFSGSppyE4J1kqjiKfVdbDdv3sSnn36KTZs2IS0tDUOGDEFISAhu3LiBJUuW4OTJkzh48GCJ5+nRo4fWgo1PmzRpEiZNmlTaUImIqJyFhwPDhysSoZgYzeeVx+Qs3CYqC3onSLGxsdi0aRMOHDiAZs2a4a233sKoUaNQrVo1VZvWrVurRoSIiIiAf6fcAN1J0vr1wNKlwLRpZRoakQa9E6TXX38dw4cPx48//oj27dtrbVO/fn3MLWnSmYiIzNK8eYpESNvkgXLh9p07Ejp2LPvYiJT0TpAyMjJKrBxtZ2eHBQsWlDooIiIyXZ6eilGiiAjdbZYssUBAQCu0agX4+JRdbERKei/SdnJyQmZmpsbx27dvw8LCwiBBERGRaXvnnZJqJUk4eNAHDRpYslYSlQu9EyRdC6pzc3NhbW39zAEREZF5kFcrSUJEhGJajqgsyZ5i++9//wtAse3Hxo0b4ejoqHquoKAAiYmJaNKkieEjJCIik6VcuO3mVtz2JP8+x3IAVFZkJ0grV64EoBhBWrdundp0mrW1NerVq4d1ytsTiIiI9BAZCVSrpliXpKvyS1QUkJXFUgBUNmRPsaWmpiI1NRXdu3fHr7/+qnqcmpqKCxcu4MCBA+jQoYMxYyUiIhOmPuWmPUviHm5UVvRegxQfHw8XFxdjxEJERGZOOeU2a1YBdCVJylIAXJdExiRrii0sLAzvvvsuHBwcEBYWVmzbFStWGCQwIiIyX4sXC1y+fAG7dzcGoP1WN065kTHJSpBOnz6NvLw81Z91kXTfr0lERKSXUaMuwM+vIebMsdS5LikmBtiwQVF4MiSkbOMj0yYrQYqPj9f6ZyIiImOaMUNg1Cjde7gBQGEhMGEC0Ls3R5LIcPReg0RERFSWlOuSitvBqrCQJQDIsGSNIA0aNEj2CWNjY0sdDBERkS4llQKIiVHUU2KiRIYgK0GqWrWqseMgIiIqUXg4MHw4MGMGsHOn5vNcuE2GIitB2rRpk7HjICIiksXTE1i+HNi1S/dI0vr1ig1x33mn7OMj08A1SEREVOl4eioSIF1YK4melawRpLZt2+KHH36Ai4sL2rRpU+zt/KdOnTJYcERERLq88w5w/37Je7hxyo1KQ1aCNGDAANjY2AAABg4caMx4iIiIZJOzhxun3Kg0ZCVICxYs0PpnIiKi8qZcuF1crSTllNv9+7zLjeSRlSBpk5SUhPPnz0OSJDRt2hR+fn6GjIuIiEg2Za0kNzdOuZFh6L1I+/r16+jatSuef/55TJ06FVOmTEH79u3xwgsvID093RgxEhERyRIZCXzwAVDczlcxMUDduop2RLronSCNGzcOeXl5OH/+PO7cuYM7d+7g/PnzEEIghBvhEBFROQsPB9LSgIkTdbfhXW5UEr2n2I4ePYrjx4+jcePGqmONGzfG6tWr0aVLF4MGR0REVBr6TLkBXJdEmvQeQapbty7y8vI0jufn56NOnToGCYqIiMgQ5Ey5RUUBy5aVXUxUOeidIL3//vuYPHkykpKSIP7/nsqkpCRMnToVy/gNIyKiCkbOlFtEBPDLL2UXE1V8sqbYXFxc1IpD5uTkoEOHDrC0VLw8Pz8flpaWGDduHOskERFRhVPSlJsQQIcOrJVE/5KVIK1atcrIYRARERmfcq2RriSJtZJISVaCFBwcbOw4iIiIykRJ1bdZK4mAZ9ys9p9//kF2drbaDxERUUUXHg789JPuxduslUR6J0g5OTl4++23UbNmTTg6OsLFxUXth4iIqDJo316x5kgX1koyb3onSBERETh8+DDWrFkDGxsbbNy4EYsWLYKHhwc+/fRTY8RIRERkFO+8A8ydW3ybqCgmSeZI7wTpm2++wZo1azBkyBBYWlqia9eumDdvHt577z18/vnnxojxmQUFBcHFxQVDhgxRO56eno4ePXqgWbNmaNWqFXbt2lVOERIRUXmRWyspNBS4fr3s4qLypXeCdOfOHfj4+AAAnJ2dcefOHQDACy+8gMTERMNGZyBTpkzROrplaWmJVatW4dy5czh06BCmT5+OnJyccoiQiIjKk5xaSVyXZF70TpDq16+Pq1evAgCaNWuGnTt3AlCMLFWrVs2QsRmMv78/nJycNI7Xrl0brVu3BgDUrFkTrq6uqoSPiIjMi7JWUnFTblyXZD70TpBef/11/PrrrwCA2bNnq9YiTZ8+He+UorpWYmIi+vXrBw8PD0iShL1792q0WbNmDXx8fGBraws/Pz8cPXpU7/cpSVJSEgoLC+Hl5WXwcxMRUeURGSlvXRKn3Eyb3pvVTp8+XfVnf39/nD9/HsnJyWjQoAF8fX31DiAnJwe+vr54/fXXMXjwYI3nd+zYgWnTpmHNmjXo0qULYmJiEBgYiHPnzqFu3boAAD8/P+Tm5mq89uDBg/Dw8Cgxhtu3b2PMmDHYuHGj3vETEZHpKalWEqCYclu/ntW3TZXeCVJR3t7e8Pb2LvXrAwMDERgYqPP5FStWICQkBOPHjwegqOp94MABrF27FtHR0QCA5OTkUr9/bm4ugoKCMHv2bHTu3LnYdk8nYcqaT3l5eVo3730WyvMZ+ryVBftv3v0HeA3Mvf9AxbgGU6cCgwcD0dFVsGFDFQCaq7gVU24Cd+4UYPFiHZlUKVSE/pcnY/Zf7jlLlSD98MMPWLlyJc6fPw9JktCkSRNMmzYNL730UmlOp9OTJ0+QnJyMWbNmqR0PCAjA8ePHn/n8QgiMHTsWPXv2xOjRo4ttGx0djUWLFmkcP3jwIOzt7Z85Fm3i4uKMct7Kgv037/4DvAbm3n+gYlyDV14B7t5tjN27G0NbkgRIWLLEAhkZZxEUdMWg710R+l+ejNH/R48eyWonCaFr8FC7jz76CNOnT8eQIUPQqVMnAMDJkyexe/durFixAm+//bb+0SqDkSTs2bNHteHtjRs3UKdOHfz4449qozvvvfcetmzZggsXLsg6b+/evXHq1Cnk5OTA1dUVe/bsQfv27XHs2DF069YNrVq1UrX97LPP0LJlS41zaBtB8vLyQlZWFpydnUvZY+3y8vIQFxeHXr16wcrKyqDnrgzYf/PuP8BrYO79ByrmNVi+XMKcORYQQns9AEkSuHIl3yDbk1TE/pclY/Y/Ozsbbm5uuH//frH/fus9ghQdHY2VK1eqJUJTpkxBly5dEBUV9UwJki5SkeIUQgiNY8U5cOCA1uMvvPACCgsLZZ3DxsYGNjY2GsetrKyM9uU15rkrA/bfvPsP8BqYe/+BinUNZs0CRo1SrE+KidF8XggJs2ZZYflyw+3hVpH6Xx6M0X+559P7Lrbs7Gy8/PLLGscDAgIMvhebm5sbLCwscPPmTbXjmZmZcHd3N+h7ERERlaSkUgA7d7JWkqnQO0Hq378/9uzZo3H8q6++Qr9+/QwSlJK1tTX8/Pw05iDj4uKKXVBNRERkTJGRuotKslaSaZA1xfbf//5X9eemTZsiKioKCQkJamuQfvzxR8yYMUPvAB4+fIjLly+rHqempiIlJQWurq6oW7cuwsLCMHr0aLRr1w6dOnXC+vXrkZaWhtDQUL3fi4iIyFDmzQM2bAB0rdSIigKyshTtDDXlRmVHVoK0cuVKtccuLi44d+4czp07pzpWrVo1fPLJJ5inZ8qclJQEf39/1eOwsDAAQHBwMDZv3oxhw4bh9u3bWLx4MTIyMtCiRQvs37//mUoLEBERPStPT0UdpAkTdCdJrJVUeclKkFJTU40WQI8ePVDSjXSTJk3CpEmTjBYDERFRaYSEAL176164Dfw75Xb/vqIdVQ56r0F6mhCixOSGiIjIlMnZww1QTLlxXVLlUaoE6dNPP0XLli1hZ2cHOzs7tGrVCp999pmhYyMiIqo0IiMVd68VV4WGe7hVHnonSCtWrMCbb76JPn36YOfOndixYwdefvllhIaGaqxVIiIiMifh4UBamu473ADFVBxLAVR8eheKXL16NdauXYsxY8aojg0YMADNmzfHwoUL1TazJSIiMjfKKTc3N8WIkTZcl1Tx6T2ClJGRobUGUefOnZGRkWGQoIiIiCq7yEh565I45VYx6Z0gNWzYEDt37tQ4vmPHDjz33HMGCYqIiMgUyFmXxCm3iknvKbZFixZh2LBhSExMRJcuXSBJEo4dO4YffvhBa+JERERkzsLDgeHD5ZUCkCRFeyp/eo8gDR48GD///DPc3Nywd+9exMbGws3NDT///DOCgoKMESMREVGlJrcUQEQEp9sqCr1GkPLy8jBhwgT85z//wdatW40VExERkUmKjASqVVMkQtrKCAqhaLN6dZmHRkXoNYJkZWWldaNaIiIikqekUgAxMcCkSVWQlWVbtoGRGr2n2IKCgrB3714jhEJERGQelFNuupKkjRstMH58AFasKGZ1NxmV3ou0GzZsiHfffRfHjx+Hn58fHBwc1J6fMmWKwYIjIiIyZfPmKTaz1b5rl4RZsyzw4AFrJZUHvROkjRs3olq1akhOTkZycrLac5IkMUEiIiKSydMTWLpUsSZJOwlRUUBWliKZ8vQsy+jMm94JUmpqqjHiICIiMkvvvKO4vV/Xwm1AsS5p/XpFMvXOO2Ubn7kq1Wa1SkIICF2fJhEREckiZw83Za2kefPKLi5zVqoE6eOPP0aLFi1ga2sLW1tbtGjRAhs3bjR0bERERGZDvVaS7sGHqCgmSWVB7ym2//znP1i5ciUmT56MTp06AQBOnDiB6dOn4+rVq4jkSjIiIqJSi4wEHB0LMHu2BQDtd7FxXZLx6Z0grV27Fhs2bMCIESNUx/r3749WrVph8uTJTJCIiIie0YwZAjVqHMRPP72EDRsstLbhuiTj0nuKraCgAO3atdM47ufnh/z8fIMERUREZO7c3B7jf/8rLHZ7Eq5LMh69E6RRo0Zh7dq1GsfXr1+P1157zSBBERERkUJkZMl7uEVFAaGh3MfNkPSeYgMUi7QPHjyIjh07AgBOnjyJ9PR0jBkzBmFhYap2K1asMEyUREREZqykPdwATrkZmt4J0u+//462bdsCAK5cuQIAqFGjBmrUqIHff/9d1U6SWB6diIjIUMLDgeHDFclSTIz2Nsopt/v3WX37WemdIMXHxxsjDiIiIiqBshSAm5tiWk0X5XNMkkrvmQpFEhERUdmLjAQ++EBRgVsXrkt6NkyQiIiIKiE51bdjYoC6dRXJFOmHCRIREVElpV59WzuWAigdJkhERESVnNxSAMuWlU08poAJEhERkQmQsy4pIgL45Zeyi6kyY4JERERkIkpalyQE0KED1yTJwQSJiIjIhJS0LolrkuRhgkRERGSCSppyYxmA4plFghQUFAQXFxcMGTJE6/OPHj2Ct7c3wsPDyzgyIiIi4wkPB376SXeSxDIAuplFgjRlyhR8+umnOp+PiopChw4dyjAiIiKistG+vWJ/Nl045aadWSRI/v7+cHJy0vrcpUuX8Mcff6BPnz5lHBUREVHZeOcdeWUApkwB4uM57QZUgAQpMTER/fr1g4eHByRJwt69ezXarFmzBj4+PrC1tYWfnx+OHj1qsPcPDw9HdHS0wc5HRERUEckpA7B6NdCzJ6fdgAqQIOXk5MDX1xcfffSR1ud37NiBadOmYe7cuTh9+jS6du2KwMBApKWlqdr4+fmhRYsWGj83btwo9r2/+uorNGrUCI0aNTJon4iIiCoiOduTAJx2AwDL8g4gMDAQgYGBOp9fsWIFQkJCMH78eADAqlWrcODAAaxdu1Y18pOcnFyq9z558iS2b9+OXbt24eHDh8jLy4OzszPmz5+v0TY3Nxe5ubmqx9nZ2QCAvLw85OXller9dVGez9DnrSzYf/PuP8BrYO79B3gNjNl/d3fFSJGLi4QlSywA6B5SiooSuHWrEHPmFMLT0+Ch6GTM/ss9pySEEAZ/91KSJAl79uzBwIEDAQBPnjyBvb09du3ahaCgIFW7qVOnIiUlBUeOHJF97oSEBHz00UfYvXu31uc3b96M33//Hct01GFfuHAhFi1apHF827ZtsLe3lx0HERFRRbF1a2Ps3t0YxSVJCgLBwWcRFHSlLMIyqkePHmHkyJG4f/8+nJ2ddbYr9xGk4mRlZaGgoADu7u5qx93d3XHz5k3Z5+nduzdOnTqFnJwceHp6Ys+ePWjfvr1escyePRthYWGqx9nZ2fDy8kJAQECxF7g08vLyEBcXh169esHKysqg564M2H/z7j/Aa2Du/Qd4Dcqq/336AH5+BZg71wKFhRIAAe3JkoQtW5qjdu0mWLzY+OMqxuy/cgaoJBU6QVKSiqwoE0JoHCvOgQMHSmwzduzYYp+3sbGBjY2NxnErKyujfXmNee7KgP037/4DvAbm3n+A16As+j9rFjBqFHD5MhAbK2H1al0tJSxZYgkLC8WC77JgjP7LPV+FTpDc3NxgYWGhMVqUmZmpMapEREREpePpqfjp0UNxB1tEhGKhtjZRUUBWlmIBd1muSypr5X4XW3Gsra3h5+eHuLg4teNxcXHo3LlzOUVFRERkuuTc6WYOFbjLfQTp4cOHuHz5supxamoqUlJS4Orqirp16yIsLAyjR49Gu3bt0KlTJ6xfvx5paWkIDQ0tx6iJiIhMl3LDWzc3xYiRNspSAOnpQFAQ8NxzpjWiVO4JUlJSEvz9/VWPlQuhg4ODsXnzZgwbNgy3b9/G4sWLkZGRgRYtWmD//v3w9vYur5CJiIjMgnKtka4kCVCUDFi9WlGAculSRdVuU1DuCVKPHj1QUqWBSZMmYdKkSWUUERERESlFRgLVqhW/Lgn4d0Tp11+BJUsq/2hShV6DREREROVPbgVuAPj8c8DLSzGSVJn3dGOCRERERCVSrksqadNbpWXLFInSxImVM1FigkRERESyKTe9rSIzg1i/vnKOKDFBIiIiIr2EhwPXrgHx8cDkyfJeU9lGlJggERERkd6UhSX/+1/FiJLcDS6UI0oVvYYSEyQiIiJ6JspF3Dt3KrYtkSMiQtF27VrF6yraqFK53+ZPRERElZ+nJ/Dqq4ofX9+SywIAijvePv/838cTJypeW7WqhH/+sTVuwCVggkREREQGFR4ODB8OnDgBfP01sHWrvNfFxCj/ZAkgAFlZBZg500hBloBTbERERGRwyhGlzz4r7XojCbNmWWDZMkNHJg8TJCIiIjKq8HDFnm2hofIXcytImDmzfNYnMUEiIiIio/P0VCzITktTJExyE6XCQuCpPe3LDBMkIiIiKjOenoopN+Vdb2vXFj+yZGEBNGxYtjECXKRNRERE5UC5Rklp7tx/F3Vv2yZQWCjBwkIgJkYql41vOYJERERE5e7pRd2XL+fj3XeP4dKlfISElE88TJCIiIioQvH0BFq2vF0uI0dKTJCIiIiIimCCRERERFQEEyQiIiKiIpggERERERXBBImIiIioCCZIREREREUwQSIiIiIqggkSERERURFMkIiIiIiKYIJEREREVAQTJCIiIqIiLMs7gMpKCAEAyM7ONvi58/Ly8OjRI2RnZ8PKysrg56/o2H/z7j/Aa2Du/Qd4Ddh/4/Vf+e+28t9xXZggldKDBw8AAF5eXuUcCREREenrwYMHqFq1qs7nJVFSCkVaFRYW4saNG3BycoIkSQY9d3Z2Nry8vJCeng5nZ2eDnrsyYP/Nu/8Ar4G59x/gNWD/jdd/IQQePHgADw8PVKmie6URR5BKqUqVKvD09DTqezg7O5vlL4YS+2/e/Qd4Dcy9/wCvAftvnP4XN3KkxEXaREREREUwQSIiIiIqgglSBWRjY4MFCxbAxsamvEMpF+y/efcf4DUw9/4DvAbsf/n3n4u0iYiIiIrgCBIRERFREUyQiIiIiIpggkRERERUBBMkIiIioiKYIFUwa9asgY+PD2xtbeHn54ejR4+Wd0hGsXDhQkiSpPZTq1Yt1fNCCCxcuBAeHh6ws7NDjx49cPbs2XKM+NklJiaiX79+8PDwgCRJ2Lt3r9rzcvqcm5uLyZMnw83NDQ4ODujfvz+uX79ehr0ovZL6P3bsWI3vRMeOHdXaVOb+R0dHo3379nByckLNmjUxcOBAXLhwQa2NKX8H5PTf1L8Da9euRatWrVTFDzt16oTvvvtO9bwpf/5Ayf2vaJ8/E6QKZMeOHZg2bRrmzp2L06dPo2vXrggMDERaWlp5h2YUzZs3R0ZGhurnt99+Uz33/vvvY8WKFfjoo4/wyy+/oFatWujVq5dqD7zKKCcnB76+vvjoo4+0Pi+nz9OmTcOePXuwfft2HDt2DA8fPkTfvn1RUFBQVt0otZL6DwAvv/yy2ndi//79as9X5v4fOXIEb731Fk6ePIm4uDjk5+cjICAAOTk5qjam/B2Q03/AtL8Dnp6eWLJkCZKSkpCUlISePXtiwIABqiTIlD9/oOT+AxXs8xdUYTz//PMiNDRU7ViTJk3ErFmzyiki41mwYIHw9fXV+lxhYaGoVauWWLJkierY48ePRdWqVcW6devKKELjAiD27Nmjeiynz/fu3RNWVlZi+/btqjZ//fWXqFKlivj+++/LLHZDKNp/IYQIDg4WAwYM0PkaU+q/EEJkZmYKAOLIkSNCCPP7DhTtvxDm9x0QQggXFxexceNGs/v8lZT9F6Liff4cQaognjx5guTkZAQEBKgdDwgIwPHjx8spKuO6dOkSPDw84OPjg+HDh+PPP/8EAKSmpuLmzZtq18LGxgbdu3c32Wshp8/JycnIy8tTa+Ph4YEWLVqYzHVJSEhAzZo10ahRI7zxxhvIzMxUPWdq/b9//z4AwNXVFYD5fQeK9l/JXL4DBQUF2L59O3JyctCpUyez+/yL9l+pIn3+3Ky2gsjKykJBQQHc3d3Vjru7u+PmzZvlFJXxdOjQAZ9++ikaNWqEW7duITIyEp07d8bZs2dV/dV2La5du1Ye4RqdnD7fvHkT1tbWcHFx0WhjCt+RwMBAvPrqq/D29kZqair+85//oGfPnkhOToaNjY1J9V8IgbCwMLzwwgto0aIFAPP6DmjrP2Ae34HffvsNnTp1wuPHj+Ho6Ig9e/agWbNmqn/gTf3z19V/oOJ9/kyQKhhJktQeCyE0jpmCwMBA1Z9btmyJTp06oUGDBtiyZYtqUZ65XIunlabPpnJdhg0bpvpzixYt0K5dO3h7e+Pbb7/FoEGDdL6uMvb/7bffxpkzZ3Ds2DGN58zhO6Cr/+bwHWjcuDFSUlJw7949fPnllwgODsaRI0dUz5v656+r/82aNatwnz+n2CoINzc3WFhYaGTBmZmZGv9HYYocHBzQsmVLXLp0SXU3mzldCzl9rlWrFp48eYK7d+/qbGNKateuDW9vb1y6dAmA6fR/8uTJ+PrrrxEfHw9PT0/VcXP5Dujqvzam+B2wtrZGw4YN0a5dO0RHR8PX1xcffvih2Xz+uvqvTXl//kyQKghra2v4+fkhLi5O7XhcXBw6d+5cTlGVndzcXJw/fx61a9eGj48PatWqpXYtnjx5giNHjpjstZDTZz8/P1hZWam1ycjIwO+//26S1+X27dtIT09H7dq1AVT+/gsh8PbbbyM2NhaHDx+Gj4+P2vOm/h0oqf/amNp3QBshBHJzc03+89dF2X9tyv3zN/iybyq17du3CysrK/Hxxx+Lc+fOiWnTpgkHBwdx9erV8g7N4GbMmCESEhLEn3/+KU6ePCn69u0rnJycVH1dsmSJqFq1qoiNjRW//fabGDFihKhdu7bIzs4u58hL78GDB+L06dPi9OnTAoBYsWKFOH36tLh27ZoQQl6fQ0NDhaenpzh06JA4deqU6Nmzp/D19RX5+fnl1S3Ziuv/gwcPxIwZM8Tx48dFamqqiI+PF506dRJ16tQxmf6/+eabomrVqiIhIUFkZGSofh49eqRqY8rfgZL6bw7fgdmzZ4vExESRmpoqzpw5I+bMmSOqVKkiDh48KIQw7c9fiOL7XxE/fyZIFcz//vc/4e3tLaytrUXbtm3VboE1JcOGDRO1a9cWVlZWwsPDQwwaNEicPXtW9XxhYaFYsGCBqFWrlrCxsRHdunUTv/32WzlG/Ozi4+MFAI2f4OBgIYS8Pv/zzz/i7bffFq6ursLOzk707dtXpKWllUNv9Fdc/x89eiQCAgJEjRo1hJWVlahbt64IDg7W6Ftl7r+2vgMQmzZtUrUx5e9ASf03h+/AuHHjVH+/16hRQ7z44ouq5EgI0/78hSi+/xXx85eEEMLw41JERERElRfXIBEREREVwQSJiIiIqAgmSERERERFMEEiIiIiKoIJEhEREVERTJCIiIiIimCCRERERFQEEyQiqhB69OiBadOmlXcYKkIITJgwAa6urpAkCSkpKeUdEhGVIcvyDoCIqCL6/vvvsXnzZiQkJKB+/fpwc3Mr75CIqAwxQSIik1VQUABJklCliv6D5VeuXEHt2rUr7SagRPRsOMVGRCo9evTAlClTEBERAVdXV9SqVQsLFy5UPX/16lWN6aZ79+5BkiQkJCQAABISEiBJEg4cOIA2bdrAzs4OPXv2RGZmJr777js0bdoUzs7OGDFiBB49eqT2/vn5+Xj77bdRrVo1VK9eHfPmzcPTuyE9efIEERERqFOnDhwcHNChQwfV+wLA5s2bUa1aNezbtw/NmjWDjY0Nrl27prWvR44cwfPPPw8bGxvUrl0bs2bNQn5+PgBg7NixmDx5MtLS0iBJEurVq6f1HE+/X+PGjWFvb48hQ4YgJycHW7ZsQb169eDi4oLJkyejoKBA9bq7d+9izJgxcHFxgb29PQIDA3Hp0iUAwP3792FnZ4fvv/9e7b1iY2Ph4OCAhw8fAgD++usvDBs2DC4uLqhevToGDBiAq1evqtonJCTg+eefh4ODA6pVq4YuXbrovBbKzzU2Nhb+/v6wt7eHr68vTpw4obU9kVkwyg5vRFQpde/eXTg7O4uFCxeKixcvii1btghJklQbSqampgoA4vTp06rX3L17VwAQ8fHxQoh/N6Xt2LGjOHbsmDh16pRo2LCh6N69uwgICBCnTp0SiYmJonr16mLJkiVq7+3o6CimTp0q/vjjD7F161Zhb28v1q9fr2ozcuRI0blzZ5GYmCguX74sPvjgA2FjYyMuXrwohBBi06ZNwsrKSnTu3Fn8+OOP4o8//hAPHz7U6Of169eFvb29mDRpkjh//rzYs2ePcHNzEwsWLBBCCHHv3j2xePFi4enpKTIyMkRmZqbW66V8v169eolTp06JI0eOiOrVq4uAgAAxdOhQcfbsWfHNN98Ia2trsX37dtXr+vfvL5o2bSoSExNFSkqK6N27t2jYsKF48uSJEEKIwYMHi1GjRqm91+DBg8WIESOEEELk5OSI5557TowbN06cOXNGnDt3TowcOVI0btxY5Obmiry8PFG1alURHh4uLl++LM6dOyc2b94srl27prUfys+1SZMmYt++feLChQtiyJAhwtvbW+Tl5Wl9DZGpY4JERCrdu3cXL7zwgtqx9u3bi5kzZwoh9EuQDh06pGoTHR0tAIgrV66ojk2cOFH07t1b7b2bNm0qCgsLVcdmzpwpmjZtKoQQ4vLly0KSJPHXX3+pxffiiy+K2bNnCyEUCQsAkZKSUmw/58yZIxo3bqz2Xv/73/+Eo6OjKCgoEEIIsXLlSuHt7V3seZTvd/nyZbV+2dvbiwcPHqiO9e7dW0ycOFEIIcTFixcFAPHjjz+qns/KyhJ2dnZi586dQgghYmNjhaOjo8jJyRFCCHH//n1ha2srvv32WyGEEB9//LFG/Lm5ucLOzk4cOHBA3L59WwAQCQkJxcavpPxcN27cqDp29uxZAUCcP39e1jmITA2n2IhITatWrdQe165dG5mZmc90Hnd3d9jb26N+/fpqx4qet2PHjpAkSfW4U6dOuHTpEgoKCnDq1CkIIdCoUSM4Ojqqfo4cOYIrV66oXmNtba3Rh6LOnz+PTp06qb1Xly5d8PDhQ1y/fl2vftrb26NBgwZq/apXrx4cHR219vX8+fOwtLREhw4dVM9Xr14djRs3xvnz5wEAr7zyCiwtLfH1118DAL788ks4OTkhICAAAJCcnIzLly/DyclJdR1cXV3x+PFjXLlyBa6urhg7dix69+6Nfv364cMPP0RGRkaJfXn6utWuXRsASvXZE5kCLtImIjVWVlZqjyVJQmFhIQCoFjuLp9YF5eXllXgeSZKKPa8chYWFsLCwQHJyMiwsLNSeezoZsbOzU0t8tBFCaLRR9qmk1xalrV/F9fXpa6crJmtrawwZMgTbtm3D8OHDsW3bNgwbNgyWloq/sgsLC+Hn54fPP/9c4zw1atQAAGzatAlTpkzB999/jx07dmDevHmIi4tDx44dZfVFGYs+nxGRKeEIEhHJpvzH9+nRCEPWBzp58qTG4+eeew4WFhZo06YNCgoKkJmZiYYNG6r91KpVS6/3adasGY4fP66WrBw/fhxOTk6oU6eOQfpS3Hvn5+fjp59+Uh27ffs2Ll68iKZNm6qOvfbaa/j+++9x9uxZxMfH47XXXlM917ZtW1y6dAk1a9bUuBZVq1ZVtWvTpg1mz56N48ePo0WLFti2bZtR+0ZkSpggEZFsdnZ26NixI5YsWYJz584hMTER8+bNM9j509PTERYWhgsXLuCLL77A6tWrMXXqVABAo0aN8Nprr2HMmDGIjY1FamoqfvnlFyxduhT79+/X630mTZqE9PR0TJ48GX/88Qe++uorLFiwAGFhYaUqCaCP5557DgMGDMAbb7yBY8eO4ddff8WoUaNQp04dDBgwQNWue/fucHd3x2uvvYZ69eqpjfy89tprcHNzw4ABA3D06FGkpqbiyJEjmDp1Kq5fv47U1FTMnj0bJ06cwLVr13Dw4EGNBIyIiscEiYj08sknnyAvLw/t2rXD1KlTERkZabBzjxkzBv/88w+ef/55vPXWW5g8eTImTJigen7Tpk0YM2YMZsyYgcaNG6N///746aef4OXlpdf71KlTB/v378fPP/8MX19fhIaGIiQkxKDJXnE2bdoEPz8/9O3bF506dYIQAvv379eY4hoxYgR+/fVXtdEjQLHuKTExEXXr1sWgQYPQtGlTjBs3Dv/88w+cnZ1hb2+PP/74A4MHD0ajRo0wYcIEvP3225g4cWKZ9I/IFEhC14Q4ERERkZniCBIRERFREUyQiIiIiIpggkRERERUBBMkIiIioiKYIBEREREVwQSJiIiIqAgmSERERERFMEEiIiIiKoIJEhEREVERTJCIiIiIimCCRERERFQEEyQiIiKiIv4PTSuemSi7aaUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'chance of long chutes & ladders game')" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(0:350, [1-((T*M)^n * e₁)[end] for n = 0:350], \"b.-\")\n", + "xlabel(\"number of moves n\")\n", + "ylabel(\"probability of NOT finishing in n moves\")\n", + "grid()\n", + "title(\"chance of long chutes & ladders game\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fortunately, the probability of a long game decreases exponentially fast with $n$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Absorbing Markov matrix\n", + "\n", + "It turns out that the matrix $M$ (and $TM$) for this problem is something called an [absorbing Markov matrix](https://en.wikipedia.org/wiki/Absorbing_Markov_chain).\n", + "\n", + "It is \"absorbing\" because the final position 101 (spot 100 on the board) cannot be escaped, and can be reached from every other position. This has two consequences:\n", + "\n", + "* Every initial vector eventually reaches this \"absorbing\" steady state, even though it is not a positive Markov matrix.\n", + "\n", + "* There are nice analytical formulas for the expected number of moves, the variance, etcetera. We don't actually have to sum up $n [p(n) - p(n-1)]$ as above.\n", + "\n", + "Deriving these nice formulas is not too hard, but is a bit outside the scope of 18.06. But, just for fun, here is the \"clever way\" to compute the expected number of moves to finish *Chutes & Ladders*:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "27.130202016993298" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = (T*M)'[1:100,1:100] # the 100x100 upper-left corner of (TM)ᵀ\n", + "N = inv(I - A) # N[i,j] = expected number of visits to i starting at j\n", + "(N * ones(100))[1] # expected number of moves to finish starting at 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This matches our brute-force calculation from above!" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notes/Circulant-Matrices.ipynb b/notes/Circulant-Matrices.ipynb new file mode 100644 index 00000000..52aa0f34 --- /dev/null +++ b/notes/Circulant-Matrices.ipynb @@ -0,0 +1,834 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using PyPlot, LinearAlgebra" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALwAAADDCAYAAAA4PXu/AAABOGlDQ1BrQ0dDb2xvclNwYWNlQWRvYmVSR0IxOTk4AAAokWNgYFJILCjIYRJgYMjNKykKcndSiIiMUmB/xsDKwMLAzqDPYJyYXFzgGBDgwwAEMBoVfLvGwAiiL+uCzJpivO1cjMWGdoHpqRe3pXw2xVSPArhSUouTgfQfIM5OLigqYWBgzACylctLCkDsHiBbJCkbzF4AYhcBHQhkbwGx0yHsE2A1EPYdsJqQIGcg+wOQzZcEZjOB7OJLh7AFQGyovSAg6JiSn5SqAPK9hqGlpYUmATeTDEpSK0pAtHN+QWVRZnpGiYIjMKRSFTzzkvV0FIwMjIwYGEDhDlH9ORAcnoxiZxBiCIAQmyPBwOC/lIGB5Q9CzKSXgWGBDgMD/1SEmJohA4OAPgPDvjnJpUVlUGMYmYwZGAjxAc0oUqEijgXCAAAAOGVYSWZNTQAqAAAACAABh2kABAAAAAEAAAAaAAAAAAACoAIABAAAAAEAAAC8oAMABAAAAAEAAADDAAAAANj/xwIAADpoSURBVHgB7V0FYBRXEx78x4oVKxSHtri7uwS34hbcCe4SCAR3Ke4UL1Y8uLu7F3cppbT7zzd0j7vLaW4vuSQ7bbi93bdv387Nvp038k0EhYl00jkQTjgQMZzcp36bOgeEA7rA64IQrjigC3y4+rn1m9UF3o0yoC+P3MjcIHatC3wQGWfvtM+fP1Pnzp3tNdOPBzMHdIF3E8NPnTpF6dOnd1PverdB5UDkoJ6on2eZA//88w/9/vvvNGXyZEqXLh09ffKEEiZKZLmxvjfYOaDP8BqzvFnTpnTr5k2KFCkSVa9Rg0qWLEkfP37U+Cp6d0HlgC7wQeWchfM2/PYbPXv+nOrUrUtRokShrFmz0rt37+jFixcWWuu7QoIDusBryPU1a9dSrVq1aO/evZQrd266ePEifffdd5TICZXmypUr5NOtm4aj0rsy5oAu8MbccHH7m2++of/973+0JyCAcubMSVOnTKG+/frRnTt3qED+/HTs2DG5wpIlS6h169b06dOnQFf84Ycf6Nbt24H26zu04YC+aNWGj9LLz6zKTJw4kc6ePUvXrl2jypUrU6VKlegv1uHjxYtHCxcupDx58lC0qFGpQ4cOFJU/LVHECBEs7db3acABXeA1YKLaRYGCBSl6jBjk4+ND61mfjxYtmhw6cvQo9ezZk/r06SNWGzwMlby86P69e+qp8pk4SRLR/U12uvELHGMRwtnDFa5VmsJF8tHcub9oKlJHjhyhwoUKGYQdnR9lgS9QoADVZP1+6bJlFClyZHrz5g1dvHTJ5O+vv/7SdCz2Ouvdqxe9ffvWXrMwdTzcz/BR/5uFtfpVk/IsDeE2prcs3NFYt2/QoAGVLVOG/EePpsSJE1PZsmWNm8k2BPDly5eiBuEcdxFm90ePHlHs2LHddQnP7JdvPMxTocJ5lX3794bIfa5evVpp3KiR8uHDB7l++3btFJ7drY7lyZMnyv3795WnT59abePqgZs3byr9+/dXihYpohw/ftzV7kLV+REwWs98FLUZ1fv376hc+VLUtElz8vZurU2nLvTy/v17ihkzpgs9uHbq8uXLaeOGDRL2kCZNGpozZw717duXypYr51rHoeTsMKXDv3wZ2METM2Ys2r/viEcIO2QiJIUdDjD/UaNoyJAhdOHCBSpZqpSoVnfv3g0l4ur6MMOMwJ8+fYoqV6lAv/22znWuhNEedu3cSalTp5bYnocPH9K3CRIQqzeUPUeOMHrHgW8rzAh8unTpKXPmLFS6dOCFYODbdu+ee/fusllyLS1ZspB27tzuMZaQb+LEEcfYwQMHRMiXLF1KefPmpdzsFfb19SVeawhjnnN4RLWqVcW65F5OBX/vYcZKEytWLJoxfXbwc9DoioiB79+/Nx0/fowiRIxInz//LebJz5//oY4dOlPVqtWNWgf/Jry/vIgmf39/CWj7/PffNHTYMBlIvLhx6TZ7eG9cv05pOcozW7Zs8jAE/yjde8VQt2gtVrwgIQQXerknEYTdq3I5wqLUmh2gY4cuVLduvRAfdiF2kE2fMUOC29TB+I0YQXB83eUwiCYc8Xno0CGqX7++ejjMfIY6lWb8uElUpEgxj/sBli1bTHAcWRN2DHjWL9N5Fr0VomOHdxcxPIjkVOnN69dij0fg25YtW2jr1q1UvHhx9XCY+gx1Ap8zZ27yG+HvcT/CmrWr6W9WEWyRJIds3WKxCfTmMmWLy0NjsYFGOz/8+Sf16NHDpLc9e/ZQfnaWIfitFFtutnICC6I8wyJ5rMCfv3COrl69EuI8P3fuLJvvirAgWk/igKC/ePHc7lih9ly5ctliu8WLF9BPP2WiDx/eG4736NmNli5dZPiuxUaGDBkkXl/t69WrVzR79mxD5Gajxo3DpO6u3q/HLlrbtPGWMQa3rt66TQvKlDEzderUVa4PNaV8+Yps7lxPtWvXVfkm64gHDx5w6O8tunnrJv3777+GY7Y20H758qWUMmVK/ktFSZN+R2fOnGZB/0ApUqQgCGC8ePHp5KkTkjVlHPqAfZ07t6d9ew/buoRTx+LyYhWBbir99NNPMg71e1j79FiB37Z1N92/bxpNqDXz//jjAc92NejXFWv4FZ5Muk+dKg3dZqF8wMeS8b7Xr19RmjRpxfJSpGgxtl1/S2PGjKKnz57wdkJKmSoVpWeTaJIkSenhwz9sDhHhwKVKlqWkrC5cu36NdrDJEs6gu3fv0MQJU2jzlo305u0bUY3WrVtDXl5V6Op/bwS8RdasWcVvgYzycEVkK5C7KCSdY+66J7VfjxX4GBxmmyHDD+o4Hfo8cGA/rV23mk1r1wgCARWhdp26lC1rdovnw6JStmx5WvHrMurapbu0ecsCV6VyNRaulWxK7MIC/1pm3PLlKojAeVWqTH+zuXHEcH+TiMgX7OWdMGGszfxVLBbr8HgSJvya1I2Z/eWrl/JwxYkTl17zDL9r1w6eZVNSksRJOGnkizVq+45tlJYfPNCXMcWTbWv/4OFbsHAeW1sOipoUP34CDlwrx/z4mb6J/Y2108L8fvdNE8HMuiFDB9LgIf3p8OGDPPs+pcdPHlPAnl3Uvn1rViGWWBzNK569IVh/ffyLTp06KTPnW85BLVq0uITvQn/HDB+XHTawDD1//kxm/kSJEpsIOzr3qlSF8ucvaPE66s6ZM+aYCDv248HGmwQU55s4MuND4KtXq0lx+LqwoCB6cs+e3VStWg1ZWOKhxHrgFqtS+DSnmzdvsGBXZ4vLJhnzn7xQffDgPocmL6aKFcuI+mR+Tnj57rEzvDM/wJSpk2j37p0Wf3z0g+OxOAwWQqnS06dP6MH9+xSLY21q1qpNixYtoFSpUot5Dm+HmjVr0wrWteGdxJ+gEFSvSfPnz6VcuXKr3Zh8+g7zo7nzZhNMlGiP5AoIZHzWyfv2HUCZMmU2aW/+BVaSCxfPU6FCRSgBu/2xfnj95rWESxTlBw66PR4KzPBwbi1avEBCBbAOwHoA48c1u3btKF3DKmRMarx9s+aNaNHCZVYzrozPCWvboV7gYR1ZvfpXq8Ku/mCTJo0XGzkCpe7euS3x6cmSJacG9RsRvLQpvk9B+/fvlVkV5/z4w0+il1+6fJFn+LjSTeZMWWRG/vRX4FxU9TrNm3lLnzduXKd3HKn5HQsjrgNBtEeROTEkIGA3der4ZcGMjKm/P/1Nl69coiH1fOV0qD2PHj2kU6dPytoDOxHKcIfv6cL5c7Rh49cFqLXrIchuB6tIFSt6WWsSZveHeoHHTIfFoD0bOI4/4oCpYqyupGALibkeW41VCKhEGdlCo1K9eg2ofoM6JhGOQ4cMVw9b/YSgZsyYyepxawfy5s1PG34ztdNDPWvUuKlhNsZbAMJah3VxQIGAsKjGH2jFr8vl09Y/WDfs4jeipws8nHiOTBS27tX8WKjX4WHlsCfsuOlo0f4nFg4EmJkLO45/++23bEEpQ8YJ1N+w+rBxw1ae1UMwfn3ZKsqbJx+G+IX4TRGFH/BcufKoe0w+//zzg8l3a18c8RtYOze49rsjBTHUz/Dx48cXfdn+j6CwUCe02aw66+iu0h9//EFnz5yhnLlySZL2n4xYUKhQIV507uEHLTbl4AAuV6hihUqEP2sUK1ZsWWhbO67uT8wLb08mzO7uSEEM9TN8lKhRbJoC1R8Vr0aEEDtK06dNo7p16rCN/K44gzDbIOjq8ePHNrs4fPgwdezYUdzzCxiWY0D//jRr1iwOFV5Cfn5+Ns/V4mBR9hVgwWyLoAIWK17CahNb8UBWT9LwwK1bt2jgwIF0m6M3T5w4oWHPRKFW4OHqh5Vi//59VIFnPCz4bFHnzt3stjE+Pw57IG8y42ERGcmC2p3jT3YHBEiGkHE78+0oPA7o1tC18+XLR5yjSlmzZGEbehrKwCBL7qYWzVvZvAQefJhCTzO6MSxV5gSTJsbsKl26dJFGjhxuNZTCWv9IQcQkEZkfWm9vb0Fh28bBbFqRxwv8dXYimRNm3ZGjRshM1qtnX+rbZ4DVCEoggXXo0JnKl6to3o3N75cYQgNM78Uz+3AOnYWOj5nRHu3dt4+ycix51WrV6MD+/ewt9ZLArIMHD1KRwoXtne7ycYxz1covWV9YPBtT9OjROTisDC+Mf6fChYvQmLH+nOTxNUxh2/atNMJvGIc1HDc+LUjb8Ai/ePmcWng3oZatmrEXeZPdwLjgSEG0PS0G6Va1O+kN26CbNmtIbdu0Z6tEPZk5Hz1+xD/KUGrdqh3lyPFVHx42dATtP7CP1q9fS3hIvnhaM0r8izVPq62RQkCzcAjt9m3bRCd3VPfex7iSozhvFLE16GP5ihXixMIDFJtnfcBwuBsaA57c9es2S9bVAeYJMHAQOlGmTFnW/73E8lG4cFGx7MybP4cwtjdvX4tpNwGHTuTK+dXP4IqlpE2bDuwIPMT9X+S/oTR58gSqxKZQONCSJ/8+EPvtpSDCuoS3k0vEN+RRxI4ak/H4jfRVZsycpgwdNkhhb6Fy7dpVhb2qJm20/sKLJSVVypQKv0mUOrVrK3Xr1nXoEteuXlWyZ8umsNVIOX/unMJ4knLe5cuXlcyZMimLFy1yqJ/gbMThDgo7y5SNG39T2HegjBgxzHB59vAqgwf3V548eWzY5+wGfj/ApJj/denaUeFYJpPuOA5fqV+vnrJl82aFoQgVRlRQ2rVtq0Am5syerTRu3NikfVC+eJRKwzcgXsU77ERRKU/uvOJdLMexLJN4hsAMD6xGS/qneo6rn4c52yd58uT0/fff8yyYho7wQhSztj1KxxU/Tp0+LWuFTJkz00HuBwSA1AOcR9qgYUN7XQT7caw3GjdqKhGhiMZU35oIq2BhJVidgPwQVPJu0VryaM3Pv8LONDjRjAkpiPCIIwXxxPHjdIwR2wYzwgIW4aVKlyakJLpKHiXwWFBdu36Vkbn8xDGCm8uePSedPnOKIPjdunYXb2hsDn46edL26h0/1O+cvYMF2Ele6UPgQDAPnjp5Urat/QP9ex/r3yC/kSMFzRe6vCuE8ARPJQgU/oD8kD17DlrFnuuVq1ZIEB0QDYzVCEw4zhDWFPXqBX7QW7duZ9Iv+kTbmTNniq4/gz+Rhpgw4RdTslYOqBAXeDiNMLOrVKpkafrxx584mOsEzZgxVYK0YGuHXo6gre4+vSgef0dIrS0KafOgrbF54jEEosHShVghxOT36d2fEFaRI3suGS5+p9mzZ1K/fr1Mfi9H7qU+Czxig1TKn68AVa1iOaHdUgqiep4WnyEu8BDsUWxxgfkPBE8o8NTbte0oC62Ro4azSvCjxI7gOH6U1q3a0s8/N8BXqxTS5kGrA/PQAwxFyOrLA7F2ebdoJTP+5cuXOPc1m+z39x8hUZaYkJydbWEdatWyrRgSGjRoxH6Kzlaz2SylIGrJshAXeEQAIkx3FAv2hQvnJQQAaWjnzp+lKlWqUcOGjcXWDmuD8ZvAnqUjpM2DWv5IwdFX8WIlachgX/YKfzGd4rdInToNq47HaSIH3pUpU07yAJBTHBRC3M7iRSvY4taBIztTi/BbekubpyCq10KhuHucgH6docZdoRAXeHg/MWM0YezHFSuW0lpOhs6eLQfrk1/0bEQtDhwwhJ04BTjv8i+H7xXmwbZt2hjMg82aNw9kHnS4s3DQEOmFCDNW6SgnnsA4AFNvd5+ejEX5g6yH0qfPoDZx6hO/Ma6hEn53qE5IXgc9e/ZUgKuOHT+qNjH5bNWqFWESg2HAFQpxgQcjsmTJSmwSo96sNyJ1bteunVwf6YIhcRqzOfTAuXPmOuTuxyyA2O9C7Oi5xHWW8EqFpQTwcnDGoMqevTeEK0wN7eeyGZACAnaylSqFrJlg18cElI3VGySTICdXC4K6dPHSBba+jadatavxInUqh2SYRotqcR2TPoJiy9TyHDZBKr16d1dOnPwK2xywZ7fYbdk0ZnIpjkdRGBZO4ZIySq+ePQVSmgXbpI29L5xCZ6+Jfpw58PDRQxM+jBs3mqG1jyr9+vdWsM1OJIWzwQxt2NGmvHv3VuHQBIUjMRVOPjEcs7aB9m3aepvY6KtV97LWXJP9bkUeO3v2DK1bv0ZmazxliBGvVbOOIVYccd07d+3gBWj9QHmnWEDBO2hMAwYMoB3bt4uVZgNDPsOUppP7OQDVA6hqyLpq3KQZ/ZDhR0kfxLqqQYPG8tb09/ejK1cvyzYsOlibtfRuLfZ9ayMcOKif5O+aH1+6ZKWJ+mN+3JXvbhN4vKYAbfHx45+G8UF94ceU4Ix4+47zMv/+TE2btmDm2E5IVjsASFDatGnF3b9mzRqXQ23VfvVP2xxAhtXMWdPZD9LDRBWEGjpt2mQ6YhSPY95TG7a3N2zYxHy3fD9z9jRHRfaTvFvjBj7depIWodrGfarbbhH433/fzKGwvvTPv6Y5lepF8Vm+fEXq13egwyYuhOXm5+hDLFy6c9EwgJUisk6nkOMAFprQvaHz26JxYycyuFN+i02QoM5hIwZ0BjQqVqwEDfcdabG9qzs1X7QCOWv4iKE2hR2D3rdvrwHtypGbCKq735G+9TZB48DmzZscUiuR2G6N8HbHA9GqZRsxVaIdvOgIvnMHaS7wpzjOOmZM+ylxUG8QRecoucPd7+i19XaWOQDMHBUJwXKLL3utwQuq50AWGjduxtGU0wXGBDAkHCSoHtb0U3OBh1nR3ivuyx0ogXQ3Te9M78ztHICJ0hEyhwuxdg7CuOfPW8yZZYU50+mYtWYu7ddc4LE6t5d99GXEEcTa4tLo9ZNDlANwAmF2tkcICnOUAD41atRYjtr8EsPj6HmOttNc4OEl/cRYKvbo778/MWhpJnvN9OMezAEkkyCjzBbB0eflVdVWE4vHkDHlDtJc4PGEwqSEOGtrBPs5gsMAnaFT6OUAPKVqNKW1u4COX89OoJ+1c92xX3OBxyA7tO9EiRImtjheuPkrMeQdoOyg211k1//GjRtF79/AsM1clFei8lCLSI2zsNiRvjPEOYDCbQgNKMg6N2byqFG/5NBiQsPMj0T2dWs3SWhHiA/2vwG4JacVEXa5uDJc2zztOZHgVwH9BMDRDxznXosFvUCBQnJ5LHpmcaD/Kw4NRnbLlStXOA7+lAg8hw/Qu3fvOKjMstPCUxgYHscBkyHwOg8d2s8JG3MEDPb+/XucZLNPMqSwjsubN58k8/y+dTM1ZG+sx5AmAQpGnSC2pf+APsoNjqlwhDgKTilerJjCoZ9Kg/r1lQoVKiic6Kxwhr/C5RUd6UJvE4wcYIhxpUfPrkrHTu0UTg63eWX2sit9+/VSEC/lKaSpSgMVBbEzqVOlpjQcS22P0P4QZ/Y359DdhLySP8Z5jL1795aw0adPn8pbwl4f+vHg4wAnc1Pbdi05e+lbcRbZizjFGq0yL1hX8VteJeAJISQhpMhlgQcTVK8YdLcMHDfNszvHNz+ze0+n/0t4rlO3rgg7EqeLFi0qD0FeDiNAIq9OnsEBZD8BX6ZC+UoELCDHTM/EmPkF6PM/nxkuvKeEm7RjvP4mTRsIInJI3JlLOjz0tp/r1SJkwSC7PxXP7JjdUVVj6tSJ1I2DgGzNAvs5UbpcuXKy4AGGS4kSJYQHyGx5wYkB/+MFrk4hz4Hdu3fS6DEjWWgHUuFCRZweEILOAPL0E6/hUJWkebOWAkfudEcanOBy8BigHVatXMFFbBtJTSbUIb3Ff0eOHKKMXHJm/PjJItDOjBWZNqBodmy8zvSptw0aBxYumk/ruIwQnEHp0wUt2wlX/si/6YSJYyWbDYGDIUUuCzwGvmdvgJRk8enWw4BhAtwYxEWbx7SH1I3q13WOA/jtkLgN9dR/1DiB0HCuh6+tEWoyla06kAW1EiJ0eSTrJ+Hq34AlDy4KksDjBpCgkSxZckO03IaN6wl6HqpXwCarU+jlABAk+rDOjdpWgwYN5d8z6A5Cts7QnDmzxOeCVM7bd24TtABAYcN83aWzD9WqVSfYmBUkgT94cD8t47xGgI2m4KJg0N3xd+7cGS7z8l5gNLCA1Sn0cQBIAt17dKGSJUoTwJIiRLAfK2PrLrez7o7E/CRJkwoKQqqUqQS1YP1vawSvP7i9sEESeNwgzI/Xr18Ts9MdZtLt2zfpJidHo05S507dDK8uW8zQj3kWBxChOGhwf2rXrpPNogvOjBraAMp1GqOXzZs3W2b85s1bGmLgnenTlbZBFnhcFAuaPz98oJZGwfsIB/jf/6IZdHlXBqefG3wc2LBhvaTx+Q7zE7g9d10ZNnmU0GzP4ScwbWIxi0LQCEtwxHfj6ricEngsRFHMF1DHGCwcR8h1jMMxEw08yX3sKlfC0fnwoSAvFfgzY0aPtwhjrRU7tm7dInV0SzJ6GVQn6POoNXXkyGGJgffzG+32Gd8pgR8zdhRju/whidhYsEJvhw6/c8d2QSIAUphOoYcDiGUaPGSAxC4NHz7SYrE3re7mxo3r1LxFYynIkCZNWpEd6POownjj5nUxdtiKsNVqHE4JPPSx6TOmcBhAInH73+aSMIC2hnXmMNvdp0/7RUCVtBqc3o/7OIC3dY8e3QS4tnv3Xg57Tl0ZEUyRxhYflM48eGA/Oyh7mOj4rlzD7rnOBvUgIGiU/wiFzZACVK+ez+VK1E3908M5wKjASpWqFZQlS0OuQANDe0iQIYouBCc5HUuDJxQVqR88eGACbuootozdJ1Bv4FYOMKob+fh0ph7dewt8oVsvZqVzwCgCR7R48ZK0Zs1KNnEvsdJS+91OCzzKlsOzWqf2z8HyGtT+lsNvj4uXLKQJE8bS+HGTuahZ0RBhBOQHIF3wrj5mgCfUAoB5G+CtQSV+Qzh+qrOvk7lzf1E2b9no7Gl6+xDkAIcJKIwVpHCBOMHjDMGhyKUxHmO6deumYFayidJ4t8PbPXv0sBubr3Zmc4aH2RElToARAnxBPIkIDCtdqqzjT5TeMkQ5gEqInbu0F6hwGBWcQRBw18DNQ4th7UNg2vYdztdjZUF2qmK31fBgwOXBxg5QnMiR2EHAK+zo0WNQ1y4+NhO03cUkvV/nOYB6tt17dGZduZSU/nQ1TMD5ETh+RtWq1aWIWkFO/4wf/2t5HFs9oGL33Llz2cv/pWJ3rlz2oT0smiVXcrjvtOlTONrxk8XrrVi+WgLHLB7Ud3oEBxCYBXReoEOg+oanE9ANUPoIwKwA4MVbIFOmzNS0SQspu2M+fuCKbmQE6fSMjYNcDC5xyfH6faks51fYokAqDeIpJk4aZ1XY0RmKBcM9rJNncgCRqwMH9adhQ/1ChbDDv9OufSuunLiXa329Evg+ePSPHj0i+xGPb0yuVOwOJPDzF8w17tviNga4afNGi8f0nSHHAYQJTOUwgcWLF7ITcJah5mrIjcixK48d58+IFZe5usgHiydMmTqZEJagkq2K3QhUUwvkqe2NPwMJPLym9gjJAcePWa7FY+9c/bh7OIAgLK7OwQC1F+iXX+ZJuRr3XEnbXrliCCFwzRZBxZnF60k80CDUvAXuDaNaEOrILlm6lGFB8oq3FrWgqnOdXa56brHLQAKP2dsRwiJWJ8/gAMIEuHSM5A9PGD8lUEwM8H26de0qda6ArV+vXj35jv0hTUAgjhIlqt1hoNIjVBmQtYrdQLqYP38+v+WmMVLCKot9BhJ440puFs/4b2dwhHLaur5+7AsHoAq0bNWcypQuS337DLDoDIwVKxaDYP3ID0JsTsYeQ+PGjeOkjLVSqTyk+QghtmYcMR4bFrGvXr2UXdYqdhcrVkyOP+HiGShoZ4kCCXz1ajUcgkar5FXFUn/6vmDkwF72eHft1pFn6+52w7NRxhMQKDBNnj9/XkbpCTb5hIkSOZQSCt0ceDgqWavYDd/Rrl27qA2XLLVEgQS+atUaNvU/xNKULlWG8uTOa6k/fV8wcWAJhwmMHTeaoMIULVrc5lURBnzs2DF6xsk5Xbt0YRClsWzFGUTF/4NFsXmymw8WyF/QJCbL2uUg7ADqVclaxe65bJ5s266dPEQok2ROFu3w0ONhekSyLV4l+P4lrFOhsmXKU8+efVzOdTQfiP7dMQ7gtxg9eqRUzEPCxrffJrR7YsDu3YLuhsqHNWrUoHHjxzOgbSW75wVHA3hKR44cTlu3bbFZSGP5slV2k1MmTZpEy5ct4yoiCSW3ei0XvsMC15gsCrzaAMkB8ePHp4gRIlLixEkYJbaQ7nBSmRMCn2/Y6w0Er1ixYtPgQcPsYrOrQxw6ZIiA1K5dt446dujAFRTfyeJOPR7SnxB6yNrOndtNhoLJFn99eveXxBGTg0H8YjW0AP0hXx1Z5ajErFPIcuDevbvk072LVLhr26a9U6lwAQEBhhm9Vu3ajPzVTOJPgAnjCYR1xZDBvjzGyrSBS53e5AyoF1zdr3jxElLyMtl3pvV6XRqzGkVm6bNLlw4KLxYsHdL3BSMHUKW8klc5Sbpx9rITJ05UUqVMqbRp3VpBFXJe1Clc/lNp1LChEtzJF86MfcqUiQrHzTtzikNtrc7w79+/40zyqHqgmEvTiesnb9q0gdMqp9LQIb6C4elsj506dSL8GdOhw4eNv3rkNnRvWx7ToA7aqsCjSEGcuHGD2q9+nosc4OmKZsycSrt376JpU2e5rRS7i8N02+lxWfZUu7uWF7Eq8Pz6c8sTpuXgw2pfCBMYOnSgVEaZzWECwYm96Ck8jRsnrsA5aj2eQHZ49QLwuEKl8R/tJ+lXahyDelz/dA8Hnj17KhGCMWPGpEkTp4ZLYQdnEyVKTL/+ulxg+hDBi3oDcCq5SjbNklx6houOXRAb6QEG6tn6+y5Xr6efb4MDV69eoZ69fKTgW6OGem0rgDUhmPHCxfN0hotn+Pn5k6OhL9bYbCLwKAV/7/49QYW6y3gzCBBLmRJgSykoMT9xefPmt9aPvt9FDgCT02+kLzv1+lIxO55TFy8VKk7/wBCOmGT37tvDOEgJ2URZUjCPXM3aMhF4Pz9fQgmbcuUqsEUgl7xWQgV3Qvkgly5bLLAVKDrw4w8/hfK7cW34bCrlaiG/S+n5LFmyUQkWdEA7akUmAo9OkbC9O2CnIAEXKlRYZpvwuGjSisG2+kGYAOALL1+6xOEC43QHHzOrcJF8BOzJrCzsadKmpZQpUnHQmGM5rrZ4rR4LJPDqASyeAgJ284L1MNfmycjlw6voP4jKHA0+ESbQr19vihE9Og1mLyMKNutEnPX0J925e5vV6rt0h2O5AMWOhKPveZZP+t13VLNGbZfYFMgsiQvCjX2HdXgE3QPG+AAXQEiWLLkUK3PpavrJwoH7vE7q3qOrFAhr166jU2ECYZ2FePCh1qmq3QOuNIOiCshv1cIvZDLDd+rcnqMgiVKlSi2vkpQpUwo6sB5Lo52YnT59irhws1RJqVy5qnYdh7Gezp8/RwBbxZoS4c+FWb2OESOmy3dpMsMXYfi148ePcqrYNwKKD1hjnbTjwOYtm6Sc59AhwylXrjzadRyGesIaEnhICRibpmzZciyHOQ11xLS4TZMZHh0CHwQlJ3cH7GL9MgbXTi0l2e+RIuk1m4LKcIQJzJw5jWesHVx0YGK4CxNwhm/GMzt091SpuCYUL1xTsLaRik3kSFd0hQIJvNoZ3NtnuUgZEMj2MOLszh171UP6pxMcAB+HDRtELzlUw2+Ev0nWjhPdhMumgAkEqhjWk+J8OnOK5s5Z5NIC36DSAC7hLi9W4XDCyhiBO7B/Ahq7WLES4ZLhrt403OG9evtQ6lRpxBITHBUuXB2zJ50fOXIUAiIDkA2Q4tebE0FctWYZZniUFv+DMd8rVKhEmTJnoaRJkurWAxd+/WvXr7LX1IeqV69JjRs1daGn8HcqnE8AVsV6MnPmrFxCs5RmzieDwIOtl69cogAOR2X4YvJu2dqlUuPh72f6esdwKHGFDerZo4+4xL8e0bcc4QCcTxW4PD08rXA+QcvQikwEXu10x45tYotv1sxb3aV/OsEBBN0BexNg/zo5zwEkfkBvhwMKwYtp06TTrFq3QYc3HhYCd+Bo0iloHIjNgEe6sAeNdzgLcBxZs2aTv9Sp09A+DiDTiizGw8PDGocD8HXSORDSHEAiyOtXrzUbhkWBB2RxnLimeB6aXVHvSOeAExyIGzcem3RfOnGG7aYmAg8HCfRPWGtQ7QPfddI5EJIcgKMJ9V1hCNCCDItWBOjMnj2TnrDdE6lUCLTPzOZJ32F+FC9efC2upfehc8BhDmDi3blrOx06dJCxMM9R7tx5qGIFL8qXz7UkJBF4lLiZ9ct0Cc20NKIpk2dIbI2lY/o+nQNac+APjpBs3cabS998DFQk4YcMP3KYxhyLKMkYB7QSW1lREU+eOiElbhAWbI3gLXzOQJw66RxwNwcgh3Xq1iDUc7VUEeTqtSs0efIEQ3EE8/H07tVL1HLz/er3iAsXzFO3rX5CxQlKSUGrHeoHdA5Y4QDqi0WMaLK0NGmJGXzL75vEC2tygL/g2KNHj6QwhPkx9XvESw6UuMGr5TDrUjrpHHAnByCwe/YEWJ291WvDT7SdnaPGhBKWAwcOlGCzEydOGB8y2Y7oKNbHBysFp0x607/oHHCRA+/evXWoh/v37xvaoYTlgP79uZ5wJPL29iafbt1o21bLRY4jJmA4bHuERUC6tOntNdOP6xxwmQOO1HvCRQDFB3K2hGVEREeiIpotwqumPAfz6KRzwJ0c+GIKz2z3EgizLlKkmLSzVcLyL1bFnz55YtJfxNq161I89mZZM+XgYShfrqLFasgmPelfdA5owIEWzVv+V23GemfIhELZJZC1EpYxY8bkyt6jqFXr1iYV/cQOD09WhYplCIWjsEIGjiRS+lB9oRR3jAoM1h4I68PSj+gcCBoHECzWhyudmBNmdiSALF2y0qDSIMmmX79+dO3qVbHbZ8uWjYYOGyY+JSDmbdmyhW7dvMl4ne2lO4OnFd+QUX+Us0tu3rhOrzm9qnevfgy1l0oa6v/oHAhODiCBxtd3CFtdbskEDGCBEiVKUrOm3lzX6ms1P3VMhQoWZBz9GayJZFV30V6uXDiYi7cNHz6cCvBxIdbPAxG/MhTGTVHevHkT6Ji+Q+dAcHFg3PjRCocVKBxHo7DWYfWy9+7eVXLnyhXoOJsvlUULFypVKlc2HLNo4YcqkylTZjpz9rThadE3dA4EJweQwP3w4R9cPfxHUa9tqdTWSlhC/WnQsCGlS5fOMHSLCSA4mj1bDkFvLVyoiKExdP0v5SsNu/QNnQNu4cCZM6cltQ+Trz3KkCED4c+YZs2axSBOTxj/JxdXKm9lOGSiwxv28gbCMVt4N6HvuIJaBP7+/sN7isJZ5GPGTDBupm/rHHALB8aO86fSpctStqzZg9w/jDAo6mFMFlUaNMCTNWvmXOrFeOWZs2SV2qDde/Q2Plff1jngFg4glGX//n0UjXFNXSFzYUdfVmd4HESY5rz5c2SWR71Wew4qnKOTzgEtOAA8momTxlNuhiSsUqWazYAyZ65nVeD37A2gzZs3MjxxLb3yhzMc1dsGiQM9e3UTDBosTiPyHz7/YX/QHUYeQ5jw8OGjgtSv+UkWVwTIfELcMRaut+/clj+26yD+kk7zYgKQcTrpHNCSAzEZGfg6A6mWKVOOIrODCbIGmUuTOi3nYjzT7FIWBT5J0qRsyklPEf6LS8aiFd7XY8eOCl6NZlfXO9I58B8HBg0aRtAqNnIhZndqFVZVGuNf4sqVy7Ro8QLJK6zsVVVT+GLj6+jbOgfUdSNwkX6uW1/zdaNNgUes/MZNv8nMjjKKcALopHNASw6gtA1UloiRIrLuHlF0d2gTJ04epwsXzlO/vgMZRCCeZpe0KvBwMo0cOVzKjJQrW0FWyaxVfbkwf0SKHEnHntTsZwi/HaEO6/jxYwTAN1o0NkP+p7tD1t69fUcorFewYGHNGGRV4AGfDTUGocP82OF/ITik7t65Q5UqVRbHgGYj0TsKtxw4e/YMLV++RIBnsWg1DiOAvDnibXWUeVYFHuqMedWPo0cP0+o1q6hiRS+9eK6jHNbbOcSBV1wwYuHCeWKZady4maZqjPEArAq8cSN4vpavWCqIuM2athBHlPFxfVvnQFA4gGTsGDFiGE6FGRLJ2QG7d1KTJs3dsma0K/CPHj2kadOnCApZ9Wo1Sa9iYfh99A0XOVC9RmVJ5IgVK7aoMVCboc6gzti5c2dp/74jLl4h8Ol2BR7g9Nmz5yA4Bj7yQjZXztyEV45OOgdc5QCylaZMnciFr3+imjXriLCLg5M7RuCX8ezv6rXU8+0K/IsXzw22UAxm4KB+hLKLMWO6Vk1NHYD+Gb45AGvg8uXLGCH4BbVq2UaTWqy2OGo1WlI9KT7Xy0RBWPxByDNlzExYVeukc0ALDiC/okKFiowkdsztwo7x2hV485uCenOaywfqpHNAKw4gl7pqlepadWezH6cFHql/N65fJ6yw8Qc7qU46B1zhwKnTJyl7jhyudOHwuRaDx2yd/enT34Ihjyp1qrADlaxpsxZknA5oqw/9WPjlAMIGnj17yujALyk+o95FjBiJawK/CjZkO7uLVuOf5t27d1S+QikDdo3xMWx369aDalSvZb5b/65zQDhw8OB+msRJHU/ZOhMlSmQCoBLWhiVLlqauXXyChUsOCzxwuxs1/lngiG2NbNy4SZQ3Tz5bTfRj4ZAD+/fvFXAl1exozoJevfoSInHdTQ7r8IcOH6Q3b+wju06bNtndY9b7D2UcuHHjOvXu00PCBqwNfcKEsXTp0kVrhzXb77DAHzlyiBep7+1eGEhRcBropHNA5QDCUmwVOUA7yMwKbuducljgUR3ZEcKN2Sqf40gfepuwxYEzbMbGYtUWQdU5d/5coCbWVKBADR3c4bDAp0yR0u5TimsiFgKlBnXSOaByAJY9R+jTp78CNbNXsynQCXZ2OCzwJUqUCgRqY943wokLFiwcKKzYvJ3+PXxxIJWDgLzJk39vwhjM7vZqNpmc4MAXhwX+Rw7wQXC+LUIMfds2X2CJbbXTj4UvDlRnqBdHAsGMva2O1mxylpMOCzw6BgoZZnoAMhkvQvBdRSoDNJ9OOgeMOVCUq3VkzvwVxtr4GLaBEJY2bTpDlRlnajaZ92Xvu9OeVkRKXrx4gXbs3E6wyHzDuN358hegRIkS0ZIlC9n51JMSJEhg77r68XDEAazrsmbNJmjA9+7dZQGPxlaZv0TQMXHCbzN06AjhiFqzaeXKldSnTx/ybtmSNm7cSEj21oKcFngMHvE0+DMnZEZNmTKBfHx6mSxcAZuWMGEi8+b693DCgbVrV0uh4YULlrJO/pAOHjpAT58+ldCC/PkKUOrUacTYAXbYqtmE4zBf4i+ohpFIg5nQkRaUgi05CCjbtHkDY9jklTfAqtW/Ut++vQSuL1GixFpcRu8jFHFgJ2sCCA7r0L6zqMJx4sQRGOy8efNRFgbpjRcvvkHYcVv3HzygC+fPU3yG5njLoSwIQwD0Xkue6UH9+vYlhLhkyhx4wpUGdv5xeoa3058keKOma+cu7SX3FYJfuXJVSRG0d65+PHRzALZ247XdseNHudDwblFzHVm04u5z5sxJq1evJn9/f6nZ9JnjbVCzCbRz506bZeWlkb1/2PTjFmJdTfn48U+lb9+eyp07t91yDb1Tz+EA56Aq5cqXVHhtp7DjUX77BQvnKQsXzQ/SIAsWKKCcOXPGcO7jx4+VObNnK/PmzVNWLF9u2O/shlNWGnsPj/Fx2FS3bNksuj5UHRDX66GRo4bT5SuXjJvq22GAA+nTZ2AVJZsAog4a3J+RpzeRF2MXAabx5q2bTt3h/Xv3RE83LlA2buxYypU7Nz16+JBh3P8I8kzvNoF/8uQxIeDMy6sK7T+wj4b5Dqb169fIals3XTr1+4eKxkANQ81fLoQn1R8x6FH+fpQkcRKaNnWSzcAx8xu0VLMJJSh379rFk+UVhuC7IIte8/Mc+e5weLAjnRm3mTJloqzCER+ROnVqKlmiNO1gzBHMBKj9qlPo5wBMjIhxr8DAXDBPg8aMHcWJQEUpP5uqYbU7wMcXLZzPJSj9yNyTGhQOLFy4kKKz36d2nTpBOR1QftoT9PeSpYooS5ctVh4/fiQXYGBMZcjQgVKCEDs4W0o5cvSw8vbtW+0HoPcYLBzA2sy7ZVPFp3sXhX0wysNHD3m9dkfp06eH6PDqINgDr26G+KfbZniYJ9WVOUIOfIcPodq16orNFbPCLkaXAmoszFWZM2cJ2tOqnxXiHICzMXr0GPJb790bQFivoaDBtwm+pWrVaoT4+MwH4DYdXhV2XDAgYBcliJ+ALl2+SIN5QfPgwX1GhS0iFUZ0YTf/STz7O1DBAKCkUmWuv8Rvai4PmVu8pfCo4veFavP8+XO1med8uvsd8/r1K3ntde3WUVm3fo3CybsKl7VXevbyUXhh6+7L6/1rzAGexZVChfMqs+fMUhhhWnrntZkyffoUkyupx0x2esAXt6k0xo/0qVMnKWPGjIaixngNxuSY+WpVPe+VZzxufTswB6CewuKWN29+App0nG/icBJ2KVq3fq2orBkzZgp8kgftcZtKY3yPOXLkNAj73bt36CLnLuZhD+zQYYMkxsK4rb7t2RxAzkOtWnXoxIljNKD/YMF0RyDhh/fvafCQAYQHwpNJ01gaR250Cttko0ePTvv27aGfeDYA3nxKThDQIywd4Z5ntEFM1EkuSYMKj2U5R6JggUIS3hslalRKkyatAYvU3mjfvHlNpUoXk+jbsmXL22uuyXHNY2lsjQpRk5gJvDi2BjM8YujxyfogdezQmZIlSy6nIyYDQD2K8i/b8hOYxGfY6l8/FjwcWLXqV4rEAEp1av9suCAEHX/O0DesDiHqtk0wJg0Fiw5vjwlI8v115Qrq0tmHNmxYRyuZoQgB5SA5EXbo+i1atGK1KJq9rvTjLnKA/SMELzmSMixNNtu2b6WTJ45TFwZOCo2V2T1C4PEboUanr+9g8c7xYh67DIQiDJj1t28LkB/CcEDf0IwDMCECqx3RjZEjReYq2P8IKliD+g3p558byHUOHz5EW37fRD6MMIfZOTSSxwi830hfDjbbZBXOAYknqOg20m9MaOSzR48ZeEPVqnvJWxUzvDkVLlyEGjVsKhltmNlDc15DsFhpzBlo/v39+3cSZ2MLuwSzPiqBo3CtTtpxAAJeoWIZwRKyJOy4Emb2CRPHUvv2nVwSdhgqhrPHPSTJIwT+0qVLDtWOwiJXL8agrbjA2gJ93VyNNL4KHoT79+9TYo58dIX69O3JKtFmV7pw+dxgtdJYG60jEH44959//hUd31o/+n7nOYDiYYhqtEcQ+se8mE3mAiqFO4qU2Ru3+XGPmOERH29LnVEHHZmrf3+XLDAMCEyY165d9Xinh3ofnvSJID9bs7s6VqTufWQE6dBOHiHwqVKldmjVj1nG3NaLiuG9evtwUsB5HfEsCNII3jtiXgSsRtKk3wXhCp51ikcIPHTzwYO/JOraYg+Qz0aNGkGLORYHi9dHjx/R7NkzGSEhDyVO8lW/fMDHNmxcL/U+bfUX3o89fPgHcb6CWGds8QIWshw5comH3FY742OesEA1Ho+67TFmSQwIuY9t23qLeqMiEP/vf9FlrCOGj5SAJbyCkTK4adNvBNCevn0GcDb7dipduiwBDvAW9zF69EjOfs9F3t6t1fsMl5/jxo2mrdu20MqV6wwZSWAEgLR27dohk0bx4iUlXW76jCk2ebR50zaH3sJqJ6jvC/IEvV0dEz49SuAxoDdv39BedkLBGvMvL1IhxIjGg9fPmBCkhLhrJBz4+g5h4W7FntmINJHNZ4AGiRI1iqGiBFLROHuey6p0NySlGPcVFrbBD84eE4AivDFBSLRBpCryTLt27S6earwhQSVLlZYi05EiRZLvmzZtIPhCUEYStVNBMWOiXGkMmjxpuibpedJpCP/jEVYaYx4gN9KrUhX5M95vvo0fSkVDQFFbvAnGjR8tWTY3WK9PlPgL6NMdDnAayzNdMl7sGielmPcX2r+DHwi7vn79Gg0Z4iuzcdy48YBfTunSpadfZs9goNsOosIgv9S8sHQlRhgAONK+fXvp2vWrksWUlYGS8ucv6JCOH1r45xE6vCvMgooTgf/jBAQqXLioqD2vXr2kuHHj8qv6Cc2cOY0LrdXk7PmkrlzG485VVTtV9cMAv/8+BeVj6Lpp06bILA0egBcI50UaHtY+CRkD9JWV4haAQ6zBSL8Aze3UsYuE/jqyoPU45tgYUKgX+Jf8g+LHxyyGUFXQq5evRGdFKHIVLnj7idGr4saLa4MNXw6hH3gVAQ+IRS/eDo6YS+12HIQGCJ5DwV6sT+AcUtUMtSu8rXYyCgRSJhFmC4KAR4gYgVKnSUO//DJTvqMkJBadTZs0p5e85oGl6xWbcbWkGjWrkKqza9mvO/ryOJXG2Zv8xDmWqACHmHqVnr94TosWL5A4bcBF/LpyucFLiAUv0GrhXTQmBK/5+Q1jmzRxOcVPYuL891+Fw1cz0dgxEx3yBBv358r2unVrCItICKpK0NGbNW1B9es3UneJShebVcDpM6ZypGk3FvB4nDd8iVq1bCMqDMJ4//nns1irEGmK0ABGghOfhSUwXEPHTm706N6L5i+Y6+RZIdPc4xatrrIBM2HjJg3k1Vy3Tj3pbtYv02Uhu+G3dRQ/QQJxkxcqWJhf2SVE1z3B4a7AwrREWAgjLn/njj2GrC1L7bTat53DbxnOxGp3jRs3E4FGA6Dyxo4dW5Kq8ZAD6WvFr8uoZ48+UgMV2EC3GNK8X9+B/MB/WdNY7TicHAj1Ko3574SZcM7sBaQKO46/eP6CMcZ/ozw8s3fs0EUE4hPP4sPYujNz1nTq0bOreTeG7xB2WD0mT55o2Ge88e7dO6pXvzbBRa/SVFaljF/xUCPwfffunWoTi5/ow5aw46QVK5ZJLimQA06dOiFV0evU+VkK/cLUqKorCKnuwEk1yZMnZ2vWPYvXC487w5zAo7KzMXY4dPCNbLP/9tuEgmyMHxnphLVq1iEUd1D1Wls/PgQW9mx8mtPZs6dFRcKnSi9evhDrBgOAyq5Lly5ShQqV6CqHP9iitWtX2Tosx/AGGzPWn0aPGSkPMB5suP2bNfWWLLG7bILFQw+C0GO2z5kzt3zX4p/QpK9but8wJ/DmNwlhgPOjXdsO5ofEc/gvz+COLEwRb/KSBdmczrCgF+J48bM8O6MfeC9RUj0fZ/XjGOg0Z3Qh7/Pa1SuiT2MfvMQoDiCf2OY/RyNBsUgdNnSEwJCrdnQId6dOXdn3UEX6xTXcQdDXtdT/3TFGW32G+kWrrZtz5JgqMPbaQogXLJhn4l6HWgSoCu8WrWlPwG66ceO6/GXLlp2yMpIuFp+lSpYW1GSUVceCEl5OWFi6dO3IGIyFZZGsXpvxetRNm59RokQNtOjGCVC96tatb/NcVw8W4AcXf6GVwr3AZ86UhU1/O+xWGYcdu5JXZbH5G//YDdhqgtkVQn7mzGm6fuOaAVLwGUMJAm0N9a9gMsyWldvwrP+eE9n9RvhT9uw5jLuij/3/pABOsbNHGTL8YK+JftwKB8K8SmPlvg27ixUrwRn4ttkA8yAWhj/9mFFCHRDuoP6p6W5ZWeCPnzhGb9ipkyZNWtGr4ak8sH+fQArigoChO3fuDN1iT3DGjIEBi+D0ccTRU90DMRsNDPXwDdu/tIcPXovhYYE7efJ0m12VKFFKHDe2GgEHHeVZMvzwo8F+ni1bDoGLxuwPggkxTpy4lPz77y2qJFhc1qhey9ZlCG8UeJR1ChoHwpwdPmhsIIkfGTx4gEBUQBdWHVAo6NC5UzeZse31DVMhZmjVSgSrDhaxwEVXnUhAB8C6ASqONYITZ9Gi+aIqweKC9n9z+fY6detR61ZtrZ2m73eAA7rAmzEJCeXQsSMxVEWcOHFkIWjWJFi+4mHBGuAvTr+DVxhmVawVdHKNA/8HOAUJHzeSYTMAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Circulant Matrices\n", + "\n", + "In this lecture, I want to introduce you to a new type of matrix: **circulant** matrices. Like Hermitian matrices, they have orthonormal eigenvectors, but unlike Hermitian matrices we know *exactly* what their eigenvectors are! Moreover, their eigenvectors are closely related to the famous Fourier transform and Fourier series. Even more importantly, it turns out that circulant matrices and the eigenvectors lend themselves to **incredibly efficient** algorithms called FFTs, that play a central role in much of computational science and engineering.\n", + "\n", + "![a ring of springs](attachment:image.png)\n", + "\n", + "Consider a system of $n$ identical masses $m$ connected by springs $k$, sliding around a *circle* without friction. Similar to our mass-and-spring lectur, the vector $\\vec{s}$ of displacements satifies $m\\frac{d^2\\vec{s}}{dt^2} = -kA\\vec{s}$, where $A$ is the $n \\times n$ matrix:\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "A &= D^T \\underbrace{\\begin{pmatrix}\n", + "-1 & 1 & 0 & 0 & 0\\\\\n", + "0 & -1 & 1 & 0 & 0\\\\\n", + "0 & 0 & \\ddots & \\ddots & 0\\\\\n", + "0 & 0 & 0 & -1 & 1\\\\\n", + "1 & 0 & 0 & 0 & -1\\\\\n", + "\\end{pmatrix}}_D \\\\\n", + "&= \\begin{pmatrix} 2 & -1 & & & & & -1 \\\\\n", + " -1 & 2 &-1& & & & \\\\\n", + " &-1 &2&-1& & & \\\\\n", + " & &\\ddots&\\ddots&\\ddots& & \\\\ \n", + " & & &-1 & 2 &-1 & \\\\\n", + " & & & & -1 &2 & -1 \\\\\n", + " -1 & & & & &-1 &2\n", + " \\end{pmatrix}\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "(This matrix is real-symmetric and, by the $D^T D$ construction, positive semidefinite. So, it should have orthogonal eigenvectors and real eigenvalues $\\lambda \\ge 0$.)\n", + "\n", + "For example, if $n = 7$:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7×7 Matrix{Int64}:\n", + " 2 -1 0 0 0 0 -1\n", + " -1 2 -1 0 0 0 0\n", + " 0 -1 2 -1 0 0 0\n", + " 0 0 -1 2 -1 0 0\n", + " 0 0 0 -1 2 -1 0\n", + " 0 0 0 0 -1 2 -1\n", + " -1 0 0 0 0 -1 2" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 2 -1 0 0 0 0 -1\n", + " -1 2 -1 0 0 0 0\n", + " 0 -1 2 -1 0 0 0\n", + " 0 0 -1 2 -1 0 0\n", + " 0 0 0 -1 2 -1 0\n", + " 0 0 0 0 -1 2 -1\n", + " -1 0 0 0 0 -1 2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This matrix has a very special pattern: *every row is the same as the previous row, just shifted to the right by 1* (wrapping around \"cyclically\" at the edges). That is, each row is a [circular shift](https://en.wikipedia.org/wiki/Circular_shift) of the first row.\n", + "\n", + "This is called a [circulant matrix](https://en.wikipedia.org/wiki/Circulant_matrix). A $4\\times 4$ circulant matrix looks like:\n", + "\n", + "$$\n", + "C = \\begin{pmatrix}\n", + "c_0 & c_1 & c_2 & c_3 \\\\\n", + "c_3 & c_0 & c_1 & c_2 \\\\\n", + "c_2 & c_3 & c_0 & c_1 \\\\\n", + "c_1 & c_2 & c_3 & c_0\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "The general form of an $n \\times n$ circulant matrix $C$ is:\n", + "\n", + "$$\n", + "C = \\begin{pmatrix}\n", + "c_0 & c_1 & c_2 & \\cdots & c_{n-1} \\\\\n", + "c_{n-1} & c_0 & c_1 & c_2 & \\cdots \\\\\n", + "c_{n-2} & c_{n-1} & c_0 & \\cdots \\\\\n", + "\\ddots & \\ddots & \\ddots & \\ddots & \\ddots \\\\\n", + "c_1 & c_2 & \\cdots & c_{n-1} & c_0 \n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "When working with circulant matrix, it is convenient to number entries from $0$ to $n-1$ rather than from $1$ to $n$!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multiplying by circulant matrices: Convolutions\n", + "\n", + "Suppose we have an $n \\times n$ circulant matrix $C$ that we want to multiply by a vector $x = (x_0, x_1, \\ldots, x_n)$. It turns out that the result is a very special kind of operation:\n", + "\n", + "$$\n", + "y = Cx = \\begin{pmatrix}\n", + "c_0 & c_1 & c_2 & \\cdots & c_{n-1} \\\\\n", + "c_{n-1} & c_0 & c_1 & c_2 & \\cdots \\\\\n", + "c_{n-2} & c_{n-1} & c_0 & \\cdots \\\\\n", + "\\ddots & \\ddots & \\ddots & \\ddots & \\ddots \\\\\n", + "c_1 & c_2 & \\cdots & c_{n-1} & c_0 \n", + "\\end{pmatrix} \\begin{pmatrix} x_0 \\\\ x_1 \\\\ \\vdots \\\\ x_{n-1} \\end{pmatrix}\n", + "$$\n", + "\n", + "Let's write down a formula for the entries of $y$:\n", + "\n", + "$$\n", + "y_0 = c_0 x_0 + c_1 x_1 + c_2 x_2 + \\cdots \\\\\n", + "y_1 = c_{n-1} x_0 + c_0 x_1 + c_1 x_2 + \\cdots \\\\\n", + "y_2 = c_{n-2} x_0 + c_{n-1} x_1 + c_0 x_2 + \\cdots\n", + "$$\n", + "\n", + "Can you see the pattern? This is one of those cases that is actually clearer if we write out the summation:\n", + "\n", + "$$\n", + "y_k = \\sum_{j=0}^{n-1} c_{j-k} x_j\n", + "$$\n", + "\n", + "There is a slight problem with this formula: the subscript $j-k$ can be $< 0$! No problem: we just *interpret the subscript periodically*, i.e. we let $c_{-1} = c_{n-1}$, $c_{-2} = c_{n-2}$, and so on. Equivalently, we define $c_{j\\pm n} = c_j$. (We could say that the subscripts are [modulo n](https://en.wikipedia.org/wiki/Modular_arithmetic).)\n", + "\n", + "Multiplying by a circulant matrix is equivalent to a very famous operation called a [circular convolution](https://en.wikipedia.org/wiki/Circular_convolution). Convolution operations, and hence circulant matrices, show up in lots of applications: **digital signal processing**, **image compression**, **physics/engineering simulations**, **number theory** and **cryptography**, and so on." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Eigenvectors of circulant matrices\n", + "\n", + "One amazing property of circulant matrices is that **the eigenvectors are always the same**. The eigen-*values* are different for each C, but since we know the eigenvectors they are easy to diagonalize.\n", + "\n", + "We can actually see one eigenvector right away. Let's call it $x^{(0)}$:\n", + "\n", + "$$\n", + "x^{(0)} = \\begin{pmatrix} 1 \\\\ 1 \\\\ 1 \\\\ \\vdots \\\\ 1 \\end{pmatrix}\n", + "$$\n", + "\n", + "This is an eigenvector because multiplying $C x^{(0)}$ **simply sums each row of C**. But since each row of C contains the same entries (just in a different order), the sum is the same:\n", + "\n", + "$$\n", + "C x^{(0)} = \\underbrace{(c_0 + c_1 + \\cdots + c_{n-1})}_{\\lambda_0} x^{(0)}\n", + "$$\n", + "\n", + "Thus, one of the eigenvalues $\\lambda_0$ of $C$ is simply the sum of the row entries.\n", + "\n", + "For our example matrix $A$ above, this sum is $-1 + 2 + -1 = 0$, so $A$ is a *singular* matrix with an eigenvalue zero." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7-element Vector{Float64}:\n", + " -6.847820921420924e-16\n", + " 0.7530203962825327\n", + " 0.7530203962825328\n", + " 2.4450418679126287\n", + " 2.4450418679126287\n", + " 3.801937735804838\n", + " 3.801937735804838" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the eigenvalue that is nearly zero (up to roundoff errors). \n", + "\n", + "**Is there also a simple formula for the other eigenvectors and eigenvalues?**\n", + "\n", + "(*This* matrix $A$ has special properties *beyond* being a circulant matrix. It is positive semidefinite — we actually already showed this in class, since $A=D^TD$ for a \"difference\" matrix $D$ — and the nonzero eigenvalues come in pairs — a consequence of the mirror symmetry of this problem. These properties are *not true* of *all* circulant matrices, however!) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roots of unity\n", + "\n", + "The eigenvectors are simple to write down in terms of a very special value: a [primitive root of unity](https://en.wikipedia.org/wiki/Root_of_unity):\n", + "\n", + "$$\n", + "\\omega_n = e^{\\frac{2\\pi i}{n}}\n", + "$$\n", + "\n", + "The quantity $\\omega_n$ has the very special property that $\\omega_n^n = e^{2\\pi i} = 1 = \\omega_n^0$, but no smaller power equals 1. Therefore, $\\omega_n^{j+n} = \\omega_n^j \\omega_n^n = \\omega_n^j$: the **exponents of ωₙ are periodic**. (Just like the $c_j$!)\n", + "\n", + "For example, let's plot the powers of $\\omega_7$:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6234898018587336 + 0.7818314824680298im" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ω₇ = exp(2π*im / 7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also construct it using a function called [`cis`](https://en.wikipedia.org/wiki/Cis_(mathematics)) (for [\"cosine + i sine\"](https://en.wikipedia.org/wiki/Euler%27s_formula)), defined as $\\mathrm{cis}(x) = e^{ix}$:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6234898018587336 + 0.7818314824680298im" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ω₇ = cis(2π / 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHFCAYAAABsA4m6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1d0lEQVR4nO3de1iUdf7/8dcgA4gK5omDImi7HjaxXKkk1zBd8VCuaWlli7hWZuaa0H7dzK+b1rdcD6m5lma66lbbwVO7phlcnloTExG3PGS7haImoawKacIAn98fLvNrApUbmRnGno/rmuvy/sznns973o68vGfum7EZY4wAAPiR8/N2AQAA1AUEIgAAIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYi4xhUVFWnixIlKTExU8+bNZbPZNHXqVEuP8de//lXz5s2rNH748GHZbDbNnj27dop1ow0bNlh+3rWlpKREY8aMUUREhOrVq6ebbrrJo+uPHDlSMTExLmMvvPCC3nvvPY/WgbqPQMQ1raCgQIsXL1ZxcbHuvvvuGj3GpQLRl2zYsEHTpk3zytoLFy7Uq6++qsmTJ2v79u16/fXXPbr+lClTtHbtWpcxAhFV8fd2AYA7RUdH6/Tp07LZbDp16pSWLFni7ZIu67vvvlNQUJBsNpu3S6k1+/btU/369TVu3DivrH/99dd7ZV34Ho4QcU2z2WxXFS49e/bU+vXrdeTIEedjVfV4c+bMUZs2bdSwYUPFx8dr586dV3zs5cuXy2azKS0tTaNGjVLz5s0VHBys4uJilZeXa+bMmerQoYMCAwPVokULjRgxQseOHav0OH/+85914403KigoSE2aNNHgwYN18OBB5/0jR47Uyy+/7NIPm82mw4cPS5JWrlypW2+9VaGhoQoODlbbtm01atSoK9Z/4cIFTZo0SW3atFFAQIBatmypxx9/XGfOnHHOsdlsWrJkib777jvnusuXL7/kY8bExGjkyJGVxnv27KmePXs6t7du3Sqbzaa33npLkydPVmRkpEJCQvTLX/5Shw4dctn3h2+Z2mw2nTt3TitWrHDW1LNnTx0+fFj+/v6aPn16pfU/+ugj2Ww2rVy58op9gQ8zwI/EyZMnjSTzzDPPVHuf/fv3m+7du5vw8HCTkZHhvBljTE5OjpFkYmJiTL9+/cx7771n3nvvPRMbG2uuu+46c+bMmcs+9rJly4wk07JlSzN69GjzwQcfmFWrVpnS0lIzevRoI8mMGzfObNy40SxatMg0b97cREVFmZMnTzof44UXXjCSzAMPPGDWr19v/vKXv5i2bdua0NBQ88UXXxhjjPn3v/9t7r33XiPJ5TlcuHDB7Nixw9hsNnP//febDRs2mM2bN5tly5aZpKSky9ZeXl5u+vbta/z9/c2UKVNMWlqamT17tmnQoIHp0qWLuXDhgjHGmIyMDDNgwABTv35957r5+fmXfNzo6GiTnJxcaTwhIcEkJCQ4t7ds2eLs/YMPPmjWr19v3nrrLdO6dWvz05/+1JSWljrnJicnm+joaOd2RkaGqV+/vhkwYICzpv379xtjjBk8eLBp3bq1y/7GGDN06FATGRlpHA7HZfsC30Yg4kejJoFojDF33nmnyw/UChWBGBsb6/IDdNeuXUaSeeutty77uBWBOGLECJfxgwcPGklm7NixLuOffPKJkWSefvppY4wxp0+fdv5g/77c3FwTGBhohg8f7hx7/PHHTVX//509e7aRdMXw/qGNGzcaSWbmzJku4++8846RZBYvXuwcS05ONg0aNKjW41oNxB8+93fffdcZ/N9f/4d/fw0aNKhynYrHXbt2rXPs+PHjxt/f30ybNq1azwG+i7dMAUnl5eUqLS113srKyqq975133ql69eo5tzt37ixJOnLkSLX2v+eee1y2t2zZIkmV3jq85ZZb1LFjR23atEmSlJGRoe+++67SvKioKPXq1cs573JuvvlmSdKwYcP07rvv6vjx49WqefPmzVXWOHToUDVo0KBaa9eGX/3qVy7bVnv/Qz179tSNN97ofItZkhYtWiSbzabRo0fXvFD4BAIRkPTss8/Kbrc7b1ZOxGjatKnLdmBgoKSLJ8hUR0REhMt2QUFBleOSFBkZ6by/uvMu5/bbb9d7772n0tJSjRgxQq1atVKnTp301ltvXXa/goIC+fv7q3nz5i7jNptN4eHh1Vq7Nlxt76syfvx4bdq0SYcOHZLD4dBrr72me++9V+Hh4VdVK+o+AhGQNHr0aGVmZjpv69at89jaPzxJp+KH/IkTJyrN/frrr9WsWTNL865k0KBB2rRpk86ePautW7eqVatWGj58uDIyMi65T9OmTVVaWqqTJ0+6jBtjlJeXV+21fygoKEjFxcWVxk+dOlWjx6uJ4cOHq2nTpnr55Ze1cuVK5eXl6fHHH/fY+vAeAhHQxSOquLg45y02NtZ5X2Bg4FUdcVjVq1cvSdIbb7zhMp6ZmamDBw+qd+/ekqT4+HjVr1+/0rxjx45p8+bNznlS9Y6cAgMDlZCQoBkzZkiSsrOzLzm34rF/uPbq1at17tw5l7WtiImJ0aeffuoy9sUXX1Q6c/RqXe7vNCgoSKNHj9aKFSs0Z84c3XTTTerevXutro+6iesQcc374IMPdO7cORUVFUmSDhw4oFWrVkmSBgwYoODg4MvuHxsbqzVr1mjhwoXq2rWr/Pz8FBcX57Z627dvr9GjR+tPf/qT/Pz81L9/fx0+fFhTpkxRVFSUUlJSJEmNGzfWlClT9PTTT2vEiBF64IEHVFBQoGnTpikoKEjPPPOMy3OQpBkzZqh///6qV6+eOnfurP/7v//TsWPH1Lt3b7Vq1UpnzpzRSy+9JLvdroSEhEvW2KdPH/Xt21e///3vVVhYqO7du+vTTz/VM888oy5duigpKalGzz0pKUm//vWvNXbsWN1zzz06cuSIZs6cWemt2asVGxurrVu3at26dYqIiFCjRo3Uvn175/1jx47VzJkzlZWVVeevXUUt8vZZPYC7RUdHG0lV3nJycq64/3/+8x9z7733msaNGxubzeY8W7PiLNNZs2ZV2kfVOJu14izTzMzMSveVlZWZGTNmmHbt2hm73W6aNWtmfv3rX5ujR49WmrtkyRLTuXNnExAQYEJDQ82gQYOclxFUKC4uNg8//LBp3ry58znk5OSY999/3/Tv39+0bNnSBAQEmBYtWpgBAwaYf/zjH1fsy3fffWd+//vfm+joaGO3201ERIR57LHHzOnTp13mWTnLtLy83MycOdO0bdvWBAUFmbi4OLN58+ZLnmW6cuVKl/0r/k6WLVvmsv4PzzLdu3ev6d69uwkODjaSXB67Qs+ePU2TJk3M+fPnq1U7fJ/NGGO8EcQAUFfl5+crOjpav/3tbzVz5kxvlwMP4S1TAPivY8eO6auvvtKsWbPk5+enJ554wtslwYM4qQYA/mvJkiXq2bOn9u/frzfffFMtW7b0dknwIN4yBQBAHCECACCJQAQAQBKBCACAJM4yvaLy8nJ9/fXXatSo0TX1pa0A8GNhjFFRUZEiIyPl53fp40AC8Qq+/vprRUVFebsMAMBVOnr0qFq1anXJ+wnEK2jUqJGki40MCQnx6NoOh0NpaWlKTEyU3W736Nq+ip5ZR8+so2fWebNnhYWFioqKcv48vxQC8Qoq3iYNCQnxSiAGBwcrJCSEf3TVRM+so2fW0TPr6kLPrvSxFyfVAAAgAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAko8F4kcffaSBAwcqMjJSNptN77333hX32bZtm7p27aqgoCC1bdtWixYtcn+hAACf41OBeO7cOd14441asGBBtebn5ORowIAB6tGjh7Kzs/X0009r/PjxWr16tZsrBQD4Gn9vF2BF//791b9//2rPX7RokVq3bq158+ZJkjp27Kjdu3dr9uzZuueee9xUJQDAF/lUIFqVkZGhxMREl7G+fftq6dKlcjgcstvtlfYpLi5WcXGxc7uwsFCS5HA45HA43FvwD1Ss5+l1fRk9s46eWUfPrPNmz6q75jUdiHl5eQoLC3MZCwsLU2lpqU6dOqWIiIhK+0yfPl3Tpk2rNJ6Wlqbg4GC31Xo56enpXlnXl9Ez6+iZdfTMOm/07Pz589Wad00HoiTZbDaXbWNMleMVJk2apNTUVOd2YWGhoqKilJiYqJCQEPcVWgWHw6H09HT16dOnyqNZVEbPrKNn1tEz67zZs4p3+q7kmg7E8PBw5eXluYzl5+fL399fTZs2rXKfwMBABQYGVhq32+1ee+F7c21fRc+so2fW0TPrvNGz6q7nU2eZWhUfH1/p8DwtLU1xcXG8iAEALnwqEL/99lvt3btXe/fulXTxsoq9e/cqNzdX0sW3O0eMGOGcP2bMGB05ckSpqak6ePCg/vznP2vp0qX63e9+543yAQB1mE+9Zbp7927dcccdzu2Kz/qSk5O1fPlynThxwhmOktSmTRtt2LBBKSkpevnllxUZGan58+dzyQUAoBKfCsSePXs6T4qpyvLlyyuNJSQkaM+ePW6sCgBwLfCpt0wBAHAXAhEAABGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACT5YCC+8soratOmjYKCgtS1a1f94x//uOTcrVu3ymazVbp9/vnnHqwYAOALfCoQ33nnHU2YMEGTJ09Wdna2evToof79+ys3N/ey+x06dEgnTpxw3n760596qGIAgK/wqUCcM2eOHnroIT388MPq2LGj5s2bp6ioKC1cuPCy+7Vo0ULh4eHOW7169TxUMQDAV/h7u4DqKikpUVZWlp566imX8cTERO3YseOy+3bp0kUXLlzQz372M/3v//6v7rjjjkvOLS4uVnFxsXO7sLBQkuRwOORwOK7iGVhXsZ6n1/Vl9Mw6emYdPbPOmz2r7po+E4inTp1SWVmZwsLCXMbDwsKUl5dX5T4RERFavHixunbtquLiYr3++uvq3bu3tm7dqttvv73KfaZPn65p06ZVGk9LS1NwcPDVP5EaSE9P98q6voyeWUfPrKNn1nmjZ+fPn6/WPJ8JxAo2m81l2xhTaaxC+/bt1b59e+d2fHy8jh49qtmzZ18yECdNmqTU1FTndmFhoaKiopSYmKiQkJBaeAbV53A4lJ6erj59+shut3t0bV9Fz6yjZ9bRM+u82bOKd/quxGcCsVmzZqpXr16lo8H8/PxKR42X061bN73xxhuXvD8wMFCBgYGVxu12u9de+N5c21fRM+vomXX0zDpv9Ky66/nMSTUBAQHq2rVrpcPt9PR03XbbbdV+nOzsbEVERNR2eQAAH+czR4iSlJqaqqSkJMXFxSk+Pl6LFy9Wbm6uxowZI+ni253Hjx/XX/7yF0nSvHnzFBMToxtuuEElJSV64403tHr1aq1evdqbTwMAUAf5VCDed999Kigo0LPPPqsTJ06oU6dO2rBhg6KjoyVJJ06ccLkmsaSkRL/73e90/Phx1a9fXzfccIPWr1+vAQMGeOspAADqKJ8KREkaO3asxo4dW+V9y5cvd9meOHGiJk6c6IGqAAC+zmc+QwQAwJ0IRAAARCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEBSDQKxbdu2KigoqDR+5swZtW3btlaKAgDA0ywH4uHDh1VWVlZpvLi4WMePH6+VogAA8DT/6k78+9//7vzzhx9+qNDQUOd2WVmZNm3apJiYmFotDgAAT6l2IN59993OPycnJ7vcZ7fbFRMToxdffLHWCgMAwJOqHYjl5eWSpDZt2mj37t1q2rSp24oCAMDTLH2G6HA4FBMTU+VJNQAA+DJLgWi327Vv3z7ZbDZ31QMAgFdYPst0xIgRWrp0qTtqAQDAa6r9GWKFkpISLVmyROnp6YqLi1ODBg1c7p8zZ06tFQcAgKdYDsR9+/bp5z//uSTpiy++cLmPt1IBAL7KciBu2bLFHXUAAOBV/C5TAABUgyNEScrMzNTKlSuVm5urkpISl/vWrFlTK4UBAOBJlo8Q3377bXXv3l0HDhzQ2rVr5XA4dODAAW3evNnl17kBAOBLLAfiCy+8oLlz5+r9999XQECAXnrpJR08eFDDhg1T69at3VEjAABuZzkQv/zyS915552SpMDAQJ07d042m00pKSlavHhxrRcIAIAnWA7EJk2aqKioSJLUsmVL7du3T9LF70M8f/587VYHAICHWD6ppkePHkpPT1dsbKyGDRumJ554Qps3b1Z6erp69+7tjhoBAHA7y4G4YMECXbhwQZI0adIk2e12bd++XUOGDNGUKVNqvUAAADzBciA2adLE+Wc/Pz9NnDhREydOrNWiAADwtBpdh1hWVqa1a9fq4MGDstls6tixowYNGiR//xo9HAAAXlej32U6aNAg5eXlqX379pIu/k7T5s2b6+9//7tiY2NrvUgAANzN8lmmDz/8sG644QYdO3ZMe/bs0Z49e3T06FF17txZo0ePdkeNAAC4neUjxH/+85/avXu3rrvuOufYddddp+eff14333xzrRYHAICnWD5CbN++vb755ptK4/n5+frJT35SK0UBAOBpNfrVbePHj9eqVat07NgxHTt2TKtWrdKECRM0Y8YMFRYWOm8AAPgKy2+Z3nXXXZKkYcOGOb8Q2BgjSRo4cKBz22azqaysrLbqBADArfiCYAAAVINATEhIcEcdAAB4leXPEAEAuBYRiAAAiEAEAEASgQgAgKQaBOLUqVN15MgRd9QCAIDXWA7EdevW6frrr1fv3r3117/+1fndiAAA+DLLgZiVlaU9e/aoc+fOSklJUUREhB577DFlZma6oz4AADyiRp8hdu7cWXPnztXx48f15z//WcePH1f37t0VGxurl156SWfPnq3tOgEAP1KDBw/Wddddp3vvvdet61zVSTXl5eUqKSlRcXGxjDFq0qSJFi5cqKioKL3zzju1VSMA4Eds/Pjx+stf/uL2dWoUiFlZWRo3bpwiIiKUkpKiLl266ODBg9q2bZs+//xzPfPMMxo/fnxt1woA+BG644471KhRI7evYzkQO3furG7duiknJ0dLly7V0aNH9cc//tHlq59GjBihkydP1mqhAAC4k+XfZTp06FCNGjVKLVu2vOSc5s2bq7y8/KoKAwDAkywdITocDi1btoyTZgAAV2XcuHH6xS9+UeV9MTExev755z1ckcUjRLvdruLiYuf3IAIAYNWBAwe0cOFCffTRR1Xe37FjR+3du9ezRakGnyH+9re/1YwZM1RaWuqOegAA17hZs2bp5ptvVvfu3au8v0mTJvrmm2+c23379tXQoUO1YcMGtWrVym3XvVv+DPGTTz7Rpk2blJaWptjYWDVo0MDl/jVr1tRacQCAa0tpaalWr16tKVOmOMceffRR3XLLLXrooYckSUVFRS7Z8uGHH3qkNstHiI0bN9Y999yjvn37KjIyUqGhoS43AABclJXJtm2bWn70kb56+20VFRUpNjZW0sXr2VeuXKmGDRs6p3/66afq2LGjJM9dlC/V4Ahx2bJl7qij2l555RXNmjVLJ06c0A033KB58+apR48el5y/bds2paamav/+/YqMjNTEiRM1ZswYD1YMAD9ia9ZITzwh/2PHFCfpk/8ON8zKkvr104cffqjTp08rICBAkrRr1y4dOXJEd999t6SLF+WPGjVKK1ascHupPvX1T++8844mTJigyZMnKzs7Wz169FD//v2Vm5tb5fycnBwNGDBAPXr0UHZ2tp5++mmNHz9eq1ev9nDlAPAjtGaNdO+90rFjzqFoSTZJb/3v/yp79mw9+eSTGjBggP72t78pOztbjz76qHr16qXbb79dkucuypdqcIQoSatWrdK7776r3NxclZSUuNy3Z8+eWimsKnPmzNFDDz2khx9+WJI0b948ffjhh1q4cKGmT59eaf6iRYvUunVrzZs3T9LFM5d2796t2bNn65577nFbnYDPMEYqLVU9SSotlTiDvHro2ZWVlUlPPHHxNfY94ZKel/RHSat//3v938KFuqVbNw0aNEgrV67UwIED9corr3ijYuuBOH/+fE2ePFnJycn629/+pt/85jf68ssvlZmZqccff9wdNUqSSkpKlJWVpaeeesplPDExUTt27Khyn4yMDCUmJrqM9e3bV0uXLpXD4ZDdbq+0T3FxsYqLi53bhYWFki5eg+lwOK72aVhSsZ6n1/Vl9Myi0lLZN23SXfXqSZs2ebsan2GX6NmVfPaZy5Hh9036703l5Spt21amY0d98cUXLnO+/2+4tLRU5eXlNf53Xd39LAfiK6+8osWLF+uBBx7QihUrNHHiRLVt21Z/+MMf9J///MdyodV16tQplZWVKSwszGU8LCxMeXl5Ve6Tl5dX5fzS0lKdOnVKERERlfaZPn26pk2bVmk8LS1NwcHBV/EMai49Pd0r6/oyelY99fTfH+xAbatmHuz94AMdP3fusnM+++wz5eXlacOGDTUq5fz589WaZzkQc3Nzddttt0mS6tevr6KiIklSUlKSunXrpgULFlh9SEt++EsBjDGX/UUBVc2varzCpEmTlJqa6twuLCxUVFSUEhMTFRISUtOya8ThcCg9PV19+vSp8mgWldEzi4zR+eJibd68Wb169ZLdv0afovzoOEpL6dkV2Ox2+c+efcV5N/XvrxsTEi47p0GDBtqzZ48GDBhQo1oq3um7Est/k+Hh4SooKFB0dLSio6O1c+dO3XjjjcrJyXGGjTs0a9ZM9erVq3Q0mJ+fX+ko8Pu1VjXf399fTZs2rXKfwMBABQYGVhq32+1e+wHrzbV9FT2zwGZTmSR7UBA9qy6Hg55dyS9/KbVqJR0/XulzREkXP3tt1Ur+d9whXeZdir59+2rPnj06d+6c2rRpo7Vr1+rmm2+2VEp1/44sn2Xaq1cvrVu3TpL00EMPKSUlRX369NF9992nwYMHW324agsICFDXrl0rvRWWnp7uPGL9ofj4+Erz09LSFBcXx4sYANypXj3ppZcu/vmH78hVbM+bd9kwlC5elH/y5EmdP39ex44dsxyGVlg+Qly8eLHzmyzGjBmjJk2aaPv27Ro4cKDbr+9LTU1VUlKS4uLiFB8fr8WLFys3N9e57qRJk3T8+HHnF0mOGTNGCxYsUGpqqh555BFlZGRo6dKleuutt9xaJwBA0pAh0qpVF882/f4JNq1aXQzDIUO8VlpVLAein5+f/Pz+/4HlsGHDNGzYsFot6lLuu+8+FRQU6Nlnn9WJEyfUqVMnbdiwQdHR0ZKkEydOuFyT2KZNG23YsEEpKSl6+eWXFRkZqfnz53PJBQB4ypAh0qBBKt2yRXs/+EA39e9/xbdJvaVGnwafOXNGu3btUn5+fqXvPRwxYkStFHYpY8eO1dixY6u8b/ny5ZXGEhIS3HptJADgCurVk0lI0PFz5y6eQFMHw1CqQSCuW7dODz74oM6dO6dGjRq5nK1ps9ncHogAALiD5ZNqnnzySY0aNUpFRUU6c+aMTp8+7by58zpEAADcyXIgHj9+XOPHj/faReoAALiD5UDs27evdu/e7Y5aAADwGsufId555536n//5Hx04cECxsbGVruf71a9+VWvFAQDgKZYD8ZFHHpEkPfvss5Xus9lsKisru/qqAADwMMuB+MPLLAAAuBb41BcEAwDgLtU6Qpw/f75Gjx6toKAgzZ8//7Jzx48fXyuFAQDgSdUKxLlz5+rBBx9UUFCQ5s6de8l5NpuNQAQA+KRqBWJOTk6VfwYA4FrBZ4gAAKgGZ5l+/9vkv89msykoKEg/+clPNGjQIDVp0uSqiwMAwFMsB2J2drb27NmjsrIytW/fXsYY/etf/1K9evXUoUMHvfLKK3ryySe1fft2/exnP3NHzQAA1DrLb5kOGjRIv/zlL/X1118rKytLe/bs0fHjx9WnTx898MADOn78uG6//XalpKS4o14AANzCciDOmjVLzz33nEJCQpxjISEhmjp1qmbOnKng4GD94Q9/UFZWVq0WCgCAO1kOxLNnzyo/P7/S+MmTJ1VYWChJaty4sUpKSq6+OgAAPKRGb5mOGjVKa9eu1bFjx3T8+HGtXbtWDz30kO6++25J0q5du9SuXbvarhUAALexfFLNq6++qpSUFN1///0qLS29+CD+/kpOTnZetN+hQwctWbKkdisFAMCNLAdiw4YN9dprr2nu3Ln66quvZIzR9ddfr4YNGzrn3HTTTbVZIwAAbmc5ECs0bNhQnTt3rs1aAADwmhoFYmZmplauXKnc3NxKJ8+sWbOmVgoDAMCTLJ9U8/bbb6t79+46cOCA1q5dK4fDoQMHDmjz5s0KDQ11R40AALid5UB84YUXNHfuXL3//vsKCAjQSy+9pIMHD2rYsGFq3bq1O2oEAMDtLAfil19+qTvvvFOSFBgYqHPnzslmsyklJUWLFy+u9QIBAPAEy4HYpEkTFRUVSZJatmypffv2SZLOnDmj8+fP1251AAB4iOWTanr06KH09HTFxsZq2LBheuKJJ7R582alp6erd+/e7qgRAAC3sxyICxYs0IULFyRJkyZNkt1u1/bt2zVkyBBNmTKl1gsEAMATLAfi97/n0M/PTxMnTtTEiRNrtSgAADytxhfm5+fnKz8/X+Xl5S7jXKwPAPBFlgMxKytLycnJOnjwoIwxLvfZbDaVlZXVWnEAAHiK5UD8zW9+o3bt2mnp0qUKCwuTzWZzR10AAHiU5UDMycnRmjVr9JOf/MQd9QAA4BWWr0Ps3bu3/vnPf7qjFgAAvMbyEeKSJUuUnJysffv2qVOnTrLb7S73/+pXv6q14gAA8BTLgbhjxw5t375dH3zwQaX7OKkGAOCrLL9lOn78eCUlJenEiRMqLy93uRGGAABfZTkQCwoKlJKSorCwMHfUAwCAV1gOxCFDhmjLli3uqAUAAK+x/Bliu3btNGnSJG3fvl2xsbGVTqoZP358rRUHAICn1Ogs04YNG2rbtm3atm2by302m41ABAD4pBpdmA8AwLXG8meIAABci6p1hJiamqrnnntODRo0UGpq6mXnzpkzp1YKAwDAk6oViNnZ2XI4HM4/Xwq/6BsA4KuqFYjfv8yCSy4AANciPkMEAEAEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABI8qFAPH36tJKSkhQaGqrQ0FAlJSXpzJkzl91n5MiRstlsLrdu3bp5pmAAgE/x93YB1TV8+HAdO3ZMGzdulCSNHj1aSUlJWrdu3WX369evn5YtW+bcDggIcGudAADf5BOBePDgQW3cuFE7d+7UrbfeKkl67bXXFB8fr0OHDql9+/aX3DcwMFDh4eGeKhUA4KN8IhAzMjIUGhrqDENJ6tatm0JDQ7Vjx47LBuLWrVvVokULNW7cWAkJCXr++efVokWLS84vLi5WcXGxc7uwsFCS5HA45HA4auHZVF/Fep5e15fRM+vomXX0zDpv9qy6a/pEIObl5VUZYi1atFBeXt4l9+vfv7+GDh2q6Oho5eTkaMqUKerVq5eysrIUGBhY5T7Tp0/XtGnTKo2npaUpODi45k/iKqSnp3tlXV9Gz6yjZ9bRM+u80bPz589Xa55XA3Hq1KlVhs/3ZWZmSpJsNlul+4wxVY5XuO+++5x/7tSpk+Li4hQdHa3169dryJAhVe4zadIkpaamOrcLCwsVFRWlxMREhYSEXLbW2uZwOJSenq4+ffrIbrd7dG1fRc+so2fW0TPrvNmzinf6rsSrgThu3Djdf//9l50TExOjTz/9VN98802l+06ePKmwsLBqrxcREaHo6Gj961//uuScwMDAKo8e7Xa711743lzbV9Ez6+iZdfTMOm/0rLrreTUQmzVrpmbNml1xXnx8vM6ePatdu3bplltukSR98sknOnv2rG677bZqr1dQUKCjR48qIiKixjUDAK5NPnEdYseOHdWvXz898sgj2rlzp3bu3KlHHnlEd911l8sJNR06dNDatWslSd9++61+97vfKSMjQ4cPH9bWrVs1cOBANWvWTIMHD/bWUwEA1FE+EYiS9Oabbyo2NlaJiYlKTExU586d9frrr7vMOXTokM6ePStJqlevnj777DMNGjRI7dq1U3Jystq1a6eMjAw1atTIG08BAFCH+cRZppLUpEkTvfHGG5edY4xx/rl+/fr68MMP3V0WAOAa4TNHiAAAuBOBCACACEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAknwoEJ9//nnddtttCg4OVuPGjau1jzFGU6dOVWRkpOrXr6+ePXtq//797i0UAOCTfCYQS0pKNHToUD322GPV3mfmzJmaM2eOFixYoMzMTIWHh6tPnz4qKipyY6UAAF/kM4E4bdo0paSkKDY2tlrzjTGaN2+eJk+erCFDhqhTp05asWKFzp8/r7/+9a9urhYA4Gv8vV2Au+Tk5CgvL0+JiYnOscDAQCUkJGjHjh169NFHq9yvuLhYxcXFzu3CwkJJksPhkMPhcG/RP1CxnqfX9WX0zDp6Zh09s86bPavumtdsIObl5UmSwsLCXMbDwsJ05MiRS+43ffp0TZs2rdJ4WlqagoODa7fIakpPT/fKur6MnllHz6yjZ9Z5o2fnz5+v1jyvBuLUqVOrDJ/vy8zMVFxcXI3XsNlsLtvGmEpj3zdp0iSlpqY6twsLCxUVFaXExESFhITUuI6acDgcSk9PV58+fWS32z26tq+iZ9bRM+vomXXe7FnFO31X4tVAHDdunO6///7LzomJianRY4eHh0u6eKQYERHhHM/Pz6901Ph9gYGBCgwMrDRut9u99sL35tq+ip5ZR8+so2fWeaNn1V3Pq4HYrFkzNWvWzC2P3aZNG4WHhys9PV1dunSRdPFM1W3btmnGjBluWRMA4Lt85izT3Nxc7d27V7m5uSorK9PevXu1d+9effvtt845HTp00Nq1ayVdfKt0woQJeuGFF7R27Vrt27dPI0eOVHBwsIYPH+6tpwEAqKN85qSaP/zhD1qxYoVzu+Kob8uWLerZs6ck6dChQzp79qxzzsSJE/Xdd99p7NixOn36tG699ValpaWpUaNGHq0dAFD3+UwgLl++XMuXL7/sHGOMy7bNZtPUqVM1depU9xUGALgm+MxbpgAAuBOBCACACEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAECS5O/tAuo6Y4wkqbCw0ONrOxwOnT9/XoWFhbLb7R5f3xfRM+vomXX0zDpv9qzi53fFz/NLIRCvoKioSJIUFRXl5UoAAFejqKhIoaGhl7zfZq4UmT9y5eXl+vrrr9WoUSPZbDaPrl1YWKioqCgdPXpUISEhHl3bV9Ez6+iZdfTMOm/2zBijoqIiRUZGys/v0p8UcoR4BX5+fmrVqpVXawgJCeEfnUX0zDp6Zh09s85bPbvckWEFTqoBAEAEIgAAkgjEOi0wMFDPPPOMAgMDvV2Kz6Bn1tEz6+iZdb7QM06qAQBAHCECACCJQAQAQBKBCACAJAIRAABJBGKd8vzzz+u2225TcHCwGjduXK19jDGaOnWqIiMjVb9+ffXs2VP79+93b6F1yOnTp5WUlKTQ0FCFhoYqKSlJZ86cuew+I0eOlM1mc7l169bNMwV7ySuvvKI2bdooKChIXbt21T/+8Y/Lzt+2bZu6du2qoKAgtW3bVosWLfJQpXWHlZ5t3bq10mvKZrPp888/92DF3vPRRx9p4MCBioyMlM1m03vvvXfFferia4xArENKSko0dOhQPfbYY9XeZ+bMmZozZ44WLFigzMxMhYeHq0+fPs7fwXqtGz58uPbu3auNGzdq48aN2rt3r5KSkq64X79+/XTixAnnbcOGDR6o1jveeecdTZgwQZMnT1Z2drZ69Oih/v37Kzc3t8r5OTk5GjBggHr06KHs7Gw9/fTTGj9+vFavXu3hyr3Has8qHDp0yOV19dOf/tRDFXvXuXPndOONN2rBggXVml9nX2MGdc6yZctMaGjoFeeVl5eb8PBw88c//tE5duHCBRMaGmoWLVrkxgrrhgMHDhhJZufOnc6xjIwMI8l8/vnnl9wvOTnZDBo0yAMV1g233HKLGTNmjMtYhw4dzFNPPVXl/IkTJ5oOHTq4jD366KOmW7dubquxrrHasy1bthhJ5vTp0x6orm6TZNauXXvZOXX1NcYRog/LyclRXl6eEhMTnWOBgYFKSEjQjh07vFiZZ2RkZCg0NFS33nqrc6xbt24KDQ294vPfunWrWrRooXbt2umRRx5Rfn6+u8v1ipKSEmVlZbm8RiQpMTHxkj3KyMioNL9v377avXu3HA6H22qtK2rSswpdunRRRESEevfurS1btrizTJ9WV19jBKIPy8vLkySFhYW5jIeFhTnvu5bl5eWpRYsWlcZbtGhx2effv39/vfnmm9q8ebNefPFFZWZmqlevXiouLnZnuV5x6tQplZWVWXqN5OXlVTm/tLRUp06dclutdUVNehYREaHFixdr9erVWrNmjdq3b6/evXvro48+8kTJPqeuvsb4tgs3mzp1qqZNm3bZOZmZmYqLi6vxGj/8WipjjMe/qqo2VbdnUuXnLl35+d93333OP3fq1ElxcXGKjo7W+vXrNWTIkBpWXbdZfY1UNb+q8WuZlZ61b99e7du3d27Hx8fr6NGjmj17tm6//Xa31umr6uJrjEB0s3Hjxun++++/7JyYmJgaPXZ4eLiki//bioiIcI7n5+dX+t+XL6luzz799FN98803le47efKkpecfERGh6Oho/etf/7Jca13XrFkz1atXr9KRzeVeI+Hh4VXO9/f3V9OmTd1Wa11Rk55VpVu3bnrjjTdqu7xrQl19jRGIbtasWTM1a9bMLY/dpk0bhYeHKz09XV26dJF08fOPbdu2acaMGW5Z0xOq27P4+HidPXtWu3bt0i233CJJ+uSTT3T27Fnddttt1V6voKBAR48edflPxbUiICBAXbt2VXp6ugYPHuwcT09P16BBg6rcJz4+XuvWrXMZS0tLU1xcnOx2u1vrrQtq0rOqZGdnX5OvqdpQZ19j3jyjB66OHDlisrOzzbRp00zDhg1Ndna2yc7ONkVFRc457du3N2vWrHFu//GPfzShoaFmzZo15rPPPjMPPPCAiYiIMIWFhd54Ch7Xr18/07lzZ5ORkWEyMjJMbGysueuuu1zmfL9nRUVF5sknnzQ7duwwOTk5ZsuWLSY+Pt60bNnymu3Z22+/bex2u1m6dKk5cOCAmTBhgmnQoIE5fPiwMcaYp556yiQlJTnnf/XVVyY4ONikpKSYAwcOmKVLlxq73W5WrVrlrafgcVZ7NnfuXLN27VrzxRdfmH379pmnnnrKSDKrV6/21lPwqKKiIufPK0lmzpw5Jjs72xw5csQY4zuvMQKxDklOTjaSKt22bNninCPJLFu2zLldXl5unnnmGRMeHm4CAwPN7bffbj777DPPF+8lBQUF5sEHHzSNGjUyjRo1Mg8++GClU9+/37Pz58+bxMRE07x5c2O3203r1q1NcnKyyc3N9XzxHvTyyy+b6OhoExAQYH7+85+bbdu2Oe9LTk42CQkJLvO3bt1qunTpYgICAkxMTIxZuHChhyv2Pis9mzFjhrn++utNUFCQue6668wvfvELs379ei9U7R0Vl5388JacnGyM8Z3XGF//BACAuOwCAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEI/GgcPnxYNptNe/fu9XYpQJ1EIALwiJEjR+ruu+/2dhnAJRGIQB1XUlLi7RKuSllZmcrLy71dBnBFBCJQx/Ts2VPjxo1TamqqmjVrpj59+kiSDhw4oAEDBqhhw4YKCwtTUlKSy5epbty4Ub/4xS/UuHFjNW3aVHfddZe+/PJLS2vHxMToueee0/Dhw9WwYUNFRkbqT3/6k8ucOXPmKDY2Vg0aNFBUVJTGjh2rb7/91nn/8uXL1bhxY73//vv62c9+psDAQP3mN7/RihUr9Le//U02m002m01bt26teZMANyAQgTpoxYoV8vf318cff6xXX31VJ06cUEJCgm666Sbt3r1bGzdu1DfffKNhw4Y59zl37pxSU1OVmZmpTZs2yc/PT4MHD7Z8dDZr1ix17txZe/bs0aRJk5SSkqL09HTn/X5+fpo/f7727dunFStWaPPmzZo4caLLY5w/f17Tp0/XkiVLtH//fs2fP1/Dhg1Tv379dOLECZ04ccLSV3QBHuHt3y4OwFVCQoK56aabXMamTJliEhMTXcaOHj1qJJlDhw5V+Tj5+flGkvPbT3Jycowkk52dfcm1o6OjTb9+/VzG7rvvPtO/f/9L7vPuu++apk2bOreXLVtmJJm9e/e6zEtOTjaDBg265OMA3sYRIlAHxcXFuWxnZWVpy5YtatiwofPWoUMHSXK+Lfrll19q+PDhatu2rUJCQtSmTRtJUm5urqW14+PjK20fPHjQub1lyxb16dNHLVu2VKNGjTRixAgVFBTo3LlzzjkBAQHq3LmzpXUBb/P3dgEAKmvQoIHLdnl5uQYOHKgZM2ZUmlvxrewDBw5UVFSUXnvtNUVGRqq8vFydOnWqlZNybDabJOnIkSMaMGCAxowZo+eee05NmjTR9u3b9dBDD8nhcDjn169f37kP4CsIRMAH/PznP9fq1asVExMjf//K/2wLCgp08OBBvfrqq+rRo4ckafv27TVaa+fOnZW2K45Gd+/erdLSUr344ovy87v4BtO7775brccNCAhQWVlZjWoCPIG3TAEf8Pjjj+s///mPHnjgAe3atUtfffWV0tLSNGrUKJWVlem6665T06ZNtXjxYv373//W5s2blZqaWqO1Pv74Y82cOVNffPGFXn75Za1cuVJPPPGEJOn6669XaWmp/vSnP+mrr77S66+/rkWLFlXrcWNiYvTpp5/q0KFDOnXqlMsRJVAXEIiAD4iMjNTHH3+ssrIy9e3bV506ddITTzyh0NBQ+fn5yc/PT2+//baysrLUqVMnpaSkaNasWTVa68knn1RWVpa6dOmi5557Ti+++KL69u0rSbrppps0Z84czZgxQ506ddKbb76p6dOnV+txH3nkEbVv315xcXFq3ry5Pv744xrVB7iLzRhjvF0EgLohJiZGEyZM0IQJE7xdCuBxHCECACACEQAASbxlCgCAJI4QAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJAk/T9SUjVq4PSsbwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHFCAYAAABsA4m6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3k0lEQVR4nO3dfVxUZf7/8fcoI4gK5h03iqC13rRCmmxpZpgm3pTLamlli7hWVmYmtl83a02tLdNMzTTNNHWrLfN213QNvnm3JhYibhlm+y0UNYlkVUgTBrh+f7jMrwlUDjIzjPt6Ph7zyHOd65zrM5fTvD1nzpmxGWOMAAD4L1fH2wUAAFAbEIgAAIhABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQg4gq3ZcsWjRo1Sh06dFCDBg3UsmVLJSQkKCMjo8r7+Mtf/qK5c+dWaD906JBsNptmzZpVgxW7x6ZNmzR16lSvjF1cXKyHH35YYWFhqlu3rjp37uzR8UeOHKmoqCiXthdeeEHr16/3aB2o/QhEXNEWLlyoQ4cO6fHHH9emTZv0yiuvKC8vT926ddOWLVuqtI8LBaIv2bRpk6ZNm+aVsRcuXKjXX39dTz/9tHbu3Km33nrLo+NPnjxZ69atc2kjEFEZP28XALjTggUL1KJFC5e2/v3765prrtELL7yg3r17e6myyv34448KCAiQzWbzdik1Zv/+/apfv77Gjh3rlfGvvvpqr4wL38MRIq5oPw9DSWrYsKGuvfZaHTly5JLb9+rVSxs3btThw4dls9mcj5+bPXu22rRpo4YNG6p79+7avXv3Jfe9fPly2Ww2paSkaNSoUWrevLkCAwNVVFSksrIyzZw5Ux06dJC/v79atGihESNG6OjRoxX28+abb+q6665TQECAmjRposGDB+vAgQPO9SNHjtSCBQskyeU5HDp0SJK0atUq3XjjjQoODlZgYKDatm2rUaNGXbL+c+fOadKkSWrTpo3q1aunli1b6tFHH9WpU6ecfWw2m5YsWaIff/zROe7y5csvuM+oqCiNHDmyQnuvXr3Uq1cv5/K2bdtks9n07rvv6umnn1Z4eLiCgoJ022236eDBgy7b/vyUqc1m05kzZ7RixQpnTb169dKhQ4fk5+en6dOnVxh/x44dstlsWrVq1SXnBT7MAP9lTp06ZYKDg83gwYMv2feLL74wPXr0MKGhoSYtLc35MMaY7OxsI8lERUWZ/v37m/Xr15v169eb6Ohoc9VVV5lTp05ddN/Lli0zkkzLli3N6NGjzd///nezevVqU1JSYkaPHm0kmbFjx5rNmzebRYsWmebNm5uIiAjz/fffO/fxwgsvGEnm3nvvNRs3bjR//vOfTdu2bU1wcLD56quvjDHG/N///Z+56667jCSX53Du3Dmza9cuY7PZzD333GM2bdpktmzZYpYtW2YSExMvWntZWZnp16+f8fPzM5MnTzYpKSlm1qxZpkGDBqZLly7m3Llzxhhj0tLSzMCBA039+vWd4+bl5V1wv5GRkSYpKalCe1xcnImLi3Mub9261Tn39913n9m4caN59913TevWrc0vfvELU1JS4uyblJRkIiMjnctpaWmmfv36ZuDAgc6avvjiC2OMMYMHDzatW7d22d4YY4YOHWrCw8ONw+G46LzAtxGI+K9z3333GT8/P7Nnz54q9b/99ttd3lDLlQdidHS0yxvop59+aiSZd99996L7LQ/EESNGuLQfOHDASDJjxoxxaf/kk0+MJPPUU08ZY4w5efKk8439p3Jycoy/v78ZPny4s+3RRx81lf37d9asWUbSJcP75zZv3mwkmZkzZ7q0r1y50kgyixcvdrYlJSWZBg0aVGm/VgPx58/9/fffdwb/T8f/+d9fgwYNKh2nfL/r1q1zth07dsz4+fmZadOmVek5wHdxyhT/VSZPnqx33nlHc+bMUdeuXZ3tZWVlKikpcT5KS0urvM/bb79ddevWdS7HxMRIkg4fPlyl7e+8806X5a1bt0pShVOHN9xwgzp27KiPPvpIkpSWlqYff/yxQr+IiAj17t3b2e9ifvWrX0mShg0bpvfff1/Hjh2rUs3lFyT9fOyhQ4eqQYMGVRq7Jvz61792WbY69z/Xq1cvXXfddc5TzJK0aNEi2Ww2jR49uvqFwicQiPivMW3aNP3pT3/S888/X+ECj2effVZ2u935sHIhRtOmTV2W/f39JZ2/QKYqwsLCXJbz8/MrbZek8PBw5/qq9ruYW265RevXr1dJSYlGjBihVq1aqVOnTnr33Xcvul1+fr78/PzUvHlzl3abzabQ0NAqjV0TLnfuKzNu3Dh99NFHOnjwoBwOh9544w3dddddCg0NvaxaUfsRiPivMG3aNE2dOlVTp07VU089VWH96NGjlZ6e7nxs2LDBY7X9/CKd8jf548ePV+j77bffqlmzZpb6XUpCQoI++ugjnT59Wtu2bVOrVq00fPhwpaWlXXCbpk2bqqSkRN9//71LuzFGubm5VR775wICAlRUVFSh/cSJE9XaX3UMHz5cTZs21YIFC7Rq1Srl5ubq0Ucf9dj48B4CEVe85557TlOnTtUf//hHTZkypdI+4eHhio2NdT6io6Od6/z9/S/riMOq8ltB3n77bZf29PR0HThwQH369JEkde/eXfXr16/Q7+jRo9qyZYuzn1S1Iyd/f3/FxcVpxowZkqTMzMwL9i3f98/HXrNmjc6cOeMythVRUVH67LPPXNq++uqrCleOXq6L/Z0GBARo9OjRWrFihWbPnq3OnTurR48eNTo+aifuQ8QV7eWXX9Yzzzyj/v376/bbb69wO0S3bt0uuY/o6GitXbtWCxcuVNeuXVWnTh3Fxsa6q2S1b99eo0eP1quvvqo6depowIABOnTokCZPnqyIiAglJydLkho3bqzJkyfrqaee0ogRI3TvvfcqPz9f06ZNU0BAgEv4lwf8jBkzNGDAANWtW1cxMTH605/+pKNHj6pPnz5q1aqVTp06pVdeeUV2u11xcXEXrLFv377q16+f/vCHP6igoEA9evTQZ599pilTpqhLly5KTEys1nNPTEzUb3/7W40ZM0Z33nmnDh8+rJkzZ1Y4NXu5oqOjtW3bNm3YsEFhYWFq1KiR2rdv71w/ZswYzZw5UxkZGVqyZEmNjo1azNtX9QDuFBcXZyRd8FEV//73v81dd91lGjdubGw2m3O78qtMX3rppQrbSDJTpky56H7LrzJNT0+vsK60tNTMmDHDtGvXztjtdtOsWTPz29/+1hw5cqRC3yVLlpiYmBhTr149ExwcbBISEpy3EZQrKioyDzzwgGnevLnzOWRnZ5sPPvjADBgwwLRs2dLUq1fPtGjRwgwcOND84x//uOS8/Pjjj+YPf/iDiYyMNHa73YSFhZlHHnnEnDx50qWflatMy8rKzMyZM03btm1NQECAiY2NNVu2bLngVaarVq1y2b7872TZsmUu4//8KtN9+/aZHj16mMDAQCPJZd/levXqZZo0aWLOnj1bpdrh+2zGGOOFHAaAWisvL0+RkZF67LHHNHPmTG+XAw/hlCkA/MfRo0f1zTff6KWXXlKdOnX0+OOPe7skeBAX1QDAfyxZskS9evXSF198oXfeeUctW7b0dknwIE6ZAgAgjhABAJBEIAIAIIlABABAEleZXlJZWZm+/fZbNWrU6Ir60VYA+G9hjFFhYaHCw8NVp86FjwMJxEv49ttvFRER4e0yAACX6ciRI2rVqtUF1xOIl9CoUSNJ5ycyKCjIo2M7HA6lpKQoPj5edrvdo2P7KubMOubMOubMOm/OWUFBgSIiIpzv5xdCIF5C+WnSoKAgrwRiYGCggoKC+J+uipgz65gz65gz62rDnF3qYy8uqgEAQAQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQfC8QdO3Zo0KBBCg8Pl81m0/r16y+5zfbt29W1a1cFBASobdu2WrRokfsLBQD4HJ8KxDNnzui6667T/Pnzq9Q/OztbAwcOVM+ePZWZmamnnnpK48aN05o1a9xcKQDA1/h5uwArBgwYoAEDBlS5/6JFi9S6dWvNnTtXktSxY0ft2bNHs2bN0p133ummKgEAvsinAtGqtLQ0xcfHu7T169dPS5culcPhkN1ur7BNUVGRioqKnMsFBQWSJIfDIYfD4d6Cf6Z8PE+P68uYM+uYM+uYM+u8OWdVHfOKDsTc3FyFhIS4tIWEhKikpEQnTpxQWFhYhW2mT5+uadOmVWhPSUlRYGCg22q9mNTUVK+M68uYM+uYM+uYM+u8MWdnz56tUr8rOhAlyWazuSwbYyptLzdp0iRNmDDBuVxQUKCIiAjFx8crKCjIfYVWwuFwKDU1VX379q30aBYVMWfWMWfWMWfWeXPOys/0XcoVHYihoaHKzc11acvLy5Ofn5+aNm1a6Tb+/v7y9/ev0G632732wvfm2L6KObOOObOOObPOG3NW1fF86ipTq7p3717h8DwlJUWxsbG8iAEALnwqEH/44Qft27dP+/btk3T+top9+/YpJydH0vnTnSNGjHD2f/jhh3X48GFNmDBBBw4c0JtvvqmlS5fq97//vTfKBwDUYj51ynTPnj269dZbncvln/UlJSVp+fLlOn78uDMcJalNmzbatGmTkpOTtWDBAoWHh2vevHnccgEAqMCnArFXr17Oi2Iqs3z58gptcXFx2rt3rxurAgBcCXzqlCkAAO5CIAIAIAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQfDMTXXntNbdq0UUBAgLp27ap//OMfF+y7bds22Wy2Co8vv/zSgxUDAHyBTwXiypUrNX78eD399NPKzMxUz549NWDAAOXk5Fx0u4MHD+r48ePOxy9+8QsPVQwA8BU+FYizZ8/W/fffrwceeEAdO3bU3LlzFRERoYULF150uxYtWig0NNT5qFu3rocqBgD4Cj9vF1BVxcXFysjI0JNPPunSHh8fr127dl102y5duujcuXO69tpr9cc//lG33nrrBfsWFRWpqKjIuVxQUCBJcjgccjgcl/EMrCsfz9Pj+jLmzDrmzDrmzDpvzllVx/SZQDxx4oRKS0sVEhLi0h4SEqLc3NxKtwkLC9PixYvVtWtXFRUV6a233lKfPn20bds23XLLLZVuM336dE2bNq1Ce0pKigIDAy//iVRDamqqV8b1ZcyZdcyZdcyZdd6Ys7Nnz1apn88EYjmbzeaybIyp0Fauffv2at++vXO5e/fuOnLkiGbNmnXBQJw0aZImTJjgXC4oKFBERITi4+MVFBRUA8+g6hwOh1JTU9W3b1/Z7XaPju2rmDPrmDPrmDPrvDln5Wf6LsVnArFZs2aqW7duhaPBvLy8CkeNF9OtWze9/fbbF1zv7+8vf3//Cu12u91rL3xvju2rmDPrmDPrmDPrvDFnVR3PZy6qqVevnrp27VrhcDs1NVU33XRTlfeTmZmpsLCwmi4PAODjfOYIUZImTJigxMRExcbGqnv37lq8eLFycnL08MMPSzp/uvPYsWP685//LEmaO3euoqKi9Mtf/lLFxcV6++23tWbNGq1Zs8abTwMAUAv5VCDefffdys/P17PPPqvjx4+rU6dO2rRpkyIjIyVJx48fd7knsbi4WL///e917Ngx1a9fX7/85S+1ceNGDRw40FtPAQBQS/lUIErSmDFjNGbMmErXLV++3GV54sSJmjhxogeqAgD4Op/5DBEAAHciEAEAEIEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJ1QjEtm3bKj8/v0L7qVOn1LZt2xopCgAAT7MciIcOHVJpaWmF9qKiIh07dqxGigIAwNP8qtrxb3/7m/PPH374oYKDg53LpaWl+uijjxQVFVWjxQEA4ClVDsTf/OY3zj8nJSW5rLPb7YqKitLLL79cY4UBAOBJVQ7EsrIySVKbNm20Z88eNW3a1G1FAQDgaZY+Q3Q4HIqKiqr0ohoAAHyZpUC02+3av3+/bDabu+oBAMArLF9lOmLECC1dutQdtQAA4DVV/gyxXHFxsZYsWaLU1FTFxsaqQYMGLutnz55dY8UBAOAplgNx//79uv766yVJX331lcs6TqUCAHyV5UDcunWrO+oAAMCr+C5TAABUjSNESUpPT9eqVauUk5Oj4uJil3Vr166tkcIAAPAky0eI7733nnr06KGsrCytW7dODodDWVlZ2rJli8vXuQEA4EssB+ILL7ygOXPm6IMPPlC9evX0yiuv6MCBAxo2bJhat27tjhoBAHA7y4H49ddf6/bbb5ck+fv768yZM7LZbEpOTtbixYtrvEAAADzBciA2adJEhYWFkqSWLVtq//79ks7/HuLZs2drtjoAADzE8kU1PXv2VGpqqqKjozVs2DA9/vjj2rJli1JTU9WnTx931AgAgNtZDsT58+fr3LlzkqRJkybJbrdr586dGjJkiCZPnlzjBQIA4AmWA7FJkybOP9epU0cTJ07UxIkTa7QoAAA8rVr3IZaWlmrdunU6cOCAbDabOnbsqISEBPn5VWt3AAB4XbW+yzQhIUG5ublq3769pPPfadq8eXP97W9/U3R0dI0XCQCAu1m+yvSBBx7QL3/5Sx09elR79+7V3r17deTIEcXExGj06NHuqBEAALezfIT4z3/+U3v27NFVV13lbLvqqqv0/PPP61e/+lWNFgcAgKdYPkJs3769vvvuuwrteXl5uuaaa2qkKAAAPK1aX902btw4rV69WkePHtXRo0e1evVqjR8/XjNmzFBBQYHzAQCAr7B8yvSOO+6QJA0bNsz5g8DGGEnSoEGDnMs2m02lpaU1VScAAG7FDwQDAKBqBGJcXJw76gAAwKssf4YIAMCViEAEAEAEIgAAkghEAAAkVSMQp06dqsOHD7ujFgAAvMZyIG7YsEFXX321+vTpo7/85S/O30YEAMCXWQ7EjIwM7d27VzExMUpOTlZYWJgeeeQRpaenu6M+AAA8olqfIcbExGjOnDk6duyY3nzzTR07dkw9evRQdHS0XnnlFZ0+fbqm64RFgwcP1lVXXaW77rrL26UAQLUdOXJEvXr10rXXXquYmBitWrXKbWNd1kU1ZWVlKi4uVlFRkYwxatKkiRYuXKiIiAitXLmypmpENYwbN05//vOfvV0GAFwWPz8/zZ07V1lZWfrf//1fJScn68yZM24Zq1qBmJGRobFjxyosLEzJycnq0qWLDhw4oO3bt+vLL7/UlClTNG7cuJquFRbceuutatSokbfLAIDLEhYWps6dO0uSWrRooSZNmujf//63W8ayHIgxMTHq1q2bsrOztXTpUh05ckQvvviiy08/jRgxQt9//32NFgoA+O+2Z88elZWVKSIiwi37t/xdpkOHDtWoUaPUsmXLC/Zp3ry5ysrKLqswAADK5efna8SIEVqyZInbxrB0hOhwOLRs2TIumvGSsWPH6uabb650XVRUlJ5//nkPVwQA1WPl/ayoqEiDBw/WpEmTdNNNN7mtJktHiHa7XUVFRc7fQYTnZGVlaeHChdqxY0el6zt27Kh9+/Z5tigAqAYr72fGGI0cOVK9e/dWYmKiW+uy/BniY489phkzZqikpMQd9eACXnrpJf3qV79Sjx49Kl3fpEkTfffdd87lfv36aejQodq0aZNatWrFfaIAag0r72cff/yxVq5cqfXr16tz587q3LmzPv/8c7fUZfkzxE8++UQfffSRUlJSFB0drQYNGrisX7t2bY0Vh/NKSkq0Zs0aTZ482dn20EMP6YYbbtD9998vSSosLHT5u/jwww89XicAXIrV97Obb77ZY9ekWD5CbNy4se68807169dP4eHhCg4OdnmghpSWyrZ9u1ru2KFv3ntPhYWFio6OlnT+/s9Vq1apYcOGzu6fffaZOnbs6NGbWAGgSnzl/cz4mAULFpioqCjj7+9vrr/+erNjx46L9t+2bZu5/vrrjb+/v2nTpo1ZuHChpfFOnz5tJJnTp09fTtnWrFljTKtWxkjGSGa3ZCSZf/zpT8YYYzZt2mQkmbVr1xpjjPnkk0+MJLN9+3bz7bffmszMTGOMMd99951p2bKl+eGHHzxXu5cVFxeb9evXm+LiYm+X4jOYM+uYMwtqwftZVd/HLZ8y9aaVK1dq/Pjxeu2119SjRw+9/vrrGjBggLKystS6desK/bOzszVw4EA9+OCDevvtt/Xxxx9rzJgxat68ue68804vPIMqWLtWuuuu8y+d/4iUZJP07h//qAb+/nrizTc1cOBA/fWvf1VUVJQeeugh9e7dW7fccouk8zeySq43sf781DYAuJ2PvZ9VKxBXr16t999/Xzk5OSouLnZZt3fv3hoprDKzZ8/W/fffrwceeECSNHfuXH344YdauHChpk+fXqH/okWL1Lp1a82dO1fS+SuX9uzZo1mzZtXOQCwtlR5/3OXFI0mhkp6X9KKkNX/4g/40f75uuPFGJdx5p1atWqVBd9yh1159VfrZhU7Om1jDwiqsu2KVlKjuf/4rroa+NGOkoiLVkySHgzmrKl5nl1bV97OFC3VDt25KSEg4/342aJBee+21Crtz9035UjUCcd68eXr66aeVlJSkv/71r/rd736nr7/+Wunp6Xr00UfdUaMkqbi4WBkZGXryySdd2uPj47Vr165Kt0lLS1N8fLxLW79+/bR06VI5HA7Z7fYK2xQVFamoqMi5XFBQIOn8PZgOh+Nyn8ZF2bZvl9/Ro5Wum/Sfh8rKpFOnpG+/Vfarr/7/Dp9+6tI/v6BAI558Uksee0zavNldJdc6dkl31K0rffSRt0vxGXZJA+rWlbZs8XYpPoPXWRV8/rlUhfezkrZtZTp21FdffeXS56fvt/n5+UpMTNTrr79erffhqm5jORBfe+01LV68WPfee69WrFihiRMnqm3btnrmmWfc9v1yknTixAmVlpYqJCTEpT0kJES5ubmVbpObm1tp/5KSEp04ccJ5KP5T06dP17Rp0yq0p6SkKDAw8DKewaW13LFDsVXpeIl5LnI4NPiFFzTprrt0U8eONVIbAFhSxTzY9/e/69hFvqzb4XBoypQp6tevn06ePKlNmzZZLuXs2bNV6mc5EHNycpzfFFC/fn0VFhZKkhITE9WtWzfNnz/f6i4t+fmXAhhjLvpFAZX1r6y93KRJkzRhwgTnckFBgSIiIhQfH6+goKDqll0ltgYNpNmzL9mv5LbbZP5zfv3njDEaMXKk4hISdM8f/yj3HtPWPo6SEm3ZskW9e/eW3c+nPiL3DmPkKC7W9u3bFXfrrZWeNUFFvM4uzWa3y2/WrEv26zxggK6Li6t0nTFGiYmJGjJkiJ555plq11J+pu9SLP9NhoaGKj8/X5GRkYqMjNTu3bt13XXXKTs72xk27tCsWTPVrVu3wtFgXl5ehaPAn9ZaWX8/Pz81bdq00m38/f3l7+9fod1ut7v/zeLWW6VWraRjxyqcd5d0/rOKVq3kd9ttUt26le5i586dWrV6tWJiYrRh40ZJ0ltvveW8xPmK53CoVJI9IIA396qy21UsyV6/PnNWVbzOLu2226r2fnbrrRd/P1u16vz72YYNkqr3flbVvyPLgdi7d29t2LBB119/ve6//34lJydr9erV2rNnj4YMGWJ1d1VWr149de3aVampqRo8eLCzPTU1VQkJCZVu0717d+cklktJSVFsbGztfBHXrSu98sr5q7JsNtcXUfkR7dy5F3zxSJ69iRUALsgX38+s3s9RWlpqHA6Hc3nlypXmscceM6+88oopKiqyujtL3nvvPWO3283SpUtNVlaWGT9+vGnQoIE5dOiQMcaYJ5980iQmJjr7f/PNNyYwMNAkJyebrKwss3TpUmO3283q1aurPGZtuA/RSMZERJxvx0Vxf5h1zJl1zJkFteD9zG33IdapU0d16vz/L7gZNmyYhg0bVoMRfWF333238vPz9eyzz+r48ePq1KmTNm3apMjISEnS8ePHlZOT4+zfpk0bbdq0ScnJyVqwYIHCw8M1b9682nnLxU8NGSIlJKhk61bt+/vf1XnAgIueVgCAWsuH3s+q9WnwqVOn9OmnnyovL6/C4eyIESNqpLALGTNmjMaMGVPpuuXLl1doi4uLc+u9kW5Tt65MXJyOnTlz/gPnWvjiAYAq8ZH3M8uBuGHDBt133306c+aMGjVq5HK1ps1mc3sgAgDgDpa/3PuJJ57QqFGjVFhYqFOnTunkyZPOhzvvQwQAwJ0sB+KxY8c0btw4t9+kDgCAJ1kOxH79+mnPnj3uqAUAAK+x/Bni7bffrv/5n/9RVlaWoqOjK9zP9+tf/7rGigMAwFMsB+KDDz4oSXr22WcrrLPZbCotLb38qgAA8DDLgci3oAAArkSWP0MEAOBKVKUjxHnz5mn06NEKCAjQvHnzLtp33LhxNVIYAACeVKVAnDNnju677z4FBARozpw5F+xns9kIRACAT6pSIGZnZ1f6ZwAArhR8hggAgKpxlelPf03+p2w2mwICAnTNNdcoISFBTZo0ueziAADwFMuBmJmZqb1796q0tFTt27eXMUb/+te/VLduXXXo0EGvvfaannjiCe3cuVPXXnutO2oGAKDGWT5lmpCQoNtuu03ffvutMjIytHfvXh07dkx9+/bVvffeq2PHjumWW25RcnKyO+oFAMAtLAfiSy+9pOeee05BQUHOtqCgIE2dOlUzZ85UYGCgnnnmGWVkZNRooQAAuJPlQDx9+rTy8vIqtH///fcqKCiQJDVu3FjFxcWXXx0AAB5SrVOmo0aN0rp163T06FEdO3ZM69at0/3336/f/OY3kqRPP/1U7dq1q+laAQBwG8sX1bz++utKTk7WPffco5KSkvM78fNTUlKS86b9Dh06aMmSJTVbKQAAbmQ5EBs2bKg33nhDc+bM0TfffCNjjK6++mo1bNjQ2adz5841WSMAAG5nORDLNWzYUDExMTVZCwAAXlOtQExPT9eqVauUk5NT4eKZtWvX1khhAAB4kuWLat577z316NFDWVlZWrdunRwOh7KysrRlyxYFBwe7o0YAANzOciC+8MILmjNnjj744APVq1dPr7zyig4cOKBhw4apdevW7qgRAAC3sxyIX3/9tW6//XZJkr+/v86cOSObzabk5GQtXry4xgsEAMATLAdikyZNVFhYKElq2bKl9u/fL0k6deqUzp49W7PVAQDgIZYvqunZs6dSU1MVHR2tYcOG6fHHH9eWLVuUmpqqPn36uKNGAADcznIgzp8/X+fOnZMkTZo0SXa7XTt37tSQIUM0efLkGi8QAABPsByIP/2dwzp16mjixImaOHFijRYFAICnVfvG/Ly8POXl5amsrMylnZv1AQC+yHIgZmRkKCkpSQcOHJAxxmWdzWZTaWlpjRUHAICnWA7E3/3ud2rXrp2WLl2qkJAQ2Ww2d9QFAIBHWQ7E7OxsrV27Vtdcc4076gEAwCss34fYp08f/fOf/3RHLQAAeI3lI8QlS5YoKSlJ+/fvV6dOnWS3213W//rXv66x4gAA8BTLgbhr1y7t3LlTf//73yus46IaAICvsnzKdNy4cUpMTNTx48dVVlbm8iAMAQC+ynIg5ufnKzk5WSEhIe6oBwAAr7AciEOGDNHWrVvdUQsAAF5j+TPEdu3aadKkSdq5c6eio6MrXFQzbty4GisOAABPqdZVpg0bNtT27du1fft2l3U2m41ABAD4pGrdmA8AwJXG8meIAABciap0hDhhwgQ999xzatCggSZMmHDRvrNnz66RwgAA8KQqBWJmZqYcDofzzxfCF30DAHxVlQLxp7dZcMsFAOBKxGeIAACIQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAAST4UiCdPnlRiYqKCg4MVHBysxMREnTp16qLbjBw5UjabzeXRrVs3zxQMAPApft4uoKqGDx+uo0ePavPmzZKk0aNHKzExURs2bLjodv3799eyZcucy/Xq1XNrnQAA3+QTgXjgwAFt3rxZu3fv1o033ihJeuONN9S9e3cdPHhQ7du3v+C2/v7+Cg0N9VSpAAAf5ROBmJaWpuDgYGcYSlK3bt0UHBysXbt2XTQQt23bphYtWqhx48aKi4vT888/rxYtWlywf1FRkYqKipzLBQUFkiSHwyGHw1EDz6bqysfz9Li+jDmzjjmzjjmzzptzVtUxfSIQc3NzKw2xFi1aKDc394LbDRgwQEOHDlVkZKSys7M1efJk9e7dWxkZGfL39690m+nTp2vatGkV2lNSUhQYGFj9J3EZUlNTvTKuL2POrGPOrGPOrPPGnJ09e7ZK/bwaiFOnTq00fH4qPT1dkmSz2SqsM8ZU2l7u7rvvdv65U6dOio2NVWRkpDZu3KghQ4ZUus2kSZM0YcIE53JBQYEiIiIUHx+voKCgi9Za0xwOh1JTU9W3b1/Z7XaPju2rmDPrmDPrmDPrvDln5Wf6LsWrgTh27Fjdc889F+0TFRWlzz77TN99912Fdd9//71CQkKqPF5YWJgiIyP1r3/964J9/P39Kz16tNvtXnvhe3NsX8WcWcecWcecWeeNOavqeF4NxGbNmqlZs2aX7Ne9e3edPn1an376qW644QZJ0ieffKLTp0/rpptuqvJ4+fn5OnLkiMLCwqpdMwDgyuQT9yF27NhR/fv314MPPqjdu3dr9+7devDBB3XHHXe4XFDToUMHrVu3TpL0ww8/6Pe//73S0tJ06NAhbdu2TYMGDVKzZs00ePBgbz0VAEAt5ROBKEnvvPOOoqOjFR8fr/j4eMXExOitt95y6XPw4EGdPn1aklS3bl19/vnnSkhIULt27ZSUlKR27dopLS1NjRo18sZTAADUYj5xlakkNWnSRG+//fZF+xhjnH+uX7++PvzwQ3eXBQC4QvjMESIAAO5EIAIAIAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQfCsTnn39eN910kwIDA9W4ceMqbWOM0dSpUxUeHq769eurV69e+uKLL9xbKADAJ/lMIBYXF2vo0KF65JFHqrzNzJkzNXv2bM2fP1/p6ekKDQ1V3759VVhY6MZKAQC+yGcCcdq0aUpOTlZ0dHSV+htjNHfuXD399NMaMmSIOnXqpBUrVujs2bP6y1/+4uZqAQC+xs/bBbhLdna2cnNzFR8f72zz9/dXXFycdu3apYceeqjS7YqKilRUVORcLigokCQ5HA45HA73Fv0z5eN5elxfxpxZx5xZx5xZ5805q+qYV2wg5ubmSpJCQkJc2kNCQnT48OELbjd9+nRNmzatQntKSooCAwNrtsgqSk1N9cq4vow5s445s445s84bc3b27Nkq9fNqIE6dOrXS8Pmp9PR0xcbGVnsMm83msmyMqdD2U5MmTdKECROcywUFBYqIiFB8fLyCgoKqXUd1OBwOpaamqm/fvrLb7R4d21cxZ9YxZ9YxZ9Z5c87Kz/RdilcDcezYsbrnnnsu2icqKqpa+w4NDZV0/kgxLCzM2Z6Xl1fhqPGn/P395e/vX6Hdbrd77YXvzbF9FXNmHXNmHXNmnTfmrKrjeTUQmzVrpmbNmrll323atFFoaKhSU1PVpUsXSeevVN2+fbtmzJjhljEBAL7LZ64yzcnJ0b59+5STk6PS0lLt27dP+/bt0w8//ODs06FDB61bt07S+VOl48eP1wsvvKB169Zp//79GjlypAIDAzV8+HBvPQ0AQC3lMxfVPPPMM1qxYoVzufyob+vWrerVq5ck6eDBgzp9+rSzz8SJE/Xjjz9qzJgxOnnypG688UalpKSoUaNGHq0dAFD7+UwgLl++XMuXL79oH2OMy7LNZtPUqVM1depU9xUGALgi+MwpUwAA3IlABABABCIAAJIIRAAAJBGIAABIIhABAJBEIAIAIIlABABAEoEIAIAkAhEAAEkEIgAAkghEAAAkEYgAAEgiEAEAkEQgAgAgiUAEAEASgQgAgCQCEQAASQQiAACSCEQAACQRiAAASCIQAQCQRCACACBJ8vN2AbWdMUaSVFBQ4PGxHQ6Hzp49q4KCAtntdo+P74uYM+uYM+uYM+u8OWfl79/l7+cXQiBeQmFhoSQpIiLCy5UAAC5HYWGhgoODL7jeZi4Vmf/lysrK9O2336pRo0ay2WweHbugoEARERE6cuSIgoKCPDq2r2LOrGPOrGPOrPPmnBljVFhYqPDwcNWpc+FPCjlCvIQ6deqoVatWXq0hKCiI/+ksYs6sY86sY86s89acXezIsBwX1QAAIAIRAABJBGKt5u/vrylTpsjf39/bpfgM5sw65sw65sw6X5gzLqoBAEAcIQIAIIlABABAEoEIAIAkAhEAAEkEYq3y/PPP66abblJgYKAaN25cpW2MMZo6darCw8NVv3599erVS1988YV7C61FTp48qcTERAUHBys4OFiJiYk6derURbcZOXKkbDaby6Nbt26eKdhLXnvtNbVp00YBAQHq2rWr/vGPf1y0//bt29W1a1cFBASobdu2WrRokYcqrT2szNm2bdsqvKZsNpu+/PJLD1bsPTt27NCgQYMUHh4um82m9evXX3Kb2vgaIxBrkeLiYg0dOlSPPPJIlbeZOXOmZs+erfnz5ys9PV2hoaHq27ev8ztYr3TDhw/Xvn37tHnzZm3evFn79u1TYmLiJbfr37+/jh8/7nxs2rTJA9V6x8qVKzV+/Hg9/fTTyszMVM+ePTVgwADl5ORU2j87O1sDBw5Uz549lZmZqaeeekrjxo3TmjVrPFy591ids3IHDx50eV394he/8FDF3nXmzBldd911mj9/fpX619rXmEGts2zZMhMcHHzJfmVlZSY0NNS8+OKLzrZz586Z4OBgs2jRIjdWWDtkZWUZSWb37t3OtrS0NCPJfPnllxfcLikpySQkJHigwtrhhhtuMA8//LBLW4cOHcyTTz5Zaf+JEyeaDh06uLQ99NBDplu3bm6rsbaxOmdbt241kszJkyc9UF3tJsmsW7fuon1q62uMI0Qflp2drdzcXMXHxzvb/P39FRcXp127dnmxMs9IS0tTcHCwbrzxRmdbt27dFBwcfMnnv23bNrVo0ULt2rXTgw8+qLy8PHeX6xXFxcXKyMhweY1IUnx8/AXnKC0trUL/fv36ac+ePXI4HG6rtbaozpyV69Kli8LCwtSnTx9t3brVnWX6tNr6GiMQfVhubq4kKSQkxKU9JCTEue5KlpubqxYtWlRob9GixUWf/4ABA/TOO+9oy5Ytevnll5Wenq7evXurqKjIneV6xYkTJ1RaWmrpNZKbm1tp/5KSEp04ccJttdYW1ZmzsLAwLV68WGvWrNHatWvVvn179enTRzt27PBEyT6ntr7G+LULN5s6daqmTZt20T7p6emKjY2t9hg//1kqY4zHf6qqJlV1zqSKz1269PO/++67nX/u1KmTYmNjFRkZqY0bN2rIkCHVrLp2s/oaqax/Ze1XMitz1r59e7Vv39653L17dx05ckSzZs3SLbfc4tY6fVVtfI0RiG42duxY3XPPPRftExUVVa19h4aGSjr/r62wsDBne15eXoV/ffmSqs7ZZ599pu+++67Cuu+//97S8w8LC1NkZKT+9a9/Wa61tmvWrJnq1q1b4cjmYq+R0NDQSvv7+fmpadOmbqu1tqjOnFWmW7duevvtt2u6vCtCbX2NEYhu1qxZMzVr1swt+27Tpo1CQ0OVmpqqLl26SDr/+cf27ds1Y8YMt4zpCVWds+7du+v06dP69NNPdcMNN0iSPvnkE50+fVo33XRTlcfLz8/XkSNHXP5RcaWoV6+eunbtqtTUVA0ePNjZnpqaqoSEhEq36d69uzZs2ODSlpKSotjYWNntdrfWWxtUZ84qk5mZeUW+pmpCrX2NefOKHrg6fPiwyczMNNOmTTMNGzY0mZmZJjMz0xQWFjr7tG/f3qxdu9a5/OKLL5rg4GCzdu1a8/nnn5t7773XhIWFmYKCAm88BY/r37+/iYmJMWlpaSYtLc1ER0ebO+64w6XPT+essLDQPPHEE2bXrl0mOzvbbN261XTv3t20bNnyip2z9957z9jtdrN06VKTlZVlxo8fbxo0aGAOHTpkjDHmySefNImJic7+33zzjQkMDDTJyckmKyvLLF261NjtdrN69WpvPQWPszpnc+bMMevWrTNfffWV2b9/v3nyySeNJLNmzRpvPQWPKiwsdL5fSTKzZ882mZmZ5vDhw8YY33mNEYi1SFJSkpFU4bF161ZnH0lm2bJlzuWysjIzZcoUExoaavz9/c0tt9xiPv/8c88X7yX5+fnmvvvuM40aNTKNGjUy9913X4VL3386Z2fPnjXx8fGmefPmxm63m9atW5ukpCSTk5Pj+eI9aMGCBSYyMtLUq1fPXH/99Wb79u3OdUlJSSYuLs6l/7Zt20yXLl1MvXr1TFRUlFm4cKGHK/Y+K3M2Y8YMc/XVV5uAgABz1VVXmZtvvtls3LjRC1V7R/ltJz9/JCUlGWN85zXGzz8BACBuuwAAQBKBCACAJAIRAABJBCIAAJIIRAAAJBGIAABIIhABAJBEIAL/NQ4dOiSbzaZ9+/Z5uxSgViIQAXjEyJEj9Zvf/MbbZQAXRCACtVxxcbG3S7gspaWlKisr83YZwCURiEAt06tXL40dO1YTJkxQs2bN1LdvX0lSVlaWBg4cqIYNGyokJESJiYkuP6a6efNm3XzzzWrcuLGaNm2qO+64Q19//bWlsaOiovTcc89p+PDhatiwocLDw/Xqq6+69Jk9e7aio6PVoEEDRUREaMyYMfrhhx+c65cvX67GjRvrgw8+0LXXXit/f3/97ne/04oVK/TXv/5VNptNNptN27Ztq/4kAW5AIAK10IoVK+Tn56ePP/5Yr7/+uo4fP664uDh17txZe/bs0ebNm/Xdd99p2LBhzm3OnDmjCRMmKD09XR999JHq1KmjwYMHWz46e+mllxQTE6O9e/dq0qRJSk5OVmpqqnN9nTp1NG/ePO3fv18rVqzQli1bNHHiRJd9nD17VtOnT9eSJUv0xRdfaN68eRo2bJj69++v48eP6/jx45Z+ogvwCG9/uzgAV3FxcaZz584ubZMnTzbx8fEubUeOHDGSzMGDByvdT15enpHk/PWT7OxsI8lkZmZecOzIyEjTv39/l7a7777bDBgw4ILbvP/++6Zp06bO5WXLlhlJZt++fS79kpKSTEJCwgX3A3gbR4hALRQbG+uynJGRoa1bt6phw4bOR4cOHSTJeVr066+/1vDhw9W2bVsFBQWpTZs2kqScnBxLY3fv3r3C8oEDB5zLW7duVd++fdWyZUs1atRII0aMUH5+vs6cOePsU69ePcXExFgaF/A2P28XAKCiBg0auCyXlZVp0KBBmjFjRoW+5b/KPmjQIEVEROiNN95QeHi4ysrK1KlTpxq5KMdms0mSDh8+rIEDB+rhhx/Wc889pyZNmmjnzp26//775XA4nP3r16/v3AbwFQQi4AOuv/56rVmzRlFRUfLzq/i/bX5+vg4cOKDXX39dPXv2lCTt3LmzWmPt3r27wnL50eiePXtUUlKil19+WXXqnD/B9P7771dpv/Xq1VNpaWm1agI8gVOmgA949NFH9e9//1v33nuvPv30U33zzTdKSUnRqFGjVFpaqquuukpNmzbV4sWL9X//93/asmWLJkyYUK2xPv74Y82cOVNfffWVFixYoFWrVunxxx+XJF199dUqKSnRq6++qm+++UZvvfWWFi1aVKX9RkVF6bPPPtPBgwd14sQJlyNKoDYgEAEfEB4ero8//lilpaXq16+fOnXqpMcff1zBwcGqU6eO6tSpo/fee08ZGRnq1KmTkpOT9dJLL1VrrCeeeEIZGRnq0qWLnnvuOb388svq16+fJKlz586aPXu2ZsyYoU6dOumdd97R9OnTq7TfBx98UO3bt1dsbKyaN2+ujz/+uFr1Ae5iM8YYbxcBoHaIiorS+PHjNX78eG+XAngcR4gAAIhABABAEqdMAQCQxBEiAACSCEQAACQRiAAASCIQAQCQRCACACCJQAQAQBKBCACAJAIRAABJBCIAAJKk/wfz1GQcuSC5AAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHFCAYAAABsA4m6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJrklEQVR4nO3de1yUZf7/8ddwBhE8oBwUQU3xBGqaq3nA1VXTci0rO33VNjctcy1tf27Wuum25apl1laaHbTDbgdTa1ut5JGnLCuPmYJoiiIK4gkhURjg/v1xxyQCyiDDzcD7+XjMw3vuuWfuz1wOvLnvua7rthmGYSAiIlLHeVhdgIiISE2gQBQREUGBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiAAKRKnldu7cyY033kiLFi3w9/enUaNG9OrVi3fffbfCr/Gf//yHBQsWlFp/6NAhbDYbzz77bBVW7BqrV69m5syZluw7Pz+fBx54gPDwcDw9PenSpUu17v/ee+8lOjq6xLpnnnmGjz/+uFrrkJpPgSi1WlZWFpGRkTzzzDOsXr2at99+m+joaEaPHs0//vGPCr1GeYHoTlavXs2sWbMs2ffChQt59dVXeeKJJ9i0aRPvvPNOte5/xowZrFy5ssQ6BaKUxcvqAkRcqX///vTv37/EuptuuomUlBQWL17MX//6V2sKK8f58+fx8/PDZrNZXUqV2b17N/7+/kyaNMmS/bdu3dqS/Yr70RGi1EkhISF4eV3578H+/fuzatUqDh8+jM1mc9wuNX/+fFq2bElgYCC9evXi22+/veJrL126FJvNxpo1a7jvvvto0qQJAQEB5OXlUVRUxNy5c2nXrh2+vr40bdqUMWPGkJaWVup13nzzTTp37oyfnx+NGjXilltuISkpyfH4vffey8svvwxQ4j0cOnQIgGXLlvGb3/yG4OBgAgICaNWqFffdd98V679w4QLTp0+nZcuW+Pj40KxZMx566CGysrIc29hsNl5//XXOnz/v2O/SpUvLfc3o6GjuvffeUusv/cNm/fr12Gw23nvvPZ544gkiIiIICgrid7/7HcnJySWee+kpU5vNxrlz53jrrbccNfXv359Dhw7h5eXF7NmzS+1/48aN2Gw2li1bdsV2ETdmiNQBhYWFht1uNzIzM42XX37Z8PLyMhYtWnTF5+3Zs8fo3bu3ERYWZmzevNlxMwzDSElJMQAjOjrauOGGG4yPP/7Y+Pjjj43Y2FijYcOGRlZW1mVfe8mSJQZgNGvWzBg/frzx2WefGR999JFRUFBgjB8/3gCMSZMmGZ9//rmxaNEio0mTJkZkZKRx4sQJx2s888wzBmDcddddxqpVq4y3337baNWqlREcHGzs27fPMAzD+Omnn4zbbrvNAEq8hwsXLhjffPONYbPZjDvvvNNYvXq1sXbtWmPJkiXG6NGjL1t7UVGRMWTIEMPLy8uYMWOGsWbNGuPZZ5816tWrZ3Tt2tW4cOGCYRiGsXnzZmPYsGGGv7+/Y7+ZmZnlvm5UVJQxduzYUuvj4+ON+Ph4x/1169Y52v6ee+4xVq1aZbz33ntGixYtjDZt2hgFBQWObceOHWtERUU57m/evNnw9/c3hg0b5qhpz549hmEYxi233GK0aNGixPMNwzBuv/12IyIiwrDb7ZdtF3FvCkSpEyZMmGAABmD4+PgYr7zySoWfe+ONN5b4hVqsOBBjY2NL/AL9/vvvDcB47733Lvu6xYE4ZsyYEuuTkpIMwJg4cWKJ9d99950BGI8//rhhGIZx5swZxy/2i6Wmphq+vr7G3Xff7Vj30EMPGWX9/fvss88awBXD+1Kff/65ARhz584tsf6DDz4wAGPx4sWOdWPHjjXq1atXodd1NhAvfe8ffvihI/gv3v+l/3/16tUrcz/Fr7ty5UrHuqNHjxpeXl7GrFmzKvQexH3plKnUCY8//jhbtmxh1apV3HfffUyaNKlE79CioiIKCgoct8LCwgq/9o033oinp6fjflxcHACHDx+u0PNvvfXWEvfXrVsHUOrUYY8ePWjfvj1ffvklAJs3b+b8+fOltouMjGTAgAGO7S7nuuuuA2DUqFF8+OGHHD16tEI1r127tswab7/9durVq1ehfVeF3//+9yXuO9v2l+rfvz+dO3d2nGIGWLRoETabjfHjx1e+UHELCkSpE1q0aEH37t0ZNmwYCxcuZPz48UyfPp0TJ04A8Pe//x1vb2/HzZmOGI0bNy5x39fXFzA7yFREeHh4ifunTp0qcz1ARESE4/GKbnc5/fr14+OPP6agoIAxY8bQvHlzOnXqxHvvvXfZ5506dQovLy+aNGlSYr3NZiMsLKxC+64KV9v2ZZk8eTJffvklycnJ2O12XnvtNW677TbCwsKuqlap+RSIUif16NGDgoICDh48CMD48ePZsmWL4/bpp59WWy2XdtIp/iWfnp5eattjx44REhLi1HZXMmLECL788kvOnj3L+vXrad68OXfffTebN28u9zmNGzemoKDA8QdFMcMwyMjIqPC+L+Xn50deXl6p9SdPnqzU61XG3XffTePGjXn55ZdZtmwZGRkZPPTQQ9W2f7GOAlHqpHXr1uHh4UGrVq0A84iqe/fujltsbKxjW19f36s64nDWgAEDAEpNHrBlyxaSkpIYOHAgAL169cLf37/Udmlpaaxdu9axHVTsyMnX15f4+HjmzJkDwI4dO8rdtvi1L9338uXLOXfuXIl9OyM6Oppdu3aVWLdv375SPUev1uX+T/38/Bg/fjxvvfUW8+fPp0uXLvTu3btK9y81k8YhSq02fvx4goKC6NGjB6GhoZw8eZJly5bxwQcf8P/+3/8rdcqvLLGxsaxYsYKFCxfSrVs3PDw86N69u8tqjomJYfz48fzrX//Cw8ODoUOHcujQIWbMmEFkZCRTpkwBoEGDBsyYMYPHH3+cMWPGcNddd3Hq1ClmzZqFn58fTz75ZIn3ADBnzhyGDh2Kp6cncXFx/OMf/yAtLY2BAwfSvHlzsrKyeOGFF/D29iY+Pr7cGgcNGsSQIUP4y1/+QnZ2Nr1792bXrl08+eSTdO3aldGjR1fqvY8ePZr/+7//Y+LEidx6660cPnyYuXPnVuj/yRmxsbGsX7+eTz/9lPDwcOrXr09MTIzj8YkTJzJ37ly2bdvG66+/XqX7lhrM6l49Iq705ptvGn379jVCQkIMLy8vo0GDBkZ8fLzxzjvvVPg1Tp8+bdx2221GgwYNDJvN5uitWdzLdN68eaWeAxhPPvnkZV+3uJfpli1bSj1WWFhozJkzx2jbtq3h7e1thISEGP/3f/9nHDlypNS2r7/+uhEXF2f4+PgYwcHBxogRIxzDCIrl5eUZf/zjH40mTZo43kNKSorxv//9zxg6dKjRrFkzw8fHx2jatKkxbNgw46uvvrpiu5w/f974y1/+YkRFRRne3t5GeHi48eCDDxpnzpwpsZ0zvUyLioqMuXPnGq1atTL8/PyM7t27G2vXri23l+myZctKPL/4/2TJkiUl9n9pL9OdO3cavXv3NgICAgygxGsX69+/v9GoUSMjNze3QrWL+7MZhmFYF8ciIjVPZmYmUVFR/OlPf2Lu3LlWlyPVRKdMRUR+kZaWxsGDB5k3bx4eHh48/PDDVpck1UidakREfvH666/Tv39/9uzZw7///W+aNWtmdUlSjXTKVEREBB0hioiIAApEERERQIEoIiICqJfpFRUVFXHs2DHq169fqy7aKiJSVxiGQU5ODhEREXh4lH8cqEC8gmPHjhEZGWl1GSIicpWOHDlC8+bNy31cgXgF9evXB8yGDAoKqtZ92+121qxZw+DBg/H29q7WfbsrtZnz1GbOU5s5z8o2y87OJjIy0vH7vDwKxCsoPk0aFBRkSSAGBAQQFBSkH7oKUps5T23mPLWZ82pCm13pay91qhEREUGBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiABuFogbN25k+PDhREREYLPZ+Pjjj6/4nA0bNtCtWzf8/Pxo1aoVixYtcn2hIiLidtwqEM+dO0fnzp156aWXKrR9SkoKw4YNo2/fvuzYsYPHH3+cyZMns3z5chdXKiIi7sbL6gKcMXToUIYOHVrh7RctWkSLFi1YsGABAO3bt2fr1q08++yz3HrrrS6qUkRE3JFbBaKzNm/ezODBg0usGzJkCG+88QZ2ux1vb+9Sz8nLyyMvL89xPzs7GwC73Y7dbndtwZco3l9179edqc2cpzZzntrMeVa2WUX3WasDMSMjg9DQ0BLrQkNDKSgo4OTJk4SHh5d6zuzZs5k1a1ap9WvWrCEgIMBltV5OQkKCJft1Z2oz56nNnKc2c54VbZabm1uh7Wp1IALYbLYS9w3DKHN9senTpzN16lTH/ezsbCIjIxk8eDBBQUGuK7QMdrudhIQEBg0aVObRrJSmNnOe2sx5ajPnWdlmxWf6rqRWB2JYWBgZGRkl1mVmZuLl5UXjxo3LfI6vry++vr6l1nt7e1v2wbdy3+5KbeY8tZnz1GbOs6LNKro/t+pl6qxevXqVOjxfs2YN3bt314dYRERKcKtA/Pnnn9m5cyc7d+4EzGEVO3fuJDU1FTBPd44ZM8ax/QMPPMDhw4eZOnUqSUlJvPnmm7zxxhv8+c9/tqJ8ERGpwdzqlOnWrVv57W9/67hf/F3f2LFjWbp0Kenp6Y5wBGjZsiWrV69mypQpvPzyy0RERPDiiy9qyIWIiJTiVoHYv39/R6eYsixdurTUuvj4eLZv3+7CqkREpDZwq1OmIq50yy230LBhQ2677TarSxERCygQRX4xefJk3n77bavLEBGLKBBFfvHb3/6W+vXrW12GiFhEgSgiIoICUUREBFAgSi03adIk+vTpU+Zj0dHRPP3009VckYjUVG417ELEGYmJiSxcuJCNGzeW+Xj79u0dkzyIiCgQpdaaN28e1113Hb179y7z8UaNGnHkyBHH/SFDhrB9+3bOnTtH8+bNWblyJdddd111lSsiFlMgSq1UUFDA8uXLmTFjhmPdhAkT6NGjB+PGjQMgJyeHevXqOR7/4osvqr1OEak59B2i1B6Fhdg2bKDZxo0cfP99cnJyiI2NBaCoqIhly5YRGBjo2HzXrl20b9+enJwcrrvuOrp06UJsbCyvvfaaVe9ARCykI0SpHVasgIcfxistje7Ad7+sDty2DW64gS+++IIzZ87g4+MDwPfff8/hw4e5+eabCQgIYMOGDQQEBJCbm0unTp0YOXJkuZcIE5HaSYEo7m/FCrjtNrhontsowAa899e/Us/Xl0fffJNhw4bxySefEB0dzYQJExgwYAD9+vUDICAgAIALFy5QWFh42TlzRaR20ilTcW+FhfDwwyXCECAMeBp4Fxj6l78w9ZFHmD17Nhs2bKBPnz7ExMSwbNkyx/ZZWVl07tyZ5s2bM23aNEJCQqr1bYiI9XSEKO7tq68gLa3Mh6b/cqOoCNq2hbg4UlJSyty2QYMG/PDDDxw/fpyRI0dy2223ERoa6rKyRaTm0RGiuLf09CrdLjQ0lLi4uHLHLopI7aVAFPcWHn7V2x0/fpzs7GwAsrOz2bhxIzExMVVRnYi4EZ0yFffWty80bw5Hj5b6HhEAm818vG/fcl8iLS2NcePGYRgGhmEwadIk4uLiXFi0iNRECkRxb56e8MILZi9Tm63sUFywwNyuHN26ddMUbiKiU6ZSC4wcCR99BM2alVwfEgJPPgkjRlhTl4i4FR0hSu0wciSMGEHBunXs/OwzugwejJdhQEEBpKTANddYXaGI1HA6QpTaw9MTIz6eo/36YQwYAJ06mev374cLF6ytTURqPAWi1F7NmkGDBubg/eRkq6sRkRpOgSi1l80GHTuay0eOQFaWpeWISM2mQJTarWHDXzvb7NlTdi9UEREUiFIXtGtnDrs4cwaOHbO6GhGpoRSIUvv5+//ayzQpyex5KiJyCQWi1A2tWpnBeOECHDhgdTUiUgMpEKVu8PSEDh3M5QMHIDfX2npEpMZRIErdERYGjRubl4NKSrK6GhGpYRSIUndcPAwjPR1OnbK2HhGpURSIUrcEBUGLFuayhmGIyEUUiFL3xMSAlxdkZ5sD9kVEUCBKXeTrC23bmst794Ldbm09IlIjKBClboqOhsBAyM83J/8WkTpPgSh1k4fHr8MwUlLg55+trUdELKdAlLqraVPzZhiQmGh1NSJiMQWi1G0dOpjDMTIzzZuI1FkKRKnbAgOhZUtzOTHRHLQvInWSAlGkTRvw8TG/Rzx0yOpqRMQiCkQRb29zbCKYPU7z862tR0QsoUAUAXP2mqAgc0xicrLV1YiIBRSIIlByntPDh81ZbESkTlEgihRr3BjCw81lzXMqUucoEEUu1r69OWj/1CnIyLC6GhGpRgpEkYsFBEDr1uZyUhIUFlpbj4hUGwWiyKVatwY/P8jNNad1E5E6QYEocikvL2jXzlzevx8uXLC2HhGpFgpEkbI0awYNG5qnTPfutboaEakGCkSRslw8DCMtDc6csbYeEXE5BaJIeRo0gObNzWUNwxCp9RSIIpfTrh14ekJWFhw9anU1IuJCCkSRy/HzMyf/BnMYRkGBtfWIiMsoEEWupGVLc3xiXh789JPV1YiIiygQRa7E09O8kDDAwYPm+EQRqXUUiCIVERoKISHmBYSTkqyuRkRcQIEoUhE2269HienpcPKktfWISJVTIIpUVFAQREWZyxqGIVLrKBBFnBETA97ekJMDqalWVyMiVUiBKOIMHx9o29ZcTk4Gu93aekSkyigQRZwVFQWBgZCfD/v2WV2NiFQRBaKIszw8fp3n9NAh+PlnS8sRkaqhQBSpjCZNzKEYhmF2sBERt6dAFKms9u3N4RgnTsDx41ZXIyJXSYEoUlmBgea0bgCJieagfRFxWwpEkavRpo3Z8/TcOfP7RBFxWwpEkavh7W1eIgrMHqd5edbWIyKV5naB+Morr9CyZUv8/Pzo1q0bX331Vbnbrl+/HpvNVuq2d+/eaqxYar3ISAgONi8NlZxsdTUiUkluFYgffPABjzzyCE888QQ7duygb9++DB06lNQrzBiSnJxMenq649am+Pp2IlXBZvt1GEZqKpw9a209IlIpbhWI8+fPZ9y4cfzxj3+kffv2LFiwgMjISBYuXHjZ5zVt2pSwsDDHzdPTs5oqljqjUSOIiDCXNc+piFvysrqAisrPz2fbtm089thjJdYPHjyYb7755rLP7dq1KxcuXKBDhw789a9/5be//W252+bl5ZF30fdA2dnZANjtduzVPE1X8f6qe7/uzNI2u+YavDIysJ0+TUFaGkZYWPXXUAn6nDlPbeY8K9usovt0m0A8efIkhYWFhIaGllgfGhpKRkZGmc8JDw9n8eLFdOvWjby8PN555x0GDhzI+vXr6devX5nPmT17NrNmzSq1fs2aNQQEBFz9G6mEhIQES/brzqxqsxibjXYeHuTv3MmXRUW400AMfc6cpzZznhVtllvBi3rbDMM9zu0cO3aMZs2a8c0339CrVy/H+qeffpp33nmnwh1lhg8fjs1m47///W+Zj5d1hBgZGcnJkycJCgq6ujfhJLvdTkJCAoMGDcLb27ta9+2uLG+zwkK8Nm3CduEChddcQ1Hr1tVfg5MsbzM3pDZznpVtlp2dTUhICGfPnr3s73G3OUIMCQnB09Oz1NFgZmZmqaPGy+nZsyfvvvtuuY/7+vri6+tbar23t7dlH3wr9+2uLGszb29zBpsdO/BMScEzKgr8/au/jkrQ58x5ajPnWdFmFd2f23Sq8fHxoVu3bqUOtxMSErj++usr/Do7duwgPDy8qssT+VVEBDRsCIWFoCE+Im7DbY4QAaZOncro0aPp3r07vXr1YvHixaSmpvLAAw8AMH36dI4ePcrbb78NwIIFC4iOjqZjx47k5+fz7rvvsnz5cpYvX27l25DarngYxqZNcPQoREebASkiNZpbBeIdd9zBqVOn+Pvf/056ejqdOnVi9erVREVFAZCenl5iTGJ+fj5//vOfOXr0KP7+/nTs2JFVq1YxbNgwq96C1BUNGpgD9o8cgd27oU8fMyhFpMZyq0AEmDhxIhMnTizzsaVLl5a4P23aNKZNm1YNVYmUISYG0tPNgfppaWZAikiN5TbfIYq4HT8/c/JvML9LLCiwth4RuSwFoogrRUdDQIA56fdPP1ldjYhchgJRxJU8PaFDB3P54EHzMlEiUiMpEEVcLTQUQkLMCwgnJVldjYiUQ4Eo4mrFwzBsNsjIgJMnra5IRMqgQBSpDvXrwy/Dg9izxzxaFJEaRYEoUl3atjWndsvJMa+bKCI1igJRpLr4+JhjEwGSkyE/39p6RKQEBaJIdWrRwjx9arfDvn1WVyMiF1EgilQnDw+zgw3A4cPm6VMRqREUiCLVLSTEHIphGJCYaP4rIpZTIIpYoUMH82jxxAnIzLS6GhFBgShijXr1oGVLc1nDMERqBAWiiFXatAFfX8jNhZQUq6sRqfMUiCJW8fKCdu3M5f37zQnARcQyCkQRKzVvDsHB5qWh9u61uhqROk2BKGIlmw06dTKXjxwxLyYsIpZQIIpYrWFDiIgwl/fs0TAMEYsoEEVqgvbtzWsnnj4N6elWVyNSJykQRWoCf39o3dpcTkyEwkJr6xGpg5wOxFatWnHq1KlS67OysmjVqlWVFCVSJ7VubQbjhQtw4IDV1YjUOU4H4qFDhygs46/XvLw8jh49WiVFidRJnp7mqVOAn36C8+etrUekjvGq6Ib//e9/HctffPEFwcHBjvuFhYV8+eWXREdHV2lxInVOeDg0amR+l5iUBNdea3VFInVGhQPx5ptvdiyPHTu2xGPe3t5ER0fz3HPPVVlhInWSzWZeDeOrr+DYMYiONgNSRFyuwoFY9Mtciy1btmTr1q00btzYZUWJ1GnBweZ1E1NTzWEYffqYQSkiLuXUd4h2u53o6OgyO9WISBWKiTGndjt71hywLyIu51Qgent7s3v3bmz6a1XEtXx9oW1bczk5Gex2a+sRqQOc7mU6ZswY3njjDVfUIiIXi442LxOVl2f2OhURl6rwd4jF8vPzef3110lISKB79+7Uq1evxOPz58+vsuJE6jQPD/NCwlu2wMGDEBkJgYFWVyVSazkdiLt37+baX7qC79u3r8RjOpUqUsWaNoUmTeDECXMYxnXXWV2RSK3ldCCuW7fOFXWISFlsNvMoceNGOH7cDMYmTayuSqRW0lymIjVd/frm94lgDsP4ZQiUiFQtp48QAbZs2cKyZctITU0lPz+/xGMrVqyoksJE5CJt2kBaGvz8Mxw+DC1bWl2RSK3j9BHi+++/T+/evUlMTGTlypXY7XYSExNZu3ZtiencRKQK+fhAu3bm8r59cMkfoiJy9ZwOxGeeeYbnn3+e//3vf/j4+PDCCy+QlJTEqFGjaNGihStqFBEwZ6+pX98ck5icbHU1IrWO04F44MABbrzxRgB8fX05d+4cNpuNKVOmsHjx4iovUER+UTzPKZinTbOzra1HpJZxOhAbNWpETk4OAM2aNWP37t2AeT3E3Nzcqq1OREoKCYGwMHM5MREMw9p6RGoRpwOxb9++JCQkADBq1Cgefvhh7r//fu666y4GDhxY5QWKyCU6dDAH7Z88aQ7FEJEq4XQv05deeokLFy4AMH36dLy9vdm0aRMjR45kxowZVV6giFwiIABatTKnc0tMNMclenpaXZWI23M6EBtddG02Dw8Ppk2bxrRp06q0KBG5gmuuMa+CkZsLKSnmfRG5KpUah1hYWMjKlStJSkrCZrPRvn17RowYgZdXpV5ORJzl5QXt28POnbB/PzRvDn5+Vlcl4tYqNZfpiBEjyMjIICYmBjDnNG3SpAn//e9/iY2NrfIiRaQMzZrBoUOQlWUOw+jc2eqKRNya051q/vjHP9KxY0fS0tLYvn0727dv58iRI8TFxTF+/HhX1CgiZbl4GMaRI2YwikilOX2E+MMPP7B161YaNmzoWNewYUOefvpprtNM/CLVq2FD80jx6FFzntPrrzeDUkSc5vQRYkxMDMfL6OqdmZnJNfpiX6T6tWtn9jI9cwaOHbO6GhG3Vamp2yZPnsxHH31EWloaaWlpfPTRRzzyyCPMmTOH7Oxsx01EqoG//6+9TJOSoKDA2npE3JTTp0xvuukmwByUX3xBYOOX2TKGDx/uuG+z2SgsLKyqOkXkclq1gtRUOH8eDhyAXzq8iUjF6QLBIrWBp6c5g822bWYgRkaaA/hFpMKcDsT4+HhX1CEiVyssDBo3hlOnzFOn3bpZXZGIW3H6O0QRqaEuHoaRnm4Go4hUmAJRpDYJCoKoKHN5zx5dDUPECQpEkdqmbVvw9javl3jkiNXViLgNBaJIbePrC23amMt794Ldbm09Im7C6UCcOXMmhw8fdkUtIlJVoqMhMBDy883Jv0XkipwOxE8//ZTWrVszcOBA/vOf/ziujSgiNYiHhzkMA8zLQ/38s7X1iLgBpwNx27ZtbN++nbi4OKZMmUJ4eDgPPvggW7ZscUV9IlJZTZuaN8MwLyQsIpdVqe8Q4+LieP755zl69ChvvvkmR48epXfv3sTGxvLCCy9w9uzZqq5TRCqjQwdzOEZmpnkTcTM5OTlcd911dOnShdjYWF577TWX7euqOtUUFRWRn59PXl4ehmHQqFEjFi5cSGRkJB988EFV1SgilRUYCC1bmsuJiVBUZG09Ik4KCAhgw4YN7Ny5k++++47Zs2dzykVjbCsViNu2bWPSpEmEh4czZcoUunbtSlJSEhs2bGDv3r08+eSTTJ48uaprFZHKaNMGfHzM7xEPHbK6GhGneHp6EvDLNIQXLlygsLDQMX92VXM6EOPi4ujZsycpKSm88cYbHDlyhH/+858lLv00ZswYTpw4UaWFikgleXv/Otn3/v1mz1MRN5KVlUXnzp1p3rw506ZNIyQkxCX7cToQb7/9dg4dOsSqVau4+eab8fT0LLVNkyZNKNKpGZGao0ULcxYbux2Sk62uRsQpDRo04IcffiAlJYX//Oc/ZV6Ttyo4FYh2u50lS5ao04yIu7l4ntPDh81ZbEQsNGnSJPr06VPmY9HR0Tz99NOl1oeGhhIXF8fGjRtdUpNTgejt7U1eXp7jOogi4kYaN4bwcHNZ85yKhRITE1m4cCFz5swp8/H27duzc+dOAI4fP+644Hx2djYbN24kxkXX+3T6lOmf/vQn5syZQ4Guyi3iftq3NwftnzoFGRlWVyN11Lx587juuuvo3bt3mY83atTIcVo0LS2Nfv360blzZ/r06cOkSZOIi4tzSV1OXw/xu+++48svv2TNmjXExsZSr169Eo+vWLGiyooTkSoWEACtW5udaxITzYH7ItWooKCA5cuXM2PGDMe6CRMm0KNHD8aNGweYYw+Ls6Vbt26Oo0VXczoQGzRowK233uqKWkSkOrRubV4F4/x5c1q34stFibhKYSG2DRtotnEjB0+fJicnh9jYWMAcz75s2TIGDBjg2HzXrl2MHDmSnJwcBgwYgN1up7CwkMmTJ3P//fe7rEynA3HJkiWuqKPCXnnlFebNm0d6ejodO3ZkwYIF9O3bt9ztN2zYwNSpU9mzZw8RERFMmzaNBx54oBorFqlhvLzMU6c7dphHiqGhVlcktdmKFfDww3ilpdEd+O6X1YHbtsENN/DFF19w5swZfHx8APj+++85fPgwN998s2NQfkBAALm5uXTq1ImRI0fSuHFjl5TqdCBa6YMPPuCRRx7hlVdeoXfv3rz66qsMHTqUxMREWrRoUWr7lJQUhg0bxv3338+7777L119/zcSJE2nSpImOcqVui4gwB+mfOYOnroYhrrJiBdx2W4kOXFGADXjvr3+lnq8vj775JsOGDeOTTz4hOjqaCRMmMGDAAPr16wdQbYPyoZKB+NFHH/Hhhx+SmppK/iWDfLdv314lhZVl/vz5jBs3jj/+8Y8ALFiwgC+++IKFCxcye/bsUtsvWrSIFi1asGDBAsDsubR161aeffZZBaLUbcXDMDZtwuPYMUIACgrM9XJlBQV4/vKv2qwchYXw8MOlejOHAU8D/wSW/+Uv/GPhQnr07MmIESNYtmwZw4cP55VXXnFsn5WVRXx8PPv372fevHkuG5QPlQjEF198kSeeeIKxY8fyySef8Ic//IEDBw6wZcsWHnroIVfUCEB+fj7btm3jscceK7F+8ODBfPPNN2U+Z/PmzQwePLjEuiFDhvDGG29gt9vx9vYu9Zy8vDzy8vIc94u7+9rtduzVfKHV4v1V937dmdrMCfXq4RkSgsfJk/T29IQvv7S6IrfhDdykNru8H3+EtLQyH5r+y42iIgpatcJo3559+/aV2Kb4Z7hevXps3bqV48ePM2rUKEaMGEGok6f5K/r7wOlAfOWVV1i8eDF33XUXb731FtOmTaNVq1b87W9/4/Tp086+XIWdPHmSwsLCUg0RGhpKRjndxzMyMsrcvqCggJMnTxJePCbrIrNnz2bWrFml1q9Zs8Zx6F7dEhISLNmvO1ObVcz1Hh400RGOuEIF82DnZ59x9Ny5Cm0bHBzMiy++WO5wjfLk5uZWaDunAzE1NZXrr78eAH9/f3JycgAYPXo0PXv25KWXXnL2JZ1y6aQAhmFcdqKAsrYva32x6dOnM3XqVMf97OxsIiMjGTx4MEFBQZUtu1LsdjsJCQkMGjSozKNZKU1tVnG2Eyfw2r4dA1hXWEjPAQPw9nKrbgWWsRcUsHbtWgaozcpl8/bG69lnr7hdl6FD6RwfX+Zjx48fx9/fn6CgILKzs5k+fTr/+Mc/nB6HmF3BmZmc/p8MCwvj1KlTREVFERUVxbfffkvnzp1JSUlx6ZedISEheHp6ljoazMzMLPfwOSwsrMztvby8yu2l5Ovri6+vb6n13t7elv2CtXLf7kptdgVFRY45TYuio8k5cABvPz+1WUXZ7RSC2uxyfvc7aN4cjh4te1Ykmw2aN8frt7+FMubEBjMQx40bh2EYGIbBn/70J7p16+Z0KRX9P3J6ppoBAwbw6aefAjBu3DimTJnCoEGDuOOOO7jlllucfbkK8/HxoVu3bqVOhSUkJDiOWC/Vq1evUtuvWbOG7t2760MsdduhQ3DuHPj4UNS6tdXVSG3k6QkvvGAuX3pGrvj+ggXlhiH8Oij/hx9+YNeuXTz44IOuqfUXTh8hLl682HEliwceeIBGjRqxadMmhg8f7vLxfVOnTmX06NF0796dXr16sXjxYlJTUx37nT59OkePHuXtt9921PfSSy8xdepU7r//fjZv3swbb7zBe++959I6RWq0vDwo7sDQrp05LlHEFUaOhI8+MnubXtzBpnlzMwxHjrSstLI4/ZPg4eGBh8evB5ajRo1i1KhRVVpUee644w5OnTrF3//+d9LT0+nUqROrV68m6peZNtLT00lNTXVs37JlS1avXs2UKVN4+eWXiYiI4MUXX9SQC6nbkpPN4QLBwRAZaS6LuMrIkTBiBAXr1rHzs8/oMnToZU+TWqlSfxpmZWXx/fffk5mZWeq6h2PGjKmSwsozceJEJk6cWOZjS5cuLbUuPj7epWMjRdzK2bNQ/Edjx44aQyfVw9MTIz6eo+fOmR1oamAYQiUC8dNPP+Wee+7h3Llz1K9fv0RvTZvN5vJAFJFKMgzzsk9gzlTTqJG19YjUME53qnn00Ue57777yMnJISsrizNnzjhurhyHKCJXKT3dHBvm4WHOZSoiJTgdiEePHmXy5MmWDVIXkUooLISkJHP5mmvA39/aekRqIKcDcciQIWzdutUVtYiIqxw8aF7uyc/PvPyTiJTi9HeIN954I//v//0/EhMTiY2NLTWe7/e//32VFSciVeD8efjpJ3O5ffsa26FBxGpOB2LxxRn//ve/l3rMZrNRWFh49VWJSNXZu9c8ZdqwodmZRkTK5HQgXjrMQkRqsDNnzKmzQMMsRK7A6e8QRcRNGAbs3m0uR0ZCgwaWliNS01XoCPHFF19k/Pjx+Pn58eKLL15228mTJ1dJYSJyldLSzIH4Xl7mFG0iclkVCsTnn3+ee+65Bz8/P55//vlyt7PZbApEkZqgoMD87hCgTRso4wouIlJShQIxJSWlzGURqaH27zcn8Q4IgOhoq6sRcQv6DlGktjl3Dor/cO3YUcMsRCrI6V6mF19N/mI2mw0/Pz+uueYaRowYQSPNkyhijaQk8wLAISHQtKnV1Yi4DacDcceOHWzfvp3CwkJiYmIwDIP9+/fj6elJu3bteOWVV3j00UfZtGkTHTp0cEXNIlKekychI8McXqFhFiJOcfqU6YgRI/jd737HsWPH2LZtG9u3b+fo0aMMGjSIu+66i6NHj9KvXz+mTJniinpFpDxFRb9ezSIqCurXt7YeETfjdCDOmzePp556iqCgIMe6oKAgZs6cydy5cwkICOBvf/sb27Ztq9JCReQKUlMhJwe8vaFtW6urEXE7Tgfi2bNnyczMLLX+xIkTZGdnA9CgQQPy8/OvvjoRqZj8fEhONpdjYsDHx9p6RNxQpU6Z3nfffaxcuZK0tDSOHj3KypUrGTduHDfffDMA33//PW31F6pI9dm3D+x28zRpixZWVyPilpzuVPPqq68yZcoU7rzzTgoKCswX8fJi7NixjkH77dq14/XXX6/aSkWkbDk5cPiwudyxo3kBYBFxmtOBGBgYyGuvvcbzzz/PwYMHMQyD1q1bExgY6NimS5cuVVmjiJTHMMyONIYBoaHmUAsRqRSnA7FYYGAgcXFxVVmLiDgrM9McauHhARrmJHJVKhWIW7ZsYdmyZaSmppbqPLNixYoqKUxErqCw8NdhFi1bQr161tYj4uac/rLh/fffp3fv3iQmJrJy5UrsdjuJiYmsXbuW4OBgV9QoImU5dAhyc82Ju9u0sboaEbfndCA+88wzPP/88/zvf//Dx8eHF154gaSkJEaNGkUL9W4TqR55eeYE3mBe2smr0t9+iMgvnA7EAwcOcOONNwLg6+vLuXPnsNlsTJkyhcWLF1d5gSJShr17zUs8BQdD8+ZWVyNSKzgdiI0aNSInJweAZs2asfuXK3JnZWWRm5tbtdWJSGlnz8KRI+Zyp06ar1Skijh9nqVv374kJCQQGxvLqFGjePjhh1m7di0JCQkMHDjQFTWKSLHiYRYAzZpBw4bW1iNSizgdiC+99BIXLlwAYPr06Xh7e7Np0yZGjhzJjBkzqrxAEblIejqcPm1e47BdO6urEalVnA7Ei69z6OHhwbRp05g2bVqVFiUiZSgshMREc7l1a/D3t7YekVqm0l3TMjMzyczMpKioqMR6DdYXcZEDB+DCBTMIW7e2uhqRWsfpQNy2bRtjx44lKSkJwzBKPGaz2SgsLKyy4kTkF+fPw08/mcvt25unTEWkSjkdiH/4wx9o27Ytb7zxBqGhodjUw03E9ZKSzAsAN2oE4eFWVyNSKzkdiCkpKaxYsYJrrrnGFfWIyKVOn4Zjx8zljh01zELERZwehzhw4EB++OEHV9QiIpe6eJhFixbmQHwRcQmnjxBff/11xo4dy+7du+nUqRPe3t4lHv/9739fZcWJ1HlHjpgD8b28ICbG6mpEajWnA/Gbb75h06ZNfPbZZ6UeU6cakSpkt5tTtAG0bWtO4i0iLuP0KdPJkyczevRo0tPTKSoqKnFTGIpUoZ9+gvx887JO0dFWVyNS6zkdiKdOnWLKlCmEhoa6oh4RAfj5Zzh40Fzu0MG8ALCIuJTTP2UjR45k3bp1rqhFRIolJZkdapo0gaZNra5GpE5w+jvEtm3bMn36dDZt2kRsbGypTjWTJ0+usuJE6qQTJ+D4cXN4RYcOGmYhUk0q1cs0MDCQDRs2sGHDhhKP2Ww2BaLI1Sgq+nWYRXQ01K9vaTkidUmlBuaLiIscPmx+f+jtDW3aWF2NSJ2ib+pFaor8fNi3z1xu1w58fKytR6SOqdAR4tSpU3nqqaeoV68eU6dOvey28+fPr5LCROqc5GRz7GH9+uasNCJSrSoUiDt27MButzuWy6OJvkUqKTvbPF0Kmq9UxCIVCsSLh1loyIVIFTOMXy/8GxYGISHW1iNSR+k7RBGrHT8OJ0+ag+87dLC6GpE6S4EoYqXCwl+PDlu1goAAa+sRqcMUiCJWSkmB3Fxz4m5dY1TEUgpEEatcuAD795vL7dubl3gSEcsoEEWssnevecq0QQNo1szqakTqPAWiiBWysiAtzVzWMAuRGkGBKFLdDOPX+UqbNYOGDa2tR0QABaJI9Tt2DM6cAU9Pc4o2EakRFIgi1amgwLzWIZi9Sv39ra1HRBwUiCLV6cABs3epv7857lBEagwFokh1yc01AxHMGWk8Pa2tR0RKUCCKVJekJPMCwI0bm3OWikiNokAUqQ6nTkF6urmsYRYiNZICUcTVLh5mERUFQUHW1iMiZVIgirhaaqp5vUNvb2jb1upqRKQcCkQRV7LbITnZXG7TxpzEW0RqJAWiiCvt3w/5+RAYCNHRVlcjIpehQBRxlZ9/Ni/vBOYwCw/9uInUZPoJFXGVxESzQ03TpuZNRGo0BaKIK2RmmjebzTw6FJEaz20C8cyZM4wePZrg4GCCg4MZPXo0WVlZl33Ovffei81mK3Hr2bNn9RQsdVdRkXl0CNCypfn9oYjUeG5zie67776btLQ0Pv/8cwDGjx/P6NGj+fTTTy/7vBtuuIElS5Y47vv4+Li0ThEOHTK/P/TxMXuWiohbcItATEpK4vPPP+fbb7/lN7/5DQCvvfYavXr1Ijk5mZiYmHKf6+vrS5imyZLqkpcH+/aZyzEx5thDEXELbhGImzdvJjg42BGGAD179iQ4OJhvvvnmsoG4fv16mjZtSoMGDYiPj+fpp5+m6WU6OOTl5ZGXl+e4n52dDYDdbsdut1fBu6m44v1V937dmdVt5rF3L54FBRj161MQHm6OQ6zhrG4zd6Q2c56VbVbRfbpFIGZkZJQZYk2bNiUjI6Pc5w0dOpTbb7+dqKgoUlJSmDFjBgMGDGDbtm34ljNAevbs2cyaNavU+jVr1hAQEFD5N3EVEhISLNmvO7OizYKA/h4eYLPxdVYWpz77rNpruBr6nDlPbeY8K9osNze3QttZGogzZ84sM3wutmXLFgBsZUyGbBhGmeuL3XHHHY7lTp060b17d6Kioli1ahUjR44s8znTp09n6tSpjvvZ2dlERkYyePBggqp5Dkq73U5CQgKDBg3CW6feKsSyNjMMPLduxXb6NEWhofymS5fq2/dV0ufMeWoz51nZZsVn+q7E0kCcNGkSd95552W3iY6OZteuXRw/frzUYydOnCA0NLTC+wsPDycqKor9+/eXu42vr2+ZR4/e3t6WffCt3Le7qvY2S0+H06fBwwOPjh3xcMP/L33OnKc2c54VbVbR/VkaiCEhIYSEhFxxu169enH27Fm+//57evToAcB3333H2bNnuf766yu8v1OnTnHkyBHCw8MrXbNIKYWFvw6zaN0aLDq1LiJXxy3GIbZv354bbriB+++/n2+//ZZvv/2W+++/n5tuuqlEh5p27dqxcuVKAH7++Wf+/Oc/s3nzZg4dOsT69esZPnw4ISEh3HLLLVa9FamNDh6E8+fBz88MRBFxS24RiAD//ve/iY2NZfDgwQwePJi4uDjeeeedEtskJydz9uxZADw9Pfnxxx8ZMWIEbdu2ZezYsbRt25bNmzdTv359K96C1EYXLsBPP5nL7dqBl1v0UxORMrjNT2+jRo149913L7uNYRiOZX9/f7744gtXlyV13d695inThg2hWTOrqxGRq+A2R4giNc6ZM5CWZi537GjOWyoibkuBKFIZhgF79pjLzZtDgwaWliMiV0+BKFIZR49CVhZ4eprfHYqI21MgijiroACSkszlNm3M3qUi4vYUiCLO+ukncxLvgADz8k4iUisoEEWckZtrjjsE88K/np7W1iMiVUaBKOKMxETzAsAhIeDEtIEiUvMpEEUq6uRJKL66SocOGmYhUssoEEUq4uJhFlFRUM1XPhER11MgilREairk5IC3N1zmgtQi4r4UiCJXkp9vTtEG0LYt+PhYW4+IuIQCUeRK9u8Hux0CA83TpSJSKykQRS4nJwcOHTKXO3YED/3IiNRW+ukWuZzERLNDTWgoNGlidTUi4kIKRJHyHD8OJ06Ywyvat7e6GhFxMQWiSFmKisyjQzCnZwsMtLYeEXE5BaJIWQ4dgnPnzB6lbdpYXY2IVAMFosil8vJg3z5zuV07c+yhiNR6CkSRSyUnm5d4Cg6GyEirqxGRaqJAFLnY2bPmrDRgDrPQfKUidYYCUaTYxfOVRkRAo0bW1iMi1UqBKFIsPR1OnzYH32uYhUido0AUASgshKQkc7l1a/D3t7YeEal2CkQRgIMH4fx58PODa66xuhoRsYACUeT8efjpJ3O5fXvw9LS2HhGxhAJRZO9e85Rpw4ZmZxoRqZMUiFK3nT4NR4+ayxpmIVKnKRCl7rp4mEVkJDRoYGk5ImItBaLUXWlp5kB8Ly+IibG6GhGxmAJR6qaCAvO7QzAn7/bzs7YeEbGcAlHqpv37zUm8AwIgOtrqakSkBlAgSt1z7hykpJjLHTtqmIWIAApEqYsSE80LAIeEQNOmVlcjIjWEAlHqlpMn4fhxc3iFhlmIyEUUiFJ3FBX9OswiKgrq17e2HhGpURSIUnekpkJODnh7Q9u2VlcjIjWMAlHqhvx8SE42l2NiwMenxMNHjhyhf//+dOjQgbi4OJYtW2ZBkSJiJS+rCxCpFvv2gd1uniZt0aLUw15eXixYsIAuXbqQmZnJtddey7Bhw6hXr54FxYqIFRSIUvvl5MDhw+Zyx47mBYAvER4eTnh4OABNmzalUaNGnD59WoEoUofolKnUbsXzlRoGhIaaQy2uYOvWrRQVFREZGVkNBYpITaEjRKndMjPNoRYeHtChwxU3P3XqFGPGjOH111+vhuJEpCbREaLUXoWFTJowgT7TpkHLlnDJ6c/o6Giefvppx/28vDxuueUWpk+fzvXXX1/d1YqIxXSEKLVWYkICCz/9lI3PPWdO4H2J9u3bs3PnTgAMw+Dee+9lwIABjB49uporFZGaQEeIUjvl5TFv/nyua9OG3rfeal7i6RKNGjXi+PHjAHz99dd88MEHfPzxx3Tp0oUuXbrw448/VnfVImIhHSFK7VFYiG3DBppt3IiRns7yTZuYce+90Lw5ABMmTKBHjx6MGzcOgJycHEcv0j59+lBUVGRV5SJSA+gIUWqHFSsgOhqvQYPoPn8+KQ8+SM7588QGBIDNRlFREcuWLSMwMNDxlF27dtG+fXtycnK47rrr6NKlC7Gxsbz22msWvhERsYqOEMX9rVgBt91mDq34RdYv/wY+9xxcfz1f+Ptz5swZfH6Zoeb777/n8OHD3HzzzQQEBLBhwwYCAgLIzc2lU6dOjBw5ksaNG1f/exERyygQxb0VFsLDD5cIQ4AowAa8B9SbOJFHGzVi2LBhfPLJJ0RHRzNhwgQGDBhAv379AAgICADgwoULFBYWYlzyeiJS++mUqbi3r76CtLRSq8OAp4F3gaHHjzP1xhuZPXs2GzZsoE+fPsTExJSYrzQrK4vOnTvTvHlzpk2bRkgFBvCLSO2iI0Rxb+np5T40/ZcbANdeC3FxpKSklLltgwYN+OGHHzh+/DgjR47ktttuIzQ0tMrLFZGaS0eI4t5+mX+0qrYLDQ0lLi6OjRs3XkVRIuKOFIji3vr2NYdV2GxlP26zQWSkuV05jh8/TnZ2NgDZ2dls3LiRmJgYV1QrIjWYTpmKe/P0hBdeMHuZ2mwlO9cUh+SCBeZ25UhLS2PcuHEYhoFhGEyaNIm4uDjX1i0iNY4CUdzfyJHw0Udmb9OLO9g0b26G4ciRl316t27dHFO4iUjdpUCU2mHkSBgxgoJ169j52Wd0GToUr9/+9rJHhiIiF1MgSu3h6YkRH8/Rc+foHB+vMBQRp6hTjYiICApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERwI0C8emnn+b6668nICCABg0aVOg5hmEwc+ZMIiIi8Pf3p3///uzZs8e1hYqIiFtym0DMz8/n9ttv58EHH6zwc+bOncv8+fN56aWX2LJlC2FhYQwaNIicnBwXVioiIu7IbQJx1qxZTJkyhdjY2AptbxgGCxYs4IknnmDkyJF06tSJt956i9zcXP7zn/+4uFoREXE3tfZqFykpKWRkZDB48GDHOl9fX+Lj4/nmm2+YMGFCmc/Ly8sjLy/Pcb/4Sup2ux273e7aoi9RvL/q3q87U5s5T23mPLWZ86xss4rus9YGYkZGBgChoaEl1oeGhnL48OFynzd79mxmzZpVav2aNWsICAio2iIrKCEhwZL9ujO1mfPUZs5TmznPijbLzc2t0HaWBuLMmTPLDJ+Lbdmyhe7du1d6HzabrcR9wzBKrbvY9OnTmTp1quN+dnY2kZGRDB48mKCgoErXURl2u52EhAQGDRqEt7d3te7bXanNnKc2c57azHlWtlnxmb4rsTQQJ02axJ133nnZbaKjoyv12mFhYYB5pBgeHu5Yn5mZWeqo8WK+vr74+vqWWu/t7W3ZB9/KfbsrtZnz1GbOU5s5z4o2q+j+LA3EkJAQQkJCXPLaLVu2JCwsjISEBLp27QqYPVU3bNjAnDlzXLJPERFxX27TyzQ1NZWdO3eSmppKYWEhO3fuZOfOnfz888+Obdq1a8fKlSsB81TpI488wjPPPMPKlSvZvXs39957LwEBAdx9991WvQ0REamh3KZTzd/+9jfeeustx/3io75169bRv39/AJKTkzl79qxjm2nTpnH+/HkmTpzImTNn+M1vfsOaNWuoX79+tdYuIiI1n9sE4tKlS1m6dOlltzEMo8R9m83GzJkzmTlzpusKExGRWsFtTpmKiIi4kgJRREQEBaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAOBldQE1nWEYAGRnZ1f7vu12O7m5uWRnZ+Pt7V3t+3dHajPnqc2cpzZznpVtVvz7u/j3eXkUiFeQk5MDQGRkpMWViIjI1cjJySE4OLjcx23GlSKzjisqKuLYsWPUr18fm81WrfvOzs4mMjKSI0eOEBQUVK37dldqM+epzZynNnOelW1mGAY5OTlERETg4VH+N4U6QrwCDw8PmjdvbmkNQUFB+qFzktrMeWoz56nNnGdVm13uyLCYOtWIiIigQBQREQEUiDWar68vTz75JL6+vlaX4jbUZs5TmzlPbeY8d2gzdaoRERFBR4giIiKAAlFERARQIIqIiAAKRBEREUCBWKM8/fTTXH/99QQEBNCgQYMKPccwDGbOnElERAT+/v7079+fPXv2uLbQGuTMmTOMHj2a4OBggoODGT16NFlZWZd9zr333ovNZitx69mzZ/UUbJFXXnmFli1b4ufnR7du3fjqq68uu/2GDRvo1q0bfn5+tGrVikWLFlVTpTWHM222fv36Up8pm83G3r17q7Fi62zcuJHhw4cTERGBzWbj448/vuJzauJnTIFYg+Tn53P77bfz4IMPVvg5c+fOZf78+bz00kts2bKFsLAwBg0a5JiDtba7++672blzJ59//jmff/45O3fuZPTo0Vd83g033EB6errjtnr16mqo1hoffPABjzzyCE888QQ7duygb9++DB06lNTU1DK3T0lJYdiwYfTt25cdO3bw+OOPM3nyZJYvX17NlVvH2TYrlpycXOJz1aZNm2qq2Frnzp2jc+fOvPTSSxXavsZ+xgypcZYsWWIEBwdfcbuioiIjLCzM+Oc//+lYd+HCBSM4ONhYtGiRCyusGRITEw3A+Pbbbx3rNm/ebADG3r17y33e2LFjjREjRlRDhTVDjx49jAceeKDEunbt2hmPPfZYmdtPmzbNaNeuXYl1EyZMMHr27OmyGmsaZ9ts3bp1BmCcOXOmGqqr2QBj5cqVl92mpn7GdIToxlJSUsjIyGDw4MGOdb6+vsTHx/PNN99YWFn12Lx5M8HBwfzmN79xrOvZsyfBwcFXfP/r16+nadOmtG3blvvvv5/MzExXl2uJ/Px8tm3bVuIzAjB48OBy22jz5s2lth8yZAhbt27Fbre7rNaaojJtVqxr166Eh4czcOBA1q1b58oy3VpN/YwpEN1YRkYGAKGhoSXWh4aGOh6rzTIyMmjatGmp9U2bNr3s+x86dCj//ve/Wbt2Lc899xxbtmxhwIAB5OXlubJcS5w8eZLCwkKnPiMZGRllbl9QUMDJkyddVmtNUZk2Cw8PZ/HixSxfvpwVK1YQExPDwIED2bhxY3WU7HZq6mdMV7twsZkzZzJr1qzLbrNlyxa6d+9e6X1celkqwzCq/VJVVamibQal3ztc+f3fcccdjuVOnTrRvXt3oqKiWLVqFSNHjqxk1TWbs5+RsrYva31t5kybxcTEEBMT47jfq1cvjhw5wrPPPku/fv1cWqe7qomfMQWii02aNIk777zzsttER0dX6rXDwsIA86+t8PBwx/rMzMxSf325k4q22a5duzh+/Hipx06cOOHU+w8PDycqKor9+/c7XWtNFxISgqenZ6kjm8t9RsLCwsrc3svLi8aNG7us1pqiMm1Wlp49e/Luu+9WdXm1Qk39jCkQXSwkJISQkBCXvHbLli0JCwsjISGBrl27Aub3Hxs2bGDOnDku2Wd1qGib9erVi7Nnz/L999/To0cPAL777jvOnj3L9ddfX+H9nTp1iiNHjpT4o6K28PHxoVu3biQkJHDLLbc41ickJDBixIgyn9OrVy8+/fTTEuvWrFlD9+7d8fb2dmm9NUFl2qwsO3bsqJWfqapQYz9jVvbokZIOHz5s7Nixw5g1a5YRGBho7Nixw9ixY4eRk5Pj2CYmJsZYsWKF4/4///lPIzg42FixYoXx448/GnfddZcRHh5uZGdnW/EWqt0NN9xgxMXFGZs3bzY2b95sxMbGGjfddFOJbS5us5ycHOPRRx81vvnmGyMlJcVYt26d0atXL6NZs2a1ts3ef/99w9vb23jjjTeMxMRE45FHHjHq1atnHDp0yDAMw3jssceM0aNHO7Y/ePCgERAQYEyZMsVITEw03njjDcPb29v46KOPrHoL1c7ZNnv++eeNlStXGvv27TN2795tPPbYYwZgLF++3Kq3UK1ycnIcv68AY/78+caOHTuMw4cPG4bhPp8xBWINMnbsWAModVu3bp1jG8BYsmSJ435RUZHx5JNPGmFhYYavr6/Rr18/48cff6z+4i1y6tQp45577jHq169v1K9f37jnnntKdX2/uM1yc3ONwYMHG02aNDG8vb2NFi1aGGPHjjVSU1Orv/hq9PLLLxtRUVGGj4+Pce211xobNmxwPDZ27FgjPj6+xPbr1683unbtavj4+BjR0dHGwoULq7li6znTZnPmzDFat25t+Pn5GQ0bNjT69OljrFq1yoKqrVE87OTS29ixYw3DcJ/PmC7/JCIigoZdiIiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUaTOOHToEDabjZ07d1pdikiNpEAUkWpx7733cvPNN1tdhki5FIgiNVx+fr7VJVyVwsJCioqKrC5D5IoUiCI1TP/+/Zk0aRJTp04lJCSEQYMGAZCYmMiwYcMIDAwkNDSU0aNHl7iY6ueff06fPn1o0KABjRs35qabbuLAgQNO7Ts6OpqnnnqKu+++m8DAQCIiIvjXv/5VYpv58+cTGxtLvXr1iIyMZOLEifz888+Ox5cuXUqDBg343//+R4cOHfD19eUPf/gDb731Fp988gk2mw2bzcb69esr30giLqBAFKmB3nrrLby8vPj666959dVXSU9PJz4+ni5durB161Y+//xzjh8/zqhRoxzPOXfuHFOnTmXLli18+eWXeHh4cMsttzh9dDZv3jzi4uLYvn0706dPZ8qUKSQkJDge9/Dw4MUXX2T37t289dZbrF27lmnTppV4jdzcXGbPns3rr7/Onj17ePHFFxk1ahQ33HAD6enppKenO3WJLpFqYfXs4iJSUnx8vNGlS5cS62bMmGEMHjy4xLojR44YgJGcnFzm62RmZhqA4+onKSkpBmDs2LGj3H1HRUUZN9xwQ4l1d9xxhzF06NByn/Phhx8ajRs3dtxfsmSJARg7d+4ssd3YsWONESNGlPs6IlbTEaJIDdS9e/cS97dt28a6desIDAx03Nq1awfgOC164MAB7r77blq1akVQUBAtW7YEIDU11al99+rVq9T9pKQkx/1169YxaNAgmjVrRv369RkzZgynTp3i3Llzjm18fHyIi4tzar8iVvOyugARKa1evXol7hcVFTF8+HDmzJlTatviq7IPHz6cyMhIXnvtNSIiIigqKqJTp05V0inHZrMBcPjwYYYNG8YDDzzAU089RaNGjdi0aRPjxo3Dbrc7tvf393c8R8RdKBBF3MC1117L8uXLiY6Oxsur9I/tqVOnSEpK4tVXX6Vv374AbNq0qVL7+vbbb0vdLz4a3bp1KwUFBTz33HN4eJgnmD788MMKva6Pjw+FhYWVqkmkOuiUqYgbeOihhzh9+jR33XUX33//PQcPHmTNmjXcd999FBYW0rBhQxo3bszixYv56aefWLt2LVOnTq3Uvr7++mvmzp3Lvn37ePnll1m2bBkPP/wwAK1bt6agoIB//etfHDx4kHfeeYdFixZV6HWjo6PZtWsXycnJnDx5ssQRpUhNoEAUcQMRERF8/fXXFBYWMmTIEDp16sTDDz9McHAwHh4eeHh48P7777Nt2zY6derElClTmDdvXqX29eijj7Jt2za6du3KU089xXPPPceQIUMA6NKlC/Pnz2fOnDl06tSJf//738yePbtCr3v//fcTExND9+7dadKkCV9//XWl6hNxFZthGIbVRYhIzRAdHc0jjzzCI488YnUpItVOR4giIiIoEEVERACdMhUREQF0hCgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgLA/wc+V5h0b8j6cQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHFCAYAAABsA4m6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA95UlEQVR4nO3de1xU1f7/8dcAA4gXvAsogdbxUmKa5iVTTBPT8phWWnYQT57UzEzMn2UdS+uYecmsTMs0NSstr2WZydcLZmLeMFNM+xbeSDQ9KgQJA6zfH+Z8JVBnkJlh7P18PObxYK+99l6fWe3m7d6zZ8ZijDGIiIj8xfl4ugAREZGyQIEoIiKCAlFERARQIIqIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIjyFzN79mwsFgsVKlRweJuPPvqIadOmFWk/ePAgFouFKVOmlGKFrrFq1SrGjh3rkbFzc3MZPHgwoaGh+Pr60rRpU7eO379/fyIjIwu1vfzyy6xYscKtdUjZp0CUv4y0tDRGjhxJWFiYU9tdKhC9yapVqxg3bpxHxp45cybvvPMOzz33HJs2bWLBggVuHX/MmDEsX768UJsCUYrj5+kCRNxl8ODBtG/fnqpVq7JkyRJPl1Os33//ncDAQCwWi6dLKTV79uyhXLlyDB061CPjX3/99R4ZV7yPzhDlL+GDDz4gMTGRGTNmOLVdhw4d+OKLLzh06BAWi8X++LOpU6dSt25dKlSoQJs2bdiyZcsV9z1v3jwsFgtr1qzhkUceoUaNGgQFBZGTk0NBQQGTJk2iYcOGBAQEULNmTfr168fRo0eL7Oe9997j5ptvJjAwkKpVq9KzZ0/27dtnX9+/f3/eeustgELP4eDBgwAsXryYVq1aERwcTFBQEPXq1eORRx65Yv3nzp1j9OjR1K1bF39/f2rXrs3jjz/OmTNn7H0sFguzZ8/m999/t487b968S+4zMjKS/v37F2nv0KEDHTp0sC9v2LABi8XCwoULee655wgLC6NSpUrceeed7N+/v9C2f75karFYyMrKYv78+faaOnTowMGDB/Hz82PChAlFxt+4cSMWi4XFixdfcV7EixmRa9zx48dNtWrVzFtvvWWMMSYuLs6UL1/eoW337t1r2rZta0JCQkxSUpL9YYwxqampBjCRkZHmrrvuMitWrDArVqwwUVFRpkqVKubMmTOX3ffcuXMNYGrXrm0GDhxovvzyS7NkyRKTl5dnBg4caAAzdOhQs3r1avP222+bGjVqmPDwcPPrr7/a9/Hyyy8bwDz00EPmiy++MO+//76pV6+eCQ4ONgcOHDDGGPO///u/5v777zdAoedw7tw5s3nzZmOxWMyDDz5oVq1aZdatW2fmzp1rYmNjL1t7QUGB6dKli/Hz8zNjxowxa9asMVOmTDHly5c3zZo1M+fOnTPGGJOUlGS6detmypUrZx/3xIkTl9xvRESEiYuLK9IeHR1toqOj7cvr16+3z/3DDz9svvjiC7Nw4UJz3XXXmb/97W8mLy/P3jcuLs5ERETYl5OSkky5cuVMt27d7DXt3bvXGGNMz549zXXXXVdoe2OMeeCBB0xYWJix2WyXnRfxbgpEuebdd9995rbbbjMFBQXGGOcC0Rhj7r777kIvqBdcCMSoqKhCL6Bbt241gFm4cOFl93shEPv161eofd++fQYwQ4YMKdT+7bffGsA8++yzxhhjTp8+bX9hv9jhw4dNQECA6du3r73t8ccfN8X9+3fKlCkGuGJ4/9nq1asNYCZNmlSo/eOPPzaAmTVrlr3Nmfl2NhD//Nw/+eQTe/BfPP6f//uVL1++2HEu7Hf58uX2trS0NOPn52fGjRvn0HMQ76VLpnJNW7p0KStXruTdd9+97PtyBQUF5OXl2R/5+fkOj3H33Xfj6+trX27SpAkAhw4dcmj7++67r9Dy+vXrAYpcOmzZsiWNGjVi7dq1ACQlJfH7778X6RceHk7Hjh3t/S7n1ltvBaB379588sknpKWlOVTzunXriq3xgQceoHz58g6NXRr+/ve/F1p2du7/rEOHDtx88832S8wAb7/9NhaLhYEDB5a8UPEKCkS5Zv322288/vjjPPHEE4SFhXHmzBnOnDlDbm4uAGfOnCErKwuAF198EavVan84cyNGtWrVCi0HBAQA52+QcURoaGih5VOnThXbDhAWFmZf72i/y2nfvj0rVqwgLy+Pfv36UadOHRo3bszChQsvu92pU6fw8/OjRo0ahdotFgshISEOjV0arnbuizNs2DDWrl3L/v37sdlsvPvuu9x///2EhIRcVa1S9ikQ5Zp18uRJjh8/zquvvkqVKlXsj4ULF5KVlUWVKlV4+OGHARg4cCDbtm2zP1auXOm2Ov985nrhRf7YsWNF+v7yyy9Ur17dqX5X0qNHD9auXcvZs2fZsGEDderUoW/fviQlJV1ym2rVqpGXl8evv/5aqN0YQ3p6usNj/1lgYCA5OTlF2k+ePFmi/ZVE3759qVatGm+99RaLFy8mPT2dxx9/3G3ji+coEOWaFRISwvr164s8unTpQmBgIOvXr+c///kPcP6MqkWLFvZHVFSUfT8BAQFXdcbhrI4dOwLn74y92LZt29i3bx+dOnUCoE2bNpQrV65Iv6NHj7Ju3Tp7P3DszCkgIIDo6GgmTpwIQHJy8iX7Xtj3n8deunQpWVlZhcZ2RmRkJLt37y7UduDAgSJ3jl6ty/03DQwMZODAgcyfP5+pU6fStGlT2rZtW6rjS9mkzyHKNSswMLDQrfoXzJs3D19f32LXFScqKoply5Yxc+ZMmjdvjo+PDy1atCjdYi/SoEEDBg4cyJtvvomPjw9du3bl4MGDjBkzhvDwcOLj4wGoXLkyY8aM4dlnn6Vfv3489NBDnDp1inHjxhEYGMgLL7xQ6DkATJw4ka5du+Lr60uTJk34z3/+w9GjR+nUqRN16tThzJkzvP7661itVqKjoy9ZY+fOnenSpQtPP/00GRkZtG3blt27d/PCCy/QrFkzYmNjS/TcY2Nj+cc//sGQIUO47777OHToEJMmTSpyafZqRUVFsWHDBlauXEloaCgVK1akQYMG9vVDhgxh0qRJ7Nixg9mzZ5fq2FKGefquHhF3c/Yu0//+97/m/vvvN5UrVzYWi8V+t+aFu0wnT55cZBvAvPDCC5fd74W7TLdt21ZkXX5+vpk4caKpX7++sVqtpnr16uYf//iHOXLkSJG+s2fPNk2aNDH+/v4mODjY9OjRw/4xggtycnLMv/71L1OjRg37c0hNTTWff/656dq1q6ldu7bx9/c3NWvWNN26dTNff/31Fefl999/N08//bSJiIgwVqvVhIaGmscee8ycPn26UD9n5rugoMBMmjTJ1KtXzwQGBpoWLVqYdevWXfIu08WLFxfa/sJ/k7lz5xYa/893me7atcu0bdvWBAUFGaDQvi/o0KGDqVq1qsnOznaodvF+FmOM8Vwci4iUPSdOnCAiIoInnniCSZMmeboccRNdMhUR+cPRo0f5+eefmTx5Mj4+Pjz55JOeLkncSDfViIj8Yfbs2XTo0IG9e/fy4YcfUrt2bU+XJG6kS6YiIiLoDFFERARQIIqIiAAKRBEREUB3mV5RQUEBv/zyCxUrVrymfrRVROSvwhhDZmYmYWFh+Phc+jxQgXgFv/zyC+Hh4Z4uQ0RErtKRI0eoU6fOJdcrEK+gYsWKwPmJrFSpklvHttlsrFmzhpiYGKxWq1vH9laaM+dpzpynOXOeJ+csIyOD8PBw++v5pSgQr+DCZdJKlSp5JBCDgoKoVKmS/qdzkObMeZoz52nOnFcW5uxKb3vpphoREREUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBF5Cr07NmTKlWqcP/993u6FJGrpkAUkRIbNmwY77//vqfLECkVCkQRKbE77rjjir9CLuItFIgiIiIoEEVERAAFooj8ydChQ7n99tuLXRcZGcn48ePdXJGIe/h5ugARKTtSUlKYOXMmGzduLHZ9o0aN2LVrl3uLEnETBaKI2E2ePJlbb72Vtm3bFru+atWqHDlyxL7cpUsXdu7cSVZWFnXq1GH58uXceuut7ipXpFQpEEUEgLy8PJYuXcqYMWPsbYMGDaJly5YMGDAAgMzMTMqXL29f/9VXX7m9ThFX0XuIIn9l+flYEhOpvXEjPy9aRGZmJlFRUQAUFBSwePFiKlSoYO++e/duGjVqZF/Ozs4mIiKCkSNHur10kdLmVYG4ceNGunfvTlhYGBaLhRUrVlxxm8TERJo3b05gYCD16tXj7bffdn2hIt5g2TKIjMSvc2daTJ3Kb488AkCFHTuA82d/p0+fxt/fH4CtW7dy6NAh7r33Xvsuxo8fT6tWrdxeuogreFUgZmVlcfPNNzN9+nSH+qemptKtWzfatWtHcnIyzz77LMOGDWPp0qUurlSkjFu2DO6/H44etTdFABZg4b//TfKUKTz11FN069aNTz/9lOTkZAYNGkTHjh1p3749AD/++CM//PAD3bp188xzECllXvUeYteuXenatavD/d9++22uu+46pk2bBpy/Q2779u1MmTKF++67z0VVipRx+fnw5JNgTKHmEGA88Aqw9Omn+c/MmbRs3ZoePXqwePFiunfvzowZM+z9R44cyeTJk9m8ebNbyxdxFa8KRGclJSURExNTqK1Lly7MmTMHm82G1Wotsk1OTg45OTn25YyMDABsNhs2m821Bf/JhfHcPa4305xdmSUxEb+LzgwvNvqPBwUF5NWrh2nUiAMHDhTqY7PZ+Oyzz7jhhhuoW7cuX3/9NQUFBX+pOddx5jxPzpmjY17TgZienk6tWrUKtdWqVYu8vDxOnjxJaGhokW0mTJjAuHHjirSvWbOGoKAgl9V6OQkJCR4Z15tpzi6t9saNtHCg364vvyQtK6vYdQsXLmTDhg0sWLCAc+fOkZ+fT3p6On369CndYss4HWfO88ScZWdnO9Tvmg5EAIvFUmjZ/HGZ6M/tF4wePZoRI0bYlzMyMggPDycmJoZKlSq5rtBi2Gw2EhIS6Ny5c7Fns1KU5uzKLOXLw9SpV+zXtGtXbo6OLnbdxe8bvv/+++zdu5eJEyeWWo1lnY4z53lyzi5c6buSazoQQ0JCSE9PL9R24sQJ/Pz8qFatWrHbBAQEEBAQUKTdarV67MD35NjeSnN2GXfcAXXqQFpakfcRAbBYoE4d/O64A3x9r7g7X19ffHx8/pLzrePMeZ6YM0fHu6YDsU2bNqxcubJQ25o1a2jRooUOYvnr8vWF118/f5epxVI4FC9cOZk2zaEwBOjfv3+plyjiCV71sYvffvuNXbt22b9LMTU1lV27dnH48GHg/OXOfv362fsPHjyYQ4cOMWLECPbt28d7773HnDlz9CFikV69YMkSqF27cHudOufbe/XyTF0iHuRVZ4jbt2/njjvusC9feK8vLi6OefPmcezYMXs4AtStW5dVq1YRHx/PW2+9RVhYGG+88YY+ciEC50Pv7rvPv5/43/+Sd+ed+N15p8NnhiLXGq8KxA4dOthviinOvHnzirRFR0ezc+dOF1Yl4sV8feGPr2oz7dsrDOUvzasumYqIiLiKAlFERAQFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAvDMQZM2ZQt25dAgMDad68OV9//fUl+27YsAGLxVLk8cMPP7ixYhER8QZeFYgff/wxw4cP57nnniM5OZl27drRtWtXDh8+fNnt9u/fz7Fjx+yPv/3tb26qWEREvIVXBeLUqVMZMGAA//rXv2jUqBHTpk0jPDycmTNnXna7mjVrEhISYn/4+vq6qWIREfEWfp4uwFG5ubns2LGDZ555plB7TEwMmzdvvuy2zZo149y5c9x44438+9//5o477rhk35ycHHJycuzLGRkZANhsNmw221U8A+ddGM/d43ozzZmT8vKw/vGnLS8PNG8O0XHmPE/OmaNjek0gnjx5kvz8fGrVqlWovVatWqSnpxe7TWhoKLNmzaJ58+bk5OSwYMECOnXqxIYNG2jfvn2x20yYMIFx48YVaV+zZg1BQUFX/0RKICEhwSPjejPNmWN8gXv+uGKybt068j1bjtfRceY8T8xZdna2Q/0sxhjj4lpKxS+//ELt2rXZvHkzbdq0sbePHz+eBQsWOHyjTPfu3bFYLHz22WfFri/uDDE8PJyTJ09SqVKlq3sSTrLZbCQkJNC5c2esVuuVNxDNmbPy8rCuXQtAdnQ01sBADxfkHXScOc+Tc5aRkUH16tU5e/bsZV/HveYMsXr16vj6+hY5Gzxx4kSRs8bLad26NR988MEl1wcEBBAQEFCk3Wq1euzA9+TY3kpz5iCLxf6n1c9Pc+YkHWfO88ScOTqe19xU4+/vT/PmzYucbickJHDbbbc5vJ/k5GRCQ0NLuzwREfFyXnOGCDBixAhiY2Np0aIFbdq0YdasWRw+fJjBgwcDMHr0aNLS0nj//fcBmDZtGpGRkdx0003k5ubywQcfsHTpUpYuXerJpyEiImWQVwVinz59OHXqFC+++CLHjh2jcePGrFq1ioiICACOHTtW6DOJubm5jBw5krS0NMqVK8dNN93EF198Qbdu3Tz1FEREpIzyqkAEGDJkCEOGDCl23bx58wotjxo1ilGjRrmhKhER8XZe8x6iiIiIKykQRUREUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERGgBIFYr149Tp06VaT9zJkz1KtXr1SKEhERcTenA/HgwYPk5+cXac/JySEtLa1UihIREXE3P0c7fvbZZ/a/v/rqK4KDg+3L+fn5rF27lsjIyFItTkRExF0cDsR7773X/ndcXFyhdVarlcjISF599dVSK0xERMSdHA7EgoICAOrWrcv27dupVq2ay4oSERFxN6feQ7TZbERGRhZ7U42IiIg3cyoQrVYre/bswWKxuKoeERERj3D6LtN+/foxZ84cV9QiIiLiMQ6/h3hBbm4us2fPJiEhgRYtWlC+fPlC66dOnVpqxYmIiLiL04G4Z88ebrnlFgAOHDhQaJ0upYqIiLdyOhDXr1/vijpEREQ8St9lKiIiQgnOEAG2bdvG4sWLOXz4MLm5uYXWLVu2rFQKExERcSenzxAXLVpE27ZtSUlJYfny5dhsNlJSUli3bl2hr3MTERHxJk4H4ssvv8xrr73G559/jr+/P6+//jr79u2jd+/eXHfdda6oUURExOWcDsSffvqJu+++G4CAgACysrKwWCzEx8cza9asUi9QRETEHZwOxKpVq5KZmQlA7dq12bNnD3D+9xCzs7NLtzoRERE3cfqmmnbt2pGQkEBUVBS9e/fmySefZN26dSQkJNCpUydX1CgiIuJyTgfi9OnTOXfuHACjR4/GarWyadMmevXqxZgxY0q9QBEREXdwOhCrVq1q/9vHx4dRo0YxatSoUi1KRETE3Ur0OcT8/HyWL1/Ovn37sFgsNGrUiB49euDnV6LdiYiIeFyJvsu0R48epKen06BBA+D8d5rWqFGDzz77jKioqFIvUkRExNWcvsv0X//6FzfddBNHjx5l586d7Ny5kyNHjtCkSRMGDhzoihpFRERczukzxO+++47t27dTpUoVe1uVKlUYP348t956a6kWJyIi4i5OnyE2aNCA48ePF2k/ceIEN9xwQ6kUJSIi4m4l+uq2YcOGsWTJEo4ePcrRo0dZsmQJw4cPZ+LEiWRkZNgfIiIi3sLpS6b33HMPAL1797b/ILAxBoDu3bvbly0WC/n5+aVVp4iIiEvpB4JFREQoQSBGR0e7og4RERGPcvo9RBERkWuRAlFERAQFooiICKBAFBERAUoQiGPHjuXQoUOuqEVERMRjnA7ElStXcv3119OpUyc++ugj+28jioiIeDOnA3HHjh3s3LmTJk2aEB8fT2hoKI899hjbtm1zRX0iIiJuUaL3EJs0acJrr71GWloa7733HmlpabRt25aoqChef/11zp49W9p1ihOOHDlChw4duPHGG2nSpAmLFy/2dEkiIlclOzubiIgIRo4c6bIxruqmmoKCAnJzc8nJycEYQ9WqVZk5cybh4eF8/PHHpVWjOMnPz49p06aRkpLC//zP/xAfH09WVpanyxIRKbHx48fTqlUrl45RokDcsWMHQ4cOJTQ0lPj4eJo1a8a+fftITEzkhx9+4IUXXmDYsGGlXas4KDQ0lKZNmwJQs2ZNqlatyn//+1/PFiUiUkI//vgjP/zwA926dXPpOE4HYpMmTWjdujWpqanMmTOHI0eO8MorrxT66ad+/frx66+/lmqhUjLbt2+noKCA8PBwT5ciIlIiI0eOZMKECS4fx+nvMn3ggQd45JFHqF279iX71KhRg4KCgqsqTK7eqVOn6NevH7Nnz/Z0KSIiJfLpp59Sv3596tevz+bNm106llNniDabjblz5+qmGQ8ZOnQot99+e7HrIiMjGT9+vH05JyeHnj17Mnr0aG677TZ3lSgi4hBHX8+2bNnCokWLiIyMZOTIkbz77ru8+OKLLqnJqTNEq9VKTk6O/XcQxX1SUlKYOXMmGzduLHZ9o0aN2LVrF3D+9yj79+9Px44diY2NdWOVIiJX5szr2YQJE+yXS+fNm8eePXt4/vnnXVKX0+8hPvHEE0ycOJG8vDxX1COXMHnyZG699Vbatm1b7PqqVaty/PhxAL755hs+/vhjVqxYQdOmTWnatCnff/+9O8sVEbkkZ17P3Mnp9xC//fZb1q5dy5o1a4iKiqJ8+fKF1i9btqzUipPz8vLyWLp0KWPGjLG3DRo0iJYtWzJgwAAAMjMz7f8tbr/9dr2HKyJlkrOvZxfr37+/S2tz+gyxcuXK3HfffXTp0oWwsDCCg4MLPaSU5OdjSUyk9saN/LxoEZmZmURFRQHnP/+5ePFiKlSoYO++e/duGjVqZF92x4dYRUQc4iWvZ06fIc6dO9cVdThsxowZTJ48mWPHjnHTTTcxbdo02rVrd8n+iYmJjBgxgr179xIWFsaoUaMYPHiwGysugWXL4Mkn8Tt6lBbAt380V9ixA+66i6+++orTp0/j7+8PwNatWzl06BD33nuvfRfu+BCriMgVedHrmdOB6Ekff/wxw4cPZ8aMGbRt25Z33nmHrl27kpKSwnXXXVekf2pqKt26dePRRx/lgw8+4JtvvmHIkCHUqFGD++67zwPPwAHLlsH994Mx9qYIwAIs/Pe/KR8QwFPvvUe3bt349NNPiYyMZNCgQXTs2JH27dsD//ch1u7du7Nnzx7PPA8RES97PbMYc1GlDlqyZAmffPIJhw8fJjc3t9C6nTt3llpxf9aqVStuueUWZs6caW9r1KgR9957b7Ef2nz66af57LPP2Ldvn71t8ODBfPfddyQlJTk0ZkZGBsHBwZw9e5ZKlSpd/ZO4nPx8iIyEo0eLrJoAvAKU8/HhP9On07JVK3rcdx8nTpyg+z33MOPNN6latSoAPXr1YvIrr7A5KYk9e/cyZdIk19ZdhthsNr5as4YuMTFYrVZPl1P25ebCunUA2Nq3xxoU5OGCvIOOMwfk58MNN1z59WzmTFq2bk2PHj3Ov551786MGTP+7/WsRw8mT57M5s2b2bNnD1OmTHG6FEdfx50+Q3zjjTd47rnniIuL49NPP+Wf//wnP/30E9u2bePxxx93ulBH5ebmsmPHDp555plC7TExMZf8sGZSUhIxMTGF2rp06cKcOXOw2WzFHsg5OTnk5OTYlzMyMoDz/wPYbLarfRqXZUlMxK+Ygwdg9B8PCgrgzBn45RdS33zz/zps3QrAp1u2UN/Pj/o//8zm77+HQ4dg9WqX1l2WWIF7fH1h7VpPl+J1rJe4BV6K0nHmgO+/LzYMofDrWV69ephGjThw4EChPjabjc8++4wbbriBunXr8vXXX1NQUFCi12FHt3E6EGfMmMGsWbN46KGHmD9/PqNGjaJevXo8//zzLv2+zJMnT5Kfn0+tWrUKtdeqVYv09PRit0lPTy+2f15eHidPniQ0NLTINhMmTGDcuHFF2tesWUOQi//1XHvjRlo40vEy87xl/34Wff01i7/5ht9+/x1bfj6VgoJ4/qGHSq1OEZErcjAPdn35JWmX+PGBhQsXsmHDBhYsWMC5c+fIz88nPT2dPn36OFVKdna2Q/2cDsTDhw/bv/mkXLlyZGZmAhAbG0vr1q2ZPn26s7t0yp+/FMAYc9kvCiiuf3HtF4wePZoRI0bYlzMyMggPDycmJsbll0wt5cvD1KlX7Jd3552YP66v/9mLnTpx4Tsc3l+wgL0pKYyeMAHXntuWHba8PNatW0fHjh2x+nnVW+SeYbPZzwyzb7sNa7lyHi7IO+g4uzKL1YqfA5c3m3btys3R0cWuu/jLvN9//3327t3LxIkTna7lwpW+K3H6v2RISAinTp0iIiKCiIgItmzZws0330xqaioleDvSYdWrV8fX17fI2eCJEyeKnAVeXGtx/f38/KhWrVqx2wQEBBAQEFCk3Wq1uv69gjvugDp1IC2t0JvQdhYL1KmD3513gq/vFXfn6++Pj5/fX+tFzmYjH7AGBuq9HUdcNEfWcuX+WsfK1dBxdmV33unY69kddzj2eubri4+PT4nm29FtnP4cYseOHVm5ciUAAwYMID4+ns6dO9OnTx969uzp7O4c5u/vT/PmzUlISCjUnpCQcMnv6mzTpk2R/mvWrKFFixZl8yD29YXXXz//95/PYC8sT5vm0MED5z/EWpI3oEVErpo3vp4ZJ+Xn5xubzWZf/vjjj80TTzxhXn/9dZOTk+Ps7pyyaNEiY7VazZw5c0xKSooZPny4KV++vDl48KAxxphnnnnGxMbG2vv//PPPJigoyMTHx5uUlBQzZ84cY7VazZIlSxwe8+zZswYwZ8+eLfXnc0lLlxpTp44x5/9ddf4RHn6+XS4rNzfXrFixwuTm5nq6FO9gsxmzcqUxK1ea3OxsT1fjNXScOaEMvJ45+jru9CVTHx8ffHz+78Syd+/e9O7duxQj+tL69OnDqVOnePHFFzl27BiNGzdm1apVREREAHDs2DEOHz5s71+3bl1WrVpFfHw8b731FmFhYbzxxhtl9zOIF/TqBT16kLd+Pbu+/JKmXbs6fFlBRKRM8aLXsxK9G3zmzBm2bt3KiRMninxnZr9+/UqlsEsZMmQIQ4YMKXbdvHnzirRFR0e79LORLuPri4mOJi0r6/wbzmXw4BERcYiXvJ45HYgrV67k4YcfJisri4oVKxa6W9Nisbg8EEVERFzB6ZtqnnrqKR555BEyMzM5c+YMp0+ftj9c+TlEERERV3I6ENPS0hg2bJjLP6QuIiLiTk4HYpcuXdi+fbsrahEREfEYp99DvPvuu/l//+//kZKSQlRUVJHP8/39738vteJERETcxelAfPTRRwF48cUXi6yzWCzk5+dffVUiIiJu5nQg/vljFiIiItcCp99DFBERuRY5dIb4xhtvMHDgQAIDA3njjTcu23fYsGGlUpiIiIg7ORSIr732Gg8//DCBgYG89tprl+xnsVgUiCIi4pUcCsTU1NRi/xYREblW6D1EERERSnCX6cW/Jn8xi8VCYGAgN9xwAz169KBq1apXXZyIiIi7OB2IycnJ7Ny5k/z8fBo0aIAxhh9//BFfX18aNmzIjBkzeOqpp9i0aRM33nijK2oWEREpdU5fMu3Rowd33nknv/zyCzt27GDnzp2kpaXRuXNnHnroIdLS0mjfvj3x8fGuqFdERMQlnA7EyZMn89JLL1GpUiV7W6VKlRg7diyTJk0iKCiI559/nh07dpRqoSIiIq7kdCCePXuWEydOFGn/9ddfycjIAKBy5crk5uZefXUiIiJuUqJLpo888gjLly/n6NGjpKWlsXz5cgYMGMC9994LwNatW6lfv35p1yoiIuIyTt9U88477xAfH8+DDz5IXl7e+Z34+REXF2f/0H7Dhg2ZPXt26VYqIiLiQk4HYoUKFXj33Xd57bXX+PnnnzHGcP3111OhQgV7n6ZNm5ZmjSIiIi7ndCBeUKFCBZo0aVKatYiIiHhMiQJx27ZtLF68mMOHDxe5eWbZsmWlUpiIiIg7OX1TzaJFi2jbti0pKSksX74cm81GSkoK69atIzg42BU1ioiIuJzTgfjyyy/z2muv8fnnn+Pv78/rr7/Ovn376N27N9ddd50rahQREXE5pwPxp59+4u677wYgICCArKwsLBYL8fHxzJo1q9QLFBERcQenA7Fq1apkZmYCULt2bfbs2QPAmTNnyM7OLt3qRERE3MTpm2ratWtHQkICUVFR9O7dmyeffJJ169aRkJBAp06dXFGjiIiIyzkdiNOnT+fcuXMAjB49GqvVyqZNm+jVqxdjxowp9QJFRETcwelAvPh3Dn18fBg1ahSjRo0q1aJERETcrcQfzD9x4gQnTpygoKCgULs+rC8iIt7I6UDcsWMHcXFx7Nu3D2NMoXUWi4X8/PxSK05ERMRdnA7Ef/7zn9SvX585c+ZQq1YtLBaLK+oSERFxK6cDMTU1lWXLlnHDDTe4oh4RERGPcPpziJ06deK7775zRS0iIiIe4/QZ4uzZs4mLi2PPnj00btwYq9VaaP3f//73UitORETEXZwOxM2bN7Np0ya+/PLLIut0U42IiHgrpy+ZDhs2jNjYWI4dO0ZBQUGhh8JQRES8ldOBeOrUKeLj46lVq5Yr6hEREfEIpwOxV69erF+/3hW1iIiIeIzT7yHWr1+f0aNHs2nTJqKioorcVDNs2LBSK05ERMRdSnSXaYUKFUhMTCQxMbHQOovFokAUERGvVKIP5ouIiFxrnH4PUURE5Frk0BniiBEjeOmllyhfvjwjRoy4bN+pU6eWSmEiIiLu5FAgJicnY7PZ7H9fir7oW0REvJVDgXjxxyz0kQsREbkW6T1EERERFIgiIiKAAlFERARQIIqIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiABeFIinT58mNjaW4OBggoODiY2N5cyZM5fdpn///lgslkKP1q1bu6dgERHxKn6eLsBRffv25ejRo6xevRqAgQMHEhsby8qVKy+73V133cXcuXPty/7+/i6tU0REvJNXBOK+fftYvXo1W7ZsoVWrVgC8++67tGnThv3799OgQYNLbhsQEEBISIi7ShURES/lFYGYlJREcHCwPQwBWrduTXBwMJs3b75sIG7YsIGaNWtSuXJloqOjGT9+PDVr1rxk/5ycHHJycuzLGRkZANhsNmw2Wyk8G8ddGM/d43ozzZmT8vKw/vGnLS8PNG8O0XHmPE/OmaNjekUgpqenFxtiNWvWJD09/ZLbde3alQceeICIiAhSU1MZM2YMHTt2ZMeOHQQEBBS7zYQJExg3blyR9jVr1hAUFFTyJ3EVEhISPDKuN9OcOcYXuMfXF4B169aR79lyvI6OM+d5Ys6ys7Md6ufRQBw7dmyx4XOxbdu2AWCxWIqsM8YU235Bnz597H83btyYFi1aEBERwRdffEGvXr2K3Wb06NGMGDHCvpyRkUF4eDgxMTFUqlTpsrWWNpvNRkJCAp07d8ZqtV55A9GcOSsvD9auBaBjx45YAwM9XJB30HHmPE/O2YUrfVfi0UAcOnQoDz744GX7REZGsnv3bo4fP15k3a+//kqtWrUcHi80NJSIiAh+/PHHS/YJCAgo9uzRarV67MD35NjeSnPmoIv+QWn189OcOUnHmfM8MWeOjufRQKxevTrVq1e/Yr82bdpw9uxZtm7dSsuWLQH49ttvOXv2LLfddpvD4506dYojR44QGhpa4ppFROTa5BWfQ2zUqBF33XUXjz76KFu2bGHLli08+uij3HPPPYVuqGnYsCHLly8H4LfffmPkyJEkJSVx8OBBNmzYQPfu3alevTo9e/b01FMREZEyyisCEeDDDz8kKiqKmJgYYmJiaNKkCQsWLCjUZ//+/Zw9exYAX19fvv/+e3r06EH9+vWJi4ujfv36JCUlUbFiRU88BRERKcO84i5TgKpVq/LBBx9cto8xxv53uXLl+Oqrr1xdloiIXCO85gxRRETElRSIIiIiKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEESmhzMxMbr31Vpo2bUpUVBTvvvuup0sSuSp+ni5ARLxTUFAQiYmJBAUFkZ2dTePGjenVqxfVqlXzdGkiJaIzRBEpEV9fX4KCggA4d+4c+fn5GGM8XJVIySkQRaTEzpw5w80330ydOnUYNWoU1atX93RJIiWmQBSREqtcuTLfffcdqampfPTRRxw/ftzTJYmUmAJRRAoZOnQot99+e7HrIiMjGT9+fJH2WrVq0aRJEzZu3Ojq8kRcRoEoInYpKSnMnDmTiRMnFru+UaNG7Nq1C4Djx4+TkZEBQEZGBhs3bqRBgwbuKlWk1OkuUxGxmzx5Mrfeeitt27Ytdn3VqlU5cuQIAEePHmXAgAEYYzDGMHToUJo0aeLOckVKlQJRRADIy8tj6dKljBkzxt42aNAgWrZsyYABA4Dznz0sX748AM2bN7efLYpcC3TJVOSvLD8fvv8eEhP5+eOPyczMJCoqCoCCggIWL15MhQoV7N13795No0aN7MvZ2dlEREQwcuRIt5cuUtq8JhDHjx/PbbfdRlBQEJUrV3ZoG2MMY8eOJSwsjHLlytGhQwf27t3r2kJFvMWyZXDDDfDsszBlCr89+igAFXbsAOCrr77i9OnT+Pv7A7B161YOHTrEvffea9/F+PHjadWqldtLF3EFrwnE3NxcHnjgAR577DGHt5k0aRJTp05l+vTpbNu2jZCQEDp37kxmZqYLKxXxAsuWwf33w9Gj9qYIwAIs/Pe/SZ4yhaeeeopu3brx6aefkpyczKBBg+jYsSPt27cH4Mcff+SHH36gW7dunnkOIqXMawJx3LhxxMfH2y/nXIkxhmnTpvHcc8/Rq1cvGjduzPz588nOzuajjz5ycbUiZVh+Pjz5JPzpW2VCgPHAB0DXp59mxPDhTJgwgcTERG6//XYaNGjA4sWL7f1HjhzJhAkT3Fq6iCtdszfVpKamkp6eTkxMjL0tICCA6OhoNm/ezKBBg4rdLicnh5ycHPvyhdvKbTYbNpvNtUX/yYXx3D2uN9OcXZklMRG/i84MLzb6jwcFBeTVq4dp1IgDBw4U6mOz2fjss8+44YYbqFu3Ll9//TUFBQV/qTnXceY8T86Zo2Nes4GYnp4OnP/A8MVq1arFoUOHLrndhAkTGDduXJH2NWvW2L+30d0SEhI8Mq4305xdWu2NG2nhQL9dX35JWlZWsesWLlzIhg0bWLBggf17TNPT0+nTp0/pFlvG6ThznifmLDs726F+Hg3EsWPHFhs+F9u2bRstWjjyv2/xLBZLoWVjTJG2i40ePZoRI0bYlzMyMggPDycmJoZKlSqVuI6SsNlsJCQk0LlzZ6xWq1vH9laasyuzlC8PU6desV/Trl25OTq62HUXv2/4/vvvs3fv3kt+mP9apOPMeZ6cswtX+q7Eo4E4dOhQHnzwwcv2iYyMLNG+Q0JCgPNniqGhofb2EydOFDlrvFhAQAABAQFF2q1Wq8cOfE+O7a00Z5dxxx1Qpw6kpRV5HxEAiwXq1MHvjjvA1/eKu/P19cXHx+cvOd86zpzniTlzdDyPBmL16tVd9u34devWJSQkhISEBJo1awacv1M1MTHxL/UvWZEifH3h9dfP32VqsRQOxQtXT6ZNcygMAfr371/qJYp4gtfcZXr48GF27drF4cOHyc/PZ9euXezatYvffvvN3qdhw4YsX74cOH+pdPjw4bz88sssX76cPXv20L9/f4KCgujbt6+nnoZI2dCrFyxZArVrF26vU+d8e69enqlLxIO85qaa559/nvnz59uXL5z1rV+/ng4dOgCwf/9+zp49a+8zatQofv/9d4YMGcLp06dp1aoVa9asoWLFim6tXaRM6tULevQgb/16dn35JU27dnX4MqnItchrAnHevHnMmzfvsn3+/GvdFouFsWPHMnbsWNcVJuLNfH0x0dGkZWWdv4FGYSh/YV5zyVRERMSVFIgiIiIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEAD9PF1DWGWMAyMjIcPvYNpuN7OxsMjIysFqtbh/fG2nOnKc5c57mzHmenLMLr98XXs8vRYF4BZmZmQCEh4d7uBIREbkamZmZBAcHX3K9xVwpMv/iCgoK+OWXX6hYsSIWi8WtY2dkZBAeHs6RI0eoVKmSW8f2Vpoz52nOnKc5c54n58wYQ2ZmJmFhYfj4XPqdQp0hXoGPjw916tTxaA2VKlXS/3RO0pw5T3PmPM2Z8zw1Z5c7M7xAN9WIiIigQBQREQEUiGVaQEAAL7zwAgEBAZ4uxWtozpynOXOe5sx53jBnuqlGREQEnSGKiIgACkQRERFAgSgiIgIoEEVERAAFYpkyfvx4brvtNoKCgqhcubJD2xhjGDt2LGFhYZQrV44OHTqwd+9e1xZahpw+fZrY2FiCg4MJDg4mNjaWM2fOXHab/v37Y7FYCj1at27tnoI9ZMaMGdStW5fAwECaN2/O119/fdn+iYmJNG/enMDAQOrVq8fbb7/tpkrLDmfmbMOGDUWOKYvFwg8//ODGij1n48aNdO/enbCwMCwWCytWrLjiNmXxGFMgliG5ubk88MADPPbYYw5vM2nSJKZOncr06dPZtm0bISEhdO7c2f4drNe6vn37smvXLlavXs3q1avZtWsXsbGxV9zurrvu4tixY/bHqlWr3FCtZ3z88ccMHz6c5557juTkZNq1a0fXrl05fPhwsf1TU1Pp1q0b7dq1Izk5mWeffZZhw4axdOlSN1fuOc7O2QX79+8vdFz97W9/c1PFnpWVlcXNN9/M9OnTHepfZo8xI2XO3LlzTXBw8BX7FRQUmJCQEPPKK6/Y286dO2eCg4PN22+/7cIKy4aUlBQDmC1bttjbkpKSDGB++OGHS24XFxdnevTo4YYKy4aWLVuawYMHF2pr2LCheeaZZ4rtP2rUKNOwYcNCbYMGDTKtW7d2WY1ljbNztn79egOY06dPu6G6sg0wy5cvv2yfsnqM6QzRi6WmppKenk5MTIy9LSAggOjoaDZv3uzBytwjKSmJ4OBgWrVqZW9r3bo1wcHBV3z+GzZsoGbNmtSvX59HH32UEydOuLpcj8jNzWXHjh2FjhGAmJiYS85RUlJSkf5dunRh+/bt2Gw2l9VaVpRkzi5o1qwZoaGhdOrUifXr17uyTK9WVo8xBaIXS09PB6BWrVqF2mvVqmVfdy1LT0+nZs2aRdpr1qx52efftWtXPvzwQ9atW8err77Ktm3b6NixIzk5Oa4s1yNOnjxJfn6+U8dIenp6sf3z8vI4efKky2otK0oyZ6GhocyaNYulS5eybNkyGjRoQKdOndi4caM7SvY6ZfUY069duNjYsWMZN27cZfts27aNFi1alHiMP/8slTHG7T9VVZocnTMo+tzhys+/T58+9r8bN25MixYtiIiI4IsvvqBXr14lrLpsc/YYKa5/ce3XMmfmrEGDBjRo0MC+3KZNG44cOcKUKVNo3769S+v0VmXxGFMgutjQoUN58MEHL9snMjKyRPsOCQkBzv9rKzQ01N5+4sSJIv/68iaOztnu3bs5fvx4kXW//vqrU88/NDSUiIgIfvzxR6drLeuqV6+Or69vkTObyx0jISEhxfb38/OjWrVqLqu1rCjJnBWndevWfPDBB6Vd3jWhrB5jCkQXq169OtWrV3fJvuvWrUtISAgJCQk0a9YMOP/+R2JiIhMnTnTJmO7g6Jy1adOGs2fPsnXrVlq2bAnAt99+y9mzZ7ntttscHu/UqVMcOXKk0D8qrhX+/v40b96chIQEevbsaW9PSEigR48exW7Tpk0bVq5cWahtzZo1tGjRAqvV6tJ6y4KSzFlxkpOTr8ljqjSU2WPMk3f0SGGHDh0yycnJZty4caZChQomOTnZJCcnm8zMTHufBg0amGXLltmXX3nlFRMcHGyWLVtmvv/+e/PQQw+Z0NBQk5GR4Ymn4HZ33XWXadKkiUlKSjJJSUkmKirK3HPPPYX6XDxnmZmZ5qmnnjKbN282qampZv369aZNmzamdu3a1+ycLVq0yFitVjNnzhyTkpJihg8fbsqXL28OHjxojDHmmWeeMbGxsfb+P//8swkKCjLx8fEmJSXFzJkzx1itVrNkyRJPPQW3c3bOXnvtNbN8+XJz4MABs2fPHvPMM88YwCxdutRTT8GtMjMz7a9XgJk6dapJTk42hw4dMsZ4zzGmQCxD4uLiDFDksX79ensfwMydO9e+XFBQYF544QUTEhJiAgICTPv27c3333/v/uI95NSpU+bhhx82FStWNBUrVjQPP/xwkVvfL56z7OxsExMTY2rUqGGsVqu57rrrTFxcnDl8+LD7i3ejt956y0RERBh/f39zyy23mMTERPu6uLg4Ex0dXaj/hg0bTLNmzYy/v7+JjIw0M2fOdHPFnufMnE2cONFcf/31JjAw0FSpUsXcfvvt5osvvvBA1Z5x4WMnf37ExcUZY7znGNPPP4mIiKCPXYiIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlHkL+PgwYNYLBZ27drl6VJEyiQFooi4Rf/+/bn33ns9XYbIJSkQRcq43NxcT5dwVfLz8ykoKPB0GSJXpEAUKWM6dOjA0KFDGTFiBNWrV6dz584ApKSk0K1bNypUqECtWrWIjY0t9GOqq1ev5vbbb6dy5cpUq1aNe+65h59++smpsSMjI3nppZfo27cvFSpUICwsjDfffLNQn6lTpxIVFUX58uUJDw9nyJAh/Pbbb/b18+bNo3Llynz++efceOONBAQE8M9//pP58+fz6aefYrFYsFgsbNiwoeSTJOICCkSRMmj+/Pn4+fnxzTff8M4773Ds2DGio6Np2rQp27dvZ/Xq1Rw/fpzevXvbt8nKymLEiBFs27aNtWvX4uPjQ8+ePZ0+O5s8eTJNmjRh586djB49mvj4eBISEuzrfXx8eOONN9izZw/z589n3bp1jBo1qtA+srOzmTBhArNnz2bv3r288cYb9O7dm7vuuotjx45x7Ngxp36iS8QtPP3t4iJSWHR0tGnatGmhtjFjxpiYmJhCbUeOHDGA2b9/f7H7OXHihAHsv36SmppqAJOcnHzJsSMiIsxdd91VqK1Pnz6ma9eul9zmk08+MdWqVbMvz5071wBm165dhfrFxcWZHj16XHI/Ip6mM0SRMqhFixaFlnfs2MH69eupUKGC/dGwYUMA+2XRn376ib59+1KvXj0qVapE3bp1ATh8+LBTY7dp06bI8r59++zL69evp3PnztSuXZuKFSvSr18/Tp06RVZWlr2Pv78/TZo0cWpcEU/z83QBIlJU+fLlCy0XFBTQvXt3Jk6cWKTvhV9l7969O+Hh4bz77ruEhYVRUFBA48aNS+WmHIvFAsChQ4fo1q0bgwcP5qWXXqJq1aps2rSJAQMGYLPZ7P3LlStn30bEWygQRbzALbfcwtKlS4mMjMTPr+j/tqdOnWLfvn288847tGvXDoBNmzaVaKwtW7YUWb5wNrp9+3by8vJ49dVX8fE5f4Hpk08+cWi//v7+5Ofnl6gmEXfQJVMRL/D444/z3//+l4ceeoitW7fy888/s2bNGh555BHy8/OpUqUK1apVY9asWfzv//4v69atY8SIESUa65tvvmHSpEkcOHCAt956i8WLF/Pkk08CcP3115OXl8ebb77Jzz//zIIFC3j77bcd2m9kZCS7d+9m//79nDx5stAZpUhZoEAU8QJhYWF888035Ofn06VLFxo3bsyTTz5JcHAwPj4++Pj4sGjRInbs2EHjxo2Jj49n8uTJJRrrqaeeYseOHTRr1oyXXnqJV199lS5dugDQtGlTpk6dysSJE2ncuDEffvghEyZMcGi/jz76KA0aNKBFixbUqFGDb775pkT1ibiKxRhjPF2EiJQNkZGRDB8+nOHDh3u6FBG30xmiiIgICkQRERFAl0xFREQAnSGKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgA8P8BIZ7/Mel7wc4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHFCAYAAABsA4m6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXuUlEQVR4nO3deXhTVf4/8HfSpvtGW7pBaQFlbUuBiuxFkCLbgIyi4iCMiCjyBUF/jIyDgjPIAIrgoCjiiDOOGwI6KqP0kV2KrAVKy16Wli60dKOFNk3O749DQksXmtLk5qbv1/PkIbm5yf3kNvTTc+75nKMRQggQERE1c1qlAyAiIrIHTIhERERgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJiIgAMCGSg9u+fTs0Gk2tt7179zboPT7//HOsWLGixvbz589Do9HgrbfeauKom97mzZuxYMECRY5dUVGB5557DqGhoXByckJsbKxNjz958mRERkZW2/bmm2/i22+/tWkcZP+clQ6AyBbefPNNPPDAA9W2RUVFNei1n3/+OVJSUvDiiy9aITLb2Lx5M9577z1FkuLq1avx4Ycf4h//+Ad69uwJLy8vmx5//vz5mDVrVrVtb775Jh555BGMHTvWprGQfWNCpGbh3nvvRe/evZUO446uX78ONzc3aDQapUNpMikpKXB3d8eMGTMUOX779u0VOS6pD7tMieoxaNAg/Pjjj7hw4UK17tbbLV++HG3btoWXlxf69OnToO7YdevWQaPRYMuWLXj66afRsmVLeHh4oLy8HEajEUuXLkWnTp3g6uqKoKAgPPXUU8jIyKjxPv/85z/RrVs3uLm5wd/fHw8//DDS0tLMz0+ePBnvvfceAFT7DOfPnwcArF+/Hvfffz98fX3h4eGBdu3a4emnn75j/Ddu3MC8efPQtm1buLi4oFWrVnjhhRdQWFho3kej0WDt2rW4fv26+bjr1q2r8z0jIyMxefLkGtsHDRqEQYMGmR+busK/+OILvPrqqwgLC4OPjw8efPBBnDx5stprb+8y1Wg0KC0txaeffmqOadCgQTh//jycnZ2xePHiGsffuXMnNBoN1q9ff8fzQiomiBzYtm3bBAARFBQknJychLe3t0hISBC7du1q0OuPHz8u+vXrJ0JCQkRSUpL5JoQQ6enpAoCIjIwUDz30kPj222/Ft99+K6Kjo0WLFi1EYWFhve/9ySefCACiVatW4tlnnxX/+9//xDfffCMqKyvFs88+KwCIGTNmiJ9++kl88MEHomXLliI8PFxcuXLF/B5vvvmmACCeeOIJ8eOPP4p//etfol27dsLX11ecOnVKCCHEmTNnxCOPPCIAVPsMN27cEHv27BEajUY8/vjjYvPmzWLr1q3ik08+ERMnTqw3dqPRKIYNGyacnZ3F/PnzxZYtW8Rbb70lPD09Rffu3cWNGzeEEEIkJSWJESNGCHd3d/Nxc3Nz63zfiIgIMWnSpBrb4+PjRXx8vPmx6ecaGRkpnnzySfHjjz+KL774QrRp00bce++9orKy0rzvpEmTREREhPlxUlKScHd3FyNGjDDHdPz4cSGEEA8//LBo06ZNtdcLIcSjjz4qwsLChF6vr/e8kLoxIZJDO3TokJg1a5bYtGmT2Llzp/jnP/8pOnfuLJycnMRPP/3UoPcYOXJktV+oJqaEGB0dXe0X6L59+wQA8cUXX9T7vqaE+NRTT1XbnpaWJgCI6dOnV9v+22+/CQDiz3/+sxBCiIKCAvMv9qouXrwoXF1dxYQJE8zbXnjhBVHb379vvfWWAHDH5H27n376SQAQS5curbb9q6++EgDEmjVrzNsmTZokPD09G/S+libE2z/7119/bU78VY9/+8/P09Oz1uOY3nfTpk3mbZmZmcLZ2VksXLiwQZ+B1ItdpuTQunfvjhUrVmDs2LEYMGAA/vjHP2LPnj0IDQ3F3LlzzfsZjUZUVlaabwaDocHHGDlyJJycnMyPY2JiAAAXLlxo0Ot///vfV3u8bds2AKjRddirVy907twZv/zyCwAgKSkJ169fr7FfeHg4Bg8ebN6vPvfddx8AYPz48fj666+RmZnZoJi3bt1aa4yPPvooPD09G3TspvC73/2u2mNLz/3tBg0ahG7dupm7mAHggw8+gEajwbPPPtv4QEkVmBCp2fHz88OoUaNw9OhRXL9+HQDwxhtvQKfTmW+WDMQICAio9tjV1RUAzO99J6GhodUe5+fn17odAMLCwszPN3S/+gwcOBDffvstKisr8dRTT6F169aIiorCF198Ue/r8vPz4ezsjJYtW1bbrtFoEBIS0qBjN4W7Pfe1mTlzJn755RecPHkSer0eH330ER555BGEhITcVaxk/5gQqVkSQgCAeYDMs88+i/3795tv33//vc1iuX2QjumXfFZWVo19L1++jMDAQIv2u5MxY8bgl19+QVFREbZv347WrVtjwoQJSEpKqvM1AQEBqKysxJUrV6ptF0IgOzu7wce+nZubG8rLy2tsz8vLa9T7NcaECRMQEBCA9957D+vXr0d2djZeeOEFmx2flMOESM1OQUEBfvjhB8TGxsLNzQ2AbFHFxcWZb9HR0eb9XV1d76rFYanBgwcDAD777LNq2/fv34+0tDQMGTIEANCnTx+4u7vX2C8jIwNbt2417wc0rOXk6uqK+Ph4LFmyBABw+PDhOvc1vfftx96wYQNKS0urHdsSkZGROHr0aLVtp06dqjFy9G7V9zN1c3PDs88+i08//RTLly9HbGws+vXr16THJ/vEOkRyaBMmTECbNm0QFxeHwMBAnD59Gm+//TZycnLqHf5fVXR0NDZu3IjVq1ejZ8+e0Gq1iIuLs1rMHTt2xLPPPot//OMf0Gq1GD58OM6fP4/58+cjPDwcs2fPBiC7fufPn48///nPeOqpp/DEE08gPz8fCxcuhJubG15//fVqnwEAlixZguHDh8PJyQkxMTH429/+hoyMDAwZMgStW7dGYWEhVq5cCZ1Oh/j4+DpjHDp0KIYNG4Y//elPKC4uRr9+/XD06FG8/vrr6N69OyZOnNiozz5x4kT84Q9/wPTp0/H73/8eFy5cwNKlS2t0zd6t6OhobN++Hd9//z1CQ0Ph7e2Njh07mp+fPn06li5dioMHD2Lt2rVNemyyY0qP6iGypsWLF4vY2Fjh6+srnJycRMuWLcXDDz8s9u3b1+D3uHr1qnjkkUeEn5+f0Gg05tGaplGmy5Ytq/EaAOL111+v931No0z3799f4zmDwSCWLFkiOnToIHQ6nQgMDBR/+MMfxKVLl2rsu3btWhETEyNcXFyEr6+vGDNmjLmMwKS8vFw888wzomXLlubPkJ6eLn744QcxfPhw0apVK+Hi4iKCgoLEiBEjGlSWcv36dfGnP/1JRERECJ1OJ0JDQ8Xzzz8vCgoKqu1nyShTo9Eoli5dKtq1ayfc3NxEXFyc2Lp1a52jTNevX1/t9aafySeffFLt+LePMk1OThb9+vUTHh4eAkC19zYZNGiQ8Pf3F2VlZQ2KndRPI8TNiylERAQAyM3NRUREBP7v//4PS5cuVTocshF2mRIR3ZSRkYFz585h2bJl0Gq1NeZAJcfGQTVERDetXbsWgwYNwvHjx/Gf//wHrVq1UjoksiF2mRIREYEtRCIiIgBMiERERACYEImIiABwlOkdGY1GXL58Gd7e3g61aCsRUXMhhEBJSQnCwsKg1dbdDmRCvIPLly8jPDxc6TCIiOguXbp0Ca1bt67zeSbEO/D29gYgT6SPj49Nj63X67FlyxYkJCRAp9PZ9NhqxXNmOZ4zy/GcWU7Jc1ZcXIzw8HDz7/O6MCHegamb1MfHR5GE6OHhAR8fH/6nayCeM8vxnFmO58xy9nDO7nTZi4NqiIiIwIRIREQEgAmRiIgIABMiERERACZEIiIiAEyIREREAJgQiYiIADAhEhERAWBCJCIiAsCESEREBIAJkYiICAATIhEREQAmRCIiIgBMiERERACYEImIiAAwIRIREQFgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJqJl6+OGH0aJFCzzyyCNKh0J2ggmRiJqlmTNn4l//+pfSYZAdUVVC3LlzJ0aPHo2wsDBoNBp8++23d3zNjh070LNnT7i5uaFdu3b44IMPrB8oEdm9Bx54AN7e3kqHQXZEVQmxtLQU3bp1w6pVqxq0f3p6OkaMGIEBAwbg8OHD+POf/4yZM2diw4YNVo6UiIjUxlnpACwxfPhwDB8+vMH7f/DBB2jTpg1WrFgBAOjcuTMOHDiAt956C7///e+tFCUREamRqhKipZKSkpCQkFBt27Bhw/Dxxx9Dr9dDp9PVeE15eTnKy8vNj4uLiwEAer0eer3eugHfxnQ8Wx9XzXjOLOdI52zWrFk4cuQItm/fXuO5e++9F08//TTmzZtn3lZZWQmj0WjxZ3ekc2YrSp6zhh7ToRNidnY2goODq20LDg5GZWUl8vLyEBoaWuM1ixcvxsKFC2ts37JlCzw8PKwWa30SExMVOa6a8ZxZTu3n7NKlS/jwww+xaNEibN68ucbzAQEB+Pnnn9GtWzfztmPHjiE7O7vW/RtC7edMCUqcs7Kysgbt59AJEQA0Gk21x0KIWrebzJs3D3PmzDE/Li4uRnh4OBISEuDj42O9QGuh1+uRmJiIoUOH1tqapZp4ziznKOfsmWeeQVxcHF566aVan//yyy+RkZGBESNGAABGjhyJw4cPo7S0FC+88ALWr1+PuLi4Bh3LUc6ZLSl5zkw9fXfi0AkxJCQE2dnZ1bbl5ubC2dkZAQEBtb7G1dUVrq6uNbbrdDrFvvhKHluteM4sp7pzZjAAu3YBWVmoDArCpk2bMH/+fPNnmDZtGnr16oUpU6YAkIPyvLy8zM9v2bLlrkNQ3TmzA0qcs4YeT1WjTC3Vp0+fGs3zLVu2IC4ujl9iIjXbuBGIjAQeeACYMAFnH3wQJSUliL7ZEjAajVi/fj28vLzMLzl69Cg6d+4MAHB2dkZsbCxiY2PxzDPPKPEJyA6pqoV47do1nDlzxvw4PT0dycnJ8Pf3R5s2bTBv3jxkZmaai22fe+45rFq1CnPmzMHUqVORlJSEjz/+GF988YVSH4GI7tbGjcAjjwA3L38AQOHNf73+9jege3f87O6OgoICuLi4AAD27duHCxcuYOzYsQAAPz8/JCcn2zRssn+qSogHDhzAAw88YH5sutY3adIkrFu3DllZWbh48aL5+bZt22Lz5s2YPXs23nvvPYSFheHdd99lyQWRWhkMwKxZ1ZIhAEQA0AD4AoDn9Ol4yd8fI0aMwHfffYfIyEhMmzYNgwcPxsCBA5WImlRCVQlx0KBB5kExtVm3bl2NbfHx8Th06JAVoyIim9m1C8jIqLE5BMAiAH8HsCEnB3+bOBG9Jk7EmDFjsH79eowePRrvv/++ef/i4mL07NkT7u7uWLRoEeLj4232Ech+qSohElEzl5VV51Pzbt4AAD16ADExSE9Pr3Xf8+fPIywsDCkpKRg5ciSOHTtm81HkZH8celANETmYWmqHG7NfWFgYACAqKgpdunTBqVOn7jYycgBMiESkHgMGAK1bA3XUEUOjAcLD5X51KCgoMM9GlZGRgdTUVLRr184a0ZLKsMuUiNTDyQlYuVKOMr2dKUmuWCH3q0NaWhqmTZsGrVYLjUaDlStXwt/f3zrxkqowIRKRuowbB3z9NfD880Be3q3trVvLZDhuXL0v79u3L44dO2bdGEmVmBCJSH369QPWrgXOnJHXC8PCZDdpPS1DojthQiQi9cnKkslv+HCgSxeloyEHwUE1RKQuBgOQmyvvN3TUKVEDMCESkbrk5QGVlYCrK+Dnp3Q05ECYEIlIXUzF+aGhdZdfEDUCEyIRqYfRCOTkyPshIcrGQg6HCZGI1CM/H9DrARcXoI41TYkaiwmRiNTD1F0aEsLuUmpyTIhEpA5CANnZ8j5Hl5IVMCESkTpcvQpUVAA6HbtLySqYEIlIHUzdpcHBgJa/uqjp8VtFRPaP3aVkA0yIRGT/CguBGzfkdG2BgUpHQw6KCZGI7F/V7lJO4E1WwoRIRPZNiOqz0xBZCRMiEdm34mLg+nU5kKZlS6WjIQfGhEhE9s3UOgwKApy5Yh1ZDxMiEdkvdpeSDTEhEpH9unYNKC2V3aVBQUpHQw6OCZGI7JepdRgYKGeoIbIiJkQisl/sLiUbYkIkIvt07RpQUiJXtQgOVjoaagaYEInIPpmmagsIkOsfElkZEyIR2Sd2l5KNMSESkf0pKwOKiuT9kBBlY6FmgwmRiOyPqbvU3x9wdVU2Fmo2mBCJyP6wu5QUwIRIRPblxg2goEDeZ3cp2RATIhHZF1N3qZ8f4O6uaCjUvDAhEpF9YXcpKYQJkYjsR3k5kJ8v7zMhko0xIRKR/TB1l/r6Ah4eysZCzQ4TIhHZD1NC5GAaUgATIhHZh4oKIC9P3md3KSmACZGI7ENurlwQ2Nsb8PJSOhpqhpgQicg+mEaXsruUFMKESETKq6wErlyR99ldSgphQiQi5eXkAEYj4Okpu0yJFMCESE3i0qVLGDRoELp06YKYmBisX79e6ZBITaqOLtVolI2Fmi1npQMgx+Ds7IwVK1YgNjYWubm56NGjB0aMGAFPT0+lQyN7ZzDIATUAu0tJUUyI1CRCQ0MRevOXWVBQEPz9/XH16lUmRLqz3FyZFN3dZUE+kULYZUpN7sCBAzAajQgPD1c6FFKDqnOXsruUFMQWIjWp/Px8PPXUU1i7dq3SoZAaVO0uZbkFKYwtRKrXjBkz0L9//1qfi4yMxKJFi8yPy8vL8fDDD2PevHno27evrUIkNcvLkyUXrq5AixZKR0PNHFuIVKfU1FSsXr0aO3furPX5zp07Izk5GQAghMDkyZMxePBgTJw40YZRkqpxdCnZEbYQqU7Lli3Dfffdh379+tX6vL+/P3JycgAAv/76K7766it8++23iI2NRWxsLI4dO2bLcEltjMZbCZGjS8kOsIVItxgMwK5dQFYWKoOCsGHDBsyfP9/89LRp09CrVy9MmTIFAFBSUmIeRdq/f38YjUZFwiaVys8H9HrAxQXw91c6GiK2EOmmjRuByEjggQeACRNw9sEHUVJSgujiYgCA0WjE+vXr4VVl0uWjR4+ic+fOAGQdoqll+MwzzyjxCUhtqs5dquWvIlIeW4gkk+Ejj8iVBm4qvPmv19/+BnTvjp/d3VFQUAAXFxcAwL59+3DhwgWMHTsWAODn52e+nkh0R0Jw7UOyO0yIzZ3BAMyaVS0ZAkAEAA2ALwB4Tp+Ol/z9MWLECHz33XeIjIzEtGnTMHjwYAwcOFCJqEntrl6V6x/qdEBgoNLREAFglynt2gVkZNTYHAJgEYDPAAzPycGckSOxePFi7NixA/3790fHjh2rzVdaXFyMnj17on///tixY4fNwieVMnWXBgezu5TsBluIzZ3pF1Mt5t28AQB69ABiYpCenl7rvufPn0dYWBhSUlIwcuRIHDt2DD4+Pk0eLjkAdpeSneKfZs1dQ4e732G/sLAwAEBUVBS6dOmCU6dO3W1k5KgKC4EbNwAnJ6BlS6WjITJjQmzuBgwAWreuvyg6KAjo2bPOpwsKClBeXg4AyMjIQGpqKtq1a9fUkZKjqNpd6uSkbCxEVTAhNndOTsDKlfL+7UnR9HjKFODXX4HLl2t9i7S0NMTFxaFbt24YNWoUVq5cCX/WlVFt2F1KdozXEAkYNw745hs52rTqAJvWrYElS4A2bYCCAuDQIeDKFaBrV8D51lenb9++nJWGGqa4GCgrkwNpgoKUjoaoGiZEksaNA8aMMc9Ug9BQ2Z3q5CSn2Dp9Wt4uXZJD5nv04Np1ZDlTd2lQULU/qojsAb+RdIuTEzBoUM3tWi3QsSMQEAAcPgyUlsou1M6d5ew2nJSZGkKI6msfEtkZXkOkhgsMBOLj5WAIoxE4fhzYvx+4OaCGqF7Xrsk/pthdSnaKCZEs4+ICxMUBUVHyF1tuLrBzp1zXjqg+ptZhYKCcoYbIzjAhkuU0GtlV2r8/4OUlW4h79wInTsiWI1Ft2F1Kdk51CfH9999H27Zt4ebmhp49e2LXrl117rt9+3ZoNJoatxMnTtgwYgfm4yMH3rRpIx+fOQPs2SNHERJVVVoKlJTIP6aCg5WOhqhWqkqIX331FV588UW8+uqrOHz4MAYMGIDhw4fj4sWL9b7u5MmTyMrKMt/uvfdeG0XcDDg5ATExctSpTidnIdm5E8jMVDoysiem1mFAgOx2J7JDqkqIy5cvx5QpU/DMM8+gc+fOWLFiBcLDw7F69ep6XxcUFISQkBDzzYmzYzS9sDDZWmzRAqislKNRjxyR94nYXUoqoJqyi4qKChw8eBCvvPJKte0JCQnYs2dPva/t3r07bty4gS5duuAvf/kLHnjggTr3LS8vN09DBshVHABAr9dDr9ffxSewnOl4tj5uo+l0QFwctOfOQXv2LDSXLkHk56OyWzfZvWoDqjtndsDq5+z6deiKiiAAVAYEAA7ws+H3zHJKnrOGHlM1CTEvLw8GgwHBt11/CA4ORrZpKqjbhIaGYs2aNejZsyfKy8vx73//G0OGDMH27dvrXMdv8eLFWLhwYY3tW7ZsgYeHx91/kEZITExU5Lh3IwBAT60W7mVl0O7Zg1QhcO62NRetSY3nTGnWOmftNBpEa7XIFwK//vKLVY6hFH7PLKfEOStr4LgGjRA2/C11Fy5fvoxWrVphz5496NOnj3n7okWL8O9//7vBA2VGjx4NjUaD//73v7U+X1sLMTw8HHl5eTZfzkiv1yMxMRFDhw6FTo3D1Csq4HT8OLS5uQAAY2AgDNHRVr2GpPpzpgBrnzOn336DtrAQhk6dYIyIaPL3VwK/Z5ZT8pwVFxcjMDAQRUVF9f4eV00LMTAwEE5OTjVag7m5uTVajfXp3bs3Pvvsszqfd3V1haura43tOp1OsS++kse+KzodcN99wIULQGoqtHl50O7ZA8TGWn3ZH9WeMwVZ5ZzduCEHWgFwatUKTg72M+H3zHJKnLOGHk81g2pcXFzQs2fPGs3txMRE9O3bt8Hvc/jwYYTywr7tVK1Z9PaWNYu//QakpbFmsTkw/QHr5we4uysaCtGdqKaFCABz5szBxIkTERcXhz59+mDNmjW4ePEinnvuOQDAvHnzkJmZiX/9618AgBUrViAyMhJdu3ZFRUUFPvvsM2zYsAEbNmxQ8mM0Tz4+MimmpsoW49mzQH4+0L074OmpdHRkLRxdSiqiqoT42GOPIT8/H2+88QaysrIQFRWFzZs3I+LmdYmsrKxqNYkVFRV4+eWXkZmZCXd3d3Tt2hU//vgjRowYodRHaN6cnIDoaDl119Gjsitt1y65rVUrpaOjplZeLv/oAZgQSRVUlRABYPr06Zg+fXqtz61bt67a47lz52Lu3Lk2iIosEhoqu9AOH5ZLSR0+LNdZjIrikkCOJCdH/uvjAyg0QpvIEqq5hkgOxt0d6N0b6NBBPs7IkK3FmwMwyAGwu5RUhgmRlKPVyoTYpw/g5nZrncVz5+TaeaReev2tFVCYEEklmBBJeQEBwMCBQEiITISpqcC+fVxnUc1ycuTP0ttbrohCpAJMiGQfXFyAnj3lAButVl5T3LlT/kvqY+ouDQlRNg4iCzAhkv3QaICICDlJeNWaxdRU1iyqSWXlrT9k2F1KKsKESPbH21vWLJqm+Tp3Tl5bLC1VNi5qmNxc+QeMh4f8WRKpBBMi2SdTzWJcnJwCrqhIdqFmZCgdGd1J1dGlGo2ysRBZgAmR7FtIiBxw4+8PGAxAcrKsW+Q6i/bJYJAtRIDdpaQ6TIhk/9zdZWmGqWYxM1O2FlmzaH+uXJFJ0d0d8PVVOhoiizAhkjpoNDIh9u0rf9mWlcnrimfPsmbRnlQdXcruUlIZJkRSF39/OQrVVLOYliZrFm/cUDoyMhhuTdfG7lJSISZEUp+6ahZN165IGXl58tquqyvQooXS0RBZjDMpkzqZahb9/YFDh4CSEmDfPmgjI8GOOoWY1j5kdympFFuIpG6mmsXISACA0/nzGKjVsmbR1ozGWwmR3aWkUkyIpH5OTnLpqLg4CJ0OfhoNnJOSZM0iB9zYxtWrckJvFxfZaidSISZEchwhIajs2xdXhIDGVLOYnCx/UZN1mUaXBgfL67pEKsRvLjkWNzfsMRphuOceeR0rM1Ous1hQoHRkjksIdpeSQ2BCJIdkbN9eFvObahb37AHOnGEXqjVcvSonYnd2BgIDlY6GqNGYEMlx+fvLad9CQ2UiPHFCrp7BmsWmVXV0KbtLScX47SXHptMBPXoAMTFy8E1eHmsWm5IQXPuQHIbFCbFdu3bIz8+vsb2wsBDt2rVrkqCImpRGA7RpI8szfHyAigo5u83x43J2FWq8wkLZ4nZyAlq2VDoaorticUI8f/48DLX8EikvL0dmZmaTBEVkFd7eQL9+5ppFpKfL+VCvXVM0LFWrOrrUyUnZWIjuUoNnqvnvf/9rvv/zzz/Dt8pM9gaDAb/88gsiTb9oiOyVqWaxZUtZklFcLEehRkUBrVtzhhVLVB1dyu5ScgANTohjx4413580aVK153Q6HSIjI/H22283WWBEVhUcDMTHy7UV8/OBI0fknKjR0fK6I91ZcbEcwavVAkFBSkdDdNcanBCNRiMAoG3btjhw4AACAgKsFhSRTbi5Ab17yyWkTp4ELl+W18S6d+fk1A1hah0GBcmSCyKVs+gaol6vR2RkZK2DaohUSaMB7rmn+jqLrFlsGI4uJQdjUULU6XRISUmBhtdZyNG0aCFrFsPCWLPYECUlcjCSRiO7n4kcgMWjTJ966il8/PHH1oiFSFk6newu7dates2iadFbusXUOmzZktdcyWFY3PFfUVGBtWvXIjExEXFxcfD09Kz2/PLly5ssOCKb02iA8HDZYjx0SA4c2b8faNsW6NSJpQUmHF1KDsjihJiSkoIePXoAAE6dOlXtOXalksPw8pI1iydOyHrF9HQ5GrVHD/lcc1ZaKv9Q0GiYEMmhWJwQt23bZo04iOyPkxPQtaucsPrIkVs1i127ylZkc/0D0NRdGhAg1z8kchCcy5ToToKD5YCbwEA51dvRo7J+sbmus2hKiFzqiRxMo4qH9u/fj/Xr1+PixYuoqKio9tzGjRubJDAiu+LmBtx/f/WaxYIC2YXanGoWr18HiorkfY4uJQdjcQvxyy+/RL9+/ZCamopNmzZBr9cjNTUVW7durTadG5HDqVqz6OEhk8OePcDp082nZtHUOvT3l38kEDkQixPim2++iXfeeQc//PADXFxcsHLlSqSlpWH8+PFo06aNNWIksi8tWgADBtyqWTx5Eti7VyZIR8fRpeTALE6IZ8+exciRIwEArq6uKC0thUajwezZs7FmzZomD5DILt1es5if7/g1izduAFevyvu8fkgOyOKE6O/vj5KSEgBAq1atkJKSAkCuh1hWVta00RHZM1PN4oABcp1FvV7WLKakOOY6i6bWoZ+fnOaOyMFYnBAHDBiAxMREAMD48eMxa9YsTJ06FU888QSGDBnS5AES2T1TzaJpgezz54Hdu+X0Zo6Eo0vJwVk8ynTVqlW4cXN+x3nz5kGn02H37t0YN24c5s+f3+QBEqmCkxPQpYsszUhOlsnQtM6iI9QsVlTc6i7l9UNyUBYnRH9/f/N9rVaLuXPnYu7cuU0aFJFqBQXJmsXkZDkX6tGjcp3FmBh1z/mZnS0HEPn4ALdN10jkKBpVh2gwGLBp0yakpaVBo9Ggc+fOGDNmDJy5JhrRrZrFc+fk1G9ZWbfWWazyB6WqsLuUmoFGzWU6ZswYZGdno2PHjgDknKYtW7bEf//7X0RHRzd5kESqo9EA7dvL6c0OHZLrLCYlAR06yFpGNXWh6vWytQswIZJDs3hQzTPPPIOuXbsiIyMDhw4dwqFDh3Dp0iXExMTg2WeftUaMROrl5ydHobZqdatmMSlJXTWLOTkydi8vTmxODs3iFuKRI0dw4MABtKgyXVWLFi2waNEi3HfffU0aHJFDMNUstmwJHDsmB6fs3ClrGNUwQIXdpdRMWNxC7NixI3JqKT7Ozc3FPffc0yRBETmk1q1la9HXV3ZDHjggE6Q91yxWVspBQQATIjm8Rk3dNnPmTHzzzTfIyMhARkYGvvnmG7z44otYsmQJiouLzTcius3tNYsXLth3zWJuLmA0yrlbvb2VjobIqizuMh01ahQAWZRvWhBY3JzYePTo0ebHGo0GBnv+y5dIKVpt7TWLXbsCbdrY14Cbqt2l9hQXkRVwgWAipQQFAfHxMileuSK7T001i/aw8K7BIFuIALtLqVmwOCHGx8dbIw6i5snVFejV61bNYna2rFns0UP5msUrV2RSdHeX1z2JHJzF1xCJqImZahb79ZPX6m7ckOssnjql7DqLpu7SkBB2l1KzwIRIZC/8/OS0b61by8enTilXs2g03lrKit2l1EwwIRLZE2dnIDZW3pycbtUsmlprtpKXJ0suXF3lgshEzQATIpE9at1athZNNYsHD9q2ZpHdpdQMWZwQFyxYgAsXLlgjFiKqytNTXlds314+NtUsWrvG12i8tRgwu0upGbE4IX7//fdo3749hgwZgs8//9y8NiIRWYFWC3TuLFfPcHWVNYu7d8tFiK014ObqVdkq1emUH+lKZEMWJ8SDBw/i0KFDiImJwezZsxEaGornn38e+/fvt0Z8RATIeVAHDpT/Go1ASorsRq2oaPpjVe0u1fKqCjUfjfq2x8TE4J133kFmZib++c9/IjMzE/369UN0dDRWrlyJoqKipo6TiEw1i126yOt62dlywE1+ftMdQwh2l5LdcXZ2RmxsLGJjY/HMM89Y7Th39eef0WhERUUFysvLIYSAv78/Vq9ejfDwcHz11VdNFSMRmWg0ch7U/v3lNcYbN2RpxsmTsuV4twoKgPJyOdo1MPDu34+oCfj5+SE5ORnJyclYu3at1Y7TqIR48OBBzJgxA6GhoZg9eza6d++OtLQ07NixAydOnMDrr7+OmTNnNnWsRGTi6ytXzjDVLJ4+Dezde/c1i6bu0uBgdpdSs2PxNz4mJga9e/dGeno6Pv74Y1y6dAl///vfqy399NRTT+GKackYIrIOU81i9+7y/t3WLArBtQ/JLhUXF6Nnz57o378/duzYYbXjWDyX6aOPPoqnn34arVq1qnOfli1bwtgU3TdEdGetWslZbg4flvOgHjwoV83o2lUW9zeQpqhIdsE6OcnBO0R24vz58wgLC0NKSgpGjhyJY8eOwcfHp8mPY1ELUa/X45NPPuGgGSJ74+kJ9O17q2bx4kW5pJQFNYsa01RtQUEWJVKixpgxYwb69+9f63ORkZFYtGiR+XFYWBgAICoqCl26dMGpU6esEpNFLUSdTofy8nLzOohEZEdMNYumdRavXZM1i126ABERd5xxRsu5S8lGUlNTsXr1auzcubPW5zt37ozk5GQAQEFBATw8PODq6oqMjAykpqainWmB7SZm8TXE//u//8OSJUtQWVlpjXiI6G6ZahaDgm7VLB44UG/Nog8AzfXrMqkGBdkuVmqWli1bhvvuuw/9+vWr9Xl/f3/k3PwDLS0tDXFxcejWrRtGjRqFlStXwt9KE0ZYfA3xt99+wy+//IItW7YgOjoanp6e1Z7fuHFjkwVHRI3k6grcdx+Qni7XWczJkQNuuncHAgJq7B5maj22bCkH6BBZSWVlJTZs2ID58+ebt02bNg29evXClClTAAAlJSXm3NK3b18cO3bMJrFZ/M338/PD73//e2vEQkRNyVSzGBAAHDoElJbKmsV775W3KmUV5oTI7lKyBoMBmh070GrnTpy7ehUlJSWIjo4GIOvZ169fj8GDB5t3P3r0KMaNGwdAFuVHRUUBAOLi4qxah2hxQvzkk0+sEUeDvf/++1i2bBmysrLQtWtXrFixAgMGDKhz/x07dmDOnDk4fvw4wsLCMHfuXDz33HM2jJhIYaaaxePHgUuXZM1iXp5sLXp4ANeuwVujgdBooAkOVjpacjQbNwKzZsE5IwNxAH67udnr4EHgoYfw888/o6CgAC4uLgCAffv24cKFCxg7diyAW0X5tqCqvpGvvvoKL774It5//33069cPH374IYYPH47U1FS0adOmxv7p6ekYMWIEpk6dis8++wy//vorpk+fjpYtW7KVS82LszPQrZsccHPsmJyRZudOICYG2psjUUVAADQ6ncKBkkPZuBF45JFqE9FHANAA+OIvf4Gnqyte+uc/MWLECHz33XeIjIzEtGnTMHjwYAwcONDm4WqEsHzK/G+++QZff/01Ll68iIrbLtQfOnSoyYK73f33348ePXpg9erV5m2dO3fG2LFjsXjx4hr7/+lPf8J///tfpKWlmbc999xzOHLkCJKSkhp0zOLiYvj6+qKoqMgqdS/10ev12Lx5M0aMGAEdf1E1CM9ZA5SVyS7UwkIAgNBqoTEaUdm5M5wjIpSNTSX0ej1+3rIFwxIS+D2ri8EA3HMPkJFR46nFAP4OwF2rxd9Wr0av3r0xZswY5ObmYvTo0Xj//ffNA2dcXFwQHR0Nd3d3LFq0CPHx8RaH0tDf4xa3EN999128+uqrmDRpEr777jv88Y9/xNmzZ7F//3688MILFgfaUBUVFTh48CBeeeWVatsTEhKwZ8+eWl+TlJSEhISEatuGDRuGjz/+GHq9vtYvcnl5OcrLy82Pi2/+9azX66HX6+/2Y1jEdDxbH1fNeM4aQKcD7rsP2jNnoE1Ph+bmJBrOaWlAlT8eqW46AKOcnIBfflE6FPt17FityRAA5t28wWhEZbt2EJ0716gtNP0fPn36tLkof+zYsTh06JDFjZOG/j6wOCG+//77WLNmDZ544gl8+umnmDt3Ltq1a4fXXnsNV69etfTtGiwvLw8GgwHBt13jCA4ORrZpdv7bZGdn17p/ZWUl8vLyEFrLAILFixdj4cKFNbZv2bIFHh4ed/EJGi8xMVGR46oZz1n9dABitdpbg2mImloD80Hy//6HzNLS+ve5eQ0xMDAQ69atqzZVaEOUlZU1aD+LE+LFixfRt29fAIC7uztKSkoAABMnTkTv3r2xatUqS9/SIrdPCiCEqHeigNr2r227ybx58zBnzhzz4+LiYoSHhyMhIUGRLtPExEQMHTqU3TINxHN2Z5qCAjgdPQrNjRsQAISLC7QVFaho3x6ayEilw1MFfWUltm7disGDB0PHMpVaaXQ6OL/11h33ix0+HN3q6Aa9vSg/Ly8Pf/jDHyyuQyxu4IxNFv8kQ0JCkJ+fj4iICERERGDv3r3o1q0b0tPT0YjLkQ0WGBgIJyenGq3B3NzcGq3AqrHWtr+zszMCaqnFAgBXV1e4urrW2K7T6RT7BavksdWK56wWRiNw5gxg6pry9ISmRw8Yr1wBTpyAc34+tJ07KxujWuj1MADQubnxe1aXBx+Uq7FkZlYbVGOm0QCtW8P5gQfqnCrwzJkzmDZtGrRaLTQaDVauXFnn7/v6NPRnZPFMNYMHD8b3338PAJgyZQpmz56NoUOH4rHHHsPDDz9s6ds1mIuLC3r27FmjKywxMdHcYr1dnz59auy/ZcsWxMXF8UtMzcv163J5KFMybN1almL4+sJ4c2YaTWGhnNybqCk4OQErV8r7t/fImR6vWFHvvLmmovwjR44gOTnZXIphLRa3ENesWWNeyeK5556Dv78/du/ejdGjR1u9vm/OnDmYOHEi4uLi0KdPH6xZswYXL140H3fevHnIzMzEv/71L3N8q1atwpw5czB16lQkJSXh448/xhdffGHVOInsSlYWcPQooNfL8ovoaLlChom7OwqEQAuNBsjOBthtSk1l3Djgm2+AWbOqD7Bp3Vomw5vF9/bC4oSo1WqhrTLDxfjx4zF+/PgmDaoujz32GPLz8/HGG28gKysLUVFR2Lx5MyJuDhXPysrCxYsXzfu3bdsWmzdvxuzZs/Hee+8hLCwM7777LmsQqXkwGIDUVODCBfnYz08W49823SIAXGZCJGsZNw4YMwaV27Yh+X//Q+zw4fV2kyqpUVeDCwsLsW/fPuTm5tZY9/Cpp55qksDqMn36dEyfPr3W59atW1djW3x8vFVrI4nsUnGxXB/x5qA3tG8PdOxYbbq2qi4Lga4AkJ8vJwG/OWsIUZNwcoKIj0dmaakcQGOHyRBoREL8/vvv8eSTT6K0tBTe3t7VRmtqNBqrJ0QiqocQskWYmioH0bi6ArGxd1zwtwyA8PaGpqREthJrmfmJyNFZPKjmpZdewtNPP42SkhIUFhaioKDAfLNmHSIR3UFFhVzmKSVFJsOgILkM1B2SoYnRNHovK8uKQRLZL4tbiJmZmZg5c6ZiRepEVIv8fNlFeuOGHMHXuTPQtu0dFwWuyhgcDKczZ+TE33q9nNGGqBmxuIU4bNgwHDhwwBqxEJGljEbg5Em5rNONG3LATP/+ctknS2eh8fKSNyHk+olEzYzFLcSRI0fi//2//4fU1FRER0fXqOf73e9+12TBEVE9yspkq7CgQD4ODwe6dr27BX5DQ+XyUFlZcmg8UTNi8f+cqVOnAgDeeOONGs9pNBoYDIa7j4qI6nf5spw8ua7awsYyJcQrV4DKyrtLrkQqY/G3/fYyCyKyIYNBLvRrqrf18wN69JAL/TYFb2/5XmVlQG4uEBbWNO9LpAIWX0MkIoUUFwO7dt1KhvfcA/Tt23TJEJDXHU2rwHC0KTUzDWohvvvuu3j22Wfh5uaGd999t959Z86c2SSBEdFNtdUWdu8OBAZa53ghIcDZs7KFaDDYbRE1UVNrUEJ855138OSTT8LNzQ3vvPNOnftpNBomRKKmVFEBHDlya9RnUJAstLfmTDJ+foCbmxy1euWKTJBEzUCDEmJ6enqt94nIivLygORkmZi0WllbGBlpeTmFpUzdpunpstuUCZGaCQ4hI7I3RqMc6Xn6tHzs5SW7SH19bReDKSHm5Mh46pgDlciRWJwQq64mX5VGo4GbmxvuuecejBkzxuIVjYkI1qktbIwWLeS1yvJy2VK9uWYikSOz+H/Z4cOHcejQIRgMBnTs2BFCCJw+fRpOTk7o1KkT3n//fbz00kvYvXs3unTpYo2YiRzT5cty3UJT/V9MjHJlDxqN7Cq9cEF2mzIhUjNgcT/ImDFj8OCDD+Ly5cs4ePAgDh06hMzMTAwdOhRPPPEEMjMzMXDgQMyePdsa8RI5nspKOXDm0CF5v0ULOSm30jWApvKL7GzZbUrk4CxuIS5btgyJiYnw8fExb/Px8cGCBQuQkJCAWbNm4bXXXkNCQkKTBkrkkIqLZSK8dk0+vvdeebOHa3b+/nKCb70euHrVemUeRHbC4v91RUVFyM3NrbH9ypUrKC4uBgD4+fmhoqLi7qMjclRCyEEru3fLZOjqCvTuXe8ivjan1d4aYcoifWoGGtVl+vTTT2PTpk3IyMhAZmYmNm3ahClTpmDs2LEAgH379qFDhw5NHSuRY6ioAPbvl1OwGY1AcDAQH2+fLbCq3aZCKBsLkZVZ3GX64YcfYvbs2Xj88cdRWVkp38TZGZMmTTIX7Xfq1Alr165t2kiJHEFenhxFWl4uW2BdugAREdavLWyswEA5wKe8XI585ehxcmAWJ0QvLy989NFHeOedd3Du3DkIIdC+fXt4eXmZ94mNjW3KGInUz2gETp0CzpyRj7285KTcVa7F2yWtVrZgMzNltykTIjmwRhc3eXl5ISYmpiljIXJMZWVy4ExhoXzcpo2sLVTLHKGhoTIhZmfLFq29tmaJ7lKjEuL+/fuxfv16XLx4scbgmY0bNzZJYEQOoWptoU4n1y1UupzCUi1byuR9/TpQVCTnOiVyQBYPqvnyyy/Rr18/pKamYtOmTdDr9UhNTcXWrVvha8uppYjsWW21hQMGqC8ZAjIZmgrzOdqUHJjFCfHNN9/EO++8gx9++AEuLi5YuXIl0tLSMH78eLRp08YaMRKpS1GRXLfw0iX5+N57gT59mnbdQlurukYiR5uSg7I4IZ49exYjR44EALi6uqK0tBQajQazZ8/GmjVrmjxAItUQAjh3Dvj1V6C0VC6h1KePfdUWNlZQkPwMZWVASYnS0RBZhcX/S/39/VFy8z9Eq1atkJKSAgAoLCxEWVlZ00ZHpBbl5bK20LSIb3CwnH4tIEDpyJqGs7O8lgiw25QclsWDagYMGIDExERER0dj/PjxmDVrFrZu3YrExEQMGTLEGjES2Te11RY2VmioXA4qK0u2eokcjMUJcdWqVbhx4wYAYN68edDpdNi9ezfGjRuH+fPnN3mARHbLaAROngTOnpWP1VJb2FjBwTLJX7smu029vZWOiKhJWZwQq65zqNVqMXfuXMydO7dJgyKye6WlslVoqi2MiJAtQ7XUFjaGTidnrrlyRdYkMiGSg2l0YX5ubi5yc3NhvG1ZGBbrk8PLzASOHbtVWxgTc2sUpqMLDZUJMStLjp4lciAWJ8SDBw9i0qRJSEtLg7ht+LVGo4HBYGiy4IjsSmUlkJICZGTIx/7+QPfugLu7snHZUkiI/GOguFi2kj09lY6IqMlYnBD/+Mc/okOHDvj4448RHBwMjaMNHCCqTVGRLLIvLZWPO3QA7rlH/eUUlnJxkX8I5OfLbtP27ZWOiKjJWJwQ09PTsXHjRtxzzz3WiIfIvpjWLUxLk/fd3GSr0FHKKRojNFQmxKwsJkRyKBb/eTtkyBAcOXLEGrEQ2ZfycmDfPllbKITsLnSk2sLGMi0aXFgo5zclchAWtxDXrl2LSZMmISUlBVFRUdDpdNWe/93vftdkwREp5soVIDn5Vm1h165ylQpeIpCtZH9/4OpV2Ups107piIiahMUJcc+ePdi9ezf+97//1XiOg2pI9W6vLfT2lrWFLDGoLiREJsTsbCZEchgWd5nOnDkTEydORFZWFoxGY7UbkyGpWmmpnIfUlAwjIoD+/ZkMa2MqM7l6Fbg5UQeR2lncQszPz8fs2bMRHBxsjXiIlJGRIcsJDAZZW9it261rZVSTuzvg6ytH3+bkyD8eiFTO4hbiuHHjsG3bNmvEQmR7lZXyWmFyskyG/v5y4AyT4Z1VXRKKyAFY3ELs0KED5s2bh927dyM6OrrGoJqZM2c2WXBEVlVYKGsLTau0dOggZ1/hwJmGCQ0FTpyQJRgVFbJGkUjFGjXK1MvLCzt27MCOHTuqPafRaJgQyf6Z1i08cULed3eXtYVV5umlBvD0lBOZFxfLwTVcIJxUrlGF+USqdeMGcOSILKsAZNdoTAxbN40VEsKESA6j0ZN7E6lObq68VlhRwdrCphIaCpw6Jf/A0OvlgCQilWpQQpwzZw7++te/wtPTE3PmzKl33+XLlzdJYERNxmiU3aPnzsnHrC1sOt7ech3Ia9fkaNPWrZWOiKjRGpQQDx8+DL1eb75fF070TXbn2jW5bmFRkXwcGQl07uzY6xbaWmgocPq07DZlQiQVa1BCrFpmwZILUg3WFtpGSIhMiLm5sozFmVdiSJ34zSWH4wzA6ejRW/VxAQFAbGzzWrfQlnx8AA8PWb6SmwuEhSkdEVGjNLPF3MjRaYqKEK/VQpuVJQfLdOwI9O7NZGhNGs2tlnd2trKxEN0FthDJMQgBnD0Lp5Mn4aXRQLi5QdOjB2sLbSU0VA5aysmRXdS8RksqxBYiqd+NG8BvvwEnTkAjBDKNRlT27ctkaEt+fnJZKIPhVo0nkcowIZK65eYCO3cCeXmAkxMqu3bFASFYD2drGg3nNiXVY0IkdTIYgOPH5Yr2FRVyYEf//hAc9q8c03XEnBxZ+0mkMryGSOpTX23hzXpZUoC/P+DqCpSXyxZ7UJDSERFZhAmR1EMIWVuYknKrtjA2FuDanPbBNNr0wgXZbcqESCrDhEjqoNfLIvvLl+XjgAC5QoWbm7JxUXWmhGjqNtXyqgypBxMi2b+CAtlFWlZ2q7awfXtOym2PAgJky72iArh6FQgMVDoiogZjQiT7dbO2ECdP3lq3sEcPoEULpSOjumi1spV46ZLsNmVCJBVhfwbZpyq1hRBCTgc2cCCToRpUnbVGCGVjIbIAW4hkf3Jy5CK+FRVy5GhUlFxFgV2k6hAYKCf4Li+X3d2cIIFUggmR7IfBIFuE6enysY+P7CL18lI2LrKMk5Mc+ZuZKbtNmRBJJdhlSvbh2jXg119vJcO2bYF+/ZgM1YrdpqRCbCGSsoSQAzCOH5ctRBcXuW4hawvVLShIthSvX5cTKPj5KR0R0R0xIZJybq8tDAyUhfasLVQ/JyeZFLOy5I0JkVSAXaakjIICOSn35ctysEynTsD99zMZOpKqk32z25RUgC1Esi0hgDNngFOn5H0PDznjDMspHE9QkKxLLCsDSkrkICkiO8aESLZz/TqQnAzk58vHYWFAdDSXanJUzs5Ay5ayjCYriwmR7J5qukwLCgowceJE+Pr6wtfXFxMnTkRhYWG9r5k8eTI0Gk21W+/evW0TMFWXkyO7SPPz5fWlbt1ky5DJ0LGZuk2zs5WNg6gBVNNCnDBhAjIyMvDTTz8BAJ599llMnDgR33//fb2ve+ihh/DJJ5+YH7u4uFg1TrqNwQCkpQHnz8vHvr4yEbKconkIDpbXiEtKZGkNf+5kx1SRENPS0vDTTz9h7969uP/++wEAH330Efr06YOTJ0+iY8eOdb7W1dUVIaaaKLKtkhLg0CH5LwC0aycn5nZyUjYush2dTo4evnJFdpvee6/SERHVSRUJMSkpCb6+vuZkCAC9e/eGr68v9uzZU29C3L59O4KCguDn54f4+HgsWrQIQfWs01ZeXo7y8nLz4+LiYgCAXq+H3saLz5qOZ+vj3jUhoMnMhFNaGjRGI4SLCwxRURAtW8olgay4mrpqz5mCrH3ONEFBcL5yBeLyZVRGRlrlGLbG75nllDxnDT2mKhJidnZ2rUksKCgI2fVcmxg+fDgeffRRREREID09HfPnz8fgwYNx8OBBuLq61vqaxYsXY+HChTW2b9myBR4eHo3/EHchMTFRkeNa4vr165g/fz4MlZVwEQIvjR6NqcOGIVcIHLp+HeX799s0HjWcM3tjrXPmAuAhrRaakhJs37wZZVY5ijL4PbOcEuesrKxh3zqNEMoVCC1YsKDW5FPV/v37sWXLFnz66ac4efJktefuvfdeTJkyBa+88kqDjpeVlYWIiAh8+eWXGDduXK371NZCDA8PR15eHnxsPEpOr9cjMTERQ4cOhc7OB58YDAZUZGfD+8wZXC8sRNSMGdj73Xdo0b27TSflVtM5sxe2OGdO+/dDe/UqDB06wNi2rVWOYUv8nllOyXNWXFyMwMBAFBUV1ft7XNEW4owZM/D444/Xu09kZCSOHj2KnJycGs9duXIFwRZM8RUaGoqIiAicPn26zn1cXV1rbT3qdDrFvvhKHrtBhIDu/Hm43awtvOHsDINOB2379tApNIjJ7s+ZHbLqOQsLA65ehVNuLpw6dLDOMRTA75nllDhnDT2eogkxMDAQgQ1YQLRPnz4oKirCvn370KtXLwDAb7/9hqKiIvTt27fBx8vPz8elS5cQahoKTnfv+nW5mv3Vqyi8dg3xr72G0xkZWLZsWYN+ttRMhIQAKSlAYaH8zri7Kx0RUQ2qqEPs3LkzHnroIUydOhV79+7F3r17MXXqVIwaNaragJpOnTph06ZNAIBr167h5ZdfRlJSEs6fP4/t27dj9OjRCAwMxMMPP6zUR3Es2dmytvDqVcDJCX79++PIqVNIT0/H559/XmurnpopN7dbsxGxJpHslCoSIgD85z//QXR0NBISEpCQkICYmBj8+9//rrbPyZMnUVRUBABwcnLCsWPHMGbMGHTo0AGTJk1Chw4dkJSUBG9vbyU+girNmDED/fv3r77RYACOHUNkt25Y9NlnsrZwwAC5iC+A4OBgxMTEYOfOnQpETHar6tymRHZIFaNMAcDf3x+fffZZvftUHR/k7u6On3/+2dphObTU1FSsXr26emKrUlvYuXVrJOfmAv36IefKFbgbjfDx8UFxcTF27tyJ559/Xrngyf6EhACpqbJHobwcqGOkN5FSVJMQyfaWLVuG++67D/369ZMTcV+8KNctNBoBFxf4R0bi0pUrgFaLjIwMTJkyBUIICCEwY8YMxMTEKP0RyJ54eMjehKIi2W0aEaF0RETVMCHSLQYDsGsXkJWFyqAgbNiwAfPnzwcqKoCjRzHtL39Brw4dMOXJJ4HYWJSsWgVPT08AQM+ePZGcnKxs/GT/QkNlQszKYkIku6Oaa4hkZRs3ApGRwAMPABMm4OyDD6KkpATRNwfOGC9fxvpff4XXPfcAvXoBrq44evQoOnfuDABwdnZGbGwsYmNj8cwzzyj7Wch+ma4j5ufLP7SI7AhbiCST4SOPVFvEtfDmv17LlwOurvjZ2xsF167BJTwc0Giwb98+XLhwAWPHjgUA+Pn5sYVId+bpCXh7y2vROTlAeLjSERGZMSE2dwYDMGtWjRXNIwBoAHwBwPPDD/FSUBBGjBiB7777DpGRkZg2bRoGDx6MgQMHKhE1qVloqEyIWVlMiGRX2GXa3O3aBWRk1NgcAmARgM8ADL96FXNGjcLixYuxY8cO9O/fHx07dsT69evN+xcXF6Nnz57o378/duzYYbPwSYVM3aZ5eQAnxyY7whZic1dPTdi8mzcAQI8eQEwM0tPTa933/PnzCAsLQ0pKCkaOHIljx47ZfO5XUgkvL3m7dk12m96sXyVSGluIzV1Dp7G7w35hYWEAgKioKHTp0gWnTp2628jIUWk0siYR4Kw1ZFeYEJs70wwzda1IodHI6zwDBtT5FgUFBeYVQjIyMpCamop27dpZI1pyFKY/sHJzgcpKZWMhuokJsblzcgJWrpT3b0+KpscrVtS7yn1aWhri4uLQrVs3jBo1CitXroS/v7914iXH4OMjC/WNRpkUiewAryESMG4c8M03crRp1QE2rVvLZFjH2pEmffv2xbFjx6wbIzkWU7fpuXOy2/RmlzuRkpgQSRo3DhgzxjxTDUJDZTdpPS1DorsSGioTYk6OLP/hd40UxoRItzg5AYMGKR0FNRd+fnJZqBs3gCtXbg20IVIIryESkTI42pTsDBMiESnHNNo0J0cOsCFSEBMiESnH3x9wcZEz1uTlKR0NNXNMiESkHHabkh1hQiQiZZm6TbOz2W1KimJCJCJlBQQAOp1cH/HqVaWjoWaMCZGIlKXV3uo2rWeyeSJrY0IkIuVVvY5429qcRLbChEhEygsMBJydgfJyoKBA6WiomWJCJCLlOTkBQUHyPkebkkKYEInIPphGm2ZlsduUFMGESET2IShIthSvXweKipSOhpohJkQisg9Vu0052pQUwIRIRPaDo01JQUyIRGQ/goNlXWJpKVBSonQ01MwwIRKR/XB2Blq2lPfZbUo2xoRIRPal6tymRDbEhEhE9iUoSK6CUVICXLumdDTUjDAhEpF9cXGRM9cA7DYlm2JCJCL7wzUSSQFMiERkf0wJsagIKCtTNhZqNpgQicj+uLrKdRIBdpuSzTAhEpF9qjq3KZENMCESkX0ydZsWFsr5TYmsjAmRiOyTmxvQooW8z8E1ZANMiERkv9htSjbEhEhE9svUbXr1KlBermws5PCYEInIfnl4AL6+8j67TcnKmBCJyL6x25RshAmRiOybqds0Px+oqFA2FnJoTIhEZN+8vABvb7lgcE6O0tGQA2NCJCL7x25TsgEmRCKyf6Zu07w8QK9XNhZyWEyIRGT/vL0BT0/AaARyc5WOhhwUEyIR2T+Nht2mZHVMiESkDqaEmJsLVFYqGws5JCZEIlIHHx/A3V12m1650iRvWVZWhoiICLz88stN8n6kbkyIRKQOVug2XbRoEe6///4meS9SPyZEIlIPU0LMyQEMhrt6q9OnT+PEiRMYMWJEEwRGjoAJkYjUw89PLgtlMMgSjLvw8ssvY/HixU0TFzkEJkQiUg+N5lZN4l10m3733Xfo0KEDOnTo0ESBkSNgQiQidanabWo0VntqxowZ6N+/f60vi4yMxKJFiwAAe/fuxZdffonIyEi8/PLL+Oijj/DGG29YNWyyf85KB0BEZBF/f8DFRU70nZ8PtGwJAEhNTcXq1auxc+fOWl/WuXNnJCcnAwAWL15s7i5dt24dUlJS8Nprr9kkfLJfbCESkbrU0W26bNky3HfffejXr1+tL/P390cOJwenerCFSETqExoKpKcDP/8MpKSgMjgYGzZswPz58827TJs2Db169cKUKVMAACUlJfD09KzxVpMnT7ZV1GTnmBCJSH127ACef9480vQsgBIA0cXFAACj0Yj169dj8ODB5pccPXoU48aNAwA4OzsjKioKABAXF4e1a9faNHyyT0yIRKQuGzcC48fL9RFvKrz5r9ff/gZ0746f3d1RUFAAFxcXAMC+fftw4cIFjB07FgDg5+dnvp5IZMKESETqYTAAs2ZVS4YAEAFAA+ALAJ7Tp+Mlf3+MGDEC3333HSIjIzFt2jQMHjwYAwcOVCJqUgkOqiEi9di1C8jIqLE5BMAiAJ8BGJ6TgzkjR2Lx4sXYsWMH+vfvj44dO2L9+vXm/YuLi9GzZ0/0798fO3bssFn4ZN/YQiQi9ainGH/ezRsAoEcPICYG6enpte57/vx5hIWFISUlBSNHjsSxY8fg4+PT5OGSurCFSETqYSrKv8v9wsLCAABRUVHo0qULTp06dbeRkQNgQiQi9RgwAGjdWtYi1kajAcLD5X51KCgoQHl5OQAgIyMDqampaNeunTWiJZVhlykRqYeTE7ByJfDIIzL5VR1cY0qSK1bI/eqQlpaGadOmQavVQqPRYOXKlfD397du3KQKqmkhLlq0CH379oWHhwf8/Pwa9BohBBYsWICwsDC4u7tj0KBBOH78uHUDJSLrGjcO+OYboFWr6ttbt5bbb9Ya1qVv3744duwYjhw5guTkZHMpBpFqEmJFRQUeffRRPP/88w1+zdKlS7F8+XKsWrUK+/fvR0hICIYOHYqSkhIrRkpEVjduHHD+PLBtG/D55/Lf9PQ7JkOi+qimy3ThwoUA5ES8DSGEwIoVK/Dqq6+aZ6f49NNPERwcjM8//xzTpk2zVqhEZAtOTsCgQUpHQQ5ENQnRUunp6cjOzkZCQoJ5m6urK+Lj47Fnz546E2J5ebn5gjsg65UAQK/XQ6/XWzfo25iOZ+vjqhnPmeV4zizHc2Y5Jc9ZQ4/psAkxOzsbABAcHFxte3BwMC5cuFDn6xYvXmxujVa1ZcsWeHh4NG2QDZSYmKjIcdWM58xyPGeW4zmznBLnrKysrEH7KZoQFyxYUGvyqWr//v2Ii4tr9DE0tw3PFkLU2FbVvHnzMGfOHPPj4uJihIeHIyEhweaFu3q9HomJiRg6dCh0Op1Nj61WPGeW4zmzHM+Z5ZQ8Z6aevjtRNCHOmDEDjz/+eL37REZGNuq9Q26ul5adnY3QKkW6ubm5NVqNVbm6usLV1bXGdp1Op9gXX8ljqxXPmeV4zizHc2Y5Jc5ZQ4+naEIMDAxEYGCgVd67bdu2CAkJQWJiIrp37w5AjlTdsWMHlixZYpVjEhGReqmm7OLixYtITk7GxYsXYTAYkJycjOTkZFy7ds28T6dOnbBp0yYAsqv0xRdfxJtvvolNmzYhJSUFkydPhoeHByZMmKDUxyAiIjulmkE1r732Gj799FPzY1Orb9u2bRh0c+j1yZMnUVRUZN5n7ty5uH79OqZPn46CggLcf//92LJlC7y9vW0aOxER2T/VJMR169bdsQZR3LZGmkajwYIFC7BgwQLrBUZERA5BNV2mRERE1sSESEREBCZEIiIiAEyIREREAJgQiYiIADAhEhERAWBCJCIiAsCESEREBIAJkYiICAATIhEREQAmRCIiIgBMiERERACYEImIiAAwIRIREQFgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJiIgAMCESEREBYEIkIiICADgrHYC9E0IAAIqLi21+bL1ej7KyMhQXF0On09n8+GrEc2Y5njPL8ZxZTslzZvr9bfp9XhcmxDsoKSkBAISHhyscCRER3Y2SkhL4+vrW+bxG3CllNnNGoxGXL1+Gt7c3NBqNTY9dXFyM8PBwXLp0CT4+PjY9tlrxnFmO58xyPGeWU/KcCSFQUlKCsLAwaLV1XylkC/EOtFotWrdurWgMPj4+/E9nIZ4zy/GcWY7nzHJKnbP6WoYmHFRDREQEJkQiIiIATIh2zdXVFa+//jpcXV2VDkU1eM4sx3NmOZ4zy6nhnHFQDREREdhCJCIiAsCESEREBIAJkYiICAATIhEREQAmRLuyaNEi9O3bFx4eHvDz82vQa4QQWLBgAcLCwuDu7o5Bgwbh+PHj1g3UjhQUFGDixInw9fWFr68vJk6ciMLCwnpfM3nyZGg0mmq33r172yZghbz//vto27Yt3Nzc0LNnT+zatave/Xfs2IGePXvCzc0N7dq1wwcffGCjSO2HJeds+/btNb5TGo0GJ06csGHEytm5cydGjx6NsLAwaDQafPvtt3d8jT1+x5gQ7UhFRQUeffRRPP/88w1+zdKlS7F8+XKsWrUK+/fvR0hICIYOHWqeg9XRTZgwAcnJyfjpp5/w008/ITk5GRMnTrzj6x566CFkZWWZb5s3b7ZBtMr46quv8OKLL+LVV1/F4cOHMWDAAAwfPhwXL16sdf/09HSMGDECAwYMwOHDh/HnP/8ZM2fOxIYNG2wcuXIsPWcmJ0+erPa9uvfee20UsbJKS0vRrVs3rFq1qkH72+13TJDd+eSTT4Svr+8d9zMajSIkJET8/e9/N2+7ceOG8PX1FR988IEVI7QPqampAoDYu3eveVtSUpIAIE6cOFHn6yZNmiTGjBljgwjtQ69evcRzzz1XbVunTp3EK6+8Uuv+c+fOFZ06daq2bdq0aaJ3795Wi9HeWHrOtm3bJgCIgoICG0Rn3wCITZs21buPvX7H2EJUsfT0dGRnZyMhIcG8zdXVFfHx8dizZ4+CkdlGUlISfH19cf/995u39e7dG76+vnf8/Nu3b0dQUBA6dOiAqVOnIjc319rhKqKiogIHDx6s9h0BgISEhDrPUVJSUo39hw0bhgMHDkCv11stVnvRmHNm0r17d4SGhmLIkCHYtm2bNcNUNXv9jjEhqlh2djYAIDg4uNr24OBg83OOLDs7G0FBQTW2BwUF1fv5hw8fjv/85z/YunUr3n77bezfvx+DBw9GeXm5NcNVRF5eHgwGg0Xfkezs7Fr3r6ysRF5entVitReNOWehoaFYs2YNNmzYgI0bN6Jjx44YMmQIdu7caYuQVcdev2Nc7cLKFixYgIULF9a7z/79+xEXF9foY9y+LJUQwuZLVTWlhp4zoOZnB+78+R977DHz/aioKMTFxSEiIgI//vgjxo0b18io7Zul35Ha9q9tuyOz5Jx17NgRHTt2ND/u06cPLl26hLfeegsDBw60apxqZY/fMSZEK5sxYwYef/zxeveJjIxs1HuHhIQAkH9thYaGmrfn5ubW+OtLTRp6zo4ePYqcnJwaz125csWizx8aGoqIiAicPn3a4ljtXWBgIJycnGq0bOr7joSEhNS6v7OzMwICAqwWq71ozDmrTe/evfHZZ581dXgOwV6/Y0yIVhYYGIjAwECrvHfbtm0REhKCxMREdO/eHYC8/rFjxw4sWbLEKse0hYaesz59+qCoqAj79u1Dr169AAC//fYbioqK0Ldv3wYfLz8/H5cuXar2R4WjcHFxQc+ePZGYmIiHH37YvD0xMRFjxoyp9TV9+vTB999/X23bli1bEBcXB51OZ9V47UFjzlltDh8+7JDfqaZgt98xJUf0UHUXLlwQhw8fFgsXLhReXl7i8OHD4vDhw6KkpMS8T8eOHcXGjRvNj//+978LX19fsXHjRnHs2DHxxBNPiNDQUFFcXKzER7C5hx56SMTExIikpCSRlJQkoqOjxahRo6rtU/WclZSUiJdeekns2bNHpKeni23btok+ffqIVq1aOew5+/LLL4VOpxMff/yxSE1NFS+++KLw9PQU58+fF0II8corr4iJEyea9z937pzw8PAQs2fPFqmpqeLjjz8WOp1OfPPNN0p9BJuz9Jy98847YtOmTeLUqVMiJSVFvPLKKwKA2LBhg1IfwaZKSkrMv68AiOXLl4vDhw+LCxcuCCHU8x1jQrQjkyZNEgBq3LZt22beB4D45JNPzI+NRqN4/fXXRUhIiHB1dRUDBw4Ux44ds33wCsnPzxdPPvmk8Pb2Ft7e3uLJJ5+sMfS96jkrKysTCQkJomXLlkKn04k2bdqISZMmiYsXL9o+eBt67733REREhHBxcRE9evQQO3bsMD83adIkER8fX23/7du3i+7duwsXFxcRGRkpVq9ebeOIlWfJOVuyZIlo3769cHNzEy1atBD9+/cXP/74owJRK8NUdnL7bdKkSUII9XzHuPwTERERWHZBREQEgAmRiIgIABMiERERACZEIiIiAEyIREREAJgQiYiIADAhEhERAWBCJGo2zp8/D41Gg+TkZKVDIbJLTIhEZBOTJ0/G2LFjlQ6DqE5MiER2rqKiQukQ7orBYIDRaFQ6DKI7YkIksjODBg3CjBkzMGfOHAQGBmLo0KEAgNTUVIwYMQJeXl4IDg7GxIkTqy2m+tNPP6F///7w8/NDQEAARo0ahbNnz1p07MjISPz1r3/FhAkT4OXlhbCwMPzjH/+ots/y5csRHR0NT09PhIeHY/r06bh27Zr5+XXr1sHPzw8//PADunTpAldXV/zxj3/Ep59+iu+++w4ajQYajQbbt29v/EkisgImRCI79Omnn8LZ2Rm//vorPvzwQ2RlZSE+Ph6xsbE4cOAAfvrpJ+Tk5GD8+PHm15SWlmLOnDnYv38/fvnlF2i1Wjz88MMWt86WLVuGmJgYHDp0CPPmzcPs2bORmJhofl6r1eLdd99FSkoKPv30U2zduhVz586t9h5lZWVYvHgx1q5di+PHj+Pdd9/F+PHj8dBDDyErKwtZWVkWLdFFZBNKzy5ORNXFx8eL2NjYatvmz58vEhISqm27dOmSACBOnjxZ6/vk5uYKAObVT9LT0wUAcfjw4TqPHRERIR566KFq2x577DExfPjwOl/z9ddfi4CAAPPjTz75RAAQycnJ1fabNGmSGDNmTJ3vQ6Q0thCJ7FBcXFy1xwcPHsS2bdvg5eVlvnXq1AkAzN2iZ8+exYQJE9CuXTv4+Pigbdu2AICLFy9adOw+ffrUeJyWlmZ+vG3bNgwdOhStWrWCt7c3nnrqKeTn56O0tNS8j4uLC2JiYiw6LpHSnJUOgIhq8vT0rPbYaDRi9OjRWLJkSY19Tauyjx49GuHh4fjoo48QFhYGo9GIqKioJhmUo9FoAAAXLlzAiBEj8Nxzz+Gvf/0r/P39sXv3bkyZMgV6vd68v7u7u/k1RGrBhEikAj169MCGDRsQGRkJZ+ea/23z8/ORlpaGDz/8EAMGDAAA7N69u1HH2rt3b43HptbogQMHUFlZibfffhtarexg+vrrrxv0vi4uLjAYDI2KicgW2GVKpAIvvPACrl69iieeeAL79u3DuXPnsGXLFjz99NMwGAxo0aIFAgICsGbNGpw5cwZbt27FnDlzGnWsX3/9FUuXLsWpU6fw3nvvYf369Zg1axYAoH379qisrMQ//vEPnDt3Dv/+97/xwQcfNOh9IyMjcfToUZw8eRJ5eXnVWpRE9oAJkUgFwsLC8Ouvv8JgMGDYsGGIiorCrFmz4OvrC61WC61Wiy+//BIHDx5EVFQUZs+ejWXLljXqWC+99BIOHjyI7t27469//SvefvttDBs2DAAQGxuL5cuXY8mSJYiKisJ//vMfLF68uEHvO3XqVHTs2BFxcXFo2bIlfv3110bFR2QtGiGEUDoIIrIPkZGRePHFF/Hiiy8qHQqRzbGFSEREBCZEIiIiAOwyJSIiAsAWIhEREQAmRCIiIgBMiERERACYEImIiAAwIRIREQFgQiQiIgLAhEhERASACZGIiAgAEyIREREA4P8DEvFf/JJetmwAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHFCAYAAABsA4m6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYYUlEQVR4nO3deVxU9f4/8NcAwwCyicgmCK6ICe7ljkuikGZZ2XZdbl2zzK+pdS3retNKvVrZcivNtGy5bebS7WYmv9xTExcqBXeURRBFBASFgfn8/vg4MyAIM8jMmeX1fDx4NHPmzJw3x9O8Oed83u+PSgghQERE5ORclA6AiIjIFjAhEhERgQmRiIgIABMiERERACZEIiIiAEyIREREAJgQiYiIADAhEhERAWBCJCIiAsCESE5i165dSEpKQvPmzeHp6YkOHTrg1VdfNem9X375Jd5+++1ay8+cOQOVSoU33nijiaNtehs3bsS8efMU2XZFRQWefPJJhIaGwtXVFd26dbPq9idNmoSoqKgayxYuXIgNGzZYNQ6yfUyI5PC+/PJLxMfHw8/PD5999hk2btyI559/HqZ2LbxZQrQnGzduxPz58xXZ9rJly/Dhhx/ipZdewq5du/D5559bdftz587F+vXrayxjQqS6uCkdAJEl5eTk4IknnsCUKVPwwQcfGJYPGTJEwahu7urVq/Dw8IBKpVI6lCZz+PBheHp6Ytq0aYpsv127dopsl+wPzxDJoa1cuRKlpaV4/vnnG/X+wYMH48cff8TZs2ehUqkMPzdaunQp2rRpA29vb/Tt2xd79+5t8LNXr14NlUqFzZs347HHHkPLli3h5eWF8vJy6HQ6LFmyBJ06dYJGo0FQUBAmTJiA7OzsWp/z8ccfo2vXrvDw8EBAQADuvfdepKenG16fNGkS3n//fQCo8TucOXMGALBmzRrccccd8PPzg5eXF9q2bYvHHnuswfivXbuGOXPmoE2bNnB3d0erVq3w9NNP4/Lly4Z1VCoVVq5ciatXrxq2u3r16pt+ZlRUFCZNmlRr+eDBgzF48GDD823btkGlUuGrr77CSy+9hLCwMPj6+uLOO+/EsWPHarz3xkumKpUKpaWl+PTTTw0xDR48GGfOnIGbmxsWLVpUa/s7duyASqXCmjVrGtwvZMcEkQMbOnSoCAgIEJs2bRJdu3YVrq6uomXLlmLKlCmiqKiowfcfOXJE9O/fX4SEhIg9e/YYfoQQIiMjQwAQUVFRYuTIkWLDhg1iw4YNIjY2VjRv3lxcvny53s/+5JNPBADRqlUr8cQTT4iffvpJfPfdd6KyslI88cQTAoCYNm2a2LRpk1i+fLlo2bKliIiIEBcuXDB8xsKFCwUA8fDDD4sff/xRfPbZZ6Jt27bCz89PHD9+XAghxMmTJ8X9998vANT4Ha5duyZ2794tVCqVeOihh8TGjRvFli1bxCeffCLGjx9fb+w6nU6MGDFCuLm5iblz54rNmzeLN954QzRr1kx0795dXLt2TQghxJ49e0RSUpLw9PQ0bDc/P/+mnxsZGSkmTpxYa3l8fLyIj483PN+6dath3z/66KPixx9/FF999ZVo3bq16NChg6isrDSsO3HiRBEZGWl4vmfPHuHp6SmSkpIMMR05ckQIIcS9994rWrduXeP9QgjxwAMPiLCwMKHVauvdL2TfmBDJoUVHRwsPDw/h4+MjFi5cKLZu3SqWLFkiPD09Rf/+/YVOp2vwM+66664aX6h6+oQYGxtb4wt03759AoD46quv6v1cfUKcMGFCjeXp6ekCgJg6dWqN5b/99psAIF588UUhhBCFhYWGL/bqMjMzhUajEY888ohh2dNPPy3q+vv3jTfeEAAaTN432rRpkwAglixZUmP5N998IwCIFStWGJZNnDhRNGvWzKTPNTch3vi7f/vtt4bEX337N/77NWvWrM7t6D93/fr1hmU5OTnCzc1NzJ8/36TfgewXL5mSQ9PpdLh27RpefPFFzJkzB4MHD8bf//53LFq0CL/++it++eUXw3qVlZWGn6qqKpO3cdddd8HV1dXwPC4uDgBw9uxZk95/33331Xi+detWAKh16fD2229HTEyMIeY9e/bg6tWrtdaLiIjA0KFDDevVp3fv3gCAcePG4dtvv0VOTo5JMW/ZsqXOGB944AE0a9bMpG03hbvvvrvGc3P3/Y0GDx6Mrl27Gi4xA8Dy5cuhUqnwxBNPND5QsgtMiOTQWrRoAQAYMWJEjeWJiYkAgIMHDwIAXnnlFajVasOPOQMx9NvQ02g0AOQAGVOEhobWeF5QUFDncgAICwszvG7qevUZNGgQNmzYgMrKSkyYMAHh4eHo0qULvvrqq3rfV1BQADc3N7Rs2bLGcpVKhZCQEJO23RRudd/XZfr06fjll19w7NgxaLVafPTRR7j//vsREhJyS7GS7WNCJIemP2O4kbhecuHiIv8XeOKJJ5CSkmL4+eGHH6wW442DdPRf8rm5ubXWPXfuHAIDA81aryFjxozBL7/8gqKiImzbtg3h4eF45JFHsGfPnpu+p0WLFqisrMSFCxdqLBdCIC8vz+Rt38jDwwPl5eW1ll+8eLFRn9cYjzzyCFq0aIH3338fa9asQV5eHp5++mmrbZ+Uw4RIDk1/OfKnn36qsXzjxo0AgD59+gCQZ1S9evUy/MTGxhrW1Wg0t3TGYa6hQ4cCAL744osay1NSUpCeno5hw4YBAPr27QtPT89a62VnZ2PLli2G9QDTzpw0Gg3i4+OxePFiAMChQ4duuq7+s2/c9tq1a1FaWlpj2+aIiorCH3/8UWPZ8ePHa40cvVX1/Zt6eHjgiSeewKeffoqlS5eiW7du6N+/f5Nun2wT6xDJoSUkJGD06NF45ZVXoNPp0KdPH+zfvx/z58/HqFGjMGDAgAY/IzY2FuvWrcOyZcvQs2dPuLi4oFevXhaLOTo6Gk888QT+/e9/w8XFBYmJiThz5gzmzp2LiIgIzJw5EwDg7++PuXPn4sUXX8SECRPw8MMPo6CgAPPnz4eHhwdefvnlGr8DACxevBiJiYlwdXVFXFwcXnvtNWRnZ2PYsGEIDw/H5cuX8c4770CtViM+Pv6mMQ4fPhwjRozA888/j+LiYvTv3x9//PEHXn75ZXTv3h3jx49v1O8+fvx4/OUvf8HUqVNx33334ezZs1iyZEmtS7O3KjY2Ftu2bcMPP/yA0NBQ+Pj4IDo62vD61KlTsWTJEhw4cAArV65s0m2TDVN6VA+RpZWVlYnnn39eRERECDc3N9G6dWsxZ84cQ2lAQy5duiTuv/9+4e/vL1QqlWG0pn6U6euvv17rPQDEyy+/XO/n6keZpqSk1HqtqqpKLF68WHTs2FGo1WoRGBgo/vKXv4isrKxa665cuVLExcUJd3d34efnJ8aMGWMoI9ArLy8Xf/vb30TLli0Nv0NGRob43//+JxITE0WrVq2Eu7u7CAoKEklJSWLnzp0N7perV6+K559/XkRGRgq1Wi1CQ0PFU089JQoLC2usZ84oU51OJ5YsWSLatm0rPDw8RK9evcSWLVtuOsp0zZo1Nd6v/zf55JNPamz/xlGmqampon///sLLy0sAqPHZeoMHDxYBAQGirKzMpNjJ/qmEMLF/FRGRk8jPz0dkZCT+7//+D0uWLFE6HLISXjIlIrouOzsbp0+fxuuvvw4XFxc888wzSodEVsRBNURE161cuRKDBw/GkSNH8J///AetWrVSOiSyIl4yJSIiAs8QiYiIADAhEhERAWBCJCIiAsBRpg3S6XQ4d+4cfHx8HGrSViIiZyGEQElJCcLCwgztGuvChNiAc+fOISIiQukwiIjoFmVlZSE8PPymrzMhNsDHxweA3JG+vr5W3bZWq8XmzZuRkJAAtVpt1W3bK+4z83GfmY/7zHxK7rPi4mJEREQYvs9vhgmxAfrLpL6+vookRC8vL/j6+vJ/OhNxn5mP+8x83Gfms4V91tBtLw6qISIiAhMiERERACZEIiIiAEyIREREAJgQiYiIADAhEhERAWBCJCIiAsCESEREBIAJkYiICAATIhEREQAmRCIiIgBMiERERACYEImIiAAwIRIREQFgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJiIgAMCESEREBYEIkIiICwIRIREQEwM4S4o4dOzB69GiEhYVBpVJhw4YNDb5n+/bt6NmzJzw8PNC2bVssX77c8oESEZHdsauEWFpaiq5du+K9994zaf2MjAwkJSVh4MCBOHToEF588UVMnz4da9eutXCkRERkb9yUDsAciYmJSExMNHn95cuXo3Xr1nj77bcBADExMdi/fz/eeOMN3HfffRaKkoiI7JFdJURz7dmzBwkJCTWWjRgxAqtWrYJWq4Vara71nvLycpSXlxueFxcXAwC0Wi20Wq1lA76BfnvW3q494z4zH/eZ+bjPzKfkPjN1mw6dEPPy8hAcHFxjWXBwMCorK3Hx4kWEhobWes+iRYswf/78Wss3b94MLy8vi8Van+TkZEW2a8+4z8zHfWY+7jPzKbHPysrKTFrPoRMiAKhUqhrPhRB1LtebM2cOZs2aZXheXFyMiIgIJCQkwNfX13KB1kGr1SI5ORnDhw+v82yWauM+Mx/3mfm4z8yn5D7TX+lriEMnxJCQEOTl5dVYlp+fDzc3N7Ro0aLO92g0Gmg0mlrL1Wq1Yge+ktu2V9xn5uM+Mx/3mfmU2Gembs+uRpmaq2/fvrVOzzdv3oxevXrxICYiohrsKiFeuXIFqampSE1NBSDLKlJTU5GZmQlAXu6cMGGCYf0nn3wSZ8+exaxZs5Ceno6PP/4Yq1atwnPPPadE+EREZMPs6pLp/v37MWTIEMNz/b2+iRMnYvXq1cjNzTUkRwBo06YNNm7ciJkzZ+L9999HWFgY3n33XZZcEBFRLXaVEAcPHmwYFFOX1atX11oWHx+PgwcPWjAqIiJyBHZ1yZTIUrKysjB48GB07twZcXFxWLNmjdIhkYO699570bx5c9x///1Kh0I3YEIkAuDm5oa3334baWlp+H//7/9h5syZKC0tVTosckDTp0/HZ599pnQYVAcmRCIAoaGh6NatGwAgKCgIAQEBuHTpkrJBkUMaMmQIfHx8lA6D6sCESHSD/fv3Q6fTISIiQulQiMiK7GpQDZGlFRQUYMKECVi5cqXSoRCRlfEMkRzatGnTMGDAgDpfi4qKwoIFCwzPy8vLce+992LOnDno16+ftUIkB2DOcUa2i2eI5LDS0tKwbNky7Nixo87XY2JiDE0ehBCYNGkShg4divHjx1sxSrJ35hxnZNt4hkgO6/XXX0fv3r3Rv3//Ol8PCAjA+fPnAQC//vorvvnmG2zYsAHdunVDt27d8Oeff1ozXLJT5hxngJyC7oEHHsDGjRsRHh6OlJQUa4VKDeAZIjmkyspKrF27FnPnzjUsmzJlCm6//XY8/vjjAICSkhI0a9YMADBgwADodDpFYiX7Ze5xBgA///yz1eMk0/AMkRxHVRVU27ej1Y4dOP311ygpKUFsbCwAQKfTYc2aNfD29jas/scffyAmJgaA7Is7ZMgQdO7cGbGxsaxBpJvjceaweIZIjmHdOuCZZ+CWnY1eAH67vtj7wAFg5Ej8/PPPKCwshLu7OwBg3759OHv2LO655x4AwKRJk/Daa69h4MCBuHTpUp1TgBHxOHNsTIhk/9atA+6/H6jW5zYSgArAV//4B5ppNHj244+RlJSE77//HlFRUZgyZQqGDh2KQYMG4ciRI1Cr1Rg4cCAAec+HqBYeZw6Pl0zJvlVVAc88U+NLCgBCACwA8AWAxOefx6wZM7Bo0SJs374dAwYMQHR0tKFf6YkTJ+Dt7Y27774bPXr0wMKFC63+a5CN43HmFHiGSPZt504gO7vOl+Zc/4FOB3TsCMTFISMjo9Z6Wq0WO3fuRGpqKoKCgjBy5Ej07t0bw4cPt2joZEd4nDkFniGSfcvNveX1wsPD0bt3b0RERECj0SApKYl1Y1QTjzOnwIRI9i009JbX6927N86fP4/CwkLodDrs2LHDMCqQCACPMyfBhEj2beBAIDwcUKnqfl2lAiIi5Ho34ebmhoULF2LQoEGIi4tDhw4dMGrUKAsFTHZp4ECgVaubv87jzCHwHiLZN1dX4J135Og/larWoAcAwNtvy/XqkZiYiMTERMvESPbP1RWYMQP4+99rv6b/Y4zHmd3jGSLZv7Fjge++q/0XfGAg8PLLwJgxysRFjqOgAOjUCZgzBwgLq/laeLg8/saOVSY2ajI8QyTHMHYsMGYMKrduRepPP6FbQgLchAAqK4GMDKB9e6UjJHslBHDkiHz80EPAq68aj7PERLgNGdLgmSHZByZEchyurhDx8cgpLUXXoUOB8+eB1FTgxAn5V7yHh9IRkj3KygKKiwE3NyA6uuZxFh/PZOhAeMmUHFerVoC/vyyqPnZM6WjIHmm1wNGj8nHHjgBbrTk0JkRyXCoVcNtt8nFWFnD5sqLhkB06cQKoqACaNQOiopSOhiyMCZEcW/PmxsE2R47UPQqVqC5Xrsj7z4D8w8qFX5eOjv/C5Pg6dZL3eQoLgXPnlI6G7EV6uvwDKihI/pDDY0Ikx+fpaRxlmp4uR54S1Sc/Xw7KUqmAzp2VjoashAmRnEPbtjIxXrsGnDqldDRky3Q6IC1NPo6KAqpN9kuOjQmRnIOrq/Ev/VOngLIyZeMh23X2rLx/6O4uR5aS02BCJOcREgK0aCHPANLTlY6GbFFFBXD8uHwcHQ2o1crGQ1bFhEjOo3oZRm6ubMdFVN2xY7L20NcXaN1a6WjIypgQyblU/6JjGQZVV1wsL5cC8g+nm82gQg6LCZGcT3S0bMNVXCwL9omq9ysNDZWX1snpMCGS89FojIMljh6Vl8jIueXlyUvoLi4AJ+11WkyI5Jz0w+krKmR7LnJeVVXGQVbt2gFeXsrGQ4phQiTn5OJiLMPIyJDD7Mk5ZWTIMhwPD5kQyWkxIZLz0rfkEsJYiE3O5do14xWCTp3kvWVyWkyI5Nw6d5ajCfPz5Q85l6NH5SVTf39jE3hyWkyI5Ny8vYE2beTjtDRZtE/OobAQyM6Wj1lmQWBCJAI6dJBtuq5cAc6cUToasobqZRbh4XKaMHJ6TIhEarWsTQSME8KSY8vJkRNGu7rKe4dEYEIkklq3ll1stFrZvoscV2WlscyiQwc5upQITIhEUvU+p2fPyi425JhOnQLKy2W9of7+MRGYEImMWrSQbbsA9jl1VGVlxvkwY2LkJVOi65gQiaqLiZFF+wUFsp0XOZb0dDmSuEULOR0YUTVMiETVeXkZu5Wkp8saNXIMBQVy2i+AZRZUJyZEohu1aycHWpSVybZeZP+ql1lERsoBVEQ3YEIkupGbm3Eo/okTsr0X2bfMTDlQqnqJDdENmBCJ6tKqlSzWrqqS7b3IflUvpenYUTZhIKoDEyJRXaqXYWRnyzZfZJ+OH5fNFry95eVSoptgQiS6GX9/2dYLYBmGvarejq9zZzmCmOgmeHQQ1adTJ1mrdvmybPdF9iUtTf4ho5/qi6geTIhE9fHwkO29AFmGUVmpbDxkuvPn5ZReKpVxMmiiejAhEjWkTRtZn1heDpw8qXQ0ZAqdzjjpc5s28v4hUQOYEIka4upqPMM4fVrWJ5JtO3MGKC2VI0r1Z/hEDWBCJDJFcDAQGCjPPPQzJZBtKi+XI0sBeQ9YrVY2HrIbTIhEpqh+Hyo3F7h4Udl46OaOHZP3en19gYgIpaMhO8KESGQqX19jHRvLMGxTUZHsSgOwXymZjQmRyBzR0fISXEmJ8YuXbEP1fqVhYXJGCyIzMCESmcPdXbb/AuSlOa1W2XjIKDcXuHRJFt/HxCgdDdkhJkQic0VGymH8FRXGwRukrKoq42Cndu0AT09l4yG7xIRIZC4XF2Of0zNnZHswUtbp08DVq7KRQvv2SkdDdooJkagxWraUpRjV71uRMq5eNTZMiImRdaNEjcCESNRYMTFyFOOFC7JNGCnj6FF5ybR5czmYhqiRmBCJGsvbW7YFA2SbMJ1O2XicUWGhsek6yyzoFjEhEt2KDh3kyNPSUuM0Q2Qd1S9XR0TI6bqIbgETItGtUKtlezBAjjgtL1c2HmeSkyOn5XJzk/WhRLfI7hLiBx98gDZt2sDDwwM9e/bEzp07b7rutm3boFKpav0cPXrUihGTw4uIAPz8ZLuwY8eUjsY5VFYayyzat5ejS4lukV0lxG+++QYzZszASy+9hEOHDmHgwIFITExEZgMdQ44dO4bc3FzDTwd2v6empFIZyzAyM2X7MLKskyfl2biXl/E+LtEtsquEuHTpUjz++OP429/+hpiYGLz99tuIiIjAsmXL6n1fUFAQQkJCDD+uHJZNTS0gwDjCkX1OLau0VNYdArLhOv9/pibipnQApqqoqMCBAwfwwgsv1FiekJCA3bt31/ve7t2749q1a+jcuTP+8Y9/YMiQITddt7y8HOXV7gMVFxcDALRaLbRWbtOl3561t2vPFN1n7dvDLS8PqkuXUJmdDRESYv0YGsHejjPXI0fgotNB16IFqgICFGmfZ2/7zBYouc9M3abdJMSLFy+iqqoKwcHBNZYHBwcjLy+vzveEhoZixYoV6NmzJ8rLy/H5559j2LBh2LZtGwYNGlTnexYtWoT58+fXWr5582Z4eXnd+i/SCMnJyYps154ptc+iVSp0cnFBRWoqftHpYE+FGPZwnAUC6O/qCp0Q2Jafj5KfflI0HnvYZ7ZGiX1WZuKk3ioh7OPazrlz59CqVSvs3r0bffv2NSxfsGABPv/8c5MHyowePRoqlQr//e9/63y9rjPEiIgIXLx4Eb6+vrf2S5hJq9UiOTkZw4cPh5qTnJpE8X1WVQW3XbugunYNVe3bQ9eunfVjMJPi+8xUOh3c9uyB6soVVLVuDZ2CDbztZp/ZECX3WXFxMQIDA1FUVFTv97jdnCEGBgbC1dW11tlgfn5+rbPG+vTp0wdffPHFTV/XaDTQaDS1lqvVasUOfCW3ba8U22dqtexgc+gQXDMy4BoZaTeNpm3+ONP3jVWr4dqpE1xtIFab32c2SIl9Zur27GZQjbu7O3r27FnrdDs5ORn9+vUz+XMOHTqE0NDQpg6PyCgsTLYRq6qSbcXo1lVUGEtaoqNlMwSiJmY3Z4gAMGvWLIwfPx69evVC3759sWLFCmRmZuLJJ58EAMyZMwc5OTn47LPPAABvv/02oqKicNttt6GiogJffPEF1q5di7Vr1yr5a5Cj05dh7Noli8ejomSCpMY7cUIOnvHxAVq3VjoaclB2lRAffPBBFBQU4JVXXkFubi66dOmCjRs3IjIyEgCQm5tboyaxoqICzz33HHJycuDp6YnbbrsNP/74I5KSkpT6FchZ+PvLgv2sLODwYWDAAPbZbKySEmNbvM6d5fRbRBZgVwkRAKZOnYqpU6fW+drq1atrPJ89ezZmz55thaiI6hAdLWdxLyoCsrNlgiTzCCEbpwshp9tq2VLpiMiB8U8tIkvx8JDNvwF5L7GyUtl47FF+vpxey8VFnh0SWRATIpElRUXJ9mLl5cZJbMk0Op08OwRke7ZmzZSNhxweEyKRJbm6Gs9sTp+WbcfINBkZcn9pNMYzbSILYkIksrTgYCAwUJ7x6GdooPqVl8uRpYCcXsvN7oY7kB1iQiSyNH0ZhkoF5OUBFy8qHZHt099z9fMDwsOVjoacBBMikTX4+ADXy4Nw5Ig8W6S6FRXJchXA+IcEkRUwIRJZS8eOsrVbSYmcN5FqE0L+wQDIjj8BAcrGQ06FCZHIWtzdZW0iINuQVVQoG48tys0FLl2SZRYKNu8m58SESGRNrVvLy6daLXD8uNLR2JaqKuOgo/bt7aYpOjkOJkQia3JxkffFAODsWXn5lKRTp4CrV2UitINps8jxMCESWVtgoCzFqN6WzNldvWpsXBATI+s3iayMCZFICfom1RcuyPZkzi49XY68DQgAOD0bKYQJkUgJzZrJdmQAyzAuXQLOnZOPWWZBCmJCJFJKhw6yLVlZmWxT5oyql1lERMhCfCKFMCESKcXNTbYlA2SbsvJyZeNRQna2LMSvvi+IFMKESKSk8HB5VlRZKduVOROt1vg768+WiRTEhEikJJUK6NJFPs7KkmdLzuLkSXlWXP1+KpGCmBCJlNa8uWxTBsj7ac5QhlFaarxvqh9xS6QwHoVEtkBfe3fpkmxf5ujS0uTI2pYtgaAgpaMhAsCESGQbqndnSUuTbcwc1YULwPnz8nJx584ssyCbYXZCbNu2LQoKCmotv3z5Mtq2bdskQRE5pXbtZGK8dk22MXNEOp1M+AAQFSX7uhLZCLMT4pkzZ1BVx1+v5eXlyMnJaZKgiJySq6txhoeTJ2U7M0eTmSn7t6rVcmQpkQ1xM3XF//73v4bHP//8M/yqFdBWVVXhl19+QVRUVJMGR+R0QkNl+7JLl2Q7sx49lI6o6VRUyGmvADkNlru7svEQ3cDkhHjPPfcYHk+cOLHGa2q1GlFRUXjzzTebLDAip6RSyfZlO3fKdmZRUY4zSe7x47L20MdHToNFZGNMToi6670W27Rpg/3796NFixYWC4rIqfn5yYSRmSnLMAYMsP+BJ8XFcrorQCZ8llmQDTLrqNRqtYiKiqpzUA0RNaHoaNnOrKhIFuzbs+rTXIWEyOmviGyQWQlRrVbj8OHDUNn7X6tEtk6jATp2lI+PHZOXGu3V+fPAxYvyrFA/aIjIBpl93WLChAlYtWqVJWIhouqiomRbs/Jy4+S59qaqylhm0bat/H2IbJTJ9xD1KioqsHLlSiQnJ6NXr15odsMBvnTp0iYLjsipubjIwvWUFOD0aTk9kre30lGZJyNDTm+l0QDt2ysdDVG9zE6Ihw8fRo/rQ8GPHz9e4zVeSiVqYkFBsr3ZhQuyDKN3b6UjMt21a3JaK0BeKnUz++uGyKrMPkK3bt1qiTiIqC769mY7dsh7cRcuyARpD44dk5dM/f2BVq2UjoaoQRz7TGTrfHzk/URAlmFcL4GyaZcvG0fH3nab/ZeNkFNo1DWMlJQUrFmzBpmZmaioqKjx2rp165okMCKqpkMHObv8lSuyns+W5w8UQiZuQJ4ZNm+ubDxEJjL7DPHrr79G//79kZaWhvXr10Or1SItLQ1btmyp0c6NiJqQuzvQqZN8fPy4bINmq86dAwoLZW9WfcxEdsDshLhw4UK89dZb+N///gd3d3e88847SE9Px7hx49Ca7ZiILKd1a3n5VKs19gS1NZWVcvAPIEeVenoqGw+RGcxOiKdOncJdd90FANBoNCgtLYVKpcLMmTOxYsWKJg+QiK7T9zkF5GXT4mJl46nLqVNydKmnp6w7JLIjZifEgIAAlJSUAABatWqFw4cPA5DzIZaVlTVtdERUU2CgbH8GGNuh2YqrV43zOHbuLC+ZEtkRsxPiwIEDkZycDAAYN24cnnnmGUyePBkPP/wwhg0b1uQBEtENOneWRfsXL8pSDFuRni5HwAYEGJM2kR0xe5Tpe++9h2vXrgEA5syZA7VajV27dmHs2LGYO3dukwdIRDfw8pKXI0+elGeJLVsqfzZWUCAH0wAssyC7ZXZCDKg2N5uLiwtmz56N2bNnN2lQRNSA9u1lnV9ZmWyPpmRbtOplFq1by+mriOxQo+oQq6qqsH79eqSnp0OlUiEmJgZjxoyBG1szEVmHm5tsh5aaKtujhYcDHh7KxJKVJQf4uLnJaauI7FSjepmOGTMGeXl5iL5+8B8/fhwtW7bEf//7X8TGxjZ5kERUh1atgDNnZFeYY8eArl2tH4NWCxw9Kh937CibeBPZKbMH1fztb3/DbbfdhuzsbBw8eBAHDx5EVlYW4uLi8MQTT1giRiKqS/UyjKwsmRit7cQJ2SSgWTNjezkiO2X2GeLvv/+O/fv3o3m1dkzNmzfHggUL0NueOvETOYLmzeWZYk6OvI/Xr5/1BrRcuSLvXwIyMbuwNTLZN7OP4OjoaJyvY6h3fn4+2nO+MyLr69RJjjItLDSO9LQGfR1kUJD8IbJzjWrdNn36dHz33XfIzs5GdnY2vvvuO8yYMQOLFy9GcXGx4YeIrMDT0zjKND1dtk+ztPx8+aOfnorIAZh9yXTUqFEAZFG+fkJgcb1bxujRow3PVSoVqqqqmipOIqpP27ZAZqaxW4wlR3vqdPLsEJCzbnh7W25bRFbECYKJHIGrqzxTO3BAJsSICFnAbwlnz8r7h+7ucloqIgdhdkKMj4+3RBxEdKtCQoAWLWTXmPR0oGfPpt9GRYWcfgqQZ6FqddNvg0ghHBZG5Ciql2Hk5srE2NSOHZO1h76+sisNkQNhQiRyJL6+QGSkfHzkSNPOhlFcLC+XAuxXSg6JCZHI0XTsKC9lFhfLgv2mUL1faWiovDRL5GCYEIkcjUZjHOxy9Ki8xHmr8vLkJVgXF9lDlcgBmZ0Q582bh7P6yyZEZJuiomQ5REWFbK92K6qq5CAdAGjXznKjV4kUZnZC/OGHH9CuXTsMGzYMX375pWFuRCKyIS4uxoL5jAxZJtFYGRlymikPD5kQiRyU2QnxwIEDOHjwIOLi4jBz5kyEhobiqaeeQkpKiiXiI6LG0rdUE8JYSG+ua9eMZ5idOskpnogcVKPuIcbFxeGtt95CTk4OPv74Y+Tk5KB///6IjY3FO++8g6KioqaOk8xQUlKC3r17o1u3boiNjcVHH32kdEiklM6d5WhQfas1cx09Ki+Z6puIEykgIyMDQ4YMQefOnREbG4vS0lKLbOeWBtXodDpUVFSgvLwcQggEBARg2bJliIiIwDfffNNUMZKZvLy8sH37dqSmpuK3337DokWLUGCJmjSyfd7esr0aIM8SdTrT31tYCGRny8cssyAFTZo0Ca+88grS0tKwfft2aCw072ajEuKBAwcwbdo0hIaGYubMmejevTvS09Oxfft2HD16FC+//DKmT5/e1LGSiVxdXeF1feDDtWvXUFVVZeg3S06oQwfZZu3KFTmhsCmql1mEhwP+/paKjqheR44cgVqtxsCBAwEAAQEBcLPQpXuzE2JcXBz69OmDjIwMrFq1CllZWfjXv/5VY+qnCRMm4MKFC00aKJnn8uXL6Nq1K8LDwzF79mwEBgYqHRIpRa02NvvWT+jbkJwcOeGwq6u8d0ikkBMnTsDb2xt33303evTogYULF1psW2YnxAceeABnzpzBjz/+iHvuuQeurq611mnZsiV05lyaoSbn7++P33//HRkZGfjyyy/rnMOSnEjr1rKLjVYr26/Vp7LSWGbRoYMcXUqkEK1Wi507d+L999/Hnj17kJycjOTkZItsy6yEqNVq8cknn3DQjEKmTZuGAQMG1PlaVFQUFixYUGt5cHAw4uLisGPHDkuHR7asep/Ts2dlF5ubOXUKKC+X9Yb6+49ETczU77Pw8HD07t0bERER0Gg0SEpKQmpqqkViMishqtVqlJeXG+ZBJOtJS0vDsmXLsHjx4jpfj4mJMRwk58+fN0zQXFxcjB07diDakvPjkX1o0UK2XQNu3ue0rEwmREB2pKnjChDRrTLn+6x37944f/48CgsLodPpsGPHDsRYqFuS2ZdM/+///g+LFy9GpTVm5SaD119/Hb1790b//v3rfD0gIMBwWTQ7OxuDBg1C165dMWDAAEybNg1xcXHWDJdsVUyMLNovKJDt2G6Uni5HorZoIaeTIrIAc77P3NzcsHDhQgwaNAhxcXHo0KGDYaL6pmb2UJ3ffvsNv/zyCzZv3ozY2Fg0a9asxuvr1q1rsuBIqqysxNq1azF37lzDsilTpuD222/H448/DkDWHur/LXr27GmxSwpk57y8ZLeZEydkGUZQkOEl1aVLctoogGUWZDHmfp8BQGJiIhITEy0em9lniP7+/rjvvvswYsQIhIWFwc/Pr8YPNZGqKqi2b0erHTtw+uuvUVJSgtjYWACy/nPNmjXw9vY2rP7HH38YLiNYq4iV7FS7dnKgzNWrsi3bda5Hj8oHkZFyAA5RU7GX7zNhZ95//30RFRUlNBqN6NGjh9ixY0e962/btk306NFDaDQa0aZNG7Fs2TKztldUVCQAiKKiolsJ2zxr1woRHi6EvMsj9gICgNj52mtCCCE2btwoAIh169YJIYT47bffBACxfft2IYQQgwYNMuyXgoICodVqrRe7wioqKsSGDRtERUWF0qHYtuxsIX74QYiNG0VFcbE49P338vmmTUKUlysdnc3jcWYGG/g+M/V73K4aE37zzTeYMWMGPvjgA/Tv3x8ffvghEhMTkZaWhtZ1zN6dkZGBpKQkTJ48GV988QV+/fVXTJ06FS1btsR9992nwG9ggnXrgPvvrzHgIRKACsBX//gHmmk0ePbjj5GUlITvv/8eUVFRmDJlCoYOHYpBgwbVWcRKVEtYmCzSLyyE67FjiNFfHu3YURbxEzUFO/s+UwlhfguT7777Dt9++y0yMzNRcUOR78GDB5ssuBvdcccd6NGjB5YtW2ZYFhMTg3vuuQeLFi2qtf7zzz+P//73v0jX11QBePLJJ/H7779jz549Jm2zuLgYfn5+KCoqgq+lLyNVVclpe/TtsqpZBOBfADxdXPDae+/h9jvuwJj77kN+fj5GjxqFD/79bwQEBGDD999j9WefQafTITs7G/ffdx9efOEFy8ZtQ7RaLX7evBkjEhKgVquVDse2FRUB1f4/EJ6eUA0cKAfdUL14nJmgqgpo377h77Nly3B7nz4YM2aM/D4bPRoffPCB/D7bsAGrV682fp/dfz9efPFFs0Mx9Xvc7DPEd999Fy+99BImTpyI77//Hn/9619x6tQppKSk4OmnnzY7UFNVVFTgwIEDeOGGL/eEhATs3r27zvfs2bMHCQkJNZaNGDECq1atglarrfNALi8vR3l5ueG5vnxBq9VC2xQTrdZDtX073Oo4eABgzvUf6HSyg8i5c8j497+NK+zbJ+NMScHOrVuR+s47CPL3x8iXX0ZvITC8e3eLxm4r1ABGuboCv/yidCh2R3X1KrB5s9Jh2AUeZyb48886kyFQ8/ussm1biJgYHD9+vMY6Wq0WV69exc6dO5GSkoKgoCCMGjUK3bt3x5133mlWKKZ+d5udED/44AOsWLECDz/8MD799FPMnj0bbdu2xT//+U9cunTJ3I8z2cWLF1FVVYXg4OAay4ODg5FX1/BxAHl5eXWuX1lZiYsXLyJUX5NVzaJFizB//vxayzdv3mzoD2oprXbsQC9TVqxnP4cHBqJ3hw6IaNkSAJDUqxdSMzKcJiESkY0wMR+k/vQTcm4yUCYzMxORkZH4888/AciC/W+++abWlcmGlJWVmbSe2QkxMzMT/fr1AwB4enqipKQEADB+/Hj06dMH7733nrkfaZYbmwIIIeptFFDX+nUt15szZw5mzZpleF5cXIyIiAgkJCRY/JKpqlkzYOnSBtervPNOiEGD6nytW3w88j7/HPk9esDPzw/bPvgAkx9/HNphw5o6XJukrazEli1bMHToUKg5d1+9VBcvwu333yEg7+no1GpU9e/PYnwT8DhrmEqthtsbbzS4XrfERHSNj6/ztYSEBHz11Vfo27cv/Pz8sGLFCkyePBlJSUlmxVJcX2emasz+lwwJCUFBQQEiIyMRGRmJvXv3omvXrsjIyLDojAqBgYFwdXWtdTaYn59f6yyweqx1re/m5oYWLVrU+R6NRlPn1CJqtdry9wqGDJEzC+Tk1N1FRKUCwsPhduedN/3SUgNY9K9/YdiIERBCICEhAffY6gAiS9BqUQVA7eHBezv10emAkyflw8hIXD1zBt5aLVyys9nM2xQ8zhp2552mfZ8NGXLz7zO1GosWLcKwYcOM32f33GN2KKb+G5l993zo0KH44YcfAACPP/44Zs6cieHDh+PBBx/Evffea+7Hmczd3R09e/as1dQ1OTnZcMZ6o759+9Zaf/PmzejVq5dtHsSursA778jHN57B6p+//XaDf8EnJibizz//xOHDh7HUhDNOckJnzgClpYC7O3Tt2+OIvhn/6dOyfRvRrbLD7zOzE+KKFSvw0ksvAZAjNlevXo2YmBjMnz+/xuhPS5g1axZWrlyJjz/+GOnp6Zg5cyYyMzPx5JNPApCXOydMmGBY/8knn8TZs2cxa9YspKen4+OPP8aqVavw3HPPWTTOWzJ2LPDdd7VnJw8Pl8vHjlUmLnIc5eWAfgBDp06AmxvyAOhatJBnjmlpioZHDsTOvs/MvmTq4uICl2rDsseNG4dx48Y1aVA38+CDD6KgoACvvPIKcnNz0aVLF2zcuBGRkZEAgNzcXGRmZhrWb9OmDTZu3IiZM2fi/fffR1hYGN59913brUHUGzsWGDMGlVu3IvWnn9AtMbHeywpEZjl2TE7x5OcHRETIxwCqoqPhsnu37HF68SLAOTSpKdjR91mj7gZfvnwZ+/btQ35+fq15D6ufoVnC1KlTMXXq1DpfW716da1l8fHxFq2NtBhXV4j4eOSUlsobzjZ48JAdKioC9H803tiv1MdHtm07e1bOhsGaRGoqdvJ9ZnZC/OGHH/Doo4+itLQUPj4+NUZrqlQqiydEImokIWSiA2Snmrq6fkRHA+fOASUlQFaWTJBETsLsP/+effZZPPbYYygpKcHly5dRWFho+LFkHSIR3aLcXFkb5uIip4Gqi7u7bN8GAEePAmbWexHZM7MTYk5ODqZPn27xInUiakJVVXKuQ0C20/L0vPm6kZHy8qlWK6eJInISZifEESNGYP/+/ZaIhYgs5fRpOd2Th4ec/qk+Li5A587y8Zkz8vIpkRMw+x7iXXfdhb///e9IS0tDbGxsrXq+u+++u8mCI6ImcPWqoQgfMTGmDWho2RIIDgbOn5dlGLffzgmDyeGZnRAnT54MAHjllVdqvaZSqVBVVXXrURFR0zl6VF4ybd5cDqYxVefOQH4+cOGC/O9NOkIROQqzL5nqdLqb/jAZEtmYwkLZOguoXWbRkGbNgLZt5eO0NFm0T+TAWGRE5KiEAA4flo8jIgB/f/M/o317QKORbd7OnGnK6IhsjkmXTN9991088cQT8PDwwLvvvlvvutOnT2+SwIjoFmVny0J8N7fGN+xWq2Vt4h9/yHZvrVrJBEnkgExKiG+99RYeffRReHh44K233rrpeiqVigmRyBZUVsp7hwDQocOtJbGICNm9pqhItn2Li2uaGIlsjEkJMSMjo87HRGSjTpyQTby9vICoqFv7LJVK3n/cvVu2fYuMlH1QiRwM7yESOZrSUkD/h+tttzVN38iAAOMI1SNH6p7fjsjOmV12UX02+epUKhU8PDzQvn17jBkzBgF19UkkIstLT5cjQgMDgaCgpvvcmBg5E8alS7INnDklHER2wOyEeOjQIRw8eBBVVVWIjo6GEAInTpyAq6srOnXqhA8++ADPPvssdu3ahc76bhdEZB0XL8qkpb/M2ZTF9J6ectTp8eMy6QYH2+ysBUSNYfYl0zFjxuDOO+/EuXPncODAARw8eBA5OTkYPnw4Hn74YeTk5GDQoEGYOXOmJeIlopvR6YyzWej7kTa1du1k+7erV4FTp5r+84kUZHZCfP311/Hqq6/C19fXsMzX1xfz5s3DkiVL4OXlhX/+8584cOBAkwZKRA3IzJR9R9Vq44wVTc3V1djn9ORJmRiJHITZCbGoqAj5+fm1ll+4cAHFxcUAAH9/f1Rw2hgi66mokCURgKwbdHe33LZCQ+UgG53OOIMGkQNo1CXTxx57DOvXr0d2djZycnKwfv16PP7447jnnnsAAPv27UNHS/2FSkS1HT8up2vy8QFat7bstvT3JwE5mTDnQSUHYXZC/PDDDzFs2DA89NBDiIyMROvWrfHQQw9h2LBhWL58OQCgU6dOWLlyZZMHS0R1KCmRhfOATFQuVqim8vOTBfsAyzDIYZg9ytTb2xsfffQR3nrrLZw+fRpCCLRr1w7e3t6Gdbp169aUMRLRzQhhTEjBwbLUwlo6dZLlF0VFsk2cPkES2SmzE6Ket7c34tjCiUhZ+fmy1KL6pL7WotHItnDp6bJNXEiIHNBDZKcalRBTUlKwZs0aZGZm1ho8s27duiYJjIgaUFVlLLNo00ZO12RtbdrI0a2lpXLUaUyM9WMgaiJm32z4+uuv0b9/f6SlpWH9+vXQarVIS0vDli1b4Mf+hkTWc+YMUFZmPFNTQvUz04wMmRiJ7JTZCXHhwoV466238L///Q/u7u545513kJ6ejnHjxqG1pUe3EZFUXi4beAPyXp5bo+9+3LqgIKBlS1mGkZamXBxEt8jshHjq1CncddddAACNRoPS0lKoVCrMnDkTK1asaPIAiagOR4/KKZ78/IDwcGVjUankWaJKBZw/D1y4oGw8RI1kdkIMCAhASUkJAKBVq1Y4fH1G7suXL6OsrKxpoyOi2oqKgKws+bhLl6btV9pYPj6yXRwgzxJ1OmXjIWoEsxPiwIEDkZycDAAYN24cnnnmGUyePBkPP/wwhg0b1uQBElE1+jILQM5e37y5svFU17GjHGVaUiIH2hDZGbNvPLz33nu4du0aAGDOnDlQq9XYtWsXxo4di7lz5zZ5gERUTW6u7Azj6irvHdoSd3fZNu7wYdlGLizMsi3kiJqY2Qmx+jyHLi4umD17NmbPnt2kQRFRHaqqjINW2rWT0zHZmtatZdeckhLZTq5LF6UjIjJZo4em5efnIz8/H7ob7hWwWJ/IQk6dAq5dk4mwXTulo6mbi4tsH7d3r0yMlpqGisgCzE6IBw4cwMSJE5Geng5xQ/9ClUqFqqqqJguOiK67elUWvgOy+N2WJ+YNDJRda/Ly5P3OO+6wjYE/RA0wOyH+9a9/RceOHbFq1SoEBwdDxQOdyPLS0+XIzYAAOf2SrYuJMbaVy8+XfVaJbJzZCTEjIwPr1q1D+/btLREPEd3o0iU5zRIgL0fawx+hzZrJtm6nTsmzxMBA2z6rJUIjyi6GDRuG33//3RKxENGNqpdZtG4tC/HtRYcOsq1cWZlsM0dk48w+Q1y5ciUmTpyIw4cPo0uXLlDf0N3+7rvvbrLgiJxeVpYsxHdzkyUN9sTNTZaG/P67bDPXqhXg4aF0VEQ3ZXZC3L17N3bt2oWffvqp1mscVEPUhLRa2aINkEXvGo2y8TRGeLg8OywqkrWJXbsqHRHRTZl9yXT69OkYP348cnNzodPpavwwGRI1oZMngYoKeT8uKkrpaBpHpTLWImZlAZcvKxoOUX3MTogFBQWYOXMmgjlqjMhyrlwBTp+Wjzt3lvV99qp5c3m5FJD3Q28o1yKyFWb/XzZ27Fhs3brVErEQkV56ukwcLVvK6ZXsXadOcpRpYaFxxCyRjTH7HmLHjh0xZ84c7Nq1C7GxsbUG1UyfPr3JgiNyShcuyGmUqk+rZO88PYH27eV9xPR0WbjPMgyyMY0aZert7Y3t27dj+/btNV5TqVRMiES3QqczlllERTlW27O2beUsGPquO/Y2apYcXqMK84nIQs6elfcP1WpZx+dIXF1lB5uDB2XBfuvWttmgnJyWHd+pJ3IwFRVyhghA3nNzxKmTQkNl+zmdTl46JbIhJp0hzpo1C6+++iqaNWuGWbNm1bvu0qVLmyQwIqdz7JisPfTxkWdPjkilku3ndu6Ug2siI4EWLZSOigiAiQnx0KFD0Gq1hsc3w0bfRI1UXCwvlwL206+0sfz8ZMLPzJT3SwcOdOzfl+yGSQmxepkFSy6ImpgQxol/Q0JkI2xHFx0tzxCLi2XBvqOeEZNd4T1EIqWdPy+nSXJxkWUWzkCjke3oANme7voVKCIlMSESKamqynh22LYt4OWlbDzWFBUl29JVVMjm30QKY0IkUlJGhpweSaORhevOpPoZcUaGLDchUhATIpFSrl0znhnFxMjpkpxNcLBsTycEyzBIcUyIREo5elReMvX3Nza/dkb6UbXnz8u2dUQKYUIkUsLly0B2tnzs6GUWDfH2Nk5vdeSILNonUgATIpG1CWHsV9qqlZweydl16CA781y5YqzHJLIyJkQiazt3Tk6D5OoqW7SRTIb6Zt/Hj8uRp0RWxoRIZE2VlcbBI+3bs7l1da1by7Z1Wq1sY0dkZUyIRNZ06pQcXerpKesOyUjf5xSQl02Li5WNh5wOEyKRtZSVyYQIyPo7TpBbW2CgbF8HyPusQigbDzkVJkQia0lPlyMoW7QwfulTbZ07y6L9ggJZikFkJUyIRNZQUADk5srHzl5m0RAvL+Pl5LQ0WatJZAVMiESWVr3MIjIS8PVVNh570L69bGdXVibbuhFZARMikaVlZsoBImq1cYYHqp+bm2xnB8j2dteuKRsPOQUmRCJLql5C0KGDPOsh07RqJdvaVVXJNndEFsaESGRJJ07IIvPq7cnINNXLMLKzZbs7IgtiQiSylCtXjPe/9CMnyTzNmwPh4fLx4cMswyCL4v+hRJaSlia/wIOC5A81TqdOsmbz8mUgJ0fpaMiBMSESWUJ+vvxRqYyT4FLjeHgYJ08+elS2vyOyALtJiIWFhRg/fjz8/Pzg5+eH8ePH43ID9xQmTZoElUpV46dPnz7WCZicl04nzw4BoE0bef+Qbk3btrLd3bVrxm4/RE3MbhLiI488gtTUVGzatAmbNm1Camoqxo8f3+D7Ro4cidzcXMPPxo0brRAtObUzZ+T9Q3d3ObKUbp2rq/FM+9QpWZ9I1MTclA7AFOnp6di0aRP27t2LO+64AwDw0UcfoW/fvjh27Bii9dPG1EGj0SCEbbLIWsrL5fRFgJzOSK1WNh5HEhIi294VFMg2eD17Kh0RORi7SIh79uyBn5+fIRkCQJ8+feDn54fdu3fXmxC3bduGoKAg+Pv7Iz4+HgsWLEBQPQMcysvLUV5ebnhefL3jvlarhVarbYLfxnT67Vl7u/ZM6X3mcvQoXCsrIXx8UBkaKusQbZzS+8ws0dFw270bqtxcVJ4/DxEQoEgYdrXPbISS+8zUbdpFQszLy6sziQUFBSEvL++m70tMTMQDDzyAyMhIZGRkYO7cuRg6dCgOHDgAzU0KpBctWoT58+fXWr5582Z4eXk1/pe4BcnJyYps154psc98AQx2cQFUKvx6+TIKfvrJ6jHcCns5zuJUKrRxcUHpvn3YptMpGou97DNbosQ+KzPxEruiCXHevHl1Jp/qUlJSAACqOpohCyHqXK734IMPGh536dIFvXr1QmRkJH788UeMHTu2zvfMmTMHs2bNMjwvLi5GREQEEhIS4GvlHpRarRbJyckYPnw41Lz0ZhLF9pkQcN2/H6pLl6ALDsYd3bpZb9u3yO6Os4oKiJ074VdZibtiYyEiIqwegt3tMxug5D4rNnFuTUUT4rRp0/DQQw/Vu05UVBT++OMPnK9jGpgLFy4gODjY5O2FhoYiMjISJ06cuOk6Go2mzrNHtVqt2IGv5LbtldX3WW4ucOkS4OICl9tug4sd/nvZzXGm7wmblga3kyeBiAjF7tXazT6zIUrsM1O3p2hCDAwMRGBgYIPr9e3bF0VFRdi3bx9uv/12AMBvv/2GoqIi9OvXz+TtFRQUICsrC6GhoY2OmaiWqipjmUW7dnL6IrKsqCjZNP3KFdkej7We1ATsouwiJiYGI0eOxOTJk7F3717s3bsXkydPxqhRo2oMqOnUqRPWr18PALhy5Qqee+457NmzB2fOnMG2bdswevRoBAYG4t5771XqVyFHdPo0cPWqLCBv107paJyDi4sxCWZkyMRIdIvsIiECwH/+8x/ExsYiISEBCQkJiIuLw+eff15jnWPHjqGoqAgA4Orqij///BNjxoxBx44dMXHiRHTs2BF79uyBj4+PEr8COaJr14CTJ+XjTp3ktEVkHfqWeEIYz9CJboHd/N8bEBCAL774ot51RLXGv56envj5558tHRY5u6NH5SXT5s3ldEVkXZ07AxcuGFvlsWcs3QK7OUMksjmFhXJaIkBOU1TPiGeyEG9v2R4PAI4ckW3ziBqJCZGoMYSQX8CAnJ7I31/RcJxahw6yTV5pqWybR9RITIhEjZGTI6cjcnWV9w5JOWq18d/g+HHZPo+oEZgQicxVWSl7aQLy7MTDQ9l4SNYi+vrKf5tjx5SOhuwUEyKRuU6elGchXl7G+1ekLJVK3scFZH2iiZ1JiKpjQiQyR1mZrDsE5AhHV1dl4yGjFi0AfdONI0fkfV4iMzAhEpkjLU2OZAwMBMxoG0hWEhMji/YLCoB6Gv8T1YUJkchUFy8av2Q7d2aZhS3y8jJ2C0pLkzWiRCZiQiQyRfUyi8hIOYCDbFO7dnKg09WrxsvbRCZgQiQyRWYmUFIih/jXMyE12QA3N3npFJADoK5eVTYeshtMiEQNqaiQLdoAOe2Qu7uy8VDDwsJkO72qKuO/HVEDmBCJGnLiBKDVyjZhkZFKR0OmqF6GkZMj2+wRNYAJkag+JSXGdmC33SZHMJJ98PeXBfsAyzDIJPy/m6g+aWnyizQ4GGjZUuloyFzR0bJW9PJleaZIVA8mRKKbOX9eTi2kUhkHaZB98fCQ7fUA2W6vslLZeMimMSES1UWnM04626aNvH9I9qlNG1mfWF5unMyZqA5MiER1OXNGTifk7m48wyD75OoqGykAsi6xtFTZeMhmMSES3ai8XE4jBMhphdRqZeOhWxccLNvt6XTGmUqIbsCESHSjY8fkvSY/P+MoRbJvKpXxLDEvT7bhI7oBEyJRdUVFsisNIMss2K/Ucfj6GutIjxyRZ4tE1TAhEulV71caFgYEBCgbDzW96Gh5CbykBMjKUjoasjFMiER6ubnApUuy+J5lFo7J3V223wNkS7eKCmXjIZvChEgEyJ6X+sEW7doBnp7KxkOWExkpy2i0WtmWj+g6JkQiQA7Hv3pVFnK3b690NGRJLi7GPqdnzsjLp0RgQiSSiVBfsB0TI+vWyLG1bClLMYQwtucjp8eESHT0qLxk2ry5HExDzqFzZzmK+MIFID9f6WjIBjAhknO7dMnY9JllFs6lWTOgbVv5OC2NZRjEhEhOrHqZRUSEnC6InEv79oBGI9u5ZWQoHQ0pjAmRnFd2tizEd3OT9WnkfNRq47/9iROybR85LSZEck6VlfLeISCbd3t4KBsPKSciQrbpq6yUbfvIaTEhknPSnw14eQFRUUpHQ0pSqYxlGJmZ8qoBOSUmRHI+1e8X3XYbyyxItunTjzA+coRlGE6KCZGcj35EYWAgEBSkdDRkK2JiZNH+pUuyjR85HSZEci4XLwLnzxsvk7HMgvQ8PY1ditLTZW0qORUmRHIeOp2xzCIyEvDxUTYesj3t2skBVlevAqdOKR0NWRkTIjmPzEzZt1KtNs54QFSdq6txIuGTJ2ViJKfBhEjOoaLCOKQ+OlpOA1SHsrIyREZG4rnnnrNicGRTQkPlIBudzjgDShNyc3NDt27d0K1bN/ztb39r8s+nxnNTOgAiqzh+XE734+MDtG5909UWLFiAO+64w4qBkc3R31/euRM4d06W5TThZNH+/v5ITU1tss+jpsMzRHJ8JSXA2bPy8W23yZGEdThx4gSOHj2KpKQkKwZHNsnPTxbsAyzDcCJMiOTY9P1KhZDT/QQG3nTV5557DosWLbJicGTTOnWSbf2KimSbvyZSXFyMnj17YsCAAdi+fXuTfS7dOiZEcmz5+bLUwsXFOFiiDt9//z06duyIjhxsQ3oajWzrB8g2f1ptk3zsmTNncODAASxfvhwTJkxAcXFxk3wu3TomRHJcVVWYNmUKBsyeDbRpI6f7qSYqKgoLFiwAAOzduxdff/01oqKi8Nxzz+Gjjz7CK6+8okTUZEv0x015uXES6TpMmzYNAwYMqPO16scZAIRd74jTpUsXdO7cGcePH2/amKnROKiGHFZacjKW/fADdrz5pvEv/WpiYmIMgxsWLVpkuFy6evVqHD58GP/85z+tGS7ZIv2VhZQU2e6vdetaf1ilpaVh2bJl2LFjR50fUf04KywshJeXFzQaDbKzs5GWloa2+jkZSXFMiOSYysvx+tKl6N2hA/rfd5+8F3SDgIAAZGVlKRAc2ZWgIKBlS+DCBdn2r3fvGi+//vrr6N27N/r371/n26sfZ+np6ZgyZQpcXFygUqnwzjvvIKAJR7DSrWFCJMdRVQXV9u1otWMHRG4u1u7ahbmTJgHh4QCAKVOm4Pbbb8fjjz8OACgpKUGzG/7aB4BJkyZZMWiyeSqVPEvcsUO2/cvLg+rwYbTasQNVHh5Yu3Yt5s6da1i9vuOsX79++PPPPxX5NahhvIdIjmHdOiAqCm7Dh6PX0qXIeOoplFy9ilgvL0Clgk6nw5o1a+Dt7W14yx9//IGYmBgAQEZGBoYMGYLOnTsjNjYWpaWlSv0mZIt8fGS7v927gbg4w3F2duRIlJSUIPb6wBgeZ/aNZ4hk/9atA+6/v0at2OXr//V+802gXz/87OmJwsJCuF/vULNv3z6cPXsW99xzDwB5Vvjaa69h4MCBuHTpEjQajXV/B7J9aWnADWU5l6//1/u114Du3Xmc2TkmRLJvVVXAM8/UKpyOBKAC8BWAZlOn4tmAACQlJeH7779HVFQUpkyZgqFDh2LQoEE4cuQI1Go1Bg4cCAC8p0O1VVUBzz5bazGPM8fCS6Zk33burLNoOgTAAgBfAEg8fx6z7roLixYtwvbt2zFgwABER0djzZo1AGSHGm9vb9x9993o0aMHFi5caNVfgewAjzOnwDNEsm/1TOQ65/oPAKBHDyAuDhkZGbXW02q12LlzJ1JTUxEUFISRI0eid+/eGD58uEVCJjvE48wp8AyR7Fto6C2vFx4ejt69eyMiIgIajQZJSUlsvkw18ThzCkyIZN8GDpRlFSpV3a+rVLJJ8/X7NnXp3bs3zp8/j8LCQuh0OuzYscMwKpAIAI8zJ8GESPbN1RV45x35+MYvK/3zt9+W692Em5sbFi5ciEGDBiEuLg4dOnTAqFGjLBMv2SceZ06B9xDJ/o0dC3z3nRxtWn3gQ3i4/JIaO7bBj0hMTERiYqLlYiT7x+PM4TEhkmMYOxYYMwaVW7ci9aef0C0xEW5DhtT7FzuR2XicOTQmRHIcrq4Q8fHIKS1F1/h4fkmRZfA4c1i8h0hERAQmRCIiIgBMiERERACYEImIiAAwIRIREQFgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIAdpQQFyxYgH79+sHLywv+/v4mvUcIgXnz5iEsLAyenp4YPHgwjhw5YtlAiYjILtlNQqyoqMADDzyAp556yuT3LFmyBEuXLsV7772HlJQUhISEYPjw4SgpKbFgpEREZI/sJiHOnz8fM2fORGxsrEnrCyHw9ttv46WXXsLYsWPRpUsXfPrppygrK8OXX35p4WiJiMjeOOxsFxkZGcjLy0NCQoJhmUajQXx8PHbv3o0pU6bU+b7y8nKUl5cbnhcXFwMAtFottFqtZYO+gX571t6uPeM+Mx/3mfm4z8yn5D4zdZsOmxDz8vIAAMHBwTWWBwcH4+zZszd936JFizB//vxayzdv3gwvL6+mDdJEycnJimzXnnGfmY/7zHzcZ+ZTYp+VlZWZtJ6iCXHevHl1Jp/qUlJS0KtXr0ZvQ6VS1XguhKi1rLo5c+Zg1qxZhufFxcWIiIhAQkICfH19Gx1HY2i1WiQnJ2P48OFQq9VW3ba94j4zH/eZ+bjPzKfkPtNf6WuIoglx2rRpeOihh+pdJyoqqlGfHRISAkCeKYaGhhqW5+fn1zprrE6j0UCj0dRarlarFTvwldy2veI+Mx/3mfm4z8ynxD4zdXuKJsTAwEAEBgZa5LPbtGmDkJAQJCcno3v37gDkSNXt27dj8eLFFtkmERHZL7sZZZqZmYnU1FRkZmaiqqoKqampSE1NxZUrVwzrdOrUCevXrwcgL5XOmDEDCxcuxPr163H48GFMmjQJXl5eeOSRR5T6NYiIyEbZzaCaf/7zn/j0008Nz/VnfVu3bsXgwYMBAMeOHUNRUZFhndmzZ+Pq1auYOnUqCgsLcccdd2Dz5s3w8fGxauxERGT77CYhrl69GqtXr653HSFEjecqlQrz5s3DvHnzLBcYERE5BLu5ZEpERGRJTIhERERgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJiIgAMCESEREBYEIkIiICwIRIREQEgAmRiIgIABMiERERACZEIiIiAEyIREREAJgQiYiIADAhEhERAWBCJCIiAsCESEREBIAJkYiICAATIhEREQAmRCIiIgCAm9IB2DohBACguLjY6tvWarUoKytDcXEx1Gq11bdvj7jPzMd9Zj7uM/Mpuc/039/67/ObYUJsQElJCQAgIiJC4UiIiOhWlJSUwM/P76avq0RDKdPJ6XQ6nDt3Dj4+PlCpVFbddnFxMSIiIpCVlQVfX1+rbttecZ+Zj/vMfNxn5lNynwkhUFJSgrCwMLi43PxOIc8QG+Di4oLw8HBFY/D19eX/dGbiPjMf95n5uM/Mp9Q+q+/MUI+DaoiIiMCESEREBIAJ0aZpNBq8/PLL0Gg0SodiN7jPzMd9Zj7uM/PZwz7joBoiIiLwDJGIiAgAEyIREREAJkQiIiIATIhEREQAmBBtyoIFC9CvXz94eXnB39/fpPcIITBv3jyEhYXB09MTgwcPxpEjRywbqA0pLCzE+PHj4efnBz8/P4wfPx6XL1+u9z2TJk2CSqWq8dOnTx/rBKyQDz74AG3atIGHhwd69uyJnTt31rv+9u3b0bNnT3h4eKBt27ZYvny5lSK1Hebss23bttU6plQqFY4ePWrFiJWzY8cOjB49GmFhYVCpVNiwYUOD77HFY4wJ0YZUVFTggQcewFNPPWXye5YsWYKlS5fivffeQ0pKCkJCQjB8+HBDD1ZH98gjjyA1NRWbNm3Cpk2bkJqaivHjxzf4vpEjRyI3N9fws3HjRitEq4xvvvkGM2bMwEsvvYRDhw5h4MCBSExMRGZmZp3rZ2RkICkpCQMHDsShQ4fw4osvYvr06Vi7dq2VI1eOuftM79ixYzWOqw4dOlgpYmWVlpaia9eueO+990xa32aPMUE255NPPhF+fn4NrqfT6URISIj417/+ZVh27do14efnJ5YvX27BCG1DWlqaACD27t1rWLZnzx4BQBw9evSm75s4caIYM2aMFSK0Dbfffrt48sknayzr1KmTeOGFF+pcf/bs2aJTp041lk2ZMkX06dPHYjHaGnP32datWwUAUVhYaIXobBsAsX79+nrXsdVjjGeIdiwjIwN5eXlISEgwLNNoNIiPj8fu3bsVjMw69uzZAz8/P9xxxx2GZX369IGfn1+Dv/+2bdsQFBSEjh07YvLkycjPz7d0uIqoqKjAgQMHahwjAJCQkHDTfbRnz55a648YMQL79++HVqu1WKy2ojH7TK979+4IDQ3FsGHDsHXrVkuGadds9RhjQrRjeXl5AIDg4OAay4ODgw2vObK8vDwEBQXVWh4UFFTv75+YmIj//Oc/2LJlC958802kpKRg6NChKC8vt2S4irh48SKqqqrMOkby8vLqXL+yshIXL160WKy2ojH7LDQ0FCtWrMDatWuxbt06REdHY9iwYdixY4c1QrY7tnqMcbYLC5s3bx7mz59f7zopKSno1atXo7dx47RUQgirT1XVlEzdZ0Dt3x1o+Pd/8MEHDY+7dOmCXr16ITIyEj/++CPGjh3byKhtm7nHSF3r17XckZmzz6KjoxEdHW143rdvX2RlZeGNN97AoEGDLBqnvbLFY4wJ0cKmTZuGhx56qN51oqKiGvXZISEhAORfW6GhoYbl+fn5tf76siem7rM//vgD58+fr/XahQsXzPr9Q0NDERkZiRMnTpgdq60LDAyEq6trrTOb+o6RkJCQOtd3c3NDixYtLBarrWjMPqtLnz598MUXXzR1eA7BVo8xJkQLCwwMRGBgoEU+u02bNggJCUFycjK6d+8OQN7/2L59OxYvXmyRbVqDqfusb9++KCoqwr59+3D77bcDAH777TcUFRWhX79+Jm+voKAAWVlZNf6ocBTu7u7o2bMnkpOTce+99xqWJycnY8yYMXW+p2/fvvjhhx9qLNu8eTN69eoFtVpt0XhtQWP2WV0OHTrkkMdUU7DZY0zJET1U09mzZ8WhQ4fE/Pnzhbe3tzh06JA4dOiQKCkpMawTHR0t1q1bZ3j+r3/9S/j5+Yl169aJP//8Uzz88MMiNDRUFBcXK/ErWN3IkSNFXFyc2LNnj9izZ4+IjY0Vo0aNqrFO9X1WUlIinn32WbF7926RkZEhtm7dKvr27StatWrlsPvs66+/Fmq1WqxatUqkpaWJGTNmiGbNmokzZ84IIYR44YUXxPjx4w3rnz59Wnh5eYmZM2eKtLQ0sWrVKqFWq8V3332n1K9gdebus7feekusX79eHD9+XBw+fFi88MILAoBYu3atUr+CVZWUlBi+rwCIpUuXikOHDomzZ88KIeznGGNCtCETJ04UAGr9bN261bAOAPHJJ58Ynut0OvHyyy+LkJAQodFoxKBBg8Sff/5p/eAVUlBQIB599FHh4+MjfHx8xKOPPlpr6Hv1fVZWViYSEhJEy5YthVqtFq1btxYTJ04UmZmZ1g/eit5//30RGRkp3N3dRY8ePcT27dsNr02cOFHEx8fXWH/btm2ie/fuwt3dXURFRYlly5ZZOWLlmbPPFi9eLNq1ayc8PDxE8+bNxYABA8SPP/6oQNTK0Jed3PgzceJEIYT9HGOc/omIiAgsuyAiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJiIgAMCESOY0zZ85ApVIhNTVV6VCIbBITIhFZxaRJk3DPPfcoHQbRTTEhEtm4iooKpUO4JVVVVdDpdEqHQdQgJkQiGzN48GBMmzYNs2bNQmBgIIYPHw4ASEtLQ1JSEry9vREcHIzx48fXmEx106ZNGDBgAPz9/dGiRQuMGjUKp06dMmvbUVFRePXVV/HII4/A29sbYWFh+Pe//11jnaVLlyI2NhbNmjVDREQEpk6diitXrhheX716Nfz9/fG///0PnTt3hkajwV//+ld8+umn+P7776FSqaBSqbBt27bG7yQiC2BCJLJBn376Kdzc3PDrr7/iww8/RG5uLuLj49GtWzfs378fmzZtwvnz5zFu3DjDe0pLSzFr1iykpKTgl19+gYuLC+69916zz85ef/11xMXF4eDBg5gzZw5mzpyJ5ORkw+suLi549913cfjwYXz66afYsmULZs+eXeMzysrKsGjRIqxcuRJHjhzBu+++i3HjxmHkyJHIzc1Fbm6uWVN0EVmF0t3Fiaim+Ph40a1btxrL5s6dKxISEmosy8rKEgDEsWPH6vyc/Px8AcAw+0lGRoYAIA4dOnTTbUdGRoqRI0fWWPbggw+KxMTEm77n22+/FS1atDA8/+STTwQAkZqaWmO9iRMnijFjxtz0c4iUxjNEIhvUq1evGs8PHDiArVu3wtvb2/DTqVMnADBcFj116hQeeeQRtG3bFr6+vmjTpg0AIDMz06xt9+3bt9bz9PR0w/OtW7di+PDhaNWqFXx8fDBhwgQUFBSgtLTUsI67uzvi4uLM2i6R0tyUDoCIamvWrFmN5zqdDqNHj8bixYtrrauflX306NGIiIjARx99hLCwMOh0OnTp0qVJBuWoVCoAwNmzZ5GUlIQnn3wSr776KgICArBr1y48/vjj0Gq1hvU9PT0N7yGyF0yIRHagR48eWLt2LaKiouDmVvt/24KCAqSnp+PDDz/EwIEDAQC7du1q1Lb27t1b67n+bHT//v2orKzEm2++CRcXeYHp22+/Nelz3d3dUVVV1aiYiKyBl0yJ7MDTTz+NS5cu4eGHH8a+fftw+vRpbN68GY899hiqqqrQvHlztGjRAitWrMDJkyexZcsWzJo1q1Hb+vXXX7FkyRIcP34c77//PtasWYNnnnkGANCuXTtUVlbi3//+N06fPo3PP/8cy5cvN+lzo6Ki8Mcff+DYsWO4ePFijTNKIlvAhEhkB8LCwvDrr7+iqqoKI0aMQJcuXfDMM8/Az88PLi4ucHFxwddff40DBw6gS5cumDlzJl5//fVGbevZZ5/FgQMH0L17d7z66qt48803MWLECABAt27dsHTpUixevBhdunTBf/7zHyxatMikz508eTKio6PRq1cvtGzZEr/++muj4iOyFJUQQigdBBHZhqioKMyYMQMzZsxQOhQiq+MZIhEREZgQiYiIAPCSKREREQCeIRIREQFgQiQiIgLAhEhERASACZGIiAgAEyIREREAJkQiIiIATIhEREQAmBCJiIgAMCESEREBAP4/1D34d+qMKgIAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = figure()\n", + "#@manipulate for n in slider(1:20, value=7)\n", + "for n in 1:6\n", + " ω = exp(2π*im/n)\n", + " display(\n", + " withfig(fig) do\n", + " for j = 1:n\n", + " z = ω ^ j\n", + " plot([0,real(z)], [0,imag(z)], ls=\"solid\", color=(1,.7,.7))\n", + " plot(real(z), imag(z), \"ro\")\n", + " text(real(z), imag(z), \"\\$\\\\omega_{$n}^{$j}\\$\")\n", + " end\n", + " axis(\"square\")\n", + " grid()\n", + " xlabel(\"real part\")\n", + " ylabel(\"imaginary part\")\n", + " title(\"$n-th roots of unity\")\n", + " xlim(-1.2,1.2)\n", + " ylim(-1.2,1.2)\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "They are called \"roots of unity\" because $\\omega_n^j$ for $j = 0,\\ldots,n-1$ (or $1,\\ldots,n$) are *all* the solutions $z$ to \n", + "\n", + "$$\n", + "z^n = 1 .\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Eigenvectors: The discrete Fourier transform (DFT)\n", + "\n", + "In terms of $\\omega_n$, the eigenvectors of a circulant matrix are easy: the **k-th eigenvector** $x^{(k)}$ ($k=0,\\ldots,n-1$) for **any n×n circulant matrix** is simply\n", + "\n", + "$$\n", + "x^{(k)} = \\begin{pmatrix} \\omega_n^{0k} \\\\ \\omega_n^{1k} \\\\ \\omega_n^{2k} \\\\ \\vdots \\\\ \\omega_n^{(n-1)k} \\end{pmatrix}\n", + "$$\n", + "\n", + "Therefore, the matrix $F$ whose columns are the eigenvectors is:\n", + "\n", + "$$\n", + "F = \\begin{pmatrix} x^{(0)} & x^{(1)} & \\cdots & x^{(n-1)} \\end{pmatrix}\n", + "$$\n", + "\n", + "with entries\n", + "\n", + "$$\n", + "\\boxed{F_{jk} = x^{(k)}_j = \\omega_n^{jk} = e^{\\frac{2\\pi i}{n} jk}}.\n", + "$$\n", + "\n", + "Multiplying a vector by $F$ is called a [discrete Fourier transform (DFT)](https://en.wikipedia.org/wiki/Discrete_Fourier_transform). This is one of the most important matrices in the world! (It is sort of a finite, computer-friendly analogue to a Fourier series if you've seen those before.)\n", + "\n", + "Before we show this, let's try it:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "F (generic function with 1 method)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# define a function to create the n×n matrix F for any n:\n", + "F(n) = [exp((2π*im/n)*j*k) for j=0:n-1, k=0:n-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The $2\\times2$ and $4\\times 4$ DFT matrices $F$ are quite simple, for example\n", + "$$\n", + "F_{2\\times 2} = \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}\n", + "$$\n", + "\n", + "$$\n", + "F_{4\\times 4} = \\begin{pmatrix} 1 & 1 & 1 & 1 \\\\ 1 & i & -1 & -i \\\\ 1 & -1 & 1 & -1 \\\\ 1 & -i & -1 & i \\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Matrix{ComplexF64}:\n", + " 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im\n", + " 1.0+0.0im 0.0+1.0im -1.0+0.0im -0.0-1.0im\n", + " 1.0+0.0im -1.0+0.0im 1.0-0.0im -1.0+0.0im\n", + " 1.0+0.0im -0.0-1.0im -1.0+0.0im 0.0+1.0im" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round.(F(4))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's check that it diagonalizes our $7 \\times 7$ mass-and-spring matrix $A$ from earlier. We should have $F^{-1} A F = \\Lambda$:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7×7 Matrix{ComplexF64}:\n", + " -0.0+0.0im -0.0+0.0im -0.0+0.0im … -0.0-0.0im -0.0+0.0im\n", + " 0.0-0.0im 0.753+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im\n", + " 0.0+0.0im -0.0+0.0im 2.445-0.0im -0.0+0.0im 0.0+0.0im\n", + " 0.0+0.0im 0.0-0.0im 0.0-0.0im -0.0-0.0im -0.0+0.0im\n", + " 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im\n", + " 0.0+0.0im -0.0+0.0im -0.0+0.0im … 2.445-0.0im -0.0+0.0im\n", + " -0.0-0.0im 0.0+0.0im -0.0-0.0im -0.0-0.0im 0.753-0.0im" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round.(inv(F(7)) * A * F(7), digits=3) # F⁻¹AF = Λ, rounded to 3 digits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the diagonal entries to the eigenvalues:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7-element Vector{Float64}:\n", + " -6.847820921420924e-16\n", + " 0.7530203962825327\n", + " 0.7530203962825328\n", + " 2.4450418679126287\n", + " 2.4450418679126287\n", + " 3.801937735804838\n", + " 3.801937735804838" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7-element Vector{ComplexF64}:\n", + " -2.7755575615628914e-17 + 0.0im\n", + " 0.7530203962825329 + 8.231328092213654e-18im\n", + " 2.4450418679126287 - 8.127363310989668e-17im\n", + " 3.8019377358048376 - 8.058346821283383e-17im\n", + " 3.8019377358048394 + 1.2783350539335312e-16im\n", + " 2.4450418679126296 - 2.3118001670187046e-16im\n", + " 0.7530203962825329 - 1.8759081285465905e-17im" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diag(inv(F(7)) * A * F(7)) # diagonal entries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup!\n", + "\n", + "Since $A$ is real-symmetric, you may wonder why the eigenvectors are not real as well. But they **could have been chosen** real. For a real-symmetric circulant matrix, the real and imaginary parts of the eigenvectors are themselves eigenvectors. This is why most of the eigenvalues come in pairs! (The only eigenvalues that don't come in pairs correspond to eigenvectors $x^{(k)}$ that are purely real, e.g. $x^{(0)} = (1,1,\\ldots,1)$.) These real and imaginary eigenvectors turn out to correspond to a [discrete cosine transform (DCT)](https://en.wikipedia.org/wiki/Discrete_cosine_transform) and a [discrete sine transform (DST)](https://en.wikipedia.org/wiki/Discrete_sine_transform).\n", + "\n", + "But this is a nice example where complex numbers actually turn out to be *easier* than real numbers, because the rule $e^x e^y = e^{x+y}$ for multiplying exponentials are simpler than the identities for multiplying sines and cosines." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Derivation and eigenvalues\n", + "\n", + "Why does this work? It's easy to see if we take our formula from above for $Cx$ and multiply it by an eigenvector. Let $y = C x^{(k)}$. Then the ℓ-th component is:\n", + "\n", + "$$\n", + "y_\\ell = \\sum_{j=0}^{n-1} c_{j-\\ell} \\omega_n^{jk} = \\omega_n^{\\ell k} \\sum_{j=0}^{n-1} c_{j-\\ell} \\omega_n^{(j-\\ell)k}\n", + "$$\n", + "\n", + "But the remaining sum is now **independent of ℓ**: because both $c_j$ and $\\omega_n^j$ are periodic in $j$, all $j \\to j - \\ell$ does is to re-arrange the numbers being summed (a circular shift), so you get the **same sum**. And $\\omega_n^{\\ell k} = x^{(k)}$, so we have:\n", + "\n", + "$$\n", + "C x^{(k)} = \\lambda_k x^{(k)}\n", + "$$\n", + "\n", + "where\n", + "\n", + "$$\n", + "\\lambda_k = \\sum_{j=0}^{n-1} c_{j} \\omega_n^{jk}\n", + "$$\n", + "\n", + "But if we define a vector $\\hat{c} = (\\lambda_0, \\lambda_1, \\ldots, \\lambda_{n-1})$, then\n", + "\n", + "$$\n", + "\\hat{c} = F c\n", + "$$\n", + "\n", + "That is, the **eigenvalues are the DFT of c** (where c = first row of C).\n", + "\n", + "Let's check it:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7-element Vector{ComplexF64}:\n", + " 0.0 + 0.0im\n", + " 0.753020396282533 + 1.1102230246251565e-16im\n", + " 2.445041867912629 - 1.1102230246251565e-16im\n", + " 3.8019377358048385 - 6.661338147750939e-16im\n", + " 3.801937735804838 - 8.881784197001252e-16im\n", + " 2.4450418679126282 - 2.220446049250313e-16im\n", + " 0.7530203962825321 + 8.881784197001252e-16im" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F(7) * A[:,1] # DFT of first row/column of A" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7-element Vector{Float64}:\n", + " -6.847820921420924e-16\n", + " 0.7530203962825327\n", + " 0.7530203962825328\n", + " 2.4450418679126287\n", + " 2.4450418679126287\n", + " 3.801937735804838\n", + " 3.801937735804838" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, they match!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Unitarity\n", + "\n", + "The DFT matrix F is special in many ways. It is symmetric, but *not* Hermitian, so its eigenvalues are *not* real. However, it has **orthogonal columns**, which we can see from $F^H F$ for $n=7$:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7×7 Matrix{ComplexF64}:\n", + " 7.0+0.0im -0.0-0.0im -0.0+0.0im … 0.0+0.0im 0.0+0.0im 0.0+0.0im\n", + " -0.0+0.0im 7.0+0.0im -0.0+0.0im -0.0+0.0im 0.0+0.0im 0.0+0.0im\n", + " -0.0-0.0im -0.0-0.0im 7.0-0.0im -0.0+0.0im -0.0+0.0im 0.0+0.0im\n", + " 0.0-0.0im -0.0-0.0im -0.0-0.0im -0.0+0.0im -0.0+0.0im -0.0+0.0im\n", + " 0.0-0.0im -0.0-0.0im -0.0-0.0im 7.0-0.0im 0.0+0.0im 0.0+0.0im\n", + " 0.0-0.0im 0.0-0.0im -0.0-0.0im … 0.0-0.0im 7.0+0.0im -0.0+0.0im\n", + " 0.0-0.0im 0.0-0.0im 0.0-0.0im 0.0-0.0im -0.0+0.0im 7.0+0.0im" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round.(F(7)' * F(7), digits=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(It is a straightforward exercise to show this, e.g. using the [geometric-series](https://en.wikipedia.org/wiki/Geometric_series) summation formula.)\n", + "\n", + "The columns are orthogonal but not orthonormal because they have length $\\sqrt{n}$ (the lengths squared are $n$, which is what shows up on the diagonal of $F^H F$ above). But this means that if we divide by their length, then:\n", + "\n", + "$$\n", + "\\frac{1}{\\sqrt{n}} F\n", + "$$\n", + "\n", + "is a **unitary** matrix. Equivalently:\n", + "\n", + "$$\n", + "F^{-1} = \\frac{1}{n} F^H = \\frac{1}{n} \\bar{F},\n", + "$$\n", + "\n", + "where we have used the fact that $F^T = F$. This is the **inverse discrete Fourier transform (IDFT)**.\n", + "\n", + "Note that this means that **every circulant matrix C has orthogonal eigenvectors** (the columns of F). (Even if the matrix C is not Hermitian or one of the similar cases we have seen so far!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fast Fourier transforms (FFTs)\n", + "\n", + "The product $Fx$ for a vector $x$ is the DFT of $x$. At first glance, it seems like it would require $\\sim n^2$ operations ($n$ dot products) like any other matrix–vector multiplication. \n", + "\n", + "One of the most amazing facts of computational science is that it is possible to compute the DFT $Fx$ in only $\\sim n \\log n$ operations (and $\\sim n$ storage), by a [fast Fourier transform (FFT) algorithm](https://en.wikipedia.org/wiki/Fast_Fourier_transform). FFT algorithms mean that DFTs and circulant matrices become practical to deal with even for huge $n$, and are are the **core of a huge number of practical computational algorithms**.\n", + "\n", + "(From a linear-algebra viewpoint, it turns out that the \"dense\" matrix $F$ factors into a **product** of $\\sim \\log n$ **sparse** matrices.)\n", + "\n", + "FFTs aren't too complicated to understand (the simplest ones can be derived in a few lines of algebra), but they are a bit outside the scope of 18.06. But `fft(x)` functions are available in Julia (via the [FFTW.jl package](https://github.com/JuliaMath/FFTW.jl), for example, and in every other computational-science environment:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "using FFTW" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7-element Vector{ComplexF64}:\n", + " 0.0 + 0.0im\n", + " 0.753020396282533 + 0.0im\n", + " 2.4450418679126287 + 0.0im\n", + " 3.801937735804838 + 0.0im\n", + " 3.801937735804838 + 0.0im\n", + " 2.4450418679126287 + 0.0im\n", + " 0.753020396282533 + 0.0im" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fft(A[:,1]) # computes the same thing as F(7) * A[:,1], but much faster" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But now that we know that $F$ diagonalizes any circulant matrix, it leads to an amazing fact: **you can multiply Cx for any circulant matrix in ~ n log n operations and ~ n storage**. \n", + "\n", + "Specifically, $C = F \\Lambda F^{-1} = F \\frac{\\Lambda}{n} \\bar{F}$, so to multiply $Cx$ we just need to:\n", + "\n", + "1. Multiply $\\hat{x} = \\bar{F} x$. This can be done by an (inverse) FFT in $\\sim n log n$ operations.\n", + "\n", + "2. Multiply each component of $\\hat{x}$ by the eigenvalues $\\lambda_k/n$. The eigenvalues can be computed by multiply $F$ by the first row of $C$, which can be done by an FFT in $\\sim n \\log n$ operations.\n", + "\n", + "3. Multiply by $F$ via another FFT in $\\sim n \\log n$ operations.\n", + "\n", + "This means that **circulant matrices are perfectly suited to iterative solver algorithms** (e.g. the power method or steepest-descent), just like sparse matrices!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A personal note\n", + "\n", + "FFTs are near and dear to your instructor's heart — 20 years ago, partially for my final project in Prof. Alan Edelman's class 18.337, I developed a library for FFTs along with a friend of mine, [Matteo Frigo](https://www.linkedin.com/in/matteo-frigo-851212/). Being arrogant MIT graduate students, we named it [FFTW: The Fastest Fourier Transform in the West](http://fftw.org/). Fortunately, FFTW somewhat lived up to its name, and it is now the FFT library in Matlab, in Julia, and in many other software packages.\n", + "\n", + "![FFTW logo](http://fftw.org/fftw-logo-med.gif)" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Complex-Eigenvalues.ipynb b/notes/Complex-Eigenvalues.ipynb new file mode 100644 index 00000000..99b09bdf --- /dev/null +++ b/notes/Complex-Eigenvalues.ipynb @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "5a885b29", + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra, PyPlot" + ] + }, + { + "cell_type": "markdown", + "id": "7c0b5837", + "metadata": {}, + "source": [ + "# Real matrices and complex λ\n", + "\n", + "A *real* matrix can easily have *complex* eigenvalues, because (as you know from the quadratic formula), real polynomials such as $\\det(A - \\lambda I)$ can have complex roots.\n", + "\n", + "Here is a randomly chosen $5 \\times 5$ real matrix, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2eff420e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 0 -9 5 -4 7\n", + " -2 2 0 -5 -9\n", + " 4 9 7 5 2\n", + " 5 0 -7 5 -4\n", + " 2 1 -3 -8 0" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 0 -9 5 -4 7\n", + " -2 2 0 -5 -9\n", + " 4 9 7 5 2\n", + " 5 0 -7 5 -4\n", + " 2 1 -3 -8 0 ]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "061b5268", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{ComplexF64}:\n", + " -5.616265073910875 - 8.089914555646233im\n", + " -5.616265073910875 + 8.089914555646233im\n", + " 7.593939120984211 + 0.0im\n", + " 8.819295513418766 - 4.439554583783142im\n", + " 8.819295513418766 + 4.439554583783142im" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ = eigvals(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "beb553c4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "reim_axes (generic function with 1 method)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a little function to plot the complex axes nicely\n", + "function reim_axes(ax)\n", + " ax.axis(\"equal\")\n", + "\n", + " # Move left y-axis and bottim x-axis to centre, passing through (0,0)\n", + " ax.spines[\"left\"].set_position(\"center\")\n", + " ax.spines[\"bottom\"].set_position(\"center\")\n", + "\n", + " # Eliminate upper and right axes\n", + " ax.spines[\"right\"].set_color(\"none\")\n", + " ax.spines[\"top\"].set_color(\"none\")\n", + "\n", + " # Show ticks in the left and lower axes only\n", + " ax.xaxis.set_ticks_position(\"bottom\")\n", + " ax.yaxis.set_ticks_position(\"left\")\n", + "\n", + " xlabel(L\"\\operatorname{Re} \\lambda\")\n", + " ax.xaxis.set_label_coords(1.04, 0.52)\n", + "\n", + " ylabel(L\"\\operatorname{Im} \\lambda\", rotation=0)\n", + " ax.yaxis.set_label_coords(0.5, 1.02)\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e339e76b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGbCAYAAADjpRuEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoqElEQVR4nO3df3RU5Z3H8c8kIRMSyRCIIYlJSBS2gkRAWClIJNSKspFlTWGLKAtCWVF+s2hBw0KxkvLjIBYLiu6h2F3Qs5jaFiqFLYpBsPLTA5QF+aGJIZQf2hkIMiGTu39kSR1JQhIyuXlm3q9znpPMM8+9842Ti58897l3HJZlWQIAADBAmN0FAAAA1BfBBQAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+AC4Ibl5eXJ6XRq5MiRdpcCIMg5+KwiIPSMGTNGf/3rX/XOO+80yf48Ho9+9atfadKkSfr000/VqVOnJtkvAHwbMy4AblhsbKzGjh2rsLAwHThwwO5yAAQxggsQ4rKzszV58mRNmzZNcXFx6tChg1atWqWysjI9/vjjatOmjW677Ta9++67de6noqJC0dHROnjwYDNVDiAUEVwAaM2aNYqPj9fHH3+syZMn68knn9Tw4cPVr18/7d27Vw888IBGjRqlS5cu1bqPvLw8Xbx4keACIKBY4wKEoG+uccnOzpbP51NhYaEkyefzyeVyKTc3V2+88YYk6fTp00pKStLOnTv13e9+95r97dmzR/369dP999+vkydP6tChQ8368wAIHcy4ANCdd95Z/X14eLjat2+vzMzM6r4OHTpIks6cOXPNtpWVlXriiSc0adIk/cu//IuOHj2q8vLywBcNICQRXACoVatWfo8dDodfn8PhkFQVUr5t+fLlOnv2rObPn6/MzExVVFToyJEjgS0YQMgiuABotJKSEs2ZM0crVqxQTEyMOnfuLKfTyToXAAFDcAHQaFOmTNHgwYOVk5MjSYqIiFCXLl0ILgACJsLuAgCYacOGDdq6dasOHz7s15+ZmUlwARAwXFUEAACMwakiAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4A6mRZljwej7jlE4CWgOACoE4XLlyQy+XShQsX7C4FAAguAADAHAQXAABgDIILAAAwBsEFAAAYg+ACAACMEWF3AQAAe/l8Pl25csXuMhAArVq1Unh4uN1lNCmCCwCEKMuydPr0af31r3+1uxQEUNu2bZWYmCiHw2F3KU2C4AIAIepqaElISFB0dHTQ/I8NVSzL0qVLl3TmzBlJUlJSks0VNQ2CCwCEIJ/PVx1a2rdvb3c5CJDWrVtLks6cOaOEhISgOG3E4lwACEFX17RER0fbXAkC7ep7HCzrmAguABDCOD0U/ILtPeZUUZDw+aTCQqm0VEpKkrKypCCYEQQAwA/BJQgUFEhTp0pffPG3vpQU6aWXpNxc++oCAKCpcarIcAUF0rBh/qFFkkpKqvoLCuypCwCAQCC4GMznq5ppsaxrn7vaN21a1TgACASfT3r/fWnduqqvzfXvTV5enpxOp0aOHNkk+7MsS//6r/+qdu3ayeFwaP/+/U2y3/rKzs7WtGnTmvU1TUVwMVhh4bUzLd9kWVJxcdU4hKaKigrl5eUpIyNDrVu31q233qr58+ersrLS7tIQBAoKpPR0aeBAaeTIqq/p6c0z0/vMM89o6dKlWrdunY4dO3bD+9u0aZN++ctfasOGDSotLVW3bt2aoMrA2bdvn1q1aqWsrCy7S2l2BBeDlZY27TgEn4ULF+qVV17Ryy+/rMOHD2vRokVavHixli9fbndpMJzdp6ljY2M1duxYhYWF6cCBAze8v+PHjyspKUn9+vVTYmKiIiLqtwS0vLz8hl+7MaZMmaKZM2fqk08+kVXTtHsQI7gYrL43QQySmyWiEXbu3KmhQ4cqJydH6enpGjZsmAYNGqTdu3fXuo3X65XH4/FrwDe1lNPUFRUVio6O1sGDB6871uv1asqUKUpISFBUVJT69++vXbt2SZLGjBmjyZMnq6ioSA6HQ+np6bXuJzs7W5MmTdKMGTMUHx+v+++/X5ZladGiRbr11lvVunVrde/eXevXr/fbbtOmTerfv7/atm2r9u3b66GHHtLx48cb9XOvXbtWcXFxmjhxoi5cuKATJ040aj+mIrgYLCur6uqh2i7Rdzik1NSqcQhN/fv31x//+EcdPXpUkvTJJ59o+/bt+od/+Idat8nPz5fL5apuqampzVUuDNFSTlPn5eXp4sWL9QouzzzzjN5++22tWbNGe/fuVadOnfTAAw/oyy+/1EsvvaT58+crJSVFpaWl1YGmNmvWrFFERIQ+/PBDvfrqq8rLy9Pq1au1cuVKHTp0SNOnT9djjz2mbdu2VW9TVlamGTNmaNeuXfrjH/+osLAwPfzwww0+bVtWVqZnn31WCxcuVEpKilwuV7Ovx7GdBaO9/bZlORxVreqfi6p2te/tt+2uEHaqrKy0Zs2aZTkcDisiIsJyOBzWggUL6tzm8uXLltvtrm7FxcWWJMvtdjdT1WgOX3/9tfXnP//Z+vrrrxu87dq1/v/e1NbWrg1A4f9v9+7dVmRkpJWTk2N17dq1zrEXL160WrVqZf3Xf/1XdV95ebmVnJxsLVq0yLIsy3rxxRetjh07Xvd1BwwYYPXo0cNv31FRUdaOHTv8xo0bN8565JFHat3PmTNnLEnWgQMHqvc7derU677+7NmzrSeeeKL6cd++fa28vLw6t7mR97ol4j4uhsvNldavr/k+LsuWcR+XUPfWW2/pP//zP7V27Vrdcccd2r9/v6ZNm6bk5GSNHj26xm2cTqecTmczVwqT2H2aurKyUk888YQmTZqkPn366NFHH1V5ebkiIyNrHH/8+HFduXJF99xzT3Vfq1atdPfdd+vw4cMNfv3evXtXf//nP/9Zly9f1v333+83pry8XD179vSrYc6cOfroo4907ty56pmWoqKiei8EPnHihFatWuU3w9StW7eQm3EhuASB3Fxp6FDunItrPf3005o1a5ZGjBghScrMzNTnn3+u/Pz8WoMLcD1XT1OXlNS8zsXhqHo+UKeply9frrNnz2r+/PkqKipSRUWFjhw5oszMzBrHW/9f5LdvfW9ZVqNuhx8TE1P9/dUAsnHjRt1yyy1+4775B8CQIUOUmpqq1157TcnJyaqsrFS3bt0atLh3+vTpOn/+vFJSUvxe/9uvG+wILkEiPFzKzra7CrQ0ly5dUliY/1K28PBwLofGDQkPr7oz97BhVSHlm+Hlag5YtiwwfzyVlJRozpw5WrdunWJiYtS5c2c5nU4dPHiw1uDSqVMnRUZGavv27dX3fbly5Yp27959w/dO6dq1q5xOp4qKijRgwIAax5w/f16HDx/Wq6++Wn358vbt2xv0Olu2bNGHH36offv2+V3xtGvXLo0dO1bnz58PmU/5JrgAQWzIkCF64YUXlJaWpjvuuEP79u3T0qVLNXbsWLtLg+HsOk09ZcoUDR48WDk5OZKkiIgIdenSpc4FujExMXryySf19NNPq127dkpLS9OiRYt06dIljRs37obqadOmjWbOnKnp06ersrJS/fv3l8fj0Y4dO3TTTTdp9OjRiouLU/v27bVq1SolJSWpqKhIs2bNqvdrVFRUaOrUqXr66afVo0cPv+diY2MlSfv379d99913Qz+LKQguQBBbvny55syZo6eeekpnzpxRcnKynnjiCf37v/+73aUhCDT3aeoNGzZo69at16xLyczMvO6VRT/72c9UWVmpUaNG6cKFC+rdu7f+8Ic/KC4u7obrev7555WQkKD8/HydOHFCbdu21V133aVnn31WkhQWFqY333xTU6ZMUbdu3fSd73xHP//5z5Vdz2ny5cuX6/z585o0adI1z6Wmpio6OjqkgovDskLszjUAGsTj8cjlcsntdlf/dQfzXb58WSdPnlRGRoaioqLsLgcBFGzvNfdxAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAAhh3NMn+AXbe8zl0AAQgiIjIxUWFqZTp07p5ptvVmRkZKPuIouWy7IslZeX6+zZswoLC6v1IxFMQ3ABgBAUFhamjIwMlZaW6tSpU3aXgwCKjo5WWlraNXfRNhXBBQBCVGRkpNLS0lRRUSGfz2d3OQiA8PBwRUREBNVsGsEFAEKYw+FQq1at1KpVK7tLAeolOOaNAABASCC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCxDkSkpK9Nhjj6l9+/aKjo5Wjx49tGfPHrvLAoBGibC7AACB89VXX+mee+7RwIED9e677yohIUHHjx9X27Zt7S4NABqF4AIEsYULFyo1NVWrV6+u7ktPT7evIAC4QZwqAoLYb3/7W/Xu3VvDhw9XQkKCevbsqddee63Obbxerzwej18DgJaC4AIEsRMnTmjlypXq3Lmz/vCHP2jChAmaMmWK3njjjVq3yc/Pl8vlqm6pqanNWDEA1M1hWZZldxEAAiMyMlK9e/fWjh07qvumTJmiXbt2aefOnTVu4/V65fV6qx97PB6lpqbK7XYrNjY24DUDQF2YcQGCWFJSkrp27erX16VLFxUVFdW6jdPpVGxsrF8DgJaC4AIEsXvuuUdHjhzx6zt69Kg6duxoU0UAcGMILkAQmz59uj766CMtWLBAx44d09q1a7Vq1SpNnDjR7tIAoFFY4wIEuQ0bNmj27Nn69NNPlZGRoRkzZmj8+PH13t7j8cjlcrHGBUCLQHABUCeCC4CWhFNFAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGCPC7gIAAKHF55MKC6XSUikpScrKksLD7a4KpiC4AACaTUGBNHWq9MUXf+tLSZFeeknKzbWvLpiDU0UAgGZRUCANG+YfWiSppKSqv6DAnrpgFodlWZbdRQBouTwej1wul9xut2JjY+0uB4by+aT09GtDy1UOR9XMy8mTnDZC3ZhxAQAEXGFh7aFFkixLKi6uGgfUheACAAi40tKmHYfQRXABAARcUlLTjkPoIrgAAAIuK6tqDYvDUfPzDoeUmlo1DqgLwQUAEHDh4VWXPEvXhperj5ctY2Euro/gAgBoFrm50vr10i23+PenpFT1cx8X1AeXQwOoE5dDo6lx51zcCGZcgBCSn58vh8OhadOm2V0KQlh4uJSdLT3ySNVXQgsaguAChIhdu3Zp1apVuvPOO+0uBQAajeAChICLFy/q0Ucf1Wuvvaa4uLg6x3q9Xnk8Hr8GAC0FwQUIARMnTlROTo6+//3vX3dsfn6+XC5XdUtNTW2GCgGgfgguQJB78803tXfvXuXn59dr/OzZs+V2u6tbcXFxgCsEgPqLsLsAAIFTXFysqVOnavPmzYqKiqrXNk6nU06nM8CVAUDjcDk0EMTeeecdPfzwwwr/xmUbPp9PDodDYWFh8nq9fs/VhMuhAbQkzLgAQey+++7TgQMH/Poef/xx3X777frxj3983dACAC0NwQUIYm3atFG3bt38+mJiYtS+fftr+gHABCzOBQAAxmCNC4A6scYFQEvCjAsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILkAQy8/P19///d+rTZs2SkhI0D/90z/pyJEjdpcFAI1GcAGC2LZt2zRx4kR99NFH2rJliyoqKjRo0CCVlZXZXRoANIrDsizL7iIANI+zZ88qISFB27Zt07333luvbTwej1wul9xut2JjYwNcIQDULcLuAgA0H7fbLUlq165drWO8Xq+8Xm/1Y4/HE/C6AKC+OFUEhAjLsjRjxgz1799f3bp1q3Vcfn6+XC5XdUtNTW3GKgGgbpwqAkLExIkTtXHjRm3fvl0pKSm1jqtpxiU1NZVTRQBaBE4VASFg8uTJ+u1vf6sPPvigztAiSU6nU06ns5kqA4CGIbgAQcyyLE2ePFm//vWv9f777ysjI8PukgDghhBcgCA2ceJErV27Vr/5zW/Upk0bnT59WpLkcrnUunVrm6sDgIZjjQsQxBwOR439q1ev1pgxY+q1Dy6HBtCSMOMCBDH+LgEQbLgcGgAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAABJks8nvf++tG5d1Vefz+6KEIzy8vLkdDo1cuTIRm1PcAEAqKBASk+XBg6URo6s+pqeXtWP0DVmzBg5HA45HA5FREQoLS1NTz75pL766qtG7/OZZ57R0qVLtW7dOh07dqzB2xNcgBCwYsUKZWRkKCoqSr169VJhYaHdJaEFKSiQhg2TvvjCv7+kpKqf8BLaHnzwQZWWluqzzz7T66+/rt/97nd66qmnGr2/2NhYjR07VmFhYTpw4ECDtye4AEHurbfe0rRp0/Tcc89p3759ysrK0uDBg1VUVGR3aWgBfD5p6lTJsq597mrftGmcNgplTqdTiYmJSklJ0aBBg/TDH/5Qmzdvrn7esiwtWrRIt956q1q3bq3u3btr/fr1de6zoqJC0dHROnjwYIPriWjwFjWwLEsXLlxoil0BaGKLFy/WqFGj9M///M+SpPnz5+v3v/+9li1bpnnz5l0z3uv1yuv1Vj++emx7PJ5mqRfNq7Dw2pmWb7IsqbhY2rRJyspqvrrQvNq0aSOHw3HdcSdOnNCmTZvUqlWr6r68vDwVFBRo5cqV6ty5sz744AM99thjuvnmmzVgwIAa95OXl6eLFy82KrjIagJut9uSRKPRaDQazcDmdrtr/P/76NGjrfDwcCsmJsaKioqqHr906VLLsizr4sWLVlRUlLVjxw6/7caNG2c98sgjNe5z9+7dVmRkpJWTk2N17dq1wZnDYVk1TRA2jFXHjIvH41FqaqqKi4sVGxt7oy+FJsb703I1xXtTWlqq22+/XZs3b1afPn2q+5csWaK1a9dq796912xT04xL165d+R35lmA5dgoLpYceuv64DRvMmnEJlvenudQ24zJmzBiVlJRo5cqVunTpkl5//XUdPXpUGzZsUEREhHbt2qW7775bMTExftuVl5erZ8+e+tOf/uTXX1lZqbvvvlsDBgxQnz599Oijj6qsrEyRkZH1rrVJThU5HI7r/mLExsbyy9OC8f60XDfy3ly8eFGSdNNNN/ntw+l0KiIiol77vXqKiN+Rmpn+3+XBB6WUlKqFuDX9GetwVD3/4INSeHjz13ejTH9/WoKYmBh16tRJkvTzn/9cAwcO1E9+8hM9//zzqqyslCRt3LhRt9xyi992Tqfzmn0tX75cZ8+e1fz581VUVKSKigodOXJEmZmZ9a6HxblAEIuPj1d4eLhOnz7t13/mzBl16NDBpqrQkoSHSy+9VPX9t//gvvp42TIzQwsCY+7cuVqyZIlOnTqlrl27yul0qqioSJ06dfJrqampftuVlJRozpw5WrFihWJiYtS5c2c5nc4Gr3MhuABBLDIyUr169dKWLVv8+rds2aJ+/frZVBVamtxcaf166Vt/MCslpao/N9eeutAyZWdn64477tCCBQvUpk0bzZw5U9OnT9eaNWt0/Phx7du3T7/4xS+0Zs0av+2mTJmiwYMHKycnR5IUERGhLl26NDi4NMmporo4nU7NnTu3xikj2I/3p+VqqvdmxowZGjVqlHr37q2+fftq1apVKioq0oQJE5qo0tAUbMdObq40dGjVmpfSUikpqWpNi6kzLcH2/rQ0M2bM0OOPP64f//jHev7555WQkKD8/HydOHFCbdu21V133aVnn322evyGDRu0detWHT582G8/mZmZDQ4uTbI4F0DLtmLFCi1atEilpaXq1q2bXnzxRd1777312tbj8cjlcsntdrNWAIDtCC4A6kRwAdCSsMYFAAAYg+ACAACMQXABAADGILgAAABjBCy4vPDCC+rXr5+io6PVtm3bGscUFRVpyJAhiomJUXx8vKZMmaLy8vJAlYTrSE9Pl8Ph8GuzZs2yu6yQtWLFCmVkZCgqKkq9evVSYWGh3SVB0rx58645ThITE+0uK2R98MEHGjJkiJKTk+VwOPTOO+/4PW9ZlubNm6fk5GS1bt1a2dnZOnTokD3FokkELLiUl5dr+PDhevLJJ2t83ufzKScnR2VlZdq+fbvefPNNvf322/q3f/u3QJWEepg/f75KS0urW15ent0lhaS33npL06ZN03PPPad9+/YpKytLgwcPVlFRkd2lQdIdd9zhd5wcOHDA7pJCVllZmbp3766XX365xucXLVqkpUuX6uWXX9auXbuUmJio+++/v9bP14MBGvyxjA20evVqy+VyXdP/+9//3goLC7NKSkqq+9atW2c5nc5aP6USgdWxY0frxRdftLsMWJZ19913WxMmTPDru/32261Zs2Y1ey1XP/2d47LK3Llzre7du9tdBmogyfr1r39d/biystJKTEy0fvazn1X3Xb582XK5XNYrr7xiQ4VoCratcdm5c6e6deum5OTk6r4HHnhAXq9Xe/bssauskLdw4UK1b99ePXr00AsvvMCpOxuUl5drz549GjRokF//oEGDtGPHDpuqwjd9+umnSk5OVkZGhkaMGKETJ07YXRJqcPLkSZ0+fdrvWHI6nRowYADHksECfsv/2pw+ffqaD3mLi4tTZGTkNR8Ih+YxdepU3XXXXYqLi9PHH3+s2bNn6+TJk3r99dftLi2knDt3Tj6f75rjo0OHDhwbLUCfPn30xhtv6O/+7u/0l7/8RT/96U/Vr18/HTp0SO3bt7e7PHzD1eOlpmPp888/t6MkNIEGzbjUtCjt22337t313p/j2x9FqqqFVDX1o3Ea8p5Nnz5dAwYM0J133qkf/ehHeuWVV/Qf//EfOn/+vM0/RWj69nHAsdEyDB48WD/4wQ+UmZmp73//+9q4caMkXfOBcmg5OJaCS4NmXCZNmqQRI0bUOSY9Pb1e+0pMTNSf/vQnv76vvvpKV65cuSYdo/Fu5D377ne/K0k6duwYf0k2o/j4eIWHh18zu3LmzBmOjRYoJiZGmZmZ+vTTT+0uBd9y9Wqv06dPKykpqbqfY8lsDQou8fHxio+Pb5IX7tu3r1544QWVlpZW/0Jt3rxZTqdTvXr1apLXwI29Z/v27ZMkvwMegRcZGalevXppy5Ytevjhh6v7t2zZoqFDh9pYGWri9Xp1+PBhZWVl2V0KviUjI0OJiYnasmWLevbsKalqDdm2bdu0cOFCm6tDYwVsjUtRUZG+/PJLFRUVyefzaf/+/ZKkTp066aabbtKgQYPUtWtXjRo1SosXL9aXX36pmTNnavz48XyQmw127typjz76SAMHDpTL5dKuXbs0ffp0/eM//qPS0tLsLi/kzJgxQ6NGjVLv3r3Vt29frVq1SkVFRZowYYLdpYW8mTNnasiQIUpLS9OZM2f005/+VB6PR6NHj7a7tJB08eJFHTt2rPrxyZMntX//frVr105paWmaNm2aFixYoM6dO6tz585asGCBoqOjNXLkSBurxg0J1OVKo0ePtiRd0957773qMZ9//rmVk5NjtW7d2mrXrp01adIk6/Lly4EqCXXYs2eP1adPH8vlcllRUVHWd77zHWvu3LlWWVmZ3aWFrF/84hdWx44drcjISOuuu+6ytm3bZksdXA7t74c//KGVlJRktWrVykpOTrZyc3OtQ4cO2V1WyHrvvfdq/H/N6NGjLcuquiR67ty5VmJiouV0Oq17773XOnDggL1F44Y4LMuybMpMAAzg8XjkcrnkdruZDQVgOz6rCAAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsQpD777DONGzdOGRkZat26tW677TbNnTtX5eXldpcGAI0WYXcBAALjf//3f1VZWalXX31VnTp10sGDBzV+/HiVlZVpyZIldpcHAI3isCzLsrsIAM1j8eLFWrlypU6cOFHvbTwej1wul9xut2JjYwNYHQBcHzMuQAhxu91q165dnWO8Xq+8Xm/1Y4/HE+iyAKDeWOMChIjjx49r+fLlmjBhQp3j8vPz5XK5qltqamozVQgA10dwAQwzb948ORyOOtvu3bv9tjl16pQefPBBDR8+XD/60Y/q3P/s2bPldrurW3FxcSB/HABoENa4AIY5d+6czp07V+eY9PR0RUVFSaoKLQMHDlSfPn30y1/+UmFhDft7hTUuAFoS1rgAhomPj1d8fHy9xpaUlGjgwIHq1auXVq9e3eDQAgAtDcEFCFKnTp1Sdna20tLStGTJEp09e7b6ucTERBsrA4DGI7gAQWrz5s06duyYjh07ppSUFL/nOEMMwFSscQFQJ9a4AGhJOOENAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUIAV6vVz169JDD4dD+/fvtLgcAGo3gAoSAZ555RsnJyXaXAQA3jOACBLl3331Xmzdv1pIlS+o13uv1yuPx+DUAaCkILkAQ+8tf/qLx48frV7/6laKjo+u1TX5+vlwuV3VLTU0NcJUAUH8EFyBIWZalMWPGaMKECerdu3e9t5s9e7bcbnd1Ky4uDmCVANAwBBfAMPPmzZPD4aiz7d69W8uXL5fH49Hs2bMbtH+n06nY2Fi/BgAthcOyLMvuIgDU37lz53Tu3Lk6x6Snp2vEiBH63e9+J4fDUd3v8/kUHh6uRx99VGvWrKnX63k8HrlcLrndbkIMANsRXIAgVVRU5Lew9tSpU3rggQe0fv169enTRykpKfXaD8EFTc3nkwoLpdJSKSlJysqSwsPtrgqmiLC7AACBkZaW5vf4pptukiTddttt9Q4tQFMrKJCmTpW++OJvfSkp0ksvSbm59tUFc7DGBQDQLAoKpGHD/EOLJJWUVPUXFNhTF8zCqSIAdeJUEZqCzyelp18bWq5yOKpmXk6e5LQR6saMCwAg4AoLaw8tkmRZUnFx1TigLgQXAEDAlZY27TiELoILACDgkpKadhxCF8EFABBwWVlVa1i+cVshPw6HlJpaNQ6oC8EFABBw4eFVlzxL14aXq4+XLWNhLq6P4AIAaBa5udL69dItt/j3p6RU9XMfF9QHl0MDqBOXQ6Opcedc3AjunAsAaFbh4VJ2tt1VwFScKgIAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUIchs3blSfPn3UunVrxcfHKzc31+6SAKDRIuwuAEDgvP322xo/frwWLFig733ve7IsSwcOHLC7LABoNIdlWZbdRQBoehUVFUpPT9dPfvITjRs3rtH78Xg8crlccrvdio2NbcIKAaDhOFUEBKm9e/eqpKREYWFh6tmzp5KSkjR48GAdOnSozu28Xq88Ho9fA4CWguACBKkTJ05IkubNm6e8vDxt2LBBcXFxGjBggL788stat8vPz5fL5apuqampzVUyAFwXwQUwzLx58+RwOOpsu3fvVmVlpSTpueee0w9+8AP16tVLq1evlsPh0H//93/Xuv/Zs2fL7XZXt+Li4ub60QDgulicCxhm0qRJGjFiRJ1j0tPTdeHCBUlS165dq/udTqduvfVWFRUV1bqt0+mU0+lsmmIBoIkRXADDxMfHKz4+/rrjevXqJafTqSNHjqh///6SpCtXruizzz5Tx44dA10mAAQEwQUIUrGxsZowYYLmzp2r1NRUdezYUYsXL5YkDR8+3ObqAKBxCC5AEFu8eLEiIiI0atQoff311+rTp4+2bt2quLg4u0sDgEbhPi4A6sR9XAC0JFxVBAAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADGILgAAABjEFwAAIAxCC4AAMAYBBcAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGIPgAgAAjEFwAQAAxiC4AAAAYxBcAACAMQguAADAGAQXAABgDIILAAAwBsElSPh80vvvS+vWVX31+eyuCC3B0aNHNXToUMXHxys2Nlb33HOP3nvvPbvLAoBGI7gEgYICKT1dGjhQGjmy6mt6elU/QltOTo4qKiq0detW7dmzRz169NBDDz2k06dP210aADSKw7Isy+4i0HgFBdKwYdK330WHo+rr+vVSbm7z1wX7nTt3TjfffLM++OADZWVlSZIuXLig2NhY/c///I/uu+++Grfzer3yer3Vjz0ej1JTU+V2uxUbG9sstQNAbZhxMZjPJ02dem1okf7WN20ap41CVfv27dWlSxe98cYbKisrU0VFhV599VV16NBBvXr1qnW7/Px8uVyu6paamtqMVQNA3ZhxMdj771edFrqe996TsrMDXQ1aopKSEg0dOlR79+5VWFiYOnTooI0bN6pHjx61bsOMC4CWjBkXg5WWNu04mGHevHlyOBx1tt27d8uyLD311FNKSEhQYWGhPv74Yw0dOlQPPfSQSuv4pXA6nYqNjfVrANBSMONiMGZcQtO5c+d07ty5Osekp6frww8/1KBBg/TVV1/5hY/OnTtr3LhxmjVrVr1ez+PxyOVyMeMCoEWIsLsANF5WlpSSIpWU1LzOxeGoev7/12UiSMTHxys+Pv664y5duiRJCgvzn1gNCwtTZWVlQGoDgEDjVJHBwsOll16q+v7qVURXXX28bFnVOISevn37Ki4uTqNHj9Ynn3yio0eP6umnn9bJkyeVk5Njd3kA0CgEF8Pl5lZd8nzLLf79KSlcCh3q4uPjtWnTJl28eFHf+9731Lt3b23fvl2/+c1v1L17d7vLA4BGYY1LkPD5pMLCqoW4SUlVp4eYaUFTYI0LgJaENS5BIjycBbgAgODHqSIAAGAMggsAADAGwQUAABiD4AIAAIxBcAEAAMYguAAAAGMQXAAAgDEILgAAwBgEFwAAYAyCCwAAMAbBBQAAGIMPWQRQJ8uydOHCBbVp00YOh8PucgCEOIILAAAwBqeKAACAMQguAADAGAQXAABgDIILAAAwBsEFAAAYg+ACAACMQXABAADG+D8jafYUDadAdAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n", + "│ caller = npyinitialize() at numpy.jl:67\n", + "└ @ PyCall /Users/stevenj/.julia/packages/PyCall/L0fLP/src/numpy.jl:67\n" + ] + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(real.(λ), imag.(λ), \"bo\", label=L\"$\\lambda$ of real $A$\")\n", + "\n", + "reim_axes(gca())\n", + "legend()" + ] + }, + { + "cell_type": "markdown", + "id": "5351fca1", + "metadata": {}, + "source": [ + "The **complex eigenvalues** of a real matrix come in **complex-conjugate pairs**:\n", + "\n", + "The **eigenvectors** also come in conjugate pairs:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "0d2a4c15", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×2 Matrix{ComplexF64}:\n", + " 0.111042-0.466655im 0.111042+0.466655im\n", + " 0.486281-0.0im 0.486281+0.0im\n", + " -0.363772+0.179752im -0.363772-0.179752im\n", + " 0.115521+0.375451im 0.115521-0.375451im\n", + " 0.322662+0.332225im 0.322662-0.332225im" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = eigvecs(A)\n", + "X[:,1:2] # the first two eigenvectors, corresponding to λ ≈ -5.6 ± 8.1i" + ] + }, + { + "cell_type": "markdown", + "id": "4bbd8354", + "metadata": {}, + "source": [ + "This fact is easy to derive. If $A$ is a real matrix (so $\\bar{A}=A$) and we have an eigensolution, we can just take the complex-conjugate of both sides:\n", + "\n", + "$$\n", + "Ax = \\lambda x \\implies \\overline{Ax} = \\boxed{A \\bar{x}} = \\overline{\\lambda x} = \\boxed{\\bar{\\lambda} \\bar{x}}\n", + "$$\n", + "\n", + "so the **complex-conjugate of any eigensolution is also an eigensolution** for any **real matrix**." + ] + }, + { + "cell_type": "markdown", + "id": "55730ad3", + "metadata": {}, + "source": [ + "# Complex matrices and complex λ\n", + "\n", + "Of course, complex matrices will have complex λ as well, but they have **no particular symmetry** in general.\n", + "\n", + "For example, here is a randomly chosen $5\\times 5$ complex matrix $B$:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7c85e751", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Complex{Int64}}:\n", + " -4+6im 4+3im 2+5im 6+9im 0+0im\n", + " -3+4im 4+3im -6-3im 5+0im 9+5im\n", + " 8+3im -3-6im 6-3im -9-5im 4+8im\n", + " 9+9im 9+0im 2-1im 5+2im 7+9im\n", + " -4-9im 0+0im 6+4im -2-6im -4-5im" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = [ -4+6im 4+3im 2+5im 6+9im 0+0im\n", + " -3+4im 4+3im -6-3im 5+0im 9+5im\n", + " 8+3im -3-6im 6-3im -9-5im 4+8im\n", + " 9+9im 9+0im 2-1im 5+2im 7+9im\n", + " -4-9im 0+0im 6+4im -2-6im -4-5im ]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9bf6a2d4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGbCAYAAADwcltwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqi0lEQVR4nO3dfXBUVZ7G8afJS+eVJhDJiyQETFxBEAaQtwEJ6xqXYhkcBkfFxaCIgAYIyKIILggCIzqIA6sU4xTo7Mi4hejuoDhSChqXFwNCLSIrINFgTAigpCFqhyRn/8jSY0wCISS5J53vp+pW0qfPvf273HTycO65t13GGCMAAAALtHG6AAAAgAsIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAJc0f/58ud1ujRs3zulSAAQ4F5+VAwSeCRMm6MyZM3rjjTcaZXter1d//OMflZWVpSNHjig1NbVRtgsAP8WICYBLatu2re677z61adNGBw4ccLocAAGMYAIEuPT0dE2bNk3Z2dmKiYlRXFyc1q5dq9LSUt17772Kjo7WNddcoy1btlx0O+Xl5YqIiNAnn3zSTJUDaI0IJkAr8NJLLyk2NlYfffSRpk2bpqlTp+r222/X4MGD9fHHH+vWW2/V+PHj9d1339W5jfnz5+vcuXMEEwBNijkmQAD68RyT9PR0VVRUKCcnR5JUUVEhj8ejMWPG6OWXX5YkFRUVKSEhQTt37tTAgQNrbG/v3r0aPHiwbrnlFuXl5engwYPNuj8AWg9GTIBW4IYbbvB/HxQUpA4dOqhnz57+tri4OElScXFxjXUrKys1efJkZWVl6Z577tHhw4dVVlbW9EUDaJUIJkArEBISUu2xy+Wq1uZyuSRVhZCfWrVqlU6ePKlFixapZ8+eKi8v12effda0BQNotQgmAOpUUFCgxx9/XM8//7wiIyOVlpYmt9vNPBMATYZgAqBO06dP14gRIzRy5EhJUnBwsLp160YwAdBkgp0uAICdNm/erPfee0+HDh2q1t6zZ0+CCYAmw1U5AADAGpzKAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACtHLGGHm9XnFLIwA2IJgArdzZs2fl8Xh09uxZp0sBAIIJAACwB8EEAABYg2ACAACsQTABAADWIJgAAABrBDtdAAAEuoqKCp0/f97pMhCAQkJCFBQU5HQZjYpgAgBNxBijoqIinTlzxulSEMDatWun+Ph4uVwup0tpFAQTAGgiF0JJx44dFRERETB/OGAHY4y+++47FRcXS5ISEhIcrqhxEEwAoAlUVFT4Q0mHDh2cLgcBKjw8XJJUXFysjh07BsRpHSa/AkATuDCnJCIiwuFKEOgu/IwFyjwmggkANCFO36CpBdrPGKdygNaqokLKyZE+//xvjwHAYYyYAK3Rpk1SSoo0fLh0//1VbT16VLUDgIMIJkBrs2mTNHas9NVX1du//rqqnXACwEEEE6A1qaiQZsyQjKm7T3Y2p3UAOIZgArQmOTk1R0p+zBjp+PGqfrBDRYW0fbu0YUPV12YKjfPnz5fb7da4ceMaZXvGGD3wwANq3769XC6X9u/f3yjbbS7p6enKzs52uoxWgWACtCaFhY3bD03rx3OBxo2r+pqS0iyn2+bMmaMVK1Zow4YNOnr06BVv7+2339b69eu1efNmFRYWqkePHo1QZeC56aab5HK5/Ev79u1122236eTJk06X1mwIJkBrUt87QwbIHSRbtLrmAhUUNMtcoLZt2+q+++5TmzZtdODAgSve3ueff66EhAQNHjxY8fHxCg7motCfMsZo//79euaZZ1RYWKiCggJt2LBB7733np588kmny2s2BBOgNRk6VOrUSarrvgcul5SUVNUPzrnYXKALbc0wF6i8vFwRERH65JNPLtnX5/Np+vTp6tixo8LCwjRkyBDl5uZKkiZMmKBp06YpPz9fLpdLKSkpdW6nsrJSTz31lFJTU+V2u5WcnKwlS5Zc8jUuSE9P17Rp05Sdna2YmBjFxcVp7dq1Ki0t1b333qvo6Ghdc8012rJlS7V1srKylJWVpXbt2qlDhw6aP3++zEXmYhljtHz5cnXt2lXh4eHq1auXNm7cKEk6efKk4uPjtXTpUn//3bt3KzQ0VO+8806d2zxy5IjOnj2r9PR0xcfHKzExUbfeequuueYalZaW1v2PH2gMgNbltdeMcbmqFsmUSEb//9W4XFXP44p9//335tNPPzXff//95a+8bZsxVRHk4su2bY1ddjXTp083ksyvf/3revVNTEw0b731ljl48KDJzMw0MTEx5vTp0+bMmTNm0aJFplOnTqawsNAUFxfXuZ05c+aYmJgYs379enP06FGTk5Njfv/731/yNS4YNmyYiY6ONosXLzaHDx82ixcvNm3atDEjRowwa9euNYcPHzZTp041HTp0MKWlpf51oqKizIwZM8z//u//mn//9383ERERZu3atdW2O2PGDP/jxx57zFx33XXm7bffNp9//rlZt26dcbvdZvv27cYYY958800TEhJicnNzzdmzZ01qamq19WvzyiuvmNDQUOPz+Ywxxvzwww9m7dq1JjIy0uTm5ta53hX9rFmIYAK0Rq+9ZkynTtWDydVXE0oa0RX9sXjllfoFk1deafzC/9+ePXtMaGioGTlypOnevftF+547d86EhISYP/3pT/62srIyk5iYaJYvX26MMebZZ581nTt3vuh2vF6vcbvd/iByua9hTFWAGDJkiP9xeXm5iYyMNOPHj/e3FRYWGklm586d/nW6detmKisr/X0eeeQR061bt2rbvRAszp07Z8LCwsyOHTuq1Thx4kRz1113+R8/+OCD5tprrzV333236dGjxyV/FmbPnm1cLpeJjIw0kZGRxuVymbi4OPPhhx9edL1ACyacygFaozFjpC++kLZtk158sartwIGqdjjP4blAlZWVmjx5srKysnTPPffo8OHDKisrq7P/559/rvPnz+vnP/+5vy0kJET9+/fXoUOH6v26hw4dks/n080333xFr3HDDTf4vw8KClKHDh3Us2dPf1tcXJwk+T+VV5IGDhxY7dbugwYN0pEjR1RRy+myTz/9VD/88INuueUWRUVF+ZeXX35Zn1+4k7KkZ555RuXl5fqP//gP/elPf1JYWNhF93/v3r369a9/rf3792v//v367//+b1133XWaPHlyrXUEKmYfAa1VUJCUni716VN199cA+FTSgHFhLlBBQe3zTFyuquebaC7QqlWrdPLkSS1atEj5+fkqLy/XZ599Vu2P+4+Z/6/xp5/ZYoy5rM9xufBJuVf6GiEhIdUeu1yuam0X+ldWVta7th+7sN6bb76pq6++utpzbrfb//2xY8f09ddfq7KyUl9++WW1wFSbffv2afHixUpNTZUkpaamavbs2Ro1apS+/PJLde3atUH1tjSMmACAbYKCpOeeq/r+p3/YLzxeubJJwmRBQYEef/xxPf/884qMjFRaWprcbvdFJ8CmpqYqNDRUH374ob/t/Pnz2rNnj7p161bv105LS1N4eLjefffdJnuNuuzatavG47S0NAXV8m/cvXt3ud1u5efnKzU1tdqSlJQkSSorK9Pdd9+tO+64Q08++aQmTpyoEydO1Pn6x44d05kzZ9SnT58a7UFBQWrfvv0V72NLwYgJANhozBhp48aqq3N+fMlwp05VoaSJTrtNnz5dI0aM0MiRIyVJwcHB6tat20WDSWRkpKZOnap/+Zd/Ufv27ZWcnKzly5fru+++08SJE+v92mFhYXrkkUc0Z84chYaG6uc//7lOnjypgwcPauLEiY3yGnU5fvy4Zs2apcmTJ+vjjz/WqlWr9Nvf/rbWvtHR0Zo9e7ZmzpypyspKDRkyRF6vVzt27FBUVJQyMzM1b948lZSU6He/+52ioqK0ZcsWTZw4UZs3b651m3v37pXL5VJcXJyKiopUWlqqnJwcLViwQFOmTFG7du2ueB9bCoIJANhqzBhp9OiqO/EWFlbNKRk6tMlOu23evFnvvfdejTkbPXv2vOQlw7/5zW9UWVmp8ePH6+zZs+rXr5/++te/KiYm5rJqePzxxxUcHKx//dd/1ddff62EhARNmTKlUV+jNvfcc4++//579e/fX0FBQZo2bZoeeOCBOvsvXrxYHTt21LJly3Ts2DG1a9dOffr00WOPPabt27dr5cqV2rZtm9q2bStJ+uMf/6gbbrhBL7zwgqZOnVpjex9//LGMMf7TODExMUpLS9OKFSuUmZl5xfvXkriMuciF2gACntfrlcfjUUlJif+XKK7cDz/8oLy8PHXp0uWSkx7hrPT0dPXu3VsrV650upQGCbSfNeaYAAAAaxBMAACANZhjAgBo1bZv3+50CfgRRkwAAIA1CCYAAMAaBBMAAGANggkANKGG3vYcqK9A+xlj8isANIHQ0FC1adNGX3/9ta666iqFhoZe1ufGAJdijFFZWZlOnjypNm3aKDQ01OmSGgXBBACaQJs2bdSlSxcVFhbq66+/drocBLCIiAglJyerTZvAOAlCMAGAJhIaGqrk5GSVl5e3qo+tR/MJCgpScHBwQI3GEUwAoAm5XC6FhIQoJCTE6VKAFiEwxn0AAEBAIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTACLffDBBxo1apQSExPlcrn0xhtvVHveGKOFCxcqMTFR4eHhSk9P18GDB50pFgAaAcEEsFhpaal69eql1atX1/r88uXLtWLFCq1evVq5ubmKj4/XLbfcorNnzzZzpQDQOFzGGON0EQAuzeVy6fXXX9dtt90mqWq0JDExUdnZ2XrkkUckST6fT3FxcXrqqac0efLkem3X6/XK4/GopKREbdu2baryAaBeGDEBWqi8vDwVFRUpIyPD3+Z2uzVs2DDt2LGjzvV8Pp+8Xm+1BQBsQTABWqiioiJJUlxcXLX2uLg4/3O1WbZsmTwej39JSkpq0joB4HIQTIAWzuVyVXtsjKnR9mNz585VSUmJfzl+/HhTlwgA9RbsdAEAGiY+Pl5S1chJQkKCv724uLjGKMqPud1uud3uJq8PABqCEROgherSpYvi4+O1detWf1tZWZnef/99DR482MHKAKDhGDEBLHbu3DkdPXrU/zgvL0/79+9X+/btlZycrOzsbC1dulRpaWlKS0vT0qVLFRERoXHjxjlYNQA0HMEEsNiePXs0fPhw/+NZs2ZJkjIzM7V+/XrNmTNH33//vR588EF9++23GjBggN555x1FR0c7VTIAXBHuYwK0ctzHBIBNmGMCAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArBHsdAEA0KJVVEg5OVJhoZSQIA0dKgUFOV0V0GIRTACgoTZtkmbMkL766m9tnTpJzz0njRnjXF1AC8apHABoiE2bpLFjq4cSSSooqGrftMmZuoAWzmWMMU4XAcA5Xq9XHo9HJSUlatu2rdPltAwVFVJKSs1QcoHLVTVykpfHaR3gMjFiAgCXKyen7lAiScZIx49X9QNwWQgmAHC5Cgsbtx8AP4IJAFyuhITG7QfAj2ACAJdr6NCqOSQuV+3Pu1xSUlJVPwCXhWACtGALFy6Uy+WqtsTHxztdVuALCqq6JFiqGU4uPF65komvQAMQTIAW7vrrr1dhYaF/OXDggNMltQ5jxkgbN0pXX129vVOnqnbuYwI0CDdYA1q44OBgRkmcMmaMNHo0d34FGhHBBGjhjhw5osTERLndbg0YMEBLly5V165d6+zv8/nk8/n8j71eb3OUGbiCgqT0dKerAAIGp3KAFmzAgAF6+eWX9de//lW///3vVVRUpMGDB+v06dN1rrNs2TJ5PB7/kpSU1IwVA8DFcedXIICUlpbqmmuu0Zw5czRr1qxa+9Q2YpKUlMSdXwFYgVM5QACJjIxUz549deTIkTr7uN1uud3uZqwKAOqPUzlAAPH5fDp06JASuLEXgBaKYAK0YLNnz9b777+vvLw87d69W2PHjpXX61VmZqbTpQFAg3AqB2jBvvrqK9111106deqUrrrqKg0cOFC7du1S586dnS4NABqEya9AK+f1euXxeJj8CsAKnMoBAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADWIJgAAABrEEyAAPD888+rS5cuCgsLU9++fZWTk+N0SQDQIAQToIV79dVXlZ2drXnz5mnfvn0aOnSoRowYofz8fKdLA4DL5jLGGKeLAC6qokLKyZEKC6WEBGnoUCkoyOmqrDFgwAD16dNHL7zwgr+tW7duuu2227Rs2bIa/X0+n3w+n/+x1+tVUlKSSkpK1LZt22apGeB9jbowYgK7bdokpaRIw4dL48ZVfU1JqWqHysrKtHfvXmVkZFRrz8jI0I4dO2pdZ9myZfJ4PP4lKSmpOUoF/ob3NS6CYAJ7bdokjR0rffVV9faCgqp2fonp1KlTqqioUFxcXLX2uLg4FRUV1brO3LlzVVJS4l+OHz/eHKUCVXhf4xIIJrBTRYU0Y4ZU25nGC23Z2VX9IJfLVe2xMaZG2wVut1tt27attgDNgvc16oFgAjvl5NT8H9WPGSMdP17VrxWLjY1VUFBQjdGR4uLiGqMogON4X6MeCCawU2Fh4/YLUKGhoerbt6+2bt1arX3r1q0aPHiwQ1UBdeB9jXoIdroAoFYJCY3bL4DNmjVL48ePV79+/TRo0CCtXbtW+fn5mjJlitOlAdXxvkY9EExgp6FDpU6dqibE1XY+2uWqen7o0OavzTJ33HGHTp8+rUWLFqmwsFA9evTQW2+9pc6dOztdGlAd72vUA6dyYKegIOm556q+/+kkzguPV67kvgf/78EHH9QXX3whn8+nvXv36qabbnK6JKAm3tetwvz58+V2uzVu3LgGrU8wgb3GjJE2bpSuvrp6e6dOVe1jxjhTF4CG431tlQkTJsjlcsnlcik4OFjJycmaOnWqvv322wZvc86cOVqxYoU2bNigo0ePXvb63PkV9uMOkU3K6/XK4/Fw51c0L97XVpgwYYJOnDihdevWqby8XJ9++qnuu+8+DR06VBs2bGjwdr///ntFRUVp48aN+uUvf3lZ6zJiAvsFBUnp6dJdd1V95ZcX0PLxvraG2+1WfHy8OnXqpIyMDN1xxx165513/M8bY7R8+XJ17dpV4eHh6tWrlzZu3HjRbZaXlysiIkKffPLJZddTr8mvxhidPXv2sjcOwH5er7faVwCBJzo6us6bLv7YsWPH9PbbbyskJMTfNn/+fG3atEkvvPCC0tLS9MEHH+if//mfddVVV2nYsGG1bmf+/Pk6d+5cg4KJTD2UlJQYSSwsLCwsLCwtcCkpKan173tmZqYJCgoykZGRJiwszN9/xYoVxhhjzp07Z8LCwsyOHTuqrTdx4kRz11131brNPXv2mNDQUDNy5EjTvXv3+sSMauo1x8QEwIjJhU9QPX78eKs4j87+BrbG3N+W8m/XUupsLOxv4GvOfa5rxGTChAkqKCjQCy+8oO+++04vvviiDh8+rM2bNys4OFi5ubnq37+/IiMjq61XVlamn/3sZ9q9e3e19srKSvXv31/Dhg3TgAEDdPfdd6u0tFShoaH1rrVep3JcLlfA/KC0ts8GYX8DW2Pub0v5t2spdTYW9jfwOb3PkZGRSk1NlST97ne/0/Dhw/XEE09o8eLFqqyslCS9+eabuvonV1K53e4a21q1apVOnjypRYsWKT8/X+Xl5frss8/Us2fPetfDDdYAAIDfggULNGLECE2dOlXdu3eX2+1Wfn5+nfNJLigoKNDjjz+uDRs2KDIyUmlpaXK73frkk08IJgAAoGHS09N1/fXXa+nSpVq9erVmz56tmTNnqrKyUkOGDJHX69WOHTsUFRWlzMxM/3rTp0/XiBEjNHLkSElScHCwunXrdtkTYFtNMHG73VqwYEGtQ0+BiP0NbK1tf6XWt8/sb+CzeZ9nzZqle++9V4888ogWL16sjh07atmyZTp27JjatWunPn366LHHHvP337x5s9577z0dOnSo2nZ69ux52cGEG6wBrRw3WANgE26wBgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGq0imCxZskSDBw9WRESE2rVrV2sfl8tVY1mzZk3zFtpI6rO/+fn5GjVqlCIjIxUbG6vp06errKyseQttIikpKTWO5aOPPup0WY3q+eefV5cuXRQWFqa+ffsqJyfH6ZKaxMKFC2scy/j4eKfLalQffPCBRo0apcTERLlcLr3xxhvVnjfGaOHChUpMTFR4eLjS09N18OBBZ4ptBJfa3wkTJtQ45gMHDnSm2EawbNky3XjjjYqOjlbHjh1122236bPPPqvWJ9CO8ZVqFcGkrKxMt99+u6ZOnXrRfuvWrVNhYaF/+fGNY1qSS+1vRUWFRo4cqdLSUn344Yf685//rNdee00PP/xwM1fadBYtWlTtWM6fP9/pkhrNq6++quzsbM2bN0/79u3T0KFDNWLECOXn5ztdWpO4/vrrqx3LAwcOOF1SoyotLVWvXr20evXqWp9fvny5VqxYodWrVys3N1fx8fG65ZZbWuznl11qfyXpH//xH6sd87feeqsZK2xc77//vh566CHt2rVLW7duVXl5uTIyMlRaWurvE2jH+Ipd9sf+tWDr1q0zHo+n1uckmddff71Z62lqde3vW2+9Zdq0aWMKCgr8bRs2bDBut7vOT6BsSTp37myeffZZp8toMv379zdTpkyp1nbdddeZRx99tEHbu/Dp4TYe+wULFphevXo5XUaz+envocrKShMfH29+85vf+Nt++OEH4/F4zJo1axyosHHV9ns3MzPTjB492pF6mkNxcbGRZN5//31jTOAf44ZoFSMm9ZWVlaXY2FjdeOONWrNmjf/DiwLNzp071aNHDyUmJvrbbr31Vvl8Pu3du9fByhrPU089pQ4dOqh3795asmRJwJymKisr0969e5WRkVGtPSMjQzt27HCoqqZ15MgRJSYmqkuXLrrzzjt17Ngxp0tqNnl5eSoqKqp2vN1ut4YNGxawx1uStm/fro4dO+raa6/VpEmTVFxc7HRJjaakpESS1L59e0mt9xhfTKu5Jf2lLF68WDfffLPCw8P17rvv6uGHH9apU6cC6hTABUVFRYqLi6vWFhMTo9DQUBUVFTlUVeOZMWOG+vTpo5iYGH300UeaO3eu8vLy9OKLLzpd2hU7deqUKioqahy/uLi4gDh2PzVgwAC9/PLLuvbaa3XixAk9+eSTGjx4sA4ePKgOHTo4XV6Tu3BMazveX375pRMlNbkRI0bo9ttvV+fOnZWXl6fHH39cf//3f6+9e/daeev2y2GM0axZszRkyBD16NFDUus8xpfSYkdMapsU99Nlz5499d7e/PnzNWjQIPXu3VsPP/ywFi1apKeffroJ9+DyNPb+ulyuGm3GmFrbbXA5+z9z5kwNGzZMN9xwg+6//36tWbNGf/jDH3T69GmH96Lx/PQ42XzsrsSIESP0q1/9Sj179tQ//MM/6M0335QkvfTSSw5X1rxay/GWpDvuuEMjR45Ujx49NGrUKG3ZskWHDx/2H/uWLCsrS//zP/+jDRs21HiuNR3jS2mxIyZZWVm68847L9onJSWlwdsfOHCgvF6vTpw4USPJOqEx9zc+Pl67d++u1vbtt9/q/PnzVuxrba5k/y/M6D969GiL/192bGysgoKCaoyOFBcXW3vsGlNkZKR69uypI0eOOF1Ks7hwBVJRUZESEhL87a3leEtSQkKCOnfu3OKP+bRp0/Rf//Vf+uCDD9SpUyd/O8e4phYbTGJjYxUbG9tk29+3b5/CwsLqvNy2uTXm/g4aNEhLlixRYWGh/43wzjvvyO12q2/fvo3yGo3tSvZ/3759klTtTd9ShYaGqm/fvtq6dat++ctf+tu3bt2q0aNHO1hZ8/D5fDp06JCGDh3qdCnNokuXLoqPj9fWrVv1s5/9TFLVPKP3339fTz31lMPVNY/Tp0/r+PHjLfb9a4zRtGnT9Prrr2v79u3q0qVLtec5xjW12GByOfLz8/XNN98oPz9fFRUV2r9/vyQpNTVVUVFR+stf/qKioiINGjRI4eHh2rZtm+bNm6cHHnigRZ7TvNT+ZmRkqHv37ho/fryefvppffPNN5o9e7YmTZrU4j9ddufOndq1a5eGDx8uj8ej3NxczZw5U7/4xS+UnJzsdHmNYtasWRo/frz69eunQYMGae3atcrPz9eUKVOcLq3RzZ49W6NGjVJycrKKi4v15JNPyuv1tthL+Wtz7tw5HT161P84Ly9P+/fvV/v27ZWcnKzs7GwtXbpUaWlpSktL09KlSxUREaFx48Y5WHXDXWx/27dvr4ULF+pXv/qVEhIS9MUXX+ixxx5TbGxstSDekjz00EN65ZVX9J//+Z+Kjo72j3Z6PB6Fh4fL5XIF3DG+Yk5eEtRcMjMzjaQay7Zt24wxxmzZssX07t3bREVFmYiICNOjRw+zcuVKc/78eWcLb6BL7a8xxnz55Zdm5MiRJjw83LRv395kZWWZH374wbmiG8nevXvNgAEDjMfjMWFhYebv/u7vzIIFC0xpaanTpTWqf/u3fzOdO3c2oaGhpk+fPv5LDxvC5suF77jjDpOQkGBCQkJMYmKiGTNmjDl48KDTZTWqbdu21fp+zczMNMZUXU66YMECEx8fb9xut7npppvMgQMHnC36Clxsf7/77juTkZFhrrrqKhMSEmKSk5NNZmamyc/Pd7rsBqttXyWZdevW+fsE2jG+Ui5jjGmmDATAQl6vVx6PRyUlJS1+xAxAy9dir8oBAACBh2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQToAVLSUmRy+Wqtjz66KNOlwUADRbsdAEArsyiRYs0adIk/+OoqCgHqwGAK0MwAVq46OhoxcfH17u/z+eTz+fzP/Z6vU1RFgA0CKdygBbuqaeeUocOHdS7d28tWbJEZWVlF+2/bNkyeTwe/5KUlNRMlQLApbmMMcbpIgA0zLPPPqs+ffooJiZGH330kebOnavRo0frxRdfrHOd2kZMkpKSVFJSorZt2zZH2QBQJ4IJYJmFCxfqiSeeuGif3Nxc9evXr0b7a6+9prFjx+rUqVPq0KFDvV7P6/XK4/EQTABYgWACWObUqVM6derURfukpKQoLCysRntBQYE6deqkXbt2acCAAfV6PYIJAJsw+RWwTGxsrGJjYxu07r59+yRJCQkJjVkSADQbggnQQu3cuVO7du3S8OHD5fF4lJubq5kzZ+oXv/iFkpOTnS4PABqEYAK0UG63W6+++qqeeOIJ+Xw+de7cWZMmTdKcOXOcLg0AGow5JkArxxwTADbhPiYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBPAUkuWLNHgwYMVERGhdu3a1donPz9fo0aNUmRkpGJjYzV9+nSVlZU1b6EA0IiCnS4AQO3Kysp0++23a9CgQfrDH/5Q4/mKigqNHDlSV111lT788EOdPn1amZmZMsZo1apVDlQMAFfOZYwxThcBoG7r169Xdna2zpw5U619y5Yt+qd/+icdP35ciYmJkqQ///nPmjBhgoqLi9W2bdt6bd/r9crj8aikpKTe6wBAU+FUDtBC7dy5Uz169PCHEkm69dZb5fP5tHfv3jrX8/l88nq91RYAsAXBBGihioqKFBcXV60tJiZGoaGhKioqqnO9ZcuWyePx+JekpKSmLhUA6o1gAjSjhQsXyuVyXXTZs2dPvbfncrlqtBljam2/YO7cuSopKfEvx48fb9C+AEBTYPIr0IyysrJ05513XrRPSkpKvbYVHx+v3bt3V2v79ttvdf78+RojKT/mdrvldrvr9RoA0NwIJkAzio2NVWxsbKNsa9CgQVqyZIkKCwuVkJAgSXrnnXfkdrvVt2/fRnkNAGhuBBPAUvn5+frmm2+Un5+viooK7d+/X5KUmpqqqKgoZWRkqHv37ho/fryefvppffPNN5o9e7YmTZrE1TUAWiwuFwYsNWHCBL300ks12rdt26b09HRJVeHlwQcf1Hvvvafw8HCNGzdOzzzzzGWdquFyYQA2IZgArRzBBIBNuCoHAABYg2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANYgmAAAAGsQTAAAgDUIJgAAwBoEEwAAYA2CCQAAsAbBBAAAWINgAgAArEEwAQAA1iCYAAAAaxBMAACANQgmAADAGgQTAABgjWCnC4CkigopJ0cqLJQSEqShQ6WgIKerAgCg2RFMnLZpkzRjhvTVV39r69RJeu45acwY5+oCAMABnMpx0qZN0tix1UOJJBUUVLVv2uRMXbDCkiVLNHjwYEVERKhdu3a19nG5XDWWNWvWNG+hANCICCZOqaioGikxpuZzF9qys6v6oVUqKyvT7bffrqlTp16037p161RYWOhfMjMzm6lCAGh8nMpxSk5OzZGSHzNGOn68ql96erOVBXs88cQTkqT169dftF+7du0UHx/fDBUBQNNjxMQphYWN2w+tVlZWlmJjY3XjjTdqzZo1qqysvGh/n88nr9dbbQEAWzBi4pSEhMbth1Zp8eLFuvnmmxUeHq53331XDz/8sE6dOqX58+fXuc6yZcv8ozEAYBuXMbVNckCTq6iQUlKqJrrWdghcrqqrc/LyuHQ4gCxcuPCSoSA3N1f9+vXzP16/fr2ys7N15syZS27/t7/9rRYtWqSSkpI6+/h8Pvl8Pv9jr9erpKQklZSUqG3btpfeCQBoQoyYOCUoqOqS4LFjq0LIj8OJy1X1deVKQkmAycrK0p133nnRPikpKQ3e/sCBA+X1enXixAnFxcXV2sftdsvtdjf4NQCgKRFMnDRmjLRxY+33MVm5kvuYBKDY2FjFxsY22fb37dunsLCwOi8vBgDbEUycNmaMNHo0d35FDfn5+frmm2+Un5+viooK7d+/X5KUmpqqqKgo/eUvf1FRUZEGDRqk8PBwbdu2TfPmzdMDDzzAiAiAFos5JoClJkyYoJdeeqlG+7Zt25Senq63335bc+fO1dGjR1VZWamuXbvq/vvv10MPPaTg4Pr/n8Pr9crj8TDHBIAVCCZAK0cwAWAT7mMCAACsQTABAADWIJgAAABrEEwAAIA1CCYAAMAaBBMAAGANggkAALAGwQQAAFiDYAIAAKxBMAEAANbglvRAK2eM0dmzZxUdHS2Xy+V0OQBaOYIJAACwBqdyAACANQgmAADAGgQTAABgDYIJAACwBsEEAABYg2ACAACsQTABAADW+D/5/ITMCFdP7wAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ_B = eigvals(B)\n", + "\n", + "plot(real.(λ_B), imag.(λ_B), \"ro\", label=L\"$\\lambda$ of complex $B$\")\n", + "\n", + "reim_axes(gca())\n", + "legend()" + ] + }, + { + "cell_type": "markdown", + "id": "8ec80e03", + "metadata": {}, + "source": [ + "## Complex eigenvalues and matrix powers\n", + "\n", + "A complex eigenvalue $\\lambda_k = |\\lambda_k| e^{i\\phi_k}$ in polar form. When you multiply a vector $x$ by $A^n$, it multiplies each eigenvector component by\n", + "$$\n", + "\\lambda_k^n = |\\lambda_k|^n e^{in\\phi_k } \\, .\n", + "$$\n", + "So the **magnitude** $|\\lambda_k|$ determines the exponential growth/decay of each eigenvector component, whereas any phase $\\phi_k \\ne 0$ causes a *phase rotation*, equivalent to an an *oscillation* with $n$.\n", + "\n", + "Let's take an arbitrary real vector $x$, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "72ed14f5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Int64}:\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 5" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = [1,2,3,4,5]" + ] + }, + { + "cell_type": "markdown", + "id": "6aa1df89", + "metadata": {}, + "source": [ + "If we expand it in the basis of the eigenvectors ($x = Xc \\implies c = X^{-1} x$):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "60276d13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{ComplexF64}:\n", + " 3.524941723422433 - 4.592506349393967im\n", + " 3.5249417234224336 + 4.592506349393967im\n", + " 7.01850888051289 + 5.742185317061215e-17im\n", + " -0.7740338338111896 - 0.34390253168210033im\n", + " -0.774033833811189 + 0.3439025316820996im" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c = X \\ x" + ] + }, + { + "cell_type": "markdown", + "id": "a86b60c1", + "metadata": {}, + "source": [ + "we find that the coefficients come in **complex-conjugate pairs** as well. This way, the complex-conjugate eigenvectors in the basis add up in conjugate pairs, to give a real $x$." + ] + }, + { + "cell_type": "markdown", + "id": "2e471b3c", + "metadata": {}, + "source": [ + "Now, let's plot the components of $A^n x$ as a function of $n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "fbc1029d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHKCAYAAADmR4RSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjVElEQVR4nO3dd3iUVd7/8ffMJJn0QHoCAULoPaGJUi2IStu1rK5d19+ubVVcV3FdxX1U1LWwzbourh1Zl+ZaQKkqSg29dwNJCCmTOsnM3L8/koyEBEiZzCTk87quucjcbb73ZH3yec459zkmwzAMRERERASzrwsQERERaSkUjERERESqKBiJiIiIVFEwEhEREamiYCQiIiJSRcFIREREpIqCkYiIiEgVBSMRERGRKgpGIiIiIlUUjERERESqKBg1wcqVK5k0aRKJiYmYTCbmz5/foPPLysq45ZZb6N+/P35+fkydOrXO41asWMHgwYMJDAyka9euvPbaa00vXkRERGpRMGqC4uJiBg4cyN///vdGne90OgkKCuK3v/0tF198cZ3HHDhwgMsvv5xRo0axceNGHn30UX7729/yySefNKV0ERERqYNJi8h6hslkYt68eTVafcrLy3nsscd4//33yc/Pp1+/fjz33HOMHTu21vm33HIL+fn5tVqdHn74YRYuXMiOHTvc237zm9+wadMmVq9e3Ux3IyIi0japxagZ3XrrrXz77bd89NFHbN68mauvvpoJEyawZ8+eel9j9erVjB8/vsa2Sy+9lHXr1lFRUeHpkkVERNo0BaNmsm/fPj788EPmzp3LqFGjSElJ4Xe/+x0jR45k9uzZ9b5OZmYmcXFxNbbFxcXhcDjIycnxdNkiIiJtmp+vCzhXbdiwAcMw6NGjR43tdrudqKioBl3LZDLVeF/d+3nqdhEREWkaBaNm4nK5sFgsrF+/HovFUmNfaGhova8THx9PZmZmjW3Z2dn4+fk1OGCJiIjImSkYNZPU1FScTifZ2dmMGjWq0dcZMWIEixYtqrFt8eLFDBkyBH9//6aWKSIiIidRMGqCoqIi9u7d635/4MAB0tPTiYyMpEePHlx//fXcdNNNvPjii6SmppKTk8PSpUvp378/l19+OQDbt2+nvLyc3NxcCgsLSU9PB2DQoEFA5RNof//735k2bRp33HEHq1ev5q233uLDDz/09u2KiIic8/S4fhMsX76ccePG1dp+88038/bbb1NRUcFTTz3FO++8Q0ZGBlFRUYwYMYInn3yS/v37A9ClSxcOHTpU6xon/1pWrFjBAw88wLZt20hMTOThhx/mN7/5TfPdmIiISBulYCQiIiJSRY/ri4iIiFRRMBIRERGposHXDeRyuTh69ChhYWGaR0hERKSVMAyDwsJCEhMTMZtP3y6kYNRAR48eJSkpyddliIiISCMcOXKEjh07nna/glEDhYWFAZVfbHh4uI+rERERkfqw2WwkJSW5/46fjoJRA1V3n4WHhysYiYiItDJnGwajwdciIiIiVRSMRERERKooGImIiIhUUTASERERqaJgJCIiIlKlTQWjV199lQEDBrifKBsxYgSff/65r8sSERGRFqJNBaOOHTvy7LPPsm7dOtatW8eFF17IlClT2LZtm69LExERkRbAZBiG4esifCkyMpI///nP3H777fU63mazERERQUFBgeYxEhERaSXq+/e7zU7w6HQ6mTt3LsXFxYwYMcLX5YiIiEgL0OaC0ZYtWxgxYgRlZWWEhoYyb948+vTpc9rj7XY7drvd/d5ms3mjTBERkTbF6TJYcyCX7MIyYsMCGZYcicXs/cXa21ww6tmzJ+np6eTn5/PJJ59w8803s2LFitOGo5kzZ/Lkk096uUoREZG244utx3hy0XaOFZS5tyVEBPLEpD5M6Jfg1Vra/Bijiy++mJSUFF5//fU699fVYpSUlKQxRiIiIh7wxdZj3PneBk4NI9VtRa/ekOaRcKQxRvVkGEaN4HMqq9WK1Wr1YkUiIiJtg9Nl8OSi7bVCEYBBZTh6ctF2LukT77VutTYVjB599FEuu+wykpKSKCws5KOPPmL58uV88cUXvi5NRESkzVlzILdG99mpDOBYQRlrDuQyIiXKKzW1qWCUlZXFjTfeyLFjx4iIiGDAgAF88cUXXHLJJb4uTUREpM3JLjx9KGrMcZ7QpoLRW2+95esSREREpEpsWKBHj/OENjXztYiIiLQcw5IjSYgI5HSjh0xUPp02LDnSazUpGImIiIhPWMwmnphU93Q51WHpiUl9vDqfkYKRiIiI+MyEfgncPS6l1vb4iECPParfEG1qjJGIiIi0PEernky7pHccEwcmaOZrERERaZvKKpx8uTUTgF+P6cqQLt4bT1QXdaWJiIiIz3y9I5vicicd2gWR1qm9r8tRMBIRERHfWZCeAcCkgYmYfdB1dioFIxEREfGJgtIKlu86DsCUQYk+rqaSgpGIiIj4xJdbMyl3uugRF0qv+DBflwMoGImIiIiPLNhU2Y02ZVAHTCbfd6OBgpGIiIj4QLatjO/2nQBg0oCW0Y0GCkYiIiLiA59uPoZhQGqndnSKCvZ1OW4KRiIiIuJ1CzYdBWDKwJbTWgQKRiIiIuJlB3OK2XQkH7MJrmhB3WigYCQiIiJetrCqteiCbtHEhFl9XE1NCkYiIiLiNYZhuCd1nNzCutFAwUhERES8aPsxG/uOFxPgZ+bSfvG+LqcWBSMRERHxmoXpld1oF/WKJTzQ38fV1KZgJCIiIl7hchnu8UUtsRsNFIxERETES9YdyuNYQRlhVj/G9Yr1dTl1UjASERERr6gedH1pv3gC/S0+rqZuCkYiIiLS7CqcLj7bcgyAKYNaZjcaKBiJiIiIF3yzJ4e8kgqiQwMY0TXK1+WcloKRiIiINLvqbrSJAxLxs7Tc+NFyKxMREZFzQkm5g8XbswCY3IK70UDBSERERJrZVzuyKSl3khQZRGpSO1+Xc0YKRiIiItKsqid1nDwwEZPJ5ONqzkzBSERERJpNfkk5K3ZnAzBlUAcfV3N2CkYiIiLSbD7fmkmF06BXfBg94sJ8Xc5ZKRiJiIhIs6l+Gq01tBaBgpGIiIg0k8yCMn44kAvApIEJPq6mfhSMREREpFl8uvkohgFDOrenY/tgX5dTLwpGIiIi0iwWVD2N1pKXADlVmwpGM2fOZOjQoYSFhREbG8vUqVPZtWuXr8sSERE55+w/XsSWjAIsZhOX928d3WjQxoLRihUruPvuu/n+++9ZsmQJDoeD8ePHU1xc7OvSREREzikLN1W2Fo3sFk1UqNXH1dSfn68L8KYvvviixvvZs2cTGxvL+vXrGT16tI+qEhERObcYhuGe1LE1daNBG2sxOlVBQQEAkZGRPq5ERETk3LE1w8b+nGKsfmbG9433dTkN0qZajE5mGAbTpk1j5MiR9OvX77TH2e127Ha7+73NZvNGeSIiIq1W9dxFF/eJI9TauqJGm20xuueee9i8eTMffvjhGY+bOXMmERER7ldSUpKXKhQREWl9nC6DRZt/WhuttWmTwejee+9l4cKFLFu2jI4dO57x2OnTp1NQUOB+HTlyxEtVioiItD5rDuSSZbMTFujH2J4xvi6nwVpX+1YTGYbBvffey7x581i+fDnJyclnPcdqtWK1tp7R9CIiIr60cFNlN9rl/RKw+ll8XE3DtalgdPfdd/PBBx+wYMECwsLCyMzMBCAiIoKgoCAfVyciItK6lTtcfLal8m9ra3sarVqb6kp79dVXKSgoYOzYsSQkJLhfc+bM8XVpIiIird7K3ccpKK0gNszK8K5Rvi6nUdpUi5FhGL4uQURE5Jy1oGpSx4kDErGYTT6upnHaVIuRiIiINI9iu4Ml21t3NxooGImIiIgHLNmeRVmFiy5RwQzoGOHrchqtTXWliYiISPOoXhtt8sBETKaGd6M5XU42ZG/geMlxYoJjSItNw2L2/lNtCkYiIiLSJLnF5azcfRyAyY3oRvvq0Fc8u+ZZskqy3NviguN4ZNgjXNz5Yo/VWR/qShMREZEm+WzLMRwug76J4XSLDWvQuV8d+oppy6fVCEUA2SXZTFs+ja8OfeXJUs9KwUhERESaZGF6ZTdaQwddO11Onl3zLAa1nxqv3vbcmudwupxNL7KeFIxERESk0Y7ml7LmYC5Q+Zh+Q2zI3lCrpehkBgaZJZlsyN7QpBobQsFIREREGm1R1aDrYcmRJLZr2CoSx0uOe/Q4T1AwEhERkUZb0MhuNICY4PotMlvf4zxBwUhEREQaZW92IduP2fAzm7i8X0KDz0+LTSMuOO60+02YiA+OJy02rSllNoiCkYiIiDRK9aDr0T1iaB8S0ODzLWYLk1Mm17nPROVcSA8Pe9ir8xkpGImIiEiDGYbhXhutsUuAHLYd5qOdHwEQ5FdzfFJccBwvjX3J6/MYaYJHERERabBNPxZw6EQJQf4WLu59+u6w0ympKOG+ZfdRWFFIamwqb1z8BltObNHM1yIiItL6VHejXdInjhBrw+KEYRg88d0T7M3fS3RQNC+OeZFA/0CGxg9tjlIbRF1pIiIi0iBOl8GizT+tjdZQ72x/hy8OfoGfyY+Xxr7k1afOzkbBSERERBrk+/0nOF5oJyLIn9E9GhZqfjj2Ay+tfwmA3w/7Pamxqc1RYqMpGImIiEiDLEjPAODy/gkE+NU/SmQWZ/LQiodwGS4mp0zm2p7XNleJjaZgJCIiIvVmdzj5fGsm0LCn0exOO/cvu588ex69I3vzx/P+iMlkaq4yG03BSEREROpt+a7jFJY5iA8PZFiXyHqdYxgGT3//NNtObKOdtR2zxs0i0C+wmSttHAUjERERqbfqp9EmDUzAbK5fi8/c3XOZt3ceZpOZ50c/T2Jo4+Y98gYFIxEREamXwrIKvtqRBcCUQR3qdc6m45uYuWYmAPel3ceIxBHNVp8nKBiJiIhIvSzZnoXd4aJrTAh9E8PPenxOaQ7Tlk3D4XJwSedLuLXvrV6osmkUjERERKReFqT/NHfR2QZOV7gqeHD5g2SXZpMSkcL/XfB/LXKw9akUjEREROSscorsfLM3B6jfpI4vrXuJDdkbCPUP5eVxLxPiH9LcJXqEgpGIiIic1WdbjuF0GQzoGEHXmNAzHrto3yLe2/EeAM+MfIbkiGRvlOgRCkYiIiJyVgvT67cEyM7cnfxp9Z8A+PWAXzOu07hmr82TFIxERETkjI7klrDuUB4mE0w6QzAqsBdw/7L7KXOWMbLDSO4ceKcXq/QMBSMRERE5o+oFY89LjiIuvO6JGZ0uJw+vfJiMogw6hnbk2VHPYjFbvFmmRygYiYiIyBlVd6OdaQmQf6T/g2+PfkugJZBZ42YRYY3wVnkepWAkIiIip7Urs5CdmYX4W0xc1i+hzmO+PvQ1b255E4Anz3+SnpE9vVmiRykYiYiIyGkt3JQBwJgesUQE+9fav79gP3/49g8A3NjnRi7verlX6/M0BSMRERGpk2EY7kkd6+pGKyov4v5l91NcUcyQuCE8MPgBb5focQpGIiIiUqcNh/P5Ma+U4AALF/eOq7HPMAwe+/YxDhQcIDY4lhfGvIC/uXaLUmvT5oLRypUrmTRpEomJldOZz58/39cliYiItEiLNlW2Fl3aN56ggJpPmL219S2+Pvw1/mZ/Zo2dRVRQlC9K9Lg2F4yKi4sZOHAgf//7331dioiISIvlcLr4dHPdkzp+l/Edf93wVwD+MPwP9I/p7/X6moufrwvwtssuu4zLLrvM12WIiIi0aN/tO0FOUTntg/0Z2T3avf3Hwh95aOVDGBhc2f1KruxxpQ+r9Lw2F4waym63Y7fb3e9tNpsPqxEREfGO6kHXVwxIwN9S2cFU6ijlgeUPYCu30T+6P48Of9SXJTaLNteV1lAzZ84kIiLC/UpKSvJ1SSIiIs2qrMLJl9syAZgyqANQOdj6T6v/xM7cnUQGRvLS2JcIsAT4ssxmoWB0FtOnT6egoMD9OnLkiK9LEhERaVbLdmZTZHeQGBHI4E7tAfhg5wd8uv9TLCYLL4x5gfiQeB9X2TzUlXYWVqsVq9Xq6zJERES8probbdKgRMxmE+uz1vPC2hcAeHDIgwyNH+rL8pqVWoxERETEzVZWwdJd2QBMGdiBrOIsHlz+IA7DweXJl3ND7xt8XGHzanMtRkVFRezdu9f9/sCBA6SnpxMZGUmnTp18WJmIiIjvfbk1k3KHi+6xoaTEWrlt8Z2cKDtBj/Y9eGLEE5hMJl+X2KzaXDBat24d48aNc7+fNm0aADfffDNvv/22j6oSERFpGRZu+mnuoufXPs/m45sJCwhj1thZBPsH+7i65tfmgtHYsWMxDMPXZYiIiLQ42YVlfLs3B4DAyPV8vPljTJh4btRzJIW3jaey21wwEhERkbp9tvkYLgN6dS7gta0vAnD3oLsZ1XGUjyvzHg2+FhEREQAWbDqKyVKELfxNyl3ljE0ayx0D7vB1WV6lYCQiIiIcPlHCxsMnCOrwIYWOHLqEd+GZkc9gNrWtqNC27lZERETqtHBTBtbYL7GE7CPYL5hZ42YRFhDm67K8TsFIRESkjTMMg4+2f0pA1EoAnhr5FCntUnxclW8oGImIiLRxi/dsIj/kPQBu6HULl3S+xMcV+Y6CkYiISBtmK7fx5JqHMJnLiaAPDw69z9cl+ZSCkYiISBvlMlxMXzmdQmcmrvJ23DfgSfzMbXsmHwUjERGRNur1Ta+zMmMlhssPU/YtTOrX3dcl+ZyCkYiISBu04sgKXtn0CgBlmT/j0u5DCPS3+Lgq31MwEhERaWMO2Q4xfdV0AMyFF+AoGMzkQYk+rqplUDASERFpQ0oqSrh/2f0UVhTSNawfBT9eRlRIABekRPm6tBZBwUhERKSNMAyDx797nL35e4kOiqZj+a8BPyYOSMDPokgACkYiIiJtxjvb3+HLg1/iZ/Jj5gV/Zvn2MgAmD+rg48pajrb9TJ6IiEgrZzidlKxbj+P4cfxiYggeMhiTpfYg6h+O/cBL618C4OFhD5NzIpHi8iw6tg8irVM7L1fdcikYiYiItFK2xYvJemYmjsxM9za/+HjiHp1O+Pjx7m3Hio7x0IqHcBkuJqdM5hc9f8H/e3c9AJMHJmIymbxee0ulrjQREZFWyLZ4MRn33V8jFAE4srLIuO9+bIsXA2B32nlg+QPk2fPoHdmbP573R2ylDlbsOg7AFHWj1aBgJCIi0soYTidZz8wEw6hjZ+W2rGdm4nI4eOr7p9h2YhvtrO2YNW4WgX6BfLHtGOVOF73iw+gZH+bl6ls2daWJiIi0MiXr1rtbigxM5Lfrhj0gHGu5jXb5ezEZBo7MTD6f/yLzi+djNpl5fvTzJIZWzlW0IP0oAJMGau6iUykYiYiItDKOrCwAsqMHsqfb1dgD27v3Wcvy6L53LrE5m/jfuvehN9yXdh8jEkcAkGUrY/X+E0Dl+CKpScFIRESkFTAMA/uOHRQsXET+vHlkRw9ka987ah1nt7Zja9876LftTU4Eb+GSzpdya99b3fs/3XwMw4DBnduTFBnszVtoFRSMREREWrCKjAwKPv0fBYsWUr53H1DZfbbnvKsrDzj1iTKTCQyDXT2uorxvGf93wf/VeOpsYXoGAFO0BEidFIxERERaGGdBAbYvv8S2cBEl69a5t5sCAgi98EJKz5uEffkZLmAyUREQyWPJMwnxD3FvPpBTzKYfC7CYTVzeP6H5bqAVUzASERFpAVzl5RQtX45t0SKKlq/AqKio3GEyETx8OBGTJhJ6ySUUFJnZufgwkHnG6wGEOdvXeL+watD1Bd2iiQ61evoWzgkKRiIiIj5iuFyUrl9PwcJF2L78EpfN5t5n7dmTiMmT4PxLyDrhx65defz41GZKbeX1vn5I+E/hxzAMFmyq6kbToOvTUjASERHxMvuePRQs+pSCTxfhOHrMvd0vLo6Ay6ZS1HsMBwsC+XFXHoVr99Y418/fTFxKOAf2ZOLvtGKijlmrDYOSQBuxKT/NUbTtqI39x4ux+pkZ3zeu2e6ttVMwEhER8YKKrGxs//sfBYsWYd+xw73dGRFD2aifU9Axjaz8APIOlsDBPPd+s9lEXNdwOvRsT1Kv9sR1iWDZ0aUs++R9xu++DQOjZjiqmuBxXfxc0nM6MjR+KAALN1V2o13cO46wQH8v3HHrpGAkIiLSTJxFxRQuWYJt0UKKV38PhoHTHEB+TH+K+o4jr113cgvMUATsdAAOMEFMUhgde7anQ6/2JHQNJ6sik/XZ6/lf1gY2bt3IQdtBiILFPf7FBQd/Tmj5T2OJzM5i+uz8gEP+WzheUrnsh8tlsGiTJnWsDwUjERERDzIqKij69ltsCxdRuHQpTnsFBeHJ5HW+DFvHweT7x+Eyqlp48iv/aR8fTMee7enYK5K4bmEcqTjIhqw1/Dd7Axu2beB46fE6P+tA1GYORm4hwZZC6o+XkGTrRZ7/D8TmbGLMVogJjgFg7cFcjhWUERbox9ieMV74FlovBSMREZEmMgyDss2bKVi4iILPPiffEUpeux7k9bidgnbdcJoDTjoYwiID6dirPR16tie2WwgHHHvYkL2KD7PWs2nHJgorCmtc38/sR7+ofqTFpTE4bjD9ovpxzafXkF2SjWEyOBqxl9Dy9iTZemEPSsZhhq6Z0Dk/FOJhQVVr0WX94gn0t3jzq2l1FIxERKRNcroM1hzIJbuwjNiwQIYlR2Ix1zGQ+QzKDx4kf+GnHP1yNdllYeS160F+n+k4/GvOKB0U5l/ZNdazPe1TAtjr3MHG44v5d9YGtn62lXJXzSfNQvxDGBQziLS4NNJi0+gX3Y9Av8Aaxzwy7BGmLZ+GCRMGBpmhBwCIKu3E+m7+DN9dQeGCRfh168lnWyoHeE8Z1KGhX1Obo2AkIiJtzhdbj/HUgi30zd9HtKuCHLM/D7VL4bEp/ZnQ78wTHzpyczn638UcXLGD7KJg8tr3pDzp9hrHBARZ6NCjMgiFdIY95m2sz/6GN7M3sPur3bgMV43jIwMjGRw3mLTYNNLi0ujRvgd+5jP/ib6488W8NPYlnl3zLFklWdgCcyj1KyTIEUbC5XfB7r9QsGgR2yZeT35JBTFhVs7rGtW4L6wNUTBqIUqLi/nfP/5GaU4RQdGhXHH3vQSFhJz9xBZG99Gy6D5aFt1Hy/DF1mMsffs/3FqSQJmrJwCJwLDiXJa+/R+45apa4agws4B9C1ZzZMOPZNsjKAuMhZBYqLpti9kgoVsEHftE45dkZ5/fdr47voQN2Rs4cuRIrRqSwpJIi63sFkuLS6NTWKcay3bU18WdL2Zc0jg2ZG/geMlx8vJCyd/lILbLpVjav4MzJ4eNn3wJxDFxQEKDW8TaIpNhVD3X14a88sor/PnPf+bYsWP07duXWbNmMWrUqHqda7PZiIiIoKCggPDwcI/U8/4fHqf42EAqAn56qsC/PI+QhE1c//SfPPIZ3qD7aFl0Hy2L7qNlcLoMnvrja0Tn9KjcYKr9mHtO9G4emn47x3bncXDFTjL2FFDoCq1xHZPhJCrcQVJaR4zuTvYHbGVj7gY2ZG3gRNmJmsdiomdkT3drUFpsmntQtKdt+PIQq+ftIyU1hkE5i8h7912+7TiIp4bcwPy7L2BQUrtm+dzWoL5/v9tcMJozZw433ngjr7zyChdccAGvv/46//znP9m+fTudOnU66/meDkbv/+Fx8nPGVL6p4z/QdtErWsX/sdF9tCy6j5ZF99FwDqeL0gonpRVOyspdlFQ4KC2vel/hpKTcSWl55c+lFU5Ky12UlJfjLCvBUV6Cs7wMV3kJRnkJropSqCjD5CjDWVpIr8z+lNK+9uKrVfdiwolhskCNuYFchNuziEswYx4Sxt7OR0nP20D68XSKK4prXCLAHEC/6H7uEDQodhBhAWF4w9E9+cx7cQPBEQFce1N7Dl55FeVmPx755bN89ofLG9Uqda6o79/vNteV9tJLL3H77bfzq1/9CoBZs2bx5Zdf8uqrrzJz5kyv1lJaXEzxsYHgz2lXRy4+NoDS4uIW3Uyt+2hZdB8ti6fuo/r/hzUwav5M1c8uA1fVdhcGLpfL/XP18S7jp2MMDAzXT1dwGZX/GoYBhlF5jepjDSgtKazXfXyxYT8Ov0BK7Q7Ky+2UlxVTYS/BYS/FVVb1b0UZlJdhlJdBhR0q7Jic5ZidFVicFZidFfgZTqyGkwCc+OMkAAM/XPjjwg8XEYaLKAz8MLAAFsPAjAkXFlyYcRl+GJhxGpVHuLDgMizYHDEcMEWe/hdmMmFU/WkMLs4ksmgPwXE2jqRVsLhDDtvydlJRVAHbfjol1D+UQbGD3GOE+kb3xWrxzTpksZ3DMJtNlBSUUxHXleMxScQcP8Jt5XvbdChqiDbVYlReXk5wcDBz587lZz/7mXv7fffdR3p6OitWrKh1jt1ux263u9/bbDaSkpI80mL0n+efJWv/sLMeZ3KWY6Ll/poMTBiWgLMep/vwjrZ3HxWNug+jWf5I1L6mgQnMZ388uvI+qgfkGpjc/6f5pH8No+oTTt5W/SmnHF/j/FPOM4ya1zhlX61rYeAyWakIjD3rfZgrbJX3YbJgmCwYJjNQ9a+p9Twmnpj1Aet6rOKzHn44/Mw19sUYFtICIkmLSGFw3BC6dRiBJaobBASf5mreNXfmWrIPFXL+9T15/69/4fYtizD17UevT+b6ujSfanEtRosWLWLSpEne+rg65eTk4HQ6iYuruUZMXFwcmZl1r1I8c+ZMnnzyyWappzSnqF7HGZaAFvznq/50Hy3LuXMf/rqPFsTl3/D/h9HkcmIyql8u97/m6veuM+yrPs916vaT9lWf43JSZm1HVvzws9b0TfJxFvepDObx5TDEbmd4WRGDy+x0dDgwcQBYD3z800lhCRCZAlFdIbJr5c+RVT97MTTFd40g+1Ah6zdk8nWHVG7Z+j8s27Zi338Aa9dkr9XRWnktGN10002sXbuWbt26eesjT+vU5kTDME7bxDh9+nSmTZvmfl/dYuQJQdGhnLSQ8mmFh31Nt9FDPPKZzWHvynXYCi8663G6D++o732EhS2l+5iWex97VqyjsPDCsx4XHv413cYM/WnDqf8pn/Lfdp0LblYz6ji/LjWOMeoeq1Jl99ffU2i7+KyXDA/7ml6j0jBVX95wgatyhhqTQVULUlULkctV+ZEufmpZcrkqz63sD8Oo6loyDAOT4QLDRHXrUeV5VM5+4wJwYTJM7vNMmCo/36j6QlwG23YcJcs55qz3EWlZQudBSThNLpy4cBgGTpODCqMcp6sch8tOhascp9NOhVFOhcOOw6jA4ax+lVPhrMDhcuBwluNwOnC4KnA6HDgNR+XXXX2fgLnqlk7eZjrpvYma+2PzILisB3Zru9OOMbLa84gdEMHNKY+z62A0Kw+Vscfh4jOKSDZlMjamkHExhfQKyMFqOwAn9kFZPhQeq3wd+qb2datDU2QyRKV4NjS5nHDoOyjKgtA44pO7sXkZ5By0kRcYTn7fNKK2rqNgwQJiH7i/aZ/VBnitK61nz54EBATwww8/EBxc9/8I7HY7t9xyCx9++GGz1NCYrrRTeXLwdWlxMe/e+wUV/u1O+x+of0UeN/7tshY/hkL30XLoPloW3YfnOF1O7E67+1XmKKPMWUaZo+ys2+xOO6WOUvbn7uXnL5dxqOsdlRetYxB55/1vYn7lBi7vPhGAwrIKvtiayfz0DL7bd8LdS+lnNjGmRwxTUjtwSZcAggoPQu7+yqCUux9yq/4tzeOMaoWmk1qbzhaati+ELx4G21H3psKgPrxz4GlcGPw1oowlQx2UPvYIfgkJdPv6K0xm8xkueO5qcV1pn3zyCeeddx633norc+bMqbX/+PHjTJ48mTVr1jRbMAoICGDw4MEsWbKkRjBasmQJU6ZMaZbPPJOgkBBCEjZVPuVhGHX+BxqSsJmgkKu8XltD6D5aFt1Hy6L78ByL2UKwOZhg/8a3sKzNXMtrQ2/hppVvsqfb1dgDf5p2wGrPo/ve//DO6C38JuynIRdhgf5cPSSJq4ckkWUrY9Gmo8zbmMG2oza+3pnN1zuzCQmwcGm/eKYOGsf5o6/Cz3JS+CjJhdwDlUGprtDUoJamrj+93/s1fHwTnNIJG1a6gxDzCYpdUYyNiaDTpKHsef4ZHMeOUfLDD4SMGNHo768t8Org6/fff58bb7yR5557joceesi9ffv27UycOJHDhw/z4osvct999zVbDdWP67/22muMGDGCN954gzfffJNt27bRuXPns57vvXmMcglJ2NwqHuGtpvtoWXQfLYvuo2Vwupxc+smldNmYyU1LXPhZumEPCMdabsPh3Ms7l5g5lJrAF1d+geUsg+b3Zhcyf+NR5qdn8GNeqXt7TJiVSQMS+VlqB/p1CD/z02AnhyZ3a1M9W5pMZjhlBu1qX+T/jn1lFxCY1o7b/18ax2bMIP+jOYRPnkSH558/83XPUS12HqO7776bN998ky+//JJx48axZMkSrrnmGpxOJx9++CFXXHFFs9fwyiuv8Pzzz3Ps2DH69evHyy+/zOjRo+t1bnMEI2j9M8lW0320LLqPlkX30TJ8deiryjXGXAa9jrhoXwR5obAzyYxhNvHS2Je4uPPZx4VVMwyD9YfymJ+ewaebj5FfUuHe1zUmhKmDOjB1UAc6RTWwpavO0FTV2nSW0LSpeCLfFN5Oh2SY+vCFlKanc/Da6zAFBdF91Sosoa3n9+UpPg9G69ato3///litNedyqKioYOTIkRw4cID77ruPGTNm0KFDBxYtWkT//v2boxSPaq5gJCIi3vPVoa/ca4xViw+O5+FhDzcoFJ2q3OFi5e7jzEvP4KvtWdgdP7XopHVqx9TUDlzRP4Go0CbOc7Tubfj09L0rmeXd+ST3eQIDXdz2cuXDGPsvu5zygwdJePpp2l3586Z9fivk82BkNpvx8/Ojd+/epKamkpaWRlpaGoMGDSI/P5/U1FRyc3MZOnQoCxYsqPUIfUulYCQicm5wupzuNcZigmNIi007a/dZQxSWVfDltizmb8zgu305uE4atD26RwxTBiUyvk88QQGN+MwDq+DfE0+722n48WbW+zgJ4Ponz6NdXDA5r73O8VmzCB46lM7vvtPIu2q9fB6MHn74YdLT00lPT+f48eOVH2YyYTKZSElJwTAM8vLy+Ne//sWIESOIjo5ujjI8TsFIREQaKttWxsJNleORtmb8NE9LcICFCX3jmZLagQtSomoO2j4TlxNm9QPbMU4dfA3gMmBewZ/JLOvGhTf1pvf5CVQcO8beCy8CwyDlqyUEdOzoobtrHXwejE6WkZHBxo0ba7wOHTpUWUDVoLSEhAQGDhxIamoqTz31VHOX1GgKRiIi0hR7s4tYkJ7B/PQMjuT+NGg7OtTKpIEJTB3UgQEdI86+hMf2hVVPpcHJ4ah6+qnViXPYuCGAPqMSGXd9LwAO33Ybxd+tJvqee4i5524P31nL1qKCUV3y8/NrhaVdu3bhcrlwOp2+KKleFIxERMQTDMNgw+E85m88yqebj5J38qDt6BCmDOrA1NREOkedYaB0HfMYlRn+7LrgJcJiL+Pz17YQmRjCdY9XzvZdsHAhR3//MP5JSaQs/rJNrZ/W4oNRXcrKyti8eTPDhp19/TBfUTASERFPq3BWDtqen36UJdszKav4adB2aqd2TB3UgYkD6h607XQ42PnDl5zY+Q2jj7xCCQH4TT+Cw25m9u+/ARP86qXRWIP8cJWUsGfkKFwlJXR+712Ch7Tc2e89rb5/v1vU9JeBgYEtOhSJiIg0B3+LmYt6x/G361JZ99glvHj1QEZ1j8Zsgo2H83li4TaGPfM1t85ew4L0DErKHQB8sfUYI/+8gisWwc17zifHCCeYcjZ+9yXB4QGERweCAVkHCgAwBwcTNmECAPnz5/vqdls0r818LSIiImcXavXjysEduXJwR7ILy1i06RgL0jPY/GMBy3YdZ9mu4wQHWOjXIYI1B3Ld5xmY+cbVj6mW71j79X/JixlGfEoEtpwyMvcV0KlPFAARU6dQ8N//Uvj5F7j+8AfMQUG+utUWyaPBKCcnh4yMDI4fP86JEycICgoiJiaGmJgYunbtirmNrs8iIiLSGLFhgdw+MpnbRyaz73gRCzZmMD/9KIdzS2qEomrfuPoz1fIdI81buHPRdl47rye7f8gi88BJT8INGYJ/x45U/PgjhV99TcSk0z/23xY1KRgVFhayYMECli9fzqpVq9i7d+9pjw0JCeG8885j1KhRXHHFFaSlpTXlo0VERNqUlJhQpo3vyQOX9OCd1Yd4YuG2WsescvYHf+hv2k9xQQ451p4AZO0vwOUyMJtNmMxmIqZMIecf/6Bg3jwFo1M0qgln/fr13HTTTcTHx3PzzTcze/Zs9uzZg2EYp30VFRXx9ddfM2PGDIYOHUqfPn34xz/+QXFxsafvSURE5JxlMploF+xf574sItnj6oDFZHC+eTuFgeBvtVBe5iTv2E9/byOmVi6cXrx6NRWZmV6pu7VoUIvR+vXreeyxx1i8eDFQ+aghVM5BNHToUAYPHkxsbCyRkZG0b9+e0tJScnNzycvLY/fu3axdu5bNmzdTUVHBzp07+e1vf8uMGTN46KGHuO+++2otHyIiIiK1xYYFnnbfN65+dDdnMMq8hbiIIOgSTsauPDL3FxDVIRSAgKQkgoYMpnTdegoWLiL6/93hrdJbvHoHo1tvvZV3330Xl6vyEcK0tDSuv/56rrzySjp16lTvDywvL2flypV88MEHzJs3jxMnTjB9+nReffVV3n33XUaOHNnwuxAREWlDhiVHkhARSGZBWa15r1e6BnArXzLWbyvxyZGsSymoDEb7Cug7qoP7uHZTp1YGo/nzibrjV21qTqMzqXdX2r///W/8/Py444472LlzJ+vWreOBBx5oUCgCCAgI4OKLL+Zf//oXmZmZvPPOO/Ts2ZNDhw6xdOnSBt+AiIhIW2Mxm3hiUh8ATo0za1y9KTcsdCALS/4B4rtGAHBsf0GN48ImTMAUGEj5/v2UbdnijbJbhXoHozvvvJO9e/fy+uuv06NHD498uNVq5YYbbmDbtm189NFHdO/e3SPXFREROddN6JfAqzekER9Rs1stPKIdRTGplW/2LSMuuXIyw4LsUkqLyt3HWUJDCbvkksp9mtPIrUXNfN0aaOZrERFpSZwugzUHcskuLCM2LJBhyZFYVr0Ay56C3pPgF+/xwYzvycss4fK7BpA84KdF24u+/ZYjt/8Kc0QE3VetxBwQ4MM7aV6tcuZrERERaRiL2cSIlCimDOrAiJQoLGYTpIyr3HlgJTgdxKdUdqdl7qvZnRZy3nn4xcXhKiigaOkyb5feIjU5GK1cudITdYiIiIinJKZCYASUFcDRje5xRpmnjDMyWSxETJ4MqDutWpOD0aWXXsrcuXM9UYuIiIh4gtkCyWMqf96/zB2Msg/acDpdNQ6N+NlUAIpWrcKRk+PNKlukJgcju93Oddddx6xZszxQjoiIiHhEdXfavmW0jwvGGuyHo8LFiR+Lahxm7dqVwAEDwOmk4NNPfVBoy9LkYHT++efjcrl48MEH+d3vflfv8zZv3sykSZOa+vEiIiJSl65VwejHNZgqiohLrrs7DaBdVatRwfwF3qquxWpyMPr666+58sorMQyDl19+meuuu46KiorTHr93716uu+460tLS+Oyzz5r68SIiIlKXyGRo3wVcDjj4LQkplU9inToAGyD8sssw+ftj37mTsh07vFxoy9LkYGS1Wpk7dy73338/hmHw8ccfc+mll2Kz2Woc9+OPP3LHHXfQp08fPv74Y1wuFxaLpakfLyIiIqdT3Wq0fxlx7gHYtlqHWdq1I/TCCwENwvbY4/ovvfQSL7/8MiaTiRUrVjBq1CiOHj1KTk4ODzzwAD169OBf//oXDocDk8nEtddeyxbNtCkiItJ83OOMlhLXJRyTCQpzyyjKs9c6tHph2YJFn2KcoefnXOfReYzuu+8+Pv74Y6xWK1u3bmXw4MF07dqVv/71r5SVlQFw1VVXsXnzZj744AN69uzpyY8XERGRkyWPBpMZcnYTYM8iqmPlIrJ1jTMKHTkSS1QUztxcilZ94+1KWwyPT/A4efJkrr/+egzDIDs7m6KiytHvU6dOJT09nY8//pg+ffp4+mNFRETkVEHtITGt8uf9y4ivHoB9oHYwMvn7EzFxItC2u9M8FowcDgdvvPEG3bp141//+hcmk4nq1UaioqJ4/PHH6d+/v6c+TkREROrjpMf2TzcDdrWIn/8MgKJly3Dk5XmlvJamycHI6XTy1ltv0aNHD+68804OHz6MYRgMHDiQf/zjH0RHR3PixAnGjh3L4sWLPVGziIiI1Jd7APZy4pPDADh+uBBHhbPWoYE9e2Lt3RujogJbG31yvMnBqGfPnvy///f/OHjwIIZh0KNHDz766CM2bNjAnXfeybfffkuXLl2w2WxMmjSJ2bNne6JuERERqY+OQ8E/BEpyCHfsISjMH5fT4PjhojoPb1c9CLuNzmnU5GC0f/9+DMOgU6dO/POf/2T79u1cc8017v3du3fn+++/Z/DgwVRUVPCrX/2KJ598sqkfKyIiIvXhFwDJowAw7V/+07ppp+lOC584Efz8KNuyBfu+fV4rs6VocjCKjY3lL3/5C7t37+a2227DbK59yZiYGFasWMGECRMwDIM//elP3H777TidtZvxRERExMNOms/IHYzqGIAN4BcVReioyiDVFgdhe6TF6N577yUgIOCMxwUHB7No0SJuu+02DMPg7bff5oorrmjqx4uIiMjZVA/APrSa+M6BQGWLUfVDUqeKmDoVgIIFCzHaWCNGk4NRcHBwvY+1WCz885//5PHHH8cwDJYsWdLUjxcREZGzie4BYYngtBPLNswWEyW2cgpPlNV5eOi4sVgiInBkZ1P83Wrv1upjHp/HqD5mzJjBm2++6fUlQZ5++mnOP/98goODadeunVc/W0RExGdMJnerkd/hZUQnVT6dVtdEjwDmgADCq3p12lp3mk+CEcDtt9/OggXeHfFeXl7O1VdfzZ133unVzxUREfG5rj/NZ5RwlgHYABE/mwpA4Vdf4SwsbO7qWgyfBSOAyy67zKuf9+STT/LAAw9ookkREWl7uo6t/DdrC/EdKn88dpoWI4DAfv0ISEnBsNuxffFF89fXQtQ7GOXk5HDdddcRHR1NWFgYAwcO5Oabb2bWrFksX76c/Pz8ZixTREREmiQ0BuIrGwbiTZsBOJFRTHmZo87DTSbTTwvLtqE5jeodjO69917mzJlDYGAgAwYMICsri3fffZdp06Zx0UUXERUVRdeuXbnyyiubs16vs9vt2Gy2Gi8REZFWqao7LTT7a0LbWzFcBtmHTt9NFjF5MpjNlK5fT/mhQ96q0qfqHYyWLFlCamoq+/bt49tvvyUzM5OMjAwWLVrEjBkzmDx5Mg6Hg/leHqQ1Y8YMTCbTGV/r1q1r9PVnzpxJRESE+5WUlOTB6kVERLzo5HXT6jHOyD8ujpDzzwegwMvjgn3Fr74HulwuLrnkEqxWq3tbQkICV1xxRY35iHJzcz1b4Vncc889XHvttWc8pkuXLo2+/vTp05k2bZr7vc1mUzgSEZHWqdMIsFih8Cjx3crYy+kneqwWMXUqxd98Q8H8BUTfcw+mOiZyPpfUOxiNGDGCI0eOnPW4yMjIJhXUUNHR0URHRzfb9a1Wa40wKCIi0mr5B0Hn8ytnwLZsATqTub9yokeTyVTnKWEXX4Q5NJSKo0cpWbuOkOHDvFuzl9U79j300EN8+umn9QpHLdXhw4dJT0/n8OHDOJ1O0tPTSU9Pp6io7oX0REREzjlV3WnReV9i8TdjL3aQn1Vy2sPNgYGEXzYBaBtzGtU7GO3fv58JEyYwYcIEtm/f3pw1NZvHH3+c1NRUnnjiCYqKikhNTSU1NbVJY5BERERalaoB2JbDK4ntFAqcfqLHatVLhBR++SWuktOHqHOByTjdQimnMJvNmEwmDMPAbDZzwQUXcNFFF5GWlkZqaiodOnRo7lpbBJvNRkREBAUFBYSHh/u6HBERkYZxueCF7lCSw+ouC9nwvZM+FyQw7sbepz3FMAz2XTqBisOHSXzuWSKmTPFiwZ5R37/f9R5j9P7777Np0ybS09PZtGkTq1atYtWqVe4+yejoaFJTUxk8eDBPP/100+9AREREPM9srpzscet/iLNsBXqTeeDMU9FUz2mU89e/kT9vfqsMRvVV7xajU2VlZbFx40b3OJ309HT27t2LYRg4z+GVeNViJCIird7G92DB3ZTEjmL25sonr3/10iiswf6nPaX8xwz2XXwxmEx0+/or/BMTvVWtR9T373ejn7mLi4tjwoQJPPLII3z00Ufs3LmTwsJCvvvuu8ZeUkRERLyhapxR8PFviYiufPL6bK1GAR07EDxsGBgGBQsXNnuJvuLRyQiCgoIYPny4Jy8pIiIinhbRAaJ7guEiPrryyeyzDcCGnwZhF8ybTyM7nFq8c3uWJhEREalb1WP78X6VT5qfaQbsamHjx2MKCqL80CFK09ObszqfUTASERFpi6q60+KLvwQg64ANl+vMrUCW0BDCx48Hzt2FZX0ajByOulf0FRERkWbW5QIw+xFZ8gP+VhMVdie5R4vPelrEz6YCYPvsM1xlZc1cpPd5LRgdO3aML7/8kj//+c/ceOONDBw4kLCwMG99vIiIiJzMGgYdh2E2uYiLqpy0sT7jjIKHDcMvMQFXYSFFS5c2d5VeV+95jOqrrKyMbdu2sXnz5hqvUxeXPdO6LCIiIuIFKRfC4e+I99/Jj6SSub+AfqPPPGGzyWwmYvJkTrz2Ovnz5xN++eVeKtY7mhSMDh48WCsA7du3D5fLVeO4ukau+/v7061bt6Z8vIiIiDRFyjhY9hTxpUuB1HoNwAaImDKFE6+9TvE331KRnY1/bGzz1ulFDQpGr732mjsAbd26lcLCwhr7T/fonslkYsKECYwfP54ePXrQo0cPkpOTMZs19ltERMRnElMhMIL4kg0AFBwvpcRWTnB4wBlPsyYnEzRoEKXp6dgWfUrU7bd5o1qvaFAwuuuuu9zrpZ0qJCSE3r17069fP/r27Uvfvn3p06cPXbp0AeDmm2/mmmuu8UjRIiIi4gFmCySPxrpjEe3DS8mzBZF1oIDkgTFnPTXiZz+jND2dgvnziLzt1nNmeEyjutJCQ0P52c9+Rp8+fdxBqDoAiYiISCvSdRzsWESCdTd5DCRzf/2CUfhlE8h6+mnse/ZStm07Qf36eqHY5tegvqyQkBAMw6C4uJiMjAzGjx/PFVdcoVAkIiLSWqVcCEB8xTcAHKvnOCNLeDhhF18EQMH8+c1Smi80KBjt27ePX/3qV5jNZpYtW8bQoUO56aabOHz4cHPVJyIiIs0pMhnadyHebwcA2YcKcTpdZzmpUvUSIbZPP8UoL2+uCr2qQcEoNjaWN954g40bN3LJJZfgcrl4//336dWrFw8//DAFBfVLmSIiItKCdB1HO8tRrP7lOCtc5BwpqtdpIeefjyUmGmd+PkUrVzZzkd7RqMfC+vXrxxdffMEXX3xB3759KSsr44UXXiAlJYVZs2ZRUVHh6TpFRESkuaSMw2QyiA/cB9Rv3TQAk58fEZMmA5B/jnSnNel5+fHjx5Oens7rr79OXFwcubm5PPjgg/Ts2ZM5c+Z4qkYRERFpTsmjwWQm3qh8bD/zQP17gCKmTgGgaPkKHKdM5twaNXkiIbPZzB133MGePXt47LHHCAoK4uDBg/zyl79k2LBhnqhRREREmlNQe0hMJd5/J1D/FiOAwB49COzbFxwObJ/+r7kq9BqPzbAYEhLCn/70J3bv3s1NN92EyWRi3bp17v35+fme+igRERHxtJQLifXfi8nkoijPTlFe/ReIrR6EfS48nebxqacTExN5++23Wbt2LePGjXNvv+uuu7j66qvZunWrpz9SREREmqrrOALMZUT5HwEgc7+t3qeGT7wC/P0p276dst27m6tCr2i2NTlSU1P5+uuvWbBgAT179sTlcvHf//6XQYMGce2117Jjx47m+mgRERFpqI5DwT+EBL9tQMO60/zatyd0zGgACuYvaJbyvKXZFyubNGkSW7Zs4e9//zvR0dG4XC7mzp1L//79uf7665v740VERKQ+/AKgy0ji/HcBDRuADdCuujtt0UIMh8PT1XmNV1ZxtVgs3HXXXezdu5ff//73WK1WXC4XH330kTc+XkREROojZRwJVQOwjx8uxFHurPepoaNHY2nfHufxHIq//ba5Kmx2Xl3ePiwsjGeffZadO3dy7bXXevOjRURE5GxSLiTMkk2wOQ+X0yD7cGG9TzUFBBA+cSLQuuc0qncwmjt3rsc+tFOnTnzwwQf88MMP7m0//vgj3333ncc+Q0RERBoougem8ETiq7vT9jesO809p9HXS3G20tUw6h2MfvGLX9C/f3+PBqQhQ4Zw+PBh7rzzTrp168ZXX33lsWuLiIhIA5lMkDKO+ICGz2cEENinD9bu3THKy7F9/kVzVNjs6h2MunfvzrZt27j22mvp0qULjz76KNu2bWvUhxYXF/Pee+9x2WWX0a1bN9544w2cTifdunVr1PVERETEQ7qO+2mix/0FGIZR71NNJlOrn9PIZNTzjh0OB3/961959tlnycnJwWQyAZWB6bzzzmPo0KGkpqYSGxtL+/btad++PaWlpeTm5pKXl8fu3btZu3Yta9asYc2aNZSVlbm/7Msuu4znnnuOfv36Nd+deojNZiMiIoKCggLCw8N9XY6IiIhnFR3H8efevJn1Pi78ueH/RhARE1Tv0yuys9k77kJwOun6+WdYk5Obsdj6q+/f73oHo2rFxcW88sor/OMf/+Dw4cOVF6kKSfVR/XEWi4UpU6bw0EMPMXz48IaU4FMKRiIics57dST/2X49WRU9ufjWPvQcHt+g0w//+tcUr1hJ1K9/TewD9zdPjQ1U37/fDX4qLSQkhIceeoj9+/fz+eefc+utt9K5c2cMwzjrKzAwkDFjxvD8889z6NAh/vOf/7SqUCQiItImpNTsTmso95xGCxdiuFyerKzZ+TX2RLPZzKWXXsqll14KQEZGBt999x0//vgjx48fJzc3l8DAQGJiYoiJiaF///4MGTIEf39/jxUvIiIizSBlHPEBz7OppOEDsAFCL7wQc3g4jmPHKPnhB0JGjGiGIptHo4PRqTp06MDVV1/tqcuJiIiIr3QaQULgAQBOZBRRXuYgILD+kcFstRJ+2WXkz5lDwfz5rSoYeXWCR186ePAgt99+O8nJyQQFBZGSksITTzxBeXm5r0sTERFpWfyDCOnai1BzNoYB2Qfrv6Bsteo5jWyLl+AsKvZ0hc2mzQSjnTt34nK5eP3119m2bRsvv/wyr732Go8++qivSxMREWl5uo4jIaBxEz0CBA0aRECXLhilpRQuXuzp6ppNmwlGEyZMYPbs2YwfP56uXbsyefJkfve73/Hf//7X16WJiIi0PCkXugdgH9ub3+DTa8xpNG+eBwtrXm0mGNWloKCAyMhIX5chIiLS8sT1Iz48C4Cs/XkYrgbN7gNAxJTJYDJRsnYt5T/+6OkKm0WbDUb79u3jb3/7G7/5zW/OeJzdbsdms9V4iYiInPPMZqJ6dsUPO/YyyMsqafAl/BMSCD6vclqeggULPF1hs2j1wWjGjBmYTKYzvtatW1fjnKNHjzJhwgSuvvpqfvWrX53x+jNnziQiIsL9SkpKas7bERERaTEs3ccS678HaNw4IzhpTqMFCxu0vIivNHjm65YmJyeHnJycMx7TpUsXAgMDgcpQNG7cOIYPH87bb7+N2XzmbGi327Hb7e73NpuNpKQkzXwtIiLnvoIMVv/pGTYUX0nv4VFceOvABl/CVVLCnpGjcJWU0Pn99wgePLgZCj27+s587bF5jHwlOjqa6Ojoeh2bkZHBuHHjGDx4MLNnzz5rKAKwWq1YrdamlikiItL6RHQgPqoQiiFzd3ajLmEODiZswgQK/vtf8ufN81kwqq9W35VWX0ePHmXs2LEkJSXxwgsvcPz4cTIzM8nMzPR1aSIiIi1WfJ9OAOTlWSgrrmjUNarnNCr8/AtcpaUeq605tJlgtHjxYvbu3cvSpUvp2LEjCQkJ7peIiIjULaj3SCIsRwHIOtC4B5CChwzBv0MHXMXFFH71tSfL87g2E4xuueWW0y5uKyIiIqfR5QISAnYDkLntUKMuYTKbiZhS2WpUMH++pyprFm0mGImIiEgjWMOIi6tcPitz17FGX6a6O6149WoqsrI8UlpzUDASERGRM0ro3QGArCw/XE5Xo64R0KkTQYMHg8tFwcKFnizPoxSMRERE5IzaDxpOgKmYCqc/J34sbPR12v1sKgAF8+a32KEsCkYiIiJyRuaOacRZDwCQlb6t0dcJmzABU2Ag5fv3U7Zli6fK8ygFIxERETkzix/x8ZWP6h/bkdH4y4SGEnbxxUDLHYStYCQiIiJnFd+zcnqbzGOWJl0nonqJkP99hqu8vKlleZyCkYiIiJxV3PBhgAubvR0lx3MbfZ2QEefhFxeHq6CAomXLPVafpygYiYiIyFlZE7sRaa1cLSJzzdpGX8dksRAxeRLQMrvTFIxERESkXuKr5zPa8WOTrlPdnVa0ciWOsywE720KRiIiIlIv8T3iAMg82rTrWFNSCBwwAJxOCj791AOVeY6CkYiIiNRLwtA0ALJLOuA80dRWo+olQhY0uS5PUjASERGReonoFE+gpQQnAeSs+65p17r8ckz+/th37qRs504PVdh0CkYiIiJSLyaTifjYMgAytx1s0rUs7doROm4cUDkTdkuhYCQiIiL1Ft8jBoBjGYCrceumVYuoXiLk008xKiqaWJlnKBiJiIhIvcUP7A1AVmkXyNrapGuFjhyJJSoK54kTFK36xgPVNZ2CkYiIiNRbbEoUJlwUuaIp3NK0MGPy9ydi4kSg5cxppGAkIiIi9eZvtRAdVTWf0dYDTb5edXda0bJlOPPzm3y9plIwEhERkQaJ7xYFQGaGARWlTbpWYK9eWHv1wqiooOCzzzxRXpMoGImIiEiDxPftDEBmeXc4vLrJ16ue0yj3vfcp+PR/FP+wBsPpbPJ1G0PBSERERBokPiUCgJyKZBy7VzT5epawcAAq9u/n6O9+x+Gbb2bvRRdjW7y4ydduKAUjERERaZCwyECCg1248CN7294mXcu2eDHHHnus1nZHVhYZ993v9XCkYCQiIiINYjKZSEhpB0Bmpj8UHW/UdQynk6xnZoJh1LGzclvWMzO92q2mYCQiIiINFtcjFoDMip5woHHdaSXr1uPIzDz9AYaBIzOTknXrG3X9xlAwEhERkQZLqBpnlFnRC2Pv0kZdw3G8fi1N9T3OExSMREREpMFiksIwWwxKXREU7Nxad3fYWfjFxHj0OE9QMBIREZEGs/ibie0UBkBWfjvI2d3gawQPGYxffDyYTHUfYDLhFx9P8JDBTai0YRSMREREpFHiU9oDcKy8F+xb1uDzTRYLcY9Or3pzSjiqeh/36HRMFkuT6mwIBSMRERFplHj3OKOesL/hwQggfPx4OvxlFn5xcTW2+8XF0eEvswgfP77JdTaEn1c/TURERM4Z8V0rg1GuoxPl+9YR4CgHv4AGXyd8/HjCLrqo8im148fxi4kheMhgr7YUVVMwEhERkUYJibASFhVI4YkyskoSSfpxLXS5oFHXMlkshAwf5uEKG05daSIiItJo1a1GTelOa0kUjERERKTR3MGokQOwWxoFIxEREWm0hJMGYBsZG6E0z8cVNU2bCkaTJ0+mU6dOBAYGkpCQwI033sjRo0d9XZaIiEirFdUhBL8AM+VGCHmOBDiwytclNUmbCkbjxo3j448/ZteuXXzyySfs27ePq666ytdliYiItFpmi5m4LuFAdXda45YHaSna1FNpDzzwgPvnzp0788gjjzB16lQqKirw9/f3YWUiIiKtV3zXCDJ253Osohd99n/q63KapE21GJ0sNzeX999/n/PPP/+Mochut2Oz2Wq8RERE5CfVA7CzKnpC3kHIPeDbgpqgzQWjhx9+mJCQEKKiojh8+DALFiw44/EzZ84kIiLC/UpKSvJSpSIiIq1DXNfKrrQ8R0fKXGGt+rH9Vh+MZsyYgclkOuNr3bp17uMfeughNm7cyOLFi7FYLNx0000YZ1gRePr06RQUFLhfR44c8cZtiYiItBpBoQG0iwsGILO8R6t+bL/VjzG65557uPbaa894TJcuXdw/R0dHEx0dTY8ePejduzdJSUl8//33jBgxos5zrVYrVqvVkyWLiIicc+K7hpOfVUJmRU+6HPgfuJxg9v6SHk3V6oNRddBpjOqWIrvd7smSRERE2pz4rhHsXJ1JpqMvlH0ARzdCxyG+LqvBWn0wqq81a9awZs0aRo4cSfv27dm/fz+PP/44KSkpp20tEhERkfqJT6kegN0dl2HGvG9ZqwxGrX6MUX0FBQXx3//+l4suuoiePXty22230a9fP1asWKGuMhERkSaKjA8hIMgPh8ufE47OrXYAdptpMerfvz9Ll7buSadERERaKpPZRHxyOIe355JZ3ouYI1+BvQisob4urUHaTIuRiIiINK/q7rRMUxq4KuDQtz6uqOEUjERERMQj4pOrF5TtXbmhFS4PomAkIiIiHhGXHA4msJWGUOxs1yrnM1IwEhEREY8ICPIjKjEEgCxHL8jZBQUZPq6qYRSMRERExGOq1007FjC6csP+5b4rphEUjERERMRj3AOwHX0rN7Syx/YVjERERMRjqgdgH88Px2n4VY4zcrl8XFX9KRiJiIiIx0TEBhEY6o/TCceNPlCSA1lbfV1WvSkYiYiIiMeYTCb3OKPM0PGVG1tRd5qCkYiIiHhUfNdwADKdAyo3tKLH9hWMRERExKMSqgdg50ZgGMDh1VBR5tui6knBSERERDwqpnM4ZrOJ4kIXRUF9wFFWGY5aAQUjERER8Sj/AAvRSZWLx2aGT6rc2EqWB1EwEhEREY9zT/RoDKzc0EoGYCsYiYiIiMdVB6OsvMjKDZlboOi4DyuqHwUjERER8bjqGbCPHy2jIjqtcuOBFT6sqH4UjERERMTjQttbCWlnxXAZZLe/onJjK3hsX8FIREREPK5yoseq+YxIrdy4bymVz++3XApGIiIi0izcM2DnRYLFCoVHIWe3j6s6MwUjERERaRbV44wyDxZhJJ1XubGFd6cpGImIiEiziEkKw+JnpqyogoLYCZUbW/hj+wpGIiIi0iwsfmZiO4cBkGkaXLnx4DfgrPBhVWemYCQiIiLNxj3O6EQ4BEdDeRH8uNbHVZ2egpGIiIg0G3cwOmCDrmMqN7bg5UEUjERERKTZxFU9sn/iaDH2jhdWbmzBA7AVjERERKTZhERYCY8OBAOyLUMrNx7dAKV5vi3sNBSMREREpFm5F5TNCoDoHmC44MAqH1dVNwUjERERaVbucUb7C6DruMqNLfSxfQUjERERaVbVwShrfwFGdTBqoQOwFYxERESkWUV1CMHPaqG8zEmuNQ3MfpB3EHIP+Lq0WhSMREREpFmZLWbiulQtKPujAzpWDcJugd1pCkYiIiLS7OKrHtvP3F8AKS33sX0FIxEREWl2Pw3Atv00APvASnA5fVhVbW0yGNntdgYNGoTJZCI9Pd3X5YiIiJzzqoNRflYJpeH9wBoBZflwNN2ndZ2qTQaj3//+9yQmJvq6DBERkTYjMMSf9vHBAGQdKobkUZU7WtjTaW0uGH3++ecsXryYF154wdeliIiItCnuiR73F0BKy5zPqE0Fo6ysLO644w7effddgoOD63WO3W7HZrPVeImIiEjDnTyfkXuc0ZE1YC/yYVU1tZlgZBgGt9xyC7/5zW8YMmRIvc+bOXMmERER7ldSUlIzVikiInLucgejgzacEV2gXWdwVcChb31b2ElafTCaMWMGJpPpjK9169bxt7/9DZvNxvTp0xt0/enTp1NQUOB+HTlypJnuRERE5NzWPj4Ya7AfjnIXJzKKf+pOa0GP7fv5uoCmuueee7j22mvPeEyXLl146qmn+P7777FarTX2DRkyhOuvv55///vfdZ5rtVprnSMiIiINZzKbiEsO5/C2XDL324jtOg7Wv92iBmC3+mAUHR1NdHT0WY/761//ylNPPeV+f/ToUS699FLmzJnD8OHDm7NEERERqRLfNaIqGBUwYPhowAQ5u6AgAyI6+Lq81h+M6qtTp0413oeGhgKQkpJCx44dfVGSiIhImxOfUj3RYwEE94XEVDi6AfYvh9TrfVsc58AYIxEREWk94rqEYzJB4YkyivPtPy0P0kIe22+zwahLly4YhsGgQYN8XYqIiEibERDoR2SHyl6bzBrzGS0Hl8t3hVVps8FIREREfCOh60ndaR2HgX8IFB+H7G0+rkzBSERERLwsvms4UBWM/AKgywWVO1rA02kKRiIiIuJV1QOwsw8X4qxw/TQLdguYz0jBSERERLwqPDqIoDB/XA6D40cKfxpndHg1VJT5tDYFIxEREfEqk8n004Ky+wogpheExoOjDFY8BwdWgcvpk9oUjERERMTr4k8egL1jEdirFmn/5iX490SY1Q+2L/R6XQpGIiIi4nXuYLQrC2POTVBRUvMA2zH4+CavhyMFIxEREfG62M5hmM0mSkrMFDrrWtrLqPzni0e82q2mYCQiIiJe5xdgITqu8ufMip6nOcoAWwYc+s5rdSkYiYiIiE/Ex5QCkFnR68wHFmV5oZpKCkYiIiLiE/FdQgDILD9LMAqN80I1lRSMRERExCcShg8FIMfRhQqXtY4jTBDeATqf77WaFIxERETEJ0KjggkNdWFgIbui+yl7TZX/THgWzBav1aRgJCIiIj4T3zMegGPmoTV3hCfCNe9An8lercfPq58mIiIicpL4rhHsXZ9NVsItcMWVlQOtQ+Mqu8+82FJUTcFIREREfMa9NMgBG0aXUZhMJp/Wo640ERER8ZnopFAs/mbsxQ7ys0rOfkIzUzASERERn7H4mYntHAZA5n6bj6tRMBIREREfq7GgrI8pGImIiIhPKRiJiIiIVKkORrnHirGXVPi0FgUjERER8ang8ADCY4LAgKwDvh1npGAkIiIiPhefHA7AtlUZZOzKw+UyfFKH5jESERERn9q3MZuDW04AsD89h/3pOYS0szLqF91JSY31ai1qMRIRERGf2bcxmy9e30p5qaPG9uJ8O1+8vpV9G7O9Wo+CkYiIiPiEy2Wwas6eMx7zzcd7vNqtpmAkIiIiPnFsTz7F+fYzHlOUZ+fYnnzvFISCkYiIiPhIse3Moaihx3mCgpGIiIj4REi41aPHeYKCkYiIiPhEQvd2hLQ7c+gJbW8loXs77xSEgpGIiIj4iNlsYtQvup/xmJHXdMdsNnmpIgUjERER8aGU1Fgm/LpfrZaj0PZWJvy6n9fnMdIEjyIiIuJTKamxJA+MqXxKzWYnJLyy+8ybLUXV2lSLUZcuXTCZTDVejzzyiK/LEhERafPMZhMderanx9B4OvRs75NQBG2wxehPf/oTd9xxh/t9aGioD6sRERGRlqTNBaOwsDDi4+N9XYaIiIi0QG2qKw3gueeeIyoqikGDBvH0009TXl5+xuPtdjs2m63GS0RERM5NbarF6L777iMtLY327duzZs0apk+fzoEDB/jnP/952nNmzpzJk08+6cUqRURExFdMhmF4b2W2ZjBjxoyzBpe1a9cyZMiQWts/+eQTrrrqKnJycoiKiqrzXLvdjt3+01TkNpuNpKQkCgoKCA8Pb1rxIiIi4hU2m42IiIiz/v1u9S1G99xzD9dee+0Zj+nSpUud28877zwA9u7de9pgZLVasVq9NxW5iIiI+E6rD0bR0dFER0c36tyNGzcCkJCQ4MmSREREpJVq9cGovlavXs3333/PuHHjiIiIYO3atTzwwANMnjyZTp06+bo8ERERaQHaTDCyWq3MmTOHJ598ErvdTufOnbnjjjv4/e9/7+vSREREpIVoM8EoLS2N77//vsnXqR6rrsf2RUREWo/qv9tne+aszQQjTyksLAQgKSnJx5WIiIhIQxUWFhIREXHa/a3+cX1vc7lcHD16lLCwMEwmz67jUj0VwJEjRzQVQAug30fLot9Hy6LfR8ui38fZGYZBYWEhiYmJmM2nn99aLUYNZDab6dixY7N+Rnh4uP6H3YLo99Gy6PfRsuj30bLo93FmZ2opqtbmlgQREREROR0FIxEREZEqCkYtiNVq5YknntBM2y2Efh8ti34fLYt+Hy2Lfh+eo8HXIiIiIlXUYiQiIiJSRcFIREREpIqCkYiIiEgVBaMW4pVXXiE5OZnAwEAGDx7MqlWrfF1SmzRz5kyGDh1KWFgYsbGxTJ06lV27dvm6LKkyc+ZMTCYT999/v69LadMyMjK44YYbiIqKIjg4mEGDBrF+/Xpfl9UmORwOHnvsMZKTkwkKCqJr16786U9/wuVy+bq0VkvBqAWYM2cO999/P3/4wx/YuHEjo0aN4rLLLuPw4cO+Lq3NWbFiBXfffTfff/89S5YsweFwMH78eIqLi31dWpu3du1a3njjDQYMGODrUtq0vLw8LrjgAvz9/fn888/Zvn07L774Iu3atfN1aW3Sc889x2uvvcbf//53duzYwfPPP8+f//xn/va3v/m6tFZLT6W1AMOHDyctLY1XX33Vva13795MnTqVmTNn+rAyOX78OLGxsaxYsYLRo0f7upw2q6ioiLS0NF555RWeeuopBg0axKxZs3xdVpv0yCOP8O2336pVu4WYOHEicXFxvPXWW+5tV155JcHBwbz77rs+rKz1UouRj5WXl7N+/XrGjx9fY/v48eP57rvvfFSVVCsoKAAgMjLSx5W0bXfffTdXXHEFF198sa9LafMWLlzIkCFDuPrqq4mNjSU1NZU333zT12W1WSNHjuTrr79m9+7dAGzatIlvvvmGyy+/3MeVtV5aK83HcnJycDqdxMXF1dgeFxdHZmamj6oSqFxwcNq0aYwcOZJ+/fr5upw266OPPmLDhg2sXbvW16UIsH//fl599VWmTZvGo48+ypo1a/jtb3+L1Wrlpptu8nV5bc7DDz9MQUEBvXr1wmKx4HQ6efrpp7nuuut8XVqrpWDUQphMphrvDcOotU2865577mHz5s188803vi6lzTpy5Aj33XcfixcvJjAw0NflCOByuRgyZAjPPPMMAKmpqWzbto1XX31VwcgH5syZw3vvvccHH3xA3759SU9P5/777ycxMZGbb77Z1+W1SgpGPhYdHY3FYqnVOpSdnV2rFUm8595772XhwoWsXLmSjh07+rqcNmv9+vVkZ2czePBg9zan08nKlSv5+9//jt1ux2Kx+LDCtichIYE+ffrU2Na7d28++eQTH1XUtj300EM88sgjXHvttQD079+fQ4cOMXPmTAWjRtIYIx8LCAhg8ODBLFmypMb2JUuWcP755/uoqrbLMAzuuece/vvf/7J06VKSk5N9XVKbdtFFF7FlyxbS09PdryFDhnD99deTnp6uUOQDF1xwQa0pLHbv3k3nzp19VFHbVlJSgtlc80+5xWLR4/pNoBajFmDatGnceOONDBkyhBEjRvDGG29w+PBhfvOb3/i6tDbn7rvv5oMPPmDBggWEhYW5W/IiIiIICgrycXVtT1hYWK3xXSEhIURFRWncl4888MADnH/++TzzzDNcc801rFmzhjfeeIM33njD16W1SZMmTeLpp5+mU6dO9O3bl40bN/LSSy9x2223+bq0VkuP67cQr7zyCs8//zzHjh2jX79+vPzyy3o83AdON65r9uzZ3HLLLd4tRuo0duxYPa7vY59++inTp09nz549JCcnM23aNO644w5fl9UmFRYW8sc//pF58+aRnZ1NYmIi1113HY8//jgBAQG+Lq9VUjASERERqaIxRiIiIiJVFIxEREREqigYiYiIiFRRMBIRERGpomAkIiIiUkXBSERERKSKgpGIiIhIFQUjERERkSoKRiIiIiJVFIxEREREqigYiUiLZjKZ6NKli6/LEJE2QsFIRJrNwYMHMZlMjB071teliIjUi5+vCxAROZMdO3bg7+/v6zJEpI1QMBKRFq1Xr16+LkFE2hB1pYmco07uxiouLmbatGkkJSURFBREWloaixYtch87d+5chg0bRkhICHFxcfz2t7+ltLS01jX/97//cdttt9G7d2/Cw8MJCQlh4MCBPPPMM9jt9hrHzpgxg+TkZABWrFiByWRyv2655ZZaNdpsNh588EGSk5Px9/fn/vvvB+oeY/SLX/wCk8nEww8/XKvGnTt3EhwcTHh4OPv372/Q92Sz2bjvvvtISkoiMDCQ3r178/LLL+Nyueo8d/Xq1UyZMoWYmBisVitdunThrrvu4ujRozWOKysrIzAw0P19nGzixImYTCbGjRtXa1+/fv3w8/PDZrPVqvnXv/41Xbp0wWq1EhMTw1VXXcXmzZvPen91fcdnsnPnTkwmExMmTKCoqIgnnniCXr16ERQURLdu3XjxxRfPeg2RVsUQkXPSgQMHDMAYMWKEMXz4cCM6OtqYOHGiMXbsWMNsNhsWi8VYsmSJ8dJLLxl+fn7GiBEjjKlTpxpRUVEGYPzyl7+sdc24uDgjNDTUGD58uHH11Vcbl156qdG+fXsDMC688ELD4XC4j503b55x5ZVXGoARFxdn3Hzzze7Xm2++WaPGYcOGGYMGDTLat29vTJ061fj5z39uzJgxwzAMwwCMzp0716gjNzfX6Nixo2E2m41ly5a5t5eXlxupqakGYMyePbtB39N5551nDB482GjXrp3x85//3Jg4caIRFBRkAMYtt9xS67x3333XsFgshslkMi644ALj2muvNXr06OG+3x07dtQ4fvTo0QZgHDhwwL3N4XAYERERBmBYrVajtLTUve/48eOGyWQyBg8eXOM6q1atMsLDww3A6Nu3r3HVVVcZI0aMMEwmkxEUFGQsXbq0zvs703d8Jh999JEBGNdcc43RtWtXIykpybjmmmuMSy65xDCbzQZgvPPOO/X5qkVaBQUjkXNU9R9EwBg7dqyRm5vr3jd79mwDMLp162ZERkYaK1eudO/LyMgwYmNjDcDYt29fjWvOmzfPKCoqqrHNZrMZEydONADj3//+d501jBkz5qw1jhgxwsjLy6t1TF3ByDAMY+nSpYbZbDaSkpLc5/3+9783AOOqq646wzdz+hoGDBhgHD9+3L1v7969RmJiogEYCxYscG8/fPiwERQUZPj5+RmLFi1yb3c6ncb9999vAMbQoUNrfM7jjz9eK7CtXbvWHXCAGiFv7ty5BmA8+OCD7m0FBQVGfHy84e/vb8ydO7fG9ZcsWWIEBAQYHTp0MOx2e533d7rv+EymT5/uPv+Pf/yjUVFR4d731ltvGYAxZcqUBl1TpCVTMBI5R1X/QbRYLMaePXtq7HM6nUZMTIwBGI8//nitcx944IEGtbrs2bPHAIyf//znddZQn2C0du3aOo85XTAyDMN46KGHDMC47rrrjGXLlhlms9lITEw0Tpw4Ua+6T61h8eLFtfa/+uqrBmCMHz/eva065Nx44421ji8rK3OHqdWrV7u3f/311wZg3Hzzze5tL7zwggEYc+bMMQDjiSeecO+75557DKBG8Hr55ZcNwJg+fXqd91Idyj755JM67+903/GZXH755QZg/OIXv6i17/Dhw+7AJXKu0BgjkXNcly5d6NatW41tZrOZzp07A3DJJZfUOiclJQWAY8eO1dq3Z88e/vKXv3Dvvfdy2223ccstt/B///d/7n2NkZCQwJAhQxp83lNPPUVqaioffvghU6ZMwTAM/v3vfxMZGdnga0VGRtb5Xfzyl78E4LvvvsMwDABWrVoFwPXXX1/reKvVytVXX13jOIDzzz8fq9XK8uXL3duWL19Ou3btuOqqq+jYsWOtfWazmZEjR7q3LVmyBICpU6fWeQ/Vx65du7bWvsZ+x5s2bQLgscceq7UvMzPTfW2Rc4WeShM5x3Xo0KHO7SEhIafdX73v5AHVhmHwu9/9jpdfftkdEE5VWFjYqBo7derUqPMCAgJ4++23GThwIDabjXvvvZeLL764UdeqDoqnCg8Pp127duTn52Oz2YiIiHAPrj7dxJPV208ehB0YGMiwYcNYtWoVBw8epFOnTnzzzTeMHj0as9nMmDFj+M9//kNZWRlFRUVs27aN1NRU2rVr577GwYMHARg+fPgZ7yUnJ6fWtsZ8xydOnCAjI4OuXbvSr1+/WvurB3v379+/wdcWaakUjETOcSaTqUn7q82ZM4eXXnqJjh07MmvWLEaMGEFMTAz+/v6Ul5djtVpPG5jOJjAwsFHnVddVbePGjbhcLsxmzzaGn+6+GvrdjhkzhlWrVrF8+XIGDBhAfn6+e/LLsWPH8v777/P999+Tm5uLYRi1JsZ0Op0AXH311QQHB5/2c+sKTo35jqtbi4YOHVrn/vT0dAAGDRrU4GuLtFQKRiJSL/PmzQPg1VdfZeLEiTX21eex+OawatUqnn32WRITE+nVqxdLly7l2Wef5dFHH23wtQ4fPlzndpvNRkFBASEhIYSHhwOQmJjIrl27OHDgAD169Kh1zqFDh4DaXUxjx47lqaeeYvny5eTm5rq3nfzvyfvGjBlT4/yOHTuya9cuHnvsMQYMGNDge2yo6mCUmppa534FIzkXaYyRiNRLXl4eAElJSbX2ffzxx3WeExAQAIDD4fB4PTabjRtvvBHDMJg9ezbvvfceUVFRzJgxg3Xr1jX4eidOnOCrr76qtf3DDz8EKscIVbcAjRo1CoD333+/1vHl5eXMnTu3xnHVzj//fAICAli+fDnLly+nffv2DBw4EIBu3bq5xxlVjy8aPXp0jfOruwnnz5/f4PtrjDMFI8Mw2LRpE+3atdNadnJOUTASkXqpbhl54403anQtrVq1ij//+c91nhMdHY2/vz/79u1zdwN5yl133cWhQ4e49957GT9+PAkJCbz55ptUVFRw/fXXU1JS0uBrPvTQQ5w4ccL9/sCBA+6B5XfddZd7++23305QUBAffvgh//vf/9zbXS4Xjz76KBkZGQwdOpTzzjuvxvWDgoIYOnQohw4dYsmSJe7xRdXGjBnD6tWr2bp1KwMHDqwxvgjg17/+NTExMTzzzDPMnj27VhdfcXEx77zzDj/++GOD770u1cGorhahffv2UVhY6A52IucKBSMRqZff/va3hISE8Morr9CvXz+uu+46Ro8ezZgxY/jNb35T5zkBAQFMmDCBzMxMBg4cyE033cSvfvUrZs+e3aRaPvroI95//3369u3Lc889597+s5/9jFtvvZXdu3czbdq0Bl3zvPPOw2w20717d6666iomT55Mv379yMjI4IYbbqjxJFinTp3cAXHSpEmMGjWKX/7yl/Tp04cXX3yRuLg43nnnnTo/p7rLrKysrNYYorFjx1JeXo5hGLW60QDat2/PvHnzCAkJ4bbbbiM5OZmJEydy5ZVXMnToUOLi4rj55pvrHHzdUA6Hg+3bt9OhQwdiY2Nr7Vc3mpyrFIxEpF569OjB2rVrmTRpEjk5OSxcuJCioiJef/3107YYAfzzn//kxhtv5MSJE3zwwQe89dZbrFixotF1HDlyhDvvvJOAgADee++9WoOK//rXv9K1a1def/11Fi5cWO/rWq1Wli5dynXXXcfq1av58ssvSUpK4oUXXuDtt9+udfwNN9zAypUrmThxIjt27OA///kPpaWl3Hnnnaxfv/60a7ydHIbqCkan21ftggsuYMuWLTz44IMEBQWxdOlSFi9ejM1mY+LEicyZM4c+ffrU+75PZ8eOHZSXl582+CgYybnKZDT2MRIRkXPAwYMHSU5OZsyYMTXmERKRtkktRiIiIiJVFIxEREREqigYiYiIiFTRGCMRERGRKmoxEhEREamiYCQiIiJSRcFIREREpIqCkYiIiEgVBSMRERGRKgpGIiIiIlUUjERERESqKBiJiIiIVFEwEhEREamiYCQiIiJSRcFIREREpMr/B8HiTImERAAqAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 34.0, 'matrix power $n$')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xn = reduce(vcat, [(A^n * float(x))' for n = 1:10])\n", + "\n", + "plot(xn, \"o-\")\n", + "ylabel(L\"(A^n x)_k\", size=20)\n", + "xlabel(L\"matrix power $n$\", size=15)" + ] + }, + { + "cell_type": "markdown", + "id": "54c1a2e2", + "metadata": {}, + "source": [ + "We can't see much, because there are eigenvalues with $|\\lambda| > 1$, so the result blows up exponentially:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "024550be", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 9.848307006693481\n", + " 9.848307006693481\n", + " 7.593939120984211\n", + " 9.873683114998084\n", + " 9.873683114998084" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs.(λ)" + ] + }, + { + "cell_type": "markdown", + "id": "95fe4777", + "metadata": {}, + "source": [ + "It's almost a tie, but the last eigenvalue has the biggest magnitude $\\approx 9.87$ … or actually the last two complex eigenvalues, since complex conjugates have the same magnitude.\n", + "\n", + "The combination of these two complex-conjugate terms leads to an oscillation, which we can see more clearly if we divide by $|\\lambda_5|^n$ to cancel the exponential growth:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f922d8f0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG6CAYAAADzrLkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc9bW/39ldadVXvcuSLHfLam64YmwDBmMbSAIhgVBuchN+pJIQICFxGu3mhnDTIBVISAhJqDbGGAPu3ZZky72o97ZaaVW2ze+P2VlJ1kralbbJnvd59NienZ39WhrNnDnncz5HEEVRREFBQUFBQUFBwYHK3wtQUFBQUFBQUAg0lABJQUFBQUFBQeEylABJQUFBQUFBQeEylABJQUFBQUFBQeEylABJQUFBQUFBQeEylABJQUFBQUFBQeEylABJQUFBQUFBQeEyNP5ewETEZrNRV1dHZGQkgiD4ezkKCgoKCgoKLiCKIp2dnaSmpqJSjZwjUgKkMVBXV0dGRoa/l6GgoKCgoKAwBqqrq0lPTx9xHyVAGgORkZGA9A2Oiory82oUFBQUFBQUXMFgMJCRkeG4j4+EEiCNAbmsFhUVpQRICgoKCgoKEwxX5DFXpUjbYrHwxBNPkJ2dTWhoKJMnT+YnP/kJNpvN30tTUFBQUFBQCACuygzSs88+y4svvsgrr7zC7NmzOXLkCPfffz86nY5vfOMb/l6egoKCgoKCgp+5KgOk/fv3s2HDBtauXQtAVlYWr732GkeOHHG6f19fH319fY5/GwwGn6xTQUFBQUFBwT9clSW2pUuX8tFHH3Hu3DkASktL2bNnDzfffLPT/Z9++ml0Op3jS+lgU1BQUFBQuLIRRFEU/b0IXyOKIt/73vd49tlnUavVWK1WnnzySR5//HGn+zvLIGVkZNDR0aGItBUUFBQUFCYIBoMBnU7n0v37qiyxvf7667z66qv84x//YPbs2ZSUlPDNb36T1NRU7r333iH7a7VatFqtH1aqoKCgoKCg4A+uygDpkUce4bHHHuOzn/0sAHPmzKGyspKnn37aaYCkoKCgoKCgcHVxVWqQuru7h1iMq9Vqpc1fQUFBQUFBAbhKM0jr1q3jySefZNKkScyePZvi4mKee+45HnjgAX8vTUFBQUFBQSEAuCpF2p2dnfzgBz/grbfeoqmpidTUVO666y5++MMfEhwcPOr73RF5XY1YbSKHytto6uwlMTKEBdmxqFXKUF8FBQUFBf/izv37qgyQxosSIA3P1rJ6frzpFPUdvY5tKboQNq6bxZrcFD+uTEFBQUHhased+/dVqUFS8A5by+p58NVjg4IjgIaOXh589Rhby+r9tDIFBQUFBQX3UAIkBY9gtYn8eNMpnKUj5W0/3nQKq01JWCooKCgoBD5KgBRAWG1WDjccZsulLRxuOIzVZvX3klzmUHnbkMzRQESgvqOXQ+VtvluUgoKCgoLCGLkqu9gCke2V23nm0DM0djc6tiWFJfHYgsdYnbnajytzjabO4YOjseynoKCgoKDgT5QMUgCwvXI7D+94eFBwBNDU3cTDOx5me+V2P63MdRIjQzy6n4KCgoKCgj9RAiQ/Y7VZeebQM4hO1DvytmcPPRvw5bYF2bGk6IYPfgSkbrYF2bG+W5SCgoKCgsIYUQIkP3Os6diQzNFAREQauhs41nTMh6tyH7VKYOO6WU5fkx2QNq6bpfghKSgoKChMCJQAyc80dzd7dD9/csOsZGLCgoZsT9aF8MLdRYoPkoKCgoLChEEJkPxMQliCR/fzJ0er2mnvNhMRrOZXny1wbP/gm8uV4EhBQUFBYUKhBEh+piixiKSwJAScl54EBJLDkilKLPLxytznnZJaAG7MTWF9QZpDk3S63uDPZSkoKCgoKLiNEiD5GbVKzWMLHgMYEiTJ/350waOoVWqfr80dzFYbW040ALChIBWAOWk6AI7XdPhtXQoKCgoKCmNBCZACgNWZq3luxXMkhiUO2p4UlsRzK56bED5Iey600GY0ER8RzOKcOADyM6IBKK3R+29hCgoKCgoKY0AxigwQVmeu5rqM69hTu4evfvxVAP52899IDk/288pc492SOgDWzklBo5bi7rx0JYOkoKCgoDAxUTJIAYRapebajGuZHjMdgOPNx/28ItfoMVnZdlIqr60vSHNsz0uLBqCqrRt9t8kfS1NQUFBQUBgTSoAUgBQmFgJQ3FTs55W4xkdnGjGarKTHhFI0KdqxXRcWRFZcGKBkkRQUFBQUJhZKgBSAFCVJHWsTJUCSy2vr81MRhMFC8znp0QAcV3RICgoKCgoTCCVACkDkDNKZtjN0m7v9vJqR6eg2s+OsZGK5YUB5TSbfrkMqVTJICgoKCgoTCCVACkCSw5NJCU/BKlo53hLYOqStJ+sxWW1MT4pkenLkkNfzlAySgoKCgsIERAmQAhSHDqkxsMts75bay2t276PLmZ0ahUqARkMfjYZeXy5NQUFBQUFhzCgBUoAiO2cH8pDaJkMv+y62ApL+yBnhWg1TEiMARaitoKCgoDBxUAKkAKUwScoglTaXYrFZ/Lwa52w+Xo8oQtGkaDJiw4bdTymzKSgoKChMNJQAKUCZEj2FyKBIeiw9nGs/5+/lOOWd0v7utZFQhNoKCgoKChMNJUAKUFSCioLEAiAw2/0rWoyUVutRCbA2b+QASc4gnajRI4qiD1anoKCgoKAwPpQAKYCRhdrHGgNPh7TJnj1aMiWehEjtiPvOSIkkSC3Q3m2mpr3HF8tTUFBQUFAYF0qAFMAMdNQOpMyLKIoul9cAtBo1M5KjAGVwrYKCgoLCxEAJkAKY3PhcNCoNzT3N1HTV+Hs5Dk7Xd3KhqYtgjYobc10bpqsMrlVQUFBQmEgoAVIAE6IJYXbcbCCwdEjvlNYCsHJ6IlEhQS69J9+uQyqt1ntpVQpXOlabyP6LrbxTUsv+i61YbYGTVVVQULjy0Ph7AQojU5RYRGlzKccaj7E+Z72/l4PNJrLJPnttwzDmkM7Iy5AySGW1HdhsIiqVMMo7FBT62VpWz483naK+o99sNEUXwsZ1s1iTm+LHlSkoKFypKBmkAEfWIZU0lfh3IXaOVrVT19FLpFbDdTMSXX7flIQIQoPUGE1WLrV0eXGFClcaW8vqefDVY4OCI4CGjl4efPUYW8vq/bQyBQWFKxklQApw5Fb/ix0X0ffq/boWgHdKpPLaDbOTCQlSu/w+jVrF7FS7ULta0SEpuIbVJvLjTadwVkyTt/140yml3KagoOBxlAApwIkJiSFblw1ASXOJX9dittrYcqIBcK+8JqM4aiu4y6HytiGZo4GIQH1HL4fK23y3KAUFhasCJUCaAATKXLY9F1poM5qIjwhmcU6c2+/Pz1ActRXco6nTtQHHru6noKCg4CpKgDQBcPghNfq3k+1duzh77ZwUNGr3Tx05g3Sq3oDZavPk0hSuUBIjQzy6n4KCgoKrKAHSBEDOIJ1sPUmftc8va+gxWdl2UiqvrS9IG9MxMmPDiAzRYLLYONvQ6cnlKVyhLMiOJUU3fPAjIHWzLciO9d2iFBQUrgqUAGkCkB6ZTnxoPGabmZMtJ/2yho/ONGI0WUmPCaVoUvSYjqFSCYphpIJbqFUCG9fNcvqabBSxcd0s1IpthIKCgodRAqQJgCAI/XPZ/KRDkstr6/NTEYSx34wUobaCu0y3j6m5nNjwYF64u0jxQVJQUPAKSoA0QRg4l83XdHSb2XG2GYD1Y+heG0i+kkFScJNX9lUAsGJaPK996RoKMqIBuG9JlhIcKSgoeI2rNkCqra3l7rvvJi4ujrCwMAoKCjh69Ki/lzUssg6puKkYm+hbgfPWk/WYrDamJ0U6hs6OFTmDdLaxk16z1QOrU7iS6ew185+j0hzCB5ZOZlFOHLfkSUGREmQrKCh4k6syQGpvb2fJkiUEBQXx/vvvc+rUKX7xi18QHR3t76UNy/TY6YRqQuk0dXJRf9Gnn/1uqb28Ns7sEUiC2viIYKw2kZN1hnEfT+HK5t9HaujqszAlMYJlU+MBKLRr4Iqr9IiiYhCpoKDgHa7KAOnZZ58lIyODl156iQULFpCVlcWqVavIycnx99KGRaPSkJeQB/i2zNZk6GXfxVZA0h+NF0EQFB2SgkvYbCKv7K8A4L7FWQ7t2+xUHRqVQEtXH7X6Hj+uUEFB4UrmqgyQ3n33XebNm8dnPvMZEhMTKSws5I9//OOw+/f19WEwGAZ9+QN/GEZuPl6PKELRpGgyYsM8ckylk03BFT4520RlazdRIRpuL+q3lggJUjPLPramuErvp9UpKChc6VyVAdKlS5d44YUXmDp1Kh988AFf+cpX+PrXv85f//pXp/s//fTT6HQ6x1dGRoaPVyzhj8G175T2d695inwlg6TgAi/trQDgswsmERasGfSaLNQuqdb7dlEKCgpXDVdlgGSz2SgqKuKpp56isLCQL3/5y3zpS1/ihRdecLr/448/TkdHh+OrurraxyuWyEvIQy2oqe2qpcHY4PXPq2gxUlqtRyXA2jzPBUhz7BmkSy1GOnvNHjuuwpXD+cZO9lxoQSXAPddkDnld1iEpAZKCgoK3uCoDpJSUFGbNGmw+N3PmTKqqqpzur9VqiYqKGvTlD8KDwpkWMw3wTRZpkz17tGRKPAmRWo8dNz5CS1p0KKIIJ2qVMpvCUF6yt/ZfPyvJaWm3ICMGkM4fk0UZW6OgoOB5rsoAacmSJZw9e3bQtnPnzpGZOfRJNdAoSvKNDkkURa+U12QUHZLCcOi7Tbx5TGrtv39JttN9suLCiA4LwmSxcaZB6YZUUFDwPFdlgPStb32LAwcO8NRTT3HhwgX+8Y9/8Ic//IGHHnrI30sbFV8ZRp6u7+RCUxfBGhU35iZ7/PhyJ9sJJUBSuIzXD1fTa7YxMyWKhcPMWBMEwaFDUoTaCgoK3uCqDJDmz5/PW2+9xWuvvUZubi4//elPef755/n85z/v76WNihwgnWs/R5epy2uf805pLQArpycSFRLk8ePLjtqlilBbYQAWq42/7q8E4P4Brf3OUITaCgoK3kQz+i5XJrfccgu33HKLv5fhNolhiaRHpFPTVcPx5uMsTlvs8c+w2UQ2l9YDsMED5pDOyLUHSDXtPbR29REX4TmNk8LE5cNTjdTqe4gNDx7VmLRwkqRDKq5q98XSFBQUrjKuygzSRMfbOqSjVe3U6nuI0Gq4bkaiVz4jKiSIyfHhABxXhNoKdmRx9ucWTCIkSD3ivgX2Mm1FazftRpOXV6agoHC1oQRIExBv65DeKZHKazfOTh71JjUeHELtaiVAUoCTdR0cKm9DoxK420lr/+XowoKYnCAF2SVKqVZBQcHDKAHSBEQOkI43H8ds86yPkNlqY8sJyWPJW+U1GYdQu1bv1c9RmBjIxpA3zUkhWRfi0nsUobaCgoK3UAKkCUi2LhudVkevtZczrWc8euw9F1poM5qIjwhmcU6cR499OfkZslC7Qxk6epXT0tXHuyWSrcT9S7Jcfl+hItRWGCdWm8j+i628U1LL/outWG3KtUhB4qoVaU9kVIKKwoRCdtTs4FjTMeYkzPHYsTfZb1Jr56SgUXs3fp6VokOtEmju7KPB0EuKLtSrn6cQuLx2sAqT1UZ+us4R9LiCLNQuqWrHZhNRqYbvelNQuJytZfX8eNMp6jt6HdtSdCFsXDeLNbkpflyZQiCgZJAmKIVJntch9ZisfHBSKq+N1kHkCUKD1UxNjACgNAB1SDabSO3Zds4dbqD2rHQDnohYbVYONxxmy6UtHG44jNVm9feSBmGy2PjbAXtr/5LsEVv7L2d6ciRajQpDr4XyVqO3lqhwBbK1rJ4HXz02KDgCaOjo5cFXj7G1rN5PK1MIFJQM0gSlKFHqZCtuKkYURbduKsPx0ZlGjCYr6TGhFNmfzL1Nfno0Zxo6OV6jZ40XDCnHysXiJna/fh6jvs+xLTxay7I7p5JT6J3OPm+wvXI7zxx6hsbuRse2pLAkHlvwGKszV/txZf28X1ZPU2cfCZFabp7j3lN7kFpFXrqOwxXtFFfpyUmI8NIqFa4krDaRH286hbNHHhEQgB9vOsX1s5JRK1nJqxYlgzRBmRU3i2BVMG29bVR1Op8h5y6yBmR9fqpHAi5XyLPrkAJpJtvF4ia2/r5sUHAEYNT3sfX3ZVwsbvLTytxje+V2Ht7x8KDgCKCpu4mHdzzM9srtflrZYGRx9t0LMwnWuH9J6jeMVPyQFFzjUHnbkMzRQESgvqOXQ+VtvluUQsChBEgTlGB1MLnxuQAcaxy/H1JHj5kdZ5sB35TXZPLtnWzHA0SobbOJ7H79/Ij77PnX+YAvt1ltVp459Ayik2dkeduzh571e7mtuKqdkmo9wWoVn1s4aUzHcOiQFKG2gos0dQ4fHI1lP4UrEyVAmsB40g/pg7IGTFYb05MimZEcNe7jucq0pEiC1So6esxUtnb77HOHo/68fkjm6HK62vuoP6/3zYLGyLGmY0MyRwMREWnobvD60OPRkLNH6/JTSYgcm5u6nEE6Xd9Jjymw9FUKgUlipGs2Eq7up3BlogRIExjZUdsTAZI8e82X2SOAYI2KmalSQBYIc9mMhpGDI3f38xfN3c0e3c8bNBp62XJCEsK609p/OSm6EBIjtVhtImV1gVOqHY4rRfw/kVmQHUu4dngTXAHpvFowzLBkhasDRaQ9gclPyAegwlBBa08rcaFj8y1qMvSy72IrIOmPfE1+uo7Saj0najrYUJDm888fSHiUa1kMV/fzFwlhCR7dzxu8eqASi01kflYMuWm6MR9HEAQKJ0XzwclGiqvamZ8VuDe1K0X8P9H5x6EqjH0jZxs3rpulCLSvcpQM0gRGp9UxJXoKACVNJWM+zubj9YgiFE2KJiM2zEOrc528ATokf5MyNZrw6JGDn4gYLSlTo32zoDFSlFhEUljSsK8LCCSHJTu6IX1Nr9nKPw5KzQX3L8ke9/EKMgJfh3SliP8nOttONrDxnTIAbslLIeUy1/awYDUv3F2k+CApKAHSRGdgu/9Yeae0v3vNH+TbZ7KV1XX43cVWpRJYdufUEfdZesfUgDckVKvUXJNyjdPXBKS1P7rgUdQq783aG4lNpXW0Gk2k6kK4YdbwgZyrFE6KBgJ35MiVIv6f6BytbOdrrxVjE+GuBRn8+q5C9jy6kte+dA33LpLm/02OD1eCIwVACZAmPOM1jKxsNVJarUclwNo8/wRIkxMiCAtW022ycqGpyy9rGEhOYSKZc4aWK8Ojtaz5cu6EKIVc1F/k/fL3AYgMjhz0WnxoPM+teM5vPkiiKDrE2fcsyvKIY/ucNB0qQWrNbjQEXufRlSL+n8hcbO7ii68cps9iY+WMRH66IRdBEFCrBBblxPHf1+YAcKZBEfsrSCgB0gRH7mQ71XqKHkuP2++XvY+WTIkfcxfReFGrBIcGJRCE2qIo0lYruTIvWJeNRiv9mtz4pdkTIjgyW808vvtxTDYTS9OWsuuOXfzlxr+QGSk9IX+18Kt+NYk8VN7GqXoDIUEq7lqQ4ZFjhms1TLd3XwZiFulKEf9PVJo6e7n3L4do7zaTn67jN58rHBKYp9rF/habGFC+bAr+QwmQJjip4akkhiViES2UtZS59V5RFP1eXpORy2wnAkCH1FLdRWdbL5ogFQXXTyJ9mqRvaSw3+HllrvH747/ndNtpdFodP1n8EzRqDfOT5zuCIk/4Zo2Hl/dVAHBbYTrRYcEeO67c7l8cgIaRV4r4fyLS1WfhgZcPU9PeQ2ZcGH++bz5hwUP7kwRBcEwQOFYVeOeQgu9RAqQJjiAIDh2Suze+0/WdXGjqIlij4kY/j/noF2rr/boOgEslUuv7pNw4goLVJOdIwVvDRf8Hb6NxvPk4fzrxJwCeuOaJQV1q85LnAXCk8Yhf1gZQ097tmPd33+Isjx5bHnJbEoAZpCtF/D/RMFtt/L+/H6Os1kBceDCv3L+A+Ijhfw79WjYlQFJQAqQrgrEaRsreRyunJxIVEuTxdbmD7Kh9ur4Tk8Xm17VcLJYCpMkFUnCRYg+Q6i8Ghtv3cPRYevjenu9hFa3cnH0za7LWDHq9MLEQtaCmtquWBmODX9b4t/2V2ERYMiWO6cmRo7/BDeSb2/GaDixW/55Dl3OliP8nEqIo8vibJ9h1rpnQIDV/vm8+WfHhI76nKFPOIOkD+nddwTcoAdIVgGwYWdpc6vLoCJtNZHOpZNK3wcfmkM7IiA0lOiwIk9XGmQb/lbLaG4y01xtRqQSy7ELthMwoVCqBboOJztbAEwDLPHfkOSoNlSSGJvK9hd8b8np4UDgzY2cCcLjhsK+XR7fJwmuH7K39i8ff2n85OQkRRGo19JitnGv0v9j/chIyIsFJ/BMSETRhxP8Tiec+PMd/jtagVgn89vOFjhLsSMxJ06FRCTR39lGrd1/TqXBloQRIVwBTo6cSHhROl7mLC/oLLr3naFU7tfoeIrQarpvh/wuzIAjMcQi1/VfKkstr6TNi0IZJWbWgYDXxk6RsR32Altn21e7jn2f/CcBPl/wUnda58aJcZjvaeNRna5N5q7gWQ6+FSbFhXjnnVCqBfMfgWr3Hjz9ejm2rAhHSZ0Rz67cKSZ0i/YxmLU1RgiMP8/eDlfz6Y+la+OStuayc4ZqVREiQmll2Z/9jAViqVfAtSoB0BaBWqR2u2q7O1nqnRCqv3Tg7mZAg/3jhXI5cZjvhRx3SpZIWACYXDnaYTpls1yFdCrwAqaOvgx/s+wEAn53+WRanLR5233lJ/tEhiaLIy/bW/nsXZ3nNodgh1A4wDUlXex+n90kNEfPXZpM2PYapCyTdX2N5pz+XdsWx/VQjP3hbalj5+qqpfHaBe0OQHULtysA6hxR8jxIgXSE4dEiNo+uQzFYbW05IGhRfz14biTx7J5u/HLU723ppqjCAANn5gwOk5AE6pEDjqYNP0dTdRGZUJt+a+60R9y1MKkRAoNJQ6dM5bHsvtHK+qYvwYDWfmZfutc+RdUiBlkEq+bAKm0UkZYqO1KnSDTjZHnQ3VRgUg0gPUVzVzldfO4ZNhDvmpfOt1SPrvpzhEGoH2Dmk4HuUAOkKQe5kO9p0dFRx4Z4LLbQZTcSFB7MkZ2zz27yB3Ml2rrGTbpPF559fXioFDCk5OsKiBrefy0LtttouTD2+X9twbK3YypbyLagEFU8tfYqwoJFHxUQFRzEjdgbg2yzSS3vLAfj03HSvNgTIGaQLzV0Yes1e+xx36Ok0cXK3lLGdd3OWY3tsajhBWjXmPittdUY/re7KobzFyH+9coRes40V0xN48rY5CIL7mUo5g3SqroNe88QyjBStVowHD9Gx+T2MBw8hWifW+gMNJUC6QsiNz0UjaGjqbqLeWD/ivpvs5pC35KV4xMXYUyTbjdpsIpys871QW9Yfyd1rAwmP1hIZF4IoBo4fUnN3Mz878DMAvjjni+Ql5Ln0vrlJcwE40uCbAKmixcjHZ6U5Y/d6uLX/cuIitGTEhiKKcLw6MLJ9JR9VYzHbSMyMJGNm/yBdlUogMUvSuwRi6XYi0dzZx71/OUSb0cScNB2//VwRQWO8tqXHhBIfEYzZKnKybuL8XAzbtnFh1Wqq7r2Xuu98h6p77+XCqtUYtm3z99ImLIFzd1QYF2FBYcyMkzqURtIh9ZisDh+aQCqvyfhrcG1Pl4m6c3rAeYAE/SWR+gC4mYmiyA/3/ZCOvg5mxs7kK3lfcfm9vvZDemV/BaII101PYHJChNc/r9A+uDYQdEi9RjMndtQAMPemrCEZjeTJUoDUGADn1ETF2Gfhv145TFVbN5Niw/jLffMJ1w41gnQVQRAodOiQ9B5apXcxbNtG7Te+iaVhsH2HpbGR2m98UwmSxogSIF1ByDqkkqaSYff56EwjRpOV9JhQRyo5kMh36JD0Pv3c8tIWRBHiMyKIig91uk+KwzBS78OVOeff5/7Nnto9BKuCeXrZ0wSpXS9bzU2UMkiXOi7R2tPqrSUC0Nlr5t9HpADhviWeb+13RkEAdbKd2FGDuddKXFo42XnxQ16Xg+6GAMlKTjTMVhsP/eMYx2s6iAkL4uX753tkZJJ8bQxEV/bLEa1WGp96GpxJK+zbGp96Wim3jQElQLqCcDhqj5BBkmevrctPHVN93tvk2W9uvs4glY9QXpNxOGqX+1dUW2Wo4n+P/C8A3yj6BjnROW69PzokmqkxknjV2+3+/zlaQ1efhZyEcJZPHRogeIOBQm1/mv2Zei2UflwNwNw1WQhOOveSs6VzSt/YTW9XYGimJgqiKPL9t06w42wzIUEq/nzffI9lKOVzaCJkkLqPHB2SORqEKGJpaKD7iO+tPSY6SoB0BZGfKLX6X2i/QEff0ACjo8fMjrNSIBAI5pDOkL2QyluMdPT45oZh6rVQdboNGNreP5C4tAhJVNtrpa3OP0aEVpuV7+/5Pj2WHuYnz+fuWXeP6Ti+aPe32UResc9du29Jts8C8lmpUQSrVbQaTVS3+c/sr2xXLX1GC7rEUHLmOvc5CokIIjpJEtY3lCtlNnd4fvt5/nWkBpUAv7mryKMZ8bx0HWqVQIOhl/qOwDaMtDS71o3q6n4K/SgB0hVEfGg8mVGZiIiUNpcOef2DsgZMVhvTkyKZYZ98HmjEhgeTESuVuHw1uLayrBWbRUSXGEpsyvCjCFQqgaRsu6jWT+3+L518iZLmEsKDwvnZkp+hEsb2K+yLAGnHuSYqWruJDNHwqaI0r33O5Wg1ambazf78VSKxmKyUbO/PHo00QiTZfk4Fivh/IvDPQ1X830fnAfjprbmsnuWaEaSrhAVrmGEfhRPoWSRNwvAPdWPZT6EfJUC6whhpLps8ey0QxdkDcQi1a/U++Ty5ey2nMGHULEeKH/2QzrSd4bclvwXgsQWPkRox9p+j3Ml2vv08+l69J5Y3hJfsxpCfnZ/hdHq6Nyl0GEbqffq5Mqf21tNjMBEZG8K0hSPfvJMC2IQ0EPn4TCPftxtBfm3lFD6/MNMrn+MwjAwAsf9IhM2biyZ5hGHjgoAmOZmweXN9t6grBCVAusJw6JAaB+uQmgy97LsoCXLX5wd2gOQQavugTdtitlJ5Qvq+TC4YfdyDQ4fk45uZyWri8d2PY7FZuC7jOjbkbBjX8eJC45ismwxI3lme5nxjJ7vPt6AS4AuLsjx+/NHwp2Gk1WKjeFslAEU3TkI9Sru5o5PNz9q2iUBptZ6H/l6M1Sby6bnpPHz9NK99lsMwMsADJEGtJul7jw/zovTAl/S9xxHUgTExYSKhBEhXGHIGqaylDJPV5Ni++Xg9oij90mfEjmwm6G/6W/31Xv+smjPtmPushEdrScwcfbp8crYOBDC09GLs6PP6+mR+U/wbLugvEBsSy8ZFGz2i53GU2bzgh/SyXXt0/awkv5xvcqv/qToDfRbfdu+cPdBAV3sfYbpgZixOGXX/2NQIxTDSBSpajDzw8mF6zFaWT0vg6dvHZgTpKnIGqazW9+eQuwRnZTndrklKIu3/nifqhht8u6ArBCVAusLIjMokNiQWk83EqdZTju3vlErdaxsCPHsEkJumQxCgrqOX5k7vBiGXivu715x1GV1OcKiGuFSpU8ZXOqSjjUd5+eTLAGxctJG4UM+4n3trcG1Ht5k3j0nl3PsW+6a1/3IyYkOJDQ/GZLVxyoemozarjaNbKwAovH4SGhfmHA40jGxUhNpOaenq496XDtFqNJGbFsXvPj92I0hXyYwL88s5NBY63nwLgIjVq0j9+f9IG1Uqst95RwmOxoESIF1hCIIwRIdU2WqktFqPSoC1eYEfIEVoNeTY23W9mUWyWW2UH3c+nHYkfKlDMpqNfH/P9xERuXXKrayctNJjx5YzSGfazmAwee4G8M/DVfSYrcxIjuSaybGjv8ELCILg0CH5ssx2/kgThpZeQiKCmL3MdWG6XGZTdEhD6TZZ+K+XD1PZ2k16TCh/uW8+EeMwgnSVgefQMT9p2VxBNJnoePddAKJv/xS6desImjQJbDZ6jiqt/eNBCZCuQOQASfZDkr2PlkyJ94iJmi/wxeDa+gsd9HaZCQkPInWKzuX3+VKH9PPDP6e2q5bU8FQenf+oR4+dEJbg6Hp0ZcixK1isNv66X9LfPODD1n5nFPhYqC3aRI6+XwFA/qoMgrSuaz5kP6SGS4GdqfA1FquNr/6jmFK7EeQrDywgMTLEZ59flBk4ruzD0blzJ9a2NtQJ8UQsXwZA+JLFABj37vXn0iY8SoB0BTLQUdtqszrKa4Euzh5Ivg90SBft3WtZ+fGo3EjXy+7HzVWdWEze0ybsrN7JG+ffQEDgZ0t/RkSw58d0eLrdf/vpRmr1PcSEBfm9W7LAx0LtSyXNtDd0ExyqYc6KdLfem2TPIOkbu+k1KoaRIBlB/uCdMj4+04RWo+JP9853ZJZ9hb+7IV1BLq9Fb9iAoJEyaxFLlwJg3LPHb+u6ErjqA6Snn34aQRD45je/6e+leIyZsTMJUYeg79Pz0YWTXGjqIlij4sbcEVpBA4yBGSRvuCGLouiSe7YzouJDCIsKxmYVaars9PjaANp629i4byMA98y6h/nJ873yOZ4eXPsXe2v/5xZOIsQF/Y03yc+IRhCgqq2b1i7vatlEUeSIPXuUd1062lD3SkChEcHoEiX/L6XMJvHrjy/w2qFqVAL86q5C5mb6fjRSXkY0KgFq9T00Gnp9/vmjYW5qomvXLgB0t9/u2B62cCGo1ZgqKzHV1PhreROeqzpAOnz4MH/4wx/Iy3NtCvpEIUgdxJyEOQC8XrYTgJXTE4kKcX1el7+ZmRKFRiXQajRRq/e8k21TZSdd7X1otGoyZrp34RUEwatlNlEU+en+n9La20qOLoevF33d458hIwdep9tOYzSPr4PqZF0Hh8rbUKsE7rkmywOrGx9RIUGOjIO3s0iVZa20VHeh0arJX5kxpmPImUnFMBL+dbia5z48B8CPN+Ry42z/PNxFaDVMS5K6WwOxzGZ4912wWgktLEQ7ebJjuzoigtCCAgCMe5Qy21i5agOkrq4uPv/5z/PHP/6RmJjAG9o6XhxC7cYSIHBHiwxHSJCa6XYnW284asvda1m5cS51Gl2ON4Xamy9tZnvVdjSChqeXPY1W7T3dWHJ4MmkRaVhFq1NzUXd42Z49uik3mWSd73QiI+GLEokoihzZUgFA7vI0QiLG9iCSrBhGAvDJ2SYef+sEAP9vRQ73XOMdI0gHNiuU74YT/5H+tA0um8s6pEATaouiiP6NNwGI/tTtQ16PWLoEUHRI4+GqDZAeeugh1q5dy+rVq0fdt6+vD4PBMOgr0JENI/s0F4nQarhuxugmiIGG7IdU6uEASRRFh3u2u+U1GcfN7KJnS4ANxgaeOvgUAA8WPMjMuJkeO/ZweMIPqbWrz6F1u3+Jf1r7neELHVLt2XYayw2oNSoKVo8tewQ4xtg0Vly9hpHHa/Q89PdjWG0itxem8ciN0737gafehedz4ZVb4I3/kv58Plfabqc/yA6sDFJPcQmm8nKE0FAi19w05PXwJfYA6cABRIvF18u7IrgqA6R//vOfHDt2jKefftql/Z9++ml0Op3jKyNj7BdBX5GXkAcIqIJbWTFL63c9yFhwOGp7WKjdXt+NvrEblUYgM3dsnkIJkyJRa1T0Gs3oG7s9si6baOOJPU/QZe4iLz6PB3If8MhxR0P2QxqPUPu1Q1WYLDby03UU2YOSQEA2jCyt1nst6DjyvtS1N2tpKuG6sWf74lLD0diHIbfXX32GkVWt3Tzw8mG6TVaWTY3nmU/lebcL8tS78K8vgKFu8HZDvbTdHiTJGaTjNR2YLDbvrcdN9G++AUDUjTeijhg6QzJk9mzUOh22zk56jp/w9fKuCK66AKm6uppvfOMbvPrqq4SEuFYGePzxx+no6HB8VVdXe3mV4ydEHQ4mycV3yqQWP69mbMyxB0gnajo8enOTs0cZM2MJdlNMK6PWqEjMkkqAniqJvHbmNQ42HCREHcKTS59Eo/LN/DI5g3Sy5STdZveDPbPVxt8OSEHCfUuy/NrafznTkiIIDVLT2WfhYnOXx49ff7GD2rPtqFQChTdMGtexVGoVSR4+pyYKrXYjyJYuE7NSonjh7rkEa7x4e7JZYeujgLPrin3b1sfAZmVyfDi60CD6LDbONARG9cDW3U3nlvcB5+U1kEaQhC1eBCjdbGPlqguQjh49SlNTE3PnzkWj0aDRaNi5cye/+tWv0Gg0WK1D27a1Wi1RUVGDvgKdPRdaMHVJtfse1QU/r2ZsTEuKRKtR0dlnobzVc0/U4y2vyXhSh3RJf4lfHv0lAN+e922ydFnjPqarpEWkkRyejEW0UNpc6vb7t5yop9HQR0KklrVzAkvrplGrHIF2sRfKbLLv0fRFyUTGuvbAJVqtGA8eomPzexgPHkIccM1x+CFdRULtHpOV/3rlCOUtRtKiQ3n5fh8YQVbuG5o5GoQIhlqo3CcZRtqzoscqA6PMZvhgG7buboIyJxE6b96w+zna/RUd0pi46gKkVatWceLECUpKShxf8+bN4/Of/zwlJSWor5CBfptK6rD2ZAFQ0uwZE0BfE6RWMTtVCkY9JdQ2tPTQXNWJIEB2Xvy4jjVQhzQezDYz39vzPfqsfSxOXcyd0+8c1/HcRRCEcfkhyXPX7l6Y6f2n/hHEtMPRP3RU79HlNFd1UlnWiiBA0Y2uCYkN27ZxYdVqqu69l7rvfIeqe+/lwqrVGLZtAwZ0sl0lGSSL1cbXXiumpFqPLjSIVx6YT2KUDwT+XY1u7SfPZfNGkD0WOt6QymvRt90+YsZW1iH1nDiBtePqOKc8yVUXIEVGRpKbmzvoKzw8nLi4OHJzc/29PI/QY7LywckGrN1ZAJxtOzum0kkg0C/U1nvkeOWlUrkxZUo0oZHB4zqW3Orf3jA+c78/Hf8TJ1tPEhkcyU8W/8QvJaqxCrVLqvUUV+kJVqv43MLxlZhGxAUx7XB4a+SInD2aMi+J6MTRB/Iatm2j9hvfxNLQMGi7pbGR2m98E8O2bQ6h9njPqYmAKIr88N2TbD/diFaj4s/3zmNK4ugDoz1CRJJb+zkySAEg1DZVVNB95AioVOhu3TDivkHJyQRPyQGbDeP+Az5a4ZXDVRcgXQ18fKYJo8lKWmQyqeGpWEUrx1uO+3tZYyI/w7MjRy4WNwHuzV4bjtCIYKKTpBvjWDUjZS1l/P747wF4YuETJIW7eOH2MLJQ+0TLCXotrhvivbS3HIBb8lO8N8bGRTHtcBTan/7PNhgw9nmmm6e1rouLdquIuTeNnj0SrVYan3oanHU82rc1PvU0IWFqdAmSYeSV7of0208u8I+DVQgC/N9nC5mX5cO5fZmLISoVGO5hRICoNGk/+k1Hq9t6vD5AezT0b70NQPjSJQQlj+4PFSF3s+1VdEjuogRIwI4dO3j++ef9vQyP8U6JNEl9XX4qhUmyH9LELLPNSYsGJBNCi3V8HSTdBpNDL+SK/mgkrYhM8jh0SL2WXh7f/ThW0cqarDXcPPlmt4/hKSZFTiIhNAGzzcyJFtc6XhoNvbx3vB6Q5q55BTfEtMORFBVCii4Emwgnaj0TaB/bKonSJxcmEJc6+viL7iNHh2SOBiGKWBoa6D5y9KrwQ/rP0Rr+d5tkBPmjdbNZ42uXf5Ua1jw78j5rnpH2QzIdnZoo/Zz92e4vWq10vGUfLXL7p1x6T7hdh9S1d69XphJcySgB0hVGR4+ZHWelJ9sNBakUJgweXDvRmBwfTqRWQ6/ZxrnG8XUhlZc2gwiJmZGjCmpH04rIpIxDh/T8seepMFSQEJrAE9c84fb7PckgHZKLZba/H6jEYhOZnxVDbprrw37dwg0x7UgUetAPqaO5m/OHJW3KvJuyXHqPpbnZ5f2S7XPZGssDO0Cy2qwcbjjMlktbONxwGKuLmrBd55p57A0po/3laydz7+IsL65yBGathzv+Chon14KCu6XXByDrkPxpGGncuxdLUxNqnY6IldcNed1mE6k92865ww3Unm3HZhMJmzcPITgYS109pvJyP6x64uJyq0BLSwtf+9rX+PDDD+nr62Py5MkUFBRQWFhIQUEBBQUFREdHe3GpCq7wQVkDJquNaUkRzEiOQqWVAqTS5lIsNovPWsc9hUolkJumY/+lVk7U6pmVOvYOQkf32ijlNVkrcnk5RNaK8H/PE3XDDUB/BqmpwoDVakPt4tDbA/UH+PvpvwPwkyU/Qaf1UoDhBvOS5/F+xfsuCbV7zVb+frAKgPsWe9EY0k0x7XAUZESz5USDR57+j22tRBRh0uw4Eia5ppnRJLhW0tUkJJCU2j9yRLSJCKrAsU2Q2V65nWcOPUNjd//3PSksiccWPMbqzOHNd8tqO3jw1aNYbCK3FqTy6I0zfLHc4Zm1HrZ8F7rqYfl3odcAh16EuqPS7/8APWDhpGj+ebjarxkkvX0wbdT69aiCB2soLxY3sfv18xj1/SXA8Ggty+6cSti8uRj37ce4Z++gkSQKI+NyBulrX/sar7/+OiEhIeTl5dHY2Mjf/vY3Hn74YVatWkVcXByTJ0/mU59yLe2n4B3eKZXKaxsK0gCYEj2FyKBIeiw9nG0/68+ljZk8uw5pPI7afT0Was5IF7aRymuuakXkcltMUhjaMA0Ws42WatcyXAaTgSf2SBmjO6bdwdK0pe78V7yGnEEqbS7FZDWNuO/m4/W0Gk2k6kK4cbYXdVNuimmHo8BuGFlcpR9XmaGzrZczB6RS2bybs1x+X9i8uWiSkwfdcAchCGiSkwmbN9dhGGnqtdIWgIaR2yu38/COhwcFRwBN3U08vONhtldud/q+6rZu7nvpMEaTlSVT4vifT+ej8nfwZ6iTgiNBDUu/Cdc9JmWUmk5B7eCsu5xBOl4z/nL/WLC0t9P50UfAUO+ji8VNbP192aDgCMCo72Pr78tom3m99G+l3d8tXA6QPvzwQwoLC7l48SJ79+6loaGB2tpaNm3axI9+9CPWr1+PxWLh7bff9uJyFUaiydDL/outAKzPl/xoVIKKgsQCYOLqkPLtnWzjcdSuPNGCzSoSkxxGTPJQ11kZd7QiAIJqwOBaF8tszxyUnrwzIjP49rxvu/6f8DLZumxiQ2Lps/ZR1lI27H6iKDrE2fcsykLjYtZsTLgpph2OOWk61CqBps4+6jvGPpW9eFsVNqtI2vRohw+WKwhqNUnfe3zEfZK+9ziCWi0ZRmYGpmGk1WblmUPPIDrRhMnbnj307JByW7vRZDeC7GNGcqT3jSBdpcaeLU2cBcHhEBoDs+ydYcdeGbRrTkIEkSEaesxWzjR0+nihYNi0GcxmQmbNImRGf+bNZhPZ/fr5Ed9b0piKiIDx0CFsppEffhT6cfkMtdlsXH/99Wi1/Z0qKSkprF27lh/84Ae89dZbVFVV0exirV3B82w+Xo9NlFLBGbH9bcdFSdJctomqQ5pj17ecqe+k1+yazuFy5OG0o5XX3NGKyMiiWleE2h9WfsimS5tQCSqeWvoUYUGjt4f7CkEQmJs0FxjZD+lwRTsn6wyEBKn47Hwvj90ZVUwrDhLTDkdosJoZ9uHHY9UhGTv6OLVX0kO5qj0aSNQNN5C88YdDtqsiIkgbULYFSJK1bQHWyXas6diQzNFAREQauhsGXWt6zVb+65XDXGo2kqoL4ZUHFhAVMraBvh6n1n6ep8/t31b0BenPsjegrz8rrFIJFPhpLps0mFbyPtJdlj2qP68fkjm6HGOXFUPmXMSeHnqOTcwHZX/gcoC0aNEil0ZsxMb6sFVTYRDysNAN+YPdjAsTJR1SSVPJhOxiSI8JJTY8GItNHNOTm8VkpfKklFkbrXvNHa2ITL9Qe+TyTUtPCz/Z/xMAHsh9wJHZCyRcEWrL2aPbCtOICR+fl5RLzFoPn3kFp1kkVRAkz3HpMOMVapdur8ZqtpGUHUXa9JgxHUM0Sd5G2mnT0H360wAETc4eFBxB4BpGNne79gAh72e1iXz9tWKOVemJCtHwygMLSPKFEaSryBmktAFu1JlLIHYymLrg5JuDdncYRvpYqN176hR9Z88iBAejW7t20GtGg2u2A8Is6UF5IrT7W20i+y+28k5JLfsvtmL10/BmlwOkRx55hM2bN0+IOWRXI5WtRkqr9agEWJs3OECaHTcbjUpDc08zNV01flrh2BEEgbxxDK6tOtWGxWQjIlY7qqjWHa2ITGJ2FIJKwNhhorPNeflGFEU27tuIvk/P9Jjp/L/8/+f2/8MXyH5IJc0lmG1DjQpr9T18cFIqQXpVnH05CdMAEdQhcNsf4N5NkLUMbGZ4/7vONWOX0a9Dcv/pv7fLzIldkr5v3s1jnzcna0h0t99Gwte+CkDfiTIsbW2D9ksOUMPIYLVrAXFCWAKiKPKjd0+y7VQjwRoVf7p3PlOTfGQE6QpWC9TZsynpAwIkQejPIh3766C3+MswsuMNKVCLXL0a9WXNUO31rpkAR+dPA6R2/0Bma1k9S5/9mLv+eIBv/LOEu/54gKXPfszWsnqfr8XlAOnSpUusWbOGNWvWcOrUKW+uSWEMvFsiZY+WTIkfYtgXoglhdtxsAIqbJmZ61eGoXe3+E7XcvZZTkDjqjc2hFXF2w7W/V9aKyAQFq0nIkDxShtOMvHn+TXbV7CJIFcTTy54mSB0gJYbLmBI9BZ1WR4+lh1OtQ3/P/7q/ApsIi3PimJ7sw5td9SHpz4z5kH8nZC+Htc9JGaTz2+D0plEPId/cTtR2YHZTZFv6STWWPivxGRFk5sa5u3oArHq95IAMRK5aRVBSEtqZM0EUMe7ePWjf0MhgomTDyAr/l9n6rH38+cSfHc0FwyEgkByWTFFiES/svMjfDlQiCPD8nQUsyA6w6kLzaTB3Q3AkxE8b/Fr+5yThds1haOz/PSi0B9kVrd20dvnGMNLW10fH5s0A6G7vL6+JosihTZc4sqVi1GNExGjJXrsQgL5Tp7G0BOYA861l9Tz46rEhOsGGjl4efPWYz4MklwOkL37xi/znP//h9OnT5OXlce211/KTn/yEzZs3U1tb6801KoyCKIqO8tr6fOfDQosS7TqkxompQ8ofYwbJarVRcVy6GEwudG32WtQNNxD3pS8O2a6OiRmiFZFxCLUvDA2Qqjur+Z/D/wPA1wu/ztSYqS6v39eoBBVzE6Xs2NHGo4Ne6zZZ+OchKYN8v7eMIYejxh4gpc/v35YwDZZ8Q/r71scG6UWckR0XTlSI5Kl11o1SbV+PhROfSJnXuWvGnj3q2rkTrFa006YRnCFptyKWL+9/7TJkPyR/CrVFUeT98vdZ/9Z6nj/2PEaLkbQIqUNWGEY4/+iCR3mnpJ7/2Sp1zf7wllncPCfFZ2t2GUd5rXCohi0yCabfJP29+G+OzbqwIHISpCYPT4+uGY6ujz7CZjCgSUkhfNE1gCQb2Pankxx+rwIYfa7k0jumEpwQj3bWTACM+/d7dc1jwWoT+fGmUyNZwvLjTad8Wm5zOUD6+9//ziOPPMINN9xAQkICu3fv5kc/+hEbNmxg0qRJJCUlsWbNGr7//e97c70KTjhd38mFpi6CNSpuHMaRVtYhTdQMkjyR/UJzF11ujIuoO6enr9tCaGQQyTnRLr/P2iE9tUesXu2Ylh219manwREMEGpfdjOz2qw8secJui3dFCUWcc+se1xeg79wCLUv0yG9XVxHR4+ZSbFhrJyR6NtFOTJICwZvX/4diM6UzCJ3PjPiIVQqgXxZZOvGza1sZw193RZiksPIGceIms7tUnktcvUqx7aIa68FoGvPXkTL4PM6Odu/OqSSphLu3nI33931XeqMdSSGJfLk0ifZcvsWfrnilySGDT4HwoPCeW7Fc2hN+Xz3P5IR5H8vn+z7YNpVap3ojwYil9lKXwNLf7ao3zDSN2U2vb28Fn3brQhqNcaOPt76xTEuHG1CpRa47p4Z3Pz/8ljz5VzCowdXDyJitKz5ci45hdLPyjF2ZE/g6ZAOlbeN2GEqAvUdvRwqbxt2H0/jcoB011138cwzz7B161bq6+upr69ny5YtPPnkk3zmM58hJiaG7du388wzI1+kFDyP7H20cnrisN0hsiD4Uscl9L16H63McyRGSuMiRBFOujEuQi6vZefFu+y5IooiXfaSR8wdnyH2XulC2fXJjmFF2HLLd2tNF6be/hvdX0/9lWNNxwjThPHk0idRj9JtFQjIOqTipmJHu7Yoiry8TxJnf2FRJmpf+td0t0GLNJZiUAYJICgUbv5f6e/7fweNJ0c8VOEk93RI5j4rJdulrNncm7LGbNpo6+11aD8iVvUHSKH5eaijo7EZDPSUlAx6j0OobTeM9BXVndV8e8e3uef9ezjecpxQTSgPFTzE5ts2sz5nPSpBxerM1XzwqQ/4y41/4VNTJe+7HF0OKUHzefDVY1hsIuvyU3lsjZ+NIEeixp4hTR8mQMpZBZGp0NMOZzY7Nhdl+k6oba6rw7hPconX3XYbzVWd/OeZIzRVdqIN17D+GwXMWiJVDXIKE/nCU4u57h7pe64KUvH5n1zjCI4AwpfIY0f2BVzDTlOna/Ybru7nCcZsRCFnjB577DH++c9/cubMGTo7O9m3b2TLfwXPYrOJbC6V6rLrC5yX1wBiQmKYrJMcVEuaS3yxNI/TL9R2LUASbeIA92zXMx59589jqa9H0GoJW7CAiCVLELRazDU19J1z7jcSERNCRKwWUezXjJxtO8uvi38NSGWH9Mh0l9fgT6bHTCcyKJIucxdn2s8AsPdCK+cauwgPVnOHt1v7L6fWfiOLzYFwJ6WEaTfAzHUgWmHzw2AbXl9UaM8guVoeObWnjt4uM1HxIUydN/asmXH/fsTubjQpKYTMmuXYLqjVhC9bBgwts8WlDTCMbPC+YaTBZOAXR37Bhrc3sK1yGwICt0+9nfdue4+v5H+FUE3oZe9QYTFOJksjjeQoaz3JvS/voqvPwqLJcfzvZ/L8bwQ5HL0GaJbO7WEzSGoNFH5e+vsAsbasZSut1nu93KN/+20QRcIWLqSmNYQ3//coXe19xCSH8ZnH5pE2bXA3pUolMHNRCsGhGmxmG211g8+b0KJChNBQrC0t9J0NLOPgxEjXuhtd3c8TeNSpKzQ0lIULF3rykAqjcLSqnVp9DxFazahlD7nMNlH9kBxCbRd1SI0VBro7TASHqEl3oy1bFsyGLVyAKiQEVVgY4YsWAdD18UfDvi/FXsJruNiByWrie3u+h9lmZkX6Cm6bcpvLn+9v1Cq1Y8ixXGaTs0efnpvuew+b4cprA1nzDASFQ/UBKPn7sLvJPjaXmo10dI/cHWYxWyneJg2lLboxE9U4DDHl7rXIlSuHaJgcOqQdgwOkgYaRjZe8J9Q228z84/Q/WPvmWl4++TJmm5lrUq7h3+v+zY8X/5iEsKFlxYGdRj96sx5bXzw20YpePMWM5EhevGcuWk0AZ0vrigERdJMkvdFwFN4t/XlpB7RXADA1MZIIrQajycq5Ru8ZRoo2Gx1vvoUI1Bbcyfu/P4HFZCNjViyf+u5cdAnOPdQEleDIaNdfpolUBQcTvkD6PQo0V+0F2bGk6IYPfgQgRRfiU7F/AFiZKowHuXvtxtnJhASNfEFy6JAmqKO2uxkk2Rwyc0486iDXT/WunbsAiFh+rWNbxKqVAHR+9PGw70seMLj2dyW/41z7OWK0MWxcvHHMwl5/4fBDajxCZauRj840AfAFfwwWdSbQvhxdOqx4TPr7hz+UynJOiAkPJitOurGUjBJon9nfgLHDRESMlhnXjF1kLFqtdH38CTBYfyQTsWwpqFT0nT+PuW7wYN4kuw7JG0JtURT5pOoTbn/ndp4+9DT6Pj2TdZP57arf8ofr/8D02OlO3+es08hilBoP1OEXuHdxJrrQwOzSdODMINIZMVkweYX09+JXAVCrBPLt44+8qUPqPnSYvtoGzuTeT/FZLYgw59o0bnkoD23YyN9fuWnEmXltuF2H1BVgOiS1SmDjullOX5OvnhvXzfJpeV8JkCYwZquN906MXl6TkTvZylrL6LX4ro7rKfLSogGoauum3TiyXb4oilyUy2ujmEMOxNrVRfcxKcMWsXyZY3vkddeBINBbVoa50bmTsPzUVnuxjZfLXgbgh4t+SHyoa91zgYQcIB1rPMZLey8hirBiegI5CRG+XYjN2q8VGSmDBHDNg9LIiJ422L5x2N3kLFLJCBoSq9XGsa1S9qjwhkluBdiX01NairWtDVVUFGHzhpZz1NHRhBYUANC1a9eg17zVyXa69TRf3PZFvv7J16kwVBAbEssTC5/gjfVvsDx9+bAB/XCdRnKApAk/z68+uuA3Yz+Xkc+p4cprAym6V/qz+O+SdxK+MYxsemMTxflfoz5+HoJKYPlnp7H8rukuZTJTp8gB0lDz2vClkg6p58hRbD09nl/4OFiTm0KyEyPRZF0IL9xdxJpc33ZDKgHSBGbPhRbajCbiwoNZkjO6N0t6ZDrxofFYbBZOto4sZg1EdGFBjqf/E6MItdvqjBiae1AHqZg02/WUrHHfPrBYCM7KInjSJMd2TXw8ofn5AHR97DyLFJcWjiZYhbUPdMZE1uesH3GyeSAzM24mYZowDCYD/zkhPW37pRup+QyYOiE4Qgp+RkIdJHkjgaQZqTrodDeHULt6+Kf/84ca6WzrJTQyyCGCHSty91rEtdciBDl/8nd0s11WZpMzSO0N3fSNUhJ0hUZjI0/seYI7N9/JoYZDBKuC+a/c/2LzbZu5c8adaFSaEd8/XKeRtXsyoqhCFdxKQ3edTzuN3EYUB2SQXAiQZqyF0FjorIOL0s/S24aRzeeb+Lg5n47oKQQHC9zy1TzmrHBdw5iYGYVKLdDdYcLQMvjnFZydhSY1BdFspvvwYU8vfVzUtHfTYOhFAP70hXn832cLeO1L17Dn0ZU+D44ARv5tGMDKlSu9uY4h3HfffXzhC1/w6WdONDbZy2tr81JcGhgqCAKFiYV8WPkhxU3FjnbuiUReejQVrd0cr9GzfNrwmaGL9vJaxsxYgkNcPs0dT/AR1y4f8lrEqpX0lJTQ+dHHxNx115DXVWoV3XFtBNdHM81UwGMLHnP5cwMNjUpDYWIhe+v20qc5z+SEbJZN8UMmTNYfpRWNOm8NgMxFUHA3lLwK7z0M/71TEtsOoGCAUFsUxSHZEptN5Kg9e1SwehKa4LFraURRpPMjabp95Kqh5TWZiGuX0/zLX2I8cABbby+qEOkpOixKMow0NPfQWG5g0uyxmVR2m7t56eRLvHLyFXosUtbgpuyb+EbRNxy+Rq4wbAeRLQRrzyQ0YRVows/7tNPIbTqqoasRVBpIyR99f40W8u+CA7+VAu9pNzoMIy81G9F3m4gO89zIncqTrXzwu+OYQ+IIs+hZ/8MbiEt1L3OrCVaTMCmSxnIDDRf16BL6BfaCIBCxZCn6f/8b4969Dg1cILDznHTdnpsZw+pZI2jDfITLd44dO3Z4cRmDEQSBFStW+OzzJiI9Jqtj5MMGF8prMkWJRXxY+aFkGOnaCKuAIi9dx7uldZSOokOS9Ufu+NaIoohxlyTQDl829KIRuWoVzb94DuPBg1i7ulBHDL5o7arZxXHVAeaxhlXBtxAZHEBjFcbA3MS57K3bizrsEvfPy/JPR5IcIKWPUl4byPU/gbPvQWMZHPo9LHpo0MszU6II1qjQd5upaO0mOz580OsXjzWhb+xGG6Yh91rXgwdnmC5exFxZhRAc7ChtOEM7fTqa5GQsDQ10Hzo06KaVPDkKQ3MPDZc63A6QrDYr7158l18X/5rmHul3oiChgEfmP0JeQp7b/5+ROoisxilowipQh5/3aaeR28gGkUmzJZsIVyi6RwqQzr4PnQ3ERCaTHR9OeYuR4mo9100fvy+YKIoc/6SGvf8+jyiqiNaf47rrQt0OjmRSpkTTWG6g7mIH0y/T0IUvWYL+3/+ma+9e/B+G9LPzrHSOrpg+dr8xT+JygLRx4/A1fW9w7bXXjr7TVczHZ5owmqykx4Q66uGuIHcnlTSXYBNtqISJVWWVO9lGctTuaO6mtbYLQSWQNYrD7ED6zp7F0tSEEBpK2PyhqXft5MkEZ2VhqqjAuHs3UTfd5HhN36tn476NhETFQy2Y6wNcpOoCKtMUAILCK7itcHyBwpipcaGD7XLC42D1j2HT1+GTp2DWraDrX3+wRkVuahTHqvSUVLcPCpBEm8jR9ysAyF+V4Vb20RlyeS1s0TWoI8KH3U8QBCKWL0f/r3/RtXPX4AApW8e5g400lLvXyXag/gD/e/h/OdsutXOnRaTx8NyHuT7z+jE3DcidRg0dvU51SNqE7QRFXGRupm5Mx/cJtW7oj2QSZ0pBes0hKPkHLHuYwknRUoBU2T7uAMlqtbH7n+c4uVuqCqTU72X6pTdI/M32MR8zJUdHyYdS08jlhC+6BlQqTBcuYq6vJyjF/07nJouNvRekqQfXTvOxEe0wBGyApDAy75RI5pDr8lPduthNj5lOqCaUTlMnF/UXA3rshTNy06JQCdBo6KPR0Ot0MvilYumXLG1aNCHhrgcqXXL2aOFCVFqt030iVq2k7c9/ofOjjx0BkiiK/PTAT2npaWFqahycAUNzD90GE2FRPph27yU+Ph6MqApCUBtp6KlkSsgU3y6guw1aL0h/H6mDzRmF90hdRzWH4IPH4Y7Lh47GSAFSlZ7bCvu1HRUnWmitNRIUonZL8zEcjvb+EcprMhErrrUHSDsRn/i+4/f6csPI0cwqL3Vc4rkjz7GzRtIzRQZF8uX8L3PXjLtcHjY7HHKn0YOvDrUKEXvSEa0hCOoezrSfGlOGyifUuKE/GkjRF6Tz6dhfYem3KJoUw5vHat1yZXdGr9HMB38so+ZMOwiQF1NN3I5/ELl6FZr4sZe15aaRtjojvUbzoGuhWqcjdM4cekpLMe7bR/SnPjWu/4MnOFrZjtFkJT4imNmpUf5eDqCItCckHT1mdthTke6U10DSlsgXrok4diQsWMPURKl0NVy7/6USqSXdne41gK5d0g3Fmf5IRr7Rde3ahWiWRLNbyrewrXIbGkHDT6/7MXGpUqbA2ZPbROFCUyd7z+ux9WQCUru/z6mxC0jjpkKYm94nKhXc8ktp4Oipd+D84CfxAicjR0RRdAz+nHNtulvBtTPMjY30njgBgiB1QY5C+MKFCEFBmGtqMF265Ngui/9NPRbaG4af3N7W28bPDvyM29+5nZ01O9EIGj4343O8d/t73Dv73nEHRzJrclP4xqqhD1bJunDmxEm6xv11gTfrCwCrGepLpL+7k0ECmH2b1CzQXg4VexxC7ZIqPbYxdu3pG7t543+OUnOmnSCtmpu/NIuknX9EAKIHDKYdC6GRwUQnSU0tTrNI9pJvoLT77zgnXbeXT00IGINRJUCagHxQ1oDJamNaUgQzkt2PtB2Da71lGGmzQvluOPEf6U/7uApPkTfC4FpjRx8NdlO97Hw32vsNBnqKSwDn+iOZ0Px81LGx2AwGuo8cocHYwJMHnwTgv/P/m9nxs/vnsl0cur6Jwsv7KgDICpeEan4JkFwxiByJ5FxY+BXp71u+Deb+lmY5QDpVZ6DXLJ2f1afbaKrsRBOkIn/V+N3C5W7H0IICNAmjn4uq8HDC7CZ+A7vZVGoViZn2dv/yoTe6Pmsffyn7C2vfXMvrZ1/HKlpZkbGCNze8yeMLHycmxPUSvKs02SfZXzctYVCn0W0zpGaefXUBOlGh8SRYekGrgzg3M6LaCMi1Z1qO/ZXpSZGEBavp7LNwoXnkQcnOqDnTxn+ePYK+sZuIWC23PzKX+PaTWFtbUcfHE7Fs2egHuQyrzcrhhsNsubSFww2HHTYRI/khde/bj2j17DV6LMj6o2sDRH8ESoA0IZFnr20oGJsuxKuGkafehedz4ZVb4I3/kv58Plfa7iHy7Dc3Z0Ltcrv3UVJ2FBExzstkzjDu2wdWK8E5OQSnD/99FdRqIq5bAYDho4/44d4f0mnqJDculy/O+SLQb9Lmzyns46Gj28wbR6Vz7M45KwDJUdvns5tcMYgcjesel+ZptVfAnl86NqfHhBIfocViEzlZJ/2cjr4vda7NXpbmkdKoYzjtKtc7gB3t/kP8kIaeU6IosrV8Kxve3sAvj/6SLnMXM2Nn8ucb/syvV/6abJ13bBksVhsflEkNIvcvzWZDQRqLcuJQqwQWpUiO88ebj2M0e388its4BtQWSVlGd5E9kU69g8bU4XhYO1bpXrv/yd21bPpVKX3dFpKyo/jMY/OJT49wDKbVbVg/rCXEcGyv3M6Nb9zIAx88wKO7H+WBDx7g7/o/Ac4f1kLz5qCKjMTa0UHvSf/avjR09HKmoRNBgGVTlQBJYYw0GXrZf7EVgHV5Y/NnyUvIQy2oqTPW0WBs8NziTr0L//oCGAa7AWOol7Z7KEjKS+vPIF1+0+6fveZmeU12z3bhqU0uszV9sJn9dfvQqrU8tewpglTSBU2u/TdVdWIx+//JzF1eP1JFj9nKjORI7sxbTLAqmNbeVioMFb5bhM0KtfYM51gzSADaSFjztPT3Pb+EFknTJAhCf5mtSk/d+XbqzutRaQQKrp80zMFcx9rZifGQFOBFuKA/kpHLu91Hj2Lt7B9jkZQtG0ZK2dGSphLufv9uHtn1CLVdtSSGJfKzJT/jn7f8kwUp4/h+ucDB8jZajSaiw4JYdJn/WkZUBmkRaVhEi2NMTUDhGFA7xqA7rQgSZ4O1D47/29Eg46ofks0msudf59nx97PYbCJT5ydx68OFhEUFY2ludszjc7e8tr1yOw/veJjG7sEmtue0JQA0lOuxmgfPKBQ0GsKvuQbw/9iRnfbyWn56NLHhgaPb9FuA9P777/PEE0/w8MMP86tf/Yqamhp/LWVCsfl4PTZRMiqbFOd8Fs9ohAeFO8YIeEyHZLPC1kdhSG8L/du2PuaRctuMlEiC1AL6bjM17f1lk16jmdqzesA9/ZFos9G1RxJoj6Q/kglftAi0WoKbO8hsgm/N/dagp/Wo+FBCI4OwWUSaK703q8kbWG0ir+yTMin3L8kiRBPi0Kz5tMzWdApMXRAcCQnjnAg/awNMWQ1Wk1RqswfVsoakuFrPEXv2aOaiFLcyj8PRtWsXmM0E5+SgzXY9kxOcmUlwVhZYLBj39pep5AxSe72R7374GPe8fw/Hm48TqgnloYKH2HzbZjZM2eCTrlTZvX/N7GSCnPivLU5dDARomc0dg0hnCALMtWeRjr3iGH7siqO2qcfClt8dp/TjagAWrs/m+gdmobGPiOp4912wWgktKECbk+Pykqw2K88cegbRybW3I6SZHk0nolWgoWLoGvvHjvg7QLKX10bwtvMHXv1t+n//7/+xZcuWQdtaW1tZunQpt9xyC0899RTPP/883/zmN5k2bRovvfSSN5dzRfBOqZSd2ZA/PndfWYfksQCpct/QzNEgRDDUSvuNE61GzcwU6Yl64ODaihMt2GwicWnhRCe6Hjz2nj6NtbkFVVgYoXNHN8+0aYM4O0XqnrutPpW7Zgw2jRQEwTG41lntP5D58FQjtfoeYsKCHCXcecn2uWy+zAhU212w0+e6ZhA5EoIAN/0PqLXS0NGyNwAcN7eq83qqT7UhqASKbswc32fZ6RownNZdHGW2nf06JEtIL2KkpPs5ceoCAgK3T72d9257j6/kf4VQjYt+PuPEYrWx1V5eu3mO89bwRalSmW1/fYAJtXv00HJO+nvaOExy53xGOpcay5ivlQLr801ddPQM73RuaOnhjZ8fpbKsFU2Qihu/lMu8m7MdnYqiKPaX1z7lXvboWNOxIZkjBwLUR0mC/6Olp4a8HL5UCpB6Skqwdrmvo/IEFquN3eelzuNA8T+S8WqA9OKLL3LkyOCL6j333MO+fftYsmQJf/7zn3nnnXd4/PHHAfjyl788ZH+FfipbjZRW61EJsHaM5TWZgsQCwIMBUtcwv6CXc+I/owRSruFscK1sDpntZveacbeUPQpbtAhV8Ojp3T+d+BMfZUmZoWWXQpw+tTvTjEwEXtpbDsBdCyY5hh8PHFzrMx1Stb2DzR2DyJGIy4Fl35b+/sH3oLeDvIxoBAFymqWs5vQFSUTFjz/QsJlMjpKts+G0oxGxwh4g7d6NydLHa2deY+2bazmvPQHAXJbx73X/5seLf0xCmG9vKAfL22gzmohxUl6TWZC8AJWgoryj3LMl/PFSZy/ZxmRB+Dhc4cNiYdZ6AKJPv0amPZNfOky7f/0FPf959ghtdUbCdMHc9p0ipswd7PPTU1KC6dIlhNDQQf5qrtDc3Tzi6w2R0u907YX2Ib+/wenpBGdmgtVK94EDbn2upyiu1tPZayEmLMjhcxco+LTEdvz4cbZu3crNN9/Mzp07uf/++1m3bh1PPvkk27Ztw2q18vzzz/tySROKd+2jRZZMiSchcnxlAFmofa79HJ0mD5SBIlz0Yz32Mjw3E15YAh9uhIo9Uuutm8iDa+WLkrnPStUpaf6TO+7ZMEB/5ILl/snWk/y+9PccnSIgqgSsZ4dOYAdImdIfIPlc3DxGTtUZOFjehlolcM+i/kxKXkIeGpWGpu4majp9VAp3GEQu9Nwxl34TYnOkYP6Tp4jQapgXFcFUixQIFq3xTPao++AhbEYjmoQEQua4b1cfNncuqrAwrC0tfOOFW3jq4FPo+/RYE6Tf0wXCtY4Sua/ZfNxeXst1Xl4D0Gl15MblAgHW7u/OgNrRKLKPwTrxHxamSddiZzqkswfqefv5Yno6zcRnRPCZx+Y5OhIH0vHmWwBE3XDDEIf+0RgtSG6IlDJIxhqR296+jRdLX6Sio8LxuqPd3086pB1nJf3RsqkJqAOkvV/GpwHSvn37EASBjRs3DjE3XLp0KTfccAO77U/zCoMRRdFRXls3zvIaQGJYIukR6dhEG8ebj4/7eGQuhqhUYIQTXBsJqUXSPo1lsPd5eHktPJsN//w8HH0ZOmpd+ri8DCkAKavtwGYTqTrZitVsIyo+hLg01y8wVr2entJSACKWjyzQ7rX08r3d38MiWrhm5g2EFUpBZufHnwzZNyEjErVGRU+nmY6mwJqYPRwv75OeNG/KTSZF159JCdWEMifeh+3+xhZos/sApXtwXqBGC2t/If390B+groT5vVJwZEkLISZ5eKdrd5Bnr0WsXIkwhk6ps12XHCXc5NI6YrQxPLHwCb6/4WGg3zDS11isNsd4o+HKazKOMltABUhyVtIDAVLmUojJBlMnG4KlYH6gDkm0iex/+yLbXz6NzSIyuTCB278zl4iYoca2tu5uDHYpirvlNZDkEklhwz+gtoTXYFGZCLVE0NrQxW9Lfsu6t9dxx6Y7eKnsJUxzZwJg9JMOSdYfBVp5DXwcILW3SxH2rFnOp3Ln5ubS2OhiqeYq43R9JxeaugjWqFiTm+yRYxYledAPSaWGNc8O86IgfW34Hfz3J/DIBbj9j5B3J4TFSdPaz2yGTd+AX86C3y2CbU/ApZ1gMTk94pSECEKD1BhNVi61dPV3rxUkuOUs3rV3L9hsaKdOHdVu/1fFv+JSxyXiQuL4wTU/IHKl3TTy44+G7KsOUpGYKRlaTgQdUmtXH2/bM5T3L8ka8vrAMpvXkW9k8dMh1MMePjnXSV42oo32N35GeKN0fh330Ng80Waj6yPJ/2i48trlXjVWe+NCU3cTP9j7A+7YdAfb0/UA3FAXx3u3v8edM+4kMUOHJmh0w0hvceDSgPLa5JFnwskB0oH6A9hE24j7+gRRHNDi74EASaWS5rMBBU1Sd25xVTs2m4i5z8rWP5RxzD7weO6aTNZ8KZcgrXMtnWHbNmxGI0GTJhE23/3uOrVKPexgbAEBUWUjMl3qsH0w6WGWpC1BLag53Xaa544+x+21G7GqBczV1TSeK3X788dDU2cvZbVSZ2YgtffLjG/QkAsMvFmlpUmiz76+PsLDhz6t9fX1ERISwEMO/YjsfbRyeiJRIZ6Z81WYWMi7F9/1nA5p1nq49hHY+T+Dt0elwppnHHV7wuMh7w7py2aD+mLJ6fjCduki1nRK+tr3a8m5NvtamLIKpl4P0VILtkatIjctisMV7ZRU6Gk/IVkfTC50b4aPYzitk+yR1WblWNMxmrubaelp4W+n/gbAT5b8hJiQGEyrVtL0859jPHQYq8GAOmpw6jx5so76ix00XOpg5mL/zzoaidcOVWGy2MhL1zmd7TcvaR5/PPFH3wi1HQaR4/A/GokbnoRz2zh2SSpTXdBYOdBmwGoTx53i7y0rw9LcLJk+LhxaHtxeuZ1nDj0zSFSbGJZIYUIhu2p30WORso0xK1bBlg+JvtRMqKEP4iNRq1UkZkVRd15PQ3kHsameyXi5iqN7LTcZzTDlNZm8hDzCNGG097Vzpu0Ms+KcPxT7jPYK6G4FVRAke2hKd/7n4OMnCW86yuygOk72pnLqYjsn/3WBluouVBqBlffMZPrCkR9oO+zi7OjbbxvzjLzl6cvRqrX0WfsGbU8KS+LRBY8SUZLF0apKkgxZvHj7i7T3tvNh5YdsrdjKkYYjnEmzMrsKfv7bz6Nfew03Zd3E6szV6LTenam365wkzp6Tphu3bMQbeD1A+uUvf+noTuvrk354J0+eZJkTv5mKigqSkgJptnBgYLOJbC6VLk7r3RwtMhJyJ9uJ5hOYbWaHj8/4sF84s6+V6vQRSVL5bbhOJJVK6ihJmwsrHpXmb138WAqWLmwHY7M0mf3se9L+8dOlQGnKagpTYzhc0c7Z401E91gIiwomOdt1Z3HRZqPLXtKNWD54OLKzGxnANSnXsDxd0ioFZ2URnJOD6eJFunbtRnfL2kH7Jufo4MPAzyCZrTb+dqC/td/ZRbogscDhnVXXVUdqhOfOwyHUeFigfTlRKRjm/4izb0iao0uRBoymEC40dTE9eXypJNkcMuLa5UME/7JXzeXt2E3dTXxQ+QEA+Qn5PDL/EfIT8il/+VP0njpF1+49RN92KwDJk6UAqfFSB7OWePFncBlS95p0DVo7Z/TPDVIFsSB5ATtqdrCvbp//AyR5QG3yHAjy0EN4VApMuxHObuErkft4sukz7H7hBLZuK6GRQdz0lTyHJ9pwmCor6T58GAQB3a23jnkphxsO02ftIz4knmeWP0NrTysJYQkUJRahVqmp7GoFKqmzX4tiQmK4Y/od3DH9Dpq6mzhetRH+voO8SzZ+Xn+Qg/UH+dmBn7E4bTFrstawctJKwoM8H5AHanu/jFdLbJMmTUKn0yGKIqIoEhwczKRJk9g5oH1VpqOjg48++oiioiJvLmlCcrSqnVp9DxFaDStneG7KcbYum2htNL3WXs60nvHMQavtnRAz18GcT0P2MvfatMNipffd9iJ8+xz8905Y+QRkXAOCClrOwv7fwN9u5bula/hT0M+JOSe5wGYXJIw6yHMgvSdPYm1rk572iwod24czXQOpZLC9sn+ul9zG7azMNtC7ptfovhDdV7xf1kCjoY/4CO2w2pKwoDBmx80GvFxms1r6b2bjMYgchWONSxBRkxFcwrej/wFIJZLxIg+njVg5uLw2kleNTLQ2mpdvfJn8hHwAwu2eXAPb/ZOy7eL/csO41+oO+y+10t5tJjY8mGsmuzYX75pUyYTwQJ1/uqMGMdYBtaNhF2tP1hu4q0uLrdtKbGo4n3503qjBEYD+LUmcHb50KUHJY5dOfFIt6SBXTFrBwpSF3Dz5ZuYnz0dtv/YmT9aBIA3RNnYMzjIlhiWy5LavAjC/LpRv5n2V6THTsYgWdtXs4nt7vse1r1/LwzseZlvFNnotvWNe50CsNpHd5wNXfwReDpAqKiooLy8f8vXEE08M2beuro7vfve7PPjgg95c0oRE7l67YXaSo/XaEwiCQEFCAeAhHZLV0n8hmnTN+I+nUkFqASx/BP7rA/juJfjMy1BwN0Qko7H2sFJVSkiXJMrOqdwI7z8mZZ7Mo/8Sy+Mcwhcvdtj6j3YjExB49tCzDt2IPEaia9duRNNgvVRYVDC6REns3OjjG5o7yK39d18zCa1m+PNrbrIkmPZqma2xDMzd0qyseO90ahn1fZw+IImN50X8h+U921konKZknFPZ+8rLMV28CEFBQwxHR/SqsaPv01Pc3F/ujrT7IRn37HEMRpaD7rZ6I309lnGt1x222MtrN84evbwmIxtGHms65igd+g1P6o8GIOas5rDpfna0PYQGgcZwgU89MtcluwjRaqXjrbcBqbw25jWIIjuqdwBwXYbzocjaUA1xqdJ10tng2pBZM1HHxICxm7usc/nP+v/wzoZ3eDD/QbKisuiz9vFh5Yd8e+e3ufb1a3l89+PsqtmFeQwdyDKlNXr03WaiQjQOV/tAI2BGjcycOZONGzey3IVW66sJs9XmqP2PdfbaSBQm2eeyeUKH1HRScj/WRkGiF1LqoTHSRO1bfwvfPoP45V382vwQPbZotEIXqb3b4OAL8Oqn4NksePXTcPD30HrR6eHkAGngzWy0G5mISEN3gyOgDMnLQ50Qj62rC+Ohw0P2TwnwwbUl1XqKq/QEqQU+v3DkNnefCLUd5bW5Y5uV5QLFH1Zhs4ikTNGRukjKUv0s6C+cqBzZT2Y05OG04QsWoI4cXKobzavG2X4hc+agjonB1tVFd7H0+xkWFUxUfAiI0OhkcK03MA8wh1w7SvfaQLKiskgOT8ZsM3O08ai3ljc6FhPU2zt1PZhBspitfPjKOQ61SdrKuNB9vBrUTZ/gWoehcd9+LI2NqHU6t8bRXM6ZtjM0djcSqgllQfLwWVfZeqT+wtDzRlCpCF8sBbRyu//k6Mn8v4L/x7u3vsu/1/2bB3IfIDU8lW5LN5svbeahjx5ixb9W8KN9P+JA/QHHQ6Or7LAPp102NcHloNvXBOaqFBzsudBCm9FEXHgwS4YxZhsPAx21x+3XUyW7H88fv/vxaAgCQko+TUE3SP/Mikd950tQeI80nNTSAxc+hPe/C78ugl8VwpZH4Nw2MHVjaW+n97hkvBc+QA/n7o1MUKmIXCE9tTktswX44NqX7dmjdXmpo4okixKLUAkqqjuraTR6qdu02gv+RwPo6TRxcpfU8DDvpixYvRFbaBxTVbUsa/sXXX1jz8o49EdOhtO6aug4cD9BrXZYTzgrs/kqK3lgDOU1kDLU8vBav7b7N56QZqeFxkLsZI8c0tjRx9vPFXP+cCMqFayI+h136P6XVKF5kHntSOjflBzdo9atc8mgdjjk7NGilEWEaIbXV8klv+Ee1mQ/pMvb/QVBYEbsDL4191ts/dRWXr35Ve6eeTfxofEYTAbeOP8GX9r2JVb9exVPHXyK4qZilzoXHfqjAC2vgRIgBTyb7OW1tXkpXomyZ8XNIlgVTFtvG5WGyvEdrMp+EfREec0FRFEk2SAFdTVRQdLMrQ2/gYdPwYP7YPWPIWsZqDSSr86hP8A/PgP/k43xmU+DKKKdkk1QYr+uayw3MvmG2PnxJ0OCTDlAaiw3YLUGQLvzAJoMvY7s5P1LRp8XFhEcwYxYaS6a17JIskHkWIeJjkLpR9VYzDYSMyPJmBULoTGobnwSgK+r3+Ls6bFNNbe0tNBTUgI4Hy8ymleNgEByWLLjgUUmfPlQHZKvXdrfO+5+eU0mIOayOQwi50pjZ8ZJS00X/3nmCI3lBrRhGtZ9o5DZs02oEPmMeifHKkfXslna2+myB9TRY/A+GohDf5SxYsT9UqZEA9Bc3YW5b2i2R84g9ZaVYWl3/n8QBIH8hHweXfAo2z+9nT/f8Gc+Pe3T6LQ6Wntbee3Ma3zh/S9w4xs38osjv+BU6ymnD96tXX0ct4+JClSBNvgpQKqoqGDz5s0888wz/vh4nn76aebPn09kZCSJiYnceuutnD171i9rGYkek9VhzLbBg91rAwlWB5MbL7nejrvMJs/P8tLT/+W0VHeh6rFiRuRQ7wCNgyBA0mzJOfm+zfDdcrjz7zD3PohKB0svXSXSVPeIoOPwf/nw3rfh7FaKoqeTFBTlGGh6OYIokhysG3QjC1+0CCEsDEtDA70nB887ik0ORxumwWKy0Vrjn1lHw/HqwSrMVpF5mTHMSXetnderZbauZqkdG8HzYlqkYcbHd0hO4HNvGtCtl/9ZzoXmEyb0Ebv7B2M6ducnn4AoEjJnjlOx7WheNQCPLnjUIaqViVi6FNRqTBcuYqqRMl/Jk6VOTV8YRpoHmEPekue+VcXClIUICFzQX3A5O+txxjugdgDlx1t44+dH6WrvIzopjE8/Oo/06TEOsfZn1DsoqWod9TiGze8hms1oZ80kZObMMa+nwdjA6bbTCAiO7trhiIwNISJGi2gTnZZng5IS0U6dCqJI9/7RM35qlZoFKQvYuGgjn9zxCb9b9TvW56wnPCicBmMDL598mTs338m6t9fxm+LfcFHfL3XYfb4FUYSZKVEkRQWutY9XA6SGhga2b9/O888/zxe/+EWuueYaoqKiyMnJYcOGDXz/+9/35scPy86dO3nooYc4cOAAH374IRaLhRtuuAGj0eiX9QzHx2eaMJqspEWHOvWm8RSyYeS4AiR9tTSMVlB75ebmDNkcsjzIxpnmLnrNw9TAQ6Jg5i2w7v/gW2WIX96HsVUqFUSkWUFfCYf/BK/difp/JvPZplopyLosSBLs/360tY2BtzGVVkuEPBX7sjKboBIcJZFAavfvs1j5x0G5td/1afOOAMkbQm05e5QwA0I8779yYkcN5l6pyyg7b8AsLkHgeN4PMItqslt3wpktwx9kGORsQKST8prM6szVZEVlDdmeFJbEcyueY3Xm6iGvqXU6QgsLpM/YJWWR4tIj0ASp6Ou20N7oXcPI/Rel8lpceDALs10vr8nEhMQwM04KAA7U+6mbrWb8Am1RFCneVsWWF45j6bOSPiOGT313LtFJ9qHYM27Boo0mVWgjtGrnqHIF/Zuy99GnxrwmgJ3V0jmRn5BPXOjoEoz+Mpvza9FYx44EqYJYlr6MJ5c+yc47d/L8iue5IfMGQtQhVBoq+f3x33PrO7dy+7u388fjf+T9M2XA8Nmj4cxUfY1HfJDa29s5efIkZWVlg77anaTpBp44YzXFGi9bt24d9O+XXnqJxMREjh49GlAi8XdKpCfG9QWpXv1eyXPZxhUgydmj5DkQ7BsDOzlAqo8QsNpETtYZmJs5SiApCPQ2WbB29aKKjCT02f1Qvc/uu/Qhor6KXaFSR1uIKNI74PueZLXyaGs7q7t7oHKfZGFgJ2LVSjo//JDOjz4m4etfH/SRKTk6qk620nCpg/yVGR7634+PTaX1tHSZSNGFcMNs173HipKKEBCoMFTQ0tNCfOg4hn5ejhcNIk29Fko/rgYk7dHldhDZs+byp70386BmE+L7jyBMvtbl89hmNGK0P3FHjiC2reiooMJQgQoV/3vt/2K2mQd51QxHxLXX0nPkKF07dxL7uc+hVqtIyIyk/oJkQhqb4r3fN0f3mgvmkMOxKGURp1pPsa9uH+ty1nlyeaPT3QZt9sxF2tgsZKwWGzv+cZYz+6TvxezlaSy7cyrqgd+PoBCE/M/CoRdZa/mQitavkh3v/OfSe+oUfadPIwQFDfFOc5dPalwrr8mkTInm/JGm4QOkJUtoe+kljHv2IorimO47WrWWVZmrWJW5CqPZyI7qHWwt38qeuj2cbz/P+fbzAIRlZWCOWE+jMYak8P5rkDMPuqSwJB5b8JjThwhv4naAVFxcTElJyaBAqKFh6MRmZxF0ZmYmc+bMIS8vjzlz5jBnDIMcvUFHh3SyxMY6f0Lq6+tzmFwCGAzeF0d29JgdKn9vlddkZN+VCkMFrT2tLj2JDKHK/nQ4aZEHVzY87Q1G2uqMqFQC0TlRcKGZ4zX60QMk+ofThi9ZghAeDTNulr5Eke3bHqa4YTuhNhtv19RTG6ShWa0mwWqlqLevP3PUNVikHHHttaBW03f2LKaaGoLT0x2vOYTaAZJBEkXR0dp/z6LMYYeOOkOn1TEtZhpn289ypPEIa7LWeG5hXjSIPLmrjj6jBV1iKDlzh3qJzU7Vcb94O+vE/aR31MCun8PqH7l07K49exFNJoIyJxE8Zcqw+71z8R0AlqYv5fqs611ee8Tya2n+xXN0HziIracHVWio5NJ+oYPGcoPXDCPNVhtb5fKaG91rl7M4dTF/Lvsz++v2j/mmO2ZkT63YHMljzU16ukxs/X0Zdef1CAIsvWMqc1akO/0/qOd+AQ69yGrVMT44d57s+AKnx9TbB9NGrF6FOjra7TXJGM1GDtVLDxXDtfdfzsCmEZtNRHXZg0LYvLkIWi2WxkZMFy+iHeF8doXwoHDWTl7L2slr6ejr4OOqj/nXmU2caD2COrSaf136Lf++9DuKkoq4KesmtBotP9z7Q6dmqg/veHjYTKu3cDlAqqqqYu3atZw6NVhj4SwQio6OdgRAckCUm5tL5GWtr4GAKIo8/PDDLF26lNzcXKf7PP300/z4xz/26bo+KGvAZLUxLSmCGcmuu0OPBZ1Wx5ToKVzQX6CkqYRVmWNoOZUNIif5Rn8kZ4/SZ8Rgygpn2wXXu0cc7f2XubmbbRZ+qZdmEd3b0Umq1UqqdZjUbsTgrIsmJoawoiK6Dx+m6+OPif3CFxyvJWVFIagEutr76GzrJTLWvzX3I5XtnKwzoNWouGv+JLffPy95nhQgNXgwQLKaodbuxeVhg0iLyUrx9ipAmot1+U0BICRITVZKIj+qu5c/Bf9CGnOT91lInDHq8eXhtJGrVg9787farLx7UZrZtSFng1vr106biiYlBUt9PcaDB4lcscInQu39F1vR28trC8ZQXpMpSCwgVBNKa28r59rPMT3WO/5WThmHQWRbvZH3fluKoaWX4BA1N3wpl8zZIzw8Js2mNnw2acaTaE78ExYXDNnF1tdHx6ZNwPjLa/vq9mG2mZkUOYlsnWtl8ri0CIJC1Jh7rbTWdpGQMfierAoJIWzePIx799K1Z8+4A6SB6LQ6bpt6G9VVuRw4cJQ506uISTjJsaZjHG08OqIVhIjo8KC7LuO6ETOunsTlR8dHHnmEkydPOlyxRVEkIiKCoqIiVCoVgiAgCAJLliyhrKyMnTt38pvf/IYvf/nLLFq0KCCDI4CvfvWrHD9+nNdee23YfR5//HE6OjocX9XV1V5flzx7zRveR86QRcdjMozsNUCjvfsnwzcdbJdKpBk+2QUJ5NkFxnJXxEhYWlroLZPq3+HLlg567fWzr1Pd20ycTeT+js5hjiBAVJo0PuUyHN1s9mGlMkFaNfHpw5u0+Ro5e3RbYRox4e63F8s6JI962zSckKwZQnQQN9VzxwVO7a2nx2AiIlbLtBHmYhVkRLPdNpez0cvAZpGE+6NoSUSzma4dkg5kJP3R/vr9NHU3odPqXC6HyAiC4PDqMtqDe18YRsrda67MXhuJYHWwQ+focx2SCwaRNptI7dl2zh1uoPasNHC26lQrb/zPUQwtvUTFh/Cp784bOTiy0zb9swDMaXzH6bnT9fHH2Do60CQnE754fNl2ub1/RcYKl7NyKpXQ783mxA8JBrT77/VO5+HOc82I1kjumvFZXrnpFT789Id8Z953nOrzBnK5B50vcPms37lzJ4IgkJ2dzauvvsqlS5fo6OjgyJEjHDx4kIKCAkRRZN++fcyePZsXXnjBm+v2CF/72td49913+eSTT0gfUBK5HK1WS1RU1KAvb9Jk6GX/RakTYl2eb+YtjcswsuYwiDZpkGyU94eydrX30lRhAAGy8+MdAdKlFiOdvSM7u3bt2QOAdtbMQe39HX0dvHj8RQC+Ovk2wkQRuPyiY//3mmec+jzJ+pPuI0ew6vWDXpNT2/V+9kOq1ffwwUmpPHjfkqwxHWNukuSofUF/gfbe8Y/nAAaX1zxoEGm12CjeZp+qfmPmYN3IZRROigbgOfUDoAmFyj1Q+s8Rj9999Cg2gwF1bCyhBQXD7vf2hbcBWJu9lmC1+0FphN1Vu2uHJAAeaBjZ5AU/JLPVxgen3DeHHI7FKX5o9xfF/hJb+lynu1wsbuKv39vH278s5sM/n+LtXxbz52/vZtOvSzH1WEiZouPTj85zeTBw4qLPYRS1pNnq6Lmwe8jrevtgWt1ttyKox54FsdikMSDguv5Ipr/kr3f6evgS6WfVffgwtr4+p/uMFX23yTHSRxZoJ4cnc+/se3kw37UpGr7shnT5StTcLC3qxRdf5HOf+xxZWVmO1+bOncvhw4d57rnnCA8Pp6Ojg69+9assWbJkSEkuEBBFka9+9au8+eabfPzxx2Rnu97F4ws2H6/HJkoX7ElxYT75TDmDdLr1tPtjARzt/b7NHqXk6AjXaYmL0JIWHYoowonakQMQ4y55OO1gMf6fTvyJjr4OpkRP4dZlG+GOvw4N9iISpe2z1js9dnBGhtQma7U6yngyKQGiQ/rb/kqsNpHFOXFjLt3GhMQwJVpKvXssi+QQaHu2vHb2YANd7X2E6YKZsXjkG31BhqRf+6QxFMuyR6SN256QhL7D4DCHXHndsDc8WXsBcOuUW938H0iEL1yIEByMua4O0wXJoqJ/Lpvnz6l99vJafMT4ymsyi1KlbMnRxqNDJs57jbZL0NMOai0kDdW7XixuYuvvyzDqB6/H1GMBEdKmRbPhG4WERroe0CYlxPOR2t4Jtv8vg14z19djtHeHRd829tEiAKXNpej79EQFRzmabFxF9kOqu9DhVCKjnToVTWIiYm8vPUc964C+50ILNhGmJUWQGj14HMtYPOi8jcsBUni4FEGnpTkv+ahUKr75zW9y+vRpNmzYgCiKHDhwgKKiIn7wgx8MEjn7m4ceeohXX32Vf/zjH0RGRtLQ0EBDQwM9Pf6dF2S1iey/2Mor+yqAsfmOjJWU8BSSwpKwiBbKWsrce3OVr/VHTQBMLuj/RcnPkMtsw98sRIvF0b4asfxax/aazhr+fvrvADw892E0Ko0UBH2zDO7d3F/yufa7wwZHMsOV2eSSSEtNF6Ze383Qgv7z6j9Hqvnb/goA7lucNa5jylkkj/khecEg0ma1cXSrlD0qvH4SmlHmGGbFhREdFoTJYuN01j2S3UB3C3z8U6f7i6LoGE4buXJ43d6W8i2YbWamx0x3tLy7iyosjLCF0u+XbBop+yE1XPJ8Bum945JB7VjMIZ0xJXoKCaEJ9Fn7PDPWyBVk/VFKHmgGBzk2m8ju18+P+PaO5h4EtfuC8rNpkvFjTMUW6NH3H+/tt0EUCVuwgOBJ7mv/BiKX15anL5euV26QlBWFSiVg1EuayMsRBIFw2bZkj3vt/qMhNx45a++XzVSFIZl7+7qGMVP1Ji6f+QaDgXPnzg3KHDkjLS2Nt956i7fffpuMjAxMJhNPPfUUeXl5fPLJJ+Ndr0d44YUX6OjoYMWKFaSkpDi+Xn/9db+taWtZPUuf/Zi7/niAyjbJ2+T3Oy+xtazeJ58vCILjSeRYoxs13oEDan2QQerpMlF3Tg8MDpDmpEUDI+uQeo6fwNbRgUqnIzQ/z7H9/479H2abmWtSrmFp2gBdkkottfLn3SH9+9JORkN2UTbu3o1twPDagSZtTRW+G1w78Lz6zn+OYzRZUQtgsY7PYHBesgf9kDobQV8FCJLbsYc4f6QJQ3MPIeFBzF42upZPEATH0Mxjtd2w9hfSC0de6ndjHkDvqVNY6usRQkNH1JO8c0HqXhtr9kjGUWbbOViH1Fje4VHDSMkcUirDrvXQQ5ogCI4sks/KbA6DyKFBd/15/ZDM0eV0tfdRf17v9sfGTF3EGVsGGlsfnPg3AKLN5uheG69zNgzWH7lLkFZNfMbImsjwpVKAZHTTD2kkbDbRMV5kxfShnaQDzVQvD5JGMlP1Jm49GuTk5BAW5lrJZ/369Zw6dYpvfetbqFQqzp8/z+rVq3nggQdoaxs+Ze0LBgrNB37dd999flnP1rJ6Hnz1GPUdg6P55s4+Hnz1mM+CpDH5ITWWgdkoTV9PHLsjrKtUHJccWOMzIgZNzM5PHz2DJBvtRSxZ4iiHlDaXsrViKwIC35n3Hedix8n2FtryXTCKYVlIbi6ahARs3d10HxgsSPX1XLbhziurCA/9Y3znlSzUPtd+jo6+cf5/5OxR4izJ1NMDiDbRkT3KX51BkNa1i6ocIJVU6yFrKeTfBYiw+ZvSw8AAuuxZwoilS1GFOO9MPN9+npOtJ9EIGm6efPNY/isOZKF297FjWA2GQYaR+ibPGUbuvdBCR49UXluY7bn5j9ekSA9QB+p8JNR2GEQODbqNBtcqGq7uN5DCzFhet64AQDz2V0DSJZqrq1GFhxN5ww1uH3Mg5R3lVBgq0Kg0LEldMqZjyGW2YYXaixeDINB39izmpqaxLnUQpxsMNHf2ERasZl6WczuW1ZmreW7FcySGDQ6gRjJT9SZeddIOCwvjF7/4BUeOHGH+/PmIosgrr7zCzJkz+fvf/+7Nj54wWG0iP950CmfPf/K2H286hdXLIwWg31G7pLnEdedSh/7IBwNqgUvF0hPIwOwRQK49QKpp76G1y/lFTdYFhdsHgIqiyC+OSFmCDVM2DN9+nFoodVf16qGuZMT1CSoVESudl9n6XWy9n0Ea6bySGc95FR8aT1ZUFiKiexlHZ3jBIPJSaTPt9UaCQzXMWTF8A8blFNod62UhKdf/VPrZNxyX3NYHIJfXnA2nlZHF2ddmXEtsyPi0PMEZGQRPngxWK8a9ex2GkeDZoFs2h1yTm4zaiSXCWJEzSKfbTtPaM/o4jnFh7pU6I8Fpi3941MiDmd3dbyC5aVG8x3L6RA1Cw3GoK6HDLs6OuvlmVKGhoxxhZOTs0YLkBUQER4zpGClTRh5cq4mJIWT2bACM+zyT8ZPLa4tz4tBqhr9XrM5czQef+oC/3PgXnl32LH+58S9s/dRWnwdH4KNZbPn5+Rw4cIBf//rXREVF0dzczBe+8AVuvPFGX3x8QHOovG3IE/5ARKC+o5dD5d7Puk2Nnkp4UDhGs5Hz+pHr8w7kAbU+KK+Zei1UnZa+D5MLBwdIUSFBTE6QdHLHnQi1zU1N9J06DfT7H31U9RHFTcWEqEP4asFXh/9gtQay7aLuix8Pv58dud276+OPEW39A2q9VRJxhi/OK0eZbbw6JA8bRIqiyJEtFQDkXZeONtR1jUZBejQAFa3dtBtNEJEAqzZKL378M+iUOrtMNTX0nT0LarWj9HU5ZpuZzZc2A+Mvr8kM7GYDSJaF2h7SIQ0qr83xbAdtfGg802KmAXCw/qBHjz2EhhNgM0NYPERnDnk5ZWo04dEjBz8RMVpSpka7/dFajZrU1DQ+sEkBv3XfnzF88AHg//KaTEpONACtdUb6up13/so6JE+1+8vltWudlNcuR61SMz95PjdPvpn5yfN9WlYbiM+G1QqCwEMPPcTp06f59Kc/jSiKbN++3VcfH7A0dQ5/ExvLfuNBrVJTkFAAuKhDEkWosl/ofCDQrixrxWYR0SWGOh2vkG+/uR2vHhogGXdL7f0hublo4uIwW8388ugvAbh39r2DrO6dIpfZLo2uowu75hpUYWFYmpsdnksA8ekRaIKlkkhbg3fn/vnivPLI4FqLyeMGkZVlrbRUd6HRqslb6Xr2CEAX1h9ol1TrpY1z75fKNKZO+OB7AHTZs0dh8+ahiXFeLthds5u23jbiQuIGa9vGgSNA2r0b0WbzuGFkf3lN65HutctZnCq1kO+vH30Y6rgYOKDWSdlcpRJYdufIfltL75jq1FTUFYomxfBPq3TNMLy3GbG3l+CcHELy88d0PJm23jZKmksAWJG+YszHCYsKRpcQCuLwwXXEAB3SwAe9sWDoNXO0UsrKrhhm/log4rMASSY5OZl//etfvPfee6MKvq8GEiNdc1V2db/xIuuQSppKRt+5oxo666QBtR4U1w6H7J6dU5jgVCs0J214w8iu3YPb+/917l9UdVYRFxLH/bn3j/7hOfYAqfoQ9HWNuKsqOJhwe5ZqYJlNpVaRlG3vPPJyu78vziu5k+1M2xk6TcMZa45Cwwmw9kFoDMSN37VXFEWOvl8BQO7yNEIj3PccknVIxXKApFLB2udAUEHZG3DxY0d7/0iz1+Ty2rqcdW53Gg1H2NwiVOHhWNva6C0rI8neydZWb5Ta08eJbA55k4fLazKLUvqF2qMNdB0XclZyBIPInMJECq4fOhsxIkbLmi/nklM4eqZjOIoyo9lvm0WDKomOc9JtNvr228c9ZmV3zW5soo0ZsTNIiRifgL6/5K93+npofj6qsDCsbW30nTkzrs/ad6EFq01kckI4GbG+sa7xBD4PkGRuuukmTp486a+PDxgWZMeSogsZprFRsiZM0YV45WnOGbIO6WjT0dEvYHL2KCXP6wNqLWYrlSck3cLkAucXLkerf+1gfw/RYnF0Y0QsX4bBZOCFUsnI9KHChwgPcmHtsZMhJktK21eO3tnRX2b7aNB2ObXt7QBJPq+GwxPnVXJ4MukR6dhEm2sBtTMc7f0LnD7pu0vtOT0NlwyoNSoKVo9tMLCsQ3JkkABSC2D+lwCw/OfbdNv9YYZzz27taWV3jRSUe6q8BiAEBfW3YO/YSbhOS2ScZBjZOM7uSJPFxrZTUnntZg+YQzqjKKmIYFUwTd1NlHeUe+UzgAEjRkZ+cOtslTKoU+Ylcv1/zeLWbxVyz5OLxxUcgXQOiah4p2U+Pa3BIIBuw8gWIa7gifKazGhCbSE4uN9aYpzt/iO19wcyfguQAEKG6fy4mlCrBDaumwUM69vMxnWzvPI054zc+Fw0goam7ibqjaN0Ocnz13ygP6o50465z0p4tJbETOdja2al6FCrBJo7+2gw9JeOekpKsHV2oo6OJmTOHP54/I909HWQo8vhtiluGLbJZTYXdEgRy5dLw2vPX8BUVeXYLpdEhpum7SkGnleX48nzatw6JA8LtGXt0awlKYTr3BfYAhTKnWxV0tgJByu/DxFJdJ2qB5sN7cyZBA3jC/fepfewiBbmxM8hJzpnTOsYjv52f9kPyTNltr0XvVteAwjRhDgewrzW7m9sAb3UwUjq8J45pl4LFfaHrqIbMpk2P5m06TFjLqsNJFUXQlKUFuOlIAAiUnvQiOPTkfZZ+9hbJwUqngmQ7JrICgNWi/MSmifa/UVRdARIztr7Axm/BkgKEmtyU3jh7iKSL3viT9aF8MLdRazJ9Z1hZKgm1GFmN+rMG4f+yPsB0sDuNWGYC1hosJppSVLwVDpAhyT7xoQvW0Ztd73DFPLb877tXulDLrNdHF2HpI6OJmyeFDwMLLPJ5n4dzT10G0xO3+spJsU6z4x58rwatw7JgwLthksd1J5tR6USKLxxqDDXVaYnR6LVqDD0WihvHaAVC9HBjU/RWSP9nkYudn7zFUWRty++Dbg/mNYVIuxdmL0nT2Jpbu4v245TqO3t8pqM3M3mNR2SnD2Knwah0cPuVl7agtVsIzopzOEL5CkEQWBuaiQLq6VJEtHZPVD813Ed81D9IXosPSSGJjIr1vnDjztEJ4UREh6E1Wyjudp5iTzCnq3sPnYMm3FsuslzjV00GHrRalQs9FElxFO4fHdYuXL4VlZvcN999/GFARPRr3TW5KZw/axkDpW30dTZS2KkVP7wVeZoIIWJhZxoOUFxYzG3TL7F+U69HdBkL5F6OUCyWW2UH5fGi0wuiB9x3/x0HafrDRyv0bMmVxpM2q8/WsaTx37l3BTSFbKXSzqUlrPQUQu6kc0HI1etpPvgQbo++oi4++8DQBsWRGxqOG11RhoudQyxK/Ak//fROQDWzknm7muyvHJeyRmkUy2n6DZ3Exbkhr7AUC/p2ASVRzRsR+zao+mLkomMHXt2OkitIi9dx+GKdoqr9OQk9N88bTk3Y2z8ISASKeyXGhUuKw2eajvF+fbzBKuCWZO9ZszrGA5NQgIhubn0lpXRtWs3yXOl9me5O3K4B4iRMFlsbDtpn73mZQf/xamL+eXRX3K44TBmq5kgdZBnP8CFAbUAF45K/j5T5iWOWxvkjJWGi8T2dWIKCyUitRdKXoOVPxzi6u0qYxlOOxKCIJCco6PieAv1FzocHZEDCcrMJCg9HXNNDcbDh4lcscLtz9lxVvo+L8qJI2QUN/tAw+UAaceOHV5cxmAEQWDFGH4QEx21SmBRjueM2cZKUWIRfz3115EzSI4BtZkQOfyEdE9Qf6GD3i4z2nANqaO03c5J1/HPw9WOmWzmxkZJYCgIVM6I4f197yMg8O1533b/IhMaI6Xsa49I3WyFd4+4e8TKVTQ+9TTdx45haW93dDsl5+ikAOmi9wKkk3UdfHCyEUGAb66extQk52XJ8ZIWkUZKeAr1xnpKmkscXUou4TCInA3a8T3BN1d1UnmiFUGAonFkj2QKMqI5XNFOSXU7n57b3wln3L8f0SISFG5F27kHTr0Ds28d9N63z78NwKpJq9Bph950PEHEtddKAdLOnaRsuBX1AMPImGT39YB7L7Rg6LUQH6FlfpZ3n/KnxUwjNiTW0ZE1P9lz/leAS/qjXqOZqpNSeW3q3FE6WMfI9OIdAHyUeQ15UUboaoBz78Ms97OKoih6VH8kkzJFDpD0FF4/dPyJPHZE//rrGPfsHVOA5Gjvn2D6I3AjQNq4caM31zGEa4fxFlHwPgWJBYA0rb2jr8P5Rd6H5bWL9u617PwEVKPMhXK0+tdIQm3ZHDJkzhyeufBHANbnrGdG7IyxLSbnOilAujh6gBScnoZ2+nT6zp6la8dOom+7FYCUyTpO7a7zqg7p+e2Sj9W6vFSvBUcy85LmsenSJo40HHEvQPKg/kjuXJsyL4noxPF3yUhC7XKKq/SDtsvl0ogFsxGERtj6OExZBVrpe9xn7WNL+RbAs+Lsy4m4djktv/0txr17UdksJGZGUn+hg4ZLhjEFSO/ZzSFvnuPd8hqASlBxTco1bCnfwv66/Z4NkGy2ftuIEeb6XSppxmYViUsLJzbV8w0mluZmNIckjdXbKXP54oxYoo78Go79dUwB0qm2UzT1NBGqCWVBiucGOjuaRi5J10tnD43hS+0B0hh0SF19Fg5XSNqriaY/ggAOkBT8R1xoHFlRWVQYKihtLmV5+vKhOzkE2t71PxJFkfIS5+7ZzpieHEmwRkVHj5nK1m40u6TyWlN+BseaPpBMIQtHMIUcjcnXwa6fw6Ud0sVYNXLAFrlqpRQgffyRI0CSRbVNVQasZhvqIM9KActqO/jwVCMqAb6+amSvF08wL1kKkI42ujn5u3pAB9s4aKszOoLouTeNP3sE/a3+Zxo66TFZCQ1WS8OOP5YCpMi7vwVHLkF7Bex4Bm58EpDKIAaTgaSwJBameO93IyQ3F3VcHNbWVrqPFZOcHScFSOUdzFzsXolsYHnNW91rl7ModZEjQPp60dc9d+DWC9DXAZpQKTM5DBeOSN16U+Z5J3vU8e4msFqpTJpMVVQyh2NmsYpfw4WPQF8N0e51WMrZoyWpS9Cqx9Z84IzESZGoNSp6Os10NPUQnTT04SL8mmtArcZUXo65tnbYxgRn7L/YitkqkhkXRna8dzudvYEi0lZwipxFcjqXzWrpH97p5QxSU2UnXe19aLRqMmY6N+QbSJBaxawUSbRaWtHssMl/KVL6f3xh9hdIDh9HSTB9PgSFS1PeG8tG3T3CPuW9a89ebL1SZ50uMZTQyCBsFpGmqjH6B43A89sl7dH6/FSmJHpWfOoMWah9ouUEvRYXjSctfVBfIv19nAaRRz+oAFEKoONSPfP/TbF3IVltImV1Uqavp7gYq16PSqcjbOFiuNk+zPbAC9AgnQuy99H6nPVedf8VVCqHI3zXzp0OP6TGMXSyyeW1hEjvl9dkZD+kk60nxz/LbyCy/ii1QHLAd0K3wUTNGcm0cOo8z2c1RFFE/6Y0WqRp6fUA7G6NgqxlgAgl7o/Z8kZ5DUAdpCIxS8p+1l3QO98nMpJQu8Fll5tZJFl/NBHLa+BmgHT0qJtPiAoTlqJEqUPHqaN244n+AbUJ3h1QK5tDZs6OQ+OiwE8eXFu/5xA2oxFzVBj7ohqJC4njgdwHxrcgTTBkSzcmV9r9Q2bPQpOcjNjTg3G/1LUjCEJ/a7aHy2zHa/RsP93ks+wRQEZkBomhiZhtZo43H3ftTfXHwWqCsDjJY2qMdDR3c/6QlA3wVPYIpJ+RwzDSPpdNLq9FrliBoNHA1NVSuUS0wuZv0dhV72hd3zDF891rlxOxor/dXz6fWuvcN4zcbO9eu9nL3WsDSQpPIkeXg4jo2bEjIwyolblU3IQoQmJmJLoEz5sW9h4/juniRYSQEGLWSgOKi6v1UHSvtEPxq6MOvR5IfVc9Z9rOoBJULEtf5vH1uuLNFr5EKp0b3fBDGtzefxUESPPnzyc9PZ0vf/nLbN68md5e74+/UPAPsqN2WUsZJutl7eiy/ihjwaglpvEgiqKjvT+n0PVfsDl2HZL6sBSQHMmyIAqC66aQo+HG2BFBEIhcKe0vl2dAEmrD8C62Y0XWHt1akMbkBO9nj8De0pws3ZBcbvf3kEHksQ+qEEWYNDuOxMyoMR/HGQUZ/YaRoij2D6ddPcA9+8anITgCag6xac9PsYk2ihKLyIzyXLA2HOGLF0ulj0uXCDI0SZ17IjRWut7uL5lD+ra8JiO3+3vUD2ngiJFhOH9E7l7zTnlNLw+mvfEGCmZIAv9TdR30Tr0ZQqKlzk0Xrh0yO2p2AFCQUDDugcfO6B9cO3yAFLFU6vg1HjiAaHEtAL/YbKRW30OwWsU1k/3ffDQW3L671dXV8ac//YkNGzYQFxfHunXr+MMf/kBdXZ031qfgJzKjMokNicVkM3Gq9dTgF+UBtV6ev9Ze342+sRuVRiAz1/VfMDmDlHGhFICD2Rb3TSFHQvZDqtwP5p5Rd5fLbJ2f7HDMNEoZYO7nqZELJdV6Pj7ThFol8DUfZY9k3PZD8oBAu7OtlzP7pezHvJuzxnyc4SicFA1AcZWevnPnMVdXI2i1Dm8YQLJ6WPE4IvBOrWTc6E1x9kDUUVGEFUmZ3q6duxweW+6U2fZcaKaz10JipJZ5PiqvyTj8kOr2e+Z3wNTtKHUO1+Lf1d7rKCVNmev58pqtpwfDe+8BoLv9U6THhBIfocVsFTnZ1Ad5d0o7HnPdE0kur12XcZ2HVyshZx/1jd30dDr3ZgvJzUWl02EzGOg5ccKl48rltYWTYwkL9syoHV/jVoBUU1PDiy++yM0330xISAg9PT289957PPjgg2RkZDB37lx+9KMfKaW4KwBBEBxZpEHt/qII1XIGybv6I7m8ljEjlmA3JrJPTohgksVAZkc9NgFKswUenvewx+ZhET8NIlOlGWJVo5vdhS+YjyoiAmtLCz2lUtCWkBmJSiPQ02nG0DJ6kOUKsvbo1oI0nwsiZT+k483Hh2YcneEBg8jiD6uwWUXSpkU75kp5kjlpOlQC1Hf00rBFmsYevngxqrDLyjILv0JpygwqNCpCUXFD1g0eX8twDCyzJTmCbtczSO8dl7JH3jaHdMa8pHloVBrqjHVUdVaN/obRqC+Vyp0RSaBzPqT4wtEmEKWsyXi8soajc9s2bEYjQRkZhM2fJ11H7YH2sUo9FNm9/c5sga7mUY/XZeriUIP0MOFp/ZFMSHiQo5NvuCySoFYTvkgKaI17Xcv4TeT2fhm3AqTU1FT++7//m02bNtHS0sI777zDl770JVJSUhBFkeLiYn7605+yYMEC0tLSHPv29HjmBqDgW+QAaZBQW18FnfWg0nh9QK0cIE12o7wGkp/ULT0VAJxLhdzJ17AszYO1e0GAHLtxqgs6JCE42OF+LJfZNEFqEidJ4khPtPsfq2pnx9lm1CqBr68a/9BXd8mOyiYuJI4+ax8nWkZ5wuyoBUOtfcjx8KMgRqLbYOLUHilrPdcL2SOAcK2G6clSVkb/4XYAIgeW12TUGt7Oln4Xru80EF7v2hO2J5DHjnQfPEhiitTd1FDuWlayz2J1lNfW5qV6b5HDEBYU5rjG7K/zgKv2QIPIYcq2sjnkVC+X16Jvvw3BLj8oss/2K65uh+RcyUvNZobS10Y93t66vVhsFrKissjSZXllzTBgcO0wQm0YoENyQajdY7JysFxu779KAqSBhIaGsm7dOn7/+99TU1PD4cOH+eEPf0hhYSGiKFJfX8+f//xnbr31VuLj45VS3AREFmqXNJVgE+2zeuTsUXIeBHtvKrOhpYfmqk4EAbLzRnbPdsaceuliWZyj4jvzvuN5p1zH2JEdLu3uKLMNHDviwcG1svbo9sI0MuN8304rCAJzk+w6pIZRymyy/ihp9piHHJdsr8JqtpGUHUX69NG7G8dKQUY08d16tJfOgSAQ4cQor8fSw9YWKct6a5cRNn8LrGavrWkgwTk5BKWmIppMhNaUSYaRRgv6xu5R37v3Qkt/eS3Te9/DkZC72TyiQxrFINLQ0kNjuUF6vinyfHnNVFVF96FDIAjobr3VsX1QBgn6s0jH/ipl5Efgk2pJq+St8pqMI0AaSYdkLy33HD+O1TBylvLApVZMFhtp0aGDnOgnGh5T2MrltSNHjiiluCuEGXEzCFGHoO/TU9FRIW2ssvsfebm9v7xUGi2SMiWa0Ej3rPmtfX2kXDgDwNnMvLGbQo5Ett3ItPEEdDWNunvE8mWg0WC6dIm+cmmKeYqHBtcerWxn17lmNCqBr630rfZoIC4PrnXoj9wrr9lsIrVn2zm5u5bjn9RIn3lzllfGRMgUTopmkV3XElpUhCZuqBZue+V2jGYjaeEpzBXCoemU1PrvAwRBcJTZevbucmQlG8tHL7M5utfmpHhkQOtYkHVIhxsOY7G51303hFr7/WQY/dF5u/dR2vQYwqLGNu5jJPRvvQVA+JIlBKX0C97z0qUh2g2GXur0PTDn05JVSOv5/uupE8w2M7tqJKNbb5XXZFKmRAOSI73Z5LzDLig1leDJk8FqxXhg+HXDgPb+6Qle/f30Nl5pQRpYimttbeXdd98dsRT35S9/mVK7NkMhcAhSBTEnYQ4wQIdU7RsH7YvF0i+Yu+U1gH3v/xmtyUZ7OJT0rcM0zKTqcRGRAMnS94ZLO0fdXR0VRfgCSZAsl9nkTra2eiN93WPPOMjao08VpTMpzntZvdGQhdqlzaWYbSP8fxwBkusi/4vFTfz1e/t4+5fF7Pj7WaxmGyq1gMXshZ/tAAozormmXpo5GD7MPMp3LrwDwIapt6G6/ifSxh3PQEeNV9cmI5fZunbuGjC4duSgu89i5cOTUsDg6+61gcyMnYlOq6PL3EVZy+i+YsPS2Sh1hyFAaqHTXeTuNW+U10SrlY63pfMg+vbBzSBhwRpmpkiBa3GVXnJdz7XvM4JYu6SphE5TJ9HaaPIT8j2+5oFExoUQrgvGZhVpqhg+uA63Z5FGa/ffYdcfrZjA+iPwgVFkSEgIt9xyy6BS3MaNGykslE7i+vp6/vSnP/HOO+94eykKY2CQDqm3AxrtA2q9KNDuNpgcWRV3Z5WZrWZObpYuOqXpafSZdJxpGN+U82FxQ4cEQ8tsYVHBRCWEgggNLjzxO+NIRRu7z7egUQl8daXvtUcDyYnOIVobTY+lh5MtJ53vZO6VxLQw4iiIgVwsbmLr78sw6vsGbbdZRT74Q5kjmPYGWcFW8louAtCcNzSgq+2q5WDDQQQENuRsgILPS78bZiNsfcxr6xpI2MKFCFotlvp64kKk0tpoQu0951vo7PNveQ1ArVKzMFn6vo6rzCbrjxJnQshQu4f2BiOtNV2oVMKYHrpGw7j/AJb6elQ6HRGrhurUCu2WEcfsnloOT6STb0nXVSfI5bXl6cu9ajoK8uDaaGC0dn85QNozrM6tosVIZWs3QWqBxVPcl0cEEj530p47dy4bN27kyJEjVFdX8+KLL7J27VrCLu8MUQgIBhlGVh8GRIjJgkjviBwBykubwW7k5m6nyb/O/Yuc09IveOt0yaSttMZLM88G+iG5IIqV/ZB6iouxtEqDMuXa/1h1SL+0Z48+My+djFj//g6pBFW/Dmm4Mlt9qSRQDU+QzqNRsNlEdr9+fsR99vzrPDabZ6wSLqd7z240oo2KyCSKbUO1FO9eeBeABSkLSI1IlXzBbnlOEqCf3gTntnllXQNRhYQQdo0UZIRXSGWmtrouTL3Dl6zeC4Dymow8v29cQu1RDCLl7FHG7FhCwoPG/jnD0PHmGwDobrkFlXboKJCizGig33SU9PmQMAMsPXDiP0P2Hzic1tv6IxmHH9KF4a9FYfPnIwQFYa6rw1RR4XQfubw2LzOWCO3EbO+X8VmAtGnTpiHb5FLcu+++y3e+8x1fLUXBDfIT8lEJKmq6amiusJub+ai9390nPYPJwL93/Jb0VhBVKiIWSaWHEzV6Ty9RYtIi0IRIXX3NZ0fdPSg1Fe2smSCKdO3YAfR7kIxFh3SovI29F1oJUgs8dJ1/s0cyo/ohuWkQWX9e///ZO+/wRspr/39G3ZIs997W9vZqb19gG7ssSyekQQqQQG4CN4WShEAaJL+EkHAJSS6kEUraTUgl9IVdtvfei9fede+2bNlWn98fr0aWi2zJkmwv+PM8fqy1Zkbv2tLMmXO+53sGZI76Y2tzUHeuPZxlhoyS7duVNZvD/QbXemUvr5wXme8+3kcZs2DZveLxG18V/jwxRimzeXZvwpysR5ahIUipxOH28M5JUV67bu7YldcUFB3SseZjdDpHOHpnCINIWZb9s9emxMD7yNPeTqevyzHxw7cMuo2SQTpe04HD7RHv/UCxdj/KreVUdVahVWnDGwAdAdk+HVJ9uRU5yA2HymgkboEIQoO1+/vb+y/h7jWFUQuQbr/9dsrKykbr5SaIEmadmalJUwE4VOP7QMTQINLR4/bPSQq3vPbcsecoOi0CjbjSEmZOFUMVj8Yqg6Q1iCAJQnbGje9XZlMySA0XOvB6wtPT/PQdJXuUR27S+MjAKkLtQw2HBhfdhmkQ2dUxdHAU7nbh4HU46NoqRLK7smZzuKq9z/MHGg5QY6vBrDWzJr9fWWXlN8CSA+0XYdv/RH1t/Yn3BUg9hw6TkSveCw1BymzbzoryWoZFz4L8sSuvKWSbsymwFOCRPX7Pn7DweqDGZ0UyiEC7pcZGW303ao2KwnnRv2hbX3sd2eVCP2MGhpkzB92mIMVIskmH0+PlZK3v7zL3VlBpxUxCpezsQymvLclaglE7Op/tlBwTGr0aZ4+b1rquoNv1jh3ZPuA5u8vDrnKRHb+U2/sVRi1ASk9P50Mf+hDd3cHvphwOB7fddttoLWmCEPHrkGxV4gcxzCBdPNaM1yOTlGkkKTP0FvAaWw1/Ovkn5p8Xdz7xK1cxzzdL62xDJ93OCDtkghGmDil+jdi+a+dOvD09JGeZ0MVpcDs8tNQEPyn1Z3d5C7vKx1f2CGBK4hTidfF0u7s53Xq675OyHLZBpMkS2uTyULcLh+7du/F2d6NKT+dcYi5lTTY67L3ic2Uw7frC9cRp4vrurDfD+h+Jxzt+Bs1DlwkjRZuTg37KZPB4SPKIbEl9xeA3Bm8cE+W1a2aPfXlNQWn3H1GZrfksODtFZ1j6wNmQ5/aJkk/BnJSwDGdDpd1XXku8ZfDsEfiMd33no4NKJtKUAjOuF48P/qHP9qNdXgNQqVVk+kT+Q/kh+ceO7N2L7OxrCru3ohW7y0umxcC0jPiYrXW0GLUA6R//+AcVFRV85jOfGfT5pqYmVq1axcsvvzxaS5ogRPyO2joVGBJE7TxGjLS89rODP0N2OphbKU745hXLybCIiexeGU7Uxkqo7TuBXdgB7uEdpPXTpwvfGrudrp07kVSSf0REOGU2JXv08UV55CTGDbP16KFWqVmQHsQPyVrdazIapNOoP1lTEjElDh38mJP0ZE1JHMlyh0TJ8iWsXUN+iglZhqNV4m/U5erinYvvAAhx9mDMuAGmrBOaq9cfCEmnFgmmFSvEd58OqaG8Y4CQNrC8dv04KK8pBI4dCRtFf5RdCv3EzLIs+9v7Y9G9Zj91CsfJU0haLZbrrxty2/k+MbxfhwS9ZbajL/vHFjX3NPuHPq/IXRH1NQ+F0u4/1LlIP20a6pQU5O5uug8d7vOcMpx25dRLu71fYdQCpNmzZ/PrX/+av/3tb/zkJz/p89zJkydZsmQJ+/bt46mnnhqtJU0QIkqAdFqnoyt3YcwG1LqdHi4eF+nZcMprx5qO8WbFm8ysBK3TiyY9Hf20aQDM9Q2uPdKvPBI10mcJwbGrq1dfMwSSJGH2tYsrF2BFh1Qf4uDaneeb2VPRik6tGlfZI4WgfkiKRUTG7JBNRlUqieUfH9rb6YqPTYl6JkT2eun02TGY16yhxHf3r1zc3r7wNj3uHiZZJgVvwZYkuObHQqdWsXVQMW40UXRIml1vodZI2LtcWBv7TjFQymuZFoPf4Xk8sDhzMWpJTWVnJdWdYdoj+LOSAwXajRc66Wyxo9GrKZgT/YGp7f8U3kfmNWvQJA39+wyc7eencBUk5IPDCieF4H9b9TZkZGamzCTTlBn1NQ9Fr6N28ABJUqmCumpvOSuyde+H8hqMchfbJz/5Se655x6++c1v8t57osb6zjvvcPnll/tHl3zlK18ZzSVNEAKZpkyyJR1eSeJo2qSYvU7lyVbcTi/mZD1p+aGlZ2VZ5sn9TwJwS4tYm2nFcv/dy9wc8YE/VhMjHZJKBUWrxOPzIeqQfGU22+bNyB6P3w+pLoQho7Is8/Q7olxz6+I8shLGT/ZIQRFqH2w4iMcbYDqnXMjCNIg0Jw3eyWhO0rP+87MpLo2+8LbnyBE8zc2ozGZMixb5AyRFh6SU126efPPQd8rJhbDc14Dy9iPQ0x71tSoYS0tRxccjtzaTkiIyKf39kF5XymtzMsdNeQ2E1nFu2lwAdtWFmUUawiBSyR4Vzk1Fq4tuq7zX6aTjPyKoCSbODmRebiIqCWrae2josIsfqlQw/9Pi8cGXgF79UazNIQcjo9CCpJLobLVja7MH3c58eW+7v0JVazfnm7pQqy799n6FmAVI+/fvx+EYKJx8+umnKS0t5eMf/zg/+MEPuPbaa0lISGDHjh1cd93QKcoJxghZptQ3T++QPvoOtAoVSnmtJPT07KaqTRxsPIherWfWOVHiMq/oTUvP9V3YYibUhrB1SMaFC1FZLHhaW+k5fJiMSRYkCWytjiFPSgA7z7ew90IrOo2Ke1eNv+wRwLTkaZi0JjpdnZxtO9v7xAgMIkGMFQGYujiDm+8v5aq7ZnLz/aV8+geXxSQ4ArBt3AiIrIyk0/Xe/Ve1U2Gt4FDjIVSSihuKbxj+YJd/GVKmQFcjbPp/MVkvgKTVYvL51CS6RCAU6K9ld3l4V+leG0NzyGCMqMzmsAnnchjQwSZ7A7rXFkb/fWLbtAmP1YomIwPTZcN3mgXO9utTZiv5JEgquLgDe8MJ//9/NPVHCjqDhtRcYWcxVJlN+f/aT57E3SpmrinmkAvyk0iIi76VwlgQswBp8eLFxMfHM2/ePO68805+/vOfs337dhwOB//4xz+QZZnvfOc7LFiwgD179jBnzpxYLWWCSGm/yHyb+LActMfGlM/j8VJxVIwXKQ5Rf+TyuvjpgZ8C8PmUm/BerAKNps/JSskgVTR3Ye2J0XwsJYNUewi6W4fdXNJq/UFc58ZN6AwaUkI4Kcmy7NcefWJxPpkJ0Z9GHg00Ko2/LOsvs7l6oF7oKkI1iAQxP+u8b8Bo6bp8cqYlMXVRJjnTkmKaAVHKn8pw2pnZFnRqFa1dTv54XAwkvTz7ctKNIVx4NXq4ztfJtu858T6JEeYVosxmqhC/98AM0rZz47O8pqAItffU7embeRyKusMgeyE+Gyx9B+7WnW+ny+pEF6chf2YMymu+wbQJH7oZSR1adso/ly2wzJaQA5OvAmDP3qexe+xkmjKZljQtmssNmVDKbJq0NPTThRZVafffcub9096vELMA6Wtf+xqrV6+mvr6e3//+99x3332sXLmSxMRE1qxZQ1JSEsnJyXzzm99EHeKba4IxonIPpXaRDTzacjzymUmDUHu2HUe3m7h4rd/RdTj+duZvXOy4SLIhmRsaRUu/cf581OZeQ78kk458n4HisVhlkSzZPuG6LLQmIeAvs23ciCzLZCmDa4cos20va2b/xTb0GhX3rCqOdNUxxe+HpAi1aw+D1w3mDEjMD/k4RzdVI8uQNyOJ1NzR6YpxlJfjrKgArRbT8uUA6DVqZmZbAC9vXXwN6Od9NBxFK2HORwEZXr1PjKc59neo2Cba1KOEecVykCSMJ7YB0FrTaxj5+lExKHy8ldcUZqfOJl4bT4ezg5MtJ0PbaYgBtYo5ZFFpGmptdC91rro6f3kp8UMfGmbrXpTAtE8GCfxi7fdqxDFX5a4aM5Fzr1C7fcjt/K7aO3bgcHvYeV7c4K68xMeLBBKzAOmJJ57g7bffpqGhgaqqKv7zn//w6KOPcuONN+J0OikrK6OlpYWbb76ZjIwMcnNzue666/jWt74VqyVNMFKqdlPschEvaelx93CmbXhTxHBRutcK56aGdPLudHbyyyNiIOh/l/w3zh1ieKJ5xfIB287NFXdER2JlGAl9XbVDwLR8OWi1OC9exFleTmaxb4ZWkAxSn+zRknwyLOMze6SgCLUPNB7AK3sDDCIXhWQQCWDvcnFih7iol1wVelAVKZ3vivKaaenSPsF2SV4ialMZHa5mEvQJ4WtE1v0ANHEi6/H7G+Efd8FL18PTs/0C3UjRpKRgmDMHvdOK0eBBlqHxQocor50SAcN46l4LRKPSsDhL6NNC1iEpBpH99Edej5fzB32z12JgDml95RWQZYyLFqErKAh5PyWDdLTa2ndG5NSr8ZrS2aIVn42xKK8pKBmklmobzp7gN8P+uWw7dnCgopVup4dUs56ZWQNHvVyqjIpIOycnh+uvv55vf/vb/POf/6SiooLW1lY2btzIT37yEz7xiU+QmJjIhg0bePzxx0djSROEQ+UeVECJpRAQJoDRRPbKAe39oZ3Mfnvst7Q72ilKKOLmvGvp3iMuwKYVA9tilQApZhkk6KtDCqGdW202Y1oitDidGzf5M0hNVTZcjoEZha3nmjlY2S6yRyvHd/YIYGbKTOI0cVgdVsraywL0R6ELtE9ur8Xt8JCSYyJvRnKMVjoQRX8U32+mVml+ItoEcUG+tvBadOow9XhVe8Roif501MHLt0ctSDKvFJ+BRIdPh1TewdazTdh85TXF1Xk8opTZQp7LVu0TaPcr29acaaen04XBrCVnenT/v7Is+7vXEobwPhqMolQTCXFaHG5v3xmRai0nZq6nWaPGhMp/gzEWmBL1WFINyHJwLy2AuAULkAwG3E1NHNwi/g4rp6aNy+zkSBn1WWwKiYmJrF69mgceeIA//OEPHD9+nM7OTnbtimAezwTRp6fdL4KcnyuyMwcbD0b1JRoudNBtdaIzqMmdNvzJTDGFBHhw4YM49x9EdjjQZGWhnzKwJVxp9T8aywzSpMuFK257JbSWh7RLYJnNnKTHlKhH9g6cph2YPfrU0gLSx3n2CECr0lKSVgL4ymxhGkR63F6ObhLGpCVr80et3OBqbKTniHA1Nl/Z9y5+coYaTbz4LFxXeGN4B/Z64K2HgjzpC6jf+kZUym2KDsms+CFVWP3mkONh9tpQKGM1jjQdocs1jHFqRy101oq5d9klfZ5SuteK56ejVkf3Mtezfz+uykpURiOWq9eFta8kSb06pIt9y2zvJYrS1OVdNnS22A1gDgXlhm0oHZJKp8O4WASmndtFu//7pb1fYcwCpMEwGAwsXhxeC/AEMaZaGVBbSGmeCJAONR4KOsl5JJQfEtmjgjmpIWkFfn7w5zi9TpZkLmF5znJsW4Xewrx8+aAX0tk5CUgS1FrtNHVGfyQFADpTb3dWiGU2xQ+p5+hRPM3NveLIfjqkzWebOFzVjkGr4guXQPZIwe+HVLUVbA0+g8iSkPY9t7+BLqsTU4KOKYtiNxi5P7ZN4m9nmDcXbXrfbObR9veQVG489kw8PdmD7R6cizvFBT0oMnTUiO0ixDBrJurUVOKbRVBdX9HBuyfFBXc8zF4bijxLHjnmHNxe90Cj0f4o+qP0meLz58Pj9voz0rHoXlPE2ZbrrkU1giHrig7pYL/ZfptbDgOwqqsbDv85ojVGit96ZBjzWqXdP//8UVQSLJ/y/mjvVxhXAdIE45BKoe0hfymzU2ejVWlp7mkO38wtCLIscz6gvX84jjcf542KN5CQeHDhgwDYtmwBeksL/THrNUxOE1qSmGaRileJ7yH6IWkzMjDMng2yTOd77wUYRvaelITvkbjQfXppAWnx0R+pESsUofaBpsMiR5I5F7TD+zbJsszhd0Rr/5zVuag1o3ea6tyklNfWDnhOGUzral/I4aowy7W2huhuNwSSSoV5xQribVWo8GK3udD0eMhKMPjHXYxn/O3+w+mQagYXaFedbMXR7caUoPMLjqOFx2aj4+23gfDLawp+oXZVbwapurOac23nUCOxoscuRo94w5vNGE2yJvtmRFZY8QwxI9LkGzsyu6WchVlGEo2xs4EZC6J65mlububIkSO8++67/PWvf+U///kPu3btoqysDO8Y/rEniADF/ThvifAaSpkFwKGm6OiQWmu76GjqQa1RkT9raJ1JoCnkDcU3MCNlBs4LF3BVVYFWi3FJ8Blxc3w6pFHxQ6rYCp7QOv16y2yb/CelwGna751p5Ei1lTitms9fQtkjEF1JerWeVncXFVpNyP5HVadaaanpQqNXM2t5ToxX2YvHZqN7l7ghUNr7Fc61neNEywkk1Lg7SgYMrh0Wc4hZsFC3G+4wK1eikj1Y7KK0luNRjfvymoJSZhvWD6l6cINIf3ltQXrU/78db76J3NODrqiIuJKSER1jXp7IaFe19vgz2luqxU1eaXopCdp4sFZCxeYorTp8kjNN6I0a3E4vLdW2oNvpiorojE9G53VzI2NbFowFEQVInZ2d/PGPf+Tuu+9m2rRpZGRkMH/+fK6++mo+8YlP8KEPfYgrrriCadOmkZiYyLp16/j+97/PwYPR1bBMECM8rt40dr4IPkozfHPZGqLzNzzvK6/lzUxGZxh6kOR7Ve9xoOEAerWeL5V+CYCubaK8Zly4ALU5+HDbeaOhQ8oqAUMiODqgNrTfj/lKcSHu2rWLpCQJjU6Fo9tNW323yB69K1yzb19WQKr50skeAejUOv8Yjv0GA+SF5n90+F2hPZp5eRYG0+gZznVt24bscqGbNAl9UVGf514pE9mjucnLkD3m8AOkgst8Pj3BLtgSWHLEdlHAdNky0GiIbxIDg7PdIkC6FFicuRiVpKLcWk59V/3gG3ncvZ+xAINIl9NDxRHRbh6L2WtWX3kt8cO3jFgXF2/QMjVdWFYo7f5+9+z8K2Hux8SGB38f4WpHjqSSestsQ+iQ3F6ZvalTAShpiH5381gzogDpwIED3H777WRmZnLHHXfwwgsvcO7cOWRZDvpls9nYuHEjjz76KIsWLWLmzJk888wzdHWFPsE8mjz77LMUFhZiMBhYsGAB23wX2gkCqD8qum4MiZAqTMtK00SAdKgxOhkkRX80nDlkoCnk7TNv988osm0RvkPm5UMPdZwbkEGKpn6qDyq18LuBkMts+qlT0ObmIjud9OzeRcYkX7t/uZWNpxo5Wm3FqFPzXyuKhjnS+GRhqhIg6UMSaDdX26g62Yokwbwr82K9vD4o7f39s0cur4tXy18F4LaZH0aSoLK1mxZbGHo2lRrWP+H7R5AL6/ofDRi2OlLU8fEYFywgoaMCgHxZfUmU1wAS9AnMTpkNDJFFajoFrm7QxYPvAg1w8VgLLoeH+GQDGYXRbTd3lJfTc/gwqNUk3BimSL8fgYaRHc4ODtSLbNiqvFW9A2xPvQZdLRG9TiT0Gka2B93m4MU29qQKR/+4I/tGY1mjSlgB0oEDB7jmmmtYvHgxf/rTn+jp6UGWZTIzM7nxxht57LHH+OUvf8lf//pXNmzYwCuvvMILL7zAU089xRe+8AXmz5+PRqNBlmVOnz7Nl7/8ZSZNmsSPf/zjQceSxIq//vWv3HfffXzzm9/k0KFDLF++nGuuuYbKyspRW8MlQWVveU0ZUFuSXgJAubWcNntbkB1Dw9rUTUuNDUklMWnu0OK+v535Gxc6LpBsSOazsz8LgLe7m+594kMZTH+kMCPLgkYl0dLlpKZ9kFbraBGmH5IkSX3KbIoOqe58O09vFNqj25dNIuUSyx4pLFQL7df+OCOyZfhymTJWpHh+OpbU0ZszJzud2Lb6gu1+7f3bq7fTam8l2ZDMusKVFPv0bGFnkWbeCB/7PVj6Z3Ik+MgL4vkoYl65kgSr6KhMckm4ndEzpIw1S7NFxjpogKRktnNK+wSV/tEii9Kj3vlo/afIHplXrECTFlm3VqBh5I6aHbhlN0UJRRRYCiBrrshGe11w5P8iXfaI8XeynQ9+U7n5bBOH0qYiI+EsK8PVELmGbjwRcoD0mc98hiVLlvD2228jyzKlpaX8z//8DxcuXKCmpoZ///vffPvb3+bzn/88H/3oR1m7di033HADd9xxB/fddx/PPvss+/bto7Ozkw0bNnDnnXdisVhoaWnh4YcfZvr06WwPGHwXS5566inuuusu7r77bmbMmMHTTz9NXl4ev/zlLwfd3uFw0NHR0efrA0GVItDu1Y4kGZIoShDZjMONhyM6fPkhkQrPmZo4ZCmlvymkWScuUF179iA7nWizs9EVDZ1hMWjVTM8Sae3Y6pB8AVLVXrCH9j5Rymy2zZvJLBRrPH+qleM1HZgu4ewRwJyOFrSyTJNaotJWNeS2tjYH5/aJE+xoGkMCdO3bh7ezE3VqKnHz5vV5ThlMe0PRDWhVWn8m5lC/LqSQmHkj3Hcc7ngNPvQbMCQAMuij7xKuvfwK9E4rensrEtB4sTPqrxErFB3S7rrdwmi0P4MYRDrtbi4cFxmXyQuiW16TXS7a/y3KrKEMph2OQMPITZWDDKddcIf4fvD3IfmqxYL0SfGoNBLdHU46mge/qdxypgmbzoi9WFQYunzt/u8XQg6QXnrpJTQaDZ/73Oc4ffo0+/fv5/777yc/P7wTmU6nY+3atTz//PP+MSTTpk3j4sWLbNoU2rDPSHA6nRw4cIB16/r6V6xbt46dOwdvsX388cdJSEjwf+XljW7qf0yQ5d4Otry+4mdlzlakZbbyELvXnjv2HO2OdgoTCrllSu/JSdEfmVauCOlucU5OIhDjAClpEiQXgeyBC6EF/MYF81EnJOCxWrH4SiKudidxXrjjskkkmy7dzhBDzSHm+LLDw7VtH9tchdcjkzU5wV9qHC385pCrVyOpek+LLT0tbK0WmSVltEiJ7+IWdgZJQaWGwuUw7+Mwx6c3Of6PkR1rCHY6zdQZk/1ltqHG2Iw35qbNxagx0uZo40zrINoWv0Fkb4BUcaQZj8tLYoaR1DzzwH0iwLZtO57mZtQpKZhXroz4eMVpZiwGDT0uJ1urxXmsj3v27I+A1gjNZ3pNVkcZjVZNer74HA6mQ2rssHOyrgNJgpTVIoPfteMDGiDdc889lJWV8etf/5qpU6cOv0MI6PV6PvWpT3HixAn+8pe/MGUQk79o09zcjMfjISOj7x1GRkYG9fWDCwIffvhhrFar/6uqaug74fcFbRd83jVayJnf56n5GeLfkRhGdlkd/hN24bzgAVKtrZY/nvwjAA8ueBCNSgi5ZVkOWX+kMM+vQ2of6bJDI9wym0aDeZU46bq2v4c2WZTTiiUtn1t+6WaPkGWo2sPCHl+A1BA8QHLa3RzfKnyCSkc5eyTL8oDhtApvVLyBW3YzO2U2k5OE1kJxoj5S1Y7XG+Hd/ewPi++nXwOXPbJj9eON4/Xsy5jhD7obLqEASavSsihTiPoHuGrbO8AnPg/MICnltckLo19ea/+nCGATbrwRSRt544BKJVGSn4TaWEG320ayIZk5qQED2w0WmOWb8TaGYu2sIfyQNp8VN7hzcxJIUwKknTuRPZdOKXc4Qg6QnnnmGXJzc2OyCEmS+NjHPsZtt90Wk+MHe81AZFkO+qHS6/VYLJY+X+97lPb+rHkDvGuUDNKJlhPY3SM7qVf4skcZhRbMScH1NT8/JEwhF2cuZkVubyDkrKjAVVODpNViWhpa+7jiqH2s2hr5hW0olDJbiEJt6C2zdW7aRJnHCcDa9ESSLuHsEW0V0N3MQqewPNjfsD+oluHUjjqcPW4SM4xMmjO6ZnP24ydwNzSgMhoxLu3Nlsqy7C+v3TT5Jv/Pp2aYidOq6XS4Od8UvAU6JPKWiO41RweUvRvZsQIQs9ca2Js5ozeDVNERuwaFGBDUD6n2ECBDQj7Eixtde5eLypOtAEyJcnnN3dyMbbNow0+8JfTBtMNRmpeIJv4UACtyV6DuL9BXxNon/hlyuT7aKNYjgwm1t/gCpJVT04ibOxeV2YynvR37yVOjucSY8oEzikxNTUWtVg/IFjU2Ng7IKn2gCTCI7E+uOZe0uDTcXjcnWk6M6PChlNdONJ/g9fLXATFSJDCAVbJHxsWLQ3aznZphxqBV0elwU9ESw+7JScvF+IOWc9AeWrbRfMXlSDodrqoqGjrEnXC2+xL/eFYJAf285BloJA31XfXU2GoGbOb1eDmyURkrkoc0yl49nRtFYGJavhyVvjdYP9V6irNtZ9GpdFxTeI3/5xq1yt8VeWikZTYFlao3UxDFMtvmM010Oz00F8/G4mpC8rqw21xYm2LYoBBllADpYMNBegJn2A1iEFl+uAmvRyYlx0xydnC7j5Fg/c+r4HZjmDd30FFGI6U0PxGNWQQTgw6nzVsiOvRc3TEpwYaC0urfVt+N3eby/9zt8bJNCZCmpSNptRh9N6pdO0ZHSzwaRHwG3urr/LhU0Ol0LFiwgHfeeafPz9955x0uuyw6HiTvC5QM0iABkiRJ/m62keiQ7F0uas60A8EDJFmW+cn+nwBCHDszZWaf521bfe7ZK5aH/LoatYpZ2aMwuDYuEXJ8J+8Qy2wqk8mfvchrOg5Aa5UNj+sSNlitFtoJY+4SZqaKv99gZbbzh5robLUTF69l2pLMUV0iiO5BGFheU7JHV+ZfSYI+oc9zig5pRELt/ihltrNvgTM6gfvrvtlr60rziF+yiPhOEYBeSmW2QkshmaZMXF5XX9+1QQwiA8tr0UQMphXBSeItH47qsRMsLah0rcheDVMt8wduIEm9WaQxKrPFmXUkZYob0MARSEeq2+mwu0mI01Lia1ow+1y1309C7YgDpKuvvpq//e1v0VjLqPHAAw/w3HPP8fzzz3Pq1Cnuv/9+Kisr+cIXvjDWSxsf9LRDoy9NGsT9eH66T4c0AsPIC8ea8XplUnJMJGYMnv0JNIX88vwv93nO29VF935xkjStCE1/pDAnR1zojsRahzSCMtuF6eKEv7h2H3qTBo/bS1PVpdN5NABFXJq3yD92pL9QO3CsyOyVuWh00fEBChXnxYs4zp0DjQZzwHvJ6XHyRsUbQK84OxClk23EQu1AskshqVBkCs68GfHh7C4PG0+JgOHaOVmYV60MEGpfOh24kiSxLMtXZlPa/WU5IIMk3lPdHU6qTwvLkWjPXrMfO4az7DySwYDl2muG3yEM9jeJTIunazJn6oLY3My9VehAaw9C/bGovn6oDOaHtPmMyB4tn5KK2pfxNfnmsnUfPozHFmHpeZwQcYDkcDi47bbbePrpp6OwnNHh4x//OE8//TTf+973KCkpYevWrbzxxhsUFBSM9dLGB8qA2uQiMA9+wlEctQ83Hh68DXcIFHPIwiDZo2CmkApdu3eDy4U2Lw/dpElhvfa8vFEYOQIBQu3NIc1U8nplft4tSrxTWivJzBW6r0up86gPzi5o8JVfcxf3zmVrONBns7qydhovdqLWqpizcvTGiigo4mzjooWoE3qzRO9VvYfVYSXDmMHSrIFZ1FKfj82Z+g66HKGNlQmKJPVmkY7/M7JjAZvPNNLt9JCTGEdJXiLmFSv8AVLdudaIjz+aKGW2nXU+oba1unfwcZawYzh/sBFZhvSCeBLSwh8eOxTKYNr4dVehjo+uFcPmqs0AuG0zOVgZxFPOnAbTrxWPD/4hqq8fKso8u8AZkYH6IwVdXh7agnxwu+neOzadd9Em4gDpsssuw+v18uCDD/LVr3415P2OHj3KDTfcEOnLj5h7772XCxcu4HA4OHDgACvCzES8r6n03a3lBZ9tNi1pGnGaODpdnZS1l4V8aJfD4xdTBnPP/vvZvw8whQzEtlW0xZpXhNbeH4gi1D5Ra8U9xBDGiMldKFx+e1qh/siwm79+rI79NjVnU0SQnuQSJZLhpmmPW2oOCqsDSw4k5FCaXopKUlFtq+4zPuLQO6L0M31pJnHxoy9I71Ta+/sNp1VGi9xYfONA8SyQYTGQlWDAK8Oxmij8jZQAqewdkcGNgNePid/vtXMykSQJbXY2qSnic9Ja143Lcel0GS3NWoqExLm2czR1N/VmjzJm+ZtHzvnNIaOrIfX29NDxutBARru81tzTzNHmowC4bdOHLtUqZbajfwHX6GvIFB1Sw8UO3C4PzTaH/wZz5bS+53CzL4v0fimzRRwgbdy4kQ9/+MPIssxPf/pTbrvtNlwuV9Dty8rKuO2225g/fz5vvPFGpC8/QSxQHLTzg3eHaVQa/5ytQw2h65AqT7bgcXmxpBpIyRnoVdLp7OSXh4Up5L3z7vWbQirIstzreByG/kihMMVEvF6D3eXlbEMM08BqrfC6gWHLbB6vzM82iplrXCYCdeM5IZKvH8LFdlzj0x+RK1q1zTozM5JnAL06pLb6Li4cbQYJ5q0ZfW8xd0sLPYfEe1dxMwdo7G5kR604wQd2r/WnNFI/pEAyZkLaDPA44fTrIz5MYHnturnZ/p+nLZ+P3t6GjETjhUunzJZkSGJ68nRAmEb2OmiLjKStze6/iSieH93yWuc77+C12dDm5mJcHNocwVDZUiU0lJMTZiK7LRypascTrLO2aDUk5IHdKsaPjDIJaXHEWXR43TKNFzvZdk5kj2ZlW0iPN/TZVimz2d4nQu2IAyS9Xs/f/vY37rvvPmRZ5uWXX+bqq68e4DZdXV3N5z73OWbOnMnLL7+M1+tFrR5dvcEEIeBxQY2vDDJEBgl6dUiHmkIPkJTyWlFJ2qDZn98d+x1tjjZhCjl1oGOts6wMd10dkl6PcfHws736o1JJzPbpkI7VtIe9f1iE6If02tFayhptWAwarrhT/J91e99GpVZcbKPrjzMq+PVHvX+j/jqkw77OtcK5qSRlRrfzKBRsmzeD14th5ky0Wb3jP149/ype2UtpeqkY/RCEEr+jdmQjd/z4y2wj71gKLK8pvl/gGzuilNnOt0eyylFHcdXeVburN0Dy6Y/KDjSCLNrR45MNwQ4xIpTyWsItH+pjHhoNlPLa1YVXYtZr6HJ6ONsQRG+oUkPpp8Xjgy9FdR2hIEkS2b4sUv15q19/FFheUzAuWQIaDa6LlTjfB36BUfurP/XUU/z0pz9FkiS2bNnC8uXLqa2tpbm5mfvvv5+pU6fy/PPP43a7kSSJW2+9lWPHxkZ0NsEQ1AUOqB3aENTfyRZiBsnj9nLhmBgFUFQ68G6v1lbLH06KOvsDCx5AqxpoyKZkj4yLF6OKG9msrrl5ilA7xuUrRahduRuc3YNu4vHK/NyXPbp7eRHJM6ehLchH5egm2SJKIZecDkmWfTo2+gyoXZjZq0Pq7nByZpcoBZWsHV1jSAVlOK05oHst0PtoMHF2IKX+eVrt0cnyzfbdEJRvhq7mER3itaOiNHvd3Kw+NyBxJSUkOMVztYerI1rmaOP3Q6rdhVx3WPzQl0E6t78RgCkLo1tec1ZV0b1nD0gSiTffHNVj97h7/N5OV+av9gfaQXVIAKWfBCS4sA1azkd1PaGglNlqz7Wz1ac/WjVt4DlcbTYTVyIqC+8HV+2ohsVf+cpXePnll9Hr9Rw/fpwFCxZQVFTEz3/+c+x2cRf8kY98hKNHj/LnP/+ZadOmRfPlJ4gGVQH+R8PcNc1Nm4taUlPbVdtHVxKMmjNtOHvcGC06MgeZtK2YQi7KXMTK3MHt/AP1RyNlnk+HFHNH7ZTJIjXuccLFwcfYvHqklvNNXSTEafnM5ZPE8FqfaWSC7SJwCeqQWsuhuwXUejF408f8jPlISFzouMCed8/icXtJn2Txm9GNJt7ubrp8o4UC9UdHmo5woeMCcZo4rp509ZDHmJ2dgFol0djpoM4ahSxfSrEYUip74OQrYe/e4/Sw6bQIGK6d03cgrqTR+IePNtT0XFJl29L0UgxqA832Zs5JHtAnQMpkrE09NF4Qoy6iXV6z/uvfAJiWLUObnT30xmGyq3YXDo+DHHMOUxKn+Eu1By+2B98pIRcm+96nh0ZfrK0ItWvK2mnrchGv1/jX3R9/u/9EgDSQG2+8kU9+8pPIskxjYyM2X7vfzTffzOHDh3n55ZeZOXPmMEeZYMzwz18b3p3apDUxLVkEuaH4IZ0/3Nu91t8MMNAU8qsLvzpo+c1js9F9QJT/RqI/UlBM/k7XdWJ3xVCwKklQtEo8HqTM5vZ4/dmjzy0vJN4gMmaKHsZ0Rpxg6i+1AEkpr2WXgKbXeNGiszAteRoaj5bT24ROpvSq/KiPhQgF244dyA4H2rw89FN7zf+U7NFVBVdh0g5d9ovTqZmeKTqboqJDgoi62YKV1xRyVs5F8rpwejRBh4+OR3RqHQsyha/YrjiDGH2kUlF2QLyHcqYlYbRET+Avezy0/+tfACREYTBtf5Ty2qq8VUiSxHwlE1k1TKlWEWsf/rOQQowiqXlmNDoVbruHFK/EFVNS0aoHDx8UHVLXrt3IQ+iRLwWiFiC53W5+85vfMHnyZJ5//nkkSfLfpaSkpPCd73yHOXPmDHOUCcaUwAG1gxhEDkaofkher0zFEVE2KO7X3i/LMk/ufxIY3BRSoWvnTnC70RUUoIvAkiEnMY4Ukw63V+ZUXYwFq0P4If3nSC3lzV0kGrXccdkk/8/jSktRJyURXy/a5FtqbTh6ImwlH036CbQDWZixkKlNi/H2SFhSDRSVjO5YEQWbr7wWf+WV/gCtx93D2xfeBoYvrymU+g0jo6RDUly1L+6Ajtqwdn3t2ODlNQXLquXE20R5rebQpaUP8fshxRn8+qNYlde6du/GXVeHymIhfu3a4XcIA4/Xw5ZqIdBelbcK6NWylTd10d7tDL7z1PVgShM2B+c2RHVdw6FWq8jwZf1z3KpB9UcKhpkzUScm4rXZ6LnEZTQRB0gej4ff/e53TJ06lXvuuYfKykpkWWbevHk888wzpKam0tLSwqpVq9iwYXT/qBOESVsFdDUKY7Ls0pB2UeayDZdBqi+30tPhRG/UkD0tsc9zm6s2s79hP3q1ni+VfinoMbq2ifKaaWVklgySJDEnVxFqxzg7U7gKkKDxBHT2liH7Zo+K/NkjAEmtxrxqFXpnBya1HWRoqLiEski+ESOBAm2FBWkLmVu3CoC5V+ahCnIXGktkt1sItOnrnr2xciM2l40ccw4LMhYE2bsvJb7BtVHLICXm+ZojZDjx75B363F62HRKBAzX9SuvKWiSk0nRCSFw9Z7QrTnGA4pQ+4BBjyO7hNa6LlqqbahUEkVB7EJGilURZ19/fZ/RM9HgWPMxWu2txGvj/e+xJJOOolSRrRxydI1GB/N880rHwFk7KV9kS3PdqgHt/YFIajWmy0RA27X90u5mi/jsNG3aNP7rv/6LCxcuIMsyU6dO5S9/+QsHDx7knnvuYceOHUyaNImOjg5uuOEGXnjhhWise4JYoLT3Z5cMGFAbDCVAOtd+jk5ncNdnpXtt0pxU1AEXRZfXxVMHngLg0zM/TZZ58JO7aO/36Y+WR+5ZpfghHamKceBhSvEb2lG+2f/jfx+u5UJLN0n9skcKSpnN0iaCqEtGh+ToFMEg9BFoK6Q3FZFoT8eh7iZzQXS7jkKl+8BBPFYr6qQk4kp7bwT8g2mLb0IlhXZqVDJIx2qsuKLlqzWCbrb3zjTS4/KQmxTnLyEPRta0FAAaa4I4N49TJutTSXO7satUHNJp/aNF8mYlYzANbOYYKZ72djrfFbP5YlleuyLnij5NKP7RNRdDLLOd2xB2hjFS6nWiIjQJDVkJQ18fTJcLHZLtEtchRRwglZeXI8sy+fn5PPfcc5w8eZKPfexj/uenTJnC7t27WbBgAS6Xi7vvvpvHHnss0pedIBZUha4/UkgzppEXn4dX9nK06eig28iyHHQ47T/O/sNvCnnX7LuCvo7j7FncDQ1IBkNUPEkUjUbMhdowoMzm9nj5xSYR+PzXimLMes2AXUyXXYak12OpF3PZLhkdUs1BkL1CnG4ZGOyWbRUmoScyd3C0/fAoL06gDKc1r1qFpBG/+1pbLXvrRGnwxsk3hnyswhQTFoPw1TpTH6WxMDNvAkklTBHbLoS0izJ77bo5g5fXFPKuFMF6hxyPo/PS0SFJdYdY1iOE8LtaT8asvGZ9/XVkpxP99OkYYqCVDdQfBdKrQ2of+gCpUyD/MvEZO/ynqK9vKPZ2duFFxuSCLuvQAbbpcpHxsx87jqe9fRRWFxsiDpDS09P52c9+xtmzZ/nsZz+LapDOp7S0NLZs2cL69euRZZnvfe973HXXXXg8l46j6wcCv0HksrB2U7JIBxsH1yE1V9nobLGj0arIm5Xs/3mns5NnDz8LwD3z7hlgChmIbYto7zctWRKVtLeSQSprsmGLdFTEcASOHZFl/nmohost3SSbdNy+bHAtlcpoxHTZZSRYywFoqOjAG0vn72hRFVx/VF9upa7Miqzycjxz64C5bKOBLMu9+qOA8tor519BRmZJ5hJyzKGPPFGpJEpCvbiFSnwGTPI1IYQg1u5TXps7eAZWIWXxHPSuDmRJTdU7o//7HzHVB1jqC5COnjlLe0M3ao2KwrmRa9hkj4euPXuxvvY6rX/4IwCJt9wS9eaByo5KzlvPo5E0XJ5zeZ/nlADpcGU73mCGkf6NlQG2fwhpjFE08HpltpQ306QWa6srG/qGTZuZiX7KZPB6xWioS5SoZJC+9KUvodMN3UVgNBp59dVX+exnP4ssy7z44otcd911kb78BNGipw2ahh5QG4zhdEhK9ih/dgragGGkiinkJMskPjx1aCv/Lp//UaT6I4W0eD3ZCQZkGU7EWoeUvxQ0cWCrx1V/wp89+vyKIkyDZI8U4tdciamrDo3XgcvhoaU2OpPeY0r1QINIhcPviqG0llnQrevwO2qPJo4zZ3DV1iIZDJguE3e5XtnrHy0ylHN2MKJuGAlhdbMFlteUYczBkCSJFJMINGr2jL6fzoip2c8yn1WM6nwiAAVzUtDFBf/8hELHhg2UrVlL5R13UPvVr+K6cEG8Rnzwm7WRomSPFmQsIEHf9+80NcOMUaem0+GmrGkYh/+ZN4HeAu0X4cLWqK9zME7WddBsc9LoK7OFYjZqusznqn0J65AiDpCMxtCHA6rVap577jm+853vIMsy77zzTqQvP0G0UIS1ycViQGIYKJ1sx5qO4Rqk/XSw8lqdrc5vCvngwgcHNYVU8HR00O0bCRGJ/1F/5vjLbDEOkDR6mCROFse3/ouq1h5SzTo+HSR7pGBetQpJAku7uJCN+zJboEFkvwDJ2tTj16Fddo0YHXGu7RxWx+j+nxRzSNPll/uNRg80HKDGVoNZa2ZtQfhdS6W+AClqQm2AGTeIgawNx6DpzJCbvh7EHDIYWdNE1qWh9hLRIfneV6keL1NNuUxuEeebSMtrHRs2UPOV+3DXD/Rwq3vkm3REualoc/VmYGB5DUCjVvn92Q4Op0PSGWHOR8XjURJrbz4jMpTxeSJwHC6DBGDy+yHtvKR8twIZ/RYS4NFHH+W3v/3txKiR8YQyoDbE9v5AChMKSdQnYvfYOdV6qs9z7Q3dtNZ2oVJJTJqT4v95KKaQCl07d4LHg66oCF1ubtjrC4ZfqD0aOiRfmc1xRlygP7+iGKNu6LtfTWqqcEC2KiMixnmA1FImMpEaA2T0tfQ4sqkKWYb8mclMLsqlMKEQGZkDDQdGdYm9w2l7y2uKOPvqSVcTpwnfnT2wTdvaHSXfF2MyFPvWOIRYu9vp9ptDBute60/eytkAtGszsZeXR7bO0aDtgjAeVWm5zHAtFkcKXo2bgoDzSbjIHg8NP3xcBF9BaPjh48hRkoFYHVa/FcrKvMHPd37DyFAykQvuEN9PvQrdrdFY4pBs8blnz5knDDmbq2047UNLE4wLFyDpdLjr6nBeCu+zQRiTAAngrrvu4pVXwneLnSBGVPn0R2GW10Ck7f1jR/qV2ZTsUc70JPRGkSU60XKC18rF0MUHFz447F1vNNyzB6PXUXsUAg+fUHue5wRZJhWfWhqaj1P8mitJ6PBlkMb7yBG/QWSpaEn2Ye9ycWqH6LgpuUqMFfHPZRvFMpurpgbHqVOgUmFevQqALlcX71wUmexQvY/6k2TSMSlFZNIPRzPYDuxmC3Ihf+90Ez0uD3nJw5fXFDKnpaOSPbh08TS8M7jD+7hCmQ2ZOYe8JuHMXpNyBo125Jev7v0HBs0c+ZFl3PX1dO+PTgC/rWYbHtnD5MTJ5MUPPph5fsDommHJmie+PE448peorDEY1h4XB31rWl2ahTlZj+yVaRhm6LEqLg7jQvE5v1RdtccsQAK45pprxvLlJ1BwO3tPQiPIIEHA4Np+AdL5Q33La7Is8z/7/weA64uuZ1bKrCGPK3u92LaJOnsk7tmDoZTYKlu7aesawqAtCjiTp9NMEnGSk2/NtRKnCy17ar5yDZaOCyB76Wyx09U+jssiQQwiT2yrwe30kpJrJne6uAj0H1w7GnRu3ASAccECNEliHRsubKDH3cMkyyTmpc0b8bFLA0S2UWP6tSIb11IG9YN3iL7h6167dpjutUDUWhVJ8eLuv2bfJXBn7xtQK+cspOu0+NwcT9xJhW/47khwNzVFdbvhUPRHq/NWB91GafU/12jD2hNCJtIv1v79kJmwSNlR1ozHK1OcZiIv2egfWRNSmc3nqn2ptvuHHCA1Nzdz2223kZqaSnx8PPPmzeOOO+7g6aefZvPmzbRfwq18H3jqj4LbDnFJkDJl+O0HIVCordSbbW12Gi90gASF84TuYUv1FvbV70On0vHl0i8Pe1zH6dN4mpqRjEbifHcj0SIhTkuhz6At1oaRfz9YwxaPCAavjjs1zNa96IsKMeZnY7bVAOO8zDaIQaTH5eXoJuHeXLo2z38RVwbXnmk7M6R/VjRRymtmn8cUBHgfTb4poq4lv1B7uHER4aCPh6m+eXCDlNm6nW42nhZ+QNfPCW9eWNZ0ccPS2CTjsY1z8X+NCJDqVMvotjrxaJ1UJZ5iV+2uER9SkxaazjLU7YbC5XGxvUYIlQfTHymkmvUU+DKRR0LRs83+iGj+aDrlDyJjgaI/UobTZvkG19aHItS+QgRI3Xv34XXG9iY0FoQcIH3pS1/ir3/9KwaDgblz59LQ0MAf/vAHHnjgAdasWUNKSgpFRUV8+MNDdyNNMA7xz18bfkBtMGamzESn0tFqb+VihxiyWn5YjBbJKkrAlKDH5XX5s0dDmUIGYlO615YuRTVMp+RIUMoSsfRDcrq9PPNeGds9Qpejqdgc1v6izCbu9MetUNveAY0nxeMAg8iz++rp7nBiStQzOUBUm25MJz8+H6/sDWmOX6R42tvp3i8uIor+6GLHRQ42HkQlqbixOHTvo8FQ9COHq9qjK0gN7Gbrd9xNpxuxu7zkJccxO2fg8OehyC4RZZ4OcwFdu8Zxmc3thDqRPTtXJ/SHuskOvCpPRAGSceECNJlDiLwlCU1mJsaFoTmqD8W+hn10ubpIMaQwO3X2kNsqgv+QdEhxiTDrZvH44EsRrTEYsiz79UerfO7ZyuDa+vLhrUf0U6eiTktF7umh5+DQ46jGIyFfDd955x1KS0s5f/48O3bsoL6+npqaGl599VUeffRRbrzxRtxuN//+979juNwJYoJiEJkfvv5IQafW+T/8B+sPUXOmjeNbReag0DdvSzGFTNIncdec4KaQgcRKf6SguA4fiaEO6eX9VdS093Da6DvZ1h2BrpaQ9zdfucbvh1R3PooZimhSsx+QITFf+PggTq6H3xUzv+ZemYta0/d0o2SRRqPMZtuyBTwe9NOmocsTwYHS2n9Z9mWkGyObBj8904JOo6K928WFlu6I1+tnyjrQmcFa1dsh6OMNvzlkdtjZr8wi8b63mXNo37wtOmuNBQ3HwOPAa0ih7KQoL89eIvR7e+v3Dto1GwqSWo1xSRA5ge93mfHIw0hRaCQKNIcczqF9fkEYOiToLbMd/6dwsY8yp+s7aehwEKdVs2iS8LBLzjahi9MI65GaobOPkiRh9rX7X4pjR0IOkLxeL1dddRX6AJO+rKwsrrvuOr797W/zr3/9i8rKSpqiVLOdYJQIHFCbNzL9kcL8jPkUtsyl+td6/v3TQ7TViQvF4XeqOL7vot8U8t6Se4nXxQ97PE97Oz2HDwPR1x8pzPPdscUqg+Rwe3jmPTH36uOrF0L6TECGMLJIcfPmkqwSgVFTpQ2XcxwarCrltYDsUeXJVlpru9Aa1MxaPtB8cTSF2kp7vzLCxeP18J/z/wFGLs4ORKdRMTtbZHEOR7PMpo2D6T6/uIAyW2D32vXDmEMORnyyAaMRZElN3f6K8duGXS20kdWmm7DbXBjMWpYunE2yIZkedw9Hmo6M6LCdmzfT8R/x91fF9z0XaTIyyPnZ01jWrYts7YibhGDu2YPRK9RuG94wEoSpb8pkcHWF5JkVLpvPiOv5suIUDFoRLKpUEplF4r0ekh/SFcrYkXGcqQxCyAHSsmXLqKoafgJ0cnLysNtMMI5oLYeuJlDrQh5QG4yi1nmsO/tZVN19na67O5xs/l0ZibV5IZlCKnTt3AleL/opk9Fmh6exCJVZ2RZUEjR0OGjosEf9+C/vq6LOaifTYuDWxflQ7NO/+MaOhIKkVpN6eQk6RzuyDE0Xh+4eGRP8BpG9WcjD7whjyJmXZ6MfxNBPCZBOtpykyxU7HYzXbveb1Zl95bU9dXto6G7AorMMKZwNh9JwupDCQSmznfgXeEVwrJTX8pONzMoOr7ymkDlFtMm3eZNEd994xKc/KusWN2/F89PRaDQsyRLvs1114ZfZHGVl1D74VZBlEj/2Mabs2kn+Sy+R/eST5L/0EpM3vhuV4AjgbNtZ6rrqMKgN/jUPxbTMeAxaFR12N+XNwxhGgsh2BYq1o8yWsyIIXzm1rxYrLKG2b3Ct49Qp3M3N0V1gjAk5QPra177Ga6+9FlKQNMElhNLen1UC2pEPD/V6ZZrfFXcYEoOn+y+7cAv3l94/pClkIP7xIlEYThsMo07DlHRxBxntdn+7y8Mz74kW/XtXF4s7sH5jR0LFsqa3zFYbwklpVPF6AwwiRQdbU1Un1afbkFQSc68c3Lsqy5xFjjkHj+zhcOPhmC2va9cu5J4eNFlZ/vlaijj72sJr0amjo20riYVhJIj3jCERbA1wUXQDhWsOORiZk0VAZ00oFCXI8Uj1fjyyhvJaUaafslCUQi/LFi7o4eqQ3G1tVN1zL96uLoyLFpH5rW+i0mgwLVlMwvXXYVqyOCplNYX3qsSN0NLspSF5bGnVKr8/28FQA+15twlT0Zr90HBihCsdSKfdxf4LIhuq6I8UsiaLEm1d2fCaO01Kiv9z17Xz0soihRwglZeXs379etavX8/JkydjuaYJRpPKyPVHAHXn2uludwUNjiQk4p1JTHWUhHQ80d4fW/2RwtwYDa79674q6jvsZCUY+Pgin/dJwWUiW2etgpbQRz2YLltGYo+4Oak9Uh3VdUZMyzmwW0VHTYbQoSljRSYvSMeSEvzCsCBD6LJiWWbzm0NeeSWSJGF1WNlYKX5285Sbo/Y6ilD7ZG0HdlcUy6AaHcz0iciP/4Muh5v3zoRnDjkYig7Jaimkc/M4DJC6W6H1PJWOEhwOCVOCzi8QXpYlshInWk6E7MYuu1zUfOU+XFVVaHNzyfn5z5Bi0PgRSCjt/f1R3kchj64xp8M0n2XOwT+Evrhh2Hm+BbdXZlKKkYIUU5/n0idZUKkkuqxOOluGz7z72/0vMR1SyAHS3Xffzd///ndOnTrF3LlzWblyJd/73vd47bXXqKmpieUaJ4glVSMbUNufro7Q/Hm6O0Jr9bSfOImntRWVyYRxfmSlv+GY67vzj6ZQ2+7y8OxmoT26d/Vk9BrfXanO2FuGOr8p5OOpDAZ/3b+hqhs5FH3CaKEYRObMB7WWzlY7ZfvEBbxk7eCmeAqx9kOSPR5sm8RdvDKc9q2Kt3B6nUxJmsLM5OhNbM9JjCPVrMftlTlRG+Usn1JmO/kK752swe7yUpAy8vIaQFq+GZUKXDoLbWdrcLeNswaAGtH1dM4rLv7FC9JRqXwCalMGRQlFeGUve+r2hHS4+h/+kO69e1EZjeQ++4zfCytWNHQ1cKLlBBISK3JDv8kLyzDSv9Od4vuR/4OyjXDs71CxzV+SHQmK/khp7w9Eq1OTViAy76FYj/jHjuzchTxKA3ajQcgB0p/+9Ce+9rWvsW7dOtLS0ti2bRuPPvooN910E/n5+WRkZLB+/Xq++c1vxnK9E0ST7lZoOi0ej8BBOxCTRT/8RmFsZ9sq7mhNly2L+V3evIAMUrTEqv+3t5KGDgfZCQY+trBfiUnRIZWHrkMCyF09H5XHidOjob0xip1SkdLPIPLoe9V4vTI5UxNJLxj6Aq50sh1vOU6PuyfqS+s5ckQE2haL39VXKa/dXHxzVCe2S5IUMLi2PWrHBWDScjClQ08bF/a+DoRnDjkYGq2aNN/fxxpfSNe2cdbNVr0Pl6zjQpewx+g/e81fZgtBh9T65z/T/n9/AUki+8knMUydGv319mNLtTiHzUmbQ2pcasj7KRmkMw2ddNpD7NIrXg1xKWBvhz/eAv+4C166Hp6eDSf/E+bKhbh8q6+9v7/+SEHxQwolQDKWliAZjXiam3GcGXq24Hgi5ADptttu40c/+hFvvfUWdXV11NXV8cYbb/CDH/yAj370oyQlJfHuu+/yox/9KJbrnSCaKLqRlMlgCv0DPBhZUxLRG4eaLSZjTtKTNSUxpON1+dr7TTEur4EQRurUokW7ui3yi7TIHony2X9fGZA9UvCNHaFiG4TRpmxZswpLp/CYqtp3IeJ1Ro0Ag0hnj5uT20RGWRkrMhS55lwyjBm4ve4RdyQNhdK9Zl61EkmrpaytjOMtx9FIGq4vvj7qr+cvj0Rbh6RS+z1vcmreBCIrrylkFIoAqcMyCdt4K7PV7OeiYwEuj5b4ZIN/rQrLskXWe1ftriFvbLp276bhBz8EIO2B+4m/Mjqi/OEYSXkNID3eQG5SHLIchi7y9OvQM4h1SEcdvHx72EFSWaONmvYedBoVS4sGn3nXK9RuH/Z4kk6HabHocL2Uxo6MeNSIkjH6xje+wV/+8hdOnz5NZ2cnOy8xEdYHGmVAbYTt/QAN5VYcvrsdmb4nK9n3E8vqHn+KfCjcbW30HBXmcOblsWnvD0SvUTM9S6SLozG49k97KmnqdJCTGMdHFwxSYsqcB3HJ4OzsHfESApqkJFKMInM0bkZE9LQLJ1+A3MWc3FGL0+4hKdNIwazhh4lKkhQzPyRZlunc+C4A8VeK8tor54X30YrcFSQbot9xqxj9RXXkiIKvzLZW2seUZE1E5TUFvw4poRDb9u3I7qEHkI4asgw1ByjrEaWZKYvSB2TLFmYsRKPSUGOroapz8OYh58WLVH/lPvB4sNx4Ayl33x3rlQPQ7er2l/5G0iWpdEQevBhC2dPrgbceCvKk71z81jfCKrcp5bWlRSlBxyJl+jJIrbVd2LuGv9Hr1SF9AAKkwYiLi2PJkshKNR9kZI+Hrj17sb72Ol179kZtknRQKhX9UWR/s47mHt741THwStSbK+jStfd53qZr552pL/Cs9Qk8IXxIu7bvAFlGP20a2szMiNYWKr1C7ci0Iz1OD7/0ZY++eOVkdJpBPmIqFRT5JnqHoUMCyJ4lsgYN9ePkQuZrwyZpEp64FI5sFBeqkrX5SCEEwxA7PyTn+fO4LlaKu9crrsDldfHq+VcBMVokFszNS0SSoKa9h8bOKNtG5C6mVZNOvNTDvbkVUSkP9hpG5uKy9dBzJPpZvBHRWo6zy84Fh3hvTF440PXaqDVSklYCDN7N5unsFB1rViuGeXPJ+v73o1pSHYpdtbtwep3kxedRlFAU9v7zw8lEXtwJHbVDbCBDR43YLkS2DFNeAzBadCRmiNEooQzSVsaO9Bw4gLd7HEkEhmBMh9VO0EvHhg2UrVlL5R13UPvVr1J5xx2UrVlLx4YNsXlBtxNqfdbvEWSQnHY3b/zyKHabiyZTFa/NfJY/zX+M/8z8Be9OeYn/zPwFf57/GOUpR6jvrudg4/B288p4kViZQw6G0lob0gykIfjTnos02xzkJsXxkQWDt7cDI/JDAph0rS9NrUrAVhe6G3fM8JfXlnD+QCO2Ngdx8VqmLhlijEM/lADpWNMxHJ7oDeNVymumZctQm03sqNlBi72FZEMyy3Nj894y6zVM9dlGRDuL1OXy8i+n+Ptf6Y6OXsicpMeUoEOW1HTEF4yfMlv1fioci/EgLsKpueZBN1N0SDtr+178ZY+HmgcfxFlejiYjg9xf/AKVPjT9YzRQ2vtX5a0aUVAWaBg5rC7S1hDaQUPcrsvhZm9FKzCwvb8/mWHokHSTJqHNzkZ2uejet2/Y7ccDEwHSOKBjwwZqvnIf7vr6Pj93NzRQ85X7YhMk1R3xDahNhtSRDaj1emXeef4kLTVdqE0yb037LW61E1mSqU0ooyz1ILUJZchS7we8qXtop3XZ4/Fb0se6vT+Qeb4A6XiNFc8IO8S6nW5+tUVkj7505WS06iE+XoofUs0B0SIfIpYZRZhcIjC6+Hpo3TsxxSfQlnMW+ceKzFmVi0YbupdMgaWA1LhUnF4nR5sGn1o/EvoPp1XE2dcXXR+yF9dICJzLFk02nm7kXy5xM2Op3AiOEIwEh0GSJH8WqcMyjvyQavZTZhcZh8kLB5bXFBQd0t76vbi9vVnVxif/h66t25AMBnKfeQZtemSjZMLB4/WwtVrc5I3UhHRGlgW9RkVbt4uK5mFMVM0h3oyEuN3u8hacHi+5SXEUpZqG3NYv1A5FhyRJAa7al0aZbUwDJPd4qXePIbLHQ8MPHx/cNND3s4YfPh79cpt//tpS/+yhcNn97/NcONqMWqNi2m0muvTDX+jTjEPfkdiPH8fT1obKbCaupGRE6xoJk9PNxGnVdDk9VITiYDsIf9x9kWabk/xkI7fMHyJ7BJCYJ8TxskeItcMg3SftqTk8xqatXq9/FESNp5Smyk40WhWzVw4cKzIUkiRFvczmamjAfuwYSBLxq1fTam9lS5W4+EdjtMhQxKqT7fWjtRyXC2kz5CK5e+DsW1E5bkaADslx9iyu2qHKNaOD/cJxKn2eaVMWBL+wz0iegUVnweaycbz5OADt//wXrS+8AED24z8kbvasmK83kKPNR2lztGHRWShJLxnRMXQalX+Q9rDvo4LLwJINQTzoQAJLjtguBHrb+9OGzX4pAVLjxU48ruHb9xUdUtclMnZk1AKkuro63n77bX7yk5/w6U9/mnnz5hHfbwbOB5Hu/QcGZI76IMu46+vp3h+6mDck/PPXRqY/Or2rjkMbhBnglbdPZ8X8RWQYM4Y0isw0ZjI/ff6Qx/W7Z19+OZI2dnf5/VGrJP9E9CNV4euQup1ufr1FCKe/OFz2SEHJIoWpQ8qZL7rDmlrVeJ2h+UrFhOYz4LCC1sThA6KDcfplWcSZw7dlUAKkA/XReZ/bNonfaVxJCZq0NF4vfx237GZWyiymJI0sYxoqJb4M0tHq9hFnI/tjc7h9Fy4J94xbxA8DZrNFQqavO6wzeQoyvQOixwyXnfKLZrxoScnUkZwdPIuhVqlZmiWyartqd9F98CD13/0uAKn33oPlmmtGZcmBKOW15bnLI8pUKpnIg8MZRqrUsP4J3z+CBDTrfyS2GwZZltnsHy8yfNYtMcOIwazF4/LSVDX8sFzT0iWgUgl9YF3dsNuPNVEPkOx2OwcOHOCFF17g/vvvZ82aNaSlpZGbm8u1117LN77xDf785z9z7NgxnGN5ch8nuEMc7hvqdiEhywEGkeHrj+rOW3nvT8I/aeG1k5i6OBO1Ss03Fn8DGDhqRPn3Q4sfQj3Mh7TXPXv09EcKig5pJI7av991kZYuJwUpRm4pDTGDMkI/pLwVwtyww5RL584xLLP5DCJbk9Zy8UQrSDBvzdDGkMFQOtmONB0Z8YT2QPoPp32lTHSvxTp7BDAlPR6TTmQjzzVGZ8L6xlMNONxeClNNpC69Tfzw3DvQE7m5Y1pBPCq1hENlxG5IGfsyW/0xzvWI0tnkxcN/lpQy24mTm6n+0peRXS7ir7qK1C9+MabLDEY4w2mHIizDyJk3wsd+D5ZBrB9m3tzrxD4MFc1dVLX2oFOruKw4tC7U3jLb8DeW6oQE4ubOBS6Ndv+hjGuG5cKFCxw9erTP1/nz5/H2c8ocTGSm1WqZPHlyJC//vkCTNnTJKdztQiJwQG1WSVi7drT08OavjuJ1yxSXprH4+kL/c2sL1vLUqqf40d4f0dDdKwjMMGbw0OKHWFuwdshju1taRFkEMF0xFgGS+KCH66jd5XDzm60ie/SlK6egCSV7BDDpCpDU4u/RdhGSCkLaLSnLjE5y4VTrqH5nLwmrRv93Bfj1R4c71gNQNC+NxHTjiA5VlFBEsiGZVnsrx1uOU5o+cvd0T2cnXXvF2sxr1nCq5RRn2s6gVWm5pjD2GQW1SmJubiK7yls4XNnO9MzI2/HfOCbutq+dk4mUMR3SZ0LjSeF/U/qpiI6t0apJzYun8UIHVkshxt278TocoypqDqS77BA1Tp855KLhdTPLspehd8pc97tjeFpk9NOnk/3Ej5BUo68guWC9QIW1Ao1Kw+XZl0d0LKXV/3R9B10ONyb9MJfrmTfC9OtEt5qtAZrOwtYn4Oyb0HYBkiYN+5pKeW1RYdLwr+cjqziRiiPN1J1vp5Thvc9Ml19Oz+HD2LbvIPEjHwnpNcaKsAKkX/3qV/5A6Pjx43R29r07Cqa2lySJ9evXs27dOqZOncrUqVMpLCxENQZv4PGGceECNJmZuBsagg4v1WRmYly4IHovqpTXskvDGlDrtLt549mj9HS6SM0zs+bOmQNaudcWrGV13moONh6kqbuJNGMa89PnD5s5AvzibP3MGWgzRk9UqaAItU/WdeB0ewdv0R+El3ZdoLXLSWGqiZtLskN/QYNFuE9X7RZZpAV3hrSbJEmkZ2mproW6k43MlOVRa1/uQ9VeujyJnKkSF7FQjCGDIUkSCzIW8M7Fd9hfvz+iAMm2dSu4XOiKi9EXFvLvPY8DcGX+lSToE0Z83HAozfcFSFXt3Lp45L8XEOW193wXruvm+N5fs2+BTSdFmS3CAAkgs8hC44UOOjNnkdm4n+69e0fFg2wwzh9uRWYy6cldJKQNH3BnG7P4+lsGJjV24UmMJ+/ZZ1AZRxaoR4rinr0oYxHxusgkJJkJBrITDNRa7RyttrIshIwOKjUU+v5usgyVO+HCNnj7m3Drn4bdPZT2/v74B9eetyKHcC4yXXE5zc88I4ZIezxRHQ4cbcKKUO69915+/etfs3PnTjo6OpBl2f9lNBpZuHAhd955Jz/5yU944403uHDhgn/fO+64g6985Stcc801FBcXTwRHPiS1moxHHvb9Y/A3ljHKE6b9Au0w9EdyQMdanEXHtffMRasffE1qlZpFmYu4tuhaFmUuCik4gl79kXn56HWvBVKQYsRi0OB0eznbEFppxNYnezQ59OyRQvFIdUgi29QqpWE/Hr0J3iHT3QrNZznefQ1ej0RmkcWfah8p0Rpca1OG065Zg9Pj5PUKMZpjNMprCtEUam881YDTV16b4TM0ZZZPh1S+BWyRl9+VTrbO9OlA72dxLDhXKQKBKXOH7qBSaP7fZ5hzoguXGrb+9zK02WHcpESZwPb+aFBa4DOMDHVwbSCSBNf+RGSpT78mZrQNgd3lYXe56JAdbP5aMNLy41FrVdhtLtobhvc3ipszB1V8PF6rFfvx4yG/zlgwoijFbDbz6U9/mscff5xXX32V8vJyOjs72bt3L88//zwPPvgg69evJz8/sjunDwqWdevI+dnTaDL6ppNVZuH90fHKf2h54cXovWBl+Pqj3a/0dqxde88c4pNDzzyFguzx+Fs/zSvHJkCSJClAhxRame2lnRdo73ZRlGrixnkjODH7dUhbwnK6zZ4mXKCtCUV0bBz6xBcTag7g8uo5Zr8OEMaQkaIItQ81HsLlHZkOyet0+i/u8WuuZHPVZqwOK+nGdP8E+NFAEWqfbezE5oisW/f1o6K8dl3g7LWUYpEBlj1w6pWIjg+9I0esnng8Ki22LVuiNpcwHGw1tdT1FAMweeXsYbfveOMNmp99FoDfrFfxhvl8TNc3FO32dg41HgKiGCBFGminz4DF/yUev/mQ8L8Lwu7yFhxuL1kJBqakD+47NRhqjYqMSeL9E4ofkqTRYFomPovjvd0/rADJZDIhyzJdXV3U1NSwbt06rrvuOiZNmhSj5X1wsKxbx+SN75L/0ktkP/kk+S+9xNQ9u0n97/8GoPGJJ2h96aXIX6i7VXQfQcgZpNO76zj4dm/HWmZh9MsUPUeO4rVaUVksfhHfWDA3YHDtcHTaXf7s0ZfXhKE9CiR7PugTxJDJusMh75ZeYEGSZJz6RJq2jIHpWtVeTvdcicNjwpJqoLAkco3clKQpWHQWetw9nGo5NaJjdO/Zi7erC01aGoY5c/zeRzcW3xhyJjMapMcbyEn0zdOKwA/J5nCz2Vf2uLb/7DXf6BGO/3PEx1eITzZgTNAhyxKdSUW4qqpwVlREfNxwKdsiMgpZxgrMWUNnMXqOn6D24UcAMN/+SbbP03Kx4yI1tpqYr3MwttVswyt7mZY0jWxzdLJY8wvCMIwMxqpvgCkNWs7Bnl8G3Syc9v7+hOOHBAHt/uN87EhYZ/Tz589z9913o1KpeO+991i0aBG33347lZWVsVpfVLlw4QJ33XUXhYWFxMXFUVxczHe/+91x000nqdWYliwm4frrMPnKaqlf/G9S7vkCAA2P/4jWP/wxshfxdR6RMiWkAbV1562890fRsbbgmgKmLo7N6A/bNl957YrLkTQR9Q5EhN9RO4QM0os7LmDtcVGcZuKGkWSPANSaXs1AGK7aGp2atFxRgmhqUeGsrh7Z648Qb9U+DneLzpiStfkhzdgbDpWkYn6GsIEYaZlNmb1mXnMlzfYWdtSKE/BNxbEZLTIUJVEYXKuU14oCy2sKsz4kvl/cCdbIgoJAw8ieGeL9OBau2ueOi2HRUwqGLim5Ghup/u//RnY4MK1YTu5DDzM3TdxYDTZ2ZDSIdnkNYFa2BZ1aRUuXk8rWEY7niEuEtY+Kx1t+LAbYDsLWEeiPFLImJwKhZZCgN0DqOXIET2d0Oj1jQVgBUnp6Or/5zW84dOgQV111FV6vlz/96U9Mnz6dhx56CKs1sjlWseb06dN4vV5+/etfc+LECX7605/yq1/9ikceeWSslxYUSZJI+/KXSfkvkSZt+MEPaP3zn0d+QGVAbQjz1wI71opK0lhyQ/gzhUKlS/E/GiP9kcK8PHGRONvQid0VvOTVYXfx22292SN1JAFC0SrxPcyxI1lThVbDmlDo192MCl4PFeegw5OJ3iAxfVnkU+UV/IaRIxhcK3u92DYKLVf8mjW8Wv4qXtlLaXopkxImRW2NoRJxeYTe8tq1geU1hYRcyF8GyHDiXyN+DQUlM+zXIW0dXR2StamHxtZ4JDwUlwYXJHsdDqq/+CXcDQ3oiovJ+Z//QVKr/SXUsQiQHB4H22tEk8lI3bMHQ69RM8vnzxaRnm3eJyBnITht8M53Bjxd2dJNeXMXGpXEZZOHv3HuT2aRBSSwNvbQ3TF8wkGXm4Nu0iTweOjavTvs1xstRqRBmj17Nm+99RZvvfUWs2bNwm638+STT1JcXMzTTz+NyxW5j0ksWL9+PS+88ALr1q2jqKiIG2+8ka9+9av8859Dp6gdDgcdHR19vkYTSZJIu/8+Uu6+C4CG732ftr/8dWQHU/yPhpm/JjrWjvk71tZ+ZmDHWrRwNzVhP3kSAPPyK2LyGqGSaTGQatbj8cqcqA3+d35h+wU67G4mp5u5fm6E6XRFh1S1J6zxEb2T2Ivp3BieyDsimk5z2LoOgNmr8oKK9UeC4od0qPFQSIONA7EfO4a7qQmVyUTc4sX+8tpYZI+g78iRkZRHOu0uf3nturlBglB/mS1y08jMInEhbnGYkYHu/fvx2CIfZxIqZfuEYW6O7hjGyYN3McqyTN23v4396FFUCQnkPfsMap/hsOKHtLtud9jvnUjZV7+PHncP6XHpzEiZEdVjl+ZFINRWUKng2h8DEhx7GS72DSIVc8j5BUlYDOGbW+qNWlJ8hp5159tD2kcZOzKe/ZAiaiVbt24dhw8f5te//jUZGRm0trby4IMPMm3aNP761xFewEcZq9VKcnLykNs8/vjjJCQk+L/y8kZmhhcJkiSR9uCDJH/mMwDUP/oobS+/HN5B3A6o8Q2LHUKgLXtl3n3hJC01tmE71qKBbZu48zLMmoUmNfy7l2giSRLzhtEhWXtcPLddZI++Emn2CCC5CBLzwesKa+K2Uve3mbLpOHwCT/vg6402dfuPUO+ajkpyM2d1dD8L05OmY9aasblsnG47Hda+SpBoXrmC4x2nqbBWYFAbuHrS1VFdY6jMyk5Aq5Zotjmoae8Je/+NpxpFeS3NxPTMIC3jM28CSSUGT7eWR7TetPx4VCqJni4PnuI54HaP6kiIc3tEmXiKaS9kDD4epOW55+j4z6ugVpP7s6fRFfR6h81OnU28Np4OZwenWkemYRspijnkyryVqKTodmjPL0gEotARmbMA5n9aPH7ja32aQrYE6I9GSmZxIhBOmU2MPunavmNMGgJCIeK/pEql4nOf+xznzp3jW9/6FnFxcVy4cIFPfOITLF68OBprjBnnz5/nF7/4BV/4wheG3O7hhx/GarX6v6qqxmYGliRJpH/9ayTfcQcA9d/5Lu3/COPOse4IeBxgTBFzwIKw+5VyKo74Ota+EP2Otf4oqfyx6l7rz3CdbM9vr6DT7mZqhpnr+gtnR4Ik9Y4dCcNV25SoJz7FAJKKDlPeqDkgH94jurKmTWrBlBBdM0G1Su33QAq3zOYfTnvlGn/26KqCqzDrQu/IiSYGrZoZWSMvj7x+bJDutf6Y06HQ97mJUKyt0alJzRO/K3upMHUdrfdUa10XLQ0uVLgpKrSDemAWo3PTezQ99VMAMr75CKalfW/yNCoNizIXAaNbZpNlOSb6IwXFMPJUXQc9zggzY2u+C4YEaDgG+58HRHv/zvO+9v4QxosEIxxHbQDT4sWg1eKqrsY1TnXMUQt1TSYT3/ve9zh79iy33347kiSxf3/vCa49hne3jz76KJIkDfkVuBaA2tpa1q9fz0c/+lHuvvvuIY+v1+uxWCx9vsYKSZJI/8ZDJN0u7gTqvvVt2v/179B29s9fCz6g9szuOg6+fRHwdawVxdZYT3a7/SlW84pxEiDlKY7a7QOes3a7eH676O75ypqpUREnAyP2Q1JOSlZL0aiU2dobuylvFCXFkhVDZ15HilJmO9AQ+lw2R0UFzvPnQatFc/ki3qoQg1xH0/toMBQd0uEwhdqddpfftC9oeU1hts+NOArdbH4/pNRpgGiekPtNRogFZfuF836e/jCGgoHZI/vZs9R+9asgyyTedivJn/jEoMe5LFtkJXbWjl7m61TrKRq7G4nTxLEka2SzLYciO8FAhkWP2ytzrCZCna8pFVZ/Szze9P+gq4X9F9rocXlIj9cPbAQIA8UwsrmyE1cIgZzKZMJYKm6GbD6T4PFG1N0as7OzefHFF9m3bx+rV/eK1e69914++tGPcjwGxlBf/OIXOXXq1JBfs2f3emrU1tayevVqli1bxm9+85uoryfWSJJExsMPk/TJT4IsU/fII1hfCcELxT9/bfAPcd15K5uUjrX1setYC6Tn8GG8nZ2oExMxzJkT89cLhbm+KdrlTV102vvq6X63vZxOh5vpmfFcMzuKv5/ClYAETaehI/Rp6pkBk9ht27fjdTiit6ZBOPJ2GaCiQL+f5HmLYvIailD7YONBvHJoF2dlOK1p8WI2t+3D5rKRY87xB1tjhb+TLUz9SGB5bVrGMBetGdeDSguNJ6AxstKS8n5q7o5DZTTiaWrGfjK25SpZljm3X2hgphi2Q27fv5m7rY3qe+7F292NcckSModoqlF0SIebDtPtGmHXV5go5bXLsi9Dr47+eBZJkvxz2SLSISks/CykzxLWIpu+z+YzynDa8Nv7A4lPNmBK1OP1yjRWhKbT7dUhjV5AGw4xs7MuLS1l48aNvPLKK0ybNg2v18s///lPSkpKuPXWWzl1KnofutTUVKZPnz7kl8EgykQ1NTWsWrWK+fPn88ILL1yyjt6SJJHxrW+SeNutIMvUPvwI1ldfC76DLPfNIPVjQMfajbHrWAtEmRxuuuKKcWM5n2LWk5MYB9Dnjq2928nzOy4AQnsUtewRgDFZGP8BlG8OeTflrs2aUIy3u4fuGHaE2G0uTu8RWY2SrANizTFgRsoM4jRxWB1WzrWdC2kf/3DatWv6iLOjrQcJlxKfwPZ4rRhfEyqv+brXrh+qvKYQlwSTfXMOI8wiZShC7eou9MtEK7Zty+aIjjkczdU22hu6UeOkUL9XdFv5kJ1Oar78FVw1NWjz8sh5+qdI2uAi4rz4PHLMObi97ogd2UMlWsNph0IR/B+8GIUASa0RDtsAB16k9pQoR66MQH8EvsG1/rEj7SHto+iQunfvRh4ndjuBxPzsccMNN3Ds2DH+93//l9TUVLxeL3/729+YM2cOn/zkJ2P98n2ora1l1apV5OXl8eSTT9LU1ER9fT319fWjuo5oIUkSmd/+Nokf+xh4vdQ+9BDW118ffOOW89DdDGo9ZJf0eSqwYy0l18yaO2fErGOtP3790YoxGrgaBKXdP1CH9Ny2Cmy+7NHVs2KQXfOX2ULXISVnm9Ea1HjUerpMWTEtsx3fWo3bLZGqOU/OtBDmQo0QrUrbq0MK4SLnbm6m5/BhALqXzGJPnciU3lB8Q8zWGCqTUowkGrU43V5O1YV2V91pd/k9aa4drrymENjNFoHgNT7ZgNGiw+uVcZSI92Osx44o5bUC/QF0FouwL0Bkluq////o3rcPlclE3i+fRZOUNOSxJEnyZ5FGQ4dU31XPqdZTSEisyI2dREDJIB0aYUfkACZd7ivNytzV+UvUkpflkyM3e80KU6htmDEDdXIy3u5ueo4cifj1o82o3F6p1WruvfdeysrK+PrXv45er8fr9fKXv/xlNF7ez4YNGygrK2PTpk3k5uaSlZXl/7pUkVQqMh/9Lokf/YgIkr7+EB1vvjlwQ2X+WnYpaHrTwP071q67dy46w+gYNboaGnCcPg2S5E+1jhd6hdrtALR1OXlhh9Ae3bc2itqjQAKF2iHqPlQqiUzfmIj2hGI639sUE82I2+Xh6Huiy6jU9ApSXmzKawpKmS0UHVLne++BLGOYM4dXO3ciI7M4czG58bkxXWMoSJLkn8sWqg7p3VMNOD1eikMprylMuwY0cdB6XjRjjJBAw8jO5KmAzz6hpWXExxyKPuW1uO0ie+TLmLX98U+0/+1vIElk/8+T6CcHbywJZDR1SEr2qCS9hGRDbDKqALNzEtCoJJo6HVS3hd8ROSjrvo9LHccC1TnuSztIgjH89v7+KJrI+vNWvN7hAzlJpcJ0mfh7jcexI6Oaf46Pj+dHP/oRp0+f5tZbbx3Nlwbgzjvv7DNgN/DrUkZSqch87DESbrkFPB5qvvo1Ot56u+9GSnmtn/5o939Gt2MtkK5torxmmDMHzTBWC6ONMnLkSJW4E/rttnK6nB5mZlm4elbGULuOnLzFoDVBV5PQk4SIckHrSJ4iNCPHjkV9aWf3NNDT6cKsbqbYsFOsNYYECrWH+3zafOU185oreaVMaPHGWpwdiOJjE2qA9PpRkdEesnutP3ozTPXZGUToiaSU2ZqavOhnzgBZxub7rEabhgsddLbY0ahdFOj3Q64YWGzbsYOGH/0IgPSvPkj8qlUhH3Nx5mJUkopyazn1XbGtDoxGeQ1ER+SsbF9HZATO7H2wZPOfBFHF+WzPS2CP3Og5JceE1qDGaffQWhuah9Z4HjsScoD0t7/9LWovmp+fz5///Gf27Nnj/1l1dTU7d45PodalgKRSkfX975Fw002+IOmrdLzzTu8GgxhEntldx8G3RMfa6k/HvmOtP0rqfrx0rwUyxyfUrmnv4Tdby/2da/etnRKRkHFINHqR+oawymyZvru2jjThgBztMpvslTn8rmjDnWt8FbXeCL7XihWzU2ZjUBtotbdSbg3u7+OxddG1S5RSKudlUG2rxqQ1sbZgbUzXFw7hCLU7Aspr14VrQKqU2U78K+QM5GAo54H6cqvf2T5W7f5l+0T2qNB4BK3khJyFOCoqqLn/AfB4SLjpJpI/+9mwjpmgT2BWiuiE210XO02ezWljT704r8Y6QILedv+o6JAAp9vL95tXUe7NxORqEWNIIkSlVvnfPyG3+/t0SPYTJ3C3Ref/Fi1CDpA+/vGPM2fOnKgGSgsXLqSyspJ77rmHyZMn8+6770bt2B9EJLWarB/+AMuNN4DbTc39DwhvmO5WaD4rNvINqK0v7+1Ym7++gGlLYt+xFojsctHlC4jHm/4IYEdZs98A8odvnMLu9qJRSXhCSBtHxAj8kDILE0CCbtmEQ2ehc1N0x45cPNFCW303Oq2XWXHviLv8GA9+1aq1zEubBwzth9S1fTuy04m2IJ9/ucV26yetJ04TF9P1hUOJr1x7oaWbtq6hhagbA8prUzPC9G+achXo4sFaBdUjH2Cc7jOM7O5wIi3wdRlt34Ec5QkJXq/MuQNCfzRFvQGQ8JgnU33vf+Pt6CCupITM7z02ohsSRYcUyzLbztqduL1uCiwFFFoKY/Y6CqVRmO0XyIGLbbQ7VfxUIyY0sOdX0BieOetg+P2QQtQhadPT0U+dCrLsvyaMF0IOkKZMmcKJEye49dZbmTRpEo888ggnToReBgikq6uLP/7xj1xzzTVMnjyZ3/zmN3g8HiaHWGOeIDiSWk32449jue46cLupvu9+Ov8hDMFInQqmFDpb7bzxS9GxVjgvlaWj1LEWSPfBQ3i7ulAnJ2MIsGAYD7x1vI57/nhwQDDk9src+6eDvHV88GGPUUERal/cCS57SLvo4jSkZIuLqTVpCs6y8zgvXozakg6/I7JHM7PPolP1QO7oGMAuyBTllqGE2kowGLd6JRsqRcZ0PJXXABKMWorSxBiG4cpsyuy16+Zmhx8YaONg+nXicQRltkDDyHZ9DuqkJLydnX4hfLSoK2un2+pEp5PJ1x9CTplGzSOP4qyoQJOZSe4vfo5KP7K2eWUu2566PSFbRYSLv7yWuyp2WeUAFKH2yVrrkHMiQ0UZL6Kdtg6mXQteN7z59YhE/hBoGNke8j7jtd0/5ADpxIkTPPnkk6SkpFBZWckTTzzB3LlzmT59OnfeeSfPPPMMO3fupKysjJaWFrxeL11dXVRVVXH06FH+/ve/89BDD7F69WrS09O54447ePvtt3G73axfv55Dhw7xiSDmXxOEh6RWk/3Ej7Bcew24XNQ88QK2Wj3kLcFpd/P6s0f9HWuxnLE2FF3bfOW15VcgjSOrBY9X5rFXTzLUKeKxV0/GLpOUNh3is8Bt7x0sHALKSal7iiihRqvM1nixg5qz7ahUEnN1vuxxXvTN8AbDP7i2Yf+gOiTZ5fJPnD82PY4edw+TLJP8mafxhCLUHuruX5TXmgG4PtTutf70KbON/CKa4SuTNFzoxOSbjxjtMluZT5xdlN2AWnLTeCSBru3bkeLiyHv2GTRpI++qmpc2D6PGSKu9lTOtZ6K1ZD9ur5utNeIcNhrlNYDcpDhSzXpcHpkTtZHrhZTxIiunpcHVPxQdzhVb4NR/IjpuRmECkkrC1uagszW0m7zesSPbx5UmOOQrk0aj4YEHHqCiooInnniCvLw8ZFnm7Nmz/OEPf+DLX/4yy5cvZ9q0aaSnp6PVarFYLEyaNInS0lI+/vGP8+STT7JlyxZ6enpQqVTccsst7Nq1i9dff72PkeMEkSNpNGT/+MfEX301sttL9fZkOlvSRMda9eh3rPVH0R8pGofxwt6KVuqswT/UMlBntbO3ojU2Cxjh2BFFh2RNFFnYaJXZDr8rxupMLkkgvtM3x88npI01c9PmolPpaO5p5mLHwIxY9/79eDs6UCcn8xftIQBumnzTqNzNh4uiHxlKh/TuSVFem5xuZmqo3Wv9KVolfJG6GuHCyN2JlcG19eVWzCtWAtENkLweL2UHle61HbSfN9K6XbzXsh9/HMPMmREdX6vW9o4dqYt+u//hxsNYHVYS9AmUpJdE/fiDIQwjEwE4eLE9omPVW+2cru9EkmD5lDRILoTLvyKefPub4By5yaZWrybNl4EM1Q/JuHAhkl6Pu7ERZ1nZiF872oR9624ymfja175GeXk5b775Jp/5zGcoKCgI2h0W+GUwGFi5ciU//vGPuXjxIn//+99ZsmR07kY/iEgaDTk/+n/E5zmQvRJb/mmn4kgzKo006h1rgbjq6nCcOwcqlf/OYbzQ2BnaHU+o242IEfghKRmktm4dHpWWnoOHIhY8drbaKTsgLmIlM8R3UqeJC/AooFfrmZMm3NUHK7MpWTLpisUcaD6ESlJxQ9HYex8NhjJy5EhVe9D2Z395LZL5fhodzLhRPI6gzJZZ6HPUrrJhWLIMVCoc58pw1dSMfG0BVJ9pw25zYTBrST7/BnUHxOulfvGLWNZHZ7hwLP2QlPLaipwVaFSjd5NZGiVHbaURYG5uIskmnfjhFfdDQp7QsG3/aUTHV/yQ6kMUaqv0eoyLREBrG0fdbCP+y6pUKq6++mquvlq8mWtqati5cyfV1dU0NTXR2tqKwWAgLS2NtLQ05syZw8KFC9EO4YI6QfSRmk6Qs7SFXfE3cjH9KgAuX6oZ9Y61QBT37Li5c4c1fhtt0uNDCxpD3W5EFK0S3+uPgq0JzMOXGuJThMFfd4cT++zlmI5uwvbeZhJv+dCIl3FkUxWyVyZ3ehJpDl/aPcb+R/1ZmLGQAw0H2N+wn49M/Yj/57Is+4fT7psqMkbLspeRYYqRBUOETMuMx6BV0WF3U9HSRXFaXwG2tcfFtnOivDbs7LXhmP1hOPiSKJVc+6QImsIk8P3UalURV1pKz4ED2LZuJem22yJbH/i9jwrz3dT+Tgteifirryb13nsiPraCEiAdbDiI3W3HoInOZzZwOO3q/NXDcDIwkQAARudJREFUbB1d5vs7ItsjOo6iP1o1NeDcojPC1T+Al2+HHT+Dkk+IzNIIyCxO4MimKmpDFGoDmK64nK7t2+nasYOUz9w5oteNNlETf+Tk5PDRj36U+++/nx/+8If86le/4umnn+ab3/wm//Vf/8WyZcsmgqOxoGo3DZ6pHM0Qw20LLr6N7skv0xXDkRTDYVP0RyvHV3kNYHFhMlkJBoIVaSQgK8HA4sIY+jaZ0yHDN5euIrSyhiRJvTqk6UIzEkmZzdHt4uQ2MROuZG1+b1fUKAm0FRQ/pP31fXVI9pMncdfVIcXF8QejMEYcb+LsQLRqld86YrCLm1JemxJJeU1h0hVgSoeetrDG1gQSaBhZX96BeaWvzLY58jKbx+Wl/JDIYMS/8zwehxp9ho7sHz0eVT1ioaWQDGMGTq+Tgw0Ho3bcio4KKjsr0aq0flPK0WJObgJqlUR9h53a9pEZRro9Xn8wPmC8yIwbxVxIjwPeDj7zbjiUkSMtNTYcPe6Q9jH7/JC69+3Da49hhj4Mxo86doKY0Hn2OG+0fwOPrKFwbjJz863IdjtVX7iHrr17R309XqeT7p0i5T3e9EcAapXEd28Q+of+QZLy7+/eMNNvARAzileJ7yPwQ7Ka8gHRETLSE82J7bW4HB6SskzkT7dAjc/ROsYGkf2ZlzYPjUpDQ3cD1bZq/89tvvKaY+EMql2NWHQWVueN7t18uPQ6ag8sj7xxTJTXro2kvKagUsMsX+YwgjJbhs+hvb7C6g+QuvbsifjiVXmqFWePGwM9mM4dQG3wkPffV6GKi641gyRJMXHVVspri7MWY9KaonbcUDDqNMzIEgH0SLNIh6ra6bS7STJqmeezoPAjSXDNj0GlgTNvwLl3Bj3GcJgS9FjS4kCGhvLQski6yZPRZGQgOxx0HxjeQX80mAiQ3sc4e1y8fuhyerxJpKSrWPvZ2eT+/GeYli8XQdLnv0D3/tEZ6KjQc+AA3u5u1KmpGGbOGNXXDpX1s7P45afmk5nQNyWfmWDgl5+az/rZozCaJlCoHWJXhxIgNTZ6UWdnIff00LUzfP2Fx+3l6CbfWJGr8pCaToKrG/QJQoM0isRp4pidIho4Av2QlPLa7smihfuawmtiMkk9mvQKtdv7/Nza42LrOcUcMkrvLaWb7fTr4BpZpiHQMFI3ZTKazExku53uAIPfkXBun/A+SqvahUotk3dFK9rZsblZ8uuQoijUVgKk1bljE5Arzuwj1SFtPiPKa8unpA1+o5c+HZZ8QTx+8yFwO0b0OuH6IUmSNO5ctScCpPcpslfm3d/sp8WZT5yqneu+OB+dQYNKryf3f3+B6fLLkXt6qPyvz9N9MHrp5+FQ9EfmK8ZXe39/1s/OYvtDV/J/n1vKz24t4f8+t5TtD105OsERQMFlou22o6bX5HMY0vLiUWtV2LtcSFdcC4yszFZ2oJGudgdGi46pizKhypdpzF0AY/A385fZfEJtZ1UVjjNnQK3mz8nid/OhySPXWo0WSgbpdH0nPc7eFvx3Tzbg8sjRKa8p5C4Sgltn54izAOkFPsNIqxNbm6O3zBbB8FqX00PFQTH+I73pAJmL2olLdUHuwhEfcyiWZi1FQuJs21mae5ojPl6rvZXDjYcBWJm3MuLjjYT5BYlAaM7sg7HFJ9BeOXUIbePKh0SZtvU87H52RK8zEj8k8xW+AGmczGUbv1eoCSJiz3/KqTjVgwoX1057jfh0i/85lV5P7jP/i+myZcjd3VTd/Tm6Dx0alXXZto5f/VF/1CqJZcUp3FSSw7LilNiX1QLRxkGBuPsNtcym1qhILxAX2K7JohRme28zsid0PxxZljnkM4acszoXtVbVGyCNkv9RfxQ/pIN1++nas5emX/wCANuMPFp1TiYnTmZmSmRt4aNBVoKBDIsej1fmeICPzevHFHPIKAbfKlXEZbZAw8iGQB3Sli0j9qo59/oh3B4Jg72FwnXTSJzUDfHZYAlzrEqIJBmSmJ4sxuJEo5tta/VWZGRmJM8g0zS60wcUFMPI4zUdONzheV01dto5XtMBwIqhAiSDBa56TDze8hPoqA17nVmTEwFoqOjA4wnNrNO4bBlIEo6zZ3E1NIb9mtFmIkB6H3JmTz0HfDPWrkx4hsyZeQO2URkM5D7zDMalS/H6gqSeIyOfAh4KzuoanOfPg1rtn+A8wRCMwA9JuWtrlVNRxcfjaWmh58jRkPevPt1GS7UNjU7F7BU5vh8qGaTR7WBTKEkvYekZeOTHlVTecQcd/3kVAHVZJYvPeLl58s3j0vuoP5Ik9RpG+u7+Rfear7wWDf1RIEqZ7ezb4Ogc0SEUw8j6CiumpUuQdDpcNb7PcZi4Gho48bJoDsnVN5K+TmjlYu2rpZTZojGXzV9eG0O9W36ykWSTDqfHy8najrD23eYzIp2dYyEtfpiS9NxbRVOGqws2fDvsdSZlGNGbNLhdXporQxtcq0lKwjBLzNFr/eMfsb72Ol179oZ1kxdNJgKk9xn1FVbe+4NvxlrqJqbFbYH8pYNuq/I51hoXL8bb1UXlXXfTE4NJ8AqKe3ZcSQnqhLGzGbhkUPyQLmwH99AzvBQyFf+Rig7/EGBbGGU2ZSjtjMuyMZi0wmag7QIgxawMMhye93Zw/z/dpPS7xhvsXh78p5e1FVEqS40Cig5JGTnyjq+8NjXDzJRoldcUsuZBcjG4e+DMWyM6RKYi1C7vQGU0Ylzsy0yGaRrptdup+OL9NJuFkWnJAx9BqvOV9nNi+75ShNq7andF5NLs8Dj8Yu/Rcs8ejD6GkWEKtTf7ymurpqYPv7FKBdf+BJDg+N/hQnhlL0kl+f2QQjWMBNBkixuF1t/+ltqvfpXKO+6gbM1aOjZsCOv1o8FEgPQ+QsxYO4bH7aVwloWl6v8VTwxRGlEZjeT96pfELVyA12YTQdLxkc3YGw6//mjF+C+vjQsy5oAxFZy2kIePKg7IbfXd6JZfCYQ+dqSlxkbliVYkCeatyRU/VLJHadPBMPpBrezx0PDDx4HgXYXdT/5izO4ww6U3g9QOwOtHRekiKt1r/ZGk3izSCMtsilC7uaoTt8szIh2SLMvUffNb1DRq8Kp1JKRoSZ+aDtW+TqUYZyZL00sxqA009TRR1j5yl+Y9dXvocfeQYczwl+3GipEYRnq8sj9bOaC9PxjZJbDgTvH4ja+BJ7SWfYVwhdodGzZg2zBQM+duaKDmK/eNepA0ESC9T3A5PLzxy6P0dDhJyTGzdmUjkiSLriPj0J49KqOR/F//mrgFC/B2dFB5113YT56M6vq8Doffe8m8YnlUj/2+RaXqNY0MscwWZ9aRmGEEoDN7Lmi1OCsqcJRXDLuvkj0qKk0jIU0co1d/NPrlNW9PDx2vvY67vn5IXyp3fT3d+8dHW/BwzMlJQCWJcTVnGzrZXuYzh4xFgAS9AVLZu8IXKUziUwzEWXR4PTJNFzsxrxIBUvfBg3g6Qyvbtfz6N3S8/joNGeI9NGVpDlJnHXTWgqQWF+EYolPr/IOPI9Eh+YfT5o3OcNqhKPVlkA6HkUE6Ut1Oe7cLi0Hjd3YPiTXfAUMiNJ6A/c+Hs8w+Qu3hsneBN0MDnxT7Nvzw8VG9GZoIkN4HyF6Zd184SXOVjbh4LdfeOwddg6/enh+asFZlMpH3618TV1qK12ql8jOfxX76dNTW2L1/P3JPD5q0NPTTx/bu65JiBGNH/O3+tQ5MSklkmDJbl9XB2b2i/bpkbX7vEzEyiPTYunCcP49txw7a//FPmp59lrrvfJfKz3+e8ptu5uySpZwpnU/tQw+FdDx3U1NU1xcrTHqNv1Ptgb8eFuW19BiU1xTSp0P6LPC64NRrYe8uSVKfMpsuLw9dURG43SF1GnW++y5NTz+NS2Ok1Sekn7IgA6p9lg3pM0EXey+hZVlCh7SzbmR+SF7Zy5YqUVYcD35b83ITUUlQ095DQ0dovlSbfcNpl09JQ6MO49JvTIYrvyUev/f/oCv0bsD0AgtqjYqeThfWxqHtJrr3H8BdXx98A1ke9ZuhsZlUOkFU2fNqOeWHm1BpJK75wlwsKXFQ6QuQ8gbXHw2G2mwi77e/oequu+k5coTKOz9D/ksvYpgWufdNl697zbRi+ZjffV1SKELt2oMiAxDCHLSsogRO76yj7ryVqWuupGvHDtr//QqazCw0aWkYFy5AUqv77HP0vWq8Hpms4oTeMTQeF9T4dCIhGkTKsozXasXV0IC7vh5XfQPuBt/3+npcjQ246xvw2kITbaLTgXN4/VUkk99Hk7eO13GxVQwCPe4T2NZa7bx1vC52FhKzb4FNJ4SOZP6nw949syiBiiPNNFSIMol5xQpay8uxbd6CZf36oPvZz5yh5usiwO267r+QrRIpOWaSs01wwhcgjdLgY0WofaD+AE6PE506vPErp1pO0djTiFFj9A/BHUtMeg3TMi2cquvgUGVbSO+dkNr7g7Hws2J8Tf0x2PgY3PiLkHZTa0Vnbd15K3Xnrf7s9mCEepMzmjdDEwHSJc7ZvfUceNPXsfap6SKl6bJDra9tP4hAOxhqs5m8535L5V13Yz96tDdImjo1onUqmgVlMvgEIZKQA6lThRdSxVaYedOwu/gzSBc6kHPER9xZVkbtV78KgCYzk4xHHsaybp14zu7mxFYxhLTkqoDsUf0xIfA1JEDKFGSvF09ra2/Q0yCCnT4BUEMDcohOyyqLBW1GBprMTLSZGWgyMtFkpKPNzESTkYE2MxPJaOTEquWomtsHTXd7AW9aIsaFo3OhjYS3jtdxzx8P0r/QYHO4ueePB2NnQjr7Ftj0ffH+sTWKUTZhoOja6sutyLKMedVKWl98Edu2bche76B+Zu6WFqrvuRe5uxvjsqWczVwE1namLPK9tqI/irFAW2FK4hRS41Jp7mnmUOMhlmSFZ1mhzF67POfysIOrWDE/P5FTdR0crGwf9n3TYnNwtLodCEN/FIhKDdf8BF5YDwf/AAs+AznzQ9o1a3KCL0BqZ8ZlwdcZ6k3OaN4MTQRIlzD1FVY2/d7XsXZ1PtOW+t58dYfB4xQC3+SisI+rjo8n/7nfUvnZu7AfP07lnZ+h4KUX0U+ZMqJ1OisrcV64ABoNpsuWjegYH2iKrxQB0vn3QgqQkjKM6I0aHN1uyp56Hku/5xXBIz97Gsu6dZzaWYej201Cio4MuYaOtw+JoOfQBtwnEnHJqbjfWYersRFcrpCWrE5OFkFORgaazAxf0NMbCGkz0lGZhi+teLweXlyr4q6/iGAo8FLsRWiQXlyj5scSqAc/xLjA45V57NWTA4KjQB579SRXzcyMvt9WchFkzxdZyJOvwOLPhbV7WoEFlUqiSzGMnD8flcmEp6UF+4kTxM2Z02d72emk+stfwVVbi7Ygn+Tv/ZiaH4ru2MkLMsDr6b2BG6XOSEmSWJa1jFfLX2VX7a6wA6Tx0N7fn9L8JP60pzIkw8jtZc3IMkzPjCfDMsKhvQXLYO7H4ehfhWD7rndCMo4VnWyV1A8j1DYuXIAmMxN3Q8Pg0wMkCU1GxqjeDE0ESJcogR1rk+amsvSm4t4nlfJa/lLRyTIC1BYL+b97TmiRTp7k4p2foeD3L6EvLh5+534o3WvG0lLU8ZdOS/a4oWg17PlVyEJtSSWRWWTh4vFWrPGFWDou9t3Ad/Kp/drXaXzudxwwfwx0SWTs+j2V/9jW72hGoNv3hThJpab2yfr0+Z6ZiSY9HZU+OmM/DjYeZENhB+23qLjzHS+pAbrg1nh48SoVewut3Np4cFyUPoKxt6KVOmvwzJqMEG7vrWhlWXFK9Bcw5yMiQDr+j7ADJK1OTUqumabKTurLrUxZmIHp8svp3LAB2+YtfQIkWZape+wxeg4cQGU2k/fss5w970CWhTN3Qloc1B8X3jq6eJEdHSWWZYsAaWftTu5bcF/I+9XaajnTdgaVpGJ5zvhpMFFa/Y9WW3G6veg0wYMVRX+0alp42cMBXPU9Mb6mZj8c+TOUfmrYXZSMdlt9Nz2dTuLiB8/ASWo1GY88LG7eJKlvkOS7jmU88vAAeUAsmQiQLkH6dqyZuOqzM5EC7zqrfLOSwiyv9UedkED+87/j4mc+i+PUKS7eeScFL/0efVFhWMexbbt03LPHJZMuF8Mj2y5Aa3lIWcEUnY2LgDWhmLyazYNuIzsc1NSp6ZmVhNZlI6t5P5rsLLQZmSLrU/M2GnU72qsfRDP3ShEApaUhabVR/e8NRVO3OLHvnaZi3xSJGVUySTZoM8OpPAnZ975XthuvNHaGVnYMdbuwmfUhePubULkLrNWQkBvW7plFCX0CJPPKFSJA2rKFtC990b9d2+9/j/Uf/wSVipyn/gd9cTHn/iXKaVMWZYiNFOF/Tqko3YwSig7pdOtp2uxtJBmG1/NBb/aoNL2URENibBY3AgpTTSQatbR3uzhd38Hc/oNnfXi9Mlsj0R8FEp8JK78O73wH3n0Upl8PcYO/roLBpCUpy0RbXRd1560UlQRfg2XdOvjZ0zT88PE+gm1NRkYfWcBoMdHFdokhe2XefTGwY20uOkNAnCvLIxJoB0OdmEj+879DP20anqZmKu+4A0fF8C3jCl67ne7dImAzLZ8IkEaEPr63iyzEbrYUvUi1tCcUBS3ryEBN6a0AzLmqkFmH9jFl0yYm/d+fyf3eN8iYWUPKtG4st34O4/xStNnZoxocAaQZe0+mskriZIGKHbNUnCxQ+YOj/tuNR9LjQytrhLpd2FiyxXw/gBP/Cnt3RYfUUCGE5YqXmf34cdr+7y907dlL55atNDzxYwDSv/Y1zCtWYGuzU1cmSiuTF/iyFzU+gfYo6Y8UUuNSmZo0FRmZPXWhD9wdj+U1EGVDpV3/4MXgZbbjtVZaupyY9RoWFIQWFA7JknsgZQp0NcHmH4W0S9ZknyN7CH5IlnXrmLzxXfJfeonsJ58k/6WXmLzx3VEPjmAiQLrk2PtaBeWH+nWsBdJ8DnpaQWMQTrpRQJOURP4Lz6OfMgV3UxOVd9yJ8+LF4XcEuvftQ3Y40GRmop86Mg3TBAgdEoRcZsuYnIzk9eDUJ2LXD+6DZU0ops1pRq1RMe/aaX1T14pBZPpMMZdpjJifPp8MYwZSECckCYlMYybz00MTjI4ViwuTyUowDOnnlJVgYHHh0J5lETH7FvF9BKaRGYXiAtdUKQwjuw8dAo24Mat/7DEq77iD6i98AbxeEm65heQ77wDE4GMQF0hzki/48xtEjr4zu7/dvza0dv9OZyf7GkTGayzds4PRaxjZHnQbpbx2WXHKkGW4kNHo4JonxOO9v4GG4T3zeg0j20N6CUmtxrRkMQnXX4dpyeJRLasFMhEgXUKc3VvP/jcuALBa6VjrT5Uve5Q9X7yRo4QmOZn8F19AN7kYd2MjF++4E2dl5bD7+bvXlk+090eE4odUsTUkN1vL0oXEO0SK2powSElUkqiafB0A05ZmYrT0e6+MoUFkIGqVmm8s/gbAgCBJ+fdDix9CPYqlmpGgVkl89wbhAxTMEfy7N8yM7UDkGTcJY8baQ9AS3iw1S6qBuHgtXo/Mhb9vFDoRd7/3oU8zYrricv9n/dw+4a01ZaGvvGbvgCafv9ooZ5Cgt8y2qy60sSM7anbg9ropTCikwFIQ6+WFjTK49lBV8AyS0t4fsf4okMlrRHlN9sCbXx9cVB2AMnKk8WInbuel4XoPEwHSJUNgx1rpunymLw3SLlmp6I+iP3ldk5JCwYsvoisuxl1fL4Kk6uoh97FtndAfRYXsUtFub7f2dgANgaRWk+1r/e1I6CeslyS649JpihcC2ZK1A4cZx8ogciSsLVjLU6ueIt3Y9wSfYczgqVVPsbZg7RitLDzWz87il5+aT2ZC3zJaZoIhdi3+gZjToMhns3Hin2HtKkmS3x+r4m/vDXlBbPzxT5A9HqxN3TRe7ESSoHi+729XewiQISEP4jNG8r+IiPkZ89GpdNR31VPRMbxUQGnvH4/ZI4B5eQlIElS19tDU6RjwfHu309/lNqL2/qG4+geiUnFh27BlW0uqAWOCcGRvvDiywcljwUSAdAnQ2WrnzcCOtZuH6CSrip7+aDA0qakUvPgCusJC3HV1VN5+B87qmkG3dV64gKuyErRajEsn2vsjQqWGQl+QGWKZreDKuQBYU/p2CmkyMmj9+LcAiUlzUkjK7Ndu73aGbRAZa9YWrOXtD7/N81c/zxPLn+D5q5/nrQ+/dckERwrrZ2ex/aEr+b/PLeVnt5bwf59byvaHrox9cKTgn80WXoAEvXPZ2qTUIbdT3I6V8lrOtKTeDKWiPxqjwcdxmjhKM0qB4ceOuLwuttWIrs7xpj9SiDdomZouOoMHa/ffXtaMV4Yp6WZyEuMGPB8RSZPg8vvE4w3fAmdX0E0lSQq7zDYemAiQxjlKx1p3QMeaKlgavqsZWnzDGGN4YdOkpZH/4ovoCgpw1dZSeccduGprB2ynZI+MCxagNsd+nMD7HkWHFKJQW7mg2eKyyHruRb/gMeffb3C+WuhH+hhDKtQfA49DuHanTI7K0qOBWqVmUeYiri26lkWZi8Z9WS0YapXEsuIUbirJYVlxSmzLav2Zfj2otNB4MiTtSCCKULvDMmnYbd1NTZzbJwIkf/cajLpB5GBcli3E6rtrdw+53aGGQ3Q6O0nSJzE3de5oLG1EzC9IBAbXIfW298eoieGK+yAxHzpqYNtTQ26qlNkU0f6lwESANI6RvTIbh+pY64/S3p82fdgBtZGizUgn//cvoS3Ix1VTw8U77sRVV9dnG8X/yLx8/HiHXNIoY0eq94Jj+DS1OUlPfLIBWYbO1Cl+wePx7fV4XF7SC+LJnpI4cEdFoJ27eMQ+WhOMU+ISYcpV4nGYZba0fAuSBA59EnZ94pDb2rQptNTYUKmk3rZuWR7zDBL0CrX31u/F5Q1ufKqU11bkrhjXwXhpnk+H1C+DJMtywHiRKOqPAtHGwdU/FI93/nxIbZu/k63ciuwdXv81HpgIkMYRXq9MzZk2zu6rp+ZMG3teLee80rH2+TkDO9b642/vj77+aDC0GRkUvPQS2rw8XFVVIkhqaED2eLBt20bXLpHCNl1x+ais531PcqFIa3vdcGF7SLsoJm1Ke63b6eHYZqEbK7kqf3Dh/DgRaE8QI/xltn8MK64NRKtXk5prBsCaEMSLS5LQZGZSbRdBUd6sZAwmnzWEtRpsDcLTK0odtiNhWvI0kg3JdLu7Odp0dNBtZFn2B0jjtbymoGSQjlZbcXu8/p+frOugqdNBnFbNosIotPcHY/r14ubN44S3Hwm6WWquGY1ejaPbTWtd8HLceGIiQBonnD/UyO8f2cm/f3qId353kn//9JB/xtrqT04na3Li8AcJdNAeJbSZmRS89CLa3FxclZVc+MhHObdqNVWf+y/wiG6Fqs9/no4NG0ZtTe9rlCxSiGW2rH4B0pk99dhtLuKTDRSXBkm7jyOB9gQxYOp60MQJ09G6w2HtqpRtOyyFA7OLvn+nP/wwZQdF5sLfvQa92aOMWSLzMEaoJJV/1Eiwdv/z7eepsdWgU+n8nW/jlaJUMxaDhh6Xh9P1vZnlwPZ+vSaGGTBJgmt+LALfs2/B2bcH3UylVpFZKMq0dSH4IY0HJgKkccD5Q4289evjdLUP7EIA0BpCeHO77L0nu1HKIClos7MpeOlF1ElJuJua8PSbtuxuaKTmK/dNBEnRIEw/JOWCVl9uxevxcvjdKgDmrclDpR7k499RB9YqkFSQM/4HwE4wAvRmmLZePA7TEynD937qmbMaTUbfLjRNRgY5P3sa58xltDd0o9aqKJwbIOiuHhuDyMFQymzBdEibqzcDsCRrCUZt8An04wGVSqIkf2CZrbe9fxRMVNOmwtJ7xOO3vgHuwa9lmZeYUHsiQBpjvF6ZbX89N+Q2218+h3e4mm3tIZHiNKWNaEBtpGgyMyGYmZcvjd/ww8eRPZeOB8a4pHCFCF6az4qSxTCk5JjQ6FQ47R42PH+S9oZutAY1My4P0jXlN4icJS6kE7w/8ZfZ/gVe79DbBqAE3K2dKgrf2jCo23HZfuF9NGl2Crq4AM1k9djrjxSUrNDxluNYHQOzGeO9vb8/fkdtn1C7w+7igM9dO2b6o/6s+DqYM0Rmctf/DrpJ9iUm1J4IkMaYunPtQTNHCrY2B3Xn2oc+UFWA/mgMhLXd+w/gaW4OvoEs+9t/J4iAuERhAgohldkqjjb7BZHnfW3XyFB1qnXwHSb0Rx8MJl8lhsV2VPcGxSHgN4x0yzTXdg9wO5Zl2d+9NjmwvOZx9Wa4x0EGKdOUSVFCEV7Zy976vv//5p5mjjUdA2Bl7sqxWF7YzC/om0HaWdaMxytTlGoiP2WUMmAGC1z1ffF465OD3sBlFAmhf2eLHVvb0Ne98cBEgDTGdHWE9iYZdju/QeTY1MvdTaENCw11uwmGQHHVHqbMppRuPe6+2UeXw8Nbvz7O+UONA3eqCuhgm+D9i9YAM64Xj8Mos0mS5B87Ul8+MAvQUNFBZ6sdjV5NwZyUgCdOgNsO+oRxYx2htPv390PaWr0VGZlZKbPIMI2+meVIKPFlkC60dNNic/j1R1E3hxyOuR8THnyubtjw7QFP6wwaUnxC/0uhzDYRII0xJos+8u283t4W/1EUaAeiSQvtgxjqdhMMgV+HtDloeWREpVu3I0DHNhEgve9Rymwn/hXS+BoFxQ9psADpnK+8Vjg3Fa0uoOTuH1A7H1Tj47KjlNn6C7UvtfIaQEKclsnpIvA4VNke0N4/yudbSYJrfyJkACf+CRXbBmyiNBxdCkLt8fFO/QCTNSURU+LQQZI5SU/WYH41Ci0BA2ozx8bQzLhwgdAhBSvv+dp/jQsnhL8Rk7sIdGboboGGY4NuMqLSbd1RoWMzpoyJjm2CUaZolTAD7WqCi6HZRkCg8L+jz8+9Xtnvnt3HHBLGdEBtMBZmLESj0lBjq6GqQzQv9Lh7/MLt8d7e35/5+YkA/HLLeeqsdrQqiUWTYuuHNyhZc2HBZ8TjN78+IPju31k7nvnABkgOh4OSkhIkSeLw4cNjtg6VSmL5x4eecn/Fx6YEd8+G3vb+nAVRHVAbDpJaTcYjD/v+MXj7b8YjD4/ZVOb3FWotTLpCPD6/adBNRlS6nTCI/GCh1sLMm8TjMMps6QUWJJVEV7sDW5vd//O6sna6rU50cRryZ/S7MPsNIsePts2oNVKSVgL0ZpH21O3B7rGTbcpmatLUIfYef2h9XamKONvllVn71BbeOl431G6x4cpvieC78STse67PU4qjdnNVJ0576JnLseADGyB9/etfJzs7e6yXAUBxaTrrPz97QCbJnKRn/ednU1w6TBeCUl4b5fb+/ljWrSPnZ08Hbf+1rFs3Rit7HzKMH9KISrcTAu0PHkqZ7eR/xAy+EAg0jAzMIp3bL7JHRaVpqLUBl5aedtF1CePOOkIps+2qEzqkzVWbAVFeG9REdZzy1vE6/rSncsDP66127vnjwdEPkozJsOY74vF7PwRbr/bUnKQnPkU4/Df0y0KON4aYW/H+5c0332TDhg384x//4M033xzr5QAiSCqclyZKIx0OTBZRVhsyc6QwBgaRwbCsW0f8mjV07z+Au6kJTVoaxoULJjJH0UbRIVXuBlfPAOM9pXQ7VJltQOl2wiDyg0fB5aI129YgRP9Trw5pt4xCC02VndSXW5m8IB2vx8v5g77y2sJ+N3S1vsHHSZPANPSg29HmsuzL+MWhX7C3bi8uj6tPgHSp4PHKPPbq4HP1ZEACHnv1JFfNzBzduX/z74ADL0LdEdj4KNz0jP+prMkJdLbYqTvfTt7MMSgDhsgHLoPU0NDA5z73Of7whz9gNIbW/uhwOOjo6OjzFQtUKomcaUlMXZRJzrSk0IIjWxO0+ubfjBNhraRWD2j/nSDKpE4BS44YKntxoBtw2KVba40YOCmphZB2gg8GKjXM+pB4HEaZLdCAFKD6TBt2mwuDWUvutH5jLcbBgNpgzEieQbw2nk5XJ9/Z+R1a7C2YNCYWZoy/tQZjb0UrdVZ70OdloM5qZ29FEGuPWKFSwzU/EY8P/bH3fUDA4NpxrkP6QAVIsixz55138oUvfIGFC0P/ADz++OMkJCT4v/Ly8mK4yjDxD6idIWq+E3wwkKSAMtvgOqSwSreK/ihjFuhMsVjxBOMVpcx2+nWRjQwBpZOtqaoTj8vrL69Nnp8+0KF9HAyoDcZ7Ve/h9IrS4mvlrwHglt1sqd4ylssKi8bO4MHRSLaLKvlLYN5t4vEbX/V33fqF2hUdeD2hG5WONu+LAOnRRx9FkqQhv/bv388vfvELOjo6ePjhh8M6/sMPP4zVavV/VVVVxeh/MgIUg8j8sdUfTTAG+P2QNgffpDSd2394GTffX8pVd83k5vtL+fQPLhuoa/Prj8ZHFnKCUSR3ESTkg9MG50IbB2RJjfMbRtZXWCk/JDQmk/uX12R5XI0YCeTdi+/ywOYHcHj6lqEdHgcPbH6Ady++O0YrC4/0eENUt4s6ax8TpqS1B+HwHwFIzjKhN2pwOzw0V9vGZl0h8L4IkL74xS9y6tSpIb9mz57Npk2b2L17N3q9Ho1Gw+TJwrBs4cKF3HHHHUGPr9frsVgsfb7GDYr+KG/s9UcTjDJFq8T3huNgG8T00UdIpVt/gDQRaH/gkCSYHV6ZTZIk0ieJ8+CWP5/B2ePGaNEOHKrddgG6m0Glhcw50VtzhHi8Hn6090fIBB/h9MTeJ/B4x/9opMWFyWQlGAgmyJCArAQDiwvHSOsTnwGrviEev/sY9LQhqSR/mXY8jx15XwRIqampTJ8+fcgvg8HAz3/+c44cOcLhw4c5fPgwb7zxBgB//etf+cEPfjDG/4sR4OqB2sPi8UQG6YOHKbXX92qILNKwuOxCSAnjqg17glFEKbOdfRvsw2sszx9q9HtotdV3A+ByeKk40s8pv8anO8mcI9y7xwkHGw/S0N0Q9HkZmfrueg42HhzFVY0MtUriuzfMBBgQJCn//u4NM0dXoN2fJZ+H1GkiWH7vcUAItWF865DeFwFSqOTn5zN79mz/19SpwueiuLiY3NzcMV7dCKg9BF4XmNIhqXCsVzPBWFA8tA4pJOqO+N5HaaLTaIIPHplzxQgQtx3ODN3Zq4ywcdr7ZlcGHWEzjgbUBtLUHdrIo1C3G2vWz87il5+aT2ZC3yA0M8HALz81n/WzgwynHi3UWrjmCfF433PQcMKvQ6o7344sDzOMfYz4QLb5v2+oDNAfXUKeHRNEkaLVsONnwg9Jlkf2PpgwiJxAkkQWacsTosw27+ODbhbqCJvCeWmilFszPvVHacbQRnCEut14YP3sLK6amcneilYaO+2kx4uy2phmjgIpXg0zboRT/4E3vk76J15BpZbotjrpaLaTkBY3/DFGmQ9UBqk/kyZNQpZlSkpKxnopI6NqbAfUTjAOyF8mRszY6qHp9MiOMWEQOQH0ltnOb4TuwVvCwxph43aK8TUw7jJI89Pnk2HMQAqi3JGQyDRmMj/90rK8UKsklhWncFNJDsuKU8ZPcKRw9Q9AEwcXt6M5+2/SC+IBqB+ng2s/0AHSJU3ggNoJgfYHF60BCsRU8mCu2kMiyxMGkRMI0qZBxhzwuuHUq4NuEtYIm4ZjwqcrLmnczfZTq9R8Y7EQDvcPkpR/P7T4IdSqCQ+3qJKYD8sfEI83fJvMScKLsHac6pAmAqRLlZZz0NMmovGssRlQO8E4YRg/pCGxVkNnHag0kF0a3XVNcOkx+xbxPUg3W1gjbAINIsdh6XZtwVqeWvUU6ca+1gQZxgyeWvUUawvWjtHK3udc9mVILIDOWrLsG4Hx28k2oUG6VKkUs4PIWSAEcBN8cCleDe8AF3eA2wGa0C5iQG8WMmM26EJzlp/gfczsW2DjY3BhG3Q2iBbtAMIaYfPv8SnQDmRtwVpW563mYONBmrqbSDOmMT99/kTmKJZoDbD+cfjLJ8g6/xTwO9rqurB3uTCYxte1bCKDdKlSqeiPJtr7P/CkzxKdjK7uXj1RqCjltQn/owlAdDHmLATZCydfGfB0WCNsxqlBZH/UKjWLMhdxbdG1LMpcNBEcjQbTroXJa4mTWkmMawOgfhyW2SYCpEuVqgmDyAl8qFS9ppHlYeqQJhy0J+iPItYOUmYLaYRNd2vvjMiJ2X4T9EeSYP0ToNKShQikx6Mf0kSJ7VLE1git5YA00Xk0gaB4NRx7WeiQ1nwntH1cPVCvdBlNvI8m8DHrZnj7EXET1l4FiQNnTxaXpv//9u49LOoq/wP4e4bLMCLDRS6BIBfNvJCIiAheYNtytTDNW951bXsy7+m6qZm6u6aVqe1uj266PpR5zVyL1r3IRiiu9ou8ZYpKCkKIN1QGVK5zfn98nZG5MDJofGeY9+t5eMTzPd8vn5npkU/nfM45iIwJkFa1aavgqZGm1Qy7tBff22DRrz3Qyn5PaycZ+XcAEqchOOMkcu8+g5K8GwDayx2VEY4gOSJ93UggD6ile/QjSJeON7hE28yl49KKpdZB0uoSIgDQhADhfaTvT+1psJvVI2zs+IBasiP95yPY9zoA4GpBGepq7OvgWiZIjshw/hrrRugeTQgQ0BmAAPIbeRK5YYPIeLtcZUQyesBqtgfS17bZef0RyUzlBe9nZ0GtvIU6nRJXT/8od0RGmCA5IsMO2qw/onoMx440sg6J9UfUkC5DAIULUHIcKD1v271C3D+DLTTukYdGLYui2wgEe0vH05Ts+1zeYEwwQXI0NXfvHyzKESSqL6pegvSgs424QSRZ4+l/f9r2h7/bdu+NC9IebS4qaeNJImsUCgTHS3uwlfyke7iDtx8xJkiOpviodLBo6yAeLErGIvoASjegrPBeEb8Vty4CFVfubRDZvVnCIwfzgNVsDdIv7w/uBri6P9qYqEUKju0MALhc3QninwuAuhqZI5IwQXI0RfXqj1g3QvW5e96fdn3QrtpF90aPgmMAN/s7JJLsQKfnABd34FoucOV04++z0wNqyX75t2sNVzcFKoUGNy+XA//3IZCfDZz8TPpTVydLXEyQHE0hD6glKwz7IWVZ72co0Ob0GjVA7QN0eEb63pZRpJ+4go1s4+KiRFCkNwCgpLozsG8x8HEqsPsl6c/3o4HT6c0eFxMkR1L/gFruoE2W6Au18w8AdbUN9zMUaHP/I7Ki/mq2B9W1AUBNJXD5pPQ9EySyQXAHHwDSNBtg8t+atgT4dGKzJ0lMkBzJ9XNA5S3ArRXwGA+oJQuCuwMePkCV9v5KIlPVd4ArP0jfcwSJrHlikPTvzc184NKxB/e/fFKqkWzlLx1IStRIj0V6AQAu1XS2cPVewvTvBc063cYEyZHwgFp6EKXLg48duXRM2iDSKxjwDm220MgBuXsCHQdK3zdmmq3+BpGskSQbPOaWC0AHbV0wbtf5WOghAG0xcPFQs8XEBMmR6KfXuLyfrHnQfkjcIJJsoV/NdmqPNM1vjYMcUEv2R1VzFW1cLwIALtd0arhjxZVmiogJkmPhBpHUGPr9kH7KASotHACpX8HGDSKpMTo8Dag00v+96/8nrSGGESRuEEk2ah2EYPczAO4Valvp11yYIDmKiqtSHQAUPFiUrPMNB/yiAFEHFBw0vibE/V9yrD+ixnDzADqlSt9bm2a7fR24WSB9H9LjZw+LWpjwJARrSgAAJRbrkBSApi0QntRsITFBchT60aPALtLyWyJr2j8l/Wk6zXYzH7hzXdpQMjim+eMix6SfZjv9ecOrI/XTa/4d+W8U2U7pguBBLwIArtVEoUanqnfxXinAwLelOsvmCqnZfhI9HC7vJ1vop9lMC7X102sh3aWRAaLGiEoG1H7A7WtAQbblPtwgkh6SV8JgtG6tg4ALrtR0vH9BEwKM2gx0eb5Z42GC5Cj0K9jCWH9EjRDZTzpstPRH4Fbh/XZuEElN4eImHWALNDzN9hPrj+jhBXcOBgCUdF0ODN8ETPoHMOdksydHABMkx1B95/4BtRxBosbw8Ja2gwCMp9m4QSQ1lX6aLTcdqK02vqbTSedEAhxBoocS3F7aUTu/yBPnKvuiuDoaOplSFSZIjuDSUWnfmtaPcfM1ajx9HZJ+mq36NnDllPQ9R5DIVuFJ0r9BlWXA+a+Mr5X+CFSVAa5qIKirPPFRi1BXK20Eee1iOTI2ncbna49h86JDOH/sarPHwgTJERiW9/OAWrKBfj+kC1nS7rPFR6WVbZq2gHdbWUMjB6R0Abq+IH1vOs2mrz8K6c5NbKnJzh+7iv99dt6s/fatKvz7wx+aPUliguQIinhALTVB2zjA3Qu4e1Oaoq2/QSRRU+in2c78U5r61zNsEMn6I2oanU4ge2ee1T4HP82DTteIMwEfESZI9q7+AbXcQZts4eImFWsD0jSbof6I02vURKE9AZ92QM1tIO8/99vrHzFC1AQlebdw+1aV1T4VN6tQknereQICEyT7d/2sNOfv1gp47Em5oyFHU38/pJ/uLfFn/RE1lUJxfxRJP81Wc/d+bRsLtKmJbmutJ0e29nsUmCDZOx5QSw9Dvx9SQTZwp1TaIJJFtPQw9AnSuX1ApVaavtXVSkdA8PBjaiJPjerBnWzo9ygwQbJ3hfr6I+5/RE1w9ZS0H5Kergb4IA44nS5fTOTYgqKl3bLrqoCz/zQ+oJaLSKiJgh/3gaeP9eSnta8KwY/7NE9AYIJk/4rurWDjBpFkq9PpwKeTpJVr9WlLgE8nMkmipjGdZjNM3bJAm5pOqVSg34uPW+3Td9TjUCqbLwlngmTPyq/cO/xRwY39yDa6OuDfrwOwtOLjXtu/F0j9iGzVdZj054//vb8nUnCsfPFQi9A+NhADX4k2G0lq7avCwFei0T42sFnjcW3Wn0a20Y8eBXWVdkYmaqyLhwDtJSsdBKAtlvrpV7oRNda1M1I9m64GqCqX2r6YBgx6V5YjIajlaB8biMiYAGlVm7YKnhppWq05R470mCDZs0Iu76cmqrjyaPsR6Z1Ol6ZoTUcnyy9L7TIcKkoti1KpQNsnfOUOg1Nsdk0/gsQCbbJV66BH248I4NQtORUmSPaq/gG1HEEiW4UnAZoQAA0NSyukI0fCk5ozKnJ0tkzdEjk4Jkj2qviItLeIV7C0cy2RLZQuwMB37v3FNEm69/eBb0v9iBqLU7fkRJwyQdq7dy8SEhKgVqvh7++PYcOGyR2SOcPyfh5QS03U5XmpHkQTbNyuCWGdCDUNp27JiThdkfbu3bvx8ssvY8WKFXjqqacghMDJkyflDstcIQ+opUegy/NAp+ekKY+KK9IvrvAkjhxR0+inbrUlsFyHpJCuc+qWWgCnSpBqa2sxe/ZsrFq1Ci+99JKh/YknnpAxKgt0uvsnr7dj/RE9JKULl/LTo6Gfuv10IqSp2vpJEqduqWVxqim2o0ePori4GEqlErGxsQgODsagQYNw6tQpq/dVVVVBq9Uaff2srp25d0CtJxDEA2qJyI5w6pachFONIF24cAEAsGzZMqxZswYRERFYvXo1kpOTce7cOfj5+Vm8b+XKlfj973/ffIHqD6gNjQNcnOojIiJHwKlbcgItYgRp2bJlUCgUVr++++476HQ6AMAbb7yB4cOHIy4uDmlpaVAoFNi1a1eDz1+4cCHKysoMX0VFRT/vCyrSbxDJ/Y+IyE7pp26fHCH9yeSIWpgWMTwxY8YMjB492mqfiIgIlJdLW+J36dLF0K5SqRAVFYXCwsIG71WpVFCprJ8y/EgV6jeIZP0RERGRHFpEguTv7w9/f/8H9ouLi4NKpcLZs2fRt29fAEBNTQ0KCgoQHh7+c4fZOOWXgVsXASiAUB5QS0REJIcWkSA1lkajwdSpU7F06VKEhYUhPDwcq1atAgCMHDlS5uggbc//XZr0vW8E4N5a1nCIiIiclVMlSACwatUquLq6YsKECbh79y4SEhKQmZkJX1+ZD8Y7nS6dcaTfxv9mPvB+tLSklqtCiIiImpVCCGFpty+yQqvVwtvbG2VlZdBoNA//wIZOx9bvK8Kls0RERA/Nlt/fLWIVm0Pj6dhERER2hwmS3Hg6NhERkd1hgiQ3no5NRERkd5ggyY2nYxMREdkdJkhy05+OrS/INqMANG15OjYREVEzYoIkN/3p2ADMkySejk1ERCQHJkj2gKdjExER2RWn2yjSbvF0bCIiIrvBBMme6E/HJiIiIllxio2IiIjIBBMkIiIiIhNMkIiIiIhMMEEiIiIiMsEEiYiIiMgEEyQiIiIiE0yQiIiIiEwwQSIiIiIywQSJiIiIyAR30m4CIQQAQKvVyhwJERERNZb+97b+97g1TJCaoLy8HAAQFhYmcyRERERkq/Lycnh7e1vtoxCNSaPIiE6nw6VLl+Dl5QWFQvFIn63VahEWFoaioiJoNJpH+myyHT8P+8LPw77w87A//EysE0KgvLwcISEhUCqtVxlxBKkJlEolQkNDf9afodFo+B+3HeHnYV/4edgXfh72h59Jwx40cqTHIm0iIiIiE0yQiIiIiEwwQbIzKpUKS5cuhUqlkjsUAj8Pe8PPw77w87A//EweHRZpExEREZngCBIRERGRCSZIRERERCaYIBERERGZYIJEREREZIIJkh1Zt24dIiMj4eHhgbi4OGRnZ8sdklNauXIl4uPj4eXlhcDAQAwdOhRnz56VOyy6Z+XKlVAoFJgzZ47coTi14uJijB8/Hm3atEGrVq3QvXt3HDlyRO6wnFJtbS0WL16MyMhIqNVqREVF4Q9/+AN0Op3coTk0Jkh2YufOnZgzZw7eeOMNHDt2DP369cOgQYNQWFgod2hOZ//+/Zg+fTq++eYbZGRkoLa2FgMGDMDt27flDs3p5eTkYMOGDejWrZvcoTi1mzdvok+fPnBzc8O//vUvnD59GqtXr4aPj4/coTmld955B3/961/xwQcfIDc3F++++y5WrVqFv/zlL3KH5tC4zN9OJCQkoEePHli/fr2hrXPnzhg6dChWrlwpY2R07do1BAYGYv/+/ejfv7/c4TitiooK9OjRA+vWrcPy5cvRvXt3vP/++3KH5ZQWLFiA//3vfxzlthOpqakICgrCpk2bDG3Dhw9Hq1at8Mknn8gYmWPjCJIdqK6uxpEjRzBgwACj9gEDBuDQoUMyRUV6ZWVlAAA/Pz+ZI3Fu06dPx3PPPYenn35a7lCcXnp6Onr27ImRI0ciMDAQsbGx2Lhxo9xhOa2+ffviq6++wrlz5wAAJ06cwMGDB/Hss8/KHJlj42G1duD69euoq6tDUFCQUXtQUBAuX74sU1QESCc/z507F3379kV0dLTc4TitHTt24OjRo8jJyZE7FAJw4cIFrF+/HnPnzsWiRYvw7bffYtasWVCpVJg4caLc4Tmd119/HWVlZejUqRNcXFxQV1eHt956C2PGjJE7NIfGBMmOKBQKo78LIczaqHnNmDED33//PQ4ePCh3KE6rqKgIs2fPxr59++Dh4SF3OARAp9OhZ8+eWLFiBQAgNjYWp06dwvr165kgyWDnzp3YsmULtm3bhq5du+L48eOYM2cOQkJCMGnSJLnDc1hMkOyAv78/XFxczEaLrl69ajaqRM1n5syZSE9Px4EDBxAaGip3OE7ryJEjuHr1KuLi4gxtdXV1OHDgAD744ANUVVXBxcVFxgidT3BwMLp06WLU1rlzZ+zevVumiJzb/PnzsWDBAowePRoA8OSTT+LixYtYuXIlE6SHwBokO+Du7o64uDhkZGQYtWdkZCApKUmmqJyXEAIzZszA3//+d2RmZiIyMlLukJzaL3/5S5w8eRLHjx83fPXs2RPjxo3D8ePHmRzJoE+fPmZbX5w7dw7h4eEyReTc7ty5A6XS+Ne5i4sLl/k/JI4g2Ym5c+diwoQJ6NmzJxITE7FhwwYUFhZi6tSpcofmdKZPn45t27bhiy++gJeXl2Fkz9vbG2q1WubonI+Xl5dZ/ZenpyfatGnDujCZvPbaa0hKSsKKFSswatQofPvtt9iwYQM2bNggd2hOafDgwXjrrbfQrl07dO3aFceOHcOaNWswZcoUuUNzaFzmb0fWrVuHd999FyUlJYiOjsbatWu5rFwGDdV9paWlYfLkyc0bDFmUkpLCZf4y+8c//oGFCxciLy8PkZGRmDt3Ll5++WW5w3JK5eXlePPNN7Fnzx5cvXoVISEhGDNmDJYsWQJ3d3e5w3NYTJCIiIiITLAGiYiIiMgEEyQiIiIiE0yQiIiIiEwwQSIiIiIywQSJiIiIyAQTJCIiIiITTJCIiIiITDBBIiIiIjLBBImIiIjIBBMkIiIiIhNMkIjIISgUCkRERMgdBhE5CSZIRPSzKygogEKhQEpKityhEBE1iqvcARARNUZubi7c3NzkDoOInAQTJCJyCJ06dZI7BCJyIpxiI2rh6k9v3b59G3PnzkVYWBjUajV69OiBL7/80tB3165d6NWrFzw9PREUFIRZs2bh7t27Zs/cu3cvpkyZgs6dO0Oj0cDT0xMxMTFYsWIFqqqqjPouW7YMkZGRAID9+/dDoVAYviZPnmwWo1arxbx58xAZGQk3NzfMmTMHgOUapBdffBEKhQKvv/66WYxnzpxBq1atoNFocOHCBZveJ61Wi9mzZyMsLAweHh7o3Lkz1q5dC51OZ/Hew4cPY8iQIQgICIBKpUJERASmTZuGS5cuGfWrrKyEh4eH4f2oLzU1FQqFAr/4xS/MrkVHR8PV1RVardYs5ldeeQURERFQqVQICAjAiBEj8P333z/w9Vl6j605c+YMFAoFBg4ciIqKCixduhSdOnWCWq1Ghw4dsHr16gc+g8ihCCJq0fLz8wUAkZiYKBISEoS/v79ITU0VKSkpQqlUChcXF5GRkSHWrFkjXF1dRWJiohg6dKho06aNACDGjh1r9sygoCDRunVrkZCQIEaOHCl+9atfCV9fXwFAPPXUU6K2ttbQd8+ePWL48OECgAgKChKTJk0yfG3cuNEoxl69eonu3bsLX19fMXToUDFs2DCxbNkyIYQQAER4eLhRHDdu3BChoaFCqVSKr7/+2tBeXV0tYmNjBQCRlpZm0/vUu3dvERcXJ3x8fMSwYcNEamqqUKvVAoCYPHmy2X2ffPKJcHFxEQqFQvTp00eMHj1adOzY0fB6c3Nzjfr3799fABD5+fmGttraWuHt7S0ACJVKJe7evWu4du3aNaFQKERcXJzRc7Kzs4VGoxEARNeuXcWIESNEYmKiUCgUQq1Wi8zMTIuvz9p7bM2OHTsEADFq1CgRFRUlwsLCxKhRo8QzzzwjlEqlACA2b97cmLeayCEwQSJq4fS/GAGIlJQUcePGDcO1tLQ0AUB06NBB+Pn5iQMHDhiuFRcXi8DAQAFAnD9/3uiZe/bsERUVFUZtWq1WpKamCgDi448/thhDcnLyA2NMTEwUN2/eNOtjKUESQojMzEyhVCpFWFiY4b7f/e53AoAYMWKElXem4Ri6desmrl27Zrj2448/ipCQEAFAfPHFF4b2wsJCoVarhaurq/jyyy8N7XV1dWLOnDkCgIiPjzf6OUuWLDFL3HJycgyJDgCjZG/Xrl0CgJg3b56hraysTDz22GPCzc1N7Nq1y+j5GRkZwt3dXbRt21ZUVVVZfH0NvcfWLFy40HD/m2++KWpqagzXNm3aJACIIUOG2PRMInvGBImohdP/YnRxcRF5eXlG1+rq6kRAQIAAIJYsWWJ272uvvWbTKExeXp4AIIYNG2YxhsYkSDk5ORb7NJQgCSHE/PnzBQAxZswY8fXXXwulUilCQkJEaWlpo+I2jWHfvn1m19evXy8AiAEDBhja9MnOhAkTzPpXVlYakqrDhw8b2r/66isBQEyaNMnQ9t577wkAYufOnQKAWLp0qeHajBkzBACjBGzt2rUCgFi4cKHF16JPznbv3m3x9TX0Hlvz7LPPCgDixRdfNLtWWFhoSLyIWgrWIBE5iYiICHTo0MGoTalUIjw8HADwzDPPmN3Tvn17AEBJSYnZtby8PPzpT3/CzJkzMWXKFEyePBl//OMfDdeaIjg4GD179rT5vuXLlyM2Nhbbt2/HkCFDIITAxx9/DD8/P5uf5efnZ/G9GDt2LADg0KFDEEIAALKzswEA48aNM+uvUqkwcuRIo34AkJSUBJVKhaysLENbVlYWfHx8MGLECISGhppdUyqV6Nu3r6EtIyMDADB06FCLr0HfNycnx+xaU9/jEydOAAAWL15sdu3y5cuGZxO1FFzFRuQk2rZta7Hd09Ozwev6a/ULr4UQ+O1vf4u1a9caEgVT5eXlTYqxXbt2TbrP3d0dH330EWJiYqDVajFz5kw8/fTTTXqWPmE0pdFo4OPjg1u3bkGr1cLb29tQhN3QBpb69vrF2h4eHujVqxeys7NRUFCAdu3a4eDBg+jfvz+USiWSk5Px2WefobKyEhUVFTh16hRiY2Ph4+NjeEZBQQEAICEhwepruX79ullbU97j0tJSFBcXIyoqCtHR0WbX9UXhTz75pM3PJrJXTJCInIRCoXio63o7d+7EmjVrEBoaivfffx+JiYkICAiAm5sbqquroVKpGkycHsTDw6NJ9+nj0jt27Bh0Oh2Uykc7SN7Q67L1vU1OTkZ2djaysrLQrVs33Lp1y7CJZkpKCrZu3YpvvvkGN27cgBDCbIPNuro6AMDIkSPRqlWrBn+upQSqKe+xfvQoPj7e4vXjx48DALp3727zs4nsFRMkIrLJnj17AADr169Hamqq0bXGLKf/OWRnZ+Ptt99GSEgIOnXqhMzMTLz99ttYtGiRzc8qLCy02K7ValFWVgZPT09oNBoAQEhICM6ePYv8/Hx07NjR7J6LFy8CMJ96SklJwfLly5GVlYUbN24Y2ur/Wf9acnKy0f2hoaE4e/YsFi9ejG7dutn8Gm2lT5BiY2MtXmeCRC0Ra5CIyCY3b94EAISFhZld+/TTTy3e4+7uDgCora195PFotVpMmDABQgikpaVhy5YtaNOmDZYtW4bvvvvO5ueVlpbiv//9r1n79u3bAUg1RPoRoX79+gEAtm7data/uroau3btMuqnl5SUBHd3d2RlZSErKwu+vr6IiYkBAHTo0MFQh6SvP+rfv7/R/frpw88//9zm19cU1hIkIQROnDgBHx8fnpVHLQoTJCKyiX6kZMOGDUZTTtnZ2Vi1apXFe/z9/eHm5obz588bpocelWnTpuHixYuYOXMmBgwYgODgYGzcuBE1NTUYN24c7ty5Y/Mz58+fj9LSUsPf8/PzDQXo06ZNM7S/9NJLUKvV2L59O/bu3Wto1+l0WLRoEYqLixEfH4/evXsbPV+tViM+Ph4XL15ERkaGof5ILzk5GYcPH8YPP/yAmJgYo/ojAHjllVcQEBCAFStWIC0tzWzq7/bt29i8eTN++uknm1+7JfoEydII0fnz51FeXm5I8IhaCiZIRGSTWbNmwdPTE+vWrUN0dDTGjBmD/v37Izk5GVOnTrV4j7u7OwYOHIjLly8jJiYGEydOxG9+8xukpaU9VCw7duzA1q1b0bVrV7zzzjuG9hdeeAG//vWvce7cOcydO9emZ/bu3RtKpRKPP/44RowYgeeffx7R0dEoLi7G+PHjjVaOtWvXzpAoDh48GP369cPYsWPRpUsXrF69GkFBQdi8ebPFn6OfSqusrDSrMUpJSUF1dTWEEGbTawDg6+uLPXv2wNPTE1OmTEFkZCRSU1MxfPhwxMfHIygoCJMmTbJYpG2r2tpanD59Gm3btkVgYKDZdU6vUUvFBImIbNKxY0fk5ORg8ODBuH79OtLT01FRUYEPP/ywwREkAPjb3/6GCRMmoLS0FNu2bcOmTZuwf//+JsdRVFSEV199Fe7u7tiyZYtZ8fGf//xnREVF4cMPP0R6enqjn6tSqZCZmYkxY8bg8OHD+M9//oOwsDC89957+Oijj8z6jx8/HgcOHEBqaipyc3Px2Wef4e7du3j11Vdx5MiRBs+Qq58UWUqQGrqm16dPH5w8eRLz5s2DWq1GZmYm9u3bB61Wi9TUVOzcuRNdunRp9OtuSG5uLqqrqxtMgJggUUulEE1dbkJE1IIUFBQgMjISycnJRvsQEZFz4ggSERERkQkmSEREREQmmCARERERmWANEhEREZEJjiARERERmWCCRERERGSCCRIRERGRCSZIRERERCaYIBERERGZYIJEREREZIIJEhEREZEJJkhEREREJpggEREREZlggkRERERk4v8BhK3hCQ2R5cYAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 34.0, 'matrix power $n$')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(xn ./ abs(λ[end]).^(1:10), \"o-\")\n", + "ylabel(L\"(A^n x)_k / |\\lambda_5|^n\", size=20)\n", + "xlabel(L\"matrix power $n$\", size=15)" + ] + }, + { + "cell_type": "markdown", + "id": "9dbfc04f", + "metadata": {}, + "source": [ + "We can plot a few more $n$ just to see that the oscillation never stops:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b6915074", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG6CAYAAADzrLkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5xc5X0u/pw+fWZ3tU0FdYoQIATIFGHAyCAbA7lJ7Fxf10uKw3XDXNuAUzBJTMkvIcQpOCaJrzGucWLHVQjZBoOFECBRhESRUF1t350+c/rvj/d9T5uZ3ZFY7c7unufz0We1M2dn3tPe87zP9/l+v5xt2zZChAgRIkSIECFCOOBnegAhQoQIESJEiBCthpAghQgRIkSIECFCBBASpBAhQoQIESJEiABCghQiRIgQIUKECBFASJBChAgRIkSIECECCAlSiBAhQoQIESJEACFBChEiRIgQIUKECECc6QHMRliWhePHjyOZTILjuJkeTogQIUKECBGiCdi2jUKhgIULF4LnJ9aIQoJ0Ejh+/DiWLFky08MIESJEiBAhQpwEjh49isWLF0+4TUiQTgLJZBIAOcCpVGqGRxMiRIgQIUKEaAb5fB5LlixxnuMTISRIJwEWVkulUiFBChEiRIgQIWYZmrHHhCbtECFChAgRIkSIAEKCFCJEiBAhQoQIEUBIkEKECBEiRIgQIQIICVKIECFChAgRIkQAIUEKESJEiBAhQoQIICRIIUKECBEiRIgQAYQEKUSIECFChAgRIoCQIIUIESJEiBAhQgQQEqQQIUKECBEiRIgAwkraLQTTMrFraBeGy8PojHVifdd6CLww08MKESJEiBAh5h1CgtQi2HZ4G+7deS8Gy4POa92xbty+4XZsWrppBkcWIkSIECFCzD+EIbYWwLbD23Dr47f6yBEADJWHcOvjt2Lb4W0zNLIQIUKECBFifiIkSDMM0zJx7857YcOueY+9dt/O+2Ba5nQPLUSIECFChJi3CAnSDGPX0K4a5cgLGzYGygPYNbRrGkcVIkSIECFCzG+EBGmGMVwentLtQoQIESJEiBBvHSFBmmF0xjqndLsQIUKECBEixFtHSJBmGOu71qM71g0OXN33OXDoifVgfdf6aR5ZiBAhQoQIMX8REqQZhsALuH3D7XXfY6Tptg23hfWQQoQIESJEiGlESJBaAJuWbsL9V96PBdEFvte7Y924/8r7wzpIIUKECBEixDQjLBTZIti0dBPWd63HFd+7AgDw1Xd+FRt6NoTKUYgQIUKECDEDCBWkFkJCTjj/P3vB2SE5ChEiRIgQIWYIIUFqIUi8BJEjol5Fr8zwaEKECBEiRIj5i5AgtRA4jkNUjAIAykZ5hkcTIkSIECFCzF+EBKnFEJUIQaoYoYIUIkSIECFCzBRCgtRiiIkxAEBZDxWkECFChAgRYqYQEqQWAwuxhQpSiBAhQoQIMXMICVKLIfQghQgRIkSIEDOPeUuQ+vr68MEPfhAdHR2IxWJYt24dnn/++ZkeFmISCbGFClKIECFChAgxc5iXhSLHx8dx2WWX4aqrrsLPf/5zdHV14cCBA8hkMjM9NFdBCj1IIUKECBEixIxhXhKk++67D0uWLMHXvvY157Vly5Y13F5VVaiq6vyez+dP2diYSTtUkEKECBEiRIiZw7wMsf3oRz/ChRdeiPe+973o6urC+eefj4ceeqjh9vfccw/S6bTzb8mSJadsbKEHKUSIECFChJh5zEuC9Oabb+LBBx/E6tWr8eijj+KP//iP8alPfQoPP/xw3e3vuOMO5HI559/Ro0dP2dhCD9IchWUCB58EXv4++WmZMz2iECFChAgxAeZliM2yLFx44YW4++67AQDnn38+XnnlFTz44IP48Ic/XLO9oihQFGVaxhZ6kOYg9v4I2HIbkD/uvpZaCGy+D1hzw8yNK0SIECFCNMS8VJB6e3uxZs0a32tnnXUWjhw5MkMjcuEUipxrIbb5qqDs/RHwvQ/7yREA5PvJ63t/NDPjChEiRIgQE2JeKkiXXXYZXnvtNd9rr7/+OpYuXTpDI3IxJ0Ns81VBsUyy37DrvGkD4IAttwNnXgfwwjQPLkSIECFCTIR5qSB95jOfwY4dO3D33Xdj//79+Na3voWvfvWr+PjHPz7TQ3MraetzhCDNZwXl8Pba/fbBBvJ9ZLsQIUKECNFSmJcE6aKLLsIPfvADfPvb38batWvxl3/5l3jggQfwgQ98YKaHNrfS/CdVUEAUlLkabisOTu12IUKECBFi2jAvQ2wA8J73vAfvec97ZnoYNYhKcyjN/0QUlOWXT9uwpg2J7qndLkSIECFCTBvmpYLUyphTCtJ8V1CWXkq8VuAabMABqUVkuxAhQoQI0VIICVKLYU6l+c93BYUXiBEdQC1Jor9vvjc0aIcIESJECyIkSC2GOZXFFiooJEvvfQ8DqV7/66mF5PW5nMUXIkSIELMYIUFqMTAFqWpWYc5287JPQQliHikoa24AbtkDxBaQ31duAm55OSRHIUKECNHCCAlSi4F5kABCkmY9mIISyfhfn28KCi8ANiW8SmLuk8IQIUKEmOWYt1lsrQpFUMCBgw0bZb2MuBSf6SG9day5AcgeBrb+Kfn9PX8HrP/I/CMJrLbVXPCXhQgRIsQcR6ggtRg4jptbPiQGtej+v/PM+UeOLAswqCKolWZ2LCFChAgRYlKEClILIipGUdJLc6MWEoNacP8/HxUUL9kNCVKIELMLlknqtRUHSdbt0kvn3yJvHiIkSC2IOVULiUHNuf/X54C36kShhwQpRIhZifnaSzJEGGJrRcypWkgMPgVpDhG/ZuE9l3PpvIYIMZcxn3tJhggJUitiTnqQqnn3//ORIPgUpGLj7UKECNEamO+9JEOEBKkV4ShIc9WDZMzHEJvnXGpz6LyGCDFXcSK9JEPMSYQEqQXheJDmUihqvpu0vefS0gFDm7mxhAgRYnLM916SIUKC1IqYmwqSN8Q2zxUkANBDo3aIEC2N+d5LMkSYxdaKmJMepFBB8v+ulYFo28yMZaYQpkqHmE1gvSTz/ajvQ+LI+3O5l+Q8R0iQWhBzLovNMv3G5LkUOmwWNQRpnilIYap0iNkG1kvyex+u8+Y86iU5jxGG2FoQc64Oklc9AvxFE+cL5nOILUyVDjFbwXpJSlH/6/Otl6RlAgefBF7+Pvk5TzL3QgWpBTHnPEhBghQqSPNHQZo0VZojqdJnXheuxEO0JtbcALz4HeC1n5Km27/3yPwKD89j9TdUkFoQc86D5DVoA/OUIAXI7nxJ9Q9TpUPMBTDF17aB5ZfPL3I0j9XfkCC1IOacBylUkGr3eb6E2MJU6RBzAWxBM1/uWyAslImQILUk5pwHqRoqSPM2xBamSoeYC2D3q2XMnxpmofobEqRWxNzzIAUI0lwhfieC+RpiY6nSLOunBhyQWhSmSodobfiycOfJ4iZUf0OC1IqYsx6kSJr8DBWk+dOPjaVK10WYKh1ilmA+tgoK1d+QILUi5qwHid1I85Ig0XPJ8f7f5wNYqjQjyAzzLVU6xOyFNyQ+X+7dUP0NCVIrYs55kEKC5O5zrIP8nC8eJIY1NwCXfdr9/bceBG55OSRHIVoflhVQkEL1d76ovyFBakFEaVGyilGBbdfLIJhlYCbtkCABsQXk53wjSIDf3Nq+ck5PrCHmEOarfxBw1d94p//1eaL+hoUiWxBMQbJho2pWnZDbrEWNglQm9US4RtLtHASbZOMLgGHMH5neC68iWhmfuXGECHEiCC5m5tu9u+YGEh5/mJKhi/4QeNd982KBEypILYiIGHH+Pyd8SMykneiiL9iAOU9SZRmYghSfxwqSXnX/X83O2DBChDghBENq8/He9c7XsY55QY6AUEFqSfAcj6gYRcWo1PiQTMvGzoNjGCpU0ZWMYMPydgh8iysxaiDEBpBVmKjMzHhmAozozucQm5fsV7IzNowQIU4INX0U58Ci9UTh3edqbubGMc0ICVKLghEkby2kLXv6cdeP96I/567Ee9MR3Hn9Gmxe2zsTw2wOLMQWawd4kRRb06vALI8cnhAcBYnG8ucjQTI8ClIYYps9sExSDLA4SBY586kPGVB7r87He9frGw0JUoiZBvMdMQVpy55+3PzIrpqi7wO5Km5+ZBce/OD61iVJzKStJAExCmiF+bcKcwgSzWKbb/sPBCbZ7IwNI8QJYB43KnUQEqSAgpSdsWFMN0IPUovCWwvJtGzc9eO9E3XEwV0/3gvTatGMN6YgKSmAZujNu0w2x6TNFKR5kirshU9Bys7YMEI0iXneqNTBfDdpA/NWQQoJUovCW01758ExX1gtCBtAf66KnQfHpml0JwjVoyAxgmQ03p85B1MnYUXA40Ga55NsGGJrbYSNSl2ECtK89SCFBKlF4e3HNlRojkw0u920wtBcMhTxKkjziCB495UpSPNp/xnCENvsQdio1EWw99p8v3fnkfobepBaFN5q2ouTkUm2JuhqcrtpBQuvAYCcnJ8hNravHA9E2+hrZVKhl59Ha5RZGmKzTRPl556HMTwMsbMTsQsvACfMcZNy2KjURY2CNM8J0jxSkEKC1KLwepA2rGpHbzqCgVy1ruDNAehJk5T/lgMNr1liHP37Cyjl1iOuauhVK/NHvmQrTikGyDH/60piZsY0E5iFIbb81q0YvPseGAMDzmtiTw+6v3AHUtdcM4MjO8U4wUalpmVi19AuDJeH0RnrxPqu9RDmSqYbI0gcD9hWraI0H+BrtVIATAMQ5j59mPt7OEvh9SAJPIc7r1+Dmx/ZVbMdq4B05/VrWrMeklrAgerFeLLwRyj93W4A7wHwHsT/n4nLPziEled3TfYJsx+MGEhRksUHDoBNJt4WJ0hTqp4EQ2wtXk09v3Ur+j59CxmnB8bgIHn97x+YuySJNSrN96O+D4kj7y+9FNsOb8O9O+/FYNlVk7pj3bh9w+3YtHTTtA35lIERpNgCoDQ0Pz1IQdVMzZOyLXMc82YRP9vg9SABwOa1vXjwg+sRk/0Pp550pKVT/A+8lMWW7OdRMjO+10slHlv+ZQ8O7B6amYFNJ7wEieeJkgS0/Eo0v3Ur9l+9CUc+8hEc/+xnceQjH8H+qzchv3XryX2gt+ipqbW0l8M2TQzefU8NOSJvktcG774HtjlHTcq+RqVBEus2Kt129Fe49fFbfeQIAIbKQ7j18Vux7fC2Uz7UUw5GiFgngHkZYgvs8zzxEIYEqUXheJA8q+7Na3txsSeM9plNq/HUbe9oWXJkWTaefEynv9WfZJ/63huwWrU8wVTBG2IDADlOfrbwSpSpJ97QEuCqJydFkvRAEkEL+5DKzz1fs+8+2DaMgQGUn3t++gY13ZikUal55nW4d+e9sOsoTOy1+3beB3O2Z7qx+5S1CWrxhc0pQdAzOk98SCFBalEEFSSGgbzq/L87FWnNsBpF/xtZlIocasmRi+K4iv43stM2phmBV0ECXB9Si65ET4l6YlmASa9djk47LbwKNYaHp3S7WYs1NwDv/br7+4U3Abe8DKy5AbuGdtUoR17YsDFQHsCuoVprwKwCW+AwX1aL3renFCFBCtFK8HqQvBjIu6vwbEVHK6PkIXNTsd2sRY2CRH1HLboSPSXqiTeDjT1oWtioLXZ2Tr7RCWw3q8HqmAFAstdpMzJcbo4cNrtdy4IVdZ3XJToC+9zC6u9UIiRILYp6ClJVNzFWcrsq51qcIMVTzTWjbXa7WYuggsSIUouG2E6JeuJdgSZpSLiFJ9nYhRdA7OlpbCLnOIg9PYhdeMH0Dmwm4CWyngdlZ6w5ctjsdi0LJ8TGquDPR4JE7185SX6GClKImUQ9D9JAoJp2ttzaBKl3dQbxqArAarhNok1B7+rMtI1pRuAoSLMjxHZK1BOmhPISEKP96Fo4xMYJArq/cEeDNwlp6v7CHXO/HhLgP0+e+Wh913p0x7rBNQihc+DQE+vB+q71p3iApxjsPnVM2sX64ee5DHbekz3kZ0iQ5gfuuececByHW265ZaaH4kOwWS2AmnYj+RZXkHiew+Vn74GT1u4D+X3j+1aDb2Ef1ZTAUZACIbYW7cd2StQTZtCWokA0Q/7fwiE2AEhdcw0W/f0D4ONx3+tidzcWzeUU/yAaKEgCL+D2DbcDQA1JYr/ftuG22V8PyQmxUYJkmyQLcz6BnXeHIGVnbCjTiXlNkJ599ll89atfxbnnnjvTQ6lBPQ/SQN7vR8pWWv8mXdn2OjZn/hoRxW/oTSglbP7Y2vlXBwnwpPm3poLkU0+CJOlk1RPDcwxYNfEWDrExpK65Bsl3v9v5vecv/xKrfrFt/pAjIECQ/HPQpqWbcP+V96Mr5r+Pu2PduP/K++dWHSSWxeZ9bb6AnffUQvIzVJDmNorFIj7wgQ/goYceQltb20wPpwbeStoMTEHqiMsAWt+DBABQC1gZ2YErNmadly6Kfwsfuuib84McAbMyzZ+pJ2KX/xydtHrCJlgxAkQy5P+zZBVql9zzJC89bX6E1bzwEtk6LYI2Ld2ER3/nUSQkooye3XE2tvzOlrlBjgD3/o22kRCx97X5ANuuoyCFBGlO4+Mf/ziuu+46bNo0+U2sqiry+bzv36mGtxcbQ3+WEKQze4lRrtU9SACcDBiTizovJYVR8EbrkoMpR02af+sTJICQpGX/8T3n98j69SevnniPwSwJsTGYRbefoNXg3jctE88OPIufvfkzPDvw7Oyv/eOBVc6iTz0br1c2om+krW7dMoEXoNGwk8ALsz+sxmCZLjmQ4y3vHzwlMFQ4FolZkGAxlZiXrUa+853vYNeuXXj22Web2v6ee+7BXXfddYpH5Yc3i822bXAc5yhIZ/ak8Jv9o7NEQSIPFMNDkDQ7BugTpJHPNdSYtOP+11sYVtH1SQkR5eTVE5bmL0ZmVYgNAMxiGeOZ1VDlFPhDZay2bJ9vbi632jiwewhP7vwASnqKvJAD4l/Yjst/b7VPAdYtHZpFCFKpxYn/CcF7j8pxQIoT9aRFS3ScEniPQaggzW0cPXoUn/70p/HII48gEok09Td33HEHcrmc8+/o0aOneJSuB8m0TegWIULMg3RGD1GQClUDZqtXoVbJ6tuAe6xVO+avizPXETRpt3iavxdm1p0IzdJbGK/3GMyiENuB3UP4Zey92L3uFuxdcxO2PZfAw1/Y7rTI2XZ425xttXFg9xC2/MselPSk7/VSVq1pE+S1AhT11kw+OCkwpYjjCbmXZ8+9O2Vg51aQPRmoIUGak3j++ecxNDSECy64AKIoQhRFPPHEE/jyl78MURRh1qkOrCgKUqmU79+pBlOQAHfyGXAUJHfCavVMNlSJgqRbbq0jzYrPCvVkyjBLQ2wAYGazzv+tKSFIkVkTYmMEoSr4GwozgvDG8wNzttWGZdl48rtv0N/qZzN62wSVPIpKaS6pKyyDTYqTBAVpHobYvPNXJE3+PwsWN1OBeUeQrr76arz88st44YUXnH8XXnghPvCBD+CFF16A0CIGTJEXIfPEjF0xKlANEyNFImEvaYshTpvWtnQ1bdt2FCTTlp2XSYhtPilIs8+kzWDm3JWiVX4LDwXmpRNnRxabjyA0KHfw+Hf3YajUuNnybG610f9GFqXsxBXuvW2CggTJshvXPptVYPcou2ed8Hjr37tTBu/85ai/80NBmncepGQyibVr1/pei8fj6OjoqHl9phGVotBUDWWjDD1HJquIxCMTk5CJyShpldb2IRlVgIYHdcu91DQrNr8VpBZP8/fCzGWd/1ultzBepw5SIIvNsgC+9dZpzRAELW+jN78Sx9P7J9xuNrbaONE2QV6CZMNGxaggLsUb/dnsgdeg7f1ZR0EyLRO7hnZhuDyMzlgn1netnxtm9XoKklEl97TUnE1ltmLeEaTZhJgYQ07NoWJUMEL9R73pKDiOQyoqoS9bQbbcwrWQVJb9w8E03YlCtWN104XnLBr1YmvRQpFe+BSkUslJGDhhGHWy2GwL0ArupNtCaJYgxPTJw+2zsdXGibYJKgfIfkkvzQ2CxO5ROeAfDOzvXDbqu/NXHFBScAr/VnNzniC13tJtBvD444/jgQcemOlh1ICl+pf1stOktidFLshMlNTjaGkFiREkJQlDdyV3zY6Tzu7WHJHhJ0ONB2n2+Bi8HiQYBmz9JK833RNik6LE8Aq0bJitWYKgJIU52Wqjd3UG8czEx8DbJqgUKNsxZ4zaToiNLmrqhMfnslEfgH/+4nkgQhcF8yDMFhKkFoa33QhL8e9NkwdLejYQJHYDBQmSRQmCMU9UpEYm7VkQYrNy/knwpI3aXpM24IbZWtSo3SxB+P13/q+67832Vhs8z+Hy31tNf6u/kPG2CQoas+dMqr8WCLEFMlBNy5yzRn0HwfnLMWqHBCnEDIKl+peNMvqz5CLtoQQpE6MEqZWLRToKUgqG5k4Qqs0IwnwhSIEQmzSLTNrZKSJITh0kOsmyMFuLZsP4CEKDxqQb37ca71xOWm0kZX8q/FxotbHy/C5sflcJcd5PYhMZqaZNUJAgzR0FiWWxsfC4P8S2a2hXjXLkxWw26jsIzl/zKJMtJEgtjLoKUoa8xhSkls5io0UiGypIAYI0Z6sRNwyxlVq+K7gvxIa3YNT2NqsFZkUm28rzu3DlRh6C6fcjJdoUH0HYtHQTPnTWh5z3P7P+M3Om1cbKRcP47cznnd+X4yl88P8urmkTVM+DNCcQDLEFFjfNGvBno1HfQY2ClCE/54GCFJq0Wxj1PEi91IOUjs2CEBtTkCIpGGMu2TEhw7RFCB6CNGdNjt4+RsE0f9skZfxb2OhoTlmILVBNvMVDbAyL20pYMPIiBnsuBgCc8/KDuOyX34SgyL7t8prbgmRxcvGsDKvVQ/43u/DmrxYB55HftT4Tb/72h9D9Z3/uazkzZxUkJ4stcO/S15s14M9Go76DUEEK0YqISrUKUk/Ag9TS/diqHgVJ8/sYqmbc8SDNaZOjt2K4k+bvye5pcR8SI0hclIz9rYfYKBlkClKLT7JWoQiTLlQAIFk8Brtcewxyqksky0Zrn9Nmkd+6FX0P/gKa7hatNcQojOFR9H36FuS3bnVer/EgzTkFiaX5+z1I67vWozvWPSeN+g4aKUgtrP5OFUKC1MJgClJBK2GkSGR+ZtLORMkKtqUraVMFKf96BeUDh31vvbHtNOR/9eTcNzl6w4jMfyOIgEANwC2c6m/rutOLTVq4EMBUmLQDHqQWn2StYgGG6Cp8Ji/XbVg7rrpKWDDcNBthmyYG774HAGAInv33/H/w7ntg084DQVI4dwgSS/MPhNjoORZ4AbdvuL3un852o74DRhKD9+48CLGFBKmFwTxIo+UCbBuQRR7tcUKMZkUWm5pH/mgEfd94CabtX2GpZgx9f/FPePH7/zK3TY7ePkaCJ6I9C1L9TQ8RkHpIk8qTrqZtBDxIsyTEZhaKMDwKkiUovuPCMNcUpPJzz8MYIA2lTcHN5nPIom3DGBhA+bnnAbiEKEIJ1JwJsWnB8HhtL7ZNS4lRPyH5W9LMBaM+gNpekvMoiy30ILUwWBbbWIVMNr3piFOkj2WxZSutWyjSruQwuIvcTJZAiB1nm7A5AYZA9k368jfA/b4Nm5+4+OBMmRxt0yQPi+FhiJ2diF14wYl1tA8qJwxygpCDFl5ps/Aan0qBT5EsrbfsQRIDJu1WD7EVizDERc7vpiDXJUhZNev8v5GCZBoGXn3mUVTG+xBtW4Qz33YtBLE1p2Bj2L3ffARJiNbdjhGkrlgXjhSONEzzNy0bOw+OYahQRVcygg3L2yFMcu/PKIIhNsek7T/Hm5Zuwr6xffjqS18FAPzhOX+Ij6/7+OxWjhgapvlnfZu95bmyBdGad2cIAK6ClKuSm5QViQRmh4JUfq0PRoXcICbtKydpBWhKxlmJiiNZnHWUx96lE0+SM2FyzG/disG773FW0gAg9vSg+wt3+AyqEyJocGSQaleirQaW4i+k0+BjZLwnT5A8rUaAWRZic0lBoxBb1vOwqNSp77X70a9j4dN34WyMOq8NPtaB45fcifOv/cjUDnoKIHa695vpCTF6w43e7YIEqZ6CtGVPP+768V7HTwmQRd+d16/B5rW9Uzr+KQNbwDiFImP+1z2oevyG7ZH2uUGOgDom7Qz56VGQpmSubEGEIbYWhuNBUsnNyPxHgJvFVtUtVPXW9OcYY+RBYsNVkBSa7eN96CzT0y1ncsxv3Yq+T9/iu+EBwBgcrDGoTohgejvDbAix0RR/IZMBHycr55MPsXkqaQOzJsRm5IsBD44MM1/wb2MZKOjua8EQ2+5Hv47ztn8Knfao7/VOexTnbf8Udj/69VMw8reG2IUXQKRhVa+CZLLzx3EQe3oQu/ACAH6C5P2dYcueftz8yC4fOQKAgVwVNz+yC1v29J+S/XjLcBSkYKPp2vvAe97HqmOnemTTh0kKRU7ZXNmCCAlSC4MpSCXK4HvS7kM2IYtgynSrGrVFhYT/LF5yXpMpQTI9BOm6iz6Eepgpk6NjUK1Xo4i+5jWoTohGCtIs6MfGQmxCOu0SpLesIM2uEJtWrAKcO02aggKr4FeQvP4jwB9iMw0DC5++CwAQjCSx33ufvgumYUzhqN86OEFA9xfuAGDDENySBoYQcdIpur9whxNCYYSoO9YNwO9BMi0bd/14b500DDiv3fXjvTCtFqwJ1ijEVieM6lUOvab9WY9gqQNGkCrZqZ0rWxAhQWphMA8Su/EWZtyVLM9zLV8sMtapQYyadQkS8zKIPT24/Lo/wv1X3o8F0QW+v58pk6PXoFoXAYPqhGjkQWrQ9LKVYOayAKYqxNYoi621jZ5q2U9cLF6GmfMTJK//CPA/KF995lF0Y7SGHDHwHNCDUbz6zKNTMt4ThWnZePrAKP77hT48fWDUR1JS77gCiy4bh624CpLNi+Db01j09w/4QiflQF0gL0nceXCsRjnywgbQn6ti58EWVF1qerE1LvLq3efx6lwiSAGTtieLbUrnyhZE6EFqYTAFSbVom5GUP/6fjkoYL+st60Pi9AK61+dw4LkO8rtlQKIrTeZlYKvQTUs3YXFyMd774/cCADadtgl/c8XfzEgc32tQfcvbBQskMtRpegmQauK7hnZhuDyMzlgn1netnzEvgxNi8ypIbznEFujFpuYAywRa1K+hVv0rX1OQYRYmJkjeUEtlvK+p72l2u6nEpJ6gShapJVVEIzbgOQxLvnAj4h5yZNu206yWhdi8CtJQoTE58qLZ7aYVTop7zP+zTpFX73mfmwSpNsRmDA819RHNzqmthpAgtTCYB8mwWKNa/0M2HZOB0XLrFotU80gtqaLzik8A2wHe0iHSB6UVUbDo9y/1rUK9JkdFVGaMGHgNqm95u+Dqi6FOunCrVRN3QmyZDIS3EmIzDcCiSkxQQQKIlyHW/hZGeuqg1SFIVsCDVEOQPEpCtG0RmkGz200VmCcoGBhhnqAHP7gem7vI+dc5f585taDBU+oUVbMKyyaFYFmIzetB6ko2Vym+2e2mFTWFIgNFXj0Eyasczi0PUoNK2rYJMZOo/zcBNDunthrCEFsLgylIFke8PD3pWgUJaNFMNtt2CkVG3nYZAEAwNYcgKYt5pM7u8P2JdwUW9HVMJxyDKtcgLhIwqE6IidL8AWfyacVq4pZDkNLg3kqIzZvVxY6DILnHoEWN2rZtQwvcWhZfm+bPMtic1kCe6/jMt12LQXSgkb3GsoEBdODMt107ZeOeDE17gsrkIa/B/xAsDzUuCslCbEWPt27D8nZSoqTBeDgQ5WrD8hYjyZbpXrvsWhUkUtMMqFF/fSG2OeVBCsxhUgygtonYmuVTN1e2IEKC1MJgHiRwKmSBR0fc3/8p47QbmdlaSHV9DFoJoKtKA+TG4i0dokluNs2O+R+c8E8webU2lXq64BpU671JJgKvQXVCNJHm36rVxL0hNuGthNh81cQ9JL8FWhZM5MGxq1UYnP+eMwWlYYhtYYJUG/dex4Io4vgldwJADUliv/dfcue01kNq1hP0xqGjAADd9l+75VF/8162v1ExiqRM1CbN0qCZZF4SeA53Xr+m7nexx+qd169pvXpIXn+g7DkGDfyDXgUpp+ZgWK1lvD9pBFVwjnNUJE4vTt1c2YJo+q4cGRnBJz/5STz22GNQVRUrVqzAunXrcP7552PdunVYt24dMpnMKRzq/ANTkDjeRFdaBB+YQJiCNJNZbI18DHdv6sBVAMAJMCwyTsFyFSTNjvsfnAgoSNrMmndT11wD/P0DOP7522BX3X0Tu7tPsA5SIwXJJUi7hnY1XU38op6LTmQ33hKcOkjeNP+TUZB0j//Iu9KMtgH5Y8AM+TUm8+CYhYKvijZAQ2y5+llsCxMLsT+7vybN//xrP4LdABY9/UV0wQ29jHDt6Lvki9NeB6lZr085PwIA0G2/cl3N+R/8TEGKS3FHRWOvy1Rt2by2Fw9+cD1u+e4LqOpuX8aeVq6DxBQijvcTezlOsi8DClKw/lVWzdYknsxK1PNRRtJAeYT41Ohc2f/nd8KiiyrgJObKFkTTCtInP/lJfPe730UkEsG5556LwcFBfOMb38Ctt96Kq6++Gh0dHVixYgV+53d+51SOd17BO9l0p2pPlVtNe2YI0kS1Tb70XzvJL0oShkEmRN7UIVCfkWrGagiSV6qfyRAbQ+qaaxA5+2zn967Pfw6rfrHtxG74hiZtluZfarpK+HRXE5+yNP9go1qGGSwW2UxdHqtY8tXrAphJ2+9BYuGU3jh5yFf0CuxAhtP5134Eg+/7qe+1jg99fUaKRDbr9WnnyLlmBImjikjFv/s+giTyorOwCxaL3Ly2F5escMPqX7/pIjx12ztakxwB/gw2L7FvoCAFK6jPCaO2qQMWfb5457BAP7bUNddgwc03O2/H3375ic+VLYimFaTHHnsM559/PrZv3w6Fpn329/dj165dzr/nn38eP/zhD0/VWOcdJEECDwEWTCxI1b4/kx6kyXwMSRDyY0dSMDRCkHwKklVHQfKG2LQ8LNsCz81sFNibwiotWXLiUjHdR0uIof+1cZTyKuIpBb1CjKxO9HLTVcKnu5q402oknQZP7/m3FGILhhmdeirT+yCZ7NrlQDw4G9+1wCFISlyEWjJg0Uratm07bX+CITbDNqBbuqOeMKhV/7ETRl8DVr59KnetKTBP0ECuWvcYcCDKzmkxEkozbLIfspaHGmmHWvHfk0wxYwu6uBRHxajUbblS1tww8Vk9qdYLq3kRzGBjqJNgYVomqiYh221KG8bV8blBkLzn0Hsc6vRjM0dGnP/zkeisDat50TRBsiwL73znOx1yBAC9vb247rrrcN111zmvjY3NIfd+C0DgIrDsEtrrJAukHA/S9BOkyXwMCY7cWGUuBoNOiryp+T1IE4TYLNtCUS8iJddhhtME2zShD7lprPZJkoMD1Yvx5E/Xo1Te7bwcjy/E5dLFWKmVsL5rPbpj3RgqD9X1IXHg0B3rntZq4rauwyoWYYPD4JiAclHFeGY1Mtn9sHUdnCRN/iEMDkEKKkgzUyyyWQ/Ovv39DkGKpxWoJQOmoMDWddjVKrgobQXEQmzxhc5nlPVyDUGqlANFQQf3TMHenDiYJ+jmR2obQHs9QfzhnwMAdJD9iKIEFe2oVv2PDa+CBAAJKYGRykjddiMVT9X/bEVHV6oFM9cYghlsDFJtiQ5GjgBgUWIRxtVxjKlz4FnI7l2Od83pQN1+bIZnrrSKAZlxlqLp5fkll1yCo0ePTrpde3uLZSLMcnB09ZaJ1z44MzOoIE3mY0hQBanCx2HoTEFy0/xNToap+c3lwRXnTIfZjJFRQHePrdkgvDSR0fdAXwe2ZD+PUtlPKEolHluyn8eBwSUQeAG3b7i97mfPVDVxM5/H0ILzsP3iv8SPH9qPX3z7IHavuwXbL/5L7H/m2Il9WLDNCMMMhdia9eDkR8ZdgpQhC0OTPiS87UaYUtAR7YBMew4GfUgAUCkFEg8G957YwKcQzBOUivjJTk86QlL81/Y6yp5h04ylCLmPNUPx/U2QILGfwXYjAFBSXf9SS2bfeqG7BMmybPS9No7Xnx1AX3k1LJv3qSts7uI5Hj1x0qJlTilIUswfZqzTj81bE8kstm6PyRNB0wrS5z73Odx44404evQolixZcirHFMID25IBHkjGrJr3ZjLENpmPIUkVJCGSchUkS0Ok3VWEVNWGV7wOPlTyah7wl2CZVhj9x32/11OQJjL6XrOmB0++diF9NRhK4ABYeOrYO7HcsrFp6Sbcf+X9uP3J26GabpZQd6wbt224bdrrIO1/9jj2nP2HNa+rSgZbHzkIPh7HyvO7mvuwYKNahhnKYmvWg5OxNAyysBElSBb1YViFPNBN9p8R+YySQUyKQVO1uuEljSpIqi1B4XRgaC9gWQA/M2HkzWt7sacvh3/81QEAwE2XLcOfXOfJJquMw7QFWBx5TCQyIpAFdC4CM5eDkCYqAiNCLOs2IRG5u1injU7FE2Jr2fptDFQhOlBchye/sB2lLLsvfwtxfiMuf13HyvPJK94wY1uEKKNzgyBNEh73ECSv2m4V5pmC9Oabb2Lz5s3YvHkz9u6duZXPfINpEBKUiNYSpEyMrFZngiBNVtuEeZDSbR2OB4k3dUROX+0YtTV/tnDNinOmFSQ9UEI/qCBNZvT9760HUNISqCVHDDyKegb9b2QBAJuWbsK5C8513v3SZV/Clt/ZMu3kyLJsPP0Y9RME65vQ35/63huwmu2dZTSYZGcoxNZsXZ6lUdtRkBI2yTJ0FSSiBlm25WRcZpRM3VpIDFqVEIbX7UXQIZI+fNnDU7VbJ4VcxVV0OhKK3xNUGYdhu2pRPE323RCi0I65KiIjg0EFqV6IreQhSC2vIGklHKhejC37f8tDjghKVju2/KoHB3YTUsCOgZcgzYlikY2ycD392BiMITeJxJxvIbY/+IM/wPe//33s27cP5557Lq644gr8xV/8BX7yk5+gr2/6y+TPBximBZ0SpKhSW1PDqyAFs2ZONSarbcJCbLxHQRIsDcrpp7s+JDVg9gyG2GY41V8/7u8w7s3gaqbY3veeau7hV8q7k683Vbg73j0j1cT738iiXLIbF38DUBxXHWI3Kbxp/l44IbbpXWk3W5fHLhbdENsr/wwAMDlyPsw9jwEAClrBqSLNFCSgPkEyquT6KdgxHOapCj80s4vNcU8NtZpyIdUsdJuWGrEMRFKUHIoR6MfcOZ8tbJhyNFGIza8gzWz9tslgVUt4Mv/7Dd4lcxdbKLD7NipF0R4hNpO5oSA1qOMWyGKzKhVYngKq1hwJsTVNkL75zW/ic5/7HK655hp0dnbiySefxBe/+EXceOONOO2009Dd3Y3NmzfjT/7kT07leOcVhosqCbEBEMVagsTS/E3LRlGd/qJkzMeQUGp9DP9jDXWVK0nHg8RbOpTTV0Nkqf6a//JjEyrLXJt5BYkSJBoC8WZwNWP0PVZp7gEQT7mrdO+DdajcXJ+jqYaXsE3FdpOatGcgzZ9du0EK6PXgWIdfdAkST9QAk6ehtl8+AOz9kZPBFpfikATJVZDqhNhMlSgqZSh4HUvJi4OvTO2OnSC8BKlG0amMQ6MESTCriKQI8TGECHSPgsT6sDFy2EhB0gwLmukq4TNZv60Z9B8DStYCNFaAOWeh4AuxKTTENheqaU+mIFGC5PRao4squ1KBrbf2+W0GTROk97///bj33nuxZcsW9Pf3o7+/Hz/72c/wpS99Ce9973vR1taGbdu24d577z2V451X6M9VHYJUqbMijUgCZJGcwpmK529e24vfu2ix8/tDH74AT932DixL0IlQ8ShIpgZl1WoIdLVVKfvVEbYK64ySdPaZJkhGPyFI8mmnAfArSM0YfY+JFmLCOIDa8CiBhQQ/jN4Vboqid9U9UfHIUwkvYZuK7dw6SMFJNkN+TnOIjeHtp3c6al9SEfHtP7zYrctjmTBef8olSAIjSDJsAKbGAVtuR7ZCXs8oGQBEQQDqK0iWSl6rQsFek94zM02QSu68ka965hDLAipZpwaSYGpQ2oh/0BCj0I8ecTZ1TNoizWKjNb6CJNGrHgEzV7+tWZSKzVWuL+VVXzXxueVBaqAgBQkS9R9JvW5NK7NYG2KdbThpdyBTjG6//XZ85zvfwauvvopCoYDt27dP5fjmNQZyVcBqnBUDzGwmG0PFUxn3TFbbhLUKUVI+BUlsy0ASyMRTqcZJITIKNtGygnutEmJTVq8C4FeQmjH62hxwyYLvYaIV6MbUv4M3PdkwnvM8WJoZgtS7OoOoqJF+enVhI9GmoHd1prkPdEzajbLYZuZBMuRRwEzbxiUrO1wPzuHt0CsWbBpSYwoSOB4WL8LSOSDfh+zRpwG4BGkiBcmmpt+yreAlvUUIki/E5lGh1TwAG7pFrnPRVKG0k4eiKUageQhSsx6ksu5XuVvdpB0Xm/PRxFNK3RDb3PYg+f2DDkFauNApf2HNZ4JUD9FoFG9729um8iPnNY5nKx4FqVJ3m1ZoWOtdGTqhPtqoFpEUjCp5TTA1cLEYZIVcdlU14U+VpeSgN0EJ0oyH2IhJW165EoBfQWrW6HtGdAc2Z/4a8ZRfLYulZWzO/H9YGdkBaGS/bdv2PVhnKsTG8xzOTeynvwVIEiVNG9+3uqb1TUMYDSZZFmLTy4Ax/X6UwbyrApY10286Lw5CtciDnrMNRHn3WrR4BSYND2eLJNPRIUh0pV33fqUPmzIU7LOIKomxAzX1wKYTDUNslLRqXAYADbEtIOfLEKLQ+2o9SN46SN7Xne1UvyLT6ibt3tQxxPkR1NwDDtyFQr0stpyac/xpMwXbNFF6ZidyP/kpSs/shG2eYD/HRp0AAgoSy2ATuzrBJ2jV/ZAghTiVGPCE2OqtSAHXhzSTk423tkmBkiFUmYKUhE6le97SIcTjUGj2XUVPuOoC3H1kCtJMNqy1VBXm6CgAoG8BIQLF3IjTMNZr9K2XwA8Qoy+nV7AysgMfvmMFpIh7u139kbOwMk3VA7rfmqXBtN0JbKYIEgD0am9i7SsPISL5J3hFHcdlKwZrUvxNy8SzA8/iZ2/+DM8OPOtvrNvIpK2k4RytGQizDRUCmUmaR+FIdDsESUYZPGeBB7mOTUEmITYAWYH479IKeWBMpCDxhhtiG0YaVrSDNHQefnUK96p5VDTT1xfNF2KjBEkFUUMEU0Wkg4XYItCODziJIcE0f0dBCqT5z7YQG6+XcHnq3xq8S44bWyj4stioB8m0zRmdw/Jbt2L/1Ztw5CMfwfHPfhZHPvIR7L96E/Jbtzb/IZOl+at5Eo6mGWxiZxeEBKnNEmzJMxsREqQWRn/eDbFNpiDNpFztrY5bVOk4mIKkJGHQiVfgTHCyDIVWz1WNmEMOLNtyVmGsIvFMhthYixFV4vClQw8BAIZGDuPa/7wW2w5vA+AafTuTfi+OY/Rd0wXQmka8EoeXM+RHqu6kQx8kwYfqTBIkM5tF18iLuHSdqzB0K+O4dMefY6HsH9e2w9tw7X9ei5sevQm3PXkbbnr0Jt9xaijT8zwQoXWxZiDMFiRI3jYYWHopNI6MTaY1vSSOkHlTkGHpPJBahGyMPCiYajBRmj/z3pVtBQCHavuZ5A1PmM1XkPC18eZLKZwExgNZZPl6ChLI/okwIMdpJWWOh2m4xly2r5MqSJo/xNbqJm1oZayM7MDmq4chSv5HZYIfxeaVP3AWCk6ITYxCEiQkJUISZqqadn7rVvR9+hZfqyQAMAYH0ffpW5onSdokChIAVHNOiE3s6gKfJPseKkghTikGclXY9sQepHR05mohMdRVkByClIJB3xdFsuqOZMgEqppuP7aq4Sm02AIhth0v/AQAMJyyUaXPhYhGSMutj9/qI0nf+aOLnb9LRUTX6OsJndhCBKZntZ4bKrstDOgkFHygjFRHYFjTn50IAGaWHHuVd1eOsgxwsH1erG2Ht+HWx2+tMZT7jpPRwIMEzGgmW9Bo78sE5QWoIlFPFNq0VeIIoTJ5mYTYNt+LrEYUAkdBkuorSKphQrLp31PjdylzBnmTVtQ+sHsID39hO374d7vx2L/txQ//bjce/sJ2p9bOVGOsRAgS813lq4ZbLoQqeqpNSKLIW5AUARxVTgwx6qT6N6qkXeNBogQpIrHEktZO82cLl5VnCFh0Zpvz8oUXW/hQ5x9jZcJtHeSE2Oj5b2TUnqjq/lTBNk0M3n1PfQ8hfW3w7nuaC7c1MmmLsvtagCAJCTK/zwWC1HQl7Xe84x2nchw1+OhHP4oPf/jD0/qdrYb+bAXgiDrRyh4k78rbJUieEBtVgkSF+HAiC9LAAY30Y6P75U3x74r5KxRPN0zLxJZnHsGHAIwmOYcgRTXAhg0OHO7beR+uWnIVBF4IhCkMlDQDqYjkI0is4SdDdqhS0/SSTbJtShvyWh6mbWKkMuK0LphOsEa1FSsC0JpWJk+uNebFMi0T9+68t27/ON9xsnohALVZbEBNJpttmig/9zyM4WGInZ2IXXjBKWt6ORwoU1AOeGR0kzZp5cn+io6CpMCMLwfW3IDc448DqGPSDixoClUDMZDvk6NxQAWyydPRCQCDe3Bg9xC2/Ettb7ZSVsWWf9mDzR9b23zl8ibBVOfFbVEcHi3DtGyUNJOU7aAKkk7DjKJAmvPKggrVjMIQI9D7jgHrz6/JYovLjQgSOb4L01G8OVJCrqLDsuzmvWynAKZlY+fBMQwVquhKRrBhebtr1Pf0YjM8c5wUkcFzlq8XW1kvg7Ns9L42ilz/T3HeMRFHk7aPIE1UdX/zWjf7662i/NzzNcqRD7YNY2AA5eeeR/xtGyb+sEbqL0BUJL1cqyBRgjQXQmxNE6TH6UQwHeA4DldeeeW0fV8rwrRsDBZUcAnm16lPkFwP0sytxspBk7ZlOqsvRNIwNJLxItF6SdHudgAD0BGDrZbAwV+qnz1sclrO1zV9urBraBfkYULwRtJAhSlIOsDZNmwOGCgPYNfQLlzUc5GzMmY4MlrG2kVp3+rL0P1entxQGVhCFST6gGGqQ0JOQBZkDJYHMVQemhmClM3SMblThAlGkMg4dw3tmrAUgQ2bHCdexkVAbR0kwJfJlt+6FYN33+Ob3MWeHnR/4Q6krrnmrexOXQRDbF4FydZ16DYl9A5BIttbggxLI/cjewAy30kjBSlX0REDeTBylEAMx1ZhNQBrYC+e3PfGhGN96ntvYPl5nVNKJsaogtOTiqA/W4VmWshXdB9B0iyyPxK9DByCJEShHzsGy7acxVuw1UjwGDAC2puJ4M2REiwbKLLFxAxgUsLCxi/HoFfdOS5foAfDs3+dOw/gn75pYkHhP3Ec/4kPAXhXEihxTwEf3eRU3Q8uJVjVfaf/3RTAqUk0Fds1MmkDhCAV+oFq1iFI+/gBWMgiCcDIz5z/aqrQNEG68847T+U4anDFFVdM6/e1GkaKKkzLhmzPBgXJfbAUq4YbXgMAJQnTsABwEBhB6ukAMABdiMIYGoK0wm/0TMnUDGoZqBgVZ+KdLgyXh7EgT6aykZSrIAGAogFVxd0O8LdPAIBDoyVKkNzVlx7YJjdSgbUiQWLcmp8gsUwYRpCmG7auOypRueI+kE2iAznvsf2fDMMWnWTrKUg0xJZ/8jn0/dPPasICzDOBv39gyklSMMTmDRWbxSIMqgbJQiDEJijO6pgVimQhtqhYvw5SvqIjwhFCwlHlcEhZBoBDf7arppVFEKwg4aIz2ibc7kTAQlxtMRmpqIiRooZcRcfCTNQJeWomudiZB0cWdUCjqf7HjvlIUL1mtZZtOYVf2TyRicmISDyquoVcWZ8RgtQUYWGLPDkB3WsjYM99GhrPb92Kq77yXM13tBeAjnu/i2zvpbhrl9Cw6j4H4K4f78U71/T4W72cJMTOzqnbjs1hzA7gBVV/zfEhJ+x+8+4v4H3jFt4D4Du7/h1rDq+e9lZJU4mWJUjzHWxVk4nEUcEEdZBiM2/S9qbvFqq6S5AEGRAVGHRukehEqCRYy4Io9L7jkOAnB1ExComXoFs6cmpu2glSZ6wTOToJjqYATQQsDuBtEmZjBKkzRiaYcqCK+eFReq68ChLtR6fEROiaCcuwUbQXIAXUhNjiUhwd0Q4AM1Ms0vSs/IoF99w6BIlOhmz/J0OnQT+j7io0A9sCBh/5VWPPBMdh8O57kLz66ikNtw3SENuChIKRouozEVuFglMkUuEZQaIhNl6CVSjAtiyHIAXT/GsIUtVABw2x8fRhkzMloGMlSseaIz1NVy5vEsyD1BaXkYpKGClqrnGaEiSdJolICiNI5BiRatp9zsJG4AQoArkxmIJkg7TgcAgTXSTEZQHpqISqriJX0THdrc8naxPECMu1AlG3Icehe8zWhZxF3Lt6CbZhEL8ParNZefp5fX/5JQxe9lmAq2/5tUHm+50Hx3DJyo63uHdA7MILIPb0wBgcrH9PcRzE7m7ELrxg8g+bLMQG4MnXf4NuAGUZqCocKnR+tItl3Pr4rbj/yvtnLUkKTdotioEcuTAXxElGQCMFKTXDCpJl2b4stoJq+AzaAMC8gCIdqxIjvNwQo9D7CQHwmhw5jnNW5DORyba+az26i+RBPJICwHE+ozYHDj2xHqzvWg+gjoI0Qr0JnsmFeRgkRUB6AZlscno33c5v0o5KUceHNRMKEvMf8amUT9kwLNpyhSpI67vWozvW3fBznOPEro8GIbbysAwjW38BAMDnmZgqVHXTuWeWLyCkxkv0zRqCxDkhNlNQANuGWSg4BKkmi02vVZCilCAJCvXoqAbQtQZxvrkMvqYrlzcJtqhqi0mOipNnHkLmQTLJ63KE3LOyRAmSSEJs3jYjLBSuCApEjmzvTfVnClJMFpGZILnkVGfyNdMmqD9XhaXS+1iKQfcuAsd1wjtsC+WdO2AMDExYD40fGcLZI29OOq5mqvM3A04Q0P2FOxq8SUba/YU7mltsNDJpA0AkDRPAdw/8BgAwThsClBXyHTGVnLf7dt7nL/sxixASpBbF8Sy5WboShGQ0rIM0w2n+XnIEsBCba9C2LRumRW4YOUYmeDbZGkIE+gBNFQ5U403LlCDNgFGb53iHII0mydiZDylK69/ctuE2p5Esm/iZPO4qSLUESZQFpLvIZJOr0tViQEGKiTGHIM2IgkT9R3ZbJ9SyJ+xETzUjSAIv4PYNt9f9DA6e48RqXTUIsRnV5lShZr0VzWCY+o9kkSchJfhDxVax5BIkUQfalrkeJBoiK40POVmGwSy24IImX9UR5eoQpO616JX3Ia5MQBCBE6tc3iSYgtROFSTAQ1gckzZ5XaJKtSyRh54pRqAPDKBcIYshdt8CxEPKjNrezEzmVYzJAtINlO/pyORrhojwsCCYZDtbivs8SIZuo2KR8230H6v790G0q5Mblpupzt8sUtdcg0UPPFDzutjdjUUnEq6eSEGKZrArogB0MT9O58oy5fEx1eNDHNp1orvQEggJUotigFb57UkSgjSZB+lU1RSZsAAgArVjQLPYvFW0DdecLMXJBCBHCUGyBBnVQTIRe8kB4D5wZoIgWfk8+Ap5mFU7yLKIEaSFfFuNZMyUh1WdZNtDo0xBcldfOg2xiTKPdCeZbLLVDHk/4EGKS/GZVZBoir+e8ZtGWaTMm+a/aekmvGvZu2o+ozvW7R4nnWV/RWpTnCMZiJHmVpfNeiuaATNodyYUxKk3zmvStoqugiS3dwJK0vEgWTGi6mZHSJq7IiiO96iRgkRM2uTvpSi5TopVA+g+Gzxn4fLeH0043hOqXN4kWB2kTEyunUdYCwmLKke0uKss0zR/KQaYJsrHjwJwM9gY2O/eTDZm0o7REBsAZD3JJSyTL+jHYpl8U0WSmiEizFAPABYfc1QsKULIfAGkVpuYqePNqQOuo2PSqvsblrc39VnNInbBet/vS776L1j1i20n5uWbxKQ9LAhoo6fYVZDIz6jqKn/N+hVbDU17kEJML5gEvDCdBrJA1azCtExHtWDI0ImroBowTAuiMHWcd9vhbbh3570+FaM71o3bN9zuEIRgBldRNZzy895GtUAtQQKA8gjZz2A13hQNz81EiE2nTWqFtjbccPZv4+uvfB1V6iP9s3M/i4WBeDoz965ZmMJrgwUMFVSUNQOxeiE2WUCmi4bYynRGoQTJOQZizAldzWSITUuRMcgRAVrVhKGTCc/bcgVwjcoA0K6042+u/Bus71rvXquU3H/o4ZewveBmqPWmI/jn822s69QgJgQYJeuteyaaxDBVEbpSCsnaQsCkXSg4Jm2lcyFgx500fztCCc4YuS+Y/wiYQEGqGIiCkAE5mgCQpQoSqca+Uv8hrtjwO3j6N1VotMggACh6DhdvTEx5ij/gqjftcQkpquo61bSpgmTYlCCxe5eGT2xaLVk7SgmSFCBIchwoBRQknREksaaHpGXZePK705PJx9oEDeSqdX1IHIBlKQAaAI6HZrpzbntvHIMH8yhwi9GNfYitWQGxqwv60FBdAmQDkHp68D9vuh5PfPvFut8FkKr7U2HQ9kI/5le3lFWrTtzD16iSNgBE0ug0TbQXyVEcCxCkmIfnNutXbDXMmIL085//HH/6p3+KW2+9FV/+8pdx7FhzUuV8AfMgnZZxDZxVs1YaZhMb4PEPTAGaKgCI2v5KxYAHiZmTOUuHQHv08DwHkScTYyVLfnpN2sDMhtgYQZJ6e51WAVX6YOgfPVizPTP39qYjjmn+8Gi5rklblHk3xFakqzK6HXuoxqW4jyDZDZvGvjU0KlrHQmxqbAEAINNNxmtZgMXxsKtV2NR5b1gGXhz2TPwccFHPRT4ib6hkv44W/fsxkKvir389BI4Hui9vkMl0op6JJsEUpO5kBDGZfK7XS2YVim6IrXcZIMVcBUlxQ2xAgCDR65ctaBgKlSoUjlzrClOQVAPILAOkOPKHOAh/fQvOefGffeO86JkvQfjrT59Ye4gmwUJsmVjjEJujIKX8BMmKkv00+kgvumAiRb1q2iyZIa64ClKOkrT+N7JNZ/K9VTTTJujzV9FmwnICukruXUHikaL+wbxFFCTOqkI67TRwqO3YxrTz7jvuwObzFuPBD65HB6tGTuFU3Z/COkgMmqdfHuDe1yeECU3aGayvqugtkqM2nmAhNuZBqvVrzjacUoL0f/7P/8HPfvYz32ujo6PYuHEj3vOe9+Duu+/GAw88gFtuuQWnn346vva1r53K4cwqMA/S4kzK8XPU8yGJAo8kXQFPVWXayQoAAq7xrhLo0E2y2FwPElNOBFMHH3MnUYWaPaslG7ZhOGZPx4M0gyE2RpDEhb0YV8mDgilIg8OHarZnoYO4ImJpBxn/4dFSYw8SDbHligosm69VkCTXg1QxKijoU19wbcuefmy875d4/0M78OnvvID3P7QDG+/7Jbbs6YeZywIAVDkDwCVIAGDxZIK3KmTfXht7DWWj7FyjwWrgpmmBN2m19ECxTBtAzibHK7mwiEV//wC4mP9Be8KeiSYxRDPCGilIVj7nhtgWnQ7IcY8HibxeGR8BUF9BAvwqklpyz6FCEy+KVQPgedidZ2FwF7neddlVjwBAoyUvmq58fAJg80W7L8RmkOuWVj83aJBBSdG+dBFynk1KEtFPSGKNglSnmjYLx0dlsaaHZLMZelOVycfaBHWn/eG2rpSCBz+4Hm9fRvdHjjsGbTkiINVBti9a5P7M/+o3qDz3HCwA+YDIMpYE/va3eeCqi53v/PvfW+e8f+HSNrfq/ikAq3TOcHIEyTWq1yCShgDg7AKhEcyDxLLYovRx5PVrzjacUoL0la98Bc89568P8aEPfQjbt2/HZZddhn/7t3/Df//3f+OOO4jj/mMf+1jN9vMRlmU7ncYXZqITdwjH1GeyeQsAcpaNNYctXPaKhTWHLXCW7TPeMQWJKVk+D5KSdAok8pYGPu5OorJCiJbBR2EMDroKkjTzHiSjn4SBpJ5eZKkXQ6ZesJGxWqWz5GTnCFjWQcZ/yKcgRT0KkoBEewS8yMGyOBTNjhqTdlSMIiJGnHpQQ6WpDbOxGjDBTB5WA+bQQUIQqwJRAVKdUSbkwKQGYxZme36QZJad23kuAEA1VV97lGcPDICnpFqFnyABLkGyK1mk3vlOxC+91Hkv9Z73nLhnokkwo25X0vUg+UJsw0ddgtSzApDjbpo/XU1rWZL6nWHVwAHIvAyBo+Z9T6q/WiXHywaHeNRj0gZQLvXCqJC/YYTI+Tslc0qy+FTDdBSztpjsZLHlKrrb9oUTYHDUnJ2iNaHofW6K5CnI0ySLIEGqqyDR+yTu9SBRBanZDL2pzOTbvLYXW295u++1f3j/+YSwaC4xYARJUgQkKUHKGwtgVHkM/MM3AAD/fQmHP/qkAI5Wke750l/hs59KYOcZvK+adtXjyawa5pSH1bwIhtimXkEic3QiT46PvSADwB9iu/+Kv521Kf7ANIfYXnrpJWzZsgXvfve78cQTT+B//+//jeuvvx5f+tKXsHXrVpimiQfqOO/nG0ZKKgzLBs+RCbxR8TkGpxbSFBEkZqjb8JqFf/pnE1/8loVP/8jCF79Fft/wmuVsxya9bqcBrQWzQhWkiBtiE6yAgiRTgiRGoB3rcw3K4sxnsXlDbE6dG2pYzo3XlvAvO/VdGilIMadQpCjz4HnOTfU3FzpEKpjJdyoy2SarAQMA+14jE2sF5Hwl2yJOmxg7Th7gQYJ0+aLLnc/xPhRHs+75q9YhSFmQBwpvaYBecSryAgAny6eszQirgdTlDbF5wsX60HFYvKdul1dBovV+9DzZN6+CxHFcXaO2XiFKiilGEadkhBEyg3P9RXUJEsVUZvExYiLwHJIREamox4NEw2tmpAM2JXtyGzlPDkGix0CiSRZsnxkcBcmT5l9yFCQB6Zg/zb93dQbxhAU3MBWEhUTCmvJMPsdzRXFkjN6znjYj9QhSQW/DwPNpmLkihFXL8R8befCCCLGdWCKU5cvRFiNZql6CVPZk/faN11/wThX0Pj9BMk6UIFmWoySaQrQ2HB/NwLZBvIMAvnjdl7Ewtwo9xfUYz6wGZ3O4asGlE31Dy2NaCdL27dvBcRzuvPPOmvYRGzduxDXXXIMnn3xyOofUkhjIsdVtBKLAO5PPdGWydcY6seE1C//3vyx0BKI77QXg//6XhQ2vWeiMdTrkoMuzsjPKWfIfJQmDTgi8GVSQ6LZiFHpfX02zx0Z1kKaj2aM+wAhSj0OQuhacBgCo5Md9jXUB90EXUzwK0ki5YYgNgONDypq9dU3aAE6JUbuZGjAiDQdVaA2cRJvijNshSOUybNvG7iHSsPNtvW+DRAmFlxh004WnaXPQ6uSElBCBYdNpqDIOg5JTYGoJQRBOFps3xOZJOFDHs/R/NmRFoB4kViiSFjqlZnZ2rTJEpdoFjUEJki1Gne8rsCbOy892tqslSK4HcSqz+Bz/UVQihN07h7AUf8mtcRVpJ+Ni2Ww67REZGSLHoBkFqeJZSLhZbGTO4mHh8uS/Ag3dPBw2Jv8NfEMCdXIIlhk47GSg1idIqQ7qQaqkkD8aBQQe4p/dCkMkxFigSrNVKDjtZ8aqbpHJiucaGy/rNUku5I9N4OCTwMvfJz9PsoaQRkNs8rJlAE5CQfI8bzb9w86acPwTRzRYOgfb5DC04Dxs+VoeN+z9JK48+FHsXncLtl/8lzjw7PGTGnurYFoJ0vg4ufHWrFlT9/21a9dicPDU13255557cNFFFyGZTKKrqwu/9Vu/hddee+2Uf2+zYP6jHhofdxSkRrWQpria9vkd5+H3iQe7YXXY3/8Fh/M7znNWhUlFclbijoKkNFaQmNnTZAXnWJFEuq9OFptHQZrIN3NSaDARGcfJ5/E93c73t7cvIrukWTiQPeD7GEdBqvEg1Zq0JZnccmmWyWa4BCnY06o7Th5QU6kgNVMDJklbKJRpfaJ4m+KM26Yp7laphIO5gxhXxxERIji742xfiwmG83vJg5SoR7XhBA4c8hytvFwcgT4yivHMagx0XYDBnDLlRQIZhj0htphcG2KrFsn7Mm+A4zlATriFIikRRJHsZ5uHxAD1U/0Neo5tKYYkVWGKNKki9o4bIEZNALZDkETq3VGVNMni6+mZ0iw+luLfRk3DTqHIiu6k+GsSIWS8qUFMBwgS9ZNFshVIut2UB4kR0LgiOFlszqLu8HastH+OzZm/hsT5F4IJfhSbM3+NlfbPgMPb3+Ke+zEe8G0eYjXMvAoSPU+SIiDRTq5nAwoMMY4F11+E6ipi2I5KUfBJcn+Y+YJTPNSnIAXKorC53sHeHwEPrAW+/h7gP3+f/HxgLXn9BGCbpqOER9auJWM6UYLk6f95KO8npgO5Kj71gzdhVAQMLTgPe87+Q1QD26hKBo999+iU1rCabpxyguRVihYtIg8ZVa1vtFNVFZHI1BXLaoQnnngCH//4x7Fjxw489thjMAwD11xzDUqB9OWZAstg66UEaTIP0lT3Y1N3vYC2vNWwbgcPoC1nQt31grMiismCszK26qT51yhIEXLpGUIUet8xX5sNwF2VsyyyyXwzJ0ySGkxE9ss/hE5JerUj4ZjSoylSoySqAfvG9vk+ypn4ZdFRkI7nqjA1rwfJryBlWCZbQEHiLBvJPYeR+8lPcfpBDZxlT6mC5K0Bw8PCxfxe3MBvx8X8Xmd1ntTLMAQFGr2ckm0RZ9wWzcCySiU8P0TCa+d0ngNJkFyCZLj3ESu2Vy+8xq4vJUGO7Ru/OYbtb/sL7F53C/auuQk72//HlBcJBADDtDBKFZSuZMRj0qYPL9OARmu4SDIdpexmsbGWK1yRnN+gghRsN2LbNmxalZmTY47nqaKbMC0bXLIT3RuZB4k8YJMFkj7PFKSpzuIbL7lVtAHXx5ivGo6CpNrkuwVThUC9NSzdX7NkZ8HTma/NYqtHluuZtJ3EkiK551ZGdmCV8pTzN6fJz+FDnX+MlZEdvu2mCuONFKQ6ITaulEfp0Z9Dob0Fzc4UFly71l3YiDEISXp/FD0ESW1MkPqynjl974+A730YyAdUl3w/ef0ESJIxOAjoOiBJUE4/nYz3BAmSSa/Zii3DDlAFG0ABMVQrIt5Y9d76H8ARNfCp771xyhY6pxqnvA7S3/3d3znZaYwYvfLKK7j88strtj106BC6uxu3LpgqbNmyxff71772NXR1deH555/H29/+9gZ/NX3ozzdQkBp4kNK0bP9UKUgn0g26xHpQKQKSEZGELrwm7WIDD1KUTPaGGIHWd7jWpC27IbZmeyc13eyRTUTBT8z3w/jGTYDZDQgCckkyKSTlJKQIWUFHNODVsVd9f+YtgNcel5FURBRUA+VSAUnAb9KWWIiNFos03K7hp780htt/akIu/BWOA1gP4J+SwLP/cw9wyeS71QxYDZjzCr/Gn0sPYyHnyv/H7Xb8hf5hpPWK432RIgLkqOiG2GgNIKtcdvxHF3QTZYOdO18mG314yJE4EFgX9dDO6fGnF+DASA8e+2UEUPwLJFYkcPPH1k5ZLaCRogbbJv6bjrhMMi/hUZBGXoNmUYM2JQ6QYk4dJMMmx0IskR3yepAAj4JE71fVsCBa5G95OY644hKdomogHZWQetvZQPlJ7LDIZ6UKRzDefhbU+IJTksU37mlUC7iLrKJqwCyNQQBQpWMRLA2cRM3a8SiAKnQrAnHxYmivv46ubK2ClJD9ITbdtKBRg3JcFgC4pRV004KUcOd9zU44/zfsKHjOo0wkpvb5kKPHYUVnHG8Ol3BwpATbtsE5Ju04Ci/vAyBA2/kbHH/4G1DO/79Q0yvALU6As6vO3BUVo+BpiM0sFNEeIcTfG2ILhtSOM4JkmcCW21AbXgScWW7L7cCZ1wFNZIRp1KAtLex1fFEsJNwsXj40gHUAKnUWNwBggcfh6nlQIxP1EuROSaPl6cIpVZBOO+00pNNpsoKybciyjNNOOw1PPPFEzba5XA6/+MUvsH799NdLyOVYGKV+JVNVVZHP533/TiUGnCKR/uq8FX16FKQT6QZd9qgnCSrTc95K2kxBCmaxRT392OqYtNlDRzVVPLW/v6neSTsPjjXcxsEkE5FeJpOP1N2NvEHCA21Km0PuIhpJbffCDR2I4DgOS2lvL7VMwwtSzKMg0RAbTfXPm92w1Aryj27FH34nW9fztfmhl6esDo7Ac/jn9cfwz9ID6IH/ePVgDP8kPICoXnUIUqKNEBbWrNSOuFlsuwZJ+wBW44SdO18omFbRtkU/8fny/1znpDhbkXY8mf998gZXn+BO5SqUhRk7Ewp4nnOz2DSD1Jw6/gI0ml2nsKKmcsJVkGjrHImRjMADwlF86f2a91TR5pUYFFGALJLj6VTv7j4bqSVVGLEMACBZOAIA0Nt6T0kW33jJT5CSnnpqWpFcF5pJiIoId14hBImAW7QMANCVnTzN36ucRGUByYjknOpcRQeWXgqkSKiq6iFIWZOlwHNAahHZbgrBFKTzFmcAkCzcbFl3FKT8q3mM/eRRAERJA4AIJTyD/YuRf/YNn3/SUZAKeYcgTRxio3P64e21ypEPNpDvazrEyFL85UWLIWTIvp2ogpSlSQgVNM4czOkLmvqsqW60PF04pQTp0KFDOHjwYM2/P/3TP63Z9vjx4/j85z+Pm2+++VQOqQa2bePWW2/Fxo0bsZbGaoO45557kE6nnX9Llpza/tOMDDSrILk1RaamDhLrBt0QHk9E2ZOZwuoxCbqrIOllunI29QBBImM2RJLmz9Kg2cMlLsWddOkjueYUraaaPU4yERllckuIbTFnYstEMs7YI5qN18Zfg2WTVa1t247yEKcqC/Mh6XSfIEY8rUbINsm2CASRgwUJeWMBBu/+EoD6ni9gCuvgWCbOf+VecBwQFNt4DrB0Mr6qQib3RJviGzerAZQd60d/qR8CJ+C8zvMA1A+rMB9DyfIXgjy9J+moff3V1ShZC1DPo8QwVUUCAX8NJAAOQbJsoKpbwPHd0DhaRTtOxy3HHA8SrZGJSIWcj5oQW0BB8vZh4+gxqqm91H02DFuGRo3xjCCpFcvJgJxKMGKQofsnCbzjITRKjCCRcy3C/X4hGgPPCFMvmQe7cnZNq5GgSZsZtEWegyzwJHvOqd+mE1Vk830AANVyP6tstTtqHjbf25R6ciJgSlp3KuJYGg6NlgCtBNsCBv97n5Ox5xAklRyfaqQDg//1Iiqq6590FaT6HqSKpx8d4AmxNRs6bHI7luIvLT55grRAJmMN1i/zgq+WGr7nxVQ3Wp4utEwvtrPOOgt33nnntIe4PvGJT+Cll17Ct7/97Ybb3HHHHcjlcs6/o7S8/qlC/wx7kE6kG7Q3xZ2tQkX2gFRS0KnZVbA0cFF39alQc6gpRgDbRnSUrDTZQ5bjOOfBE1GaI35NNXucZIJxFKS2mNup3aMgxXQOFaOCI3n6ADMsMGEjRid85kNyPUiugiTR8ArHc0hRFWlodAmMwfqtCgBCG6asDg4liI2+y1LJO1qSqIgOQaKhQZM2aj0+TLqTn9V+lnN9ThRiyxv+aH7RU/W9ZHc0NfSpWoWyDLauJNm3mOQ+dEuaAbtvN3RGkBJ0YvfUQTIMUs8oViUnvibExjxIVEnLVXSnzQjo8XMy2aouQSqb5HrnLR0Rdcx5IJfGp371Pe4pEsnA5hGTEiRVJ/eTyLshLk6OQaYmaq6LKD5d2cYeJJbmz1TWqCw4vtRMINUfK64ABAWq5S+WmYucA7zvYWDNDSe7uw3BbAltMQlLnRpmJUAvoTwsw8hWaghStDoKgBAkI6eCf4mE3H0epHyhQYiN9m3sIts5qf7Nhg6b3I6l+PsJUv0QW6N+m2ctINdDIwWJA5DMHYJSHUd9RZ4UFo5mxCkvzzBdaBmCNBP45Cc/iR/96Ef41a9+hcWLFzfcTlEUpFIp379TBcuyMZgjN2LTWWyBomtTgeRVV8FWalcOwcrGLMQWU4hJW4Th+C2gJGFQVUvgbZ9hX46RfTOpItE2TsYe9XR8Z4UST+skZHFKmj1OMsHoJUqQehc6K7+0knYUpAR90L86TiZFb+ZTVPIrSKhr0nZvOWbUzuoLJx83pijtfRKCaGpkfFqMKkgZWu+GhtgsGiobHiWLBOY/AtyHok/ppCG2capMRaRAaAlAPNV4herFVK1CWRHWTkqoeZ5zayFVqrCOveL2YWOkW3LrIAGAxYuI6IBiCY5awhBUfPMVwwmxsYrEiWCD3I7VKIOQUkkrgAOgUHNvcZIWHCeDoAcJcDPZ7DJN8zfIe6LoefhJMcg82S8rQzxhXbk6HqQGClJcdomyu7Cj5PHF7wKmChXU78eRB3rumm+cEnIE+I/DMnrfHhopA1oJBs3irFGQqkxBIveINUIIU0yKgac96syim+Zfz6TNGlsfp4thN8Q4wSx3AiFG1mZEWrTQIUhWPl+jQm87vA3X/ue1uOnRm3Dbk7fhpkdvwrX/eS22Hd4GgVbAr+dBYqOMmAJW7/8P+luAJNk2YAOZq9Qpb7Q8XZiXBMm2bXziE5/Af/3Xf+GXv/wlli9fPtNDcjBW1qCZFjjOLb44WR2kqa6kDQDl53eBUzWn6khZArJ/c2tNZeOyRzJOREQk4BmjkoROJz8xoIyzbBhDIj+76OLGuxJlClJRy0/aO6npZo+TTER6mapgZ17oV5DiZFysfD7zITkhRklwvp9NtDzrnSfFnIriLFQFuD6kotTcqnBK6uBMQhBNjeyDGiWqTqKdqggsxEYrKOfGSdbg+m7XM1g3xEav2aIpQRI4rOklDz8vQepdwiPOj9RvVAsAsJFoU6ZsFRpUkAA3zKYP7INV0dw+bEmvguQSFfbQ7LVSNTXdgmn+JMTmXguAhyAxBUmUUY6fRb5TIx5HhV5/k/UoOxk4HqR4rYLE0e/VdBp+84p/UhQyR7PzkuT+bMaD5K0VxuBrN2LbwLP/CsvmoVnkmuuWSfPa7FATofM6sE0TpWd2IveTn6L0zM66IWon1BiT/CU6tBLECNm+liARQlSJdJBsriQ5QFExCj5Fy2AUir4QG+unyFozraQK0kCuSmq5eUKMtaDX1wmEGB0P0uLFENI0BGzbMD3+2Un7bQ4Tj2Fb2h9CBtweclzFQtfIizij6yiCc6qijkOv/iv2t+9uasytiBkhSIcOHcJPfvIT3HvvvTPx9fj4xz+ORx55BN/61reQTCYxMDCAgYEBVCqntrJpM2AG7c6EAkkgp+eUVNKepBhZ8fHHAQB7lpGLXjaB4TO7alKNnYlPFpGMSEhyblgJggSdjkkQ/TePnKDNLgWyb11ZGzIvO8UGAX+xSNY7qadB76Sm+xlNMhEZ5VoFyetBklQTsG0n1d9b24WBhdgkpqQ1UJBYsciy3AWk6vQ6orAAGJ2ZqamDQwmi3YAgmmrAg5Txe5DYw0IvEp+ZtwklIwb1PEhVyFjVlXQUC2+IjY9lkO78Rt3x2DYptJC6qjJlq1CnBpJHkWL+MWHgRZg65xIkx6QdA8fZEDhCLIwEIXrdll89AmrT/PP1QmyR2tpL5RhJx5a1PCCKDkEqjp8cQZgI457QEgOrpi0ygmTQe0HyHHcx4oTYdFqSJVEFolU/uY3L1Idn6dBMzbeQcr/Po3wfegoYeQ2q4C4CusT9AIDcUP15byLkt27F/qs34chHPoLjn/0sjnzkI9h/9aaaZIespx6Ur02QVkKsU4PYkYJBr3kxoCCZYhTIJHB8VYbsmxiDwOogeUzaqqk6i1t2HJYviEPgOeimjWFK2LHmBhJKjAQISbzzhEKMlqaRNH+QEBsnSeBpmQaTFkBtqt/m0UdhAigHPEif2bQaT932Dly7phtGgRy/vEbOd0UghLg7VcKlO/4ckfKLeHHoRcxWnFKCNDAwgG3btuGBBx7AH/zBH+Diiy9GKpXCypUrceONN+JP/uRPTuXXN8SDDz6IXC6HK6+8Er29vc6/7373uzMyHi9YVkOvhwg060HSDAtVvXaVVIMmipExgvTk2WRyFC0gl6utR+Od+JKKiCRTkBQyURisWnCAIClJSpB48iDqzNX6GILtRjav7cWTn7/Kt83f/u55J97scc0NwDv/ovb11ELoZgYASY9l3+v1IHGmBcl0FaSSk+LvLrM7kwqikoAIeyhKUcekLXkeEBlWLNLshUWzmoLTFStjcOij75iaOjgeglhPsGEhtipHQ4osi40SO1YkMaIBK9MrfX3IJjJpq5BxVm/SIQZeBcmMpPHg4v1I5fbXjIezxvHY6V/DP+fuc7wRbxWuguTeY0xBkoZehKXzLkGK0fNK900CISs6DaV0WrXENhgSz1cbh9gKXoIkkWrtspZH5PTTXQXpFHqQvAoSC7FJtHq9TsOikof8g+chC+QYlNQq8jQiLg36MyK9pu2SXvLME+59kvEq38/+KwBAPf195PMiAtokooJk+08sPT2/dSv6Pn0LjAF/WyBjcBB9n77FR5LcbL5aBYnjge4/+B81CpJg6ZCoyhe7uBcVi7wek2JOoUirUERUjEKhf8t8SCzUmFBE9NAIga8W0pobgHUf8O/QO/7khEKMxvHjgG2Di0bBZdrQ99o4hhZfivHMauhjZNHn7bdZDzZsDBgF7Ioo6KPJuKzf5uK2GASeI6Zv04Yqp9CfJWRwXw/JspMkERxsRFVg79jemu4DswVTUgdpfHwcr7zyCvbs2eP7xypne2F7ZuWgND1dsBtK+TOPgUANJGByD1JCEckFa9nIlnX0pCd4kE5QAwjf+zDwvoehRs+BdugQTIHDzjM4/PHPAMEGytmRmo/zTny+EButhE0IkuBTTgBATpDJyORkWJyArqxZI9PXa1irepo9AsDB0RI24iRCT5GAj+zKL8Da8AmYX70QAOnDNv6mR0Hy1HCKahxGKiMYqYygrJHj6F0ZcxyHpe1RRLPuQ9FQGytIOaMbGC+jJAOWLCJZ9FR0bo/jn66s4MxzM7j+xPeyPtbcgIeX/AV+98hfIe4tThRJw1x1PYyXfwMdbpsRMm4aYqPNS6Oa7fMfAR4Pkvc6pRNj1ZaxpjeFN0cIefISpF3qMPSyjFKC+ACH4ofRVVqK9tGXIeb+BW9uFIAymdQv6rnoLe8+y2LrTtWG2OIjLwcUJJbFRvZN5KqAnYIWJeeuw6hNDKjJYqvo6OX8BCkeDLEBKNOebLKWR+S8s6H8hjzgi2NT+3DRTcsxh/s8SFEJPCzItLyFbtByBhH/Y0IWCKkolcrIZ4BUBbCODwBnn+NsI/AComIUFaOCol4E5SG++8QxhWePA6/+BABQXfU7wOPjiMQkZFIAskBuuHll3zZNDN59T332b9sAx2Hw7nuQvPpqmOBIYUwQwzjzEI6XdZhqEQKA1BWXgN9rAAWXIAFA1MhDl1OwFiTdGm5iDALzIBUK4DgObZE2DJQGMF4dx+LkYt+CclEmir5sBcezFVyw1FMqIksSQBBJA9UccPwF4ATEY9ZiZGzVFfjGnzxNQrQ9NwI9wGvfzOLtwhCG0835GYcFAXlDQjIiYsPydmzbN+T0k2N9E0d6zwPAodw+ipE4+W7NJtdMWpdgWAb2ju71heNnC06YIO3evRsvvPCCjwgNBJg6UJ+ELF26FOeccw7OPfdcnHPOOTjnnHNqtpnvYCn+vWnXrOzzIFkmyUQqDhI/ydJLwfGkO/ZYSUOuoteEoRw0WYysmPksAKBvVRoVpYhKlEeibKE8XntTlT0hpmREdENsTEHSTBCC5CdtctzTu02MoitX9Bm0AU+7EU8/Nm9IAgD2DxVxUugPyL6xdhhDZP+4WAx8KuU2qlUy4AQBXCQCu1rFSnkRdqMPr469ipK6CoCrCDCs7FAg5mgpADFSU0kbIOErgdNhQkJVace/v3MM2hUX4P9+9hkAwKIv/z1+2HMcO3f/LdqnsJo2APxQvQDLrNNxhfAyBq0MuvkssOQSmPu7nBpIMi0S6R23wZHfIzpqJryJFKQKCEFi4QTveRy2DawcPh2mGIWo57Cv+2l0vbkUHHi0Fd1rlTVRfiuwLBsjxToKkixAhIFU7lUUdcExacu0oCkjNsyHVI2Sv23Taw2s9bPYGEEi1zjL+PT2f6uYKQBFyFoeyoo1iPyaKGqFkZO8xhuAJXNwnEtSAEKQkiiDo/ODYRAyL3nCcAAgi+Tvy8UKhjIcVvXbjufFi4SUQMWooKSXUNHI8fKatJk1YM3ADwHLAE67BGrkNADjUOIi0r0Z4BBQKQNqxXDDnROg/NzzNcqRD7btZIRWzz7PHUtUgijw6EoqGCqoMKuEIEGOwxRVACoEU8WCT3wcsYs24PAODfl9GgqVpKPskzR/Mu/Z5TJsw0CbQgkSNWp7F5QLM3UUJAAYP0R+nnk98MIjwPET8/Dox46R9h8d7wEC/rVyxcaWf9mDVe/LNPVZnaaJQSi4fPUCRKiRtMyaLFOCNNRJ2NvwwjehUWO3bpFtO8wIgDJeHH5xbhOkI0eO4LrrrsPevXt9r9cjQplMxiFAjBCtXbsWyWSyZtsQfgw4BMmjILHml8UBEgrz1vFJLQQ234dMNOUQpIZoshhZ8RkSanvljCiAIsyYDJSrULO1hRidG14SkVA8ChJVaJg5WQoQCF7gIXEV6HYUhhhFplRE2vYTpGCIDfArDwBwYPgk28Mcf4H8jC0AyiNAcRC6yZrU9oLjOMeDxLJR+HgcZrWKsyLLsNsgBKldX0Y+JkiQ2lylyOKizoLWRxQ5IKaNoiD1YHzVSjx59jiuiCYgtLfDHBuDfNpp6IqQ4zeV7UZs28aBoSKWcURif8i8Dn/KfxM48jTM8V6nvUW8zb0GWRabToskRlTg7ICC5KT5e1qNaNUSZBAP0lm9KTx/mGZmec5jZ2oJluTPBQDI5ZdQlGmrCyWNNs/p7Yy9dZP6WFmDYdngOGBBwiU3cUXEaq4PgqXBsjugOyE2Sg54nlbTJg+cikIIflqrnUKDSRX5qlsokilRNWn+AMq0BpesFSCIVcQzZHxTbdJm4bV0VPIlNqQiIjIcJWNyAroBgAPkmD97UJbImCtlDUPULsPq7ngRl+IYrgyjqBVRosfJqyBlojJEGLh4nIb2L/oDqJS8KTERcs8yRPlxVKw25IbK6Fo6efbwiXQBYD6sZESESP2eyzriGCqosH2tRgjRFUwVqXdfB2XFcqT2PwdAQ0FLoWy4WWysJQsAWMXaatre1kyL2sg1dtxLkGwb1thh9KtnoyT8D8TV3egd2AveUAGxuSxO7dixxu0/qPew/zEb3ef3YLBSn0xy4NDNK1hfVfEsFFx5ehdePJYF4M75xtAQqkoG44nVAIC+zr1QR8i+aFR9TNIw7QtDLzQ19lZD0x6kz33uc3jllVecqti2bSORSGD9+vXgeR4cx4HjOFx22WXYs2cPnnjiCfzjP/4jPvaxj+GSSy4JyVGTYDWQvCqQM+Hmjzbs03MNvxOAp7dRPTRRZMzUOJT3kOyRHSvo5E1vei2f9W1rWbZLkBwFKeBBMggzECO1DxKZJ2RQow1Qe/L+yzHYjw2oR5BOYnVt6sDgK+T/q2lGXmEAOm1SK/X0wLAM5KnPgPlsmFF7pULS8l8be81p1hsPKGQr0tSzAx666e6XN8RW2LYNSpZMUH0XnA5wpCO42EEmVWN0FN2xqW9YO1xUUalWsZgjD5OfmW9DETFAzcEa7kOVKkjJNndCZsSuoJFzltAF9MT9xUTrhdhyNGtGUmJoi8tuaEl1/UTrFl6Gdo0QJN16ESWZ/I0qpxFTAUUHemI9PkP4yYKF1zrisvNQBIiycQ5PajuZkV4nxCZ7VQvJ7cdWkWkFarV2Cq01aRuIcJrzGYAnxOb1IOXJNrKWh2CNItlF7otKxYZpTl0Xe+a78dZAAghhyoDeT5EMdJMmaMSDBImMRa3qGMqQbRoRJABUQapv0t7E70KbOUqMyGddD7VMPYvVAnKv60ha5P7INmnUPpEuANk6pQ5YLSSB9dGTYtCrZOyCqUJoywAAkrRafl5r84XYOEly6r0Fi0Xatu2Ep2KygIWZWoJ0YMebeLjvfvxw/K/w2E95/HD8r/Dw4D/hwOPNq0j9Ryq0/UdjC0tpXMWnem6r+x5H/+5WZRUEkF5sbz+907lmWdRAHxrCUOf5AIDe6JsYE4egCuRYaPRyV+ixe2H4hZa2tjRC0wTpiSeeAMdxWL58OR555BG8+eabyOVyeO655/DMM89g3bp1sG0b27dvx9lnn40HH3zwVI57TsK0bBykHo2xkkbSPwFEqdGvzNU7XWSbPyx9FTysiRWkJoqMlQYUwLQgr1yB12P04UbTPM2Cvw9G1XAfcjHaPiAZ9CCxLOZIbShCFmi4ooNMIl0BL6Y3i42BPVA6afp1f65aQ5omxfCrgKmSMZ52Mf3gQegDlCB5DNocOKceE/MhLRPJcXx17FVHbvaaTwHgNLoeqEKBoZNzxPMcBPpQNoslDH7pbsQqxNdVorVfYlIMQgcp32+OjqIrRnwpw+VhZ4IxLRtPHxjFf7/Qh6cPjDrXSbM4MFTCYm4YAmfDEqM4jg48jzPJZ48MOCG2eB2CVNRpsTy9dvJlxlxviK1As93SNP3ZMWlX3et0+JgBHkmIehlZ5XWUZWoSlpOwOBHpEnDbhtsgTEEV5UHWZiRQVDSuiDiHOwgAMMRuWPSec0zaACDHnX5sFWqqj1drj329NP8Y/Gn+yUAlbdu2/QRJ70d80QJwlg6AQzk3NVXyAVdBygRCZ6mohDRHz120DaZFFa3AsZJlQpC0quUoSFpfLUFitZCKetFNZlD8IbYPCY+RX9Z/GBAV5F4k2aHa07/G8X/6MYT+LABgaPvLTe2b0wWgkb/V0wUgWyeTb9mCOHhYEKnx2uJjTosb0VQh0Bp4yQVk3wpmJyqGW0kbgKMiWQGCpBqWoyRHPQTpGC0WeWD3ELZ8/TBKlr9waslqx5bvl5pu2lwabY5MnhlZ68wvXnTHunH/lfdjbYGcq2QyhZ50xPFoeRWkoS6iIq+K7UDZKEMTaYhNs2FxPPhSFRIvYaw6hmOF2muk1dE0QRqm0uVXvvIV/K//9b+wbNky570LLrgAzz77LO6//37E43Hkcjl84hOfwGWXXVYTkgtRH1v29OOy+36JQbrCvevHe7Hxvl9iy55+xAbJpFFpmOZso8Mcxgb+1YkJUhPFyApDRL2QNl4C06Y1ftLkhrUCBIlNehwHRERSKJJ5kGyqILHSI0EfAwAoItnXMn14dmT9RKdeiI1956JM1AmRHDzRMBvzH/WeByRpBlxhAHo/IUhiT4/znSklBZEnEwVTkBYJ5Hgczh9GtkKOiTfNHwAWJ8gxLtsyVEoGvOrRyD/+I4yBAST4LADALJLPjkkxiB3k842RUXRFyQSmWRqyahZb9vRj432/xPsf2oFPf+cFvP+hHc510iz2DxexjCMrczOzHACHpwxSZ8rM5pwQW8IbYqNjr2hkXyTVgG35VY26HdxL5P/t6Qz5TIcYuOT6zd2EJC4YfQmljISqWILJkWtBlVO48/RPYdPSTU3v30QYZm1Gkn5VJKEIOIcnBEnlXRVCjnjOq6cWUkWgtW+qtcpOvTR/N8TmT/NnJm1dNZ2GxrJegDDyHJSYBoVeh8UpzGRjoaX2uH/RkopIyIARpAx0arRV0v5MPVkmT3ldg6sg9R2vUQi814NTUNZTtbyzegiXCa/ABA9c8FHkt27F2GOkT6fESEeFKKcDjz/fVD/CE+kC4BJFv4LkkFkAuu25B+IRJ5M02Z0BQAhSsNE2T0mUGaim7e3DFpNFLPIoSJZl48nvvgE3b9ULcu81249QGDw86TYAMMoPYag8BJmXERHIfn7xki9iy+9swaalmzBGK2+f1k3mIzbHsf3ID5aQTy0HbAsrhV+ipJegiq4aZgpR2JqGc9OkvtcLwy80Na5WQtMEKc4eDosW1f8gnsctt9yCffv24cYbb4Rt29ixYwfWr1+PP/uzP4Oqzs5mddOBLXv6cfMjuxz/EcNAroqbH9mFg2+SqsUVjmtQ0J2gC9mJCdIkNYBsCygNkJu8+jbSly6tpKFkyA3CFSu+SdA76fE8h6Qni82kq0ensWe81jjumD1pRltm1L9KrpfFVlTJ3yQUEStoNdoTDrMx/1HveUCCrqCKgzD6CWmQehc6pkpvGwmmIMV1AZ3RTtiwcbxyCECtgrRAIZNIxZZxfJQcE4GzkPvJTzH+H9/H2MMPAwAWX0bUIrtMSGJcikNcQAnS6AgkQXIm2f966RXc/Miumsa97DppliQR/xH1HnSsBABsN8kkZpY1D0GqVZB0wz3/VtlvLvWak9l1olbIuelsz5DPDKS327aNAy+QlXHn8Iu4ZOWFAAeUqIqkKWmsE5c1tV/NgPXrqyFIko2zOJI9VKVqnshb4D1hOK8HqcyT15VyrXrpVZBs20a+2jjExo4DU4gEU4VoqhALr0N69V9PSS2ksVItMQBIiC3NPEjRNpg0Y1FO+bNLZZnc04bGYSQF2BxgVyowR0d92yVkt5q2G4p375Oe178FAPiVdT6sxEIM3n0PdHrsRNYAlhrzK9HOpvsRpq65Bov+/gFA8i/Kgl0Asp4ikQzLOuIumeUEaLRyPm9qkDKuB4qF2FQ7CZ325GPn3VGQAtW02Xwpi6QXHVOQ8lUDB14ZoV6zxovXZvoRWqUSUsd20/YfjZFoU/CM/UsAwBVLrnCUpOXp5RB4AZZlo1gkEYSVC8mCISr7Q2zHihkAQDf2QeFHoZoqbM6CyPyKVFG7IEEJ0on4kCap0zddaJog5fN5vP766z7lqB4WLVqEH/zgB/jhD3+IJUuWQNM03H333Tj33HPxq1/96q2Od87BtGzc9eO9DfPKAOCbL5Eb2eY4VCcojTCEzOTtRlgxMj7gCUotROW8u2AWy+DTaYyfTm6YjkgHImnygI5WTacyLuCpIk1vnLgsIkE9SKpACZJNM2HqEiT6cKAx+1QgnZkRpLJRhm6S/WLelYQiYuXJEqT+F8jP3nVAkvpoSsPQ+4m/S1rYi2w1CyBAkOgiwSqXcUb7GQCAIZX4VoIeJN5g2VsKBn/1GwCAPTaE45/9LAb+7M8Ay0Jk3Tr0rieTD19Ng7N5kircTgiSOUqMncyH9JWndk14ndz1471NhdsOeBQkgRKkffZSmFIals45HqR6BEmwJFDOC6vkV+6YYmDYBjSLhIhZP7reBeQz44HQ0vCRAopjKnhTRfv4PhTjtOKwTJQ5VcnAHKktL3GycGogBdqWLNQPQ+F0lPgENI0QB1kKHEtPP7YqJUhSHc8fI4o2bFSMCnJeBSlQB4kdh/LL5GEla3lwvA1OtCElTLcW0qu7Tnqfg2DemxoFKSoiTRUkW0k7Na+UNr9/VI7QMLEmwBA5lOmDPuhD8lbTdrJd2X2ilRDbR+rOPWxswviOZ2EMDDjZgxJTZSqEPJejnSfUjzB59dWAp26YuWYllj/2qK8LQL12K6d1xBCj59iWY06jYMFUnZYd5BiIiPDkGhXKtMo+JQSOghSoph30YSUU0ckiPD7QnAo+WT9Cra8PHGyccfxn9TegC5fL3rsaW45sAQBcu+xah8yy+X1vfx4C7QSwrJfMUezcsXn/OL8UALBS2oGSJ7rBEhusJHlunBMhmb5NK0hN1OmbLpxQociVK1ciFotNviGAG264AXv37sVnPvMZ8DyPN954A5s2bcJNN92EsbHabKj5ip0Hx2oUAS9sAI/lVzu/l+sSJA5FpRs7rTObazdy2iUkrZZhwenALS+jeIi8lrj8coxqWQBAR7QDcprc5DEVDnEA/Cn+APHYtPGUGPC0zpFNi83VI0i0W3SZZgTFR/yTREJKOIZB5kNiD5S4ImJlJ/mOE0r1Nw1gYA/5/8J1xBzK8bAty2fSZgoSWwECroJklUo4q52sikZ1EpYJZrE5BRKPCYh88/8BAATT/zCtvvACzDeOQIAKzhaQrLYTk7ajIJEVOVvdZbXGRMEG8WPtPDj5vbV/qIjllCDxC1YiIvGwwKPcRvwEjoKUqc1iEy0ZOg0PWWX/+WIraICoBodGS5Btss+dzNwaKBT55m6iEHSM7YVg6RiPke1jNINLldMo9E9dc2i3BpL/elxYJmHsg9JqaPQeYkqJA9ntx1alDwShWFujh4UrAGC0XIRp2TUhNt9xsEyUf0PUFFnLQ5BJqyEpbiDCFKSXn5qyVfRYqVY5AYgHiWWxqUjAoPuhtPuzxxhBsqm6Uu0i72uBVH9vPzZ3MUVJy8v/AU4t4JDdgyetc1A4Tq5HpiBJVEGKVsj1YUgJ6GKs6Sy1J7Z/G6i68+qB7AFs/uG7se3wNue18ToKUioiYWGUemyEGHTVa9D21CoCkJTIHBGpEALJiLHTsNZTTdsbYvOGGZmKVEBzJvzJ+hGycguLE1msvaI22qMYeWz+2FqUlwygr9iHqBjF2xe/3fWL0ebCT7w+jAi9ZqUIDf97CFK2v4h8dCEJr7XtQYktGHgJEerbMxNk389QlgAA3hh/w/n8hmB1+hokI003STqllbRjsRj+9m//Fs899xwuuugi2LaNr3/96zjrrLPwzW9+81R+9awBk/wnggURMq3IUOtDIr+/dM4dsMA3127k0JPkJ2vrYagALzjVsxNXXokRah7uiHRAoB6heNXfeLFeFek0zUwrIwrLsmFxlCAla4m1QrNhKiJ5GEaH/B4ngReQlMl3s0w25tlIKILTz+iEFKSR10l/MDkBtK8kYcd4JyyNg00nVLGnx62BJGfQ99o4Xn92AKNCL2xwPgUpb5F4f1BBgl6GbQHCbgOWQI6zYAXODcdh6Nu/RlogD4d0dQE1abshNsAlSJyYx2SY7Hoqqgb6c1UspSn+aF/pqBn5xDkwBAUGUznaaxUk0ZQBqvhZJb8ZlBUHBMhDcV9/HgqtJi7I9QskvvkCeeB1Dr8AcDZGI2T88TQlSEoaA0f2TbrfzaJRiG1BnnzH68JKqNRX5PMfAT4FyeLp3xdrDbHe4zBcyoOHBYWj556qKr7jcHg7ykX6nVoegkL+L8g2Iga53/LFKCnTcQJo1KW9XvYWACRkERmOFfKMAjQpREn5y284mX20BpTalSG/NlKQtKKb7SlywMFfA7/+GwDAD/l3wgaPcoJ8Brv2RKogCZbuNO0tR7uaylLbdngbvvcj0saKVWFIlT09xihJanQcVqRpP0I+4s9g8yhIAJBSyKItqRIiwBYIvKdYpFdBqiGJgONDGo/ziGcU1K9RBwAWEjF90n6E7BxIixf7PooXgPNfeACXPfcXWHl+F35+8OcAgKuWXIWoGPUZ6gFCkKKeTgCAO8+XNROvP3UIANCWfR3JDh4leq3EpbhzfZhxMtaULmJxYjFs2Hhp5KXGg5+0Th+ALbdPa7htWnqxnXfeedixYwf+4R/+AalUCsPDw/jwhz+Ma6+9djq+vqXRlaxVVupBkchNV45m/G9E24D3PYzyincDaLJh7cFfk58r30F+lkehHTsG9Y39gCAgcflGjNKGjAuiC5wbPqrCIQ6Av80IQ4qatItczCmOCABy0j/JAoCsUJ+KQLuGFyswi36yE8xkY8pDIiI6HbEPjZRhNJsGzQzaPeeS2jYAkOiGTnuwCe3t4CMRZKtZLB89F90/vAw//LvdeOzf9uLXw2uw/eK/xNERBWe2k6yvsn0MgFlXQSoPy+ArNiye7B8fUJBg2zBG80iYhKykq53UpE2z2Eb8ChInTd5yYbLr6c3hIiQYWMxTNapjpfOwzkor/EUiPaUZaH1I8OAhJsmkHwyxAX7/zd7j+ZpJlpExzbQwcCyP8YEyeB5YMLoHYtREgZpzpSR9SMkZ5AeOTLrfzYKF2IJZbG1ZUvZhr70CGq2OLgcLE3o8SDZHzmkwcYHBJUgFt0gkUPc46Ll+VKwM+U4PQeI4IMaRa6BodDRVpoNhoi7tYw2IAc9zWCCQ418ouwRSChZ5pceFsyRwNg+zhxB6va8+QSrpJZRVA9fyO3H5z64Cvn49kCOq4AfxU1zL70R21RqIPT3QaSak5Ok7GaU+JLV39aT9CFmPsWWD5BjuXULr8VQ8PcZ2krY1jbL5TkvSMC8iEypIiQiZq5JqB0ROhMQWQnUa1paNMvK0npJ3QbmIqrT9+Sou/13WND04lxHj9sZVOybtR8jOgbR4MQYPuQsqywTSuQOAWoVRLmHrIWJ4f9fyd5F98YTY8lUdzx8erwkLuwqSgQMvEqW6t/w6uFjGCbHFpbgTYjOjZO62igWs61oHABP3ZWuyTt+JLhTeCqatWS3Hcfj4xz+Offv24Xd/93dh2za2bds2+R/OcWxY3o7edGQCax4pGplSaC2kDX/g3+CMzcCaG5BmnbEnqoPEcJBkimDt75CfWhHFbSTdNrZ+PYR0GqMVMjF3RD0KkmoHCJJb9IyBmbQLdhSm7t7oUsDoCQAynYMNU3Z6Oul9fpk+mMlW9ITYFmWiUEQemmk5qbKTwvEfneekyw/YGYcgSb0kq63yhohrXr8JXMk/eapKBjtGT4e+P4KYGIPN6eDlESSUWgXJqLIGr+RBJFj1z03C8BAkbx2ksTHYtu14kKKR4qTXyYbl7RPu/v6hIpZwQxBgETUj0e1M2Hkj7YbXEv5J+lD5Tef/UpoQuGCIDfAUi6QKkmNOFlklZfc4vfE8efD1dFoQzSqkqIUSC62kaH9BJQ1jeGRKaqjYtu3pw+ZRkAwN8SzprfeiudwpcqfEA5mXcsLJYrOpgmTm83XHxojiWLngPmiAGoIEABWlE2WLHHcWYmNIiITIlu32psp0AJN3aR80ngXgT29naONp5h0lSIKlgQs8lOWohzyZCtBDVB1tAg/SRZWn8KD0AOSyvzBhuz2GB6UHED24Bd1fuMOpPyV6io0yHxJ31Q2T9iNkPcaW0695aTl9cKuAYNqkx1h5ALuGdnnS/P1EcXGMHP+CpfgJUlBBipI5J6G2OcV8Aa+ClEdSSjpZsMNlMqd6FSQWYuvLVrByeQWbM3+NKO9XipUIsDnz11hpTh5eYmFOfuEijB7zLzZNWqT0xf1PYagyhKScxKULLyX74Amxbd8/AtOyERfqK0hiycTYiAHOMrFQGQYiaSdpgRAksp0RYcehiHWd6wBM4kNqdgFwAguFt4ppI0gMPT09+N73voef/vSnkxq+5wMEnsOd15MU6/rBM+DO69e4GUIshhujtTIOPA7Ytr/x40TIHgXG3gQ4gZArevMWf/ULACS8BsBRkDoiHc4NH6/CqS5NxlKrIMUoQcrZrsGRNzUI8VqCpFBfC2dIbkXeIEEKZLIxD1JCEcHz3IlnslEF6SVrmZMu/0Qf7xCksXgGlmUj+ewq+geBs0I9YL/5j/04o42oSHzkeE0WG/QKxAjZ/4YKEkVGJKumdLUTcSnuhNhgGLByOYcgdWbqh8+814kwyQrzwHDRE15bAXCcQ+708axr0Jayvr/bPbLLSb232cqwVBte8qoG+/oLvoa9ACAKvFNP5fBL5OG/OE6+S4yZKFJjKAk3EA9SvKDhcL651OWJkKvo0Ggvv04vQRraC97SkLXjeENrdwp7KkE1To45dZA4sPC0AbtSS87Z/TpeKSLi7cNGrx+B55z7JrvgQpR5kiwgawVHQQKApETuwzLXDnvJJZPuYzNd2gvx/wRg1Zi0ATghtlKFKqp2bZaeEIlAoKRPMaLgFpGx633+1T976Jb1Ej6l/xuARgnswOm770bs7VfCoosJyVNsNE4XEFVPY+RGGC4Pg7NtrBgk+/ryMs5JKkhW/NvVM2kDQA/1IOUM2SFIYh2ClIyTayGptvv8d7xHQeI4zvExjlbI3OmdL33VtMcPYWVkB65d+j3f96w4tx0rIzuA0f2kN9sEYCG2YmwRLMtGNClBkKhnrJ0o0dv3PQoAuPq0qyHT4+0ls0+8ThYucScszAgSGffiArk+28dfRawzDUQzKHFeBYkSJIVl8xUdBeml4ZcaN51ucgHQ9HZTgGknSAzvete78Morr8zU17cUNq/txYMfXF/TQ60nHcGDH1yPzWt7Hcm+olFJf+XVZFVeOA4Mv+pkQ+Qq+sS1Mmh4zepdj77DFl43r8WR8lqUdpHYcOKqKwGgroIUqwmxscwUSg5sGzGLTLA5K+IoSLylORlgXsgRclNxhozhBhV5nX5sAQWJrcCZUbspgmSZQD/Zz88+xTnm+CFkYFCC9NgIh//eegBSJeYYxGtBUm7PVi8EAAiRfl+PKbIjFcQ6NWhREUYjBYnjIHa2ozNDwg1MQeIVxenpZHiKRZatMTz4wfU1NZe818lk8Bq00bECgLsyNLJZV0EySViL+Vh++uZPYfBk/DatfD5RiG2omMNAvlpDkACi/qUsDrm+EjgO6DLId0kxEwV6jNLtNI1aSSNTBHYcf3rSfZsMTD1KRyVEPEZZpiq+bC2HUanA4Ml9GAkYuSHFIPHkM3hbgUXJqJmv9Yax4zBeKdSEKhgcH5Juo5wgiyRviA0AUtExwLZgcwLKpcm9F810aYeYhRA7WJPmDwApm9xHpQo15XN1irBKUcg0GUMyI8TvAkDv7/el4Tthm/IwejCKRtyd54B4dQDq6zucUXobwy49LwsAyA5O7sHrjHWiK0vmKk0Aji0ACvTSS3n4/ILogrombQDoogubMV2qW0WbIZkgxyaptvv6SApJV0EC4PMhAX6C5FbTrjo92LTYUt/3DB7TgPRp5JdgD0kPbNt25s8xkyxiupelHC+dTZXflw+QENW7lr3L3Rfq9SxqRTzx2jAAG7LNiptSkzadd1bQa6NreBfEri4gknZM2jEp5vTMYxmJVrGAVZlViIkxFPUi/mvPrvpFbpuo04fUIrLdNKHpXmynApFIc/6b+YDNa3vxzjU92HlwDEOFKrqSJFzCFIFgdV7EFwBLLwMO/ALY/wukLroZAGDZQFEzkIrUyucAgIO/xoHqxXhy3y0o7doNgITslAvGcVb2cZy5nMTBfQoSq/Ks+hUktzouveENFSLIpDFmKNBLZJITLN3JAPOCeRkEQ3Er8gYIEguxMWLmDbEBcFP9h5pIkx09AOglVCFjv73QeXnIzkAvkX0Yjmbw4lOHsXGCMv0Mi4VlAABeOe4eAwa9DI4HBjYshXWIEiSvgsSK1n36j8C/+EUAQLLajihPTart7dAKBUKQlhClKq/lceWZbbhx3UJ86xk3s+unn7wc7Ynah109HBgu4TJGkNoJQWJk08rl3Cra1dew7c2f497n/9Z54K7jNShmDMOoohOk3EEQbCV6YHQUHNoRYatQzwMkGRHRPkLOY++qDETqmxBjJkqWAfBAui0OIA9TjAKcgl1v/Br/86z3N7WPjTBUr0ikZQKvEcPqGJKIVEtOmEcJ+ubkBERKdkRLhhaTEClqMPN5SD3+titMQcpVS64PS/bfA0lFxHBBRVE1UNZiAFQoAYKkdCiQS3loSgalrIp4euIspmYb+nJioYYYwLaRsMkCrFIm16fI1/H2STHIXBkVZCCbEUR7FpGaQ7oOY3AQ0kJyb7mqRHMp7NWxUQBpSLYKb8W3CK29lRu1YNs2uAlKnazvWo9142kAYzjSBZgCh3wMSJeBZNkGBx7dsW6c1XYeNINYPNoCSlqHTOcwXUKk7NanqlGQqFcpaiSQ4NxMP96ppE3IJiNIWXUcQA+ikteDRK6xgXwV1tgh8ABUmRy/BUsSGDlaxFh/CerKt0HJHQH6dgHL3153381s1lm0jGYpiVmWwvhAGZWCDitFw+/5AtpWdGBD7wbnb9m5GihmcTxXRUK0wNn03HtCbB0mhwUWDx4WFoy8CLHrQiBiuR4k0fUgsSxIs1CEwAtYFD0DbxR24ws/+zH07NsAEFvAndevIYs7Vqfvex+us3f0nG++l2w3TZgxBSlELQSewyUrO3DjukW4ZGWHL1ziKEhsspHjwKqryf8P/AIRSUCESqm5RrWQbBsHXs5hS/bzKFX8E62qZPBCz2/hzReGYdmW01yxI9rhFD6L6EC+7BKkitNXiN7wnp5pY4YMNU/GypvahARJNCMYTrsVeb1w+rHRvmgsxMZaNbBMtv3NKEhUKXjFWgrLc+kPeTxIQ7EMjlWaa+uwtIesnPnIcV/qLtkR2rTxjCV4ajHpV8R7FCSnaN07r4bCj0PnNfAQYOVpaGOB224kKSWd8z9UHkJZ9SsJu49OXBTOGZJp4dBIyS0S2U5qIDFFys7nUaUK0lF5FLc++XmfGmEI5LraXTgAoL6CxCbaw+PjUOC5DiV3MZRQRKymTSxXnN8JfYB8hxQ1nXTndCIJia58NTmNA28+D8Oqo2acAJwMNpYqzeqtvE7qwdwoPI0f8H/uEqRYYP0ox5wsNsmSYdLSFfWM2mxBk9dKiHL1FSRWTbtQ1VAukGtD0goQ3nEL0EM6zUtXfNRN9W+imnazDX2jfAaSEJj+9Qokm5wzlYkHQh01WopCpskYshlBPJJ0vHveBY7ja2ngvQtC5WkVfxpmlVeR61MYKwCwoOk8KoWJLQQCL+B9IEbugz1kTnEUJBpiu23DbcjTTEVJ4GoyUKM22bAMBaO0UXA9gqTEZfA8mXcymnvcWTsSdl20K2S/ClqtgtSZUCAJHEzLhjpCfH5V2sqorSeO1IIIYAODEm2JdLxxTzaW4i90LsDQUXJvdi9LOfOslaDqcAW4Ztk1jjcKcM9VP+23efkyj+IvkYzksYN5bKyQv2m3jkMyKlRByjhtsLwhNp369KxCAVv29OOVN8n3C1E3XF5T5JbV6eMC82lqIXl9zQ0N9/9UoGkF6R3veMepHEcNPvrRj+LDH67HJOcn3PYF9C6X4yTMBgCHfgNoZaSjEqq6ilxFx5I6n2ENv4EnB3+7/hfQVdlT33sDbWdIzsOoPdIOXnEn0krWrcVTcvqQ0YtZJRNCwY6iqFowaI0YwTbASbWKFltpSEYEQ3R+CYbYWKFG14NE04UDIbb9Q8VJV5dMnn7ZWu57edhDkIajbTgm6tB4G7LVQOG0bSTaI1h7zumw9/LgxTJK1iiAxe42rNBdIomheBcWa66CtOTf/x3xt20ghtPKOCoCkI+MoKO8ENoYgCXwtRvhOA5dsS4czh/GYHkQLJNfEXmohoWdh8Zw9VmTx+UPj5ZhWDaWS5T00CKRjOByhbyjIP1nu1bjYtFpiE2XyIrbLNYSA0aQ+nJZROBRVTwKUobnsZj6fFas68QA7YEnxkwUOZKxk5STiKfHka2WoSppyLkR7BnZ43gZTgYsxNadjLj1VgJ72a7nnVo8SlBhkeMQaYhNNGVYiSgwmIeZqxNio/drUSsh5oQZAyE2etwLBR0WVUlkPQ9h9QZALwEDL0Lih6Go5O8Kg3kAExOg9V3r0R3rnjDMZulpdAhn1r5BPTK6LUCjBEKU6txPUswJsclmhGReLl4E/cgR8pCmwoTTvNhUccxux0KM1Q2zWTaQlTqhps4E8ApEughMXnklRvcfgHYsj8TKERStLuSGyoilJlZLe46VUQJwsJsSpBgHwEanquD+K/8am5Zuwp4+Mp9kYnLtnEGLm5YRAZ8nN5tgqhADWWyQYuDFEVhawkn1B/xp/oCrIOUN8p1egsTzHHrTURwZK8MaOwTAJYpKTETPyjTyI1UMVFfiNAA43rhgqJNFuHglckPk/HR5QmxmjPaRq5DikF6wcOhohYzximVx4BgAXsKBl8bx5HffQCmr4nRKGbL2AgwtOA9LurqASN6fxUbnZt2m2WzFIu768V4YxlLIAISYS5BYY5W7frwX71zTQ0SBs64nBMk2iWLUvZaE1aZROWJomiA9TmvkTAc4jsOV1CwcgsBRkByClAA6zyAxWZr6mInKGMyrDatp9z/9DEpW/VYxDMVxFfv3ERUnJaccE58djYCrVKHmJjBpUwNhAVEUqgY0auYTUN87IcfICkO0ZQynRQAa9GPHfEQnaNIu0L5mjCCtWJAAxxHv1VhJQ0dighAEbTHyir3M9/KwnYZRYQQpjVWWAdlK1P8MmrG08X2rYVsSLLULQmQARwpvYFW7lyCR85RMJJmd1/FiJS71mG2lOMocj1xkGB3lhSjSdivediMAqabtEiTy3sZVC/CLV4eaKg4JEJ+WBAMLOUpyAyE2oZiH2kMVpGgt+WEeJI3WrRoaPYKewDaMGAwW867/iJcAwZ1qFpZIE2BhgYJEWoIxRMNCUROax+wZz8jIDpahyhlkisDT/U+/NYLkhNjEhvVWbJ2HSTPulEjgwSm5dZBESwaXTAAYhFWoJUhuPagyMixtW/b78BwFaZyRrgoEyyAPYpsQGKFwABFKivLHRgGsnHAfBV7ALRfcgjuerO1HxoGDDRvq4PVoy9Qh/5Qg5RCHrZqADEjBYpkAVZAIiZGNKOJiHNYi6kPyLHAYQQKAO8334yHhn2o+ygYhLw+nb8a1ZUrKVKLKJK64AqP/+m9Qjw4jfXo/ilYXskMV9K7KNNx/27ZR3UeLfnZz6Ih0YEFvAnjtABYZSaenH0tmYcktPtBEmJIdAXJ0kWdWIdCm3Q7kODhpBNCWIV51yZOb5l+AbdsOQSpRghQNKFYLMxEcGStDyhMvnmqnAJQRiUto743j9WcGMTBK56PsEaA0CsQ7aobNjn2p+yygCqQ7o4jEJUj0OhvlTKQAdOlRrO9a7/tbb1FPALh0aQx4CjigX44t/7Kn5rsMXsGes/8Q3fkkzmwPeJCYgmSRn2NDY+hXqgBPfFS8PApOKMI2yXd6i9xesrIDKI8BTHW88CZAnDisfCrRNEG68847T+U4anDFFVdM6/e1OhwPkumR6zmO1DLa/Q3gwC+QjhL5sVEmW+nwGwAmJkgAMDqaBUDCawxcMg5UqtCpBAt40/xZiI08VIt2FEXVgEEnPIGrX6OIESQAKMSiADRYpRKsXM6Rs711kGzbdgrOsUrEUVnAokwUx8YrODBcakyQLMtRkPpjZ4IruI9Hs8KThlKcjbgk4d0lstI61vEqzjDPoz2SCBR1HKcf/hFWnv8wjo2XYVV7IUQG8Hr2Nbxj6VXu91GClEqnIdIvEky9dpIVZZQFGbkIIQls5RdsN8KM2kPlIRRU8hnvOKsLv3h1CC8fy6GimTUTbxC+FH854WSDMP8UV1EdY2VJydb8vUHTfg1KkNRC7TbsoZitFtDt9B/ze3mcpsSLoqRauGEAPI+Khz8kpISbyaakkSkBO47vwM3n3TzhPk4EFmI7x9jbsN6KpXOOgiRn9wLwzENy3PEgSaYMPuk2JQ3C25cuyhSKwHFgYWLWPkKmCRhCJgOIpBAphl9FLEYIdXGo9nvqgS0mBE5wGk4DhGRvbP99fG1fEu0L6xADWiU/Z8dh6RYlSHVcGFIMgqMgKYhLcVSZUdtTC0kRFIicCMM28EusxR3S53Cf/feAx4unxnrw6ezvoQ8bcGWZNUImhFM54wyIvb0w+vuR0IkilhvIA2icjGAMDsIcG4PFczjSBdx42lU4Z5WM8uMHUB0bxlB5CF2xroYZbGQniIJUgQKxWIUEHpIAcHJgWykGSz4KlIBoxW3HwhIsbF2HrapONe2KSY5vLHCfLsrEkMIRyDrZ76oZBVAmCtIKcq8PHi7DXrEa3NgbJMy2elPNsFl4M5dYAlSJegQAcpR833GjiOUAVvM9EAJqDFOQwFexuC2KJQnAsnk8OfbBuscZHAfYNnY8VcLpZ2QChSJpiQ6qEhvs/rCiMKvdECKDEKKHYRTP9n2kU+Q2TzOZ450zSo6AFiZIIfxwFCRGkNhqdNUmQpD2/wLpFKlrNF5S0ffaOEp5FfGUgt7VGfCwkTs+Wu+ja1BRyAXdEXEJkpBMwRwahZV3Q1lMQXKyqliIDTEUqwY0atAV+PpZdbwSg8BVYdoRRKV2CJ0SzOERaMf6EKUEKSW7WWyqYTlZD3FPHZmVnQlKkIqN6wCNHwS0AiAo+ND178RT33rZeStN6/nwcR6bK0nIFo/+5AG8sv5RfOl/3Ixv/vnTyI9UcfG7FiJ62yfIOtwwUNZMmOpCSNiN18Ze838fnWTbMxlINk3ttjTwmQBBAlBWosiJjCCRv2vUbmSoPIRCdRkA4MyeFHrTEfTnqth9ZByXrlpQf98pvD3Y0L7cCas6NXl0MqEJkgVdqPW7MAWJEaRIHWtJnBb6szkVHbRhL6uBZFk2Du8ZQWyMEKRKlwxjkDz4xM5OlKLkARETIhB4wTEkE4JkY8vwSyjpJZ8ycSJgClIP3zhV2tR5GAr1IFmB+0V2s9hEW4aYzpC/ydd+HlvQVMwKYqD3R4MstmpBhwRApl4joa0NUOi9VxpGPMkDVnMeJNMy8cjeRwAAt110G/aM7sGPDvwIb1/0dnz5HV/GQ08eAvBqfWJAFaQsEgAN+UmROo8IKQqOZx6kKGJSDOZisvDythvhOA5xOY6cmgPHq3g2shGI/QwYegW47DPAqquxlzsLj37lGSwu61Bp41/RKAOCAD6ZRHTdeSj09yNazQIRIHtsBMAZDfe/uncvAGCgS4IuWti4cCOSncdQBsli+/WxX+N3T//dhhlsZCdoqQNEEK1okBCBVE9pkuPQ5VHwAOSye03ysZhDICxPNe2qRa7vaCDjdVEmgtM4UusJiW6oVXLslZiEjkVxiIoArWpiLH0FOiYgSMy/mQWZA7sZQaLncIDWllpkpmr+lilIHK/iitM7wRkVHNfOQslsq9nWAcehlNPRP5QImLRpEVSdWO1lza2vYFZOgxAZhJh+DrYVgVleDmaFdorcFqgfKeUm0swUQpP2LIGzImXSI2P8K64gLQFGXsNp4hhWazxy3zvsVH/+4d/txtfv+A2+/6WnsDNLC0M2Krpn24hFbZQ6aJsRj4IkpsiDPaKaKOiECDml81lWBmsHYkeRr+owqNlZqGf0BAApCpFOtClkIDOZ3lMLyTFpq3kUqq5J12uKdjPZJjBqM3Njz1pce+5p+OilbiptV2UcNoB9q/4X0qYCIW7jsdP/HzKxNHieQ4yaetMLU052jVWpoKQasKrkJn517FX/91EFqS2ddkNspuYYOL0oSVFHQcoOUwWpQbsRQpDIcUhFRIcQ7jw0eZjtgDfFn4bXAI8CaJOHZjKtoJuTwQWuE+ZBYoUvk2btQ4Ndp+BVnNlO35ciOLB7CA9/YTt+9s8vO/mB4pMjOPAcGY/Y041ChBybBF0MMIKkyRksVGMwbAPPDjw76X42AluhRtsbT7yGzpPMOQByW4BwSnGnDhIAiCkS+rLqKUiUIKlmxa2k3SDEphVp7zct7xADKAkntTuZpD0Ly5MXy3z86OM4VjyGlJzCjatuxMW9xNxbNasQeMFVTurUQHIIkp1wijnL9YiBFAVoS6GolQDP8U7mmvrGGyg9s9NJ92cPXvBVonCyRI6zrgeWX44MNbrnKjpU2iNO0ssQUilwHIfYunVkHLSUQm6SbNXqK4QgvdapQ+AEbOjdAKGd3CPJCvDEMVIkN1uaQEGiIbayHYGtUTN3PSIlx6FK5P4US646yPG8oyKZhaJTB0mjGYLBhI6FmahLkNqWoVoi97cSE8ELPLqXkc8aAA2LNfAh6ceOwQYwWiT71L3cT5A0Wo8tVvEr+qZlY1+fRsdu4NKVaUAvo2RNQI48KKmRuiE2ywIsXoKiVtCbjkBM7oGYIuE6KbUPsaUPIb7qPojJPf4it0xBSk0e7TjVOCGC9PzzzXVSDjH1cBQkVriNTbbRNmARqcdzRv9B3FiWYVf8np9yTsNgnwEOJrrGaR2NIEmiv69+4/sYq9IGoh4FSaIEKV51G9a6jWODChIJsemUIImNIj9SFDwlSAmkIS0iN4TXx8AIUkEvIF8hkzIrEsmwsquJWkisfkjvOjp2E5wNLNF5LLWi2L/yt9GXuRQcZyPx7hzKct4xiDOTo25wgEhv/hJpwGlWidx/rHgMBc3zoKQKkqTEEafVfwVLqw2xAShLCnJRcswLo1WYplXTboQVixwsDTqlDpIRCRctowRpEh+Sbds4MFzy9WBjSCgCBMuEKZDjmGyP4vbFm+kfup9h8OQBZgqEuNgTFIrkeBWr2sl+HyhfhC3/sscXqgQArmrhiWd4DC04D1J3D4oR8jBN0IncG2JbopH3nm6yHlK9PmTMpB1ddXnDeiua4ZIYZXWgMKMcBwdXNpNT9BzVy2KjRFGzKp4sNn+IjSl3RsklSEI67ZqGO4lSkkqQ67piSJNWFH9478MAgPed8T7EpBgWJ8mi41iB3FPjDjGo88D3eJA4mzwavGFwB1IMtkCIfNSOI791K/o+9WkAgJXP48hHPoL9V29CfutW93oQVGJKZ4UOI+Q+YPXbClUDFY+CxELs0fNJBqg4QAhENstNeAyYgnSwh8N5nechKSchZMiDPlW28Uz/M6gaVVdBClZLBzwmbQWcSc3zdZptQ4qhopD7jiv6iZbgpPq7DWsNUIIUDLG1+QmSSscWoWPrWU6O1UCRehzrZLLZlgW9rw+q0oZqlbaNWUzGwEJsFk27t7JZ5++27OnHxvt+id//mquo3/WzXXh+fx/ifHPZsfGOtNNEPS5GISmCU33dEGOwCgX89sYxRBY9Ao73F1XlxBwiix7Bb28cc7O2Wfg7OXldt1ONEyJIF110ERYvXoyPfexj+MlPfoKqp1tyiFMLx4PEPAXe1eiqq2HZPPIHiWW2fh6XDQV5nP3iQ1j7ykNQPAUfAVLaf+0rD6Fj/+PgXyRqiFdBYiuimOo2rHVN2lSBqJJVXsGOEQ8SNVSLYoPMMo9UH7eTEOkqtPSbp5xVKAuxAcBgiYw5WCiRKUgTpvp7WowAwNGXR/FHeQX/s6SgO3U+ji4hGYGrl2VR6SSkhEnjEv0+QzWdgpdWqUQIohWDaJEJ0BdmowoSpCiidHXFmxqEdK2CVBYVlKU8TEGHbdkojFR97UYAV0EaLA85YcZERMTb6Kpr15Fxp0p0PQzmSb2d5TwrEukSpLgiIqmVnQy2xIIYNp13E+4fGsECT+E/g4bd1vde4hyDILwEaUVGID6G/uvrjoldFW+s+l2IPT0oKuRvE7SJsreadnuJHMOn+ycnSPX6kF3z/WuhKYQkd6VjpN5KHVQpQRJgQFCCWWwxFAUeOg2zSUmiIE0UYjPsasNCkYwg2aw5rlbw9/uiBClNybMJ0QlD1cMrI69g19AuiLyI95/5ftimie7XRnDZKxba9x2HprnEoL6ClAVAPEjs0SDX8/RJMZj0QdedVdD36VtgDPvrLxmDg+j79C1Yv48pE1XEJLgKUoAgAUCJljrwEqTImWeCUxTI4wPgYMIwBJTzjcsGOASpm3PaaLBjmqnwqBgVPDvwbMNGtQCcEJstxyGx41Cvx6EcQ5ESJFREp3MAAPBUKTY9/dgsrgLAqGPSjmIJR46fnTkNqkdBAuD4kAYGJRItKPST7vYeGMMjsDUN+QxRhjsWJyDKAkzLxJHKIfLZHK1LRAnSlj39uPmRXbRgLg/bJMdipJTD/3t8L3rlfYjLE/nebCTaFPSu6XUUpAQ4cBznKRYZhVUqYevxr4DjnKi+A44j88DWga+6FbYZQZqNIbbjx4/jX//1X3HjjTeio6MD119/Pb761a/i+PGJmsyFeKtwFaQ6GTErr0a/dhZUIzlh9ecq2pDNrELXyIu4dMef4fwXHkDbGJlQegZ2oGuEPECMYRpi83qQWDXtqu2YQGuy2FiIjWax6TQUxErd10CMApQgrTjMI/vd7wIAStufdlah5W2/dGT6oRIhZvFAY9hVtBbSsfEKqnqdjDnbdhWkhevwzK+PYeOQjaTN1Wz3+sEM8q8RAsLUK1aPR1dN8HFaHbZcdkOMtKjCD/b/wO2a7iFICmsvYdUxaQMoiTLAAUaMHNfsUBkCVZDsSgVWqeQoSMOVYQAWqT4sC1jVlUBbTEJVt7DneGNvzX4aflwleNqMUMRkEUm97NRASnZEgfYV2CS24/8bItdCu9KOa1a+EwDQlTjNOQZBOC0XeBXL0hz6tbNQ0mv32QUHNdKOsdhSFCXyME7SaSmeJhO2pqQh58rgOR4HcwcxUBpo+GkN+5BVBhFZ9AgSbfvI9bPmBuCav6r5+xwNK0hizVuAFEeW5x0vFmjadN0QGyVDJtTGITZ2HdNqzbKW99fa6SSZbBHhOCTaZb043nhRytSjzcs2I/LUC9h/9Sbk/vBT+PSPLPz5Nw28uemd6H2REMwJPUh2Ahy1p9ZrMg0pCkOgNaWG+fohe/raO39wFJxlA7yKDsmjINJwqijwznGoFGktKL3s3CecLCNy9tngbRNxi1yLzKcXhDEyAmNwEBaAw13AZYsuI9/RTq/rChnXE8ee8Ji0G3uQ0qkMeFqPR07V1nGDFEdJrEKlalph1D03XgUpraTBUxMzJ5Zr5q+F6SiWUAWpHD+tRkHqXkGOVXaoimobUdSCKhIzxxe7zwJADNpsofCNA18n300JkpHPw9AN3PXjvb48TpuVNRFURDkNPGdh48oGjWE92by87IbY4hZ5PjmZbHQ+yGUn6J/GwemPB2D2htiOHTuGr3zlK3j3u9+NSCSCSqWCn/70p7j55puxZMkSXHDBBfjiF78YhuJOAdiEW3HMAZ409EXrURIW1/mrWvz/7L133GVVefb/3e3085zz9Gf6DDPDwDCUGWBooqgIKKJGjEpsiYotReXnG19NYolJjFGR+L5qCIqiJipW1BhFbCi9wzADU5hh2tPb6WfX3x9rrb33aQ8kEXxNvD8fPzLPaXuvvfda17ru677upmRkNAL6F/YwNiWuVSUfaXImUuJBH0pHGgxVsZONuWl3tBoJfZAyeH6AI1NBXSthQBiQycnlpNsW8dtaNqhd6DP2iolitj6Pjs9Z2k546Buw/5fgewxmExTSFkEA+2e6aBTmDwhq30jgDx7HvTc8Jsegy3YGMG9biRZEPZQs1Xm94YaGl361StV2MfM7qOmCOfruvu9GXdP1iDWIqths9L5OsFCXJfBeRuks6ujZDJp0mndnZxlMD6JrOn7goZkVckkTTRO7tSeTZts7VSaBw2igSvzjKbZWBilbTIqxWHsus9JMcE1hDasGxITlSdFxNwapaYtrpelNlmW1J61jcDIDIUDKyuuiNEi+bmFXXE4qiHYcvdJsS/UhU2EM3xDtVNUOdeg4uPRzfH7D/+Fu90QA2guWADATLJgJHFnNF6QE4Fmq1Qh6s3eKTWpDjKZcVHoAJMveHzK+otS/MyaqE2GH9tdMbRSszkQrkPSnZnjlv32as48+1F2crFJsQUZYM9ADGBgWjqnAzhLdEIKA/EKT4w8FaHqDQfmsY6ZbqpMUi9TokmIDSEsdUqYp02yT3QGSKu8fH4B03wCbB8X9ohgkw/VJ20KHNCcBUrd2K8hS94H+IpoESMliF9uPRIaarlGWLFJ5LgJIkQapjK7pYbpeMyphL8Lw/BIG6wzBIB31x0K8qUBGOpegOCquw0TqPPFiO0CSsoRSQXZCyB8KNwqOBLO6vFZaEPC5m78WtlpSoQCSpjdISVBf7DvIRW/eQirXer8km/Ocs3ac9VtlGySlQXJb2S8vFWUenihCF3jFjv22MUjLly/nTW96E9/73veYmZnhhhtu4PLLL2fZsmUEQcB9993Hhz70IbZv386KFSvC99a7NHP8XfzHImSQFEcZ343qBtnV67p8qjOSbmsaKl8Wpl3l3CoCNMyxMe5dJh6ceIrNyIsJQvVj8/0gdNJOtzFIVU0cq60aPbb3KVNhpfElVe+aXXaqcqa49AcLaH5AcPhn/Cr5Z/xt6T3wzTfAdS+Eq7ag7fre0j3ZFHs0spnx/TX8qrsk02bWUiwrrQ8nNZVic+IptlqNB+Z+SWrFl/FonWimalNcUUxxUyYtdFYS0+o9NEhVqVHSsgog1dA0LTKLnJ3F1E2GUgKwamaJfKyVjBI33rUEQNo3XWWVNoUelviPhK9lEoYASDIVkOuXi9e6c5mRArKh9BCmvM5eYIRj0K4HOTovrR0Mm4TffNI6htzyfiqGOKe8TCEalh5OzM1kgXOzJwG902xP1IdM08A3FqKd6swe8f8rT4MTX8b00HYS8r5IdPP/ARaSmZBB8uUz2A7sIdrQaLpNNrQ76J5isxypc7HLrf2+ho8FQK+Pk5I9DksHproe11ce+Qpu4HL68KlY/+dLXVkd4TgEb37oBvpTXYSBUlvY8DOhED9Z6F4xaCfEs63aSSwV/RUBmItKf5JqfQYUQHLqckPlVtsAkkiLpyuykOFw93YqjZ3S/2hM48zlZ4asjZ5Oo6XF/DLUTDJRnWC2eUAc2xIptuH+gQggDeQ735fItgKkOIMUa1gLhJstzah2aJDwXJYhzulgQzzjhqWHzxvAmBRcT3iyNL5NqG0fPkyAxqIhPv/lmc+GGwVbAiTLS1GTp3vjzqsJlfgqfPHca3ojbI9TCxKs3zrCM35/AwBuziBz4Jucffv7WHusrFgNgqhZrSs+FwKknJibMk/CTD10gS8dxQ90jswMsvuuCY48Or90f9GnMP7TVWzpdJpLLrmEq6++msOHD3PXXXfxvve9j61btxIEAePj43zuc5/jJS95CUNDQ79Lxf0XI9QgKSFb22S7bNsWsvoM3czvRPiknAWKc7tb/pqtTqB7TTwzRS0zyuh73sOstMSPp9hCBqkhAFLD9cI5uF2kbZsCTDmyAsRM9gZIRl1sLbxuAAkgCCgsOBx/KGB072cZow0ElMbh+tfy4qRgwrr2ZIvpj6qLT2IrA2ScvkiDpFJsDS9kkNxymV/MfLb7Ictr8JHBfjwzCZ4EDZ4ddvqOR016kpiSQWqvZPPaSv11czH0gYIYQDow13Mi2TvVvcQfOhmkXL9c9Naey7QEb8OJYsgEuqo9uu8TtOkQD86IhTPQmwROXegYkktUHgUBycYcK09ZSUX+Vs6LJu6o1L/IaaZgve4YvwM/8Du+6sn2IQvfNysB0pCY/LNJk4QSJ3cDEMBCIhUCJE8yQl1F2vJ51TSbvKG6oncCJC2AhJIV2iXMOIOUKkBe7KIzMj1VHu9Mo9acGl/f/XUA3uCd1cEcxUMHRuoL5Hd3aRQuGSSNdCjET/R1fy4blgAzrvnEAGk+J0TaRdmepB0gFTMWBODJVKPl1DBidhiKQUosiudg8Uj3jUBcoH3O8nNaXlPA86yMABglXTSt7kix+R64Mn1YiCxDUgNd0sTS5LUSAqSICIjctFsb1mpmNdJsqigdwcSjGZgcrEiLCStg8fv/Fmoxx9ZLHdKiZPWP3tcCgp3DR6hmx/Aw0ROwT9sZvhYHSPLrCUpzGJn9LYcRePJaxljPhCyccCTLqeUtRud2oRGINiOICkk1JSiApKof3Yw47hX099yUBoFwd09566FRYl/pBL44fTXfuXYqrMT+4ntvZd993TcHT2X82sr8VXrt7rvv/l0q7imIiEHSxUSrt146feNzOLfvcwBdUgw+BBobHr2exIrljL7//ZhjStAdkC8fAsB45SsJzjsDxxcT+kA6miAUg5SWKTbV8kPTIKXK1KRI27dkJ3rppWJ281IRL4C3BIMUi/4KLBpal1YF4jdeOvV/0fG7M0jSQZvlp1BeIv0Sj5pVWpJBOjD5CDV/tkN0GB6VpjFhmtwz+2jYRkL3barJzh25Ar2JtFj8Qi+kWLsRiACSZpVaANLmZX1kEwalhsujk91FlcIDqbOCDQQw6HMjk8iQQepfw7TUigxP7MRcFD3YPC9SW7an2R6bUhqwgLpdQtd8zj3+we5jJK/Fxn3fJDE6Qln5MnmR0Wm2KE0pEwWOcftJm2nmGnPsnt/d8X1Ptg9Z+L4Z+R1DgqnJJgxMxRi092GTsRhLsflW1Gsq3sUeWu0O8ird2tasNpcySQdqEg6wnDaRNoRC7UxCPCeV2U6wecO+GyjbZVbnV3OC9uTSEulyF2ZPAiRDT+FJZkj18ep4a0IBpHSn8laFptEYzLFrlQZ6k74eAKmQtkhAuLdrT7FZIyNYy5eTqckU20z3TU7tYVGJ9dgooUBbhSkr2U5LiWvtJgVA7Eix2dH4jvaJz+i+gzXYJVWcyFDvwSDpbQxSMcYgdRi6zh8A4HAwjH/3/eJ900c4+q53hVrM3IQ43smjAb6WhNqscNWW4Rw+TCm/VhzWqEegxcCTLK5IeMmwL12+HtDf12iBLGGKzYgYpBF53koXZSQNBmQlojkinqNqrBlxWlYARik2MX+8ds3LOsdPhqZBc/ISvnLnEfbdvk/0CvVbncKrC01+ePWOpx0kPSU+SPFU3OzsLN/97neXTMW9+c1v5oEHHngqDuW/TYQ+SLpGkOhCexdWsHblAs90P9HhX5NsLLDl4WtYkZxh9XXXMXDZK9nwk5tYfd11LP/Yx1ixSrbxSI0w2xCLcd7KkzQinUCkQQpYaC5QDz2QjKjkXjJIvhRVu3LNsNI9eidpGs2keHifCCDN56DUsxdPQL45yXb9kU6AFBdoLzuZR32bqraUSsWnmlxgvG9fR5m/HWOQqoszvb6gJabqEWAxPJsJv1P7oejpTHoBgNJMg0duH2e+bz0BWtRuJCuE2ppZigS+CKHrtjViIuumQyo1HKbKzYhBGmwFSAlTp19uAU3NDX1T2PldZmTD2aHHbsa89cMAuAvT6DJl0Q6Qdk80CaT4vSb9ZNavmuOiN28JgaaKBi5bHr6G5RxBsyzZhw1yTrQAxkv9g7l5ThsVlha3H7294zy3jWxrqXpsjyCAnDEk2iwEAczsleOxUfxW0sTQxLknu1V5AfOmGTFIevQev9J636kNjaZ7WKEGqVOknZFjlQia6IHf0RBV6ZByCVkAUWqtYvMDPzSGfPXmV2MNP3FPPoDUaJf3ySo2K7BCBqn9mqmoSYAU6Ba+ZnYvTwIOv+ECAl1D0xvkkfdKutjy1mLGIiXHQQ9cUczQNg7pU04hXZdmqosmQRtT6i0u4h0W2Qlz07EMZ4bx/YAjj86z+64J5gePI0DjBEMUVOjpQ2hGpaWKDogAkmYwIjeFhtfEy3e5r6wMNS0CSKUWkXYrg5S3xPkIBqk7QJo8VGD9T78nzsGJdFbu5CTV970TywxwbZ/ZvvPECzEdknP4MKU+oSPtX906lyoGKeGlKKXFOOfr8EdnnNTyviBMsUWFBboE9ba0jrESGgUJgizJICmAlPF9dOWCrgBSUozhSekNXHnelQwmo9Q+QCFR4C3H/TVueQvfvfcIN39fzV/dQfevrt/ztKbbnnKjyFQqxQtf+MKWVNz73/9+tkp/i/HxcT772c9yww03PNWH8lsdasL1NA2nbSeqolI9DufueVEK6nscv/M6tt5/FWff/j5GZh5g8PI3kpCOt5phkD1jO4UXXsyKYwR9OjVpMFsXACmuP4Iop55tSAapvc0IhBqkQO4afLnoWt28VGTMDUmA1EvLoGnUi0l2rdJY1Je+XUdY4LHpausDtHgI6nOgmzByArc/NoutBT0ePx/Q+NWabxJoQazMX1ZkNN2QQcq7T86EfsCKWA3ddznsdgKkmoRrxlz03p98YRe/XNzKrWd+iIPSFqo1xdb6PWcsYRipKtiOteTuq41BAijIqSBpSvZGNnOdlkM+7HmYcqF3pvajJyMdkoqG47F/ugq+AA5VWXmFlWb91hE2ni6Of9VJg3w12+Se2v2MzDwQspkVaWGRc6KFJm4W6c7McNZyYTHQTYf0jd3foGR36oGAkJ144cq3iDYLpaNCjKubIuWITHlpYlyT3cq6gQXDCHfknq+FQvr2NFso0gb0Hi1XckmTrHxGEp5YZDoBkvRCkteu3mx9Bn5x6BccLB8kn8jz4vUvJnPaqWI8e7A6PjCX7Sdz2qmtL3hu+PymNCvUIFk90uNVKwJqwx/5GGYb4DJHR1nxj1fhnisAraY3yQfyfmhjkPrSFimZMbV82Ry2TauX3rqVVGMWLXDxfINKm6dWY5ewJpkqwLaN54bGpMow9zbjudx65oeYO5zkmL5j0bSAbHEPCbNtTlEAKZElKwsUDLfBZDcxum5Q0/XuDFJeVbGJc86a4nwMs4pltP3m/AECHzL313CkE73lxoToQYBGQN+iKC6ZtCQ7JgFS4Dg4ExOUZKHNiZs3hFWvEAEkDZ2KZMyWe3necsbz+Myrt0WicZliy6UdnrNBSgHkPWtLfVhK3suuYaHLa6QAUtb3Q58rBZBcpdOrVDh/zfl89MyvUXv8csyGqLa7+JiLedv2l7B+OEt/LaBW0egFjkC4yY/vWej5+q87nnYn7VNPPZX3v//93H333Rw6dIh/+qd/4uKLLyaT6b7o/y5EpGMMS60LgxR4HlPf2x0+JPnKYZZN3Un/wp7Q/Xnmn67uSAUAjIzJ1+fTzFS6A6S4D9JiczHWhy22G5ITrCYrFzyp57CyvQFS3VLtK7pQ9WoXetmpBLrGYvvE0hazej91x+PoYqwoQLFHw8cTmElmHpqj39fRTI1MoZUlyJmLnD3wUfYPPoiu6eQT4jxayvzlfTpKgQT9PU3JtSBgzPM5vrAFEB5IGgEHmp3nUMNn3exJlHZc2PFaM1nk9vnj2HffVDjptafYgJZKtnbhtHIYX6d3lviryErmJJHwhQ5DNnOdkbqgIdfDkrtKN0ii+5ItjDFIj06U8QPQAnG9q2oXLO9dpWNYubGfQ5bPkBQFWyFAkgaYsTRHnEHyZmY4S3ow3TF+J+//6Rf4wj03Ybsu1z18HX9zhyjbf+aKZ7YsEAC6X6Rx5NWct1L4XYX6o/61IMXhGT0AyZykemhvFnUtNMx0ml7ojO4ttmqDLMNCl6XyQY8UWyZhkFMMkgR2nSk2wSD16QcAqMs0iDLCvOreqwC4dOOlZKwMmmEw+t73dBVpC/gP3z/3lWhGG4vRiI4/jSk2WUT3fntUDUI/qOSZz2DDT25i7G/F+OvZLBt+chN9F1wQtYUxGmQDeV3bNUjpRMggKeakG4OkBz5pyXC3l/rXd4oU1P4xjc2LZ3Q1Jm0mi9yyd5jTKs8X59bX1h4Iwgo2ElnsRQlavSYHu2xsHM/BjTFItZKNKwtX1H3hS+CcNsQ5m1aXCryFx6lNJ0jWXVwJSEynLZUaBOSnxfGON+QGRwq1nclJPAyqObH5HVtX5H9v/9/hRz3dwdPEcVUl83t+8QwM3eCiLcs4ba24505YJjYwLzl1kJVqiZGZi6YCSBLAlrKRoWkEkIKQhUxKbZdjSKa5Isahbgd4tfXkvdMB2LOwB03TeNUZa8i22670CNW78OmIpw0gfe973+v4m0rFffe73+Vd73rX03Uov5Vh6iYJuYjVuzBItbvvwZ1ZoCwBUl/5YMd73IkJand36r4KIzkSWhXPN5iSXjpxgTaAETeKbMx1eiAFQZhi0+QE6EuAZHZzoVXHLcWnzaHBnrtQ7/kvAFiaQepbwUy/sOLfNx2bXEL90cnsenyRrQviIdx+yTG87sPnsCG4hc07r0X37uE1p1xDNns3AMVkMayCCTVIjUiDFNTrLHNf2fVQ1GP+7mpAIAkZw2viaTp7u+iVa4HPOQde2v28NA0CQS0PpwTDpHVhkE5eVSRh6EyXmxyYbZ2E905XSOAw5Elx8mAng2RpAhiYaQ0evxVKR3GAeSXS9jxMPQaQVCVXDCDtGpf0uiHTkGqSt8T1V75YqbRJJmEwVJdaBgWQZJ/BbCNKV8XNIt3pGb710L0QaHiBy7cOfZyP73gnp37pTD5298cAuPzEy/m/z/2//OjSH/GJ8z4Rfo9/8M9xy1sYlW1jwgo2qT8CyLn1MNWbLHTfsM1r4KpxsP2Y1qRT+2Uq3xmUSLt1Y6NpGv0ybWwp/U8PBqmgCYbENVLc+OiNoRHmY5JV+P5j3+emx28CoO+CC8g///kdxzOXh797xvM5ctKZnScmf59EPhLJBwFmDw+zmq6HzIRd99AMg7xsMO7XaiFAixuHpr3uDJJIsYn/NmVatn0cUsdtQksmSUuB/UKbWH36/jsAOLQswcSNvXYt4skcvP8YtEDDSz6CE9O7iZOJAFJzTm74fIcDlc6NZU2yPE2zhiX3WpU5mZoKU2wSIOkCMOlmdxsStyHNaLsxSDIKJSGqnpiV7M7RB8D3cQ4fppJbSaAZZAoJcv1Jzl9zPmtkyg2NsNQfWVW2KoiA+LR0mN+yTMy/FafS4uMGEYOUlv3cFrPRNaxJUJsJYgySMoo0FMMqrqvqvlAwhJfaI3OPEAQBl25bidPFeaJbZPt6b7h/3fG0AaTXvva17N279+n6uf+WkZHeJDWrE3AoJ9tSXvZvkuX7vd4XDy03xIglrk3pkFj4ejFIegDN8iJl6ZIdmp7ZVZCVRaasXPAVK5HrrS+qSj8Vz0ix4Sc3MfQnfyI+s359uAstyFTXoq7TM/182utZNyJ+t6UnW6zFyK++s5dMoFFNaWw9fxW6rjE8/yhjU/cwkwrQ+0ZYkCyV0h9BrNVIjEHyq1XMxsk0jryagtXas2s02c+VUzOcH6TCHaXuO1SsFPcfXuC2fbOhGzZAcn4FObufntSyplGZb2JOqkm2k0FKWQYnrxLn317uv28qXuKfF12y20LXpUAzbUBFME2zEhyZQUDR98NO9k6QRJfmTgogeX7Azx4RaSBL2jzU3JjvDULDBYKVyCVNhpXmZUxOzJ6YxPN2HWQ1jDKLbCYLPP7YI3zxsQ91FiFIwHJK/7P5s21/hqZpGLrBc1Y/h4TUCVVkJ/VhlToLAdLG8GsyTgNHAaRc99l6ET8UaTu2h5FXDFJnas+QoNOle4oNoCBBf6Imr1lfvrVFSqoA2RGy2QqGHM9Pfv8jHXYGs/VZrvj5FSFIcsell4z8/rufNcYfv83g9mMGupsjSjaPdD8ZyTJruFHbk7aoamCb4njU4mkUi2GTVuXWHAdIKU+CyC4ibcUgWQogtaXYNMsideIW0nVxjy0ebK3Uqz0senyl1zyb6sJSNeUaQRVG57cQaA3unry79WUFkKwM9oI4liBwebyLOL4ur4dJgJIolWQlm9EGnBOa9J8zugMkMyXGXBkrml0AUp8ESKV5n6o2As1Fbrr1Nh6591FKfWsB0aBW0zQWm4scksU3H33mR8nJeesFJ74aiNy0IQJII9lYykyxv4pBkh5VabkJno9dQ7URyvlBR4rNEfL7UKOn2iT1J1Zh6iZlu8x4dZxCxmLbqWOY+iId9gOxyPWL5utPVzxtAGlkZITf+73fo9bFfVdFs9nksssue7oO6bcu0rpkkKxOBG0ODxOgUZYAqa8HQDKHu1T6ZCKA1JyQu6w2BklLJsESE2uq4bEgH4TIRVtOfppBKi3y74EESFa+d/q0LBkk3zbQDIPcM88V/65WwzSAcrQ+YA0xTbH1C1S10D1fYPOAeLBCoXYQhCX+09qJ2I9IjcUZQxiGTuB5JI6KSUQvlwgyIyzonQBJMUh2W6uRmu3ilrfw99u/yqUbLwXgnOXn8MNT/4rza3WwMriSaTM8m7KV4eBcncuuuZ1nfOSn/HCHXMSaSwvUVaSasuO20SSZ6FwEVLn/He0AaTrepHZdZyoTCHQJ/HIW5KRrtxz/Qc9Dh1Bs7JJEtyRAqtXCfk4/2ikW7YWq+P6jklYPd6GSQUqkTHJJM2KQRiWDJBeFnO+HC7ZikOxEH81ZMV7d1uwggAem78N2I22MrumhsF03F0iaOn0KWKoKtsEIIKXtRsQgdWvSCswHbijSdmMpNr/cCZB0mWq0tbb+ibHIS5Y1aZcINI1LbnplS4uUC795ITcNr0LTCQHG2EKnYDi0lrjzI9jzc9QfFJWDufPOE+eWKxLoGnpidkkXbdJF0nIMtcDtfJ+MKkHEIMnrqplmCGxUi5yoWW0z8mDrSLFFAMl0a2iJROhbFI/MKaeQUQzSRMQg+dUq6aOyJc/q03seczxSZcHM3Xz45tYXQgYpR1Om2PzA62BlIWKQMr4fNhRWOqSQQZLAwNTEvwO9rYikUYLaLJlhm4VsAUfOZ5bT9nuaRnqoQP+YeP3OhtAhffcH/8YNP7wrlFaMrBX3hrLCWFdYx0XrLqIgNVGB3LwqgOR4PrOyP99YvghAxa7EAFLrs5uSm5qZVHQPVt1IpK2e24QCSIHsXSnngrCPZDLF+oJgslWj71edtZbjct8gcuzqjGe8fGNLH86nOp42gPTNb36T/fv380d/9EddX5+enua8887j+uuvf7oO6bcuMrIEuWZ2TnCZ007FXr0Zz0yjezaZWusOK0CkMjrEmQCZgRAgadPiAWxnkDRNi9JsDZiVD0p7mxGSeXIpCy3w8ZQb71IASe5CA0/Hc/0w3eJOTRHIibqQkDsbzef19v+Sv9MHr/s+XLEL+tfB4iFeeuRjQBABpPI4VKcJMLj5pzoasMtyOeusFZRuvJG9z30uxozYkb709m+y929/jn9QLGqtAEnSxU0PPRMZRSqrg3wyyZYhoTWydAvDjZyTb98tKtAM36aSiCb9icUGb/3yvfxwxzgLxpMzU+wfyKMHMqevd/rhKB3SXTGhdtP1eHy2ypoeFWwqXLmQObkUrDkb+pYzbUbpNSAUabtBCi0tmJiH98b7OYlQ1TD75xfDcQCRogTByOVSEUCylo3h+V5sJ+qHC3Y6nxCASNPJ2tlQT9cemgaBucC/PvDzlr8vy4qGl5q1yEhfMmJEZiWbHUuxpewoxWZ20d4EQcBi4ODGGKSw51aXdiNIgFSTqdp2HySAjDwdyy5TTQaMN1vLmKdqU1yhTXNjJo3hi/EaLhe7jIAASRO1CXb86Cvg+yQ2rCe99RRxmmVpmmjNPQFA6seSrGewxE6+RhCK1RUzCDHvLgWQpOO/pjew3O4MUl86SrEJD6RiV+YqfcopZBSDNBv95sLOB9ECmMvBCZu39TzmeJQdsVH8+aGft2r2Yik2uyzmJg+/O4Mk01CZIKAvJxh1BZCMUKRdJvB9zEAySlotcnIHWBAbWS03yE3PfU1otWG6nRqk0fe+B3dAzKl7GsLx/feMX3FCfX/IIB1EzJm3HhUtQpQflKpM9eT1UJq5mYq4hoauMZYrAt1TbIpBSlbEdZ1KRH5uKsWWDSIGKSVZStuX5rJtKbZcwmTTgACpj84LbdXJKwuckr2Zi4r/0EGm5/qTXPTmLaFz99MVTxtA2rJlC1dffTVf//rX+ehHP9ry2s6dOznjjDO46667uPLKK5+uQ/qti7S8XPUuAEkzDA5JrU6ucgg9ZqSn/mvy8os7xZkA2YhBSiz2YfhmB4ME7TokMaG2txkh2Uc+ZZJybXwJkKwebrwAZTNaWO26izk0JJgq3w/TgYpB8rUaRU3+TmEVrDtXlAxf+jnQTVYe/SG/b/wi0iBJ/dFu6xVM7K9gE3B73mf9rrtkK4bWNIU7X2X1TWm2P+qHFWzQKlT1ElF5e9hqJWmEgGqhuRBOLoGV5qu3CS2YLhkkFWpK/sD3HuZg/lEqiXl67ZoIArJ9Jss2FjF88TsOnaDq1DX96BocnKsxIQHL47M1/ACONXtXsAW2jS1BaD2XBt2Aiz7SItCGCCABBOuEWPoX9z/eedQSIHlSzKw8ddQu1EqZZC0jFGmbo2PhLhQgF/ih2FPXNTJ98n43CqSfwJH3YKl1YzCWFYBbtxYYUek1uyqqG6ElxWY1aiFA8rs0WK46VVwCnJBB8iORdpeGtar5Z2ju2sVUMS3XyqRdotTNTF5yQ+8aGaKkyybKtWLnG2Ph3nonALlznhEK4PsWxbXQEnMMdOtgH2OQTHm9fa03QKrihT3IVIoNwByQTZaluWmUYvPwbTlGXTVIEYPUzW0eVKm/BEjlRFituuf2HwEwviLNKScdG7KOXSMIcFM6jztj6JgcrhxmfylmmBgCpAy2BA8OAYfn6zhe63goBintB+QyUrysGCR5XxAE+LUami/nQE3YpIQhS/zpX0t5+zM4XBAto9oZpPyFF5I9/3ncOCk+2++Km+XZxgNsbR6inhaA76p7H8f1fG45egsQ+UFZCiApc1PJIKn02lAuQV9SzO/dUmzqGluLYvwnrXwILLtVsSn/LMfVCNBiKTZxb2WTJscNiAIE1eRbcxsUghLrU7erpDR9Zw6x8RXr+YMPnfW0gyN4mqvYXvWqV/HWt76Vv/iLv+BnP/sZAD/+8Y8555xzwtYlb3/725/OQ/qtioy8XLUufkCe7/HTivABSVdbBdpzebjy93Q+qH+ndfcSfvEQOX2GtL6IHugMVld0MEgQPfTZRvSQt7cZIdUn/F2cJoFMCVpLaJAqmhtWwzTrLpquh/4azrhY7PqScrLRAgpykSAb0/2sPBWe/RcAfMC8jlzlAPNVmyMPPMbO2nO5efzFANyWctm8rsDsR/6+e4NNGX/4Y5+iFVHIpqWHaR0/ETWrVQxSJmGGIG7RXgwnl3nHpKIM1nybSpu4PgAmShUcXG5Z+63uByOP84xzsoJa9sTvNLsApHzKYvNycdyq3F+V+B+XkNqzLhVs9en5cOdaVpYMm1/EzEnC3C1ikCJ0EiwTjsRul35sikFydfG53bOy6ivGIA37NSx5L1ojw1TlwmQFkAyINDHEhdpFil18QOOxum+s5d8KIGnWIiN5eW6zwvCSzCBkIjNUvVYNx8Hpso+Yb4ox1xSTZnuRSLsLg+T7MYDUxdwVICE1wgm7FLocd4tA06hbCwBk7e4AQrwxIHuv0Fdlzz0Xc0SkGFPzYnx1a657/zEJSEn3o0sGyV2CQaoGXij8VcAXwJAAyZsTY5XUo5OqO09Cg9RmEhkPc2iIfEFH8x38wKAie5/NPSh0RPqm9RiGztmXdmdJ1bM0vjZBQJLVGcHC3HwolmZzohSbXZMASRcau8PzrS2zlAYpE/j0pcUzH6bYkkk0KUnwSyWaTkDgintLbS7FPw6I/+9fy/JiGk9WfVluDWvVKob++I8BqN56K3fuOMiAK851zjkmbPkzo4lnusARjq/ezHd33s9EdYKEnuC0MWGzkEgrEbgUTUuANCUrwkbyqTAdWrbLMQYpg+/5OHKus2bFnDydzGNLwNi9ik1pJDVcM4UnU2whg5Q0QoCkUmyUxPpV8dMk5P3wdzsP8aYf7eCZH/1ZJEl4GuMpA0h33303zWZnOd5VV13F1q1becUrXsHf/u3f8oIXvIBCocAtt9zCxRdf/FQdzn+LSMs1va53epPcO3EX2ZJYDMYLAiDdfix84A90/vhtBnccpzNhL3LvxF2dX5zIoFlphi0xsQ5XVrc0qlUR78dWcsROIRRpN6IUWz5lknOjxbSX2ZzruzQJsNt2omGabUI8EEkjGdoc5E2ZPmoXGp/zDlj3TLJak7/yfsE33n873/nZZn5W+hNsN0EALOo+F/oTS7Zi0NAYKsPqx6KVWNO08BzCqoxqNZwgsnGA1FwMJ5dakEBKdSSD1LkCapKN2D/4IBcMXtWx+035FbY8fA2rJDLwHQGAan73dgvb1wpge8dj09w1cRc/OvDvGJl9LKd3iq10RFZQuXWqWjQlTMuKl+HVzxDnMLwRQ1Y1+bJRa9rtfMYVg+RIgDRnG/iej+uI8UqkTEbk/WL3FdESCcpy8cyr369Hi0i81L/QAyAFAWhukT84+byWv4cMkrkQAaQu+iNAlHXL33e6yBwWm1KAqolFsEWk3aWKzZWl4TVN7yrQ9jwfQ7qsJ+wS5fTS2op10gk94RW7vq6hsbUyhD4zj5ZKkTn9tFAAr0/PQxCgWyVyqS6bg1iKDVdcJ7sHo+kHPvXAxTZVFVuMQRqUDNKc2Mg03YBAAsUIILUefy5pRlVsTm+ABJA5+QTSdZG2VqX+1l7BBo5uFWxJaUb6/rStbsnmPFsevoZpxE20pV+woD8//PPoTbEUm6q61OQcd6AtzRZWb/kB+aS4n7s3rK1Qsz18TzwzCmiLf0itaHENK4pp0jEmLbl+PUN//DYSG9bjl8u43/gK705eTUKr4JJk1l2L78JCSgCkEWsP77e+xB3jvwJg2+i2cN5UKTZXE9ciaDTwGw2mlEA7nwzZvqpTJYgxSPEUqj59BIDZVCE0Cw6NIgMf3Dq4TQxTx1SticxM6AelAFI2aXJsv0hvH6kcEf5lEiAd9ISO1iegIR+JuCTh6YynDCBt376dfD7PySefzB/+4R/yyU9+kl/96lc0m02++c1vEgQB73vf+zj11FO54447OPHEE5+qQ/lvExm5A6p12YlOPX4rQ1VBzxYXBUC6b4POzjU6QUzUNn3o1u5fnh2iaImd9Uh1VXcGKXTThrKky0OTsZYUm0XOl5NmEGC0m7HJiMpkWydalRZwYimwPpkCShuSpm8HSLoOv3c1O5rPZlfpD7ErreW7GgGX1BKMLdEWLB7FUivTpgCSL3dgcYPEdCJKsS02FwnkJJtIZZHFXhi+Q6WLBkVVYKV9n43Wzbz2b85k+QZxrlvOW8H5wb8xMvNA2G7ElkLtitO9q/v2df2Y+R18f/5PeP2PXs9P5z5BZs01XDami+a5XVJsZSl4NexSOIEBzNTEQjQ0LPRVBF446fmyZUra6QRIikGyZZfevnxfyyRrpQyG5E6zVhRAvCKrl7LSqDFkNGgFSMVq0EH+qX+/5tg/I2G2bh7GMopBWmCkT6a4Qv1RK0BqLNbk93nU/U72RLGmqtO50/QwCr1TbK6sW67rWkeJP0Cj7Ag5auBjOVXKT2AFV0gKFlDXih19rdS/39YQi37m9NPRk8nQOiOo18nUZapT69KzTgGkVJFAAtl6D5ZVAYN4mb8Ko7+VQarbHoEnfbG87s1qNU0jqyw13GpLH7b2SJ9+DhnpqL1wcJyD0/sYnRSbjBPOvoR62ebeHwnQ8ZzXHM8J54rWKyuP6+fcXR9nZOaBUB912ojQ59w3eR/f2P0NUTXYVOammZA1MSXj9vhMG0BSKbYgIJ8Q17+62MST46ckCX6lTM32CCRAmmvENjdxBimfCpslW04NY3AATdcZevNbABj8wddZ5s0xZomU1IS9Cadqhg7aY6ndLNdmObL4C4CWfnRhJa6vg3xGvIUFpsqy71xfMvR98wKPuuxHh5WONq6WDqUFcQ6pvtDqpYVBgnCzHJb6m5mwmq8SA0iFZCHUCO6e242/KMDXUV/4OdU1UNZI6k784Pd2tlQAP9XxlAGk//W//hfPfvazmZiY4Itf/CLveMc7eNaznkWxWOS5z30u/f39DAwM8Bd/8RcY3XQxv4uOSMtJu95FxZ+bS2D5CWyjweisABYzXdzxh70etHlmECslPFVGq2tb2oyoUO6wmQbUXMUgdRFpJ02yjpi0jKB3qbCaaJ2QQZI07jIFkKLdQk6mvBKG/J1sJ8Pl55Zxa+WN8l/tv6kJo8ZdIif+RJHqb20qq3L4jtqBSa+XhKGTMPWQQfICj7I0/Rsa6GdA+hXpnk25LcWmAcPyGqXlYqR79bAxpYaGpXbks7M4no/TFB9YdLq3Oqlb95Na8WU8faHl71OGwRUjQ9w0c3/HZ8qywa/mVsIJDGBaLkRDsmEq9QUsmVINkuJc+jW3YzTVgqgA0ubVI2EaxjB1DFOnWBXHV82L86tI1+2cat8RT7HF3LQvSF+E5rUuoIFb4BWr/4L/de7vd5ybmoCFBqmNQWoDSE2pOQl8J5z846FSIynJILm2H7IE7Sk2zw+wHcUgaR0mkSCMBcXvNdEIqPRgkDQ0xgKD4y3xPHhmkbFk6wZhNDPKleddyXJZSZg7V7J+qVTIyPTPSY2J36WfVazMX+1taoDbZb5QC6Kry+c2nmIbVABJAPiq7YU9vqpqY5fqBEBx5mQpBim9bVuoQ1o4OMl9d9yA6UMta1JYvZ67f3AAp+ExtCrHpjPGwqouw9QxB4SuMJDppQV3P4Zm4OPzwds+KKoGp28SG4lEDscWz2QyL1iY9kq2MMXm+6S1RQEgAijPyzSbYpBKJWq2S+BKBqlHim0oGWnDTLeGOSjmuL4XPJ/EmjVolRrzezOMJSRAco7DrhphD7ZRay9NDR6ti3n87BVRP7pQE9TwQo2XAEjinh/Op0ib6dD7raoM3Kx0KNC2EuIaNcwENTMZajBDgKTWDHkvJaXWzTHTeNUqQRCEHRhUq6S4UPvQ42KDPuWLZ7amtQKhABhfbHRtp/RUxZPrl/CfiI985CPhfx85coT77ruv5X+PPy5Q/kte8hIAli1bxsknn8zWrVv5m7/5m6fqsH6rIyM1G7Uu8+iQcwIQMJ05yHBJ3FjTheiNWhAw6nlsG+tRBpsdwk+J0uBCTSxoiTavHZVOyDQDap4AAZkOkbZIsalj1eldKqwAkicBUjNMsYkHxB2PUmFZU0w2CbMKNl29fMZ3z+E4S23DdRpGHwvFDfQv7On6jgCYzUPfppUtfw8ZJCk8x/dJeg5p2bNLpQHrbp3F5iJ9gG6lOW/9EAv3zAoNUizNoq7M689dzqceFTQ9AHaVwrA4h8XpGsaQrAqanaXScPFdcQ3mGp0AyfM9PvXgx8V3t90jgaahBfCRu/6BZ69+jmi3IaMy3wBS+F69BRgogDTcJ/pXUZ/HlADJT4hF7/hilylEMkhNOcEZiUykP5JaiIKshinlxaKlGKS8ajnTI8X23HyaK8+8nrd88xsMFpqYfoGjk8tYc0J3BjrUIBkN+rJyse9iEgnQrMgea4FLtQtAUim2HLLBsh1z0i61lvlXGm6YWqrp3VNsCiBpkokopxWMjxYGxQy9O7+Z/swvoQpOoo9vn3ktO1NTTNemGc4Ms21kG1qjye67rhBj9oxzw+8wx8bwFhbon89wZCUsOl1SzLEUm+vJhVDXKTdc+tv60oWCer01NQ5gDsgGy5JBqtlueD9UNcmkGZ0i8aRqNfIEKbbUpk1kmuLeP3hgisOP/4Bjgeb65ZRmGuy4WbAQZ790A5qukZKLdKPqCJfy/fvRSguYo4tc9dCXO75/KmhyxcgQVzYncd0RMCDbn4N5OirZIoPEAM2tkhtIsjBZZ9et46w+fiDUbPqVCjV3KGSQQoDk+2EVG/1rKVZVyw8BmFW6UjMMBt/8Zsbf+15mH8kxukYA/Al7E/O1UZxcHi1wGbL2c2cySSNwGUmPsLEYbQDUXG43PIxiEW92VgCkkvj7SF5UeGatLGW7TFnXxWbaymDXxXVOSDp8IVMATetgkML2Ou1mkWYaHIeg2WwRaQMcN3AcPz/0cx6de5SzFsR8M+cNowE1vTtTpFivpyOeFpH2ihUreOELX8hf/dVf8a1vfYv9+/czNzfHT37yEz760Y/yB3/wBxSLRW688UY+/OEPPx2H9FsZaU9MRPUur81UBahYTB0kJcH/bKhtFjfau+saxtpndP/yzCDlRJlKYh4NjZlDnZqKsB9bE5qy1URY5q80SKk+cimTjDxWY6lSYbkwBG0TbcQgRRN5ypBGldIWoBtAqu7b0fO34pG64HmiLryN2VKP4xeep9Pvt6boQoo6iIBF2m1GVXxE1XaLSmthZVgjHZmNNgZprJDiM6/exkmrxMKZVT/uVCkMi78tTtWjBWd2lnLDJXDFb0zVWyvwAO6dulcYCPYgyAINJmoT3Dt1b8vfq7IBquM3QwbJD3zm6gLEDBXXyS/wMOXa5kltQ7/m8plXbyNhRD+qUmxNNVRWOjKJlEAzVxLfPZ+RAEkxSCoN2ZJik2aRiQLuzAzlpo9XW8+x2WfyxtOfB+h8857DrefqeVTvuBPvxl+w+YCJ5gfo5oJYlFSKrU2D1KzJ6jS8llSjCpViy8onMN5qxG8DSKWGEwKDmgIGbVGTAllDnvtFp7yc4Ux3Zuj8Fc8krZfQJL1T3nOU08dO5wXHvIDTx07H0A2qd95J4DhYy5eTWLc2/A5LptkGFsU4TtSOdBxLC0CSp17XdXEe7cctgYGumN94mb9kaTxZxVaLMUgVXe/KHvmejymniaWq2EB4LZl58XxNzWukHxO6lTv6ZrjhX2/F9wJWbR5g1fECXKSy4vls1tywjUumXiI52tnZAaI54CMzt4p0FNAvDWgfb2OQ4j5I+w4PhgLte3/4ON/5xH3clHgpU0Mn45VKMtXYlmIrj4Nni36AfSsIbDEIukxFGoMRS1645IVYK1bgNQ0Sh46g4VH2Rzjobweg6BxE11xu7RPnfdbys1qYeytsuO2GANRbWGBapdgku6qE2kKLqIGZDDeulvTzKmfF51WRihqHbAiQFoBYPzZ57/vlckykLQFSfyTULroC+JZ8Mee1M0gqRnr0SXwq4mnvxaaiWCzy7Gc/myuuuIIvfelL7Nixg3K5zG23dTah/F2IUKCj1gV0TB0Uk8YZNUG/LmTBkaXKI57HlVOznP+cvxcl3F2/fIgZ02AqJ/RLU493AiRlfpZpgh0ogKQYpJhIO2mRkpVPhr5EJYzceQSG1DQ0WkXa8RRbSpf+HboCSJ0ptgxPjnodOWMlK/7xqo7WJs7AEB9/qc6dm3SKsXYXEC3srh2Ebtppr9nSiy4s9Q9bbKRxQidtm0vOEYzF+uEsv3r3c7hoy7JoklWPol2jMCIrymYb6CFAmqHUcAikSHu2PovTBuKma120JV2i/X3VqpiI6jghbT7fmMcNXDQ0BvMrwh5lliGup2+Kf/u1KhdtWcYxw+L6vOVZx/DnF5wMSGCgxkGZRMpdZXpBLKAzGTFmZVvcTznZaoGpnbD/l+B7YYqtmRQAaV5WBhYzFi8+ZTmmrvHA4UX2TIrvEB5X53Pwda/j6LvexQe+0uBTn/ZI3PZTKB8VVYa6Bf1rWsbBrotzc/DDVEA8FEDqCyKRduiD1CbSXqw7BIEUJ+v6kik21YdtyzFncd1F1wFgaAafu+Bz/PDSH3L+mvNheBOaBmlPAJnS450AuforUdqdPffclsVRPU+DJXGPHa4c7visAki+nsGVOrCqYbBY7wRI6rk1NfH/zRaRtmKQZH+yuAapB0Bq+fwTpNhuevwmbi8K1sXyB1kjjW0PFEcp7xIGg2f9XqSzUz3BGlUnTLEVgyPoVqdmTEWgaUw4ZVxp4jmyXICOx+eqfPvew6ETvgKK6cVt/PDBc/Hc1gW9QYodJ1zOwUOBGAeVYlMibZVeK6wCw6RRFWOtSvzNoUgHqlkWg296EwDlRwz6DTFP70k/D4ChYC8acIvcwJyzItIfQYxBqrcCpFCkLfV5yreqoiovNS3SIAXivZWcGMe605piy0mbALW5UWaRnjKnrFQ6ANKxA2JO3Luwl5wnUqcNX7y/PVOiAcsKqdAQ9+mIpyzF9p+JVCrF9u3bf9OH8f9spF0bElAPWul/z/WZOSIW9OSQ2IFW8wFp36eu6/xjReOEF14Nm1/U+8uzg8waBtPZQxwzdzJTB7q0TuiLjCIdWQnS4aSdLJCydFHRAOhLeKmoCUbTW1NsSqTtzcwS2DZaIkFCk0aGsuqrG0AqOLMkGz7NZLGn3XKyOU/BWSB/8e+Rf+5zqd19D9d+9y5unHB5zmVncueRN2IEAfla6wRqhRS1Szabxa/VSDvNqIqPOIMUtSuInLQdjj92JTw2iecHGFJHFgIkVXJjV8mOJDAtHdfxqUs/Km9mlkrTFbvQwCDQPGbrs2EKCehaedgt2lmKui3tI/DCXeGMrBTqT/Vj6ZaobqpMYJridc9IYAJ+VaaHJAC68IQxgmQddkI15v9jS8CpgGZiXnz/lHTkDSdZ1Ttv4kG47oXQt5zseR8BcrhWjubkPIuS6SlmLAZzSZ593Ag/3jnJN+49zB8bhzjy9nd02DgMlEH7u3+mREAfCEfxtlSP3fQgI6q3lmKQCtQpAb4boGWlQ3KjgW/b6AkBikp1J0qxadqSKba0/F6jvxj+xlB6iO3LYnOhbFqb8WepMUzp6ELH91V/+Usxhue2ssSqkm2gIp5F1YIijCAqz/a9BJ4sRKgZBqV65ziEAEk+t06XMn+/VCKwbWrNKMVW0bXuAKkqPq97DfTA7wmQPN/j7+/8e1YuL3HGlI1vJBgtDxIwTb8v5raDYzsYWHFe+BmVYmtWHfQxsbD3OZ1zW3sknABPF8d9wNHl78M7r38AEAv18SfOogUaxuQf9PgWAdjuPTxEbdgl8MQcFqbYYvojiMwYE5JRVGOpovB7L+Hxq/4PzM+QaxxkzlpHzRKWKAOpCabGtrAnUUILAs6ilbFUqW2RYhPXwJ2bZ7osnr92Bqmi6yAtGtS8rJcF6LW0AD3ww7kiTLElZMoibDcixt6VmyC/UomJtMXxrMitIGflqDgVHq9OsBGwfXEM8RSbms3ff8nmcO58OuI3xiD9Lv7jkZEVQ7W2FgCzRyr4bkAyazJbErvDqdQgm7JrAdj3gr9bGhwBZAaZMwyml2KQpOgw2wjwNFl11EWkrWkaWUlW6z3yyBCBA02XDJLq6TQwgJZIQBDgTAm2w5APfFV9X5cUm2+MsnHv17v/mFwwN+79Br4hFgzNMMiesZ3p7c/ioeENzMjFqej5aNXWHXrYsDbWjy3tNqPzJ3L8XlDVOlYatxkxSPlhMeEtxHbl4eQi27LgVNF0jT6ZZqvJ83bn5iQI0TED8TvxflyO7/Ddfd/tfu6xGMuMsW2k1W245spFXY+qTEKBtgJdabG4mMr8UYqpVS82xTQU0lZULqxAn5mK2oykTYIgwJwT3z8hJ9XypGyNYbclkEvjJG94bchE1hYbIYOkHKFfdqrQi33n7kNM/u3fdfW4UhPd5D99RbQMbNMfAdjysjT0INRKxEOBl6IfHaOfSIdgPJ5ma0mx9ahiUwApK1MuRrHIbF0wax1VpPkxSBbIaOK9lbZ0j33oEPbjj4NpkjmztRmt8kIalC0ljpSP4MeMZLGrINlIzzXwDCWy17qm2NQ9m9DUcxtLsRUKod+TO78gRdoKIHVnkBryeprSHqNXik2lkHevhLS8P93EMBPDmxmuHYunudy8/JstKWSV5gkC8AtiTAu1Ll5wbZGviU0AwN/8fH/H6xOLDW7dP86y0npwB1mqj2LdTZCcsztTbG0ASTFIaanHM4faNjymxbePew5TQydzVGvVkt6deC0/WSm6DJxg2xSvfy1MPgy+B/t/SeKI8HpyYgxSdWYOV2ofh3JdAJJMd5cfkj5Fh8U4bNl9F1/40d9i3SKq5UInbWXf0KZB8pKS/S+VOhgkXdPDcv9HpNP68ZLZ769M8qzD93Hi9F6W5RN85tXbuGjLsq7D/FTFr5VBmpmZ4ciRI0xPTzM7O0s6nWZ4eJjh4WGOOeYY9KW6sT/N8elPf5qPfvSjjI+Pc8IJJ3DVVVdx7rnnPvEHf4ORdhpAknrQOmkpMDO0Osdj9wqAsz9xDGPD6+HgQfYs7nviL88MMavrTKfE7nJxuk6j6oQ7MGh10g60GuB3FWkDZGT+uN2LJB7RTrQVIGmahjk2hnPwIO7EOImVKzACMbksGoZwJJZUcDzMkVFGZh5g7eP/zoG1L2h5LdmcZ+PebzAy8wDmyBUtr/XJSrM5mWYo+h6U2wBSvGGt7McmUmzRIxSW+ntRiawjgYPh2RQkQCrVHXw/QNe1SOipxN/SIqAwnGbuaJWymyIFePPzlGviey2KuMzxw/0/xPZsjus/jj//5Z/zqyO/ArTQ4TZOomlBQIDGBWNvahFo23UXF/Hb86YudvxEabhh6dBLWpybqTmAhScBnV+r4bheCKwKaYuaLybWmq6Ja6XrkUg7aeAtLKDZYrE+bOTA96gcug2SOvmO8vpAloHPUmKYWg0Wq2KjoAwPn71phP6MxciBXbiTnamncAwAd65CbTpBdnBDx+u2K53q9Wgc4rEgtRXFoMkhPAIMXDdAz+Xwy2W8Ujlc1Er1mEhb65FiWxRjkK/HANKi0NF1ONlrGgxvIveYrA4rudy2b5apcoORfIpj7xDeN5lTTsHItT4bpmSQBms1QMf2baZqUxH7qPRHuoXfcCOARNA1xabu2aQWaQeDQFwnTdcx+vuFCHh+jrqdiqrYtB4ptnbmpAeDpO7J4w8FpOrTVHMrmBw5jYWC8AGaSf6cSnK+JYVsJgwMS8dzfDypncnXNUy/H09f6Gx8jHhW1nl9kQO8LpigeASIBryZRpdS4S4RNPzOKrZQoL2mZRxMt4qvaR3j8Is909xZOJ2RE57Z8f1eE2a/n2fdsSdxdnEv1B+Bay8CKwWVKRLuSuD/YM/PYKSFdKE+MwcZGMgmSEgrllaAlKZ0443M3fgLWPVcTDfaGAw2Fhn65F+zsL6fhpzvsqr7QLsGSQKkxmI5bDYeZ96PGziOe6fu5dGkxSWNBMlKgwo6l+36PsOzD4kx2TvK6Onvhd8mgFQul7nhhhv4+c9/zi9/+Uv27t3b873ZbJYzzzyTc889l4svvpht255cz5ynIr72ta/xjne8g09/+tOcc845XH311Tz/+c9n586drF69+jd2XEuG55KRpnw1r7XfwtTjYufqD9XoXxAP2WRyBSsTawHYM9+9YqslskPMGgZNq4bVD848TB8sh2JHiDlpNwHNB73RVaQNkAo0Ub+2BEAKu2G3ASQQaTbn4MHQTVsLZGWXrgv2qEsKLXPaqZhjY2En7MLCXlYcvZmkXaK4sFdUhnTpR9cndzqL0tup6PlQaa30CRmkRhuDFNMghSk2X3Vvz+DUpd2BHlCQ1gF+AOWmSyFtRSWyqrzdFsdeVDqkqkZK08D3aczMYeZ30NQFiP3yri/z5V1fxtRNXN8lZaRg6tXM1xukh7/L5okF+iswn4PZZT4Hpl7Ht8YHuOKcKMVXmRf3lOnUWEwkqdoevh+EKbZ2BsnSm8QBEq5LuRSxGX1pC2xx7HVdxzNTGMTajKTN0KhzPpljwdXg8VupuA1IZsgG3VKyAVl9mpI3TNPqw54Rx1aUDWUTps6LT1nB/t13dvlsZ7gNoyuD5HjiWlZ1nfQSGqQB38fUbJwgHQq1/XIZP+aFVGo4IXMiGKTeKbaUvO/MYpHZiR4MEsDwJvLWDPiwUAn442tuD1/6u3u+zVaE/qg9VMp6qL5IVh+i6k9xuHw4AkjxEv9KJQJImgDz7aGq2FJSg+T7AZ7jhxWO5sAA3uws7uwsVXcsqmLrlWJTDJJ8bnsxSMOZYbY/6vPam09k13Ei5TgxdoZ4MfB51n1HOJLxGb6wlV1OZUyqizZeWnxvoVnlGP0P2MOnO6sG5ebiDwcvZIc05O1lmIlmU7OemI0CKAV+yCAtNBfwAx+9PcUW0yBV03m0NkLhS7ce4JlNKVDuYZ1y9oGXcvYVg/DtP4XFgyGzn1Bg1k+iP/oVoEhzbh4yMJyLLF2ysqFyRdcIjBSTf/dh3MJzAVoAko4AiVMf/nu01wUEukZW3bNhii3yQQKozy8COTSNFu1m6KidSFCazlFdnIP0EAlV7ILozXnk7e+Af7yKvgsu6HruT0X8pyide+65h9e+9rWMjY3xute9js9//vPs2bOHIAh6/q9SqfCTn/yED3zgA5x++uls3ryZT33qU1S7tCp4quPKK6/kDW94A2984xs5/vjjueqqq1i1ahWf+cxnur6/2WxSKpVa/ve0h1MNvXLqHQBJ3EiH03sYkiX+U5l+CqYAe08KIGUEQAIorEjI7209T7UzzUhvQM2o9WSQEnJSiRV9dUQ7Va92UNDpheTL3kMCIHXX2miGweh730M1I3YZ/Qt7GJu6R5b0i2lw9L3v6ehHl5cMUtlZEJ/z/Q4GKSF3PC0MkmuT6aJBWoh5iLgyRWGlLVKWERprLspFIfRSMRRAErvowog439JMM9xJPnb4p6RWfBmf1kXLlZVNz1/5GqanNrD90YBPfdrjA//q8/bv+nzgX30++WnY/minj0hlQez+ks15SnJyrDteVOKv9EqSPjdlBZfnR1PH4qz0xEoYWIYeptgA6gnVDTxikFR14kyqQLXpEpQnxI4VyPcwgcsa0igzWcCXFVL9MXbzZaeuZE6JRJ8gzJTX4YEUeF7IpFUNPdRXxEOV+ReMFGbohdRdqF2qOxBnkLqk2OrlSKRdM5MEpsVsQwKkLr0QGT6OvrQAh76ZxfIksPBdNo2L0u8Hl23qPN9R8SzlnTrDvtCstOiQYhVsXrmCKwGSo7Fkii2tNVCdHns1rBUi7ZgP0hIaJMut0bSSIr3eJbYOnsxL7z6ZHSdcHoK4KDQeOe61vPTuk9k6eHLLK6Efj7w/+uwq67NnceV5VzKSae3vNer5XDk1w/Fm1JKnm6s6CBf88b59WMYsS/VRTPkVDhkRQBJeaeWeGiTTrTHfxpAfmqux9+FZ+gK9JzjS0Mjb/QzVjhfVcbFQc6yPhSY3e96CuO4jfdFY5i0xRhVdpzap405MRA2c3db0twZ4E5McfyjA1E0SabmZDlNsUoMk26c0F8V6kk2YLUUESqi92zSZvE3DloaVCTsm85Br3+TffZjAe3Kg9NcR/yGAdM899/D85z+f7du38y//8i/U63WCIGBsbIwXvehFfPCDH+Qzn/kMX/va17jxxhu54YYb+PznP8+VV17JW97yFrZt24ZpCg3CI488wp/92Z+xdu1a/uEf/qFrW5KnImzb5p577uGCNhR6wQUXcOut3V2mP/zhD1MoFML/rVq16uk41Nawq6FXTi12ozq2x9xRMWHd59/KkNzETqX7yQTCkXSqPhVO7r0iSPeHzUlHV4sHuV2HpBaChAuWG6CZ1ZgGKXLSBrAkERAsIahTVH2oZYhNsmpSV15IIUAy9K76IxV3btJ5bIUwNsxWj4Z/n83DlS81uHNT5y2vUmwVKd4seh5UJlu0LPEyWT3bnUEKU2xKI2ZlQg2SJSeLohQuLkhmKRRpK/8fOSZhqf90PTTf23f0Gz3PG+CnR7/D2Ucf4C/vvI6hRtv1rsNf3nkdZx99KPQR8f2AQ7tkesezqUnNQbXp9mSQzEB6ALkBWlqCuHkxbgV5jkkjiaEM52S1W7yKTTFIM+kirh/gZEZCgJTr4mANkNXFZN5MFNHmZ+XvRQvpCcv7cE84melUoddShQ+YGZfMsA1tKTa/WsWRC0HZMDtE2nW3HqYSimYaK+zH5oepZ69FgxT3QepkkFzHi1JLdonFRJaq7fbWIAHe0Cb6pJt2M1lkpCbG5PjZA2TcJvPJHH+5w+5wGjZyWZpJ8ftrm0WgrZItBpBaGaSlU2zZwIuYiRYvJFnqPzdHrenGNEhPwCA5NSrJ3o2tq3fdy/jyS8U/2kGC/Pf48pdSvavVxiIVGhaK+7vPrtKfSXD+mvP50aU/4v1nvh+AQqKPHx46wvm1Ok1pfYHv4veawnSbQAtYM/CFnscMcNzcT6k6LgQmGVmlOVc+KuYYiDRINcUgVZmxsjScaD788u2Pk/OenIN0c9/OTgZci7yDfEtcD1P6Dg3nYwyS0g/qOm4j5mMEmF4rQFLRX5Gfk2n49n5sylw3BEhtrac2FDdgoLHsqE6zauCrilmnra9QEOBOTFC7+54lzv7XG086xfZHf/RHfOlLX8KXE9i2bdt41atexaWXXvofSkvZts3NN9/Mv/7rv/Ltb3+b2dlZ3vOe9/CZz3yGL33pSzzjGT18en5NMTMzg+d5jLaVeI+OjjLRo0fXe97zHq64ItKtlEqlpx8k2VXSMv1Qj92os4crBH5AKm/y0MIdFGW2YyrTT8O2WJFbwZHKEXbP7+b0XiaRQMUwZa4d1qxI8jB0VLLp2ayYiIKATBMWjRop0xBCQLsVIBlStOgtAZAUVZ/UqwS0lvu2eyG5rgAQJV0nyAx1lUR6vsff3/H3XMI7xZAxzj++SGc+B7tWaQS6xuN3foRnr3p2iw5Hpdjq3iJYkkHyHajNQVYsVC0i7ZBB6q5BWlA2DFYax6kAGlZWPPSFtMX4YiNceCKTNbmAyhSbKvUvzdTRB4dh7z5S5RLaEqKuUnOKt+wQTW87fcQFQHjzQzeQyLyeffdN8cuv7aG6IBb6UmEdL/J8fmw7VG2vpwbJCsSk5UqxulevU5EAqU8CJE3TyOhJyl6dqiV1HDEfJNVCZkamPEojp1OWBkvdAZJGNuNBTZT6W4vzkIX+TMQgaZrGS09bzT/d/xL+8s7rOr4hkGOQPbWMlhtqaVILwqNFLQQ1Q29xFIeIPTJ1k6yphwtOvN1IXKS9WI9E2nVdx7cyLbtRlV7TdbEzL+cGqTTdJRmk+xujbIoxaWO1xzmSH+G0KWHtce/wsRwt2dy5f46z1rd+fjHXz0izztpmFpK9GKQifqWMJ4sYbFiyii3rByS0OnaQbWtYq6wp5qjmI5F2Lw1SI2SQqix2a8cj457bD9NMLVHirWk0UwPcc/thnhOZSEcLNUksIOU5DEi7CkM3OHelSEtWnGr43DRl+TuBS6cCSf6crKhdmb6DDcV/4Je8L3yeALI5nXW3/xMj2lHqm8SGvJDsp+ZWmZ95hHUgxkNuPhSTZro1FlJ5xhcbrBsSQOlrdx/i5PJRiDFbvUI//EiXoQmwtBpOkMFLpAAfvSqe5bivkCrzL2saZlEWiBjdGSQV8znImtno2srNWSIcdwlQpdt8XH8EYkO1zszRX1kM2SPdszG87qSJO/3k7Ex+HfGkGaTrrrsO0zS5/PLLeeSRR7j77rt55zvf+R/W7CQSCc4//3yuvfbasA3Jpk2bePzxx/npT3/6Hz6B/2y0t79QIsNukUwm6evra/nf0x52JWKQnEjzMSlBjDnqMlCSPi6JFBUrzWLdYWO/SCU8UZptVnpzZHyfFUMOaEKfoiZyAE3X0VWarQGpZF10mI+zFRMPge9hyBnFNXrfYqFAWWoZWnahYcNaAZCaMvfuaho1WTbaHvdO3UtloYkZpNF8j8m+aW45obUfXTejRMUgNX2Z3tLlhFGJ0mxPqopNaZCUwZmVwXPEf1tZMckolmVB7hbDMVAmazLFlismMUwd3wtw+gUTWGgtXOqI4w8FDNeqvepp0IGR+gL5+/bww6t3tEzmAJlA48W1BAfun+5MsSkGSY6RY/shUKwttDJIELUdqFli99iNQVrMKRftgKpkDnK9UmynPh8QZpHpitSKtXWlf/HW5dyx8iQ+tu2VHZ+vJzU+/lKd+XVuV/2RV6mEAKmh0dFqJKxgSxbREjlMLerHpnoUeqXWFJtikAAabZYC9ZK4/qmEjwaUElmqzaUZpMPeAL5WRws8As1gRV1ci1MlQLpnVGg5ujkNz0mAu7ohrsuRcswsUplypvtxShV8me51tGDJFFtGM0lI/WB8cxOaRc7PUbddiBtFKpYhFnEN0qKZxu9xDzTqT07a0P4+xSDZroYrr8OQFz1MAxJ0eYFHSddBM7DlGCY6Tb8BAbY12UcxEwSsT93Oaz9wMkOrxPy47aI1vPLP1oveb5UKjmR/BpJibObnpV5XskcQjYPl1phP5ji6IADJ9x44ykLNYUCfI9mY71qlCQgbk8Ycg8nuE4Vi6j3JIBkNGy3woxY8xIwidZ3MhhHMsbGeKbYA8IcH2LVKI2NlOgBSCEx9yUTJFHQu2cnLHBdYzOfAlim+hFPuOY+Zw70zCL/ueNIA6a1vfSt79+7l6quv5thjOyeY/0wkk0le/epX8/DDD/PVr36VjRs3PvGH/osxNDSEYRgdbNHU1FQHq/T/VNi1UIPk+E5oEjgt02AzucOh/qgxOAKaxkLdDu3md8/vXvLr1c51yPNIuHP0j6k0W5sOKVbJZiXqsPO78OlYWfGXfw+u2oIpdTH2EpWLkQeQmHA9x8eTncStZUJHpBikuq2HbruLqe5ak8nqFAM18blMfYrJge656slqay+qvOp0jRjLfsmCxWnqblVsqTYGKQRIijWz0rjyEBJ5AYCiFFsbgyT1P4TeUFGpfz0vzqlQXZpi7+/R6T4eARp33dZ9J6jaWuz50SFma/J+UCk2pUHyxf3g2tE41CUwaAFIutLziMW2hUGSlWZVWXZdbjhUpGYi154+NZLw8i+SPUE0YW0mCww0ymha6++B2Ak/69hhmvI3zWXLuG2tEOTv25Djzk06E6YJQ50VbHEGqal1+iCpyqNisgiJbAiQXNuLpdhaRdoEFgor19o2CspFO2WI+6CUyFJuLM0gjfSleYxlpHzxO6N2k/5GifWLR/HRuHfk2HAcQKRQjzw6z+67Jpjo20iAxrKGuI97pdicUqQJtTW6G0W6qrDAChddJ1bqb8YZpFiZfy+RdsggOXUxDl0qCAGs1U8uxdS/tlWfpDRIzZpLNSUAQH9sk2kZFn3SbmLO0CGRwy6JZySd1PnMq7cxlGsF42OFFIa8dmkJ6HS3zsAyOTdkLCzpGxfU6xiy9dKA1OnMLaoKtrWxcYhSjYvJHEckQPrS7eK9p526MbIx6dGxeePeb5DYfDb0LaedR1bpUE8yQloQkHUaLRqkkEHSdbRkhtH3vqcrQFI87/xbfk8ItK1sOEdEVWxi3L1Ax9NN/LK0hkl0AqRNtsOuVRolqbe04vojFbK6ub3I5qmMJw2QPvWpT7Fy5cqn5CA0TePlL385l1122VPy/fFIJBKceuqp/PjHP275+49//GPOPvvsHp/6fyDsKplY+kGJexWA2Wncw5DEMu6gEB4u1t3QY2JPj95jKsKdq+dBbZaRNeLh7kizhQApYJ2xF65/bQvTAkBpHF02uWwuBZDkJJUjmqzsdrPIuTn8ZpNq0yMrxQCLXUqmAWYWkgzUxeey1XEm+rvvQWYWWidQlRryJFAryl1eXKitRNp2ww0ZpEwbg6RSbGVddKALzBSuPOZEn/iMWtRVdZC6jlm5c1Nl/hDpkGpJseD0VxI9N48aGtrQEzvMLhQ3UGv0viYaGk7ZYWBePOtRik1WsbkLgARIchwapUrLuUEMIJnRuIFkkMaF8L4hAdJcvYordVv5t94Br/s+XPh34os8G1aeFjWsTRYpNsv0payuhnEvO3UlW6fFZiD7nOfw3ZUirbzmqBjvCbN7BZtbKsUAEj1TbMVkEaxMmGJzbR89TLHFGSQX0FDKo5reuigoZjaJ+J5SIsNivRH+TjcGafu6AY6Ya8gEQjc24Hohe7S3uIJSMhc6De+7b4ovvvdWvvOJ+/jx53bij1zArWd+CG++CAgvHgXOQ4CUKtKsiPtRI8CjexVbqEHSEzH9YIxBChvWzskWG0/gpB0yJ1UxDrXO3wR4YNkObG1pBiUTzHDaGa3rlGo30qi5lCRT2dds3U0oFmnWMCCRwa6I62ImdC7asowb/lhIP3QNvnL5GfzsXefiI0BPRhpK4lTJ9EndWakZsu0AWaeBoWsMSYA0X5FdAiRACoIgagrrVplP5jm6UOf+Qws8eHiRhKFz4SsvZLk5yZadnyUpGU0VyeY8Wx6+huXmJJnTt8NFqhdq9Iwots/RMugpcZx9drU1xRYySMJJO/+85+FJUBkHSDPpIl+/5I+ZPWNj9DklLK/Pw/6bBfsmf941MwSyIKs9xQawqVoi0DVu3yo2ZPEKNnEa4ou6Fdk8lfH/jjHR0xhXXHEFn/3sZ7n22mvZtWsX73znOzl48CBvectbftOH1jvsChYg+wVSd+rYDZf5SXHTP6jdybDawEqB80LNDlNse+f3tprDtUW4c/V8qM4wskZM+qqFiQojNIuEY3mQ7tn5AFdTbRaeWKSdDVxMrdVNWy8UQhGwOzFBpemFFU6LVvcql4J+LMWKSPkKgNR2VAH4ToGC3rpAKgZJM8UD3K/SSnEGqYcGKb4bUrtQEFopT0ujZohEUUweKi20UGsTacvcexwgFWUlW00X3ztY7s5wKubn0pf9lUhNahoBGvPFjUyMnMp8UbAHAM7wk0uJZ5w+8laelHRVDlNsrrjJXNsPxeqOpM77YgApo6mS+cjBF8BK6iGDZPeLyXBWupZraKQTOVh3Lpz1x7D6bCCAB74aNqz1jCT9diNk4trjucePcJpsRrtjbBO7Cyvx0eibb9BXDZgwzI4ebABOqUYgQV1TC5ZMsZHIhiJtp+mFTZxbqthkaiqjGKS25yAESJ643uVEhsmqEMYbmhGykfEwdI0NJ5xKVhfPap+vsW1KgMF7R0T12vsv2cyBB6a7plCbySI7qiezpSQ2gofLkkWKlfnbsmGvYfigiU1We8S7t3dLsZnSAdqdmxMtW5QPkq7jd6k0jFdvla1MV9ZqobHA9ZO38LON35IG1d0ZlDNHv4l1TKuOVTEZzarDgtxc5Rqt1dOtACmLLZ9P1aJDVUz6AZy8qkgzZhaaVgJ8u0ZGAvnqoo1mmuEmIuvWyVgG/dIraF4WQVAUHkhO08OXaTjTrQsGab7OF287AMDFJy1jqCAYnZGZBzj7jvex9f6r2LzzWrbefxVn3v4+hmceiADE5hfBy78IfZFvUCio3/5O9AHx7PXZtdYUW9hqRPggeY6PLzd5pltn+Ip3Mv3Xn+CPLngv9645JWLA64twrSx8Cny47hK0T55IMiHOyTXTIDVPuTaRNr7PpkUxJ+wrSOsOuxXAmqOjrHiaS/zh1wCQbr755l/HcTyt8YpXvIKrrrqKv/7rv+aUU07h5ptv5gc/+AFr1qx54g//psJWpbWyLYRbY/pgGQIw+nwaVoUNDTGpGjI9Vao7rO5bjaVb1NwaRytHu383UWuJbgxSEJuMQjftJjT07ju9IABPAqSMO9X1PRBR9Rl0kqErb2QWqZpsOuMTVJsu/bIX3aLRvbZgrC9Lf0mAn2z1KOMxBkmdQnPyEsb6WitlkqZBytLRDMkg5eSkEmOQwhRbo7XMP74bMnSDvNyBLRgGrh+9ZhXE39s1SOFio9J6cQZJCrUrUqCerwQ0jryagWRrGipsaHrMBYy+9z1MDZ3MrWd+iPtOeQc7N7+e+055B7ee+SEeW3sxB9c+v+vYtUfNKjGUidkpKJG2I9gLJ5ZicyrVlnMDyCLGq2aocVOLYIOgIdkX2RZnTmpGclYOPS5CP0W2cHjgK1gJHYWLc4HWoT9SoY0fZbQyi6vpfGQyQ81KMd4nGNX144FkkDoBUnNBjXuADVRtt+W+V/2ziqliS4rNseMi7ViKra4AktQNat0BkiplXkxkQ4A0kBpoHYdYbNpyOjlLAKQUJtskg/TYupP4zKu3ccHmMX75tR5ssTyG0/ddjBZoQqjtezAnnaIrkzhVyZzIW3dJDZKRDBfdbu1GvNlZak0Pw48WxJrZXp7f6v9TTmTCCs94/Msj/0LdrZNcNc2FxX8IbR9U5IwZLuz/B45/5as6+k0qLUyj6jAntX7peuvGTzF2c7oOiSyOYrLlPZ22DEwJckt1N9zcWbqFpSwcnBrZQsQgQWy+dBqkE0YExFRVcVuJvxZ4GF6T+VSeW/bN8t37xZz9mrPE2tR3wQWs+MersEZHWmxM5vMBj/7xn7cCiM0vgnfsCKt+E8tFatkeOAlNek3l7Wpriq3NKDIEvoGPETgMvO51mKeehq/p1GwvalR78HbRfDcepXGSrphDXTODXuvBIFWnGXBtRlyXlCN+33LK6Nksyz/2MVZfdx0bfnLT0w6O4NfgpH3hhRfyxS9+kd///d//dRzP0xZve9vbeNvb3vabPownHyFAMigHPnW3zsIBMRFUCmJiXV1LA/NYy5fBbjiyUOfu/SXWFY5h9/yj7Jnfw8p89zRpa4pthqGVOXRdo152qMw3yQ+IRTrsx9aEIz0E2IEPvtyN61pvYUzkIi2o+iqDrULtZWPYBw7gTIxTbaQZzDmAGWl82uL0Nf3c6UgNQH2cmdgmPHALNCcvYVg/rWuzw1wqoCkBX39eVih2YZB8LyBIRSLtuOEZQNHKUXYqLCYyjDiCsdN8F6u/KF5v0yCFYyDblBDTRqgUW7kufiNbK+OWt/DPz34LpWA307VphjPDbBvZFlblTQ+fwo4T3thB7DWTReEu3h3TRuNEgJf2GO/bx+npWNWjYpBks1TX9sPdsVepQrENIKkyf5liVQySVpK2Av39pDJpoMS8NBnNtbujn/AS+Pc/h5ndcOQesnmLhVmHdGCGJpHtUb1FWHXsGljDPnnr7SqsZEVpkvXjsGelFe7a49FYFAu9pbmgyfZkjhdqzFpSbImFyAep6aEXlAZJLLqO51OVDFTG98EwOhpvhgBJumiXE1lmlhBohzG8ib7kV6AGgZWjYNeo6xav+6MLOX/LMo48Ot/BHLWEppFs5FhWWs/hvT+Cb/4plOTG6Zcfwz7yTFh3MVZCXjfXp+F4pKwYyFHMr5mhGjasjWuQZD+2ahW7XicX2GhBgKtpVDSddg/8OINUSmQ7GKSyXeZfdv0LAJef/i7qxUme98v/Dc4YVb+frD7PWOYxjEv/uWtLJSXSrlUcFuQ9lqi0SgcUcJkzDLCyODLFmpDVp5qm0Ze2mKvalBoOZlL6l1kZ4XsCopBGpdikS7rRl8ednCTr1HETETO4J2hyVyrJtuIqDOJWB6LIYiGZY2ZBGelqTC5Gwvu+Cy4g8+zzePCmr3LPzpu4qXoPOwaO4Q83ntVx7uiGuN+r01gZVVHqYuUEqB/2Gy06yrhI2zfTUaNar0Fy1Ur0ZJJMQhxXzfaoSoCf7SqsD0jK+8M10yTq4hnqEGmXRMHAcb6O5SgPpBKJ9espvPDiLt/79MV/mUFqNptcdtllXHXVVb+Gw/ld9AxJOaqeXTWnxtRB8ZDvSzwMQGFBPJQfvV/8faZic9k1t/PYEXHTxXVInh9w275Zbrj/CLftm40BJJFiMxMGAys6hdqqYifTCJhv26mp8B097NU1o/X2NQnBQYyqj/d1ssYEk+NOTKLbJdECBCi1NesNv2+hiYmG5juUk9M0FoTLrldfSW3vu/HKW3o2O8xJ90tdM8gWJIjswiAB+JKmT3nNjt1QUTFIiRSuLUuJfTtkGRSIWKw7+BLoAqSVTX8XDVK55BOgUWiWIQjoT5qcXm/wgmqN0+sN1JH5fhCxB918YoIAw21w/KFvdx0/NcUd3HSQQAtam99K7UhcnKwYpKDWySBlAvH7VU3D83w8BRbnBaNojo2Rk+mLhYacZNvNFJN5OF4uePf/C9kBKS410wyb3dPF+34oKmHvG47SqHuK4nquHw8YtxLQhYFsyqolS/fCoYvrkFpSbFam1QcpNIoUz0k5xqZkpKldjdbjrUuAZFXE5qaUzDK3lEmkiuJqDMnYNaXmLe079L/5VZRuvJFq6cn5yWWcPg7t/EYEjmQ4nkxxUEc9Ju06pJD1NNMkZMPauAZJ7+sLKSiztEhBq4f2DVW/tcLOdTxceW9YTpVyIh2yqyq+9ujXKNtljikcw/lrzufHwXbOtf+Rb294I9+y1rAi+TC6b8Oa7hpSBZAaVYeS0i8uLrS8R435rKETGGlcTyyNiZg+p0/er6W6E6XGzUzURiaWYgttHHIRg0T2IT5+98cB2Jswef2yUS782Vu56fGbIrNMOScuxjYLrh/wtn+5lx/uEAzNTY/fxEXfeQGvm/oonxy6j51rdLTMOPfP/bLr+ZMTTHxCghWn4dFMi+9fprWydfFNStUwQgbJdOskNgoGSnm/1WyX6pxoY5XpId9I6PI3zQxmoweDJO/BTUaOtCsBrF0h8RRpnv8j8V8GSGeffTa+7/P//X//H+9617ue9OcefPBBLrnkkv/qz//PCblwZiTwqLm10Mhxf2InSSz0qQUA9rTt0aplQbHefEA0BP3hjnGe8ZGfctk1t/P2r97PZdfczs2PCZpdMEhiVxvqkGKGkXo+ctOeN0y6NWn0XQ1fltPulGaV7REEQUTPGslwp9HNC6l5dJw+b56CnGQX3SrdYlYaZmZrk0wV0jiLggHRrHlGKpWHOgAA6UtJREFUC+klmx1m0mJhyZoFNFk1FhefG4aOIfsVqW7nGaeTQeqTQt9FM4kjWQTds8P2CUVpbrhYc2i4jbDNQTbdCZByAyl0U8P3AhrJfizf40XeLQx97jTR6f6bbxD/f9UW2PldxvcsSPagl/WvhmemSM0+zimT3ybb18rCBCmdGzI2BwfEpNcCkHQDkoVIexMHSHWxSLYwSBIg1TTCPmwA2qwASNboaLiTLEvBbF7psOJxiizc2PFNcv1SqJ0oMOp3ljK7jktw790A3DcSAaTd/YIRXD8eMK0FNN1OGq0hG7kmrCDUlcXdtMM+bKEGqRGOgwJIvjTCU4Ain9TJSFBfa1tAqnIBNRbFeJSsDIu2FF8v4fVTuukn1B8Qv91UxQRAenGWI29/B8EjD/X8bDxqVonDZucGxwnEvZ2oH6KYEvd7PM3m+A62bKWTtTKxKrboudU0LWSREpVF+qiFDEOlzfwvdM8PfAyvSbmNQao5Nb748BcBeOOJb0TXdO47tICPTvGE5/LzoVfyoL8OLfBAeoC1h0qx2XWXRVkt6s3PtbwnziC5bjI0y0zkIoNPpbErNZxwc5c202FTV5xayCA1a67YRMj5Mm/sZTZzTQi0VUzVprni51dwxwFx31pulbKVxukC4j/4vZ3ceODHXPHzK1oaVQOgN3mw+UluevymzgHIiRRzIhDzuN3wqEnh9UjQClgTeiJMK1V1A7sWAaTkBgGQ0nLOq9oeVflcZHsYvKZkBsE101h2E933egOk1DBpxSA5ZazfhCFzW/yXAdJPfvITLr30UoIg4BOf+ASXXXYZjtObx9+7dy+XXXYZ27Zt4wc/+MF/9ef/54RKsUmAVCnXKU2LhWk6d4hnpE5A81w8TWcu3erT5DUF0Hho6lF+8OA4b/3yvYwvtu3kEJO7SrEBoQ7p4MOz7L5rgiOPzqNJajbbEG0/uj0WvhsxSKUe7q9Nr4knmaCMmY4xSJ1eSM2jRxmkREFWxvVyBZ87KstIq+OMHreJL7zqRejo6GaVb/7JCUt2gk4mxHik9bzonA4d1XmKRWpqYvJMec2OktWidMReNM0Yg+SEi2jcSVsBRA2NlCqRjaXYdF2jMCRL/QeEuPofvKvRym1astI4XP9aqg/f0vP84uGOrGFg101s//c/aRF6nn37XzE88wBlqTMKK9hUpAsRg9SMUmx6XRxzXwtAEte9SnRNDUvHmxZpS3PZWAiQSrJiRdH7LbH2mdC3EhqLZF1hbthMFhlqE3EC3Pvj28jZNSpmit3FaPf5WGEFvgbFGgyU4cePdmp01DEmLC0EvdVeDFIiiyl33k6ztdVIEETeQcNJP6w8rdHKeiqGwZwT17KUyFJyRPqyV4ot8Dwm/+7DYQVTMxG5hgsjUI2H/r3TJLD1SwISyQbjffs4ZHUuwiFACko8IyHGKS7UjnuwZaxc1Cao3np+SoeUqpbo06rhAlq1Wzc3qrTdcutoBLKaL1o/vrnnm8w351mZW8nz1z0f3w+4/6A4/62ri6wfyfFtT4qyH/xa11NWDFLgBpSlSNydn295T6hBMgw8x8KVWikrFSvCSKkKVLeNQZLMp10lmTHDjVStZIcC/kLqvq7HpjZINzz874A0iUx2PgcBML5Y429u+3D3BrtyT/SROz+C57cx7IpB8hfEYTbckEkbaHPH1jSNfCCOv6xFG1bDbZDcILR7as6zXZ+K/N3uKbaIQVL92DJus1OkrVJs+bWklQbJLpNY9d+AQUomk3z961/nHe94B0EQcP3113PhhRd29Cs7fPgwl19+OZs3b+b666/H932Mp7Fc77c+FIMkdzaLh8UEa+cq2GadYyoCbc+kCvhtAk9fAiTPnOJd37iny+MVoJliwRn0PAIpFlWLxsyhCj/+3E6+84n7+P6DK5kaOplsEwItoPyST3V8m58YDjVIJcftaH0AUfUWiCqQbuXCqtTfmZhgUCtFDFIPgDRzRKZqquMsP/5UnrlxORv6xa7n0fldXT8T/lZCtT3pCycU7ArEyoGVDqkWiHPLuE0ybQ97UZpMLpgmTk2m7TwbXTJI8RRbKHa1MmiK2m5bQFSarS5ZELdpdOGHAiAge98nljxHFcNnCDdezbFbhJ7phRn+8s7r2LTzAECrSBsg3R8CJM/1ISMWBqPRySBlQoDk40gmJpEycKWLtjU6Fu4kq8ocs12DBMJqWrJI2YW7AOGFNNgsd7y1ecdtADwwvIFAM1jl6BxnG4z6SbyC+K0N4wH75g91fDbsFZfSQ+DWDSAVkgWwMi292FRlJ56HX62F7tPDKS8SafvRom833LAFTUKW2JcTGarSQqFXiq129z24ExMkZHNb30jgytYVvqaz8/g/YrLvhF6tusJKhZNGHibQAsZNk3iNWuCDK+9fy6iz0mplxCDWP1FPYCWyUel4I/5NkQ6p2KzQR42cZNCqbexvqD9yomo+VeFpezZf2PEFAN5w4hswdZN90xXKTZe0ZbBpNM/GkRzf887Gw4Ajd8PM3o7TtlIGmswX1mWlqTe/0PKeiEHS8WwjYpBiqXXluF9qOFEPRSvTwiBpmkYmFGrbIYOUc+o9id2AAE9VeTrdARKAkdnPvL2Ei7TW3Qg3ZJCkftCuuyxIwFJwOpnYrJyuq1rMdsWtkZQ+hekYa16S45TtYb0QapCkd13GaZBLtukHpbh7ZXFDKNJOOGWslf8NGCQVV155JZ/4xCfQNI1f/OIXnHvuuRw9epSZmRne+c53cuyxx3Lttdfiui6apvHKV76Shx56cnTw7wJQDSJleqd2VEw4R9OPAbCsVAREi5H2CNw+Ai+Npvk0tPGO19FtNClQHvR8qM+x755Jbv3Wvo631po6O064HM04BYB5yWygW/DSa+B138d/4dV40qzP1URFUMf3xChqw8zEdqKdDJI/OcmgVqJPASS7O0A6ckgAu2x1nJXHnQbA8QPHA7BrbmmAZFji901ykMxFzUVjLJKaLGuyOs3yPSyv9dwK0u9mUTewF8XCb/h2yCAVJIPUcHwWpBNy1sy27ELjJcyFYTGR1eQO11/Cw2iZfi9Zfaa3Tww+OX0a4wfdd9qqpcLv33gEzQ86GaRUMUyxiX+LY7ZsARZaUmxSe1PFiybZpEHjUcFweNUq+YRMw7kSIHVjkABOlgBpTgCgZqJAX73zHijuFLv0vSvO4U2lJK+sJrmkluCV1SR3bnk/U0Mns348ALPzs3ZT3FvJtBECN1Xq7/leqNE7VD6E16JB8oQdhSXLwMulkEEaSnhd+yeqJrWmpWF6TfxEkqaZoC53+L0YJNViwfBdTCmOPbLsbGaLx7Jj8+uZGtmG5rs867QmF715S2iNoMIM6mx5+BrWWwtYUjQ9EUuzeY4eAQO9jp0S1z+eYgv1R1YWrO7PLUQMUqFZoaDFUmxtzF9YwebWCDSNqpVmodbkrom7+Jvb/4ap+hQj6RFetF5o0e6T7NGJKwuYhs6GkRwzFLg/sVV84UPXd4ybpmmhF1JT3mPeXPcU26xh4DWjcbBiG6CIQXJaHfBDDZLc8Mg0W3WxGTJImSeQhiU98R2CQepuhKuZXcwTu4RqExSGYpBc8Xe74TEjme5cs1OukJfzR5mA+pQAVYbXJLFurThWUw91nBU1Dr5q5tNyxCQlg+SlZObBbXT0YlMpNju5Cl1CEsup/PdgkOLx9re/neuvv55kMsmOHTs49dRTOeaYY/jkJz9JQ5b2vuxlL+PBBx/kX//1X9m0qbPz9O+iR6iHT2pc7Elx6Y5mHiOfyHNMUzyUk10AEmh4DQE29GRnvznNEA9e4CfIBAGBD7+8vpfztngIyoOXogUaCzOS0h/aCCe9HNadi1+rhwySC1QanQAp6kGWASsdPkh2iwZJlduXGPXmRBNZujNIvh9QmxavZ2vjJKVlw/GDEiDNLg2QNLkT1gMJVPKSRSp3VrJV3eixUfobFQVNptB0DXtRnJOBH5qb5ZNmOLlMV8UOXVTCyEk28MCNZtOC9EKqJ6W3zBIASdd8zk5/Tn5PK0gKCAjQON3/It5sd4AJYkIYLHuibUlHiq0fg0jU6SmxujzeFoAUam88bMmWBIcP0NwprsPcNddwyv/6Q84++hB12fahK4MEMLgeVp0Z+v80k0Vy1VaG2q9WMXftYGroZFbmTiQftE7WTaPIjhMuZ0XpZLLZzoXGli3bE5lEmGKrNF1uevwmLvjmBWGj2vf+6r1cuOvT7EzJtj5NH03TYm7a5TBFNJh0Q/FqPQaQVIVTOi1+08sLdrEpHbJ7MUiqxcLU0Ml4ch54bP1LeOCUtzMzvBV8lxMfvoa1WwZZv3WE1/7d2RxzimABd1ou6zJ3MjLzAK6dZoXMjR82oxSSb2sRQEqbHC0I0NGNQRLMSTry1mlnkKRZZNGuMGjERNpODwbJreFnc+h9O7nLfxev/9Hr+fZeUUxQ9+rcfFjYydx3aAEQ6TWAjSNi3L/WlALtB7/WdYOgvJAcpUFaXGzpCq8crqu6TqPudwdIoQYpSrGlzXRkkCjnaGVqWlu0Y8a6HYfUenyueJZ6MUga0J9cQrwfi7A9kAoJkCxb6N2chssE4hjTjU6AFKZD8akdFZvOZMZET4g1RtM0MrKqMQTMz/zzFs8l8eX9JE99GQCuPKesU+9ZxVbXBdNlOhXQg3CD/JuMX7tR5Ite9CJe9apXEQQBU1NTVCpix/CSl7yE+++/n+uvv57Nmzf/un/2v38oDZKkc70p8bBO5w6yfWw7y5qycq1LryOI0mxGqhMg6TK9Frg5SkGGcft4qotL1INrGl6in2Wl9SzMSUp7cH30W7VaSz+ncheA1EpRx1Js8Z5O+XwoBB6tz4UptlKzsydTabqO5unonk3KnsNaIcThJwyeAMDO2Z29zwcIJEDDkwApp3RI8XYjsqltw8eWTJFfa6Woi/KRWtQCbNm2wTQipZamaSGQaAFI8QqueKm/BEhVS0yOXnPptPQKbx/H7L+ho4qtkljg0Jp/YoX+2JKfV9Ff6Z5i0zQwDQl4EuLY0m6TtGWQMKPpJOtJnyffZfEOQfkbjVZgYs6JlN4Ju0QrhbzVfecMwCl/QNYQu3470UeqtNDycvWuuwhcj92bXgFE5plhyLRzs3Apk4udLKrjivcnc4lwAr9n+hdc8fMrmKq1enlNOSWu6Rc7cCXED4XapcUQUAxYbtiGIp5SrkkGKSVN9JCfdZQOsAeDlDntVGY3nMeOEy4n0NrugyAAzcArDIStGHRdY2x9MXyLNSYWSndyilUDYnMa1yEJBkmm2DaeSz4t9XRtommIMUhhiq1dgyTOodCsMmDWw0W3l0jbdGo0swlSK76MS6s+qGyXueLnV3DT4zdx30Hx2tZVYiO4diiDoWt8t7kV38rC/AE4dEfH2Cmhti/bbOD7eDEZSN7KY8l7plqzezBIURVbrxQb0JJiM2SKrb8eoPVgdrUgoOjEGaRWgKTu5A9e8EJGM73bYQUBFBPC9qMlVIqtKZmahsdRTxyjVe3cLOQkcKzg0ZgRoD1VaO1eoKQFNQmQchueJzyXXvd9WH++eNMJv0dyvQDZrpzfRPeBGEAKgpBBqgXinknYFUoDqafVMbtX/NoAkuu6/PM//zMbNmzg2muvRdO00GhtcHCQ973vfZx44om/rp/7nxeqzN/KkrbzaJUEAQEz2cOcuexMvKPiJpvM9Hfv5C4BUjo71fm6pG4DN8eiXqDqd2OhOiPj9DGvegoNRv2t3HI1nMBdoNLsbTYnJtruIm0QYl6AofpipEHqkmJ7bL/YhWRrE1jLl6HJnfGx/ceioTFdn+6knmPhymoLX1LdEYPU2bC2Vneom2KC8autO7CiFDguaAGObNtgGK0jrgDSnDSry5gZUXouJ+XWUn/ZzkPrI0DD6ckgadC3gsboi9HlOI1au3he4eNsHP1r/nXbB9k19BDmeW/qOQbxqPQlOgGLMouUAMmXACnjNDv6omVccR1rXpPZG0QxhuG1FgaolN4rfrYHzQ86y/zjccJLyEghfaCbUGoFptVbb2WhuAHbKnSCo/AHNezkAN5DnbtmOxD3S6ovJSdwnx9NXN1VEBsAruzk7qpKxZhQW6WkipYTaZBioFcxSKoPm14oAh6+1Gv0FGlrOrvXvSg8l/ZzA3h07YsIYhpEVfnX52skl8v+hpOTrFwmQFQLg+REDJK1cnOYDi7FNjhhHzb13MY2NnFjTdWwttCsMKDXwibE7QxSJNKuMmFKwNLj8n34zr9n96R49hWDlDQN1gxkaJBketWF4o1dxNpKqJ3AwE2rSrYIiGmaxoAyN600noBBaqtiWyLFpmxRjquI8+wGkgJgY90Mx8EvtlYxjhVSfObV23jBiSt59+nv7j44Ms4bujz0RAtDpdgCMb523eWgtHMwKp2bzZyUDVR8h8a8mBdTQ63O7so7SbG/GSsjKl3XnQvbXiPedOhOElK3pdr4ZJ1GK4NUnwe3Ib9LjFXCKXOk0N3K5emO/zJA8jyPz33ucxx77LG89a1v5eDBgwRBwMknn8ynPvUphoaGmJ2d5bzzzuPGG2/8dRzz/8yQD1/KyLFpajsAlcQ8rm5zxrIzcCRAeuULT2eskGr56Fghxf933jMByOUFZRqfg7SQQcqT6x8lq7fu4HpFzVxkUfUUigEkuxothK5GVwappQrESsfK/FsfDEu2TSnWK2EVW9Nr0nBbF9sde0TFTbY6TmrduvDvGSvDuoL491I6JEeWwLq2nOxCBqkTIDXrLnVZ5dIOkNQ0shh4OKqfk9UDINXK4TECHRMtQH4giW5oBOg0kwW8rgBJfv9Ff09jzmCxIETYxyTv5Nj0rzjeepBACziSTJN66Z+E7Ui6hQ/M5GF20wha+3uUWaTUq6lFJOU1QwGriqxMu63YX8euiv82264ZqJSew/GHgu5l/ipSBTjuIlLBAgB2udW/pXrrrTRjrV6WiuTjreAqCAIcKbxP9mXIJg2MzH4q3my3j4vfN2WrmLo4pyjFVgpF2gXTjarY4gxSWx82o7+IZtRAC9DQwp5+7TG+e466k+x57dA0XD/N+O5IX6MMXvO+RnbFckC07lmVFQzrIcuC530ILv0c/rnvi4BBymhhTFR0ptjEeQUBoRgfwByUDJJdoajXyAZPwCC5NRZSbs9TCwiYqk2ipfezophmtC+a4zaMCMblvqIESDu+1ZKmBkhKDVIq0PBlwYTXVsk2IDc3drWBq5i02GKeD8ejLcUWc9KGWIotxiAVGwFXTs0w4nUu/H2+T1oxSE6N//0HZ/OVy8/kH195Cl+5/Ex+9e7nhBW4Xg8PuLQ2SOPIqyn42zpftFKQKrQUwhzxpRN9o4HfjI1VEJCT7G/Fd2jK1jOZZa2gXaShAxrKqsWMbW5WS8PKyR2kTGkLIvvVZZx6K4OkfLgyQ9TrAjxadpnDeSfs7vCbjP8yQNq0aRNvetObOHDgAEEQcOyxx/LVr36Ve++9l7e+9a3ccsstrF27llKpxCWXXMLnP//5X8dx/88Lu8q+xpn433sGZx4Su8i8PcBr7vtrvH1ZHNkA9Kyzt/Crdz+n4wF79bYzAVh0Zvj4Kze2gCjNEJPWM45ZR//QMpYldpHNdoKaMIKAZGOOxeQ+5qUTcBwgKeaEQDS87AaQ1ESbttItVH0vBilXq5MJAky5O27XIY0fEotZtjpOYnWrU/KT0SE1fAFWmrYcF8UgxUXaEiA16i51KZZvT7EVZDZtMXBwZDWO2e62rUr9mzGRNkRahtguWzd0+lSpf3qYRbct7QWic/fLvwibX0TjkV0sSIC07MWvh0s/x9hl30LXdOzAZdaeZ/S97xGf67IaacAXnqczlB3p/B1pRWBK9sSXIDHjdjJIWUeyJCU7TNsYXm8hRn9lCZG2jMVNLyejiUWtUYnuE2dyEnvvPpLdOoB3iczkkZZ/B7VauCCm+7NkE+YTCmIVg+QpK4ew3Ugk0u4z7JBBatEglVv7sFn9/eHv9af6Mdsa26qo7tvxpM5vatf94X+HACnQ6FspAdLMDCvL4rk9nEjCmW+DE1+Gl1mFG2NO+mIVl+ExhCaRWVnN10STZh/xNJvRL8C0qmJTIu2eZf5OjXKaJwzNLHOKZI9UKID0K/c4yC8TveX2tDYjT8lnLhUABfH5doA0KMkdt9IIi0ziBrGhSLu9ii1mFAmxFNuiHTJInqNzfq3Ojw4d5drxST4yNcPV45Msd1xKhsGsJgC25dZIDA1x1vpBXnzKCs5aPxhqFptek0/cIypV33LyW7j2wmv5yLkf4doLr+W1q67GLW/h6GKrJjKM3CgJPWqwXDdSeHIu9RYWove5jVAvVvEaoX4ws6pVD5RJGKC5+PLat7C/+VEYOAYISCwKaYNDNFe0iLQVQOpbTr0s7oWEU2aqX+ORuSewrHga4r8MkB577DGCIGD16tV89rOfZefOnbz85S8PX9+4cSO33347p556Ko7j8MY3vpEPfvCD/9Wf/R8X+xaO44cLf05Qa+1BlW7m+dE/72AiJTRA1rJlGLrW8YDlEjlW5MSucfVYiV+9+zn81cUCOOQy4qHaumIVZAfRNZ9ztz2+5PFs3PsNMs2ABVmB1AKQamoh9EDr7IwO8XYFWTBToctrO0BSbtqJuoMG9Mm0TzzN5vouzqxsx1E9SmJ1a0PWzQNC87aUDqnuie9rNOQsrRikuEg7pRqvumGKzWtPsckdYgOfZk26M7cBJAUmys3YbhwiLUOPUv9aegRD9ak65dVw6edEzv8dD8HmF+E3GiwcLeMk+tANjeEznwEnvgxr/Xksy4pxPFI5EvZzMkdb9Qza6Ch//+zt3LlJbzWJVCEZJEsyHyHb4Hv0J1rBlmKQprMergST3RgkFfO5JUTaMiYHt2MZIiVQb2oESkx6q6huG1uZ7Kjcag0B7Fcc3NkCWLxKJUwBJIsZMkmTwF2CzSICSIEUd4cLYUyknTfsiEHqkmKzbHEuycH+kMVdyiQyazw5ZndmIQKAetrAI0BHI5krimo732flI8Iy4XAiSSBTMn650pJaKsRSSuGxt2iQ0mgaJAxxrVsqUCWDVGxWyFONRNq9yvzdGpVW4rtrBG6erauKLX/bOCrum93TdTjx98UfH/xqy3uSWQWQNIz+qJluPAbksxs8UYqtvYotZJC6VbGJY3MdgwANAzi90eQF1RpnN5q8U9oN2H4uHAdzqHuK9Us7v8TR6lFGM6O8fsvrOX3sdF5wzAs4fex0VhTFMUws9njGcqNYWnTPJ9CoJqWeNQ6QnEhQ70/Ph03HOwGSiaZHG55wDlMhWaTkrDDAdDAJ0OjzGiTjBqVSoE3f8nDjkLDLTBb57wGQRkZG+Md//Ed2797N61//enS98yuHh4f5xS9+wUUXXUQQBPz1X/81b3jDG/C60I2/i87wPZ9fzsrGnW0JeqW32LPhZej9A+jp3tuwjUXhY7F7fjeGrvHMY0W1g6PFqmekMHf9wD4uevOW8GFXketPsm73vzAy84Bw09Z1kf7IRA+1qwCSJnciS6XYpMgx2aNcWLlp63XxXaqXUZxBenDyIfpq4riztXESa3swSEuk2CqOWKyqDXm+UtjYmmITO3un4YUptqCNQcq6NqZkDZp1MQ5WG7ui+oiVlfBeLs5RqX8bKzUcMUiaZKXY9ho48WUi5y8XuObu3Szm1gLC5NOM9c9S4Fh1cO+74AI2/OQmVl93XdgQctkPfsjtG8RCP5DqBpCKAJiIidbTIqZjUG99ljO2eM+uVRp+TgCrdg0SqJSexq5V2hMySAsNn0kJtppmH97tX4b9v6R6y68AyJ19Fue+YmOPT4sy5I17v8ExkwHjixGI8OMAKW2RSxp4tXUkGeipZ3Ll4hD44Hl+2KPQi4m0c5pDWmmQuqTYEg0BeFJDgyGLW0j0BkjLNg4IG4eu9qygbBx2xawnFhoOZV1SI3UfS1bCDT0kQGU5cClJoOZXym0ptsgYUUV7mT9EAMluaVgr5oOU55C1K5FIu73MvxYxSEFfrqOHoAoNDdwiXm0dW1e3aiQ3DIux3zdVgZNfKf64+0dC3yIjFabYIDEoPt/uhTQodXNB1SGQVbhdy/w7qthiFh1EKbZ62YGsBEi23tV948JqnRPrNglPVbFVw7GLx0x9hmsevAaAt297ezRnyFhWEP/uDZBGMDQXQxaMJNFoyHYjLePgRHqx5MEpHOmXlOxrRa+ZhAHyGUib6c7myqtFxiI5cav8g9C3Ffw2FjnOIKnnwikzWdTYPderkvrpi18Lg/Snf/qnJBKJJd+XyWT43ve+x+tf/3qCIOALX/gCF1/8m21E99sS449OUfWH6KleBJqpAcprTl3yezb2i8VD9WQbyEoWBEHvD6YHI6BTm2X91hEue/8Z4edf+Kcn85q/PRurIvvvNGHR0GFgfUu6xpELhKZJP40uHcFbd6KpMMXmOb4wIZShSj3dmoGPTkHusOOVbLfuugsjMNG9JqnGfAeDdNzAcQCMV8eZb3TuwutuHVs+uOVqUohN810YJDlZurZHXS4k7QyS5jZCvyZHitPbAVJBdqJvWWwgNtG2LiKFETFJ1dPDBK6Gr+VgRee1bux6JNQfLYtVLwFhk+LDlcPRsRoG2TO2U3jhxWTP2E4unUSXqZ4+q8tCrTRIgbxWnoZninMb0NuArVMn4QcEukawWVQSmu0ASRPw4/PPtQgky7lULNRsqnKxbyYLeF9/J8EXXkj1J/8GQPacc1i/dYShVZ3fo+Nx4RuPp6/8EEkXpnfeE77ml8uh028yY0qNhM4aLuvuWowWMkggG9aGVWzlUNSc0RtdGaSwD1tZpIUTA/1YCXEv5K3eBRL6unPY1v91lG92a/iAxub817nuyLLQnHWualOWz2F1vhk+T8ZijWHpcn+oLIwzvXIlbKOTSJqhrqxbii2eWgr7scWAlJ7N4Mt7I9WokVPGoUuU+T9j80Vdz1tDIyCgPvFCLMPghOWtWrP1I+K5ma3azGY3wOgW8Gx4+DvR8chnNx1opCRD0+GFJNPCRixL1cog9ahia0uxpfOWaHjsBzi6AC5GEPDw9o+H1ZThufUt58+O/7Pw36bhoWfb2Bjg/973f6m5NbYMbuHiYzrXzWVSMnF0sd4ilg9DCbVN6RgfgJOVrGecQbJrIZjNHp4L74dkm8ZQMEjiee5aXLFa2C6Y43diWOKcHTND3mvVDsYBUk2CO8suM1WA+6bv4weP/YC7Ju7qdAd/muK/DJAymc6L2SsMw+Czn/0s73vf+wiCgB//+MdP/KHfBdXZzrYK3cId7N73TEUIkOYFQCpmEuhaJNIeTA9CVjIHtZj/hazCGliWRdOgIh+arGpYG0uvATgyDaQqkcvdUmwtIu3IcA66eyE5NYNGoj9kkOI9jR7ZewCAXHUczdDDEn8V+USe1XkBmrqxSKrPVuAb+F5CdGJXKbb6HLhyQZMpNs/2ezJIODWKUkyuWo2Y2dbdl2KQak5skoWOcmEVqtS/Jn2J3MHTwGhzowUau3ayWBCp1rH1rVUn7QxStzB0DcOSbT/MLgBJapCsQNwvTtPDSYpz6ycGgoMA3HoozLX7xOeMthSbOTrKx895HXcdL963ZJk/kNv/77zAFM1om4kCbl2nuWji1UEzfNKpw8wcrjBzSBzf+a/fzHnP8wEPH5Oh1QWmV4vfqD74YPi99kI5tKVIpM2wlULKOYXXbX5dx3GMZkb52Pw8uvShdpp+aAjolcshg5Qh0iCp+z0IgpBBshYFO2kU+0kmlban2HsAdIOfjZ3JhYV/IKu3Lu45fZYLi//Av6ROYrbus+OIYFgXag4lCSrLc42o1L9msFL2clP3hF8uP3GKzW1NsQGxSrZYzz1Noyn9nax67zL/eBXb5nVnkHVP6zjt0cwol635S9zyFjYv6yMVY0ZBLNYr+8Wx7J2qwEnC6iFezebKOSwVaGSGJUBaaNMg2Q10P8Cwxffrhha2DYGIQXL9gIrdO8WmGzrpnHhv3dZDrY+dP15Qjmjwks+E6fHjjv8jQDwflUzQURzx6NyjfGuP6DP359v/vJOtgVC03nD8FkAbhir1l2xfMtAI8l0AklMjL69V/kgp1OYlOgCSEabYugKkwfUiG+E2SEo7C9dMk2tPs6u2SX0rqC/Iql/ToZ7SmKhO8O5fvpvX/+j1XPjNC7v3mXuK49fug/Rk4gMf+ADXXHPN71qNPMnIZpYQTMffN7REmTRRim3vwl6CIMDQNQayiVAgGk+xIduNaJoWPuyNikPD8anIiTHThAVD7wBIrgREClgtaRQpq2F0zQ+ro1oa1kqdjO/oNLQIICkN0nxjnuqUeH+2Oo61YgWa1QkeNg/21iHNN+VE6WUBTTBemQHhDg5hmk3tJn3b76lBwqlTkLsdydhjtQEktfA0vLYKkCeRYgvQ8Ard7TLKj+ynKrVGy3oApCOVIx2fi4cCSBmjC5OhGCSZYnNtn6Ylzq0Qb1rhORD4oYu0Sr2YXgOSSZZ/9B9Yfd11bPjJTezYGHmiZRNL3L++x9aHPxx6ITWTBdyGQXVCij9HbPSf/CX33yi0cxtOHWHT9jFOWLGHlQnh2P/YfdNU1ovxCXZF9H1zIVq0E2kzrLKpNL1QhPrsVc8OBbE/vPSHnO8aUV+6WFNS+7HHWHVwF3rgk6IZjkHdETt7u+6GDKkxJ66FUSxiWDLdqhd7jwHwXftUPmqcySvWvI+X9P8lzyt8nJf0/yWvGfljNrzmrdQ3vACAm3cLS4v5mh0CpMpcIzSbdGoGqwaFF5JiFb2eKTYnZCXaRdoACaR+sO05b0iGQqu7XY0igyAIGSTLqWEUi+iGuPfPGHhxy3jbpS0AHek1FUqovXe6InVIGhy8TfgiAQ05Bhk0TKVBiou0PZcBt0m2QeQFlWwHYkYomA6LTFrK/GN96lQlW9mhnpDPyPTD4sXBDXDKH4Tp8WY1YtEmkw3umrirZYw+etdHCQi4cO2FbB3Z2vX8U5bBoMwIHF3okmZTDJLUISUCwvZH7Rok1TZkYNILGS/lIxWeX9IAQ1a4mV1IEk2L0mySknOtDNl2gBRPscnCi8lEZ/XoVG0q9MJ6OuM3ApAA3vCGN3DDDTf8pn7+typGljnUrPmudD8QVpWNrl06RbGmsAZTN6k6VY5WxY3Znw3CNiND6SHIqhRbtENN5cSDV6/YVG2XqqUYJNmwduCYlt8JvWHk7qtrmX9c5KhoXKVlaKHqszgyfdt0+uiTpdxKg3Tb0dvor4mHX1SwtabXVCxVyaYYJE26aJfqrnjAVU+2ijAKTMgy38D1wyq2TgapHtoR+J50Z863TiCqis322xikcKJt3WXnB1P4BPhGAjvRh5taR3sEnsfUpCwv7zdJ51tT3mGKbQkGCQAJllPdFupEFnQrbNTqOh5NyaT1BTHqXKYfFGugqpsMr0lq0yYKl1xC9oztaIZBOiUZBD2JpXcC2zAev5Vcc4qcMotMFnEbegiQsmNNyvNN9twtwOzWC+R9MLOb9anbAXjs/mn848S9mtoTjUN9QRp64qDrGlkpqq81XR6cFkzT89Y8LxTEGrohG9aK+3XhF79i8m/+VhzX/v38zS8+zRd+9Le4Dz0eptjcwMXxnUh/lDZhXiwERn8xNGtNar2tCoIgYHyxwY/87Yz/4R2seNNHOPaVf8CK/EF0HNB0nnWsYAp+oQBS1Q41SOX5Jpb0GnKdDCtHxWKrUmxuuRo64Mer2PwgKrRo39gAJKSHWHuBRS0jGYqGHrUacSoh2HKaHoH8u+nWCAo5qrpI3x+beW7LeLc7aLfHRgmQ9kxWhKPzMc8SLzz4dXEscu4UIm2pQZqLASSnyoDnka8T68PWCgo0TQutD8L5q4tRJEA2rGRrUpV6ocyMBOWjJ7R8b6jDcmssZjU+dtfHuGP8Dn7w2A/47EOf5Y6JO0joCd556ju7nrsKVZk8UepSyaYAEuJaJQINS3pVdWOQtCCgf14xabToGcV5m0szSBAJtRHf75ppMk53gOSmloVmrXO5zgpStfZ1bcb7FMZvDCABPP/5z/9N/vxvTdw/cz+/XCco1naQpP69ce83OJztbDwYD0u3OEZqVFSarS8n8756UjzsoQYp6umVijFItaZHNcYg+ZpGudBqMa8AkhFr2dAerYZzSuzZqWUAsLNiwnKdbIdI+5ajt9BfF7/frYJNxVI92RSDZCIm2TClEJb6Cx1SuKN0Aho9GaQaRVUFEoj3J/qeACCpHVhY5t96HQ1Dx5a7tVp6GNfrnJDsAwdYSAkQtGxTp8BaMUhTtSnsdh2AOnTfIdDFBGpR7HyDpkG6GDZqdZoeNQmQcvHvlKlDtRN1ZZ8z062T3NjKNqaSYqxTxtLsp2LxVGrJtnI0qwlq0+I6ZEebPFC9BN+HFZv6GVkjgcbMHtYl7wQCJveXsI45GYDCocXQ/6VZkmJ6TTKRIYPUCBnHk4dPbj2eRBZLjsP4xz/ZWTLeWGTyS/fjHYyq6mpOLQRImbxJIH/fKPYTyHY/Fq3MXzxKdTfsD7d8ICcYiK2vgjPeLN5w26d45rHi2t93aIHFusN8W4rNrItF2gkGWdknnhUFmp1qJKC1kgapmDu60lW1O2kDJKSHmN3mpl1NS+F60wgXUdd3sX0xBiq9pvsOuu+w35/Gp0ngZjC8aE5pOB47j0qDyFVLM0j7puXm4iQp1r7nWnjw6yRmRDWV5StjzrYyf7vKoOeTrxFZHaQ6MxwKNNYlEyJ6scWeW/nsR5VsdrihTEzJ3pajW1q+syEBkulUqWR1ds7t5I03vpF3//LdfPK+TwJw7opzw2e4Vyih9ng3obZqNyLNIpOBqJ6ELgyS7zO0CEYgN66Zzo1LNhml2HoWV6wRACnhyBYnZoaUHTu2RgmklrSuiXVH812mit2tCgKC7s14n8J40gBpZmaGyy67jKGhIfL5PCeffDKve93ruOqqq/j5z3/OQnyQfxe/1piuTbJ/8EFuPPZafK0VPFQSC6zddw0jMw8wV3jilGW7DimTFjdjSO2rFJvbiNqb5OWkUHaoORGDVGyIyWC+rf+b68gFUQKKbhqkelx/o3aiodizdaJ1MzK11UyFAKlkl/ADn9sO3U6xLtIG3SrYVCiAdKh8KKzaUaH0TEnpRRIa4ykGSQq11YSpeUEIDLoxSEXPhyDARyy0iULrBKJSbB7NaAygZ5k/QEL2IaunhzsWY2gTaG8sdrw+mBokbaYJCBivdmlYDMxJT6sg0NG6gDAA0v2xRq0+VdXN2+8ESBlZVOA1xQJteM2wI7iKVEJ6AulPoGWU1yKtl9ACFzSd2alRAk/HTHkE+SQP158HwLYLYiB5Zg9ZY56xleJa6LV1lNJg+AHNR0QZsS0NPS1Z4aMAUpWDOL5Df7KfVfm2zuLSAwjA68J8qYl1+r4+UtKAsOZGACmdkjoTyxKCZk2ADN3vrcNSHjcD2USrDmf75SIdfOh2VlZ3sX44i+cH3Lp3Roi04ym2eQEU3JoenpNikJqy+lTXCbU3Ks22KBfxdgd8gESXPooApZSs4GroZJIR8FPfEW8zogH3NUXbIre+lnIMbO0cL+F4AYPZBKsGulfpbpA92fZMSoCkG4AmGIpvvZGzb//D8L1upotRpF2l3/PI14OuJf4qxHgENL0uTtoQazcivqO62KQs2WZj5qB4TzuDJFNslltjLtu9QvEnh37yhOklJdQeXyrFJhsiJwKNXKjFWogdf528H7BqOggrO9v1RwDpWBVbR4m/irGTRIVyIMbZNdOk4vKBspyHkgXqttQAygq2pWKpjgi/7njSAOlP//RP+drXvkYqleKkk05icnKSL33pS1xxxRU897nPZXBwkGOOOYZLL730qTze/5ExLL0o9g8+SF1S8Xeu/De+u/n/cP1JH+CYww8AUFizoed3qFA6JAWQUilxwyYUtZ/IhikvJdROSw+RRtWh2vRCyrjQEBPvQtAqCvQc6YgqJ9duVWztzWqBnqX+gZwTg7pOIRExSI/OPYo3b6BjYPpNks0FrB4MUjFVDHdgj8y2+msogJTS++Txyt8PU2ytGiTdC0KRdjcGqeD7JFzwZeNaq9i66BXSsk1JO0BqKxdW0XQ9Rk2hrallRnBnOnP0tZ27KOUFOGzXH4FIDzyRUFs51wZujprdo5Q8VWzR3lQkOEjHnYvl7jorpxffFhOe4TZIHXtsy9dZlnTZ1p7AJXDN2czoQwQEpCVlX/WFliQ71mRn/ULcIM1gfoFVG1Lge/Doj0L275ht4lpW95jsWyaOp/6Q0CYpJiNhiftWGdk1TdG37qThkzpdxRNZdCne940kvcKtmZx8WDb2bFY5ulcce+C5whenWCAgwJUASVsCII1LgLSszSmf/JiwfAC4/VOhfcfNe6ZZiGmQmjU31I04s4usyArjyInqBI7n4Cg9UMzTKqzcks9wC/OrFtAeDWtLScUg6RipQsiUKrPIZjVKLWFZ3Lko0plebR0LtQhw33dQjNnW1cXO6yBDMUgTpQa1B74N33oTcc8AXfNDrzX3sGAg/FotcpG2q1jASPUJAFLabDFIzFiZcByAmJu2eMbL802qaj6dlxWxPVJsplNjMdP9/DS0J0wvqRRbVwYpMwCaEW5CkwH0jYrNcHuKLeP7rJohZn3RCZCyiSeRYjMsWHkaSVmh7JoZrGasyi5ewaYKF+wyU8Wepwh0acb7FMaTBkg//vGP2bp1K/v27eOWW25hYmKCI0eO8L3vfY8PfOADvOhFL8J1Xb7zne88hYf7PzO2JYcZdV0M3yDriMVv59itHC3sZaAihbCWxtaNz3rC7zq2XyxQu+cF1W5aAnAZvgRImtZS6g9Riq1ecajZLhXJIPXJ5zBeOh+4Lm4QdUaHpX2QWqthuu9EjZTyJ/FbUmwivSaqzbLVcTQgsaY7gwS902zq+DOmGIMoxdZa6q8mTMOnZ6sRJdLO1QndeBNtjR5D12m1AzOXBkiVcon1pgB19fQw7mwXEeOjk/hGgqTlUxztvqNbmRMpuF5C7em62JkFbp5qF9YPgHR/CJCcpkdJgsBkXFugUmwY6L4BUotleo0OBsmULTtMnoBB0g0+lXwjABmUDkncC8mRgAdqLwRgq/55tE9th48fB1+JDGvXPyQ+O/dYnceWSa3ZA/eJ75HAICGBgWKQtJTY8Xek1wASWQzJmnn60hYnwzWTdbMn8fOPHGHHz8XYTxxxuPXMDzEzdhoLzQUCueD6bu9U4xHJDKhUSkuc+Tbx/w9/hwtWiPP5xaPTzNUcbA20hJjq64kB4RLguhRrWsgqHqkcwZHPaRwYFGLmiNDGIBkmGImuVWwA85JZcZvCK02lYlQlW7zE3+jr476p+wEJkGKVWGGD2h4CbXWcI/kkOj7mj95DN0OllC5TgXdcC7IHXcgiyWduuK49MYMUs3hIm2lBubWxv5k+8R2VxSY1OV/6zQASeSi2buIaMQZpscflfzLppeXFJTRIugHZ4fBaJdEojgmg4S3GuhI4dSxgbQwg9WKQnhAgAaw+i6TUqLlmBt33Cery+OIC7UXxXQm7zFSxOyzR0BjLjHU2430K40kDJN/3ed7znkcyGe2Wli1bxsUXX8xf/dVf8e1vf5uDBw8yPf300V//U8Jwavzv2XnyzQE0dBy9SUMyScPy3tbGRjCN7i0K4qFSbAdKB4QWRRrUBV4sDaQAUlUsxErw2yjb1GyPmgQ0uf+fvTcPk+Msr8VP7b3Pptm0WJYl2UaW9w0TGzAxtggxJCEGksuWBMKSPMEhEGOHew3cG2yDfwSygUkuuRByL/vlGgiyMWaxMcaL5EWWF0mWZC2jGWm23mv//fEt9VV19UyP1DPdI9V5Hj32zPT0VFd3fXW+8573vExBElruvWoVHr1hGLR7a85RI2o62ImCeRmCxzuuh1SGhvKVzFAX24OHHkR/lfqPSgcBWYYeafEXwYza0U42dvx5jZbvoiU2qiAx06YEwKLHHB01wkps2Tr4eYgmaeuqjGzcAtOkzd/e+xAGVKL61NKDcI+FZxT5vo+JCfJeDK1KNd1lr8rPrSCFCJLVZKea7uUltnrdQZXl5liCgsQIkqRAc4P1Qs+loKwI+6MUOqtJ8edRkAB8374Ud+77fcjTVIGgauKT469FzetDLg9s6N0BFA8ClYnQ7xZqO7BCfRG+D9QGySzD2g6iIJl0nIJOS6iszV9JE4J03uB5jQejZ6HJLFF8boKkqhfg2hf+GFYxrMqZRi+29/82dj5KSly+k0HVjHsGgjHaBs1uhCGMngecfhXgu7hk4tvQVRmHZ+t4gpILPU/Lhv4KqP29AABnfCJQFWdfgs2UX2FWFi+x0U62kAcJCA+ajlznU5QQuXVCkFiXIiNIwZiRCtx8BiW7BEPOwKuvDLWqcwUpkqAdxcbhHC6Tn4NejS8hsxu1Wa5DoY0TUYI0UJeadrGx8yHRJgVd1oOxMJFrl40bqRUt3vXr2hIwvKlhxA9XkJxKU4LEMFd5aaRAPUhxJTYAyA1xgpRXFWh9veS4IgoSAKw55gfZYE0UpHlLbABw2sthsBIsfZxbomVQTpBGUT5CP6dOGZP5IACZgX1902U3NQ7jXUS0TJCuuOIKHDhwYN7H9fc3T4JNcJywKrimWsOHPbKTLRlTPDNyfZ2oHr2nzV9eA0imSF7Pw/Vd7J3dC1cmfhzbEq7MSBZSMwWJ8pamBClD205rtgvHDd8cWNBaSEGiBEkssVVMF3nqk/Kmy7zENlmbxJMTTwYEqTIGbeVKSHMEljZTkFgXW0HvBSBML48oSKou8/Nus1lsooLk+7zElqsDLs0qis5iA4BCWoZEwxXnU5DkfQ+gVyHHUEsPwo4E3Dnj45jWyXlYtTk8EkAEvxmW4wnSMfp+e06hJQWpLoxckevCrpWF6MkadJecJ9m1kN64voG8yQpdzP2550z4vo9Nux/Db//6IehVsiswjV74kLB/+BoAwNmnO1C0Zu+/z7vZsjIJ2fT3HYRbrsCiggC7ESiyhFSqBFmbgQwZ566IiVXQMkgZNDBzjhKbknHRN9skEFeSAAnY+f0pSL4Ez83FNjQwsNLJyt4mZPKKPyOHtv0reOVa8hj2WS4Y5NoqaRuhriTeI2f8CFcV73/2B0H3lmDKDbKQHJiuyYeliqQ+UJDCx35MjVeQGjxIThUlegls7DkXgMw9TxPFOg7N1CBJwHnzEKQNgzkM0fJrHFK0AcH0c1Dz5PzwcSP0mPpq8rwlNokqSCFiEGn1ZyW2eskOFCRLbiivAYKCZNealtgY5iovjQoltmZhkawcmpdlKL29AIiCxMb2wK7B94GRY36QgZSZR0FS52B1qy/lJTaLfma8Mu1S42NGVqFCCVLKkPD/vebvMJQJz4Iczgzjs6/+LK5Ze03zv7UIaJkgfeQjH8EPfvCDlkhSgjaDsvr1PikfnbFmNc8I+YuVfwAA0FaubOmpJEkKjRyxfDaDTPiQNymx1Ss2qlbQxZaiBInnCIEQBkYM0sLOoyJM+nY9N5xESxcaA4SsiQtt2XLQnyUXlHNsmk98tz0bju9gyCSLfbYyNmd5DQgUpH2z+0J5LOz4e2kQIvdMRdr8JUkK0rSVGAXJtQDfQ4/rIVeTgnEFcQQpGyxgjUnaYYKUOfQg8soEfBB/BJvlxVDbuRMzNCBy9OyYESEU7GbYioJUbaogBQTJEkauhIgiLbdlZA2aywbV1mFE/EcAAKrCwJubIJVrFt79xPcAALrFCFIPjq04D9XMMFS7gsI3PwW/eKTpc5yRIuM18jNrMN6TguT7qO98hisn4o0gnSfnaE3+jPgdsp6DxgbWKnqDKsDf3YtWwjDzTUeWABLsoo/R4nr4ztwE6fBMEw8Sw8brSKq9OYs/zj4U+lHGIh1U5b4roNE07R07f45HjjwCAPjZc//JlZMSgiYGMT1avGb4qAst3ZQgTdBrxK0r8I0CP49BiS0YM3KMetHOW0GiB5iCxNr7zxzKI2c03qhFbBjOYyKu+5LCoASp7uWhMPWEjdmg11y+LpTYUo1/TyyxhfJ/IoOmWYnNsz1U6M+IgtRIkMwK9d84FRSzzT1I85WXmAepZrtNwiKHudqXkWWolCDB8+CVKGmxq7DLCnQHMFlSeoyCNG9QJIORh9FP1iSH3je8clRBWonqZNAQdM3aa3DPm+4JDePd+qatS06OgAUQpBdffBFbtmzBli1bsHNn86GfCRYBNBenaBL15LRVozwjxBmj/piVo01/PQpx5EjFnQEAVKrCohsJi0yzHKSSRdv86c6CKUhUgQHCCpJuKDB4m3BwwYqDQtmoEQCxC221XESeDtP16yZSVWFiuKshU+slz1Mdg7423qDNsCK9AkOZIfjw8fzU8/z7TAFbkSIeBz57iilIlQnevssIkkuVE68iECRKZHs9D/lasAtX9cbLLJ+iUQiSCo2lYjOCJJbYatPITu6AIjmwVfI7FceAbwUk6diTe8iAWngYWtvc5MtKbK14kJreqFNBic2yBIIkEkVm0lZ06LTEpsZ0sAGAT1vlPbe5CgMAk7/6NQbrs8RnRiMeSrk12HM68R6tOvwLYHyct/3HoU85iF7lIGRPwe61pNW6/vQOWC55f1L54BpQ0mQjuC63qfGJAEDP8LiD7HWvbxj8a2byWPUaGxiYp2ZCkbEL8xOkWVZia6IgyTLw8vcDADYf+N+QweZuWRiok0aOF63T+LiRn237TpBobwZK2DOzT/OOKbHEJmaX8TRnLSOU2MKkepyO2fA9CZ6UDRQkSkbqgoJ0SCbv6eWjlwIAZmhJTzRoz4eNQzk84p2NCWkAcWOZWImtro1CGTkdgDBuhCVjCzlI8QqSxolBiDhHPEiaoQTDrTU6hsaWG1r8AaBeomVmt4Zy+vjLSylN4eOjYo3a+WBgbQoSJF2HTCdh8DKbXYNZpKQ4Gz9mBAiX2OYkSAD0UdJd61JSzUtsQop2lUZtZPrJ8SiyEhrGu5RlNREtE6R3v/vd+Pa3v41nn30W5513Hl71qlfhk5/8JH7wgx/g0KG503kTnCDoRVeskQWmsCJYIO0x8iFrVUECAqP2ruldKFpEPanXs6gx1YCHRTKCxBQkBxXThqFRY60lAb4fLrEJCpKqK8jTBVZc+NmirEgKdFkPPEhyI0Gqz4xDVgHZIIv9n/7H7/Gf9daHIPkSVL8O3So27WATsamf3PBYmc33fU7wBrN0zhsjc9lBABLgOVxNY9EFrhy0+YvyNAD0QEKuHtyo2SwiERlKkDRJIKZajIK070FI8LHbW4kqNb1X04OhSeRHaGdUX85uCHQTwRSkolVsiDoAghJbqyZtV5hJF1aQaJlBTgUKklODcWYjQXLpgu06cxOkymHiA5tYcT72rP9d8r3cKlRzKwHfR5oeu1Nv/volCTiDltlm+0i5urbjadgeuQEY+eC68g3SNbg687L4J9MynCjKq07jg3/H1pMb4Pilr0RhVQVZuTGSIQ5VrQjfzcU2NACA5/l8EGlTBQkALvhDWFoPCrUD+E2ZGHqvlp9APy3RPnEA2EPLmf3FQMVMWwExsBWTd0yJ40ZCHWz8PKRju9g8z8e0p8KjafqupfHfY88jtrdP6hZSSgqXjhK/l+v5qFiuYNDubf6aKTYM5eBBxn+z3k4VvDDRYAqSufoaqAPkWufjRugmNFUTcpCadbFRBSk0MDYmTZsNrVVp2de1JGCo8fPEuvlSWQ3/39UnVl5in43YobW5Yb4J1eiSJfdG0rTtKswZumanmytIaV2BRIN903FJ2gJSa8gsTI/ZEniJLVCQ6nQYeXaod87nWmrM7+ql+I//+A88+eSTeOKJJ/Dkk0/igQcewAMPPMA9BStWrMCFF16Iiy++GH/7t3+7aAd8SoLeMEtV8kHMDwQLpH144QRJzELik7ydHCYrJlbrGUFBoiU22ubvez5qFQfD2gwAQPYk6E5zD5KqycinVBwrmyGCJKbxSpJE7lxqil+8ptAN4xTJjbGSlZA2AUwcAwqEcDD/kVo9MG8HG8PLBl6Gnx38GTdqk0G1ZMEbyg4AOBKYtBWNlBurx0i7eG4QMiU7kmDM9ao1KLksJ0gpNYMeKwVogAI31jSdSTlADVBFghRXYtv7CwDAL71z4GVVoGjxTjZWKjk6JQM9wMjauXdyGS2D/lQ/pupTOFQ6hMJAOLWZKUieU5jTpM2UE9f25i6xqQbyNUFB2tDok3Po4FtnHoJUyvbAXHE+dpzzntifP3f226C6NZw28CSAOuLHwktYP/AitlUATT4HrqyhvuMZ2CsIaU5RZcZ2bdgKIUijxlnxB6TngsBMy+WDf5+88DUY3bMDg7ueBkarGNWfhZupQ64aTcpsPtyMibHCHvhH1zdVkI5VTNiuD0kK5m7FwVUz+Lr3m3gHvot3qz9EycngT9UfIA9yDec9Cd849BLeD6BfCCzO1H04akCQWMdUIU2UsWLNaRyuDIRKbHbdhef5kGUJdYd8fjxDglz14ZpK0MVmhUtsql1FOS3h/KHzkU+loKsyLMfDZNnEUwdpQOQcHWwMA1kdfRkNW6uX4cDrvojTHvlEcBNG0CVrptZA6SUxJ07EpK3VPG66b2rSjiuxReaxASQscma8ij7KRjzPAFKNERwmzZNLFVK4Zu01uHrN1dg2sQ1Hq0cxmBnERUMXtaygjPak8MzhIlcbQ8gN8U2oQgcVK729cA6PhQkSVZDqRhoGGseMAOGgyNAaFgN93YUAdsFRyPnyymWyRtBNJ/KjqDsvAjKQWz3Q0utcKrSsIP3BH/wBbr/9dmzduhVjY2MYGxvDf/7nf+Jv//ZvccMNN6Cvrw/33Xcfbr/99sU83lMT9OKdLZMLlylIvufBOUw6NtTR1gnShl5yoxqvjvNyl+/mMEVr4VEPkqLJvMOnXrGwSj8G0AnhGTPc5u9VKjw4T9UV7hsoxQy8DC0wagpGTJu/V5qAC2BXH/morhCEj74qIQg9NHBMXbN63tcencnG/EeGYmBFJkePVbhJcaM2IWqMIKU0g5Q0AHhVuiiy0piWRg9t15bleKKRMsjfkCESpJigyBd/DgB4yNsMiQV2pofg0lZ/t1jEtEqOcfVF8ytozVr9Pd/DZI0853wKkka7eDzbQ02LK7FRA76awVCRvD5V9aEUGsdo2D5VH6y5O8Em1p6N5zfStv0o4aRf7zrrLUi9/Tb2zcgzkK8H3/gB6D0yFN/AVN/ZsA8c4GbUVB95/5+ffh6+5MB3MkhhGLHQAwXJEfx1z42eBQ8SModfglOTIUse3MtJN1zDqCDfByDh0Pnb4Ev+nCU21pk0nE9BU5ov24/sncI/VV4Dx5dxufw8vq7/D1wk70ZOIQpbjwfspzfs/lJwPGKJzabKwNHq0dA8ttCYEQahxAaQ6Acg8Byye6dT8wMFKcakXU4DFw8T8zwb5vzI3inUbBd5Q8WGwbnHKAHEI8jykLbnrgJu3AG88weoXvd3cHwZGdqQUq84jeNG7Cp8H5BrLp9g37zERhUkbW4FiXWy9dHSuOs0Boo6lguXfnzSPSdeXhqZV0Ei15vk0BEvzKgtlthmyXHazPoQ48VKqUFQ5HwdqMYgWZ9c2YAnKaTExsprahp+qhcW/aDk17V+H1sKHPeokeHhYWzZsgUf/ehH8fWvfx3PPfccSqUSHnroofl/OUEsfNdF5dePYPYHP0Tl14/AZ1eOVYblpWGa5EIprCAfJndyEr5tA7IMbXio2dM2IK/nsTIbfBAlXwM8A5NlSpAiXWxAYNS2qg7WyUegsFC9ejD2AyCeHDYZXdMV5FOMIAklNnGOEYOWgUov3mrRxKHnp+F5PrzKUWxLGRijG68BYVHvpyNGeopj8CRghz5/xATrZHtx9kXUnBovr/UYPeihJSzRLxUYtan5lxKkrCrz+j1XT6iCBC2NnE3eI0mJD1zUNXo+PEE5YbtQ1yRBh8Ux4Njz8CHhV97LoPWQ96CaXsHDImeffJYPqF157vyLS7OwyBlzBo5P86acXHOClAoUJN/xm5TYqDdHTWNFkfzcyMYrRKZH/SjzEKTJlyqwjd5GcsQgSTC1HhxJvQp481fJPC4RhZXAm78K6Zw34LTzegEAL60ihmCW98II0pNHiV/Hra9pblYXZrHZQqjmOAy82EPeh8o4ec2pMz3ce+aX4evhc2qY03jNtTns7ScBiXN1sfGQyLgWfwETpToukHdDQfhzR0a0eJAhY41OPt8DJfBxQiJBsmhn4WBmMFRia2jxB+h1a0OWyd9jm5uqRckPLY07VQ85PZyDxNv8nQpKaeCS4UsABJ1zP3ueXM/nr+mFLM/d3cUQStSWFWDdVZjY+BY85J0TlNiqNhQ2h2w6KLF5tgTJayFJW2alJYEY8Db/4DrIUqN2gT6NGDbPwEii5LswBho3EAvFfONGmNrnWR58zw862ShB8s0qLKog+XLzNn9ZlriCJM3TgSqObHHUNDGEixlIx0rwJfKY/IY1cU/RMbRcYmsF6XQal19+eTuf8pRB8d57Mf6p2+AcCbpw1JERDN9yMwpWBUWX3KhTWY0zelZeU4eGYifYz4WNfRv5wFoy/0nCsTJ1XUdKbAAZWFs8VodTcXGGdASy5sG1ZGRMYMyaheu5UGQlpCApuswVpJAHiS20Qnvontql+MXMGwCQwLnv/d12ZHsNrByR4CgKjhUkAD4GBAWpv8pCIg/jWAGoODPzvu6hzBAvM+2a3oWSReoMfUYfn7NUrDnwfZ+UxiKt/lBpmKCsQM5m4ZXLgXrCFaQMUja54TcjSJpKSZgvEAdxmr1V4eW1Q+kzUaznkOqjXSrpQTiTRDU79Pg+AIPIosTnP80FnoUUafVn+Sp5rQclqKhY83uQJB+oz+VB0rLorRhACjB64n0Kdaom1s25l6LyjNnSbq5SNIFL3wCc/Xpg/0Mkwyo3DKx9BR0/AWy6ZA12PzCF2d5z4UlykBhMDa5PTlCCVD2tealRC2axOcJjijUbTwxuwIbZQ6iMG+jZ4COjZ7F34CkUM3vR+8SZGDmjgJU/vAM9489g/cf/E5OPMuUuh4otfPYEsJDIlXEhkQKGshpu1b7a8H1FcpGVp1DxVuBPFdKgYDhkg1NJM4JEPl+ObPGOqWecEn9dvMSmhgkSAOiah7opCwSJZUs5MKHCrdjN2/ztKuoZlccpsFmFv9hFPpOt+I8YmIK0eyIY+DxdtfBj72K8X/41AELM1L4oQarANcknzKalRm7UEVBIqzwHKbaLLUZByjCl2XTgex4kOfgkM5KoOjVokYyw40HQ6t9YYvOzgzxJGyClYUaQHEqQrKMl+J4EV1Mg+83b/F3P5UPO4c+97tieD0+yIfsaHDUDt1wimz8AKKxEcQ9piFDdOoz+5rMIO4GODqtNQFC8914c+uCNIXIEkHybQx+8EcWd0yi6RCFi6hEA2GPkQ7YQ/xHD+t71/P81SQfgYTJaYjNnAZdcBGwem1t3sE4ag6zTqP26D8/3ONEQPUiaLiMXoyBFpfo92yew9eA7UfXCPoPKjIldz22GUrwIk7Q5a4D6JlRXR8EkC0q2OoYjfVJLEfSSJPF2/2cnnw21+DO1y3I9mA5dHLP0Ofc/BOx9AB69YtKyDDlLcz1iFKSUTX1bSvwNlgUkeq5AbFUDYN1BVgXYS8prz6aI0pEbSAHw4appVCaIandkLzkhg72tTbjmrf4RgsTGjPQZ5JxWzeYeJFZaAgCLGS9jutgyWhaFOlWQmix8VZfcyKp1LT67haIkNf+ZCLZrZ+oBzv198l+hTLFqYz9MrQLIGUz3nR101zz3NHzXxVPH6MiL2mnNlTRRQRLOVbFu44lB4vGrjOvw1QxXGvwKOYbRMwroHd8BCT7k3l5M1ekMPCcP2/WDz56Asfla/CkuU57DSmkqVmjL0zJbVtLg0o69FSXywIzph0psrGNK7GKLL7HRBguVnCfWycYUpJRBoxBKZqjN3/N8TqY0p4rR0TORop8lpiCxNWMhBGkjJUi7JgKD1UzVxn3uxUJQpMVLbIEHqQrXItceM2lXpYBkMYht/ro8d3mcESQVlED4ftDiThGQxAo3jp8I5ho3MusaMH0JMuh7VXMbFCRzgtocVvbAcJqPGmE2CWD+DtSK6aDG8+My8IrFUAZSeR+57+mYIyW1Q0gIUofhuy7GP3Ubl7rDPyTfG/95FUWHKEihDrZDCzdoA8B9++/Dd174Dv+6gsPIbrgDT0wSxQLpvuBGTX1IbB6bVHdwmjTOS2wDDrkgGdEgXWxkQVC0YIEVu3O4B0nLwPN8PPCNXfQn8TL62OQ7YObI3xmgnTdsxIjnF6HbFcwOZVqOoGedbDundvISW5/Rh5yu8htLsW4DO+8GHv838o09PwG+8ttYdeDbAEibbGOJLVCQVJvFATQhSAohno4j7L4kSdiJBgrSEyrpuMpnNWRomWb2GPWJ0BLW6Ibell47b/UvhT1IzKC9Ik0IUtN2c0WDrKcggfoq2NDeeh2+Q3+HDyLOI2vSXehwI0Eiyczk3HluCjW7Ock7lgKKUpP5cBS5PiN2UG8UsixhdiV5/WMjgeJ95H1/ghdeczVWPX4AgDRPiU3wINHH+L6PYs3BjoF1gKrAqaqw6xlODKQKzQfTXXYgKBs+HI+WNumA4Lhzz254o81a/CmUSIK4iJxC3uOSO4jMCkIQzrDI+yKW2N66+c28Y4qRlYrlokTN1VGTNgDoVBEVFSQdNowU/ZyXqlxBqtpVPt4FIB6kjacH1y6bVchwwZr5DdoMG4fJ39g/WYVFieZ01cIYBjBukE2mWXMg9wYKku/7gFUmgZYIPtMVlKJPj4yuQKbz7GSI5fHmJTbT74GkkHWL5w1RBGXGGpSBE1eQmMI4NtMYFjlRtnAMPbzV36o7DQTJOkpJ/5oRqFQZiutiY2TZ92XYztw0omK6KNMSmqOm4R07FE7RPkybgbTWNnlLiY4SJMdpsgifQqg+9niDchSC78OpAFNl4qkIKUisg2209Qyk+/bfhw/97EOYtWZD35fUWfyy9FmSfyLLQJruZirhNO2MWYYuuWDjpwZcckEyH5JXqcDjJu25S2wZNYOxXTOozJhoRo4ACRVvEBfrryN/j/omWHlNtYmKdt4F17ZsZmRG7ZCCZBCfQ54er7vjbuCb7wDq4fOUdsluf40zFihIvMQWKEiyzRaEJp9xWr+37UhplC204zuA2QOArGGbRNpkCykVhTw5T6WSB7tax6xKFK7Vl65r6bUzBelw+TA8PyAcTEEaoiqc6XgN6ecMUiYoszlCijQ/D1RBMmoyJGpClwcb/RVVp8qNy76batriDgAzdQf3p2PC7wRc+eaNLXtVhty9AICjKwj5lF0Tsu/CHT+Kv/quh9fs7ge8VHOiqGWFLjZynkzHI+qjasA4i2S/VI5ovBSj1Mi5SNMbrNLTgyn6+ctreWSpKTbuPLCupFXzeJC4Zy4GTEEquyugDZH3+db1f44vX/dlrFOGOUG6aPUFwe8IBt2ZehxBoiU2+ppYq3/FdFFAFQr1ILkzJf57ZbvMiYHi1CD7Hs5d/4rYvzlcMILZhS1gpJBCzlDheD720/DBadott6uHKLG+L8FN08+j6xLSIpTYPBrhUfJnEYUkSdA18nxSXHk8psRWdfsAmoXmRghSSEFaceIdXGJYZDEa3Fk0MYHe0GiYBgXpGHlt3uqg4SOOILE1HJ6Bmj33xqVsOjCpAuyoabiTY+EU7Qnim0hnOpN1NBeWjCCNjY3hnnvuwWc+8xm8/e1vx/nnn498vnmo3akCp8XZdcyDlB8QM5BoiW1VawqS67m4/ZHbG7tpQL2vPoKJ0RGjNpvHlrNo1xslB/20PZt1snnVwKStagovsYnGZzFPpVJsTVYdypF8FN0B8rWggy1fId1l51zQesoqK7HtmtmFiSrZcffRkMhCWoMMDwMP/DfEtYqz3de6+i7IGZoMGymx+UoKcMiN2tLib+oevbmathre6bGF9vn/JP9dcxkmqTk/n9JQ6CfntlRTcfih5+ApOjSnihWb5484AICR7AgUSYHlWaG5Tuz/R7KB2b+p/ybVG/iQZBU+HfwZVdLs8SrvCPLTjeeSlWXhy4CvzRmSOF21sEv3MPy61cj2hiX9XJ+BLe/djPUXttao4LsuLv/Rz6A6VZ52LnkOpns3ApDgA/iDe2ch+96cJbZoFxuLh5AlIH8eKWFXDgUlKY3GdKRBW637+jBZJ7vngfQAv1ZiFaS5BtWKWPsKYkiP2XDkZHItl+TToJ5Os2kmJnDpyKVYr41ysivpwXulKmRuIBAQpNgSG+18E03aBakCNUVN2tPToaDIoIOthroGXLCKBERu3TGGbz8elH/HiyauvON+bN0RP18tCkmSsJ6X2cjxzlQJeXtp6CqotIxjVWt8g+NOTQF2Fa4pw5NkgA5gnnXjM6xUtunx4xSkRoJU9wtwaaZQVEHiaeJOFUobxnSlNAV91MM1FhlaO1Gq46jfG4plCAgSTaefJu+9vJpsuGzFjN10MKO97xm8nNoMFcuBSZ/C0TLwZqfCKdrT5HjSPXOX6jqBtpq0AaBer+OZZ57BU089Ffo3FZkfFWdEPBWhDs7vmwGAikIedyIK0raJbRivjjd/gASef3Jpk3Ejaab65XsBHEOPTT5CLAvJDbX5y3w3KO6Ka6wEo2YCz8g8UPp7oaxYAffYMfzDObfiyWIvagBGZ8mNvZUMJIaV2ZUo6AUUrSIeO/IYAPAhuPmUNufAS2ZylF0ZMs3wiZq0PU/nPqyaGk8APbpQu46Ouu0hzcaRMC/DC/eQ/657FUq/IucuZ6jQh7PArhLKbhqHnzwIIIM+aQryHK3fIlRZxUh2BIfKh3CofAjDWUK8WYltJDcETZFguz4qphO/e6c+pBoAzZcgpTNAqSicB0r+Ds/CUchO1I1R0vjoCj8FQJqTILHZXGvOHcCl128kymPRRLZAymqtKkcAUW2zk0VkS4cwSzPBXC2L7RfcCKM+jY27v4WhY0/inGMvomI1a/PPhnKQgGATUEhryJ6zFscAVA/ayMgpSL4MwyTvbcouogqSQcOiFfpT/agYKgCz4TzYrofxEiuxzaMgyQqw5Q6ifoLueihYq385ey60UTJ6xB4n60HWlODq5Fp8sbIbaxGsSz1pDRXLRdGkClKcSZteF1aNeZAiCtLkZJCDZJeFMSMVmFkNGS2DrTvG8P6vbWvYlhyZreP9X9uGL7ztImzZPP9at2EwhycPzHCj9jQlSFb/2cirO+E4BswXHobS1wevUoEzPQ3dqsC15NBcvSnvWOzzq6oFG4Av+gdjMsxSGQ0SXPhQUM8PITO1N0iRpghM2lWobTBpA4RET1dtjM3UcfZIoNxOlEyk/R7k40psszPwbRvWLFlHlJVEAbXVmG44CCU212hehqYomw7qVEGy1TS8mQpQpOehsBL18nNAAciu6D7B5IQI0r59+xqI0J49e+B5YcktznypaRo2xATHnWrIXHIx1JEROOPj8T4kCVDSDsp0wSrEKUgtepDmmgTd8DhGkCJhkdSbDal3BYBjyFvkxs5KVU61DmTIRSbmIDULihzd2Itsr4HKTB3Nymwq6kivHoY2MgLn2CQKhwfgTagAHKSnXwIkCdrq+TOQGCRJwqaBTXh47GFuVu4zqIKUUucceMk6l2w/BVmlAXARBcm1Ve7Dqsu1xicBYHlUbfIMzNQspHU224outGx8yxmvQvmnZHeXT6lw1/QBKKGq9ODIgSqADIYWuK6uzq3GofIhHCwfxEXDxPvBSmwr0iuQNSTMVO3mO8N0oCCpPiBlM/BLxeA80BKbeWiKK0hODFFkChLLUZlPQQKA3owOWZaw6qzWfSlROEePYmLF+ZjtbVx/TKMXO855DzY/8y/oN0vNjymiIPm+z+dfFVIa0qf1Q1Y9uDUgvXccGasACTJkRYJWmwHQqCDNGI2bCQAYL9bh+4CmSFjRJC4hhE1vIFEHW28KBSXmCxIwA5RqaajDRIF1jhCC5JXLcAfJcz8+9SiuxhX89wppDYdn6yhZ8UGRgECQ6hEFySA3T2d6mitPVaeKKo0UUZ0qpEIerufjE9/fGRvvSdKigE98fydeu2kEyjxkmPmQAgWJvC+9WQOpjIJKETB3PQKlrw/2wYOkk80qwzUDguRKDqbtqdjnZzlIrit4pWLGBEmyhJRSRM3tQ72wEhnshVcKJ9jXpmlApV3hnXUnitGeFHaOFRuM2hNFExm/FwN8YoELZXUveS0zs7D2vgjfkyCpHrT+1QCmUFeqsWKGWGJr2tBBUTEFBUnNwLV80l0KwM+OoG7RzuDR9rz+dmJBBOmLX/wiJ0I7duxAKSIXNutCkSQJW7ZswbXXXoszzzwTZ555JtatWwdZTjzikqJg+JabceiDN5I6V/Qc+kDPhRIcpAApSNF2yxV4s+TG2WpIZCtdXvxxTUpsCt01KStGATyHLP3kMwXJqVoAFUFEBakUY9LOalnIsoSr3rIRW+96GoCHxqqvDwcpHLqnhszQFdj18rfC/BkA2onxzKY/wqbJ+yAbC5NnXzbwMjw89jD/mg2qLaS1OQdecoOjn4ZcIBd0VEFyLSVQkFBtfBIIXSCegdmaHZROxFZ/LQtv9CKUrR8DIOqWvG4FgJdQTQ/CKruACqw8e2HehVX5VcCRsFGbkefB9CCy+gxmqjbKTTvZAg+SBkDN5mCjkSiaB4/C6afZOnLjTpTJ9Ar9wMw1ZoORj75MjKK1QMgDK7Brww3xP6TX4K4Nv48p5RDspmZ1HapMzdU+4Dk+93wU0iok30RmyEL5cArq9meRc3sBANleA94s2UwovT1cQRpIDWCcXivRiAV2oxvpSbWulG1qjDrID1wK/PVDqBUtSIOkHGmPE/+jUy7BHSFry8PHHgLwF/ypWKNFsyRtIEipFk3aBVShpNgYHhuZerC2lcp05IVTRWpgEI/snYrP7qHw6Xl4ZO8Urlg/9+d9Y6TVnxGkvowGqacAFH3UX9oJQ2z1t6pwzUyok491F0bB2tsdMfgxMouN/X9ePkYIUo6s0VEFyZyh50H1Ienzx3S0AqYyHom0+h8tm8igF+fFKEh+tYr6008AAIyCAxcFAFMwFTJpwFDC6yuzSZAS2/wEqc49SBl4Nv0MSwqcogNTJe9XbmV3pWgDCyRIH/jAByBJUiwRymazeNnLXobNmzfjnHPOwTnnnINNmzbh9NNPBwC8853vxJvf/Oa2HPTJhsK11wKf/1xDDhJkGatu/TCqT/4zMAXkeg0odPirfZjc3OSeHjLmogVcNHQRhjPDmKhOxPqQfJ/M/blo6CIgQ0s8rIuNltg8mo2hjpCSFlv0WDeYXSe7K0kCFEWOncXGFlrW/rz+wiFsuewpPPDYKlS8QA7J9Sg4x/0Knqq+HrWpPuzA+UCEB1l6D54YfRNGtk+07EEBgk42hkBB0vAT72yUjSHkzKOI+pCYgmQiB3lkA4AfNypIlsTn0VX8xlZhICgz+p7OF3DyBwSPyeDZKNse58z5lAp1NA/4Hlw1DRfEO7Py0oUpsdFWf9/3uZIxmB5E1iAbn7nCIpl6kpIkKNkMIUiCWd33AfOlcbiD5PNixkj1bOSERoeaNsteKtUdePQc9LSBIM32boCZqjR/gCTBTPVjNpuG30xFkyRownR523J5ia0nrQF2FZlhE+XDKfiPPYnsOb0AgGyvzifIK729IQUpqzduJgDgMG3xny8DqQEs6oDC8H2ougzH8mDSbkWmILnlGnza5LC3ugf7Zvfh9J7TAYDng1Wd+CRtQCBIdYEgSVXICiDrMjzLgzxTgiqrcDwHE1Nk46XaVfSsWo19pebkSMREC49jWUh7jpbhej5XH/syOur9/cCBSZimhCztCHUnjwGuCdfKBQRJNjFViydIvmQCfqTBIsakjYnnkKGz+GyaLdegIFEPZirdPrGAbbYONyhIdWT9Hmg0vsCuO5DzeUBRANdF9bHHAQBGj4sqzXGzlBpKVglGOkKQWInN0+f1IJVNN0SQfFeG7wGS7ML6/LWw9f8KAMjME2HRCRxXiS2Xy+F3f/d3sWnTJk6IGBFKcHwoXHst8r/5m6g+9jjssTGM3/YpeLNF+FZVyEAKFkjnODKQFFnBRy/7KD70sw9BghQiSewm/Ccvu5F0g/GwyHAXm+Nn4PoqjJXEhGrQHSMvsdGdvkoDFecaNSLuRNevLWPd/vdibP1NqLzsXcRboj0D+avfQUbfgZ/N3gHfRcwECeKzePCbu7Du/MGWd9jMqM3wUvElnNl3JvIpFR5k/Hjth/C7L9yMqI+DKUgVdQhyjrz2Bg+S6XMFqYoyHM+BKocvNXGB4QRp590kToDh8OPI/vMFuE5+C+6XLoehypAkCYZbhqkSb0G6fgypDVe39JoZomnaFbvCR84MpAeQ0clojFYG1hY0lRP0oMRWg11W4JsWHFpiM+VGJY0pSIY0t4LEbnAZXYGhnninS7U8dzccQ8ZXMDFH+UA2UpBhw4MG23S5SbuQ0gCriuwwNQRvewL59b8BAEj1qHD3zAAA1L4+TNbIzLe5TNqHWUjkPC3+80GSJOT6UpgZr6KuEBLhlctwSyXYQseTrZj4xcFfCASJzuaKuW65gkQ3AmIOUgHk86DkdHhTdbjUqD1jzmDf0ZcADEBzqjD6VmAo39rNsZXHre7LwFBlmI6HA1PVoMSW0TCdo6VvLw/FIeTQOUYaNcQSm62YnLxG4VGCZFrCNR3T5o/xHQFB0sn12qAgVW0AMow2EH+GkUL8uJGjJRNVvxe6RNRiq0bmRCo9PXCnplDd/gQAwOiXYJs0GV2toWJXePwHA/cPeqmWFKQz5T0AXgabZY7ZMlTDgz0xA0sj3iNWpegmLIi2ZrNZ+L6PSqWCQ4cO4dprr8XrX//6hBy1CWzgZe/vvBH973wnAGDqmz/gHWyFuCG1C2jxB4Br1l6Dz776sw0To2WvF/VDb8NZBdpuy0tsZJEw0kFG0FF3COogucnqdGFlChLLhFFpW2tciU00aXNoaciSh1W9h3DmpSNYdVYfZOqLGfPWwXfnCgqUUJ42MbZrprWTAOD5qedDw0M//IsP47rvXIcpkF3U45krY0dWmNRb5HiGEBQZbvN36+AeJEe2gm4tAWKJrVijmUvffEcQFUAhl4/gC9rn8EbjcUiShD3bJ2ArwQ2qmhnBv/+3R7Bne/P8myhW54mCxOaxMYN2Vssio2U4qW2eph14kHKqEhOYWYc5q8GTFN4lVpcaFRumIBn09ZSaELIZXl5rzwLaamNARfKbk0QA0MJZSEX6GS+kiIJk9DhQcgb8Wh2nTRGFUi/IcGZYia03VGJjERPRv8nHjLRhh52nJc9KVYJMZ+NZL74Ihw1fVj34ko9fHPwF/x1WYjOpby62zR9EGeElNpMoSACgFshjnMlJ/rtHpshnTnUqUHp7cdm6foz2pOYI+yCv/7J183d6KbKEMwaDMpuoIKUoEal7OSg1EvXgTtG5hpbcUonN9cl7XrcFghQziw3jzyBLCZJLje0NXWxsUO1C1cE5wEps0TTtiZKJo35P0OZPrytWZrP2kURrY4XGuwwtpc6vUxHMg+R7RvN1gqJSN/Fm7V4AgEMJtUd9R/WyDod+JtK5Zd7mv2fPHrz73e+GLMv46U9/iksvvRTveMc78NJLLy3W8Z2y6HvLWyDpOuq79mGqQm7SeTEk8vDxp2hfs/Ya3POme/Dl676MO666g+Sg1D4Fp7QZx9g8tkw4B0mSJei0I2W/v54vrkqF7FJmzBn4vs87elQ6syxv0MXV8Xhw21xeBpEgeGWyiE65zbNdRLQaGXDf/vvw4Z9/uKHMOFGdwE+nPwM1v4P4STa9gQ+8xAiJGfhZ5tXkwY4fBEVWIyW2ussVJEe2uT9LBCNIvmdgtlojhtq4+AX6vY/4/wt7Hj+CrXftIK3I4uueMbH1rh0tkySmIE1UJ2C5FjdoD6aJRy1LZ1BV5vAgsVJjVhFm0vEcpBrMWZWPrgCASkwqcckmN4s0vXk0IyPsBreQPJy5wBoD4srMDJleHQdVb848KLGTzbG8QEFKq4BdhSQB2bOJGXqoRAiSmvd55kzUpJ01mpXYWguJbAW5fpq1NF3n8xvN3bs5MdDpMTw+/jgn9uy8s8aCcBcbU5DCBKkiKkgF2k4/OcU72Wo0tV+za1B6e6HIEm69npS948cMA7dev2legzYD8yE9c7jIFY6+jA4jS16fiV4oHiFA7tQUfJ8oSGxwsS1bmK5Ph7LCAFKOdnzyftTqwg2drWVODWBNSuPPIKPM0OejykmEIFlUzEz3xo/iOR6I89iYHaZqOSibDo6hhw+stSrkv0pPOMTVGEzx99FUa1zpFREo4AZq8yhIK6Yex6hMS7l0U+zRGJRyrRcAmUWXOvbIwl7oEmBBBGloaAhf+tKXsH37drz2ta+F53n4j//4D5x99tm46aabMDvbGKyV4PigDgygcP1vAwCmK3OERB4HQQIaJ0YP0qRqPrA2E1aQAECnPpIx6TQoNMNKphfZjDkDv16HJ5EFSKULbVYY+MhKB2KSNkcMQbKL5KKqLHTMxByYKwuKfc8Y/j5m65RsMR/HecQ/t8EmYyh81wdYtkklXGJza06gIClWaJgvQyBR68gdeTTUbRSFLAGD3hQe+PpOBD09jUf/4Dd3wfPmP1f9qX6k1TR8+DhcPswN2kxGZ16YuUtstOwVO3KlDnNW5eU1W7ZQc2NKbCyZmd5wm5XYWIt/X7Y9BIk1BgBo+Bywr1/x+xvh09PclCgKnWy26Ya62JiSkNlEvHo5k9yEpJzLPUhyT9ik3azExpSAlW1RkChBmqrzTjZz9x5OkFJpHacXTofjO3jo8EPk9aQ1AB5csBEyjR4kwyOvKSixCQpSLy0vTU/xTZHh0Gwop8Jv0Fs2j+ILb7uIhx0yjPSkWm7xZ2A+pMf2ExIkS0TNZqWsenptMEh3ehq+I5EZZFxBqsP13YZr13RN+HQQcNUUCJLYXGFXAd+HL5TYLI+sB6KC5Hs+LJc8R2og1/Jrmw+sxFYVVM0JunnUdQN6itz2LbpuMQUJAGTVg9qX4QTJUmqxClKwfhnN89Io9NpRPuaFl9joWJeKRTYOKRQhzZEC3ykclzNs8+bN2Lp1K7Zu3YpzzjkH9Xodd955J9avX4/Pfe5zsO3WavwJ5kb/O94BAChLjR6kgCAtrMTWDAO0fXiqQomBWGKjOyJDJhf3pLSKmPsAoFaH7PmYNWdhl4pwqXKiUmKkKjIyNOOH3QDjZzqxGn5AkJwSuWBKeqUhHDCKVsdMzJsFBUDWZjFhPRv+5ulXAgA2u0/wb7ladNQIVZCqNj8Pjmw1KEi+7wsmbQNSZe7jAYAx62WolIC5EsdbLTNKkhT4kMoHeYktUJBYiW2OoEia49Qwk873qYKkhcoVFTumxEZ3pjmdfJaadc3xFv90e0psAGkMkK89jIo+E/q+lzGx5b2bcdYlw9AVtog3b/UXs5DEHCQ+sPc8ZqCnu/SsHaQW53RYdMT7QHquElt7PEgAkKMDj0vTJtQRosyae3ZztU8zVLxy9SsBgJfZetIaIAdrepzyq3mUCAhdbD1MQerrBQA4k40ESXWqoRv0ls2jePCm1+D/vOfl+PxbL8D/ec/L8eBNr1kQOQICBWnb/mn+GmRZ4nElpjYqpHzP8jEjnkGOT6KjlKJlNubVA4ByTbh9amnwa9OqAKUxSPUZpOQZ8i2Hjh4qBwSJGNrpLLzB9rW4p3UhLJKS64kSuV6H8gb0DO0spdeVeP71HgeSnoE5j4IkKuC1eUpsE14PDJl8Fhw1Ax+AZ5NzV7XJdZGWZ+dMge8UTsg6f+211+KJJ57AXXfdheHhYUxNTeGv/uqvcNZZZ+Eb3/hGu47xlEXqrLOQ2nQaTJbyfAIZSPNhgJoXgxIbbbn0XZ7JkwZZLErSCJRcsOPJ1MnOuzg7IYwZCXZX3KhtkkWWK0iiB4mqDSJB8mmJraz28B1/YwwC+brVMROtZkGVohkoI+cBqR70SCV4dAfpsnp61KRdNeHRLjZHtht2oZZnwfFpi7hn4IjXO+/xVNzWFtDKTGvdQKyT7VDpUJCBRFXDDC+xNVeQWIktJUVKbE4dvguYRRUO3S3aSp23BYtgO9McnT9XNuM3VtOCybadGD03h/+46BN48ZU/xYuXPIC7N/0DVr23zrsh5z0PWgYaVdIcMxjt0CMQJH3lCNTVa2DRIFI3VSHDOgHM0hb4DB1om43JDKtZLqZoOWrBXWwxYB6k8lQdGleQghKbZih41epXAQAePPQgXM9FIaVCoqNxFEkJt3zzEhu58Ue72ACihgPAoYM78eiRRwEAhksVJLuK7fVdEKHIEq5YP4A3XrAKV6wfaLmsJoJlIVWE8hoAocRWgJIia4c7W+SKhpcl75NikL8ZJUgBMdBQqgvlN0kKG7XHnwEAHJXIuaqbpFjuFQOCxHw+smvBGDrxFG0RI0KZDQi6/wbzBvQs+RnzIDG7BAAomgtfSYcVpBiCxK5d39ObK6wU26SXYUoi59+XFLiKAc+W4NoS6hIlSEaNpMB3GU64t1CWZbznPe/Brl278LGPfQzpdBr79u3DH/7hH+Kyyy5rxzG2Dfv27cOf/MmfYN26dUin01i/fj1uvfVWWJbV6UNritSVF8KXFMiejbRGb6q2DWeCqCsLNWk3w0COXMiTdDGGagB0Z48qWSSyHlE66tIAJE2DRG+Mgx7ZdRVnxnlpKUSQBKO25Vp8OGe8giSUYqj/qar1kyiA925Gyg/faFOoLmjMRKtZUPV6JDpBVoC1pBMJEllY2FDLBgWpYs6pIFXF1+jpeNw/u+l4CADwfMAst3aTkMf2tvQ40agdVZBy85bYApO2AS+sINk1mCUV8CV+s7GU+pwKUg/9nDVbaGcFk207MZIdgS/5eCH9BB5I/xCHe3bjguHz+c95qbHpwNocV5As0+Xt+IdnqvBZHo6egXLZK+FLCnzfhWMFJespLVCPALHjMzjvTAHI6ArvJjsRcAVpqg5lmOzYncNjfMyInlJw4fCFyGk5TNWnsGNyB1HEKEHKaJlwaCAtLRnU+OtYHlzXC3exrSCfqz17t6Pu0jl9goL0qef+gcyAbCPWDmShCsSKkWtu0q75UM8gs9m8qgmHqkFemnwWNUqOo51sgTlZ554zDtGoPb4DALCXEgDPA2wtG1KQxBRtZaC9GUDM0M862ViJbSifgkY3t7bpoXjvvZj9jjC4/Egau7/wEqrjVBFsYtLmGx7PmHPINACULeBv7bdCBs2PUtNwbQl2ReEdbJm1G8ga22VoW/hCNpvFJz/5Sbzwwgt4xzveAUmS8Nhjj/Gfz1BZuZN47rnn4Hke7rrrLjzzzDP4u7/7O3zxi1/ELbfc0ulDawqX7vJS9SkUv383AMAenwA8D5Kut+3CGsiSm89kWTA6Z9m4kWNAbQY5n5Ayh5YLmA9p2CMXXGnmaKAgacFHi2ch1Z0QOQh3sVEFyQkUENbFVtfJ7mr9hUO4NnU/Lnzic9i87+u48InP4XVDjy0o/4hlQUlNS1WAZ/egMnta4/cpQTKoyZHtur0qSZvlBKlc4/PoHLnRg8R2oZpsAJAxXXfJeAgAUZLE9LKD2TNg1Kfj09YBwPdh1KcwoMTPj4pCLLEdqwYp2kALJTajAIWSxJTnBDOtKhXAIf4jAJBWnQ6AKEghUkjBCFJvinyOmnWxLZqClCWbi33Ffag5NeS1PNb1BEN/s/MpSHrQxXbb93fixWPkpvHpe17Asy/RsqmWBc65GACgOrNwZqgnplDApD0DgPiPgGAjIf49pgCM9qTaMpop10c+s47lwe8PShqigqTJGn5jFfms//zAz9GT1riCFCqvAYCiA5IMTQreX7vukmG19HvSIO3CrZLPruKp0KgnR3WqKKWFGZBtgqbIOH1FcKwNClLFgXTe9QD1N1olOk8wRdYynTaXMI8YQ9B9qqNYt8OZgOImjypIz/urUZfp39ALIQWJESTNrrRtzAgDI0hjM+ES22DegF4g15tZ9XHogzfCK4cJkFNyUDtCXjdr84+CE0W3hVlspoN7/MugGuSeQMIiZdhlFRbdHGVWnXFcr3Ox0fYo65UrV+J//a//hUcffRRXXx3ks3zgAx/ADTfcgB07drT7T7aMLVu24N/+7d9w7bXX4owzzsAb3vAGfPjDH8Z3v/vdjh3TfCiWyFuUqk9i6qv/Dt/zeEikNjoKqU1p5KzExk3aQDgLaWoPUtSDpHpkMZHzZDEZpHJ5ZfZYMKhWUJDyQumA7TwMxQhnA8UoSCpdnKxUID/royPom9mFoX0PoG9mF4zTG4nMXGBZUAAaSBL5WoI5fj1qtg870r1kriE3jaxEzoNDZWM4DnzLCkza5QpXkGylscTGFpyUQqTu2ZodjIeIxAoUtSG8374RY2tfiY27v0W+2aTMuHH3t6EPtaaQMQXpYEnwIGWiXWzNQxI9+vZqnstLbH6lShSkWUpkRsjfsJp5kOjOtC9VmPPvsTb/3jYrSGwOHcNphdNCN7y4klcIWoYrSNVq+DGqS25MjxyqwVlzFnm+6gywj2RPKX3hkEgAsWN5eEhkG/xHALku03mqogjXlUiQAPAy2y8O/gJZQ4VEk9AlPwVXbASgpSVFcqFqdEBzzUHNclCgKfK7DPIaeuilzdQj+B5Up45yyuczINuJDYOBDYB9dpgHyXU8uBteB4XOTrKK5Ny7VAVKU79bMw+S7+mwXR91cZK9OI+NEqRn/TWoK/S86D3wTZOsFQDqbMyIU4XahkG1IjhBipTYhgoG9B5Srrccten0C1Yet6Qa7zYVIXaxzTdqhH2elSw5t7aagXfGb8F62XuDDKRCezc/7cKizfq48MIL8ZOf/AT/7//9P5x11lnwPA/f/e53ccEFF+Ctb30rnn322fmfZAkwOzuL/nk+nKZpolgshv4tFYolsmCl7WlYe/ei8uCD3KCttsmgDQQmbV5iAwIfUvUYMLkHKZm8bo1eD0qe3Nj6XXIx1opTgUlbDz5aYlgk23k07ER5FxtVkFwbuk2IhZ0KdlfqyEjo1xYypJahWRbUcGYYd77yTjilzfR4wze9cs/ZmPGzQTlByFn1qtVAQSpVBAXJbFpiy9BzwIMixViBN/1P4J0/wCfXfx33eJfBOuc8rFTHsXnnv8KIPJ9hTmPzzn/FSnUcmUsubukctGTSniMDyKZqhuK6gYJUpSU2qiBhgLxX9jwltoEM+Rw162Kb4Sbt9i6ivzz0yxBJfmbyGVz3net4uYd9bpvtkD0tGxq5IiINcsx3/eoIKjRQMGXOIP/g0wAaM5DEv1euNypI7fAfMbBOtroSeE84QaIq1pWrroQECc9PP483/csPuYJ0cNLFlXfcj607hGHOWhqeL/MKyYHnpuBaNRhUZTyWI8+ZrwKS78NwyGtRnSqqhg+PlsJa9Qe2ivVDwRpTsxy4ng/NULhX0XzpOe5DMhlBou9JJkPOUYMHiW3gfHJ9F4UAXE6Q6jPAsRcAAM97p8GiHw6ThUVSxaZ2lI6K8kx+DbULrNX/SJF8fo6WghKb3kfWU19W4UUCbAGiWjOCtHaigorVeO2KXWxV221KtIBgHTEy5G85ahpuahXsigpb796QSGARCRLD9ddfj6effhr/+I//iBUrVsDzPHzrW9/Cueeei//yX/7LYv/5ObFnzx78wz/8A973vvfN+bjbbrsNPT09/N+aNWuW6AiBYpksXP2ryFU29ZWvHleK9nxYQRWkqYoZtIqLnWyTu0mnAQDVJj9nClIfjaXfe+RZocQmKEjMg2Q6XKJmY0Y4oiZtGi/g+hKkdC9/mDYaJkjaaQtTkBjisqC2vmkrrlt3LbJU/Yp6DKq2h197L+Np2o7tQ0qR4/ZKJW5Q9mp1uHJzkzZbZHNUNSvVnSBrh8UKnPv7wLqrULTIuc5nDAzfcjOGjj2JV/z6v+HCJz6HTTu/jAuf+Bxe8etbMXTsSQzfcjMkpbU6PiNIJavE824a2vznkM5NmsUkOREPklOHOUNeu99Lns9SzNgSG/+7GVKynS8HqV1t/gDJwvrQzz4Um4X1oZ99CPftvy/ovmyyQ36pLPESmxa5P6Tp9w+UJezeT95/w5xG3+N7AABqb1+jgsTa/C2H33CYgsTC/9oBloVUqUuQ0rTtOqIg9aX6cFqWpM3P+E8BdECr7xo4MlvH+7+2jZOkPfXL8dWjd8GiY4d+9rXn8cezOeypvxw+JPSvIgqa4gPZGmA45POi2aS8xtCqP7AVbN0xhv94OMjn+88dR3DlHffjnmeO8DJb/e6PQdXJe8tKbC6NKclZpOwcHTfC1i8V5ByG1gimgh9+AvAc2FoBY+iHQzeLdp68PmbSr02Sz7+htq+0yMAUJPb5OSp0sWl9wXkWs8qC7xkAvb5z1XqDguT7vuDFIoqi6cRnhXmez0v1zP/lqBl4pRKsAwe7OkUbWAKCBACKouADH/gAdu/ejb/+67+GYRjwPA9f//rX2/L8H//4xyFJ0pz/RD8UABw+fBhbtmzBDTfcgHe/+91zPv/NN9+M2dlZ/u/AgQNtOe5WUKqSi27oolFAllH55S8x+8P/BAD4rgffbc/F1Uc9SJ4flDS4glRhBIlOX6eyMlOQ9h0mcvKuw09zk/ahenCO+MJfd+JDIoHGEluFhkSigGwquHjUobDqcyIkMZoFpdAtMPNMhXaHICbiX3mboLPW7nrgv/GKNDHXlsmujC4wjmJh1or3IOWE7JRiE/WEjWjJpzQUrr0Wqz7/OWjDQ+ib2YWRicfRN7ML2vAQVn3+c2SmX4vIaBn0i6VLWUeB7nCZgjSXdF4BOVd+KDCzCq84DbtC/Ry5XgDxXWyWa8H2yGsbypLHicRARDAqoj2LaCtZWHc8cgcy9MbWtPTnaLybT/PD5doMjUGoQUdpmhqTzWmorNwwh4Lk++DhhocXQUFiPqTylAmNGbV5mz9tR/d8jI0RP5aae44rSL5n8LP2ie/vxK7HJ7D10B+j4oW9kBlfxtaZv8Ye92pctOblqKbI+empIqQgldOktD2SGSEzINuArTvG8P6vbQvWMQpG7GjHPUwvG7T600wjVybnJn/4lwAaTdqsxKbKlCDFKUgHSODhbOFMABI8+jmy6HrKxo3UqQG/TTNqQxgRSmy+7wdt/gUDUn4EGi1/OtGNqvA9yXMxlbMa1N9oFy6ApmGRVcHAzeZ5OmoabrkE+8AB7kFiZd9uw5IQJIZ8Po/bb78dzz33HN761re27Xn//M//HM8+++yc/zZv3swff/jwYVx99dW44oor8KUvfWne5zcMA4VCIfRvqVCsE5Wmf10vUvQ1WLt3k59973vY/ZvXoHjvvSf8dzRF5om53KjNFaRjwORuXmKTLA++7+OwRG78Gt3hpyxwBeneg1t5qSIvdOfEjhkBghKb7wKuzQnSMb/Ab9jFe+/FwQ/eGPq1F3/7+ra8fhGsWyhaYqtaDh72NnEFyarZAkGiqbymDE8O2qDjkrQ5QdKy/KY4G+2IoWDHwM5h4dprseEn9+G0r3wFK++8E6d95SvY8JP7FkSOGFirP0B278wEHCgn8cTA932UfEqQXD80csV8cR8AQMlIcGjhyaImbZH8iONXBrMF+rxomOvkuB4/B+0qsc2XheWDeGLqCrnOqk3OQzbX06TE5iNDv1/zU5Br5CasCZ8Dr17HFDXHMwUprSlgjVfs3I8tgoLESmyl6TovWQclNvK+PrJ3CtPHSLSGkt0NSaVGXnpD9AEcmanjp//nefqscX4+H7+cfhskyNBoJxshSCwksooyJU43XXYT36CcCFzPxye+vzM2I519b7Y6AwCo+3lOkPjv02u3t04aUpqV2HRGkIQZdoGCtJ38bo5Gk6TJ67JTvQCCgbV1Wv4y0u3v3mIltiqNiWBREUP5FJAb4uNGXLXxc+VQb6Ti1fHsaVLDqCSRMBn0PDRTm9nmQpaATFZQkGaLsA4dgk2T1TPLXUH61re+1bY/etppp+F//+//jV//+tf8ewcPHsRDDz10XM+3YsUKnH322XP+S9FSyKFDh/DqV78aF110Ef7t3/4NcptMzosB23JRtckHSNqzB/Wnnmp4jDM+jkMfvLEtJKFpFlIl7EGCB9SrFh6afYI8jNqG0pYvzCCzeWcK72ITTNpNPUgAUZFoi/+kX0DOUFG8914c+uCNcI+GfQrtfP0MbPZUtMRWsVw876+GL5ObuH3sYKCeMAXJS8GlGUiyIsGXvKYm7YyW4aSU+WyiYDdKVqYEgpl9Pb/9emQvv6zlsloUq/Kr+P+Lwyhz83iQ6raHkk9LEo7ECZJfraK+Zx8AwBg0eCaOrZjw4YdD9qj/KKNmkDU0nnUTJWUicWzXqJFWvS6+UqTHFL87PmPVUECQhDtyCsF72VMoQKqR39dp1xoAlO65Bx/45FO47HmPEyRJkkJGbd/3gxJbWxUklqYdKEjREttEqQ7PHIZn90CSHaj5nQACxQAAVjsy7LKN5uGlMspOH8Z2zaAwTGwJa5wenoGk2lU4+RQ+++rP4pq117TltT2yd4r7tuLgA/B8ck5FBYnBkci56fMJgWiWg2TQ0SFhBYkSJPo5n8iQkFCJEiAzMrC2To39RhtLxwxpXeFdn08dohtZRSIBkuk+6NR07ygpINIdyRQkNa/Dl6UGBYl9nVbTyOjkbzRTkNj1nDWCFHNbS8PcuxeOJ3Ov5rIvsb3lLW/Bueee21aidMkll+Cll17C+9//fmzYsAH33dfeLIwoDh8+jFe/+tVYs2YN7rzzThw9ehRHjhzBkSNHFvXvHi9Kx8iHWJcqmP5f345/EN2Vj3/qthMut63gadqRcSMTOwGrDEVyYNN92GP7n8BRhZqNqeAkKki2bPHOFDEHKTAoRxQk2i5MfrnGFaRJ9CCnSRj/1G3xLe5tfP0MhXR8ia1qOvAho6iShc4+ejBQT0pkEXJdo8GoXnNqMN0gPoGfAzXDF7FoOYCBK0ip9i+iK7NBeVKRFN5mzUtsths7umS2ZqMk0d2gEwRFAkD9+X0AAGMoDZuOnXAU8trFhTZI0c5BkiTu+4qqdqzFP59SoSrt2cy06nXpNwhxaWbSVowsL7GpQomNldcA4MO/fT4q01Q1rYUjGHqKLv7qux56fhU0rIhG7WLd4f6NlYugIJWn61BoyZplemm0E20onwIgwSkTH5KSIo0hIkHK+s2IURiVogm1n3RO3XzmB3DDWlI90JwKrjn3d9tGjoCgW2vO46GEoO7n+bgRBpsSpAFKkCp2BXUheoSR/BQlEWEPUnjTdyS1HgCgUHOySYcye2UWqkkH1Rba996KYCNHnjpA1qbBnEFUYkmCrpLj7vkvvw91ONzN6feR0rveT0cARXKQxPUrM09WGNtk5QxVMGln4BWL3H+kGgon5t2GllecjRs34plnnsFb3/pWnH766bjlllvwzDPPHNcfrVQq+NrXvobXve512LBhA770pS/BdV1s2LBh/l8+Adx7773YvXs37r//fqxevRqjo6P8XzeiOEmHQ/pH4R6bI9/G9+EcOYLqY4+f0N/jrf7RcSMlYsacUIZQpbkhx6anUKVrZZY+PG2BkwOXjiY4Wj0a6mITdx8hSBLAvicSJL+A4X3PwZmLxLbp9TMwtSYknyNYBKbpjdOeORooSJQgeY7Bd0WarkCRyIUvqkjiLDpGkNi8sfDL8gUP0omHBIq4b/99+NYLwWZn28Q23sHF2vx9H7EhcLM1GyXQPB1XBgwDoEps7QVijDVGclxBknTymQkRJLro5ukiyQhgVLWarbU/JHK+LCzmiTkjfy451qZt/sEsNpG+pilBcmUDr1y9Ar4vAb4Hwwp3v8qgHUN/9yVO7sV5bCwksjej8RtRO5CjadqV6TqmvkE+A0xBOvqJ/4bivffisnX9GO1JwS2dHfpdSakA8CABSLXoG8kWDCj95JrxpmcwQEcnqU4Vam/7RmwAjNjNjYMgGxzTyzUqSNR83ZMvQJcbW/1FcgBEvIN6mCAd1EiHrU69N6ZEfselWUgsOD7d2745bCJYNMRTB2cAAIMCEdM18rrV1UNByf6NIzjt6mMYePebAAApulEs2+VQeZxtbrJalpfjm20iwgpSQJAA8A62TJf6j4AFEKRnnnkGd955JwYGBvDSSy/hjjvuwHnnnYezzz4b73rXu/BP//RPeOihh7B7925MTk7C8zxUKhUcOHAATz31FL797W/jpptuwtVXX42hoSG8853vxD333APHcbBlyxZs374df/iHf7iYrxXvete74Pt+7L9uRJEqSDm3tZKAc7S1xzVDY4ktHH9wQFoFNn4o5/aiQq83riDZCEZsKOQ5BjOD/OZeFrrYGkpsQHhgreBByldaG4J8oq+fgZXYSg0mbXKxT6cJobZLRcgZOm6E7gpdRxMUJAU9dMSE6EMSF1lWNorzIJmOB9sln81cGwkS6+AqRm7YrIPrl4d/ylX3OG/BbM3GjE/efB8yPMGHZB4ipdHUaIEPLpXp2AbRqM0H1dKbCiNlUTIyTcP0+toYEjl/FhbxxBRSlEg0DYoMZrFpvgRDlfF3b7kA/3QDIRWKkcGxXz0BADCsWch+Y6ePDMA9Ms7JvVhiG5thIZHtK68BxO8hSz58SKjRGWSMIEmTR3Dogzeict+Pcev1mwC5HhJu9b5Hkd1wB5T8Drz3TS+jMxKbrZ8+cqkqRjf2QqEKkjs1CbPKAhLDc9jaAUbsmk8sBFTqMax7YQ+SJ8lwQa5d/bU3oT9N1j+RIDEFKavFKEi6oIr3rcOMQ86pQQmAAxWurPOBtWxQbbqNg2pFMKP2k5QgDeUD9U+n16RVKgUl+zM1ZIct2B75vXSW+c38ICATCDXaZOZp6GCRFWKJjWcsdXkHG7AAgqSqKj70oQ9h7969uOOOO7BmzRr4vo8XXngB//7v/46/+Iu/wFVXXYWzzjoLQ0ND0DQNhUIBp59+Oi688EK85S1vwZ133omf//znqNVqkGUZv/d7v4df/epX+OEPfxgyUScgKB4jF2NBmX+YKQCogyfWJsuzkJhJm5XYKPZjFDWqIK1ST+OBYxna3psyRQXJ4Z0pIYIU2YGFoAk1fOpBmkIBWovhhyf6+hmYSTvaWcbIQpWWaGxXg0yleE6QbDUUlsk6w+IUpKyWRQ8NpJuJUZBYuUmSgvEfJ4pWOrg+/einkeUdXPEK0owU7EYdywvKbPRp9VX9sOnxswRdsdWftQ4zBSkuJBEIWvx72hwSOVcWFvPEzJsormdCHqRzVhbwuxeuwgUj9Fi1LEpjMwDQkF0VBSP3WaHEdpgqSCt72lyC8T0YJlGk2ZxH1sWm0HLS+Kdug5p5GunVX28gG7I6i/Tqr0Hr2RnMSER8m/crNu+GLEtQqYLkTE2jXqGfC6f9BEmRJULs0OiMYl//5vl0Bt2q14QmETD/JABo5/027/KMI0isAzVUhhdV8dww6ib57GYyKp8sYOoFuJQg2ZSMpYfaq6IxjFLFiG14RYLEzPhWWYjfoNen6RAik87oXAEXy2yiTSJD41yqTcaNsDUzZygw6Lpq07Xf6vIMJOA4utiy2Sw+8pGP4MUXX8SPfvQj/NEf/RHWrl3bVJkR/6VSKbzqVa/Cpz/9aezfvx/f/va3cfnlly/G6zopUDpKmHp/7jDU4aEGMx2HJEEdGWk5JLAZGtK0jTzxBlG86I1wgmRWXNxw4TsBBCW2lO1zD5IjW7wzJc8VmfkUJCELSSixaRdcRLptFvn1MzQzabNdkk4Jn+WlITtk8WTz2FxbCXmQeo1eAGGCJJq0Aw9So0mbKVg5XW1pEG8raLWDK5XfT441Rj0p1mzMIBPMVrLcUNCdlnWg5PJcQdJTbBFt3IWyQbXZmJBEIFDW2qkgMTTLwmKemHmH1eq5UIntnJVELeRRFXoGdYXcBOYjSIzci5sJriC10X8EANXHHodBNyB1gyo7VEFSXJOXrL/97f9OfiGGaUiQcMcjd+D08wew5bKnkJUjw53hAZAwXSMERB0gZMOdFBQkpwqlt6etrw0AtmwexRfedhFXUBhGelL4wtsuwgXryTHVlUGoH/hx8IB+siGUFQmKKnOCJI4bYZ/hvEEJEivD77wb+PkdwXMdeBg3PX8DrpMfQdrQkOkha4Jl9MArlUiSN10nMiOLRJAi6euDooJEN2ZWVfBs0Q5jyybXmpHW+PUplsdFBYkpv806PVmDQ85Qef6U00CQurfEdtzbUlmWcd111+G6664DQLrDHnroIRw8eBBHjx7F1NQUUqkUBgcHMTg4iHPPPReXXHIJNK17T0a3oXiMXIwFdQL9t9yMQzd+iJAEUfOmpGEhIYHNMBA1aUsSkB4AysSDJDl11OhcoXrZwuXnvQYv4rPImeQY0hYwTQnV+y5+L7/RiMbTpiZtILbENukXkM+SkMRDH7xxUV8/Q5CDFK8gsRu+7acg18m58SoVoBdwLYl3sam6wgnS8ZTYmJrSzvJaqx1cukF2jHHkYLZmYwaEHJi+BtsMEySjxwHUFPcgaSkFsMKLLGsdztE2X0YMoiW96UVK0WZgWVhxCJK0myhIWoabtHUfOGMljf+wKEHS0rAKwwAOcMUmCh+AJpB7UUlr95gRBufoUaRMQmjqqT74iBAkhmNTwHD8HpoR6W0T23Dp2hLW7X8vxjbchMrZ78JP902i59dfwmT5jXj82ZVYf7iMFJ1W4ExP8Sn26iKU2Bi2bB7FazeN4JG9U5go1TGUT+Gydf1QZAn7dxDCY1btkILk9xNliRmGWT6VmIXENng9KUFB2nk38M13IFpq7HGO4gva5/DLqbU42nM+isfqsPQC3HIJ9RmWyO0hvbJ9AZkiRiMEUfRn6Vny/7aoXFOCZNoKAAd6WkHOymHWnA2FRXKCpGYh63NfIxXBg6RTBcmha7+9DEpsbVt5V61ahRtuuKFdT3fKw/d9FCfJzaFgzKJw3Rbg8zLGP3VbyLCsDg9j+JabjysHJwruQWIm7Z13kwwkio/IX8NPVQk7zd9DrWxDzpEFJGvJ+PK1/xPWF/6EJ0i/fM1l/PfYDd5yPZSsoL27ATwsMiixHUMPsoZKXt/nP7eor58hKLHFK0gpJhX7acjVQwAy8GpVQpBMCZ7MTNoyCga5aYYIkmjSZgRpjhJbOw3arXZwZRRyQ2vmQZr1yZgN08/BMZ1QJ5vRY8OVM/AccsMw0hpQjPcgMYLE0rujXWztDolcCObLgyKz2MIlNgCBgqRlUZ6hGWHmDDyEJXuisYTJvTj/LSixtZcgqYODSNVpic3oJ6ov7SAVCdJ0C9aYo9WjgJaGLHlY1XMIuHQEP5ot4ezU48jbo9hnXoaf/vtz+K03UqVqciqiIPW29bWJUGQJV6xvHObNk7QrNiRdJ0mNlgWX5v8wgjSXB6nXICenXK0DW29CnA9LBnmPL372Dvyil5jhTTqwtjpGSJfq1qH19Z7wa41DI0ESFKQcVXHEEjr93FoW+SwYGQ05nypIwrgRHtWiZyHPY9KO62JzFQOeJMPSuzsDCWgjQUrQXphVB5ZJ6vr5NFWSrr0W+d/8TVQfexzO0aNQBweRueTitiknK8QSW5Nd0QqZlGfqYwegFE4n33RdXFw4B087gv9GGDUi+mdK1hwKEgstqx7jF+ukX+Ay7mK/fobmOUjkYk+lVdQB2MhAli0AGXgVsnB6dY97GUQFKeRBEhQkf442fzFFu11gHVwT1YlYH5IECcOZYfSbZ2E3Zpp6kIrIQpXIQulUypAy4ffT9IKbejpNFmaxxCa2+QPxk+yBgCAtRoltPsyXBwVZhkLb4lVI2DhEGYVQYquM0ynqb3k9pu76CVYImXtTeeDQu6/DJoHc5wW1leX5RG90J4rMJRcjY5ApBvVUH1ePAEBxLTKMeLAPz66ZvzliMDMYtLdTBaJqOeiRq7i48CUcmr0U43uLeP6FHFIAnJkZmNSDpNmVRSVIzcBGXtSLdez+zWsANjz20BFgMPBhMQUproutL5MDUMHaylNA/XDTvyVLQKZ2BJk+8hyW3gO3PIHKOPla8+ptGzgeRbTEOFQQCFK+AMCEZQprAFOQLPKZ1tMKshZ5b0UFic/TVLMAJ0jz5yCZD/4MjHI4apqbtLHvOQBLN75rIejelMRTHMygnZan+QBJoH0hgXFgJbZSzYT/o/hdUYaG59UO74ekawAtmbqlEjTT4XV1RQ+MC7IsBOC1oiDNkFbxuq+hghTyRnBzXMzXz8BykBqTtMkikKYLrIUsZJoQ6NXJourWPa4gNfMgxZu04zxIwe6rXWi1gytH5x808yCZ0KFK5Jhnf/kQqr/6Ff/55LN57PrUVgDkHGRpd09cDlKe+hDy85i0O6EgZYUSW1weFABApTPpIEFj55PttrU0ynTMyPCrX44/+4CCj/+hjMKnbsX3//JS/NkHFHivvCz0dOE2fzpmpM0lNklRMPKm1wEA6kZ/UF5z6tzmt+pv/iuGciPzRiFcNHRRuDQOcr7yqCKnTOIVV5Nr5ZH7jqCWGiBdXPRcqr4JObc4HVxzIcUSnR0J1vgE/z47D/6h/Sjee2+8B4leuwNp2qJuBgr7XMho5PNu6QV4pTLqdFCtJjWfd3iiyOgqCsK948BUDS4993oP8X5ZlkwsC54LUGJoUVuSnlb59dnUg9RiiW3dzkcw9pc3cvLpqBne5l/+139u+zSEdiEhSF0K1uLfo4wD+tIsIj1pkmh8mfwcpFL8rihN07TrdgrSS7+CQhc4d2oKsB2uIB2shufVcT+HHZCDBjCT9gz53WPogSxJSGlL+zHlOUhN2vyzdIG1XQ2SSglSjWbf1JyQghTX5h+XpD1ba1woF6PEBpx4BxfzS8kK+dnEV74Nvx4O6DPLNGdFcvl7HZeDxH6WbUKQghLb0itIWUH5bNalYwu7f5udK0oUfDWL8gz5XOT7UkjpGexcK8N77W9gx2mAL0s8RZv/TXoe9k9WYDkeJAkYXoQgweFrXgEAMNMDQQeba0IdHsaqz38OvddtaUqkfZ9snfh4ELaxocSwYjkoUHXxnJf3Y+XGXjiWhxfOeTsslU4G8ByURjbFZr8uNjQjeD2OsFFzBB/W+Kduw4BGyoJxCtKKLLm577fzLf3NTD95HCmxFVGdJJ9/XWn/oFqGrTvGQsTlz/73Nlx5x/3YumMMGu1AtrwUUJ8NhoQDME1WGlf59SmOGxHXr/S8JTYXsu/hzG/9C+D7UJ1gBhxTkHS71Nag33YiIUhdChYSmVfGGwLIFguyLKEvo2MIM00fw8aN1LwCUB6HXCAfcvvIOO9gA4BtU+HhwOwmL/pvGsB2olRBmqRz2KRm3WuLhIIwGkVUDthik8ux1ynBUwkZ8qokL8at2oKCFBCkZiU2HhRZsxryuBYzRXu+Dq7sHOUlRpAUmQ76lBvVHTbjSS5NIUNvwCGTdrTNXxhoLGKmgwpSSpP5bLRmZbaqr0GhwZA2K0fS97fm9xAflgRkewyumlbtasOgWga2kdg1Tm6ggzkDutr+ZZqFRTpKCj23fBIAYKzoDc31a0akfacHf7H5vwcJ2FEFqe6gQIehSpleXP22s6GoMibzG/HopbeQ55BVbFv/J/jqLQ9hz/YJLCXq27ZBpe+RLWzURKO6c+QI+l4gXkdGkHw/GJczSAnSr5yz4OVXotm4Fc8H7OxKZM8gieSW0QO3XEZ9lo4sMWJ/7YTBBvY6EeWTDezdfpSqRX4GKE+ECJLFRuM0UZDETS5LwG8WhVE2HZxz7EUY00RpU+n5s7UcP/e6WWxr0G87kRCkLgUbM1JQJpaMIAHEhzSB3qY/T0k0BdbPw8sMQcmRC8gZPxIiSI8c/XXo99gN0HRp0JoapyBR0jRLFKRJv8BLL0sJRuZ8HygJN0ae6ZENbtZejsT0e5UyfEcCPF/oYmsssXm+xxdZsc3fdv0GmXqxUrQZWAfXb53xW7h05NLQsFC+8M1BkGSHHK+YH8PAVQmzgpFd5AYTavO3wm3+3O8T2YnOLGKb/3yQJGlOoggA005QanSoZ5ArKS4p0WTyOhRV5puCmlPjnVFRBYm91+xzF23Vbhf0VGCarfWQocVGb7ahZB0l0mc4H0Zl903o8S8KHsSbKyjpsGowWOko1YPe4QzWX0SaA6LDUSszJrbetWNJSZJz9ChUajQWFaRoJ1+uSN7X6fo0PN9D3a1z395AJg9FluBBRvHV/4M+Q5gkMW4y/cpPIkPfR0svAK6L2hT5+8YiXNutDOz90q/2kePx00B5XGgsyMCk8RxGJl5BCidp08/QHCW2fjP4XY1ukGupFaQxwPeC96JNQb/tREKQuhShkMglKrEBpJPtEe9s1FLDiNsVpeQSWChcfcWlIQWJ3ShdycGjRx+B7QUlKnID9GB61FulxSz8bPGko02YgrTUSGkK37WLRm2xZZV1urgrLwQAeKYDl3Z/ePR1aDFt/nUnWGQzagZpTYGmkPMcbfXng2o7cA6yTQgLIBAkmgztxSlIgq8lVySPF7vYmIIUJUiigmQ6LieNnVCQgKDMFmdWL9ZtzNgqb/V37HCJrWyRrrZcHzkXTEGark/zHXlDiS0SCNr2kEgBbGjt1GFyLM3mYYlE+sLBSwDI2D0hzOeKKEhyfQYASVmHnoPn+Tj0wgyaJ24DD35zV3OfV5uhDg5Ci1WQglIjABRWnk6+77uYNWdDBD+tprm/5+jqa4E3fxUohEdWHcEA3m/fCGy6HpkCzR3ScvAkOVCQcu0n/q0M7D1Ew4BtL0MJEm0yUbNwzEBBYl2mzTxI82WFlU0HU0ZQhmQKUjVDNpaaXeHrSLuCftuJhCB1KYqTnVGQBrIGPMj45caP0O9ESJLkwaD+gnrFg5InNwHnSKAguTKZufbMsWBWXyGlAVJAAOI9SOGy2yRt8e8ECkK4JQNr8w8RpFWXAAA8R4JLuz88mpESLbH5fhDZL0FCWk1DkqSmadqL5UFqBVm+8DX3IGkpNqYiRkGiJFF161DowhfnQeJt/kZYOQGC8yFLnSGJ5LhYCaHxBvDs4SKqSPGwyGiJrUw7gBgRYQrSgRJRSDVZ4yVGhmjmVbvHjIjI0zLb1BgjSPOf443D5P16YVxox4sSJDrCxtELgCRhbNcMKjMmmpWhAKA8bWJs18wCX8HxIXPJxdAV8n7aTRQkdWQEhUsv59fvVH2KK79pNQ1FVsJDrTe9AbhxB/DOHwBv+p8w/8vduNL8PO7xLkNGV5HO68QAL8mwtTxMOkJnMQbVtjKw16KBvw4MeMWJoMVfCcZL6WmVb2CYagQINgk1w6Mw4mY2AuS6eWbFGfBWkKBj5kGq0rKtbpfbHvTbTiQEqQvhez73IBWW0IMEAP20fPR49qrYXdG0Moh0DzmeWtmCnCcXkD0+zr0oMm19/tVY0NmUM1RIMpGsZUlGSolZGCKq0jG/0BFyADRmIfm+z2+SWV3hUf3OKFGQfFeGS+daeTp5Haou8wXW8R1U7EooKJN5q5qlabO/nVsED9J8aFZaqtsuTIfs+NIryOuMI0hsN65pEtQLyNBX9tpdz+WLLCNIcS31YgZSu5LEF4q5SmzPHC6iCoPPY2sgSCY1oEcUJEaQBtIDDf46sWMTAFa2OUVbRK6fPPc0JUgsAHUubBwihI55pAA0lNhUSpBcmgFWKQrhk3Og1cedKCRFQe6sdQAAp4kHiWVTieNG2GeWDdoO4kDoZ0NWgHVXAef+PsqjL4dHb69pTYEsS0gzFUkvwHLoz3rbv7a3MrDXEj521sxk0OIvE/O2qstQFJlfn+KoEVFBSmtzl6ArpgtPkqH8xV+R521QkAjRbmfQbzuREKQuRGXWguf4kCQPOeXYknuQADqPTdgVPXj+7Xir9THcfNp/ID1ALqJ62Q4rSNR7o9NF/tdjgQ8pl1IBmSyAGTUTb7yOEKRJv9BQclgqRLOQTMfjnoKMoCA5s2P8d+wq+Z7n0ZwXXUFaTcOgC++sNRt0gAg712ZhkbzE1gGS2MwTxEibJAEGzTfyZL1hDAxTkPIXnINsKmz0FEttzAQaV2Jb7BTtVsA+f3FhkTvHiqj6KR4W6VjMg0QJUpWcg1wvJUhMQSpTghQxaAOBYsXQ7hZ/EXlKkNhImGYlNhEs6+nQTC24KUYUJNUmBMmnBCkr5O/MhVYf1w7kzyC5O25vYEBnBKn/t6/jRnWepl2b5ASfE6QmgbJA0NBhqDIUSu5Zmc3UC1y5Sq9orQtuIWhlYO9wbwqqQj6v1uxMMGZE6iXHTV/bfCU29nlt5kHi0wBeew1Wff5z0KnqzEbcGLKNVZ//XFuDftuJhCB1IXgHW7oGWfKW2IMUGTdCd0XPrbgOD3ubkDF0pGjdvFa2YxWkbIosIE8efTKYXZRSIQkEKRZRgoRCW8dsLARBqz+5wMUdUlpT+Dw255dfBKhczQmSTH6mjpNOvh49aPWPm0XXbNxIJ0tsGU4MwgsfI4yFlAaNlgZTZ66AOjwcepyfJwtgduPpDW3+bDeqyRp0qj7xoEghc6iTLf4MYhZSFExB0jhBCitIlRo5buZBYjfWg6WDABr9R0BciW0xFaQwIWmFIPVldayga8Qu5kMSh0x7HgyHfj/VCwAY3diLbK+BuTxIuT4Doxt7F3L4JwSWpp1901tx2le+gpV33gn9MhJ9kD9vE38cz0KqT4aaK4DmgbJAUHJiJSiAdDICpJONjdtYjEG1rQzsvfX6TdB0um4VZ4NBtRJZq9hYEFZiY55BscmEmLSbd7FZjgeLqs05Og1h9H1/TA+EUI+h61/bteQISAhSV6JEDdr5VGQBWgIM0BIbmwDNwLwoaV3lBKletriC5Ndq3IOUThlYlVsFx3Pw+Dhp3SQlNkqQmr0eNaog9bQ1JHEhCMIiyeLHQyI1BYosQaPT7m0/zcMi7Qr1JbEcpO3/CnguelLUh1QPFKS08Fp7mqRps79d6EiJLX4IJSNxPWkNaorcvKWshg0/uY/caH6jiNOuPoYMndGopxT+fjNyyDpimHoEhMMwmWrFWvz7OmTQBkQvVvg8WI6H3RMlSpCalNjo5yFq0j5UPgQgXkEyVAW6EizLi6kgMW8Ug9ZCiQ0AzqQ+pF3MhyRsbHynBsMh35fS5HMvyxKuestGAJE5igKufPPGJS2jsrDIetXlwbN+lqxlIlFsqcRWb1QX2XqRERTwOAUpM7w4g2rnG9i7ZfMoV3OsciVQkECziaIKEu3MFI3q83WxidcM22iksuFrOb2EquHxIBk10oWYZS3++gz5xlKatOnucLIS9gNUBf9NWiIf8lrZ5l1sAIIxI7qCl4++HN/Z9R08PPYwrlp9FbnRUA+S7+lwPZ9LzxwxHqRoyWGpEPUXcP8RPR7NJbOsbD8FTfXgWTKcKp01xHKQaoeA/Q8Frf7WLC8tiiSxt4lJu7wISdqtIujeak6QtAx5vxzbJwnnl14M/IiQetuh5ykVtArXnBpcz+UkkS2+AClFqLIEx/NRMV3kUxonjD1doCBFzeq7JkqwXR9eKstLbDwo0qrC94FymdyAsr1hk7ZDS7BxCpLr+dBVCZZLzOmLSQ5ZiY2hFQUJIGW2h/ZMCgpScN2atQryIO+vku7l319/4RB+842DePAbL8BMBaQg12fgyjdvxPoLw1lLiw2DfqZM4ZqLKzWK89jE/DJAKLHFKEhsvUwLClKmJ/AgOTTmJL2ICuFcA3sBQE9pABxY5VqgIPlkPWcREOwaZQoSu3YVSYGhGMjo5LVbrgfb9aAJ5J6V13RV5t9nz8vQzYNqgURB6kowBamg04j7JSyxheaxCeA7IkNUkGwo+YAgucKIjZePvhwA8PDYw9i6Ywx3bH2eK0h7xm2e6BpChCBNoYCc0ZmbY9RfwG6QbMekSTTwzE9DVsMlNpcSSFUygfJ4qNW/ZgfyNEMQFhkstK7nc9m6M11s8UnaIQWJzl9zbEp0xbA5i440SCmh11p1qg1z2IBw5lDZJH9jugsUpGZerGcOE59NT09P4EHiClIFpp+HS3+Fe5AipeWogrR1xxiuvON+Xtb0fOBVn/lp43XSJmR79JB1rJUuNgDYOMyM2lRBkhWA+ndqlRIKErnZKpne0O9tePlqvOLh/4oLn/gcNu38Mn7rTQN4+9++YsnJEQCk+MDa4H1lCqCopIkeJF5iUyMlthgPUs1qXmKrpofg08wxY5HJPxvY+8YLVuGK9QOhTameoSW/mg3QrCILNLwxUmLjmxsnSNGWJCmkkEXL0Dw3TvhcRQlSNw+qBRKC1JUIWvxpcFYHutiqlhuSTdmHPaMrSIc8SKKCRAMSNQWXjZIZUy9Mv4AP/J9fYKZq8y42eAZPdA0t/gJBqspZ2FCR67iCxEpsQQYSAGiUHNh+KiixVWnbOyWKmmQBuWEUdCLdz5gzsSbtwIMUkFLRrNwJH5ZYWhITvpmRvCetQc1S/5lLlxEnaC+2qQCpp1Tosg5VokTDrvASm6ggAYJRm96oZmgrdCdN2uwGFzVp76QEqb+vP8hBYiZtu4ayS26s6bwGhY7KiZaWRQWJJR9H82tir5M2QVZk6g0iaKWLDQiM2i+EOtnItVuvllGgCpIsKEgAoPT0QFJk9M3swsjE41i9eahj3YkGLbGxdntAIEhGI0EKtflrzKQd6WITIJbkGViJrZodAQDIvgtV79wtWM9Sk76f5tMLTI98RqMmbYC0+kdHRelU+QUax40EuXHBOYgSQtbZ161ICFIXgodEyiTqfikJUs5QeUiiWGZjZCmrKy0pSP2pfpzZdxYAQM7uIQ+gCpLvGdyu+Ynv7+QDFEWCNCv3kr/XsRwkmsvDTdrB6wcAfYikD4sKkk+Jggty01HzfcDaV3AFqWgWY0et8DZ/Qe4vURVFV2UY6tKTRHbeHc+H5Xr8+2xmXCGtQaXjFhxXBRwrUJAUIyhXpBSy02Q+JLvakIHEkI+MG2GxB73ZzitIUS8WI0gjK/pjS2xldwX5fcHnk4547NjNt5Xk49B10kaIZbZWS2xnUgUp3MlG3l+zVuEKEjNpM0iyDKUvKK8pveGfLyWYklGvzk2QWiqxtaggZaiCZNIOLk2yl3yMkgidEjzLTwPT+8j/e2n6M7oRVDTehVuxK0GKtjAJIcPnsYUVJLbREasA7HkZ0vnObX5aQUKQugyu4/EBlwWJDnxdwhKbJElYkW0ss7FSS1pXkc4xD5IFmZq0AXCTtkovmLWZ8wEASnYXeW6BIAFk8R+breORvXQYpEAapkEMnp02aQclNqqgMQWJKky2l+IECQA8SYZH1RL1tR8F5HCa9lwKUoggUZJQ6FAXnxivIPpvWImtkFahsTEzfgqozwQESUvBZv4DevxiJ1tciQ1oHFg7Xe0GBamxm8/zfOwcIwRp5dCKQEEyXWJCtqsoe4T8iApNQ4mNKkitJB+HrpM2ghnIgdYJEulkI2vA7ogPyayV+Rw20OYEEZwUqSpqTz3dsQGlzKRtVh34lHjGEiTWxTZXiW0OD1JGWL+yPWGir6seOgmmGFpehhMk0yWEWSyFsWu3bJdDLf4M7BqpRnx6bM3MhRSkpMSW4ARQmqoDPlFh0u44+eYSKkhAvFGb7aBDClLJhpIPbnK8e4uWFEb188jXmd0AfG7Shhe+KHjyqzCnaQp0TEOHk7SL9UiJjZI/tojaq14JOR0ctzh2Qz339QDAwyJnzJlQUCRDXJv/Yg6qbQWKLCFF30fRqB3uYqMk0deB2gxp8wYANc0HXjI/BydIjkCQmpbYyN9j5bxu62I7MF1F2XSgqzJGowqSUwfg8xKbSEAaSmxUQWol+Xghj1sIssLxzYxXWx73wQMjGUHSqR+tXkGBJu1HCVLx3nthv0RKOXAcvPTOd2L3b16D4r33nsArOD7wG7UPmDUHnuvBtQlh0YU1h71HVafK5+c1lNjiuthYm39MiY1Bg9XRCfYaVXNsPw3M7AcAWA75POjCxkwMi4xbv9i4kWiJrcxLbMFzaYYCiZbkFFVuuXOyU0gIUpeBldfyA2lILJxryQlSY6u/aNJmsqhje3D1oGwQVZAuHbkYvq9A1mcgaVMNChIDT35Vgu/7rgMZXsdKbDwHiXexRUzabPdlDEG+5C3893iqtEQWAAChcSNxOUhszphIkJhRuVMEUfzbokE5RJCof8LxDaA2Ddj0Bq6lYUUUJLaghjxIehOCVA+btDuZg8RLbMI5YOW1s4bzUFM5IQfJ4yGRlTiCJChIqqSiQIMUW0k+XsjjWsWe7RPY+WDgbXrgm7vw1Vseamlw7MaGVn/qyauX0YNGglS8914c+uCN8K1w84czPo5DH7xxyUmSqin882tWHdhWoOaIClJWy0Knmx4Wz9CKghRXYqv+7CdQ3aCRQTpyoGMEERAUJD8DuOR9MR3yWsVSmDhuJF5BogTJjleQxDXcp5t/gKyhTVIfugYJQeoyFFmL/4AR7MiXsMQGBEbtyRBBCkzamqFAVskuwKx5kHPk+LiCRC+AqzasgmKdTr6X3c1N2j5VkCSQILzL1vUDO+8G/uXV/O9d5T+GB42/wPChziweDTlIEcMh22XadRdyNlgsRJLIR4mwNn9h4GVcknbZdGBTv08nQyIZMjGt/kWxzZ8ujLzERj+vrpKD5wRdbEDgWajaVb7INswhEzrnfN/viqDITEySNutgO2dlAdBz4VEjLAPJJ/PnRA+SuOvuT/VDpmF5rSQf8+ukTdizfQJb79oBK2IwrsyY2HrXjnlJEu9ki5TYXFP0IBGC5Lsuxj91W3wGEv3e+KduW3I1JSiz2bDp9SYrEjfVA8RywHxILOAzzoPkR16bmBsHBARRr8/yx2hOtWMEEQg2L5YXfC4th3xPLIWJCtJxldjoz/dsn8BXb3kINvUn1st2y4S8U0gIUpehxGaw9Qk3Rn3pgiIB8KTcKaHEVhF2RJIkIU0Xl1rJ4p1snBxQWVmRJVyz7jfI97K7uUkbnhFKdFWe+z7wzXcApXCnzgimMLz1Twl5WmKIIXBkDltEQWIlNtMJESRGEjWhOyVUYosxaRcEjw0jIMUuIEhxGUCs5EgUJEqQYMCvTgdhc3LgS9PiPEjMpN3Eg1SqO6jZLjeHd0Obv2hAZf6jTSsLgJYJJ2kzguRRgtTEgyR2sLWafNyQG3ac8DwfD3xj15yPefCbu+YstwWdbGEFyalXGjxI1cceh3PkSPM/5vtwjhxB9bHHW3wF7QHrqKpX7Fj/EQMvhVbJjZyX2FiJ2fVRt8N+opodbChFgqjTOXUAoDqVjhLEQEEScqwsugFMxxCk+RSkhhJbMNybEfLKTDhfr1VC3ikkBKnLwBWkHroYSnLIm7MUGIhRkIIuNpqISs11Yieb2MXG8PbzX0u+l9sDSSGvzfeMINF10xCw9SbEjSHg94OtHwW8pV082O7Q9XxULbfRg5RiBMmFnAlufH6GkANV8B4wglSySpwciF0giixxIsTCEYOQyE6Wlxr9N3ElNgBwyrPCPCfyelVd5m3coRKb3aTNPxUoVsygrSlSqEyx1GD+irCCRFQAoiAJQZGmA1gVEhLp0FErTTxITJVgaCX5uF0Y2zXTcKOKojxtYmzXTNOfs062g9M1cm1Q0iDXp6BJ9FqlBMk5erSl42r1ce0Cy0IyK86cBIkZtX26RjGim9EVTlqjnWxVYUMpEkTDEhQklkrdIYLINi+WLyhIFg10bFJii7MIsHtCQw4SV5DkEybknUKSpN1F8Dwfxw6Sm4ddr8PzZchGrmEQ6GKDmbSP0Xls4iR7drMSs5AMpiCxHCThxrl5xWZktSwqdgXZ/GGYHgBPx//840vJDnzvA0DxcNNjkeADRZJIjXVXtfeFzgE2UsT1fJTqThAUaYQVJCtSYvMLwTRsBkaQfPg4UjlCnz/c8t2b0VCqO7ysxEp73VBiKzclSMHNxCkVeVebLdFxBcKxt6Ig5QQyMsP9R3pHW6F52Y/mQU1WLIwXTUgScNZIAVD9QEEyHcD2YPpZ4stCWEHSBQO/7/twPReKHJzD+ZKP24VKcW5y1Mrj+rM6BrI6JisWdk+UcR79POtV0ljiQoFCvZPq4GBLf6/Vx7ULLAupXrGRqVPldw6CxMAIkiRJKKRUTFdtFGs2hgsBueU5SLoSIn5hBSkY2wEsPUFkKhFTkHwfsCwp9DNg/hJbukmbPyNI6Vm3ZUK+6qzFGb1yvEgUpC4Bq8/OjJNd+CP3zeKrR+/CHus3lvxYBniaNvlQm47H7QOMIMRlIXEFSVBPVFnFpcOXkufxyGvzPQPbXiKjOlAeb+2gWn1cm8AWP4DsDudSkBSRIGWZehKcA03W+CJztEYWwWjLNxs3wsIiO93mDzSWl2zX4//fk9YgyxIUmf6sUhLmOZHXKnaosAU1lKTd0MUWeLFmeAdbZ3NSWNnP88l1wAzapw9kyflRNKgqPQeWB9hVbtBOZQMSed/++3DDD27gz/vQ4Ydw3Xeuw3377wv9vbmSj9v2mlqcfzXf4wKjdpmX2FJ1Uiox1WBjl7nkYqgjI803epIEdWQEmUsubum42gXmszGrc5fYomqfuLmJxoEwiCZtkfhpAkGytAJ8oai61ASRldhs6kFyoMPzyPHM1+Yvrl/ZpiU28rXhtKYMtUrclxIJQeoCNK3Pev3YOvaeJa/PRkts0Un2AMJZSIWIBymSDvvylS8PfS3pR/HYPjpGJReeAt8UrT6ujQiScu0gKJLeMJlJ27U9+ClhWCcdeBk9B6KKBIR3YEBjqz9bXDrV5g80pkiLXXbsuFSaAeVUqzxJmxGkpgoSJUjisFogMMCX607QwZbubE6K2KZdNp2w/4hC08hNhXSxVVD2aEhkPyEY9+2/Dx/62Ye4h4VhojqBD/3sQw0kabExurE3lM8Uh1yfgdGNvXM+hrX6vzBR4iW2jEk2AJYavLeSomD4lpvpFxGSRL8evuVmSMrSllJT3IPkxI4ZYYiOhBHJQXRmIwOfxaapnCBODF6Al04LJtfvP30LHnr5f8fE4AUdIYjcpE0VJMsj16gkhYkiu04rdqUhSRsIjOjNRo2wESvzoVXivpRICFKHMbdhkrw9S12fHeAmbQu+7/MPfkqT+Y5WVJDkDLlY2LDa6DoX7fBIj/4/3F/9ILkxrH0FUFiJRnsqgwQUVpHHLTHycQqSEVaQAMATYhj8DFlMojtRRpAYopk4PZE0bVZi68SYEYZspMWdEaR8SuWfA43yN6da5QZlm3oaxNEV7KYiltiiJJGd74rldEUHG0Am0XMTqulyBWnTaECQVJY6bvvwrWDMSK7XgOu5uP2R2zkxFsG+d8cjd8BdQo+dLEu46i0b53zMlW/eOO8YkDOpgrRbUJBy1jEAgBXpUCxcey1Wff5zUIfDGx11eBirPv85FK69FksNg3uQbFhUsY2bR9esxAY0T9MWPUiSosB85y3YsendcCLKsWn0Ysemd8N85y1LThDFEpvvSzD9YA6bWNZm12nJKgVJ2iEP0twm7b61+bYQ8k4gIUgdxvyGSWlew2S7wRQky/VQMh1+sYvpysyDVNpzEMXvfx9AUGI78pEP8bbV+/bfh08/+umGv+HJM/jLn/0l7jvwU2DLHfS74QWZ94VsuZ0MxFxisN1hqe40dLEpqgxZocqBYKL30+SmoUaMxazVn0E0aQNBqz8jBt3QxZaLdLGJ/iMGnoVUq/McJAvkJqDFKEiTtUm4Ph3CG1WQmOepLnqQOj+KQEz4Dhm0KcTX6dSCMSPZvhS2TWzDeLV5ediHjyPVI9g2sW0xDr0p1l84hC3v3dxw48r1Gdjy3s0tDZDdEKMgFRyiDLt6Y4p24dprseEn9+G0r3wFK++8E6d95SvY8JP7OkKOgKDNv16d26QdVZBCJbYmWUg1OyBInufjseczZHmLU9Ak4PEXMktuUg42MDJs3+Dt/tFxIKwUXrErQYlN2OA18yCxPLNcWm0LIe8EEpN2h9EOw2S7kdIU5AwVZdPBZNniUmlauOkzBam4cw+8CrlomEkbx0i2h/e5z+L24p2xu2e2TtzxyB24+k1bobz5q6SbTTBsTymDWPGmzwKb3rAYL3NeiIsfDz0TSKJmKDCrDjyBIHlGBijHlNj0uRUkRgQYCel0kjYQdHBVIiW2QkokSAoAH3atHpTYPHI+9BgPEiszSZAafFhMLQt7kDo/iiCrKzgK4FjZxIvHyGddLLGpenA+7GqdjxnJ9RqYqLZmvD3a4uPaifUXDmHd+YNkk1Y0kS2QXXyrNyqmIB2crsGSDOgAFJCbpKsXYn9HUhRkL7+sLcd/omBt/iEPUlyJLd1Cia0eLbEFJu1gE9xcJe+ESVnRSJep5/mw/ExIQRIR6mKLKbHFxYGIX+cMFesv7MWW927GA9/YFRIEcn0GrnzzxpYIeSeQEKQOo12GyXZjIKdTgmTyjA+RHKQy1OAnGG2ZgiTTVNZDf/vfMfFHs0K/fiPY7vnSTW8Azn49sP8hPLh9B/7xsTJ6znol7tp0edtfW6sI5HNHmMUmmK9ThCDZwmVkUy9CVEESS2yqpEKTw8Sn0YPUfUnaxRgFiZQkbNrBRUzaNidIwbEzQsgIUk7LNXSn5QWTNp/D1g0EiZ6Hx/dPw/eBwbwRSrWWDBIW6fgpOHUrlKLtZ1oz3g62+Lh2Q5al474pD+QM9Gd1TFUsTNQVrBZ+5huNClK3gbX511ts8+e/J2yI+BoRVZAExblSLLV0PEttUpYkCVpagVlxYPkZriAZ6fA5CHWxObSLLWZYLct+YogmaZ8oIe8EkhJbhzG/YdLvSH2WldmOla3AcCje9PcT35QlECRm0lZcC/B9yBNTeNmB+WVjvnuWFWDdVXhm4Fo87G1CNtVZ015eUJDiyozMr3DwY5/g36s++wIAwBs7GHquXmGyeUbLNJADZkZmpaVu6GKLDmqNLbFRUuOYdtDF5pL3La6LzfLI64u2+AOBv6tquTyktCtKbPQ8PLqPDIsV/UcAAD0DFTQLqW5xD1K2z8BFQxdhODMMqYl6IEHCSGYEFw1dtEhHv7hggZGHKuHv+6l4BambwNr8zXmCIsVrN62meQI60DizEQD1bQaxKN26CQYAXSHXo+WleR6SfviBUDjv/KNGGhUkMRpG3OQxQn7mpSNYdVZfV5MjICFIHcfchkmi3HSiPtufDYzanBwIi4daITcLW8vChwQfEjdpy16wWPSV5/9b0d0z65rqpEEZCBa/Y2ULDvUHiAqSUicvzioF85VYknbtJz8OjQ8QS2zR8hogmLRrZGxBN5TYWC4RG7MSpyCpafI5sT0VqB6j/0/nOYkepIjnKo4gie/3oRlyTjvd5g8En/vtL80ACPuPAAB6VshCsnmJLd+XgiIr+OhlHwWABpLEvr7psptCeUjLCazV/0BEJJHTvUt/MAtE4EGy+fiLOIKkyRpXgNNqOL8s6HQN1BPT8cDsRGldaVvXYNux827oVTI82PYzMGkXm+FOkskGlCQxBWnWnIXjMatBjIIkeJBqtsvPQafmabYDCUHqAjQ1TMqT2HLFsx2pz64QspCqEYMyAGRXEiMqJBmOmoYnBz9TXGEg5Yr+prtn3wf69MGG3XPcFOhOgMnnR4oBAWJt377rwju4FwDgKoHkzsqMimeFxgeIJbao9wYIl9jqtgeXri6dJInRoEiuIAmkRUuR1+v4KaBIRsVYjkZ/1qggMUTnsAGAoSrQqPH94DQ55z0dbvMHgs8hM95uihIkLQtVJv6rSjno4mPX8zVrr8FnX/1ZDGXC1/FwZhifffVncc3aaxbz8BcVLFF732x41MZyIEgs68dzfFRLZM3SYwgSAPQbtMzmA48eeZR3HcZ1sYlEIaMpbesabCs8F9h6E3Q6N8/y07CYB0mmciCdYMA2M6y5AgivYYwgiUOtxXBZMSpjuWH5UruTDA312ae/iNH9n4e87m86cjw8LLJi8dKaOPIhf/klUP/tHjhKCpaWg+YEGrvs2ST8bXgYv//7N+OhBz4MCVKsWfuS/B817J55RH2nCRJVb8Zmyc3PUGWoCtlTVB97HHK1CGQBVwmILVfRXJOPD8heflmoiy1KFgDBpF21eYu/LAUttJ1ANhIUGd/FxgbW6kCJGOzZwMs4DxJ/7phzAJD3fLoalDT7sl2gIOnhz+E5KyP+Gj2YxzZTJJ8FQ3dDasQ1a6/B1WuuxraJbThaPYrBDNkYLFfliGEDLbHtnglf22q2uxKR46AZCjcpl6fINa7FbEju238fDpZJyXzKnMIf3/PHGM4M46OXfRSF1LkAwh4kNtVeV4L1gm2Cu8akvP8hoHgYukwJkheYtA2pCggTDLKRiJWUkoIqbIjZRkokhqJBu9vLaHMhIUhdhJBhct9+QPKAmFLEUmCAltiOlU3eSSQqSJKiIF0wUKoAtp6HQr0lsmfzDrXhW27GxjOuxWeVz+L2R24PtTvn1RWY2LcFk95ZDX+73CUEibXYH6EESVS0nKNHuVLmqgFBcrkPy+aPA8Jt/nEKEvcg1WzeEZMz1K4ZswEIXWwxbf62bwBV0uJt23TgpZiDFCFIcSU2gJxjZtAGuqSLTXjfs7qCtf2R90/Pcg/SdJncZHK5xlwjRVZw6cili3egHQBTkPaXfEB4q/Rsb2cOaAGQJAlGVkWtZKPECFJEQWIhn9HNHQv5/MCmTwLQQl1stTjPJrrMpEwnE+gS9Q0KJm2uINHHKbKCjJqJHbQNxCtIgUF7eW8AEoLUrbDoh1SP32kvNoJxIxZW9YXHbDBkhnpQ2luEN7gK7iFiQpBdG+rwMIZvuZnnm8Ttng1nPd7w9K+wzZ6G5/mhRaIcSa3uFBgREEPfGNTBQaguWVSdOAWJEkY2PiBUYovxIDEFyfV8jBfJ83bSfwQ0T9IOdbFxBSkoM1oOIU2igqTJGnRZ5ybtuBIb0EiKxb/VKWSEyIZVfelGHVTLQqMlttkqeV3ZzuxrlhwDWR19GQ3VWpjI6rnuV5AA4kOqlWySgo4wQZov5FOChK+/+A8AbgwrSDHrBcOJdA22FXQygSaU2MIKUvhxOS0XO6gWCF4nswYostQ1NokTxfI++pMZnSZIoknbjL/gWRZS71//V+TLB4C7a9B7stjwk/saUmGju2fH9ZDRFZTqDl6YKOHskcDX0W0lNgbxeDKXXAwtRUzY8R4kOzQ+YD6ClNIU6KoMy/FwYIosRJ0MiQSC12s6HhzXwyw1osaX2AKSyAZeRjNlsloWlkkIUrbJ51o8x2lNQarD/oWtO8bwlV/t51+/MF7GlXfcj1uv34Qtm0fJN/UsVImoZ9O1XgBArnBq2DslScLG4Tz27Q37J41cf5Pf6C4YkSYAkSC1EvI5WZ+AktmLYn0DfN+HJEmhDKSuBZ1goFN/peVFFSSJTDig5bWcnsNEjUR0RAmSSIJqtoucoXbNGn6iODWu4uUIOo6hYyU27kESTNqRDztL065XHWhnbQIAqNlUS5H5qiLjwtN6AQCP7ZsO/axc746LqxAJTBMJoqQo6LmSZDTFeZAUzwrNl8qoGW5WL1vl2NESLE37wHR3ECSxY69iufFdbLzEFigINpsIHjl+kRg2VZCE3+l0i//WHWN4/9e28Y5ChiOzdbz/a9uwdQcxpRMPElGQ6g4tsfV2XvlaKmwcyqGOsIKkZHo7czALBMtCYhAJUqvhnZJagu36PC+uNoeC1DWQFWDLHdBlVmIL2vwNWnYTJxiIg6WjFgFDlbmtgsUblGOCdZcjEoLUreAKUqPasBRgBGmqYnHTcKOCRB5TL9twqDFR01v/SF28luwyH6P5MgzlLqlfR0tcUbk4dw7xT3mC34IpSMMf+FNeYrxv/3143Xdfx6X6nx/8eewkd0YIWAdXpwmi2FVWtZz4EpsRU2KzyOuMU5AY5vIgMXQyJNL1fHzi+ztjiivg3/vE93eSbkM9B1WyQo/J9XbeO7VUOHM4jxoibexCdlA3w8g2V5BaDe+UXKJ+s042vqHUupwcbHoD9It+D0C4zV/Pp4E3fzU0wSCUnB1RkCRJ4kSIVRuiw72XKxKC1K2gke6dKrH105uT5wOHZ8kNO6PHK0i1clDDVxZQErn0dFKLf2x/REHik+w7bNI21NDopChBZApJ6spX8flS0hApuxR+4+UAApNnVKqPm+TOiAcjSJ32IAHBAjdbs/n7IoZXRktsrq+CiWPRkQUhgqTFE6S8sKB2MgPpkb1TvHsxDj5Id+Mje6cALVCQGHJ96fhfPAmxcSgHGwocn6qJUPlstm5HKvIZE1XPVkM+sz5p4WcKKw+JXAYGZf308wEA1spXwlJJfpfxR99qGO8kbmjiOlCj89iCElv3n4O5kBCkbkWHS2yqIvMb1IEpcsOOmrSZB6letuFYC1eQLjytD7JECAEzJvu+3xBR3ynIshRScaJyMdtt2qaL7OWXoee3Xw9XIo9RdXnBk9xZ5k+3eJCA4DWLZKFpFxvAZXqgsSNILLE1I0g5oztKbBOl5uSo4XF6BmqEIGUHOqP8dgIbh/MAJK4iVaRs41DWLoUxR4mt1ZDPHhqWyhQkcVBtt4MRQhN5WBZtrsg2hlqK12scQcpyghQpsSUKUoK2w/c7btIGgH46boSVVqKmwzgFKTqDbC7kDJWbs5kPyXQ8nlrdDReXaNSO7ghFgsQQEEVlwZPcGSGYKJGW8e5QkMhrHJuhUQe6Ak0Jlg0toiBZHlEOVJoxE3oudfmU2MRZa/M+Ts/xHCSG3EC8x+pkxIqcjt6Mxn1IFblza9ZCIZq0ZVmCrIY/s62EfAZDrQkp4Cbtbi+xISBIZSGbyUg3Hvf8ClI4M+1kMWkv76M/AZimicsvvxxPPvkktm/fjgsuuKDThxTAtQAa6d5JgjSQM7DnaJCJESUsgQfJ4sRA1RbGuS85vQ87x4p4bP8UXn/eaCiBtRsMfqKK06AgUY+NRccU+L4fIopHiwub5N4baWnvBgWJlVUPz7Bk6/AxRktslk8IUlwisbiw5vV4AiG+5uj5WEpctq4foz0pHJmtx/qQJAAjPSlctq4fODoOVSBIulSBnj91CJIkSThzKI/aYR2QgLq8fDIORJO2llJic8fmC/lkn9kGD9IyUJA0Opi2MkM8dIomQ4lZwxMF6RTDX//1X2PlypWdPox4WAEpQZPE4aUAGzfCkNbmUJDshStIAHDxWuJDepz6kNjOI6MrULoggVUsJ0U9WFEFybWDcQuqLrds8mSPi5KPbiBIbAfIfGiFBoIULrGxMRtR/xEwt9GTfz/kQeqcgqTIEm69nnRmRj+F7Otbr99EPqPCLDYAyCmTQEyUw8mMjUNpMPu6DAAxXZrdCNGkHTeHjYHFlPzWGb+FS0cuDSWgBwNrydpVEwbVdjuYguRT1T7uugXmJ0hRD1JCkJYxfvSjH+Hee+/FnXfe2elDiQfzH6kpQOncB2wgUotuVJDIwmDXXVhUXlYW4EECgEtOJ51szxwuomo5XXdhiSW2aFcdW1wYQWLqEUCI4kInuUc9N91AkKIltiiJC7rYqIIk94a+LyKlBmWr3dO7Y6MOusWDBABbNo/iC2+7CCM94XLbSE8KX3jbRZEcpMCDlFOmOnrdLjl23o2bn38zTpPJsOJ19gvwP7c5NBG+WyGatOciSHOBz2OjVoTKcshBoohGccSV14BwiS0ux42p65WTzKR9Cl3FBOPj43jPe96D733ve8hkWtvlmaYJ0wx2iMVicbEOj6AL/EdA0OrPEDVpG2kVkizB9/wgqn+BwX6retNY2ZPC4dk6nnhphqtG+a4hSI0zhxi4glR34Ps+bLo4KKpM/TfE5Pmhn32oYRZd3CT3nohikjO6wIOkhxWk+UpstkQ8ZXq6cWTD15/7Ov/6L376F3yelTisVRxsOV6s82TeTmHL5lG8dtMIHtk7hYlSHUN5UlYLHVNEQcpqi7w+dBN23g3/m+9AJlKI9IuHgW++A1KkXbzbIJq0j5sgcQWJmrSXUYktep22pCCpjfcl9lqZepa0+S9D+L6Pd73rXXjf+96HSy65pOXfu+2229DT08P/rVmzZhGPEl1EkMIKUnRHJMkSV5HYsMeFKkgAcDFVkR7bP83n+XTLhSWWlKIKEvMg+T4pr3EflnAOFjLJvRtLbOx9aKYgsdfqQofny7AoQdKE949FHZTtcuh3o1EHW3eM4a+/8xT/+Z33voAr77g/CGTsEBRZwhXrB/DGC1bhivUDjYRNTUFBkIPkSTo8L865dJLBc1H7/kfg+37DjUQGWW9r3/9IV5fbUmKJLXW8ClLUpM1msXX++p0Pmq6EashGOv4ciOGQh8qHGtRf1sDCiFG3VQKOFycFQfr4xz8OSZLm/PfYY4/hH/7hH1AsFnHzzTcv6PlvvvlmzM7O8n8HDhxYpFdCwUpsHfQfAWTOkoioggIEPqTSNNlBL6TNn+GStUEeUlmYAt0NKMxl0hYIo1V3m3byXbP2Gtzzpnvw5eu+jDuuugNfvu7L2PqmrSFyBHSpSZsufJZLXltDiU14rY6vw5LITpPtTFuNOvjPpw/i/V/bhslKOHCxIbW6C7HniaO4d/bD/OvnSy/HV295CHu2T3TwqBYf7r5fIl07gmYCnywB6doRuPt+ubQHtgDoaZUTBO0415xCM5N2h8fktAJJlkINFXpMY8R9++/D3/zyb/jXf7/97xuCbtm9gUUcsI1ut6zjx4uTgiD9+Z//OZ599tk5/23evBn3338/Hn74YRiGAVVVsWHDBgDAJZdcgne+851Nn98wDBQKhdC/RYXV2ZBIBpEgpTQ5ttTBdmDlaaogHceiwIza2/dP8zp+t+w8QiZto1FBUwWjth2jIDHMZfJkaPAgdUGJLRchhVGCJHa8OL4BC5Qg0fev1aiDW+/9QWup1V2GPdsnsPWuHah54TWhMmNi6107TmqStOfFPW19XKfANnW26R6X8hcoSMuvxAaEy2pRBYmpv1P18LSDqPrLXivzHlVOklEjy/voKVasWIEVK1bM+7i///u/x//4H/+Df3348GFcd911+MY3voHLL798MQ9xYejCElucegQA6TxZHDyHjpc4DgXp7JE8srqCkulg20ukm61bzH1iWe3FoxVcvi5cYtEMBY7pwjYdocR2fMfemw4rdt2hIIWPIdrFJkkSVF2GY3mw/RRsm4bNpch/W51nNW1OAogvXYup1VesH1jYC1hEeJ6PB76xi34VL6M8+M1dWHf+YEMm1MmACb8XZ7bxcUuNPdsn8MA3dsE2iTp66PlpfPWWh3DVWzZi/YVD8/x2gGgX27IYVitAS6kASAVAFzZp86m/EiTc8cgduHrN1YIHKVxiSxSkZYTTTjsNmzdv5v/OPJNctuvXr8fq1as7fHQCOpyizSC2+TfbDaUiRu7jUZDI4FqiIv3iBdIJk+sCcrB1xxju2Po8//pj39vR4InRuVE7KLEdD0kECCESY1i64RxEiWpUQQIATSGLoeMbsGqkRKY9/k/Azrtbjjrwnflzg1pNt14qjO2aQWXGnPMx5WkTY7tmluaAlhjK6b+Bw34/mokung8c9gegnP4bS3tgLYApf9H373iUP7ZpKNWiSdqdv35bgS54r0QFaSFBt2JQpON6fHBvp+dpnihOKYK0bNAlClIhpUGlO99mBIl5kBjiykutgJXZjpXJgtXpEhub5D5TtUPfj3pieFik6Z6wgiTLEt+NpjQ5lFjdKUTfhwaCtPNuqCYhtY5vwGZBkdYE8M134KLJQ/NGHfTpQ3Cr6+Y9llbTrZcKleLc5Gihj1tuuGz9IP5eezcANJAk9vXfa3+Cy9a3RpKXCmHlLx4PfnNXy+U23ubPPUjLJwcJCJfYRA9Sq+rv0epR3uFcsRze6g90xybvRND5FbiDOP300+H7fnelaANdQ5BkWeK+GNP28Ks9kw0+kFSuuWl3IbiUdrIxRL0vS4mFTHLXYhSk4yVIQOBD6oYxI0CjhyBUYvNcYOtNPEXa9g1YHul20STio1PuuQUfvfSvATSfZ/WxKz6K0Z5MEwpFilejLLW6i5AtNM6sOpHHLTcosoRX/84f4wP2jTiC8HtzBAP4gH0jXv07f9wVga8i2q38iaNGfN9fdiW2ZgrSQoJuxRIb8x9pigRDXR7noBlOaYLUteAlts4SpK07xriCsn+qij/4l4cbSkxRBel42vwB4ILTekM3yGNls2Om3IVMcmedL7bpzGnSbhWsI0YCYgnpUmNOBWn/Q0DxMJ9kH1KQ5BoAHygewjV+es6og2tPf23rqdVdhNGNvcj2zk1+cn0GRjf2Ls0BdQBbNo/id/7wfbjBuAtvtT6Gv7D+HG+1PoYbjC/id/7wfUGYZheh3cof2zRYrgfT8ZadSVtLiQpS8P8LCbrNCEGR3TJsvB1Y/q/gZARXkDrnQWIlpujtmZWYWJJwuxSkB3cdhSJLfFDtV361H/fuHMet129a8kV2IZPcDaGL7URLbFt3jOH58TJ9bhN/8C8PY7Qn1ZFzwBBd5EMEqUz8CapEfEcOjGAWm1QLPe6ac39/znlWLLX6E9/fGSKnIx1+/XNBliVc9ZaN2HrXDhDa3HgjufLNG09Kg7aIIEzz4uZhml2Edit/WV2BLJGy4rGyydewzDIYVgtEFKRMcMyK3HrQrRgUWT5JOtiAhCB1JzpcYpuvxCSBlJheu2kE6QaT9sLVk1bJ2FJhIZPcaymRIFGT9klwDhiiXSghgpQbBoCgxOYFBImV2MTHsaiDZmgptbrLsP7CIWx572Y88JVHUamn+fdzfQaufPPCuqGWM1iY5nIAU/7mKrMtRPmTJAmFtIaZqo3xYkDul0+JLV5BAoKg29sfuT1k2B7ODOOmy27iWW5hBam7suxOBMv/FZyM4CW2zgy8XEiJaXNfmMQtVEFaCBlbqhvlQia5P/TYJAASFOk5x+dB6sZzwCDK5GlNga4K5G/tK4DCSmg0JNRB4EEiJTYJKKwkj2sRy+lGy7D+wiGsG38IYz//KSpeH7KXvgGjv/enJ71ytFwRVv7isVDlr5AiBOnILLkWVFkKXytdDHHEytRYBf0rc6HXfs3aa+ZUfwGEPEhBivbyIIhzYXm8g6cabBYU2ZkS20JKTNES20IVpIWQsaXCQia5azEK0kI9SN14DhjERa6hg01WgC13CCbtFGyfqG86G9665XbyuJMcspHDKuMZnJl+EKtW+wk56nIw5S/qIcv1Gdjy3s0LVv5YJ9sRqiAtF/Voz/YJbLtnP//6x/9zZ2wK/HxBt3zUSBcOHD8RLP9XcDKiwyW2hZSYNF3hQYHAwhWkhZCxpUSrnhhxYC2TgBaqIHXrOQCIaiRJZN5cXAYSNr0B6gYD2AGYXhYeyGO0Qg/w+r/r6kGlbYWo9mrp5o9L0DVYf+EQ1p0/SLraiiayBVJWOx5yyzrZWIltORi0WRZUFCwLaiFEkZXYfB+YpFEtSYktweKgwwRpISUmAEjndJSOc1jtQsjYUqMVTwyr39umC6YvLZQgdfM5kCQJWV1F2XTiCRIAdeQMYMcBVM+4AXiaJqr/5SOAegotL+K12uHu0wStQ5YlrDqr74SfhxGkI7OMIHX3Z7/VLKhWU+DTQkDw0VJ3ZNm1A0mJrRvR4STthZSYgHAWkrrAujsjY92agTPfJPdQDpJ9fG3+3XwOXM+HppAjczwvNnaAqYZVjxyfaiiQTyVyBIQHS2ud8Q4m6ByiJbZuV5DanQWlyBJS1F4xUTp5FKSEIHUjuiAokpWYRnrCqsVIT6qho4plISmaDGmB8vRCyVi3IexBIgRJW6A5sVvPwdYdY7jyjvsxTbOwtr0005CDBQSEsEpzY8S24VMG4rWalNhOOSy3EttipMCztv5AQeruc9AKlj/FOxnRBQQJaL3t2sjRcEOZDHxcaB1/OWbgMDAyZNVdThSOJwep287BQmIH2OutFkkekr7MxwscF1TB7Du5G1j3ylPCnJ6AgIVFshJbustLbIuRAp/WFaASeCVPhhLb8n8FJxs8t+NdbCLma7ves30C+54kre6O6eF7f7cd2V5jwROxl2MGDiB6kBz4PrkhHm+Sdrecg4XGDrASW61ElKZTTkHaeTfwg78Mvv7PDwMPfhbYcsepY1I/xcES8E0a9ZE5jqHdS4l2Z0EBjQpSUmJL0H7YQsBel5s9WReEbbqh7x/PRGxgfr9PN0KLSdI+3jRxoDvOwUJjB1SDLCM+9SdppxJB2nk38M13ANVj4e8Xx8j3d97dmeNKsKQoRBoYur3ExrKg5sJCs6BYtEGxfvIkaScEqdvAymuQALW7ppeLaPdE7OWK+GG1y/uyWmjsgBrZLZ8yJTY6rBdzjTXe+lHyuAQnNQqR4dLLIQep3VlQUc9RUmJL0H6Ic9ik7lVQFtIF0Y422m4FU0sc2wMksnOKEoblhoXGDkQVs1NGQaLDepuDDOvF/oeAdVct2WElWHosNwWJoZ1ZUOnI7LmTocS2/F/ByYYuMWjPh8XogliOEDvWAgVpeSyOzbDQHCzVOEUVpPL4/I9ZyOMSLFsUIjPMut2kLaJdWVCNCtLyXgeBpMTWfVgmBGkxuiCWIxRVbthtLfcS20JjB6Kv95QxadMhvG17XIJli2iJbbkoSO1E9DXnT4KN0vJeyU9GLBOCxLog5sJCuyCWIyRJaigpnYhJu1uwkBysxhLb8l8YWwId1ttIIxkkoLBqQcN6EyxPLNcSWzsRTQ9PPEgJ2o8Op2i3isWYiL1coRkKzCrxH0kSIKsnx2tuNXYgWlI8ZRQkOqwX33wHCEkSC5L0HJ0iw3pPdWR1BbIEsJ6U9DL3IR4PoqTwZCBIiYLUbVgmChLQ/i6I5QrRh6TqCqQuNtcvFK3EDjSW2Jb/wtgyNr0BePNXgUIkyLOwknw/yUE6JSBJUkhF6vZZbIuBBgXpJDgHy/8VnGxYRgQJaG8XxHKFWFJa7v6j48Ep28XGsOkNwNmvJ91q5XHiOVr7ikQ5OsVQSGmYoWN5Ts0SW/Ca05qyLHLs5kNCkLoNy6TEJqJdXRDLFVEF6VSDrEqQZIkHRZ5SChKDrCSt/Kc4xE625ZCD1G6IBOlkKK8BSYmt+8AVpGQi+HKB6Lk5FQmSJEkh5eyUU5ASJEC4k+3UVJACUpQ7CVr8gYQgdR/4HLblUWJLEFaQtFOwxAaEieEpqSAlOOVxyhMkI1GQEiw2eIktIUjLBWEP0qm3MAJhYnjKdLElSCAgXGI7OQjCQiAO6E0IUoLFgThqJMGyQNiDdGpeUomClOBUR0hBOgXb/EVSdDKMGQESgtR9WGZdbAkSDxIQft3aSeI/SJBgIcgJG4OnDs3APckHdUeRTkzaCRYdCUFadgh7kE5NcqAZMv2vAukkaO9NkGAh2LpjDF9+cC//+p1ffhRX3nE/tu4Y6+BRLS2yiUk7waJjGbb5n+pISmyBgpR0sCU41bB1xxje/7VtKNad0PePzNbx/q9tO2VIUkhBOkk8WKfmat7NSBSkZQctKbFBUelS4gOHnp+Gd4qVFxKcmnA9H5/4/k7EfdrZ9z7x/Z2nRLnNUAM6MV21TorXnBCkbgMjSFqSg7RcoBmndpL2nu0TeOmZSQBAtWjhe3+3HV+95SHs2T7R4SNLkGBx8cjeKYzN1pv+3AcwNlvHI3unlu6gOoCtO8Zw9Z0/419/Z9uhk6LEeOqt5t2OpMS27KCfwknae7ZPYOtdO+BYXuj7lRkTW+/akZCkBCc1JkrNydHxPG45gpUYo0TxZCgxJgSp25CU2JYdxBLbqWTS9jwfD3xj15yPefCbu5JyW4KTFkP5VFsft9xwspcYE4LUTXAswKNGv4QgLRucqibtsV0zqMyYcz6mPG1ibNfM0hxQggRLjMvW9WO0J4VmfZsSgNGeFC5b17+Uh7VkONlLjKfOar4cwMprQEKQlhEUIRSuOFk/ZRSTSnFucrTQxyVIsNygyBJuvX4TADSQJPb1rddvOikm28fhZC8xJgSpm1Avkv9KKvDSw4DndvZ4EsyLPdsn8N1PP8a/3rZ1/yljUM4WjLY+LkGC5Ygtm0fxhbddhJGecBltpCeFL7ztImzZPNqhI1t8nOwlxpMjrOBkwM67gR/+Ffl/3wG+8ttAYSWw5Q5g0xs6e2wJYsEMylEwg/KW927G+guHOnBkS4PRjb3I9hpzltlyfQZGN/Yu3UElSNABbNk8itduGsEje6cwUapjKE/KaiercsTASoxHZuuxPiQJhCgu1xJjoiB1A3beDXzzHUAlojoUx8j3d97dmeNK0BSJQRmQZQlXvWXjnI+58s0bIZ/kN4kECQBSbrti/QDeeMEqXLF+4KQnR8DJX2JMCFKn4bnA1puAufoAtn40Kbd1GRKDMsH6C4ew5b2bke0Nl9FyfcZJr6AlSJDg5C4xJiW2TmP/Q0Dx8BwP8IHiIfK4dVct2WElmBuJQTnA+guHsO78QUIaiyayBVJWS5SjBAlODZysJcaEIHUa5fH2Pi7BkiAxKIchyxJWndXX6cNIkCBBh8BKjCcTkhJbp5Ebbu/jEiwJmEF5LiQG5QQJEiRYvkgIUqex9hWkW22uqLHCKvK4BF2DxKCcIEGCBCc3EoLUacgKaeUH0LQPYMvt5HEJugqJQTlBggQJTl5Ivu+fvH3Ii4RisYienh7Mzs6iUCi050l33k262UTDdmEVIUdJDlJXw/P8xKCcIEGCBMsAC7l/n5Im7R/+8If45Cc/iaeeegrZbBavfOUr8d3vfrezB7XpDcDZryfdauVx4jla+4pEOVoGSAzKCRIkSHDy4ZQjSN/5znfwnve8B5/61Kfwmte8Br7v4+mnn+70YRHIStLKnyBBggQJEnQBTimC5DgOPvjBD+Izn/kM/uRP/oR//6yzzprz90zThGkGeTbFYnHRjjFBggQJEiRI0HmcUibtbdu24dChQ5BlGRdeeCFGR0fxute9Ds8888ycv3fbbbehp6eH/1uzZs0SHXGCBAkSJEiQoBM4pQjSiy++CAD4+Mc/jo997GP4wQ9+gL6+PrzqVa/C1NRU09+7+eabMTs7y/8dOHBgqQ45QYIECRIkSNABnBQE6eMf/zgkSZrz32OPPQbP8wAAf/M3f4M3velNuPjii/Fv//ZvkCQJ3/rWt5o+v2EYKBQKoX8JEiRIkCBBgpMXJ4UH6c///M/x1re+dc7HnH766SiVSgCATZs28e8bhoEzzjgDL7300qIeY4IECRIkSJBg+eCkIEgrVqzAihUr5n3cxRdfDMMw8Pzzz+PKK68EANi2jX379mHt2rWLfZgJEiRIkCBBgmWCk4IgtYpCoYD3ve99uPXWW7FmzRqsXbsWn/nMZwAAN9xwQ4ePLkGCBAkSJEjQLTilCBIAfOYzn4Gqqnj729+OWq2Gyy+/HPfffz/6+pKgvwQJEiRIkCABQTJq5DiwKKNGEiRIkCBBggSLimTUyCKDccokMDJBggQJEiRYPmD37Va0oYQgHQdYN1wSGJkgQYIECRIsP5RKJfT09Mz5mKTEdhzwPA+HDx9GPp+HJLV3anuxWMSaNWtw4MCBpHy3BEjO99IiOd9Li+R8Ly2S8720OJ7z7fs+SqUSVq5cCVmeOwoyUZCOA7IsY/Xq1Yv6N5JAyqVFcr6XFsn5Xlok53tpkZzvpcVCz/d8yhHDSZGknSBBggQJEiRI0E4kBClBggQJEiRIkCCChCB1GQzDwK233grDMDp9KKcEkvO9tEjO99IiOd9Li+R8Ly0W+3wnJu0ECRIkSJAgQYIIEgUpQYIECRIkSJAggoQgJUiQIEGCBAkSRJAQpAQJEiRIkCBBgggSgpQgQYIECRIkSBBBQpC6CP/8z/+MdevWIZVK4eKLL8YDDzzQ6UM6KfCLX/wC119/PVauXAlJkvC9730v9HPf9/Hxj38cK1euRDqdxqtf/Wo888wznTnYkwC33XYbLr30UuTzeQwNDeF3fud38Pzzz4cek5zz9uELX/gCzjvvPB6Wd8UVV+BHP/oR/3lyrhcXt912GyRJwo033si/l5zz9uHjH/84JEkK/RsZGeE/X8xznRCkLsE3vvEN3Hjjjfibv/kbbN++HVdddRVe97rX4aWXXur0oS17VCoVnH/++fjHf/zH2J9/+tOfxmc/+1n84z/+Ix599FGMjIzgta99LZ+5l2Bh+PnPf44/+7M/w8MPP4wf//jHcBwH1157LSqVCn9Mcs7bh9WrV+P222/HY489hsceewyvec1r8MY3vpHfJJJzvXh49NFH8aUvfQnnnXde6PvJOW8vzjnnHIyNjfF/Tz/9NP/Zop5rP0FX4LLLLvPf9773hb539tln+x/96Ec7dEQnJwD4//f//l/+ted5/sjIiH/77bfz79Xrdb+np8f/4he/2IEjPPkwMTHhA/B//vOf+76fnPOlQF9fn/+v//qvybleRJRKJX/jxo3+j3/8Y///b+/eg6Ks+jiAf3eBXRDjpoggqCCRFxRREfDCUipZrWmIF7yEUTOmiZpkjY6JM69jNnlJZ8oxc1DSxFApHf8Iios44gwZKCkaKaCRpIK6ogKKv/ePd/YZ94IJwYvi9zOzo55znsN5frPjfud5zrPodDpZtGiRiPD93dqSkpIkKCjIal9b15pXkJ4ADQ0NOHHiBKKiokzao6KicOzYsXZa1bOhrKwMVVVVJrXXarXQ6XSsfSu5efMmAMDNzQ0Aa96WGhsbkZqaitu3byM8PJy1bkPvvfceXnvtNYwdO9aknTVvfaWlpfDy8oKvry+mT5+OCxcuAGj7WvOX1T4Brl27hsbGRnh4eJi0e3h4oKqqqp1W9Www1tda7SsqKtpjSR2KiGDJkiUYNWoUAgMDAbDmbaG4uBjh4eGoq6tD586dkZ6ejv79+ysfEqx160pNTcWvv/6KgoICiz6+v1tXaGgoUlJSEBAQgL///hurV6/GiBEjcPr06TavNQPSE0SlUpn8W0Qs2qhtsPZtY8GCBTh16hSOHj1q0ceat54XXngBRUVFuHHjBvbv34+4uDjk5uYq/ax167l06RIWLVqEjIwM2NvbNzmONW8dr7zyivL3gQMHIjw8HH369MHOnTsRFhYGoO1qzVtsT4CuXbvCxsbG4mrRlStXLJIxtS7j0xCsfetLSEjAwYMHkZ2dDW9vb6WdNW99Go0G/v7+GDZsGD755BMEBQVh06ZNrHUbOHHiBK5cuYKhQ4fC1tYWtra2yM3NxebNm2Fra6vUlTVvG46Ojhg4cCBKS0vb/P3NgPQE0Gg0GDp0KDIzM03aMzMzMWLEiHZa1bPB19cX3bt3N6l9Q0MDcnNzWfsWEhEsWLAABw4cQFZWFnx9fU36WfO2JyKor69nrdvAmDFjUFxcjKKiIuU1bNgwzJw5E0VFRfDz82PN21B9fT1KSkrg6enZ9u/vf73Nm1pFamqq2NnZyfbt2+XMmTOyePFicXR0lPLy8vZe2lPv1q1bUlhYKIWFhQJANmzYIIWFhVJRUSEiImvXrhVnZ2c5cOCAFBcXS2xsrHh6eorBYGjnlT+d5s2bJ87OzpKTkyOXL19WXnfu3FHGsOatZ9myZXLkyBEpKyuTU6dOyfLly0WtVktGRoaIsNb/Dw8/xSbCmremxMREycnJkQsXLsjx48dFr9fLc889p3w2tmWtGZCeIF988YX06tVLNBqNDBkyRHksmv6d7OxsAWDxiouLE5H/PSqalJQk3bt3F61WKxEREVJcXNy+i36KWas1AElOTlbGsOatJz4+Xvl/w93dXcaMGaOEIxHW+v/BPCCx5q1n2rRp4unpKXZ2duLl5SXR0dFy+vRppb8ta60SEfn316GIiIiIOg7uQSIiIiIyw4BEREREZIYBiYiIiMgMAxIRERGRGQYkIiIiIjMMSERERERmGJCIiIiIzDAgEREREZlhQCIiIiIyw4BEREREZIYBiYieCiqVCr17927vZRDRM4IBiYjaXHl5OVQqFSIjI9t7KUREj8W2vRdARPQ4SkpKYGdn197LIKJnBAMSET0V+vbt295LIKJnCG+xEXVwD9/eun37NpYsWQIfHx84ODhgyJAhOHTokDI2LS0Nw4cPh6OjIzw8PLBw4ULcvXvXYs7Dhw8jPj4e/fr1g5OTExwdHREUFIQ1a9agvr7eZOyqVavg6+sLAMjNzYVKpVJec+bMsVijwWBAYmIifH19YWdnh8WLFwOwvgdp2rRpUKlU+OijjyzWePbsWXTq1AlOTk64cOFCs+pkMBiwaNEi+Pj4wN7eHv369cPGjRvx4MEDq8fm5+dj4sSJcHd3h1arRe/evTF//nz89ddfJuPq6upgb2+v1ONher0eKpUKL774okVfYGAgbG1tYTAYLNY8d+5c9O7dG1qtFu7u7oiJicGpU6f+8fys1fhRzp49C5VKhfHjx6O2thZJSUno27cvHBwc4O/vj/Xr1//jHERPFSGiDq2srEwASHh4uISGhkrXrl1Fr9dLZGSkqNVqsbGxkczMTNmwYYPY2tpKeHi4TJo0Sbp06SIAZMaMGRZzenh4SOfOnSU0NFSmTJkiL7/8sri6ugoAeemll+T+/fvK2PT0dJk8ebIAEA8PD4mLi1Ne27ZtM1nj8OHDZfDgweLq6iqTJk2S6OhoWbVqlYiIAJBevXqZrKOmpka8vb1FrVZLdna20t7Q0CDBwcECQJKTk5tVp7CwMBk6dKi4uLhIdHS06PV6cXBwEAAyZ84ci+O++eYbsbGxEZVKJSNHjpTp06dLQECAcr4lJSUm4yMiIgSAlJWVKW33798XZ2dnASBarVbu3r2r9F29elVUKpUMHTrUZJ68vDxxcnISADJgwACJiYmR8PBwUalU4uDgIFlZWVbP71E1fpTU1FQBIFOnThU/Pz/x8fGRqVOnyrhx40StVgsASUlJeZxSEz0VGJCIOjjjByMAiYyMlJqaGqUvOTlZAIi/v7+4ubnJkSNHlL7Kykrp1q2bAJDz58+bzJmeni61tbUmbQaDQfR6vQCQnTt3Wl2DTqf7xzWGh4fL9evXLcZYC0giIllZWaJWq8XHx0c57sMPPxQAEhMT84jKNL2GQYMGydWrV5W+P/74Q7y8vASA/PDDD0r7xYsXxcHBQWxtbeXQoUNKe2NjoyxevFgASEhIiMnPWblypUVwKygoUIIOAJOwl5aWJgAkMTFRabt586Z0795d7OzsJC0tzWT+zMxM0Wg00qNHD6mvr7d6fk3V+FGWLVumHP/xxx/LvXv3lL7t27cLAJk4cWKz5iR6kjEgEXVwxg9GGxsbKS0tNelrbGwUd3d3ASArV660OPb9999v1lWY0tJSASDR0dFW1/A4AamgoMDqmKYCkojI0qVLBYDExsZKdna2qNVq8fLykurq6sdat/kaMjIyLPq3bNkiACQqKkppM4ad2bNnW4yvq6tTQlV+fr7S/vPPPwsAiYuLU9rWrVsnAGTv3r0CQJKSkpS+BQsWCACTALZx40YBIMuWLbN6LsZwtn//fqvn11SNH+XVV18VADJt2jSLvosXLyrBi6ij4B4komdE79694e/vb9KmVqvRq1cvAMC4ceMsjunTpw8A4PLlyxZ9paWl2LRpExISEhAfH485c+bgP//5j9LXEp6enhg2bFizj1u9ejWCg4OxZ88eTJw4ESKCnTt3ws3Nrdlzubm5Wa3FjBkzAADHjh2DiAAA8vLyAAAzZ860GK/VajFlyhSTcQAwYsQIaLVa5OTkKG05OTlwcXFBTEwMvL29LfrUajVGjRqltGVmZgIAJk2aZPUcjGMLCgos+lpa45MnTwIAVqxYYdFXVVWlzE3UUfApNqJnRI8ePay2Ozo6Ntlv7Ht447WI4IMPPsDGjRuVoGDu1q1bLVpjz549W3ScRqPBjh07EBQUBIPBgISEBIwdO7ZFcxkDozknJye4uLjgxo0bMBgMcHZ2VjZhN/UFlsb2hzdr29vbY/jw4cjLy0N5eTl69uyJo0ePIiIiAmq1GjqdDvv27UNdXR1qa2tx+vRpBAcHw8XFRZmjvLwcABAaGvrIc7l27ZpFW0tqXF1djcrKSvj5+SEwMNCi37gpfODAgc2em+hJxYBE9IxQqVT/qt9o79692LBhA7y9vfH5558jPDwc7u7usLOzQ0NDA7RabZPB6Z/Y29u36DjjuowKCwvx4MEDqNWte5G8qfNqbm11Oh3y8vKQk5ODQYMG4caNG8qXaEZGRmL37t04fvw4ampqICIWX7DZ2NgIAJgyZQo6derU5M+1FqBaUmPj1aOQkBCr/UVFRQCAwYMHN3tuoicVAxIRNUt6ejoAYMuWLdDr9SZ9j/M4fVvIy8vD2rVr4eXlhb59+yIrKwtr167F8uXLmz3XxYsXrbYbDAbcvHkTjo6OcHJyAgB4eXnh3LlzKCsrQ0BAgMUxFRUVACxvPUVGRmL16tXIyclBTU2N0vbwnw/36XQ6k+O9vb1x7tw5rFixAoMGDWr2OTaXMSAFBwdb7WdAoo6Ie5CIqFmuX78OAPDx8bHo++6776weo9FoAAD3799v9fUYDAbMnj0bIoLk5GTs2rULXbp0wapVq/DLL780e77q6mr89NNPFu179uwB8L89RMYrQqNHjwYA7N6922J8Q0MD0tLSTMYZjRgxAhqNBjk5OcjJyYGrqyuCgoIAAP7+/so+JOP+o4iICJPjjbcPv//++2afX0s8KiCJCE6ePAkXFxf+rjzqUBiQiKhZjFdKvvrqK5NbTnl5efjss8+sHtO1a1fY2dnh/Pnzyu2h1jJ//nxUVFQgISEBUVFR8PT0xLZt23Dv3j3MnDkTd+7cafacS5cuRXV1tfLvsrIyZQP6/Pnzlfa3334bDg4O2LNnDw4fPqy0P3jwAMuXL0dlZSVCQkIQFhZmMr+DgwNCQkJQUVGBzMxMZf+RkU6nQ35+Pn777TcEBQWZ7D8CgLlz58Ld3R1r1qxBcnKyxa2/27dvIyUlBX/++Wezz90aY0CydoXo/PnzuHXrlhLwiDoKBiQiapaFCxfC0dERX375JQIDAxEbG4uIiAjodDq8++67Vo/RaDQYP348qqqqEBQUhDfffBPvvPMOkpOT/9VaUlNTsXv3bgwYMACffvqp0v7GG2/grbfewu+//44lS5Y0a86wsDCo1Wo8//zziImJweuvv47AwEBUVlZi1qxZJk+O9ezZUwmKEyZMwOjRozFjxgz0798f69evh4eHB1JSUqz+HOOttLq6Oos9RpGRkWhoaICIWNxeAwBXV1ekp6fD0dER8fHx8PX1hV6vx+TJkxESEgIPDw/ExcVZ3aTdXPfv38eZM2fQo0cPdOvWzaKft9eoo2JAIqJmCQgIQEFBASZMmIBr167h4MGDqK2txdatW5u8ggQAX3/9NWbPno3q6mp8++232L59O3Jzc1u8jkuXLmHevHnQaDTYtWuXxebjzZs3w8/PD1u3bsXBgwcfe16tVousrCzExsYiPz8fP/74I3x8fLBu3Trs2LHDYvysWbNw5MgR6PV6lJSUYN++fbh79y7mzZuHEydONPk75B4ORdYCUlN9RiNHjkRxcTESExPh4OCArKwsZGRkwGAwQK/XY+/evejfv/9jn3dTSkpK0NDQ0GQAYkCijkolLX3chIioAykvL4evry90Op3J9xAR0bOJV5CIiIiIzDAgEREREZlhQCIiIiIywz1IRERERGZ4BYmIiIjIDAMSERERkRkGJCIiIiIzDEhEREREZhiQiIiIiMwwIBERERGZYUAiIiIiMsOARERERGSGAYmIiIjIDAMSERERkZn/AhT7YGA4oE9JAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 34.0, 'matrix power $n$')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xnmore = reduce(vcat, [((A/λ[end])^n * float(x))' for n = 1:50])\n", + "plot(xnmore, \"o-\")\n", + "ylabel(L\"(A^n x)_k / |\\lambda_5|^n\", size=20)\n", + "xlabel(L\"matrix power $n$\", size=15)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ea0f39a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notes/Complexity.ipynb b/notes/Complexity.ipynb new file mode 100644 index 00000000..ca85c129 --- /dev/null +++ b/notes/Complexity.ipynb @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Complexity of Matrix Operations\n", + "\n", + "With a little effort, we can figure out that the **number of arithmetic operations** for an $n\\times n$ matrix **scales proportional to** (for large $n$):\n", + "\n", + "* $n$ for vector operations: vector addition $x\\pm y$, scaling $\\alpha x$, dot products $x^T y$\n", + "* $n^2$ for: matrix `*` vector $Ax$, or solving a *triangular* system like $Ux=c$ or $Lc=b$ (back/forward substitution)\n", + "* $n^3$ for: matrix `*` matrix $AB$, LU factorization $PA=LU$, or solving a triangular system with $n$ right-hand sides like computing $A^{-1}$ from the LU factorization.\n", + "\n", + "(In computer science, we would say that these have “complexity” $\\Theta(n^2)$ and $\\Theta(n^3)$, respectively.\n", + "\n", + "Let's see how these predictions match up to reality:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "using BenchmarkTools # a useful Julia package for performance benchmarking" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Measure the time for LU factorization of 10×10, 100×100, 500×500, 1000×1000, and 2000×2000 random real (double precision) matrices:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 6.25e-7\n", + " 5.0292e-5\n", + " 0.002477292\n", + " 0.016567125\n", + " 0.121252792" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n = [10,100,500,1000,2000]\n", + "LinearAlgebra.BLAS.set_num_threads(1) # benchmarking on multiple cores is weird\n", + "t = [@belapsed(lu($(rand(n,n))), evals=1) for n in n]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's plot it on a log–log scale to see if it is the expected $n^3$ power law:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHJCAYAAABtzYa7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1vElEQVR4nO3dd3yN9/vH8ddJZEjsFVKCtvYIIka+Yra21qxRs/RblSpVVapqtKotVVpBVStmjBbtF61qzaL2rNZqzMYmISGR5P79cf+cCkJk3Rnv5+NxHtyfc+e+r3M4zuWzLpthGAYiIiIiWYiD1QGIiIiIpDUlQCIiIpLlKAESERGRLEcJkIiIiGQ5SoBEREQky1ECJCIiIlmOEiARERHJcpQAiYiISJajBEhERESyHCVAImlky5YtjBo1imvXrt33XP369alfv36ax/Qwv/76K9WrV8fd3R2bzcby5ctT7V4nTpzAZrMxYcKEBM8pUaIELVu2fOBzO3fuxGazERQU9Mh7pfbrioyMZNSoUaxfvz5Fr3tHUFAQNpuNEydOpMr1V61axahRox74XIkSJejZs2eq3FckrWWzOgCRrGLLli2MHj2anj17kidPnnjPTZ061ZqgEmAYBi+88AKlS5fmhx9+wN3dnTJlylgdVrKlxeuKjIxk9OjRAKmS1LZo0YKtW7dSpEiRFL82mAlQYGDgA5OgZcuWkStXrlS5r0haUwIkkg6UL1/e6hDi+eeff7hy5Qpt2rShUaNGKXLNmzdv4urqis1mS5HrJUVqvK60cuf9K1iwIAULFrQkhqpVq1pyX5HUoCEwkTQwatQo3nrrLQBKliyJzWbDZrPZh0nuHQK7MyQ0fvx4Pv74Y0qUKEH27NmpX78+R44c4fbt2wwdOhRPT09y585NmzZtuHDhwn33XbRoEbVr18bd3Z0cOXLQpEkT9uzZ88hYixYtCsDbb7+NzWajRIkS9ud/++03GjVqRM6cOXFzc8PPz4+VK1fGu8adYZqff/6Zl156iYIFC+Lm5kZUVFQS3r2U8bDXdezYMXr16kWpUqVwc3PjiSeeoFWrVhw4cOC+61y7do0333yTJ598EhcXFwoVKkTz5s3566+/OHHihD05GT16tP3P+e5ho+S+f/cOga1fv95+n3sfd/+5LVq0iMaNG1OkSBGyZ89OuXLlGDp0KBEREfZzevbsSWBgIEC869y514OGwE6dOkXXrl0pVKgQLi4ulCtXjk8//ZS4uDj7OXcPcU6cOJGSJUuSI0cOateuze+//57oP0ORlKQeIJE00KdPH65cucIXX3zB0qVL7cMXj+r5CQwMpHLlygQGBtq/eFu1akXNmjVxcnLim2++4eTJkwwePJg+ffrwww8/2H/2ww8/5N1336VXr168++67REdHM378ePz9/dm+fXuC9+7Tpw/e3t60bduW/v3706VLF1xcXADYsGEDzz77LJUrV+brr7/GxcWFqVOn0qpVK4KDg+nYsWO8a7300ku0aNGCuXPnEhERgZOTU3LexmR52Ov6559/yJ8/Px999BEFCxbkypUrzJ49m5o1a7Jnzx77MNn169epU6cOJ06c4O2336ZmzZrcuHGDjRs3Ehoaip+fHz/99BNNmzald+/e9OnTB8CeFKXG+1etWjW2bt0ar+3o0aP07t2bChUqxGtr3rw5AwcOxN3dnb/++ouPP/6Y7du3s3btWgBGjBhBREQE3377bbxrJjTcdvHiRfz8/IiOjub999+nRIkSrFixgsGDB3P8+PH7hnYDAwMpW7YskyZNst+vefPmhISEkDt37of/AYqkNENE0sT48eMNwAgJCbnvuXr16hn16tWzH4eEhBiA4e3tbcTGxtrbJ02aZADGc889F+/nBw4caABGWFiYYRiGcerUKSNbtmxG//794513/fp1o3DhwsYLL7zw0Fjv3H/8+PHx2mvVqmUUKlTIuH79ur0tJibGqFixolG0aFEjLi7OMAzDmDVrlgEY3bt3f+h9HnW/uxUvXtxo0aLFA5/bsWOHARizZs1K9n0Mw3xN0dHRRqlSpYw33njD3j5mzBgDMNasWZPgz168eNEAjJEjR973XEq8f3eee9DfI8MwjPPnzxtPPvmkUaFCBePq1asPPCcuLs64ffu2sWHDBgMw9u3bZ38uICDASOiroXjx4kaPHj3sx0OHDjUAY9u2bfHOe/XVVw2bzWYcPnzYMIx/3/dKlSoZMTEx9vO2b99uAEZwcPAD7yeSmjQEJpKONW/eHAeHfz+m5cqVA8yJsHe7037q1CkAVq9eTUxMDN27dycmJsb+cHV1pV69eklaoRQREcG2bdto3749OXLksLc7OjrSrVs3zpw5w+HDh+P9TLt27R77PlaIiYnhww8/pHz58jg7O5MtWzacnZ05evQof/75p/28H3/8kdKlS/PMM8889j3S4v2LiIigRYsW3Lp1ix9//DHeZPu///6bLl26ULhwYRwdHXFycqJevXoA8V7j41i7di3ly5enRo0a8dp79uyJYRj2nqU7WrRogaOjo/24cuXKAJw8eTJJ9xdJDg2BiaRj+fLli3fs7Oz80PZbt24BcP78eQB8fX0feN27k6rEunr1KoZhPHA4xNPTE4DLly/Ha0/JlUrZsmUjNjb2gc/FxMQAJHmIbdCgQQQGBvL2229Tr1498ubNi4ODA3369OHmzZv28y5evIiXl1eS7pHa719MTAzt27fnyJEjbNy4kWLFitmfu3HjBv7+/ri6uvLBBx9QunRp3NzcOH36NG3bto33Gh/H5cuX480zetTryZ8/f7zjO0OQSb2/SHIoARLJhAoUKADAt99+S/HixVPkmneSgtDQ0Pue++eff+Ld946UXPHl4eHB2bNnH/jcnXYPD48kXXvevHl0796dDz/8MF77pUuX4vWiFCxYkDNnziTpHqn9/v33v//l119/ZdWqVXh7e8d7bu3atfzzzz+sX7/e3usDPHBPqseRP3/+x3o9IumJhsBE0kha/m+3SZMmZMuWjePHj1O9evUHPh6Xu7s7NWvWZOnSpfFeQ1xcHPPmzaNo0aKULl06JV9GPM888wwHDx7k0KFD9z23ePFicuTIQc2aNZN0bZvNZv/zuWPlypX3JVzNmjXjyJEj9w3t3C2hP+fUfP/effddZs2axcyZMx84PHcnkbr3NX755ZeJjv9BGjVqxKFDh9i9e3e89jlz5mCz2WjQoEGiX4NIWlMPkEgaqVSpEgCTJ0+mR48eODk5UaZMGXLmzJni9ypRogRjxoxh+PDh/P333zRt2pS8efNy/vx5tm/fjru7u32zvscxbtw4nn32WRo0aMDgwYNxdnZm6tSpHDx4kODg4GT3+Bw4cIBvv/32vnZfX18GDBjAnDlzqF+/Pu+88w6VKlXi6tWrLFq0iG+//ZaJEycm+b1s2bIlQUFBlC1blsqVK7Nr1y7Gjx9vXzZ/x8CBA1m0aBHPP/88Q4cOpUaNGty8eZMNGzbQsmVLGjRoQM6cOSlevDjff/89jRo1Il++fBQoUIASJUqkyvu3ZMkSxo4dS/v27SldunS8ZeUuLi5UrVoVPz8/8ubNS9++fRk5ciROTk7Mnz+fffv23Xe9O39PP/74Y5o1a4ajoyOVK1e2D7Pe7Y033mDOnDm0aNGCMWPGULx4cVauXMnUqVN59dVXUzUhFkk2iydhi2Qpw4YNMzw9PQ0HBwcDMNatW2cYRsKrwO5drbRu3ToDMJYsWRKv/c7KoB07dsRrX758udGgQQMjV65chouLi1G8eHGjffv2xi+//PLQOB+2WmrTpk1Gw4YNDXd3dyN79uxGrVq1jP/973+JiudR90vocWd117lz54xXX33V8PLyMrJly2bkzJnTqFOnzn3vx+O+rqtXrxq9e/c2ChUqZLi5uRl16tQxNm3adN+fy51zBwwYYHh5eRlOTk5GoUKFjBYtWhh//fWX/ZxffvnFqFq1quHi4mIA8VZOJff9u3cV2MiRIxN834oXL27/uS1bthi1a9c23NzcjIIFCxp9+vQxdu/efd/quaioKKNPnz5GwYIFDZvNFu9e964CMwzDOHnypNGlSxcjf/78hpOTk1GmTBlj/Pjx8VYvPuzvEwmsmBNJbTbDMIw0yrVERERE0gXNARIREZEsRwmQiIiIZDlKgERERCTLUQIkIiIiWY4SIBEREclylACJiIhIlqONEBMQFxfHP//8Q86cOVN0O38RERFJPYZhcP36dTw9PR9a91AJUAL++eefeMUERUREJOM4ffr0fbu5300JUALubKl/+vRpcuXKZXE0IiIikhjh4eEUK1bskaVxlAAl4M6wV65cuZQAiYiIZDCPmr6iSdAiIiKS5SgBEhERkSxHQ2DJEBcXR3R0tNVhZDhOTk44OjpaHYaIiGRhmSIBatOmDevXr6dRo0Z8++239vYVK1bw5ptvEhcXx9tvv02fPn1S7J7R0dGEhIQQFxeXYtfMSvLkyUPhwoW1xYCIiFjCZhiGYXUQybVu3Tpu3LjB7Nmz7QlQTEwM5cuXZ926deTKlYtq1aqxbds28uXLl6hrhoeHkzt3bsLCwu6bBG0YBqdOneL27duP3GdA4jMMg8jISC5cuECePHkoUqSI1SGJiEgm8rDv77tlih6gBg0asH79+nht27dvp0KFCjzxxBMANG/enNWrV9O5c+dk3y8mJobIyEg8PT1xc3NL9vWymuzZswNw4cIFChUqpOEwERFJc5Z3XWzcuJFWrVrh6emJzWZj+fLl950zdepUSpYsiaurKz4+PmzatOmR1/3nn3/syQ9A0aJFOXv2bIrEHBsbC4Czs3OKXC8rupM43r592+JIREQkK7I8AYqIiMDb25spU6Y88PlFixYxcOBAhg8fzp49e/D396dZs2acOnXqodd90MheSs830fyVpNN7JyIiVrJ8CKxZs2Y0a9YswecnTpxI79697ROYJ02axOrVq5k2bRrjxo1L8OeeeOKJeD0+Z86coWbNmgmeHxUVRVRUlP04PDz8cV6GiIiIZCCW9wA9THR0NLt27aJx48bx2hs3bsyWLVse+rM1atTg4MGDnD17luvXr7Nq1SqaNGmS4Pnjxo0jd+7c9ofqgImIiGRe6ToBunTpErGxsXh4eMRr9/Dw4Ny5c/bjJk2a0KFDB1atWkXRokXZsWMH2bJl49NPP6VBgwZUrVqVt956i/z58yd4r2HDhhEWFmZ/nD59OtVe1x2xsbB+PQQHm7/+/9SiNLV+/XpsNhvXrl1L+5uLiIhYxPIhsMS4d76IYRjx2lavXv3An3vuued47rnnEnUPFxcXXFxcCAwMJDAw0D7RObUsXQoDBsCZM/+2FS0KkydD27apd9/69etTpUoVJk2aBICfnx+hoaHkzp079W4qIiKSzqTrHqACBQrg6OgYr7cHzOXT9/YKpZSAgAAOHTrEjh07UuX6YCY/7dvHT34Azp4125cuTbVb38fZ2VkbEoqISJqJi4vjxx9/tDqM9J0AOTs74+Pjw5o1a+K1r1mzBj8/v1S5Z2BgIOXLl8fX1zfRP2MYEBGRuEd4OLz+uvkzD7oOmD1D4eGJu97jbGPZs2dPNmzYwOTJk7HZbNhsNoKCguINgQUFBZEnTx5WrFhBmTJlcHNzo3379kRERDB79mxKlChB3rx56d+/f7xesujoaIYMGcITTzyBu7s7NWvWvG9vJhERydouXLhAy5Ytad68OfPmzbM0FsuHwG7cuMGxY8fsxyEhIezdu5d8+fLh5eXFoEGD6NatG9WrV6d27drMmDGDU6dO0bdv31SJJyAggICAAPtOkokRGQk5cqTM/Q3D7BlK7IjUjRvg7p64cydPnsyRI0eoWLEiY8aMAeCPP/6477zIyEg+//xzFi5cyPXr12nbti1t27YlT548rFq1ir///pt27dpRp04dOnbsCECvXr04ceIECxcuxNPTk2XLltG0aVMOHDhAqVKlEhegiIhkWj///DPdu3fn/PnzuLq6xlt5bQnDYuvWrTOA+x49evSwnxMYGGgUL17ccHZ2NqpVq2Zs2LAh1eMKCwszACMsLOy+527evGkcOnTIuHnzpmEYhnHjhmGYqUvaP27ceLzXVa9ePWPAgAH24zvv/9WrVw3DMIxZs2YZgHHs2DH7Oa+88orh5uZmXL9+3d7WpEkT45VXXjEMwzCOHTtm2Gw24+zZs/Hu1ahRI2PYsGEPjOPe91BERDKvuLg4w8/PzwCMChUqGAcOHEi1ez3s+/tulvcA1a9f/4GbFt6tX79+9OvXL03iScokaDc3sycmMTZuhObNH33eqlVQt27i7p3S3NzceOqpp+zHHh4elChRghx3dXN5eHhw4cIFAHbv3o1hGJQuXTredaKioh668k5ERLIGm83GvHnz+OKLLxg7dqy9JJKVLE+A0pukDIHZbIkfhmrc2Fztdfbsg+fv2Gzm840bg1UlspycnO6JyfbAtri4OMCc0Obo6MiuXbvuq+uVI6XGBkVEJMMwDIPZs2cTEhLC6NGjAShZsiQTJ060OLJ/KQFKY46O5lL39u3NZOfuJOjOQqxJk1Iv+XF2dk7xJf5Vq1YlNjaWCxcu4O/vn6LXFhGRjCUsLIy+ffuycOFCAJo2bUrt2rUtjup+6XoVmBWSsgrscbVtC99+C3fVagXMnp9vv03dfYBKlCjBtm3bOHHiBJcuXbL34iRH6dKlefHFF+nevTtLly4lJCSEHTt28PHHH7Nq1aoUiFpERDKC33//nSpVqrBw4UIcHR0ZO3YsNWrUsDqsB1ICdI+02AcIzCTnxAlYtw4WLDB/DQlJ3eQHYPDgwTg6OlK+fHkKFiz4yKKyiTVr1iy6d+/Om2++SZkyZXjuuefYtm2bSoqIiGQBsbGxjB07ljp16nDixAlKlizJb7/9xjvvvHPf1Ij0wmY8agZyFnVnDlBYWBi5cuWK99ytW7cICQmhZMmSuLq6WhRhxqb3UEQk83j++ef54YcfAOjcuTPTpk2zrMLAw76/76YeIBEREUmWDh064O7uTlBQEPPnz88Q5ZWUAN0jLeYAiYiIZGQ3b96Mt5Fu165dOXbsGD169MgwpZWUAN0jreYAiYiIZEQHDx6kRo0aPPvss1y8eNHeXrhwYQujenxKgEREROSRDMNg2rRp+Pr6cvDgQeLi4ggJCbE6rCRTAiQiIiIPdfnyZdq2bUu/fv24desWTZs2Zd++fel2iXtiKAESERGRBK1fvx5vb2+WL1+Ok5MTEydOZOXKlXh4eFgdWrJoJ+h7JKUWmIiISGb19ddfc/bsWcqUKUNwcDBVq1a1OqQUoQToHkmpBSYiIpJZBQYG8sQTTzBixAjcE1v4MgPQEJiIiIjYBQcH06NHD+7sk5wrVy4++uijTJX8gBIgERERAW7cuEGvXr3o0qULc+bMYcmSJVaHlKqUAEk8169fx9fXlypVqlCpUiW++uorq0MSEZFUtmvXLqpVq0ZQUBAODg689957tE3t4pQW0xyge2T1SdBubm5s2LABNzc3IiMjqVixIm3btiV//vxWhyYiIiksLi6Ozz77jGHDhnH79m2KFi3K/PnzqVu3rtWhpTr1AN0jq+8E7ejoiJubG2AWLI2NjUX1ckVEMqdXXnmFwYMHc/v2bdq2bcu+ffuyRPIDSoDkAa5du4a3tzdFixZlyJAhFChQwOqQREQkFfTq1YucOXPy5Zdf8u2335IvXz6rQ0ozSoDkPnny5GHfvn2EhISwYMECzp8/b3VIIiKSAqKiotiyZYv92M/Pj5MnT/Lf//43wxQxTSlKgLKYY8eOYbPZWLlyJY0aNcLNzY0yZcqwbdu2+8718PCgcuXKbNy40YJIRUQkJR0+fJjatWvTqFGjeJXc8+bNa2FU1lEClMXs27cPm83Gp59+yrvvvsu+ffvw8vJi6NChAJw/f57w8HAAwsPD2bhxI2XKlLEyZBERSQbDMPj666+pVq0ae/bsIUeOHOrZR6vAUlRERESCzzk6OuLq6pqocx0cHMiePfsjz03KplT79u0jd+7cLFq0iIIFCwLQunVrpk2bBsCZM2fo3bs3hmFgGAavvfYalStXfuz7iIiI9a5du8Yrr7zC4sWLAWjUqBFz5szB09PT4sispwQoBeXIkSPB55o3b87KlSvtx4UKFSIyMvKB59arV4/169fbj0uUKMGlS5fuOy8pq7P27dtHq1at7MkPwN9//83TTz8NgI+PD3v37n3s64qISPqyZcsWunTpwsmTJ8mWLRsffPABb731Fg4OGvwBDYFlOfv27aN27drx2vbs2UOVKlWsCUhERFLFmjVrOHnyJE8++SSbN2/m7bffVvJzF/UA3SM5GyHeuHEjweccHR3jHV+4cCHBc+/9C3rixInHjuVBwsLCOHny5H2VfPfu3cvrr7+eIvcQERHrGIZhX801fPhwsmXLRv/+/cmVK5fFkaU/NkO73D3QnWrwYWFh9/3FuXXrFiEhIZQsWTLevJ70buPGjTRs2JDr16/b5xidPHmSEiVKEBISQokSJdIsloz6HoqIpFfLli1jypQprFy5Mkv/u/qw7++7qS8sC9m3bx9ly5aNN8F6z5495MmTJ02THxERSTmRkZG8+uqrtG3blrVr1zJlyhSrQ8oQlABlIf379+fgwYPx2lq3bs3Vq1ctikhERJLjwIED+Pr6Mn36dACGDBmiKQ2JpDlAIiIiGYxhGAQGBjJ48GCioqIoXLgwc+fO5ZlnnrE6tAxDPUAiIiIZzIgRI+jfvz9RUVG0aNGC/fv3K/l5TEqAREREMpg+ffpQqFAhJk+ezP/+9794e7tJ4mgITEREJJ27ffs2a9asoXnz5oC5Qe7ff/+dpIoAYlIPkIiISDp2/Phx6tSpQ4sWLfjpp5/s7Up+kidTJ0ATJkygQoUKVKxYkXnz5qX49bWFUtLpvRMRebT58+dTtWpVtm/fTp48eYiOjrY6pEwj0w6BHThwgAULFrBr1y7ALADXsmVL8uTJk+xr39nVOTo6Ot6eOpJ4d+qgOTk5WRyJiEj6c/36dQICApg7dy4A/v7+zJs3Dy8vL4sjyzwybQL0559/4ufnZ98Ns0qVKvz000906tQp2dfOli0bbm5uXLx4EScnJ9VWeQyGYRAZGcmFCxfIkyfPfSVCRESyuh07dtC5c2eOHz+Og4MD7733nr2shaScdPtubty4kfHjx7Nr1y5CQ0NZtmwZrVu3jnfO1KlTGT9+PKGhoVSoUIFJkybh7+8PQMWKFRk9ejTXrl0DYO3atTz55JMpEpvNZqNIkSKEhIRw8uTJFLlmVpMnTx4KFy5sdRgiIunOsWPHOH78OF5eXsyfP586depYHVKmlG4ToIiICLy9venVqxft2rW77/lFixYxcOBApk6dyn/+8x++/PJLmjVrxqFDh/Dy8qJ8+fK8/vrrNGzYkNy5c+Pr6/vQ7DkqKoqoqCj7cXh4+EPjc3Z2plSpUhqPTQInJyf1/IiI3CUuLs4+mtC5c2fCwsLo2LEjefPmtTiyzCtDFEO12Wz39QDVrFmTatWqMW3aNHtbuXLlaN26NePGjbvvGn369KFNmza0aNHigfcYNWoUo0ePvq/9UcXUREREkmPFihW88847/PLLLxQqVMjqcDK8TF0MNTo6ml27dtG4ceN47Y0bN2bLli324wsXLgBw+PBhtm/fTpMmTRK85rBhwwgLC7M/Tp8+nTrBi4iIALdu3eL111+nVatWHDhwgA8//NDqkLKUdDsE9jCXLl0iNjYWDw+PeO0eHh6cO3fOfty6dWuuXbuGu7s7s2bNeugQmIuLCy4uLgQGBhIYGEhsbGyqxS8iIlnbn3/+SadOndi/fz8AAwcO5KOPPrI4qqwlQyZAd9hstnjHhmHEa7u7NyixAgICCAgIsHehiYiIpBTDMJg5cyYDBgzg5s2bFCxYkKCgIPsOz5J2MmQCVKBAARwdHeP19oA55HVvr5CIiEh6ERgYSP/+/QF49tlnmT17NkWKFLE4qqwpQ84BcnZ2xsfHhzVr1sRrX7NmDX5+fsm6dmBgIOXLl8fX1zdZ1xEREblX9+7dKVeuHOPHj+enn35S8mOhdNsDdOPGDY4dO2Y/DgkJYe/eveTLlw8vLy8GDRpEt27dqF69OrVr12bGjBmcOnWKvn37Juu+GgITEZGUEhMTw6JFi+jSpQs2m41cuXKxd+9enJ2drQ4ty0u3CdDOnTtp0KCB/XjQoEEA9OjRg6CgIDp27Mjly5cZM2YMoaGhVKxYkVWrVlG8ePFk3VeToEVEJCWcPHmSF198kc2bN3P16lVee+01ACU/6USG2AfICondR0BEROReS5Ys4eWXXyYsLIycOXPy5Zdf0rlzZ6vDyhIS+/2dbnuAREREMpqIiAgGDhzIzJkzAahRowbBwcEpVopJUk6GnAQtIiKS3uzfv5/q1aszc+ZMbDYbw4YN47ffflPyk06pB+gemgMkIiJJERkZydGjRylSpAjz5s2jYcOGVockD6E5QAnQHCAREXmUmJiYeFUGvvvuO+rVq0eBAgUsjCpry9S1wERERKy2Zs0aSpcuzcGDB+1t7dq1U/KTQSgBuoc2QhQRkYeJjo5myJAhNG7cmJCQEMaMGWN1SJIEGgJLgIbARETkXseOHaNz587s3LkTgL59+/Lpp5/i5uZmcWRyh4bAREREUtDcuXOpWrUqO3fuJG/evCxdupRp06Yp+cmgtApMRETkEZYtW0b37t0BqFevHvPmzaNo0aIWRyXJoQRIRETkEZ577jkaNmxIgwYNGDZsGI6OjlaHJMmkBOge2gdIRERiY2OZOXMmPXr0wNXVFUdHR37++WclPpmIJkEnQJOgRUSyprNnz9KtWzfWrVtH//79+fzzz60OSR6DJkGLiIg8ph9++AFvb2/WrVuHu7s7VatWtTokSSUaAhMRkSzv5s2bvPXWWwQGBgJQtWpVFi5cSOnSpS2OTFKLeoBERCRLO3LkCDVr1rQnP4MGDWLr1q1KfjI59QCJiEiW5urqyunTpylUqBCzZ8+madOmVockaUAJ0D20CkxEJPO7desWrq6uAHh5ebF8+XLKli2Lh4eHxZFJWtEqsARoFZiISOa0YcMGunXrxvTp02nevLnV4UgK0yowERGRu8TExDBixAgaNGjA6dOnGTduHOoDyLo0BCYiIpneiRMn6NKlC1u3bgXgpZdeYvLkydhsNosjE6uoB0hERDK1RYsW4e3tzdatW8mVKxcLFy7k66+/JkeOHFaHJhZSD5CIiGRa27dvp1OnTgDUrl2bBQsWUKJECWuDknRBCZCIiGRaNWrUoE+fPhQuXJiRI0eSLZu+9sSkvwkiIpJpxMXFMW3aNNq3b29f0j5jxgzN9ZH7aA7QPQIDAylfvjy+vr5WhyIiIo/h/PnztGjRgtdee42ePXsSFxcHoORHHkgJ0D0CAgI4dOgQO3bssDoUERFJpNWrV+Pt7c1PP/2Eq6srzz//vBIfeSglQCIikmFFRUXx5ptv0rRpU86fP0/FihXZuXMnffv2VQIkD6U5QCIikiGdOnWKNm3asHv3bsDswR8/fjzZs2e3ODLJCJQAiYhIhpQ3b17Cw8PJnz8/33zzDc8995zVIUkGogRIREQyjOvXr5MjRw5sNhs5c+Zk2bJl5M2blyeeeMLq0CSRYmNh0yYIDYUiRcDfHxwd0z4OzQESEZEMYevWrVSuXJnPP//c3laxYkUlPxnI0qVQogQ0aABdupi/lihhtqc1JUAiIpKuxcbG8sEHH+Dv78+JEyeYPn06t2/ftjoseUxLl0L79nDmTPz2s2fN9rROgpQAiYhIunXmzBkaNWrEiBEjiI2NpUuXLvz+++84OTlZHZo8hthYGDAADOP+5+60DRxonpdWMnUC9Nlnn1GhQgXKly/P66+/jvGgd15ERNKl5cuX4+3tzYYNG3B3d2f27NnMmzeP3LlzWx2aPKZNm+7v+bmbYcDp0+Z5aSXTToK+ePEiU6ZM4Y8//sDJyYm6devy+++/U7t2batDExGRRzh58iQdOnQgJiYGHx8fgoODKVWqlNVhSRKFhqbseSkh0yZAADExMdy6dQuA27dvU6hQIYsjEhGRxChevDhjx47l0qVLfPDBBzg7O1sdkiRD4cKJO69IkdSN427pdghs48aNtGrVCk9PT2w2G8uXL7/vnKlTp1KyZElcXV3x8fFh0119ZwULFmTw4MF4eXnh6enJM888w1NPPZWGr0BERBLLMAymTp3K/v377W1Dhgzhk08+UfKTwV25AlOnPvwcmw2KFTOXxKeVdJsARURE4O3tzZQpUx74/KJFixg4cCDDhw9nz549+Pv706xZM06dOgXA1atXWbFiBSdOnODs2bNs2bKFjRs3Jni/qKgowsPD4z1ERCT1Xbp0idatWxMQEECnTp24efOm1SFJClm9GipVgm+/BYf/zzjurVBy53jSpLTdDyjdJkDNmjXjgw8+oG3btg98fuLEifTu3Zs+ffpQrlw5Jk2aRLFixZg2bRoAv/zyC08//TT58uUje/bstGjRgt9//z3B+40bN47cuXPbH8WKFUuV1yUiIv9au3Yt3t7e/PDDDzg7O/PKK6/g6upqdViSTBEREBAATZvCP/9AmTKwbRt89x3cu21T0aJmgpTA132qSbcJ0MNER0eza9cuGjduHK+9cePGbNmyBYBixYqxZcsWbt26RWxsLOvXr6dMmTIJXnPYsGGEhYXZH6dPn07V1yAikpXdvn2bd955h2eeeYZ//vmHMmXKsG3bNgYMGKAiphnctm1Qteq/w179+8Pu3VC9upnknDgB69bBggXmryEhaZ/8QAadBH3p0iViY2Px8PCI1+7h4cG5c+cAqFWrFs2bN6dq1ao4ODjQqFGjh9aJcXFxwcXFhcDAQAIDA4lNy80IRESykEuXLtGyZUu2bdsGQJ8+fZg0aRLu7u4WRybJcfs2fPABjB1r7ufzxBMwaxY8+2z88xwdoX59S0KMJ0MmQHfc+78EwzDitY0dO5axY8c+1jUDAgIICAggPDxce02IiKSCvHnzkj17dvLkycNXX31F+/btrQ5Jkumvv6BbN9i50zzu3BkCAyFvXmvjepgMmQAVKFAAR0dHe2/PHRcuXLivV0hERKx3/fp1smXLRvbs2XF0dGT+/Pncvn2b4sWLWx2aJENcnJnoDBkCt25BnjwwbRp06mR1ZI+WIecAOTs74+Pjw5o1a+K1r1mzBj8/v2RdOzAwkPLly+Pr65us64iIiGnnzp1Uq1aNt956y97m6emp5CeDO3vWnOT8+utm8tO4MRw8mDGSH0jHCdCNGzfYu3cve/fuBSAkJIS9e/fal7kPGjSImTNn8s033/Dnn3/yxhtvcOrUKfr27Zus+wYEBHDo0CF27NiR3JcgIpKlxcXFMWHCBPz8/Dh27Bg//PAD165dszosSQHBwVCxIqxZA9mzw5Qp8NNP96/wSs/S7RDYzp07adCggf140KBBAPTo0YOgoCA6duzI5cuXGTNmDKGhoVSsWJFVq1bpfxQiIunAuXPn6NGjBz///DMA7dq146uvviJPnjzWBibJcuWKubx94ULz2NcX5s41l7lnNDZDFULjuXsV2JEjRwgLCyNXrlxWhyUikmH8+OOP9OjRg4sXL5I9e3YmT55Mnz59tLw9g/v5Z+jVy9zXx9ERRoyAd94BJyerI4vvziKmR31/KwFKQGLfQBER+Vd4eDglS5bkypUrVK5cmeDgYMqXL291WJIMkZHw9tvmMBdA6dJmr0+NGtbGlZDEfn+n2yEwERHJeHLlysVXX33Fhg0b+Pjjj7Wrcwa3Y4e5vP3wYfP4tdfg44/Bzc3auFKCeoDuoSEwEZHEMwyDr7/+Gk9PT5o3b251OJJCbt+GDz+E9983NzX09DQ3NbynAEO6pCGwZNIQmIjIw127do3//ve/LFmyhAIFCvDHH39QqFAhq8OSZDp82Oz1ubMYumNHs6xFvnzWxpVYif3+TrfL4EVEJP3avHkz3t7eLFmyhGzZsvHWW29RoEABq8OSZDAMc1PDqlXN5CdPHrNe18KFGSf5eRyaAyQiIokWGxvL2LFjGT16NHFxcTz11FMsWLCAGul1Rqwkytmz8NJL5kovgGeeMYe8iha1Nq7UpAToHiqGKiLyYLdu3aJx48Zs2rQJgG7duhEYGEjOnDktjkySY9EiePVVuHoVXF3hk0/MvX4cMvkYUSZ/eY9PO0GLiDyYq6srZcqUIWfOnMybN485c+Yo+cnArl6FLl3M0hVXr4KPD+zZA/37Z/7kBzQJOkGaBC0iAhEREdy8edM+vyciIoLz58/z5JNPWhyZJMcvv0DPnubQl6MjDB8O776b/jY1TApNghYRkWTZt28f1atX58UXXyQuLg4Ad3d3JT8ZWGSkWbz02WfN5KdUKdi8GUaPzhzJz+NQAnQPVYMXkazOMAw+//xzatSowV9//cWBAwfshagl49q50xzm+uIL87hfP3PIq2ZNa+OyiobAEqAhMBHJii5evEivXr1YuXIlAK1ateKbb77REvcMLCbm300NY2KgSBH45hto2tTqyFKHSmGIiMhj+eWXX+jevTuhoaG4uLgwYcIEAgICVMQ0AztyBLp3h23bzOMOHWDaNMif39q40gMlQCIiQkxMDP379yc0NJRy5cqxcOFCKleubHVYkkSGAdOnw5tvws2bkDu3uclhly6gfNakOUAiIkK2bNmYP38+/fr1Y+fOnUp+MrB//oHmzc05PjdvQsOGcOAAvPiikp+7qQdIRCSLmjt3LtevX6dfv34AVKtWjWrVqlkclSTHkiXQty9cuWJuavjRR1lnX5/HpQToHtoJWkQyu/DwcPr168f8+fNxcnKifv36lC9f3uqwJBmuXYPXXoP5883jatVg7lzQH2vClBPeQztBi0hmtm3bNqpWrcr8+fNxcHBgxIgRlClTxuqwJBl+/RUqVTKTHwcHc0PDrVuV/DyKeoBERLKAuLg4PvnkE0aMGEFMTAxeXl4sWLCA//znP1aHJkl08yYMGwaTJ5vHTz8Nc+ZA7drWxpVRKAESEcnkDMOgZcuW/PjjjwB06NCBGTNmkCdPHmsDkyTbtQu6dYM//zSP+/aFCRPA3d3auDISDYGJiGRyNpuNBg0a4ObmxsyZM1m0aJGSnwwqJgY++ABq1TKTn8KFYeVKc28fJT+PRztBJ0A7QYtIRnbr1i3OnTtHiRIlAHMI7OTJk5QsWdLawCTJjh41NzX8/XfzuF07c68fbdIdn4qhiohkUYcOHaJmzZo0a9aMyMhIABwcHJT8ZFB3NjWsUsVMfnLlMuf6LFmi5Cc5lACJiGQShmEwY8YMqlevzv79+7l8+TJHjhyxOixJhNhYWL8egoPNX+/sxBIaCi1awKuvmpXcGzQwNzXs1k2bGiaXJkHfQ/sAiUhGdOXKFV5++WWWLl0KQOPGjZk9ezaFCxe2ODJ5lKVLYcAAOHPm37aiRaFTJ5g1Cy5fBhcXGDfOPE+bGqYMzQFKgOYAiUhGsXHjRl588UXOnDmDk5MT48aN44033sBB35Tp3tKl0L69OcyVkKpVzU0NK1RIu7gyMlWDFxHJAgzD4IMPPuDMmTOUKlWK4OBgfHx8rA5LEiE21uzReVjykysXbN4M2bOnXVxZhf57ICKSgdlsNoKCgnjttdfYvXu3kp8MZNOm+MNeDxIeDtu2pU08WY0SIBGRDGbx4sW8/fbb9mNPT0+++OILcuTIYWFU8rhCQ1P2PHk8GgITEckgIiIiGDBgAF9//TUAzzzzDM8++6zFUUlSJXYvyiJFUjWMLEsJkIhIBrBnzx46d+7M4cOHsdlsvPPOO9SvX9/qsCSJ1q41l7Y/jM1mrgbz90+bmLIaDYGJiKRjcXFxfPbZZ9SqVYvDhw/j6enJr7/+ygcffICTk5PV4cljCg8363Y1agQnT/67keG9e/rcOZ40CRwd0zTELEMJkIhIOta9e3cGDRpEdHQ0zz//PPv376dBgwZWhyVJ8PPPUKkSfPmlefzqq/D33/Ddd/DEE/HPLVoUvv0W2rZN+zizikybAB0+fJgqVarYH9mzZ2f58uVWhyUi8ljat2+Pq6srgYGBLFu2jPz581sdkjymsDDo0weaNIFTp6BkSXMIbOpUyJnTTHJOnIB162DBAvPXkBAlP6ktS2yEeOPGDUqUKMHJkydxT2S5XG2EKCJWiI6O5q+//qJy5cr2ttDQUIpoJmyG9OOP8N///rvcvX9/+PBD0IK91KNiqHf54YcfaNSoUaKTHxERKxw9ehQ/Pz8aNGjA2bNn7e1KfjKeq1ehZ09o3txMfp56CjZsgM8/V/KTXqTbBGjjxo20atUKT09PbDbbA4evpk6dSsmSJXF1dcXHx4dNmzY98FqLFy+mY8eOqRyxiEjSGIZBUFAQVatWZdeuXQAcP37c4qgkqf73P7NsxezZ5mTmN96A/fuhbl2rI5O7pdsEKCIiAm9vb6ZMmfLA5xctWsTAgQMZPnw4e/bswd/fn2bNmnHq1Kl454WHh7N582aaN2+eFmGLiDyWsLAwunTpQq9evYiIiKB+/frs27ePuvq2zHAuX4auXeG558zNC0uXht9+g4kTwc3N6ujkXhliDpDNZmPZsmW0bt3a3lazZk2qVavGtGnT7G3lypWjdevWjBs3zt42d+5cVq9ezbx58x56j6ioKKKiouzH4eHhFCtWTHOARCTV/P7773Tu3JkTJ07g6OjImDFjePvtt3HUuucMZ9kyc1XX+fNmtfY334TRo1XDywqZeg5QdHQ0u3btonHjxvHaGzduzJYtW+K1JXb4a9y4ceTOndv+KFasWIrGLCJyrzlz5nDixAlKlizJb7/9xjvvvKPkJ4O5eBE6dTJXbJ0/D+XKwZYt8MknSn7SuyTvBH369GlOnDhBZGQkBQsWpEKFCri4uKRkbAm6dOkSsbGxeHh4xGv38PDg3Llz9uOwsDC2b9/Od99998hrDhs2jEGDBtmP7/QAiYiklgkTJpAzZ07eeecdcufObXU48piWLIGAADMJcnSEIUPgvffA1dXqyCQxHisBOnnyJNOnTyc4OJjTp09z9+iZs7Mz/v7+/Pe//6Vdu3Y4OKR+55Ltnq0zDcOI15Y7d27Onz+fqGu5uLjg4uJCYGAggYGBxMbGpmisIiLff/89wcHBLFiwAAcHB9zc3Pj444+tDkse0/nzZuJz5//WFSvCrFlQvbq1ccnjSXSWMmDAACpVqsTRo0cZM2YMf/zxB2FhYURHR3Pu3DlWrVpFnTp1GDFiBJUrV2bHjh2pFnSBAgVwdHSM19sDcOHChft6hR5XQEAAhw4dStX4RSRruXnzJgEBAbRu3ZpFixYxa9Ysq0OSJDAMCA42V3h99x1kywYjRsDOnUp+MqJE9wA5Oztz/PhxChYseN9zhQoVomHDhjRs2JCRI0eyatUqTp48ia+vb4oGe3csPj4+rFmzhjZt2tjb16xZw/PPP5+sa6sHSERS0h9//EGnTp04ePAgAG+++SbdunWzOCp5XKGh5iTn7783j729zV6fqlWtjUuSLt2uArtx4wbHjh0DoGrVqkycOJEGDRqQL18+vLy8WLRoEd26dWP69OnUrl2bGTNm8NVXX/HHH39QvHjxZN9fO0GLSHIYhsH06dMZNGgQt27dwsPDg9mzZ9OkSROrQ5PHYBgwbx4MGGBubujkBO++C8OGmb+X9Cex399JmgR98+ZNDMPA7f83Njh58iTLli2jXLlyKfbh3rlzZ7yCf3cmKPfo0YOgoCA6duzI5cuXGTNmDKGhoVSsWJFVq1alSPIjIpJcgwcPZuLEiQA0bdqUoKCgZA/RS9o6exZeeQVWrjSPq1WDoCCzoKlkfEnqAWrcuDFt27alb9++XLt2jbJly+Lk5MSlS5eYOHEir776amrEmibuHgI7cuSIeoBEJEn27NlDvXr1GD16NAMGDEiThSGSMgzDTHTeeMMsZOrsDCNHwltvqdcnI0hsD1CSEqACBQqwYcMGKlSowMyZM/niiy/Ys2cP3333He+99x5//vlnsoJPDzQEJiKP4/bt22zbto06derY265evUrevHktjEoe1+nT8PLLsHq1eVyjBnzzjTnxWTKGVN0IMTIykpw5cwLw888/07ZtWxwcHKhVqxYnT55MWsQiIhlUSEgIdevWpWHDhvZaXoCSnwzEMOCrr8xEZ/VqcHGBjz+GzZuV/GRWSUqAnn76aZYvX87p06dZvXq1fUfmCxcuZPjeksDAQMqXL59qK9hEJHMJDg6mSpUq/P7777i5ud23PYekfydOQOPG8N//wvXrULs27N1rbmyYLcnbBUt6l6QE6L333mPw4MGUKFGCmjVrUrt2bcDsDaqawdcEah8gEUmMGzdu0KtXL7p06UJ4eDh+fn7s3buXFi1aWB2aJFJcHEybZk5q/uUXcwfnTz+FTZugbFmro5PUluRl8OfOnSM0NBRvb2/75L7t27eTK1cuymaCvzmaAyQiCdm9ezedOnXi6NGjODg48O677zJixAiyqbsgw/j7b+jdG9avN4/r1DHn+pQqZWlYkgJSdRk8QOHChSlcuHC8tho1aiT1ciIiGcb69es5evQoRYsWZf78+dStW9fqkCSR4uIgMBCGDoXISHBzg3Hj4LXXzCruknUkKQGKiIjgo48+4tdff+XChQvExcXFe/7vv/9OkeCsoJ2gReRB7q41OHDgQG7dukXfvn3Jly+fxZFJYh09avb6bNpkHtevDzNnwlNPWRqWWCRJQ2CdO3dmw4YNdOvWjSJFitxXlHTAgAEpFqBVNAQmInf8+OOPjBs3jlWrVpEjRw6rw5HHFBsLn38Ow4fDzZvg7g6ffAJ9+6rXJzNK1SGwH3/8kZUrV/Kf//wnyQGKiKR3UVFRDBs2jM8++wyA8ePHM3r0aIujksdx+DD06gVbt5rHjRqZvT4lSlgalqQDSUqA8ubNq25fEcnUDh8+TOfOndmzZw8A/fv3Z9iwYRZHJYkVGwsTJ5rV2qOiIGdOmDDB3OTwnkELyaKS1Pn3/vvv89577xEZGZnS8VhO+wCJZG2GYfD1119TrVo19uzZQ/78+fnhhx/4/PPPcXV1tTo8SYRDh8DPz9zHJyoKmjSBgwfNfX6U/MgdSZoDVLVqVY4fP45hGJQoUQKne4qj7N69O8UCtIrmAIlkTR9//DFDhw4FoFGjRsyZMwdPT0+Lo5LEiImB8eNh1CiIjobcuc1eoF69lPhkJak6B6h169ZJjUtEJF3r3r07n3/+Oa+//jpvvfWWiphmEAcOmInOnUokLVrAl1/CE09YG5ekX0neCDGzUw+QSNYQGxvLTz/9FG8H54iICNzd3S2MShLr9m346CN4/33z93nywOTJ0K2ben2yqlQthpoYyqtEJL07ffo0jRo1omXLlixdutTeruQnY9i716zW/t57ZvLz3HPm/J/u3ZX8yKMlOgEqV64cCxYsIDo6+qHnHT16lFdffZWPP/442cGJiKSWZcuW4e3tzYYNG8iRIwe3b9+2OiS5R2ysWaoiONj89c7+tNHRMHIk+PqaSVC+fDB/PixfDkWKWBevZCyJngMUGBjI22+/TUBAAI0bN6Z69ep4enri6urK1atXOXToEL/99huHDh3itddeo1+/fqkZd6rRTtAimVtkZCRvvvkm06dPB8DX15cFCxbw9NNPWxyZ3G3pUhgwAM6c+betaFF4/XWYO9ec8wPQti1MnQoeHtbEKRnXY88B2rJlC4sWLWLjxo2cOHGCmzdvUqBAAapWrUqTJk3o2rUrefLkSaVw047mAIlkPgcOHKBTp04cOnQIgCFDhvD+++/j7OxscWRyt6VLoX17eNi3U4ECZk2vDh003CXxpdoqMD8/P/z8/JIVnIiIFUJCQjh06BCFCxdmzpw5PPvss1aHJPeIjTV7fh6W/GTPbvYA3VOPW+SxaH2niGRqdxdrfu6555gxYwb79+9X8pNObdoUf9jrQW7ehL/+Spt4JPNSAiQimdbatWvx9vbm9OnT9raXX36ZggULWhiVPExoaMqeJ5IQJUAikuncvn2bYcOG8cwzz3Dw4EFGjRpldUiSSFeuJO48rfaS5ErSTtAiIunV8ePH6dKlC9u3bwfMHp871dwl/QoNhaFDYc6ch59ns5mrwfz90yYuybzUAyQimcb8+fOpWrUq27dvJ0+ePCxZsoQZM2ZoY8N0LCoKPvkESpf+N/lp2NBMdO5d3XXneNIkcHRM0zAlE0pyAnT8+HHeffddOnfuzIULFwD46aef+OOPP1IsOBGRxJo9ezZdu3bl+vXr+Pv7s2/fPtq3b291WPIQK1dCxYrw9ttw4wbUrAnbtsGvv8K3395fx6toUbO9bVtr4pXMJUkJ0IYNG6hUqRLbtm1j6dKl3LhxA4D9+/czcuTIFA0wrQUGBlK+fHl8fX2tDkVEHsMLL7xA5cqVGTVqFGvXrsXLy8vqkCQBhw9D8+bQsiUcO2YuZ589G7ZsMUtbgJnknDgB69bBggXmryEhSn4k5SSpGGrt2rXp0KEDgwYNImfOnOzbt48nn3ySHTt20Lp1a86ePZsasaYpbYQokr7FxcURHBxMp06dcPz/8ZDo6GhtapiOhYebRUsnTzZrdzk5wRtvwPDhoH9mJaWkajHUAwcO0KZNm/vaCxYsyOXLl5NySRGRRAsNDbXvPP/JJ5/Y25X8pE9xcWYPT+nSMGGCmfy0aAEHD8LHHyv5EWskKQHKkycPoQ/YhGHPnj08ce+grYhIClqxYgWVK1fml19+wc3NDQ8VgUrXtm+H2rWhZ084fx5KlYIVK8xH6dJWRydZWZISoC5duvD2229z7tw5bDYbcXFxbN68mcGDB9O9e/eUjlFEhFu3bvH666/TqlUrLl26RJUqVdi1axcvvfSS1aHJA5w7B716mRObt2+HHDnM1V4HD5q9PyJWS1ICNHbsWLy8vHjiiSe4ceMG5cuXp27duvj5+fHuu++mdIwiksX99ddf1KxZky+++AKAgQMH8vvvv1O2bFmLI5N7RUebw1ylS0NQkNnWowccOQJvvQUapZT0IkmToO84fvw4e/bsIS4ujqpVq1KqVKmUjM1SmgQtkn7s27ePGjVqkDt3boKCgmjevLnVIckD/PgjDBxoJjsAvr7wxRdmL5BIWkns93eyEqDMTAmQiLViYmLIlu3fzeq///57atSoQRHVQEh3jh0zV3OtWGEeFyoEH31k9vw4aLtdSWOJ/f5OUikMwzD49ttvWbduHRcuXIhXbRlg6dKlSblsigsJCeGll17i/PnzODo68vvvv2tHWJEMYNOmTfTq1Yvg4GD7nlzPP/+8xVHJva5fh7Fj4bPPzKGvbNlgwAAYMQJy57Y6OpGHS1JuPmDAALp160ZISAg5cuQgd+7c8R7pRc+ePRkzZgyHDh1iw4YNuLi4WB2SiDxETEwMo0aNon79+hw/fpwRI0ZYHZI8QFwczJ0LZcqYy9ijo6FpUzhwwJz/k46+BkQSlKQeoHnz5rF06dJ0PQ7/xx9/4OTkhP//V8zLly+fxRGJyMOcPHmSF198kc2bNwPQvXt3pkyZYnFUcq+dO+H112HrVvP4qafM2lwtWtxfu0skPUtSD1Du3Ll58sknUzqWeDZu3EirVq3w9PTEZrOxfPny+86ZOnUqJUuWxNXVFR8fHzZt2mR/7ujRo+TIkYPnnnuOatWq8eGHH6ZqvCKSdEuWLMHb25vNmzeTM2dO5s+fz+zZs8mZM6fVocn/u3AB+vQxS1Vs3Qru7jBuHPzxh1nSQsmPZDRJSoBGjRrF6NGjuXnzZkrHYxcREYG3t3eC/wNctGgRAwcOZPjw4ezZswd/f3+aNWvGqVOnALh9+zabNm0iMDCQrVu3smbNGtasWZNq8YpI0vzyyy+88MILhIWFUaNGDfbu3UuXLl2sDkv+3+3b5hyfUqXg66/BMKBrV3Ol19ChoJkFklElaRVYZGQkbdu2ZfPmzZQoUQInJ6d4z+/evTvFAgSw2WwsW7aM1q1b29tq1qxJtWrVmDZtmr2tXLlytG7dmnHjxrF161ZGjx7NTz/9BMD48eMBeOuttx54j6ioKKKiouzH4eHhFCtWTKvARFKZYRi0atWKypUrM3r06Pv+PRHr/PyzOan5r7/MYx8f+Pxz8POzNi6Rh0nVVWA9e/Zk165ddO3aFQ8PD2xp3PcZHR3Nrl27GDp0aLz2xo0bs2XLFgB8fX05f/48V69eJXfu3GzcuJFXXnklwWuOGzeO0aNHp2rcImImPN988w0dO3YkR44c2Gw2vv/+e3tBU7He8eMwaBD88IN5XLCgOdzVq5eWtUvmkaQEaOXKlaxevZo6deqkdDyJcunSJWJjY++rAeTh4cG5c+cAyJYtGx9++CF169bFMAwaN25My5YtE7zmsGHDGDRokP34Tg+QiKScCxcu0KtXL1atWsXmzZv55ptvAJT8pBM3bpiJzoQJ/y5r798f3nsP8uSxOjqRlJWkBKhYsWLpYljo3p4nwzDitTVr1oxmzZol6louLi64uLgQGBhIYGAgsbGxKRqrSFa3Zs0aunfvzrlz53BxccHHx+e+z6xYwzAgONgsVfHPP2bbs8+aq7vKl7c0NJFUk6TOzE8//ZQhQ4Zw4sSJFA4ncQoUKICjo6O9t+eOCxcuJLsydEBAAIcOHWLHjh3Juo6ImKKjoxkyZAiNGzfm3LlzVKhQgR07dhAQEKDkJx3YvRv8/eHFF83k58knYflyWL1ayY9kbklKgLp27cq6det46qmnyJkzJ/ny5Yv3SG3Ozs74+Pjct6przZo1+CVzdl5gYCDly5e37z4rIkl34sQJ/vOf/9gXIfTt25ft27dTqVIliyOTixfhv/+F6tVh82ZwczN3df7jD3j+eS1rl8wvSUNgkyZNSuEw7nfjxg2OHTtmPw4JCWHv3r3ky5cPLy8vBg0aRLdu3ahevTq1a9dmxowZnDp1ir59+ybrvgEBAQQEBNhnkYtI0rm6unLq1Cny5s3L119/TZs2bawOKcu7fRumToWRIyEszGzr0sXc0bloUWtjE0lL6bYY6vr162nQoMF97T169CAoKAgwN0L85JNPCA0NpWLFinz22WfUrVs3Re6vYqgiSXPr1i1cXV3tx5s3b8bLy0uLCtKBX34xl7UfOmQeV61qLmu3aD2LSKpI8Wrw4eHh9guFh4c/9NyMnDDcPQn6yJEjSoBEHsO2bdvo3LkzH3/8MR06dLA6HPl/ISHw5puwbJl5nD8/fPgh9O4NWoAnmU2KJ0COjo6EhoZSqFAhHBwcHjh58c6Kjsywgko9QCKJFxsbyyeffMJ7771HTEwMVapUYdeuXTho0xhLRUTARx/B+PEQFWUmOwEBMGoU5M1rdXQiqSPFN0Jcu3atfYLzunXrkh+hiGQKZ8+epVu3bvZ/Fzp27Mj06dOV/FjIMGDRInNZ+5kzZlujRjB5MlSoYG1sIulFohOgevXq2X9fsmRJihUr9sB9eE6fPp1y0VlA+wCJJN7//vc/evXqxeXLl3F3d+eLL76gZ8+eWt5uob17zWrtd2pDlygBn34KbdpoZZfI3ZI0Cfru4bC7Xb58mUKFCmWK5EFDYCIP98cff1CxYkUAqlatysKFCyldurTFUWVdly7BiBEwYwbExUH27DBsGAwebP5eJKtI1VpgCe3eeuPGjXirP0Qk86pQoQIDBgzA0dGRDz/8EBeVBbdETAxMn26Wq7h61Wzr2BE++QS8vKyNTSQ9e6wE6E6tLJvNxogRI3Bzc7M/Fxsby7Zt26hSpUqKBigi6YNhGMycOZMmTZrg9f/frJ999pmGuyy0dq25rP3gQfPY29tc1p5Cu4GIZGqPlQDt2bMHMP8hPHDgAM7OzvbnnJ2d8fb2ZvDgwSkbYRrTHCCR+125coU+ffqwbNky/P39Wbt2LdmyZVPyY5GTJ82hrW+/NY/z5TN3cX75ZS1rF0msJM0B6tWrF5MnT87Uc2M0B0jEtGHDBrp27cqZM2dwcnLi448/ZsCAAVrlZYHISHNo6+OP4dYtcHCAV1+FMWPMJEhEUnkO0KxZs5IcmIhkDDExMYwePZqxY8diGAalS5cmODiYatWqWR1almMYZm/P4MFw6pTZVr++uay9cmVLQxPJsJKUAIlI5nbu3Dnatm3L1q1bAbPX9/PPPydHjhwWR5b17N9vLmvfsME89vIyl7W3a6dl7SLJoQRIRO6TO3dubty4Qa5cuZgxYwYdO3a0OqQs5/Jlc2XX9OnmsnZXVxg61Nzc8K71JyKSREqA7qFJ0JJVRURE4OrqiqOjI9mzZ2fJkiW4uLhQokQJq0PLUmJjzb183n0Xrlwx2zp0MMtZFC9ubWwimUm6rQZvNU2Clqxk9+7ddO7cme7duzN8+HCrw8myNmwwh7v27zePK1Uy5/k0aGBtXCIZSWK/v7WMQyQLi4uL47PPPqNWrVocOXKEmTNncvPmTavDynJOnTI3L6xf30x+8uaFKVNg924lPyKpRQmQSBZ1/vx5WrRowaBBg7h9+zatW7dm586dZFfdhDRz86a5hL1sWVi8+N9l7UePmlXbs2mSgkiq0cdLJAtavXo1PXr04Pz587i6uvLZZ5/xyiuvaGPDNGIYsHQpvPmmuakhmLs3f/65uZuziKQ+JUAiWcz58+dp06YNN2/epGLFigQHB9uLmkrqO3jQLF+xdq15XKyYOcH5hRe0rF0kLSkBuodWgUlm5+Hhwfjx4/nzzz8ZP368hrzSyNWrMHIkTJ1qrvRycYG33zYfWtYukva0CiwBWgUmmYVhGMyePZty5cpRs2ZNq8PJcmJjYeZMGD7c3NsHoG1bmDABSpa0NjaRzChVS2GISMYQFhZG3759WbhwISVLlmTv3r1K6NPQb79B//6wd695XKGCuay9USNLwxIRlACJZFpbt26lS5cunDhxAkdHR15++WXc3d2tDitLOHMGhgyB4GDzOE8eGD3aXOHl5GRpaCLy/5QAiWQysbGxjBs3jlGjRhEbG0vJkiVZsGABtWrVsjq0TO/WLbNO14cfmpXbbTZ4+WX44AMoWNDq6ETkbkqARDKR8PBwnnvuOTb8f+XMLl26MHXqVHLnzm1xZJmbYcD338OgQRASYrbVqWMua69a1drYROTBlACJZCI5c+YkR44cuLu7M3XqVLp166a9fVLZoUPmsvZffjGPn3jCXNbeqZOWtYukZ0qARDK4mzdvEhsbS44cObDZbMyaNYtr165RqlQpq0PL1K5dM+f1fPGFudLL2dms1D50KOTIYXV0IvIoKoVxj8DAQMqXL4+vr6/VoYg80oEDB/D19SUgIMDeVrBgQSU/qejOsvbSpWHSJPO4dWv4809zro+SH5GMQfsAJUD7AEl6ZhgGU6dO5c033yQqKgoPDw/27t1L4cKFrQ4tU9u82azWvnu3eVyunLms/dlnrY1LRP6lavAimdSlS5do3bo1r732GlFRUTRv3pz9+/cr+UlFZ89C167mxObduyFXLvjsM9i3T8mPSEalBEgkA1m3bh3e3t788MMPODs7M2nSJFasWEGhQoWsDi1TioqCceOgTBmYP9+c1Nynj1mtfeBA7ekjkpFpErRIBnHr1i26du3KP//8Q5kyZVi4cCFVqlSxOqxMyTBgxQp44w04ftxsq13bnPDs42NtbCKSMtQDJJJBuLq6MmvWLPr06cOuXbuU/KSSv/6CZs3guefM5KdIEZg3z5z/o+RHJPPQJOgEaBK0pAfBwcE4OzvTrl07q0PJ9MLCYMwYc/PCmBhzWfugQfDOO5Azp9XRiUhiqRiqSAZ2/fp1+vfvz+zZs8mVKxc1atSgWLFiVoeVKcXFQVAQDBsGFy6Yba1awcSJ8PTTloYmIqlICZBIOrNr1y46derEsWPHcHBwYODAgRQpUsTqsDKl3383l7Xv2GEelylj7u3TtKmlYYlIGsjUc4CyZctGlSpVqFKlCn369LE6HJGHiouLY8KECdSuXZtjx45RrFgx1q9fz+jRo8mWTf9XSUmhodCjhzmxeccOc4jr009h/34lPyJZRab+VzVPnjzs3bvX6jBEHikmJoaWLVuyevVqANq1a8dXX31F3rx5LY4sc4mKMjcufP99uHHDbHvpJbN6u4eHtbGJSNrK1D1AIhlFtmzZKFeuHNmzZ2fGjBksWbJEyU8KW7kSKlaEt982k5+aNWHbNvj6ayU/IllRuk2ANm7cSKtWrfD09MRms7F8+fL7zpk6dSolS5bE1dUVHx8fNm3aFO/58PBwfHx8qFOnDhs2bEijyEUSJyoqigt3Zt0CH330EXv27OHll19WBfcUdOQItGgBLVvCsWNQuDDMng1btkCNGlZHJyJWSbcJUEREBN7e3kyZMuWBzy9atIiBAwcyfPhw9uzZg7+/P82aNePUqVP2c06cOMGuXbuYPn063bt3Jzw8PMH7RUVFER4eHu8hklr++usvatWqRdu2bYmJiQHAxcWFMmXKWBxZ5hEeDkOGmL0+q1aZuzYPGQKHD0P37uCQbv/1E5E0YWQAgLFs2bJ4bTVq1DD69u0br61s2bLG0KFDH3iNpk2bGjt27EjwHiNHjjSA+x5hYWHJjl/kjri4OGPmzJmGm5ubARgFChQw/vzzT6vDylRiYw0jKMgwChc2DHNPZ8No0cIwDh+2OjIRSQthYWGJ+v7OkP8Hio6OZteuXTRu3Dhee+PGjdmyZQsAV69eJSoqCoAzZ85w6NAhnnzyyQSvOWzYMMLCwuyP06dPp94LkCzp2rVrdOzYkT59+hAZGUmjRo3Yv38/ZcuWtTq0TGP7dnNlV8+ecO4clCpllrRYsQJKl7Y6OhFJTzLkKrBLly4RGxuLxz0zFz08PDh37hwAf/75J6+88goODg7YbDYmT55Mvnz5Erymi4sLLi4uBAYGEhgYSGxsbKq+BslaNm/eTJcuXTh16hTZsmXjgw8+4K233sJB4zAp4tw5c8fmWbPM4xw54L33YMAAc0dnEZF7ZcgE6I57J4oahmFv8/Pz48CBA499zYCAAAICAuxbaYskV1xcHK+//jqnTp3iqaeeYsGCBdTQ7NsUER1tFigdPRquXzfbevQwK7hr70gReZgM+d/PAgUK4OjoaO/tuePChQv39QqJWM3BwYF58+bRu3dvdu/ereQnhfz0E1SuDIMHm8mPr6+5s3NQkJIfEXm0DJkAOTs74+Pjw5o1a+K1r1mzBj8/v2RdOzAwkPLly+Pr65us60jWtnTpUiZOnGg/LleuHDNnzlRh3RRw7JhZq6tZM3NFV6FC8M03ZvJTs6bV0YlIRpFuh8Bu3LjBsWPH7MchISHs3buXfPny4eXlxaBBg+jWrRvVq1endu3azJgxg1OnTtG3b99k3VdDYJIckZGRDBw4kK+++goHBwfq1q1L9erVrQ4rU7h+HcaOhc8+M4e+smUz5/iMGAH6qIrI40q3CdDOnTtp0KCB/XjQoEEA9OjRg6CgIDp27Mjly5cZM2YMoaGhVKxYkVWrVlG8ePFk3VeToCWp9u3bR+fOnfnzzz+x2WwMGTIEb29vq8PK8AwD5s839/AJDTXbmjY1EyEtoBORpLIZhmFYHUR6dKcHKCwsTMMW8lCGYTBlyhTeeustoqKiKFKkCHPnzqVRo0ZWh5bh7dxpVmvfutU8fuops1p7ixagzbJF5EES+/2dbnuARDICwzDo2LEjS5YsAaBly5bMmjWLAgUKWBxZ+hcbC5s2mb06RYqAvz84OprPXbhgLmv/5huzB8jdHd59F954A1xcrI1bRDIHJUAiyWCz2WjYsCE//PADEyZMICAgQHW8EmHpUnP+zpkz/7YVLQqffgpnz8KoUWYpC4CuXeHjj8HT05JQRSST0hDYPe6eA3TkyBENgcl9oqOjOXPmjH1nccMwCAkJeehO4/KvpUuhfXuzZ+dhfHzg888hmQs7RSSLSewQmBKgBGgOkDzI8ePH6dy5MxcvXmTv3r1aKfiYYmOhRIn4PT/3cnCA6dOhd28VLBWRx5fY72/98yKSSHPnzqVKlSrs2LGDsLAw/vzzT6tDynA2bXp48gMQF2fW8FLyIyKpSf/E3EMbIcq9wsPD6dq1K927d+fGjRv4+/uzb98+atWqZXVoGc6dZewpdZ6ISFIpAbpHQEAAhw4dYseOHVaHIunAtm3bqFq1KvPnz8fBwYHRo0ezbt06ihUrZnVoGYphwNq15t49iaFSFiKS2rQKTOQhPvnkE/7++2+8vLxYsGAB//nPf6wOKUOJiYHvvoPx42HXrkefb7OZq8H8/VM/NhHJ2pQAiTzEl19+SaFChfjwww/Jmzev1eFkGJGRMGuWuaw9JMRsy57dnNhcvjwEBJhtdy/BuLN7wKRJ/+4HJCKSWpQAidxlxYoVrFmzhsmTJwNQoEABpk2bZnFUGcfFixAYCFOmwOXLZluBAvDaa2bSc2d/SA+PB+8DNGkStG2b5mGLSBakBOgeqgWWNd26dYshQ4bwxRdfAFC/fn3atGljcVQZx/HjMHGi2etz86bZ9uST8Oab0LMnuLnFP79tW3j++YR3ghYRSW3aBygB2gco6zh06BCdO3dm//79AAwcOJCPPvoIF9VceKSdO835Pd9+ay5fB6he3Sxc2ratEhoRSXuqBSbyCIZh8NVXXzFw4EBu3rxJwYIFCQoKonnz5laHlq4ZBqxeDZ98AuvW/dverJmZ+NSrp0KlIpL+KQGSLCsgIMA+v+fZZ59lzpw5FC5c2OKo0q/bt2HhQrPH58ABsy1bNujcGQYPhsqVrY1PRORxaB8gybLatGmDi4sL48eP56efflLyk4Dr1839e556Crp3N5OfHDlg0CD4+2+YM0fJj4hkPOoBkiwjJiaGP/74A29vb8Ds9QkJCaGIdt17oHPnzGKk06bBtWtm253VW337gnYFEJGMTD1A91ApjMzp5MmT1KtXD39/f/7++297u5Kf+x0+DC+/DMWLw7hxZvJTujR89RWcOAHDhin5EZGMTwnQPVQKI/NZvHgx3t7ebNmyBZvNxtGjR60OKV3auhXatIFy5WDmTIiOBj8/WL4c/vwT+vQBV1eroxQRSRkaApNMKyIiggEDBvD1118DUKtWLRYsWEDJkiUtjiz9iIuDFSvMFV2bN//b/vzz8NZboMofIpJZKQGSTGnPnj107tyZw4cPY7PZeOeddxg5ciROTk5Wh5YuREXBvHkwYQL89ZfZ5uwM3bqZmxeWK2dtfCIiqU0JkGRKCxYs4PDhw3h6ejJv3jwaNGhgdUjpwrVr8OWXMHmyuQMzQO7c8Oqr8PrrqsIuIlmHEiDJlD744ANsNhtvv/02+fPntzocy505Y9bZmjHDXNYOZu2tgQPNCc/a7FxEshpNgpZM4eeff6Zt27bExMQA4OLiwieffJLlk5+DB6FHDyhZ0qzMfv06VKwIs2eb9bvefFPJj4hkTUqAJEOLjo7mrbfeokmTJixbtowpU6ZYHZLlDAM2bIAWLaBSJXOjwpgYqF8fVq2C/fvNDQ2dna2OVETEOhoCu4eqwWccR48epXPnzuzatQuAfv368corr1gclXViY2HZMnNF151dHBwcoF07c0WXtrYSEfmXqsEnQNXg0y/DMJg9ezavvfYaERER5MuXj2+++Ybnn3/e6tAscfMmBAWZQ1zHj5ttrq7Qq5dZruLppy0NT0QkTakavGRao0ePZvTo0QDUr1+fuXPnUrRoUYujSnuXL8PUqfDFF3DxotmWLx+89hoEBEChQtbGJyKSnmkOkGQ4nTp1IleuXIwdO5ZffvklyyU/J06YS9a9vOC998zkp0QJs27XqVMwerSSHxGRR1EPkKR7sbGxbNmyBX9/fwDKli3LiRMnyJvFClLt3g3jx8OSJeZ8H4CqVWHIEGjfHrLp0ywikmjqAZJ07ezZszz77LPUr1+fTZs22duzSvJjGLBmDTz7LPj4wMKFZvLTuDH88gvs2gWdOin5ERF5XPpnU9Kt77//npdeeokrV67g7u7OuXPnrA4pzcTEwOLFZo/P3r1mm6OjmewMHgxVqlgZnYhIxqcESNKdmzdvMnjwYKZOnQpAtWrVCA4OpnTp0hZHlvpu3ICvv4bPPoOTJ802d3ezEvsbb0Dx4tbGJyKSWSgBknTljz/+oFOnThw8eBCAN998kw8//BDnTL5r34UL5mquwEC4etVsK1TInOz86qvm6i4REUk5mT4BioyMpFy5cnTo0IEJEyZYHY48wubNmzl48CAeHh7Mnj2bJk2aWB1Sqjp61Ny/JyjIrNAOUKqUWaKie3fInt3S8EREMq1MnwCNHTuWmjVrWh2GPIRhGNhsNgBefvllrly5Qq9evfDw8LA4stSzbZu5Y/OyZeZEZ4CaNc0VXc8/b873ERGR1JOpV4EdPXqUv/76i+bNm1sdiiRg/fr1+Pv7c+3aNQBsNhtDhw7NlMlPXBysXAn16kGtWrB0qZn8tGwJGzfC1q3Qtq2SHxGRtJBuE6CNGzfSqlUrPD09sdlsLF++/L5zpk6dSsmSJXF1dcXHxyfeMmmAwYMHM27cuDSKWB7H7du3effdd2nYsCGbN2/m/ffftzqkVBMdbQ5xVa78b7Lj5GSWqvjjD/jf/8DfH/6/E0xERNJAuk2AIiIi8Pb2TrC696JFixg4cCDDhw9nz549+Pv706xZM06dOgWYS6hLly6d6JVDUVFRhIeHx3tI6ggJCaFu3bqMHTsWwzDo3bs3Y8aMsTqsFBceDhMmwJNP/pvs5MplFiYNCYFvvoHy5a2OUkQkizIyAMBYtmxZvLYaNWoYffv2jddWtmxZY+jQoYZhGMbQoUONokWLGsWLFzfy589v5MqVyxg9enSC9xg5cqQB3PcICwtL8deTlS1YsMDIlSuXARi5c+c2Fi1aZHVIKe7sWcMYMsQwcuUyDHOQyzA8PQ3jk08M49o1q6MTEcncwsLCEvX9nSGqwdtsNpYtW0br1q0BiI6Oxs3NjSVLltCmTRv7eQMGDGDv3r1s2LAh3s8HBQVx8ODBh64Ci4qKIurOMhzMarLFihVTNfgUNHXqVAICAgCoXbs2CxYsoESJEtYGlYIOHTJ7fObNg9u3zbby5c2NC7t0ARcXa+MTEckKElsNPt0OgT3MpUuXiI2NvW+irIeHR5J3C3ZxcSFXrlzxHpKyOnbsiJeXFyNGjGDjxo2ZIvkxDNi0CVq1ggoVYNYsM/nx9zfn9hw4YA5/KfkREUlfMvQyeNs9s0aNu5ZT361nz56JvmZgYCCBgYHE3qk2KUkWFxfHqlWraNGiBTabjfz583Po0CHc3d2tDi3ZYmPh++/NUhW//2622WzQpo05x6dWLWvjExGRh8uQPUAFChTA0dHxvt6eCxcuJHv5dEBAAIcOHWLHjh3Juk5Wd+7cOZo1a0arVq2YM2eOvT2jJz+3bsGMGVCuHLRrZyY/Li7wyivw11/w3XdKfkREMoIMmQA5Ozvj4+PDmjVr4rWvWbMGPz+/ZF07MDCQ8uXL4+vrm6zrZGU//vgj3t7e/Pzzz2TPnp24uDirQ0q2q1fhww+hRAkz2Tl6FPLmheHDzZpd06dDFihVJiKSaaTbIbAbN25w7Ngx+3FISAh79+4lX758eHl5MWjQILp160b16tWpXbs2M2bM4NSpU/Tt2zdZ9w0ICCAgIMA+iUoSLyoqimHDhvHZZ58BUKlSJRYuXEj5DLzW+9QpszDpV19BRITZ5uUFgwZB796QI4e18YmISNKk2wRo586dNGjQwH48aNAgAHr06EFQUBAdO3bk8uXLjBkzhtDQUCpWrMiqVasornLZljh8+DCdO3dmz549APTv359PPvkEV1dXiyNLmn37zPk9Cxea830AvL3NUhUdOpgbGYqISMaVIZbBp6W7J0EfOXJEy+AT6ddff+XZZ58lX758zJo1i1atWlkd0mMzDFi71qzR9fPP/7Y3amQmPs8+q92aRUTSu8Qug1cClIDEvoFZ2b2r7oKCgmjcuDGenp4WRvX4YmLg22/NHp/du802Bwd44QVzRVe1atbGJyIiiZep9wES623ZsgVvb2+OHz9ub+vZs2eGSn4iImDKFChVCjp3NpOf7Nmhf384dgyCg5X8iIhkVkqA7qFVYA8XGxvL+++/T926dTlw4ADvvPOO1SE9tosXYdQoKF7cTHZOnIACBWD0aHPS8+efQ8mSVkcpIiKpSUNgCdAQ2P1Onz5Nt27d7KVGXnzxRaZOnZph3p/jx2HiRLMI6a1bZtuTT5qlKnr0ADc3a+MTEZHkS+z3d7pdBSbpy7Jly+jduzdXr14lR44cTJ06lW7dulkdVqLs2GHO7/nuO7izJZGvrzmxuU0bcHS0Nj4REUl7SoDkkZYuXUq7du0AqF69OsHBwTz99NMWR/VwhgE//WQmPuvW/dvevLk5sblePa3oEhHJypQA3UO1wO7XsmVLfH19adCgAe+//z7Ozs5Wh5Sg6Ghz754JE8xCpADZspnV2AcPhkqVrI1PRETSB80BSkBWngNkGAaLFi2iXbt2OP3/jn/R0dHpOvG5ft3crfmzz+DMGbMtRw6zbMWAAVCsmLXxiYhI2tAyeEmSS5cu8fzzz9O5c2dGjRplb0+vyc+5c/DOO2aC8+abZvJTuDCMGwenT5s9QUp+RETkXhoCE7u1a9fStWtXQkNDcXZ2pnDhwlaHlKDDh83kZs4cc9gLoEwZc35P165mhXYREZGEKAG6R1acA3T79m3ee+89Pv74YwzDoGzZsgQHB1OlShWrQ7vPli1mqYoffjAnOgP85z/miq6WLc0dnEVERB5Fc4ASkFXmAIWEhNCpUye2b98OwMsvv8xnn32Gu7u7xZH9Ky4O/vc/c0XX5s1mm80Gzz9v9vj4+Vkbn4iIpB/aB0gSJTo6moMHD5InTx6++uor2rdvb3VIdlFRMG+emfgcPmy2OTtD9+7mfJ+yZa2NT0REMi4lQFlQTEwM2bKZf/RlypRh8eLFVKpUCS8vL4sjM127BtOnw+TJ5iRngNy5oV8/s3RFkSKWhiciIpmAZkxkMTt27KBChQr2chYALVq0SBfJz5kz5l49xYrBsGFm8lO0KHz6qbmi68MPlfyIiEjKUAKURcTFxfHJJ5/g5+fHkSNHeOedd0gv078OHDBrcZUsaSY7N25AxYrmCq+//4ZBgyBnTqujFBGRzERDYPfIjKvAQkND6d69O7/88gsA7du3Z8aMGdgsrAVhGLBhg7mi68cf/21v0MBc0dWkiUpViIhI6tEqsARkllVgK1asoFevXly6dAk3NzcmT55M7969LUt+YmNh6VJzYvOOHWabgwO0b2+u6Kpe3ZKwREQkk9AqMGHr1q20atUKgCpVqhAcHExZi5ZO3bwJQUHmENfx42abqyu89JI5xPXUU5aEJSIiWZQSoEysVq1adOjQgSeeeIKPPvoIFwu2R758GQID4Ysv4NIlsy1/fnjtNQgIgIIF0zwkERERJUCZiWEYzJ07l1atWpE3b15sNhvBwcE4OjqmeSwhIWZh0q+/hshIs61kSbO3p1cvSEf7LIqISBakVWCZxNWrV+nQoQM9evTgv//9r32FV1onP7t3Q+fO8PTTZq9PZCRUqwYLF8KRI2bPj5IfERGxmnqAMoFNmzbx4osvcvr0abJly4avry+GYaTZRGfDgDVrzBVdv/76b3uTJuaKrgYNtKJLRETSFyVAGVhMTAwffPAB77//PnFxcTz11FMEBwfj6+ubJve/fRsWLzZXdO3bZ7Y5Opo9QIMHg7d3moQhIiLy2JQA3SOj7AP0zz//8MILL7D5/6uDdu/enSlTppAzDXYMvHHDnNszcSKcOmW2ubvDyy/DwIFQvHiqhyAiIpIs2gcoAel9H6ArV67g7e1NWFgY06dPp0uXLql+z/PnzXk9U6fC1atmW6FCMGAAvPoq5M2b6iGIiIg8lPYByoRu3bqFi4sLNpuNfPny8d1331GgQAGefPLJVL3v0aPm/j1BQWaFdoBSpcxhru7dzf18REREMhKtAssg9u3bR9WqVQkKCrK31ahRI1WTn23boF07KFMGvvzSTH5q1TJ3cv7zT/jvf5X8iIhIxqQEKJ0zDIPJkydTo0YN/vrrL8aNG0dMTEyq3S8uDlasgLp1/012DANatYJNm2DLFmjTxpzsLCIiklFpCCwdu3jxIr169WLlypUAtGrVim+++YZs2VL+jy0qChYsgAkT4NAhs83JCbp1gzffhPLlU/yWIiIillEClE6tWbOG7t27c+7cOVxcXPj000/p169fiu/tExYGM2bApEnwzz9mW65c0LevObnZ0zNFbyciIpIuKAFKh0JCQmjWrBmxsbGUL1+e4OBgKleunKL3OHsWJk+G6dPh+nWzzdMT3njDnNuTDhe+iYiIpBglQOlQyZIlGTp0KJcvX+bTTz/Fzc0txa596JA5zDVvnrmRIZjDW0OGmBsYOjun2K1ERETSrUy7D9D169dp2LAht2/fJjY2ltdff52XX3450T+f1vsAzZs3j5o1a1KqVCmAFC1lYRjw229mqYoVK/5tr1vXTHyaNQMHTYcXEZFMIMvvA+Tm5saGDRtwc3MjMjKSihUr0rZtW/Lnz291aPGEh4fTr18/5s+fj4+PD1u2bMHZ2TlFkp/YWPj+ezPx2bbNbLPZoG1beOstqFkz2bcQERHJkDJtAuTo6GgfOrp16xaxsbGkt86ubdu20aVLF/7++28cHR1p3bp1ilRvv3kT5swxNy88etRsc3GBXr1g0CBzE0MREZGsLN0OfGzcuJFWrVrh6emJzWZj+fLl950zdepUSpYsiaurKz4+PmzatCne89euXcPb25uiRYsyZMgQChQokEbRP1xsbCzjxo2jTp06/P333xQvXpyNGzfy7rvvJisBunIFxo6FEiXMVVxHj5rlKd59F06ehGnTlPyIiIhAOk6AIiIi8Pb2ZsqUKQ98ftGiRQwcOJDhw4ezZ88e/P39adasGafuVOcE8uTJw759+wgJCWHBggWcP38+rcJP0JUrV2jcuDHvvPMOMTExdOzYkb179+Ln55fka548aRYh9fIyk50LF8yCpJMnm8VK338fPDxS7jWIiIhkdBliErTNZmPZsmW0bt3a3lazZk2qVavGtGnT7G3lypWjdevWjBs37r5rvPrqqzRs2JAOHTo88B5RUVFE3Sl0hTk3p1ixYik+Cfr27dvUqVOHgwcPMmXKFHr27Jnk+T779sH48bBwoTnfB6BKFXNic4cOkAr7JYqIiKRriZ0EnW57gB4mOjqaXbt20bhx43jtjRs3ZsuWLQCcP3+e8PBwwHwzNm7cSJkyZRK85rhx48idO7f9UaxYsVSJ3cnJieDgYHbv3k2vXr0eO/kxDPj1V2jSxEx25s83k59nnoGff4bdu83l7Ep+REREEpYhvyYvXbpEbGwsHveM63h4eHDu3DkAzpw5Q+/evTEMA8MweO211x66meCwYcMYNGiQ/fhOD1BqSEoB05gY+PZbc0XXnj1mm6MjvPCCuaKratUUDlJERCQTy5AJ0B339p7cvXeOj48Pe/fuTfS1XFxccHFxITAwkMDAQGLvjClZLCICvvkGJk6EEyfMNjc36NPH3LW5RAkroxMREcmYMmQCVKBAARwdHe29PXdcuHDhvl6hxxUQEEBAQIB9DNEqFy/ClCnm48oVs61gQejfH/r1g3S2nZGIiEiGkiHnADk7O+Pj48OaNWvita9ZsyZZq6kAAgMDKV++PL6+vsm6zoPExsL69RAcbP76oE6mY8fMBMfLC8aMMZOfp54yl7CfPAkjRij5ERERSa502wN048YNjh07Zj8OCQlh79695MuXDy8vLwYNGkS3bt2oXr06tWvXZsaMGZw6dYq+ffsm676p1QO0dKlZXf3MmX/bihY1l6q3bQs7dpgrur77DuLizOd9feHtt6F1a3O+j4iIiKSMdJsA7dy5kwYNGtiP70xQ7tGjB0FBQXTs2JHLly8zZswYQkNDqVixIqtWraJ48eJWhZygpUuhfXtzBdfdzp6Fdu2gQgX4449/25s3N5ey161rlq4QERGRlJUh9gFKS3dPgj5y5Eiy9wGKjTUnKt/d8/Mgjo7QtSsMHgwVKyb5diIiIllaYvcBUgKUgJSqBr9+PdzVkZWgxYvNzQtFREQk6TL1RogZSWho4s6LiUndOERERORfSoDukdKrwIoUSdnzREREJPk0BJaAlBoCuzMH6OzZ+ydBgznJuWhRCAnRSi8REZHk0hBYOuHoaC51h/tXdN05njRJyY+IiEhaUgKUBtq2Net4PfFE/PaiRc32tm2tiUtERCSrSrf7AFkltWqBtW0Lzz8PmzaZE6OLFAF/f/X8iIiIWEFzgBKQUnOAREREJO1oDpCIiIhIApQAiYiISJajBOgeqVkNXkRERNIHzQFKgOYAiYiIZDyaAyQiIiKSACVAIiIikuUoARIREZEsRwmQiIiIZDlKgO6hVWAiIiKZn1aBJSAsLIw8efJw+vRprQITERHJIMLDwylWrBjXrl0jd+7cCZ6nWmAJuH79OgDFihWzOBIRERF5XNevX39oAqQeoATExcXxzz//kDNnTmw2G76+vuzYseORP/eo8+5kplmlZymx71taSO1YUvL6yb1WUn7+cX5Gn4ek0efBmmvp85A+pdbfQcMwuH79Op6enjg4JDzTRz1ACXBwcKBo0aL2Y0dHx0T9hUzsebly5coSf8ET+36khdSOJSWvn9xrJeXnH+dn9HlIGn0erLmWPg/pU2r+HXxYz88dmgSdSAEBASl6XlaRnt6P1I4lJa+f3Gsl5ecf52f0eUia9PR+6POQcj+jz0PSWP1+aAgsjanEhsi/9HkQ+Zc+D2lLPUBpzMXFhZEjR+Li4mJ1KCKW0+dB5F/6PKQt9QCJiIhIlqMeIBEREclylACJiIhIlqMESERERLIcJUAiIiKS5SgBEhERkSxHCVA606ZNG/LmzUv79u2tDkXEUqdPn6Z+/fqUL1+eypUrs2TJEqtDErHM9evX8fX1pUqVKlSqVImvvvrK6pAyPC2DT2fWrVvHjRs3mD17Nt9++63V4YhYJjQ0lPPnz1OlShUuXLhAtWrVOHz4MO7u7laHJpLmYmNjiYqKws3NjcjISCpWrMiOHTvInz+/1aFlWOoBSmcaNGhAzpw5rQ5DxHJFihShSpUqABQqVIh8+fJx5coVa4MSsYijoyNubm4A3Lp1i9jYWNR/kTxKgFLQxo0badWqFZ6enthsNpYvX37fOVOnTqVkyZK4urri4+PDpk2b0j5QkTSQkp+HnTt3EhcXR7FixVI5apHUkRKfh2vXruHt7U3RokUZMmQIBQoUSKPoMyclQCkoIiICb29vpkyZ8sDnFy1axMCBAxk+fDh79uzB39+fZs2acerUqTSOVCT1pdTn4fLly3Tv3p0ZM2akRdgiqSIlPg958uRh3759hISEsGDBAs6fP59W4WdOhqQKwFi2bFm8tho1ahh9+/aN11a2bFlj6NCh8drWrVtntGvXLrVDFEkzSf083Lp1y/D39zfmzJmTFmGKpInkfD/c0bdvX2Px4sWpFWKWoB6gNBIdHc2uXbto3LhxvPbGjRuzZcsWi6ISsUZiPg+GYdCzZ08aNmxIt27drAhTJE0k5vNw/vx5wsPDAbNq/MaNGylTpkyax5qZZLM6gKzi0qVLxMbG4uHhEa/dw8ODc+fO2Y+bNGnC7t27iYiIoGjRoixbtgxfX9+0DlckVSXm87B582YWLVpE5cqV7fMl5s6dS6VKldI6XJFUlZjPw5kzZ+jduzeGYWAYBq+99hqVK1e2ItxMQwlQGrPZbPGODcOI17Z69eq0DknEMg/7PNSpU4e4uDgrwhKxxMM+Dz4+Puzdu9eCqDIvDYGlkQIFCuDo6BivtwfgwoUL92X9IpmdPg8i/9LnwRpKgNKIs7MzPj4+rFmzJl77mjVr8PPzsygqEWvo8yDyL30erKEhsBR048YNjh07Zj8OCQlh79695MuXDy8vLwYNGkS3bt2oXr06tWvXZsaMGZw6dYq+fftaGLVI6tDnQeRf+jykQ1YuQcts1q1bZwD3PXr06GE/JzAw0ChevLjh7OxsVKtWzdiwYYN1AYukIn0eRP6lz0P6o1pgIiIikuVoDpCIiIhkOUqAREREJMtRAiQiIiJZjhIgERERyXKUAImIiEiWowRIREREshwlQCIiIpLlKAESERGRLEcJkIiIiGQ5SoBEJNMICgoiT548qXb9+vXrM3DgwFS7voikHZXCEJF0rWfPnly7do3ly5c/8tybN29y/fp1ChUqlCqxXLlyBScnJ3LmzJkq1xeRtKNq8CKSKdy+fZvs2bOTPXv2VLtHvnz5Uu3aIpK2NAQmIimifv369O/fn4EDB5I3b148PDyYMWMGERER9OrVi5w5c/LUU0/x448/2n8mNjaW3r17U7JkSbJnz06ZMmWYPHmy/flRo0Yxe/Zsvv/+e2w2GzabjfXr13PixAlsNhuLFy+mfv36uLq6Mm/evHhDYIZh8Mwzz9C0aVPudHRfu3YNLy8vhg8fnuDrmDp1KqVKlcLV1RUPDw/at28f7zXeGQJbv369Paa7Hz179rSf/7///Q8fHx9cXV158sknGT16NDExMQneu2fPnrRu3ZoJEyZQpEgR8ufPT0BAALdv336cPwoRSQQlQCKSYmbPnk2BAgXYvn07/fv359VXX6VDhw74+fmxe/dumjRpQrdu3YiMjAQgLi6OokWLsnjxYg4dOsR7773HO++8w+LFiwEYPHgwL7zwAk2bNiU0NJTQ0FD8/Pzs93v77bd5/fXX+fPPP2nSpEm8WGw2G7Nnz2b79u18/vnnAPTt2xcPDw9GjRr1wPh37tzJ66+/zpgxYzh8+DA//fQTdevWfeC5fn5+9phCQ0NZu3Ytrq6u9vNXr15N165def311zl06BBffvklQUFBjB079qHv4bp16zh+/Djr1q1j9uzZBAUFERQU9Mj3XkQekyEikgLq1atn1KlTx34cExNjuLu7G926dbO3hYaGGoCxdevWBK/Tr18/o127dvbjHj16GM8//3y8c0JCQgzAmDRpUrz2WbNmGblz547XtnjxYsPFxcUYNmyY4ebmZhw+fDjBe3/33XdGrly5jPDw8ARf44ABA+5rv3TpkvHUU08Z/fr1s7f5+/sbH374Ybzz5s6daxQpUiTB+/fo0cMoXry4ERMTY2/r0KGD0bFjxwR/RkSSRnOARCTFVK5c2f57R0dH8ufPT6VKlextHh4eAFy4cMHeNn36dGbOnMnJkye5efMm0dHRVKlSJVH3q169+iPP6dChA8uWLWPcuHFMmzaN0qVLJ3jus88+S/HixXnyySdp2rQpTZs2pU2bNri5uSX4M7dv36Zdu3Z4eXnFG77btWsXO3bsiNfjExsby61bt4iMjEzwmhUqVMDR0dF+XKRIEQ4cOPDI1ykij0dDYCKSYpycnOId22y2eG02mw0wh74AFi9ezBtvvMFLL73Ezz//zN69e+nVqxfR0dGJup+7u/sjz4mMjGTXrl04Ojpy9OjRh56bM2dOdu/eTXBwMEWKFOG9997D29uba9euJfgzr776KqdOnWLJkiVky/bv/ynj4uIYPXo0e/futT8OHDjA0aNHcXV1TfB6D3oP77xfIpJy1AMkIpbZtGkTfn5+9OvXz952/PjxeOc4OzsTGxub5Hu8+eabODg48OOPP9K8eXNatGhBw4YNEzw/W7ZsPPPMMzzzzDOMHDmSPHnysHbtWtq2bXvfuRMnTmTRokVs3bqV/Pnzx3uuWrVqHD58mKeffjrJsYtI6lECJCKWefrpp5kzZw6rV6+mZMmSzJ07lx07dlCyZEn7OSVKlGD16tUcPnyY/Pnzkzt37kRff+XKlXzzzTds3bqVatWqMXToUHr06MH+/fvJmzfvfeevWLGCv//+m7p165I3b15WrVpFXFwcZcqUue/cX375hSFDhhAYGEiBAgU4d+4cANmzZyd37ty89957tGzZkmLFitGhQwccHBzYv38/Bw4c4IMPPkjCuyUiKUlDYCJimb59+9K2bVs6duxIzZo1uXz5crzeIICXX36ZMmXKUL16dQoWLMjmzZsTde2LFy/Su3dvRo0aRbVq1QAYOXIknp6e9O3b94E/kydPHpYuXUrDhg0pV64c06dPJzg4mAoVKtx37m+//UZsbCx9+/alSJEi9seAAQMAaNKkCStWrGDNmjX4+vpSq1YtJk6cSPHixR/nLRKRVKKdoEVERCTLUQ+QiIiIZDlKgERERCTLUQIkIiIiWY4SIBEREclylACJiIhIlqMESERERLIcJUAiIiKS5SgBEhERkSxHCZCIiIhkOUqAREREJMtRAiQiIiJZzv8BW5yB48XXxOUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'time for LU factorization')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "loglog(n, t*1e9, \"bo-\")\n", + "loglog(n, n.^3, \"k--\")\n", + "xlabel(\"matrix size n\")\n", + "ylabel(\"time (ns)\")\n", + "legend([\"time\", L\"n^3\"])\n", + "title(\"time for LU factorization\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's pretty close! For large $n$, you can see it starting to go parallel to the $n^3$ line.\n", + "\n", + "Let's also look at the time to *solve* $LUx=b$ when we are *given* the LU factors, which we predict should grow $\\sim n^2$:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 2.274989733059548e-7\n", + " 2.4583333333333337e-6\n", + " 5.1166e-5\n", + " 0.000201208\n", + " 0.001118792" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = [@belapsed($(lu(rand(n,n))) \\ $(rand(n))) for n in n]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHJCAYAAACMppPqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrUlEQVR4nO3de3yP9f/H8cdns4MNG8aQOZZTzobIuXIoIjkkZk4VSYREKpJSKYd+jSjMIQwhRaFyCjGHSe0rZE6Z82G2Yafr98eVaTk0s8+u7fN53m+33bjen2vX9dr42NP7eh9shmEYiIiIiDggF6sLEBEREbEXBR0RERFxWAo6IiIi4rAUdERERMRhKeiIiIiIw1LQEREREYeloCMiIiIOS0FHREREHJaCjoiIiDgsBR0RB7FlyxZGjx7NxYsXb3qtSZMmNGnSJMtrupMff/yRwMBAvL29sdlsLF++3G73Onz4MDabjY8++ui255QqVYrWrVvf8rUdO3Zgs9kIDQ21U4U3Cw0NxWazcfjw4Sy7p4gjymV1ASKSObZs2cLbb79Njx498PX1TfPalClTrCnqNgzDoFOnTpQrV44VK1bg7e1N+fLlrS5LRByQgo6IE6hUqZLVJaRx4sQJzp8/z1NPPcUjjzySKde8cuUKnp6e2Gy2TLmeiDgGPboScQCjR4/m1VdfBaB06dLYbDZsNhvr168Hbn50df1Rzvjx4/nggw8oVaoUuXPnpkmTJuzfv5/ExESGDx9OsWLF8PHx4amnnuL06dM33TcsLIx69erh7e1Nnjx5aNGiBbt37/7PWosXLw7Aa6+9hs1mo1SpUqmv//zzzzzyyCPkzZsXLy8v6tevz8qVK9Nc4/pjnTVr1tCrVy8KFSqEl5cX165dy8B3L/PEx8czdOhQSpcujaenJwUKFCAwMJAFCxakOW/FihXUq1cPLy8v8ubNy2OPPcbWrVvveO1Bgwbh7e1NTEzMTa917twZf39/EhMTU9sy8mcj4ogUdEQcQJ8+fRgwYAAAS5cuZevWrWzdupWaNWve8fNCQkLYvHkzISEhfPHFF+zbt482bdrQu3dvzpw5w8yZM/nwww/54Ycf6NOnT5rPfe+99+jSpQuVKlVi0aJFzJ07l8uXL9OwYUMiIyPvWOvSpUsBGDBgAFu3bmXZsmUAbNiwgWbNmnHp0iVmzJjBggULyJs3L23atCEsLOyma/Xq1Qs3Nzfmzp3LkiVLcHNzu6vvW2YbPHgwU6dO5eWXX+b7779n7ty5dOzYkXPnzqWeM3/+fNq2bUu+fPlYsGABM2bM4MKFCzRp0oSff/75ttfu1asX8fHxLFq0KE37xYsX+frrr+nWrVvq15/RPxsRh2SIiEMYP368ARhRUVE3vda4cWOjcePGqcdRUVEGYFSrVs1ITk5ObZ80aZIBGE8++WSazx80aJABGJcuXTIMwzCOHj1q5MqVyxgwYECa8y5fvmwUKVLE6NSp0x1rvX7/8ePHp2l/6KGHjMKFCxuXL19ObUtKSjIqV65sFC9e3EhJSTEMwzBmzZplAEb37t3veJ//ut8/lSxZ0njiiSdu+Vp4eLgBGLNmzbrjfSpXrmy0a9futq8nJycbxYoVM6pUqZLm+3758mWjcOHCRv369VPbrn+N//zzrFmzZppzDMMwpkyZYgDG3r17DcO49z8bEUejHh0RJ/b444/j4nLjn4GKFSsC8MQTT6Q573r70aNHAVi9ejVJSUl0796dpKSk1A9PT08aN26c+sjsbsTFxbFt2zY6dOhAnjx5UttdXV0JCgri+PHj/PHHH2k+5+mnn77r+9hTnTp1+O677xg+fDjr16/nypUraV7/448/OHHiBEFBQWm+73ny5OHpp5/ml19+IT4+/rbX79mzJ1u2bEnzfZg1axa1a9emcuXKgH3+bERyMgUdESdWoECBNMfu7u53bL969SoAp06dAqB27dq4ubml+QgLC+Ps2bN3XcuFCxcwDIOiRYve9FqxYsUA0jwCAm55bkblypWL5OTkW76WlJQE8J+Pxj755BNee+01li9fTtOmTSlQoADt2rXjwIEDwI36b/c1pqSkcOHChdtev2vXrnh4eKROc4+MjCQ8PJyePXumnmOPPxuRnEyzrkTkrvn5+QGwZMkSSpYsmSnXzJ8/Py4uLkRHR9/02okTJ9Lc97rMnGHl7+/PX3/9dcvXrrf7+/vf8Rre3t68/fbbvP3225w6dSq1d6dNmzbs27ePggULAtz2a3RxcSF//vy3vX7+/Plp27Ytc+bMYezYscyaNQtPT0+6dOmSeo49/mxEcjIFHREH4eHhAXDT4xJ7aNGiBbly5eLPP//MtMdH3t7e1K1bl6VLl/LRRx+RO3duAFJSUpg3bx7FixenXLlymXKvW3n00Ud55513iIyMvGk6/qJFi8iTJw9169ZN9/X8/f3p0aMHe/bsYdKkScTHx1O+fHnuu+8+5s+fz9ChQ1ODWlxcHF999VXqTKw76dmzJ4sWLWLVqlXMmzePp556Ks26Sfb4sxHJyRR0RBxElSpVAJg8eTLBwcG4ublRvnx58ubNm+n3KlWqFGPGjGHkyJEcOnSIli1bkj9/fk6dOsX27dtTezbu1rhx43jsscdo2rQpQ4cOxd3dnSlTpvDbb7+xYMGCe+7B2bt3L0uWLLmpvXbt2gwcOJA5c+bQpEkTXn/9dapUqcKFCxcICwtjyZIlTJgw4T+/l3Xr1qV169ZUrVqV/Pnz87///Y+5c+emCTAffvghXbt2pXXr1rzwwgtcu3aN8ePHc/HiRd5///3//BqaN29O8eLFefHFFzl58mSax1Zgvz8bkRzL6tHQIpJ5RowYYRQrVsxwcXExAGPdunWGYdx+1tW/ZyGtW7fOAIzFixenab8+Ayg8PDxN+/Lly42mTZsa+fLlMzw8PIySJUsaHTp0MH744Yc71nmnWVCbNm0ymjVrZnh7exu5c+c2HnroIeObb75JVz3/db/bfVyfTXXy5EmjX79+RokSJYxcuXIZefPmNRo0aHDT9+N2hg8fbgQGBhr58+c3PDw8jDJlyhivvPKKcfbs2TTnLV++3Khbt67h6elpeHt7G4888oixefPmW36Nt5pF9/rrrxuAERAQkGb21r/vkZE/GxFHYzMMw7AgX4mIiIjYnWZdiYiIiMNS0BERERGHpaAjIiIiDktBR0RERByWgo6IiIg4LAUdERERcVhOv2BgSkoKJ06cIG/evJm6nLyIiIjYj2EYXL58mWLFiqXZJPffnD7onDhxgoCAAKvLEBERkQw4duwYxYsXv+3rTh90ri/pfuzYMfLly2dxNSIiIpIeMTExBAQE/OfWLE4fdK4/rsqXL5+CjoiISA7zX8NOnHYwckhICJUqVaJ27dpWlyIiIiJ24vR7XcXExODj48OlS5fUoyMiIpJDpPfnt9M/ukqPlJQUEhISrC4jx3Fzc8PV1dXqMkRExIkp6PyHhIQEoqKiSElJsbqUHMnX15ciRYpo6r6IiFhCQecODMMgOjoaV1dXAgIC7jhPX9IyDIP4+HhOnz4NQNGiRS2uSEREnJGCzh0kJSURHx9PsWLF8PLysrqcHCd37twAnD59msKFC+sxloiIZDmn7aJIz6yr5ORkANzd3bOqLIdzPSAmJiZaXImIiDgjpw06/fv3JzIykvDw8P88V+NLMk7fOxERsZLTBh0RERFxfAo6IiIi4rAUdLJAcjKsXw8LFpi//j30J8usX78em83GxYsXs/bGIiIiFlPQsbOlS6FUKWjaFJ591vy1VCmz3V6aNGnCoEGDUo/r169PdHQ0Pj4+9rupiIhINqSgY0dLl0KHDnD8eNr2v/4y2+0Zdv7J3d1di/aJiIhTctqgk5FNPQ0D4uLS9xETAy+/bH7Ora4DMHCgeV56rpfeHcl69OjBhg0bmDx5MjabDZvNRmhoaJpHV6Ghofj6+vLtt99Svnx5vLy86NChA3FxccyePZtSpUqRP39+BgwYkDrFHsxVoocNG8Z9992Ht7c3devWZf369en+/omIiGQ1p10wsH///vTv3z91U7D0iI+HPHky5/6GYfb0pPdpUmwseHv/93mTJ09m//79VK5cmTFjxgDw+++/33RefHw8n3zyCQsXLuTy5cu0b9+e9u3b4+vry6pVqzh06BBPP/00DRo0oHPnzgD07NmTw4cPs3DhQooVK8ayZcto2bIle/fu5YEHHkj31y4iIo7r22+/5dNPP+Xrr7/Gw8PD6nKct0fHUfn4+ODu7o6XlxdFihShSJEit1yRODExkalTp1KjRg0aNWpEhw4d+Pnnn5kxYwaVKlWidevWNG3alHXr1gHw559/smDBAhYvXkzDhg0pW7YsQ4cOpUGDBsyaNSurv0wREclmEhISGDJkCG3atGH16tV88sknVpcEOHGPTkZ4eZk9K+mxcSM8/vh/n7dqFTRqlL57ZyYvLy/Kli2beuzv70+pUqXI848uK39//9S9qnbt2oVhGJQrVy7Nda5du0bBggUztzgREclRDh8+zDPPPMO2bdsAGDhwIC+//LLFVZkUdO6CzZa+x0cAzZtD8eLmwONbja+x2czXmzcHK7aAcnNz+1c9tlu2Xd+1PSUlBVdXV3bu3HlTD1GezHqeJyIiOc7y5cvp2bMnFy9exNfXl1mzZtGuXTury0qloGMnrq4webI5u8pmSxt2rk9+mjTJPiHH3d09zSDizFCjRg2Sk5M5ffo0DRs2zNRri4hIzvTJJ58wcOBAAOrWrcvChQspVaqUtUX9i8bo2FH79rBkCdx3X9r24sXN9vbt7XPfUqVKsW3bNg4fPszZs2dTe2XuRbly5ejatSvdu3dn6dKlREVFER4ezgcffMCqVasyoWoREclpWrdujY+PD0OHDmXTpk3ZLuSAgo7dtW8Phw/DunUwf775a1SU/UIOwNChQ3F1daVSpUoUKlSIo0ePZsp1Z82aRffu3RkyZAjly5fnySefZNu2bQQEBGTK9UVEJPv750zeMmXKsH//fsaPH3/T8IfswmYY6V2hxTFdn15+6dIl8uXLl+a1q1evEhUVRenSpfH09LSowpxN30MREcdw9epVBg8ezGeffcb3339P8+bNLa3nTj+//8lpe3QysmCgiIiIM9q/fz8PPfQQU6dOxTAMdu/ebXVJ6ea0Qad///5ERkYSHh5udSkiIiLZ1vz586lVqxZ79uyhUKFCfP/997z22mtWl5VuTht0RERE5Pbi4+N57rnn6Nq1K7GxsTRu3JiIiAhatGhhdWl3RUFHREREbvLdd9/xxRdfYLPZeOutt/jhhx8oVqyY1WXdNa2jIyIiIjd5+umnGTJkCK1ateKRRx6xupwMU4+OiIiIEBcXx+DBgzl79mxq20cffZSjQw6oR0dERMTp/fbbb3Ts2JF9+/Zx8OBBVqxYYXVJmUY9OiIiIk7KMAy++OILateuzb59+yhWrBhDhgyxuqxMpR4dERERJ3T58mX69u3L/PnzAWjRogVz586lUKFCFleWudSjIyIi4mQOHDhAYGAg8+fPx9XVlXHjxrFq1SqHCzmgoOO0jh07RpMmTahUqRJVq1Zl8eLFVpckIiJZpHDhwiQmJlK8eHE2bNjA8OHDcXFxzEigR1dOKleuXEyaNInq1atz+vRpatasyeOPP463t7fVpYmIiB3ExcXh5eWFzWbDx8eHb7/9Fn9/fwoWLGh1aXblmPFN/lPRokWpXr06YCb7AgUKcP78eWuLEhERu9ixYwdVq1bls88+S22rVKmSw4cccOKgo009b9ixYwcpKSkEBARYXYqIiGQiwzD45JNPqF+/PocOHWLy5MkkJiZaXVaWctqgo009TefOnaN79+5Mnz7d6lJERCQTXbhwgaeffpqBAweSmJhIu3bt2Lp1K25ublaXlqWcNug4uoMHD2Kz2Vi5ciWPPPIIXl5elC9fnm3btqWec+3aNZ566ilGjBhB/fr1LaxWREQy07Zt26hRowbLli3Dzc2NyZMns3TpUvLnz291aVlOQcdB7dmzB5vNxscff8wbb7zBnj17KFGiBMOHDwfM7swePXrQrFkzgoKCLK5WREQyy6lTp2jSpAlHjhyhTJkybNmyhZdffhmbzWZ1aZbQrKsMiIuLu+1rrq6ueHp6putcFxcXcufO/Z/nZmQm1J49e/Dx8SEsLCx1XYR27doxdepUADZv3kxYWBhVq1Zl+fLlAMydO5cqVarc9b1ERCT78Pf358033yQiIoLPP/8cHx8fq0uylIJOBuTJk+e2rz3++OOsXLky9bhw4cLEx8ff8tzGjRuzfv361ONSpUql2UztOsMw7rrGPXv20KZNmzSLPx06dIj7778fgAYNGpCSknLX1xURkexn8+bNFChQgIoVKwIwfPhwbDab0/bi/JMeXTmoPXv2UK9evTRtu3fvTp1SLiIiOV9KSgrvv/8+jRs3plOnTqn/sXZxcVHI+Zt6dDIgNjb2tq+5urqmOT59+vRtz/33KpSHDx++p7quu3TpEkeOHKFGjRpp2iMiInj55Zcz5R4iImKtM2fO0L17d77//nsAqlWrpp76W1DQyYC7GTNjr3PvZM+ePbi6ulKtWrXUtiNHjnDhwgX16IiIOIANGzbw7LPPcuLECTw9Pfn000/p1auXenFuQY+uHNCePXuoUKFCmoHOu3fvxtfXl1KlSllXmIiI3JPk5GTeeecdmjVrxokTJ6hYsSLh4eH07t1bIec2FHQc0IABA/jtt9/StLVr144LFy5YVJGIiGQGwzBYvXo1KSkpBAcHEx4eTuXKla0uK1vToysREZFszjAMbDYbuXLlYsGCBaxfv15roKWTenRERESyqeTkZEaNGsWrr76a2hYQEKCQcxfUoyMiIpINnThxgmeffZYNGzYA0LVr15tm08p/U9ARERHJZlavXk1QUBBnzpwhT548TJs2LceFnORk2LQJoqOhaFFo2BD+tQJLltCjKxERkWwiKSmJESNG0LJlS86cOUO1atXYuXMnzz77rNWl3ZWlS6FUKWjaFJ591vy1VCmzPasp6KRDRrZgEJO+dyIi6deuXTvef/99APr168cvv/xCuXLlLK7q7ixdCh06wPHjadv/+stsz+qw4xBBJyoqiqZNm1KpUiWqVKlyx40078b1VY4TEhIy5XrO6Ppy5G5ubhZXIiKS/QUHB5MvXz7CwsKYMmVKmk2ic4LkZBg4EG71f9zrbYMGmedlFYcYo9OjRw/Gjh1Lw4YNOX/+PB4eHply3Vy5cuHl5cWZM2dwc3O7acsGuT3DMIiPj+f06dP4+vretDWGiIhAYmIiBw8eTN2Ms2PHjjRt2hQ/Pz+LK8uYTZtu7sn5J8OAY8fM85o0yZqacnzQ+f3333Fzc6Nhw4YAFChQINOubbPZKFq0KFFRURw5ciTTrutMfH19KVKkiNVliIhkO0eOHOGZZ57h0KFDREREULRoUYAcG3LAHHicmedlBsuDzsaNGxk/fjw7d+4kOjqaZcuW0a5duzTnTJkyhfHjxxMdHc2DDz7IpEmTUoPNgQMHyJMnD08++STHjx+nQ4cOvP7665lWn7u7Ow888IAeX2WAm5ubenJERG5h+fLl9OzZk4sXL+Lr68uBAwdSg05Olt4vISu/VMuDTlxcHNWqVaNnz548/fTTN70eFhbGoEGDmDJlCg8//DDTpk2jVatWREZGUqJECRITE9m0aRMREREULlyYli1bUrt2bR577LFb3u/atWtcu3Yt9TgmJuY/a3Rxcclxz0lFRCT7SUhIYNiwYUyePBmAunXrsnDhQofZh3D79ju/brNB8eLmVPOsYvmgk1atWjF27Fjat29/y9cnTJhA79696dOnDxUrVmTSpEkEBAQwdepUAIoXL07t2rUJCAjAw8ODxx9/nIiIiNveb9y4cfj4+KR+BAQE2OPLEhERSePQoUM8/PDDqSFnyJAhbNy40SFCjmHA8OHw2ms32v69x+j140mTsnY9HcuDzp0kJCSwc+dOmjdvnqa9efPmbNmyBYDatWtz6tQpLly4QEpKChs3bkwd1HUrI0aM4NKlS6kfx44ds+vXICIiAjB+/Hh27NhBgQIF+Oabb/joo49wd3e3uqx7lpwMzz8PH3xgHn/wAXz1Fdx3X9rziheHJUvgNv0admP5o6s7OXv2LMnJyfj7+6dp9/f35+TJk4A5M+q9996jUaNGGIZB8+bNad269W2v6eHhkWmzskRERNJr/PjxxMfHM3bsWId5mnD1KnTtaq6N4+IC06ZBnz7ma23bZo+VkbN10LnO9q/+r+u7uF7XqlUrWrVqldVliYiI3NaBAweYNm0aH374IS4uLuTJk4fZs2dbXVamuXwZ2rWDn34Cd3dYsCBtb42ra9ZNIb+TbB10/Pz8cHV1Te29ue706dM39fLcrZCQEEJCQkjOylWLRETEKSxYsIDnn3+e2NhYAgICGDhwoNUlZaozZ+Dxx2HHDsiTB77+Gpo1s7qqW8vWY3Tc3d2pVasWa9euTdO+du1a6tevf0/X7t+/P5GRkYSHh9/TdURERK67cuUKzz//PM8++yyxsbE0btyYjh07Wl1Wpjp61HwMtWMH+PnBunXZN+RANujRiY2N5eDBg6nHUVFRREREUKBAAUqUKMHgwYMJCgoiMDCQevXqMX36dI4ePUrfvn0trFpERCStffv20bFjR3777TdsNhtvvvkmb775JrlyWf6jNtPs2wePPWaufhwQAGvWQIUKVld1Z5Z/93fs2EHTpk1TjwcPHgyY+32EhobSuXNnzp07x5gxY4iOjqZy5cqsWrWKkiVL3tN99ehKREQyy9KlSwkKCiI+Ph5/f3++/PJLHnnkEavLylTh4dCqFZw7Z4abNWvMsJPd2Qwn3146JiYGHx8fLl26RL58+awuR0REcqDw8HAefvhhGjVqxLx58xxu65sffzQHHsfGQmAgfPed+djKSun9+W15j46IiEhOdPnyZfLmzQuYa7pt2rSJwMBAh9v6ZulS6NIFEhLMsTjLl8PfX3aOkK0HI4uIiGQ3hmEwY8YMSpYsmWYl/rp16zpcyPniC+jY0Qw57dvDqlU5K+SAgo6IiEi6Xb58maCgIPr06cOFCxeYPn261SXZzQcfwHPPQUqKuQjgokWQE9fbddqgExISQqVKlahdu7bVpYiISA6wZ88eAgMD+fLLL3F1dWXcuHF8+umnVpeV6QwDXn3V3LsKzF+nT7dmVePMoMHIGowsIiJ3YBgG06ZNY9CgQVy7do3ixYuzcOFCHn74YatLy3RJSea+VbNmmcfjx8PQodbWdDsajCwiIpIJli5dSr9+/QBo3bo1oaGhFCxY0OKqMt/Vq+ag4+XLzX2rvvgCeva0uqp7p6AjIiJyB+3atePxxx+nWbNmDB48+Kb9Fx1BTIy5Cef69eY4nIULzenkjsBpg44WDBQRkVsxDIO5c+fSsWNHcufOjaurK99++61DBhyA06fNhQB37TJnVK1YkT0248wsTjsYWXtdiYjIv128eJEOHToQHBycZiNORw05R46Y+1bt2gWFCpk9Oo4UcsCJe3RERET+afv27XTu3JnDhw/j5uZG5cqVMQzDYUNOZCQ0bw5//QUlSsDatVCunNVVZT6n7dEREREB81HVhAkTePjhhzl8+DBlypRhy5YtvPzyyw4bcrZtM3ty/voLKlaEzZsdM+SAenRERMSJnT9/nh49evDNN98A0KFDB7744gt8fHwsrsx+1q6Fp56CuDioWxdWrgQHnESWSj06IiLitOLi4ti8eTMeHh5MmTKFRYsWOXTIWbwYnnjCDDmPPQY//ODYIQecuEdHs65ERJzTP8fdBAQEEBYWhp+fH9WrV7e2MDubNg369TNXPu7YEebOzZlbOtwtrYyslZFFRJzGmTNn6NGjB3379qVNmzZWl5MlDAPGjYORI83jF16AkJCcu6XDden9+a1HVyIi4hQ2btxI9erVWbVqFf369ePatWtWl2R3KSkwZMiNkDNyJEydmvNDzt1Q0BEREYeWnJzM2LFjadq0KSdOnKBChQp89913eDj4c5ukJOjVCyZONI8nTICxY8FBJ5LdltOO0REREcd36tQpunXrxg8//ABAcHAwISEheHt7W1yZfV25As88Y65y7OoKM2dC9+5WV2UNBR0REXFIZ8+epXr16pw8eRIvLy+mTJlCcHCw1WXZ3aVL8OSTsHEjeHrCokXgJMORbklBR0REHJKfnx/t2rVj06ZNLFq0iEqVKlldkt2dOgUtW0JEBOTLB998A40aWV2VtZw26Gh6uYiI44mOjsbFxQV/f38AJk6cSEpKCl5eXhZXZn+HD5tr4xw8CIULw/ffQ40aVldlPU0v1/RyERGHsGbNGrp160aVKlVYs2YNrk40tei336BFCzhxAkqWNFc/fuABq6uyL00vFxERp5CUlMTIkSNp2bIlZ86c4dy5c5w7d87qsrLM1q3m46kTJ+DBB819qxw95NwNBR0REcmxjh8/TtOmTXnvvfcwDIN+/frxyy+/ULhwYatLyxKrV8Ojj8KFC/DQQ+YA5Pvus7qq7EVBR0REcqRVq1ZRvXp1fv75Z/LmzUtYWBhTpkzB09PT6tKyRFiYOZsqPt58bPXDD1CggNVVZT8KOiIikuMkJiYyZMgQzp07R61atdi9ezedOnWyuqwsM3UqdOkCiYnQubO5Xo6DLw2UYQo6IiKS47i5uREWFsYrr7zC5s2bKVu2rNUlZQnDgHfegRdfNH/frx98+SW4u1tdWfalWVeadSUikiN8/fXXREdH07dvX6tLsURKCgweDJMnm8dvvQWjRzvflg7Xpffnt9OuoyMiIjlDQkICw4YNY/LkyeTKlYu6detSw8kWiElMNPetmjfPPJ48GV5+2dqacgqnDTpaMFBEJPs7dOgQnTt3ZseOHQAMHDiQBx980OKqslZ8PHTqBCtXmvtWzZ4NXbtaXVXOoUdXenQlIpItffXVV/Tq1YuYmBgKFChAaGgobZxs06aLF82ZVT//bO5btWQJPPGE1VVlD3p0JSIiOdbgwYOZOHEiAPXr12fhwoUEBARYXFXWOnnSnDb+66/g4wPffgsNGlhdVc6jWVciIpLtFC9eHIDhw4ezfv16pws5hw6ZoebXX8HfHzZsUMjJKD260qMrEZFsISYmJvXfYcMwCA8Pp06dOhZXlfV+/dXsyTl5EkqXNvetcpLZ83dFe12JiEiOcOXKFV544QVq165NbGwsADabzSlDzubN0LixGXKqVDGPFXLujYKOiIhYZt++fdStW5fp06dz4MAB1qxZY3VJllm1Ch57zByAXL+++biqaFGrq8r5FHRERMQSc+fOJTAwkL179+Lv78+aNWto37691WVZYv58aNsWrlyBVq3Mx1X581tdlWPQrCsREclScXFxDBgwgFmzZgHQrFkzvvzyS4oUKWJxZfaXnAybNkF0tNlb07ChuW/Vyy+bWzo8+yyEhoKbm9WVOg4FHRERyVJDhgxh1qxZuLi4MGrUKEaOHImrq6vVZdnd0qUwcCAcP36jLV8+iIkxf//SS+aKxy561pKpFHRERCRLjR49mvDwcD7++GOaNGlidTlZYulS6NDB7LX5p+shp3Nn+OQT5923yp6UG0VExK5iY2OZPXt26nGRIkXYsWOH04Sc5GSzJ+dOi7ls2WJu2imZT0FHRETs5tdff6VWrVr06NGDsLCw1HabE3VdbNqU9nHVrRw7Zp4nmc9pg05ISAiVKlWidu3aVpciIuJwDMNg2rRp1KlTh/3793Pfffdx3333WV2WJaKjM/c8uTtOG3T69+9PZGQk4eHhVpciIuJQYmJi6NKlC3379uXatWs88cQTRERE0MBJ9zAoXDh952nNHPtw2qAjIiKZb/fu3dSqVYuwsDBy5crF+PHjWbFiBX5+flaXZomjR+Gtt+58js0GAQHmVHPJfJp1JSIimeb48eMcPHiQkiVLsnDhQh566CGrS7LM8uXQqxdcuAC5c5uLAdpsaQclXx+qNGkSOMEMe0uoR0dERO7JP/eGbtOmDbNnz2b37t1OG3KuXTMXAHzqKTPkBAbCb7/BV1/Bv4cpFS8OS5aAky4InSW0e7l2LxcRybDt27fTv39/li5dSkBAgNXlWG7/fnjmGdi92zweMgTeew/c3c3jW62MrJ6cjEnvz289uhIRkbtmGAaTJk3itddeIzExkddee4358+dbXZal5s6Ffv0gLg78/GD2bHj88bTnuLqCkywflG0o6IiIyF05f/48PXv2ZMWKFQB06NCBqVOnWlyVdWJjze0brq+J2KQJzJt382MqsYbG6IiISLpt3bqV6tWrs2LFCtzd3QkJCWHRokX4+PhYXZolIiKgVi0z5Li4wJgx8MMPCjnZiXp0REQkXdasWcMTTzxBUlIS999/P4sWLaJGjRpWl2UJw4ApU8wxONeumcFm/nxo1MjqyuTfFHRERCRdGjZsSKVKlXjwwQeZNm0aefPmtbokS1y4AL17w7Jl5nHr1jBrljkuR7IfBR0REbmtXbt2Ua1aNVxdXcmdOzcbNmzAx8fHqfaq+qctW6BLF3MhQDc3GD/enErupN+OHEFjdERE5CYpKSm8++671K5dm3HjxqW2+/r6OmXISUmBcePMR1NHj0LZsrB1q7kruRN+O3IU9eiIiEgap06dIigoiLVr1wJw6NAhDMNwyoADcPIkBAWZg4wBnn0Wpk4FLb2WM6hHR0REUv30009Ur16dtWvX4uXlxaxZs5g5c6bThpw1a6BaNTPkeHnBzJnm1HGFnJxDQUdEREhOTmb06NE8+uijnDx5kgcffJDw8HB69OhhdWmWSEyE4cOhRQs4fRqqVIEdO6BnTz2qymkUdEREhIMHD/L+++9jGAa9e/dm+/btVKpUyeqyLHH4sDkW54MPzON+/WDbNqhY0dKyJIMcYoxOrly5qFy5MgCBgYF88cUXFlckIpKzlC9fnilTpuDh4UHXrl2tLscyX30FffrAxYvg4wNffAEdOlhdldwLh9jU08/Pj7Nnz2boc7Wpp4g4o6SkJEaPHs2TTz5JnTp1rC7HcleumIv/Xd/J4qGHYMECKFXK0rLkDtL781uPrkREnMzx48dp2rQp7777Lp07d+bKlStWl2Sp//3PDDbXQ85rr8HGjQo5jsLyoLNx40batGlDsWLFsNlsLF++/KZzpkyZQunSpfH09KRWrVps2rQpzesxMTHUqlWLBg0asGHDhiyqXEQk51m1ahXVq1fn559/Jm/evLz//vvkzp3b6rIsYRjmisaBgfDrr1CoEHz/Pbz/vrkYoDgGy4NOXFwc1apV49NPP73l62FhYQwaNIiRI0eye/duGjZsSKtWrTh69GjqOYcPH2bnzp189tlndO/enZiYmNve79q1a8TExKT5EBFxdImJiQwbNownnniCc+fOUbNmTXbt2kXnzp2tLs0Sly9Dt27QqxfEx8Mjj8CePeYsK3EwRjYCGMuWLUvTVqdOHaNv375p2ipUqGAMHz78ltdo2bKlER4eftt7jBo1ygBu+rh06dI91y8ikh1duHDBqFevXuq/dwMGDDCuXr1qdVmW2bnTMO6/3zDAMFxdDePddw0jKcnqquRuXbp0KV0/vy3v0bmThIQEdu7cSfPmzdO0N2/enC1btgBw4cIFrl27BpjPnSMjIylTpsxtrzlixAguXbqU+nHs2DH7fQEiItmAj48PBQsWxMfHh6+++opPPvkEDw8Pq8vKcoYBkyeb43EOHoSAANiwAV5/HVxdra5O7CVbTy8/e/YsycnJ+Pv7p2n39/fn5MmTAPzvf//jhRdewMXFBZvNxuTJkylQoMBtr+nh4eGUb3ARcS4JCQkkJibi7e2NzWYjNDSUmJgYSpcubXVpljh3zlzs75tvzON27WDGDLjDjwtxENk66Fz376XHjX/suVK/fn327t1rRVkiItlSVFQUnTt3pnz58syZMwebzUbBggUpWLCg1aVZYuNGc3+qv/4Cd3eYMAFefFErHDuLbP3oys/PD1dX19Tem+tOnz59Uy/P3QoJCaFSpUrUrl37nq4jIpKdfPXVV9SoUYPw8HBWrlzJX3/9ZXVJlklOhjFjoGlTM+SUK2eucNy/v0KOM8nWQcfd3Z1atWql7qB73dq1a6lfv/49Xbt///5ERkYSHh5+T9cREckOrl69yksvvUSHDh24dOkS9erVIyIiguLFi1tdmiVOnIBHH4VRoyAlBbp3h507oXp1qyuTrGb5o6vY2FgOHjyYehwVFUVERAQFChSgRIkSDB48mKCgIAIDA6lXrx7Tp0/n6NGj9O3b18KqRUSyj4MHD9KpUyd2794NwLBhwxg7dixuTroYzHffmcHm7Fnw9oYpU8xjcU6WB50dO3bQtGnT1OPBgwcDEBwcTGhoKJ07d+bcuXOMGTOG6OhoKleuzKpVqyhZsuQ93TckJISQkBCSk5Pv6ToiIlZKTk7m8ccf58CBA/j5+TFnzhxatWpldVmWSEgwZ1B9/LF5XL06hIWZj6zEeTnEXlf3QntdiUhO98MPP/Duu+8yb9487rvvPqvLscShQ/DMM3B9NMKAAfDhh+DpaW1dYj/p/fmtoKOgIyI5zL59+zh8+DAtW7ZMbfvnbFRnExYGzz8PMTGQP7+5rUPbtlZXJfamTT1FRBzQ3LlzCQwMpFOnTvz555+p7c4YcuLjzYDzzDNmyHn4YYiIUMiRtBR0RERygPj4eHr16kX37t2Ji4sjMDAQLy8vq8uyzO+/Q5068Pnn5lTxkSNh/XooUcLqyiS7cdqgo3V0RCSniIyMpHbt2syaNQsXFxfefvtt1q5dS9GiRa0uLcsZhhluatc2w06RIrB2LYwdC7ksn14j2ZHG6GiMjohkY6Ghobz44otcuXKFIkWKsGDBApo0aWJ1WZa4dAleeMEckwPmTuOzZ8M9rh8rOZTG6IiIOIA9e/Zw5coVmjdvzp49e5w25GzfDjVqmCEnVy5zRtWqVQo58t/U0Sciks38cwbVBx98wIMPPkivXr1wcXG+/5umpMDEiTB8OCQlQalSsGCBuQO5SHo437vmbxqjIyLZjWEYTJs2jRYtWpCUlASYW+H06dPHKUPOmTPQujUMHWqGnKefht27FXLk7miMjsboiEg2EBMTw/PPP0/Y3wNQZs6cSc+ePS2uKmskJ8OmTRAdDUWLQsOG5o7jXbuabZ6eMGmSOZXcCWfRy22k9+e3Hl2JiFhs165dqevi5MqVi/fee4/g4GCry8oSS5fCwIFw/PiNtnz5zHVxACpWNMflVKliTX2S8ynoiIhYxDAMQkJCGDJkCAkJCZQoUYKFCxdSr149q0vLEkuXQocO5pTxf7oech55BL7+2tyYUySjnO+hr4hINjFixAgGDBhAQkICTz75JLt373aakJOcbPbk3GnwxP792qtK7p2CjoiIRXr06EH+/PmZOHEiy5cvp0CBAlaXlGU2bUr7uOpWjh0zzxO5Fxl+dHXs2DEOHz5MfHw8hQoV4sEHH8TDwyMza7OrkJAQQkJCSE5OtroUEXEShmEQHh5OnTp1AKhQoQJRUVH4+PhYXFnWi47O3PNEbueuenSOHDnCiBEjKFWqFKVKlaJx48a0atWKwMBAfHx8eOyxx1i8eDEpKSn2qjfT9O/fn8jISMLDw60uRUScwPnz52nXrh316tVj48aNqe3OGHKSksxtG9LDCXe5kEyW7qAzcOBAqlSpwoEDBxgzZgy///47ly5dIiEhgZMnT7Jq1SoaNGjAm2++SdWqVRUgRET+tnXrVmrUqMGKFSvIlSsXUVFRVpdkmT//hEaNYNasO59ns0FAgDnVXORepPvRlbu7O3/++SeFChW66bXChQvTrFkzmjVrxqhRo1i1ahVHjhzRYnwi4tRSUlL4+OOPef3110lKSqJs2bIsWrSImjVrWl1aljMMCA2Fl1+G2FhzCnmPHvB//3fj9euur5UzaRK4umZxoeJwtGCgFgwUETs4e/YswcHBrFq1CoDOnTszffp0p/x35uxZczPOpUvN44YNYc4cczuHW62jExBghpz27a2oVnIKuy4YeOXKFQzDwMvLCzDH7ixbtoyKFSvSokWLjFUsIuJAVqxYwapVq/D09GTy5Mk899xzqftXOZPVq6FnT3NQsZsbjBkDr756o6emfXto2/bmlZHVkyOZJUNBp23btrRv356+ffty8eJF6tati5ubG2fPnmXChAn069cvs+sUEclRevbsyb59++jWrRtVq1a1upwsd+WKuRHnJ5+YxxUqwJdfwq2e2rm6gpNuyi5ZIEPr6OzatYuGf48QW7JkCf7+/hw5coQ5c+bwyfW/1dmcNvUUkcx06tQpevfuzcWLFwGw2Wx8+OGHThlydu+GwMAbIeell2DnzluHHBF7y1DQiY+PJ2/evACsWbOG9u3b4+LiwkMPPcSRI0cytUB70fRyEcksP/30E9WrV2fmzJm89NJLVpdjmeRk+PBDqFsXIiOhSBFYtcoccPz3SAeRLJehoHP//fezfPlyjh07xurVq2nevDkAp0+fdsqBdiLinJKTkxk9ejSPPvooJ0+epFKlSowYMcLqsixx9Ki5N9Vrr0FiIrRrB7/+Cq1aWV2ZOLsMBZ233nqLoUOHUqpUKerWrZu6N8uaNWuoUaNGphYoIpIdRUdH89hjj/H2229jGAa9evUiPDycBx980OrSstz8+VC1KmzYYG7A+cUX5myqW6xGIpLlMjy9/OTJk0RHR1OtWjVcXMy8tH37dvLly0eFChUytUh70vRyEblb4eHhtG7dmtOnT+Pt7c3UqVMJCgqyuqwsd+EC9O8PCxaYxw89BHPnwv33W1uXOAe7Ti8HKFKkCEWKFEnTdn3/FhERR1a6dGnc3NyoUqUKixYtylH/ucss69ZBcLC58aarK7z1Frz+OuTK8E8VEfvI0F/JuLg43n//fX788UdOnz59095Whw4dypTiRESyi/Pnz6fuLu7n58cPP/xAyZIlyZ07t8WVZa1r1+DNN+Gjj8zVjO+/H+bNMwcgi2RHGQo6ffr0YcOGDQQFBVG0aFGnXARLRJzHd999R1BQEB9//DHBwcEATtmL89tv0K0b7NljHj/3HEyYAHnyWFuXyJ1kaIyOr68vK1eu5OGHH7ZHTVlKY3RE5HYSExN54403+PDDDwFo0KABGzdudLr/3KWkmFPEX3vN7NHx8zMHHLdta3Vl4szS+/M7Q7Ou8ufPn9qFm1NpwUARuZOjR4/SuHHj1JDz0ksvsXbtWqcLOSdOQMuWMGiQGXJatYK9exVyJOfIUI/OvHnz+Prrr5k9e3bqflc5lXp0ROTfVqxYQY8ePbhw4QI+Pj7MmDGDp59+2uqystySJeZmnOfPg6cnfPwx9Ot3Y3dxESul9+d3hoJOjRo1+PPPPzEMg1KlSuHm5pbm9V27dt19xRZR0BGRf9q/fz8VKlTAMAxq167NwoULKVOmjNVlZamYGHNH8dBQ87hmTXOfKiccliTZmF2nl7dr1y6jdYmIZGvlypXj9ddfJy4ujg8++AB3d3erS8pSmzdDUBBERZk9NyNGwKhR4GTfBnEgGV4w0FGoR0dEli5dSrVq1ShbtiwAhmE43VicxEQYMwbee88cfFyypLn439/7N4tkO3YdjJweTp6fRCQHuHbtGgMGDODpp5+mc+fOXLt2DcDpQs4ff0D9+jB2rBlyunc3p5Ar5IgjSHfQqVixIvPnzychIeGO5x04cIB+/frxwQcf3HNxIiL2cvDgQerXr8+nn34KwCOPPJK6nY2zMAz47DOoUQN27ID8+SEsDGbPBh8fq6sTyRzpHqMTEhLCa6+9Rv/+/WnevDmBgYEUK1YMT09PLly4QGRkJD///DORkZG89NJLvPjii/asW0Qkw8LCwnjuuee4fPkyBQsWZM6cOTz++ONWl5WlTp2C3r1h5Urz+JFHzMHHxYtbWpZIprvrMTpbtmwhLCyMjRs3cvjwYa5cuYKfnx81atSgRYsWdOvWDV9fXzuVm/k0RkfEeVy9epVBgwYxbdo0wFwAcMGCBRR3sp/u33xjhpwzZ8xBxu+/b86ycrIOLcnh7Dbrqn79+tSvX/+eihMRsYKLiws7d+7EZrPx+uuvM3r0aHI50S6UcXEwZAj8nfOoUsWcNl6lirV1idiT87zDRcRpXZ9F5e7uTlhYGAcPHqR58+ZWl5WlwsOha1c4cMA8HjLEHHzs6WltXSL2po5KEXFY8fHx9OrVizfffDO1rUyZMk4VcpKSzEBTr54Zcu67D374wdx9XCFHnIF6dETEIf3+++906tSJyMhIXF1d6d27N6VLl7a6rCz155/m4n9bt5rHnTrB1KmQw7cqFLkrTtujo009RRyTYRjMmjWL2rVrExkZSZEiRVizZo1ThRzDgFmzoHp1M+Tky2cu/rdwoUKOOB+tjKxZVyIOIzY2lhdffJG5c+cC8NhjjzF37lz8/f0trizrnDsHzz8PS5eaxw0bwpw5UKqUpWWJZDq7r4z8559/8sYbb9ClSxdOnz4NwPfff8/vv/+e0UuKiGRYSkoKTZo0Ye7cubi4uDB27Fi+//57pwo5q1ebM6iWLoVcuWDcOFi3TiFHnFuGgs6GDRuoUqUK27ZtY+nSpcTGxgLw66+/MmrUqEwtUEQkPVxcXBgwYADFihVj3bp1jBw50mlWOr5yxVwHp2VLiI42dxnftg2GDwdXV6urE7FWhv4VGD58OGPHjmXt2rVpdvZt2rQpW6+PehMRsbOYmBh+++231OPg4GD27dtHo0aNLKwqa0VEQGAgfPKJefzSS7BzJ9SsaWlZItlGhoLO3r17eeqpp25qL1SoEOfOnbvnokRE/svu3bupVasWLVu25OzZs6ntefPmtbCqrJOcDB9+CHXqQGQk+PvDqlXwf/8HXl5WVyeSfWQo6Pj6+hIdHX1T++7du7nvvvvuuSgRkdsxDIMpU6bw0EMPcfDgQVxcXDhx4oTVZWWpo0fNvaleew0SE6FtW9i7F1q1sroykewnQ0Hn2Wef5bXXXuPkyZPYbDZSUlLYvHkzQ4cOpXv37pldo4gIAJcuXaJTp07079+fhIQE2rRpQ0REBFWrVrW6tCwzfz5UrQobNoC3N3zxBSxbBoUKWV2ZSPaUoaDz7rvvUqJECe677z5iY2OpVKkSjRo1on79+rzxxhuZXaOICOHh4dSoUYMlS5bg5ubGhAkT+PrrryngJAvDXLwIzz5rbuNw6RLUrWuOz+ndG2w2q6sTyb7uaR2dP//8k927d5OSkkKNGjV44IEHMrO2LKF1dERyhmeffZYFCxZQqlQpwsLCqFOnjtUlZZl16yA4GI4dM2dRvfkmjBxpTiEXcVZ22738n8qWLUvZsmXv5RIiIukydepUChYsyDvvvIOvr6/V5WSJa9fMUPPRR+Zqx/ffD/Pmmb05IpI+GerRMQyDJUuWsG7dOk6fPk1KSkqa15deX5IzB1CPjkj29Msvv7Bw4UImTpyIzQmfzfz+u/mYas8e8/i552DCBMiTx9q6RLILu66MPHDgQIKCgoiKiiJPnjz4+Pik+RARyaiUlBTGjx9Pw4YNmTx5MrNnz7a6pCyVkgKTJ0OtWmbI8fOD5cth+nSFHJGMyNCjq3nz5rF06VIef/zxzK5HRJzY2bNnCQ4OZtWqVQB07tyZ9u3bW1xV1jlxAnr0gLVrzeNWrWDmTChSxNKyRHK0DPXo+Pj4UKZMmcyuRUSc2KZNm6hevTqrVq3Cw8ODzz77jAULFjjNI+WvvjL3qVq7Fjw9ISQEVq5UyBG5VxkKOqNHj+btt9/mypUrmV2PiDihqVOn0rRpU/766y/KlSvHtm3beOGFF5xibE5MDPTsCR06wPnz5tYNu3bBiy9q2rhIZsjQo6uOHTuyYMECChcuTKlSpXBzc0vz+q5duzKlOBFxDpUrV8YwDLp168bUqVPJ4ySDUTZvhqAgiIoyQ83w4TB6NPxjC0ERuUcZCjo9evRg586ddOvWDX9//2zxv674+HgqVqxIx44d+eijj6wuR0T+w7lz5yhYsCAADRs2ZPfu3VSpUiVb/Htib4mJMGYMvPeeOfi4ZEmYOxcaNrS6MhHHk6Ggs3LlSlavXk2DBg0yu54Me/fdd6mrxSVEsr3k5GTeffddPv74Y7Zt20aFChUAnGYbh/37zWnjO3aYx927mzuPa8KqiH1kaIxOQEBAthogeODAAfbt26dZYCLZ3MmTJ2nevDmjRo0iJiaGxYsXW11SljEM+OwzqFHDDDn580NYGMyerZAjYk8ZCjoff/wxw4YN4/Dhw/dcwMaNG2nTpg3FihXDZrOxfPnym86ZMmUKpUuXxtPTk1q1arFp06Y0rw8dOpRx48bdcy0iYj8//PAD1apV46effsLb25s5c+bw5ptvWl1Wljh1Ctq0gX79ID7e3Hn811+hUyerKxNxfBkKOt26dWPdunWULVuWvHnzUqBAgTQfdyMuLo5q1arx6aef3vL1sLAwBg0axMiRI9m9ezcNGzakVatWHD16FICvv/6acuXKUa5cuXTd79q1a8TExKT5EBH7SUpK4o033qB58+acPn2aKlWqsGPHDoKCgqwuLUt88405bXzlSnOQ8YQJsGYNFC9udWUiziFDW0D810qlwcHBGSvGZmPZsmW0a9cuta1u3brUrFmTqVOnprZVrFiRdu3aMW7cOEaMGMG8efNwdXUlNjaWxMREhgwZwltvvXXLe1yfGv9v2gJCxD4+++wz+vXrB8Dzzz/PpEmTyJ07t8VV2V9cHAwZAtOmmcdVqsCXX5q/isi9S+8WEPe0e3lm+3fQSUhIwMvLi8WLF/PUU0+lnjdw4EAiIiLYsGFDms8PDQ3lt99+u+Osq2vXrnHt2rXU45iYGAICAhR0ROwkKSmJJ598kqCgILp06WJ1OVkiPNwccHzggHk8eDC8+665EKCIZI5M3708JiYm9UL/9bgnswLD2bNnSU5Oxt/fP027v78/J0+ezNA1PTw88PDwyIzyROQWEhMTmTp1Kn379sXd3Z1cuXKxcuVKp5g2npQE779vroWTnAz33WcONn7kEasrE3Fe6Q46+fPnJzo6msKFC+Pr63vLf7QMw8Bms5GcnJypRf77Xtfv8289evTI1PuKyN05evQoXbp0YcuWLURFRTFx4kTg5vewIzp0yFz8b8sW87hTJ5g6Fe5y2KKIZLJ0B52ffvopdaDxunXr7FbQP/n5+eHq6npT783p06dv6uW5WyEhIYSEhGR6KBNxVt988w09evTg/Pnz5MuXj4cfftjqkrKEYUBoKLz8MsTGQr585j5VXbtqCweR7CDdQadx48apvy9dujQBAQG37Gk5duxYphXn7u5OrVq1WLt2bZoxOmvXrqVt27b3dO3+/fvTv3//1Gd8IpIxCQkJjBgxggkTJgAQGBhIWFiYU2z8e+4cPP88LF1qHjdsCHPmQKlSlpYlIv+QoZWRS5cunfoY65/Onz9P6dKl76qXJDY2loMHD6YeR0VFERERQYECBShRogSDBw8mKCiIwMBA6tWrx/Tp0zl69Ch9+/bNSOkikomOHDlCp06d2L59OwCDBg3igw8+wN0JNmtaswZ69IDoaMiVC955B159FVxdra5MRP4pQ0HndmNkYmNj8bzLaQU7duygadOmqceDBw8GzCnqoaGhdO7cmXPnzjFmzBiio6OpXLkyq1atomTJkhkpPZUeXYncu6SkJPbt24evry+hoaH33NOaE1y5Ym6++ckn5nGFCua08Zo1ra1LRG7trqaXXw8hkydP5rnnnsPLyyv1teTkZLZt24arqyubN2/O/ErtJL3T00TElJKSgovLjbVG165dS7ly5e75Px85QUSEOfYmMtI87t8fPvwQ/vFPoYhkkUyfXg6we/duwOzR2bt3b5ruaXd3d6pVq8bQoUMzWLKIZHd//vknXbp04d133+Wxxx4DSP3VkSUnmysajxxp7jzu7w8zZ4K21xPJ/jK0YGDPnj2ZPHmyQ/SAqEdHJH0WLVpEnz59uHz5MpUqVWLv3r1penYc1dGj5g7j19cnbdsWPv8cChWyti4RZ5fen98Z+ldq1qxZCgUiTuLKlSv069ePzp07c/nyZRo0aMDq1audIuTMnw9Vq5ohx9sbvvgCli1TyBHJSRz/X6rbCAkJoVKlStSuXdvqUkSyrT/++IOHHnqIzz77DIARI0awbt06ijv4jpQXL8Kzz5rjcS5dgrp1zfE5vXtrbRyRnCZb7XVlBT26Erm1qKgoqlSpQlxcHIUKFWLu3Lm0aNHC6rLsbv1681HVsWPmVPE33zTH5uTK0BxVEbEXuwxGFhHnUapUKdq3b8+xY8f48ssvKVasmNUl2dW1a2ao+egjc7XjsmVh3jx46CGrKxORe6GgIyKp/ve//1GoUCH8/Pyw2WxMmzYNd3d3XB18FbzffzcfU+3ZYx736QMTJ0KePNbWJSL3TmN0NEZHBIDQ0FACAwPp0aMH159o586d26FDTkqKufBfrVpmyPHzMwcbf/65Qo6Io3DaoNO/f38iIyMJDw+3uhQRS8XGxhIcHEzPnj2Jj4/n6tWrxMbGWl2W3Z04AS1bwsCB5mOrVq1g715o187qykQkMzlt0BER2Lt3L7Vr12bOnDm4uLjwzjvvsHr1avLmzWt1aXb11VdQpQqsXQuenuZu4ytXQpEiVlcmIplNY3REnJBhGMyYMYMBAwZw9epVihUrxvz582ncuLHVpdlVTIzZgxMaah7XrGkOOK5Y0dKyRMSO1KMj4oTi4+N59913uXr1Ki1btiQiIsLhQ87mzVC9uhlybDYYMQK2blXIEXF06tERcULe3t6EhYWxbt06Xn31VYde5TgxEcaMgffeMwcflywJc+dCw4ZWVyYiWcFpg05ISAghISEkJydbXYqI3RmGwdSpU3F3d6dPnz4A1KlThzp16lhcmX3t329OG9+xwzwOCoL/+z/w8bG2LhHJOloZWSsji4O7dOkSffr0YcmSJXh4ePDbb79x//33W12WXRkGTJ8OgwdDfDz4+sJnn0HnzlZXJiKZRSsjiwg7duygU6dOREVFkStXLt577z3Kli1rdVl2deqUueDft9+ax488Yo7LcfDtuUTkNhz3wbyIEzMMg8mTJ1O/fn2ioqIoWbIkP//8M4MHD8bmwLtSfvONOW3822/B3R0mTIA1axRyRJyZenREHIxhGHTs2JGvvvoKgKeeeooZM2aQP39+iyuzn7g4GDIEpk0zj6tUMaeNV61qbV0iYj316Ig4GJvNRvXq1XF3d+eTTz7hq6++cuiQEx4ONWrcCDmDB8P27Qo5ImLSYGQNRhYHkJKSwvnz5/Hz8wMgOTmZP/74g0qVKllcmf0kJcH778Po0ZCcDPfdB7Nnm2NyRMTxpffnt9P26GhTT3EU586d48knn+SRRx7hypUrALi6ujp0yDl0CBo3hjffNENOx47w668KOSJyM/XoqEdHcrCff/6ZLl26cPz4cTw8PFi9erVDr3BsGGavzYABEBsLefOa+1R162audiwizkM9OiIOLCUlhXHjxtGkSROOHz9OuXLl2LZtm0OHnHPnoEMH6NnTDDkNG5q9OEFBCjkicnuadSWSw5w+fZqgoCDWrFkDQNeuXZk6dapD7zi+Zg306AHR0ZArF7zzDrz6Kri6Wl2ZiGR3CjoiOcyLL77ImjVryJ07N//3f/9Hr169HHZtnCtXYPhw+OQT87hCBXPaeK1a1tYlIjmHgo5IDjNx4kROnTrF1KlTqVy5stXl2E1EhLlPVWSkedy/P3z4IXh5WVqWiOQwGqMjks2dPHmSzz//PPU4ICCATZs2OWzISU6G8eOhTh0z5Pj7w8qV8OmnCjkicvfUoyOSjf3444907dqVU6dO4e/vz5NPPml1SXZ19CgEB8P69eZx27bw+edQqJClZYlIDqYeHZFsKCkpibfeeovHHnuMU6dOUblyZR544AGry7Kr+fPN1YzXrwdvbzPgLFumkCMi98Zpe3RCQkIICQkhOTnZ6lJE0jhx4gRdunRh48aNADz33HNMnjyZ3LlzW1yZfVy8CC++CAsWmMd165oDju+/39KyRMRBaMFALRgo2ciaNWvo2rUrZ8+eJU+ePEybNo1nn33W6rLsZv166N4djh0zp4q/8Yb5kctp/wsmIumV3p/f+udEJBu5ePEiZ8+epVq1aixatIhy5cpZXdI9S06GTZvMNXCKFjUX+ktKMrdv+Ogjc7XjsmXNXpyHHrK6WhFxNAo6IhZLSUnBxcUcLtepUydSUlJo164dnp6eFld275YuhYED4fjxG23+/uDpCUeOmMd9+sDEiZAnjzU1iohj02BkEQt9++23VKlShZMnT6a2PfPMMw4Tcjp0SBtyAE6dMkNOnjzmYOPPP1fIERH7UdARsUBCQgJDhw6lTZs2REZGMm7cOKtLylTJyWZPzp1GAObLB23aZF1NIuKcFHREstjhw4dp1KgRH3/8MQADBw7kww8/tLiqzLVp0809Of924oR5noiIPWmMjkgWWrZsGb169eLixYv4+voya9Ys2rVrZ3VZmWrfPvg7w/2n6Gj71iIioqAjkkW+/PJLunXrBkDdunVZuHAhpUqVsraoTBIbC4sWwcyZsHlz+j+vaFH71SQiAgo6IlnmySefpHz58rRu3Zr33nsPd3d3q0u6J4YBW7fCjBkQFgZxcWa7iwu0agW//ALnz996nI7NBsWLm1PNRUTsSUFHxI42btxIw4YNsdls5M2bl507d+Lt7W11Wffk1CmYM8fsvdm370b7Aw9Ar17mAoDFit2YdWWzpQ07Npv566RJ5iKBIiL2pMHIInZw9epVXnzxRRo3bszEiRNT23NqyElKgm++gXbtzJ6YYcPMkOPlZW7CuXEj/PEHDB9uhhyA9u1hyRK477601ype3Gxv3z7LvwwRcULq0RHJZPv376dTp07s2bMHMFc7zqn27zd7bmbPhn8s9UPdutC7N3TubE4Tv5327c0dyP+9MrJ6ckQkqzht0NGmnmIP8+fP54UXXiA2NhY/Pz/mzZtHixYtrC7rrsTFweLFZsD55/TvQoUgKMh8PPXgg+m/nqsrNGmS6WWKiKSLNvXUpp6SCeLj4xk4cCBffPEFAI0bN2b+/PkUu/4cJ5szDNi2zRxYvHChOYsKbgws7tULWreGHD5+WkQciDb1FMlC+/btIzQ0FJvNxptvvsmbb75JrhywBffp0zB3rtl7Exl5o/3++28MLP73GBsRkZwk+/9LLJID1KxZkylTplCmTBkeeeQRq8u5o6QkWL3a7L355hvzGCB3bujY0Qw4jRrdmB0lIpKTKeiIZEBcXByDBg1iwIABVK1aFYDnnnvO4qru7ODBGwOLT5y40V6njhlunnkGfHysq09ExB4UdETu0t69e+nUqRP79u1jy5Yt/Prrr7hm02lEcXHw1Vdm783GjTfa/fxuDCyuXNm6+kRE7E1BRySdDMNgxowZDBgwgKtXr1KsWDGmTJmS7UKOYcD27WbvzYIFcPmy2e7iAi1amOHmySc1sFhEnIOCjkg6XL58mb59+zJ//nwAWrRowdy5cylUqJDFld1w5gzMm2f23vz++432MmXMcBMcbC7WJyLiTBR0RP7DX3/9RdOmTTlw4ACurq6MHTuWYcOG4eJi/cLiycnmwOKZM2HFCkhMNNs9Pc3tF3r3NgcWZ4NSRUQsoaAj8h+KFClCQEAAV65cYeHChTz88MNWl8Sff8KsWRAaCn/9daM9MNAMN888A76+VlUnIpJ9KOiI3MKlS5dwd3cnd+7cuLq6smDBAlxdXSlYsKBlNcXHmwOLZ86E9etvtBcocGNg8d8TwERE5G8KOiL/snPnTjp16kTz5s2ZOnUqAIULF7akFsOAHTvMcDN/PsTEmO02GzRvbvbePPkkeHhYUp6ISLanoCPyN8Mw+PTTTxk6dCgJCQl89913XLhwgfz582d5LWfPmgOLZ86EvXtvtJcqZfbc9OgBAQFZXpaISI6joCMCXLhwgd69e7Ns2TIA2rVrx8yZM7M05CQnw9q15qypr7++MbDYwwOeftrsvWnSRAOLRUTuhoKOOL1t27bxzDPPcPjwYdzc3Pjoo48YMGAAtizaA+HQoRsDi48fv9Fes6YZbrp0AQs6lUREHIKCjji1K1eu0LZtW06dOkWZMmUICwsjMDAwC+4LS5eaj6Z++ulGe/780K2b+XiqenW7lyEi4vAUdMSp5c6dm88//5x58+Yxffp0fOy42ZNhwK5d5qOp+fPh0iWz3WaDRx81e2/atjXXwBERkcxhMwzDsLqIe3H58mWaNWtGYmIiycnJvPzyy3e1uWJMTAw+Pj5cunSJfPny2bFSyS42b95MXFwczZs3z5L7nTsHX35pBpxff73RXrIk9OxpDiwuWTJLShERcRjp/fmd43t0vLy82LBhA15eXsTHx1O5cmXat29v6Xonkj2lpKTw4Ycf8sYbb+Dj40NERAQBdpq6lJwMP/5ohpvlyyEhwWz38ID27c1HU82aaWCxiIi95fig4+rqipeXFwBXr14lOTmZHN5JJXZw5swZunfvzvfffw9Ay5Yt8bXD0sGHD98YWHz06I32GjXMcPPss+YCfyIikjUs///kxo0badOmDcWKFcNms7F8+fKbzpkyZQqlS5fG09OTWrVqsWnTpjSvX7x4kWrVqlG8eHGGDRuGn59fFlUvOcGGDRuoXr0633//PZ6enqljcvLmzZsp17961dwl/NFHoXRpGDPGDDm+vtC/vzkuZ9cueOklhRwRkaxmedCJi4ujWrVqfPrpp7d8PSwsjEGDBjFy5Eh2795Nw4YNadWqFUf/8d9lX19f9uzZQ1RUFPPnz+fUqVO3vd+1a9eIiYlJ8yGOyTAMxo4dS7NmzThx4gQVKlRg+/bt9OnTJ1Omju/ebYaXokXNnpoffzTbH33UHGwcHQ2ffmr25oiIiDUsDzqtWrVi7NixtG/f/pavT5gwgd69e9OnTx8qVqzIpEmTCAgISF2a/5/8/f2pWrUqGzduvO39xo0bh4+PT+qHvcZoiPVsNhvHjh0jJSWF4OBgduzYQZUqVe7pmufP3wgvNWtCSAhcvAglSsCoURAVZS7616WLZk+JiGQHlgedO0lISGDnzp03zY5p3rw5W7ZsAeDUqVOpvTIxMTFs3LiR8uXL3/aaI0aM4NKlS6kfx44ds98XIJZITk5O/f2kSZNYvHgxoaGheHt7Z+h6KSk3wkuxYjBgAEREgLs7dO4Mq1ebi/6NHm1u0SAiItlHth6MfPbsWZKTk/H390/T7u/vz8mTJwE4fvw4vXv3xjAMDMPgpZdeouodtnD28PDAQzsgOqTk5GTGjBnDtm3bWLlyJa6uruTOnZsOHTpk6HpHjpiDimfNMn9/XbVq5po3zz4LmtwnIpK9Zeugc92/x1MYhpHaVqtWLSIiIiyoSrKTEydO0LVrV9avXw/Ad999R+vWre/6OlevmtPBZ86EH34wF/kD8PGBrl3NmVM1a5qL/ImISPaXrYOOn58frq6uqb03150+ffqmXp67FRISQkhISJrHHJIzrV69mqCgIM6cOUOePHmYPn36XYeciAgz3MybBxcu3Ghv1szsvXnqKcidO3PrFhER+8vWY3Tc3d2pVasWa9euTdO+du1a6tevf0/X7t+/P5GRkYSHh9/TdcQ6SUlJjBgxgpYtW3LmzBmqVavGzp076dKlS7o+/8IFczBxrVrm4OL/+z+zrXhxePNNc9zNjz+aj6gUckREcibLe3RiY2M5ePBg6nFUVBQREREUKFCAEiVKMHjwYIKCgggMDKRevXpMnz6do0eP0rdvXwurluygT58+zJ49G4B+/foxYcIEPP9jqlNKCqxbZ/befPUVXLtmtru5Qbt2Zu/No4+Cq6udixcRkSxhedDZsWMHTZs2TT0ePHgwAMHBwYSGhtK5c2fOnTvHmDFjiI6OpnLlyqxatYqS97g5kB5d5XyDBg3iu+++4//+7//o1KnTHc89evTGwOLDh2+0V6lihpuuXUHrTIqIOJ4cv6nnvdKmnjlHYmIiW7dupVGjRqlt8fHxqVuA/Nu1a/D112bvzZo1NwYW58tnPo7q3dt8bKWBxSIiOY/TbOopzuHIkSN07tyZXbt28fPPP1OnTh2AW4acX381N9OcN89c4O+6Jk3McNO+PdwmG4mIiINR0JFsb/ny5fTs2ZOLFy/i6+vLuXPnbjrn4kVzv6kZM2Dnzhvt990HPXpAz55QtmyWlSwiItmEgo5kWwkJCQwbNozJkycDULduXRYuXEipv5cfTkmBDRvMcPPVV+YaOGAOLG7b1lzzpnlzDSwWEXFmTht0NBg5ezt06BCdO3dmx44dAAwZMoT33nsPd3d3jh+/MbD40KEbn/Pgg+ajqW7doFAha+oWEZHsRYORNRg5W5o0aRKvvPIKBQoUYPbs2Tz2WGu++cbsvVmzxuzNAcib19yDqndvqF1bA4tFRJyFBiNLjvbyyy9z5swZmjbty8qVAfToAf8cmtO4sfloqkMHDSwWEZHbU9CRbOHAgQO88cYbzJgxg+TkPCxc6MLate/y3ns3zila1BxY3KsX3H+/ZaWKiEgOoqAjlluwYAHPP/88sbGx7NlTiKNHP+XKFfO1XLngySfNcNOihXksIiKSXk77Y0ODka135coV+vQZyPz5n//d0pg//ngdgEqVbgwsLlzYuhpFRCRn02BkDUbOcgkJ8Nln+xg5siOxsb8BNuANvL3f4tlnc9GrF9Stq4HFIiJyexqMLNnO77+b2zHMmLGaS5faA/GAP5Urz2PIkEfp2BG8va2uUkREHImCjthVTAwsXGgGnG3brrdWxcUlDwEBD/Hll1/y8MNFrCxRREQcmIKOZDrDgE2bzHCzeDHExwNEkytXUVq3ht69i3L//Zt54IHSuGrZYhERsSOnDToajJz5TpyAOXPMgHPgwPVWgyJFZnLu3AA+/TSU55/v9He75oeLiIj9aTCyBiPfk8RE+PZbM9ysWnVjxeI8eeCppy5z6lQ/1qz5EoBOnToRFhZmYbUiIuIoNBhZ7Op//zO3Y5g7F06fvtH+8MPmtPAKFfbQo0cn9u/fj6urK2PHjmXYsGHWFSwiIk5JQUfS7fJlCAsze2+2br3R7u8PwcHmon7lyhlMnz6dpk0Hcu3aNYoXL86CBQto0KCBdYWLiIjTUtCROzIM2LzZ7L1ZtOj6wGJwdYUnnjB7b1q1Ajc3sz08fAd9+/YF4IknnmD27NkULFjQoupFRMTZKejILUVH3xhYvH//jfZy5cxw0707FLnFrPDatWvz6quvUrhwYQYPHoyLi0vWFS0iIvIvGoyswcipEhPNAcUzZpi/Xp+Q5u0NnTqZAad+/bQrFhuGwWeffUabNm0oXry4NYWLiIjT0WDk/6Dp5Tfs22f23MyZA6dO3WivV88MN506Qd68N3/ehQsX6N27N8uWLePLL79k/fr15NKumyIiko047U+l/v37079//9RE6GxiY80xNzNmwJYtN9oLFzYfS/XqBRUr3v7zt2/fTufOnTl8+DBubm506tRJi/+JiEi247RBxxkZhhlqZs40Z0/FxZntrq7w+ONmuHniiRsDi299DYOJEyfy2muvkZSURJkyZQgLCyMwMDBrvggREZG7oKDjBE6eNNe7mTnTfEx13QMPmOGme3coVuy/r3Px4kW6d+/ON998A0DHjh35/PPPnbJHTEREcgYFHQeVlATffWc+mvr22xsDi728oGNHc+xNgwZpBxb/F3d3d6KiovDw8GDixIn07dsX291cQEREJIsp6DiYP/6AWbNg9myzJ+e6hx4ye286d4a7mVyW8veeDi4uLnh5ebF48WKuXr1K9erVM7dwERERO1DQcQCxsbBkidl78/PPN9oLFTIfS/XsCQ8+ePfXPXPmDMHBwTRo0IDXX38dgAoVKmRS1SIiIvandXRy6Do6hgG//GKOu1m40Aw7AC4u5krFvXpB69bg7p6x62/cuJEuXbpw4sQJ8uTJQ1RUFH5+fpn3BYiIiNwDraPjoE6fNgcWz5hhbqx53f333xhYfN99Gb9+cnIy48aNY9SoUaSkpFChQgUWL16skCMiIjmS0wadnLRgYFISfP+92XvzzTfmMUDu3ObA4l69oFGjuxtYfCunTp2iW7du/PDDDwAEBwcTEhKCt7f3PX4FIiIi1tCjq2z86OrAATPczJ5t7j11XZ065qypzp0hs2Z2X7t2jQoVKnD48GG8vLyYMmUKwcHBmXNxERGRTKZHVzlUXJw5sHjmTNi48Ua7nx8EBZm9N5UrZ/59PTw8ePXVV5k6dSphYWFUqlQp828iIiKSxdSjkw16dAwDtm83x90sXAiXL5vtLi7QooXZe9OmTcYHFt/OiRMnOHfuHFWqVPm7DoNr167h6emZuTcSERHJZOrRsVByMmzaZD5uKloUGjY0t1n4tzNnbqxY/PvvN9rLlDF7boKDwV4bgq9Zs4Zu3bqRJ08edu3aha+vLzabTSFHREQcioJOJlu6FAYOhOPHb7QVLw6TJ0P79mYIWr3a7L1ZseLGwGJPT+jQwey9adTI7M2xh6SkJEaNGsW4ceMwDINixYpx8eJFfH197XNDERERCynoZKKlS82w8u+HgX/9ZbY/9RRs22YeXxcYaIabZ54Be2eN48eP06VLF37+e1XBvn37MnHiRPXiiIiIw1LQySTJyWZPzq1GPF1vW7rU/LVgQejWzXw8VbVq1tS3atUqunfvzrlz58ibNy9ffPEFnTp1ypqbi4iIWERBJ5Ns2pT2cdXtjBoFI0aAh4f9a7rOMAymTp3KuXPnqFWrFmFhYZQtWzbrChAREbGInUaCOJ9/rnNzJ+XLZ23IAbDZbMyaNYs33niDzZs3K+SIiIjTUNDJJEWLZu5592rFihUMGjQo9djPz4933nkHj6xOWSIiIhZS0MkkDRuas6tutw2DzQYBAeZ59pSQkMArr7xC27ZtmTx5Ml9//bV9bygiIpKNKehkEldXcwo53Bx2rh9PmnTr9XQyy6FDh3j44YeZNGkSAEOGDKFVq1b2u6GIiEg257RBJyQkhEqVKlG7du1Mu2b79ub2Df/ePbx4cbO9fftMu9VNlixZQo0aNdixYwcFChRgxYoVfPTRR7hn9nLKIiIiOYi2gLDDFhDpXRk5s7z55puMHTsWgPr167Nw4UICAgLsd0MRERGLaQsIC7m6QpMmWXe/hg0b4uLiwrBhwxgzZgxubm5Zd3MREZFsTEEnh/rrr7+47+9nZM2bN+ePP/7g/vvvt7gqERGR7MVpx+jkVFeuXOGFF17gwQcf5NChQ6ntCjkiIiI3U49ODrJv3z46derE3r17sdls/Pjjj5QpU8bqskRERLIt9ejkEHPnziUwMJC9e/fi7+/PmjVreO6556wuS0REJFtT0Mnm4uLi6NWrF927dycuLo5mzZoRERHBo48+anVpIiIi2Z6CTjb3ySefMGvWLFxcXHj77bdZs2YNRYoUsbosERGRHEFjdLK5wYMH88svv/DKK6/QJCvnrIuIiDgA9ehkM7Gxsbz33nskJSUB4OHhwddff62QIyIikgHq0clG9uzZQ6dOndi/fz/x8fGpqx2LiIhIxqhHJxswDINp06ZRt25d9u/fT/HixWnZsqXVZYmIiOR46tGxWExMDM8//zxhYWEAPPHEE4SGhuLn52dxZSIiIjmfenQstGfPHmrWrElYWBi5cuVi/PjxrFixQiFHREQkk6hHx0Jubm5ER0dTsmRJFi5cyEMPPWR1SSIiIg5FQSeLJSUlkSuX+W2vVKkSK1asoGbNmuTPn9/iykRERBxPjn90dezYMZo0aUKlSpWoWrUqixcvtrqk29q+fTsVK1bk559/Tm175JFHFHJERETsJMcHnVy5cjFp0iQiIyP54YcfeOWVV4iLi7O6rDQMw2DixIk0aNCAgwcP8sYbb1hdkoiIiFPI8Y+uihYtStGiRQEoXLgwBQoU4Pz583h7e1tcmen8+fP07NmTFStWANChQwe++OILi6sSERFxDpb36GzcuJE2bdpQrFgxbDYby5cvv+mcKVOmULp0aTw9PalVqxabNm265bV27NhBSkoKAQEBdq46fbZs2UL16tVZsWIFHh4eTJkyhUWLFuHj42N1aSIiIk7B8qATFxdHtWrV+PTTT2/5elhYGIMGDWLkyJHs3r2bhg0b0qpVK44ePZrmvHPnztG9e3emT59+x/tdu3aNmJiYNB/2sHv3bho1asSxY8d44IEH+OWXX+jXrx82m80u9xMREZGb2QzDMKwu4jqbzcayZcto165dalvdunWpWbMmU6dOTW2rWLEi7dq1Y9y4cYAZXh577DGee+45goKC7niP0aNH8/bbb9/UfunSJfLly5c5XwjmuJyOHTvi7u7OtGnTyJs3b6ZdW0RExNnFxMTg4+Pznz+/Le/RuZOEhAR27txJ8+bN07Q3b96cLVu2AGag6NGjB82aNfvPkAMwYsQILl26lPpx7Ngxu9Rus9n48ssv+fLLLxVyRERELJKtByOfPXuW5ORk/P3907T7+/tz8uRJADZv3kxYWBhVq1ZNHd8zd+5cqlSpcstrenh44OHhYde6/3kvERERsU62DjrX/Xtci2EYqW0NGjQgJSXFirJEREQkm8vWj678/PxwdXVN7b257vTp0zf18tytkJAQKlWqRO3ate/pOiIiIpJ9Zeug4+7uTq1atVi7dm2a9rVr11K/fv17unb//v2JjIwkPDz8nq4jIiIi2Zflj65iY2M5ePBg6nFUVBQREREUKFCAEiVKMHjwYIKCgggMDKRevXpMnz6do0eP0rdvXwurFhERkZzA8qCzY8cOmjZtmno8ePBgAIKDgwkNDaVz586cO3eOMWPGEB0dTeXKlVm1ahUlS5a8p/uGhIQQEhJCcnLyPV1HREREsq9stY6OFdI7D19ERESyD4dYR0dERETkXijoiIiIiMNS0BERERGH5bRBR+voiIiIOD4NRtZgZBERkRxHg5FFRETE6SnoiIiIiMOyfMFAq11/chcTE2NxJSIiIpJe139u/9cIHKcNOtdXRk5ISAAgICDA4opERETkbl2+fBkfH5/bvu70g5FTUlI4ceIEefPmxWazUbt27XRt9Plf58XExBAQEMCxY8ecYpBzer9vWcHetWTm9e/1Whn5/Lv5HL0fMkbvB2uupfdD9mSvv4OGYXD58mWKFSuGi8vtR+I4bY/OdS4uLhQvXjz12NXVNV1/8dJ7Xr58+ZziL3J6vx9Zwd61ZOb17/VaGfn8u/kcvR8yRu8Ha66l90P2ZM+/g3fqyblOg5H/pX///pl6nrPITt8Pe9eSmde/12tl5PPv5nP0fsiY7PT90Psh8z5H74eMsfr74fSPruxF6/OI3KD3g8gNej9kLfXo2ImHhwejRo3Cw8PD6lJELKf3g8gNej9kLfXoiIiIiMNSj46IiIg4LAUdERERcVgKOiIiIuKwFHRERETEYSnoiIiIiMNS0LHIU089Rf78+enQoYPVpYhY6tixYzRp0oRKlSpRtWpVFi9ebHVJIpa5fPkytWvXpnr16lSpUoXPP//c6pJyPE0vt8i6deuIjY1l9uzZLFmyxOpyRCwTHR3NqVOnqF69OqdPn6ZmzZr88ccfeHt7W12aSJZLTk7m2rVreHl5ER8fT+XKlQkPD6dgwYJWl5ZjqUfHIk2bNiVv3rxWlyFiuaJFi1K9enUAChcuTIECBTh//ry1RYlYxNXVFS8vLwCuXr1KcnIy6o+4Nwo6GbBx40batGlDsWLFsNlsLF++/KZzpkyZQunSpfH09KRWrVps2rQp6wsVyQKZ+X7YsWMHKSkpBAQE2LlqEfvIjPfDxYsXqVatGsWLF2fYsGH4+fllUfWOSUEnA+Li4qhWrRqffvrpLV8PCwtj0KBBjBw5kt27d9OwYUNatWrF0aNHs7hSEfvLrPfDuXPn6N69O9OnT8+KskXsIjPeD76+vuzZs4eoqCjmz5/PqVOnsqp8x2TIPQGMZcuWpWmrU6eO0bdv3zRtFSpUMIYPH56mbd26dcbTTz9t7xJFskxG3w9Xr141GjZsaMyZMycryhTJEvfy8+G6vn37GosWLbJXiU5BPTqZLCEhgZ07d9K8efM07c2bN2fLli0WVSVijfS8HwzDoEePHjRr1oygoCAryhTJEul5P5w6dYqYmBjA3OV848aNlC9fPstrdSS5rC7A0Zw9e5bk5GT8/f3TtPv7+3Py5MnU4xYtWrBr1y7i4uIoXrw4y5Yto3bt2lldrohdpef9sHnzZsLCwqhatWrqeIa5c+dSpUqVrC5XxK7S8344fvw4vXv3xjAMDMPgpZdeomrVqlaU6zAUdOzEZrOlOTYMI03b6tWrs7okEcvc6f3QoEEDUlJSrChLxBJ3ej/UqlWLiIgIC6pyXHp0lcn8/PxwdXVN03sDcPr06ZtSvIij0/tB5Aa9H6yhoJPJ3N3dqVWrFmvXrk3TvnbtWurXr29RVSLW0PtB5Aa9H6yhR1cZEBsby8GDB1OPo6KiiIiIoECBApQoUYLBgwcTFBREYGAg9erVY/r06Rw9epS+fftaWLWIfej9IHKD3g/ZkJVTvnKqdevWGcBNH8HBwannhISEGCVLljTc3d2NmjVrGhs2bLCuYBE70vtB5Aa9H7If7XUlIiIiDktjdERERMRhKeiIiIiIw1LQEREREYeloCMiIiIOS0FHREREHJaCjoiIiDgsBR0RERFxWAo6IiIi4rAUdERERMRhKeiISI4TGhqKr6+v3a7fpEkTBg0aZLfri0jW0RYQIpIt9OjRg4sXL7J8+fL/PPfKlStcvnyZwoUL26WW8+fP4+bmRt68ee1yfRHJOtq9XERylMTERHLnzk3u3Lntdo8CBQrY7doikrX06EpE7kqTJk0YMGAAgwYNIn/+/Pj7+zN9+nTi4uLo2bMnefPmpWzZsnz33Xepn5OcnEzv3r0pXbo0uXPnpnz58kyePDn19dGjRzN79my+/vprbDYbNpuN9evXc/jwYWw2G4sWLaJJkyZ4enoyb968NI+uDMPg0UcfpWXLllzvoL548SIlSpRg5MiRt/06pkyZwgMPPICnpyf+/v506NAhzdd4/dHV+vXrU2v650ePHj1Sz//mm2+oVasWnp6elClThrfffpukpKTb3rtHjx60a9eOjz76iKJFi1KwYEH69+9PYmLi3fxRiEg6KOiIyF2bPXs2fn5+bN++nQEDBtCvXz86duxI/fr12bVrFy1atCAoKIj4+HgAUlJSKF68OIsWLSIyMpK33nqL119/nUWLFgEwdOhQOnXqRMuWLYmOjiY6Opr69eun3u+1117j5Zdf5n//+x8tWrRIU4vNZmP27Nls376dTz75BIC+ffvi7+/P6NGjb1n/jh07ePnllxkzZgx//PEH33//PY0aNbrlufXr10+tKTo6mp9++glPT8/U81evXk23bt14+eWXiYyMZNq0aYSGhvLuu+/e8Xu4bt06/vzzT9atW8fs2bMJDQ0lNDT0P7/3InKXDBGRu9C4cWOjQYMGqcdJSUmGt7e3ERQUlNoWHR1tAMbWrVtve50XX3zRePrpp1OPg4ODjbZt26Y5JyoqygCMSZMmpWmfNWuW4ePjk6Zt0aJFhoeHhzFixAjDy8vL+OOPP25776+++srIly+fERMTc9uvceDAgTe1nz171ihbtqzx4osvprY1bNjQeO+999KcN3fuXKNo0aK3vX9wcLBRsmRJIykpKbWtY8eORufOnW/7OSKSMRqjIyJ3rWrVqqm/d3V1pWDBglSpUiW1zd/fH4DTp0+ntn322Wd88cUXHDlyhCtXrpCQkED16tXTdb/AwMD/PKdjx44sW7aMcePGMXXqVMqVK3fbcx977DFKlixJmTJlaNmyJS1btuSpp57Cy8vrtp+TmJjI008/TYkSJdI8dtu5cyfh4eFpenCSk5O5evUq8fHxt73mgw8+iKura+px0aJF2bt3739+nSJyd/ToSkTumpubW5pjm82Wps1mswHmIyuARYsW8corr9CrVy/WrFlDREQEPXv2JCEhIV338/b2/s9z4uPj2blzJ66urhw4cOCO5+bNm5ddu3axYMECihYtyltvvUW1atW4ePHibT+nX79+HD16lMWLF5Mr143/I6akpPD2228TERGR+rF3714OHDiAp6fnba93q+/h9e+XiGQe9eiIiN1t2rSJ+vXr8+KLL6a2/fnnn2nOcXd3Jzk5OcP3GDJkCC4uLnz33Xc8/vjjPPHEEzRr1uy25+fKlYtHH32URx99lFGjRuHr68tPP/1E+/btbzp3woQJhIWFsXXrVgoWLJjmtZo1a/LHH39w//33Z7h2EbEfBR0Rsbv777+fOXPmsHr1akqXLs3cuXMJDw+ndOnSqeeUKlWK1atX88cff1CwYEF8fHzSff2VK1cyc+ZMtm7dSs2aNRk+fDjBwcH8+uuv5M+f/6bzv/32Ww4dOkSjRo3Inz8/q1atIiUlhfLly9907g8//MCwYcMICQnBz8+PkydPApA7d258fHx46623aN26NQEBAXTs2BEXFxd+/fVX9u7dy9ixYzPw3RKRzKRHVyJid3379qV9+/Z07tyZunXrcu7cuTS9OwDPPfcc5cuXJzAwkEKFCrF58+Z0XfvMmTP07t2b0aNHU7NmTQBGjRpFsWLF6Nu37y0/x9fXl6VLl9KsWTMqVqzIZ599xoIFC3jwwQdvOvfnn38mOTmZvn37UrRo0dSPgQMHAtCiRQu+/fZb1q5dS+3atXnooYeYMGECJUuWvJtvkYjYiVZGFhEREYelHh0RERFxWAo6IiIi4rAUdERERMRhKeiIiIiIw1LQEREREYeloCMiIiIOS0FHREREHJaCjoiIiDgsBR0RERFxWAo6IiIi4rAUdERERMRh/T8eFQOmFfgfbgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'time for LU solve')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglog(n, ts*1e9, \"bo-\")\n", + "loglog(n, n.^2, \"k--\")\n", + "xlabel(\"matrix size n\")\n", + "ylabel(\"time (ns)\")\n", + "legend([\"time\", L\"n^2\"])\n", + "title(\"time for LU solve\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, it's pretty close to the $n^2$ growth! The key point is that, unless you have many ($\\gtrsim n$) right-hand sides, most of the effort is spent in Gaussian elimination (finding L and U), *not* in the back/forward-substitution to solve $LUx=b$.\n", + "\n", + "If we believe this scaling, how long would it take for my laptop to solve a $10^6 \\times 10^6$ system of equations?" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.121252792, 2000)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t[end], n[end] # the last measured time and n for LU factorization" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.5156599e7" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "secs = t[end] * (1e6/n[end])^3 # this many seconds" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "25 weeks, 10 hours, 9 minutes, 59 seconds" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# convert to a human time period\n", + "using Dates\n", + "Dates.canonicalize(Dates.CompoundPeriod(Dates.Second(round(Int,secs))))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In fact, we **usually run out of memory before we run out of time:**" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8000.0 GB for a 10⁶×10⁶ matrix\n" + ] + } + ], + "source": [ + "println((1e6)^2 * sizeof(Float64) / 10^9, \" GB for a 10⁶×10⁶ matrix\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "In practice, people do *regularly* solve problems this large, and even larger, but they can do so because real matrices that big almost always have some **special structure** that allows you to solve them more quickly and store them more compactly. For example, a common special structure is [sparsity](https://en.wikipedia.org/wiki/Sparse_matrix): matrices whose entries are *mostly zero*. We will learn some basic ways to take advantage of this later in 18.06, and sparse-matrix methods are covered more extensively in 18.335." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Compressing an Image with the svd.ipynb b/notes/Compressing an Image with the svd.ipynb new file mode 100644 index 00000000..2ff9ed78 --- /dev/null +++ b/notes/Compressing an Image with the svd.ipynb @@ -0,0 +1,1462 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m registry at `~/.julia/registries/General`\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m git-repo `https://github.com/JuliaRegistries/General.git`\n", + "\u001b[2K\u001b[?25h[1mFetching:\u001b[22m\u001b[39m [========================================>] 99.9 %0.0 %\u001b[36m\u001b[1mFetching:\u001b[22m\u001b[39m [======> ] 13.2 %> ] 25.6 %\u001b[36m\u001b[1mFetching:\u001b[22m\u001b[39m [================> ] 38.1 % ] 56.8 % [============================> ] 69.3 % ] 87.5 %\u001b[32m\u001b[1m Resolving\u001b[22m\u001b[39m package versions...\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m CatIndices ──────────────── v0.2.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m CoordinateTransformations ─ v0.5.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m MKL_jll ─────────────────── v2019.0.117+2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m RangeArrays ─────────────── v0.3.2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m FFTViews ────────────────── v0.3.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Images ──────────────────── v0.22.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageQualityIndexes ─────── v0.1.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m StatsBase ───────────────── v0.32.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m CustomUnitRanges ────────── v1.0.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m AxisAlgorithms ──────────── v1.0.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m MappedArrays ────────────── v0.2.2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m SimpleTraits ────────────── v0.9.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ComputationalResources ──── v0.3.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageMorphology ─────────── v0.2.5\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageAxes ───────────────── v0.6.4\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m PaddedViews ─────────────── v0.5.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageTransformations ────── v0.8.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Graphics ────────────────── v1.0.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m IntervalSets ────────────── v0.4.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ColorVectorSpace ────────── v0.8.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m FFTW_jll ────────────────── v3.3.9+4\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ZeroMQ_jll ──────────────── v4.3.2+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m WoodburyMatrices ────────── v0.5.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m OpenSpecFun_jll ─────────── v0.5.3+1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m TiledIteration ──────────── v0.2.4\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageFiltering ──────────── v0.6.11\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m AbstractFFTs ────────────── v0.5.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Interpolations ──────────── v0.12.5\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageShow ───────────────── v0.2.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageMetadata ───────────── v0.9.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m EllipsisNotation ────────── v0.4.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m FileIO ──────────────────── v1.2.2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m IntelOpenMP_jll ─────────── v2018.0.3+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageCore ───────────────── v0.8.11\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m SpecialFunctions ────────── v0.10.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m AxisArrays ──────────────── v0.4.2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m IdentityRanges ──────────── v0.3.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m OffsetArrays ────────────── v1.0.2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Ratios ──────────────────── v0.4.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m FFTW ────────────────────── v1.2.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Rotations ───────────────── v0.13.0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageContrastAdjustment ─── v0.3.3\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Conda ───────────────────── v1.4.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m IndirectArrays ──────────── v0.5.1\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageDistances ──────────── v0.2.7\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/.julia/environments/v1.3/Project.toml`\n", + " \u001b[90m [916415d5]\u001b[39m\u001b[92m + Images v0.22.0\u001b[39m\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/.julia/environments/v1.3/Manifest.toml`\n", + " \u001b[90m [621f4979]\u001b[39m\u001b[92m + AbstractFFTs v0.5.0\u001b[39m\n", + " \u001b[90m [13072b0f]\u001b[39m\u001b[92m + AxisAlgorithms v1.0.0\u001b[39m\n", + " \u001b[90m [39de3d68]\u001b[39m\u001b[92m + AxisArrays v0.4.2\u001b[39m\n", + " \u001b[90m [aafaddc9]\u001b[39m\u001b[92m + CatIndices v0.2.1\u001b[39m\n", + " \u001b[90m [c3611d14]\u001b[39m\u001b[92m + ColorVectorSpace v0.8.3\u001b[39m\n", + " \u001b[90m [ed09eef8]\u001b[39m\u001b[92m + ComputationalResources v0.3.1\u001b[39m\n", + " \u001b[90m [8f4d0f93]\u001b[39m\u001b[93m ↑ Conda v1.3.0 ⇒ v1.4.1\u001b[39m\n", + " \u001b[90m [150eb455]\u001b[39m\u001b[92m + CoordinateTransformations v0.5.0\u001b[39m\n", + " \u001b[90m [dc8bdbbb]\u001b[39m\u001b[92m + CustomUnitRanges v1.0.0\u001b[39m\n", + " \u001b[90m [b4f34e82]\u001b[39m\u001b[92m + Distances v0.8.2\u001b[39m\n", + " \u001b[90m [da5c29d0]\u001b[39m\u001b[92m + EllipsisNotation v0.4.0\u001b[39m\n", + " \u001b[90m [4f61f5a4]\u001b[39m\u001b[92m + FFTViews v0.3.1\u001b[39m\n", + " \u001b[90m [7a1cc6ca]\u001b[39m\u001b[92m + FFTW v1.2.0\u001b[39m\n", + " \u001b[90m [f5851436]\u001b[39m\u001b[92m + FFTW_jll v3.3.9+4\u001b[39m\n", + " \u001b[90m [5789e2e9]\u001b[39m\u001b[92m + FileIO v1.2.2\u001b[39m\n", + " \u001b[90m [a2bd30eb]\u001b[39m\u001b[92m + Graphics v1.0.1\u001b[39m\n", + " \u001b[90m [bbac6d45]\u001b[39m\u001b[92m + IdentityRanges v0.3.1\u001b[39m\n", + " \u001b[90m [2803e5a7]\u001b[39m\u001b[92m + ImageAxes v0.6.4\u001b[39m\n", + " \u001b[90m [f332f351]\u001b[39m\u001b[92m + ImageContrastAdjustment v0.3.3\u001b[39m\n", + " \u001b[90m [a09fc81d]\u001b[39m\u001b[92m + ImageCore v0.8.11\u001b[39m\n", + " \u001b[90m [51556ac3]\u001b[39m\u001b[92m + ImageDistances v0.2.7\u001b[39m\n", + " \u001b[90m [6a3955dd]\u001b[39m\u001b[92m + ImageFiltering v0.6.11\u001b[39m\n", + " \u001b[90m [bc367c6b]\u001b[39m\u001b[92m + ImageMetadata v0.9.0\u001b[39m\n", + " \u001b[90m [787d08f9]\u001b[39m\u001b[92m + ImageMorphology v0.2.5\u001b[39m\n", + " \u001b[90m [2996bd0c]\u001b[39m\u001b[92m + ImageQualityIndexes v0.1.3\u001b[39m\n", + " \u001b[90m [4e3cecfd]\u001b[39m\u001b[92m + ImageShow v0.2.3\u001b[39m\n", + " \u001b[90m [02fcd773]\u001b[39m\u001b[92m + ImageTransformations v0.8.3\u001b[39m\n", + " \u001b[90m [916415d5]\u001b[39m\u001b[92m + Images v0.22.0\u001b[39m\n", + " \u001b[90m [9b13fd28]\u001b[39m\u001b[92m + IndirectArrays v0.5.1\u001b[39m\n", + " \u001b[90m [1d5cc7b8]\u001b[39m\u001b[92m + IntelOpenMP_jll v2018.0.3+0\u001b[39m\n", + " \u001b[90m [a98d9a8b]\u001b[39m\u001b[92m + Interpolations v0.12.5\u001b[39m\n", + " \u001b[90m [8197267c]\u001b[39m\u001b[92m + IntervalSets v0.4.0\u001b[39m\n", + " \u001b[90m [c8e1da08]\u001b[39m\u001b[92m + IterTools v1.3.0\u001b[39m\n", + " \u001b[90m [856f044c]\u001b[39m\u001b[92m + MKL_jll v2019.0.117+2\u001b[39m\n", + " \u001b[90m [dbb5928d]\u001b[39m\u001b[92m + MappedArrays v0.2.2\u001b[39m\n", + " \u001b[90m [6fe1bfb0]\u001b[39m\u001b[92m + OffsetArrays v1.0.2\u001b[39m\n", + " \u001b[90m [efe28fd5]\u001b[39m\u001b[92m + OpenSpecFun_jll v0.5.3+1\u001b[39m\n", + " \u001b[90m [5432bcbf]\u001b[39m\u001b[92m + PaddedViews v0.5.1\u001b[39m\n", + " \u001b[90m [d96e819e]\u001b[39m\u001b[92m + Parameters v0.12.0\u001b[39m\n", + " \u001b[90m [b3c3ace0]\u001b[39m\u001b[92m + RangeArrays v0.3.2\u001b[39m\n", + " \u001b[90m [c84ed2f1]\u001b[39m\u001b[92m + Ratios v0.4.0\u001b[39m\n", + " \u001b[90m [6038ab10]\u001b[39m\u001b[92m + Rotations v0.13.0\u001b[39m\n", + " \u001b[90m [699a6c99]\u001b[39m\u001b[92m + SimpleTraits v0.9.1\u001b[39m\n", + " \u001b[90m [276daf66]\u001b[39m\u001b[92m + SpecialFunctions v0.10.0\u001b[39m\n", + " \u001b[90m [2913bbd2]\u001b[39m\u001b[93m ↑ StatsBase v0.32.0 ⇒ v0.32.1\u001b[39m\n", + " \u001b[90m [06e1c1a7]\u001b[39m\u001b[92m + TiledIteration v0.2.4\u001b[39m\n", + " \u001b[90m [efce3f68]\u001b[39m\u001b[92m + WoodburyMatrices v0.5.0\u001b[39m\n", + " \u001b[90m [8f1865be]\u001b[39m\u001b[93m ↑ ZeroMQ_jll v4.3.1+0 ⇒ v4.3.2+0\u001b[39m\n", + "\u001b[32m\u001b[1m Building\u001b[22m\u001b[39m FFTW ─→ `~/.julia/packages/FFTW/qqcBj/deps/build.log`\n", + "\u001b[32m\u001b[1m Building\u001b[22m\u001b[39m Conda → `~/.julia/packages/Conda/3rPhK/deps/build.log`\n", + "\u001b[32m\u001b[1m Resolving\u001b[22m\u001b[39m package versions...\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Zlib_jll ──────── v1.2.11+8\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Libtiff_jll ───── v4.0.10+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m Zstd_jll ──────── v1.4.4+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m JpegTurbo_jll ─── v2.0.1+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m libpng_jll ────── v1.6.37+2\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageMagick_jll ─ v6.9.10-12+0\n", + "\u001b[32m\u001b[1m Installed\u001b[22m\u001b[39m ImageMagick ───── v1.1.2\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/.julia/environments/v1.3/Project.toml`\n", + " \u001b[90m [6218d12a]\u001b[39m\u001b[92m + ImageMagick v1.1.2\u001b[39m\n", + "\u001b[32m\u001b[1m Updating\u001b[22m\u001b[39m `~/.julia/environments/v1.3/Manifest.toml`\n", + " \u001b[90m [6218d12a]\u001b[39m\u001b[92m + ImageMagick v1.1.2\u001b[39m\n", + " \u001b[90m [c73af94c]\u001b[39m\u001b[92m + ImageMagick_jll v6.9.10-12+0\u001b[39m\n", + " \u001b[90m [aacddb02]\u001b[39m\u001b[92m + JpegTurbo_jll v2.0.1+0\u001b[39m\n", + " \u001b[90m [89763e89]\u001b[39m\u001b[92m + Libtiff_jll v4.0.10+0\u001b[39m\n", + " \u001b[90m [83775a58]\u001b[39m\u001b[92m + Zlib_jll v1.2.11+8\u001b[39m\n", + " \u001b[90m [3161d3a3]\u001b[39m\u001b[92m + Zstd_jll v1.4.4+0\u001b[39m\n", + " \u001b[90m [b53b4c65]\u001b[39m\u001b[92m + libpng_jll v1.6.37+2\u001b[39m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Info: Precompiling Images [916415d5-f1e6-5110-898d-aaa5f9f070e0]\n", + "└ @ Base loading.jl:1273\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\n", + " For troubleshooting, please see \n", + " the WebIO/IJulia documentation.\n", + " \n", + "

    \n" + ], + "text/plain": [ + "HTML{String}(\"\\n\\n Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\\n For troubleshooting, please see \\n the WebIO/IJulia documentation.\\n \\n

    \\n\")" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Helpful packages for working with images and factorizations\n", + " using Pkg; Pkg.add(\"Images\")\n", + "using Pkg; Pkg.add(\"ImageMagick\") # And this allows us to load JPEG-encoded images\n", + "using Images, LinearAlgebra, Interact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using an SVD to compress an image\n", + "We take a matrix $A$ and factorize it so that\n", + "\n", + "$$A = USV^T$$\n", + "\n", + "where matrices $U$ and $V$ are orthogonal and hold our singular vectors. Matrix $S$ is diagonal and stores our singular values in decreasing order from top/left to bottom/right." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"strang.jpg\"" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strang = download(\"https://ocw.mit.edu/faculty/gilbert-strang/strang-blue.jpg\",\"strang.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"cb.jpg\"" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cb = download(\"https://i.barkpost.com/wp-content/uploads/2015/01/corgi2.jpg?q=70&fit=crop&crop=entropy&w=808&h=500\",\"cb.jpg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAAGrCAIAAAA+cdm8AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42kz92Y5sS5IliMmkqnswMx/OcMeIyIiormSNINkFNuqJAAn+C/kd/DaCD+QDwe4mesihIjPiTuf4ZGZ7UFUZ+GDnRqXC4XCHw9x9b1PdIrJkrSX4f/+//V/DTPfm22ZbjdagGwac/Odr2y91M7DjON2nMnWAvR1eNodw9trXbb0I2HEccpLnzR757oh3e8Oztph4HACsvfMDzcOV+y/b5dwWIhpSLsK2gmpX7yGAKZvDutu61w06AXrXte6rWmVYCGrArgJCu8OifQfsRB2wexBoADhAAAYQIjsQAOyhAICASIGIAQAAgJ7chiHfHefjPI1DKgmFERFBjuOQ51ISQgrLGIVJkNp9TZyZMoAgUC7pcBimeRjmwzzPH969LylnkcTS6+bu6Pm6rPu+X9bt6fn5+e38+enp8+fnt6fPTtwctl2bOmMgKJiNBE4pSLrz3lStZeahpJ+VP/3wk7f67nC8L8P9NH3/8euvPrz77n3sXZe9/vzy9nc//PKnX15qpHw4ff78S68dAhhgTHw3Hz+8e7y/vx+Al209X66fXp9fLhdA4Zy6aQNlJEQcxjyPU+89TMdxPB6GIilhQg+z6G7Lvq91f7vqXitSJOsfWP44Db8h/pBynk9Lu55R/9L3p0zvfnv/v/8PX/8f/uPvPn744AYvr8v/+g8//r//v3//Dz++ve7086czNtrXbUS8H4fHMs5I2PqY0/f/9rs//G/+5uPvv2kpfnhb/v6ny59/Xq4rpcOH+e5YEV+3c4QL9qgrant3dz/PZRwken/79PTD3/+Xz3/+xdf+vF0fDsPvvvnqm8fDV1/dHU4DTfAPf/r7/8f/+Llt9d3x4Sglef3u/eH3v3n3zcdT/puvhjTrzj/+5fWHH88vr/qy2HXZl7pN93m+iw+P/IfvHuaH8cf99S/Xl4n398fjN9PdDOK7vr1tL9d9UdXrh5fz5dOnt+eX8/PzK5hPWdbLtUZJhOHNVAlwPN6PxzvKpeM3md3aJdqZuTNaUAzTeJfq8X7++N27cho6otN43fynX176BtHWU/IJVXs9He+bwXA4yR/+2//salb3fd3aulndUR0BtK+zdrDdIY7D8Dgd72RIHuqXvW2177Fd9fJS93VTtV7LD08/nevL9modF+spjZZGNj5HT8YdgAylortFUSg8n0qzUA0HQ3T1QIeM8pUNbtZ73dx2B2WKJJCY57GbLrWdG2xmHUmJLGIdJnXopl2tqVc3c3P3mUnNFCAchAiIzd3MmDijZC7DMI1TziURAQBggFAgGiciJCAHRkxCoO7BRNM4T9N0OBzu7g+HwzQd5ixpnmdwBw8wb1vvvb+9/uX19e3p+fXp5fWnXz6fL2tVa62d3zZgMRB1dAgnYBAEckIHMUogiTl8l+7q1V8vl25tyDIMw1CGaRhKYgmEGAgcUAAs4hK2tR4a2r2jgACOKU+pDGkgI1t187pu67osrWoAWHjXbuEAgYKlFBGutbbWxpLHcXQ3dw8KBAAA/3WZdQjDIEZKjIJEgIhARACgqrX23aPuTbu7g6q6gaqamZm5uzuYGRFzEiEOgEBA4VDdW91qa13NLJKICCL2bvveZI5A5iRig2qL8KDkaBEBQBaACCmllBIRkQgTmPmyLNcBj1susxSQnIfE2NTaXltGpNjdl95e93Zcu0ndL/789PbyfF02qDV67yIJAHtvfffW2mQpSQyFPNADDQEQAYAQBWnA1Acae5rmvLdxuaw9GoIwsnZlYWEWpNv9bK0RoFJlwmHIaTgh1lq3va7b85tnBvLDA2EpysjDgQVF4vz2z6j7FfpWF29V7/qy9/G4ymenQPQ89aBKAuNMDCIyDkcPy612ayqpz7OXmTgl2K2uZH2CeGgbtx57rcv1+nf/n+s//bS9XVPgIFIOdylPurRPy1kIJTCggFVXdSJP8rSdEQwpGEEICvGAFCVrCCMVZkZSt71t1dUiaN8swFOKYVSkarFb7xY/ugKAMnUCT6KIChERe22NwAMpl1QGBVq2uu5bkBxyeXc8vP/w7vRwV8YcFBau51cAz1mGMRNFtxZEUOggB6Y8zXcPD+8fHh4Op3mep2HIObGrAUDd+77v27p+/vS8r+unT//49PTy6fPz8+vl9W3dmyMwsuxrBBMIEucAUDVHEITzXh08UgCjOuw16rartqsuOfFhmg7jcCzDcRqPZSgie8WuuK7xetHr1fcdandoLQSIITGXlAcs5Ngu6svCYlvdr5e19cbEBtBNgVCIIgIRCXBvNdRklpyz9i0i3D08ere97tu2bXU3i4Ag8ISQkBPCLa0hQAwI89ba3mHbaq1q3QkFGflfLCJGxF07E3qi7t7DIXF02vp+WbZ1166QJE8jj3nDALcvC3MSHgLIDQPdXR3QAt1AkFLJIoIYTlEkhdq6rsuUdrXulkCGYfjq7v7nvbu2HSkSnZv+eFmrwN0POfO4XfTHHz9/+rR1S5vxtvfp7ggBqlBr7bWB5yxesm6dFUIxghBJEvFIQhiKTdiSoBC6e987Ee7NA9DdgVFEzKz37lQzCxWIMCIQSa6KiAHUWr1qKgfZW8YqRsyYaqetCrtkHmKry3kJ7Yjp7Vq1k6zagCggGkfLGAGcU0oJUNWto0YgF+ZjobmgJG6nMlS6ZZge2Z22Wpf1c8I8/EO8vIyDpOOh3L9TK08/n//0d/99O5/pWnM1XTdVFVNxV+4lYREqTMlJghmFgTSLhgVCYQwHUipIBEhydA8UTnkI5K3uy7ZX7x+nwSMcogd08G6m4BEhw11Vq2aO5CRbs2u3CzhQHVHeRb+zfVLBWpv3bnokUDcOnCRBwq0jUHCm+4fH0+nh/vHj6Xg3zoc0pAhfrXnTZVnq3t/e3i6X5e3l7YcffrhclpfnH1/eztfLFiAORQmbhneQQOsIgRQcEb01CEuERnELJOCxN12vdVt31T7fpcM0vz8c5pQL85A5CQlabW1p+ny+fnp5eVuu6ioMyCZHTCCZyoiFjbCzaTdXLLbttfbuAJJKjwYdgEIktdZ6awiCHinnIRcMSCkRoJt7131v67Yu67p1CyQCZ0cBSO4YAGDu6rdSBREcu0fbWt3atraIQCQiQURERmBEBCDVqg4cjggd3BBQiHPa97ptVVufWI6H8XTY5/J6wWautVYkNCDAxERKrqHaQdUIkFOklDgnh+i9Z0wRrandjpkhRiCLTAIZrCtRoTzMIfltt+358vLWhzzqHs9Pl+tVA4cOSa1BkLtDB2vh3d06cBVUIung5uDCSMEohRG0b2Q5xTDKNJahJN99kAENu+4R4R4OqKrNraTCzEFm1rtjclAzAGEqgNbNmnptHWrtiAxp77Tu1QNFcnc410Zuvrfn61I5yZ/+l/+RhJHJwDwCBVPJpRSRbGYWLkJTJpSAFJGiDWxWEqMSQXcwS6PQlO79e19bS5ILDl9/mL//m0VTO/zc4e3H/+Ufzi+vpWr0vfXWO+jVkyVBzAIZIyEUSAOXxGmmbmaMMCQZExWkQdKYRadkrZk7hjPhmKTwhIjUGyIGgoNZhENEhEG0bW8GTaO5BrgTwzxZjDVdcoGC27AR0QZCDcMj3GTtFYSx7zjkBM5DPox8mqdvPr5//+Ejy+CAEb5s57fLK1V/eXl5e718/vz89nZ+ebv89NMv67K7w161aUppSHkKADNX0IIW7m7uaAAAjuDuAcQIKADYNbS21hoA5JTuxvT+7ng/HVJAQSSI2leMzqNtTd/2y6Vdq++Y+4DIguVwEkqFSo4sStjY9u7N32qt6g3CgQRRgFoAAYQ7BJiZtbj9xZwzIuZSQs30S957+wwASAEGDCEA7E7ugBZA7o6ImXNKmffaW2xr36+6rrtIVlXtbmYREQERAcxg1t2mlBDRzIRpmmcKaOtStwXtrkg6Duk4yAu5WWvr1bV7Lpgyc3LMEfu6ViLygZgoEw3DkFKqsRQqFtJ721XX2qr2YswsXldr6kaCMpSJkyz75W2pvJ+nYULn66Xue3BizJRzAkJENsNeoW5quyFBDtqRQ6ObegQjkXAicAgmF8IiMpY0DcVXKyIc+e26//Xa49f9SUTXtgrYiAOzhIuZm2NvAbhvOy1rttxcmAnUC2DfEIiwIW1ITACBlw7RTf6H/9f/k0VSSiSMgimlMpaccxy/jrCIGErRCsIjUc4ZhV4AHHNGEAsjQh5TysXPxzTf72/nClqmEz68B8xs3D//+WeAX3o7pjQfHgJBCSrosB53q9o37yuqJrecejKIdjYwYhwtTUYFMbuxwymBmYX7wKlkGXPJkrIIYEJEQUIkhkgBAQYeKZVJIiIsPCKA6JbIVWsojL3jcvVKmASzIPNuMNbeo1JVyMKM4/F0Qnvo/aHZsarv161r01qv5+3t+eWHl09Pn19e3n7+9Hw5L8va3t4uasHjPXJijbb1Hc4eqOFE4rZ3d3UEKcxMgASGHrY1QzHcqsG61d6rII453ad0n4dDSQKRAZDgWtfLYqPC83V/vmxLry1MtQd6GBx1LCkXKoUyMwf6bq7az03VtAMSgJkJ4iwEAJtqzikRqzYEQEQRmcqAKbr5Lbtm5pRSNvPeFAIBBCABZACBIEAAD3NGTCmJCEC1HnXXbWu1VkSGIMTbr2dhTpJHir0vgpRZENHNEHAYS2Jv66Ve3mw/McVEdj+kJ7Sl793VMUiEwgUTEDeUvV5JiDh5zsg0ztPxeFhez8kF0Zbm13V9uaTT4zT7kHP+9uNj3drT07ZdFuGSe7ks614X9rrmnSO1ZrUBqQkdUy5EAIFmsFu0K7QNuZRSYKxmvVt3K4CEICkYHTqjYBhEYESY9rZG2/ZtC0gAQH9dBhFhZs4NGSNM44Y1gBkCpSw1rO3blcdwEwUOdAQFzgBBmJIMHMZSWFbkLP/09//8a5GCv75nzMzp4wsBAsBQ0vr4GMsG33xzOB1TXx1BcmLmMB9IdskEeK3XrdfLrjnLKcbeYPcehITFMPHx7uN3v/ndb397//4hH6dgom1sddmW13076765GShExGVfa9+XfXnt2wVUTGHbre757UqIGIHV0g4JrxwQBolHIcjIA1MmygAEQQA5CyOxUBYSAEZH6hj9nRyJGZgssFXrNZAMBUbhqUF3dDUFNaSyXdOOOYFevP1yCc6t1+tyfn59er28/Pyn57fXy3Vtviy0a+5xqEGIl20ppaj3aJUQiAkYmDkQsGnTsFhSziUJQbgroXeLprFbOEAGmCTNRe45HVlGJCIoORHRvq8V9v3ZP5/350u97r436a0JABLQhmiB5sbdUd1it3WzbQUIQsYMERieRXJK7tbqfhiniGh1v+2wzJJzNuy3GhgAfq1dCRHDgwAycQEYhDMToxPh7bVMgEHu0Ltp1d4MEYVTSsicfgXDMCIQgAD59spu7gDIFDAm0nWp13NsCyU+Zf7qNL5Mea97UCF2IggEckvEhcQlQ2AAeYR7DMNwOB1ZiPYQSg7QtK9176qOMObhu++/WZb9/FrfXhc0mU9H3U2r0RBmJiI5i4N3b+ZbYVFrRAwGAdQrxS5gKYWMsGzatHV1ZxQnd8YeIFyEsUgbBpzHshaMrnG7OQhE+OuCG+YHzMhioa0ZIwYQk8zT3YmSxuYVvIIZgGtgkHKpGNZx09wRDTg8tcgd5elpIaLElEWYUYiFiZlz/UcKCPc31+Vw0M8/tt989/DuMe5mDcckIjkiBk6DJAzQ56f+/KTn68N81ArXl+V5W5e12mq2K0KaTg/vv/vu/XffnB5PmKTIXdfd+uJRIQz8Fl+hrLn2/VovW1sIrITbvvVleWogSNBaWzffK3aL3nptvl45AN2xa2/NWovewAzdIhpWFVQBY/BwAIN5hTKOZRqJk7o1dQtHoIdj5giWhB06QHNNrWKlqpfzDy9295jGeevt8+dPP3764e3yup5RtzZQYuNjJCPcqIvkn/s2MStFAxsOpYwSYRa+yrBWlbVuvafEU0kIYd2Hkra9RRgiAUnO+TgO41TmlAYiBiTCnDMJdhDGvL+2dYVlhdqTOQMEQReC5MJKEd5QAyEiWtQOTSkjSWISN7Q2SJpLtt7PbsMwtNbMgQkS8S1COODtAOOviZ+qtu6OQABEUIASS2ZJ2H99icOtcglAM3e4xe8vP3Vvre37vlXatg2A3ALBHdQZPAAY0Twxaqu6b6CNoh9KeXd3eDzOP21vCXNODJm7B4IDRBYKGiWBCCOCg4tIzhkAwpyTiBAQByDwr5lX3W8XhQ5CaUojeYiDTK2k4TAemNKytaVWF86FrtuesFAQUSbIEAOagQEHowWYR4QjAGEg9HDdrFd1g5LSPI/7YfLW0HpzEQTEL3gcfMECoPY9yxAMEcycRaInEszJolfTCtZuCWVCSYIZrXpVqkEN3aAgjsZjJ1n9hRGdsnMiwLDw7mCOF5TERJAyquz958u5/vjw9DAc7rYkWxlSmrnTYHg4DhbqC2wvW1g6tO3HP//PD/tDt/zLp/Uff/lhTzh987hP9uxXbtfrUx+GYR6aW08YhKZuxImnYg71oPvKB/743XiURtCcHcNgjyXnTAxdtWq1cDNVVVsu2muru26b981q9VatN1irdU0I7NC3FVTJre/1c3dvHevOvU0QBR21g/afYBBm8MVbJ7dRsqQMCC9/3qbD3A4/NdPLVntwUZ63dGLOp0egcWm2eNcSNfXV1v+4H6rpGm6cZZQ8FPBobf94uG+m53l7q/u17QY95WE+zsnyh8dpWy6fPn0Sssf7cjjMmYWPghgsPpQpo6DS5AeJfJUGDBlicAX3zsjTwHNmGokZmDGwd9u1NR9cMsYWiFsYIUx55jRPPA7McDxHxG5LTmThm1bn2KHLPkNHllHDz+fzebFd2QEypYTmSaEAZA9WNkSL494vQp5LGtq0X0O9bb71Q3vpkbXWi4VGjNeX19otB2qQsGwIyELMra3AcDQkOw4y6RmWT40F+AhppHLv8ZTP64qSA3A8PWLEkIWAWzcxw4qcs3HsoZhkzoMty76u0zQgBDR9/emn2fd3v/tO5uF04uN7WALe2p4A54f7+rYJHHIehsOcSuap0ipugoFK0C/XYxYSvGzXa5W7lqeU9sSrxCWuFPQ43w2S0t6H2N8I50MGsLXbxNOFpsUgaIRou2pOQx4GB+qtsjWyjq7Wwnk2TrtaOAyZCQH7gtYsWJUdkgcRAmUq0tMO2dO1p/mr96+6YotNP0tKBQDMKapHhKvd6h+MgL2ZWcoEISJpW41pX859naZrcU3UG4HScKUGCm+vA5aTDEvdPv/wy/jpiXDcFohO5Mkd6+qvL1fhl5yzlPxJgyCKgDC4KyCD5ACaEre9bYh7vsqXLUlEdGkLN0YMQmTmzJwkp5I7mnTJQ+G7u3xrbwRgxKtfKWAoqTBFb+SGEaa6r+HavNWoFVr1utu2WWtp9TDtrbVl89a6R9Xuqgj587raunTV2g25CBcLelemNIyIxcG0h6CXxMdp5AmrKWvdvWESYgoKjoxhJcvDfDf6fG2t9Q5AjFQESvHEgjgJ0TjikDUlrBqEEQhGtXsAoHULU5Fr5muiaxI1cMlQjmk6+B3miDCPrsrgHE7uYTYQqVvtPQCgMAmGQA9nwCAkQ7LIOc95KGmY8rRmb9hrrb33jdfKm4U6hXUiNEdzCQwEEEe44YUAwICMlJhbWGtt2zbEY0S4hZndIvDeo3fTcEQGwt5td5MIEqEke+0ZqN8eymYMwIyl5JxaMjJwUAftAIxJmBIABQYiIGI3DYRhno739y/P11uq2vd2sf04Ehj0qkdJd6WMRKyQrKdmKUWBsFAk8FDEdDhMiHxdqzCdhmw7DAQEpqbNUgCwJNNwB9NQ9aY2QCLmVLJ0QiAiY0YUBCYDr9qzJPTIQom5Y9ANvO/t7iAEgb0RSikDU3JHd7caREQkfsO7wiAsDHORYpC6rgw3cJEAJSVJMvXe695vFS8AESAx5yQREV6t+77FliFxJIGS5qDHXu6X8nAh3jtQGRoF7nhKx5WZLp/89ZPUJStbpUBfljqOw8L7z/rp8rYyI4DvCoPQIJgZmBGRg5k4HUCIGSmAiYSAiBhYRAGtd3cXYiEWohu7SsDMzDUycZEySBZkDNzuBiagMmAWhBAEYUweBzrcMNUIB1ez7tbN7F0l69r2ve2bt+6ttb3WWrnuy3Jpvbr7vtW69uXaLufN2j4AJnI3MHQASMAieZfAYDIUFydEQYggJECXnKZpuh+zITXV1lpohL2JQAz5dLiPCAwHUOYAL8zBaOTdwwEoAhBd7DzQdR52KTExmAAXY7Z304fadNuqm5ICdo3WrNtxHnZT046ImYEzQkb1IBcHU9UIPBwOd3f3pRRmJl8h1tAtVFFXsQ4KbkAAEMYBHCFIQshIAGCqAIwIGTkjd7e21329mr27IdiIHBGtatNwAPyyzcAizMEJJQ8p59YU7Qt5Y+q9hCXikuUwJwXfwMy71cokjoyIv0JB1D126wJYpmk63X2GvwRB5tT3um5h984oESQQ85DmkgZuHpxR2WHmWJhSYsQQhsNxZGYAF84OsZuCQ9MmFk1bDxk8CJGQNWDfvYl3cibkzGIQHoghicqQyphl5xt1JSK+IAXMTHjDFL49HWo3c2DEjBzEXWHfegIMzhbYe3eIxCNad1MKTxwiRES919o2ABARQS7eI9wMgIAQ0SIiwN2JCCghxrZ77eemJPkwPv5u+PDd9O5rnR93TV0V5kRoevnYsbxd17rv22r8/DSsjRuWUsKBkcDj/HIGMo++bRdPx0TBXjlsECa6QRusTsfjUYS6V2YEBhEaxvJueN9ac4g8DqnkcOhuAJAYwJECGUWwZM5ZMnNqT09ElDJnZmIQwpQSMZRYmRkTBqJRBHoIMXMbC40Ah5HwkQEYcQ6YwsYdVBuhIeK+7J9+/vz3/+ufXv7hT//llz8XWjLxnNJhmhMzRRfFRmgIKtSNAsMBEdEJmbH3ul8Ve5JhSCnlacKAtvWUEhFEhJuqqnf10CEJkhARgIdHOAIxMRzHoeR8f2/K5EINrIWp9ykZWFNozZXc2Bxade8HEAwFdIcQb+F7dY+IFgEANSwSDnfH8f4Iwqu2VHXYnCqEctJSzNRUASoSAUlYAsrIiYURiW4QGSAAuWWAChDWrWvv2pvdWiaE8mUTAzjgDdpJwggWACFEpaBhINTW1m27az0ihGlIcn8Yundr1kxjrybRgxExHE29EYh6cweSxAJMwaSqzDzm0erFe4RLOF/6FUvKc8njqsooYaEgtu2GV58sEwdS9GahVU2Xlfa1E3CoqtLp6uO5I8bwMA15Vt16923vQ5IRkTLBFmaVAHIu4zwe76am9bpetks1B+63d5lERBIxs7SdAJ0LYrirO7tDEAMWt+hq23JNuSDTDZJofR2ckVwoaut12x0cI2RdrwCAQgwIAAgQARHerYNB4jQMo1lf1kW7Jcnym5OMH/a7b/rxgwWhtxgDudfTkGGI59fr0z+3MFhf7XwZWxy//lbd++Zt5cty9mgsvixvPD2GVmh7spYI6AuSDq9lOM4jQZi2seShsCBkSZ/2f9x7cyKZBh5HY+7hgeC9pZQyZ8LMyAlLKWNJOfMiIpyImZgxKIiIGCaYiRmFnFEJMEkeSioSYcwsjIyEBIJUUs5F8o4iVFIm8FZinU/ncfw54k+1D6lPiCcp75mnnJk5SyTJitHMNwsPkwAGBKKcS637+XpZnqoRzMN8OBzGMlAUZmESgIhojBHctVZBx7g1Y8McNIBQEFFgSAkTRQhhEmS6MUmLqgv3xK7BgAQWjlIxa2PwRNAsYF9q9JbFIjakaZp4YCLOU8IUTqrauGE0ii7gSAGMxAxiVrFJoACIO7ljGKAEIQgAEbqhR0ISAPKIMP2yvDftvbsDADEjRmquEMgph7Zmvart2gfAAGytr+vaWiWAnHgc8mlqy+rbrgHSghA5yICZUwZTC+8WwAJCZtCJLPPatkGtSEKE5Vpf35b5cJCpQaaYSx9lu5rrmqEn0VZDtREfhp6v50uoqXrd274eIbKUo7Ora6uj9QEjE3KSAdXqrhVDCZ0wDUmu1bojYkpSPMbDNPY9X3PerVYN1zAHN/BwtQ77y+dtmo/jcQCh6mpBKQ3DNLdlVezb9dxaGyYVYSgeYEyREBNTSlyj994DoVUVh42YwVxVAYBFAMG63rrwQZDHueT7tCR3t7BLXzO0BeJCVkV2QBndxSHNrZMXmt6dvv03f3P/oZef/sKv1zq1y3lfV2+Vrss1sQwP4zQOl3WV0GPiwzSKdTD37qvBW6ZdO3gIQDh5w6W213ZVKE29efjbGikZkwIGgFDI7aQChGNEEIkQm9eck+TEmSVzB+3WAOD9eEdJRAQQkYlTGaZxGAayyswiQgQIQATjOE7TtD3tOUvKpLrXWve1/tPryz9dzz8D3CdSRsOOsK0ROfLEeWbqbnv45g4YQERCGFwhaBhLksrLvmxPb+fLUsdcchrTrd+CCK7MDG61mkgPwNsG7eoGCMhEpM0RI0DRLaU0jnNJowRDDsEyZiCUZC5Fy8Ctd18aERtBrbVqdKu61w6gCHmQD/NAjEMot41zymBrt0uva21msTVTN5KEqcS+Ayg6oEV07YxNAAgdBDDA4xaBE0CYuapZmEXvvdZaa7cAAIj4NX8266pkiupbb2/LEpEHSsHWWmutqepAw2Ecx2EZOKCtzEzAxBEShJwkY3K3XSOCBYS9O+dCx7Fer5dt95K7w+u1/fTpmafhw5hzymk6grxd9602P4yAbEBjb7VV783NFTzcY79u1sYyHObpvvWo/bxu2BoRjmFNUMK5tbaR9hKYmDmN2U1VzYGdBVORMpU0pMOBAK4R4KE3Srlqa42PE5JIytmItfVdu2BQIkwDBThg086NettzwlzkNJWDM/lWsmytowMwaO/yr/72t8uyPD8/tx3ev3/4m9/8dhzHfd/B8XK5XK9LznmeDvcPU2tNJHv7yft964fNci1hAjAxlIwrI5hk+Pa7d//xD//u9/0h//Pf9x9//B9eXz7/0l6etOUEUVjk8XSsjc9vn6ax/OG7r759vPPtouu6r9vLy9smg6p6OKLszTtzQN4DegJMKQJN3TVudKZwTIXNwLEREVKYWe+t964dOSegAEEZs2FsbQuAX+QzMwslAggD8MgsQmlgRcSUUi5JRETodoCvVxchSrH3bW+1an96fvvpetYASoUyIAOPBVNqFtZ77RYI1VTDEDBcewVXa9UxC+dEeU7Otm3L1s6XNefzjS0zjoUBWZCZAcI6uEN3q+ZqYR7OjIhrq0mQvFtdU2BN88BjGJ7e3zuEGyMCkefCUmACARICRPNWUlet4DtYdQuD98QpsUPIXgtCMd/3fdEeupjt1WDV1g0QM3HKEAQoEBTg2q2jIRhIB7+lx4JUWLiDdt33fVmW6W4IR0QWkSwcLs0bIgMgALamGD0zOcJ1W9m9FBHOAFBr3bdF5pyE7g75JQFZNU8ejLk7CZAgI6esutfaUQSZkGA4HIfHB3h+WbsCQAdwg2vTa+0fes7TcD/f3w9vr16xey6pBAqP21afPr/2rY6Fc0qh0fZa6ysEyTBv1dd2TgNfrvvxrI93M2EGkFqDyZuqCmTClBn3ChAA7hgoKJllkHGTHVc1DTWCECQPj7BIU0dpHuq9amtdDQywB40gWfIgrbm79SpUHo6H00HGHeyy3zp2AMBEESH//j/87Y8//gjYs6T//J//8//l//R//u677/Z9//M//fmnn375u7/7u59/+qSqvdu6Qu899j/7ft/2w1bHnhlSgTxgSbSuKfHxMLyHw3en+BvfjvI+Dr58lmksh0PXOj09r733cShd17t5+vrd3b/91//6D9+8X55+vjw9Xc5n9v5zo02tme+q1Y3LfP/hw+OH4S+XH5IkAfYasTtoRHN1gwYehgzDkKe5iCBgV+sFDthx92booaESrgqEVXshIQ6ywObRvJkrwIq7hd1ovYgYYUSUUgK5c/Rg69F2q8DS1JrqSDzIMCU8DfR4f5elXK9rrb0ZIFOgG2C4tbW1ba/bsm7hBMGUhpJzRseq1rYGDPsOhnse71AIAJmzFLEdI8AwAkDBnMgcAmOJ/cApiaN53+Baz8t+7hVonAHAUS3UUIFChDjRdDxyAJrfpBdKsIFV7bz1gxQIt3DsnsXYa319Ow0M2IVjBwCGzcCiYSgDMTGTCzoBBHggBKG2RpwxnJGEGAF6h7Zv1+v1vp+YuZQyz/M0TbZ7bZWQGNAJzBQjZMySSm9rMwKiVDKR9N63bcv7BBCHeSo5ETiauVboaqTBCh7MqGbdKycP9BQ5j8N0OvI82tvWugFAKkS5UC64+3BkGo6P091TWiNiJjmQ74fjvu/nt6p1ff84ZErgmKUMER7bXs+7BpJyBsDe9cp450QIZBa9W2/WE2gQAKKHuwN6BCCFCKXEPdTMugazM3NKdONUnrfW4VoDiJMHJqGUQBh2d+GUypBuejzXJHKc5yFD6q1Zv6H0N5qNu8v8m/r+kPHha+H5P/x3/+mr3/zxUB6/fjie5t8+3v/lbvzwP8v/78cff97IW93WbdVnrv/9n4/Pufwhv36Fln9z0PfjfnjqvyxYmbZvxunfz/p1b/Sx2+S/Mauf9aV627skRI69nq02Yfhv/7f/u//07/7txyHnD1/V16df/vKnf7ZeP9k/LtefWq3AgHK8P/6n/+N/N324+/T59e3t5eX187aesfd63pbnTRTWfkaDFAA4UJi6mjfK0XsjjIwQbrzVWSgjE8fUCQkpU7Ds7AvVHkzCIWkYBoobWyha29d6RVXpr4tHjQBEIBLbjwC/m6e794+nQR4GvJ9LM922lsbHBfS6vCS1kekg5NqXtiPZcJps2LVT61z3pJo5C0yDjC1L6bEsu6IUZgaAw+HAxjmi+VbVDboJeGA3UA99QXw4igyX7Xq97ACEyIrWP/+SMomAoXo0ljyO85jKQKKtRdOEMHFKEQJCPFzv2d0Rw8w8tBiHBhhqL18NU4dat91KucJ2rebm95CIafVNhkGmjAAZaXSeetqsluNQhtbf3ojgkCFrSLX+1Mp0oEvQvjHU1npgJg8AICPHnKSowrVGkvHu4bQg0WKue+J8PO77cecxTWmYcpqz1OuWJZs3jNyapgLNEctIHfCq3I2HSIfhfTz+oMeru40FvCk6de6f1iuOj7PdJ/5O0kXSc7PNy2YwyvHdkdq6EbX7d4/fff+xJLxcLvB6eK5v13Ruhnulty3uL+nrh3nwnMiOEp8zPwXpDogwjCFmiT1iY5LD8WCMa/fx+GjrJ7y6GzhhQHTvAQ4AUAFgMwCWLHkowyHnkYl3k7qrNSQsOeE85nFAhHVdSq1982q+1rfLh3l8c3qtm6SUjscj0pj58Pj4eH9/f5fvjuNpOJR9u5yf58d392/nl+Xza29LYrhuV+uO8zNczvbuI5gDADIQEXxhbCMAMAsxA6VWo1VsO7qlnMa9kbbNPP83f/ub3//hN99+/80DIi9lR+/L5fLwNl4vZS1ixsB5mL/99tu//du/PX394bpuLy9PP/38l9eXT31b16fLq7zUZV/O1fYWHrU27xaE6trUBZg5MUYYcBARWPS2KyEFIXmnPDgSJc4JkcnQu9bee2hnZrXd3VjAjQVJEV0kIbBFIs8ipNfH44d3x8KhUC1yaqiui7U+DCWnHG7NbNO2m2MSkhO4963VvY4jTePAErW2MaXIuUZwBEcQUUIEd1MOTWjuARauFl2jO6j3bd+7+KZN0ZglpZJGvLz+KAIpEaUgQshuYN3tqTVXlcDxpriLUA+C8L3fmLMMEMAFEYkiFQMoRDiOKtJ7nxGOXA1BjPM83PM4jJKZeN2gByBcotcICK0IJgAOBlA9tt72Vl1SN0UMSSAJHeCmpLXbfwLdCZE4E59CpsAxkJvpurfrGuuBs+SpfPX4/vLWul3OLdR7qHLixkIQ4WrmApAculpEMOnDYYy2gRuYZTLQ3rX1oEZ9ZI6Ckbi59taIeZogPDhRzunuMH/78cO7h2Pv7e2Hlt7Q17fXt61uliybDUjSa2cEDAjT3vsCcEE+A7zLR6gUCOqG2sIiE4+SVxIRYVYAMgNVv7Vqp0mEMyKqqkX32FQNmaLkLxkyc6Iiwu5Qa48WqTdX5Vs7UDg7CpIAQBkHQEg0l1JyzsMwjOPY1i0JfXj/kOgPY8K/4z+p7mttn1/Pa6z+NMvHi61V9x2Wi3cPBAB0IIMAJOJEXIyYMLtRrW1rHQstq17PO2G6f3c43k/jnJNF7GAOTW3dKzMhhrtbQErp/fuPv/n+d6dv3r1el/EwanQi1zof0kTGF3yt5zcDRwA0UINxzNN83HsrJGNJjOSmgjQOmQJa2xPhrZMRxAaczBUCgPIwuWu4iVAWqm1d1zVMfSng0D0YMmgD8IHoNJS//eP973/7/cj+/PnTm2o3a9vWLm+j3M95iojzUpetnVfd3biksQyIVIol1MNUHg4TgW3esisQQBi1XVIqpQzgqho2ECAji7upm4YphMU4FkCtXffWamsAfeuNmROgKnqEBHIi0tQqdjWbCZA5IBDMO1RFVbK4G0cEcOuqGhEIfpNYiHV2zZJIyFCOaVaY1G3Z9jJSEJacJdCie3cNr4mN0AECiSRzNOKsHd8+n8FlGOv1+drXlbUXj/C2BwSBCQCCOxgCKHGQvbzgNEIpmNw36usOagOJM909Pty/rD+9bmTOaOY7OLxVxXBU9baVcDQG7Uw4crs7ZdtSXTY3JYhtW4jtqL75PmdJp8ynoZ/reWvgEPSL6a7RT8NwPIyPp/mb9/cQ+onWmi9vT+e0RBICoK3a9VLx3ZxLnlMZkqA1C20QFdkFIguJBAR6COBANEnepnkaT64b4dC7EQJisOBWdyIDQHNAbsNgKSuRnGZWwHAFKIk1IvZlt15PcHBvYZ6YxpKoJKnGNwQ3QBpa67321k0dIRDAbZ6H4/TVd1/ffXg3vXs8nu7Ljz//Yr6/rbgkQGTltAP13hdYKckXNR8QIgdyAJmTkEbs63p+Op8pj5f9um3b+/uPaUhpynkq2dHaDombx95667VrVTcABIBSxmk6pFQAFmIGQmAqpfABDod9uyzu4AYJmQgJcJ7vjvfHrbeMe2Lpva/X1hELMDGiYAdnZpEEJIIgmIgIWbRVQBrG9O7hOM+DaVuWpda+/gI/v1zapZkbmGewd6fD33z/4V//djodvS5L6MLckxN7nzMYYG/t9XX9/PxWzQ1RIRjMVIecCosMWMi4LYmMsCWOYQC2cG+CPjKl2FwrkQu6oWJUgy5u7oCB02FoTVurbhUQkH0YKQ/ZL7OBObkLYaJG3IKi2YUbeWTkLjggSeacRJCW0Ijove/77qHFyzBkIprY9r1pSGYJCMqSmb1ZjiDU1s0RJQ2SBkFkBy5AAIaYEWdUQmbK3MleW/OFSsR1OTb/gDklqxbarTs0A8skBWfGA0EB96VaEiwpADbdL+tyXPaxaRs7ZsaBA5UzpQLNew8nnBOzcADmZFoYh0SZRIvKCJQtlkoMHfS16ip6t9LaNuVRjmV+mOlp2V9333E4LARRJjndHQ7H6TQN94dBOAzhEsOzlrdVJRJ4MoVlbW2zYcYpp7nIoN3RnCkyU84D8uwQnjEGJk/o6Lhc95wvRN0NIJgpIyJCWOymARCInJCEU+IMAOu6YhAFIDMjYVi4h6JFd3cKyCkNJYGwdCNwKePgRvverH9RKiKiu5dBDlMGc938NMvvfvOu7s/a3sIef35unyPt7uiwuas2JxRCIAhCR/TAQLagbtDaubbz3t4uV4e8rL2ZAY+Ux1MuxzLMxSFmrfNhnKc8zfRWAW7dBieSlFLOhSmnkpMWzqmMA5uhQRkHJGIkJiIk+hV/QkRGRLDw6G1f1otZqLUiSVWBcRxHESYmh2AEzpxSlkkC+jjR+3f57m4Umls91tp/tPPr5dV9CRcBnQm+fpf/+P3pYdTLy0/PTy/briQZw9D7ccxV5br387IuXSUNh8PMCViQGxBYilpIR/bsMCXORQ6HWUTWNddaRSSlxMwrNeQt0DW09jZI39iaYjgxJ4S9ezMESsDJxuw5x8/xBQIVJMFECG7dHN8+PQvTnIc6DCOnAihICUG9AUCH3lgBIHMMHDmzogNnl2TIvbUAg/CKNo05gG+SdDaPwExiQgGKiNBDNIYu7JRgSC2TV+/W04q1Hht/LcOpRFWYtG0RG2AnkUFKBrAWvQa5kXfqToSBtWnvHQxaazmNJUsZJIMDWsYeQacoc+JJhsiINYrAIaexpJ+NYMPIAaMAYm+2h6dwq2rNuiklLMc0zCVfNwUfMoU5chnzJCgAkAtNA1+8Hbdpfh0ybd76vrVosJzK5boNp0TyhTpfW6vV+sAujnhzXwtzdQdiYGYWjIjWmqlDyA1LcQ2UG+ECGUkkJ2b0cAdXZUrCidzMKoQT+E3ORA4JKXMyZkOkMPSQuIXMmyYeAYkcomk3a61vXq/75Wm9PoVujJv31ynrJE7LatfFtorqiEiCdtMqA0aEAUIQUkbKN7spZibCHgiEbuGYEGf3sjfJoeiIkvI0Tofx7u44nF94b7c3r9Xem0FTDQdCIERhQvAIg9BwFmRGjmCmJCIcAM6MA6QgFOGUUriaRgOI4DGVnMaUEgC4qocToFm8fzxxktNdev9uPBxLYmmtXy9QH/n+hZZGzMOU4OsD/eF3999/Mwz49ml5rW2XPAKPuu69meRMBKqNCMZS8jAcDzknwFCG3a0NSe9P8ngYDoWHLFnSPB/Hcdz3WVVvqloi2vdd++pg6n1rfalt370rWvDzeT1M8jiKAjaD2nWva7suvQUyCAEGuJubmqMpRhBgAkmW8g60agtzREyZmNmZLTEiNsQVQNw30HEYaDogS9tra83CjSmJMLI5LT3O12VbdkbOnO+mnFi8mXaDDgjMlr1GraxVMZpaQ4+ZBsmgHB9g2NRqhJMwciDUsBaIY8kCAB4BqBB7g2vl844defCD+nuS0HVpCwKOIrntR8EpATF4CqaYxTLjUnIf03UetEMESARrBSPcOHbv6+6IQ6G7Q7m+SVWt6woWGdks6t7Py3XZZ2JBknk+vnvYf/m5P8V1Wy7WoLbTalHNZ6FxSMOC6951D5uLhAcghfeuXaM7EhUueZrKOKWU2A3c7RZcEFEDIgAMjG/FJwWAqWaRzEmIvaN7066g7oowFAykuNHOMcAJnBFk3Tbm0kx7j96/VEQAYN5b2zP6YUq647pc6/YadmlbhS7ig7gzCQ4jjwXHYVvbjeVqDuYBkjgNJU9TekhcxzKMRXMaCsFWG/M90X3EwaxYoFCSkss0TsdpWvqN83g7wMuyLMtSCq9tuzHsI0LdW2td1cIjOqOFB1OapjwMuSQaJE2U3B0srrSZ9etSiToiadW2tS1nRGRBEUFzR3z+ebm7L8O7+7tZTkcZctk3Qm39fan+eP/hoeTDaUzfnuj37+Tu0M9PW5hN4wz5sFXy6A4pgt/Or5fL6k4s3Op1Oy9pJKI+2j5N8vgwffPV8f3jPA9FiNDpRslqrZlZzvmmfeu9a1ULra1trV73ttfoHd3xaXzjJCQ5KFWzpbbLdb1u+3HqzEgEGt6a7lVrNe3gwygsIgVIlNBQPAMzY0dkDroZJqGZNevm1I1MhIwPVGSaKPW6bQr2BgEWa7e2Net9r5VFMrkzjSLePTAssEeoeVfHJLGZW/PonIhLEhIIwByle9ZgJHYIi05Dy8R5cnQmBg9vzbbXS4fnl90fJ5MEux6e175sybELB9th3CaJgZXQAzuiJetU4dgBedDxqIuvS02ROAD38GvEGlGVs5yGdD+n1xS+bb6iWygP1nxd+uW6XffKQwTOJc+n2R/v43o/aKWAnZLsAd0DiA/jcBjzsqBADCizlEgEigvD1gOyEA2gduzj6TRfLztA2zdzU5HMjEYUBoY34wQREQoCA2u9SwBnAhDOyMCkCcm6GpirRbhrD0EETwzSe0dMX2Sfrd0o0Dln7eHWKcF8GJcrbsvbcnludX35/LTWg/pEHog38QVq6M0l6YuCIhCYRASGUegO/CKRsxAOE49l2PUwfQgYAAeEDBRMKUlJKUmWiPDQCLi1ZL8owG+WBsLELCkhgCMgIhGFq1k3gxLEQjdGa0rMEa7+Kx8oFCAFpCzLurW9MW8iMox5mtAB3a33DU9UGAaBMeE8pIRUl/VV6v39MJ3GoRzvpvzNMSa6LMtn7yYipdytlq4v1+ta666t+7LvrXVKYyZezldDL3MZcnzM+cPHu2+/fXj/fro7lnEYBMQdBhnneb49m24Oj0Rkhmk8NdW91bXuA7eFozVwp4/3d47QzNem1fwU07u7497776oAuIct6/r6+vbcLxeFZnBeW2ete8dMRuDglFMp5T4G/LVoIknIcStYtFMzOl8qFHq4uxcWs7bXfkXV1i9vV/IoSeg0DeOYhrKBcxYPD6CqrWuQ666m6tZrbwuC5iENhJDcHLp7iiiGgyN3J4GUnBN77Y4gAkKg1W3f227Xc4PXycybOmiMFkKiCXr03I3rSltCCZIgcgNv3ie7p5Aq07Ndlk3FMUXS1jtp7E6GmZiHfBhSCrMKSXBvUW1/e76WzHcPsrX3Byzb2pd1Xy6LVhXJUxmaGwCsrW+9HYM4YRZmDAlMjFYbciJEpiCiMOjgzS1lGsY8DHldump3iOjBzMioYRHQtbfWErWbamq4uweAiCAkEiGA8FDtjqhoySxCwz3MESExyH2UzmkXa4fcwFNKzOjsEOV0fHecKPH2wau3+s9/96fP/+UX3XQcH6aMeMDyfng98G49lD0apBJb6d3MHYCAVXLN78Tu+L/A809lnh5P8/Qw4JxOH+3+4xunpeCAgb25mzdkmxJxaKiCZEaMva9BnQfEqxAwEzEBZxpG3HIn2Y3ZCDJha225vNzNeWRA0DEPEF1hudS2AxBk9dR3M0oLhGtn11ng+tYz02mat8yQ8sPd4f6Q3p1KeHAapzGm47gtP0yxPrJ+KMOEcD4/Xa+vpck8Paw7f/p5+enT5XPtK2AAfOoH7ZdTROlv36B/d5/ujzyM/Ifv5o8fP3771dfH43Eaxpyzme37ng+gHgzgiZhTRkYD21vkSrUntINgFipSW9OIGPxk7pX8kLBRtLCGrhLTu4fe+7q3Lcu7oXx1PJ7P52Xdv6/zUve11q35Ft4AkHsavee3cjhghLVe0uEwTwAUoUORdbuuda959owiMlKnqm3ZN+2caFl9DUiDdAfqtfd+CkaLbdtb01193zZIifwNETgxUyEEXnakDQDeDYeAQLZw5R7ZePAsJmPCxNHa1utKBHma33j4tEasbw93s7Cv9U29K5DtmVKZ1mS++wAyirO0lJzG5mnyJ7vuj2tkxZ96x5EvffEZciLfd/08jjVJEXEy5iYwwJilOmm3q2pZd//LX5Z1zRc/X9706SlersmZ8JDbtr6qDtvbtaVJE7PP4qcUe7c/PW9wP96NnDBwW1PF8NKYOQ1r0ulwGsYz4lZSQ0cMcwM3TwABAsCtOvY1MxXi8+fXcZrgQJggIYhhskQNlmHX3nzf2r5kQnAYMDGqMLPdrBPixg6mm17v1iQsJU8DS1TbL999/83f/P77l+dLi2E36YRuCo6C0hQ5iYuIiISImIiwcTCjW1gVt0x4KOU0TwXGqeSb2/AXu3XEWzi9LWZmhH4zN40AgFBjZujwpXUZILeQLDLmxDGMLBngMA2H0/Hu7i6PZeJ03fdV2/Q61nYhBAQHjwhkIQqAMN131Lj5fND7gYTz8ZhOMx1n4MwxjjKM62cA3/eVZpnnGX3blrVXvZ8PQdQ3uG71vKtjAaLLXlvdwsxB0f10x99+9e7br0/3p/n776bT6XR3PIpIYpKELCxUanxxtCEIBqSbTJLZEJn95tOH6Dcbh3AsY3Z3NGFTNmE3TuYOCJYSnmQYhjy2YZqGx8d7RNwaXpb156fPn97epIMTUBZOEJH2dW2tYQQjlZxPp+M8z3U5A5OUnFJy9947EU/TdJqPe3Mpq/7yelm3famvV1eFGOFl29nJdle1FqiA6GHWEAAtbgqZGxQSAM/rSogUwA5MNEAaIBJ6sWB3sF21ElFqO4h3w75vT9EHdjZNQokSQqJOSBxO+1L7cukRUo55JCDZ+tarewtSP0iej/NBqXkXt6LAuzvtrDj0eOQcw1BV081bQ/tyefv0SUhi3RfIsq2+793UmCQngqUtb12mg7SeNKTQQJIpKXiY79tlYhRIJEgG6AZgET2XMY9VhgFTNuwBQcSEVNi7oRoqMEaAK0tygeX60qEVbGUcBk4O0K1h79n2sB57E4VcCJC3sKIgOaVIian91cT7C5DLlFIahuFwgIE72fvvf/PVH//V9+ent6cL7JdBCynSKMMxzatRJY2b5w8RMgWAu4c7WkWtEppdh/BDShxMEaYRgTfvFUQkBiL4qy8XEYT5jbNyU37eJKCImHNObgszMyeWw3HeESdORXgeyzBMwzwdT6cpJV6Wl+VSSkqZQi0ReUBHZCSEYPCDyCHjBFCYpkhf58M3xw/v747DXCgXpLI2AP/Bdfe2QxzCdLlclvM1JclDWjZbW2yGyjOVIzisr5913+6Gcl/wPtsfv3n42z98881X9+8eTo/vSylFROJGfcFITE4SLhZIRKQagRABDggAHhjASECQWEzKrWS6PdQYwogYIhMISCBcli0cgTAnRiLm7A7A9H4ctjYcH/nuOb3tuwZtvW+17nuuSzWDnHHfttdfjddUjZOMPLt7rZ0CUuJpnGQsQwen3ACGegjEZb0+v17eHN6ujREEyRA1AggcAzIDAHgAOlhAfDnHy5fLByEgMuHIEOxdeoR3tAYBzM5egzWQhOOt96Ha4D5zLmCuGzi+gRFHyuFg7i7W+nZtFVC6kISGuJ8S3w/DrL7sS6I8GsZ1r2tD2WLrc3cgaQkDpHlX77Zul6eXRG77lsasnWJDblGGcZoHakNrW143OC94zonzkYa1jLqtvtbIQK6SBDLEF2Pb1SF3nAMJU+ZcQqpDBLIHiUpEIKcsCQCst0X3DpxLpKxSgAdJpaQgYOje06au6t0hIhEDCPXO3eR2DJjZXa31Lxow9xuaklJiQUypDHw4pod305yi+jp0SAzqJsRjnrTDpq9m2k0NTVU79egtag2rbDoipG6wbrFu3a325H4X/sUu+L+OPgEAv9kdgrvfdgLGl2eBqxFgTplc+dYlQwQ367WHZx4JJRCRhFMmJhS+scQQIzCSQCAaJbeOvReBj+Pw3el0IuLexoA/0Pz78v5YTjIIlxwgK5y1r1kiHYZE+Pb0fHl7xqD7031QPJ+vn159t9SdrKE7oOGR47cf737z7vBxxj9+c//br+4ejuPdacgjp0RCiFkiggEjnAgIBw9spgDQm4WZN3czBbv5rhOBCJZyczk12zsABAQGJISb8TIQWtZaqxmUMs9jadqv69Z7c4sh09fvH47H+brV1+v2fL5wBGqGYjcFyL7v535BxN47UczjyMzu0LeGHp4lS+GJMeE4lw/8WMZ5Ohxf3i5//vOf9efn1RYA5pyjO/nNzgXtpj8CB/81BAcAAOcvgqQOEQFgCqaAIJ3DjQEYQBzR3Tkc4MC5qe7qJWJHTUhg7u5V96HgqQx5zIKMMFze6tPLy/3xeBpTER4T1RrRW1+3vm/MpVLrqyJiygMDvsvTnXhXirDdavWm6Nkor07YYO2MaehoS58cypiJ8g6a90pv1z6lkY7TlA8+Xfq6bpuMQuosgUKmwRSJ3NFVAyMS8TBM82yuccNlovkXyzshd1Vo3SoA3D8MkIyy58x5GgcRyxTi5N0JmsIeMSYJAgswAPGuMQQFgIeqWldwR48vI4VunpehAUrc86CxA5K6o9re+tp1M++qcYuVZmbk5t5Mo/cwDVcEH4TFXdfW16YeoHs4QyAiIRIA3UwEIvxL2uw3ZfKvy/2GkN9cCNBCbt1fj7pcr5et08YnPIwTkSALcrIIQDFAIiESiC7EiFFJTFtAZIMDwldFvipD6gm0fjWPp2me5zs+jalI1zoIHifR0zjRIZu/Pn2yVh9Odw/H+8t+Wda67qCWtuvyev2UUjoyfPvV3b/53Ve/++rw8STfvJtOc5pLOZ4mHr7k/MyMHqoa7rdd7UgR0eBmUeMQAR5MDAhB4MDMwBAUTdFj+GIvzAERcWPABWGUhGbdNFMMmXNiDNhxP29NJKec76aRqVtjzzTAfBxSbc28v10ub3W7DUohoq1uIjkBoTsFuZk229e6gZGwdgcEFmBGZhSROxzAqoUnCnIndQJ08JvVDgAQ/DrA4faFInxp9OOvkCdowIBfKLkCLEBu1s26uzAJEgGr+dmVGZHByGgSTaAF54mnYXQv664vYAPYaU7DOE5D8de4LMvn5bp3fxjBmgZSBErfmZkCmJA93IEjjcSQkEmkCblG9CRFgH3bsXZcS94X7D1JUIu4qmWDPfzS4GzU3d96x61OiMhgwI4F0k0hbshjwAQIkju5dm+ukBOqtb5ZX5FsIJtGmEeZZqze13atwESSppkSyZihlb5rbeiBQ0Zi6YkgJWmtsU83U9n4NYVm5t5u33nYTT/RiU2StYSSGSWczEHVm0ENwsSp8n+tY/HW1UZ0CADIUhIIKjBmx4Q0mIU7/WoC++tCx5uzU8Bt8AyYu5q7hxrYl1IQIogoiyAiYTAAImCYQQRQIANx4pwck0wlT1mWWiNRii8jejwBzEIHwAfE70o+jMNLkrtv7sr72R4mepgb2na+1NTvTuN+IW7a9m1ft7nksUxaY98MMc3DYFEyXqAvE8DXD/O///33f/zN48fH4eFID6dSEh8Op9P9I4B/EZEAOrirmQERBXQPNzMwpwAiQsYIdCEAdHdVv5HMmZN7l4HdXd3IvlxNM3X1hDSWIama2n5dgEQAp1yuews1pxCkAfKAgwoWiowSEeu+retKAbf4v29tazVJBsBElIRJggMY+HxZU2JHt/C3l/r29rat2vdWmma3CmF1J4AEQAAMgCAAEGAEiF8OMAE4uSMgIYnIDWoBAPQwAnAkJUZkZkervldrk2mWwpzNtUGnRJhRzaJwZ8cC0/2Y7+5zlOQo54vOlD4chtNxHIdX6WfdnhB2wq7KSBbU1RFqQucIDs2Rb1B8zjmJRMfamplB9JzbOI5grn23VntrguQK3qCtcfFVw18v575WYXLw1lsMaAgBUg0jTDIV2PJ1levK5yusGweCBagtFh6G4ARwTPD1Q/n63fH+UHiSp6v98Gpve9d17SSFnSGM2RgbGKB1ImGExGUc5CaCHQCHrLeYhnGLfjcfzC9FV4AGVKTqVDBlTAEMIR5JQ0xSdsgtHJgIiehmzoPABCQBRCgEQpSHMlMUlkG7m4YbwL88v7cz744BhF+mZvXeWe3L4zwgzMNdkG4eJaXk49xzSiWXL3UyMbKkPGeQlKdS5pwWRUNkDLiNuUgAx5zvc7oXeRQ+Edkp3T+Mw3HsOUHibb1u6xlsLRnQ+vX8ZstestwdTwy4Xq7XtVJkhgRmdxmPD/z9+/Lbb+//1W8/fvVhOkzw8FDmeQjgMh+4jNGrWcDNxNXDLFwDGczVA9W6qoIDIibiYFRERLQgv4kcCYERDDy6mfoX3yMIs2hNu+XpeBhYza/bvteOBCml4DSUUO/eL7Vv6lwELEOrVp2JOUs6TEd/59d9W9d12zYeS1Mj6oFEDIkoEMMgAYU7gmF4t951N0uHYYRBI/xcr46Qs1AAm2Vi7QTgt2NMt1yLgYELMgEKkjBnZEZC86BYqEkIMJNhSokKavDaoVedCg9p6GIOuRwKFL9ul8/rCgXH8fD44fHdu3fYqF76eBrhnstXM58mS6nXcl2G8zafl/bLWmlvweJGCD4SFDCGADTwQMTkbdCUiCMizLtXofVoXUR+DSExDJNte/fL21Jv0uW1rl1rSmnfIC4BsncMR2pGECnn7RBu6y7na97WslYLQORAuIQmhJFhFPjqPv3xu/vffry7n7OO488vFXxDjwbMqm7m1kgd1UEtvkBLno0AULKkUkohTqn+V68w95sTj5m5k7u6q0c3b7WxhltEd3MwB3dUTkJG6PFlZgj+1zNJnAIpAsKROeU8uJbAdBtY91eLhlsh/KXmAwAARryVQjcB5O1HiGimYPbFXogZI1KWoQyJ063+zTmP40yeCYOpCA/MCYAwyN0lSYdwAEYahAcAat3dy9SmiMGAFKhH36qs29H8GSLAtm2Tbnf3j493j621tve2Rav28vT86XkTsD9+9/hvf//4+6+P83i8m1IZ/f4wDPOwKTrh1np2BEMAZs6MoRIOxszW/jpMzCPwr55vN/j9rzfnNhkMAre93qYFAhAxATAREWpd9zwMEehdrSsncg9wmw+0bfXtsm+7EhZJh5IhPPxiWJAB53nOQ6Lz29Prk6rdqCQR2Hrz6AzAASICBWpdDCwozKF1JhxzmU4PJzllWLh5L6UIAKmPzFoD48vbykTMJEiIKK2DB3lIIAeAWXQNtTxHujnUBxWhYRqCeNQwpDFNmSbdVLWVKVnU3tvgQEh3w/hwnE7z1EOFKTHSQeRugClXiC1jHfNaynk3QCDGoBQYYNDRxwB26COGufWg3lJvGXmQJEibqXW4XM9DFjOz7uB4IDx6e1t2755SnoaZws0cuC1vug/NExiCi1gIhJQcsb1GxKB6RGJmB0ROxLLAmrIk9AH6wyQf5vzVMd8P6ZP1HDYiDQgRgd0sWm/L0dOtKqUA7EbqWDUZSsSG2IUBiLa6Blv3xXEYoCwN2CTRnLA6fSzxjfSfwip7H6OXrfEqc5uWxlRgG3O77oSDK2sVGu8ZT0y7+JAkG5vOo8vdc8vBnJKdp8MvHlUkUjIHgSw8M05sMZecGFYzZK9aKVMkBPCqVSMKcZJsSLZfQhc0aEvDBmmiMktBFA+03mTcvGIy9yWxhu8OeThOfFkKD+hNaJhgnngqd3Pz9ZDpeH/nJblkqz6lsU/D60utZ62X3qqWIfEADc8G695fLGeoUl+ej+r/5l+/+91vDh/fDaf70+HQ5mk43X0YxzviMqGHhZk2VGZKxIiODEMhQzNrTCVck7NDtjALDAJMLDK5O6nlIcC/PFUJ/Tg9bNvWYEcEZjTuEU7kfd11rx0xBBKxu/W2uUPJk6RRefHYAFN0APVCMua616W3PqQMgcnoyIel7fBGW7VxTkRp0z4IMmFbt/ObAyFIeVuvuZSS8+Xl5Th3JVLVMfGxjBlZABNQZlnLS0kjKsVuA6VMxO5MwJN0tx7oN+FpGEYC9EcR656Q5mEktK29qC6F4x1IbTtPXr569/PPrV27Nx+3OfkycXo3pfsRHh+SHebXlzW9vHu4PwypnKZiSjM/2us5Llq0aQgoMIeGB3gNqMggABsCIoB+yQTJxmHc9xYuRP6kjt4wAAIEM63+DhzDBTDXtmx9QGRAMluF4szEQ04TCQJ2pKXm87KjuyNzPt7HWGutyDQMw2/jlAnRKup68Bw1LeekO0X9hEvlvedgiwF1FEqSJtiez8sLmY1lmoaHUFvbOZdfRx42B73Zq7rfEGD56xwIACD8a34rzFlIGPlmYOGBHuw0ARZEIzCPxtrJCBq6OkLvfdn33stwwjwUBdSIuvfWtJveKhBOdOsiz/M8jmMpiTb7Mnv71iXG22SVcHd1/evwHo/wX+EuvwkCw82M5ct4W9UOv466/QKJwRfv6xtTOiWmYCC4absASJAAqNe+XNbr6zNYm4dyOswiUrtZR+JhCG5h45DefZj+8Pvvv/vmcH8sh2k+HMdxOEzzKacBMJmZhmIgCwMA3VIO/1IRQJi73vrAIoSIHl/6LbdkKMLcb+1rjzBA99AAAwhE+hf9c0H8YidCiAFoZr1r7wbF3QARSykOXFuYGRKmlCxwq63WCizzPAPSvu/n5Zp0N9LjcR7nYcqJIUw4rW1tdavbXve7+/v37969sIQatOampu6ukBKSCLKGj4YZIJrrbhAOREyYs+zuKHlgusFvwgjg6LFpIwMzv2xnhJayf/Xu/vHdqTl+frk+L9XOLxdrQlkRGtE0H473w8PDw93xNI9DBcqJpyEBBWB4qCtG38F7Ck3g9yKUJBBqtx43e1hCRIgB0c0rkt3690MPVKhICEjmNx/NGwSH4CuTqZOrAGTEzJIYGAW1mSqGMTcRYfKUIQfZUomolJKFGQWjW7XQ/TSKALirW49N1xd40S0njnZdNrPVsZFEELoEE6CDzinjxCNzJnaJhKBbFTPba90At97WXtXNINzdEZDpSzL8ZaYNOQRopXCOL1kQEA+SJGeOGBGWBB10hd6gCZhEdwgDB1RABXBHN0iKUZA8IAKBGJhufMxmahFmpqoegf7F3fpmg/bXrPILq+HXJN/MnLi7/ZX4AQARfiunb+RQFvoXdjkREESQMudCubA5a+LgDECAJJxNebvUt8/n9fkn7NthKIdpYJRaqyqGTLAuaPr+Lv/Nb77+7Xcf3z/keU5TyceH90mGnCbicqOUomOEpcyq3bvePHvB3PxW9/oXEAWTUvw6DPvLVcevk+3gX2qtmCIEMYjB4wtweDxO131f1nXt6kFEcusDmvVwZOZhSOq412pm4EDM05C3bVtrg8AsYmOZpmmzpWrFhiMMQymQE4SH2+GQs4+5V3uLfd+fn59//umnffHvvj0xmlrvrRHkkgcLVXNWc+59975XdmKEkmTEvBuKWkSz3sNMiL5gp8QRgWFMfjrl33z/+K/++P03375/oeEf/unPb//Tf/n8+bJ6MLii45AOuA2Z5ikfxpTCtlZddyRtGlW31j06UujjlMdvPqLYnedcCjM307VXvd1miO0ivW+1MWK0vvdmmWDKvBF6aADBbTgjEpgBRIPUIxxAbs9P7xgoiTOaQYQbeZWODJ4qlsS4aWK4I8w5M5EEW+vdVZo5I6CB9aa+UoR2SQQ9Vo3oWAzEFDzEAT32HCMzhidzaK0kPo5DrVUiYu9tC1i0Xuq29XabrAOEyBwIgOAAFgGEEUHhiZARMOLWpMWghClbLYgbQWOv3Cv7RM6Ejl4GPh3GcxWzuu+bZsScAcmRHMiBEDEIPcJuBkKm6uEA6K6qzRS1197MjIiYkdxv5/DWW3IH9S9z4L9U0XRjfQTATXnDpZQkzIw5564V3BGBOVKmlJGDcBg4lWARySnlfo39si2v54yWxpJSEWI37C3WtWt3X/c5y7uv777/5u7uOA6FDuMwjankiUiAGICCgIJuNm6IQQHmHmEYEGBhrqoOQYgB7kiMEbe52wTuGuFIwYS3mdYBCHFD4IEZkeDXQ3471By/ctf+mrMQiaPGrwmI2ZdZR7XtMJYyTKWk2tuu1Xtjyae74+K9Xvp129O6YCZAJwczq9eFU7r5hHW3vdZSyjxQFgaM7qpuDu7gFtB728DFvFkoWJKE4BSatHFM3veoK/adAoSAACKAhhwRJHR/f/jmX33/t//u93/43df3p5FXfF03hn98+fz5uoMDMMDpdEqpjjKfMk7saJvtVfsK0fNYhqnkTHXv5P04lo8fHu8f5g+HYxmHnHMz3ereWus333mYal2W9YwYXeu67CkVIl5CVVWtW+tmpu2213TropoQUXJy9L3V3jsAOB9ADTW8WzfVDs1iM51HwMR9Yh2JnLyLGWmzvjUEBAgHd4TnrUquRFBScSQFNECKSGCMyAQsoyAEILhar9aht9palduM1haxa7/UbbfuXxrwgEw3Bd/tg4SDMBcetKRk0cy8R7daK7WcORARmcxBIeI2sRIpMY4lHUeaB9owPNQ8EuVu+CU9wZuvE0lmznybts6MqABEFl5rjX3/KzAW/2IBADLdDH1uz534FUK75cm3A48hpaQhDUlSKbjXKyoQgyRiDhbHcJjHNKZUMubMSH1b18u571UihAQDXA2RhMQ7Lpd9ov7+8fjwcP/xw+F0mE/H6eFuKgMHTxEAQYaB/3+u/qzJkiTLzsX2pGpm5/gUQ06VXVXdAC5AXlIoFAp/CoUiFOFPJvFA3gdeNoAGqmvIzMgIdz+DmanuiQ96PLKa/hAvmRnp7sdMdQ9rfSuZKAPetkeUiImJwhDJRiAE6pGDt5oWAZhJBJkUMN5eQkQCdPdMT4dtu976YZCvMYKIeLlczGyapumuJnBruq9NdV+eJgTo5q11TxqW4+u66xZvIFsUx2tvhenucHjy++57HyQhIiAhAUSUI1/bflm3te0A4KyIIFNVVQ33jMiMTIXQTE9Xz56qBoCERTJdrWVrUAj8uoi9f4DHAy+FiICIWqceHkLHb5f7f/fu7o8f6JvDyvBEy4fj/H6R9wyPMyDCtJQPHw5H9O+e6Pt7fDfDFv4ldsiOEiK11lordeweDdCWQ3l8Or7/8dtpmqiIqi69jyeHiADdrHd9Vytn5vV6JSpMZdsvERkO6RGjE9NmptslIgIIScTC19a3fbfwHe7Sw61726F3MEeLdKAjDM7xFqxbX6Gt1tStwpIACZlIDh6WmMCM+7URATNUwko4k1TiihxrK4ScsNQ5Ebe2N7MeKQDgGcFkBLvpbrd0SSJG4UQEJhLmWuZ5LrWucAZO4PTBI3I3DwdsAM6jVmIMxkQCIaCJZEKqqAsiFqpSL8QRwKUSVyBOME8UuOmcR1WsngGAmeNCBrdBTh4XSLi+vZyjiTViIaKkW9/umYUo00d2jrsiYq2FCMdziQTMKIIsAGAJShPShFSAC5q208vn6+kLpwFyIg0lGDOgBbQGrR0+lg/f3L17t9w9TU/v3z09frw7LsAOSRHgeYvGTTJMjgxCYKdgBnQmIsgqku4WAZmRA7iRgMyASLdmWPBtq27gQeHY2jZ29be1WiYCI0IpYCOvZFCXVTNzQCHd0tO7BgRO80GkqsWXy2nft961cOUjaXi6JfhxksfjoYcvUyUid08DN0PzW2oRs4VvvQkgI+22W0aHTABzCyUawO2rmmc0SywerGGt7wDgD5e7xd8/0B8/1t+9r3cLEWUiWOM9cUfh+6W8xzbbWnIpMrdGsD2I/ngPj8elCLPk3Z3dTeXpHf94jKXYFw2M3bx318Vh5GclQg+/tj3PL161HWhZlmmaxtJ7wMAIoG8vLIQS9VBEBEve1iXHIyQxFEQiwMyA6BFW4qY3ckAPMDO1MLON32V01623HUwZRZIA6Ivvobav7fRyPbftNfoFzALmyjeYETOQaDhiMvKaQOGUOWEK5oy9UhHM0m1gfeFOCsmWCPOhLrdtO4AwVjFIhQjIUaze8kyZodZpmubDYTkefvn5bwao6T20pyOmEyRSY1AA4spQKEhcOCiTK3NBqBETxnjl1hwkyEpSkSSpB6RDAhMXzmGXCnjT63z1Ff6btvC3XpduQZajeOYiUssQPI222UO3bRtmvbe/wRFBhEplZoTbNDicHDkBrW3n5y+/XM8vAjHdvzcz29U9bbucnk/tcp0RP358+vZ37x4f797dPz5++Hap74EY0ECMPMFHhg4ComWmM42rMgMyw3Ro3BiRGMNHUFeMVmv8PAEBAASACBABEGOmJYUziZBvDz7IcFZWKpp53bZr31r3CJjrcjjcBdiNkFaK95FwCSPnkQiYmasQl3Xv67bn9ZI4Eqkxul77SzggQJgXIJrK4XhcCJt2bZ0BmagpmWeHTMa0aKmVpUqZBQ3MMXrYvq+aHgBS4cN9/cOH+T98V//4aN88+OMRiKOZih+7zFdZVj7k5K2trR2nMu14Atkfn+if/uHw+2++qWwZG1KfII7T/gBX1uSe2fbWtrXbd+VYeUaMBHakk+7Pn9e/XfDx5fVwOBzmRUQESUSYCAAOQnXiTN3Prdbau0ISs+MMMK6CDPAxQVQEvzsEoWRkmCHRskxzoqo+ckEiDwgngCiyMFZI/mDe9v76ciX/tJ3XMu2sluw22b7v2kEQ0kEdAIAUsN5nWviuNzUTNgAC+FAnzwyLNYAtWySWmghvoTXCxJyJ8TYZGtkFQAjMgCKlTMs8zzMyoDAQjnlvmDXVEsYskQgkBMTBGIjBGMiAglAJJxytX0R4SnS328I5bgaGOpX5sBzv7w6HwzTx2gGYv0q7bsfVGLomfV1Z3/4SzEQcy+FSSq11CBPHz7Lve6jBm13jRv0TEiEWBMiI2+0VFJja+nq+nNq2MoE6tea6dwmIpn1bl1K++fDxm+8fvv/dt/cPy9387u7hKX1Ry0IM6V/NzMAMBBw+dDHj+w0zzMBMHxP4hCTARErMMRclQMQi5S2kN782t5l5OMyZicgDTQxgDonI23oZvyIiQhyzeWDm63Z2S092923buu6ZuDdl5sM8i0QyAwpAqPXW8u5+wLXTEkw1E0dGJEC+VTc3x3iobdvGUg0N0w3TItI1K5EgvL8jtah723rzsASZSe4Pf/j48D//8cP/9gf5UL48TZd390kl1+Z57jbXtfIL8ouZXk9XniUY7Npgn+94/ub44w/HSi3czZ1OXnmf/RIGZJLRRw5zDuwWhQWAFK5Ti2bW1j/9tZRSSiFAYa61TlKI6F29F8HWr8xYJ3FLkVrKdJadoCBUSCFAlqySUuDTdKp1oiTXYC6HesDE1toMq5QEdsCOTJGeKBYkunh37D2beuuuhpYYSbORAwGIQCEMSwAoUn99dQIb+sQESCCAEiCvrU1cCmFwocKBwEV6dKnQexxqm+8pJwtoZwEUPJTdw0vQneM9cPLBHx7bJI9zAd0QVsadEYwnjQPYLDI91utFt/2c/jpNUebareSrodbK94dyvkD43tt5CHiN2x67upVSmCTAnezaT95bHWrCjEinyldtzAjakCIJkmfGqvtuw6ckotTCfWYpZaJkSUr1morq6r6znClxwl/7cxWBvUlrR4DHrEedqpWZac8CcKzTAxiEaehql2e7vEJswrWfdlvTA6A7apbaHo/wbvm4wIePh98dDkf0nrETImAFOSSFZSADM1MSOJIZsBADsoY7eIMISCSilBHAApg43joAB1CCGmGejoiB1n3r3oIsDJkK8wCTuOW+ae+9P7/23nU53D3d3a9b23YNwC+nZ7WNpWaCmzGIYPYAArpfjvve1ELqkhxLqTEfRIpTHkXmzK4qRN3MMwxhOT4Ewqb9sm6qKlQKEOKMZEJ03doWUCcOj8vekMV8R4jjodwf5Hy+ni9Qsjzy/fG7b95/X58+Ph/pM0+6LxNqV1R/5DLXhd5be7y89t0tS1N+uQN7BD73dSqno7Sl+rZ6dCDeI0siBhTwAt3slHUvMCVPc61TJfTrry8/PZ/P6kmf9UIAEwkqFaSPT+/eP95R2gtemHO9ntbLl1Ll4e7+bjnO82Hjz2bsVlyFSKimFGUJx1Jo621jwIf7O6RXBz/cHYn6fJhSIsDqJIVj1HNiL13hfG2ndf986Z8uzQDrcnxX7kIukZ2nqSzzMN4AYe4v7hzOmdDBCZRhXYSgBJd9qXD/xE8Pj3vjn379cr6uEq4DJz/q5a+7X8QEykyHMRXCZM4yiaUFCAAg3ZbxDMxYzfpwMv3dvcpAONU6eKXgkebuHmiYAN3IEyMJgBApMs2jq5oFYRJGAHR1M+gG/bYsZRaimyz+NnAend7NUBWqGhFIxDel1i1eGC3MDMzbthkA3+LULCI8GbkcDodaKxCZ+7a1bdvdozBrD+1pqhQpGPNhenyYvvnu/TfffXv38EjCakYEmYhAjAjAiIlESfibxkzYTQMBWZgZsIaNGYLbzTCL44/fOgX3GMMqQkgkQAKMQKklAxOBilQRC7dt33rLhAg372yTmWU6EybRNE0AZI4iMi9YQ6grIirsAGHeQ4FwZkYphEyFyTMhgiNwRJIRsUhEeMZI+t02I2iLyFSrhxEzITM5URmivX23yiGMwCwih8MBqc137969fy8FRIA5iRIpAA0xmcF8zDu0tda7qqHubZe8WwDJET1TIwlwTDES3+Ydw9pxs9CVaSpFRDJz3/d9381s3/fNwxGQgFhIEj3cNm1AmMl7ZLifiLfjfDgegnntfdtg21Y/nXS7hgNOk8wHrJV6MgK0dQWA5TAhIhV6eHgg0PmulklIYJpZgASgshRQdW4tu/WurTUPgjJVMIdIUA9UqJWJ1U1VKQEASZADwFUADgvdHabHx/zw+PDt09PDNDHK5y8n+gLzRAIQlAHhbzYBDCBAjuxIQBgEjgBAxJUP90ups9Qik48YgbCETrEDTLc4Og+3iEBypMRSmYQA0zMgw9CMBBITe7BnARIQQcKg3N231iGAiUWIPADZki1LQM/8ugmFtxqViCCSAYcyPiJ678Oah2967MI8c0lERtSuGskI81SFCNJHT01SRISpKGJrfdtaNyiyTFM+X0YrnZleJnq6v/v+u/e/+/2PP/z4+2U5IKJ5oiciMTMQAyHisB7DkDETMSCGIiSNRVYGYoJZBvzWF3xVm9yKfE9whwggRABJdkBESubu1t0LAST18G7atEuZVSkzQ3uYD7+HAFCZzSxtBOeVSFLVPR0YRk6ZOpRkJBcB4Fy33TOBaHQo27YFZKkzVzSPiBAhEbAOvRtkllKICjOSB6RkQG+me2OGKoCHhHlKhDLVOpcy13GPSUlGR/IEREoiKFKJRQ0iIj3SMSPQIsMTDCkYA8CYWBiIIxwTISCH87xpt/BSCmIy87CnTrU83T8AVL5spvsktbIgpqAxGVEvDCCZYLW2ecqP7+X9Y3W1db0azvtVtbXrrg6w77g1KZW3HhHR1DKhlM09uMr79ziJL1crk8jMh4pzoeMky12tE6aGFCiFaxUp4EDMDGbsThGpHawyk6nu14t1wJseJ2rNx4f5u28fP75/eH+PP3z73XcfP0TX6+t2WrfIzoxSBJECCYbMX909I5GcAhA8NMIIO+i2b9emXZN6pOMIGwdGFCoFastrggek55iMQyIlMWSgW7pRImESpkACJGtMyYW4EAuVTMimcdVm+rWXA8foGnsviZt7EgHA0EFEJAAxl5EaD/RVvzEmhNnCNDw9KKDe7r1wNZkm1F5KIfSCwEi3EEFhKgIATV0ti8y9LG77fm0MRIXC+nSYvv3hmx9//O7j9x/fvf8GiUzHwEpg1CSA44dklsSIoHTLBExOYpIS7oyZBkmZGAGAzF/nhTcJOoBHkAECEWSOxi6icC0cXQQ80kzNAMgygKhM0wwLOCRSREQawE1nEGpmkR4QGKBdc9uvbd3pHrmQRIlxbkA4+EiWYeYyTcQMpTTVbvqmgXNivL+/v7vLfW193VwdkpFy2DQAAVIQOMIjIB126uO4fROHKaACIpLTwB9DwJj2Sgmk0FvDT8DDVBNh6caYLEAYNFY/4AAwViTI5JDNtJtNY0QFkR7hqqqtbW6OmU/HJwaEdAqbKh0PdH9HU2WAg8dmclhqfvf+/t3TwbpexWa5q0SCcly8dehqGq49e8sAsJQktEQLk47XHcv90r1oyxrAARPi4X7+5t275a7te7yIXvc8HubDtDWHETc3sUAJiyCN4foSTx63UzoAzEv5+M397//47fffPr2b8eOH94/3D8/PL3oJBdu7maMsRTYZahhT86ZdzQOyzFNrbb1sl3paJu3r+ddfPv3rX//y11/O1zM+v/R9vw+zieluXpZ5UdjwlviMgBTEDmxAnAHpAllZJmRDCDc3leRaSuEKzMzsSeiQavt13battz7mtX3bt21LD/cAAPcEuO3mRnVHOTI1DOYgImQaKsTNtY2gyt7RgsrNnQe0ZCqEoRshDGxvEM3zXEoxKgCKwFKWCDy9XNrWa2VEB9T5KN/87tvv/uF3D08fsNQxpxIGJokhYiBGJGIGQUTB0IwEygxnKRmA6G6RqIEIxCI1KL/qwxAiPRMoIQGCiABItblFwgAWTZkBdeqjCfYsxGM7Aju0RhbgaaEWQCkWlnvXzAwgAHTP1pu2Zt44KjPPMweTOdreeu9cQKQAUSlFSumZ8zyjEnEBptZDw7gM64isCXtuptl2bel9hEJwKWUK9G4NASzALZAARq4LhkeLxARDSqT8atuwiAR391BL80zkBEnMAepJryIypLVwc0TLiIMhTEhz95tgEyIC3M1s267n02ltAVgqU7iHdoQ41HI312XmeeKMRTtM4HczHEs9IOAk03GuAgvWu0nWDU/X+PJyPZ231k2ADTLQE0fMExPPTBVlCaR0J4isVFkejvP7x2maTadKIC/PG7qGdnBmScCsLIjYTYcXXojnOnnvQ3snAnOlWhDRezTiqen+6ym+vL4+X9dr9w6yNZMqwBgEEWEjJbi7WUCdDnuzdr2udZfE1ux8vr6e118+b5dTfnnRizL3bQ7lNAoFuoGtSQpwAHIQOxJCSKYwz0V2ky3c296DCW6SKYd0pDeZF0lABSqAkmBvcl8ugoEROLYg4BEBGZgBAqSRiUGIhZjHhcYUkQEZatE01RAFaFA90tSUDEKrQCH2BOQJuUSAJxBPUhaiogbXS1dbBwlzOciHD+++/e6Hd+9/WO7uPYGQkUmYkIZmNIlLMiUTMicGJKdEWBAwC0JScERqKg32PfGor3F8ZpkOlECAQOiORJEWgAE5CPaAqK1DkgybijpEjmz5nobD0m3urkB1rNCsOyCKIDDnCEiUnKG0oERA5loWALe4dPMyRHcRsW3Ue3tjDGdmESEGbapn61MXFGac52rMauHmDhE9mT0TMwKALNIsGo6cPsQxkcDb6OE2fwfKTAhExvwKRUMi5MoylUIoppEOXIsII1gG5sAmCt/gTW+7xZtoPxIyAIIAiWCpk9TDpV0wMtxJcKrLVKUST8wWoNYYbC6lolJEJSo16uz3Ffp93Vr59GXXLbezerpUWT3IQyOAmKZ6f7xflgWlIA0Guxahu0N5vOOHBaQkzhVcFgbqnTsQ0YSc0PImmIoECHAiqnPZzzszjRWJEKv6y8up6w5rnZZLjzxd9XK1L1dzPuy2CUAQjEoGbiZBH2layDQRVW958e38eno5bepoOrfW971179xX7Wu0C6yvcfCvqiBABmRHciSMhEwGEMYCxIAZFqYRAUma0NMnSCRGYma+l+npcHc3n85td8RymOtxoVqKT5YBSZGGN59jRAQjCg05RxlYgkG0NQCu5Zb3k1hYSHCapqYYAEI8T2UqQgSeKWUWkda7qpY6MZe267b2bsDkgLEcl+8+fvNP//4fv/vuh3m5QzkGIAAmjKIZHQbhV7AIEERmJCQkAI3KGhIBkdzZSoc2JGjIQjJodZExhg/ASJSZ2SzCPDUDpaCgA3TT7IbIrtq2rVuMx919YEyGyQFFZIy4ENHN3zzSnAClcg0hshbY1QFhESSuiCW8GZHQb53IUOEjk3lm5jRNS8Z120+niyDNUgoLglg0wEEdcLNB2AMASYiuQZCIWQhH3GkplYiGITKG2T8ZkZCJiYehhTkySIirFJbqGmZBswhyjv8yGSip3HSENjJ9CIGpsLCQ9tDWh5ol0nrv6V2EJqGDyGGqU5G51vvDvPfU1oro00N994Aza6HEjDhIYkFc1l4Y7PICl5LoAAJI2DE1Ewo93B8fj3fHMtkMBKytRxgxHY58f8/393BXD4jH2NsMMBPdTyVwZqAWoe7qphECIhlJBEDMsMwyTRMARPh67Yi57z3WLMvhpH1r8OV5W18DYNZM+SqM+DrT84xMbOrCcy3N+n768vnnn//65fXXbdsT58j0pLxpFy1Dw3Z3+ntxxZjBJlKYRjhkUgIjDXQLUrqnZ1iGeihEGVkORIJ0LFNF9gxPJyIUNshSSrqNCdbfkXaCkURkkjIKkttwi7ncnEaliHgpyzRRZSe4bI6I8zwf5mUulRAtk4QPhwMiAtDgUZyu6+l06V0fJ2DBu/v5H37/wx/+8IfHp3duBZxxQiQKy6GkssHNlAJMkDfSWubIjWWAABqoLwbit7qRvmpUfrNPjyYPQE0jXN08o5bKQqq6t3ZXajg029u2e8CyLEyigDv4zeeAUAJqnco0s9qgEUXC2xgfmcgRA6S3FuBlSiqMMIRJmG/DQiIqzEPNqqaqbVoOMk+JL8/P192CU4VYrbW2WwISIL8NFxEtmBIIb2c6M7+t6H1Erd328Xkbvrs7ws2FbmYZ4O5hXqeR6p6YBEBvCxMmCmZOQhs7cvrq9YCh2FHVSCssgNRU6wRzLQVpKbVOZZJpWQ6Pjw9le+27zzWenuT9u1IRKJQgXYCFuU5HrdfrfpxoLhAKlk7ohbMA0FwOS5knFoAoBO5m3XQ1C+FpmWGq+e7+vneiWMF0YrpfDr3TvnWvoaq7QiSghENChGfcHejueKh1bq1fd12vNrqrV2sl8HndT7v9/PO6neGbxzvLKuRYSI7lbsk9SoC6lHTeXCUQz/pyvZ73tv6q8peX8teXp7+ef103vsaim9y1efG7l1z64ekya1NAqoCwQ+/kUmjZ4lmiFj/klZCKn1scDvLg0zHILu26tuZ5iCwZhJHWtWypF901FDCJ9rBwrQibYDJCjVAjMCqUSN3gDJXnYoQKdiS7K/yAUleVyYo2YciCG6rQLBCXy6VsWJOmbmI2qFNJHDA1lqfHp13qPB9E+Kef/zVkhWUN9yPffX//4x8+/qd38+/DjgqkXEs4IDMPk4CXKnWaYGKfCoSRoWRAEkSAG1gC9lQN7ekgsDimoxKgsmCOss/dNSIGXDa3ve8bE81lioSCJQna9pq2RWLvHQc3a8ihPTihEu/dCPBQSxKAt6kU6CtzOLInXzQtJkVZvV32VaajMCkiJdS7uyMxIoZWGCRA4QF3IChTxUhsu8JxtjJvZXOI6x7S1xqcQAAhyYVH5K+tbadsTCBSuhkYVw1tK9NBysQSJEWkcAnE4uZgGgxupupmse86FiOQct26QM6wUibV95HV933h7DlRdC4bEXYsa2d1LlOt89ybM80IkxsCZUY/3i1SuPfuSYGcqfN8/LDU2dShfjw+Vr4s6UfyOmECZsI8xbRUKEvuMx9ily+vQV2KSSDWxbMALvP93XLkIrsn4sHTgAM8tKcbz3V5uL/vc31p6yvomdwn4YV8VW+Ui/hNoyeUUzZ2ikx/WPi4UICv3t0g63HXw/5CG305Nnl3963167vy0P0k09PjD1UGNoGIqAiGf1UvTstRVZvGdev77i+n9refTv/9f/z8+efTvmnbGUEQWEQAY9uvncHdKdE8TD2mGw525BNVmZxqxSJYhIRJAGKQU0cTCABmse/78/Pz+XruvSckIL7ZaNw9AIGAGEUwPQkTMTAiXDtKWmfMHDUYEJn5G1Hk5itUdTNrFgDuAf72FUGMMWTDh2VW98+ffn1+fp7AClfG693j9N2P77/5/hGLJex1OVBFgHrb/USk040fBAlh6THWQRQBGTAMy6ruDpnIREUkCvQhlkSk2495E4oOMD8XhI5ATIWZRIpFMpeXlxMiRyYQA4sBprmFL8tCRCQ27Ksa42dUIhrMzzddWgxK0a0KeCu+xg1JRIGjRsLutrd1a7unEZF5djVgRIipiKd3cwj4/4N745seztUybx5sd++9tybeXYiZUYjHj4xog8qct3v1JokdGnDPGOxRBsRBDsMkIgd/WzpAJo7/0Ve7y9C6j4eKuUgyEUVoxHhokAUnYRZA8nlpQl4wpslLjXkhQPEEkixTgKR4ADXztWvvBkCVGUopRcqyLLVWYgFMf1sBVpHDoRyPi4i4OyMmYmT2yGbeLZ0ChUYfYZGcbmYAMVCBWUpOk0gpybUoyVzqksjHfJrkiFAAiMmXWg5zISSZCs/CpXCZiicNa24hdiKsFcu8Kfz06fW//MtP//zffv7Tn74Ur9YyFJr7trXMlCrq2hpgAjCFp7snISBnIFEtPC+SieWSKIiCQojhGumAyUhVhInTQ3t/eXm5tLV3HQ/FWO1u25ZAIFxwEkZKTiySXKBQZNfmSWb9TeUfCeFdMTAtIaJyFSQzo9FnANRaSylvy1cQEZYSAES0Xa+ffv15PV+oQD0IS3785t0//OF3T98+uUNyyMIADjwBESBSJr35dxEyfZTPgekwAoMiMqO3FhEIITTs+xJhYb+hguJtPpe3gBUZyFgqlYgSkUhqnXFaELGKjGayqZsZRWT3wEAaukwkoACHJAP0BPXQtEgn4iq8TOV07e6e4RlJ6s1jQD97t9FCJ5hHU1uBULiaxa4d0kjkYT4o+2pr7z5UEwD5huC7KXloGGkDMSk82tZbIV13yLuCQxoA6Z6ECEBEADcywWgjpFQpw46CDL+d48RJgD7OC6ZIzKCxAhgPDECK0FcRPTMnEJKE9bQIBiKowqUiczKBzGuIVog6Z6k5zQXALAAFRRAKiiEimKkamAPf4OSzzMu8LLXMQEycnbGlmWkpMc31cDiUSQAiEYDYAC2yme9mhogzkdwqF5ZKXCx6GCLTFlERUITmwfpDJADwkndu3DZtW8+etVBBTXJZmE4ImW4Z3XTb971bJrZupZRSl1KOiBPiUsrj8fiNv76mufdoatfrZu4oHOBqUKkylbFWJmRmARZMKlBmdANhDZYUycww3a2t2na36UaFjgy9GfQBgIYAx721tu97S5a5ZAQmUcZ4MhBZEDShssgYjYR1N3obn477QUSYS0TUWpV7SVqWpVYZVORMHxDsfd83ytfTy/n1hZG97avju493333/j++++RHqPVmATMDVWuc6WmYEJEjCzHCPTAyIsaoe81Acf4bFcJ8GjHQ5xECIt2U5BBgmhmc6ZA5ZFhEnIiR6ZHpEwrwcPnxfhzGD65SZsTbvjQFCT5nuaQnDZQ231z4kzDMyxrFCVCcmrqV391RTM09QAzSPzNz3jYim41xq5Uq5h5uSJFDNdGs2IR/nxdiyG0TDvAmAbsyTsNtIBRAgiYgBMyF67OvW1s32zU0oACEgAwdahALwNma3iAQohbkwYHwd0AzVHcQNdAwcRDUTHVgN1RJvkplkIbjVQEEklBkB4ZQJEMmILMQCjJGgCHvhqMSFCuFMWBIlsxMgAEMyZMmQ8JIOBMh8i8EUEUTOzGFbAcaA6NGLRWQCgwiNrC9IAmBz6A7NTROXqYyycujVEVGbR1qk3E+FgyrVYOriHghugHy+hIUCwOl0TQRENru6u3AGeldre9frvl3W677vqi5k7r6O9A3kUibhkgH7de29A4ggxdtOtmUkSCImoo0FD1IiQ2JmEuDEoogT4FJomUodG8+wdAU3giBEBqakWitbG6LOr44FMzMICh5AHAjzDCBkRkoQgHkqtdZRgUYYYAgJwVgRQrg7WToQcETEIKoPl1imexAB1ykA3fV6eVnPF0rYzo0wDz/++9/98J/uHn7MFBDGUiAEgjUch6Vg7MAiAyEyCyLgEP4HIgJGMgEC10KZ4JYjmoFuO8wBRUi4SVG+4gBvGg/E8eZ7hojM8ywM67qq++CVaKqnIbIUtuQCGYCeGBkaAQnAlSV8KOos0y0BzfxmFczhYwSSUlkGS2DXHhEsWKIARDeFjjTPpZTYNjKfIhnYSkWP61X9BhdNQh4zpMLkaqOaJoyMTI/sYJv28xptAQ8kAASkxMxR2BLJKIZhrFcZkTM9XA0TRvxApt2UaojIjCCZ5A6qPhAU4x0OCA9960rAI3FMVgcon5ApADtEJ08iqTxXnhkPmJLQIZOwECwek6tYL2ETRAGYZKT2Aaiaxy5BpRIJdFV3BYDESPAx52VB88CkcMpgALIADZ1JPNMyDaB7UMLuBmN0eQGr3bGnOe2hbkPq83rZmzUi2vZeKk9LHSwsmRkZgZm4EDEHUiIWluNyYOa27evl8lqQyUrxZUGf8uAkwadO+DbCSWJINE/SWyCgW7pnBDBCYUBBZ1wYj1M5LFwTs3ItUoWnUme0Mh2Py+F4PM7zLH3L2w7mt86qHqY6C3iERrinBM9UjxXT02PcwABAjAMPwCDw9kb0druQh0g4AJh5ALFqFUWf57nINM9zk1jXy/PL5772tvbHw9333/3xu+//kQ7vXDtyiUQGliKbX77qH/9+koyABAiYkAg8ympEhmmZR+ER1tMj4dbpDfvXuGm+TlIpgQUKDPazOgQSEicVRDDAMGsRlEiAnumW5rq7R0AkEQJmZLp7xtYyRtgpEnt4eEZA9Na6qqubAyKhELEUM5M6sYe5r3u3cGQpZUIWIJyXGl3B3FuPxIIQUnqB7N3h1k9HBtzU8zROYUoe1fRAJ4cpeuFMzshxTN/AFASJnpgIQTleACJMy7ENKqUys/U+UDCAYwrNkMXcTIGIpNBYhY8JyNiIjD6fiQlFCIWYOIiS2QmdUSpy5TrV41wmoggCIqhVSMgD9r3ve3eLHErDTCKBpH3fI7XOMAWQyAWuZo4M08C3CA3hCjtQIFqiE0EhaBCWafN8P03d136DqAAy5+Fw3Lfrem0J3CPX1jVy7M87xO6BkYZZpCz3x1KKhQu6EacITYelKbCM2DBu13WeZ86g0LQr+KXQfpzDZ/AIa+6h0ffrtu69w+EOmDMyAhIIkDNxLNbrJLUwiTuBoBVyJnM16xnaIZwghbiWMs+H43xclkXW8yiox9zltu+diSaKFlvfw9buu4IGe2HZMzMsoyDEmNl4JiO5D9O/uDs7S3kbkIQz38Y2IsIAIjTsAYDtdHp5+fLZzCovv/v+9//hf/qn490BvKUAF+htZ6wwWISABIiRiDD2ZIQE4yYGgLcNSlJmDP3rCDe6LT5uAeUAQ/k3Zl1EYxeTZSY0iqaZLkylCDAODVmmEjoTIFMUVE3rnYgAbNQX41JHBgHKDsnEIiWAu7EEJhFVeO03+A7cUIGhuu97M08Ed79sr5GJLFI5M9X7VKYq1Nfe1Q0AS830ZVkAwHsbkL3wG8eiEEISRpq5AAiRQKTDLGXimxc3h18m3XOwhvI2gkIMyIjIgpQwUiwKMQP2EQ3F3CCZBbFiipt18yQWEUTwUNXRh49DEhmGXJbfPncWTinEmRM7Zg4rOksAbchb4c6FiKvvl71r05eADUkz3GwZw7/eTL0nMiBn7423dCgIpdRlmeZlDFmIEzkgFTG4wE0nCOmjBEOiG7umlFppWuYUsOPcptI9elhPJyZm8gJmkZkdohDwNCMzOci+XnuVOMSYATrcStYPD09EgOmMPlc8LFiLQ17Pl1+3Flsv+47ZtnVd29psPpJUtJFqSkQETBjCVKRgEUTCHSy9ue3at33vl04vr4/n83ldj606m6U5ZNZaR4nyVdo/pqZuu5Jd9su6vvbLVU9ftsvzdbtMUq4w4I23yiozzXulKT0IsEoZTJGpTK52yfXrwNCsm1GPrqoREBEaej6f13UtzHfHux++//0//P47pH7d93p3hIKpzUHBXOpxXJajJbv5iRAhDN6S+AAg8Dak9d+03OmDZGJmZiS/sawAgN9qjloZwHsPQC9V6lIiorWu2iGUwImFGYwRUnu7fvvuu8u6wfW6d4ubyJqZ+UBzBCBiUxuDW2Fi4sPhIGKe0SO7emaa6bZt52tbjofMvFx2TzvcHVFw31tOcqgHIkrzpm4AJREIkH+DgBMRAoJDQgYkI4ZDpOetYyBKmEq9SW7sa3oOQGZkIMabnxkzI8FhHAp/l7l3+y0xAyTQcLPQDX94OyThtzHK7QsIkDwYiZlYRrmBIlRACK8ZkQBIPdECr0krFQdCIApo3Xa1E/JGApgxygH8bTmSZm7hcIBMTyBgEJFpmspUSkHqwmnogQYEzMCYQBCXdW1NPTyAOBEwMtnM8DjZLM7U0i7k6gYJFH4UMHT31MhuMRi/iS4m1zSq+zrx/cl8083djkWYKlISyt3x+B/+6d/97pt3f/jhm//2X54W5T//5Wc97wY7o2vfKEOcVAXAgDKIFGpEJdIip5p2X/DUrweYn2r94l3C0Hp1sOuL+2XzixJ37HysZal6XHNTuRBcAx3nxocVv8OjznfuHczm8AC/mmbbZVuvdl6OsyW0gKflCbJEw3mqJqCpTXuttfWOwlKmK/qVy7eZh6CjZ0HIwvP8ri5PtRJD6rb/9U//en798n/+P/2nL5/+8vCP+vh476HhhjoBc3QLosLiMprWpIwRNTbUSBgCA9GOBTAROMAiOiF6KIZjZphyBjEjoGkvzBUoEtCjmQ4OgqSpd09jRplEhNa9XbdLsw2AZKoibBbaDALnerzu2Vt6R+xEg4AniEQLt8u6do1aDvdz+dz1+Xp1JGU++abd8fYsy8Qsy4TSEXPTfVzOrh0c0kyTttgqL3Skfd8hYvfWOkyAYVaIsVaLsHDMZIBIJhFLTw5BcIhCoK1bXhJIVWtdgEgxhUHduVwzHyAnU2DO45FZotB0btemvVZw1p4Jgr6HqtIsRBhkDXYQnSuvm/vlav3xcHdfrLXrpWZ4dDUVEigIriXKkqVmgVZVCJgYn4WxTihVkX2pjhhtu56pLXUreDgcD43LlxUJ6f1U/OHIUg2IZSbX1C4Ii1CL894ylKIYxTSVu1JmxLqX9YptzdPFX5z2ukjr5Ibr+YQEpUACps/pruuaujV9qNvKAq6bhhNWYshMv/gCS0sFgEmmyrWUcrlchG5QMfp7VmtmNmtCiJSHw3I8CH3z8P794ZuPj7FbQMDz9TOuqxS3ZJBwzEx60+XfFFHAzGXob5gHZzoLy1ylaIkc2DQcMWU33CQROAhKZSmkCVgnOBz57qFQLcRlE4/jbNvllMSbr79ervDFffjIbjKssc9EZkQ0s23b9n0HQp5lHJ9ftUG3IVlERMiyBNLr+ZpAP/z+D//u3/+Hj++Ov//jP42tMqVk3mq8cdngW6jPuG9vDfCbFG38JodDEzMwwcwgDDPe5paEhFlKKVUAx/IJEW+3ClOCEFXmTERI8aDRbdwonBgikEHuqR1a02v/3PeW7oWqiCTibqraWJAYjnWpZWGDa/fNXROyxVxmQlO/3Xvpua6rqg8fda21abgnZCJSRPRmMZDULIgGlpnh4YgIkGYGt6coiQjeaCKREYyJkIABeT6dep9vk+QMQrr9g8SRkhUB40YNh7cy+LcvJgIGYkSpiOgR7m46zJJ1mqbKAm8QYnyLpGWkoLF7KyzISIWRCBN8VFF480UBRCZhJpRkVNTm27VvqzbNQEThN+RvZiYRlMLTXApTA4K3GmoMRzAwnJCnAFNH81BPiwygAExCz4wEogJEEaHg4OCvJy+ABJBQGOrkeNsPzDfUGeSorcZMRwiR3p5FDe+9d1N1e6iCmMypqn1vZut2fbW+PjxOpUaRXCbZESlZeKnlbofhuQd8AzAzsXD9qhAYcl/CFEaB7IjgAZHw9rlhZET4nmkkJExqqWWKuwe+f6T7qdS5tBm1F12Wey9w0tf705fyF+23pJVRNY2XeewfzKy19hs+ejwdADeXP+KAYFtGUsW6JNeP3//4/bt3v//H338+0IdvPnKpiYjsiRSQ+EbBhDE3RhwD0czEHPzsmx6DMCEQbmuhofcIhMCvZmZEroWE0yNNNdISACiAGNkiE4ULJgCghGOicJkf53faPQIIC2SFnKyX8Ho6/2SmGAkkgKmZDumQGFlKraUicbpyobpUSpDNaRburtdLhDOgI7haaz0zqXKts2eotkxg5tBo0RyoSpFaQgl9xwQimmtppuaOAPgWZ4dfe6AhtyBKQIt8fT7t6xGTKDwgmISA3HoKEiEAZQ779VhK4Zgp3MYNEJlOgAX1S+kAAIAASURBVPF2/t4c4F0zc0TqIKK1fr1eVdXdvat7UJX0kYV5iyxmpiq3AwIxGQDQIWO8mxhSsZCzrbGd+7q23QK54jQtU01GV1drZjYLZhoBz+WQJYBgWebDskxlFq6Fpta7GrXu5uiBnoxUgSBp7rZlABMgMaALlzrpw8qFGMPDXYgKL0m0p+5EESFyCzP7SomTQswxHCLWWlv3fdeu4dd1nSqNC0St9e1sugl59wuSoqu3Hd1As+3eloTi+G++RuMpcWOzgbuG9iyaXW2/7kqDNTe88qPXtd62y257RwvwzDRALTWmGT4wVeFrwI7ciWFaHpa7Y53nee7NxqUBby7//LuEp8H3Gi4lEWHQ0WcOEu2QxiNTM6ulHB8efvzHP0xtA8pSyuEwE7ITFLqN6aUwIgIxAY6b9u29/S3NKDNvubjg4IEWFM4BN4Ds7V5KlLcIuLfagZmRCYS5iCuBJFKMNWhkEk/zUvbeE9Pc3SzC2+6tm5rfPz5o66aalntvmoBF6rLkvidAN923/fW6nba+RTog5eQRpmrN1LMURSJKinS1zlSIiKn07O6REWnRVRUQuRQRGFxt8FJKXZZsuG/bG20hx+4QMYdgyiET2AE8aG+gegukFCSuFZwiewNgLog4JFlDm50J3jV9bCY9DdM8fHjPMCLdU7v33jNxsNBuYJa9YaQQ//ahmA+ZTbqmGYIxCaZTAkMijZN3PKxMVCtIBkdP3aE38ABEcAxX5QEDzSB0pMjoXXM6PBl1gDws02GqlYWACYpZ0w6mlFgIk9CpCEKWufRNzc3dORXBa8G7I7/nd8s0M/i+r5qBNK8efTczG2fluHiGlg4RZSpVghlvD736sJPgNM3zUrRdTy96ef318vrLfn05n58v12fCSG+2rjMJF97GyH4sNN9SYeEN9zyuH0YSJIZEt+jN9nVrsG3HrjtBAAwGlqlqtvR97GzHhx8AAZQlvaTXhBEmxxSEwfRv8hm+vrRfZyFDB/L31TWj36qEt28TmUqtCmHhXMvd3cF1f3n+xOAP90sgZSTXSlKBSYgghrsoB2Z93DaZOcrpTIex/g7HSHADD4wI8zB7OzfTMWV8P6WGGsaoTEsiJBMKB5vlTQo6PpQEROJlvi/ina3tqhq1IjMfjvPerw1pzxwxJ5GQZkggJETiBt1Ce6rG2nvzsKB977t2TCAA60pchHie569DIESE5N410zRBFRITulbAsSyMN73ETbJ6wwGN9mFYIHNIZgPAAzuAO/YO3WGh5ErTVKyFoIwTH5Iyg5CZy6hRMgzTbzN/zGEBIwC12xntDqo2GACQNJUqwABQa40Z69o4gKUYIKbfPr5brqcPCfqoZ4kRaXQ3hRBMh0kFVcM0wxJRXeG62XS8Iy6l0syH+8NUC6XuEJlhDCAMwolg6Z7m4AyBmVC5MBmmMWCGMsjEhAAIDrFz+kJ6YPjuW/zm/XScpfVyaf2a/LfL/vrFbBty51E+81f0ktRSJi/MzHmTp44bCXlCoN7jfL5eXs7r5dLW6/p6barurnvTbZsiZuHGIWUErkd83bPf5ju3fpiIplKnUhgAvIGpGWrr4DdD3E2vGyaJaECBhataz0R3cEPFBHMNTwwkh1D3zfXSWlNVRORavppXR5b2IMtu22ZmQHjDJg3a19uwFxC5SJmnKuKqc+VCuG+n7fTl40OtYJAUEEICyJBwEzy/vbq3p3XgPG+aIX6TlQWYgXl6YIa3btaH8HsoDRNxVA1fl8m3TAmmRKzLzO7dRvyKe8QtRN0zAtSim5obYFBBAoA93SzUCHCuE5ivbW/XK0IlkkIFoS7HqtxXv173ayKmh6CUwxKRCZSEVabDgVpr3d/yRIDcsmkCQiQ4wtp6M8fENIeE3rtm7NojB0OLAGBM9QQhRLQ7A3kiJKTFtZfTDs3JSvJgN4EB50gPyMSIHMmTCDx+sYhYhKpwYTBUorfpdWAOMbx7RNLXJBoEdx9R6Zk5NgWH6eC2F6ZapAoQOIwrFJAxmWEoK3EQflJWv3CiOppiqFGMdV8rpRZGA09X4pzm4/0ikHIxZgBhX6ZcFqwFhVIYC5IksofEuL12gfBwv77UkvMElJnmFe1pgacF/viPz3/4kX/4eBeJ115+Wnn+y95Ef74cx+Ndaz0cDsuymJmIyE1CALc3bWgZLQNpYsIih7vj49OhTvQ73V9+/fRTL/n661r5VRJt3/btorbudkUSwPh6AY76Z/CMw0c+tQjRELkRJkZ6WIy5zpjihLs7E4RrmAuJAJli22Df8gxKYHtfAdVtv+wvl+uXrb28LRUgIsbhNJoEfROBjH9h9MOqivBWr76lkYNImWoVgtT7+7lwtP1K3u7nw4jpDQ8A8nBPqMgQMUiwt5kH/Pb2QubNHTwKafc0v4XmmIc7JCAT+OgMcwAZoqupgvrbPJFSCBDCx72MxBiUrpaZ6OweZmHWI5U4Es3dBQ4cwAkEREjJ2JE04eW8hSWhHJZHmY+EmNHc+Jb9gEBjhJQJPpYxwMyClHHTbDMX1M4IxIyQPaJ7FMACtxyz1neDMX2jTGTkQariNyFyAAQgRCbAl1O8XHzr0ufA7OhsqSSZiZnoHm4Jb6LoHAiHuFn9GUY8TVLiVzMmAAxo2WADhJkTauuttd7duqIUdIehqAQQocJCmADJkDdzRSFhJHICiEC3CPIMs+AIxIRKwAR3Ar48IMu17aoNwBIOpc6E3raUAsI4T7QcpE5YBKsQB4yqcxSe2dq0FBTa17w70LSUsPTdF4FvHvDpKf/xo/3x4/mHbzqSXq0eLsuXk/1Z4Ffm0QOXUkYnPO5FsZEg/HeBwN1UVU1DmRH4eLx/f3h6uq+6vUwiL7b/9V9+XqYv87St4d4boAH4uHnyFvbx20AbIsY4YUwKxlNOeNO+v1W/QG81MCW4WroD1YTQDm3PffNVwlX3fknoadv58rJur3u71lpH1t9gl48XmJk3s6GCLqVUriMG0czAmfDNgHXbEhIKAwRgzLVAWFtPB4r3T/fL3ZKNwfwmd8ooxOmAEMgDpfCbp+dtp3kbYmH4zWQfkZFCNEKRbqqJDHdBpnCwhBh6qEHGnQoSXa7P6jZmvCjIhuoZ7gXnUVp7DL5UqG2trff1Xc4G5kOMTAlLnWqtyHw5XVsz95RkJmaZWPS6td7VwjN3NQcSZDEzrWOKTAlAkMK11puoCYsQprbmFkAsLAUJw7s6AkgpyBwBSRlvAy25AegzA4eQ+fVi59W7gyVwAPhmlhON8fytKgYat3FGgKu5G+RtqD0MVem3j+/r6uTtZaZxNL9pCAIAhBiJWmva9wkLw0I01GJIjITEAkJDtzo+O4wAnAiMkQERhbEWmJiOM7y6jwnISMwjwAhL7wlzDi4NG6Nh2hBUotvQrlnbo7cMnWUW4fKOHh6naebrddtVF8m7CvcFvj/SNzM90Ba5ES4PMB+ceYchgB/l2xgejfZQzpp9inM9XfFuX+C5rVd9xnKiiQ3SCYjLZh3PjhqZRfPJ4IhlurubvfpyrMSVZF47i8xId8mnS7z+Yi9/zcsa9njh68llj1yvsm3HhScEjLWAlmCKLVyZJpymTlgf78rBlgfyS5zs2hETtlc/veoLtUWkbnZsHdfz+dfP5y/b6QQXKKUAFMb0ra2fM79PyvO2epTndd3I6wPr6VIBWtc9lQCOx/lIvng7wLFFM+peHGsFzLSrbp9te57n42F5BF166HSYkIAzGQHTkNHdGcq4gSnoNmcmGQcXeNA0g9re2kwC4Jmh3AGSAV011WSqCWxAuLbHw/HsKwin0NntbrlblgVta+czJKR2SJ8Q933bz2dXYMY7XirG1k7ZnBz8qvgOjg/Hw+GwXfbLeo2uVCoxPRyQZ7uuuLfz2q/I0zTr1C5fzi6TgPPejefCpWYmltp6BwhgIkaCJA7ADmBWKNHWXQHLVKQiHo9TQVyvTeTuvF2y27QUZzIi7+mQ3W2ScuDS+j7GXaa6N/jTZ/3/fLp7vL/7Bn4t7bQSXbOyzK2HaRBidMe2z4cyEZkn7SoLW8QW1sD3Bk91hpr1ULwKc+6trde2vONaqxynUASpgGVv+/3jMTG6XltLhEgSZj4c7uaJElY34JkriyTNIBnQvfNUyqFwn7rPkeL7ZVJ9YlaelZbDLBoDww+hgFAYpq6G5nPkPeFHhHnfii6TTLuiFbimrYytFC1FWOoihfye75aJ7u7pvtjnluJwJ/RQStbqi+7Tngb7RhTlKZ6WTxPaOh8PiLx7CmdABJi7yv58Xqn5Qz0c7x9pqTJNuFQ5HBlqQazldNW+X5O8b6eff/7581/+dHn+1NeL9bW1Hbar6h6p6VckR0BOL5mL8dF4PsO1rT362PhFYgZSqVLm9tq3Fh5EJAjA7ofCj5M8He/v9jbvXj16AGHNYFU2T4+4bt437ytmK75NvtamZs1dxmAjrusml5VLmeqRmUdDKiIEpJgYVgALFeFaShUqloBARJKZvfVNr+fzKwtJveVCTTwNAdxXww3c0NmREBhxG1Di0GLhEA+BqvY+CtPIAHAiYmICTL8tvaZpgsJQAvl2Y6SnmbmaFRNi8lRT1w7pEKbbvq9r5LQsU6nVkocuh7hM88N8POje1m1TNxGZWZrH7rptVPhhnu2yvq6bTscKUCB0nq337h4igiwjYE21uzsiAhqRDDEzM7PgppaIZgloo59d9xQAIGYiBtbxI7zpufPvfMJfhQaImAnPL/tf//b68n753VwZxbwDV79puYQwgX77b98EdnEzLXNl7l8v3rEm7N0CQWTsK8e2D4fPcdu2oXo9Ho8IcZhk2EiJxxkl7i2Cb4mORDws7p7IHH24IwOBSwFEGUOTHM5kgLHaGJpQKZSFpxkOx/lwXJbDVCu5pWcEAtKNlIaUQGju6F4izcGRqKDULMs83RVC4kLznBmcNO8uMkWZYFmWw2HmQwlCZBShDCJAgS0hrLJ/OMy9TOFSTLJhu65yN0Xa1tv1dLJ+vZyf//XPf/p//7/+8//4l//26fPzeYv10K3v5hppyQ3qhCZm5pCUXIzLzk0SBKFwYESkOYYnZem4XDt2p5GCzdlnweOhTsuBuLwNhCrJEnJwOpw9w/N06e3SfcP9Ott60PPhfPlkvS1TWeYpSCzIM5GKWR+VkrpVIpECppk4SWHkQjJRZRBMF6yFJyrUXT8//3w5f55nmaZiEEFEdQKzdB8RRHFLSiZgGvUcehAMNz9mwE3G+5YDFhmqDQACokgZAKCx2Sql9HRA0HB1Q+BExIQxZhNAjEj1VMswcIveU60cDRkDAQXLtBSagUlVu5ume0ZPt7AeuXbd2t71SGSRzHJH0jMqU1kO5epfXk+X3nuZFohMpEgcluC/m83lG2IAXMdYA26gW/CmqRHzdJRSqMggFhCxIBlRun3NOh3h7Dd1LMDzZ/3v/+3552/L/+a7ByzqaoH2xpUYPPDM3yy9gXgLshthTohg6g6RCBZ53bR1QxSuhYqMOvyrikNVGWgqRbhwRq1FhGjYRZiFAiIAafAYkQhvepJwcAtsu/dmmSBUEighbPzlwMOtPXTHiAhgSCFSpomXpUyTSCG36OmW0cK6aU8XJEeIdETXhJ5gmSAVOLIwVHHwTPTxi6Z0aEHOB5ttKpOUqQZhgBMmIHGtMsO8BLyLSjwj49lUmsdu272R8mZ+7vbT8+nTrz99/vS3P//5X//bn//0t+cv561vUI0EfZDEW/DUqARhIF6J9ipOUx7ngy5wWKjuxjF4DmQhZlDrlraa7RgNEzG9UtbMZfZaGqVhgnBO1eq8S22YFv55a+3asYX1cunzpR8ul27aAWiaCJE9wAIYUaMDRaSpdgauQ2GLzESYgOP6tASginWRQ5kEr3o5f7a+3VdGzOZhRBURIrrb0MXfFL9lVMswbK+3aVaEZ6RbEaEMKUxO3vZmiogBHjdBMDAjMwLGer2wBYWa9VpmYgrEUpmFuipmFgRCME83l8SZy7xg03VfNyQph7lOBw/w6/X5cppKrXeHID6fz916EPIypdvr+RTAdbqfD9O+u2kgk5QpIixAkNQ8MmqtUiePDgO5fPM138YUQpCMnIkkw8oYkJ5RIFOIi6SqhpeIweDu6e7g4z3EgBuNPwCmq9rfPrW//qTrfzzeHQP2a7dGlQALICMjDTsmDdVLICYzvkkXMBNbUwIHxEiKZABmqcTsaapo6r3fSgkRYSEi0n0Hpr87GAARhDkBiIPG3TiEJ+7mbmHuaIa9h+6RhsBJ4eaARIXZWCCgrbsSFcG1b953c4/0QeU3a2rpmd1t2/fztm77Pk+TZwTkcLtqgiUpcrpdtV3MAWpm7k0joKusem04TffMGyZYpnhkpmdCdKUEKU0O6nPHQ8+i/mx2v17r6Rne/U57gGklxsjttJ6er23Tw3R4PD5EWw3nWaYSidZx304P9xhV3YsjV4caeCwi8931IGXeRUKsTLQgHL0/9Mbp0ay1195XP8xG0CAunnuddiEjUIxEc3ANb+ZQUDGuEHs4ZSKSkuxEtR4QYC7zVJcik4iw4FSKaSOGwLS0IU1GKeyOaegE4dabbTUWqShCJXq7Xl6vz5+hX3ia2h69d0uoCA5v0osRDDsCaChQAHxIAm8DGHMfvpmhUgjU7j0x6G13p6oYt1ENErk7EwUkMEkp40RPD1CzrunBiAnooWaa4HUSjV1VNTKpEFBKEE9Qjxi7zPPE1QL0crr0XROkFqS9LBCZGqs6JLNHXtadqJZpkZrTcrhue1dHlkrU9g63AEceGcvjcWcGICbyJKJEC3BIALC8rQ1HHOxtFA+Qw1RAjjco/NjDBAAmlJdT+5e/XP/yS388TsCL647AEAgjUO9N3JLgqt1DxzdjOpx3I8LSAgfZt5LMyOyQ3VqmDMlh7x0Rl2VJjAhTdU5BAMREBISh/HNEf6sMbqupG/cSPKkSSQalQXoKJ5KAg7trHyEVEhGtNYTSWoveVeFtO+1DazPq/N67vUEmRitRCotgBnmkJ0XE7qEJpSxcIIA8IYg1IQmn+3k6g4YDGkJCImZ6V0SS46umBcX5nr6UzQ6X/vjn/+6H5XS6llJMW66X6a8/Hf78p/dfnutl/Waavj8cX694STKAqV2n/SzbyyXeZ++tp/f++9y/O7/eza8H3x5VAAuWElOX6ktfjzu8267fpwLn8fyZX59THvtVT2d9vfjPX04vr5e2Gjlg7LWvsl1wPdX5fSG6r0JTIcwwahNKyRuzBIkzOKNQzCy1YCQmxii6wGD0SOxFUAtnpaQ00w3rwhlpevr85dNP//ry819jvfTePEqYZyAgsshw7d7WR5kRDoxwG2UneGDkAOgWQkh3U0oYRnyu5ZYnEKlmab5tWxDO7x6XZSGLzKwUdRJVNW1tvSqRhap3hPDwmx8LkonUlIocpO4W521F9funD8fH+5zNzbbelZLnKjpFJNcirh/fPe49fvnltKvfP3wUp9O6Xbe9lMKlIgs2ywxVJZQIA4CAsZm/5Z4wk2kM9p6lB6Bn6CBdpkuY5c0t9FXUMRThkYZwC20bBTljQPIK+D/+cvr//tdfv33/NN3VQIIUB7CAiMgh3QPnxG2/qrbMeRx/AFJKpYKdE4YNjBipAGEiOAQzI96q9zFrsFBTK1yYcRhIKwuiJXiao4zqgP9uG8/MqB5EhMCYgsiMzMSIOJX6erleL1eQcjgcplIzw7qGJwARVkImFBrwKAiIFmrhXonnaaosBIiABQETwNM1woGBmLEuNYcke4QS4rx1vezeAw7HaettnqtlpCUEAutcqtx/0qodP9vda5Ye87Yfrrr9/Mvdf/zvpU7SjbY9fv1Cv/z6/bb3bX/Jl9xcvXfnWE/8y18Od8tkl9WuSUf1ovt+By8/Hn6+K3+p/pN/MTw1CaAaUnzS9j6jZ8OJHPPHfS1/+1u7Xtrr5fSXl/NP++XT1V/77PABQBCPkd+Zf6NGGiJynJb1AM7YfKPqr9I+maJHatcd+n6N3sAbakkw1R7gJDhy14Kqu08FloWXmQsnhEKWDNW+r6/7r3/5y+unn6a8dBbORQAxENxhPAdmicDMKIyIA0AFlCO5FyGJoCIRUpib2SSMDCJEJF13604A7pbu1+ulp73Lbw/HpV22fJPsj3A2UyUig2ym7hrWLR0LMggLYjJKASltbWq7ZyxpWAGCt8ul73qcj9/+7ocn9ZZJRU4/vZ4u67pezQmh7I0S6lSffv71X8eYp7fm7kCYgfY2PQIMAL7p+wEAYvT/ERAYnl/vLOhubKpuw8AfEaEGEcPFn7/hit9aa+jAUzq9XuIvP71+eVm+OwhhBeJUdE+LQXZBAIi0IcYeu6ghJ2QupVYrGpDdXHt0i1GslMpDSjlEzuMHHP5hTmZmghQkYhiov0SXcutokBJ+M+Pc+F69g6ljSCEZSHoqs5u1ZhVokqkUoRgCO2aEUmqth1IWkUm4ioRk967RFBMKECcIIJFkBBj08L6H9cACzHg8LgGbA4GHOXSn09VeznHdDyDBSXWZ2F2zQ2RluT/eSfn1knsjiHpunMDd6+766def//y/PBzvyCD2bpf1brOSqK0XOR9zFqXspP3FMyfQ6fTp9Nf/QvKU+OAhAuej/Dzxnxg+fd4k1KztAFFKHmq+n5jvpm8PpWX+zow/fd5e1uvL5fWX5/a53eH8rhysmgsV5rnU71m+Q+o9ZuJjqfsSHezawNjv2f3pyXQ7VKqFJuFJqAgWRtut931MC81CVVVI1etEyyzzXEWIBngu3dpuna+n03a5lNpDjagIMQKE2fBJIRNkUhEUuT2I+RuiGkcsEiNE+tDQTZUZihXA0FX3dZ1KgUjMbK0pRKjSXIc+7OseftwbzAyEata1QTgzyU0HQ5nYLdreW2saSjx12647I2IzVdP7IncP991C1Jzgdz/805//H//5z//6aZoeE+ef/3Yy5+VwdPcyzcMMMJwAyAURfd9HHTw0zW88BeCRnni7SG/eZ2C4idgzCImQzCIyIoP43/Cub8cCgCYIGkMJsuvu+6Yx2O8DYPFGi84hAk8ACCIYMAb3gExGJmJmd3BVbdrNwh2AUEqBNyuSiLjGKChqraYBNyPRGwwUERGnaar15oT7GmMXkd373mRr1of7FjDG50o31cjXV52IamHY97G1KDIJF0IhqoRBgGmuvUfXMBywhSKCZg7g5m0zVcV0Aq4sUkBEMsAdTbN1aC3NycIinAUjcICEAWCuVf6yegSBA+tViAEDrj+7e3uUI0jZQ7oXoIB0kXJcFn/yCGCMRX1/4e1l+usv8hPzexQvEofAGpWyeJJKGGSbAU3VrRfCmvEB4se5bEt5mGf95//n8Zf/dZqm9cvrbPB4uf7vIv7dwV8ztnQjX5bDv3/+y+N/XeHuW83AIoa5Xc6XLy+Pnz7/0KjHJSnREUD4sj39+vxhmia19+t5fj7Pr/Yc8zqXteu6ne6BPmY8IAXqC0D3XJyeAJfr/lN+8cvnPJ3siF/Av/vum973pUgUTkR1QyGpNSLCtCwz6wQYSV0JCNPT2ZMYDbEDOAL1Vuda5vn6+qzbxoLToYy0SxMXxPBGBud4BoeZZkiLvm/rGVCX4zw5z1R7+nT3rs6lt0vfrxn9l88q8zTfHZVl3VfdL7kxoB8eP3Cpv/766/n8evfyXqajTPfHx3fv3sn//H/8p477Tz8/A13KXbe24uHu9//49PpyVeVpmnxT0yhogYhQAJ3CLBUymZGAwzRYergxxG0axaFEkAHZdkfkTNA3ng6xuCzmLV1nyCLkFu4IWAt0MixM0/HYpvnF6I+Av7+rPx+vqhQe2IWISiwA0DzKqoWZpllR7+b7WMEb9eDKk5Qli6xuZ/eO7Imqqqtczno6X8+6ZtykrBJVUjCDwJk6APTogH0uyTGcV9ISgJlmcQMACvx4Wfu22nCwORjWCZA9wtyB0QjX9OPdYy24rddzzBOvja9eOhQOnAPQo0U/RLtHfRSkIivCGgbuEy2zIxm6i6dep/BvuP/7Y/vuqdSwSPbk2Ga/LO16dn+Ndh8WftkIopB2blY6PtzJt//3/8sA77t2iHAdjhZb1m19Pp1/+uy2FiyJEEKC07HMbp0BkSfHXpBOIhHRT6fJpwqYbL0BYXuNfgRrz3YsRYiLlMJYmuvZ3OLBPk0b83aitmCty7pyijQLfmjg3013tEyWEczfvLwcTP1v/9LDUwgZtPUP69rO1+1y/lxLOhCWBAjPhz3uTyZtz7h8405T/YFZAy57u7bunn9Q/0Hph9WeMmuhsgTq1tbX6/Wk5yZZBMkhIWndW+6agplAKMw81GaICJZIdKP+ZFqGIJIAEEutgKEtCAHcrW+9t4j4ylgZ84yxwJRahWuGQTq4fS04w2FTM8KUyak4TVAwDFx5eXjYtO8gh8f7b6flerkwoKMs9w9PGdu2/fLTz+effyr1yMs6n8/to5T7w3/83/+H47tP26aA/Pr6/OnTp8PhQ9zL5dK3FiMvw93VHd5kavx2Z4o4M6u7h8Obyu5t8HMTIH/dEv39F9+IXXmb2INHRhE0C/P9yyl+/mX95XOsP94/LjOZcDCmUAJjIoRAhvex82RBQWDIAEcSRCC+RzxCQEbjnBln4aPgId8QlkQUeDNoD3PF2EN/7XXf1Fo3gRcGIPmQJwKQ8CQCCOG+d3MTLCjA5soy1QNJIPbe13WFuUYEY/KYs7zFTUaEhpur+Z7pxCxYwAFA3EFEAJAiiQOFaoWpUCG8AYWCTH3d9bL61lrrI6R5iIKhIBeZieePH97Jj/+3/6uZWdc0zYjQPsSVy5frX//7nz795//lX//XfzmfTtrdg5jyRyF1JkgmAiwEiBqq+oRtTli4YKHdPWybot0TbY2feD5ySeaV8cSqYoL0ADubI8nuWgyMS/Og48I0wRY8xfFYPb3p7tuvzU+zrNpbggMiuxbPGWyu/Z4kgwQpHNWjXveKJ+DV4RNu2304iURiC9iS3P3HIgfEd5vOqEycsZ331/7Kn768nH+58MQYFSkCynVtTa3kTYOKLBAJCQhgmsI2rNVYOKFwBgy9f9pbciIAfKXkjm3wXKvUKojYWmutHe/u0NPVmyknuHWAIBREhkUECNZ2MaQtAVhjboYPHz8ei3Swy3o1Pj58fNDWn5+f97/89eF4+OaH76d53rbmKbvm5XL55fTp229+V8sxGLe9T9MkUlV92xRBMrU1RSy1iIcm4hiWDhTqQKWPVzMJCYgxYjCgMxEI/85B+ff1cmb2fS8IDEiQwijI3VIzRo4RgQTEdc/zNS4NNy2EhaOSD3l2CgSnoeptioYAmBluaRZaZAKYM6qahxeESXiZ+FDKMuA74y3KMc1+08MT3ez7dMO+x9+PhQEdMZEACNAzdso3WA9SMCdwczCzMpB3/aaGH5gBKaKFaZ5kBHIRv/m0oJk3y5EKRJCMUAlqRGi6qrtbZTzMvMxcC430Nvfct3h92V5fc9vTnHi6RVh7hCCXKse7+f27B7n/3T/ePB8QQ0GT7hHRT9fT4/v+cv0v//Kv//z58753nmYp07v4JSKEWAgiAhMI08w+ii15PU69LgcVjNQ7yCdBP9QPUzkUSYYrwblgm6AkLnGHiXMtACAoyblZX8qyeG5gBLn5sJZi25Wa3j0cd6XMHNjJwgyzO/apBxEXLEHQNFAvuFqPmHETsztP5mTAiAwmYMGJ0XvLloZp1FvGC6ZdXr9ku/TD+2omJtkUz6frZV3fP9wMMQAYbgiAzKoaGOmB6ZnpaQSECBHurffewrUQY6aZdt33fbXrVoUfHx8P83yYq3f17pAkyb2bblu2tne1pjYZe5W7+W65K4/SkhI5Eq+XS3993oAf758Sou/dhQ/v35GngbheeiAnitRpokQ5HGsQ/3zBtcGvX06ffrn89Lcv1m2SUvhx33RZjpDcdkXOAmCu/ubmuUE14ZYUN5VqGZSYQeThgBkIOIIFv0aE/ptLmMCZuCQWgqUW5rJ2o2bXcCIoskzogLp1XHdcGzNW9jLoCMQAaAIMZhoKGAQBbuGqZrulU0XvaH0oghG9EDA7QXfncLhRbpERISkQmZBEbrSWG/4FCMCJeDAnkAMJkTADItx6agtVB6BSGZaqJdu2WUACJgKh1FqneanzZERL0Sq8TLWUN8cfQgIQjdBLj8jeLT1ykTodLV/NbOtN1SslUxAi5a3QMc1989dXPV+yKzlWSWEZHuvI7Mg08TwLyr3MAMBIjOMfW3q4+68PyB/ex9P9r4x/2psnYOux91dwACiEANAjGUAQAOAXouJQbM/WG4R5PwTcAX4/zR/m6bHOKNgKPre2rjs5cxwAYF4kIgaLZ9/a8SgfAsOwiNSWAjjxghBhHb+Y9SzCS52K0FwqMajqqqcishQhCYOO3IDUQN/hnTAnpQASMMoNCvxFRsNEbJl7Kqjpq51Wg3sPtJR0tMzrvieet+v56/AUIkZkIwEwIkFqGESYtTRDlkKkaemm2kxbagrhtl237bptl9Yv81KXZWIu8zzvWx8ctonqHti2rYXvvWki1cVArD0DTy5TyKEuU60TiFCRX1+ef/nyHAQ8zZT5+nomz2U+yrFu62VfNR2s67qeNZB5aoqmljE93f9et/t//ud/Ob08H4/HaYoiR8QCQBmgapGOggUZkSxhvJoMKCK15mlfM1OGsCoHon5EC8Dfw2u+ihwr81IEPQV8qlVEiERLRD93g1Dr4FfSrbkaeBArDG1TMgSNi1HQ0HO4hZEBE9jcmltESO4QbOmJG9AOgO6vpgjx9HWVlTnqRCQkApSCUoaiC2+2NUf4u3HU8HJ7mJpxHs287eqeKAVKTejNEynHLnoIYIfjAlKmijPTYRbh4U/kgbXIRPeB28RunqoZKFKAMijcNcyykFAKWEZzCxfOZHNcN7hcc91QBQsYUbVurhq+MyRYxWjy8rojpeCA4UR6ZFhEnPbtcu0apRyeHr/9B6IiVNbrTrZFhGGq6rWfx8ONAJsWsSAI7+YISLQELYl/su2DbU9SyiR95mdtL6t6h7lcIgmjqg2qd6b2Bzk8xb2ZVuU0pYyHw1KY0tFff4WIg9RjrUVEqqCwqnbPwnG3+MQZYYLBmT36d35AREbGwe7JhHQKDCBMFuDiAA3UwpW54wtfjN1NS1QqbCNyNTW8IxOkpmZCYBIkECUgMiIVLnIINSIMs3Xfbd/UmvXWwjHNrZv1CFfd1vWy7ddlPo5gF7NIs+xpW9suZ9Vt72pYUI7FaVoOre07dFpcKtdS744LvJvff/fhvF533UspGXZ+PUHrx8PhdDplh8rl/nDU5fiz/frrp+eX7YuXBzNwD/dYL329+NqyLgLN2m4ZOE/HRLDQcCCiQgUgKGC3pqqt+77ZvmlHvzHoYzA3MfhG338TXeLfl9ACAeFgRgyHUqbDEslcKj7n5axuyAkMIDTSGs3dkxKEoEQyOFJiyaiQQiRCk6AjE1HvnhaxpCF4kCe+raV9D9uBbtxPM8MIBrp9h5CINz3m18UYDQowQKa79YSOSe6pqqU8YaBZelC4hEknCJhRgPzWXDTz03Udqu8KTuhFSCgRk5kGvr/12Jr5m33KMAPcU3Ps9kMzszAelnJ/pPulRu7ggFFcYd/yevWtkTqMQE+zhMh0tWaUXcDlT397hkHiwhzv8Gj1f/5y+vR5g7z74z/9H95/+J8ejo9TPW7XndhU1dN775ft4u5E5Gmv6mTu27b6noWnaZo0+Wr/Y/2vr80u19W2fQ8/Z+wJQFAgDCPNIQCIwAMpH3L7l4xmbZJipmB+wFaIhdl5I8wDWPUdNVEJmDR8aTIx3fepoqd3lqQC5vreX9+iOiMzI286mPdchHkmKSAW6hTliDNNlziREIYeuc5TAQKhxGhq28RTQnj4yPHJCGQGD3fFZERMSkBs1l7XU3t9rVUIs2uztobrCG1y0/V63q73y3RYpnmrPczb1rRZ33W/ruv2ct52y9JduO6V+LI3Y1nevWt9fX1loBDGd9/84eFQZ8utN6L4cL/AVBBC7p9Kom9nCihA3zy+m1CeXy5/+/QrQ63l4RLbdn2J3JHjsp/eH+57N0BZliURrpvrrs3a3XI3diqC1DPHTtvMcwJMwJuNMgHS3TKJ3xz8t+XS18VxeHoSwDKVu+OhTrMl1Gn5jr4lO+27ScBh9mXmuSCRanSukRJZ0QEtCWCObB6YObJEB+qsdOvZrXXiScIIoTJE5UMtx1oODAWRI0D1/8fVn/3YlmTpndiazGzvfQZ3v0NMmZVZWUNWFVkkm0CjRYlqCWiggQb7pZ/0Z+qFLTSagEio0YIkkmgW2RwgMpmsHCIz4g7ufqa9t5mtQQ/b781UOwI3IhA33M89Z5vZsrW+7/sZeQhz+KYYaxFl67W9xE5g/J4hITwsQHnL22ewRVUVYqPvlN6oSyY+ENalr90C05bdHl0dwZP3IBP6lOiIuLl03VJdY126wcBJEAhZzVcDVTOzeNF/JBoKD0WaUETU2m/XOJ30NrNDIik5DcJM5EwJg8A7QQxC8s/+6b9FcIothw0IMDEi4mWpT8/nj08zwH463O12r3bj/rAzGDdMo0dYdwOKbYDW3aRbm29zv8WQxnEsDfy0Hj4c9f3T4+kXj0vT2QKEgAll1DkgVSCHxMgQNYONLie4gUEwpZS647LqxdeEeSVAiwE0ATo4VgDGDjFZzZ2m3tnNojMAAirEPVwR8SU4HNwBEMEB7g0GhikNRNJ7NYkJ9vtMX94Bj8k4PDEIm5nautyuqq2UBB4RxixB4aGMCGHrumrrqmquwzC49tbaPF9TuitDqaqraqtrb7WvS63LFmWEiMMwlFJ7t3VdBYnhJT3zdHqeK54XB96lro+X6wI+vbob7/bORuy58J/+FO9fPXBmDsVwjHBt1tswfSH7UKY2Xx2UUl6A1tu1Xj8gFT4wOq3rs/MyHVMPn+e1Vkt5HHcHyalbWytHxDovZcw5SyklCIVLyj4OVvVGAaxo4eb6EkkSLxEc/5uviCAAIc6JtvgIAKhLq4GvDg/zc+vzFdzRTQgkgXA0NyYAeUkBNERAASzawYnMIpAQxSxaBwPvTbyKK4IDo6Dsp/KwH+9b48+CMAgIii01HMI/xeW9eLc3mcrmjyeyTzwqQuIIfD9ftw8rp4lq6kpBxDih9N7b0qBQGaY8lCkntq6m3VkBNqAbbnFr3Q1BevN1bcoJEURe0oSFRcKJNje4eg/tpg3TmFpry9zOZzufoTWQPKTd3TjsckKixqBhHIFCmITkF+9H7Y4hSTK4L8vSWiV0yGPtuMQODgjIH0we15wx2UxNewAEmHXNhELsra+Xp1d39/s9p2XBsEFTRL/h9Q7xKX932V9tgPP5O6DuEG7tFinlTIjDkHrU2psKX9YFePzmT3/y53/jL3/8kx99++tf/OoX/+Hx/W/OTx+PNmwJUu/ffQAEyImIfG0uQ2sNrCFRyuOm1wl3Qtk2WyB8SVdHAMQRmxumyNAQPLHOu6fnnxwYxm/uR47228N6+oOvvnn6+Pzxurx7rF/fVhonR5eEqrWeb/tUQq11OD8/LVo5p/3d3qI9PT+mjPzwBksmDiH1dplPT+DOzGlOVvt1ONfjrRyPu9dHQ0nTAZdlD6++1NlWnd1708ff3C7zMx1pnI638/ztb39xf394+83x7VeHr968ejusbJd6zYhD7dbmS6aKVv1RkIMyE4+9krS4O9z/+A3A8mzBv/jNX//st+8b7R++fLM419s690XEG/ptvu187+iBOA1HzBARa3f3QBxKRoQWto6zqUUPUMDO0LdGEXFoQgjeNFsREQ4YgpgwDakwapZcJN1u8/PjUy67h7y/3+/ePX506o8GT6vVNhHcDdPknn25jZ6HPBaoXX9t+EH6koZFmFjidlGvgRWmoQKNVO77XK96XunqjGdtU80Ic4W6QO3skjINo7a+3uY8QE1YGReIVT3rKrgmMYd7CJYgRiEJztzcau/blh3ks72zRIVynVFVLk2jSUHeRRmjYIWlWgADPpDeMKYiu21IHjQGktOFssg4rQrVTRKt7MCwLufrbBBZshuojLY/7LXHzs8Q+953F7WWu4+txzOb0f6+5SVkobr6gqS00rruLyL4wCmy5GnaI/A6z8tyM7OlRkZNBbhkwNRWbVftHRKv2CLckRAUFMBRzZxyaR51rfN8C9MhJwRobsBZhuFwvM9q1/VpXq5bnKNvCAjvBg2IwiBCweGnf/Kn/+0/+G//8//if/fVV1/85ttf/tt/+c//xT//f30vg526Q6Awj7thHIfDDonnulrFzXqyFczb5ScifPO1glt4BG30oS3C1iO0r+4IYAIwr/D8dPWHJU1jlrQXLODJbLnWy/v33RSICKP1tq5rW1fqpr0vCh2Dx0FSCk611bmZd3316m3U9fn54/z48fZ8aXONCCJxD+EEQI6UUiERpyx5MtOc87jfPzw8rEs/r8+q1SGGsmPKpWDJDsC76fjDr3/85df3y3WePy63BpT2nFNCyGViEaauoN10ntd1XpKLAIxj+YOf/OX3Hx/5ednvjlen6+V6mnXtfjfc9d5Tysyp1q5qEVRre5mN6qZATIxkZu5GRATGDg5EscFLt4mwA6IHBDiBA2y+I0cpnNOQEjFfl/l0OV9uV1z7TsRTTinNvc03OD/X01N9lkj3h0AGzMhDcAmACI4YGXHrlHlgIGDKedJxvxvHzIkIO3h1W4ESQ83cwJMEsxMqeLijooWQQDdwJkgJh4TAQAmFQYNMg7s7QhiGddQQ9cxpAPLWl7VGgwjmFWJudlsqbh9Mykagbt3CwhE9J2YaCu+KjITFmtXVbanYTBykuxoIAveIqrXhvIQIDIJAkArlIQFrq1DV1ua1aTeNF5sjMYIDqCr1zuDjkKdhzJLk7u4QESXnaZoy51rLOo+99wgFCipMJanh88fzh/V2vlx9lfl2UzdmcggNDYSISDtz15SZymFThlqohuQCKerx/o0ZrOtjIr0/HB4eHjqO83x99+H9styAHBDCAAIeyvT3/vbf/c//5n8mBHcG8dvvHseH47HeHVMgYErfHz/SMPA0AFNVqzU2Ji2+UMJfxrDLekspRXhrzay/uEO9W8ytgUc2ResaumbsQGW9nuIIZQwBRNOCIaHz8+Pa6vZtr9fLuq7WG2bva70RDbup7KdV7Vq1rZ3SfpoyGtyu8/n94+3xUddlk9s7hqRBiiBncwzgNOwAxIIi4MWAXjLn5O61Ne10OlVEhWDCUvJ0GF8lGp8+zh+//26tYTx+8dXu1XS3P4xDwfl2vrb3z9fbu+fnd++fLs+3AuUgE1vk/RcK+zdf/OHuTf34PP/sF7/V6w2dd/e7Uz0XGUopT6cLAo/DEBGrnzfsTDgS0ZZPwMyJZQvTJAgERPJPsbpbcjVEbP4kp42wnSSNwzQlIVy1r9oVQ3u93M6HV2+HaazX1s2utzid6CIpu7OQrplocEtKsdaoN2FPFEkbr4GLUgtzAZAdBoI6B2SABIZoI+kIPeeHK+YhJBlC197r1mQiSTnKgGPBUdASYiJOYsQdCQLdw8AhLMzZnBn3sMkwQjqxIl1afbxVRBzTSMMEOSsgMBqAbZG5hZgg5zwMU5bUQzJ3UBPAhIRhaI4IuvS6Vi273i/AOThAOidhka6rKKwNL3O/LL05SE77sj8cD4fdsITW2ftc9653x/Ht8Xg/7SWnU9eqBq2WSAkCJTkRCCQQ5AGkoBr4ArfcZ1qeH/v1eu29iQgw9DAFQ+G8yjTB4e44jjtOEhGtVYVEeOngyMRIh2m8m97+7b/xF3/xF38xp/2vf/3Lv/qrv/r5z3++riszA4JGTyW/fvtmv9+fHz+C2t2w+8Ovvvnx69c/yCOVlMbpr7//zeN8udamgkFIVn6XgQqwrWQius2nnDOAL8ui1hNtuXZtpVqbNUVVdvXonaIPOVE+ecJO3qIvuphEJLq0+VZX1z4v8/n5BADM6BCKQUORaYiUerdrrd5MUBzSb375s+vjx/OH366XE2jNm2dlnFIpUgpIaupqwZIgsjcjZpIcCB7AknMZOSu6PZ7mcKbgoUzD23um8d13p8fH31hd3375zR//+Cdf/+BHAXS6nt799uO33/7i59+9/83373/53YfTqWHw28Ob17u7FHib349Tfv32+Or1V9OumlKCsi6OgVrbOi+MQgDAqZSCiASttaZ1i87cRMKZiBZtFg6uL8P/AIft6N2wBrAtX9z+lTkIHQKZAMHcOUkZBlsVwA1tsysCQF3k/ARPCOXpxsnXHoQmkik8AdSl2lxQ4fmUsvBt9ssKq2eQicCpus2pwLQnRRhGZV695EjNpXo2wGAOV9VwlDKwIhmSGVhDnxF7oiBRZAMKDI0wM+zqvdn1HNez1SYkOyFePaqZIe2GkXJBpu6WSdKQC4u7D/P7cQqiFWBGyBDMiMx91tY+RUh3JEKsjsvaJB2bzmjbLA5IhFL2AIBDN7m1fq2qkHb7/f7+9d3D62F/OK1xvT322hPB/S6/Pu7vh4N89+t/3/rs0RJzzjlRhsgQfEg/NHJIDMIReH1elud1PS3X/rH22WoDIxbprj0Us6R+181vqn0YOIkhqpuqWjsv62lZT1afw9vrh+Pf+os//3v/xd+7Tbuf/ezt6XT69ttv53lOSO5OwVgSZMEx41RoyOkwPXz95cD4k+OxjEOadvxql959bx/fL9aBcLRhO3I/TyA3G3cZYUg5wtpYzDdZBXStPWPrvqqpoxuAGgeE6fFY+MBBveX1Er2C3kDrfJl7rdrXdbXWh2EgIQdQCJY819auS3djQEKar5fvH3/18ef/Aa2TtUFYna3rujbElPYTDxmzaHh3K4ggSYJap400v7RqEJwkAJZWW2dCXNZe19s0ncZBkNfb9enLN3dv7189jPvT+w+/+NUvv//4oUW/XK+w/9GH2+3f/7K9f3/JPH08rveFsHet7/b74ePp7tXT8e7u8M0XXz7sX52er//puycOW29n04osGDovVVIaj+M2eFN9yR1ERBEaUlZVbA4GgZ+H40z4EmoQGB4uCIlFZHMbWK3VEezFRcTuDZlaa5f51tURYFnt++8veG2vETkt6oSUhBIDZkKr/XTGPHB3EuG1pmWJDrws1Gfgi98a+m0oTcEL30S5z/i+fXyCeR0DS8rMXKGqujiwetSq66bvnzE6MxAUghAAQHLwrtGr6do/vr89P659wYRjJ8DeBinprmxJANEaZBAa9kOSnNR9gDZNwXwLOLlT7b07a18u26kJUTFUEqXAkIoMLdSVG/qARDDkXPKYdYzIvftc+2oIaRinw/F4vDvshsNg3IenQYl3A9zvynEYBkjy83/7r81XwJYEUypMA1gO5zdvvjdQBTMChFRXvT4tt/PVrDK3lGxAKcwD6uo9gvZRqSYMsZY8CaaMBOgRega7hN7W5YTRp2l48+bN67dvkOn121evXz+ICERQkLsjoBPOrbYwLKkLzmg30B4Qu1KZIyFNpRz3pc1tWS22xNLfcQk9nJAMghM5BzhyJvacCCECKeeck0TqPYS2w0QA13lJO6CkUqY0ZuNo3jphEHrElroqzCXn5r1pB0JvUFub15uIZGEEL9HO6/n13S6RFzxS9Hq9zfMSyMNYUFAGSlPGTBbq1ogFEAKBhIEJkIHYAJfaLte5836/H4Vxvs7v3n1QnV+/Hu8Ohy9fvdF1/Vf/yz/7zW9+83y9lbv9F3/wB/evX8nDX3z33Znil7fZr3ClGjZc2foffF3Gcay1/aef/3ochz/8wx+9efNmfxhmVcF2W+YeigkccFkXgzTEw6d4bXNHD2NKzJwSc2NEQALawnMDwo1jE/XgJuxNiEW4lDIOUyIEt9hUtw6bGpI5BYC7EpMERODlMsvaondANkIgSpQYJQWjx+NaJeul9pRytNwbYVC/KqxqaX7qNi+tXU1yb0+3eekBvZ9PWfuecEjELMm0uZWBpoQZHLtHi2jojU0I5jEiuwOjgndX8OZaqc1uLUiZNLhb6npwzON0abO7WUTKPFEUcgJFV2bLCYU9SwyZk6ArEvvnPAODcAsnskAzIO8CwagUIQgECBqusCpdF7+sviiA5DwOpSQhzAkycqI0St4lO2SekFKQ/PbX/wahA63EJijgyXs2pV/86hLoTohZSh6ZBl18ua31YjvmnfNByiENHX2FqgEUH4GSNdCGkDPjSCzg5q2hncEurZ6HAYdpKLsJEFV1GPLhcMiSaItuNjCwvZSCzA6JOaXkCHOrFezd83O3yEP5eHpuTSloo61GDrf4fAeOCAcLhoDUI+JFKweBGKZIhJEzekhgftH5ZmK3lToaRCn5kJN4RaW97I77tzxk+hS/vpnvQGjY76Bm8y6KCV3A2XtOrjs63L2dz6fr88fldl5vV1Uv4x7AF1tGHEkAJJrVtc05EEKG3QFSWvfH/f7cmiOdiKhMo0ZKKY3TLkuez8/W9W5/+MHXb3u7vnt++vbXv+6q3/zwm9c/+MHu9QPk/B9+9r8sH3++h/OP76Gk/PZueHMoI0/j/U54vJ77X384f3j/nFLeH4bD/fjjP3jY7+m2zLe6VvPmGowOXVUjfENMmdlGYZFEbMyMQqQQgOQOG3KLI9iR6OU+nIQnyUPKTJwQOIwDhLlDkEUmQeCUh5xztRYEIpRKKUlO66yxBG5ZAsRO0JE8VIigLu5ZRlKDlRO5rd5bbQSn5lf33js0XjLUlwF0jBQklBiYXrJRDgNkdjDVma4N7ZbbKUqm/cTjAOMATOEYTX1uvraoS2PnDCLdUvgxKCOzBkmuWh2gMI1k0pboG2alZBLyhF7QC2giT+Qu9QMtneaWGodDCRAAtyygA0Ei54iEwA62mDvezK9Xfb7Uy2IwYRmn3W63n4YIB9doHl2pOIEK4sBJ5ut/BGweC0Bz92iiPVmXp+sKAsFEScZxl3mnDdrSdn5N0+6YpilNR9kD4mJr95hptQZV262ZJcltL2XQcFvHrnOt53U9pTSlzJKTAQbBMAz7w5SLIHCWIqFmjmunqj5X94Ye3vV6vaL3d07dfBiG8+XS3W1uaJGJG2vfQoY+hR4iohM6oXWLAEEgYnOLgADkzkAACAwvpnxhRjKuIQBDyAhsreFqY9q93t1zSkQE5t5VqbW6lsNuf3ek685aXywkwcCIYV1XnU+/va7PH94/f3hXb+feWldHLqmUN3/+ozTwdBjYWF16ryKZCUEyGBERJ/GI3rtFjOO4rDgvi0CGl8x63O/302745b//j6YtrP7gqy///G/+2e7VmwWhht/z6c+/Gb88/pTTPokM0DM0svn7tcwLtF7Xud9u7XKda687TPd3U0CbDjIs+bzcqlKw1tZ8IyEkAUAzcw1mLqW0qoLEzAkBicwc3cJhE/9jBAMCUkJKLIllmRdgMujIlDCFWpgn4mZemImxrZ0MkHzaDcdxiLvcejcwdTML6GCrq4bHEthWB+231A27YDhguy5tRbp5NEkaxih1jui9VRvHUYCCgMGZYSqpCAGsptqtXBw54BIh6ER22OlYaCwuXA1Vw1f12uNsUSuDC1sMiDyMY3c1xCFJcwfPTOIWbQUKIcx5z0SmssxwvXQWbmbXk/p51ucrXBaJgQgnkZ2Mvehjf0efuDxZICFxUALpDeZVrze7LTCMnnLe7/fH/e5W23YlaWttyUJ7YtyVQV7ZPg0MGWpdau3dqc5xu66ERCbmZmD9VjvqRsFu6exUhTt7o3XdE0ur0Dogma8RDWLpbEEH433zCBvV9P27XxHR/f3r+zdvecot6aC7yCYZnMwgxqnc7waM6w+/uRsH5kxNCww7nw6zcOsLYktjYrSWKYxiv++XawSO6XXYqt4SJ0m8OfUgoHTPeTSz1jR8AyE6Ca0azCUMo7n3lRFl4j3twmE93+pAfeJeA6UMhzvZ78Zxqha03xOwOx3LwzBM8YTnIeg4TX4do7/aTfVm/+nx9OH98/njUmfI+EeGXqZyPp8v57Ojxr9BeNTUa/nJ/e7hfhj2DCNFsWptbt3NwDRUyjCMx9vzIj4lwZxD2zPn2+5wt67rr371/tvTt3/4gx/98Z//yS5P1LA/3hIzmP34iz/6gwc95AHNnp6e5javYc/XM98e2+Wmtb56lV+9nu73w/p4+ng9LYyI3NTrWrGzBO+cEtjTaofDYcxpXdfb9aqmFKFm1/nWTEUEtyxz77IBi3rNGRNLW7oH7Jj3jLYuUW9UhpQSEjmilDyp3m63AdTn67GU+XpFBNrv4/5BD7vcQ6IbeEowZUY3X9a+1JTSEAmV5qrPti7ekkcBaMu6tBpOkgusetVYl3K7KdZptB0mXJYbQOxHFqD11mrqg7BE62vHkDKMnHbq9vDBU+KUiWViMcCutta6nttIROAhHuJB1lOE97WA3QGoYXTNvs/Dfu39drvJHbBPN+vf4jv70EopgfR0uvz6l305xeCxJ1FNdg6jCqElfM88EO/BX0PiWk6nmBG/X9/M17nc/Ph8xeWC9CvMXoY3nYdxef9w/jX161t8lWzSlrSDHO8TJQB2JkMwMO2iSfrr472Zra26AydWVfdm4GjQlna2qxSTMbpIb6vWdm7mqJyxlFIKpTQyFUU4ra2vq87KCRLxbrfbHQ6Hu+M6S6CMOe2GMuZ0vx+/fLMb8vHt27f7wyTC5LpRaodhyJke3nyVUyqSau0YQIF1WYloHHebuEa1Xa/Xy+Xs7jnnzDEMQziu66q6pc05MwdKRNTl6q02repdDJvplFOESEpAVHtb17bbW4SpqtkLCc7CGSFnyXnQtZ8ez692d4cheVvn6/m772+/+vXzL3/TIOTt6yySBs75kH7w8GYqsvo5KD7xLBEAWATyaNfT5yCOrdOzfZFTSrLbTUOOeaANZnx3d/ejP/k/H4b9/f5AwKFRxklyuc0z9MVqQ04sQjnX5XpZl7n1y+V5WWvJ6dWbbx5evTkeJvR1vp66Vreua5/P8/m69B6AwpT2u0Nb5utz7b0z0ga7oIA3x/va26q9eczauhuFmgF90h4TQWaapmkYhlrrnkeiDWPkFMHMlgTCe+9ptytZUkLfKCpJ0lDMK0BididQCEbiPHLKKtg7SwgfcIg9k4m7mO8Ax3VdmwVIn1d0lDTWUr775Qd9nDtooEMYP39kAARoACMug+SMXBI7BKE5x0e+5iQ5JUmQEqacEAVj2NX4zODV3s3Mu3rvIxcPrGGtmy6VI1FAAsG1dpwvs33X1vXdEzOr0/ky//pjba3dHfbj+KrVaK0FoTtn2gNAER4TCsD1Yt/7Ffrlifh66euteQPEvlyW04dnRph5dz3fzCxLZpamdj7fnh7PYn4FC/AOvoau2rQ3dwBQaq313kspw5Bq9d4auBcm6zbrPJCUohVACW5o1+tFKO5xvN9Pw1CEM3qygJLlufYRgJkPu/39/f00TZQkU5B38E6gHEro+yEf9pkINrO7+SaV55yKpPz2i69zziUNrTUMQkStmnPejPIp8bqu3333G/5QiGh/2BXE3W4HAMtca62qRkSllLI7qrbb5XQ7P5+e3s+3M4bFZtjmgbI42Pm6Xk/ncbq7rct8uZ5ZMKjWvgF8LdzBhqAY9sdxJKbTx9s/+Z//6r//H/6R5PLvvksfPz7d3/313TT94NXdN/vhhw93WOQGz6Tw8NU+50Fy8QAz414/JzZ+tsVsYU4SLwG007grJQgiwKZpePX2Qdc2V3dtreoeJRNfehvKsGmAPSxKbgC31tThzdtXKS9B4+svv3rz+qsh03p7fqIlawTS/W7cpZQCn5/X1p0FhzFbZitly1Lsa7PWiWjPU94CcdEdoiXdIi53nL2rqyNBzjIMuQwJ0LE3dyWgzZK7m8aSsC4Xh8iZHSlLWq05hBI1RCgp0LdkybY0N5VAwliRxHQUojRWdhMQImsNkWQ/ZXUzLDvPKJxyLYNd9fn8NNcuWQ7TgdNGFvcdThLICMJEia0ICAYBfDGl/bjb74dhGIYyDC+5Czg/bQgibb3W2te6YfTonFT9cp2fT7elqsdKkhGZlXSxmy12uT4nJBIPXub22GsYjtM+SdS2Esc0TVKmtYV2Z+aSBACXGR5bj8qPfm6NQzEzMQ9i3C71Btcbtvp4hUWJybpfn+en8lzSIAGGRAyALFAGq6uWKDk/15t2Y4BppMM+32RLtIajjEqdwLmIFvbEVriy+S1BxDiOb/d3xzEDgEWYgzW7zU0Aisjx7nD/8KqMIyEzdeur1pu3VbtZXet6zQzLeqt1MetI+VNIN6aU87AvZSylyGAABOYt9VJKSiQiZciY8nC9TK2z4DhNmWjc7wHAeY4kGWCa9ofDIU87s77M9+fnPRe0d3F6/rCojokcSYE0YG56W9fae+t9Wecy55wzMxkACmMSj6DEr754DSmf3r3/n//qX//D/+n/8+1F//f/x79/ezP88v/9P70/Xb7E9UDpHu3D4/P7y+VdfTq+ml5/cx+ACLItNqvrFu2/aXdf0ifNtl6MWpsXCAdC79qfn5/2+91Df+VGtXdrHQBks42LjPsDBrS2tlppN8hhl7WS2/3D/uGVUR7G8c5sef54Oj99vJw+5olzmna74920P06Hd/l0uVZ1us6XnIfDYRLO1+v8FM+9aUoJW2ezHOiERtkJZcjdfCCu89KhoQcz4YaaEtbmCCFC22Q4J86JhyFv9lp1J3BEcMIGfnWbrycSJqIgDMnEAsxI5FBVwygp4GmpDW1kTmocXsroxBZk7IHJgquTSwopEX54c/fnf/YnP/mDHw5C67LUZut868sCVhHMoUMKyXL/MB2Px/v7V9O4L6XkPDALABSfRYSJVLUu67qurTV3n+o4z8v37x6X//ir97/+ri43YgXAgbpgR70mgJIgp4I8mCUSLUMeBml9Wdan7gGpDjxc57MbIqYV8yzYFh7FQ2kGA2bAMg6Fc6GQdrNLn9FWf7zFuUNKPer51mIxqiCtemJJnBMSE1cMRgfKUzaE6u6ZUdgFulAgwtvjbjNbTvs9CCuBFzHgctiV8MN+fHPY3ecc1nvvzb2nNDMOAGXId3d3r1692u12Yx5bjs94sS3eRK3fbitiiHApRTHBvGg3AMppZE4iuZRxs5z33sEhWFLOZqYWgJyHcdofNgE0SUKWl/Y9kogM0/5w96BE6DIS9t6G/YFPT92jhV16Q2+L4Q5TynspNQ9jyvzuu+/D/M2bt+Mw1K4b1zCIht3ovT1/fPfP/uW/+L/+o//x/Tz/H/7BP/ijn/7F6V99Ox0kGL7+4e5P/uzNj3blUNf2wevT8sU3b7/46sv9/ohcEJlRtOm2zW9Rxuu6LstSa+3du/aUMoB2NULvdZ0v5wjL+2kaxzBX1VKKX69WryzibSmlrH1d1xUgym68g6O7f/j+O0BmzLWeLpfLcrmi6mEs8/LUTQdJ41D4uEsg5/Pae/zi8tGW26x9GHeJcSwDQUOicczmTqFgHqFB6AoYLzFAOedEnCV9hqEYBAtzTmCuZk37hi/PksDNWsOIYZBpf+BhsES4m17SMYJgu3XXplqHDGhsEHVdz9frtc27lPYpD8lKzgi4zsvzaW4dIfj5PDNwSXnaj3/8kx//3b/zd376x384ZanL7YxtuVzW2zl0cW8GFQVTkZF2+/3+cDiWPIoMhAxA7i5pyxVCdx9qG1vbFF2qaucrJ2wf33//q3aaF5EMQRNqkRgzjAI2EE8Dp4lJxirjOIzj2LQrDpd5udXT8+1JAcK3SZyhx3nIo4C3SiNvYxLDgOC12rxWInoFIrOPngoUMFpO63Kt9aqy30+v7veHRNFbq45x0agW0udWSJxsI42PQxEGyenr/R6AWmsgslh3REoCi3fSDJETToX2maLTahHYduNBhISBk3DJ0zSVNOSULGVOhXLClJHBiQOwqkU4UhCDb+3IiCRlHHf3h2POeZr2BrEVAxq30Cid1nXpPTEzoZQ8Bth21dw+CbNw25rUTCSBLwRNTpLHYRjGlFIZBtNrlqLAnIf93aveqwOsrZ2+/VVE7Pf7cZoizMAoCQlDoucPT//4n/zjv/pX/+vbNw//5X/1X//hn/7Nf/cf/uN/+Ff/T7ue/+hr/M/+5Iu/+ZNXb0SOcEdfP/wk/fn9m7c/+pM/GsadOyDAli+K9Amt3nutddvpVUEk7/fTw6sJfDVdCHm1Oi/Xb3/17Rdv3wwpEwHz4NF6D8qw3qpHXVo9Xy4BFubrfLXayzAxs2Sp2sl1V9K03xfh21oCkCkDGpPn5MMAzL7vaV2au3pvgMyAAGCqF+uBoIAWjog5MVFuJk+XZwAvOe/HaWMyqLZa62VZSykgCdw94tZ78ggWSahWW12JaNrvpuOB96NnyZIgghwFEJFX7X2pLVYSzCyoUttyua3P18uNyPfT9HZIidSgtuXjx4+XaxMea7eHh4eUDw9vHv7sp3/8ox9+fX8cx8TpbjyO1tf70IrecfNhs1FiWcach1IKc2ISZgYgM6ux2Q1BEDlbdidEEXk3v6MEtMx+HOeEVwAJB6DqemDZ3e3KjnZTmvb7QCbOfJJpGg/HMRV++8NXp+v18ePz09Ppu8daPcy6B2Dw3HvWcDU2GzIhIgUMIMwAgeiwD4MNLTqOmKgC3G63U3+SYWcP9+lYUqywrm3pdF773O0w7WMMYNwfhmk/enR3zePwDQ+OcL3MPYB6FGHZTXW+fYz5kMow8nHKD1OJjlfpdrX5Oi9tbQFMzkmk5MxSKC9sXEoe9kC8KqiFAmOQWnPfklYxIkS2MAfKTImQyQm2aA2kCHc7fXyqtQ7DkEuqc9XWRISC1rUhsmlod7MgitbaslQTgnAMB0AK2kJnwVHGkiAUDCjv9vfX89NSVztpLru63Gqtm1x5nHbjfnSHyy9+8S/+6T/9J//wH9au/9V//d/85Z/96XePHz/+p5/9+RfHv/HVn//dv/3Hf/SD1xNDPT1hNyj48Oqwv5sQsTUlycxoASzkn7iqn6toM4sgFtqwQCycc5nGvOYUDpenp4IE94fdbiRQoI0WZEkMrBF52bE7emvQuZs2k1KGYSq5VzRljYEEDehwZMlE0g3nWbnWwHltc5uboGzCT3Xq5qyMwI11C75TC3M1B+1dtUsi7y5CZUiJBdTqUmtbLtUa9O648T6xGjMYSkrYuoZ2Ycw5I9NqHbuNJLzxMzgzJc4TZy2u+x0VT+ulmpqJnLVB6wDw9Y+mdMxoHBe+2vLucsppR5xSveUh8SRU0EVDIk0ylHTrfRqEY+Rw31ix6ECBPCBij2jdNrxoa21d16abC4WyJBERpJQSch4Pe0A+3tf98VBKQVkQUjiypHE3vvni1at73k84jLm2FhhU3pRBjnfj8WHa7cfW7cOH548fnh7/xX98/P58URVCIgpVhgYR7DBEZwwM2AGWlAVFiJ+iOYGFo84EvHido0UPuX8ob77YvRqyLbwsSVFnb7xq9DtmFOFhzJyxtqiuoXb3sHN3UK1mKADDUI6H+Xa5ljyN+e7u8Or18e00mjY+R4e6p8O+Xu+g7l6/unu43+/3KSVGopTLOJVph5IcoLoFMrJsaRUiJEjbPyNy77Zczj2niOAkSMIEkohQlCIlL6WklFZaiTb8HC23io5CWFISfKEE84YiDCCkLCmlJJ9y2Dm5M3ZV8yilMEtrtWsdxsO6rufz+f7hlZQhpQSE67z87F/+m//H/+1/eP+flp/+9P4Q0N+/P6L8n/72317+eN0N9JMfvtX1dHr/m+utFplSKd0WVW2mR07T4QAA2jrAixPjUx7y775U2/ncAtZpxP2uTMNAAK01IWaMIrwbSxLmnCKjQmTEjiaC+3Gn2joGahUjTrthyABwu92eHz+KocoY7p31/j7tj0dOw1JbGpOjqtX4YCEI4ITAgkKMHrW2Z1hf2MvIOeeJ8+bc/NivbVl/l0oDsFUTTuABS+8RUVKO1gjA3dPdpPYSHBlhS6txm42clp6QBsyTDEkKlhwpEadTnweApa0nXatQI+phOwLcidyNElnOF01xUUC/lTzicjnk/bXNv316f/y4O9yXEtDqynRMSIyBHgzOaEEIhJ3AzFpbW+utrWudn5+fz+fn9fYcEYllmqbdMG7TkCGXlnBd9Pp8rrdZlwoaW0L8m7tXb17vfviDL98+8H6HkuJ2u2l49Dcp0/6Y3nx19/Bwpw55N5bd9PVjf1x+3tYZcwqWVjtapATaGQJcFSC6aZaSgJnTLWszvaxrNeAEBhAKRCCSW5pyObwZX+F8+3iuly+X6WEoNqdgztMATIGhqB10HPgg42HcTZGuYL+83jRPtJZ7+uYDrnd0/KZ8/TZ/PQgDax535TreUn+i8avDFxV3ECnl/dK1aCMvYJIwj3kkAFQLq5JsrbEuBiFCAqYE3fX69PHDb8c8jmO+XUUkSem9z5fbuq6m14hYl3EYht6td+sV3H2u8+l0uj/eHabdSo0K0Qg3mGPNRASOqhl85LQfxv3T05P3A2ZelvZbuP7pD19/89UPPvz2F20+X07vhPj0PNOPhofd67tdATv9+3/+j//R//2/H8fd/+W/+y9f33+5Pyaa25u7PN490Jei68VOHyWW14dpl+h0W+bl2mDwDA88lN3OMfpamYAkSVvD1ZEUs/OYpmOel/NybVe9Rfe25jdHzOJAvqb51MfdfeFDX/xij3f3pS9dQXd3xyefGLhIEWCIVB0Uwcfp2Hbz83x6emp9PfIxyFwj52IIy9wRriQVgA7lKG9LoTIbXm7zsp7a0mTYe8IV2tP83MHv7+9bVw3jtEPBJCk67axg6MPxYT/unx+f5stNiL9588PhOj8+n5/bOuRcxjHQHGw3iQpr1pZdw3IhYvaOrdrlEu3yVPpyN8jdYT893Hsq19rzhAthV9Pr6f5Sl4+L7YfD3asD7vYQgfPrAe/TeExVDkfFTkmhL8tv3z0T/sx7t+vru3SfeUllmqZEHAFC/CLdRW79cLvdrp++ni/n0+l0u93w/B1hDkwyDIe7w3BMwyTTLhGOpvLd95ef/fXjZYUAoFhLwpTTF1+Ur7+2N3fHzMq5ljI8fgxPp6U7wduaD2fcB6FmvdolMNY6E4Bqc48tf6wTCuxmqwKckjdz1FWIMWrosSoqCBALZWdsqNBUhvKwK68P46tE5q0WOZScCcf9bucAMgwg5Bh14ZVjP+WpyJhpPyQPGWttDENKkf14PB7H3X6/3x8P+1EgtBLrUt8O8dvTcyy3Icnd7jCWPKY8JmHOw1DGsYzjKAyf4Ou2qecRt0jK2Ig4a52///67YRiYZVP5ReCyLKoatprZVmlr/93t93x5IsCoqx2P7s5DRnRkWqsSCTjqUi/n5+V6246rUgqzX+v6/sPlq4fxy/tXaP3771Rnfd8+OE6X2/z67RsA9OfL+29/C45/+bf+zt//+//NbrpzXGo/gwdhBoBltj6voF1b11DASJkb8TAM0zQxs28NfYvwvtxmdMuShFhVrfVEfNwfnrt1nXul3sRUQIbw5tYv14/7HbJIAUJE7TC3pn5VIWbWZkSkqsuy9t4B4HG9rX1ZSctxd/fqThDWupjZUI0IA/q8rHXVnIcyTG/evLaSf/v9+998/37pqxMBDyJQBh55yiy4dRPM53olIggSDiRzba3PiFEGYaQAL0mGMae29t7rvChpFoQibCOZkAdChxjNR4hRgZuea+u323w5t4+n88Pad69eR0qP7x9DiCysrslt5NBQaNdSjuMYgDBNsNvh8SjT6wlTFLzXyzyf5/e/mS815urHkQ+CUWgYJkJxhJQKAnXziFiXLQvl9Pz8fD6ft2U8z4sACKfAhFmOd3fjXSkTDSOXJMvsT0/Lu/eXS7cAGIY87Ke3r6aHh+HuON4fJiZDZgZrBa5N1fta/XRuqy4Rcb7cLst63Mtf/sUfffy4fHycPzxdiTgPu7WvCEabcZm3NAooYkTclueCIRHuYA0BgRwcQhjGwtNQdgOH1nko0zQkk90hZ7WglCBxhCkEqrPDw3EcSNiH5P7YZOW0303SYd/GXRnHsUy7cbfPFCHEWtvuumT09XJ6/c2X9/tdigBVUKu61LYAQClp68Qyc0rZzD6xsAxw6/v12+2Wc/ZoWzCScHb3WpuZ7Qa2MLe6mZ8QkSUjekJ1tTo/X211d8zSl3MILXUlFAzR2td5qfMsgPsy5iyCTsIW/br0Vw/7/cPbpffl49Pj6Rb88TrPaShAfPlwev7u6eHh1V/8rb989Td+CrU1lTFEgjhN6+0ZR7W92grXx2V+nmtz5pzH4Xj3sDsegNl630B92lpbZwRILIk5ITESkw+cxjIyUhZwTesc4GYduwGLNluayg5HkRzEy9r7AuNdggDSADBv3dceqoiIu8KpDCMd99Pdwz0T8C2v67wHASC3wGVtba1tDvSU0quHY4TV3n77/mNtMxVMA5cuhSaALbk+haO1TgClFM9c66xab9dqVYUZMdxqSXk/Drd5vnZdlxsFwIgEB+iFO1IMBDlgshjcSgcyuirRYjEvba7e+DI6gaRoZxTOhKPZRHiXuKIVa6E3hj1zJOqMmrMfJk67Qvr2+fyu3ubWVljt6dxK2ICRk3JOatA8KA9O3NU9EGFW1ev1ej2da63u0PvWYhRJuZn7tZ7aeaoDZ5IEdzv8+PHy/Ny0MwQCiqeU9/v7Ax13vB9pzETgQGSADMaQ6trPbT71J8wrkvXldruuP3h7/KMf/fB66b/4xfv/9V//7PHpsvMBK47DrnWQpMfjcNilaVeGkgAgq23+r2beercN5MQkva4BLuwiPUkr2cdCntJdmWpXY0bBQFyJGkERGSTE+0jQAAbwDjHkVItkfomwISLJCTgSlLyMebkmNPL+5v7w9uEuE3qrfZlPsz4/P9a2bpmBWz1DRC9hEGCxNY4FEdGsT0Pe7cachu361LthWO/+efEz8wYJ25BWqONyu9XbZb2cem3IJENBJsWGKOgCyq1prwsj7cZx7asBDOM0ynBe+l9/+/44ZUh3mZQp1lUvt5mIIPB6uuZIP/rJn37xwx9Cgps1HIhp8OqMiCMTJ+SsPc51OS83iHw3jbtXr+5fPQzjDl7+sBSq6zyjR3SzuoL2QXjK6XatvTVCHwbKWZCgtiWgExEllTHU5tsMmf1wOCQpJe0D8FjG7Z0BgEaSA7ftjO73AIARkqgIRsQ0SOHpkF1Ve7PgAcBv1zovF72olP1Q8ldfvq7m754uXVcALkMuJhsblSwAsEgiokHyNWbZWoFdt5hzcFCruZTdNBzqZKeLR5iDtggz0B6uDLCBLhQ8UCsoUPSART2CgNKssZxnc78vW9XIGQF7za4QMYTW1UMBkUNJm1sLNwTneT7P18tSL9EpnG+rjMR3KXd4xpyX1s6rVYfVNwsOo15FpLfmDgSQmcfMgiTDgZLU1tZWM3JCTiQbxsBm12sDGBgTEw2QcnDOVsQyeyLFsAiHcFR3S8us72bT8wnKKikE11D7gzfy+tXhy9fl61dfYtW/+hf/biSZhmOahuttYYFXd+OPf/Tmyy/fTLtsZmO7AYA6qGo3dwgiAhIJWxEXlkWkSbpJuqZMYSWXuw1A7BREVBK3xLmI+6otrKmrelezrm4eIQAQ5q6OTok5MxCOvR9up4eH3Rdf3P/xH/34m6/fHnYTAFjvtS3zclFdNypfa721xqAAsNkDIxwRmFkSpZRyzuM4ljxuo+PebRufZmIAyFmY2V03Rm1rTdkjeqs3q21LJ8MqRHTTGUEgMga7g7tGGCVu1xnDCN0pPc+3dx/OJQsjfkUQVLrG89O5LetQcu/xxTd/8MOf/tnx668g0ZgnmgLaba03dO1ab9fzcvpwe/5wul4V8Hg8vvri6+nt14e7e2A204gQQHPQqtRqX9fr8+nydOq1cQCHo6lIRwzhBA4NgEByYsZ2nS+uOQGAdiGepj1LycOEAUyUU04pWRmGXDaHlqExswhhhPYGYQURc177WVW7agSkLCnr2iLCnh4/DOOhlPGLN69mtXdP1w5Wph3daEu9Wtc1AonIIpZlqbAQQcnZSdwscVJVcBeOIRU97N1hXde1NnawVS3fgoxEBRGkBl0dcqBFWLO2dAUjdI4GCV1ERCClJMzofZ7n201tAOlmfXA/IAmAue5a87rkQLlevl/7I+HVEBwJgA/H1189HAZoMgzV4PGyfLzUD+dlrisoQbh6f3E7whZwTEwS1xNnEW1iWlKaAgaacspYIzXIHQGgMBZMe0rF4iViTkiEwAECE6EkihVaw3mFSoJcGPsolJMcj8dxSomGt/f777796uf/359zoBESWkYT8inhcTe+fX083u8iQhYxs00RjMibdweCNhw2DhkTmUgTURbxUNVmABahFoLgABZmocTMbEBEQTlnNDYkF2EiQdouqGkoPAglMuvTc9of8pdfvv7BD7+8uz+UqdS51lrdW2urh0ribQ0DQAQyb1JhJ0pEhBjMnLIwJYSNToSIKSXZ7xIicgAA5JyIQbVFWNemqpuJd5sBC3EgvBCXjdw9vCFyAAV0IkSCUpIZ9aq32gh49fzx4+X09FG/fpuzMNDlfL5d5kNOZb//4Z/89Is//EOYRtBKCex2rZfn5bSylevp8Xp5XC6PVlvJY3lzf//w5f7V2/s3bzjJ5pGHICYEQCFqtbVlnc+n8+PH5bJ6RyHel7Gnpurq3TRQEHBLKa63eRXiklNTPZ/Pvdvd8WE4ikclkAAICKRgcaRAhGRAYRK44ZcIfAO+3JZbSpkpiQQE5+ylGJGst+vldMbSpOwPu+P7p1nVBxIAQKZMZV3XZlaSIKK57/aHMGfmatU1wpGBU0mFERn349i6gTm7J8YwiNTDA8gJAdgAOyMm8ZAYMpdxcA2k1LQz47ifxp2kISckxn71p9nADIRS1dS9JBO10j31nuaVanjAfNjTeH90NktuBD/8Yv/jL17flTTsjwb543n9zfvTX//6/a+/+3C9dQ/OOYM7Wowph5qrAYVYS6aIzgQJe/F1hDRIXmfPIBk5AlJEIkhhKVRdAphIkAWiOURs9FlXAHSZZHiQwxFodrQgl/19SLnVulbvuuTM0GNel32ykX0a064Ih4N54ZyHITJtRh0ESiklfrGpCcXAMDJmopqwZMqCSTErBvGGl3EuTGWrpR2ZRBils+I4EK7eAxuQq4UAYRAzMAFDBEViw96tckZOpK4kaGC9VXNtbd0MBrjBHoERLaVEBFugM2KY2ZZoBc4YAr7hkYFAiEFEvEaEuYKrqwZSoCM6GpIidovQAMTwUHN3T+XQ1S0CEH1TFUFjwJRZgrpWQOBUsPu1nr57mofytC/lzWFczrfr0wlePZTjUcIXJG5de2Oyy+k3fbn2NdqMUFfucEh7zCMicpmmw5vd3as07cC2HpsEWTgw0lgGdUA362qtk4UgD8yRAxACtHVsvaNAGSQNzAJlxHHaDYULxgZmShlLZuPu0dTco23KEEQUFhFGxE+ZaOYRAN6sukeSQiTeuqltQCZEOEx3erncbl3r7Aa73aHP6zwvyQcgGobRGft12ZpZqeScUFHRMaxiMABCIFMmcOsNAoVRCMs0TUMRJhoGNMfeMTbSMRPnjMy53TiEg2QQlDrfrFeOnWzyCmIMUsk9SRe+0VC1V63ksLr2cENQ8G56X8bjYf/Fw46S1tSr6R98+fqHr+/vDtMw7s1lunQu41r1dLrUa68QZgbumWTrg5oruuynQxo5qHarKOgI3TwbVNAGauQI2MFda/I8kagO3ZNjDmRHtK2Axhc9knkEZcqTRTMDxP7d4zX8eblcdenfvvs1iidmXhCtJtBEidyX6+3p4xMBDdO4WN9Us4ySkif2DfcjXpN1cU0ABSIRjgIpYFTXJGVL7A5CZAqEbtZMKdg8zAyAunVd+nVpra0Kxcw81F3dSE2badN1rnN3a9abVhQkYYPYTt0I3+7Am5hBVX9Hr0HeMq4+EXRj++2A6EAAAUC4paoHaN9+rqVMKRV3KDG0ZV2Fw1xYGFHcA2HpKdzcNCgMTK0ZrESRcNjMQClnIlr1fF1bc/jN0/MhScZX8+V6en5urRnzrfbXuwlT9mX2erm+/zBmuhvubuqkIWVg3nu0Zhppmo530/0rQHezl1siUZgRSSml52xNBCmJxCDEqbYOq91WcwNV7j3QIzwPZc+yl1SnIglN0EpOw5CHLETeokeE9b55aBAx5VxKcmBiTCythTUACBERHqTrNmCfb4t22LIA3V24HHbHqtfH87WR7HaH2fHd+493Q0bEVLKYql/72ohoHGh+XiJikMIsiQsDtmjgaKZNu4aAOSOO43h32Aui54TdUBnBETJFyTAw5wbv2zpfLtecYjfsNo4vA6x9TQjGDMEtsKHMTqHoqE5qiMDKCWgAzqEMQ9lPQzoeppA1pVRAXz0cXr2+m8aF01ArisSQckmDBIECsJt3sAAmxAgwBwdwpcwoQe5kDu6t9cjO7Xmdn9dbc0BsCEChqLrHITATjyyDpLFDByNgQHZz7b0va4tq2ntEA18J9f3putyu58cPttTHDx9vbR2IDQxdVbUuejmhWa21Pj1dmNJSEgAQooAws1BiZiGSp+V50bqqIpojAVNQIEOd2cx5EJGAsI251Hu4iznU2jclp1krBajFmAbh0JjnZRmXY4mE7QqX960ucb7ide3v3rP1bl21DSTu9Zj2H+O+t4HSgBiqOqQhKvcGFqyIazOwtM9vig1TGYqksaQto+QzDqMAAgILq1OtgUGJi4ylL0mmh+PX3yB4hIUpBhDBqdv1el2WW3h359q8V7dmJGGtDZLa0iMiY0Ilr/F41mde99Ph43x7evfB12UYBzyMexytViYN5i+/+iOMbqp7rGvZiRB691aFcDgeyt0RJoaWzMPqjb0LILp7C20Aaeo+Sz5M41zruUOP0up6hpFvc4uyszwA8aWLfqhTlp7Hulhmv5uGcRyNqbXWl5X3ICRoTt1EBIkQIDNZU+/aIohoPxQzW9dFewfz+XIF89RD11bX2lQNYpZ6W+ldjQ8zNFsgVl1x3+7VotZ1PevuuLs/Pjyfn1S1ayUSRLheZ/DYTZOwiAgB3jxIkrWOYPeHcb8/MrM1hedHQtYWp6akeNwfJKdgMr5zPHGcqd9IbBqZM199jn6IiEmodnWRS12jw7gcrDa49Yziq69IK0rueCdTluW4hyy36W680XTpvnJpY349FXeP1AVXxCWThxEAchTvxkQMtN/vf3U6DQloQhi0Q08cAycNr+7V23J5jmslBQZyRyJAhI2tQPkGfiwsiRd0ZZwujp0uCPuJ/U5gTTecJkwjz/d5ll+efr3M1m/84bt+fUaObPWUClpPoOBXYo3rqf/m460N1giLL1tGymbYNDMRSSnJpmHaeOpbZMw8e29EcGAgIkIGJP/sVvVP9AwP3YpSCkiMabcbyfLWTQLceq3eFZaWuk4WeJntdIG5QlOvbmTbvXdrUKE2ACDAbs3dPFpEQglOhGjuKkQYEWbEjBvUkYhKgd7c3cMiLCjctVavveWJQUJbYDgCoG9cd9SVzal1r2s1MwYEKcIB0T85KzZrgfXeVXWeFQken58/fCzXeQGScRwpIQZ4q9FVmFnEW5g1ABqG4r0bIE3jNI1ltwfJvfYEmSGCCAO3LYfYRTDtDuu8jOO42++bRyy9BqSU9KZrU8OuEOHce794E7R8OLi1jA1e7Y5D5pJIJNAhIsyt9o3Cy0kEA1QAyB1U+9bbd/cN6YGIiQiQq+mLGLu2Va0R1CpuhMCmVdXBUkpD86qq5j7YUMZhv9/P8+wR21MlIq62WakySyqZm4ZF7721msZ9KalIqVjnxZAZwDeyMMamlY7r9RoR41gyMROaOwW9GPpUb7VH7eu6ekA4bMagbR///Km9QBI9mDklTCkVyT3BOI65FCJ98UpEbCmaG1PU3QMiwjbERCbIIllSFgEzcEXCJJkAZwtVpU8At9/DUMAnoOxnZ84LW/TlJdEmsmZEsjDr2lr78P7xdl6vz+35/TU6HMeckgxZsBoCIGyEuuX8fL0xLAEJIGcggv1+X0pprW1tXXlBwwAQITOKEJK5KzNu2MUQR/JtmW1CQpTtimovRTnjkAvnRtE+W9IT8RYZXFq84qGUsl97Pt+m1om4AczxApIehmEoZWmrqroLsVMKoAjoRIBk3dq8XJb5atrCVURe4B1EzBzWzcxf0rACA7XqUlfA3nvtrYEbbWBWwUTslEg6UXPv4MacNmVF752ZieSTziI27quwKfj5Vr//8HS6LsQiw+SksCp6MMEWyqeq7sBIOe1WWJ1k2A3luAfO0BxaB1LAEGYI2pCcgIyEmEsexrLb782CBdJNAdTi43JWi0XrahZIgzD0ha3351kS7AoX5qdhFoBxKrv7g8YK7ubVakOzUHFVCJeyxwBwVG3x0tdzcBCClJiMtSoBJs45o0frQaYBgSVN3UN1AaDEggl67x6xDerGcUREgwiEUKUkItJrU9U0MCLmlJygtcZELFgSE7l5dVfgTIju6p8U4PbpciEijIQQ4bEt0dZXsojaoalqE4Yg2CApn5fNpvHcZD9ElBPnvAXiEiMik6FxEjJ31W3YLvQCEEb4DDmGABOiDX4ikQgZkAkASZBIwC0E2RF1w0G9wM7jJQt1W6VEm2k8NNwgUF4WmENgbNL8ztoLjTfrulh0SCS7cTcVSom8LinlfS4JAed5WVcOlAD1QAUiUMOoNs91j2l/GEQSsSAzSqIh8jAMw4CmDPa7pGXwl4toRAABEUlmVmc1BGeiItRecr7hRbweYF1brdLsFeWHTON1zk+nsTZKO6cQlsRCgJsf/9a1t2ZDAohNURtIxE4E5q1pvdyuo4/IVBDMbMvZQMScZXMXAeGmzl17a625dzML6+GK4R6GHuAWAqqqVgkUmEQoDKzbNoUGAOa0odCHMu52O61gtlxXf/d4ebpVQwFhiAbmiQmIAdGWpXcj4DIMxCUJcXLZD5AyqINDouw2b5GOgRjhbuDmpp5UHZBSTuOUXUvXaQrh9NT4WuN2rasqBg+USh4SZFh7JhGgusKH9yftddilL/gLtASgELSdMAgA2vtiKLtNlfAJ6kUA3d2JXrJxtHfrnQITiVKQk7VmHYgkc+7Ym3vtHbITUbgvy1J7U+9ElIZSe2vas6ScUmwXPjdcV8opZ0ZwYRxzAvDa1uvl2bxBUFPovVMypBBCIh6G4RSxrqsTDzmJCPGLTwvj9wODXyYovztyP9GYtuNEe3Mf3KGb1gAlUTQNR06MBJIGToOkktKG8CUmcgzXCAs1wtgS2KmDJGHmwDAHBCxSWFC1MyuAvbwkAEQgIkqSc+aciBQ/HW8AQJwCUcNVO6oCq2AIw5jHQpVsTiT7stuVIUmENuxNJI3MmXilNpAYMbPcbEZmQHTg3mxe+zBhKpMMQ97orSIUjiz06TB70VdUreZtXddaKxN0N0eGDc0YBuZhCsEAsCEatpwuN6vzcns+62WW2icZ/Pmk7z7o+Wx3ealV9i8+2Je0mm0b9qjau5u7ByEwwUuq3pjyUIZpGHciAr0jqYeFR2HJOXNKAFBrba139QBKw6sBAgDCt4b3si631pqujxAEBsRISIyk4B72abf6vBujiIjIuvQKsHag5qe56Rbh5gaOwAyI0Xs3k5ySZMoZICVAT46I1rt3E2XE5KqSXlCJZuYKrYVWVVVzCBYTdOJAEEIp5eFAj9fl3D2FAfIw5qPIjjGXsXery2paT+de9ZKmPB4e7/dFkACTcEhOWbC7mWudl1JKkiSZ3MWsNw9zc+8e0Gpra21LrwaL2rK22WlZeu/ZEVWbWXcNbeaB2xPZWrPqFlpKoSQWYWYNQERImCMiYmk1hU/TVEqhrWFpzXoL6NrWCFKNsEDERDwMAyKenp5VtVZD8bFkFkHGbWsWIAzUbs3MzLbAkq1X9wlW9rJ63b3W2tZFW4ocmtBYSIQzb2d1kVQkjSlvkdEWYeGMEWFh4KoMCB7giubMxAQbxg2ZgSUCbLPCoW9SX0Bgpq1W5ZxEBDmYOdDc3dybh3p82micIAid0ciJPExVAsckY0rCVlWFLCNKdHTFXtE0zEJtGPO2UHe7Xe9daxtz2Y+TwNbjAdvoxohBvGUhpJwzJ6lO5vC5xNcNhguu4Wam1lzVLGpv1WrvfRMzMyB6RNdaK5nuEsy32c/PvtzseL+CkSH69vAbA2IAfypIACiAAxlCzIIwjbvD/vWb3W43TZO7W61FEqu6+5DTtNsNwwAAt3UJTphWZh7ygwgLM5jWdb6dT2q0LOeARAHugRAEHGHoLghBHIGqFRHDQVVVvTVF5C3Qd+7QnZ0S4JYaYRBhampOWZJkTAW2jAnb2JGNiNgxLCAcw8A3Kqe5QyAhgoMHEsmAafXKhmAQqgo92u0EbRGGMggS76fyOpdDTjzkVu0m6Xbj6/V0XRcpl93hAiRTpkKZE7JkINfeW1Ow+gmzulntX0pNazVArYcg5ZQ8AtzN4nq7hnHmYQ3TXgmtDJmRLrW+1FeETMyfSFQigsyquq5rZtny3N19WRZELMIRAW4BljLeH6cruVLqQqM45wIAph15sxZgSpgkbb75bc7Am7MuDMADzBwS4zQNnxftp47mS8ld0lbHwnY3dDCnAGGDSIi0EVWQP5XQANaDOOClQSDMCZ0cEm3bjAOFlBTC6lZr809y/d+/BhMRb6KTT2xRANjmR2ur3S2ARYSSABmBh+uYZODEHghRGIrgOIgAH2gShz0zBrTCi3UNDIg1PAlP03h3PPTeTXvJiQml9bVrU+3OumXwl1KsF+9bSSDJk0f/HLa2reMXiDA4eIAHQbTWmrXeu6sxYGLJLJnlHC6Ik0ivK2pFiGDomZJ7RHhX7/p5E7XeARNhJhKiZA6tBwDtdsfD3evj8VhKqbUGLqmEu6vqlGTa77ddnMvkwSiziBz296WknJJrX24ZUC/LGRmplS0ngAkAEFw9lNiBhs3ZlyRvtrltO09SDJPa1REU2GO7KgQy994VgpJQzkAJiIAF6gqgoZVMiQg5QXA35w1l7wZuACgihAwopSfNdbYZhGXIqeSbXuo8r6dna3OinBEdiEOFZBRRWBNzydLbFLBerld8N+fpmRI97A6HIiOJkyCCQ7Mw2T6lF6dx3wZvQswEYYYOzJwzW3hqJiTgyiwBGGsza7lwojy7+bIRHhEQ8EVsA2aWS845V7Nu2wgQvbtHuHtfawghOSV2b1lYhsJIHRgBOcTKQADrum4wzs+SWESMl5xppA34KZgGdNV14yZGbKqGzySdzxX1OI7jFqs4DAshWHQ3hzAPRycPNEcP/lyBIwJDbBfGMMFto/DAiiSC4BROFt5a02WdfVl7twgmZASPT5Yb/MQ6t3BH+PwK3cHjd2lniEAQDIDhCAbWIgBChaxkQceDMDRNoBQ0Fdx5WrvW7nWxQVbICU1BO2jvyzyfT/L7cWqAW4uCUubr3FUVnT4XJ1uVm1JiEmT9vRRFxGAWAejx/7cxQUSoO7kiAYS6dnc1AiVIAUQUv/vabJmtN+tqbgREiAJBksbjYTfsj9PxvpQC82zIL4VoreO0G8dJRAJADJFyeDVFEGURTg7owWpRuy5Lv1AlsyAMzrKhQ9wVfkcLwe0B2sbRsWVwYKhhg1ALtYBPvQBnZKGURwhsqhSSEnatKUIQwBzMARAIt5gRAPzUemFJGaQwKVMDcxJGFsl5GAak6GsV8sKYGamD9rWu0MEVfHy7u1619wDgnCaMy8fHSzXNJfTB/LDHsexHkcwFAlkgkIjC4aXYeelN5gFzXbRbd/NQ6rX3btaVGdFCe1vXWa0VKkje6zyOIxF5hIY6BAullFC4Q6SUeu9hRkToLwejILm7miUgAMcgMwNwImTkkRPKYGUISQ4AvvWrW2uakHjYrM6chzKOhQOSI1uE2el0XRY7n89ffiHbRvy7p3d7kgMiHHEbZyGEIiIyhEXAi+Mt3CMiEAIBiEREtX/+Du6u0LtDyZySGEUza2FdTbX3aqqwWQm2Rpb7SzstPjWfXySAZt0Uhbdun4WTK7AhATF07eEKAJlhKDyN5bhPVXpZVndjc4RgCqYtphAedum43+13034ojbANpZQ8CEtGhu5kAqskKtzwIAUDo3zBkXTB6ICe0AzsRs4ezZPw/djmy0RpHzyEVJK9DENfxB20tXXBsoMoroVrdtifjGYeJqfB0Vsd3SLCraJWcZdtFjWUPA3MdRw5J3QUMUoOO+IS0byqVWp++vhRiEsq1+v11eHAZnq7Dfu9u+r17NdT3K6cs61TEBIRed7h1NPxKqfZL9hmYiIEMtgmKmRqZjBOiXA/CnP02pfHp9RIVhr2oGrYMDS+e/fUWodyTNV7FEmZkSAAzFI4RIOlJ6e2XNHaJpbESAATQAB0EA7sgTLkApRg7di7Uet1Ze2DmzWtvbeS5uOArTAsXmvr8zyvqYAf7mE6fHj/Ya1eOzoUKpj3++s5vv3+FvDXP/rq7fVuf9vv9G7ZD2NKZb97O/MvV50BAImZCAD6VuLWJsKYzHpf1j4vSlhyzru4n69Pa71K5ikduuPawkWIIiVqptCdEcPc0aZcvN00PGUO4A4BGJAYAdVUmB3cIUSysHhoGBBgzikNO6a8IHEpIFxrnYqUzLopuGpNUJi5zy2c97sCCZXUN1WWhvgEOkk5es6Y2gBWQKVQzdbCGuTFW7gYSmbeE++dxyFH047RBZfQVTsHliAL8WZEEsxK7B6HaRdr124ieRzH1Wrt1R1Mo9fefKMz5m0bF4CcaCzpkMrICZEwjR7Y3ZHvGJNiDRbE4obd1owLhpMlyGLMjpCIUyrh2C3K7lCew5YYDIc8pgTn+aJ2CYgmDDkzCneA1WI1JV/VJJC2zs2nm9Ln5tnisKyt39arwWpwJrmlMtFWM5iD+ZaiqKouXF0pTMONAAgBQMM1NgmVdbctqOFzNzsitv49ARJgAHjX3vuAKYcIsAVQAAIRoLsfUhk4MXGWJNvwBwnjd61ys5cX8yLe0gBzDCJwRhIiRkrMwfzCDTb1CAASySJATmq6rl2xbwUVMjiESMKt8mSotV6vV1gPa11TJET07YKGsHWwIwLDf79HSh5ABhGIAWpq6maRArc7ZyjCdi4RM2+lIHNKkqe9XCNyxATkIGH+dD732wLSWAaNeL6ce1AII8Ppdj1e75/PKrBCUzJbpttuGAN1eJUi8NPYkz5XUqUU69q7hSMKE7l6bHk+IpIDIyB6uIcZuLvDS3h1SikiumprLSIc1SCAttYwudunag5FBMEhVFU7BDGklMLCI5r2BtCJIWdiCsK+ze4iPh9oG/BQXu638Tl7aHtUP6v3fr+JxcCfv4mZGaB/qrI8KCA8vLmpu0Nsf32uFrcbmauqMrp/7pO9vGO4tUXCDAJAEkaHCA8ARNh6wJK2NbQ50jcRoQdCbCR0+l2Z8PkFA7wgRdxd9WVFMBIKIZOFKVrH6BEEbtZrXyl8WZe5L0WxW5Nw7KoegcKIHAgWiiKES9O+tvm2PgFpxIKyAFv46200siXRaOuq6pS6G3toeAA4kkN4hLo1U/y0qFprqhrm25zvcwNg+wOrqirX29puta0dkjgSJ4nMDXw+n8hNJLe6QB4YMMLNLATczNvce7+1dbVeXSPIrFftyRjDq9Xae3XtoQqGL/qZCMRt7EUM0h3dYMt7YuYiUNUoeqvz2rq7IFzn2+W2gDB7jvrp2rM9bfxyFAc6YiBihEcAgAMoI24X4F5b4LacI9w8TOut91V1ddftgTRzd2gRt9bmtXsgczLT62IaBkMfd0MHWt01UBJ5oh5xW8t1loGRvGZBoI7JM/BAI0S8bCjb/Q7CILLIFqBHm7YyYVSIsN47EYlg7RoRn+pTjDB3BUIAR9w6Yta6cWJiAtr4KvB5tENESQTAN90COo9DTik5R3Xova8QlQXMOHjLHgxHD4QIdShAiJ8m8hH+e1fKzzKel3o4XrohaJYgfVoeoaoaYIhuYGaK7LHJQEIxengP38YnG/ndPVprYNB7FwfJ5dO60peZyMvI98W19NIDAiB2SSiyTZ7x81a+PfMQhBhERCgAsF2PtwtbRCCBSKJNr+7hrhiOjIIMDObewBtGYyigGr0FEqKRmXiIO5o4UjP3rTBgCAoDp8RgEBFqTVVJHBHctXeMpkAGjrSh0z+9iT2Aww3Qws3dAsARHLsq+ctwxs1cbfuUtsNz+1VEaFvMgJGSCweLEXSMBfS5XnWd70Ivt1Ek99qmaZ9SmutcoYNg10oL1VqX5VZr7d40QurN0LqtHrrO8/n2+LyeTjp3XWQL/CUKwK0agPBG7hJOYgoAyJmBItDXtanZ9uifni+XywVyHmjoFsjbThAYAPQiyUGKIIRANAR/gScSGri6eVgHEgIEDCcF6t3r2uemVUOBIYBqt2XVx2t9PF+elwZpJMosuXAehJ/qB9dIUsaH0tSWWhVsOKSmZWkyV2D0c5qDV+caqafhbUopJWHBTyZNJCJ3Mw0LBwQiQXREQBL3uu0+m2lZRCDA2ePlofTPeomXeiEx8DYTCVX/3NLIIsyMDr5dEwkjgolIaKnazTTQiS083NQN4JO2PV4uqPb7DZLf661sG8om0vrc8v18oCEwIgGEOzh+7m2QuQcCEgYTbunTn0NfID7LpxhgM5xsHalt9W4/LgXmXK25A7h7gCGCMIjQtoaJMMDcw3177bD9/aUVRwTEERhIW7cOXxLG0tbBFnJyx3BGkBeRpnmoBWgANe9asxBIoVG4CwgGunhgV1ePbW8GRKAQ5mx3qgu4Wl+QgIjBu3UENVBjlEScWLZPMV7eWX6502tEaJihRzclt02nsll9CRE9iIiRAECIsggTYAAR8VhoyFgYhSEFplBv59tHiL7cMhG5Q60XJFnXNaUEwrUtEVFrVW0v1VAUV5WbMGO41rpcr5fz+lxjce7AgZKAN+n6y/hhpk6MgqxrCw0NDbAkhIi5DBjuvX18fvr+/Qfo5kgiuFELt2jLbUe1CKEgAnDGAIxNsdPBWmiHDaeIBICfjkMFbA7Vo289WCJyo9780loLlDTKsHcXUOsojGnuAJlyGUcZ7Hqt11PVmsdUfCDmoABCc1PDua5+DgTZ7/d398cXA9pGDQWzcGBKUhhT66i+SWco5xxq0fTFOIW0FRQi9PJQ+stD+ZJxJ+IIgVtd8dJrBYYtydHAfqcxDNhK3m5qjsDISSjJJikmFkQCJCAApHD4vLAQkQg/jUFw0yh8vnR8bkF/FnsQfRJZ/Z7Q8nNd8EKuIfr8v2xJhyKEbjkzQQj/bs68zaIx54FjUI2ua1dVjYgkOJRImZCcCAK6We893D0+SY4twJGAGDea7OdNCEDNOkTwBhrBhMRA5MYBFM7hKWIgHhFqACpANxXVcN+6KxHuLureLQJBwxOAJGJmYih67D2BL9oSIFBmjEbA7IABCMBIvFkBP70RFEDAaOGtK0ashj00XCKAiYF/p6dBCib6ZCEWka2SIQBhZDDyDgqD64HgnqNrbb/9lVECQmbGYXIEVbeUPKLW6qG9dwDPOQM4lrLa6SV7NqxZ672m1nagMiQAQDAwe9l6kAPihmHaEcG0RXO15m4psQWKiHmA6uWy/vrXv76dz+M9IbNHEAAQwtbfDAcA2/iYuF1uAsKh1zqfonmeDokHDei9k0fTtekyt8u63lpbQanWPq/ruta1qyJxGUYof+BUoAAAgABJREFUION865fzqrW5GpSKYnmIaMv5epnnGVwZQ6Q7mDlsYuAsOUmCwNPpZhZb6HEuL4vAQ8Ep5yGmwGAzJ+pECASlFMdOtW/zG/UNjhHbtXP7tfe+3R7dHd0NwhA9AgCJCEUAAT22MzUxMwIzbQdahahNlQQyURJOQswajohbx4RfAitjC534vNI+b3AGL/Lpzwkkn//T793JEIEIt26JEAmhISABCiAhbmC2T2rIT2WgYyGC3j7/3M8LOJWiFrk1GFP3WU0jgplzwZSROWg7vFzjd/uIEIm7b9kyW8UHSAiEyNu70Q3UfWtZoyOokQeasUP6/7H1Z0+SLVt6H7Ymd997R0QOVXXGO/VFA41uoWFogiAJUoOJZnyR6UGmf1WPlFGUSCOMNIEEQAwkekDfvtOZqiozI2IP7r4GPezIupcwpZ2HU2VVWRkR292Xr/V9vy/oCPJWylWMtcOh5DIY4m7IY05ZypgGqbuUGDlAgZCSAOuuKCSqABSxD7YQkXbpDDsQBP1OehEREc3DnAPIMJqpR183W2sAGMSnVlO4CxJjGCLvq5dYiAHAVHvvUzdZVng+RwR9+DA9n48v1+35qs9nInEISSkNi7lLIOfEDqm1AFNVZsw5RwTz0pwB9h/fGGwAiwjH4JvHeK8Db5VSOD5QWpYKDGsnBdqQZ3BkeqU2R06y1fbrX//6/fuPP338HNBVOwBkFkDYb7BEFGYAQUhIBOagvbXzy/MHdpI8yDD2ButakVqr161erpfntm3e1BpcL/X8cl23Fk40CBtop7q0p5f58nxZ5q3V9e4hub3UzSNiXs61LbngOA7YLr3bGj6G6HhiOKQY0dBxu5zXWr+b58vD4/04lltRCiAikQcw0mLjCMDom6L6ritKHhHc9Pa6ABwgiAkAuzrcFjOY2b6AARGR4PV2D2a7cogxYziGRwT6Pks0I95tlYjoCEBo4b33pjbuURUQFMEin87PT6rJ/UHa/Qy/v8Y+KaIhaP9xiCheT2CJPSQpwhzVyYMD+Cb/vcmwyTGLtN5eOzJKe7a7iOSsDqU1UJfaWreIm+TptX0FxLhDFD79MADUzTwEkIPQERABdokh3C7DIbR3g8IcuqEpdifAkj3xoAW7Ual1yROybGAU7IiJy5DGUSZRVYvfhWsRIfAuJa8RHcmIgMiRAtACIhEj7h/H774MwlTBAgMIANTC3Gv32m8tPvjf6GaYyPHVUbRXPAG9a++9ffyw/vDDdvedWdj5Jb/Md1vzpgwJHLoZhZNvtasDkPDEQ9cGAGbOjBlcrSNiC44IRwfw3eGJvAd33Mgc+9mJyPsKfcgPzyt6xhWkF6m5PtPsGIh4M8oW8dp++P7Dh6ePX/VHdlJVANjfkP3VEVGA4X4EE4IjuLdtvV7PhfK9O+0+QtWArbe6bUvX+qmJUmuttQJQKSWTYPW2tOu1zde1qQcxSNnWrW59vtaUuGsNa4dxeri7A+vYQqwTIgEyJMIUgVzicrl8fPn4ci3d9e27x5TYAbrb/pMjUc48TBKC3Te9zBHAzCKhRp8cY9XbpwLa3XF/4onW2v79yb+qdQt3DBCRQHft4TfH1CclcyAAgprt6jSz0O7gEECORIEQtO+w8Hvz1U8Hxq75+yTA2mvjT+v50yDg0//sZt8wR3NwBw8MYCBDjNczfP8n9+/ZzaUzRQTfeu85sJSiW9vX535XB3Ai3nsqiEGEzLTP3l/3ndfr++6ceP1iZmBivklQEfG19+VghoApMGHSJGuGcJ67B/qu2gYhCtqtvzKGlXBtKx6paQdAW72vi9Xvni9KXhiK6ZkmNsd5lnPEl8dDe7oIwzSk0zgQ54DElBS2hWAFu1el6qDdE0jIqtuHeS5MeW369HI0x4w1FRMHqp7i4thlKLB9dWSN/O/+x3/58P76xd1oy7P+9peP5/eHum3zk6ruldKnJootJq+f8e3BQrzZHt0BwAHD0QHdYL+4cL49BLf+fdAry1ZLxnNdD0y4WF69NX2/rYUJWxskwdKmBN9//337cM0LGrVJxCwwwLv3qiLiiqLHCK+2FgHwRZcrLZv/8BJDlq/7+frNxw/nh3K8G6bNhGMU/Mnq81zntjUMOgzF1mVdOrRGq65Pzx8/vKw1Ck93450c0rr8etNuvXI6TIdDkuOQKZTAR+ZhEE0JPHDrVxl6GVi2/Lbcw3Bquj1/+7ycrw9vHu7ujof0yEk2WJa6RcJ8Stt1i3VjGUw7+YbWwTCsW4SnCW28XJ7L/hSS5CzujhRSMphZdFUNoJIO3vhpfrrWGcfDH9zfDzC1Za6ukIXKEFt/Or9vScdM0ukwHoc8Xbfrd3WWOBl6ApZAoWC2iNV1kqEkIfMAwAyA4OzqZJkwbSGWuvOl9zccgigFAG33FFmPrmaVoGaLVZANTFVj78hQBLp7R6KUku+yfpaORsIDjOEUzRp5PwQgC/DRy9VX9ABHCEITUDLNVsW2O9ATwWEY8OPzD5uvS792WEdN72s9y5rz4zQmMSFGTmCQx5SPw3AQSuAcmPM4lrGeXSSQuWMorqnIA0OLlep17QjDSfh+66E9ZECwKkXKrRkA+6jA67ZcLwv0sXdCkpQYUW4zG8VPK+R1+moYtxD32C67nkZJBWhvPH5qwf2+fWQ3ee6tkf1bdTcD6Obzr377gfKvnz9up4Gw1/MzXhY5b8ctVIPIEW9JvyJoFk7+u9V76ymDISLvmvd8GwAQYMlEJBnN9hfqZtG1927uzrmroauCIoBtqx5XP64ugEbk5j0UO7x/evn1t9+COQvvJRl4EIAQMWI4UMmgLTqC2bas89PT8vxxni+Mp/U6d8Try/n7j7+ZOL398t30cFzRHaS3uFyX+bIui26ttqa+XWy+RJ0J6pAkS5QSRbDIYVNzIhlLSsJoSYAwAkNgvxN6732pSBkd84GFBXcuZdetXZqZbcv69u27z774zF3P81VSIQJ3LSW9eSxr6z18UyN1Ec5ILOgQwzDsT8o+SHd37QGE5JYdwCEAMEDRGvi1tg+X63E8vD0e0t19Adisn+v27dPzpa6lZGQKsGaNLAeGCO0E0k+aRFUFj0TDrY0k0oX//4iQAQNsH9sAAaPcLsN7f3nvToC9Dqd/N6J/Nd7w7VdOr0c6uPt0OjyMo1A89/lqdpmvCZK9HvufRsc7ZS5ir87DQyMoAl8Lvk9zaW+t0WbJa9lzqtVaa8uyJaCJxcpwmwBThIeZOTgRUuKc0lSGEys0v5jN87y07tpO00A0SM6Z8VbWCHEictdtrmErwiSFh2HYbEa32Kcgr2/cTczovt+m8lB6xaa7VsP2+C59PRI/9Rs+OT+9qiClJMLBggDQDGpz/PCkWS7X98ORT8d8MICKrqiVdjd1RKgaUYhARHS6vZWf6vm93JpOd4lLJmFGR4twFGSmhNSjOwJKCo6O2EgBgASNcdyTklvo4sc57jZA0oTcAwWI0a8L/Oq333XDxLRvYIiIdMMAmQe4R+u6rdprvVyW88u6XAEAHa27DAMB//DtD9v5+sXl/Parz9SnrnXr27YtW1vVw71VXUZblVufQGQwEJa8YxfQxtrVQHjIzOzROLpAUKKCmIkQNTCaRu2O4pA1ehAGE6U8aa9tUW+L2vsyDGUaxmmy8AgqJTlEAQqikklEcthRyqZeWzPHnJOq7g3b3n3/NBMwOUCEWBhihBtCY5gNvnm+UDnEeLwbT0RwuV4+XJ5/OD870WEoecwK1KOTt04mQvv1+YYTJgaMT+awm6iOCF9vj/snvjthd/+5ECfeWSTBGIB4W8QAu4351sh5LW7dPWK3+N9uSe43rbqi11pbEhJyd0cPMyTG35tXvWo/wj3BTR//WtKb7w1dxt3hbLtjvG3do1LvjnzbPgKIaEi5lFIk4a4QAHdzDRfiFDAIH0p+SIdArd1X06a1t6raEEFUrTXtW1UVzk4MSKHWxE0Kl1yaDdGSQ2emPXBMVT95Mnaj6a5kCITdAOgIbu6729sd49ZhDnNtfd9pCDgJCSMRcmZOYtaXzaaDHcSPuB0BTwxBWRVd+EUo4NYjMQcDN9dP4hsE4J0uCWC2z18RusEtsdYDDNz2vOLb3TUPwCSMzCIiaWRHkNlttaYxOGTzBADuxEwAxGVIrlp/8de/ef/h/NXpAdxdbfcV7bIwiPC+Wa+6rrbOvtbo3VonBCKZysAPb5nG3Om7X/82Ap+fz/noqfDdm0wyDCvWuSNva18+z+nt49vPtT+vdVZDyuHcu2ITYTBALkSEpgSOgjEMnFgGBnEhdBB2LEZlQ9hqZffj4XA8Tmjal631+v13H2u3v/WHP7m7u1vrYoAO3p+3Zb72pq41XEXSOB553eb5oo6lFNNGGMIl3AkYEIWAgMVRCRTQiEkiEkdKz81wrrnj0iF6v5yXp+vWGMtYynGapqnuaEFURwc0dzPvHkCURQSFGIyTOIKqgt2404ho7t27hSERMxdJQ0mDyJgLQpe49UeZgZFg/wUBhv9+e3lf3Ai0q6dtD243MwMmeHp68rqVzJ09TsNQCoG0zX4/yOqT5AsA9vIBwAF4X71CUjg1FmYgIEAkQuwRas01IhgwZzmM0+FwmEpBxFYrIjICYbA7OZA7hzPERNwSLhQ4DI0xQJECMaRtdVvWdd3aRhRbhDF6eCul5DJwSsmYjcMxi+hu/mwtejez3XJo+6lopuEskody60Eg7o6zvfkBwPvf3RuYiQFpt4FoSlxKadtam8ObyCPnkSQ5gKltm7J1OCcz8p1L0hPvm4ZqTK+2lSDcq3FwDDMld3A3l8SCALLHiHUGVnQAcDIW3HEnwYyZmVC0gUFUNY4u0RCQQENbAFuCJOHwq198+zf/7rdffX0I1TBDEfBADyCkAMRIhA4AvYMatDq/vCx1STg5Iks6Pr7523/68KMvf/Th/HHRKic4HEaWqOthWZb5spTvNORyZ6dyPC5m33x8Os8LSXGDulhdHAl6QEqIjEYQxkIwFBSCgkwgCI5JXIpiYTIn8oAeoMEEVEObqgV9990PeeQf/eSr8VR2o2iZcl4u87K0Ote1YjqO9wWZXl6etMeulzMDVXaDV/ogMDojAlAEBQEziRBxAoUN85WzGs/X8/yyaAvORLns7eUByBmd4NZLQo2wCLrNGkV2U3ZEVG2kFhHIFITu7hBmFmABhuGCRAEMQe4ILiTInCMM9tDw+CT52LeA3ztI6dYSCTQNE3eA8H1nor3dVEpJQ/H2O9dxxC7H+r2emcQ+FGXAfT6aQPLeGAZgQBIZMhMVqqtrv2knzPvOiWPuBrasBYEYhFjCEYLctAe2lgkLwCAMQx6Z1Fag/U+SvN5SCRGFMCVmhiQiiQGCAQkBwYmAAPdFiLswFIWINAIiupuaOQIyE1Lg7b0Gjx0ThAFgbq1HBCMSoBDtMCYkpxsyQnoyHDiEVW2rvraoVR2wJjOyvWsH5da4gg7RbG+gB4GCA4CjO7pQV/euzityIkToWmvvhzQCIRI7hRNx5hBWoL41TtI8PKBjVPE6Yj2gK/QWDSADgOFpHLfL9uG3H/uy3lr/Hnv3APcmZyiYUTibheo2zx8//OBg+GXBlHdNr0yH8R29HeXg6rJNh1GS1zENh3w4FslYxoQXkmHgZX2eoSuUTImkJriQyVqbBSZEluAgJ0YAQYYAcAgOSgrkzq1hiQ5BQLR16zqDR6hZwFQODv7h/RMn/KM3fzgepufr+XDMyQ+99w8fwbqqrhB2mPLxVNq1EcMwZtOdWXsTPwepB3ZCD9g1BoSYAtGDS5FhsDRqHrbgTYMcrVtW1d699p0XC7BrWxRx14OEeTcTNN5ZqPE6yPjk3weA/dJ+a3qbQZj26owwBnpgAILvG/vrvTc+LbbfvwNHIOzSV4dblDQAIh2Px7tpGjJXsl4yM3NCG8prH2dvBiG94uLwpqPcichIwIxIwK62X8b3hc3MKaUS6MUTi7u3Wtd17UyR5LU9HwxAuAfCKQaBWQHOABEaYUARCBGGGLLzmYRYiPZk7SS0o0PIzL2b9U9XjhvGzp33FMm4mRP24Xv3V7tCCiBE3ssGwr1SptsoH8wjwtUwnMDV6v5NADAw3QB6nsIYpQi6iRrECUwj0Oy23yACQAMw8tv0C/xVdhfEgG0Gs25a3eFTix6CM0jJktibAwU6eLfW29QYCkIjNAAAZVfxWlwJuoGg7EkOh3zQub7/5ffrvIgIIuNO8DOjCHDo2nyZdV58Xdvlcv7wdD2/PLx7ePfl53I8QclWA7pCeJ4OgWp6h4Cu1d0IIZfh/nHI6b7drWurrmsa+YjDKCUThwhFQ7KlBhLu0kvAEEYuGAah4WgB5E5e3bAe6pxzRuRt29zh1sYH5q0ejscy8e5IeSicCwXEOPJxKg93x/PVn2dXbYlSThzW1bzk0sN6U+aCDoih6Hv/pqJaALmCejIrAON08JQ39XIo43Ta6IN23XQbhwG6RathDCGRCEJ7rx66D5LdvfcOTBjUWssy5pyBqOneKIogRLnxFTGAEISYAClcCAgwzL2rGhqxhQb5pxX7adx1W8CAEARAe/Pkk7EH6HZb3o96NEuYUkqvw6F92HtbwDddJMbeMd2pdOCIt3FJYKCZbZtmbwmglDLr/EkZJiJpBwwA7h778Ag1MKWUEksmHolmM9y12bCTxNlMZV1r32rvvXdC6L031W5dWzSipq81sLu7Wuvbp4nxPovb114iIuGdP9C0hwTRJ8QUE9O/p6EBAFVPdKsi9nwWA2QSMA0DNBZPAx5YDKAF2uhW1cKDd0M2Q0RQ1xp6myO/fiq3ORuGEYiTAZoHs0gu++hymEbKxQhAEqXUTdWMughxeNLoHIQBjh7oxgAJEhZsaL1FK+fr5Zd/9YvW/hEiivD+OHxKlkDEWmtfrn5d1svl5enDtm3TNAVLbzVSDubWO6hhQXMcy2dIqraAgRthROLiw5jHa3t6oQuOh3EqgwSKE5DN1bYmTfXWYQ0HcAIqOauaebgDAjvs8E8/lQADD21NPUL27CLV9vL0k7uvvvzyix7L1lZEnKZhXq/RNyI/nQ7397jqjB7e1bSt64zIOee9/hTZxYnU3QJd0Xp0dcyu0IO6Z6ZUyhqwruvx9FhKScytqzGEIwaBucVuSWPEqG1T1U92iF1jz4StNZjGVAoxW+362nmim/9pNwPJkHOWlHNmVAT3UDdUBSX+VPT+/hr+vQUc+9x+r6JfT2nuva91sw7XqAalDMUJvPd/rwf+e1JNs/2MwF23suPOQUSyECttqro0i3WgkFKu12trjZFKKUMpIgJm27YlgAB3N7UmDhHBCEVYkQUAwwFjb/nvMyCJxFiKAhqSAptCQAoQ5UMTAeHexx7oUBTOSC/gBSIZeEpl1Hibxm2Vac4fvjsflnT0MROmsgmE1iWz1+gDTgATIUWsoJcUOrocpV83SOUt2PAmjcO2AbgSBZ6Cgg4rA0AmgrFAWmvtCC4CFJ4IORS6QdCBcj9Z11DDW5vMezgQTDECAmePaBgGDJiVMng6KKOgcpC1ZmoWQQG9LUDEFBi1JHg4TlNfM4/D+w3AK67IEAwf68ublN6/1G9/uf3pf/wH6/INTMP6dB3LCfoKerVq3Gbw2nVZl6ePL8+Hu8dyepPvHhJn6NrbDAA4MiJOjJquiVgcnYZkQoi9NqbluvZWwztNacKMQkwBrbXP8CR85euy6c3EB2CEgQ5JiiTqBq1H680AGfDcmtZeDZAHQrH3C6sdh/LwOE2HlAT65l7dOhY63BdY9XJP1KHpr1/my1MZ88Pj4e3d3eVpWZqBE0kCoR7BCASNsEjiHLZZTQHgXEODmDMFMHJBLq2be9Aw8FjufDrmaciSEkPiYKmOBKitmlYAEGZVDcdxPAgPY3EIc4eXeYWA48Oj1h8kQQ5Ej63V6kqZhkM+5GFgLG9RHnK5z54zzUqQRSTCd7FYGLgBkYSjegASYvVACxzK5Lo7esR7wyw5TWMu7mkTZkxgvm2Lbja4HxEWM4s7k9HMM5AAJxCIXBWqmboidIZKLJy4cDGhQDqkaUKPHl68Qu+mFJQpZUmJyE8JvnuJwG7BMThGb4HRkyA8TGWpb4IR0rldOcvp8eGW6/laIRPt3joURKKo4OIGYQq+gbfQ1dpG0RAIvKFvjDQyuS1x/RjXZ9wu1I5swYCMRCAUeSxFdvduhLm1rfbWdvkXIu5s23Ecc85brd1025ZNt97ZOBwOQB7iKIGOQL+Ty3/SySHlDhyhO4rPQxkYCOdNiSAQHckAPFyMqGMyUFDY1TjEmLIS9MBJBgWIuvSlanezkOoHZSQKv5HMBCkL69a+//77p6cXIBLJ0B0RwSx699631nvv2tr5enl6eqmtHYZy//iYUgEguAmEEYERkIgUfKcAAvgOGPboHtrXjQNOh8Pum+u9z/N83RbeBMJySkCoEGZKiER4uZ4jUAEtyIM1OBAh6Kl2yRPLiJTAQiiNA5+OeRhoh85dl+d1Xc1sGIZWVa2p+T4pSLsplnnIMgxDj8bMxJIzRISrdu0GGOA3Yx3R/upEJDl8gokTUeguCmC85cimUgokVkA1sB3W5cgcu98Ydpn5a3D0ftH13j8ZDAEAwZNQziIJAlStBrGqmTF42v8hBt4B6GEdXnX7/ppE7eERgCQppWEYQi1BeMUI51fTAwbunolw27Vljnhzw76Satx999Xt1KldqbXXxrdREzgSSUokRq64Cxno3zdjvJoFSGQXWujtuiAZIwRJiG93XpG8m5h2oNxeZQAgkTAyRSKv2BBESS2BChsJIBtGFZQAZW8jcGJiC13bYXkv2zr0h9I1exJksoYuzPxqu48dB2v7JImZxJk555xzlpxu41zwCAcCSMQlgkLJoCt2ROTYabe4C7MBiNCFyB0p3PefXwiRJH9xvyvUPKBq7+oG4UDYWQF2LW8aJ7k7yVQG5gKjW+0vH8A+aL3a1nBRWS0Iw0GImWlkmcZC6t9+//2vfvUbCEmpWOuEDK92cDNT9276fH759v2H7jEe7x/efpGHAoTuDrdeBwYAJEEwJIQAJHc1d1Vtqi0BTTvDIKduOq9r7R2IEkNmahR1dzxbTyxlSCK5qWvTbr4DXNSie2g+shdbKFofwI4Zj6f05nE8FDscxlKyuy/L4u6n432rvm1bREMPERmGYcwpM3nJ4zjOdXfkonvknCkljNyIA9xdGSUcVW+zVhHSvS0qmYjVbtM7AGKWfQmDsJvvLeEIMHNBTCnhPhq8iSjBLGrtvZtuHfptPrkvY2YuQwiD2tq8jZTUCCPTzsLcB7+AQkIRTEiciARgN4QBAgfE3hDGvVeMQICEuCeTAYAgGXNmsYB961GicIObZf8mAb5B+ZiFgJmFI7NUcWRyNwVjZs7E2GGfIREwIxMS4K6zAb+1h4j37rK74t5vIiLoJkCJIdTAPYuISOJX7MAN4BTEIYgJgDg6Ge67C7MTO5C5QEQVniiRYgiZUBysdXMT3cTeAk4BKRgNvWGomJlquGRISIC994hILJmpuQeCudttQ0UikpzLOExHngoPU1YiXQNNERM7uGOAWeAe14e/U5rexgO8Z8ckgccHSSnnQlwMUC3UA4BQwSxUVQHS8Ti+eZTjMTJjDLZdt/cjEDcHrS9bj9rVIRwgixACI5WceRrnp+ff/PpbqArj0LeNMH3qcN4sge7XZZ3XtYzH0+PjeLonEQewCGRikX0QclPowq0PtFOae6+qLVPu2DsoOoYjkQzT4RSAba3dtfe69KU3BE6JWLJjA7Rdf8Yo5mStR+s93b28rB+/ew9b/frx+O7r092p3B04J8nlNQ3IbK+G9rFfa63WShjHUsYhD4kgOKVEROpuN3tSSEqJU+xsy8CdjxKhr7x12S+4n3wspnt/SAjFb7N6uPn4HZhKGKhHOKYsr2Iv3WMl91ZLaw37q03YwB0iQhAjrNcZCS1NFOPO32YCQMe4TXdFJDFFYErpJj1EYWYw8/Be24pr2zaUW+PGzdws1PZBDBMxS781q37nXtwxFTup4hWcEOCvAkRAEXE0N8eIGyHAjd0YkPbRjCuYu3YDNW0JORwdfO9n3DSLrVkwYWKH3pp651RuGyXCrfsCQBTkyBSJI4Oaem9uXc3ZJblrj6YeQZxSwsQyBhyFCFDJ7u+PL4JvUhqDyHZnRTiEq2lTH3w3EFrrppoQA/ETZGTvD/veQ93zxaZhnHAYhwrUqZGjEICSqr9SVCACwSPl5K67/JWZiZlylpzaIDmVPI4s2YHM0DwcofUAs+gMiHgc4DjgXUFJARySbMl94lbSmrEm7rloXQJAkF7ZEulApAAf3r88fXx5/Ok9BHq4Kn7S03XTtfat9ebxxdt3d4/vIA2wh7ntGiPi8LAICbjBAlx1R6zfHgYHf821gwh3CsjILvlle9nWVpsqAKcRSVyyRlYsRhESEdwDt24v175s9ePLh/P7j5fvPzyWcvz64fPPTg93TFxzKRHe+ka0H5IEQLuYodZ6vSzrujLBlNOhZCFNKaWUGHMPUuu1Vm0tMVYkc73BOoL2ILqb/ulGkIM93mU3XKZcAGjbalkLlWQRxJkwRDI4RXhrmlJKmdWs9564hKOq7d+c9saXoyl4C+9h4aat90qMEClAAjrtvb1PyEjfJxfiGLsb6LWPdUNrmNkOrbuBaZAIgOKGyPOdZmj+Oui4wc8R0d1Ub7PcW7dsP0UD8FU4HBEaDm5gwHAzQnpomIdZmLupGTt077pvds0A1MgCKULdoWMEMIVGXzajLlPZl7eYmauBBzohMmFmFuEyLxqMLaL7DlmEcHEnh+Qggcw0DAz3MmRwQno3Te8dC7O4h4VGOBgIppR6rbR3DgFvgPiuHW23ueRxyEPZe9S9920LNdw90CEUiBgsnpDA3alj77HTQkJdQ1ufzRQtgDqShIubhXbSIbBHRW3dwru7uUfEarsINALB1q4Xc1+CKXOxdbblydpsXjtGz6RT8vra3+5qZssl8jggwYcPz3/zN795/MljSqVuPVR3/sq8bfM8z+uybhsgP372xfHNO5CyX1ECwCMAbhuWhbdqBA4e2kPVTTECicTJMOWUcpFkZq3WuXlTWLs3B5CSJANINV+W9uwzD0MP21qf13ZetueX+en5fFmWuRmZnxh+/OXhD3788NnbaRgUAlMS87ptsJfK++1mN/Fr9+v1ulyuJU9TztOQkoylbCKyD91/9xAHUBmQxCzUzc3cP5HxKQDD8ZPe1h1MFUtS9ct5JqJsI0jKJYsjYdrTiXrvqqkMKcBVnWgEot3T90lL7+6u7Cbu6IamAR6UmAgQfMdQowciMpAgE4pbWNgnsJY7uIe57Z7gXfPovFNEiIiKcJYkxNjVeq+1ooW1vr+cWwkOYGbOrzVg3EaZ+wmMiBTQ9ZWabEYGwEAiggG+08IBblPrfc17ON4k1gYYgXFzR6EFuYO69u5se32CiHLb8PeyBwiQMw0pFUmIMjAmNA82JG2hEcUgdxNQD0iZ5SClWMdwRNmAwAAVHBwIIwePOOSyYvv0se/s0Kyq5IiYh2GapnEcWWSX+bQarUfXqOZk3gUhIXsW7ADsHVPbMQdhGtZp6xauGHvgX7g3M8AuqCAivWQScoRAD0RiOMUAOxxV3ZarX146ozqgiFnDdU0vV6kr7dPvQMdbigYhCtDuwUhD+vab9//Lv/nzP/sP/4jzCJtFKL76VGutrbWq5sSnxzfHuzeUkgcSkSOYOd9CDsgC3QiRwY0QhYOSJC4AvukqBAiQSLh1WytVtevaAx3FAFvw0v2ybctaVTW4b60ta7vMy/NluSx1WWsPJ4CvTunv/Pjtn/z03ds3YPaiyofjlAtFWO+WMpdStm1DKEy3RaK9W9c08WEcDqUsXvd+TO/mlPZyGiMIHHJGAjNettXUXi8RwcgMu0EXIXaTami3Wn0mmK2Z96Pf5+mQd2m9I3LifTTVu3tx32lEDESIlFIm4n3uEwFhmSJzZIhGJCmVnHaZBLEQ7QNyRELGW4Ig7Jrn358GAyDD79oq+IqhFryBO2QX8HeF1jFePbF+g7C4+86v3ltKt8nWDpb5NDo1QyJBqQjuHgz7W8d74BJBYiKCRLd+m1nd/wgRoCMiEIukBEzugBFkwemmDU3EYl1f+bqEAEjInITS2zefoRQlue7Edr1Gm5uGY2pOocYunHKizNFBlbrKDci25zgAJkiFmJlvZMAbIgzM9+siMe+ZaXuzc5e3GCAER+DNooYCRCQs0AnRGJkJlQhYVbUpF9Yq0RUD3KGbqYeb4bKhsLcNBQwMyIkAmeLFE1IYePdu7oANvFt07bhfcCxkC24du1nXvRyMiERcSpLoOefE8f790y9+8Yt1XcfxiK/m8d/1EveNHbGMUx4KpRxqQQgOZhaftJ8AtCsQRCJcUCDZ/gT01aA3q71ps7W2Zd2uS7su5lA1luaXqi9V56rdFBE/vjy3ppd5fb4u17m28ABGKF9M+Hd++vWf/p3Pvnpk0PPTx/n+8eHNZ2+EbS93c0kiUmslrCUPnwpgIiqlDGNm5pv2xj0Ccs5IiYjqurZtA+KU5RPsElFuPdi4LeDXzioCgKquq4W5tgURKReQ4ga7opg5FSa0bq/37Bs+7gbr3IHvr1IqJ7xlAHiiHfslibmUkrOw0N7E+jRVJpKbGWnvMb0SPBBxH7yGWpih823MAXCLnfcICvBgomB+nR7vkSvh4bfvKPLKFXUiIr4taQAXEYHUiRxuqix3JwYiEgLakVLMCdlZqhkwMScO30EJIlJKCffqQYB7X03w9p5I2BFNXFuYIxTTVrVyqauUnLOZO3TvW2Dr1DbvW184vxm4+LKFh/bKbY11PlM9Qx0ycypOGY/jcJouieXlA/nyfP1wHN5kHFoX22b2M2zBw0PhO6SCEjl7ATj4gI7L5WqrIxEwMLEBMuWC3XaKJ7MLqYEymohuGCSR0Lt6U1TPqhGxxnsAyoDimBApiEAASI1Um3lFxCQUztgAqzaGWitlHCQDUwl/6PD5Rheddv3JRZeWqRwPL9bfnN58u7z883/37S9/1f7u25Pxt5J7XHWKtwtvLNF9G+/TGgvKHkDhEALqqg3QUmbHHRBHianWykgU4Oop5cSybRs5isPuizh/fHn+cDm/zJd5+e6syGPfYnnZlrl2j5TzOJUP9fl6WWi4M4Ql2gCZQQ8F//d/WP7Wzx8f7o4ccJ2XdYXjgdbLNR9Ta621ejiOCH798Ex3dHwznvJIJonvAucG13LQPISfIepm65zzAcPNDYkUnMuQoUP3Oq+CnPNQeyACF9rsgTWyM24q0kYg46EF1m5BzdA/6pVhGIa7zS/LuiksWKxGkyLAuJAzS84J72tdKw1g2g8jndca7D3U8kwFmYt0FXd2dRWK+9RZGsdSI2LAQWQ6ynif7ihde9Wurfa21rV7x6QkfdJ3HdTcq1aNpVqV3imNR3gTCit0Zx8IrdfntX54OZ9XSwgly0R5DTb3w5GQvHkLb2Rb2Jajrq2llID5IMcMfSAJwQ5K1HPORTjDSJiAB8+lCXcEhT1KJpGkQFIIDAyMBIEEjaOqdrMhF4IOAMNUjFzWulw3uazD2g+jkfZWrW7W+FDG45E5ccmXa3htoql43kltry1+dUdXYwAJ3oMX0VGIJQ2ALefcx2E8TBQ4Dnm9rsvaLvN8stbL4AKrgI0p7ka4G1sRDDbowWEILSyaIqtRYPTrNgPyK8oMmFFQIiJLRGAomaI1tMba2N0HUNqPAAx0cHV1JWcgvBVluwAzyCMSEiOgMmAIgFJwRs0+47JCauA9YCGZJLdg7uG1fzaUl9++/82f/+Lv/ulPh5x7tDzlXhURh3G8e7iv67zWtk/arWvrFdA1miQ07+HoBhrsqsOQMW7JWt62l3Vd13VeFt1Wr307r8/fn5+fL8vc5qX5HFu/flz1w1xr2HQqp5OzzI8Pd8/n63p51nUdwN4cypv7h8/f3P/ox8Obd28Zab6el2Vzt1Dz7m2r7iaMQqytn89novz2zWfqvVvvujLHdMilJAfb2tpaI6KUszOr3dgJTGSqiG4Qe8Vru+DVQ/0cSCBFykSDhwIMhFm8XXtX8z6MOKX0MI7TMJL63TheCHtTIswpy+6N8IiZsAsBgKE28+4AwCkNkiRwv22mlCQlYnaEtjXrhJCES8IckHeAuW/NmvravGl0jabRFBQ2qACESSiHd9zl9D28uZlBYDhBp2jar9s6r81CBMGRVL2qBrkpukPKO4YsCbnWttMbOcnaam3aU9LYqT6gqq1/Eg567FTTV09OJhyYB+GkqG6MkIUGwRkIMXBH4ppqr+HGBBJQu85dj7vVY2/RSeY0TtPxNAwDsM/1SddqUQN7QiDXhAUgtPXukFQlYMA8kLFzChxTzmUQ4mUYWxEikERFUsPa1+VyfZm3tT4MGlrRLWMMrCW27M37ZtGhg5BhoCN3d+/aN6+d2VPiyCFImJj38oM2iJ25wd14J7O4g9tlv5CAu1Y3JO/o+7WNgZBv0nl3LgDMaEqAEY5gJaVySthwvbTZeLbYAo0HwJw6DKjs/tnx8Ydfffsv/qd/8X/6z/9M3gzLdh6G1FmB+XS6l7C2XC6XmcDD2mZtWbsIya4vQMJd3cJp9rau6zJfEtCh5OV8efrwASJaY2/arsvlw/PLD8/Lta5b3+Z1wMPTef724+W7ZS3349dfvPv668n783D6+rvvvru8fBwM7gv86O3406/f/PTrrz974Gma5st1WZbee9p7Da2vWpnxeBqnMlyv15enp1D88ouvW/SqddtmJL0/TcMx160vdZ3bxklSyTXId4oDEhF1C2B0AwuDIHD3QFMlMkQmAZDubAGuBeGQSYWFMbyUMUtJmBLKQDI2HCpQoxE5IXE3AMiDNACAhEjqvXXY1ABgj/rt1ppWA3OBLrFZpT5/HoMHWSTEHFg0oFt0t1tnGHFvMu/1LiL0cGKk5MGkZArkAMa4gYG7m3sCJ7IAY4wMvoEHmHpz8EChVMYhl8HCN+2b9RK2Wb/WtqxcewdOIYBZUs4w+iCYEDB027ZeW+89rO/ijZ25C6EELIAUJhAMwaHkhmQQ/UZpsmadvG8EB5lQsyrWir1Li3DIgEMi7z1qBULs1bfZtiv0FXUd/I57T8JgBrVZhLaeAskxOYIHNOXWuTfCTq3qttZlhqpRjjmxNNRtrfNVpkMElQaTWqmb1JWbo82BjKY7r0gwo4vVbksl4B2j5GCqHRVEKAjIFyQWlsiZITmyOjgg9nYTWvcdJ0YKGMhoQLTfhvb0dEcAFmCzIHMLjsDEU0lTl3SJVrWHd2OI4k7hbcjwWGS74/WX8P/9V//iX//lX/79/+xnkbm6GWnKeZSBUcv3BcDn+dK2pSoOw5CyuOs2L3VZSxoQJZzn3t31+vyyXi+JCa2BaSkFvWmdr9f3l/MP5tt0yCSxqQdtOLV+6VesME6Hr948fjU8vz/X76++zQPB28/SZ48PX7y7//Ld6cu3Q0N/vlzPT891rTmlqVCY99oiakosd6eShhnXZd5qe/rx5drBHazqAtGHkcYxV7W519qbE/qe5/X65Wo9QIB25hmCYzgBYhgjJYB+4zqEqXcjwxT5jsdUSNM0auRli8BoTfo5YJWCfIADOYQ5M5/4tNy6QRjRUgT0tbWKYC9tvtj2AL2LV/GLb1uzDexrTx97h4pShytqY98S9ASR2ADAw4t4EU/smV0A1BWdQggUCIMRAoCpgbt6YCCwiOSUTpJkGN9/t3ADCqIAQhqHPA1jScONU4dAwvvI0IBImAeRLZgZElPOQ6EJQIIYA/CVPQsOgWAe5uDmu8VAlc1IKBS31TwzmglFFhTbGfMWZnLX6rSAPF/j+xdzDNN0XYe1tvkHn89aCtV5us7UVQPWwGNVuS4po9cWraqDte7M1pp5x1brfJbnSaOvvtaXH/rTiy8rAEYYM2VCn1d9ejmkY4AOyp+fly9f5h/PTTuEwx1C6Q3XGpYjBzNSw9SCWQAALKK7ohK7C7EgW0NhFsJk+9nGwIiwF9iASOiwKy93MqDdJniA6hEeRjtkPpRe5XFkMQicGN8ITlbFMYWz0uj94P3NMH4+pl8dnO/gz3/xN//dP/2nf+sf/uh4/1A/viByHsbMBH1lZtP28vzxcb4YyHh/YoJ5nn/z618+f3xxo77py/Pl4csfff7Fu6mUrdWP83ksfDwMDatMMLfr5h+bXI5fHN69+2xrwL+J2eYvPz9d7vP7X5hxNI9N6Tz7D7/95cDtRz+7/6M/+Mn93ZSJxpJHgee5ffj+h/PLy5TSaTwJWV1rQkiFTbF1bN3VcdPQujyftzhgsLgrko9DSZkdoAf28ECorSnIrogED+t9R6W+TlUAERkgCJOLQsqRPQQ76Wo6q84GRm5sQObZPK09gKMpXjFdkBCROKfEUphLooeHgauIAEXBxBNX2J6fe4W+Rm/sMDAlxoGDQ9EMY/F+6cAblFGXjMGgyWMI3ePChVzIGBtDx3AECgWPMKOUJHHhFLqaRQsFCgzcxWFcSkrDkNQW6mcjjARgAYwgENHbrVcXsCf47BrJxLiLN3qv2lJKBuwiLEjH4/F4PK5LH3LeVVfdurbtJGk37ZKHiOR8u4IFBiONJR0hTkZeJBMTgPzYKDW/f6npm5dYlRHychnmeYL3EcjMg7b75XIHHQmWSseo2c40BlxXmzcnrrWySICSAJD27bJ8JN6emlWdn/l5Hi2mqSCDq4H2+uHp+qtvHrcQGCXKZ99++NnzOkP+ehTw8e1Ebzr4h8vGooPl4qEr9XBuAHGbtXEgAhEYAzsiA7KhAIrvGdmBuzXX3T00vIVXJ40INqVAQrL4vYSacAA1R+wRYQiqZHDX9EvHnyO64NaMqRWAhPpVGd7kOFP7+lS+/3X9t//Tv3z/m//Dzz/7OeMGiJwC0VhkGAZmnudrq4vkw+X6NJVhL4Hqsr48Xb/99Xe/+MWvIT+MU/7DP/qDf/Bn/7uf/uHfbjYD2jCm+2ORJ9K88As+Pr758U//YN28HuNx+3jf+KO+x387f/x+/vbhr+7tp6mXn3355udf3f/0y8++/Oyxrcs8zyiobmvdni/Xbd7KSRBR1bTOgn43fa6hW/WXua4VWqS5tqe15YE9iEiOw3A8TuawNNMgIDQPNw0kkbxTVlQ1Ug5iQI7QAONboBwuPRiCLbIDmkZra51TWyiMz1twJz7JXSl0yOzA1qfo3MH1vfrdcDgcDpSp5n4UY3YzQ3Bh2AiruirkxJlwJCKRxzS8ycMp8t14ejhNdwMfhnEYp5wPjaWQM9RM4oKcMEsqkgrLDjNO0N2BIk3MFmmi1G3FrbugZE7AHCgWrBHqWFVczTqhFUgWINrYOEOQBQewA0ZIYEZuSBVsV7gDBpqCKjmIUwEUwvTqJRQhCcAI9Mhl4ADpxmRZ8lCyg3mt4FEoWZomiAOjFk6cQUN+RpmD06L5hytcKwmUtvl2KUitKpG4B66rCEqCdbVcNpoVx4CXOWrVnK03Cg/qnQhjXa4fl7owI2DXNg+zulMibta6dm3t+s0Pzby/+4HjMODov/3Nu+v5T9NwfXiLlnXQB3X8eF0BpcSWO3olW4H7rXm2h9N+mk8EIRmyIwMwEEHc/NkZ92BoU+vuiugEIYslQAXsiAa441HA3QmsASlJdKXugPZQ4yeacGIh2rZNhITBPR4meiD7w+6fp+mz0exX77/5V3/587/90xJTpEH5CuEpl7u7u7u7o7tGmAidt6UkfHi4Ox7+7teffXX+uPz68du745t/+s/++l/9z3/z53/+N3dv7v/un/2Jcr9uL+8+f3sYuLx7oOP44f33p9Pp+OMfwdaGdSnfKzy3O22fOwwBd9f1tOjd9DD80VQYH44jhq7nrffuIZft+vxy2WrdJZawKwU0QqMZOUozua6xdlBMS28fL/V+HNbuyOXdu7dvH972btd50xAgAg5TR8YgBI2IIEAFAgCDMAeiIObEhIkHM9VOPaCC4DjFTGk9DPWwWpA3b0eLU5eT4UTWU7yly8LXpjH6dh9+Qsix5rYeGdm41erdyeJhVehAAHfGh9XzuZYh3lb6GR4w8dvh4X4sx+QDyABSQ7bAU7Nx2w54io6hZMaz8cn5zvjFUSB2dEwOsB5EPTkUJHEYSBgImllspBAGvmzQtnAbGCBxrw0VMw53gxSWgVNhyehKXCQpc4UgdwHMhEEiBBlcHJLBPM/LsuhuojQHutkhPJiJMTn0bkgGO6vBoimndPsMDMkFjXVzeQQkJ9gC6+IzUibQFbcl+jWqIw8MnKuWIZWSUt3DvzScfduiqxN57w1ig4t52kmc5sgUQh7eD1ZqmLW6oruFq81PTy/zsj6/zzEe+Lh+eD+gfsHyZjqApjNuYw/Q6g69JWX1fiVbKRkg7npJ2M96DzNDT4iBDMRB7ERB7IhhcUJwQAUzNwMNcEbkpUuAI3UkRbRdIbRfhjcG4wFNpHkOPHR4F3k8HRNC5cgJqfDmPU1J2B+aVyxfvZk+1vr+L38D768wZMyEPoMj5HS4O5xOp3lpDJiEbWu11tPxcHrz5vTw7usf4R/8+A//6G//8Vdf/Pa/+m/+X//mL/76X/8vf/En/9Hfe/zybuOoAmM65FMaW8/dIhdNk0eG8TjEcEL42f2b8vcSQv7szVcPDw9jLr/VF/JY565tWZarAXfV9y/L09NTa+00TjcNMNyqu7UqJzYUD3JMTmlTPy91aKl3Y5KHh8e70/2H5bLMTR2RieJmzNklhLtbHfa66PVr9w8wUs4drWnbiHvCYYA+DB0A3iGiyOaNZMv2nDcbDzAx/6xvE4OPMGQeyA6+kpJAh+MoCJv1tjV24e4D5pIGaCbXFdKFpnJc+jvlQuUzHPq8MDkmFBp9yig8HfuhC3tDjWieVi2bDauVzQaNjLLH4GA331owCcBBMiMNKBixtQZqAkxB3F3QM8CUCRJft/DmoDVxRFNtXVvvrlqbd/Xmbd20YZjvrGgBJA8Mj667JLE11V577w2NtfVa15YwESGGQzVDIGI0J1dHBlWo1ao1KdK7buayIbtWsw6hUkF2MzvEZtkFlALRsPCGsVHHSYY2cUQ7u0QJzPMWiKetQ+QEFOAOvtKehb0HHQOoav24jXfHzfXufjov1/r8/f1HScO0GWLI6gEQh3HC0lW1RbTMSI54MTCTbtiTNqGEjt6QgoQzAbt7k0BAbTuJk0QSUTF3aR/352kXlTCjoBFR9+snocInlr+7b4JhCF49WlOsgRjwMA5HL0CB774wcAGLutmH+XiFxvwWiUb8m++fPvy3//2H/+BP3v4X/8naz3nLKADmjfDd15/bt9+s2/eP79IpPd4/vhnu3oIMEOjSzK3Q4T8cfv7Vz/6v/+S//yf/8t/8y3/2//7v/vQf/On5eh7+DvMX43QaCe8gXa+1vX9/TTjQkp+uAvD28c3jV1/dT2UI2AK3dXka65w4r+dlvbRW8dLg2toP5/XjuSfJUo7j/aOBqqd0eNzC1WZd1zfvSkaudZkYofan799/9cWXvf4Njdfj5xCD+RVScPvwon4C71TXkqqEVzdjXKsygtXOED3MHCAlQ2yghVJGw6jff/ftYZge8/FHpy+mQqOsmUCXK1krLzS2PC1uZv3Z7+VNSmnXLYBDXes4jnGuEd2aM+f3Hz+cWPLDaVkWPovktdHa162vlyM78rxEvZ+BhPuKmz+5nDvwZVnt/bEfZwL07ufz9dvv3j89fy8pjoM0oCFh5q7LdkLITgkf79K7fJwQV4RNjPtGAoWzBW+LrHwk4kf0dJ+Ecvc8/a/vz9NpPY3XE73ZoK4v6/IS5yfYXlSfcIzY2suqP8Dh0DI/g2czAZ6YnWHYLmlLkkpt0aF8uS1QVw1ARMUwp93lC+mkKXdsGC/3fSuzPrKchkl++ZzBk4cRKO2aNwwAJxk/SbE/hUwCgNgZfk+l/Wkm3HZhOAUD7oH3e6E77soslkCubrX2H16uHy9NT19IyxGQpACQqg6RiKgVj7CwAGOGCCB3ds9XiESFiREJkYTSDbp7MSCM2HH2kByAPSIY3wLcAIIIDg4MgYiK+UYhC0THV0JKhO6/STsV8GaPMlRQAECjQGACksFz1JwNtZsmmfj+/ofz5c//4q/+0//oj0vSbou7JsFpOurD5+tiRCPYcToMQmxdQSsAEeBYJgGsVv/Bl1/89Kc/+Tv/7A/n5fLn/+p//eab3/z1v/2Lf/SP/tHnX76lAfgyX77/fo5v7sfHtGo5HMJll1gamPWO3En4rtx5tSVAA7am86KzopmVnPboR9fu9Dvz1h6vu20NAM7XbV3q1lrq/eMP73vvD3f3d3f3OzkYkcxiW1vJklJyt3memwKlsZRir4bYT5yWPaakzeu+RZrZPM/U4k0ejse70xE5vKqy2pRpoKA6z+e5cBORYdilSx0ABHws3jX13uvSJOUhJEVOmLgcvAac6+LPLOFWszdOLJs9zwszO0KdzJl6OHzUdjyozsLMKHXr/Lw+ntvPYfxiKIP3lCUl1NzICXuyGQazGRbiKuydeCPgBJygcR4aIuchI6NUTsR4Ah476Td89v7d0xmj9aVtC80Xul6Nt549hgBIIqUmYQIjc3puJ5WRD/d8uPMhde5bizV+aDcwZUppSBlKKqUkFg1fo23WcYRE1G09X37obZR/sjztAJqdUAVhtPcSD7ZbK36XQ7GLN9Tw92IdP30t141vZ1qgB1LsfuUJTAIL8pvMZtkJ3+PhA/QZj9pUVacJI/S6LlQ3Zn7efsAACtgDEGWXqIeADLuJZLd9MHQiQuRwJo6I0DDEIHFmjAjFW/LFHhwpN5WrO/17jrAb43fYAc94k8ze8EgeSN3BKImZEju52dam6ijXZe5lejDK/+6bj+2f/NM//Mf/4PM/+Qkn6ZsmoDTc3T+kdYb52raaTo9DpoxI8XuQXTAfx1FK+ezLr/+Dv/9n333z22VZ3g7Hbdte/t0v1u++QYFqta7rmMbh3fExDcudaA/GiODWmqPnnLKkdr3Uquum1UIDN7VuEBjMzASE4Xu+JuxKQuEcrr038+jL2tamzbH1fn55Ssxv374dhmFd67qpOTiQhZMwc+61datdQ8QDcPf6RcR+eMIrNan3jpJ3XmfTdm3xVIah5BPOgyAmRdAsacyJMHlSynDjOmxb783MemsIneExmuk14shTvkspkeA4EuRARK8BVfcoGegOodQHYiZwNnRT720+f9By/bD8dk/w9Q5bC+z04HIKyacAYSy5xxDI0aDKgtRPMYNVQh9YDsOAhMBoSAc8AoCEQcwdamgM55C11Ut8fPmwDIFWVd1j3KosG6SwgvIApNHdVyYoTIkpVb/XwYmHznDpSJ4VyRJ+9cVOq63gztKztJwzCw1hdUWHA2VYlsvLtYcOZPJfPn0kRkaKsHCnCCYgQmtzROyeQHbggLQnKkSB3zuQP53D2VCAE8q+gAOMCBkRsLHFEPjwROiRx+G88UstztfLcq6+HtrIjPO6UBKRPC8VA/aMTgEncAEGoICVgRk4IAIcwQhIgPstWsnUNcBIkAgi3PiW2bPvR0K3nzleYWXwe4AuRMx2U6LfXtHt8I5M2cKZ2V13C6lZLwEnpucWx7GkdPeLeP/yF9/8/f/5L/9vf/r3hFNdn3o1wSRDuru3rb7vboKCeJP13+Kfu4ZaGo/bde5bLal8/eWPplwo4OnpiaAtdWvWMYuIjJIzp77VSmtATHdCmPomtQGxM8X67ffzdbssvRp2lODU+rZsswWmsdxc32EYzkRDzsOBGYFE1LErdUNA6gFgfnd/ujseerdt1Xler0vz4DSIpBQKJJbKYKjqNq+NbknCWEoRkU/rGV8jd4UYE7nCx+s5wvM7vMujCrXz+v5lKXDJMvbmF3o5HA6llGVZ9r++bRsR3eURAF661tqJORHs9M+5d0BniEyYhDMxAQFCLgUFRQQYoXeI6GZe6zqdMNy1O5iTY5FwgsCFrYN3h9nQoAcgFDtO9M5paa3pGlSYk6CDe3jcjW8Q3bhpdDRmLpkKo5hez2d9ednMKxJHOqinzQm2PqQhcebuum7qjsPA40gBuQwIQ2hXD4BgYSJ6Kq+BJx6ElgEykCBQ82rRiCNwc6yGCcggyRP+nIAEdqeFEYCECNBmGubkAR4SmHCPEaT9BIP/LZ4zIkQmYybey7VbTcUINiEFVA3LA5qfTidT5VafhvqEP3y8fMuqYb44sCoDGjPegpsQXfCWvQwzADOmxMSwB6NgBKIN3fdV3UM7KHXY8e7lBm0wBIhXusLOGqVbevLevtqnl7BbMBBBEPZksn3BS2DvPRmrKkBQYgsn7VOL8xoP7GnbrnD45bcv/4//zz//s//j//mnP/6Cmer6EgF5gOlhGmuSbBFh3cFbYAAgAxJJktJ7DyYZS8GxXrettTGX0/2ba11LuZvKsOcqZ0mg3aXe89JayzIg4vUM/WU7X16Wy1Wb9h7rpnPHDlIjmtbzfE6UDkUYAcN2MrYgl5RSlqwZgU2hNtg6NEdv5mbTMKaUvDuwdIOX81xbSCkRWHtD2/OR2DWa9gTg7p/OXn1NMxSRQBLicRiWWjvYy7Z0sMPnX3k+2QhrbtZWbJq0hcM5YqQtqbXWdmfCgqTdVr7mUj6Q2vKyast1AsRmenYlQMZgwkKSE5fEjPSYTIJHGVNKLmJ5Mu/MnN58ob1t64vyyuYDMnXUpqWCQ2iNXreqtqfJ3o3S3k61wvPVLnOL5cxeD4mGHKwok1iOziDDIZdDkqNAqtdvta+tewRTTpRHwxSOvQsQ91BsZiO60ybQU9cOaUw5JVW13g0A0NHhTGphBj3AiUBQBgxBoy5qrOEW3nridGTOykX+8R/9w51GvY+zMYiZE0uFBnseNyATJeIb7Z4m+N9+3fxZPOwOCcDd0+x7qTpLF+aIGFLutZ2OR1TX2t6dxh8+/OoXv/7z5/m7uZ8hqkEyFfAzIAICEAEBhAMQoEOQgZtWUIedvJillBKYDbFbbJvrnrOCDACrEb4WyRgA6BQAAY43/9jvdh8ICHC4BersDhb+dGLDquYJYScmCrIiBcbjcLz2dmnNrutAbgD/w7/+t//tP/vX//d37w7j3aYVVQFUMo6HDDtUAwFJmBMAhauFqylnIRIAEM6YBu5dKCVEsEqcyuHQFJZlUW/eUDHGFAZBBLVuy3Ztum3bdp6vuHqrtmz2Um/hMIZAggS39ClVZW/kXZE9S+/hDr3HusWy6rL2tbtQ19Z3ViQiljIibdfLNq/NSmy9b1tDN3doag7MqbDrLS3BrN9w//u/iBxUSpmcz/O87ZE66B86cUgeTuNPjve5CCACg8O9vuy68VrrbleE5+dt28o0pjKmgz8/X379ZHG9IFFzh3G/OHkACNbkMkDKOX/BmRgOiUgYMAexW3CSz9LXHZelpY4fGFYgGgTJNUTQIYOX1rv1ZqY4rBHD4S7fDWVMT/rD0/NKdVWmdD9ufik0xYA1kU4YB3EmChryZ96r9A3JKAmmTCRCjKX2ttm2oWPmhMi1wdI0GliJxta07WfDjqTdvdlqHGoAzkTBZOSn6aHWurWK6uVuEMl781X+0z/+YyJi3OMFECJ2vrz1vkvDfueTJELEBMd/r311K0fT/h0VbnmttNupODNkqRSGcb1e7/LIzbz1F8yf8Qjnl18uL6SLYhCNvXtKx0A3CPXevEHclFODWkAQBAEw4Zjz/f3xdDptKUfEtur5wvO1dr09fha6H6kEt/M04FPM5CtN/3UDioiABOgAgG471zNAAQA4AMmDCQWJynSSnWtEgYNt85nBwoEBnp6v/8//6r/8sz/+0R//4c84I5OEqweX8dR7pyTIQjmhZAiKjtaaAeaSe+8A1IjS3TRNE1hobbl+Z955wGTIBnVr1+19b0udYV1XZlzny8vLCwGzSBmGp/cfls1bjx68mW3WJPHd433qNJQUEdZbSpQlJyERUW0RST20W+2hBoDkREPK3tVV9rQRVe/m5kDEvfXeuzAGojvYHhAL9GkB78byG2YVYC8chkHc3QCQoTM0ta42DPzu3cNPvnxX0g3v3NZtf8Z67/t5vg/AJGoexuF6R9+/fPOv/+K8RSA7sGj3gAgIBGcKEeCkyN97CeXSh7AEMqQyuUgqI8BDpEMbcNVeGIci90MeiTadUStau5uda2CHjUPvYCrD47u3X+Pjw3D4Pr6v353vQt95e7gbxoe0HOIJtBeFvJk4IlGepJNYIkrMHIwgTCLAsdVeEwBRSoSQYdXYKBkBubuCKMINGgIAGJ05OCCC+HXdMcLAEWgOCgnzwJhY3aq6fP3Z3yMiocR7fWm3GjOqxY7bgZ0SD3sxO/D5k8Pz9xiRaIFhfb//MELOeSxJRLIjjnmWaAzzmB6Hw+iUun+o/p7X+n6q74NiUwyAOkfj5g5gYAQdYJeuAzFmScw0ljQMWQgl8TiWw6F8Vu7M4iorN8NFN7MO4BCNVwDA2InAAG62vxSiT/jofYy5X3YFEu4gfwoMd3AMCIDgoVtLzh5qFvW6dQqwfkktA47JjwSfPx6OgyTxpx+++fO//GdffTFN5MzuHoAyTo9cVUr2IDUj0D38cpgmGMoPT0+llLuHN819U50gOvilb2/HWK7zsthW7XK59LaYzkPB9Um7qYg01f26OF/r+fmsVXuLQJJUzHvtMzAM4zCVXLKAa1CklKYiQ+JxLIrKzDsFH5GAJZUBi5xOp4jQ7qralq1uLZCQk6TUt80gCmdmrla9e1MTvKVj74f879+qrCuwlJSJbhLWppoBMsNU5OG+vP3smDMhAyehdrd76Pf8NFU9ndjM5vOHXKZyOuEw/eKb7y/fnwMTAKauAaEAgYRAFn5dVw8/j4MFlrUYIRU83E+QhjFOy9wlUYA0lJHxcEj87uH+cDhdvo0NafOWZO1wUT5DGe+Hd2X88du3p/v8k8PpQ7qfh+/o/PEIfZogT/6So/Y2u3NExppSAupInSMyIe4izSRSMveplNTLaOTIhM6D5NMI12ULBESBVACxe2/au6kYAGAEUTjAHo6wo0UW4W0oLiKUQaEahJSQ8f6kqobAOZOw7SnMiOWZmdHAe69BzozutvWm06CqHsoIZZB8i0TR5gciMmtL3dwtlTwMg4jcD+6GpjkaT2nqAZFRJlg+zN/27bnI5S59O29Lq+IZiYGl95Zzub9/d3yN+QWAkqadq8IpxT618sJ+WBdY1/Vyse6cH082zNvlrNbQnYjMDQFECH3nCOwgEmAqEMltX6QAYEodwicIMQeAitxSCiZoCyBtJAiTOAy9PUItYMLl/oSPj/L4Tu7fHvlw2iBdq/0P/+bPD2/e/Bf/2T+k7bycP06lQGDiqN+dsWQaDz6MzCNQgYpa4y1JNNX3PyTmLAJtYbOj6vqhApH5ZrrBunqvFrQagjNDWZeOlsfy4GYxrFtuNo3EPZHaqptrpbIq5pof7t8RN4pZ9QUJpulOdr3ucP/hZb72eTO+Qp/bslzXYc3PX9cvhkMqOZqt7TrPs6LTIcE6nwr02Vu/pBhkt7hvPiPdl4NGADEy9D7zbqCX1NZLyQC63mc/Hsr352o1puE0liGXUL8ET8e3jzubBP1xEirktl0F0WEIOK5bL4dfUeLciqZxvC/4TB4IwSEkItgsOgw4jlRcw3p/MXu8n8rAG41rurvQyU/D0wSH++M0JtFTfyn68u2vnp+pv8Q7fAuZKKaDnAZmXJtu1/pBygXut9MDvbv7+uf3P9Pj8VfbR2/t3cCO7Eo/oGzmjlbyYXhIRNFWyDwUBnIFq6ibhEmjK34+luGIk/VutQlbKkYj/DbTVrsB5jJhymLIHhNSWs/hThYYwMxA6IwBMNkwlsnMOImIXJeF1lVEBHsXBEKSCFe13ltr7l47srNqW+vioZKFmc26r3mvQrtZXToR7eOia/tBRIgA3Agc0C0MGM89MSciVGutNbWGGCL0/sP755fvni/vz5fn2jsiJimJy3g8ENHd3d3Dw4OIqOqyLNfrdZ3bp0AqVV3XlZmXZRFJO8oRAF5RvoTGHraXc0yQUgrttieh7lCDcETjHckPCgCVlREMAYMcwsGDOhCfpqlu3XVhuE4Anx/Ku7vhOHK58/vT8ObNdDwOMhaTUiErpOul/+rXH7/7dvn68Q5wqS1KzmEmGZ0pInboGbpFhIUyokHEPq92B4BmambemiOY9dab9goRiZiFVtjUtWvf+ta979UXCYoI9b3IgCxiSMiUSg5XomACYs5FypjFhCmpNe2uiq2bmRHe2Mj7LNcsut/+8x0N9ynXa4dkCEEPsx4s7k4EnyJCbniSPVXkNUWhmYEDCQ6DIEbd2vlq57OWiVgySiI1HSgJ9Uarttr848fL0ro3Jo5a+4ePtT71WAzQAENHDERDNHTE3SwLLvmY+XTi8cgp3Kw21JIyj+OQMhGoGYynIUNp4xrbtx2q1hE6ZL9LNKYhBzkblgSUC8s45Ds5+n07H49rSQyRUC5br02NLRUBllTGYUoPp5KEMgW5RputraAV3MuQiBAgvIt5ICYkQ4wfD1grqgMlMOi1eQsDwlSIUWQXvbo7RDAiE4b13lFVspeCwUACRC4fn94zc+ANkKk7qEYVsuacAbyZMuNI01DyDXHEAmrrtrx8vG5bY+YhD7U/78ImdXV3oNh7JzX2REE3r61VVdux3fP68WX++JvvfvF0/ggAh8PpeLgfy/H0cL8PFREZgFIqOTtzLQVba58qtJ0+paqn00lEpmlARPP+CXD9+222vdDnWxQ4WACAUSAjEAWFB/SqAAJIOVjQA72LqXdDaw8Mp4nfnabPH6Z3j8P9KQ+j4GSllON4l/KRZYQ08XCUYfyb7z5+fNG/+MUPb+//ZDh9tZyfxSVYCWNPIEWPMEXi3cwNDGih2nd8Y7ymLoe6o98ull3VDQhMCcTM2qZL1arRwaPvFnX11re21l67GwiSMGUCjkYQhYGYS0nTNEVH7940mrkqbtXNfC+DyzQCQFPf1IBpazemECKpWYQFIAIGEiJH1O7KDOYNgUmkJO7MiMBErdtrXB5P49i2SgTT4QjYt6arLXWjxMd5maTcSRLQ5yzMYJfzx7Zutdt5XoGkxACBl/P16WXVK2TIzMmRel1UApCB2JFWC49gkj/4/O7tl8fhlD5edXu+9D6hPhQcpYwBBgTpkEt6K3pe54/LNq/b9QiG1BLaMckhsyfwlETGkcqB0qlkGIbH44HLmNqWQi6rOYVMqaSR8ng43t+/PZ5AhFAIwZrVwdoafXNV59De1NCTKCR1d2Sg+DJhT9gtAKmqzbFVV3RGyIKYiQO8m6kbIBBh567WADthsPAAEYgAIf/TX/wLZnT3PffoMI7H05RSOj7G4ZiGaSIizulwGMdxBMLMo5lv87Z9s71//91f/s0vLpe5SB7y7WxsWnvvDq+fXx48msUS0JiROUGwWRBYUGgs03F8c3p3f/d4mB6m4cCJlmVRVVezrhFRt03ba2iTmaqIyPE4xa1bhuNYUkoeOs+29132BXwLN3UgUgpHBCKCdOrN3CEAHUO9hzcAEMikxCGJKKMWoYFSIjslfvtw+vHnD1+8PU6HRAWxCJWE6R4iJz6V4XGc7ofxWI5jGsrp84+//eVf/8s//6svPnv847/1Y+51rUtmUMAdaB5IaA7ewYMYMSjc9qibPcnuph4j3EHZjIABO2/W3cd7dmwezaAjmXn03vd3p7XatYZ5ChLChJHQ2C0DFkFmHnLJOXf3rao5ubGa927dAojjNYCudV27GPK1+tpvWe0O4QHMRc16C3fVUJYQDgT1MIwbsGrv/rsa496OpmmaLl2HAe7v74dRsrBbuOHzOZo2zkYJtm5q6zpfn95/N8+XvtVt2zind/mE4Nfzy7qu67bt/YwghAaHsWBQtX3fbkL5eDx+/vnpqy+Px3tJH84fl3atMzQFpwaIUngcJANk0z5qYr1mrstWn+HaHK9DmvJwSIWC04QDd/Clml+ltwxemMRBFDJQwhBgDMqcxvFwPN3fuzMCgocBCEThsKKqfb5ue1CTUTOsRk4sOam7W2KgIITefHOtgYguYBgKBjuXesdWehi59ggnM2ybmQcaA4D8Lx//MktCDAg/HcbD2/LZH7x7+/bxzds4Hu6madqVD3koKSUApBFba8tc7H795RVf/vqbv3j/V1X7Q7l3d/OuZg5qr6HqgzckD1gDTASHYWIawjlRGg5DmvLb++nu8c1hPAnnxOW6nNd1jYics5nt9fOyLHvNDACttWEYHh4ejsejiGx1ESEPtdugQgj3sPjfHcK7Y9AdEKNaDldAZCEhC1cEIvLsIWgD6ynDw0RfncoXd+VuzHdf/DgnGZIEYcdoWWKaYhxL+ZnwlMt9OdyPwyENxGRAdqSDf4v//F/+G+R2/+6/+PLNtL6sbbtGyEDMkm/XDwxAZN6XBcQNSbqHdAREAEqERTjuHGT1aM3NeiXrDcwYA1lihwQamBkzHqeSJ9Eg9R2O57StyFR4GEopQ2bmTmgOamiOENKtuxMEqerusaxq86Yd+FJ17W6BRAQKCChpVNu2tTlCgJdBmJkFoptZR0TCQKRPPUIm8vDEgh5Z0jiOkiWlTC69+Va9audipcA3W1kWu7zo0w9a16Z17nUeCHV6fzpOBH3IBgLLpZmgTMPP337+8PCmN3//w/P1UhV8ovzF6eEwlYe7w/2DbK3fZX9WAKJEaeYiiXGgKKjcAEtj2SIkeK6xXeqmy8RpKIxIoRBV68fr3HEYtmGu0TYyjdq7VS7CjnW+LlLlbeFw8hD0LEQkYYAC4KxtAwCi0dA2g7rCZY25WTClAc3YX9PRthXO523eEBGHewZ3vIHgKZDDMRShLhZBRL36NdaIAEJmlq/++CtBCDe3Og358UeHL35+96Mff34/wniYUkpuYYB7yiEARNmy5/E+5emLa/vJ9x+/fpp/8+tfv3/q/SaGuGkmzBCB2WwdE+UivfvaQ1srhURy4uxIkkqeJqZcmy69gV/meX5+flbVV45pjwgCPhwOwzAQ0V5IM/M4jtM0DU3Wdb1eZ1VH4Jwzc7Ibizf2R4qZdx6gaoReEaAQj5yKKJGPmcsgU7Qxw5sTfXafv3iYPr8/PZ6OxzJe+bNutjZokSyPfDjJ8Y6GYUgPaTjIcCCWjbRhC92sLst1/v7p/Je//NUPP3z39def/1/+8388vXncnlpbCUkA9ygKCzBKEkxgiEzMDOxh++qFAGja3D3Mem+uxhBFkhNvy4t399bRUIg9kEMypUvMInIqyah0823brDd0Y28cNObheBimkoEoMICkLVU7aKB294BANL3dc1tTFFZKS/XaI26DonBAJgynrSszokDOTIBFuLmZq9AtcxODRGTfQb3rru5IZcgpaY9ddd+0125AOeNoaVS8n7u+zHSePapn1zuMN3fDz989/exHb47jm97tw8v2P/7lb57dDw+HP/nRF59//kXd7JfDN999+3Q5b0lSYWLJwolBBLLEhgG7p5SGwRABvbuS92hrnc/PH3/A5+eY1+u5bZtOrEOxiYHRo70kRVjqcDpC09g27N1qdZDIo3ls9VJFoN1Ta7EtVAgjJURgCJIw6BG9d1fpPdalX87t6dyvTQOYRH4TEhHEwMy9tsvlUmsFgLd8F+ZoToDMjExO6BDwvCIi5wQAvXeH2KM25R//J3+/tbrML5fzc/QqvAJeCRbJBxHgzOjOyKUU4RwIDClljogpEvzBH/g/usJ6LV7/+psnh72JEkC034FTwoc3D8fDHdMwX9uyNEIZp6mUMrI3j6ACWJZNtS3WNVxNo/e+bdu+Akspp9NpGAbOsEeW7EkWrW8v56eulRnWdTmfz6ounHvfEbn/f+7ARIYIn5EJ45jxNHkWy2L3d3J/N9zfP9yP/PY+Pd7laZoonUIODcenOSwPcbzj8qZMD3macs4oxOEyZErYQ5lRgqraOm9/9Vff/K9/8dvffLv8xeVXD6f/+kdffP4f/4O/W6ZHgIbIYBHdYvdb7uNnAgTkxOAWTq+dC7/But3AA8EZMAAJApp7d6sKRiCZNNil0JRSJWQDhrCuDXuVsMwkGUvi41ju7ybJKSIsAghb09bDMFTDd8kK3mZsXS2aK9m2Q+T32BoOb4qQ1SkcMZNISAJUSBnNMCwQcR8aqXrJ2cz2F7JPhk6nu+PxSEQAAQRSMBicgoqj1MfyhS7nFS3bBv35Di6fjfbT+/QP/9D/1k/wbirL4r/9yB+/o+96enjz8OM/+OKzz7+6Xrany/lca4UwxxVabXGZO5pdPm7L3K2HubG3zhKhEY6t9n6G9Vmffti+/831srFqW3m7YPE24PquwCkhVJ+BuOuiPUWE9gTkSJU8kiemUx7kbng4DBMB19oB0bs1dPfdA7cTwrXDWtt12S6Xta5mGlW1qy85uSsR5ZTMetNNoRHRuuyIRUJAdzAFIDSEhO4REnvAXzDhPhiSLz97XK7nJ5t1tmWZdel6ffJ6qo0kETAh7vQv3q2zU0+lFNceln5893n+O3+vf7z6y/Lx5Z+31swMhVJKkmUcx2EYpmlKcrSe61oZe0qp5EPOEv5c6xpam1PvvW8roZObOiHi4XDYa+D9mN1jMZZlaa3tjJJ1Xc/ns4hIim1t1+tsFsLZLNSMkR1uNJM9808Q96S9t9FKgofD+PAgdxPfHcYvvzh98cX94f7LzFqyEnmFdLHD2R/WmMoXKHLA/Ab5kbAQ7blVkdAkj1gSpjSOh8Jy/u5j/xg/vF//8i+++eHjdn2G//q/+R//wz/907/7k5/dT4c0IKpH76pKASjw/2PrT38kWZI8QUwuVTUzP+LK+51VXVU9Xd095w4WBIElFgQxCwIk9gP/YBIEPyyxy8HszvRObx9V9eqdecTl7mamh4jwg3pEvR4y8D4kXmZGhrubiorI73Jwc6UnLB2YjfRsQt0Dh9HpqRRqqa1mLZUZARCqt6asTYtjA3GatpuqthRoSylrNq1TDNtxhNJiou00TNPkSLlYa62q5x6LjNhUnZlIulN3d3hGUzev6mbmxH1zr82AzB2IJARmMSIDVCISxuZGREKCiKo1hPAnswSHFOJ+v9/v9y2vgMYMIQgnaEgoTWHx5VHasiG1qNL0ivTdBH92ib+5gs828ybSAnGw9IuraWy7m5ev9q8vpsvN3Xo66HLSuQRDEBvo9uExBF0T3t3Op2MprIJOwddWhUAA3LQtRzze2/GR5kdbKmNS41Ol93f5Wk5hw3EbUmtlXheyNeKIwG4hBkhDQefAwxhvhk17sb28uphiZNe8llrI9VytRMRaUdUGLVvOOjfPHHAQ8lxrObkEUAVCksTRQ1AEFGFY1xTiIJERVLWqOmEg2u4mdRMREammzEzCtVb58NNPJc/L8bYcP9b79/OBb2ENp7v92y9ev3q7v7xhGTCwmVEIKcQ5nlZsEBmnTcmRBn6t//KNtb8yubu7yznHkDpjoiM6u3GTc17mA/o6jcbMpseHu9zwvEb+k1BRJMYICMMYx3FkxpxzKafTnMdxXE6OSPOptNb6rAgADw+fXNxqA3NGdl/FMACQ+0wuMUCWgDRV23p5N6SbIV3t/ILk5ZBebsftzV5eX8kXr8OrKxr2S20fVz1mbRoST5vx8jIOcWRHGtLEaWNOHMaYNgAwpA2Sj+MQAzP7mGTCeDwer19dHfPy8LBsNhtn+X/9D3/z66+++m/+63+x2ezV10bKkZkQSACJAcHVmnpt1hTUwDUQSkwO4/HwiIwisi5LbpUEm0FboS0e6+ZCRgB6rA91fVzK3PAC3LGeEmu6oFwFgHFKNoxpO4Vpv9+9zLk+PNyrIwosojM2BaQUyAUA9mk3YjoVck7gETwQu7PU1ioxoQvT4+MdYdhOg3pljK61xViAFaPV7KrGoOAsgfyYIjaUfIIFgabNsN2O09S0OAK4gToTk5q3GaGeiJVuaTqGLQFuK/i6W5drTFdb2mWVRwlXy92lyKuLzfWrN6/eXb/EEI/H4x9/+P72ftlurpNM2nw9wMN2uC3tocKK9uJmU7fRSCa0QDp4HW2OWvh08rm95l2jjz98+n4p7ohHxx8e1rGNOxw2fNtWSdsBqw7jdtyF+085a6FUpB53gsPrq/WV4tW62ceWC6+2zFk1LYsAwOZCgKq7r9PweDxlyMOEGxzMMGYehvQ6XtWSASwNzOi1ruAqQjN6kiDS6SAUFUDNXTehlQZESDIwMoFBrbY2+cMfflfLAvVkdZ7z+jgfT4fH29vbF7ksOb9uZbu7HKb9gOBoRFA1kwhig4aqNgR5/fLVr3/5C5n1u++++/jhU89q67TYUtq6rszshBwDmnWZWG21mYqEYZj6spqou+uHbhnR1T9mtq6l1sP9/f1me23W1nVWVaTO1A1bnB7WR0cDckNSNwcDQARMkkL1wcprHL6Ydq8FPtum60243qethMtp2m73vpuW3UVJO+CNxYHJIsOUwD1Gmca4G+OIAixhs9uPw85RYtqEYXSDcdwAQEohMCB5jGQI1y8eP3vz+st3bwPIn/3iV9fb9GoXbg/57//44be/euPmgIzs0ENdm7ZmAcHAnyL3vMsr2L0HWBJRCJJScld0AYAPHz5go4E3FLg1XUs+LvNaVh53iD4OCch7dJQBxcBBxt1mGobETAZq3mqtp6WUUqqqs/R4ATAv2kpVGbtnNj6HLZgZuTmAgdfWmlkIgSMCYm0NmFprbo2IJLD3rFRyIFT1rNXAx3EK08W43QGQPWnFnRABnRDM3JXK3QRzinUcoRYPpYXaOK+nY9PrbYqhWkRkEdhtL25evhyHTVavqx6P8+mwoI2aOMrg5qfT4mLakFCEI8bkKRVgdHcDVVWr6MpsFEmGIYSQW1N1hzMKoKrq52RTU+youDbQBhkaRDEUCcNmfxUub9J2WPy4Hg6HeWmlqIcQQjN1b6qKHAYJLSZkTnELKEPWeS3Ag46MpkgOZsJRtZJDCAREwCTE7t61sQDgjs6mSOpmagSOYEYot5/eg60pwJQkXl+uMYijIt3efwpJMODa6k5baTnq1LyoNumxF0TmDkACPsWw2WxiSOd4GMR+9kopQB5CqLUuy/Is4kspvdjfpJRCCJ0Eb3aOVCbAUsrpdCql1JoBIMaBGe/uP7TWlvV0HrMB6EiA5t4AIQTpCcOlqbbmYGlKm+KXDf9yjH+1G76I/tk+XW/Slo4heUzkgxzSdBs3EC89XuF2i2ZWFI0d4jju9tPFmCYOMaU0brbCA7LENMaYVBWBETFEJgCHbl0UZRjeXF389ld/9vVnX/3Lf/mv375+JV6v9gE3F9UYPCAaIVJvgxHMn6IW4Sn3+2lt3j88CRSYYozealcPcEiAToQGmmteyuIAEgOTsZAkkchryS2vBjgNst0Pm3GIiZqu63payzLn8nia19wMuqWkmLm7OZD2xFNieBInWFNXAHYnbG6rVm0IgYnYCasb5NUc2EiQFBTMDZwIjLjWespVDYZh2l1dBUnLWtzgSc15zg5UcLM6+hzwpFhMV11nzCsnGIBIApO4qbuytGHDdcMhhP3m4uG0lqzrUmv1+VSsrpZERPJqSq2ZuVNrVnPDZgwCDuCL1aZ1YVuFa4he1z4bqjsiIPNTQKyzG4EzQgAUcHcQcwaKFFMYprC7pus38eYFMD0e9DF/+vh4cpPNdDFNMU3JAQaKrM6bbdRgFYJMQCGIAq2lmjC6s1t1NHEyDE0rIZ8TiAQESd26eX1FUCRHb63m2ggwEgKibEdm3jE1YY3jLqWhrLWYL8cDEJ5yuXg8vHi1Xl7f7NycHRr0/QoiqWou7fb29tOP7z9+uv14++nxeEDkXMvj4bQsS8+A6WuMWut2u+1ejZeXlxcXr1U15zzP85qXfrxFpNW1b6ncFQActNba4WVwAwAJAcBarQYNHCYHBBBAAVQCAGuE6tDyaS/0mx3/1xfjP9/wSzu94HohZZcCSKiBH5COSIaD0xbkSsY9AOLkEYUlTcNuO27HNHLc9kLTo4glJmRm4a7acTXQ1rmlh8fjspa6rl+8fQMYvnz79ouvfzFNQ0wcIgI/OCxmDgbsgELogMb+xCEDxGbOyq5mCMt6qrWCC0L0ptqdvcyvrm7ynFkdyanYdjttdhNGKnMDNEmMDLUsra6IglpTiMTWM4fnvFZTIwLCVaujMAlGEyWFFpJzEJYogRChtc7JA0ZiFGNrqtVUwhBjROoHldwauDORcKfEKwlzik5eqytoGKdhu03DZIC1NnYwQHRzVYNucMzqzqJAgt6AsCnWAnOGOYNEleDIpXpVqhSEw0viEmRkMkQWjL3i5VXZWnqxIQyGzkRM2t0ZyJCAudcXrVorWGbSGLQCuHdegBP2JTqYN3ABDMiJQxAemAhBANAgoAfH6JQ4bDFss7Xj6h/uTx/ujyEkHjcDanMjwZjG6LQN4xrKfMi1wJ/Cw7CPgcaMiAFNzUwCq3HNxbzZOcIS3I2QkMgclSAXm0tGB0shEsrn7z7bbIdal/n44O4hem4P9w+HeT7cPa7jeLy8XhsIcFSQrAbNiEhbl1yX+/v7j+8/ffvtD3/4wx++/fb7w+EQY1yXcn9/747TNEngYRynaUopXV1dMfPxeBzHkYiOx+PDQw8SWXLOHRkSCbW2Xv671OUcZCzSWn2+o5DI3ZBoZ2RuntVbRnc2RcBI9Ibgq0B/EdJfjPRnYuOax9wChaOmGmhGe4x4i+kkmxb2IpdGk8Q0TWMYp5CGIFEoCJKEixC5q216nFWpxcy0FlVtp1ZzXte1tbLOy/F4rDW/enmdhs1mO4pQ3IwhRg7SrCAKGLiCkTETOKK4tdpVmtgX0toaVHQQBjcgRkECoRSjmcTou318vH9o86y1grcUWOKAgY/l3kwDokNDWwPZOITL3bTbbxjQmva04dpsze2wlLU0CeTgQNKVWYFIQgpDYkbz1tbWmpEDcxQJRt0IBTebzWazyeXUsfpAQupCQYjNwMApBk7ptOZGSDFtx33a7J1FDUmSkAKDQ9OmjsCMgAxo2QNFDmnc+QS+Xe+k0P1DpWoZwxAGlFoUjtWB07thh4wixAyCiIJMwNjPBQQiYXImjwkpCg4hbOKCAGDoZlpMs1sDMEJn7ik7ANa3/NYpicbm7kRMKECMTAreehPEwSkaSDMEEAM0Go4FCrLE6AEr2EnXiMCAmxhBgCG07Mu6LFWLIxAOu3FdVzCKKTH6siwOGGMU847BiogwBxBXQ0QDBHXHQGbQY9tIgFA2w7jf7HLm02mZl/l0Wm5vT6e5XV+9mqZtGoZh2qFsmsfDMd8f17IUM6u5ANDh/uG7777/+P7D7e3t7//wx0+fPqnqNG3dPY3T1dXVixcvwsAxxt1u1yfb4/H46f7Obj+luF/XtdZKTPury5TSNE2bzSZ0eFqEhRCx1nw4HI7H4/c/fT/P87rO67qCKSACiCNWbwZOQAGFhUVdVcHhMtcdAuV6stPdJlUZbDu07fhw9UpTapeX7cXLeP3m8voN3XweL64zeRhT2kxhGkKMzMwohCiyBbCmxd1c27zOy3xUrXmZO9y1nOZSSvcYUNU4DcMwXe4ur64up01gRkohpNROI7NwVK/q1IDcSRU8MJNDD3bn4FKl6zEvL/e1VjqDsN661NYhoojBui6P9/eHh0cJ42bHbEhW3BuamilZ2yS+uNzeXG7SsFHV5hUwIJWmy2nV49KaKSKZuyEAMjpScgxCHEhQq6kZmAcOIoEp5lbJPJHshmkIqeYTOMQUhgCtVALADjAzAmFp+dPxYM7EMW22KEGNSrMQhxBGYlCvQG6gQaITI/s854AoKU2Xmxi2dS9saXyBIif0CNA4NBmcIpiX1hqShygsCObqlVwBhAlKWaENENVMa62sq1kFVObq1sAzgREYOYCatSfiqkMn6nUgmxkVVHv2gTeHnlpuDjpQNMBWajme2odbSgwh5qKFAm02abcNmxETcxQSAAqtNQBsZo7QwLO26uTCEpOVqq4BqZnN2VprA0h/nrs2uHs+EHTfRcDmBGJuKUQACMyEIARcc13Xlle9uz99/PTgEF+9ffdX/+wvbm5uxmlC4XEzhZTWdT3Op8M6//jjj9/98dua23qa3//44fHxMS9LzvMwDMMwjeMYQtpsNjc3N5tpu+iplFK1LcdlXddlWY7ziZlbfdzv9zc3n93c3Lx8+fLNmzdXV1cpddIuP3nOlFprP7S39493959ub2+/++67T58+zPN8d/ep1bpw7DeDc4ghABtUNbP3Ci+H6/ly/3C9/3B1UW52/tmbdn3VNtcaWTcjX14M017HnYwXkrbX4waZIIrLWSuMSIRUteVlPh4ecpmtrofHu/n46K7rfHD3rh0GJyIKIoNE3L+YUrzc7bebFCJQcBZTbMaJgd2q+kytMLojIBO7uBlAX6C4E9L5UjACVlUw7bNGWQoAQHYrFdV0OeXTUSaOxEwBhqgGKFi1EmoMPEYOjCW3knMpBSk0E/VADCEalUbCjujIRExEgYlCNIQnmXRPL+PIAo4tFzLolujsgM2IMQCJUM2l1CzIKIySspaH4+G0ehp3w7SJ00aNFRgJEBlZWADd1RkBUJAQzSyCa80FaqJhHGXLSTztL83qtK5RgBFkSDFIWVtYZkLUYYjTkCSAADICogJ4qWvwgGCqLZcT59nbQnXBaUNQnLo/eHd3g1pMrZrp0wHuWZ5xGAZulcgAm7maFcNKDMzU1iUXfMz4yOWIiy/H6fKi5IxxGkKcdhsZhSOlMTF4c7dWtLSy6NJqcV21ztUaoGhdlkWb5+ZmsK5VVbNV86UH8rbWFHwjyQmbKntAV3Bk5MARTdHBtMk3v/umeZvX5bQud/ePnx6O7959/evf/OUvvvrNu88/u7i4UND+SR9Ox8PhMLf26W///t//L38zH46MXJcVgZnk4uJiuz0j9aqeUtJmHz58uDt9Oh6PwzB0bsZ2u3358uWLFy/+5T//V2/fvn39+nVKaRiGrknIOZOFEBgRa62l5tZaKWspZS16OBweHx++/fbbj5/ePz4+fv/994fDw6fHT6fTKc/LnGcq3YsHCPDi3S9u/vlf/9k/+83Xn72+2m9gGtvrF+vFxdSGSq6D0BQwDiSDyDDIiCrIqIwNtWppNZea0ezhlB8e7m4/vS/r0a3Mx4d1OYQg5DXGOKRp2o4pjimEIDGE4Ls0BplEUA28CjlCm+dlF3fgVeuxqbpWIojMIg6dO9kLfD/CREznRGwi6pxLLZWcEHHEYWTRMYg1KxVJsFkpa/HF3QISAQ4hDkn2+/12GjMNNbdaVM3m03o8zUuGWlxSijEqCPQhlyFw6Oy3/0IyjchmrrkwYmRhB2uK1tnakIIUBFVzxiCJo6xznueZ0sVmt93s9pvdLmdAjmtWRzGtymeijQEwgLqp2yS+5optBVThQHjycl+X8v59uZhwuplCJLBjK+ZpE+UGCQaWcUopxRAKIXrrEhAjRhY2LETA4hgpJm6ojg3BCPu7SmZg1XqyMOWGZ5uKs71mCCyhJ+B5x19IMAQuNZtCcy8rz8eT76bxYj/G6eplItSL/RDJQvDtNGotZVnVbMl5XkspVrUtJT8sOTflMLTWyKkpEqKiOLMBF20DERGqqao2MwFQVTKypg4EhuRgjt5Mm8r/8j/+x+a65HnV2gAljilN47Cbrl/H7XXYbC+mkRgA7OLi6uHhblF/9fIHDKGYbYdoBUaB/Thur6+7G8i6rgAwz8d5nnPOKtKUP93OX3725V/91T//+suv37x+N03T5eVlSmkYgwg5VABHxM1m3DJoA+JkmymXMz+z1FyX42Ybr663b1/fHI/HZZ5Pp9Pj4+OHh0/ffffdt99+e3d39/j4mOcZmMZp+uzrX/zv/6///W9/+9vNdhynyUxFxNzX7Y6IAnMHDMIwiMhaq5g2NROqWh+Oh/n4mJe1nJb7hz8cTse7x4d1zWS0ScNuvN6mMQ08TWP3YQuBQwgs6O40Ebg3cyIG93w64hEY4DGcyrqU5RHbOokbERDHIEAGilaboToi0+SNqmJIgRNAaWXNRZ3jZqBRa4tDWlfImPjm+iJFMzCjmut6qHFIYXPhrZbZ0zDI5sLidDjk2rw1XXNVR+eY0Wi/o1JVCAIHIhZMIQYENG9NvXqtYBD6KGHacg9BEo+BG5zcVIIiNQRYlOOQbF1I68W4XwkXVd7tx+ndtNmOm50iWXTzhiOaN6oKgOCcwsbMrGlEGiSdqIvO3QJXEmhhbtMffzqOu7l9f/mgl9Mu3uYHTO+nuF4NP7T4SrVykv1+f3+/ltyaIWoLWbyxa2bycRs+loUNVhTmGyqnqVhajnBULhoTooh8aBeyfbR7ADbl4zK3DWkU9NkFPA04KSWDJWOboZ5aPdZR+Hq3fbHdv3t79evfbF68qogux76MtNZCCK21eX1Mu0uQB/PVUQH1cX6oCoAC3LQ50WhEqyP1qHNopstFvEqJiV0tE2FKgkgGsFbnMUIlXWof1pay1lbkH3//jaOtZV01G/Fuf1NKQeEY4zAMHZudNkMIYAYphe9v716+fPnVV19NaRhEPGdxC0ClVj1jIt5FvGY2TdPl69evX79+++rN11/98rPPvtht9tvtLqW0LLNIJ/Q4UWJxERIRabU5EEdAlqqKCIRNayub3Zq7vG5dllJKXfM8z3fz4y9/dffTTz/98MMPv/vd77755pvT6QQkX/3i16/evrt++Wocx2GIZiZCAFCR+/ali4079bc1XU/zaVlObTkt893j3Xw4ng7H5fCo9Ta32tRDCPvd9OLy+mq7n2KKYzijYl6aMpLWPlDl1i0VuogE3HuMkAiBKeoqXht4raxCLgGdAL1fGeZ69jCiMwO0Q2sxIrC0ZhXL/f19a8Wh9Z0fALXq7liHBHR+RaPEISSqfri7zwVqyaW0UtpaPK81r2ZMcYgobIyOdt7hAJ31jKZdGXJGBN3NWveF6KRoROIzcYtdDR3GzSaxAMm8rk09xmGYxpBSF4SZg0N3AwVJkYi8aa2560aJCMwZIjCaN23YyAiEQ0xp/MH3h4P8UOoouVZ9OO0uw01dLnMuwkOQyCyIjMxgtpb64maKMQJpbVkbcgiEkXvS3bOypeu9EIUZEmCQ7gTu7qAAnTvRnJ0D9Q0FShokpMLLKDFsxu31DX7x+fDLX17+8pfp5kUBaH5UVULMOZNDrbVka6V6cyRJSbqMbhgiDpwcXBsQN0M1IILIgArabIgxDSLB3LsVHKqag46yc2MEdwpErVlDIiaRpdQQGZjNSM3WWtZ1nef5cDxe1zp4qtrUjIE4wLTdXF1dvXv37osvvjg9Htq6MlHLJa8F4tllq5Ty6dOnh4eHN2/e/OpXv/o//p//u3ev311cXGw228DSmqVAQv7y1UUXiQMaoiIBEpjXpRVtbrA2gGYgw5DiZuB4enSZJAKaWUhTx5a2tb5Osq7r6XT6+PHjP/zDP/zd3/3d7e2tu3/2i68vXrwadhchBY4RrbGIu284zfNcspasy7I8Ac5VT4+3D7c/3n388aeffvr4vubMCGT+2evtNE3bF1f7/X43baY0jCToUPNJRIjRFcypqJ/hO2znR997FjqQg7trBSGMQoLCbG5ohtrQnRGAKIAQGRpqf9CaKSOpWTN1ABYmAwOf1wXRY+IhjhzEDJA01xanqZTS1IkkSvLq8/1jq2bj1Krl0k5LOWVbllyLQ+BAA4mQoBIQUaD+A3sIoS/kYoyCRCS5t/ZNGVAYYwgAnRXhDFiLNvApDiHGx3W9fTxlpGEzbneXIuKE2kzNkfxMylVHBEVozQBMMCBicyUPKGTO1tS6rSFFCfC4f5PFj7CGlsVNRt5sX8d0FWSDxAgpr3qcF4fINBCKqqpBoMikgXxIO6NoFSuXUGspxUuhUs0MBQnJIrqQEboBmIMBNaDili0YR4huDC7CgDHWJ7Z6DGl7dbN7+XK8vOTtjtSIU89AT7G21qS14VjeP7yvp5WBoqRh4qvrfdgNuelcKjo4kjqaAxMJObTc8hKQQsA0JOKgWkspTRuigWmrrVV3QzBzVbcGrvLf/p/+nbl+vHv/w0/ff7x/MMeHw+GHH7776qtfm1l361bVUiwlCYF3u93V1dXV1VUp5fbjxwiQj4fl8Ygpdfy2tVZr2Wy2f/mXf/nv/t2/+6u//ufjOJZS3CoG2k5pGBIiIlT16qZmnf7SmpZuDXFal+N8Oi5zU0+bzf7iZrPZafHeDkiQgEQxJnMAwBRSzmmzoziszYrB7upWVXf7a3VYS1WHUrvY0FVVqz8+PuacVXVZluPx+Pj4eDgcPnz7d+8/ffzDD3/8wx+/eTgevnj39t/+V//VP/vNb6424fLqarvfuHvJeT0diyk5nPJxs9mM49ijHZCcmYmpu3x0mdjZTR67OBmYMTEJuYAGBEevRuRKiIJEWIEM0RzPYxjQOfbFDZjJENx93G5EKA1i1ux0arkquBOGcaoOQCGQ5KXNj0cGDCEcm6pZaV5cFAzE2Uwk9PBLCiEwEQEjQmuKrlr9jFU6Ipq1Xh9baxJIJIYQiECEzBQA2IO7ssRicHecT0Xj5cWwueQ0IJG6GYKDEhMzOgE4OiAgS4qIKEwAgOTWIHIyCU6NANVqU6iOFEEGCWESIy9rrfVgDz/e/6HsJISkTuO0jTxUBZHIJLW1WhUTamNTZ0igXFetkK1kWrOtK65rtOpohla8VWjqTsAAxHaOvrOCCIkwuZOqO7K6l9bEW6uWEIdhmHbbOE7GDACOyRGRJeIAUMCrevh4e5wfHqYhXu5pv91O+8210+Pp9OHufn48uLsDEjIzBXIzMIbOC1JTZATUbi47jDF4XihLYMJYq+a81Jpba/K/+z/8t2bt46efvvvxu58+/Pjp7iHFdHt7++nTp48fP6Yh7Pc7gGCO3Xl/GIYY4ziOtdb7+/uReT08roeTr6uITNP08uXLzz777Be/+MW//bf/9l//63+NkVJKeWFEHFMgIgKttZ6WE4A9E6Fba6WnPOV2XI63Dx/uD49NPU673cNht7u6vrohwcQBGQUIwICxK4yePU37vdEhKwryeDzG21si6myQUnIpZT3MHZfqKPSnT5+++eabP/7xjz9987fVdLUGJQPDzeWFCG230zQk5jDP5f5wv56OiXATh0CcYgwshD1mCULoE4cE/NMBRjkniQFAiBHByCEgMDi6dg9lqtY1SsENkBEVEQmUQiAAIwMiAiThAKRDCoElUAi0rCc7uZpxkHGasuNEgoY1l9Jq7WLi2j49PoKEilI5wsABdBRFCWkaOIgz6ZOG7OyDLWLQ1dQkSKVU1dpaEcbAveUwApYYAIK7R0rV1BEe19OqlPZXFy/fDpsLpYDM5EqATGd6EyJKCqpVhLfbLXav6lZikFYbc0BsBoDorXoxd8IL9EgYmJClGOXS1sf3j/V4PZtw/PDxjjlIknUuoIWYQ8SqxVfKS14b0oBggO5nigaAqnJTA1NVBu39l7kRdEWHg7MpNhlMBg/JCY1EDay3hI6dGhVCCmkIMdYURIWAAYWICLAq1KUcT+tP7z/dvn+/342IOE5pGmOQ0MCmdVmPBzXVqlVdRDwgWUNTZO6DmHmfVjClFOMg8hFjARdhLKXF3GptpWa5evE6pvDizesvf/1nx+PjDz/8dPvpjkP843ffqtvt/ae3795cXOy2u6lT5AAg51xK6f2njGO3sHr39ddv37794osvPv/88y+//PLt27cvXry4vLxUqMMwlBisVdW6LnNf9BG6SOgjkLuXUsAQTYo/BoTEnAIAWFmPH9f2cHd0bfv93nQ7xEhE2hoAoAjHKaXUv0MnijDzNE2JaRoigVmrrbXacl7XdV0BnAVi4tGiw4YFAFUCvr3enNblYTk9HO6b2zRN61rev/94SsOSv//w6f3HT++jyC+//OKXX36xncbLi33fXYlIGkJKiQjcfRMnADA8X6Hw5NoJDKoKZu4ISO7u2Bq2YFW9gWl1D0DARGpOoKrNXU2J6IzsIMYYVRHQq2mutaoCUwpjGqkd2rCd8rre3j+spmG7dbPD6URDbEDHrKcKGaEhQZIwpP12Z6DZWqvqbogUEIiJg1jzc9aRYWuNmUMIABSj9D2CgzHHTtOlQoI4a12rQxqmy+vN5QsMQ8lGzEQiKuSNobumAiKBMQcKQwIA1VOHuseBACA3M1BCUm+ONozj9eZaveXWgCMMY+CdWysI7z9+dMc1t+12evHiGj49NAXAUn22NScazUwwigRFJiIZBnTlLE6EiL1R0qaoDZvRk+zUiBpgAcAYFuJMISWmEK1WcxSJAxjGyCR9O6Dg6litBRRANgckcqS1tOO8PhxO3/748WrdpEFkwE0+gYRSQVWHFKm2XEpt1VoR4z6xILIrmmG3jhOmEFIMA1DgYIQDU2yKISIJGri8v30Yp8AMEsLNy1dxGPcXlwB0Oun9/b1ZKzUPQ5w2w8uXL4nguNbf/e53x+Nxs9m8e/fu3YsXA9P17uLP//qvv/jii1evXk3TdHFxcXl5OU1TCGHY7My15rXWbFprXSSQiOx2VyGEGAYAKKWuvAoXVb/abavn63nzeNydlvX2cb29XZflePfpJ/QqqORTChHB0VwATSu7J8bL7cR+c3Ox65wQBEgpiEhrQKgxDCnSOAgiljKYXfRijIjdIk8KnNblUE4Pj4+3D3foPg2pVq2B74/LN9//9N33f7zYbd+8eSPDuL282W3GGGNKKaaQUhKh3gVw6KFwbk9IqjIRUVN1oO5WiwbkRBQhAutitjYr0QXQkBkE0KE17T+eiHTDDbdzelgpubZ1nk+1VpHYbWvM+qq5LKVmABBU45Vp2m1OxUpZH5s2JAw8xBjGgRjACR07sRzJexKOajPTs7i/tWXJtRVAD4QphBCCuyFiIASHWls5NkxshJKG/W4Yrl5wmtTISFliiGym2oq7MziSuyEHYWJ1c7XmpuBgllIoZTUrSMjsTo4CwybhVnK21QmEOYycjNwEkdelVRumcX91efPm1fsPt58+3t0fjqxooETOUcgjhwBojuaIDIgA3e1RUCKLK40cEhMDEKADmXsByA4V6b7VC2sjpUZStYBhkhAJOE0xJWQCIAfyzlLW4u7Wmoi4a2m5WUV0p6SGpdWcF4dszq3RWsy0mhv2FQmomrfm5EY+AAiAgiMAIQRtuLRifFVyJRzcaJ5XAABsS5nl//7/+H9eXm0vrzavXl69fvMqxrjf7xF5uw3rurbWPn36dDw+AtqrV69E6O4w//jj97XVL7/88je//OWvv/pqm+Kbm5evPv/85cuX0zQBQOdUncX3h2VZlofbTxJot5lCnJiJADfTLsYYQnAH5orIQUYACFiQ6n7H1ze7UvXD7WkznpZZKbQhBCECMy1lXddaioisis/ReAiQojCBtiLgS1k6l8vMQhBEZPPiDcCHIaWUulMEM19fXw2WmpsJVG2H+aClEiLU9nDK28urabd7+fbdNMjnv/hqf3mFIe42+77KdtBWmtZzuOFpzl1UpODYu2hhJAI0RDQnU7fmjC4sMQQO0YqCkwJGZOgfqVCUpLWRIxJZtTwvqoZEjlBaXdZlyWszZQT1s/fdsiynZTaEhv64ro4AY1xbLQZGiCmxDCEOIkQp5JyRyOHsPSiM5Aj2ZLOL9pyTcu6rmxFRSul84NFLKeu6QiaRMaSwHTa4veDtlVL3Zp1oAACAAElEQVTSasxEIXIQtoYO5oWBAI049bxMV1Nv3VK6m/E7KKCJBI7CKymAJK77HtPGzlKb1VITuAhvNuPptAD6kOLLOGy22/3VxccPn+rsh2UOQdrq3rSLcvsMpaVQraQaALuw1pRD8EGCwNn3v9+oiji3FnM+rPlyO6hba9ZDJ9Z19SRYa8k1tcadAgIQQnD33H3te8AQgMTw6tWbIJrGadxMQ+JStfuldrx9HJOEAACBnLyhVq29ngYARxAzaK3Uoku5qKUPwHY6IjOzhHk2+V//t/+BiC4uLj97+/nbN59dX95cX9/sdtts+Wq/C0HMWxCoNR8O90R0nOdhiFfD7i9+8fVmHC63m+vLizENl+PFuNlOl5eOVFop2tDrOt8/npZSimoTGmPYvnh5nVIyMwlDp1sBQL9P4+AAQI1qoYBXAFtu6+fb/SvJDw8PK6uIRLDg1V3J1paPh/ulNV3WVQFjGkFCM1cH4gA5dzkendPPzqS5qrXW2kGy51QuZg4mvR9Gpsu0lX0Xpus2Zwd69/kXaylRaDPKJklg+Km0BDQCCnMnuaO5m2Y8F5SubmfnHpRIMRAzE6IYC4lERKxmDV9BXBCl5k9qbSLiEAEF5pmBARkAyRqAODZHchkqLHPV3BQNevzy4XA6b7xRkMRc19aIWUJaYZprNisj8TDsx+3G0HItXdPAAMIxDZEI1lrWdcYMIQbXYu1ABCkhwhDDKNlHDtGJGIywmC81354Uo1xdXqTdDohh2JqImioZCRJZMDN1dEKeQLinm7o7uCNTQHZq7o7m83zEMAySEL21hsxj2A5pM6VLwWruIuIRZ15btcZ8yhUnMbO5ZQAIE7xM0+U16xLKujwcjn//h+8+GUd+qRXsFnKyhBRxqA31tOzSQTY1yizjdUqLgyPkqMoh3ge8B43oc7PBaYPxAlPkAubteDJf2RgBhEKghI1srQER4Sw4qLl4qzFwYqrLaRPmd5+9vbm5SVOapmFE4OMjyHF9DMxsZjnX1hqhIKGhPc6ncRqiwNrWnFVEAGODavR4yrMpr8XcIYW0tpJxkd/8+s9Op9M6559++P5we7/fX758+fLF9cvXb95SirvdbpwSkLdW1NXdD0sW4sv99uryIjAFpEDYLbaOy3zM1YXcvdZ1Ptzd396W1l6+fPny5Yuri8vdbjemIYTQcc7WzsEtJIJPqrpspXprWkoruWV3B/I0RrOG5G6tFnVX7Qp488PhsK5rbeZ8VMA116rNkbYcnrMjfm7XSpF6fEQ33BLpmbc2yEBEMcYwpN4bp3GIMTqwxCHt9gnAQYMgB3Zod/f3zDyEuElxSEmIBJCoa5LPA5X/DDwVDk+9bo+771FMhMnZzWkCmLlUhAJqbgbsqupWidjECtW5zbVWVtFWYhDBVGtttdayruvSmWBQ21JyqVVi5BjUvKFhCMM2RWBJIzCptqKN3UMgkdjfzGrNtLKBxIhk7p0kDdQt9wgt2OxZXQKLItyv6+16Onq+ma7H7S7t9uRQiRUIwIkoxMhMDoAGRB0LN0A0847ERpEQA4Boa7X2sFjstvvnHb5IDxw9J9/ESCSSorszhbHWzjgoJXdQ17y1NsT9bpmPwzQ2pM1iawhHmE3v0V9EoshURTAED9ECq5sb6CC4RVt8cSMtbDVQrDlzkbnkvqIDRGRCBrI/Bev+k2ghs+fnrbnXDlm5p4QhYAgYo8QYgbCUIcZ20oM/K0kB+k32/FiqmWsF6Be1GDiixyRurFARebMZmzItJv+3//7/cjicHu7uj8d5Pc2lNCYty8PDY1IrKWCIl+OYxnEngYnoBSQi2G+24xC1tlbWVlspuSzHpdRTzgYEhMfD/d2nn+bT47u3n0mMu91uHEdhzjmvp5mIllb63vg5damfH0dwhKxtWdfTfNJa8QzUNG323C2rKgAScWDxEIWBgxjQEGI1dYDg2Lnpz0DO2fR8CJ3Isq5rKeVsXp2zcz0uy3w7l1ZbMyTabDbb7Vama+KwubgYN1sAm6IkQa3r48MdmsfAF7v9fhqThCASRSCMTzd/j1uVvr3hp4ICYG5oeq4pRzV2RCM0MUdUZ2vkihNBM2ugrs1bpdK4NquYm2sBbao156WUhiZEdKrZ3U81KzoE5iFiiF5rNcIYYgiKYoDFtGpTb0qeZAhDsIrzYbFWImFiUaA1r/NxzjmnwIGjs2tVHnBdZ6tI406ZsteT1UwYdxdxt4/bXavtya6XhTGMDM3cVARB0NwNDZm0IvQAeKKQIoFn91qrEyJ1kFXNrUeTDJtpjKk/ACkNEoL7OSD2kkN/1ksprdVnIT5C5ITTNm2vdq/n9mH226wq+bEeSauVQ6nH1tbCNbsTSyMqBCbURKtCQVpAqzcrBbPMpa7WCrqxuwAEovpPsnWfz3Cv28+3Rff6ZWYJiGTelRPuYAROCGEYhv4z9xipWs4mM9vtltiJjSC4q7uDIRE76jgGt2CAzGGzTaWA2ir/5l/8y3Vdc86t1Hmej4+nbst8KEpsx9PjWtdhTNM0TdtN32ijo1ZbrK7zUvPS30Src2k6l9ocmrfH+9vD/S1B22w2XbW/LIuptrw+3N/neTnWpbXWu1Zm7puni4sLYOdAIXAWNG/H5dhtd1KgzvQiIuHAiEmCIMWr66INALppZtVWTRFxm0Zm7mPqOSGKmYjOoWcAfcDr6+t1XZvY3d3d9z/+8P798eHhMdfW/8pqYwXYX724eflqGIbddhgiL6fjergDtWlMr18Uvb7aDOM4RHhy3mIRCUFCeC4f+hSbYOf08G5uYU2doHCbueTYdATbCAlT0waGTXNe1mVZWi7gGohYGM4UfDOz0hoRpTQdH+5LKVmNpikSqUNRNQCTgMjurAql1WYK2DiQVjuvyt1cK6tGGSLTyTDnfDournXgbRpiRK1eSCAMERgI7Hha53klDhebTby89HFqKBXNeh1GImFmaGqIIEGEuJmquzEGECUicGFB7LnjDgA9FAIRa7WeoTNN03a7DZEBoiGkFGNMgNgZY+M49Avs2TZEm6tqro0jE9g14U3Ry8flbq4N6ON6qLYs9dbK3ZLvDVaoAdCtUJmXmhUUIoeJIxtZaxWxuGfQ6mBkSoAMHAh7dtj/z1evMufLxr0/WuM47rbYNfCI7OerXETCsJlKKVYrApA7ORKAiIQ4OjRhZwbXuq5rrYqOEkEVwRmFEVmESzUikM8//3ydly6+B+tUh6Kq92stpczLsq6lmtZa5+Op5oLYQgi2UREpa17XsizLPM+1PDpyc3AWYHQWjolQ1G1d1/v7e61tPZ4+/vjDd3/89u7u7m7+ZGb9eA/DcHNz8/bt26+//np3fcnMEihFiVGIwGoxM1Dvoh/EyITMAk7GVlruiRDnEE2np2hi6w6/aA6O4OROTtRVP12NFUVyzow2DUGDEeyaFnTY7XZukHOd53V5XBEQXXPOp9Ppp59KXk8Pd5/afBDm64v9/OXaar2+vNq3yTe4DfZcL55iStTdS649Ndys2xvkpsXMsiFZpbZSmZOvW1YbaDcFWFc3txXq3HRRNGckclIzQ3BESoERoeGc26p5UVcMEEBiMuLWWsslW1UmcDJzVVNV88aCQYIjEJg9TSKMJARgnltt1RADE4EhqQfhREHzukvRCB9O6+PdY25w8eLNi7df4OVLSHFVLwAggSUQAgIjmQgGpCSRiFxbNwlyYRFBAgZUczdFxBCjBAIAEvbFNNswjvuLi+1uh+RnD4U4xBjx3N93MI6EOeFgBn3JZGahNdhObg0Rx9bSOFytZa3t5X1Zcnm0Op3gvuAIEKzSWtcD1sOCK4hDIpo4kIErFRYjNmKQXoIdEVgQ6jmy+ucNMDylCPRmuH/inZXABKacV81lrQWAsOTucNH6zdF7MXcMIcQY+5RRW3M/H0czQ6CUYinmRiEEVT+dTo+HB9Uqu+1ViptxKuBKBNylDu4VoJSyrmVel2XOS6nddLJkBQdtxbT23z2eTofD4Xj6BBiMmFOaNqMMI5V5Pq5/94//8MMPP0Siu4+fvvmH3/3xd//44af3y+n04+MP65qnaWTm/X7/y1/+8re//e2/+Bf/4rOvvry4uJiGobVmpaCqtqqlojkRkUQCQXNEh34ioePzQD36yLU3HogMbq3V+mTyeE5yiNx3tv2Y9biDGONsq5lJ8ymmbdpOm507zvP6pdaQpu3VC0X+9vsffv/7f/zxh+/vPn4gb8OYBOlwf3gYN4xCDq4QZGMhIICb9Vb/rDjNWbWaN3ettZS6qlZ3PxUFa1gr1Bw0T9KOu3hR0zWH1rA2VRhCDGBqrdRScq1ZLRuYeVY4Vnucs1tbzYdxQ0Gag5OEKXhs9XTSAmZnTCJQYHcEJbMxpFaqarFW0BWZDKHk9fG41lIiBwdqS521bgZOgc1hWZa51MNaidOLmxf7t1/tb16fxgmBbV1NXGIQjs3U3UliZIzEQt05htWqu53F3oRorrWZocTASL2c9TG4lLLdTtvtlplFnEg4SIyRpIf7gAMIeXc1QiQ3aKqtmfd0CZJayQFYZBwlpTHnfO2npcb9uB/Dy+1QfX2UOutiVps3Df0WbQDi4C6h6+rpOfoLHcBVwI3Inq7Z5wPs7tDbGcT+cZvZuq7rutYFal6ZqyGIEDI87zg7Z7mU5u5EEkIIeQ1pqnUFK8SOYKoKToJwOuWSVRsvuZXSDqfHx8cHFpTvf7qVQFGEuedQOwszUmL0cdA9mEFttq7rcVnzWrSWzmBuzdQseWgtrWUNbchV51LauhzWeYh8OB7ff//Dp++/WU9zLXm+f/zw/Y/z4wOZK7QwoStYK9bg8KDff/uNtVLWuZT1zatX2+22+0es65oPx1IKBQshpDi4grJ1Cjs4SWQHNzNtTa1aq11TZk/ntv+yD0ju7uR96O1nuDc/wzCMu6021VJ91QagpBLSFKbtUMfd5XSxq07rfnfY7XU+bQIz+mazubm6vr68GuIYqJtC4Hp80BA0h+5i3WutmWkrrRUzBTTVWtvaowzmXMCAFMncWzlSW81OimUQdHBl84AO5FAVazFycBLFujYsisW5YcQQ1rkKhCAjWBecSQU2VKtLa+bmQYSYyVCrGjqZWM6OeJ7NCBVs1bosJ6sWIAhFR0dt6IoARfDxmA/LiuP26s3nw8vPfLo8ABcFIm9EHFOIkYisupmBs4QYJJB5a40IqZtpCzGz8Dn9TPkcBFBbfj7AHSboB3gYhJlFIjIhkGFHbZDIzVQbuFOrVmtzRyZ28E7T4BDcnbBGQpYIzmzKfkG7fdxf1cO9nR7Wx4dm93x81LVo9oxWwNSMFJachyTk9GRVr9gMWiOi5xsY/hQu/adj2f9HrfXx8fHjx4/cttMGJKBhk4DIhughsht2Q4h1Le4uEntiwTCpWXWoQo4dpjcsgHXNqtgqPBzmdS3zspzmOUYRQwKKgFRabaUg+TQNmzGY1d6tE3JCSikNw7TkwtRMAQCK2ryUvNbD6ThM41ovD8f5w93dT59u8/EQYzg93H37/fff/f3f//Dtd2U+MRC57+OwHUYtdaHDxUX6xS9+8eLFi77iQsT9fnu8fziNEzq0UlXVaqtrzutacYlxaIO2ZsIDszAlIlInQOsoIoGLEGIEgKVkMyPs1tb4PHz2Wt6ZZH3V2e8EDEFKseBFdJ7LfX4gZCIp5WMc78Lmo1I8HGevZZPiNlyEYdxsxqv9xXazSRIY+6LG8jq3yoW5d1PdndOsu1JVBwXoLdLqoP2QIwTiiBjQwYArUHY+EgdOBElpaRnBM4VkxHB6lBRSCNAqFA3GgyhTmuujQgiQwhharYfjfFxz1YYGrWhrFThiCghmTd1qrdhyZj4fICc0hAYuIqVWAIgxphhSsDEaQikImiQMF9P1y/HVG512jw0PuSC0GCMRITOKOIAhGAIaIDKRgJ5jdgILu0tC7kriMxPYrTZ3lxA6ay2kyEGm7WZ/ecHMKZ0TJw1QtbliDwTPZdXmZoAgAAQkKaaURmgrsnDzMIxmNs8zgyMLUHJ3JdzsGm2udT7642Hd3qn9Ldx9KgeACpmhBsqlaC7r3NrYzIwACTtCrvh05z6f3ucWuqPEROez3Vo7Ho93d3c262ZTYmLnKsEpGLPHJM9bzM5E6JsaMzudTkRObMhABG5WcmtNI0emYAitQi2GyEFSjEESu7e1NQAwASAEW8upNCdERGYTERYUBAwWCBFTFw2Ojtsp1qIXF+n1y/1DXg+Hw9XD9PJmenh4yDk/UrP6GeUjmh3ubpfjgVuTYKUeg9D+evOrP/vzz959dfPy1bu3n+2vLlgwBN7vXp4JEq79BpN1ievaeYiqdW4N2yMzCxIRiP4JK/o5bqStdqNHZu6/M43jOI7AsbddzdtaFjMdt5v9fmsaPny8Xe1hn7ZwWE4lO8jtw0O2rR99qDmJoeGXLz/ffDkCwBDHaRqmaQzcAzIAoetbl1zOjrAA0FVTZsZi6mcf7NaaqsWYNtNWwoCIhN0VOwlHIgEg2hkgmZZyemxwcp6hNaOqgXKpRbMaOXgWl9G3w5hdHRnFKrTjfPxwf7+sBYXRkMmDFCiHlpU5pJCEB9J1FFStbrAJI6HUrNyig437OEje+fHCBIDvZviQ8fu6XL58s3v9xre7g6SGoYAbmshgxH3tXhyYGePgrW04AthSFndXV3jKGW2OwJQkCLE1rVWMW2ttO8QQwv3DbSnl5ubm3bt3HagHGdTJHM+2te7dp05g07wVb+6OTEQEBKuuQOjWkCnrwhTSbgQgd9c8h9a8FK8NA9Qp2RDSq+vNmwu4fjX957//5h9/txyOJ7cB/CLKMWGwBsc5VPNTDRQrxhWkQmW1rRppzZ6rqIUhrw0hBwpq2ABXhQqhUPzu46Gtt9f14uX1xUhia7XqNLASlZb7pR1TGIYYAvTjHFiGICEEJA+9GQZX1ft6sqq4YprhtDQFl2nicZBcy1MmFSI6Gxo6QmNIHZdyr2aM5OfkTnc9E99ZSGSkXupGa1cXl/nlq9769+J3e3v7w599+Xh3f7y/e//D98vhUczuPn36+P791avrr7/+5a9/9RcvX7199erV9mI/TWmzHdH7yq6zf83du6VOzqu1lvOSc65lrbVabWYt5/bzQvh8hhnFvXVaDBOLSBxSSJFl6I10oBCHYKZEVGu9v3usue63F9v9RW5wOK3zmoOkH97/RMxjjJtpSiFuhnEcRwLc7fbMhOQMDqimtZSS8wJQzjFrT8CmuzOzcOAhPvGKoWuSh2FAJkRkCjEOKQ3CsWPFjKeaS86lVm1q61pPh7v5eGK1y+uLcbPJeSl5BSC3alrTuCGiXOvp4fD4+NhK1lbralohMYyMA1NgYaS+WuskZxECZKLeLOTWykUSxcxu7r5qbcVOCo1w3F/F7V6GyeOIYQw9k7q0Vs5+wADAT3hgJ83//Jp6nmLSEyzU3xZ0r+5C7LoCwPEwl1JevnzZl9JdEfKUk9PnHe44s6kRUQrBe58o539cVZub29NuycH68lfk52hl5wK4u2wYiMdxs9td3P3wIyxHzmtgdHUfpARfvJzcV29KbuTsSA4CKI7kwD09sBkIuKG796jkvohhIYzDsNtsLy+3Q0RoQEaJUXDHe1UF9I6VhNDdbS2NUUQYyUF7b2RmUOtGpore3FMqMRYr6oQhJhn3EyISIBEQAID1BGpQBoCOVAEo9F0ZmKk1759KBWSAHrcLRi0EDmGapjPDqZRyfX35yy/etJxrKY+3n8p8asvyu7//u7/7278drjZ/8c/++W//8l+8uHm12V+kFELgYUoEqe/hEc/091JKLkvOs9ZayppzLv0Yr7nWjGS9U+07tj7oIuKK2h+RSJiESUQZG4EId0RDmCNLaWWe5/y45JXcQCLvtxeSpldGRe3Fzd1XX77rTU6UEEVSSkNM/UlSrd7UvGmrteZaK7jXeuYeppREpLcAvVHvT88TxhTGcUwpAZ0XbETSc/1qUVVta12X+Xg6HQ4Pd7cfP3z48fb2dl6OX7z+Yvvu8uJyZ4e70j6WUpbbTw+mu1dfEGEt+vDwMB/nEAJE0nqajysKpiFgCh3JRyRAjCk+taZgZrU2s2bWJjElA0FsNC91XtsSJ9rsvvj66zBOPo4LiAGqSm2tVX8GAvtB7UOgiJDTc0ntG9rzQhUxdOs44sBSzNBBREjGWvOnT59yrpvNRiT2t/0p1Z0Q/RnV7xX6XCX5/NUJjNZUVVtTdQMD64YJ7izS//VnQLHTELJa2mzfffnVkKZP11eP73+8/+nHup40cQ20kmZvzanf4k0L14okUJXMgyMDgSMDluampb9k5u6jStM0wDRdXb+4unk5DYFQSYAjc6A0SRfSEhELMvMZELYSmPvbiG5PrygGHTNXZcxbXBavfjLiOA5ioAhnn/EzjMXgDuJ9dDxzD56vOBHpReH5I2l9XyTnvS6B9xfAGBi3oENdM4J/9vqVtXr34f3j4+Mfv/t2u7scp/007sfN5TRu4xBEWIQCJXcHPK8GOpdFRGJka62UWEqpJS3LkmUpRZZ1RgREYw4AJHKOGrLQ7wSJMaY0ppRCSN1+GRzBsTswtFKPj4fHw31bOHRTvjTsLi/VOZfmzQLVjhgTURQWwr49dlWzDj+W3iMwQUopBOqHs2s5fvbE/Ela2O/hTuHkgOcUb4MOLczLnHOe378/zqe7h9v3nz5+uvs053UYpxcvXn31m3/19Z//crcdT3c/PX74LhJ+KqWeDsuSQ7CcszUNzCEEISsIAo5mqNR9nRiRhEgkQF/LGxEyCwoRgwSyhx/jNHgIzdrJa41DuLoeX7wYL15CCBlR1ZqLAyFFZk5y3iM8lSECAEMToH6knxcQ57fRQUSihN4LPGMwaYj3Pz0+HA/TNMVhamaoDoRaihn0WtyPMaEA9HALPLvh962SmiMklgoA6mjdkb6Tu9HBn7HG55/HzEIageK44c12//rtm9Ptxx+/+cPx4ZN++L2YunutDSUMJIhBCzA4O7AqmZIpakM1aLU+wR/93SCCmOjickNyffP61cX1PhAFdkksg0gSpPb08q3PdL0uLeWBiBgJkbsVhJm5WmzAWoyk7PhwrMe1GDpLlGU5uXdiDJ6TEfr3bedy1b81dBd/AIceGwpETG6mjOek+XPZMPPzRoMlRWEQ31YEH0J0a+5OKRzXnD/d3X66fzgct/s8jJuBJITAoedodSF7q7Wp1ue6fpbmAPQfMrLUGocx6dPXuZ4xM3Ohc4UWiTFG4dg/NqEg7gTmrrWsNeeyrnle1pNtXDXvtGZvBZy8KnibAmfX3BRUSQgdWydyzUdVdTUAU1Vh7Elu0zQw8zAMPQz1eTnJHPrF+/wMqWqt6kjdPxRRW7Na8+l0OJ1O958+frq7/enjh8NxxiBvv/jVL3/1Z1988UWabnY3e7Iim7Jzhdbqss4cl4IlN2ueUiISd8/rqjlHbEIUWMcYU+wkeObIAUOtVdWRkYis9e3vKuZA2ByPCjbutvsX0+vP6OpysWQI1bDBuawLCgcODMLSl0z9M0JER/KmPx9q+s3Zb97zja3mqgQ4xhRjVG/H43EcN+/evd3tdiKxm3MSCeK5QyEipnD+tvB0LsFBteo5EdoD/ekfPVsTsbsb9sf4XD27mKG1ZmUtZSm1ttooxN3NjYFezpcSqcyHXUBuGJQHDsixUWA26Ds4NWsKTY2L1WZkZt17CAENyUR4msZhs715cXF1ceEtC7kkkYE4cc596QWI7KDu/fH0cUwABOYA5E17QKErBGehgBJjNKZgjs1dHWRIsbXWSm3arEAFgH6zu/QmtpeHJ8Jj39FTJwYSEqIDOAC6EwA01VYrItanygqKMUYAP62Llnxa5sOy/nT70czefvZFqZmDnFXB6Kq1Ne0spVprLkutFdFFRLWdO3x309Z7ge4Dak9fT0eFERFSZ0F1jscTqFOtxyKDa8tray3nXHNppY5BCHVdHh8+/aRaSQaWOERa1pqPDz9+eL8syzCO03bTD6G7dk1ySunyYjeO4xiTiEiK8BTU9nNX+qf+7TwXqCqAEcEzdpLz+vB49+HDh/fvf3x8fPz4w4dlWZrD9as3n3319Rdffv3yzdvNZuNhgwJuNF2/HK4urvYXMabbH396/+33pRQiHdMgVE+nk+YVtZGXRLId0n4bU4pm5qIcxKsieWfcALjVVuq65nkfh0bDAlzTsJkub95+GW6uc2BdQ3UTtWB2No4ydfdAoWdhIpzFzwBgbvVnHlQ/O72coggxAVYzV40xRhZ3//jpNpf2xZdf/uIXv7i6uXw6/D7E8fkGFo5EdGZTl4r933Qw6JHo6IjVeyeAyMJOTujeO0l4bvKfNxTngQK4qs+8tJIRfdhuxnEIZvl0mLxO24mEAblhXBUTVlQuLdeaxRqTi0gIioZEYEbdJcq8OSixjUn207CdpGVFaCwKbtCU0Qm9nyB37BIlNytaQfvYTlatVtVqAOSoVh3ctWjOdV5LQRtylVFiMQAopWppxVVbax2i7LPouTXi8ywXY0Q+C3cAmYicGBEZGBEd3QkQzw02MrtJZw5qq8tympcch3Tz6qXVsttvxjENQ0xDCEkAtLa8HB9Op9PxeFzXpa9wu1tNkCTUX62b1m7IhNgvnPNU8ydMCFHx3K/2W6E3YCq6aGXqOxpXVWuqtWltzBUdtS15fZRFWHIYRgCykufT4fb9T4+Hw+7yAsnDxUVKQ5DYA9mmYbPb7TbDRESttaXkZ4hfzrxK7rESpZRay1OfYogYQqhNW2vzfLq/v/3w8aeffvrh9vbT6XSal7LZX3z2+t2XX/7is8+/vr56SSS1aCNtTSXQlIYYp+04IQjwxtZ6ODwioiChewZkhBREzcaEm4k2GxaBXFTJkXhZz1k2LF0+ZSI0jmld0HmQ3f5i3F7sX2wuLksMq+aq1P2vwznaqVub8rNY5Inw30Ua5176mefQPwIimqYRABgJ3R1pO07ufnd7e3t7G2P85S9/9fr1y35ndC5xjOeVinDsTKwOraueGW+OYGbq52Nr4MYIRHxWW4EamBn6n/jw/fSeezqgQAISxryZ52PNs2sG0/Dybd7upMxGdl/yJ9cSaJmGUA5qyq1VbcFUAFCIY2jH0/nmeHJEcq8Axl6YFb1pObpVNzR2CkyYDMzAoHvoPA2kuS6qjo4IjMa1NlMgYMXsjcH9eDzeHx5Pp6UypCULgvX8aCEgYnUAbIg0l9PTcmhtrQGcs0lVnWNIKcUwSAwhRI5BRAbZ9uawO1f1hoyZaz7zGUKIyWzYTF9+/XUz2yb+/PMvXr5+IcLNqiip5dN6uvv44e7u7tPth2VZVM8UcERMcRO7iyUzE4jIGFMIvK7rc5P2pw0HYs89BABVJyKQRERgJlGIyPVPzTYRCZFZcauutba1ldnA2UQkbMZxv9lcbLckdHl9fXNzvdltp2kaBxnHcUyDSBSOQtRqf7taf55DAHdUddVWqyK1zlUQFHcvtbi7WpiXsq7r4+PDx4/vP91+eHh46O5Tv/7Vb1+/evvu3ReX2+sgIwChSZTgYrWqqi7Z0SxN08WLt2tWPt7HGBHx5IdaVkQPzBgCoAxJUqQgCNAcixkz0nY39R2vuuWcl+VUSgagY/aEYXf1cn/zchp2DXyu61xXNukDp3T7NwUCQHB9OqJ9fnkea/uw88xYet7exRg7WIIirjaO4zLPd3d38zx3i/8Y47qugYJZ7g/S0yjUBxA5c9rV+i8cobUG2p6IOk/tMxOhKDioA4IVe64jveNLKalqWrU6OEuMOaXQyrAmRLfTkOHA60P9eHoox8MmpiFFvLlK94cGjMIKXk2xVewLzNIw4fMl31OBAA28Qct1sdPxwa3EQTgQG5+57N7M7AkPVtUWxwGbuwMimZpVBAVHL1rd1A3m0zKf1mVZLHLOWVS9Z/mCixqQad9nMRa1onUtee3jvoEDQMDYB5KO1gZJfd7TIYtISmMIyVWZWGgipGnDD/OR04BDBKYJX30x7V+9/Toxaa3DuCfi+fQ4H9dlvjsc7v/+2789Pp7m00LADAEMkqRhmNRX9Rh4YCFCcsO1tKoe+BkBdgB4SsHwMcxnzuw/3QMj9RdrLS+wnqAtgTVFXJmqmFG14z1IeLHZRkJrTQkg8HhzFeHy4ury1cs3F9M2iEyb0FfNpmeOYSllnuc1VxEJZoBo7v1QuTu7CQQD82ZdhzjP8+39w1JOn+5ulyXf3d/fPjxW9bS7/vqzz9589sV2s9/t9xKjqpmvIB5CuAzYYnJidTCABQKNYXiNa/0wSNmtt2FeyE9zyw+tLYaXjS5209V0FZBzXaPsAse1tTWooI2gnhW15uP68f6w2V+2t29v3rx99fbztNkfc32cc9E48KaMXGtFd+HE4JWqIwQJoZGbN+sxZWbeVXVOTq21YRhUq6oSGlgd0xDUItIQY85LGMK0ST/+9Mdvvv1Hcvryt7+NALaWi3GDTIOEaZoM4cyZQyqtCiMwlaxKgARdqGJC3ki1qWrCdB5bgHoApLmZI8Sp1uquAiQOaC4iMsQ55EEkEG80tJpq3eS8a7ns5NNj5PuBTw/hE8X/vNSrzdtgl6vFEOrL6/0o0+UxDodhTbhQS2TY2hAHc8hrwTaYhpo5XqhZk2G/w5fLeip1hbbiapXW/1IPQUgU2sH7gK+ee2kEBHNnYzdcWw0j7S7i3QHcYUtBSilozwkxnSUOiJgkMhACMUlnt56NJnLtloXdRNWsS6WsqvYY0RjPl1JfvXqDFIRScEKGOATB7dZqW5fjw+3D4/39ejpYW8vy+OHj9w/3H7/78L22RsjDsE3DkMZpSNMwDCmdZbq9Q36qc1RzPg/GdobCz44H5Sz6fUYyzjdDDMwMprXlltdSCqCTsGAVInRzrTUv6+noTd3x4XCal1mYp2m8vr6+uLjYj5sgEhN2BUwPWGxNa60551r1WRraRYv9nh+HCADAZGq1lJzz4fhwOBzm9fTp0928LHMuEsPF7sXNzc27zz+bpsv+Ys97wSemiqoCMTObno04BI2ZN9OFbg++m3hOdZZBcGAyx3EzSYoSwzikkKQ6ZTU2G6yVNasEa/5wWg650rgfL199/ue/Hbe7YbtzFGfkiNGRONS6onv3yu2tMjkGZjNUNwIgEuCnBxE8ylBKIQJ3EpEQpc+xKZ6NUPpt/PBw9/HjRyL64t1n0zSYN3c3D0mGGGUYYrUnvjHg00fJIQRXpadxqZsNPVfqZ9j5CR8lIjJvzOwOz21C/zN919gzqIJIv41KKUocypwud8eLfb64g+P88HjSEX18wX5s24Ajx02MY3BCrZUY9JyhSa3VXBY022zTkPYhjEyDIjIZMjbtpCn5+Xrv+RSb1efO5flIAkCchqoeahuItrlsT/MptwImLReAHlVrPY9ITUGtox4phGeEoI8ZtVt1a4ecmhmpYlPEBu7mbuYtWFDuOj5BCGk7oftaChENIaCaORRuy/rw4YcPD58+WsmC7Xi4LesxjMM0TJvpYrPbb7a7YdoP00ZiTOGfbHGfF57wXFz8rPE4C/etdebA87vQe5Z5zojooFqLWkNXZkyJBQcicmMAaHldjo9aCgAe7k9KMG02N69fvXr1ar/ZRwlM1HTJa80555zXNfclWmvWBej9Ge1fMcYOKQGAecs5z/Opx0rM83HJ67IWQ9ruLjb73c2LlxcXF/vLi2bnOc2AmIm5jyahrJkidwTF1FtrKMDMu+01rYucbmO+1/XxeKRlZVRwAY4ShhCHACvUXDS3OhfVQ6uVLq9ysw/3p5XHN1/9+stf/GZ8/c7Ai+LSaq5QezSnAaqTAQCwd2iRiFmIm6A1FREKQgTq1okWTNzJCYjYbcNaK2aNiIZhyHkJIcQo//AP3/3xj3+8vrn8i9/+OsbYtHPUjQOMcQRsIt37Tu1J4I1AInLmH4oAgLo91+gQ+Mw40h5f/SQj1T6X0vPDc74DRPoSEQ36H+2jYjZyncRz3O0e9tv1eDjc3z9seL1jqHIRmiYeBkmRMVAAbopNC4BJIAdkBgm2neI0TSmOQmwSR3dlakoItixPqjXk87a8/2AjwVNA9DOTv1OP+nUUkuz32/3VJRxOzCiBBTqIRlr9bAAGz5RWQ0Fx8uaGfRZl7sNGB3vcsFNJKAQiYoJzz25oauCNELXk3GppdRxHZMvrqmtZ8uOnjz/9h3//P/2n//A/25rfvb66udxf7MabV293+8v91fWw3Q6bfdpsQxqIwxikD0LP5fOMChA+nc+mqk3LOb7YV/tZxvzT5kNVIyKa1spoygCGpqqhP2r9ECK4a7VG0OOIUrq8vn7z8tXF1ZWgaG1e2+NyWpal1uoOjiAhAfTMx5Bzrp2baubuAYkkPGuPT/PxcDicTsd1XVV9mLbjZhdSStO42e43uy0yN6N2tt0MiVkkMhIyq7uCE5yD0BA7C9yBMITdMO5sf4H5oi2Pp8fTeihQTCNvLjZX19cC3soBgV1bza0eT0ttMW0zBR92L9989cu/+jeXr97dL6spZNfSqBhWBXVzsABnM80O3hAR91xQAmYGphAYCL1VACThtq7nxQRTZIlMaNxD2y8uLtwV0ed5/uabb46nx//q3/7rN29en06nfDzUVnw1DizCRNgVSESEcN5ZmHpHg/rXcyl/lqacZyXs5if4RK7oGbHna+15qXZONGdWUHdQAwRmAhcDpOA8oFQnl7imgabhCKnNfiwP9XSET7dlf3mTrtK0aZYdwMzVm3kFrwjKpPu9DIOTVG7VqIE18KZeAgVEQ3A0604VZ1Uz5Ofu4J+o6DjU2kr1ZoQ5p2ZJTZrK5cWFmVktJXejeGUFdGBEclLQLl8WP1MCkc53Wk/fMoO+jD0HIj5LJUHVmjkykedWamluEKi2Uo4nzeX+8Okf/v5/+/f/n//pP/77/9lrffzq87/8i9+8fv1yf3FzdXV1cXOTNvth3KTNJowTIkf6/9NvIKJZe2qxesFqT2rM+Rle6q1m/+rbctVay6pawc1dW2veznvpVtW9w4+IBNM0DZvpYrcfxzEQa9W8rlrqkpecMyKJCKE80Qz4tMzPEsWu5O6kDncHdxJlidyF20yIOF5cpZQkBpFIzCgBidy9txwhBJYkzODYy1BfYrda/by3c/cG7opiMvGwHzaX+4t5eVzXh8WW09EsMgmj1TM1zQBPy7qe2oeHhzrur794/eWbX9x88av9i89PxXMjRCQWEmR1NGB3BwIwRCDzPy0bEJpbxyCIEJkQAZm6N13fY3V/nI4dxCTdTre1No4p5/yP//iPHz+9f/v27VdffdUXS889cAcgmBmsPO0mSUSQqP1TI5c/YULne8zOqARAB+r7YPVMjKeeLP1ML6k1xkjMDNBa6y8QmTAlLgStmrcJhzTETdzv0z6v4yx8ums/fDrNy+9vZ/uqvHv17iogpWlCw+PxeDgcHu5vj4eHnOfj/BPgEnlo1ftN2TQDGGIw7xi2dtC0616a/Uyi+DO9xI4Gr6a5lerltOr9AecFQpMpDa21rA3tPAAzkoNHTqDIYCSMiLXb8DM7ngtYZwv0Xpqfr+Ue0+iA5gDmAIbFnd2at3a4L17bfPe4Hk9//8M//Pv/9//4t3/znx8PxyGEUzMLcf/yzeXrV/vL64vrmzRuYhrisI1xQCYwfS4Qz6cXAMDak5LBz2RPM3dv+id8+PkMq6orMKBZq2l0bYDmaqp1Xdr5AIfWa3p/LDYhxXEEgHVZzAydrFdKc3MgBEA2cG0KoM3UgDikyDxNUz/AnbvQXaM5BBQGpme4GNM4DEM/umpWzYMEADh3HBSYGYi75g5J3NUR1M0cY4yI1j2bKotK8rCT6cXmwq6PZbk/tWVezXRZ5sdHM1c3Z8nud/Pp4/26KL3YX9/82W+2N6/C9kVrkmsmEkcAM/duFmkIhIytX71PsKpjJ6obdFvnDiYDsPTMa9iMsWd6nDMr0Ic4pBCt2rrO+/3+dDr957/9GyL667/+y/1+G2Oapg0gdUosENbaEM86WX9S+jr8Cc59Fq48tdb+fAN3ljUANLWnS8y74qeP6XA2vmmru7v3dbepAgDD+Xv2V0iKyZEpbjluhU8XuCZ6ZH38+OF+0dMfvn9/erz5Yf+rz9++fv36cn+lze/04+FwOtwfzNeHh1stlTCqwpl85g3R53n9ufbGnpQGHe7qEDfAk5s2gGkDBEJnNwYUcHYQUzkej3lZT/NhPR1rLm6NOreLudbqCNEjEOpZr+QhBEIUjiF0r5Z+gIOadbW6u2MPzLR2Jl241lqPx2NdVl3L/fuPP/zx2//w93/zN//hP336eOtAmMa42W1fvd6/ebt5/XLY7NNuPwyjSCQUd0TD3iw9l6U+H0J/asD7rQBPp9fBzKO59f8cumWpIBm5ERFZQwzGjRG8m/QHf25j+urr/MZVFKSyrEteU0rbzX6TBkqyaFeTdJDs3J4Q0X6/56eBtTf8T9xdUFVQJQ0SQrSRBVNKFUKISR2JpUFrtbAAMnUoHwg7B5MB3REAaj0Dms+f/XmWG6KXjcfLkGzYE8x5ubstp3utEgC8NmZBYW1UHCpR3V2//ezNL//Vv7n58ksPCTCi+hjkkLM2La3WnLVWVHVvbljZkLDz5MjBHQwBzMmMg1A3NkQLITiiedvIBgBKXUMIZwv4TpOO5M6n0+l3v/+Hjx8//vrXf/bLX/4SEcElhsmcRVqnH7i7Gz8/3+BqZkhnwB/d8ekMM3ROvrm7nJFBBO1SHANwgDMc0Bs0eDLTdXdEamZe6hmvAmxP2W7amoNDQEQhJDRvgOFiH/cok6fd7nSX7z49fPPt7ffvP+TD6XQsn78zRndnq2bNJITEW8LRlLRYVXA1cyPC+kRP6PhIOLf9fQb50/30/BEjixtK1dRAZs2I+eO9NpNPHz4uyzIfH5fTUVsDMMbufSHdKzCNAxFVbWbGzNv9NTNTkBBGEek2N8xMwmbWWjFvdqZHUAeSVS0vy3x8rMsKzR7vb//w+3/8+//1724/3jqgAtcGNEzTxVXc7MaLizRNcTONw5aAwRCRBVm9nWGK8+nyp0oMAIDQvXLA3J5Jub2dx+4m/jwiGSOgE6ICEVCvc9A4Dv906fWUtOgVANZ1nWtOKQ1x5GkTJQw29JnZ3TvUPAxDkERBut/1GT1i7ou3eV06rt73Xq01lsDMw3ThiHVdvGmtrbUW4iDAtWcyPNF9m4E/CWgQkRANnswQ3YmZYsSQgAeI+2A6bS/G7WacZD4oVLWmxNyq3c/zw3zMrp/95q/+/K//8uvf/nq1tuYyBmZ20HJuQ0q1pgSGBKqmVRshdff33h9bh4yczSNCf0J6kyqCrXkvuB1uFTk7n9Saxzjudrs/fPO73//+9+7ekwBqrfO8EpEpEEpM0fGssO3GXfaElvKZUU6uCk8t9Jmd2mWGT1uS5w1QL3DjOLbW1rXknPt57p/Ldtr02QT7kgypt7JkhuAUBCiQGgFCU6iFdiO6RdlTCDG2prKWPC+nP/z+j/OpPD4cr3bbVtdWjZm34+A2uA5oTN3YkA0RRQhH+y/4C/0BHcM/OcDPv65DsOa1uBmGU3tszefjfJhlPXwsy7weHubToZUFXNEN0AbfdlsQAOgCI2a6urriEIZhGlOI0AAQGVGIhWutaQjjNNaazRFRmnIppCRLXi3EzTSo8O2H93M+frz96TZ/GHaMFI+nrGsdVV9td68uLi/j9W7cRYleXeEsFTTmZmfhLzwxfM5McKjg9BSO3deM4uBmvRNmRHta0Ku78UDu5ubACM6GCGCIKcDw3G/3J6+/rWVXl2Wtt7fLabbm625tOwgsFKLX1rSCU0hpmrbdk0Cw70XdATlGYDrmfFrmui799KoqkUy7bU+ZCuMEACHE0iqdbc7NW40kbEgKhN4dC5AAAI2SATACuXm33QVeKkRFjNtlWO4sYyUX8evXcSlVThwG210dG7zPj988rgec3v7LX//mX/03l1dXFEcqmTgvzRbPJ56XasVLBVVyVVQzQOKUkjczQCAQJiIBxGaoxmNfgnpgIeq2ABQwlZZFJKbkAA4EyKVW5nR5cXF3d/c3//E/ffP7P/z1X//1n//6N4eHx8vLy+wVERKHnnQODuf1FYemaojmtuQ2oAzDICI1z8/rKMFAMXWdMMvZbNwDtaZLWwEgpaRs6tYIsquqN9KBE3MgTKUtdVUACOKGZ9GF9msMQIiQ2cwaWNiNO47zPILfUGy+y/t3g03bZVmWj3/82z98/O7D4e2b60D603H1dLUQb+AGeaAAPLQwiARA9BClYeqtAgMys9DZQW0YokOfpZqZuZE2NIOUBtnI/cMtmC33t9UpN344qjze3uacl9NhXQ4lr9ZW1QrmAe/M7HQ6ttZCYEQcxxHw+GK7DYEBR2ZAQWRABhJPw9BnFXc1Iwk84FaHaklTyWMt4RDXeTkdjiENEtLj42PNLaWRQVIcX758OY7jsyPJz/HtZyrPzyvT8x/Ds0y0czjPaGGHxZ7/cP+2zHQeNBCon2q0ZwYItGf1PzwPwIiYaBCRnPO6ru5ea21a3J9MpEPoy7x+4agqCxMRE5l7KaW0uq7rkte6Lv0H7t5l4ziO4xhCwBjPf/1MCXx6XT8rwP5PnR+ef8Ln98TdVashcBoSbNflaHEXLl9tDK/CQVVno4939x+PxzDtfvX23Zd//qvLV+8kBjNzR0JBAiJF5J8rz56aTH6aCc+xDQzn9o+Q6Ekmic9MuB442FpX5JdS+jvZUcDW2h/+8Idvvvn25cuXv/nNb168eNFz4Ttr/akuo51nwD+99ueR4UxTTbG1Vks7t41d2MWk3s4d2jmDi5g5DsOzGGYYBncUEWGBn1nh/JN+FVGCPCuofk7U1aKdA9u/evuZc/6ox4qYtdwdZoZainIYhpTSFMdNYkHVgqSAhgRExuQxUghBkJi5h7a21rQp9jwOECQH4hgiglSwUoo2V7V1KX3D5+7yePehtVbzqiVbzlpLa8VUC8zuviynnHN/TmrdDGOju+tct0ZqUOMwUYzolT0ID6Zu5m6GToFSjAMi1rSEWhU8baa8rO6el/Lm8y/k30uFFkK4uXzx8sXrr7/++vr6+k9bn6c39Pk+/BmV9Z989Txd7KEkT/sJAFD608zcP3uz7jj/FN4Jz07cAAAc/+RUdl7oq5nZuNmklDabaZ7nbtUNABIocXoatrg/f8+SqeYGCqXWOa+nZS59qul0fJEuJOybz+fos74O6sP3z8O18WdmpU99xJ+oKX/6u329Jrwbr2qOy3zS2sbt1TC+2ND387wuc/YtXPx/+fqzJluSJD0QU1VbfDlrLHfJm0tVZtZe3egVmAE4bAwa7BkBKMI3kJQhfyQfSJAUIbFwODME0Gj0AOgFXXvleuPGcjbfzExV+WDuHiciC3Mk68qtcyP8HDc3NVX99NNPl1eXb9579a2PXrz3RsyCmbu+B7JoIKakgkhWJeVCVS4TZjkLVTVECMpTS4BFsoaMRWsNIoKh3Ko5fmccOejnN5KHzt2+fffzn/+8bdvf+73fe/PmTYxcFNln2ul4JkEFyf2tjyf4ec4PE1VTWOdKIcDYNDKb4tx45JxLMjbAZIVXIlLBDP+O5RVEQ2PrhTFmZB9OnRh55ZnZyFnQDpBrDUS0ef0GfdGd9j1HI4CmLl1dlYUtwZbWOsQYU2JAdd6Ule9ErFPA2KdECSJbZQkhFMUFTMWUlJIIIbAhR84ej83xdBqG4euvv949NLkkYSX0BOAJisKKqYQtc4kq/aAA4I1NVQQA0WSt1aRNu1ONZEQgFqn3ZeV8wc4m7hGRk4bAoFRVq6oEa63xBIacNUtr6rrmIbSH4+Xl5Wq1OtwfO+1eXb9+/fr11dVVURSI6KfXbMB5EUclrjMPPP7J2W/AoxlnOqydkb1RsxcIQcHZKhvp7IHHUT0q86XHUkOO0Aw48vVyUXctHyWkoev7ou9tVeQHmbURx2Y3Y0QgDKEfhj6GbuhDisYYVxSZxJ33U2bKsoKwoDzmQtZanmMNBTAkCICgk8AEIsLYKI+guUxNIiwM1oHzLgF9+fb+r/7TrwqATz96b/3+60u/ot0Omvb1a6zXm+uX71XrpaLphsAi+UMjpxhjmOCTswQlW/KTd8cZLkSWrCdDdsrfDOVgJhfMnC+HIWtrlXMDkAj87Bc///rtu8urq48/+cQXVdO1xllrLaec8xslACHMDa65k/DsFJ4fPY6sZhiRion2kNvOcgV4ZCicxSnZhvNcG06qqpGZiJw1RFm7hlEtEXV9Ouf/5OpXSsmimbGSlNIQQxIW0GpzIUTGee4aHHpAZ4VZsY1Hw672hSk8WUBISBg5imJkVNUYAiLWWGY4LgwpxhjTwMwpSozCiUCpC0PXNU176Pv+9nbXd0NdbV+8KKwvIHfXko6duPl2h36Tv6JClkeNOZYwhgA5hAGbY74BXxbOFVVVCeswxK4bhDF0PS+HsqyJNSn7ssi/qcp9356aw2q18t4vqsX777//rW99Kw9GG9PCiW41PzM8e52HOqo6d5mMZjwJQSjx+VbM20BVDeXJDI8lclVAxBD7b0atCprS6K6JCEBTSkPoQiwTjuUHM+mY5ecaQjo1Tdd1URgIvfeuKPIAVGPMo9Q7ok4qpOfB8PyadYWe5RSz9sX5h6aUyJAFc3t//y//xf/wz/7Zv1itFv/wj//rv/OHv19sXy79UruenC3rhSkXSk4VAVlVOY/kA8oMliR5lfLtj/NpQQnBECjkiQqIWdTDGWONzV27GWkThEzHU1XrbIwxH1i5Kp5S+uKLL37yk580TfPxx791cXHhvS+pzLeZOxHQKgpBxh7z49bHutF5s8rYCqiATPloBkRALKoyj78VFgAwzhIRGiKgc2ZivrYxxhtjLRXWqWqeopgPjuVymQfW6xQ6ZY5d6Aac5L7HNilriagF9q6UKqUsYa4Qhr7tBhPbpEaNWVVVUVQGmdMQQvCrpR87YUkSD1FRJMYU+qZtT13XiqgIDL30naSo5DCmoW1PCrJarhc1rJYX3pfWeDI5HgMkBQKT6aPLzcuMmqoyEeVquKqepFGWvuv6GMm05Kx1hXF2u71k5r4b+r4XgbIsI7eLtDAdCoKk2nnDMbWHh+64D+1psVi8fv36ozff/t3f/d1PP/nuxfXV5eXler22k3bRXMuZnx88rZ2MYZWzc9icCy3ZXfFUQIJ5uyOIKkEcWaMSJ9IyIGLix8kJekZDtd4A0BBDkiigoBxTCjEqT17RGWbOpK9hGELkEEJSMc76svDek7VTEm7m6sUcEz6LDB99nRntPNsUTLVBnGxZJ6b3iPPFlLx8/svP/vt/9t//0//L/w1IP/vV55/9+qt/9A/+7vryxaqqXVkgYuh6B8Y7ZzrbdN3QNLmbhYwDDClGeJZ2gkHKxiKGyNAYLVtjrbWerM4KEIikmgkTOerJSX5WrjHG7Ha7v/mbv3n77m67vfzgWx+5skoqhXUhJRIBJUEwSpB9L4CMAMcjkjwHrtm75oTjkcM/T+eZunvmNbfWZnEp1ceQeKzieG8tOTIiEpSz6iAiOm9zwjybaF7wVFT5Qfd9n/kPJvMLQp98YVLqU0qgPJYJsA+WT0G0j0tc18V6tVws1lURO2BRQwjOUtQYhpDLE82x2e8f9vv9MMShT8fDcDoOMWpRGNGYuF8sqhcvXiCaGFk1WDAMOQFAIjAGMphu0VpUoLFDShBd3jvxEBRNPvOYOQmEqGioa3oYBTUDS+w603V3ZVlWfq0IZV0BSBzCu6+/jP2p8maz2VSu/t4n3/vkk0/ef//99cV2sVnkdGVkqE+533TiPtrtbAMZ683xcK7oZO+hqqJh2uIyJjCSRIQkJ425wJ9R7lxKfgzOx86urOcs2feSqo4iOJZU1Xs/9+IzZzGN2LZtmktKhS+q0mRwQjh3u+eql07OH7/xOs//z4+q2bA5jYp5uaiWl8ZaKhzdfPn1//gv/4d/+z/9Kzi14M0vf/qzv3h5/fu/88P64tJYw4a8sdINwzBwiEhkrTPOYYyjY0Wafe/ofsEQSd7nhBENkTVgyFH2vcaQmZUuAEAJCUCmkCiXXonEGNv3w9dfv3379ubq6upHP/rR+28+zOTwGHPcbtA4kyXUjdExZ6Dzo2SOU+Y0W/KJTZhJPElYopbsyJpqUZM1WWk5f22jOcDOBGon+Xh/SgjJtpqjCQWZMSqicfiziOQmRJ0Ga+YAKsboxSXAUBROOTiUwg6FD9F3+8QpHRoOQ9edGNhfblcGS9AhK6xLNE3T7x+Oh8NhGIZhiNmAu25oTuGw77oGAMg6YYZ6kYe8q7OmqipEsnn2MVkkIgNk0BKRRTp0D+OSoeQhsbnUvF5twWQdLsuZfKkAACEO1lprSaEchjbEfginEI+BBhEBZ4ah69vu+LDTIXiLb9684UHevHlzcXGx3W4vr6+LRWG89d7jmWbC/PxyM6NO0iOPmQnw5DZRcmd3Hq1CcUpg0siF5phSMjDHnzz/gKqSdTrNhuu6bpwXE2M/DHlo02q1Wa+Xdb1crVZ1XQuYHF+p6Pn3ERFb+LLMzdKOrBVQjNKHaK3NCrcKMKqemSdImzFGJ9hcUjrHrnTChLKLyG+eyUpg5Ytf/vKX/5//9z///Gc///jT7/3eH/7eRx9/8Id/5w/e/+Cj65evj6Fpu87mb46DDnHfd5kDS9ZKGEY/RjhO6p098HR9S4RkyFq0xiJZzMJnRDgm6NmoEEd6hSbJuzw3Xd7c3Nze3qaUfviDH/z4xz+u65oM5EPQGBQRlWy9lJX9zqg0zxMomLqyJhKRydaZ4SjXYl3X2fk3TTPjjjgJDHvviWxKiYHzegJQVp8ar2YNEbGMOfB4jk+vGEbxoWzAI5Ym4nIcSAjOk4FoiAnUAqbLOPTCMcQhhZ70kAYh0Idw4gkn65t2v9+3p4aZu/7Utm3X9SmyCnpXlhdV4ReKfYzD9mK5Xi/y17bWIpJtj4NzTgsSB2TBEBBSJEJHxpFBEgEkBlDvrbduYDTGeFdaX1jjiKwoAsB+kKLyrnSoqWsP+3c3+9u3fXM6yE3f9ylJ34Ukul6vjbHlcv0+dgzm5XuXyxebxauNWZaMWC9qRWEZ1VIkW4fmnk7KzJogGjgF5ihjEpJXFlgQEabkREBAlHIBPg5D13EcVHlhFjGGJAwgzHFIA0tCRIRR2rPrutPpsNvt7h/ujsejX16+fv365esPL69fVb5YLzeLxYKZvXMDeWYW0GB907UxRCHjNyvvPVoriEnQMGTpOG88KGjSccQTETCICNoRdiMkRKQ5dLcuo6sqQjlnFmVh52yMMUYha4w6VTFgjDG3d/dffv757/7eb/2dv/0H3/nu93/427+zutwG0bqSqrBVsT0ej9om4xz4KpFzkInfQ4wsSVHJoPXo1IBw5q2qjrxitJas9WP3QGaGGYPG5Pq8tZYAM4Dkxp4BFjM2D5V13XXdz37xi7v97pPvffd3/vB3rbVgEY0Ba7wtMu5P8hRqovEvSYUop6U6FQ5UJBlAYU0hxBgAgTzFPvZDX/RUFaW3tnAORAizmgcwGzKUYS1EJNA8WC1KQjEySt8hjYKMRtkwcwyh74dhGDLe4X0haSCDRok4ZzOKBMbS4FxCZMDEqEylXxiMp/5gvDXkw9AxGoB0iNrsDgBCwL/61We73Q6RJDGiAdGuHQ4ntXZlzFYpogm+ksKZsiwXL+KqukQellWoahRNrvyarLXbxUVmVllrc8Y/nus2EZHBPLWEAECNEbKFK8gaa7y1Do1DspYsEb3YVkVR2IJSiiJJAIeQ2i4G7ochqqKxWNpyu95Y61Tk0NvV+uLVy9eXl9f1cpNhZyIz+s9pMlguJDJzYsyPc2AJKfYpRU4zisMx6Tg1BSZSqwIIoZJKDH3THkLXiggF1TyEwxjMTF8i55y1DsEo8KQYWdXVChSLenG9vfDGkuh6tVpUNWZiAGteMVZNEMCQc844i66Yv/ycvGUMfH5HMrSGmTf+vO49JZ+PbufcS09Y93QKTMykz9+9u3zx4o/++M3VxXW9XInqF19+uTs1mxWp6nZ7QUT9EGKMGQ/KPmRmns0Xn7PNOYWZql+P3vj8leNMkMeWoPMMEwD6vn/37t3xeNxsNt///vdz0eUcnxs/Vx/j2PMs6Ty+nQNazKMSxuCbBAFVUxYzDKHve+/HIm02V2OMJsbHZgady8II45tz1VcmtaP58eXvnH/MlS6vUoa4sp5xCIEUjDEJCVUjjHzslJJGCsECSERRQRzpxhBZhiHc3+33+31zaqxxy3oBAKeGqrqoy9J5rJau9K6qi6JwrqaL1dIbXtVlVRUCisayol3UW0REa/L+I2NyXxFZBoBxokQqAYQAgUjQKqAgRRFSRoMWyBItfIUGAQkoKRnyvlptnau69n5ZQVEURVFZ6y254+EUmq4qilcvXl9evqwXa2s8CxFg3yVXjDuezmYLxRgHFgFMKiHGNsQhhiQqoISgaSSvUkac8xgkFgRBVE2xOe1397eH/UMIPSX2vqgWdVUuvC+tLwtfl2WdZ0EAgDUFoSX03pfDsLXGW6Dh2KR66YCssSACuc0KUDLInRKgMU6dNQIjejw/8okw9NjnOdcncooyp/pwzt9QmIGTubY5b+5nuJeqsrV+sw7N8LPPfnU8NgOnwAyGvvX68sWLlxcXl0VRpCgxRiI15nHq2vlXUlUFRtI8K1AkGzBZR87ZZ9HsiA95p6oyZebnxsnMVVUdTqcvv/wypfTJdz79+OOPQROcjfCbLXMEsqd7fHbX+cq5U3eqfgvC3CEMqupIozHKHPqhdxaz0LzzOd0lg/nXETHGCDjKvDlyU6chj9x5HdUhDFHhvbN2zlZU1duRvczMeUBPRx2hica4mOIkJ2CQgLQsS3UGDYkmBRHO+lcKkizUi+XVehu7Lj7EJoZobbTWpsDilSUia+mpXLrVCn0BZJfL5XpR2GXlq7oExCTSdIOVXJa0Rr2HwoM1SMiqBnJSxBacWqYZAM38REMqyIikIIARQCVx0MQQUiYtoS9KIvNiW6WUHDlLLkXpuy4eT/HQvPrWx+9dv7feXJZlTabIu1lTChjOEYt5h0VODMoqkTlxiMIZN1YZd2HGLVVV4qg/jKIiKYZ2//Dw7u3Nw/1t1zXrhV+tNvVyUZZlXa99uVjUq6paGIMxxqy/GUK/XA7DsB2Gvn3Yv/315/dlSYjLxcKS83UlKanPJEEIKolVIDdJmNwbRBNaAgDCnJizKuLs8WZnRfA4G/WpB35M/+YcGBE5ly8VVARhJESrKnuXiO6Oxy8+/7zv+9VmXS5qXxQC1HTDqe2JKGniTG0OcfaxMFEU8kF5bqUzeD6bzfyv5uwlIkD6DA2ai7Ft2+52u8y7stYaNaqaNJESIlq0hKSg4Mz86zO6LtNC5desWAgAooyThh4pCCiRODL5nXzuF0WBOOJPjpwjUzgvkktmSogWSZ7e6UwcyjWwPNo692bnG+QU83PMB0pZlvmfbDLRRmOMJOYYlSUrUUvWnhw70kSBSFASxlY3m0vvq7qorHGn08kggcL11WVRGGOFsSPDzosthFxwZmvIW+Oz0KwrnKaUEljjDWb1hNKZwoE1ioCqLmQYwRkCIrITSMujAC8JUJZYycenhI5BTWEJxTlX17VH7NrWSa8hS+iGoR12d7u7r24Ot7cffPSJVbTWojEJVVVIkWPMKeJcB87LF0IIcQCgpJI4yaiWC6KKklQE0uhNOKUc2HCfJMXEIQ192xy69gSSvDV1vVyvtpeXlxfbF4t67au68AvvS+cwhJB731Kq8uS44/Fw+9mXf/2Xf7U/Hvf7fVVVq/XW1aUStimO4ogCkRMrAI016Xn/zaFgBuEkH+xj2xsI5L49eRZCn8M1896di2qTjxpZSnOA/fXt/ZeffdEfTuVqcfXiuqqqBFnhzeTifFnmoVBjA+ozXzcflJNOcE47Rwrq1CpzLu88OqJzOC1/7dlzlmV5PB6/+OIL59x3vvOdly9f7vd7M02rmIOUbO3WuWcxhUyDFHSips8eXkRMTkKMgbFtVawxyRh3VpZX1fnczJ72nCo7fhDnLj5RVQLM+haIKJjnCSnHJJkBgQQA3TDCV5kSS2SLoiKylq2LMbqYca84DBKTgAoSkgVnCD0IKgeQXB0MZbXI9GER2R92uSBS08o6SjpEZuMEDbFKjBK6AFE6j8DROVMvVzHx/tjYGgUBiMSgEHKmoytAmRca0ZiRbE0GETGFYWynBEQ0CmOJBTQqAiEbgnVdbOprDem423e//kW32592Rx7S6dDcfPH2y8+/2N/vr957Xa0WxcVleXUFxGBAhUmFH6WPaMZdQwi5F0cAQYWEEQCFgRmZNaUYI4dRTTr0Q26PTmkUQLDGXF9cuhfX3ruqqjebi8urF+v1tiwqW5SZDkkGABONUpVgDA2h7fpmt9v99Oc/+zd/9mefffXl6w/ef/3hR2yQiBrWGGOSEbvMubQaS6gpJQYF4ZE8RmiMg1Ht7TGhnU+oeVed15bm8vW8y/M/TaOVgFUoT7ADEpHd/vjTn//SKf74+997/fJFSunQHIBwaGPXDsMweG+nKJlFkqSRSDi2ST/6OjtL5J+nxKhgvvEioixnk2vFAKA89pxkvvevf/3rm5ubjz/++KOPPhqhjXHK2Ug3yIRkVpgtSs6oaefhwHlWPB2LQAqcUyciY8A7h5wwEzxEgQUzpdhYa9AQZJUZQrWjFqIm0XPuag6a8hGT6xHDMIxqyoh5otI5cJAjgqIojGDMhxqgJO4ABgCKkRXQW48VG+QESsICiFLXdS5FlaW/fn11ebUqy7Kqi/3bWwANyffRKYq1JiaMHMLheAQuLEgcrKXlugmRj21n9z/7ibHWeGdLj6W3hafCoTEDLonIEBpjLBIT5ITNUC64IoJB6wwaBgRVwEFUWEyQlGIsikI4ds2+vb371U9+9ou/+enpcOI+tYfmcLfv+/7f/emfNildf/Lx6/o7WNXIQklMQe0Zl3VG9p1z+Wg3IpacI2NIBghRdGgPHLKaXJTEIgLMxLxaLFTZEBTOFc4UnqqqrMtSoaqqqqpr55zzFscmhJCSphSNRVGMcUgpnU6Ht2+/+OyLz9/evru5ffjX//ZPP/jk22Lttz/+eH2x9dWamTMBF0Qgh8OIxtBMsZAnknp5n+eSyZR2iuDjiNknNjyTN2bo5axNEvM1pl8BEfnqy3f/4T/8hRXYlHXlfFF4B8Qsp2HYH4/1foEGEJUliKQQAiUfp1eulMBcCIWcn488Z0Q0WWTZmCxF+iSchixs9Mi9ybGlqp5Op/1+v1qtPvnkk+VyeWxOxhjSGSp7DLU0i7NPk7IVAQ1Rbvt8atuP0Q1zpgaQgmShaWcQMXbpPBTHid3hpnghX2EOxdOk5DJHFnBWeJ9xrHxHKSXnxsEXqhojD0McSVow2jNUZTmN6UJDqGBNAZaUMUWTIkIacs9Z1zUhdgKpqgpa+lVdrVarBfVdiE2r1JcsJGRFjQFBvEuRPSEAqaIwMTMnsJ/9uz831prSm6pwVemXdVFXrvBaXBFRjp8NTMczYoY/kgCRta6w1kpuateGrLFllVBZJBZFczx99stf/Opf/5u/+ou//ul/+hsJsKkXRij1UWP6sz/9/w0GfvuP/tdAOtJHVD35OBXcZJJNKcvSOcd9l1iTigIwkkvREPWQ4wcwoIoTbw4RAUy9NAbLwtVlWTi0Br01zjnVlbUWSEU4hIA2S9UEAEopiBpVzUK/x9Pu9u7dz375iz4MZe13h+b/+n//p6cY/9H/9h//4Ac/2PqFZJIAEasKgwIjjYHKPO8rn9nZD59DRTOAZO2T7Pebr3O/fR6W5wMABfOcqrquDw+HX/3kJ8fb29/+0Q9//OMfvX7vpbVYlYsMmcYYvR+VvefrzdlvrmfP5avzqHWEf/FRpWAGcnVq08fHtH1E9WOMNzc3McaPPvrovffey1klIpauoGl24TnuHc8qv3jW5SuJz9GQbGkjBKiiublipBISWEgTWJ0PlDmFnuZpPOLe+bJeIGlKKgiQVb4yqBC6HhFL53O3ECkwC7C4sshkrxhj0zR93+feb6EkEyt2HviGiApkCZFAGQEUIOW7N8ox9aFXYxEUmVM7tEgsehq67nhom15ZPZqayIIpEI1qMsYRoXXGOR+iAJD9s//xf3bOucK7wtM4g7Nyhe+3sxaMVYS5zU2wNxbRKBJnzg2hRzTcFb4q0ZAQrjZrX1dvb9/9/Je/+MW/+rNffnX70C1Ssh/XH4n2suV9ePjVw8Pw1cOfBGFwFXhQts5w06kiR1EF9yiICQZRi9Iw49QdIuJK6nvQYn3Rtq1Bm/sqAUbdU1+YjP5bS957BU7MmtTYPjBIFGbN4W2OJMUGmEo+Xdcdj8e3N+92+0MI4e2720QEBm4OPRTL7fW3rL9M1mSwEY1xiCACoMRJhN1svZwwdzWqihBkyFpVmCVHrQCBo1XHICoJAJAQEJKyB5JHx4yAYAAFRUGMtcMQMl8xKyB2XbdPg5S+Ef6zv/irL7/8WoFev3nz3uv3j3zSxGCUmVG9SSQ9u1S2qR04MrAxaJxNKaFaS1YErC2cw3nk9BwCABlFAjIwzbHOUG02ib7viahaLZiZkfZd84svPquq6uNPP0FDwzBs1xsRiSmAAZU89ZPGRMyQpEGm5ooMtYyu0o8GDxmzREqjaEM5qrGoAkqSsUo8H4jZlrIHNcYacpxkThYQxxF8QTmrR4tI4pSHCCEiOgBQY8lWJSKyStSkHgQ4hphZWWSxXlYppVN7zMM+ABREU4yorMpEYI1zxpJBiUnYaiBOUURSOkUgrUuDjlMIh3Ta97vbbrHSJunAokkspJKiQ2sBhpVvSLFYInpBDGAiIhixf/mrz40xaEgQWIWnccmJx9gvW6lOTGMuBFGRoqKKJgFCsES2wIUrPDlLxtiq8GURmZuu3ad4shhq7A7xbdqFtolDvB+OAHDc7ft2QDQChCSgZMoiHdv85M6LHHNh5jw3zqG191bEE417AbK0nDH0mDrm4HNs01NIOKpPJhEBHYnpTX/KRE4RGYahaZrb29uvvvrqpz/7+dc3d8uL9d/9r//49/723/mv/ld//3vf+573fpD+PMr6Jmj83GGCnnuYGZd6VhA6R3GexXLjUlgzl52MtQDQDsN+vz8eGklaFhUohRC++OKrt1+/e+/1+5ebbUqJAKuyKnyhiaOJGjWDkTO6S0R5BAnhI8Van1Ky8IwINX+rOXLOjiifXHk0tDHm9ctXFxcXRCSI1tqu60bzoMcFO18TOm+QnJytfqOXEEYw9bGiluMJALBn6DqcVY+f3c78iOafnHNvnNqbp1wGREat8fPQ6fzr6SNhK0niGGMKg6paa7M+cxb3y8ifsiCidUVkFmAFZEgiwAmBRdggWu8rT+CM98YTGRDoeQTJWQYiiziCfPYnu70BMoZGqTQRQSACkx5DOz1r8s5NmjkaAMhtm0CEXm8AQAkBkUEF1DhrnLM1eMu2JKeDd3uhjgEdgAPY3d0d9ntJCgCiBlDBmnnjzoDB+Bjsk/r+WZiHReGdszQ9G0vGGBMTG2Om5jcEBVSroxBPbhaUFHn6v5C7l5m1bbvTqdntDm/fvvv665u/+slPF8vl3//jP/kn/93/6W//3b97dfUCBUUkHAcAQMDZgPGskHve+PKY2k3v0FmDGwLN/6nqeCXAWTNIn75mqhlZ45wLnNq2vb29vfnybXvq6qJerraUJEZu2965YrNapJRIwTvnjBVMMYSYE3WVOeJFRBaIMSI8NkjoWc150mp9PEnnnHwOSnO5xRhzOp1ub98t6/rDDz/YbNbHwwEJCmdDP9LQRgwdnrCvsvslonFIytP54M9ONxHBRxr240Jl8vmMip/D+OcWO8UQmQOHOAVH+T8EyFLvYB5ZH1lyJA6PfgWmMaUxxtR3mjn2iWOMHMeAwiCpKrKCaFavYSIViVFTUmZkgMSo4AyBGoix58iqgEbIIlqV1LHkNEe6runaCEDGYIgtoNowqg0QESGBI8jDzrkbAABRicCQy9sSADYdEgE6JoNkkdAiWkWzdpIHOCARg8YYWQWR17Umh1RDWGkFMa5cAP8wmPvIX+9Cv7uLXYurJYtEYEJdrupcxMtrZATHoU/9MD+kvIJjOETqjFElnCJOQ2gtGTuqUmUbzuqzzJrJsTmPzwzqfP2e+7wpj8fjfr//xS9++af/5s//+q//Gl35D/7bf/x//D//d3/49/7e9YsXotA1Pcq0daZmt3mnwFkZCc6sGvEJx/gRlDKP5IfzlyAooYjq5MDH/2IEgCRckkNLEuXUNHf397GLJFoX9avLy7osXr96eXFxsd5uHKmxmD2kJcOIPhWiagc79F2m+2canEYmItAnnKr5O58XYOY7nZHYbL2z4TVN07fdt7/97RcvXuTCrCOToemkMhtw/qjZNueLy6TnfJ7HnlvvM9tGeh4pzCD540OBrNODY58i5XbRc3LbU47NyPQmIVBVyYOdwSg/cSSZF933PY79AiZbrHLMZq+iqCow0rvzxzOAgAU0ilZZVMiQo9IaIUkICCIJR2mHkFJIoT91rGIO+2b3cBIRJAWQovT2YrtA0tydSgYcoXVkjCmvEhF5Z6wlb8mQIiKpXCRHBMaT87kFwiI4VjC8R/SU28ysRcRczPHdIRYqPqVeKmQeaBDdB/cOFu6XtxR3qX+wcJ27XwTYGHsOYuU9FEIYhv6boem8e1QVWEYwJjck9L2OfVQIqBOpKzDrMAxDn3FCjTF23TAMQ8KYe8T2+/1+v//lL3/5H//jX9zd3f0Xf/Qn/80/+ke/9Tu/b31xaru8U0PXg83t9Y8B3vxtnxnqM+/xzJMQ2VytmzzJ6Azwccjdk1tOI01ZFZFZTm1zPB67riutqb1LLFXhL7ably+vt9u1tWRIzVy8JUNEWikYiqlv+i6EMI/nzo5Lx+6rRzc7mwScZTF0RkicfzI/+v1+n0cNvnr1alHXIQRvLCJKYksmEwdUcpDyaJD4jdd82XkNn4Xu42gBVQSdv5hOLYSzAX/j6BynXp8HRLMi0uzerXO5kTKT0bINq2pVuXGw8NTWn4/sMmvfIhChiEiaBFuzxJcoAQCSZOCdpagL4wiDtj1LzFFirkQW1ohYVujRMiIAJ6G42VykKMMQnTcxgALXi2q9Xtqt7wiQjBTOek9V6YvCOWvWdnCeSm8LZ50Fg+AMEKKxFonRgnVkLQFRhhQQyXufH7MBMIZEXErozWWPKdgEsSrVA/uExYnh4Sh12V1UDfb3CINFi4gKhmMSSdnc8gMbhr7v+8xlhSnUmR3W8dDmx5wJWKqaO0eEzET3zUWmkFmysQ9t2x6Px74Pfd+fTvnv/anPs07a4/EYQjgcDn0f3n//vf/2H//vvvODH6uxx66vAAvrAJGBM/uXps0xn/RzbDn7DZ3A3nkP6VOzP3cvj7aNoLmHGcahNmf5G6AxRNT23W6367rOOLtdVq+vLz2aD957fXWx+fDbH77/weuq9hZHMF9G/gha79CQpMWpa7u2B3iso1hrOT1pdcy/OysqzyZxfmDNJJPlcomINzc3h8Ph/Tcvrq8ujMHQDUXhQLVt29xIDADyJDB+DMufHXzzYj479XQaDDIGO9Ps5fNfPz8LVFVGQS8dnWDO9VUpD64ng6S5Jyl3lWTjNGLQkDc2l5FUNabRGcxHXmZ0oEoIIaWICimlFLJ6IQFZginWR8j1OLQaA0sWTx9b5QIyANowDImTgFpjrEUCFWeNGOdtHottjGlTG2MoK2eMsa/K6Ah9YaqSVotiuSjrsnDerJel97YqrDdkkA1p4YwzFEtgYMBERskiohEwKojWW2MgowsyqoCLkAL3Sj1aVCrZIVvx1aV3b07NcnX9Yh11uIXYJDbOFXl0YIbpcxtDjk/6vucYzjPMnHgwM4vNDdZD1/V9H0Lomrbrurd3t017HIYhdxcNwxDC0Lbt0PZ933fd0Pd934e2bXMqaItiGIbz0/rFixf/8B/+yd/6/T8sFqv743GxXBaVBk5GwRgTOZz3l58b8LPALz/sGNO5reYfs3Z0v5kpPeXAj9t0Nv7ZE8oo2ocCI1quCFdXV4Z+UZX2xcX2k4/fX6+XL19d1As/hGNRLI21RJgSZ2XP3HBTluV2uxXWw+GQ9YNzJhymLsvzvDT/E561K8PcpAGQfx0RnXP7/f7rr7+21r7//vvL5dIAqiqeBauaA9onWS7kCP+bocp56PEMxxLJ8pX5n/IpqXlNZ6M9v+Czno1vRkXz8xpPKxlX3iKSI2dMFGbmvItOp1O+6+y9q6oamlOMse+7jLpwShkmzNgOgYqq8qNucT+cUh7CgglREJUMgqQhdMwRJIIKkYIhazwV6Moyxb4sS9jkoXmwXq+326398UcvyEDpbFXauvKLypWFNcaEVSqcLZyxBkiiIa0cOW+wQgUWJSXOctAIDoCYssShWipyyJSX36vtVHpQFEMDYCItC1PXofrc+o1bgMaDdschWq3EWjskRMSUUtd12SX2fT8Mw2zA2Xr7vs8qc7t9HIZhv98/3N7l6Pf+9m6/3++ah67rsuwGc8qBUwjsCOaKoyoqaOGLsqh7jgDRZa6sCBF98sl3/viP/zfbi6tuaNtmMIVfQn7yj0pdz1ryc/x2bqIz5JZlBM934Wzwz7bsfEjBWfHzzIDH6peqxhiHEJxzy+Xyow/epPb08vL6o48+WC7ryxeXFxdr652wWFGdhAfwbBj6arWKITVN0w1dURQjlJXC/Imz1535Sedw9LN7ydff7Xa73e7Vq1cvXrwoigImPDKfVoV14axz49wDz2H8+VLAUzD8/J+Y5VFAczzp9PxB5NV7VCaaFMWnhzKfDk8QMjOOTLOFsUOM42RTAGYOMQzD0DTd8Xjc7XaZLJ0bj621Mo6uHtukmSCjLUOIAECZ98vCkiQlZSECZwypFyxEolGBCEaBLIqAKCcRI2QtOlug90NMiQMRLJfLlMR7e319+fLltf3o001RFEXhnAWkZJ1WpRalDmZA6mmkFhIRgdGEXJoS0SGVU44x4/jdGaMFRqkkgEFNAeDzUtUqwsAn5aMsile1Z3PE5m+Gm9IW72N60SbnZN2Hvgmnw2l3e7xrUxg4tUOf9i2rdF13Op2att3tdrcP9yGEu9vj/f39/u4+9AOypCF0TRt4yNrJCIRoCKwIgTVlaS3XgiIaWEKCHiACiMLgbeGqwptUlPbYhX0HP/q7f/jyR9+P5fZw7EioVPIpektJJaSYGVcKj0I5YzaFFhBVE7MYQ0rEmkKSGFQtjPVcxLGGC1BY5401AKKJQHPOxRxV7FSxAEJLBqYQThCxqj2z3t7eEOqrV5dt264L+4PvfnJ1dfX+R+/Xde19ns5ZRmEmBBVFQAVNDIDOWLVuWVYqsN/vM8pggHN/jwJwtiVCYw14C96WZLNLsZaMoSxpAgCY0ForqrYue0lffPmliHzy4bdevrzuupbIurLIkyusL4KAcYWIoATFOMHISiqzeut5vwcAEAGiphRSEiLyrhSBFAVRiYyxOVoe/XC2QJokYM8j/HP3S9O4prwrc1E3P8G5utZLDwBIyhJjN8xtg6ehVZL1RS0iTdPsT3dVVW232xChWldoIQ3BGirKZRHi0PXMQ4wRrfWVG4aBB2YSVhYYQAmAnK2T19CLwGCsXWwXHAvpfHdsYiMWFgnhYb9bqhaFD0Xsuaku8GX18qPrF+vF2l69Kbz3vnAGQQEtqfPqnHXmZQbr8t1OSQUApCwooQiKlJXZAIDoBZnn8SQAuCxUkE/ax2NPUfYGfGIJ/f3d258x3fn6FWAlbPoQH079VzcPv/rq7bv9oRm6puu6m3tByDlq07XH4/HUtqoaAnddl4bg0XjnLGrlyKMLwiwhTUCpIQIQTmzQoVEUMaSkRkFyVnK5XV5sXi8rxxwHZqw3v/87v79eXnx9ODRNU3uakREgW1WaUniakv0GyGo+4GfYnIgmStu5ExNVmqYO5jU0nFFoBZmUXEUfw1oR6fteRKqq8t53XZcbSF6/fr3dbs00DiKllBlg8FRXDACqslSA5XK52Wxyytd1HSLmgSXjUJip5szMonbKLc3sFIlIVIw1HCMz39/f7/f7Fy9evHz5EgCcK86DEdAREnoGAQCA0mM99jymPXuTAJ7Y4bm7nq39/CLniNf5Bc9XHhH56RBAnEIV7+1s2Im5Hx7b+vOPZaY0M7dti4gcH2VoR5BvkqfNav6ImnO9nFI5tAKSZGx1yo8gTEmTIKChxNz3fUjxeDx2QyekAQZbmrIsq6IsF7Xz3r76aG0tWWsJRNUpsEEyBoU3c/qgmWKioArkcseZ5v/JRKOLqZiwSmQZG7wBIKFBRMn+JhNnEUDV2s6gM0Ic77u7Ux9tVV34ctHBsD/w51+G//hXN//zX/zi87f3p77vQm/b1jknoDxRAbPm49WiDK7gZFBUWVIIREGIq7rsg4SgrEA2AZouBAVoITpjAcRYdJZEjLFUlr5yerWtX15eAAr6xatvf+973/kegh2GfhiGRVHnPc1Jk/K5lT7bEDpVs2CEr0brPWtJm0Cv8aQ7iwxlavBXUMWz/0a0WySLQCHH1BxPBLhZrauybE6n9Xp9cXHx5s2bqqoy/z6zF8nZcwOed7CoxhgL7xeLcbZI27Yikmk8FiBL4+RhhKggZwMBcWxNezyGRKRvhy+//DKE8N3vfOfi4kIVs2JOjEyEMI0CkjOk6jG+JT03xfOjMH/QvD4ikiW7xukX8JvNfj4i5/OCnnY15TubH8c3bX6WjM5BQSbbG2OERxzBGbusF5gJQqLzDxsydJaBZzvP6hEhhKZpcuxdLjyoaM+sCmTJGAFMUZCEVbKKuBoJKTZd28eQ9nsGFssbu7KExlBK6ZQau7hcWDJkcuotqopqEJGgzMeBqirMkIMYnCb0wlwZB0TouDHGZGGUc3Q+5KM6L2x2L5KlUpI1ZC2CHlMKFFj1a5Qq+VNzSG+/6H7+12//6t9//vVdJwjg4HVV2kzR8GVRFFm00XvPMqgrAApUyA0u3lpjjCkrZh5SzBMDhxj2h+PhcLjbDUhZlAwUMAQxBorCVR7T0KRQXl+/uHj1wbe//6Ory1fqy5TaoY+wzrR7EkkhhpiEzBMY+ZsOZHKbj9ydyQM/Dqc1xpAjQJL8k5pl9hBg7Ps9x2DnDa2qzCmE4L1fr9fWGmvty5cv1+v1crnM1pgXR0RARqlYRByn4wGoahhCSikzz6y1y+Uyl9/1sUsBAEZ+G9E4vCZrbhtjEceJyzBd/O7u7ubmZr1eZ+aziBRFDp4TTqZOZAEfewxmAgZO+s/5PBspRyNXZ2yRByWFXEyVc1PHiYUx2+2jD5yyaBExaHIJKROeMzVKAKJREJrExEeEH63pQ+BxSFYaQoyiSYFZ+qHPIbr3frFYVFU1P9+UUuZGcKZ2hDBMQ5LziZDrIPnRGGcNYhBGjUSIxiqhKghgylNdrbNAcVAgW/iq2m7IqvO4vlzVdb2sltYbjmKt3RIKkQAmJFAxpBbUoG2mw4vP/lRQPw0CVBFRGNvH1O2zeNHcMmLIgLEZWuAcP4MiZPKiciA2XFinKgShNExwNFpQajjE4dj1xzsdutqZcrMql+WroshexXhX1zXZcXaWc08KsM7ajMdILgaoRpYkMsRwODXH4/HNkFKSpmnatm3bfhiGlCAMrAwPtw+h6byvrt7Yi+sX5At1PqvbMa+zfDQZQ2yJkkiajfBMJiIPWH2EUmbFuxlSzs1cM14ysfyyWWo2WwBgfRxlNjuIMSKaOhDKsqjrOqbgvd+sl7nUkbM1Vc30jDGfHK8weSTRLN2mqjlyLssyi1fHyJCnz0wIhwEEFgWTSS9WLDlCdDHyMAwF+Xw7Nzc3TdN87+NPN5uNiNAYO6gKAGqenIKIxtCcZ+a2p/GUeQpuz8nw7Htzez8AI9Ic8cyGiohEjzIDz47Ucxz7m2H2udM+e3BKxuSOha7rMk0lpcQpFEVB1hGgJWP9OKAje1cQJaI0OfAYY276H1VlhoGZy7JcLpeACa0xKUC0KEkRFUgxUxeyeAeN0tiGyrpaXZTrRe08VqXL4jlVWXGF1ugCIIr0hKggZoxYTNQWMtEo61RjVqvWUQFuVJ5iyGVGJMAISKLA03RGBQNoc5V6ToAly7Sokm5jjGCSaFKNzlBWCgVB7iX2kWMig76gonDOE1iHzlnnqqraXGyrqspzAL23sxC8TvIRuY2LrEEwScdpSH0MXTec2uPt7e3N29vd7vBwf1A5igCi2+/j0Df3cDDl6uqj75bLVVQJYRiGIAL5UNBRchVmxVN8ykx6tjP0rF3+mwY8bRpQBZHELJw0ZnEvsjLWVzCzvOaQHPOQN9HQ9aW3hXOSYuWLuq7zDpvHOOWgd5aMfBJSinjjiaht27Zts8h+XdfGmN3ugIiEOLfvsEhKydvccE8iIuPcFWVWNJiYm6Y5Ho91Xb98+bKqKqsIpCklTjLHwDl/xonDiNMI3G++zlePMM+Wn1RHRXMf4vlLx7ZTms/EZ/yNvP1AdPxMVchSjPrkQ+eEP5uNiHRD/7DftW2bj8IYowHNk3FGyoMxi8WiKIrdYd91XYzBwJP8PP9M3/dte+q6LgPjRJR3qiIJqDHOuLFlCEeBdmRVVEiiIorGbC/X772+dqgcBiRVNOSM994SWJEoGhVaJAZ1qqTioMwoKyjm0CXX3rEPzbg6wKKCAIgWCDDV8/SeLLPPiEqUG/RpBnsmvpo1iZlRIXGuDxlVRUND5/sjhw4AqCy9pbJYV1SY7eZlvVyMr9WqqipfFlVVWYN+cs5oyOUJ2gBOjDFGkRSBrLW+CCm1bfvLX/xV13XGPFjrvS/rClOSEGLTgqgHCVFNuVxfvnyRHHVDTCl577ebi7pachpYR02bZzHzMz/53GAm60VEkSdMaQFNMs7DS8JJGNQCotK0uxBy05yC5t4L51xK4XA4WDc6DTtJMcUYD4fDw8PDer3ebDbW2pQJz+P2nJ7CtE33+33bttvtlmjk4YQuxBiTypjvZLLKNL8CETOVDSeOFBENXffFF18AwCeffPLy5UvnHEQmQzGkKR7OncY+g17zvdNZRwedKQH+JvIGirDIqBYy+8xJpA7mlG024GdP5/yRjZhOti5rZWpIRMSU8khwiaB939/f39/f3z/29BvjCL33WSGciKqqyn/Psykz7XyOsBDRe0dE2Y0zc1WVWSy+LBcjnmFMURSo2vpjkIFVjDFqDbDm1hxWBWFfupcvXzrU/rQ3xkQFIWOLwpKqCKsMLC1SJCVVo2IZXM5+c3g/wfGiKRMSpqCMAEnJAMSLMc9RRZ2dMCClvHUQACfrBQCWBwCyRCJWFRQMswa23ano2y6lPLKwtqvL9YtLU/gPrj++uLrcbrfL5bKoSmOM9b6u68IW5CwRsQoRGedydF1JHhuPSuh8Sc52fX84nNrm7vPPv7DWF57rGgxVfRfDcOg6NdZaC4vl5vLqxWKzvQ3cxi6EYInqui5L0zaY1cCNMSyPJgojKXJstX8Wp81mfG7A8x5liVMOlQPOzHp4QkuaP2I8+6wFgKZpitJNzidPh5AQwn6/3+12GSy11kpWqMhXOwPYskvJysk4ZbREtFwu27ZNfZdSMvioByKsedS4iIQQcepwIKJhGL766iu/qD7++OPNZkOIIQ1lUYoERDTGqfJIE0Zk4XP7nKPambX2DBOGM5x/tnZQwicqXCOX65wo9uwj5ovo02Fx3hc4EW/mjENEmq7d7/e3t7fH41FVy7Isy7Ku621R1HVdWJf1rrMm1tD1uXdVRATl3AOvVqtMasg/v92uF4uF976oyygjfbqqKoPkiiqFyEmBchVAzTQUQkAPp5OoemvV+aqqgqRTEiW0WL7H/cMQB5XgAQlJmSRq0AOeTc3jac9h6pxzhDYTjFXUqAf0iyqqYmJNSRPAiEULWDxaVxA6VhAQyii1JEzkC4jpQKQpIodN6V8cH0K3NzHUTKG6qj/44LLcvlhfXm0vLl5cfPvFixfr9dY5V9fLPAnNkLWlO09g5uedxSRg6jpU1ePxqGqqxXa9efnydXr1xquYtgv394ebt+9Sk46nh8XGVxdX25cvEak2dN8OLP3lxbpa2MCMVrowqKHA0Uzn50hmBlIBzSTBPINDJeXNikDW5FG7RkDVeVcQOQIETcBeOXJCEWFNgsKgrNGzmTbrpK2Tm7IKo4TGu3q17EN42O8XyxpBYxzCELtu6Ls09MysAAI4Tg9QImtMUg7DQERFURhAZ+jmq5vVYrWqVw8PD82hWa1WtnILv9QTnE4nTVJVlTEUY4ycHBhQyppkuTu/ruuW+7fvvuY0fPrhd7/70YeIejwerKGYgrEkrMzRGJdTXwAQZWct5EGtwkhofZYQ4HP7mQI40PG8Y1XJ/HAisk6dN4iSG2gQsXDOobFoHIKzhpnBkIqKJID8HYwisCZQQ4gAY4Mhxw4UVTgmEVZmHToe2u7u7nh3ODw0XVCx3pSF86WvS2eWha9LMsb70iD17VB6X9pif3ffPxycAqGKqAEcYlxt1ot6mVJaLfv97sDMi3pbV/XDw0NSWayW2/XF6dje3e6ut5ur7eVP3t72sVtWtXVFiF3b96roirIfhsMxPOxae7UaWENzJKLQdUNM1i6vvCN2g7CCtkk4u91lsdRpQTlrmGQ22GAnMjqrqrGIUBAWXX+Xx90LClgBEgQ1AMISMSA6kVyJEpUoygZ9ZImSDCKjUZXIMYF0gYT8cnX1ZrnE5XWxvFhut5fXV1cXb66uXiyXS2tt4Strbd7YRVWcG/DsppwlnboOdRotx8zbzdW3vvXJ9fWrerGyphxivLu7+/qrm3dfvD2eHoyVq+tNUThjyKFxtpj9zIhhMJN5rKbibyo2fjOXm8gJYwwrUyOeMeOgiPlrnzml3+DGcZoJlGFna2m5XCKBMabrusw0GEuXKQ3D4AsHaGfvf47cGkuHpguc1t6BIbQGrTm2TVkXOZy2NivIx8ntuzQNi5iJFsz8sLs/Ho9XV1evX78GgIzTAIizj219k2PMlCb45q3BU4z9yWJOjvGcYW6MIXrU9Jhv6pypqtNl6VG459EJzz+ZYu7y1dxKlxJ3XbffH3e7Xdu3MUaw4Kz1zhbOFs6XeWiSsc45UlCGJKLMh1MbkuSIum1bSamoFtVikXF+nQXMpzbY06mtF6uqXBVF1TQNAK1Wm5cvXx/bO0ksITnnCLBt21zBaiR9ffMu9k3sjyhMRG0chiHaqHXCQUwtUIgEAEUrAoSMKqIMDJD7rzOKgFrmoRM5VFRGSS4CgQoKEgFYQY6iQYQBhU0BrKCM6JCQICtUCGjJwAwGwSrZKGUftB30i7vTvkmHocCqLNyCTEmmKPzCmFG1kDCTXQnxySM5D8BEhKfRHjLJA2SncbF9j7AmgsVqaS0NMdzd3b18dfHuxbLtjsPQLLZr57N6BqkQwKM2SC7BI4017t+4C89D33NcJBcwM5pwLiIn/LzFatzxj+zoJ8dBjpa992/evHHOFN73oReRmNIQQ4hRQMkaUY2cErN1DudJaJLn2ZNFAoCbmxsRyXVgEXHO5ZkyOakrimIuX1trnS+ywj5OJAoR6bru9vZ2GIZPP/74/fffz/VSRMzNPjNOPCWl/1npgnzrZzyTjDIYROBH+TDJIOUU1Y/2PMIf3yh0w1k5c7aib6LTzmXXwgqcIvfDsDue7nb3D/t9hISo3thF4ZdlVZdlVVVVUXo7jZhUVYR81/v9PiPMZVlmykfOxvOpmnH+XB1AxKqqjneNCF5cXTZt33dfGCquLy8sFr/+Uh7u7pl1WdRYQEyC/YAWQgy3t7dpKA1HEEZrWLQdgvWmRKgJK06VyEAKRgGUoB2yzHKe+IJT36aYAlQRxCBORDYU0BTX2T8oYSaOjimfJWZFtUTGYs7wI6CEobLWEmlkTGpDsMdj3O/iV7fdrpWeqTJg1Fv0hIUxHokSc4gMGBWRx2ZL7EM/H8NPUN9pts1s29lsvFtsN9Za8pVVjWR1tS6HUJf2SmTTdiewrl7kmZeU0ijSn6XezjccPuqoPtuITxi858ZJhDjxqJ85HH3C+HuSXX/zXMgesigKROWJkpVPqHxIZf85bm5EzViRKCJ6kzEeCElubm6IaLFYzGSDoihO7TEfEBlrycDpuXPL3z+LNh4Oh67r6rp+8+bNYrFomybbmLcuPp3VgFP337OUHs9qY+efMt9sDvS+GZuM18ExPtKz0lT+13mw8Ox+ZRrePa+tiERRFYgpdn1omu7hcHx3e3e/exji4JwrrCu9XZf1sqhKX5TeFc4bMo8eNbGInNqm6VrrXb1c5FgdCMmYPgxxiKpaLRcv6NV+vw+c+hjKqgSg5tRdvXi13V589tnnTdNdb6+KorLeiwirGGcNjq1OmjBG2O/3mobCgKSYRxq1Q7CVrQsKAReMtXIPgiSIAENhDbOaJLk0h2AyFSh5ERFNSIQGaVwOCZIACMFbqFitiKgYJSeAAoJqNJECEghoRJGU1LoKyQ1daPp4bPnrt/c374Zf3zYMhVus6vXrF68/Xq03y+Viu9mUy5UxRhCGmELiXN8XEWeeQL6PRHx8PLbPcRGJOhbxRVQFUL2n9aZelloUbhiGIHpxsSlKl4LLj38sS8BUAPjP9/fCWRPC+afPmw+mWtr8rWaFlvPQcb4OnIEu8651zjmDApASz8oHfRhCipETELrC555BNERIIpKJNBYJ83R6hMjp1DZFUVjv2rbthr6qKusddjgMAwCs1+ssa56j4mEYZjpKPhpCCMfjkZkzfzPnF2dtD0+0gc9v5/x0e1yoPOaQDIDmgWkiomfiWOc80GeByRxpwzfCotna54vkYGq+Tgwpy7+eTu3dbn9/OBy7PioEYWe8s1RZX7ui8q5wtigKP43OHPOUGIdhuH24b/thu91uLi5jjEBGRdHYHKYaY+q6zmjW3d0dEdV1XRTFfr/vum65XJZlmVOVPLInJuEoMTKDCCCQRdKyrpCTCqIh5jSEFBmabrAMlUJEszEYyTmSBAKopA5ZxWTgAQEAMmvUaRVjjHEQETUINlNktSz6lFTFKZUoJYAKWyKX1BhrgQ0wEKAlJGTlSI59UYlS1x/uHo43d4dfft7fP4RdxMsXL9/78HuffP93P/r4+8v1Ks+NCMAiEmJOw5CIEZGTon8SMs2uLPEjQx1GcQMgomHorCUyaggUoqgQ2bKoi6peLuuub7qYsvNBVMSxu4iZrcFJ63DsYHlmcvNOpUmXY06bHzHVs3HVc3Q90/f1KTfw2cVnY7DWIIDIyMLP+XnXdfn/5pChKIp8SFkCAhREm6NZyur80DQNAOTq8XlgPEeb+Tp5b4UQWBJNLJ1x1HUIWQ/g5cuXxdSMSTTKTRtf5ETgDFl8ItbzjSBlvNMZSZ6P49lRP8Mpz8vvM1o+CqWoPg5VnjZAPl/oTCVfVY1xIhCGtD81N/f3h2PTDzGpCIgxprCusG5VlMuyqpwv3CjvroQIyMxDCF3fH0+nJFwt6nq5CCGUddU0jfWuqMrjw05VM5BpnEVD2T9fX1/e3L7r+lNRXSwW9f7u9nDY1WUVOQ3D0LUNKjhjQgj5NktfQoq+8M4ZREchKWjhjeXiNcDa0pLMpaWehCWiJiWcYLqMYE1LaaSIccjpEGQlhExkpVPshhgU1IqYTpQZUEwCLZ0HgtgnYiktEkKKKXBKxxgjfn2/f3t7+Prd7qt3B0V878PvffK9H33nB3/w5sPvXFy/57wJXRtD1/MpqRoCaw1BLve5lBLw8CwNfvaMZ1HlcXMAYu6XsoRYRg5E5H25cK6uS1WM0qpiSonI+8JlelMIwThjaKQ3n08q+43nPU2dwLlp+dE+J/mduVY5GfAZX3Ky5HnzPaUtACLw5NMeJ1dwEgS0xloqisJXJRiKwhZE89g3hNwhxqzM/PkXX1jnNtttYk7MxuYmqtFuiSj3P1ZVlVI6Ho85OM+mnrPl/Ob1i+3V1ZVzLoTcIC15xmxuTsy7aOKuPD9n5zh2Yjg/Oap06kN85lrPkQJDYx/YrAMzi10BPv7KWXoCc3ykqn3fdwP0ff/u/uHzL7/6+vau6YeEimA2m6Ksq8oXq6pY14tVVdqxr58YVJgjc85prXeu8L6okGyIbKxfrjYhMqDxRUV0CCG0bZvXdrlcZv7MalkZA7e3NyF1LMOp2X3Fwwdv3r+8uPrqi69CiB30ESmlJAii2neBUD1FUtUkkZEFEKxNxQvCBkxBZqHQx5hi5CTqyCOiIKgIgwiIgDBqGkYBgVH+QsaBbups0zT9EBFRgGJMiZVIje8IVCOcmmPsBk8IEvqu3Z+6PnBMtGvi7jjcHo5NaC+urj/+7g+//6Pf+fg7P/SLCzQ2DNx1Q9s1WkwUGTCISDQOUrQ4Dxx4ggMX3s7uCKdxskS0WdejMT8OFlBrLQTxhWnblmjIxFjv3WIxTr6IMTpUcqNbQDLnp8b59srfSiYFw3ngXaYQgY7yd5P3eAyen8URGbM939Njo5zJLnT83Iw25/1hrTVkEE3mRWYe1RMqZeYgiUhMX3zxxWaz2Ww2+SyePVjXnuYJYLl0mfsciEYgMNfk5qb2i4uL1WplrWXmTNDz3udRfUQ08mafd2g9YXfDKC5npsHiWQKIVVEEcij+zeMyh6YZ6jtfnyfsqgllyEn7HBzNw367rjsewqntb29v7x7uT20TRI31arCoyrouF75YltWiqquiUKMEaIyRHIKGFEJAsnVdry+2eVr38XjM46OzTAIzZ4nsCZyH3Gpyf3/fNnQ47tuh7cNlWZZ1XVZF8cEHb4pV9flnnx1u7/PDbfqOVRi0tlxYIyJhiJp4CBIiCKC9796Jc6orgi0J2xBs6m0KJ30HkACjQlQYiaDCaqUf4oBgUHEYYgopJen7nlMnAomhH7gdhGyJ5PohWorcdM1d3+zuYtwpdYNqF7VpuBvi7nAcktpyYar6zQff/f4Pf/zD7//B9XtvFhcrrOyxOZ2Ou/bu0B9OwcP2Yl1WpTXGGPSejEGxBsQhIowkUM0DCpGUyaiqNQaFU4ylL5zBGGMysXDeGANZzi6qta6ua4npcP+QxNSLC+NKQw4UPdDKgcRWORXVum8bMs4TC/MkOzqVWzHbM2edZGbkRCFQ2/MQ+sCB3JYRRBJhQlM4Z0UxtGnuUgIABDCGGJSzNYxbc/zTWCVSCySJkRKiIARJKbSqoUixSZGtxUXpVnWxKKxDg4JCAwomkYWvu669WNTJmb/52S/u39185+NvF9b0TeAwWEQUzsTANHJ1KO9y7/1qtYppPwyhKBwADEO33z8cj/vXr19/8OZ9AhRRIqOqSC4mtdYSGAUiQ6BZ75SZx4rUKMQ9TzAbUYOUI4BcRx/nv0iKAESQhXgyDFE4chasHVsmYQYIERABGZmFwKgIKBHZIWXMn2xZRkjD0JGiBYw9S6enNt4d+l/ddV+dWNQ5TIWGlbWXZAqWsvTFdiWVk7JyZFhSxyEzVZXAekdEhHqxWvIAh8PBYOOdS0OoCx8Q+uNhaJqhbe/v77uu2Ww219fXUlqjsTD9olj99Gc3FW03q/rt17q4unr16ceb+8uf/+VPbugzp1g4bxI3XdsOLdDCLivni+PxoW07EUgRlsuVDX2vKYLz6K0FlclsqDEAAIAASURBVKHr9ntuTjbeAibAqBpFY0ophJQiq03DMEjSFGXo+zxpLPaDWj2dmraLA0OIqGAU7JBYUtsftb3rm939MNwlbSMIizk1EhMfu96Wiw++vfnww49/+OMf//DHv/3mzbcX1xfVctEI7w8Pb7/+WtuhJPvq5cv1ep1dIhI457JPEM6uKvOGBWCcdQXjuCoFYEKmPH8DEgoDY4wh12/6fogxNt5XQMZCVfikAi5Pe1Lvvfc+51k0Sp8xAsJvUrEa/TACs4SQ+j7kqkyfgkgC7o1BUjCTcoM1hif+4Fnapt+stsy5H+I8ToREUgw8DEMIMcWRnuUNWWutmRjaCJX3qpjRJiJKCodD89kXn2duYA6V5Uw/kKZueJiki4ioLMvVSsL0ytSisixfv369WCyyT55jnMycgadVvTlKmr3feSIKk3rGuZc+Awum5v6plVqf0i2fVY++CR88BkfoCFCBU9J+iG0/tE2/Pxzb5igpEIG1tq7MsirImKIoqqqayZKZRt21A7M458gQJx36MHPIhmFIcQCU1aK+uLi4ubn5xS9+frh/WK1WZVkuFtV2u91sVhm6Zxr6GGJkYVCB3Nfdtu12vS6KAlj6GNA5VXXOFFBABBHJRPdRrAe07zs79Cc1hrjwUCJC6pvd7ra5v4W7vxRJogPLwBxDCMMQU5JGfQiBU4ohcRind0niwcJ+d4zZndpCwApgSDLEPpyg3cXh2Hd9E2IjAIqmPfEQoQe4XlWvP/z4h3/r97/zwx++/OCj1dWVq4oIstvd/+qzX37968/XRf3he28uNsu6Lsty3BmGBKaWxumRM4gqcC5Vae4ZzDFqimStKiUOMTI4NwxDGBIz393dHY9NXdfe9lfX19V2a8mS94jIIs65uqwSB1W1SGytcsrwxjSlEb65dUKMXdc3Tds0XduHwAOgKnWFdaawzpkMhsAkdvu4a0cDfkIFOSNZjzx8QFHRFCWENA6FYjTeWIRcXsplJEOIiH3XCQOIeucAUBD2p+OvPv/s4sVlVVUAj0iYTLp2OvEc8sVzSYmIhONut9vvTjFG79zl5YsP3n+vLMu8GuehrDEmB/ly9poNeH7naVz9GPHO5o1jh7nknnND8NhCnBMNACQyU78HZhKqgoCyqIAyTAoJYygDLBCTdEM4tMPDobm5e/jq7dd3u4eI6pxZ+GJRrZbLalEvFsvlarVaLBZ5cmJSYZU8tMkV3hjTh6HtOwAoimK1Wg1D13dd3/eFs9batmvu7u42i+Xr16+vri4Q0XtLRIfDoR/az97+uh9iPg0R8fr65fXlCxA0BjH3gQw9iRCBMabCom176GQIGmN03hZFEUMisva4fxAyrig51uJM35we9vf3t2/j25/G1MXUx9glDilKjJySHLvtWP+II1U9Z6GdNV0vaKwqRkUFTCzdEKOahEbLwpDxhXBLEqNRbws+xQbBvP7g2z/8W3/wo9/9g1fvf7Bab6v1iiyeQr/b7d69fXs4PFy8V26vlhYFOKSQq7ucQj6GOVOIAQRFFWSi+4pCGCO0XL+SUWoQmFhSezi8u7n97LPP/vzP//3t7e3r169/+FvvfaLffVlQWW8zrT8lNQarqmrapIkBwCAlxDx6+1nHyfxKwjHGth/abuj60A1RRNGCQzAWC+froix9QYjMkUPEMwa/QK4YPaF5zcDYeH3NvHSNnCtqIghg1YA658uyXNRlWZbOmon4YfsYlstl9m4hxM+/+OLd7e2Pf+e3qqrKsoEzjz/b3ly4yv45/6Usy9yo0DQNM798+fLFixebzQYmiGiWqsCRWvzIbT5Hm8/t+RygmnPdMVmbarZqjCpM0GPOeyEXw7KkUy4jEiAqiAqQySJ6M9aV0TODFhU58hBS34dTO9wdTre75uZ+f3N3f2xPReWtL0prlnW5WCzWq/VqtaoWtbV2PG5UVcV7n/G86ZwaswxQRsSmafq+XS8XCmKtfe+9915dXLx69Wq5XPZD27btoWke7m/bU3NqOhFYrbfri4tlvVqv3ebiSpI+3N33TZs9E3MEQRrlgYyIKKSqLpfL2nuvitZauzsecrHKFR5VTrv7L7/41d3NV1/+4tchtENoYxzyYSeiwuBJnXO5olh4W9oCnTOAYKw3CzAkYJOC80VRF1SnLrKrCrMtSXXo6sODa3YnGaRGczgNRb344MOPv/Xpd1+8/mB5cb1Yb3zhBDgc9vu7u+PuFtJgrCAMKIPEFBPmzuQMfYsIoINstwDjICLInTSRiEQTqxhD1mR4g4kMgILGw/7+z//dn/7Tf/r/aJrmd37ndz79/jYPJQRAZ4s8z8p5qsty6BoR0Xn0hj7vClDV8zpkUkkpMSuzpKisaoCKApyxZenrReW9RUSJLJoAzaOnglEAgyjn8r+JVok6TefTzBMFkKx04SxVpa+qqvCOiFBYVQvnQdBb26dkjDmcjn/zs5/6qvzggw/yCAWduiMea13T32cYjJnLwldlYQ2pMABcX1/XdU0IiWehgifdF+fqOU89rZ5/0Hx+Zb31nCFnf55BqSkzPutAyqOLnMtzMyGPF83fWUSNGSeJECoAalYcBxJFAhVglj7poe1vj81Xu93d/nRsO+XoydfeLEpfVcWirMpF7avSGJOElRkArLXG2cQaRSRGco6cU6IQQh+jBWWJt7c3RPStjz5cLpdVVbx4cbUsa0Rkicx8Op2+/vrLm5ubvu+Pp7YoyuVms6hXRVGVZV3YIsZ4e/9uGHpLhgwpc1R1Brzxi8WCZQDE7XaxvVgiIqEtisL+v/75v8hzuYwxCNI0+/uHd7v97emgIWiIJJIlRY0KMeuSDlkzrXRuU5ZltfWLynvfHTtLqGiSsEGzvLzcXl5Za0/9gFobqlF5aLYPX1Xv7NvTwyl0Uphiu7368INvvX71pqwXaKz1hYIOXXi4u9+9u6MhbGq/rjxiBAk8ViMEEcmM9T4gGfVYpvHa+citrSOipMQq3lswJCKsgGoAoKoKMnJqdk3brNbVd7777ffffLTdXJfFuizWxrg8KsR5zfkPjKrfaohkKpk+cy/jXiQUkSQcUwpJIosICAIBWkuVL6qidNaSCqMQYDrzS6yCCPmszVWVc+udPKqmNLZscsIcByCqsyZn7N5ZQyZrb6pqCIP3pSROMSzq+u7h4de//vW3P/l4u93m4bdw1kMPE094JMNMhVadJGmKosiWPyuhI9Kc/cq5ItRT650PgmetSPP79uywUNWxdYl5HN/wNJXNFdoxnJaxYkQAOvICM1hAmsVc8zAgUWUUERYYQjq0w83D8ct3u5ubu67vvBNDUnlbFS4jCDkKE8yIYnLGWmt9YWMfAGBUL1FNKTVNk1J6eXVdVZUxJsZARGXpy7Ksqso7L5pSIlXt+/b29vbm5uuu68AYX5Wr5SYXojnpcX8MIZwOR47JWsvGDCFIikXhrLViUIFEwXu7XC6mwWDe/vl//CtQHCurFgE4Sj8AUX3hyogpAAiiYdahT2mQt4dfL4SN6Z0NDTr2MfqysrS5eq0AtvDGOrJmsdmuL7bee2ZGXIAWnIbu5Csr0EcY9NCdQNkA1lWxWFZl6a231oIy9k13uN/L0F8uly9fbj947/pivfC5n1sFQCjnM9lwjUGdutZBAIhUAMCRsdYaQRaxxgLhIAKCaEFElHiIQzd09dJ9+t1P/tbv/vbLFx8sF1d1tanKtaFCRACVKNOeRgdFmZfHJvJI1JzNGCZPEmMKWQcgxJREGJSMIZ+DrsyEz0GmJD73S/nu6Gw2wm8OoSUmgcga05wmAlkqyzJbLyKijokmgtA4WwaKorg/Hv/yL/+yG/oXL1/m7Fcn8fSMXZ3zjWfiLp7RIc9HXU/TM55pNWvOopkfgauZwjX/1rlh5/cJ7TkoNaNoswHPL5pmhc7HBACYSblmdO+5GAB5AnN2zqrKMcTjsbnfH97d79/e3b+9fXjY7Z3VqjSFd+tFsaoKb6x15MsiJ7oMjIJTRzUSWkIbYui7kFLipCqIYFQ1hECEVVVliHOxWBAIDiml1J6apjnevbt9d/P1w/09My+22832YrXZFkW1qFd1UXVd50r3xX7f9Y1wVFUYaaS56o+qOgxd2zqRzWJZeFeklOw/+JM/UQaJIomTRIaklBQ59CTKIglAVLHv4vHYtU1/OizLskwpcAzVauHXF261LBaLhSuVcL252F5euKo03hVlnS0SoGZ2MXSVj9gfu4tdvx8w4Fdv3/Zdc9ofhrZTFhQNIaHa4/F4vN/Ftq+93y4Wi7IonFmYOhefs81mlTAAYLSAU/e58BRkAg6CksNtAQbmlEKIwgTEzG3fnNrjEPvlevnBRx986+NvERagzlDpXa3oIkfBhEayDtco+0BEZPRso3yzpDkMQxaNDyExa55t6VxhTBzPFIOqnDiH2UnpsY6tY5H5N0grPubYKcWoMY4WQmSR1DrK1jvXOUUElAERAI/HI1mzWC1//vOf//SnP3358uWnn36a5RHzpswxcGZH5lanvB1n9ou1FoUzXgXCImIQjaHAaQ625/FCU1noOSF89sDn+PNs22JEz5ulpqud3/uMS8+hASqIqpl+BRUGTrkWkBurs/EzKCImTm3b7vf7+4fDw/5wODbHph0iV1W5qPxqUV2s1+v1uq7rTHX0PtOeUCbphRwlJeEhhjwJLC/sZrMpvNvvd8fj8eLiIq8egDjnSCnG2DTH+/v7h4eHYRi898651Yvry812uVxmX0pEISRU2O8fTqdTCIEeB7irJjamUKB5KPFyVbPEU3O0f/Lf/B/GulwKKaUYhxRjSjn1eFzfXD+IMT7E/TgoQMEYM5HjqUxQ1/Vms9lut4vFYvYzEdaC0vdd1rLiZH/9+f5o3t2b5lDqZ7t3//rnP/vh/e7yE0OClWiUI4cj96eC06VfvVpdrtwSBu1rg7YmK8opH4MikkKfd3tCjQpRJeYGZtBlkwACIqpICG0aQk6cQnfousEgbGDFh0hB3lxeVSprXCz8YrlddEUMwM6WEIyJpij7svIxxpSir2vmyEhgnYtKAqRkwFhwMNIDYBAYBE9MD1FCYtRUYzIkhfFlYb0dJSO62HVRACwIJM64KxAaQwaVkCG6ZMlm2ReDaCwRoAjHgClJipJSjDGIpMLbsii999Z5QgOKihZRAC0i9vJLQePt5rjf/Zv/77/64mdf/pN/8r9/UV897O/m5oe5buScW9aLrJBqyRCgqhoyqADWCRkyVlUVCXIeYZ0wEFlmFWFjxgEOeQpb/vtYgExJGAw5nVo7H40Q0XtPBkSTMJAh56wxFCMrsCZ23oOqaPKu8M6qquQukykooCxPl0naBOQMJ0URNDZKHGIsrC8J7t7dP5yOTZeGoMddf/P5/cPbXe2abf3BZrHcbl4s1y9c4arlYrGoF7by6C2SNSYKpJTiEDgSp8RDrzGAWkJclkWMJGG4bQ5fffXVEMOLVy+retm0PYK13gp3MUk/8Lt3D19+edOfEoLzrlqvl9fXL7erK2M8ijVoNcWv3359apuBUwAxBk1ZUmJlCm0yTji1VVFKpPagcemOfX849HZ7sc4H5Kg7KCP7b2alz3HOOMXPJOase8WqipNqW8k4axTk/CE/nocjK5GCc4lVsCzLuvR1UTaJSqWT6q//5mf/9n/6168uX336ve8moiY1TdOEFMl5W5fgrTpjHDVdawwiQEoBhLP0FzNTMgy5nVMCh9xDn0QeIuPUapuGEEIwSN57SUMMAQBYw3azfHdjYttIDGW1KFcL74pIxoAhIgHJ+NAcW+oZiQ9H4t4j1pqXqA9D0/fd0IeQQoioyZHRcir+ngnHPKbNT2CecVDIhI3N74+9xM9+fWYOn8/yypFn/sX18nJILIl+/evPv755t16vy0V96ppcwNCpxzjntN90dDrLjP0mSuOUPTxXhHuWGkye4DHMfoYgzFd+pqpBRMYAEQEyCBGN32qcNPCUIj6G8Zmph49dJczKPDTH/qE5Htp2tz/d3e729w+hbazwarW6WK8uLy8vLi42m433VBdlrpDnCxpjmElVsw5JNwwxxjm1mYl3u7t759zFxUXpi5RSTn6YOfXD8Xi8v7+/vb3d7XYisl4sV5v1arXJtV8AI5KGwE1zOp72zfEUs460osHxhgEgRhYhYyyA7HaHruuyK7Y5m7QERA4VmJNzllOCs+Tn/MklZ7LF4mjvI+jvyeCZWuo8RmRNmlIQDSGpcnJGV6vl1fV2uL1bumoPw82Xb//lP/8Xy+XSe/vmzZs2HLumZY5KGoR37Slasd70bcq108gxxkE0jZMHBxJJoklSTDwwR5Ckyl16lEdlZklsrS1SUTg1niBxbeLHV5v4duWH6JJiXRWLlZAREWOcQZsgwCTokff6k5xQnygP5yVi5j7IECQMIqLMjJy0IEsT5DD1spwzgfOFz3jQY+vXqOqoszzqDJ7l0VtZ4wasdXl80VwjPbfDwIJYsuhf/fV/+vXnX/7Wb/2WK9yxOYEReByS7s+VXOeNS9Nolflp0plW6/Tno6Tr+edO1vtI5Mg3KgwqqIJIlP8C+siCno+5+ZrWkjGo8igMYCyd604+R+kniXxWlRgjj8SvQ9M2MTUx7o6n23f3D7d3GrplYS/Wq+3F5vr68uricrPZeEMui8VZq1MHYn6yGRQAVZ/VUXO9TVWZQ0pd064WS+ecs7bvOudc6XyMqW3b3W737t27u/v7vu/rul5tN9evXl5eXq6Wq6qqUlJJ3A7D4bi7v79tjkeOKUftZMhaY/MYt6RkvHM2hPDu7r7rmq7rENXGoSUiITKU2y+TMKuK8yWdyVw8no5gwQAAmAn3z7JZDOeq2Y/yQhVKH6LttZMhxlY0+oLqhQdDQIhgOhn+5qd/Df9PAx7/6I/+6KL0HnCzqDvDLMPx8ND1O1XlJiiCKkdh5iggigIAnj2BgApJBA0kEYENCCQDAIRkrc29RSVQAUKSlvUipaCn45skJ7b1cXCnoL5QWwyJA2tRTewoBISR2zAdYeN24bEjBXicao6CwKCJIbEKEOa+K2CLdM6v0DOdkJwrTuki5H4dBDOSyzQDZwDZhjX/sE7RT3ae3o3264jomdCjqh5bXi5827c/+9XnTdfW6/UQowUurJld93loMFsFTSORzr3NeZFpuoXn09jOP/1ZxvtNBOvM2z8WzOZ4xxiTdYsBEbILnmTxnxjt06ZLANA86CCJqkZO3dCfUugBuqAPD827d3eHhx2EYb1aLZZ1XdfLelEURTEdg8743PA8DAERmeOo5YCYuyZyBTjTYEUkhFBVlZvTxn6wSGhBEjen03632+12IYSiLLcXFxfXVxfXV2VRG3JEZIykJCnFEPoQWxmigVG8M8N1BCCJDVki8t4OQ+i7MNWiyQ6hISIzqgIioQICGRhHfk/sHxwHq6KqmRfdZK2OPNAYH49hPSPcQArCAYmt0aRJOYEm0NToEIxGSkC+G47//j/8aVmjc/x7b75V1MXSkUuUuNOm73ahb09p3011WkGLmEfMqzp2qOBQLIojMUYtiUF8QXV2I1k/wRhTJS1YDYELp+54iHcP24fmqtcLKC8WF2a1Fl/GSXJNEuepEyJ6Dqic7+B5D82+NMZ46mMb0sCaa0jIDADOmJxZzATjZ4WobJbZVmkM/XHqBJhteOIwcYZnydA4/CoP1gIYCQw6dS8gYlFsRe2vvvj68y/flsvlYrVshuai3uS84PyOzsNyOGt4PHfI5/EzPMXwzrsy8sKcm/T8KecUjudBzeQtZqdNRCgCKDnams41VmVEC09fOolTpox4CzAzq6QoQx/bPjRtuH84fvX17c3bu+aw8yilX62Xi0VVlpV3hITGGY+ohsYGmH7oRUYsdMTGVQlRRTJUlGLklDilzXotMYUQgCXLtCpz6Ps8Lfmw3zNzvVysry5W2025qCc9cAAAlhTjwDKoCioYJELUxGonRBA0ijoDSpiUbWEvXryy1iQO1vu8cpArqKpgCRAxS8ifFyHzEvexx+mRZMptTs7A22cPdfxFjaqMkABYJCkkY9RaWq7Ly6vlYTj1iStnm6771V/8uz8tdPGD33313sur661F9pI8png66W4X392nvk0xWgTnjCXMIuhWPaoYBEfojBaGLJE1WNDYwOXyyaQA1qr3BZbH0CQezNt7+26/Rf/ee++//PjT4eKSnJNucMYYMMJjz/dMmcy7yhicncMzWl/W3T8c21MbmrYPPafQO0igJQGWZTlzhmfi4bzDdWpqByO5I2falXnxzRRCQ0o50H10ktZa5/z4TWaS09QgQc5/+eXtv/pX/+7rd/effPLt9WbDoLa0hSvmolH23jK1uZ//OZ9TswGfE5vPQ5LZOM/pyrOW0Jmdw2yzY8SBRGTP5m+NAyjHoySfowA0ysKM3Ltz9/sMq0/ZXYpETilKrgu0bTgcmpu39zc3d6e2Q0N17ddXy8ur7XqzXC9q772z1vsipYhKuUkrN2BljnROvDkFGWuIjKjOGRGnWqBgl1hZch8viDTH08Pd/f2724eHh7Ztkaioq3qxqOralsVqtQYeBZLatt0f7g6H/fH0gCyzurqyJBg9fwgJ0ZERkbRYFt/69gd17U+nk72+uhwXV5KI5EoMIgZ+jBvpjLvvdcRWEMdhFaqKAiENTyOiPNCTWIEkc6GQjDoLdekXdfH6YqN9f7p1pzTUzoZozfHU/qeffIEu7W7Cy8tF7ZeWCmN829T7Q7y/xa5PYXCgDsEyECiheldl8jOCEqBFIgMA2IT20cOIMnOe2eVOdhdPflP0h9PDl3fLb3366gc/MB++8YtFCJxYC+cJDLOQIX0sikjG9sarIwoIjXqmo24zq4QUmyGEyDFy1w8Soi8zJ36UAtczptG8/cbTgUGEs60S0SPzCjJaQ5lfNI+WfswJp6TxPLWeD9+Y4Fe//uo//Me/Nq74/g9/fPX6JVKCp6SIDOTmbzUP1HwWS8+g8fkZPdvPudHmN/Pun3Cy5zH2M5PLeNmcbM/x6rl/zQl//uQxrn5aKs8/F1VDkux7c7NH2w99H7pDc7jbv3t793B/VMHNdnN5Xb94/8XFxeZivVqtVlkFwTkXhxBCZI3z+hiD3vusVZDPl7lyDhOO0B1abx27ZBBDCEPXn06nr7766u7urm9aa229Wm6329VqVS7qsq6qqor92GLdNMf9fn847E6ng0msLMqS5wTlJbXWkoUkUWMM3C2r6vJ6fXm1PR73NvsnQ5RF9wlGaSIT6VncmL93VRczkXAERlkEMhwBuWNdOaU0+WFiEPXegpaaShhK5ywR1QA2BNv3i8BL8sZaL+Yiys1nv2ofbm+/rDaL8qouLqzzIWg3aBho6G2IxIIxKSdSdcYy3EeG6bAHVUUlAEA/as0QIDPPzG26066Q7ftX+/3+2Dbfff/Nez/6nry4FISQ4pBi4cbx4t5awccQcZJ0GDd3jAmn8VznsTSCyfN38hLloYGLxWIkBj4V6HiMWZSmc322jcfW1vPAVUSmqQZmmlcy9sE+yUJnTFjgdGybvn/z5v3vfv97V1fbttsHTm0YCU9TLj0mdYiPGstz8DzPjvmmHWYxujl1mg3unHf1TWLWNz181rLK63mO7Y9xyBnem2cjzV/vWZyYWEXGZnVmHmIm1YTucDrsjg93u+PxVC6qalGvNsvV5XJZ1bnlyOZIBEaJbIGUC7aImA2YOTEzThnQONcKwAAqkrXWICpzSqlr2hDCcX94uLtvjicRqev64uLi4uKiXi2LqizrKkYOIRg0cXwNCjznHXkpzqk1VWVCHGLsU4qAzhd2va6dV+vcxWOYdHbilSCTnntSiDIOdweElHs2ZRKLHmMqzHKEz7WpgKKw1QCFAms/pAeMbb877W6b2PDry5eFdRpT33aYpAkc23fAp+EOdyEefXWsfE1qIK2OR0umMAaBkkqP2BKCjYBFCKEoiiFERKyK+ng8EiKSD5wO7anarsXTHhpXlQJ6OMZlvU7v4Jdf9ZtPv/tb/+Xf33z8w4vy4q0MRaFEro8NJLDeBmJVFYOiQJZUNbezG7Qx9syZLK2GlIeeFfvExz4NAVkdQ7s/7hHS1VXli2K12Rrn+xCZGY3NgCwaiyiaouZJSGNUQwLKKi7LTBMQAohmbJGUGFyCiACugMKRyzohDAyPtmetlZRSSkVRqMKxewDqP/nOm+XSEkpdLmIcRMHaERjP8n0iCkAhijEZ6LW5m8sSFs4y8KjfxYyKoGDQGZMpQMoaNDNmABQz3pZplSMacoaBcY6EeSQYj1x9Q84ZR2hFRIHIuKQysBgVJPLO5VFPBtDawlnPPFaCM37PE1rGQSUmtND3LZu079suRDH2XZR//5Of3+32qsp9WJXrN9cfbOrtZr2uytI7W5alaurDQBZC7HNTCZH13gBA4kFEyEAfOmt8vagtEShZY1KUYzhCElAgwNAPfd93XXPz7mZ3eNgPbbFabC4vrl++3F5c1HVd+sIoekHjfApd3+7D0EgffLJrWPbmaIlK7+cTFIkMIlj0Rf3uZkeAEPVqfbmpNhDAevdotnrWrkmgIpI4xDjEGBR4mgqH8BQGRMrv2vOzcM6UxKioRSAjMBgTkxxPp9vb293x0HMU0CFFEPFlkRmLp9ONDkAJTFD1yCEVCBZZy401xpJRwZjHyCMhUB8xRvC2aFWSomPcMSmA6VOMcXcKBbSMsG+OrhgENADJsX84Ni3Cf/HdN8WPPhlebXYAKW9cg5w0pRSFjXkcyZFDnXEjTklbziBw2q9ZqiavYS7TlcXYU5o7deaQck4mn6Wd505s7PlEmlAuyeX3cfFBz1d7fiKZnjUDRQQQAp+a42KxyOMLVbXv25RS4cvZo07iKmOxBxHzfAHNsrpTRfqZCz1zpE+4zfk1jub4XxQAxLM69hMYOr+fMamzHuBnkUh2U+PHPeoEwpAiiIYQT11/OJzaLrRd/OKzL969exe65JxdrRaLZV3X5XK5rOu6LIupryiKiAJba53Lccc4LjjXWpgZwWTQnwBSHPGInMLkNunj8Xg4HPb7h9vb2/v7e1d4VxZVVWWZlPyntdYAJokxxr7PvL3HqOEZyJc3gy+8jtP8XNYtY46qbAtPjw5TRTjEEGKMp9NeRGIaYox5mLUxGUP3+SrWWmPsHEOe50LnexF9pckRG8MDSrO/uxkS3x+Pn331VlVJgWOSmLxzztiUUuV9QC8KBhSwSGINiaXibRu8tQY1DqFp+55j7jdrI0ZhX5VdTJFUjd2djoqwrKsY46kNlRpBODXBDaCqy6tqd2puUrp+c/3q7/3hi9/5bV1tjqB6tuFmVGYGdHPumkxSVZpyTppGq0KWmAspRj4nri0Xq81ms1qtjDFRYuAUU0REnwdnC6ZxuNRvnsMyl0PP3xw3Nz7CwvmrmmnGV/4CNAqAQXs6Hnf7V9cvvv3hB9vVummOp8QoiobIGiCUsbdpBsbzFcZ5sDjHxvj8ez77zs+C58mAHwcRndv/bKjnRaxnQXXuAbb0SJiBp2s1Uk3wUfJKVZVIEZg1JAmDDIGPp+Hm7f3N29u2bR25zbq+vtps13VZFVXpV6txykeMQ4wRSXMpKffu6thYxvOE3TyTFQCEIYQAghm/zNOPDof9fr8/Ho95HtpyucTCbTabzXZbLxa5vaFwnmAsTcU4DKEbhm6YXmnsPhiNcrovEIEQhpQSGRVNp9PBO+36xg7daSLfj698HgzheL6g1hrnK+9sVZXGjI0vM3kAcZSqOn8M4+FhoiYHCUn90C2tdzHJ4dTeH9t8kqnikBhZUIcQAzkgMJwQ1ZQhGQJL6r1F7EpfOLRD2x2bLomgM64oWzVKUBgRIiUEQ42WANDVVoSktna5LKxbhsvMwncQLdjaD9//gz/4vf/yv3r98o32BEmSwbkTdZ7GMnNuYJKnEJGs76ioKDKhWJRhE044I8xZnmaz2RRFEWNMGphZWHOfX076DNncnfdNe6AJPTrv0X0MkpHOqVffcInjYSoA+/0+pfThh++/fPlyrBQSWffkyucUZYTHIQaIjxqRBnEk5wLmCdSz+N5Z4j36xlwgnV0lnCX8599ztl4iwrPM6/wnn5V88azKlRH4PDBkxnt4HkwR0xAlJjw18uvP3t3e3qNqVbvNdvnq9dV7b65fvbzcbtcTAj9K9o/elR4f+qjaSWNemgU6nCsU2VqvLCmxiCbmru8Pp+PhdDyejiH0xtl1XdlFdXFxsd1uM+9qHBPPHIdhCEOmJ6eUYsyW18pZaxc+pbWN6mUGRHh/uMuNjPb+7qu+79u2zbM50vQq6zJzdPKfZVllhnfulc33mbGNaVntud3ODzXBIOQAQQWsL2xZGeuV8JQipeRFjDE9KKdEgEDUIuRcChFIEqfBWF0UdWG7ZUmVQ7YUCovWFovaV2VIQABVURauqKwvbCHMRBSXRlVBtC5LVAj9gKIIYMHhYrct/B/8F3/v+9//oSPXHDurpGsrIplolCfQEpG1gInPg9iUklhHRAJTPxJmEdnECfM4iLxlZwZiCOEkUfCR/Zur8IhorU1TLgfnMNRTZ3W+niPEiPTsuHy27/P7kblrTtv16juffLqoy77rUhycJWutGdvEcZxENEfdM/qlOiHcGVjCc4PMK6KqOKmXzsHDCFyNFxkxfJjaG87Pl9l6iShvXP1NLYfn0bWhx7jjHOuaH1AfYgjh2Ha7Q9M06e6++eqrh5//4svYDYvF4mK72W6q68vFi+v1xeV6UZYAwhwBAEkLW+RW7TnYmYv2hsav4XwxSf/k9AmHYTgej8fjcbfbPTw87Ha7rusAZLFYlGW5vL5cbzbL5coZa3ITFSKLhNgPQ98PbQh9trtnNz6TW+ebVVUiNIbISNc1RaEpBfvuqy+yLmlOukpryZeI6Je1c0VZlmVZFUVR+PHgmUsX50BlPirnU/n82CA0iMiAoISGXFEVi0W5WEY0fRwoJWts4KgABtBZ15JhVVUGZIAImIyFaomr7XazXq/KWoOkGI315aL2ZfHQNahammJZ1dtyWRelR+PI7UwHAJkFRYAphNyAsZci3tfFdvvpj39QXWxa5kGZEQxQPq1GkZqM3U8wjJ5RNZJ1iIiEoixCZjz7gVmYx5b0/DzyxI2aZFE6MeNcWYIxP3TOOWfPE5Dzs++MgSisMOfAUwh9Vmc6qxHgmZpHPrNTSq9evfrwo/eJ6HQ6ZP0NoifEifNHNhW3nxMqEQD1yX868z/nyP/Mf87bLt/f/wL+fP6Fn0Hc50nN7HXnXZdvOaQoIqyaBTqDSBRu2r7thsNx+OLzm88/u729azY1blbby8vNZltvL5ardV15ByD5qCEDxjhraSr1xfztzit2eWXyD8TIEtMwhNAP9/f3Nze37969PR6P+/2+HwY0pqyqdS4arVZlXfuysGScscYYnSirOdUahiGmkMdoE0HSUf0vQ1cxJiJyzqcJQFFlVRhC2/cgGu3p+JC/X1W6uRXBWmvKlbXW+8L70tnCWm/MSAEdl37SkMurjJppQFm4VKe9CJEHSS4FBQnMimhs4X1R2qImBhEJQAxWQMl5sdaqQU2M6qwhkwjg8qr+8MOXly+315urzWJJUdKQwJB1Hq257HYpRADY1OvNarWolqUvvLEvodOJbjGDc0R00xu/rK/f++A7H31Uko1DT9YkzrxMMgYztS3bZH5gM+k/m4QzuSf2nPpPwpCiZFRjVoSJMe52u0KjrGoqHhls87aYcftnecf5dlcdz8XpV7I4G816YPOLmfGstWA8SmK8vNhs1xsVBVFUIEJDxDB2ujNoUkkq5+4XQPVpWis4crPPHCMCQEwyH9sypW1ExInnHZ9bC1QU/jPWew7bnP3TyO0971t4bO08C3FFRCf6hwCEFNuhT0maLv76s6+//HpPptLUl2W5WtbXl+vrq/ViWfiCEAwB+cJOmiT52eW+5YxBjOOX8hz5zIHPh1QSHYbhdDw+POzfvXt3OByyOkIuSq3Wi9VqVVWVXS2LsrTee2sdGlBIKaUhqKqM6khTdweMHnieRzUHAtbavh8lBBQUgJijaBRJdr1ezznt1APpiMjVWyKy1lvjjXFEBiZOH44TBuB8zwEkffoaj3ByaIwaRBLrXFGVdb2sV8sozKC5dwSscc5m6TA8CipbAM9SWCy8eW9df/Jii4ury83V1fLCKKTAAIBEALT0Nre2VotVvVxXi2VZltbasjV5VjJaoyOjCYwxctR1sfz2R9/+9Pq9hcApRPJVSGlKBTGbPYyDeYQm6fB81zwRkUfPgpIHVeYUMgPRs/o5IvZ9//+n68+aJEmONEGQDxFRVTv8jiMvIBNAFlBXd3Vv9xIN0e4S7e/efdqnoXkZ2lnqnu5GV6GATGREhocfdqmqHMy8D6KqbhFAOSUlRUZGuJupCQszf/zx950ctJ4CN9Xkalnzqn8snJXB58/zvLyscM50cOEzo+oXb5EaQ+ffTVVTGi8uLpxzKY3OVWK8IaJ86oj72V1wfo/MFYGZLvI39dKpFazAzNOo5t3n726GOQERdea02ac8qrmAIztjgL4EsLx8z4Vsr7PP/ctVOGMBY6pTnCEXG4Z4f//wvBtW3fWmc9vtdrtdX19fbi/WDjHnjJZXq01tEktJMYrIRB9IKVcUeg7gydT7sDvWjzvGeDwen552Dw8PDw8P49iral3ov7q6ur65XK1WzjlbdY0P3vvgPRtKyiWmGKNpVVN4ofRV1heeAfj1TM4whM5tv3mPzlMIThXc69e/QERm75sQQutCqFWKsavXZ60jcaHao1Wx7UVatYo0qSoxAZKpllJs4aPbJUAMTc4lr1YXbXt18+rt1e3N3eXlT/3p+nIbHA+nE5Pl/qhWBqsqhIYIF5vt61dvf/Xt17/8+pdXr++22y3O9MZ6RcUYTyPSqS+lTHvYwdcSh9tgmotlpuKa1rsWzIlByPnq9dXb735l2+3R86CsMHDHflaEWOCQGkV5KCSTSjER5aQjFeehZfANj8NgZojOUNXSGI9QkBVb39hKUj497R5X7VUToTFNvpSsTVvVJMA5YvaADg3QieYiYERmZAIixbWNIwLAwuxQUQQRnDMlNSRkckQIQGrGhAYOsXgHUqInLyLo/WEUBY/kQMsqhPG0d0hCKIbkuIiAWm00DFBFERCDmSkTVV8VJoeAAMaCWYoUFdG6Hw+oAGBcTNVADRTBAKwS49ghcVV4rjQMQBIDAXN1EjdZwRtWIoqqmkEdg6GBI54dPwIREbJ3nolrfQeApWTESUUp5lyLo2M/RIn3H55JNh/++PP//r/9F9mlrowb2Ifg7q5W3//627vbbSAwsabx3vvQeNUyjmX+6Lk6TtWwmZS3nGPyUiDFpFkmMf3jqT+e9k+Pu8eH2J/YB++paZrtdn1xcdG16+Ab59y6dp1mkJLUiT5KhpJPKZdiygBUsowx56KKE+WlPpAKLZvZ6XQaIY45MbVmFsvRe1qv14fDyV1fXyMiOV9HRDj1PFRgorYxERBNcsUVzwaoSzHnXQ05B5/iLhPKr4oCUFXOCLz3bfDbzbpbt8yY0ijCSTIDFyk19wAAgnSr9RdfffP3v/v13/3ub375y2/ay23XdQuSVPNklckdx9GKOOfaZnZbV1PLlfVuZIiM5BA9GW8vVtev3lzd3rEPooCIDj2+zCDoJad9OvmASUNvSgiVqqqqlVM53Y5NYAEnxZk0Ko6tbXxwDcHnOXMimhJVjcu/3Mg97/0+yVT8V3ZxzorS6XVWMZ1lnAOLRCtWiQmUWVpUVes+mWNe9mAZP1nZq43XlBNqt7vYlCwjyL8Y+S4ZdX4BjFgWy5jzOuKzhP/pO/oE6zr/WwqGLyxrzKIVvlKFp4fnf/7nf3737h2gbjYrIri7u7u43DRN4zx7P+2HVRzbznhH5+yxacnL+0WAcjkhOefj8fj4+Pj8/BxjJKIqFNd1zXa73Ww2q1VXK9ngPCwIBSKYMVJwfpRTjHGMsWIuL2VzKc4FZmZ2iAWx6lGCqEkxMbVJxYebppNCbrXZTs+FHAAYkpgBKDDNdZGRzoLpVhd0Xt7n0smQvtB0p1EkkXNuiIOWCFhMM2iqrp9t8OyQHBYtzORr2q9oJ64YgQlev7r8/re/+0//+f/y93/327dvX7uuCSFUsG2hQ8QYFWw6hQCoVkqZ/lMV0RSlktpNydAjckZ4/eWX1zc3zBxLtXurTiUvnIoF3Tk/SXNjMBsCIgMiVKUuqjp77ByBByjM6pyG4GDlQ0Dn1c8lui5F0XlluJyklx9EL7LmNvfBhC+ruQA2q6bWEwxEVFXczExFQLWUEkKoZ6sKeuWixSwXRcdSSimlOvDSPNSph8HRC31ymjDVNcZPPVZVtSyKmvO65Tz2pcUno8IEAEJEtkhpnN1B563gZ8G/hO456gYACrVfgKJqhqKWk8VR+lNOo93fP7776f3hcNhu169e36xW4Re//Or6+rK2squ13263bWjOOz6dsaXlx322wl0xJxCpU9+np6ePHz/unp9zzk3TrNfrJXq7rm2apgreepy9XQ0QwAwcoAMMIQyxr7vKdQyUhkFyZrNasdefu8hjjAdogjNj0B7RO+68WzlGpwgGBoqqefqk6oObAdKqq4LzLUWzZOFytdcnmzUvEuFL7e69N4AUBy1RJeY4fPx4/+7PPz18eMg5OceI6Fdd/ZC8qvfe6KpbNW3jvnh1892vvv/u+999892vbq+uMFCtmZd7ugbwOSYpueSca2mAdf8OsohkFRUyIwMatVzf3Pm2K2oiJgqqpiLYIJ2BJZ+iNdPFX0oxFSJKKbV0QajZJRU1kaICaIhopIom00imOtI5MhI1A5VchKuIMakTyQUYl42CzySjzg/5VIgiGcGn0YuACoimyMw4y6kbIKpWb7uu65xzNlsQppxjKhx8vSVs5pYtU5nzQcOyn6iqS/RW0ZBiqqYyE2rP5z1nzXldOVr8vvEvhSLOO+2X6J3/2PmVel4Z1X/X1axcVARyLjFJP8j9/e6PP7w7jZGcU9TN5erb7765e3Vxcbn2Ab3H9Xq9WnWgMI5pon/OxxtnwdrlF0tCmlSlhvFwONS+93A41Cuy67q2DZX0XqPX+ekNSk5LSqf6gZmiac3PMDPhKhxtRU6HA8+GmLWSry8sxgLgvGvAzDtiClIwZ3Upy/JdskwblUQEWuhM8L7mtL8KU00vFKb95qX5nqSPvOvH09AfxuNh9/j04acPv/9vv//hjz8Mw0jeM3l2gdkDOe941W02l29uri436+bm+uLNF9/c3r25un61utiCA2D2IUH15zMDolVKFc9AxEUbZNpwUyslZ4sAAISmXLIVtcEkrNZWdYLRCYhkUTX2n5uMwZwB7IwnULIi4jAMK7kIyIROoIjWWh3JoSd2SIxQNU0IGcgZO+YXoHVGvCrc9ZJhlg/isyO+lMcICGjTmqbJFL0z9YKITJZ6AQCgXu1Tbpkz/3TlidbzVGNu4j/PzM3PcqOqwqfRqzNnQ3TSJEAEJKqL2vM6RX0L09ogGOG06/rXo/H8OJ3VQfrZ/5ruawQBE9GUNSWpulNxlOOh/OFffvz9//iXw36ou/eh4YvLtluF1TpsNuv1pvXeqaoWLaVkSee1AM4KYRMSNJcGy9369PT08PDw/v3758enlFI1jtput75tNpvNZrMOIbCbRBcrMF4T+zIAqwVXKePyv5YqDJAKOURSBVXJuQBAJWfsdyeGrmkcI4BRKZpSTrG4GKMRmk0VNgASs6uJd9EWJ+TZ6P0v2XTT8zVk55bbehIEEkklHfbHh/uf3/34ww///Mef3/38r7//4+5xF7O1zcb5JnSrpu2adtVtttvN5dsvfnF1dbFufde67fWdCy2gA/LABojADpinAEakUIW9CRCJimf3IklB4Ev05hCNXQCgkrEUdaZGPgOaITmHAqqZ4fNlmuUTXball+iKMTrn+tNobQAgq4JVhNXXc5VEmZUqMIRKrC6oo8B6flI/O75/yalaBrBmNmctJCDFmp+rs4zARICrHGbW+bvVkUFl90w5+WxBT2elmIoyVWZILeOzlE9GxHNzWKO9PqCpDYZ6YGApzc4f4Bn7AgDAFGcQ9CUDnwMNS9a1l4viE2mBz+ttEDMTg5ylH2KKejwM++Nwf3/44Yf7D/c7ALi9vXzzxdX2qgUu3uNm011db9arBkzGcTSxmen58uOWDuW8N4aZh5dSenh4uL+/f3h4yDGFELab7c3NzcXFhWv8er3uuq5ie7UKMbMsqcr3AjUOGQnZ04KY2rxeOiEUgJvNpkY7zjPnev86T6STaopojjGO41BKccDERIBMrDQZinvyLrj5QdfwFF0qgc/KnukRiFUofFFLq8X9IPq8P/z45/f/5f/4L//f/+1/f75/6nfjZrW9vXlzcXHZdut2s726vltfXq0vLter7c3NzfZi7RBAxvVmXQT3x14RQvvieVk/y0rpRkTmut5iZsjzaIQsGQqCISNU/XMmQgIl4mCCRQBq8CkavOSx808UEQXs/DeXgqfvR8+u7mIaTsR6F9yKUNgXJ1o0ixXAqIpAvi4M1FkMkiGAKKrBDEqdH9PlJFklEiMsAVz3VGv0zreVIjqzSQAZJ4FVUoCUUn1QU7U9D4cn58s5J1TIyhMTIMy4aw1Im7mEi5iu1C2XRboESZEUAZAUCZEMbMKaJ3JemedPCPB5+v0kB/xFBl6KeTez7pcyUE0rJlNKiTGfjuPz/rjbHf70x3c///yAwNvt9s2b17/61Rc3d9163VxcbrYX6/W6awKXZEmylhelgSUxLigAnXnEVoh7v9/v9/vn5+e+7xFxs9lcXFxcrCf/pNA1Xdf5wKWUUpKqVVfRIQ4i4r1vg3NdAwCSwEDrvNbMapWUc66VDCrmXFTAe4/AAEZIhLpadVYcYVU918q7FDW3Xq+R3MR2UAMA8lVT0pZNFC0iKFBgEXNagMflcBctlfNQreJtZnh/3J32u6d3P/38x3/98x/+8EcZ5aK7/Pqrb/Hy4u71q9XmanNxcfPqi4ur66ZbOd84T5vVCi2n2LcNF9PTMKpqWyY98TMpjGqinSdqWx2B4rT3V8qhruUimgCCIVgAIgHvPKKiiKiZFqv8B3d2mD5DUz7DhCckPIuqOseIUw9Sz5w3c4DVsMfMkpZRsmVoKc+laWXnTyU0+X9LjXFiRM3fmUwBAeFzrFdnvY6X9F4zsJ1tUC33whI24zDATNpZZGVFxIVmOcT2F1+qWuWRX7IT018+NJgw589D9Bz1/KwGOatKzltonCjbNNcjS1U/g4wKlnPu43g6Dcdj/8MPf374+LTdXtzdvXr16tXd3d3mgi4um6ury7YNdSjqnFNnWXLOBehzKBHPQHKbqd1Vm+7h4aG2JKvV6uri8vLysguTVMNSMdU/X0oZx7Hvj6lERPQhNG3bdp2IpJxl/lBEpI5RSikesYr11ut1eQGTMEiJVoAJCUW1FMm5RFN2q02L4BW4TihABKyOBxtVGNMY42ACrqBFS6PE9t0wDP0QRQDBS/VMUihyKioPH5/2xwOyH1PcHQ9mdvx4/MP7H/75D7//1//2+3F//OWbb373j//05pfftpd32+326uqqrnRVojURoVMAVTMXvJmdcuai1jAMGQAARSQTKxEWORADYRijmE3my4hY33GBkwwiWUwgZSsAzXZ7cXkJoS1iABAcjDkJmDoyM5cVTQmKc45wYpSBwSTIxKRmfZQsQORH4S6nUkpogiGhsTdIMQbFAzE45hAaYkEaU+TTwBd8AkRAb0AZHJl6SGalxK20uSgzVsXwLGlSb8ECRqpIxGqoUiqVzPtm3msDQiJkMxCxseRWfQEkdGMsoVvnqEMyZ9mBSTFAF+NYsslYVi7I7BG+XBxG6KsK4vlohxCYzDSDFpkYaWpaJx9mRmaBSIGIqPEOAHIuCGbqpOrGgweolxcs8pfnnXb99Rl9X5caxHvfmDISAuaYclEAUCRVKoOJlVhiimPOMRfYn/Rf/vD0/v2PxGV76UITX79Zk42rcLlt13frizY4p1piP45jHLOpJ/LgDZAcO+fn1TojAMhS6qaBicYYD7v9/nk3nHoA8961bbvarEIb2vWqaRozc11jTIIoCFG0H/qcs7FrWbxvnGOVggBMRMCNb1MoahZLzgttQ40NEoyuJe89opWsxARAaSw5pYvVOucMlgik8QHVN37jYkGcgGjQnCAlLBGlDJCylGM8HY7HYYh5yKkf4ynud++GPj4+754edykrkQOgJOW0OyUpz8+7w+mYih5Ox2Ec23Y1JNvHw6nfjY/HtYVudXH95u2bX/7i5vrNer3ebDbnSQARMeAkJtIKAXjvgw+EbNXEDFhnFhgiqpkai4LmoiqqWYvU557KQbOWlHMqY4row81b9V3r/YVO5SQys6iISv1+FYZU1fpC6u+8nO8XoJLgjMS3LKzYxNxUh1TRVmY2YLNqLA6ERkDFJBGRE8iZwRdfzvm9593gkqOWio7OTCHO/vwUh+fdI0weDtkQjHBybJpEXWGZQp//oIUnu2Se8+ZQVeq7xnmwpOdLfGd1ymddJcxA4Et18Cn9a0E9/7IGIZrUyhe9DiISQFXNGBUgix5Pwymmp93pn//lX//Hv/zPfhzYYdGy3q6K5m5z0aya11+8ubi4IFazVLKWUqrNBjPqp8X8hBUCTB5qBkUkxlhXfSpi2jRNzTr10E7bhXO9PQyn6lFYs+i6dfNYqG4yuK6znHPppJ78OqyiImxKakM/LYExM86bnmZWp9YiZjpl6ZwzQnbHoxbNIpazlCHm/iT9UVI6xPd9ive73buPH95/vH94eNrtdv3x1P8URWS/Pz487US07dbeNyLy8cMJAMTUhTa0zZBiEV2vPawvxwhpKJCT9+zD1fbq7vLNm017sV6vqz30stuEiKkIolW5PEcTDdU559kDAKBWMAWpQirVZIRUGWYDWgCHWGXNShI4ncZDP1Ao7XXKBoE9golomUlCTDRZsKiKwHJ09FNxqSVoAZC4VulF1Z9DHc650EDMBRMiGjsk8GhakpQWvVHtuVQ1i1ExctPmwxI58Ongyj7dIjwPnvM1BJsdic5qUai12Sb4ham3rKwswXAew9N0+lMayfKL89mhfqogvQT8EtLnoO7SHdRvuwxmPgt4+3RRaVHhIpgGYwqGSIpQKdenHFW1T/k4pmx4HMZ//fMP7+4/XN7drFfNet3cvr1tV/761dV63VxeX7Uh5BJTlJSLCgHoZ6/wBV0zmsrglCvLYuyHYRi0FEfkum61Wl1cXIQQzKyeWzPLKrVsPp2Ofd/nHJeavGmmJX4EZuYQWgDyPiGiFYEz10tVFVNHDonYOUArpYipgjFzmQH5aWZOaGbuv/+PH4aYnnenx+fD88Pj7vGhf3oeh9Pu4cMgsovxoT89HA/Pp0Pfn6BEpi+c86rr7DoK1HQr54KZ8XceAAi5W6+2l9e3jtXQe5+4Ox0ehw8/yp//1FmG5Fh9y6uuW7ftqmm6+UqeRhHVfaM6YyFyIGYOxI5qAENlCtSDomZgVhCdc1hVAxdm0Dq/KpLG/uT9M7XPFGh1cdWu1hSCliKlYjC1hwTHLyMcZq7QLrxsyNlyRqsCA2COEVJKIoG45pkJSGw89AyMhmCeWB0iVO60J65yv3MvjWRIy7lfLo4lgJcfvSRDmCHfmpTOA4D5BdgkIlXo+76Usrm5WHab6xT9s6z7yWzp7Gu5Hhb+Sb1r4C8i/BzhWyqIpSdcguSzJvn8uln+s2J157tutfSoKpNiasVy0VLKmFPM6TSk/Skfx/Knn97//g9/eDwcXr2+7tbt5rJzXteX7cXNZrtaIVHKlfUUVQFmSXORQo7P0TIi0mKllJjH6t4oVSxWtareOaLVarVZbyoiQ4AmmlIqaIu8Rl0XDcuCQds2TYeIRQ3UDEgUVCSO4+l06vs+jmOJEUvWmFXVZgWxikpUekWOxRGqQPAITL4Jq9WKsHX/r//3/+dwHN497N/fP/18//D88HTY7+LQQ99Rt26ubld3361eX/5i22EAIkjNJTOzd0QkVb2h6jN7BIAh5SwFu65dbdAxEekJN8Ouu71LvnUffnp6Pu3uD3k/4PU1OUaeXXZMQYWIiD2YgRRAJiJkXylCWWVOhbgAJIjYNCuA2QB6yUqifoUipWvX7Wq9TTfgYXW1cc2mqFXLMWSoOJhpMZt2Ej6bK8BsFKZnW+kiYpAdQ4yxlLb1jXOuZKnCqOyKqwuUFdgkBmOC6k5bOZdoCGqgYlJM6QXeX1DQBerXWdMMXzxNP3+FZ7XfsoBBKZfD4cDM17c3LviY05hiKnmqEOmF63qu6i4iy173cqPVOceyI/lZvJ3De+dfn72F8ypGP133PU+85/lwuhEIxGr0mln1Ty+llFRyfxqHUcaoT4/HP//482F/qgXdatV++cWtD3r3artdh5ubKySTVKvOOmPnyXgUtbal5z904mzklHPWIqrqiJqmqQ6jRLjoey94Vd/3GbRm4BhHMwvBVTWlpqlWvI2ZqYBiFaWiOo8chyEOY85Zc4aUckzVNUEn9Qio/aCqppyEyE1a8LxarbYXFybOvf/p3X7M97t4vx8/RtrDOjYeuHSX33C76e6+uPnm25uv3raXLTo1KocwfzyEqmXM09AIMIYQWO3U9xmJV51vOkPkvXi5wJU7Ds+np5/f/+nn797//O1xuBiSd03w5r1z7JYq2urIhBtH7D1PT43RLONM0J0z1ctKhRmQgc1sNTMgBC9eGxfW3VpzhgKOxwzRIiI6JHbIbJJNxc6Ewv/KNt95ABNRtQupCS2l1LSLEZQAAJkSq2NypFWwEQxBUIpmRockU5hBKiJogbBW42Fi5r6wCJbwOO8Vzxvdz8YxUyFmRkRpiIfDoYohImJVWVHV2qfgTJysP/GTgJnR5qXiON81/8twPcucnzNP7Gxasfzm+e8sTfJfL2UREbFKJ1ZmmyGaTBaBOaaxH8cIsZeP75/v7x+bpvvi7Retc9fbzddfvvE+v311dbHutqvGlAGTmehE0gNAIzbvGc8A5AVzjnHSWAeASkFdtV1tHxgBVKt9USlFclbVoe97yQsssmwvNU3jmxbIIXsEEDEBBAJDsiIl5TqvcUjCbESeuTAAk9TXYpCkpFJsQfWcR6fI1HTdZrMZenHf/uLrPuNlb+ujbA7l8ZRPuRQxiFww2PpG717h67f+esWNAuWOcoUKpY4DJ2p0HobBNwGBtxcliyETMJmBa0VFZdPizaZcb4Y/a9+wbdebzWaz2Wy323NxXWamFt3MX3c8dUGIiPNcmsjhmYOITloudVwKDJNIVam0/uJcYcgskoeiJZVCwA7BeY9c2bnOkSMnBufB8NkJW5BS55yqGZCqVJpE2zXn3l9qmRFCCFlFtEZFPcqgqILmiauudtV6SDTNtJ0nOtPQORfE+uxrTll/wbWklwCOMZ5Op83mYr3ZqNkwjkWEmKkqSAMs2OESNkRUabP66dd50H42+znPrvX76EwXsc/um7n+/8vcW/8wnxk7ncdwmSmchqCiOeeYUyklDWPsY3/U/cPhT3/48f6nD4G4cd4jt94Hhrevbi7X7eWmRRE06McqfFGPBwECO2TGSRQTai0pFSwopUx2KrXoMHixXIWJKqeqdcyOZ+M67z1zaJpmtWrX63XTNMx++nSQRVLJAgDnWnbVJpoAgRlZwU2LqDCf5PqEQ9t4apwLiNHMKn8zp9FdbNdBna592VDegvbiokXR/vg+DXrCXsve6yV5t1455/kOyDknWoZxVCPnKEsZR7tYX+aci2nnGvOI7BBRARy7IXPiofn6i2Z8Oh0/dF+9Wr29vby+2m63dVUVzsbo4IQm05aJ9ssMXJdrJgZWMQCRehoQSGoA10mSYJWsIjGtN22xUlSzWCqliFmDKFigACqhoWnjPRGdhrxExXTy8CWxfJpnwIBqTVlZK8si0VkHiM4TCGrRCV2jF9kwZq4sZDWp/dIiZX7O3T+vUc9DaI6ZlwD+bCqDk6lnurxtQwj11/ip1PDikX1euBJgRUqWlLuMkXHWGV9e0mcT5gWpWjLteeR/Fs/Le4FPUQYzA8DzGFaZkXaDUsoY4zCMpZT+cBxOY+xt7ONxfzKBu9ubq8vLt1fbN3eXnXdfvH21XYWL9erj/R6ND8ddimLqvWuNAAzNXh54XdUAnFpuVR2GQecSuXpEq2qJCdCWPmJRbkHEOgStcpZt23ZdU3dISpmKYUTNqcwcJ6kiVrV+FhE0q5pjyzhmOY31aTjvHHtHTiRWzNI1wbni/IV3EFxpsOO8Dsfsfi7wIclqd5GOxxLLYOVh/wzBmbu5bK5P7e5yvWmLIRwl5SxiQug4OzRzChCzJLFsqohE7vZk4jcHlCd5jnKlsPntl1//sg0326/aTWjXwQfzaK1RY+gUji0bgJoaJDAB8KZOkZqE4EjQHYYB0AfndBRHhBHQ++MwKlFYN8RgDCrFJc4qalbQklqUYqbEAMBVjk7ADJDrXzByTsyMDBmN1MCKmTFAEgSzKoailhTVDGPJw4laldDmbc6rJnimDGgK5DrKMVAysiiaTQSBQqA8gkMFSialiFMmBiYUClHM5xKKekYwdQCBoDrgEjlVFTHnmGbzhJljjGZkRqCACCr5JOKJXbdJAsfjkSBvgqrqOI51U4KIKgpFRFw0kPNAIIZkyAgAxTTLJFgPdXmjzDIRWnnTFYvOM4oGiKSa6+BtIv1ymFAJIqlrHgDIBAZSJJADsHLmLzNdkblUsVUHHMh78iAgSU4CnrzKyAqkgmqOfFaN4sRdvH9+/F//j//x88f97e313QXdNaery/D6rv3uu+9ub75omvDxaRxLSfkkSEqgxSTFxkK38qvWBU+EhKYiJrnEEivaV1SsmBQpkkUkaZywD5LT6fQCSSC4xtWipq06NszOubZtV93KO29iTAFmN9TG++rbIHG83z097Z5jjGSQcpEYEXRM40W7yTnX9Q8VQGDnfEqp9L6kvm1c1yUftOTj7uE+9uY8BybXMCv6yHQq7pS4kJbiGnIQcxJ92J+iGge/Wa3damviCWG1RupszKkfIputJRpCAYysCTWBGpAR8pobTysPaXsVLm+6b37x9suvb+5ur2+6sHJuBUZmCAqQAURAGAggADlowFAFVEAN+tEpUUE4DF7EsMR4PATky8A+iOSIjomJHDhHqqK1g1MQNNV5AokEzCaqYohVdmhRMGNEJQNTVJjkVIpOFMvzem/KG1jRjjLG1LYtGVZcgOxFK4cRC2LdcT/vqAFArCqK4MQbL6qqRmQKlZpu8Hn3CzPCvKTZ88S7DIoRcRjGcRzX6/XFxcU5XX75i0SE+kkaXAa80/c0+Isq+vOcea5Z+Wl5Xyu/aWXXzKxKXVZayKeNyUv5zUCOiAkZjczIVLVYYWYwrbS5nPMwxMNp3B1PZrTfnX788aeffnzX9/12dRXaLjRN27arVVsXsBaQKacy9L0pkrngu9C4tm2bhp0DZAcAOo/Hcs4x5pRSLnlRR9I6ZTQ104V0VV/8QmJzTZh9qrxvGvLOCM2gEnAqc0xEtMjYD8/Pz/vT8RTHrAIIyGRMCFD3j82s5u2cpoWktm0NApt6QkZigzQMPe0ksQscAjGRkWVDSA4iETPf+wtrRunHcUx5OMXnfde2m7bbdK/MeW5h1XkExSMa0Bp90+8UQAgy22hWTAugImRnhf26Id3e2M0Xl96++fbX29tb3xX2AogCGUBHdASMhKCEgCYgxaRgFBwKRIEh8ynKYUz745BjYpHG5HZ7sbqEpnUrD+ywISIEBixII+pE4bczIISAMdR9f6vb4EaCiqLIxBzMxIqIGdkUXQafb7TNywVWipzGYd03q7brQuc9VGsSRKtcFKp7wvXUfrpAN8tcoeok1FOKVlu58ybzLyc0n6FHU3y8BDAA4G63G8fx5ubm8vKy5AxmjlnPGgFmpqJz1fwSkyKidXo2mZiKzbNfw8+BLqJPpG1tpltM4FMxW3QS5uhFw/rg64ThfKZVVceXb7hgaeicqSkgmGaxIhaLHIbEunp6Ovz88/3hecfM61V7fX19c7e5vFzd3NxcXk0qQnVhfhxTToLIzpH33LZN0zTOQfUDn0fcdV2h1GnTYgWpE+d6evLnzFOaBdIBgEP1Bp5jeIrDUosZnV1+FLHEdHjePTw8nPaHkjOagpojQgPyPudc7whVzXC2n2zkPRMUp8ZmcXd8PhWy1rV+FVCD5mBCRGKiod0Ul2RTTI9l3lyPw25//POf/xxaYne5uVhRCyjqxFpAz9xoq9XgS4VBimIBMISBdLDsBTZt01ze/PLNxc2rt+YCBqNAyOoNEJmBCZwCqJgJZKGc4HmUj6d436ddjPcnfNif7nen5/0Bi9514TdvXzdvr4YmrTbOk/MMngFMkJAE2YgMySbZ4lJKKkUNwyS1RohV5aWu9yAjErMpJigkoFyzUFXrO4NJbdImqQGcoo1DiaO0DbsAFAnRJojbkJU9m5kC8uwzOC2azfPqGsHziNW3RBXOYbDPgbS/+rW0qUuWTyk9PT2Z2d3dXdM0w34Hn3qFToEHUzLRSVFtSrmVHrDoS77cI/jJD11e2OIhbLOJ2YRXgS1JGAEF6ngBpeg88JoutDkJf7IMdI6ET5WGQkxlLCUppmLjfvzw4fnwfAzer1dN24bVZnV9d/3q9fb27ma73aqWcRyHIY5jjDF59swcvAsNO0fEoGJFCjsopcRYpdHLsuInZx7O5ze4sbl5YbiKydUn4FxYqNTMrg4ozZCYSn0jIqCGajml0/5wevfRTmPIVsYRJXfe152bh/1+tVp13TqEIMVqh6yqLXsiAFFS8WZl6FPuW7d1IbQtSgvUmnjwBI0Tt834GC35ssOEjm3VAWif+vuPI64LNF80F6+xbVYNds47L5ZHDVZMSykFiokQCpuBwcoUMpDiuuXtzcV3rzbtdhshCTs0dMqkjo1ISQuUBIecs0Cf9bHXHw/jH552f3h+ejie3vXwfIrHJMOYgtpXF6txe7kBaEsiChcNAIJh0ZIIKKNUDRgAQ5pohjlJllIYm6bpmoYJoSZoBIIquVh9FkhAqq+ZzmKpMzTF1awWEZENChS1MUlMYoaOGch4AspJCZShzDPdBeepNFctk1sHiIFazlKyWGvOh/odcA7gc5bFeSQvoTVlvImxBFWjuNbPqmqiRFXF0tR0nni++Nzbp2vesHid/rWED3PIneNM51n2HDs1nLQEFYEB1EzNZJabOkPjEIkMxVANFRDFFBEVRKyIaBXZGmM+nPrn49CPchzz/Yfdjz++3+92XeuvLtquIR+w2XSvXt1eXm6do9MpD8PQn8Y6/g2rxvummhE4D1xxUZWcSxVmWjTRq2RNUZn6fDhTyWVgpIU1WAO4ZmN20y8MQFTrhSiqAkVKKSmXlLCopHx63h+ed3Lou4IB3H7ILGUbVmBSRD+eTfLq5NqqdQsrIgIaM/rq0ygKKA4AgNDYO/IduitgScUZfCM9hDK0VpIMBcGZFEimP338iG3IzF/k669eb6/WDKDjcW+NL8WKFVRxJKhWW0pntAIpbO3WX3Trr97eIrmoeojeI7ABFjNBFRhGGKI8iz2P+c/78U/7+MfD8MPh8P50OIxx8CGi080W1uxyUo3++Yn+9K59bW7boWPgHHRUKagoZppyVgP0SH62ljVV6PtRFeo8fjpgVv0xlCrNkAgUBAzVqkLbMgdmZiAus4EjkIFxijoMuRRxnhErNxOYkQHZmFmcghgSnxmjMxa1IkVEzYpJYYIzgi4jvHD9PmNlfRJOZ/9ZVGos9X0vIpXSUJeBl5x2Pmuls1q9EhXng2NTQTn7DJ8l2JeQg09HXEtRDQBqkyd1HfbVvtdmWkgV6zWrrXJNxUy1ifu0eJ7YxSqqVrJmKUNMKUtSHLLcPzzdP3wcx/7mYn19tb68bNaXYXPRXF9fes8xDn3fD0MVhQNEqneX91x37ZjZAIjcEI81gCfybdbFHqzWWcsDZGZiaOd5fX2Yi7AGzY3x5yxxhLq/pUXyMI6H0+7p+bTbVy3kZQTjva9aEXWwWmHwSsD2PjCzodpMU3Oe2uCyCIM5ZlTiiIZoxuSQLsyc5V8DhwuM4IeTDL2AQ2gZFEahdx/HQ94f+kZsU26wNU++ccauEDCSK041VJ9i085cbFSdroia5DYtD8OInvc7AAVVK0Wi4SD8FPNxkKcsH0/pX/bDj8f8Idug69yurRFsFYBds1VwNPZxf/9ut2v++Iff4tXddn3DTecjlREkEnsxKCpFDQmQeN56Z7MyplRP/8YsOO8QTbVe8wDFESMyUJU+NKOJObAEMAKqFEQENiJSw5jLsR/HGEPTGtdBdBXRA0FjpILKYEQ8+05Ppkf1oBbJJkoVnBRBaBculM7mGp/hVX81jNV0mW1Uwv0ymjpvqpdgtvlHTOYD+BLJi14fVL2CGW5eCunPRlyfJHCY1Ethjl5UXHYAS12JRIDZU4oIgQkdsxP2hASmpiJqdclNzCinFFNMqRQ1NYq5HE/D+w8/9/2xDXR50V5ehKvr9e3dxc2ri/WmM5DTKR0Oh3Ecq7xzCC2TD77putYHYoeqIgVTLMMwxJhTKjCpDtjE6qVJ8B0RASbxV3YYQrNI7SDiEre46EzUIqSWNmfYZ43Jx4eHx48fnx+f9ljUEiONAdnwhDJKBLJqAFTr9wqSTUILJmbGYAVFzYABGUpMbrVqBayoiBVG9p62jlaByoBG4aPJO5NnyRGAsllJIKt+4H7MJY2OB0qrVxdwtdqs0NAJOdeItmpezeViog244lUabb3BITPI6XSitht2RzNLUoYiJ6Rn4Mdsz2O8fxqfsrxL8GgcuQPvAxGbSnOADAUIFAQZiEspp9Pp8Ej97UX0pfjEpdcyIntRgm0LVbXYbHGmMkURGS0CgGd0xOi8gko18xJUMkaa/X5eUBt9ETP4RCZCBbOUyhH4rF8iIsSyxE9dlp7nqy/kkFKKiTKByMsCEHzKeTiPEOZPqujzKFpIFPUjrwCmw4meMS0tGVBVZqWJmznv68/bpzp5iE4BDy9T8VpSwqeY/Kehe0YfRzL6ZHu5KgHQGSi4NNILCwDPVjSm9wsYRSoWNcTcx7Q7DO/vP7778POY082q6TofvPlgq3XYbDvnuBQZhqEu2VaLUO99G9qu69q2ISegVkqJo/R9HGNahvnzfA4QsRJrqiUS4mSUww69m3QqbZbv/qxJ/uzXOeeSs5SSc+6Pp+fHp4f7j08PjwfMYxmC85GNEFBTnwdmbrMxM5FrmsYUc871VSURK+IAiuRUklinqjGLWzeac46mhoSeqOqiEb8iGcG+HHjvG2vsQ+pPKkhhveuDa1I57fPz7/3zvlz+arz7m9ebTQsOfQt5jamz3EAKQRiNsGr/U4kc/fWDUEG0E8ZDGovuiz0kfcj5sdhRIBr+CcKQ06hijKSFslgBZ8jJVjqwPraYLiHedfr2enu36r5/PVw3j06cWAKPzkOCpMSt+YYdhiYTxyjomLtGTN3JSbZULCJ7ZGiAkZ0ng6ImpYgREAFStRcDLXvR0ZDAewLPyuwKBvqQduTDEFPwq0HK+93H1SuXmxifMxKSNx2yaCayxkFRkChsjMxqlBSEUH2jAF6DQI5xGI8Jb6FrmElVomBgdg7JG5GCImdEBSsitcSqc12dd80wls12u39+2D893t5ev7697PuTiCxbSstO33QTUREzACKuAniqqqhYCYvIUBXVJ+Y/o8RSy3tABaRK/CYiE0NAAtCJDkfTMiV5rW4MFYwGY0MiH6EgG5MRAQM6MkZxAIqQVUhJRK2QFNVqFkf94fiUxaJoKdpAZ4fTw7/cPzwMpZfLQME1TNT58Pb21du716fRj/3paXfq+8EzImSzwrxqXNMGDqFV1T6PKaUxx1FHU613h03a5hAaqnX+hBZUxribNO5WwatqFgUAQK4+B0QE6qqVs07a6ZCtDJLglMwQ1ZfMT7vxj+/u3z8/lYaviyTGFPvGVegO1t2qWot7XzcHhR0i1WFYzP3Jr9a+c4i5YdPjM/vAa+fatnHBYcpZtEhJE/8PN6573eLhgkfgscR0LAiQFNoWPAiZgeT8+PHD6YmfH9rhyy++vGQAD8CaGQRBRbJo6XUlYNksqo5qfS59kVTK+4hR9FjkUOCocFTtlYqZXV4hIOZiMpooFXEGLbmbRI5t04bbbftmZW9X/OWmuVs3N/nnu81620AH1DhExopEBwpRFFWBgJlJFECwWpHJMvGLAL4J4BzJvBBszB4JCQEm2UpmH5DRmBBzzpqy6EhCJIaFVNUSlA5lYMerphnNzECIpqZURUGN2akq4JypDKscpDDmUnJOo7Ba3XcAlb/CoKxfC067UCBq7G02m6rYFEJYr9dL6CrgZHYzKVku5euUVNXqtK0C7p8Uw+dfC4m6ytbVImXhJAFVbH2qnBVB535hSVDL3fFZppps0M4qnaUNFtExjRUCQ4Tgm8Nz/9NP7z58+KhFLrfr7XYNZE3bvn379vr62gz646nvj6fTKcYRgvMe6xbR7e1t27aImHOe9CVzzjmHM5XVpU9hZudowcZrAL/IbhhR5f9R3QMhIGTwdTsABIoVm4UEUxpRKGd5enp+eHg4HHYlZQBrmmapmxb5+BijxASiojmPMS8arCLMHJzz3reu3TjpggGQFnLOExkCE6ZkpYAaEzKTK+WC3S/WhIRWDCP/GdpTsZgGAPQOHFHKOva7h9S/c/hD6bvgN45asIBCmIvEnONz1pTllPMp516tV0giyeQP6sW0AAiSeQ+e1aGayfFBpZDGFmVFdtnhVePWAf6RbxsP27Vdr+GqLdeh3LSyaWJLV5dd0xGgkGMkH6pyZxEcxqSkYd0yV01/mZEhFdEYY93AIajFEilUTV1hAiJSAxVRcewccYuKRUdNKWkvEFmBmMU5ADIFzGiRQ7vKlGoPaWaeqhiMEUnJFeSm2mtpna8gCMhY8hjHEDGZKLGSTYzdv/aFZ0sCZ6Npaxt+enp6enq6u7u7vLxcdNJMP9mIOCu/6/cRnZr82Xljaupk4SpM1wTW0l0BAKnCS2YmjITsqjCtAZnZtHCf8zlTeulG2FXjdCTCarE2Eb+xduM1gEFVcylFtGR1LmTNRNQ0fr//8OMPPx32p03r7262m41H0ovrzVdff31xeRvHOFEUYywxFYKubbfb7c3NzWrdAkCMQ9+fckoKRmCOUEteUKt5MDatedTnNC1suZl8gmykjFznCsxu0vmCF1xgoY9ozvVtHHfD/fv3P79/9/TwGNPJE0lYVtBfdMLr1KCkrKpjP1RVYCICM6409VwUipFWWomIueubm7pd6SLzOI4VTNds4g3zpS+KbrgoUZw4+LnXcWRRREMm9iZ9ose0L1nzU+rasPaeUZgMSaLmMQ2nQYaShlwGs8xUEBOiGMhmpVoMBFFdSVy7OdBwHFuPFwFvW3q95tcb/+aiu+yaXxVrAm06XgdYO2hJW7aGxXerhh2JFGNVAvBmULT0+9Pz7gDOX/uV69b1kueqpYymajnH6UihEZHvmIgUYHpKk+wykms8+QIQY9wd9of9o+YMlh06JF9czilK0TyW1J+6sHZIZlIDgpk9uQRazQ9IoXLOVCUVFREgLFLGNPSxbzMXFUNQRKv7fn/tq6KjdU20ptm6kDBG2e/3zrnqSDycTqpCZ0If551zjREzU5mQ4aXlJoS/moTnFIqIhsAwKYFhJXDV4hlABSYh2PNcej79mqIX0CE54up16pAETNSsSkACVIGholoKOFcrahzH9NNP73/66T0Avrq8bBsETGHdvnr76uL2CgCHY6oCy5oLEQXnN5vNq5vbu7u7sU8ppb7vx2HQMwuOVCUjZxLy7A/8Qk2Zxub8CS99pvfQArVXbpDKNDRKKeWcVKSk3PfD48fH+w8fnh+f0jCaiTkYx9FmSnndSaq8sapIVlQJwM3eLmaWSjGDGCOnPlrKagpkEFy32eacMcZpByrGeoGNHlUSWerY3a7srbkDYF/SsVvHmGIqKNA63/nVKerj7rQrXfDREROoogJZAoklQz8CEHiG4MEFcAhqIKWNkcDIikdrWRtnHoHQfnG1Wnfh1ca/WblXHb7auuuVW7d+rYcmuFVoWiKP3lHjKyVVIgjkQrmwIhCigA05f3h8et4dQrdaXxVuq6OTsUMkqW1efXAAymgAQM26ip5Up/Za2Dh26DiKPe72P7378O7n9+NwbIO/2HTbFpgxpxTHIec8DP3x2G42byeFJMppsoAzENVcAMBwkjgvojHmVDIYKpaco0ipW+siVbbj3yyha6KogXEewB8/fogxvnr1ar1e1+QcY2zbVgEUTGFmYkwv6kyYrpJKTGuuxmn+uaDWlQhqlREDaAhIaABUBeWhDnjFQHLN0jPR5RNtunMkvNLUqtakc+SJEVHUTNREgVDVskpWEbMUs4qVouOoP79/+J+//5ef3z9stjeBYTzu+RJff/nVV99+5dvmeBhPh3Tc7fvhqFq2m/X19fXr25vNZoOIWnJJMaWxlAQAalhKySkBWJ0qLXtgc1Ez4c9nLx/qX1SrowFSMFIUBABBRVU1leldFLFcQHTsj8+Pz/c///z8+CApskM2dggiupC6ltURZm54uj7qPVI7l7qTrEgAyEiBnau65ugdGCOYY2ByTdPlJjc+jOMYo1pJULInuWL8auWLMWZNIz9lOekJsnXQbZmcd1FKbynFmGttVQesDEDoQRCRgB2aR2AKSqCOXqWDZ1w5vGz8tg1Xrdu2IXj88urqogu3XXPVwIXXTQPBA5Ny6xvyjIyFpEAxSoUMyBcAsKIkEhTMM5uJZB2jJFEPs+gpgEPyTM6xqkgBg0lks/IEXBeqBApiEctkVYAX4xifj8Mf/vTjH/71x4+PzwRwdblmWnUMTQgXF00IoSpdqGWDgsZLqlFEQhKqEhnFzBRMDWKWMaacxRDQRjBpQ+h8QAMtBqiMzkz+rRi2ebER5kFijPHx8TGEcHd3573POcMifIP8lyv1IlJfT82itVSsmfMzcZ/l1zGV6TcJVHFG4mdxaa25t8xM8JdBMZ59mc1iSUiO2BG7yc3JTMSkMiBQRHPOWYpp3X1Hpibn459//On9+/uUshn2z48Fhzdfvfn211/fvb0pKk/70+kwPj8/5xI3q+76+vqL128ur9Zm9vTwqEVTSpLLEoj1mYSmWRiRy/Op8fnp7fPJTiUAAiEYCVaiB9WHUDFFNNMimrIWicO4e3p+engcT71VNqWo4IQF1Pti2donomyKaklKlCIi2dTMcs7ekImZqfWha1ygnLIQggP07ByhGghIIUMI6sEVwr4oldG0gCg78x11a1eG8t7EoYLQWkurQAHAtc2GckqaFQ0MIZuZZxfaKyz1NDNj8BACNM4z88pvWuZ14I2nracaxp2n9mq1DWEbQofqsbADI1FQ1c6BY2AtKtkKYiFMYGsNCkQYhNFAgJghM3C72ijxar1pmmaZplbqjGosrNVBUVUzIACchpGIEFsDYvZAYIY5y5jTfr+///D04eOuHwoBWkl52MdNuLtr15uOiNquKSWpkZozs8Wkl5ENyTE4YjQBUNFcBCc5LUMEBCmtc8GFVdt5cJYKgHPIGeTfit5l8bB+DcPw+PiYc3716lXTNLW6JoCmaVRVEPXTalhUi4hoqeuNtSA0nBG2vxDlqgc662ySZghoZMQ8c0vNFMkm0rAioiKwfjJ5Xr7hJMlAyxq9VdWLUnJJWRWUsRRNJcecERnMVdun02n48cefTsdhvd469mP/dP1m85vvv/vml18C2/Nut3vu++dsoutu9cUXb3/x1deXl1skGfv+dDp5JMlZTRCmS6Yh772rb+JcSXfuMmBBoQEAZ/VZJqda8QusO1xWzShEK6Mdi0ouZYzjsc857/ZPTw+Pz7vHNJa69ARq7MGHsJinMHMNYEQcVQEg5VQD2KFT1SSFBF078cCCU9AsuQgVN/SFCBxX9gE0HoPzsAZ3wpOCDfsURy39ZPYAul9hw3x5deFDtyluVXTVtpuLdYg/DyeQJI68giU1CqFddVsCImrIBe8bcg1T1UMfLtaN4xXjirBFXTOuA7fejytae27JqGqIkhW0rNrphsE5wyyZrRSsHBdN4BEccIuMaIUdMpgj3l5ecghdt/YhTGYkBM7IB865IqZmZmAkIkQQY5xNcerUHkVLydl7b8RiisCOKUe93x8+yG63vTwccLPt2akPSARqTcq4ar2q+lSEofKbFlpPHYSKTCaaAEjkMGvj2q4Nq9AwEoiaAPK/WUTX0fEEjTIjYt/39/f361VTRf1nG2ho27aKGC/gKp5p4qlAtZz9jFCVUv3mLw7a89dES6qF9BLnMLE1AGcag4CBUtXA+ctCugJWZ1j0rDRWt3YM9WWlXpDRBKqs/NPj7t27dyml1equZvPXr26/+9U3l1cXfd8/Px9PJzkd43rb3N3d/PKXv3z75rVIPh2fp8c1BypMaDzSJA2hVYB0YoUhMCEASqmcuQlemgfCyOSQDVXByAgBaLL7m9VLIEuJqcq1l5g+frj/+PDh8LxDo7qpzg67rmFXqmjZkoprAMukxs4gzJ59CACAyTWjNk1DzrwDZqG6D4/mjk8fvfdt24TgXGAiR+QBFVCC3x4Hn+Po1hvre+p3V5v4fWjeHqw/DnrsX93d3NxcOW8XGy7DbZLLlEpKSRSIyDXBsV+RqzsvlVHgmUO1Ml2LJ/OeFtluR0wEF0IgWtAmu8BihK4BBzwkSbEeHzIH6AQ6QOcRUUvZ17Yhp7zve1WDqBu/bt2aCqF3jW9KkTFnytxAU9Ci9WNKYuxcYLBbYckpO/bsgMmUHCAwOm5X/rhq3GbN3PKph8dRdqfx/fGHzf7jZh3Wnd9uOka7Pg1Xr99aGIMjgVMTYBhi4A4cZCc6aikWhbNgMsxWQDNYDmGFHNg1WeVw3F1t22YTTBJhK6piKoTOUa2ui+Sj35ZyWLO2AQMVVZBx3D3t//3f/hNrMlHPiOhK0dOQFNmRlSKlZJ23fMHEtAgQTQK+ZGa1AFNQNAPgCscs+JOCItKS+c1MipoSAiSxEIJKTqliZqilAAiHlnkyWxYTFXOOHTvfMqg5QjDNpVSp9RjjoBQLEVEZFBA3vi19X4ZTPPnC4VTwYYc//o8HVlrd0ePwcXXd//YffvHm5rUcAAqVfjwNzxHjL66/+t33v3j79nYYjpVVKgLMYYwqUpO5r5DyNKwqeZoV4CeSvWwJRMAmaUmY3MYyNc4xJ7Ui6pqW2GUxYIjloKCqWlLKMachHx4Pj4+PDw+n/phDaB3hMAyFwW3W0Tsdx4zBkE3BgTnySGqiXbdJKTFi24VFbT94V9iLY9ODhxSsmBUXmpN4dzgefXCppBBcCC40rmmCc65bOecJmJRMwZKkMQFnICgyHCXGtm1vLzdvX18HB13XxH6QKkNSdMpXzqHjzgFiXWgCBpy44MRQpZjIKmhAlQWkyJNApCJVRYKqPmlVuQIRq+vPwpWtUPvCOjSz+rh9cBw8sbfZLd45x6WYEGIB1M8ym8qk8EqARC/0GrXiPW8vNhenPhRkbzEbAJRYROV51z8/SeMJTG5uD1fXt//0H37FRM61DignEAURJXKqYx39FJsWD+obNqJlilFfgGo1SREAY0QAtYmZLWhA+bjxRpLKWELbHA79026/Wq2YucI/FUWfFgONyMHC3ASomzcx5wyuWcatdsY9/lzo+czC5y+pnSJi9iK+Ub9mrrUREBogGCARo2N2zFPPWIWsz/Rll4LCIJdcREqpggyoSdIwxP/+f/7X+w8/311d6nhqEO5ev3399ksKzf54GmK8f3xU1a+/+cXf//3vttttnfQudqG1Af8EjJo/9vMW/fx/oA/1zetkGYMASPiiGVQPYZE05iTFVMSK5JxjlZY9Ho/9qe/7p6enw+HAaBgaVRWTlJJJaWpBZCaiKkVLQQBmPh6P9cXrrEk+0W/DyoSd5KI5SwbNoj6DuofHj03TdF3Ttm3T+FYCAJhB1zUcGgoOPHIgcgZYEMpxiHl4HnenFd9dNPhq2waPTeutc/WzTKWI1L10R0RZ9jhhj4AGjOTJiKhZbad2kWqEL8ci2SQXiNVop/5Ta7FJ4rS8rLupysJrE5kElpl5vbkAJjWLqhVLnNeBlg+y8g7UTMx4uSCwqc2PARIiqJa2c3c3F1nSaZQuGhG1DTw+xhR5HHJJEEdLeRSFnz58/A/wO8cheCUwwpJKkYJgXBntRaCqhirUkYlWm8JSijBVscVSiiM0qFdbdUIo09TPdEOxcZxzZHIi7v7+fr/fv/7ia/auPp8sUorW6EVcwKdJp76IiYIo0Fn0zl3fCxESziZPZi+jps8a2vpnF4roZ/8XpmWAWjnPftlEdWuamcUsS7EiRUWRoR5ok1RSzrmomXGWEgV2u/6//Z//v+HxozYEPb95e/XLX39/9eqVET88HB+fPh4Op6+++uL773/79u3bvu/7vq9hYLPaFlE9SThhi1MP9eI/vLQY9ZU77xb+7HJ4zAyQmL3lPFlSKmjOJZcSey0ynPrjfn982j0/PT0+PhyedyklA6mmUOyIlRENCaRMuqUq1VxAHNWthqBqdculhoBzbGbggSp9zRMwoTGSQ3Vuf9q30iqqgGQNxVQMm6JG0LZNCLyFlQ/UdSF4Cg4lPT85E5aNsxXr2kHT4Koh1zVmVsREJEmZjDsIY24r6AdqDLhs20Fd9gGoMu6IVv3cnKvs3Fz3dF7Y9vqitQkAhC8+VAucU6UAK/5uQFnV1BCNkGA240I6XwlQs+pmnHOeeAsv5vRUW0dbtc3tzWWx3JyGVTTPGJyKjmNvnrQHGYZhGPbk4sNuPw6w7lofQOJYBFShGMikwqGlaDGSaVEW0KyosqGAGYCa1QoGkRGk3iBVyXzaLkC98VmheI9AdDgen3e7pmu/+uoLRKlXghkaAmhlHUDV0FnA52Xf9bMcewaxcuV41K65moOaTbIES44922eYpBhrNp0bY6wivxXLJZ64Tc5NHWRVLhDVtGzxqZqJLTaAsaigGaWSx7E8PN4fds9Ieto93d2uvv3q1W9+9zfAfOj709APfby5vvvd7/7uq6++Op0OwzAAgHNuyWNmRsRmlcxTw3Ve1QQ8R7DONzeX31ner5kheZjn8CRkZlAySqnF5ziOx+Nxt9vtdrvD4XAc+tC4kgMZVPtoYnDOUfDjeCQE55xANV05F1TjJSe9XIhk5MwhOcdA0VDRMSk73zhyKFbGZEWliKlhEVMQNei6xnv2Yd22wTF6R16dDEN/dXV9dfvF7eX1umla1zZsOlFti5IIlUmkBmPpKrMGDchmEV5AC6VyCcjATEy1SBKRSi1Iua5x5lJyZSyUbNVK13vfNF3T+rZZ1dn1wnFzzlV56lKgCNRgAK4bR6oqxKgCBlKHNDgBL2IKImgmiNExTxMFYkR0Dtm79bq7yhsAaIM6QrbSdV/2Jznu5eHj8b4kE+hP49Pj/vFpf3N1zexH6VMqWmcKZVr3EdOiJoZQ44MngeJa4eOM3zgiQK3uRwCAoArCCADmIRUj13WHPv98f4/Ov/3i7WbtU8yqU/QisJFp9f/E2WeglAp11gMazoCrTwYk9pKNcbZ0UVXDF06Izu6k53tz5zwHAGAwAmKkWmE5BIfkkByzitDs4hVTqp9vNiYCtZw1F9MkpQhJATAehuGnP39gct2qfX6+/7755quv317f3p6G4fnxQXL54osvvv/Nr77/9ledg/0s32dmVRmjrpHU6U5dpSACIq6tGcFLfL7Uz4hqUGNniuS5a8sxAkCMY06pIk9xHHPOKiWnmMahPx4P/XGIQ9FiaFIEEetCoZnALOlfLbhAXiDGWgSkmBbXC5sFmBARyohISEmljMPJchTH2cjdvbmbrudiWQyocBFgwQGZClGVHwBPfh1aWltQJlUwvthur6+vt5uOSZ0jKZPYmp99wWqh2gmIgBVQmYV2DUAtW6w1ZSqp1GDN0Yoc+tPMTS3TqydDRO/Xzrm2rUZoq7Zd1c8mhEURAqpyU4z5cDj0QyIXfBOISRVFc/1cC+T5aAIzzyWkitROj0opKWUzA+cnJV6zxjXrbmWiKYsjJtNNhnEl4xpbjwxRyuF4fH74+PHDhw9fffF2FZyZFc2ILFaSZKv+n0vYEDIxE4BkrVoVTEaYRXIpIXgCm/wbYAoAAwPAISbfrpX4cf+8Ow23d6/fvL4rueRc/XLVFOtek4hklZRGnW2ml7bqfNi7nN1pVKs1XVdWFoKhKUhRATlvFJcExY5ElXiqPxGx/pqZF82AefMB6g41A8rieV+yqBQpBk5BUh7VSq20SsYUgSH0p/zupw/kWvYB2G9vL9fX2/646/v+/sPPdzfXv/v+u199+wuP2u+i975egjX9LhKtC2pVpwxEVcLB0D5XtJ4D+BMS6Fz96TgWZp62HcBUpYx9HMdxHIdheH58+vjx4/Pz8zAMOcYsJaVYtxG9I+aGoNRIbdtWJac8ppQ0Z0YkYiYuZfJ4rugPTO4D6LWwcUPmwCwniclADIr76puvRCSlHMecswBUUxbKQv2YASgEFzyzA4du3a49+ZrqGt9676uxUM6RsK1gVD0aYpNTc6XE5ZRKvVtFq9Dhw/CgqlXcWnIqpagWUEtaT1gturjK24fGbbe3s15255xjnuI254lUWJOMmR0Oh/v7+58/PHz1zTdfffMLRhSpQWumle86KTCJgQmogpoB1EmZVh0TM0O1EIIUr2rO47rtyCAWCS45wKfHHTtr1obWBL5wHP/041iG/OHjx9Pp1LgVMzrHWUUkGkgpteUiJCJDUyMwZgST6uKykOnOVskrtcwcgjlUNTTIBYn9/hT3Q764vnn16lVgSnHIOdforaV2KSWWLEXHeIIz3+BFNX7RNP4E0qkjzkWmZybrikgxPZe/xgXTxheD+QWmRsTAEzNxQo/IHDMhapZakVXOY11FFjBQAJMYo8HUfyFWJVfdP/WPD0dRgtB+9etvX337dfL48f4dAtxebn73/a++/fKLhiCeDsMw+FWom7e5jgDPkli9tV/yah1dlxeSyXkroVVPxNCmWeC8nYF0/sxMSskxjv3uaX86nT5+/Pjw8HA4HBY/mnqR1d1V1QKG9b723iWdLC9AdcL2RernYmd09/qprT1777rOr/2AGcAUERpy7ubmSqTKO5W62SylsjopJSXLFZlsDNm7EFzbhrqtMclYqJrVGdq8O26gAKXUdk73z39OKcVhzDHmmKrDhRYZoOoPFxMRyWhQKePt+mZ2aaAQwmrVbbfbruuarqvEAyICqGNGNLO+74/H4+l0OhwOx+NxGIYPHz78+OOPRcCF8MVXX+IZH2gWnZupfAYKUjHv80NcQ8hNxkUAZswUXGOtuaIO2IrxtY4x5ixM1rQX3rMW2e1Pp9NpGHvdBvLsA6chqQmAFqlYKzMwKKhVnh4wESy+bFO3Px84AACtlFswZCQDxaYrQE/7QwH84ouvNtt1HI4OoaiogEip6TdJqSrEOolqIBEjMRKrTSKY5xlm6YdnaFCXjDodptn1E868PxExlwSzrHf985PIG/GsXGG1jJp3pwRma4tSShXfBkIRFckxJ6Sa/ZnYE+vxsO/3Y4xFzJxvvv3Nt7dffpkMdBxWTfs33//qP/2Hf9p07Wm3Z1OPejqdarJ1zlVaq5lVcewFiJ5OESozzy6rn3wtM+0FqD9z2CHVuuUbM1hJcRzHPA65xJTHmIaYBtFsYFSzqhIBLkJjomKEqMXgxbFxwc9KkaXZnuvqieYZCANTwxiQVaGoVW6/64gVQMh1rkmNxJj7cUgpGWZETCqaagkcGkKHoAO40CGCqpiVUZNozDmvYIsIBUYiY09jysfDScSO+9Pj48en54eck0gukoigaZqgmYMP3lNwgN5736zWbduu/FXXdfWlV237iiqTW9UiuZ7QnHPlbD8+/OHdu58/Pjz1p/j+/YfHp8Pp1P/www+bq+vf/MM/WNP5ld89R1T0xo1fH0RADNmcg6KGWszMMRWdZ1QKIuTJqdIY1WC3Xq/JsUgmcJ0nj+wQqfE89n0cVwH1BNfQGrz5cP9Y8qk/HvyXb2LKUgCIXRNOx13rtpgFiqBlJFfYJwNRXZW+aRpgGosVMxLbgNs0GwJDpCK5bRxYLnFoQwiN6/v2+Wl///PT27evX19vUorGtOv7gq5AKTbTy0qJOcYYUUrXdRcXF23b5pyrGTwiglObSCxE5Iio9rNDGfFF1crYrCAKUdeERY2x1smAZmDeBSZnZmDYhHYZWTlniJOu8bKpr6rYQI45SsoWRx3qhE9Uw6ighSICeQVXUi6ahey+3//X//5fqUjXNHRzwZfbgm7sUzgd/t3f//2//8d/dAhPu2cAQIdintI0Sqz3S72yzYypsrhpKU+n/SESW7Qz2BOiIqkZYw0w0VykZMlVJxzRooiwipmO43g4HPb70zhGl7DsYz4mD97YYsXPvPcYmbmKPziERllyyvusF2VIB2PpNj6NqgimcMqjQamVjiuQswGIRw6M0dakBSGNNOaWI64IsXHmyjxlwNmIoEZ8mc3EbHa4QsRSiBWQqK6EEbppj9QwShLJMR3G1Kc8Ho79OCYm1x9j3x9jGgGA2YcQ2i60bbtyXDEGrGeCfdM0IYSuvQqhjrKMQ5gxGHE0oakppVokf/z48Xg8vn/3z8fTMI5x6OO7nz88fNx9+Pjw+9///tvffF8PXJqXs83UOweSabLtnj3gEXUCNvDM5QsAlIgGUKI4FTMEQOh9QMSMgKaE4BBRjYBz1DTmJKcxHk+HfZm2TlMx9dwUQc8ohqokYAhAimpgqqYFzTOyJ2TTklLsj+SCMqCKGTv2GIS9q3TGw+EAE1PSqthDURHFxSmiPqjK7yWVCssvW6+10ShR5zGpc85h3QQUQXZ2Rpw+R6qX3zzf2kkxn9c4Zyju52o+86hZau5dGPzTtJNN1AxRwFJOYxYDGlN5+HCfxrHElFJcdWG7WaEUTfbb3/72zZs3Nccuw7Aym6fS7BFxhpafm1q8lM0zN6vmZDazKileVemlJBCtiKOqZpker6qmlIahKm8N4zgOT/un3fPhcBhTLKWknAHAqYbZVPPl9XhPRCNQRfhBAYwI0MDQXvTPbIGvJlBQSMVyEk01aRrHgt4djyciR44BIJW62YSIDCDLc6/te865ToCCOe99JVoAMaAH1CH2MQ77w8Nu/7DfP+/3R3bh6urmcnu93a7nIgpDCG0bQggde/auOsdkUTNDJiaPyHVXy8ByUYCpoM39fV3BPx6P9/f379692+12pZQUhxDCxeV1t5KYtB9L+undx59/Xl1cbjabpgkxCyDmIpaLm5dayYBqTckMIARk7F64BDNvgYhIiqqW0jSNR+cRoAojbcA8WuOp9eQdtUE8kCf88NzHdNwfnhyyGeZkBYGpU1IH7BmtymwZIhkZoIoJSk7ogcGxCUnSNCx+UFPD6RtmTCn2Y/74+OyD61abCfsrUkqJWc4dQHE2UmHjM6sOXFRgA7rq0BPHMmginLaamsYtqM/S9IYQlpUd+9TId4nSZV46XYv8yflbCJmlSCmak5SsUswMqoCHghVTQShqfcpZsYg+7k7758PYRzAJZJvOs0gZhzdfvfmHf//vbm9vmTmVafF44YfQmQzgUpEC0ixuPQO+Ux6uFT4jIiCLSL21SonVfAxVmAhUdDbTAQARGYbheDxWDdBxHIfTsR+HXN/SDAQ454gmzQMBIwBy7IDNbJACQqY0jWKsyni4WtqqKmglI1LNKIHMo5IaqpAYG1hRwOyen/fOORc8AmedOADn40GYLTYX+LGY8yqVy44ECmToDWLRHHPqh2F/PByPh83mog3+9evXVTu3XrrEM51dHSGpVVMYkWJaDEAQcj0359c2AAiVw+Hw/Pz88PDw/v37h4cHEWnb9u3bL6+ublarVRa7vn2zvrza7Q8YPCI2XQsEpvMuawVL5mTiiITRu5mlVKUk+YwAbAhGRU0k2YRVsqqKkHMuOG9aHGPwGLyPjbY+dKEpfELL/bC/6C7b0Awxl6TmiMkAzAMWMBZUMCPk+tHmUgjFITpyYA7Ug3pHIbjKNsmlOEZDjrk8Pz/3ff/V7ddd1w3DkKYZm6aYAACrl6kqGKioafGhWbKlqi6OhD5c1DbkeOwrKbcK4Szg1rLOVn/BCN75OjgxswpNm8JZyn35QkTmv+48apVyINV8oPbVYLWHR1CwpCJm5Dop8vP944efH4/HY+O42YQQsKTTJrz6x9/+7ZdffklEWUpdvYJZ2QNnnapaM9YXIyKTlMKZRMH0n2envRoA1K9xGETESsaan0Grr0KsZp8pnU6n4+nUj2Nfac9SAJGdq5N0M+O6MWYjEYFoXU5BRFfv05OoAtb3rLPLJtCMQRjNAqZIplYCSuupIXLgzHdsKRdjUzeOo/deFBBLMVCtike41B7LdTuxnaxkAQXDgrNagImoEaMPLjRdt+6GIcdC6CoT/WVEYSgFVEw1T5ztqjNQ1SHqPQ4lplJ/+rIGYGbopdp51tnAZrPx3l9cXLx984vtdts0jaiu1lvfdR+fnr77n79+9fotIuYsxEREyOSZaaZGEBoRNN5XfVPVuuEFNYDngsfMLJVJY7E6rGesgCE6NhVAYu8JkYnVsQ+hlRDTkPIYi0/MPrBLGM3UIVQduaoTxliBZiroRUsqUxsGoBWod0TBOQAomkspRI0B5ALP+31o25ubG2Ya4phzSZJiijmX8/hZCrYqKNO2rYhUnTciWtSMAYjZt207jlUbOeVxqImr/sX6J2vSOi9K3cwQ1tnPhT41aqiI0V8GMACZoSqUojnXDSeC2VfJzEpRQsc+PD8f3r27/+HHdylL1/lcRmS8u/3F3/7ub77/za/J8WT4K1LdNxWhqjUuSNty8BARyVc4dgKj510Wx/WYqYjINHur44BEBsQMZiZFVE0EEV6i93isz7MWMjnGrEXAFCuEDUsjg4iAatWlfFK6f+GQglW30+kfFaoajMTkHDEjQl2VHpm8Y/QQyCGolpJNiqvMGxFB5CqrQg6ZWeWTbuHlBgUDQtEJxKJZCqTEpIbOd5uLa2bvqMkxD0M6Ho85Z+fq8pTWztnMiERVc5kWY6ZLEZlQKgixzN+nneaiCD741XoFhOHq8m69Xm+326vr1yG4OqHZXF52F9sxxf3x4Di4JmSV4Llyj6UyW+eNVUekhM109SKaOkKuQAAQWn2+Whl9ZploNANPpAymWIhyFvLgkJQYHTvEhvXt6qvn+6c0jFqEvXMefIGCyoYmVsAQlJHMwEDFTNGLKSiIgRioTtRoRnMEAmYVMWZSgGM/nE6nq6urrlsNMadUsk6zg8/YFws7bW4TYEFTaRZMzaWIFGbcbDZd1/V9PwxjEljslM5mWtg1bdVbrfiz9009muPY4wtNlc7by89K6GkcVaAUSTHXfxCRkJGJ1AxAi0E2RJJoTw/7Dz/dZ4Pt9XXMu4ePf/7m61e//dvv//1/+Mftdp3zMHXRdWw74248l/3LrPu8lvysJzczo4lSknOuPMKaxmqT5ZhNiiomKXXtse7u1hlYzSj1P/s4VkkRU8WZ0keA7B0BKikpW55mDYhoJYMUqBOcqvSElWKEZojEk9iQM1BUM9HBTS2lSAAAgABJREFUAM00a3FgdeKAZBPhE8QASvXI5UmxWD65wJYwpknQQUQmmrKZKgxJCcHAN+2m9S1Ds3vaa9b7+3ucGHlYrda898xeQXLOKZZiyux91cxnXq1WqgLISK5SApqmqe+kaVNoVqHpV+uEiG3btm27Xm2BSVVDcOSYvfv6m2/+/h/+QcRWqxVODEMFgJwzOodkaEBUJ6xo5lQgT1K+MFsFATOWImaqyKBaShlGVNWmaRoDM0vocjFnqASqJgBIDh1f+LVuMVIfnGdGMZc1kQpmr6hE4KH2L6pFi0gCn0rMRY6+BMcNM5L3zYoJABR1Wt9nxj6W9/cfhmH48ssvU87DMBRTMxRTckwiRMiES5E8qz3Y0gTV3Fu/qiwJYBExA0HkrmtCcAJt7f9hVntZRHxs3mSsVppLPCzkkJeGs17089dMj0yllBStoj51p6LOPxGAkUTEUkEDKPb8/Pzzj+93H5+b7bbp6PGnnzDg3/ztb37397979eZu0toBIGZQlcl3CXBeroJZhXOZpgrM7OfZjHYaDNXONpdSitTu8YxzVkoCNSm5pDyMpxJTXwQAFKyojCkO4zDEsd6l9QcgAhN55xofArsCIzIxojlXxTqKKqiJJrUMZo7IsPL0DCf+MyPKEnPIgMaIgqyiUlJksJRTUWFCN6k31CK2MoLEMXs629c5bxt02m4hq0UgMiCYSQitmWhWJhdcK2sYTmlIfW1WVQGRg2/btuu6ddNYKjHnnEpBZPauaZr1eu2asOlWdQRft5zNrAawWmlb532zWm3qWZxcHqFuI2poOyIYE4cQLi4uStHasGnthRxBys65WGJ1HjZEBlICInJm+iL2OPEHYTaeVkQrklLCSWYFvDKwL2LmELWyVgxRFZAprFbrhrxjAlAFGQWtmInVhyUEBEg6Te0F2pgtluwJWkfbLvimXW8umIEQxUpF7xFhHOL9x4cyZkCsCEpYNRNrIgQZxzk3+nmxebr+lk6k0sXr/+3HHhGdZ9U8jr2ITRwPfNGXqbdeRcUkVzCv2Owb5L0HgK5rzrGrF+z6ZTtlyvwT226EOFZeT93zRQBCZI+qWkyVlXOx3ePzw/3jcBp5szkM/WE4/c1vvvlf/m//yzfffq0IRcVMnPc0kS4qA6zSTmdCGNHyUvHMr3j5d73UcuxVtdQN7eq5RgwAkqJKFhFQMykxxuF46vs+s1vYXRVVrRdThXjRgA10ZrZ453MZzqE1wSoapgZiIEuBgkRVVYioNRMErux4xDr6UmIiTxJLKoVUihRRZSbHLgAAnxEvyYyqXsUidHZGFjUJSHn+bCpTpNLBzQzRt4Zmzq+uu7tmfTgc9IHqje6cW61WtVrz3usIz4f94XAwQ0IHAALogE5j9N4Xg5QyABBxLGK5sE81/5MnR54mRU90jhvnASDlMZ1iOe1hOG4dpuAZS9fwkAsaMRD5TjMCOnagNkGXDgyCidhgjDUFA5kqEJNzQOoNctZEiNQkdLGwAybvWouILIVyBgCeuRhKcQihEWcYOKWIPiAygVIASYIIWKiYEAcfeCwQJTxGgWInGZTgiy9vt9uu9epbG4beN11wXJV+D/vh/sNTCCGZHZ+fzWwdLlR11W1ExIVQAacljM0s55xScc6pyuFwEpHVasXsxzFByQZgqlAkEAGBiOaht1nVQLWIFAAIgYkB2rYmzBgjEQHhEEciahBDtwZyRZCMmNSBIqhDLrnUtVIDHUvuU8xSTqPuhz6VKJazJVJxENZEObhR8tEgifRRf/j54ccfPwS3chbevfvhdn3x//x//N//4z/9fddiSQcDM1FDAUQA80iu7oWrFhoBK1grYI4wVBRILZpBFR6b/61m1VaHgAwrVAqIpoiVxSwoMtHjTAugIOWYqit3PPV5GKloABqLEqGJrNuuYbIiF11Yd02OCdRKyhXhVzBVQcSiCmPu0IkKmHnnRCSVDExuSIagbMlUxBxA480xhVLice8ctasm5WgxO0fE+sJWkdkidRq4Ey731jlnXWA8u3GBmdETmk36LJNog1R3DwJtmy/rQLQ29DWdAkDKQ5EIoM5xt2rWmy60TT123vNCGFgKM+Jmfg1QC3wVqwqevQ6ai0iRUvb7w/PT/ulxd/3lG2Zfrx4BExEpYgJGLwD7+czQKVGVOgVSBERBJCMspVqxqJkAVGJwAtCEikuRqAYADAgAfckAKxFxRiGEpvE55x6OJRZE9N4B45AlliQimhO7LjiOeUxjFAneuerA5UiJ8pQoDFKB3f7p6elp1TVxGL33zNj4IFq4mipkXHJvfWI1P4jmykNa5gh1vFF9t5dSeZGA0okDVM2ZcLJbAVq1Tde01W+p9i/VuefUj8+HPqzWm4tLUEErDdcNqgIAtbsRnfxKFtpTPa+iUk0qEBGMvGtWq+3h4/5f/uWP//2//f7paRdcO45H7/nXv/nl99//+uLiopqAAxCy1HuktsFToW7K6GZbuHmEUWFePier5ul/obJxhdFsNpepH3fJZYmLWjtU6K6onfN263UZQhjHXJ8vMy+tJxHVU+EAxeo6LSJi5T4s5f155ULEyshkQICoDs0xNUzTX1RT0JotwBDV3Gq7Wagai5bvUmmcz+hhXqBc8Cwzq1pBqtr4Ch4ENGXmxvN23QFcpNhX86hF/3Z+6QVAnceu6y4u1uv1ikNARHZh2ctRVUOVujVSi41p+09znjbjQC3nHONgIjnH4/5wOI2K5H1rCtXjvLIYiAjAkn5CeX2ZggAw16U5NABUJKqqN4GocEFgVwf9QMBUt3NtkcWrnxci5lISgUg28SH4pvUEwMDZspk5BGAiVLTikBsmc9B5Fw+p73dwu+q6pm2b4FkNFAgNzcA5V8Seds/Pz88q65TS5eW267rVajWM/RR4ykv3W4co9QONaQKuFkfMWj1NogJIYlnUECerAX1ZWJ9yVC22hmGoNXNtarbb7Xq9Tik9P+1//OFHfdq/EfSeCa31ACq36xU6nh5IKjHmfojDMIwJq2mXaCEAdiGEELoVWnsa9ynC0+Pxhz+9f3jaM7u2bT8+v7u53f7H//jv/ua334fGiQiRBzDHvsIVCGi1kjAT0Vp7mpoUsyIipmJgBqQzkJZFpC57VQtUOtvEmpHVUkdcOhsALJuJ85JcqZ2LlskEnGa/c+ccMZBjBUCmVegmkW0gdVlskqzYnfFkFrxNVck7Zqp+DwiZSQJhw+rIgahqHcoAIqOaKTvvvX4qMvDZEPg8DQLA8dQD1C18IqphMKmlEzEjVVIXEfpqI+OwXlFyZoKuqkVGtUSE3qMPTDxN4YYx1R+3yCnMr2o27xGrnutVcqFO23NJIpLHOI69GV9dvrrYXnnfzC54lVRgxEwwOdmfZyREJNS6JT3leASkGuFMCMRIRDBtaCjUPZRppbv2HbNOFFhOQ0opRYrOpdgMp77GlWoCANNCoK0jJMfo0Wh0lsbjeDx499Xl9qLWRGMpqkCMSOg8xVEOh8OQhi/Wr5vGV5KpQYUSxTlPM2NR50WfSXkDuD7JpbNd8KT6EEyXthBVJ1M34yo7LguExowAKpKZiRnNhAi958fn3T//4V8/Pu1ff/HT119//ebVdddetF1HnohIVLPomPIYy+k0Pu8PMUoupWgmhhC8n/0CEbshPn18eP75/fPDw4EotJsGFFM5/erX3/+7f/rbq6tNzpEAkRCAyE0ntt7vZV5LnnedUbKWUqxU8QQzKFMFefahI+KL+Ge1pygy89VkSWwzfj4V3jWGl/NTf9MhGaEjds4RIPIkW8lIola1Z9Gq+D3WMfuCKZwHnYIQMVfXQlPGwpZqQtNp/xEJHUNVejQ3eaUj1BO1hK5NwmsvCFb9GTfXV9MTwopSTPz7mAZTEkQzBdERtfHBe1/VXmppV5/COI7jOJ5Op1gyoVvYLaVO4YqdZ+Dl50qZ51VFSyk5vajpl1KgnjPfrimExnVdd/PmbtVdECHO6zWmavAiU7LcWRNoCcZgBGpgaoYmOJWUYiYERmCEJprNDA0VHIJVgiJWbWRVEw3BxZxijPNHC4fD4fb2tlsHZk5FLY0Otd4kQChoHlVibzlerrvrywtHmHPKRQ2ZyNVBw+l0enh+MJBffv3V1fai9cFUYp8kRWZufdDFnUykJo16yJp2tUAsSwIZx1HA6pUkVqeWaNXjbnpcWKeROC0bcReaClxtNpupJhepS0Uicn//8+54UNXG43bVXmxasFLEUipDPw5j7E/j/jjudqcxJueYHAJ5FxoOoWKoSXKM+bAfnp6Pw5DVLKbxdDiGxv7273797bdfI6mp+NA5dKZkNpVmtXKepJzM8lhljEFVa6U8GSxqWsZds9KAAYDWiVdtiWvRJwpnwNsSXVWNqHLRUkppHCuuOZlgILHjNoQawEy11MJ4GlMaq3PMOI6aS017NaVNc+yzlJlBPAhTwwjOgsPkTKi+k7paTMiIRg7UwMAt98pngzuc5wTLiK/+mMBu7iJMLdd3ldIoMEsrlZRS0iLMGEK4ubxZoMg6AT8cDsMwPD09FVPv/TDkU5+cc5XDhrxamDQLi0NVTZex3jyUNgR0XbtWK0TUNW3TBEfkHDnnmk0g4pLB6qWNioy1Wf2rs8q6PEZYBc617sUSOiAkrremIgCIimVTI27BRC2DzbVZyiKSRstZxnHMWU6n0353/PDhw9u3X/z7//SPdUkjRmwdi+qQBi05hCagsUnb+Lubq+26UVPIxZAJCYmLiAnsds+n0+ny8vLVq1dNG5xnMwJQ55yZlJLwL1ZnFlr70sLVa2vq3wjBJheFKvgixaRMc0kiQ2QkrZevczQdeDQfnPNQxJxn5vB3f/v9xcXm9tXdw9NjGyjFfjjt+oa4CyXrEOOhH3b74/PT4ePT8+FwyJJWm3VwjZ/VmKtwgkjOkvoxmsJ6uzWz/fPToX/423/48m9++91m26iNbYXQwZdsVfar7jmKSJpTYix5AmjUpC55T+sabk5FtvT2ZkbgJkvkUkSKFhERA1ly7xLA8+qfnedeyVM50wbfdV3XdZ7JzKqXEqgBoiioFQI0oGITJWs5e0tzWn9QwUIYAiIROxNvQJpAomkxUARHAABctxwBwA3DsATweVJqQ/N59wsAAHHsZwmUUq+lcexjjM+nfYwxxyHnXFJU1cb7ENzH5uPS+pZSKv87pbTfH40w+EYKDGMmIqg7MZAXOwmcdCoIgWniA03z7bpAg4jeNwDg2TWNb0Ko0xMyQLZSVFPBQESEjk3AoPZGdk57mEto42kXHRXNsAqAADB4YzMhRNMCmixHVc0gy4dX1cxynXOWlGI+nU7HY7/fH58ed3/845/u7n7YXK++++67rusaz43nmCWOA0pGSUzaBNesw+3NVQhgowComauba6UUUR1SbNvm1Ztf31xfeXZVLM4Rg+ecteR8PvqaoRpBRLVYGZSLxOHUdNFiVoiIFVyYZHvqga9UWXaTRW0zz05ATbKVlL33anB32ayaX75+c/fwtDsej56t81zG09N4UoEx5eNxeHx8vn94Pp2GIgAI06oQk5gVsVKKOFckAygxNqv28vJyOB0A892ri//8f/2nX/zyi1xGtdFzuz88O2ilQJFYSimmACDzBigwSQFwRjStDsKk3IANhalQNqhSMDBZz/IUnSJ1HCwiaiVPvClbBk71KhhirF6kIYScc47TDGnbdZvVerVaVYTMh0kWh9sAJUGpVhYOlWu4pRjra6ZPPc3Rk6FJ/fiJnJEHYJCpxZ6qCVUBMyBA17RtrUVfiuczULqGKJ4ZammKs+RfTb/D6XQahuEQD+Op7/s+52iiiLhqQ9u2TM+L8E39brVsuL15DVxx2o4q5lzlZv3FYve4tN9mVq3lKoQ3o04AAN413ntf907VqlgJMyqUWmKB4qS8LSK5VHG5zyA6IjLFRft3ydBEVMuNyWKw5BSHHEdVPcYhpZTHmFKqoGSMsao55ZwPh+Pu+dD34+k0PD8+gdo///M/X19ft23rmVxoiOKJABxlLQzWBb9edev1mgmiiEMsWQyQBKQoe2Tmi6vLX//617e3tzWL5hxx0ViaGb9LCd33ffWL6FYXzNy2ba3ZqiUPEaH3IiIZFKSiONVLvp4CZvae6cyVT0S6rmPmpqn1ka8P5+HhCMjXl5vLy83Dw2OKowMZ+sNuf0JyAHTqYz0hath1KxdW2+2GPKtZKToMA6RkRQZV52m97lar/PHj08Pzg2n+1Xe/+Id/+Lur64v+9AiY0crz477htakzSEnKhJLUYorJkzesQtW4VJHTmBPRTBbdvuXT11nUZt61KKUUk7x4TMBMI6vpBGI6/81pdbzecU3TNE1KJiK8WJYCVUEaZ2QIYlhURKR+Op9lTVUFXuRBCA1q48aoTAyVOaWoUttBBCK37lYxJkE01ZwjgQBm0YK6yjkCmEHOpVdLOcdh6L2G/X7fD8dhOB2Ph5gGAKg+aQDQedq0q4paTWYz7sp774IHgFSKiKyYnHOX2yvvm+AbIjJDAGLyzIyuPU+PC3yK7AFgaczm5FnlUcCRAVrF1IjMMRqBAypoxbKVyUuvcrdzzhVqSynZJFlkOauKEJmq5JyrUgNrogRktR0aUh5jHFMaRaTfS4p5YhelEnMyRWbOknOxw6D3fRkiDoVXb76BEP78/mn7P3/otldXVxfDaZfysN5QP6T+WASj62Rz6cTiYVAHnDKYKDHlMbfcxCEOT6cvr958+/obhCJlunCRyKozjxTnSGshIGXoYz/EUtQ5R+jBEMGBcU5ZCnjXeu+Nw2E8SFHn2vlMk4iBBwHJmtEsoEN0jMAIXdt4z865YXhhpIcQoHgAiLujalkjtt71fYKCfVaBtB/K86HvYxrBiKUNpWVXYnTgyLuSxsNJsvMlJsdrKty27fpivLxr11sM4P/zP/3u++/e5tOh5Xa/T0Pqzfh5fG7bVuglCP0M4AEAUyECAnJIwDQpXyOVMp5NiQAqDoZQ0jCFYimlSCmSc1E1Y5pmN4BkQGo5pmEYjmNf413mPIdq227VbtaCUFS69aaUIrkA8tD3SVNWKSrZUowxpWFqURlUFCdEBkRzypqLNXSrdUgJx4ZGhJPTGEpOMoGv5AidkUHVaXJVcwxBDRRN1AqgSkl5SCK5OkWe+t2p3x+P+8NhVxJUvRJVLSXX2937ZtNulzXR2ttMdm9+65xjX3n5CgAueO99cA2zd1wLMwIgBCai9G9wsIGq2VBdr6y1olT/AjJQE4SqY2SEqGrsyACYALASCa3qkrF3tTlZCo0pOZvOm7STze3EHM4LGikxaUwSo5Yi45DHFFMshiDklKFYGVUN/GE4noY+x1H//3T9Z5MkyZIliikxMycRkaRIV5NLZu7c2dnZt4OV3fcgDx/wRPD/BQIRyCww8jBkL+nbpGhmBnE3oqr4oO6eUdWzISXdWVmZQdzNTFWPHj2ntNsu7V/edSmg1PPDx/c//DCmOI57m/nx8dN5to5D1jMDdF3nohatNfeu9LHSlFJTccLtXEuf4hUyb2uJRyLmu1cFKHBKfQiKYRkA9FgxTZPnz6rqTLhF84X5Of2uwmkR3OhSipHTog1Gm3Kgrbp221FrV4+tP9eaXzdtVas0NC2tomhEsBAItRZpuUgyptglxmDL2kjp9vb21c3wd3/3d7e3tzWXEMLhcMiXaZqmJX1dtc28Q7JxYL228rlRgpXpiYjr294wgi/UObc5pOtPYavMjXeSSimMpKa1ySY9HYhCjEub9nm9Ltek5lLm3GpFNM1Va/MuR4oRAGS9RB4JRARAAZXEGJXQ3LwU7LP20PXWCCJNWq21lVLKPDWZW52n6VineZrOHnOenh7mfKk15zwPzvvh1HWp7/u+G/f7m5QSceeqrh57N3JsSIM33AFAfMylSzFGxrBg7UtWTK7YvkhjXL3FBV53o/hF6t3MFqFZBlwk9AwMFAFVGwChLvjbgnmpAREyZB+NVNvuzTLjTrgaTGFKiRg822fJpqAKuUrObbpIztYalqzTLHOtxoEjS0zCsao8fjyfjhczux17i/NhSDeHhCrHx/nDH//1H58+tnn6/X/8+xgHxBnQxginJkMM94d930WT1lSYgqk1kdZaSmlBzhFqrQadW3XL0vMBMmOmWnKp4i2POZdSiiF1ITbvstTi3fgYIwYWMDVsrYgIESC6goLnYS6LQ12MMbK3EtghoJXYs3UlREQdEDITBQNVQJ/IQaTSyuU8nc/TZcqlFCbIXBtgTwgJrdplynWaTanvPGnHlFLqu77v7+/v/+rXX//df/r73a6/2Lnr4jiOj2qttcDETIG7NZDSNVNQQBiWHM3P4uUj4Wc+ic9Qnz6fQdeSRhtM5ZC+k7dLKbiuP/OKTJViCMG7OeR7GBGRCQHNLBEHQFOXiwgck48lLqaE+JkJKzMTGgNE1o4tkQUnSGGEWr9I/v2v4fj4MM9lnkuZ5vP5mOfTZXp8Oj60/OQSU6XMOWciXEqgIYUQ9ru7YdgRxhTHcTwwM4XeN7DvXliVk5YJW5c1d10L397km3YhrACQ21t2MTqqbytizMRE0HQxaljCoyHCJlbsu9drOQUgVGtNiNlriPWoZgOcTxdH/80s5+xYQq1VERyQZyYz2zZw0NkMS7NSbZ7kMttcrBa1ZoIBI1GIGlkMci3F9OmSifjF7eGuow4KtVKnh9PptDN8fPvzn/75nz69/SlP0ze//RvF0PGg9UHzZdd3r1/c73eD40zKIZfiGQ0QEtCw32Fgp1Js7QdYxzxbayI+MNDmks+ny3meYuwQOSzOyybNTJEpBk6qDjY/D82uUSqoaIycQnCRCPCT1YCYNjWPZwxWxIW11cypXU54a2KlwXTJT8fp8ek052KqKVIhjQGqISsWaedLa0WGhIpJYDHpjTF2w3C4vdndHIZh8OaAC1OHEIaxR1MRCSl+AUMukXOR+jbv7cEzb+dZqHWLZnbFMty29LZDtm8+O2YgSq3epiJYly4TuHFgWPWlaTnvkCkCBUMFjERAHAlFpECZ88VVjxdO2Ca30HJMcZdoYOtAWZV9WiDYJgayNVAAILx992PLtZRWcpsup1xOp6ePHz+9u5w+TNMkIkwBEbtu3I83fd8Ph9suDXd397vxlih1aRyGHWHwwHstXLgcjKzmtpqqzS8cwpYBwjIob7gS2TiyqQLqYuhIhGROefX75b14AzVQT5P8PFw65YYECi6xj4hGi5+DLPKTS09FbdvAfnsEtl6c1VpRlvOYDKpIqTYXm4rMVecKIsEsU0pdisahqcw551IveX798sUhwYHKfWx7Tu308KHOQ5wx7PC+z6ePH//0L/88DuVyGW5fKtF8/vD08Om73/76zesX+2EEtVIrEZVS+nEAxJyzIgzD0A39sBuBVExzLeaDloSi2loj4NLkMs2llKqGyICshiLitYxH8mEYHD49Xc6LWjKis/Odr84Bh65LKYTFsArXKV8UeZ5qgmfZA3Jtd1FTk9Yk1zKXfD5Pp/Occ103BalRroIMoVmeyyXP53mKQMjBkC+XS1YWM47RSWYi8vO7t4f9t8fjeX53ub079CkQd6atNXS/gnXpuwKruVUgwqJR6GMDHpplFevTK4U6Wzb7lbPMiry0le2zbTAPSJArIpgsL+0Xdlv8tE5E+6ujW4eW0molDOxzTqLWJOesql/4BAGAlsJBe449VWrF6iwkFHArr2whRC3iBOF8fHQZEDCNiQhjSSEEcoU9MAodd92w625ud6/Gcb978VXXdYfDTdcNhKHrhmEYAaBby4CthFjHUUVVEYyIvPvm4LCpExU36WDy2nOzOLlmj6iq3xRDWVIjc+rTQhxyVI6Bgc3hO6SFKbZh6dqaycKPcwZczjnP80Kywa3pjf6G/Z5pi6ZapeVS52ZFTZAkQBw6x65Ly7WKtZaIKXa///q2xxwuH4Z6uWeF0W5f9fByfMrt21e//qtfvfr4lCVae/jh4en9nOVxPlWT//D7393td0yYSy2lgHmfU1prU1mGB1JwJiM6r3jhiwGpu9Ki5blMU1aEFPvUDUQUQppLDioxRgVDJkOo0nItp/MTAHDgfkjjrjcztWaAIfRdF7uYmDkFBzgIzYtM3Djq20IvTV0av6m01morl1zOcz6d52nKVYBDzyagzcXcrYm0UgXOp1OTutsdUmDQdpmycc8cu64bdmM/DDnnP/7xj7/6+uWnT59+/PEv33739e9/99sQqBYLgRZV58/V5M2JSsseQgWlbfzoqie0PcwsIumz+4deP9X2/euXCE5SMLO2jGT14zDudhiIYmAkZAJd5p+c+1Bqba3FyEYABs3UGRBmhosKc22trTLMmRRINFiFNptWBZX27B2hIkS0+o9D6PtkhowBAKzVJsmgTNPjA0ZrWcQCIoQUcN/x7a67G8bXXdf1w96l50JKQEG1AaE5txRd9W5xS7CVNO/nmKqKiqq6ftdmoun/7ED+L0EsMzNgb/MQLVbUqm1NtlW1ef8WjUHNHR/JjJc5G1xao7UtxOzaFonGOS/gJC2nj5+hHJYbgBgNmjSpzWrTCqq+ljtuIrXUVioB3/R9YDZFKu+xnlN92MF5D9ANhOMBkH9+PHOI3765K8bHizxe6uP5UeepnhuldBj6xDSfT3NtVSVY8LNsKrm1xjGoas754elp7EJt1StbbdUVYkVFci2lNVOCoGDe4zQSAhJZqM6qVkpDlJyLiDhc5GPVizANQBdDn7qUUlzcjCgQiID3WbdSc1vrfhyLQVOp0nIp0zxfpslVimtdJvgRMRCDIZigqdRW8hwC7cd+N3SoAgCp74iHxrWp9H0/PZ3fvn37hz/8aZ7zNOWnpycA6LoobUZENHSHZe8h+biJOy+aL0REWv5q+LndxHUujbCwIz1Jvj4Utg28USlLKf3KIyLExCF2neM+RrDpjSkYGYjIXMostZgYmCAwoXd/dJWpQGAnFzKz78nEGNlIK0IOZOxOs/TsCwu06tSDmVm4vT2AIlEwQym5VLicYwhkymZkakQp0BDDLoYx8BDDvkvDOBz6vkMyH4uptTI/U4tXVj0QQckMAMvo0FUOA6ouF+J8TFVwy7KtOIHP20gG4q1sZgRgVfHgY0tGJOwDCIDGaKZNhZgDgjswbLPmziTZnGykLKORRGGFJV2RfHEkAUhgpoIOGBqAkQHSKZ/NdTwiHfrdoR8JWFr74Z/+ZbD5uz3uDzyQ7SJTCOe5jQmfTo9U8ni4DSMH4J67254+tcx9GodOVc/nc5FFaArRijRHiWOMOefT5TKXAodxCw7XeOnpdG6mgZOZzXOZ55liGPrx5f3dlvR6MxNWyattNvi5ogFYeweLlAcBiECt7fqO6LWhoaItmP6ibOyAuZlVsVLKlGWuNcaYOIQQAxojECiCdhz2u2Hok+YaYuqHQeOu2OyMRVU9Xc7/8i//8qtvvxvH0UHaEBIR1lq72G2H+3Uc9vxlSaF1UYdTX2FX82fP8+3PUiHPA1sAgOue2f7V0ayekhMnQwgGEFNiZgUIK2HB80uBxexyriW3SkuSok3Fu0qg1bs/W/NZ1YjosNuRzGiFVfvITG74BqVOy3SAF95GrtQdxuFORNFI1X0AsB9O4+4+jD/pJHEgHkW7s+5m2ze+xcgtBQHNrcgCsVDsQmyQ/ZMzEwYGBgEQhZhA5grWEJQNQCWaJY4QEYGNABHUxFweg61Vt3p37RtjZBNnJiEiypVui5+CIRCiqZKZGYEyGCqAEmpMqFqbLkt2nuf5MpXHU54X8lnLRVVDl5jI5T2X6TlVVGYlU3rMpymXqZYizdjGPkKEaTrtC8wNQ/d6398eUnjBEs7vpo8/mPw8dPGb2xcvXhxanX8+n2MH/X5skQTaw/Hh7dv3qQshhNQpcfub+9FSGrFw00/ncjxPXR9RDSj5iV5rRTRG6AOL1uPDp2EYiELJtTUljkQsIkaoBZq2qjaVPLcaiAPiVIWIAnIIFFNSlVJKAwucYugCR1V1hW0AHcd+t+/Hse9jMvPRDQQDFQkhyNKO88wdxUDM1KqpWC2WS8vz+Xw5XuRU6XyaTQNxp5CJoRu6OERr+Ygx1DqfHxnbvu9uEsI0JeYU2oiXUnLf5o/TU4MG+xffn+bp/KG2sBvs2zd3XTLDC/UC3JKNFCLAszdiVZHagvtRIzkiLbZ1DJ9BrOvEeGMWASGil74+swUqral4dVBaLa0q2Lt27rouBDaIVkwZMFAXA3MgZGVorRmSljbPOXEsorlJCGSBssllupQ6G1oCnWffwzBNc55nwoAhRJwDzb3miJVUXDC4GmAEUBK12uZmDjYxIvhXiuYObtBAUupd1GKaz4h2fUi31kIkDuh/iAHJHd9gC3G2sLjYz7hFLcEjwFKsIy4Wj0vEXv/vJumLiu9zKWK2YMtrSQyfPxCRKAAo4TOLxafGkNDDvmfO0zR5WPui3YeIgaOSEiBzAEP3WGu1VWlzzqUJx4CEHMhIOQYCuRmH3X683x9G1Pbh+8vxT6TH3/3ur253492hB5lanYdhMISnp6dZwARSGCI7qoQAEFD2+32lbhOIa61BVjLtRxaRXGYRMVtoT7XW+XJsTVNKTVSWQQRV1Vos1yZNF/qvayTIJsK4kAWXSg91a/h5yRCjT3Av3o7LZQFY/A6/FKZ7vjvXDxGrVaY8n6e5AVZTURNTARMDURU1wqV7t+uW0SgEMIO+72q1Kc+tQUppHPa5nUXk58eHUi+/+ebl3/7NryJHFI2QgEjrZ8NA2w3Vz0viLeo6hPvFG4arlsyWX/jDRyOuWcbL0N8qcvpFFsOuu0t4jeMsMh2ISw4vy4AEiMa0vrf1dQOHGGOtuQvUdV0QKfNUWxZg45C6wGwh+H5ChOAfx1s+iEa+QwhkQ9WIyMXNU0oODI7j+EyxWum1S+pFfsnAzOecBNZh+kVMG2hJlaURESMbGWIAQyJWgUXXDNoXS2RBrdZ+HnzeyIYVbdoi89WZa87XL6W5Z+x0mRb28nqnbZWCeVYOIDJaqKNNJJvMUhtiTJGZFBXQYozjru+7/W4Y7zqEy9Pl6c9cP3z1Iv3q279ik1ZOp+NFao59p4attTYbAfbc4TqUCwAKWoaBIG6LwMGPUorhZGalFEAlohCWj5lST0RiIGKlCoCEkIxQLTSVKipqrWkTZZOMNbwMXrNvocbpzX3qU0ruVY9oRAkRh6FPK1Fki1fwC6zouoYkQFUTsVzLZc7nKZ8u+XjOc4FLqedSL62ZWVQrolJl4NhymS75/jDG1BdpSMQCaizNcjMVJEyJaxe6FLoL079+/32KkFLP3GmbsZHOqvTlBl4Se9NfLJ5NFPUZxHruA28Cd/jcUsZ1KnP7YVsnW5GRiEyUiDiEYRj6vg/EIURXwVOwVqpLT+d5RlsaJZvqAwO2retLZFeCzRtGiNfkZUBEbVVViDCZz5kgOhcseCSkhWDMaJGZA8eVPVtpNcJxfhXzypzFZV/ZcsmWnXB9QRERXSDevAGO2/ATcXRRXqLVBBoZYanWwGyxD3q+E7ZVO1+QtGgdcVh/ldQkUrd+TpjneZrmeco555KbLukyGDERAfpVZVzU2MgMlVyXNygXY2Lm2CUBsybE1PXj7XgzxD4R63R+/P4Pp7d/+fYWv7nbRZLHTx8vx4+k4o64Dbgfh7wOjsGiIrraVVpVZ72zO7k1tYYqpckClWBoKupnDkLsOwyMgA7UNQOxFkL4dLxsMIyCEoWu68dxjLz6gJoSIsflVqbAfRe3M1pVOVCXUgi8YVSOL+Dn6dWCGK0PIhZzmmGepjzNdZrbnNu5ylylSCtqiG6AjAIGDaSqtNanrus6VQAmQyzNOLI3E72KZqTDbvfw6cfv//KX17dDU0BFEwgWoIL1sGhogOmCx7u16meGElvmfD0Bft1PAtsQ1oWTsG2erfS9FroIkdDbnojr6BtF5kDBEIDIBwwDIKr5WJ424eDNUEoxmiYCBFj0LWRtU/mjj8ks52lWLZE5prEpFtFaF+F6BDR1wIsQYSVduE8MRrQWQtr48bDw2h1s67quc1LARsrQVRPEBPzDk18fkVWcBVfoeOsJgUuZAQAY+rVfur6wDVws5prLZobV63C9H9seXtNgn1Vi/xUyUtdMFyulnM8Xl89vVZuK9xgEjAE2kX4XvvW33MRYTQ0VfOApEqcYI4lwiMOY0pDu4utECHk6v3/48V//zZ7e/dX+qzrN03w8Hx/A6jD0MUbgoGoceRh4nvM0Ta0t3T9XJniybEk8wfPrXKqJNFHxPhCi1VqbzMsdVokxxq4nDMBSp5ylINNUG+qSp6gJEaQUxr5DRNEmKojo3UoP9gHJM/mFIY5bso3PCamoyDLqsBEntw28UPmbbh4yubRc2lTlUkSRjMDIVkFpch1zaU1aixS7bmAODgQjB+/eGkIzbaW0Wgiwi9RaGXfdd9998+r1C+8hIUDXdYJfpmPrMnsW09sK3e07drUm/XI+t5QQHCLaovq2gTd8y9dyCAEZWmu09kFjjGik4Kqyjn2idz2kVBBFIm1CRKjGgG4f6Uro2ztcDA+YoVopxVrmhH1KQCjapra0CaQ5frm6IDFHRCWLiKjWCDzMRrkSInUF5nEcu67jgACq1tQQzcCca0qqzwo1eHUVrjAn38nBWz7+nXU9ODDiUh5LzYCLACjAYpn3pYOrP6TZmgd7+uHZqRssWpU6z9mNC2uu2gSRY0wKgKrIa2BBAgqkKOqyTaaooOY1ZN/3kbsQkqrGyOOuC4FucJTp9PD+/bs//euHv/zpLhUmPR4fjXIM2MUOtE1zpRCFo4jEvs8tV21TnlXADF0V6GTM46KA7V2xWmuZ51OBEHkcxxBCM62y0AO7GIAWowkzrKXlWhAZMBojmBoYGYRAMQAHRVM/+5kxxuhjbt7U8Xkjj71+0ZxKua1sb5tvd3PbANfdhDa3ssgjS1UrDXJp01wxBlUzRWcOljOG1LRkjgYCLkzre6CpUQAjbFpzzSKKKITSxFQaWfmPf/c3/9f/7b9+8+ZlnS9TviBiDJ1vRHUCh18a9+2+OuXtylt00764rnW/6PFuR8DG9LimfCy4qbscAwIQAbr2OgfE6v4p4Lh3a81JfqaKi267bT7r0ppANcUQgq2WjosMcM0BICCZmZRWCJAiANzcjG754HOrzrAKWzPqOiNdLRJ8HDxuuzelhIgxOvHdkflFigWAgYOB6qYJjJ71uxTOQoVjjiEowrOCq0sVwTLP8HzSL5/Z7TBUiWCT1PliA4MZMyM4LwcRXXODEXzmaiOjVxNBAGQOKQGA2JI6up+NA6xLY9rQ/MMYDCExxxh6xhBCOOyGEHDOF5veTZ8+/OVf//HtH/9Pqp9efHV/e9+bzGDYp8gI02Wa5xLGkYiaqeAk1JSlYcuuH9FMFQSAr8KIn98559O5ejDc7/eInNKytsYh+rECxM70dueZ01yQjMFS5HHsbg7jzc1u7AdUTim5H7JXvM5ySMgpJTNTkhCCO2wgYpHmGKxvgBACr32jqw383F9Z33CZ53m65LnUXK2KkYkooBIJaFUgAzRo0LQQ29D3Zni5XGKMtsyxzAAg0ogxRCMWqaWWfLdL/8t/+N2vv311Pj/Nl2ORDMgakNd50i/Xw1X1e41TfpFRb82bsP0iLmt+m2/Rz+cHaDWg8Jdg5hRi3/dxpTAFZlBhJCLKdfZJew+tyVWialskJQwWX9XtmRdhM805x2gxRtJIZrQiOtN8XrsSUkp2GWDAFEREBVak6Lly97H7EPqu6/b7/c3NzX63D9xxCJv/nX88X1jsqbljZAAMPnMO65D8kkgz82JvsXrVrFvXZ4B4HRUkbyNtdban3P/uBl6z/S2YL7restJFNvvflR7GiAgqy6iDgB9sfrMDEhDSKpjfpxBjF0PPwH3X3Rz2KuX89Hh6+4fjx3c//vmfLg/fv7nr3nyzv3vZ51kgA6iAaYyRAmPqGxAAlFYEqpfbCtq0LlQ0pCs62mfToSJSy6LI6z/QWpumDAAh9V0IXY/xMk1TbuLjyqqkiajrwm43dF3kAGyx6xYx0LVfAMwcgWJEUQQxZvTbAgDWbNsIW6Qysy/28BbfnDpeSjlNl8tc5qIKhhTIFDBQIA1ASl1MY9dBDOfjEwLGOIhImWcPGMzRSmVmYkBmz/JMi7Tyv/6Xf/iPf/u7ly9uL+enJqXbdXNpWcuI/bYY7BeNieuNt609vVZoWoWHYr942RoufIGty709CS1zxa4KSOsHX0rLEAJ4Ien92fUU8GHVgAQcYgyBGNiYGSw4qmiKRKSyDLT6KwqIBSSiGGMkYsZqiE3NGgCHEADMIIhIDCmlFAzZqAEKoqFt9FBsMscY+25/2N2P3U1H/RgHr346Zo/ArlPByIxS63PtsdK+pLUSISix58YxxRC70qS1Rtx5VkPkdq22pkLLefR8RPECzQPAOr2w3SRIYU0fFm4dERIqzBWBewbrUMf+5hjKpU1EpK0GNSMQNXc+Uyf9avJXdPu1hQZKdGahkBDCoR+Daj0+oeY4XR5Ppx//9Z/L2z+/4Pyfv/vm73/9K6aO930Kolakzo2LmRBwa9YZTUYzxWGgACi1ifhkcmMDu0j5mE/vLgW4Ns2iNSAQcug0pNNskduQYgfSppOq1ir9Xodh1/U9pnmy42nKTNCnkFLa79LN7X4Yhi7uhn6kMpEqtcaoW2iFJhjMnEqDYKJuEqgKJOjKcGjEgZmDiwW5IBMCqbVW6lymVquJTGYXayeVx6YnwYoGDMSCErApG7Rahsg3Y9Q2NZmJl2EqtDqOAyPFSK1OMd5Jg0Co0trpzGV6MYT7Ny//2z/8/vb2lk2LUcnWal2M2thssfADXFHyuJlLrmYU1/CybXu3NS0VmqCoIRgChVXQU1VbA9VpyiLiG8kvGjMRQ/JKjzGE2KcUKRKQGJzy1PN4nqe5ZN+92mSeZ5WqKt710SYqQhS60D1dsqkamTT1NjsxzHOuWBokYAADlQYIqqTWAkqkZk2gtSEypk5VQeZFgJ/Qe63PycbhcJvieHf34tWrV27/5zp6Ys8a0W6foaoAhPCZufj2Ra0Vg26JByISIxvDFfawhR286gBfJ0JbJXad6l//zHWfww1f3PPOY5zzzDd4JufiDLoYIxIhEBhSDOubWaTcgAmIxo77NERgJq45l9Ox5dPHD+9++uH7Tx/fjrvut1+/cqNaNWiiYXcH0FQKy2ytSmt2aQ0s9IlqJlJWor5hm3NrpTUpR2x4On4q87mEfp7n03nKNc8lMwcoURQqAZhgQCA0QUOoVWppaUhuXKaG0/HJIscQhmHY78dxGBmjqnaryeCqv79d6ucDd8sznfj13JJZi0DPA0WkSlNdpE6cZjSXOs95djfxLEWgVsm51LmAABFLVQTKtZU81zrvul40OycspRQYmSIAMhsTmUmdZ2J79erF65f3r169evPmjR/f3lz1CNla67roGMlnqfMV/vQcQtePtoS4KyL0dVNjSzQck9smPUIIW0Fhpq4gz8whJG+b+3MuekwbilGKK7SIioEpoSFUk1wKAFRmvwK2TlZ7H9HhJ47kiLqAiUCTRT8Z0OeiFlzJk91wheVuI5HWWktxTBHu71/c3ty7nM3a/nE4ngAEgX0NeLNhSzb8ljtgUEoJmGLUpeaF1RJF0IsrXpFP/3XVZQ7piy1KS0B+LmkAF+xra2vZglebGSEt9azPi3Rdd5mnnBtCkIbN1J1pQ1rapBC3VN8cauTIIYTQkW9gK62qqOSSpzwdf/7hfxwf3//+2/u/+Zu/ev36NjCKqagdi6bAIaYQmbRKqdImqk2XeXPkELp+KEK5TTJXs3zJx0+PH07Tk42US8m15qrznA1bqMap60IkU8LIBDH1rFrNSilpGGMgBkRQAIhMw9Dd7Pc3+8PQjVrVDFNMvuA4eL6+TGW2Z2mwzx4xho3W7+fvVma6roCIGKoZVpWc8zTVnFvOdZrylLUqN1FRKFVFhBFBlNlqg6omijHGiNinQEQIy+wfgbcbVaUSyv3t7vXrV2++fn13cxsIXcZUVl3x5SZd0Uvw83P9+ujxKGPXyg1XWpBbXu0P373uWqbNWxKKBoF5DUuLZ0oIIcZuk+ndjgZVbaWWeXatJROdpTKzIVTT0lrWhohRwbnotnqdbYW0sTVTsQYqIA0AqmJT6/qemVUBQRAIgQCNiAKAHzyABNpUxETEFFM3xhh3+5vY9YAsujRgmAOiijTEsNaoYub5PNtVs0EABVC0kHpwW1rhPi7S3ASV/PvPYWGL1V/UNl9E4OezUz9rKcHqNI0+TwRGRCkttUrOmWgAl3xG91NeGBRGus4/wiq3H2KMKRIZWWnz6XR+/DgdPz19evvzT9/Xy0Pk9urV/uWrWw4mUhE5GtZ8ViBm6hiQwAwxETZ6OB2lFFNkpL5LiMzAaHYyuzxNf3n7w/7tX8ZXeClSBUWpFqnaZJLUSxsGIkCyFEJKIQBLLa2tzvFStbahT4fD4cXt3e1hP/R9YhIl1e1qbJdo+4O6qBp4BF6Sly+Smm2hb9tBwcBQwNxpoQpU0dZkLlpyNWaiwBwNs4gJVFDkpqWJKXJMJnW/H3e7ngBqrZFDSEzMJZ8BNXG4v91/9frlq1cvxl2PKE9PF98Ymyif351lqvRzTOQauPoMl72qafVKy8rTCq9addWRdXBrS09UFWnjeACBix+SQ7SwKo9vv7s01Wq1JktTFFEQwLSCmrPNY8SMm2n2tRZ/sTkDJW5Rq881q4ICxdAhIpPB4luyuj0zs0hAEMDlKAoh9X0/jt91XXdzc7Mbd2a2njvhykjZ1oYNm5kRLz6ga2Manx/mO5PYtWDBDAIiIKkpIyEsc0mE2wCgg2qLus2aIzzvYU+NzAyZtpvlv7WodoCYgSoAaoyxH7quSznnVoWINhl0InJSodA62s6Lra5LQAWEknOb83Q5zdMpX54eP757eP9zH+rwYvf65U2IVtucKHYxAPCu0xQtJkUENG0AkACFn04SQBthjHFMses5dhK7fgrnUt7/8PQQf/j+0LBaKg1ybZqtmgmagNQ251zm2t/sxmASIzUDaNpaI4NITGg3u8Prly++en2/3w19jKCg1tCe0XsRh3CW9Hgz7/ti0evVWKxdcQlVFhASVau11rRKK63O7lQmBkaKoQmUZq2CD2wSMBmoQK0A2mIAEUwpdimoVkbr+9R1Awiczk8pxcPt7ptv3rx+/XLookhzZNF3mmN4DqA6T8GLOFvv+sZcgCvDRGdofFHWXTc4pT07s+o6InKF3nkZtlH9LIBsr74VFyEEMlC3J6015+z8DzTzhhkium/BFsD9GNrSBM+6SyndaAgKoMyMKqhoxBFgrhWMahUzCxDMVMRYLcQAqgGVnYthZvv9Xmvrx11KqR86IvLraIQYGJqnYddnnPus8uYQcb3TMBkvIKo3gpdtBuiz14ZkjqQAAJLB0u/1NfScF+lKzNpgWlgCLLoz6OZ1ujYFvHDxgxaHYdjtdq21x4ciIrCUhRxjHIah6zrjZ4n+5W4ZaBOFls8XyaWVi5Rcy1TmU2uX1wO/+er+5as9sbBhF0JEIuAxCQZFsKZaDcRYwgB9x3vlUpmChU4hAaa+kY355UsqN28/Xsqj6PTwMReqBS+XqUsH4gCB5ioKDaze7ItZ7HbJkE2x1no5z8vxlMKL+9sXd/f3t3d9YkKUUquZiVlYcYoFvNiUtNi17nFtyCMi0cLMoSu9K1iYhuyNgKpSayu15rnOUzme5tq0FnPvhlrlcinneQ4gATTGEMiNN5poQeCx3/Xuj2Wl67phGAgglxo53B5u37x58+bV675L0oo0IcAY4zau4KnmSnr9TDrjOlPb+h3LoW/6xe59Dq1X/gFbyF1+HYyZQ0xXDQ5AtEjk/VRpFpAiMQAYCTNXVwcvpczZU3FS64fOzNigNcG2mgwsxn3PwNDCkQYYu9SR9YydKJCJajAGpNpUVWoVAEI0XTJlCEQ+dgAA6nF2HEcyCGlw7qRqE1SFpePHFpwvdRWHGdG5h2DOifBLoIpUAxLFsPbQlq2nagSobuBkgKv+GK6+VF9AVbiq6fwyhb76meX/HoqRDJfiyJ3W4m63E5FWzzlnw0YcQuSu567nGDFyvwaf5WxWayrStE6Xk8zl8nh8+vTh/PD++PTJWn35ev/rX3318sVNgJxi6DHabIm4tAaKDSCbVQhCnYS+IefDodbWOBVOkwWBTpRLqsMYv7r/Nh5PDSDPMpdcZ70cz2cjQcIQQj9wimoimkO6HNgnwEhbO5/Pw9gd9mMM9NWr17c3NykEMEVTIoocBJZI6ysWALxtta1X+MVjg3auMylbG6eXPM/zxfVVRGSupTXNuZYmKqBqc67TNJfSxg6YoWNiBoSGUtkkMcUYvefsZblJLWIi+vrF69evX795+bpPfc25tgpqRKBX74TWOfPrPH+JE9uHvMoglkFUfZa82KDpraXkJSheOaRepyQr36NdJ4AegQnt2ssGzKTUVhZPjFWYEq00VW1EoEIAoKC5zmsfXVdZD3+tGGPPLaKwGoqimLlHFjOmYXUwBiT2EtAVBsG7pxvZ2InQhjGEtAzNBBV9ZuQQEcHWsF2Tjavbv1SVC6kDgGkR6Fx/xmwB1n/52BYN/HuY8/9swa1fPx/GRKSrCv5yaYZU62BGT09WWmPGGLnrYggEoAFJYIEpvCbxBnlxj79ccplrnkDbbuj2w6uX9+WrV/e7fd+m0nFixSYSmCZKhlAMz6qzdYp7ob5xuKRxZq2cMvUX5QpJjSpa1iPfDLt+V0oROPGswaDG+vb9eW4ixsO93L94QRxKg/OlndPZzGIK7g63P4w3+53s9nd3d8OQVFttNTFFTpAgCNBa3W03yydnnA1yBd0/J5nXbP5tjdYqc83n87mU4q6PLjbGzGauqGi1aa2iCkQhQG3apBVoPsTfkCop55zn2bWxmQxyzmbYx+HFi1cvXrza7Q7SSs5VF1fx6iXSdS9aV9k9vKJVXM80XDMon6u4X+hOXoflL5CXq2rZS9NqZt7L2FJ6uILur6vfzXPPodQyzWbmuuWk4GJPbc6C1UtxXOecXOAV7Yiqoi2UBq2BIBKyMSZCxNY8X2BEJQxMMeSprh+GAIJBADROHWFzPWYgBGJb+PcQoDNDFWW3tA9AQRGNtS+lEFBgBAAUATNordRLwkRGapXdUh3ARJAoJgIjdceONS2mtRT/bFWBQfQfeM7r/JGUAUAUDEARgN2pHcTZQtYAFNAQWmI4HJKI3Nzsc64I3Me+DxxJmBExM7sZh7rbt8g8z3ObT5FhbhmJuzQcf/6LzfM3X91+dRfuYhgKEN+UOn+cz9bTAz8YRYo74X22/QX7ScNFbKrtNNwTRsCuNDtf5ilfmDGNfTgKFttTyJx4TLvuZZ5V45PIx5/evZ0v57HL1EtIPVusZ/xeL6+ABumgiimR2N1+vNn3HIy0gtNiDMAqEygoAhKaex6bqoIQmiGzIbl3+SrlDgDgA5hrgIKryTiEmkj7ZIbNgMyCCpommhpq91Quf3n4eC6to75LTJd5fpr7PplKk0puhmZYBIKZEj9dTi/7g4i1WsbYvbo/HF7swkDnfKpzRgNTBNWOewu8YmmLSdkqbogA5qKmYKoAaIqoiMBM2/ia+5kqQCJWQCQVW+vzTSvCjAADMRmgqSGnSM1qCIECmVlFVG0hMKcoVrKooM+EJgGYm0y1PV2mfJm0FDoXOF465t3d4XQ59rZYugTGlJK0Ukph5lgxGUEYuEtsXPKEpZJh1QJUCTNiYxBAQjNrJm1WaSqziIG1bS4jqDWXg8TFTMSZjwYmywsTok8teDZV1LNgEVN1dVJDRGLPB8wZm66r7GQXzzoSJ+dsLLnNcmQYgoEhw6JEhoqfR9RnWdkvAq9/wW4nuWq7qKyieQj6RXghZHZ2cYyxmeI2++oQDyxwpaiqwaIG3OY5z1LnrLlYEybqYhxjt9/3zLG1hiJzmadpshQ4dZReYNhxvGMaA3QsbKWZlgjkVyUAdEwWE5AFQ47JUAHV0cgYYopIFHpOyvbxI3PiqtUE2IC5Q7BSytj3xJxznkpljpw6kOYqMkiBCBwBNxM3s2TmRatgnQFYxOA8nf3FDO3W0r8+RpEppaQIYjDlNpd6Ol+OJ3m4XN5/+vRwPFYDjRgErUpaM9JatbYWAi1XOzDHgNCJaW46dN39q1evXr+OMTbv7jRhJF53lzdOr4vbZXksBmUrjf75Z77UXn2uwq4+y/Y8S3UAQEK2zVH6uvTRdARUdOlJIgph2PJzh4c2hFxV65y9/esawADgn9rMRKqtehqllODsEWTxhY0oplXa4NANmHvAoKEfZtN8vkou2H1waqVQc1lzzhACMi4WOIG6bTK2+GVSNYB+8Apk6ft+nniILuixevTNebqcjmaWUoqM6+QgxBhQBEAViQFt7e4qrr6tVxSOVexrvQHbJTYDAJdK8ad1B65lA8PC8VQEFEOmAIGIDCyEkJJJW/Az1eYsNO8TALj+ib+UYVNooqW1eW7zhNISYUSLYZBm1VpwOCAw9gOPo/bfWjdaPIANABGUmAtzjeWsoooSMWAMrhuPprL47IlINWnAFEO/GzCFqGihi+fz8TwdccYQ77r+Bsyq2+oglct0fDpfStnpWIr7DwIDEmMwNLNaRaQRr+WPuUNlA4A+DRvybFcPxU1YnwhYwXSBeYgQOUFAbKWV1i5Tebrkx2P7cDoeT7NWQGIr0gShYYjkHT5QzZfJUhi6CKoppSoS2JoqmowpjDeH4f5m13XTNLW2zFQZmQL6NVr27doEXmsBXdeGrngmm5m70m273a4GGGAdybiueLeOsUtGLpt2OwK8V41IuPTQnc5ERIETANQqbnTuy7+Uoq0RUZMmpTIvfebWWskzIsawaOgpmRgCuxOXYeDYDSkRFGXmQDEAkgggiqJIAxFGwuATCskNOgPhQlFa94UCqpptYoiuAw4rJYWZ+46WDbxMAjq6Cc2KI7dIiwCWk/JdSt/2B98dzQDBmHAVhXV4cxkvJvDWmq1j+l9EY9u+eN7hrSAwEdrCYCav6N3ETMCcP7Tg9c/YhjH77WzLbIYs7QFA3XYvEYEBiaGo1Ka1BtA+YIpoZqUUghaGRLEvIdDhjnf7dvgaKVXsamNRQqAYSDqiT5cqYg18LRpjMxVpqILqoICZNMJAqIGgYNvfDJzuP3608vM5l8lsYJaXt68QuYup1jrl8v7jp5/fvefIiTAEZCVjYPNjEQCDmZkSMqwgsyCG6xTmy9oPntOWz/4Z0c9HBc6tHM/zp3N5OpdPk0wNA/f7oVdAqWranHXjehTeI6k1c0ARGUqpdR4H4NDHQBxCGnpeDWVRvecsroMnIl3XfdHnXwt1AFdaWvyfcdFy0We06boBjkwm4JPDi6WumQE01SZCa6fKT3xYDwlDdA9oF6d2pUBmDpwQ0SlP85zP53OdihNOvIcMorVWJq6tunmAtEru5+qdKo7IZIpNi6oaUEgxpAhTQ2LCQEBGDUwFrFpd+2LsI0YAoAKIGG5uD4ggom0pqqtLz0guRBRT6roOmADAdaufD7AtxQVQBaeSrJC9gqCBNCm2urwvExgmaghemHnkBFV3WffIuWINa5aywl/PLc3P7iUF8gRbDZp6K8/MoOqiulDdeGJlzxEFAC9LXIwGDRTQam0AQLxx8RaHe2hmomgKJgjad3E/hsOuR2raWoNmYgLRsNN4gHhH+x1gIA1UARUYNIgkEYpk4h7SlZAJ3UtMCA0JIiUiCEiGgSmK6Cw5Eae0GxPd7MLldAS0+en9+M1vdsM+pf58Pp9Opw+Pj+EP39fWvvnqdYzaxUBCgUyYAVVVySWNhFazAnfzRLlSrrim78symr02XTyBcwcbIjIULcdLefdwfvfh6e2n0+miVZphiD6dJ9XUGAlAvdjzl5jn2UCmaeIY+yH2cZjOF9oP+/3+9va2G/r54UlKDSFQDFJcPBUBSGBdZFfQJiKCsXmcBlgE/Zfd+oyhbMsVPu9fXOOpyxXwv64zNYrgObMhiGlVIfK2pJpiiImZW9Naq9OSRCTnPF+m6XyZ5xnN3LM6EnMAt7/uug4ApBVPuS1gA2hoWbSUAlYjQrP2As3MNVUaSiMi9XxE1jsiZCq1WimNiEJiAAAG0tpKLefz5dOnTw8PD9qWUdhhHFNKwNR1nQ4DaCKiGHGVoHGcBJARMXjdhWjIUioDQEqh75w/t6TdjLYuEvAx6HUYGmFxi1k2MLpVG/nslet3f9YuAgDQ6n0sNDICbUhmXk86kZ3Btp5yM4fMFIGdiEIMAGywaJqv+eQiWytSkyvuh0ABlSwkSiNSArWpSgaVkrESSNrHeI/pNVIHlAJzYsOmxSqSoWnoExDCrE1RVAEUSAlQmwEYMXYcmAgwEMZWlcJuni+m9urmxe9+82Y6n3764c9v3779w//4tzdvvn7z1Xf7/U0pZfrp8pef3x6nSwxhHMfd0McYIzEHT19BW/HUGpeJX2RmJAAOz1H3qjsqtCrpfBGZFRFRAKeqD0/nt+8+/vju08eHU65koogWkUxUS0UARHaikmgjhhRiBjgfTxfEQPzVm5cRd/l8Pgz9/d3d/d0dIVcDH83ze+5+v8bk+Pl1HbvhygA+jGmGPtkNV/+6/OS2gR2eWcd56bndRG4ji57v+VHtiAkQKpp3d5HZAbNlog6olNnFOpmZKZrowqkUFZVAvNvt+rGDKk7Y9OR51mW87DKdk6JSdJloMhQTLdZ1KSJBq60pqoXAHIkQ8mSOVRmhAkltWgmIgms15FwfHx8+fPj09u3bP//5zz/++NP5eHFHqZcvX97c3u52u8Pd7c3NTeA+pTTu+mHo+j5yWNSwxMDbyWaMaGgLUyLtdrvdru+8tL6aagAGoEW0ypYjdM2QF9rGQmU1MAME+QKZWG9MA3ArSEAldH6ID2qBkVEIAZd7A9QaGamC6mLVaH6sQgtx8zT1k3th2FlQC4QpEDMwUOSQkAI2uyRsgSCwGcd+uIvjGxhfNdsjRDCOZkgtQIxAXaKyb5DZsEE1qQ0czwAGwKqKq/TfxnEdKFglBdzFcH/Y6RAgH+Xy9Oeffr5cpjzLmzffdP348uXrDw/v3r7/+G//448v7u5fvny5P4x96iJwJMarJQtki48FISBuom3XuxcA2uqLe92A8bYoqEylHp9OHz4+vf34+HiaczVLZFVBVEQjEkcyVbMmAhtV0NkyOU+Xy4WaUqs9N052+9vf3N/edTHV2oZhiDEaQlVBIoyh1kpgLPblUWJmZqUK+r4lYjNn5brG2S93O6ztRroqpLdm7yaFYduHdTLUqqno+5xjCCG4ALNLqnnraLrkzTzJ3RjQPWKYOIac61aNX+sHNBVUUSA1885lIgMVawqBEBgseFIBhAqKkBBXwwKMhERUCDn48ZDL9OnTpz//+Y//9m9/+Kd/+qc//OEP03HmGO7u7r7++uuXr17d3d3dvXxxf39/c3jd9/3Nze72bgew64fI7HXIsxaHl7vOvhpjv5ysC+pl5j8JDLgG0qU75GAWrzpb6ETQFXRsiAh21SJ2XSAmBFJvFi2OU9KqtsjLxLmZmbmPuyyq9qZqImqmBmLWDBotmeSz3rLf41xLbU1MFZUCcuDYh9SnANoh7Tjt+qHyIY+HMNzWcMMwoDsnCJARc0whNBbgoxCJ5gYN1acPiBm70Oc8CQiSWfWPR4ZaayZTRpRWyuVCKLdDD1+/vqA+fDr+8MMPSOH+/v7m7g6DTXn67//9//vVV69+/d2vXr58ud8Nfd/HyAFp6OPS6nwmPwgiRn72Ddk+LwCUVjcIx7udvsMZUmsyz/PT6fzp8el4mcSAU0r7QUu1XKNZx4QGNU85ZzN2vKfUklIchuF45FLKh8fz8dMHacff/PabF3f3d/tDQFJADCGlVKWBStd1ETt/J9iehazkyqZo4UJuaqZLOUYA8sts+Qr6orXvYFsH2KPoNRPz+chY2BGw8CVDMF2ss/0XL+f58fHxeDw+PDzMpzOvc1rEjGD1UqfLxYOWtNJac3Jta23Y7YhTBYBmYECBYgim9fjwOKQhAqkIgJYKoCW3kmCP6Mg4gy1/DDCcGz48trc/PX3//cc///nDn396qNh9/d3vpnJ2923shkkwVkyZ6GhKPApzx4Mkg4SLCFZ1F0AERGIzalWZ4ov7r1LklJJBQKD1zDO/6Mvxb57/IiqoKcAiT2eLZEozY2JA5S30EhEurC1jTH62AqAaZIG5SDNALRy4qUmTEFIwNuS+51mqWjM2DkEVaq1qAZEFLk3NuxM+61xVBVFZIJpWwG7oibp65Mk4dN2AEIZHHJ/gvr/9ddz/qlAXmC8sZma0MMSXbANDb/vYSYddR5cna9iklCJFL5CZY2I32lg6CJwgpHFGu1wu+ZzPeQ4ErUmjYUjhZzl+fPp4fqsv5fjXX3/zaneDh1f/cpk+Ppzm8ofH4+nNq5dvXr2mcczl8nimm5sbYgmEamJN+j41yYEGEWMOSF6koYtvCagvVkTUhVeDSDzXKfWD5fjnH97/+fv3RN04dFUgaRU0DEQGDAiqgSIFzFxymYrNHBET7OL4Db/Z7YbzH99/PH74f/0//9+7m/3di5ep6+dLYeYUB2lKEMbovVlNGNXc2WbZwzEECcH5EgAm0lSAASGEpRfBJEJEgVJorZk03cYz0IjdrKGZtACAANWlyFYz7s1vNYZQahZtqkpoicn/2UQqMGIiosUmCBqgEgOgYqJapVIrULQ2VqxlbjpHji5c5Ta4fo7ELtaG06XWCQAYkQAsEEI4NFMOCKZlzgFSxJ4gqRlhEGARQuDcYBZjhnDJ8PB0+fnDw8dPj3PVcX/ohtFZ6ymlvh9T7GPs+n4Yh33XdV1/GPrY973rsCysY+TrGUB/i+6mtfnKbjXJ9Y/Z53TIqyT5s0N0+5HP/vIZYcuzd1iRKibGVWcLVwDLWmvXVJDr/Iop+dgZIlNQ0oAQhCrvX4lI7KqMM10e9Wmudq4KUpVDYE5KUXBRRpKVf/bLx3LA+7j5OlFgrepKj31ue4gBQCsCQDF2oAHQCCGlEGM/zBa6MD08nn/Ml8vcYezf/PrF6+/+48u7H3744eO793/6/seSxSDc3SgRUbLzeQLQro/BJQ0VVEBMaitNvNuUAcBRYlkD3XXm6V+cTqcPHz4+PTxO85kTxDQkTlZqID9/jQEokIUAicAwEIdAKYSx77oY+xS7rrt8OH388emcj/ub3eFwyDlLbV3oMKYVnVpaHkuWK/XakMkLyK7r5vMJ1ynUa8rnQu2AtUr+XAHrObPABU8WXajvX7C4Njb4Nhfhz++lFgA47XmapvP5fDwer4sRXMiIqMxi7OuQOQKQom5PLuLTi21TaReR+5sdtIraWnPAHCiGaJDPZ7NWhU0BOdSai2QOGL7/8fHp6ZQbpvHmDuOwu3HU201zdrvdMOy6NPR93/dj13VkEBMOfUgpIKIZKAKtswPbLXejthgj4WdbdLsu13sPrptDuk67wTKjhCtH+ho83OR/F8yJqQHk2uY5F7UUAwC22kwB0YenKURsdaWtr6+2rc5aVEQMnL6CZigNW4MmIVeTSoTRAlctWKcptVuKVsk4Go/U7aDftcjZGsA2O/rZw183rtW4r5XNXhLgWc8FF78NY0yhi94aUDMmjCEcXthX5XUJ+HA8PTye/vSnn6IN37x4k4b9mze/7rvD6XR8PJXzv/3p9nDz4sWLcRdzqsTQt9TFxAFV5tbabgBdtGpbk8WsS1WBwi8POAAA1NqgtdYP6f7mIBiBAhI11/BPzIAEbhSvoNYKCnMPaez7oUsE4LpcN7/+Kn36S5T429//7v7+tpUqpbbcdNCF8yBCRB0n7+FFits98lEkPwo3WbwNctuSYadfIKJzzxQBA4fngQTcRGCcyfg8t+Q+j0Rm1vVpm3zy3WhXc1HbD3uj9HK5SCm11larqa5ekICgTpUgDIEZkXKdPciDYSmt1nVKE8hMam2WUAlQFBCBqZpqq2KmrRF5HUoLeVOVKIQqBNSlbtcEgbvY7VorZnbYv3DJH9eed2HZGOOQLCDERMgoYKJIBAoE1p7vOiwSk7jq9H6xlLekaL03a57zbNLjIw1bHAYAXp5v2XzPYw+6GICANMs+2obSSah1sTJsTf2WNilFrdba6sIpXV+X5qkuXBkiInBcoJQyTThNk2rd9ThibdACVmWM3OUCEuI43IbDKxwOk3KR1rP3Ija+yZpTrDt6ExiY55lriYbSDNWI3IwdTRXVAgZmNjIEUQEzFUUQjr199fWrtB/ffXp69/bjh09HKX98epxu7sZXr1599+u/Pp+e/vznP//rH/4t53x3d/f7v/7V/f397c2+NA2h9MkHSGup07oZ/HKKa9UFCC6OiYtG8nprSAFg7LuvX79Sw+Mpz6WpydAHgLX57hUIBgbUGGspqg2IxLQ2UVUK3L++/+b3f3U3pt//7d+mlC7nEyLO87TlaLVmRGxS3cxlm4TxVbv1F7cxPf8mXEFc118v5ma4DN9uUJbJZ5JXuPmVr8H8anzCZUCe3Zifn3wdBtxSyyVoL9RrZ/OiiCgLAZuukw8A47BrjXe7NO4SEQ09dWza8fHDX6SVniwgAXKt7TQfS25UWpcGoKhKtbVpyg2KSArMsetAFUTUDEJIKdwx8+Fw59N2qz2sK0Vh1xEiMjliB6omhowAG275ix17nSJ+nifDVezdALDnLe30G2ZAAGK/wd5Jwk1lGjGQoeISuVtr57lOc+1yl8uyRh27QsScpyzQWiu5qmoIKaXEzIhXtFgH1SW3qiW3nHXKmUB4N6SU4tB39Rz7oJaaRuwO6fYrHu8uwEVB8PkDfp5lPN97X39udqFgOdeKsjVLtigRA5mpiTlI6eP3talgi4H2u5EoMIaf7ePT+XGe59uHfrpcvvrq1bjfffX16/cf3/3hv//xH/8//5jn/+2777777rtv+hRCoN1+7FNHBHk6bUPqzLy2QsH0GcTalqaqUjDvQO133X7XzXM2AUPqe5/xqkt4DBxjDMTch8vlMk/n1po2RQNiTBxrPe7vDr/97s3rVy9UWsvFp+pP06Wq+AYGgCxlm7b3GLgtfZ/m4yv7CH9pXMsTcOr3JkB5RQ59DiHbkNM2E3s187StGZ9bFBHvwCGiFxcefr0a3zQPmLkhevzx4XxpZZrUcXjolyvq/Kinx9Pj06Vq5Nir6vmoux77jqFiy81AE4PW5rPWVTRUlFqbiuuX1AJFTVoNOedAPHQ9EwxdD2BdjMxsSDG6aubSIF26iAERjQkBzWV7nP2zbGDAq23pycNnh+J1GnyN5q+q0RQRFhKod3Rg8ffW9Qm9M+K1kiq2JmKggNVoLm0u7enxeJ4uS/Mthr7v+yGllBAthCDLkCEBQEr9MAze1hu6utYwIiJz1iZBlHulEPsQ6HafBoT5TNQMtBUIOBx2L970t29mHC65CVLXRTDx9OyqbgcAYGRVdR+NEELf9wAQu3Q5TRPmUopXE2qAAMysKlVFxRCBYyAIIlJVIhKI9kTDYb/vhiGGH378+Xg8SZa3P38/Tw/f/uq7N29e/7f/9R92+/Qv/+NfPj4egd+qQepiF8PN7X6/H/fD2AcCI6er+Wy/r0KEepVnPmMEZOYGlONueHl7o1WnXFtr5u70GFJ8rhpkTTTARFXBhMzTayCise+/ef3V3f7ACtpqkVZBrCzAskhFRKRFcn0rhrcN7PsqUtjmCr8IjKoqoAQAnzH5nuPtFrGvU2IHt2lRUw5qskZ+1z/AjVWGq/6rc2mcSlmn6Tpur/OztMWb1tSV8rdpyoW/4CUeaQhDShzi/unS8nRu1qQWEaXQd2Ew0HnOx/NEGPtxAEtSpVUJY9f7MyZCTSmFmFJYFTQ5RGBeZz98cxIwIjIwMJE+x9zP4aVt4V6HoC9+YN3Yi7yGKzYRgiqILk0dRHR5E+8dwOoU4dMQIppzVsAGS7+QOdZaHx6e/Njr+xRC6LrDbjc4uH0pBgAqbk61iJKV0roYVFW0toalCFVkphgpkDD3KaUuqh1znS6Ws6Wudl063Pa3r63bzxWacIwxQvAj+JdI2xdFRAhhGIbYJcZAGPzId1F5X0CieYUECHzyiwGM2Qi1RjMKIRHaiz1g/vRA8HjJ59O7y6fp8vF4/Pqrr1//3d//1a9/+9U///8+PD4+/vjzW0RLMfTv0jAML1/cffvi3lEMIooRVKG2sqS/nz8WjEeq3+ld39HLe0Q8n6fj6TLNAAjIiExEJKt6eTMlopCi1IaADKhSW2s9hTQefvvNt7fDwAYxhFzmhuCT8bpCSrBCU9cNnk28AgAiLVIYfrU3hWp3WvFUipGFBReCULtOA/2jsd9jok0zYPP9Ilh0/Fpry2EEMM8zXjl3e/Xrel2XyyWl5DLuvNj8RAjUKgPowi6SYqtc3ILy+jxLjEPX9X1nVqAEvVidpEkrc21NY6JuCHmuedaSkYk4kBmUjKoQxi6R6791HaJ1gQCgicTIC4NRHYIHZiTC5sLCBAxASC66zFelLyxSOMu63Xb3L/btdnAuCnX++66D4xfOB6kBANFcjd4zKDPzOyciTc3ploHCMKS9QDeMhI+GmFKKsUup2+12+/3o0BrMskVgT9fnuZZSukROnm+tljLXmlsraq2L2PcppQgtn/OU5zmoRooau9AP1PcC2ASZOBCbiLOOf4kDqVxNotKyepAJBmxVV+88HxVCZgY2IAYhNVAGc2I2GFXw/C/Pj3MtyPb65eH2bshvHwEAiRSVsSLU25v9Yd916bt//Md//OGH76VmRANTZn786lV+eNzv9+M4jrtht9upasmKiNQv73kLUFtvX1VLbSlSF8N+7M2slBJocP2Y9fSJ1KcEMM9zBWi5zdMEJkPqvCCq0/Ti5vDm/mVHQWoJIZAyGaTUrRvM4aiFj74NNl6XJL4HfG/7StjWFazzSYhI6OiUOEH3uuKV9ZjgxcTvsyF+RHS+sTeWQgje01ZVXXLkFYa8qqsdP9vsC0UETJh7P46azq7oGCOHwI9PU2tiFJ15zxxV9Xw6Dac8n7NkiYYy69RgnvM8KVJk7va7HVPHMeScEUoIIYypASw8ZCM0RyESMTzjTP5h/Q+Toq3b0i+UghKAVFhIeoCKZurTXkDPIyCfpWTAro2orTEFbSqGnKia+lT0doEcKszT7F71zEEBxQgRKQWAbp4zo6FJH8Pr3ZBv9vDm7uF0PBz2u93u/v5+P+4iMxFMU62rmon7OYiItIxQ2+xGOLnWqi0H1JtdR9QD930ikel4eSwyU9cjpjMPcfcqvfxr6V9cKmlICYmsgVQEhiv4zQ8oLw5hDSIgmxIicTAbIkjIKMLWx1hrbe2M1AUAQym1tpIVjAKnEGYyEdFaAtghRWGEFLhPr+5/44mZ+61fLhd7e+xTivzTb38dhnT48B7ev3t8fLgQpXzGaS773bmL6TCMr1+8vBn3gTpGmqHEyK2VJjMzIQkR9H3P0tU6pRQQWi2ZEcc44J7OZ2GCs8ncCgKkGCOyiTy1li9PVh9f3cS+3z0cy3EC7vaID8oW7gj2FGQHD8fOIFFuFmJ0FUHPaZvW1lpDBQJDVVSlxZxYzRoFAmmGRggLhS7EQGxSnIntd4GZTbhp801oZtZkq5n9oHJXckbcDYMr4ItImzIAEMiYOiaUXACgDzy3zXDrPF8mE42IauY5ISMboJQqkA0KWHM7cjOLkTkEd4BFoz6wGk5m51LMbB9ZSUspN+ky3gJBl6e5NUgE43ALSid6wqCIBUOJadCYGYqqLoUE0DrN98xiuUKVidA9k528iBvG6nJKpAqBCJGdqryRwpekm2jDRZ6DkhoYtlZyzj6BTMgA6ZKfXJREr4yYiQiNDESa5mkKgcNAHAIRTChIuox4owFATDiOqdrOm9VbF1oESimrHcyCIspqzX45nfx7iNj3/Za5CRKDmeXACTkacTNVCLcvXw+7nYUEDUBFUBGEr5CS65gAABtM9cXV8IrAS2JXM9z2NjoZnAiFmy4ijH1MnLQpsAFH5i6Fsec+3cLu6enpfLnIXFtrl8tlni9mtn/zYtePL++VLCSO97dVBYi41vrh48eSczB89/LlVy9f3ewPYz9Qp12XiAEwGqoIgqhhiQxm0hqEEFJKMXAIQhTAZqxWgTBGIgKrU75IqZAv+45ffPXd129eEcc//Pnt9MNDqYIAKQXvspARcQTkWkVwEWdlSmsVCgCgzdZhI//CvLG4OGzZZxd8AasWBu4yPOnJjrSr9XxVzfl92ahd241zsApp9QlZUhLymY15nj2i4LaKpIQwBg5Nq6giIHEAsNym2iqCB97gTSAVr6JrRSOKZiZaAThG3oUxJERQt27UgikmqcYSpYCZKkvLs/tsOp6yXoJ1MmFFgDdREld7XR038Fm5al2FLkSTnrcsGPxPlvIVcNVEJJfL5TKXUlrTJTHWi9NKfd+GBSlOYJxCNGQmMFFQNZFaDUmIhQBNmpqIAVIbxoDxzvehszhb09baPM+y2gM52uFqgC7A7QHR25Vu/AUAMXatFbOchn7c7SFPQVoY9sPdK+53wiEAi6I2ATCKpNef+uprvdIfhitMxUGa6yuzyjWxERIABaKGuUFrrdUG0kA1dbGPKaTOGBtYnstPOT8+Pj49PTkItEiUmuWfPsQYh5D47vbFzSHGzjPDf/35g5TapFwu088f3s7zZbfbDakbd/3hcNjthhiDgbRWADR1oU8IuMgmj+M+cA+AKaWS5h7RMBRbLIgZJXR4vzu8uLv99W+++errr09TPc749qHVqQ0pvnxxf3vYeTXrH1YUBBYSRWCO0ZgDsqmqrQoEXwAKCyuDwbm3nlYj2jLz6BTRdawthCCtrXpauKYqjIhyJbVzvWIXFBoIlommZ73LWut0vpzP50W6fZXUwR6ZWbCZ+agPgpnaSVUARJTZIiITesVZWpssxJjikt6j9kPad7uxdsRY5ozMZWogYZ4bn1OrGQAQQ6tSJ0VjRAyBwcV+PTt59uqlX0rDrqqQm5i9sxoNAEDMR858sB63JSyLQ+hCtNzsWM/nT6raqlYpYqrgSiEo5ZLz5MAArGBmSinwoeu66AWPl2fIZg2oESsaSatS21RLLhdA2O2GYRgAgBlbK75WWivGaYNJ/Ch1F6hdP4QQQ1x192AhkPVdLKiiaU+3iZAQQ637wz5DAiVUY+bEJKam8oXCwRdff1EYb2tiUxjd6gUzy239RQVjjIrmQhEGFJhiiLFTxPOUH07H83S5XOY1c1nyw5RC13UyawqUutB3XUqh7ztErC3bbodq5/P58eHheDzO03R696iqweLhZnd3d+ewn5mGSF3XHcZmJrXNMXLNLcYhxeFwuG2VY+q44uPllNuMYDc3u8Nu9+1hf3N3uH35wih8+PT+w8fHDx8+fTpeXt3gq/sX+/1eVeepVVEgxhC0LJsuLCwIh6LwukC93sN+oUTEzYqeRSq3Tq+rnSPilRpejBFIEdHkmXelrYlZU2VEdydZ5P+YF2aKWzOjKRiYSV34G2Wea63a3MZRPVyvMb9Dqq1ICGgGKiAixYppQGSmiMAxJuCASw9PEbHr0suvRzMJBHmau6G/HOd8UThNJUsrwhxTTFlzWFUlw0LYFleVcmDK57HxC/R4QRFsy7EX7wM/6ZailCAQAAGthEiV51raVpqeiEyXvEoELuYsDinVKjnXp6fTNE05560TuNt/fXt7u9/vQ0xNACj25t6CoiLQJM9zq/I0nR9PR+76w93ttlHdmMO7/4ILaOE0Go/2tdYYI6cIFFSbKRBYF1NKiVaf3hDJjw/LmcfdhFEEqTbP5BWXWtf+va37eerxmSLENXfP0w0/uQpk9DEsQjIOjCkyqo1jX9XmJpdcnk7np9P54ek0TVlsdffWZosCW+j7/v7mjsjXCYbA3gVMNvxqeOnn12G/e/z08Pj4+OnTp6enp8fj04eHD8O7d3f3N4fDwX3ep9xAmmprkkOgacqqMPSjiAwdKbIYEgii7ob+9Yu7+7u72xCI4sdPx4+n8x9+ePfx4fF8Pn989yE0ZIIUGcSJEAZMBtSaeu7ASCHMAH3weOG7QhVw1QPClawH6+ddBmkMEUR8xZKZoTuYrEv3M1R9zcLiWtF8cdc2YUbVtoy3KKiArYPiUmutVepyXPoPt1ZVlYgJg6rW2pAwxgghmFGrTcUQ1RjNMMVegdty10zVOODLN/eIRrhs4PMpnx5nGhJWZkYRb1IKkhAFRAi4drp9pB7XyWkE3qb0tlxQ1dyD3Mw2D04HG0QshNClYJEiLO7pCFrkeQXrlfg9x9SkNqnbeIkZlFI+vP/4/v3777///ueff354eJjn2Rvfr1//+rvvfv3rv/rty5cvbw6QldNUAaBCdRvleZpqkYfz8TRN4w10u7mTGDAgoNPNUxdi4mbRx6+9B+DD1m4Etx4xLo+31sBafQrSKBJA6PYC0UIPaS/ETZRkWpoZYIC6OSF+sSboyqRzq35XHP55A29NEURDwuDNmVXfHhET0dzaVMvD8ennDx+ejlOeijQLpIgYQ0jD2Pf9fr8/HHbjOPY8rP7UKlpLbb7aoBRrrUN8eXtzt99dXt5/+HB4+/btx/Dp48ePHz+dcrnknPf7vWM/RyCDSqSpY8efUxwePjy8fnVLgS1Q5PDy/v6w29/f3B52e5nl8TQ/XOb3T+enUwaKKSU2vZyOAIqrJxAQGrYqlnNWVRd+WE63mIgCWP0lxWqLBwuNkp53KKwBwyfiAEBXuqWtPY/teexKj/I51VzGFJbiUAzMtBmoSm4VqrVSmpsnuX+yAagxo5mo0aJeYdBcLjuC64A5W3Axb9dGaszRmtUqIaBIqc3u9nvexUhoZkI6gGFMyAEiD5SGYzydTufzZLWqNkMBgABgBOYG9x6BPU12eGDzTNjoFqKLCJGAgZq7UfvV77rOdiNAVDVGMBNALWUheW9kcYfmUW2aZl9bea4558tlPp1O//qHf/3w4cNf/vKXH3/88f3798fj0eGEb7794Xe//3Aq+pvfyN297M+5G/oQktRSS6lzns6ziBynaa6F4h5WoH8Twl+sX9U2CmspZWv9pZRc1ty/E0IAo5JbMvUJYQEDSqEbESPGZHFARqlFa3WJYEDXBvn3a2C++vqadYAr4ckHgGwRoKmK0IXg/hDeN/LLfjkei8rlcnk6Hj89PExTRYiBeRdi13W73e5ws9vtHMAjRDzlxSvEmUMOkoUQghggdl3X9wMQ3u13h/14c9h9uL/t/xLfvn2b8/zDT98zx4X5NAuidj2njh3qS6l/9+7dv/6fNtzsv/3Nr//6b353c3+Haq26tV/8cK4fj/PDpX48zcfTRVvpAv7qu+++evWCiC7zJVdQCUAk6xQKABQriAhoPGJKidBUxUzM9OpyEeJCAgVQW+AFXhgUz5yfJeJuVLylMF3nB82sSGsq6gKXTMiLZbRURUzrKeHUKy2lBTFP3KQ2RAy09orDc5FsTUoprYkZaiMjMDVmcjfuRq21ahqRWST7XdBWAODu7oYCYiDQxgLdrgtdF2IXu54O5W4ePnyIHz4od+qZY2sW/GZEIldCWKU7N6Nf2HJAr/5VYckXzVQ05zad8jzPLiOXUo2BVnaGb+C2pc3bQ1XPjxcXEGpNj8fjp0+P7969e/v27cPpVGutDW/vXse0Gx8fT/4dpctUPz4+hZ/ffzxdhn48HA79OPSYSs75MuWpmNk5zwIojbf45uvVIYpaaxX1HbLh21sHT5zrg8YxpL4jZi8pMcRF8wdD6HrmGDmKj1YT2ZUPgJ9xvwy/v/zrto23Gs8XnJ9otVYIQIQxhhgC1CVRAdWap6w258tlOk25qNF+HPbj/vXQ7feuDt0BwDzPp4eneZ7//PCRvEFgaGZMMaUOiDstHMMQA4DWXCnw7X43pPjV1y9v7w43t/sff/j5L3/5y/n8qe/HYRh21gHaPM+nc641p5QQ+XKepuPp9ddv7l683O32+93h4ePHx6fTkLpMh0/H+VRabjjNLec69sP+V9/+/d9/+91338UYp+kyX4BoTK5WCYzk2uuWcyaiLkQiSvGzy/Xchryey/cFyl/ynHEFr3E1QEFczLQ0iP/1PF02c4ZrUnStbdvksIlXtkaGG/DpQxGeUVNYCZsEzRaBKgBCiK2KWQ1Buq5LHRETIGhjWMab4jAM8+XCrLe3t6mXEGg5kjokS30nfZ/bdBy1hwjKrT/0p9Pp4UF0rsHdhm0VKmBwmjF4gEZgM0AFaWACqqgNzAAZmFGNVUAQMJGJAoOAzTkbeOu8qUlFK6VM58s8ZwZkjtok5/zx+PF8vjw9Xh4fTm9/fvjpp3eXcwGg3U26uX9JHN99/PDh8lPpbsfdy5hSF5jG258/nU/lp9vb+5sbOV6073PX9TF2pcUKhGQ1Wj9wN8a+G10zRwWaKSKqGVPElmuepOYUKFLvg0qRQtPFd6fvU9dFDkgEERlbUlUC7IBVFc04xZRStWYVRBUwZmWzPvg0jJYv9uo1iLrt1W36zOPDyq17zqhH2PWUgoZ2KQYNGdBgbvNc9Ye373549+lpmnqINy9uX7+62+3Hb158m1KqtZ5Op8fHx7dv3z4+PprZrM2L/74bYwiMFBE75m7szExJAiM0abV21O2GNCn99re/evXy7utXL+73/V++//70+KTHS6WIiNPxWC8XaPXlt99Ia5++/75/0f3tt3//v/9f/pc3dy9/evfp+HQeUhrH/buPxw8f3k7n+XK5PL57x0i//e1ff/vtt795wzdp0AwpDoVPRJOWtgujxJZzVjVmQsM65wsSIRPSOpzm8LJL31Br4ZrsiURBXZ2iqil57giEqEBoJlVm82F1NDVrhI2wihGgiaJB5ECA82VS1RQiEZ3ORxelAYDzZaq1AlKZ2zzV82muRVWx1tqKDv0eSNXoVCY0EBCxSoFEsCs54NqKVYGKYBaIM7fTaeLYD+Nunp9a+XTzInbpnUy7ZgYLOMqAgp1EAut3ZobUuNNa64cPJDz1lUKMzw4Jmw8UAIgoIi8qGfrMbYZ1zIgYAmMUTBZYzCw5W+VcmtYCqC4oPYuDVVZKmc+X83k6Pj6dz+fjfHp8fPz44enp8Xw+VRHYjbe3t/dvvr0LMaoCMOVa8PEYu3Rzc/P65VfDMPhRHUMHtlj7bAezC+enDsddOtzsvHL7Il+1VdZko1Fs5Q8jOc87cgjEBEjgQDtukfx6qtmujE5FpEI1IlUllGv87/ql4Qs05UppcSPQe2xJKe13w1KBo8TgduNWG+dWcp0h4IsXrw73L168eLEbe1R5Oh5F5OHh4e3bt44dhBD2+/1+HM0We9EQgqsx1lpbQBExcFaOhwUSNVMlxMO44+++G7r+9ubmx+//8vHjx8f3nwiwqkCgWuWnD++m80Wk/qe/+y//t//7//Htr3/16el4mc/7w2EculLmv3z/xw8fPuRcAtLt7e71y6++++6b3W5UnbyE8ak65iDNai3XA2o+QuART4S3m6hXArFfFCD/M7zwi2plOzo9abpuzm/H6zI7vgmYL/PkqwtZzj7AsL2ZJW/nVZPRDHV5OV4XDKfoZtStNa0tt6qavH5WbQyY+tTFKCJ5rkviYIgqiOhSmhwjEY03B4xBRCgFYyylOFN8U6K6soFSBgD19o8TTJ3c5pGZmIgMNASKRiSBMIZAoNZaqzkDqkaOHEyslXY6nX768e3bn3768P7T8XjMOR/nUymlVkMIu8P+sL/76quvX736qsqltZabhBQd1AnE+/3+xf2rYRiX1k4/ppRi6GKMgI2ZCQMAxMREaX/ob25uNu7bduO3RbAC/YzL7C4s/TQAIui6bqtnEG3jeF/vXhEp2tYW7gZ7+HPpdWTYXvff9eABANGF4o9EvmCRqB+GNARV1epu5YYuyNWF3U1/U29p2IXhdn+471Kf53x6fPrx3Z+nafr06dP5fHaTjjR01PHtYedT0Ckt1ezS60I2MFGgxaUUm5iZmgkSMfPt4eYw7m4Oh7Hru66jEOfzRc7GGDHR8Xx6PD999dXr//AP//D3/+UfjNIffvzny1x+9auh23W5TjHU+5ueaBzH/c3h7uXL1yklr4au5+ZFpDVrTT87WH3OXLXWGngznQbf47SMsyxYNK5jq7Bmy/8u1rDhiLqaM3rr7rm9dDWQJCJuQLUZbi78brNpmhw98Ru6Hb7Ei8mfrm+U3Dg3MC3O3fy8ApuIaAhBGE0qsQxd6mO0IpbUxzh5jSvA4A7DIYQhYNoNSBR3A3dpriWYrqHVXFJoMzkiMzAF1fVE8bOKBdxSkKLTKX22mUNCZLdpa4HJ2CvqSLFqzZf8+PHxh5/evn//PucKANzFMQ5d13dpF0KKoe/HARB3N4fWGpfaVO7u7gjD3d3dr371q36898khBO66LoS0NPdCI3LjYw6RiKzvffYIv9hF8ItWwdrYRkT0cZMQQkyeyq76Y4v89dKT3IjvVRYezBZsvV5C+IwP8LyejPynYDGU3SLws1ifLyDffiIZF2IwuNKAxw1B6IeBUmgQHh+epvPb8/F4OZ0f5p9dIyIkHobBs5XScs1RVZkDGINVxLBMxoWO0LnT0HzKx0hVX9zsl9weMfS9D4Hf3N/Ff/u3H3744Wk6KQJ0YT5JS/zN7377n//bf9vd3v7xh5+P04UohBTvXt7v9wOwqGoMXUo9Ionx8Xg8Hh/Hm44oIDIAteaKqoxXGJ8tVBbwbVMrbB2d6xi7caS3YvgaSri+19s3PZxuMdM3anXAEp6FrP1RpW33dEMBvfE2e/v385l2AvRGLBnoxmcy83liNauteZxkoi6lNlHXdY25SlHIKXDHAarNU2HmxMHIaKFsEwFaFwAQKXCIIYQRsKh1pYTFaOZZDhLXIs3l0VVVyYCI3IiXQvMAzIy6+r75xLxhQx+foQCgYipVQVGq9ybNDNUTNiKOHTOH1Me+i7Hru92wG/pdP+47EcHT5fHxcRFMQJTW7u7uUkqqqgIuqrKMJYXmNZIf3MQWYyTCL7Ijj4Hb/V4OQlg8BxAxMnsSzsRoCoKmhvSclVyvsNYarL1yQtr+C25x/HxAPIdu+AXpz3/AUWsBE5XcajMNIYQuTfOMTowjNIMqUGurtZ0vZW6aWz2eph9/ePvh3ccyX6S2U3s/juMwDIg4TZdaiyt11xiIiAIhmEozlcAxhmhSCSAQASiaEFEMZIZWm5m1Wqsuq6fv+6+++kqI+nHkFMp0eXr8FA7jX/362//9//F//OZ3vzvn8u7jJwBCZiK4O+z5dn+3j+cp19qa4DSXy9P5crlsCP/Wksg5E0ZeDWtV1X2MfaTB9/AXV2wN0Q3gGTLwMxfgS7jhevf6jdj+6+9k++sWHrfDdNvkvnUdrMpXKbQthCJaGF9q7JKiiM0MxFEvJQMW85VMBr45J59GYmx5QqtkkQFZyZqaYTNhNLcSXUDWgGYmYGSLkWBI0RCCnwsLGWN9W2ZG2HmOToSMxoyBkQiQoo9Bm/keNRU09biEas2kGai2mnOe54tcyvk8vfvw4dOnx3nKpsAxxRgPN7d+DWPs+m7Y7Xb7/c04jtmqEeraTD/s9/c3t7f7gxuY+hVfxH0whBAUJhWw9dTgAKkLG+x8HQPxipeyopTPwTNGJlpMG5Z7D4qKPum4LojnPxyW4/yqSa4ikuK/U48hIhFfZQG4jok+xxNfHLZSCLquczdnxIgItZTTcToez3/64f2c29zs6TR9ev9pvkwd0zgkgt3Nzc3Lly89T3GhglprPj3iYuzafG+EQMTJN20XyP/rq1lEoJorsyMvhwuHMIbwCmC324274ePH9//2L1ms/e1//Lv/9A//mSm+//jpcp6W+ZOcpWQONPZdmfNcSm1Wc5vnueRGFPp+DJxqmVpTogCGqiCt8TOTdGn5LNMsCGaykhkRkVyr1BkL1wTmtb79d4Y34QqP+GKy/zpEe60LAG11/fYd4em9HzdLk281K8VFgMlAFgkuJjIzMlDT1ppSZWYMMS4ammCiYOa3hECZLAB3TBECw+JbZAJKgAaKAAZkBmJVmn8AZb9HrKihZN1S/OuxoZR8uBmY0d1XXIHDFMTdCECqWK2mQmBBAFHEDAAJ1OZSP7x//+HDh+PbT8fj8eOnh6fpPJcGgYdxHMf9sBtj6Pq+H8dxGMau61LqmVkb+PSGY7+BQ9/3Yz/0QxqGLoTAFPu+Zw4iAtACB3HJF0IAYjZX24MrvPeLPbzdMELaNkwK0b8DXjA4bQ68SfTZuJk/ZPPsNO9CLeSElQn0GUZlG63vKqu/XkbO0y6lbAyhlEazLA1UrRY5Pk3v3z09PDxcLvB0zufLfDxP5+kSycZdt++7tB8Ph8ObN29evHgxjmNKaZ7njx8/nhPXWluTLez0fepSut31AJBS8iqAmVtr5/P5cZrneS7SYowUWMCaCCLeHg4v7u5SF1+/fsmMovW//tf/+vV33+ZLrrn1KaUQQZQMJBei1EoGUVAAAanS2uKGtyhXLIAA6uI8TguP7apo9UwHwbaq9bM4SWq2DB46QL3+0zPWeH2Fr2EwXxW+SzfD4Q2e2CphW7U+/EYv4J/TsK60h7cnvDpjoPlNbwLRtvLAzKzJ2uVKOWcLGgh2fRy7LnEISNOcaX0nTlUOSEIUA6iqGz6Ts+gBDfBZ7uAanVsfGBiZgQBUm2hVVbDgglqmWNVqEVEFIzMDQgbiELwL9unx4aeffvrxX/50nqbLNAlB6sdxGG5u73eHPceu7/vD4XA43AzD4DFTmnURVRUIfUYnYNgN3vJNXeeVrXHAGClaIKImxZ3c/F760MV1VbmlstuN3O6Wp7vPnxYRFjKsB0kD0FU2AbeUyf/qwKmqMoZnPHvl6G5jtM8LUmHjElyFCzeZAjEtrVZpiRMQ6nJ0MMdUWzlP86eH46eH49PT+Tjh6ZxPl5xzBoC+T3f3+7v9WKTc7A+vXrx89eqVF6611shB724ul8vlcjH10mMYhqHrutsxOYSzlfGn0+lyakxUS5mmSYa+HwfXhTOE4/EYY6xz3g/jr7/7br8ff//73xPR8XgspUQOiYNCRbWW57Qbn3JBg0g8Sc65ltJUjSlu3NgQwsLJI44xOJNhy0pgHegX+Qy5wFX1InxZkXyWNn+xe68X+XabltmJEFxMDwAc1lp2JsIGeW77+RqOvk7pV7jk+ewBWDAtZkYiQxARU0VRUKMlX2sqMozUdV3XR+9jPRfPgMQUVuan1ObQms/OGyEaoEHIp4WqxsAcyAdxmCmERRtJm1b1URhHq7IZSlMRk4aLewkQqXZdn7pIgAXnSBNImi7tURqkmGIXY7y9vX/58uV+v2dm7ulwuO26IcVhHPdgIc9FEWg6gbZBCWsBrWnow9Bh7CMGNkgxMjOaWi3MzMBZciAGRZQGqCEwR2vcUsCFQAu0qKWbgVlDkzUn820WOaYQfaJaBdZN61k8Wq1iaBiRInJoJsV0BgBKhiSGVSqpxNSIyMhGinDNiN5m+HmBKbexJGZ0NWEHEVQ1xjgMfQisKjxrigG69JTl53P+07vjxw+5zfHth4/n8zEFGPuYYnh5t3v56i4y3qS7+/v7/f5m7PsQgrbKpi9uDhRuj09ProLQxxRj7FO39DQcug997FKea2nnpnw6TVWZQocUm9rqYAe1XS4XibF7//b94XD3N7/96/vxXqaaZ20VOYz7PV4up6amSEUkxKHIBCAmEAkj4bmUvu93h7FIdgqtqjJHLZrrTPysjOOFjJ8v6BrfVSxqf3sTI6/iG5tm1bN2RwgBQBDXqscIHPBVsEDSVEV9bzjFTVUng77vRWQ6n7U1aDKfziYChCmlWuo8z77hy2Wy2mYT7lIwbXkOhgEsgRKT67H1MYmIgiFiriWk2GnAQIA0YTGAGDA0M2nH6dL1HBnImvu+FDNtGgP4cBUYiKgiMzCBTafJg2vXsRNd+r5D1bCgoLQJ8Dkab7WKKa4Ts8uBpereQ94rQ9eCiyExMzLEGGNiNFAN64t1d3d3RMQUu647HG7v7u6GYWAODVuM0c+/GCMCS1Mn+rl+AhGN43jYH252+2EYQuAvqpdnRBGIDBX1ueVj16fvZ5XqF0ksrhydbREsrrPrmU0hIAY1VoMmkst0ns65ZRFxor8LTWwnfTPlZWx6caD45UtfV8h+jqL5MeO+eYvfJAVutTor4/27j8fjxSpaqyYVQxj7fhzC/ma33+8j47A7jOPoaK3fM8+ncs4xxhcvXhARyAJz1FqRWBfxLZ2m6enx9O7duw8fPjx+nKoUIiLeD+OeU/QxCVEmzCIWAt/d3d7d3SHi6XRZ6kZiv4/PcYlpg+i+UHT4osHmppGizd/8ijJunT8/BtUxdjMGAGSCVRH6ukT6ostwnUhfR871PTz7qmwA55aoiz2HWb0S0AFZzPqYSOkZmbQlLviZLQBKBMyIa6MrEBsSgxEaII49hY5igi7pkFLfDSkZq6rOAGCKqu2Kl0EUyS24Y4wAz0NBIfTPwPrywRAVIE+qqj508eyXA9TAC0IgohC5S13XxxBCNWUknxCptU7z7Fyz/e7GVVS7bhjHcRzHGBMADOPQdUMIwUVrwSjEKoouwCutmFkK0XtCAWGzmcQVl/M37HGYAL09GNZT2XcFrHo9sAKU2zNc794Yo2hZr8BnHWNFCEQmIGK5lk+PD58ePrZWBOzm5ub29rbr4lazIaI0MaIAyyngL3ylj/tM7VjeBj5TC7a7YIuYjE5T/vTp+OH9w+lyFlFAqmWWWjBiSsFHJvu+77r44sVLLwS2Udjl+QVcGBgRpdR5nrWJiBjS+eJsVsm1TJf8dDqez+da5uqmeC2CDok74F5VcxNEzjkfDodXr17d3NzM83w+T2zB33zXda7L6xDGsyKCaZEmnndc9cC3qs0vdZNy5bduz98HJCRVLU05Z1VGpogRaQNfjRcmP17pEz9v1Ot7umXXuApAbcv+el2pagzLebQ5PDl8ZatGny1PCwKCZmpNtBKDgYpWA+WAIRIDAQESeL4D6pWx7nZDTEjRFc1BVa1BqTV2aLocLkReuKGqkqFUk9oie2u6EaCZha57Fs5WldYW5C3P2+SQiggYrYXisI6nUUwYI3MgYoAGRZo20dpO59PlcmkiIcWvb++GYRiGneMlTMGPw8GVpkIiIjI1s0CgbCGmKfgJDkQ09P0wdMMwpBS22vVa6CxhcJk9MEM0CshXi2Crepaa9zN7u7XxG2MIQVfkzJeW910BoJpVK3mWXGSa8tu37z9+emcmIYRIvOuHFEhV3ZHF9w8ANIIApGvD11bZ3e1Qt9WVx2PLNRd3/QEtOT88Pn34+HQ6XVpblERAK6OmyF2KvuJDiruDJykBERfNNyZfiGHtc5ZS6pxFhFZ+/+Pj47t37y6XqanE0HEM4zgGBFVAotRFQK0tQ6VmWhoiQQhh/3K4vTuY2XSZVRZbwO1KijQfEeHgOikLwC4i8Iv27PXXDvZuKbHfug1oVFjss2U1zUPQq2v1eS161cPb/roAYGTPvYCVyrrx4ddxfBORtDIUt9J3IZ9IcwBTWwNRRUUgQftCQ9N3vl/6JeYCuMZ3ES2txSgATAA1l6ecg3Q0JlTx9qRPsCIiwDrEhi4+0Zhnv7M+pReaNVOT5k1zKdlBNkMIjp36GcBMFCJzIk4hcAjgsI3IItrrHCXcAABSxElEQVTQ0KS2UnPOeT6fci3DMBC/vL175f1JZjZ19E9rrUTAtKwt144AACKYW5ZSpS5kcSLsYhqHjiJf797n+wREwIEZ1IAM3FbTVl1tERVfYbCMMF8FYe8kh+DN8LU5vNQUy3bKWqfL/PDpeDrN0+n88eP7y+WUurjb8dZpQMSN1GlmjICGgka60iQ/X7vXq1alaW2O3wYkMgBREAWm83n69Onx4dPxMtVWpZQyzzO33AUc+pgShUhEGGPc7/feG1fVMhcA4BQBYJomZIxhUb30cm7o+pRSuUy+YYZhAMIuDbFLqpr7RESALGCicJ7WYVHoECUmur9/tdsNpZTLZQYLIk1EaBW+sLYcRrJKRAhYlSZOR7/Kbra8mgivdY4APOwsKbTiwrfxISEF3zGtR3Y2yFqmk2PRqzDzlwjWF1iXR2B8bvKtjIkVoMZKnrT73M8z+0rcdrZKqWqNiDCYz+iKVHX+orYVsARRWfUBgqo2sSxaDer5qJai4uX82KajHvru5YuO6SyzZ6UAxBwB/PQCYibQJT0H0yY1N1AMl/MkIq1pLVKr1Nqkmapy9B5XQCYCDku1mjAgERhCkTbPc23ZSwKx1lqbLufz+ZzzxID9OOxuxnF/2/d913UIi3KqYiEwBsPFmhmqeFNGSilSm097aG3UJcZlx24ShF8wb8wsYCBgUDMTA7EmBSTw86364v5tGzjG6AZOvoD8seRUq7pCbvLu44d3P384Pk2X05TL1Efq+/5mf9iPuy6mQLxlgSZKgRds2YkFuggUMT43tK6LYU/P4Iphsi4vnef5+HSe50IYkbXpNOcpzudh6BJTDBQCRZdait0GpG/LcaEcm4zD0HVday0z6yp93HWdz+uHEMUUjAyhlEKRVCGXdpnznIsoKBIASS6iedzxOPYphfly9mZKk9LUsDW/krbWJmoLRfQZueDnZHXbVERka+PdI5hjEP7f626Ngnk/J1Rg5oiwDWBu/VszY3526tmYHn6dneS4XSKfEnXY5bP3ebXtZfVD3FpH2Bq0BqKi1Vf+6jEgItVssdHF1UG+aQOFgISMaOxccw2cFAhRm1zO58cP7/QydAbD/7+7N+uVZVnOw2LKrKruXsPeZ7qX5KUuNVmyKNG0BehChjVAtgy9GP4LfvCT/59eDBuyZcOUJVoSQEk2RV1RdzjTntZaPVRVZkaEH6Kquve+lAG9unFwsLGGXtVVmRkRX3zxfUm6PeQcLGtWLb6WwSzRMUlEJJJis9Ra5f37JzNr1VqLEcJEmJiIuYnkVRROiChJJyJGxd1r1dPpdDyea61Jupxz87HW+vz8/PThQ63zw+Fut9vt9v3+7j5SZVjorNZ1Q60VW0NyXtzAvNZ6uZxeXl6w0PPT++fnD9N0uR9yP+S+SyKEBLcY2xLZiM2AgdnZ0VWtqRadFHTY5WXnL1Pyn5pHbs0M9EVufwsIiKhW53me5/m7y/HnX3/z7u2TVatzy4kfH18/PNx9/tljyLISLzL8kQSy0OKPupi+wMKMJd8g6A0pMTNrChY9A2YiDKFAwLmOp8v5dBmrAlImjKWs7K3L+6GXw7C7u7vbHXZd18WVR2MzzDTi4zCH3+VyTCxJV+iKuOecA5J4OR0v56mZllIuZrXW03m8nOfmwJIhrPmmCVABuOuzw1JVmbqp+joxHgDKwq/qBBFJhEWQiRnA+RZt+dX8GRdnjOsG3jAqDeIEOKgZOFbKyDlhTOqaKqG6IACkFFXMp++/5mvXE/yjf69fWPIId1yUerY0swV/g9TQHFwJ0NAAcFVUXHxKmBgJiJEIzTXo9ETESBrEDCJkucvoaKXO4zgen15guiQzAXj9g90wDJFWRL0Zm7nNNedMDmjIgAzcrDRVeff+ycy0gTsydSlh1wmhpJ4jQEUuHquOGcy9tVbq5XR6eXk5msFuwJQ6SsJm7j7Nc6uzHg7hHpJzFk7RK4+BgdDukIWQaGYhblRPp9O792+evj2+e//m3bvvHS36cmbWak25u426t1gUI5MRqLW4NivVap8ZkYRp0e832Bp0269H0LIGqsqyJVTg7qWUl5eX8/n8/cuHb7/7bjzPQ95Hwvnw8HB/f3h4eAgAySEqN1tqv5DzWC8VABQXpSxfi65PCrb1s3y0mMpUgnZbSqnV5rlO0zTO0xeHw+P94eHh4fHx/vHzV8Nul6PF5h7qIkOXcs6uDRFzzh137n46nS6XCwPmnIWltfb8/FxVD4eDu4/j+P79h7mWUsqI1Fqbq6kBpwFE5tLGcZZSU17wsE27K85BWPGF2GmRdu66Q5yGS8nDwM7ryP1HFtvXrPVm6ivsqeJbuIqZxJBNHPfK+bZJu9kpIibEj4hut4gDuG210uaYd/s4cG0uTmW+3brxLFRVnNydAY0IrhNpi7Tl7QONPy1JyCghIxCHE6W7MwpTVVt1nWoCO51OXqvJ5XC4j6ieUxfFMBGF6mOcxSFEicDuTZ4uBQCIhJmoE+o67jsW6dKBGROiEBA7UyMCJADvUCVhyxyi8HR/v7u728nu8PL0/Pys7pO16Xx8f9rnw0HIat91RGAGhABOBN51gzsOA6nOcxlTmucyfv3Nz/7tH//0+1/87HQ6ff/de2ZJnF8/fjHIgJ9DmsaAwQJbZ2blaFrUSKUW8rOZnuvp5UXP9vnnr3f3Q5mbapWcRNjMEkuTKil3eahWbTKRjJnRLZCey3Te3R3S0J/efPf++Dy+PSVFk45EEnPf932XXt3dHfohJ2HwZmq1NK2ALgkFcsfdMu1NUkphJiQGwGbuDglQHVxd1VprZR67riNhMzUwEQEmM3tX4N1cz2pN1WqdX54ub950oOfMX+z33aHvD13uAOCCkKBNzXsC7LouC3sp4ziC+5Bz13Wq+nK5tLHk3Y6Rl7ZNkvM073KW4XD85vtvX44A2Ewvo07TzCJ3j6/M/fk8ttaa+gjZzi+/PnzV77r5cp6mi7uMU2tW+j7jPKnr0GdjAQVXSgLY5/nDsZfEDbmxsHhF01ko9IKSaZ2niojVCuXI73hqmhJJKCV0HcyzalR1COZIGR2r4YQNqThSYgEAU3XmrutaifPUNcy+ECAhgHMJYxNDIkoiIhG9UwcGzk1ttyut+TxzkvlyIcBpmi6nc71MNlefK6sPuW+1MgmZUanokAaRlF2owEQd9vtcSpnqZUd99LFVhVjcpRWYtAI5sjlcXDso1S8zXYwLNqPnamWaL7V7ePDWrJbS72rfUe5InM1THY+qdbfvi1lTAxA1kRWHkyR9l4eu67uuFxFHcCRjcgJHA2SghaUmcpUyZubdbtf3PYn3fd93O2Yew71alTltVUprhqhuGOOpQV1eWCbq5/P5zZs3v/j5L5/fvpnnej6fifi7777LuT+dzu+/fPr8q/uUFrrFIhmJDABBAIj6JLLH8/n88vJSPnz38vL0w1/76vH1637IvoyGoNZF7HIBM8MRqzUAP51Oz8eX4/F5f393OOyiGp/qpG6UuN8NXcr9kIi5aFGtrUEwbOIcjfZJzosN19ZeXkj564zokkfgNexcX0Hlc1fVy2U6n8bQKnL3Wud5ng1N0l1KHGdZSinMNFV16HNw9Gx1YFpPa4kezxWJdXf3fT/M81zn8lJfTqfTNM3EiZlra4pExNNc51rGqSxqhw4AttvtEsuoYAZzLaVOFn70q6VQMQ3UPdLVAAWJiChIyx+Vmn4zZRnupK6mbgTIJBjT2KFbris0tcbMuVUuLCLYISOFmVZrLdqQt4To7SN/Eh63FGlLxzZRwdZameZbCHqL9rXWpqal+irGtHbOFgMkVQ9ELRIU5sTM7GzsDEzoCRnAvXnAiqUUD6VLNzN7+/5pmqZSp3na3933u32+OwzDkNwtzLPMtFavtSEkNRdTRCDCJNIxZ+a0jHoBmhsoGBALGgAjMWImAAQWGnZ9yiIiu92u77OC7vf7x8fHx7v7Mk4hVLvkjd60eSkNAIN0yZz6njcqv7u3aiEVVps5QDf0iDTOl19+84vj+fT0/Pyz7yLjTYjIJGvPkLfaKYq6QGumaTqO56+/+cXx9Jt/4S/9xz/Yf2XgrRUEEiRgERZZfRBbrfM0fRhP33777Zs3b87n4+vXr3/04x91XbcfdpJPME7NtGgRIeKeO5GcAM1AQ4Koms5TOY+X1trdgaN3sgk+L+dX0G4Bt2lDA982cASNZQObllJenk/H43GeornVSimtla5Ln3326vPPX796/Xg47Pb7vQiGMXff9XUu8bdo00E3iyvp+35LVlewhxPxNE1jbZdxLFUJeMgdCIKhGl3GeSxzuA25ezmPzJWJzGCaStB7zD3c6wCRkuA2o7dM220e2cCCoTdMWz58s4HjUSKiu7bmIUK4cNqD3eGL2oGvNUgpFWCKrdh3GYDVzGt1p/Csue3YbQ3nX0XRbjPnlJLlHNdfpnlDsAJc2Gpya81VEYGEEbFom2rJwm7UqrfqbgTOCATrCCo4ATsY0TJ4vjrnqAL6MAyoDdy7nC+lnC5zLKFS2jimWvz+Dvd3HQsTZMns7mhhP4vSd/ci1MUrd7LGTCAw8KKNDLC5MKbEbEy8oKkh15xSyjkxgxl3Hb9+fDx98VV0k0ChTHNOnaqYm2pdxHoMzYyTGDCiN1UH7Ibdl1/9eqk6/fDL1tp4mYL4NY7zh5cPVdXfHwHAl2nHaxFFGH2gBcLZ4uplGgHg7dvvDd3d7h4Oy9BCzrcThWY2T/V0On3z/Tc/+9nPvvvuu6ZFVb/88vPPP/8czd+dLpdS27i6SCYJVgryItcRbt1TmUOhvu8OdqMfgKuIcYT9CLxVVYjMTN0yXwvIjUxfShnHqZRYN1RKGacLoj8+3n/++uHz168eDvsuJTRnkD5lFxURaxpZACKllGzRc1rqxmAFrC02DU2Mal5KRSSU5EAKwiLzaTSzkH9DxOgMmY290JCTq5dSQ61GEiElTteB9djY4zia3cfHisMCtTrU8Ihd1JhvZgY2PNkMzZt7zAbSBjeSE3PMRV9ZzbXqBacbAgw7AsUOj/H9Nfaq6golXivw2+C8tRU3JH/ZxmHbvRqLuzsnYUBFZDdErKpNm7oR9sK9KbkxYQaQG3F0ciQFDVlpdEoACIrm1pogDYddK1XnklLaU6p1nkrj09yqXc4cnmbqZbcbUsaNlw1giCSPj69EQjxdQgIx5ulssfl0C9Hq0HDHmBc2IriZegBEEARm6PJw2O0Ph3uw59ba6Xje7Q8rxWwFcly9+TRd0mIMZ2Y29Lvf+PUfPT68ch9Dcy4yk+fn58vlwpSqH9fBrrU3YAGipDjUI4mF1a7qPnfRtXrz5u3d3S+/bF8+PDyIZHQQik4yqamrzdN0fHl59+H9h+en4/GI5JfL5XI+0xdfDH2/G7rD0CMQp7zb97s+JyGEcH4yRVPV0uo4zqfLFME/yN6wDrstZw2hgi+iEnqFRq93cE3wAsU1g4gKqtPLy8vz83Mn/ur1w+vXj68/u398dS9C4dzMzIji9mk2uLJYrkkgrgGwtXY8PqsDoDCnlHtJ09TUaz29TE/vPxBj6FpmRgTlhJ8dXt0d+s9evxYRcnIDAzc0CVINk4FXs6iRxnlWVeFEJIiVhbC6mRLb1tHZ9INih8dmVTACJnAGRHNAt5W1Hvt5ta30mACpVUeel43HxPAxUeeW93bTPtzCMP4Kx9ZX8brN/jcaSNGziC+CObk31bmU5s0YgZA5pdSBOSITIfj63NUMTdGqajFFBwJHhFLmeZ7meVatXe4IcaozmGLKVr3Wpqp5IhEps5fZgXfmuINOshEhIEerUoahZ+acJWVOiQOpcnfksAXAGAcRIllAxOsYQBiCRqMkaGXWVFs09sgMdHX6IUJiMPWwvUD0y6zZTUSaNkOSrn94/dnh4RF83BoeQeWd59ldL/No6xqNPJxIeBGOtFX6+CpuJLgwt6QTbXg516HXLnuxcuW7qtZaz+fzhw8f3j19OI2XZtqnpKqn06lM8zAMQ8qdpEqKjqxOBqSOzawHc4BWquo0lfM4x64LKHibWd/CC4a2A7ggGbi1pmawcfduJGgX0q8hU0LUUsrz8/Px+Ny9Otzd7T97ff9wd7jb71KW5YwARsCibYsw8fIlkpRwuA1T5UB3a51rKQ5EWRBRwQ2oqRbT9+/eXs6n+8OOvXWUdjlbwpxld9999viwH3pQgJDUr3UuBYCJF6fIsFBckoi5drnHhVRExGimoXS7RcW4OSvjKhJacteVjm6mFlNcHKzi1e7I3REZ/KM9TESQQPzTtv9t3Us3XM7lONssg27g6A18jvC7nX1xwQTIDmhSayUn6lLqMqozo7khOjMCLtbhCwvSoaE3A3ZjDIOl4CYDLWODQICttbwfzHie1d3nqq2ZKc5FJQM4u4fvT+xS0dZC2gJDuR/JkADRkSwtoQPB2Z3IYfHvJdywGMRo7bqZuQIiltK0NTMgok5S3+1Yrupht4kTCqvW+GJKHVF4ppDpMeJSysEyX2SN1VOoTkUjSlWjj7sdsp9QLK0aM7trNUX0buiT7BCSW1V3ba3MLUg2H969f/v9m6eX523vqerL0/N0vjwc7u77fsp9GYupQ9Vk3pMMSYwU3A1QVcsyTb1wy4Zh2O12cfRs6me0yLUjCBFgacWu5R/C0ti4OjbFdHak0ys8JofD7u7+IInVGhttCIqZARLe6E7YKvkXePim+RQRvpTirmpqjabi5/M41+rE7pjQHnfd68e7JLjf9Z89PtQyqTbu+NXjPSNaU+akDlV1LhNhDhEiNXN0EmbwqpGJ3CMicYyIOBKkLFsSG3dm08pZurJbT9nUgdzC8Hzz6Lr2exScHMCwmZbSLjQREWLXorUTEyY3m3Zjv2+7d6HXhiDroosmWwoNN/MPW3daVU+XMwbfD0xV1RujOWECRTLAhos91qL0shC1iKCxY0NAQUqICgCuoVHBgpl6PDQtFToCFCRv1VzB3Espteovfj5eLtPpNJTycHc/5Jw9a61N9vuMYR3KgAhIukj8WEUUwS3IBgYYQRCW0+UGoyujLpIOAMzcSRqGYb/fMzMxmt3OZCoAZum2vmjX5TC5RsSqwowppeiLLma4ZvOUzQyR1zu72CYh6la6LAO6wemfF78cXRS8glTruNqrH1/O5/O5lPLhw4enp6dSisHi3NtaOx6P5/PZVHf9sB/GMreiOuQ89P1+6A79cJHJDcO8Io55Zg6N38PhsNsN0ZS6AVqv7tXRgQx4aVkuN35xt1ncxjfMWXa7fr/fv3q1jU84841iozut2gPLsot7rUqh3kK02LipttbIYW7NDC6Tns7nWpW6RMSfPz64++tX9+j6+LD/9R98dXx5enp6L11+uD/knNEo5D7i7AiOutOq1EkE7kHLtU90G1FFrn3gdYRjqTWAI+pqlN9reawxsv5JOI12IdDCmYkeR9HGjSmyACVfVS+WPeyf+lTfxmG6cTy75epuKNeCO5qllFyNDKKlzUAowsxa5uWqlncPWdOwKooNhkSEBkSUiE5atucLACkl7/sKeGyTmwMooCMhOnmz5vVyduCjk3e7Pg996pgkk/NiTogAqIqobBA2TZkEIQgQH33aUidcAEVGRG9wOY3H41l9OXikl4fP7lSH3An0ShxWRiypc6gGGPx3NDZVJ2BKDtTMCZyEmXISzikzsyReU766k04VIvGIsjFOWGRzV0RIiQEpphGYne7IjETAHUpZYl2tNUM3TVOtrn55Pr15fvlwOp2Kv9TiboSQT6N1gpja189vH8prz2LJG81ZmDMYVBOagAD6phWRx3k8naZxqqq6PwyHw33GNDBIHlJvp+ncWoUs02WMrITRTdV0RoLELAmbzuaeswDBhp20ogwsJNZci+77uy8++8Grh9dWkHeZiAQSGVuYyjmW2gw1EmfycMd1IsydDEMPYPNcEdEd57magWka+t3T5fLh+UltZnJsp8x5xvmHP/zBb/zwB09PT0yYh/yYPzvc3+333Q+/+mp3yMfz+DI/vYwvwIqCylwd2tyWURUidQegczudy2H3sJs/FIcqBMNu6Ei6XmqbpnmUhES5tUZs7hiqNYjcdxmWo9iYhVkkRqlUQ6K/mbbWdoga89UNCxkgG9Vi+NCJWkuKIhRavOzQSzLiFYuSmDlxUCQERxIOc3dmlpxT14nI1HSsTd2mWqzVLmWtjcm9NknxDqCq0JiUYIbCnTc1dHRICEyckBE9p4okVZWK0mwOraoqam7lePrQzu+8FcCd20CK3mTHU0MnQgMb1auZYTSG4M3LqKRffvWKwa027zilXqKMD6AyvEO3/fnJiQUA7pDTsGZoaOatLSSheZ4Dzc4pJSYH67p0a7QrHPMZi6k5+KLZ6YQhgEFEQoSURVLEVEKImSTEzoohOUsAhgvlFQCQyCwUPGMCgQPyIIcWhlgA5OzmCCCYOAshB9gOTjHJOI0F8FxrMfM+D8A0z/PxeHw5HT//7MuUUhhy9EnWoR+PdKPWBeoopRBJ13UhiOkOzDQMg5FfprGoqjrDx+UfUkz5bSf9ptG1FfPbFBvaktqEnkb8QHx3KbQYwQLg1YB/QqOp669R+toIMSOieHC2Cqlm5r7P+/TweL/f7QfzmiU9vrpHiz65lVLs6M0WDpbb1Q7mk64MALh+pOoaTZooi25jGq62YIxoFsEkOq5LKBNJtwXqLVLgHn8EwbFCJaICUGnLTWiFaRYvu/i7t0ny7XviDSPar+Kvi+Y+ERXVUgqu6ogBqt2UbM3MrDmhA0nkp+igjuim4EAITG6LuA1rRXIiUHD1pmRGhAwgGVUVrbo2hwZgDrRSQ1VDyIkAyJGWtmjMuq16skgh7BYP6aPd6wCQkMzAjc3MHVrTUuo0zdN8jD6UiNBCnKQFHeTFRlxbEqm1hnqOEQkAVFNzBYcwCkcHRcfFUJWimWoGkto1HULbcjDmRARLg0pDWNtViRxLid0Oq96FMAM4ZulS6rpu6LrdbrdnTO509netPo3jpFod2qzz80t6fv7w6vC47/qHw50bHA6H3a4PwDNq+YiWazmHu90uIOignXWdOO/Urc4jmi283cV43qWLGv56b/HmxCRamBillNpmgcVgIeRytjQ7uPhmRpzcXbWaGTkgwUbNjM0GAO649ja1FrtM4ziOCxSs1ZGS0GePd8OOiVuXqeukE0aCDmQa59PxLFlCRZSI3BsuImxuZv7xMEDUj+EuiIhZuO9z32cGVDNyE6QGbc0149ODg65zCGsh4IueowdMQk5m6IvSyTL4r66wNJ8rb3VysM+J+EqQ9BtPFrtRAtiOkq0GsdpKKa1UNOe11ReFyYaibaW1xxy8GviiHsyceNUb9XAnJZLMqOQKCGo+M0PXi1qpoAQNOVnmsbkqTNWKQnVQIAA0AnZhbyxZJKXUISc3qOCywVEIjOi8TVnRVbNz2cAh1Vhian+BWFe8rszziOitZYeEi9QWhpJbOKwTCYgBpFhwDRTA1RxN3Q2R3UoxJ+9igtndka4dwqG7rsW1OW9m1ue0wGkOqlVVzRsAEAxBY9oaJzFw56QiIp0klvv9fVjJdN3A+/2uH7777k2d5jLOZT5/SPDN17+4S7vHV68+f/2Zu/f9kCQIZGmcp1JKMB3cAJFTSrvhsN/vGUEVwuQ8SBQN3XQCgFaqKTAseAkTRaHu7p8kO1GPxD41M2TMWfoh34aIVZVmxQXaIlYclpYSwcdD0XahVbS2ZA3aQN0ASEQ6cG05Mw+JD3ddSkJoKVMWrG0CIAI8n8ei5XB/GOQgIsLJfY5DaZmV3aThkACgFi1zG7KFYCAI7Ie+zymOnTihiMhdyZd61WGtwxbD7uhZqJmGyYoDJiQHcmAztwX5i/6cr2IjTEStKXML4xrSUB2E28oWfmVMbTvsNgDiloAF5oLUpzyGspRZGMEvyIo7AZs7mCLx0skjRvQZwI1bNMOEiBkbOLORDR22HdeGtbVmFYEaAXJnWFXdyFWXaRhXD/V6Va/N5lqx2VzUYBmFjfsOi7g9gBsoh1vmtbsYA2JWV74eqJnWWmqdap3LfGHyWjprPXJML6UkaYswZg2RWYAom1lia615KYBO7upVq5kZU4xW0rIPieKa2tR9kgvE/2d5iYMzYP8YLUZEsKt8flTRMYrACYdhSDUTgRMy0sPhbtf1h9f3X77+7Iv7x3fv3p2PL+eLENjx3fvT/fP9/rDb7YBkk6pDdDMr8+IwHObDfbfr+z6QeaZog4ChReS06pFpJ0YOBkwQLfkKMfgN3c9Bt7yOGVOmnHPf9xtWdztSG7E3ggNx9IFJiDd+S7h8tLawPks4dAOKe6tTj5LvDkPuHg/7vqOUeLfrEzGREHBg6S8vL054//iAq6g6kTBfD3Fb5dFjlLqUqU619ppYhmEg8JyFGbWpqSJYYgGrYAQYpGVbQeZNF1rMzNVczdkRkZFIFteC0hzNwF0dYut7dQCYiLZ7sppSxqH2kQPLJ8Fp+1bAfq01JhLmRGxQW2vo4GYppWn6SFNl2/Nkzg7N0MBg0UlFJE5ItS4teQRFr4JGpJxBWcj7VsvpPLVWHRFQZlM1MAgD2mUaFRZtTi1Fz+fj8SSAzKknSRINK6RVDm+1QSL2bZiLbuU8DR1UTWstTadxPM/l3GyMx0N0YzXgi5RcuBxEfRFqMwyMGtfUWp3GqcSoB7AQTiklkSDcreUWGOnukypoTRDnoKSdTqfz+VRrZUZmdr0qpMWAGDOr1t2+IwLV6qAYczKEedcf7oYfPLz+0edfHZ9fpvkynl8ulxfz+rDfZUJXQ2gWzUf0UgoCx1D76Xg+n0eWvN/vc+5LqQmIMzNDa27LcqRQTmulqBr6ag6sC/q6LSBfp2QRMSYoJYUGxaKCcqv5sK2hpc+BC0eSCQEgVEQRUiR7Zq5aImtQVSb3+LHWkGjo8/1ut99l95pS2vdD1w3WfByn8VLKPM9zpbQ0rsrcbFWEKLZYpVwz3pD6chzHcdcPuUv7oXfXlBITKCyLShKZxTDp4lC16mREcGYHBY0dqggMEBO2gEKIbIVbwNdm5gaOIeU8um1Mr+AKIiYzMK2bXM62eDYmya0c/1qaXRFprTXGRXnJGq5qW9cwro4GDIiOZqbNmYAIEvdWG2mx1tyL+0xQMrd9l1SRPGnptNRjbQpIzKpaWy2l1bYwqRANHJASmheF4/iyvxCRdKC93Enkt2a0qDrZiu8zbhuYl0cCai7oplrrNM2XUsd5HpuOSHXf9SKShRgwlACBHRSgw7XAiCHC9dBqZZrHy+n09PL89u37908fEHG/u9sdHro+h4pinAUh5kg2XuuQm/Mv9Osul9ObN2+enj64e8who3l0OyClLIMkYaYsi5dIq1VBEyQkihvQSdcdDq+Gg33+VWJsOo7jqdXRsCei0moxb6YbqlSNT6fT+XwJrYb7Yb/f38X6Dk0+D0EjdGIWEjTrUtJazdqy99Zht+1Y0o8NvrYFhHiVxqOb1kh8N+b7JAsslEAQJHdtVVtr3eKHtGSGsXsBoLQa+hihQ9p3aejyru8UoZcekVuz6VyOx8t4nkupaz9sMZRSXZSuiQhstaFZtiAgIiPXuc3zvOuzdJ1qDWMAIa5QEImZjBWcmVwJ1DaHEEUk4sBEjB15K5FjIQE6ec4Zaw1SEIZQvi9JdWttnjZ26kpQ3YLBR7p2wJHxLv2Lj9C+TV2EmUFNW1OwrYT5JJywIxED8caRNgQD6kCaGwMDKDuKey84ZH4AnsjQsw7d5TKdoLkqCRwOwzyz+9nNVWMqAhAh7TKi99yGHXe9KDiKSTJZL7qBhSFaeMxjC00aN0ICcEI0d0MwU7OArmL3TkgmEncqZtjVrAGwe3NDQwUnIhKJg21Ra5zO59Pp9HJ8fvfu3c9//rNvv38jIp999tlvdJnYN6vNVWbdA9VDwC3JWUA12JnZ8Xh6enp6fn5JSXa7XU59Fuj7PkrNYRgC7805EzsSmBqYMmdGUDdVI81UjYg58X4g5mT3d4DNOE3FTpfzOJen07G2RrVO03SZ7Xg8R5bu7l3XRX4rIl5aaw2RVBUEmQmIsLXIBaJSCDP32+P8ti5AxMgj1jVnW82/LbKVn4QhAS3BckJkRkFSrfaR0Ae4e6u28orY3CEGhofcdaljGvpu1w/I3TAMiFymcjpdzsdLa6rNgUHbIvUU51RrzZyICbbKdW1Jx98NjA0C+HULMYabMLiAvkswbLYl57d745Y7tb0IkFZqiku0mBbXhq2xrC1ICov+PqB9coeXvDJcCPHqXBd/rs2llKKtxTMFtDLPtdZuyLCKbN0WdMvjYAr8iENKhhkMCJABhURQE8qhw10HnV7AsBFm4cREDujGgMRoTF0SxsZIXe5jGbd+14nvc/v1H77+7PV+Kg1J+uEgblfTNLNrIiRjuPVhT9wtxoOoCiXIed60GQAJ7zhnwT7L4j8w1xrCdWAooqguIgjYqqKpSFfnMp7PL+NziKp9/e23b968mcr8+PjYZU9SoukuLESEkOKGbhPkZlhrZA0OAAQV0MxHwDrsZLfbPb46fPHFq5xlmxm8JRhiBmZOlJZIYg7AiFgVgJQBCE1n6TpmRoDkBLmnR7nD5+OI7Frn8zjV+Xi8XC6nl8ukRvv7V/v9fpexZ21FmdnAL60QYMZMkYso7vKOHS8L246ZqWmxGxQ6J1FV1EamGTWTApqCe2JnB5yZpmKjSFZrDoyCAOSEknt0ZUQBg9pqzBChSJeJoNbwSXOH0nR0KEhONLTWEkGXUpclZxmGzD3t0n3OuZTy9Pz84cOHoi3YYA39MAzCQLXesXTmGWica9/HzB821ILNgAXRwckF0S+X6d3Th/1+YAGvat7EQXJiTqfjxZy7fmjVchYoz601AUDi0FxBwJ6TAio4qG40KVuIu5RzTySIU6mV3Q1IVX1R1F3QZm1ei+ackRo4QQrvMVCtAOzuMuRxHMfWhtwZubpy4mJtLPM0TaXMfZcdDbB1HdfWnDokJltiCpAzUYwWpSQpMQA0LdYMTb3OrTOSLBWsGoOKn9HfCarSh+qtlFpnYyz3AzRgSeb3eaf8aFlEDrv94XAYhqGTJFgBfLfPh8Ow3+/NbJ7b0O/lfB5vW5HX4t5blNFKqMoECzwtQu4p59xyJY1kGBGxz6EeSESkZqqVSBBRyAKXQzdvOtXz+TSeXl4+vLz75rtvf/nLX55OJwN4vH94/fr13d1dwPGuBuQAjgSL1us2ROJO0VdYoVoAiz6wCOUsXZe6LoVI8k0QW35ciJni6+zuiynor6CR7qAKqq5YE2chSCl1XdfA57nM8zzPC0hGLH2f+2GRbv0ES97eO6bIzFJnXXi9LSqHN1yu2yvZqN0iklLmpQm0RYiP/kwgNO4hX1Jaa+pEKYZRl5/c2PnBzSKilJmZU5Kcc9/nvu+6rhOScRyfnp+fn5+nadJVnzUAoS1T2LA09+Vb8YmEiYiJqExzMGdOJ22t9EMXizu6G5E4RC5m3mpd9bFW2t/trdjqUrhpCIcHYDx3FjSLyH/NU4JDCmvDnHGlxC2i4QRwY/hqXkqJEUJ3Z6K4S8ECnsYLaGOkaP4HL6BWVVNENrM6zaBFVLKFJGB4+Dkwd12qBYo3wEak7I5MQGa5R2gJ+11C38FOhdKu6w/WLfqeXc455z7lrutEpBc2U0kggrkTU5im2uVBarkmLYueWNRjOkepg6YOBjlJim7Y4piK4K01d9UqtVZ3dXDY1iU4okcsdWvqYNVqrfNYnp+fXz48ff/u+/fv359Op5TS3cPDw8PDbrfblMHj9n3SZP8Iuwpg3OxGhnOZXA8Nva7rtiRzWwG+zhuGooC7K14feQAza6IFi2KGTdhDkjx03dx36nacLvN4mee5ttnMc0e7Xb/b7VjIXUO5dCHv+uaKBMgAAJJTh31ts5qZGhG4Xcuq22W6IX8pdTn32EybzVOD5iTIvuXexuCA0MAoFvTSSjACDET6ho+Z+76PLNq0ilCXpOvy0PX73dB1HRFo0+eXl3fv3o3j2ELcnJCYUs4xXnK7r1pr7iQiWRKgaW2eBBETcV1U3WAai2pFgpQOKSVvVdWIQoGVtvyWA46P5wW23QoAWzvDHJTE5YBbudEhPhH6GzfHyiYQ71umDqBRAgCGMRKL0DwXUGcWRBRJIsmaTeMc/TkzDhUeWDSl8qXUrusEKQalt3VIrMDo1IA3+gMzswiXMjW7EHgeaMddR8OQvUpGg+Syh/wKOsMs/aHrhvN47Pt+6HoRiZZyYhGRfb8zqw611hK8TBFFctlgoU9KDl+GdebZLWVpQ7/b9zlnJBSRYeiFKWgDdZ6YcZwnbYs4ICNJuKJaYRNrZZqmy+kyjuPlMr28hATE1Pf9/f39/u6w2+1oZQVf5+9u0oEN0IpkP6JuBN6Qb0cCFmKglEUSS2JzpQXIjdb8Rr6lFR8Sd0ewzYpu6bhQ2v5uRDp0YABK2Pf91AoDttbQjcAJPQnthqHPCd2sFcXl6W3QfpwLushTY0rJvNVa3U2EYsL/FpyDm7FVBBbOSTrVeZ71fJpr1b4nvKnoHIwYsToyJeIwuQ6PA151KuLkenh4iAu4XC4vp3Mnu9yllRuSAKBWPR0vHz48n04XFE6SSosiNoVYAhHZYk2w2F5bY0bKOWsry6ET3Fte/HINvKpPc+kH2+0P81y1OXikxOhOOSciqhpitLAdf0SEsHgUbZBv3BlVRQkjZgJgR3e3RcsfLaRA1SoZoHlTJIUguiAikQGA+cJsg7YclIzU930r9Y3Z1h1UVSZMKSETAbZNPQJcRMCWkr7ve4Ag4YMIsUAMvMXdKmWa23nXyf7h/tUu73i3S36iSiiUeqBk1Lkn50Qk96ULyXF31xr2Gsao43hBdIc6Tqe4CdNUEavoaqC4AW7LhCp4rXUcxzZPLFTnweHO3XMvCy1OSDWpVoIlR5znuUyju4tQImqtlToB8jRNLy8vLy+naZpK0+DlffH6s5RStxtyzr71P9J6l1f9SfTlCA5u3YI/O1A8K3ckR4TYMrAQmNSshQfHFoSvFML1bQkWZ/d48mpL74E4dAlXYh03ZkIEAsgiOWcRYkF3jSGQlKTrUsoSesalNRHBlDbLrIUMgJHOQcB9GlSf5l0WvCX03IikIy4IkEjWiedJj8fLdJn3wwExZpLR3cB0SSpj/4ARmC0qeYs8dtzenHOo2KWU1Op+N+x2Q2RorjZN8zzXt++enp+fp1oGGaJ6ASLJOeRmmLktmgHXQ5aIkgiht+a4+tT6IrJnKSVtfjpOIpdh2EdHOq4qMOeYcHCUxf4LF/YBETGhgq7KLb6N+CCSOTRf3KaB2KyRLiDZlqn5Bv2ZtdUQMUajzCAWRU5dq9XNFV0oiWRQsGrjONZazZqCm1Y0JUBzDaFFACMSJNy4lnOtjgYkYNWVDZSB0c1Vaq2A2g3dw+vd60PXsw+JBBpyQhbHZE7mrA7m2HeLVqm5yeI+0Wqr0xw8YpvnmRlFcikzAMpcLtsdjySBmCRhq0slVmutzYWwn3NKiRMyMwuiCzOqIpgDGrqE4JFbEyICq6WUaYx9ezpdLtOoZil1w65n5of9Y+yuGGRBpjDXKa0BAK76hbfw7G2msNWBkS+GDw0sFItW69z3PTOmxCmFFwSo/glq/bjOuG/7Z53gic0PxJkhkmEggiypyzmxuDUiyCIpc85JMH7dYgpHiDb1VjAnohCO3MIILm600VyhW5IQL1bji2mgSO66oY2nWux0nC6X6eGhBYU7TAvcCdAI0N1aqa7VzIAEGQhQTWm1mY8FHYRtFk8p5dwjoqlfLpdxnOd5fno5jXM189oM0IEkfowonNPpJrldP8uqxhpDFFqbqwFD8wYAicnUp2mi09Tv5vvMRNxaBaDo8UbLd+nH3hRKERVx5cyufSxcXLnJ0BzRiRCI1IgV3SkMG9x9y+Sia+ErpTkoPQCGytpcuS0WAoAAoKUej8fT6eTuOWczqmWutYK2LCnlpEi1VnAITkDYhjFgVXcEQmAWJ3IER0YiUIkD8HDX3z3sh90uuWdOBi2s25u6AyZkCXGi6q7mTdcu80K/UY1Fb0GICtIhIsnL8b2vJO+OOmJJGXMmhLQckAgOlvOiNowhTYuhuEKIiL0huRsxcxOp5WKt1UiaT8cP331f1VQVAYa+74eh2+1TShmzbc20EH8ldPcUjDwIMITDF9vdafXCAQCHQADNwYJBRgwsyz8cFjbln5iTBxMPzYmAHNZRL9qYgGtyGNcm0XAxW3TAg1YR8wydJEXuUk5CgKalhphb5JYxUbH1e2HNBkM+Kg99sVqnGmrmn2SJm3N8ZLx9N9S0CzGq8TxqtcROqwK6WwN3xGTaQBVs++z+q7EIAAJsE3kwM1NvVee5Xs7TPM+tLdMREE1swoBSmBmgbUIIt0hEiEK6uyACkZsqqLs70lonr97lBoQ8fPG668OPB8NwnAhqrYBXk15f2VQBy1A0N01riycOIhLdyigUmFCEUmZiWN13rzVwPA4A3Wp4ohjDWDxfwujHENpcnp5e3r59f3o54xJDwE1VJJiYkepvgEWQ/c2s1YbCknPuelmd31mQiKAxc+LcD4eh2w3S9Vi8OYfQjpmhugCEia2Zs3SK2hajAjdToeQItgkWteauZmJmIizv37+NvGLBMDQBdIi+Wgdyy0mtZeEw40O8pk+xnxFi9oKhg5YYvJ6m8+l4fH56Or48nV+OTsgpd30/7Id+2OehTymRSoQPAICNLL4GyFDwideS2RLfxkn8laZ8AKFbAR8H7YbfXDczfMTl2gpO/viLm9gaobk5Aad10Clal8zMwkY5pcXeTuuMbih7WMFQdTCzCLG2TEojAC4Eaa0BInyCgUdisn06kdx13SgC7tosYOTrpfrq5YXKiM7AJBTnEaJ6Q6SNkLOFUFVNiefZSp3LXKepTdMcves4ygkhCqVoQhq425W6cJtKxG0HNZBFUtPMEXGex3X22Gqt42WaaG7Nvrzfx2UQIQA7MBEutfymkvHv8ebeIg2vHm63Ny1yloKV1v2/7TRE1AbbbwW7IzrVKSVfyc+X4+nDhw/n42nR5QN0VzfLOYOSNZ3nuS0rc1lOgR3MtREKU2JKTLIMVIXPERChUBRfKSGJuqKLzhdmJiQKZSUEA/PWeEjgZOBVa3gCBytIBGur5m1tlTsx5JzExyyJe+4HGnros+24JcTFPIqCcslh5c6mYJfZ2NuS5iHHBDXIQUxVZ4DJSCvNjRvuZJf2X+Sovrpu6LqemcHJm5vYUriFcZVB8L+rNgwZB0ERCtYxoKle2b/b0yUiQaq1kkOfsrt3khIxqJXSiKQ1E/Hrz6JrqSvn5OpGCsBWaoyhtjIrIhFYo1boYbiTlEDhPFdFULeM6aHfTftHluycUpe1zs+nS5vOQpi7mnOeGxNZQ66mh8PBiAR8mXJUU3cReXx4dbi7Gy+XeZ6tmMiidRIl+t3Qv0vcD1Tc5ZwgYdH5++cPz8fn5+NL7pMkcCQ1M299n1HV3By4khAJIQEyuDfTSEyIiMPCxwtoO08LoawpqkEUukxpSGOtFQiHTvpOkjhii1wuE0/jPDetil3XJXzuWdE1UZbkLI3cObHHlDIZEYxjGy8XVTdr7jpOl58P9OMf/+bj3f1lPFurKbNrc3WU5WlE0bEcoEgAIMwKVA0AIXEixzoVv2lMEGB43LTWcIfRMDO7OokjYlNEhNYqES0sa2dmwVbRrIyXyzx9/+b7f/f1zz6ML6MXhgARZJ7qNF1YkNDnUkJmPVEK6TLEBgA55wpT02IugLQYO4FdxrEhOc2/9cUXP3z1eedC5hWqUZO+Cz8hXA8pQsySLuMJVxCo4TrKgogwkxsqJuzRmDElEVCQGKrIOXVdzp1EImrWmKO/N+AigrVEQm2+Sc+szmC4VnS6CQillIL/lA4dLsR3DrHfSDJ5mRO0xQPeNfTyQrjQ16nLW3j2VyMVfPy6zZZVa2vUWjLbSEroDjEFrhoaUb6WWKvVHYSOhEVWgAiqSms8RAAh7rrubn/AvmfJihw9jDJf5nm+1MLSFj+KlLqOMou71zYjJiIC91qrgkaSHLO1S5i3hSNNq+ta3/dda6lq7qTrOpvbKuQ/lVJC9xAR3VxVZRtFvImT/okl4g2UsBHaNu9Yj4HMZSCBNhoMADhAaG7DTT9504uKtwL0RUrSyd3DoqGWcLpq7koEvkqdHIZd0LM2MELX4b5PEpDbyiJWxdJN2GYn1m/FGojwvuQFABuIiJQ3EHtDOtbSzKdp+vD04c2bN09PT2WewT3Y+E3rBu7iKsfl7mZN1bQ1RCci8iUTWiM/Ysz3MddSeuF913dZEhBbtE180esgdF1KmShypjYumU7gfIQEBAC1XgcTEK7ySZIy5Y5TZkkAYKVMpVwAoB9y9FTDr9Ns8RzTNsWYXnw3kKec85YFRbzd7/chJr7v08I2X1/xDMxjpuw66QZg7pSWMUZzNfPrxKZdCbfL/2P/bnnd1h9aKp/ajNhq86aUQFbtpbqCItueX7IsAELXmOoEA1yUBasWVHDE1qojpJS6LHeHHVYlyQo0tzqrhS65mp2PJ63h9MWEyCJ1gtaaSQcAJGyhGBYpn5NpC1M/1Yoe0CullEBNmBgBvYnQfj8UaAZ8voyn8/kw7oEGzhkIwbCpC1+lnjaUzldvZF+dp287VVsdxMxhML/tmaXRkJKkYHd7YgqYMDDdlWcSO6GqRqPVAMCtmsE0luPxPI11nnUcRxHqejHTp6enp6enu92+HzoRMV+MyGvTDQ+jVXMHdOFXxrrS1dUaAORGBW0T1nJ3xMVZ+zoJCGAWowW4zQJDcHgMG2Ep5enp6dtffv31N18/f3hqpRJgUa21qjXTSgwpMWNSq8FVQkD3UP9Zlp5f+eDXQ4eZe8RXh8PDfuiY0M0NxNHAm1vsegP3dbTbVC9tBABeMTwiAkZYJlaFMDih6AiOhkwiQiIgEt2VkAAOlkFRbe5NREILupQyz2OrZRxHM9vv9w6mlgE9ZaG1DglJirC6dPdMvBYwequUXedp3XhMVzrtp0MefjMo+8m3tk27ndlbIbREk/V5bwMovrnyfixhGWAQLvKlIS91BbSqKm5zeQ6M2Em6VKMwDGhqtTHSrusb4Twdtc6X1tydkQ73d4QoxDEeQOBBvHXHWqvBMvCsDlEPmxkhMnNOsutyShXQUsZhv/PaHHCaptPpfD6NQTuTFJQyuxosbhU/4BaBl5u5HrJbJclsTJQS1doAoFXbYuDi/CAUEz/BTCAO1I9SXpylm7fmEpQPRHRvZtSanc7zy/Eyz7UWned52HU76dEtZEBPp5Mk7tLib3KbW63d2tjDgSHrBlDH4kFEX0PQJ024SA9v9jPKEqtpS03i70RAO5c2juP79+/fvn378uGpzYUcCHAyC9WA61Wxp5TcUGSRwiOKLJ0yS5lpcxVfG5YAAPdD9+XD3WHo2a2VEsIECHgp83KFMVuvuuWw7l4BErOv5gDuzpQREXkRrN5wEGFxYiD2GCFISQAE0GqtgE2NQBtazHs0JFiJVrAhBMv8JPsKukjshPgYDGk5mEFVKxSsWsMnOFJrIkBkYAj34G1qZIslC+XmxsbhNpGOPxQJXmzghfwMjmDgalotpCkREYAFAREUYu7Cl3MhFOGWdtR6DRGOEUMwBAzdwRQQySwxh2LiYghSm6l6UyG2pnMd53GMJtxut9vv94hYSvECuRPG1LwhIichNET0pkRkIV7jKCL3h7vq+FKUX04kwCkBiTrMVS/zdJ7GPOc8VEwUXkprxXFjYg5IRDepj2/YEC5+6MjMhAJA7hDmbFtSuo3Txb1feCXL79v6M9ia+uJaS2ZqQVKpWmub5zpPy5ENkFJmxD45mtk4jv3QZdnjlevCGICHWdilxYPeFmsghdtu/1Usc804PNRIYDU3244zWKSjPvr5y2U6Ho8fXp5DwxAByLzWKoljnLNVLaXOczMV1ZakR8SNgruk0LTob20fJ0RXAGD/MNzf7XaZUesCmzM6YrO6zLR41G3mYICGHO0WV3cyq+5BTMPANQAdHJAdq7q7mqREzADYHNCcYR1VDZNKd226DKkBGBF0XYp2Us7BszXVOs+LBMztK1aVSIfIMbkFAADFzGqb17MzUiYwA3M1N1SHm6MyVhOudJwNZL5N9m439jaCR3C18IxGX3yurdG/XWS8pyznCAeyYNYwzKLXWWjQTQdaW63P4+xAlHsnNNUyTfP5XOYRYPkwtU3j+cyIYLrf72lJVAFhgdM3P8QtUKhDKaW555wJQBAYzaECGpIjScx41aIrHzuLCAsAkFndDjuiGxmGlQCDN95/4ODbBC94KGYuapU3EO5tkRmjZmattlJrLWVqWltrQGDu6garQstcWinNnB2kaavNPDAQkdzRQYaccxTzre829H/pjcf+vNZNFkI5WwPi+ry2+nxtcUcE+xgHWSRTzSxHUm1XGlnU8M+nS5TlIXmH5rXUOs1KMVQH16IsqD7erDWvXmsxdSIyawqYUnLQ7Ydba0hORF2i3BGQgzsyaHMzLU2REQA0SkWzZQ+7b/PerlZVcQtXSkvTO+4VLSwDyZ2slJ3m0MjJIfzF2cHU2loyLXdEeAGuNjBg1Xz4CGfaat3ZFRGZEVCbatFarBRt6YpFxSpZ2MigH41l4koOM7etNboVvRtgsDF+t7rI1YK7E2gWERDlAGKjlxMMtI1xRZGiLK3/tqI+iihBVbPWrGmr9XK5jKfz16czIO8fXu3v725rswCiBqLR7PTy/P7tOxI+Ho8/+LU/s9/v+13v7iU45Eqlat/TJnEejngOtl4/xoRGSmjKqcsd9wDH1fCy5HHMWYjzbf4J6yqHj0UCoh5e7tjNKJy5AXwkdne7W9yXex47Ldb9Jk/rsAibxdyeWVP1UrRWbY3AKe5MyiwiKfN+vzukXUrMxJEKpk1Zauvzra9YWot4nQaBD24GpGGDVLYzHVcC9vaJtgKqeYn9HL8bLMNxHN+9XC7n8+VyUVVQa6XWubhqaVPweZggQFCmhV/s7tZaa4oA7mJmCjV12Rxv52eWUiUjMsytkFVAaKCGVMnZmnukeAbgFgxQt83/rblrVVUVImaO6gbQFl8vCi7HYl631su0lUZYSltNVsP7NIQ4WvwIXnV9l/KDVwGALbGJ1zSVyEuRFs2q5VBEI5Btl26vODJuQMJotYmhIwTRl7aYQESmq0kS0QbTERGYM+Ii56cKZhjShx+nXnajz0D0EesLIv6Sm2prRWtttV5O5+f3H56fn4+KjkTS7XY7BhRiyh0kAWR3n2s5nd79u5///Kc//eP3799/8dWX/9V//d/+5m/+5g9+7YfM1Ny6LomI+lL7oDuzbCP+RLTf7034rkyH48nJwa120Ked+9HAa2ul1bmW0qqYhKbnAiRvmcXH4sbX1BoJYVGcaM3Ar5ucbuwLr9D0xxEyQKzroycCtNjMqtUMFqCj5jj3VK3nxUtxGPpMOWchXyLnpjinn9Tva2hdUSgLhsm2e4Mqc4tfrutn0eKOAOsr+13btUUSG/hyuZxOp6en4zxN0zQtT6I2DM6WUWvNzMN4EdBNrdY5pX67OXGubdcQdir08RCOZEb02gpoQ3J1Q0JGqfO0WS5uQDoRlfBBX48wVaUw+kBSrQAGjISEAApeTQU4Jo4ZKZAcUDc3MnBtVwydMEZ0hRWgqaNdIV9zMwU1dCdDjRzdfS6llGbWNlAEEclSRweSDnFciodAdQjNqpW51Yqre0BoTWmQgaRDB1drXomIMjt6NUPoA7kFQF/3NRN7utbDWzoAcK2rwwErekiqfp4uXdcxc3NrDo5kBtash9HNLpfL6TQdT+OH98/TVFK3zympzc9P35f5Qz905/P5+HIiEgafzpe337/56R/96z/+Nz/9xb/747dv3nSS3n9//pt/+2/95Cc/efXF56nL89xKtZyzObdpzjnNl9pau5ymP/qjf/2f/JXfPjzcP/SH9Pa7h5ygtrFO/b6/zK1Rh8W7ad73zFVgqsYDd7uil1AgYmAgdATVyd0d5FpiRAECrqoJsRImptZsLtUdJIuaVdPANlE4+hvMnIW7tMupny/nplDMi7YKbW6FHDjvQmMYMZmrOnCSOtrcqqGnTIS1T3g/pIwNcCbGXdczM3E058jMHBcsJ5b+ot1ViqqP47hpmyG0JF1KqUJTNzB1BAKHVYZ2YaoszlKI0bzQRbOKAEtr0zTV1f0olJ1ATadSLpO7c0rNFJSFOzNrGhPjDgCp65AKGhAlSaFkrSSNRDwDYVbiS6ld7rg1v5y//Gz/+d1dArhMY4CapRiPMwBJKDcTGpq6FS01VmljQCRAM8q5HzKa1jqXVktstzZXq5pSYu47zoszzXbWbklUnCK8eCDRdq7gmpnENrs9ES2SCVvIN7oYTEYKzQu7cM2CVNtKgYqqbJ3A1hpHbzw/AGitM+uHXXD1rrlfzJ22qlv02JoKkVHf1rrbqRxDd1u0uX3DDSG3G12I8VLO5/P3794/P72U6mbAKQ/DPnXy9t35229/fj6/EMM81dPpYuYE+P7Nm2+/+ebbX349no51mvs+H4bdH/6Lf/ry7pv3b77+L//u3/3xn/1zBlgXDi5hEkrCRK729ru3v/+P/vH3P//67/03f+/u8eHhcHeZzbA+n2q5KIErcgNsDlU95CbcCupC8d+yx5uIBP8frw2vQgRHULHw0r5iXTd9Hb+ZDbhpHS/ZnZmJiCm0aqqKnhGRwBxMJMdh2nVDTNVu9VfkUTE8s+UPCFvh/VFBvpVmiAhylc72G+LkduV+k0i7O9nCLLglLGzLwAL+VcW1pgrTpsgsooSMy1ArGCxLxGC5M7PcYoe04hpMJAJqDVutS5uwFCNjAGJSREQmYHAEAArPPWfBtRxAoq31l3MXnzfqF1+p3QLmHuMIG1eOPp4Zj/IdF1sQW6i2CynganoUc+TNq+k813mekajrhm1A5HY1AADiotV0I8iywAZR422u2Yug/tKYXNxPTUO3G8I0ZDtibv8Btzrja/XivLlIAsAyTeIhWlPbllTD2oUaz5eXl9P7d8fnl7NIGvZ39/eP9/f3mdvbb/7d97/4+Xff/zI6rOM4z1N1kKcP787ns7seDjs67Gqd98Nufvvu3/yrXx6fvz2/vP3J3/hbf+4v/qWH15+1WiB36KDj1IsMeRhfLv/0H/2zf+q//+f/4n/023/lLz/eP5zn2nw8DLm1IkhnTYo8K0zNptr6WrxmQIQk20OLTxRb2PzaTLrFpfymG8zsIQSjYrVWN0d0NAc1JCcH3nj0G/Nj2xhEW/PDF+cqLaVMkwXfIyff7+73Q0dEQosg56bGes0hA2MLuWa/HrJbv2TLIyKZSpSCt6WqhphSQqLFOG/zIjQPtpOpki+MDr3xDQ2SX7QbAC3GIWPf1lJ81ZdH9LD4c9AYKoZFxJsYiHyxGrKQSUIy06aaAESk1toU5nl2bYjszQzQDJoXCEbgYpW5PBYmbq26KiMRYBRZZpbkepxtUDwiiquFLEQgmA5w3cAfQ76GSEQZlChICngLaaw0D3fCcJ1IzCmllekVhPirWjfhxrYhdwfXFUSB5YYG5lnngL7n6eKWEYLIDo5oquwJKbaPLQcQg8eIwrotEdHVrGnFAgCeOOe8GiwsrGm70Zry1V7scrlM0zSdtdZqTn23T3338PDq4f7Vbrcrp29ePrz98Obb+XxMiZk5oRtZ0brfD68f79Ftmqbnp/elXKYy/sYXe/HLh+9/9r/+T3//6+9++df++t/4y//ZX/3yqx8S3qNDG2fohm6/t+bvvnv7/bff/W//4H/5wRdf/uBHv/4hPT/D+dCnZl6qTxdxoKIwVbgU7Uvpy0SozPvN+2/NIIiIQGP33nTR4bqTN1Rzi3vbEbbNmd6Cvdvxf1uvbgnOLfwxjWW+TNN06bvd/cPucNgLsfvSvCUkvfG7Q0RY+1Vb2PwImbt5LSE3Xb3dttrYzLw6IkIcQBF+NMbUcYvAi1x+xAY1MEdEIQ4DUWs6l7nME1zRu3Aeb6oa3iAAQA6A6ASABKE0bwbmTh4kVSJHJgByMwIETuTQCMnF3UIvLlTolBYODABwJ7VWdGchIjJV12BJXwVGcs7b4SvbdE6c3YgIvsoNUowxX0l5CCGPuLTXSynjOAazT9XCFDMPfUrhFt51Xbf6M/DWxliScxrcXbWiK5F7yAuiO+jtf+atNphLGFiGm2HPzKZgDC5UyrgFE1lfwdrZkLBtoZgZ9f3hcACg/V6IGNEXABwWMak4jC6Xy/l8nqapTRiK7XCglLq7u7tuyI729OH9d998/fz0ngVyygDQZUks56kIwW6I8mlOXeoPXUop4fzDX/v8c0en/s03P/+f/8e//+79m7/+n/8Xhx/8xsPhjhDVyvFFn5+fT5fLy8vz//4P/uFf/d2/+qMf/eh+v3///DL03FxONvfCSN7MT6V1k/RZs1QA6KQFX3VDm7dofN0GSyUMW7no18i2BFUmivIpskRCDIXk+O5tV3blzxCAIzKAtxbISEoJO7GLv5hWYT/suv2uZ2byq0LdxrtaACG40U5ZHxzezBLeJhdbaxBW8/StSF6wpUUDYolU5LAt4+3XY5upatNqrcY+YkIPXnbKEZ+XHgqQICnVNcP12PaJOEsSESImx+jpaRyHTEoQcnkpdQzeWgvmZK1qHH7kEbwiDVRwR0pgFiaGzBhi1IjYojW19s98bZJJPCTa0qoNdURkIr7xoYjrrnWyxUJ+DEukpZxAMTOmBCtNOlipUSrfOtNECYS+tCvAPKhpgWroHPC6qbboTao2d+tSYeZ5mro8iORNy2kjMN2Wwbi6V26t/63Tk+/vSilxpoR4bRxWcTviE03TNI5jMEZz3oVdKCURkWHfM9M8z8/Pz8/Px9ZaPwwRBwgzM+dExZtqU63M+OrVw8PjXkSe3313/7BL3c5Qnl7O77//5p//k99r0+XP/Pbv/tZv/dYPv/qBk3//7undy1sQAGj/5v/+oz/4Z//8t3/ntx8fDq/u9lVba+3i4z4PZmjupeq5WDd7Sg5omEpwpG6zTTMD+Ggbb3tgiZ6En3w90IoNd9w2qq+x6xbqj/v8CYASr77vw10sd5wSi1CfBibZjhJaV5e16O4EkLtAWbf0rE9C/fJAa22L7aADgLW2VD5mgItXw3JkO9i6hm9r+6XPVFspZZ4mG4upElGXMwBoi7xSHRRQRCQJuS+bZ6N5MnOXsogAAzNIzquFGiGTuY/jjOjoCkJgCEDMSQhmLw2cGgBaWCOvnOcaaKy7gwMjBQ39UjdPpuXK41mIIK1OiLeDqyFLsuSl8dORPs3zc/jQxxL3VQI7R8TNQ+q7lPIG/4bX+IY05FWmmECWEsMAcUEv4sJCLsesxX+ttXkez8BmTiQ59Tnvcur6ftd1Q9fxbb9+e90iH7cATCVJ0l12U5cH02sEqG7hkeJIBgjE3bBj5kO+l07CpY0zD8NQ2lwu0/vn58tcKGXp+tbK3DwnQOQuC7gyU6iFkKA3KG3O9w8guQK0VkX41eOhXJ5///f+4Xdvvn//9V/8S3/ld7766qu51LvXd7/2p3/9+5c3L++O/+f/8Xu/87u/85O/+ZNXj4fzeCllKodBRi8NxmbN8NIsN8/NjSyVIrLIvq+sqSj7r+ZmC0h0M7uHuDl0rcYIamAO4ItAjQOYoy9idDe7d7m38Xy3dyNid6i1TReb51mY9kPHtLjkJOkdy/ZQlokOh6ABwyruftvWops/dtukrHXRCdry6i2rjNp1Cb9rTL5l1N52a1trWmqdi9WKapySBxNXzZsuKAAAgaGjmaMgAAiS0XJn4sRJWQgpEVevRRsgGHgp5VxrqPOjpxjB71Im4LlMrlbN0JzQhTgxEdHTPCVhZZiaxteFAJljpm7rjccxIdss0bVAutHp2qJu7NioCVt70UXhv1g4MkrPjF04he3uUNjsqm7RWt30emgdRjUzIY6GIVhzAPDWtFyncOkK6wXqMI/hp4pJuq7b992w2x2GYc+rg8QVfqi1tRgnoE3dYkO2tgxqI83GCmhgsPJAYYXfc86dDEQUfomSWATmqpfL6f27p3kuzIlJqgcLit3da0PElFhdWiuxwprr7v6LMs+MNOwEHQhgPF/evn37B//XPzk+fXBT/N3f/ezzL3/8p//Un/0Lf+7ffv2zp3c//5d/8K/+1b/4l//pX/vdXdfnLMPQA5OXo6tPYKrcDIvCrCDGG+t7w5+D7hstvXUPw20Kve66dZ84EVEUEVtKEm/YWkt9d/tbt9BgKWVL7eIXSynv31+Ox+PdPeQsRFGjIQH6ChdvALiRElHzT+Fy3Or4W9Pjbb53gZdC/8hvN6eZLaM8FtQI2AyZr++4rjHztsQMtKD9qPo0T6TRS1+E72PpmjWfV1aMLZW/qTYiyTtn3HK9kEEey3xIsP6umRkYYEZmYUrmS/KI4JEEM1KdC0ICtaIKrlnS0IU2E60RsU7T1FoLLST+7/77/yFKT0eP6rbWeZ4nsEnbXMvlMr68vLx/fnl/Oj1N83medZ6bOeY87A/3d/ePj4+fPb76bP/6odsP0qfUJek4dSKZOAG2aZ5O0+VoWhOjEKCbWzOttUy1XoKRV6vWGhIfPYCogTVszbSpmyMgkiJ60zqP5+lybHVCK+A1GL4I0MJmTZuaNlVWEkndbtcdDt1u1+/3h/3h7nDXH+5zXgzWzJuDOTTzRgCMqOpuziIpdX0/HO7uU5dTl7quI8R9txNnavDdz7/5gz/8Z9+9/WYqRd0NfK7lPB9RoJZpmqfaWlMVSShSagMgMEIDMseQDTFVK5KYfT4+fyitTqV13bAf9r3QL//43z69vH86vh/H8cc/+lM//vFvWfPz+WxuDb0BJOkBEzl2RAjWCbHZ0B9CIkc4E7I7JOmIxcytOSIyCZEEXxhQOS1eOCzMzGrRTNH48JJEzdSUhXPXkUBtbZpLq6WVdjlf6lQTiQMgQG2ttObEiji2Ola9jJPZ/NnD/jd+8NXDbt+lPPSH3HeUTK25KREmSQBQS5vnAuC4HqC1NXN38KrNmremZhqbzcEctGldzx2M2ZslHImAQastgEkHRBIkicFpYkFiMzf1Vts8lVrqy+nl9HyaxyKYmTMQqFfFgggoCImMoYK5OyMmEnTilDClgjSazo4gmfNwvz+4S22qtbVS2fRh333x6o7pAm51Km2u5EkN56aYJGcnQgJnRCYmRFevtea7AxjOpSK4cNKmdW5Esks7La2ocuqH/V1Ou1r0/HSRAPHQF+l6b9paUdXZSwTe83iZpqlcpcx4GIb7+/vD4RDYcswVNr7S3G7bDLdtq5W/eu1hkFOttdZy25TbStnbf2wN3oat1jaOo6tNU3l8tUiFxMtg6RN0kCQnWQ14A+JKLGm/D8LZVktsOQgR5cwAgEyqDgCrw0uweTilVOfy8vLy7bffvnv3LvwQRATJ+74/ncvxeOyJcJGeXJWoRZjZXNaY4Kpmtc3zPM8zM48v55/97GdP53I6T7/zO7/7+eef/+QnP7kf9r//j//JH/7hH/7e7/3eb/35P/v5D35oQj//9muRRmTevNaqzbzN8wReJ97nYRiWbA0RUZZE2uE/6LWRUvXG2GFTOwl0Q9VFpJTmt5ykaDsvPaRpQ6E2Ds/SwmWnle4YoRsAuq6b6/QnXs+vYleRWWxPEFaeWTx3Rt4cIbb142vDP/7NzMERwnWk6droXkeDGJOZwfqRsVkdp/M4Jem8IQg7hYiNhImcqtaqzRZWLEJT1cvlct+vrDJtbkUdDasCOFzcPVhWBOiqrdRaK3abeubauqsNEeexOgBlkZSiRZZS4gGX9ENra5EXj9M0XWqt4/lpaZdpI6Ku70Mkfre76/v+cDjs9/u4iSE4OoP+iRvYxnElS+OaP8dNAjNrWrYNHCVYzv2f+CD7vp/nuZRmZvM8q06zTClNDmkYhv1+n7oupcRpMWRYNvDQUU4Ljy93iaX9exbukgGGqE/I+6yuJUuuGAOV0xQUvO1gao2Jl961qvZ9D/8hr1B7ld3+7du3p9///Zz7v/23/sbf+Tt/58e//iN0+KP/54/evHnz05/+1IhNaLfbVaDmggRFW/GKuOA+GwvFIXgXsAzKSPoP28H//31tRRn8SY7hn7zmeXYAYAqjIxGBlNB8vMyYGMExERNHVBBi+5WhyOt8P4K7m6ppLc0UsJpJqgAgREjALCwS3e/677mexe+0FaqNmMGQmftd/n8BGk4ENDjYGgAAAAAASUVORK5CYII=", + "text/plain": [ + "427×320 Array{RGB{N0f8},2} with eltype RGB{Normed{UInt8,8}}:\n", + " RGB{N0f8}(0.514,0.412,0.408) … RGB{N0f8}(0.325,0.322,0.251)\n", + " RGB{N0f8}(0.647,0.612,0.631) RGB{N0f8}(0.239,0.208,0.157)\n", + " RGB{N0f8}(0.569,0.604,0.639) RGB{N0f8}(0.188,0.137,0.102)\n", + " RGB{N0f8}(0.529,0.588,0.616) RGB{N0f8}(0.114,0.098,0.063)\n", + " RGB{N0f8}(0.408,0.439,0.447) RGB{N0f8}(0.067,0.078,0.051)\n", + " RGB{N0f8}(0.235,0.231,0.224) … RGB{N0f8}(0.071,0.09,0.075) \n", + " RGB{N0f8}(0.118,0.094,0.11) RGB{N0f8}(0.094,0.071,0.078)\n", + " RGB{N0f8}(0.043,0.02,0.067) RGB{N0f8}(0.129,0.051,0.086)\n", + " RGB{N0f8}(0.004,0.012,0.0) RGB{N0f8}(0.094,0.035,0.008)\n", + " RGB{N0f8}(0.024,0.031,0.027) RGB{N0f8}(0.114,0.055,0.027)\n", + " RGB{N0f8}(0.043,0.047,0.067) … RGB{N0f8}(0.129,0.071,0.043)\n", + " RGB{N0f8}(0.047,0.059,0.094) RGB{N0f8}(0.133,0.067,0.039)\n", + " RGB{N0f8}(0.008,0.02,0.047) RGB{N0f8}(0.11,0.039,0.024) \n", + " ⋮ ⋱ \n", + " RGB{N0f8}(0.753,0.784,0.827) … RGB{N0f8}(0.467,0.427,0.29) \n", + " RGB{N0f8}(0.753,0.796,0.82) RGB{N0f8}(0.494,0.439,0.337)\n", + " RGB{N0f8}(0.745,0.788,0.812) RGB{N0f8}(0.486,0.431,0.329)\n", + " RGB{N0f8}(0.745,0.78,0.808) RGB{N0f8}(0.482,0.427,0.325)\n", + " RGB{N0f8}(0.741,0.769,0.8) RGB{N0f8}(0.482,0.427,0.325)\n", + " RGB{N0f8}(0.749,0.765,0.8) … RGB{N0f8}(0.471,0.416,0.314)\n", + " RGB{N0f8}(0.757,0.769,0.804) RGB{N0f8}(0.455,0.4,0.298) \n", + " RGB{N0f8}(0.773,0.773,0.812) RGB{N0f8}(0.455,0.4,0.298) \n", + " RGB{N0f8}(0.776,0.776,0.816) RGB{N0f8}(0.471,0.416,0.314)\n", + " RGB{N0f8}(0.769,0.784,0.827) RGB{N0f8}(0.404,0.329,0.263)\n", + " RGB{N0f8}(0.749,0.765,0.808) … RGB{N0f8}(0.439,0.365,0.298)\n", + " RGB{N0f8}(0.745,0.761,0.804) RGB{N0f8}(0.478,0.404,0.337)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s = load(strang)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAH0CAIAAABZ9Z7bAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42nz9664kS84kipmRdI/Mtapqd3+XmZEE6KX0FHoCPaYEQUeCMICEI+EIc+ZI83XvqlqZEe4k9YMesbKqZyZR2LsuufIS4e4kjWZG/u/+9/+HzASgqmZmrd1uX3Trrd1TBanDJxGqCsB9zjlFoNDImR6ZjjnmnGOMj4+Pnz/+9ONQjq/37T/85eu//vX+z9+2m40YP37+7T/vP/4XjofGkTEkUpWqatYpDWmAeirRE4J0IACQSQEAURMxa5vKliLh4oGIhJIkYQAyNTMzSFLJzER4/Z4kUxDZhAQAkFQkSUqSBKKeQpIKkkEkEZIQkqwfAcAEAGaSREoKAaFIu239tomAKmRGxPRjjAM+BRM56Yf40JyNuG32l/evb1+3L3/c+/um9y3VdNto9/0Zf/6c/6//8T/9H//P//f/y//t//E//y9//v3Pw0OPod9/PB/P+f35eD6fYmbdRMRzApCEqkrKnA6nWScsEbRJBk2tYdu2bWtta9qsd5Nm1rbWmrabmZE6PeeMMd3njIjYj+M44hiZmTEjIn0CuC5IPVRVlZk5/Zhznn8pIpKZERER7n4cxzHmwRZJd48IACLSWjMzVVXV1trtdnt7e7vf79u2mZmJeYa7jzmfY3/uH8/n8zie+88fz+eTPnvvNzOSqjQzQ1NVowBQERGRkIiYa1kYVUWEKhACSDIz55xzTpL1E5k5xoiI+nt3d/fMzEwRM7PerT4zSUDqIgAwSt9sa90aRCQzjmMkkElHeoi77yPcnWIREdPdPeYcYxzH092ZRmajqEJEqNDe9NYjRbRBTMQojabN7tqb2aZdmyjoCu9Gxcj58P1xa/H11r6+tXtDM95Mby2+WkockTMzPdfaDoJinkGYg/sxn89drN9ut4bu7sfu+z4ioNJUjWT6JFMpqhRmHQ6I0AAyEQmPjMlIhmcm5iBTACBrhWR6nTyZGQwAohAhAHA2USIEEIQlwaAnGAmAEWtdITPDxZGAOBFAZCIjYkqkw6mAMEPnPI54Zk4RsSZdqOR9a9++ffnXf/3Xf/e//t/8u3//v73/8c/2/scR7ccj/6f/9Lf/63/8H/9P/8N//B/+4//zf/rPf/sYuU/s4xgxmC7ChkZmrEW0zpz6OpmZngCEnaSwo65KuMfo3cgcY0w/gIQwc6gqJYQpEmbWum1b0yZmJk3aZq01NaklR7LJRmrOPHb3PQFpaCRFICKA1KZz9zq4hNZ7v91ut9tt27bb7bZt99Za327vX97++Prt/cv2Zbu/vW9vbVPj1kxVW699qSQJJQmGiFyLn3XMAvXf65xc/wTo7QZSyMzknJnZSBExIiLoM3LCw33URot0dx9jH2Psc+z7fhzHnLMODU9k5jpMjukZPjOQngwkYWki7FQ5ZmRmJkiKmIgQCoDpcj6gch1iEbWosPscPp8+5oiZsVlz9+eoNxxzTp+RmSKy1l+mJOoMcffDh7t7BlmXZV3/TB1zuseAz/l8xtPz6Tr6lmwTPI7x83F8fx6PY499zjmAVE2R3GwaZ++43fR+62/3vr3db9u2NWGdmlTr/cZ2a3azdgc7qUgFvfcZcXhMd2dCBCYigm4654w53B31IRNAzDkzk6EANUBShSQpmqLINsEMTszMnPTMmBkzhvsYsXs8jLn1+Pf//O2f/+j//q+3f/qSb/24t/3bfX65z7/e3OQRMiFJubNpig+M4cfP4/nj5+PPx/g44u8P+9vf9e8/bv/f/8T/z//b//P/nOP5Nfxr0y/v7+/bze5vrfXYbiI6A+HuAZItHKq2bfdt2/p2V1WiZab1e2uNKnPOWhrzPHXHGPWtM/066kVJUkAReY37nlF/k5nzGHPOCmRgkJRcWyDPB32u5EPqOq64aTizkOuvro0kCYeTJPi6tUig3oBEYi1woHIXMAAkPM/wXNF37X8RJqOylvOfiCCy3j8zE37mRp9b+rdHfQxy/U4omQkwz1f+7ZGZyERmRMr1TfHLk+sVPt/x1wvy28teR0y+/Pj1Cr9dyUTy5WZkfXFkbfjMZGZkAhDQzHqDiNRB2fuH2ohRqyBFoaSqVDq5LgXAdbxWuEdmUvKMcUJy/YCKiIpIUs9vxNfPfz3Wevrlq/3Xrur618/n5MvN/cefJVmL5/XIjliZ/W+rNjMj/HyJYKYkJEOxUjdGRMSMMJFMqRzo9QZdj7XuRfCy1El6xMvC5usnf90X13+vXbeW7vk39V9l7dKIqDsbIlJvcV6hM0ir1rvE+XhJRxAMUhKOZApjMCGSFBMghLW3aiVHpmQGIlIyM+qNRCvvBJmkSCLTmax0Z2Vda9PivBd01CZafxOBkMw8L9eqcq7geq4B/r5JP3/mtw3731gVv/zgeQvI9ToJZ3w+ITPqkq7Ah1ylALEuiNc5M+sN61t+/jgcHknLc2+cb17Jn5qYiF+3ycxaa+JTBKoaDAGZSWQtqNpBlNrluO7yeSQaGKh7tGJwktdaAs/wT4EKVM2sqpFuKqIUlWbWWlNVtTpVRamkIkV6pIrRBHYVkKRW2VCJFwChtdauIudKPmw9pBKsSkdkRXQVkfrveXVJ4a9r4HMr/Xqvf/mn3zbRulkiCDIVzM9cLfJ1P9bHqPVKEvn5TFVFEpmsgxwkJFWECqHIOs9J1olXiZdgfYYg+A8rsPbCWYBBEleJeFVlNLmWbsYKt5lZJ5ikR8S18K7FkMmso+Zl5QsY4YygnJFhHWnhnkggmHBxk8w6p18v7G8n1cvfJJDIALLiy+cHztrXGfF5oOE8zn65HutcRERWZIkIooLXZ5T7/XiHko71Lp9vXQtJNbl2Vn1KR8q1KdYmXVs9AL3u4LVfPpPml6/PLBiFSarKtbzrGv92ztSr/eMJ/9vjXKQvgSwqK0Cth+urnTv6c4VfP143dF3OiNfn2G9vhpc8qeoF4VotUkccyGS9EDJXXTWm+xH+WcLmWW5cmEd9OBFhXG+fmYxIIogQWSVCQihCEWblcJ/p12d0X3cCWIfCBWNduyleauu6cJEeqnKlfeDv1/ofQwFrlZ0x5jMwv1ziz6D6siQ/05cVGxKVXWUwV75VV2/OyamkIBKkmd1u9uXLl3/5p7/8u3/5p/1wn/pzdzxj21pkdpeApVCMAKQq0UhVVWgm3OPc8FmV6lr3J7D0UsLK6x2POHP+Om7OG/f5jVhxhplIRiIRv+TQr0/+ry5lRSbrskZmZEQGAgGTjAxnuMwhQynMcG2iETED0w8fw+cR7uG+dnUtP0rt7YjISsF5ngKQFHzerWsJZX2Lz/zyyp8+z6MqP2TBDPWDZlbH7/WlRFCBiqRKAV3pvs5PVfOICPi1c8lXtCAi3EcUoJgZHgCEiHAwkoE4NLaEqIW2NEtNgYrpeahVIl8AUqJ2U292M9y3tnVpSqELkXB3R4aD50J9SdqRBAGqqtCSeq3pQEIIkJ+f/B/219oGdTD/sgDO6xn47Xyoc5YrX2ZU9ZWUBDMYUtsGawMB6e6JdXUzK+XSz+OLEEphYkyJDBB5lXORzGRgJWySQJApuq7FddNjFqZyjDFqO8w53ZnpjPqG6eEARE+wPMKD11dTWm2UyER6Bbw63wKakuEOQkSaNVlbMqyJmfRufWvdmhjFKE16730za21lSSJKI1XCmKq0Jo2F92dlWnJt5Dq1wlEZZOVevffeb6217X4rdHnbtt57PaEpW2tqrLc7g1CBAPmSmshv8ea3zV5Z/2+J1/X4NTs/E7r14iYC1YgI005oYmSmYFU7qgqIIIUZoCzES0IpNAiT+ZJ4WX1+AMq6RlWER/76eYDP1FBEJDHnjFzBq7Zt/Yy7I5hOnMV65U51Wa4T+MrbKgxOD0dci2HF4whiFRLrls10X0eDUsSdsCvxuj5tBP/xkkYEOWutATE5M+cVNiMCUQldFfxnLuixStn0zIyZmcmoqj5JqmVQkOlUpDg9IlwiMzynV5D3jIwkM3kccxxyHHMOuvl5AQkFJJiIjIwpKciAROVb12J5qVtURFqTnJIhvVvvvTVVpZk0XRGFEMJEDGKq1trWWjM1Ec2zI6GqYkqSng6HZND9BKI+zyueBwYQK2muDLRiap21nznluuarA/Y76Iurgj1zqsoy/uuIV14p8BmH/gEQycpjYs55jGM8j+MY43Cf7p45IwQMCkSBRGUYSIqIaMuYdaKeqYmr2Cqda7dKkimURCAZ11WISM5K3UDBS6WEYGH+KNQtf1+mhQVExAvi9V8vzcGVhK0L9/pPv14u1l06r1pEBCgL0qoKpt45iEAE3DOdwHTOOefUOUV2UkUgYq7dqf3W5F/++a8fj+M5MqVb+y//9ufj548h8kEi4WQGmFxbQ0RieiVeADOHzwACIklqZV2tmzVrXU3F7FrcV4KYmT4rq3F3r5sbEa+F2ms0rfMIUbBNXn/zmZu+ROXrpA6QgCRmJiODGWOGioJQgUdmslb1dFUdyvTVrBw+5xhjHAXwMuFcSyszJcmsbCopWWjPmRmvPUN3iARSILVa8qWGfq2lfrvdV07ZWl/r7fxSFzYgIpV4ERnncogYK/FKZuXB+Ezjfjsx55wxs7Y4JSNmIFNFpifF1K1H79kSJKc0CE1b9QiIEFCRKmBKb7xvfH+7vW/SxMPDkJKRSMdn6ZKFkYJiGgGBJEQlW0NQhJZR353Is9is3n/BrInXu3xF02tbVTHKyJeK6JfE68KBqklYWZd4ppIZJCvx4ks9E+vCxnWKUQhJUijMOsGBDBoRIoH8/KDXUXBGrbrLrzVDRIwxHo/H4+fH4/Hz+Xzu+2Ps4QnPyPTEipwrUS6c5azlSEiK6spUMsFIZ2hKAIBW7qJK1W7derfW9Xa7qaK1tt30drttW2umIkiGNLbWrPdt2/qtbb2bdrMuKZIm0CZNxBAy56z8uw56P9N/AHX7zrJBzKz3m5lZb29vb29v99utb23bttZbV8vWuykveIwkUkiKfm6Nq3vyGrpeA08C8x8Sr7qR7pkZyMgzaHG1IO16vsMjIhRXQlNL4sr5kqDQMyWZRIBGgpYEhL8lXgWuCGJmwF9zd6RQQX+JBoIz/LxABsDaLPXd3b2OKrzUby/hMdzH1e2tmiESjvD0ZCKZknkmXucnQkSGw2fA4V6HuIsUKeI8sQtQl3WMaJWIkQ6PnFxwm5AZGMDEZ10UM2ZmHkgyBSkgERc+WolXTqnECyhGBoQHRAOWYFAcGTFdMoW+EjsffkTOlET444FH8+cTe5fNpnePkIgJTsDBiZWA+gkyVgULVaWliIiuGrX17L0hN/i29e12u/VNW8/WsXWqWbJAtSbaCKNpa5uZrRY/BEDv3XoXkak+Z1R5rEp1eQUOrv0yxiApL8dOhfLivcT0WpPXSU5JAPr5Xc6y5IRX4nO9BQC7jptr81yfACRW4p+rAZ5+gW8VDMN9jDGe+ziOOY6cnj4Dn+2bs194Am6ECEUE4QVOFGgfEcEpq+5ZjQOQhFzFBFY6H0SQDCSYis96t9IzipxtwliHYXFLGIkANLI2JoO4qu0U4kw+r2Mir1fG74/AGX1eAmdEZEpE1IVcOfK54hGrIp4Zc2KfQw/KziRSaEnRZjq4NbJ9+/b2v/oP/zoDAbXeb//289/+yw+aQpgSM31MT1p9aKFJq6pOCGcEsVDK6haIrY6JmZkpKr0QQVbavxLpOecYPqf7mBEBjzmdtVyiYOq6VpVsIRMZVdLFZ7Ii/w2sS80SMWFMR+rCDDJApngmQ6Y7ELt7xEw7io6DtWgXOuhznHwFARqyPknOjPSpIhGYEiLSJCztjKz1MTwjxKqtKdcmeU0N88TGq7Z+3Rd1zX5DelbAMBORptXkiki4Q0TGmGeRgjogqiZIyMVyq/Lm3PXnzYB7zhkhpgJSLWl0d3dxj5geQ6ZkK+QlmFMgBE2CGabcmtw2vd9MMkcGfGZGyomKg7LojaQsumP4+ni0JlHBLx3pmUG0ajzRIudJYsG1vq///8NeWf3lunIZiUicncSMEClOZwHJufgUmUIwIQuF+H05ce1fUoQgBcEs8O6E8OQEy706PbI6nQXuxsx0lzmPMcZxHGM//NgtMiPGGM/n8/H8uQhGY6K4OhX6GMTqcYUPIZVyte9UF1TEKjGSMd0jmfILOVJhZtvWb/femt7f31Rx27b7vd3v9+3WVAWIgFPFzFrXbdtub2/v93tvNwCkMpQpRgMkJsYYAY8In59RpJbZtt1fq2vVFZzM7H6/V6rXrZupmamlqsqZeHElWHqu/9/Ler50W66blHWo5ssaWKuFBQCt/niRTEhJq87/1WkmlIik58sxW3mRiAVSyNXnTiZXY+Js06zES0TAl+C6eg8ntF8rJCC18la3ftFn5KV6F5GLNpKZoFAwzxO+WKQzfEXZOSIiKki711t4RiTW0XxtGYhk8ZXhM07mIhmcnjEcKS4ZVWRKnRJwT5khSoGkrSvj7khhzEQiU6CkpzvoAmYtDJ+IGRE+DjKVEFCYEZHTIyKyTn5lJvxMvKr5JBqQhPpKUn0yaBpwAF6s5jimpE9vzEfzfZcxbM4x3UfKTJ/xpD4LewsIIqQS4ipZTc1DHaoi1CLn9a7b1okN3m/32/1ta82aRd/YN6o5BRQ165V4FXFcRGLhSpJA7zdtjSTHQAwELthGWPj1WPElHcA8xrXCC1y4IMx6Wi0JEQEjM4vdFecJcK35arhkzgsgqDX830C8IiImqHVnUZytQjjOBk16IGbM4WM/jn3fd49R60xyjoE5j1pHSoiIqE2pvVRLOuTXMhSZkSGKVfFf25hRGB4YUZT3KjrRXoIfEn61GqtOvpI3qe0UmbLqmF/hvc9KRYRJXAX62qRnhrXeC7/UdklkFHYdGuHuV/y+oMhXDKAeI/wYow3uOxY3bt1HtSQ1VW9fv7z9u3/5yzFdTG9v31trUAR8xtj3R1IDVCogQru+iFAbAJnpwKkMkGrdqpAaFOUJCX7e7nAvjnmOMXzMwpxieqRL4lp8AHL1JResc2XxK3c527IXerQ+AKs+mJmYSgTAZPEnPCikR2bkSM8QxPApIj4WTI+onZ3hMzLqHi3+fqZUDY2ZZ8IEYFBaa5/N/tpmporUZpq8qpbfAskrbnfdxDwpWdffXFlaRTIRqZ5kVZKkrcsDyQwWPB10eGZS7Kqk84VJIyKRjowCdq7XNzO1IjUvuqtkMN3HzhRGNepgsEaKsTFU2JhKR07mQMwkRGytNxWQFCWZEEf6TM+cq9WplMUIyah840xNKUgJMIX0X1qHa50XCT5SXha85OqmvDA/fulFVtZVy0wEkrFkC599BwAwVc+TJLjKJDnp7Xk2mBIIUSBAZIJBX0FaBBdqkBFjxpzHc38+P577x30MOY5jyr7vz+fzOI6IMEJV1Qoyr5iJWr71RirWzWxrXV96edbIRXKPETNCUgq38QgA1rT33m7tdrv1bm9vN21629r9vr2931prZ78jqFBV661I8ff7vfcbSaUxtIJ0AQ6tNa8jfuZ1ytejEq88sW2e9KnrA4u85IW/3LpfEqwr8XoNGbUv/jHbjkRScHJOVltgba7MqOZzMIH6DslXtsPrY855+FxsSchK808Gz2oArYVWd2pVy54hkGuVXvXbKNjg5JSdfXdNwtehuNK/a79XhEKsgvqzmRtRTO2lD7ge+Sv1IhIp0Fypu1BRtQJYmz0i174CCXimh2d6pGsk4Uz3dLq7GyURKdfrV8QKX0TNFbIiAoysplMF6DEi59ifTGdWnRKZuerbnEypu8HSI5X+JhLUpEzQE4H0iMmgFda4LkjEMRjTfNM8jpizDY+i9rtj+tznR+RuAgczG+FXX0J0SUNUWVRGBU901pCW0bclEBOVaI2tsfUuUm30Ta2DK/EiOYugSiXZ+qbaruRpreFStpyrYowx53D3JI7nfi3vixp0fseLyVNbYmFdq+g6W/MVhnLdm1/aiQAs/4GP/LlZMRlsKSsmeqwFEuFz5vTp+5z7cezH/jj2fXVW5gPz0GwfH/ePj9vX21trsN567/QtR8zMCBASCKyOHhbtB54Za1/V6XoW6BW58zcygdAzhFLt7ipBC8NiCXBOCCYTqQWFaRLFHquayStguJMMoI6fiuQoJcDJ4a+XrSJpNfU+BQFXAqMlaXy9PRedXEQkBZG1JeacY7AkDyIyRchHJmmEZdft29e3f52urb19edeuNHr68OO5P+I5kkZpCQPE/RSkiCgZAsdMMpCLWbOOoWRmBFGBW8788jpHRviYUYnX2fh3VL589Yp4HkwR63z3T+hIrkX2+a1VVSQvnSMhGcygX2zQdIBZRIE6EtLlxNIRFVIzPAtoTRYL2Fa1kQXExVLRndQKs1mfqvgZIiKurbW6cQHYSet53RX/GHX+OwHmdUdFMRw8IucldhOhKmNRfriSfUqscn9dn9aM1XLws1WQRqW1ZtvWts30ZOCICsG6aDmQyoQyGmmqvYlROrMrBBNO+E4fZGixjKnk4uejCFKUSgt9Tq9c3Yo4iHCv+AgKRCBWvfwLBr5SKElm/F5j1HuU3CBfj5bzoRQhRDRWRxOCxT0sQjHPfqUQURk8KvaJX9z6M+CuP2ctfIgyIyWyGkkiqEQMSDVWJyUzI0rKe8IVsdaDmb29vX379m0Ps59jehw+PY6Iyaj17+y33u3t9l5NwN77tm2ttXvfRAzAHO4jZrhAqZLUOvfbZkWrut1uttnb201Nerf7fdtuTVXhfvg0E22f+dxaANrMTMUEGoGVKVhGxAx39wJcXg/zijonlTNel/R5cNHd50wBI6DGoIo7iv8vjFoyL/Xsryv/9x3BpZkKuQDj5KkjStTR4fNiNxax6GrPzTmPeYxR+cx8HqNuDYSoHMEBybOJX3IlZkZCAglIgElISgDntjtF1uEzfPhJrOSpl2XgejKq3ZYsKoVHuM9weM7V7zm5sEXPqGYBPjuYQkIkFuK7MlphOiQoKQKxlKy1mcmqcAgVQGmOGXUUCoIosCMcIaj0S5iqiheiWsIBKY7oymbITMn0hWnN6WNGzpzuOWN6hCP9aqpK5csQJkrTJyGpUoBLwRB1SAdOkQsRyVz8tKkIhO87jiOP0T10+Bgx9hn7PHQ8gJmoje5lRABkUc8+E3x8CsYr9/KpEDMT62YqpmmGrUkzWhNtbdvu1jZKyUcagHDJzKCISG+biHiR0eZM1RCZqsfIRW0eYx7HUTJPxJzjWtzhcPeiwYwc17LnqhLltYx5LeOxsPvMhCc9GVkNpLSruD+3omSel6PKhothBSc4/YBHjPB5eBx+HON4HsdzHtNzuvsch4+n5vz4+Hg87nN2NKmKzQ+NSQ+4pwqLLFJXGYhLgBDhC7iSZBRWTBVJVh7FxaVbCqzX6vmVgxU4IwRXV55F/pdS0eRV2Mk6kSSYDAZRbYyKlQwG8xSSfSIcFWBY+zbjOuIygiIJFPWzipri/YpAkAJEsjo4Mec0Mpv7mKoaOoODsQsovb11/cuXmzax3p7jOef88fPPnz+3PzcdGZBGbgnL5HEMnxk5SneDDKpk+MmOy8z00r/FUm9dCcd1HF/nyIK8X0CX/AcFzVk9M8LLw6NW4WuRdy2tq51nItVgC5HqVq34vY54FnrmmYhIkRkjM6UqsFx0/0A4U8nVVC+FRRWU5wcbY2TmnJ+JF0qrlRbI5JLNtNZer8O1bV6/xX8nIbsei8WcyPSYnvDFOEyti6OqAoOiOhbTP7lxPJuVBVaTVRdUgi+ttd5uIiWMKEwxBSs7NagBRhiji26WN4NROmeXVEwmMgYRSrS2Uq6KpiAhCiDBQmKCgQBUhSp1p1ApdnX8TiFLXp39z+DNl9/kUlCg+Hw818/rxVzca6xGlom4BwAVGovgJXX0VvhgVTsCIKXKtnUuVhucKJ5YOjMFPLkDQUn40s5VizWRm5Xy/NL2rntqZk2s936/39+/fPnLX+Y+yfah7eeMHPsx/AgfnjMdEdGabLf2frv3e7+vgnzrvb/d78XmngurcYFQDKLDHcB2K0ZV37atb9Z7o7E1vd17752kH4cM6fdba9r7zXpbqkOAkIyCyK2olRdSu2TouRIvnvREUi/85rNYJy90xh0z183QgLuSLN0wWaVS6do+hb2/QWi/7ZE8ga7PB5GZXhVSNUdmxEKJZpUrlQfPOWf4PB+jfIzCSy9UWzUcSJ2BzEgiA8EixURSMjwICKujBbyAFhklz3HkrLZ3ZMRLlS4ncHphXbGaPOnuw4vo8+oyc/2RxMsKJ5f6UlISOLWUFIOECCigBBiJpfxYrGpxpKJNHwwFhM5UZDICOQFBCF4ZaZKRQoEtIJFCpmjljb/Iv+ohYuEFjk74clNAZhPN4pe/MG2YoGnlWFqRLWVBFeElLY1EONIjGO4xxpxT5pzHzBFj+HOfuY9Hs0N1UBqZggnYirNrwQSJV3VwXUklVZhRDYqiK5YdlZhZM23Wer/1dtPW9Ey8fMUlhUpvG8kxfIwxdbi6mfWY+4u03N3DR5Qy4lwthR/POasVe8Rxrf9KxQo0aa3Fi8j981Q8+2kvG80z0+rZIRZnOnMFEpKZx9OHUsBgZMSA+zzGGD7nEeO5Pz6O/eHzmMexz93dI9zHM2f++af9eW9/3nWTt/uXzu0e+7aPZyX7EROy3I8KfBZSRBN+CZHgqB6ZrE4ERKQw5LUvmKKan8zBukkAGZfhBRmBCudC07PxhMVbi9qVtTVFJH3R40mi3HhKjJyMWMedqnqGLpFGaaMkA3N4Vl9VVnaialLaOi9iGXx6wb9zzh1T2I/MjHmbvrUmnuGDwq43kaDw/b1Vcew+MuO//O1vf37//v7lBjV3dSpo4RLgDPjIpBShyBFFoJ4ZkjFzWthr2lTHRGW6V/V2PI5rjWTJAmIhWtfPvuJ57n6pCwrDa2yiWn4/wiIgVOOoElZVJgIhSCXrqkbI2Q4FIj08JkLDdD8OAJp1/DGLGI20bqBWVZpRDLKq8yIiQoIqVaGmT5KGRDKQnjHGeOx7GRqNMYrpUt+uln191KuofY1Vr/3T1wRUlXPOGTNiCgp/XmAn5NRIQq8D/WxFe+R83eS1fGimqWYzAUDdXez0FiCaSmSkTzMapiSMfNval3v7sulbl64qoQqP+UxQMlRQXNoRrtJJKbkQuLrwc0QkhL0grUzOyAyOGSDNWim1I0Cc1LflDpEo/cuZssuvGtIirYR7lbWrDlmQWTTVJWgCRU0UzECGrkwd9tlTDCw8tV6zSjBCYRQHSlBVi4gRn4edO7IyzFI2QNSAMBNri7hTiW8ZZZlY7/3t7e2PP/54uga7bo++fTyPeTyej/HzeHzscyznPM23t9v9duu39uXt/e3trffee79vt6okq9U43Bl0JEWp1lrr3VSVpr136wVl6XZrvZuIRLibubuZ3W63+/1NmuXVJYFmpkAVFFqc8tM8S3A7LQ/ybIj3fqskpsiLtardXVVLtiJqSXH3CaayKBMOK18Ck+ovw5qC9MzwE+QWuq+uypVwXLe/9XYho+tq+MjpSpk+j30/jqePper91PaeZKMZMT2rqIlA+Apla0cW4E6kI1fPEgkB4e55RrOIebUmxhgFJHhVX0ShNqISHnCfmUu8dZ5vEZHuY850n+7wBBHTCZiou0/39GDCzNynCfTkflQOB4qCU7JevamadEfOevPISJCi0iRzTveRvqcfyVCmSopAFSpiV0vrlFq/+B2sxnRFUkp5QEA8PDwYyURTu5mRGdPHlB3PHRkZyFwsq2Dlg1ULVYwTkSCUEkhkcaZJ5vTR2I708Ij0jMjkdJ/jcWtt37nv+3HY8/lB/ACTsiefUKR4k00UYMx5iKr7SPhVzGdmAS0nkB3VizQlEx5DU0W0t3J7FDPbrFlr2/2uqirtxFi0tmFdM8FxKJsyTGPyiGxmyjSBIHzsMQ8VoUCT7jE9Yk6f009Dx8wcn0rVlXKISJVbOFkT5QpZse8lmnzSvOw1eFyhheFqlisPXQq3YvyMMcbc536MMfx4jv3xfPw8xr4/9mOMOWek+3xOye/f7d+6vHe8tfxy12ab99t8/jyC07MtI4MFLBVYEPTw36Ux6yOpQUhoVHfsV1MTnj5ev9Rbl25xBX6m4HpSrA4nAp/8+iCLFLKAmBSeQPmrgMvdKYtnEKcE8vznerogFmJdksaMJWz01aPDDKcLPnY0Q7Om0/fBNhXNVCQnMATSGDBx4P1d//i6/eu/fP3x48f3798j8nEsifFMCGAmQMt0T4owVSNnGaZErPpDVRetZ/W5f5ExVwH0ysm98vrX8/SlcHL3IiHmVfWuO1KNRfxmHLeoHjjz1+uVX4mHuARTceZ5mQy+EE8kAvTSq+Xny1JEBZjXi9c57hnpE44KJ/niFnEhXjwZY1ft/lkGxad04Jdqhqz2rqqO4XXXSSbidAolly0WPBk5MrO6q/5yza+aYTX/VJVVkIhHQE3VkChGQiOsimLBpuzqpri19u1uf7xv72/t3tHoYz8E2SSRk+kIF2OR2KuhV0SsJItEUBYOBKrTCMgpUa2dJRfyXw5WABaGVJj4QjTABDMJnmDyqshR/KoTpV5b5drmuWQuZ8EikknJk09JoDKtSGdciuhTupyZoloAmpZantfSjmVJlAgEK/5AFz7nAcBE1PhqGsLl6nL78iUOF0j3KVv3Z9P25G66jR1JNVHi/cv9duu32+3Lly9v91slXrfbrWDaiJjzOnCpbaNKs27b8iA1M+2qqm2zbWvF7joNLPx2u1f7UsRmiWbOw721rYlm5lmixwViOTJ+bTVewOrLAuZyYFk5W84MiSLEYo4QKQiHwozTZzEclF+09PnSwXxFelDIhcsJm4aP4pAeESEJH/PYn8dxxCyd8jy32yxg7EqdPaM0P1dDc/nkLZLhwkiCBYYyz5YxhAHk1RUFpnusvmSOwr3qiChOe3we5SW3LM+rLPZ7ZK1gSXTRODOCZTMRkRnkFTcz86IxSDiK3BcSkEhyIhnFLXeETorSRFyAOqMhFE2BNmxNTLWJSPnKlUbKSutSG6bwYaVQKFSV8l3LKOsNU5E0yUytwsqmjVRKNw3vmVmOaiVEW85Y54KpRD+FnqvFLpFVCHmMKAjxbIWGT2aO4Y9j/3jKjw+KfEQ8VV10qDxVEWFuCdkKrcNFsw5m4jPgVkOgjr4MUYigtmqEBzKFRdJYLft+662LaRX8p3W6xikLu3qCOqeSamJHNaEIxEW3N9JfvOVqbb+aab8SKOs1r2Kmnnxxdsse6FrJ18ax66lVS12tolyMq6zjyX34mNOP4/Ec49ifz31/5DjG8Xw+H8fxHM/xHMeonr0PQ3SExfHW8uub/uUv93Yz6zdpnaqkBn3VJ8sYLANFtZY8q9tSIMpCFM57g6VVESrUcjnYFel1BWCiShoUnqVAwQ5MBChnW/JKpiLPliSXypGUqiWEJ/2sjjVhYdu12YtIJ+VmwdM8JhHTySQiM1j96yiJe0mFM+FgIBgZmqGZrjKf+zQTU2wdPhAEVZnUBuEfX7bn8fbP379+//79+/evwE95xOEyfXWH7tpnyzEPuovm4ZCJmAMMjzFm8qho22uhLEjvhXBa1fnr+riW1ysv5PWf6mgmCTBKXxfh7k0aT+t4UuvWFARd/NqAJHWJWpGeQdDPtFtJJLWA4nUIro6iQhJZVqivvY1rm5TEEJiR9BhRGsGqluOzJXrl0Be5mPwl+sbL4yV0LZvKK/da0FG58IuqLfrVavFHOUMUYZ5X4pUQPw3JEH65KlSfXVUp6a4goVSjULpqV22mt6YA1HjreH/rTfO+bd/etz++3t43UQZzapcymxVEhjOdoaeFZFnxMiEIhkt45YgCJJe8hZW1rmP3Ov1qgVdn+fXqZxZ9/r9izoKlHOHaimcqQOQpZqzGp5R+m1CUG/4p0ce5nzPhHvCFaC1kujq5DRkCJpazzKszfi3VwuUoq9iLiKLOyDk+YS1XL0GVSjNphU75+/t726cKlDBFH0aINd26vL/f397ebrfbl6/vb9ut0Kzb7VYxLFYzzSMiIRATEbNuXesMERFp1nvftna7dTMrnq+KZOZ2u7W2tdYJJVzyJfESW7bD+styXTYHFQbOXyM8qiUHQIuBzsKHJaL9ssJFhGJKMYqBClFSSU3G8MnLiAMsYaJ7/mJdce4vAGPOenYlXmMMjIrRY845jn2MMY/9tK3/JKf7S+JYlIxFvzuNkSrTDz/tIcuQrSpd5Jxeo0dKyfJZ0gGODKQjpy/Oz/rYkcwlNqnneUQZB6QHyrOwmJoERWf4dGekgio6ySha2Wd5dpHrxWeGZiYDHorAzgTDITnCQffoIXPIhOoMUiRME5BsTcykNe1NW7OttbZt2xpkIBCUqV5Z9VJVRVQoZJBKEDDTYm5VtzCBIMxNt9a898jJMqUjw2urX172KNrzWYizKICgAyEZ06NaFnEadCAQ6fszHh/zzx/ZW3jswx+0pA5rBxgemhu37pQSqnhmhiMC4RLlpe9ABBPw8BhRQu8xIyaZpx+2aG+2tX679futt9vpU2mlORNbiNc4fM4pgImYyJGJiDLfKbirNKPCFCZqZg1TawkhmWWe5XPslYFVPZCZRQK5/jIieu9mRlMRqVTyNaTW2rDXxO1awVUJXesexXScI+ec4zj2x/P52J8fcex+HGM85xhjHvPYx4yIyfQB//kzJI8f324/f74f+8ytqVqzrfeOCB+PQKACbdlDVPHQIFAsf5ST9A2GT4YmvSh/IKWZapsjXlxAX0DXF/0doSyChxCxvGR1KYjrgIgFx5zeRIHLCUxOOSdElldlRAQ+ARIIJcsuSDJZsHMBsglI0TcjiilQfaWJzJEp2MjS8sz9eMoPIJwBkYhpOdl6nZNd7e0mf/ly+3Kzb19v//xP75kQnR97fDx9jNmbqfXMfBwYY3hCJgZyZtmHfWoxIuJSXixSlPt0X/FhrtCav4otfiOVX+fYBXGdleh6l8va6teK4fAoeSwiK90o35igauapFKtUXEqHqKeVEylLomhJWaYYtVDFKJBP473VtjzfeoQ3/Yz5VZ5e9C+cHZnLQuKCyn5LvACczkSfiemaBrAM+kAapXL5ADBHMU4YLK/ZYjF8Ji35q0caTz+bWtUUoWnbuojcemvNbl27FaApb5t+uVnXvN/k213fN7k1ID3HUAZK85ZIptcp4UbboAIVQpBFs0uHExLLv05qG0WkzxTaiwi49PaemcXKLPYgr0txeQfkp+1x/ah+Xuo4L18CddM/hcM4vXBk8btKBBOZQpZXy6yF6CWZ4QKt8auCbFW4kfysHTIyQM8Qo6xpQzjxLe1mRsh1nwvhO/cOeu8Z9GmuhtZb03Ihvd9sJV737cv97Xa7VePjvt0qaOUaJnPWMxAsup7GaQcqlJJO9H5TJQB311xVOwCfSfo6zIr0dkmITvP9a7e+NjGu/47xOaSrDtXwlWa5e6YtFbiKmJqefvans13EupQ1QuH1EHgxmD0tGl7QcbEqkkt3Od2dMzLTxzHPDs6cSxVY7rjzKgIj4lxGpUOM04ffLxIbVr0kYlkJHpiEe7gUDTzjTCFWC5Go7r5nFE1+He9ZVGhaYS71HmO+1p8ns7icrxbygaX5+OzA1zd+GaQhXWt0FoPhkgHRwOGRgKhjDg9zta4dBknTUJScFTVMwJp+qiua9Vsv2szKazOT6QoFo4ww6/5US7IQ60xPxBr0l1BakmFkpYR1T2dt/hkxz6M/kQuTBgBOLOZOUbLSBPCFS1ynxBjz8RE/fsxuKTLMYj84XPZJnSDDNAIJagqxJBfiMyIkV1InOaE0AXWhFB5ZVg7ZrhxLWmtba5tKK1GhnJbXq+dIKUbgcn9cLAePnESQyayoW6lOlKH+ax2yiPOikBivQrSMiBD59Oi/Io6ZSbMaOfFak1womjlY5991bK2ey9kRyMxwn2PM/RjjOI6PcezH/hjPR4znPNYsrXEctXcAMF3SD/gHxo8fP3/8+PF4PP7y9aaq1je1buYxDwRW/V/E3cudGn56ahWALHISn2u2Ii5PL8lVgxTXioHTKIG/jDFZY4IuQRawtIonYWdhaSTzbDJWzWPrn8HLWrNaLZQo2/bzBGRKVfARK/ECTti02p1LU1hUxKUKMdXavsOhSKKQIOm4J8PgFKPQlFvD25v+9dvt4+Pr8+fHHDH9IxPuOYabqppmTbVjDg9AIlj+5xleJ4kjZ0bOJbhd2dIsZl5xLVfxB1mK5BJFx+W0BLzqaD6X8omKVTuvgASsSHZlMKtoLFPJKEpm2eKyeFwrlBTZ1LNsrrAQELXyEZIUU6vXLw7aWvEofj0TpSKeQfh6d63S9bPAyJjhmi2X2IqvJoiXV8ZyMTu/8hjP14YjAJEg2fuNREUdR9lseoXMPAWkoBZ/qz5CZpZvUH5O+4KpAiHnSlWRchkn2TfZhF2xGZW0Jm+b3TS68a3z3nlr2DQzIjWHT8lVwBVtLaYnDtu+Fik7lwSd1fJbI6tSiigTjhnwjC79U7NyOqaeeNWV0bAYmIDjv/soifAKYKuNAKSc3YVl4FJ0IQA1w3GZWpzo1W8DJypbdy+olshE+jXLLDLgce08ICUyWErfqEP5akB80mbxywgdqjSVsAw1b000VXl7e7/d+m1rX9/u97db7/3tdi/mlpn1zUgqqgdhZazlq5OrSw0SMcNPzNSMVmlWwUsFEa6Umb7w9nJ1p1BNBAFeFfKMOees5GYM/83a4DhmfhqBLnI6F3uPc6qZRZzKGFnboV7bcyoUHmA2tdrU180/mdTzslR4ac2nli2/CID6bFoHTKVWfhUw6wAZ7sPny/i8KoNxJna1dM5TVWgUkg5KzrNmrqZEIWsxI2KRxZnCWiOjTCmRF66GJY4uuxFmZmkXcT3h18crH+MXI8BKOhUiqigr75o4ytBiJWcyJ8g5KR4ZI1uIufZpcwswGDBkoxhTJVstiSbWbOunvrWGxa7GPVPPWXAmKlLKcgGhumxjSCboPpPFsJXycy4bSaCU/gJBxMwCTKd7VOfLK1Ym0wSZCFJDrRCKotkxHSDFSVDnOJ46vv+IZrQW2w3TZSQPD52h5Jg5nFskwCQzJBzhFiPpIqHwZCy/WpKtNaJdY6zOBaZrxvTLIKxr55o1EQlHZo0lXPecCBb851Et8PqVMVFMtU/PLWYEYgpCBWHk8dl/TI9wD4lMfYV7HbkRXYVV+UHKQ3s11UCCi+PFF1pVrTO1xeVkuM/jOI798TGO5xz78/mxf3zsz0ccjzH3sR9zzmOfc+kBnIlyApHMv/3tb3/7cvvx4+P448vbpmfjqeQRmVnz7LhoXhnLMVaWIZQU5U+EIkkRSk0RCvfk9EDpF3453P9rtuDnnxdrhDyL6DVwREHHKa6sQj549i4/EZTzsp2P1zy30rXzbjmX2G5Zgq08kgwhknSNnNPzCG88jEKFVWXRFE1T0unETXswFdSu8r61f/nnv7jnvu+PYzyf030km6ohLWkRASrZODxjqgCirp8cvjgdinPlsOsr+HVMz7PpEKW1wIWpXo//TuKF03p0jLHSkpdTiSrpWrWSU5zplFQ5Bcl1nVJEQXgkIs0EEBbpmlrPkE/Cir6isxHxejvyNNYWkUsnLC8jgKoZ/zlD6QUq+G05vfYfX7Ouq3G5Cv3gGCOj8PBCS3Wlgyrl+i3Fd74qnIKAuES+hdx4LDc4FZoIJVuzrmJCk+ySzdi7vW3yx/t967ltfeuiOXxOxhF+MAaJGoYn1TlAVjaciwddXV6BUlIm80xz8mWwoF7DDEnKiUhKjQwquOtluB6WYeAFVwcSmme2VUKNT6/dsxFJ6uJgVhuQgeIbB8lglIT55BhYnI59WG4TIDl9ZuY5c2gN8YgztmNBQYhrlZ7UgnpcywC3WxvU53GBBsWFqnPIzO7cgtaavr19ud36l7fb+/u9b633ft96TVQsv9NKvD7r45mZGJ5JIVebj04snkrTBcqe6tH1VRgRawSvULWdjDDLaiDG2rnH3K/EqzCkC4uK0/WFr4Sks2MoInPGGKPmLjTxOhmufb2mNEKQ8AznIuZXsKl8qx41ZOl1+/RbM5NmdhZ4YReOXaQCMWixHYQqxz7mnPu+1+v4uZ3d/ZijqAg4WSAiUhczPVZPPDMXB5wD4e4jI2scirBmJNeAnmK/+kk0zOlEMYjh5ZnpC+F7JTTk2Q/ITAi1RH4iUKn3tsK6FCJia0MTkJipIFIgmQLNBBvdp0+kplmkReuAKBSqkA5vApOToGzaL1eRgkxPk16A2XqXmlwm6+SoST+y5qvm2UEtrakr7CRi6vKeqC0fWmShOSU4yRmRkuJJSIGeBoni18iUzGN9hnFeIljQMzhHPh/zp8XW4+3N9kP3nb1RSEQY5/MxGl1aGd5auMOZAWQ7vV+wP47jkHRrpqJNTUxFtYC9dbZfV+a33KskU3FWH2edcHF2w2M8nx81iD2mfwL2n7BWvm4iAErOlzDh7rH67EeRBCJiI+rdVXD1YDN/IY2ZmWWmngNBrpcza5mF+5ZHyTiOYxzH/vx5PB/Px8fz+RHHPsc+92OfxxizIIpMF1AYEpgRf/7557/92/b/+7f/8pdvN8lbOrDsJaWYosmi8q3vXA2gdZSf02czl6ncGatWyE+4SCMEvyZDyw7ibF/wHL8EYOaSUCkWuFUTuV8dAx3FP1z8Jzkzv1pXJMT05PoUR6R+/5rqFZAgQhMSkpIzi1RZQKN4zkTmdB/EgZkKRaZkPBmCZHaECDel5ADE1DbaX/94d8/nMZ+7H09Sn/chzx1z5pgxPK2b2cDD0yfTjlwylRPqvLxJxoUp5sIJiiXnLEye5KJNByIoLGQjT9XJb8nulaNcCZm7k34tuLLl9HQHIkqcWHPySOEZHwVMiFWlkcX+UVXtqAFDHqjhQhBSrdwQCjbC0nxdH6kAIzFPYuyzIJULPa46qfrxtUWv7fTZKDmhuwsoNuv1/a6cu+yV12Z21rEVMUVEjSv7SEGu1ikuY70XMciFZ6RnwpEQkd5UjKJUZFcxlSYwZW+ydbnf+7cv27f3W2vZTU0QpYaaB+IwhWDZQRRjiyJQrQqseL2BaoafpJQSlmSZDFHKGLwa7tDyfch0/DacNJNrChLy5XXOAHW2dyMinJGR1/zpkv3WaGGpMrSu1lJaMmT5neKcRl3jR+tj1m78FEmiJPDnRPJ4wXsyy6D6RYh0Zloiei0JmkEkIo/jeD6fj8fjue8FvZg1QJowsZGhXW+3t21r72+397db783M7vettWZNWmtNzkk7QMw8OUzcRwRYS3aEi0QZ0/e+LZO/DEYdBoiIit65Ov9nA0WbqkXM9LJj+vymZ5PuxCI/7aZ+36fldsFfo8ic8zh7BSUBFhEOUdUUZThP+scFbtVvns/na8J0Vjywrr3bbdtKzQwAVDMTtcwUK2HEMuHEVJXDkTOwD6+Xyswk1jsO988t3FR1X3n8C35MSULFKvE6wkuzUchlRDgygSU7uoYexRpZyLPxwdPC5vPx6RhdaoNldXS2YohyPGOW7QtP53ukhJxe/FoIb4S05Ey0jKnUhhYMUpOWrScbs2kYQwpuV+u935pJTTQ/04viOqFthhQuEaKKKCGkLhskLoW1kpDIVTvNUvTz5JUDkLSI6VNUxaVKylgsOa4pvQtxNER67009qr3AqhYD7kHeMn34fB7+eMbjJ35+kbahtSSIGQ/G4zmbeYeqcfEx3DNKFNQMKUj4g5Gm2nu3ttF6a03NapdZa9ab9SblK61Fz8jTYSgzWStn35/uPuex74/j2KtcOY5j/3gcz4ePI8JJNNVcnR5Fhs/p8xjHqfr/1fJ9oRgZANyzmNOVrKwefYpnTs/qApE1W0Qz00oXs27Myw7EnJV1ZYG1vrKQ0jOOscc85tj9OMbx8DF8LiA9kIEwkSBS8jiOj4/nn3/7/udff2wCgwPQ1qcfDHWMCvOyJOkvbCEHGUGROrGkQUoYJSKSVBTf82wRvuROeUkVqw+YLL/WZJ625slkGOSUOZb0NC5aSQWLYqSgfMTKBxvOEuxqbfXT+/Zle77+ScnybBWprKvGDwepoJ7zJ2MgCIyQnPAdIYRJqrSu3pt5IFI0jNJVv2z3v3798uMv+8fPQdhj4NZ9f/pzn7tH0Ezpfvg4mBGzjC/Lz0HyJRZ+ZqbV6maSWbPqz5CR5dhCpFBJBIugE+RSpJ5gAPIcf/ea1195DMuhIGOEx4uB+eKsiAnKf/7T9KvYX4SqNG1G0scMLFs/AMJU+xynNcNVcCyk7fPrVGhfNGQudKFfZIkTpgZekomzGZ+n9EREKt1sTQFcuvcrZhc0PZHpOefqZEmUrY7EIkqou4toimROrIEqeR4WIkjZLCcF7L2XkWbl9KYwTRPpxma4dX3f9MutiUytscAI+BHzYA4yTVbYSFQuIxSh9XMNFDIuJJBSoxDLrS7POcEKzZKav+SIWhy1ggTibMudq71kVJd9gJTVO5KJcDDpPhPBhJgiICpWZ2XNUoFzbUBJBKHJ8snn4oiVRW5ZdCBSgogz8fL178sor77lPBk8KVlgc5lJJovAZKqqECNVpUEbfj5/fIy/f//+/fv3n4/Hvo9Aish229KR2etYV2VrW+/WWqXwTZuadTutIVTVrsRLUqQSL4ghwAzOTI3wwly7nivQi1/iyAjMQDuddHAKGpNSZ85S9p3LtWS8c1Wnn5YoJ3PxZdev5Z1CtXUFBBAPTPehivD5jK6uOq9cLSiZ2VUq3uz77mPO8HmM4fP58TjmGPtxzIFIqiiFRnlg29q837dtM1FVRbOXbpFkpkxJIAOgbNstE3ocmZjTjxpSjuXMd8xRm85EzbxQg3WrF1+vePTs99usKTAZkYSKqlbitdpOp86gdnqTQl3rfFwtcJbX99Jz5ompL8bbRSQNymWRfY4hOYuZKOJYnA4PENUQZGrLFjIdu1GAljJreHpCMVt0YzRJhWv52zXbujVbENYig6o2VVKgYmubSnkURgnyCykgq2eggFRth3TAWKMSc41P0yWY0EkT+EhjTiE9glHWGCKpdChiwsForYnEMrmvyrImPJ9NuvCYY+6D+67PHW/DTESzjUPn0DnQrAk2X7awASejE51IybltvN0Y/uV+f9d2p2xiJqalHW6tVT+RVKAoK5/rPDMjfPpRyzUzxxiFb1Vn/DiO/Xgex9PdeXqAk5z0Wp818O1T8p8RL8O8cQJjlXgBGGMs+FMXs77kl4hMTRPFifeYCU94vkTjkkn31BocNT2nw4uKGnWQzWPM4xjH04/Hsf+M5xMRMV3aDaag5hyRE4GM9JHHcXz8fHz/28eX3r/cOrWLe+u3yR2Y6ZNrACslSulvSS2xF9JbE2v9aiCRFBrUQA0UvFxquKsoRGaqWKbnObTrVHWW0GON/cny/Eby7MWcRWoBqUA67RN9AYWiFE0gHFke8Sj/s9pssRpHkiWbmplKqKjPiUR4IT2IKvKFmTyGh8wEc0ylbQY/GB9Ild472yFqTRuoBt6g0/B1u//L16/4D/Ll7fG3v398/7k/dDbDOy0gj/0JjvB9jsdmcM8Bpoh7Tp/1AWP6tm3FkFDV6eP59Mw4YmamUlVtZR5eaCijEpmaglIowgIgw+cBrDZZhLg7qeVNUcDT6hdkFtRfPunXDSVgqmOM0zWTmam03tV6W7ZooGrLCnsiTRg+4oi2bU1tzhJLRm+MnGPGmruVoUqzNuchogKamVJMpKl2sybarUFlzpmEmqn1OWe1q4prmZWeUMBUs4gI18vLODPnnLXRcY5iBCQifSwFLEmV5fZ3SSDHOKrXuW0bpZRTgTlSwBqgILZtvTVTwWYqjG522/R9a2/39n5vJn5vljEyXA0qWJbqSARUZKbPGYAmZIQo1UQoSmpEhMs5OeD0ASGDbDSSMXP6cfLPUq01FQR9zjl8zomMJS1KnPCw04PpNde8LJWEWgLK9CibCCVAMSqRGH5Op1gOZxRmQm2DVDUQEEapHAnRpXdWKb5fzJwJrxkGuaagBJHX7OXLeG0BGNQC2+orN9u2/i62RWqO3OP48f3xb3//829/fv/x8dyng63feu9N6ifl8qqmgNu9S/kdtS5q2jezVn64lZNjUURNSuHKHJ6ZaBD3RLgqtan7BAM8vT2jxs9ZENKoNELMKtFrVVnGJfTJWD5kqiTK7T1mpfqCqYscsAa7Kq9ZupI1J8JTA0hqikZyzKIlTJY6O048LKNWzmq+jPkcx9yPw+fcj8exj+c+wiXLcBWi7N3e72+aqjA2kaqQRXEqbzJTNdKENB5rNqZKs7aZ5+6x78fz2IvLvgzcp5tqZ3V/JKsvDqEKkkk4+ByzOOSFoLJo16mV1DqyOo8IETFGRojkmpUQ4WWSAkT4maouI4WsuUUQepJebIdl5ZwAmp5WRF6VulFoArWklhhABcrO8riR7uECh4Slqs4IcRE0k1C4pEg3I8SkC1H9tG6tKha8HKEiss6N+iIM5qdzNU7mcVlFlMfqktJVJzYBpFZPQanZlAgtdh08OCPnyAxISpBbQ2ttTIRBW/WCfU45pqTLsU+VJnpXo0gfY/78wLa1RzeVNzNxMEJzSCgTbbpyUuGamH7DUIar9Kbx17+8R7yTm1nXtrF1kttt671bV4pUjo7U1d9X7b0XVnccx3Pfn8fTcz6fzx8/f3w8P45jHsfx87GajFiOM26yHKq72hgDqdF7qYOPI+bhET7GcYw55vCYYFCSE+6uVpatPue0IwaHpsYG7kfrt611qmCN/ym9pSxM6MR4qlr1ORE+Ysw5jnEcx/NxPB9j38ex+9jH2Odx+LFjDoQjJiPTZ5aT8oJ/Q1H93BjDj+k+maLGzgzPSXdQU4qEXiVYKgUKWXgoAhIolLZUzatSAyShZA1QTUmp6RBntYGUZOpZDJVhZQ1kEGQZP1e/ZXVk5PTlOwUpuNy9L38jIctbDkUOAGJBBSjLYy4SUiCFCMny+EbCmRKfs14F8NeBaB6xoxLBSELLLNzs2TvNhE3kkNQkFXpv9u3tPv8SpCqNE5J5b/axqdMi0Q0Zhx9bzP3Yc85Upmc6ksEAUtDVtmbXIB0MFwHpiEks/4sqzjolCKNd1iUR6T4XAH66CgRoFGe5EmJ/fgDImgVALY2PE16aqNNlTdZlXSdUFIuHEgIFUVxRXSQvnPPqVaAZDopnxlEfSpCixTmrkasQBU4tYRXHFTtbaV4oek7PlTWUhoUPqyoWE8tJvnLarlrnBXBOkhUV6l5KLMZSnBzCi3ZQLc4i+fLkMlZXghRB0AA00dZau9/vt1vfujYJEzEJU/ZmW9f7prfNbkbDOT83BJiCpbg/ISoBJFBzS7T0oK9fQcpiPxPlXSs1HEQRiQimREwAJlpWe4KESKpmSCawelqRNfHk5ULVldUTjxQwRSQkMoAsX0RkhmdhSCcYQy475WoYkCIBhtS01jw9mYLnAMlCuRgCLi3yK+R8fdNELaA1gWIp0bTRVKyJtqKZPo/98Xg8Ho/nMSMgaqZdrN/um7yM1FznUMUx0ZSaXq+gJCVATyQrS5QIj9Qljs+EBFNVTJTinpKqlaCXwjdBVisJItSCVJcJRbNNudriIhJZhr2tWl4lEeU5VKB4iWZVl3/CALlk8CiVaOYytvAMjGIIsIku5UVmzvGplqdEya3mLPzgai8ex1HTLUtjVO4q7l0pt9utz16cpHMfNFWKWKa7pwGupKZYF3Prm4wJmRQrhsb0PHwWnSCmt1nDl0q5w+o/lkMhhEF4NIdnMiTCoYVPh4vIZM6z0aG1lgqViihTu0hnpGRIluy+Jo3yyrqKvI+AUMko1l6RJSMSXLapUh7rFKV4pDADpw9HSRbBRhHVdGvpYKbABSqVHTGhmZRUQkx4cuezHK0u6qHq4q1Wh0fAlFrraUScTeWCQCEpWQMsU0RUKrhWbzUYFFY/SFR0lusTEccs3iZKlLNCdrZukaIR48zwSIZSynYvQogZcwweD91vtt9av/WWPVhlesvoyI40JCWGJBEtacQUQe/m+Sa4QzahSXUVramxsneWNn+NY45Uicu+0eMafnABXf6ydJ/7XhOlq3WztGRJzIV+FRclTuZMrjFBi8pcB0IoWJSaU+RbdClVTZFm28WFhZzUSdBWH7qqzXVsCSQDkUunso9997HP43nsj/Hc98dzf374/sixxxjwWZKQRHghs4UNiUEEjGPGz4/nj8fHMQf4ptqBwNypLqKemVwuwyIFwQhyuQEQBYBJZV2nZk2K8JmQ86iXz/7QS1BZra7ylfik1lw6WS8vI5yWFhc9UVV4tRGrIcOlXV4rOLNGPeLk+BYlhot+v0weCwWqKaK4QgJLKbgSMYdLBDIOn3TOOWUOih7HGPvofUwd06yzizIxTdvX9xtFTLuAMSbSn7s3lRQN0a0r4YgpOX4Sc+oYfvicCKREAOTbbbvdbpedVQZLAceTjk0Ewa5mdUDKOd9wjdM+xliDPvLkCS06DlIydJnHIn1GzkVfAKT1UL0yHj1zD3enIIAaY13oK0W0bJJR1vaLm6VKzIEklwnhrPbAZdRQtDaR0iQhMyvxWidhDYGm4lT2i0h956VDDubZuYgIuRxOayGtRJF+lsJ+ipxyUaNr7MFS/4VSzdia9c16r+FFc04lmDDTriakJCgeQVGKtW3bttt2v21bl03ZG01SBc2wNdm6tI5mwBzMKHU00kvVceYxWsk8FpdLlqxSpOref5w6WXkSgbMdHCtvTV9deEYltarqnuAaPFAnCxdTsDTKeY5Oz5MfdrUll3gZoRmJkDwzRVm6fLl6QFF7vQz4GBQuC3teg1uTEKaUgdNpGowaLVJDyqvKOjNAUkWaiEGbqXUxo1bb0sfhzzGP4ZFU6/fe1W5iTU+nN5Cxxp8uxX9C1hCF+lVwd3lc1VFROrsTymUIRUWbLWlF1IDzCMRMIallDmSqmuWwqms+o2kvCmz1TTwsomW62pJJFmB/0dsqMGSWG0UUZlMhRFISXsxmU6qAiBg1ZSyyZjksz/Z5uUdWw3FxXo7xfD73veYpHp/PKRqysrUGZmvtmO4JiIo1ahPrat2aqLSEy0wIp1M8W7954DZjeM7II0KPoXM4EqHpnlH9jYizy/PZ9LemqkJNcPoRlwJEzqZHiph5xGQmKaZZY7GXkUpiIqdnTMaaxMdz5EbGchmoxOvcGJMUY6g2ZTUFokapqArPWAhRxIK9WTV6JT3akA3pxkBkRmKKagaIMAmBWIZkKiG6bGtEFE1USVOa1kiLa7usOSy5zMKrUVGe41UdORILFEdSln9eTVATsEoGa5LJmAFq8UsG81TD+EngEwHEukeVuw60SroiTCkIcU+BIA4fMg4+n/Z8yu1NM7cEIt1TM5qnRVoRxDPKqqD2L3vvybvyDr5l9lRVM5rhhRw1YwQ8oEmjkiGcNS/On8/n87k/n8+Pj49LBXIcz8fj4+fP7z9+/jmfz0LreTK2y7939SuZarQpqkIW67IomElkrNwLIrKyK6jQqpHt5UZzuiBAWCw0KdvkeNHQ17kQORlkEceKyDX2fX+M4zn3fRzPeSy4i+6I0IwkaBaiFEygRunqmQONMX58/Pz+54/vf/359dvdbr3k0y5DtGUuJrcQopQ12zApRlCll5VhDayoDCgvvsNaClXunVlV8NRDLT4QT3phyho7c/byMzI9vVzceE5gKAB8IbAZWf4WufyOkUgpPhodWe3lkyVToesi7mfNcyVCzpr+5GSszk7t+mSR3yMjZoQhxxhtP47j6Puh0oY2lWlsMQcMTeytd7/FfuvPu/nRJFxFYY1W3CCacut6633f9+dz34956PTWSKrYt2/ftG/w2OeIMT3k3lsTtroHpWMyrUkIqtraVlmaRxSX43iuGQYrQAMkHWksjQ9mBr2cKhwAJQqtFIaJ1sBmEbZSk8HcPc7oeyXQxSpTVMdQW9PemyljMjsxveCoQM6AIodEAlYJFke5HyXESnWUa+J9cbuKi6Miok3SU1RsaaOcs5rLEWdtlglg1H5RubxYL5Zh5TuVvpvqoiGftZHZGnIttlDGCCOiHGJkIaaWgDW1vvXet61vW7s12Tp6k6bZVEzRGKogZkYKnDiq3wSPhCtlaSYgVeFCymdEFpVDyjyDlDIIL/biclErwPuabiEigmCZ3tdY9HJKIsiM9EVmX5T2kuHlmtK4cOwaDlnZyOpNf+6F13qERLLAQS7nbarCKcKIZMBr5p0s2/x6gSXRvQqqpRQRBQKp62Aop4byXjZaU1FCrDjXn5tRRcVU27Yheods1E6VZW1ePI+ICpzOvDVjpZbUJIISyaSatOTyoyuuWp1yMT1PqzkzgwqAgGvKnFKNvLOeriC9RCCquszGyhPL/ezX1ShSOf1mP8cjXsDYZ32Vn1bJS8OUWWosVWVkOchnZgEYl7hqQQVr/tOZf4x50V8++fzVec8sbmecsx9Ol5/PA1mlmRlgQo8IVa+2e1nATGYIyuoMIjpHyE+MAT/JtbH473jBOAsTosoxJ3ONFQG55nqGY6z+YwiNl2UcBR7lmT89fJTPDTI1P2lkfraF4hxPdCKfHhEprWbxrikLKPNSKpQMUZHyw15aKwmLSEM2IMKjEGNJnxkCCg2iSMkUpDLL115UueCuE+85QS8lKctifrXRyYycJ+uyLHzmop2Fp0JdgmAKJCUjGciy4wAJNYmEKCRCBMws13ImubTGAFOFIDTYtAKoCs0okTIHiaZyCI8MjbB9cI73iLeMjBjunN5tbhktHasSy46kinYB9Aa5qdwy7XAiMtwFIm0VAHPOuhG1zESZmVOmux/7OPb98bFfcFclXs/n8+fPn9+/f//x/U+Pw856u5ZuiUXOO7v4wU1tiLpob03OeQ/Nc1edGgDmOgCltVYiy23blg7gtMS7Oh4kLT+N+BKSdcVJzjGuD7rv+ziO8SzV5Ugf9CmLwQfTZTI9mYlUodS4rJKuCt39+Xx+//7973/++OPLu5GqqPM1VZF6vilOSCpL1aXSxZqwo1RjKV5Nas9lq0kxbTiJmWcUJHIZzy93woox5SDAsmYqm/lfyv3aVcWdFJEqUa9ekogsb33yNyuhM+iuyFFY0ZlCE5A858qRJ0SG6m6uor2CyTmdnpnY9yFytLartgzNpIQyNUMVSvFAboJ7ly+37uMw4ukO7dy2m6M13Zrebv3tdn88Hj9+fHx8fIxjxpIlb3/9yz9BuD+ePz5+jszMrRUGnQkFUqpcvt1ut9vNzO79Vium+Bwf+3P/2B+Pn8/2nMeYMzwDwSSUIqYwekaYt7kseRbrsIn2VlrC4rkXw73O7tPgez0ionSKSutmvbcaQqxKpEsGY5m/uvs+xwi/415ozYg8TLtHeHrBFOu+Q8SsPkXrKq3KEC7K4DKsUbHMrCEzq0+BXI7tCkJoutBPByIKpy6WqqnVeNOVkqm+9hlfEq9gQhS62mepRN++tLbyXWvaG+9Nby2bsTduTZQhOTOOHHPATVzXVJMREQKmKmm5oCtZlhAgxSidS/mzKpjXxY/Tkj49Yw54CqmmJQhkhPtxOrLNGjuFKA0mT0vFkMu7YW1GnDBMsYxOX5WCjOGyfGJP7aKuxgmvKl4BSHWTqm9/Mu9W9haJqD+X3jZ4jrc5taKnFmm1Lq3GMZoSpzm7QCyFSFFT61vbbrdsyM3RExoES4kb7ukJqKm1ZmZNRczEOsRQryZGEWoXEYEuK7uLBaHn8BBNMdOmIpLpcwrKMedUARdab/L54JUjZiJjZTGmAlGT10r9zIRWvBVFuT2e8FX1EyMCB456XgUw9xqscTYl49OWYslHzjhHMoMBgQhVTW50h8yi28w5gzIzLpuJ4zj89jkWLIUpPGekSkQNPkKK9KUpZA2QTopu/fF4OJIskSljTCCphH8qemTlUcVdkvMsro4+A+kRmXMyAzXPE+6psXCz9HD3mDM94MtyEC8+Ml5JbXWbVpGO0+q47jVQA0vAIMooLRhklIhBKm9mZKamWraIiQxjFMXTq0FYXSkoUWNNBGlKO9MspDDJQBEE1hyKM94IIxexsG4olgVTOdWkBxiS5XlJMlUURYbLpXCsmic9az7I8lJJTBUTRnKNfgSCWRufkszqUJeSqzE3k4bcmgb5TDK95+zp7zHuMT3G0+nON5c7ctOQiCmZkluDhEY0ILvoBrTpiqD7jAh6du08uYZ5CkYdIdPoUev5OI7x3J/7cRQva85jPJ/7x8fjx4+ff/788eePH9/BWdCsqmbpHPe9OPKq2mwzs6ZE09xaJbtLYJE5Z/QxjrkSr4hIqpm1VpnXMpepEHeW30uIeuLnr/ZFWdeS1wY+NVy1dCPDBZEIFQog52QMWe0eKSkSKeecHbj7x8fH3//+97+/30xx27RkaaqK1IxUOBfVcsW40uaqNlQFn1LD+hyU03RbqiBPXiR6IBeBZGVxgrPNkaftXtVAXhBAYNkSpl7Tf19KZ/lF51ghpBIvuabIfaZfZ8apS0uCl0li1S05Ey8Rixhg1QuFRdf05zWz4Mp65z537IAYb2au9TaZCjTivZm/30y5tcdjuKuGdfPPOQRd7aepgkbsPQD09rZt29dv3yIiPfTxGICJtjfVZtJElaXCFZG3t7e3tzczu/d72XiOMY7n/ng8vtuPptLUdtsfj51zxlnHV08kT9n5GKMSLzVaV9vsfr+XJqXm0PXeK+WqM3rG5yCj8gNT2matssBKvErhqrk22D7G89j3MbM6Bp7qU1Vtzsg1bdDdKzYJtAgoqk2pIlpVcpxzIfMcLXyd6Z5R86xUNQEViZIyuk93fZ0IUQPTWKhMEEqV1lpT61Y2t0aVxRhIUFLBzKht03u7bW273VprKjTN3qQb3rr2jtZUMPyYniPmzNiFKVJTqKe7Q5VRZK0WRFJBJBtFKMZPp+TqNBZcHFW9xjnvobqH5cplpkhnZHphlyMimF7DFRLOk9JZOEQGLiN7yRoAHGsol6ScLvgr/Ypc4+SFqMFqplRlJV6fRk0gBFmcqmCW4rWywayPhuXLXYTXyuMqluRC+6UQN4OwYC1RqjZtXfumzardHHVdqnUHgvSFb6x0QaSRWXhka82QpqrS1pQhUW2NULUubCLG8g8oW9SEKDJLITWlKgATz0yhHsXEKuX5ml5K5ro50HLil8LR6kPKbIVhExO4iFyftfSZVY/T5HSMUS5fl1XKvu+AjDGW0tCjfIYjLorMWRFlug+esxpMmpiamWeUwlGHiqko9kX24r7vqvz42LZtuxWO23oVWq9Va50bmTkyjPAMS2/ht/BAWm8zw479GEOKGPCrfc9n8XDyaRi5aOTVsCbcY9REQdakJlah4hUwnKuBOuaVdUlK9iVj9FLkZs0dA5WLLsKyexCmqJLnvqLn6Yv0KdZeImUyMi1amkeYh0fOpDFCwJWUw4iG1DTJkAyp7o3IxW0qX9iywdArtGVOLvYwr/CUp+1wZo1WdRAll4ND4KzCmCEos4l56s1z6aEFCWmUTIkUh5cFfjXxq8CpsGdJpIoYgJydcFWPOFSD0hVvGbeY7RjH0JwYo/pz1jOAVE0obiY9DWjVY+oe1cbNTOR0l5ApxQwZVcFKaTZRPqBXKDmOYxyfDnOPx6MmHf/48ePj4+P5fFK8tTXzLf3zse+7mWWvxWlF2Ce5WtNgZs4Rux3di1kppRNX1TVMs78I50UXNUq1fm9Qq/Xr7p6IcPjqefn8fIw5D5/DZ/rI9EwX1HTJU06YlUVA6wBC5XRu9KYQcM758+fPP//8835rKrduQlZdq4FZ5rXLoiCRkVy9ofLRThErItWFNhFabDDgbE8uoK2ETacJwtk/uQZnxdnTJ5YPHCVt2Vf62SmvtngsHvbCtOJz+Wala7LUieAnyHfFlgToPOv8as8giVRICCRgYAKSIYE1aKyen54yYww/9lmAc7O9tQ2SSNEGJC15s5Zv0U1M2Pf5BF2bzExqxa2m1sxUW+99HEHS+lvvvW9vZWTSWqtDsLW2vW3tzVpTYE3Ufn9/f7+/tdbu/b61LiJjjOfH4+Pj4+12//799tyPnz9//vjx8Xw+M1NVe7+11s6lvEreOOeGvr/ft1t7f3+/3W5927ZtqyRMTCNi3/fH43Ecx0WB/NgfAhitnnm7b713ETQ1EyCy6L3PY38c++MYnmUIHvvwMXy6R1ZBanPGHOHuJWHtrTXrZibWzEzN5jkS7mStVQsjkkEv+3dXXRNYi+vx2mrBS6eHZ5t7EWxVm4oJm7KZQQq5zyodSGaGUUxpxtZv23ZvTYXo6ptx67xt1i1VEB41rB5zKOaMnaYAYs7F7GVGxClGkCQg5YMqULuqhStRPIuNRckuXxZmCqWV7XVRlIob5J4xMysRXWx6chng4tycrBCIzEhWPx/UKN74mjt/zrzLBU8Ii+VLlbWfRCB1SnC5zcMFnmsUUGXnCC/OFTME7tUFrV0qAFnN1CvZK0TEolqObaGo2jeqRWIffkw/ZuzTj6BzlnNNnS3FQRVFGQipmQmV57iVRbk2lUbtIluTyr0ko2TSIQoqgZh+ZDqN4PLUBfViFkmValKzy2b5GhRfCZBlwr3smExVSxATOQrgLJS9CudLOX8O54k5fU4nwz2stRl+jGi22JM8O3ef6kX/9K2A6BqhbGrWaGqUIMZzP3yGTc2I0dn2MQZ8hh8+j7E/98fH3vvR2zBVZlO60kVFJNyRQVSMFy7yTEEEWmPsl3fAGADMLKdndWhyEVUAiBQ6e0WSWtFSdg8z3T3nHLXAJGrIoVcGQV+IV05Px8q6uPhwdR1mpGfBXYCwOo8SomW0bjCTMBEpjpQsU6nFbC9b+dLiKnOWmLOZMTyzo9TeCk2JjFpohHrWDEpd4ipVlApY1mi1AMiYMfjLSlzMok83mLOsWqEpZ2ZETgEjIQIBrBo3p+CXAbi//pSIGNSjaI7FeOLL2LDF+0osFzGompag91CiWRO9MdsYcTzHITE4ZXmMNw91h7sto2uUHVm6Mx3hnl48eiRyPPcZs/ZcmQ1V4o5zMMPKusao3t3z8THGqKzr+/c/f/788Xw+xtzFKLnUcFBCaaYkYpYdaaqgTLytgLFxTsQSzunb6BFIKqQm0JRkR+Uc/1puMwp6+WUBkhmRdvV0zm024IH0MUaMsT8fx/44ns/9+Xg+n/P55Em5LRB7JUpIiCgFqtJVVUWbgIrJSFVS6Yl9Hx/7sY9xj82KD0uFlNtp4nTvqSS+uuzrvA+YdWYGRSG5RmqUAXQya3KZXOxuoaGMQ0/Q/hMuPtWLceJQ5Vag+ovffaw5MgIx4VWcaZ4OYf/tB19hMAgjyuB10TdZQEgKqaQTCmrSsYyBK73T6QcgTz2Eu3t0R5e9yY7GtcqlDPGw1RSa9zt1t+AUNYNZdu037Q971Jn1drvPGZFobdO2idj05Trdexfl1m+399vb11vbrBJlVf3y5dvXt/fW2tb7tm1KOfb5eDx+/vz5drvd79sx/cf3n9v2t8fjkZmq7Xa7lclK5Rb1FlVbN9V//ue/vt1v7+/v97e3bdtut9vb21u7bTWprbrvZcZYLMgfHz9Jmuh92+73+/1+b62JwETVmNOfz8fj8Xgc+3M/HnNOzxmYc+5j7MOnF6lcWtvG8OM4xrFwL1Nt1ovd0nsT04Z8rlkSOBOpYgZmrNYxrTJxlGPBItDUKl219cl3EaGJyhpzpZ+e0iufWAXlmqXGMEpT6Sbb1u73rTcjomm8dd4bN4OKEzWp9Yg5MwYx4Z6SJCNnlF1DVsONwhUhcLq0Vfpf2jesUaIARBIpEst7+HJCpapK2WEUn9ij5BRgliN8ueDXr4uqX/rHUxvrSK/hnCFCYZ6elXlOpl9MMC1MjIHFkFnEX7X41A+Xrqb6P4glQ+LVXWMUwBA8h/meuzWWrnFpbMs+o/oAW7PNtBEayTF8TIwZY8aREXQx0XNs+SonJVV1wWpSEh+WEaEmcnkedZEixRuyhB6sJL6IukG4D8AzUZyaFeBj1j0BkiqegfAJMCOINgnrSMyawkqc5IxfpItXB+PirJwdw8+GPtbQlBjhjFSTrXWzNVfxs93hC7MnhYQtGVkxYNgKxK37McVVLdObQ4Ui4TKf8yKlXSBE4VsiotJEJMsq4mUi6jVU8Yr3t9Y/WmvVqotIc8Czpu06ajzX55SnlTWs5kbpzJFSjW8ghafgPTM90qMSr5zu7mthYeEFEdM9j2LGVUQSkJy5Lo7R3DIcNjW7iGSkZDYFXU/NzQL2yvIwE1SkEiFilHRJrZojwkOVSl1eXVkUlGQ1kRRYkl+hxDJGBiKWcyFSUK1GOnB2gdbvctHjGOEOzkxnIIha3VjYcqAs9bIGlc66TKzEBEJCQtaowjPxikDUND8BEjNDRY2m1lpTeFdhv21CQajPYyjnyGk0zzED4jElJuZID3oyXSJqCjvm9OkMlPw2M/M5ppxqXMsQQcRUtKUOm76yrjkr8aoe4vP5/Pj4+Xg89n0/hwJ9rjEkzEwSqspkSRpvt1tr22IrRmzDk2vSyYwYY5RLXDiGn3NkT8GjmVkuAhndg4Wcp4DWhJk5oqhoxxo6ESPGmGP3ecQ4jrH//Pl9fzyY4fszY4oiI7McGFUANGnP6XHsW7Pe7xRJB1Jtu21dlUD4PubPj+fPx/7t21exFh4CIxuIGJnhNRCwRu3NOef4EIvebq3dlAJl0kCN1dOrY1vOLB+i8pmQTY8aURFLs2Bi3XDEiDK1nEg/g4Xw8CnVDKvII6xhD5IpanJ5+kc1tKHUPCmOa87kEgCzCv9VimVhYeaYpJRujKkiSE9Spw+hqBgzIzUE8BjDVazsSZ7PYx4+jszgnPGXb3/1SI1Momi6pmK22fTMlJmp7U3aY8RT4mj9y+1tH/Px/vh47GN44GTOiXw8DyKFeDweZL6/f33/+vbtj7dt6yTnnL33P/74y5cvX0Tk1rfCseaMj4+PP//88+399sdf//r954/HH/tf/+kv+75HhIrdtq0yqgIRxxgfHx/HcZjZ/bb99dvX+9v27du3r1+/3u/37X7fbq31vvCtj48fP348Pj4umfrPj48ImOj7+/tfvn273W4BpA9TKb7CGO/7vv/cHx/PY49JaR/HeD6OfYxjTk+o1OxhG4c/Hvvj8Rj7jIgaIufuFQMcOWaEacyxH8dihqi40h0+PGJG+M0amUpdQjphqJbM/lxLWhOWVHUJjrSE8hXnN5XmyN7b8EMFt9ttM0t4TAeiNW3dWrett9um986bpmFsxvD9OEr/PMtHc/n0eDkl6Ix5HEen3rZbVuMJCTByUjYxramn7stCd/X7zq58HQ5zThYcBPFjzJjLwzyjvDaS6R5zHAUdrQIMsRa6amJBizE9fZqgGHVKKdZWLKYYImYJq1SJUsxDsgT6SWcgyukRvgLnyhyrnJ9zDcfJmGUHI6fNai5iRAbhERlepJ8IT09Kqt3gIaBZN9t6v2nrzyOnx/efHz8+Pj72eLqmtO0uorrdtohZs2o8c46h6a6677ltm6qZdtvuYJsRXXsg9YQT9YTMR2TrHQw/2QvTZ9G7q8MOSVDi087HCbGEKjJT48W5cQ5kouhJHpk+jz3m8HHMY1+/ZozjeD72fd8/Hg9gMb1OZALlZz99+jjiET9RDd4C6JbIy0FWimqbGulQo0gzwb23besp6u7ViJFzoG3v/XbrETEeTRABDo8Z6TU0aR9iM3BUEGPkrHFSUlPMgHWnHFFTA6PeonpA9ECLBCHpM4JlZLaczCDwDBoJiJJNYC1rxHIAQneHBISey+cDETmP9Ig5C5vU02WpCsJ9zDHG9MXrCiElR6yJ4I0tpk+bJpJorVIokSMDQLemXbDswzxjDZZ2SXEnZvlIMR0ey276mk7HNNFyv8vAcjPONTockRTkjNTqBSFzIKlQEROCKWPOM8Sd7dnISBfQPYoKQGR6mlkItWuufCtGjTz36aBqQ4plEWtPCHBOT6BooISZCdvwOI4RDt3Y7u+3262pqdEoKhDmCKcjnPuRT01VpQtdZ8Cn7IPP4YfvmBJojxFjypgZsKBCMjIig4KIuY+cdPOTLkyMGSkr8apvMec4juPj8fPHjx/f//5nyRszXY2bbNqEuoCnpmZbQ4vMPNphZhX1VNuCb8ooVaUMOpZiA5LCDHrG4VEO91croX+WeYs8ULfDyhM1fPg8xvGcc/pxzDkz5hx7jMPnGPvTxz6PHek+d4QzHBlatQMMgAOqRZ0gEEJNTUlVExQcqkzYc8bPff58ujZvomWDEulR9Tk1YiKiFqGQ4IRG+GBrhJXrSEIL3EtwWbnkancUk1aKNQIts5YKCUnmcnBPkn7q/YFI/3S85TluKJbekLGs76tsWOM5S3vCiDJs0nOgx+l9mTXBPq+KNBPlOV3laMn7y9cAlIwEM8lgRFUwCIdPOgOFfR4+mn98fPQtLENsIc/V+HfHppqEtEa93ToPcw8MxzHncb8fw8dwTyYFyQDv7dmFN9N9v6nq169fv3x9+8tf/ujdRGz4bK19+/bt/f1dRNp2qwSlVCHvX9/++OOPj+ejqofl5eMoh9LW2pe3tzqFx35U4qWq963901+/3e/bly9f3t5ut9tbv7Xeu/Y254xxPJ/vP35sz48v+/F4Pp9jjMfHl0ya6O12+/r+vm1VfEykM65hVv1j9OdxHB4j5fA49rGPOeZMUdOurWXwOObjsT8f93EcRW7laUIyM44xxnA7/LLDXUhJibyZKilka4saTzKTI5zTf7FLZk0/iVSp1vtiSaiydW1NW5eytxghYBPZup2D3WYzfbu1t81ud3vr7WbonAqRGIipPiVc06sKrgZfZOAc4pSQAGdAtJhOlagQLGZWIiG18FgZU5ZmpeZTvDKETgrLpUGp/lc1K9VdTUVFVeRzAmMi54w50j19ot4zRCRYYFAsqd/Z5tTLx+YEnIu2IjMnUlEz8yAr1KQLEvCEB7wIzsEAEXAuOvTSyrvAyzRsFf2BzLKn0NOdvxTTKk3YCYvMY+KYvj/HPnJkSi9jQl/zLT08wz1mhEyqqrClhma2dIg3KIRd1gCTPOWSVQwKY55j1N19+IycZUnpGQ6fGZ4zy4rCp88oCvWy7pzByBiTZNFtfUwvhAwx9+PY9+Ns7o8xjmM+n8/nc9mSXoOoedJpo6RCNZT62CNi8fliXpMeRKRc5RRUqjRVqok2td5a713EilKj4OR0pIJDxGpTbC0zaxKDWktweoAxpicPjxQlVttZKBinjvIi+FcDoqmFRbblpZReaqsEJqNKWV6SYc+JGUtP2zSVHuACvGJGIGPGEkRnADHmHIw1rl6rc54BcO7HNSx7KTqJctS5Ei/n8DYsugqIPk08embCVEXmnDkdKsxgzvq2YIIHOCJG5EwMICkppy5L1mAx4uUXESos3tOySS1Ws6dJu9CbgjKrEQrO+jKr/Y/yrZghjpjhDmQgpKAKE7qeg725bOXWT3gAnuEQL0/IYCbDlwN5AkwPYXgiomZWV6ZFSVnm+CizFfcc3oZvx1Q9dKCpi0+ZB8bAPjFnob9+TM4QDyaFdGd6+FHqTGQ6xUdT02a3mAE36wy9mCruPvY1/usynAOiPJQDTlKUn8onEQEysyRl3ZrZGl2/8FGpaeRtdUNyudUcMzyjzzhqAS+wffkbSUUKcmZUW88wD0TEsfv+8P05jpV+wafPMecR85jPx3g+xvHMOcNHYmiGSmLJgpZNO4WLV73OmuU7UhC7aoboY8SfP/b725PW3m7ybh3C8GPmCRpFZszp8LCUyZzuwxO9l3n1UirlGk8gx5wnC7Y8e08HuJr6t0xQo1hd5eNU/BOWDVgE4LFqtSJgXQteQfqa0VgyMCHpZ18gchHmAAYI1txBJmvSSWlfI6PsoVfwQh0w5a4TLlDJRDCnYC6fU0AoZcWVwWTmzDG1DzseIhO5SQqsfLQbVACVaAZN1a2r3TzEW0ZyRgEMmAH3GDOmZya/fzwO05vwa5OZ7621b9++fP369Y8//mhdhTbDVfX965f7/Y4z8UrhnPO572/f3vfHfhx7Zs5zalt4MtYg3tu27CdizOfzUdTdrdv9TW+b3W637d5b27SJmYmqT6bzOPT9PY/nbczbvu9+eOwDwcrnbr2fI3RaTMeir8g+5Zg6fJvIw5m0Y47nPiJCWlfrgBSe+3wexz7zEpFkJjHCn/t4HvtxHI9D7ps8HjLnjMBwnzMlU5ihjBSzqqO5pnFOeKYjYIJTvi7VPlejWZRaWERak3u3t7dbu5Fc6qGIZnbv29bNlCZp6vfNbrd+2/Stty7OGfAxxyPHI/enjKNltuorJODMSF+t/zWBvrwGVp2bLA8rOXW78f+n61+XJElyJU2QcRE188isQ93z/m83S7Q0M919TlWGu5mqAOD9ARF1z+pZr6CgrLi5mZqqCARg/lgb/KiN86mqIuaMzhAUalulFkf+b/7dVvU6SoSwNkhj1X6JqKxuQaFqad1+Imc7vOUWkfSZvgPPYVDreUypsDlJKwqsY6I6t77fZvZ2UMiQrB7GAMvgJYugmK0IC5YUULb+KbSczNWOhqU9nuPxtHFQBoRRX+fM97zmREpH7GZGxbRo1Wt2DE2pqpgfT+ekZoaQsKJCbHpGhEIUBAxmPYAprg5LNxm6Dkgmqt7zfcV5xTUrFEiyGw6qhwWteXJE+Onu7fjMnHFekVfra5eRJZBRFZFzzvd1vd7nNeeVlbztUyWJ74CsinnGdc7rnfOsiB5YHt6UlUPHGMM/DjsedhzH4dYjmI/n4+MYz2OoerB6i110fsAoMpyAuJFUQlVljBSdAIH3NWVeIpd2IJtC1RtQQi4cZMdLsFUgZpnm7kcmLNNClKyk9R6q7uru5u3m9dRrLf7DCtoXWVjdQ4uazMXo6oYoZElTWkBTRURk4HxNLr98G96ZVYmcOSfnzEmmiY5sDbUyj+Ga+SBTjoeb1YwcswzlqMyOtxFQcAEX+KYUkKKtcMedCNJtpA296+9PYyy7dFGFyGoPPf1+UPv5qshW71QPUHtfaTsmWTWr8jvOXAgzq5CUS0TMRnePq4TUqpqRBQ1ph4EWlTRdx78lQZQUsVCqiQy3w9QFBiqrt+gmSRckitc8Tvk1rCAuacQ4p+QVGRLUSM45zzlTlXDQOmO8SqLybOVh+5pNhw4/jszjyXo+obCIiHle5znnPL9e7/f78/Ov97vTgWbvUCo7glI693O02Nd1iUnuUgxLiwUl1Q8zU996/G1bsGL33yUkQnLTxjuQrfUaVX2OZ5HO+WYV55nxrutV15XXlTlzRs4z4sq4rvMdMWvOrIlKohQsChf/ppN3xVXN3VpW3JmktvODpVxHqZ7X/Ot1PX6/bLjYx/Nom6pHUWnJOXYwFiooo8lWCp3zbByZjEO0T8CDLDPjopfKIqj0ublPLYKfadkEtVUmPexXTbIv6F7WSXaKl2qbXzoNbiXGAFLN9WWJQKvRFegsncX3UjExYf+9NZ5A9QC8BQjLfN+kUsXSBYOJjGVTHmpbIUtkiXhmRaRFqHtmYmEBJDBV1WTFoh6q5lKUFG2kWhPyKFqpM2tmzUwXvIc+Xa6Pg+R4Pv7bf/z58ecff/755xgDzRMyfTyfj48nTM0PMytpRBv8sI+Pj4hruOdcKK9GNqxTck8oGo5yzaows3EYePnAGMPdpOe0DSasCSm3+niO59BMj+vIa3otFQ9wh6nvoOdECEL5MOThKVbQq8T8iKr3+x2FcTzFR1V9/n7PqfPDKuGyAs6DlcVzxu+vr6+3nuHXfLxer9d5vN/vmHld8Z4SIVmVLWns8Gix7rfngjl3U4Ymy45HVbUhbnm1ZY0DUBt+jON5HO4Vaayc18P04fbHw48xDudj1GPocYxjyMOoFZXnfP+lOeV6Y74lcwjFDMVSXuvo3oZchxioWew80c4ZXfptKYol6TTsbNNkBRFZM2uh97SZj+0k7m1MWGpoL5f2sWfYIe1xzrXk5AxmMKPhs4IyBQhXmChWuPDudS3Mn5grFNqBR9p+U3Y3eoHfelvqWm1rMgoVki0F7eKyqfZrtk/5pllJylLq9wZaZmKmPvQ4jufz18fHH4/jD7WD4sEZySWwJmmEVNasyU/OVXR15wM6zPWQDFIS5BQpaFTnlakCMa7Dx3CtLlAbqA1vk2Myi1GVWTMYr/PrjGvOGXlVIiojsoKm6cukARNOk2E6TEVYOeN6R0wAS6JayKjMpg8uvoayZVTkN4Dj5k1UxJWZlRMVQlqbKFlNVX0MfT7Hx8fj49evX79+9TzR/XiMYzyOxzgOHyJiMCmKU4nYcu7GOuQawasKRbU5Z0V5zegh8g+738RKa2Yvyav+aAVhK6W2T9GgPc8xE8BaJGImYus+ERcDxLS0Z2sLWX7LwpHZ+bXGqop2gAEQKpMZlTPirBnUXQYBAKNr5YgIzsirKlK1ZBaPUEVlRMcfyxAtHxVZkWnEhNgmohDgJXyLhiJ7WK9YwAdAxF25HPes5hl29ZXbwrJoW1qksXICKxPl279f6cZ+M5nZSrg+vHQ3qMU23dEZanS/GLIYpYeqSrEoRctojTsbDVrSqgBXXXHDWDR8qMIErmLKxo7KcuB1b6wn7Ligpw6/KuEQzbJzVl5SWSk5k3Gd73klSBmiAxpQK8qVEVlnTJJtMw+rwRBNoEzQkbjX9b6uGeeSdnUP+O6kdm1LQRZUbS1HuKPHrZVei629J2H14xQqN755q8RMtbRcGlkZ3THdcbhAoUVx/Rp8dgzWvHK2bXFWRs7rer8jrrhmxjXnRAei3CamPX5ISLVMHQoxW4flXEWZSPdaALUSKamEvK7H76/j8OMY//igiVDMbAgCdT+KguY8MokkZ6SaULPDmkEZkEoR86N29sMunUrvnFws/hIIIHr23tNZM+uZOtczvOSoC51NiYKq5r2mYwXTKYVSGU3CgQg7n7MEqv2qZdVpImVtsewWnaFbvlwGRtY3Lp5UlkmtLmUoRJBZ0YaTKtsmI43wTKRSIKxZqWA7wduRqQpl59PbGAfXDFRJyUKboh/D3vM6ryszIfRj/OOPP5+/Ph4fv2y4wKqKKn4MHwOmMO87VApicDopqIcJMo/MbLBgVTWhtO8Q7XX+Y/SFdVfwUCvZ6vJ2xG79qarSRKBGZ6mX2WCgdmDH1uQZtDRpDGWEpBlUygTqkbQxknI+NAt2PCAWlR+KCO/BtOuC4GVxpnxd89fDvt7+jjmz3u/j/Trf7+d7Xud7vq8zogqMIqEBgRqAqLoi/NRLV0+7txwxwBVKMVXXJpsWkcjMmTlFn4/hOsbFpONj+HPIw+Xh+nT8+WFuHEPc4EipGfOV89KalbNtPy275Wryr2w4ERV1mMJsB/b8bZlYLCgKYR1tukyKyT1D4coXFG3hfRWFq1ssjdVqVptApV9R5DVZySxmMqtZJ9JNtdpEUusirfOq2pOwvMNauiJOKFS9HcfY4PAWx/e4UARLn9Znly4N15BKhW3BbCHWkh+0NlNW5hQBNP1/mPWkzO2g6EyZWe8zvt7n6/2ec0K9Rf+ZJ1HnezKzEgmwDCrwhwHkl+ejVVMmNGGqzGlKVBmYRStzgyhRhThPLixOJiNiXvGaNd/X55XXdV3nvGJWFGNmJhWnUIbqMH8Mo6kO0zLhzJpxXTNOoMpaPCeZYGnPoL3zqSim/s5r1tzk+tkGRxGZ8+zr24JhE1+92KxGEX08jl/Px/Pj8fE8FkvZH48xbIzOKRaRLAq9t9ta+DaoKs2vEvRn1Clt0KSwcjshardR29lRzTVYOt22AyQzGlzLWsGnreX1QuieN6yjRTE7LEQg2iBuMKoYaH2CcNvPWWhTCCkIsEklCnYcxszMKsjAhtlWAVhe2myLbyZZRDJXpYisUBPA1aYeMSIj8po2Hs3Jtt6RkCJTZJpmoWNPK3fN2tfElsVQVDtyBLKOeXV7UoBqbhaX5CawUf5VRaQSlbPL633mAYDoKiR2V4YyOwBHYM7jsGLYokBLrWOnJrVUSxq9bwrJnD2zbf93aPiC5ljHIbSyVBUdTV5kVSRLKt5MLZ6RUAlwXpUzkiQqKud8X3OeWdQLMgRK0ShE5cyGZonrEBFIMBDndRImak1Cuc68ImNmXJWTFQuGxZtC0+TCPoJ26JCwep2z5svY5hWLSVV5X/Qd0NQ09WW9YzbVoVxIGZQkAizmnW78bROu8vP1WVXv63q/XndhOOc8X5/drsu4GD97lb2bYn3AWCVOTwAzSC5aJlOz4zCgZF5K0orF9/XPv36762PYr4fjw4eajWfJWyJIqKofVinJzhKpRvoWIxFaLihqZ6HamkRssyHZEvMVWcO9ChQoRAK+b2vVpoDp+kP7pk/WIveZFMvhy6NPiq32b1H6Cewgtk2pWKNVeKIaG0RKm6EoULDxzX0AkNv13SAnFadWirdNJCIbnSYicKDEMyPCpnFkVek+Ea62pwhU1EWHW9OFhkDd3CGGbi6JOPQBTXL8ev7KOLuLCbj7Y4HSP8QMWOL/5lguKdqeuVofAWFsz+cikexCV2SocTN1lOhetxCdWwYUtrd0bZHkege92SuEKJMsQVCa8UTp/hgIILUz3gWi0hYz8SGmYp27h/nxiIKolyCJX8+PGynZfOeqymCWzIzPP8br/fGe1zXzfZ3XFed7vud8v9/XzIiKHl2xzrn85BF1XteX+9ve1yURkVEJiilNspNtRB+PkUkGBYx5zmswnvbx8R+/PqaR04fj1+GPoc+hj0OeDwynuxpLMooTDOFETWEt7Q9bQRhEiqiYGjtbq7HWjrHwB9U0PhG7+wplayXNyqyY2eg/UV+QoB5gL1EJkSSs6RcgwKbdS2anWlyVs/f9Lp/uEF5ZQLq1eyxDWHXv/Y4PEtK6+Yuy6lhhorqlh+LKKv72wjdqteED0JK0TrmwTW3dGi+HdkOj1rvSbvNTrW5XjEATck3ydb3z+ufv97/+9fv31+f7/U4bnROjJszIefZG3GyXgoanzzAPf8yGsB/u3IFumdMUEZMsZlkthG9cbaSrYGXGVdec58nzPD/POF/n+32d88pzMrNYlleCdLU/fz3/4+MDz4disEQryahsodJy3TbcuaqKK2zu8AcYKQSu+qahzuu6qsV3VYt2IqqAK9zEBEaOsch5z49fHx8fz2bL2RhjHMfT3W08miJG8myLSY8ysZGQ5k4NgLEAkCTnnIvzzdxY48bwKqQOH3fyIPObaDQbDDBXS7LDGVX1dtP2hL2EN+5h3YJbE4airsD7QunSZPYxwhDXlZs7fJO3YB3UYxuAV6vFmzmvKzmL2UlCwgwJgabWUJOi63jazPmoWemheChh7JN4EakIchYvQZsHWMXiTmzYjl8017StBDue5UezRVaixj3c2uVFX1VJqTxv2Vx3DbEiBatmVCGzAdEG6zCnKirhA2K6mjnGHme6iHcGkfa5KIrSucN7bFQiLu46xji65fudRFJE9B16Zbyuq5xiVpai1cT2qgo0Q+6KiNcMQqEXS3LlYrANHypO6RkTmRXXBEurVLWiNj9lk+g2VyUze1bbFaeYr4bFcsCYit9DxmaGdxBkn/d+ck83kmelrazmAo3OztHzxDuy2c637GwVXp+fnw29+Pr6+nq/bxPmPM+I63qfkRdW+sOKtQGq5fKACpOlXdaQZKYJMaykq66AHRSgcuYsMyICZF2KHFoPh/LjH097uBMegapyUxUtUa5SmipCJqlVyZy9uKsIRSOCah3v1CDxvUavg6/gm1B/qxx+gK2lvsnWYFtF+hcpuuXGXc8Jd8MZZTb679TKA2OBtKSQKVCaLBz38oKxdV1gZUfJrNBudm4gxIkl7sysmhGmAEJD1wLDDjJSVx82Dj/cj3Ec7r5o5KNE3R6HuIMOiKiX6WJiiMPWjEnBh7pmWPvLBSL0MWwMqMIVTWHujrj070cH8G2OgIpICWGuKuI7BjOLnbgsgujmNLR8i7RzPXu1WuF3+dV3FJHE/oAkpcGBxVaDr2/RyzutbtCyQNzgA+o+hnR6luhRElyDyXo0YGGl4q5RS1YvR3/+8euc1zljRp0x58zziuuK831dMVvsNbMy+Hq92kE9Z77O9+fn63Mc+6mpmZGCUklWyAqiSqI6uSiDc7rIx8P/489nDEgew3AYDsVzHI+nPn9xOFSVsxeO1znfM07OmTkjK3e3QGQJVhf3UrUTIcRMfJPG9vEDYqruNmCewcoZmXPGWo1LfBx3V8zUAIiS6bma0LYaTxUsVCRqxciwqskQZC79bmsF9nkmsfxx/bFuUQTWWk9jieiiRELBaqeyrRvvDmFfrvjKTourEirERIFKgaBS7tPhymfsckJVKbaiHBe55m6rVF0x5/v6mvz9eX69X6/X++vrK9TrOtXMDUQL34slUGMp6GUVEeNIUaqXGIUpa0wVAgaJYmrk6v03GD1bVn9FZOY73tf1ftf7/f595vvr9fp6v853XFmVUpT315mZTx///b/9R/y3/1b5Z87hJlq5eWXVNrY++lbSkkkYhO6LIFspYlXIYN4fHEsG1YeZ9P44BIdLg5c+xrgLr8fH8/l8Po6nu5doYyHNzHSYGdSqSqxTL77faZvulD4j5z4BV1XMMzMb05qZM845J1mtCf54PFW1yUwVGed1vedsPPIuvCoyIqR5k0jR7OZoLcASYIuWW2RRImrhiimKPgpSem+0pesys57nLVCuNlmAqa0uDGYtGPq8ombMaqRyO2/RUquKkiodVvoY6xqDqpScVSMrGn8dtJzzFfNdnBM1k5FVENBVpSNEEqv91gABVKGkn6/ck/SqJXVauQKsO8AAgLICkhmZWdy/Xr1RZ4MyVre7IzmsDkGKdlHjYuYrV7eGBTR4BCwAAyu8ll4nq+6DNN19PNyPMR7H4+M4jsNEeVNOMrJDIOacmTFnt8WK16zsEKrZpVnOAq+ZbRjqwguAmDagWLoHVFkhiYKLZL6u6CS0OxL7mnFd5/t9nud5Xu+VX7crQTMI1Bo4P8ZxjGMs8ukNvN1NXAHQBzh2LtY+NqC78fdEtQpVFZElEbkCvCNzRs7IiMz09/vdhVcr/1e2wzwzM655nmfGJYKeehbLuD7/tTmKrq5dUVBUCaWI6EhAo2jiUL0R+CJMtmW3nkP+eB5Pl6d/HG4QS0gPzdSGiHR4xd2y6ttMZbaKmKooLSQrXY4V27goPmhLjfR+8GPskqxlWMYt/5L7ttjzUyqZLNBIYh80+sPqz8B93EVDLRS4UDgrqaq507QXfUXbS8TssF/UmntrU1VNrPoc3W0ZUc7MglI6cbMEqUjR4/ExjuPxePjj4cdoPG5PgbRQajqcqlVVFEqgcUxSNjrQckUt2cfjKLdkYm1VZmJm5GaiFdZFBLuzuIKMF8R7xU0SyR6s9nhxQcYShWIKqy08JjdMJojJahua7M04+/BJVoOe7pxkmqLX8C6Nq4oZLHNFtbrHoaJmYgazDtQTgZuniGQS7Y/o4b2LCHKJEkjGeYnIA/YrHlFstlkmv97XnPOcEbOCzMxrZkSc5wegWfWe8fp6/z6Oz8PfV5yv1znnFXOiApyFYAUkItoN1XwnRz4MfzyOX4+jjFo+lK505OPQ59OfT7oBQCSvPM/zfV6vthX3JLdLpT6aifbYxNZ6pEZpdPjIWu2uu5eu0jhpLVmgsl4fsACz+j2OvG90IqHaoxyyu4zVtTqJlR1ARQnBquz4ClIoq0DOTNx9Sl6vNccAAIAASURBVDQeWHCHDPEbP9yy/e5TCRs9gZbxA1x68I5lxOriLdgedmUmTUtYbQtRILFFX6DevwHAzEQdKikaBKKuWdd1ZTBmnTGvPK+3yLJpY5iQVAi00PqI7ggOkwqFd5STlMrUUhWzNEP9rR+zEg931sIV5/t6va7Xle/3/Lri+nx9fX19vc5rzrb52+fnZ0Y8x1E5H6qukmGHK7MObzqldfiWmRHKyspQdWoZhIXMtkZiHyBXmoYazExdxxiPcRzDnq6H6zFsmD7HcQx/PB531fV4PMQHgDGG6bi7Mj05XbCiNZJrvlEWxGoJ9LrdWLmS6OJ8V9WMtkSfZDXv++vrq7U169854zzPvCbJc+YVS5mUmX1sFa0evZXsQX+bykuhUqJZeWXOnd7d0/J2XukiA0EhdhxSierT5IaDOzCra7rIlSXSU1r2xEPae7h6ulIMhqiUjaVgUzZoPuKaM821Zol34O284kxWIKJyVoKuSoo1ArYHWS3laWNuMWuNFJksJme7mjpUAMzM5U7AmqhK9JI5v5VfJMmmLXTvCBQoXIUqRhMaRUtdfejx8KYpwYRqdIM4e9P1quwQDhQbaVyoMcbjMcyly5fjWLHua5tUFeuqS2d0tVwKecdVrXmKjPwuaNaEuVDNulQ1sfYhdqukqqQypECDqSwsTp7nGREsXLHocX2ndV9qh3Ct1qbdldc4xuM4fL3sn4XX5gdbMTOqtDK2SUsXKqIn1BF5RcyIDLYKeLVj97Sxqvzr/IqI6/V+v9/v16vP7qx4vV5oDmT/rYoS6WvUs7bKQnyrI5k1myfpdiJTrhpiw8/zFLnaHGVsEiIqY5j886/X4f88TA83gbuYjV8BXCgLiugYD4eKdDz2wA5GUBGRjqxKpqAqZapSaCKklrRlcdVbzo0WrwrRPSrtFq21ZH4FH+Udvo3VYIxMVVXxFR7SaPvV7oJK28hubGaaSyGuDIMcrgqJxggtAh7YUmF0XLQpvYhkqLo/FKb5ftcV6sdqhUNbKS/jGB/PqXgehz6fj48PP4aNYe7t1FpwKbHq228BBCEGCEtCFFArKIWGoPZ2+11xFghhZkilCEWtW3A9YGVFW9HYVf9qiK2etyzb8er/aVPTV5BegsWcmQEJIKSk8OPksfRe2cHO/R/rIEaujCgSOVueKJJ3wItSC60OQRVsPBKsyvN8rdqaSkrb21fXNququrAbLj0PHW6klEt6VvEA6vArKiJmh7hRelAyi++Ia+b16+Mfnx+/H8/X+X4/jnNes/Kq/IrrrLgyXuelJSylQdxF7CHioDIeJuYP63Ia4SquAC6jIkKYjBfnWfMV12L9Zc2KjKjueBfdTMQ3LgquamJDdXQs9RJvQe0Yri5iTQPKrKiMymQ0+0TETHSModoPS5oIa08nWjrUa4xQFUJ5fZ4GcTUFitHjCiFa2p1F6WkXVNW71CeJ1RZZ6GdRwElFaZuIjTtaGBQgRW1FAsK7nwLk9j+bd3NxXgVGhC2QN1nZi9Qy1bfuXBXwPu1AjVAxhQ9RI6Q6PbrqPeOMvCLPjIAwwPEY7gXDmpyKWidzFOrSGpIxKjxV5ksVKogzoxm05g34qVpwxfd7Rs2IuOL9fn99vj+vvBL5++uf52zAYxdea6z5++tLqPn8+MevPz5fb3M9Dx2mx9AsfwyTcTzkcRxPM8sgxqi8gEqtM9JMzAqINlH6UIRUyXEcfpiIHMdxPPzX8+MxbJgNk+E6TH89nk2PPNYx7+nujady9yYbrQFWJRazp+cB7IPijGYaacTs5m/lbAzI9fp6XWfv/dd1fX5+Zk73QxUtI2tRcxWuK67rqhnXdXHHiO2fo6rcmhO+lnVRqru6qDqGVeWVdV6R7Dw7LbKTf+uCjWN0dnU777DyDlWNpmLFTEplMZIRyUJRouqMKSqsoqS5io5isiDKutJkuIkLTCYQiZjA8INSSSbbwnGddUXl1/lOjUIkKwoqDzccagSYlK4/WhyVYEJyJQpcGQx2CNIaA3Q3lYkdhAdqvK4OOW9KGvfYZ19GrinK4/gwoznt4c9fdvzy8WHPP2QMuPvxrGRH4jnlBn21yi0ZFSmmrqPNDVXh7sfj4ccQU1E11T43ynDOSWHRIrruYs7PKuwOOtquQ7KXLFFXReU9ZFOUVKS7uyhYnR8Kp8jgRnbvDLq8q66I2G3rclfTVWz5MOtAt8P9cHWDSr/sHlhvB/uS5KMQKhQVH1rSWj+IZcaceUbkFVfWDCT5nrmV4S1GLB+q6n6HmG7WxatbYeyOHPOWSZEpxOYi9Iwz712zMro21OgmkQDidXvvRWRNo7txcr6nAl+P9+fn68+PcYw/5BDoUHvKouY0EVtbVsRV8yONqIAYNFii0F3ncoWYbQvu9+v8/lJW5UopZd8KuKWga6bJv1UDt+9a1oG5oNbJa7K6bKvFrlqtfGzALpHZXYKqbuTcGcFUSokoUYT2a3FARSGmNswYi28kCTHRtmdSTW3AVd3YLrBuGJhCfQXedVnak9dmmq3wjZ3B0hkatt+eNADj/h9EdNEyd78BElCXPSoyZInawonfg8JuVHCB0aGCXCFLRUiuU0/l+lzv2L5eq2UFKjU+F7sZuVMFIUgoCYoBuUGLbVb/0TomE6K3+aN5tSANKYRytlZJmpP4PY7W/hCJyhaQD8uSQ3W6ZFSVde5mPsfMumaekec1H6ZD8DH8PfR9jcy8Ko5Lv+J6h6hwIkNWyONhx69fv/7j4/HrOIbADcNMVvRCmNAkkROIjKjrvaqumBFXg7b2rF8BwJQqthgmq+YGtLfBWs1J9IBVOq25ZClq9nlJWiOmLjtsa3XDRNBFahP6oeQsgpVV0YsD9hlaUrI6tjERBEqKaKbeNrV9CyNU+tQB0/UZqEENprQh6h0fpEKqqWQtBEyuHlwX/tqv0cAUMVSpelMtVstYVu5qFdddRqGa1grG9nHo8fDnhz0P9aPEEmv20qD3rCxRG945HLLwyEvDb+24ETGmMRUpDAkU6rzeIpIdVydaaB8WZzJZGbhiznm+4/V+//46f3+d72S8r9ecy4H1vtpBSVL++v1SCLJ+//r8448/zJFlh8kMpA/UQ4hhx4gQdAneoutOdDQgAKwnSKQnaH0iGw9X1V9/PA8fv56Hux1qqjhMfQfSrwiKcbi7+YG17pl8B27+FGPs6cQPHXEWGNXaHCWS7ILpTiM+z/Pz8zMi3C9VNTtVYcNVnSXdHVw0eTJzrkDFvg/JsSBMq1NLpXd3wKKBcHP7GbtGWYO16vnEipkzWfbdPnm3EKLfQtbMZJVmZmTNjGACBaWbwg53hSJKJCeJ4xgP0+HiDUjRImaAM0tCaGZgIQIR2SX+pCYlJ6IvEhjUaalc5L1sgQY7qStW3Zkba7LaXZmr0K1gDzZ6v5voHKTYUNxWxcw5V+qXiLsILM1sDPGH6AEf8EEb8KPzf+EdeCydeGMqThQqGZnGg3caQYvMROQ7OI7ruAWV6nMIo6PuQ1YQ5q3FmlldyhB9uHbVLBFWx7/o95AqKyqwtC2dBGOZ1/e9l7xTGn+6GnUFXbM7tf7jq++kFUX/9681bizkUiqpSIm6MJWcM2Pp15bjsCitKooqqxKuIOMuNvx6veecr9fn6/V1vl/neVYEuOZMWNLFnpV0hcG7nuk2hW6dIkj5GfxApU8bDQAwESSgKGFB6j2j8nKtY+D5sMcYrg9zNRvNmFbID12tLBe5KH9+9Rqsiu9iaYcl/kBB3knyvRBzhYys9MYV7qa2VVdrDrKGI1WqmqRW0/4XLHNBuPfHs02nltVZltWtYCG1Y+lWTcb9F6SHaxVsxGUgvfP9zM1ZVFbondhdImIwteFuB9TFHGodJNe21dbXQzumvDlIqm49OqSvwPtG0WGBYGUXOvfP6NC9/UFjx0Pd1xMgrYXWe+K8qqtaLlJZwNjq+lMa0iHVDPTveQ95F7aiWkjlqoPWLYd9B8ryP66EGuvmXKvtl/ON61VQmCtjZnX9DLhxz9vOtD5/LGhVSccwd22vwo5WLK1BlFutmR3EPCqvqCvymvl+vv94jPN8nufHe16ZeWb8cb6/rvNznl/v8/X7ikhSOmj84+PjHx/Ph8GRQ+xhouKtT0elIIPBmpHX9fp6v7+uec55VlwodijQ3THqLzXrBxkiVMM63qxyVFU6ywFqq4Nb2eapbrBLD9PUZeXN96USSmfg/m0E39tpzMn4BkFJFhfdKKsSVQL4ikSkbgreeqbEKIBYg3KoAjGqQU3MxYaYS3sbG0TQ2lJQdFFiFEKJFVf/43wlG/S6MlHWX679XEBMRSA0fzz9eNrjeXz8enz8Gh+/IEcFrsjXeXXo53ldIdTjYe5+DPeBFYQMldW6VoWijKGlkkpkhua5XGBiB8QolsQ76przjMwCaO/r9T5fZ7yufH+dX+/318xrZsyK67qu6z1nxsyIqsLrdSrExV+v1+fnXyYR0w6XY0iMo4++xxEZdIO6IWFmLKL7e0AmzDpBQagOwN3M7PEcqvrx8RhjPLuygtyF10ebGI/nGMPGw811IVXt1hffbXKSlUTLM4Cd99UpOzt9i+yQ3/7dTmU9z/l6vf711+85p6qqYZi3xst0UJDJ7uP0Br1mtdkJ3EmBq6z9cmmjYRkaZmYwpeiZEREzI7Iyc5HrE6IqResQKCiklFWSKx9n6fGuDPaoJDPnvCIiEVCqivmww9y1UJLtPheHPG08Hz4OMSckiMhkZKq5Rt/Eldj1fbvWtLNO27qdzMoZC9maISWVyYmqavjz6kUHqiqq+eyxAo/YQF3e4d8ZC/z7XUMIIgLQrlmGqBULUqqlGqpDtVRLLUVdjVAbXlVtB1z5EBCoZOqPCkbviJeq6pQt8ocQigT1rsubQtsBuRE5Z1xXF9bMgqqr0k26yOiLY+wAWrgoyFwxTn2Hh4h0Z2uuoXB9F15XxlzmD96+NFVX6x/D3HUJ2kQkslSXGeOubgGosvpX+hDZ3QLFlbOKq95qjChqDwOTuUIn3L1/3c8W0W8lGlcOtCALsveqtY9ia2Q7P7gXuKVk/7enseOlCkRmr539uy0YFOTMWaR/4l+H/fl8/HoePekwd4GKpLSlnMs+oKoFFVVZtcUSD6o18qfBc5TFrpefL2ZVSN9NFPwsy3Yb6m8HuO86HVKgZWc6CgpmBhX9mTC8080AEElKVT9hzcRvDCX5DXXdOjQooEVUpsqOvgNU3Qy1FBTWwxGYmg0s4lFXMaugWIWmLF1A1zslUkzp8Y20Hoqt9qDUIpstQMi27gMQKQmplkt3BB83B+3+UrQyrG437cJ3rF42KaIAidhJ4cuW0f+aiVA7BKZdpBUZykqooEy+z0myqn+FbHn16rAmsLPOf35e2iq1dkJ3CV5Az3drQUE3orpIESW79bUcxWCxSjo0imXsVJtuE4i6ZmG4PdKuI55DPw6b84j4Y87ZcL/P8/p9vb/m/Px6vf4455WZNLPn8Xw+nx/HcSgqL6iBBkxhRLxRkbxUknnNeV7na57vuE7mrIrdUljdwAKEvb12yIvCXBqRTqFolaIgPXz0IcvIuaQGd1tXxc2Gqiqs5S/d16n7WLeke019qu4fILPNNE2IYCQyFzePqrZEd117fRdtu5rW3VkQSMrSBsGGmqoZ1XT1H4tQgSzLW99ybeJul0zFvaxX5c+neE1aqC0iUBFx7RL1eHw8Pj7G82M8n/Z4qj2uxOd5/fPz67/+9a9//vX5fr8zU4a1uvzxeKj6xk+2oK0tKzQhOKVQV1EaLMaGdKgNiKXYVXLN+Lrme0YkIfr79fV6/575TlTwnPOMiisjYqfLRcyZ86qImjNE9Lre7/Pr6+uhyOsUH/Lr6TkuI1z8Ma7rETZyLMO76UKgrdDiqjqOA4A3Hprl7l14HYePMR7DzMwBM3nY8KGPx8dx+BiHDje1JsLj1nL90MWuOmCJcNHj+J7v9O7eZ1f8SN2+xyyv1/vz8/P379/XdfW/31WUmamPtSBnq9u/Oz1V1b4cUaZqVA5zLAEKzAyGMR5iWsDM6NIklxQamdmtCPcOBXXX22xO0WTKXT3s+J4+O1dJgNWyLXcbx3DXZIoQQ8xkiD7UPo7j+TB3EY2qK0uvSwgHXaqolYwrrnec1xW0FGMZ210llcw3Ipm6hEGRjKpYSTgdNsOFKObufq2OF5kkExseUXbXDS3T2Tu6orntIOhX5cFSMCAOyS4YsVhMKgRY7XUW5Q825t04b2He3eKKCFWF3CCFNQ9V8W+xY3+grXaLuK55XVfzvbFnSu5u5hSrqoI0r0oAg1QVi9XAkcxMdht1gYS7f7YbXa2Fu1+w7jjFn9OtvaoIWgveubq3YbaqRM3q3uLI6rj6VUpW1S7pWoKWmQ/zOWdcU0TatNT+H2fnBvA+xvU4p1PYWwebS8ojKxXk3oR//MctdmuDlYg5ZYExUrCTjvYZqShQVkXU+7w+v96/v97P51MNqsfuZXPt3UvAA5He5nXXztxGpzvhpaOJrHUGwJqnsWQv2FA1kkzpzKy7ldOb2O7srZMcFrpXOiJYlVDJglMaaKjsIUpTuIuk2MAai8Rqq4gotSXMbcVHu01ry5ApBeEKABaokdShVj0ehpqpmKl3UV5qFKNoD/Ob/OqypsjNYJI+6LNHeoSSuj4QSBZEGLfDoMX+nT/Qz8r6oIuZueyiC7W3K/x7vtDvehdvrNtBqiAFudsSRaQgde3skO67rKykAgtMrKtTIoIskAFCaN1qZdeO3Uwraf+87KKvkR8F6cu4zJJ7h+AG865fZ//7bdKsZSjoAxq2T3j9tW3wtvYrCuhbB3KoPcejajB4xuyBwNd5fcb1nvH5Or/e53VdMVNVH+M5xvDehOJMIinsfXu+Iy/Wm3mxrjmvDukqXkCJ7tazcrl1VxXWb9uaLSNqBQW1KKwUMdWhfnQUMbolHT207yQ3wcKFqIq1RF72mQ99jsRqX9YWl2RmVVqXwZHa+T19Yt802eUAFlkRxo1i76J3nb6WESYLomawBgFmgxnB5UYVBWJ5KlhEGZg5q2Oea3k8qyojWrDYSM2uDAqZ/XyJNtZYzPQ47PH0x9PGB3RcVZ/n+dfv13/+1z//13/+9fn5eUXCMJ7j+evx+PUxxrFTvwnlkj8KDKV9fp9nzGttF0BlM96K8ICegffMz/PqwitFfn/9/nr9KzjVAG1VR1sdr3uTmFee5zVnZlDETtXX6+vzOIrXx8OPEMWoGEp1Ox5HHNc1/NHUsqgG/XZ5oBRN1sfHR6cMiEiS7n48vAsvd78LL3d92BiHLRKAP76FyGIFSm8e64cUUdk5R3VvXXPmdcWMyijVQlZSSMY8t9D5uq44z/l6v1td/H6/sZhr1ZwkU+9Rk26Aws8KWzpgQZSrDs+1EPVOZFLsTBBGNQUEvfxFzqpiQqjojpfoYmkwQy5hHyeDg5leQQAhoFR1SgUqUe6GfWXA1GE+fAw7lA/zw/3hMpxqWXJFaSYCM0LUAJNgvOd1zjMiykss2rndnt2K5uZL5hJuZURdqMw4r34Gl8/7R+G16tpGeWHBIxTWJVqbH0XWg8ktyO6PMyEJSdGApGqIpGqtRBbEGhOgu8ZbyHWPARocA1J1Bb8ykd+UZPkuZCG1C18hJSFZmJmd2DajMpu/51BXPx6Pp5lBvUsrAEKtYD/4TU9koZLXFdVcjh/F/TdCgvpDRNQlhqn6PVOec/bFlDBdJGdV9Z+FV1aqpi7q9yo6st3mbC6/QCnmWqWZtnGpqFQRX1FdisZaiUB1lWlVUSQLZrYCsX70h7bOYVVdLeGWn4OPLpn0+1RUm394F5VsckpHfJsW7X3l12t+vcPd3VDdyNQy0VXtaUMolR2Dzrm2YCkt72AUVW/f+pLg7TpW5C7M7onoGkfeA0cAuSWi300v2bcbCWTTSmWFSgIZzQFbU+Efg4/OvpCG2gnAopZWFw8sJOsezKV2yUFA1LGsxIpqY6GIePfahqubjiHuNrylf+xQQZUSwFRU+he7wWU9EjeFiphpi+U6YRisG6nfwED0TtdgmOjknyKL2Vwmbj2fiOiGWkonrq7/4Ddft+0K7caRwppQ75COnevXoXvdzTVFw3VEN9+4i+JMdneRJQvY9uPkzR+H71X7llCgteeVi/0iqo266CxZIYslxQZ/r3umxXnbQLsry+VbUXEK6jKs+Z2oylBgGOiZecw+L8txjF/5PLO+Pq5//utfV4zrChE5/GFmVZXzinpn8UyapMjMnPN8V5wRn5lXx1Bz4cPq3tSBbkRK932h/c4Mpk3wElHkjgcVg7nbaI8wS/YYYvtzddsYYQKrjYKQJTHWoZ0stEg/S4WRCbKKKGoWi8plb4RILZWCfj9YskxYSfmeLvdnLAoRoxB0Qd4QAPTIdHGuO3uOJNsY0MD3nJ32shnLBEq2BOSu/qM6iUWNQqiY2zj0+NDjKeMo0Qx8vea/vt5/fZ6fr9c1EyJHA0M/nuNxDBsZkk4kmSXStxYBmADMtppVla7RHmfymjNoV+nXmV/n/P2erxlRmSKf79+v9ydl+lB1lKz+TbETBPpdZb/HIlCVecy8Zl5HogoUS1TknHFWFUzFBsxVfC6it4iIubDUIe7+b4WXuWzfVlu6rKMvzNyGu43hjw7hab2Ltjx0PxS4wWwkydhGjE1LWjPBIq2QVVlso9n99Xq9Xq/Xe7n8226G7tms4YKvra+DNW8TkIioNrhNpEpEEtJhzo10cj+UUhq9dWyZtlDXNlkJJsxbd9uTJhmHkWkmqkmjqYukYL6/rn2YrNULltwPynoxpibKccizfQ8qh+uhOqwUJJJwqGQKqVKCZKGuyTNYRc5ku4B6Hp+siEoyJCI6tz5nxEUGY15zzpqVpKsWwKhgMTL4LWJbugAQeZXo9+fV1YFpRLiPQw6auqBMykRM6Wj1ME0pUiraS80SA285T2cPrUaMLMLZTSD/38ZNPx7JH9WCqoqXXKBWrjRMEaOI22jR1RjD3cVGZs6ZjMwsZL3i/FH5SZLXZFT2GHD++FqkeDvuF3Pfw/fPXXhldnSji4gdjZNoeVJF5j00V1W2VQgAMCPmnKsCbZYzFvW+tYzDXEeJyNBuGxcAZ2Zve8O1+TSElHQPv9MWAv/2Jfec6m9X1szUOttIW16B76fF9l/ulv16ce6m6lF8X/madUwZD3UAym4ofct9kv/2Krjk9gEqrT8z39+w1JrobT+si03h7Wbait1i2yrWhv/9Bu/CoicixV5vJUAzWHItK1h9P+2oxw0Oa/9DUZFcHMgmMshSNzeDhlnGYkEpUBEfS0hRxYKiQ5YFgPpQP9TGOA63Mfwwc9hSXGD5egS2GBZqK4u1F4Ylt1ypqs082tdTi6Xr5x7n1a42sfudkMhQVRcV1e/xokCX/UKatrWuwHfxyj1e7G5lrZ7APZkVLr+/ajdYUQkxVIIoxsIAUNq53WSABg6sDfxus0iBUKJPp98jyD48tL8y43tAUsVI5oqeELGNMF4jE/Tr22+1+7RsbliXsVw4dzV3FxVb95fYoD0Sw1U4z+nnOTNTO6oqT+aFumZeZ4VJuRGcOc9rfs3rE3VVD/07OCursnuoC1fdh6SOZPkpkId6rjEcQBdxlWH20Ebty1IKUveesUG4+0j6443fPXlYoRI/2l2ZAjBX8kpXxXqnpYp0ZoM0AUJk9c6pC/YoQmms8GrwQsTVuqDuqotowwyAWnYNKTKIADpXOIkA2nxSAtpQNZGmFux4u90n3BYTG+qHHg89Dj0eYkfBrqzXjPcVkYyC+DjE9GHj48M7QEBu7YOUJFC6opSSJLIgRDPM2EOWvCKvK6+UV+Cv1/XXa/71er/OmJXJPPNVFXZQ3AkBV+EVa2SbVIFhDyzWrl9VWTNKc4FnOTNOnclSMXd3O9RNM7sVpKqEthrSTMbhvEUnTDM7jqODvczMO5VjHaFtWXbEtstFKfr9zO6vDjhsKXHmKhUXonWXO8DK62n/VtdYt7f/umLO7ByzblTEzJIfZBPVRpS5NPRkXZYmZfR4nEUUE4GiukBpUM7qLWN1etzW8S1RmZ2h0qWUigx1b6EvSqkpFOmMN42rwNKM3ZiwNsBWdXx7mdvhppbjwDj4OOQQc+MhVLQUUpKpMkiNyA74TfCMuqIAYef/9kCWWRlM1KzWxMesaD7BxYrMK6/rmudsYISYMhGZKtIc+tz3fFUf8quTWfqETPT83RKpNjBUDsMQGGAoa38Of/6gFKXEGpFaDcZpDSnWTs1WcsnymC2a6BpGVLVVq7m4GWx0ubunj6rIGuJplqRVE8VV3Uf/6L6U6zAYMgKIvJqotryZAFRn5jV5xVxm5t33yhUMdZd63ri4e3cw0Vs+uJr9WWaWEDPLutuKnYhOEVNw5Yc3ly5qzly1KdRMd5qfuhZJBcvEsB6hvmu9GCuWWTHG6ET3Kr2uq8dDNzJg7aP/LvbfK9semnbyBBcP6n+r2cQacEKAomqD4kVbCKWSLBW0OpSFMiFgoiUkRRc6qutWWcI3kU4hgZTQugG3fTc/UKm69bm3tq7qexe+e3I/zstYASaArF7N97qTVbo3J/xo6VWVQrXDgWApuUA3IgIr6XyGNSjp2LDmqKh2uKUvdOUMUZh2p6rEDNpe7sPd1U28w3VMvLc5/O2UsWsR2XCzVXxIc+MX5WXx//bPzUaXPQtn4wf6g2dUCXUQKfA1nrx5ZO1/WKAPLn1UV67M7hmV9EC8lQzFHXjAxRkhmFh9klu7E0vxvUxqPQrDUgp9CzaxG1S1vHmwVR32fcSskqYgAo2AygpmzSV4atOBGPbR7bt2JEsUCUpArKo1/bYlfiqqwnIfMAYp0GE9BNWi/R//8R/v+X6/ruu6FpEmmMjKK68z8kwhDaIVecU8K66qqAwhFN8y1J4ZSc+SVSCm5lCnmqptm4VWMYksUqSgQx0i3VEHorM7dXvc9lFURGzBAPuj363b/t3+lbvwWpe9SjeeTHcLn1KtHu1bRtYqj8Kdb90qMilREeje46vD/LS+b2Ltu2ZJDcBaXvjqkODJ/hVWj57dTWQdaPair3tdgqqJD/FhfqgfPh7mT7qnaKZkSdFSTPQwN7fSwxe0GqAY9WdY+NIe2I7uJqgwSIIsrNPzec534vOdv7/Of36e//o63+d1Mc+4CtMcTx36UFlnw7oyImZE35Agf6wqjbyP67oud3FPtQeEzBLae14zu2osyXJ3rvSt3jZZ1dLjpWhRBeC3FHqjUIEWOap2o2Fz7rprX7LxUdTdJMASg/dX3TbAXXXdS2jujsJs0N2cZ6zgy5/PWlVV8nVN/NgntfdJVfjYrZZbLszOLGC1E5ckVTujQ6M6H49VWQKr75nXwl1oO7jNeiB2H+CklnNCIS42lKSG2tKCaYY2O7U7ssM4jnaGhFkMgxndXGSuvaYkqTOSpZnSBu5UXBHnVaIZEqVTbKXTZxRj1JQMRsPMr5wz8soKRhde76vXBFVlSWaOMdZxtsE66MEVh9/8pHVAbn+zH+YP94ePh9uwjnWlsFCQntsm11H5h4h25U98dx/33IhN8xLpUf8ez/Wvg92+EhE4NBVmEHP3qiMzVWKMh6AoC45zmw358xy41iJWlRBtQUhWQa7K86pzXqu62F8i0rE/P4RoJj9kXj97YFzmeogII6rK9kSlZ5pV1e9OtsDlvuc7Y0ZliWK7KhDI4aMEXElIm2sFuLR9XsRMS+DiKejALxUFJToIS5fOY7lUHWO4iGSmio395X6ICGVRWOacvQiK4Dvoe0bWPIa7G9TVRkGuydc7juM6Hn/8+ugCdxYmOstQXIcoIGuPti7dq/opVRVJpph1S6Y/GuAuGblmM4I+mW55tYq09Yuq3hexG8vi5sOHKkRavrBUDltG0CjO1SogdUtjGrU/Z5AdXSdubqpStQXK3ZZfbAkup6Oa+/PXxxijqs55uQwVDDV3hRTbg2Z67C9xqwUxlzGGKMBaeD1ZjAkxRSR6ImmrmFqym8ofT87KOUFnouKuQWEr6ZJHYz3Xc1hojycrM3W3T5bqrpuzgr049jGplqCTCxOChmtXE6poZkTe8xruthMb0d5nFLkrgWWZ3MpGoMkR6D7L1nhxQYRZCxxfVcIiJ3qxxkpfq4qqHrD+TW6ZP3yX7D5PKzzLZYiKooW+iet6t8BMpPGSQAKmOvwx9BD7Xfn1fsV1xXUyT9QV833Nt7CmlZIZV9a83m8w1hL2I1gpiiJl+3jTHS+KqXkUpDBEhZo556yimNoWKEj2qb8E1MxUv/dgNTOhVlXMKSIQqwrpbrSZqnXJ9d20z6oMKWImIFoq0mzT/niUrBUYz6UygUoLK2vxJ7q9qWqjp1ribm5UFqMSIqImSIouuiqKZGRcWWfx7O5lc8pEaSa+XidLqokxGU1b3DWHDlM/Hs9f//jzH//x33/98Q+4P3/9R+b4519//fV5XRFF0XFohStgQjH1oWaCRhQpFCVZPdCOec1r1qWRbmud7TuwCjPq6/3+fM9/fV7/el9/fc2/vs6v1/usSIR4/fr16LB0SMycVdkhilUxZ2rLCLsNds1+CwAi4jwBkYjry/SPj4/nqHkt4TBXYgRcBiDdA6sq4MzM9/s9hi18gNo4rIc47t97Twt0ipgZZlaTV2RrrXDzGrJ+fs2I6+ryILqi6nnNqptY13XNGa/X+/P1dfe6tmJmP7oUgVYyIkQE1E70Rk4zo5kBs9LMFAZoEFKUpQRlaUkfUVX9cDVXtdVLJztLV6lIFAsJZm6arsjKgcUtmQQAUzN9iKsmEm85rzlFaS6QISIh0s31tokfA8fTzBOSaqHWjVih9IFQKZ5EhGRIlczkjIrK1AKKBlhrXSYZGi7FDI2ovLYm7j2vK+uqnFVVOTvyDyKyNtYilGpKkLUiaxL8OKyF9qKioqarBDmOw8bxeIzxcDcTQzLmPI/Dr7yMZtT3NCqGIs6v5zgys4L9M1smeBz2Ay/VQd2N3jCROWfEFBETDZ1d4qPhHWaiLnj0PmM2vr6+bJTv5HIAKsaSQkWEwszseRxK0YRSqX7ZJHm9X1/v8+s6Z6Ni2zEgfq9vGxLhvej1Vr7odDuKMSLv8q7Xd2qICGTefZhVUFB2MbCbDKrufsVsvS2Spofs1n8xj+PQUTmjou2ZRdLHsIakbvvJymirUpFVb7biZ13cFtnZj7VbfVddrmolULQdoJbi/o4iMSOp7usflD6se4fKzeR78pjpx3hATLwQLYNes4tVunf/qOtTvWvxe8O+ZyX7UWqmQG3+mZI/eRELz95LUvdIl4ijC4ZlapFGXdt+O/vty11N34c0Notvv54qCtqIu453e4gjMHFx1FTwONz9GMOza5+srlYP05K6S65lFtudCjBF/G+trtUEXq0oQYG2VVbVrF/hPYxji/I7N61PSv3rUGlPo7T0rXYPs7BSxe+yhriFfgvpJZDaT9Aus/7fvhok3fVaSrFZCH36lDUW3WSTv9tRv11+JEApWYQ6FAqF6M44miK6fAydvrEZyt1VFawQjU5DY2Jh2NYd8j1e6fG8GlCQQjK/lVfb/0OnpEgS3iTpApiT8404GWfN/jHrmhlXzkv7BTMyJyrXDby++57psESMotQbxKAUa3kfoUlIUqSiAOnxumNNl5lbfhFcgaI9lls3EqRXoqqiIlMll7qgT5aLN8s9SFQFS1Rly7Vq97dQfZYold4Z2WS4lns3SALaBhhdsN/vLoRGEe3sL3agZgmFAU6ifwSZWNbZ7G/OxWzJ3bPbQWzIxcVXFR/qA7pyS0uHypiJ93V9nvF1xteZZzCXhrNH9GbaUb8HS0wtlShmSAUzomYgpkbodpCZKoDX6/X59f7n5+v3a/7r6/35nr9f8Xqf7zOCRafZ7sRUiGZP4Su/K5qlcdzL1N0D3OuJJMvFBWo61FsuO9bPTNW/NTR77V2f74ZG35DSn8uX3vobaMbqEVEDpsr9Z5R3/l2/4lvRdWXcSi9smtd8v2acLZ+fc76v6HbXTzXhz9fJSPD/71zl374IFNhVYS/Kbj7Gw10p2L0KI3nH861pRaE0t29RVHUMpYqVVmUuKg5IHsdRxXgG8dhMzunuqHJHq5BFRCR76KpGSlB1HXYIiINSIhMyAxmIlDMr+tBse6PaPXuNEsacyFldqs73eV0RV8XssQFXrr3csXR96jE1MXEidTdn7YA0n3CnW4oIVWy0zKfP4rVllHrlhav7LNnkDtMB4KvZEz33SZA0s+u6hu0zaiYzcIdxLUnoKrzcvdtyPbAAsy0+qjbGoWokeqj6A9ygtm2H7OixYt/J7l4ZemlVXTFVZ8cjZebdfu87/KZzdbTDOiCZ3Uh93V3b73VDTHa3Bfscfl8397/RKPqFRS12/3pQ91SNpArHQmhKre5gAvDnY3y3i6syZQgy1SBZ4SphuheybSDfncC7fefubqNNKJviB9Umf/adLY36B1AaqKFCdVM3MxNXQmfwdZ7jfY3H+KC7mrI7TItPKpt7Ld8PrSjW+n7vxdjvGewQLzbyae8x3hsylkq+sPPM7h+7KSbSfwoiauZjr1Pr88PyJXzredfuDNHGIPxIF5S7d7+8FTBRET1MUWICf9g4Dj/MSDOrSFUZ60hKdfv4eHROrQ8z2/fXPTHs1DEmlp2xRBTFlX/YVde9m2OxQFryjn6YALCkKMoCupRZmcQb5yAN2eo1Ytm8o9Fw37WXtL8V+oPNsZReC1m4IzC6ta/Ufuprv5r1GfeUULpPxsa13h6GpSoQ6U4KdM/Eucf83zVW/5nemr9X4S64+Z0IseRsyNsLyR9FfJOxzLu1GEDH43J3gbuqDaqpFDCzlJkZGRF5XnmeeZ7xfs/rvK5rnmdeM6+ZnKKQyibAbbPCWoq5ML9L83SPX0R6EGZ98M6qjCnwLPQCvCJxoLmaeivWzXw0eRXSmnjrXFJVc7Ii+0RQ1UbtG9C19+wG1zZFtGvrqurm5fb3AjAiu/3INedW0UKHJ4qoY524NAWiEOl07O5BNkqvC/uEBNmTtCRzMXgXx+TWxs7vomUJ+dv+LEPdzNwO04aEHbSD4oSdk59f8dfv86/P8+viefJKaU6Qqom66qEyVFxcuymZZERc5/s6rzxfnCfiZOfYoAwyK1+v19fr/fl1fb2v3+/rPasFrJFMAYxK7bIkIiArf6YymZM5mVllKta37i0xHtYHd+vrpW52DDtGo7ZuKTpuR/ddTinM5Dh8dZGx2iS9gLcipxVU6wxKyR3rtqqi6GKsj/gaO4G4C6wewfQkJnO551ZlFtd1vRuCuoBFG3TUtjLKpPyt/BJp7vOSzv7vdSGAvn1vnF2nlPZu6of7eIyja0oC6BnRBi6EECju/8/q87+P8bCGRAbTcmXmkia/Rkt2zKzvshgNdE0gXMQAk05YVEjCoMut242n5cuX8eRVV+acvGL5XlNSh8EC6FPEJMWSWrjOjKj3+T7P83rPea1Ro+1jYRttxaDLHNHhzl2r8FttqbMk+1G9LyZaHbqmFFWMFUMjFV8RcURcZtayltZndxSDt6aYStLE3f15uN6gqa09N7PadkIRGe6dI1R5uB8AbK20HGoyZIyh4tNWVmOvNjeUoW/pRLaPtBMXKtPMi7hmuKfqak2peCPp768xHj8rMACqqw0mIhFRP+K8qqrT6fJuf3YpuWeUx/G8JfbuTpUeA9yLcymKZjvVxQARmlrLT3of6Y7Xd+HVs8xEA3gQsb7jz7F9P953Tqr8eFzuV9mJXZkp8p2LZGY7Gqml4LXagGOYWwnPyHqHjnM8x5/5OCCiJqwitwzlbwfA/V2/D0c/YOy2XHXSIqXvMyBuJsLPf+LvLoxvRxvZ2i7Rn2ZUke9v9N1/6SkkOr6w/7BSaQ1CJ1BMZaUs/XJX8q25NtMxho8Vh15VGFSV4YuHZMN//fr1fB7jcPdlf9xcK/7tomBrvL6Lnm5NAYvJ3ERXrD8hKxgKgK4A1eUjap+gwBQFqvbjq0RDJxLFQCSa/6TejzSEK/hn92h7lfh/73ndiqKVInBj4iBFI9jasAVDkx89Juitqm8SCFQX37rbO1m1PLVY0YSFquRij/VHllwECy46yf6g7/cqu+lVRYGW1uqm7C90i3S1jTfPRPtYes131Dzf5/n+nK9XzIj3e845zzPizLgW2qSiqtCxTm0u3RI2kLW2UYOYqFNM1KBaEO1wQwh7qdf24bva6EuP/CF6WLw9U7kDSzcGuqfIvTTbIK/qtkxELT92A0JaJbQiGfqO6nBhLOgWpWuida/1k7l2n5XFYaZuogtxCQF7z196r45vs9pWj+3uzO2z/kbJdEe5aoE61yPb3QAoqOaH27BxUBwyxA7ooI5JjSv++jo/3/PrytdZ76jI7sG2mqTVM4SUQaLW3Od1vl9fr/P1NV9fGW+eby5u0LVCGM/zdc3ziivrms1gkg4jNdXYy0hV5TxLF0jyxgJUJAjV6pbm8/EYY/x6/vr4+Hg8Hub0w8chz8fz+fz1fP4ax3GfgX+uAfex4e7Qk5S18eiPjhfv1Xuv83IfJ36uLW1GJ+Xbog904UUy4yc8feVJR8R5vosRV87I3Z/GzyX0Z7OBWynbRdPdV3Azl+UfbxtTD0DuG/aev5sO98M618j7OkdFZsV1XUKkWtnorsNayt26bIUdItRO4lszUB3d0imqanoxsoY3firrhMy16YmqEQKz0dIyVm7nBSjmanQE4irOrDMrkokyISU1kzqrAtWqfmk01cq1jKsh9RTpsFJbVoNtqhh+N3hs+N3MhjMCqtp4bL37D+s+2Vf+HhzPKSLXdR3uUHVxmBossfZBUzdt3iFdx2PYObYUshfC9tipcndwTTXce5hmZqNZld/IPRsiFCtXIJLf++9dePWWRN4Zwbuhteq5xzNrslTdF1NG7jv89kUuLeOaU62Z4w2W29c5MrOn/uLf/LPvTpNZzJmFqupCv1/hbKjsHvuWTKBUXdZARc2k5Yd7wygfpt/DFLJUQpCN8hBZqcoboaLqqjr86DQJH4sSFj1wJpQq0iYqFqtYugQd/QzXvS7sQ7mau7qiOkK97Hg8r/mOPFLUFWK22iPWxLLeSb+vr1hkAvJz6WlnJdfYCpTOE1gD3e8pkjSJ/rt5iBbg13eIckb0Gi97PEwSuJtejWeo9Y2+x4slAhcV666MZuvEa886mRUJVDJ9iIyjP9rjWH01FM3MbZlE/LDn8ziOY4xhXVX2Ldg/6Q8D10/W6aLc7tSBpW1fySffS3NfU0C4Kp1eaGVhtrDSqipBYZZQ2eHabIO8qDQJQrEOsA0V2084IGxyC/Yngn8rxHokvFhd8q2OXC3OboKsPlgB0NVXK935GM0zazU9K1EpuYh2AlRETxl4K9jW9h0NZdsDvuxWXRNe12teSVQsoPET369tmwhEuWwKBtZkSUZWMOM9I+Z1XvM945wzMidzzjh3nyazIrPVivweYC/uFTp7Z/tF9J7DsIRNlts0I9w9cOucro0V71jMTjLX7TXu613L7pSVpOj9PRells0GuLdGa8n7noFRQNGlPVeUiLBsFfuSAnYfkNLiS1UXa1uAlpl0hvDOAlFbkueOluf6sBvb1nkqq4IR3Ce9VXVFbM5+P9WQLfAYOoaKiZnYofZQe1D8nHXO/NfX+XnGNXFOzECUUqAqSUOAUppVqInJRJzX+/V6fZ1fX+/319f7/eK8zverWjB+vZuPMOfcXUJkoaBJVqJdcrXDabjUx7nmo5V9WkA2NoUKh6FX2o+Pj1+//jyOw5w2dAz99evXr48/Pj4+juNhNtBxwkjdzdqqCo3+9EXZRqs+OHcRszbIncXU/ao5c9a3NP5uLv94UjVzpQNjvYuqqpnfu9cCI0VmxfuaVVHB2LdQVP9YVVrm31RjyuJqyrRmpTFzcNdeDkWM6yCtRKmqoOETw2yYjd6k3A/3xlRV5cxMVwsxJQznZWk6viNiVKGuTlUoVa2qqFpmlWloBgSQmjRlGbMyIxJZ3EuetoZKdD912/JT7Q7SleoQwgA78CjbOWiEdX5PZwPBRYEqJKWgFFOpUvjOwRLbFemaNbm59w6i4vd0TKCkBMV6ECbE/eSus3nvESWs6tA/EfFgWWKNJLXHlLpS+2Qv0XLYcR7H4av7gr2NdoHzY1c1UZHKhUzbmkIym74sYgIc5lLtyjdmATAXMxPYui2qH6jqbNAuPd398XiUqB5jzsxauY27dHOzVXV1BmiXXHePqdMbY1brFNeZoZKkxNXnh/6neikRt6EW/FF4rZQkUVUdrkJaE1FFV7rdT8r68oRCxO9u3upOVLXOaVc2P0TxVWb2OH49Ho8OT/VhJHsOzU473wean4et2z5wOwpFZJ9eVjOsRHJGod7XfF3zdb4fx2Eibtqs0c3NFJLLg9P/LJpBya046U5+31umEBjYcxn+OBHKtw9xTy5X/+t+hZlZgj7Y3R/nNhUvEvQa5eL7rLbL5FQDYCbaAqW2CsvQCm2rB8mqBFNX7Vv9JD0ejwZXqsFVIKWqPsbz+RzHMBNYz/Xa0owmn+J/+1pT160Uwp41AqJNdf3BCAVKiR4CGiRJMDvyjppSAqnWbXZ1IlmMRJWukKUN+ezRpGQrkO7bqiET3zg1LpKTFIVEbXLHN+ZpncT0rrt0xZqTKyWaG/UFAMWGZACUoiZz5XOvZlZ24bVP1dwvpRZUTduusRgVwO3eAnDfYCIoxE6c4t+Ws1tFUQmCwZo554yMK+d5fZ3n6zzfMyozgpE5V5+DmZkzqrMWVbRd82ydFFJ0rbQiRkgUjGBQfE9ATbsiKTETUzdTu6vXYtxnxB7JwBw79GJ9Ep3fu2YjrU9cD1EHwvVt3UESXQL1rQCo9AMq3ZAjoIGShQFHrsTGFaIM6wwrFVNI3zRdtbGXGyoERSYUe07DrB+VLqVxv+1mqQpQMzoWDYCoSrsKTIe6qz/Nh/pQ92P88ucHbVwlv1/X1zv/6/fr82u+p54X37FOtyiRBJSdN2wIIRg/ct8yrqhzVs58n5Uzz3Oe5/V6XV/nOyK+fR1r2IXo29iXKWeRaVuPrypimZNcaYa9Ofa88xjjOLq59WwAhD9kDP/168/n8+NxfLh7Hxe/jwL7vr2P7Pdxd5Xl+i3wup2JETFndLbK94nih8ZxL3dGfqsbu00SEVfM7nK1oYpbc9eN7PzBeepiq3eN/vM7NGW9ThNtwlyLhVs2vxU5Q1o+SAol8TcNsXavV3u9bN2xAkAdWXOoXbpDvq8F1LB99Qo0EXfr56aqypDJCDXLPqimRGqgKKwqmxORQpuKbv52HGrSOsFNS42ZK2EmZnH1mtGxM02wGaIOOMACq5hqWYzSnhHTXYUwHUzpA8z3vtnDxZW6fKiqjh+7bW/aMhJ1K9zuB0k3/wjb4N47nYkXI/JvTv+qElhmVrVlmj10e4zjeXx7BvumzdZUtYTfvIvE74bc2vhB6uqwCgSmruRCmHYgo7m4O2vxB/pgAKBfQLGgYsMf9uHPj49mzpPnedaOAAc6dfToXbXfcm2n+KqrEnfT6y68Wrt4zx/vwsvMpllV9STs/kVRHeMxqgxSbStuOYZoa87+tikDAHzYXab0pqOuUlXDdJpWDZLzmG8fq8B8/vF4PB6PxxjDXEkex/F6vcTluq6ZUZJK677FCvjRztRrQNRml+r6AVN0i0xQWRFxnufrazyO9gO2LKgb2iJcZaNsXsg+0++OHUtQdy25u3Z7foPdaJWV4oN1tGa1Fm0tT9WuXuwytD8kbvXYj6KtG+Pf/3eVC91/Uq1KRRVjaenb2CcUIitvUse9fgnRQSVjCTDY4k0bdhyHjyEGfCuzuo8oy7d495d+FF67E8cfv1e71X+7C3JRZveo9DtooFPK179M2VtKa4A6Mm9VVM2a3WzURnHJj6ZX12VboLnOhHcp1sMDwLoduCVcXBXQerHbq1pkxX0olyXrCgCySMGrVuBWelXu4eCPyfIexHfJtYxd3TtkU5KxFK8QrHx4aztAsUpKilRUyTrHQIQKomLm+bqumO+c75hfX59fX6/3dTavqFnfwQIWfHJyGkVNDaIK0X5siW4WL4jXSj5D5qJZmjce2tQAytJMm4rucPvVmmgzvJir2XYd3m0MbR/1/St/G6n/ECVvo2jUHg/Jaow2DQdQVFL3YXqNF0WXzF8MohQVNd7RPxCu/AEtgfTzTiELJdmbUTViYfl/e6q5X6Utdu+C9/Ys00VEx04h02Hj8Mfj49cfz48/YY931O+v66/f53/+1+fvzyt4nKEzqOoi6SLqC4BBLjAfc7Ki1jy1A1I1aQF7RX2dc06mjLJHlt6PxwKkFHoINQ63w5/H8zgOd6UWUUpU656KskLpoBA3g6iZDfPHOJ7HczwOM/VDxqHrED98eVf3B7fbGH9ryn4fIaSrnx5irIknN+7hPWPOmUGuqnqLH7FNsaSqd4YBNy71nD1S7Iy8xU29yz4dXjtjsTe8BVD9er++3uf1jojISVT7sH0MaeXsD/9/i1tURGWQlEJWdSu4WgqxINF+gzefx4f77q9UZunkahSZmWnC9Dieqs4+S8WUtiioGNoyLGYYY7inwi5K6MwIyUSlyHENm6FBE2Q32bWDRbs/tPPod/0ZBbdhR2lCjAUITcRDD6pVsJITJDNE3Ew5dNBFJF1QglRSbDm9xtIMqGrrrnwVN2Z2PxyrDpTuq7Znf9Uvjd62HTu9Ns9Ooy5SdjTTPgCvryR34TXGOx6PeDxU1fXbJY2R7i62ggdE3FSXq1BVic7HBDB3pJW0u7+VH4WS/LE6rXZi/xdEYNYnaWsFpKBTX0WMQG/Tt+Lzrvl6yFjFvhV7twUwM67Ic/atO++DQUZzwlbHq8xYmd12QW99RRLWXUc/juc4DqBUYeDNmr03OCzR7DqB+G083N2wld3dk9F+/xExxgAwxng8PvwYx3isz3gPfdho7NoGfymAqiKFb9Un8XNxv69sdy86RzAqr5jnvM7Lfh1Wbomdp/PtUuwqx1Q9s9bi3O2ZRkVRfhh0rJnzy/y4Unv7mxawsQ670XVfDVvRj3afExqd0ivWdV2iFOr3Jd4l/1JeQ6p0YVKZZmptETAUixo7Fm8l8+SlHfa3+l7PY5lD2gQx7DgOuKBi+5uyter3g3OXQKtptORK3wa9+8pXd0IXWJ7QbRtsUdc+zhJg2wtk///aqZ17qzAVQa2RLfg9xSre06D9WSsa/FWtmd8Dl967+//9GEE2pOl7MlhscBKWhmIXu7tIYr+fPSPubIBece7lY12KHuURFOqyaK6SS7gbgXfh2fYbrCtkK1oJUr1fVleSPR2hroNBxDXjPM/5jusd8/V6vd6f73NGI9+rWhnTuJ2U7EVCWr8BUKx9x8pV1ld1L08IqYSAkq0G7hXPk1SamMstv937bt+iZiZmakZtS+ueSbUU2w2xhNnriCPSyD8Ud9XZUjzpKUoPlHusQezptX4fS7C/BeVuW64091UikIt/vS60qawRdRdS3N9fKKyW+K2Vuru+Bgkk6GvQqiocbS9wceuiRMVtHMfj+Ph1HM9JiczzvD5f1+/P1++vTDDKkuYONZEVOrUaT303/xzxmJmYi7oooTFTz2BR1V1hgjcjkkFkNZ9FYWYfH4/HxxNDns/H4/EQY1ZGBaruBJgtxtjTItFbF7xltTqGHMNNh6pLIzeo9xL+c8f6uXXlYvD2R3MfvdCtpsUem9eKtKPemcr3XdSqL9NvJXKHT3fJ9X6/GzLZbfi7uYU5uvCKvCqYOd/v6zxfec3zPOeMrG0ga3ehD/kxDNEdDeJmAhPRnZchuQ5F94m6oz5v9P5w9+EKlJRokl5kkZ133rgQg1iyNCFB9z5oL3Fw+1kOf6gmE8hSSgJigjITutapvAKJix2ZUcg29ygJAywb71pVnf033AqWIp3NOBQWYiVOZEGjpESchHVmOUtVK4UUpKHQtVfDMvuWVFV+t/xaxo1bRA/TQpZVZlIC0VHCC/7dHYz7c16JPirY9gjuY/bPOqzvop1cBDOrRVtT7jRIJbp+0B8dig5Y7JJRRAY0lUpAfQFMuZaCItGDFvm+h00g4v0Lc65t191UHKaqzqUyWu9n50rLj/FiqWo3ZVVVxTPnnenehdfGrgbJzLgLg9731/NSXI0SETuGu3dN+9Ms7OLsura6hxO3S6mq/I5GFtWG5TtGP5CW3vXLjLNbhsfzYTrG6NjdO8Cu4VAjybMTTlprw0BKQkk5lh6ppTPSXtVu01XV+3p3QaWPAdcCzhlXZBTfM4z1MDNjKxgXrIyuGAq7KnuvykyBiTvJ8zzVHyr3rKsK2qCt2lsRQWjjBbqk0x5h9/IKkUL23memxe489ZkxmB3LUsqViNajUzHNnLc9bs7ZLocuSZKhQldpndZUzQtEucotYu0YY3Ebz48VisPOPAEAREKBinYxmpIirKsKZqPf0q69tCH6tWiW2x6i+0wsW92GJDt6VFpuKcuZKB1EjaL5op4DgqZiFVXUTTBnA9YgBhYXdVqQseM/BbBa3FZGLT/LKss6Qo/Ia7awg42aLwjVFuqjkcGCWtSGqoJgjCGqNaOqDKLrsMZlxIusTFR13ljTImJ1gGTNaGsD8pirKdgFO6xJ/SJSiN3dMVExyGweB6ndk2t3N1vrp5SpYi2cqqr3+/11zdfrfH2dV8yShjPU3KHOfQba/WZmKcSEBtAVIpQqZpn27NNEvChVUKVBzEfSKkVgat5h2BTdao6uNVfnwMa4Iqq2yH1FP3VMXaiI2k7BaTNm55e1P0UcwqpkNI5Zm2xebU/bPZXDPXMWqaYCbaFn027uzZ7IbndSSGoKlJpJrOMlBDTp5qGyJKOwH2AVW93FTrUqA11FbBykgEpRd1uEKtDdh9rz8XgcH8gGrOP1ef3rr9f//F+//+tfn1mekGjQG6Fw9hMNB4oVYAmq5uyF3NXcj+H5ZTMl3zNKVP2REbMqS4oK8T4BAGWmPvTj8fzjjz+evx7jj49OChCBjQFI5SUlfJ+r/GIz+8bj+Xw8fn08fg1/iNnCYrgexzjchrsSQmVJREYUE/OMFe7bz5ai101Uqeucsw3Ic5uwZKUCc2Zc19Vobi5a8vekkn2KKyRoVlGzGfR9xjnP6/V+Z+Z1xZzzFvJXZLJqVrAtbldeeV3v85wR17yu87zymkA1iC0z+wV3lam6AkoXumg3ppvxvHIdAHNHGtJY1qQPfdjzeIroGjVmdBzcxm7RhK5GO1THUgdqqcmM02eZDrhCVGGiRqabPJ+HCS8iTbVyiDKj3HyqKCcVhqDMuNQGK4kQFcVQs45+MR0pCkpZ6cOGP0hSrzLAihLwss7YPRWhPYLT4TqQAQbV1XVkbP1lYcEIpQXT7aj53vj7JnNIdK6LFtQTk4himI4VvtJl1oyIUAjE5jUZ3/D3Znep9f0QizknOlgUnOc5zGrR8pSVjoU8bmR7zSg1HNX9BVVk5nVd7oeZ9/wgizV7oaaC1XOhrBkXtmBL3MYYx1jq6jEsWT2INButbCvyOA4xdT/GGCZaVTl7kI2qumJe1yWqBGaUJx8zz9e7g5evGe/3e93zyG4VSIfVZpVMMNXGEkorIIyMvIosM8vUmOe81tjVzVRoahkoJPEtZwTgfbRd/Vfzu1rcB6jep4aIuNrz+VS34Q8xXdgKCqhe+qB9mYqAlQmpympeJQaguUROuLf/ngG3KrMbHd+mFZWonFees5qAiN1WtXtm1aoUlPtRVWV7VFEFMRCUrJbzkvxBxVxNJtwKJ2yB/DfPowsSVTXBki3vMxwAQTVVXERghlJpcGTVPTDvU8E6Q4gANed0LV2i505FUNdjnm/z1ls13PmatQmE1i8fqF0v9U9NHi9CtCvJWm0f3Y0axd0XbCNxT1X1e77IPbPr82liHSV0uXLa0aAd2oM9NLy1JH37WMOxSlbP7DYatsSrCaVLUt/SkH3VN9ECPzN/0MSI/al809Bwe/D6Miy3QBaqE5obm4Eug7h/7pOTLIbrQkhAO6RQqAJSyiEpBJFtAlTamjyv+eKeH0vH4FQ3jXfzj+2+FNFcpP7mprGbCFVV87qud8tZUnfrsEp1W2xgRKNtqJF9DIJqQnqU3ttG3sQj8dLtHlp94FKRApWsBXyv3Ri+G96LvrPNofu8seasdvszlupugyWxxW9KzS5uGKajuVz17Uk0qawu7r8HyiBEtBEr2tPC1dghE93z60Eq7hNqt/K4ZMtmNiBiMkwhbCd/40MgoMoQdwlCRXudWbGV0lEHLWpSdxW/zvzX1/k//ud//uufn3/9/nqdVzvXG0ZZaY8BQrn0bF03lhAGK+HiJUFnZUScVxBKcxlPwcmIMoo8XSiN1ALM5aH+eI4/f/3x8cfz8edHWSex5Kw549UNn+dT4pqSITQXP47j+Xg8H8fj8TAd1jI4iJsN0+MxfEncWhHfYcBlBh+ObVK5D9SqevUlXRD8fY4nKxJA1MzMXqz2oB4/PPZYYyZSh8283u/3dV09vX+fV0dc3+ObfmFVVYIzKwstb+/WQl4zIjLmjhVadmBVquowd3PXnkphHWeo3Vxh5+Wuj6WSFKi59RKhW0mylOpZJorCLeFndqyNidS9pPRyMWepIN3TKZKtbSBpYgpzdwWsdOpby42lLjWF7D4GsphgdHYEqnX24o7OaFBGFUEq1QVSZkgCKh3Ul62mQQkFLkJFDakde9XaR1IMitXr0ixSlBA3U9+wD2lgq6iomCiu4kqPI0gtsT7QcIfoEsUdoFTA1/mFIqMvVxdbICWvPqLXvi61o6JSf/SZfn6RjUnZ9szzMtHuNLkfpDB+jrPXgFRbBpSVuXIglrw9rWdoa91rlnqPpDcbgsDj8VC3MR5deAHgasQyM31ety2vVeJM9JHjnrn3bdnzqb9NwPa6fStO704efiSqRYTqeff/9kzg9q8sxYvXQtqqbGtxL4KLNtadgRTXcRzH8/kcx+HH6IFa/1vXOUsoRnsTEp2+3AmurOqUk+m4ubHtaTUzApFURAnulrKpC7UK1xXzPQ+iHibiKm4q1mpQoIAoovLxcDUDtAqxLkk1klC/lUrVyc6iKytVZMV33yMPU7mfzw5lh4rBas9DasOWW/Ziwr4+4k7xAmCCLJj19ldVAlFFq8iravm17sapmagw3V1lpeFVRCCLTBGaqCzPV2yZVi1qPNaO2XpusB2H6Jpp3/hr46JKy6D3t17rVF8d7mY9VtyertIWK545UZXsrDMpLgtW36aAAk5VavUAtFdH5d00JgAtdF+xwU7fhVctyFoTen6ModeK03oftOZ4yxDrdhqSWNiIXbjxe9HfxNpbcYJd5i327E/NY4tF2pfYUZKQpbsnN6EmRQT71CI/8qaKNBtNZO13IixmzDgzzxnneb7e59ecMxc6VxMkTLXLG+uYGMk1EhL1Nl1TtP+t6sx0XZu/arOHrfU6XB6HpAirCUw9l13TdorVymnwtqD2DdS3kkh3oaSKYCK/v9Yufq+k64ZRM+PCd6+7uhOYodrW0f7wq2kRytQWsHW00fKjVI9mFqJvgRlVaSasPb4VMxuq1pYScErPSlZ4CWEqoDo6U6DV42JKbbamiJs2QNXsivrX1+s///r6v/7n//rn5/X5TjXCpOjtxfWhEmEuhKGyGMgU4ukmVOCbzdHXZxYJVRvtblPQx/ChzDKT4eauh9oY9ufHr19/PB+/npRKZHJGvs/JqZKhpggxqzklTfw5jo/j8Xw8hhsaFpKzQpEiVGW1SJ9kxHXB3E+3AyIDdndPrRTQsRKmhupcuPgtGa6qHR1GYcsJdQtCVk7RnDOTLUvMTHGNvF7v6zzPjr6+rjjPsyvRtYG1K1xKVF8RWdUkLeYaUFajo/rPrJHujTLR9vGhfb1AVMp+AMFiWR/gikmyuptfRibQXcskEnDcixu9D3mrdGAtGUYWKVUZrbbIpjrqrTdvJZz7GGp0LbEwxUytdDAsSjiZ56ysrMwiLy6M6hDtmDuo0Fi9/ZioyyhBpRJtAwttMWCPBMRKpExojD7nNv2ubclu0iNmga3Dja61QFTVdYjAxFWg4qogu7xZMpKmSItwzlmZlUgs7V3H2uQsktJDDS6BdYeXtTCnV24pIItaCrn7IkPNN6mhi7nUVYtc1+XuFHzog6RIiszNNFqn2rqn2xBCchlmc3Z0ushR2SKhod0QRacUi/fMaWAFRpuruIr7WIevbmFl+vlNtO//yFlxzcyZC7tfnSP3HM817N81ZaFA7pCJu7SANRM2g6kVM6fOJSOuquioq/tt3iYSr0IJsB092xuyXhnkO2+8RQa/fv06jsNHBw5mzPMTX5lZmWbTpMColOj2d8KlgiE7rlBERK0nkbJkN1Kd4tlhW2ueJZkVs8KyfLAMZqoOEWMlE1u8M7iZytYRoxQIFbuO5L3Fyo+NVmRxvpaVXVYC5F2K4Yc3c4NVubfj9ThU3UnTivbDmAFKRv9Z3WV87wWURuvKUNHusTDV2yUgIjaGmwlQFVdbI0VtNboqkUVUo/lWJ2Y1g6BLWbPuWuzzWus8pbAhr60IkcV6+Lag7ovTZT2/8RMrEgmr26fUnj3dMwgTF/H2jfbKod8+yiJCapXyq8BaAVSiUp0+uEbTvVfXPka0YO9bVABZpsrez0tEKnI5Nmr5O7ndD1X/djIBtkild2vpJhkbirmOm5tojy1WWkvv7iqxk5a+e5+yeoqJ9UAWV+Da0vbVjKVaPuc858yAiBrUKTCWqmYhS1nWpyoWFgUNuuiwHTSQTbg3EYjVSsBqP5aEwsgUCply57WL3hFDbbMHdLeXeliKO2mz+wGoZCQjYkbOrMxmEIAKLG6+GKRXn3Wx9gMFEdFa9G4Sebt9+8ldEXndub/NrLLPufsItMO3VjKDdAj8CmpF0VigSMrs3aB7bMu23twalWprf2sAbEC9YFX8/b7+65+///Off/2P//rn11URZu56NFucBuqJqgDTXUXZs0khA4NL7EKSLnocRyQTksGZMWrkI0iueZnJGPY4DnczoYk+n8cfH4/jsNL2R1TEiBwRH1UpzHle15hzTpVjPB+/fn0c47lFiWwnXDGqNBKW1gPfmnZh2nmaGaSK4xaafBvcgOM4MjM4gXkfGJi32O9bGda9outqJtm7C69+45lZJ675/nqd13VFNq8r3rOjSG8JNpLVnaKJtbH3oOpOHJLv1R7ZTmRVUSQDXFHf3KGuQIENgM27pbueeWn7slfoNOrkiBEx3D0iGpRYM/v5bMBHq4mrO/kqRFSk6Uj1TDJJa3s3heKqDbPo7CylCkrZxgdm2ZmtlycyG/wmKoBFrTDh1VE2UE1FS2hFJpNZmpSSBQeuFaNmSldJrV5RYVAjROA0VzlUXNXaWdx8IlWVZefUdbCDuigEwfAlSe3z9yJ7r2N7rYNr2/i4DpC9tWibwvvRPg5jqVQSWkJRHcfz8Xg8nw9X82GH3Y5FvRVRVXLP11oRdRzH3WJI/ljfb1nqD3NYsESNGfc/0u4aku1S7JqrR63uoyd36n9LZbC2hdtC548xzuN8X2enoqG1HUPNrFPR3iebZ3YXDHu2u56Cwt/QDf/W8VpPQEaEKHHt1J/967vwimXhSkmKiLsfRxd6UNW2bjFX3pmKP8yfwx/PIVKsmOfEJC1DrgN5aIYArCAXX/ie34lQrKkO2pWXbpsCTYqMTIJyiJCiUl4lGTJnzavcVUvddcmGFiig5syFeUNtmpf1zt4+zybt9XvH5q1mLZBEy6JIRnekDKKibHjaaj8u3PruBi24Z1ZvILOy6nISbc7UlecOlALebD6roZh90BSMY6hbgcL+yEWox2P8+fF8PIcaIi7mxLIoExWsIKOHLLWwTKtgg/0wBuNmZK1kVG3Fcb+xJlz+0LzrKnG+bzPu3JVaqe7LAZPN+0F2+hKld02BDJpTHUuUww7G7WjqhRRoVnLvwmpd863vyNxSs05/rJtYjS1BWX7JXF2xFfqnguxu+JottlqxqPsN7JJp1cYiS3mPYoq0/ZERARQkF7hLGolxO322xHuVGLJxRIJvylFP9mYJKKVUBRNZUmqIeEe+I86qyIxZAkkxQkdWinR2XIqIm4uZSIpYS8grJbVWzPcKmS5oA/NEq6pCxFZ3cKdQowObVjppL0ND1SFasMyNzVhmtT7nrBqmIhhZc2ZEZVbmzSJZldCa3UtmraHyFsurgmrVPhisuVYCKgq10pbhaVfnPcumQBUu3WtpZHT1Ad4UPQ2RpVbr5mU2rKMLrspOHtHG+6rKzvSEmIq1J/Dw8aF2ZOEr4v/5X//1f/5//+//z//1//z1+7pKIUhLj+C+/+f7RJoUMUytp67Fyqtp59GnDo4x/vjjj8fx8Y+oOfOaE0AfINsNcxx+PPyP58fhDikDxxgfz8OHAEFhIKp+Ja/qkIDZ4TAZESpHE7fF1ojNdPhjPIerC5g56yy6e0cY9MO0bFKqNrTpX8MOMzMIyet9sipF5wQ8JkFmyuo6F6sYoBbynHFd1+t1Xtf1Ps9tE0NEZeYV8Trfr9d7ztkl+vva+K6tGMjMBIeaEe0lior7LFSMYpltziL7Q6WSQq0lz5iKG6a/fDPb5ITv/VrKoKzMkEszJSHlZ5vsQFaqZ2bN4Pr4Os+jbWnZJW33Vs6vQkab/4/6ns88fvmwMuu4w1CZaq0yg7LMaN756nQiqS4PQqCF9SBUCUsKZm2BgBQzSmYxiIsyq5IaVctKUx0vAy9IdqCIOEwIpw2RA6oqLgbkOqcS4uKLt1iyT1OigHWzsMCEJCTABBNDh1JFIzY42c2CHXIPhpJL21qAEmMcKxlVISbu/vj48/HxdBVr8+k+LwmAWojUlpzc572qes9LU0d8EwDWUOSHLo2Can/LOo5bQywiabPmlZQ8ngY1/RGfM8ZoB4qY9qi6y8DDDt0s1kpev6IxyE1jGHY8n88/3h8fz2dTBf/1l3x9fUXrm4V3DUcIoJnX/YKxEJVArclEn7cVpShhZkm+4/uh6BlCJ1LMIDrlliXKB2kmfXjqOrqqen7cGRONXBpQdwFSSx4Dl+fQ+Rx8Dsski9ETRZP2uG9XYy/i3xB8cjETOmKdZFiYdioLMnhKqaZ7+FVyFEWtwwXFupaYlRqsXmrh1LY8Lcp563nw42vvxP8Ovvo5sr19jlUr6R0tCxKKuAmFmJjISq77M9Dhcj2yZGaI0HUAMDNz1YXXXF0cEYzD1NxhZhjuz+fxjz8+3NVMyYq43EXTgGLOyilrvUl0GGQJvLTWatsVX60UCO6caKKJELI6ez1oW72KWzO0uqkrpqZ2Q0uWMP/ffVKqmiu72ERHaXuslIVFDkOgJjpKsCetXSxSlMYWLTajYQ+ruKhdu0PZnHwVSbK7dkvwsXFfWRHRq+di+q3SsDfmWxT8/dVr4Y326poic4pANEWz9SbYEqhFvOhKRrTR9YXqb9OTy9qupajqTBMT0ciomQxKZc2IlfcRlXMS4gIz9l/vMB90ALaYdkcuKZV0EaFqJaDVJy2l1mJbVGWVQbPH70qDFlYKlpAJFShVXcWoUtLLH8ju9hWqVXDL8o6mXkZgBts3XrKsBavK1h4dtkOgS2ypXe7sbnFt22sWCiWqTaAUQbJa21JSy5RltrpUBgIdx9XDWlTr01NXmFBsZWp/hJL9SRFNpenzQy3fJGgK79HOEBsh/jq//vOfn//3//yv//Fff72uhDxkqEUVohG1ZiZdKwpVvCNtmUFyXlcXXhS00fCP40FSQq/rmp3ubI3oy2I8Ho/j8D8+no/H6LmZuz+O4Q4iuq+YNas6QrHOtz39OT2qmlPtAqMUywiYjfE4hjmlUDELFYF82DHaZZPpmbNqiHKM8fHx8fHxMexQVSmpKhMXkbTp7i2xz3n1fxSDUUypYmXknE18aAp/y7Yyc06ec57n+Trf7/cZmaRcGTErKiOXumvRRlfCF+XvZ/1b2LDPed/PZucomQrJWamd5Ld1ius+7eItwTVnTIrCIEIJAjUV17U6vBEKZUTWXBTGyOzJZhRrZtMWRRiMIEuGvNXcm1XW2TuiBcnqySsnGZ0DW30M6KfPqISZKHXgSEohihlFEWs6zu21TmbwnLiKAZnkTEb0OX4xEZQ0stMeejQ2VjSRmKirDRHt4NB17IRkruNz03dMRQal4LQCi0ZkQwg1l9hWCE1K13tqYubsRHKkfOfc91m5N7JD9TEa2jqev349n0/9sZPuFtF3IfW35beqSuecZluqvbnw0m7BRQ/xtreplrrMOUvU/YCVi+pw8WF/D2AAvj0ZXXjZnrD1n2kmg4iI66ixOOSL1XI8Ho/3+21mUbN3vsx8vV7VU4DtVdzHgO9tRX+kBd5Fzk/VFzkr2PCwWzHZeFj/Oq8l7UKqCnCJdbtkjDGG9pFJVHypCjKRwXJWCdKVh+MxdCifh/3x8Sh65LRJMbRSvscdfQTup0VYUEkuXS1XS0NItDjNBTljuglgEHcOXzF/fUS3zq7bJXMwhaWN9kaCZdrdnGghO5vOtRVs/1Z23fK3vQogya0OrnXyQnUUUtv7lShJBVcqHLVZcHVJsbl7oPbTIs2SOI4jpcBZjEzYsMdjOHgc4xj2fB7P59HtA1P8/+j61yXJkSRJE2UWEQXMPCKrd9//8XbPdM/UdHVXZoSbASqX80MUcK+l3aCgpKyoSHdzMwAqF+aPM7xSUYaKSu8HD2uJq7o5ZGllL6haDXYPs9ZmrqdHlVxM+W8T3ftvyoX5WCQzoJI9x65vSCC0r1B0LfCVhKFQHKRCRkHRYsUMVAOqyFoTTklpiX4/giCy5FZAr/Z7ftnfkrJSHXkTKdC6tK52SLAv5IogeUMPoa1bqit380s0lrF2kj3f7ur12jXEKuzQ2b1Sy0a6MPerj0thouTiv1VF31GFyDj96HsvvID0ihnTKxJ5ZdXN4/DTQSmV0c1cSefTAqjpWYRK3VS5FbhAAWuFH3YzIFzTg75Us1btvdRsXdUqmSq9pmqkDxPZFNYv6t16tmT6hEczNDEn1p87PNKzoZGShZJFyWVeJ+e3NIiWjrHjJXvm2SAv6Vu3i70u0kS1G8rb0qt9dq2avhVogWb7VLVOqNM5yK7FpXEnSjbXXiCBy3KkIjps28U2T/56vf7xzz//1z/+6x///c+/fr8OT1htRS3NLIqZZFWAglJhKQJmHet3h/1l9JnWAZCiUBC7ynVmrNYczM5C2x/j8dhM1k+qStEepfuMM1LbwY5KKaS4a6Al1yLtFiqfLYEd26YiUe7uqKTo2iBh5bSMfXt87B8fHz9+/Pj582cXXoQiKivchirT3c+hKH3zJEjaEHdm9hhmbSduTXTkjPQMzDnfb38dx3Gcr+P9PtYuJq9tstkWWMEp+tXHIjM808u7zF+z58aDVOa1SQVlJRNQC5UZrJSSi8u87uoO1uqlWFUlZhRtaDYvnolw93NO82kEUsTnV833xUSY7scJpCkh5eUSkoAOkdNEBGJUEcJzijRCpgAPTlRoh2UxE9G36mJSLkkIHFWezBJDaiUqJIuZzKgz8vQ6Cw4JMKI8USWU0jWZLgK9XiwVVd0JaVm9iHYcIde0um81dMQIJAsUUSENfYVaXzMSEi0iy/LCnLMpgR3q12D3qhIubdyc82wdnugQReUm9dz0sXXatNk2bi7B/QS49UyXrKiN4YgeULhLimq5XCNL0sy0x+gtkqGCA1KiSbI8VDcqlFCKDlHbRNWjRGHo9wodytewJ0GbFXBtVVYEmVCoIkXNxa8Xkc0OM+lA5ETohW/5xz//e855nsfNOkevIUQWWL+zCriCL9eatVdEFdkWoB7jXsQ7P+eNwrfjmItESuca9aOxPSRtGJZ+ao2sVg5eBjKVnnRVyIANDtfxkBGuR1I7qPG2toovaNES6Nxzpm8LHdzqnFwGgRQwpMLTMzQ0A1AoWAqF9UOnnxCApGYf8BWVJgotoRbz1oHdeq+rkbqHX7xQH7eCp58I0k+jex1HklBQzVJEWNphkj0Q62y8ioooIPXKzgTNTHRLKZ8Z4WQO21SHsfbHeGzjuY9hmplkqSo6CbiTdrJL1LxeZC9rOjSGLKkSltaVGNgTJlYXu2vfu8RaC/mFjFyu8/vIRFWVyiDzqoYXYaEhNGsDWPe6iSgtqGBUbRTp2eDSQPen017LqptqX7nEBp2y83UFrGnems2h96IRkOuIR4+dusgQnzMiKmLNga8LvPj/4q/plr0T1Nr1sHpvlNJ65wr4mmlf91jP7PXiKuG6fLgQLEA3vrncN9VhXBnXMX3eBhSfeZ7nnHE6TU0GE8DomXABkYHJqBk0jYr+ZmoN1JQWv7ehiB0Esu5F630uU4tRCdKld8EFKY2OVWutdGUVbRPJy2pQkeHhxQo/Z4X7eeY807tKrWpJagayC/S1sK8ixGo93/DtXr7AvkAVo5dCaMQw1nr2upwKELEG4VV7QVcTWVd/3IFDvOh8ElgbcCEBXUg+srs4XtG2sZYUIiLbxw+x8Zr+n//93//+P//x7//x97//53/9+TqCZkOKtlETZVpEgpqpgYyZzkTj/C+TQa/fbzBeL6bVdMjWmXGqmswLYVti3Idt+1DVTuYhC4xM96CFuEuEZXohh+i06X4tFtfcJVrqKzQZpuBMCMrLVWyo3dTMpi4/n88//vhjFV6PHz1xZyIzpx0ikucxVdJjeRRvOGq6Z7jnbNlWeERM9zkb1F/HcXx+np/v9zHn+/0+Tu9cxN5bJzG2jXfw2q2MZEZ+5c3zu8e2L41vAbjC+v4Qbp1QSgvEyWRGZTCirsIrsq9Alm0bG/cixYqI+Xr9dncRcfebnZyB9ijH+5jnW5AdFO7lGdg4+GapFBmSBahhhIpRqcJKXRdjfwqJijbqdrJnJSBzviOn5ww4gjqQCkg6o1gpHt140wEHClqBiwzM1swLS1lSIGgmpmJCA6RH6utIBRQLt3b10smWYYqY6G7DhopgppjoDPdrO3YPoyKir5/H47HZWAeBEElvGwRWTKGiNsPPbTz2oWBErEUYGZXprTyWdhYXEStK7uug70viPM8eVHV/2//SBSVFQCsONKqBBUL0mmCtOEIRUVLds0Okv8Yl/Wj/ruf+lqCzjY2LbQRUJ3jwzltcskjTfd/Htm3blsT7/f78lEbh35flyvO5vSBcWK2vVWn1GqYNIFzd/uXr/Cq83sfMdEqp0pQRLITX1l/L6apqQjEVimduzLNcUgCqAhQM1X1sz8crD/HUXcYHrOjuokqHmZUI53SfnjHG3lEAGas0aZWkdqa0Nsg7WSVADC0EjTJaKyVKFksFoKBVIiqbSmZ6VrRO7Ara7IZCJFVVy0TWdO37ZqSfpFQjU+BLjnaRstcn1ycJWyUp94Zu6CoeYiVjVGYIoGN0uHV3jeBQkyFDdgln9SLSpCNVVPl4PLahXHaanMcJj4pI37Zt6xiwbLRSVkYGSoSFbMp5a5/ZhErtPZlWMVFXJFT2qRi9tQHUOoKnS4g7QQ7h3lm3PdAhqSCojbwSKojotD4KRNWeIkaO5lcSKZTMIgzLmViFy3LJatfULWPvuCNWBw9en0zrF+9F4aWxXykF6VXlVwRQ5kL0dqJzVLdAX3okj8qMJSS9xCbXJ6gNf/L2PvKCV+DehzOzEEGqFAFsOmYGGJ7V7mL3OcMzM95HKMheNDevvViMKHc/j3kcAXuImLvrtkWU+xnX/kwIATMZRaJU+46tTjxYNSpQmau5AtxdWDSlMCJKUjjAjIJeuUAdwUEQJZnr0Mr7YeCeMyoj5kStJQRweVuzrU49nstoeWMC7TO6xRkqgHi33SI+PSt6MNojDr0TuwFcibNmo9kWkG+PMkoyM/0C71c1SmVNOpfMspZC0Xi9M931kGEXzB0q2/MJUVCP8/jf//lf//f/9f/7H//jP/7zH/99RMn2jD6nxPogKRvAYCUgQZxnTly9YrMXktSVt2NmY2u35Ojwmcdjez6ftjWSOgtBhYmMTfd9NxN3n/PIOCOhwYjYTW8XVY5093kGr6jdCrSUnqSI9aN9K4ttm+kqBlHTsY19258fHx8/f/7829/+9vPnzz/++ONvf/xt356LBhyVmZ2iXNuYcyAr8rx3iN2T9On4L9kp7nPO93m+3+evX78+f5/uPiOOc2U2K4QqqmbD+hBVVbZ4K2K2UhBVVdJMkb4xL++SmeFWY2Z2QPkNpECHRLR7CDBaBrGmTNHSzFa54hq6dl8U4XW8RJHHasvd79A9KUgnZqefSoxSVU0EVWd4nUdqQSBjH2OYDgcFbH16UFI1ZkSWgHPmDCSt0xcywk9Pr9kcGWQ5NJSDUJRK1HnWDMzCmXRKQqICXpmsNk+Ju4VKaSWlBCgp2XQz3biKV1WKQlRFFGHuc+Z0oKTnQSpD7blvj8c+xqiKUSPTOyHDd18S8vcnL6Du4/H48ePHY9sAzDmjCoFsR/wy+gTDN7Mfm+6mBLAcC5mo13lUa1W9KBTQM0zUM9zdgEmJSPK8yu51VInpttGGUMzGjt6MNXBNFptITaEw7fVZ69nY2rbXcXpWLw37WjuOY4yx7WZmJEW3ISpgeoRMVZWypQEdStnV5G2qKk1skOb/jfHjxw+afn5+/vnnn79//755E0sbnt80XqSY9OSvsyC7uLzLQUDOs+ms0ZjimJ6ZdhxnVZKlxtSKWF4SXZWx7ujudCVkHT5hpakK9U4k6gi4x2Yh5jGqtrQtgLO4+tjrIDRd4ZtVl5/8QlJdPfNxRGamMDMoBZgpL0pyjAhSevDR0iBb7DFpXV52PAduR0zctXYBdzDlKrzWt8X1clp9dI8zLmz5tWhramW3vZ0NKtA+UaQkBNKN5OU5j5g6dUoJ87F/bGbb2DI1fRYm63KGRaafgWG64rErc16w4IjYto1sO3f1ugOlAUhxhT6XsuegekUgU5AXbAwA2m4NafB4xUoZ/P/4pWy8/HLHrU6hYRxC7TWPKGqQKr1t7Ja1CnQiUSEVnbWINVdMueYiPRO7WK6rG76nnrUm6Lm2nV+TyKvE/VcJ1+ozUFEX++ZadtyOxFso+tUP9S4yCqhAgrImbj1x4XrqdZfTgrTrmuif4Z4arCs5y+uCGJHEl/eTQMO3G0WuKeruEL3cuQuYTf7LvG698qq2RH+fLWVmR1JTRHJpj5kF7Y+vO4eS23mg/Yb0q4+Kaq9QxawshGdMVt/kjaD/SiBdQ7tlNInKrChAZA3+eN0oUnVl+ZRk81ZQ1E4OWbwmXm3rFeRh1wOq2Nq/nut30dUeRVCpbSDgiuNY+6oWyQXKo3pUbLaZmart+8fYHqLj85x//8//+vf/+F//8b/+/l///O/f71eJjWbYusucnXHrlxW0wcOWbTroZwJadCWysnoe+26bmajZMBn7Ph6Px+Pj0TWWaBvuS0R64ahKdz8Ovl/R6Nce8mSmhBQivAhFzUv3JsUWT3eE61rrAIjyzBBR6hj2HNvz8fj58eOPnz9//vjx48ePH8/Hj8f+McZgG03YQ14sY1/62tX2RumM6fM83X2eM87wY87T5+v9/v1+fX5+HsdxHPN1vM/To3qTJSSlURkiNDOz9keuqNZv92Zf1fld7rPul+ih1W0H6wfUrbbuy3g1MNDoR3sS6Aw375pbZFvy6r7mezWQ4cexdn+ZnUG5THFlUUiflb5dSVsLrpNZGVoZghSm0llkadFR7Nqrfxcy4jwjCuH1nv4+Tj99zjjP0yPCuw2/UJdSKZWrcEBvTSlZklRBwavTzaCR6sWkJJEQlSE61DZT7bMmm+GuDWWhlmRFQoaYcKip6ia6bbaPbQzNlWNhfZvkOlY88+d630we+/Pnx9NsAF+N2XrwA9FPl4hNaxfZFKzW/IVHvM6DCBdGpsMBlECSmVGxcg8ZeQ+EFo9TRsP3VTbTXWynbrw17B1wIUlKxyT16gwtO2Oy6H5eh2z0o6rvtbHpYz4ej8cYY8DyW0JoVXX+Wk+k0f6Jpc03qvScwsbYtk2G/f79+5///Odff/31er2awljeVXx8P4C4jJw96L2PG18P5UJnkn5x7Lrwer/OZrJbiGs2WNbde6Iv0NwQzedpzXc5tcZuVVrNzekIcGC4bDMdiLIZhWYs9coqo6rBVL076KO3EEsL3YciSXRmvbByCAtIVZ3hM9zCZ097gYYcyYqy0xJFpgUjYrFK+u6NzMiiVkfVBKgNeVj8wNWX18XgrFp7JaBqzVQEiGQtfTdX4MYCOSzFSa1t2oqi7z1VZfr0A6yUH7vUeGzbttnImHMeMc/IIqvzy5DFbQzRyorpHQh6Hh6xAzKGVrXepsfLRYgkWdrrvUUjoMDaNtjxxAGR5QLqqvRLcX8f5HkRrRbfeVFXl6xc2JAoUmGX8YBGSQ6UdQzXylDD2hMRrc5xQLByH/LiQWX/pdX/Xla8SyhEFrLIbE5Pflfy9eQrIzIjM7CC81bEUSZbBIcVesMVDZnpN/v2CiCqy81VFxMQvJN/10vCSs9mJshydJonipUob2x0ecC9fPZKaJ0sSRLppzdkgqSojm0DdW+z1zxnccZNOiOJXB8jv06vzl/pbVxHUK8/zGQQbNkWu3e55uvNda97Xrt+EvALOVFVMZGZPiMK6b2ga18Pcz1EeCF5evyaF8ROQKUs1xYoSWqb5iklAi1SGuO4ZrBC9NVx45qHNmYbRmnpcZM8V8IKrkfbcroQVNEaCJTUtbYT5hpnru5LTW1s+3OM8Xh8qD1m8b///P0//uN//t///h//8+//+c+/fk9PqsqWcAfPfqCvMVVFmRWkKrJlI2i7jqoOFe2V4vP5fDweY5iIjLGpav/h8/l4PB5jN1Uu8jBgJvtjiOA8z8yYpxar7yCkVVVqFsK1RKbIGh2RbD9KZoqome3bc9s2NXZouMqgjX37sT9+PPafz+fHzz/+7cePHx/Pn8/ns4OB0Y4lAFGERihLwxTCvDhkxzynn2dXXp69W2xZ/ev1+v27iV3H6/0OR7tkaa3xMWu+fHMEcuXtfvUht3S6Wql7Cwv9soxfyrk5v9RX3SpfG+vGATSoajUwXamztLsZM71iACk9q8kSnjNItjBmLUx7G5IGkkiyUkYZxSTZJLyspGcsYxGRxAyn9u4PXSieGZ5xHu/zPNMrA5/v43ifq+ryc+aM8EQgGcGaAo2UohW0SGSUIyjRR41HeESWSwHpGcFIyexH+a7yVN2GDRkATl9oJRYQmaKuZa0ul85sZnPjxlAba5gMjG597mUuAFUxszH0+fzxfGxCK8SKoM6v6UMUGyOnFVoulVJw9znjDDflUK6gdCBQkeVMfF1iUR64jVw6VHUMUo0QEYOaiAmNXwhJqaXHakp5Z8msh3W/+hYV5Iz1yUZ0i/J4bM/zzMzn8zkg7nKiY7ZbAxA3wWuopZZnUkVKRtm2bQV0S/j8+cfr9fr4+Pnz51+/f/9+vV5+nK3T6hukZ8O5YFsgdD2tryTj7iwy4jz8PL8Awt0D2M1pBcAMEVRmhKqOT3kDmGf4Xpm16QakdRGZK3sHImbipVrYNrE9t0KWuXvFcVZUScy8Ur7Z+WL9k+sNef8+wOAVGoJsb+lmMudwHxGzylqQ1y3v1ZQvkERPtdHapvXFvyYEl66l9cWxaiessLoFhemH/DURBWJZvq4hBzonDGgW/6WoXQO2i/BRaq3+rUyfZ2bWP/+ZRHxsKttj2G4GN+Rk+MkqP6eCm0gN6efRnA0YJADTTVWRJEdUZC8WIQkpSPb5toLzdNE0emCZ0rgyRtTXHKhTDC+L4/dfBVQw8/Lw9//sNaQgm+NFQeeaGzGIHncpKQvmjnYbsJbKekmABVnMtSVaVRB4DcSuwVVPipa7sgcweRkLmgRR9a3buJbrdelI+lNeFyeqqnx9Ml8kuWsaWoB4R/ewnQlyQWH7vWCzAS7y7xqSBermMCbaIdRQt8xon0oSzKjp0WdKx8OYSooWBJ4e5+KXo66tKGWRT673frGKonfB/SqlmAu+B2k8cU+TOsSwpK0eXNGJrT9fO1+iWMGsDEdWhSMTS8LVOn5tevl1szCKd27staKVkuYEdOWbgEQVKX1zFCG0K4ILNAMAUaxl0JecpWMlW0oJcNkHvsUzVy1Jl1BYGcUqJ3FLgBMtsikVA2m604bq2Lcfwx5R/PP359//8x//8b//8x9//nodZ2anijMiMrLWY3ZQhdkxqOrlFRWEFC6T/FK6mtm2bY0vGmOIYNseZmPbtn3ftm0bQ/fNdAjSioUKMQ4VCEQoCjPJNIssqSsGp3rHd1+c36/nTo62XmY+HrbwtzXGUNse+8/Hxx/74+e+P54fP7vRvw1WdxXO5V+49UDRo2PPZR4Pr+k+s6bn6X7MefjszNx3j7xmVJFQEiuQaRumG+0CqfdYpL65F7/Nt741EtnQx7vqaqXmF6ipI7ViCbRFpEQbd1dFacmLXIC2tRtq2dOKoQSITO8eDhLlhQJ95WhU9RfonZwYZYgIrzTzCGQggghJUtK92AlnaCDMMc95Hu/36zhmemTi+Dzer2P9HOkNaOWCjoVPT1aJy04djE5KBChSrPKq5sgWUJDlOkxkGbkpn7Y9zPaxKYXUoZD2EPVVI0VKCkxNlWOoKTuFpsusMcZq7RR3VnQDvVW5bdvHc388Ph7DlqguoqWNdweYIDKQUfNd3rHHGaEqJS5jPMYb58nTKagZOZv3RkwkOpG78hZZg18XJ/oIS0a2MKwAaVWKKFswIFfWXURVNPAsempV1SHHsZb4a1aaa0dR1cz62PL2PN4axGvi/NWadnO8aBqLOtvvkm7b9vHx0YXX+T7e7/fr9Wrb74qzbOTUur5u5nZVVV7hS/evvs5txZzc6ITFq8V5ngAiash59qp+pxHyRQaHZ6hkEWq0FA0+514FopPyJoETGXH0t2yY2RAlqUJBsbXf18ywqvcc7siRImh/kIx57vWMFvV+48QBsgrHi8NzPyT74ytZeRTX4157g3bNSLp36g9pvf1LCw5hbzearb1k2Q6g9Su6ZoCaKSJ2wzpFRAilmNIdke5xxow/zxc5961U4+OxD7VNGGZxsLU1K22AZILJ8I41heo8zznGULViLn8iABrFoEoVimXDAyiXWAiAlICd7Sis9hoSNyp2Lfi+gclRhQpWsGIFPJUiSyDSPVbW9RBfTPR2nYKKrtYabnbtB3svXggwinENZi7a5reh10LNrvoAlcErnaLNjOiRaAuJ8mJLX9SYiwO2FuKXTzPuxz1uVS9QEAhxQ1B5xVASpOVFkMDaDAAtcCspInrZ2aLJ5nWVR3mfXx0P2j9+eJynn4dnwsyolkEHpy9hTXcNHWoDaaQkUT1FCiaTAKPg3V6IQJqPX1KRC0FdFR3cI1jkta6DV7SI9gBzeSv6H5ltu0Q6MtgUkPXWSLtLc6WLVR+TXtnSfWleFiBQCCsqu+DD5WdczggFikKqLKls8kK0CaG33ydQd6ZqLegwIcxLZbJqNWGlEClinVS5PqTs4DXVYckU29Qe1F3HAzLOY/7jv/76H//zf/+vv//jr1+f54xWJ5cw3LOT6cI1PPslg1HetKlm33W+NclOFe6Wfdu25/P52HY1ju1x+dh1G7YNHWoiHJsWk3AIlFLMUA6VGKOuFfB9giYx5xQxkXN1DplIRtS2jTHGvn88nz9+PJ5deCUwxrBtfz5+Pj7+tj9+jLHv23Mb22a7ybi2OqB0a8OIy1XXqvAem6LBUeULXe5XYLB/vo73MY/zPHyekTODUANFqEPHtjVUANoaj8VwZhQKyZI2sAIVWRcH755w1SW6an3bqs2unIjl1r2OxE6bbfuUFResfDlLFX35/gs2KMGSalB02bofjIyQqKRYx5yLDuUQDEJgFM9KItEJyemZrJrhQEYlC+U5z7P5Zu/38Xq9yqMC79drvmf7Skqav4AgGopfFcEIuiYiWIzJSqQNkRR4dBx9pwdpKrIky0BTfQ77sT8e+2Mbey/lSW1yo7tHUhIxqko6SX3bttYWq7Ixovtma3LMxVxo73BrxPd9//Hcn4/nsGZAZk6vsit663pmZiA9nDVFOisoc+5xeITXZjxPex2HgKdP8wTyOC80FxJrUUARsSF6We4C1QDego/BFncVoQra+ltm1jrayl7IZiv5xrCGGWfODi3I9Ig4DulH1nme720/H8/5PPd937dnl6FXG5KZi3Wlue7syJJOfqS+32/a4PPnptvH/jHn9HNGxJ+//trfb9t+2+ul7/fNW8lAVGRUNXYS0mubRCZWAAnVmCUJskxVq+Qis/c+gIC4B3BGxEG6h4gI1JVZlIO2nbRMSaspMhMlqmOTLbckGv6T5SIiPElWYM5JilrnJqqJ4pva5mtm4KmqqJhSyAB9M93Prds1kriC0Nlu5TUU7cyBa2lTBPuJsB7kX9+rvvQyqxVbzf3Voa2+u9ZVTiUD+U27UCu69WsX3lJirpdBckUrMq9Uw8iI92/8aSSC9cfHj21TNTWvrdLDC5HncVSmUVD9w0hVRdR5+hhz30XNBq23hTSV0QKAARVQmk3QOaP947NDDovZe/PsyqVnS/HVIF4fQMfFoAIZXEXJCpRBFq+879XS9T5e22+g6+t0zm4VsveNWekFB6LgyewCC2sY8oUhZa3ju60KiESSdQE819N5GS3vInv99asV+H+de11//tWFX9v3JfDvd4lXoNN1nSzlH3owd3U0joxK9+Y9fwHDMpNZbNNDwSvnnMcx52xe8wNCn5XTURPpbewmrGHC2QtRiWWM7+KZVSytSMSqV5ZkppsjLlvY3T6SWlJJEUpPQOu+aCNR8Gp3wYLKTM/Ffu9ZFVuIfZGXrnjahnP2s7PbRAAUBJpiDRDVWVwC9LhrrYgoAm1SgHbT2zuRlkHdmGpCo6N1sbRPJdZo7aVL6P6QqzSrWnkrFGPr9ccQYuz7sF1tUC2cf/56/a+//+N//Pvf/+N//eOvv36/Dp8FHdb56B1iF6gZ0e9i9SOjMrO68VABZbQ+oUv2Xm/t+/7x8di2bZUgZjY69IOq7JHTygTr8VI6kKJ4PB7tU0aWQu/h1nu5E79UKa5Lsbttj+fj48ePHz+ezzGs337dhtn2eP78eP7cHj90bKZbH729Z+wEhaoWZYlfecOtml/ddy/9ouac73mec77f56/Pz9+v95+//jqO4/B5SS07sB061rfoWddKjmqMbUsV/7UzjvgS2fTR2GFBa0OU82vafk04v8eMXv8X7viEda33EWDaZY5oJ4LzEttcZZuQNAARSnV3B2hmVAG1lFCILSJAtrQQOXOePkcYhA3SjDiqkF5xztdxHsf5eh+v369wx4z35xHHOcTMrFTUqGJKdSbK+6mbwWQC4XTHpDKXIaqLNCH1CnEAsoaOj7H/eD7/+PHjx+PnsB0QFlZeUDYi4pxmVRuAbdv0uhh7+Nck+81G38zr1hvSOE4Ayhommw1TNp1JimXayuCbQb+yLqqgg8bKFa3j5nvmPEM0h4mqKHFMPT1EJPOIiBwaqXWdxX3vXCuKcnciQM86EqAqtVQ1rwHzJQtbQ9vLxSzSa22pC6dSK5c9sxF0x/v9er0e2/5+vs/z/PHxUR/kZVtZQ4d+Xn9bnlwScInLLK869n3vrWL7oMa+vd/vx+PRc6/X6/V+nRHxfr8ZDMSdXVLFqvCkWbZ+oOdnaVFV9tj2zAbYdHRLNtaiYUr9EHjjlPdrjd3MvDIkz7JH5P5MGwFNkYGhmmqJSI6MRz5Imm62TdUxj7OqWXeC3vl/u9+66moHSkSgQgSDsAnPiOtM5f1R3MPKLzRrXrOK6rPpmlqt77V0MmvNpY15q44CXOEp66RRtqMkc30Y68t/XwGsGLsusy5baX/3ypLUUlSGslRF1JB097/++rPy0HLl3+SxryOMrCY0+tzUNtvUTMSMAlIoGXDPfZdhe5W2CxMiakPHJtYHg7Q1rhP0sOJTCnlem6vbxcnWtvc518Vm72JRyXTW7AqLNbowirtOra5IkNWJlqXS0mldEF9Kp2M0Y7BHQkCAXnCwMv0aeN0fhwCQCqgQiszyygipS/+HuKZxRJUgL/TXWjp2EdRhw3I9mutaWuXKxsnvhdf14/Q8oJDs2rE3yqtHvO7LTqnkEg2GZ0auvAtEwB3ujKjKy5RJJGLmcRx9D+9jiOlBP65zSK51cC1PnlRUzHTxLrxIUHpoF0RSSSmFriVA1gLVkaiVvfT9DFtryZ63X2qhzMzDb0Vzx990v1IBsBOIOxeFIlQp3QSaekVetsSxw4YvsWXxSgzqkw7CDizpE66Eiaz1JJd73yFQVIqIipVQShLBHncQoooAmHIheXqzCLQwcl3P7VaAQMxA7ttTxsiy95mvvz7//d///n//x9//x9///l///eeM6HT6rgW1bfpjU91IZkflrZii9Tb2va1mY6jpJlcWLy9S9titb8ExdCVFMZNOUNjZvXIlOja3qYYakr1aUui1AuxcBkXnqPYg0445thLdxv7x8fHz599+Pj/GpispbJiq7o+Pj+fPsX+ojks9Y6p68QKSRPAK6KmKmOf5fp3H5/F+ncfrPGKex3F8Hu/jOI7TX6/XX3/99evz9fn56e4Fio3BIRrkGqvoNnRbxHDKQthcM+UlwOgrvKpIlUKGI3LtD3rm1lGq8e0ZjoVxAYhrrk8QFABmhhJSaYNd3lpXpcM23bZt33sr0AXf3ZBDRJr2olNdm6qoKSwwlWqmw6AEoJEoL8Scx3mabaORY5HVz7CI8lnHjHPG5/v4/XrH+4TH+fsd05/jgV1UDaK67aocVe7T0xKb+BGYZx43uqwLGhYLkimFMKCi8YXcbTy3599+/PFvf/zt58ffTDcuMkyn8yKmz22u4A3hvu9jjPFoEMnqjLRDPu+caeMYY7chK3vRldKGZ+ZKQzG96hwuJlXfdJLZccdFZnohRKGUGjlSqyoREZZEUSKx7/0KPLKxesjWWiGb8Zg5mSSc4gCLFDOpBSGf4X0zzpi4EEhLlw9SKiNWlhQSulwIYC7/oEvjG87z7EFuBnrIep7nGKOvZAgdnNFHx7+gjVbq44qih7vnHlH5/Ph4v98/f7ze7/f7/f7169dfn6/zPOX3754W31vaSmRF2phz66nY/RCuKtv33TMqPFfHWaYyRtNgyYLn6e7v9zsipPB8Pkq8LFK0LR8bS4s5CCpUSlESJRSTkSY6qKaUwyw9ezbbb2PdcoOr9srMmdNKel0VNfA1rPpSLeSSZrOKKtZjm3veAUSXjK36EpEveVOUdOjstyXXeqO/mXG+nKAgKaVtCZNM7XRtMt3nqgUFhIg2SQ2VFGSpWqxg7m2zMfScr/R5vN6E70O3zaS5iFyu/eN4n8cxRWPPbdsej58dC3wNYERoNp6Z6StMVcQGVakC6Sk0iihhMlWIxpDm9QRrNNUF/vpmaLwWeZVIZ0ZTTb+FalNXchm49Oj9lgYYLdZBH7e1RGmro2k8AWalC6Nrl5pxhxQpLlAAFtkTZGVWLg4lOj72K/mnzXtYIC6iqrck2au7Pon7Zd/JjF1cfp+HrRUrmZeEXGQh93t5V4nMK3O8YRiZLAGz9yTZeXSLU77Kvm+3LRa6YmZViaiNYbaFv+16eXqNYzO68mvHQDVue7FjqwQBBOEmoy7f4lfY+oUR6XBJWeI/ANIpFv3jITKxWKnzPPoZmVeI+GpL8F360D4+5QXDtLrwb5npVZLp3kDUr03xCl6U6nG9QsxoLEiWDcPhHAAAgABJREFUq5gIzLZbgSStPGlbvLZc9r4au+gxVlbFGt2tJneV/mj+rPT1L2qDpIyhMk6P83385z///I+//+//9Z//+K///ut9njp2MzXRUitCbNCGmcnQteBkXaP0IlI6euNSh2z7o9t18r6uvpW5606qZB8G2B/P7mBFM4/u4DnYcZlrTb/iJIpEKhiXV1rFwAqK6ojCGGPbHq0t23brmCkzE7VtPGzfxhiqo9P6/vX86GnNwh1l5gw/fZ7n2ZL54zgq/DzP8/D36zzm+fv1/nwfn5+f64ZSGbphXLfJMBLLX3lNQEmJ6trkq/Za28Dect52lm+Oxe8tNMm2qnXJJe196rGBrL8wxqhkW4PNTFV6sjgeNobu+3g8trEmfUKp+6jrJjzCyPP+iEs69oAy1EzF6O799G5kbqvFzcyEyGLCI9MrIlttMN9N2piYMY8Z0w2qZhtFdew2dBtSmGNmRiJ08gyNGVoOqAL9DvazLzpXvqqxkVIYavvYnvvjx/PHj48/hm5SxOJgkWRYbGpZ3jO/0W7bbZPRTdtq6Y/PF8keE5gtNb2qVnoEVWiEcWkZRSHVsLL8UqNUVDqqs8GwInIqagXv4iqA7k8fJB+PDUKoRCGrjUsswo93FESyKoQeMbUsoWdMQWqpl5oUBD2li96brcjjphkEKvMWDQua7xUCq1ZP9RKkZlZV9SNXsECvja3vf4ppis5w4dfs+a7XzaxdokvRFJmo6d534nEc7/dbxkb76zgOALdwvtFeq8ba9+FnzqXgvDcktj12razwXFnxEIEo9n3vY0UwMvOcEQkViDPfZ6mDG8HstI7nViEgE+GoqICkqtYorXu5cJ7v069RV3XMbt1l/HqESSHLK5M0iIruojvXenvdqC0c6kgKSKdBQVU7MTky06fqSBTLK/SaPgsAvfVMXWavBoP94JB1vOdVdSWJiJ5x00QTFR3PTmamx6wKo13E5gwRU5Y6hErYEKWainA4c3ozVN5//fVXRGzDfuxbhYd7VZ1zvvzlWT9VNsJEbAySXggQanw86vUWFRGDUNZznJdHs+3UXVI0+rkyAhe6lj2PgF+TkooKZKiQAs2qCJ+HiKgoKEhpAjlVWYjymoBKE/w7zrO7/C+hWJ9aKLZLCI5y1Ez39oblWvpdadjL/saMHjBrVfXEq9r0mnUDPi7+VGWVqHgsglargpZCcTQVASuH6jauF9sx9e2kvNS7XT+0s46Lb9KSx7vm65EZuFgK/S06KioEqezAqCo0+Kr9jL2CIhVilzL9q5zdxyYic8ackwRrTscXJ065Jm1cpuJe0AgohHKwxGhgY+QLbcvzSKpoti+VlAaGd+HVX+FugvtHSxGSRlBsgR8uufSdWNd2+z6QZkZzqIUQsbW8T2mePagizZ1qxRioOkxFDFIig3oNXS8TeH8Eff9CpD+l8OBFYuv83swQ5JwhLKWZGbWdCCpqwm1sWsmUGtv21+df//O//uu/Xu9//POfr+mzAMq+7aCGgGpje6wFE1KlT/EiXJKbDaBY1eBvCG0b21ChbtsY1jLkmp48S0Ugml7oOSGgFNWlI7lZla0ooRBZqlqi6Y3A4DLFqI02yAAsqQoR3TYluW3bx/742B8yBCJiYqqktK7LVhDnOjlUdI1pRfrhmon3+3wf79/v1/uYx4xjnq/jeB3vY55+zvOY7uEex3H+/v36/Pw83jMKotZlZwntqpDM1LaxSGkrs9VbfHNNJr52NyQzvd9JKgQMRCApPB1qJsYLlZ0K6jA/I0lRWaPAJaUXkLap2eh6y4aMbWtx/Rimw2wb28PGuARM/qVkjcjq1HNaRJSUqgwdiUKmRAwzNY0AC94Zs7PyPEvV9r0RgJK9bZUM8c4HhiJmg/Aicrp/iKjqbmMf66U8pcDw8n2O369ffd+pEDlb3aWiRZtABpSWzvQyiiJ+fDx+/Pjj8fh47GO3TYIsjkttHuITjCSQJbVtZpuMrd2BPblaNVzMmPPMTBGqKk1NDcVt21Q4VJQydE0ilvK9Gie0/CxaFTkLTkTmubAIUZlo3WQVvyvHVfVMp6kCFSXdlAeiKqGtl+biUM0IgYRwo1rrT9zPTL+gKimKjjEUISQzZpUXallBBaZKamJ54MkLKYQUpM/j/aph1lreb+qdocM8F5uBZKxx1Bppq6qNvZutzOwIBFBJNdu27aHbDhmE/LbPLBzHIcfRP34/riNiztPGqP2LHtrXpD2fz0TdhRdQKkuWXddq4NsetDyDyXnGHPOtIqrnJAeGtWtYxIJGJEr6Y+8NQbbo4UtKq19qf/zLhjV7A9iiUrHRU3SKApKBiKBgkTconVpBroCw+4Yv9vpEwaisC3p+y1ZaI9Jk77zHaatvrXu6UrVMbIv5iSYmLGrRxfBsbgKSBd0gRaVqq0BRWkCGZImsbPY55+fnZ1X5NvKYhCuL5Ng0Ij4/P8/TI/jzjz8ez6ftm0WxqXFzihlVqEaycy2oY0ELM3P583KFpN0wnU42WqMqLrn1opsmgkDCZ3l0OMy1gmQFLomb9BSoCCI7CZoX55QIsBXrSyWba4TjqEC4dCUNEPhaHF9CkJ7lfMt1q3s8zurpTV8blbVKvGXI+jajrAsldT/370uiH773LJP8mu4096uuIdkNmcC3wqtWUm/ikkx5G5awwFRUXeAHICKaUx8oGVae14S5Px9oV/CZKxZJUrWTRcu+JzpkURaqXsn0lelLRuql82o0ZQ9+qrelwkRDHlBxSd2YgZmJyN+/f3/t6e6kC5FNh4go7SLDs4nnPcmLGfcYwH1Ny7Oq2ljJi4LRPuQV0C6LL3ExUq8Rx3q2977ZK6soJZ1hVqCUXBkLjBUnyUaHXXlfawwlIiVZ/TjQQVURZNU8z8/38dfr+PWeXpoQiIkO0VEUUapta9Ai1B5Wi8iilIqqDlGwhtr9Fo0xVDoLbkXF9Q3Xzg5dhOl2NJcIMz0ymU30qe8Ft1CqBEr9poWa76Obw2v+376jvJebQLd2aPnmvu9mm+2b2bZgmvgqNe4dQpfLLerq6Kr3+/3r8/PXr19//vp1vF4x/f1+f35+fr5fv1/H+zx8ZtPYKUtNc/cqXdF9K6q+oANmVhe7ISKaexTTNb8utnVvcoldcMWFxZp5d4r0PTAriImwGU79/ptZu/PMdLOh29cFfI/QWvfR7NC+6aobGCmFmlkJjYLW7QnNbNh2hrsgZenocYXZ+TlrQSogKawS0iiP8XCbNVLAjmJ4Ph7P5/Njf4ztudtCmYpCJEvq+XyudJ1XnOFeIggwU8QZ4RmVAlnhiZLP5/PHc/94PO8wn4pC0WQkAlklsg29wIRtWEZVSCq1WXeowrZtwRBhZvaqcdus+XksrImXaIfEfn3W7XXrx1YUMpVtLM+48wyCkXifs4iIOt1nRtO3z0izLSIZWZVnTHf3qBlrI31ZozJqEpKZO6VQ0ajuVmtwtBponT6MrsUjPdPDzx6RFDv6kUB+5wFVlVyOosx8v9/tbY8IkWPpvRqB3DYEkWsQ0DVr9OhUrrBtMjTUsOoWd9exCRXCsW+8lPtzzvuGrarn8yMvl+jN8Qdgj20voh2kjdUSZDLRhufVSPE6EB3obUues2ghZ+pWnMp9k67YjDpESyLJlIgsIVVUlZumJWPJD9azvDVVIqlIxJxSQkB2G4/nx7bvOjbVIWIFeqV5Saf1SIkIspOhb4UxmRRlS+AXkHwljBbJ6s0O1zrtWm0sce2SchcKsdKsUS1OaGvj9XRb306S2ajERdkOZaVJEtmkIyI9KGnCR3NQ08PP9+eRHrGNg0IJU45h1KFbzff5+X6pbWrbjx+5PU2aY0TNgG6jbYwUgVprSiHCCiVv3nfzOApo0lHeMrXKJQO7vEatjRNU5/YiIpAVTRv3BcAtQFhZ0TIrSjMWeusHybWWZDtTigKPyJwZIZFsVdPKXMm8wAR26eO7z2hlay+zOqjmOp6XqOfreUjGF/qHuRz4AJbtvBZFoxeiFZX+bRVSKwCeACrur1z5LV37+vS/cCdfU7d7q4hauiAs/EZWzY7kCi9Sh3UaSaa3eLEqVDk2da/GW0EIk9vlULV2ww0kgmRXY706ESUZq9+ILM27KmwRVOXy4bbk7/qAERGnJyL9nKsltuXHv2SkjcOXakfYgoUFiAhvJdAliF7KONza+Avrkdp6s6Islu7352C/U8UGm/FyvhYae33JSXo8G1i01Lp4IlUlqBIVNdv2sW0ifWYv4ZjZRpbH8Xmc//zr959//f78/W6Zko3dtk3HBtESqm1VJaZipsZbfNZelf25bTaG6DaM5BDbxuPnj7+J2Frn7LuN0cvV5CwuyCM1yWp7cWbFagtWUERm9n+QFIWJUcRMN1sIsarJ4oqGzDpLCCjEitpAzXtvToqOXW0zHbok5VfJnqxa5pzwiohznud5fn6+Pz/fv379+vPPP//889c///nXn3/+9X6/08/zPN+v83Wer9dxvGdmDzIpyyMgy5y/nnoUiOnaHDRCR9E4jlotbXiFp89yh4xWDd01WuerrjpsCRew9laEmXRV1NejGvXKBmie2fVhyWYmQ8T0woar6mjluChIRnjMQK5kMFEtKVUtQEWkKz9CbTMb/ZS4V7RzrrBt2Oib8eLoyqYGG0NtszHVGCk2QP3xeP58fvzx89/G/tjHRhUVo4kaITVzTs9hb9SnT5wVooGEaRR7TRMJIlac877vnQH12PYh2g5RsEYv7zIKDX/pWUVkBiLgrQAz1UHWShPkFWciGGPYuEZcWVevJL3p7OFLZlydlqd32kkM1cIZeWaTrOb0uaqyLrzuKrwLHblyPzuicJ4xI2aEbWM1HCrUjo3rlrWTLxo12AaDuTzU61OjCCjZCjP3g1Lao1iuMCFVzbXr7pdyMagzux5SOTOzG5ieC9q2taKgI4Paq3sNm0hah/q09D8THtWuDhlGUwqo0sDVz89Pmr5er4ahIALq/aW4BC1LFlJVNkSTuIJp2RMqRXfP6HV4O1YiginFVAGoCYanGzzLMy0ixS8sDrRMIzJTinBQiU2pWoUuvCoQEak6xriqOlbFkXsrQMzsY39s26Y6ipKlfegGatwD/FrLwsX+6QzmxV3irXKoJWLUS9G8rpC1RQEKQWitQiTwddz2UOfSgV168KXSuA2PXM46Vpzv8I4KUZpyC8NmA7J9PIaKKqNkduTKnO8MFrJOETwf+8fHx+PxGPZwT0Be5/Fff/5zVn58/Nj35xhDdMSqLq/YqRsLT+HiiLV/ux8VueLqexPfECwsGLoAWbE8FdXr28zpS3RvSSgu9n2lRHj2d9LWWLceo4AMNE1mxTI2wCwiumBnJqsiJ6lZPsPLQ0R8rDYrIurellY18LQHx7Iqqm53JJFrJxjRh+73cdc90fy+rb/1jPcW/9YXXvvZa9x1zQkyU/FlpLinaHeV0XmuBFoR4te3aLPjVeFd8kQ2tWhGBlDt3DauvG0BDM29WJxbdHoEg5VDGRRrFi5QqZnJiIAEo5yqxqJYLUiKVGUlZ2sZ1wW9SEmFyOfzafxSuN+d2feH5oJberl72zPnaxmnq6oXzZsN6IUkb9zDhW9dRRVBYS5sankGL0/D0jh9s55VsbubamsVOvipV6RdSbPFHaYDZtRBHZASrhxDs92GFSJPfL7e//zr169fn6/jyIKYbnzYttm2Zz9CF/t02LaNMVZfexVez+dz32yM8RxDVQ1jjP2PH38TUdNt27ax2xgrCM9MSFRl5CykaBNRSlXd44YCylqTZJM+1ohfhtk21MAcI0glp6yc9Qt0TOmc+zam51pF35Dn7g15u33va7iL9TnncR6tbfjrr79+/frzn//8559//vnr16+m0mdmhMfKrkdLmBd65xKwr2sDIGCUsbL20KM8XA6RdU/VGh8O0bCvHJDvF9v3G61/zNsIaaIi1GFqd7SUqeqwXURUTblMJZsJbdVa4+tXr2FLRCI0Jfqrtry6R1/SwcwXJaS4/Nfp0WjyyMlOLirsP3u3ICwIRYUyirWf7+n7HnPOwoAI+MfHjz8+fvzbH//H2Ld97MuUJyLKZL7P12bb0I3UDGlRl/RToMgSqcVvEErTpPqaNDMVbQ2c0thWb4Fc1KrI6RFQkOw2uXUKVOnKSER62/C1sGPnkiUT7ahiRiaq3fWZOc/ph882QCQAk8o63Y/s8ZV7RGUUhElkwHNNKDwRidd8edQx53v6PKsR9vi67r9NKiXAyjwrlmu1J1erwh5GMkJs0EyE7YFJtT7Cck3RFVocQzE20hskJBfPNCLW0HBB5pbiCpPqfkUAUkzHGNvYG83R2jizAJZ6UhWFELGOJenrJxdhoFkeuj12P2KGx/SIaOreXXgtKhNgXYzI4hjJmiggRCQRleyd44KhZCYCunQ8UeWJ6Snh6k4Kx+j3o9sOVZXRIhNRpaStwquqPMoEY+tHR9vXZ84NuepR2r5tqipqpGZU04TwL7a1ECyx6/1wIK+ZVq0nAhCLCFp6yZJ4LRlvYxsWFhfRk60GRl2HdN48Aq5M1M6SWhakxkdk5JlOpBNTuQ0VmMmeVFbrPQWsISqFSo/piYo8ezYz9m177PvjUUU/45z+3//80yNVt8fzB8Wy4y2W5EwXkWGhK9ZmrTvIa6vW/2MFrVzyqraedFVSkovJzyS9x1HerYVIEQqZUoxKTw+QUIx+oFiqdHoj//XwbstENo8wSlBcOTOduODpISJIll2H/VoKdvGEqv7humZr0XXnT2ctnr00CaIP7G5eSa7H6/rU0OD4aszVOgHQBtX8cr/e23dJ1LJP92C4+aWyBEnr01/bouYNus84wzsX1qPaci+mPtPda43oPTNZqYKFPjKJREQUiwJGA7OLxaRUVUY2Yr4F5HZ5HfrtUnqElLDRQL1aaBICUXWVQReMNIFUAiI/9+eisnFl2a7Dr5eHgLuXx51w9zqmu/v7WLpRUg0LFN5OYaKvPX4rvHixQr6Xv5djHxBbgVFoVfV1YXaXXK3VXKM8rH/2hk1oBtVSveJYVLfO8Pmg8pzvmfHr9fnnX3/99fv1OmYROjYdsj12MwtUFwb7vm+PR0Pe+5weoiLy2J6Px7YN3bbtRzvFuG3bY9hDl21wjKGdM0mJbRtNJG7skxQbbVBcLOh1ugC41FygZghhCS0K2v1DpUCNlOwQhbqCokEtMksKSgyhUUfDlXuVJitDqffD61GWmafPc56v9/v1fn++Xr8/P3/9fvXv1/t8H3P6ZPv8DaPGtDCzquhzT1VvI+f9OWqp0K5d8qIQfQUuZiKdFcoqBaB55XQVWoq42tr739f84LK7jmEi0GFdJZjZ0K3HmT3WvB9uKkqDmeimY+jYrG1MegU49uxriLjGFPqy4ahQDDZkkJwZ4dFZSvDAjB5rOJzAAdbHjwbXqYhBBcSgFH5+PASphXOcOc8h+n/+7d/+7d/+7W9//DH2/bk9oI3i7KeC6/bhT389X5/vH+f5dpxkWoPotEPY1m3TRl2yFsGDJbr24koisll8jS/Mq5DtCFGVlt9J5iIZMa5SrIM0VTt31S9Hc2dRoDI8kTHnETHDfc6jWzUARLIy8ow8aoXkIjO9N7nsNy8yMSM94wx/HWck5nT39IRXdoI2F8JDRClgVbZ21qOTlRaG956iawxRqmpBATXStIDc9gt+fjlyOoOIG0UkZUUV3X34Gu50Ks8V2VWEthoDq/ofY8zdxxjPJ6vqUhrYuByOA9JdeuZCCJLUzXpgJjq258c8/JjnPE73cwFT8jLuLP8/bFNLpoKl7U1YdQWwUkmSomIoEb1QW3RZ9CGG15zBg2ouUKH3SKGZm6pZpaxozoGUKbQZmTkdgFwbq4gIrzPOrfnbSVKXxoIiunlKJCMlo6CrNK6qKxLh69dS9Xb/dtFQ10T2a9ylnYtz7TfW2cCKVUX1u7V4k16FK30p+qmGb1OQrsDugzErugwoIqL9MvF6iUidRhvSCNnq6QSqpQDNjImsrXFnsJk5z/k+j+M8OwQ0MYd9dAeG5YPgVX5FIaoC4Q1OXgUolkBbO3UcVZEVkU3J6iytVRtEemS/iEImNm0sIQsZHpkV7APKqEbdSwyyeJjXbbAai6gmQJdU9ptYEcjqx19DFu62fk1ESKyXuDoeXCKrvnMqv+ZSqqMf5ff46nZN1Ldfq1D7lhT0VSCuSByuoq1dTpBbBN8nH6pjLtdXIPR+yREVUWfk93wSERORDADnvbhcx+7XrUoAec5KR14Rvxf4QpqfUdHWQRUNSYUBSHiflJm5YBERazcoVWwn7QpK6qn2/QgjCdbyY1MXpDMzoiJ8aciK7p7Trz+Pjp7rUnX1oLekZg0kr2MVaM46yJIL99Vj6Yt88VWW3fcLvybIvXbMewWOBRiUW7pD6lAR6T67YZpN1dqfe2a+jny/z9+/f//11+/fr9dxOii2DdVh+yYi7JGd6tj35/P548ePx+MhCgV73PJ8/tg3G0N3Gz8+nmOMTfYxdpR2ONoYaiZjE1WKlpk0j+qSvaFKSpE5C4H1vJVrDgglsx8PFcLR4PhC9k23CLVkwnFx5iolo+HhiEKJilhbSqtYrY36pru6r3x3P8932696PdROxiXAisiAjWu60Js6tyiyqksuGXbBnK62JVhXRH1X7TPjq3yPvGO2FxB73UsCJpOqBIyK4liap2UdVVWDYOwmIrgw60PUbBOR3sn2zozXAFsUUIpQTdpDqqoqwOW3vK7ZvrYdl7LwltZJwas62KsiCVgxQXcP8TQ/34eZmVEoImVN/7LCvrYjIoJhm9qPHz8+Pj5+fjz358dzf4qOipxxTj9P18H08vPnvx3zeM/PmYfX2TOitflHyGo2WWSj47IiK2rBYRPAGY70tnF3g8sLbrJtm22bmGbVcS6U5sCXTvG+a6s673IFBFVmxHTPCv98/ZXTL/l8tLKZUoqKnOFHAyBJXqGZK2fEKyvRTUOCkfCs6I69MpvlJZVMkwUSy/KIQJLBNEWyD5C4P18RzWhMV4QWRqEhlR2r1dXKJdEFWFAVwHpjSmb/CLz0rH2DRHjPjJtgFbU0E90ZFtiP8Vafi6wBM9WuFeYXSFJEZJgpRxVURMf22M/TO3RrznkcL9TXaxCR3qVYf9hr4oVLmohMtoydfZ+D2qZ9ZJqISAqD1XYOpMHPEEyjFaubHREpsayj4/9EdchmNBYRmXIFiVxYrFNyJKRhygFSbWyr9ZJBtquz3DM0raSx0tf5nZRigdSmh0YkiFJexFOp/CqPVkp012d9kEO48OffLvOOpC2PrExHshAV6xGTa492KV0qiZQGfF/Y3sz0c/buRhW6aZZC7Zq70dR0UzMphFed4TvKTE1kA4VnQn693rr9Ett+2Fb1TUG4QFwEKtMzJyJq3cA9xSxUEKA0tR/IBeGHN4PdO9VPCjlnzkQsdVFHPIr2OyFxplelKSGUAdtLB2UXPip5Fa+sLK/OoamI9MbDZTLd3RGZXs24r7X7zKXkDlxSq3UbeUJE+uq/S6jrxy5U88Aain+n2Whd0SWry6k1S+vS5i68mz5VrTsi2xTWSbgl7TVAoaQfPAVCgilLqk9vqXLkjAjvIdkyCySks8zP/n+u101StAQSFUs0kxE+W4i3MIBd/atIz3ATq+BMnTmXKpUKNgYM30rVykzcaC+5stLXVdw3dVHEK6U/W0QGPDy8In1NzjPdvZcLVZV5DbdEeyp2QwS+lraNWhJpeitJNscEd4S29uqthNfvHnb1yXeNxypI3ua4r2u8Px65fiyorEyUBtlDjDqsq4HX6/Xr8/ev36/P433M2ZmmTUHswisyW9Lx8dh+PPe//fx4PB7tmutH82PfH2Mzk20fz8dzUxPYsOFebD4eqEJT6hCR6hvtCnqtYkVm+KW9+Q7pECFV6FXMcFKrFJDQqKpjxnUoYmZ5VszoT0SESaE5LeganjGqQ297Ws0ON2zl6pKCtaZ+GdDO+T7n+zhf04/pR+Rs2T4AoWRlVACiOsRi9CDqmkJdoo67hWDDinp13W9723K/zxUiOtoLl0GEJHp2YIWAWYwlAFAZY5i1U7sgQsVdrdqa4gi5vKf9Iup6cOsFc77/k758xnIbNKuCyjQpZFF7H88VYhlVHtntd0CiOojDs+Bec56vN7bNaF0LmqwsdwBWtsdGVrnu27Y/Hi3MeuyPH48HVJl1hs6p5jMQPSI//P0+f3sch1dJ6mLuuwgIaGpPwGbO04/3+RIjkEZjVoJzzsh55y439UBUN+wqNsYGYUasBjoTmCYqILQounLTr8dCZkbknNP9PE/PmL9+fWZ4l+bufge6m9DjdH/3KLF9cj34aUyaV/b38IgjVupcsJdNmW3W6LwgqdKmi3aX311JQljCXLj/NhtW5runWRlS6blrmIjA1FXVeveK6sokvLQzMzr8+so/l87PHioiWV4RaE96Ri2JNqpKTNf0P6KKLYJa+/OqsuwbnotDlLlc52wNopqphgwTi+4DbE65NkvfNV4ArDKLWY39VNzNvQkBZRFqql1pViWhQVFRpxRKlzIsEVEVxYgWDPd64FurlMoxlENVUtubW1XFxX+PKhEIJKtTccCGjJAqQ2wTIUozGFGeseWQK44Ka3G2YO2k9NvatC+S7XfFUiF/qaRbDrO8Ov1S/wU3gJs62bKXdQzGpeiOzsPBFetXUghAQBFaa/wyvbw8qso2JVkivQ0zUVHhkO1hQ+X0o/oBKjbGXomH2FSdc75eL5Xx4+PfxJRVhWB0CKN0kA6KzGBFtv1mCUNa8ZPX3qd0iZHBqjkP6TFepvbEwsPd28lYBcY6wllkMqLtxQS0OJQDsoOjoKBVj8VaoVnqSS9ESibgFEgFfWZFaOn/Q1HUW5J7YnUXWL1tuQuv9c9Fqb0EWOQ3ElyRRYzvs66vX5fD8T4IeRHqc2E2Fl5slfLfHFu4jFeBUkhkufvh4RGzI6iEGeige1zPsuvs6cscKGgymYsFXYk8IyYAwgSF1nsAZFm7Fq93papmOntfr72KvDQ96Pluj+iun66TsoT/ejGv7sBrNfrltSapGeuBuHI5VZZkZAH2OZZ95Opxvz6RrrRKSIFo5+T0zAG5ujmw/cPftPb3/dXfaNVvterhy3G81JtLxiFrCNqbwaUPWS1OTT9ex/n7/Xq/330mtWHAy3uZtXTZPSEYK3Jx3/fn/ugSRC+ZV7OONhubmohyWYuKWJLF/vzaC+lz3lqlfkLUtbhd8XvXu6RiIgUgo5u7ZJrQ0tgz4tU5gJHpM+cMMDMgkigRdRUXVdtSPc0EtUabKCm5nFOKuzLJzMgZOdvPeHOGcMdLf3Os1zU74aK4SVeouBh4zTFiITLbJ0lkovycxzyHahuCo7KPGWVDqaqEgiyhgg1bNmYFElFFVZqZDhOwmMG1ixfB+pyVIlqRS4W/7u72wi8TzDWEWPPye8txnZoE2iYAJtutdz8l+qe6aQiQSwDaYqc5aTrQV7jQ1KSFYx3GRZIV+bDxeDwej8c+xj7WxVbXbLl1O72cOeP9On9Nf9tEajpOGAuDBSElKEIxPeb5+3g/3+++0ktLigrxnD5nG1HnnFxL833sW3R0asctZ1cfnMdMze5g1w6hL2ZKVQTqDA/31zk7i/B9zHA/z/kVRAiQNdQ8pntUxZChihbIdbZBS7go1tvb6dEA+rp/a5Wi2ntnXWfx6o0pIoyrkGgBRn2nyiPzdsJt4SUKJ8YgR0kL8CrTy2cuPdQlHLyLb7knStkmJ6/qvy9dEVcVQvoacPcCIr5oqD18VFXbxrcjBFCxtsb3sIcybnI1QZXRJ3beI9ir8Mp5JrMBJX0+i7Uglqpi1B7uRZVSOAZ1UJKimVL97iXOM2WvjPR5gkG6YluqGRF0uXt7B6jDrJIR0TugKJbPYmSWZXbtqbqpbKr62J7bZoNQKaDC83hPVsm+bbut7WiPfRs+wLzEpwWi8VWLInoJhJacpK4lDxDpvIUSTYRqxAYASLN23c81uswSaESkt3BH2vMfgKmWt1SKLRQFemnkZKVKers2vhh3OvYxlJsxS806fwndUutQc5aoavv4b+g3qm1vlaiOf5/zjJza1O9aOZ9VVZfpqZUKnuXn9ONMj8gpBVMRENE70mI2NV2QzBkIpUI5onusBwHNEIhAR6YtzGf3xWfOo2JKhsyz4kS3sT6zcWgR0e3jXdUieekMmYk545gTwB3C0t0tlpKrjQBQ1V4iZj/ruVzQ+FaH1aXdFtE10elZ5pIRXzfk5Vdq22zHK6lYVaHuoX4tPV1PZ4/5Ot6enkTHEW6brXat0tNnzIzFiwfzQv/VkhUSmR4x3c/exLTUzGjs0IjCEjXnzMzzdNM1zVr1E5lMjxgm9TXxWmcJArxMuFUVi2ighET6ynrLjLkWXG2PVZN9s0yvuEdlQOYqmLLQDB8vdB44etEtJSW9Oee1pr2g+lnVSfM9M2tt6HISs/TaCPRKTkFkJpMtVksK+84qEWjXWCp9ilByG+Px3Cg8jiMSn5+/Pz8/Pz8/2zpOMjyKFVFMdqJOVIrItm0fjx9KY4nJMLXMHKLb2MYYJjS1IdriZUIqkR4iDZMs904KiDT2xTFnnGe35qyqOae0qy6W+sTMggWhCmdEuWzbY2UmetW1aheueYxnvM/lZlDVKnLoGMNcw8tnuiasRJJQsY7oqMxUW0kbV3jwPM9zzuP9/ny/P4/jdZ7v1tuJps9WH8PPON19BrKU5EWBuhbQhWzGb0rRw+Och8/yCFSPzM85qTpUKQp4LH85j3C2ptvURCFFajGVlt2ltn1HxTr0rKrRxGC1X1NQqNjHFhEeyTXUitVbq2XW2roWM6UiI5xBM1MOYQld5eI7VZJSle5duqGEGZjhUKFaZjZ7sCLm8baPp2R4zuJWWmUgZCuJmdZhUZ+C5KCYqqyw41LKsE0WzGnsGcncK8amM+ev15+v43e9IznD1OUUqaJVlaRu3EsQrD9ff0HqzLOYP54/lRY+Z87X+/Ovv3799ddf7/cbwsfj4/l8euE1/Tl97BsAz9nxW5UFaebrwl73XNzMGJJFSkKKEp7n6zyqeM54HzFnZvQgf4XGnWf4zKp0K81iVVSeMyLijOZFvEhSVUz9fENYFV7p5YkOI2F6gpssDWHXytLiot69SeXMlcBW0hJXgEyvM8LPo/GRZrbtQIgZTUhqR+Z2Ssd13mXvDqpShBfQMcjqsWxW+VF5QXMIzTG6YbHNeg/Qko9Mr2ftstdMVUWfDiiyosIjdGyFlILZVW4f/ST8Gt/KN3mFRU7cU/4mFaVQKW1hXYLQHmwThR5bLhZZSg9VkPQJMruiECHoq3+/WvBbZMPvTXl3EoH7UFypNiKq/RzcH9s+xjCCDXDDGVHuMS1lJrSuoL1c4y1ola9ZmrdgnqACQsoamv9r4XXtgtZL69DsPrn92hetfqih6k0rqEJ2LDmLiVhxh7Uyv1CRpdSi9pKkD0wqF7JNyet8Uxkcy8MydgCkmtk2NDO78BpjNP6NEHSJ1B020GkA4WfEFGVWfzorg1KkFrRmTeymux/HUZEVU8BiZ/uteJ26OKyBlGZisMKrslOZiUDG4t8npVL6w5OMSPNkJDPgyQrp+UoFpURFkv8y7rq2Uch1wFzVGHAtv+qSzlz/IXX5Ga7H3FeNVcK1e/lmSPx/xDt+nwC1s0IA9sP+64WtqiX9nnmuYHWPc56HT8/wjkUkodJywSUauCQvncR13WyVjZJHFKq1JZQkKVxjZkpngIO9ERECIrm8AuAV7g4spxkzMzufRkRwYwUiFzVkjT1arAqhsr2chIhiELE6sLbpjS6PFmHVm2NEZAYqZiYqJgsrmxtSq4hFSUuzVERyHadYr/l2j15ZSbnWxBrM5o91i5prMElAejZfEbgaqYt4DwEu2bf2RjVR5zlf59HjruW+ZIlIg4OEtpmNfQdw7bbMzLTVchFyTUD7qWk0oQqUFJaCbKXR/avni+HVrvpWNVVVxBpf3XrzHnH14IrUUOm5xDUm69mDL3kWotgBXujKqT/n6bF5eoZnuadZdFdfySt3tC+SfiWemXMec/06rvJr9uv8Pu+JqFZlpcc9OjJK8ttNGlmZkVGZ79ObAvRF2muRXgea5jJNKCgqqjI+NnzfAy6PSH+WWlUldq9iIUu0hPy6pXt2M3P2I7kZs1neW2l2ALW7zxA6yb4FtYHC7A9lbTW/xL4lWIRJosHSOpCzSkIyRLzVlsggUlgqpXKz2yE0Kgt3qqzhC1TGFvuM0ebEJSpSefk7Mh+Pxx8ff7zPT9Df0edSUrJdX/2dSJnpFufrfNnL+uuYDCTP1+v9fn2+X+/zeJ9HZs4Zr/N4zXP/eH68P/d9p0gJdYiJ7mo9Bqs2XmQu+LUoADObGYyAClVEhzMhBokOzluDf6lZ6StQ1QLakKyIilIHInOWZKKYrEC6uy/BVnlEZGNIRHapV0Vm7mPbdOxmrZdOANQoBHLxq6nrsRntaF7an5ar1V4KnBWVUhoq0nSpf9lp5Nej3t0vH/eXwbYztXoOmpkFj4QEyTqOg2y+RhV6zxVz7vv+NDPqZce+vtp9rJBUYYqospLtiPxeeK3VbczZZwNZ9ObRSAseIRSCUlAIFViJcNcbmk0F7447piuVLGj0UaxpUp2QmK1ZiUUtlnsvcg3e+lhdM/Aqquo+tsfzue/PbeyjvTUV8DOjUB5Obw1EFZnCkrVX/HpP1/MrszpbVDYwK9twV7UImG2ruvYZncre9Pyqth5mtgriWjIuhYFUEiU9FVEu9TcjOld6IXKdUDWRodrIaetca1MTyaZeLSCs7I8xxlDZZBhKl9edVCggY4yrgFjYiKzFpPeciIw4KxKt7e2Ze8/hVXHF8daas8zj9V4PSqQ2BKUVRG2Q7YzEfs5VCgWRTAE0g+GEsZApmYqZkCIBLcmkByPLZ0UQoQhBFeIKj2RccTgZeX+HHumuUqmDda/5Yyeu3+763i5xFV61hLZ3VYZll6iqK9Ovn9+8lKVYCyBewS2EkrWuiPKoiIwVgbKWEXXlYUdEnPOYMWd+aXV7iRDVGtUzfd7j0i+5ILO1pSvPooJSJi1CugOokdlondSmmq2x05eJ5KsAreoHCoXWXPBvjIYVTowF3gLaahdCWwsfEdWOWRAg97H1oo1AznlmeUnkzPSMWV7hZ0YjHVo5H5ec5gI/rEzQ76SD7goTjfynaGmuEdoSW/bedEV4idaF1y1hRfU2XcA+87ptbYnVUNNhqpo9Bff5PufreL+Oo51ES62dOXRs2/7YP/aPZ4uqW7i2jW0Nz5JmxpQGIZNsJRpKUNbv9kWQWv8tCr128R6E+zJSRKxdXq8g1/qP0XqUElJi259jKPoH7wPikkZ1MeGex5zHjPN0UShKMmbGjLQI73/xoIRoopRRQJCsijv++jyPjpNbUb7v13GsqvT6KxURfoZPbwSXQEAsLhY6Mxetmc6rEc3wcM/wFfTJvnIhlO6a+1hRVTPBUH1Y8gvbvRRj/JcWqAeZXQ6k9H558Wj6kVsoVASqanFeMme3wWSZlMc850F0qZ2ZGW0q7FXqEurkVVu3o6uNECvcVpXumV5RSCIIr2TxLFdEa5WcseSMqgZlloWxNk0yyvIrS9HM9v352BqNBE8X03GMJM54nfPfZh4ljnedJFkqCQkImaYlUswzznKdh7yFUhGxyYaq8/fx/nz9fr9e59GGY7ydn6/98z0e+/7nr23bdMh47I+P52Pbt58blxfKukWDKAVixtIENXOKg0I1HZt4aKYFYMjozMvoKA8hIaPrcpKVniIUozuzBKB0zxDuUQ09rvLVnK0VT1TmdEQKa7fRXogZ3pXAJRCsbO40vTq4EHG9tY0CSYV4phJKokSGKEUVPTxvB6KWtTSov+y9cOwSuS8V0cosiewpTUQxAKb7uHRc0U9193PbHjPD7Iqm0nH7/PrG5xqDQVgqqOZnXb/kAo6StNZxslDsaN/12JFeNStES25MJOheKVHlHh5zZnpJUrEJjGiuXlQKIislRBJo7ngGQhKEzK0P9qoVNHebk9nWXTGz7bE/Ho99fwzbbOgYAzkRms7yQ1BJeLZ1sat4Bkuvk7bamNfDp2KmdyJ7hF882AWL6m+fJWSBlumylEMNeYqFMkdSlhVOenoLucl636TfuAZ8VZG5FjE6xk7tfccYY+uWm4o0mEktUvAmtMYLGce2bctsJINkC0uTqWiBF1onHzkrZu8FWFFh65COSxHb1aSs2NNaFXxED/BwibtVm0/VY8oCEqyk0QoaVcSgDJRlEIECozKJBDOpJNrPAlZ2ZnQ395YhCIIMQmWAXw13/0u/vLue6OFB/6HUcgtmZruvLs3yv0i48P/9az1t9YvBfT8fSRUZtbRQnbXdd/5ciaLX67wlwx0d4atY6BCRhuDdDsGeRtwuyO/Kwuwc6qasqbJDUdFMjvZbd2RyK0yWAaJ4IdtakH7NOKp1sqS7w7AJvFozdaF0lyir+P3Yuy7RZexi7wmFzIp0RM55nsdxnmfEDD8RnrEMULh2sqzl7WCh467B/wflfBkl6gqUuL71SigEshOQL015T+II+YqATBSrsqJ16LjsuncNRJWeWybo2eEtEZnNioRSi9u2P5/Pj4+P588fqgvsgJJtNxWLCMcpiipr5HqvimRtKaK5Za0yv/bS2Rtoz1mVc57uTmREHMerp3rzPFerABUJETP2p5Nqj30XldsYtDCn3Stk5uuYr9frOI7IaWwv1c2+5z2A78wWkZ4cy923dC7Zccyr6jo+Pz9btdOjr/7VMrImZXadStWeCPbseV1gQsSSxzdX6TsfnHXdX9eRtjjgpiYsE5p0RPd94WUflt8txlcmpqrqvjX5zf283ZdIZhSYVTGr0BPZ8F43nKj+bzvB4L6wr2/xL15mYYcdlXQ0uwBCRzFnNHEyQXPx0ZbzOefYtp5kuzsLaipkyRKhJqDSqYsEEFVJiOm+74/9McYAFkqHxkTNeB/+fsXvMz4dR99LjrjGJ8pg7/+zyjOOechbquoFhWO+53wf7/PwXFvg6bNmJTEzjvM0M9v04R8i0lGDDRfuk7WfebYiCAFgxgrnEVNLi21LSMIkO0O49TSpkaBS+krrS3KTKs10d9FhObtIOfyoYKJY4pVasR7a0i+hzwv4zKne+fBzBsV6PT5Pn+c5LxLEGoVe8cKqil1ITSeGSMdHNcBNFMCMEKGJiVB7JSJ56xqvFcp6jqlqtZue2Ull3x71sxV+5/nutNbn87nv07PG8DUvtzSzEs2LiNS63LXcLEjlTCdXZnzL/Fcj16glrh1w5lJmUWVQPUGDJL0LuypGeDEy3WN6s+ZY0IKhNMu0iVCJKISEsoYks/oylQSkOKkrbFl6v5uVTnJcxqh+L81EFh5DRVUMkpIm6VLpCwzTbEVWpyjdj/9K55oFolrP2rOhqlXIJzqJedXjJV/QlH7aVx+9KYvIkOygULkGQusJ3vkaC+RKXqbn9qShzbEMVOff9s+y7Y/H4zH2EeJl8DjnfL/PQ0zH/lCz5+NDVbswsiEqg+vkNsrlzswVTtnifYb3PJNFRfORSrJUcJkfU1irpU8iWg5YQRJGcGGx2OeBcrX/qhzsrD3dChql3YevLW2V4Mq77oIA5VkCAUdiElq0TkbTQUAzI9qQUQWBEtaakuiJZI93wQAkG1KaeTFrAKlaf/8br+E6CrKp6pfLFevAXg8a+f6fNN2mtVnrLC3P9EivS2eQmV2pn57rmKoOshsiRqPQIJUzwvOec60wO2RFsCQrL56+FCRZJSnDlApAsQwHgYIKCjkzppdHIarDGXtMXdd7kD2GyDZgJTvSpMSM2jf5F1SzO60G+QiXTqqxPuiFOIqJXkXl9Hkex+s95xTknEfbEOUaELZBuOsnUrleXbPlvqrnpviuV0BCWjPd4oVb8QojWq1OEcj6Ab8UZj1b78FuM9+Fyrpo820jJTQXWkWYghWVMYylUXx8PH78+Pj48Xh+PGzIem4kx6YoyTMy08u1JtFoLFgaY+mrSKpU9Ti4HVS+VJvuDmbri5nh7u/jdHcRienXjxAiIkxTFYlCPJ5fIUL9oO/U6r4+3f3z8/35+elxrje83ZBKKoudPH9fwOS6E+ua7ayT4xZ4rTLL3T3O08/Tj/d8v0/3nHOm54X+t0YYYEGjbCmgEkVorXm/IFRUBDo6e5i8Cu51UY2O0BZtGSLimwubJO0aAGRmsOdDHQewq9n+8exInOnnocchx3me5THDPXKZEGO6ezZ9WgRZSlEKC/u+t5Z4LeApPXEtoCPMBKOrpX4Wj02pouWajN51F55sA0lEu9cjMjzSMzU7oVfgEATOjKpsS2yjeXsZoapj6L7vd+E13Z+6F+KIj/d8vM6P9/t51KsyMqRDc0kWwsszTi0qNIKzIGS6VzK9/DVjhnuPhVm4TP3XAzkzOwF1hbtvC0LeYus70mvTraooNPGhOtRSg6NHXGx9SniWSjnA8MwkYmV2dTsBAmoUOUlGWKLczy4horIgzKySwLqjK5eNHGBEvt/nifWuqyAKHtF2Hz8vHMkFo+5/7wJrmEjBKPsYz33fx7ZkA6iCisJkiMDAu/DqS+7Szuf1gCJ6Ndq/W+kVAuB4nRHR1W3rfM7TH4/4CZ0zVqk3KjOhkrdvq6HYHdNSSZSKrHC1dazVItd3ed2+UEcslW9gDEGPNJCSHlZkJuA1i4VsyNoZFcIqy/r0oO6qHbSpIDlYKFiAjEjS2mJXWTX723/dgeHZ+0xCdRtj2Bhi2vI66AJHSFG0goVUVIBJE+k0KTgLlM56XCu51QWikJXRgQiV/b+ivWW39Ccajt3ZzriHWMualGCCjqald3LfxcqqFqL3swUiyxin7EWKoMDp6xPKpiEIt8f+/PmRWmJ1nK/PT2TVnOEz6lHbtplZ+8hEhFIsuSj03w63rPSoy3ZEEakrhzyxJENZiPx+EndDvzDrufwpmVm8cYdrMccSQkmDkWhk68gSlpIG6oJP9SSwGQUxO/O7gcTVMjxRYUZrQDK+DZCyH/dr4RJ1Z3dyKYm+6qq1pANaJFToXLXoVLubFXQPXS52/EVeuOcq6wv2kpytZZ5zzvAe8wHIqwxbW4pM93SPGc6LKN3gxw4amvOMPhiyt2LNeNUAVq595/pQe0QhNKoKWxOPJfdp51YmKtt4uBjiPeujaSPycrlriSytrOg0ziISsAvcWRcLpy5Ok6oO27A2jUJgzX09sup8vd/vd/j0c873ERHCipgmAq5q7aLGtW3n0saueRw6K/NCf+Jm2QMlot3V9Diiv3+r5lnhIGouJGdFhlcFkURSQnvMxCAwVk7jsLGZGVR7H9DlLihFybXPppiReDy3Hz+fjx+P/TFaUISLl9iFv58ZMd8VRsHYJTCnVJWDquyUlcij5wLLPO8RXoFq61NVZYW7z6NL77ytVagCQjVrbGYEl6ZKqCEyJyKmx9KlZWLO2ditQoppJ59+HxJ3UZXjMv82g3INhCoz5ow5vadFPjvct+X/53Ec79f5er3WmsojZoqIjdF5dVfVxdG9blIiMsOuOXTAqVLD7seIXECTa+Jlq52uQjmWW/MSgVyT1+4ETGhm29aOwMcYw3TrOYurbbQBfTtOnDEds/KczSAon1WLGu2IqfnmUSmECUvVACWHUEuqSqtmP8862z4zRTnM9u0hCk+bqX30DehQY0Eq3R1Z0kKuyJJMZkSsdSmQiOhosupob641jokOG7vtY4AVMSE1RGg18XPW68jX23+d9TvO4ywglpjt+kALEQ5P1ICEu1DLKybiPSvW7L/f+TsvqYvXsdu+7x8/nj+fHx/7Y4zRCmNeayUmiynNjq7q8O+2akZLL5bFu3mlpTQpxQbNLUdV54yyFAQrve3DSTIqq8ZY49ErgmmJYbq3nR5BsigeiGOy5hXuEG0kjcj0vGFwQAdYLWBQVW3baJOZDdm2bdu2sVaWKoRI8mINWifxBKpCxKrqPM+q+ZXn3bzESPc8T/dKkh5lZlNW2AeQIjbnzIR7JjjGvlIStrnvO00BdCp5cxhq2RhLBKTmkqxdS4YepjijUMkMXBC8HqbPgKRInlkiimA/r9ulhfIZZ7pHeft7pvtGFTUpwkhVA0GdEXM6Zg7ERiizUElRNk+isqrfYwhpuj83Gm2ImtyiSzEd+yYMqcxoAw+kZJlngYXSL8/oiVRHx1UhorOMM3tH0XzG9mShOTO4GnDiIo62diVRje7tdMpo4VdjqLK6vO0jP5KpSwO3HIHWShApMJN0lgmDODPqpA5/ZjyIx+Px+Ngzf+779vv12ePNjmd5PB7b0JskzioVyUzmwuUjqzrnp0uoNq7IopmycbDebPRqNjKuQesY45bTgor2sUfGzGsUTxRWFnaStvdtG+gQ+SZm6MqKL9PeBPiZ0+ecbWOZHnVOldpVaIrCzMnKGd6/M1PRi+hWJvXNxju1NCvarnSlEFSVMytSrnVwdLz2F82zZ7bNGflXTf01TEbvwCCYc5ZwxmyOTXtSpOU9hbm0X3e6Ni/l7KbbaIXQyow9I2LlZpPSS4yF18jK8KorcpJKtR5aSqO/PapYUZGFiObNqQjNgDSwZ49fOIZcc9pAUJbK6lZWRQQq8U3L3Pyc662o3lZFVFSFl8+Z0+cxj8/X8X5VZHnM852ZPVjy64JjlbQmpr/SlRfUe3hqS9j65L6WjN/UrFw/xXLZasP2EVeABDMFlRVeMasCSKkUQlXVahhGu5ls7Pu+PR+yiaPi7afP4/QzcjWQ7p6RMCEfz+3nz8fHH4/HY3TiR+eCWmOd0J5FP+dZRRPd093HKWfHnIrItssYNobakGZ+nud5zA417i2kikhEe/nWhOPOSqrrcgSVYvv+JJkeKZ6qLVzqJ/I53+fhc86s/ljZd0QJZ8TM2bO0E6yqtw3asDlT2t/cu5JqD2NE9J6x3Qb96zhmV13v93kcZ2Z2JkyrSnobY2YdCTTGiMwsnxkRK2O7R4ONkRORlkAs9ULJAgDIkjxWFrJ5xHVfBOs2zGrAx7ZtK5Hw8di2h4kiWR1toTZtDCM1gDz9EAfOFG9e/jXw1J2ileZThFCpYZKqpptwExvsTJo4wSweEZF1BkrEntvjx8cHWWe4TCBcqor5sCEZ4nni8Ax45DlrONSQTHBmOrL1hUU4qlWgSA52SKJ0HtW2b0RGwDaFlIWmeqmnnUf8OuLXL/+lJCqqtZMCKlHIGTMnfXqW0oyagZgoT5ZYE7epqu1i133bHz8+/vjj5/PHo1Ot9sdQVT9nY79HrxxVho2hmtMjYh6HH2dOpzd13sOn+4xoirW2jySZH8+fgACsbB+ep0fPX1RJWmYiu06CfyOV5DfY2xkaeaAkomFMPdhhI6P7EuoDLaafHu7tX1qzQBFRpQBG2R9j37d9jK05ZhdtdGFQumoAgWz6JqGZiZJpcR6eEQ386VvsnH4c8+w83Csze4l0tGXGUvn2Ga/Dx7gjW/fH4yFjI7nv+2KqyfKxLZyOSNUSF3IZiCozrSMDOhItcRkbi52sV4TI9RC/znMAKI+YC3QhxY6HGz5331SSotyhSdLd58ycEUCKDiIqHdzF6tqndnXLDkvatnuzW10uSKpy2wyQylwJgzFUYB0FnZXefWd7fAjEUMmquD7dqiK7RUjWonp2Y97VHViX1r8PsFg8T8xVrJfnFa6yvJyQ1eIjiJUbjOXKakG8iqBnaWomOiDmlTlPOfR5fIxzfvztj8fjo5nLBX5+fjZ05ziOnz9/6r6LyOEv9xNJyAYFc5XVyzcVKwi6KnkZ/QTLhVSZEU1ZAkjE8nOa2eydN9hI7h7/HXGFq1cCoTBWecFEUFrsYKEeTQiKiG7UPABkXO372Z6DY86Y52NgCIcNBeN9MP5l4rWmWRl9D2QmGyQhX/O9b5XTwhMsF/6XNRLf9lNXIf09PPi78GjRj4A1i64ZPuesitJNVVCCYQ3szcqec2ixCKWYDR2bqQGY4cdxduZdywb74sXCV3UzK2vKjOvSpgW8F2/XXwiPinbsi5BiAohWlVb2pLFH+4sCnJXSI9uEglTR1kt1oQdei/xbPHfvgi9btVfAz+mH+znfvz/fr9c8zhVmdc7MLNFte4CISCQRgAI9eW5Blkh9sXq+GNJdqzZEo/Nsrs9ymZXAS8+JrJoEo9OWG6MdExWtE1ARlbQmbIma0Lax7bbvg0PTZybm6Ye3Z6/OrDOrKVNk/Xg+Pn48fzwfY9PuudtGrrZHRCX7D4/zlQFVjRxGI6QCmVDU2GTb7PnROYA6M47DzxmoBcCHbIKVQKXbXhXuzhZQVjETJbL05vbcH7f9rS5TiZmJH3nkeZ5nOAAdwkQLCi1qkXrdr0IHqlPFh5zCvsdXSNfr9WrqzXG83u/jOOZ5+jyjf/fWsTePS25R1W/CGhKrbmNNTTJz1hzx1VxEzMR29+4qgsVAz023RtgvEzmJ6ujsbv07q+Nrk9ATsm3bPj4+fjx/7vtuZkqrMwIAQsuULMRZ54ypKf3b0xWkjCGUsYntUFMQlEyEM5w1KNxUdtOtIVgaQzhJnnhnWmb2iOixPymQ853zdMpGo5VXxthCT6TH4ZiRp+fw0gDUxQGgYoxBakiPaCNKkHw+pBEzV45kT+CINpoFknvJD+cff/36+PP3uDJMREArgWxlBthsF06keym8ZKtkBgVc15JuLattvdG+7398/Pg//+3fPv74MGsWQV8Ph6oPt9r3j7V83Iby/fly9/M45vH2ORdr9zimT3ePeWk1hF19jX1bC+9uj0/OTK8UU15yQETr1mX7WslUwFqD2AFEw57t7MgsXLKOnmz1uhrNGpzhs40gq8QuKTPjhenf972XQqoqFNWhOoRm21jzVPkmz/iW2Huep5nNOVs3BdA9YsY83ecMlEyhdtXFDm8wyhmcp9OWy60ZgI/Hw923bStRRMowRNLUKI1ZaXUPMtMDqFDcB7fN9CUN6GBa6sqJFyNNF3KtImMNUYkoz5h98gGAszCLLlrPp+rWwVPwGqcfFaM8m9x3Iga2TXSjerks7Xd/DkEoWMcxbX/MMyif2+NDVdRqexqNxoEqr8zQZKbnmecFM7jWH2hzYQajMrSyKWdeq5QeFG+ZSl34NpKrmlz5DX3DV2VECFHSM66eKBciq2KeLkuyzuvY70GHFDLZJzCoZqpQGcOk3cUBz9Tww+djzs/Pz8fHc4wxxvPHMwRaVaamAp9HnlZVZ8yZvunQDj5uRKqIqClolLLh7u4n0lmFdAqFSIEjMjh6jKm6uvGsNtJ7FgrnMTvdPLK4IsYkCqgsKSOU8MxZSEpvJ8PLtMR0Tck7dYqZ9GTKEM9KphiJQYYYyTwP78G8tx08atFfIQ1AWjVWRjmSpaoZrSroPeLXonWxqepbTKTcwI7VW5dHMdmXe/axL5fAqwqVUSIS6chOqWNFRiUprfIAhSsonEPV2kVITeT0c3rcGSw9jWhQnSz3ZAL3GFkS3pUSCywqdY27M6dHky2NJhRCb80yrhhQUSWsC7CmkNW6qYMsE8qF0gB7E6FoRZcI2R0hRNjOHXdnVUXO43z/fh+v9/H7cx5nuitFoew0KEjM9XPdin6tJdTpCrOWOC/QRA3EtRntjSJUtXN+Vp5kb0SjAhHIrLN9KxS7RXskRXQTDpYpB2HV1l/lmkfW6bN3rhXZKuxfr88/j89XzBNA7wW1PGamA5npc87TZw/pzvPLS/h6H5+v15wTkH1sqkOpXB+6gJJ1RsrYVIZV8jyjP+0ENZnTMyXKM7y8u9rGd1EhgCiaHPax7/tj26+EcqBi8Z4Lptu+VVTxZBdLvdnr7Jy6uFxtsgEyp085Pru6vtrozPT00+f7/X6/P9+vz8/P379+/Xq/j9frOE+fhx+v9/k+3u93RJAi3MYwERMxlT7RnmM3VdUNm2zu7j63bet67hHbeb7P8/Q5s2M3hmnbU0UvuReqKEQhVfYqr6XNuI/j6oDjefgcrh9mMtZAePXBEpkSsJJdRo4t90c7xci97+5GHULEo1iiavu+P/aPj/3jsT32/blt27YZyYZalWdPhj9fr33f//a3/2PbtoiQREz3OVnVoJq+4IE8z/N4vTLTxEI3F5NSGdacxQUXV8nDJ5KNwyqeM17H6R4kxximJLdCnP7eILVvZ+qmto9tjPHj+Th8zLkrBrOxR9sZUZidoWnDNK0CLJqZlolY87kJUnToto3t+djNVn6DiFElEx7zyFCx52O3bZRUKtsrmpnn+X59/j6Od1Svs0tEENkx5wkWKlDtsuvs0ShUJgtjExWLoHt2fZOZu38Js3p1M+escM/0Gb34jgIpqgOBGec8z9aUrbW8132pw2dlNHEgU8VUClKiYtv2EFpPu1R1s011CNu4Npbl8DoJWqASMSNgYdu2jTHe7/f1PFvTuBZFekRrOlbykk/8/8n62+XIkRwJFHV8BDOlqp7de9bO+7/fWdvZ7a6SkmQA8PsDQUo9k1bW1q1WSZkkIwJw+McUE1U3hQHYNm8nMEFVznnu27b5eHCeana6q5lb/w1rzSgAw0qmbBZ9c5R7XICejDUy1FXnTdnsA4Jkh5lHHR1PtuZWZUCoZZyVR8ZDlQgx18zUmDWj5kxWWVN2xAq+qaColctjrVKFooioOXNEWLqizKXpHNvmBmMV0lkZzJgRZwqnSjmoqzKiqkBQkWCs2Q/Q1TsUkZ0JjZZq3hefKwgFF68Ll4t9Lhz0ei075BWKchOG5FL3YAVni3Z0MWxRgtxdZFX3Mes8z33f3368R0TlQ8XHePTmeeO03Vx2doGu7I5AUwVXGDYW/iDNpVjplqKy0hO/cXiVYJXeh3o7Q1ZSzatTcyyZsnKvhWIidufigchLUXe3ratwBgMlSwyyoKwWnQPZBnfLPzQTC+3Kr0an7Rar6tKb3G9bRK09r6qSX5hWu3D+bbR43Yav71k1VqdAdr4Qv/XcbZ0RrZpEXZjUnRTI5Xd/DeqsGRVVNWst19sb6YvFcm1DdTnA3cUECFWvClXN5T7w3fSLgR68XpMZLhvKHos2jLRsGOTKh70/bNdp2n7BTeFa8x1dWYGyoOoke3o0Y/987b9fx+sV+1kRzDJzUWMfUlz/vK5k17gqRSrUoGplkPZO7bpZBaBeLhtqrhAUCgW0N2os1lfrxxkUEMa2+sEKizVRkepUZFOY2TBrVV2ffLI8eJff1TnnWb1VK9XY4cBZS1Eg4qKpaqL9FN0W1fu+f37sr9erk3BOf7r7kA2Ai5YbSjUqUiKHhrNkhlSamHmVWnqrpBcBcQIgaxvtwWMi4rKWv5lt5uvWEEvNoytSaY3XO1WJbA59F/QRMeNYIoyCWRmsP/u/FF5nzPM8X6+Pfd/318fn5+fHx8fr9fr8/Hy9Xq9j38/jPM9jnsyCqkF6HudjbG/P5/vb2/v7GENubfSYc1pmRmjkaSFAZdv6iXSKwJrAX65Pq+2pi7FXVwDItfS+FgW1zR2kN5ortF4hMCN1G5XbxsqIU4RzVfArUIFiZ8ToKKIxHo/3fj2fz7efP1ueBWCmrskREAx/LE7ZNlxE0HGBMG0QXxVIvbI7a4XMFjOZ+P5KUDJbZd0ToSjMzFZHc3UfatZ6eSk4NVJ0M92GjzE2H5v70DHEg0GqcjQP1dogQLqhAqgGE/HBIWImrmoKc9FFN9q2xzas87ardLnb8DwPGxzlS9ICJCPJc+4tUKAArGRFnJFnREZmpFBQ0NRFD+hmzrslgqjCVarKvQ33AKAiO+UxF93160Zfu4dUtgtV5DlnRlY3bMi5smIzsxM/K2c1LA+IDifN2lDJVHWMx4K79Ia7zN3ftvV1yBVFVJU5z7MAuLMrsxZ1kuxAhzx7kh/ZIFiZpBYZDUYtRqypSISvb4tosumc0/3IeL9P+XstNzFXxEQ6GqTxHQWwCi8zrbrzhoWX9cm9Tm5ZWVUFGwOcl6LfyGle8Hzsgs1twGXAIlPmRATXcClSGQWfoiXWhReAYBVpBlHcYhx1u4wQxUUb7amLDwE0C/VDKk25NfHYqMoqEsEKMLW6wTXiFhgnRMBaGVnSAwFe5HK9QTBcNvdV7PhCtj3FUrla01fuWVi/r8vv4GKn3aTm0Ylj65Jm5nEcZrI9H+/vb+2i9NwerhJx3sWBFOH28E1WnBiQrQ4MVa1l/XqpGdTk2sb6AONdKEEKqd1ZFGWp4taEovdFSfTUUlSoAkr3wc3tJqVZ5EWllQ5UYqk3q46593NQEcxZcbZbWETYNWgAUMmIYM6eC9UVB9QVTq/RfnxVtQVa0nbwzcdn3XHXS5wBXlXbIhNpU7dwHVy8PVK1b+f3p7p/2t+ygZrkuqyw79va99qA9rSJ6mXa8xoo9EKArpDXapbozbCWNkqVDo4jV7reustKc5G0O9z8Ntwjl6VqcTFvm0R2v9vV1V2PN5bdw/pPBezbiAcV58GZFefMGXPO/fNz//2xf74qiCrrquUag339/L/XXtf/t+uU7Q4EAATLCkKakGEX8yyWVatoruW1aOOgrCSz1dIoFTCXoeamruKKFsCr2d3REjgjjhmvY/889g5njEIPQNU3w7iGIItMsph/zdusysx9P379+v3x8dGsysx0P8cYD3uq6lDjcJSr1b7HGEOHi3iksFxd0hTQGikGoqoCEu0dR9eVv2nqat7pENfarO8hBOvKrujD+7iaGSRd7S7QJ2c/1qoZs7Zt29xV9Z71ZObM8zzPtu9/vT4+Pn///v173/ePj1+v1+vj9ft1fO7nccZEUWg2qC6Pt+3Hz7cfP3++//zxfC7+Yt+QSDPTiBgmR6ABJAsvUBae+tVv3Gp5kWt4wnH3sJWsXDzO1tjfK5FkShmlKtsqXVXEBRiPKhHMPLu77N10nUfsNAMf4/F8Pp9vP37+/Pnjx4/H4/H88X4zdc7wOWdvxcF4e3+8PR/P57aZNzBzkbi1AQd8s2te72218Ly/3ltxad0JS5UU1nkeR5xR0S5WS5EqCRGDsDxWjW2PMbbt2YEKqorQK2dT2rG39w6ppZpXVTPf1EE3cbP+pz3G9ng83t/ftm1ZtvLLwxdVpVf8WX9YZGTE/vE7IjLabU7mzOM4Xse+7+fMzNJUEFoCTdE0K7i7WscJqLt6+99SQG1/EBTP89z5Yp0rPK833iKorWNbetvzyHNmnNKSbKCf9h47rpubnWrWhdeq5ptH5e6dhfjtNdy2bdve3p4XxtGPZXOZjCt3GCN9ew57tYt+Lv7jPHvGGq14DBHTrDoz7hO2y053bXZXDzrdvW29ns/Trt3pe+3l1qN5b++bLuDk1vZ2RMma+NeXj/zfTqmqrscqWZGtXLs6s8wKsdpfwKhBpU1FZiramah/EqUiySi4QFEUVBPruoSzTmyIOM9TVc9tG+fZ53fOCQCtBEAhI87jfO1gmlLcdGgXRVIljKopnFn9/BjUKJ03Q0BNiMsRqp337x2wqnBT11cEzbIV6O/orWVFzHbQssgi1llnhuCGbfTvL6DuwrG77V+/fr29PR+Px48fP7Zt62FK5gSbHjcHrgaIIiLtR9ZLC1d/uSpBG4LuKoGqjJjzrFlEdtO/Mm0uqXl83cFllT1n6+9K2cRhEyio7EOyk8H9bmB7oLrWc8VUdEZwtbf1nLMyzVfn13VQttVVXnSQ2+AHyExcVGUza+QMhWBlRrKHgKuireXL383+jRGJwpvMSzZqoyzK5SSUV4bdXXjVHRx0Gevxy6n1PkX6wBaSnQP4fbMeQ2+Ecuku6wvEuoOzRMQ6YKdn/O6Zqbp+CNtluCs7WW39d6uyPq3ta9dfZ9tN4UI72ot1onRzxXiFZ1+4mhx7zjNnj0fPeb7247XHnAwK4dY8sYb/2FSYr1+31kgGq5Nv22UMXWLAF/S2uPd3Phoyoy5psCxiZXvPliilg5GbVihQMQo2UzcMU1cxodjy5TczUaXgzDjO+PXaf338/vXx++N4LXMjMfehoOWoqvOYr/14fO59o4tN78zeZD8/P3/9+vXx8dE3NKIejyLf1MV9c0pZtdpjxqyiRVIqy0BojrTZZbS6QJJsWVhBqioMRs8ufbs8zZxnnr6a4FXR9ls543gdR8NRC0nN6J+8IL3zpEhEhLbx0nme29YHDHFheDEzjuN4vV6v18d+vD4+Pj4+Pvb9s4vL5pB1FdrWNtuPt7cfP95+/Hj/+fPHHz8f72/btoAEWZH3RjpJ5nrDVxFgd8rqNxQ8v56WFpNntVStoZSWimWWSJhZ+UK/G9hbC02kzV+EhJDlQD6fTxFB9FJaFb/AbIzHQure3n/88ccff3ThpWPRnDPTQvskVkXkMHnrgM7uk3qpLoSppBgVrFlx5m13/i99Di4Vdma242X3D5E4oqdWMTODRSQg+LdXi5M2c1fr6Cp0x2/ZqQbdJPCiSzZEvESj7FJ+DBtjPN62x+Mx3t6eNrwRvm/QXG3P9Uln5uvYj0NiHjXj2D/bmU8UVfU6jt+vz9d+fu5HVGa1Tb+ViZVomTce2XT+jrte2HsLElZt5F7uIzPNPDNFTWpdAREV0co8z3O+jjlPreUaehcYGd/U7pUlyEwKhLS069nDXVf1cziGbdsYY3tsb4/Hw13HeFyLLiNErbI8U4Bzi205BqAaKI9vrzlnZFbHsLZtCZcgsaUkU3hu53me3wsvVd33Zfd1I2pdT3fEe5eL2omx4msy9W2I8AUU62Xu9/2LVdWWAYxEoj2XAAWLzDnzPMUPQM02lF3RdEpRIlmMzPJUIiGqSRUxSLJHpkCvwDmhFOV2jue55TzmuftyVJSu1fSiwOd5QmvSTMxFgR5rTOREnS3Lp6aoFYKioLFpsLiCV0qpBLREuuWshW9VVbBCrsy7xbyR5Y3U/X0juK1uNZM70EVVzaX18/f21IGVuCLtSB6vff98He/7c3v4NtyVMZkTZM06XntncypaFQVxv1uxthXo//QlgEBVRWSxgcODkSKyjaEKyqX5iugC4qJyCykRdZ5nO5CbddqnihjZwlcGr5SNqmT5RWwnE1lzTgUdi7fUwDWqWtt7H9vXMQERKV2OTo1l8jKCR6dzNCbHRQPuI/6+mPgWYM5lgdOHPe+uYjnjLv3sF8Cw0lbuuq+tklTvQ6SqbNkxGMlCw29ZVed5VlVkq/fEzFZe/do56h4dar9bULRtn5uUIcWUSzy+OntpJ2WCSvuSYbb0sFbSjnWVvxK1YFft1byQK6ry63j4dlQ0ptnt3GQe5/75eXy+5rHIDchq5eu6U0sQS8AoUhD/dvYES6mVxWLEWf2Gbaj11KlrtyUH+Dan5FKrtL9Km8VS9PYVVIU0L0wgdFc3NRWVhgGXU1i7gfVM7WPff39+/vnx+8+P37/2/fOcMyoIUTcX08Fz7vtp4xjjleAYA4osZtbHfpzn+fH5+tiP9lboc7TH+lcd+y1Kod0OC9QqKliFAplBbU6BQsVUS1WwpvV12dAsnQ/JE1ZeQ4fZgEqBraR5HZ/HnMfsyceMmNnTgFile2ZO5JKmmQ3bzObszpklIn1inTHPc3+9Xq99gV6fx+d+7J/HHnGu0YmLm5mOMba39/e3H8+3H8/tx2N728bDrQ+MzkfPHicuSfGqm/4ep91mzGuVdpzDMr00ABlzPXmNWFdHibdGVpIVVxHcpFV3kbq0GB2c7Er6+/u7KmQuPQkAt83M1P3t+ePnz3/chdf7+/sYY6WyXiG5CmEF8Mh6c/eeISZ4m8eqSFH6ALoyxTOTwx9ufvdgXwvtng1dT3hUsdKpTa5ZfxgDJkundf8EaR6V2VA1bXPx4KzSgmr7Usvy371+YxM2zQxQM2/riG3bnttj27axjSvdhbfKqCfIFMwMfn7u1tEtM2cgMnP2ncqMz8/Pj98dQzSjsmit3u7k7pt1tGbCVJFlJXyNizrU1QBRG76VJ8prBgUhAnKyhCWdl9CthYM3nL5G//mt8EKPBBbpVvR45PMqSEpF1jjYfTETt7fH49GRCV/iQhCiENu2MScy1Yeai3lH3sfMOOM8z6MpXm3a24yUZM2oG2aDLr93S9asPPOqsaaqxnHehddde3WqYy8Wd/ftazzqLhooKc4qJFbaksBFY03p0ZVCm0JFRFZWZGRcy6ynYGWJnIxISWV+g9A7wgW5FI6hCYFuVjDVXte1YgTzOI4SJB3Atm3H43Hsn9u2YSaWpxGFyJqKMtUzUyoLLAVdAFEWcGVnZ4cXSGm1QlJ063FaQ17UHuhcgPmVK3ed6+CsnvOQeRnlidry4+7xX3eHy0r7co3S5jdf+VAXbiFtVXhV6ytS9/V6bdv23FYsF6hEzrncDFry02+sEYi6oKYvYWAzdsELUYrznPuxI8usM/+0xfY36HURIRsNlmRGJGNFBEJhJkVhUYIptSSsSr3Q0EWAu+3mKzve615Ijk54+Kq67pdepkF6if2+40y1fLTqmJOX6rbXyoKIrg/S9BqunyCNhNtKRGgr1d6F/tZIrB1Qbh7Uuv9yYUViel/kNlPtw+NfJm7ZWNz1nff0pN+DKtog8DrIv2zHG2Lh30qldYZ+d3ntn9dct1rvtx+QK1GpTbZkMbLuAnMhsj0JgpCMiDizJvI452t/fX6e+2Rk+8oMHUvtXI0aLy+w+9b0R44qERSYGVCWrIxzawquN6NlIb1yuxOLaL+1dtf7BlA2O2h1w0Ks8tRas9zmF3dra2vGYME6I17n8XHsn+f5mvGascecVVmVoKmjkMTM2vdT7BWssW0LQMr5++NzPz6b2nXfuOt8vYKaqiK6I6QKEKRS2oxOTbHCxrB4J6UqPswMojlMRKQ1DSK8bCw45xd9Wy6Z1efr9fv10U5yje9GrXXNxQqdmRkI0+E+3L2UrfUC0Dziqsqar30/Z4cFfR7H8Xnsx3FcgkSKqWGImQPb9tyej+3xGO9Pf3uMx2bjmuJcc8b2tb67xI60q8tSHBfaHVHHMUl+K7z88vhv49JOWRBIb5X6BfhlzjnX+E04fNkx8CvGDWIwim1jk55VFQC3sW2P7fH28+fPP/74j7e3t7f3nz9+/Hh7ezOzjj1eUmXajTF3HEhF9qHan8Xd++Cr1kvPnDNrFhOma3hXl6S9vwmXibYiklYZc1ZmunvkecQ85z7nEfGIYWNNVy6Xf3ydxSYqpVJS0aQCA9oUTFcGmHbSchcUapspdXN/Prfn9ty2x+ZjjNG6rpIVRtKtTlUdxxEXAG897K5klRUysz0a4jz/+v3r9+/f+zyjxfBQG5tCTL09yVfHJ9a6f5b0yKgLaCy/8SSl52tmKekiLR7MFvTkOSOi9ehNNRDp0DteSqOv4r7j/NoNv5iivStmQ2v65RDbjL3tuW2Px0bSh7qt2p1UwIAkNyxpFG7+FaRD3i5HoHOutIRKdvBu08FVMzObMKPydfPaUNC930zrZO9p41pHvt3fbzO+vt9Ee0CCXDLzTnQQWV2OtqiKIOQieSVbHNVIA0OEKK3KDGSI5zLmbz9SXDEpxYw4MtTRVnMGs75/BUYUkIWjBJmTWa6iij5jN18pUevhifPcj56XiVaANZTobEpZbvK4jUFZGYRn57K213bDLVTKhXioqOEL91qyMi1Ws7Lbbg0QUgt579FuconyykbLWW+fmSvErAN1tBvKddB2inhFvD4+FHDF29tbswkqk1KTMKvnkG4mBNE9kK21kMvKi4xuJEUux52siJrBLKb2x1OO5b35rXSoi/tKANSI0M6rt6sxhVRlovOUpVE+ClISsJsg35gKlJoBFnMCZW5jRaNcebqmKIUK2Pqs9ZjdGP5dVsYi6WNx6EVaE1Ks9jO8i8h7OEiVL0r8srgns0TkGwnqspa46mz8y0u/WOt1HcJ93LS2GUCPTc643Cwvcz9SoM3H7uKPFzuztxrelkhttsRvVXnfouoRH3rZs9qVQnXFGfbj2onvsDUehSz7iAUtrf74Mu3qBqEyIo55fsb5OubnPj/3OM+qMphC2NYsqTWDIplpouKy/jIUF6LWnK7MEAO8UXlVKzOarcJ3yaC+yI534dsXWC4eG63hZwWk3dhoaBSsFZ2rMnb3sW22jbFtNrwqoJJggqkok1Kh+0W0EkILmpSkHDP5uUeEb7sYIuKI8ziOz8/Pc+5Nq0hQAL/g5FUf99wcRXKYqUK0RBLq0jhpdde4dKPmNYb4kI7ABKhLdNtQkLRsa3DZDnplVb2Oz/34bB+ZuKQe67CUZfmrM9FItI3neIwxUgOAcqXOiUgDS+c8znPf9/04jqP1RzmjproRKk6DdzLJ8/H+eDw6T+n5/tieo8Vh5tehdMHhcu2EX+P0WLBEZs2Z88zjOHjVMSKmOlUNnZHEnjQXqKJLZcJCJXPGPM5jOwCMMRRuAkVpKckmWUetFsVMVB/J0jMzOcb29vb288c//vGPf/zxH//5eDwe29v7+/vj8bjngEBVWVW1o3dvJUIwco/oe6MQbU+Oqojqz3Jz/oQUaESngbHqEs83/xhIorLmnDGLWbvw9bDP/eNz//g8Pt/n05oX7vJdotXll4kPHWauEKVmUQ0GoYr1rISiMCkBfZg/xuOxPZS6bc/t7fnYnu5uamLC5fOEi2Jaycqqvz4/ZmXzhn2FGFIJN5vHmTkBxHn+319/fX5+zoxCJaHqnmWDA+11oZRwz8w08SRF2APN5VzI1VusxhNCUUCrMJMx6zziOOZ5zoivHZtkFdG+CksMvNxp6gre6QKoaR4ivCuex+PxeDzens+35/P9+Xg+n8O3bdsg1XXVHVGmin6mq2IB68KepasqVUoqGTPPqJw555yxZg3roOwImRb6tzOwXKK3Hjj2v5vZnPNfCi8bcVO9fYv7646Lp3y5gqPa78uWDdH658U3bJYESe0ogMu9feF6lEphh4AU7vkCpEqyMNkJVBzBxTgWXLiCSUfFY6LKgHJfTJfMfI6nXuGXiqqqee7HsaP3RwFJazOINYacCIiACFAoLILQYqAUku2ID6USVLnYPp0RflH4iwEIjKi2R89sAhixFHZNUmlrgKj6Uryvqkvkkt5VEzsa6FoNH9LI5pqQHMMubOA7bWLRrdtxp1VjN0Zy108Ree2/TQiVK9JnIapm4avSu7pVgpQuSMtbbaHL36qduvq0pxAyqzr583rvci/y1fUXq2KJEXquenFCbxDxrnLkW531XY3Yp6B8oxXisk5Ap7Pfrl35hauR7OBmofZFvgu4hsHbf+tvWNddq/1dCPkv3/AvX+EVrXqhhnn3Z3ftqKq+cKaOPy/5ktFfE78LbpSv6O71wCxN1FUf83qjfU9EoNROu+v4qiVw4N/eJNrAtMN3aon4msLw+vicx4z94AxGSrHDdioSgDICcpEN+qD6qtHR8ewkhR2I4dLOWmqm5qIKs5WZxSY/EVBR6zM7251Y2gtMYXctyUUk1h4390S6SF095mpwt22MgWGaEFOIUU1Uxc23h8csySzSqbUMzHgJWWaGhQJ1xHGeJ1kdy9PndB+i3yZK98Gw5IootnmMumpRGo7Tb4ClVoM2rQzR7otaGLFYoz2qHEu9VNUmpcdxvI7jPM/2mW8JSxdeIjKPKdKxShSYu+f2Nsb29ngCy2GlN5yqipXmGxExO+D8cnLU4RfyKyKm7m9vPx5vz+f23B6Px/ubPzb9RgpG/WtPcm9HNw23h0JtE9Aj+AsobeWmi8hm3rSNBGUx/IClNUsB2y96PXIoYZnQaF+FV0Rm2mabbGLOkukZEY/H8/39/cf7j58/f/78+XPbtm08397exhgXWhmzpur3wI+6JWnneXYfYKJm1kX2nHmecRxz7p142fley5CSK+rDBazMEhilgExctOz8POK5j9fr43PfX8e+z8PCRVza8PkWCV3bpqqbeNcDBjExExcR09ENtsgqvDbftuFjmMLGsDGaIGZNemm7h6Zs3OOCyPz4/NVZZz0tGWYiFGIzn+cZ50Fy3/c/f/31er2a/Feg2fDi1gIj67mEDPXUCBjFlRUqosygiJh8Yfl3K95wwE0pvqzgUkoUVpI9SVhNrZooLplNC6G6Km5h/sK8fTSjy7fNt8vFdNs2d+sZYpvK3q3+sk1MB8Lm2mtXy2cm/nUWf9/zeVWv34GAJr/XXFzvBYNldsnVdNj7aOiXtuXMBdh78avwens8IkIKjGxrrlUvFF1UhwPIrAkwEyXZgw0xkTIIVk4JOs6kkigze6hsfTUhpUYjzUW0CrOj2Fyl4aeqEjFVJ4CsqJjzcPeazsh5vI7Xx8evx/vzx9p81VZDE2dVSpZpKcecGqGZMlRU9W3bJiILSolKRhYLaiBqnYVXaQlFFjq1XrUKbtrpEmfWchbl5EW3TyEA0w5+ClGWO5Re5jIuMwgh+1C4GMFX+UUm0BItALqptq9ERLRS48f7c4xxHJWZUjPNDz/6KgFlhUs8KcvaYM7jOFzt1/67mI15VmWC6l6I89y7gZN3mlm3bhA1s30/5wwOVduALIHaENEqzixGmqVUhTCLgqEONtlMATBymioLbVM/zz1RDykFM86I0w3b5ttmr9+fMfenm+WYdR4zAdy3srO+VdXUBBJR0RVVdeFdWLiKF9gLGMWGmlZTXiJqvg3W1/iPd+UHyczv+X93Rbisrq4M2asDqeCX9LcHsiKlqlntZ9yrpBsykFA1NfOOi2qLOxEAszJiRp78xm8D0DTFtnhdvibAjOho+6VntMZkAejytFYV814vTVPsKWQbtJqZ++a2oS3YuocoRpzH6/Xx16+PX5/7n3vNbLS4qkwUyBWvJdJqbr/SY+ac7gIyGfeh3RnxVdU1lru217mJuIm5kFmZ1LZElxlnnSv9Zkna20//+okqkjUBNddkZFJcVUyFSnPRKxLFtudjez6OimOeZ0SCJRC38Xw8fatjj/3krORZSaW1sUaDiDnrcz8jzkSq6sfro4+3mIX2rbhIAvekVMjMQAJEZIpRhZIwU4N3YXGeJyThpdZm4mg4SI2ouMpZFVhHFczzdNvGZltuNq0VNq/jeO2f7eLf6VVdeBXw8C0iMjo1Tt093/iGK223Ft1KoYyMjM9jn/M44+zTooPYqQMq2ZRtt+GP8dje339uz+f74217e/5sf1jf3LwJ+41p9aVollYzIn59/oo4j2O/WHGVZ0bE63Xc8AClO0Sa2TmZFx/D3AQrsWVsdmSGWU+XXq/XGGNzfXtsm+umG5b1yaKU1Sy7dK2+PVTs+Xx/Pp//9V//7/v7+48fP8ysV6uIjDG6wGpaoIsmpOZ5vvaqOo59f32e59lyH1fr+fXr9fnr4/fHx69fnx/7vs8MKlWlgomKqEteRaVKG+yKuiiEOefnMaVyuP/6/fufj//7+fPn+/OhKlXFn++i25zneez7/nlcEgpA2grBzMbYHm62DZYksS2gwaqAhMr23J6P8Xx/vIt0CLmXgAyzh48RcbZavcHU1utF5keXU93AhxwQEyokzTvNoCUX+3EeZ8w4Ok3CrPKSsUfNMYbbjGPOI97efjy3N3E2Y6DPoPhO/KhqLmxeJiliy5I0Mxmcc8Y8q8IEJr3xSHS5ZmoGpeulNj3Ps2frvm0+7Pl8/vHj53/84x9//Pi5dVKQ6gU+rXlrOz210QlW/ENlTqB0KJXBsM22t81+NfXK9HRNN8qmJrZZxChExMzukNfwp5NqG0vqBKE2FOell7rhksyc81BVnEfvM+5u83T3zs30vyEQ34O01G7CDSCZaWaXy8RXdOUimYgkSmAGgs66MNJlnwQ1mHEMiU2zEjO7gvFvyA3uyTQzoiCRNefp8ziPbcsftZm7+34xA6qKFZv75hgqmd6HJZvV0pnZi4InCqkihERKtUBjzVBJohsLbRkNeNfX7g1BoxYe2BcW6C9EMaQEKFVcwohvSUeqF5NOl/mhfRmuLp5dVfO3unD+fjWO43jNs/1C3J2siBjdT1/Sh3t+HOc8zzOrJfFdLrMK++s853kF3NLdhVimDOZUa8WgNIVfPK1JfZjJqhqEmlaRYmrKO5cGHAYXvz2E0GR/VDCQMzMb1c/MCF7Yw22PqTcdit9Gn32R7//VHtC2WjqhgLlGlq3+vfb6IQKKVqFtR7K+Ed7b9mx5wMj3tuZ2/7rbnS+eFi6jd7ZUfjl11UW+kSU1pRiuQ24RnOQyRwU454yYEcnrJ8hFwLqRpBtLIHkvSe14etEl2DbDIhko1Eqg1d1BqQIXzndjbzc40Ryafd/3z9f++Xr9/uwotKoSohTrU3wzQFllJZSCmdkm7P25sNjuQmXTzpqXAZyrX7skC9To6IuoKoaxT6iGbhUiVartao8UgYDauSss6RDSdcGLHX3bzznrjJhzHjPOmMmCirohkx1ntGC5dStvoDMZmbnPsznF/45udkSuu+s3GVoz1bDcxVokW8VknUhGDGgRxk74ESfMB4jIY5LZo3qD3YXX/kq3jLSmk8/Mfd/PmHfV1dv9eREKpXB7I4HqvrWuor37Gq3RjqcSJvImqHXKlqgpuAafLEBX1OXzMR6P5/P5448/OrTH3Q2mqrZC5pe2oEuuSyn5er1e3chlxlqzc5mNdZHUHY6IeLcynW/Rka691xZJnseKHsrM49hX1OCwnI/N/OFTO/PtGzG0LWcMMLPH9vzx40eXXO3dpdreRADQj/d9tN0Loaper8993499n3NimSpnRBT4er1+//74+Pw89mN2cFkH0gnkijuUPmrR8bylCvbjsH5+zPNExu+3j98fv/76+Pl8bmMzICDvNed+fB7na5/7/EbjG2pjPChwd1EPQnP1z65OEqmd1+Bj+GNzUVVfge6wxvaWKKS+0xPjnFNV+TXhZIIEpTjnrBnn2ZYBl49J93xAUvTaOvoEz+CKryjRFH1Ch5tZxPUY/L326hvXtPfuK6/Hg5kqMEPejU5vngXokmt8ybBsuLkPH4/lvrZtDx/D3N3Hl2zrRjTNWtzTIBlaHXW7dn1/b2Y2OluJj87kFnhEdIavUsQUDZLVFxOG8mUe+f2wvn9+f8yIHmuqeImIKTNTs/XI8+J4ibpZmtH6A7f/xO2EAaGUGrWgpW4mXi1YlVhu1ApNIVgpmeCUTBrbUgeFEoEO2EO2tCOZWRA0ZqNmbddeHWnZtVfmrAiRVInzOH1D4nB33665SUMIfD62bZigxqYxRz9C3zdVSAkKRV0z0hCxa8jefgiElC47IqwPJEB7BIAV2ST3Zc3yzTWHqG+zpxmhmXYTI/rIB6qq+Xe6fFbQsY92B9P2odJ/5Zyp10rez5kQ949mF5EMk9v/rYHlfoY+47O16O3s0u8qK8/zbNB85jnjdPfN/JaCN4QekwkZ23PFXdmYrBkVEhh05VmUlXRtSUqlZjppplUzc1FJskLyZE7OPc+jdfXnPACpnFV1xmTDURRC53W0tKyP1QzktUE0F8SkhcwSrMiYM8/IzJqR1T9F21UBLKkOb+qfkNluGUITgeuV5nQNODvH+hvedJFx2HR6WUMR9pC6h2TX6ULhmipLH1StPLelpcKC0SvXrKcXFnp0tiCsxWFoUwuVFQ+p0gzkWp7G7UDWS7GDCwSU6kyKAgXDHz2UV0JqhXLWDBFhooGK379///7r1+evz8+PD8m1WQz1FoNYw1i68KcLXa8ig1eitQi0zKwnzm7NDm3qd5KdfZLI9ttbMesUxBUSAVAV5jJohNCMa7LY0fZQUWUStRgKEBYagh9jbNtzbNueEcXXfv76+Ph4vfZz3jKFrtSXxwl64fZ28GUX1wdSgY/Htqb9QIOKPRg2G3KrRJdwVQEspiBBQQd4kwVEpmnWnBQ1tRLVBEUr50lkk9+DBSaSlRpRaVkczfDLzHMeZ8yquuGuM46m9xKrnavZk0dLwn2z8JFTVcVcRa80gEub0g7fHSwuFBOlzTOsm4Xmxzyf7+/vbz/e33/+eD7en8+nm/W7laVPPHsed57nx/76/fnx8fnr8/Pz+Hwdx2vf92J2zVcBZqlYERmTFDC1BReEiC0XL6CQFGQWK/vAhtQp0l6sPTY6HvvDx3NsYwy/YoXNrFpaDDdL33Q8Hz9+LDHj8/nsefHKlex+TKrDLSLaX+Ojq8bP379fr9fx2hsq7rtPcka89o+Pj4/P/TMiCuhOWBUl5TpU7av8YuelriMjVqhzRJycIZWfn+3j8fH7sY2lKK+Y575/nnPPbOp9exmSYtv2FFN371Q3AKbqZpuZQMVd1d02d2uvBBXPLCT64QyGQpNVERf3LvuDq4GF5OUNXkwSxThPZkW0YLenfy6VHW6Ba6X0VsosdzKJABNIoChvj3sMh2/WuAsTEYjqsE1M7bL2UNXePuOcd0iBaDs8WQkERkEVEUyKQTZ7itvm/vbj/e3HjyvWc3nWe+vceo7EXFtosYQi7I67L0Z7S844Is8Fo9oiaWXh8SyIRLC/9ZmMqBkxfZ4ZTWtZPS2jrlZNm9NqLmbqrTXXEhRjkbBKRpeSWlkq6fekZRHyq+juHbzVE3qV2x3xip1XFdPn8xmhIjnnmb1XsFBQMZZkVsw6zxhHuoeYm7dj4SRb9aO1KSaH2cBwH+1i0mzAG/TC5UueXIzIcz/KM3xpVc4GkFzmnM+Hu9bj6WdsZ45HOdcc8MJU1p4bJWqwvkMUskLUsDwvOqlYe/qhcBFxUSrSirRiSEdKFIC2ovELG/syB7/OGJCUy0/V3X/+fG/JA8njfK3YNZHntt1/t8koPT5rt+7n81lVf/3118fHRw+zTRdU1iXdV7kQ0SPL1uzcMSOksCQzzzPP/fBhb9vDH9vb811MIRLFOY9JfdDGEJUtRUmZTGYhEZJZYMmmlKEq2j6o3gdHxIyjA/8ignPnudf5ypyP4UDNOVnUagrFyTlrufYtrKtnSbdmsM/p9YCqdlhYkc2GOY6jwQCsSMqe73SyD6pq3/ev/uPqlXV5Q6xK629ohzTs9QWDXa/vI/9/pXzd60dVC99+LL/avgb4t/FMszas7w3qolsv7lZPQgHc531vGyIrHlypLXqopjvUsmjoUaa6XSJzdE/SVVozLXLWMjD//fH79+/Xx2vuh6JRWL9piN8B77s37aFrR6Iv4AGLjqoi7i56FTTrswTJJSbCVf60FIPV0UbmIqWUNqlv3wkKV8SDonfdJHvhrHe1nAm3oWpGqdpf5/Hx8fHr4+M14xV1FkM1LsJfLdQbJZUxgVJ1KsXFSguurOv2XYkT95ARd935lVEltwjTOoli6yb8yuNTdcgdgUthVftCSQlLWIiImpXBKjQVpBN5q+rMMzOPOZPtgNr0rOrfeO5HZiIb2RURmsni7S63rQunHIRZwSgbyVl5yXapVceMhWkOt20sZvLzzXxbqcBmDqvqAHZeudrHvu+fn5+/f/9+fS4R6HnGnLOVVZf+UTMXQFJVSlcxGQp08kpXt4ysvLw9m9YN6fUSAHqvq3POYTnetsd8+OIpl2RUampRrOEhMfdtjNFbbm+n3ywCUw39fo7j9fn5+9evX3/99Vfbyb5er3M/SLoPYEWMtyThtb/mOYvU1VO5qUDp5sM2E1/0XcgyPKw2L4oK5jnPiDoPqWzj2l+//nx/bI/nMGfkMedxHq8zDjJnXumi1xy2PY1ui5ue81LNTBvXdHMz78eg6y0RjLEpLDM7A6rmyQvgWoiv/W2gVKxFX+Jqbu7hSVUVtmCQl71ZLpbFQqQ6oWHGyUMIMuecj8fjO97z7ffqRXfW+1jsAlpYdR4nVQTmAFxUdWwAIEaVKmqEuNnlo/Yc4+3t7f3Hc3trz2C9YK1vVockmeeZItJ4bX/wJpgtn9Rl13exbJFQMZdt21SbjChVyMK+77N4nmdnZiE7Ib4y/fI+aiOB5df1eI77w96AyD0zlCtX7d6ZfYn7VNVMuejJPWhYf6GqTyeoKHXbNja/t6K52M27V2vrCa1Azoxo9m0DQiAr6yREVWxojcUk61iTNRdgZlW7jqMK2mdrljq9VHYzU4+qOqO6OvHStDLX2UXCQg/aqJ3Ffz1NhX1X/mbKIteJJQL2UA0KKxG75PBrrqQEuQ7YCKmq5UiuuP1qW48GYVYi+oqnVz7rkazNO83V4syZgQN+J+aKnBmYJ5dxiKrqEJ9z7seeeTxmvr3nZtqPI68l2sDDbQGHDkrTTmwIVs6M4zwjAhV2WlW9Cd6e7/eDUpSZYREUd4exufVetBmZzLOoQxQY0squJSMnmXOe55nnzOqs0VnnyXN3RQPC3QvpvbYzs7jI4z03NBFooe1KaslkrC2uVrYuKfPM84jP/ezPuJmriKqJNmojJS3cyEaqvubmptKF11VjrHQduYKsrz1ocYa6BGkNxcLPvj1CC8sEOt5sySfREOPMighmVJVenmRqPvxyoSQZk8sXno0vyVK5mogwksogJKlrfgsIorsCaQWgrhAhuXVnBiCTALOxhCLJzuZ7fXzsn5/zOOZ5dqO/roOihLaIYn254jJv47W5LAV1d6fXXmPSOFDz5TtNgXGvCAqW6UjvKJ24ptDOp5DOFFqZOSIKSUAgoSiiFKKoG9RfuAcwK0skC/t5fO6v35+fR9YsnMUpcs4zopEhwhQGVQ0mUNkuYAp369CAkrYytrv2vMmCaFoCeIVr1eLwNXdAhw3fxjYeQ2zYcB1qDrVShxjbTU9dq5RE63CXGeOsiNKL/0ssnnXXYQVmzplxZtyF12s/+nRX1SHqvb9J9YYM0/VJh7r6oKsCJoniXHNy1qJqUeDmDSw9nu/P59vz+WxqV9OMtBTSWbLVLgB9Yu373vjN6/ViQ0pNmDSupxNVc9acjM6KQUkJVagy9GqnUYy425KGIS86gIg0WNMO5lonmhsnQhVLi+xQeTsjnrV03FGrulp9Eb988ztpdx77/vn6+P37969fv3/99fHx8fH7975/nmcTP0JEMtgNWyeIF4sAS5Bkppqzz8QekmZBCsshBCxGnfOynlpG3xkf7n/++edbw12bltTbtmXNOI+sWdXavljnXtt8VctJekQMRkKUvgYa7d6mepExrxvapgOsOuNoj4w+0b553/T+Vvef3v2WgXPbVkPEVEqbAEU2qr5mA2ueM0NHm6Z2Ag+FGZcKeHV9C+RPkg8bt/dsz5H7lyrMVYT5+aKwVvyQVPtdrZy9Nnibi6dP0t065annQguQzlpSayaYtQqSumaVixm0IIl59i3uUf4yzJtztVimCrG+oKIsgbln+djmPDOzOiOoIpcf37JyvcUoYxtf4Au+EuTkiyX8bdwOOC7N9xoNqCgUTetrR4kWhbTkCsrFhW9La1MbnT/sNhSsFYTS0TodQ3ZZCCKrWvACM2W1DasTQC05AJhNbyaTsa59N+gxaWZiTrKDQdw9St7eHu3CDFOujNa/6ddw2QjVZeCINpjuCMfFrifBLFZqVRFWVU2dltJ7mzATwHWRCqW/3lf37j6//9Kv80rkOA5VNZfb1pZksl7HrpeOrLXWBnH39qppLLDvXINh9RgNsN0OXp2E0P7+/ZU551VuZsac8zjPY84pTDNzUzWbWVGgmrppguK5kApWCkz98QxoFCszIMM60wQQlUIWGJlkrTZioohiZVROkGMMH7qZi5ZWXrRUdtG2Go7evutv9XEvpqXKE3RuXWRFxBHz61M3odvWfLahpGY49uX/F4zqbyjXNVj8Ks5aRydfaFYbpOYaK/MGT+ViifUKuiFVYKVdZSZqLTyYZtbaJ60NmgM2yFtQvTISvtqAJp9fteCauBFtHiHt5ajac9LLWuLG+a+I+OZvVZ37/Pz87Jy+lqHphWx9XfCLssYrpfTGUUxEzNCKARUVF18FSgYhCckuntZvT4Aq1tnxwmVL2x9/KRnVYKZqUMOSqzKL2R4wxVji6SpVGHwZvZiSnOcZqq+mBLc7VQ+CiXPOGTMbfr+pI8o2ISwml6N+sSMEv+UTXLY+KiKay/ns/me/x97x+/gzN3MxEx3YHkM3VaVaiVG1pP1ncmk0MlmT5xHnPiMqZn4h3FdGEGURmVvNfsRsjRyAOZOktNNsk+u/uZjqlUjWWilAZ01ntjFVVTUnP6oWMjq25/P98Xzv8dw2no/n+xhjG5uqakpmskchHUaEL/nO6/Xa911XmW4Nt2fm5UTM7+uL7MZMbhUyyWRU1fw+/73yuhZkW6SwkqFdarWzealqMkRV7bpibHZzZBqWP5OYjhtlOee57/vv37///PPPP//689evX79+/fr8/Pz9+68usPpuYhkicNl5dOMqi0TbFaGZlGomI8rPnISnoW35Z483F0SqRIlktk7w13N7+FAfSka+vUOCWcGZOc+c+3mcEbnwgW6Av5NHL0y9U+tt7VGqSiZgELIw54yKLlAKTLAiuMzVoiuX2xbhBmAoYlxU6e/ARBevIhS9uYPA5QdGynh6lYnUnJOZZnbGl9Pb3aH1HnIz3+UiIj8ej+f2tm2+uX58bnEey5wXKGhTLnpbI5lj9emZ6ab+WPnW67J8I1r1B7k2c94lYHf63Tx87K9934/j3Pd93/d+mL+bKfZ6p5jCyvWhrpU63HPjhZBVVeR5P+fN4rqiVr7wLcgX1Nd6ZN7g6HWaO1Tb8UBRXYGoOFTMxg1Bok2dyEHpMB9VdRuqIFTR1qbGSgBZWfl1ILEKWjBAVYwstmdqzlRkIiFt/w4TLWEyOruY96S6UlWrg5rVQIW5moGVkKeamN3m3Vk1K71v3Y0JXYdjA6eNpH7NGC5Msp9FZgZpxsu8u6Niq08/EdHlICx3QdZL4j5vVPV2feyJiZm1QMN8dQBjjLZNm3P2gCMzs9aEdNTYzO/1kJmR0To+5myN5J3N3BY1yxN1Ef8vV1WpzGzGbmYWw0A/T1H9/PxMSkSImBl4nd8hqgLbfBsPhX6eM4oFISWTc2ZUw86pnJnKq2m4ZdsicuMIWD1TZM2Ms2/pmTGPY7HvF4KkK7v9rs+wzFt6fHA2rpZJUrvSNNMx2oE6Ch0cTlRvpryY8etsuAomytc2cy+e+05Rv0ZLV3oprkXAPi8utkR9FWQUrsCAxazUy/5woZlCCK7hYz9U0slhKxThzvYpKvWKScRy1W/szKCdW9jvU7tOqqqKkKpW3Tag3blMyMxz3/fPz/3zde5HztYs26XZWwugjz7v/QvFgtYFMl0IENvGgoUEGLlK1BCttg7ujjdBFZfSPua5rF3vGFOYr0pMVa032GoAdLKKq3OTDsyWJUzxMbbhm4hU5jHncRzHPrt5DTIhSVzGIrdQI3EdAIXlNfR19kg1eGXNn8EXL3PoALBMsdnbAsgOc4asrbZ1ZZeJhqk5VUW82jUWQGNvbcUZRx57T+iy5p0VwVV4XYcWyag55zznOeM6TWsJV5ulcD+rNtQ3G8PHGK6mqv3T1oIy7aLlRixWX95pyo/Hba6tK4GnKRbLTt2M7vFd67Ma4/bFEpVhPTng5Z7pZg0/qEhNyaxkMBFnytXm1mXgjM7mueY1qvDLBWhFZQRD4iSK19xASs3M7lwB3MKRrrpU1ZS3l8Svv/76/fv3f//3f//P//zPr99/fn5+/vr11+v12vfP8zw7ka85Xs1I2PcrgLgPM+trgpwGuCxIJSuypL3mpKerlZEJqYajRVUr4ziO379/P8zVyswyz/nHNKeLRp5zHvs8jnkel8MC2yiVd7SO9Bbka6R2ORhViOrMKAioWYzIiuXyv46AuZJw+yfnGoxxNUKAtzVJ8oaO2lMeVCC7vlcf7t7Jwj13PM8J6GYD1EQJGQpVjY9vbrDbl2k7TMVtmAPoR7dvfTwmitxEAACAAElEQVTy+dzen9vn6+14fUaeyWj8MolYObl9ShbJmDnndFP35R/RzvB3y3E/n3Medy99eUBmH7vnef76/Pz8/NyPY9/3j4/X5+feAFgVYmFJAoqpC4xqQ9Tb/aeSy08/kFVL3/1VeK2zg3kvlmsO9j32Te431M22q1urvH1Rn9hKdTO/qpYKpLE4iBS1VNKskqmlkEufBRGu1MwqZKBZssyEwczUZhIKpCzh2jrCsCZDTSLL2R/sS1/Zz3NELBtXc0U27Kp9rHVR2QkzsziyoOyxVVvILDuePpsKargMxtoPQwhRra6VuTIpFE0M6t/RR/UiZDdtK3sc3vrIryx6uwuvfwHAeGVu3EKkunqRBCNSQ6KyErEF3t66hcorYAGAq2VNMzPImScjS9bOtcQaq8KoG8Yws0iBGiVIzaojAnPq/gK0EllFMaikKArDtCAO98dDSuVkVIhpgTOT5ykt6SaMuFK/17x1QUfa/q5gVmoYUY27xVz5kefZMy8TvVO3+H1Y/6086pJxnueN590NlpmJWZ3o7bIve7tG9CxvbWNXKFaBfae+uoKVtCfeCsq6bhmbS27IXBq7jl7/G2XwMvkj7ve5loy5KBRGKXO7nAVRsT6lCNs8telO/RiCIBjtBt/fBeHl4HAfqbzsqQoEhRclDtCOA18b3FybTsvFl4yxKENFtLN71z8h2nYdd2AAltcORFQGKMsmXSgls4d0BhGKliqqhCpSkaC52pXd3kjzaOap0BWqYm0WyVoOdwzKEntfY9/lnqEQM+l9dowhJmDFa+aaEuRdeM1apvjaAGm7cKGIXGg2ilBVlSFeWnVPDa0pmsveCubmQkg3c6JKsIJZwoKoSamWKdqvy1xFq13o1XpOwGL2ZlBVBYmo/Yz9nOfrnGfkjHXgoZLrPquqb4PSlK/bHi6xxsedKyVmNvyxbdtje9vG87E9no+H+wrJzmDkyeUhjiXEpCRxmSSai+sqvVehE2cKI2huXDiq6RKJAH3jL2htuBczXZc/zmoKm7/xzUMOFpktUQly5dK0h8g1A0LbFd5Nzjd8Za3QCNG+Pu2bgfRt2KibgNiDkXkuU1YR8UtfnDX/+uuvP//833/+85//88///vj42PdXj0p7N+3Ca9FIYCIS0dSftZOw48n1zmBllyYru2N510OKNesqakxhZzDmZAWqTEQ03ZUMUTb1InI/jmM/9yOOmNWua3fvymYgiC5TezFAWEJl1hQx6ApaUBtVMueshIrMORkdfH/mOXN12i1j7HSyNuQSmKJYi5LxhVaKiIprT110BctCFr+QmczZ10eolevZ6ObfbRsPF9MxzMx0LALlwmGhbWrPrGlz2/wx7PH01zY+94/IM6pasMWsyiVpMjMW4FJMbU+Zoe7qm2/r11x1Dy8x0K3NymwgsGnTx3GsWfm+H8f8+HgdxzHPnD2PhVIgoi4mbqYDMqjqJckaVVjn9mWUvdCWrrPXfKAqvh/3kNKmiC+TVOSF3vWbdKoQQgo6WEaWs0gT7ZtOKhHBqihqiRu4KHuSktBikeWiyBS0NhKVdkZp0NyWAsQgKFVFgkMZyqNmnhR5+KO5dcnYtmctRgTa44MlgGR1kq5BTd3MV3H9sIcQnTMY4eCGEmZ1mURdK6oyO5k3KwXSxaWq1ZUk07VKY+xcmdk9msyqUkKIKmakmfnQnEFj559YF6pXKGF2nunlsXvtJwVgZmqmC91Nm0k84wp6pokyKYjO+sWyyWVHY2bmeda2PTVTgKzKiEI2KiCX/pRFsoM7zIE2Nuyfn6xWXs3i5/6KQqVESsGlXfnUkjWgIlapUB+PZ1pm4cgyrZBZs0T2bdve+GN7uFSaCV0z2SuNcFz7WkTMOmuelWddFW1dqe82zLex7AxUWGRlVXQYdqtBzazv4HJNE9gwU1ezcybPr2qMSMEyKyKBJQXvIU6aWbfjjbTfdXewhFqiwiWw4QX9t7NBNT1cpZi9FApSxbrnjCjIMj3vtAM1U0MFI+squOt6rZ2hTeOwMLFa6Y4iVVGkslWNpnCW5iW8TCR6OtD2GYDJ4iRVRvspoipnKfU4jv3ziDMZREKpMIiZNmDczmNXVHBWsrX/t2MrM7Is5VoON0boqk3qh23jmrGLqVkbssgK0CipBrqGiqqpYZgNvSjKWBOGqCmaLSFdRqsnNhsmeD7G8+3xeH/zzakyhML8/Pj1+vwkSUj2eKaIKu8q0iyqIs+MCWRVlDTBqIQJpUgPtsoczZsR3tk7IoElI4J0ZJqIqYOcvR0oBWWsM5JU99xgRFlJrQWLrBZFVc3IGXnOPM7YjzjPk2cIs4Sqy2pHbLTmv/jNf9LRxiLUNBvNhn9//nj/+ePx9mM8n+/vP9x9G5u5drsflXGpc3rmW4uxamWoqvZCt2YvZtWsk3MMV5ShAEtpz/AsKWj6ZmPb1GzbHu/v71X18ZE2BpltoZTnTMaw7YaW55nneU6gElWzmELjotKuhNyujdn6jItd3FvlNazRSxIAdo4HKQaifItjztd+bq/X2DYxTb9pHojaeXIex3nu//vPf/7PP//7//vv/+///u9/98/XOffzXDXtkjBE3HFPIhJziXW6CazOyxtopWHD2xFp08pqbKNRPDMzKxYpNsBSnzCoJSozX8fxeNmvj99iQqkfP9/GGPv+e9/3RHUoXOXakLIbPtN2N5RODSllmdgQUTAzZyHNN1CP84ijjuOIuVB2YZMEj2N/5QxVteFklkDRfoXSjou4rbk7QkbztjkNhiit7InNx3AfyYgIhaAY52zaA8lIkClZZoKHDFERwiEu4+GP57YN26z1adZ0cGRt7nNOVGRtVU8xzPDZmpI585y4W9m5bD6K7DzwG6y9VSZbg4IidW2wIhJxVtW5cheP/Tw+fr/++vhYeZT7eZwx54zoMblSoWIdQelDtzF0bJVWNFKq4k7Gw5Ld3I7oqym+i+ZG77AeeBNU1zwGqcuZrA8sl7+9vsMJfvNw0Vw8ZxERU5Q0CqVUULgSVNvzvPdxcNEmRbvaVkIpVdSO3Cm2d8W6yGsFqGgPoDsWl9Z1hwKaBcgQ0cVN3cZ4bMO8k9JBYTse3fCSCEsoqDVbpFIBtRtK6wnCBR4s8SSXbcvN02xzOLD7x8b2sijURmx5RbpcAyy78nkuT/JrMI+7vWhPW1zEQ+oXqFbFiVCqzlMhatfdvkiplvM6oXuIjUJVhF/iFJLMDrevWBzTttVvcGt52zMiiZicKQTNjVZiEB8wF3X0kwgTgLqGbq0uFKA9q6vURe48vmGKoUVjacacJEybt3c9Fbeab3XwK0n076/7IVywARcppCcyqqqu0f4ejbX1Qb48P7AIpG29fdGn1sr4zkS5xGz9799QNlnHNJnfQgJ6YnJFbn97LZfz9W2NfnGuL7LntO2LLqK+aBPMHjkpe451+VbBOvwHIhBYQRLe3gi92DuratlbdKnHRZXpAXuDCk0e/Y7DWcc421hDMlVR68z2rxEVv/ThvW4TSWpDcFhD+QCUWYAxgjR1mjRErO12aCtgx25e12KmdQY7sWLNWV3Zon23M4tUmCqbv+fuY9hj2HBNUW3Yf8YVp7bgrfb90tZGFISJSmJCojTQCCpWKlG3WtqeXFrLHa5W/V0XKAn4rXk1KVG6lmuaxOoARUlkqQREy6Tp0ShZLgYRlVk99YjIGZVBFNqrjkNVAOsprBBrUqhmZXSuzNbOad225/Px9uP5o22rns/n15xl7RyyUNXVWK98m/4XJqtRjszmmQ2vsHJWcg51HViSTcEdXNuTxzHG9ni8vf+oKjJRUWWbDxcNovoMvLoHlXYLiAuFWvcdl+57HVmgqt4OnO2zs3jK4uhs9msP6G22MkupZxz73B/74/F4Pp/um4mToto4d0bEuX/u+/7nX//769evj4/f+77f3g3fIYevicoyDbG7heu2qz3l1//F12gel+xsUW5Uq6CE0IXl6lS/5YQlaFuHz09VQ+b8PPb9eLVxUmaqWSF7ng8IlER2wFynXV9JJJdYimrt3pU8z+p8dxJKCFCRMXtmSq0iqrTatpi33D5RVR1W/d3ytCvSZCKhRGpa21ajDFKgFIXJVCqra3hAuoPsVOIhawjuPob5GDbM0EetGKogAJepLx4idNcjbKt6Hbuqlui00GSEZBRU2Iiaq2/DtjbAkXuP6q30OzUJwDwza55x7vs+5/E69s/Pz8Xw+7Xv5zHPnHPR5KUNbF2HOvRKDyPVTem9D5ATcrf34MVbuHLwLnGoVHL8DUQkhVChwIqh4lmzEpD6Krz+5fD7zgLR5dafy6RqlXrX4sCaxeAKZpPLqSoCSigoWqa50iplCdzAqkxKmA1lynJk6hi64W5Yu4+JWFGKJqI96rcxfOWxK1xp0iS9BClFURUtuWIBe50AshKOpBXs3VGRFPS53Zyb5pxRsKaBVXG5Eq3C4N8LhbqsYq96QlW1Q0Bd2kq+sauKCJ3yNQO2BlqYmZWVGX15E+WyjCrAzMqZy6i9xVYksy34CqoasjhDF66yNi2T6HzAL3uVUiaSiFlzxkyB1Aa3AYiZu7nDVEyLklgHuS7rV8FiOzCDUydUsp21q0RkqE2wUDFPKDpSb/TMG5KX861cHgFtlgMgIthWCaJoKpKYiMz6sgXBN87mnBFV2nprd3NBdabqCke8VuW1Bv5uqNi38d52cRFpVwNBNvXjO93+24DjK0VnqZK6IMci22XyHr9mJq4FI/7FNl9+Ij0k0gXQST+YzTGCikgWiybtegiuOFWmmOJi0XXIU1s0XyyaugM6uqga5jCIKfqUW/aM6mrdjX1R30qWaT+pgiDJuBbsqhJEWkpVd+jXPWe/o8pUG/jF5SHsa7JPrgjKS3x8laLLxgLNnbLl9Pn2eDy38Rw+iQpEzOM4ziMyO6gUhcKK6MxOlQJPyk4clFRUtrtuP4J643ZXMkkVCuSy/w+EiSrLSJMhwj46NocpzFJNxVK6gURFFnRIWbfE7VbVsEoFclb/qWAFM9FDB6BcYI9xJ1y1M6IoTURkrIR36uPxGOPx3N7enu9vbz/e33++vT0fj+clJ0JDAlnVsu6oLNbMufy/roIDqoKaGiaHYZhMwayhgFWkUE3U3YhEBtvkUU3dxmN7//mDAjURw+vzt2WZmkkLraT93Fr9YJpVNY8ApyJbmdx/uvZaguKr6KHKfaNXvU4DoFfQSj8ZaG+8M4lT/AVz8eG+9XRPdRGZMud5nvvn79fr9c9//vPPP//8/fv3vu8Z81b5ZbZVx3e/EmP1uBPfC68xHmYuMAVch4s3WLgwQTEVsYvH24w6hZk9sqexymGmRES8Xh/dBmxvz07S7CgIIodsE5Va7X7TYSotyAOrreiguSgdTSHRFLGMOs84z4hZVWVNJ0rWjDqzT3yi0rKwfIQbqerdqaIrldYh1qyayVnFoAiSlRJrI+W6BGaw5fZnVLE2mqlQFR/erZyZqom59p9l+0AsAXkATJhg25peGeFbbZkpLvMc4vM4zzmTCImoIlXc/fn+drcc7s6V9Nr2n2sfzsx5kbrmPM55vF6v/Ti66vqf//3fz8/PX7/34zgyeAWHw7fN/bk9ACpMJUGTLGzmvQcDEHG1r+yyLry4tKJoqNtMrnSjL2cNZKFWYdZAcqb31OfL5L6q2qWzMbNiLMPGvzUHt5RG2jLx8rVqG98VPn2V82VZnajS6WxkAVZACZJBqiYgGZXGsosAfQ0vXNCpdCrqpBCehJirbzYWM7TRUnGUSUCClWw5FbpGKzPxrSrM0IJ8Xr2XFJfbOpOl1bmtWE6V1xWMr8Mb9znc+Aa6HLlnzd87RZEO6da7NG4G8H3bWqBR35Jo73vRRX2YbdXLepmvZObJ/WLz8XtFIlfhdQ30FqxnWsWMyqisyut0pyrOrDPmDKipsp6m4uaPTcXVRkECkqxgJUuhoycw1ysitPuxeWZMMHRROK4gtiqyhgmGiLIzxu9I6Tvu9P7g9+tuBlqomFU9uKEUxYq3065c9rFm2t4fs1257gXw7T7+W+HVwTX69Z23NrA/gzQf4lt5fS22v73hW0F5rzeRO7KzrR8WH0TWiE1wyaZawSmC5YdNkXaGv6E4bZUBKLpym5thAHaim3QoiXDFn9eC6HnBvy5qPpbT+TD4UF/ioDUmJBYJ7Zpz1SV3gso9HF247wXimin1y77uu7zulvlQ2erFq0QkWEQlktkOg327IcpO2iF5/fX+gTLMN3dXq5iIynPGcVYESlzc+hwXsfadBJe7Nku0UGVOJVIXBeyuyC9KG5OCBKqnjQpUiUvSRAZEzUsKkq5iLuZUIzSp0clnQhaRTcW6tpTLxJKZmW3Im2ApSzLY5huwditeTj1RJR33oVe+hYqIbGPbtsfb8/H29nw+7kxerOL32+59dfy60rLP8zjm7V3k29ZFOCCCzexhmoooda6UW7fmU6wbuvjL27a9vb2JQLSAqJw8o61N+/eveCtd5Mglh7yOqDsBxdRuT12S3YBQv2DvlabCdn7BmghcjVGBVZxz4vVaEjkfqir061ZWdPb577/aMbhz2L4TQ1VvsErEpEOfQKdS/q6I12V056R056+Q21bU3C4nLTFRFy2lUQSuCNUNZJPLu8UCElLuSmXEPOMotjuGoBXfa5LVbT9uE621bKQ6nzgzZ0KQgGbyPC7ua6ILL1RjD1A2kxqZM3UVure2oX/8zVJdkw1ZJ75Igw7acIOaQGr4ZmZuQ32obK2fgmlVS/FMh9+nUvOSu9Phmm5j+eYUVMXdVGlEhFpZZlK5+ywTmELnZGFCQtrM8o8//vjHf/7HH3/88ePHj/F8uNyJwfKtesnIuNj0c9/3j9fr9fr89evX//711//93/99fO6/fn3sx9e8T0R928bIGazUEhehmngbBolIO3+u1xCRRX+UpeAhV1yEmbXKTS5cqaqQlZOyBoCdNt5eF+kLCc+YM9qFpyAOQqyrmtVSXxuEqhqsqsNStM3CM5sPpR0SUg3eZ0bMQWmujUpBFSWhIm3u0L3vGqS1qAY9vrv5UgsF1gFo0ZJQbz1Pbz9WAnOKszM3zqrJzPV+RdXHGFmsgqGdkC5e12VKXolsd96qKAIqINRuLztIYwqyBqk3Imi4a6yl2lLtXI71tzpzgwHe0UON8pYUpRK2msWWbd81FHHVaJeoWDqXApxNVrtAmrvMWrwuLp3O2jsUtTQji98drMQ0lrtkVmTzTdr8Xc1dzUVHmQCMykjOyGA9fUD1VpGgKR1MVjBmZaikoKQ6l3sVImhtA73LgqW7yWtYpm1RyWLNyqyMysvzHACVLGQwFqv9qnjmsiYSYLmBdtY60VrrL8OIG5r6XhXxS3oil21pX3slsYKn2lN9wWB/V1yjLgOqXmcLgu4rrOpmy6mZ7AKr33wuRKmHzktmjMuxsqeFvUeuJQzctjtsO1BKlxkiMLmGTUyiqvHeiooza5YABtnEylBS2rNWU7w9/QIaTdUgpFQsMyRmEZLMqCSp1LiSYdgqlKuWFR8LBL415MvtCBfP+sYPbtyRRLJKEF9EO1IVLFRlRUIKcFXA2+hruQRXVZyzhQILw2uzA3j1886gYLIq+zjvqFGOHt2u2azehXizNVbgXjbmdN1ZiNJWGDhKhNSWEYSoNBuQnCyUpKoKa1K01vyh4yYzK6I9zVvuukx2EpIUQrRpnTcui+xSy0zFTbpVvSBeG+7b8GFXuZ5VQkq1GJk1K8+Mc04sL+X4/Nz313m5buTbG8OCUUgxjs22zbYSkyFSwgQjU5fgnStVY4zRq6kAFs/Kh+SPOGeDRXH2xFm7HMGVvPntgYAuMfo1cZAFd61dlO34Ydcf6YCOdofXy7kXVzg9ln5tnuf5er3MrLL9k7skOs/z3D8/X6/XcZ4d/2dmJUIse4hmlF6uy0NEWL0DyKKs3NJRMRYq2npc2HERjABV0nRtJCLWdFETuGR07QUfXR73mL5W8hIOVDV1KbtwYSXJho6VAgETUirVlz3BTl+5otOpjRjHrBnRfqBViGymI5SqHC3XQWWgSvIL22NHty/p0fIPVKVgrH2lVGimY7PNbXjbbLNnC9v2VB+qG8T6dlJB7Uw2ASpq6mx6bmRObg93Rzd4beqnK/WWMC1RAydFZOOjIFGZratouxmDib+9vf28Xm9vb9twp9yq69W2Xo9TYo2Prqir86Nd6H6/fn++fv318TqOtmPpxfV4vA3HeWrOEWUC7xn4lFpk0A6XMW8upg1tngSuctmZZJqZKNWvKUS3kQmTaKJiLqq6SKIIX6qxOVfhJbICnsWvvhD3+l8PLtJs9KHAlT0EiIIq9CpEHUVWkglkISlXqyGqalRfuRbSedLtQcKSoqFnFu5u62+4mQ6KRqlAoO6b+baJSLWJgZYYivOMOmceM4fSRLuiNUt1FFWRLClRpRZaocXq+V5VdNmZrD7Q+5iQajOgb/v18jHXC//7++s6oZG6hgjVME9Xxz3FqZXGkGaWIGMpa/7loKqqoIhku+Y0ZtGWHYuHxC/opWGkLryWKA8yUdpyilow7ALtM0WsyWsloipUgRrUoruTLIpEIljRGNBFn/sqYtoQrkIYq8i63ET7Pgs7jLzNfioi2vSmLi+TupKt7oLstmNZ/7dq5uW/LxB1FesZfFvdLP+bqovjUt+daW6kCtckcQFpl2XzfQDcL7Z54C01v+dv1+u+TXf33JfmfkbMzH18Sw64+x8pVjG4aGd6JzTKlRlJLkp1LXq7ii32oUK9ukIVAGKXL1YJ28tRuiNf8BUurb6IeDtRqdLU39+tVd8NRbSBpEW/W8wvlT5JVY0rAE9wi/++K451iTraxgKL5cPumNugvlpEXIICstsKCoNUNPWoloN5haoKqK3QkSIyWRFBkeOY+75nlpm9vb1ZImAbpUQma3gGy1kWx6HSNpSas5Vu1nhdd1z1FQbauSuA63IP74tqCjGYln4Jb6qSIdQqKdVaIlQp1cJ0el5zzKqKZExG4DxrzpxRkXUP2RsSv5t1CuyKXe8EtQaHrircVL3xp+9LQ+TrUcwrH2bfD1QsDdfv1111cT0M3otPsEo5gW4+p5+77Zmp7Y4sZAM57sJNuy6WAt9YoclpZ58KKXb1UZdJ7rU03D2vnKzvq4wkvuWlfu+LVnGvsu7T3WPI7UgiN5bcwMbrdcyZzRBvTkhEHPt+HEdEr9bVK5IryGKMRyvs1ixFBOoXzm7t6Hqv7qqas0S8qpgVJCTBJM17VN1jVoiJhFJVXbTMgCHSKp8u+wUdjyi1AFFkaYsVezye/SHROg/i6kCLuXCUrNkmddVEkWzpaA9kMM/JAkoUNlQVjC7Vem6xrsOF9jX8u4oPE5HyER4xXIuqGKbu6sYlMxEK2RE77gPqgDaFWh9W4LICFfR9WTZQl5ugjNERqIVs6bWJAC4MxGLh3PjFd/h8eKroc/O3t7f35+PxGI/ntolJpZsMtdEDk7zl6JDkaUP1FLEmcjDYaTrHPl/H8fmxt7RrnQWlp+ORWnCY+jZsuJhDHEaqeAnoAms13iXe71/okAIGmcAyg13SCHp1eLE0tJWaSE3NERJS5hkLaoguPcSa1xdal0H25YsIA6aIqrgtFEbIFOkY8CQFZWjIp9oBSKuySljNkewCDmoUL2S75fawsEWkWLaYvrlf23yHGqElN6KjOSqdyLuEoN2/dmDDYTHEXcW0hoioi9OKkiyUShcsnYddUokMsupCmBoPFdoaOMryhVzce0Loa+9bGEnBtKpSskrGGJQi2mQcgLJ4a03vQraqZHm6N9YVqnof2GtqUUwWWYpqGrSKFS+NIgrU26OMFBCyQoQShNIVkKVjZSTXBKr7OesBv2C5xrfte3VerxqhnCVFiJiQLMm2LIzoU9nVIKgMk+qnsUiwkgsFUVmk7MwKxDnPY569bwHQqhnZyXCZOeeKiGteAJYhc0Vku7eruq6UyUtszE7Oq8x5n468Tsp7aX039lhVI74MVK9UGL2grKuuupzg+qfWZUoiHV/QFLoliV/8CVdyu9dkk8QaSGtunC5kfFEe7rFdu119nQ3Xt1AUoLooWHSJlBAy+pdaT1ozKqLaDk+lqSKq6plJMbgMkU4ZFxGabm9bF16jOTtFlQoRy5SYjUEG68yohPu6fFBVdTE186XqFr9AjXa1QAWFnEjVrPalgaI9ZmwZCUFKDeuySFQ1xpbSlnhMVTVxQYjWbdV0ZAjk85yfrzMp4/n2I8UTyQ561z3mnDNQZ4SkYiocOiXrsGuImQRrsdlUtYKokmpHfRlqXW/56DfgBrM+JoQk95ij/YM92c5xjDb49TJWtlifKu1imMlMRFaycrUutcD0q/+sZqqLqbq5N1PbzM2sMzoTVHoHMyMhtqAPisCrSIM1mnKee2cRxrGM5l+vvddpP5DzmKnJLJSY+LBt84dQXNv4qucp4kO3bZjTRIa5CyxNqoCQ5yZ416rpdqfeygkJVM0xrNmNqthc0/UszUxdVm6Njn51lRfro/v8rgOktY83ifZGWHsZW4O8Y7hvgEZUV5by5ZaUmTnP+C4f65OQZJULws2q7CJjqMiVkdrI2hXzSWGLTLUWUzNTWG04p2wz79Y0lt7mRGo0x5ZarY3JYoiowEXglVozC0nWkg+TVdEKx0aPXfwyhVnkFoFYx5e2myAz2ZHVC0Nt4+LMrCRK3Jrl6osrj2h/b1nEBF1jJbF1FkjD81I1KqIDKV2tBTEC2tVU9vPRkyRgGU7QjUj/ljbWLhaVU1At8lUU2dgwSDSyp6pa7UbeNKgWya1Dv2t3ki7+3B7P7fHYtufYHmPbVCTxsLEN29xUFVqzxARmMqOe4TXH6d6RDAIDHDRSMySi4qyqolLFRecoUXF/bFke+YpwOfvBcIBQGDvxsoNGRZSm1qTRa2DSLutUMVnk4WIPY6EViTmxCCUpIBL+dWK16FAvo7MIVV1b5FJ5r2Gwaq99N4DUTmyvNm1eRl26JPlFpCIJW0QLAFBRozkrRWoVTlSp5VvoKsN0WKupBWYi5uw0oRZPefcGUHSJQyWYFcUwRNicebpuKuZoNxRqUoGiaOkSKaagREIktFIrpW1VV2iSr9Ovx0RsslZ/paogkbQ1DdGlkurhgGFNyhs6Q9X8TuT6W/NHgtIceZqbfXcwtzZ5rkptdflSTwrLqm72GK5znXdJt5A5mUWqJPmVTHJtRhoRRSSVYLOQgnBij2ybcYH1Ydj7U4GZrMgZZ292YoBpZVLpitVD9W9f2fIi2hrKhi0ivvnnVNWs1NTLtOgLCbs/SLAqUSmACtR16JUz/43tfoeP8f76fRl1GZl+5Tbchdf64jfu13135BJU3rXX96SIrpbWSOQqvBrglAvoimio6LsARwCqXlFf/CoIv8AM5ZIz3kmOEFKta7tQMAus7pIpKFRmJFllNigKrQ5qzWK5Cl184SsGoaltw7cxfJiZXu4NRuIb/nftCVe6u/ji0bm5u63wYBch1Lo0w2pCWJFcJGWKsJqqIwBgUjRBFaR6ICCtEa4Uzs6TaOMOk1JJ0SrkRHlShGfySFDcx/PtzTAjCrY9qIKAOK1KHBVRqiGSBqaKZP8wiRbRSDKlVKSUWoBQTMzETYeJPsxEzGCAL1NflqjMTCoq2SSlQqyRMavKSVoth31pjUc/5ksMRSpoKqvE7FKkJ4ZUBSkum9hS+Cmc2t4XFDGp9Qe5iBzKVNuujYlYUM95vvbPz9dxzM/PY9+PzLyDHeOcN0Y7xjjn4zheLVrsQVvT8h7PYSKmLq4mCXcD6IoaxhKWFg9TKSHzVFPV8zwBZPTGUjdc0YrkC7ESUG7vLnBFhrQk/GvV82sW/H0x3ovljsZrnPsLI2+CI6/cnuz/XF0QuSY2uDRouNOd2ZMjJUvEO7esFysXPt0LIZLLWqhtnyMWMNF/oYTQQoUZIT2Ub80ZSdFyswEUAtSiavOQmz5YaNy1FE4UbJNCamMDYpfNdKsKe6vLRCZrGVjKakE7IpWd+hhEXG6fX7LldQxxNcoAVOnetanSISLt06bL07ojJKGql8Bs9YwtJk/h7YWw2MnXsOLiyenEBToUReit0Vn73Y19qlRXvFDIgKYatDazbdjb8Ifb0/3ptqkUypv9aW7aUywxiJaKxOluZpv5UDNxE3cxs2Hi7c7D0nZBLGFEqkZKQI4uYQLCKklVDujo4zkb4qahoPg2Tl+Go151KqyAViDJGq0C5sJTiqs4b4Yw6N1qNJbRkyftPR2yQvWuiUk7r4ops+/y9TSUclGjVKBjOJXGyvjcX4EBez6f27s/9Dz3fT9JbG9D6bk5X5IniiWG53g+/LGZDlNRW/L0K3ULIu7aAM2MvWi+reQmJmKekhOszxCP5DSFyENabY0I61gowWrM0R+eQKhkaZl3sDFUXVRUixUFgXkkI7KyBXTWBDlRCGHL7LlPFwIy54SUEpEsqnXiSuO198l+JUQXWChVHeqEzSPmEVcRYICYmLstV6kCJ8HmfyymZ11RXGua0G5U3eG1kAfzFtzd+sGIUHXCKEYzYTMT88xQCVA2c1dBRz9Bxxjqljk7mKi1oXPOfQ9DVE1FDcfDRJBZWXMqixVajXAVMyPzFmEBmBG4036qCF1zenWKJRHJHn8D6mrqJp3gB4A147w239n2HH1xzzhthZqJWPsvyx340JuE+3bXbe2C0yTi3g5U3Mw6yuOSibG+jZy6S75Ae10Zi5deq74VjlV1E/G/4Z1d8MV1KrC+DmqwfV/8kn1BFR1Py2TY8IdpJRISyey8N7W6FDVUnSKzmU7DVU28VZ++mcMwNhvDnuPZDWiHuy3AYwzzOOcsiqgLqkCoNxl/jPHlQA/Jahaq+WiqWXsTp6qQCxyMKKmUxxhmbgoyY1JSjUpI5WRWk1PyMJXnw8aQRtyKcyj84TYeJzD38/eZEz7L3H88DaMqkYEKnvJwj9pzcmZMnjqFB+SAFakNt4sRTW6hVDKihNLGlNRSl6cPgz3MhaLqLEnhGMPcz8njxCS1OKhNfl/HsAiyCkGaCBkrDTYzV2tk0KFDIKYVUlHX0Z5XxutYTIwSBjMrEUmRkiD/8Y8frpvrUBgSxcpKMTnqvKR8Oec89/08Xvu+v17HPLOCrsN1NAM+znmepw9rNx1W5DyP/XcbTLy9zXZ1HuYqLHO4+nA1z5pRdDW4sXRzS9cszSPV8POPd/582z/X782PjMoC27Xcc50QveGtzLjVIEqBKqKUDM48PWpLbhscHMMejwFAU9aMt3gXDU0I7rl1oMy/aWUS2dvBNbq6mJcVkQ2DyeWrFxGgXnY26e5NZVPtOrYhc4yHidWsvU7rNy/DHRZR5MzLvaad7WffP0YrzgAIHJBMyESyIIGB8RgwEpE1A3tIUCmmZnQFIVaEKSkCBmaKKEg0r0/OjOOMTDG6ymbDtETV26ZzJUX1WMch1TiCtcEyqnkJNDV3H+ZmZnK3u10p6TX4HiJyLoeKpanvMdfj8Xg8nzCdGVp162xu9aiZM+t87TUj3N39MTrUnGfVVW1Lj8jP86zEcZ5xRp1ZMyu4mb9tjz+e7//5j3/8eGxtHcYz9Ln98ePnJjY6PEdquTOq9NDKFG6L4rL8upo7n8IyRS+DKsbMqR40HVttz/THXsj9fGG+EenjTezNwSPmrH3k2LYndTweT9Oh0vTFBfWpPy6BHXEheLJQ3U2tLOI8z+CJPEWvkMtGfysJ/fLmvrGZu2To7UbFdVkio/EhkbZyFKopVenK1v8YSiRVypByoYgUiG0AkAnv3thEXVXVfWuzxVaZUNi2oFApKaiQRWmtNoS2eD0zGNMIuh6ACeYzh6mbVmdxQ4huWVO6S2EzTlLR09KVMNntmCQBDZhQE2La6CrBxa3KnIY2e5bbw0mv2JwbNpCL5nWpc3ozaoM1KL5aQMXl0YYVVHhDHgIDiqWUaqQYEDIAxVIpLHEp8fXb+/THv726qsusdhAtpghnckRI5FAQyAIKecF9F5C2igj54mXKQoLAKp6g1sw5a04wtQJMRaKW3qShoB6lXerZNXLt7uc78SWqQ5/74TPFZSpGXlz4dlyNZb+2HAP+FVn8Xtbc8NI98+2cq1uOBzQDxirmfU+5st6/1MJfeqt7sPjNqO260PVdYPz9FvzLEpOv/Me8RMF9KglFUCHiVOhtuKr3jdUVct+hq/3OzBTQ0fE9qsPVTd1p5oqFWG2jXSSYl5/4N+OMBvkBrDZxJalTyVq2AG2npj3+lsUDby8Q1OUe0m+tidKoFbGUksXlvkAUmKLUZX2y/qzqTnvVA8CkBu0sgT+04FWidSnUlUgDTVKz1FI0SmfqEVUKpxjt4tW1aqAV3AlGocTMH/54+GNzd/h6DqWvgHSHn82NgEk51Iwr0pjZEIh6sb20KQ3x63K1acoteLmEADRItKxuxdmJA9ri1SX/okJkiLq4UiUEWmVNYWYRFedVdR1zzv3Y53HGnBXNnpYeOV+CWRtjmLfFPsiKPGc0hq+NiLht5cNc5tjMZYzR4+MmJypgEBO2oLu0DK174DJUAG51d1czfc2ZbCporjgBqHrT5gGwJCvaBKURU1Xtwc03BaIa2qt6ZYJ23ND31XcvsfuLS/pdcg9w7vmjXHIZ+fvRttBwSUhBmhjH8wxVrRpmfosDVVVhS4ElVYJkRVsosRv4NhpQkpUqQJ3NK2trStFLZNCPhZqoSz8FbZgl2f74VKyBfOtwzpgRLUobIu0Eru23RiYzqqIiLyDZObvwahcecVEIhHC1h9m2jW20Ouk6wsaqujqdjxScE5QzsrHa5QqmpFKF7l5VJbj9b2su9sg9Y4kIM6vIiNAOzVvzTa2qjgSoCpZoLsRrU+vn6Ln529g294ePzdRNhsBUTMS1ReeaWlYymWTKdQKqCKCGiyJJEwxVN32UBZBMUemnF+bUEeIJPSdcKvbpngmUaPZzDQkAtllmln2RUi5X4DZe9rsA6EdFJG/MUES5/vAOBJTFkAEaPzCrSvTIciU/Smcz3wybtl4PpTY/UakCV8pDHlIBOSAJapVmQBxo8pkBJouTRKGoUV1gLmgCtXatpEQuI4Ye/msXFrzUfFFmTVuts5pZbGm7ihvOo2F2iMLFoJeMstXcaKio3VMggPaAhlUVt/hGhaQaetzdF+4iWHWgqYLLEuaOtysAUSVNJWmnjarm2ejK5O5j6aIflcKUxJVXKFfZJdI7dkMsBS5ycpuJK1eU/Neh3qx7Q9PAqi6X0Lu2vnh71aQXinZ0SbJmERlyJSRQoqrRqd4W5V5LvfXgMpT7AngyEEceRx67oIw9zE1URM6IGTGzAoBLR6K2lyYz6zJ70fYcKDKSkSlcjrRYA/WvPL6mYzfBCzCzh2pTSi7JZztylnTXLEskb38L+Qrt4cvwoW53caYt61t+H1JXz12R3cl+K6e+JWf3pLXvfn8f1+F236g1vlw98R3d3tVhpwq2KbGC18QR0dx2VSFXhPY6aagmSlvicADiNob3fMd0NbZr+gO6w9s/npC5LtS6s2BTCa4kWjOzZeuKi4hBmFgHeKiqiV0OqT30AMB+vLvOaAk5q5jCTFYWp7RDXF86U601vbBOBF7jJF/YJ6SISZ7FyVvxWcY2uy+WFsQIJdUoldCEdspPiZKSgnZ8vir7hKRUtk7fNtvetrf39/enP6y0A+4S1E6JRaIc4gmtXI8ppeM3W/UfWJmDJma1eqC6zHdESTXRyrRq8BuQy7KrF7mg2nepHRpTBKauakKt4ESg6E46RNG3u4nM+/46z/OIee6vOCezhZjagSqmi3OyjaFtqyZtNDrPs02YlzlojVJ8uYfM4ySTOTOiGNX65e4WZFHz6s5Xla/m8hKbObTA9qZlJi/s+krtBRPMyqxsBpxoQPloRqoaSQhVRUtNrn1zURt5l1n/1lLKdU6BZBYi2TFlx3E2BGJXeLPpl1/SOlPYTNOsipb9H/NUVZ/uvvibEVtUSg8mSSiDlWzhUDI60rXaDFfVTShiEah2e0xIkFribeJwM/JN3cxUYNIK1wLazzcLqMqoQsTMJWGq5l235/oqZQVVKGsiigstxB2bq9kiHaighNjcHps/n4/3xzZcG/2SZpCrimhSqnDOLEgmWUcTsK7b22GlYliXugeUpdKmddmRsZk97DSz7JjFR0fKo5FGKSrKhD2lDqpSlRCIiQ3Vzccwb/21ithNE7xGEEBlZUTMOOfMJFrruTQlTcNcH8zdtjHadTCo4qBtOh6+PX08xbcksytXkTea6amqOqAwK0jhnLKpmlu362PR5Jr4Jmrm8u1oWOhXBUWqbQzXtEr81oLVxS9X7VDqtkes7zSU/qgry6IN38UApAiEUqI6lN3cOmAlLgRSmUC234c3zwtsGEMA1Wi/0xV3f+kIW97du3IDRY14Rb/PTFSqsP9KD7lXf8wWpqatLsMoTOGyOWUxC2SHixZRcum/muDZJ2MDZW2JP1qlC3yNjlgAUgEVTeD2bZKvw/WGMVoDuD42v3rDZZjyL0DIOsi/9hNgWepVEYb1Dm+W6nKSWkUAljD+fgPExSX/3hf++26FS24pKmeGQ2uhUGBn+VykCr2zcu+qv6G7yHmecRycE0yTMhCIVXjNIyJaRtCxIWuXz8U8k5sVd4VaRtQS1uslSWuGaeWCuy7rqYvAIe7jxhqrbcMSVSX21UDfLxHpUW/DXVeo9eVi9a97+qrJcLnGf0etlrbxOyESzeP5KpKu91+1kiXqW7/eD0m2dlykSBFzoXCJ4eUaZ7MVslz776WpXoeibD09sfYmaDrWZekLunFNysAEZ8aZcRvci4i7t4l+YwqL9Cj6t6vw7bMAaIlNF5Fi34r9JToloyU+WRlVQYQqpNN7AJipuMty4nAd7puai7qIEdrUn85xT8plfNl5Pv2e7svbTSrFBMliWfcrIhpK48oc1nL3XihDn2/P958///HH+49hG0ri3Hv3s0oCkYQK1QhUCUSjgG4cqiLLYHpZ02mr+SLmrQNGiUKKTU5Yk1ppQFO6CGs1cCUoiUUlbI/PmscuIqHHZv54PDgG3VW1MiPO1+v1ub/O88wOrowyKJvPJF+Se4iM4fJNZ9IrjBDIS6e1xDWtT6zI8FfuqMyamVNbRbdm50kyV7Y5UFyjnGV8tAINrzOFETE7dKahZfhA43BfJC1804dXRdViC/XdMlNQskpVBMpvnVVTLb4Qr/qyYu9HOi4xUL/6P/klzfmilPVX/l54FYD92HtRuM8VLuQZEa62bVuBInfhFYsXWcUg0E7jZVJA0lDKzv2MoBa3h2HAOMBJXHJwmIuKO9dOUJId6Vfok1Uu91c2PJCkAZwzAQijdxVVUR1C3ey9Cy/tKl4oLFFsYo/n+Pn2fHt7e2y+DX+OTYebe8+lKnFEvvYTNFI+Pve+Uz1NW+2CCG7v9AUcXE7ImXPOJdnrgBaSS5UACpW3taG6miuYNc00on1mFhGteWArpnqR+iJCUKgeR2RmHjHP8zzOKLX2rpttIFyr/Oo8L3ffng8NO1MljWLbmzzf/fHuz6fZqDOLySxpyYrKUN2L5u6VrFLBNPOwFcp374eqdp8pWA4s7atZ8vf2oF+ebavMZNsB1bcOWOMWfS1uOVmV9/EjSx0synbIpJX1pKTKScPKr6xMOlXNHUJlwYvQNouGiriWgihmorCOPRFhLceb9lFZQjfW5YdJXY5fgHSDbHozqWup+6yN+roJL2knvGRJZbHQXMQeXVBA5RpxgfdZq2JUI4Qsha7w73X0rrzxNn2ya1PAlVJTl/l7o0Ny1ZOlDZgJrMCUS93xDcAC1iAAZB9rV92H/PrJvW1fVhdXrSzk387IBq7X3IcrHpzrXNW1XSZSS5iMYImId+G3mFg9LVypsM07uAom0ZY91uwDIMDEMnVKZkQ7aNe8O+POLcC1gzbfYilHC5k8s4oFCJBFy8UGy4jIiqZq8OK23zCimWVmG+6vnT1Icth2V13fV8IYQ2wdVPzmxUd+RWrcI9fmmrQMihfx6+Zz3BVYN+uQC2QFL8O9dSfvie01MF3WCVw3c4nwhR1cDsjoqXMp2zJkLmQCt8ODrMRruNkV6tDwkVxhdrJ8dFwETbqLW4pxP7Ht00EWg5nJNb1dGwtEKCuIGFdcmWHVM5Be87Vs0HqIisqK2cSXnoRJUdNMaOI+XLo4hNvDzYe/D393e0IH1vRFwc6ZtIjoI0dEIQZYQls6eX+W/hTiokJiKhXVmh6jljm0lAWBi+nb9v4f//Ef//n//P9+vv8xdMzjPHaJCEpZZmQr00REKtvskipmffME2ToJc6iLDRWrdjEXad8/mCA5tI2tlaharumLULBm1K2/qfU8iGSBwajz7IImbKvMejzKH2aGqjPiPOPcjzlnRxqs3kOXJqMjOu4h8mrAkIQlC5UmkBCbr6nWheMxz89jj2bEVraTdrs1ZuXZSSPVo8xmQdaMmhlQhVgDXRRkMclMHnMRDGIZ4TTJbtlD9oowMx2qm7r/zQFxSQ0v828RUe1rqgBmZcxy/drfWr4a58zMRrnWeDE7O/KOk7+IX7zDKuquDK5I+yugokAwUGSurbXIypdbVW3lUCZ6x1xm6FXNlc+luqG4uwMRmZiBQywtlNxcVWQgWZjoSa6Imrracuwq9MNbdVEuXKBKkSqiokpa1dDq4C70e1IvKgr9+Xh3eVxWydWyWFE81B/P8f72fD6fj80fj8fb87Ft2/Z4tLYqg0fkx+duuonbfh77vkemFImMc4aqDq9l98M+HTNzHsc8z3mcM2bOaBoc3V212j9URJhtQQG2Lx4AmDahhNrgun4d5fm3l0QIIZlohKi7xznjiBPUM+Yxr1tfaJ+/BYW6uUKHIUAq3J7v/vbD3t7cHhQ1pUuP+sksTp4oqbS0LNeK03Tq5WcpkreWq6uF/nMf8417d65vz0FK1rf53Z1f7REux8IW0H4Jer/jJb2PmyrZ8YeGImZJWPfkA9Z+yNXVLYWFIU53QLM7upASo1LgEsZoewUSTJZSgw1sJCSJpYFcvRqp7b8ikPb072wPBQWJFgpGlXHlxjvUC2lsEnfWcvpud9ilELmu1xI1V1PZhapahqIotTUwAsPyj17pTlHlqtUix2/0HVleL/j258JLLh2pXojCfan7Qfl3gOquui7Y40JTlrMX2WiMFKv5IrzRL14nEzrFFkWpryiczEJAUyiFooXewaoXdNd76DpWlGw3bmUTT3qKnzOY6V2ld6rKnDNmE8F7HlYimVmrT627+1ylal3pMT08rSqpvKIu7sKrqRr3dOHeUu+C6WohvqNWX05I7CPUTRffNu/r0BTRrx91QYYktezL22lNve8S42/o1/cb9+9Nz+pclts0wbWJfMM7L5BTSIRiLFxAe+myI+RVzBuNFrHuIH246RibCL+wroV8VLse9J2KiESKUNzUu23tpy4z84tJY2qXXfp6eKoyu4cUJQprXiKKRJW12x8FqoIoVkXFKVJow2WtFpuY2MMf7j4Uj9E2Fza2t22863iKPQVGIjPlMrZy0VIMqCgIO0mTMFoz6jptQS1lpAnZQprsPUQFaW5GL9HmgG86fv74x3/+1//zX//1/74/fojI6+OjkJgQIPP/T9ffbjmu5EyaKAyAk4qIzNxVPd2r7/8CZ87pfmtniHQANj/gpJRVPbFq7cqPSEkhke5wwOyxxJyRem/VGUFV0y1MVVL63OaG4Z2lIasd0DxFlkBZEIoEy0Q4o7p33+eFFNFu/0PvJmhrmSKT0cwGmHh6dBumNnF3qWK1QFFvtZIJV6Ln1YDsuh8iTbTpIHmusTuryrZO1VwqvBY7R4Q5rsSFAEoQWXPGPKMzJ0tWXIJ0Z+uiZ5eodaZp5dWbxxqyrPsuAtdZZQnCGiznCu9wz1cjqv953ZZtrKl981oBJO617VocOoYvzu56rHP/2wShLsdYI+quMc4fbug7FHmMcT8+Lqbx6xFqg2lVtKw918ogktUY6QzhYESMLpR4HnVSz41qThkfpp0mrJeZUlT6HtViCJhINnZXOh6OKgu823gL6Yzu10LdB9ueAOi2bUP3ra2gLGCJA4bpYx+fj49t833bHo/t6+tr3/dt28yGAFVyzBz+rWo6lOT/+q///+/fz2M+45ycE5k2XNWiyoDAyoE+vp/neZ7nefcX1y6ZK2hVikaEU6/DGXTN9+/qQnp2jzVbi2JmzqgzS84gqdI4C2TOWZms7nJVyXGc88wj8ozIqpV6111xE3fr2gGg7bp9YX+I72qWS6ptsDLTUURVRp4yXUQUqVo9qo4I1fMqhFZ8JJTNDr16Ui/T2/11/3TOZq4ZGukkoi/gXOXlX637ilz6GOmpq6haQVVKxXjl6Xa6p1YrZP0ataiqN8N45cyZllotCKw2FJBkgd1AjNYqSpQG8lV4ccGorv3sAn+0PLVQFIk8IyTCMo0KmAHumKmKzLUEVKJbusKai6G08MqVDX+8N+x1ohdpGVHVOwc7i4BoCRtodt+lLSFsK227IBeU+SqHqqrNPesDw8p3WFxg6fDIVvWrKJhXMt0quW4NnKyxYw/CeANy8JqOvhdqPY/U1xTshpBCyvroLStSBtfxtC5CKQB2oy4DDihuWHDkZIRZIz6yg2sjQipTsguvEO1slV5ZSQIlpgYVaErLBlaHMBvN3f5/RmRkxit32VonYYAlhT1UuLCfJJfo/vq6uzsFQSFrjSlfpd7lAKhGRb9d/CLCa7Fe7yQXTr/q/9BPltal3ABuSFVBV1acyGpXtoyMFFVbJBC5PscGSXDBYVSE0EBg7U99MGiO6Rpgm/p6cwyqK16tZfo9PCRrZs9fon1eZmYPyxmBti+J27b2HpNO1BZtDeySMC1NjIhJD8xtofGCtuLQ6WKEsEFrlWo0g1oLz+CuNnT4vm3bZrq57vs2hvn2ue0/dHzRN2JkW/miJCZyJRaoaE8cnVZlRXGFa5l2HRaGw/BMmV7aYuwSE7i5q5jaEFfQd91//fzrr7/++fXz52M8+hO3PFJSKRBbVzuFMSPPPnUYpCMuO/kHDttMx0p2aw+yQxOLcGakpdUS9G7SroLLa0wRQUcIsMcXKlLFOc+YE6kGFRuSJaeIrDl9pfQHhAt90pdl366stue3a6lDmSCy4gJWm5KAdKDeNXaviohvuVbXFXSdahTEnM8Zx/P7zMzKbMV9Vc2sKDnzipdYB+UuhEvd2okMam8kfbe4ax97xhjbto0x3NttYPdtKmLts0lW5wx2U2sddVqy/GIbr8KrO15y/aaqmHWe55yZNfvGapNjZa+071CD+9x79cZ0IeALPeLoK1BjujDJD3UjM4XsfGWxXBHlKMnUYtVK4NZGn2ZVxpSIsgiMQWtHi7r3YiaC6vlK1iSjZE7OqEoS1TphAzoYaHVQWsoib9h9c3MZ/a1mcDfD0I7+dnXFvo/98dg23318fH5+/fj5+flpNlYWHzEzPz4+xr7tn4/H4zE2/X/k/1f/mmd+zwhGmPvj87OxPSRzxjzOOC9kcCRzJbxKXV6UmI3woSy8bX/ekxmXqwZvKJ9knTH1PNSgw8kcrqN1poo+n/RQIlgNM3s+n8exUi7uETPR0qkOHRbdzEz3Dx8P6pZqRWZKlHROvbEig5Wi6pJDKQM7/dV7uy+5KkVTP/ICWq5KYekSaw3P1GGizAbW3reumYm8Wl/XBO01hpc3/PdlvIeoOETFTDVTFiCj5Vo6KNGHOpYKHeLWQQACUxfVJiIzpQI0QWn1PK+KZFRkzpJITPOV+tClxn1A4RVxby0+rhKJImbmjIjcqpbjUtVFvZB9xHztpj3eqWxYnVJKqq0KIivfDUqVtlHhSsUwosuChGiJKFFVovZ+D99dFu2jzFV4SXZlQ5JFKjWJq/YCbvbR25Z/L9NX/4lXi+s1t+JlDFx79Ovg+Iexbtkw11Pdg+q1BkG0qoTQBfmSuvTj3YcXkYoATaUiThcvI7Ot8FkzWFN8cBEC14hSKrvOa0XkazZUIMTVagnUeOvncYn3rw6T9JWeFF9AZwXEYO1jEJF1p/EdnIZbASbvj9YHppmvlO7r3evzdGYm/ziygIilr/7jC935/+Orrj24v0Evi3HPRgtmZLZsqCXzb8fx9eG/3FZLUSFdsJmKQ9hBaCqqy1djjXFd8c95yQOWP4tUogyWV6pMNGBTAHDbt/PVPJDyEl8K/T7VlfC9Bq2rDcG1BVJMmjopiTX4LjKVrIyzifDDob5AjGOYu29jbGPsTcoem7n7eNjY1XfqlqJSyMqKhlhOQhtvjA5+YwgCTHN6iVpZlUo6Q3GqToWxIEFhqohhuEPp22OXHLvunby7bZvCMrMj52AqFDCh2gbfXtYjQhVJr4IYq8q9NdFmZq1c/LNxwhVXUfd9qiUrONh69VqipWL1iZlmkCzOmTmVqhiX7jEiIixujy1IEyspCtB01NWNFllcXrSbioCguBCD4z6HVLK0MqdcU/LzhIjY8GsXzJa3na1Q/16lDABfTSzJ5JzZC8Alc6okpKBuoMJUqrB6xFUQ20ZrK8e+7WOz4av/sSx13b2+riJhj/dbit+XoUqL6OfVfKpe8u/Ca87ZkdhX4TUzU03IishGGKjqyop4yUz1HssCy1HUsoHue/buU5kLu8aGybMRa9IUtyA7b8MFVyieOjq3joIFGE9WFVQc2zC4DTM1ggwoKCGVlCieWeesqBCtrX33AuEVBquFOWMd8y5y0LAxdDCLmsBQFVMzx+btcNVtG9t4jGHb2PZ9fzweHx9f+7537SUiUXWe577vn8/Pj22PnOf383l8/wbqUs13ppmuJsHFVHyLCTGBXmpDFUiveVpe2kMjV3N3LqAJpqrgCtIQ0dl+yQnA1KvKIW42Luh01lwFvVRWkfI853kcx3kecz7nOaNmRMqlkzOBiYr4xvGA7VQvaJZkVaUk4FB9/n7moZlUeI5RVYCRaBfnxdUOitYCA7HtcmQbh1dP5M1Dtwqn3mXcDFWkYQXHtxVGFdIKh1cjF8stEmYrestVzZfn0QS5I8E5pQqmWxVdhDahUAzIJjShmasDgNO0FCU1U2qWKAOUOFOsI3TatlOStIoIHaIqRJE0MRNCXUWlJCWFVHMzmG0KmnVknreBs5BtDTTfkqpFzbQedEWeWZt5tYvv2vEpVRWoko6WgvQos6+jTnQQIRbCW1RMBSSaySIikjKf03wdQXBnJPfBtdvCsABzhQlRVfEH3vOtQERyJcGokCsY7+pztZLoWi5eBRoJypqjYbnqbhKoQdQEusbrJtSI0kwBVcVBHyrah3shuiyoRnwUs5hSMZksVhzH8X0c36jwbsaiyD5ZLvpozYJpRKUcd0mKQgpVNVgzQkw7U7hHJNaKPKnLUZHBkswCdzWmmLstjEcF6zjWfKHBVKoGNQCuA0TGyxUrIlQQqLrWkHqVg2uFXWr2l++hP5FrZIl+I96Ks6tFuo4+knGjCwEYKVoorsZsBOWyiK4n1QbpXVMWJqBNvZILHOJKuoJS1VFPGObSmQx90RRNFUJULiXZoiKgSubJ+ayYTZjU5nOB6qXnWcmprl+PD9UXDHae5+V8xN3QXQkUgK+emgBdexVU3UxFWKlaX58PQMy5mcLho+EdMLMP39xeWRS2jW3/UBtmI0SrJIvnzOOM5zFnpaoE6zhFu0+vM+sgD4kT7BCF0pomtTsUEufZM2y4K0pyKvdh2H2YPDY8enDw/f39GEIyzzbJStTMmgePg8f3+f3397+au0zgmGfW3Idv+2am+9g+tt2hzKgeqC8xYPcXmZlRzLiuK1XFaIp95+cCKZVqfQ3G85kiNMXjYwht6DAbQmtpVMuY2scDihQkrR2WJAt5Z/rqgJmtg0/L7u7KWpawXwo566xDNWGnwtWHwixSDaoFJWvOecx5ZObz+L02CehsGhfZJtySnBnnnFkFE3UkV6tWVbduKsfse8F9G/u277v3lNHWxH9sG7jMK9ALqgnJ5IzosJd1L658w1f7eRlXSJJHX7ErzDDmJfl6h9y3Y1c1uiN1rUhdJLRlSfKsvtHvENj1TNvWip7tsZsZr+lER4wmV9wVmVIoL9HR4T9ia6CRp0yPlBgP2Pjc8Bhw67wKFBnomIeuPrMynnlynt+QYfpQ3YSFMi57WG89aVBKqaygIkFWznn2XH1sm+9jmNk+xr5vH/tj233f988fPz5+/Px4fDwej8bCkNxUH4/H2Gz8NoM+n8/f/+tff//9+9w/UFKVJqjIj4+Px+MB4DxP3WlAjPF8PkfLbdv8BB1mbSkHhUlRbvv42AfJOJ/NUF9jhpbKCSspZ93lB/CcM82WkPr6JOuiHxTBzDpmHr/n39/P48jjzAsFT3PMqMhQcDywfThGiKUokxnxDM7l3juex2/EoXMSomPfgm1ZsThs33dhVgS8IXKpusZ9lG4c6d0SkpROfDdRlZapVGb5v80gr5aSVv151r/qte6Iuru7m6M1rD2nEik6hjZDQLU0RcO+dYj7Zrarvow2ZsoEC2GaWlfnG8lqVjvJyNl5ov07hajj3QsmIix5w0q1aEABMd/U3Xxz985fdXiKzwr2TMaHNLQYxYrbCijLBqwUhZiarS498x4ullCHXydLubV7Iq10+QMtU8vWcW2uF5urWxi5bJhrzvgfja7/4wDrxamX/oTfiQbrn7WJCtX48Eu4vb6h4ZHS+tv2limKNJGU0hJoG2oaXYvVqVqrnrJIwwqra82Z5IzWODImq63yxYrgbLlwTzKv538dLruP2OXUiVDqUuBioXW6hgzW1fciIG6ja4m2ezTjNC5A/39c1atZy7cCS6STiIxvRtT3f457RPjWZcx8HeaWeu9NmXd9PnW/drNuKt/lcNtQpP1TfOuoXb+ot87m9TRYnmIoG03tLJg1IWY1xdhi1YL6fTFAGwFRQlBSApco5z7fXzrFmiEhCJiYynBT1SqZDU+c55zLctIeFBMHaN1M0UthQKoWOnSaBA2VqgBruJnCHO7m5jC4u0Pd4IpeUmwbPvYxxhibumeBidXZ71muYs6zGNnZTQXoTPkuHiphKNMypkOGVuRZnDZ4snKiryCHutejZfyiJgrNqjnj6Dn9OX9nHu00mnk+5+/n+f08v5dXQ0oqTcgxtq07XY7LoHe1u6Ad5siVk9ppbauSXsIroC5/sylAdYESxUqoKKRUlOTwB2BKrcTtfAKbhimV0plvVUlGMdQAiLm4qzpU14y7299L3ytLUS7UQAHMTFggDDo1UnFPEIQyme3VnxHn8/m8VWzWZ87eLDqMMuX97iPEruitFazqhp53bKOl3Cuv/cK7LBjmUhmsYw9EznlGxLwKr+5CdUPlvjdXiXnRkt9lmrfDUd80Ybxu5fcODQBB3QtvxARAvDad/p57ibhbjBAozNRAoXYr675/vVfpfhscrqJVzLMKqeYStLIhG4RANN4tCMysMlCKUXOe8xTZRLR4NrKKRYaQyJmAOQQ+cI98G82gVG1UofZg18z2besJ71hb5EsMaoqrMwoTmY0/3ffPx8fX19ePv7/OY3WkzPTH19fKHzPdzc8xhvn38ZRiDweqE9+qz+mlbmrahy5fxBMZrs/jsEWi6VZ+MTU7tJKEGMQy+LRTATLfP3dhUkIkCImSiHp+z+fznCERMSPbRWFmOoxMOAUZq/HhglCpJEsStGSkIEPmKfMUgRFi2+jJdY5R85xziEiWVUfuLBeIyaUHva+Zpfu7GuH3tNDfqPRswezFU0BfmtfJ/ppILs+3N/loDBtq1+RIatPuSUREpCYtXDHYxxo3M6eaADRoKRIpwhbG9tHl6uw2vWBGTDYCQ4O5tL99q1RV1rx0SH80+de7fMOLpQP2VOGqBWtcO5O1jGUY3fYoefUGVE3haIFD35m60r7ZgMvVxmq//R3w+Rov3u2TzHQ1koqVOLrqpeXblPd7+B0E8ueW3B3JNir1EUcA1JJ49Xb971K+JeTvBXcJlNqykZfQSN6fqKqVyL1Uh0XIZRe4lzO97VHMHibOytu0XfNMLe/4zoritMulVCWZ8666LkpJb/wlmZR51zEtVRZBVXXeZKWsLE3AvenElcHEFIDQuOqJ679XVDPQ6hxZ0VrrUimI6utP3r/ey6m3lb3qDaItf6bIyzXX41Uuitx69Jcr4nob89V4e5Vc1G5bLuZKXw5UUISA1OVLVQEUXBLaS4+yHKa8JIKvXWLdW4IZs0lD0GVqhVKEmVMyVDhcG2Lfd5kc3bapqihZLtj1aqSJFWqgofUFNYwCKkp5hak0QEGosO7PqZWpGahWqmKu7jaG2xhj32wb/b8MOStykUxW9k7kmTk7wxQj1VLspJxqaUiXcqUxrKbKND5VnVUykKBputQ2uFkNE5cmJmXk7+PM0n3t9lpqjJxHfH9///37979+//59nme/vQJ2DGdERPq+7wBS2D643mfXkfAa6Z4NU+/Fxexy4psozGBe5q4oSKEyAzAq2FS/bdtZIlUhZOZCWIAzZt/XmYyMqiqeRDKpozG50NFdJNU0ufTlWReWr1KVqwFnotmhima2TBwiXU/PiHPOc55n5pzZKrfGrbE1oCJS86V9WdmLfcxGx4ZejstVrPpjf+wfj8fjcYM3L51ZyDWxWv2SIslrccnX6UgSgONFb1mmkMjmdVWbdK6v/+wjQF/qz8un9gcE+76vof5+iLsf5M0lTVWXiw1ml7RDW1S14Fg9LaG7wUjyPAIMs1ZqNeBWaFKgO7RnjTl7fBI9B2BA1ApCsKQymcGynKmqMKet99PN3NzppjbMXW2YD/PN3czG9bW2cvfNvEsxVQXGvQY+auOWec6vj48fP348n89MmkoXXo/90Z8C1HYf+74fPdtJHjEFmVAyW9YMoJ9iM/Vhw3SYmwPAXH2pFV3VIXcRcUp6epZGcdi8NSq3ikak0KkBkmTOZCbPI88zshTQrIoLxTDGMJHCWeg+AkSqw4r60+6ufvsxIpgniTIDIy4JYZzzqU+VjDHMXeUaBpJWqMwlUVxu83rbU4pktbXcW9pyY5NYArR+0Mn2qlxEnzfrVu+L2zb2fWzmnZPdW2fMmpVzzkibiTFcnDbcXd1FtUxFlMzbgMbrBuEZmQ3q64NNRVU2v6TjpOSqc/sEIyJuG0kVbbPvLLFUYjFAZ2UEJlJJkQDFbSueHBtJ5SApYFU0UwxXB4KdgNRNuG7qiKlSTTuLKzMJcVnMpPsOROW7D/buXbSKuUtvvYE6iv+Pntb/qeR6WzUu6ksHnfI/v5mruvujorozYEUks9T+dA+9eviN25CUGdGCT2uGDHtyKVyhpyUNz5Ga2R6iGRmREjQlkxXtXu486faedJ1qZm29uV9DOxD7nXkdgq+yIbtEvQl/V0uJjb8CWqvfWuF/61StevFKlr8rqm7B3p6pG4v1f3jD/3x7X2v09YCXH7Pux1lPLXExSLuGrGsb+PdQgfdjg4iJ8FKxLeHz2wdUgGJxyHiR3i5Ox3sRb7pUWEw2YGUNDGuNUzrHjayYxeohg6oBt6vLSKvy5UoTloBSyuwKWK3bwgUUmW3ElqsHd7XinBmpaqGlo1CAt52XEiIKJfy1GYwxbIzsXLsowawlslnlaVVSJliQNCS8Oi29qpOMKzJdZkmwyl1kx+abF5R0CehperSYSHgWM7Kkpgge+2eWFKN4PI+/f3//1/fzX9/H93lONNkVJlxpJMeBH18f953+fjctueOcc8ac2X4KUXPbRBUy+tNx122HOYUBTSmiNmGqlBQrsjXULAoS2nW2CSSvRnKPZ2aewhBLQgZUbfOtKfNVVWA2jaav0CpWNZ5Um/+sLRdSqLbm0DODLDCLrVA+5nlkZpFQGjreAGaLB9t9ptYDyGVXTFnZwkIpSA+g933vIWPril6G/GtosAS+EXFcLkWWUBs4d7292d6ClNeRe9VrkVV1HIeI4OXE0q7wIC+d4kXdfxVe647Wl4t54YHefM19K+liwet93tbLM6aqYq9+dQOB3bVjQYfDNxeTiJMlmgK6cbiOYcMMVEkUpHqYfrWjtLMEYl6WHMmqyDSmsKqLQLtMRN2j2uyxcx/wbdu2bVtzquvr/k63rcuvbdv2fevC6/aH9bv6999/u+uPj8/j58+ai7RoppJLJN21pnVhYH6q9hQYxSK1KCJD7TG27WP7fOxmhuWuvRslbmbug5VVcrJ7nGfmsrZP6FV2By83SSvEM89iJNn3WsyMhIi1HTuFUZlS6mhaCUBoQQ3atrZGG0ifEG8jPEkiKfdzsWuvA9+UHHN3d9EEoOXFAEt18b1gK9vy3oMkX81gF3bKuXQnsOpKOH4LF2wxgoqrwL0vI181srm7d/55VUOkUlIBaIpRaiSVMDejolQb0IqzI8KritkC6+pilhUlC+XKEjRu78Whkc4kUaQkpIeorVisTIFUikJlVo5ERp02vSkTgF+QR4W4twSdCVguOctap8TE2gskJVmd4aNykxsFkhlSQmr9wUCV90VkFV7s4IgpVyiQSZ+rioSo1eISXbCJq5jvTfjiVF3rRUuz0XffWtSk5UpN1K4l71rS9kv98bbcvNVYb2UZ6lL9LiL4H9/23sZb2badwdSwwYiMs5lwmVNb5ygplV2330/bd1Hzzu5iqE8bS0IFtDe6ZHlYMysrc6XeGqXZhD1U51Kjq1xNz2456WXBu5WNdjsfXqWS/jsJ4t+2z/6rPxqOb6fk98LrbfXn1TgsuepcLK7uktnyzU7/9g7b9Rru57tLwFpX7tV6hlob+HOpIlLaPQv0WRhq/Xzr812t5H4xJWswuaR61c1LaZyBXDMMRkb3aLbdO0eIkFmsChQVdIiiBBFMZFKavZFVhIFFVaSIQFuRmByiUzFEXDEglpQSAFsbr8YYY3v42OGbgYMyUjwTWZS4XT7QZCUqoGVeOmhDjY5MlLJBkkNsMmbE5f1VmNJcpuKEngsijzJuZlNRIl48Ms9z/v5+/tf387+O8++I5xUwIMsBx5dS8L473oR6LepaPaDr7uvuczOWL3KZYdt8221sqHyqVTN8ISUVcx7z6BWxqCwkQaolZxEpUxZ2sbMtD6mD5OPDx7aPB3WsE3VEZBA6iJvVUlV9vkIbBzVaPiuqzhDV2SChYkQ8swuvOesyC6tqllSipXlCzcXvaXK+Ug1FVdQlwu7N3sd4PB7bY//4+PB964julz6AVT0onHWeEed5nmfTWQGcGbnUoi1ao4jMfA8EK3ZM+/2hXJDnu67Sq/d2txXe66erE/a2kujS67wfUGV177b7YTvRC2ZS0ra41uDqBWfuwktMts19WGljzrD5x27bw7aH75ttUKGmwjpJRcHK7D233ytTIY1lTFdxVa2pLFMxVVN5Hfjdto99/9SvTX3btsf11aPGTml0HyvYQha0viNru/BaC1oObvHY9nzE+RHneeYz+rOBSjIvOTLjnCRjzs7RanhE93tLM3zkI8kcao9td/ebGk3SbLjHGCOqhDprFSskokQis5MdmI3GzRkiwmxoVBRn5iSbvq5VqBTAi+jgqBmz2mtrAS1o6RC0Y69PH6Xae9Ba0m9b1yKR5ozy5Oh6VyJkzmMMWz++sxlu2hnLgNbSVcmdDhJxD7X92lPvtaOuAOD+r90FRPcnPz72bdv2bc3mcc1urgEKe/7l7mqS1NDglS4DKWNnPbWZZ4kb1cWd6ZLeHQ/pwASFrnGYMnNCGjogite2d2+WRU4m298uYqbHpLsa7EkaLwh2JJYv0vuHqkhW1IzulczM7hKKaPVMUxSmnTG5gKVAg94KgnpX/8HveuLP7sitCu0/I6lrIwUvseB/9j+usYVcIzNeE8a+waILuzvmsSvmnisFS2qZNf5ohq3GzKtcKIZUz4b6EEwBLr7hH6AsUCjJFPG2cCCLzIjzyAhei2AxW8x0daW0Ls714ou+VX9yvSf/9uOvIXhUsCQrWCKqVamKZLbG4RpCdZhUFzV8qdnwdv7Wfyuwrievm5RB/vsb9fYaV0tD307Gqya6c77JdeZ+GQmpepdTuKq0NSu/L5L/0FPqGgqvwi0h/joFAYBBxspnnHn9zWWQu3hma91s1m5FtTPgHs2wQKmKboQBFOSq+RCtnWNWRtbaPxpYKiOzc8OUZZKVkXlWhlRURUMaHShv7IJUiVN1GwBmTk6HpMugstSzpOgipSY2fPW7tq3UTBpeE/0DZVXWbC0t2U3oUKGBZtw2h3hlSDkwtDbNsUc+v/O7ZpxZGUVVqCJcUxHQ2c1jFegioubfv//+/fv39/P333///f383xGnoNRkjFGCzCRTRcbQMca+7//24fZVdPvN++/MTEQhKuYUiHZf4NbcuA/R7WZ/QKUqD3kWJYSozNCgyCQrziZIUzLZRw8Jxqwn61Stbf8xHrU9qMo5j8gjsjLFTbsPN2fNmSwVlUZ5XaPqWuUFBmCmgytyeuY8+qBf1cT/xsoUGCQNLlI92rssjXIr3tY65jbG8DH2JnXu+/bx6IrkXmF6Qz2PIzNzVsyZPS6kiMhznhEXjfMtD3FF9LyG9dKr0LZtcsEm3pbTZgxf5yvq3bq+D1QAZClZ2pW25h5v969chZff5drqeDV8U2HmqurQu710YYR0bHBXKh1qhs+P/ePxeGxfuz2GbeZVSqr6YGFGYPmEzMxAupuRxvJKiG2VRjMSNeEwldeZsGu1z+1js7Hv+8fHx+fn58fHR7e+pF57ensY+yfuDt2b1b0gLth//foFIKIiYh5xHAezUnLf9z499ij4nurej9lXjoiMMeKcd9i2N9FzNUnp7tu2PaqPtnMWzaaZJQTQukyEEeecMyu6yJPqsIGgRDt/x/7QxQ8yiq3mGDkZyWg5lyDNaHZxclQgYgbCm37RsnVVNRMlpTLizJgZw7ByF7rUjDx74FXLTiNMULoYNRHvfa0b5HnFtKuqSza/C969Qei1yney5ri3q21s+9g+Pj7GGA/fL3G9tTP6PbVvCbY5IErR7Lqh8pYCypUeryrmAMFNYmKk5VarjKg2zWI59i70Q++pJVXSHl5NKlhISlZIpcU+UJWsjWRuiAnZtIaWCaKpGjQVg1FEFSVNExWCMKyIEko1AkK1o6JyEWWkD37aR/urC2IrTKYTMwSXEWahGmBktcg9hErRUthFbV3yrzYeveoQvo0woH3vUoDWUVDRUnOKXejFV8lQ1Z7fnsRRrgTt1sK/E0eZSZ1qDrrCb/7utXK+1V09M239HxRSLWjtjle9lQtV1cPaBcDEwrcCXbC91Zc3tUqayAmIsiSrgotBLyvhAAI0qHBxKV8DOClh1DLMq77XMYbr4Ht1fa9Wn645wvVVb//qnX722lkVLzLFVa6t2beILP/B4ub1Rfsep7rGiK9Hu+YsVS/hiIiI2Er8W8yUpLwIPYB11o6IeKHQ9jFZisP+zCjC5TboilBatRfVxBcRYSWk2v5u7ZRVknSIQQApEyQN663qjKsu/5kpUpUn66w8KifzJMkKWxWg9qNJ9ymtU+e0CHIX3a0IYQQjNPixLvWer5irGVhs+ZSwqhOI1xuOFi1K41ibY5SoUpapOrCbq++xifKULJ6c2Uznck3TBELkZBJLAiqZmll//37+/v37+/vv7+ffc373Jb0oaNVXDs19DG/aJOzGd92F8joDiAhMh1gb2Ru1P7nGT+pum9k2bHNz2ccOTUWfUovJqDPLtAcfHTUrRUhK9KAtJEQANWoUTthJK7FThmPsUBFOVClKTKvOSJwnv5/HcbS0y01HI99Wgx4ElOh9sc/5s4ugiMhkVaywneUQkEy24vNiDnd74HVwkp4wureUvueL+76j4XldFfU7RmbmccwW92bEEqAUXgf7izXPpvC8VUJvx9R1qlHVu/C6bzHISwZ6i+vvQeQlC867jO4wpd4E3muvt0LNesTXDNQeQW7e8qmt527d0Vij+dHJ66zakx/bro+xP2zfdNt1mFI6BdoXL2TM6VBHv0JmVgfgQExoa/ZAE5hDXX1zf2z7x/7xsX889s9t+K5jH9vrf9veLs4uj7RJAZ2v3TR/4eilRqg62g2mgoo8vs/n/vzYH/u+n+dTQrQ1QFWigKkpYIrUqIRpOyqWv08B63QguwqvAoBEVdF7gerkC4zIYR5jxJRiW6UrZkXvNVe5xlWXqzZGWmnaTvatEpmoqoyMmjRmzuJUSbMiCHVpdrQ1jsAIUZiYiJkbfPOUSlahmmqrCjUMV3ODUjIZUc2JxiXRoYhidcU78G0NHGZT5XoL8IuHadfesBTjXXK1Z6fXxHUYVbtHxe4955ZrbVpSErm0MpDOs2dJN7xCaFqk5n3aWFZEp5mFl29OgszOt+ktTCk05QUlKympZc5SOBCN9eUMUNIyUzsWsCQrtDZFqZSFYlNtH9YCSBWlL7his6BrTe/a9FpcNIhREJYmS4q91PZe9n7eVdVVF7avod15b99w907usZT8Z7Pr9aX/33+e//br+0gn0hO4jhuLnhm+FxNde+l7LXJXWKvC47tKqZ/lpu2j2PiOtphK9g0xmdX0Zl3VUKi0IlXJrGqR7Pph7b2/Va9wI1x/ziscqjuli0akeo0P7ter6/gLaRX2jey6J4mqrm9Y6j471cVQbY3XXXjdRdIdIXJ3By9l2R+203velCtCqlYReJWS/bd6ZYq/XhuXwOTulV7XwqtKuwvB95aqXAbJK65p3bRync7vneatcLyyRMQYC06rLCxjNzvQnUVRgNUIDoEOKY5O6gJAkbWjSmXGBCdrSp1VBzmBFEnJaEzhVWlSBWBlrbCcooJljnJlIJgxNGsmI+t1KUBuy05PZ4trVXtVxlfcVRkkZwYjmYlUUzcVcWOdmpuP2rFBUZuWo0o4oackMwmmKEsrg3My44x8Rh6ZDVgvIVmRqbmsUc38HN3w0CvE9iqR3240qJlKrzew7m1roD1dPrRFze4+BrbNOnwa63ZWHW7pDUxuv4SqAhOSgrMyS0NWUlopi1I2auLvglAdQ5XpCB9K+r/+1xmBc+ZxnN/fnXyYZgGgzekd+WPmsBLRJmBlduROXp0nPc+TPdqX6LRWldW1uguvu1Qi6UPvzsqy0Y3h7o04XuPbSx85r8SIPs+xI0Trj0Z1X+/3ZbAm4Gv141pP7gXtGo7cXqvK+arV3riJd+HVT9OdCQAtHpc34c1/Pu99wwqpun7Yfd/H2FuQ0ziDFtV1K+QKhytBDBuum6PJpqIGcRBngrb01mZmm22hFfFkFalLuicuIqBsw4Ztu2+bj33fvz4+H4/H58eH52s0dJ3G/6ByknyVsyWVUla3GaLtESKSmfc72ZPKi2j1coL3m9y/Pc8Fdr+bml14Px6P/bKyvqYcCksp0U0sC+cmdpzu7jl4xtqq625Sml4iPFEVoar4EDM1x3mEmUO3QismojvQ5t3xndRALUKQQAGlEuxCExRTKIF9HzCjS2YGpw71ofswQx8MQbYjsENZV8W/Lgde2w2KfJtbX+FUIuKNFe5GmWk3wDftmABdzcBiKXQs2I67dNW1SDz3CURWVLRDwEIVQZBBtlCrIKikGlzszPO65VIcIjp2VJKlkJoSFaElcO3eYK5VMLtMCFbEKSJRBZjDpSDZ4COZkDlMJEvyKfytEp+7fX36Y/8952Pz3QdYnUTWAbY+9g4TjIXn6+mUUS1FMqOExOC1c7t7j0TVzfR1blDF3dxewjp09Hgf/1eWqKwMXwCKBeiDqr9BQ+9FYTnX+nFqLTEX56olgQBLyezP+ZLeo5uYcqMve2uAdCC0mpipdBCzsrE1M06woJuqNS06M2elqr3MrdAeDVQeGTPnMeOomLx4E1Ic5iyuaovZLUWBGFaho0WtTr3rfJNWeqNlCkub0upGU1OYGdWaWQ6pVoNUhl693N6hgnHZowo6brPSVYvIbXXqk7mIwG5hhFzU5nspb2LeWlx60bmXsD9q4fWvlgbuXtDvquvujS1es/lV2rY6HkJQ2t3S+1YLgxoPXu7vhWDjYfUuB5cJ/yqZSfYc/L1G7BVyztmXVjJTysCO4M44h8JMWaJCg3RuOJlBZkV3LipFWBkHJWIeGYfUyZrFU5hKepsvKisUw80orHmG0NXN4UIWtR1LJQkz30bmwm9mCdRt7AlTio3yMd2nmXd/q8/hBoMOHwIPkcjMAglxHeoiJolEHZO1wXVzzyoVzsG0CkhmzicqQQE9s858xqyZ8vffxzxzns85j9WglS5rZXMzHT508/HYu3mwua6Lkh11vZZC2vBoN7aYUAvaItbWHu/78vB3Qo57OxRMbSiLEpUiVtKxyuE6D0whTiNTQjQkU72YkpXJKj+ljuAsHQmZBEtpUICJDMJ5/n0es2bUec4qXT74qm271EoG97KqQrQSU0WYjZKYPTy8zzAk9a13i8I9nlM4gNF+YUE399w29819E9GIgtoNKDYTknPmecaS08yMaGuELPnAha5+vzd7TXsrf7sVUlXViqge63eJ3P9wG/Y6UvJVwP2xUOAlvmz5P64f9C41XtXMhWrr9VpEVGHDx749tq3rOa5mItx923wMo2TD9IHWq4qKbRijMfNmIVDRRA7bHtvHGrU9n25bCisoWTmjkipwGy3P+tw+HtvHvu8/Pj4/98/NfPdtwIfbMF2dM6irkdDRTFUTkSCfMx4dZH6dXW24qEqUGT62/dzPj21/ju1SGQFAZbq7qOW1HGXmEYerbT42H6BsPrZt++c//vnPf/7z188fn58fH/tjjCGKqjpjdlX3+3lUPbs5OnyHHRTZti1LMlkR6AwApYqj3eVgE/rG1tBGqZQIzlPOo2J55ZPE8/ksTCiLMaN0ytiV3KrSRBv5iWSGYtiozT6oMXJGMYjh7vt4ABBU1tTUBWcwiPI4v8e2oZ2punoamZEpumRL7YGrq3UbV9nONoLdkbvmvuGl7L6SHK5I0XUgWFe8rsyxlYtOimaRhWykHIUlJSJRIFMBvTmTC3srNHOxIZbGKu9+dxEsbcQWrFe27NHiDWrPBC4KRqPRoYac8yjmnFORuyoynKjIbfcoGRQ1b0lk92jWvpiCNl6rd6IG1YQi2kazS+bftfa1+b1/3YvCvdu/lNIvLtQKf8Y9S3pTc8sCXfJ+/6/HMuhFLaMsMpaEqneQxXWAyMsPR0Hd+Yx3J1LW/GtJruQaivUpCCvF9opfVoXbfSteZyBCKJVYmUvJDGawCsxbw3U3XZbjbkleFG8TSe08ojbp4/X910TprRl2HXbJEqFCb6cemcW6UFZvELXLTHrVVWiX10vyDHlT98s1CvzjdPvqJ92TiBfl68+nu//hepD/WNCvB3y/YCA9yusPVZe/AssH2l6Ht9Zjv0W4jzr3Y9afzdd8k36/vcLeupoN2wfJfueryY0qzdZMysqkh4Q2FVCMbcBhSEXOI3JmnlUnGJUnpVxoegFoupwWyqoACwSZeu3QVcUUU43GhbCiuixGJnW4Aqqp6qY+fM+HIUwrqxKcaql+mAfspMesEJXS0tXjncphWQ+zWQHNCSkFE2AVq7pzQwkqQ2cwQmIWo21YBLXjmERRZqmp7m7Dh26tVdr3bRvd9pK3LTmKVdVWqPUWy3UYUr0L8haXtHn+kmCrqgiCVLFyiZJk6tRjpXlZcUzVsiQjVETKImo+j+ITnLAZOkNrthiWFGjSWT6rZmZEZTErKm0BQfpUVlqgLqJVoVOgmPUWfho3APZeCmQpRkxQb0CfrLwncfvYxF55RNqpADesmJcqtCoiGga2OHP1h6dH9VXl3PoCuaaN7zemXqNGYEXM3+ci6cEXXl3V+9f3fdqb66u47D1OcTet+w/fNJT3EvHyvtXb1/X6rVFCJFsPl5VS4mO4uutw2MA+FOqlIzb1WU8RCascFRHTIwfJs+omyOgiH1Fcx1AftrXjbbhvuoKCmmZxL4PXxwQ2yvNtFHsvF6vzR4rk+vHAbfP9MWxzknHBU7pOUtW48GkrOC4CQAvL3P3j4+Of//znP/7xjx9fn933suE9bViJcpGbSCTPgp7VTSD3LSpuDhn78CkpIo+xaZM6GrVp0pjp84g5awWVlWaWpiMnMwtZOKknUBYSYZowmHXbmHCqmlWpmG8fG6ZyZOYMBkzcVQ0LGYlqq3gxpaQqZ4OyWWYDwm4TdkfgvrR6wtvvs7Ne868lKqeqLZlXa75EmwqqEJXqfTaEhAyVxRLiG91EGh5IiSRhDSJHkZooihWiDAA0XZSKUqgWUSUUM9PSrEhjhzlHcfWFUCWQ7IdntdYS1FwQx64phFqoPGOSCWYCxtrVUV3xmA2I6kCnrSglyCSalbpE1AAousD83ZqCsdM30DkGxGL4454QrVNyb8lNY6ItqvxVV9Xyr6FV2Zfx9jXXE8E7Lea1cQOm3u2hVafxzmmOXonANdpda5DI5cniPce7yoK6I5jIhnI5el6GFLG7sWxmUnkvcKholGddqZeZWTlZIRfw/S7m7kKq/8oVa7Xs9XjB6wlBkh220CsCcwW+Q8xsmLndQvVaNFVmXuMFufgL3cHumN63xEbRt4W71nsJqMoaHJM99X6rj1/l8p91z2vx+o9yanUZr1POSiuSy/Te99dbvf6ead9rvdytLJFeqVM03oqnxX7sETPMSL1r6oJUC4LW6PzaoGS9udo08HVJQJh952gLx1r/eKuqWNaYDqBYi+uUwZqVUTEzZzHIJcQK6fBaVF9RIusg9yb5BVaQaNVaWESUVKGLeBJFZKESszizslDiZjI4TAfqzJxSUEtTpRwQgdhmIzUIpp4KqTo1HygZKqJZmNLi/xKpYs4VXU2p0pyYM88zIyEcKDUxBwui5k20yzrdx7Lcb+Nj3z8fj21zHa+q4qJ2rjsjKdF3KpR9WfZyjSrJlrPAellF+3VEu3eZKgM1lZ5KUlNryhl6pM5CiKWO7HeyZpoE5BSkbcQW5VKqzUAmjfRIf846klEad9UiFNJgJqbUNrIrFi5aLl5xxqyMjJmRrbO5P05AqOw6/Vr5+2Ypinac3i2ynnNe4n1p1HufYOvOs58NpGC31t5Pet3Bfbt/e6DZ9bHgjzOS9j24trr/gBvf4vpegv7tiLX+izfkRLWb+A//cr2kpZ1c1luyJilon11mRqa9lpR29nbFVu1uo5kN9308HtvHY/t4bI99N9sEPlPDSknsnmUZXjEyg1NozchgZ1esElgpKnCo69gwXNzgKth9qMDU9E3FQdKW2WI5QG/xAy/6Rr/D6AoYBOju2+PRrcQ1kchU7QIBCiQZc57HcTyfENm37cfXV9den5+ff/31169fvx6P3frHbmsFZJ7xnOfv388izhDLUo9WUW4bCSME1/AOoEoBWOyxYe4GkDIrz6oalvMsReNlZ4acEakurfeSFAlUwxuUkrcdATKoWurEAIbbjoGW1QfPEhpcVQ1ycwwhCyqemVGharqK+yEaK20vU4TurgpxzVpH4rsHe50tqD3bqhK91vN71ZTrAEQybdW8q/Dv3KRGsFAr0cGhWVzueVwe9mq5Qkf5mkihtNIhCkJh6VImWOffkNAsMWUSqBJJYbCw8DDVcQnBpuibQjqAvSdQRPHJdMGwJ7odJKJuvSloD3iKzZDmxfPsHhsh1T+gWkekmNsdyt1nPnl1OF7Nklu/9upOYMlkeoNn57t00ZDSkIT3Df7f1oIeOXV0bbMTqkKk4eF3470lQhCQfbzvbbSzFpVgx35DjZfIIFkJywV6q8TFv8A1oXcb7s4AgLuvjgowhdW9rtYgSlaTR6D6ri27ftFmvfUTOdRudMaaXAhqKdPXNSkL1DjM7ZoXVGNdMro3oleuYS+A9zPWurvWl6nfC/dr5dWGlOld07wfne+D4K0J6/X/rZn3zhB6qT3aC4xXnsHLA9B7Gtf8sY2tvZPdGRKleInSoKw6paovhAXh5Ao+71N7d/0upKDUpVm7tWvLJCxClc2Uq85XYSrRgHBVuPYnfGftRbUHp6WaQAv8IAnQwFR27KygqqvYVykJ0e6prDDvFjBAlVCYC0xgkKFwVVdsqkNhqpu0W75YiUplWXto3URsZw7W785cylrkG0B820Q7mlmzSmvXnF5CIuPUFOYpoYiqyWpbXxdeoZHMkIpkWReCEKpuaLS9KITc1IbvY9v2sW3+2NbOsbkX7sjwK2SWdUYEJUuqT3TWpT/NNDOqLDNUG9KlVRoRpGnHm0ESUkQAQQkwkKEx5QicxVlyqkFQLOUQfdQwQsWcYxf/FIyzuhwORGnmOKbMYOZGLluuqQl1mLv5wgmsCHOtlhfirbn0Z6jD+zlkBVVduoj7YENSBRnBP08vJDvdskkN9xbe8vxXuBnQaR/3QaguktxiaPez51tH/4qqfK+l3spEvBdecnW87nLqbdl9/TLrj75y/0KvV977ppnRXhg/kZVLcddnADKzJdEk8xKzbD4+tu1jf/z8/Prx+ePH12P/GPBI2MlnyXCEwVc3S4dhSsnylqRUEYWOQemDM9iJK3C4ijkaXfaHwOs60VlVzZh18T/rMj9dtgTmnJSUjFch2wAwByEz4/l87mPr41zn+/VHCaCFXF9fX79+/frx48fn5+fX19fn5+e+b6JtLjF3T/L5PPjULDkr7Zxmwz3NfexbgOotPL1tp2stWlIzVzMVqawjA5mpuiIwWVVpGYiIrNPTKtGhw9bNZtDR+dbmOkwfQqe6YECGiitUmOE6C8XUMiovZacs3V6RMrNyZc+wXW5vIGXl/e7JmyTU3Yf0aECkV/z+bSsSVE31fsdHx7d1FxHtHBc1qz7GZR5ryRYTGmVb+HsulErL4lSrfebm0g255UyHC1RgmUIViZTIip6EVGk1q6t305JsPlRliKhi2KXLGmpADy7aEh/IQpYRDLYJ0cauamJw7RMwVfvMcL9faEbWUoRTRGFuOrZWMNxJYe13wB1Q2mRRQVfH9y2dC6e5nD53IDSaVU7ecSL/tvH/8XX1Nvrb31MC78LrbZ649H1YiUTEbQpdk62qCoqjQpjK7NEWoaDicugsydSNmM9kTpFufr731KN7kQrgpWVfPj5KZ7iKVDd80H7RVST2h3qtliyg1CAwHT7gtrl35GJDjUQqZ0gmLnJgzwIWBek61XWR3QXIAmyvdfbiHK5R+R+F1/3P76/Make06oLOXmv9H5/UNVNQrJttjSO5boAWXXa6Hdp0cZWhL35bn0ZebgAkYNAXGP3yPVz1ZRONWozELuiL10ULWKGHrV1mcahCqj3PuK5C7bWtqao9Aa+CpKJUTUFRMaKqYKQBVKSKuEiVoKopOKUsFYGWmul9+hDcPxSgVLuLLYGqbophutn4GNsP90/Yg3BgtJVKtUyVxr4vSyykKtm51ymmIx0mw4UBUArClAzJAFFJBpCiIZFnheSsiqhUkRRWhdYEg+BKL1zLchVTBQMipvjYXId+XOPF0eDQIgAH0hYfuP1rJGdlJJOS1NZwm3W1kJAMBggXrbLeqApusoinrQfLZGQfaDr6sMuRmfHM+lZFZrIUgD5sf1izE7eH2YOicfGO5Eyc059HneeWKeQGDDVz3URgaq5uEFWa9UEECxZSrQgvAxuunv3+oAtGEUmRPkhfPiFU41mKWSoTEMklDr8z06qYawQjIo0buCeMt8bgVThxjfMW86hR5SJLkHCdjtahRa8UtHUEkrttf3nP/1hO/6gg719A/u2+vk/a/Swt6F7dDVVVZfeKmsEmSz0cVBUovE/D7Xak5JkqwmG+bdvHx8fPn1+/fv368evH5+djPCx5ngXLSBnKcAzVTXUKjdTVdS4hBQV28AC1IQBKWdRV2FB37QzKdeKFUNYZUqnR/cvqfFiVGTVnSjufoMAi+TEmVIZvvRi2mGzfh4ic51mR37ekRMTd98fj43PNE3/9+vXXX3/9+PHjRoj1XLILLzOblUU9snSU+XTffAuP3PePTMLtyro1VTVwlTsiw7vxgV4LIYame1SUI732IZJVKWcck3vWd4olVc3cl+0dK3sZZsO046Q3qAODJa7WmUvND+vCy4bB0NnGjZLqjsXV9LjV1Uu44rrde8rdy+g3yu+tCNJebHu/1N5cIQ5otmmc8V7+U6okq87VurRNZReUrLkP19PZpkpVVw3vMFaXdZJOA4fCRCwni9lib6mOtH4JaxSiVHQaDKQimoXXxFe9vNFqoyqaty7kjHqe0wTN733MPL0aidopW0seoBc6/XKZaa1UMG1GnV5r0xprQXu5lDXuWvuNvI5c97y8N+BsPR1rTar4UtDfdz4uzAzlvQ67yzNZIvs37+F60mIto2MrTG6azstKfStvmlhOBGpIQ5ISCiXKtBO+rpPiW746mlDOkJ5z1GQGKyT7YYWSwj8OuFhr3BKiXVfbWlX7dfSstXXzKuDl8XbzPoWbKlciD9mztu636w3dbvD2axZwNYFeC/F74dW/7Wvnvpjvw/29mt+P9r4636fw+9O5nkLvwkuuz+4uyOqeyHTBchFYIHYvBK2qE+lPsu8vZ+X9+kXsQu0K0TLK14bxvluoagrtEl+SoiIdpSom1TbDuvayC8e7gJEogK7d9lYFSsAy1VIgzQ2qMZG4CK6uRUUay5RDTa1Ul59cAYg15L4tbqZDx4C6jYePj33/euxfnx8/Hx8/t+1LfU8BBGYUQG3KGndIsSqtphWN5VlAIEXMnQZY09lHxdDahVoZGsJoHkVlVM2KKFAArTXbQpWoDhObARYYwtQ+6itMIGNsvtm++7a5L2sKVNq1+ZIzRuasnBlVlWRnG3V90ye5Hta2PveO760qk9u4StESRGTOiqqcLKJkQCEwigYzZ81gFLHZbkPGOs3Ah9ho09tMxiSPkJl2BGZWlqpsqxpW1db+r4tQVq6LSKyrPW+eXL9O/dOxcd3dr47RfVbpiooF6ip6TODQNfOi3EOumxD26qhd58leFLD+T1Vez/7qbL1hX/qdvMl59yu/rGB2H5zWC34rvO5bnnwTw97i5ree2b1E3BbI1wvQRcphk/PKq5qKJHe6cZMuAGzb9vXx+OvXj58/f/769evH14/HY8PgTNQ8CzuVE2mymRydZR5H5FxpNjWlYsWqkFTTLkhZJdnSju7/Ki6jZTtK1TZV5SoCljy0+ynnnPM45j4M3hl63f4WUpHRVBEWTG0bOrwg//r9d8c62fDPx8f+8fjx+bU99o/98fj8+PXj59fPH18fn9tjb2jq6hi5aadCxrQZYw4f4dsY+7ZnCQ0wHb7P2aPtrkn0tX9Jj2i6juwrBoAZMIylNSg0iFTqnDPrnGEacKiquYpiKoVZKiJUExs6IAPchJu46VClQKxEN9GU0mZDKKnXQVpuOvmahLRw9ZIYLm/W/Z3vHk9vs333upYCQ3T55dYP3DMEvRqnaC3s+8WdFVGTnOsWFRNUZ8BpR+6Zm4l4wEo1gaWJs7EabAVrbW6VC0tCQl+y6Ovzr2L1saJXqG7FCVcGz93TW1PI60yCNDIzOJ3f57RtPM7TXTfdxExVCLafShS2eiEtXRdBQth+4tcdqy1RalRw/6BLHy9vci22NkBf2zNbWV9FCi++4r2ULDqVXo6bt4ZZP57I3df/40C2lqc/F8Ru1lyETN7P1WWYmZBZWRSoDvR3QgXWmVJ3zb0qj6XNMHeXNMmsTMm8lBnJKkWThkourXdXNfIuA7+UUa/aayGr64r/UxF6pzGOYW3zXlJQkRRmVixvh4m0NvlGS/+JnX4p4tdifWWuYdmnC9dorJaY48oPfqto9ZpgmtlYHeKX8/S+rwCsBPc1Zr1eghgg0NsnoAAyrpHcix/RG4nJQio1B443sFdKRA3UJahlYyBA0at27KJJ16VFrqVqdStNK63DCVKq1fUqYKK9xJV6scDqlQepUNNmyNFKLYVl5e4e02IkI6qYU4uQRIYpx7JpE6jVWfRhZp1N6Lbv+6dvG8wf+4/Pj58/vv769fO//fr1j/3zl338FNsmpSJLZ/Ap2KDMni2FmCZVBXurOlgiwTzBoSBLTNKQg7WByqCkM6ym1GQceT7nnDHUClqp86x5otLUYDoyWFkRMs+qFBrUFdAxfAzbttGFF1Y+HbsLm5VzzrO/Zhwxz4gsmVFFlYa5y4tuf2V6ZjA83cxG9BuFJtkKzuA553fpTDnII3gWW+BVQDGnSKiYWsBUDOo0h1npEDKJKOXSi666tYut1mG8zodKRb1o74Lq37L1VjmlcpmxKS9dZjPCr5lILejDy/MINtwOEF2UIV4Sxl6ku4UnauoKpqQwh7FQSxFL6VKbF07lloL820J3GSpL+364tUqCNzcx8Pav2x57rwYdRoQ/6H1v3km53VB/FJc9lu3BfBNo29JTJZnItKrOYBIRa+9jv84x/OfX18+fP/7669ePHz9+fH5t2+a+wVhSmu5gRSpOwIQaM49jfv8+jmPOGXkgJiugNQohrkPHnPPQAyKSlKImYpyPfXNXslnErb/IqkIL1SElK94AwBj2GCpS+VGdp6yUEqmsk8c84ziOfgW8QpNSmEI33T8//vnP//bP//5//ePnr+3j8bHt47F/PT7GY3+Mzfdt92G2IF4dp5Nt/fBtjBijti0fexHqe/m+bcdnRDBXvrCINMmPGZTMGVVVSGhJilwinFrnAHFRhWTwmNus3edmYRQzF3eIvri7Kveoy4EOy/Rtc6VCokSLVKGJUiUWw7m3j0UyYoua6IUQkcWSbLIwXogitZej1oUKWUCzbneJiBCZr5P0bdi5j/j35R4RJDLjjAlN1UvQv1TdGO5Ug6k7aCxAuNpK9zGiundrooQl0lC6xnPdt0hhZnOiiro2chMTppmTEJphRVV1qz9zNqHf2IxQBjij/IzzjLYrh9NdStQUVbl2TQVUqUCDdwwskYWW1bpyN2zxPlal0KP3uyJag/M1clsdrUW9k+TVexFRasM21lhQ+mnZz/92OOui5fYDvgUxgqvFyVrvTDasXFaVelmq+nTKVR5WdhAUmbesqkoEtVI1xETRi0aniQNw7cLLs2abORbppxtNXXWu0u4lvChhJztlNY0TV/PmVVDyDWnWl9kq8u7Fsk8415ebLfuVrfqlLQZUKUhdErq7d/verLpKtGVNANobwvuV9Onk7mkBTWG9XtLr61V4XXScfn/17jW6ba9+29u/YtMvG8Pzhp9oGW6/iVXVOnsSEKdUgwlM9Fbvm3j98aMpWS3g6D8TkR5Wioh2lJKwlChSxBay7o8v9NGuzxq1ioxuPPe1WmUuotMQFpmjKsuZZUzKaVqmgISg2qADMbcNbu4b1Hzbt/Hw7aHmj8fH4/Hj8fH18fXj4+uvx+dftn/Rtl3NI/yY5h/u84jMAEktl0LoA5oZ33ogOHxkxrl0nRDJlBUpMyX7nGgZNk+cR50HzzlDioVZ1X/CGm5pLlDL1JiYQaaYlJoaOmZQh/notLu3JrBQGHme53Ec55wzMrLnZ4xk9XwZKoSZ9Qmvyq9z0daym6n5Z+EVM4/IJy1SvovfxJF4EjMZpQWhm7WdjkhCYGpDYCkmQsKgzkxRb9G1YPTKS6t1blTCRaBUMSO7f9/H+jz7PDWv83bKZRp+bSQXmR2AvVSMr5Hi6rugRQ1JK8miUYml0W4vjr7AKC2Yk2YkVR8NNJhLCvDiJLUeZa0GK05bytXS1rMbEDSRUHXVvp7ZbvF1WP3Tv/x62bcp5brDe+W5etWv3bCX35YU9WdHWYL39x7exciYECETImPzz8+Pnz9/fn5+fnzs2+5ufcqBQU2ckipmYqBWsGAv3FkAAIAASURBVGYdz/P5+3mexxmVJ2OywrSq1KTUOa2e36WVyTOZxeAY9jx8DPvYHzPjMdPHtiJbtn7/l+/hOI7n82TFY7R1D2OMzW3FoFDimDOqL/Lv82jphZl9fn42vOOf//zn//yf//N//I///uvXX42zX6GrZv3rFumuTGwgLo+QqppvNuaYm+/xUMtMt2342RLtu9jNmpnJjGKEznWJMchscr1IzcmSGikQFcocOdxdbaidNijuDtdm5NZdVa+dA23xUXQI6TUDEBql4biC1rX2Btf2PgqBZKKnMIvzJKMn8doDDb2HNt308qRA4OY2NrdNLvn8Nfvq4VHbT01INYHJsKEtIRYT0bSRLIqkhDBESt023aAPyoANmJAzk4UiqonaKWLLT9EbId31+X2IGFUuJCYjo6ois5ApuaLlkFLrWG4+IK7rPqSIZAaE0oxwWUels6rOOTY7nue3n/t45GCVUJEikbFaaLJi5Fc7JjuSB1VSSWX0R1ICiIqrGoYaqEyiEJNznn2AUN/cHYUGe16MGNHuSaAKjMj+YbnaJHZ1tAowcL0WsocjYmZVUQWR0rZBVYuZrAlHjMkrd7NK5pmdeHSPzqwxpZWvlPemQnQnJlNNruRECkBXAA6URMXIMSS9UiX6VEpm1Qwy20TU8K3uVK+0RVKY3ecnBUpRQlsZK8nkndK49ntrhyFJhTYhqaoq2u14BfGawQTCrvJVpARxZZW08LpIYVbV5ptc6nS5ugDdyawsXMI7rimqiLQCTWDiamZj1TFvFPt7FeYlL828vah6lU51HzDMup0mJN17f3rZ3S8tvq7PWmJFl0BEvFgCk6Y1tGJK4MCcfWyv7ixn0AjiYo1eLO/ucLgDc66xeF2ZySyyUkpVmhSPPh97d75dqK9ug5YKRFlFdwW2sO63D64zuGlNkUJLjFlU07ERruoUDN8e+4/hD/fH/ng8Pr/++sd/+/rrH/vH5/75uX/9wviAjhKF0722PT4ffM44nnNmoODu9ZlVZ+RDD3seiPyGGSrW51Nk1JwzUkjPsJgaEzE5zzrOPE9WHqajSr5/z/ldQJWhoD4+k2RollcWQasaOiTL4ZuNAW9+s/ZAuUqSGVEz5nF+H88jMtlwrXZtKlUrMomWCPTKGzFVdYypNlR1368Lyfqe7pzC34Uz6u+sfyV+J36LneMhtsu2DTYdCmqm5qqDMnJzUiKjbFeqU5gnxm7bQ7RGARIGtTrhYsO94lCI6WilV+acdZZkVFZGl1t1HSa0h75UKO/E3m4HO/SSxi+p3FriMbCOpjnnhKm2o0vEx9hfYTW3ibKDsScjWdXcAs2Vzi6KDsRQuGhzuMmKPqSj23RVuVSwSiumsSZrbVXBVJXOY8al7wQgicpVw3Ft9kXS9iHSwNJ1qLpLPZKiNOtWSIm0JkJFxNQN2jVNT9bgNueMeahi3zaHbMM+Htvn52OMsbt9PHZ3L0mWnqqVFlFMQUnOOp8zjno+z9/PJws55fk964TZLmOAFhinmNRzHvPU8/fv5/Fx7PswV3X/fDw+vr5+fKTvW3cl9+1DVdsf2smLwCkxH2Z5zIj6+fOnfn7uYwyx8zxjxjnj7+/n9/GMiO/v7/M8O4bg88dXi+j/x//13//xz1+f+2dbDgHIIoO6mZlvANzQpGvpuVVa1yWm7r49Rg1lVYXVaWcm72lDVXTo/Hk+M3XbtoiZOaGuKiSPecw5jZIZ4yGmmnkYcigGYNChRnpX163H6xn3rJyZrkI66C67uUmlgKyk5JJJSCWowytqzuOMKSKNOisWYJkpnVlr0+asfd+2h/luDlc1Q0EWB6ymZ1AkTEeZUO8kH50zZM2vZbXBkJcHvTnislpzoiIyxp5iho57YWacNU2dZpKhFAwx9+EfcBWVZPp1auybdM5sC0yWrKT7ymD/MrLLzyWdMaNSAixXX/FJggb6qZRCpUNeY7Yeu2rZ9GNKKjI5IzMQ2fFBLYGMdRjSzq25RO+dTNN9r+Z8C1uhU9BipA4VQ/ukXj/UuqbvE1Xjx1bW8XU9tb+S6LiJtqhoQa4KjNJBk4CpAK8onCaettheq+sMKWbHm4gJ0lTg296lFV/KsGbdSTJIFbX24HToJNSBW/7sYj1r6V3XzYaZlbqZUZWq8aZ/YlbpZfpV7V5Xe6OWJEmFxZegDbhmZNnvOZoWZxcT3LRWZPMyfJAEbNmaVpGyQlb6bZRbr6TQV410B5b/IeeShVlaXoeei6pcGRdvX2QCJsJiXPyHP6cS1E6/vp7oNZIohlDXPym8/viaV64XpqRod8rak9Ot9bz6cEBfGiYXKovXHXq/XUAHtkDVLkEEQamVEdSuE0pJJoqtIxQBXNeBTiilRSbY425vJOQyBSj7bAMCJshFqs7MEGMeUhRzZfDSFEIHdOi2mbuZiY921qhtNh7743P/+np8/Xh8/dq/fm2fn2ofhHejRC3VyjTFQuGeAeA8/TzPSJEor33wE6kznusVirJ74BBiBI+GKJ7nfB7n99N/f9t5gmEAI+T5LXGgHe5Qm5GUYoGlwOiom20bZospfYV5WOOFekxzHotd1L+N5HmeJAhXk3aBoZ3YF5itP7Zc3XFrMguWHhyUPM9jxgw+g0fkM+QoOctPO+g75cfDTJuKvgAQVqosBJkc7WIZLiKUzVyzckM9g+eznkybGodhZIVj26g9SaRkVUTngGUfzvpqLNDQvCsxNbkLL1xDTFRZGsnWjXXhFVFyhWS87ibI2Dbft+a/37J6y0vE1WIMkDQUBTDabIBSsnNN5KZ3XKu03CUXqQKq9onmbudXitq/Tww7zE11IeD7lbdjkeR5niJ1ibtfogUDchnVU6pguqmOsV2rh/ISSHSt9v39XRUG2Td/YGy77x/b/uHuai6CJANChQzjZs0Ol6O63mBOqQmUSVrP1lHGlCoESzOOCrqUi0EPzmE+n3PbNir3fcwfPwg128Y1kDmPuOyNqJLjOKqKee4OVvo2GjRf5ow6z8jkecRxHN/HccyzhGMMM/3566u/fv369d//+dfX19c2hplltM5frXOEVBXERc9uJO4icpuaufvmXqpeDaWRaj6lu3NpdUzTYabuWVPZxI5JZkGWxaikiERF5czjiGfIpJKm6gN8oNLcdJw00REYmpLO5UQe14CopAwCoViX9yCjOrgoZjJL2DaNJCsbDlKrq6KSKSJnAAaUWpVUKUCqNZWDTH/O6TRiiplcyYsEOq1FyMtydRcTolfOSYK6kKLVsj2KJKOKM7J0FgdLWhgw1Mbu265iKMniNwt3KzfriDOOSYE3P75D5XqSNWeKNP5+AFaSbZaXy5hgamipu6oU2gBZBRGtyioyl8qC1dHleqVCt6iU6iag3TVlj4NAMITU6h4CRJQJUlbseWmqqXa7aCxxm4kJOuk1mk1saoJF8FflCgy37tNcXCUpysq4wNqhb5u6mSkMinrTUPd8UViLAMFaeY89XHOxbOU0U9hRa81rWCPBHn5mlUXmVJm0MXyFXrht7vsVYNAbvUFMMcx2xSk8qiRiFk9BUCKrpOpKvVgipGJBycvsKQZpqpHyStFeUuVXU3rsS/grcmXgosU8AldQzUUJVnei+y3pggWKpRPvukQXSLjbZnKJiO/J40qL62DEJX251t+lnFtlY5/jI+M/xxO9jb72gBcwrbISvNBlfxZkcs8CZc2Xgarl3Cx2V+pGQnRHTBpmKGvqsvReizPUJxA13NKeXhqkclZnX5SwWZeaLNIv8gnFrfo25z3h79q4IU/W4gkVwWLZGUuqVp8j4hRoaUsnkCKCRqwVxyh33XYbQ1TVN/EhY7P9sX9+ff76x+evf/74659fP//6+Po5Pr4Eo+BRtJJyY1JG1DRxaECsxKpQeXaeCq7I8BBaVgkMNBVXdZP9mL/nied3/v77+Pu/xt+/x+/f4ziiDdfzWfN00rbxkbVDN1YWD+Ew2/dtDH/s++c23IeMMUyH+3gptSQzz2PO4zjOMyIqZ+WZMWccIaJmoqPnkr2ol6h0/mP3n9OiK7lJrSqVDqtUQUWcM48j/p58Rh7Bo5iB1CG2iZU8PtweuytEUmU6wrxmFSGqpmZwNCVERu1OOc46UMfM7/8d38VTde6y/dRS5ZRu+uQko0d3Ud23q2KWlMH0co63WLs7GXfhRXbXvlGCrKoyKYk+h9GUDjrElKa+b9tjH2OQvNmbzAsSJlJoZpASqk0bZeaMrIxI6Vu/6TMVVzZ9ruPfCvNuleQfWvtuXbe2skSbE4X23GrnVHrE2UNOMvPsBkR1kWmXuSrnWe3SRpGiai0NX25ALvmUSpcZHcAUAbSiZ/vY9s99PDbbqJ7QWahqpbVNHzQmWBUzjojvWUchgNi8VmQXqpRAWqacEMko09ATbMUK3Mzdx/CPjw/hNjyHn7wDBvBcbgMzgFnHGbPo/L+PmdP2sT327bEDqGP+/v6ec/79/P79/H4+n3OeZvrjx9f+GP/tr19fPz5+fH59fX39/PGxba4dqKsEYOhwkhb6iTCrs0erRdjVUMPuirUYtHmS1WArmG2jHwrwqvIcEVEVKliHnJqzMs+TKgU963gWv+M4zucxj3POkzFB2Xe11CpuxqEYQodukN6LG73GyRpgUmAqhWVQq5KsnDVLas7jwrypoDJzZvPMXNsBTkpVIqQEFHcXFBW1gMNiQ0XdY5ZQIWk2W8WCV5LgorPdUB6IRWUJc6koWRXr201h7cBCzUU6KDRPI0pEcxdxhRPJRJKZEpGkZK4Q3GIKI3O2aQc57k1K1QUGZEFJFZkL+fA2+sHl7dNOFCyimL1/iQJmuis2xQAcYoQp3FTVstXDdsmd+01QAaSU0mGc3dtvJ6miGZWgVRZVm2uft3MNQEQ2QUvKzUTMAVOxZun1WAkrT0palMBuLqlSkHmNA8GN6MKLSwSqXTyhKL3eVQlWYG2tpEIpEeMFO7uXxW7xZjbGEr10ZBUKEkJV9YWN0WG2t0uo5iRJmojWAonJlUXfdXB2JrdBATegDFWU6kAq6WGVKZqkfJPhxIQK4yUY2cY2NjNLNoatLtdC0z2lCUZyTRilUmjClEI3Zd+G968RHl+4+UuK9mYdX54mLlVSvz9yaTt6kgiWiMw8/7Pwuvbhu5d2/2U16edSi9n9za9HQEJ792pBRaEzpTTRgr0WgfXipVcU+wtmQXk7WF8VXUK9JzyNQ7Wqy8jPEmSfD5iqY0VS+DrxV1VJCHnRsUE1dBYucNuKVKwIKyRLI2laEIaAcREXFeIiBd/Elebiw8zUh227f+z71+fnr79+/PrHj59/ff74tX1+jv0hqrX0aF1kiioVakIXE2XSNmoWilZhgPXxye2zofGsZE/BiyQi5znteeD7qb8P/f3U51OPwyMiQ+YsEo4RNhBbE5pFWjGFztxzG2aNatRuA7sr2Yu+BGVmnZHHzGj2QzDOrGgFAdzUaT0kE2hdLOWKJJmRXaaSyMs1YgY1kJlyzvOcPCOzz05TBCa6yW8UD46fhQ8bG9R7Rchqf7cpVVGmW18o4oDu0EmZUd/kM/Igz3L5WSfryDPqu8G7GXdG1rV8Z5VAChdY6+Yq9018N5XXkCDvg02pGRWqDjffhm/D923sW0PHYSZkK7ysSoxBMYFmJUVSCE0BqJMpzY/M7CoMxSZYLgZYnNcB6J2op/+Gk1C4oLc88NLL9yavGAICs2vB60H0xvuZ2bZtrqYq6basFa1VhyzTIDS4st0WelVVDea+wLAuNtT34Zurk0paUUtuvAwmMMGonPM45/cxj6hTNH1wz87ZqRgtgSnJVEHODBqz5T/Z0gtr9EOGmG5jbGYe0ebNuJA3HMPNbMZzzsmynKe6bf/ro1mpmRnP8++//85z/uv79/P5TJaY7p8fH9v+9fn49bn/+Ho8Ho+PbWwKY1SWwEwVuI8crfHQhdARJdmYzht3tiYVb1+qKkr1O+FStEPmFMgBgJmqoTEQsyDFDFYiJ6WECU6J1EqtMqjskGqNFYZgFDZRW3osLiBcsWaWsPSwliB1KDTPPGefRHKy9xdbi0BbmFXLzMRVVe/kvJ5FdvnS2Bmy7QrXrJBERqdl3NzeSz2qVL25FGXL2AleGuy1lxRbGwSUKjpo18ykJKqpm5G5RVQbbYsyJcHpbpSUbHZTzXlEzhkZUySC6Vy7Vo+ObInp3owqciXP4Eq/fINLrWnO1cwcMIMOwu58pD7DKGoJt15eM/bABSsRcc2vIK0ts9Y8y4KOAprAnXm8OuqsZT0NSjPFy2BqYrZAFpwdUixASa0ORv9bSEkmE4JgWUWpVxs8urFZrCq9yDfv0dlrhNXjqKv7sd4rheM6F62uWYH9v56EmMLNhvum6rIanCbUFTZzkUgrXwQXklWhUkIXFFRt/RBrJqZQ7ZpLOixFbhCi0UjorQYwg7mu4FVUrXnqmxVy0V9FloRLqrtnLet6M4qu+x59JehtU78zemAk2Qmba9BA4BJ8tVAs8/ZAUXL5mf+cnlzv+L/DGClCyZ4zyh8wRr0/jvVdF9NLRNQWp4CiS3Fysc1xwQu6FuteYAtLq25CmFySMQXQefMNUb01EwBkGeytk2ze2nfW3I9+fV3xYTUFsF5MKaFMARvjVWSKFjiEIvCGrIqwP1WB0gztDPx4fHx8/fj188dfv37+9Y+fP//x8fnD94e0sLzaGatEyUoCFyiJIsoHir5xI0jWmafGA7w8DRmZTEGmzJCZOWecM45znjNmZKTMlDPq+ZwRUSmqroZZyZpUM3URNzX1h/oDtos5m9OgK0OsBCUVlIislI7LalFXwy0lVaVv8mF0a6cN0WjhaiJaoaGEywedcp7nnLMYQ2Hetq8ZGcGZUklmIkXFYJPfZH4fcrJ+2tdP3U0QLJRtToP76EJfSFG6yQbsm46ykWJfgrN4Ss1N+Tj/9t//qr//5jypUd0RbS1uMSJjRtw2XxuulI78u4KPtAWO1yJQlS/aquoQU13Rffu279u++7bC/vqmMbnAdVUSGVmLjFVdfGu9AQv7LMEbSZjFnMzZ0s9mXmDZcd9uQzIlRSxbC31Bf8iG3HQYW+FiRN9ryBhDhAa4+z62bWz7uM+NYmbUdgW2ox96KQcKa6VomvLYdy2tCt8Mm9lu6qAWUSKAZsfKUyrriDjn+ZzP5/n8fX6f+QxO0fIh20xmTAQ0lSWZWe1vQ8btGawVBAbg+/v4/j7mzMyMWV8/Phr1Xr1XoBovMONojfywzb+37X//764Yfnx+VuT39/fx/Tzm+Yypqvu+m9nPz6+vz8d/+/nxufsYww1jdOOzP7K7j58lgujgTqVpCaKk2W0zKrOiKqLWbrIANBfm14zKTkZs0aTIGuFCBLVM3pSilhpdZN9DpZrFdzxPmBY0jzAws8RIhNhUVWooW2UYKVNrZliWoKiJlh6lZCZnnnPOzCjJYLWWpqrOi0DbASWGlEKXk8mcms/ns6QL0YZVt/Mv3WzcM8TlhMJrsWtdUne0+lA+XAXWoH1rJyZVUMmlRhSq2IJA8bJrUbIVeVkQO0vO4hk1s+gOtdVXMJGjZvGMyPOsOlPKdFlwdUFbLlxDz1auJvELWc5LdNKeaGEjnrxZuTdyorqywSXoUSidcnvTLhTCiqFuUGAD8foI/gYNu/bgqk6WXK1DoZeRcJhSnKbwodrWopa4L1ID+fIDrpv+DdjRNU1mX2hyuQKTUsyo9l33B9fGszVg6p4j2wu55lTSNrN+7W0eYlUwp1ouKqzc4XEGVcJUBQaWw/SVpm6mdjvpXh9KP8LlE7zrDHSy8V2U9h9WNxdbVmcGN1F0NlQ/IpZxaz3RupyUJsgOHKQKosPJQa2KLjDuzCWh3qCXhnW8F4v3u/nufHw/ePXvqwo9s0C15oPsa5Jv/8VdeK0bAXe2pr65NleVtlyJd9rPn6nbALTdLFgtX1k1Y9NV+nZD5Ys3hiUeArDmhu8s1lbQiUi9Jc1p1x236qj66CIUUVGYLLnjhUG6nHfXKNxEC9nBYXCNTH1I6WLj4EWD6ytqjPF4fP748ePzx68fv379+PXXzx9/fXx97fuHmOXi4siNuQSw7OJrtFd5nbvWlQZXOBCXdYwRFVWRdRzHmcff399///3377///v37eXyfxzGf3+fzOY8jM4uEO09JEw05FUP3Yerb1rDHh7ubDjMxHU0eV7SACV1sZbY8EpVggKVoClFXyks1YrLyBgBxE5raarU0iaBqnhnnPI8jc84LFFlSwe/gLMx1J1NUkUOOyjqpUVoDVIrsIlLYtiGArbcFFKqWGx6GDxufapvIQ2yjWUhNj3P7/tC/XQyMvyWoIazqFy5KkayMYGQIwZvHIn3clQuUVSuG6+1vL/Q2miG1b7Y/tsfu2+7bAHCd6C7gy61qvNq3/wYylns1EKuqNcXrljD7FCfAwlvcD5KZiEAPE8j29Km+GPdrya3V4m0Fd2vnr0mcuOpKi9rHPoYZtm1TlTGGuWbmcRzn+ZyV0mdX7RN6C9V6fc/OCBLrmDL2MTYqrbSESVoVZc4553H8/v2v79//Or7P4/mcR/IsCe02zjzqfGbfrDkz5gLoq2r03XqvbKLnM8cYc84OtynGx8fDDMkiM2v2rpo1ReTxeGDX4zj+6+9/iaIi//78VJE45/f3d1Sq+9i3ATSV/sdj/Pjx42t3MxOpoSvUDTbmzCLIxrmxJFmymMFkUCJiRsw2U5Sc53nMM9nXA+6qq5Y8RwWmSlAT1q37lCwPo8ykuo0aBcFkxcO1hkObFS9Zec5sAQoTITZga3RAZa86mSF1otkHRTOlJcASZjBrRsy4ROci1Z3HOafcseJiwTJLWaFhKXPCBGbbtmUm3nBFjlpga0pWR4fgGkgpRRUFmJFFVRrMDBTDRR6HcaVcNzWINyezqlhnhiaRFRE85tO+y0epH5SnRVQKd5h1pZFRSzAZEccx5/fBbDAi3BUlapVSyRApNzEzV286yOoyk50x1y1EiEFXpcQLwa+uPXAWaboFRAViRDXyv/UtoLxJod9qCLH1r7Aib3uylewOduetQd3dnBDCCRGMnpM1raGyc6Noq8Sr7segX5UqSoSlqx9eKEnJTrIU7Tr42ixJSr1KT8mVHl0NZrxlS6z7HCRiqpCVciIoIpmlSsNKJDUzHa7DE+0uFCmTd706qKorQ627gbBe0ZSCIiAsSt14rrUgJhYVjDcIg1DFXUAvOEotJGktyZVeMZi9K6C19aQIllsSPXYEhHpBy5owiJXKhOpVqq0GgttX2CCStyMy8u6Bs3r42ydlp+RqfbKbitbDiyUmW9COElkv4xJHya27WiO8N5UX38pBvFgbV8Oy7RI9Xl3+ry7UsazsRQFV/sDw3iXgAn+Jpi2MKvGqbDo3IzMpa9foGeVdWLfo70ZQwq7PJaUiq5AQhZtlGWmW5WCZd7NsgfFUtXXqHx8fP378+PXz14+fP7++vh6Px7Y91Kztp9LXj0otEWdvrj3vis7fPec5Z8wZM7PTWhVecr5VzJU5I+c8zjjP8znjiDizZuWUPJkncXUkWqjFHvB5ZaYb3H3f923bFnVyM/fhjjG2tqayOnTI5/nMUzKQiZiaoVlatOa4J83ES0yhot5OGu3hc3uZJdkeojMqismWkAYra555JicRguwdIrWo0hLlSs7CUwKlHXHudA6xFGww70WKBtusNrUPs88hH4pPtYebl0rY+dTnjk1V1MpApzzLJk6Z00KlkFEnZ1JBraqcVKnUAElz6e4mNtv6HgWytETEVJYdYfg2Hq2Bsm2Yb+pGaEvJ7pFEFRnJLMnFh2gNSuVsnSiKZurwqoo8paoXOhUOV7J9xwuh180EMrP1t0oGROQ8T70mpZdWskgyZp+asmacs03Z2vsdpE0Wj8f2eDxW4eVDVdx9bN6NeTJ5chYvzN6qqxlNIF3dwRt+0T++FEBRJkcVpCq/j+P5PH7/fn5/H+f3GUdbN3LOmGdmZpxznmeTDjKiYmkhmqhBSbwizhCTHl6SNnTsmw0l2GQvkaqcHYmRNbuF5zrNnv7tfXiOiKFeVcc8SX5u2z42Ndm27eOxbdvQS/S3TopALx2ZrOQZecyYJyOlSkqsU45aatZYp8yMkp7Zdaew5SF9ASHaENG+wk51TZJlpSmc1TwNM7grVCcHtpmxOciuaCIyEKmqJ7OmbGJPVetYgb4DURN1Mg9OqYlKdOHVgtjKHnBHVQS7BSJdox8xRWRArEYw+hbphhObyDDNRs3OzhEsEIGpZ6agtJySAr8SI0pQqC6JOn6oJSApYs1GvNmtChDYDNGiL5gS184v5xklmjUzoyrgue30LaCnSzZUt/sTEdGZ5ySLOeM8zpIpCTczgSmliJQs6casm5mbm5k1XeuirRCgQtQuwU/jcTSFcFWTtoCJ6RretPJ64WHQZaQU7sLmLnHuJkrP/i9dGYpANaN/qc3UBsTal0eowrMVHh1I2BQTpiqk5VkX/r5l8sLmsl7OPykhM8sMb+2cukXnl9PtGglkSHWGqoJSWDj49gV0PYBrnJqV0KoKZa6KytY0sJXazay5stJSpBZHXAQdU8HVi1LB6oOKNPDk37o4HTHZPTxgXMjBom5Qdl51slgUdlV3KzZ6OLhG4UQV5ApqBIsCUI0spQmWdKTdB+Cl+qJyib7XW/Z+5v5DufUW8v0eQgIA4utp9f5DX2XZyuiQ62V3EcMX2f7NU3m1x/5osclVBl711vrmN3PW1Qso3BwjWYT6e7wovI700vMOQDoHpC/BNwL4iukWdKND+vwAwhwqumLSvHvGarLkiY1ckiWGE7iiEsIVBFpqHZJDuw6vYwzftse2P/bPx+Px+Xg8tt3MWp5UHfYpHdEHVLSOAe1fy6zIilwR01mLHifrwSNfP9F769ExNtuGbptFeW3K03bTqpzNfmueRmH5klqIY3eQr29j7MPNDG5uOkwta4p4Jw4xhCEMcMrd+hIaxIQCuEChDhv9EFIBsU6gLGG20DhVypB02UyKyMioZ2VUMAoJpRlbBb4qcOlUWqunTKnT7LHZ5oP/ynqIE9ppQoVN4CKbyGa5uWyKffDDxyil11A43HKwNMQToFTnPXkoqhiRZqLlwFDLGXhL4xCRlhU3l6sbXY3BG65Xv3Bs22Nsmw634bAB02wZWVSwvFVAke8Ie8no/OzFe+qrCFUFSVFKSVESLFHq4iRKK+xbXH9fA/2A3ZaPCOsjmK5pfrX3KqK1hRFnRvQ10NdRnzq262vfescRETFXdxepzHG4RxRjXqvSHalGZYmqjwYeLSfsnPM8zXv2nFVhISzG85zf55xnzbPOqDMyImbUnHPOSSJZGdVLMwt3K7AnPW0yePk9azHTv7///v1723YT0H3Fr1SL/jM6RKHHiDcvY86Zc6q/jotmtg8DsPvYfbQ3ovXT/fmsjQlWzCDPyOcxn995zObbY+ZCPZfkjDozFn27qv183T3SFSHNaixdt0p0VXX34qnZLn5CqSYCtcduiAyJKSgqBelR+n2Gwx1aBFXNtJUQlYUukepkGJOcY0b50OyhI1jJxjMtQGbVKi7lhdrur2CYWdv2e4/H9WbmVa61EdBjHqvzWayYS4roSmYrXXKGqqbXtm1jWM5oKsUKKEQrljQZEDRWRUQcHswZRWrM8zyfmVE8S+dxhI8ce/msogFjwxCpOecZM0qaKKgqrDNmpaiZURxgC41gagu1r9tjFxEIWMVWo/foP2kwOCShhNnwMcy1hARs+BjDt6HDVXsFXswGcoWr9fXXtcrCwFyCNlWtGd03vlAGq0QA1cXG2OFmOjr4W9TcfVKyaha7epZI1jxZupCZFzFHy8e4RGKrwwFWLzxY5zmgk3SbgAAmw93M/DifEWcxADeoZEl3RNYAVdTUFDMDioUTMEsyItTrnku2xW+1sM3rmCVs6VeVjjFqjGfDOWFjDHFwsru7Uqy2HC7NkbZ8gkoz63RjVhKqolh6uTdFei0XgAp6unIzRm8/Ii+ZkwArNJDJLMBa599n1nvcBuBqBEJWXBOuAguEQLFC9SAiMmdBrG+Sa91ZfaD3UvIuhpYxPrgiiMTWCEO1+2HSvbFXB2tpza7HuU26TVZbUr/1xIoLT9YdVaVQDCIy6+iLUIA21rRfz7exdsZV8amqOhDU+zV3oRdSQjGYANUu5R6eqgu4GpFmoloCFpo7Ye7SHhNRFcOVRtozNYDm6vflY9boge1j+/j42Leto9zcdWyWNSVP2GOtoVgd3Pa0vE9vaxGb35p5i/ysqjo83J8RZ6QOl23o18fj+XyOsRsNGCjLk/tIpriOGnXOjOjkYKnEPPn4UjM3HfdXI1Ta8tFWcOFgRYacR7EsA6Spbnl8ZxAYqlZsVfUGHY3SoaoQho3JrCIVdClWRE1BWkXOsyQLECYqkGcRVpWoKidMxAQmMiEPiChL55kSNPCwkqj9E3YQR+qHjc0dYrDd8OHysWPTc2gMc/NzyBh4nHaAJRNRW8ooUULGIcP1OBoX4iYf04YkrnM2K2L2wARQQSu4SEZlRxeLyLZtP378sHU83mw41MW0/zsGoHIWESFkzWiqdZ6zIuVGajGbYVFVjAxmdRJixcJpMm4al7YYOeXm6RElSxZZEWdVDbXM4Ogw8mYiVq+NGf3rkp4bFJmq+76G2m+XsZm5LtW8iIiiq3RiEhJJVKkbC3POZNnmVvV8ngAz/dgfz+fzfB772CgULZiXZZDneT7P5xHz+3dmaZKRjOLCllb+17++kxC1cyYoaqbUOVfjSpIiULpiJdNhtBShIuL3798+jGTLTPqMvaaxkI+PDxaGmkPBlOpReqvQJGeMMTrCeX/s27CG3rvva2GCCGC2VdX3eczM7+f8+/f59/fx/Tu+jzMm49quhJqMKulPuguvXMau5ZatlcSDiJISGaquS58CdMKpDyt6geq60tbjyVIhiiamcG8T3fbx4HzibGxjpORy3HebIs8KYiKP5DFmiBwVkoI2knUHK2cmtHGaOq8pKYApqXU2sqzpdaqupmbWhezx/ZTi/vHobolA/Hz+htmwgJmrljXdVx1CU1l4qIoIA0iOsXNZLGFAt5lUOdwkWFJFUbVm6lekcLwWzYziGedxjrAZY2NxA5JSAOecM2aJNA8JmqpUK1AEdc6nmRlcrZlw/y9d/94cyZFkeaJHH2buEQAymWSR1azu3unnTMvOvbLf//Psa0Zmp6qYmUCEm+lj/1DzANh9bwqFUsJCZgIR4e5qR8/5He29t9YXSTxKzal6uABJPSUZBCVKlvdoC68FGVPtt0hVJJmCMyItPc7aH4+Imj2kytzOThlEsHyE07yTl4kZwnkWCEJYWcEkqkBKqrgPRqa7eGSt+CKnAZAMACHLp3OSVJMiSVAhmpOjQQ5PiqrXcEqskKIv30NEoUzp5C/HWStUI4wQR3pmWrHlBasa8WM3GQrWRUiBOAmzrI6pIFpUdWZmDmFyImalFCLiVRZWn+rTBSUU6Sf19+E9ipNXsiD1paZgGe8ylvYU9MHhhGRUvTlAqx8NoOS1RCSiBeYpu8wynFZQN5MZ4ThLDB9S12mTwtn28/4fP/56HKN/50BZf1I8RBe84/jlgzb2Hy35H8SnD2nHpUg+7PbrCFjGYj6nTnxUGupDDkhmLkfaOnsvQNSJ5EUB/z5obOUOZGJ/iJcLYJ8V6ZckjppOCUVIQpU+gAOmpETJwdJ6xiBKLrotVkPZvu/c9HK5XC5P+74/Fnm1yjmHrTrJrdSFBCWRcIpIY5mi6uHkcepnRKSqfhqM3H3O3Xy4H+bHmG9mc9/vrbWqWENKBMzgnkBVJRLRZF5pkuofO1/nFaItukqZWTMoUzIyQ8I5gjK4jkUZxMlYU/C6GdR+vH7vCYt/xJFtpYodYRkW8KRAnO4bN0rncC84FWayEnGmUEoON0xBg2iSwwS2cYG3c2Z6sDttBCYt8vZO7GjKe5fLRhsxuwH3xoyWfGHKPaGW6gEWQoRkU+yj6777OCJmZtJ9WNUbl/x2ykLro8tnETVRoc/b3nYiImlYAhzVhqR4Kctcc9pL5jF8zowHMf/dnPpowig6w2kDCCLUU6H2GMvS4xyEcHhGzVQRDLL0VAZSyjJb5IeaS8Iema2lJ+cjahohRBFGRNp42zZVZWRx74goCcwu0lRnW78VCViG1RNlgnlGeKn1Y4zjPl9fbwJCpArtrffWGmHM+fZ2vB33+ziO+5wj3TODHPAIC08Copq9akta4AD4tDIVVK1Z733TtpJ3MR+S5JzzdnsFED5rxKxV4b7vrbVtX6x5OTvgzeyR+0sPnxbjgAp1VqbeVED1RFg2EvfD5hj2+nZ/vd2+/vb27fX+dpv34e6JIr+svqDVce4xZwl1mVQPocoPq6pOBlfvYCA1FahNynpSCJQ1NQHmJFMgg0UohIo1g/M5Ust9lqis9FJwMtM8MhCGCEy2GXZMM8w5HQ5OEhKR+hhZBOuSQT9KM+5ehhxE9ddJa/JQfy0f8vz74kPH/U7CKcoqQcwqqFumKkW1aCLg4JiR7C4Qj3RFEeSpSgtSlNupbpY757yuCuuwwODuNiIHfOAYc0/iqFYYFho25zwgnHBQiqJ1qn0ZgyyciFjyFH633remW6XSIBHup4zBRCHSVpY3WFYdeuV6hYQT8IRVEVVNakwAeGUELSsHg2W9qjTFAlFGgkCslGt6LVvbmRtmYiXWZAEXP05IqncEgWRBekayOLnTemCMIyIkg5mVzX0+XMzr3XoUVKzYZG2QouzloDJbB9LeyxnDKPKBBFwRgQSfTCmCvHcQMUtT6Vs9ftaFxO86EzOTtORJ0oi1ZCQsaOfp1hcwuJBlABVuLbMWUEyoIsXwMza63He0BtbHZHP61ZiYkRx1nAWwUtfViZKBio5/GCYpi99BZ6/UmiCJasosCG7U+5m8coE1t6/v+n0R+T6XcK3qkulhsTo/6+dkNv0oB9j72EprbfqYtz5Obx+DLI/5CCCKFRqt//oYv6oxHXW3Xe8KJ0DaH9pPubGYSuuSPBmUxA/fGHM5EIho1eqtbyCjbtwFvPjoPgOYavG8SN8MYi5QDxhEIaIIYiVECGVmNQytv6cu2H3fW5Pr9Xp9fnp6ft6frm3beu+qnEJJAQaKzM+V+UQSSQoAEahqTZiBEBFjjWJLnusVwXnkDTO7T7sfx25+f703gOeMMeYcftzub3oXEY8QoJMUuIRImJWwws7rCPNeWUuPaWyZmj0j4Jbl1smTEEeQNXFVPmHVV0HBSsIlMiOIqSr8kpghArfVwyGZ6WZunp4MmWZupYAirOpMwQxoUg80Eg04mqY1JySnpFgb7APeswlzU1EkcQqREKswmFYa2KrXo7VGl/SUY8oxKJE5pCnvm3rAHLfDfZh78lvxnzRLGRVRkfcCx3znCMriSLV6ypZ+WWVxicoluJkdx1FxTp9mZmmGTPgCaBAlmKWYybVNBwGkyQxJhzZpXVQ6nwbUmuEAmEXlMROIMAaD0iyJRCAW9kFMXVvOOuSXqaHOukthDVNl2y/npEJana1lKSuqs6j2bmB18w/LvggQxe24RzghMv1+72/fb51/G7c3QijT3vvet010mt1ut7dj1G5xWHhK8gnv5dw2nsXyJ6dA4UtwejrrhPN8fXm5Pl2vV+nNfR7zvobLiMycxzAzjxlhAupba9d97/rydHl5uvaurYkQU8KnHXkfMuqdTQ1lDKYmunVV0KatiTZhFQUQcDO738ftdvvt6/dv329//ev33769vd2O6QAJa2PqRXDK81jr7sOtbpUAmGd5Q0siV21Ibq11RIvG/DBUrAQlkTAnZ11N7/3O6QXnQgTSg7IaSAMIYpRztBjnkcWicHKMMe3QOeLt7S2ZSMAVqWFeXuAohnDl5y3SkPU5IWaOGselMTNarwG3ThZmygxVrpFdS9mZMSv6ISKm1SkWIoJ13E8Kqg6sybMyBY+AE6uwSnPztW2r4C6X7dHdKFIIxAIWZ4YhAh5GjDncLNR9KWQEhgMuClXkJozIWZqNqqo2bU1ZW+kx9OAtwU8FgtYzG0QsBBKpwauEaIDJkTN82Lwf5WlDLbOEarmHBAO17qQs6Gy5ZHIRAT4uej8+TZNKyiEIF5OYViVaGWIyF+Om9pVQIaQuZ4ONxXziqK18nQzqdiJCdfflcmoXDiI8UXFStwhGlN8kPTKMatZ6mPE+FGlzclJSqRHEqZ20SxUcqYg0JgVJ0QsTFGCqVLRU2YaGCpdCcF4/6yBS40zJZA487OUfh4/fI3aYBFzu48XRWKsDFgCk5dSrInJ5BHamGZIzrZa8ZWwiaRmWlLxWx3icwsP9QesF4Jmcq/38NOQubiqde+d3WSuWsSBPJ+7prDqlKaz9ONZKNT9qV48v+6iZEX2Qsz7YuRbe4vGmUZUvvkti78cmrJCEvUPw15cxFx94DV51Ll8vR1aCc3k3l9yF1WN+jpKnU3BlGGohXDrOKkZZm2OP0pXLhFFlRwIh9roymNC0t669bW1r++Vpvz5v10t56rU3VqmHMTiJOaXaG4JIiBABEYmM1tppDqmDZpZnpBSTWrI8Bq8530dbwaCzkbbMRpdtumXGTXWFQhx0giWTWZEPKux6gro7sxSz8N0cbcPMzOxxXs/imZNUrrY+J2Se/Nj1g5kpkJwsYNNsEdPgamOyKmAIOXs/oSQGzoLxlc8kS3cDKqTjmQ3KEkN8CN2jQk5zmh4xm3fhaBGKHZee3mANsUkXRinmZhHu8FYY5DW5q1z23sraDprOInNqRKC1rTwZZQ7FGc4ocOh5N15OnRqyauiy8EgCk3tyyDH9Po63t7fb7Xa73Y7jsDGXLwLFUHHKECVVBScETFDmBIuICqcqU3bhdgL0ERRhZnE+nmfZ5sv3kAUojmB29/eR+uz2Xc1mjyk70hLKZAg7nEXkuNzmvJgN5l4CUp7FtFXE2Vqb7gHxiCqcqG0kEU0b7oZIZozD3t5uFKmNmbwJX/rl3m+NW0QcNt1yethMs8gEk7a2XS7JYr37sJjTrUdazFlXAVM2Ubpu15en5x9ePn369MP1eu293+f9mMNsuPsY91h7bkswkTThy2V7eXn6/Pnl+fl6vV5VVepGFuE+xhh1LxLirYnCu0rYSOsUQVn5BlmRuPDjOL6/vb6+3n777eu3729//uu3r9/ebmN6kGhn7a2FZF+4VKA6tjPTc11xj9OgiKj21jpIWmtbWO+dmXlFOLVk14giraR7umVa5Wq8LHF2DDusJvtph5kFG6rKJj1R6NB1dbnTsDmm+OA5J1GScub5jKuRrrBE/O9T8NXvWffzupesOC2oOg8bUfr6VdaUVdrwCNBqW/HgqgUsl2LFm4mKGxunOxtExC7s4q7UtCwmnpnVQsOgDEJIcS9TzdUgGTRHJkHGHEO0U5dWC4XIgxHJ0EZoRKHlayv588E4YCDSvFzppz7MyYIEK4Gcks7+5BqhqjzPPVFFAHeIcG8yCnrmEKmoH5LrZyRm8YoTAWV+WY9L1FKBSh86p65AHQG11xqFRat905GRFXkvxkfNZ9qUE64iSjyJMoKQlLUWQ0ZypUp5WdDTs2i/5UZKWIRleQA9PIzSEla9H3BQclKNMyfaHiUY1RwgKgSilA2tc1OWxgW/4HdjjRdqJjNRIF0pMVdVpSpJ6quQFAlegDHhd2h+JeGEAErLZeXG+TAv0M1DIjoVOFrjLsoTQKD1XtdNn+pTVkved5EsWB7Q3Xe8BRGRl7+AMlC5CGQFdw2Qc7/o57VEnBRRgboVTyIBM5pyRi7K2nKHSKVYC7R1AtjyzEvyGWB8EBI/BA7yUbNdLSNlYFiz10OP5IQvpkKtGh8YM2Q8dq41PVEgHqphlSx91M9YgMouL4smYS1c1nWUi9m9ghpAUCHn1j9CItVGH4GqqeITcVvIbIayRL0hTCmta1Ptm25Nt23b9t43bRur1ItGZ4XLsrzR2akAJk4EiVImt2peZYpilZPDzeFcO4uC8lfMJTkd6RmWMTkmpbGg7/rkT0zofbt++/pap91KRmaSnTydql0r+/Occ04hDpEWyYjITI/hcXhMj2NGtXC/T+GnQoZYJFqEepmcIVT7pvKNokpLlTiYBAWbLLmt+j4yUAWfQBG/eE3FnBHpxgIywJT8ELsLmCwiOfMI0WjsKjQ1DwVb5CfiRBeKKwpl6aCZ5C4xI82nGbCpagshaI2VhSROb5wZEXvfytg3Pec0jyjGUlajSq1UVmCMRESUIqIKXM3cM5IMTPdhtyJ9vL3dbvfb7WZmnECG1oeXgpG6PooZgFHWqUFqq95VCF20dRGRzAgLdxB5PeN4HeXqul7kGkpPLoQAHifnGrmWO+Jx8HCGo/Esn5PNw47hY+JS9UQ1nKV7wWtYpGmGqgYmx+ojoeq+OI9qBSgeY7zdb+5GnHC77D0v5KZKFhFVwjbMbYabpyUnt7YlWNRtRjcbYqbh0wn3cKnb7ba1T8/PXz7/8NMPX56fP+19YxU5RGcL6xExZjObZiaadgxm7Jft8+eXHz6/PD9fL5e9NyEBEEXWNIthVuciZaLcL1uveFYFS332dYNiNrNh834fX79///7t9fXt9v372/e3t29vr7f7iGSRwdqvzySgICx420l6tLkutzUBA01Umh/HqMFruG3bVosVImoFuyd9VzQsI1DtEWYW0339mWZj2rA5zXyiBdjdJ9jAnln8PQQoiJ2kgHm1gylyDiKDAiylzdQNmU/01DLb5OIsJsGRljFsegZHgUiZSQkCR8wAoKotzhPbGsdyTXOqDPTTwVrymEdauiCWKQbVVWysW5fMaiV7gJ0yV7qmuuKIK/BBCEpL5/BBxXYDRJWF+7A7PKAaEmiclqjhAItwUezP0zYW/KF4q+xYTEheOT5Z12k9xStIOM3JQ4EQ5VJWQ6s6YvG5aHISRYyPLPJToVgyp4hUUql0SJwmHpXOra0WM5ZAehKjCPPpH7QSZs20oFCCKIVzUBRxX0rzWQylXErQQrFmRKWQCeSo2cALbDIBq5UuwpCraRMJiuIuPHSU84NVSp8KWJmkYGdrBuJKVa52rSQupMqyXKxB8931TEV/fX+Cni8IUeHjcDqnHiLzuZlegFBkWobk2UhYR4dMRPFKysBdpIZ4SDsoNMY6vJKyfJA/33/kjweUKCxczUIl/NQXf/h6X5zp9zNN0byENyIjSP378WfWSuXjSvExP34UtE5v1u+QXesLsl6/E/SQSDDCiydS2dWzyOdjVvR3lMiIUM7MlMornCPX4yupBClSEjAExTgjkHnAS+xJTmSJonnugc/96TJLkohEmSH9xH0AuahgEF4p1Ooma23r+9573/ql9y4F5iUBKseY63MUQebQEkkR6dXZxg4WtCA0jlCD1w2miIsR4T4RtEpdz0VPvaXung6G9LbLc9v3/Wl/uo3j5entfsy3t7fb/TCLTNIgR45xrzvh2b04PdQ9PIJciiAVMc9/1tQV+N2H7f26AIBsH3jIWTCy8ifVFFchPUF4BEWtjwLh6efxZFUsFDSUAfAiGE9PIbIpNuUYHFIVFIklPKYQmfhQ5OE5RYgvW5/WmxRs1i15BmdouedAom3bqTn5JJ6gGRmgVJOAi9TBDGBx46QZXhHv/LB8f1wC1eHGiaQU0Ix0Mw9z5O0+vr5+//79+/1+P45xv9+j2oGRbeEOl7DPTBxsEV4ESThTuXtWt0ax1yPCYkYQC9Xe+Xwnzk5HVPWjMHMsNv1KZkSto+L8JFfvikhEtIpbCWKKmfmsYr7TKhAf3meASUVZksXOgyDh/MbqxQl3jDHoLacIEc3jNi5XMo7LVckTXrzxAi1E1PfcSJJJWmLwOEgQIuTOqx9GiKfM58v1h88vP/70w5dPXy6XizAncBhpMrgnnAXuajZY4gjf9v7588uPP/74+dNz7+XTWp/jyEDEnPMYIwIknCrRe13RoAyv/1PbeaMbNscYb/fjfjvuYx7Djum3Y96PeR/TIplNW1DvLRARUlFhoscT8byWF6UvKDjTZiSFI5PJI0SkiPx2ehgAJEkFSM3MZ7ifdwbkQ7oec445LZwkzqvTuIIa5ZQjcVRnAyxpmYAJ8PT0IklyLLzIx7P9+Wl/9Ihl3UAMFhG1WGy6qQhDIsIsqoOyZzoRE/GcI1a1SLjPExblInLG+HuAKnFeQV9UmESFbBILa9e+bduFRQMj5kQCgRKFkqWJZijzdrk8Q1y4SOzMzK0JNaG5mZmnoAV7wpiTzYwoZZm/a1uSmQXgBycjKSMrooygDAhJ6SU1ftFCq1qkEVEMA1yYenG7PRgXNGJdgERkAJoRAHvaOXutfmQWIWnMmkkele1e7KsqGBEsEnqWFWYRL+uxWvZaMo+MrEZNIY5iipgnBRVEPxNyUjrpJEERraYrqksAGUnhFB4eCWdxnE3LVJhm4H13dQ4Bws3LQFwDR+kLJzd1QW6I8sScIpmEMxK86Gb1mT5lmNMJDqlDHjLxKNxCWbARUf1mCztdypB8eFbVcMNUrYX1/0Sphmt0oIxzpAPF8tEX+uUdqQ+UGesDWH/NUWdj+nnNxLLjrOhoTTyBukGuvWdtWE9waFbAnAWS8v6qvpO4P+wEH4PX7x/JH0ah9yKjunQJYE6sb/z9ta33oF6L92GrVjx1Da6/sb7dcwVfRqXAaVIu5FmA+LyTZBTRnoSQkl7Wx5o4i1IWTHxi8x8DmDRWLz6vMCUDQbli3iwQYZYozWM/f/Wul8ult121P9y48EhRIq49UQpzlR6cQl0J+ETgchByKtjYsoo4GGSBPOnXNsMs3RghhCa895bmFNfLZSOiQB73OcZ4e3t7vd++f798+/52HGMcNmea+3gACNIjlgsUBPckNpBkeuRMHPUPLYZnoV8qf075Tn+vloY8+0EK8baaeJDpcCd3srWphTs8KJLP+g2GcwDJlMJcdSV1imAQQ5m5gpMJ8TV7CCjJEMQOYmrUWAJdoOLKKZzHBZSSydNpDmAAgTDMFCJlVginA5rkiQQEJlNSbMFJysUFxyJUu6cQeXkEmErXud/vvDSkDLd081l1SnG/3W/fX9++fR9jmLmPWaAKIYTy8tKdjfUBUHUtC1ilKNaNpav03rUJEfk4vGwR6y1LnMLUeiR7RkSZU+vbA9B7Z9J68NfpkcrWAFgAwBijzLkT4/b6/W3r+9aY6Hq9lmzmtrpcLcLTIyKXtzWybtSIM40bRAnPt+M+YzZhBsEz7bAR921c902VAbZcs0i5gxtvpfBbAC6pg0NSKSKUWxdLnwCu1+uPP3z58ccfPz09q2oE3OfqClwIdJglpQSLXK9Pz9efvnz56cefrk97UQXqY79U+cAjRMwk7nB3FDpg2hA6DhURC2a18LzPMcYYw97ux+0+Xm/H97e3t7e319fX27QkaopgaXMmGExLixeuCYnWUzLMLMwBhLpnZHAgMdnMVp60yjxjub3BRCQlMnjMcDNPz/Ck2mPOcIu4jXmb09NZkzI8DGSZ5vD1WyPdYRHTMSdgoVwezSoNrEg7l/8q0jKoEO20Cj44zl/lDjIOTuzJjdumW9POrCfpCrVqpLWMYzIfERUDqbne3KUQX8xMcAokYhktCk3BTM52DxCTtMvTc2utbZqQiYiIcgULMbRqk7ZI3lmTHDq7kvLKbLMmqDOTRaITOeCEZLAwcw1eEEFSPSSLBRVhJ93H0xHhCKhwdTrSKjs64WSrxSDGyOX9IjLbFn4mu/KCNCQquFdm2yqWqMfkw2/r7ok0DgWVO2JJO5bFYA4QQZSq9QJrFsn0cNT5iTweTTJ1NqvspK0eJBVEFkeCK3f84FYkKGK57OsRVXnG5EUqSEpJetTELoBCTbok9dm3slVIlFjYSBSsIcQLOZtEiQwWylhtpQ+TU2V6aQXRcAo9CcBr6X1GAoFS3UJEsZZQ9JHGetqqHoU/ZVEqUe7xzVPUzvccPZiUVoT09ESHnScHTz+Fq8cB5bw2zoEsRDhR7oBHAjRRZ76lOdJD7CEiC2eUI7rxh0BAvRT/YfD63cj7mLTqE/Vx8Pr4Nf4IcCHP3eKSdTkp6Hd/2hJgT+zNEiUh9YN/HLwAgCr6pZkmkGSns36RWZARS1NEITZQee4ya6038mFqFCInYYpcFxlxZto8aBGPuzK11q7X6/V6XSDSvkvrIkKsdWVF1Fo3kzMyQAZnEskVWwGRU2o18QhShIFY+7fHHBg67O10UHjFYspB+PLy0lrbti0zVdWRx3Hc7qO3tu/73vatX15f376/3l5fb2aDAaSXtf70xiUXZ7FOTPBEJGqnv5J3j5q1uoyxYCCBYvcLeHHvUjTda3XoESUzebCjUcKCwtlCPMIj3VfrnqOg1cKPyDFFEgmlEERbl9ZZmcU9ijzPTJzJnJzcwxlO4+Zf+U4+kcfxspXYc5+Wk9KEQ5DiFj4ngutuiVMXF3YnyURV2kGYEkRQ4iCuuT8AJa2PtJndbofS99lHPSkduehrxUcdc44xjmOaZUSeL3isu5ScJ8yzHXJrFbYhYUYyURfu2i7XXUQyfYbbnA/V4cNlFbmoVLURniLiHsdxAAiHiJ/YoLK9nlxsRjrNOYNSWY5IYXxrrdxd27YBJ2AuPMC1ehhj+ocUmxAZERGqx5aIMBPhCAlhIdl0O+oTuY35dH15ehIBIaszp3FrbWttC1AEzNNmMZC1NPKmc28z0wtN/MOnz58+fXraLwDmnJnclUFlCIkIieDqant6enp5ef706dPLy0vftPTdOuSsz/mD/o8s/pj7fKzgmTHuh6q+3Y1YLOM4jjl9TH+7315vx2/fvv327fWvv3379vo2zFlaXHjXlh/eoDp1ExGD5kkOu9/vNma5nKU14VaB1uNMO65ub+JHBr8kgyCkTRbyU198PKfMfc45hxnN5qssGvCEV+/e42s90izNOD0iWLRUQCwW56LyLnTmY/B6/DtXSTw9YGN8NnZ06coCZiWGqGqX8v9Ik7Z1szbn9JjpUX9U3bHNjBJoD3TnsgxVqjfOerXWTJnvKokJgDhBk1SUONM4cmvSpBsYMNJk3aRHY6YkhQqDpWsjI6eoVlQGQLZoQcEVrRUByl5XtF5iLTuZ5USkUFKasGzbLiCbg4ma6n1M4XbugcItjmMOMWZ+O4aIzFYLfaeTrORmqABzOidUVerUaqMmg+RkDdGNmaUpiURSEixiNShSVkPT7zZrudqjfVhYwC3OJ/GM9Jzqs3cVgYYQgcGE6uBVOk1nEQUhighL87rNuM8MpywmvisrZQZxJiySqKb2ZmYpTNIYOYPScnMh7qDNuYfs0CaiQVSlm0xpVjBVnHosHDQK6+dDKbOaD0QrJEz1ZKREeoEJVul4/ecVPXRfKARecPZldCWwErF7LHGvcpSgQj4r18+H9LAzF10D2kNe/rhwpDPUE7n6aNf0gNqg9ofDqeYOLaojvfvPlsWvmPi161l1l0sXXCPoEtJorZPod1ojES+83qlJn/+9TL4LVp+ZtZY6dR/kErtC/r1nP1HtA0R0UsfcnRbso24K9V0xSEh6JUTjEeasX5G0RnZKPBxLWVE8IT5pKVkBC0+HPPxYYClLmSkp5WoK0upYaRuzSuvSKoHWWRpEIQxmVJmw4HwzKCJiHiINIGYp1T+KlSrlboq0grWTgygoLddJ5lwwEUljdG3MvPdtbLNWS57ByRmSl1DZzfD92w0eBGTYuB82Z2aGpKrCLW1GSgS4OkUpKhh8GhQpOVsTeBpCA4cvjDgLMkqmcoKFH4xkgZuToGrjZgyHGbnDuAk8ICGdkjmInCDK5E5NQajcfpN6/JQmm25EpNwb940pI2NYcpPet9YakbCTpDKzNIm8+8i3m//1Lz6n9Q0ApqebkjElcRjykLXVAUAQBgsjNDkz3aOqCUsdAYlIfZYqWQKgVfsISCLp29ttzimlYRIBPKe93u7fX2+32/12HO6OdbnVVBWqrMraavOVIiKtSVMWqobHCujVM9jDjzk29Aq41U2AlIVSQHcPZR5EmWlz+gwi8jSzce6G+T5mjUYIB4UQsaALM0tGjBgeIsjURtSnydvttt9ufdtux633zkubCINZYswZiWE2zGYlIWIlTijh4UsOzBzT6pEMj3mYTzveDpsB6KdPz9vWlGq/01S7tF6+w2PYUzJLK94pMsfgzK6qe+vX6/7p5eVyuTSWdM+AR4rIdqYFgmy4R8S2bVvr1/1SrYvLMp1ZpqtaU4R7RQYp4AkRSqZjztvtRkhljLtEvKaoeVhijPH6dj/muB3z9Xb77dvr12+vf/367fvbzTyr9je3KqFfUaRNNmae88hY6IO6MdpSKD3f3oTbu8yuVMmezKxvexWTq9Z/jHSCIdxjphs5wRERwqzEe29HTPdBY1InAiEybBmWiMhj+mR3DJs2oou2Oh9ykEE4ksljMiMjxxgzvDxFADzmsmG7pycArSAcgigrI9LqzImMTO29Z2aER7D7BDThMKkn0+NdWU/EmEx1VK13svZNkZnzzJKMcZdDQL6q7DmXMetc5TCzJhM1YmIJpoCXf6LsIcJIKFlL1ZKIKISKY57ChNKtuPBPquye6UkpVNZzc0vvvRoDl6yvqnvv27ZFnmR6D6Hs2pmZSRsLr1P4761LJ329NpsRFrR4SChAXzJlxCPHhDJ+I0Bemm0GE6/myEJ3RdThz8ymOSzS3G26TTerMJkQJ5xSuY4fiErtFFGAPpSRncNFZCHaT7sSlUuU8oG/Km9I1GqxfM2l7gWxCEiZNUVJtLgdDzHrtFg9hBZ6tAQ+/nKihNSsuTZ0yST5wGAsKgavzen6VMoDZBqRBcVZnVXVbojVf8xca9/AQ82Ktaj6ML7gNJmVZPvx4PtoY3wEktcggXevxpohanSKAILyfVeYmfAk5jjXvvmYofFOBKvfXR+YczBaA9w5w62KnlOGfAxeBGTJt2Xz/+gkeP9ZYu0e8f/vV/LD/fbI+J5vpSS1ShDj/JTXaZhACS8r8DoyYfG03kdPzof0petIl1ErUi4NjyiJOUsYq7rAcpUShEmJa42lde6uv4CL0rRWq7lipvUIOKFl54d6jYNCaWcWNc++inNbUVyMrBAAABERdaAS3AV9oQxydxsFEDcf0706PsY6JU+ddpi3OYnFN6lbIoOyogPVUuLKmc5ZwA1uEgFhZvdZ0nCtE8ua6iCwr+AmQQSO1TnqMZMCnKwkVOUtdXoWShA1JmLSrqos1SrhGWbwJG1KgoCHT9bGytK69i5QMDX0zgQ4IBHs5scBFp2TA2mRPtWnUrICilCeIhXyVhSurzIwHJ4sCE+kzzPnQyA+Hb/lIi6zC0VEII5wUa6s7owch31/u7293m/HMcYYNoBVQ1o1fxV1Xp4SSlYpzLU0Pi0Qq6+3XDGtVoSRpXGqKpVslV6Fn3x+jDMXmhEURMpMGZXQqevXK90CgqO2HbWUtGpgeAfEuM85a1MpxB5WjQ/Vg+YOC/aUrA81R5WlsUo1Qk+AvbTq8sWYz0gH9+T6advWe1cqHseuqtJ2ZnZLlmC11m2MkZnhXi+Iqm4ql8ul995FGBTMLBB/X4GZzeM45pyZKcIV/1JVfmDzzuB2ZaERGbnskpycRGmePs3Zh8xWyEAcOQ53d7+P+e3797dj3O7j2+vbt9e3r99e//Lbt7e3mwd670Qk0p6enuobPnsBYnWtk9G5A8mMeoXNrOwKTKszQwrPtP4EeWA7qMqBw5m8kgHFw69TEhG11iLCQyFS9XFLznswG+NsAFgFxAiCJ/j9YVopCYoCo9RGhM5wxsfTNdanpbhyBRBW1SYqIhW+1cvlcipybiZzzjqtVkkzSx2a10iBCOJM8jpkV4fRdK+VuYgoHJyONJt931oT5aYVOF/Gn/pHuepM2QGLGGY1wJUXk5lTVdG47quo6vIlFvAqzC6Ge3K6pcHT8YBBWliaNAGniGyX7eXl+YdPV+ntOI6IiGlj3n1aY1FmIWrS5VweUzLl+WCkaviId0t46YylMRT+68O2KB7PixWI47J/hCNirf4jorDAETCzsJml0s5hZlT8CRYNRIQzMbywjeW+r7+7RpD6U2r7DtgiOa6XGQSEr4cTkpEgLrNJCqtTPe6ijPMQhqq0xtrByqTMGhXWK5Z2ZRZyNW091nYRtrJ26y72uw8iEMuJRLl8UsQFWa/pOc9BJ2vhVcyDyNKAlrzqASbPGRFupWg95qsyVay/8Zyramn4mIRWBdBjjDhJW0s9rMXwuS0lnHVRvyvrrHFwjYyPn/Qcv5b4Vdi+eNfPzlUqETFrRDyEuQ+++Hi4vvzkOsQJkHwfmj+MVv/BJfa7y75+SJwwj8dPDBJPjffnVs3uNSCuKvF8QMSICmYiXAoWnag6CEGqsyH0TAISkoWMqRqylaUxi3AjkUJu1prgkUc5cePnSxBRiBTipGIJFxhrTWRr1uXVrLwYrtV4VGff8zlR0+BizEUECMpEwp6RyxpF9JAB0h3uqO0kPGe9AokZeXioB3loUktIQlDwAA5hqJBruU2ZedV5RZF28OiNpmpZRRYL6GRlFJslOMko4e6WFlQoY26s0hiZSOUEsQuxkKr2Juf2MzMCQRARaQSyCd71Kn3bLn3rF6FGLg2tMafdGQNobsc4IkDMbBnmZJPsYAJ3SmXvDV0Wa4m0SHd8tqOuU2ttI4LKnENB5XN4fFZLhS2SUogTs4bnfdr9Nr6/3e73+1EsjoyHnlHOsdZa7wXHbrT4bSq9sRKrVKTn9G6uw0mB1+vhKkIwWomK0wnQWFzUJb1aE4mI2MvZ4b6QKZSIJEZaODGTqGjT5nBV7W3ftr1a0hMxbRy3e3ows2d4UDBFYqXqLN0qAcQJThbKIJYkrkaPpFIU031KRmYKKZGs1hjVTbfimKrurbXeLlVQMy12x7SYY9zv99Ida+LftG3b1lqtIBdlVERUy6o/j+O43+/HOJqw9la2y9baY0RQYaxQEeBRci9slmREwnX4p0TCw6ZPdvhMDPc559vt/v316/e3+9vt+PZ2+/b99eu319++fru9HYG8XK4lf4/xuffO1IrQenZsgTOEsgmpEFOG2e319X6/Y4HTlLmwcVKu/JKatm0zn83aY4mlkpROp6mkzl1NsG0bJVNg0ExpoT1IHXLanN/TWvWi2fj3+ad1zw8Kh0WEg4kVurjKRCenWoROqVKWh0qlyqV6CV5BHwYvd3NvIncWzDmX64VziXjnTeTheI10izAPM1/Mm0xDWthhI/IijfetbU2qV7ve0VUk46ULEYmGm7snRx/wXSli+c8KRhggXdc7HlsdeccOTfMxRkwwREhoRbIw7kMh7SI//vDl559//uWXn14+PZHgfhtj3m+vb9++fbu/vrm7NmmrpqCtwmMmQDkzOUDFN6ZyvWSmU3J6xqIafZi6zicZIc4ZMxAMPtPmVGeJB+q6wNal4Vi4hYd7YRTW00CdK97vBayPqCmo/rBKb5nXMhQZmcHIjFi2b+Yg5lhOtXVoS/ZYZv1cQhMHC0RZRVtjaSQMEbAyS9FwaxRZo+U5i6ys5sOevyaeKNN6qX2PEaGy8vT7X6UhVMkmVqQ+KLJsaYTyHOP0i+EhFpZEfEJ67ZHnl3U8BZ+MvnMk+f8tDz029FgP+lPQOZscP+6IH1/5fiGuH5/PA/+6iZ/yzXmeXlf1u6ntw2W11JrHV75rO7//Pj/8+/1Tl7//mnpNk9+/y99/Jx9nyHzIBgCCH9rhurTqbwEFICdU9l0De9ynPv447syRjFhwJeki5cMQ5hWYhfCSux7fIa3zSNZDHcXIXzIhkk90eT7GyhqvF9QtAhTulFAghCKDEFZwj8yZWBXLnBm8Skhbl+5927anpyfPLD+4p08/IkKktU1aE1Wutu/Mk3D9CGrUFSYgy9P9uU4Vdfuuj81HxTQfsbFcLNAolFBMs+nuEXmCXoqDjwxmEIsosXLT6r/iFFTjaiUdRFskpyWTqPb9cn3ufefs4dSwb6JxfxMcDAVuDsuZRS6YTnOKjU6QAQh7E1c5tuYiTdRZGqBpWYU6HrDwkW7hWbsHWonpj5/2U4z3jJJEw8PNhvkoSfKh4H4MzDKj9967bvvee9fGpKIqrEKCrAgGURCFrYaqMK/8koiwUPm/C6BKp8OmpvZkmpPq/3JLn9NmeI3JXFVgdS1QIoXb5fJ0ve4Qbk2e+rX3XncVVY2Ic+jhSNT90wIWbtOt+gfha9GTWXyBJZEU2Ku86nBiEaKmW9/2vu/7frlu121bclSRibZ+ba0FwTzvwyNpHIeIlIhQzx0RYQI8LP3D1UqqUqaL4zhu99c5p+wbr6X1SrGcDW11F3J4+ZM9Y63iGEy5KT0KY5REAxnunnD3aTZsHnMOm7dx3I/jmKPs9nPOQDIfx7jd7/vt+zdV3lSSetK09LAkKcQdmvClNx/9Td4QNubdrSySyquykarrr6hp5emcc67zdoZKMh6sg/V+dQikS0xOKFuKG5vh8EjDpCjFn0S4tZZNo1PYA76NSuXXnW6ZmyMjorXGgmqKrhtgyUF68vfPNajixNwz6+pqLI5XZqqKV+Ukp4jMedQqgbl6nEvQ46iwgBUiPWZMq20eJcJsmDk678DWulwu7bptwqDIOXEcc3rMaW7JraVTJkfC08PcjMxS2nqwgwLKFMkhnOTTVxrsPP9Xfci7YTNrVCeqWBzwtG0/f/nyT//0T//5v/zLn/70N61zbd/f7vevf/3r//P//I+//vkvt9sNIBHR1lmFhIFWxUBLLrGR5a8vrDEB6b42kskQlsUWfRy/YvH24avq2qv3d0lBWYEyMGqNyOeRcV2iiCCCmZk0Uyo0n6RAHNV9zPk4VGJdHpEZRZeIDAaCIBXYC/KyeNNCzp7aCQeQ0IAHRLmTNmiTvpEqSVG8BSTn2jUzKWKxwDjxmCKWYYvzI4vrfUULjwwmXpGIgm8naoUZtasoPN0HFoM85ox1k/Yo231ZzNyiVo2xFt44T8DKtbx/j3LWMvEsuq4JukhJVLBnZFZk/+NEWFlURpHDPuz7aoEIXhpasdUeL8WK5zwOCu8B+0RtnNbUUrfv9wXi4yurDIQTuYz0tL6TNUnjjHcgOdda5FzkLlGobhCWVB26CSZ4/fyKcsN/WGKuAe6MxC8pj5bXDYGEkQhiFbaXeO9Z5ZZrzqhwA5uTBxDKTVhYq/lNWRqxVnQaSeFJSCCSSSgpJSsSmA3JxVejhX4rWTSIuJhM9RqexJMkVlBAMMbY0IBwTp8ZhvSKDQfDK5jBLAB6axEocLX7Ezjb3r5/byQsjUTIM5h53/fr9dr21ppo4zXx5RqL039XGLWE33MtkCcdKFYsIjJAomc3fRnz3oN3iz3q5h4kzMRBuT6yXOxXFi7iS/kjkzJl5Y9FG1pjUnYyJ7StXXbpbcvQtNawbdp06xwjQ9JbYiSqGNjHpGHi3pHNAsgpPJjiuk8mZd1EGqFFRFlMLXhWbXM4UEAsy0xmDmSeBanrKmauuHcSZ6xVYO+Lylt/yOOKEGJhWoPXtrV9a13o9LoHFfLBYyUJl9nAMqvQvUxmmWkzimkLoq6NQa7ovbdjHsdRcLIj5lGEiRL6T+dQPVxa256eXr788NOnz8/70957f+o7M9ebFEtpc3eYWSQCZCBP9gx3Cxvu5vAQClQHtJXPtvyyiAxPTItIuXSRtu/Xp6eX5+dPT09P1+v1ctlkTTl7771v1957DV4kIxNNuTDoc86YZmZuc5aPhMqxVDcnsjHnMY7b7f52u7/d3L0Jl4++NgY2JtEqga6r2JH16obX80aYpfRZ1S7aSFoSj0B43s0Om9NtDjeDG3k1lvi6/yYhPMdht9e78vfLvrcmuwpTVuKkPunKSICbgFrYdhzb0dsYevcRZg43z7oLhk/3JiJhrS4fP9taiTI8hJJRld0iIh1KEuTgFGU2plQYxYR5yP32amu/QK2xbBt7o0hKFqwdOpi4ErWMdedIJ4AFRUmvBB1AFEkQ5da76qa9dVUV4prUKZkS3IVZCoNBTBRESgn0WhAzl3MiRWRVuJdQG0lrAZIfnxzM7BEJh8i+95eXpx9++PTD55enfWfKNL/dDkL4NHefwxhCKmy1NuECrro7PJLKP4AAQmrRCTevx4IA4HdCZRJEmCN9upmThTDvur18fv67P/3pX//5X/7t3/7tv/yXf/3DH37MmLd5u1u+3Y/f/vLny2Xf+/b169c5LTPLpsdMkcYgXvC7Iqk84vur4Y/OteZD4IlwjxmOAAcISZa1diyQewrpujfnCc49AzxrkGQqkgeSJiUy3GlOJFeCwTmTOMOqSJjOes9EeqlshWcuZBg9lnohGbWjFaZ22oMog1IpCSTE3FhV9GF8lqKand8er+/LUf7rAnAvw2MZL1KEUyRLTliDIUXAy8FdOI4gZ4C8oqVJSVzLZJy0byxNNc+1ekS1NK3FmC9G4yJZ0IlQ+LitWyv78v3wAl2ISH1Pjxv9+yz14VHxYRBZLih8mGloRVzWIEWAI4vmdf5eIaqS9fUufJTHlr4DXmMW1fDn5aivLzjt8PTvVLqPxY0P1SzrXf+dHrZwMnWp1uAV8fgpnFg/aJDnMHr2ka/yywVrDWQQc3Fr+UxIPEQznLFCWc+t088GEW5n6ecq92TmJPFMRAFY+LF0y4VQ/bBLRRU6MVZFLQuihkCKjwoi1wib6WaobVxpFpGVVI1kq88IS51huFYwj2++79t+v27bJqrb1vq+1Uerd+2XvXftXURTVRYoNJDhJbSdu4ITSL0cBQbAzv9cnz2Rqv0V1bNiC6ncWNKlO8VkC17rX0csk+QC6lEBAxursPKKr9P5CkMkWUIEi/HbU5uIUpgmq1Jvul8bkx8ZNE0Q0+PwMBYPWKZEarpYWLpRDtAMOLPyMHAnElRBYpKnWIRPC6w+0HoRWMvVd75/TKuIEyGg88Sxdmlmm9zHnJPmKK16hb823fddN+2Xfbvsqgym6rV3HzbLFx8ZEXOswz4TZYRoRAijgJlhlpkijTdtrSU4Inq33nst3aqEkdmB+vTi8W201j69fPr555//9m9+/eGHH54/P297u2jPTLNxHMcx7mMMn8PdzWJaWORMTC8QZ3hMi+lUi/N6eYw4GVzOLXgYkRBXQ27TvvVLhX+vl+fr5ely3Zuswau11reriFgGz4iO6ZGZFasEcEyLdJ8WYcGc6aUeFYf529fb7Xb//v3b29vbcRwR1hodQ4/jmHOfU90ngLMgLSty+qCyMTNY6q1MkgpXTYvhVhHoI6xqvGdkle8xC0kjtdbatl8TMg4rM9Lr6+u2ba3Jrk0JjctbDAEHZwO50IZGl5x2sfu1NJlhbuYUlGlWkYHMVAXAOMrAfbKcCPDgVBYAwqLMRELJ3KBIoxaNoJgSM6c5AxjMMQ0E8RbZNTtntgq7FzarVgu8gsmnbwQllLa2TBRANbbU4NV6702lSSeS8MwIShdJDQJDp/tK6BCRChMELYlIqe4gpba510AfQpnk8HwwZ4kZmcJcJu2np8sf/vDj3/zpj7/88eeXp+u1b5xhc35v32Ex7hOZPm2SFwE5lIKTgtx9zggtOiJZukMCVAVLtTYonUaJwJLn40RECISYczoQXdv1sv/zP/6n//wv//pf/+t//ed//Ke/+fWX3lvY/ZqXw3DM8bRtXVuTtu+X7683q7okJQBhTFUMHhHlg0RW4TPKffx42BdKChFhFGxGyLDgJK7Bq+JPJVB7httZGJSIstRboLqsF3wmvdTDSFFyT7MAE4K5OuAig2MhzonKwkqRSyLBoo1/2OSVZUqW2efcjXqBEiAkIUSkm7RNepO2QRTUUPfKc+8Hj/T1ia+PBJb3U1U1VEHKnExW1p0sV9b7VvzEMiUFmCsdxkwV1iOp17G8Tx9lhJJ23dNi9eHVmbIeaUREeXIKF6QqqeL9JU6W5leVQdX1SRUn+GBOXwrKe88rVk/n+97kMTlxFh8Oq7sxk4mXGljG97Ob+hx0sohz9PspZxVQJcU5nD0U0w/erwR9+AZS3gdNnISND8Z8orUjp/cp8BQR378f4nyf0ojefTDF4Q96eL8Cp6mA1r6YuaymyEKklpjBzEXWqN/GtZfk2lM/TqJSXQjVJsoc1WBZTV1n4ECINEmIJMBLcQtUv2dN/wBl+oMGHGs55EvwrLWDHTEPs5nuoEjzZf0OYiYW6dxVM5KkKTferLe9qTIJtr3117Z6kZW0d20imswpWvc5vMNKZsaoMrhHxAXuYfH4ZjxW2331RxARiTSmFNBJPxMKkXpdiQMj1g6RtNBlNb1q5UKVSBgMoBe6kiJzIhPphBAKEVLBakgjhfQml71fNxGIhKUA5nciVjHzQxpmUFpBj0ogDEYOt/R1NFxGxtK8U8tjHTgbWgEA4tFa09ZqQyIi9YjlFSqMOae01iLaDDMj4eOgIJT60lrbr5d975fnp7bp5XLZ910aB8HdPMOGh80ZmWbnvONMaUhETjrGGMJcsRsAAlEVaTUaUmY2MWU5dFTXZGttnke4836C3vrLy8svP//x7//+7//u1z/98MPn/Wnf9rZLi4g57rfb7fX2ervd3r5/O45jDDezYX5MH3VozvSYngYibpz66GmrjjgWYRBv2yZtU+3bftn75dPTpy+ff/jy5csPP3z+/PK87X1rqizaN1UV3QCkTbcE4HPYGIigjLA55jHGvQ5NnnCfYQ5adWG//fZ6v437/X5UhvQEjY77YWPOfvp4zvzBGrxOimkxHXrvTVek9H5MYDq8Hs0ALNIzbGZEJddLG9PW991BxIxxHMccnnl7+/Z1a7xrU0FvytSZmZBSnTEEMJrydevzukeYmdHNkTOLBe7V+p2RYQgFJdxtIRvqMUic4BRQUhbymZKFm8BVOTu5utDBeWFzZDDIeSYlR090zUaRzqhlWimWWVPlMgpX8Owkd66xrwHgYCJSbmVSbNqYWNaCApyo8DiMtLhEAIvWgypJqr1bPAmRJHUGh0UsGeXDVqJu7kVS0jRVfnl5+vLTDz//8oeffvrydN07CUXOMdz91oeIcCIzzRzEEE7KALOTe5J5TAMHwF44jhDPmJnBgBOqzI6EF/4DHlNIRDjEjYiZt217frr8+uuv//RP//Sf/+Vff/31133vPkeAtyZ9k933vaB7UZbM7/fjGGMsn8oKCDpgAD9WCgFHBJdPPWh5j7KeEAyfDmTGdIDFk5IoQ0CSSZkSJ52uzOmZZFar4tXrEkhPlFWeKUOLkU2OYEiW4MT17AItt1YVkidFfDTNvOsZIIKcfhKhYv8vUDxnHZABlibaWZRVQRJgJH3UH87bbtK5H/lozuDV+1kdS3nuZHAOXpWUWy2Y5AZiSkEIkQPVwpBcKKTIrGjzmnDzkVs5x4HaK9IStD5WUPO7e6n+8sdBhIqzxZl4TyfRiex7PDweP2w+IhS/F8ZinUM+LPVySV+PIe2ct+Lxx53/fcF3lxJJ9aaVu4I//L3vdhn6d29BCWb/HidBvxsPHzNirU7ehbxz1VjxgDPX+R5XTCJa7TQRa0+K3//Rjz/noeI85C5mXkUbxOeUyeeIufZONTdzwJFUlZzJ8RA53yfFejWQmRSUnJQVczy5sh/2pGWo9wpcxJzzmPMIG26DI5kxbdS3EeBqTG2iRnTZOw8moqFW4TWzUYijYTPCmZm0pi5iJpCdKq49eCVmkaAaTd//XfuwKjF6HALKjMUqpLUKUYIsfUI42SwiKQITta2DyjIFctnqRdbx4MFNINSjlnImnAlJQSLMIRxCSCEm2du+tY3SGcIkk5hZI0zgzNxEp4Sd70EtVJia1X4+yZe/MpfVNTE8fM5YNW6PpGGWXKSq5+DVeu8qYmYEy/MIYBLDplXY3NZZrjBU+9N+edrrf2+XnRtHxPTp7jMmq9AgA2XQDK/rx+bMcAOZGUMSLlTVjaSqTapRkSKiIkF+Fnn13i2yKK81kTDLtm0vLy8//fTTzz///Msvv3z+/ImULlvr2tznOFSEy6Ewj7uZESGimgFtuJfiFWmRiUaaVQ5BmZSWzAKpfjgWbnvvW98/ffqhBq8fPn3+8sOnH16ePz9dt71ThrJI68JKou5ObqBwXzb5zDSz+/3tdns1G8IcmfCYNgqvHxHh+fZ2FDHYYxIVEZIArD6odc0G8an0l6BYDyoKFihTE+5dG0tmlrnNC6JeLKwMi5xuc06z9zpCvOuyKDBqOt+b3t+22/6279uc83F/LutFffKZWUVaa1vv161XKWomONc6OCPTgygclplZ/ioiZi05KEAf13EEUlVAWCjUSRUQiRYirXVvRoEUhkhqZ+3RKqe8VHaOBfFz5Lut45TzReozrzi5jwuiLk2kce1dSOm82dYxQB0RWUWn1eBWzdtBiSrQCQJFUEAqAJWgJG7ECSWOWId8j9lkV6EvX7787Z9+/dtf/+anP3yBr9Lc9CDIuPntNr61MefrfHtjFbkLba6bSURySBjNO/UUaQGKlGSQijKNw8DLcqaiAg6ioPQjRFsDC3GnrqCff/rD//Knv/23f/tf/+t//f/+4z/+I5jDRzJL28CkynunzjKPcXu6zTkF8v3tbptFhPkYlOkcfhTyXkQODw+nDGTUs6qyBASNqvx2I1awk2iQzjEDTCLISu77nMbU55w+66DY3HLOGWlzvIFmwsL8mGOMKQkSjDHaiviVWm3kSwNZIxevLX5RLjNDhRLiHokUkUrKUEoEg1ilM6uXRSoDokTSRInVdeuXa98uBBFtRA2QcgYLa0s3ZjB7ZnpUbHt9VkSiZB8S5qSMgC/vP1NYBiECjMzIugbXUFb8SABcwBBEErdi84THpMikAJPNMPPh5hFEEki3LM5cKUCl/z18NvLhSFDoF10AsKU9voMf1nm9FouVYRU6sQ5VE7vmvQ+/ZQ0EhKBVmLpUwEVRi5lOiMSsM+djqjsnoPf4zJpNCPkIGOIRssnH2FRxr3Nfm48fjTjO7/b303bdSvOB8TjnoJqPKzAIPCozCVGxEdSRI1a6ExDiJIJn+IxqMiUiAW3ayqzHtHrr6hUrSzx/yN5nLgMeVjueR6zgHjGfK+NVyOmRVZDF5R4qp1vlJ1a04cxjnptnd7cx5ryPeZiNQlfXEEAZ7oZMW8k14eRgEUahd0oLZmcSWF4jgpVb5+M4PKJacKhOVXH0rpE2h7vPY4zbbdgR7qvMuB6LTNVKyumz8iKVfDV3xNzaLiJ723xORLBKkwYEpTKpg0rtK9DUYQNI4UYQpdalC1UODIXWVOIS/c0NuFe9asCbbH2jy6YMhqhk7yycyQh38znczGO4j4zJ594kM8MNyUxK1B1TRDIksNrWK8hSiqy5W5zLaDARWtNN27bt+7713nvT3lcRMjObmai1qlKIMItmRiSe2d17V+3btm3X67Vf+vOnpXj13kklM++12ivzlri7H2ZuSZ7DjpijqunNUCdwUcoAKa+snggnIkJKPCVs23a9kpkd04qGCsDdLpfLpy+ffvz5xz/++sc//d2ffvnjHy+XjdL3vaeHyMXmVJXeV+FSZt5uR67M4JiZLM0iEkjipiq9SZdkEkTtBVV179umfev9enl+fnr64eWHHz59/uHlh71vz9enzy9P194iZ6kblQYdtvKbc85xPygDiNvtrX7d327TDgCtiYCmzXkM91kHg3l3m46MAgwQUVNBZCDf7jdSFBauzmkZzhlZD4kgJSpoOSO6cvi8zSPPQ6FFBGhEFuPOwt1tzjHmkRnu023OcZ+HuRsRKHzGHEO/f/9e1vjrZVOhcA6RcFlb9ggPf1hOVXXTFrqc5GyRiXqQIMLn4c7Myu7wiMkiJErQxokItIbWt6abRbIyiRAYYGjPbCQd6ft+mVAnUmyJbQQLaNA08yTAKCIE4j6X3+NsUettl7YJt5oVmVlJmLkULyWNgJDoMipyLbibqGqvG1Ak/GQEZ9XfecS7SVhFg5yIQt2Szi/msysKgFKrCuFPn59//vnnX/74h5eXp3G7317vIqS9R7zcbsfXb2/aJIFpR1Ztj6W69YxISBr5IUHaAZbaNlhkxOPpleuQBaXMtHh+ehJQmBPk+dPlp88//Ms//OM//+M//Zf/8s8///wFjZcTs+hXSe6ro/4xI0vbti3BEhEwyvQgWFlHP56tCbRy+F6W9grISARLXSrkCYN5IFkyYo57pBCJGzLnnO7DAUbOit64m8cAzcSYdowxbZoEQok0hlFrzsRaPruMsBARAjK9nNelRvo5hFfH8jJ5sxAJCROYSMFUt+6kJEiUvUuUuaFtTXtrF+lbFF3z3XETRMSUQVHD+u8FmPck3el64lO1KcNTABGejnKASROVNW+URy1AhOXOr8dsBjItkiQJY5jNQhEvvdY93GPZeBHwJPpQ1/CO0CQWiImy1Iz4KBksneYxez1GhHPHR++4KhJPo1jwDoA845x71n7wMeedVU5lnV2kjvnojDtfzMcNBWtjuVgJ65PG74PU+sOXblilQOtsl1T+ds4P/P/3/wEUlef8cR5vkyDofZ+70kwLMLuer+DMUneQGXbmLjOztK06K/feUeMRR+EmKnyKc7OSGfmO4KrSYuYEC5ex9qNWV+6SusBw/j5OX7SRrEmLEk4AU4JRmxV3S58RJsgmRK1poSpt5DDzFR8syARxStnHOKgaW7hJMDNlBsJZct/kvjV3D6SZZTrIh4fZrB3N2UsUc06z9KQ53VYKPCIwZkwzIrJ1gk+icHef5mWl8Ep4sJJWy2vTAAtBBHIbN08jzxWQYaLkuqyx8EIhIANpUQMQQjhpL8GETfjSlFJ8VhpnEK/EQcXQvVom0xKRHpRcgao6eyAYoWGcVDwqLF2dq6OrhJDla3yICr33bdsKUnDZ923rhW5yd6vMthe9wcew+xw7IagqpVNEeu/X675dL09Pl+2y1+BVxqZ26L0dZtaqyMxhFj48I3w6+ZmhOS/JCBDFosc9pNdT5G66JcE9xxjgUQ4hZtr3/fnl+uXLl19++eXnn3/68uXz09Olb5o2t70jVshs2zYgHiCGgjCZDfcZYLAxczKLSOvatt42hazIc+tyvTw/X5623i/70+dPn16eP//xpz98enp+vr400b33fe/CiDky3N3Dc8LoXImaWeUEj+M4jqNaxl+/fT/GTVVLlKokKVa+W3ykKj2oE6fOLTUEz/GQpgBwujEy3SiWhFlmDyIaY5Sam7V1i7CMQDpxgdzc3cznMeYYc7qPWd/qtGE+PWZV+r2+vtYnR1W3rmVWO2Gi4ZbTrazome+n1sq2+HrCrUjKOjJmWkDW0Y6Yoee00MFExjQjJVngCF6MCQapCFjdJFumEYWkbc4qTMaQhiTSPLcSTKAecDNLJgFBWFS0vQP0mVWJibhpK1Q91zbw9N0CWc6KKj6qQ8/7wp6IIg2uj4uqNDQQUwQxOIQkWFpx0x+7EaLsmz6/vPz005effvrp0ttv4eN+cOPeGzgvr3vbFJwQn37M8JyQDZ2yMqBKgWkbmKmxovZ45URe1J9kImoiArUMEuzSwt08tn375cuXf/yHf/jf/tf/z3/+13/9+z/9+vK8ge4B48YgOfGh7pHT7XA7ajEtRK1XDSBTCO0knJwa00MRDFGCV8cgrS1+uFs6pXu0JkkQRpinJ7ODiDjS55wezqwZfL+PMWyOqICke7hlpIE8cyaGh43D5pxaBuKEqkQg9fFkAjKSBaiKFSxIWGAJnyBUVSIgqKpKAQkV+l64tkk1VwQJiYh20h3t2rZd+9balg9T82OuqhIi+KMEbfWyM1UZI5jSKQm+PluUTBQMkoRXzTZATF24iWg9Q8oRsTZYxCCPCqEFLIvHCgcdo5rmMyFMPWnt3ZHlbinYVQ1eGREx52OiYmZmr7V0+UNVtTUS+Z09JTOD2KMKQ3gBD0u+jvpoxnsNhSczKyevBS4hDFm7s9XH+b5mrXKo932lr2ERCD/5tIDkaVL+aLp68GDXn+drOKpXzZ2Zsz6cvDJ3qw3+PQqwZrVactabULapEx/4cJUt8tkD5XX+XwUECWaWc/w8a3lSHqG8wj1gyeaZySd3C1VDG8LmoVFuMObqK3vgQjLCQEzsSImwutQzhJgrIRzhBXakhBCYKZAGR4wMo3SmaErCjVLgYZNdxhio75bdz6U0sSRRijAVOyqQnImOdFWedrTWzMLC55wWM8JWRYelGcYRY/hx9+MwMyB5zrBR8G3UgGWemWHmCa9ba2vN1KwNrxRtSacBVu1ELrljBZR92swbVzf6jKT0Bs8g1frAJABIWJJCNIWl2s1igoTZIbng7QGPOAwk6Zjudje/z3nzOCyGx+FJZhmha8l4XpUFtYgzFYxMIsAzC2MsJLQ+Msy0aeta2aS2tX3vl327XK6bPkYT5LmZNTNLvjsX4urSt62er9Lb09PT8/Pzdun7db9eLr13JpluAuKkofcb3xCIw+Z9jPtRF7wEhALMywSdbOVU6PRAa57F7iwinSmDhjlQq7KYc7hv27Z9/vz55x9/+puf//DTT1+en6+tC1FKk951mSuQ7p0Z7v729vb9+3fBw5qJx55chVqj3mXfW790USXOzLxer59ffnh+fn7an56uz1++fPnh05dffvrl6XLdtkuVQhFl+DwQQnoch8ca5y2jpq6SkMPSZ9jweYwxxnEcMQ2u6L0i9iK9sERhxek7y2Qp6Dx2unuBslDuWAgouI55HkSkIsGc0pwozCtW+lg7L5YiS3LUyep+jOOY45hj+jzMDpv3adNsWlhUKdQMP8bk25t+b/u+s7REYR0REXPaGKNWlR7LHlP3bXdHslNiKf3VwcfrtO3EIcygRlr1v5GkBDBhcBK1nZjOULyjBTMa1FUJIh0OCd/dBAaOGHFkhsianUgYyKBgH8stKygClfRURTUvVDtWE+pNGhND0sHJpd8VQXC5Nh9TV+XC6r3hZHLHwx7y4VdZZZGJtNr81fNozlEP3VIRVavniLZdy+XJKSzhZEZH0EyxCIvaxRBHRlja8F4Rubp1r5M+iMvcHpTIMEQSRwOHECFVsF/750+f/tPf/elf/vk//cN/+tu/+9PPz8+dxZETkkwdLKvQOnnY/HZ7++v373/9/vrb99dj2tKHAbBwU1YSQYR5To2jBDOimQRO40gh9oCnL8BTEGsLTKvOqSRWSxKziJSIGhbSps8ZxaYfFmYF/5yZFjQ8bjZmmBFiGnKTbW9gZZFAllAnhAwCZwWs83RQoixlWZOhElWv4gI8xEl+cKq6XU6WJGHduF9YO7VL04vwRtyKnYG1wQpQnMfdSFghGyoB/6EYBw/ZBmvvCKDOuMgkJmUV0c7akjixbG0F/2JOjvQIkgy4uVenZoLL8RaRcInk5IgUd5gFMDNnhj+wQBHIhI9ZR7pT2CrIlmeSyDodZ2oZ+EQoKDIJYQkSyiQWYhCDW2EzBFwQSIrwDA9nFjAv5RGeAUr3fGzo6kV790Kd317hlVce9nRX1Et3Gt4TyEjhD6vJ9x0iHtlGrH7xgHOuUoH3ZShQN9xcUcE4s5ACOCXnO4htDYcP3Wvp34/Jq+SNJbnJI/tUB/AgCnAjESIhJrAzAbCF1n/cWGriZAqGByRpaRNFgToB71zkQydQZHD2ihCW4EW1ccysw69gmcEpnOACOAIZWoUxKiE5iUVkzvmouCEm4mUrJCAomJLJBVnh/Exh2gliHMONIeLNY0ZABeF3t1FT1zh8jHBDZroV2YsiM5MBFsj9uB82Yk5QMCO3bUibXX3rTCTVa5lRT7ha5AlzZ5mqA2opmR7mkS5uUA1XORclVLfoECYWaiCtjlZG2MF2J9cERRi7WcbNMTiBmG7hwYdjenikR1pQXaeelSgpXEKtmeuhsz4vtLZRZEYLE8/aWrv0y7ZtpVu01noBIaSLKBC6dQVqORARJMQq4myG1lQ1657RWrs+7c8v1/26Xy6X6/XaRCOSj8NlOsumrZOwp8+YtzmOWfPBwkJzFl+lIqEhcqOjd6VkdGhpXkwIROZMy9OEpKpPl0sFs1+uT09Pl/3StXHGNDtYsKlUny+SnVbPz6OpRotW19UZVs0GAlW6XPrlab8+7dt1K5h8a23f9+fnl5fr09PTy6eXH3768oeXl5fn5+e9X5pumYkPfYiGvB2HHdOymp/NCr/hOacdxziO4R7M2vtORELUWsUPibHM8jg7Jblq+wqqfAZr3NNsRlhEwe2UBCItMyosauBwroiZlNEyQDhfaEIA07wGHyuW1Mw0Skc6pWd6LkClxQMFGhFz2P1+f3t7673XUXPf93WwjTAvf78vol6rHnJD2sMKds7Zq1gtkBQOgYADgWUUAZHo45jNi6MXEVz6OqPIgtol0DN2gzLgGkClg8QiE1yI4MovJQVTkiRzQiYxRFM1RbIxMZFysMwzOtboBMNU1Wrd8DRtUvnbFghloYlWXL+2KpBKhlCW4lH6VukZZw9VhCorr+UrRYrIvnfmSLgqJREpkqfjSJ7J95RgTm2bqCPCp4PQr5eWwtmy5mtZmx8hDgQhyC0xIJBUFSDisrXn6/XXX/74D//p7/7hf/nbP/z8+fqk0hw1bdLirnqQgSLj+7j/+fu3//ntt7++fX+dd6unJEumg4hSGCBSmkqmYl19ZpmouVgREcRMirRwTPfI8iRJJN3HGJGsjXWLlAQj4z4tg4fHfZiZh7NZzOGeMeabYwaNxPBpYUMy7pSM/fqUKZqk7gafrCQsmVQTcrVIA6tXoEA3Z5KPI6iiqi6UZUhiJNITSZIsxApt1DZuF8hO3BIaDig9sFSnirYuB4RFWsZ4UODLF/1om6cg4gQJCyMy5vRIgLWpSlNVYrb1LCUEZ6aeZkMGwg1wcidkUZsiQVnYKc7MdI5Im27mgEcY8liIjgKtJarFTITfqbtJxBKeRBSefkq85eEvzmpmBjjpbAchydrQcVWwZgqnu6waXWhhgyJ8AQw9zPm889aVVqU3fFJYiepHWQVevCIOCbxrXCDK8lBSRWvpfZsj1XdUlQQrcVgfAkpHMmLZfimzwolF53jMbadu9kGBO5skUP6q2oQ+/msClBTFBeL1KSrrUkTaTCSxUIoQN1GGZKYhOCyzcMZF4kqmJAQICXcHcyuvZGM+d5pZigrBqty9ahLqxy8LEqLc5IBU4tM5TBEBZwq3Y0mJJ4+zNeGqOzZLCvcacDMxE1zr4KzSgghKr79PRFpUAF0IKlqYQArhkTHH2/3Nb2/juPuc1ZaYRYVDouLMTArmzFuazzEyvZ6FsY+YGwH1tBap6mwUjC+ThLRri7Z538LnGPc0C7+nMELhHaqlS2WIUGNwNiYo5Z4+kAwSnhq3/Q6wIANuMTwjRtdGERli0SxseEwnK+YfcpV9BDKTOGuFTyBU2Wyhj0/dhAGnVJW97U+Xy9731trWL733y+Vp3y993/u2FfiKtIpNM2cWHElVZjD5IsTWuy9CrfG26eeX533fny/PzGxjknlAnGTj3qHslCN8lGcD6bEuNFogsdCorUNMt70jEtiVWNbUEWGWkWEW5hXG31oXEWXatyaMqqL0eWRXEW1d+iYM9vmOMq/LWURal23bAhmDCk+39bZt7fn5+vR8eXq6Xq/7fumtydPTU+Ehrtv108unH3/84cvnl8vTM5KrPeU8ugqLsMr9fhs2p82ImNPn8HGYWdxfb7e34/b9No/Jwdftsm17VoxLi5MSYV7cDVDu+85MLPowV+TJQDGzYdN8hicxVIKbKuBgTkaGEFuQzJSIMkVIpfaIARg4kccYVZttVT4TkZECXl7NoMc/q6Wxeu887mO+3e7a3hLkkVSVfSQizT0D4UmeBFZuXVOIZhIHaJ1yqFCNVa8WvrLoQaJmmR4xLVoKpOlFMpWwAEnp6dNsJg3Kee5Gmugl+0WyNUg0b0xWTTIR4bDE9GExE3CaRAHx5AiOYIO6bE256bpNOsMjphs3fqm6E2ZR0VroR4TaPDiFlYD+eGM0MGOxqiKiWBM1rLn52Unz/kEsObDAd8u4CrTWnp4uiemeqw2x8QLu60wOiBHzmcYYFNUg2BqUQ6yeZxlLnqMUYV37Xc+cZQwSoeu+/+HHH/706x///m9//eXnL8/XThxAJAxIsEYQsRbv/uvt9S9ff/vz19/e7oeBZNsVTMLHMSMybAX2AkzCySTcjBXhFT9ccoZBiBwcYW45p7MGsUaBkiNJOrN4ioPn8Dn89fX1fhu327AZ7jQtzNwzp40kg1jyLLwzeyr5pnI9/BiuVHTkWvjpaZ9i5EIVrLcDXDxsIkEikyuCl/U8IE5wgAwglmQmbiyNWhfdoA3cAcqU6p8qPtep6HrkKG0pwgHPDDqjrMIt+UCc9UNLumCiqNBHphMULGBJ0tIFuApqkI6FywUFZfUBzUq81Ujg5u7sRhEc6eaY080NOSNHxhGL2ShFhFtW7sxipGPZHusjSiIixaGk1XLMol6pAOIkSdQCTVZzZEHYMiv0kogkP+MpnkjyKLsRIpODWc4030JjPK6p0+C1pOWTLV9M14dcRZl4TEvvauLH/70cdSWdBeH0sKdTlHlOKJPOEOupdZ1LVff/KGNHDdcJhpeiGqejiKnqMISIK9dTFVUhjGpFB0qqKUAzxTSm8NWTXVWtee4ngkKZI4KDCwK1jAT1URDJMDAy3StHU5+OAFXM9Kz3iEiPmdNgk9zgM+fwU7oTacLIWPHS99UtJciLJIZKX2bFhIPgQtSVx1Gc1WCXyoVGZjjbzDntuNtxzOPuY0yzCIdZZMUMiM8c6oqUG00CJxyOdB9jHLf7qlbTTZoWrD0IFQgVkU0bbYF4znREjnljEDLSI2mx4ktB76IhyBAiIbIMQTJnF1zgPQY7F1eMypcWPSgjM6fbYTgmLFZ/cEmnqw5mHTbkPVZSBYxIFi2iPjMDrev2tF/2/VqDl0rvve/7XopX0w3AjFU2xcwsYAGlREcn9ZDSQStHrg2tU+uy7/t13/e+MXB4KEhALWlj7SQKIQ/M9Bm1pJ4ZRTYndgaZpbEz80S6e9VsKLJIrLwQbu4EZXCy19VmKBpT5at8HmaD6Nq69C773gVyYBzynuauvpqnpyeLYBWosBkot609Xdqnl6fnl8vz9en61K/X67a1T58+EZFAeu+frpdP18vz9bK1bVglVIJEawCtzVpZHSoqeLzZ/X6/3W73+/1+G3M6Udt3qRIeUgEFfMEOIm3cj9vtdc4JRL+oiLDKOqkt5qRXE6KZzWmlR6q6xGbZkkDpYOIs7GJQiSlEklXdJLXKi4j7fTx6FXGGjTIzzNMcvpJDj6BS7Z2ZeU4/jnm73U77nVQgIwhZNERmVklC4x00sSo13tsn664lTBF0In1w4jAtpqVDSXsbJMrSAAo1h3t6VNJW7KwOFhATd+ImTZODcpJzCmdVI3ggJJDcCCAmYwH4ABmLS4O2ulsF0ik0EEhBNgoHGn34VS+RIpySlamrbr1q3jMiKDHdxmHunuTL0S5MVhLUY/NYY1bsy1DZarfi7mGrQW+Yk8ec8zaOYwzPIGbdKCYzcz0UwsFCnEouFE0hSa7ITKu3kYma9l6jtBF53Sv5ul++fPr8N7/88e//9u/+9tc//eHLj9vW022mg1yYwzMykToGvn0//q//9t/+51/+/Je//DbGIGmsrfK6t9Kuz0fbCalqxpMKCRH0SJ0BvM7+Vi3lCTLtnaT160UkSSTBY9jbcTvu/no7/sf/+PPt7ViDV3AE3BAFlWKjLbQRIxFGnkrWGNt3ZWqyEwAAgABJREFUufSG3PeiNyZ7lN+Qqz66trGPJXCmI7hQE5mglKq3rErxIBiyiPEkGmCQEDeSjXVnaUnycHcREZMyF4uyyhGn+4y0AkeWix9M3JRDyYQ8LCORM5yRa9utm8f0QAxHsnRK0XULoKCIrPk+kirw5If5KKZ5RMzI2/Tpar5FOCVZUBk2CffII/yemLT6mBtS1mMCnEEAMxUYloSUGfpYDwgVkFJa5V8icpXZgiSoBOGTPX/qQmuKZaruPZxtcSt3TcK0CpDz/F1U0tmjW6k2do/rp25V1Sy5GAtSpQRVzUon+mslKNc85Auf+3Dn1zVbGtGp3JQliFAs3DW6WXhQFPS11uvFPcisRiaKLGGu+nnKGgJW4frZzhXG0kSrWb0UBWIgpFpeKZdMVgCrXIBKkXdyR4UVuMxObsmRBFAjL0U3MghUzSTwjGIZEOA+fZr5qJP9GMN82hy+mqOCecqJSbMPnK2qe1jr5ojKnYOqNTlFSVLSTVLcwlfJaSkgs5559YA5a0PiBNudsmKtzTKRqcRK3EQqkenTbq9v6SFKES5NunBrUisccIZleb+U5bLtmZMiUZ1+y4WjRW4OT7dIfje2V8lEhfi69EaNwGY+5pge1aXrGJnpHsPmMcZwMyQoeyUfcrGUgYq9C1Y+2IhDqnqHdoGwxOWy7X3rfe/SVfvWtm3bhFtr2yp4lk4kZQV0TG5SekdW2UBm1WIWGrnKD/ret8t2uWxbk631rQkig6SJdtHQ5uqdm0Ipqwy4dqIBgDyZz7wwl+4HQbp7hqdPLIZfZ2ZhYlJKZla3tPA5Ube1mMPnmPfjuL8d93bce2+Mp8YCAWml0TbNaBGBCK6jamv97VXv7TI9CK3J9al//vT55dP16XK9PvWX69O+96enJ2YWUhKu3ECd3prUBZLpFiW3VRstcrjdbre3t7fXr/fb7TZGjVzSu+6bXq7by8vLvq9H9hj3Kpx1t/vb7fvrNsYAYttaeX5qc5dZjpdp4TkQgTl9TosIZhNzCUostygzkXEdK2xMIZLkxiIlHjoyc9gx56yFPor5cuIkxjjmnGbDwz1mGUOTxTxBgeP4Jq+WcZgf5sfMBW8TySQUHLDEOaT0KSI8xEQeXGIAgZzh6vMsigBxolqQ66E153HcwOLB0iW6Gx8uI6VaMoOi8oZAUnoiZS3YtHE66oiHwhugsbCS5VB2aVa/SXdsm7QeAGDT3RBNih+mWqaZlY/+cJDWWg+r6t5737ZTCksRvd/vYSt8t8RVIhXxc4YV5vAKREhTbqLMmkE24zjm/XYcdq/UTw3FX7+93m63GnhbX2OsSEM6wMKifSuTBLOKINIKYVrJlCayaedVDx6lY75cn758+fGPf/z1119//eMf//jD55cI8xjFbKpb55zTHF+/xn//73/53/+v//PPf/3L169fieSyP7V9Z2ngsXoP04WqvKJnG9673e/MbIQ6uQdYIUnzYXYxi2MY2ALgTvP1NVlI0pz+/PX12/fb97dxu8+//M+/3u7zuI3pgWQLKkO2p0GobWgXbUIIF3eBd8bb2/375d6U+0WgmlzQKS2rzckOPXtLqXJGfAonFfGXMq4RJKn4QbXCklwNdsK6OhmZlRalhLlSkA+1pqzFZxkl41zXE2ljuEZoxswkD5OVgCORxg2YOKqfg3jTaH2raoUonhksV5TRPMacY/rI9KCMyOFxtzDjxaIERWoVVCTNyCN8Jmp+r+rMJO7n7FjGzOoo1ZUlUX3kUOpYKdsu60G6Jmqi36XtHmzMIsHX1VGdkjWD1leKSG01P+pVEaumBmuR4Kf+dBYELTy+nRgXhrzbdU8pDEFIjzWHVex0zVtR1N/l8yvSx6J5vK8vi/JKRJHJDBDjrAfID1PX+ilz7RjLQUoiyhBhURYkcRbOQEiZ9KOvbPH93sH+WL1WFUmJAJNUmpHknGmShBc5aJHY8pTSk1mACXBkFL1j3W3Nbc45R0SYTRvjsBEnCxOI5PBTw8sg/2B/fgyg7lZ0knofiuSK5MulhcNaZqaZkdMkAsU8Ry4UHZaJ6SwNKPWUuEIep665xJ5Miih7zjQfkRMcsjMkIBfwlhnVu4xICkKwiG7bU0WXHD3PT0sCDo8IK+QdHBREvAh5JExa8DGwpo8xxjFHZsaytuSwedznMccITyYRMncieuCdapUJsIqCFv9VmES0cWNmIb9c95fnT3vfyn7SW9+2fd+vIqLaS1QmgntE2LRD0R6XAyiWh8etbDp1pO/aLisTuW/btvcNmRwUZrBgonGfyiKFL0nPB92PVp0AnUVzDDJKrWdEBMKE0Jo05daqtwqi1CHGSZPMHMAYg6iNMcYYt9ut995EiXB92sMyJQE0pihtAq6NIXA4KXEjVhkWdT98err88PnT55fn63W/Xq9Pz5fLVjpgZ+YACTdSSabkJC73kAU4kBMrvBLT5328vb19/fr1t79+O24jIjJ5608q7Wl7evny8uPnH9reKHK4xbwYjCLd7W3bpPM8BhCtiSivh6BZRDDZ+fPS+87RjYg0IThwrjyImXzpTHNOIWLQINZSZ3zVca7MRBGzzesvIqIxx5iHLRDj9HcyM7nPMSjci6N2P2YNwQBrb48+jLKBNsBXFIlEpMpviKgK0zTCQt09koLCYxJzeJFR2TPdc845PQTKBG/uHFz1jFVDFqXLGbLqppUTqmrV+MJOSarC2hoQCCYQD+0IMIG0Q3cRRXpYxaEzhZoqS6pPKtZYRDiHnjsQ3bfLtm0vzy+fPn2qiHi5Q6xbl9649d5vb8f9fg/zvm8EFmYhVpZiomUmg+Z9YPqmzUd+ex1P3w8iak1e344x7fX17fX11YaLdIIKdSHWvpdym+wJTkSGGKgXdk4pke5W3ObOXUUBXrtTkIj01q/X688///GXn//4+fOX7fmawtMcWH1mx5xl3P3r//zz//5/fP362+2//Z//7S9ff3t7e2Np+36wdmmqqu6z977t/ZQKorerEHPEnSMxj5zSOtKA1N6SmIiOYe4+3TIwEWmDpd0t7xavb+Mvf3n9+v1+P+I+7Pb9bUbGDF9ZrrVmqk7uw8huNomEsREx0Rjz9kav29ul6VXVlRzCxB5x4rA4qQzGBEI51SIDvghPJAzOqNXRib4UbkkaSeURlaaswq0lkcVsAFgjKZD18S+jZwV93SKSik+RQcTZWhsJVfVUz8bqOSMiuyxuFmkPSyFPciAM1lMzKJaVKamWSATQ2oofNgtB7p4zfIDdZVqYW8YRzu5uMRMDNJiKj+8BNKYUTR/CjRlECuEgOAiJxkIq0huILOAZSS5MSkveh9CybVImBbPWXWmlcRZWg2qVzFUTkBynA84ze+/aWmaWLlL1Zuuct4apBFbO8RzOVrYZ8CiwRdgjfuzn9wMm5nLWnygIQhITyZxeWhRODCmEea2Jyz/lmecSrMKPRetCQkBMlPoYwvJ9Rlm5tYjw2gquP6/gSI1ZWmt931RbfdLKfJiEoqNlYrl2kxAQ4QA7iAJsEVEqGt8PK+0sQ8wi3FnBzEm0moWSEJSOKus0s+O4zTnraD3GYXNipUHl8SxZ/65Cp3eRv7aaiy5GyEBaJJKrSyiDRDf3JIvY0hLHGGWI6L1bzHaX4kIxoMSsXJ10NcqHI5ksY4yZmJlBlCxhNu7HW0TowRGTm3N3YiNKIeYsvORMz5wCQJSY2r49JWm6RdiM6T6POYZZBEiFW7DWP0KQ9FY1TdIbNa1Aa7U+VOTJnOa045g1jc05kyBCIhQE5jVXETEtBCCJdJGVjdDGl0vfts2n7ZdLv+y9dSIhkq5NpbVdVZtIK3+CFUA9JnNdsH7MMW1GmPmYbkUNKNVdWfa2Xfr+tF+u+6X3TVjcjCi7ios4iyiJkGp9tBPp5dKb00RrCLaCPoD5pOCGZLLgOI7bTYQ5op/gruWdScx0R7UQzfn69db4W5NOaBnkwXt/u+rby6dniuz1pEBqf3l9/Z70lDxZnBmb7pVT7sr7vj1frk/Xp+t1v1wue9tVtbdNmxQgo9wcpZckOwsH5+FzDh8xj/vt/vr29vXb96/fvv71t9++fX17ux/HZFBre+/98nT99Pz56eW6P/XtsofPPCJbk6T0II+NWvDVt5bpTbSYFxAw2N2TySVVe5Op2pmn5/RAZoy4dzCTpipBGkuxEDJzRiSIW6sxboyR6SxMDmUC0/R4SF81E8853Wfd7oiTE2YecFhKU5E25qz04iwBklllvzCVYamew8kVwGRmNKbCuMx5rhrS+NyMm5ccU+fYDCWKKvMmTwizuccwzyPTIa5qxC5gIaS4+UjcQSxcbc/n+gtcx1clriwgM4MINJlNlNourCnbdtzvI0aAmmgKnAPhjnukRTQlZlpGnta7Xq/Xfd+fn5+v1+uJ0wARVeP3SuS7zykR4dNUlVJKKyahSEqLiKy8DQI2Y9zG2+u9CbatmbnNEnHdzH1aaWcq1dNS7uoiszqLIMtzkOCFmSoxnYlRjTHhHguJ21orfXLbLizq7veZZpMyqXchTp/HOL6/3v/7f//r//1//M8//+XtL3/58+vt7e0+iO631xtIuGnbtLUGyn3rysycAtbGkIzZ0pvNLWNiBbFAjBkJYVLhphxhuY4O08e3+/3b9/Hb99tfv97uh02TOQ2pmUgSqVRWPduYgqJ6FGvn45YTBkrTdpjP6TZjeoQjOYMXEwaQyk4nr1BbtXoQ2JGyRIPF+qTkqDURVTP1aZyvzxDLR43nNBFJFToB4DM5cj6Vq03og9KTHJDKyUKE6V30qFhaxbiKORanub6Gh3q6PzJ0nlQdLO5p7h45Y3qYDfFipwUVhoM18PvvuS4PEWWmUrM+7tQBJDiyil+SqvgPaeHrSqJURtQ6jATlHs1Kl83MdHIAylK7pJPPLkmSHIIKcMRjdsn/+AtZ3necHUEff4QymAO8OhzreLgaW1YVJSfwoOgtsMT7j//x5z3JfOcqc/1VwasNvERBZC4uRsTvvMOPpoDVi4318aJC34lIUxFhASkIlIzk1eN5fhfvG9WsNrE1UNaPVqpURbSJUK1flPyhipGUIVldTaspNs2sFPSIYuGFZ6HJIs++y8cyFKUB88fBa8WXz0rH4vQLEzEpBHKqeBGqNiN007b37dZETeUx0daNMqhpy6DWu6rWWzbdieO4JRCRw31GrAwdcUHUp/lt2ma+RfS6CoUjkiESUdAYkXbZWeAwu8NGINkD6QuBxklafuqyvYeKSuutb6pasgrzVMoofTEQUUG2sBE2HaAQMolkakwFIUpe1V6rCoWVGESpytpVmmzbVm70cgxTYQYbJyEQSKvtdSATMymsymdtmkVx0TywemlOhV6pmJKtdiZ6vmF166+oBGclMxzL05nMxS1b7aJ51jmtMxKQqNvyNNMxxqECZIStFTyxBx78PzMDdNC43Y5vX9/CMzyJZO+Xl+vLvm0irKqLoUMRuSXmMWTb2mXrFAJXZm2S29b3vu3SunQlBTiTp3sGB2WgNh5RJn8GB9yDZqRl3Mf99fXrt798G99eX7+93l/fxv2Yc2Y6cWOmvvG+933X3hmcCQNDG40RyAAnQ1S5NQGC/1+6/r1JjuTI8kSPPszcIzIBVJHsZs/M7vf/ULsic+9M7/Z0T5PFKiAz3M30cf9Q88gsUi6kpAii8EhEeLirHT3nd1IQH6Xy9Z26UOcCgDRWlaYcbrlY6PXTno1wxAmgN+WSQFQjrQ2NMCEuoJoZs1Qrild/MKFapitWnZwMn6X0V/kuOYkAEEdq5izUXXi/HgrMwszJQpREmunwACyzZ67FJScvuHJQRLo7gRNlZs+K9wTIItwmKqEj4RmclUgqm6wXEM95gJVCgZC8CidAYKZaXFAmOVEmGWiCgxtEk5Qjp+d0OIjBGWwW5nGGtwwwdHU6L6Ug9cvX19vt9uXL6+vrq7DGVY3p3ve94ikNiJh2nielM7hu0bWfTqQhMIv8svZ6x3Gc749TmagcEgv7VrdLIe7aUkm1Mysql8QUaeVwLIu0kKgqEQeIIQKipPCKWzKr9v1+u73eXl+2+61tnZnn8AgLszq6MYl7/vq33/7Xv//lf/6P//j//s9ffvnr2zEew2ZEKagUSG7az77fbq0rECJUWzdhFpKMU8iRrojJRxqIiUzTkUmiITrFwuY8bZ7DHjP++ttvv/zt/dff/Mc7MpFkUSZlIlEVbmVd7/vWe2v7FnDLGOOYx2OOIzws4zinEB59Pu7nbfR79ybKTIaUlezntZ8CBThpIVVR7IQKb18Py+dcUhZykICVtMk65pZfm//uKX49iLlSV/XI/OzMzkyVHjZruBLtREA4IZJpEZCLg0cU4Or6QHVaLTjCB5E1MymSrp67amRxcwvymR6I5Ksj1WXVi9JVMsEQFhFtjUm5KbcryFOqydWBlDXZEGUFIctUfEFGhZlEyk8jmc4wygH5LFxdkb8s4DqJMmF51mJBBajEooiLjP+PvT4fc8kTEvExgeXHuPMPVvjPP/Uan4WYpPKRS9HJKFbUP054z10Y82p//bs3/ROs63dImcv7WPW9XXtb61omKR2cKCndHVzDJXPFmwCp3zmJyoF6oSmCVjI2qJw6dLUZ6XVZIqnm8IiI4ziO4zjPR2ZmmLtnesEzP1+9KzmfaNo+Lc0X9CcB/wDrB1OWgs7MIgrhSCIStyKAoFSK1vcMSktOFjl9ejhnEpK33ltrVxg8w6ol3fOyFVfRd+/aOmtj4owciQlyZtHGrposxL2QhaLlFLyn5ZiNxwNnRoS614XaWit3VWtKCFUtf9XtdiNRtxxiquoWBEHyqLD/tDltrFwwcwAOInCDMKXUMUwA7n1XZdVeCAtt3Du31vZtuw5s6/lMy3blceUzOSsA6+WkTmDOeY5hPosyY2Y12DNjNWdfDVRKzCt6suI5q+oOH33k67wHX/eWXEU310cGhcS9ND/MOc+ThMndr0rjxiyRNGexPS09LCYimR+Z9Hg85nSAb9vt8X7alxDhWqLW4ItwJs854hg5oBTkSkSi2LZ232/bthXcoT5QaVEugoCTyHQ755BwIjLkzLTEnP7269uv//mX3/76i72Nt7e3t/fHOWZGCHPv/b73l32/3/rLXVsXFQgXcKuFzyzXOVESKzG4leWrzmggWckJdSXseXfPc9owq1YoCq/Fryq3Ltvetq2vpnOiCK//JCIec4zhPhmEPSLCxjzP1R1FlGbFseYAp+eyBgU4EUHlmyQ4s1x2nTHGMWehW1pQQJYhpAav+mvJKnzLEoau3ouPg2KBLdfnP0FZh303QzpCIiOIRtCkZi1c3EFsbJWWdjZhD/LFaMzqvoKwECsROZtlgmYgk5wlVCGNpGOOMzEBJy5rpnscOSOOyXRTUqFWpdhBcLi+vLzs+166FxFFGeB42fHq6qmTxOOd69xmBU4jFhZiYoiBGAFabKPKl0YEguCr1ThiWWS0sYiw9G27EYn79DRVcXfR2tvSEunbxpKeSUEMISMi1Cj+sr+8fvnyZX99eXnZtk1ELPwYZwsWEAmZ2Rjn33795X/86//z//nv//pv/+9f//f/fvz4PixmIEVaa1WOXg8McOXeEZShrK1Jp0p/3ro4Z3AYZXhZVpq36OFgHoVASeJpcZz+dhzvb+P94edEAqQQITcwC5GodFVtre/32x/+8IevP/307eefhs+3x/vf/vbXX/76n2+/hpkNB1kyjffj/PG+3bdxbr0LmBeDyIXq7pTJV5sxO4IzGItWsnx4okGlj3EpXly7HFZZHcZa7h/K9CSp+h9eCExa7PkVSHlOCCttkB9jE1HpTJlOlFdvcbHMywaDpVjU7ymgRWVK/kDGf5KLImIZQZITRGCEZ7IgY5UwPrHtdTjrLNquwevJ2hFWMGkd7FSZCZDkrFmNVMqIVL3NAjCxKCM5rkZCEZnuHLyk7FoQEyUIqZKLD1NeJaQvLuc/ULiW9WcNPR82c75Gn3psfJiEllUL5SB6agCZBCaCJgnzRwS1TLqRBjBV6wQv6senSZr+/qUuT9gFT86rkiiz9sorSFHCQ70arbXeW+/aWmOuqhYSLj5CMjPVfoFq77MSG3mtUDPhcAHb2g0twGu5Hn83/V9fZ3Gx3b2Q3ed5JmpDZPWzlHT9iVfuKTM1s/WtcLgA8pKl3V3L0JwuVxX5Z2fJkjytQ5hZg1C7ofM8j2PMmeE006LoR1iBLDM711c7E16J4EpOiqJ33e/7ly8vX77ut3vrG7fOoknkyhKbCnXJXaW3XvAimEWaH/Mmj99YGUwszZHMuN22223f9733eo+ota1v+3a7Axhp3LqKeadwdiCOIxxu+cmvW1yw6ljcetvLodXWYL0XF0qVSVgU9QguO8rz5Soai1cgnJAenkHJYEKkZ3iEp9ex23wCcF8n8Fo1Pq83Iqp2b6nfFKTMFXPhBQTy8AmgCZlqDTS1XL4E2mtRXlpqRJDNEDUz46KPmkFEVENVI2EW7vN6bMPMjuOIiPPYCG3f7wRJJrCsS6vwOoTWhbL5vtntnkaNw40zU5X6pq0X05xRfo9cuPdy6SEDJ3ksqJVlnO7T7TjG+69vP/7y6/uvP+Jh53namIJSH7UcY61n12COpqGdtk2vq70vdvycdZs9z1mvcL1Qz79jidatoe9bn/vNvZx2MxzJuAKbTzbbFbGs4V6Y2WPWhyjTJeHuNmaNaHVJ1ABAwsHEEZ5hZnEZH2oWT3hmNceZGV2W/OvqFFJl1SVBRxgzfJ20FxOueNS/w+RSuE8Gr0N56fCZHh7k5uE+zB+IIXSYng3WVTk9KZJB4gUbZBIfBfTnXiJFk+QUAqWtYD9CW0qHNhBbsgc5ZCZJYFqcbtOn2eCNmfsWCMCAlmSerNvWelcRuvr3iHJRblOlqXB1NRIe22Zmj8ej3HMgqLAQN0n3MLYAq/LFqo5nuXd61UsHCwolx6Tb/rLvO8A1O1tTdwfKFoDaZDELaVV+gINIVYVll227fbt//enl28v+8vr1S2sSYed5MkVv0kXd6eHH29v3//d//ev/9X/93//9v/+Pv/z1MQ52E6ss5Ua8tdttl9bKa3K/3/fenw6+1tomTTiavjQFIn0eNs6c7MySpIqpnkRJkqIpGSnTz/fDxkwibBu4AaQRZG5gilgrVO3t65ef/su//Lc//9f/8oc//fHtePvr334B8P729gO/jRlRguXA22Ps78fjth+7b5pE6ZRaPnICM3klhBfdCZmZvIqZl48xaXmGSKiICSxgVukijbUlSnJfATlmJtJ62GTtkC6kKgAkJa9Hd16jhj+r7ImFpNAXi7nsRYmi9djLDKfCm4NICB7JWdyggo09E7OB9CJOMAgUhlhLTC7GrgBZUVgmFdXWN5HGpKSy0lWtt9aqRav3TgJVLccPBMxCwiSK8MyorD4RKSrYg+IMibCqSLiGZmacM3Mtd9b2j0FQn1YvY41jJbnWZvbzuIPls6KroaWGIP5HSawsZVWpWCaqC6tWoxpVYEJElzWHig+86r0/N1WvQMUShT5/PR9dk/WtTlb1I6oKMNKr5EfWv+UZTVCtezIKnHYpp+wBCs7McqEt2DrVo4t8KYYRoKRU4nKALRp0EpLjgtQFuRfmM0u694XwzQWN5RW/YqVq4Swe0sfL2/pWmyWsokCrF79qWJ6Jmc+FATWABWdrra6WmWbh+7Zt223bHrdtpqdgqbdE1JuIMJLMF5yLMghRUxcJRHi7bff7/u2nly8/v97uaK1tm4iCM0XQ201p3+T1dnu53W7C7THm4/3IzH2e27b1x9b37Tjeq6m3d91vre1NVJTRWutt731TVU8iJZHZ2pakbkmZBCmkC4k2KHEXbtoWZ6X3fd931V4alght+14hvhI5WJIZInU5Jq1eSoDT0zISQYF8Dl4kXINXOQfGGMc8yhMdNsew8FnmYADM2qR36eVeFZAsyaLSshdzZG3KuDVZPv2kmJl18yiEYV5X/j/s37HyHAURn+nr/1YlSM1AGYT0jGmSt+2ch0vrqk24XZYIq9WAcnLTl9vu50iHso0zzUxaHVqDmcoKXVR4X92dOXwEcrrxMTIx55zhh81jnMf7eXx/+I8zxsxp6VOIq2FBm2xdtk7Mlnl6SAJd+20TIjILuW01bPkcdT55fz/MbN/vRIRYIE4AhbAGCUFU+7ZFEos0iyAiiygKbomphYmtB2Jrrfc15605KQ02a/B65jRFxMwe58FTcDn86GphB1eeBgVScSQimK9aFERpZiJFMtcV+bpAGBVQRS0/CBdWoqBBjZnHmRRJyz0iGTQtE+HuM+wYj8FvsFNpbG0EBcg4mbiDIW1DeH2leToAhiwjpJZwDISUAOuZukF3cIsggxipwT1nTCeY2xQfLaxJn4082JI9yYOQINXr6BARIlIn2CdUIj2a6O12Y+bbtvuc35UXtyOji5ZjJkJMZTpYWBmUiDSzOUYmR6YzozVpTfqm29ZU+8vr622/R8T7O+YkTXGfETwtUQp4bVKIqwVZHNr01m+3/eXLy5evr9++7a+77q+vL3XWPI5H+BitSUZm+rT//Mt//M//53/867/+2//6j78+3k35RVUZvZxh9/v9fn9tWwczJPd93/e+NW3CTblr27bWmZj0VEmPeR7n47Ax2AE4iWalAqVphyaTnAmNFFbtuzbwCHjweQzAwhHhgKk2lIVjv91fvtxuN89s7QcRF6gtwEThgWE4hz1Oez/9Mb3PGWhNKNgpJJP5yqYBtdPD6m4BgTMAqSu9kJwAwIQGMNCkNdXOJEmCpDUwlKaqAimSxFJdioC5lpXl5CmLS4T7U+b9pIcxha2wd2YxpmAUvirPymdUZ9PiuKOsZn/3DRScCASDhdIQ61ErwsxJSrQoQapNtfN6ctRNoo5rXURAxNIglZ2twGMVHZbWhSoBQCZHuDvRBBo4rwlKmLmKfcYiJdvid8DBjDKrU70hiAzKRZT/MEj9Xv36/DD45KnKS+Ti9XZ9vBRLF7z0MCZacsW1R8tPPyGJPpbMz7GKPrx5n74SfHwlT/HyEiEYSSzZRLVBwetMKwvQT6Rcxv/V8frRxBQESgGvVS9R+T24WLhRPSN07S+vlllmShb6uKrXLf7p2CUiFrQmREqUEYLS2J5Y2cukUq+MNgUIvH5DuUoGVzdrUVpAT/PW8+VigSonNYA2t+/f3zJTViilt2bFcq7aoGu6XYUbRKmNPaSHGAexALxt7Xbf7l9evn172e9JBBVidiXat37fXlXue/v6sr+W0LIds7eRmXOe++1+O+9vj9+O823GrOdT61wvXGuyb/dt20kbILReJW0bpwSJY4b2TQ0qlkrUyga0tSYl62/btm83VSVGHcJVVbSKtkiEiXO9yws5sT6tzyhDRBBJZloWHJjh6+YQjtPOOp49L/jnkkhATXQ97HuvVaMyZ4IVoV4eeGFWllvv99ttjLFuMtef/hGCi6LIVK8UNxVVlvapyCJXK1dN8EWJoYsA4163PIqgOd0s3GBO5ZgoKyohiZk9VYHO+62VyJSoYpQISs9REEcigFoQIiOTwu2cw93p1KKrn+ecMQ/zMcb5/pjvg6drCoo9pmX/dWLPGOaQUA94cISAJnFtEo2FyFf91zOraGbPgRVrfZEcBA4zq3Ve752EW2vVJP8cvFprZWurb08BrDTxCHNP9wmbZjbkrBLoTGJWM4skJvUkIkM4wJHkSY2DQuuDXAG1z36y58b5CX4Trrf12YHxQX91nxFWx61l4CH2EiTWIJ6J2nn7tHnGHDFOmoGj90ljUvNqK4IGMRQHcWdqCbKshyxd1geGhJGDjCUkkoR0x7YzcbhP0YwMcjdLM7OTfSr5LiBwaR0IihQPSgCaYZ4+B5pyb9JUlXWphREIo/RSG5vIGEOZKnNrMautuT51KsQzk1IkRVO5MuzODG3owa1vCX+/NbPedHt92W77Pj2mjbIO194/UsBVTxERUTiheiO2tr++fv355z/+4dvPX16+3mVvpAqN8DHOCtfPOWPMKg/993//t3//93//7dcfNqNcEdu2V5Pr/X4vP2yt1ZKpnGd779u2qUpdaremwt6Uc45jf2ttG3ykBCVHTLCwivS2ZQ+a/Jipg4hVdgglMTtNjwwMD5tIpIVP92OO395+/PLLL/vtZj7eHo+//PWXv/3tbz/e3+dwItLWfMxITI9z2jntHHH2JLKABAsr6qi+FBOsVmYgfRmVuXSRoMJPVRKLs4iWJNI20U7aArKGBFaSxiosjSCR7iUMkRCk/r2YVKvgINf+EVyjgJtlBgqIe9mborSuSKcsFS0iRVajDKr9YD32+WPF9GE4K9oqF1sKNQaprIIeQp3E64uXun5FW++tba110b5sRslV4XDpRXU2zseYletT5uIhuM9M18yodD2XPrYmGFXOiCDJAjGUfyEBFgZdRT6jdo71NX4sQehjtffUlupFfJp8a6JaDzYpq7MQRT0wsJgIS5wDLX7BpzVlTWsLDlK1jGvFB4Sv5OYCOvDvJrPn9z/9CERUFE1UNBUsa+UCd4+4JD2KIilUu/pq8Kz5plD4Zd5iSnASR4ZF8momIAZl6fly+e+TLIFczZzlVCh6QmKxRkVIFp3IsUxxa9MkJSvKU/fKugorzVlKIq9WI67Bq8b558tbWwxmVs5M4SudSkRd29Z6dNcUY0NXAL1vIjSEGIYQD43YtGUbNCcPoyId3m7bfuv3l327w+Msb9zWtm+vL1/u35re9/aTcGfWDNnRVO6ZaT5udj/P23br7+/9mGdiRk5izwIGk5SpkVnCkcTEUidqkmQK4thOd6M5vXxTvbfet9a0fua2bbfbTXorL5oIZToLrqdgvVTVFbae35kRcz6LO9eCglZb1qo8rjdn/de1yQ1Z7ViZqVqf01aLKqFaoUgTBaUT0qUJKYMZfdPbfXs572M9MpAmZpS5wKQiUusqZtaqRhDWxk1rgSok3FiYGVKLxYu4q5xJ7tctNSgTbmQW7+/HeUyzUJVy1ZNnUigHEURB5CzOzSgsY85wTni0NA8LlU7syRQBmJnZeZ7uSTQz2DPOY86cbolMTVkOhgxlEhUiSk7PmG42Bli13xPE3IDTXMYkIjE3t3TPcEe4MDXRrXXlxqQFTF8ZgrI5RnCGZvTeWaVVhTmtvNdycOpC8JTo9aTj1iG/Jl6zCfM5T4CnhaiJuniCpAY5KQxoqfqcIsg0WZ1y6xi95ryta79S9r+Xn5/HwlKsT5unzTGOp9YFFgIVOMatMEWThZBkiTFiTj99TpilmUZmWoSFiwXL4FwsvWQmSEyiGWlMVrPh1V6ZkWSRAxiiwZrbzm1PkPs5MlMyScxyvp9hB4VtArrLnRukgRUVxCLJhKuZ1Zjce0csk2mdC2MuPA6zrsyOR7/frfcxxvDhPs1mmBXjnt2DwEJdqXVShSikwaOQ6Iho+97OOVvrvUvfOEcdsAKoKmritWwqJFC1iBALOKl1ub/s3759+fnnn17vrxs1djp/HHPyLE2CkR7H4/Hbbz/+7d/+7d///d/+9re/jTGIRCS1iQjdbtvLy/1+f63h0qfl0sxJGb233qTOSF3bvm9MRoixbU27SoMouRPCR5EAVBsTiaWwNpBMQ3npwbU3IdKmUnch1PNpjPHbb7/9x7//ZwI/fvx4P99/+fVv//mf//nrr7/G41FtbGA4YAEPTI8RaZ7Di0AID1hAZIXAMgteXx3eCGJCChOSM5DMQcxYNeElWansLJ2pB7ic+sUJKVMziBD1mI+PR3L5GiG5+v4KDs4oj0kiM82rQy8XnvIiJ1l4dbIwsm57UbHv6gpOWh2CWG7ltVBLFgHAQQKSJAKKPK8WM+phDs4i45OAWHRjEeGNpRF3sK4O52I5gDh43WISlBhjrHJ5Ueakypa6l5Og8PUlj4EJCBWJy4Fe7rVY6hQDzJRpI4nTHYFq3f7kPvnd4PUUddLxfIBVixF/qDh1D1oIdyyjMVXTUCIJRpf8gFVxtI6MuDgi8SlhOWeNFHWCXNvL57x1/cKnXzVElBdsKdcvwnPwko+8wYXs+oDHVqsbqjWhqpQkwQEu6oQHElVVVNlIJparzfsySl/z6FMyvL4fVBcq8hr4LlJUXTqfLGv/KCtmJhNFxSLUpaoWSD5tWhfkkyEuToRv377cxq23fd/3l9txHOc8zgpiJVxVQTTOUxuxEHEIuQ6IkCrxRMK3venWVbX31rqRQZhUcbu1128vL9u29XvnLVzLAaXaVTQT7l29qWqx1iDkQeZZB7nn0MOsWbbHDCKCKBdjBR7DVLuqqbYys1enYmsNRKq6bbdtu+mmxbhiDvNxrXGp8CBXaTtAdbb3JxoqM6857yMiHUhPe6qzT+0klalizpmbtqs+qVySUf9JiEXIKYNLgCMlbqJ7325be/StiC06VYmDmUguj9FV6MbMjKb8WUOpL4OIIOvPIi6bRqqyGV92xguwEjSOOc/pVn7ZgrxYWmgXkAemY046Xdx0uM9xHAlSU9eRnmouYumFVJc55xiHexIJUmpUygkASiXOhU2DmcrlHaVMD/hhGTQ1o/gbTmzuj3OkkHrkPKvACogU4q13CbWMBJeaVEEHujRCFMeeSdxDyw8HImItB2d/aoS9txrN933vfSu1MhxmNu2c50DSlBCeTIMwuVZ91JKCoAmPTOQqSE2UvrgCE6V11R/3We56rk7qLPf87D8l8DlnHT65ngu1yfWwOSMG5Sw/rFucI4b5jDRy5+vYyWV7SPdwULURApwh6gwL9huFcEr1ZkV4snsOy4NwMk9tLi1bR2TQNGQGB8gtzml2DOKIROM7RIkaIMESxJOlZaZ2FRbNyHkesykjYlprzd17E+XX4zjMgpl1kyZKkeajtdaGjEED6XWsd99v3QLu57QHy5fXl9ZvbcZBrK0TEKLd45uqHscgdvOTiW+7MnWzycnM4kasahSeJln1sWDVu+5fXl7/+NPP//THP/75n//l9f6apx/fH/oi4e4x397H336xeY7j7f379+9//cv/fry/Z6aIvN56JqS12237+nrvvWmZeZFgiJB2YYZPS4+auvQ6Ln9eAK0srrnbIFGwiPZkj4D0tvUb82+97zaGJym3ikVmzNlLkor0NFt1hX/55a9vjx9fvnx5jMfb8ePt7S0ioEqUmS7ChABxgIf5j8f7rWnb1CI58jSPiN7QWiMis0FEDEbAYQA1bcxqCUp0aVvfg3QYPKN37fsdvOKNmVQsU4KwNNKmbSPiOUeEeaRZjGHHUa3sDPjT0FpKAJJFWh0OmCl8ghBIn1FMLkpi1qjE/7JOrcdr4dmFZMwpJNq2zPRIlhRlJTYblRPOa0oIQoZDFCvgmJHBAnGwiAcniydi+vQhLcrmVSOPe04zACQV4KEkjkzPsIBUOcsyeI5KHrAqcxLV2JhNG4KMMWeYpbuv1ZxoupU+Q75S+X8nj5daUy7+z/8pP6kCuYbnzMzipVlaWJZpvYleIcZFl8nVIlCLQakU8DWCRC7Gy7OyA62VkVEAeP0pVwnf54Xj5UJbwbW17axWBHDEqhaw8PQQiMgqvK4BMq44ZCCZGqsyFVCHFn6ZqGmDsErX3lgbFaf1uoVS1h12RkTGTDg4RbiZEGXY2qjWZtejak+eEVqVJE7OlGnz71a6Vd1uMyBcfN06DlkUXuwDbMuU9cvv97u0Pqfv+/3L6+s85nmeq/8HXBGQoJjn+esPaor7i/72G7/Efcx5jsc5RqS1fbvd+svLbbv1L193j+4W+377+vJFW/SNVKBCKVSCH4v2dq9Z0WzTU0nQmujBx/l9Ro4RlCai0hqYPCKoqN3hEeUDTYAomJmEt9su2mrorAdqa11UazXfe5cm2iqBk+wUTwJcGdzTM3PYKUoEudgUq/DDIoWk+oiVpTbHTTQtl2P4Gp1tkHPMmK31l5eXLy9fv9y/3O+vW7+JtL72TcRVZ5JoLNu2bXurlP39vpsZUSpTZk4bGiK8WvD2/cZNMyPdW5PeirsWLKSiqurpKnrhTlKEyoHvFkS5bxuToCCRqj7n48fbL//5y7cvr1v/qQqURaR1hqS5OVw6tdRxzAUUCPcIw5m5cXCkN9qEdc60GTYM4KaKpDFmnImo7F+ZGUKpuwYwVagIggFXmKchpvvpIW5ssw0yNxnjwVAPhMEmIljRbn3btMedIjNYQvjj1HHdc1aRzLmMdx+W0/8/i78i7xdvQgUAm1mz7cf87poiZaUtS5YTgVvXSFVXrwyVB5kSRxILLODuREwQEm5bb23rfa8wX2mTwq34HUXAnzaH+fQo/S+Qc4zyRwn1cLdJZjbeH8gzYoC84usWZE7nNONwzRRi4gyqJFks8rO7+YzsoM2l8zbDtZr6yDOdAVCIZieCgjWlg8U8ZuTJYpUpTFiZLlS50bbpvu1dGjFHfbKgCXLm1Nf75u7HcRzvR87Ztt61b9t2u73gSjDxZSVprWG6e/l5EwhQWlmElDyA8KqI1Ybe5b7rzDYsVwRYMW2McSRk+lmzJ3GwJK9WllCtz3muIwqzkAq3fd+/ffv2pz/96c9//qc//vHnW7vZYzTwkHMcczyOx9v7919/vL+/H2+P9/e3cT7GsDAnUVFlln3ft9teeCniYF4iSQVpylFTpeorS2U+M5Bj2iyGhUhTaSGemRwhqtqRLj3hFNq79h38IMhzi0EASYqYcEuxaRPujniM8ThGa+0vf/3fKCB1fWFKpXymrcO3u48557Bh4Z4iGkm+mAV2WRolwpJSePWHgARLqxFiJVGGgoLQCMrcq00omSkqVQH69EmrdHZYGuawOSuVTlSb6moFthlzuluUnWIZweohV6ll9uVkz4xVFFb/ruJIXopSkZpkI3KAiI21UThL1n4+CWCJklWqNaumtsqcA4BYipIayE6j4Q+ei6Pdo1nK8N57LPqSBZKZREKMtm0r8KeZRzrCavm3TvCUK+eBZUhA5MdoUg/3ZfxMkBD5x/iSmRWnz1zxTDgAwYfr4hp0PiM6PhuBPYkS9QqsDNTaXZbMQ/yMiz5/MHlleUqFrN/yeuwlS62hn/IFPitDT+nr0wryo8d6JcZqU0dSf0quQgxZBhLQiv4WFx5ZgGQPD3AkHLkSSCIsrfVdVUWVGAQOWmtqXnnG+st+PLYL/+1kiYDXlG7ute+4/iJMZpZ1PEj5B9HrGnPrO9W0GeHhEeFZmkeU7MqCBmKm1m7DfNu2ShqamY0Za3Pk6ZEU53nebu395X7a+PLyMn2cNh/n++M8hpsq9976vm3b9vKixA3g1ra9CTM8h+BMDG2NFkmnqbTSlZlHhFtMb6N5i+w+ThEBLcy3L7uAXD6/WiULXRJg72WRjmvVvuqzKpLSWpMuqkICYl972coxgGIVImTCi3NWDj8WSMhz4yMi5daqNDEAeKqqSEPksBnmZvbuRz1K9t73vj1p9fULt21roptwZkogmvXeb2av95eyuGQmJVS5a6laaZGr9TJCREg5M7dq+KmidA9QlvhVLeoJr6bIKzpd0jozVKURSWvb/b7f73uteuc5IqK1bbs1bcliCQNMRNCIotJgCXJk8UrSZJ70Hjndh6CBdeb0NKHOjSlILQ3TZpAzsyqUQYJorZNSxGSpDEpmeFJGWjLO42+sk2SMuYmoSGPq4eROHCJ807b3vitaIQZNy2iR9gmIU9Cs+5yzDGeXSTQipvszr/p5AqsT/vWRr88jZ5JqjwhhZ34QWiZlSIS7UTiiyn/R1ikpU6QBkbkyLk8dtMj+z8DO81xqczVw++++zQiLiGljTqI0NxpnpnlGoeKdOCoOy4mlmFBCMpgIBSpxXl6YFRRDnJ7NY7gPoEVd5HVLpgBZ8mQN1oQai4NmYkSeHucynCBU0HtTqPK2t/2+bV0XlEO0chIgYr3f2pwYZx7jsOPEO+9t37ZNiQUpfatOkmrwqDMsAIVaNoVHZRDCtKribUKhDdpou9HtrnmOxKq2B9G2iTZijjjn8iNnnTyK+Ej7bQOnIFyDVCCkre19f3398u3bz3/4wx++ffl62/ZOqg18gwZj5gg/juPHjx/H27sNywgldiGirc73xEIUDCMIQQlR8WUiEuFitAgybJynhDgjToIJh8+0OYeHV4OKkgjSYZcAJkkpnaz33uspIuH+YR1mZuFGZPX9shEBDJ+GyFr11mn3g0weCBChGJHnOR/tOMZ5jC5dpLqokYac1144I7gsUqzV9L7aYaoOSFpA2T0h1VAJlgQnGAUsA+uyobYABcgzIyM83DIDTMrkRAxYZJrZMcecI9y57LfJ9OkBuV52EscCpQLPoHnFJCnLvh6rpqjC2oERUHAPIBGRbIAHPMgyc3XTM7EmE6hWGxKWcUy1zNUxh3rMtC1aCxHZLK6NmxORKEmDkuyXTF19jWsZCJ5epYqRmXIttogy4ShDASUzrggpJNlpdVt9NA7Fup0twanq5K455nlzeZJunzuyD1tDJigjK8X52X1FtPqdLlOSe01SazgrqNuqgqlxCivkCKp4xPO3ev6q5+989TfU2WdJdIVf0WfnQZNlwMfHeOQIK8Z8RjWnE4EDnpbESEoWFsESOqvmUVB83VWJifjsHi27XBIQAiylj5HXHE2RnFHUTSzv//JZP11fa+T63d/6ybbIyJLp4BkZC9vBa/FcXLSSQKSekBSJcn1kHu+PiEBkwOec95ft8XgMH4/Hw2Kecz7O4+3x/hgPANJEG0QoKPvGKm1vvQlHBMGSBumQtrdt86nhtUvmDFBqbQhFmmo3lzLH1N3Yy/yJqOH1Y6xPDroqSlSZI7NOD2v+ECnmPpMSlysXET6dzHMm8urL5HofATzBVEQpBNJyHWTZK/e21U5q33dhvbo+KSyP8xzneRzHOKYQk/Sm29Zv9+1+2/a9b/u23fpWg1fn0tRhZvvWEtvw/Zy3Y94DDoRq8b2yRFZgVUrXpRsRNcj1JkRJkaCsv+zWekSYD9UK0jjRyJycChZmbbpvrd32l59//unnP3z7488/fX19vW1ta+22bfsmybMKHICwcI0mpEIqpTgDsHSfSZY5p4tCJFWoz5ge2WXWXTph4SONKJRSKKPMZZVum2ag1X8FjySfaSB3yhlxWiRNgSp1zoFsjMYkTXnvuvVNuRNaMNOtp3BecERHultzB2BRPPPLaOqXWv0Jjv203108wtr3IQJzuFm4p3sOj+lpFm5pFvWPewGgOVc5SZUBwkEUSYS2bVd8citT2WdA8ZK15jnndE+7vg07zzlszjHP8zzDEyE2MQfgUHEmYwomlLAg3AhCjRjhQt4HdeaGzugqrAwxJKLysTkjh8dkOCgiHSDACEHsRJPFIcbiJCfJAJ2gAZ5ZdBBObbLtDbJ3ue9y27e9y9a0M3FjalzSBnRTQkA5KW2axYh5PM5zZ+aX+bq/OLN6FPffM5MiIy/+XXVjMSdLRc8hSEnZWBWtcd/0sKAqTqdgTtEKgRmRe5yeUvfHyHosRWvKSsrkGi4ZQr3v9/vrt68///Tl631/IZJ5DuKUpL11bjn0KIOXVuZI2o12O49uOocPN/dEeAZ5jIRkFvATQiAiFSaOrbdAzHkyMlWFdmVRYfeZNs+z+j5tXUBJBSmDsCSQIllxp6a9YRg8wpM5UVBsXseIZZVTvTzO4K5ZR0vz67EfQlRtKwA8Y855njLOOacXwj6TgfC1uKwhr4aDK+PGVLM+ERErWEvUFSxNOEMykSmFQAEpy8XKqzeWpGasZNLefDgxJDNSMsnr0zUj3bW8IMQJFJMBxEmeVQH+IeWUX0TBuvSSupczLgAimdNM9qCZFEkWPF08Y3pOT/fwtEjxdO2SBcgjJjKeEEkSp6BAMkia7p1aQE8HZz87rkpBVd3QpDGTzOkEk5JoQMTKlMvB9SmQSFlVjhTXXan8IEV3LEcug8yRTPGhFcXn4ebzt+sC+Fy7iWsq+qRE1baPieXjGHrxvH7XC5nX/TKWGUdKa/y9gnV5139PwcWnDSM+oauJUkWIXJmIUgmq617ctNUju5wWBEmQF1LaM6PKYZ/ll+FZ8mYFBaIgbEk8o27LqZnBkHK1BCKLtO6Xk9eXmGdmZm6W6SX8Vj3U85gOKTce/GPquoYw0N+9FwtQt7wjWSvUpFi8tGrazjqHRAY5CJ6LagIw5f3WPz26eut82/qw833vFn7OuZ9H31t7NAsv2oa7P46HZ97vd2jTDkrhDGEXjb5BmI1pHGHzjJQMNlshtcWKA4s0onTkwmIhE6yqsu4AWDBJRmEgzjHqFzIjC59deYucCzfG4ZaZ08kiBvHlsiiDHkn57ltrUZ0DYNYPVVJJe+vbtt3329WDstHFULDTMpM8vPneu8850ppouzZZlay83W69d63BnIhkJewy8+znbdtfb/diK2M5fgzAsHVuEpu56N9OH98gSqq6733bttu2TzvNLGIC8JjHYxzHtDOJWHhrbbtv+9evX//85z//4Q9/+Jc//9P9fv/jT9++fHm93XZVcopIZYnMTTiEh7RNyISVydTYCI7pCA8SJgtuaAhEEAjOu4OS1CnAVlZORlU2R8QUmUkecoKcyIMdPBMnfCQ5b6BW2yyQdjCYmFOLErT1tnzxqVQH09Zq8IIwvEz+BTCGMgmt1ooS5iOiaXvaKHm5cPNClVJm2qxPCsZpc87j8RhjvL+/Px7neZ7VSXXpUunuNot6nrGKNYXg9Y6XW191sRGef1C9bWVlyawA44KDlup5no95jjHPMUZ4UqobR9TluBanImhNhBvxFtwM1DKNYb3ldlLLbePWp3YBzREKwMjYyhZtAUcaqvIYBpgiAmfGwfQAn8RGbCTG5AJfWoIKqbBKZuusyk2XxU6ZutCHfU2bYk4PP8f5dp7VMc6jPSJszvMbYuu7g8pPVyfyhHuYxbQwv1SCOh43JTBUV4EAYK0pyFd2O9Ab9U1aE7OYY9jMqiq4HhzhnqwqyqQMRlIKt227fX399nJ7bW1DUMwwsca9ibqYrHN53XeLqZy6bcJgWJ4JdzBEUyWbpIqruAoxBMWU4ihDA0GEwEzCIOTSMz1O82NeYm3RFPkSBFDrRNTg1VoTGZkzMjIdqyOZunYGW7Vrm1tUJyjyInivR0EBND62dqufJiKGxzQ3s2UivXSOhQJR0gvdVNICkRBYRBcWlIQZyY1FQeIJC6gnRJb0R4UJZiQCDqYA6sNDgGoHGUe1NoRdB6PnE311MHx6nD+/4SKgEyGfDS4gUFFUi37hEW4R02BO5mQOc1jSdB6Ww8KDPNgiPMBuxRICF07UmROMSoS34sZiGkjZk6jSi0Wc6ltAIN7c6d2nkDeSRqDCI644JpeKc92VwFHVAB9buLplkgcTmGGRHzf7gth+kPk/vSy/V7z+7vtXSlGuy6E24gzG0yD8eeR62snXEzCeY18QETLWwp64EnvPTEDmuv8+aVif573LaA+R9YlAtcNCysv/oc8D1b2eGV6sLUtfcyyjtIFMZklarQAirUIPeRnpKXNmyNomu7tRRg1YT6cXAGaPMcxHWK37M9OlzJcsBUpNprgo5xEh0nItbArjX3NiBUKzdE67uh3XtnZxbFZ9diUxc0GeKCIoQbxYQa21uugtIiLaztto0/s2tul2zNGPRsJBfJxn5CRG5HGeD3DsqaL31qlYT4QUCVETLhxWWJINCZeqqBsWc6kIKIYOHLXnjHQmZ+Z1CliPMjzH6AzLiEzKyORnVTlNezAzQ6NW0DDDDEwKytXpTqAGUmEWqaBQMmXZ4TJRuUXl1rXtfbtt+32/v9xeet+5jHphp+dJcOIuGn1LA/z9CYCIAEM23W7bXUSqf7xk6ZZis7l770Xq79vs29bdzW1zd7D06dP9afIrp0otyFiEBUK07fu3r68vLy9NdMzDzJhTRCLtPOZ5juNtEilTb6293u5//OMf/9t//Zc//elPP/309Xa7/fT168vLvXVizs4MMrMzCMwmsilbw6a5ac45mSLgETkiLYKEJCGZWajjFBiBnJ1AWpTYQGRk2eaG0RQypwdosiTYPYblw/kM8uAIOpNmku+8J0eCFAxSok7CpCKihEYhIRUro6QVXLPaWiIjrG4pmUlB1QTHUgHgJZSU9fwJ/gA4ExWfNLMxbM75eLyNMY7j/TjeH+NxzGPYqKxxhHnMoq1afoS0Kr/VWtu2piqV+PKM6WP64GJ+UUYURlHqyDGnH+d5nOdxHOd5jjHmHG6jPK6ZxInVlMEpgtZYlVUai4KbUxNgUram2SgbhA/m3JsEE7khjD2B6pgd6cODM1EcCcCRTjmAB2EQT+IBOoiNYZJOIhaAZHUfAyrZlIVZlbRLF97WliLS3XXbdAyEn+d4O47hnuWbWzUCRPf7K4lGIINAISIBN7cxzmKfrugWLSJlvZ0AIizStTGxlh5sFiJUNK8xbAJmo9zzzx1QpCWbSOOmramw7P126y9dNqaGSHh4gh1GRhTjOFeFiPla7RETZ9NNlZnL+2kgEyHmVIUqRFKkqpoyERR0Pk4S2RqJ7Co1cVtmXWGVoakXRITbJdRLbeUkSSLrcNZ7b3wQUXo9h2sdRCsoWuOd1lKm7CyOpX0t7pIUU+7yDq8nYrLbapgfmiryDAw+H5MkNXYW4al6dESaQi6qpC7mwmJaXt15VKjuYjMw43qWlwfT5hTyLlIzYh1iqtCTmbXvwv6cL8oMAoBcgFm/SVkqIsij0jyJ4kNEIpOTE8jIcLIZ7lV3CguahmFsHsNqIMvp7sEWwBxgYg4IE+Tq9lpHnkwG56gUnQozzXNSxTeErhftNBsspIQgcwZXAQOQGVvrzAxYQ529imuSucSV5YpAJKHORUVCW86uAFPap1he7RqLTvdhrv/Hb355LJ4/od7GRYR/FgVmUkU1f+fHKknuE6yr3F0ZV3tSKR7XghIf687nUezvvjDO6zfBKu2eBYZVMjOrnytcqyH3AnSHg5iSpIZZIRZpnUSJlZkXtaRy4yJgXadwS4PBwmNwYprZmBcmexIRM7I6Xtbg5QBW4bs2IqoTUSkhZW+6HhufnHBlrK7mUPfyu/iVnfRy4Ak4mZiJgpgUOOdI4lqnEqBR+AuW6zVUwJk4mxDEqLU2zHRoAsP8mGOaIbwKB8nnom1wAJ4UTA2wxOlxZJK5Tss5+Tw5XG36GGN6IWQTyc/z2IWQxHQri/06vxFVo7xHZuIZFarAZtGqEpZeK+HJDogHeWJmOfU/JKNgceKNJUVWWWdEwBHlcAhSaVvvW+t7v8jtYNQa/0qc1czKpCJWdSPMjMhYWIdVsZo1sGSyiGZe5PQsAV+J24XAcC8NzzAngALil3987cO7MHMTud1uLy8vX758UZZpLSJa4957wiuXPx7OBV/Q/rLf/vRPf/hv/+Vf/vDHn+/3fd/3l/3WWitAEjFX101PMgsVa4gm2ekY2UYbGnR6uA/ASolc504WIk2uzDcnUyiFUMIyAySRcJ6gw2k4HSknURC5sZmekSfYgyYxM5kQToREcqZkbKJEYeTVCkyAEBOXwXE9IJIg6y3jKtb4wCivZE95G8rr6ETha7EYzMykmeQebllxqzHGeZ5znmOMMY7r30XYqod7BLy6VAvNk1xPv4863QrIPL1Wn7yYawFa66YxxnGM59R1lZr8Hb1PlEIEVaa+HERaOxatIg7v6o1cnNkIdVLjZHKWpBEZ4TNjZswoGctNY5I7JRCHsLPUP1k2L2KjhFAWCDpUtGmiS3blTUmFW82amRnhnh5h+nJrNmRrvHVBqHtMAyjc7Tjf+buaBUkZjcszHpkLpzHnpPCma9PEhca8xEnL8ExRKfLemIdHPvtGWptzuogsTMHzrIl0dzhv7eX+7Sv3tu+3L1++9b4TiZmfGJRwqGGQ4e37j7/98sv799/K5bpyaEIqgVZhjaidsnIygiWpbggZHzF71FAoQ5mZx8nn2bo2AHO6mR3HMDMHQVggiWLxyVXNi6cVsfeubWVl8akFr24HvOzJqcpFPIoJWkSG+tsjiwO9ZIyioFdRe/qMOadoGktdMSVj4lO5zRUCLwW/N92WP4lZpEF30Y6lW0gSg5czpr5OX0JIHR34kvguxIA/Vx5RN8pdlHJkWDrqxSGmwiCJNyJL8umeCfMwBk2miEAKBMEI4gLXe5r5sDxHmJu7j+lz+jnmdBozxozpYu7TKZJZWyCJPMkzJmrzcc2gIqLn3Ibte9/3e2uSRRFHlClkzqnEFMKdIsORRoUG+xCfhDiEUsqlV9TNBKeIdCmNMDIjrxBiZJ3zoqYtzvy98Pd87te2WZ9/0N+pTR+B6id+ni/Fa1UGXQoxkX8yw+ICoual2l0S2sJ9cX3nWZFJH/rWc8n4WZxbVrDLmF93upFcdvLnayUiZe92TxBZkSQEn94MrTWzqMqCrjFVpKhSAhmRxp4Jy+keEx7Tho3TfNQlV3wHmD0VL8kgok0bIrXay5bM+FmZXIh74ILP1ZU8raoVa/CK606/Bq/CbAoIQgIC5rSCQNYLklx2V6Wk65wZAEienz4JoGVsse3mN5uROVN8oqqMiZMK2E1GzBkUXnZvZJznA29vNI42T81QmznntIzI08M9bPgwH3PWWxGBzDHMjKPOXaXXynPSLLxGJuhZkDfdA5kOrpQoki3IQVY+qo+NM0xjL548URZe3t1X4W0AwlvvmxY6r6/6RvOEV/S3MHpKDOIQhCoFmFlIAHrSPisCHebpViWgdZBzt+cuvQ6xe+sCImLRruNsox3HUZ/rQB1RUkQKmVGD1/1+v9/vTdSjE9G26bZtoCKNAS6qW9Hzt237+edv//xPf/j27ct26721Lr3M+xFESKLclBnn9NgoIykoBu0TNuc0P1lAkZaT0gt+oqoRNJORTgiA5qpcBqCcg9CdKWJMess8kw7EkRIFvTc6wZYcLA6mwVm1ltOCbHK6pxop6MY8kozJGysHIvwC3nw6S/Eq5yKqjkuvDxcRe0bMjDB3A+xygURmKVXiHuO085zv78fj8ZjnMe18vJ/vjx+Px3GOxzgt0mwGKAowkgsSs1yYACy8GH1AtXM9cXGo/rZi/dTJ/zzPOWyM8f4+Lq1rXualgvhIkggrswi5KqumKikTS32QRbQTJJW9uyu5TvAUUmASkRIX7OHau870GV6cwqQ4LZydSEamA8bioi6KAuAwZ/X5ZUqSAlvyRtE1ddF5PK54wESY+9TeeNv15XX7abzO3c/pxzHNC1Y2H483dweXeUiI2XxUed90czdRgrSqKV57LnjVBdeHpPdeb2rJO6qxdd33/XgfqtFaAYnUcnXXg9gjCLq3+09ff2q3vff99XZ/uX/Z2k5B8xwUGTALkOHH9+8/fv3bj7fffIbNdUtDcg3pTagsAp7EMkWRmJkUmYj1055IyXA/HjmOMzO7bvu+K7FZcXLDpmdibU8WaSyAYEh8ssiUxL3Wapdrh0H+aZAHwszMRzoIHLnWuJfEVaST1axyPULEMz3raZHmLomaNFS1eHTKF4CbCaysjVaag5PAEJFGJffx1VcPAYqMKutEkuQZVPBIbSKSIU2l4n5PjMpFweG2KSxs+jJvs1J6TZyfFRqPMMrpYHIKCi4LXCJAmQwKC/OYI4aFORYyxeKcOTzOmdNomNcK0hOdKYjTnyVfUR+h5+wiInt/3G7b66vv+75vrbaoRFwx5lom1qIkwicgSFESYUae05QpQiKoiWXRjLzoSAhOrt8tywWQNW2VThx1sVcFN+ST2341yT9HnEvO/Lgp6nIrCYC48o/11wFXVRyuiY5AS+F4Yqvqd6tPIi5mWA1gRPr59lurplzJH/67ketp/AoO+fhxytVSyLIqeuQ6YyAizZ1Zi+mVxKuLXRjCfqUekoSFs6auJLPJ7Jyo7kVeiQKabj59mM9pbsNsAMFC83iEV9+LC5GyVMPMeZ4l+jJpEHydLSG9XhkBCt4bNU2OaZVkzNqmrz69kqHcUSCbJLK0SSSRjIxMcneKnJSUmuGs7QJQBIOYQFREVnHNQG5Ii5wZUPEY88T0YfzO7ETJEtrQhI/jQHJ4zpxz6PuPfPtB49CMPb27k023LMOvecxjDo85fdbURZ6F7mSsVEQtypOqZqoiCat281L6Zs6kFZ3zoAhYsCVZskudNyCJJlzOzsakxM5SJk2dZvVeE3FjadI3bkqqIHYKQnhV1UBZWmuEom0FEbm911GhFtZFCxhjcHbzGeYhLNQp08LNbJU3N9m6hndtbKbS27ZbP7fzPEXEM1W1TLEV29y2be9b7+31fr/f7y+3u4i4d1Ha975vfenWSU1vve+bNmbuvX/5+vL16+v9ZW+9lztXFnNBKAFKG2cwGvtI75SO3Nwm++Qx5VDiAVBGYCDdQcLdwiLDY4PskD7IRkKkZ2jyoGhJbDSHf3d/pz6SBkXFnNxogp0lVQHK5CRuDsqY4Sae7yd2YY+d6DXa3HhjFjRG7d7LGBNYG0WhEu2QBARE6viUFDkGkBE+fVwnLoRjTmPWBLv7GPZ4HG8/3t/f38/x8DmP43w83o/zHGOYW0SMOagEJyZSZK6alZIYaHoE3AVAxWKWN/HT/ccjrm7Wc4wxh415zrXHjAsIQiLKyYSu2IWYcohEUdyZcHUuMUtnUlfW5q45tad0lrWvK/61MJK5iN+GGeBMUDqnSVpkUp6WU3JWalI0mwooezBns+SMltnCepoSlEk4FcEWRfg3s4HwCNOuUMl909eXPSIj6Tz9/ZiPY9jEeZ5zepIEimbGE+buGZQECDQohRkhjEBKqooyKGaMMdx3ruZH6YbByV311jfb4PdEHvDTPYVbZzIxM2PGcFPdv37505//+N/2L7c6gkiKmZ1uShBQ+HgMz2n/8R//8f1vv7y/fe+ie78xgeBKT4aNtLYBYV44glmekkhHaPGTaXGPjJnnKOeVGObx9l7tSWZRETwAqsyqcFujpNdnSWoOKRmDpLXWkOGBLNRUWJ3qzjkyk/MKa2Uix7MMkYqwcG1FiPBE/4EzOWZ4Mpn7MXNr0klFRBhN6tHrkdj6jUVj0UfVkSgfu7D2xm1L2SyZuIEYokGUkU0b61YoK08SrAiu9g2RSIvIOfxj7RpBQOtNVMBbZppNgEWASLNZn7hw+AiLDCw3j1tASRJ6lZKX0yey2LNszu/vNm0Ms3P6Of2Y+W45rAq6eEaah4uwtki8H3OeByKJyDNW7166Mt/2/ng8Ho/zp69ffNtfXm+3l7sI5bI0ZAZkFPGIaz+lTAoiQlf2zOo2iojwIEplVAqdaaPyxn0yp1dHaT3yaWHdK0y39JS1cqg1UBgRrWFo+aGFmLXgjRX7qKwt87rL5FVkWaE+kFuICHjl2S92wLqEaqFGNWnKGsqEL47u+jOXnnpJa0s1rDUWALSa2ml5wZibsrI0oUzOKJMkUxCTtKZLtSYuswmJWIYfh/bubgZRGGUusD4nAPeRHhUZQCGiDeeI8BjmxzjtPCIHE8jS7VyyFCICnnFGzjkvwhkDXN41EYEwPArQQiTrdBNVFVnm7PqAEgWh7M21Equc0JXFJm1Ids+0TE9KdJWIdAtvPmOhlLfWqhYelBGOarpJ6bf+Kim9DTvyTuf06YN1NBG42zzCOREORBznA+/f4/uvebw1Gz19z2geVHQAUHiaR0zLadPSSBDwGV4NdRxWb2hZ6UlF66wIqrNBZmYdouCR4Q+/FvtG6iEOMQ9TEQZrCtI5YncldKIEubIKBazw70TcKbmhNTSFCsRnnDZImJm23kW5dNkxLDN7h4hIq1ACMTFLU+0AzxEc7lH+spxsYTMzpbE9RqQxghm960YtkG2cb+9De9UNCzd+HMfjcT5Nk8pyv99fbvvet71vfVPhVmPc1rbOrS5yUdn3frtt2/2mqre+ff36+uX1pfeeuLBiFJxg1rV61zKXGrlLZiPa04fHnXPmuPHN+fEWMzGSw9J8vhfmxfz7iSboQTSF3VtmDxcY5zp8PIwP5MEwQkw7A4GW1IkZvaJ/jHccGNNHi9FpegMdslm8n/7r66Yve7vJptN7J/YgKRhvOIZwcrtUz+oaYQhzMQiBjLThj8c84UZElEzJEThnAbVmyV3v338c74/H8WY2xrAxjnla8T6YOdIYAlIWefbVBSHSQejSy3qhxK1tTbpy69r3votqLc0szdM94jzPx+MREWbj8Xg3C2ahDBHhNYYUr7zu/MwSH84Lyqbc2ubgbb9h65PHQZG8Oc404VsjOMEQSZElYKsqOjkhAqvADJMktDs1oxayYdupqQobkbKQz2hCwQiQUiO5ITdEV97nJPcMJ58YZ4453acex7uPkyj7pkjOYKKJpDk8OBE255w+LALJyTLNPONZHxlQaSzGybTrLkwMzoBNjDPOc9y2jSFljWqaTGod+8Chk0m5LIbaMimImEiVtd/2l9dvrz+93L/e7jsx9yZkKOkJGZbuY47383wff/nLX463HzmH3inDkiMNTui9E5Evw3TBaRzkCAchAuCoRq918K9nU7Jh9SUj6VnzTdAVz8r1THpu9DLq2rxqp1oXESR7WgQXqSBLZoxaS1fDiaPw8FcxXQYVbqAEDWYoX03JKL1KVDViBX6YtOg1rTYAiNqC0ZUxrK0upDnIMjiTSJiL0pO0dFJi0oTmFXljaQIr445mb63Vetthlw2In4K/CEH4iZ7CQp4Q88It8kfX4OIuBDFlWTeX/QEVYbOcI6bFsBiGc6ZZjpnHzMP9MTC9um8WQOB9WAzY9HGcPpwQVHUl8DK2KxMBPigsGSRfqXXZtk5Ve7MalJaEmeCkFXCrjys8OCNCMmDkFEGIEBIhhHIC0eqXRJLjyU8o0sQSPJf0EMsfRkGXvWbJctdrUxi55//FtSpmLnNZphDXfLbUJOYIKLPnE4Hx8S0v/3T5zT9c+VACV3tbjV78bHT8VNOxXoFPS0imqlNwqpJ0SuYqLdC6ELJirZQzfNVvZnAAHPUOxwKPhUUIyVUcGc8l3frrRKatGJRZzOr7y0VBW2JwrmrN+rWF/Q9zupjj9fK6NmZ4VnAsVt3W5Vm5iLIFzbvy86AxbcYMZNgi/oMIcjIrqpTBwUTpbDSVgb4BwSrMcOdLJAiqRQdRW9XvCDArzGZSJ99JkjlBFrUdRgR82jxnvB35422+f1efd8ZLRAckqTFpEsqzbG4jPMhrcz3Tyo+eHo2vBQeTomCCCJv1oPWw9HCfpRykV8vVDJ5wRwuiJI0ZJkSUjRFJEjwDnpi5FGoGJdOCnVCupKdAOEFBySksrem2cVexDCSN7gDmcFXV9yMIAiGiW982bVVyvBbrESVPWvhwM7Nq7CXKJkSFSyXipgn2xGprF6a1ELQigFzOlt57b7Ls9srUWXvbG4uj8mSrTXi/td77rbdt175xUzGrRM2nmNA6JysykA1pzNzhk7CxO2zjfbab0+asA5RsMx/hVsCIyKAQgnqKBUVskT1DIhnOQWY4EifFZA2icBqOIE4WglA2EWKDITVCzTnnBpsdMryb7ac191viTjw7tZzJ4kGQmGkZaXwp4/SsFbFFsAtzW8HBUZ08ApIUgM3iOM8f5+M8z3HOx+Nx/Hg8Hm9vj7di2i0DvDthUSGEoMrS5Gk7TqZjnKgnbhBBmrbedaseBel1n4pc1Za1lPjkfMA6LJIQGTMJB0EkhSCCxsxCqZ1VkjmZ/PLe5K4dWmosgpVkC33JLSm+42qaFdLgJFVPLibmsjK3Mo2llDeHwRLMKRRCgXVL9CBehr4EoeJ54tPDxK0GL54z50AE6TkekabK+96ZegaTDKScM4kjAJt2nucY0wPJNK0e/SJdWhPSnEE6mYkabWjM1BAxDz/fx2Nr920y4xkYBgDugfY4sz1SOCCq2q+u2STR++vL1z/8/O0PP3/9+nV/3cqgYI9JHmY2xuk2xuN4/HY83t5//Pjh89E+IYj0gvitBUCYMBCcYGIWXlh1BDEHU/X+qqoyOIMmu1ldhhnpbukJYSYIVQ/dUhaYILiOVmV9KI8XSwOzB0oZjIhhbj7dHW5rPEhfHcrXJghlHig8PAuhGseaUpE6SNA33ao6Y9PWr974WmaVHKGq2pjAjhTN1tTB5rh8z0QqXDpTPVFrdgR/7pbnXGqcMLe2pRt5IBuRhK/YnYgosilEMuNiWHwyLdlc8at6KqOy+ATOUhwD4Sv9m5yZc87T5jlGdVPWjulxzvc5TotzYAQqHEfJAM2z0HoOD6o0LSsQ7h7pETMixyMMsDnTJmyO8zGO47b3vvG29W1r2rj0cFAVDl4grgyv/aEHKgYUkwVmaK0FGBwKr+Ri1IxZN+Zwrr8fHJ/f3iJHLOmBEtFq6l2z7HozmHl1hRcjfklRuE5w5RBc/YcAorrLP+qwCdWMToRPVr8qJC3qaWSxRphwOUvpw4lYcyElKJlBXA43WbFzuniDdb0CYGEiAQsLlxIdoEDEs37zunHWHRlkHIyrZykJVshSBIOSShT1io7POcZ5TqsHhiODM1Rqh7/K/i73b46rQODjPqCThCk4nwNZSkR4IqLQCWmXhRcXWuK06T4t3BGrh5PAJCINYEQCXN2oNWqYmar2VWAY5WxLJpsV9mEmUYJxqhLIwS2lU2zgCZlOw+AApp/T/LTx/TF+fZu//bD3Hxr2whmUdyIm2UASVKGls0JzyY4MAOb1oIpS5jOrC9w9PLQBGONw9/SyUs3n4EXJoEjy4AEPomhC1IhFiBOa4HBMwxg5JLijgRbEDoysEFCsjb+ZcZkUeOXrWtO2tQ5WaWYBwCxuY/zQxlp9m6Qse+8iJLRoNKuG9RImq+5mzjncHEkQlc4qEANJRPTetQk3ZYaV+204y0qab/Vp37pKl9aJ6Na2fe+NeE6edgIpir7J7da2rW9Nts6NSSWR4/LwASQgrRr0DHZjmwRrpCoUiuw0Jx+3foPe2V8w7+9+nB5hp8Uj0xLmmUSaUDOxQITAurvYJIQE3Gi4nELRHKxwmp5GCa3HQhkrXdwxT4qH5rnlvLcIDW8ZN/b3nY5TxuTb7bZbaMvGg1YsJIRZlUUakBEw8/OcVaed6efxeByPx+NxHO/rVp9CQWbx4/H+/cfb4zzKd/X4vgavYaebraQRkUgT4r51VW29ta1D+DoVI/PiJGUVPW23223btvvt3ntXaaDAssxTJq40xUxUgm0rfUGoMUMFRMLZKXfJre52TUIliWMNXqTVtl13ISf3yAgkMRt7Bkl9ZczMW2NQD+nZNpsSDpCRNu1ozURTNLsuNoKoM0/KFLCRr2K3+misoymmIZ1jknnazJjwkZHQ2oV3pCoIW0R6wg2vr9JGiCjyPIZFnHN6Vh4V4Iqirf+JYJ9mU4snK+keiPc3bXsbL9Za484im2qydmnGtM2BxyMfh2cIkWQWwJC6tNv9/tNPf/j69evL/bZtPdMJODVtuifmGI8f39++v79/fx/HWaKFXPZw1b616lHfr9xTJBpsgpQYShcZkmubxq2pcNt6J0gm5KygrMeIKpOJggtWG6RwYiZJYBHhECFgVMd2syaiIkSryQSp+YyzIWhN8FE2HaKVIKRPA72qqCQ8m0gXraqyivMoy23b985731qXpsKsdSIr/Fxrm0qrx8hTd4lcVKQlCYQSIaN2x6WCqWqr8pDS/yO8aAmlsviVz69uOCIS1c7axJum+Xx6uSyDMoB8pmJJWIgyVnk9Kh0XmQFODhBCAAyb57Bz2DnnmHZajBmP6cdp0+I0NiciL6chiNxyOoH7frt9ebnv+165rcfbj+N8P9/ffDkqzIZ7nMe07e3H/bdfb3vbe3t53b++3nv5Opb1e70dbgaEslA6ZVXBzwwjQhO6xUK4RqBouM8nNwFyKSglhQFB+L3B60Pu0k8K0yVPXd+Y1rT0ScSK3ymLuQI9CxG+5rWnTQJJ8iGq8ZObWqlGLt7b0mmxhLTPXyfLpd1XZqZ0SopMeAaCzvNkVpXMVScOrUpLpqQgB0g8iQJVp1B7W8pFlKXirQJm6UgOZ4IneBUF2TgfZjbn6fOMsBpuI00gScFLV8pnti49klCAXgaRsGekEyyfam5GVQNlZtbgVfVK9bfP9cPmYRZeqMIC2YcEMgulUd0FESvgMMaCO0TEjJlO5Wkzj2AiWcJnkf4tiZKFG7gDnSiKt5C5TB3HcR7n8XiM99PHbDGF4pEgpsZaobSMsKQB2CrwjPS0DPcAgM6SxWV3jwgmST6wEn/FVpqF+4/rs8wElvp8TgKIiaGUkyFcTfH1clN8uj5JmF0hSUGUgJlRnu+eEfdtIxFNuDsspGWKcO9dFQJyz731Jv0ic4ICwtSVL+E2WarIpT5JXo/MK2MBYWYVVa1Es4U/P01ms783rtk4s96aq3xwVQK01u63+23rQqkDzTjTW5PWpCsrg7Iuk5LNrob5+sqCkAjPOX2eZmd4BJLAxE6KftOd5N7hW4aMKdPptGHfZ1ax41k5Rw91iJFYpuPdUiMoXB3uNB2TZmzCygiaEU6CFiJJFqBId5pHzgfmIfE4aRgbyFxsbjR/a/7j1d6+nl9eXl9faN9U6QMc2JRba7fbjYjcfYxxHI96YYE8z8d5Po7j/TgOd3tWvcLx9vb29v5+nKfHHGMc83HMt9Mep014EJGKqErv2pruvWuX3jftkrzYkI68t14YngARuLW23drWt/2lC6sIR4ByOSHKb+c+gd1s1t2sJ0kNd0yiKaTIRrEhtjqosrgyCL6SkgT3CZk+042N5oHHpHeyQTZ5S9YEEUNFQCrcNuROebPJNj0hkCQJ1WjKLNrUm7hyinhVGjMgEE/lUM+ObAJhYhAraaz7RkUclMgQUAiYqXOLSKSEkwdnMDhEU0QTOst+SqdnskpmkkA7tKVoVHkkIsakk5q7hxvOJElVPl5e9j0btxUz2ba+EfM4B/145NvDjqMAeARhZd227X5/fX29f32532+bNIQnJ3TTmZnjgemP7z9+/O378RjhrrWTrcaytjXdet9739p+K/Jx3a9BExS0zgygq/9VZP1DAiYCWJGe8ATM0x2NubDMbaNaxCWFj9PJs+zGhEgh6kybSqPsnJtgCNzScyJB4YLMakdakrUvCaEatSE1fQEQ4jL2NJWarlSoi4iSKO1d9022ralqEyYVFmWGqKiqaGdtCERahliQl64LSVKQghqYQWSRmeio3rZVVbtshhdh7/kgjkAVB7l7ANJUkY1SmZidiKIqFDMjHGHFIF+ubxYkhDnA4hZZN46AgysVH5GZ02JMP8xPy8PynHnOOEecIywQvursQZQsAHtA23a7f/vpj3/45z/+6fX1tWJHf/3rX3/99Zdff/3lHIfNh9lAFtbeZMxf39675G3Tr28vY3x9ebm9foW2qapEeVmQkXBlyeqPykB4hjFSlObw3rt79m6NBRSUZfRe+7x0J/d0W/YRfmK6auRaTUTJNVEX8WsdH7A23kRlgUI1KtXUfqW/mare9jJeScloWA3aFZhAXlNcaV1XWhYs67H2IZJR5vrpeP56KWuoULplIkgzM3xmOiOsPinCoFBHSAWYahePSKlVMqJ0oQAJCRfmLa6kZCIi0ywtg9wIKRkUnjbd3c7Tw8LO8BlhVKoiwiyFMp5rksxKRQLpK2YMJa6m8wwMi+vZkeH09FaufOLvQ52Znpzm5hlYyNysTQQlqNDAIGJKQvoTzXC1e8HgQAqSWaRazCGUkYJkSiHMoBLLmTZOkE8AAZsHm8UcmIPsjHnMMQhuEScTC6fPRbB0BGg0AchAlvBIi3XSSUjPgHnOqkld1fI1plbO31AFDBwJp2InKwuXbu9MwjByqmoJSWhSI2mirdK9TpxEUb2rjIgEW7j58fCJTCFurdkgMxJNorxtTESNhYmqw/G27aoqTSnhnpRefrS1ASemDDcbbtNtulnEdM8gEWlbL/amIx90shswAprZ99l7b03L217Gf6g0YSVwBviavVprQsmMlg2I3rVvyszp4clpmY6g1RiRXhdZXVfphvNhxzHmeXgaBZEmp3XJJnvDV2fdgkXRJxEw52k2Zs5IBLtnzAwDB4sJTYGxT4YHe6aTRRqlm0tbuSwXo5AUEqJMh02yI8/3nA/yR2AaziNHkuVG8UPt++P4frx/vd/+/IevL7cuIu6uvI5erTV3ExFQnONxjodZWU7T4vQYkTNyeoxIS0NE2JyP8TjiMdmSPHRG++HjSHVGJIeIbE16L2RB6yrSeOvCnYm5amGvwClFkmUguTXWjXSDdlpwCQOBCKwBd0DQ0ZKDPTECKkjWxr2rCIuSkhI6vCM2Sqi0qgxCuNmYMaePSFNWD5oJZzcck05yk7AI456iLNSk5AfeCBui2czptRumBEljEW4qjbktcFZSHa5D4ALb4DeyG2xHbJxCEOWWrLg420Iq1IlDiZ0AFs7QDAqVyiIlT5JMonvAMiJCWpthQHgauHIsmWQWMyZzcobBo8ke5hGWGMT+7aeX+5fXV9nLbtL7jqRAu7/a62N+/+3HOSwj29b2fSPhly/3L19eXl/vLy/3+66ZFhlKLG07AXvj9Hkej+P9LWa56UiEt+12u73ct5fWtk03YV3tgEmVmlTtLKRskU5EvPSAZYZwODtnPeyESAkOCKWTqAZUVtqtVYcccbnXC0WHiFAqi2VulPdGr5vEYJ8xPCJTkI4QBqFcjbSO2UwVl1lVDJZPdtfWWlfemm5d9q773u+3dt8bczwbrlhEVLgOjswQJd20dQ8EZrB4MFRFhaC93ZNaOJyECEgtiVEgYCHW5Mo2VmuZZs0cgGd6xDAz9yCo9sYsKRIDuZjCfhWBuSfqkfu5O0hIqqqeODw8VtiAQzMRMcunc9o8xnkMO8znjHP4+7Cwan4UgtaiJwNBSNH7l28//+m//vm//Jd/+Zc/f/361T3e3t8fkB9gTubxhrGLz3BLO20OmyeO8Q5/ez8e55xzvr7ef7w/tq3t+966aGvPiOjws8jenJFh6ZMyhQGHmSNAsaU6U0rtkzNZhUkU6eHkdbKltYwBmOQ57eCKfF7YiDXwlAwLoqym4tqo1fKQBWX3KnPV6mykFcleIIm1KgUuX/3voVxFJ/k7isQH82spZCWErriZ2WQGwwCUKVsWh3bx8WsOzpQEOHiGAxRZbUFcX1RyqihYkri8ogFPD8+6HNznJDcurIdH2Ex3Si+ed3pkBtEF38p4KqwXGBXBAKrss3xP4ZERMYYt/0pE+LNRYKXY6QrA/l5KXIJY7W1JSNZ6iTiLuEcggjIAZS709kWMSUIRUq4iUS+1MuDO4ZIAlLITBydRaHhmOmbAjIxzpI05h83DM01oOklZzSjLmZdEQRxSxZh+htuSYpBuCWBajDndsorA+cIyIIM4gSByrgpzBmnIKhgjIgWDgX3bufwVqeTIGTgSSBblFGQilAslS1phhywQdXVBz0eEBQVrgpOZuzYhFmIWYdHe+wK5LYaq1SIsQCykxBFp/nsMXkRmStPee9u31nsDMkjmrCtZiCPsfH8b82Y2etfW5Rkzz2IQmrXQCJsBB3GmiIjovneVXpXIFBnK4ZxQ99XE6lFoecwRY9j5GGOMcx6AC4EotFXG7daTnLTlctlmSk2O5OQR4VQRVQ9xwBtZYswcTCaoHNLapLtbhpBT7Y9HuCWFZHCYjIPme453sVMwNY6I6eSni1rQ9DnyeDu33v+F5WtrLWIZAMKiZSN2VSaiMcew46l4eZ5BJ8hSJuDpZmye/u4/TgzjkexJmXJmjMyD2dkiPbQ1bdw2ac1UgySoMXXIpiSstEbqCAsqEmt6CtSxIXvMBoUClI2QrESZJAX9LcDiKKgAEUGVe4Hhew3vO7IhNgJ2kYT5wlAgzgW9H8ev08NSIHAehoM9ApMzlaiRSpMmuXVV2QjqlkDl4DISyXXtQluIpnByLQACFBSmOXfMe8yXHK9pN8kO2iilBiwhLlJAo5aUxqEQE27MgpSMdZ05yD0SaZ6993sCyX2MGebxmH5W6ifEEzFL/gUFBtyiWZi7O34YSfz4/sef/8gqN+0NCNaemezo++328tjv+/fHGyjvL/vry4uoti4vr/t9by873xpNs0jvykoZp5PPmCfmVE40Vm2L1KtdpIlswj1JHRTDsqLIBdkj7ULaNMJEmWktffPCU8+YmqyiDJZGGjCvMKASlERIqlZSIiMhxB1sYM+S9RGZRDHuGl+39Ltisj+Q01B0AV+rorIirVMvC0iyZLAZLJNXpxj3rk2ybAcv+3a/7V9f99tt00asTLL8zwlNKEhTJKiF7Gh3SQqaEYjUprtKV9m17czdg5woICAGNVBLCKEBmsFupYo2Io6wsPMJaSw8knDTxhsLOXLM8CgzppnlVTZ8bTmFEAQplF95SRrCPBmoU3rhBatNYlgc43yc85zjOMdpfox5nJOSSYRFQa3y2R4xIvrry7d/+qd//j//j3/6l//6x3/+l/vry4/v7785xv4y9iNeg/3e0ygNNufxsOMtjgeOH7Bz+vz+PiN+vD/m9uv3fe8vLy+3+77d9m1bvUlmhnRGStmZbVK4MHz4vjXMTPetV+NrEIIjqInoxkwcWeAKLEf8B2CMmdfipmavKvb5RN94JhjiEyM/OX2Z6EocBZgzAgSfNXgJAMokQrLTSggmASKXLTmojp7IZKLq7fvwriKy+nGIPMNjUoIIkcbMQgoUCDJZVVhIhLSRNmKNZIuFdIqSzFgInMRxWTWEGJC4asc9M3w9WH3OOY6cg8M4JnkgvTIKWsC9rMGLlasMXsoOH1GvQXqBHysNChDgsTZTY4ynoT6jyBztstuv96TQCUHIJEmnrFzFKjXnJAVfzLJgYgaJCMuz17LemnKxfyiVceFWOYJL80ZuwuYcaAQSbIior5OssTv7waEUgAFOGZQyiYEwiFbIQYREURih8sSFF9YIjgClB6phaEYqq6BWiRnsCUe5kkWFMpk8jdiSmKWKgarokm66c3JEwoQr4cmUoO3WlJpkoT8J4ORkBYtSYpWipNnxzirBfA5OJuXGEJFIYgVEuOtVaUVgpiT2amZlSGNhESdUe4FvSTTn2ccGpm3btu3WdFNpgbzdIYNAQZzaONmO82XaSenC7b7te1dtUkjC2qyJ8sFkXu8j9a3hkhDSnSIh7EylwRYFISKtmDhmxzHO8zwfx5xn5OQWSqGEbdO+7YB43ixVnUW70o6t+y4x+DdqEezxI/0RflqYA8FqzFMwOIdHYVYyWYvrE56AKKcvBTaNKXp4o5PxEDoEp8I2n0hTESGl1HnA3c6k7ddHu935pd1JCDV+hXniMV1Tich8zByW5l5yiZ9+zoLoygwyz3NiTH1MzJDhZcfQ4XhnGSkPMoMHtcZ9QztSNYRIGitHf0QXql0KE4jCbBXVBDLSW/ft1fs26S2kMarxUoVbJomTn7Kom3WnZRCTaIAHNZGO1rUxMUnFq7emGeTOOkk6U086TzJ/exye7sGgjHTzSTGToglTNK48O0djFQYyRzw8CtPpxMZ8FTWzi0wmX7F4J5jC9rTXmF9ivOa8s90DPagIJNKYqFqbQkMcTSRJmVNbqjJSwjlmrbZNu1oaM7hxz55g7W3GPGaIpYUHhVF4zAiPtCRFhrNkMCXS5xx5PvQ8p3uK9qY9KIglI5KmqPbe26bMBM37y/bt56+9VzuEamNVFo6AUVoj4ZywMce7zwdT9iZKXaV5CsDufjwGxWPvWdx5ryquLGtmiHJ1RJROxO1Jkg0vXSeyPCrELIBm00gDErygjHVcWLtqolUJx4UcqQUa+dzUXzrPjUfnd40D4RmcCJ/Aau/hygQxM+vqbycwGwDmQiqTCImmNvRN7rd+f9H7S9/3nrkQOzUfl2YVQR3qJEk9pQk6YVY2keWmfevtRrJFsgWX5xeiRELEyZJlwQlQBidFNS8keS52yIyKjHGqqFBjTYSBwlFTl5lRrXAICZZl/f6dbUiJs0ixxXaPunDhHtNz2DznHDbHtMN8eJzm58yuJCmoSFcp/ZGG+HJ/ef32x5/+9E9f//TPLz//3LftbdgBGtxNNmzehZgCFJhTjzd777FtsW0Y73G+53mMkRljzlWya+Fj2tHah7OKUghMGWFhM92EcghG7+7uMWeXBjS4ZG7Ckj1X+m9NUmBO+jC5f6QLL3h+7XY/9KcSAAgUq05nqVCcq6kGZc9b4HIUGOepL/5D9VD9OF/N0klslqvN6Poinj9/vWUXDj3dAbReytAaU0RUtdXHh0Wp0D5JxR5PCu1blQ0nSS3VqrozoQhKLnk+6/Yf6UB6zLAR83SfkgXfjnr41qvhyIwUTiU21vUpvL4tfCguJD2AzJlhbtPm9ArxZUTwpwn4KXfx1cVUn2+GLODXBaqt96zK+VAkfmYVkqa13WYpKSyeby4RRLlWlbEiIcRQ45gGDvNkgkq9g25jnmwSGZwsGZImCKZglowk9qqIYmERbk20gZi0FRgjzYOq3iepmJiAGcbC5FGCfIZnOBB1rmudRJgEY3p5TQFWli6q9bI/LEkpqATnHttO201vjXch1YobJVORRyiEWFmUq97YLV1S0Ps5J3ROM2VRUIKJU4hWQWsmknFZ9hxFGhMRIVVQ7hGM7L1LpZTGaPu2bTftjZlLhI4IEWnpzNi8bVu/3fYIZ5aqyq6od1pGxLShUwbTtKREa0KMQl24QeFA3eVSKJhMcxH1ImxGTrfjOB6Px+PtR6SDRgMSWbiWJkloFqAkD9rQWDYTuss4+mEZg+fMGOkZo/LQzjoZg3JQGpGnrdOTiKcjYBScTK6RnsaYxKEcPYbKFDcR39yreppFRDcRged0ngf52/jtjC8NvTFBGjjcAzTDydmY2TEnxsxpYe7mMYedM04r9jXOyefE6X0mW7WKWE7jEYjkYPckgyYLZWPooumrYq2BIJycCyFHy5tDaWWAlXSRUJrwyC7clZSEWIWSgjUDCo4U8+uEIykK9xmh1WWvLaROuGDmyBLAVagL9Y03amYhToPYI0Ee65aQHsWulBRBFngFAMjmHEWHvMyxcR2bg8hBzokMouCwltbZXmK+YL6E3clva2VBLE1COByNJeX/x9afdsdxLEm7qJu7R2RWASAl7aGn95x17///Y+f0sHtLJFCZET7cDx5ZwO6+WFpaEimRRFVWpoe52WNRllwOU+6R7AFnKaY6tGPndjxcnfumWc1Hvc/pM2YzzKmnHSNmViQAILCysKPuqF07oDUhVsnlnHPbNpHGIkQu3AgPKNreXr+/ttb++te/fv/+KzPNOYFU5epSYwkGzvGB4I/HH+d5RJRG2rvsIs0CIEGmWzwej4i8dWmtQbgCsQCpyL63fcuk0ft2bXXqrpEWMyK2vRGRsLS2TQ+LM9bChSCSBC9HvAdTtNbCOqWfw4hOIjKfaRNkkq5ku/Jtk5f7ZkF4mB2rPCeB3rtoy4TPKKGMZO2emCGSvUvvYJpP/5k22m/tduu3vTHf6nnzGQaOWvM0lg7uhEZ0HfIYbduJxasNiwERlQ3cHNXgKaoqva0tm0jbt2p9SeJikS92hgipNkVjhw1aVlar8lSRRpcNNjM9/PlwXJ3Jsih5mzZ3ZxCoeKPkHuY+xjSzYfMxzmPamG6ebdsombUH8bBJkUTove/76y+//fmf//Vf/vqv//b9T3/Z7/dzjJ/HeZzz5/sjiFk7K5pkyW+3pr51Gnf/eI9ji2P37aePAR/MCMIx5jA/Dmt7qzoUVeUViYWAbBzn+QD566ZnP8cY49H2TW+Nb4rOzCpMqSxCStfzPAFRrfzCJ3+ECJxVY17iVl4pHhCXVZlFhGuEKPduAPCaxRaykp4+fSJ5lqM/ERVlN653EOElnQWIRRJBKB4DnnV+uWqkZ80yfu3amt6ZRaVJtXOXPQlQaURsXmnVBmnCSlwtRkxUPBOBSGZ6GrA6gjJzznPO032RzcOnu7vNPB8jTNIZWQPrAm45MaqivSjEuXpwVgs8U0Z4rONP5MI7m5lXCYJnoLXW2qaqBUS/ekUvOj9CmYnYZ0l9EBFeaV9lZgR8AcpYmlyFJ8RaaAx60oKpJNraSBJ57c8ESO7SBqdIM/OkwNV42JCWrpQBbBKvt8hvejSfjuW6vEKXuMrHexMWJuLsajlnkb5YzEnAcOHJKG44+Wk553Q/9/t2e7m3smsJRw5t90wHZQMreLG4Ex6RSUIq3Pf2cttebtvry/7t5faNCOyJgDALNyKOCGTUGpqIAjbdanQF0XD7OA8Fd7TASkJQ1DEiPS0siYgbN1FWJWaU9ratejue08x++U2fDcqJz+tWBPveI9TTwXE/Nps3ULjVum4wvd62HRsXVE9ZjuMwH733IMUDwirJwetenDbdfs7TVfWmPcnN3XxapJmNOdxnZpoNj/Mcs28g6LazT9tv9/QMh0KJe+a5N/rtLfve7L/mz/F746E8FIdnWFXSTViQg43MPIjACJqRq1WNimjESfCU5JjpZuTK2ZiESRMqkswsqkHOgPQ6X43s+Nv730/yt5e7lZu580zr2iZ5+DSfTm6Yk+bwY9o5bJznOXxkTpJItpBIRjZi04jJqWwGEqUWbW98c6+FuhJ6JWRmreZYAoJEFdoAJWpyBRsTnKSR7MHMPUmAxrq1dmNWCjBxIoNKkuDee6YQUZL3bf/scWdAqIqxI3z1EDmDmuyioXM632Q/58fjOI7DT4OSVGokqLFUHDbDmKTq15VJuXzxII6qPQQNKopi+pyTMjhaRrOpdMBHI79R3Cg2grIGM6dTUxXuboxzUu2OQOo+E8HECYaEJGcSMbeQFCQDrRKuTieRZ7IS9xAglEM1WqaDU8DkJI7GrTd1B0SuXpQAJxSqQixe6J1MZt73/ds33/f7r7/++vb2xszV/yhdFhrAZ9jwaXb6cRzTTmbebhsTd+kiW5Bkpp3jpJlGmRnwANms0gNiWQyxbWNw/ZEyL74REUVoUIZTglS1aRcPM3JLERszg7i20k8JoW7MYE6+Kq7dygmU5CLSmtxut5eTZkjkGIERBM+oPdGKvWURfNwnVTRbtRcyBNmbds1eknqTTVvTMqOActU6CkpXqPTUYtaDmFVqVAeYuEx7tVsUYmZtkB4ElgatHtkmTaUxRAgSFGUmpgtwL4QUSWdE4Mnx4qbaxylPk9CCZWdWWRLnWucQQQocRcRIQSp4ErIe9+SePmM6WUQ1BRSQOwHe2sbaIxAeAInIdnu5vX7785///Ouvv3379su+7wDmGD9+/P733//2+Pg53SicktMz0shHvbwi2m83EjKleJDpQS7KEKViKVvMEV7vMjNLlX4ymop7WpIAjzEXhZI8Q+HMjZOZ0ZlJwzOrnZBZtLIs/3sqelqw6EuZR/m3LsP7ZcCqvs+8Grqv//b5T7xa2L90d9Nq8Vtz3hLDuEz09I9fzz9S0ieuiCiv9gU8zyfx3CAnKOFJTGuRmrjKFvMfeoeK93flZCP96aAqicopw+vsWTACD7hFGCO9RtSFy09m5qhZ5XM9iuSgavuJhR5Iu4xfNQAJCWXmVzDas/uv5BYWAmcJfU8cGoBMfyqVKDZyFUmsN+7y3S/gWbVN8HLl0eIHVndPcLKzcFhCWTIhorWVTV7LrBormeC3dCfGfr9FhhQVzTOuUp1Zdn4z40zAAdQ583qSUUap6RzPLF7W8Un3bbvfX/feuCUTeWimA6mVcPbkRRIhzyRiQVPZe9v3vj1DiCJyFQaUR5ZrSxXm02PFD8NZGR4xJiIkaBPduCckJCLi58+fa/0khDq3MLPqzESmmQVzvZLMyuz3+33OWY1AtOIUBBSzJjKTBVTSV2vbts05jW3V0ZFnOktd62vXsS4Aeu6LpW6XdAVvq/nRx0lZOLHaWceYPuecNuac5oPIiUg73NN8NSFJknAkSKM3oQ3zjEfXt619mz40P9T7GRYelmEGszSLGVkDFkl9nrIuNE9YCctOOSkswpABd6q8yGfqEgFwctYxN5Lex3tmUAM6BYemckHjMpDh7lXJ5T6nzzPOx/gx7DzOY/gAB1NCuSa+5Y105iDmLuIZ1BpBIF5jd4H9qv6EyMGclSAqltEqCM4COPN6cnraDGnB0KgASeHwotaRccn2WvHBTCdgIRuWVSPATpokqUksWd7FTASlOIkDbWNFkEfOmeBBuSI6CQoiAicziTKvMsDMlCCh5EQQfP0u+TMNkUgCh0RKTLEpmD28kbeMTrnVjY+W2b8H9zIwRkQg2ElPO4Va6cxLlCBiRiOGgxVi5EY8BQIxsOxswm4WU2N6rBp5ZYEHhjduvbXihPZtS5pJM9NF0bok8fRcga/Ot5e79na/v3775fvr/Q3IY5xjHECaWcSIePg45xiPD3u8n8ccIdjut027cgO11rq7n8KZPjMip9mZ4DnXDETMUEjjftsA1bVlWGUsJAw0IjIzqnyfbO4RzggcMqncls7hBThdTFAR8XomgSIt09JHRFAyRNp+u3GfoSbdcUxIsEzLYWXHqX7u+pxQTcHC1Bu2XXqnJrHvvUlWodi23VrrzIqsTdZidoGVigRxYbvLKQwVDRAxgVklSathNrlyICKqSRBVXbHu1laZu/pCQfnCdXK9SuI5F1nHHXF1BRfygDUqjLDqSj5LmgFUczXXZy2p7D4CVuZYftVYTUQF7MllqiUCsXLfRLbwSPPM7G17e3v75U9//fOf//rrr7++3V9UNrNx/Hj/8V///fd///ePnz8IUOFwzJxuk2JMiobchHchuYnz5hI+KFw2YaIId7Ix5vSZl6CIrUlTRlMWJKqGj6cPjpRwNUylGc0IAnKQgweyrRX00rlqp4dariDB5YBHLNKsfD4GvsxPaxyqmmHwSuY+B9xYw0dm4lpWPmeyss1UN24kURJzraqwWrGRXyGuC+GmFTS0Ol0Dq2K2woqrQxCUiP75h+TaNnoyVREy5XU4yYwgrDWhZwCJQBaXvzSPjCWzJYWTRUaiWKuofrv13RYNjihDatypBR6WT6CunAKzW9hzLKt1frIz1+y16FP1fRXEgejKlV6jG4rHlblOCYg6k+aKQgIlQ1aDZYYQL71w5UMJVe9FNbMGF60X8PWB5+SWhIQDiKzhQLJxgM0qc7e93NMNRGLBETHNxhjHcZzjMewR4TaHZHIDs3ZRJY8IC4qkpGjs1pojiQUkShwU29a+3X/55dv3+7aR1PA2hMFMDZQePmcOy0xAUhMQYW3t1nTrfZPGrJhuRNCqURRh1sxkkM/w9HNatbt4Bmly5PE4EvTQPj+Gv0y73Wfbemt1T4BwAqyQpjO6NJ/u1ZTQVbs2MLetF8QD50ks7qUhXsZF9wjjYKtvPrJ8mU2uLI6HTwt1vYTbzAwwa+u9b1vfblvfWmsKYkm6aG1uMSJhkekxfQwfdTF6ZKRNH9PHGCMpAqSzTcN08miJlsyQpHAQK3tL0/i5b283++4+TjrYT5ozYviMGDRnzknm5EbKVI3IoCLtEEdaEixzQgsEZZ7hYW5OXoS7dTFXaAyFBWfGj8fv0w8TM5mT7i1aLdQ0ldLdbdq5Bq85pz1+zB9jHMc5LCZLLj4yMRgRCRIhrgLKnjux9c2qVDEKn0KoKExYEEUZHxnKzFfsu0hOqNsJ1eYvRySqYc2SEBBuCCDFLChouZILdo0rxiUXKbBW+mTMqP+ZuQ5EEpkcwU5E6eTNpUXrMTOnJ18NjQFW5lz7pS6UsvUtQz3lqqq0JE945t2nxYykVAJl81PtFDENU1hDbJQbICBngLmDhKJq+kJEJAWATnMvvFNagwRnJhNNJhVlEkV656xzAACAAElEQVSETSL2JCIGccPknGBnmDhnHSLve9cEuTWWGrxOm9WGZzY9BpDaWoJyICihpKTb3lR133trbR1xhZPh6Y9xMh7uj3ke8zgfH3Yc85zOwr1vvW1CEpYL/HnbPIxiTPfH+Jlnlpwp0jMlAoRgJhEtcNbzuSUZXCu21gCwbIC4UTi7ZwaFs0VScoXx6QvwKECfNduL5BSJhQfboLvzC6mRuAixjmk8LZzIqfhAQiBdgAlh9M5b09vGTeO+t6Z07/2+32791qRTYE7ftDw3otxYlKVJ24votRwr9bxnrg7sJL4sQURMAmFRaY1IWJu0TfumvUFUmhIXc4UimJLyWdjMdZIuoKyRTa7p3UlE6RJ3v4o3tO6Ml3kJICCQABTaJCZQDX3l9/ziuSnyvqRI0ya6kbQMC2JQtra9vX7/9bc/v76+7ttdWcljHMfjx4+PP/54/PjdPj64MZrk9HMc43xPN2Q0Dus9e2sC8ukxa1kCaYRgYgoPqkK8iHARFZEGIVFhdSIlEk2QNqGtt75p33S/ad/6pmhNoQxtwULMVUTlGYL/WYb9/Pvzm/3f5288MRBr8EhOrpBcTYXlwqor4Xkxr1GMJFcB2aew9fxNL8sCnlNXKUBNNDPTV+syreprnnNWkPDSeRsACGtrKEMABMWhAxFRrZ4r0RdIDnYKd4cQAAERVl1pRf9s/cGEWSEeJPCG9BWzilxzQEaKcbJc4cFiy1lMM/MIlqLjB/1P8W9tJwFcRdhfB928ZD6/elSr4MmASr9rpmdi+Jl5WfOShSSi3phrg/y0zdWJIoKZGRWSZQojT65NCaFiByyoyBZQLSsIbU29NxozwhCpdf8xs8d5qKockBPTz3CAnZmgUCGPOG1mrOZygW7KBXmpXXZTfX19/fX7r7++fN92IaLCUe8qqtwAG/N8PEasvh3VRgXDlCbcIRSUFm4fH1327GncGpPIhdKwmOZj2nHaGGN6Os984KSw8N+Dfu73x+u3X17fvt1ett4LnkfCiUgQFNqb1AMiU1n2fX+53fa+1bT0eP9Yx7Nc3+PCAKfVgdDMxnkex7GyPtdbOW2Mx4eIKFMTMCEpt9a4bbeXfd/3fd9677s2IpIS7Fd/a1VLpYfPcItqkmYgmYPLFICMdA8Z5sOiOz1mVIl4ECVxMFE25i66t+11j29zjuYPHQdyhKUP8+k+ySdlFBaY8I/SdKZYMjnnhA2KQT6TokKHFA7KlVWuLTlnXXNCFA87DZZnhpjn7L2rCJDikuleup2NSJ9zTj8+xs/TzpkeaUKI9QhhhiKYA2FEruJMCaRAN3A9Hy0tKdLIqBAUyebEnqrg3rr0a0GPQsCsglTnCJpmAQowTU4mZgcpl2klaMH3Fh4xgsLdgESjKbMqIbkJWNZ6TZgzPS0zIkZEzjwzTRR940gFdwsmUGtThFiChURJBKrKaFv/lqHmsmL7cbpbwiz3nMMyQC3AlBK25byFbWR7xobckF2JGcqgcCQlJYVTeNG4kZnqa3EApgxEEidbUJEPlJk5UY7YqOoQUQBOTkQeEUnlt+1y21UaSFlaF4+QcU4fZfNaND/mS6hfgHZWhWRrDYv3U81YQuERPu00O0aBdB8+T7fIJk20aW8wCsTjPKonR3uXYeccj8fjmEfvrW9KgkYB8oidiFjoue7ICCYnacrcmkpTZgG1TEyEWbShJq4KsuKPrkVEggjh6RFWWKK1qCngN3Ih+MGqvG3thZAiRKRDcPKclpbVkEuM1hrV4YSIS/Rqetv5fmtd5e12e7ltt60rIyMyPHjBUK4HoVxTo5TPhnlZngnKrEaIZAKXBk6ikMayJUS0S+uiHaKsDZBkCabiE1W19nqnvsTfUHudfGpVFd5CREmp9QSunVOUzFBZuSwiVeSXmSMqlRV2PfayuGLkYZDO2hIClkQEQcGifbvtL2+vt/tra1tmeoxxHON82DzJjeJs1DRtznN+vM/HD7JBMU00ukZTYaRH+iQKJpjM2rRZwIPNMywIKRBmEWksLb4Usm5dutB967e9v+z95aa3vTehVdwkSloVGVLWnKyFU40CyQDHtXmsYqfr8Z8LB1UbKvBaDV/Cz+IJrcX25UyitM89w+f+EcBFBWPi1cZY+zBGEfpXScJX13+NEbXSiAivMGFc4wnqPrBqHpk5k5PSw6O0Bsqsg2wEyudds1G6u7MzAEewlJc6KDIKFeFr4rkw00QhWGWREevbpchgOLd6HajYo3O6h3mxBz6/HSIi8sgvne5E4SLmNfjql9lrmbEyqkrUL+krU7JaCzir1e7aQZOUlZ6I0p6vxufOV0TSaq5t61ZKjgBRCpjASakMBqrlcv1SoAyIhCJFwkeaC3TzgOmodVwRjKY190mwRJAkIcgMxYRNooBASYKEY6396eXl5du3b9+/fX/Zb61Lpvu07O3eVZUbePCgSSSoXsW974nyMHBGesTwmcYgTZW0ZHblWecTInLP6TE8Zvj0PKcdY4ywI+cxzhhzh/795ftvb9+/f/v2st9aa6osvUEoBCzS9k372mY20QjiZIqsjoePxzHGmDaIiJlImFc8F8TITI95znGMswavysNmREyc+SAiyQCFsAHY77eXt5f768u29d67iHRoZnKsJbW7V91lyTCZWfwzQhAoc+rGTuDqtuCYFGeYzInhotVSIFSs5zSiDbypvm7tlzNnkwfLyTxBmXHAiUp/DSrDpjAjnKkw/qAURM+ZaTIH/NScSlUx5EJOIGYRhKB8j1ntreQcliOJ4BSnO43mTVkAFIPQ3eacbiPC5pzDjtMfFqOYZQGKjJi1RlTxrr6xdVigfheIQIUFkPTpmZ4mOTPNZk0W8MnoW5Nbw0uXXuv4oLCIrPrBVWebCS4UaSB5lYM5MyIi7FqMhLlPT4swCEVECq1hs3EkpLG0JlKQwIi0pIg0chOkqgAbM5hzWCakN7QeqqSa0iBNW2sqt/v+ktHdxMwnj2lkhKAt7W7hCOGMBCiUZqe4+7zBN/hGoUktwRmRpfjXFRNkSZdNpWAExAQBSRJF3TXh1VfHwhlrKytJyYSTiWIm+SpuJYY0ViHufd9VhKO1FuQkzBNV3VPreXePau1wn+6RBk5h1saiEMFi2oaFudnjfBzHeK/B6zzIJpGTLrbk6i55PB7Vw1V3PbPxcX58fLz3Te+5i4iHZLY6A5XbpuYGT0uHNGGGNN22jZkpxR3hpqqqIWICt6dcUX72q+otM+va+lKil8gARe2phak3Tt6IJSK0GTedc8YMd0cReFv7Knt0kX3XfdO3l9tt09d9u227CmrnnOKUHCBkRqYQX7V+WovCivcTN1SbWHUwQwuoIbyJbq3dtG9IRusqHaIQTUiQUnUi5WozirgeqpfnKdebJLQE5aiikJjm7lHtbxFVXfIPhTmRK3qWRaWBQgorXqyK5WBZlcUQaaj9emYsJy4Tc82Iqn3bblAJyqteZrpPJu+MhqgHC80PmifNB7mhd/fxOJmzSJJeGp1CKwOfCDMzNyISUWZlaRAtucUikdSIVLU37bf9fuv3vW+7bl2qKQ6cqM1dSeuQ5+Ra5Ij6waqMLTI9/QNna5nnSJZayUCQMFEgRDSQHGQZTGFRD7vF8fqct/B5sPkHxfE6aC7P3QLa83OYK9vy13+Na4h+ZgCJrjrwCLNI2GJDxTLzlQ+SFneoDJeU63az5jeaKchMz5ieMcZ09/CBcJRZjlrAJISIqoydk2Jh88NEsMjiMeccNt3dqc519DxSP48GX/Wt5w/WbPGpfQHPpKRP8zSKTGSEJHFmB/w5p8VSlVY8Yn1jyU+MKjNn+oqnhmWZBVebE5cTv6hszBzIRIqkVcy+LHkCZFqGsAhvFunOqrI13jYZs03fwqeneYwgnzETocGZcnqU17hxAyQokUzAb99/+fbt2+vra2vCzBGmwkDett6k2PM09ZZCgQDQeLOMdPaqGwtjhDdqKkjnFMCcUiRFAkBZu+rv0+0Y4/39/cf5+M/f//txfoyPhya+7a+/vX3/7fsvb/eXl5eXtm/brbetk4pu2s9t27bSWbfW3T2mHUdXEaE8z7OKJpnZiShWcScTmVm1ea4SpJJy61NWeEQbOPNUEeG9pbZ229v3X77dbje5KF9KEhGgNQaUkJwZtQnxHEIc5IAnOTjSnMiSncidMH0e50n8ID56U2KW1psIs1BQpDe/t+1to0fDqfOjHR8qB2MyOZCUjur4Awm4sWSmVjeYcyang7zBOY3IJax+BHBGKogBFYaEwIlqK0jumMlhnjQPT5sx2lDhVi3ARXUwG+7TY/qYpx0zDqdArMs4PUaOiJBUyW2zaJESyiQiDczMnSHKHNQQVu0OhHA6EZwggUjuQjfGTWWH1wPU0yyNzIdZFMI54cSc7E61MyAWkqrsLNtguX/dPUZmQsjnsqlEGgCCveoLkTPzOkVKSEYwiZZUyVYnJhimR8bWoS1Uo7VsDa213vbe7tt2y+guzPDrVOweymhCNy5On7NN9tFg95gds8GFQpjCkpgsI6nAjiRP4KVnZIbOyPTkSIQn1zEhfdEAGvhp6HAWFyZ3zzCU3QwOiDJERMuEqcIU0gp5IS0kiSLoPMbjcfbtTOHH43Ecx2M8qoNCVmw8Aw5CFXW4zeP944/ffz/PH3OeY4w52A1CYmzTBojSw0cdaB1J7j7chtucw3zEmNplX/UuOcYwC5koDLn7mGYMkGILb+SJIJZyjhCXVLB2B1zFsEWpXQ8eS/LlGhFKJkMQOYUreaYXM9Rq0nNOUPJ9m97HnNPX4AWp/Had4GvgaIreuTd+ve371m9779oYyRnCLAKjDML1FP+yMNp2sIh21g3cM5HQZFFoKaIkXdqu/d76Lv1GDmhj6SIboxEYxLkicwsF/nxQUQRTPaeLl1h9KhkRqEfHP25w6kP93PWUiy2yNIV60F2e7uvLzMyyxggRJZRxAQVqKs+Uau3FNAjT7RzmfA6b5xznPOoOgnAsdOZJZoiZmZSEaZSLMv5U64jIS0EUSqwhRlSbtlb9B60JA5SgZJhw623bNr3f768v++ve9002EZaV4LrejiZVEvNlAlrhuGomohVVW771mnWfGCgGoYz5KF9qlRsmBaE80BkED4og94WE4EXAvPz7JbVVnogLLL8u6WIZ8iVkZy6zHZaXK70WK2WYFcnqZOTyq2adYSSYWEWQKIM6ru2PJoNSyxFb+3dI2IwkD6ckR2akhR3uNqele6Q1SRKB1AaJA2sdSUlLRV4nK6ui6GFzjHHaiIhEEJGQUDjy8kdnWDhzUYS4tOHnBlZFAjAbhVq9rlWPsHreJAIUAfYr5HipjKj2ppo26ypK5upMzMzCIawsTv3zF5N+CY3J4GSugAJRUDLIMtxdghlgRVdEivDmBgufoe46vU3T4d3HOXOYyfQBz0QDyNQVWSfFymNafUIZL/v2dr/dtr4GU5bkaIytCYMyUyS6WKqvbpkUdrJJCxsf0QXujuaUIasr2xy+rmeEu9s5zvM8hx3n4/3jx+8/3//rv/7rGOf8ODjyaB/j/TGP8/319fv4vm3bdr9x43KLtt61t7LG3/fby/1+9q13baoiIpRVw/q8KU0f9U5Fuo+zJrO6i3bRslk6r7FcmZRJOV7uvW3911+///bbL7331VZBYIe7Z0S1lmRkJDyKukOw5SKKpc/PMee0aX75UZl+ng8jJv7hnhC+tdba3hrYKcz6/nqnw+g4cnR9b/qu8i58gB7AhTEAgUkptXqmkBRAtcM7wzgMEkhPLjaIMZw5lVklmlRPgROtXgY3nt4yKG2aWpiFsom41DuO+kYtosKaY9jwGGWbYWaSdPjIYWYU0jIixUN6ijKBykkG5qrHQXJSdRpnhq42Omna27a3vdJbhFq6hZmv1tBad3g2lpCQsswTg52ZGRnTzGLO6Z41eFnW4IXR7Zym5zjOYWbbbATfrMW2AbVo8wgHRRM2JAqHq2gh4JZJohANbdk6bZ23rd9u962/qmzhgiU6GeWsei1zsIhTTyebNA/4IRTip3CN4jmzamVtsmSyJDTD3Wj6NB8RI8l1zIjkWoAkFdHl+fhMp0hgVm0WBwU5jaAMzKCZua4PAVqX3ntXoTAW1q7ctGd///iIiPM8H49H2x/E/HG+P473Yx4AtdYy1dLdqySbVzfu8fH+/v7jx49xfkSazUo4MoHM7DxGaND0OV14q2Polfr5dNcuYSxipE8fp52krcwcpZKACYKxzWYVVBbKtKCIrF1qLm5X3VK9OGi+ZofPr1LzPTMiBACyhKYmSeAAWeJV9tGj9z6nmVmYl9In4DI0U9WKdWyqLNFUumjJwhkEFm29NREu3E3ZuRTSWBuxsihkg3RwT+mZHKQASBsTExpxE91FN9FN281ygi+FTJggle4oXeNLpqQ2gOuxt/QYr7M53D/3ZrIEX6Ysmu58Go+8to9rLnMk8I/xuq+CRNFoCBy0DphSN3apPGaBo+jnxyO390Y03cYYYwyfw22kHQkOspwn5qnhSUGUMQ+PvHqnZd3nMik1M60WekFELNx727ft1npvvQlXVN4FrL333vd9v91ut5fb7XbbO7e1a47MUhuKvMUVeRfVZJFqxIJUe2U+SVpRxK51p6ufwrO7p8Lt7JScePbtIMGZHgkP/5x0v3je8Q9C2rOz6DkJfYYr6yEGgNdUQc+R9KtaVl+ZmQFfrvjJKiws0sA1exI95bo6xF6uf8k28/DVFRgRnj7NhttwNwojIlbSte4EEv9YWrX05kwfVs1985zjPM9hFum1si+Dr7tX1jDCK55Z36aqyup1IgCqWjUpzwtvaejVEJhOSckeQYCt7WH6snklRRb3b/HPJNaqMTMFQEq5yqQM/iIr7l9eSQan1hFn5ViJpEJeSZHEoPKdJpRpM8d0aw5Lbs7TuRsfHOo5BBgZ5JnBhNZIKM2JiFQ7gGq1L1G8qTbpgmRoRBCnKndmpgU1EmiXvj4KTjkjpsdMn5YB02Dg9AlqTgaIe1zODa+8whjzcYwx7Dzm4xgfHx+q2jJ4S3g0bSJSCBt3n2Z0njbytHOaJUhE7vf7/b7/8u1XN4vbPWzPPTZtkGLclGCZ084yJ815EjLNzUYtVdbVnqudRgTki3W+7/3b99fW+/dfXr5/fxNptaDOzBwBiNsovnvCas42H2bDfA47I4dTuJ8e8zynx5xevh0KHzFncGKog8R6z1tqaGsMZZIu954vmm/qHyo34V34pvwONKQVEJnWopCkjACOTMopCOFQcmVXicxgMoYpomWIpCJZhAVQrxsngXxt8ZEWIcBEpnMIlM2Z0pyloneL2TeHV6FnfeJCg4MckREIshFCV2/XilV1ThZqnMwQWpTdJBaSaI2FWyVFtNUJtoEUQJQU5C0tqpUtnHwYMZLDMYUcJMXdnBFeOD4zK19BWnmCk9OmmKkMnvOM8N07wfe9326biCSttUwtUZCIsEVMZ27cAI0wBn1yy2Xb2r73W4SCtVY7LsROIkhiIXZq1TIclvN0OwSpNCRdyCPDS6dJH8ywnMXmc8/po/rpCaHv79n7Cvw0EvByL3ETYQBGgO4sG9PhH8fJO5udw2ekJ8FtMHNvMicned/3epIVM8fCWeS0+X58bMe7vAsJPx7v7+9/nDZFYNEg1DZ1ahRRyPv3nz/++O+//fHj7z9//Hw83pHVBMwAOcUZJzndtn3XtvVe7seRcYzzGIeFS9Ob3EEk0FpAMONhjz8e+sK33iQojjnGGMxca60Epmfvpto82CM8wzI808lLiDH3jDo786bNjwNIMHFWkChLE/KIBFsEVO59M2o4pgednpu2TVvc2N19znQra2w0KYVcRLSxMkoJk2edjDKkVVuBm1WkkUVY977d+n5r2w5p4EZoRkLUSARQStb9xqxJSDTRW+t31j0I2rZUTSKjZMqEV0d4OiWRUzrZInhpV+bHYxJ4BsEdSzji3vfH+8Esve8JspmMjJxlD0Bwarr7qsExj2lphgUnJhFcGQjZWzefJkiSaQkAXYqDbmYRJCKiXdvNIe+PU+7z/f29OXnY+88/xse7n4cf75iPj4+BNKSTH0IORMAjV2FGrl2YkDJl6T6J5IigGphTI9hrsswAZWOuardt6/t+v7/d99tNWpPeSddGPnwSoFdZLxV3qlwQYBRxt2r+koIIzFEEmiTmdrnApESm55khM5mVZQG0y+8UGVnyFXGrGPwXqMRl3dLn3ES1ZKzoXqySx0ziqifx4rOv2my6slGB8nYgIqqFsKwhrQBdENWmfRfdiFsQK8vCR19gimsLkEwkipgVpDvMLHyajbQn1VPQCihQ3/gK/9Yo7kkV2qcsHpVbgd7ckEGeNj0tVZVLHzMCOVMQhYr21mvyoKUFRKbNeX5ZRPpzNq02bOLPgWx9CtY7Yqj9FktkeliFTJigLiLCRJHEnuG+PPPVMZBZfLjWWiZzER9rjONMhFsWIk2EVVXaVj0Tw4jKS0prXiR2Fk3qmSJjuHvLEGnRYoaLW0JLdgXELc855pxN2jitYUpvLLz1rmAkaSaIZkxz23jfbnvh/jODSIiCodpbXV3DLDPcbIoyq1dFGBEKjVZcMWnHHO/HiOTX1+8tBjM34ga+af92f/n+9vZyv/dtC8rT5sfxMLP39/dzjojQTe/3/ePj4+P927f7y+vt/v37d357G8NVNUBeVZ4+juM4jo9VN+Q+ZzGYp88REUhX1b1vxUURxdb1ftu+f3/781//8vrtFyfKzPv9nkkfH8dTto+w6XOMcZ7ztKkcc55jnCMOT8t0h0W4xcgMgmXa8MMzW+stT04F2i7DdExMSzL2aJLOpJpQ0W2/fdsePxQ/Ol4bPia5IlImSQhBQfCArWY0pLLvNFtMhTWeIsZIZTQiBQklQGALBksCwRGe6R7TMfimlcglENXWBpkAp9CqLU2AOYVTydiNgFRVjszlHiEm2ULZRQo3COZU5bbpxpGYKMEf0SovJQzdINyktW3betvLA1AZPSa/tV3p8XPmtEkTdjqFFKQOROERYcyzkAVmZovyOMwsOVnI3VlBIe4TQnTiw8Y++zG2l5d9ezQRtCainEHE4pZESokyjnJyZgOy9Rt4AjMDivayv73evjW9Pw6KZKZoQqikAho4z0cPTxtsE+PIcXDMhhQakuZpkzOUJTgnjawUxOWzrFXp+iB/PNLck6kcGoXsJ86g5ftcyGvKtmNnOU+XkVDz08vXCotzxN5hdnh0AatK711VR9rjfBRrZ9jxMYSIjvNj2vnx8dG6bNjdW6ZHDiQ87HE8Pn7+/fc//vvnHz8ej3OeASAteleiNJ9JIqEhya031RK6qpnptDm86p3y89zPICYnP+3kSR5aC4thkwlBC/1Sh7BqYvGkZVyKmas7a/29DOD0RfF6CjYUvvwitVXgqtOlpryDaVJQtbKnI632N0nIkNX5RjV4dVERVqnDoTBzEl8GHA4SZuW2t62rrnAdaycoaWPZghuBg4TRIAxupKK8EZroxtpJFawoxhDL05MdK3xRwZpMBqtQUwmtxbhXkNFN3cv/k8TSNgQ4MiDMSjkZShQMIDwiIFYmkfoIhVt1+dVLpaoixosRBREpd4Fd6xlKJq4mbpQfLoLMYoyBdrK06sAIs7RJZufxDh/CqSBJA4UAXillouQaAzIXdAruXnWKqIa9Ov9ZmsUwL35vqmqXventdttulYTa+9Z7b6rgjBp7qoXmuS6sgmiPRMF9Mqu2cTVmr03rtfkDnjCOp4JV0Xe6sBFPI9FXtVWqVPu5rLg0qnqKcKHVr8/C/1DC/v9+rc3LJ77Li6S/xrmmvW+qqn1n6dI2kpZojUWlS9Pho0hbF/friYkvJ2l6AVjS1+kwkhksK0SJaziu15AXcySjYBERdo4KMxZ+pJ4cTLQ6JC7VuYqGIqyawYg404k4aZGf5vzcOD9f5C8vEYg+r8mFxYrPjkh397TldcsUMBokEEQStUwNJhSHGFm26doc1044IcVbSqpaqqqKTYGwiqoqJSejjjioSP0XSouqlj9yb50utDqHyq0BJZ1KJihDXZOTiHjZK1mYu6hy4yTOiHREMAknJQWTNOnklgsNmxx0mZuT023aiMPdCwzE2lTa7fVNCElknsTS2gZpxPnrvrUuL32/9+2l72+3+9vLy23fI/PjePzx/hNNddPW+9/+/t9///F3GOY8fc7j/ef77fX765uNOc/RNm2tcStjRrhlmseM4cPMbBxjDBtj2mmj7J6hqrad27Z11S63bev3++1221vT1lpZwmnVPaz8kGU8nyaPMc3GTDc7TzstZpJbWtACqXINXmSEGezGRoDTY9J+xvvH7DHA0VIR5BCGMEsj7ozO6CAFlHMDTcSkDFQsqRTzYArOEMoNrpQN0eENLgjNVCYBelLNTSQsQswBslUOiiRhjUnCKmWBSOVkri6NJKDqy1qh31ZbhQchuUpVkySkDEEIFm/IJqxCQhAKoRAkg7Kq4SILP8YZ0freWuvby7ZtKs86EIYwyJOmW3A2CiZnTrVhMyPImYki6zCTM4JgZj7nchC6AYigpMiZFAGnkKSAC7JA6uHnqaK5bVtrwtpEMpwzrewrV4SLWSjDiZXBwtS4KTahJqQKssq6ZyhluHPF+IkyxN1swia5sU/AKaeTS5oJBYUnKGN6WoDssh5+teLoOJOSWBIUw09VsBg3UlBEQBj82XLaNhU93ec8aU4fY7ob3M4xjzM/Tt0evG+b6l2ERXg14iYl+Xk+ZkzPeDwe7+8/TpuEre+NEAUU8Yh5jo8fP378/vsff//9/cfPMUads0mzSRcCkTAJkhBIXzwjM388jsfjGOfMAjMQc3XGIpgbM0XQMaan1brObZ42yINDmVk3UZec1Igo2R1zzjlPWyayq9yiUo0RlF6I0PWoo+djL4UIIqiII7I+/ynMAiv+TKYZgRqFCwFEWty5pb7JVq4G5mrCRu2xQFWBp6K993a7923n1oUbSyMItHHr4JaikSAWsHBT1q69qewsHbJJ6xCpRtzaiNFz21L39UAggkIIrIpoKFlCNF0iUb6i9XlnVW0c4MiEO6dZeJwZJZ0HCSMa1mPPqPJo4R7kWXXkFelagl+9/oF4xvqiyH0shTwoV82c5/n4IEiSJrmdR30yYw47HhQzGyBADVmUlLGQlxXtrb/gVLr56uIBCVER+RBEUcNDsUhUddu22/W17/t+023rzEluLHSBdGpdxSvGD4q1Zi0nXKFouCamerVp/fsav1bnzbXgew4HK9lBNWMFwFVNU6SP9ZOr3pqTUHcoD6pfRQo3cs1n1elcrrJ16dJ6/DyntzVhFFOfFhK2tdZ7773X4EXawS1IwaLaRMTSMvNZXEBPcMY/hi6l/CzMVXmrXVQlERZZB95Ytev+rL6oI5adY/14YeKvoEAVhZFHUM4gEQLjAjhfR6PSsCIzc07/smRcR4+1cl3yGgFYOWCpCziuVazVPxRF7FIcZd0f6joIj/VucSIoUjyYNcNE1gE4IzhIMlzWW/g0ozFzxnL2ffnzE5ACZghxJFG2FhHJsPDyo21NKIvhJxHknAox0fItqGpr7dZvW+uqnTPIw87DKRoUzGYDJKzCaGIm5ANzDKMIO+fzlDtn0dRFVTcW7nCfmU6Q9ACw77uq6qZv377tt/7t9e3b/eWl7y/bvve+9T7m/OPnD910G8cYd23tnOMxHvV8fbx/0DA/B7k1YWba43aeJ1TogvLO6RHhY84xPh7v53naGOZjnmPOU5AiMrf95SX5vgPo+77f76XeRQSx5BJQl/RTUt8xzvE4juM4prnPsCPCLc3TkqZTWJ7lgopqJGMnclYjcZKWcpAeKQ/Ldlh2vQkaK3kV/Cp0fXWVXXhT2pRc4BJM6VhH1rovg1LTG2JD9KRO6IACLZURncBPI4GwEC/EXKQkGggKEhJmUW7MjPJzk4BrP0PsC11METKbmHXLoAkAHABa0EKmhTC1Rk1SwYLkWsujtkBYh6tMozWKNZV9b/e97/UxrLo8m37GaW5IVm5dbzQx3cMywi2coYzVgmYcxJhz+izEq1kUZYYK+FLx8eTMQNRRMTgz60HR2tG6tNaabiI9A0TKzCpNm/bWRQRM0oJ7bju/7Lr3vcnOJL2LuLtNkfL25GmOcYIsY5jFnDAjd5hZjDOGIZIpgAYusfC0mE44x7DaU12JawAqfGO0DB1nkid4cgs+43bXhBDPADQ5SbqCmDeIZTezSE9yek/36eQfI/sHdybKFxF4aHFxtbEBCZt2TvsoDODj8Wh7Y0nmZM7IaSPmOOZxfrz/OI8PmyMWypdatXaE9q7btik3BQskZkybTnme53Ec53lGhHDZopDpJOtpmgxzt8OOkfdbb615eG2NJac07qPrGLZKOdgN08acw8zmNHfKQERSilOSB31hXq4zvQipVipBaKHW3MOJCCVeKTwCYZHM3IRTSMH96pOJqzuvhK5C3Ui1FSWIknkjlm2/aWvbfue+ibQgBCtBNt2hnaQz1BMJYe3aNmldtLW+QzrLVh6ppBSRKMP05fldLDryymiBUZUvUYyAaqFR5WhSU2jWFDoAkrYlorx20845TZdifMkwzMmqGvmpMXwakoo3IeBgKo2JM4uDMFbNctRHnSLTZkw7H8fqBEyf4/A5yGZ6VLkmJ5BBbnVCMSurOS2/3mpbKh3mH7QigMrCr1q65WqZVFkPrUX+2bbWWESwAkRPL1HFQpPXYLMM+1+e7ksPWxLU9TnM1TDzqXg9neCftpX/5eWiL52My4p3Yff/caRYycQAlYFgnXq/oL6K/fOPKctrtwUwVxW9auusHdIWqlGEVBmtUuFPAckX1vRz/OLVDh6UzhlQFm4UzESqzI0hiBhjDp8WESvYb16Pw/M8z/N0W83CS+PDyqNCWFUXuz5TUZ2GTQQ25tORuSat9UddwtXlLMTyfpWNs+xsnNdUjLIAXzTFT4u3qABY7iVCRHgmX9/18xZxqWXBuIZpz0AQmXiIIiElilBkOUsi4V7XKDEhkgS0+Hy0cB91cu+ZAAIsCGbFqo3gTLhkkxYRIrJv275te+ul1nbppVB9zED9j6jzZDYWRTJzGZvTYxzn4+OoDGmt/plZVPZ9v7+87Ps+faXFKpMoTe/3+3bfXr+93G63X17eXu73m/ZNtImoCAEvLy+B4KN9fHxMs19++aU1+fn46e7wUCxQ4Rp2KzA153BjyuczbAw7juN4jDFPn2Zmc9ichnBRIKm1Nlf1EAC4x8dxOn5q3xMcVahJ7DPO8/z4+Hg8HjV4DQ+iCBtEGQjiyEXKL+9mi0xKNwSxJw8SJLPxR/It+WGfvfUbQ0h8tYKqsG6iG8umcmtt3z0nOyWSgjNaZmcwg1IICvT6i3hPbqo9SZEtg9MW2Qcr08hRsmgQM3HbRLUgHV07gLQKojERddEk9zkf492O8Ek5wdF2wQxGJAuBw9dBFIBw9oZNsTG6EK/5nhhoBYKuNYkUXzu4Lk+gAevuIayDbU6P86CA6rZH+PCIB6WkTXdS8TJOZMFqEys77+mepR4lU4QVm5OVSUggoTHVvXwpoESoDGa01vbdekuR1rS1fbvtL7fbbdu21lqvZH+L3mPf+LZJU00i5TbnOQmZ5HAJB06iUSTV0g4iGidTJThGgNCBVGYK4kqU5TQ7z7N8TQUuqRuRbv0bM4NQJNwkkAXpgKbBAtJEK2DmBFUIoRvtrxKpxMnix2OGDXM/TR5TtHGzNmdn8pmWcDCRhJOZzdPO0x7Dj1bs/5zhp09yIjse4zjP42f62YWjNRhbROO+tW3v+9vry+vraxfNpLCMFSUdmQgvUaOu7BVUAVNyElMwzXAfE0iS7ORMZDEtzDO7t+njnIdFiyBmccMxxjHHsGkRkUUtEXoGeC7XedEKy3SFbGWGzlyKSSQhAkihjKqwqyLqWstXIPRKXVWUHBeai0XBwqJBq/0A3FlEt7u0DbqhtSRhqVONcttJN2hLCAeRNGmbbDupsu6sG0ujhfiqoUbr911rnZVlXBhvlM5WWkqyJ8Bl+d/AzKY51QlGId7IwiLTyRzTYlq452qBuZ6+4faJm669GjGr9OTNfBrNCGXyDEEqw5JBCEokPDy8VryyUsU2MM82mssHEZFZhnEGI0EBiuLGela+hChJ6yeSFrgdV3Co+sPCg1KZhaUrbyrK0Mq0MJfMs23b3tt93+oTK0LPiScoWa6n7YVUqNEE61uW6swuBhE9K3p4jTu5lBKWtbZEdV1RyV8VQKIsQzct/H0yp5ldJNCa9CqwKMv1lVzjUbV+stTgldVO8XXzuECseX1DRCUAQlhEWtu4aWuty1W5AwpwRhZq2gmZ9hxHzMMuNls1v1TKvBglRIGMyhQLgZmSahM9xjgq99uqZ9xhZm5jjmOOc87ZRKV4LUkZkWHJiuBgwbrBo8gqZSCMqMGrkrQluJbwDPdVUJXpvAj+xFUmGEEFzivHPvM1U67XiiiBqNAWAC2clUfZLwBUxTgATi7fWIKkJqgIxpJMAM9FvaWVREV6cGa6m1tmIcdoURQJSRyZEigyHlSq2W3WPlGk1We2ajoNFJyX6bZtbW/SRFrjhrrhJCOZirUaWBxoIKMywAVLm/McNoe7sYpCQNx7b/tt2wr73nqr/jRoawC2bXt9fd3vt9vrbbvtr/f7ve+bqFZrhYjFbCndevMpIr33b99e7/ddfhefM6c3kXvbbrdbU6Wshd/5frzXARtY9PxjPMY4zuMwG5l5sWUmEXGSsE+r1CsHsUUctaaJ1OlUiXQCM89h7+8/fv/9j/f398rdZ0IEWvRoWepSHVqCGMLp4T7PPAY/jB7sqX6ycQvZSCgjM5lykFNIICxPy8ioD3AT6cLbpvdsBSqQyMGZAtd80tcFpKAO2kAbp1I2Is3gJJ5klJHkBNYmrJyQmhBZdt1WFqj3/dZvIlLnoXLNKNh8Pt4/PMIs00mzCSlFqJ8UsSZ9zmrYK6KU0qbcEAJmBBAQagoV0qq2CpaqmQAJUwtLG0ZBaIUDkia8tR0Wg+BzpoGchcTcwpfDOAFd6e/KADtijV+LyFCwZAoWYgcxs4UFiwcnzZFdKZm6MjOTiyIko9/07f79+7df317eXl5e9tumqm1T0YRSU+stRYOTZsxJEZ5GZvEe/u72w+zHtCPJKkHERI0biWaTjIQmETMVWZcjLMIrA1t/7sB6T+twq/v2RhTEIHLwCJBTetjjnA3EuslOLJxCUZoeuzS0jTdvnpkpQT4O50xST3an6XCjqeuBEsQuoujEIPEUgWhOe4jlmGgHUUwGYpw2h88D5E0J2yZhIdjbdr+9/vLLt7e3t7e31ybqlSeZEREfHz8j4hgP8xErPA2iUOVkTxHidLLpw91JiOwIaUIywoMchBl+hqlNlAYmLSYdxxhzmhVAcvmX6yjpaXxtI0qn4ao2L/tKyUYRaZQZCQZLMtUhPjIIyZQEEuGu/Oy4WL8JdAldmUGc68QAhQhv0hq3O7eNe+e2lRAj0qpaByykLVHM6cqSbBDl3tE6oFgmbsaC2a4uRmJUXIg4kdBFwOAVcAVBFOkMapxwZlYncpvkAlaj4ZY2LMw9QNxZMpMsppvPcPJwmzmMwxnJSQJlYZKWnJZEEDMf09kR9SoUwzmSwtLhZvWyW2vjOGqUmcuwSXN8kJ3lRKWwYk4X6PBaztWkS6CVp0SSYJHg1wIyE8iyZBZhEgQWbK3f9v52v729vrwW6rqpKvNn7I7p6q74rOXhAqqiMX8Fx9OXHkZc93KqhdT/ItfXr/48JOVF26q/P11c18rsqZhKjRHVA43/QUmF1yP8cwSmS/+7QBuVYUWVdRaLi9d5AKrEUn95kMWI9CAhiJSLv3r7rq9Ye/kU5BjHnKfZhFvNbESRhKRwcvdpMavAJKKYLtCUQjStbxbUVQD4SrfNiGDOEie1S1fd916rfrNZYedKLFbxyafudQ2ZEUGUlyLF7lEGNUIwJCLcKoSaV/1VyWAr901c37dQZlkPw4qHWAcHZiGVHjXIigeq5/oEwO2KikaBjJJrH0/sCHeMGcW3oQjw0iozEUzKMtMFTFyVQAWo4KZbBVXNzIgAT3AAe+uqWkQxLN2O0iMtouhBQdfcFgDWE86dIohCBNu2aYpIK4Lz1ve2b6pdpYvytt1WRyaLqm77fr/f+6Zabl9e+BsBN1VVDuoWSwyuwatAerdxc1X03LW97ffbvu+tC0tMszmXpnWOMUa9ZdXumh6VQPdCoVQcw2OyLwxBkBXidZg08nG2oKpSpeRMev/x8be//e2//v2/fv7x4/F4nOfJrL3rt9c7FKr1QfBEJGrjYdN82jhznHgf/kHkHKK9zdhm7JQM4mQNkAWZxzEex3gcc4zpEaBUQJv0UI8eapyklMYxBYAnk1AKlRXMu6ARNENSUNR6Jg8YEFBpPaURRIlbZEJRXXNCbWvbvu9b64Bw3eiSYsZ5PjBo6iRJpx7imTnnw7JlTGZISpKvQuFyJZMKOggUUmM6Apf0RUTJmcJCzCLlx805Z8kiHIwGoG26yUbhPg97f3/MaZxq9gh7lnYtXNJlzaz70iqssBmWhvJx1ruBCAOb4UPu9zsooAz2IQQ4GwdIW3tpr3/69qc//+mv399+ud232+3WWpmpmdQEJjIBD58zzp/HYyDSh433Mf7+OP8Yx/ucI5PAvbUeXZJuylsDb4LJTgGsE+EaudKNv4Szn0kdItKX+/cI8wyCBdQJ6W5Bcxox7EZgbZsuFaZxVtbJVc2ac2Sb4ZkuWZTvkro9EaxgERHTBCu0a3JashjRmZnmPnzKyZQxlDmnpw+wg105pcuOF0rd+367vfz5tz99+/bt27e3JjLOeRzDhls4Mzn54+zH8U5+7QgEUCQi2Z1pho+YSanMTuTIJA/JghlBiDiPeRCxwoU9jI5zjNMyOQKUJLWRqodmrNZnghKUWBNKHCSz2omvJ2iKSABMZElCMCo0URCIFF24N/l80EIgKtyYmVksSERYNqhKhcl0k9Z1e+Xedd+075Bagkkyi/QUper/EIWUqC+qXbWLdKoKGlFJLj9Z1nmckZSSyWBHhlc2oDwvS8VWaingOaz81pxBHEkWNTcypGm7hQo780S4eB4E97S4IONVKoaMzwmDwKDGMlVba22YmydlE45kT/Z0iiQnqsch3Mec8vgMo9kkovP4GMdjnA+fk2JJIQAWW7h0MEI18H262YoSv+SlbE26ytalN+6NI0yYuupta/f7/vJ6v9/3+33fmjblQktHBGWkB+GKYFyTXgXUSIqF+IX7DxTKC8xUkli91qsYttqV62evzyxIVJeZg8PdwZ+W8LgqsJ5b3culfkluX7aTuYp6vlLu19joS92hiFwBAF4Rpvr1zaspllJSKDlgmTPgGQkjCFMdeWBR2tUohnj4jHBGxhxuZ6RJdWREJoUQzMZp030GebFt3QuXI0lyLQSDUUBMqyVThiOqgjQ4CeFIKWMgiNx8zDHnrPLpUoekCS0mdtqcmckEZVmHHhTQao1WlFRS0AVL4yfiPuN6I5kyS0eFZ8zhY5hbghNXEkIIiaQkSyKCJltkFQqpV/phlk+roEVU7imwec6RBHNCEkMTEAQV7VXAFVuvxiFIwRS1tZaZbjSYQYngUj0LMf85Z3tQknukO4SFVTgA9N6fcL06iUWYUxcFJZMkJVtUM/fWtHNTkSbctCAzSSqy71u/bb3MWR5ZEACZRMXcYFr5owvCEpa0wChd1ZNU6XW/fbu/3rddRQA8joMZyqIslmRjnufpC3Bam0dFkoHLN2lmkXmaP8asv45pxzDh0Qgba9Iko0zM4WPMv/3nf//Hf/zHf/w///Hjx49xTHfvvb+8vNRxo3VmyxQnjgJIExXYgBxpSCO3ODDoMX7I7Di109zgCGEzjzxH/HwsFPh5zsIGV2ekiJSOm1QyMhWFe3mGU5ikMC1ICSUCOSjJ0YLFmUk7eCPpaF2TJTKh0nrf+q7ZNtm3tt36JtKYUCVtRp4eQ8bWduq51hM2ACiNyMbMKprshaxjOEgUnSFRxLFKZkWk0yIuOdUhU5gLaY5IogCcAuFiRBlhZj7P8TjmMew0m2bDbLh7ICl53S0FDGGzEMJZWW1o6WwcsQpoAa56+PQ0UCINhiALIhdJFmqUdJOX/dsv3377pz/9y1//+tfXl2+FBNr2BoA5kp3yRI6IY85TDAdOIVDOOR7n8cd5/DHnR5hFqrBoV4ktsAffk9UarHm4lyecposgFZmSRF2YVFBwgqI0Anrb7+Zz+nAiRiY1xJKpS8pmba1vUCizCBdYU2ZChZuLsXZ2Z/aFQi3yFLGTkDTapCGIm6KxMstEZRhVOktkznAKUmdwJEV0DiIjEENl08632/aybdsvr2/f395++f5NRB6Pk/H+yJNmbFvrU5oSadA0AkGLMDKrWjNqSwALgFlYOYUjiVTqBlAdL8Od3I2icUbkmGbmRGJOiAxmYVNqV5luMitxBI+4ZIzKhT6dLnQ9CC9md4CCCQX5UKApq3LXlhVaYwY3hhIhqF7JjVsTLRfz1nTjvsl2k+3e9k22jSBZpWBgahsYKUpa/4tCGkG4d0gjvvoJmMvXPcMZ9Tj5THJJ+VIuJwqQxJoSxJzGmUlpSRo5Z9IIuGd4Mpo21q6E3UY7D57ne0pj1mSpxEyyiEIzY5yfAHR3i0U1ayrKBE4OKDiIq9eKCaCQDE8gnGzGYIsV/i4kp53H+f6w42HjuF7w5eMpLFlQBXjSo4Csy2qPSAInp4puKvvWWufWpQk70IS68tb5tvWtaW/SVYRDKDncfXIs5CaW450onxXZNVhCpF1j4qISV7IbkPURBEDypV6aVjH55RB6ilXPVB2u3CJdyIky+TwHLxFZqtVXTasobcvflp/aD9HTSVZwhH8Y11SYNbJaTTIilIM1agx0kigN5voSae4+xnGur4fXUOWTKFbfZWHOMhAeSTbPcRwjRmKVple2qokSK1G6W7VNAZhzPmMH9efUMkWKKBOFTUs4rUKF0nWWhUsynulPKtWwTGxfV64ZfiUMhKhYrKgLCZ/AOaQHc1kTnx/8WllTRF6VruAK8BKCaiZkSOPqOI5YxzRyS7vMjgzAJQGY05zOaElMonBc3pcLL5iJi7FXlQgiIjWvC7XMVOJggjBfnskvJsJ63wNUC1NJVxLtImALZ2aLyScCQUK9KwBWkaZzuJkV/YYhtdONtLAkYtJk5sbCSemeZWxLp9C69VU6Yc4zV/8S3H3Os5wZtJbrrKq9933bqtQ5t4xYY/l4fjoilYVVeu8ioMCcylAROY5jztMt5ojzGOew85znNBFDVwnHLIXMPz6Oj/fj3//9//33f//P//z3/3x/f7fhAO73u4iMYSU3gILSq3ODaVGV18wqrXpfnPzH42eyeJCe4yUylbXt5vDkcx6P+TgrtrUuzrw+s42ZkBQIijrAJ3Gu5sHrmAxJTQkm4oo5GSK5SdsAMWzKWxITUomFu5LKzrfGrUsXaU2UkyIY6Yls1JRaRw8JCRsx3FipO4iQjVjqKIL0TK1zOq98YiJQDrwAeVS50SpzudT0Tw80QSoMFDnOx8fHx/k4jvFwMyYO8+M4rp6Mz08iMwsXTnhBwpNIRLTiv4ySsVnBzE7r9zofUwabBDP1RtykY7vp/tu3X/78/U9//fUvf/31Ly/3123bbvd93/dMJ0SQuR1uP90IFkZDuQkYnCg3lH1QnIAjgmUXImotshNvyb0JzepeyVHJD2ZidOGkac3bc3fxBCkrCxCpyoBEuLKai51pFDHiGPOcviW1tV9AgB1K7NK6GBFblPrKIKnz4SQJEa6N67STm2qX5IRnwpKNlSJmBFAb9DSfmZGSQeSNg5m31u7bm6Jvur/eX/709vrr97fXb/fMzDC3hswhRJiq1DprQz6KrZIeBIY2QbMZfqanAtyjChGFu7aISA9V1d6NKJLMJvl0zUyqNGPZsYnZ08LhT1/zcyVUa/AaIzLoKp0gDyIWgUA9GcnncFkVc1n9DiIQLjPFtQwSYZRIxqBGIsmNtOv2Iv2+bTvaztuN+63vG6QRVtyPWInImUS7bLuIEkS1N92Wmlb6B0mylMOpYJXgOpfX5R6Vi4uouLYvJ5EweSaLaG/pw4N8sqi2DW4EbmwKMJnbUVF5VX3k35v76WYZmaatNU4ya62ZDTcPtyCJDCSJiGrebjfPMabPhAdmTKQzqWAJVRlu86R08DHtxOOdtUM4zMfxQW5N1GaCma5M6+pWJTaPZasr1Xr5aZAIFdkatKF1Lh8Kct42bcL33r7d7/feb427Vr2CjdMEjCVRBVe9khHxem7Q0lJVWIJWgmCtvSK5zFurW/oZoCtC3Orsi+f1RURrpGKSWieJRD7v2nYR559qNq3BFvn5L0s64yU3romt/h/La9y+LOfmmemAqSonMbtoE+1KBJCDKMjmIO2kbRlIqwwjk+goK8YY4zg+juM4Hx82TlBow703sHimR9W9xRzDbHjMCAuKRWyh5ZPwKgyOoEghBLmnuxUidPW69lXRRBQeRmXqmleyoxSy1vrnghdMxPvO53kSQbXlos/knJMKzEdggYgAxMRruCC+Jt1a+yZArWmGT/NIsyCocr2ryYQVTCp5uGxGQF2EyMzhnj4Ic5HMZO2vfc5irUDUzAhChLwoYoQgFOzbkZCFEwTAFATla32NJVwXVJykwrGcHBEjZ2mjXVpmQlm6IjIQUgdUJjiREBrtt81jXdpt62PMMYZbcjXDApQUC7aZ6WZzDEZrTZqC4DbOI+Em+63J4rVaGYuohqlpNs9zzDkioqnetO+9dWUFiYCIXmQTQevSDxUCIrtoZm7bvt1vrTV3G2Mys2p3vxHewTrnPKf9eP+Q33+/3e7SW/GIh00i8mnnef78+fHxfvw///7//u1vf//b3/9+HANBvfcMyiDz+gQTSyVUopY12phJg4UgEFXpZx7DRuZhxIdl3+3MPML27Q7ZhsXj9PM8j3Oc4ww/gfVrttYU7JEZ6ZAkzqepXUHOALjmG2TUDqGKBW890z3dcWrfQuZkJiYwWDv1BlEObtyYkL7IyD7dxiSPeVo6de6kdMwHkpm0wNqtgRkqTVuZILxMOFUcQlTxSBAIlbuvU5f71Wu5Wrm6bKLahAVEtQSeM2y6jXmOcZzjPMMCiZLcLxIAU8C9HknrTNha69uttdlsZqZFsNCTRN153f3U3WzYcFUOcojettuff/vzX/701//P//3//b/+9d9ut/tt2+/3+7ZtFYr0mJniFCN6cDhPSW51jpvTY2YawQkDnE2kCSQ05WZyi3kj2dKwtWlmU2UcZ7q7pYsYB7NWxcdX00h57FwqtQg24UwuUXOcZhRy6H6cfd9IG0RZJD1YUhqps1iwSgXjI91iTp/i0nzMPIUIKVehGxEhEWASYVXOCIK5nxMeQZKBoAApeVNOkp3lpty53/ft7fXl7dbvve2i7r4JojGMBZIs+yGiLphgczKrvj/VTObCr1MEFLBgZV24OHA1nCzFK1ElSgQ3SniGU1I6Q668nxEz8uImVdb7KofOVX6Zutw5dcfWvNQwZopcSgYjZe2i1uOVCevpwQySJBbt3Pa23XV76ftru7307SZtd9m4d91upI1ZCSBRLnAHEVS1NRIlCLilMohj8d+EPg09cT3Yk5ir/YRW7VzxkpcXYPnFAbAkEWfTCKHMooUw2AelSVoGU5XG8wScUSbnJmmsgBuG4UKiK6cR1yMwEORpRk2lK8+reI0zlcXCOCkyqu3R0sMZJHEcJMrSyg83x3GOo0y1lJxMxW2K5V3BtQFkgEiIiKpQnIQVpAoVCIdCmlTuO/au91u/39ptk95UGYIFOqs4P67FYfKqoBcgV3tOsRiy8ef5b+k0wp9q0xegw3prcKkRX09/10rxua/8gvj6RNI/F5pfI42f9jL66kurDMilsS1fYq0alx4DwDI0iUWUhOByZTABtG1PsBFZ+PAoS1Bmfhb2zWKLzwjztHLlq7IIUKE8j6RAOFOUzbHMTuVttwymelW9XMxlNppz0IV4VTAzZSanL1mskNaZcemLzyPmdcvjp0OrjtGq+uVFyEs+BFXtKi/zAgFEJeylW9ISAJBZGfWkYGbLBHEktAj0V0MTJ2kNkdMKBcIWbnNETPDkRkGpKK73E5yLhVBC5gWnqOwwLV5RLD0UiKTq3ytPm0c9rsAs0pSZ66ORGUHuxJJC5LF02awh8/mJr0i4shCSipp4XU5VbsgMM69iPgCZcIsIjLT1EcyMiBYGNE5N4oD7NOc5IjL9OB7Hef78eP/4+fN8fDweH+d5TjMRUUHroqpMoCyIOYm0uuxVtRxA27ZlZu/btm2qOtxUx8KOuPdZ6DHytOOcP/54/w/92wif0/bH1rt6zHmO8zzf3x+Pj/OPP/54fJwFai4OZWtt7W0plRksrEFSM26KwC9SewZG0owcnucY3dlcu/OMPMy27QFWC3ajYT6nz3man+ZHulWpYLJf1HryFf3JyIAQZ2R6wFMSFClw8ov/FxHmFAkKGGMDJSOYwTzBolBDOM1Saz2NAj6nTU+P8j2vZOQVMgcLkShBVVpr2njdLc26aJN+ae2RiGTMpNXfcFWjWhmaM0SEU0QkVS+dnjKM0oFUWdq8u2OVIHsEmVkVTNSYEh5UDbnb1toWEdONiKZ70IVojoi0mJk+bcxyparg3m7fXl7/+uuf/vlPf/k///Rv//KXv/75lz/V27rvexMhATO5UxI7u0Q3RLpZ2484+MrdC5NKqTnJIqqsKX4KuVBo4crDubEsdN70VITlFHcPER1jZH7uNIhImWawCTOEERwOgJIx3XjmcYyfPz+4aYqAFcwQRUKbUOr0lDYBScY8J2MwPYhIe5u+aTKXza3IZnRVHgqxFFTJzUfaCU9J6kQN1Js2UZW2S9sFu/Lry/7r28vb3m9dlAMZuwJdmZynHz6TzqQBNm11zaWRGxknwyNAViJuuQQrU8LXDp0RCOJ08qhVlFMmmVF6AoTkUiUAjkx5muWunphamVcCirLK2ZYNN4g9Pjc+cpXxMVJ4Iazqav90XLOAe0K4bdL2vt3a7a7bXfeXtr9wvzVuaF22Ha3ziqCv836AwEracJl+WXRRDZKvLUuureKzGbA+5wWsyyQPIi/4QqwhQhKZXGV/Kq3s9qIgZ2YbOc+wwzOChcCeMI8EJzEJI9s6tdqybde3LOCE1OxPSBEvdiooKMw9iJSF1NYdCVWRabDMTMxwgog2KmbLHD4tM1naCsSsiNhTzyMwl6FKqD5ObRnGOYVTQAgvdUKUe2u3ri/3/rJvW29NUuGcSYaUMj2UQllmUtj1uiaDUK92KYaVXWAqpFgEkjMQvH6OiGrnWJflil7UrXeNcLUCe6JTGV93iFdFYCl7UZpWPmfrz07P0vzD53LBrHn0OZzltR1dAREnsGfmlEywi0jFe9eNQ7VOVO5u5vMavDxmZAR5dZprY2RnpibUu/YuhIwZc84Mkwh4UIZggb+8vB4RnMwEi5ER6UZhBd2muA5xzBnkFpQSDubCclM9lmjJNgzhstxV0O+pFFJCqvMIUremmlTK4kZXfSpFJTBcS3aKKuHJzJRylJWzX0FXowOLEF8At0sAtST2KgQykcZJ0/M8p/lDWzRSlkigCDhFrCnCGydfq3O75umgKkbOa1QPEJVNJ1mrp7IKdpg5mUmVT4sAIasApiq+FelO1e1RbQaEYDeLjLoUtTVpnJl5iblYAm6aVRtCCYFsbBHBFuFjhqV7+kzv5qMLZ+veWoxzfCgRefr78Xh/fPx4//lxfnw8Hj8+3s/zzMxv37413u/bftu7EkUYhWjTpiKClrUwk6Z8nreIUGnSOjM3M4YyBnjC7Harjk+cNmbMHx/vAXrYOI5xu219k/Q5jnOM4zznec7HY7i7NBVtyq2rtrYxa0QwiYj03nRLkiQGUcyYEWERI/1I+0h7t3lGVoCBOQLT8xgWj/NISDgnOIPcc8wx5yN8JA1wIJw4pTopqAb+CFyg6dWKSBGglKBwinACZzmagrxcx0ynkAuMQWUGFGCyCoUgVidgkuWwsLAYfo6YlhYULp5KYBa0BCm4BpQ6KREifFORLl3ASAryYuk9pnlt5zIiyD2qZJ0GiYhrFAeiaxMRJJ3jw2dNIUuxLqeAqpbDM8IsQL6IIWZWd5tt2/b9nqAC9EwPCx9uc047R45Im25rfyKi9/v269v3v/71z//n3/7t//o//+ff/uVf//rnv/z2yy+171PVkkCAXL3i3rz1Cafehzd61BrhunMyiSZlakNXadksQBOhVVW5hXOwZEHUOZDsBlUP8zImxpevzNTIgylFGyvCiwC2QkDBPs0+jiEfg9vJ0pLQG4PBjTmGSCNmsIL1gqszAFWRLm1TVilCAJicI8OBTHJPK4uouXs6W0QGQZgRSBXZhFVSObrQrfF9V4FzTDiYvCllpLmLzYiZeSIni7dOpOXwzeBwGuXHmpkRjTg1aXiHyxrbI50zgmd4sbQtjMIyOFaXMyhNqK3WbADEdUe+ChXKFrP4x7XqroLkTGR8qg5M9QAmRjJxk6oVLbpUbSxrbwBIE1HdX1u/9fubbnfZXtt+l+3ObWfZ0Dr3Lq1XzWI9XYojFTVTLjIFf+L7iS8WxmqtJpIn+DUvhzUnOYKvfBwzPDOFmFvYTGZmjTBiQQaVwwPiRMPDzdxpeBTz3aOs90vCCWeKdHf5zO5lUlXDZDAJMtPTq4crhevJBeVFomVkODmFe2SutPN1RVFSMJMW7wQgRAEtMmUJGETMtWDNC6ehoui9MRHDBc4IJhOWLrjt+nLbXrbeVAReNUNMqH6CgISygKr6mhga9KyITgKE64IoxvJXFWpZtfAPUcd/sFXh6zx0OfC+Ery+/DhfEMWIyK9rxXW/+JJnJBJgBp5Gn89fnC6+F68SGzOLBae4+CZfKiAj4e5O5A6/5KU6s5bxvfZbDGWJFA5nkG9NAAobx/ExzgfCpSzji+cxw+a0aWbkgWSulMQ1dbEUe+ITPraYYe7V+no5hNaiNsHP8yVdmVBaMNvEpRHWnZ2I/Gqpu/xvz8ViCeh8jaqrKvuaQqpACWvxe73sWZdlXlkOD0rnyOR0T8qYc87wKAdihiT4KbytcwJdtykUSYoyozpkMyzjurEEEdbA7XW0XRR0/rL3qXen8CxJJX1y1AclkRentQxYEbESz5xEa9n0VVIlKHPk+ia50rQRWuwJd4840s19ykGmam1M0ZMFTBV3/Xg8fv/44/3xMcPHnB8fH8ccAG63GyFUWZXhiSRBNpYmYGI4UjJEfdvKPVlJuUq8dVX35Ehm2u8vxEgWHscYp8Uc0/nxiIj72LfeIizG6T5LSm6tMXrvmbE4cUTkGZ5V2KZ933RjaGmyNsf0DLMYHqfnGWnUEmh619ZFtyqWJeaC2pzTAKnsxJzDfGY6KMDB4UEeWdmjGTQDlrAQQpDxwnsEcTIiFlYyiYLCyRIVAGPQLpGawURKiKT0VOKkpqxCqmBicplTbMw5c4483a1QVWgsqNsABKyqorUgIkA4slYYQsrITPZEUGokedpluVvCRSaAOkFRGJkPAZMQIuaoyLI2blZic2YmIeZE8HjelMqFKSJVoL7fb/t+q1/WIiRzuNGcFR5HEgcFeO+vvfO2t5eX/S9//u2f//mv//e//Nv/+ad/+fXt28u2FzBIyytElaiulpbV3LMeyskRVBjRws0UW4URyskSHHH9p1EAq0wZcGaW8iYUWSo4CzpzNcbmpQtq+AEps5AypVwORxGphHv1J+zz5p4zUgIgupK1VXPHENG+qxai776/3F9eXu73GzXMnx/EVJ2S4Ex2y+kxruGe4FY2amLNFCpZO53CwdVq5gxzwzSQJCtESSII0/xBeWQa2JpSSyKloHSbzBk0PWxmzOAxjeAqIa2ezUXjzQyWhd6gpfMX4D+ZAKpaXAaUmRUQDk5Py6CZhXMM87yEHFqhOU7C5QWhLHR/Pd7AxLSCSF8efpdNB8wq2qT1bb/1/XV/eev3V+kvst37dud+S9Lkht5ZpMQtZk6GqBJDrqR9ccyeMw4t+mg9Oq7HxgUDXOpdUtafECH5HASpupBK9ieiyF6Mozo6h4XPxe4yc4s0D7t83gQhFLDtAv/T5YPKjIxYT6z1SZs2Ik1UGc08zYKRjVK00izsYCNyIhEQI7i888lMEBEFuBCmnjVhZBSNS6u7GChdCNXwkyJgllSRrtpgTXG/9dfbfr/d7vfbrXelRLgUTQTVWxBEGUBKzU9KgAgnF+mca/AiVmI8x77abWWdE5fWxcTlxCnsOrjcfc+rIj9nIxZ5zhD0lWa+VsSrKSFx1VqJfp266hpIqkjg8+GeT91rrS+LniUkIk6X4i+ibVNVXpXtSAr34YCvpgYJUHCIi7uVDbmuKAUHO0MYDHi6n8fxeP+Y54OZernx0i3cosiXc84ZEVQTdWR6SIYAIkwC5kZUSJagCl5SJpGTkSSeSZe1nOUNKhCFIldk8HrZiJltmrvX95uZy8eM58czr8CBqXr98DK2V+8mrlKvmm/ygn7RlWO4qovKPMfJnFxbwop+iJTWtUBf/iU/8TydXBdAJTvXMnTMmZmCZBVQ1hyWQW5rvwgpkHmkmfviRnDJfpnMVBjYKgpj/7KnBkEW5W+ZIT4HLycikRCQcZjF0v/WLIbeFJRzmLtZeIQ11SzCf6nNXqy28XE8fnz8OMbpIM8Y8wwzAOP4OB/7HMNFhJgYTaU31abISPLpBKCLNkaNxHUnSkZTeEokGLrQIVJBezltsAikBbEF1fiUmSLSmmYiO4dzcbt91j2K3T0oCczSWuvaJGEeI0C1R8PF2WLcVZsKbdvee9+2VtgMaVXFREmjFrJmUZ5FZO3+A+zkgfRYjxObeRDVeSaTqnBeq0zD0iysZhdKcvKkSEKAKV0oOUg9BTlpnzQz5qTWXBu3QvhkuFPMHCPHGWOmVyuKlmLyXOnyCowFo9QpSq78bmn5pZuXTh1hkRVN9ToDlN+GnIzWHzCdIqwaiFrrAr22/Pk8s7ny2oEQFZCid4VK2/rtft+2WzJshpl5poY3i8KLmJzUTShfX+5vL7f7fX953X/77Zd/+qe//Os///Off/vt7f7SWJCXgaBO7yUyojhKxLRSthmlvZH7s1XMKY0QSZPJCUFkyGBkid6Wdq0faK3gM5FZPow0LzNeTPPS8KZ9SEoLzkiER1imP8O9uYa9hSAESSbKe23mZhHJDG1tS8qt3ba+3263237fbvfWNCRZKMgjyCmmT7PhPs1GmBNDwIpkJs41gdbB1MmZDHBRutjF0wxQCDMJJbv5eZzv7+8/x/meMVmyr5+SMJ9+xhzm0yin0Tk5KJvyNoeqKAsL+LLILLKnAFxHSyapufIZUFu34+Ago3IbxqosXA7mrP2uI9OCIrMCTVUtUrImlfKlCXBeKAMmrMUjuHx4Im1jZmm9bXu7vfbtrttLu721vltqspAoCefTrHdt75JBcWUALuHqepDT5z8mMX16hurGkIBkiHImJJGgqLwwmCIYjGzJMwRhcATZTOMgImHVlumSnt6kby0mgZKiUYtiSoC42n8RET4j0tM9vNSHFQoMILsoZAsWnhYRAiIgkoMpo84/5I4kdq4GO1AgIiBEF6MuIuvAClp3DhGpV6RQW7medDnOQ5W3W9ua7k2b0rfX29vL/e3+tnXdtqYCQQhQZVWJoi4Z4rNIkbJgHQyVei8KrPu/dazMsvXTE9zPXCvGBfGnL64vfFWkrhhjfmJOVxFSfpHTnoOarPLsVbmYmRlJafw/e3Kes9xn/c71m4KZ+7ZVPXkl9p/TWkQ4URCIRRQZdcY2SlptPukZnuREVb0e5ubn+fj4OY4PG6coszCBfM7TzuE2wy28bDppxEQcxBRBIGEGJyR8JqgC9rWMVWagohhVvkeEFgyG5AIN8PMMbWZ1bVC6qlYBjih67xfnDJl+5RyeAxxV6cfl+fqfVHp3n37lC3Ldi2twi/WEIqeMDMlwc5vEQGtorYMtqRroYk6/pMrMTE+7GgWYE9cpJZ+f68z0aZH+/2PsT5vjSJJlUVBtcY/IBEhW1Tnnvicy///nzcztIoGMcLdlPphHIlnd98mkVFPQJJAAYnN1NV3MbGEvAqk0Tdbq6KNKhSg1j2B5zss2h2W7XgHoeLHQ9taISl1yVQ4AmStGzrRVWsicDkNEspCmrsdl0lhUX7gbIJyYCIp09zHGY5xzHHWV1l6Rro4HM3s8Hr9+/a2ZvG2b7FI5Ra1JBEB1vohaRf56spkVMmht4zZba+Y+q3WcWVRZu85TlLdt63vbmjYhN0YTIUiJJ1LcaLaY08OysJ2ItN5bayItqbYl7BU/zCrcWts3oQj26NJCNtk2bV20d22svXFjVgaiNbfpYxhwFgUuVA9ATzARDOQrfNgsDRIRCAc84IiwwvXmZiXvSyIiR4AzSIgFJJ4nhwQJjMhcs/k4JtXPwVsNWoLScp5mo94qAVZibixNyr4qEGLkYliXAgxhiPBkRWlY4aXNuV5LYR8eYRUYQNKrCiXCqspcKBZ9LhUSti65EupFKF09chW0wQxuut32bd9124nIJKZbRErGlhQR8xy+jQ6+af/r+7fvP97e3m63e//x49t//89f//Nf//3H9x/f3t5762UtBq2U5OIV6Enj1p48Sz5UPuVwSw+LsMRMAGkRxrCK00AVzqwbqBRVTEuWgIsAXpF4c85K2AGgn49fqgpOiWbh53iMMcY4n3W8TwTHrGCqWA+zGNPP6REQadxUutzb7W17e39/f3//dtvv2mjCtq0jxjlszONxHo/Hx+P4OI7PjCAR2bqIalLLlAAhZ7i4UQyAk6IyMiONSSNszkrj5+njGI+P4+Pj4+c5HhHGHB2MxsEc0sfHp6VbTsvwIHOKFILNObWt8UBlJUVY5qrHYWWsxMXS0qSwUFJU318Al2IWHs+9b62FlRWZToiwCqsmAWlkeKRIW+k1TJIECnoO3coez0qsrE37Jn2TvrXe+37b9pv2m+77tt+17w3NiZ2B0kgxMlEpcswUXwEFTIURSkdMa1kFqvj2yXZAiEBZ9FiCk0GZEpRMLqUQy8pKFyQLZUiKOpF5UjjmFCEX4SY+GeSUW6Oc50eyTxgf0zHXQ3brEpRmaeaVl5dRq2XN3fd9V0eSGCQTLUK4Dq9GMsBuGUzmHGufQjNBJQYH50XwVfBeGbiezTiZz3xbr6xPCEUkUWtNbvft1qgp3m77t7fb29ut0vUofLU4U1YP3QVdLkBz5a9+EZ9P0oWuDsda4ZgA4qCnmHVhoxfg9RQGfcm7XuDUPwBTwbjXL+GrLOgV6uUKaQByNl5Rai9A7cpxxdeY7ev9X965xnzrcgCWWqg4GU6BZGYGwy0y3CMj3C1rOzdH+pznOcbwabzgfob7eT4+jsdwq4bH6V7AS4gEqcTFtF2MfYUpRCKYtEBmkatxORASTiTEJPR16iOi+DT3yEzhtjCEGbE8UVRjzgSEmRERtQXNXLBASpSJLzBdC8+wOcbwVfGzXo6EFP2FuAoNqlvaIpRYqYFBwlU6a2aeVoIS1Z6wiGzU6AoBqQZIX+tuZqyk0OKGC3iJKpAEq8osqgZSIndPeJIy18bfgqTixBbV9zVhpWex5tKO8HPCW4ToGnYDTORGUT7UkDAOoWL0UbQHRYqSMlerqDAS4lDmvfGeVA/NdHeLlVfCjHmO2UZqY8FFzjmtnqslXENSJpNTQpJCRIiVmzbtgXycB6moco+2hUeYdq2+LxWidJsH5WzCzJpJCQnnOeAzKFlEquuChNum0nrhPCKWst9QSut73u/qHzHUHlOCG/dNWpMy40gn6SJtSeLm9PM8ez9HO+fZj+NjGiXgxG6W5J5CIaXACC/ZsIcnOYdXtG+az5keGWVdBVFSEgVIg5KTPNLSkwwJNecpmSYQlAicmJLT0mfAQUkMUWIhFVxygtXJ4XFNtGuzXncQOwUUFKX0KpFAJXGZmXnxqxae2kSZG3cRUm01UlUOEdm2rbVOM02itjSgbmZm43mnq3ZV5Qzp0vdb6136hvKOGwHUmIqf8xlk8W27/Xi7//X924/vb7fbpo3e3m5//Pn9zx8/3u9ve98qkGJdxVeYY65n6PPjLyhpr68YHjMJwpNpMma6rcK5q98iYtUS1DCpijHmnBFfwOs8z7K/6K/zZ4sWGkp9Wpx2HOMxxtAuSpQMBlMS18k1sHKEpFsOwIFIZuWGb/cfe7992398u397//79/rZBkuIRTHF+nHNMO8/x83H8/Tj+93F8NqbgDQRRUjBH6RR4upObEVLUBLPlVJxsqTJ5cjo5iOS042HH4/xEYQ4VDvFKxcnKAcqInO5RUz9PhnFM98+cCRVASioJzYwQ0aBkpHAl2WUF8jAn4JlknoxWtk9JROWwFkLO8EwvvxHIgtw9kkQ4UdgngRAulXspQPiq6OngjbiDenJPviVvpNt+/769fdvevvf7N267bHfZuvQtIEhac+k1GvjS9hChpEicV91yme9WhFFSYhUxr2giygqlYcBKrVHu0/q0JAKXrjsL+bBwqdgy3TVsjINSpAkZJYX6RBgQ5Afl0gZ5UAaV70AFXsQpTVBQRcAQM+WmknufFpFMkSkIJVCpcTmhmWBOd1BIBJIpwRzJbBFSS141PEmwXUOf2qbDnTgpQ8LSgwWKLoG2b/dd/3jbfrzte4NyvN/a2942zSYArDopiLhSw1prSMrIAAKrmmBp/GqIcyn36hVfoni6Sm3LAh309cqn0Os3K+M/MNbzPWtanCAiv54gdHV90otX8fkzuLtbZkzuQeXBvSjPeuiUCgFF99a4Mjy4SgaLbCtLoxBTTbM4kqwqD4MInEgQ3DLM7Qybc57pM90QbmOGz5gDNgW0gmKTw90szmMOm1V2VXPH6n4TImFSThVqwqtIEctDUNn3xcSICAV5pmdpx6niqdw9AGZy99POMZcJoGlyssMdXqXBQVl9TkgmAa7GkoQFKHOCmSXpsoaypCgi3GzOOcxmZqIwIpaHA8vQQ5wgkECyOl6QayC+2gU4MsqfAKQ2vnblJC0Ji6l9evbdraTolETCSIZAwfUxgVYSbrHhAiJamjCN6zl1Re/zen4s00YChMyc00hWAqRAKoIfYPeZScgiJDKTmGrInWlpZFJe5WocZ2ZkExJpjCSiiL7Pvs/xeR6qSsxzRc1H5a14ZlGYFSoL1kgakTn9qg24NiEITwTI0nzR2qHM4AxkS05WltjQ6gmw3bbb7aaqRJlhPhtT9BVTR4B4sM2MgEBFhICAWziJqDKICQwKFRCjd41SNDZ6C9vHx4yEUuvcmnBnVlZl7cSNiTHFJs8T50mPScfBG2c7wB4i3AZPBzGBMJEdYbVsxRpCVoF0ZGYAHulJ5Zqokk6QEjbyRtmpqrGTwgOelC08IxwOB5iCIsMSEwRp0pt2IWnUBI2CYwan5FrbUHcbgGCuiSJ5BEyIl7ERGeEIz6jSgJFm4V48TVO69bbve0XpRloTFpF9f1fZ5shRwWxjzJhjjDHEY4mitG2tybZt2kV6096ESk04E66qrNK2ratWwNV/v/347z/+uO39+/f33jVhvff3+9vbfrv1G6MEOJFcRWqlbuL0mRnIRE3evcwLGdNyjhwW02J6eER6sLtMxkn0ADbQBkiVS0RSOkdwBscq7DIzm+ERnr58AKdNH9MR+i977JoeotM98hznDNfWmYlZtt72t/v9dm/RMIKJWutJM2HnjDyNnbqKat/3/dv7n39+/3+93f/Y+o0aBT48QhsajM8PG5+Pz3/Z+Jfb3x4fTEz6xopIezhgCeP0vG3vw7MLwPb/ts+Pn/jB/tftv986ddFMn/OcjznP8a+Pvx/zeMyhvSn345jmwyJmhkUMo3PgHEt40UkVnvaZj3naqeHt/q2paEYOg2cCCpBKznGMMwL7vu/bGxOlpU0jCCUQCrd062FhR/qpZLKp+2aT5pzHOQKoQHmQLI41KRKSIVCKOs1YJCI2j4369/3+A/0WLNCGtvP+Xd7+0LcfenvDduO+RVNv5BZrlENf8J249sKgIC1qK5AZUtCp8GBF+1wzxyoyRSIprILrGkpzPN3p8r56JAhd+JLfekUfW8JFom/y7Y+Yw+cjmJsoCQelw2EdPuCQZJGqaH1EnGYeaYEglcZgS3ePGIjZmKhxF56RZEGeBJoURCKkCY4UymRvnGFW5AZrphQn7BkRTUtGlY4MZLBXLBUyayqZcG3ce9/3tm2bstzu/fud33rcOm+93TptGGJe3nlqQpQJs2AifpyDmaU10e7SJq9etWTOCmkNIq3peHVYvhQBefWpK1djgpDoFYZeKfvrFGH1Y9T05+l8LA5iUW4RmZG5xn8X7H4uSy+J9tduDJGEWZCNy6RaMA1EFBU77VFdbkzMQgXf1ooIYmrELKI1mkgECJLhEW425mnjzDwZtrGLOs7j8fkrfSpTi5hjzPP0MYvgjAyifDzOOcG0MfE4xrBRLWwpoVu/3/fKc6ocXU7HymksxXgwNy6VH+Ic0zNZRRq31qipRczK8LzE9Z7p6ZkpxMf8FJF+UxEOOHMGI1OCIEEgN7NpMyNIKNkDw+EgkNYk2ZED3IhThWglL5VcL8NKoS1C2nkNOus8CFU/yHGc7KH91nvfMgIsZer0EtNAVDVShKUUe2TqlnOc5zjqdxEigvQu+9ZbqwaiSnK0QpwAYnxNRTkhTK0tG7+7xVgbgBTFKiyiQKoqq6YiV8N3XAQqleIlAhnVKVuT1EgKpkSkNN3Kq4FkiibU+9aaFMV4nvOc7e2+RQSrWOA4Ds+g0lTRFY3b+sx8hKtQ2/r08DGqL56Z3f2c08LH1S8FhJCvGUZm27nTxtgoIeXRYwHQb3u5i4RKqUFlMiiZOGtj1jk8Imb4nFPcsxRdqiUX001bk7a3muZbxJ75feUKRXKKkDZte2tdwJXfMY3dtjn5/KSfj/wU/0ltE9/O8fPwR84HEsraO9mAp4YfNQ7LCE9YhNcWSTvJJgGkgkSpMSmhYTZ1RgiFCpQhzKrJd7lzSoYEIS3mOeZxuplmE2bpQluT3gU9jWy6KDncKMqdIpf4IMyZuTVxho3TI1VVujDIIweMfJCf4o5wgndpe+e3Td43aUrM1O+33juQ+3679XfVHk5z+uMYxxzTx8/Pj4/Pz3PaMJsWIdDWc9+39zdwmg0SEtAOvTUGUpRuN/r2dnvf377p9uf+4/v9rTVlBilau9/e3u7vb71vOS1AJCkiTImcQDKFz8FKSC+PiUUOy8/P4/PvX/bxE+cD54mHhRGglQFp80z/OxhK3juBcX7OcW7jcz8fRL4xtQxa46+kDPJAJMb0Y5yfx8PnTAqdPsS5eU+pMOm8BDEkJAyRFEnRFE2hZI6MZE4WKuOs9Kbb1vd9v93etv2992+t30Qw3YgP91FXZIQjZsRgMmFvwkxGOTzFLX14THLHHKna+5bZGuZpTHR2HR+YGKEA3Iabm033NItSoeWKOdQMLxUaoRGUacu0zClEjZDh4mBh8oAZUat81AT5jBpcEyCUwqyEJoQyGzknRKCV49WI2DyEqlTai7QpgbXWc6O4mLRlX68JHoOjumkrwzOSmCVc0ptkV7lr33Tftvum2437xm2LtrFosFTipq/Erqtd7yULABcLwvllvPJcZb0oKf3iu9aocZnlLzsYqPR8Fw/Cme4VgpBXFlTlCZX0PqWnZmRkaqZFCrSJbqGdtbFq7x0+MhMWRqvKI712b1FmFhYgskklszPgmXAKZ2iQU5aiAKiQ+Yod1d5qicjMVIc7ZtXFIjKZs56s7IEUznRe4SFCpEpcpdd90ya67fq+ya7YJDtHkxBOKmlCOjt7+VlJKu2jWjECEKYEkpDEgWK8CMtPTXhpZcTLBCpfSrsq3vNK4XIiviAXvWqJXt/kVQSN/G0a+MqNvRJgz5lmoArliStBttRuoDKAAIiqKwBXF2mCI4KJIwDLEAckSrO1wG64e/icc84x3E6Gew7KSDvcDvgBmxAJc7eRc4bNotCI+Rp6cxZSdqAi3lW3zre9bVu79SaM9Kh5f65cuerKAUvhhHXcVlrLNbH1GqrGahGsYUABLwticFIISQ3UavF2YEVmPCnG+n8UkTbMMjPdiChUNboomKV3dac5PXxePXOFo5dGFABIiY0QBIEahdDqd6oY0owAU3WMMkEJihSLDARR5LOuLrNUD8WUSuXEK3MT5vKbfDUTFCX4nD4LBB4+ZlQqi4fHXNe2WaUr19A5wJKeSRYQ+rqQFoObeAZzrAIgkUXstXRkVk8Rk8JFqXdprYmIuauqms45PYJZA9lY6t6f4R4ock5VQ2Rkfo6ZYGWp6rE6BlbZBXBLs3AEjLxxXIeae2+q2kWVZasitZc7omJkykAWAc9kbubJ2sCsPTxDp0t1XlFWHJpoCb2b9Na3po2Z9GntpJDKxCJB9b1KF3AGu6d5nJ5+0CeHsAucwwguPlOJGhGIJg3JVFgDPEssH0GWVMg+kxhJSU0gABM0Qygbh6QzXDjAyULSpG/cGjf4anuMoJLARFYsklIoTI2ZkVCn1Ez4LE/bynpY/RogVQGQldBnZ60d3fs1Bc4KwkkkcSq4VT5iifAzlbmJbK3dbrfb7X7f31R2CgyL4xjHtM/zk5uyNBmnnGNaSN/Aap6nmQjHmu+nMFbHS+N9b297e9/ke+t/3Pu3e2+blkOGtW1Nmqiy1K517Tfrtqy7PNYUezlgylXvBAfceIZMsBOMQMIkARMhhiEeSW1CEZhu097M2KyRZSU7VeSse536OUax4tNsTpuZruM4hdj0ZEEGUaTSKoa6wgYqLdfclWPNLIvyqJ1r732/3d7f3+/3+32/7dvWtEPMkzHL8eA2pk/z6elgcGutt67amRVB4W4z5hk204HeM4OVN8LDzCm5t6bEvasQhXnMsFHq9szqgH1eSQFyR4qgMfXV6gEIVV5T9b1l2UccBmnB6RkI46VNYLBmEnNDshBfKcICUkkRIUmGGGtjnTFnrPCFmkynXuvfaVYWLSLKpMZOlWJKAqlyDZW+ebRCja3v29t9f7tvb7e+7/v+1vtOrZFqSFkxwcwZ/xxHFfYCQM8e4C+Vxn+YXeXLcAr/hxcRZXKd/afc9ykLZ+ayc1PqTA1b2QOoFktRZyJVqGZrkVGh21GW/ivL5EKEzMSqFd9JFV4ui95PyywtcJE9wsKgVjbjQivu5mxGbAipSSszKNMRGUnwyAxhZkZjYYGy9K6999aruUDvXVrLJqlXq0OtVQtYVIEMBTPrti299m+xnAFIZoZ7wUFetzhE+Xle1kK4DGLs7pffoRYMysxYszO6NGO4CrxrhkiFWnIV02b+rsp6Yq/XmeNCXQWhMp+tQZciann08irKpq/UAKR7JDiFZKVEOyWYC5Ndeog5xpjjdDuFAjkQ7nZeMnlzG2E+xpjnrLaZaoInohq9laUrYmX2tE7vb7dt09veuzAhPG3ZjbnG3+VKrBuzmoY8IpI4CbmqtNIz5pyvEPapeDOzErIQtTqYNfUrvm1RgUshCbpyJRZ36EFULTjcSVvVPjNXIDvW6FZf0TaWzbHuJBJaqjVdeaTrW7OYrDw3AkXFLhdbxrzA5ZIDRikjISLC2rT31kQkrVL26Zm4G/IVpVFTtnHE1zx6IewgouQAEWrSZ8t6ScsdjaoYdfdakgHUcaiSOGEOogCEsGKiuULSTJVba713ZhWkmKnZHB5IZk1g69Myiic4p1kEsFxGTJpBZsEqxeGioCETp1KWkewpsOSiBkXa/X7f+3bf9631rq2x4pL2k1BFg6pqAKW/IW7Tg0jA6h5eRgf9xHkCIGGp/N+mfe/SW++qvalqxUKWjLacrSQQ4daFG7PC4QH3UM8pk4jLdx4xDR6mR5oHV7MUJ2Xj6eSBdDKmZA5DRFUXLA2eKDciRmo4pWUQeVjNiYkgkq3n3qRzH59e29bkMsiVbCgJmXDzgRkZamZCvSLpWVZbABFkXZ6syu5eun63uqGWHrFu59ZaugEoI7TWS3o1OLXWbrf7/X7/8eP77XZ/u733duek6Xkc47Dx6/Ponx99+9k+Pz4/H49jAFzCxzGGqrAAyUyknMq0bW3b29vb2/vb/dvt9n27/3h7/3Z70y4FzSuEonVhRlL6tQpTRMXJljEurBq93N3Pw8cZc7pZlKiunIgla6kucMrK/IxIozzh5zzbHGKDfW45k9kyPTPMT/PPSJtznGMVqFWDbaZrjJnaYJ7DiIjDk6gxESQouHI0PUoalulzUmbGtNKIMZOobtt2u91u2957b00asSXyRVNmY8453SwjRER5v237fdu33ilpwh95po+cziy1f51zMg2fzpC9b1vr8K1VzJoXVcyCJgXhQ+AcQTmxLIRJyr0LzZAgaYzGGmnhQFBY+nTOQATEALiFtnKGUwavcW8wKtLel0qpwriMSFmcyLN0qlGmX2Io126bzSzMSnLLzMzh2jukNRVR4abSSXrb3jJb6qZ977f99v7t7f2931q/39rtrW0b2hZcaECWR53+A5ail1Sn+pTLNv+fV+V/w1i/R0D9zqCsDexL/kWBkyp2D2cBVcsylrUlXr+cE4GQ65n+FRZbjpDVB3SlfBOpIEiRYEFEzmQOMgAsuHKzFjYq+XBhtUjKEGRlQRIJofIqPDO3piKyNZG1d9Xe9Xo6ZFdSSaH1a+ZTh1+1M8WWKV0WHErO0lkvT8LzQAGRi8x47cXjF5X31wyRvyxyeDng//G8PA/RP/7plU7DC931/JLfT+viLpaI/gWR+FWgmUF0GWsSScmsXBFQROo0CQHmEhDFUubYtFHK2sAUWOXfUyHuOcOnTxtj2BhuKSKZJebhi5EJKuDD1JT33m+329a4qwoj/InwXBtfpAVRrfEJINxzupN8uRnqS0oLVULvZ5YsX8WX7l9bpvobynQkZbkag3hZxNMj6LdDmstP85v/oFz3X0aElxPhnpEe4ZmRV6T+lSG5nNvXdoJeT+j6Rsv5sL5Lna8CXvq8kFlxuTSu/d7iyc7zfB6W4gGXkvq66HwR6esXwVNotQTHUTFDEVGrbJmeiL4cDM9jW+rsCrgXYhFSUVJhuW4hEZbAWmWg21YaRAtPsZZJ8gVJla8cOY8IBoJZCE6WCHcQwpGsXfb9vm1ba01V7/e3betvt7db37o2YYbDbJznhKCxkLKIJEWYe8IjMQ2pJCyelpFsGn6ORTEElV+NISxNWVtBQ2K98h2z0p2SUxmkyYrqDBMwp3Ii04f0Lk25CSlDlTYhU7KK/QVlwIIAbp7m6TNTKEo4sQAwM/NSd3mmMyE94EzJyo25C1qHtFQK1/xyQlMyJZc7u/TQmHnlb631DfH8LoAQ5LqghEqMe+1Lqyq8pH7XiIwiXFXbiqaWJr0w97Ztb29v7+/vP378cb/f3+/ftv5Wg9hj2GHj7XHePj/2+237+fe/+qd+fIxhQBjMxkRGQ7sSqVmEe9/3bXt/+/7j/e37vn+/79/f7m/3rRQAUZswZTAC4fXrB3KCrGZOX3ODCCfknLOidMdpc7o7uZF7+oz0TMkauqKkGBaRU2JGTPPh3s3POSPNiKqZ0cxPszPy9DjHOMeojWgZq01vIp2oAS3TMwRZwa5gTQqROoiE8HkeZhwUkU6RYZ4ZzE1VW9u23ltrypAKfEpzd5un2ZznsHP49JxJQcLaGt9u9/t+u+83IfU9b9v45OMhZxpRaibZDKaJIC8v0phR9gsIiJhjk92aw3HMESPtjHH6MA94MhF6AxM1EXWcTWhThFVOBlFkWm39V1YKksGXEijKlUA2s4sg4I6MBNUYExVjYAHPHKukzSUBgmiBtiiuL31WyCpLEq++JabGbeO+s+6pu6Kh3/vttr2937+97+9vbet939t+k76FVkvmlbe6THOB35fVy4i0cH1eEeOE39xw+Xtxwev6/c9F+vlPEBTlAyRViGgV0CQFB10/WeQaPpmFGYLSw6fFNEyrh4aAorUwknTAUUeTfmMjasUR4cK47kEQt7XTJVnLlbuDg5COII1ECjKCUBWEdO3UuY4A3bemqr2JqqpUtVLlMgszlJPJ+QJdEQGSyiBcyEbqMxdqfCW91o43A2XKqP6wJ3ZZMenPFsfnrxmZnin/BGQLi3LVCVQY6fPA/Aayr4CJV1rldal+/eC6BpJIBISV5RVAXauvjTmv8XJJ8FVCkATAC4nwKkxaMvxcIbE1Sa0DBJEUEqEJH+OYY/iYZpZJoOD6ivJ5riQRiHBj3lrbe9+0REEUUfaiWYzXyn9ZR4CiwioypkeVq1KAkZ6Rzuf0Z1lHLeSquoBmtcM6BTzYgz2JHWBmiqvfvlLEM0CVaF8WeeICBMSF08N8egAQYtKGy6O6lrtVhl0Jw24xa0LKi1uFyPLdFooCwAm9eqWe5zEzr2BkYuYOBQCpRAYWYl5ZKr+1duLSln09KFbEP3GxbsVdgYPArMTC0oiIVJ7UYEHYesNYvkuOattkrlWjkvrW00mWhlGZVRozRFVURVoSmIM0RJHLIUplGp3TI0L7ortqNLmAJnGaryuZAskON00OT1ENJ+J93263+3a7VTDBtt32rlu/9da6aOmydQ7tkbTqrgEQC7NSJCzEiw7iOmqgTOIKRKFItgBbOJEre4jCk1o1VYCSPCImHBRZoQtEAipsWg7sjMiwSqej0kUEUTC5pglckZCgVsuF9AifcIGZu2VYiV6rwacGhoFVF0TB4sI10Ysu2Vown0mkTUqVm5JV4FdevCixSzJlZHrVqNUjIiLr/K60OXwNr1V123YRjQghZqa+aT0zW5O5bYnooi/nTlS1a7vf729v3759e//x48ftdvv29n3rb401AsNi2Pw+7P34vN1u221v269t2z5+PYad084ZFkaQdHdFkggiGby1/b6/vb19e9v7233vd+2bkIqnubFnJnnECNCwYJaEEcmzTnsxzXW7R86Zc8Qc4U5R/wW5wY3cEavpbVmx4Qu5UjpnCC3mMMKJZm3ALYfjkWkRMzEjbKlrACLRP9++9W3bt52EK3aWRbhx2/ZAsqr2RioRMed0O6fP5y2nXxu2GggTIsMnISKmzxHTbAw7hw1Pc2RScGt6621v+95v9/3bplvudDTr/Lm38fnrNItp7tXduLxWGe7kxE2ElSvptJH38BnuTslwToMNCwQJi2iSSlMVCedNedOYRCMtQzjBnizJyMqQJ0JtBjyrZ6ZENMws4UyIBNf64mXAjPTETHjRywFGSi0GkU4hTE3FexfPALM0kUaivtLeu6MldyGl7b7d3m/fvt/ev93ev93ud91qU6SkwqSJJWm50k6Xrv7fZ4UvazP+YXb7P00V//FPdcs9v/YZFP61rpciJmkpyoOU2Im9GmnyN5y3ABkq4I+Khr7am1eW6qvvb5njiBTsSpSU2yYBk+RAJEhKSVd4BFBmSQ0WkVBURNgLDIVc8f29s0iNbUkIqhBJZhAHMYSTmOSKll0YpRolKFl+YyYuvi6ra4UWCVaDwmReCbmv69/zd3yyVv9AS1+DyLVGfkWbPlmWL0bh5ax9zZ5e3uF1uPaPZbiWxn/QNpn1TKDn1xaplExCKV9blOL/KNPDS2HP5d8QoUxiYkET4oyloFdihIebj+oC8iddypzlyAICCBVSURYpgkIruMzd7LAxzYxeLuN88nNU5QSZ5Wd05ojpDvfIBRqeV3JxIddBLnVa4Ev2HkxJTIRll/w6QZHI6oqpAacUGgAIyR5eBFIZ4AF+sk3rQbJ6MMN9ehjXEO4J34meBNVarhLPE/pKHtdF8eTJAGSV4b30Cvw+3FwNoXhhRnnVlHExXLySzySZmBoJE2sBryfeylVKDlz5cBc7eMWARXzVYvyenyJNiRLVbFatuJpVVM8qhPpd2gy30/wyz4JJq3354oZtzJcLmwRB5giHas8Ubv3W396+bbe9F5UtvbfKn5MkjsraUVVhXxfIBHAhUvYksERimYeizLWRRBHVQWJ2hmYkk1FCuDExO1N6VTS5W8wIdzil58xlPSj9E3MgbUwb081Wpoiln+ln+qQcRFCA2EOdhbuREZwwiZxgRNU/d2WuRURaIkEuDBZnTmXuyiqh4sLJmNJaEQ0MkBAU5DBQFAlXx58bcyUOITKAf9qin47mIlYXhQwiota0GNHW2u0Gomwiz5ayJ/Aquuv9/fvt9na73bZ+27bWZQPQPLfYt+myd1QLC6uING4fx8cY9Hk8Cm97+DRrvXF1zWmrqeX91vedWxOSgELASWYWHunTTvNzGLMm8RX0d3WTSy/YgwybWYo+N2RIGXPTOA2Vw1mm0OqAiQCiBgJJCJCBAIokq40/kJFH5BFpoKgL4IsUB/T//vNPaa215hmnzUCKqm6tbVsA0lR7S6bHcUy3Mc5jHBW2sW+bbHdcmpAax3qcSXCI5fBjzHOFUYdZRlCkEDVuTbcmXXlj6sKdiHnrbNrY034dxwg/GdK4KWnVVlbUTVVLC4mAqOMy7+Q2c7Y5Rp85PDOrFFqEpXnMFNkaVFwJ8Nq1l6amllYw6h5RIUl2cGOgqXZtjRsxJcVYanOKxEyUp8sJYEZIoiK0QpZNDRuJ7FtrzTySmgcRd5IN2lN6SkPf0Tbe3tr9+/3bX28//rx//769vbV9l6ZVvFg70XidFxKViet6El/uxtWytzYoAErruDT3r4vWyzTq3xEYXaOo51/W8nB9y+ebE4KTRahgjzRVio11QBv75jFI1FWzbQlKuOfF2FUxHIEoalXITFV1rylMTfkWGG6tUVQnZsbKs80KOKlQKSJCigZlIJNDi1W2+l0ai8gqOhWhpsScizil+Oq0ZjBDSBZYTMYauCSEwXXb5KI6adXu/Cb2YkLWjGVNVHO1jvPXUf197HhNj/Ma8lyn9xomZ67L6nXh/Ae59bqavoLsVwbxFVhXcCyBLiamcgLXihaRT+THRBQVcVUrK6/hJGqi6rQ2vQx20ZrCK0ciw8LNhvn0mB4251kbfGGIcFPurWROlA6GC2VVtnHTLipCaW5ZuaTHnDPClfiqBq+EFvZVVsRRDlbkqgrzJE/HFRGENY+rjTjCPZHEkR6XdIuAikmR0tpFlKY4EYnwKkGKjEhwklTpExFRGVCZqMKqpaoULntK0sofFyqNPDGz6GphEl35cIzISE5oCeuXIjAz85nxWNJggJhUqpK2WOQLdV3lE55lUkCuNviFzgugS6HPAk9LvUJrglbAC7U4XbKz52pR366Qay0sIKrQffenXuAFeAVAOSyIUsFJSVVjKAyAPHXrzNpa27e7Z9jw5bKOeF7khfyIqGlf+Bi1Q7CUgJlkBkG17/dtv721rZfejkRBtb+mACQyIz2Ssjo2XnYnpT2JsEgiDscwP6fN6RZJogmsxG+AnEdkPdPVpplxE6EMivQ5wyqmLWOCouhM5UtkSYhp5zjnMecYdo55Tjunne6PsElCIBbJnpkRinSKGeDEBNeuNla8Ocoxv0wOqKxrSpUpkiKQlsLS0RG5EEFFByWhRgLcBCLUl4QecKOIWJH/TE98/5z5rroX6noFqhUBZDbcTLWmw9eopFIhuLXWtm3bb2+3+/vtft/2fdu21UEurYamFt53yFmNeSyiItJJWqPHAfMxR7BnhA9kK2dXZBe9b/fbfr/dWutJOp1SqCGraN7GtHPYx2M8jpEp3FSlsUqZK8xTNVR7RCTmOc7HOY9znjaHWz0CM5FBcE6iK3ZGEmC06hlaG92oaYnXbVr7usgROT0tKViZNdiFzKUpEemfb99YlZktXEGWrq1J6621Al7ceiAHc+k1zuNzmjGRMDe9FD3mMc1jTDoEIGLPafOMMeAzLdOjYB+qbpI3QUcyBdJZSJPQmoTbviPjdKN6PDFzRsw5VxPoJVWpRa+JeO+R5Z/epp3T5DQHkihElJWKCdk6NcJIMRaKAEiTJJ/YKyRVCFKltCIC2rRt2vgKCyydSyAjkzNQAhCSJEk2WfEgLESAg1iEmu49YJEJfUxP3kGaslHb0Hf0u/R7f/uxv/94//HX/fuP7e297TfuvWrcvRJeE0lMyV8Ju1+L6H8ksQLEVzz6b6Dq//lvnn9PL8qPJ8vyQpOuNeH5CUIs0lKVItG2tI3ipFBob62Tm2dYCjlFjW7+E0t3bXA9YHAKioI3KvwMErUKPitfYz1COCuKiBkUAorg2qkLpRNElFprQhQRXBTXwk8J0uoNYBCRKNGSlIYulPnV5YP/dKAWTvoP3NULMPqCUF/H9gshXV/4dUwu6mLlVVaPwusnP1+v5Nkr8Kpvt9T0zM9Pqw9i2V2/BpHPgcL6yJ9uviCSkjYWz4nk5eFIRERlsy9rYYKkzIQZ7ubDxjnPY87T5zAfDBA5i2iDNogmcXJx4wgisFBrogUqUD3p51KG+QCSRGtJCEpkRq5S0VUZQSsa3iL4whQRoS/AqxaSuDIhL0BJ1xCWuDQhoECsuNus/1KE7XdTSCCeWjG+Xi8312pnr9NSn6MZtbZeI4IvnvL1hnodF14k69f7V59mSZ7wVB1er3/wnc/X0ulcAJSILtlubaeIiSFf2b+vt+jrVddai2f54wvKN7d/YP0gCMjDkrOXZ8uq/gGgGvGJsratb7ediEYzIrLpr29SYKuOkkWVmmREIETnBElJ01rbWt+0b9UaVplnzlWbui73iiOt96xeG1wlSJFUBAkROeIsA5rHcANJZTHOQumcM0PTHbn5FgFxltqPu1ma2Ygc7gaEMERTiYlQ6SzuVZn0iHPamHFOn+EjYgZmRhkVwKickHRKXhZDIuIIcgsjzorBc6HIoPDIKVTAKFMCAha0Ro2KFCu3NSARkimg5EZKpEqdWS8rRuYk4UI/S4xxVWXrc1tYJtprxEXmY+F3Rmtba/X4nc/7ot6nr9d+u71t27bt+9b2xiKiUSI9wrZt5SqVauIi0kaZZxeuuo+KlA0l98U9N+lb7611VQN7YAjYEpYx3cacn+f56/Pj1+cwi9b3fb9VD0FtJNxbhRAl5lP8Puecc37dlaU1cKFgBLMokBHsYIDTKwR6lqhniUXKIIWZmCump0Y9JYAhZmZ9a72ml2eERbpNFm6ZGpHClXsPpGTC7Hwc8zgf4yw9hjZTsznNLI5jcNOmJmSRGT5zDrcR7jbmOM7zcZzHAPutb03atu1KGkZOyUQIpoRy6428s3uI8LZtEVFBZGOM4zgYIjwbNxGJ9ORskt5kv+lwOQa3DlA6QiSYvTUhYg/ujTp3FYTFJDdD+BwOaU6RuvXadJZYtylX6Z3N2VsPzwwnFkSYWRVuE0DM0jev5qtkETQhpSDmcICFSCQpp01Loiq/67rfpd/7dr/dv29v3/b3P7f7j+379/7+re079y2EPcvYLGCCCCevMt3a2BbT9Xws8sWRXGO+mhgz8wUOcDW+1Sfg+vO3OVfRY1l89gtDc21wGRU3gMtACUYSk5JqtkaxebVfVDvy5VwzcKI4XnakVd5HEQXExCsoZp5H7701+jwejzkCIdxUu0VyMcu8NtW1DgU5ZSJDhZsymMPcHcNNGcpCycyyVlsup9VigUvwK/zMbCdmaKvh0QqXZJYyGPL69vFcwJ5rNgvyGSp+HainMHm1mfnXurXWSNGScn8BsgtvPUEerTHTpSuqfMuX4dRzUXzqYJ6S6oBxSUYAAIAASURBVCVCVy2BDl5U/JkuJMBqWQCcq2GByC0yqwF8mWfBq6N0ER5EZWMpXzciwmAJbUwUjErWGn4ec3za+DQbNo7H54f5uPUW5YaDrLJxSl5DKmeJRoRElUk8k6CnHTEt0tZASKCq3HmFwVa9WAk08knU1SENjxng1hojaqzQe2/CZRzIzAxXYUlFue2Ji2lDeD2MGAWSSEgtAkhKzyoJM6VIFkAEHKpa9GgF4Ua6uUmViV63HrO2ppk5fFSbe7uSt4qdEoZXkTZzcbQLF2KlTtRVvK49pJltXUm4rskmkoCZ1QcXdll3ayb6svtJE1YuMJdgsbAkekp8vMZg7tIbPaWE9OSM5ZKm8bPDmK62n7r2lvpe2DNseoaDaIj18Aw0QCTAdNvuY3qKkMUxpqrSCpShWhefb1iJ9gC0+iqR7j7DRZpkjOmsotJENAOeKNtuU616YGUtfOyxnJoe06pm8tkbS2xunnC3atU7y4RrFoHpdo55zNN9gknGpMc5bqb9bO3BSk1JGmeMYcNjRhjSM40QLKHEwiQinKtDZs45znOexywf3VhltwWmp4/hh3RKuGNWTDkQgIOMJVkgwixsmeY8PTzc5ilMqqxKvWXrKeqSSRplHkwlAiGYQ6hX2UhXbkyKTJvXVLdERMpb68VOFYOojQvTX+rYtU+mEhWoMCMyC7g9Hg9mzgAvbSsDTCRV39LaptrrrqQy+W56DmuE+75lesWXhBlT2Pw4z8euNMZId2LMeW6Nhbhra6KXNTiZWLSD1f08xxg2P8/j71+//vffPz8fc07f9tPCt20rO4pnV6mg9Zjj8/Pz8xjHmGOew30+jsfj8RhjuFdbMxMaEm6VwMQcEqgL1JB8nJ/ukqUAJTYfEVbyzVyPUKhmtIx0ZtZdGgArIZlNjhRPRQpxjR7IDaD0KEkg5eIB1iPAYTPm8LytTTnXeggnGFfL7bR5nOOYs+plPN2Toh69RF5t3iwspDxl3m+ttUaUynQcnxXe/+vXr9qA9r5zA3EmJeDBzuIs3rboM/tElSmqJndsm4ApHU3AlOmpnMnINZuY6ewibBTCDa0K6c/TIqK1bSMag8eIaRmhSQ1UC5ATUphIWHoTauQl6IaqiudEVuRVBXvOAEsnUm6btlu7fbu9//Htx19v3//s9+9tf+v3t77fdOvSGhGVwDOrqHIFzP9zZ3y9IvNJX/liRxPAMxQb/5kX+z9QOM+kiRfO5nd5/lP7JWAkmweraocbbAY3YyVhZvXVQSnMXGXuSE4WuF3f4gtAtNYAREBEdOvpFu7neIAEWJJmBjw5IhIupZlnaoRKbHACCHvvAOg14EPoWt6EV0Tpbx43EdYrJ/AJU5Z5IYjWYHFh3ecXVg86XJL8STWtCU5G+Y5Rqd/X68IH/grg8EWevR7nS8V39XjQ777If7AR+I2b/NKEAV95S5mZqWV1XuzIy5cYeVSuUgSYygRe/immaqokW5DFVseLDzLSAeIgREwzP+bxaeNzzIfPw88j3QRJuswJSrK8FLgCIOBEyVwIwecMBCIcFPAvo8CCripIiqw4osxYnSEEgSQHX61oLuV7ZdS6W4vHAnovJAp9BR+gZHqsxMaRsbhwIhFmDvcy0KWHFxBRVgAFYp7a89aayGUq5KwL7fXO1darwqFpExYSvro3g4jq52ytvwKvJ11X2WmVhPeUdhVKLmT8SmN/8aAv18nzqntq+8rNZmGUIQKsKCENK1phiQ5rMRaRyK9NwvoWL7LCZ8LI5fwI90haTZGZ6Ii1ZgeJSHbKc931IiUj0Vc+WNYOiQJ8FRY7EVoyWmvg5l8avirzWL8mCYg8YpBzlivfZ3nK0mLajInSYwV55pwWSRGwDPecZnNOixznrMzxMU6LGVk4FT8/PqsDW0S0oTXNdPNhNhIWNhNGCOUQghInQlmIyGzYnOcYcxznsPEY4zxtjIiACASgSTzNPWhG9f1ykDgzoMHkRM6CIKd0YFAOJktMZoIqKaeMRHqah3TeRTNVEAFSeBCCSTkak1Ym4YpMLqdtVuul3G63vm/bti0R+pWg+6LopghS6a5LuylS9eT5ZMi+0HPVO4xRt2fm08OzmAIRItLsmdgIkek2No/2fr8d5901DiHKGZ5Si+zli+JEujklBEj4OY4xPo/z1+fx8+Pz//O///Wvv399HidBZgbAw02JSWVvvfettcPdx3F8Pn6d5znn9Gnmn2N8FpmXpTsMSidam89VF5MO82uzwZpKCK6AapBSBhF1FSMQOMNbq/k+MUM30Si3hQd5UnqZjIQyavPpnsSCbCxNtYvGIgmEIAVmIyDcRKQLtxoEldKcMszCxhxjHuecZyjZuftw7wAjA1HCdRZhFabWeN8rjdPm+Xnx4UlRtma73SzCNmxAJPmwT/NhOJNP1lO2qXCkiYr01M6slA4lRmZYipAzpZiHZ0jEowbnIqkKECLnHKeZIV1ZRtgYYZbABjaiVvqSCK+6TVZp2EDEOQJBopkpeNpGkOBIZAq4Bbfkxu3ebt9uP/66ff/r/u1P7pv0xtKWxps5kliFWOq+WFKfqLBWzizpyNc0MdNXmW4FwlV0Kqot8vk5/39hr4sb+3otJiyfkGzNyzLB1Cgh2TgcbUNY2CRRsCQJiZIoWCEKl2RZHnUWgJ5F7HwZBS/KmnsXcj6PaXOKJEiIlZUU6lnZKllcmTJUSGrmlYLIK5Xq6llVbfyiYsZXUQ8jAhBpNQnKQPJLQMPV7RMAJ16mScykV/lPuvuaRLNcFOOK9cZSgMWTo3pqYEqLiqJx8NtgN5e+pzxxXyzXxVb+03z6Cr9efY5PBui58NdrzrMixzIzOZw9JCKCqqQs8GQdyi2PvOw/QFFl5T6LCLMRYUzVrRRuw23O48PmY8xH+pnh5fwrhYEqC+mVOPJVrMusQhQeNsPd4fUb1RWX5fiR2iC35u5EUsnEYECymhvK6EoUkWYmYGJC1c+p8qp8LdTlhoxW/YwEIupNmlTFPFOuZ1IprViZwEJ8nl8ZxcykIl1FesV3uZkTERN6U2FK4hlOxXq/OFSSwNzXeFqf8V3V01O+TqmMw6etrKqCS51WITuRHolWTYS8FFqLIiIym/SSpLUGncwZ8oLFrVa7QnuZGVm7i+CmIBamcZYEPiiXiWRxqxWmRPwl91yQyyuLMsKJsi4iAGDyyMhwc+bhhFbj3SBVrZz985yq2rS31vZdA7lW+ahUKGZmC2SGRcnJyzQpzFIXk62BM1fMFbGshP2M0/wq5zarYgCf4T59RCmwzS38OM4Ax2pJXiWeFn6M6RlmNudwn4UgAQR+MjMJEyVpWYbcw8wGwtItchJMOYWgDEJsrWnjCPN5TvdSLo/HOU4bc+CC+slOcniOik5NtuSEUEqSTGKLZbOLgCVPakZhIs4gEqQgKGa6ObnRxn9oMjehLC+zrPsiG0Eopcpe65kuggJeV770Al5EZDGJGaitbJMiTcWl95rrPjelAFrfy4McxDNSLM5zPh6P1trbt+9eZQMViF2KV+bMYECVd+51W4zz0/wGfzcbtnlTRs4xTkrUHa3CQhlR7ZUubOp0mj3O+evz/Pnx+fffP//1969//fz7cU7V7qUp8ZMSrDL6tvverLnPeT4+H78KF4Z7xPw8fx3j090yfYWJB6Uz8wWKgtM9wuFa6jsEOBfhkSAiTSLmXLXqde8skUzqkm1Wr4JQplQkhDIZpQQZsmZFXdtt2z2SXBNoran21rbel1xua31rqslh6QxCCBKxyqR92nkc4Oy932/vh5ytQbdej9V146P1LsKNOKY97GQiCcfp59VYE2bD/R50U9WEH/bL/DzncdrnjF9On8EHwakpyYAaiYCJuLGzaUIyxTFribGosVda6xhBWwLkLEbhkae5mrNH9bkkI0FJ0BJ7W16hokQkTMFVp10pjmBaSneGKA0HcZO2U3+j/sbbG9od7UbbnVuXLrmefBSgrGo0pmW1v/jzilzBEo88KxoD//5KxguD9Yqi/vHBcxz5j7X89RUXA7O4k6f1r3YDJBDlbGp9ioo0F2UVDyFWKgkxa+nhKmAVmcS8asLLMvKiGmEmJXXNljXbDEJwJikopLqnASiHEKsuQXQRaGaG0srLJWFmKaM+EfFK/CNcVXprlwyv9NOSVgAgkWq9+3IxMos0+mKwuK6Ksq7l5TjzTAtPBFWV3e9pWy8n4ovZepXAs/ATWj3pxnUWIp7A6x/Knn9/vX6j179hfiE8OAo31K4uIqpufKXziDCzVHDairSIsAp3GBUW4z6VKRWUMW3Yedh8eIz0uShhYoLman4gRsXTZ4TVwl8x9Mh0jzHmnF4JCfVjelomWFZIKYkgo/wkJfnk5ALBFz+3JOFWsusIIJj7wgcRT8mFijIloELZ2mWAz5jzpAQBIrJpIxUkB3LClBnaXFW1b9u2ta6qM/zC378lq10mJoiU8v7l+NPyWBBWqz0uFcgaiepW8zt3V+3FeHFFDF5DVSaRZa9kki+7xrXroOf/rQtAVJ/E51PY99SQAVykFolUPK2KRH4NMV7p2Fet/ZOPfL3In7NRMBFWx+TXCL40YSulIiu7v7WWUSFhnYgYy+aSAQ6eTBZpl9mwTjcFvz76vpjRyt6LC2G51/UwhpkZhV+sp5kPs2lmM+Lz46iWtRrSVuHvLL+Po6aT7hZhvqLzHTUfuXJoK1QzzBEWPtIHpQmHMgmHSramWyNQlXZ4pK2sAPfMcgJwEoKn5wkx4gmKylYNjuAK67JAgCLgoAiKhJOEMHOi+EfLcLfM1JGutmT+yqBswVwhOVFikbXHI08iziAGKmfklTgXkaj9EPjLzFE5f5BOPa5xMBED0VoL5iuzl67jP47j+Pj4UNWmwswuT31FVr0oAQxvgtZ529t+CuFtznNOZ4H5SRxpaE1UiAp12YlkkBO7Ks5pH8f4+evx89fn3z8fPz8+Px7nMNe4ZDCzJLCwfZ9+9NYy3cZjzMeYo7aEEfPz8b/H/DA/6hpjSAVDIoJS4Fy15r4SAJhBSprMkkyQRuKYMHdxikgPIReGClk6gdTN6jFftz1iLVG9NUGOrPSZRc5v2qwHRweT9Nb7vu23/Xbfb/d2hfhxJCwoHOnIcJ+caEzEOYd52NHP4/bY+77EpuCM9QAi4q1vAIPMXUXavu8IP87P084Zc4zjmNuMM2jc7psqJ89pjyN+nv5x+sfMj2B3hKikkNNRifPJt6SdBMlW/VlWYweQuweZGsVw8GRW3QChjDjtF7KDWFgSBsjiZlcWSvVqLipeqAkiictcarHq8UiISIml3d7397/atz+29z+29z/09o3aHdKotbLbXQskRUSBm8AKzrv8R19gaK2lCX4ZDi6+6gVs/Uei6/d55X/EWi+ffDE6tfSu/xULF5VeRgCvnnthEgYrsbI0UmEVn0qsILly9YlZgwL+VVi0VqOrCbjC6zfe7By2rDtXEkHt6BOMLMpbuS5gthobEjErM9oXK44wLzmZCAnoZYnizMwYEV6+6EVArUajLzKJWZ+UEl7oxvqNSoTuFcWe+SyVXosBWIRXm82KC6NX4PUFtqqRZTkN4UXufYm0vhb15yL32yXx+7DpdWpTf9nkGcrvTuthGhHSiCKI4e5XViAHqIsAsExfeVo2z2POeZ6nx0TMYEoFI8cY4/yY81HdJdKoqShz+IgZVDcP4HUqAWEWBgkTJIwixxjDh5N0ISaRiFlYuGnb+k2aRgRWimJFRSkq0xJg0IqKyNU/bebkhFAGKQslCMkgESUu0zsrMVNW9igTMuDTlLi1tvVta52E3dMimFG2SiIqf9SVuRWcIeU+yOAMhGeE8hpTyrW6LIRegn1acn4BmCgy27apau/bRW6F1a5NSBYblwCRimDrojO8MBHzleu67tNX4I4nPGLFukovgFKfqcIJMCuEiSWIYxUtOQE1pl88mVtmsCyPwhMCfs0EiQLJJQPaeo0UhxkJcy7FJbhSBvOMmZmcQ7VvfWcSI4uIJiezMvw6YplBIWRR5d7VakUW6SVVZs1MWzddzjmrLnMt9l61lWlmo8TIXrTccoTVRMXdbVaXNJdr0leTZZDIc1I2vcK7AcArqNLTqt77QniUSJ9hp9uJGEhjGkyxdW6CpmiNWydtBQ3nmlAX2yEIMacz8ki1kEgKsBNHFc6BzHkGVfIWqoy9+EcRouSMRIZbVkWxGzlNkhAGMWUylKhCD51ojVSEIoPhhuRqEg7zibESI5IiSZ/Inir2nlakSyCXvyarLDqqkrz3fkWsM7EkkUWcc/769UtEtJzsyG1rqsqyeu4QucJlOPbOdtu68jxvYwzK6XNTjjmpb6rKoDA/xhGutfYFK53n/PU4f/48//X3418/P/7+OB6PYTF77wE4nBlV1Dbi7NYFSZzhY85zhSRMMz+O48P8ETlzIc4y2ZBZeKbNdMuSvysLqO37LbCRM6BMHZWgep6N5ylDKZRYiITCJADonBNEuOqZqmduaVAI5BFh47Bhs1qJW9saE5hl2/t2v91ut9tt2zamyvFLJNIN6eXEF2JV7b3vrffezxHuPs5pFirpnmYeOYi0sYhE33ut6kt8x3chJPzj42eEP4DDWuSRMoPf+sZG03DO+Djz16APw2E5kyK5OTlABqboRAmP0zF8HD7Hc6yRqWxBQiMsW2Lfts4szDndzYLJhDcWijSEZBILE0SahF3SDCaAhatJC6tYHmkOC0pS4qbct9v7248/tx//3d/+2L/9ud1/yH4LlmApmfkK5AyQcNlQsDIuIzMRmZX1zvS8FMpE92/Crycd9bs96eX1Wz7Qsl99ZU/827s9Mw2q/rOMRbRKPIq3qKxP1ioID1GyurWVRCsyOcFJTIjktdl/fq/nGC8i0iwzIKrgmEbh1VLBQKhmJpfRjmTpVyDlMBCRDMprtlgFQbUkzBhlKETW9AJ01bZkeqKVZAEcSF4ZqC/w5ZVJyhK4rX+SJdF/yYe+toPPIsSv18tM8AsBvy5ga7HMmjSBiNLzCbzqZ36dMP5HPP3beOs/Qe/8t9f6ktILPk0GV+jAqCHKacdxHMcxxjjOT7gRMiRhTPAxhs/T5imapcHYm6jAZ45wQogIg8Th6yAAkLb1cMwSZ405p1PylXTKSCZGE6lV3Myirj1hJWKpnMblfbjIG0TC8pkUsT4ovpOIlFcGofKKeVtido+I4AQLd21733rvAAbcIpYDsTokaMUxZC06L46H2gPXKJle5tN1ZgWwda7xpCvrZ9su4PX1mwYyU5m/bDRXt2Nm5jjXLPa6hJJ+u1afQ2288KO4pGNP5R+vXABl5iTxjBNR5e7FbH1ZNSHM3Pp29SMtQX29eb0hRwUsaY2oYv2+mZeoEZcerqJ0Kai1FeO/rlucREOuUX5ERJIzwOS0uPbapc/LtVDA6zm59tXaiSfwioAVtWU2xyjmtuBXYS93B0km+aoVriDKKqGi4qUW8Frhuulp080tHemRi7fKpAyEhZnbmfYI+8yYyPn+1lTRO253vaOzNGKn9HBjAXO1L0bSCT6CR/JICUgQAwrl6mn0GSdRlTPVrXo9ECgqvsZrjIwsBjHhtcEgyNrcViMxM1KWHhsEBFUi2fXr14GLCM/+LPiqofPL2hHhU+RLrlWNguWErKdWzRwuKOxj2HGMBx9E2TmJNqKNlSv+KDgpgjhFeN83wD8/qfcGpHub88ZMc87WmignbI5HxlRvCbhnMs05H8f8+Dw/Ps9fn+dH6eoRrEEx5wzmkqxHHmZ2IIw4kHOx+GYxzfyc9ulxmg+PmTEojXywxBgjAm7srpypKk166/sm34XvTI2oMTVKPo7jQw6mX43bkUcjVqQiJmfC1dNqoFUTwUBSOIIf5yOFp/t5np+f53SDMEvrvYv2tm+y9b7d+37btls9LJ5XQIl5WpOOfrvdpj32fX9/f8/0x9GkdSJK8xAbY9hMSmNqW+PeSWVey8blA++NjyvBNeYMBg3nOeyzbxI5HuPXOf8e/mH+sBwOT/gRJ4VLgMEUOt1w3j5/5fmYxznPh40ZPhAgZWGXQFiMJA9YtRBOszmd0bZefE/JjqHZhBUrVXxNx5lWr3CAK43Kgj0jwWBl7m3//v7tz28//tx//Nnuf7S3P9r9TfvGqqXsjUSW25z4P6IlqhyFp6V/kUeEL3F97XHXfxUlXcjw/7T0/ttYan2j19X6+ktcD2oqI1wJMTJqEkiZqwaMVNgbiEk0+Vk9x5VJloQEF2sRNWwM4KuSaCniCVzbrOySRig0KpUtQY6vREeKBCWVi5NXmHgNna5Fj4mo2JD128Ua+RBxRj3N+euqo+qRCCYiga4ivmWhJvBrtMM6REGXVa54iIr9vaASniWAAFAClN/REkfgoixznVeSWnPpxXxaOnRm1H/PoI0nfvrH/31dYtcKbfOL8VqvK6kfKDPHV0tr5mOcJUweY5zDzvM8H8ec08ZZbSXhAYZQIowpexNVdFVtlQiDsEQ6oZReLCJSgW0AgDFGOM5jnOc55uFGQhoR8CiD1bPYIBzuOWwCIBURaX0FlmbmjKdjo5R+lFdClTYRZVEudbNy6YBSRJSlQm6o0sdsrhT431yic9r5pD+ZWVguKIynQeTSvVmps1pbzsHnmLtuK6lGyBe4VlzN6vwpoFPFfVnVpklEgUZEICdeG7LKvYuIlZWwRDNMz/BVWruAgvIMEhZmff6o66JKgAkkzBxgJEkCgHKrn7AuawCkSkS3/VYAd2J+bTIuTaFm4BqeMLNFqGqt5s8Lvt6zABMTF01VfzKzjVy7FgBV0wQOIRI2ZIKCLkFCrsFlRMy4OondL/AU7r7SxC9991MxXHPLzKzgg2uIv4CX50qyyMxVix6lY8rMqj7J6WPYdMsgmhZj2DmdAm6Tc9WEkp8ZM/xEjrBz24CbCqmyCXdVMEfgpDrbmZkzaUIGqwWfpE5C4ExBcBAhKTgt6LqjgaQ1QnOLdKRlWMIrZoUY/Ym8c232iJTS4YZwm5Y2I90zCBAkl4K2vkp8eMxhq1uttBZPiFw6WCbvfWkNEUUfzucm5Ho+PrHasqyyu/lJbmY3M7ul5zOKLiPdCaGSW9fjABBMqUL71pjyYKhqps95Ph4sIto3gg4LT8w5P4/j18fj4+Px+Xmc54ywZETEtAQnJ4gDCJ82LRETsISZD581/p7u0/MMzHry+TyThtAgdncHOAwgUtat7W/3+75/v7U/entvemfuTA2Oj1+Pzj8RqTwYNHgIB5OrRIR8NTkZcoY7glIS+fH4JBEDzvM8xsMSjbsyVz/Qdr9v+51713brugmpoCn1yoMhAlqL7MSR6efYtt7v93ei7L07UqRNT0wnDKRFsFLHLkRMONbEMmK41cTaMkg4DTPD3T7OcJ6nPXTDjGPa5/AHaCaPoBlsiWkOkmhBIIY3CvZH/vqc44wx5nHanB6GDBERjQ5BUCOrtW1cKgS4WxNNrv3QJCJwF2pWdpNLqJOrxAFAupMFPMghkE56k3a7ff/r7cdf7z/+q7//wfv3dr+3252a9q4l+1gb6HX4yANcmvqsJMRFStWzi2qgyEX38mpuWRnZZbuoQKK8+LAipCp46bdy5VdhyivI+1qtL03xy78CoFVFHV7ZWkmcIHCpuCTAAU6WIHVIECdTVrtx/hNYJmAZGgA4mVqXXM55pGu1sYKWaiS9sqICAaLCMZfsiZT0q4+v4BeRECXiS85fszxa0egJRPHJVMoYgJiSSQAWeVYgV74zrohUkFAVz67Oco7IqPDUZOIKggWRlMkSuKpoHKW8x7Vq17+uMfE1c3+eEV5g90tv8bTpPZmzJ9h6fvyUtjwdZ/U6HwcQFOlYn+OegSQIWJiTL8BXZ6mKrs9zVsLNeZ5jnnNOyorNigx3AXEwEalUPrkINalVI1ANzS+NfheQikCec4RjnjaO066c5FpKmSGQpPAkCxdHlV5zdf2JNNGmrUalzi9LO2JJApiJauJJytRqcJYV1gVGLtR1rd/xZLaKQ3KfZjamj+lR4pekK/60zuAYo+bJ9efT3vg7+wiR2klWKpvHM4Ly4qZesXLVObs7It2NLpXYgkGOyGzMEZcE8OXUv2B0ev2XJ4P15OrWp9bCDQGTgCkohYx53/faophPH5GZwiwie+sQrhZOjUWMgYGQQEhKIMpwRglG9q1NszAKpBBXgGomETlRJSzks9JXVa3G30ERtnBdkxI/GShqtQCejOEYIyLMar2szkEAOB6j9hReo8M0m+Exn7izStmvjzGGFbtWG1K/zsVxHGBWlosUhBA5Mr0qjCMTNvN8jHF6OM7HB1M2SuFgJBKclKDHx0HByklsCfL43HYVDVFPsgACkTmDZmpSN25GEllRoVTpLx6I1DVVjsotj6DkSBrnhCOM0hLBSBaSNArmqg8HBZEILr9X+Jx+HHMes+475hKwcjFeSSRpmTl9iEjT7RV4XZdZbl155YwQohTYro3tMI8ppJkZEkRUmrYIwMO24zh1juOY9zc7D7v13iv7J+GR7mmZnlQxpMN9ZDpziGQZkM3GmJ8PchHpGUk6Zprj4+Pj43j8/Pnr16/Pj8/jmBMIVjqn1Y2nrbj2SHhmEAalecw5T3evuyvSQemRnrCZ0zzcGBMUqopkQAWq3O/t/r5/u9++vd2/39qPrX8T6Uzqnl0/mMh8yElM2ZkGZ6McQhGmWMm8NtwCRNpIYB4WMY/HcBvT5pwzsoq5bm/tfr9v2962re1vxF2pb7Lvfc+I85wtnTKQU0EJlcS32z0v18O23SzDwokZTMcYZhCIcRKJaGNxhnhGErRt5ocHie4TH5NgCXjEPA3jMKLhv+a/TntEmDaIRuSZmEFztVKMYG2ce87ME876yx+njxFmM3wiIjmbyGFxa00strzfRCTCEEHBjG7jF2IQmqALlLx7CIVk8NKJ5SQKJyjzHEHQSktJIeLe7t/fvv/X/cf/+vHX/3X/43+1+3fe37M1iLSmeaWtXQ/IZ6tf9ekQKlipsJ3jOcMqKcsV6UWg1fwZC2xdU4Z6BC+4xVRZdATmZ6o1ANTGmq7dZHU+4hmXSsgAX/xa1FdRZJLuLU6KsASLdkZGWMLbdk4gpjtPU3PrpBu3njDE9FrtV0IDcRLJFu4RViVvuJI49k2jN3e3VWyDBJqiEa05EYjBAmFSZi3KsKCJavWIUaZDMvNSSgFe+eUUbpWL03hJ6aP61ZSBQjmkYCVuJA2VOMAMVnBl5RdRyctksegy+lpWwbR2I5c/kWtQtRqPieiZ1VRP9tdV8xV4Pd9B+dK3VpfU9aoF9YJTXlTcM48+rqd3bfR9UQIegUCW9aEKLaRorxpazPDpPs4xjjmn+5kZVB6edMCeUJ9IVFIEymDKDB/DEcPmGeEs8DCGcLU+BGZFZUbY9ONxjGH1K0+3jXeSJc4nZmlKohYxpy2lOKlAmkhXzaDp0UUdbuEV9a9SB9B721vT+9Z778wMRHqUeM5ibv3tbb8VuNS2KzdOqKqywjFsekQmqXZKqubm1UZ9CflBuu6dKryhWMM7RJUp9yatKV1O1QSxaIH4Z5RZRFw2kEqgtXSjjNo4VZ4+rxj8FDAxIkwZHjnclopZmLjEP8tjW8eTLhr7y9q77v2KaUgzA1KbEknaVO3a20XR0RhZpFBr2nv/9v4GpuPzIQbprZiMtre0dLh7eholmLK3dm/7mPMUmjlnuFwtjplQlozSYnrpvcrXPOxzgcuwCDAzT6kvC+KoVi4Qsz6Nh2Y2h5XMPTPTY6mvKrkh3AMO90SEhXkdGfOxJpIz5pzDvJReAESa9lZUabYG5i6Nl72j/KI55818nNNt5pz5EP/kcRxH24kRimQK4WBsPj7OYY03H+dBp7CK0jk8mDYJz9HEpavwdBrUJ++gPU08ZDGqRKtIHoRwgzCByDkivTRIwRSwI3wmZ+MUZOWj3pX2nEiKagdiFaE8H6OxnHacn49xzPOcx2NkQrRnEqmodFbBiF+fPyuSXrU33VrbAKoINFFS5Yzdve23TaFzzuFGlJZGVT+ebjHleiC7e0z3MXvX/damnZ5mYY/juN03rnytxvUO7sPMPIYKnK13ABUfuo0xMv0cbv4Akcgvot0mPU5/nOfHx8fPnz8/z8cYY/ogSiGOEQx44JxeETaZlX7gKJeDne4zcsY0M2tts/KyDrdzuA2hECFVUm2cTdr2vv/5x7e/frz99f72X9/e/9q3b7f9h8oGlnO6aldl1vz83D4+f43jPA5+HGlKma5OiIiRPjMDELAjEzHdT5tjTltEbhB7eEnoVngmBYlol31r9631tMOHuR2cE+GIZMreNan12fd9B+JsLO7s5rZKPzyqLtfrRurdv3Zp9LU2kwp5Sx6+BiXBGZn+McfhIxyapLlypiHACtYitkQFs5zTLR7mI2JEGDwSbs7pHBrI7gpJbdQgWPH0KuRMQSgvFgVG8pGQ9BZOGY4MikxOR7UigZiDOUEiG+mmt296+357/7G//ej7m/Q7tR4slQdzmXmLGnkNgUSJhCvh8msuQEWz8dquLi0YnhIjrD7jaxCWvPIggp5tJkuK9h8orn+64dZf5jNpYtE0JUVLzgS8asCkKlZctHvfuHeB85zcJ4UjTvIm1jw4i2uSy/EHAa9+ncVOfRmyHKh5pBCFJzhr1rD0WoLkL9nTstA/Xy+UeFF99Tlln+R1cMiXwZfAqAaf4rwLOTGRIGueRUTiaZmVcVdAlL1+EKIkPAGWPHMEvmrL1itZnqD26Zi8/qyIkjIHrdPx/KRXgPU15XzRa71yXddZ5CeP4l4k1/pztTbnSqii6rSR4HD1VqxYZpbQgxhdOSvBxVMiPYNqZ0ELaTE5ZVLJNDwiLGy6n27D3VI508FtNZ15DXdQGRQ245pbgWjxFkJrrlvXeAWgfblML5qqNidPIRelIVEKXyYSSmUIQSVLxp6UkcErbGelOAKcHksNc21B4mJ0iC4DoX4l4K9P44K+E9CIeJ7S59zw6QJbtxIlERMnl6z33/jmJ30LQIC8gu6pDGMRufrK6mkQjPCXr2V+MZ29NKs/g3Zfvlddq+svVRUkrbVyTCpzEiFCkcXpVYh5V06i6L3Ca91nEgRJTTQRDLvsvSKkTGgtM9GCfXlln1PaiCjiqtRRZSko9ZineTgiAwR3JIF11RSvk1MaeXOvCumIMKqWtHDKCDcPcxsWq2jIwj0iI+Aok13Rk2455zyqCzJIRLYNqipNtMm3b99EpGnvvUtvqlLlPHWjTTc3Gqc/Pu3Xr+N4jHE+GIFwZCgcMcf58zxv0z4jH8STOSvhSZlEoT21pbYJMfBJYiHhVyrEqmSoRzvKrVVtANXSADihpglGcOIgyU7UGMrUG3YJIeZMEnCpFihB12OQags0/DzHnM58EiuERWdrwszEHrFkNhkUASIu4KWJTGmioORBJV7IdFBGLE606MP8MjPJ4cPdp/E0jTASBKINCbzzpesQIUekT7Mx5yMxWRMZ4lkWqMQ0H5FMQgCxbIQ5TceI8xyPcTzGcZ7nOQ9zZwGBGrFMcgbIq3aJIhOG80FrOzYiLHKamc14nA939zHGHD4szFRoa1WrtTN1yk3ptrf3t9u3t9v7+37bt1vbGpMmBMD7bc+cxL512Rs/+uNQaoTBHBEaRJZ5upeKq4R2Fn7O+ThPM0uCu09zYrMM8/SsC4EoWcCVCtpbs3Gc52HnL4Kp1A4MnVvAWqPeGejwHCM92bIMwtXhl4C38OlzWhBbErub+XD3SM/09fxiyWgGh6+pxMwWkZFmRqAgCTBlyhwzrfgjQ1CMmJ9hk+Z08/SZ6bVtJ0qwO9GZZN3kMK2gnQC0cq4rpiMYORDiWRHKHslf3Xax3M+UjDJnaNN+b7f3t/c/37//+e3HX/vbj/3+ltqqn7lUWIUFllhrxXwAq/7yylt4kQR9SW0vIc4XUKvPT/4Knk9Oclypp/g/SO2vp/8/8wsSntfKzqp0qexp3cBL6LrSNBIlS5K0TgZ7J6I2Q+ZsaZS7+4Oic2xwWEHDkqBdDB9z5uoE5CtQ/koZXWthLS3FnDtdLndUMusqo/3SPxEVn8hVaJ2V/s8V+XMhzswL96wqqmtBfWGtfut1Kcpm5cEGMUOyhpR0NWYziz4F1y/JYQt48dcwiL7GiC8qLVrIuNBhyUGXhnpZ0jxRQzGSJSF/mVW9REgsdtITHmnpgTSKyseyRHpYOReQGuC0SUvgjMtUll7vwCkiqgxny8gAgxQky6tZFKsjEZ6RNuc5jofNB5VJXVtqpoCI3MM9c2ZkmfxXpiKLEiEIjqs35toVrAuehZlYVVoDc81SEWVFzwKt4TXZtJpIIp2qvKWSRIIMiRXZBiJR7SIt/AwKZm663rYEH2uqq8IlYxUmWZUm11ltTlzbvaDS0xDRihpqUq2glbibVSj6vB5WLehL5u2SEF0zZaIV91XlCesEcx2Z19ap6qavaWiVhwJYYSf1SaxfwCu/YlySRYsLpKvghUmTwKAk+LQKHypgpF1X8yl15Zie0zIihKFa3QbUr4YrZgYLuIa2EIonDM3MiHQ4lVEgl0QsIpIRkY5wBDMClc4S0oIhqgpmYsrIqChUnzVOLJ0pqpIx3Gya25zjtFkzx4qWuDK9xnmeNYi3TDObo1Iq2u321lq73+/fvn3btu3P//pLpVWu1bb3SzUOR0WihHvOkZ+f58ev8zhOOw5ExjS3EXPYPB+f/xrHr18f/9/DPjx/iU4RE7GqHG6tSYe0hBJYnSO1Fp+nbMCfkt3qqa9+VVhEJUWkMBTOvAYZm2RjasJ9x5uQcq0apVrxEvzBY5VH1GTPxxzHsAyWFgSVvu2t9a5tTVdY4AGNpFLoshMzcUyfnp6AZ10aVeD4Zae9xjbByMhUpbKLwW0zK/WCGYU7UYqQNm7Vgp3uGWMeScEKJJF72AjyoGE54EjLDCKehD692czH8ZjnY4zPMY5pp2dwMoFBPD2ZASq8PisVhGKopKxcyUikW7rHeeScdp5jnsecn5S2Nc2Qre3Cd+UmvAn3fbu/vX17v93f3t5621XUkzyjgbF3lrfbprfeP5o+tv3RW1OdR48IHeln2GOO6cbJwsLJI/2c45xjmDGzB1muBjQLD0eAmTpzYzRJpiQJnlG071k9KaoNjOIR1qZNQEGeYTYig0LcMzIIjdMd7sjTJoQdhDBzi1X0CBFiFY6uWVuGSHhAmEigDjPMaRNOIA6O6eSJGREBtzMGfIyY7IlwUJJUQwkDjEQaORFNWIkoZTkCM4iiGJrwDGJYqiGtmrFAAVosYERGeIVhJ4nI3m7vt/c/9+9/3r79sd2/9duN+xakSfICmJ6g6KvMp8SewPNx/LL8fHmcCmlRqX4vkvAr2BDJ+H0z/f/8+l31Rbi6VQDPrO45BiHj5Ue4Iogg5WmtnhUn9gyHoEfu9Xggs3hwDrZ59XmDEpm88nYTgCaejW+oXIaFioJIiCI9E2C5sOjXKkJZ54I46z9Qaa5ynUa+ZqZfv10Z6XnV5pW0XkqbnFkTUMgzf4iu/upysiUJaAU2MjgX2aVUXjni67cUoryYvNezQ7jqvS4SSzLzGZ50DZEDQSxL6vtclZkvDXh+pXVfJNCixF7nlbnaG12UKT2dMsVzLsVLZvhwkC/P1tI9eVaVdpa+tWABEQmjxC5lE8iIK48jiDIx3ec4Hsfnx7RTmfrWZMnZCGCzsBlFOdgsgU4QSvpdrlZzdzBJUtWOCBErS4ZI71vb+rZ4j1KlLt9HZURSuFW7C5pGGxmcMJDSs+eXVgheqYtq1MvMvfemOufpno5JYAi3vvdNpZoVyhD2Yh8spfnzJOKy3D8ZL17twrhiV75ut/xP92BEZfd/ncF//5y6hhd2qwJmrB73f2wVnhD/Ca3oEpURfiPnALTW9n1fdfUOT7NEpGW2hD+DWZZjhbvMmWD3rMFNGYavAqIo6BUWdYdUNFr5Y2LZMZMok1gknrzX+tku3IlYtkOS6vFmXuWVWaWrQkwcV8QiRWTlTlDO8OFx+jyH2/RnYlauGeW8gmtiwUoR2ff7t2/f/vrrr//67//11x9/3t7uP378Ua78bev7vmuXplwQ/otLtiyzng07Ph8xYxzn8fF5PB6Pj18fP2+fj79708fYprXUQ9on6xAxomSlZKQEa7CUNCsuBUldpYvtqu4MLtQ14YY0cIBJGhqRkjaNrtQFm1BvpC3fOnXhBvBiBGIVQqzt2Sqj5boXhs2EWYbwcL/dMhMaEe5MnGahGswsBG0lBcO0k0q/lVrJdkvz8kLcXkMA0VZxUQCiKXNTosqq9ePxyHRmtM69a+tr+TM3wEHhMT1Oj1Ji2ZVz5xaJbIER1jwx7ZhxJkbyJM0r8jgtZmQFGGV6dUYZIRolQ0rElzAHKwQJY5+YbvY4cB5JiNwgLIS96VuTxsnCW9f9VjmzW+utMRjmHkFglSCIoKV1slsjbESNMFvLdP01jjHGMR7DjaPK1MjSThuH1WBegiQJgTTESlFHE2mNNkVDUFhaDp+WNjMT5JnkIK6UnhctalTXSGlMUNRkoSdOioAHPFBlQpGcSJbemmTkzYlD1bP6I9NiElk4UxKIp+WwEZEeYRnMbRo9zOdM97pMncqCBQhEmbRQT3o9rZMx3SzcXYkq6JMrPwvCi/niFGQF4hkCXk8QjmT3NC8nPpFoa3u7f9++/bF/+3N7/0P2d97uLD1Jq34XcBIqC1bW5rfkXhWSGdfcsP7qSufK33LIy473FVuAFelaZPZv0ajP5/w1y/iHdfFlsLjwXX6hQ8pSW2Lp+QlIYuSKMiUuYMFMQcy2nu3Cm5O5A5jpbMf0k7aeHBjIoMCMiHI4ZgWqXeawvIxajZE1MQoqRLSmcrzA65drb1XB+pXtENehY6JVDlPKUlo4LwkoZqpUU9eKwiyICm4l4cspWXWJAIGEoFVvt+Q3onKptVjWwgygAryXAYkJWVnCACpXk/GFjcrSSrF6tSvnqcaRVXEVz4SQBTOlqNHluHwun0uX/bqQP02sGZKgit5OkH9lYJqFg8y/RpblaTnMEgGEFKG4hHB1tZj7zBUXOUuWlJgrLvE8Ho+P8HnrrbFQf1Yd+pw+znmcFSVutRAKl4UwPQNOLZyCiRU1JWERUmoivfWt9d4z06eleYWtCHOrZAF1N44EMskNLnBLm3CtwX79Ik7IhJkdxyHcIiCirW0AiBWUxErEvbd9v+97h/Dadi5yEVyBG1dWOokm/6bDk2vqhyKPq2YkEytUfV0k5aErHoiCVyHstW4RGjOLXGcq41IU+CsxxpdNsjjU511fEjFaxUeXLg3P7QoRybMFuWu77zdVdZ922nAHwQjVyVXtPZmOJFUVlvCpXHG4FfQIKVdMLsyQGRRUOWdSiwFXJ0OFEybIq54TZRlIzyRw7YqJaOXyRKx7pYhYVGgTQYVXIJQgV5+wcQ3ChFrQJAiDPRBFonm4E9CEt9aJKLDk98zSdLvf3//444///u//9T//9//1P3/+z+39bd9vV81z671rFxUC5wW4/cLC4R4U+fH3Yad9/Pz8+a+fH39//PzX3/9btIl2os/Rz6kpH6mS8kF6FKcBmp4GeLJDPEAO8uRiUddsPBkRiJq7J3mSASaSrXFvvG96b7Q32jWaoAtvQk2wq78p70IMUFpR5jVmqCAUrXhCZgU4Lc95WDjzrCiKbsrVTS+NWUVG0d7NJdA8q6YzRMSs5y03Csmr7YpWYuJTGsDMkEsQIgRgmJlN9+lPJNR421vvzEKB4tUywsZ8jHkMO6fPRAa55Zw+LZAxEy38DIjhoOZtRwhRkCQyycq/UflPlXU/JzyEIU1BTbQ1ZZDVebQqNqc5hxKF2UTQKb3PhtwEt002gER6HUBh9KYq1ViTLTzhzkGRAetw5yQVboreB5AI/fn4nHM+xmFmPFm9gdPSAulIEs4qUpSdtXnmivt3kDNTY0g6YtrjtBgjroq76ckzOU23DhYSBlOlrTzzdWrnQ8REmYygjLB6XjBzrGArJmIKDT5DFbYZKinFKdzTODejyXZiPGL04SN9ZNji4NANwzGDQSqR5QyiTATJ9PAM8kA4RxByH926hTbilVzIK/eME1EmEwH1ov4RUa64WtQyM8RJiKTpJv1te/uxv/25vf3Q27tsd9E9RQlMDKHKxakkeimWa62RUW91GSZf0BIRZTUBXY9WIi533+U6XKzYv6tG/vEnreEFnm7HGugVXKEvsuxJekumA0kky3+3jIwEqmxUWXEQaJ6h206UHmlZbqQzbfPZaSrQMlNW5eKFKAVEpYH35+xsXQz17Th9WeaZucRQkZkUa/dWXHFEViFrXn5PZi3UFJQUFFUvwAtiNpYryOkpz5KrXjyJOHllHWXlMpMQCVHt7DlBzJpEle1EK9LyeagZRRISo9Kpc2WvLs5v5eDX/haXF2LJcoiIL0RYS+/z7mBmuSJcnk6CFenJXHKZfFU+XZ+ZPkqBzM/w4t+5MTxtX24ecZzDIzIMZEokzAJmQBLhZ8zhdqYdEVYutshhdrjNOc85RqaHXkrtIEtzzzn9PMYCXmYJD0dKEC1k8xyLV/moZ7SLSarCDOGW8PRIzqLkNm0iJMymEPKplOnEKcRAIN1sIBr48pYSiXCmn+fZFLX8XDIjbW2hmG3b9n3fti0zJ82ouP2IovKfe/rnB0/n4Ku6C2WYqY6MrPjreB5zv7rtL8Iyvh4FmZyUKk9kFhF0Uc5ExCBlDmbwNZokuVqn1ufUpqLmiRcQfA0okVULk2itbU1UxRnkkZBka8LKgKiwEmOaEUFVsnYIsZqCv7AjUVxsNJUyEmjEEBbhusk54W7rhgpPt/IlrFxZXEqu6+dPLUckFcTLzJr3KzErfZVDRFrTQSTGyqRDmEmU29TNbc7m7sOMiKp7QEQqK7WMLtu2v92//fnnf/3Xf/3P//zP//zXX//z/v6+tY2ZtYn22tus6otrWxvAEjkUsX2+zfGwX7f93rd/yaYsDHTRX436Qx6GIIXIrFWoRfBMgmNEGjIA9kybCEY1oGRGJmcEUmtHyU6oQ4XWeb/JbeP7rm+7vu10p2iSXahLKmFL1pWgkpyCzAClSKZma5u1aM1737fNjmPMOXMMRAYibIzBmc5ORCSaRP8/tv51S3LkSNZERS9mgHtkFsk9a8057/9ysy/N7mZlhjtgppfzQw2IKM4JcpFZWZGR7nDATE1V5JPJPOuMF6EJU+Wm1WfVCCNK5mfKN5v5N8x9LS1YHVMmgqeNEemLy+w+I6x1fszeNhYmT5PGImR+jnGUydjMEu7uxxxzeoEhAwFWsAuCQdq7GE2L4TbOWnVszllAf5825lHNl8aSENGt9SaaAMLhxlvXpsH4yNwyeI53E1HujIfw3vQhxE06Rfoc7nvaBHFyqiRHegYs3EeM4XPAJ4UJpwqnUibra561mlgmwuYs1Wdw06b7GmWwstbclcNsHvPks8vc1Kn1RE74OQ64wdMtPTzN2IlVNOFpd0bmeZRe/5Kk1FPDFHALDB88DmZO1oRFJGnpySWlQZmpaVEVI9iHRST93AUzTO21+WExhy/ZiLiJnVusT3T1P5MjgAAFYSadI8bJ7vBBrBABK5OKNCVpogCpaiN1Cs6inbKUxS8yfMIp0daTz0zaRHdpe99/bM+/7x9/3/c/2vZDtEOVmP1qKhXDPFdnZLW9AdDSVOAuvK5xUnXBkkofWT+HlvSeCmAdl+ZpqejxveHx/RdXS6Ym/3WQpKJQ1BDnknytGgtc0YHLG4mrUqjSgpNL+BVAgEHc+s5cqRaxRNTHb9GW2hPGITDm5CgaIpBRYHrQ1yr2NSth5kSN4cBcFfFSiqAGQNd2aply0U2zKGHExOUDiLyPzLXEL+gRCjYGSCV3XEL7SBKugxpfMi5qlcAX4Et7RkJKF4uSmReHjQsvUf9GgFi0w/pcHMxLip24ivcKVMr7jeNmX60hGX9hLb81MO4Mvi/DxL2L3wSjiCigO2fcK+OiSFdIJuir5WiGsv+h7KueGSWoWLLIcLfDxjHHm3yUVkkYlNNt2pgRXhgyIVZucGRk2XTmsDGsmJS1EYKFCZ4X6VSEBCwoGfPqViiB1hi5iloRWXctojWp2nNv6k3nHB6zUHOsdfdE5ozaKElUtLVWTkFCqJAKCdVYucqQzsytta6biJgtkjwlU4YQLbm9IC986N3uKvtkHe/5QroUog0JROYV3HQ/jxGVJR+3W4LvMXpUozGReelS77ophUlJwMuztgITvhKKuEln5n3f76LwKrmKeQZVLWBpE6ZEmCNDmQyQ6vWTqDKuSl9Ve2sFulv32DRmxpIh5PdFhknrqFHezKiU4TBCCEgIXotYpBCgCgunhEf42iMY2bQGDpXr5fVXl6NZqKRNXHheC1dAjaO3bWt716dttrKD0nwlDqm2Krzc0t2DmEm3bf/x44+//e1v//j73//+x88/fn48nx97K4wCq7JoAWSIiNwWtZAIDANV+eXyaI2kgChhQekc3pSEXTR4TEcku5IlIVoOGQPkERSGyLCYkBlFiy3kjVAFl6w4I0dUL0eEt4c8P/SPXT42euz648EfHI1cCU2pZYixAMS5lkRBOBDBTZKpoTCTunFTsGrvrFpdxtYaNy0+MTP3vQPLF18BB4wi9yTLV1gKXcLcOgd2UREp0YiuFDKIFPk65vSJzAh3P14vjxlhauQ+1YgyHYMoW2f3aTaYObKOalEHu/AkbcJMFMzBIm1rEAZ4s+19Dh6nxfRpw8Y5ThtWt+ucQ0n61tTQg8G99b0QPZmU0Sl3e/DHY3w8/6+P/W/v1y+hfDQ8H89H+3hsOzMLtzHG6/VqIr+Zeu+997okiPAxx/v4/P06jxnVw04XcggBpAZK4hRdVqDyw4OFW2uN62TDKr0zaVra6ZPOA2fjc+tGZEIFkXXOmgLmtAgYBVXqR8BHfb2PeZxmMwIV6rwkF1lurDTY4W8ADT3II4yDSMUJlrCyKYqIimSKiyLHjPpwyVrLh8NrjnnOua0pyIw8I0b4rPMSKs3IEae7jJDJ4TGP3rhvj9437W3NCRiUECndLjsnR/kmeZ3zKiWCljuPICSdpHN/6Pbo27P1B/eHti2lgSWohk21ji7mzKUVKOsI81Kc50pKvlS0mcmgiEyusovpO10TK0gyrlng/ZO/l1x5FWfXN8R1EMGtmgIqZTK+nHMXIb/+3rWm0/qTS2tfcqq8IoZUgK4tdTObQ9rG0li2EMnQJCfhdCn/IDKTZQmrvoz6SVT6jXWQL6NDaXYJqzIrVe56CwkmrsZUEuWaBQWRLscoJ/JGdixJMhWp9dKdXOsLRdVJBVcoIT8Tg8H8Fd/0/xLiFMWLOAFJzjv0GuBL6UPXy66/neIW88EZlWhIy8K6vqJUq3IFtojUYZ+YOa7suWJE1f9mUpGK3GcN99fQJmLFEtWTVBPOSKZ0FDIoIoIZRklEXaZVfyGSE5UATuFmw+c5ztccL7iXI6m6fRERabkkg8KsRLIQlAX8roAVy7KjlUWfvtqKVLE5uBCm950rVcFEZARRCggikfAMVW2qrYmQpKtZMx+Z7hmrRVFqbqr0zaz5UQbMrAK8VZm42gLEQlVKLqlW1Zrrv0EgXmmWxMx+RU3fbcW7+3X3Gu+GYh1z/v2RvP7xhu9fDVFI0VFA1eCt4dNqaWfdhcTEZcUHM7PmdZhikEi5B+R74SUoTB0l0zSnq19OCXe7tQyMyxzKYF7uYeZ+owHWChLh7qqtfkyUSBZez0iSAeCVObPMbneKHzOv8xuVPZmjhIUe7h62MBnKYhmo2facGcHMXThFEtWFZi2tZgglSDgzxVVVm1s1ySpHxy09o3KgidjM3BJA73vbHn98/Pj48ePHc9/3fW99b9rqitXMhnED9ha0hhfrISIQngV/4VSCNuxdbN/mc4+c0zZDn+iWzaUBLaVH2y1fnOo1d41wEo8cDhTI9uoeIiQCSEkPSkg0Qdv48eCPh/548odm/6CPjX9QKpNwKlJj2dlJCNWkrzIpg0KYwJws3PY2t61t2vZHb13Wp8NXE1+YmR4fz2sKsRwnrZKq29chcPleWwNQde3eOi8JgYtIa4r0uocjFlYN4RFx+ttsuJsmkmcjznSPM3JuLvUTeu+gNJ+BnKuIplbawSrrVAr6QiRjOoQ9o0QmdcgbY6RjzunmRbCyhkgmUpKtkI1IgTfln9jbj0d+PP54tO3z139nWJP4eMi+960/WIhZxrDX6yVKEbbv+8P21lohoOd5nO/369efhYirw3Odx8o9rRkBgjC5c3gyc9e2a2/aVoNaGjO754Axwo7zZb8FTeVBJE2pxDkClJdyzBzzhFDbWBsFmdnp4xzv9/F+ZUKlJ9QNDAa1mDHDM3Dy+ehhNmQ27ZLCGUizIA6HA4FkB2cs1V4kMuaYwSkKYrUgIiUhIT7dKdE4QW45Mg6k+ZiUQMCHG6bTTHXJEE6O2Ru1vu/PvikxgsMbC+UI92QhkoTbdEGkIZwiOINT1IIiRbd9grf9+fzxt/35h/Zn23bRHpBH36vNIkK2CHVXi6sGexAmLmA1wHVK4Px61EsDLXXES8ACQFRUE2POFKm2FyJijedATOolTLnkRXWmJvo2vlzNRzBzJAAnygVx56jA3WsfBdHy8FWJwlQ5q0iPSCoOOghJIo0kks6TWIgbSwdrUkvMpGnBBiGgASIYYxTxohoZRAt4UeqTKrpYSnq3PI/rBQjJtS1lJq9juBNKvEDMpbC5jYSFssprc4H7XO2qNeLTBF3Az7WhggvWL8ScxMtqSBxrRhJraEhRYi5GKYHZL6Jjbb93lXZR479+p34x4cxg1srlIsoIiwxeWgy5hh2r6J1uRORp5zjmNCK01kXY3M0W9fSmehLCfVbnr+IOW2sQ8kj2CrwjQNydEJJQgvIWoeGSJdGaZvOMsPDp4zXHZ/oUodaEV+hzqhCM/SYhgHw4Hj1z2SQtfNqKYXEkE1pr2jZmJU5Vlt5I2oJRMWWmmTELq47z4Ojw2Lq21hBuGV2bMLTAnQxWaNeIFnnRzN3dl3WXuQRhQuGsrfW9tbZvBcHPxgyw0prkAhDKRYoDnFIYmVChLkwqABicXFNdJ6p0Ra6/Dtf559sNgETSguVSIouMLsIAqtSoqySqvXfhViNFAMylyqveeB1xSHVNmkuDhWQIV1GlKxBJmHnTVkD5qiPv4owwq0QDkHOOMZW5NVmsJpHKrWLm4lvO6fu+N+1nnL1tTYdHtWa0Cq+El+94eRVZMrNSnev1T89pUXKfIHaP6we0LNDncZznOcYorVuVyKRyjjHGuC+mi3TJrSkJgyWJLdK95CQ65wRYVUnXkN5yBRrX0bc+XFVhFuHW+77vzz9+/Pzjb3//+x//+OPvf/v58ce+P9/vtxCJ1HWmanXXZ8FLN2oVo1gygXGcc0Yielf+2IAIP4nnjIfl63QNA6kK92Azno0ekYfNZjZrbQnnORYZsM7phOAEUimZo88xOOnj+fHsf7Tcemwb7w/9o+XWrCk2JqVUpCThxLClUiYwRwaJirRwttZPOYGYyMdz/+Px8fi1PbduGVl9YEKms4qobnurh8vdwp2Zm6iI9K6ZWbdga72pbv2xbRsjns/nvm9EVJEzVdy31uacmc6UURmwFDNO0plxWs5AuL/ojKJqMfnLINJEqsmqZdR6ncNmLbZoSkK8td5a3/qjkhjO5u55sFDyec5jzNdxnsdkFOuDOGkYtuCkxvxQefTWMxNBTXdG7+2ji9qPH3//2F+//3a+X+7vR4umTKIsBIIhz7B8vV/v8/EYHw/7eDye+4eQZFItv8Byn0Cato4lS+RGlMJJkhpBkcVKe27PVqw3IiZl4uDsEnOLcIA4zMc8jmPz5gBgM2OwnRQRkKQWNirxicXcLOekdKm4FiJhNWcPLmq2FNWT2H0WRTlJkmBI92WmKsAjCTEBOZEOuJInRbIvgmiGGSgbUgtYD2FwKgZoZ5rOh2QgERK+RYovjRcFYnQJbpLCKeHpick0I0jQiDaSrQqPSCIWBkTJAwFNZoBTtPdnfzwf+8e+P/q2S9tUN249Fga1iOCFEvnqs9TxshjciGo9yt1+Wf2PZEqnZM7SKEWsbGow0ImYEA52rJ9dMqXiji5+5qKlE9G3JUyuwstvYlAdZTOTVtdtccy/jf9Ww61eWhWIngBROmUsSpZwa+3hu1FM2E+J4+2HM8zBLTm54mjTDeUdB5gTaMxeUwa6kALXC6eKNivNFDHTJdkpM3mJ3JWWBWoJTaq+ZKowAGH2CAIIHOWcz1I/4E4c+lIoV6FLS9kxc+W5c5VewhXTieSK26GyDSyYYxpiyfXyL26Ge2P+t8KLhD3g7sRJU26XJQAzKbq3yJeoi2XRmLDy5XyMo0rM6jyBnDjyatA2IYb4impaYlv3iqf5UuJzRkoIcxOtjLo5ZtqIMWwMt+HzHf7mmGBrqq2zCFfqytcwtMb00kVkzmnFca2s6vsT4UVA+Op0Ct0NOVYRIKMMcuk2G4sKNWUgEE6UTeg7vKogtszCjEzJGLHunijrQ1263ruqkrY6qWsTVclAhHMmOChljQjJqRT6GRdOC8wl/wssMvhf0qm/g9a+z/odmXHd0d9qsirEgboV0y+LQ3VD6YLrYinJviyK0lRVRft9t0vrVWBVtsH3v2I1eXmRBepKPR4Pz0AkwqdRFE4VXxFw1YZ0VCQwqyqBV6pdBGvroNZW8zIygJJUKgCiAGvVpIiF2g8RymaR8PIghkcd+cgyzvM8z/N1HnNOioQw1Tx4xmlz+gqGYmJO8lyBzRa+eF2XPI5UKCiDMmYu4wrV4lC8wPuGaa231hhSPT1h6ps+tr01AUIIrKTK0ng5vZEeAWgUaAOJqPDsRBpIluOS0mDmx7T3GO+EQbI1cdmC5oREJTFkOjhdrOIKNAON0MwK+lKpx8FEkqVa0OZ7Q5PcWm49t57bhkfPrWHbaBfqmp1EGC05mcjSmIhJI9KEKIiRquAEbT3DrXVpGjO10ePZZ7j79Lw415yquu9bpXSWahdAXcwiBTJrdbt67621rvp8Ph+Pbdt6Zk47fXLmYm9HJjwsPX0kJihZZ8Tp8vY4Tzvh7phESRyMEBFFF7QZjUhsxDjNRkakgklVo++yP/tz3/emWxIHmDEO9S4m8maSDAmHGcoJOecUolNNZfvxsDkjQwhNmQUs0n8+/1DZlSR8bLCnUvx4Io3FPIb7NJ8Jp8BE9GmttRQlmZ4YZwixDfOESJvhaW6Z6iAmZYGQEu/V0FZiZHKisXThH/2jyXXSSqEggF3jpDHg08Pneb4+E1yY47CZc0iEsElSOB2nmX8+H8k6M5NyNopUIRLRLaNlpM0AlFh44UPTfCDSa89NtoQlZoJJVmCUEMPCnTEFDvoEfBHVg8xSTS2JoDQV6JRNpLQEQ+hgeZOfngFEMtAyBQgPP4NUeBJnUA5y5iEyYw5OcPZGoSJJzT15GacFyghCdjeAGpP2fd8fH4+PH4/nj31/9r6TNL5wNfllTVrggCwZT5VZgQzOZff1pSFdC0QikEiJOg8vawoYECGBrJ0IMdyXXooBeMI93OuUXEpqAeDD13p07QrMnEFMCqLSJxWwvkx6GUlcfTSmb+r+/OK1U9n8guiyTRERq7Tednn8IDs0PO08icSIgxhnzBE53YPQiKMmG+BZ74yIajq+xoxgEro29QQxPJJgjFiJ3agrJvSl6yxkXtU2TFJQ2qqbSzZVjccSBcvKDGbioo1HTT/LtA8iiySsJfBijcs9acLdOkfCF4MU+PJvf/U/bq7E14yyPs+qgxfw4k6cjAhmqr+0BiV9Ragt/3aRuqaNau/UfO3e3SNWVoNq94xEhqfndM9hMM+42QpL/OdMwZQIR5qP089jjsPnaedIH3O+MgZTiOTWSFuKgJMsquoVImrSa59O4DjPGp1X/zUIWe+lKQlfgpJ2TehqlNealgWkgJUWln0rsKW6z0xnpQUCQRTSM5NSaosVAtiCuVRGUZiqfn2VTHgJ3ZgoI0HuZ0LAekFO0h0BL44fBKJ65XfRNYWv/jG+ohGum8Hi36eKVQTmd99hFEJ61QSZyKg0gAxkYNb7+1JoleKzZs7aF2aMuRqrrW1Fhdi2rW6bankir9SbMkJX4UvUercogfOqzyzD7RSRREKYos4MVVSHaPOEzfk+xzBHcm87mI5jhFlaySNLK5MVOxkcnuEgKWMBJAnmwzJW65qYWDxpWryP4/V6vV6viGiqSgIiJ4xh01ZypVT8AXEsVHUhgZeWsd7avu9RmVCQiMBFzfh/j4O3bd+2zSzMrKIblbk3YUq3kRR14gMoKrPIyzUvyJRiwrESMhJLNJDpPsc4juPz9/vz8/j1efw6z1eksZCyWvLCcSWHI0jCNaYOTDMnbck5p0Um0iTjgoc4kloynIRas01la/TouW+5tdBOvVFX2po0QhNqqYl0L3UqSZpzINKXIFUhYKUtgnXr5Nh2OewxzKaNaXbMY7olQUQej+3x3B57I8qwdHd4hqOeOOFCne297023pvzHj5/b1lrXiOAzgxBhi5RUwVd+pr9mnuDwmBaf01+H/T7me/g7YnLj1iWDWts6bUq7wpHNZtiMMJZQ1k2zN2wbfXzoc2u7cAvAkwKp2SgFwZkCqAefw+ecc/ick4BN4+Mx52k5gp07b5uqgptuf//4YO6UkZ4PfeRTmIiVLMfn+/fv378/j9eYbjHzdCJ67g8DR/KLhuRbiBsUoADHop+GhzVmpiasClIh7tq6qiYR0EmayrPtlRNVis7aXYIEAvdzug07PWkidG6kgunhswWakiLGtPd5nOOTKFWMOMMHE5qycNemNmWQc7Iv1jPc4T4N09ldslFmsBNFSoBIpdo7DAsfiEEIEYt5ZFrJg8LBg9i7gCyUkiUZUCZhMNI5aWcNd/iZFpS8nEYOGxlpJjYlpCFlCA9ih52BUEqnJuw0MyNGemMGcUrPTAd7IkHKQtJUu/a99121M2mpafXyHRYdywOVglvDuttr4J5leh1joMTezMxRpRelu6xeeURwEVI1KUruDZtzzBERLJI1pgl4+JxzTehLSX5JZwJMFN+3/4gsEl81TaqFc3kDb71KHfQAwMNL30y5hguraYcg4krOJm7EnaSTdm5P6UanF6jPSQOnA0xM6UmUMTk0s6w7a5eqJmFSyiUNWeCeJZUvxlwJ55JrxHWnphDRpWUjuppel744qa5GVZRF/a2GjVSkQPIFI2dOXp4mJmEVXjokIaKsH5EFx/bIy597kxwuKU99VZHx/SvXVs/XbbLaJVm0KmSBvt2dmc1sDBZZLRzm6qwEMyqkcc6Jv7LZ6meNeWZV4RU35zks3DMh061eKBEhPdMV6fOcx+s83uP9aeNMN/LInORO5CKhWrUTERxEpQqq4rhpU9XwnHNW8Gk15cxKbKusUhH0VS7wKna/sGTrhnNE+al9Yu/lwDAbntlSRCSCSPSeqFYNIo0Z9fmW9rZVwbrvfdu2u+Tib0qyCIQ5ONKX77XS+HhlP64h741iWx/w3XNdXcYvQ65nfO855WKFXDrIbx0pvohHWectfBXcdGOQqnQo4nxTEdG6blqL83Irr85D72XSJCIzKyKdfLOYXXVeUh3jIhJVdkcSTTdmpgI75vKfF2/Y3aovNYdX35sX9YYJAhVVJaLV0TH32kOA9Ayq+zMtYZ5EEGGuRKDIMeZ7zPc4xxh1zqHleuDlDSkuDDOJQJSEfakechYkwK0cM3X5cIsHS5bU2r+p7u5LUSqijDnnWS47IN0jUOJG4ViRkQ4EKNNqhHrN/SmxskTHeb7ex+evX5+/Xr9+//fr9fs4Xsf5dj8jDOke7pUMyZQplMLRkA1hmT7dBtmwOoMmSKRq1mBOcWN2FdnhChPmJmhwFd04BJAiePAarkTRl4mqcVxehEBGGa9VmEkipalAecvOIWKTJ3KgsZLVQEpap31vP37somSnz/Ocw41SUgFuuj0ez8fjo/fedVPVXpR/EqQxwsLMRqQzEjkTljHNPsd8W44Z5zFf7/H5Pn+/7e1xBgUH1FWkBbwYGskVBaHcuoNa9q7P3p6Nn8obRyOr6Swi3Ea6rfAtNwrPOeM85nucMSvMngVkp833PN9jnsZO+973vj22Z2+qRAyFZLaeKcJgkZEtCTPSKEfY+3yfY2TmYWlO06mBJbgR79qUZQ53jznDM0QyOMChHmsQ0FvfW2/EktRZumhjKmbxUiN5EpMyO0Udsc3GCJec0jdSIQuqS0McsOFmEcl5jNHUmOFRaOCiQCuhNQcSTkrCwyzCDjssB5LETx4v0kbaWBSsROkUM84zZtqBHE2xK8gn5YRHIFdsQgZYlMQIASECpUYMslfkYWRpJ+ZAwSIjKSkdMc6IGeqswWOCJ4mDjCQZVABOKpRdEjlZBtEWSM+0qPwcZhVWEW2tdWmbaK+nhkhWi4hWmLZnZJQOulzEdaaHexbZr2x6uUxtlf6GJRDOlcW4giRAFSZhFYrstigtuOZdZvDw8O97P0vLrD79X8KDbkMSFuwgyyTJIvR1TK/rsDaVyKyglyq8ss7+XCokzqAAeUqEekpSS27UNokkdhEJZpuADfISv1WtYmtWR/gKsvzrdGZNEEkpMyjqGFkk44W/r80s+cJiVX8R9E0HnSyRWbTl6oCIFn+myskVIVOeJSJqotUDK+9MjX6wPpxFfY1cBntCKFfP5jvWoeS6/O0dfcddLnbX94KpZNdLanbhHuYEECxoTa7cGzCzKgOyrNc+b6pnzf5+vw/E6prW5zU9K5e5RIRcW6/NjPCcYTbOc55vn6MO6YRgZFd2YhZipUQpqDg9F++DlJlVGhN71pAT7nGDu0hYdalxpW2qnVUqdOG72Bxe+uBELl8KFgXXPWaaF/mSmYUJkRGVpLeEz3lX3qIs0ptuBSDvvbUGLKZ8rPikpcdLRDBHJCc8PJCR1KSX+3Nlb16bNxcz4S7rmdMREcPiun2RNzGYuGb3GSsb4+rnldeSuP6THhRaZWu4qkrr0rq2dvdset9FpCosaYUGRGaap3zz8DOzSkdyFUPfnvGUyuEyL8+Fu19mV6o0Y86UUkBBLr5KaQfjHDZmkXTIPdNsWBSxr0kTbXU09EgL98UKJgt4RgUVlA1UREi0BOrD/BijcjMddV7rqp2Zr0UFgeVArjg58gQF83Ise90vQCaGzcrcrMYkEVfyVPlJ6ymLSCArPsjGyAgIhc9zvF/v37338BLjYkkiRViFVIk10wLlqgqmiBxmM2z4Yef7+P3n6/e//vz8/fv1ep3H4dO+Gs9u0+e0aRnBzlSmVWXahMlwzjmOGUEgzk2URbk0EJFpHM4cCm7wDm9IBbWMlsGR7BGJiJxIZQxMjz4JXqvNuj8LC15NemFmgjOuDJJvHfhV8ZMot/p/6psqswRgHJyBYG7M2rTvfdv7tu/PTbfWhCgrc8GIKAPphTVOSvfTfc75HuP9Pn8d9nnO93t8vsfvc57OJkIp4ZE+Zt8YPuIUN4TItsnWmuiWXZT2nT/2tu3bs7eNiMPZwqanZ4w5bXhawiPM53me7+P9er2PI9xrRW25ff76/Sfr3vqzbX/bnx/b3p/bx/5gauWeEdKMwtclEcFo2+wjIzlf4zw9/ny/3f2YNi3M4tF6gyh48mwsF2ALQYwkBMb0SFJlUdEuvevWWRjUWXYVhPOSW8CnWVqNyFW6mAtN5Aibdjr5YFYGCSlLm1RnJGgXob3GV+AkSu0got723h7npB1Ckg44COmW5/Dxmp+YCWYSltalba3v3NRj2kDCfY60N8H2Ttaok1NOkEeEz/RJic0lDHN6e8eZ2CiZ0tg/NYfFIDdEUDplmSsJQbAZ6ZTmhw0awASMWnRQEClREry6pACLZDCIky+LHJGqtu2x78/t+dj2fdv21jbmFrRQBFnKd2TlV1SLQiA1r8jMqMjQSr0NAgKkmU6koGCsDYeWITSRiDBOpPhwz0xzj7RkibQIqU23lrmqTe8vXjEdTBe54aoMojxoEM6rqXRNJ76qrkxcPa+K0K4XU/ALTkq5j5wS7ElsxJ24kXZuu2yR4OQRDEIIVQxfcmiSXffql81wzXK+HKAha5nIu+CISGaOq/mAdc2JUequBBMlO5KTkq+YOlb+wsHLgmuvNuPyPeSVZ5cEaVp12D30qYiBhXL4mij9pZa9OyIlkaeLeL4KyL+WlTf/5q6xIqK1divN76lKZirBvTQruKQ/KpKttdKkr3qiulCg1+t99VcXT8SqIeFWWh9iULjbSCsZZZaa56sxk0nJSSLQ4EkZ7oGQKiA22Ro3+kb0KDhFvZJjjjmnZzQ07dJak962rTSn7JaX3YTCMziiuKCFCU2AnRmZHos/lzcq9ntJgeo8XWFUdVl673tfraCSQNXsny7nylUrV6fR3CWr8EoiDk1yeCYTIlHA0rV71dnjG6+IgpBzZc5mJvgbweEbuf57gFfFE60SWSkzVVvvvQqvWz1zz8i2bSv1fds6rxDuVXjdVx6XVA7Afb/dk9BLEEec8PvOZSrfX2JJH5CqKlxWuIw5vdhA1WKmzMorGWOau0hrRa71dT39Vmlmrlz2Oatre2kTke7TfZ5nhRkAKBHe3jrLUqBeaxd5BrycvMOYNbxaFwXmXpfxKosXcQ2I8Bnp7qzrOtwlbE1jzez+x/M8Pz8/xxhE5KOaU5GEFNbedNtK9XJ99O52zHnOOarwGsf5+ev9+fl5fr7GGDmtHmoA8PBpbrNSvEOdBUKcvHVExb2njzkBhgg8ocEBoch0guUGAXVky5RCnjuRZVmSUzMzZrplmECCR0O5egsVTmAiJ1+C01o6lSK9glCI6gzqmSsEpeBNrCudPPke1DZmViAFItWuBtjdU2qHZGEWXpkAtXxGlt/nbX6M8X4fn8fx+xifn+fv9/n7bYfn5MYijUkz3SOWNAHTCKHSZePGrTXFQ7F17Jvu2/7ctt6kbjFYuHlMt3nBmc3s9Xodn6/z9WljZFKmg3RE/DaTjAbeuP/YH49t/7F9xAPbpqq6ba0rgEfGyhBz5Ja7Iy1D+y+3eB9nWSbDU4LwAKgnJco8KpJcqFViVjCDJcAqlIwAIuGZdc9ejW6AdO1boKzcWiCL2sfMFImwjHQ48x4RM02IoSBhUhU0yk3YgBIYEzNzU+6tEVuacYRn2HnGefhr+nvYGVzgKCKfzYfFVNNoG2V4zLDT7SC4zWyaz0aVY52Z52HHGcPblP2V+nvwnye7N0pmeKezk20MhROSwrlUTylIniMcDho2XX14sSdaBjWGVLqNe4h5u7B+VAMWDspQkr5t+74/P34+nz+ezx9921prybyaJ8BNSfUim0XJaUNASI5Id5/Tbcyi7AKhpKKkzkWSBaBo97pSqPaAFZoXgJc+BAHAYpiZQBDp9/hjRX/lxQ273NFElD2IlsWSsEZnCQSBMhyL0v0Nr5WZywRQt3wQroDua/TAxEKSqj36JuMhvRHv1auySkNQAcQL68WlYr+kv9989cycV7Lh16Kx+K0cGbmS8jhp5cwwyRqFMGUsZzYT6NvycY946KKVUiVlS/kd8hq4FrD+rpXKnMaZa25EX34G1Pk+URJjug2kWEkDZV/4yg76Sny6z5wrzuBLRq0rK7DAlaWwlsxQZRYg+XteDVH0vleiT2ZagfSGIfP9PpfyLPlqt5AnqjxKc1Ai3GNSOFVBEtOnI9d8tsBSfA2e1p4EW0g3AYQF4l56Z5zDzmFjjK8KLI0EPVtmpbO13nshDmOFZdUwdAHTVRYf5KQUWSkarALmhDNB24U4QUYGnNI8CS5LSN1Et21rW9OyjOsFEMm7MbzkfIlq3ILqMBAoiIOZJ1d6C4hScrXwmSnSKly5Wk2Fx1ZVX9HCsa7M+tT4lttfH0Fe0JhSEq55YE0Ma9Bz14siUqqP+nVrTVRZ+/1YstSlowSXwa8MJIu6+sVPLFhLmZK/cHGZBGjYeuMFaWGASRxpkVU6H+M0s+prWuSweZxnRJR0xaIOeyDhJuQ3p9DdzTK8fJtlBwrP830Mmz4tbAqyi3Ljfd/3voFpmGcGk14AlgryXP/UhESojpc2J4DeuxQIyMN9yTeZi3Efnlnz36WPJFp3vhfYc855vl6/I6yxAJy+snSGWQqxqvbGTfd9r7XIfdo4zvM9bYTN8R425jjsPE8/zHywr6l+BUROn8tmDocHK5GqEnNQOCmiqW15Wi2t0abBPDiIguClmuFgnpYSKR4cDp6IwSGUAc+YFanGYH80USGkJzHDA5yRw4JzOkiFSThz7c+lkr0GyllZ5VRh6bA5bU4nUHEzhJmbZFQUUKPIeZwxAzPD/OPjkRW1mV68uHD3OY7X5/v49R6fY77f5+8xP097v4/3MQ5PAzOgCKGQ8trG5HJ3lptcuO379tg/OBu8kXFQgJOVIHCDIT1juB1jHOP8PN6v1+v1+fn569d5vMJnYyISSlCSZGSa2TjP8/V6fX6+Pz8/P7e9tdZ0YxEwSeuiBA9TC6ute1Dkpc7mzJzhMHQ3Ky8bOSKYtaZfpKLSWRd2m1lJWNNLwuNpniyObISgWN73BeJO8HLvLyAQICAXAmdKMlNrVDFA05N0/ekAKCmL3RKR5iJgcQoj6VBKd0sfOKcfhx9nnF4izrV3OdxglujEhkiPGXa4nQRDhntwoFE2ocy0OY7jfA+aaL+d//XO/3rlMZmTG9NTY2v4Y1elUAQ8YlpaSChS3eDIJJfdNSL8zAzaJMiZelBTMrFBocHWOaR0/gA7CCA07du27W179u1D2kN0xyJQEGGdKf3C3rjnmv2NwaBSKbn7OKfNufTRiYuYUrOD5GRXEygzExZtsaS+dVqtIK8MT8Jpc86pJHTxA9ZKscZecqs6qhSIMHeW4svGSoHMRA3yijTBdJUXBKkIRs9MsqhT84o8EmKLFCn2mCSDuIlu0rvYkwS91GBzOI1YjCsmFtTlIiGOTBJa3SMl8lJKrcU3o8ID+JrggpZugYj40qbRWnTXaOF+8clg4st59+1r/cYdzHRXpd9rTVS+z5X3hytYiYgCXNFJHFqFGeXN1lq7ax3KrzqYvuBhV+EVuZqHRP//XtuaJ9aBO3jxMzKDErVYCXM1ApfhLvOY08cwnzaHV1jbSjsBZ9yzy2m1LyIQVjzuMc4My3ShFBZQ+cOu8PQlRQCSSYixWusVYGVWZ4n1Vb06z/AMKUxrRl9ZN3CPSAtfKdIIpxBmVqHWGoOMSOEVF0i1WyEiSECttQyvtxQISbEMdgbyu76n/Agl/ltC7PLTXS0N+hbtEBFIWr21JQIreRfTGtVSZTncs2DVJiJVZ2jbKMJXKNO3djFXNvxietW46vuk8qbjVkgNUVEUL0MAt6/GGDNaI9Vix103EINAvoSMddgIQtq31iDhGtlRRBIvSSdEBSDhIB7jgt44QUu+6TZjTB/DzmHuripCmB7TK4I6gwzTRZZpV5lIGsf6ZN0uiCBR0dCQ7HMWPCIT6SHSChT/2B69b55hkRIq7MGsK2lwJYwSIT3qepiNcBe5Kf+IsPKXKldCOoPII6pivqqxlTnGyxidIqLMaf4GIkK5mdk5xzndM+6BY2sNAiGKsPN8z3GajYiY7yMdNj0tfQaiNB4+5nmO9znPmZbESGHqDmNi1QYBXI90Ye+Noft5zEykURjzJHdQCoUGN1e1bDPrTiZyTk5YUILCw7lUwgATO8/ncobW8S/TPcyi6GXeWZwu/R7Z1bWvD2xMm+G8jui+n/M8J7uGe1qRVvhqaHEE3A2wMM9MVY4UEXhcqOQxxhiv8/j9+fl6/znm5/DfHmP64fMdPpkIzJJMzpFg1ibNzYmEuSl64+fenx/7j4/nz3m6B3uYBczMAyCaSQaeQafHOeI85nEc79fv9+9fdrxjHA3R2rZpw7UOK0tvWguymZ3nfB1DX8f2GEEk1ntjSQEDzCmTZcv8rITZCk5U7Tw9yjUrjViTJEHceuubbLuIsHYRKfK2VOEFR0R4uiNko33bOhODWimLqMCJ0rgbXQJtLmNiy4SRQ1yVCJOYInM6/EwVJ5mggM+I6THNzgwrIkvaaX6eM1823+N8j/PTj0FjsjumZyRR60JMAZs5M4eNiqSBYwIDOCXrUMai2lXNpnA0iZNmziPPjE/3T5+TAHaWtsuTNzbrDUoZcdqYPj1MkcLcK80lhxsZMMFGybp1AgUm5wkDT3j7wB5N2TyTiJsqWPX58fzHtv3x/PiHbj90e0h7ZEFICb467e6lkknAw2uCMwqku7alOT2mVbtbriiYTeUCOUpYUJ50xWCBkhL3Xl5yhAA8w+Y0t2NMZuYFW89bT+rfNoOCQRKidq6NNwbBE5CaT6HiRRnpFWmfJZTOzKLaFGCDF/uqOPIUnszaBZYYAFj7/iMxxgm3pGbcg/0qyqEeFsEJLW1/RlhYeqUyMmdG2toWOd0TIpVwHoXRZ1kMryJzUIHqRKST8JKw1HH/mgoVWqL6ZyxSmEcCiTav1GFmIvKL2xko2OcaM60pxiroJODVQilfHgBCmkfZPctH7eZE/n3ScQ9/v7ZFYVkar1VwEVHmdxtElGyJWe/8v0SGx7BJENEaajbuwhBKDUufEUStSdIK6ZhzLpFv1dduEUHphekqCaASqk3AFIEAOSIjZ+SIMMRMlIiHJUAqjUWuBl6Yn8fxfp/neZp73cO+MrJy+GjZ3PKYo66DMokuqLIyCVKQqrptGzM0Va0kDSwLsRuVVlxUa7NZBZmW+5+VtRHlvm+Fc7xBVmUJTqa8fCcValhknur5l4Ol4HYkLMKOCvIKlD45wt1ba2YFMsgy4LLqvu+ULFTWGtxDTCJ2n73vQmwz5jRKKK0wUGkqwmAEkzSlbePWmdFaezw+Ho9Ha41I/KLki0iyGICEYNFMwsGUJTsLqkwCVID83fYmImGOTLgLUw2uDajOsbsEVggtQRJqTkCMYWPaMe2cNnwxOsx9lAUucgwzT9LNE3OYLLybVNDcvIRdeUFtwDzM3sfxOo45J5OK1oQaSXTOaQ5HjcvTLRcOogSdgNk0MyHW6xxaCOt0HK+Tme9Md6eMJK2ISeJZJgz+Vg0D00bvXQg2zl9jqL5qsi/cImK4le1x4a+ZpIuFI5wZifBxnuMd5uWOgievF+PjeJ/jNcaRmIFIJjPMoISm7tqRIGEotycr60HzaG7aqhx1NqIQGMMoQqn/nAdCJLvK1pk7TYKKc1JaWCJSsKqhFDHLPGOa0QLalnk5xzBmPsdBNFmkUkot7ZYxuIXZHDZTuZFQ5O/XIcTeNhUSkIgSs5Be50mf02u221o7jmPMIILHOcfrOD8/P38dx+vPX3++js/P169pv8HvpMP9SMwmlFTYTjcPYmVtGRKWrELZCV1z7/jR6WfPLWK4TTss7MyBcO3PZ8rjPd7HwPnO4/TzbX/+81//+o//HJ9/+vFJdj5V//7z8Xg8yucv3B79Q/v2/PHzjz9+6qZgGu6fr1P66+kQ3VV8ndaTgttMmiEj2IMTKvoU/RAtT8zu1J06931r29Y3Ee37tu37tm2XpnCRbLX2D8qKoQEnGKS0lv57S7jVCeusTFkFHhAVPe9+ZgpRq8OThfsYni/K4fYyH5nR2xW2HT6XlHzOOE8fw9+v+T7nEYRYqTWqSQmHp+WKY6HqeuZJOTk90x/YyxojrJme5Mkplh5+9NxHRCIylLMxBLM19E4bR3JYRlRMpKdwGghM2Zk6S+Otu2zJpElkmRxJiaCcGafbFkkE1pbJBBV9tO1j23+27altZ93BHMR3eVNxJHRJlMI8prm7HWYX5dLMzvOsUWMtGY2ltWYlQq5hUzARC4jlwk1F3gKRSjGJK2q+1DnuDkwsesLq/FwU9dXrKukOoXDnUqIgpgy7CNZpFOSrsKtef6GrsSZ/hQQnKhw+J7IQQF+DjBa59f1HlS7u6WMmS0ASRaOXBHkSgz29IqWZBCvZvCIvUHTsrKlmUrXicAtWaIHfvyaJpSP5a+Pq1ml97ycxVdicfO9y5Rd6VXCJvVY9hBWdlMuVxpGWSRSeyJKb3aK0WyZ1AffjPnN/l90EkgNZ1ccCRCkRmZ1ff2+lGMV6Khe4qIRQK+iT1jMOUem9R8QHwCoebCY2aISnwWv6l4gK6eRyidBCltQr4MpqkGrQI9JzGSPrsAwBEbFUx3IhD/A9qmhJoFQ4SZFx980WmWN9KE0oWcgJwKaiKqraVSrKA7H8CmsohiWiCnczq2K0Fbq+sbByoUd5tZFK11Uv798q3XuJS0J1nPKb2bBYWfVZGq1ciDVZJirsFbMCVO9XV6VFROTXkO064dTgGAwV8SsKbOEhWEVVqKuwSlNWzQIXNr1cOx3CtA7rWn/S3bOuIhFWAOW3d1d1TiQJc6DkDZVKvdRsFmbTzC0cyV5yzaSM63kOFOBtTj9tmofX2SYzpgPwQKJOoQCLV78kIwLi7gEzd0ubccv3V+c4IzOrDVbz05IQRcQ0n/Bkv58dlhUmkN8SSHm595a0saDq9abP87yQttRFv3WvhYJuKs399GUJ+tJ86SwHswCQprbG34UPhAfc5/kalpbppYmcdvocEcspvzyk4Okzwtx9jBE0gUwOsDA1FHUFLrn4PJJOERLpxmwpTprBpMJKouXuz9HDibw7NZce0hzdoiEZkTViXDAhJiI2p0hyBlGsBIeAzbDpgEeJf6SZBTMHRSCHf0X8HTbgsFBNaqpDrUHTJSjciTmEiaCFvOYrEj7CxkiQRbj5Mc7P4/x8vz/f78/jPG0RgjxzZA6Qq5TPkn0NWzKZzIPEm+6cimyEzrmztTgwKtXZE5HpOad/vo/fk5zI6yTwHq/38fvX5zI3nEdn0qa995/Pbd87koS5t/3j+Y+2bY+Pn4+P52N7koi7n9P+/P3yJJXOpHCIUlAkZYCp9749RiT4yKtPXSt4jZCSGaqtb733/flje/TH9gRT4W4oOQnata2tcQHNSaQpS/kZKe9xDUto0sQlZBElYTGK2iTcq8wgJqEMMz/P8xxv4THtZTZYSGS/P5gkijqZUThs+pjzHOMMQsBJ2NlqgOhuEUZURbwwQD4IZghl35WEogkJsSi1lJ4RjNatTWoNDVVXWRNuar1xU9oVpBys6MDQjEbSHRJUH3Ggj76bbKTazSOjg5W5cW5ESqLTU0VF+sZbokl77o8/9uffHvvHtj1KinGhAfB9ia8Nac55nuc8h8+wMcZx3ve6naNwSkRkIt57ZaS4GRGlLdZUBZbUyfzexSvHJJmWXMzsFlfcSxUt5KYQUZJda9Y12GJ1d+GisVYJsqonFEfxMsOvMdviJlzo6jVlysU0uuqMNUOBqu7KgUyfNsfB58HSqHXYhLobwy7UWYU8XuM4IioKNtb7XawHWWixi4Dx7asGkf6dZklYNLKrfsolfGZwZQFROaiEhS4b51qyi54p8nWtLqxr/Y4jubRWK4rPgVvV51+wg7U8/WWp+lYU1h+UzCVLrs1j+Z/XHAoAOLgkR1UZiigRubvZXDTOSx/W204Q4ea7j89jTgd4TicamRV/t7hfhWOtk48wC5LIq1WzKlgqxC2noSQEV8V7V69LRvuV9pzlGBURYRJmDngQVrqi8tX7K3QacQBAE1GV1kSURIkLHpxUW1p9OxVzch0tQlVZVsdLLmRVeQ6unCW5N1p8myrelV+9/Pt8eZWzqtrWR4m/WIOJqOycS+rhPueM0qVpyQ2/V9XCrMwQESk6DycRVbSodKGyezdtrVVULDN31cv7WagzKbjDKtNLYFfa7cq2uv3MWPW9+x3rlbTy/hBrurTmy3O4uwOcTHVkSOJAZmQgiu15nsXSSgtYFBXiiw1rgVw4Z4oIzwinMT3C6zWYRbUGS2oNlIrIrwt4D/7SPQtGt35+UGb2fZOK5rjPTmBhyhLXf4taWir2a5kFEK0Ci6CqEScAoUaX7aAKufiKgAu6NXBE/l7NxTr7JhM8M7nonWBkRmnAK8EpPSp8Q1U4OVNvISmSQVF9O1CCLHktUpUmYwjOEA8JMLLVKI97px0hLpyT56i1W5l2ZKvtCllO7Iy0StQACYmyUiSFJ6bVuxDhsDAL95xzekBESIyIINyaBHLMcZ7n+zxe53HOERTSdGNlok7CQcoilEzOzKogmGqoamFpM7M2ssR0O8/xeZ6vc7yP43We73OekaMMVQu6x5qKcLlg+TWXEWYV2rruCU0IUsMxZ4wRnM5MTF2Vq7t+nvM4/DDPzDnPOd7H6/evX78+Pz/nPNd60uSx7Y+t96ZEsrX+fH7s23Pbn88fP9r2UO21hGYOsIrouY3RR1swiwTDM5i0tU19ikhl/5C0cA/HnD6HW4O0vj0+Pj4+Pn7+0R/9Y/8AMyIsIi0tQ39+/Kj4UCYq4yVJsnL6SpW+PjAhIkpEuIsoSChCkpGF+W/CAVnRgf612QSuFBlOz9scRWAIMUMkVZxImTThiPAoVau7BbnbnNN81ILLWKT+RuiMJo5f02YPy60JEO7uaZFJHMQmipZIgRJ6y94g7E3RGilSmnKI+JbRE2pgSwnJVPPGrbs2yN7VMJ3JO+UmuTdsFOIZmizSRLakrfVnaz+2/UffntI24ha0cgGXmdEufeGc8xxjjOP1Po4jZ9Q/lu64Cq/asESktzq18xoRRqblpQW5Rl3l4PpWeFURUByd29ZxjyeK+lOFV/WFRL5IQq21SKuOV0lH12FdLvrr1au4F/lLM7LmMt97CbjKglocgzWMSFrre9tG081ah22gKM21s4ZwRil6Y1kkrwnbVbWHZ0hSRJSYi+mr5vpLT6t6Y7E2/q+Cifh70XOt10okeTEy1lZQ3sasXjB9+wmr9oxFzsyiKFW1UZ46pCOy9o/bhPitHqLvuv67cIn1Njn/6nr7alXWafEqrXiRKplK9kTkbnlJCe8/xczbtmUizsicJXha8HFaDDCpbPIlEYxEEkeEUzhxIiC6/JjEmTbdC1pbDrXLjbim3vh2YZmZUVWFsKcBLZm0y/P5fDweKIl3iflYVBceXoQucP+6VWVp8pDlj7l+uKoS5aU1qWC4EOlVSN311tdefnfxr4frfqkVF/392+piFrAjLsR8XNX8mkVWlOr1i0rUrgwf5q/T19WblFXWVyiWKIS3rYGrNisfQK/Cq96dVNQPczlzlw9XWITh6/OlKj4uvdgtB6wOyPWCF6HMkZJUZu7T/BxnsUkrUTyISQUeQEw3SraYpbaOq8iOQPXpiahS/Wr8arEci27+fr/Lo3MJ6+3ryn/7RL7f2/dZ8WsHWWKYaK0VrLt+Qt3tGX4z+tcTQVk11hqZuVP4fSS4H0PfnHkTkcrASXNLMKgKLxGpg5ado/i0a1lIEgZ16aRJQYRMn4Mowyg5YZXuVZENJWbbd1pxUCPgkCSJhFiOoFK2iiQySTI4TTPMsVGb5CrUeFPaObohg6QRE1S59b4/5FGKJRVRlvRpNtMDnMmUwmBRFvdqDQG4wUaB5GlhZnWLWoaIRO6Wdpa/dIxjnKdNcEpGShCgSTmtiTZuqikibgw4c01lNhEBpfsEhfuc432cn2O8p73nPM1npC2NuIhKJ+biW09CuDBR0d217dv2Ifpk1gz2YECQbY4cpzeC9K6cpGoZ02hO/3W+P8ewGQibdozjOI4jzBuLbJvsvWt7Ph5705rz7Hv/2B+9tb5tvXdtgnUDWxJxi2l2zNHPE5mqXGQGDx82R4Wtcx0dO89hFsccCKLE3nZi3X/8/Ps//vH4+FkdL1ZJDwu3MS1c/69//G2McRzHOE4b80xIIsx7xWaDqrigaytzH40FREZwOIBymqZIJE33zPCYFYxVrXTUFAY5I0+b7Np0yWSUqBG3EHFu0aOFOntqIB1p7oY4w6YFUaQVGApM2AQhSKW04DgFHNFFcwnY4SBjSW3oDCI0pkeTR+feo7VUzc7cQB1NoyPbOXkmS9BkSlURqIg2JMrUWH+tEClS0sitaH4q0sBNZZe2S9tFd0LLoEwElwgbS76cFjZ8nj5Pm+c4z/frZe/TxjjP86vwGjNW7qzufUM4wievmI6a7/EVG1LWGHfHlVVa9dc9R1uHv1hGaxGR2apEoyUTYQZy6bcQYeRpyEzhL5P5ZXbFFfOyFjKQ8Ho9l3ydvmHcL/dhbQXCJCEqjFIft223sac7JNNHhrIKTQEJyC9jY+lxg2hxGvMa1TlSSjGs9a3Xvy3XW8VZRJTYeV0QSGG3Fvfw7lp9L31yjZGuDtOye2R87Rmlvq9iqyb3pV+Bp3uQW1zsjiiXaRTieaUpX9Xqv9dVVUTeDYu80qwBaqJ0MTLcAxVhStS7/ltLtUgj14jvq3ND12STWVX7vocQ71szm5nu83SfXpgtGzaOTA+uDWVSQpQomggXmA6i4bNoX2DiejIjfVqy3sVr9X6AxaknAUFFhJS2bXv++Oi9Z7U/bRZRUoVYRK9i+tLsJTGJMCLhkRHEIBFVVt0BRBgzJ2LOGQFmbQpmbm01Au9SiS+XKDMn8xKhX9v/PYusGqLuNDOT1u5JvV/KKVxavZIur+Is4J6eQ1MVBZhvS/RWfsMLLuAeANOlnU8AktJaa1vvm/a9SsYKyyPRGhAUEy4zWVYP46vSioi86himwvdWTzizuJkV0bP23gRmpHmar9sJEgICpYjU93ggPazaWyTCBJLiP5uP+lMiAebwnBbBrkoJHj7HGMi74kmrJK3y2FVrN2CxwurrUUowmBsrk2eM6X7OYWbTvXffE6qaiRVkSkTC90dGCf43hUwkfLlz6/5vqubOghtfmBFjDJtnhDBR0QGZpbdGl1RfRCjTbfgtNmAWrhSDUAIlbNRNAKLqaAocQayqiU6U0yTgpEwSkeM0tiRQMDEnJIndNTYPNIgmCUUQCW+KDSieZSNVla21rbf92Z7b9uiiykKcNsY53j7fEc4MFhVVIiUsqQmxgoTqTV56jwwH3CJEAkRGfk475zhtebwomYmCMKYfOTCzqe6tZsXsZLXNz+lbR+89mDI94RFzXmC2r8F9cCISwcx921jUY9oMAoRVuHXpW388P/74eP5j3z6IWjgd5ufpPjJD3SRTGC2R1YqYc36+x5/v96/3ERW458Pm6e5CtG8bh/z88Xz09th24qzj+uPx2LePx8fftW2y7STilhaYkUib4Wz+ep+ZeYoKo9zu0vQcx/s83zY8wNqlbTxODxtzGkJAP56WJI+PHz//8T+ej4/+6Hvb78LLpw2b+scff5znKcTsWTz9w9N00v6gi0BNqPwpErCqZiRxUkyKCkSGConqWYgXL9P4qFs2Mj1hMxIzEaykfSCIPIIpJTmhG+/ZU0JdIyKBGXGcZ85hFBRtZT97GUQWIm/Jihmn4pjJii2FtISKzOY9YgdaIIk1uTdSRZNskqqkjE7cKkLMM+dwFwuaXhueI4DgZJTBwkOIRahJCjFT8oIWkqj21h9t27U9SDbiFtAVY81lYY5Iy/TqwZ7nOd7H8fl6/fo938d5nuM4h00bK9W4JIoiYvssuxlV1OhYN3GRqerQTEERhkrVvGovkTWYWEftyzq3DtDcWmslOVddqSsRIZe17dLyr2RuZvZqMJCwSijkqqeUJZBXsE2Zo7DGZMkl9voWU8iqPQKsra3C6wG3GB7cgoUgyVeHqwaL3+iucZUzVfQgczV11p4a1Qa4v5nw1dC6XsAd7PPNsZhUZ6C7Vl27ArJk+lh9hqvPd/UVvsvil5THL0yH+z2uuvVbF6qD6Jum/t6S6yOo/t4i3S9tUFW6Xz28e3Zcb7ReUt0Y90wzvjGT7hwVhpQrjJlb2xgkShEtwk4EcnrGnKfPc87TbBKCYXWxNQQRqpqlhAN9L+yKylhIzRI1l2y/stTqSWGtiUoyQ1vb9/3j8SwB2oEjpnm4mWlBPZiArEGZG6EEjgwPr/xm5iZCqq3QaNWaNZ+nn+4zwtah51tLuD6LlbWjeleid2j6l3KouCS+LG/rzPMNq3bzw/j/NeD2yy9yyb9YdY1gbuRH2S8ymYgq4671DiZRYtW2bdu2ad9U9c5qrKOCIxFRE3/+1tnCX0F361b7VtZnZhEEw78X9JWQyJY8i3SMiGRQRJIl6gibC2cMy6DUQpAsF7YbJ1nxYCMiQEctKXSe4/1+I/n7kLeuXs3N/+0pqH9Vxev356JOpPUU1Ep4TVNrQfs+fPz6KwpfwhXEqcul1Fp77HsFETJgYxqvJTej0MHktW1VV4Zoa60yTae7EIEFIiQcmSkhnKrMvQultyvWNkBBEfAMYpSKoXUh7gGX1lpnT6NThkuEyXIvgdMloCQg90whDgK8ETplF9lVtqYf27bv2/PRH3v/2LatS0ExzOb7OD/Pc5/2zoySqGUSc6sVmCCF+GFOKnE206wWIzKQMQicw214WCzuBREoo0QUZnYmMTgY4ZxM7l8LtLDViMB9RlpmEcv829nvWgkrxbUxi5NJuKmwyKZt37cfj48/fv74x8ePf+zbzyb7tHgd8/M1zt+nmZGrTQqVzIzhx3t+fp5/vo8/36/P47w8qsbhALfWOqdS/8ePPx6bbNtWY6LW2t4f2rd925M7VBNEglw5yjTnTHBmznG8wcLJKszQLu9xvs/3qENqCYBFk2CRETYjQSStbfvj+fHjx48fuvVNN8gCz6Rl86HKhKb02ChdmH0aJ9daIyIlNI4KgfH0TGEGCTjglB4cLgRh1a0RkUVmWWmvY71ZnOc8x7uoU1utWT5Xy5yIlASyU0ejnjHnTBI1d+RIZ2gnlabDIsyQ0yMocTrgGEA2MFNnUgWLNAiLMFnfMME7zVlUHqtBPLsDwULoKp3AyViigpg2zknviEmOli2gwbpv1DoLl/s6S92dIAE4C/CobWv71vdn3x7SGriByldfCgebYZQzwuY4z+N1vF/v1+fvX//69V///fr9eRdeZW+sHbS6jMerne9HeSLmnDbmeZ7X0prlKqmc6gyISBVbJJVOvcztVUXd85ECYZtrFWHhGhFAMlNmiBsRxRWvcW8VAFIW2FOWjKaBSaQ8e3fhBQSvCeuCziMjSqsbGenkjnQKsGhv2552eOpSDlEhfhLf/ktMgERmxHVfyZXEA5g7sVbPv2pMquYaofyDa7JQ3hFKusqxwOJvFWoesUhpzErEMyZZMZiCICQsd+rwNQqk5LuJVY6CuF8GKj83A4toySIozRxfxV9pgIoIBmQGE1/bZy2G10wTiLDaKSs0AFH6Lsxz1HSFQc56a3oQlI502PBFA3fPzF2fq5kWVlGvMafHafMc4xzjQCUwcgZlulkMpurrFLZseZcIYTOyDiUsTEyZaZ6sl3Wk0OZlC1/z0KrJMiEgEW5NPz6elNlVPjPf7/cl+wzL8kTDQzOzwdcM3T3dS7lVW6lIExEzEpG6qy1SeuOmyRhuman0JQMqPthdY2WmMdXTqoFbuH3XWLVlFE4zadmRSydOREmzUoGBQt+BJJip7oIa7xe2dbVpZwg3EmEiUVZddK7emzRdmZXaqzYsdPZKC+WLpZKyjE6Vd10s2SuUvb7FF+UjryIeUXp5h60bB4v4Q5zVGKrDktcIHzktUa7p8niSuVuE+2ERc873cb7PMWxSMtjWxQxyd6IJYM55HAeiRHLL1nBf1Uo0YmYRReWBUfl2qYiGY8wxpnswS+9y9+9Lg3EXWHkJ+O5jybRzzpnmyrw9n0QkQu3yVjBDpHuG2Xy9P2sgQJStdyaiSJ8W4U5mfKLYsDbDuDPtVgAAgABJREFUnIT3vvVdiSmRYZaR5IJefz1za3yfx4Ij4GQVF8dSRSAn0PbWt2YxgyJPjHkSmMIjAHdNZCojnSJJXDhDMlR537efj/3Hj4+/P/af+/5obatwnnqsIixs7/t2jtcY27TT3dLDDUJCIjUovbLnWFrXdPEgj/vwNs1IYNfXdJtedTopa9SfJGXuyQJwBDwvssk1jbUMc8uw8iEkRWWMZKz0IeKNWERNJYhnCGtT1b71H4/nzx8ff3/++NvH82+P/Y+mH3B6p0+d+zbZ9uM43PL9cjvf7m7v89fr8/f7/PM8/5zne845p4Aao2l0kf54dGxd4rn3vbetd2ZS1X3fN+0B9QjkBCFFmVWEyD0ifr8+hceh+kloxCqoCj4pTpvnHO85TrfD5zmnW6i0kCRB61vbNtl27ptu+/b8EFUmBRMxGiEFFKqRkzhb0+f+ULC1qPir8Lgc75KJSg/NdK7A4BotAZpEwqqyt5aZMk0UHOQFuU0Kx5x2HIMZ29aILh5BOFKK1qWKYIb2JPz6TBJNEFiRSgApFM3y5KTJCJ6wCIMHNMABylQkCaBcPqBEcusSIfAoNzOlmY/wBkxGbo1FWEQiLT2sAqZxWLzN3mE5XCPVZQO1YGkOIg1LTKSTz1Ky3r3u1vfWN+07SSNukQhCBEX6DDcbiJHhY5zj/T5fr/P36/j1+fnr9z//z3+Mec5jzDB4Fn45M5S10n5f++fed2Yy8znH6/XOXEKgdmvviCKicM+sa5K40ui46aa977e+wd1bhHtj5rtBUka50lh8r7f+Tf4iIl1ba52bCpfqZdUZa/JYdJ6kG3Hlf8kIpnPOcHMzRBKJsKp00pmZWJOUrIkEX8p6uYZoq2cgVd99/dB7TpSZi1UbX/bDq6311ev6/nX1h6qco7tztloanETEgiYrLG+63ziwy8WJ+PaDk4WCgpMAioqCuRsMtV1+XdKrRXj92azy90uBdHfIwr9ckPcvAMx58lfX5RpCfVPa5eLTnGMMt4xttUciijd++DzCZmLO8fb5JqQqCzWhDMvjPJlJhL7K9wwzy+q6XWU9EWemIxrzN0B50iUzDyQzW3i9kUSU3uTj8UCksoR5mH/ZSnysroNPIICtZMrwlb++erc39ao1Ve3URMQie99aF4Kc54mVx0P3EPwv06hv95Ih2O0yf0UN6JfxoozDTP/WcfTMO42njlm4HLV3o7G19ng8qo9yvkc9s8JNtffeq//A2nRr275LUyYtKVXR5lZaKBMAAQLJ3zpzmZnh97u4m7txkfvvnNAsO/p6XqSgv1E1GRipHlEWyCSc51mZRcKSHGmw8HPacRzVgz/P8xjnnPPu5/beCVJV/tWsirBg9riiF+pu/Oqp3x6X60GuHu38gnvlIoBEfP/mqxM2g1deVlVj5R88jmNvvcLCC696KdxjztlaI4K7H+MsI2Rj2XrnRJinx7oV2RL++v15jDPMt/25921rSsKWMcd0M0+4iarqmn7korQLZ5AQEydxiq2IVRC1betd2eWYh9QcMAmQjORoHNQQQCqxMzWoQyJFdX9sf3w8//Z//Y//z+PxsfWHSKNcPF6PISKhXHls3BgHYqw1gFkJnEUvQyZlzRU69lVWIhYQMdMyPOARFjDP6Y4McDnZiUqzL41JA1TJV/fg/qqt072Yt7d0mCu7tjhoKp25iTrJCLCwkEL4uT9+/PHzf/ztj//x+Pjbvv1UeYr03/99nIeNEeFM0oXj9BHn+K/Xv9x9HOfn+/U6zk/332FHmM8Qyuii1Q/RbZfYNKtb+GidmXrvz+dTRKfnHAjivFzqgYWn+fPzTazK0gi9oO9dtbcIm4gxxmuch80zbLqZGTflDCXWx9a2R3FTg4mlIOrkSTU3ZAUH6TzfERGWzPz3f/ytabf3fL2O9+/379+v9M/H4/Hjx4/eNnc3jzkPsIMyw7bWPp5NKGcYIrfW/vjJ3Dg/ix/hRCS9aeybG3ECXOQx1tqca6qyPJilsBalMc09l9g5is4e5ag5h88zMMEBJYDgqe4yTefUMZiYERmg4RYEViXMsGWvY4E2SBNuwo1FUI0sgGGUmc4xMy3TM89jxjh2Z+pT+Oz747mxuSZtP/SnRE3aN1Xl1qU3VglkOJdXuxTQp41pR+RguM9xvj/fr9/v378/f3/+/vXn57/+9fvPfwGBoLAxjmk+kGVk9qAAtxMWY2aWS3HM6QXkJErjr8KLmc34PN9U/ptarZDM0s+27+PeogAGAuGZYeFznmMc7Ww2Z+9dW6txTDwetSswM9KjjG8MUEYEmUcjYXErV9EV5lbtQLork9W+uiMX6wwNIPyru1Crds5TRFQ7Yi56Y7pwWS1qt4vMRJReoVbhOnh9QduvoRLdHv5ym4OTmYUVSclIBuQKwLkq1wwTaaRF91J8w1IQcTUMKorn2syq2InKr07Kr3FP2XPWUfIezMY9kGLBPcC6j+z/VhRWiZbhcWV8R9hqp/0VQrGIu6sWaXe5dt8b9b9B8X6/bZj5zPT0aXYipyhlTKHUrTMlw2xaBixSWZhBgJvltHCkZ6SbGTO2bd/2RlQkhVtvfmVZZvbemfXz/VLViBChx7azgEE+7Xy/Xr9/qYiZZVgT6too4TZq7hNwVF5Ker3r6sT3Xnd4U13b+eqCUHJT9czMOafK9fZFVkjUWliLWrXaYHwBae96N1fTKNbGVTpuwpVu6XYVXqr9It0Tq9BFc8gkESbm1nvve2tbfUzaC1BSr72xCrOSUts3USVWsJLU8ySLlF9DfmKUrVhWdqlllAN0PWoJAhWWncBE99wNGTQj/dIaVF/V3d1HPUGZ5Em+tKiVvugWJJ5EVpVQGYAiMMzPMc9RQ6pS3Pm+76/3WbXmndlKV92fl7PHr1Sf+2BwD8rrr7gPUfu+t60vHEmEXu5OAAXjLPZh35to8XUyI6adPmbjEv+xXtiIWiZRvCSmY4zPz8/Cv/Xet49diAREyr1JzHoqmVWjdWbENFbOsHO8RaTi05mSCWEWQEpNk4NVRaTpBsBnlJG7qsQxhvlqpppZWoZzhqyGMnE6PAEPJSZSZRHp4I5swn1//Nj6Q7k16U2VUJISCSQMLDFnpHMxV1ibhCNFwAiApKlmphdDidTtwLpjJXwuQSphuiWT9E3Tm1uFDLjnHE6q2YRJM/OcUxytNVFMt0C21iyLGJy6aSYhZiRTcDEdk4p2JCADB7FokySbc0YGSyd+kOxJG1HLFA+KqH46mgYLDjtLl/Z6n+McNuZxHO/zPMY4wyciEud4C5AhnTfXYvguvLaZOcu2PR+PZ2udmVkLAKdxhZEx0y0osPk+M5WrTqSH9w3eWrNpdR4wpAdImC4pjmV4BAm3fXt8PB8fT906SCghVGFjAEhF9f3+xcy978/98fPnH0362QaRvH+/77OyqgI7M4u0CkqjtE2097btogTDfPt0oUwZiGasg9MVAUVXmdF6hGfAzOwEUXAHM4iUOWXlISKYxYkWDInDKZ0jYqbP06eZDXeHgEhYRTuEQAEx12PQcnu2TIoUqVAARKI22kQypLNsxB3U6/vL04nJOQkHxRHxruvOnpSvP39LU2bd3nM8c9MwFu6P7fGzFnXVrqosHaxJahHVXbGldTOzkX4GPGzM83i/fv/613/91z//+z/+1//65z//+fv3bwAUOdx8LJfQrUEJNp584n0748YYZfcjSiFlAVXY14pxYlZpbZPWlmyrae+9znnM0lrbVnEwruwakHCZiebs2/ZIoF9xvFUTZB3rS7B1xePwhTK6Tturv1J5P3R1vCqJu6ghUeWULy1UebBjReB+8biVhVhszR38K+ikvhmOr1rm2+/XhKgAWJeK5UvHU+0HfKElajiW10JPKB19xjf8RP0+fQtF/revlW6cFFeEMyoQLUsrptd0qy5HiZyWBJ4uQ/uXPO66cKsfUxv4xSOtxiS+EnWoJne3BY+XIf9b6XbJ/lbPIPl1vOe0acN9pk/3weSZ0RfeOpVRC5AQhVTxR5mFnKeIxfC6rKw3WUOIsiQjjrwhnyQMoqtjAZGtbyrVWqQM9/M4ojVOCMirnweUmmddYKmSszT1X0FP90W7Gjwo4CVJlRwUETPm99JzXfnrhqla9d8qgO+to3WqEa2cIgL8r/3bu9y/m4vfr3yV1Pf1r99XTQDCTbfe+qaqKp2EtQk35aassogIiaR1wKiGRNKy3X292jJ8XH/9t8bqKn0iUKKuiO8MLVwKfar6aa4yMyNyegEgMmIZ0GrZWc7r+F6ExX0n1+9UnVTHklVpZaRH3ZzXv72CC+vZiHudtPgG6KoDH12ktBvDFvF1zwOBSxF6Dx8B1GyxLAt/eaCQLJLuYQ5cLAx4emz7RkANP+7HDW5E2UUhysyc4XNQdpRGKnOapXuoUu9ae3w4RCokVoQAoUBe2VDEWeefZTZi7n3X1rSVnofS1RAAa28im3AjboCC27597Puj3tS+77QSvCgqWCH/ol4lIpF2pcdVWgdT+IVvW/ibqHk1MIutReDOWXREaaTGuYh0WSksxIH0RNmUyiH7dcMzgXDZjSU4FikMjFTmyCwmTdmnAEiSgAXkiQ2koAaSLLJjDedYiCwJ4VFhr8d4H8fxfp9znjbGOed0M/dh8wwbY3AmJY8Ga+TKKYIswguTNE86hk1PIQowSBPwJE9Y5Bz5fo/jPN/vY7pl5iaNe+vaRUhEClffe3dKDMl5eCaLnDbBlBbl+ioLj3C7glpL5UpAluBEg1277B/bHz8//vjxU7mNNlW7Wbx/f74/32ZxvkdY9t61UZNe6BgRfez9+WjC6Wk4f1tjcJrEOft5nj45Q5SicXPqmYdPf2OaQ6e0nbuLZIcyCWlSTS9T4AwnMEKzTU+4x8w4MgMIamBR3XXr3BsYc9jM0zLmnMPaLtoJao+npmYxiSCgaqYypCdaoCPFjTk8T/iRfoDfwDvilfG2mOnJmYR5BskgGl3HedqzuTeR/vjZLKoAFBXdhBtzJ5LKNIy7avbh8zQ/mTzsGOfn+/e//vXP//jf/8///t//83/+53/+5/v9Xj1e93C/+x+l67o1ufeaFZmgYAhRBuyKo3GRViwJFjEznZq8Ft/e+7ZtrTWV3vctljwZzLK0wUYI54UmDQAxG2UgvLWWa5aUzHBXciKi9NW3uqCw35LgqidTDLOg71tdRPi0dPNpYQPuaZ4e6UEAg5QlVCMUIbnedd57fGlBLsV5MlPh+ktbU8XWjTiqVgUzZ0siWjk5Enkt1WwoAv61r11ah2/+duBLdB8LmnFpt4ALNfkV4ZtL6MzLY0nXxag5z9ocazOr0aHcf1XtNTUfkoKMV0HpUT5nogLyclamkF/Wg2v4kmB4MBsAVa1Rt4CUOFjA4XIXZ2E2fJ6RswqvJh0ILiEnPHxSev1xZAnvPBxRjr7y24OS2FesYXgW7XiUSC+uuB5mIeGYo6jyj8ejiWQmKDLTzkOQItqEoS0iKDIInggCc3G+mCGFXFNREWmiTfQigFzXnoiwaq8CEWRUy+3L+PZlCHBcN8nFarkw0fdPK8UkF2R4sXBrqFe7QtXOTLKiO69aogjhi1FSBzNVhXBEgKX6ZNv+3LbHSgxUWdWZSKU4V0FT4FkwUeFSmZBJ1aZd1WEB9tcEsUBIQCW2Lv6WW0aErXsV9e3uWbkxxzGmx+I2ZLitwqu4ydXYu/NezCxy0TUrp+Wu4arq+iI4ELXWmDszecLTp896BolIWT3dwhAws7N2z4s1SEKsTEScEGFAIqgyNqurFBFeyQrrU1vcmDSrUkmbbF0fe9+2DmRlb6+CNZMoEy7MUCXOAoiAIjzczMeszMcMyZBL17rW4bDpkdyFmcLc5zQfGdoIxFud3NIjecnqhVZgYabSlWs7PWnFwfXG0rfWWoswSaE4TRzJIo2lqZZcmJna1mTTtnfdmz56I5K42E0seppnZBCCEOAkAUNauFXI7kpisCqwKSC8Pg5mEE2vlgZv2AEsron0uMKUqqPqCc9F3w0KovBi3gJJlLwwxCTEjIzaxilDSl2bxLFCS+FJFYwWCSdR7aQbWCECZkjhUcoPkCwJc/fTbMx5Djs/x8ts+JzmNquhOI9znGMMoqRsu/Js4k0qyhGiLELakniY5zQpX3ThqQLDfA57j3mcfszpMWvAEsKtPZ/P5/PjsW1bMkAh2oOCX+88fFiAa6wWc45zHOc86v68q9yvleH6lYrktrXHc+uPjQQJkMjzubf/7//9+jx///evP//883i93+93ROzoj02ZgnXXhq4qxIIAo1UWueII0cZ3y85mFLl4TvcYOIdoSM92yjZ0i2ffO7UyvgoVFJo5KIyokxsHhk+bCmGGcmOWRptyk4REaYZgMYUhCj2y76o72gYWSi4NlhPQAo0RnCnpFCfSIs3xMrwnfZp8On1GvCIG0okK8epAJSCmW8Mhs/XtmPk+X+8T52NzgJfeEIIUYskSmC8dcZoNs7fPt43x+evPP//13//5H//nn//n//nP//0///zz9+s4kkBZbgUmgXJjpfQggZAmRURpq4UohRksXOmECzM4a1GQkNAmdXLKBGAZKxpmTlVtum1FFLwMRNL6anOXpc5j5gRQh9SI2Pf9bgAQkRRqz4ObZgSLYMWsZhHOv52qa59id795muYjbLqdPs+YltPMZroXMaiOg13UVBEa7pmSEXSripOr/sh//yrj0TKnfdtQSz7/xVNYZ9xr960TMnOBDf/yg1cng746K/ep+io0Oa7U8++tjiw4ojD5YpxfB+jVoKrCKyxE7xbL12nVlhcv7x7G3Uq5itqlT8+vRhqWzy7jvj6XHW/5HO8XWaNSj2EFTQSYIKB0I3jAPMxjxFw+8KpsUBzL+IKFEjGYkOyemTbDY4YjL4Yzg0gXNI5FJKxaT1mRz5lpPigyPSjR1qyFzawO6aVGJyJWVW2qorrk2KVl/MLQB2WEVYAXKjKZr9Pl12x3TZOvZom53TMs/tbLvL9tWR9VmSQzS5pGF2RkraPfSrq/3DbfxPv1Y0o1D2CKgUWlt33r2y7fpE51cIKUWCKRpADp8q7gcoWsbM4bXupBK6J+5dk4MrycmDHdbEYEkgUAgTPTE3NOm+GeNt3z6jl5uvsMz8xCYMTKMVvWPzMj/iLjxuVFyMtOextpS3VX1/A2duTl2SotV5Vr5fKOBVZdiOD7nLYKteWiqJLUr+cILCijXP1+lRSid7ur9d6q1b2iOQGEAQ3C27YFfJV5xDZmmPuYY4w6ANeT8njs1ZyJeuTKzuDG2kBBiOIMcAm4EjGXAUikkGORK88MCuUyGgFFZGVmUm29t9YiHcGZbBNANfuEF5ILoPK515pUb5NXxHu1Pa/E2PBCyZSWhyIiK96SIszNZqQV9M5iBoIFJGtlY+GI8Kx+ZwAgbVoNm0ReUb+eIeDSGkYlgEglYRI4UVzZch9V1yAjvJqT9YqRQc5JFqBwDw+ocjG+6ud7BkcQu9l0TItpaTPOacdp52lnkgV8xrQwdzM/bZ42zjnezOyUZs2subtnB4mTpDSSnsxZF0hYRVgahDXJM4yhhCac1IJJuxPk4/n8xx9/+8cfPx+PhyhH2AwnoplghhAnZrmJxhjv91uZX6/XcRynrfjOfxPyrsJr+NgwSYIFlgaPaoT/3J9bt006kn3G+/324SExckqHtrY16ZzkThTC2LUNhVEwJXOd65CZc4x52jwrbWJGDmKj4X1SqYSYqYk2YmJ1oTNjkjfwBjbeKpfWfCYpuEGEpTFazpinnafFmZiOmETJknJgN/Sg7ZHKuCjtEIJSVw6SCImJ6hzFafma+Tb+Pek1+QBPQZRnmEgQVJrEWQMej/qA+Xx/fnZ+zYdZFFOIqTSvKD9YeY0c7uZzzvP4/fs8fv/3f/7zv/7P//zn//5//vm//te//vnPX58vCw8CJyenQEiJJDzAkaTUuKGSCjmZsA6CzLzEvxFpdRslJCGSGcEAcsbaQtwTOSndZx1YWZBhY/q2bfvu9fwLwVzEpWJMpq9c5CaUykFpluDiCpbWqFy7glQOTi5BN2Mpk2Rtcl75B1F6MjPzMdOmjxk24CPcwzzdKYoMTGCISDAzcy6IDN3LK8D3Il4X/CYbhd9l35qnBIKZKbJMcHR776POyAlkyaW/nIbA1c9Y+qByLNUMcIHIac0O7p04M4v+HxFEi1vP7ABmeN712dVQrH1KUiqbqeoDCWHn2rRqKacqrcIzk3Oh1K6S8d8pCREelcVT3q47lPoi6BbHuJLZOSHlhGQWJuXItEjLGD6nz9PGWeXatmmCo6Syolhje4BrIFbpyNPCK79TwZ4hrNJbhe0QkSr75Mws8TKvhGjKEuLO01mIqSBeQQIR6Ba4REmsm7bqD0FYFp6+CSmAGvLOcLPkqGJo+UsYCqb8lpBzd2evfmqs7uD1wS8eBhJIuXKE8mKflpbwu6j/Joysswddg8JYIU5cWUlNq4etLQIVjtdb67WX1iMN4fXfpaTnvx6X//J1Pw6o9IhIBBKwhc/NaTanzzmnhXtWHZDEETDPMUaRRkCc7nP6GHNUbCWYiCwXhnf1t+YsM+eXNqA8wnz7a+OWBODbjLtpu8vZGibiGiXXzykR/T2QXQeD1Ty7wzfbnZ9Z5U6p90SksShjkdQEEiwi+7713loXUYpMSkdY3fqzOPiP3nsjausglDGnh3n4zHBOrJ8s2otXZ1aloaokVXrURHhjaqy9961rY7IiBho8JiSwciAy08sUXwDcgrVhjQSWbcUdm25o7Lxg/V5j5UxaHPdUSeR0O+ZkFO2rILRpHtNsmI0555zuYUVJKdlcZiYiPcokR5ySccd5rUVbsYSn4dPC3OrfMTOx1oZpns7p8Dqr0TVTLoTaBexZZ/AF44ywcIvFUb+SIZAWCVuiEwfxDB69ne04iDlAzkHcZxzDzjHPc8zj+P1+/zrH+7S3ESZ8ph3zsDGPcdo83SbBJVcfrYokCx+RDRTc0BoTGygpoMptb9tWotjWWmvn3Hz3mJF8npGk2j4ez3/87W8/P56lUp3zHMdruBXiP33CzW34OG2e53gr4/X6fB+vcxwrBxYEBv8F8AL91+9/QfDjx4+kUJVqgTXqSqoUFDSHz5ruD//9+6WS284f/OBNGMzpwmXA5yArZlVZ5FioJDpWYZtWbI8k8vSzogLmOXpvtCdDhJuyxDg1RRGdJdpOxqwIObV8mBUgEvo+xzzm8XmIS5ixBRFARooIOKRtYxeoZGR18aRJUwbUksrq6uEYHkfQEXg5DqLJyCZETIIgAjkZEYLgmlBJrZSIDPNR3o0vpRQEyUXVjEr5iTAfc87zfE87j9fvX//9X//1n//xX//8j3/95z8/f/0e46xc5UsnE5w8I8kopomI66xJhJAkecbFp/62i9wt93oIOdN5mU+/xpRrBLY8jGZWQsfvNKNaJmR57jIzTbVWQKmRR62rHvWekz2i2jgrJ5Uu/yDIsw5bwRHBV6KwTwuzmCNsuBnMwibC0g1Z8eF+D3KqDXW1EOIucarBUOOMrx2xJCrfhA7fR5zuXok6V+HypZK5hn1fCvS7QcI3J7ZeQ146KsLaXLECdpJwr0ERQZcK5+48fS+8ame6iPZJRLjwNtV3JKLChzLlKhIBqf9LvvtbF6J1eRjv31nNCP+2ay4aODLTZ2RmlFhy9Wwqxj0zPMynnXa8PSZFVoOkLIQZAOnqkZXeiMMpbNYBwDNoye4jWuMuolvXrVdmdjkW791XuMTgYWMiHEE1SLp7SGssQ6t8aW0rdYv0ynJYSeRXxwUlPgNFdbyYVsRjFeXLLJlrsJjfxverfqpqjLlykAqUVeqiBGXmnF6eeWZu7UuZF1enoT7AikCqBmeVdHcjp7XGohzl2NDWdxGtgX1Wciivmfc1kSgm6tX7vB27/1Z+3Q3hYqPUxNAjzOa0OeccWT0MJgniiDiHVeEVESxqZseYx3HMOSOz8Bx1jLmDd751reIWma0n6FLQfw+quk0/93d+7xnXZb87ZGVy/N5Ovj+j+6lcLW2sXtSl8UNTUdWSMDGXtF0ej23b2+02vZeOa6FYHc3rCc24qWwgrKyq1ntXFRU6Le+31kTBaRnTJldfq7V923rvnMCcdkvH1qAp1ktgrhMiszTiOmgBcC/lQcBBkN4lnDLJzGDm1TxTahW4hUDOaYEjPBpJy8zp5u6v432e7/f7XSxud4cj04evihOI9Ii0RCKzvPNJUVRO6Y1CWGRGIq6g1cggBlON0j3SYAeAkBaeqZnZWvv/sfVuTXIjSZbm0YsZ4BEkq7p7pGd29iKy//9f7cs+9HTlhYxwwEwv+6AGhGf1RlFKMplkhDscMFNTPec7t8Y0UMSpuqEL7WHD3KdZCQczOL/+cOR0eEVgsTlZHHPIeSTD3YUfzBLhz/k85xjnOM6f5/g1/LQ4Z+T0cfjzsOc4jzHGdEOEEommCgkyIqbbMYzo7H33QKQ4SwqDXdouvXPr5bwoMHhX88TMDKEUVdW3/X3fN1V19zGOj19/fnz8PIcZuWU40r5yab8Clz+PY4wxfNw3g6fT1SYHoL//+dv0ISLat/Yv29u2d947bz4yzXvvP378YAiT/vGPPz6ff57HOU3AqQ3CTVSEUxhoIuYe06Om7/nVgbe04Wa+PHHujikKn6jH2sZUMWZFkop0jmQWZenZoC2J3CwtKVKURMORmieEnGPCJ9KxcldnBmZISEsod8nkavaSSKsRXWG9M2Aep+H0PDONqTo8rC1AWVlaERAIiDfq4IduO7cHyaMXvLHOvi+RSustf82k7mnrGMfHx68/fv/t9//8x5+///758fM8n26WxJddnJGUkX5ple71+ouCQ9DeRKQ0tjG/soA4JSiCjIg8I9NZWt6WooImEOaU2vwej0e4uGtJ9Zdy9hzS9jVguT6+wvfo1qJoMUGIpFpEqJUx8OrwGYGWeia+5gXXbGR5RUrcmjbTJjxWtmt8rbav5+bixZc2I//L0PBCJlZgdhRzc1HpUeQD96T0RP8ihtPSJeTrxnCPOeRKiP+nOqykZvfgEAta+bUPxvX6q9dP/rUE3xVyBpUw6yofLTMX9X+V74uJXx0FIBgECr0OTF9Fw2ULXYbt6+tS20QdeP6qg+Y6E1F6hDPFNa1ylMlxjjGGzxlpWvSoS3oOQixqFKr8zsQMH/O0mHTFHJRGWrWRcO1ey21qPue8+VvC4MSF9PRxPpG96SaqixXHrT6B2sV77/u2a29t73kPXv8qZr+eO4pMXNnYC2dalk9eU/U6ilgGW9RB9r73yMtC+YX6zKXuokvvtSaTFSHZeN2BRAvXWaj+6oBCmPSq7GudaBpIZtXWRHR9ABUhSpRUMX7r7lqg96vaWv+4VFyemfBID0Tk0gLCzAJp5mYWVXjNjAhwENhB7n4e8yz6UASxuPsYVmwIAKKpqkGrvr9H1f/UbLv/vz4GFVl5WddHpspAibGikp4iqFyPRKm6EhpWRGr6nKf7zPRrORXmTkSiVAC5LDY9Kq1B675SZr1UcbUUqci+79u2iZQRIZgrGLTAv7CvKK0Askz+kV7nn1IQ1phSRDKMKIUrpIhF6LbwMJGobtv2/va2aUsPZqaK2iNRVW5ctoxMD2Qp3ZmFhJhZUwDMEcOmz4gIAjdpKZpJRLPamVdMZGtNWTjC5znHGDJU+hYR5xhzzuc4xxjzOMcYXyOBXLLgSjmlKxjjApl2csw5ndpDONNBQlZKu0VjDgZCCBQWCKuWAotEE0e1vjiDJJwz6ucyICCKnDbOOc5x2jhX9kEYVk4BLC0zAl74Q+bTQKDw9HM+m3SmjYg85nEc47R5zI+fH8/ncQ4b4Wf19ChyzX6M4MJgJmFWQjklzvOkRJoLdyIibXsjZhYVbVvbWmlG63NP4Wx9unHkO4NaV+1dmza+DvvuPlfJEnbYtAwjnG7TzvRJcbFQxnOMY9q4D/u1P15UAeivX7/O80RQ0/3R3zd9sDIJzxjTLZMej0ev8IoIj/Pnbx8Ifwrtmz6agkGRCGjlhdqMOTL8mpIkX0AXMxfOYk9bWjOkI+b0aTFGiAaEJDv3KUScodKCepp25BwOD47g8kEQlGYzNHw+TzKhSFAUYRMCHXE+z/bWdFKoA4Cu06RRZsIyM2MEZuBMPBOuEqRJrQKLskz8GY3BTC3bxrz3/uDtwfujbQ1dVWuYcqs0BLJgBqAi+tHaDPz5+evXzz9+//0fv//x28+ffzw/Pv2cgWRhygUzfO1jjTnvTaL0DXlRrL5kENPiisIgWrrsBFTNzET7vU/ThWK/jWCttTlnbXL1wKhqa/3x7tv2KJ72qiciMz3NgznDo7p6ADMlJqnwureuPhMuHXDUGChq60I6vD51pwyklxK1TBPrVHB91U9erz8vI98LfuJVtYPL9/e1H9+14G14dL77Q6tsqsM07gLriiBhTr5lVl8lEQBOXHExq2jzEm1k3LM/n5bm1Vivqwr4fx0YfZm8EBR0d2KqoemeWJakAmrDLzN86Xlum304LnzO2ikX/HCus9c459XxBhE9trf16ayUKKR5xGRYuJsPH6f5yAwRXdVDbfS4OhYIJJlbcrr7OadHSBasi8wsAM8gIr6ELJnZtg5AGJu23lpjMtBECHGkFaoDpSC/GF3MLLLaYGvnaW3TZpdHL6JGiIyiEoKQa2JXPTMk4yJXAQB/WSWq+YHrjIQLL+xur42ZaVaIMpEGZvqrIw+IKw7IK5yRLz9ya1vtpfeRjC6wBRMTKzclUc70JVVeQPEXAH3gNqngpdeVAGAzKOqZigyv8strc8gKpTYzi1nR1EXBpEw6p5/nPM+zCi8QR8ScbmNURNJauvgLdvqXAw9/JRa8npQWLuTqIK5MdOalSajuYETptEr3dt3wS5ZwnyHLCdS6hLdIu09ZmYlVqKksTAC05FWozigBEObetbUrR+gCTdU3aapjDGFhRg1nQcQrXjiQUWTz5cChOsFCc6WbV2qDlGhLWFW33h99672HeRJ8LLO3KktrqgrOTJ1u7omlAixW6wIYUdbjjDpwEGsmCauwemutSV2PWrqf47Q5LVylq58WOI7jnKNUTnbWUbyuGGU1HCiw1Bp17wRz5ZSrFBWPIlq7oninR/A5ARS6PYOcwsNh4RmUJsjrQMaqXp9sHbAjik8MszGnjXOe55w2w2atdRaTKAH26vKh4hvoz/mr9WNaf462tcakDAHTcXye52kWPu34OOsmHREpHQJuYCPupEklM4ioCfjV5wafmJGMj2eSiG7ErROEG/fe+rZ1XQ9oAt4yYlpIWHgTVZGm3JqolF2VUU61QNo55zyf8zTQuE4odTxYbBSbZgZOWq3PBAly3V/66+dn7z3mP9w4p5z/7v/yPd4f3+1MTtGtNW5CfE3lTSPCJ0XGGfN5NkgGgmAR086YE+bhp89p53Ge53meNqMkvCUHTgKB3KcZ/DwGI819+vdv/Hj7EaE7NxNEYBNxnaIhbz+mD4MbJUg80zm9v23vj20eJ8a0J+DJIvH0ifGZfcPxnLJTF+4bqyqYU8CbOs6AGTATz8DTcHieFhMwApgtMH1EhiAkkEmsrbS9vfXeurDsvF+5uUUfXXoOjxShmGBmeNg5hBLpdp7zeP76+dvvv/3Hn3/8Ps+DSfa228W1SocvzxQAuA0qJ2F6uNMFxyypMl1ZvPeiVsao2ipExv72aM0iooY4Wi81LYnO9JgmQgWCJ6JpkZmt9d69elyMt646h//KX0308diPz+cbZTB5HfmQ6ei6uzuY89JNLrmhRxS0hGrUXGiQ3ITHcrcQMaUwJ4yTEpOChbhGtfdgEQFn4sv/UmDVGsL5l5QEDsJ9fa7q6cYNYM2GpV01axCAuqubNlJRbSyNSAI0PTJCtXbIaqXVKaLCrL7aLEFf2ThmX10TOJa4NYu0Wa3+JaIvINOdJ3NNYu4+WqxeGgIJWrPUqhsoKqXeIyI4axLlUVSqZZmKTK9OQ4SXDbximGorpwszq42RnDHTJ6WbnW6njzPDgFQGVdClRnhUekx1KAIcwJiTlSPSnM4Z7FFd0tOdSKbn9AwqGCe2bXv++tm6dG3btjXtXYUhCGKOc0QElLQVCSZAjuTQ1vrWbzajNGFecAFEutl0r7bgLXh3RybMnA6nPtvWmZm4R6UYlX2e1/WvLf+0WUUPQLzYj6mqrXcAp02bE8mPx7bGNdfxQMRaazbO3nvbO5GQMEG2bXv7/mPt9IHM3LQriTIxaG2w5UoSpXU6h/tcU/Wl2omMZKLV2cqqM66JWzWAIkqQk26IKHzrMc4EzHwMG9MjAk6VXzQtyipRFsU55znHaj9EWf+SmRNLaHgL7ZW4ixJlECoDG9es/NW3AUBf6qpLdRA1/osIWICCmVnAAtXWU4uc7+4rqILCYmrUf1dfvNwQ4WuqnMkeyIur3Ko/HREZsW3bvveLihdEKULYG90PXmRrUjNOZdEq+5hFJNMTAWaHz0h2BnHvIpFZArnK5UBh2KOJ7lvvKkAU6CjTqQjtRKCoX1VmodQfSiWiuipFMbOamahKb4/WNlALT/fctg2UzFDl1hooogDgYW5nxJwhw+L5fD7PcR6TWcBKKiuiLYmJxAL89eaBQDoAFS6Z87ZtPNmRRQKXPljEE8HUgoKQ0ECOSPOIiMM94Rs1EQGLhW+6J8WwU7llYowhImOMGcc4xjmOOc9YqBELH0kgaDKSDBRBdeznaZhGz0NLo0nhoPx4PiMyprl7Ohd1GyqkyVBpre/t8dj8PHyeYc4QgFmktc7SiNiZM5IDNL2N2R749vb9+/fv398fvevWSRm1SVCkWz7HDJ96DNJCUKxn8KH67cePz0cXYf/DPmeaHz9//X66cd9q0yYidz+O47fffvuP//ztv//3j1/Pz/f9XbL7nCRCUu6CUIgdc3w+f/36+PPz89cff/zxv/+Pz//xb//zx/u/CYSSzMwiKfH3Hz824V99+/Xn739+/HF8PhtPQeNOZDE1p58+x5xHnNML7DvmOM09wtOd0gIEEk5WT5vTPs9hoJaAyNaH6JCtsWjvCiYSnkSIEIqnBWbMMd2nTcKMnTs2cUm0CuizyDnMCbPkjHCkg7NifUsr8CKgTkRKdeEz6BwxfM5AZHpSuiVNQnAro5Hc7BGK9HQSuQP+vg7AFNIYDMwlcJ5z+oxxGhGZ13p3hk2zKREzKGvcQAATAnGNdu6GE4AIy6Q6k6lqZhBxLXqZUbsSZ4YsrQ/AVZNFRNftGqKUOGPVB/QrzQY8IOyeCYR5hCvzVBkHi7AQh2s2VxWh9CFeHG0mlkV/ppcRGMBByS8NJ79cd0QQyiRSJlReQIVk1rSiQlGEwaWGFhDVNkbi+Rozh7gPsvc5mP7/BMh0wYhLMXP54Po9P/sCLLEyKbNmSbdYCJeOPhGRRMhYzAcRxILs50ol/uuENCK+EsnAhCAq/YqVyj7Xtkllmqie223UuieZy8B9O2L4VnAX2WJZM1c6cGaiBEmrs9WbuJCyKJurXKR1XrTziLSZMdJHxqC09Fl0aWbmXGQ4InKfc5kfQBRJLZEADZsc7IhhqO9d9fR5OolLU1w/rPpvuDyAIrK1pqoXkNQzwvnKybguUf1rnS9XfxdZ1ZIjfdg5ZyaBa3a74juvbqUU9ZEsKtq2MpleH9W/SLtWV5gzIaoElNkwCJKBrBhsZATR8qzEAidRjf61NQAkytrfvv3429/+JiLLUeIuIlwZlwSwQBTEyQKmrIB6imS5jWk1/c0kXz3OLE8ZowTaEhmIjKCwNIuSdLl7gW0T5L5QasUzK72Dh4twvIQZHOPUXjqhmlCXhHHVSdU8qwu7pBAAJeKmoF1t1/t5XMeeawJwlxd3U+rrmf1ypfDrH9PW6h/MzP2sFe92P6xGINWSUjPNl/DTqxCsWeWF7v+68YjI5wxLO226GXHNEy9nN1ycs2RqcDgHzNG6dt1I4DPOebi5RxRrWq4adIl7bEEE6k3VZ1dyKlQp7aj1IZkElEDvnYhEGpE03VV7OBu7SkEdCJwixVvOCBOhfe/KdIz5/Pz8PJ5jTAukIwp+I6Ks96UGL1HmBeQrxE0wU6ajwo2KwytIhaK18O4RTBaVkr5SGjnC4UxgYVYBc3KSUmpAKBBZjtdSeGAMn8Of5zzmnG7DLQsSUMfDoEi2IKsmOhtEyJJaNF5GitPTpluFf5CAVBQCDiGBVgScEhQPhTXyBwzn50AyqYh2kS1BWfYh1jXmIyHW3vft8b4/9LExU0og3GPahHMYBakKRKRiApUaaGNpQm17mB2/npQ/x3F8fv76eYaJTW2bm9sYRPY8Pj6evz4+//j5+fM5Prro0gRT2RWICEr9cx7j+Tx+/4k//vxfv//jP56fv3Ka/k959O877wlOdyXVx7dvvf/o/Y+9yT/iOD/meTzz8AHWxN48TnfLaX4OO047LSwZ3KR7g1kMswQ4GhTOmKdxzB7YQJBG/elNNxWVbdtVQjBK5MNBamBzcOSY5pMywCkAbY9OwmYMCveBkZZwHuVWoRBKEqotlxohPR2EFDjR5HwynpQTeALBaRSVWIPchDujszbhLbVRa9BaxqUmGqwVpgJwzZICYIUDyWGzIMEMEoDM/Nfn+PXr13Ecoxze4eEh1GNp35b3p56Zru0aumXxoiLrHHxposKW0ar+TBDH4sonmY3TSdydekbTNVwvOVEikEf5FhMkHI5kohaJOThBg3xEDvLRe8e+T0mhXZVJqRGlSFBQsHuWtINWx2vlxq1ezUsNVCBVopTWEy5ZfAHhcvKyirR0IRK6TIWgRkwiXs/y5ZnhezHN5SOjoAiqiUFplJmWUktqWEZEop1FFtkrvwqvIJaX/ZhIMpk4s3CGlsklj+AawTARaBm0L6TYJSxFFj9prXRrQ6iRRtbLy4S5RxhfjoGFMyaO8IjVwk8sWubKCKcFaMrlIOOLbeaMdcfeM9YyFamKgyFw5bgibjJzDIsIt+kxw0f6iTTKSVG9V+Li6GB1yM+Vsk1ZpAbOuOTqmWlZk81Cn4KVIsCAz/DhPtwlPKadIyMywXq5zoFL2chcKPBKgL76frSy3sv/Re5e9Z0jzd3cSwiBrJERIjLXJ89EcsHIRieFsLLU0JYr15JJZHUNsTCkWRe7Nb0HnZFBROVfREVKX5nZZYyoztBGi6Is2nXr3759e//2TbU5Mi3nDbVSBQtIUzRYqHz8lbEVKCcuIitkEwX4zPT0tWIzrezH+IotuvxiNud5k7RAxWtw97QI9zSP6WaBpCDhpPA0iznsLHHl9LyyBySSVLVUbquiWocryav6v1/AS1g77vrpVfN6V2N3NxrXVHeJtK4oqkvItBWxYowSBXLv2vte8vY6HKYzCuJGi1twvdQr3EwkExGw5eiU1rZqwg2wJ4Gmp9Ol6qqOGRGxhJQCoaguDIhq3/btLSgyRswRmcki2uswbokKip7mc/pKpxBE3WC24gvd0jPCVj+MkpMUSYxoLNqh0lvbhTUCw5iCkpMBhzMzIYkF2iWdSMhw5ixLOCI5STmSiClUpK2peFrkgBElah1CgCIjgRTJgvhUXxAEUZByChrvbyxifQam+5xpZjyVUFmemcLBlEJBQS0gI6sAJTh8Ymakp884Tv94zs9xWrqHJ4KY2SJtWlCwOGRGhKerqjZOogSDF70zYtTlUiERVgZzQmp4YGAoQUjbxpKbxIOSPtuRySLC2gktiQkKqhtsa6ICYkolbNoefRdyZihTUszktCOXqwNlEa91X4RVQoXdJvL0+fn8+PPXn799fvzKBUq1sMgIDzuPj49ff/z587c/f/7nnx//rYlSYwKTe9awiFPP/Gns0eac8/j589evP30GZiLo3//+P/79X/7H1t5EGhw2piU/tt7/7W+PN/nz53/++vM/x/kzzFgh2FKiERTkNmxMDmxt703c6fPjSLA5nQbDrJSwIKdME4RGjJHn6Uou9HjkVrKVQnVxMAVnClFTRrQZwIwxIny21upoXXiS5I0ylSGSIiQghmiyJimC6yGp4/NEnBQH4kkxuU3NkHRWMAAm2aBNfAM2yEO2N2l7k122jbtmU1alrrwRCUEuWHMAHEWupAopb6KPduy/Psfvv//5++9/Pp+n+yRK0gWfLuQ3E4GXj7xGD3cpAIAolSmYCbSYMuk3xYlAGRnQOmZRLBKLuz89ZJKqLh48M1OwZJi50XkgCeHJzLw7oZ0UmS3n8Dg5psfO5H1jq7hil0gFNoBw4ZizcJm5jOK1Md8H2eBEJsIjrFgXSSsPO6hKLEZcPQDigIIsSZKSKJtukRbEpb+5RL5xabxw/yAixK2Ul/aaBFfpdqWArrKtdAZBIF81TFokE5GDquqhSmSp8S4zmBCMUn+9CNHwurVcTakvhnixQoiCoUkUa/Qg4ZHI6k5/caBW7wa54BGVUFyE0tqKb3OAVI1b9fTdeGDkapsza0WTc+mnauVLm4e7mw23mX4iClccwnVQV4DL/RQBK6l+IoNIFczgTI/pXzS1erWVzieZe+tEKaBxnJ+/Pkr7lR5wYgElGEgPx419Wtp/ItIadoiWOKzOIcPmfW2lt8iEMJiSKYNAsOXj85Lzs1S+U0RmBClYl1Q/GUQr2Ol6cl5SAfI2pV7aQQuPWAYOYb0v8sUIXba7bdu27SHa9/e3bdv6tgGAcCPNhoZi9zci8sVBU5aWxIAu/cdSyhbsKLnQT1nBPkW+rP5geEY6/FZZLVMYzcRpS94HVFJ0JQwQkiwxPQNZ9/RSMyEBlKC+ko4jMsJiZpkP7muy4EDrvEN3N+VVBEYvGQmvstfXTvD9vNz/WraJmgwsI5HoNTVd13bf933fPz8/M9M9zZy59BXaWguPmHP94d62bet9b00+Pz9LanM1wKRmCCU09z1R/bWuNWRU5mAG0KrQXgIyMLM2TZKKLwQJq4jAkzhzeiKjaIu1Hq4C8XrXpc3NzJLPu6ej8hwzmBAUaZHJkBRnchYREubSKsDd4RYOblqtuZqhzOlwPPqmqnNWfJMlgSiEgsnoBsLGCU6m8mKj1CugSA5wgtFUKMukzElkSCZu1ChUMmlY9ca5N1p3RRhIGE4hTC7jjBnMxC6JIDMunVnMPIcdwz6He0xCGdYNp7lNh0TrUUhgKw6vRRBmQoSjlOOgXNTVusOsfDnJBWQN5VRGT20kEoyQLj8yVvg6oVkAkAoJEGmP/ti0cfkQ55wnG6U2IlFmIfFK/QIibEAYDBZKcII9iIl+ffz5+fGPz1+///rjH59//jGez7Y/lFlYkik4JsJ9Hsevj8/f/vjzP/7489+6sryRooHroYpk0p/P/0ByECXHaecfH3/Mw+YxMDH++9Gy/fu/6vv+Q5uecXyeJwPbvm2bbi2Uxp9/nDaGz7CYsTF35wj2bMTy2ITektmDtz4SYql+tBlPz3POiIoI7QRPG57n0zhk05YS3AOUXLC4kTmZUok7CanA09mDzCr0gAqtBBIWbUIIYchQSkohyxyRMgEnDrdRKzJc2FVDWnKmKIuCNxBEBcmSm3rT2JR6o4f2t953pSZ7x865KfXGm3BnarnQvUggKLz0R8XjESX0ZHke48+fv37++jzHqBKNiAFbQnwm5osyVVtCfq1Twpy8usQV2kIJSl/CcAQlmChKIkZcxs2MRIT5TGe4c7C0hhSGEIIR4XN62OX5Cje3ljHd1Vrz2AVBHHuT8M1N5jxUWbzlheStIKAVC5c1/4qiNy8hCKLAzciK+PN0R4SViRkUq3nDyUKsJMraEl5N4XTihCQHmYi4q3tpBQhfkdgpFw5DqgZnqgClGxScKMIDShrC6wgpl7IURBFMVBPR4vjm+itEWFR8KSBHevqXC6CaXIiKAbTwmu0gQXGRaXF1M5iQpQVesrE0vzk6tJK8b+J9VQfXdGaBYFH/tYj57pkx0+1LapNeECDm6pB4ScRvIsA5qoU102eEMQHksoAmxXvlQJqvrcLM7+tZQsPazzIprknry64sW38szhapnTbk7NoYSSBNEaL0MLO4sJzP58eqdQgFu+rbvrogTBbO7tUME5HGbOEV08Qq4csXOWy6O5Nydiapsj5rVi1NmFk7UVIVpkDAtMCBWmqY1REkVPfi8vNeeNsamEZELlvJRQesnofnOaz1YNbe9xqTcWukEO2krQbGDnJPYk2mYKmO6x3zUB4SckeSBCeKE+F36R2ZYW5VM8ca7opSEkEYTp5RXcCINIuzZDHEzJzE4HXlk3CM87Q53MrUQESkjYkCbMN9TiKLS0JAFd6GdKSk9K7lGapfFbJdAB1WYilgOwmxsBDRdETNJD0RVOg1YaHk+tetcWzJOImIIcwaMSICyVtrb/vb1jZKFlJbBXtdD1HZemuWY/r08K7S+t63jUUiyQMJJlYV6tve+l6ivYQluDgNzNp6ExFQ1IybmbuyyIK3MCEignKYWwZYuHUSCop0eB19luG0PiYBPNNvH3FeSIu7FV0SAk7wUnDmIlpMMjAQgk5UajlaKbOZyJJllLubGSzEoty5DxaiPOGBBJwJlIZEunnMoJlSsrsa5tYtvYKnJEUgegmIA0TmRCwsSIKHgchBYawSQoYkJFM2Qgi5YuSYPkemcjAFEB5z2IgZx7TTj1Fibpd0QqpbBSoEZ4ou1j1DM2iGWyDgRAFO4gEO2QRuHJMjLblDet+ZRTszZWPaRTqjk0h0OHP0vOZRSElHptDyUmtrfd9aU82IeZyZ2bsSaZSyhSs5RVtrn8cHAzWBIVgkWeZ0n+efY/6a48PGM+bgcE2SpF1anaLEqCkQ4/n89fPn7//4/T9UVVOadFWthzoo9PP4JdIoxAlBPqf/cf6Dpqr38TFzkj3H//xv/+e//viXfesUWwGCbJowvr+/Cf/t42d8Pn/++fmLUi0Bs870vnXl79rfzTGTRWyGGG/8uf0aP5/nz3EeQSpCMyQnKQYJi2pc+qCkJIKqbNpCIy3NIh12jjgZ0xmiiuc57+NfcKoqaaYUWCHg4cOMEUKOACfckcRoDUr0YO1ta1MF1KenJa0llXPTbBpNQoV2aU2pMzVSSSWIchfuIlu1vNf5kwIsFARhyvLoU0Yez2Hmz+d5HKNMR/BgWl16gic0ABL96mpw1SsVkYE68FZtc+WsVWelTFsQEUqnFHDQ4peu7ksdm8nZKInEaq9l5YxIT/cwCzAjEC3sGEfrvZsNYbDE2JrNjSlLBMra1Z04AA9zJc1MCsov09U/NYSyGhBA1IwDF4uyyJZAVvs7UAuvZLYAJOt3A3BmJfJrTpFX/M7KiaPFTiYwFYagqq7rc7lA9jUDQO2aQkQoxRNTXNOU0ovRHTW5MglrqVqt0pod3K/B87UMq8P9mvrh0jnVYHEtbjdYKL44ZJREHJT4mjWCrsQhEIlwlkyv5GXu6XOaDfhZRsaIyLDb7reGa6jaO+ZcPnOLyw4ZRshyX9/8jQzyWDQKN/PKfGVmYTCC3GZMN/fwq1d0W8Z627a9q+q2bY++FbiCkit3RpDGOU8cxBkLJj7nPM+jTIv1fdrWt21T1VuADOESIFapYeFe0qlYblkLH24R0YKrkVMVJEAsSiTMywWcEU7JNfgFFwACV8DO15knLiXean5wXiBKXjjPVquzqoKkIPu306XEYXUqv+VcSVKaTO2twsuopiqoCSctPVAAGRzrQQdSWdYtWtqCuQrf6SaqDUIigfQkLxL4ElGvSRNRRIVMVr2LjIjP8ziO4zzPOWfjRbOrSzTnMHOCJH+ltt+ytooOu/tV9zj99Z/pwtfdKq4bcVIdIL4ItPX4iMi+76VKvr7PVz5B4UjMjO6+BTfh0gwos7ZWLybre2bSGKO+bc0Wq6l2KwVbo4hIptIYMGsNl5k50qhC/RhL3kBUSEZkJJgbaXC4p2WxrGt5nYUSRToSF/DvbgcuJt/lqA3CdTSqHDaxJPdEuscgQ1IQkfZNuPWu7r1OTfX/LLpppzcmovM8fBrSleEMX7oEvxSPLhxdORUizO11AkzzPAEoXUk+ZdUK0g5EJWRRumhCzMmVzURVmiJJm/ImaJSaI2baJ8GYjNiVMyLO4xjDbOaYNqN0ZJRewkG50oyrW0/LOQRkkk+bVaFTks4U50CwMaYKtiDizkktN48TxJAUbVuXjTaJliYRTL6EDAhYRLn9u7KK7tq7tsYiIHenMYP4zJmWxAnkjGkRoFARomBKQTKBcs6wDDM/KY3Ym/L7Y1ft29u3x+NN9908RWTGrAbCmMfPz99/+/1/NdXm/LY9tv6QxkkJCj0mdriAicqzHfYx/vj9H//PE/OnzV/2+dvP8/848X/933//8bfeu/s8j2POMzMeb1vffwjbzCHj0336OYliV95aF3lTfRhkpoiYQbJ16d1/0RETtgUCxJEy3R20uRA6pXJqeduUm3Rl1zDyQeQ2D//8OMan2aRMAYsPc8rMIK7KIEgyxIlduBoATl46KdRzwcRIBTeijXljVokGEppJVmkLXo0jJeaERIKTotZzSpAkL70eKZOu9i1Wvt6CqsYaNrn7ec45/TzmnOU0DLg7ISJq/yeAuCzMa2eVqryq70WS17SlhNi0Ujdrv0yEZxn+E5yVXZHhCUqiEupyVAIShRXxqm1YpMosvuk43W08P6PWOw9rwl1lbvt4bMwwa2abx0TYGi7euSVLvcw3s8TC7gnRWk8ZxImi4uTXGu1mbhNle/HSQEvSDOJlZQy/C5prtIGS/db3KXSisIBpUctXmUXXUXMhyOvP1+uoLY8rWYiQBBAWd3ZVuUwsALzk9YGLdI81/4GviVYsmqlHePgVpRK58j5eO1W+ApBfLPlITyAtKXEzvZhZCxkltT0L3akxVw2amTZndQHdPVaTakaEFWW0xNAWNk4bw4oblxUNnroYsZX+VzmYXgkyi4cRIVzeL8EKS3CgRk/LrM7MJU/sfS9D2f7Y9tYZJIzGgnQf09ORaSMHKMLLa2JmYNLetn1/vL3tb4+quq6wa3KkRETEOQYAyQi4Rdr0iKi4ugDXxQEJwJlUPRERhkiCEhwFWzBPOAeqJM0swRk5BRHBI6/g0bgA61WTFi+kOqwi0tu27a33wmJo7z0JrbXGt7wJN/Oz7G0knKLXp0lL3fVPXxcI7v6HzJSbAkYExwRQqAi3MjdW4VXx1Z5BwaU3DJQoLavSPqctHmyx1hZTN6zWkxHMPKaf52nmzEwr8WYJIusGKwbEy5lnkUzy8laLKMBFr8jlVVl4yeon3QVrxUbVjLKGgFUwFZUerd2yeoIwwWEiumlvrMzcuFFQzLgmnL21TkQ3EP/tbb8JiLUm1MphkZ5gEmElZVKBaJRXMTmwzhoRFfAcIoXFzpUIL4SbFFgl5oL4002fyS9T9Vd+VBORVqVhmkWNqqv3nuElgViRPFTLRgjHhWyU+sBtuoD2fW+twcPG6josqVxSmeOByHRhgFK6uiyfKTOL1qoY0lsBp6PK9KgJTJKKeOVfEhPYgwqqYCreGu1KsfXWmggHs41ZaPSD4cipgsw8j+ecpQCgaoSvHI8khhBVaPRMD88Vzk2QRBrCy3vAy5nl6UGukkXAiaRCc9uYKaK1cFUvMTgJLLJcQEWarM8nCbWJr04tl5LSKccwjPjEZ6aXHrvyWFtrDCcYhdcB2X1meMKJc9P29rZ7wIK2/ce2v6fo9BTXjs6arXOEHcfx++//2KVv3vLxnb7lg/YSA6mdMAqQE0hEtPEI//z8nL+MXdnVD5PQb4+33uTR230MYubeO4hsPPZj3852IimdKPYmpB3ESXg83jUQFHtggielzE98KLXOEWCLFA0mhGBr8saxwRXWCErUlRpLmoIQCJnDzs/z8+OcIyMYJXJkYqIkkIAlkyblqZokTuw1oVGCEJjBJJFC2TJ1nXuJgHSf5nacw8wyXTi9qXfuSsGUESxNNIgbCweEqBEakZTaZqkUM4s0zXfIn6DQYRXm4O6rOR+ezJdNJ5QdwaDiwDqAG4J3b8O0fsp6wcV1Wk2d9X0c4MAyclMsiCnIkAwn5oJMcqYcx+d1RsxaGFdhFxmbpbmIjG0/93PM0+eI3qtEeC0jqn7hf7IVZuGuLuMhBYjAScykAmeCgxGCwqlZbfc206yKK0RkkLuHO0Wkw2whUiIyAlUTlNulvCpVvjKriCQRmPULaUuXRTEzUAJhR3Jk5adfNdki3QUlVybbXTKu2VOUBK84qHE5+ktnHFcIZFVhtavVZnoV004JULW0goAIK799RkZ4zWKXIJ+1sRRKEhes//WGuFd2f5Eo5QuQPdKLCkREtfdmGNKZ2IGFUaQkrm4H3OzLqnYBM5NJWqsNI6JS5oIIqlrU7DL2ZjCA3nvvuyo37dWnEaGmLYPgsRKlhSvF6xZBE1Hv/fF4PB6PtaMQVcei9N1zzmk2xiAiJZBgNW8iSKvmXpjKe2l66bZW7yHr9BEWES5IXEkA9VS9/kVKKsUYgGKflpShnpT7x6ms6GuV/ng8Kmax914OJsZKuM7SBYFYSVi4SIYvX1Q+5gxalnYvC/Mi0IcRXR3cr7ezBqPhblTNupxWZwDy6a/3w4pzcn+eY/krqwVbnbmwRf7KIKJz2Hk+I0hEqmN8f6e/mHZfwMJ8cQHvDCVcTdy7Grv/Oi2w6mplVY8QwA0pvLuG7Sq8RES4MfOcxsytbZnF+a8KxqrguZeyGwZW77E6qQDdfLvqBdaNp62o97XYzuIwES1rbUUgfvveL6deWLWrhVXYxryv85eWlMRntZC40rVFhJb7mIT4AvTb3d7zuPt8dNX5tRhFpFOQ1+JwXb366Pn2nQAziCwLDRDhlR34slDUHIBptQaYcmWhLvJURsQ9pUhmiiTksvzkOsAmCUvjjZsqPzYVJaw8OK6E1wyjNBcg8hiWFplEkMYtRSgEQlyxcEmgTFgprbIcMxa5WK0CoVh+bgKRkMiKdRDOVlLs+p6UStQIEvX4BB6PXmpYTk5GgEOYqnSu45Mv2CGB5TK0DR/ukwTb1ltXZknzrF5dGhcuLyIyWFWl994fj3cPtaCFfdadNdglKahlMXLD/Hg+Pz8+TvmcaLntvG3Vk1EGOJAUdp45RIjfdjot/Ok/f/7B1vwwct5a603+z//9f2NKVmFmJBNjWlpk7/3vf//7Mz5xevonNeYmTJ36W6hyimW209Tiwe/785ch3Uj3h5BRulLrwhq7+NbxnUfzok/prtKNXAlCEymZEk7T87TpRknYM6UphEHhcSJM2hDx5KGKtnFvtG3UN9KesoL7modaSibc52FzWp6GY8zP43R3ZWrCTXIGk1VZh7YLuCcYKY/9+9Yf0ruIVpd+dePNpFVvPJGxafMphx3p5ziPQobikg4xyDMZGYC7XcGoq0+zFtAlIpcVniMcF9XpOkshr3CPwuZxZnUBEoS1lJR9F55AWLov2nxrVLoHtzCf7lzWKU+A+sPdK7AYc06ds93ChWuuWu8atCgVt9Qh4XQlyxKCLoESM7MKKD09gqPacfd+b0YZ1cWZ87Q57DwynPJrjav1c+XGl76lqtCriE6iJHgiI5mJiViYhN1iEUgJlxtSmUBcXp24mogp4EwSUWQlH+bNtIwwSomKOUv39MyrAxe+Po5cEZW4WgWLOYqyGfgqoD1KWVIwaPdZER9ehhqJcZUm0puqRlBWkUvA6qh5LdYWEaW8cI5YJ/7bV1knaREquQmxyioiSVau7wtid13flUzXRHvvVXh5RmISFe2VhRvAve9EVCb6C0rUKmOqehtb35A6ReBGRHwFWgSSmJV539aXiHiEX2HJUYU0850HEBGnzQKxrrfmN8uWKFEbW2tNHO6e5p6c0jOzPrI5htkQpKqCC7dYREkXUDCDMIcFcknL5ySivj32fY/6XazHgZm1cVWNrbVv39/2fRfVqpBpQTsuBRBKPwRtDEgshd9XziYWbcQr8oiZveKbfOSKb7fMdIvhY8aMsHOcrbVIdbjFtAzzalfS1XMim3EcZ4m9qnJ1cWZmcJfOCc44pgM4juM4jig6v6pHXA/sV5TWa2mVl631tfy6/+F+Wu96qwqpV+l9lRFf54TLJhlhy92omyxN4HTP5f/schdYZsaMCKsuTv1m3ckiotqZNZPM4iIzg1kY6KrRtHpjPmaVnlc8lNfeTESbNlW9W4OvBfo1efiquurvVvMmiesRhSECm7beV37RepuZSRQVKFJjSFlqrttRa+bH6cAQaa311rZTxhjD4ebTfIJSWrMISmutdSkzik872XWRPGHDa41yVi2UZpEgfTgATo5SuWYlt01P8gX6IfeF/ifOuntl31tTYTCDksccLA0idiIsmohXHmsoM4SbUONUuLrAKId7eWXqcgHTY9Sx1T09KRjJJrpJF2KiZGWOmDRTWBAUBkvUGT57R/R58hEe6pKClOlZE2ghJYNL2mlu5BE2Tg8k8bTM/NS+7Xvnk2o+OOdJa6rfg/I8zwyjTOU0jsxwEIPdIW1/+/b3Y9K0n2TobeuPR0AbSTIZzHKwkkg7jvHWxvHz4+RP13eaLp5dxJN0F7TqGUgxBcQ6sGHMmHP8Pv6Xn5Oc3vf9x7d3bfTtrSMLeUz1WLG0/fG+v+97bnJkm2wgBwrk2FoDdEs83mOA7IBuXfqW5y+AABESXcbDTW2jU9IlUxGakIrvy2ThTXXv7dE2250Cz4R5DYFqXc1JGJGDchANUbSOfdO+YWsAI8IjXGUDWlGtI2K4n3OeM8eMw9JyJqVlMnh48hQWgZSvXpogCUqSUJYu3Oo0VsQjKUt4JJVrJKsiqT3bL+Mu4WpTY2klC+1exxyKggjU4TtWKQWqkwgljIgC9/xuedoyKREIAjwAZqBA7YQMuwLkYV7nmLhPhJVhV7v4mrAEIF771tK6xI3jwlfraFUcli5IIqGLe5BEq5xY/R4KDlBGCdauhgTnX79qSaJq/dhXJI6bMfJVB5BJjmRRvgJciQgsRJLEYEkKXlcSUdSFshe9tuWYGJLr+cdrkyAzAY8ggDOSSK7Cq+ap1+QzKKt1nZR5d8i+ZojrX6vNTV8VGiIzvUY0kYm8dfGxOP6JcBCROyJaEDxj6YFoafBjtbXsilK+PiBwEiN9JSwlEwMkzFFFzGWzWrcfURIiE14Bvwu7/eVQW6esIumsULNKvtmwUvPUtbQaqLQyRtrdpWNSUgAWTkRJy0xX6HC6aAJ0ZVxGRE2Ja8N+zSWsa7p8hVHxi9W/YY/rgFJa8q+PwAvkzSDzOecMN6pYdJFbT3lvpcwkTenaHOtTriK9t+2+S2uPP44jIlR6VY299woLShZijnrGr7fAd0eNgq+n6Lof66oEIaIcMRUXiWBmz8jIOpCEXZ2nYq5mkPsMt5gLLeHFcfvCPZQ2qHJMSnJ3+w1rjydb8dXFoVDtNS+9VVuvLkV+STy8O4v0X2emL193yXKz7O++3e3MyMsoWuXpV2F9NSzvPJ+XVuEKxL3/5Hqsr9qOXpJS7xdwv9o514dYi/MXFIMgIixaswoA53m+foevEhNfXdIr2XDeCksGBSMzJdOJv1piVxrYNQ1AXNOCOpRW2U1EEWZuSClVuGoXVulSd91rBxHUIqJtWsdpGUI2C47NKeafX0C3BAmDaUXi1TxxebbWGC7NPcw8LdKDw6NQRCyhxCJcJN1EeHplYEcKuCX5MGckhwhLE1FuSkyhSeSRmJZC1BCBCANlEhR0FBMl4EnhSSyRpU0MSshSWzA70+RMRkqqUjR491MPSx9mzZqwEs45nCVAXVhFOVOyEXD6DIfN5xhWfoUqvPZ91yZBdfRduSZKuEKcAkzMiIxauAkKStFs23x7kEzXtre+k2zEHARPs1BoNG2dxU4zPc/2nPp5tj6lsbUk6L5JKWI8EA0E5QbuSJnn8xjjiNMZ9Lb397c9Yf/2L997tdYakhER0rp2ebzppL2f3A85zI+BaZwiC6+j0ntvY7IJSaVSUtTmRqLoDSzeaHA+mTYVNDRxpDRkCKGJxr7F+7sFVPsnfSjJ55we6Yjp4cGTMFgmw4jRBKpoPVsXFSZycwoDb5KQTM2USBQC55xxDh+GWUlbCHM2mibsrQnj5GYzKXhvXZDTwbqr9uL3FCBqLRO+PP4LgIkoVXa5xGXFS3NFcFdHBExJuVS2THEBq9ZaUAoa8MqBEL6O0ZRRkSi1LuWVFJF16quSCRmg4r5TMqcjPcpDx2WPYY4CdnvWnUYk9ZJr1ynkw50FnlccYRJgJiEpq1gMZO2mf6k+KDLAiIxAVNfnnsdVbcgX0GsSQGT/dIwmUKEBs7ZGJgoRbmu6JNpYWJuyoFB5EASIabHzs8RbfxULE5BIKg7CmutLRmYFulVZIEnJnFm9NBSWouKDMzMLf1mlNYPKuIlYHa/SUiCdERf3ITKsvIjMEnBKUIXixqrRmcqvGE5IcERYBvuXJIho8epjWuRSdxU9/xb04gaMEaNePQmxcyYR+ULO3gWvZXp6+ArTXfqke6dMQlyuSarzsqwZTRdtbcuW5ZMaA5XRmxQsyNzowiS5r9girByTFajSVIrjFbU1VKlzzQ1f91RH4sKrlqqNkKmNKOhr1AWhqrrhEYClW5TPf84wr0xgLGdisWDrJ5bwhJS4PP91G9w/vbbtwovgahAWB6FUyQQRaSviup4U5kUiWcTzyurLO1cUefFREbfYBmYeyHQSEpbLjlrHEvaKrM2bWeBjzmFe90llpBRv7KZ6lns0PImCVTIgWvWKVPwOMFbdWRFP2gDMuUZg5ZZorVVJNOe8q6VL41QPen1SdPlwr7yv+CpZ7oZZ1ViXEuALx3p/n/tPFta1pHLlQKmV767qWpN7XvxaKd6TVgB1z1Y1Vvk8ZTjyL3cyRBiAvIQd1XDpmEdmykvVVX+yXsnq/ME95jzHdMughAvV+DsvGteSQ8RtiVWJyt4qhxSrNFnRcFRqQiJmgEW1bb21xio0yN1nTJ8roIYFJA3Avu/aGMAYB59HuRkEdp5HVCsuIhGgFVfMxK+nGmClJLm7eYzpw9wTHvAVGZ/MxI25cVrZsqq6h3Dr7c2CPQdl1DXce1cWqU1tpqVjOhQMmIWBwAESkDB7GVrWk5PMyUuwTd5JGMSMxkpMQqK8Ne6bvCl3AsXMcyLDsQUkbJzMvEVkp5pbKSgoI3C6nXPY8yh5ZGlSv3//vu2dlDKdIuc5JNMoCwxAa01GBLkXBre0wK1v7/Zg7q6yt77rthNLUFrM6QNkpNxFlViT1DPmzHPGMRwJhHYtgR9zZDg5V+4YiJ04mrR9VxV8Pn/+x//6f1unj5/fv31/+/Ztf/+2g1p1FLW1tjdlThmQycezHKNBaWapunJuVOoQWLASs7EGBVEYGcYkNlZVSZGVErtCcnrvFvnNk/vW901aI+Hj+Pz882eETZpgY/JOyQwRVKOKSzdeEVmRCZ6jqiHyyrbL4iDanD48hkfN1ygxCSaw3pRYMXKHUKf0TRmpIiq6szThRi9VV14pUZVhcy0QFnkBKpmDyAuZWvvQ4qDSOv3eSYWZF7eJqgqqdKEkcA30EAGkY5GskUtBRAJyLFu8oxgzEUGUggwGrz7/chuuLTszk6G5OiFEwhCGcIlJA1TSKzMTMqeohG8FPLOA78ugBUQB0+p5LutKZmTOcKxgXzgSKxuRe+9GTu7BATcWCpnEHqOqVLrF8pVdwazVxyMiKQUNaSFYMhOCKKIVEyAVKBRITpTjLNMBBirqx9entACM9T03IgM35oVOrT8fWNElV7eC14dYLaZL5w43EBEnwiuykoBE8BXlXf1AuqAh90xwoSIo6kjvKQAhnK4wRwDVJMN0j2ljmo11so9r98qqfTkiGHyFLhORDJ+5eKO5lGtpEcYFKllcZQGV/k2sxGcRXnZg5tpyJiaAxo0oVRsRFTNgzhKIeIQUt8KhtJQidLco6olurTX+EjC9KF1eCLT0Ne36an1VgUZECZZKESBdfzGvHKbVSKjuSE1MpLjsQhf9be1xX12WZCCUSij5NVkraH7fNlXVa7pUe5WZPZ9P7Y2EpTeqBDEwkSQLCEnXYYyKWrmuPF1BUZmeNpFBsWwbmVkE2fpAay5GeVVUVdo73P2cY05fq1xm+GqCLh0YLuoY+B7GRd4DQa8WUe+9BsutteWItK9OVYWd337GvMRb9d1w5ah+9SlfvtYT+tLuqmKoZtO3tzEvEhjRV7ur8PolP+3SrxHV0qEzIyJZvhq0dzDJq1zsLv3ryy6H4F38XUJDpbIw0Grp0Xr7rawYL12rL8LIdT2XXmLOWRU1KfNSNaxnp7Isy0bNKkRkV/+2uL7VmmBmi2lm27YBYNbet8qdLNIpN+7ZiegmVlTKQrlS6lJ4EmEQzEHMLC/uaQaCgplr0p0VH5lgkBK71Kdpc45zWnj6WnIXq4iYidKp2j+eYOkbZ8vWou85Rk0BhLizKLEw0gNwjgzlaBRhomCmWL027qLoHG4kLKzcurZH771t0Ea9oebvqqsB37W1bd/bu0hHcp1MCEkQEp7DC1lYS+Wmm7BK05078KyPLF8kvIkAonFPZkYsMhF4/UN44YQqyjEDc06QeIBItHcKNH20tvX9QUSBsBQNRDAxhPDW26NvW9NdpYElgswSroVdIWZIgOBuGY4kpugb9237/vb23jeRPI6P33//zzGen+PttPfgv0v/tu2NuToeymRNpExQjKDICGctpnSygBmkolvf37btaJ92+LQQKeEbZcImWfTMXaVJqVGpnnIS9hqICAFx2qlPJs6JOePp6dTQGcQV5w5lcLmCZ5iIqip1KfZPsgU88py+nLpup9m0nA53ICAJl1WuRCmHQpAq/FB5tP4g7iWgpGUUkQr2SI+kaWbES7dR43bPTCYSKeMcgOU9WsdEXMUWrXKlbou4Zj+Rl0BmBW9/CUQiC0xaisy10F8LK1FxLeo8TYW2L8ZYre+0ZGK+XknN75VK2VO2zTqxIcskhXCAHZQ0jZu4l6IriZKDkTU1iUBZm/IePzIVyzPdI3xx5kUaIySFMogsCNTTY6CJKKW2CL825qxwqMwLfwouTT2IGFIDTFxGy1VmkeQKwc0b6vASzl3uBAfCipJMQcWuICKpaWYyc3JU0tR9Lq/VsN6flw0qIt1jWvishbLWOyFaBtXIwuWGB2c14+ogUNMoJkKEg7lO+dfifG1uVSCH3YWXT0NcWekFP6uokSv5pKYbQSASkXyOM28cQG3yPiMquNApwTVZTYpVi9UuFpkJFkaKc2b6cGae3HrvKiEsBAplb1IYO2XK9GqQMKMalQwGUNl/m7beegUb312le6r1eofnC/R8ifiSiz3LV0rjBeC++bqpIswstA4gBaEm4sZyV070VyX+dWuBSakE+5daPNJYpbX27du3fd9FOP0K4iUaZsdxSuuP3rHerYAkmZJAiaTIsNX2uEdsdQtlZuWx4n4YY704XOkp7m6WRBExfVYyYBDcS+3klmvINa16PNXwXipsEmZaBy0zc68+cgIBgUjbH+UF1szKKrDlEKg/s2QSq1a9i9Ha/m+G3H8VD2TmHbV5C2H9tm5c7VV6EYfFBUwpX8VxHGZRmsLKd72aQVUGXarYNdf9CvauWucq+OR+Pc/naWbTR0RlRXNret11IKI553kcNYUUoW3bvg48XI7Y9eKf5zmOoyrIIpxXO0RksTAaC2WttVfK2bpjGzPjOu1WW/EVsRERW3+01nrfRdTd55hmIzOIUlWIqGagmanceuvKTVlJODM3jbQSMUyBOEnEpEQGgsrZCYCdkJkeUXkm1QK9P4U1/C3B8bJP0QWAqBtZCNlWvm4TgryBIsMyzDm8Yg6TLWnJ+4QmU4gSki15zOViUdV9V9G2bY9te7Ttvfe+baINLGvm3mq21LRrE+17fxPeMnmcdsyPTBMNoiBFeljYMcAQTiYRFjTViM0CEIVDRLa+t9Yeb/u2td67CNHF5S5XsjncmRnEDs+S5HlhiBMJIu6NpfddWl/TbQRnSEgEgkwolaCcTXlT6U1USJCeoWahysoQiKVlSSC7NnQ0btgfm+7F78Ac85PPEE1t2TfZd1VVbiwi1ZfLIMqvxPi7eUPpa5LC2Lb27fv7cb6P82NO9zCfh6O7YITF9oa3rTP1phBIYxIFSGaaxzlFl0wBxJmU0ssbBxagwr/Xdbso3nVuQVN5EHhkZMAix7RjnM9x1pFxGKyCnQnEaIytY299611JNPu+v+37+76/P/bvj8d3pgZaMX/EUuHBedEzr8LrS8ew8oVEtHFMwJAlS08Q5FoHl6t4NVHWllzDtljg9AxfdtmqAzwDlEYQqrCjBMHBhadIztVFiQtwT6yl7A7zEIfiOm4SABGWrm1ruqluXZqCqwcsyZwkSexFgL+89xcvqsZ0SXdg9YX0usuUqzylSAqiapiRaGJmxcpnHV1YoMRCiECG0xoKLBMqJVP1sogYTFeEcB1Z4fAsMMDttlyEQLKXdDlPgFLpUpshKIN4xUEik1lJSvMBZobUZi+5lMe4jr/IoArGDoe7uQ2zgbC7blg3f1E1alDi5l8Vd6wPmdY5m9a8jyMrGDvi0sH4yiSYmJ5hjLV4iTBAxMkkRElZi3iNLa459B2x/DphILqHy4tMAkpEzLpmWQApulRBzFLH/Ve4wLrJkU0Y0omo5iYREWFEokJEUl6l3lu/vl4Lr9p+eMVd+6q1MxcFCqubcm//q1DTSoVaVrU659SWvJKqK/x4/crLHluX+atEWJ9ELj7TaykWAW3MF1zq8Xi01uhmNSG5jpVcKAFdYItqe2FZV4kysaLUI18idNI5UQeaO7IzovC4Yw7zwg+4Z2K6zWmnTfMAkUfO8LEcJ27uY0yiZe+tjp0sZym/6sSxnK3XlVRV7QDNOWviUR/u3aMyu0sxupqX8ToI/qevu/zCP1/JeH0NVW3fg8V7y4hAVe2F6n0lUNWp6aq6pL5lIaDzr6KuMoioKl0p2hFxnmepyVhuIaPevaK8UizP86yPe9/fMu3lLdQgfL0Ls2UIvS9Ofbd93962XVkiAhdY527f3s9d9ejKfdlaq5yf15bwvu/r+vvwmNVfZ+ZCKtY1qX4kX5ZIkdb76sAhQFSjCva8lyOJiFsbU/rRMjLWVPf66KoxWRCdFGm+uhBISl4gOhS3m4mbtK01TfIZNs+YpsiMmZGWtVtU/kowc2n5q+EipCr61re2b+9v3x+P7/v2vm1b7631tBwRBuHeVzymNhHW1h5MW7ie/dRnH/4r8hlhqppSn1hazBnadCNBIrXLOx5vb2+NW2tbLVCtNRHq2kSE+H7XSQSaxDxriuOwcJj76l6AmakpEwnrck7U+lFtrGSv7iBxMKMJqZAqujI3Zk+dw5BEIhSVB0xv276/PRRbDCYjzt6IWuOuSWnEETnn8Xx+8M+uzPzt2zeiNudBMc1nJgm3vclsTNlMeEomViRM6/J433/k9+f568+ffH7OOf2MAR/iLYSP1uy9J95YlBtrJ1Zm6iwx3Y4pFuKu+74/HrvjTOzQSXaSoo6+RRzIEGQKVyJ4Y+4Z6mCPMTzOkceI55hj+nS3BFHp/IkpGdkZu7a972+Ph6RKtq3vve0qXUSZCsyotR8TMxFHildwWLrHxOX6rsdVpEnr2luYiqrrCVsNr4XIrkPE5VistkENF2mpXqqaABeRLANY0D7USoSKWaigPcY1vMx0qtQvEAMUnkxuwQIT0csW1lhJFsTy8Xi8vb09Ho+Sdwg3Ef2nARBeZVjXGODKY/kv+gEiJuIES8uqGpOvX4TkJUwqAmasHYtYiSaA5fB3ZBKpcJIIZxUaBCIO4pefy4XRvJfg8r5NDzO/WY7Vd3eRrLgBOMLpK/k8mUtuQYL6876Ceq7qKK9RKq38Ps+IMI+KbbNxKerX15oprGHKygYiIqmSgmhxzqpivI7xtVlNW/y+tFm/Q+4ZXjUSrmPNX7Aepdvy1VhdZNb06sFQEc8zCUqIML9o6YFI97KsItkznUhUdWu9EroyKSVFRIUI4T4jjBLuUygLNNNai4sp0FqTxVOts2bvfevam2jf273d1jYZWAHzq2K9uVNUf6BlZrkHi0tQgdxEeaMNlhxNFp8MmV9Zn5cu555F5pW9eLXWFBesBWsjlH/65tfmt7Q+XJr83uriVPMD1T3G4tJmZsKQVCZ1z5dC/Mr9WWC8yMx0szGGLTyXmy0G6XQbJSyLTJJCq0yz8zzHGCXnApNq621X7VgXTS0ymYIWXpPLr8gECuDOMF2fV0G2UGYaWmzY0n2LtNeOyP2I3VUFM0fEP8nwVxn9l1p/uWj/qYuWVxIlULHQENbe9itCKt3mlZl1Q9fKDhu3fL5sQ3mdVep9LVsJULlNlfGSlBZBkSIcGfCoroYHPMLDPj6PcvZUnaOtmmxKYO2+XTdbTRyrRSjEnVtvm3ANBCshOyEQWYfzzAxCXvd8W9HgRXZkiG5dVQioT79YfVY6DoqkSCWuyCDt+xXyzUTEQtR2BNmc01ipJXs1giMC6emRkAhPQsWCldrWElfo1F0Zx6WpSxYydzP4VfyRcJ2TiSr5QoRbY1FGkx46ONxmRUEss63UlUOGhxK31qQpUyfWx+Pt8Xj/8f3v7+/f9+17772rSKdjfk4fRLJtbXvb+8Z1HzZ+INs8GdkiIs/ztGeEbeV6Vqa8WI51d0X0ru2x97Y9+mPbHlITAqYsxb6I8LKu1y7LzMNQ+4L5agQWG7NsEEVqXf4ez0xnOMiIXAQsteIlqk/tM2yYKRNHhJqBOYVAgQxipq3174/vuz5yUpxpIyRk69X3s1IozZgfx4d+amtt2zbk2xxOkp5l180tYSHsOlsT6jOpgzdzlwh5B83ff2PhhA9zHBZglugBPh992h75IGaWRtq0EQsFcxvSmnq2oHxgfMsHuhmexi3GIE5WJMEy3HlaahOCqjThTtncxBIWZJ5z+hjz1iiQLFkYy2J0a8m4WgnOOkVj2gkduXmoB63I5OsrV6u7Zne3dMpvMUclcVaailVTmzV53qY6hBcRjCDFIQFuM1+lOFbbn/B1joyrbsN1oL9+s2be679mwumyGEKCQW7uzKrTiZhl/U+l7Vvftr7v22Pv29a2rm3j1iC8In1I79v5pegq1HpeMOc6aXkB+EluTgaJiAUTc9JS/pd9oGA1K0EDycDV3qJKkzSz2iobUQDaesndQJLgL9hV0Or7XQPZKnks1sxszulLAeDrvyLgkZgoJRCRQFTZk5S0nATVIijO4V14Ce5tHrehqR5d8+G24tnuHhsnRMQYzNyU702rejnXU3o16UQE5NfUpmxreZFNc8E7cJcCdaa/b4PqhIW5Xap2AVVLskZcuKXr10UutgkRe7onkM6l1aNskoSCNWzVkCjNk9zdqSjGoAuR8tpLysheXV66+HYXQlOkKavUN6y+6eplJr6mmy/cc8iX0muNLLVmBAL+8uraBVFTXoM8utJtahZZKLt7mnZfXnevOVFVRTWnU+0r+QCESJ9mY5pZ750ut5r23veHqkYlkCZxdeCJSry/9q4CyoVHrpSHpHKe1C0VmWWcWm+5+i4rLyFwi+VHTfcSyRmQ9ZtjHMdxzjHnZBb3otzJvSWn2z20vcoIIaH0yJvgX8hDZREp7eN1pqhOgAJQ/Ysc/i5DX49kr5Pi++a8T2d3TZYXFezuja3HxynkSzFWvZ9qKpjdkRV/KaPrW9W0bgWcx+oE18e6+kxZ49R6GZRMV+04lxnW4z4A1Lv7/Pysd9RaEAmSWbRMCczcpY95VIl8v4yvnuLL2I4A+iouA8twTfVq18T8GsmBqfde2fD1ne8yV6Tyy40oi8hPKlmKQLoG6EQRodKFVEVASgkJNlgUVAfF40NRSywjksoV6zPSvIRfScSo0OESU1jEgAsRqXbOdHetwzNlQjI0pWljUvgpZQQ0msuIQOGZxLnkyIy9bczCsjG1/e397fHtx4+/f3v/8djeVbU3ZiUePOwEsO/7+9tj23Vx6KiFK4LaiMEq0sipjtsiotwKZMRcUlUiJlV92x/vj2/fHu9bf5TupZrJ6VGRSpnp/nVyWGciAq+4UvYMJlTzXpal/RrIwBjGZEyTOZdSKTP8OObxef4SRfCUqZGmIuTuI4aSMrOy9N77xr1pf3Qb/vHncx5niMouumnfs3SBY+LPnz8jKSKO49j2BjIIo+2i7duj7d/602Xq4+eYOa3R2NJtmIPmJu+7fHvopzjNse1tUxIeAor4c3pPepftsT0oyTOnOz4/z4jsG1PfWmhufuLzAD1yO/OnJgMwdzhUMRxhqSE99nmwkTZqnmJmiSasm8YcPs/zOaNt+PG+mdkMF/Ft2yjo+DwjPSjGnBsrh4SLzTa4TdNzJqkEMOzEaKIbiwZGpHogEo3J3KWybqc34K23H9/e/3zbP/zMvRPex/n0LIxUgPxS+SDTM8BMEVk3PZLcMthqKICXII4yg4ArfoToFjkBAV8VW6KCxepQtUxATEI5jpMl2r43Ulbdtr3t+7cff//x42/vb9/fvn3fHu/cGksT7aQivXHT6uo1CFGhrUBZbpko5/sKZaGQIgkyR7qbjTnJznRLTFEQJEgSkizmItLCrU6BkX7OGTbGccIN4N42FeESAJWuq94mFRONCppxzrF6BqjMYy84xRhjul0+Jrr3DITX344YiKjehnIbHiqdSImVmDJJkgnU2nbpVNz8a5qcHubnGIf5WVmTgcgwH+P2A2Zi2lwncrrGc9fIjDmIqylPCficbjnSA1wIxIj0Zbm4SvLkjCSR9Jhzhrv7RFgVfwB40UsIwIiIGczlIb3k4UBKJbQXM508LLLwtyUQF8ScHjDXYaohvbWlYa9EokkkUQiyggKp1vvau96DFW6sKkW1rRdOyv2xS+tm5lGme47Ic3xWzUFL6g4i3rZFIacFMtXaj1ml9EzMbe1SGSjJY5iNWCjj4lYUf8XDfI7TrhGtlP5phSnBksCsrAKQeRI7EXnMjXXv/bFtNZMIRxI1bcyaFUQuX8B6rqqr2gZJFWvhmULEFX5Qo8FYLc8a6d7pT3VCOI6jTuRmMSonyIo0CfM4bUYKM7etP8/jnOP5fJq5kGaHsrm6e45znuc53PZ97/tmZu52zjPOIBUlbvsG4ekOoD+2S5nuWFaAWEczZWGpZuHFa/gqCDKbO0csMH1JyzKpXvMYo/f+9vZWZKxqzvFFSrjvxlvkNMYooMzWH713ImJgjjHnzDrTxhpA3jiQGiO+v79v2xYR+767e8TyARzHUcCUCLy9fev7HmlzTCBU1/gCiBlhkY4kFS205phXZbntnZWbkiCjte35/KDkx/aWjl/HxzEOVSVEIA47x6+Z5lXJMbMSe8H2cpHt5ZKgfVWonJnZ+r73RsSWMec4jmMeMyLqwiaxhWdSo1Z96L31i8uKywHKSu3R30Cxpcx4nuf5fD65JLeZaXGMUfxCX0Jz4mCh2ERVpGubPj7G8Ryn5dIEi6afbnNmpsmsSUhrm3LbdCv9ElVHMdGbZozykxyRYzynj+EHsROniDJrna9Vuui2b9/27du+ve/7o3UVYWKAkwQqXQnb1lQYseKySduqUeuJyyQFM4Hc3AjR267cBSJCLOiydd3+9V//9b/927+ryDgnrTVZAcQ1CfH0VYMeR7iFe92/7qnadiYON8oKNMzIe9acbgxPnklGMtOC0kloU4V/fny2Oefhz6e/VcKYgimDLsQSqFIFlFsXJtKkviE9Qe40QSLtUVIJDzuOKt/teXy01tom7SH7W5et9fZt18fO+y9n2rC7teNzwmYc5nh02bq8P9q3904R710fzIJUAGKB54wPi10c4GLBBVEmg5U0OTPUWbq0rfFMasSzGoYrATAJLC3Rp0uANcm4Eu4KO8BIa2201hpOVVKhbd9mWKYrpYXVRznNWsOcjjGCTg5rnOGUkOk2fbg74oqXrGEbipJtXgcJhFCK8t60rwdNVDV6sV4s3CkcOFHp7cnhmcj467SOaspFNRpYjyqWna6IJ5fW/pq33Q7vO0UxonJWL4WoOzItid1Fk5lZ++P9++P9fX+89/2hfe/bvj/e276RXlIMemFYm3N1bgraQMSgIOYEcfWpixJg6y9Ukngs+FgsmzIBxE0Tls4EzggYZ03FmABFFnBj6R9qwBOXimtNcynibpIVK+ClXTRsOf8jYkmSq4+VzqByZFJ6HZhMYu8PgDyCIwoXV4bqVWn5F7shCoDqi+JDsdILVpOJuFyIRQFD5mp83wGj1/lYhCjIc8UBeYYFPJAcDI51QiZmjrDqsSHsHBNh6VH3m/ukfBE5XX6ue9yZ5iAYx73bvbYfIgKorFcWYhKJNE+i+FKY8SqGCCi+OhqzgLLaP4wXUTPf+0opjtsSQ9Qu8sXkdPfw9LDbH1cRjZIr5+4ex1SAEpIvrLkk8dcnUbze670wc9d2d4XXrLUELFfDxt35kqJ7QbUrTJ0IrFSqcF6KoFLlSwEcpS1Fj6oUHnOx74uf99V+RuHioni/rWzp6VHyfEEGVwjSGvXcFrmKVLJwmzHnrBlQ3XrlNPI0IpoWZlZcdZ9BWn0jzOkR83ie53nWeSm/Qrcq9DqDXz/6Ly5opF9d42oTlqz94vO9aOTrq0RgXwOvdXe9nEz++lNee2Bfn8oLIr9mV3dZNq+vmxtcBtu8PtSX50iqRqlPGJcv5TzHGNbadp5nXI23u1eduZAo91vj/JL/t9Za68y8ws+4ARBpfMEvbkeIeRDNstHT8okTEenjsV4nUonoZS9YtgNkWCQnIRtzXAPq+wLWstZblwxXjQgGiUhXFRG3whEUfDgLUBPkDdEyhYgyJ/HdmI9IiwCYJJMEBbeLJMmRDs4kbc7GElF3JsqLXsKD29bQRFvrTRqjwnySiBszFb9wYTqZVbgpR0ugwtKZCFlB4DXzFuaKgbn6ggXBhgC+YvVKL1G93lgG81j0jfD0yDzmUQA2VU1qAQInBK10Envrm9bBCcsccwvqK2bezWJNjjPX3r6guEzESZGRhshIs5jmlQ2Y4dXuajwDMxEGl4yYSA2Xbo6EWc6uSkTqxfGP8MxGWl0NUdXO5MHKvbewDB9hZ/ZeujwiSuZAzrTDTpwZCJKuyZHkRnNAg4Jpa11bc4KIPMdzjMPsNML7vv34vtt4p9CHsMDIjCM9x7Dz8/ln+yUewa1ntsQA7xCg5luxcie2bZNDpauaZjp5BoW0RsqPx5uyEJSJpYL8QCIEVlEWiiB4ks4nJEiYOBqk4C4RwUoMUah7+nB7PhVQen/rA+FIn+eYZN7DNIihvGBTUSuXR3p4zMhg5mJz185xNa4bS6ctw43CIyTCiyFem3thn0rqQyu9AcJLuUWQBPhLxZ6LH/FSqK3/jyD8pTMfTqWWCLMSGmh54nrb3x7b49Eeb/rYZOvaGzflpto2VRVtxZWooxJfTjpaVvmFQmJCFlw4s1JfFuJhdYZqvy7DZhHCaojpCIE01LVjygsHELCaXhbbAgxiRFgWcRJ5J8oRpNyO+VLWeLpffu8qv0oKYzMyU0u6IaVMTRFRuoJiqDaYWTuoiABidW5eCS13TGMt8hPhL+s4A87MkVZrf82wBAJIIiOtBn9uLikci9lYXw7yWLFwSfWAXnqarIs0zczmjLCCb4d5wgtRQekiwgSRCrZaFN81Yw1BRjB9VV3XLyKiSgCmZOY5wz1hmTmnqLtrKjOTple5BK7+hoIzc1vY8Rqg6C0mbq0ydlazTVW1lV4DLASHTSstUUFG7rBzZm6sd8afX47VL0V2JCKLtr9SIRLXzC5TNCIKEYAS6697wgvRT0QkVexyoWtqTK/Ste+ttS7XJvlfvqhQstpJdc23V+G66n4sXoRneZ5Rw/dICx9jTVMZzFWbe5pjoVbW0X5azGnnGO4LiltrlCfMfPrS/40xKNbAuoKMqpxdt7pZ0+ae4BK0FZU06oPICwF6z/5e52Wvdbm7M3Hx5e8RWJQhIAESL1LOhYLDRbW4//q9Lt2aubtmeh3W05L8sypL5aX6rF+xMosWUeICq+ZdvNEKfyRmEDQrLzXZG2WSZz7P0zN779X98QAHKj78viuWjPwSq7/te++dRZJQTzFlqmowzAxEJWj3mKwMoorVrn5/hZIRCzGvGI0qKaWxyqrnmEqm5pFawVgoUYnVqAtLtl84/qAyTVFefk8mTWZO56iKrH5myyR4tq6nchttfB02pJ02p0USIJqFTCObJZC4oCFElB6RMcbwXMJjCAO8+IAcDCNwZIaREKm01pQyQIxg5kvH1js4zRgUTAwSTkYKk7I0EUmmkiHGGp8sFPmCwZSWribzTkQzkUUPjqK5RnjM04xBPSGixL1dG27fdOs1smYhphBHmt93+FrLxxjVbe0sL0friAhHRlKAKz3Y3Wz4GEYrTH0IeSlUEQYyJsvKvLQTOTI48hz2rK6/WiAiLZwSYN6FIYACgvAgRGGlzecYvG1tjC49m6qWpJ+R6cPH+XHOeKSGbp2lN32IvCVpphLL1jsJD5sBT9i0j2/vjzG+cx5unw0GO/0sHop9zg/+k2baYxx9exfdkrbW4MmRApJAJq9kSenS95ZkSHZnIFWbiIA1IYAKd5FepgWQWEJUodH3bX9/G3Y+7TnsPO2kDASZzXRUdjAlhWWcOQeIAn4N7yPnnKYrvqZ5nWIYt/rx7gkBIrT3bdu2pUcBwpOItm3ropRIH+7iFQXhHpwRNtyI3DOwopEvQU6FJf/1vHivj/dvrv+/ol0Zd6Qjrg5R5foQIqM6hNu+vb9v+9v+eN8f7/3xpn2T1gsNfxueq+x+odrg9Qhbng6/tUrrOnhe8uECwNdoHFHwQEYyCacvKwExV1DKYlFylY5UvcwkJNLdSrRZi+0tEyFpJV+9j9HxAsj+UsOc5xyemXvxb5pyVxHuXbe2F5D9NkMtst2KSl2hIutHrJzs1a3J9EwvqRV5sUtvkuTXcZ/L8HJtPHf6ygSWfj8zkoJAlB5YB7yX3sA9jQqf7h423T3DMrNsghUKddcu119UviIGagvPS//PLxF+VzMgAzEsPFbpu7RW1X+t6cYFHBbR6htVeUSXdLqqn5e9fK2DN1/gflOlaspM0nWsugVDSnLffmbzvuevDRsRYV4hfYsa9fJfY5Wqdxn0gjNY/5VwNVCYhAWQyjva94pfFBEl/FPochVe1Q8rdE153vjKpVhsi8IIZl23QrC5zToBeIQJL8vs3Tu9bxUhGlVmmfkVCp6Znjinm9k0N7MxF7aDaNkayk86fSn0b0nW6/fPRKycM8sr5fD1Q3ldW274VlO+vtlSYtedX6FAsVLWX89+X+DlYjS8Kr3umwRXDvfrenLfupHG12pTAIT63FjulMavGm7OKSJUfVBfPbBt21rbzOznx/O+jeWKPrzrwsv3+VX8tdbe3t6+v79XC+1mgPUrAqgQa6r6eDzMGjMnHEHMaNJbk2LdZVLv2vtOWrzk8NttzMSk4BKHZDl/+YIYFwCsqkld1hZU1NV13/Kd/RCUEWwedU2IA/oWkCZdVcdpkeaW7r6NcYzz8zw8AKYZjqD0+Pz8HOnu0zOKVuNjDreP52eZdkV77w0KIVZmH3NyOFvRM1m0SR0WOfjKfWCl1lsGJkMlM1axU2ncwlyhf9Vy8EW4BQjpc85IS08TqHKS1CSEKcPHNBp2DH/OmObH8DGOA2BbXGzmjbJv0hbejyVBBlKWQJLFtLRMSneLyrAZ5zjDXLc9ytfiZrW8hnl1mj3n9DnnPMcYRulcOeoShBRYiEcR9MIF5MGZTyfCtONYW6d6SAS5uwRar/Q7TgqL6WZkGRmJ6THMedpzWksm4WaRgMNj2BLceAapbO/4m+xv7z9Evo+ggeTeZNt168nEmxDlOT/H/m7f/iaYPiTjyMnREeZhGYmP8znCtuNz29/79p31wc0TLajxRWskIu1te2wP2qQDYXOeSxYX9PE8OHUXxkYCDYhq660rgYRJs+36r5tY2m+/fv/j52/NdHo74nNm9TPScs6g5kpBnCzaRLRuKlzw5WvMuKqadZutI06yUymWeu/7/vZ4vO/7m6oOIANM2ntvoulqlnMOZ3F3k4wQTHY3urpEd44pFVA7QcmUwRfFeUEyV6W1BpVROdbLFIn8mgykqi7CaUnMkpJYtD/ev7//+Nv3Hz/eHu+Px3vru4hI6yRKomVTZ6ztTVW5KsG8kNUvi/XLF2WW9J6TpWKNCsXErCW8dJuF1SAikNSxUDKGSwXrRCwvZxmTqoEUuHtOuRAz/nVoTvC9Pcw5xjjHGKUfqg0ps0KAUoQkq3vRdNu1Nak3VHzUCtXxBDB8RES1qcu7QKWtt8V/zyuHtcaj1W+8f6HSiCJaawV1rnGOZyBXNOfaBlZvC9Vpz8UBqgNfvaNpZmOcUQnv7nCrtPgve35FWIIzkwKF1qudLAutGysniIhRw8GlYrbaQevWpmtQd++LwhwRcL8QSqhoJVrosQKOf220995cHbHqx4jI1dY383HazMzONSlodzWfha2PIlf5fXtd5RdKmwGAGMKV8fAXQTcutBvRKt/rsoADN3xhuWRQih+RVnd4b11VO+tr3/qmGyAZQSVx4FwZmYWqX9Ve6ZmXtwBO1bGabsNm+ccKhZSZGeZzzpIOlpNxwfFnQSsyAIscbmPMALnlHD7HCHcEhDiVEzw9zGwOm3N6jcOq5Mo0i2TKy0J4j1zvoMO7Jfn6IONLJL4Eph42bbzqym+FVuGulk1b9K6x7hrl1dZwt8fullheSIWrUPPMwr44EIuFDEpwFYqXhE/rZRzHkZmPx1tmmnlEqPZt21pT1T4dYwy6ooFutJ/NKCuyF8eNUGPkt7f98Xg83t+ZeZ7nnHOUyKnStWMWn6IkW7r1NDejhTeXpr0pdxYgeX/0fXuLtOfnefrgma2LOXXXXmIkaZnOrIvhLNQ6IsseC17hWsIRVj5NSlXtXUUkHUG0WnVFJkXpVRWAMkRk16jCa4aPMej5aYFZlf055jGmz5jmYcVkHnaO43ken6fN4/MTwtI6b0wSDdpZmzRUIxKupNyYaEG2GVTLpCcFC0tnTWXKEI9ZWMX1TDDA6WnD7DhPEDVviw1KPo9nYpIixamzotXZvXwn52G/js/j/Dzmr8OPMT/neSLIRABwQhiPvQNOHCwBWMRkBgRFbxl23pbhw+20MdzIw8xy1KFmHDEs3H1awjyn2zhtjmMc55yT0oWh7Co1xEn2SLIk9wyLoAykUI6kL9eFJjTS16ZGjVpjaSA6bdo8cxpmRjjEHHP4KfaMYi15aRJ5hYe0nVhm5Jg+IzIkmwDUWEr80Uje90dSnOfHr49vaU+h0djGQe4tvCF2hI9hMW1OHzan+/BsxqoV/NpSurSNVYCiPfK2bU67tnQnjBkz3M085+AMN1GmRMbGrETCfd80BCLU9/72fQsBCbv7MZ50fphElzjJp02bjhiEhwaptr3tW+sii9jx16lQcvHqkiBSYiARCSubGqnq29vbjx8//vVvfz8+fs3PcRzHdHNvlfFcoxNaolRkqqrOOWj185EV01BYUFqBIfFiKbq7KZdva4mwS+l1+YwyEwKAtLd9Rk4PaBNuoBIMtLdv37+9f//+7cf2eNv6g1lXWPH1VRvL67++th/k2uF8jca/LEhrt3YPUbgnE0MBZzBBQpidQ5gg7ABJsIY4MwcxPIqP8TWY+Et5h1puMjJs2tUfisC8bPnuXiVXrf51mlyb5BrQNJXW2ta0N21c89x1Gv4Kp6s5RAVZIj2OGPTfAACAAElEQVTCS/cQC4aR7jMqa+Pljd+fUVz0o7xAnZU8WSnba0cL+Aqp+2qVfcmIqXAPs06uX62+q0UgVXi9EBDub+Luc5x3EVVm8bzvYVqNqFfVS2ubhBWNRrWvkVwmMdUg89aQVV1f5ez9qu5P/xYt9d7dW149tqr9bpL4f+3d3o2ruzjAminfVAL804+7+yV/7QdXhfnVjc7LNHclIxGRJL7+7j26UtVvb9+K4LX1XRZvv7KAEBHkFwxv8SNWlxcVfR2ZiEoDKDVK2JfCrEZ+VXj5tDlnyfzd092P45hzjulJYA4DHXOcw+aslNWvKWE96CLtbh/OYRGRLFXmliyyKr2ycNDKG4ivlthFpb9v3XyRTxFReBU7qw1WMvn6JqUavjvuV8vbl4vu+inAalPd/1o/9P4EX6u0Wzq2jlg1nV8L21emJ19RP3WyipIqZpacoLrI9SNaa9eJZDXeLgXYWf27u+13qVke9zS2vmo9Oa9G4LQTQNXkIpIQgC9eCRGEmZlYVJpuIhIzLPw8JpGZqQciehA3tFWFJNdzUMqH1lrFHNVDRNdZKdPpikGjL0VrWTRqZSAmaqwQWWVx+3qOnnK6p83EONMzPcMciUd/sJ0T+TzPGPP4fH5+fgyb0yaxZoiSpYI9BaRJrXUvjgBEaKU8mYcQu43pNiM94cQh4twohUMhAfPETIcTHOlzSOSc8+P46KV7ywTFnM+EtU6T3kJzo71ukuM4zPzj6Z+fn8f4mPY57I9ph0+DR4FuOstU8fHwfkRsnm3G+By/GldLOI95/Pz89Xye47TMDNCc06ez53N6ms9xnmHDx8gZEZZxDhvTxxjneM5zuA3OUEFT3xRCcKnIEUMaEBRk092ZaJEK6nStoI04uNZW6dL26vuN83AfPkd6MBM1ECMwp32W0JapF2qWVbZtV90CGBG/jmP79SH7xzs9oN1iZjBbJJCUW+s/Ht+f334wWdMU2Af7ORDOdWzk3cyMPs95juK5Zggg5mQJd+c42blSLS2n1aBMCUJSLZEIS3M0d0LYB5vN09i79O+s749vkEjOOsdC6e3x/dv7HNORB6U03oNtmPt0Dkp2IpRDnqkz5FrgSuSx1t5MR2qk1QmKQVIy3+W0x77v3759+5d/+ZePj4+PP379+vVZ4P73bae0jBO0xJKqAgSXR+SkzLSKe/Qgqo9NroUsXwiI166M8sTOCGRCryXp3mwYwiokAgIJy7a397ft/e3t2/vj/X1/e9/f3vv+aLqJtEXNIJUSKdTQeskNk+qEn4kwZGbQLA4qwSIqcehrIWYUTgKRWePFzEojYiLqu2VQToNVmBgzcwhpY0OQr6be1elYhP+CstchLygLEO8RZkWVLDvPGMMDNb+/dm5IsZSppLhdtbM2YgELWJgFYI6bEJFhWcxi94xFWJrpdTq0zKxTWmad8ha1yx2FHb33ntoqht8qY2FRJFNxGT1BiWvmchclzFxv/gK+eoQX8oCSWCkzBcrMWnS/9K9C+Z7ErAIlbpUqsEiaS9yThIBZmEVpIh/9kekcWf4vCK/x0DqUCyMS7lFHDHIr9qbihXcKYM7Vo1y2ipt/QZHpM3LGmrcWGtgve8nqZV5dkFU0c7sr2q/0pquiwnWd6xICoMwIi0XIC4/SR/nVmKmyjN2dRGkplBGe4UnEqu3bt2+ttUffW2uk7aoshIgDWCIEJrm4a2mzWlhRxy9k2SsCNBFmHuY+x5qJAIxArFH4LNmvZUQcx3B38ygfyUSc5zynmZloX7Hq6/qsa+CeVQ+dZgDXJ13heMU4rCQGQIhwFXklMIrqYkpl7H5N9y4eHlD+xCpfIsx91pwh05lRTc31ude8KYz5q3B58fD+pbR9PUDe54RyPpaUboGOK6ZjSbwrNcgiGi+0Lxd2NSLcYwVvvMQv1kBWRALpmbEINexeT9ktIBNiFmmqauF+xnGMegvnOcZ5XgGaV2iPUN3+W+cmxXIrwRzMghEilBnnOau5YhaXs1iIxJPcsoSvmR5+zvCLJSxgJcnwmNOqjYpqakuNLN0n0h24rLLuNQEgYlpXjwEER+pqKzJLgGxzc4AVyVvzdHS4cw7Tz5PC/GkRY/o5zGZ6QiwhwTN0ZjcMQyp3ISYiJQgnp+XECWBkppv5NDfPcEonDjCxsAglpEWM08eMzOnD5shcznRaiSAAmcdwzG3nv+WPFN+xVwF9fH7O6b8+58fHxzEOj+e0n24n1T2iPVRtPL3LmM9ztOMU4vz40DkPIVVtafnnr89//Pbnr1+fnx8Hq3DrnEiHBuYZbuZjnGETNtM8w5HnsHOOhc07j/C5uEAZjNycEEA4s1OcQABibuNszCxN8wpyVdaGCvVBcFNRJW3JOddtMykCxE2acEIC5O6nW2Qeor2KfYDfvn2zyNPH8xy//fETsp+ztf3R3naUqpMCTFtrf3v/MccTOSXNxucYz9POCDAsOUk6sUlooKekUFd5NHnP4EjyhHl6TkeYHx6H5ZhhIAMZSZI6uUMipllk5P9H1r9uN44sSYOo3yJAUsq67e5v5sz7v9yc8033rkyJBCLc3c4PD0CqHq1evWpnKiUSBCIszO0yCbvTHKKPvkWg9xsXS82MVCYx67fb3awzNaYhlVk50w/i9LYlaTKzQBmC5IqBYVNWEiEIVmQ9BaCUDoqr5feCO8qybbf724/H48GqPrPUGZLMmExTNJva6fMyEgbSvXbcLw09CKVfzW+Dw/NTOLWI6SJrGNqsfS1zkWWqY7EIJJNp79v99ni7vf14f//tx+9/3O9vt9utt5v1TU6Bs5nV6aoYrGtl/M7fLP0hmIJSKjy+INUlOyNhIRGI5Ld2vNKvmRlnQ2gl3y6NV51TxegUzFVtxf8YZa69AVmR9gviTB/7/vl6Pp/Pfd9XQcGp7VDV1jozm/3D95dJ4WDKdutU3kgioijMBYQI+3qzM8acvs95RFZIRJl1WBeiEeYvhxefIewFHeYYp9SpSCO71N8VE5+ZlP/QHdcLPOF1ec6ECETBJCyQuisrzbDw+HIMffEQZraspqsS8vTAnl9LuBMhptp6742QhciYWViuT5+Jqg/qhDuUwoi4iISLcruIq4uLUtU1SCogd4auXbfTJcTOM1P0Gj/xuT6fm/cXvDsft7huzkwnrvqy1QqBb+TZ9bkDCIAIvXWx021RkEjkKoqusSNES5tYNSsXJ7T4IaS7wx1Upg6nDKJcKSHEUZ1PBW8XWUVjjoupcq/ChhUZfzIcEnz9I5+eVI2v354CooJcUcTPLJ07p4hservuIqYvUuoSfl5Xj89in/9Badf13/edvyoBvkyI10L0nWRlEuZWE+dvwRNfrOT/+39eS0p9PzO3pkSkujoJzlPlFwm3ZtaZrbXv/J+entOaDhdZte4rrhsS15RzrsXhK4WVmUVsJd3P9TFFhI9RSR8RUT8BMKKxLpcpXTln1TnhcbFx6/ZmWgPrZtu21SRiXjWv6jbt8XhUN/d1nQtQqqC453PGeuXQFhVWWvS8GHAVUyU+nb9MimRhao17j1uwiHDyaibg3OfBgowYsjMRRaUqrYQzkAdL2oxjpN4SE6Iiq20iSydEWR9KfUwTmcRBHMSJtdw1YSYPUCb5nIgYY2ZSzOvIlAwEzcQEz9sw7qF3DnkvEmGOfR/ztR8fx+s4XokjYw/f9cywBYKREe7zNaZ97utjtaMxaQn+Pn69/v718V///vV8PlXbdnuYqqY0ML+cPNznzJjkyRQUSXAfl88jyEFRAm9QUJ3+mYxDeSh5mSbdp09lVdIbkQgkmQzCHsmNm920NzZhO3tvIgLBSAa0dTPyeQRhDiBNuPGcETCzvt3nnO3+mBPPY4+Pz93p/cl//vUfPXF/bMKnT4xh0N/fflAOgn8+f5I04i0RLibMhzvIYAxTJd3a/b79Yf2hUA3GnEfOpOk5X+N47b8GfrWeLNPjSTyt0VY39G17fVIOVWWeBI+YnjMpRDcjgSMIarqxRkJNW9tu+76Pcbh7a43hOYko93FEMM9ts3HbFuckIqKUjIBzTLAUNImgFamcUNUIySxCgN/f3//6669ff//99vZD2n/tz9dMxJhd0QxmIv0rT6+thOjageKEHaTNLuq7liFR7dtWRXJmkpkeY23SSV17McARASuGgD0wxmHbzW73x48fP/766/2PP//417/e39/ff/uh1pN4uItQ713Nlp2wVgFelSsxyd1POrBJ1aw7iATK1d5dWoqVLEDMlJlQKrwDSq/yyG87XM+Y4FDVVM1URoaA0kSJUUp2KnATmZmemVUkWf7rRGb4HPvz9RxjpI8Yc7z21/P58XqO4a212+3We1cR6U1VzETNRDXBHhCFEI8ZqtzUTE2mE2aumAYR+IyYc8acHj7njJxAVide4WZVRcYYEyvUWS/1ehFvZ8uE1FyAVxtxqX39bBsUgrhwre+ZyGUTC6AoPmpMJkpCoBSQCEv5E8rvLcSr6ICKvC9NUvKlg6JTm6eRFGPUziymtZnd73cVFlAVcmf62rwSKqxCUtVOBY58cXKiZE2quHdtDKjURiKVIDhyhCdX8fi52gqDqHK6a+O8eJF1DZm/z8IKhJV8+3wcCgd85aRrac4ic8nbuSg2zuDM0j955KJMzFT1fr+37dZ7vz3e7tvt7b69vb2pLuVNSQKImUTBWju8nImd1247fVJ6emQ6I8/O+7JqERI+jrGPUxTPFN8UXV7nsupXX5UQ0+dMTM9jjmMUeydJcsyoMxhnhaTgmLGvtkFV1TKx1Lb9HQoDmNM9fIwjTrh8oa5rhPddu13QcN/3svrOOZm5MuW37V6QZc5J3wjW200rupVoORBLsU6nk8PdI+bV+HQhiYX+RYotjgjiq9O6XekSkfN+v/feSyw4ZxVZLmhYmvfb7S4iEQPAGKMeUKyoCGWmOWdJxKp4IDPr3ivINeesQWT5E91jDN/3vbDXti03gyNFhJIZSF8R+OnBltwaPJZxD6gTkfaaQmo16dLZgkEBR4zpLNKqziK5GnJrcTOrg41kzR6qrYhURHo3FYiUEGIdtGbOKh0sCT8bm1ocx9vbD+H+8yO3Tf7V2vP5/Pvjb2M9hsOjqT0ejz8iROTv58fwZwEaY8GM+ToG78YCC7s1M3X3xFw1ApVtk6umPTOrxz2ZKNB7g6qSchcRVRlzBivGeL2ezzlnenhJaSmchrZ8m6Y9bOOkWf1Ix/78fB1/f75eY7oPj4NiCALIrXdtAs6ggHBSHnO3tj0Pnhldu0rD83POmMP/fv7cx/7cX+6/7uN43N8NesywEeyZERMZkouJUxKljHR4crKxqplCjbcum0brpDIpd4rJPOrTboxUCKMpta0zZIYbMWsr+le1K5l4BvmxbM1MxhAWNZGmjXmOEUE+PXMgpTff2ta3t3570+3GzBn0+fn58TmfT5pOf/z1F0PeqIsIOMMzkOQi1FS66dbsDbSPHGPfAyG9hTsGSbRmd9vetb2J3u+2dbKGePn+OT59eJKEEAEDk3KQhEoWy9BImhkTu4pAlLTGZDFi30cntq7JkjNiP9xh2kU3pmexWcqcqiTpVZLtnmM2HDHi0u6UKES0KiOTKFHjERQD7JFL+rCOdCrC1lq/v73/8edff/77I2cerx3A8OkepsgwIiGYtbM65lsnHdLXrn5GM1/HejNrzXrvrWlmipcmAJTUra/KMCp5uFSRJWvr7XZ//Pj99z9///M/3v/487ff//rx4/da/jyz0kTpTGUVkSCUpgBMSxJeIsVz4wRXXVEl1EuR3cWsypkqJlyySV0xABkBKCHc+UpgZ6KTc/6u15F1nqbadM/SvfO3RwaWDHKMMY8x5pLSH8ex7/vcj+FLYnJphwsWql3JQFoRy2xfo5Drg2CmsmzVh5Iycxb9cIhI+b8BTPrSJ1WhzXdWQESk2Xku/6od/B/amsxFT9Ynfh3xVyTEVxu0rnobnHWVywCW37jGtaMtriIRyLO/cfWwe0Sedtd1rFhFZipVQh4MrZH6khYJK5OpCoMY4VibtwgVRVQAd/EEc6V1f4ehmVmZ8JUEGxmZXy87Qr+TLmsMRF+qo/M7cQGvGjPiwlgMlkr3y2ukddWxRVl7c6ngRYQyVVV7ezwet8f98Xiv6pLe+6VWLLC4rIsCUcNJO13wqyAUpcf0xJT170qjaQDcw+eIMcccFMnMxbhcGq8IzKgkZQVTJO3Tx4yZGHNGJAnPEY45xoBHBWt75Od++Myr4/lL11V3Y93u+EpgLk9inF2H19f1T+pNfWcuI6JWhu9w7UK6uTbcVd41xqjK79pjr8+9/pWebZ7Xj7okhpeGta6nqNXFIGLVdkkGM5N5X9rBhvrDS2h/PU1nxcLCizkHX/agE/99l37ibAgVscySf7mo1Z02xnh+7mPudHZN1p+7u9Bci+QVJgfKzG3bmFlWoftawSpsOpnq2CxmXfUcd15yTW5t3fyRotJUsQzm3wwKzdpagqiKGdZq6+6eXp94YcokEIRJmcksbv1utrwRLPj8/JX5aG2709t2v90fj7cf7+/Pz79//ZzLF5vwSHH4hE+KhnQkEZeQwCPz8BIWrGakiKj2KyJq/eEJExJt5Z8BGBhpeVZQEJg8Yhyv4YPN1ZPJtqe2D032CgfwMY95TMygCInMFE4m3Lbb1vvt1pt10fLAuruMsV+cJeceDneakXNOL9MG0YhhcyduEhQ+2yXcFGEVFoFRKlLBgtMbG025GzaN3mbXEIVwMg6mwQzTrRkxiZht91vrG4AWbP3WQNKt3frWTcQsCHXiigxGJCcrqbIqA+LiSTkjj5ePI1SfmeQB9/wjQ7cbgGOfx5zPJ4VLTsqD2LV3A2dQDhwOH0dkmNrd2sPaQbvv0/fhsg8i0lQTS+6Qu9i993exm1YPFB5b3l7Hrd22tuOgGNO9hpmM4NAU7kpJ/W7NusSmU2UKwJ+/ntr/fry/vf/2Jl0jsH+OGSOqEXk5n4Ug6/AOoaB00Eyn8HmUfQyRcx7Sp/sQbcTVNR1MnDhPbGdz7Xr4lxOwvb//9r/+1/+5P6cf/t/+v31/EibDQyrvfUeyhahZrYnXelSyp23b7vd77cSlCKln5uTVNSqRYqFD3rZNWTwRII9aSphEeu+P97c//vzzz3/968///M/7j98e7z9u9zuIZgYVDaOWBFZp3CSEiFzIKjynPHhZw0SqAhYuxbUQK7Pqec9KxRqtEuYK4oqa7UgEZyYhYqaVmEwaiUMhmbYoJoeU328pGIgIFJwWpaiqXHz3zDzGrEP5cbyOY+77vh/PMfdlvCIoVbjo+j81vnAGqWCNP3jMKcwlwOElhGcRDXde0UH/c0KXSXVSXms9cRL03OOvLBIIGxvAcemQTpFRVi4SKMFZ+CYrW8oyB1F1pZOc6JPL3FVzbTBxebz5O6tx7ZrJQmdr9jmjXOfsGqcyKJc14kt1HgGiJFlpqJlrX5xzMqGpFf1LpJRzjdRb37Z2u/UCXovxkrgGVgtomnLFu0NIiAlcMnOKgvVCUFYiUjZmriiEwkBJqNy72t2/DSiLCf4GvFTXABA4jZ4UBEflP1QygUA4SYyTWE3b7XZ7e3t7PN5ERNaRfcBMVSjq/v42gasIY6GqL42VX4mv8XCuKi0iKln9cD/GMYbHnLFMjPNy4HqiSvQC4KYAuedxHPsxR0XxgonZUeWMOxG11pgRJaVCrNLV1oloHD7GMQYK8W/btlnVNFUgxTgbmVZd+XVnnygqLmq0UL9XDMk6S9QjLom6pRhA1XOVPCsiSk285nDS/uneWKe7C4qtlLJvR9YKZJ91d4FFeh2Q3HPf9zGGvrT3/uOHCNeCKZUFU+DmOI4yqF43SfkVzGy733CaJ2ohXZOE4Jg59gmKW+sZqaQsTMQRiJnhToCQstLlR4kRLz6yoRJNS+oKYGZA2AhCsLqScmUE+p47mNu2iUjb7hfFW/F7RMLE2noXbi0Sw9ZerCJC8WWJOPFfJUdnWUGrZzOJKpY5M4p9FFkjv7JDVPb6rW/FRGo3MIHzNe63x+Px/HXf326P+xhjf40xhg8wUcxVSKDh9WSkMgjwSHhkTM9qc7/qFkgszXOSELNQE7MunIxkpPak7gkgjqzO3pU4FDEnjtf+/PUrMK+0lBHuIDQwpKm1REt7ezy2rW/bJqJCDIoRnix4fXT3dDBLzvSZmQKWoDCz230bx4xCwyqNuQJLVMRMybTKGVMhYIX2W6+nlTCbcO+0iRvvN4awc4IYoOAkEW+6qaj1vt23tt3qHrO3tx8M6hVswKJCmEckVR6LUKgQaUAC4sEpTTmJRs7w12tQzHA59tx3mqm///Unac2zfByvn//+t4/YX699f769vXEXEpo0HOM5nyMmuFm/37b52l3Y08PhW+u37VZ1S9PJN9mssTQRVdNte/zef0/xj9evz+PHx7j9etrPTxmTw18+UjNVnXKwCDdqRmaqIjj8+foZ/+2eh3V6628E+P56HnvAc6akGN8azRkxD8wXI4hJjDZtvbWmxOkjxjHn8Xq9WG6jvYkGCwmjSlZBep16/7l8ZIBAsvX7H3/89fzP8evX5/Haf+4v1APKZ1eGg5n7rRV5fv2Q+tq2dr/fS81Q+oNTBVJHWMw5j3HU6ZZFidZu6pkjPJOMoE0ft/tvv/3x+59//v7nH+/vv7XbTUQiPWYECxye6yzb1ETEx+RGqrwKAmtpXlGCOLVT8rWvaj29fKWIUcVbLKJGiLWC2UsJS5mosFu0zFSAFFwTiJiIJAKlEo3aM5ptM6cBiRjkdQIe4eFZSV2v12vfxz6OEnZUlg8R2dZvt1tJdsT0ooNWwsUiV3zOIIYkEaet1HIVJcIEBVXiDiVRipJRG+M4IydSgkKT2MCSSf7NQ3dh0e3WZkRMryiMAPJ09a89Kf8hpGMWohSUVTzrOgpIOYWEOVF/xzjjx+qnXDQPlgQkYjmgmAJfcv01E8Qa+V2Cm+fz2VrjtgajhbJYOOcoeRCTFscmpsylZdx672b9Ig+wFHvn6EpaQV1mrvR25jBrrTUAqxCCrt7dbmYEzlP0QxfJGvVwLQ8azo7QS/mUCaLQlWKadWmAFf1VQrAgIgpiJUwSdeRV1O5ZlyvcvULYKymGhCvxm4hpFZFHMjVRVql3kXOcZeiV5VaBunTq388oLKRndVzSApTEUR9+NbMCyTQzpuc+PbxAMM8ZI2rqF9UAW35TMW7SmLX33lqPiGOfxcCJiGarSR+uSOEzV+U7d8Vn3yLOBvHrD/nk2q8RMJ3q+8wUwTWpLKTFJJB/ME8XPxQRJf+6YqULKn3/jSeeDvcA4ivnPTGnv17H5+eniLy/vz8e78xaSSW9b9u2laxq33f36/XbcXx8fHwcx1EIvrXG/OWcXdEYkVecbLcVf11lR7XYqrQfP35kJou0rszsPmv1ru62xV5rHRukbs71b5s1becIPo8Kp8gUEbG+erGYWdfYt86FzboYEXWrKPh6djyu9V9WHyWLVB9iuVjI8W0D8kroYFWqnLxTq3fSzJwew4ZFRNkAlJkhmvTWb02tSR9tjFZwjqJUAenETYRaVwoNuCYCMXM899d+zHITtNZa5xEjKECTqGtvN1PtrRXQPMtYA7CcpLTJNuaTWNQi0/e55ysON1aiRApla9p6V7W09+idUR9WEe2VnEM50jOkOVWXgs7d5whmFeut33rXbE1138dEmZFFUhm0Kgu0NzZVZRIopFXcWMScB+Voxr3jJi7EmsE+iAWBqMjKmtqLWdusb9Y6AFa3P+5/1vClqQFB6ROZKQlNIjYhITKCeQhNCZCkcipAFEk+Ez/HPD4ibuAbILf3hzbrwmP6/vx5jNfr+PV5/Hz//f3+491uFhJO48gjOKixta33beuPTfeDBsiMVLmZtQyaoN1Dpr+9SW/bdr/Z1rUxNN4fbzPf/z76f/3sIu3nz/9+DsSsuh0WRtKEMKNoQlWigM+IfeS+U79FMvm++2sPJLmb241ujuQJf03fBdDN7ps97nZ/tLdmihw+9zleD0TlPFWeesm6hZf+81pY1w6RnInSnpv1t8ePP/88fv71H3M/YjzHgZiOZZVzwhQRz1k9PAWn8koMi0yfQYiI9Jk+0z2QITwSxFmGiyVKbe01DiS7Z4nLwSStWbP3P39//+P3tx8/bo9727qYJkXOSbUiuEeAtMUcoY2IbAMpM6wiUi/CnJlAWfb+FTyhWuOuin2tvko6BThEAGV9SEkIVHExr+MsFQeu4EYrEYpwiiA46RzyMITFIQLiCWJPDI85PTP3cTz318fzsw7Ec4YXdjE267fbrUrrvkd9VtqKFhdNVVYRGU7hQPg34TwLmLkpcxdK9ZDp5eFSCBFJjV8JUqAzQKBv5cz18kWstZiB5Mgomj6qag16Aq9c0xIwEMqCpfVaxQBEJJyKLGCRgDDJ2qyJV9rZFR9WlgRWtWK2MpOJMyPKTvgt9oIZQkB4fUBEZOsXn/ElAuv9SqgvPFOlnE2rGajXIX/JU2o6SoJkEEdt7hVMTVwcZuuy3TdmHkOP43WB1NbUrBFRuLAIr53466xfRHX90JP9usrLl02ymJxSSxVgi4Rj1SJnJlXtca7YizGG7nvNu5UhxhGhp6GUqPwNuXJqI33MQJKa9caAsUxmWhYR5q8nACSSsoSSzkjw2iFFnHKCZsasN4iy/yKB6VmSpgywUj3RY/gYI4HFTPPKRmElFWlNtRucSAmCigVfAQg+iGzOWUFc32Duys4tMHTh/otT4dNdcYItBqiyskSktYwgAHV0XKXm588JZBSorYIEER/DY6pqb71ARsGXeiVfq6iDOP0YRFT6HiQfxxyHz+kAReScPqdH5Hq6222B+HEcxwReJbs8Y/xKnuWqct82VSlx2L7vPqacif8F+3wAkQyqxPCmRh3nCCJKl1nEUoTXDZhn2A1ryTq1DnieQRkm1G9b2zqAnHwTVB98jS9KWVBDRiRVLldX0+VyrKy9qjAhl7GiSNaRq9y7EXDPeQ1qsUqdCUy8ovpMtHzBzpDTtAAmfXv8IJH9eM7XGPsxfj3n53O8dnBShiQaC6sJvGQ5tWdZBLMQuwhEwOKRu+fh8ek5PDJZWJw8VW9JIiRDoiGNN2usbDRTUtrW7wRW0i77/vQ4hBtlViPQ8CNmZbCWisC0S7vRJnqD/OZ5U+m9lw1mDYuL1fZJhpiU0zNpHDmns7ZOeNzvqspqAGakIyPTa4ZgiqbUTXrT3pooBEIKBCjdRz2/TXFr1FQ4g8IyJZOi4v3qM2ERMcgGbdBeS479aH/VeVeVPYbnMWOGC6rpW4QbsVE0EI3BI5IjZA+MCmiBzKK9js/9+f/9/Hj99q8fv/3xW79tTQWC5/h4xt8f/v/c/f3Nf7v9uOsmEKSi5gtqZGZbt1u/jz4/fz1f+zGevt1v/baZ4giXcTzeaLvfSoR0+Csnmt76Zn2jpl3yznEXvxl+ClwkJ/kMBA5QqLjx1u5sjYhcjdzl+TGYNUaIg1N8pkxtvrVIAzoZC4j43u6Ptt3a7Wa9qTAF5UAcTcsv081uwqupN6ud8VytIkpo+HVqVNVsRkQ/fvz2r3/9Z07XmL9+/f8+fuYxPqd7JgmbGWgCFLSIB762xtfrdQkvvplxKhWQEyu2SrXEVzQHSjISRcJb07Zt99uP3/54++3H7XFvrYmQiKxEyYU8WCkZSR5zjHDvwilaMeplllOR87BYuZXLtl2pMnQO6fKKTqqcdKknHFdqK7GQKLEGEYOqMQzgAAOyH54xKVIYupgzhhSWhoIbsoYRGpnE++evWl7r/7/GUdtA3eRL+N6s915agSJhKkuaKc+g+azYrMhaEpMqKBWQJr33rbXNGnFOP2rPuERja1BTFNrKVBBhkIISK2lU1JOJAG4smgliYlFlrEoW90xnrQaNIqESRNCV56WrKy0Zs3BFBHGiBHm8Kh2/x2JpAZJubeUkRKR/BbiXMkZbJbNfijeuSpOgKphaXZbKer+13rRbs7LGnaRm7fxLQrZQSgn4K9CEIoListPzKSFCQ8XGQ+RiIRf76L5CS74GfN9KAOvnnGGb5QKLC3iRqKwYWmKmArqREeDq5vFEJjgRRkHsEYfP1zh4Vxaru6QCFOw0HfO69CsDos5GY87Jo83GzFE6axIzo4qwTg5MACN9ZoyMgdg9qqEFhKg43DnGjLO0hpJgCQCjUg1rkpbJvCY4WcgamBH5bfh5CUOZ+X6/E9G+j3OmTbVoFOr6fhnL2la3TYkZrunnBcovIqoIqsIoBVPc3SyYGfl1//S+JPMXn5QpEXGRQAX1MrMWrq3dLjtOBcGMwzMTMes7RcQ95zwiQtjeHj0iVDafOY6837S3R2tKJEXk1Dt6vV5Fs5Xcnk6ncPF/mfnr169LGVLvSES62QpzH+N+v7+/v5fMo16YiJASs4rS6W2s+m6a4RKVGiDBTBkmirPLo1Rwyy17a2OM6clM6WMMIZLWWuUYC3MmO5K5kjiasFWWcGbOieme00FhZsyg1anqQFYvbK7QmPVOmZlEzWwFx61ah69Wyq59hKf75EOCOUg8NTBjIrx6hAlsqkwqxrIGHgeo6B0f83n463X8HDFJQ7eARnrO3Md43toP5SYQQ/NkJxE2VorhnuFwvdlbf5NOM8fz1yepQCiRTp4pEiIyVaR3syb9xvebdJFH8O9m76zb41YHwiSeU8ach/tEvj6e4QQylsasJNa79psKobKylaWJphAyVvk8kwqnCZpKMzFTJpYWMREzAG9ApEpuDKlGFYIzJ0mCQVpnMXBnuUF7cg/WBAWZPeR3LmeKksu+x+fEQMo+gpHUMoRcSRUTMbDPyHDeD34NSu/phiEZRDh+/Rz/9e9///bf97/+jz/+43/96+3thyim/Dpy/v2Cuth+uz3vt8ej3fvj8WBTAI5hmu+3Tj8enSg+jpdHrQieYT03YVZ7jX07jvvdhVipMTE8AGv6+w/t87bN3qNtGrekF/Hh/pn8dHZVdY4Rn0KyiTZu942bfiIOd4WLpRF6uuBI7GJ+f+O73hDdiKipKEMyKUg0TVI4qioPkRQCr3QKKqEkvopoC3v5dJ/hh0+iNRBhcL89fvz+W86hOVoLysnPmK8jc5bzPWcU40VE6cU5kwBzTjoHi3w5t4lmxMWW1xE6QC5JmDPSA2zam7Wt398e97e37XHvt01MZwb77CoqXVkIZMS85OZmwpSRGfMYQmyijURJmapTicWkalPP1ZLpXEnxtUmeXF0tO0xVZlaPOrQpc2LZgcACERajcoySIhdz619lhYhEEAcE3FhJLK0DrHg+IczVyeomPlOcmAgspqxEgtqXbEWQt2IKTplqkSgkioSDHDSByPCcHhHmRhnKxfaTmS79OJZuA0CSBJhPwMHMVWDJJbEmYQiBQEosoGRGEliNiSIJxIFIVmMWVpJMZ0ZUTZwQC0e1hahkgpSRmU6JNdqlqyEd4GqO5oVazpQKogsbfZkKayyyLJ4LQ6s2IkJ6uGd4YfRLmNxaa6LIda5YKdTVQubBLFg67sInS4REayMoYNdEqo2C3Z1ilYQkaM1/w6V6kVlFrDXNiMrmvUDGJRui5W2MC7rVx7EQCTGBA/AoS4HUw5NBpJwstEJuowLKmw8zEWmVpVlnrUsevlJzg2J6zBFzZOaYyzbY1Rb+QywF4jxmxu4xEOOYz/313H2MUWRVFW8es2qg4FiRHxrLFFaC5YpuAriEYQQhzhmRY1Q1XMwUkSRi18paM7Pb7XZFlRZDl//M4LjA9zVbLDhSuKp0Cxc9jNOqzMw5EMhjDmFLcORygwA0I5NcxC8vxSU9vJiS72fUJQlgqxMRAIKMw1+vl7sz0FpTDdUV2VrTg23bMtOsmzURM+uqrWBc3deqjUnCU0RU7L5JuVGez2ddk611AI/b/ZowFuXJQJiVTKJJbLY1abd2o8yDKN1JxCs+5sy+qRXAkRHBCVXt1sxMM2GoNRLM+xhOqDufk5nRTFiMiHL6gcPdb9ujYvMqq9Y9mZ1q/HSRvp7uJcyklNoOMpClnFMVUiOp9plaoVv5KEu7iUwhERFaWgFYEw/c3Dk8fb5tt9E2bDdJHAf2JBUEIUUhLKaiSpbWiDg8RmAOP/bj43l8TH8lJZsrmCSiPnBIjuz9obIFMJNtgsgEcsx9hoMLs6u1dnvcg2dIZLAkWAYUk4aQBKQpqUnf6HajN+H31P9A+6GthsKkkoEh+qIU90yP1+fnMWZw3x73x2+9We+6be2KuS4/kGoOr44iEoILmwhMpFlr3VQbk4/DM4Ob8iQxpWGAlFNJlEWJG6Tn6oboJD3FXJQrQZQQLHaTd1bqrbPx9BYRIo2pHXuQOGs62IidQIgJz6SZcngcg9KF3HxkDrfejuM1X8ff+69n7mH4DyG5aWqMGK+xj93zk+2jPX778Xg8/vqPf5mZslHA2Nqtd+53vceT9td4Hc9JPnb3+SSRZtv+/PgFFtIfP37cbjdtNuZ+TB8vJKvmjbNRaEYPjAmahEiQcmsqHBHz8AC49Tdrrd86xcQcmULRQWRke2ZOR0jvN+sN2ZZZY+4+Bufc2taklVHveO2mc9yG6Lw6YSMpi4uqIpTVezqXKeaSyTOr6tbvt7f3x/4+5m+v/QM0d2I8KxR9hUyuCVGekqpk0dNxkyH8ZbbPU6cQBCUOAjw9U6y5O7Egk1Vs623btvvDemMRR+acNAaLlICa6hTIkqzVesmsCfgxBNREBwtDuBEZg1WqFOwqVlP5yr3E2h0r2AZn5XyBApQ7UpjJSNDkRpjkYEAowayJDGttY6KBnRxJiQBRsMoYR64Q5yiaP4MzaYXj9ESu8go6c6tba9pM2GpLroBEM6uRcRKBopAKC8YIgmetM7RGvBGeWVkPC0Of6QPbr89nadJLdQRwMAQEpLBWgeJKJ08STmFjIpHkcxooEAjPudcMSIiLYiGwEBAgoMIRVFRX8iwsjdgXaVfp/rzKisovlrkqI5lViF/HUfkdZxT4CoLYWlvguQzOJ/F1CX3CZ0aUt19EIlDERumIv0Q5+NL8Vd3EwnYkmVn9JJfamplL52vWmLXUNXNGZOQpWweYIoTVjFWjNf3uobuw11KxLPlRskoprq6E0ip4Iqo24hNwkAAelSa2Wq9KBJZF9YT7zAikNBPRys+IlcaaRJQzr6GYu3PVxRA5RgEvlC1vzDH36T6Yg3C4v8bxOo4xPMu6lvCMYrXKTVU3Upk2IpBRKrH6OLIcxOsraOasYXzMdXNGwN2ZNeMrev5kXJYWu7W2ctFOgjDPvKhL5HQpwOpSR2ZJAC9hVr19Mbv0iNcvigjPEFM7TbsXX1gK9zqjXuFbzFxNi98B7qLcvkyjJQ2o+sKtApDLxrFtW6VaHMdSv50ecBapIdT28fmrXkOht8JnzPz777+ranFdRXHFnCIixK217fFWPAp9qzbisx4nky9aH4zD55yTiDZrl3JuH+N2uxWg3MfBc2zb1prOqivUVvkvCYdzZpp6fUDCwlSCPCHycpbjvNmJSMSIZNG2p5m0nMVsqmYjIrwMWHIFgymxsFRWG5fXsnaTY7bWCHeKPO6v47WH++rj0taRKZyqIEplFuEGMSaOwyN8+Hwdx/PYPypzc6lKOEgi1Zl0P34RUTdyULo4ADZOHmNcxMSMkZT3x+Ptx+3pH+GakxIy+WBOYpYSMTCpytba3foPar/z/Q/bzikwOacGp8YhpJnd9LlTTnddkmhQJKKpKhNIzIRZ3GCec8S+j1RZak5VbdYqaJtII4iNOISMOJiEkU2U0MDB6Gg3SEZUbo5ATFkSmJSBoIxEWttuVcDOluDUuIP18PCAH0OIb7dbRn58PBmhqXOn8Un7Tseg1+eIl1s+VG594xn57+MFov1v9rftybK9d2qcTZ5H/P3560g/5ri/vf2f/9f/h/j24+39x+PRrd9a3+ye9xxbbPn7/rl/Pn/+++Pv//r8r4HIIw565jNyd03aurz/uPVby8/58Tx23w9/PY8P4jAjIo+IZMwAazNhckKCnZhAlKX67d1q++AD84j0MWgMCjSytiWyKZs2gMnH6xPH4QRM7psZVEmkAut8HFNeHsO0a+tUydVUR9zD3SNnzJExlXj6iGXz1vLQabPt8Xb3337HYV1V/63KPmKMAZhnfE8kksX1YK6K1PIIA0SHTyau86+oIhFR9STiESRMotZa7/12uz0ej5LnrxVELBw+gjkoeQVcsYLJlK13Zo1a6UlKPsB8kECNjVRVc3VTCljqkB8nagTL11kQAMGz2AtWVVZGcinsVWTJmomQ5E6krtYp0ijB6TzdZ4XGx147rF/n+PTMWVIPgEVb30pItfXjmJWbVatwb7et3Zr28jWa9Cj8gSpCHzUU45UHGBRBmIxqZod77BHHMXvv9/e3+/sbkvZxgOV1HH44C4houjOzqZaVjeKLm6me31g6EFJeiQrp7j5f+6e7p4cyN+tpSglOqr7ORIqSMEhIhMugX1hHu0Hnoii8Oo+rl5xBiBJ4EM9jrH5upuJMmFlFRciURUnty2ZfROD0Uat8baUz3Fy6WUTEmK7Qk39CBcBGtXZkBFb0NnM54QhC+JKdiSiTChtIp6fHiDggJNoRs5DAifAAUTqB1Mlm1SySRDgCzFUyG5kVaUZGJEIZfrF6WAgWVcySSSLWVcxsa31rvVvbxO7Wt9ZVuGz71ZwZhEyndEItx03PZ1CbmVAQrv3+5HgzYkZ6Vq9muBNm5H6M1yiXotNyrWtEzC+7AAFcAR11/gIwq5GTVUQiA4iEjzFLv3higoJZo7VZp/813l16ya8PNyuol0TFCIEqdqXT4nPWJhJRa+0azSeciRCZHDWmMu23DSJWOz2ACvuX0mmBkljUVLX1OufkMccx90Cd++bCfEGZaHehimaYldgnxkoMEObwT3wexwHmqm8iEasyddVa2jzz58eHu//3v/99sX2Ph7VbV7Nk9N5rMPp4PCJi3/dfv37V/HHbNhNBhDJTrqyfJT8XlmZB4cPH4Uju7RYRVbMwxv56fQKwrc3wSzBXw83n/qprmIQZzmdN077vZtJ7tya9sagyE87ZQb3y2+1GRLFazgTgSDczlZLfA9BMz4wEwpMReto7ShUgJKqKduYMI5lXqV0SsVQqZF4urtZIlYcqED/wp5i1+/3j+dGez+nHiFHt3yxWnjKWGLEnImJ+7PPj9bGP15i7Y6TgDPojTRbImGGSHsecZiTPV7DdutGcQSy8On9X/1Ez2278w9rzJcfACOR0ILuYMLo0ScoRdEO72bu9P+TtZq0SOJLw8jGSiFtizKBjZFUGx0wffttY0RhMCA8Wlt43Ij6Gu+8AKiSgMnFufbtpM2tNTbyEfS3TkxVspmzWCENXmoenJJxZW2YoCexuysEjB9fTQ5QmvZ/7IieLsImYsHnNFoIRgDKHhkdEhks4udM+aCRFZiKMfPcjjcxuaRjC/94HPT/ufIcRCT7258frGOmHz8Op9Z+9vXV9/PHY7vr26LfNHunoOfl9G7o/+m1rHYK/x0d4vPx5xCGB+3Z7fX783XQbHZGq7Ps4xr7vH+6DzngtgExaedNBiSTjvjXdlNvWbbO2Ga/IwUEcwZEgMEgZUIBSNMU4GRKtc78pg2BcvMeMcJ/hI3343JXMK21djcgSAZqgAEU1ERc2uFj9OrGtfbe3vm1vb2/KKQQzGfvUVzuOmeBYjut1/M0kValxGBEh+ezIphXCVNpjYjoX0bUGWNu2bXvc77e37f7Ytq1vG6ma9stoTYmlOuZM4Ws6UJM4FW1fX1q5OEmoLqhLqEGrpXqdvSqI6jpSZya+ZTHQ+QuWDa1aAZjKPcekzC4iBBMOEl9ZMV9fpz0t5hjj9focY+zHUX6c+gbVdrtpaXLLT9da29pm1kyUWashcRF0hZKwJnqIyo4nSQoEnctTnZYAtNtGRGLaqQ/PDgi+UohwipCvN3oqrnA6Db6+5UsR6DPcKRIsIc4OBlH6OlFXx06hlzXKJJQw75vnv34eEWXhArJkInCZHIUJtIaPCsrVof6PgPLrc/f0y8W2uoaArFOH84EZ4iYCqZ5QPn+A4iuJ/nJlUrV8Xiq0U8WVPpNPcRFzMrHqGYyeSMY3vkQvCdd5m33dYIU7I9OqnE6KHfIikU4+gE/Yd05URWuR7b3f2u3Wbr33rfXeet3ulbtWBwYiAjEnR6AYkcpJWBD7ZH2WqabGaBmeMcOL05qRY5Tf1kcsikzkWz9BWSBLF1xhpBdFBywQzGeGE5CAhpZ58B/ZgWca3HU+KZrskihcgKz+lXxLybhuhutHrTyRkwYrXSMzlz+ulEnVKCVsNUcDoNpUG5tqa703M6tA8yujlVYm8CpsAJDwcLlEsa1tInYcr+M49iNV1QoCJpjpOI5lI13pqas//vV6FWYq0XpdChFBhIjcbjdmrljU5/MpIqUwy+q4nPNSRF3kVo0vI2IcY87JLK01M014kYsASFn0y3xwZQld/133/OWzjpBKz0pd6xkRMed1t9cV1mVv5NMrKedjvvohiIBQXqVzUt+wHOFVZoK6uwQAIyttlQHIMklc83oRAZqKLNxmCjXZWrvdjmM/5s4MbQa1YAFT5KGT5zymNJMqRs4yRUIgtFyevAL3y6REbBzhfpC7tHtrarZtqrpxi4jPQwCosDJ1ZrcG6vAN5ETWhEFJTmzMyULapbe2db113ZBDTClTmFRJFSLKasyaYE/S6v6oDCG2xQ98Ey/S9UfaKiBzs1bWhmLT8tKwMsnSzjKzsnYQkd2UEEziIhwzufQkwKREBJcvx6z3iIi6XElJKPVIwcMMiuAMLvmEH0SBETmcAhREKZRAKB8IbHZrzTXBvI/j82nBJF1T8Tz2Krjax7Efg9lMtrf2G37npttmj0d7I5XDp77P2Dzm++3eXRI/+b8//v3xfNJkBXXtEfHfv372W+ubsPHH58fz+Hzun2PumSliTTohm1rwzHTEJE8Sba3ftlOIJGBS0iAlaCIoOImJrQllBpJmwAikSrLZjW6IJObDDz5e1l/3bWbOxAFqi1BFUnqmZnlDwymj2qLXMCJnjX4iYsaImEVoVdKBlm2ESGjPpAQTM3nilKogKJFMAuIkXmFF9CWbWLzYmuNRmQzNTJptt/vj8Xi8//bjx49ivHrvBbzEGmsTWcl+mciEMDJTrwWXqKiifrv1bWtVzspSQ8/Ct3LCr2UmqKiJcxEhWg4dUQIQTLza5ej8vXmNIvkLAQipMJWmUq79G0DZncNnRRnt+/7aP/fjGLH0wsRQ1dLqXrLcOkp2baxqbGCuKuoiFFewQ2YGldwHHpkuGaBqmj8P6CRENIeHZ79tvdsWzKwVdh0RcOcox9FZJlOV4bRyIvAPBLksGEVYIb2MizFRVSm1cAKTkFyFVCJS0dT4gnF0/qgLKq1sT6q6w3LJLWCL065BXHfK2ed7qdqriff6ad86jCMiU4dHEpSpV+a7VRhHdbKTiARYaDUiiSgAIblggdRoWzgJcGfJ5GQmIQEg1oFkAXFKpGoz7eeWIzUuPLHXihq+Rn6RuRRjLFWjeX7xtcLWLmZLPW96Kui3W+vbmf566/fttrVeUQLMLNX3vOIqBjNX87EqecR0n6UfP69bZLWL+IUJgjD8yl13T1DU3V7z32XArIHghXjXMy6cgcUdip7fsBpb6VsXweIm5xqqXvcDn9f/+0kJZ9KBgK/CnO/w6xtmJVWLGDUQrItmTXrvFfZbaZlyDq3zjIDn84qrLtxczKV86xcifBXgAB6rL6gpaWa6jzHG5/NDVe9vb621bbtRaSuIzKw6AOhb11C9i0r1qzKS1efIXNaB+gw+Pz+LGyuIdhzH8XoRUe0WYwzrrW6nfcecc+6zQhlExOyr6jsImFOwXJzljrzefhmeLjB3DnDF3Vn0/IAW8Po6uZV3pJo/mJm5DEI4WxBUFSCRE5lx5bet2sq6PkLI0+Z8hvdFsarniYsBlFWyJQBk09Za3+59u7ftft8fHx8/n6/P9lRwajNSm6DIjKwIwlDX68bL6YlIreqi1cWiug7waq2Z0IGMhODW+v1+74+HWe8wjyGfHyqUGU1CJDdrxJ3FRUMklTDmwSyUjCBOVramXcVEFOhrPRMSTia/br8637IkYW0EapyBtTKvZLWIiJnBbPV51XmstVYx2+VqX9sra0k4iCDSWSojE8HUIE6mOcUdrJUckih3QhKltfuGMdynryULRKKkXTeOjZE5AQFSyDknsupwjWwjkKIZZxdtSaq95SbNKATShUzJhJsBDpIEqp/QE4ifG9/+ev/r+GuPlmAiFUODiPQteIYwy+8THhRzzufHixJjP37++++fnz9TmRt6N9saOA8/RuyZnpRM1uzeWFunlHD343hlHoIASYQcIJVg9rLx5poBETGLVaNk5Y9TwJFfJRdO6V7ei5fK53179vbMeGccXNMkVE6ieVYL7owzKijTPcYV7lW5hZEzqISQLKaKrd/uc85weISwsQoNxsq+S68JYpy76BkL9G2VXKpnopX8Lqb9fuu9F+66Pd6LUW9tE6kGWVNVU+NT1vNFUBFbMhFVa7e0ft2FeuYkOZIiRYRRS2qxDl/AS74FT5x7dh3R2IWUgAhaoD6QvtpUQbjM51m5sqrSYHUsDCIax6xJwev1er0+X6/XfjznnODMk+o3k9barXVpVq9zPW9qzFwlNqi+QgSJrBhzALRGNojCW14VfNciy8JENOd8HTuJ6plMoXpKUphD4nRH/GNHxDd4tIbRDkQFaTpxae9JKoOCiCCg8HTOAKUgJtMidp1KYLJKhCL/GdsrtTAAHOf+1poK4cTKlLyUtaRfium1+RHRt4q9i8uimjRlIjLDlUWIWhXCidZteY1Lruz7gkd1jMirivhbChShihszPAEYQUSFWWyto6p1BqaVjP5FekVt8Bcxk98oh0xc5Z61wdQdblqJVtX3Yt9frZl1MzPrra2IcJGznohrfLYCnwBTvxiR8tLWq1pVzVltyrPagCICwrUsECRZUDL6ExWSlD+a/t8tiBdHWDm7GXm+wcQZhcXMZsynx/M7tCrWR1gvButCo5d1UU3+8Su/sTVXEhjxgm6FirZtI9aIWMFONRYhKrZpCW7O45nr9wSvzEzhS1iopfxblGHSNeVkZQD7/gRQTZF8BkOUwaU+nbryq2jBrDgtfItpqLWrF9FQzOi39NEioj4+Pj4/P2PO+gk10FwCjzmX1nGRak5Ec47ICWDbNkXOWbFhq+yoxGffHgEU/LpqKmrNPG9mqqW+cqzqZa8rU6Fo31Lv/0lOa70wrrQAKXzJERwx4REETq6JDs604e+f73l38ZJHEVE2tdF6t+0mfWtbPRCmTAkXVTBx5KCsNJsaHzF4WRDrNBuezFKiimrGFmGBmigTMW2m74/HX3/++def/2rbjUkV5O59u398tn1/eTyJBjN3NdF7g1gjDtcyCRFzMiVTLOPOjFAhggRKX6zVBEOQRdWv7BhmVTYVVawI6nKBxogxYrhnu6QpVo5mVZY68Ba/u3hNkiQIjDiXG0hBwhSaUJq7sGSZeGIGpkcknAgm964CPzKDKj5RREz72+1tp8l8wMkJuipbIpPAZI34zdq2xewUHWQBCWUoqOnt3rbHdnu7tVsTk3QiV5qW8wiQj4ixf9jzv/+fn//1498dN/3Rez56v29660I7diMw01+/pZmYiCTtnzuAY3/OVxw0gkMUpNRvLShJIEKspir37e22/d46SHLO+ZSPSTtyEuYcEZFwn2MIY2XmQli76kQkoEzGqgjOlAAimZlySs70kTFijsl43fur6et2f7Wtw5lkEizArBqZMTPDq6cKMRHFdcXZYDDcR5Izw5pkKNMmRNl73B6AJsvB+6RUQrmUEYEclJw1hmA6Jy//oLsudnplmJrdHo/e+3Z/3G63fnv0fisfX2YWLXFtOWaNrVSWXMIgAJW+wKsEyCo7shIiViFrgFW0sqvAAHlG/RUzZ8mVeRmpiWo2DV0jsKTCV+FwRzrSGc4gxAoHTE8guFYMFW2WKy3wqOPs6/V6fnw8n8/jeM2crd9ERBt3s6ZV7i3KIrZW5C/gRYJVeyLEElRW0LNMLx0RyIyYhUSymiKTW2s17HDPj49nOG+Pu1kXlSYkaiyTRSMiPVCqYXx1XWfOzExfbzBiRgDp4QBFa2fOwrIlJq0gCKrMCV5Qu6o2zrCvYkRjKaKQrFz9GzXLY5V1v6uqEMBkRWutaB9h+2ouqpfq9ZMZJ0ElwspnHG4llFAmK2ORGUYqBWdZm9i5WLfOzOPwU9ieUQ7KGvZVCpepLAsDpiNydmIzqRWPtNonhYiRJRQTJiVWEOHU9auqqLbeFVf9dsVbGc5rxMwkxiK93/hMrrp2wTIU1P81VWMpsVW4I8DCMAEBgXC4Z0QcKCrrtMIsUBJzHv8EXu5ewEuCkOvxFYJE/XkhQpOKfstMROnzGEs7cAIvpkDOWecxWiT4SgxhVZxP4lc3+RpWMtVj993hmElzrugyHtxaE/0abF3vyN3ncGFlXQOp1lrvt9a2+EayjuFzemvMp1+VeUV0zjkrGv+SZhbqua58BmVmzIHlwCFmuSBL6dX4PN1VMiozn+wOrqe7sHJxWjVMPI7jsuLWPyxL41Jiqais5LDjOD4/PxnYtu3xeNxuNxGpHzLDyxVIKtVf/nw+icCC2+PxeH/LzM9PHHN8jW7PtqV6bYXeiKgYlPPUEQSpcfA5alRVn37wsQoAipCL1iok6PpciCqisqJWG0iIktctXRCWrnGnUOGGYrrk7AAFEQWIiaymlKvuCKziSLKoK9t6N7NmGjGJ0yN0ukx+TmdUQyUZi524EoDXCa2OOxxgCjhnmhlIm9iP9/f/9ce//q///D/+4z//l7QeDnK4+/3t7f3t/vff//3xSXOUKLi6Us2MyKcQH8dBDGVlMKXk5CyzN7GQBHIGe8Ar/56sMpGRDPyDwWVjISZQUnhOT/ecntnlpsqlbjSzIucVDEpmJmEmzZwkmkjP6tDj9VcQJsNkosT5KSfg4REzCUAYN6VQdmWValIzs/vtBv9h4hmsHBQzUVlNSQRWkqbSN8otvE83pIA0QBC2m93e748fj+3WxIQEqXaje1IkOQAhxcQY4+d///v/vv/fhrblfZN75/vWN5UNQY4gcuKHmQpxI/nv//771/Pz4/MT6aLpOT/na8aUT4LAioy53bf2eH+8/3i7VbPzDH/o29729OHzOcee8AidU6rYV+qIyUzcCIEkEmVtKj1dnWiOSOe5u49k55ickkbzeJ/HcYy5z9GIksSYAxUOBM6sYy3i9Ox8nTAW9ogKPQeVyJtIBIUsWvbMOdyyF1LBOh1qSPUVkq6CoOX9uW6jesJV7VqGHu/vZr1tvfdufWutmWg582vpb2qncquralYaCTiQtdCsA/1JMNR7KcaDiBLEcfnS/6dA5Est9M8DVk1SCoZSJJWXKwMRgqAEqnIpvCixqppP8MUGi5Snk07b04iYiNAbrXLrOpokMpNjqm0sqPdswiSqxFmOFALl6qDMcg5yBmKZp1CIK/M8loipmZHI9DieY3jew9/efzOzc4BlNWgIPQOl4hopzoJKldQV4eEDYCCEAcBUmrBqSz5HaZTl9yEDIVZEvIAJiTOZs+Rz3yEIlQiPJJmJncBMdgbb1uLAzE0WJC2v58V3XlZ/tZLyc62nRfoUp8IgE7PK0hZOJr3Stv75iV9Mxhq3nRGdqrp1ZdN2yr2LowqnSUmACgufFOxqR6zBoorEcpl9UzXVPn1lJQTK3cF8snT/gz26IFcFRlxjBTMr+MWJGNMrk9m0yZen8mK2juM4jlm/nf4xjfXFaEYs7IWoiUJ1uyJXulXtxyLCoHr9Zc1MrGC2CwBdvzfLU1DwSPA/nq9L9Ha9nmvSd+nqclU/XRTOMjNaqzKZXkc4Pktj10f5jfhcsqqIOedxzMycnkUgFXBR1dr3S9d1SrvOGN7zJ9fBLxzuXvndhLyYIU7OzNba29vbiHWhCiSJSGYUiCn67cvfevpM4yxtrJddOOz5fGZmqdPydGJe79FUy4S0bVucBSH1YlR1gdpYRKAy18g1Ioriqqll0XVFd11StkJ7lap/KvDkUrz5cq/zxamErzNPeaHMLP2rTVJEiCqmjs0akZV+CFltRQRAzovMVJudiCgxZ1KSlIHoO6u6xLuZSXV4aykq1lszYW4mESPhc059HTVNBlW7w+3WtzG34ZvH9pxDKeupAxhc0IGJCGOkiVn788eP//jrX//686+/fv9LrY8ZfnjEfNDb49YFSXn8yt1DkrQ3aZ1FgKJAHRCYNCVF1MgkQyg8SckzVrepl+SnBDDIXDnVhaQpTbTEA0j4zDljBIIIItRUm1pbDqYyTa2ujsLrGYI5RaEGClYmEhUoiyVmcsXClCk5ImfkiPTaJG336RnBEYQEiCvQoik9mo5wQh5lBCIxM2RlYGpNQRiNNDiSlYWSqOntcXv77X57bCKUFEGhRjduondRWJPR3I+E58fnz//9v//33R5v/bduN+ONpDWzkuPFTJ8Hk9+1/fb2PvdjzuMl1e2pHhTTj/E55wFh6+0d78UkP+7vb49HFxKlnLjRm2/pOY/98/X6xBymbAKEZ0wASI4Uz/BgzzrUN5Uba9MDk8cx5+uVeaQSc6qkTOd9P1799fz4xYx+e2nbzG7ESlUBF9UAI5lUylqkE7K85ZHTYyT8MiF/jUIq+ldEmzUhEZkZOT0S2oTVGSU4XT6jC3jVD7E1kVnAq7V2uz/Mulbkkm3Wem+b9Wat2Qpi2ppZO0cqLCwixaCadvkK5ZIr1Ge92mpi+YavSIJ5xWd/x170//qqpDEuvBBBEcUCL2NjAdaMiKBMYiQyw2PMcezH6zXGQESpOtp5NYSQnE1FVUxYKCm96qC5WHBQlFsRxoqk0kaeknrKjFwBY4ga+gshKYmTOFeBoEppBWoa5DM9RyYRV0l5O5dOXepVkYJdvsitxfARkDGRQWueXZrZ7Mwl4yzjQiCqg1HsFKcX/YwyRUfJxzMDmYv4YC1/ECpVoroCV7/TUvd/SZ108Q3FeNXnFZkCSJE3y54hqtpqfrScp6kmvXVrqq2RnF3glaJNqAAET6gjOYun8czhXpG20VjB1lHUF6sACTImyDKMawRq/lIHfRFRrhw2Um1EQiQTx3pX/wT9hVlY7XTY1tiRhAQkjhSWin669a2GSuVg2rateutEtD7r4R4R1huRcI0nROs6QxKi1T5cyoKIuLI86kM/xV4BIJY7TaPWgsyZcBA8RMBZKrgVAVTUZlL5TlCtuGsLoQWjV70myTVfrkShL3QYAFZq1Al3zqk3FiUmYkSzXnBJl5argItizrVUtEaiRc/MGSVLj/yCFET0HcLWncPMEeLucpqLCqSaGRNdJTkibGZR1U9Y8dQi5aT2dtvef/+t3zciKpFcTZNY5UujU/7mE2wtXt+0yWK26lqpagXHV5FoAdBAskrdBma23e+l2a+sVJzMXGutmMXWema6zxKhl2ZLVW+3+zWKvd4agDHmWg1KMFIC0FzVC7WUzShevGI7qGV6Fd4SX8q81ppqNq2InDxBNatQLTi1ivFKUg1exSH/cyGuZ+rktr/k/Cidbv1YETOFqFT0PqibUs7IeRyvJrpPM5O+28tUFJGvyH1i93g69gDNRFIkg5iUaNWZESijqfz2/uNfv//2frt3NWJpQioUTM5Abret37bt9apEtzRpJpyYAAtpt40EZptQc8+JuXMTWWYIz9jnGD6P8P3lY+QcCF/D9zlntT6QKAfAjtQgGnMcfsz09dCdfrjM0rtybVngLDBWm5RQSVOZQIyVPcBs4EyaMwfIEzNiRO4JLzGmvcYRMSlj5pw5DZW9xnbrwo/wDGcfRYdGgo2REjFIiFOIkymSURymWm+3R78/rG0VwTJ9HuVR70S5CUEZJDSdcs798/Pvj9fPz9fPn7e7tU2sbV3KhV2EMGgEnD2bVBFghTyBOCjcfYx5eGbz1ntj5q31+7ZtrTcWZclGgjsag+jVPk0+fB5NSeEeI8ZeyDcyAJ6RkQIlVVPtDNMk7OGIY1J43sSEhLkBeO5PVVUjj9d279v9sfUHm7ZmNSAqIgsJBCoVCMjSQHiFqoYjkxkkkMoRba6+8ga1t+YsIuw+mQVplESG8MvmeiUNXl91/CqZ9Mm7d/321dVaa711tabWu7VL2VMP5JLqSAOTLO0FPFzVvmlCCQBX3v15tl4fDlHJTq+F+B94i+J//AkV70Wo+K965gVlCK1VpXow0iN8HvvY9xN4RUxGqPK2NaItu2Z6IE8pP6/IUgkWyziQTAiQIZumKgsJm3YhJILglehO4QAEScT+P14wREQz85hTta2QqogxBj+f14L73We34ClQnEel8INCKtW/Tv8EKTqHWSiV2CQdyeRS5WFCX4YDWjbMcCTclsHQM1OxRHXnleeMrwg1IqliIap0idq3zq9r5aWqFTzVOSeOPnt56Yz15UqhKY1Uaf258kyuk8C6MWglP/GXuRX1P06sVkpfJVwNx3a+fsnKEBKoFvzSso+oWkW6iNhFZeF8u+dJgM9+xpXL8l3YVN/TzpiVAl5bO3kva4VB67Y/5jBiktlZqzeTWcAQ1madFhapweLauWLpHXEeKLi0cgkG0YzSDK47qxxO67xQSpQSm59ll/UwLM1+RC39rEInd3XuzZd7gP+xMpxD1drav5ORp/BRz0vylWhg2gpCrgjZBbyWcKpUX6ByL+oFp5aGff1eOxcYRvj1ESxi+KsucHnrCgzxYos6M7snM0e0t7e3t7eHiHy+nh8fH4VdrjXwKvm5uK5r8njd5BFhotu2nWU+chzHJaYroq76swt1jTE+Pz+L7rqekYqy40XEpvuoPLC6pNe8vi7F99fznVG+/KSnCgOZeczVvmCLfVjs16k6wCkwKmcSX4YHokCp14l8lZ+ux0+JBJS8OtuWm0iUWPk0cCBilUWKxFIxcoJFmEWlkvlBppzRlGbE3JuZ6DZHhf6ZEMiPcTvGdpt9b+3mbRJxIkrWL8yshMrkFgJvau+37XG/dzVJzJiULKAAypEmxMok1ZlBwcmcQMDHzCQzYxVh4+Q4YpfjCSGleq5H+D6OGT4jXsOP3d3LjkOU5HP5KsRa8AwwwQI05xw+PJNII6av/dqZgpb2vUIsl3S/DpOZTKlKzOAsqRJRsiQ8MaZ/CnOUuD6r55eZ2X5+/L1yM3Im+z6fnIeYbLa1Nsfuxz6EesLTSZEk7EFJI5KTJBncNmEB5da7mdw2fn80afJ8Hj4/Iw5Vu7UO43nMsf89jlBuc+6Ne8oM2j/Gz/w3vY7Xv3/9/POP/3W33pX6bRN5H/vHPtGlMei+9ffH7b+e++vz42P+GnMnLMEUcTKomfXNWmu3dqPI8Rpwvt3eW78P9wzFpmhja2IUx3ju4MwnR6pKHkNVIapmLDJ8+vRE96Rk6dsdtq2eF0JS7PsTmInX8Ns2+zZu7+9/PB4PaJ/ufsQMEe7MjTIyJkqUjdVMj3Sfx5zHZo2lplnOpCApmZGYmrCkajNrm1o/XvsC6WpiTVu33lS1WLNTZiuB8goQREkNWXktBLCqbdvtfn/btm27Pb5UIws5RVb0OYkoiTaQzHlkVnMOGhOastQZbmUb1hKWYGJIiKjmSrsAAE4kwr+FjJ9/VfPDNUlc2yRDSsNAKDQKkYhI/tonail8vj5izIgpidqb1IqsazPGquZj0nIUS8WHoeh2gmeMEDE2CHMvhjIj66DsTKR1tkEgPWNZw5hU9Rz0kGTOStiYCXeP52edkFpryit23UQjQbG4Lp/TfSixKc9jgFJAm2lTY0Fm5hy9dREiRGH2SB/hCe63rVRWhTbCJ4aDJrFEeDndlOUUdS3vpM9091i0pIpQlDzqVPDUsU5O23ye86kat3ml1YOu2VDhcgBJ00S1WXm+iNYpsGDUakZiBYlnICCinkgSEpPG10AWTFUML62rqlhL0ljjbJoRdSwUod5760qqZiKmQDARQ9m9EAkACH/DE8wqUj2GRGYSrDWyVzUpzpOltX6/3+/3+48fP97f34vrurVOKnPO5/4aYxxjBEgqOB7MhAR5UgmkPNMTy00Dmp6RlT7ql3ybqrOUJCOTr9pRY0Y4xuFEEiNq/u+z9k6iM5zldPxxnXyqEUVE1RTACJ9zhgeA1k6KGigLZAGpXCEXX5PK+uq9l+L7drsVfCmJerN+2+71h36mD4pIVvcwpJ1hDbkqC7fysgJ4Pp9zzirY4TNaIjOPcUREHbYKBvm34XhF25RvVbig8IOIPj6elbZqZtt927bt3X/cbrdfH59zzmL955wfHx+F25i5ppBm9vb29vb25u4/f/6s1qBt2/78809VLeVWZtYPfzweS7khbKJE9PevX3POY85K+brf74E8np+ULCL3+6Nm7+56HMeY0zMyY4wVAHuRXhcMraAKqwC88xC7td5agy73ZZ5JbNvdI/sGqKqDPaMTauDovuJQI8gxZU6ivN/vVS23vgFBRCYrFlWwzmO5FtIKX5VM1PCf9bRn9hsqwyUzJnGyNmutJzI5Mj2DlPSxPZTUxpEkc85u7da6iZqIkRjLbdvEQQguhWkzlUaiSFLtoP7j8fb7j9/e+o2A9ACxarPNOtlzvj7mEXOeBL5kBW7NOI59jB2Zzbbe+7bdRCScnsM7TTYZY0QJAOaYGUkYnh6YgUxiUoJUhohagypUZqTP1+HLb9GkNdnG2MfYazCVuQRzDOpmlYDKxtKMJkdNbUOhKmIsBmYnONmEgS1oBIXDQZMoRZoI28fzbxFRIcmkHKTOFMJJHNrkRl34Pg9MR3ogFUSkZladehkI0FjdtcQEcDBnF2iTuBs5g9kxI9M1d5OYdGRO0ciMff789fov++hHjol5xHDC++Pxx+Nx3+ymdyEf45jH2LbNOY44HnGbsY+wgaTIbo2ZlWtmXhEXqI4fpUaskg1uFFTC+a1ZM1JOQkY73D2DEF4nfIr0GCKdiJM108EpItaZU1gzfWTg8HAfHhx4juj32R7+YHGWd9DNPeekcGLaSLZwokhGzIwY8xivGEemC9KEph8+xtmHTJcM084kaHcnxHXWuU6u36d4l56Dz+C+S+jg7LXwlQbiOtmr9RLqLj1BlUYwW4WigwhRvdScpa7JAlLnwQtXCDKuFCgGMZQk+UtUUf8qVrrEGRJBxAiAgwhRqwJWct4ZVEKUJCRK5f8bc9/3574/hx9lUJh+pIcty1vttLB+wxIWgKmGPsTMQVIEfqQYi5k5m4i4lpwiCFnDiky/9DQnG7Q6InPFoX61rDBznRoJeL1eEXHbttt2b93gNZl1UAivUjPEDKwANvmKCqjPIFko5khZEeHhMz0oA8QxmVTTavAQAgpOCsyclZgg1YjzReksGU+e9UFEFITGuHIcrpuq0HBWlMiJgxcNQFyecxGxSmUDEZEjVLX8f7zSngrCyTVj/j5Gn6d+vKIHljiJuaRbzlS47Ay7v3RUiAAimIloZFoaIky18taDVv+TrpAF+scTwSSo40QZEZZljpeERfXSBpV2+xsnlHIJoSIr2jRYiIeDmKUqlGrE6xFjjGN4TJ/hqNbxyKRaH2vgWwrSMichCU4c57CsOBsiKvBa2u3zc1msavEf5QgE0LZba01Mrun/9wu+JESCU0j0DxHYJfDK06Vb13DpiJWvM1KJzwqKqapqi7n8ehenRchLMIcrmM39bJVt9XguUpw5omRtVbbI1zp2afZVtdl927ZtuwFFGWbxTNattTbG6L23Norxut5I/ai6IWssUCZufPMZXJ2q3ym6S9hXjFd1B+37fhwHn+kPYwwRiogCXmYzM0U4wo/j2I9XElSlvvn1etUosxT69ZOJqGhC+ibCK3C+jlUiYwxgL+xZ0DwzKxWviDd3Pz+mRT3W499acpmS3N2dOFWVWET5dD4BADxmetJatR20Uum/bRkFMtatJMggIEwbIcBaS/V1kH7cbu7vhPA4NttMWhO72Q3kqrxtW1CszDlCBrXWTTdw36w10bOjzJSE1DSlApBLFokIFqgxBfmYQWOMo8wowubu6i6s7kDgMw84LTA9/BjH9AzCdB8+h8cMFIsHYTCNcDmOFB6IcMzwMYd7DhqN58NkjP11PM1kq6M0KTPPDAGBA1y1qUgmJvJMoUbcytZIzMQheoCtlBYiy9tSV9g+j48m2kyEw9iJ3YyY4D66sG4mehcl7BJOYBpjRjBSUStOuihMuPebcEocGJm7NWo9J2s1zI2cToSu/nZjSR4zXI7p9Nrzvz+Um6UmtzIObLGPyOd7v92JkVSzdSHXJrfb9sAt+JHsQQMHsU9OYhCGz9d+fDyP/vaivtlGZALLyekxcyJIxJppaykUyNZaS2/pI4K7SjYurRtzWmMwHwiWtEYsyhBMnwd77BSOIHMcLsPlmC3wJs21DWAD2CdPZ8pN+EZoTCo1G52Hjz18Mlw4SZDhFcslImJlIQuRUkfCZ4gqYdXQiojaaqr/in4QIuJSmF4bYT2uIvJ4PGqSUvIVVWUGUVqTmp1llfcAJ7FRMsL1mFLVq5MUEgKCU5hJlJglTwkn1W6SAaHSbn+tp7XknYGiZsaSvFKKi0XnRAJOxTnliirF+RuB8BjHsb9en8fxSjhX1AIywkG0iVoTEWWGGkdQTLhHwhMJp9qEaKXKUmiLNFVVsUQFYxqtsphIP8XaubAXcaXD09J4ExEhkHKqQ5awYB7jeGHem2hTCp/H/lnnSwGUwYgyM6rQrfWs7NIkXupeEHOka12OyhPLyn3hjMmUySxltStkQ+TuRFmo69ykCZVVj/IbclFBvPR7Xz0YtVOuDbso/XPm8oVdvjX61a8QESG2tspozTpJUSwCImE5g04k1nq7SDhm0W967RUNCi6RcGYGCOua1wD9Kzai4p5rpzGz9oWRiFSELKoc4IzYqatJgE8HUJEc8GLFEkC/t2sups1IuM7BPiZzCd4kCMcc+2scPncPjRwJG0PE6m4iIg8cHmP465gxZ024kwiRjuAMRzDgCHj5nCsvRLMstMkixprwanSocwRVrE9JIWfAveKVylySRMTurbXKdyuGsq6qzyCiUu7l0gDVBRR8R59V4UkyRgUdkare73dVvUrKryxWEbvaZi54KiKZdBxHNYIvzdbpOiysc0WrFGdQP7ZENkVQ3bbtGr0VGVPqsvvtvm2bqgG43UhEbrcOgJWLBbS+Wvm+BxHXsXPbtroa9R90ll4DqD8/qx6RFdjPVJ/+peKaOS6wVVindH5twceKeCAzExP38fPj1+fzbxG532/MMsZ4Pp+V7PrHH39cqo/Co4W9ruPKPl73+916ezwefE7ze7eiIacUSqMLFcmmrfX7/WFmhfnmJKBCYkGcER7uvBJCjU9BATGNcE/MiiwCE3OU41BMz9WjLlQNOqnKZykY0K887VKvshk1YpDctw3xOI5Xt23T262/gfKGzhasFJTD53Ecr3FEppF0NZHeRMN97LvAhFu/P4qNnfMY+2se+xz7GMe65cg9juF7xKxDjWdwOMYUCXaJEE2K4NZa+fJGYkSCaSSOyNcxI0EVq8pS1yF3CoYDHuG56t4RJNSiExMJ5dhfWzt7adVat3o+vEzd1Q6boGQlsKlYQxJlipraTe0256vc/cJy4VoTSZZMEDI5p9CEQpiQFZBdB4gHk4azuRwf05MiKUHM2hQpxAxlUiRGpE9XqHcSmIZgMkbCwRAD36VLn57ISZSO4/DPff68YUt9C5tTnu7HMfiT9De9b6wRQcwzPDNJ5Xa7EQc4IRDrn8+d8aIMcszXfP16veyz0aaPzsEZ7OGBkRQkrgbCpCCQM4UJTQEzgZzY1ciQCRf11gmSM1wtVEQg8Aiemp4+PScLnBJE6qKhY+bwdkwCGkEy1CcjDxE3fRNqyiycQiFETQXEkjwCZgIISAnMEBaw3CKsIqxMc4yBoN57+pkoqEv6Wi7XWumK+fvOQNSj9/tvv5fWtbXGZ4vFnLNtyXzipnOWxwlOEAPsBOVTqq3ClThc4VK1ErCIVSodvhr9AKgCK/i+eJy8eBjijAQvl03xYpnlzo8IHxmTwrHSKhzpEdNjRFSGWqXmBCu3ZszZTIjShJYTWkIExJSRxBE+Ev6V7U9VWM2ZXmf4enOqatqqDZpzJT1/I70qm2q55Eq4nAQCFbXhSyHLiBlBU3iOZ+P0OefxWtIwYioQg0A6gaiZMDgBRqIGrFWlvSQnZdIQhpIIE1budDCIKyGaVo7DdQY9fQ+nuIdJWPIbDuaK7zp3qZVhKsK8Spcv8zmd8+B//AlLt6bWxCo5s6sqlR/0BD1Mev3zxZ+dOOzSD52ojpIJKwyes+LpkCJWQiUiRRnsSYmz/H11m8n5oarqaXuMi71bVUIAEVdd0Mo5y8z06wVcB/36mbsHgJgVJUqqyqZJmJ6HTycmn+zF/TRlMetSbadRY8dTUAcG1iDpjDjNUvitB6R1Lsr9/KQuXxtLXmR2Bd7OtR/Urbeu7RcqCrqSqEqWhDyuufB3IUEBoDUcXCKvNf9qrUylS1pe7FQRaSdLtE7qESHamC/BXwWxfpFtehonr6/rHBgRfDJPxQm11rbeceaEVawlU16kVL3H2nrXa8CXWKpWwjmOa2xd2LGGp/X8Fgb6+++/n89nUZsAaqInIkmogaOIILK4qKu9u95mzQcLtG2txFt1Yk8z06ZzHh8fH78+frbWmOl+fxR8qQlmXdK2kiCuLoEl1S9QWIPgCqmpx3nbtmN+JX6Vnux/0JNmRoQajwCaPupZIKUy69ThPMNlHW3o+/1QqTleh+1vtZ/rPrm0H+AiwicHJYS5iQqX2IAscsJVWu+3x/b+dvsx3w9r7PRgDWgmxXG8Pl8fn8kIdriK3vu9bz8e7R4jfv36NQdukcEIcE4/juPX6+/Pz8/X6zWOV8YQITHNFCGmb2fCOWeAWEwhhHZwCqFbI1GOjKF5sudBmB5gYlYQ1WhjhvuRwZiUkQjKGXP4gCfH1GgSLIE59t5b73a7PTZrLbTORpk585g5E8mp5RUXU7V2CluNtVm7T/8ZkUQQzpWQHWRvDwMifOQYexxGwcTaqG9GiAwImenGtI0px8HCk+AZzmLdhFRWIUiCfeYxJvLIQbtpE92E2FXSBOBMgijZJrNLYpM2XkeA98N/7f7Y/dOy+eFC1rIld0tKajn9mMdEgKm6Pzv6PR+eATIOa2wIb9JaCI/wgdhj0BRq8OGecx6kyVs0xpgzFcJJuROGyFSdpvM1XiXMUWkig/ggZubRN0IqxUgGyLVPQrBERghShbkLWybvHr+OEZkm0Az1MMTNlBiiAiZVRlNBtwyw84iUcGYkI4WZVEhZICIRpZRinyFSgZpkyjl7Veq21lpvm63nmYhMSv5ZalI5WfR+1ceWGrGmCEQUczAzq9GKL2biZJHIyaipQZIwsVXUpZlyuWiZSkdNGRBGVTjXPuueKpHfjOuQSgRe0yOUt6wO92Aujy4HZ65qGic4ZTICkYkcc6fTFp7wUjsm3IRv985lEE7n5QflSM/0pAgMUFT2KZ1xYtUuRhyJxHQiyiCznm1rliK2cl+/afuLDQIQ9Td1RF4VHJWECQJYJBFMHPM4Xp/kMyLGvgNggbIAYEpjYimFJpiAykGukM8rkw0oo1v5rwt9BFPdKfRt963FlJLPsuGvuAScc90aTdNXCILTaT2wlTHPxKt08NpBV05spWSdrAKxCHFT0yqKOekNIoJInQQ9z7EFwAFakY2sojVRzcxkqQp1IsJprMiMYhP/KQpHcVrnaVuYsSyQ54D7PGYUhKrIsyuvJBlYfYoUSSRiymrSIuLa4E9gnpHx6+NXRFAu9TerJHhSOnEGY8Xwti692wp/SqrCw1ZNc+mZxFEu2WVhq3CUtaNvUO2SVE2a8Jk+c47KHota08+3Lu7H8Fl/a8qXzKC6usmzRo8ZSE2cEoVrczrvYa6p2TnpoKWsOF0UFaRc0OQUOTwBVBXVlX2QmTFcxFTjmsGtzvPCgkQ1t71i4m+3t8wcY8/MCuer7NManJ2oNMYYGSQiSBeRZvc8E6Bq5WitcqHpSudhU4Hcm176inofZW8M5Ax/7q99339+/BpjlKvRmMcYwycvs+E4B3Y5w7kU1mNcRpnK/Srq69at0svcnUkSaAw/v2qSKKJzRJmVk8hnjsN3HUW2CZtKK9FeZUqpNmatbyuRWwUWPtrDzKxtFWBRJ5ck7OMQUzFtNdSO9QE13RY8pbVaElOA0xN6mu1YmZXVJFe3XC0c6wzDRCKZhAoAXA1gKLlYZBqniYpsNdAMxxzhnkJm3Lft/sePP0T5PR4kzuITxz5en2Q+wjXRLDV77+8/fru//X6ThyQfx4FkJ/qcMyKqoOB5fH48f+37c4yR7MRpJpkSyUwcmUnhHgilOYXNrLPqTdmFX+lJOJB7xswgohlxuE9ULxKHlIsHpckjoYkZScmUcFAEh9CK9dr9RXt4WmADk6e2lLbyxGjmqDOXEIGzlqaCywE2g8cQa2BxT2AyjTmnTwLItptUopDH08cRFGwskPv7GyVIVSBKxoStY9x1u4GHEw1SosZ1ozNIEgR4Bk2PiF1Sm7a7coN20VZm/FQCGMpsSs1yBCWO6fsxfh3+Zt6MU7gR4unBnpOaJAIORlSVn8BEN2uj3QICZ2VDDFOVZB+Yz7nzpBjGVLXnY75SdvEYhxMWEBSZyqk8enOPaTYI5MzMAVNiUmltA4lzsk8CXChUgY6cNPZkkEn2Bulg3T3pmANpTA3RMxoApiY8UCFKLK2rKLmDyNMkoWPO2qRW9C0XE7HOo2pSfV7dWmNCx+HzOnGewafGzE0NqxlNm+jFiond6r/NrLbA0j1VFJYIrhNqbYvzmLUQswZYxUBECGZNWRtgggrMJIPDAT67wwCKEJEQXlFba4Qm59a4auE5CYwmSkLMMBYwkxB5zSXdY1a4qB8jMaeP9FkJtJHTfag1VTNtEeQexBAmFsolLE2pxwtrG2aQCITL+wMiVAtgZtKJV1RKTsEXEXLtgMB6F1/03cnwASDK2q0Z6R6vz8/ZXpTsPgAwI5YyHWiy5MOUX6MxIBPXRGE1FGJFIxNRBc4tamS6LGbMM/Pi56qpA6f1qfhOUlER/tYfsJ7DzNr5cMZMfGcpLqqjaI16lXwdhL8L8xNZZSNYAXNE5wsHMkt289UPuKRLotdvjEyK833i60R+UUE460rrZ5p9BYrR6YT99sWL+D9Fyr3digFgVrJk5q313qv7ant7e6tQpfL5i8jtdsvMmjKX9r8+KETlmmSCMyLkcK+cdLskU0yCpVA5A8mi/ttXnUNmOLxl0aUzQUT5LW5KFsRBZs3/89rXuSjzkw8bc17pgHIiSKmm+WWXOwOcvma7l/L6q4GxxovL/9wvspy3bfvGeNm3iLKvMoP1MfGa8UUExijmrJLfVXXbbnPOUnTFrKrwUVHydacVNVjjr5IQmpnK55xT1n1SJw0jIs9Vt3QFRpQk7RK2XmtOvcjvDF/9lvt2u7g0/mbmXSPF6cdxHMdRLHKcTeErZ2vBlwlg67crBLXe8pppjn8wx4Up63kpJFot3RewKzdAlUve5NZaqxnhVaIgIldO+vUD62rLOlmpqnZbA02iEsDudaG4TvAE0e8s/jqxVKU0X4rhr0f9SysplRoKYmFVYVA6PGIMP455zFlDZyHt/fGW05ykJUsM3zl52njrbwK9twyK+7Zt97ft/t6460sy8jiOI9OJPIDp7uPwccwXvJS+dN3bzBweY87jOKKOaWysbSM26RMplDMmMw/KgZgIZh6Iw2cSRMrmXMkjRVFHBGaMSIKiJnlESYJIn/MYXEManTkPP8zsvvVmstnGDPccPhhESiBLCnCyiYh2khlp2YYbWJMqESl9hDsIZiIkksxBlIlJOaeIhHh2E91aVzQhC2XCphYi72P4MfeZDs6QrM/PiHMfDh75pDjGfoDRhrY37VAlhZWXipmQESq5mXnOwynymL7P+ZrzxpuS8ASNY47P1w1tE2PjnXbnSeKipKq3voGlb34zn2PE3Ckzg2L3T+w5P/GuvXMjC3efx8yPOD6Sd2EXjabonW5dTEnEm83ePNyBSNJ0H6HMd+1WYhkiArkomihDKGRsVixmU5iGWLASOBIbwc8QgCZcdY3OLMpipjBybcLJhGYLizD4SlNcgU+lvPQcxxz7jOmMdcqk07cVWo4hVtXeKjVHe+9de2Gy3jtJv861rAIA7pcWtVzxZ7guQBTTQ0k4OIXEGMZJq6wm3Mw0ytVYyIt95tcpnKhoHIGgivfOcr3aWs9NvfABiZJWsAuv2ILaM9J9jGMcx5wvco+cPo6IWZOLyuCo1M/KYKieySQCfE3sWFhMhNlLGeMmygI9h4aFh1i5iKUaxSRDBMRV28LASloHYQU9n4H+11fmKn0qMRYyCUHhGSyQTBeRhFeJirCYKFiIqgdpIdZCGZFeZNslhNZyIZWCICkJHp4iEGWimNNjaH4DVecIj0vJcO4rLAJZW+9qGzyZBmamNWn+iiQoGQozN7PNTM86BKtDY0VieZBk6X/WDDBPaokKNFzRnVn7BBHl8lidGc90StByzaUu8T5/q2e+pOHX9vNFU2VWYtHqli2aC3S2IYSwX9fBtJlZQa7ffvtt27b3x620zyKiKpl53+7MrOdwZ5S6K4OnTxGU9TcoAhThnsLpWHGdi9kKj4jpUS8sM+q2ACsJq67kcXefkUxC+d0TsPwEmXm2emZmVvvkalKmVVdVI7Db7dbPRAY5u0KvRx5AZdkXcooA8yzMXWClQkeL66o8Apx1QBegvJIRmFlNr2DSNUnUxa/Xr64mn3Xqu2LfK2jjxEDXCPLCNLmikrCC5vnp7maVPpoAkmr1W8BojFGxzcrfAQoVX1g49bz9uJ9fZlZ8WC2zInIJwpjZ3ecYheoKixFyu9881/Vs/av5J8/Y1UJUt9vtmPPwSe70bUhab6dW5ppXFs9XDU6ttd5aff++79p12zbRusKDqKoT+omI1htc03YRPutJVDWJgiCZIqSqBqvbRkqnkFkp9u7huepET6BGxFzCvrP0k1mw4qQJVfSYkUaULEKIs8gtSThZWBxM4KZ9SFNqXCYSkLA9tvcm2/u7Z1ASVAgkqH8oCkF4Hq/XUTfb9Ah3eJKLclOdxepmgHMVkPpxeI0ZiSTbJpZZQ3kiB0NVL4BZ9monnhmWotzAWiUOmTliuvvwwzMgzJrMXFGhIwYLqwsROU3xIYcws99v1mRrN5HKRQ0lNnSLdqH51ppo80Smj/my1nu7RR7BNIaXbN2YkimLcahM6jrWH8Nl62q3JhtH5Tjz1uX+QJGxu7+GHxGDVLrJxurP/RX9FfZ6/hzjGJHIFM1iqpRMN2XTkZHhb7e7WkAEhy9J3fHSvrX7xmwQTY5nxL6/jEVVnEZqWOPe7Wbabr1vD0d69zHGPMYYY7zGPqfvxwG795uxpQoAzznnMfzT85eoq+VUIESpS+VukiOH+z5HTLBjnxBpr60/SIghYmFwImpmSi2C+2YRpcKJpilCYmEmhJ2zoh29MZmkSiJSBbqUT2LMQmEU3jjhzHogw7laZMbYI2LMPZJi+nHMsR/uocQiMnO5wyhisJwi+8pq+aoAOx/IRsq1q62lhKiWA67tnJZ2+4vFSReSVGIHSVImZ1JI+hTTbJuo1oAQAEEiku1r4StnXZFkpMRRG6dfxyxEZMySFyaRsDBV70lyBiEoc87j2J+v12uOvSnFHO4jV2TXpkIRK5p9neEgLAVbs/UmZxwg82RGuDOjWUNlWNU2v3zWtd0txW4RJVeqe4KRHIV9aOUNXrgIAOWSrfDyQmQiKIMZokIIQgpznkpebe0seeKImiR+sUFrn1DNCuc4A6joiqqt5VPEJYko5kRJB6Qq70qkv07SRXetD12FLycmGbDSXyOCpGoTKGJ+P1JXH0u0Zve7ipR2R0C6Ks9Wkkh5Nct/EUUi4lsrJYBCxZDISJYqTf9OsKloZlYgVoUprFLwk58rVX5VJtWvPuWD31sQUq6KxlrGsEbA4U5VeFvY64z3XMWj7VZHFFa1s8q5qVVIgbvv4+BjSCSmK1GC3dMpoyK/swbpeY0RC3wsAvIEXnT2lhafoKogigA8vzygJGB8l8BzlQVRzaS+N5SvhubLg1ZPNIBUXKs/n1H1lfR3BkP8/+l62+VGciRZ1CMCQCYpVU3Pnt1rdt//9c7ubHdJZCYQH/dHIEFWj11Z22yvWqLIZBJwePhHZmIZ/y7GWrHvqv39198HvnmbgSShCS4xu9SJyfLOWXGjEdHaFrOVqL//Sq01KaE1ql6EyzxtzlisaWRxV0f2D9o5euquMiTltrX0DC71+nmeX19fP378WHdIZn3t+56mxSWcT8C0ynx673pZRFcAWKY/CLGIlIzqGPPNjeusQkTCVUjPrsI1j5oxYcLItLNU4PF1hlmXYt93MzuzevKorSnUjuNxv9/dPWb97t897PMdfC1hGGOYcYilL1W4lrxfZwqoW7ipD1NVV9eIoCIt812XbgGRWSfZ+4Cs3MpkHe0anF055nAwiZRS837GSPXw2fs+aHBwHyeCheS23e875QEvl+vneZzDiLgUIeYD3U51cws3Vw+NNHARCZU+wqY6xa8hcgT5sB4kwpIDvmDo5cQqXAbZYFcOBnSeE41ryWra2Z4d3jWBwdlNwSQyW5OEjNjAnv8EuQVUI8JARxtF21GukqtCJcJs24YPDSUKqcKOWmUMrrXWuul2L2Gjs3RzdRAXCpdAIW61su9qh7k9T9s3OS1uqPf9HxLbOKMW2bYPdcrJSu+n6+ExzE63EUONP2768edo5yNcB+xhT4+N677d6700lsJUuLqSdyNuhVrZG/dvDUaBgRTH19MKKrta9iUGDcPpAWNGKWy3rd7ard6kSMCMei/SuT3pxOBxmuvZzcfWaq0QHmRSq1AVEwvx8wxVcAwvBrMgdxtDfbifMZ7jW1WDqLZCrkKlbNmKG3QURimtCJoXD2IDg1hQBMTBgWCTULizcZFNwoVCwgBPDfCc/BTeCw1JZeXno+o3j8dzWHjKHNV6PzVPYOf5TGaVAwRZQ/2oomOcx3fmPd7v91LarW0pamFOVZ0PHSASZg+uVJmZ0pxIRG7WXXUOLi1Dn8dkCErbqlTA9Xx001KrhjOXep0dM4/A3FjZQpGJ+bI6upNZsohL1HnV1XkkwHRnKZULs1C4Dbce1nU8dZymXcc5jqN755xF5SeOI3eIcc44iQgOFDNlrvtt8+jMlTgqEbkNPcfZVQen/toTyLwo9SgA4IbhYW6lCAggmMEBy9h3sDC5ezd1poDBPCyLJjUhGIM8lDznYsIuDCIhD00NnBCqcCklzNX62fu21yIJXMBETmJmEYYUkaadIdxHgqQBQJiYcUETnhuLgZgI7AnrErVwYSksJWuTzV1N08JJPKetS2jviLSyr94Yd1/Bl1NqPbSAWQSEYKrbTkQZVmsWFGESzCTJdRFRIhkIgIxgiAz/R4AgLKVWEckybndnQatSSvGri5g4XwvBgya2da7FZ8Mm5qYCzxeYAaQJ/DnQSGrhTCTnmMYR66MTb2Xj4OyMUocAW6sMUlWz/nw+EotAmKW0fYeaEZfAMArTbALJWIeIsHBVU7UxzilGdFcdEz6SM4NFAAeECgB2jVTLMZfgQBREMTO3RPYciD66hvcxAM7yLqnMQnMC7t5adapUplVqjHH5SVFrzXhbMyNS5nG/fyYOIKLRLSLH7tKyIFzaNeTFlWmTWjF1HzlUmlGZpWVBTRaeighfJeLCUx6mas/n4UAdY1Ym52FAJDIkrNZaXlVICYBS3i4QmIcZ3EPNA3b5JYigbqrdXQ2WD5McP+YYujyfz6+vrzw/rIF44qekA7Pi6TiO/IFEeIuRHaZm1lpr+1ZKqdGe3w8iun9+LDrt+/gSke/ns91a78fX11diKR0eLsOs1irCpSQc996VSO736L27Y9tAlzOjlFbq5tF7fxzHoYFat1LrGPbnX1+11m3Tfd9rjVorCSpXtyy9HfOSFiE1VUsDYI6DKk9mLlzyNBnmlmGRwUEcGSiTChBmmREqSkROjDACT0eRz056DmQ9qBRKN8f28SHbpqcz8x4xxjn0KG3bHtvZfwXMnIoBQB7bsqm6UP3274c/R3hEGJuxmp3mrsPNjDhHB6qhTn2EdR82nlIghQoKm8I4hAEqre7327bttTYPeZ6HCLEPDR/sOWc9xnnO1xYN2LZNmgwbBqfGz+fRdSoOAXanCJZaIgZv2/bZ9lYoYKOf5zH6YQcO4qZtK1sYVL3WduMbHSJNVD+DVYSoyK7VramWvW1jfBx9uDuRBZ/mXrT3iBDiWiuHY2jv7mGP80TU7jDUInu7bQW1lP2zfUzFg/bwHj7O/mucx/Ovr5OOQcH4gNZ+kDvVxmKbxFZi27jUItJkD6/cvRQjHkH7NrZDxyCyGI9DuJmpkYexUgS7hbqa9rOVetuSAidkFYRUoAoN0qFCBAXYdUTE8/ld9m1vpW6VCdI7+SY4B5zQJZycXEl7WljdOlkPG3CNIHI2dvdQ90IBxGAoE4S4iIIZbsFOMBIltuwYIGImkLuUWsKrQwIzTietrCDOcgEG1VqEWIW5EJoUO8/BDLfTvAhrMGvOYVxVB2yy3DFDEUmkilCtW2vt58+frTXdP1S1t34cW60PaVWkEs/uUjMrhWdEDKZVGJa6rAm8XK/cP7eIQjkKVz10BKFIFaFw9gAHIwJuEa5hEVJKLvzCkQU417Bp0vJBcLcxm3NgQezGIWQ5vooRnnrDrlmcpd3GkygpuyAiJp5WebWIFpBr5Hc5qMHEqX4AcW7PnK6lAEdYjrUw4yuT7kF2rRIxSxHZEAxy2BTJrmMlEZmPiHgDXgafuBDIzKzcjJW4Zoo7MupzmmksJUdlNrhcLfevGHdf0eNBIMwx2cq2YOLsfyYP42BImd3JpVzSqCDM8SLTFWULMMFlpsxP2cSUMYV5qr+XCmTmG0m5oggA4iw3XRPAHMlBOJicX3IZCmRFYl5hJ2ZkKP20tq8wlDcHX3IwRLPwITL0ZP4hWekZ0/0wWykjk22vTF6Cp96UswchGValgIevvKtcZGdgOk9JU9CRM9bH99fj8VDVUuv9fv/4+WPbPwLUew+IXgGkiwqaRYzz63y/hmvccWmqsnQgWUnAZ+4Krj49B7k73NK0oeFANiPNosAsUL8EmtUTa16+ZnfkEH+Nn67rXFbsE73Ei5cUyV1EMrMnt+2EMus12tXNZe4p9KY5cH4N3dcHJL8/e3KcTONqHPX0P67Z3OV1fQWyU5r1qKwbY975KYPEbHcVkbpvJRrTbGReQ/+lu1/PfHUZrQfs1zBxpZjmJU0T4rvwi64GpNRgLSIw78m2FTM7vh/f39952Hx+P1R1u90zeh5vmfUiciV7TdJrzYKTUSMSsziPcRxHS0JLxK6ayNZs227b7Q6+1m196SC32tacN09WW3mlrFGaZhyGkFxDCSXVdHy1aL1lLnponugwG9Wn8z2BqSGYCtgFAJME1Rszl4jYtpvZqeO21dLP9jH2s/96PH4NPckgVIo0IYFxSMheTuuPcQw7DQYhmIOcOLMiffhQH4Zz+CAOyXTeEoWqtCFeWrgGqBAV5srUODuwT1c4hvrZTx0ORzc1d3PfRUqb1v5cMdTUERruc+yTExiz0NJ23krdpbbG8ME6AmTh3gPpIQrSMAuiGEOYH6q7ZTCFKzOyAiu9OMKb0H1AHSOrG0s/hghxoSqNGc6aAULDbcBPxaFaWtm2W5OPQvte7pVLlSJMVcy8//rr/3799a/nvw4fbCe0+3n496/T3D4+Obyw10JbobZJqbUGQ+qASEgZga35VvVx2jAKMBtFWCYQlVIC4Ro2RtfZddXUdbhvAEqlGqQBUSIOo2CYqEeY+uObWonCt49dCrYQtKZxqwRQZQoR1Ew1QxFkaLe5hg0oBVMJLaHMQmAXoyDOljoAwcEcHiFsLEGkEs6IylIJFVRJagi7sJdQcq+qk6snYgKYSmEh3qpZUW+F9j6eRxdCuFKAjcYYuXrAlDyGuptX4cDsXVYzo7AxtJewsW2bf6iqlvJkllqr1Hq/f0qdtLmItFYyY1qt57bhVzKNI8zMdTBzRGWeCQDmaj6e5whCrQq5VrFCYJQ6a+qCAj6NmdmLmEOCtZb59ZWrkbsakWSp6AqquBDhJTc21SE8VQfETOTZJ1NKW10xETEJocxaQBAHUTBCRApXqzUdVc5qZpnstTpwsgWFLQBhKmAOn6kHVCLlekBYqLv1rhGRpkvM2ahxwG1kqArgA3AhSMx2kZgoIUxz86XwLM5IZRrgOehnRoQAmOk7oACEGCwhr/WRIBHhAs7kp7ccVAvP9RFEEHaCYeqsjQGQlHJ1XU/Nff6KX4maQGqv6KrulEJcWJhZJmaqzAUeVHhGbcgVL0Ys81uJEdNrJkTkKcmZ+RW8sBem8i8/HXnLmPur2BiZyjpntO5vjdHXEB1xSfrnkOTqcl6AYCKh7KQDlavrmnzKjKiTu+sYfYzncTyfz9ykDbEPN8fX4wkqDraAaWZy+TXPXHNAujgne2GvyytK1+AYyLvQgXznJQ1rc4brL6RSStm2eZNPFAKMMRK+TSjzkoJhybrXnJGImKfVceGPNdoG0AGJ4KycKgnvaiYyLEbKrhA+ACJeCi9gEW8WE3oLLy2lCIMpVC9/8DVDncVbVDgTq1/WBIgIXz5LyqBLnu+imuYRkIj27b6QX7lytnDFk8oVmrPmv8l1pfBrlmtdYoy1Ll11T7aA7LtsI/MvcDU67PveWklglOEUqWMTkeqeyJWIEogntns+p/5y5UpcV9TnaNy1j3g+n/m5vyYD5SqhIuEiIIesj8aow8ziFq21NHJqt4jQonNlsxm+ymlRkES3U3BhZm6zkyABOmYkTYqg2Keon9f7ywEOBK+WJzAXoqzTDhSJIkJxcAg7QX0M8uBA4VZLK1QDxJtU2mR8H9YjW8CLxBhBGYvl7tp19H5oHI6nNJQiLE7CXHjARlgIkzrVgiJohbYaRmHjeAx378/xeBw2XMCuMXxIof2+fX5+tn0PWDBU1cfalBxTjgEK09CbiJQ5ghcKouh6QmCm8AhX8yHO4QQ4D4DjGI+zf/f+Y/SjyL4kH8y5ZgpRRYibuCFTQJiCKXcpaa05ERUqxFU9vh9GrsxSSiPedEgrt9b2j9u2b2TeSaFPg/3P+Xw8v/X5sO+v8fWrg9A2ca1hDdEkGlMrXEiY0KKwExdipihM9xbD2CAhBSzB4igx+dtLZmseMTtiTQMCMPlAKMEYFhyTWVD3GOM4DqpfIlGlMqhKaxsNKoVdhGqh2giMMQa827Z3/f4mERwBKtSabJW3wiVCQRGwaeggJSEWYXZwUPVCIRGV0AjC2JgaS43KXqKTgdkIQUIsxDkyz577UqVGVEMtaG2vtedqtdVytnMMq0fdtq1v7fl8ns/ee4frmNqCiNCYKThTC8xUIiI/Qq21dtvBVC2TBo2IWqu3my1nTTdNM1EpDUzuGubEUz1qMYvwzM21O5gCnQ8OIg/eJnzJUmsDCmtEDVP3GQefK7NQcQGc3DVZGMukrgDDDJQNglUoQ1MnCknaXEoSVymkznqbiKilXTtsnqlzfyvfk8EAAIAASURBVHIhRxhREIcgRCQk6QM1G9ZNVb04TyZpmobMQ9iGkYPCYGHJsOXim/HQs9YzAwZNaUZtGbk5ueuQkgn3Fhk2Ih5RV2bBOpQv8iyWy++NObiO1C/cMJW5179zpqNd2IJJFvByBJycsrzNnVIWFQSyuUrO83pukMwZuBrrDy2IQJd1cdu2KpKdniV/lyV3siCkvxBE5cpiXQ+1lubrJWQIwqyxe22uv+dpeRqszTI8NfdpzG7ERKSrWf4aqsaMoPCYKSBwAsAx2ZLFYVQppZT7/f7x8fHjx4+c0QtLIJYg/X7/iIhaa4biP57H99GPrh4MKcQtIlLbka2Q+Vmjq3OQpn0kIyGMLvsHVlkLZiBT7x3gUivzDGDDVYowLaUirbW42gjyWiU4SFRERI7XBVzvGvPLP5Ej9Xy/1r3E7ItqfX/r+c0S+M5HLh5LZkv0S6K0ppz5k6tLe932SUFdrG3aIIyZpba/fQrS0LAo3oXLY4Y2qZk6QoRqlcXxGPB4ZPIFjuPIKC9c5oMUnOWT8dkz4SLy8fExE1+J8iff9Xn5R98SMfb8fj7a/ec/Pj4+WJA5qDnfzJj+fd8Xh5dqQlxuyqX1X/dJXpbe60omy66bap2ZHSYQlnWJRh/pteR18TGFu6nVw+LPXmPu4AyDEIK4EJUqxJTOek2TwKvng9b9QIkn1ili3Rv5XgRhSvWHDx9EWdvLAniYDdcR43AoFVSpRESVRaQi0hlPiODscssbm0nDRppUwszHOY5zPIcf4PO+1VoLhHLHr9GKjZAw6sQcQtkL73ANP3Vo18fzOI5naP4V8jCRrW7bfr+31tSHISDs7uHEgfROOYJg7mxhs1aYgwsRgYxYCJw+g9SMmUCE2ANdiQud5/Px+Hrcv7a6Y2NTynQ6mrPWylRSVICg0qQBDvOsgylUqH20GjAIbzro+zy0P+EnM5Xadv5o9XOTTTIfoWz37Tx2/bj/9fU//Tz//Po1vn/p84m2ocgH0034LnRnqggmb0QQiDsFQ6JsJKVIY+6D1V1BJM1LUaB7UDHZWxO+3W7jefhp4RQZtB4gY0apxMaxyzaa6q4AWHvAzczVCF5RQA7aRbbW9iJUq5RsMnT1eLJzicpOxb2GiHAp295u297c1TO1KsK9xxT0hNGAmLCCDQmscrNnYilVSgFzZ3cihc+kx5mQaRHkxkIcXus2GMxcBCK1Mm2l9o/7+exHP2/H7fl8Pp/f2+Px/df38Xi6dmZkeUVMuSIR0bCIYXQefmUQb7rdESwll9HUV7WtnOe5lpIxhntwLa3ueRTz0FAnGmpdrZe6YcYxOCFcvR8Oj3AjxIbgVl01wZblAXoe6SSyLiWM2AnEwQijUMYcUkZEeJopg+EhRPBwJ4/CHFKkaol69XDnpxQEpzTTQXKwxxHu4u4eyqFZc5cTHuKY0S1e2IXIIGpmfNUXYnqFyI2JbAYFuTGLA1lhHuQZC9R7V83YCHPzWJ4A8tktmyn87gkxRYPLnJVQWFhkhlmeEePS1Mwd+Voswek0nI5XIQLRNRNAatACSOumvwEdzFnSS/4/ZwVXN9QUfKw0RQEi2IhBev3sJCREtlKnFL3WrbZSikzeAgDUtfgs/5vCKpLrxIzk5AyDiNjzRFfXBvw30uUd8+XgTlXhtCAILpSV+8vqVZjAK4PIiNk9WwTC0gb/wg1Vpsm3tfbjx4+fP3/+8Y8/tm2rW2PmXEaHmzs12bjK3UxVj+M8ez/68Th6qTvEiQG6wtnNATIbAU6XCOfBX5WgdAWOp9wfORNHBIV59GFn1whqQaVwaqlsOvuurHFhMPmF1BdwnyBAZ1yLX1GfeV1TDbY4mKmIf0OfIpKhm/bWSjSpHa7xlrY6i4UvbngZIf3KIknXYR8jV5JSykZ1K7Vu2+KNiASIQhCWtH+q9oTvAEC+poGJxomFRLgULjVnWO7TRJlYP79pZr2P3rsPfTweNFXwnhWcAEx9dO3nAICgTD1jZnPN2rREkCnGP8/z8XjY1Wq1Bqy11s/7R+rcv7+/v76+3P3n5w8iKlL7qcHUbnv+SsrFLGKYnYlEi3AUM1N366e7Vw8qkgNiDXdCeeabQq2V4ZHwjpnrVhb6XB8Wn9PekCKl1lIYKxA7xxq1qup5Ip8MUVwMcThylUpSlhy4doq0b+fQ5zLY+m8HsMsyRVmTxVwiKFvuhhrNwA9lIriOrqbkzhStzsZdXGw2zGDDu46zj7y/NJNWMh3X1aBqvZtqmIUyuXNEAZdCgmBic9YK12zgsPQzqo5hz34eY2jv5+jd1T2EICBwOHuiKKkMK6wDl/6PiJaTPCIslI01VH2odvMCYbBDnAXMGfinZpalyUFuNLrxs3//ev61Pz8/7j/qtuXunLFoyT9zKakQIqAISsDcNA0MLCkkkH56KI8RPrQ/n6Tfhc/tM7Yf91bvwmLq5+GFg7C3+vHzx3/9eXsQ/nsMOhQa0qRB7lI/pN5ZPkiEggLCYILrOUZEkIcUokrOmDo6RWXfYCIoXFttG7GHn0NAAz2bp1zNSoTE3jbyWEUWpXBr7dnPx/FgiBA1aVtpNtg92HHbNxGqBSwE78PPUPfu53HYU2I0MS61Nt42ujeUjoMymtLYjTyGG+q1UZJkWM/wiNmIRY2ZTEhQfBYghhAkd6fsXQ8DTDzIhFurwsSpx2ytlX1vZp/nsz/PY3s+juNxHLdfv36lhMmtyVml95TiToP5BDowW8alQSSl9HIeZgogk13Kk3s/9nO/FtCIiDJa3LzWRqnICHV3UXG3qoNZPPUBWSFj2tWgg0xd+x73mBnrFEagmSRkfuaWCoRJFIgFwm2M03xqLHJXiRT7Z3Y7PFQ9VAhROKgICgUM4c4XeSvClZlzkuWzPpLUDeYZFefhOYAiIPNrncERUiTAAQ3zRRtmX5DN1Hrk1B8adOW5p1ZadZhpmE12JRtH4ERXogQm5fL6f+O36sPcMif7Uuvy5L/IISILJyfGwiXvUebBgfycLraAFjqZOpj0cWOhEky/EhGIX8O397CeaeNfIujEW3tttZQ6xdM8qZM1dHC+QmAzGCfnojlW9bRgZoDhDFBoxMy4ZnzrOV+6mfkC38fNcwRA2auz9EPTnbq+3sU30+inkcALSyje6m2/ZUvpz58///jjj58/f+732+fnZ2vNbFaaDFODlV7H0OdxnH04KEhISrAQSaShId+aSRoRXWEQuQEzM1EFLMmGfEUxmzDd3bOmIQ9Owy0yaGN+vfi/3FAvf9+r3Q9TSmXrJa/pXj6LpXa6eoR8PbecOcplflxf73fp+maOyf52A6c+CsC+79u2l1JwJZEuAMfTcmELJhLPqK24KretZXf4jOxfWWLMRbiWUhfdNYUJ7ivrIB/2OM7zPJ9f32aW639q7XvvCTozdWKhlvyvdM0y8zUm5Pr+/v7zzz/panj0V2Wh//j43LbNzFJcvFCaiHx/f/dxbNv24/5xv9+/v7+P0deFyo/tCrjOJLMIypSNNXBsMosv675hWEScxwB5qT9xnRze6czsprz8mKmgdzPbtlk3mSvMkvSdZ88fcYRpKL8q3DCF9bxuJJ+T/EkqMxdmENVcexZ/WevcbuhyLeRnDWGOUtoGiiLkeup4hp2RKSkRHtFnUFDvqmNkdIT1c2QqTNdhPoaf2ZJMhVHYGUYRjOksIbAUx8hjMweFxtDR++jPrqceXXtOuHmGUxMjChlHUHBhEmbrkyyEAyxwdgTIEe5mGMPGqcdDv7jH3kqEgoMKE1HAhirl2iIzQ2eYivWckB7j2PRGkKCrGFtedHLejWUKWKMQmBAMEQiDm5Aa1N1HjHH8Gr+28uujfJ57v2+gUmGqQ41oDHKr2/aP2/0/7j/+/Pzj+Pl4KqJUQmlcPkQ+pHwkBgEEICZzg5qrOZcoVVhaE6YKxDAnHwQQb1vbNikED8UD5pUKOyLiPI/KshchKqWm2aoVwb7V+75/n73WCqatbPf6cWt/GFnRj0J82yuLCyPCAt2pbiwq24bvIe1z2+/ssrVyq1xFmCR4sIAe4erDjtFZuhrXeyWYiQOmcFB0R4lo1NyFvIC4oSDDWCTyLDnvP1LiWRUDHaAmzFSYhMQoKzta29u5la2dY++9b7ddatu22/P5XY/pysmwonRXrZyYfd+JSHVw8tTXqq996DjdIIxs3V5rLqpJCUbSNmE2Mn1JQXAlIkNUqoaYY4uhNrqNrn2D2xKUpDA4t8FZPZEqda7QHOAP9dOTLnCH24XzlCnFTZ5a9SokJMZCpbmLuJuNS45WmJll1o6m4IeICxJPmc8DTBACkfpxciNiYUBAATKoTfEEMwcoURcNs6E2XvmHOkODfKipR/YaOyjSbs0ZuJck7CxX9osh4MxszUh6j0gVvqQMKmKYJUpOEJz7lgdhSsOvbmOHCDs0MDvUZrv2jE6NfCuJKHI1zTFkRAK2yKh8IvB0eBDPGvT3SDKsbY2oEG+ltioifCnuyCMTF1OFzYXuaWvNtGsQwoOJPDzXJvW5bSc7ktJppA2A4jpqh3Al9owRWnFWqRHMTKtMqIjZdv4ayQHgyyWZl25ljdp4IYnCzSlzFpkLgcNhFtr1rFaIgitz3QyxEcTL8zzNj7NrRhYwldYqqFgIWCIj6SN7K7NolCPCNN5262x1mCktVwpGDlFS/c0aM0V2YpTwIMoMYQJlT8s59BzqV0rqC3shm8GnM2PN+DICw/236V6eTBKErSnYO+9IxAAtDXhKiwDY9XLy3riS0ibAyke7BqnERGvCmLEjZqZn773nfXC5XSJvoRwFvgNHpsJSWUqVtk4C02QwtVo6BeERdo7e+/M8Vud0/khO+o7jmOEab9q4STOLbHtL7HJeX8/n8zzPRSm9HwlqrWvqmlNUVVW37+eDQWMMkbq1W22NpFoQjoOISqul1YiAETEX5lIrODBGVnWkYiY/a6n9krYxF2FeJ73n8wS41qQwC7PEpPznWlFK2bbqVwJtgNRm7WvdGhexq0XQzKCIcHWLkQPoII8ptSemCLfX271G2+SBwpdOid3TGpVldICDShZCsmSznxEzU91EiNB0PM/Oeopp9+hjVl4ONUuvT1CNGNYxRoxTz/M8jqfGaRgBBxskXOjQ4T0KBYe4+9lNFeFC4EJNovJgd/fD9dB+DNPsZihxpSsSTNkfdnzbUdGIJWBxHV3EASPO2tNwECy098ezGD/VaZi3wuwxBHEizDHM4SElezc4QBl35rBh4/H8IqLKm7urnopDoytGt/PU4xinqhakHoeYiDFTrpmcd2knqcMtLLof/XHuj/P2eO6Pn7cfUu9cNx/iZhbFvLDcbvc//vl//l91Bkm53fr4Kk2CivPm1DzbxyAFbOGl1OFnuLpWbrfb/pPLDVEex3moftt5iIELlWwt7CRcWiUUGuZHf+ooxHspWykZTF1nMHyemcZ9/+huXOjWftzaDwi50Far28HiWTUTOFG38J2pF/647f3QEYVlEypwpmB9qpwKZjWcOnycJ6BqqNtO7DA3nvkhIVFRlJhIqkgJEVABC6M4CpSuA0XWC4DDQlV7MBM5kxBzwPL0sG3VCTujeNltlFZBUsv20T+P4ziOI0+BqmYaYXB3mNda7x87EV3r40rYSk87mFlSJmM6o7VniRT59BfP6R+FuNMr3nCOikoEE8ScNBQ+XM9ckriWhESJw676FwLAojETerJ5KZt8sp9PXdVDSdjggDO8lCLChdk4AAq4DSW6emxoSVISfvhl1vEIDw5yuJuRMzEITBlDTpE6dRYmVmcDjAwkYAaRumqEug3TXM0zN/w4H733uLIDGJYs3rSmzuroRBKGCGcU4ZJC5ffI+OXxJLpO7ZHwlCiT/JGoi1KkZDMoAfQCSDMjbY4k4+LGpy8u5rwysjBoktxgCmKanXpJHV0UUfxthOEI+l2CnUW5ikHpVKy1CEstRRomaCAgLJicgl/syNsZOgCYDwDM+nbyS1xiPPnaJd16U6bPMaO704wpuxrF35nCa0ZpSXW4rjJK2oS4EBENNz+P7+N5nucxjj9+/PH1fJw6Pj4+5ljNDEy/fv366+v78XiMMczBtRQpIdW7X/UciMjJb7oW3MxGt54k9JWrmcrx9cZllr2ZZSn1AkCJgMPjZUN7a20yM3nLeJt30ZuQbuGJPHExs9l8hJwM5uEh7+d1xdZJiZnNLu+F2ZQ65Tslr3aB/Os57juOIzHWbxSje0ajrVLCHD6OMcwi+5tFpNRZa0YUC3jFVcq+Xs6FuiKCFvOkpqUURk5RLTFTNqbjLU4WV1T9tm301mw7k6Vb22+biCSVmO9y/vztdrO3OP78rfzm+k5C24T4rdQcWaYRYUaLme33W2oHZzTMkq4LMlIhF+Q50jV7dhBJYyEICbPnSF2+v5/MfLt9lNLeL2liv8l/XytM4sgXv1tlkcHTvXsVOQAMd+LwoWmSIEFcRUxL3zYZXAFHgEqE1Xozs/OMnMtHUDgKkcMpl64IN0sNGpUqJKB0CwLAmOCrW6hLsNSikN4REsHsoqeP0/t5dn0GK8S4EJUwDw0b8I0hHmZ2nkMV2SNW0EoUdg4LjMCA9WyZ5mAKiXC38ED4ePKTb8+9bqVwPfqz92795IAH2JmCBAj3IA/C0IP6QFPqHfSxSWObGZDuMPUIUotACRT1EJEgARd1exzf7p7p9iNM7TTvasfQs4/jPJ+qWq7kcZJSOA3mKAAzBB6VWVp99vF89O8//+er7ZW4AkXwef/MEF7iVttnH/Tj5z8Rsu232+328cfn8/wOjFsrtRbQxsIkBDBJ2UQiDiZm0lL2ffv5cf9ju/2jyOZW/ufrrzoeTzqfPALI+D3xKMx1IzCd/cwE227b0XkQGHCNVKds3KIKDd320vbto300/tj3D6YaERSd2BCafcwgT1PQObq653cdptHVbeDcTP76Hqf+pWOYGVHURrcb3WtICyo0yJ4WDw/VHid93H4AQg7z7tZbhzjdpIlqYaFre3NJz4B2JedSyOgq5SAiKaTurRWprN7GOB38E9xu9+fzee/Wex9DrVuGDVqeYwKttWv9HaHGAkYUpohShcYoRLS1IlXgRjrUQoRroVZI2CKlEOFTBj07AMPddYxSCpUMZWAHQnGelJletW7pd6PX4bLEZV/vAQClSq0icLsSKN09wjkpkDAKBzkTESyjraiwGQWIhIUaZyxMhgoSwhUZ4p5dPuQhIOJhmpXIGbjXdQILAJVrq1WKmR9kHhnynPsHkSGG50U1M/WhvXcdZ/JYGZAQlsjAJ1CYoc+cEIMJDMlTLk8jBU2xT3BSJEHkoK5mDpB4hKk5gkFSA5Yy19kFJCKzgzJI1UJnoDwReXgaptZMM97GjhlDlQzEa4QEF2rLphSOS7TBpsFE2X/AOU8OFxHbUKSQzCjLNGanApqytirYMDGGuklWnkUQR9vKxKSgifsFF+7K2qkX/rvmUjqrx7WvXTDJthQFvdsRLlQ7mwPcnYIL15EyPiLKkJRQzw/11FCPww5V3c/bOY6Px8cFI9iBcyhBQGI+zLzrII5gIRSzGOa6bINEEehjor2hM3FAWIgwVFNSRQkFgiwbSYJMHUBKzlL2bghTHa52MaCWeyRCZvcD7KqzwATHJbOgRCpRrJZoYGalrkxjdz+O47qXJkmW4y0zUz3HGO5XfxTSWUK0TlARvevqis7rn6RRdhrmq06ya9FCCfVaa8fjZFCEm2qr9bbtnXiM8U65ptVgtp8JpwBgqI5uqxZJCrfW2raZWT+/e+9jWOoVZ9KBWSY7LFCST3KhzFwbWynufj4PVwvzfpxExCAh9jAmpkA/TxG5bTsFSlaPx2QNE88xs7qRvIahmRy74EteyQVP10VDTJvCcgBExNE1aGybBDCGuoGFTP08x+jKn1KkZjuk0JwkRkRGHG/bVusG4PH4YmZLCbFlo0CG6kWrtdWaY4YUS/hQCugYbpbVAKrqYRFhsHkkBihKGt6JaJxPd2dBCXEbYU5SzHX4UOsyOf+IiMJZzeFF6nbDPFW6kimhgDGO43n059Efjz5O9wHt0Z9qXf1Uc3XqJp2dA3HE4CaFip+DSM2in2rdN9kKRFzYSEjcjDValI+yP0c/XSNCh3U9wSStOuLp49fzUasIFTsPs6Ha+/m04RjEQcwsLFGmx0thj6N7PAkGueFkUjyfRwSXdmcu2/4ZvDnLVjYRadu9tp2KOPx5Ps7zKQQuZYzncX49Hl/P53fvh1ofOqZXmYhyx2euwoVIGlW0MmKohdCgGKM/f/31PwQIqDKZ6l63jOqR2j4+mEjIS631/nH74z/++X38pXqaHkWwVWpVtl1aKyLiBBpph6oke6n3/f7Hzx//57b/QNTt84/b+ee/jr/G819PPczUzDNaJPcwEiaBhj7PB1E0riWrahxKpOp9DJYqqI22yvcm91ZvwhvIW7ldjJdKFteAIqZRqIepW9fjPJ/fx/fT+Hz+8tP6sx/fh5lv2/55p9stPnZiMRR/Bp3s4XFGuEt8GXpXOnrAnD7cCnCr0tAqQ1iI2JiMXX24EyOJA4eHQyMM4QEIwShgmTLAtcnuTUTatplF72OMYcP7qdq7jmx3QyvzMGo2YCC2TTinDedZtFciKjUdxV71HFUAtFZblYxR6jajqJjB4hFE8Kx1AYwCFNekK3OthsEFrmHFuMRlcCtUPHPLLtaHIIy6NSYOdhhTzK6Z1aANCmKBEGTCFY4i8JSTK6VUn14ZQoABwQ4id3JBeI7VyTGzP/LfIpOfNKOdgvJ0QuGRHYgwS9+jah9DbdhQ165juPaIQLoJyYk9R4Ygn0WUMz0heA53p0GGL9y5+Al+q5MjiJNGhE3bQDiR25TeI2tJA2urm4IbneVxkhJg98AVrbMirJaSOl3DyOgvBLG9wmNfYU7v45VJIL10TBYhAQNm+A2yu5XIkVNNIuLUeQUFgyLGtFIuAuNFzwQRgZZbauIJDr78fC9e57dBqOcv4ro0E5DxfOR8Eq9rm36CHMBl8XAwaeSgP1MX/BwnDiTa2Pe91sqlMZdaNjcqpZYyzfZmoWYBaEAt5r0auJg5SpohfuvupL+/hKDpZ5BruHaJplNyPr11djFhV9pZFoVdA9bXVV1q96znywnUEg9FvOd7veJCrl+si1ta1Nd6/o5XfXWyLKvWev1purrL1h+lS+m1kAdfBYUAQJLl2ev5j7EmmK/7MF+1e0bkWjpl89H2ui8d2+8Xgdf9sJ7h1fM9zaHrsqRIaxU7vlN6meM1D4pX42RaMSaN9AZk15ubf3FZYvPXV+iXCOWNkZJ5uULV8pHzr2vPy5jQh3T4dabgjHrPw1Vyz4mYXxPqK2KNLq2V0+tzzcwoUgKvD/vVikpE2s8UdhDJ1MmaR5bYI9J7FGHuZDYAyYbKjGzB7FmDOxAWgBFhll/BZvK9R+52pTTccuZAJz/++tf3efz6evz1/fj6fiaA7v2wU92Mg6uIQSJSFedDnMLV3UzA5AbtHhpQbUTC4RFMIeBWNiIppZXzYOvd+nB3kFm4qjNixON81Ac3khjqo6fFiy04mFE4CiLLSkau4uY6hp/nSYTSC4W0ehephFLr1rZ7kEREKa2UUre97nvbdmEhS2+7a2hSoSm8XNLD4pTOegkSksalZZ5yRUIChmmtsm+Fw0b/6kf74lKZw0z3n9t250xVbpuqWeugj1pl3/eP43Po0+1ADCBqo8/7vu8bhFWVaWe+l/Pgst/2nx/3P/75x399/vgDUfbz2Z43+5P/7N/RH55h+WAR5iDn4JJ58v71fADc2TeujSVCEOxm4aIBEJlSKMipcm23VquwRGFnBMgLUApXKelrzbu26/k4H1/fv+Qv5of/qRxHPH/1719Pbv7jc//xsX3sVvlJ5BY0nNgoNIaFGcJMeid8h5sQJOIm4hhUi7DXQiLiTEZ2mJmhgozMY4RREIdpuAYTU+HMdwREeEctxNbCUczdLFRN++hdx3GqeqaqljQnBTwUwSy+iRBbWCYEngCKEDMFbIx9jDMipE6BJ5jQIUaYjfcSTp7+Mk6JDxEh+GKtc67lMO0II+ogCiokHOhgApVgnlVUVlHA2OLaP3AlIwQu0TYiSVcRkTQ1o2koqWUoGIIIs8BwnszIgwjhFNmtkzUsDkpp0BQIqSekMOISGZRaHBQDs+ermw4dRz/PfvR+2NCwoX3APTPoRSQ/jUyxxn/I0nAgq21LgkIPM0tllU+JrBCRTIZHeMaWaibjLwH2TJplkmy3ZBgyJ9/66NOlSyThdXVmX71DmCTFZV7LwIhLDDRpSMLwCJ4mTFwuuTUjm+Yj5EjPYVdALYGSZxQGzcINitnkDFBuBUShNpYBs1Rh5lSd/T7ifCG7eGVE+fJjLuw497lkyDxjD3VttJjxFnylb9B6mXNvzFJ05gBs5jtQMEHQTaHM/ci0s2pRiotUNQz1cEJwsJA7IVmr8MgR59U7dbn2VjrGGKqvOkJebZX5FmflcxBzBDEytnQJ4VOZ5DYb9K5oJc6KUoDDTBAZJpxQgJkzWGHShWFwum3bGg76VUKQs9S4onH3bcar5ijqYragbhdLzRcXFWPYUqknaFgi7gQcOWRMz2t2HSZqqVd4WL6c237f9+yTTaD2igBNbGFXXBUzSaDWmh+d/P7q8Fmfuwwpu227XXlduaDktRtjzDrUvKsj3EzHMNP7/b7cgitpIl9j3pkZS7Hv+77vn5+fOczNC56XcQnssqxbVcFcWgPgbjn1q7Xm6/UrPaS1Vt5bdDN8RM+EUERkDlVfpziAw6DdKBQAV7oUa7yw7wKaZduJiOaE18wm5VkyQSZAxFNJMklVuniM64vnR6jM/OPpZg2YR9j8UHNKYt39JQ2AzyEHyAmWKh64O3shIikbcWUqwqX86+t/u9uvx/f//vnXr1/P3rsO6+ehdrj34IEWoPCIYf3EQJEoSoO0S7rVyQVOgbgagGHkDMqreguSWnA+oweOYeoDpkRVSAPyhAQaiQSgBo8ZD+lSqArX4HAxF6LiRm6O8zTRpyOatcrbdvu8337e9s/W9lJvXX0MDUIppW23rX3u284U3s+h3c30VDODOSx1ZQ5zsqvELI0kIrWUIlyFOBuQhJgFWyvCWevM4eM8vn6BfGi/j9t+1rYzl73dgKAC0lfpunmNuBOUOEqhz/u+3Tci6jpa+2z7sx09iLbbR9tu237bbx9m2AUNvT3bVmt5shMR10popUjAFLQBXPvj+TgP84eQ3PnWuDUBkYSTBWxYQIXtLFZLL1uve812BBESEpAVUK2yCSdvlyLlYxQGhVl/Hgc/BJVRokOPqEQlto23St1OIxmR+4FyDCDYjBsxxasdJS+2hk4hqjgLgQVMhcSgHpnOkCcdCR8eDnPn5jPdOQIa2b1CYHJmLhK1wIWqYPCUNSSCJiLyABozC1OtJESuVkoZowIoIkRhprX2MWqEyQysmTS4XqJUeTNSTc38a8ucOUCZRUlTNI1cw3lWf5JIZCw2M1WRVgpxSHBQCMplu/MI9mwMQOSikw7kgAkLOZkkkWO5vOaWfTE0FxPKS/1FuWOuPR5TwzvBSm6WpbQghc6dT89+nmc/j+N49PPpQ8M8zCicRIgKp4qS6FKwgyJLwbOtNbiKsMCvKC+yhAXvZ3S6kreCXkdkf6trfP/JeCuunj64a9Cg4bnMzYDpVzGjZM7WClJandM5PhLKhs68JjPU0d3DKQUdlGqzazHN+spgRwbaBDuBA6nNDZ+K6QSUxAa7CE5KK9sEXospWchqwhcnIkQEsV9lwDMxfJ3dU2CXj5lH/Hf+hi7H+3Wsj9yHwVT8BUHo0oDfbrfWCsAvDsPQvffeHWQ6/e1mRsQslcFEMvRMILs+BJcD8YVr3V9ggn5zik3EkwA8b501hMqfn2Ije3UXJl9yKclovQqsDfBSfK/UVb5qSvORc1l4v39yq9bh9/s9fxegt6FHxEs59OJ11nRy27YMYkjglRTRIoTc/Tz7eZ7pDVx2h/zdN+TkkUlpM4fr9SfWHTKvFdeXwJ88IdqKOd3K1qT8+PxcfKG9hdQvUpDewlSvMp+SSDTZI7/KLhf9toaq73zwwjrzr2/b36BtbnnP52NltF7mhr/r1t9f7/u81UOu61mDZu5rStkSh+V31rK2UGC+onVHrQbuUgrnyhkvJmyu26XkVWXOMBinyHtT6NoNXw4Mnvde3v6ZZu9u7pBJb4PZiVkwbZNpjHBnKVSIROq2EZhu+8e2PVrbSzlEOoJM9TxPG9386TTYAtWMLB/VzTwoLKAGIkgpECEu0go3kYKAq2EylHsAztLhTxsUEUHmzkHqhLABPjHyTCTOABeu8IgZ9cxUCLXEJqhhTD7c1fpp4T2jWsptv9/+8ccf/3Hbf7CUx9kfz9PMSLiWvZa9lFZAgzOjy027B8IlBXi1bvuGWqJUrsxcuFSWQpwJYYFcCHz0c4yeCShMHI7zfI5j9OfxfD4fX4/b7cd++6i1tbojwrWbDR09D09MhUtpTVoVKdFa2bYNAPEAunMJOSxISgvCgA1osDinix57q7etSXeCV5YiROpevLAEO7qq0/PPLzj95Y9CRagktWDEwm3b7x6Ny5A6yvGoDaDzdt8yhhJkaXsHKkhb3UFiZqSUlubs/t7K7VY/79vP+3ZIQeWdtTgGOcJg7pqdMUbwgAUXp4yjJs5klcz1hQR4ev+DkohFE3FLsXnMQ70NsomK0zVGCArDsFCfcSwkTMSAQoVGFKPc44mQnwdYyrQAJi5ByMFaoW16UCh672AmrhEukvNHIYrida2/FHNj+Le5SUQEzUANeV8xCYkr0skvheVK+kCttVThN4SBya/kOTsPT0EcnPHzAKNE4ikGhVvGQ2RGBIe7OU91+xUNyhwsLrM3O0MZPGt4XvO1K9Gb2chTF/08zudxns9+nOPs1ocNzZxXSsl4pN2SgaDgbBcgwCblhkAwmImDI8xTmJQZOfmZYuJ8EsQBckYG8oOZZI5cwzMJGiSTQmJ31xhr6Y+r7JyZEZCg9/HT8uSvKpU8mHqEhxNyAieUHpzrxDpP3jlCy3eQ8vM+b0l3uCPnlBBKpCyvaS8u3dpKK81GFOQifZ2tp+B3PpG8g1ZKV2T0Sv70ZMgS0OKKbplPNSy7udbOWvJcbg7zYTpMVdUipofR93xlzFxLud9v9/u91jrTJ1lS4DJ1gkGqZjFDmyOT91ZfwAr7YYoAz4Fp2tQmvH79byaMB8IDwZxtVyJU0rKeYuSUkF/BE7MTHLnRlvKCa1eIXZ442F/MIGiOVicHvMKo1t6JS5edW7KZnWVExOfn57Zt27abWXYUZvCmXzleZqtAYkrLb7fbx8fHe4sOXyUEb/PhF4+Vwe4rSnR9AN9JzRVSer/fk4u65JIk1wzX3bNpw1yHTltlDuxut1s+4ZyHLqiHK9vCr1T6fKgfPzJAZFJQicCWs2E9q8U4xtu49v35T7L7MhUmEUhE5zlPpHnxF+qaIwUgn6pcHW4TCaXMGvPI1FqzmL6BRFHXFfZ21rUgryjdiCjRVnvS+9cV6JXpXOEXABSernqPHBsCaaolIaJV3LTwt8d4n88yp2IgU3peEb7A/OSaXSE1gQguhQPEVD4+foxhpiK8bfX2tX399ddf7va0Uy2GDgqj8CgoIixy6JnxNOYBhgBSpErb6t6oMFGo5ZvDXEqtEN4Ym29yPvPOD3OzDNUO8wgJk+CUPBgEYuEeoRTEKIWlMrUilQbEBw3vGHBlFUIphdqtffy4/eP28RMs4FP1q0dnYubG1IRbIUahEHclhrpbGMFEqGzlzrcGoMxBYy5CDMJM7DMd2u04n/0xLD9iwRTkgyIFMl9frd337eN+/7ztH63trZVNivnsLAtiori3+77v21aIozARl5Rrq3OAg0RtjOOZSagjorV9uA07Qb638rndTgJRbLXBadAACgVgPk6t7fz119O66WEYFBpmph4uVMvt8/Pnf/3TEqmX6mVzltpGGDFTYTiIMDfIJCYi+6jcp0QaQVvdP26f//kf/7Vt1YveNkh0cmrSzNXCoB6DMMBBbGrarR5RSpQdRJzbQpHIwI883IeCqCCCURhulk5PRBQEoHA3OAVTFMDC1MfwEXBnzl2RA87uEgoYUzoBCYjezX3EbKbnGVjgr5VIWABkFjpBQM5MRWZZWwHST06UoVpzQhFvweuLkImIIDBnQAHPOc8FwjhF5vkRFkhO6942jAm8QgLmzrMGOxvsrhjlmRQFjSiL9AIyzopiPdXcbDiuxYdyM1sLkKuDkBFjABPmkmpDx9nP53E8H+d52jjDRrhSZIMVCskqzEE4DAgXsMOmvCvY4RSTW5LsN2LMVtg3l9Ck38yvCvFFel1kw/QX0xWvgEWc/Cbeyt/KGV1yOYvq+33PiIhk5ee+EsLlIoGuopdrzEAEzveqMIlIkZx3p/pBwoHr3bt6vX9TMuUTXM/zYtQuz7ZIpvAGI8JnIi/Wa780c39H+f8G99c48Xq9c8X3ecSe/lMClwlDa62tbSLUat3327ZtWSSsmkFZCs440CbMKIQZb5ewVSNIkVxIOBAZm0Ehl5Dr8lPqqs3OI8QiGNbTDibJnNckb0ZPTBBXHMzro3H9yyQZ8FKGIV6c4nwcf31Iz/OcePRSRB1HT05oET8EWR/kNOXNntaLG5tRW29Mklxf77WPC+XHy4cYC3Dk/HSGiVzsznoOc7BI1FoTkfv9/vn5ebvd9J01vOLHANTspjSjq3fhXSm1BnARkYiwXqJ4v/rH8mmseSVfYVf+ewlj/thKx4jL7/m+9OFN6WVvHU3vD5uE35Jh5V1H4BxrrgFLOi3olZUn0xyK1zzxnT9LHMZXeZRfSbmb32ZQ2aX3yrdGR1/PGW+kW1YwRVjKHNwzSZFz4ED0N4bV87OcQSa4LNVZ9BYBAUVaiTDrZSdcc3MLo5gacuLbdrcPJ9R9v99u91+/ft1ut9ut/eu/4/EMfw6NGQeT/dwE5oBiJsHK5Hkbs6R1ycaUwc1YRKHgCE61mod56FTEkCPrTAEQX9HXeZYmgMklQhhFRLgIc3BwICTMfQAoQrWUvcnWyt6kBZUmLlRy5gyHQApvTZiMFCdC3VgHeldVI5TWUMoGoAiIiVu2BU0FYkSEuWWZsbn2ruMw1yBi8qKqMEQgnEi22+3jfr9/fv64b/utNni4mkht202kgAkkxBXkIAYxiBwMFifu5r+ex/M84s9//ev718fnz4+PT67S9eznkwlbK0X21tpW9zHsPLvJoECoxS1MaYw4Hsdh5xj6HMfz+ezqRhH+/fE4zsO/v5///PXxeH6qf5rdxvl92+tt30WiMFdh8l2kHicx1T7s0odiHvQZn7dd2n/+H/+hruq/YH8Rd8EBgIa7goaysjhJEM9a63lICqYoDGGSyV9NNT27wUrmbzI8XEgMQVNq7cwCBIVHGJmym0Qwwjy381lzRt7JjSOYNuEgiMogU7nOHw4hrHkWgwuIAbAgQXDAON8WFmJiKEeG9JCFEaV0kq6FZiabX8f6C8/Vci0NLx1PtthOGpxDmKRkgyIHrSUsXy8m2TpT7OcjBOyKDGViOIU7pXvGiUKVGOGKye4xIZijkBNPKUNEkCfsdAqEh7tRMJGbqo5Txxi9n8ezPw9T9Wvwn4yfkFSeyRAX0FnS6exSNAApOOeYIXVSBHZtmHDO/NIIZE6Ep36KPEyIAxnQc41awATk2DYtF/OfpLrKW69L2HQMRibJ/P2fS0mfWCeSs8n8b7/KOdZBf26rwiJShQtLYSFhhCDz2JJAJSGIrHc5BW55qT2QuUWSKZfjJR2bBFqyBZR6gAtX5WDCc+qR4bfppL0A9G+JY3y1+CU5h2uchyRmQChFiEO47du2bbf9drt9bLUxQwqJCAeFujJ67+c53MDMre3U2EWmVe1SqphbBCnYg8xNLTRynJeflwinMcZ5Jn7CGh4lunqtAxeoWoqf3nvvp5nFbLZ+YVm+qmCS9QQgMjlCwoU4SUqRoDhHz6LSTD8++kGXaTEZndzgc5OOiJwDble4/Dl6Cn7T20hvSb8pq18IySKLAUaqAhINrPz31U6dYAwXq1dL2VrbWqulCLHaeJ8wLoiTz8fdUyenI2m2jJJLNreoKjkxc6kTm+oF9/Kqrlvlyqf9zdKYKQ+JV5IbW+/L4ozzogHTHp4NPCn/SnvBGtWtt3X9S1xs+sJzx3FkQlj+9QTN+cTS9Zn3OTNLzNrsdUJL8ERwVfMwBjzUg7WPwhKlvtaBSwMnIKYiXFM5kx/2BboAeK5/kUPbcQVezHVNENdw0Z2WIjNn4nOyH5zdUNk6IJg99inPDDe/ShdmQyuHRDiQ8kgwqEn7aHciqbWVUvd9//i4//zH7Xavv772/a/yOL66PU/rfYyuTg0GCkdK+q1kik9hKgj4sFQ5ExFHMXevGNDneeRbnNLH3LgoD90ZvEicxbKOYCpUIa3K1kqrpQlXgkO81rghSvfuruFCqJU35hpO0wsxrPfejzPIt9bcQyCCqm7eeRz2fPbjfPZxEHsyuwAjuHDm1pWadWxrITNmisuVRq7axzChovrU03KtOc9hitb2++2TiG7bdqulsGzb7Y9//Mc///mft/tnu84cECahIg3sYV6IycPweDzP//nzX13H/vXX7ePjfv+8f96kkMYAvAjtZf/4+FHL9jhPhDhXCvjQMEQwhzzb8eDjWZ/gqg6jAffucXT91//+9Xg8/vrVvp+fFv/U8Xnf9/O2jY/bVqUItdZCrZSmfTBVszjPPBoO1+HaCd4qbx8/uP7odjy/0cdg9PP4H5iGAgoyiHkJ8uC9ZCfTbH2eNz1HcICDiYXTxhgUQDgTFyDYg1zAxAxQTwkMIULZjV0ljBlBBB08P0MaOkIVroiIfgY1liqwwnH1Xmd5swRT6iuJIpg4sHpzY2o5Zw9gBBMlS5JtqXM0GpQmtuktm/IFBFNIkVKmTOz9jJ7aQREhDgA1HVipFHwBrzkjARDBSbbximVHCTIEGBwEtgLWiwmh64wrgCdNBmL2OaDLgRdgRCKwAb72+FhqifQJ+hg+1LSbKoVxyvMdRFyFS3JIoJm+nGLSmLrUtaZxksfzMJoV13gRd4vu8mm2/K0gceE4ojl+g/y7yOad4/nbdv43amj91juDkouom3t2WfjMl8+fSS9FKmAykE1EmMUNYJnrb3CQ0PznrYI6OTkiELVSmJg4S5zGkqdEBIKD56Q4fRVvgMpSNcKXLeudGb3YzdRK80Xg5mTuOsW7c05shEmYK9f9tm3bbf+43W6t1KwIXBRCbn5jmBtEKtHI+0K2OqGBRQQF2GJG088dPdxdSynBoBkrNdMW+BqsR2RA3rrfrhm3kV0MynmeY3QzS3QuUgEG7JWOypzTqIsyrOHONRZRKlwdZtZVPf0o7tH7mfvivu9Xix8tXJJE0f1+z/+a4CCHX+7OPAmhRCeLmqJZQDndl5jdVK+a+aVUWzQYX7ntfAVo1Zr3TESE2Xgd3mgekGZ7rFoCL6KpJb+CLfC3+38qnFaB4HXD548l2Zag5+PjY9u2fd9ba2kwfHdfxttkMKEkX5bGUkr+WEKo5L1S4/X+zr5u4ittNS9X70fq9JPVE1nnjZdw80rm+40Ud/csEcfb9/N1LbKQmQuV10f7bU66noz5aMJXyuBvCNU0zHN64BEWcCOqQYZZnZbzioW9coDgc932HC9k/B7RPOlGRHi8hByTOUu/6mTIQCZStghc2H3ft897+9i3v359fN73P7/+9+v4+nr+FefT9Dl0NtBOUl0ZlShYpEItfFgf/TjzpVXbB9tgP0d/nI8xRtgMNZScihDNQzK4EIcwDFGCirR9k61xEa5ciFyNAsWqu4uLW0DydwVOrjHOEeBx9nGex3GAvG+bq6XdKMx1jPPZn1/fxzjVe21obau15sZUrgFUFSlVSi5MGtrKZtUjE5lrGfvgyk3aGNZrt68xvp+Px3E8xxjmw+/7zcbJ5B8fH//4+R//+Z//Tw/7LyYq+c+tFHZQ9wCX0u5qfTyP72P8eh5fz+PX45f9z39TwT/+4x+32/5x27Ztu+/bx8fHfdvJwURbqeWjmMY4+/CzVpePBmVEC29cbtv++fHzH+NUMzvHSIMgQc3P85RffwL2+PmxHXs7n7fbvpcipZQmtXDd6u4Gd6jbGOPs/dlPYhUhKtJ2rjdRpRKPx0PgrBMSYSN4A5VWSYwqM2+13Gq7SS0UDK0CSawEZ0YpRZDWrIgIBrVSGzjAGpAAVWKSzKAKMgpzciJPIkhAFmrew43DBAPezUY4ZV3DXrZb3RzFAmZatqquOjyYSShoBMLAVbLEiCOI8tzjNsyECggEtbBhPSt1iAuIghgIuJGg1MrMwVSZIK/a4xxVrfUxW30kz51cmTkbwtY4BshU08mR8JSXEl2SWBb2iGkS46BZP/wqjXktu04koJSzyUodBZiphBi5O3zoGE5eSrHex3F0G4/Ho4+HlBAiV6pc3JmuPspplHWHE3mYdikkLOVK8clzVJEMqmNhAZNdduJVlJtPZUG1rJ7x61lyIjWf1Zu5SE6IQKhbC9es7U6KK8nJIHZ3LiIsJByAZhKuX5v3VcVz7Z0xxlBPbZqFubsxRS0lc2trqSIkpbQZSmJTICiNJQd0RaSwyNa21AYtaTZiTlJnsRtwTZuZqbxJu2aoBJOkoT07AGIWIOWrg83QswgPMJEjc/RnKOgE375YpTAPZmGupdSttX1v+21tnyLE3Bhw9WM8V9AUlypFguIYR/QzQHSWmFYRSV0WE4Mkz7IlAuoRyHkIc1oTcNEVYabZKfWC0ysMYpZbRRKrNnT0nlu1iJi6mZu9nB9EourTCxnBTNtW10OlOB0RVQoFVLvaDJXI8e6MhAVK4dtt+/7+dvdt2378+HG7bW0rBD7PM7Iv6Tgi4v75cb/fASS7k5xQ4icRydSrKmVRMvSWS5JdjYkw8pvb1lprSXuTQN3cPRV4uf3XJkQ8xvCu2VWQxOoYQ9VKKbJha+Ud5WgOPTK4y3WMQZhNQRGhZpkIY2Ye0dOvEHG730utbdtExM3++7//J2f38+QZERG11ixnzISt1T5Ua308Hl9fX8dxLKCWwqkxZolQrS0vwtKjJ0OWv1Kb5DgvFX4B0xFvtwSZG/EoZWQFXE4aW6lEZO45i6q1Finh5MhC6MheFgDDbYwRTIZgHyAJwNyS2eq9l7eGzfzcrBliLsKp+4S7ujGnbNRSqcVpW/FUbs1glywIvRbgZLNlkX9UwYWkpNaXicrLXoAIFGSJiUXv3VU5sNUd96iFM5a2ff2LmS3cQt2HAxRkKUCE84YSxAGRBigUDBpuv54P6DPAPUa3PjRTry81XoAdDNlq22oRZoF4WLnfIiyISaTWrW7FAdc+HieDKtehzKh72yq4QoRKpVa5EJWz9+P78fx+aO/H8SjE58+fbmru2g/t5/n8GsdT7XB2kDBTbVxZpqjjMg/TdRidfVjrbEFE9/stmQzpVrYimRhpcId1Gzb+9b8PG0eY/vmX/Pnnn4/jO6QQc91KtdJiCzN1sAdxMdjz+Zwp0v18Pp/f39/DOwTH+N5v7WO/fX7c7MfPwqjERdqI00EUpQpRYxi8xHBzCLhS9RpEUsq2c0CIVS3MNSk/P7cKG/p8jIrhVtz6eTznTsIZqtzcfdZ6pJ8F5uytEAoR1M5D9YSdlRwUt9YIEm7MgFdBrSwhW6sfhe97vRXaqkt2E7nnQTe6sZsVmjwBQ5oUy0bkgET2IrIghlsQPOBkBQayyevGoFkFPQDPUDARJQohhTtgoCCpwsJEmbHOEg5i8tzOsCz8L7Iki3aCYDQbrDPRNABxmDlZRLgCyFi90jYRYaE8bU91EDPJVCDxEuIAfKk14981T7MHxvmV6E3XZsN+xTnObiCAYsSlpfCZjLoc0hldIdepL8IE0HT+rS+Pt7Lh3j1UiKsIxJwp1CwHJXBGEAiOq5AzauHMKJgpoOCApxBBQPlPyp2ciIMXLllHfL6mJH87y86l0Jc84kKO7+lf14RvXcMc8q5d8P0PLS7hxQRMz0SesqeoLhBmNnvQ3AEmsn6trwCzO3Ew2EGCyevNOucFpDB1Yu8WuQn+pnV6pZZfLyKy6jEjsZAIy6f0zOPtNRIRhCSAS1IzWcFrgYoISLxdQ5on+VVYVIQyU8A9N8X5sDzj3YPgHkFxPI8Mc5GazB+IUyuji3GZ0vj5v6/QrOuWxlo2F/u7wHfSDC80k0d/i0v75MC4fldSY7T4A+EX1ln8H1CS5s2BY34ocCm08hdba//85z9TWrQ0Rq3u+YpSDoUrGAKXY25l378TqEvSlI+fj7AUVHTF6OMaquqINV2NyInnzNfF1eeYH4fJFdk07uX8MZ/bmnvmV1whYcyc3Fi+rt778/lcArVclGZ0+6VYytoPM8vvX7FhAJBc4O12W9Hw+TjneX5/f2cA2IKVq8gyR8zbtqWaUK7zWNJjOdjd992unlZ6+6q1Hkd394iDiIpM4rCU8vn5mdPDMQZh8nB5HdI3+k4rrhy1d84vY6Mqk/3+DuYtKiIRc17JPItPIlY69ERRy3MjUhZ3fj1azotT8OdJaS/6cy3g66ORSMNnjN+Llgs31S5EAhEptWxb3bbttvebho9zjhlCYeFUIShN2lb3Slz38LsWxvd5HOPRnwaSAdXI7mliXEoOkL95dHhasnhaiUgoL283g4UZPD1dnPyWwEuprWy3disiTFSYTMhsnI/vX99fQUi9ynk+IcVdI4zhQNTCLqXUNIdqELOg6HCEMRmz5vnYPeNbxnKLeGDbtirFPW57jQi93bdt29u+748/y9fxeDy/v01cR0REH4/H+Tz68xjHMc7NdydHihyPVPTF9/f3X89fX19fz+fzOB/P47vraXBia9/lud/6+UNAt23fy85biVCSUia57crFDb2Ptt8CxRynE3uPQBNuZRNmAcFh3qEn0Vl4CJuAZiySKxH19BZQEeQLt3MMRzBz3WrZSi1MxUF6jqdqZ2jjCARvIlQEUYyq3zraKALZPUotUotUli1Ko9akFGZzVWdyUqJ0EEIyeok5h+VEZDPRCvCYu0sIIaaGMYjcYjAsogubpGimZBORIzQnNiDmNAxwM4WQQAAqhBShZVT8wtk+C45naqcH7DenVe6M5qqK3Pa45rp/Aa8p6CZ+kcwQMJcZaxlYamjIlbMxP0+YJBAxECxvPRgEIYS+wASzEeU6YiKSM8X1Ic9BxrXuSMrREuS8hgJObpMxSUrAxpkr3dYKwW0M40E9LGn1CPfZc+aGCJTKInTVAUVyNfPo9zYKCWbHHKCszXLGTV3LbvKdGS34wkl4iWzel1F+E88FTb0egNLqiqdfi9373vzOC7pHXhqjFyszF1kRd7er5HuBJ5qIJWm56U8kegVsrlU17Qfm5mvqkQl/8gJb0zgxNSIvKX0+DXODp/LG7PVfMoWIEtBcIZ+Qq/9x7qlvs1ZVxWBmdsyIy5qHgbcx35Qkil+sFBHBc2CXaUF5NQjsZGaYpofi04mZp4C4WKXKLJemLV+cEF6+wvXcUniX6CRdygk+cpI1htFL+l3Xu78Y5aUNn2EHE+TNDS85rTVRTStfRlK1tmcp4dJjJSCeRToZdt/q0qTnM1yS+fVer8gGv7I9c2dNPdlSUzFzCvN1dHfvPcdzU6UeEfU6KrwWmTfFFTPXWhJt5OMkXE651aLWAYw+c91U9fl8/vXXX0lfJQxa12qMkddwPitVv+p08pVmFVKOI+NSieWfSDx3nme+tIUY8kHGGBl/SrOhiBcrlpfldrtt2/Z8PulKdn3HXpjZyBYRrU5kloxjrbWUmvdSvpYxRh/j/WyTteLpkMAlE5JpaLpSThbtcy07i6oCYWWqKTQltHidf/KDEUhj4dwmkAe25e58S9aNZOnUIt6yeS/zHhORs4ko2xpEzncnbIwx57+Z35ZaKJFqMUyvOtQ6hSKllK3UBmZQbyW++fHrGOcjiEe4kzsHUYiQaaSjqQDkRmHhaWu8SEeiAo6gPoaN7u7k0YLoinVOtiDfvtqk1lJrKa1oGAsN7Y/nLzAV8a+vz+fnxtvu1gPKElXCGXSFlruHMzhaeT6fs/mHiCHAZAXzcuTsfyVNM1PbCkGibMK1lW3f7vf7/fk8v/78X7dh48z79f55C7azP8/zqfoR4U7WtZ89P/f69f399fz6fn4PfTo5M8xU7Qh2NcQ42f1W6r3tVZo7iEupUbbiaABnw6cHbfsNNCyy+ba7q0OClalk5ypTYwhTLTKErW3MsgSDHh4zX9BwfZxOdZdaSr0RPECF4aTCPXiADeyuWiy4EXMpzlvUM6oVAddnp1o4gVeN0giSwajd1JwiEuQxF2Fh5nAgPAEPI9tyXMiNHMmsUjBZnTmmlhNk4fAwTAlKeASngRcjmIm6U3AUcIiUqUCi8LBp7btwCVYjOxsHiNQoKSXzK1EdjJzsFWaUlrVrr6MbmEkkG3I4PeBXtNK8o6YC+x0WvKQ5b8QbTRy69qpJgK0VCuApL7hWEJG66AdcSRMvmmQ+8qIfXkrtd6lEFa4irQpFOMUIsNnJubsa4opInbotxyVwpitM02domVwHA2Bptn4nPHA9v0uKQes7FwaaDMES5VwP8o4vsXjBnIms/fhdtvJ+eRfAiiU8Is/YCFzDTXe3y2vp76Eb1/h47cF0GbsWvFtskFm4Z5B3uTKTJjkxo2TfLsh6p2Jlkma4dt6oayeeyz3W1pIcxXtGWrzfUWGevIiOHPXm5LlcDEEySQmYLYueMmuWeNurIcwRQSmGS0OCtO263SeLuaDnspH+Bh3oN27jxUaA3n+RLrlSqo7MYimE3hXoSbQkVFogzMzUXj3Qi3Ni5lrbyi+4/hNymrZgSnJas6jnGiuvlyBX/88S5i9ItJ7Aeyj8ctK9aT2nPthtemjd8zjhaxteN8By5OFt9VgET/JYCzDNX2fgquXJE87j8cjWoBx6ZnTR8/lModW80y76LS9vXhlmXvU+i8pa139d4bXOrJ/MLXLbXk7e909cPmyeDRa2JqJatnw+K/li3RL8ZggVEZpCVbxfrvM8F3lmZhKvxW3OE68/XUpJ3BFvUWT55zQj7zkX5NeaI5c5bL3dufLkMxfi5Y30V8TGK3qNLg2l27kO5GmxpSs9RLUIZ2hoE+nhTBRn772fvffsazN1Hd67BpNp+HjBkvd8k1JaK6J748qHPbuPriMzJOBUmF04iuuIyAXE422/sIgYpkl4RXj+HXcXUCktrqFfKSWXIPMB+H0vH5+bRwzHx73d7+3PLz7HcXYcz6+z/9gKIUZhLwWtkhKhgNhY8tNPirOc5xDx3MDyIr5y9lSHD2lSueasIAW4uQhK5bbXO4Irbbf2+aORe3rcMzG6tHKOx19ff7Z9226t1E1dFTZiqJla7+Ps4xFhOTil07SfqgcAY4FrIS7g0Ljfj7bft9vNHbUgWERk3+7hcg5zzOAhEWGTKrxVqaAm2IQKS3oKpZQqJgWABxJAO+AxXeL5gTHQCJj62VWjSxSGhBRnPkoxwunoiBE0qqBU3tC6Sw1WkhC+73ehm/DGUcmJNUz7cG/RIkqu8kESJIhCRBYaEXC++nPyPO/kFuHkyuGVwgTuAULZxN0yQiylvRTmbkzmCGeQRJCPOBUdIUUaUXEIEQ8Xcg6SIHaS2a5FNvcqgCN1AFe5L4HmhAdbrfnBE5EmpdbKpU5BtojUtdr+VschKBGJoK7cgmue+DfgdWGjePt1ZkYpi5Wx69aaaijMFO9FQsSMJp8HvMWsAWC59jC6lML5p/e2VQKTFeawkb5iCJnQ8By6zlagUomZZ4TzVLAxmACflE6Z+8l18SZz8Hagt2zABdGiavzKY81+hjHsXQotIsIQoaQe6Ld4SVlcyPsB+j3J6d9RTo5YEZO3SIsEEcEtwlEmr8MseU6VWtbfyrdp+gcr+4tffNftYcq10ncImnNezPCIFZ36Gw/0yiS9EoWuCYWvjOw3+J7w8T3rBP52psfcs2G6kEcQoxYp5fbx2fbb4/FILiEP1kQkRcBiOX7IYXe6JrFCql537xuUx8tiESvrYTnq50x2OlbhLLwk6gsN+9Wxw9OCt4vU9Z8AmKYW4AVK3n8xOa16VSOXUrbtlnKrN7zyGv3gSvZ6B1JElEXei9bKDXMlY60orwX+Vp77uleTQ5pc8qoMJzOdkCsi8nB1ARrk7lyKZOcprmRmMzvPA8B5Ti38it6Y95vD1BNDJ1J5Pp85XV1AcCVBXHNAya17FjTNy07ufr/f83pmd1C+xesEcrvd6JJJrc9U7z1/uJSag858tBUAkYPmvIDMvGi2WrZ1BWjK4V8AOv/Q9/c3MwdaRPDVKZ6/npfiPM+ExRzu7rfbja+cMB9jcZkxXtZLfjt5DtOImQiXxMO0DuB1msqxad7I59lFJK73LuCBoBmzZ+sAlafNiDDvHBxR1xo/pxCRrhrKU0StlQD3Ot5OFCKVuTBXQhnH0T2bJAHimfZ8UYk7c+ybDZUmh3eV+PX15T2sq4sTlSoCAYdbzKx7iuszGa5uqh4c7p2LjPBhSkSFS5L6FlZZeC/wCLPzPCLsdts+Pm7P8yhOHx/7H//88XX8sv89AkPtcD3glWBZVPNxK4drh81hjgCu4VgpABNU+RWNvcQYIrK3fZ1mKDhHciAHh1RuaFy4lc9auAkzszvOYUNDPZ7Hr7++Nqlc9xuCHWHh3Ua3MayrD3cNqLuanmM81Q4giMsR9I1aguAxev/5D8qoAW9cSiOuIpVL9O+/koUeZ9d+xuji7BTc6kbtVrA3KUKFWUqIhMcAhTpLkBM7+ZvgyVmCFCwwuMc5NPyEwqs5aASU4gz/DjpKQTbcGDGZsIulDr/cmHbhDVFpVCcBmPx1GIogsyDKvQMe2YFFucqbw8PC3UMpPOBMnjWHcErflbnYCDV3HVd3e5eCCK1oLMVApkaBoAIoUQUJiCkKiEgKseSB/o1UsOQNQJbV2EwzB8RJApyKk622WmuTQkWY6uvUW6dYcG4/1weR8dqS6e0suA6I7ygNAPE78Lo6K+ZOwBF+lcNgqpEgGR57sVn5maJwurS6MwwJ9P7H1+wsam2KICiFqhuFERRwosh64iDwVTpZWLrZenpEs0Fw/o0Ax2+PHxFCE6C8IYzZo/LO9k265xoY+dsJ9f2wuwinRWb8DVfhb/qqC+Be3BV8DA+FR75vuGpDVpPIIi2WRCaJnsweW6QaF/rbmxgzvTOf/OWD0yCylHRk3c3fKMCLo3r9GzOn+OpF4L397Pp1TxnFdSrNnsoJSqaObr62pUaS2eyxTZ4pVV2U4waIARfuI+LE+OkAiQgzRWbj/R5AEC+2NVRtUQXv9Oo79UUg4JUIlSDGfZowmEumKyzVzvXmvqLnE3xMOBW6qCmiLfmGWmtrew4N7cIZdGVzL3LuHfxlboK6vd8/Sx2VL2Hf94+Pj4+Pj78xXnG1RNObAO7fs9ovGcDMAL7ucLyThTmCyDPakgrlDf8+2l7/nnL4iFhxDwtg5QtMTdi1XEBE4iIaEw+NMUoRZr7f70lK5TQ2/aQJ3Zh52za/HKDrZaZabk2KYw7XOIFgvtlm1ntEzOby/P47LX0Br2uy/1aFeZ5nni0RmlgwIrbbLm+9k2bGbqp63T9sZuPtrxRMTJyX9R3Nu+cQcqyrYWYxo0nyaSxCy/vopRSu2by5wNSqRX19MV9/7k3JYGYpXoRlqNWKZKt5jg4zZmi4IzR8G2ctz1o3f36H0YUb5yeTiFqtt9v2WbawYUOj+K/+9fRjjHPEoBEUEMZUaZI5mY+gcCZKtwEsPNk1CzNjFyMYRWPhWkiEhjJzldLa7mrn82k2PAaxl0qiEIltl/tHu3+U50EMD3SPM7AROWMID97IhqtrwEGSK5KHl4+Pz8TRPBMF5uI1xgkOR2QC277vTj7cslBzWCbKBQSFSylMRNvebttORKrO3VhVApWa0fj1+EXnk4gIourHOJ7P5/N8jHH2cfbn4zhncXfarChKuPfzfPJ3kyoQ4c0tQGLOrVERUp8CZFU9j+P715/n9xf6qcJRuX5+xH7bts/Pum17IzKQgRRIUogDkZ4xs3HxH2zhUqQ4WcoFWYf143kKK4sFTkQX7iIqJTf4awuHM5GUKsRMCddrcAspwRTC1p0AM5gNhYtpYWFG8Dy151HPQDbjhRFhWbQshWaWW6Y8hDk0tPs4dTx99PAzCizUpXEMpzbMFMGoFjtkgEtQCRok5bKLUWqF5lE+w8VQyDAxCYlwI25BxUMiqJSyt202gDETCskaN9ScJa3zzdxvchiUBO+0vb3ph+a2/Vsg5AsLklNGvkUUiLOuBXchHzBRFOIMvvJwpZxRZlAtmCBMIRI2HS7Xk/PJ+iAw2fTwKSyFuylfmlKC8woLDCtCGfbEFEwR1xgsd6cII5ta+4jU/IMj22RxUUQOEPxyls89aQJTplTpZUHH1CBHRGo/rzQncndjRxBffqKFz94pqLVXvYBLNh29oEOeQUHz9DX/SfHfi18hTkVW0BxN/oY+J/54pYIhCAGjgIQIE7F7noaxoPOV/a0pWnt/QBH+DaT/DtTe1SG4EsgI7wh+zqwzRNBjNhVSpKACzFxao/SqItx8mOYIn2sDCUsOnjw1DO4+1K8Y/Xi/sElHGeyNgUtW6SU6XLzXisSjK8kz4UvWhOAi50ppzJweN5BnE2aObABKSDNNi/QqSF6JwbiE7a+34/ejTu6L4euNmxGj6rbA+tI/zfWB+fPz8+fPn8n9LNQYl4p8hYUuueF14105be83DE80naEbb6tBvM2j1/2ORIF21XK/I7AEfIl+SilZsLiIt5zKvaPYBXbX6CrFZCtvdomb1xv9/r+rpef9KGVXsc+8dRfDxOi9Bya2zq98Vu/HqgRe67cWksZlZTB9cZAWviqbUiZU9621lgRYzpdXoZOqfmz7qhZIpcF1eQlpgg7KnXB6BSyBGtbPrPt9XcC5YuW8hK50JIoIuyolpumVad0MiFA3hEY/tVs389SuoQgzhEJkvkcOdLP7fQz4s59QsXGGkUH90kSOcQI/SmWSYhzNZdtqa6W1IoOkEBNtrZIUZWMMJ3RTJirEtdbKol2V9Qgdqo4QLyHsQqUUEq61unqTupVaiiicGSzo/Xg8vu7PnZjaxhrBYrXxthfXjhjhPfwMt4gz/HTr8OHe3cKhrCEgIir7vifAX4t1vjHLbJL8LV1qTXKJyCj1EQaSMlu2mbd93283CvSuxF6xQ6age2jX83CHRfTej36OMVR7t3OM8+zPfjxsnKn1SD6QPLyfJ8pZnk9pEaTmTnwLYa7CW67glevpD+1dj2d/ftM4hKGjGnuw1ZB7qbu4k6p2DWsbRzg4AHKBOyngBDPXcKZA5CyO3c2I3fz07nYQa2AQjlb9tsOouJt5uLGZR1BjKSGNREgKSaEKak6iHGAGIZLP0BhhApbCzJASBovLnesgdzd/LXnX6kypuO9Hh5lpt3Ha+dD+1PEM66X6MCMp4mpS1MMIHq1UDypBNVgihLiSBEsA7CCaY5SZbCtEEiUpQKYqsrG0wOYxGa9aWOSKZKecf9fLViMAUoEeV0JgXPqhtw10qgTedgIs8ibepAPX/koAWIScCA6MeMmMeHUGX8hHLiVogqnUnCEiNPRv3EpM1WQGb8IjDxUjzNyVIkAuDCLh7HK2q+XxOvEDoAtOTTz0poqglLG/H/pfwnryv/MBr30xF2K8aTLWUdivOrml/F2WtPXJzQdZl/H9gOthV19AJsVfhBlM3rYBepNz/YZ9LhNA/L6Rv//8FF/PHR3XGOqFxf8dTiWn9I4PmHnYW1REyl8uSPH+DF+Q4tVI7VfSHHORNCvMQr1wIkImf24bkHnWbmGnDh3mCC5GVYpYKSUo+2rgjuPob094bbo5SHX/TZYn8Wa7W0ywX0FHC2DF1f2cAfrxSrItc298sQjXwOEtUpxf4ujX5FHn1zxL++WgXFG0LzgVU4EkV6Hh+904x9lXEQQz3263+/2e6vL1vr//0fz+DF5/Pea7mC9pEgf4gj4vAibvIyIwT8rqHTpmz8/6OKwlIqEerhT+VLJHRIZBLOZ4fRDs+gQtZ4BZyQ9R/u9Ck284I95Tzd7POevirwZJVaz5b/LRUijVdYsLTDh4BZ3I++EIl9h/xdDkLnwcR14Edfv8/Fzau3TsllKS2EvEVohSNTjG2FqT625cH58Lh82jC2bpg69TTbJW16vziCXQfOGE+P0A9v6hWMtI7i+vVRcWFmbmNn9LSmECM6pcdClTCI+Iz66K6KZ0Fj3YzjBdt7c+n999fMbemJNGDWIjDimoglqIWG5bBZcO4sBpVtJ4TtxScxbUdbjr0FMtKAbVxhD1EbGJkNRapRYpIjL0ZIZU7uP48/tft8d2/7zXWmgESKVYqVAP0KDo4Z3M3E5oH/Y07x7a1WAOeJXSpJQgATuYnaCXtDciSFjd1EeQH/08/3tq5UKTCPWIqFzDtZRyu90+9g8CnecZTszlfr+VWoOl1K13/fXX1+P8Os+hZosWBod5H+O0MShQWAAXKlVKowIPtQE7voN1+G3o0U0VZsW96ABzERDChOjGPIQ1dJzP7soSR9yUjlHtoIPurbWybbITuRtxMAOc6eHoxO7oYQQ6zUBRStlvW0QcegZgPc5D++h9dPNz3xEkBoKzDg8LAlepgr1622WnqKRCEcJMXIuQekiVgfChPrOJwi0oohYOBEkOka2bE4S5GKLUrN8ypsgmU1VHfsh71/Hsx7ce324dpHoeXBnUxmEdEixWmTGCDNjAhai2snGTskWp3If6rJUWAjFymISWbtAoESS8FdmDmjmrRxXJFJ8ISvN/0NQtAcQsQULk4QiPJKVzwkdFYqpw5r642OqkXAB4zBJWEK9Pc6ZyXahFA+HOjiysvHY+zI0+V+3wvIBwR3iouQ8zM4JMWOZTeVqZIqJIG4Otf5up+TDrasYCPY2IeI54p4+Qpvw/iwivzTWmvh5wgiACsDmovTgP59dwYTYHMNwjiR17a1NO5oN+R10A7No2AMjbvj6PsMzIvkUiYi4iqbGNCH0f+rj7ahm3iLBSmcsshUzbRB6a0yQ1hWgZfEg0M6UwAza5lNqu5D+zVOY7WFhIKojUYcMqSrlQhE/O6+8mg2UdyJlaJuu8Q9ILUmJGFVxbFC7rvlyKNU6yK+VHRcLzOxlJYBFnmInIOQwzRcKHzotvFO5WIUSk4YxI2sy6Xdv2awosIpz85IW68k1bI9pkgn/HCk6FUhi0ElhEAuBatzGGO0opre4A0klH0wLZbrd7sk3L88Q8SxV8eqHOHIe5u0hN7mcNi93xfD5XwmettUhb2D25ogzZyle3GCBcs8jkURaiWkPeyLP0cSyYshIl3jnsiCg5HJlsijMjQWrvJxFdzU4lXbR2hdXSNG34YuMWGKVXbAe9t3evseDSVy0iENeMdd/3KQRETExzDR8TGKUYIC/ROmvF1Ya5/uu2bWloxXSl2KLBEtauQSQuJvL0kddHRPA2Cnw/fJpZa61UdncdnhDz+Xze+B5vQIqvANtk0a5i7Jf7BwCEnWZsEFH2XEwdgs9G8CVco/BkYQpzAednPq/AtIXMxwDSjB+/jxTjUhQAQTRH1denhglRudZaNbQPczgse+HNVAGUtm/ERtzNPz89ClvB4/+OWkeLFhRq/devX/utPY/t6+vPnbwJh+vz+Or9GaEgZfHWSqnbvu+1brrpNx6sys1v2/Zx2/d9v227b0aE5zhP7T7UusFtKzepHBzqtm+lcAVo+Cil0G0/en/2559//u/Hx50LMguhtSKCVgga8N7Hc5xCAMOYzEc/9fE9jiO6k9dab7V4lPK2rs2Tq7rH1ZNwdXVdReigZKPDAkytbKVWEHnQ0btACoQCTMJS636T0iJInbgWIupjPB6PtJmUJqAwG5rFjk6FqxDXdieiEgK1IAhCdfjz6aCuAargBohZ1LoJSWHZhK3SXTiEmJ28sxpO9UP9iGgjuAY1okrMQk6RcUQIcqMAhzNTlO4mnjMRYS7EXIWGRQtX1a4joAF7HOfzeIIGwQVSolT2+4YGRmOCCAkhY+aJGOIMuAYx8rTh8/AAJg4LN3iegzXMwoKoEIi4TqZLCoEFYepsZhZqpuqju47wQTEYBgmGuXX1Yc7OFCFeRYrDB2ETNqpRdqqblE28O0iyYJe5MEQAzvTWYISQc3hYjAiACnEER3BQcIRbwMKIhNkp3IMYRMzCxE7ubGbAnMdfO2hEOHEAf6c93okQvqxq7zzZRTz47+TZ/98XrcCKa5zKZkkrcoIVwAEJmLD4LM+c86vMXWO+8o6RDLjP4/rb1/sz59+///7S/sb0xPWKYnkY38YZf9urLm4P74QE/9ufeH8+78/h/ZQ/2aDIuc98S9xz1PsSz72TOn5JnSOMqLy/EJvWjBcxtv7um9bq9YDvDoDcWdcPJw+U4QtXy9GEVv9+JefWm99555/w0lqxzGh7RiS8SBS3cryYOboSJZs5bVlg4qtpNNX215oozC87yPvsiZmZyts9TL+/TPq3N4hIhLm/M3YLyqTDbmmeMt0gfyBLftb4KVnVN+plbr0JgCIih5XL8Soij8ex3pp0/MlcYCaDm0K39aaspsLlf3yfhCwDFq6M+zULW0zJ9ZInWQtArkLYRectumvdSu/v+Pv9vxLR3j8p75lhecX495Q1vsyecSXj25Wm8drvVFMKltPMuPSRC3rm8+Q3S6C/RULgjf5Zq1N+Z0ZOhL4rMlU1jYbZq11Ke3+98aZgW88/rqZdvyIwEgEnZ0blJZKbhoZLgfd+x8ZK8Pltyc2RfWDmyIAp6JXimXUguLguvp5mZgJQtkFE/F3mRS/tI4fTTA7OeMfrmQfGOXSMgfAIc72ePFGRrDqo1SqTtLYrvMcg7YBrxBjn83w+nl+/OBpTmD36r+N89PGwGERRq+x72/atSlWm2Bp6h8pe27Ztt22/3W5hrm77+Xz2Uz2z+8MyK5NepDkARomwuhVxjDG+n49f33/Ve9u4uWuwSyFAAxoh4UpQAmDdtes4xuiP8/tbuyNaK9hvW/NioYFZ2usIdTtHt6HP4/l9PI/Rhw7TSF8JA7XcYNCu5qiiXGTb+jDf222r+56KdxREdZPrMyMilaXmQeTX99fz+WxVrrtCw11ItlZFZN83eJB5VIVl8y1c+/EgcyJuQdWc7t323WrNmAUrHHtDbCyDidBcd7LNISNwnIFmVnyrJFzLRoJAYcrGaKpcnLjWWjQIHWqQVuROzM6V3WuhWqyzguARz+N4HsdxaBVUGbu0j9L4Fg3YQiiKSCM0RGMHpvNNnJRZSiHwNcEJBFzDPUwzGSUQCElIJsK1ttqKcAIv7SdCK4sTC4ICQgHJnYFYJHsgYmg4KRGBAXJxQol6CjYWLQ3tLrWRs4EZ3Jgj+wWEWMASBZoBJjx66PP0GCQbgICAygq9DIgHE8RdksKrEGYBE/u1B78kVR4EBLPzOiddq4CsDZjepl2+8o4vjbD7csyROXmQBTl4teskBIrwmD/5tynnDK2h8GxM9PfpHyfqcnd1t8KFs6+QCK6OrLbPJeYKWcuOZwrMfCrMYAQwZoMZcTBAirenEVnynVoQvYpBrwErUeRPYDnmXjLzuUvNKJT4Gzr5G/Z6P2S/YJxHhCXgciJmpHCrEAPI4lnwzBdb8w9HRBa0AzETGV8qq7lky5u5mIUog3EZIPdIh9Q7FsnkCEqf42uB54VO39+7C7a8Xlr+n7/dS3nDwCIVERwuXCNCsrucLLtG3aAxiAia5YyUkXoghvD/R9efrkeSI0uCqKgqAHMnGZFZy+me7vd/s3vvTPepJTMW0s0AXe4PhcGNcXpY9dUXFeF0N7cFKhAVFXEwOZhzznTW1Cx46Wbnl1jl7AqeVfmq2smLtXDDsy21nojnLctsFkQQObmIc44doNV7kjNB6InbJvaatN/j8Xg8HgC2DbfbbSEhItr3vmRbt9tt2zamEhfBXJy+CXTOJy6K6yrbWq6hftq+rxnGxfNd3zBR/vm2s/V6hWVx2ZstgjPgAUsH1oSLyx0+GazFt8lpGLuwy3LYotOlIi/HVNmfh7q0HGvIkU66Lj3Jciow6bE1grYeKJx8cJw2GTRtup4zASlISoNoPlOrxxg6UluWPdknNRgX/7A1f1BKSffpvPppe+HuaTDbWoOwP8c7dIyxPGDy5Kx7ZgU1AiAuxEqXJnVqBCcXEG7h1U5/EMlRcsqate7hy+OZ/QoQKJ3qckwzgtyQ9oGlMHF4eK31Vm/BOuwY6m4aYTbGTJkHpdNEKRl7UNttM4nD9z4eHhIxxuiPx4/HTRrZAwHX9/7+ON77eKj1YN/q7X7ftq0xFyFY5V44qmxbfbnd315e397eAsaVdjuGDws1OzTCYRo2V1di4jLTeEmKFOamR//Y9z9/fG+vG8qr4dQc5yinHW4HxV2Yh6uOfRzH43h/fzx+9N0QbSs5hFrOAV2YWcDSNGWM8fHx/vF4JOma6ZlpWUlF3EIt9tGPGBBuow+L395EsEndbttrkYbgYzeHzmQ6T1b52XseRw9YRAhRK+V2a7fbSyu1tQZXqDKMALPRu/ahjrkv3PcdVNygqltrpB5jZ7etcnlpr3SLrpvHq+BrizuNMhTBpiWGgAtuWymFrNLWpGwihUsJriGtD2cZPNy4MG+OMEN4dTPCjcWEY7cxfHO44Z1DyGVE7V6GsB/JxhUqtfINUQCBlqDU80tQoMys5eEjdKRjncYc8QcomISDhEtqPm/bVmotwtBOQGjc7xy7j+ZaJIpzYWxCI2N93byQD0QhhFMY6/ggYrYtXBHmoCB2CaoWVEiMeRMQCwkRx+wipxlewIbvFrWK83RlNyKGh3M6i3JEtRgwI3ZmEN9yBLAUWdjBjUAezgEDyVpkr3vEa0m+WjAszmZlq52y5V9/iCiTK1brMjVeAJhDJAA4kTsY4a4BIyfTMbF/hLPPSMpETJwunQE742DtUyDuLIE0ezHPHXk8GSD+5Gn+rC6g51dLXLT2xGtbeoUadDEQuvIBq+r8QrF8Oi0XWs5DY843pcJGWE7ceH3lJHgyx01iVvdU2Z88FtxsTUiciBlpqiGIdMf55NP2idLD85+ehz3PoePi4/UL8Lq+1SpadDkngZkmxC7CaUE5z+eiQGbcUCSBJEuZEpOGGQCIhTmjoZDF+CmLuVzfy1E9nbROoKwLTGTxNtgK81kH7+6qtm6AVacBuD/tv9N9ajI3Z3kmoikOOT8ap0B72T3k8a/anwU7473TBOGkm+KXav28XU9Ms6ZuV7E3ew5p4sK7XO/2J97iVGXbFBv8Hwjs5xDD2cB97h9W63DRTok2ViIyEeX5+QXpro3c1Ur0vHBPmXxiXJumuE+nDFzuvTVYipOtzLviei3OD8223GTRVvhjWsYsW7In3Fy5xmnKr6oqzEyQhIPufs6PP2+S7CatdSAPbxG0F3dTvmCs/MTpbgo8UzQui5K5sJ2G+22u5+cjSZMXSvlorlC4yEyZJMLcoeZuSVhmfNwGYSm00WZ2C9g4dksFTcAst3keU5Q9HCEijZqMykeh6HAaMdTHcFUf5CNUe9+HPobtGp3Sfbfl4h3mhrDCFEK1lG3bXl5e3t7eWCC1fPRjt6PrMQ5LKtKTFzevFMrOQREQYSmlFI6IYfqxP94fH7wJ2LseDnMgYJ6G226FRCNcrfc9w6P24UoYPgqYiMqhI7fAwcSMx+Px/vjovX98PD4e+9hzSDgCQVKIKHFpN1ULIWIwcZHamIVlK/Um9V55S/g3dAxXIlK3NADqXY9j9K6uBjhlXFpr9/bl7eXrvW1VCsIoVNiJ3Ud/9OPo2p1RmsgGQPvY4z1cdVQJF9MW415Z3m7cjAaqlZcYL2KvPMgVHXBx42DRuEcpiK0UZ+daWm0V5cb1Ppy5eunagxX8GDr6MC19kFut5U0NgVEqt9e/vEZwgCyK0RallXuhV7I7RhO6F9yYG5ScYO4jPPM+IEESGk4KMzdXDwxTMzMYc2GUYAqO3A/VsrVWWi0cFR6mPYpYKVKoFOZgzxg7Jh3G5IXcJTYKBYHcsrpFcTtIQ0dwJ+puPEgKyEDhBCZOzRSIzLt7AKWQBxuLASRNhEmEUpUPeHQ3DzdAGkAeShSlMFBYBLEW0PRnB2a8fMywwZk4/VysiX5lp3LhyIg3c7Pw8CfPdP1JJ9CYIzbpvKy5nWYGhDlYiI05L4e7uYPSaFPNdEymJPGWZDA4BRM4iDkADgsOEMItxzRp8TST1UtwdhkUj+QJdG6H3NNfKl/AhOX5OUNU5hmQOH2fMvmRMoQEJS4NlCv++wVsXZn/1TQ5SUey0enMJICfLmdTtZaMnQsIBGeJz5fDKTi3B4uZShcffhqtzrTyT4dERHmfLYIqz9FT/h85oHf5LHzGjjibuZ/+8oLA6PNdlCUnCKZKQS4GgMOTMOBzSs505ogQs0gNJgO5+ZiVlUSq1EiruvjsibpIhXhGBv3qnbYCN0/wwRq6OmXr668mS/gcEiMikelEBcAdlzo9IVqtVQotMJRUVh5A2knksSVKyDZc4oNcWkwncbU40bzT8Dn0Oi7VFJfY7/zLq+PXesEyquBnCBgWjT0p1Amvn9d3IY/lP3LV3a+vGf/FjWyRBfkdF8pZXNdCG8+t0cXzApcd0eII5+Jz+rX+soH55elL4BXxqR+9gFciTDuzL/0y9bJAUjb1wp/h3xkbcBxIfSrOPcPVfWPOcm4tMdkixbOZnq9hCCGEQbnqGkbGOM7lbqohzSyCV1DZPLzTKkJEPBfYc0WYZyM44KkcQNorrQGOyuHTOmfuRsMiBGUemIhsL69UqBfuvbuFeBh8hKnrPnofI/tserqLgZwoFGah5+i3geHshj78MB+nNwMyGs18qHVVhUf6YDNFFbm1xpUd9uX1/rG/fDweDz8eYYboZkIm2qWJoDAI5IWkFDAou4Ifj8f3nz+pUGmpjgXLKZLxgAdJzgim0ck4hlvAATXsfYCpjDHcTXWqa5Oszp3QGKObMnO9tLF1RDoy1Mqt3W632/3t9fe3v9y3t3u5p3+VGxNJeEdEYxk+dEQ/tB/au45uZqbDKFBZuLYmry/t69vt623bWmmFSESJFX6McZTRbuojJKQCmwZMkVMnNo7CXGGVrRa6t9aa8rBmqBq3sGYK2yMCJKDiIXYYvAl7VCGrEi7MIkXKJigQkkY95LDQeJCEOFEEsd2aBG93l0p2e73d76+hhmF0eNW4odx5q9QKNrFKqOwlgsTZYlBOvglEhCTCUSBm6p4poGY+IiftM8aKgHQsICDlYk/iIzuTynCiIA5GEFlhuJuRVwIYwgEiK+GFvLhxeJibQkeMbnJs8uJUgSG4eUBDParHQCDAFKrkUqS9CHEpReb8E837bEwD2nAiOIW5FwZuUlCEAc65lVkTw89hRmZc2xD/B0Yk1zucbaNPLNHlmY/4DL7yL4UE2dF8yhG4eARlC1ddPT6x+mMMMzU3g80zLSxOdH17hglzCCJ8oZbPP+fK/UwxmqKlCy2/FuUEFnGx7fl1F34aDeRsM9HT8HyVh0V4PMHKuaDjYiS96MOJdcgJJ6s050mXbQ9d6Ssinkra9L84fURjwo783GwxsIhk6AAikHB+ihxpKkUCib3oGV++GE1DxkESEz/TLa9AKhkT/hxsvL5sloT1fQMcTCICpmlOe0JcnIIzobzBItKsoRQWCSY3ihhnyRf34eAIynjPq5rtF7orkUZ8ZnCXTcDSKmloqvKv8qPVsfWnwuc5fxcxM9yyJJfC07O4lIDlQp2lOm8Yd8+kgcVauXuqvrLgZYCgsi/B1rxRz7TNOA3SVjvv7CDzwg3r4POf1kjgknuf8HH2KpnZ56RHhvzYOo3rvr3Kp9bDsnqXeWB58Dn0l/5h+XOenLI6s3waYq1HhojiMoO5GPQEK+sbLXosPneEr7CMnm6Cz5HcPAPL9uIa8mGnMy1OXi1xcMY6lSJ0iQuLU1/fu/fe3SBnFtN1McnGouhzjHTeOSdnRhm14X4Vh8119XJawuXJTVJZtZ4JvywLl+nj+QScWnsnYoSv/RgRkUBmADRiOllaXgEgWNBaK4VbKfv+kdbcQdB+xOoAFKFOZtatq6tHqNsYQwtmfxAu8IgRYQGPcBYOzz61gxWOiCC3HAgI03P6eDpITyeRuiY9vesgO8hDlMXT1BABIyKznLAbTqgf71zo9e0WPHNFaRx1dh0dHhSAh6uNMVQRBK4AMNTpGCXlhjj9ZzPWIGH40gQI14XEIUSQ7aXVur29fv3y5cvvv//+l69//fr2F6jgIOsc6pZEmyIQH0f/8f7j27c/v337/v7zod0i4JprOhGVUrZab1XulbdNbq1S20i4m34chctWPITbi3MxKx9H/3g/juPo+8cgKoIGrxUuVIQ2LlVKs7KpbMZyeLil5EeIFTALMEHF7QjfYJYQ1T2IpZaNSqlUa7DLS8it9V7rQ8OpYYvfy/23Dq1bu79+gRqGFaXN0AxloGiIASGuKQFmIuIQhIcFKKiGiHARp2AfhaR3B09djQiRSOaCLNp5gCg8mMzCh7p28xx1dhESEQ4hcDCrPXMeizCEvSJqaIVW1QLl4aEWGjEKe6AAxTE8DrGNUT2EfQOEwBGQcru3xlKZ5XZrIlJY3LE3pQI5VAcExacFEZEA00U0yHObCOCpo8qnKWsRUcYl5Yp1sv0Ei9Op/KzNdDZQphv6abWw1ujLNNAcFErBT26sGQSQnaHUVy7dbJwrTlpsE0sGLIGCSOYM9TQifxqY49NidKpSzjVxIpoURcgFQHAAMQ0mHEZEK87PzyCUDKONi045y+GCR2u5XDan6++vVf/Ke61CYunriExWOsEqqJ4hm+t8ptAb/vSPeH5fns7yOFWos7rwdW4gZzOz2nEOr+WtkLvmab/4vM6xaEzOMN3rt5iTq7yabuHPCJEsn7lwzyPnAmFmJuEmed/Ss5wwiCjUPJyIpUitlUsBs2HmB531lc+mm5l6Dm9aBCNFlbyaPidQmAl3FxLlk5taAi8iYi7ZUEtGkjmIEu09FUJAB1DrRpd+WaqdWit5Cnsf+76bjdZKrY2IEoe5YznO88U0FWd/qtZK8CUzn5t1mcaqq5W2iJYFwta4K38eI5AzOCjZl3haY6RcjAGoxQVW6hXHXDYVvI7n+qwtK4c1apBgK0cK1ifGKdJaQOTsV56xP9lIvoQg4TQjvQKv9UCt22adihUudD1Cvvyca0sGokYhXl8zRyjyLPE5VPgUq/2X3WYato1uq4MstVxPV0p3kuFb65tdBm9VneL5TSPCDWbh10vPFGfvnQsRR44fswgXEa4iUqRGxNM6NR/m3OKexjSTBqe4nsZSOLMg+QJVc6FkllKK0MbMVUoCLyc4vFm73+9Wosf4vv9Yrfmz2wzVrtrNq7uZD40RpJDEnSDqTMdWWi5xzCwCJV1otfceHKr9uqWPCLWIUKMeHiWa0Lg5lcoA9jiO8OztRMRxjMfjqLe23c5EBxs8TJjD3MhgClMicQs3RIOUtAhR8ygRYeGZQk6BYW4abmjthii1eK218owpcPefH7uUupXt9fXL3//6t7/97e//8de//fUv/+3vf/vvfbePH/3nz/1474/HARtm9uf79x/v3799++PPP//89v2Pnz9/mqkw1IcQQzIcfDU7Ek+UWitxENcgE1Ti8vL1rx48egjtfuh4mB4D4Roj2Me9WGkohSQKSSG+lVuxoNARGmTTaJLd4RSEKOxOpuHqOsBKpoBziZr5m9P7itrQTe/dLRhGo768Hd4tvJYbMYnEFnyLUoZjH7QPgruRG+DBiGy7hZPBSZghLDXIS5TSqlGwO8KpCHOlWkttRRpLsdDhTEYEA6pLqO4jusFTmU2lCgWDKYRRPBr6YX7wGAUEJinFa4yGKI5CzsYCiIEDUI8RaZTgFAEDIjRiIxRyDkS4StFSt1qKB221pdAygopo4dqq6UAYfKg7kaRBh3ocEcRSiYSCwwnJdDMhjUsDAcrB5Dj7SnFh4K8MAU7xFhNPVRBlb9OCpoPL57kxQdicUeR0rGeGjxgRodNyaYRryrwAJXZKJwwQUTE4YCDKAk0cFAwEQUCx3PCxJq2CiShdv+diFFPlwOAUVp31I9XWSbyDqDAhzr5JfoFsCxIRuDBLmn3kwaTWO0HPSXs8J8jwuQ30y4IS7qY6htXyqz4u0gr2/G8m00CYwQFfaSA4fZhkglKa3VZmxlTTI/1Zz1mBy/eaF5nSuR05FQXi1EXENJVlIi4U5hBcLcR4soBJBGI2RdxPYsDdQwRMAiGZJ4ekMnPGW5XyHOnI0fpTg1ykVa6VuajDPIhFGFxBJG5QdfUzaTBH4gmcWJNEeIFxBmwOdlx4zcwJvZArWJwW4Mx5rWfvdYI8fyJ1M//yZfU0Z31vrW1b7f1I2HEcB1GI3Fu7EVEqOsxGbuxLiYwkWTfJBSE875P51kXODYyv03XdZiTJ9AswusCjqLW2VtzhrhFPRkFkVn1NC2u4e+R7/MJcllKfEBYGcoIThZmaabjzSkTNIpqpi0u1gHl1hGdje+43MgNLJJhXQuLJpXmcTl2rE/3LE7ROkXzORf0FeC1wYzMtIEFbBayWzWK4zcNbArLFYXNa4Bp++dzcfhPRGCMDvPP9ryGV6xjmAeRgI5GIjGHXNWHex6FrNnYtEZMHSoeL6TT0pHW5Flqma0/fweTp6ARe0zMFAbccY6Rs+eXiQATzg0jobJUwM7jUMqPLxlQx2a2a3l9RZbej/ax1lEZyJM2eG2qDZzBGmAWCmLix0NEfqmF+MDUBtdIYxAJ20aR1zVW7qsogG75gbm7p3YHo5ORRNdw5XCicnBAWHloLRCqxqHu36aYbpW7bFuPG6EzFAffp/ydSmAvDCnGOanEEI0qOcZurDqUAsWy3L+5ea0V0Va1UKrdSo2KYRnl9BXC/v/z9L3/9H//x3//Hf//v//M//sdf/vK3++vXR/fvrx/y7eef7f0jxvG9/9g//vXtz3/8+c9//fsf+/vHGIe6qnVS034IQ2jrA0ObetsHqQnf38SaYCtCCK5121pt93upd4Q4ByviONBH77b3h+qu5O/Km2232EqLVtyJD6eBivYKKRJeKGNhzGM4FN5dh/Wu+0EoDOFgaVREuDS5Ebd2f6n3F9nVNOBCRjhc1cfH8fHz44eqCkkt3Ki2KKWAWcGjKI/HMB+5Uqq7BbPcCjsJMxUGB0VUATFx5bbFx/tjh5Ow3KQ0InZ3FO021GgIabQaBAwUM+xKQymCihOL3IC7ZeyS7SEPir4RceWo4tXrS3tgOI5AdzeOgqiMVlBFNnIBCodYDzeTAvKohUVqepCSG0dIqRx8K6/btoV7D20UWqCa7en3x2N4GFPPih1g0xHEgo2kTUNcD2I261mnpuelTw/F5bFpmc8djsC0xYrMq2ECR5iHIi3EkjB1ipTMshCRDgcx16TQXXWYWbh20zTOdQoPVe3pAEesFFoM4SDl0CLIfR+BHBFm+VwERBhR7yUf08jQsZhhf4XCPU0QAhSnYoqEJF2ymCKIWFCDIt2lp6FzFJYgPgukxDTNKsISlK4nIdL45MmYWYS5FmIuUsyMKFN+Q1XVeoQLUbhGkKc1sAachEq4OeeiGYWl1kos5iCekwVCApKMNXMiYc7EaKRtLkUOnBchjwBKgAQMTwjCljokcA66B1PknR5E5+Yqgswd6u4W5FP8GDHcKKIQc2mu6tPXHMQAkSHMtHL1cHUb6bsWBgYLg8B1mhJn46MgGCHswl5ESObYqjCR8CAjFnBxESM2CIlIYQSK8AxWz3ewiIgxeoTP4CueHBxA4ZFzZ2ax7zOg5mQ4kBSWA56DqO4BNxvMmGEPcHc1G73vcXFPSAKJmd2tFLndtqV5Z87Hxvd93x+dqWz3VlsuHXS7S4DVckSapbT8+4joYwAotXpQHxYRjlAfSbw6gi500Rgj23ZZ8tMdhohVbYVqm42TYLNSihQuhaUQGWqT9CVvt9sJR4yLVNzU8khSvma1phgGyYElJ8QgRtTcqcLdDtN+7HuYb/dbYXEzG2qqYeamrkrChYVF4KFjNClgCkgYXEMKCRUmAcH0YRpmcXtrpZT39/epFT/9KZk5qaZk4HJTMfcGJ0lkZqVUXw1QEWKepoE+nxjzcDUHiZM5E4VIbbf7dn+prc3OI5PUwoUd7nD1kaBqmN5e7iIy1DMvN4gdc3RgBQRFhB7d+ih0HfIgFkqbUC/BzGHW952I0szQzEWk9302ox3pTcrMrgGKub3gTEumoNPjm4lYOJY6IvfsE3RSwCxtMs8XeOo/nxReK00nXQcmIKqkcF1KDWnqzVwt1O3FQ0S+vX//8voFHiUcvUs9+mvR8WCX8eFaQkQ+en8odSuPru8dDAaJJ3uNSN2xI7baOPzj/cetbVVK3+5B6PtwNXdnwm0j72Ea7NG4VXlp8nrjNmF/EIgRoPRF8zDHMAvw7fayiYij+4eZdcXWxFGDGpwqyiaqILLYbqUIw6zU0ohNqDqCkPQs4DGGEVAgMHEjgApeWuMXIhF5+/LyH3/9+3/763/8/ctff79/fasvt3Yj1oeNeKBj/9l//Nh//Nh/fH/8+Njf9+PYx+5Dxxg69oCRjwAOi6bSx/s+ttYEVH8+VONm9XZH24iktu122+73cAkNMruL8Je3lyIfJO8//f3HsKE6+sfQNg5+KeVO0riTMGdqW6lQ4ahQihFcHcHEZjaOYfFxaMjA2+8NbhzeGFsr7e32wvVV7V0NUsrtjiKH68fj8eePP/NxFVAJqSwNWwOXGrzZ+NkRhaRM5RPMEcScaYlZz4ilSZPSarPOhrqJHIdaoFhIYZZCe/8oTBBxYo0PG6H98PHwGBauoAACQlQoqkOZOcpN/Caiwl6KYGMvGCU4eq4+TgyT8BpeKVpFLbIxKriOoRbMJrftVuQGklNmaQFjN5FCAAUzqBVwBNQDwdBWOBoPC4S6PhgWmVsY4iSCEiQGt8jBzTXUhkwtOpmAqVG/9j4QRFRABHAg5QKB4IAGUxo55FY3+1PhFOIRQeld70lKefatnMmHz+FxPWwMj44SFE5wBJcQEHm4kDtlZzPH3YKI8xlG0llO00viuTsVwPP7nBFDnMLa0zQrQM6U0S7Z4wOYMm7rtFGcAQCY5oQghyduCSZg+ssLRGbs1xIeuXues8l+2YVxSQbRQR6UkDLFHwSb1wHhxsyVBcJ+jhZGpDXGp509EfEyOkfAoEREI1jCIzvB19bMk10h4hQ+wObOeLrJXv1A2An0OUY9LlNw/DkJZ1EyU4FEcDdxZxAKARwGp1AKpHI5FYzBJDyHCIiMcraLwYIgBocDJEFBZISI8Ow8LjHWIjwIEk5OKVTzNbF41UU9+UikS9yidWemXuqB3G1qYyTvihyzcBaUyiJsOm+nXxTua/wewBhGJLVup8B8hm2nbfVimK70FZ2MxVUymEzVCbBs6uE+y89TYjUBCoegJQMYSH3YvCj5cMZZrUsppTTTnruOvJESvfHpRF+LFBYKV4S783T0YKbSSiUiV+u99/1wd3gOexCAMDdYJGKfTn6z+5t/PnpPmjAi3LdLs56IKBuXq3P6X2WUq803icyLPm9SSqe/wFrEzMydxni01m63mgEAcmZBroCB1Hv10dOIeLFNrbVkRjGtX2eY8ooeylf++PEj26Czt0tMROmh8rxXz+FHIup9Tzy9GrKLYJtPoYln5w5I8J0nmZmDCTmfCspg+6nYi5Tzc26VJrEPu/ZqAReKSPcYh5OTlNlfllLqrVUdddQxVFzCfnt9CxvVcCMq8K3g0KP3xlH08P3RuXK3GEEj6LCwYMOZiv1cmmno4SNUXZw/6s8qYt2C6ePj4+iPMCOyVokZoVXifovbS72/1JdWCrFbdEM41OyBbqEBjlKKWkw7uSLeh+8a3s2hI43ECcEUKOnSgyiIRuKCcmt3C4+COGfvc27Gx4OlWHYizYV5a/fb7baVetvqb799/dvf/vbf/vKX3778dt9eCou5EoU0SAn146O/f398+/bx58fj577vOqaCwUM91F0LnJgAN5j6UB/dOnF0je5jSI+4y3ZrW22t3tvWu3bXcNuEt/Zyb3VT8Dh4P9QwjvChh+rhW0erEOFgYYCZlESqBLgwak3ZXbAHHcfwAXTnHcFbu9MdleptA2qt2+31BuJ+cG3t5ZXb1tW+tZ/Dx358pJEpnGa8GEsRlgLyihqm6sPG0X0Mdidhi0jbbgQXKlLk1l6J2Srfj+PW3n8+9t57ejemFCGklAIi6+Mw7W6dzSyGIoLFw5klaTSSDUSFGuSF4UVCqqCSFwePYh+nNlXdpFphr7pHuUmrdZOb0NY983C2l9evXCpCVN2G5uMEj358kHqoVSnMXIRcwk0JKIKoDGh6wnmAeDMfiAgyIs1eCtzccjM0LdziNJXBaWKZ8fanmitdnihnDQNkT70wEQTkU32VJZk5ebWctYkzRzOp9aQWkl0wG6rDrJsNYQ53cicPSnREMXfAS68921wECiK2iBnTON2YCUTnCFDOyE1d1LPP5znr8quaHmARFpler+dUJtLadNZFYWa26eyfbaf5/pGeEOmb71ZnG0+IYFAg4A6P1N3FLNI8k3eBPNqUl53TW7R8HNYPLn2HdfyTok/Mx05EYQEAp1/XGvrjs+UAzICmWbdmx20aQVzOSYrqnuBmAlxHBFym9xozB5U0ScpyvkBMgIQ4zsATdwslEvZksQJBUUuZMH7ZCdA0EjmLGZjJDZnCnpE1cQ4Jrm64iHiciTShHqo2lh/Bgi8gJw7GJ+i2quaq9NO5vrVSyhknQGucLZ7Zxr/izjgRQArt8x22bcZmZ+ZM1un16+fIJDPPa7Rk4GeNXC7qrmrpMbYG6/Jt0wELQKacLSC1muDuLsjIPmJuANeqSULn07n84hEpc5w2WiLC4QTvY57t2RiuFUD+yi8wd4GMX/Dx9WbuJ/AiOhM8J76pCS/2fc+Of77niu65Qq51Dk+l9nyIUgV1aWI+7feSx1rYSC4hmPl1VFWH6bAr5ennoIw/pWl6v9/zgT2OY7WNe+8535CEZZwS4XUY2d32cyw0LuM+axKCL4mf7q4aS3s6Zd/pfclJtiVQe4rSCAByi3I6cXicufP5TSnMU0N5Jq09B1OWhK61NkYdphrlt5evZF6DbrW2So9eP8bjOD6O/nDEo3c4K40j/DA9XJWCZ/ws5vDZ/GIYanqMh6GUn8w8NqNCfX8P24vonaQxOSi0st02v73W+3273W43Yjcb6sOiDxvuZupKo5RjHBoWTKUWKbIzfViQedjZj5HphJMM+dy0lKByqy/u7uxE4iCAQ8MBLRHkGvBQIm6tvb28vt7ur9vt1urXr2+/v3592d6aNHc/Rh9jN6Fuo+vx6I+fj+8/P76/v//c++MMJYAUMs/TAWYqhWtlKSB28z704dFVvXhRPoS8UdxrQRgih/UoRJik1qoiuB3e2vb2dUjtLKY7h9phPf1uC0l4MIQYHlWoJGDPgk0UQWbUh9kYKB8j5PZqw9iptvvXu1oJoMittqi1cAWEEIXLVu5bex3dDGMcXQ3sKgyWylLrSxFnOHzovu/Yd+3mCLNu7jFQiKlSK+3l/lrvN2rti8frj58t0AAAgABJREFU2+P79+8/f/48jh3e3Xut23bjrRa1Y3/sx+NnIb+1ol2VLJhANc0PhOtcvAsKQghVCEJUSYsZ9WZ1k6KjAN0lCBVRjx2FABKW1vhWKkhaqbft9YuUjUh0+Dj6nAly2z++Kx2jHS+3l9vtVkSkSaHS+65QisjgACoszMTU3cyJ0NOyOHe3+YDF/+nnLMAXuguISOM+5NyNR7rBxSkvKJEGu+TMZfJaCRTdI20KTVW72hFuqn2Mrqrumg71gI9Dw1XUY1ixQEzp2IypJlBu8Ka4n1OLlMgMxGtblfbvmWccU3GSu8JAck25k4Vfqi3x1EaQ+zNw/VwrzSxWbNrkBXOVn44SU3rzBGF2MfaUecYiwmmCKuZEAKsr8dQ3XAf0ns5MEOAZPXn9mYzUHIycsG5VoPWaNdJ/thpSEe/mCoucNo8MbL+gulyp13eZ/4uIM6olVb4nM/eEaPMAwFEWxs0gp9z5pskruXz2BXCPGMTl7CfxnCIgEZmDgVIozQWWjdOSrl8PW0Q+T8w9XftP+iSuROASDJ1Ylpby2uxpwpTfTnXOE1xxQEQkf0OniGcVsGUnsaIGF2W1Ypivh4HLTxbaRalekfSVRHkWdfNF8iXmY+ZwjDFCIJi/uOT2prLgd4qdCbE8KWbFYrbzHvCLNdcyM5vA7sxoktl2n7/yX9Ht9aKvS3mez3K5RkSX4G26OOyv9+GLP9+TreV05vl1TjPOec/8ssveZaHGdYmX0H79eu996dGZp3HLesH1eV/f+mrlxSnontjI1m2Z6Hahz4gZp7KmxeOM+pmnJc/J/PTKzEmqnSI6XdqvUkqtNk3//eS/ab6Vg6RyrYVYEOynwiSm/JcA4nwISm4zxNoL3VwYxFZrkVFzSNZ8BGDuh0ePkS3DuU4CQQ5yRhDO4RuK4W5Dx7H3fptmv+yl0p1rQQSRORtxgASohe9te7ndWcJsHHqoQeQ+7FAP19BuxzGOY9yqHuaqnrvx5VDI0/g+OQQnKkJcWUBcGDJ3j8RMJYKMYRH3xq46IoK81vbl9e319ct9q6+1bbW83F5auQPsHmOMYTqgH6F/fHz873/853/+53/++9///v7jz58fP099QN6pue6DPEAeHEGw6I/+Th8x9JGBeiLSYyviL0zaWtgtdFRpbUu8XdOGrg7fzPT+6B/1R6GPd7OhY4zH4Sy1kQiiSjjM2ZRCnYTJQISad2t46NARCsF+fB9KhE3a623v997lZiDeWjOulatLKSi3jd9eMxltPBweY3KxQcy1ClFl4VK4hhla8cLx2E3HoaZu4VSFBVTq/e3LX15//yrbBpJj2Pef73/88a/v3/54//Hv/VAWKbWVjdCHux7HY0AZW+/7cw937s6Fa61VmBtJESoE4lB2Kta4uVevFaMW9CEuhQVShCq/Cjb2RiiCUkvbbl9ut9fS7rW8mpke+9Efve82dHRVs3CthFsF0wYGSuhQCg1TIrRaaqvE1SG9i2d/0Uw4PdIZdGYWTlv5afadHT1cNBTPKpLuD5j7p7koeFqr+/x1ojTzwkyS9oiVbTjcDtMROnTso+9Dj+Qk1spL4TaMTc1DaHrTUyEiKkxEIWlExnORWFAAJz2TR50PXXjwxA0gYiEKJIvgjjg92Y1ZctI78eUpWj23zsSXwn2ClnNeiThKKZyTe5LlE+6eLcRErXxOfc6dH8VMnbxAgXUARFTr0/dIRxY5lnKOws0YdWFIJgERKAAjTy49Z2mXidhnVg8Rkc5YPs+8emhmXM7Jg8Cs2izZfFTV8/ZYhheICHAJ9wA8yMLVZ19pdJrRzxnEgRwQ4KtZVFpekLBLUlnzjgvyIAl3yj/Ec1p21VcRYRpxupBcLaBWJV6wI+HOAhlXGfV6JV/GDFfIYKZHnwyHmVnqqad7jsYq2OmhkKvrMF3DcZnPeHV7et6uF8BxBQSLnVq4n54ZiHya1z7prkVr5ZGvRym9WGut9/s9P87MLECJusAiTESFxVj6RAzs7q7makSU+2QKkIeFZTQmpu/59NmfPVod7pY8Sh5VAk1Vilj2v7+GWa1vR5eBx/ymyz7jGhOU9+FCMzhnQvP1V1329cquh5YwEffk1UjCkaI/t0geMRzCtggkmoxAZITRif9i3YQ5prAervWs5WHH6cWztq8tJ/s45d7PxWSBv7yFVJUydIuDz53Zeps5rBDhTqbuPkRyjFgiKFXkqrklsGpmVlpbK3lILLtiZ1ClVgRcOJyI2G32O/I2gAen08G2lcK9063dw5Q4SKJWoWOytmOwhpsffehhQ0kx1RGA93CGi8E5stlgCItwi6HWTXczgZQqQaVWhAYsuhmpY5iid8Rgia2V2tiMS6eugWEOo9E52B3jGPujb6XWQrkTK6VIDhKFU1iygLnc8ELniCLTR62U0mrZiMQ93DC2nBlxAPft5cuXL/f7a2W6MdcipYma7XtX7YXJECHxx8fP/+8//vH/+X/+n//9j3/++cf3x+Ph582a0+mRPKQTcRAcCDM/+nA7hj5+igBcy9ba7Qu/jlsNGFNUpibchKWUbWtNGhWB4ZXKb1vrH+/vPxpLuO0f/X3oGIcd4oUbAxbOMCPTgJZ8EApToWxLhbpbhIDE3Ee30a0/en8cfR/1ZkQS8JDwEhK1ELUmd/V+67f6s3cFeJhaqJHnc9fmwFOEEKEKbSDz3XT3EZYWnA5CKe31/tvX37fXryjVg75+fHx5++3fb//5z3/I92/Rj58AmUU6S3ZT748xDphTwBEUzBQOcnJh1FprKfeybSKMcNhgI3HFMKp3L1Qb+6OSpdbifn+5t62xkEvenBCRKFt5rdvbS3sF0Ld9f8heQjubdj2Gq/UDh3iUg5mD0AqGOpMTcWVqVViqB2vb4OjGHgxH5LLK6ezsK+jvLIoyh18i75ZClCuFUwrJPrMgk+PxVFnpxVXTJ8cRHj7cLbyba9gx9OjjcfT343jY2N2GjcnnwZ0t3MDEiBSBQ4Qzi4lOOXly4zQZIAIyzptSX58oEXCi1DDM1T7Njmn2KD1fc5bAMTzbhLy4wGlCSFiRdpeds2sSkBwRIRQiIpx1PYFbdiiITsed+Ws5Ue/k8NSgZcV1f+7MkmXJFpJdnbQ+7+nXRZs9FEREBpDzVOnxc4Bu/cqiKDzniFwnuqW8gpazjs+6hU/hlWuWME7Ty2xQzap5ObwEEDnAT3G21chztKOAczogb0YCByeMzMCDcLcgpkx8ImFy/mzYYV4SCZ0EVSwiZ1XchCYJBW63WxJL2eHKVlG+PrH4AsEnqfls8MXF1yAdE3ICNovrz58/8zS4T7+AbdsWW7agHk611tWO4Xp1+LPZxIImp7L+aUD6lOud3qf5HSfbQU/3rzywHC/g5/StZGwUn96nV97OL2GIgaSC3GYnkQC83JomIxK4OkRs25YHlsALQI5kZAN0ncZFm9kzzdoXglw4ZvFSi0zSiw3N4qIW8Frwa2Gv9eLPdD7yQqTh08rczLN6feUKEHs8HiKr68pXTJxP02pZXneq6/su+DgvMa093soVWP3E2S8mhJmVVulURJwbCS6lFBEzMw0z4wuZvXqRp0/Y06L2vKmeuaKeeaCqgweBmIvBAmxmDDI/Sa+gwjWEmDnMa+3ud0hECWnijK56HI8I5ALgGm7BHHKaMBPAsAiFh1sSJV11ZAt6Nsl1DylcUCQqi4UZRIcNBTEGBsOIjSW2SqilsBe7dT/YSEAaCLXe+773rQrdGma+U1RzBoIUYWmqDQ+nCFPyhGIoGxVmbu12v99v99datyAGWAfMrB9Jt7b7/V7rxuFMQUwj9GM//Id6dDfteqj7v7//+P/94z//899/7H3A6bW9bHQ71Fs5eq/uFnbUI0aPQIXvlLsd7a6Hxi5SCWKhJADdtyq3Wl629nbbvrzct7JVaTduTSqXRk623frr/eOxvb612sB0CI79Q0EGRz+MnEgQ0NPiQUzATSI4IAATuFSp0rg2Lq3c7rd2Yy5moQNmKC6qHmIZ7RfcmKVVv9++fv3S3TD2bubah5ulrYBVMfeaeXYML47GYUSbBGfzyHvocFUPJ67txrWBOM1AXl5vt63+cd/+/a//tR/f3z8eOnYdQIgOHkcvuSkkCrghhBSoBCV4IVSR1gqDLDygJlbAhcQZhaI6A2fNsxpagsUhGsQo4ErYhG+bvGz1lYiEWaAiQ4vD204xdiXfrcfwfBil1c1NSF09EEpuLCFSXm9CQeTkXhDNABjMLSccY3Iv0+srDc8CGVcnwpWSD4FhNpQogiT7dCACmaeLlJNTKplo1s7wGKq72uFqNnbtDx177/sYH9YP15Gpi3NfmLN67JPUERIh5kwmj+XDhpzyj3Cf2qzIBMDpP8UpQ51iyrjydtcKmmP2kwxQ1Z5mCnNLWZhJZHF4JZwiyAJmw+OTuCcyqDxcSVe9iekcm3G2z4bUpGcS8CYlxMt3x4nSvLqICFMhqOmR6MsdZeJMvvSIOQKrQ5HrXPboHDlDHlMYGJa2AtnnmiLPsFR0MRWWKX2mwHSBm3gxkhgIR1C2I3O6AkO7z3F4OxVys+7WWqsUACURyjT7JXcP2BRsnVGQ5hEwkhxSibQydqNp94uUh2bqToZJx2oGLS/KZA6uDbiF/5Zdk5wBizY9iPql6ruc2T5XRmoJcZZeJ69gOcmwSVGse4wmBLnf71cmI4FC5g0vSHR25Z41+wrULsyN/DIZ8Nm7ZPqWLS6qnLZk+X2P48jgDam1ljrvLsB8UoYTCNrKepinTm2oioqm+VOE5cNUSgmbnjPpljBB9tmdzMMzS7S2bJ/SKlOeW4WlzJvMmWY/8XyHcpoqT0D2Xzmt9YeF5BYwXWAXlw54/iEv9P1+T0ryqoS7yunc3Wzq6DOvj4haa6XU3ASJzBspL+svwGvBx/UDchauUvPrJN+8tF/rq9H0yZtW9vlY0exK11JKlSLsxmZmNJuqlUUQCuH13ReulUvL1TKnjjw/xS161zBnLnFmb0+K0Zw8AA5HWKS/MYGJC0mtsOAo/UhhSe86xnDyEnIr1dglZ94JraBJFLYz50yNRhAguanSwAhnV2NhyS5BAG7gcDZh5gYpRqxBHUJS6CYijmEboF17t+7u1m3s/WilCJG7wJnBk2DTCKWwcM0ItJjjJE6EcuNSSrm3+9v969vX3273u0gLIjPyiN7tY9/Tl5JI3DXgCu9j/Hz/2D9+7vvPY3/s+8f74+PPn+//+vZtP+x2e3l9fa3S3OIY+nHsvbcId93bQWNQoIeJ+xh64ICbn45ABHYpaE1uW3vZttdte9vub7ft69tvlWujWqVJreRs7Ri3rRXqTSqHYIiN7xg+PiTCjmO4hEAoCDa8MLhAqhciIVQAJNiY6nZv95fXr79R2Vg2lFb5VkgKFaZShI0KosIqSd24tNtNpApPs8FwOmIfY1h4jxERHt59UICDo4QV02p8LyD1YQrtro9xPI79se93NzEHs3B9fWmtVaIQgdo+/nl8/Pnn0Xc3B9WAqLGAnHNiDqcLi4PDzLRMQwDMMAcCMZMQiMIIlREZCMzEj/edmlDhysQsYGG6iTTBjaNxbEwIHpCGWpSK8K1yPEAUXAW1UK2otYCxNTYDhkcMty5SmW9bvbkSBqnXcIZiuFk4JJagebJU55IdQfDIDhHO9lnMPRPNIbilJnYCITwDdVdPzsKG62566NjDho5Dx0fvu43D+qE2wpSICklUhrmlsS0clM43VIqwnO05AQOcbgAII+PTJVWm5JwpHfA8IEGAhXEwpscYTEfqVX0OtV36hmaqFgFhWgvoqcWeocumYeZu80RMHo2fJeFaY1IGtUrjlXmKaVLq7hb45FG0SMSTqo0sDHmEq7BdkcH69PN9ltJtxqLj2iINLDBx7tvPwp71LxS+jof9szgakdOvU482RW4Xi8hkdDLSOIEXZ3ahR/jsriZtaOwpKjHwUAUL4CBJ4mMYsv/oFhESEUyllGLmzFRKSbi3vgCWCf5/adWtztfkyS5Jo1eOJO1S+YxHTFh/CXguV+nVKqjrBUsb5IjUbN1ut9VBS6omKZNs3GCOvvLih+jyc70lcLGtWlSKnNkyqYNyTw9O5PsTP2Nt/Eyt2RovlTrNQYdJsUxZ+udoCjqNUs3GEnrTDNb0cwJjRmAtFupKUC1S58pKrpvxqiJf3cb0jo8oU/ccQUTX8Mdf2KxrZ3nxW1fmbL1mfai7pwliIuk8A1fgdYW8OJX1uV2RM7A80whO33/Pi7hev2Diev2iNukiGltXc113Picrk88sLTcbz1nO6/2A2SlLQ2M54doc91nngZlzjOa5+OQ5mT5WcegIZRGAnfm564Cn3J7MQtXVhuV0H8IRhpyAIliEkw0fh0pFraUVcja17sQEF8FW0Aoklzx1EqCBc2SzAKwgBhmopYpBYn6IgNhRGko14gE+QMxcuXEJcr87+d73oaIrP7QPK0SuhJxY1kAQnCngzgEKcJLC5hTOQaUMbCyvvH2tt9eyVa6t3aVVNTpGL+zbtu1d930f1rO71Pv42I/3/fH+8f7nt3/9+5//TGdUtdjVi7S3ly+/ffn99XY385/7Qd+J3DwGpG7b21B+7N+y41xGlPpsnzOV+3273+qtlfvWvrzeX7Z2r/Xry+tLq1vZNtmYC3GhIJIa2+1W5f2HsCp9+Qs+HsXG8Y7RH0U202MMC2GUAi/wEmgcJTwswyW4SC0vr19fvny9v77d7q9Ubyhte/t9u38tcivl1g2AgCpTFd4CFPBbeYnN/Hcnklr/9f3798fHT3dXGBO9jyMiOE0vk4ERiwpYamNE3R/H8f3HD25bvX+9v6DdhKQA1Or25ctvBB96PB6Pb9+/f3x8fLwPVy9yZ0iG3pYqTVgi40Qx3BrBHH2ocAthDRqAEwcNBMMJzhy1sgQLMzfmcUQMi1IUzmQMr8XtDisIgWxFylaogyo5BaEwtY0F5eV2u9/vt1a5VAt6PA4LDZiae/TAlo9Sa42iDS2jQ0cPMwQcgSUhyEc6Vs7ddMw597XzMb8yPRN1Bcq5lERGcGNq50f/GOPo/aF91364dh1HuOp4hBsjKMP1cvZFwAgIRMAUU/ssIIIIgZxiZMjihABgkeyDBWfjGhTu5hCexhh+2hHH3MbpWVgsLvvac00EMAMis3XQWgUQYPcAmAoZzN35CrwynOdk+P0cfZIcHnVfbcSYPiIabuTh5EHINXb9Vu4f0j8pI2h6V6KnADxiWtQKOBOv4om9DEBGDQhXqTXXX3KXp3V4thrV3VNA3VqptcrZRWUq6aGRzp8Jv7IyRUzJWp7UdBxQnW39nLFqteUkVCmlFgZAJkBCQNdQR6accWYRmIWaB0jHcGg6/R4jgasAFo6k54QXVUnuPgfoE5HzmvtzIj7HG/wMJVzzEJlkZ2YjwkrhUl4SXjDzmipdWFx1mqpnTc225qqXC3slvklQZWZSy8vLS601+1NrpjIPflE4q3Cukny9xMvpPgKxntEzVsUu6UNEdJbpp0xNyrOELwYIgKcBUszG05phtKHn/eOFGalhVy1c9ei7W61SiNP6kLmAJLdJ6hYgLrQliwNZCOncdWCMLlLyMBbcWTzi+joZOp59WPfq7qVMi5bVDr727+Ribb/O5OrhXrclq3l6Pbfxuem5oG0OIuz7npOJInVtpei0SHX3FHEtMnWhYTonDOxMJVqPdmttHzszbIYxUClPFVq+LN/KzEoGGZVzCvCXmRsCiAo3AHSB6GskNiIYqETk2ULdzEzHYWYrZix7/KpjqAcZwMJs4ZHm4tO4VQQ2929XpUMwgiMy8bm///ix7zsAoVqYU0NoJLVUTltsQYExRRSnYuUFA6DAVlAKjMYwp1LNQYpSWcjcRowh1F5fSuVaGrctWCxwBFykMZeu5dbq68uLQd/PcEX3u6o3kUIhiArCcBs9bCCMKbs8YAoy92NIraV2LeDSRhle1LZGlVBJhgBedRx9KFxFxMKPse/jeDwe379///btjx/f/vj27V9//PnP9/cfj48PkIBrLdu2bW/3l9fX14hQx7sIpyuApJ2VDOU55M4spZgtH2FhCZYgtsLeqtzbtrVyr/UlB6RZmCQysJ0iCGSbb7e43eN+7/dXffyQsT98uA6KdNkJcyInjcJUyUnATBIoQUyySWm1tLf7W3t5DakhrbXbfXuh2lC3ggDYMVWExMJEQdTK/aVZv2l/GblMj7479PCuoaFGMZU7mWoYTDk3A4exD9NHP7aP41///vdfqJTbK3kG4JXbyxeiGOP4+fP79+/ff/z4MTRMUW/1vm1bq1W43rgIsw8fHeZEFBwaeugAOkEMUGYvOMQV7g6m0moprdZ2E5EPebimUTLpMDcLe7hVkR9h5V7fhGspMXjXwT0o96hEdLu1r79//e3tS6pJfj4+HHYM6Yqwwx1mw0yZn6reVI6f25rkqWjtxijtsbjkI50h9jGTdJ/i6AU78s8iQqlS9fDwdF8IPXTsvb+P46MfD9cRpnAld4ISjMmQ44jp7BGUAqvkkJiC5uUNEgIUUcg1NV1zE4MznQxOwYBNS8EIOAVZMDz9p2cX1BfXtXb363SUIgDSOjWXaaIgEkdkqCV4Gr7L1Mxfdtv8aVe6yuTJdAnDhchFQjzHiiNoTdxc9+6rEYaYMTJLJ34uwU89+NzNnzLW51uRzxHOS7jSAprzd5E78pbO4tlVWe8JnAK0T4GYHMv4IWDmZpb3vJ9pmFk5iCgnmDjS8IyDC4NyhD1Fcwby01nECJkNYOmFe2rvZtLm5awmy5jsBp1KoCdlewmU/Lw9eIKqBYMSfNjnKMNfruOqZNc5yqyv1xKeqOJ+v5dWr70znOqrxXNkifpFDH6VfF3JmwgspueqFcuLmABufbskrohI8BxmXFsLdwcsAsmwAEjfrzWYubiQE8enA0IOMTMlEyzCTObI9AZmng3j/CJOv3yv1VJcCGnBkasEyszMxyKMT+f6lr+yaMV1d62b/5cH7UpDLi5q9XAXpXTqAWyhNHyeeE1qmZlF6oJueW5nJuMlpmmBp3Vgz+HEi1xv6ec+89O/3rR5c8oll/NKldU6KbTnJvnSHU5PwfV6ZqY5uWwLwD0ZL8Btfq8ggA0sxGdWB4TZgeLszIXZmXXMGPd8ClzVtasOJwgHq3vazopEayK8CVym7BYkSG8xFEIFNXAgGMYWFIXCAJgXFjcCaXJUDAfpywuXIqW58Mh2i8I5SqyUuTSRMeRmyYTdIwSUSuXsz4QLRSG0AgCFuBAVkSJS3oQr0wtwh9+AO/HGpZTSPShwEELVXN3jOB4/3n/++Pj+8+fPP/74448//vX9x58/fv75/v7t6I9Qk7pttbWt3Nu2bXXbqrsXBiPIDTBGEIVBGZZjHIYAASUj8eRcvhUwlrgVftnkpdWtyG2rlWqhRI+EKbmlcshWJG7NX277y62/32Ps4aObBc0C4EbKXFCJNhBDCCJB4tMAc5VzhpOthzYADWYRKjGFvSnfYybayp1ojuYRQIGfFH14j0Otp3936pTCMjpAIjt7kDCo6sfHB9P3Phh8L/Vlu6OU0oQZ9X5/++tf7ePx49u3b9++/fn92x9Oo9Xbl9f71uS+tftL3SqHd+277j2nh0LRex89AAFJ1BpgQxiFQ4iltfr65e319cu2bfF36nvvj/74+Hj/9v5xHO/j6Md34SZU316++H2jKkyVZCNpXKxUsOD+8vb25be3L19LKU7WyIy8a33o7oqhA9bJuvgwl4jiTmY2rKtrMMWnAEYmogxBzHBWIpyz/5EjgIbsBWb28nRDAVEhDuIwUCDcTLuNxzg+xvFDj4+xv4/j4TpyZA1wIQc5zQMggaR8IPPp5j3FaaWV+qRPqu0FmXI0cHbyPMsnslALweAcOR00HbbUnyt+fHqr1F+Xud9gzi+U5mQzr4gogkTgDp4ZjlhQCbP+5cue3kun/iYWfgrRCIG7h9GnCMenhNYNI6d+LIiklFZrypbp5CPTZC2dKi95PsDMxDxpOJog5xJRsobSQdkUE5HQERfN3KyR0Pkkgs+Y7em9inR2NoOl8geOMHMzZ3ai7OdyuAsoCpGQ5E4uGEGRuDOrBuAGFBauLDUcRJqt5srVLYhgZsKTXSAi83EBRgCeDikLWS5AtoTMi6xNVXWWqMfj8Xg8IiKlS1mVV9nGaQCWVzN7XhGRhlIzqe5ibX+/3+vWcqjQT2+n1V5MuVWOyC3YkZ+y7BISF5pZcl3Xw7727/7rz1I45Sdmr/Pawuu9Mz8HFCJsjGGZSTATNtPiiZgpH5EEXslcskAKcbJoIzNW8hdyxZjDFuZw/3SzJXy8tBR1YS9zLOA1dBrBR0QpMsa43ebgZHqepTPWGn5cKHltk/IyLYicf7h2+vJf52MYkfgJl17kOre8AptPh5HH49H7ICJVOY5HJjLxDI8KwFX7Sas9qccM30uFpdlzjnXdqLgMB6wd4LN1ntIUeu4BSmmrVZ0DK2n1Ps0Oecoc15ISweRuj9ziZs6b/fJlLwtHyLWPGQyc3dVwoKmNgqJQOLkjEzgYIlKYCqCmAURpUUW2Wgu8sIT4CHXYgDkcEqhEFhyYwmHYQEgA7qpph60UUeZiHi9NSFAkhAzmQwdQAtIPH/04qVBY+Dh0fxwVzA0VFJRy1MwMRCU04VsFE0ktrdZWahEuX9gLxx262ajjkFF5MAtaKQPKUMTox8fP/fjz+7dv37//69s/3t/f//zzzx8/fnx8/HzsP/t4z6Zmla1Waa3VJiJCnB5iqMK1ibsFNKAgJzYPM++qu8fZOeB02hInDQyCTzsqoJKXCCJFSE7UcGLX8Hwl55AXIUcwWmtmg0HwsMhBOvIgJy61SWEhyWnlrqP3vu87lZ83D3BVLs4s222rVVhQb9l+8ikW5uwrMHPl7WVDOGWIlfkxopMSCcMoAtkD9qFmKcLYai2Fi3WERu/9HY99sKFoxF//8vfXt7vXUiSEqbb29vr1t99+e3n7cru/dlCpt9vt5dbk7fX29beXl1tFDO37/vHRe//4eHS4jpzzqiRZR4oUUvf0WZJyu91evrz99vr61sqmR3+87+/ff1TamN6Pwxy5lo3jOPb9AyTBwXSv1Y6DqBSJoHrjUlEK1cpcaOzirdybHAVHd7URg60ffsDFrAyzY+ihHeYRBI4kmq49M0q8E5mKuHazOTN4yTrE2XwKzuYTwsKG9cP63veHHu8+drcPtyP8gBvByS0iKrMwpQABkNy6hZPw2q4BeY8QOyFGqrsB90gldhjBI4zPRT+PNsG7rQU//cT8WgWewOv/jdtYqgszS6U1MaemRYQASUMc0PN3fzURWtngZvCY5+q0D2ShbD5eN80LdS0F92ljWNdielbfpzdBzAOQq6P9BcMxzU3zFNfMb5oCFOIi01NUY1bokxrIjykeDrKzVYdVVsKDQhCZijjpGTo9dfPmyKqpqRcOWHAp7ESeltrZ+ctiwFSklraBi1i6ERNBqlSlNNp9og06abWzZGaNx0Iw53FOafm1OU6nAHyd8H3fr7U2YWhmDZ3qrrptWymNiH78+JFWEVnss8Dzaey5iLRrT2q1+fJXphXFSbT46ZKQs2y11uxsYt50n3hNumi/VmX1M2TaPnv0Z7d3wUczO/qDqa0AxMubrKYtrZbreU01zjjURRrNF4Nm/mqkHBjr5C/UdXkfv2jLnjI78znmeW2e/vLrqVFbcGR90+vjMxH5yegsTRhOrfovwvnFqy2Gic7kiRVJ/gvNnOBvnsnjcPcU1Ocdsji5paLjz3LDdcwJB/O2XHTp1X52PnrnbyVxvO6BT1rA04oRyFAQSu+VT1x40PWUptgGJ0tWqEBYiIOJpYhIxnss+J6dVi9eg4hC6E4UvtuhXZRFtq3dX+9vj/3d3Wl0IACFGdwYURhFyEXUzNQ0bHhYei4XUKIlAzkIzmHN0RFpSc4UQkJMHOjjUYMCZGERZBqmbE59xKF26Jg6xbAxxtjLwVzBTjXY126fAkK8VblTJUKRWoWbcJVSpP8QL0QjRJ0P9R12N33l273vx3g8rO8fP7//5z//+Y9//+vn4+Mff/zn4/H4+NiP4zjGfowP8wOUzo7KzIVOPYUIc2ytvL7cmF77wD7GUCPyUknVzXXEoTqSqc6hKJEWbJSrJWl2iMgdPgg5FkOB4q7sDHUhC6j5UO3Dx3BzyiSWQumz6CB3god5aOClMBFILNTcQnEcBzEboo9BsnmpIYU/brTV+62BnASlsIJARsQcxd3dwCyNNiuuL2+HHr0/hh2BA5aDkMl5+HBNE6PsKNVSBWSwsOi9k8vH438/joOIpP23XIUKC8Cltbbdt+1+v7+SB7Mg+Ha7vb6+fvnty/1WC8zG8Wjt8XiYeUQfw0IDCK7gjfjGwQSXUE17TuLS2nbfbjBQKXzfCkiobHU7dlO37aXVxsE6bLA6hAg3Yry83kvtasMJP45h8ti2aK1S3RDOt61sN2rdxzA3H13tIyzCQnvddQxT+LQDJTBBCPkH5kyxSYbjtE2n6ZqV7lkymRyepjuE1Fpb2NDedRw2dhu7jofbARsSlgm7yKvuWurdJ+vB4TOaOyiEV1PpGdqdoiWaR/LENLmWTH97IoIzESUO8DQcRO7Uicn0SbNf61acMti17p+aNj+re6OLCi4XNRuWGULPg5nvl+PoGRyZGgh1ImFKr/cJHTwowAHI8uY4myBcl+RrmSKJSDjiDCD/RPtNB//8+9whOvMcBS2lkJQU0p0QLY2jKSJSiovIcJGZI4unqyxTuurH9A0CPYUywQRoEUGEs+b+G342GYVlZk0HPHpYRJCSuwQTSMCRuTUIJkYRllJFJIgjIJUFTBCc10JVMxzbfJzl3+d9ktdpimmeFgmrSP9CkKybZ7XYcLZ4Frl1tV86zevbgq1r+HHZTa0PHWOQcM7KJRRbgxGLa8m/XKUxabNlA3aFXKt4L1xypb74op3Pr8mn0PB2a+uLrN6QmTk0xYcilNGrIlRKqUmKzqye5/NFYGEWUOET5YR5PHu4gJ99/6cnu/lYjxpNZdtzV3A9/2kFuM7ndQdyeR6fuGERRYujWpC0lCInSlsQjS4Cr+u8aiKe1TFMdLVQkV/cNBbCE5FS0/If5goND/MwFlKrLOQJQB2gkNJYSApLYRYKuLkGXGrDnO6cUrPEW+P8WVuCIlJKyWHYuUDxc2uRFzdzmRLCC07bQGJPA/pl0++2bBoj/Jw4z0Td6REIYWIhypWcTCM4UCa4pilTrVUoItRH0S7DNyK5v4FcfbBI7cNsqD0Y7rZr76UVZ85pWDXSIIuwiIEI5iinikGgzAPCIHN3B0dUQTDVIEe8//yzVd2alnqPoH5EP6Ir9mEjoO4jwmxYTHJ3DLZS3GXmn4TlKBsDW213EeGgUmttmxQmFNr/iCKB3aQrH+EP91fSD3+0b4/9+77/ufc/vv35n//5f/+vf/7rcXz82N+P4xhDLRw0iD3IiFCZapMmnBGJAIQKMd3vm9nhUSzIDzM/PDozauMgiMMzcJgiQi0kMBoVJw3WgFMYhTEZwWnaT56xLu6YBJTDbd5TbpaDW1LCnNgYLEJGBchYXiiB3ezsFKjZfjwOHaU9wE3a1t063Cvkfq9tIyGIc1BkN8qDQWMoV2YqletW7q+31357PfTjsHcHm7GrZU2abAocbu7qLkJCQgh2hPn4eHyo29evX17e3ljohSQgw3MbXbbt/vb2hUHkvZuVtrXbvbZb21qBmVBEGKMexwiIeQwwc2lCd+GbsBmbwDmjDteCyEAhSBFqFa/3InJsfZiHoDSRkkxR4WxYg0sh9Uf43u3wfTgluhdnUtAIVso/wFw1hg1xE1eZCwAMDHkS0k8DwCtbc1I3p1s6spg+11DAQU5m7jPbzMZh49BxuB1hZnqEjfDO8NTzEBlRCDSAAjIyAoMxGy9uwWc0IYAwRzicOeAQxHSw4OAgELtxIixmnmzZnNpblBZxOjmdaRh0ynLxX5zWz0p87Woy0ZBT5UYoOcgzu1cXxBZzP3oZMDzfxj0DD408IhP+IuNsP+lgrkxV/uJZkMrzLamcGUo4BftB09F0+jWkncGzwyISnxLiWER8tYkvg/3/p3vg01zYMtlHhnvG5/vnctaeO+yYTpFwYmZLawnJt+AARX5fIhIOJw0zT9euAmDlEYmQ09ORcpm4LnR1Hj8WsTHDc06XqV/Q9vpFIkp9ZBazRVkt0COnP7udcX5rRvLKSCUGWs3HZJtut1seBi49rHxl/m7CgvRfPd22Lr3/izHBImITPawndHWvrnqy2+0mF0uqpWSPE7Ksnwku65TurS/CzO7KmUgjzxvD3dWVqKYdip83wfV41s1DT/3Tk11e+wpceMeFMtety6cDWZ5MnC25K/Rc8Ct/3dyTOlqADKfp/zrhi9la5y1iUX1LAutrvHF1b1N3H5ebHp+5vevfXA9yXSMA5bOd/bruiwN73ienrHCdQ5wBkRHx8fEhIoXl/Gsg51iLPJ8Ifar7+RJORUREuaTYuUrOOWszC5cIx+TP1uP83DMmDSZSRVwgImKwv/z2VxKWxz7GMQ6EH2xhMUaZQErDB8ICnjUj4EzTi6lJ+t54QCOgMdzY3Aq2Yk4hjv44zMLdyxju6EfsRxwdj65GCJZgMTePcC8eGlEjgiNRiiOMAkJRhYgruO4EZyklB0apkP3JUSHd+1Acah99vOPYPhzf9uNf749vj/2fP3++//jz/ce//3z/Zuxdj6lkhRkdCCPiL29fXtvrfbu1HI2kepONKzPC7XjsFGFZGiltCyXEuVTGVEq5R9hQQEthCzUbmjo6V4QRPB3C2SmghIAz3GxoDHXVsLTpFOZG7OYIDgoGoxYwiZSNS3VQWpqt59ZcvQ91xAfAUrYX7vv3/WOQlfvL7/cXkM6XhQgJU3ovZkOaGKVwbe22bdutb/tRgfS/daEAE7fiheFEHGMcYd6oCbVSxIM8vBRE2B/f/yj/aH18tdeXodXtGGallK9fvxbCz9u3929/DH0cht3i7ixGLkylRQ12Ly8vlagSsQVBeKvUmBokStGo7A4nItX+8fGO8N9fv+R0e1inGEJWc7dfiSXce+Y0ChqTELf3x/Hx4R/HDhrbjUIKFQ/xw/bH4/H9588fPx8fx+jmhBJEw8PN3RQhwcy1AJDUdWG5AXFk0PUCXZ+EVYwpyKGFGCZtYDZ6N93HsR/7x+gP0920hw09ulrX3uHKYZIDaCDXARBc+NToMNg53KfsydeiFo7wwPyLdNhcmiZmNvXwWJUS9twW5x40XcpWh2LhG7q4Jc2Xs8wkn9PJJkFYzCxkQ8AixzzTwf/CvRHRqdXAJa7uzB/0xfXHgjiAeUKg7GnKOqtXKDyZf1piXuQQ+PpYnPYfJAw4nyOQE4KcqU2p38rsHZ5bd3kec8Sz7RKf6scZ+4EwMJOffqp2WpnjOQ7/qSbNwmYeIswVBDq9/tdanoAeRKYxvHfTAJfSWIjS0IQoIVEW6xNhzEnD5BLMTx9z4VJS2mW9j6UpLqWIEOBJvaRajojNIp0vRGTBuIV607k++4O9a0YKXnU/C0as/7tcOU7m6Ul90VJBmS1skdX34kEqImW5SyQrs6DDen9mHvOXbIGGZZQgZ3rjL6haRJDSjAg/HaSWqD+5KiKKsLQpxnpSPiMNd49QQ4Rz0KmqvJBwcx7zk+uBL7z3vDOBBWHp2Rxfcy1Txg7gdrvl7ybs+AWV+jlOqGaPx+Pj42PNHKynfhntXkHnlf++9gQn3yw0FH66o7HQJtsasbx2OddFWadpjV/ExbyUiGZ8dTqvwYf2HJ+0/5LIuUTsS4WWnL9EuPu+76UUT6Vp0h9SIoIxdxSqmsArIsx0bv/m5m0R+ByuPrFjhOdVo/ysOInP5Yei6nAd7iAp0mqFwdi4lHa73VpvcqixCQmowNzCjt7DGUTDdWQKUJB5plkQMRfeRCqzRESojccRBlMXCkshPpzscAP6DvPBj65x7LHv6Boa7CwkBYXN85gt0t+UQBygIDdyB5zgOanOVQRuIAgXEDxKGT/BTHwEH8N2O4q1zev9Efhx9O8/Hv/+8eN96NDd/PHYfwTFoSMcJKxhqodHbyhbK9tWt9q2khKF2+3ltbZyu5ej//z2oyQrWSoTVw9VC5AXYmdOmaoODAPCWpn2ej66aU/C/6x9KQ7isJTmR98/juOh2iPO3ayIlGZmQYFZ70RYUDaS4nOfYU5gUJCNc+Dfwh2lwMn10Y/2ev/L4z1g4erhh5pDGgkLIWROOFNCvVKlbNI2Ka1Ut64gDTCIpVUBgN5VQAkUWZiL5Da8BUstHvzY3//5r/+ltnv/cvsotUmYllK+fP368vLStqKjj+/Hx360o217J0LkBZVCpZb7VuA1QKqz19OIhZklCkLCTINpDHt/fx+9V7CE21Dt3Yaaw9wRKFw89l3Boea+EbdWSep2q4+h+vjRx+hGh9r3986F7i/t/ePntx8/39/f9z7cWZgqpzWWOYzIuchp/05nDPZlq3qK7XMPdFmqfEEQpJOWu7smkhh9d93H8ejHh45H2OE2XIfprvrQfsC0MES4CJOgdyUQAhyFOQjI8ZVhAHkEZn1I1OWan+hh8Ax/CEdwqoim1GHuSg2AmbsOi4hwFAEbJrF/7esRcwTlg7oA1lUIEhE51HmuhpHB4u5gqau0XLHptQ8y6ZBARJj+on/P5V7cPbCQUwKsyYs8IV2Gl9NStHzK/8FpvZaQ7GkuxmfcD3IxCnclEuECOY3KIDPXG07nAdMlyeAi0zmNKGEMdlc3NVM3Mzd6mmsE8/WMuarCg1M6yByWPUog2ImR7Q8iD7h5VzvGIBJEEVeAbKiIMCeYmKhljCM5MKBdeZQUNuVXy85dckipIloEBi6WqscxFlJJIHIlYxa91Ht/f388Ho+vX7+uZquf1O86V4kRpRQ/TdeS95p/f5odjDFeXl7ycxf3dpb/J6O2TuBxHNu2XQE9gAEzz9G/qZFaTp5r47FukkW2EWbXeIxhNp592BPYRdjlxvu0AThRReR9jiAPT6KFiJjydD2TnYh9hUaseQV8JvNWbPn/6YNwhU2Lprq+w7rN6umcchxHDo0mLl9Sql+kfmtTsYBXvucaXM29IC5OE/kR+frUAuaf1/1znYddWNmflvGgDADhabaVb97Hse/Hwqx0maBMDi9Ojdr1kZ+t8EgwdyoNnHgQAPOpeVo7qIwb5PWMP3VgzeOcVYxgFpZglmtRWPycjcPdDUFMpbRizp7MFDkJBZOnFXIgKCBuZCPCLVKiFBTZewgnEmJmKlJKqzeR6u5KdjzUw93YYPkFlYIdJWCmw0l99IFjt35EV+LaPJw5KOpa65AaRJ6lKskCPsc7uBSqAoQiiAQegBfpP0gqxaH2MeTnkDK4dWlD2o+9/3zfdQy3MPvwGIX5sb9zxPAwdyokLTZpL9vtdmt//ctf3+5/b+XL17/85fW3r9vrrbViyl9+++2x/1D9iNgf+zAfJARikJhGqJnCFEfHMVA27P5454/Hlw/7XdNzzEYPekWGFcc5N4VAWAiU7NChrlJ5uzcSxE4A6eg2uhsMc2vYbveXl5cIMz306Kqd3QuzVM76xgyEHvtP8tfxsX//84/773++/vXvtFWZ4zfJgjC4eBCBpJRbNDeRQDE0FA1uVKje9NwGqRpXsTGTGlQHPKJakxsTCBKtkPDeP/7v//vHt629vd5/e3t9+/Ly22+/vb7ePz4+iGwch+ree//3v/899uMvf/nt65eXUeExw0Fvt1ttt71r12ExPSYihdZE6uF96DEOOTaR/v5IGzDzAXMiEa5cS6iaYfj34Wi3t99++483ZgqMEWY2euzvA2TUOOQYGB47KIuTDjNCOg0jBMgTFJCgyHnQ4CJLY5tFO/mupzbTzAKW3pKOAMPdYJ0iBTc2rIceqvvYf4zj3XQf+tB+aD/gh41H6EE+CCZBHB4aBIilLYgR2H2kQpqm01UanSdXZOx+unV6Hsb5f8NO6y8mCHFkTr27UxjcZ3hOqPW9a0SU1lQH89rdTmNAdx89aq2bNCl0smUgzt6WM+tzwSJBlEyrTB5rYh4uRJLllpmJuJtzuJyohJnDA0zhZPndUqUEES5MJZzSbT+PjVnA5GnGzwye2+hCAp5EmpmBZ+oACQs4JqleeI6jugdyaRbhCHIEzCKIRcBGnNtbTGQWkELCBZi6vpPZgvu0r1Z11Z41FRzJqjEzPDxsjG7GUkukWQ5EasIOllogAAmoBBViSorRNKjUCHMznQi1K5GpE5FAmKe1t4eSRxUCgs62o1sgiEkmk8fo/diP3VwzY5CFjr5Pg/vI8S4nRm4+e9+zTC7HhzhtBSLS1yOjkX0ZYyZuQ7D7J64vCOpGzpkX9GRh55WY/b4VdLjakThdLbZtK2U2Ys3S2tTXUaWsO59KD2PmbduIMMbY9z3l3stCIj/UzMbR++m6XmspxLWIOx2mvY/Ru7t3Ty0R0hZOxzHGMItbbcQSBlcb6ADUvauHC5dCUgkED+K5X4qIFJAxiztFWKQ9viczJyJciIebD+9dSztAXkople/3O58ToDlk4K6Zve7z1+m+bWOM4+iPo2utrTXwHC9IsFZOLCtlkmfZR84x0iWZWhRXcr3C3BK/luLuR1JQQTpMo0u6OABbyZlOrrVKxjchmJGZECJUSg2SiHi53db6iaC0HO7ek3m1SD7SS+HWypyBNVMbRFSlbK2Wkg6C8HM2tpRCBcNCydxdxbTY4mvd/ePxuGSzcsDUTqPgMZgZuWHQ/sS+MRULIlLOcboIDxISJmKEASjESmRpYlKYKLZSmxR33R/mXfZu0e3Y94/9Q8eH2YeQ1iJTh8YRZsN19AgCCXGhwvV2/7K1WxAjOFTNbajrbtBgiHfzhlZRgPutYKAP7wMfu++Hh4GYI6xUQaEQCJMFBYXBLFSVrFAQE0mQs9RWg9h1mgplLAYo2B2lHD9ImLy5F2IJqgO1S313etcYfQwLD7j1wCC2Wy1E0uEQUGNm2iq9vXz573//n3/77X+8vvy98OtvX//++++/v7y9lMLH/vPl5f7y8nL/2I5ezVuQs9DwGGoew0zd1YAcwgyFS6hlH7qr9qFHV1VXEJXiYAYYATCD3SKJGuHWqm2pEA6SLoUeFA5zdQRJKfXebm9cC4czwXRXg5pGkPl8KoQ9pDDS8ccoR+eAQhyFgiqTkAuYeTqkEijhAVXixlWcixXLHEGyLBEUxCCNoSObnMMQ7DGIXl7e1GBQjxhd+2N//LDv32r8t/8olbf7vd7u1a31+/319be//PXHz3+p6c+PPZjMx7YVYgOZWhCRTQs6jqSHLEZ4xglHhLqHmWIM4Jv+m83CHaZE1Fq73V7KVsTYhXbXfUTt3YMehxW51/ZydDWLrjDXUAx2her48NAxDjMNotZugUZs4AIOwCgs4OEMT5PSRAVIO/EIxuS00rk4yelFyCeoVIHNnFU3MzUfqabv42fvDxu97w/XPXyEGWJQqIQzmB18up8SIKCAMcjT14og5Of4miGIwimclhg0d9KrMe3T3WB2O579MZtADQSnqWkjxsWjcgqMQhEcnsyWMOd4AYN1URFXTuv8rDTuXWQhESTARCRcz93zaTMRThzEHAgK86Azlp5yKGBt8/H5O8SyybiQWBxpePZpZAxzbHAlPl3+8jKhhsv05dkkzevra6coFIWECgHwiyouccXE367newBTdJ/dpvNOodM3iDLAjpg5AR+zRPoWEyJnMx0B954K9CCn4MsxG3LgNYl1Dg4xnEP7q9UrZxTPyhFfh31lpHCO3S0vrusY/3L+XHzAIlcW5FpMjKqmZ9VSfE9NdClJh6zeYlys25NmOxVU8ywlyEh01Vri9mfT6voVllhtXf28nZODcVd+zv09GR2++PpuJY+NU1iWWGRoMi6Trzp1d+yuNqONyF08wt37sK4hvM2HcrLjlsQtfb6ZT1J9hWL9ymwl5E3SKN0i4jQzu3Ku6/UJUnsfz386dYp0Dv0lszi5qFbWmU+eLz9927brib1SaIteWtfIzO73+3rZ5FBZIkLdfoldTy/b5dmW9A/SkDpoNvU+28Bm0vY6kjnhfQkFx6Uruni1a5908WS9z2TomQ1vFues5fO31gfF5PoJ5BGaJ4dzJSRPxXau0kKFJaS4KwuBC81vwYNZiENhw4/jeDzedTyA3kqUWmEpfj2/scMZTLjVG5d2a7e23QF2y+aKEokDZpkhSMVz5DktJE0V/Yij++igABcvN+EqXMXgRhyminBIoAV5cJpxQsKZxaXAOoCwaUKUaw8FlaLfKJiimpUC6VHcuLN89DggI8ggA2TmQIjQy+2FpJIUFKpbqa3ct/bb69f/6z/+5++//feX29+EX17uv395+9q2yuxEvY/t/nq7fWztUdUKSStVAjyUpDhI5yPOKOlimH0aO7oehx1dj67HPnojiBNNVpIC4eEuEcJSWr0FKEgKSQHv5kFForDr9B8KEjAXaYURhcO7jT6SElbnVtILDkJKDg7iQawIIw8iaRDnQih+Mq4gQljEfA2DqrSKbcAd6QvaMyNBCoXIIB8ZEh0BDAtHxDGKOsCVUTgQpse+v//8SRRcub3ct1sjKdy2+9vvITxC3z9+vD8+HuP42N9fX7Ztk1IZQHoBW8CCzH246XClcAKCLbsrpn0ou43H7jpidLfBzLfbTV/3TRs1dond8NGVsD92v91Vyv3ty196H48+jjNnbbBpKJmPY3zsDzOTxkwNLWFBJr2kBDqAmVQTLDxNCRwApsoy+4yMoHQLmfEgRAyls30ensyymg3zQ23XsdvYx7EP3X0MxMhrMXvAyKxEJw8GO1aGoBOGhwVxegJOYBMUGSxGAQQRkyfTlBOWAaaAgSUinNItdC5fq12S3NUsYIzKjWaCU8RzBVzFQJjJCeTErlmhKd1SZgmkTNNyEDgyMfKJyYJJJBOfOakkIiYGOYt4zIzicEv2i+BI06RzYnL1+M6vMQ38rzruWHmYM8RwhVvPl6Y5QALPtJHw7B5moPi0xnFEuF/sM84iLUJSa0QM1emUNi/BJ+HXFImDUrrLIDhF4rogcxMRFj6n1SIyv5IKP3HsHIPw3IREZLMDzMIFANgJT+kPnSZMZ7/7NMbN6IjWtm0DPdHJFTytKp7/ugTvyZCuZsqqu9MniXi9ydJyPZtB+pxIyOpbWl2oa1lMLR03LiLxFZe5MMd8h8KrBXlSF59A5BrxOz83NxIwa8sjwCxVxn4yGdJa8+mPNT9i5QPmppqZgdnQRZone3BAww3mEAunM/OgD22NyYWfYVk46a5PwPeCsZ4XPXLATCBC6bNFZ4rlhatLf9pM8fKFhFqrEXEcfYyRCc50coHnC1oOAyYY3dptfe66xKtHmcB3ZYAFkAjVThg9xsgM57QmwznvksALgJiVUkhmFJW7V6JaptNkPMd8nIiEGP6Mx16YuNa67/3SXgxOw5wIVb/ArLkS5szyL93S1Zi+9nbTOqy1ltbQYfOBe0J5n46vHhOsiyBt6+FB7Ne9h1k+hkSSkVRQRSmltJpkuA7f967jYB5Vcl+XJYcofRECJSDErdTS2r1tt+2GKF3dFYyDUhbibgFmFNBdSuEQLoqAqY7QDjMUATPqVsqtotQIt8y8InM2i+4k4GCBQDiXXDDNuc48CWk9TeFUKu0E5lALQVTSgJJ7sRFGEqjOJSAUVAu/3G6vL1/a/Sa1lVrrrdYmr+32en/57be//P7l9+32hem+tU0KIoadsS+1llqlVC4qLKXduG1NTcq7RxicIna4E4UHKoMFEebp0eT98N7GnsagBRFk7vARo6ul31cVRoMb5X+tOh0hnDMyQURcQMVCiKtUlhBX1drD3EOJIjQcBDAXKc5RWApn6c5ijSxokxjImgsPdTd4ph9stdxu9S1tuoKyFxwSHCBKjxGI1UDMkNQRffTviFJrq/WtNLZOx+697//4x/9mBpi+/v61liJS68ttg739/rcg7Mfx8+f3nz/95bX99uXLy2sTIUcYhiM0fKh1PXqYn5rCXFghLEGk3FoxdnWYuto4uoPGoSI38Yru8ehh/uhDu1qpb8NUHTaGuwYHFWGh4swkYwwz9K6VmhsBBSADeS5S5KvpGETJXhAks5eXhcQvP7P8MAo4FQXwrH8Zm6jBTpxSuh5QhoGmIJ2moQlLYpWARxCB4Yj8TwRxGt3RtPhLCofS6WkxECxrYArZm1dNzqXMqjOZuCRIhIOCCZltmobPXCJicRW500rzm5MiKnNfkFmoC4OeDgs+d/h+rimf6KU8W0ScGnbiYAQxcappw9PkxZ2Q/A0mqrqWpuuSuvbiycaFT++OxXnw88iTYJvkn/tsM6a/aeYkLlva55Z3Th0aIgB3IubKjERi1xqfE8GZxMzMVZhrcQvPceZEnqedmVlilAzzSagaOdSezdPsK3s25h024TSVUvhEHu4ueFoMnPZdWdHsMxf7Kz907SVdRXuLoMoabPq0KliuE3GGbWdXOuKpXsc5deHuOmbrcLkhlFqXyOwXhiwPYOmB1vDjerhOPuxpnU8z8frJwVy/wiKBkmhLaJXvqaoZZAlg27bSJAFfpP38xeb+cpCxQABRlFKMRVWHW9JgkcPDF28td4MrUJgRIclUX9T3n0jZXwjdZxM2/KpSp1OQvob+3D1BNp8xiHmQadtxbcLilF7VWnMMYnounDuW1LAv7L7u7eWhxcy1lPO0z5ddb551a9HpxZqIGUzXgCB3p7PjuSCRmQU8n7l1GHSqx1Ixdr05aY5rfDLoX39OpvO5azr/KVlDuvycYFQiApLuEhkjFk+YPlNleT1ozM9HCXHmo0dEREqnWBjw6UVS6/rftVHJaJkgkE3lqZAwO9eS3mglqBI3qpHvxd65fVAhiLnCIYRg4bKJROEKigNObuQQRq2ot1q2VrcSIu4wMoq54Dg5EMxIOpGtECnDgyUsfAo0KcLgAqA00TThJmJDNAQHkZubB1UPB4UUatS+bM1aef3t9+3+WretlNJurRYWkVvbimwkklNOFv0YluPrqjZMg8BFpBbR3JT67SYekXJAUoRzhY5uESGFbm0rpQSHwkd4DztMgw5h1nAQu0NHDB199A/tbhbhRuRFwguF19e7shuCVTUAbiGNZePywo0rRwTlFlDH7qHdVEDFjFGllMgUaClSWMieDA0AOAlmuyTbI8TMsm2vEREajBAKOoIQAaUAOVkuHYTsfRBTCgwBZzEWIjpgFPoY+4/H+89uOTylav/X3/7y13bbSmkkx8vr12Fa3n/az28/9/dHf5hZjy/3++YwgzlcKdTHiFAPmwZ3IcSVWVqT0ggObTF6r6xNhh4RttseuwvBB4xwKMKLk6NTI9f3Dszlg4RZSEo1hD4e2T44+vDA1nTvSmwIcQsOJyYG4zTeVFWBpF1TwoXnKkmnP9WJfojDIxmoMHiEabiGeihInZRYiQeLhjmxM+DGuS0tRILJLAVSmHQGEBEQhmACB5+aqNMSO2IRxqCYPlURaeuYU9Z8Uj4TjgWIpRBHBDkhE8y5VGYWklQZJvW2ll8iBsgCPKEnn6tezI+lZzk8F+LUh/xa8oGEOESnTxrIKYJpxgoxcyG2nGKhAhawgBl82qVN9HZOm85UahDD6WTqVhMwGE4x11FkTM8MGtAgMfV8KtwpMs5yLdnre8QcpEBEGIwn7Zjua6s56TOihyhjqqVWY1ONs6eEImfnkViEmDLMaN5aS+00GZILg5YsJ5OQ1FLqWfOiUDnbVdkPOfOdJDsIszoSkbn2EclY0KkTWjRVIpL4PNd2ZY+AT3yeX6Jmnu4hZxdsVdNVPq9FEWfniy4zFldsQUSPx2O9yXWHs0opnu6gfDb+Ztvr6oCQ5McCf6t4T231xS02L7jQjMpZtmEnXUdZ/ltrJW07pLj7cHNXyvKMa0jiBVWAkfONgE/eARHIpyMfojNxIT1lZD4akxJ9joiuecw0WcgZRmYGnNmZo6simUVrdNHsz9nMUlhk27bee5HKJCfRMGGNXXKZ1tVZ/yQiAdCZF5S369B2Uo9P69f1Dk3KbG6C1A2Aao+w0m75DK8fD3OFCC2x/6mmFxEkw7puvwXxMwB0wUc5s6cuSn/2qbiQUlprfJ3dlszDKUXSe9EjIsRlDVUEu5mZGudIWmnJWfKz2f4EjsmLm1laUlOmb5xE4/1+f3t9PfoHR1IdqmrpOcVBxNEkY+6L1ELh5OaqbiM9b9A238ajtV2kA5bujCwitRQKBULYmWHJdW1b3V422Yo0MSLSYAHCSTxTDFnmc1HBpTAJTMCWvuvZBZkbayIqEhoAQSNawRDmwiQRBM8uAVOtUsp2B2+D6/3tt3J7SaTZShMhRsSAWXQ19B4cnAa+NjdDve+99ziD0wmR61qRct82e7lZtwjZeVhLcSvdbrfWGjEHwcJznAkmNHpRjpzYt1D3H/vHY9+j51aVqbZbaaUpSXWmYTq0dwMDJRhoUrZaSi0g99E/bBxuw2Z6SZiZGEiEuREk/DRZOb35PADhYJ5qlbTVYC7tJsSllFa4Vtm2bTvuj8f7sENtt+FH18PDwlCdmJVCRZ0c4MLhcYzDbPf940P7h2nX0R/v+Plt++3t1d/eynYrLOmp2Np2v79+vNz7eHTtf/58P0y//P4VHFTcGcbuSPczGsccGm8FtdStlMoioBg7tN5vVfXuuh/ahx7qx6GHsQ4iCydqCIoQs/DYwzNmhws1xi0CDJiFWtgMSyRVV7UxDKFkFAiWtGbgND5M7J8r/HNvGp5GoIlyptKIZ2cQ+ahqP9TSYUStIwZ8BAbBOMcnYRm2FZRSLSIwwSmY0wSOnE6LikAGdhNhKoaIGCnvyZLvzyP8pUZet4ZAJilM1R/m0AcDICnMDOMgm4TazN4J5kgLWYAzoOZk3SiHcFf0bOKI3GOfjJc/hVjpYjiRzdP6gRhwX36SchqeMhNothpXbX7yW5efhQYu9hafNUyfQMyp0iMiDQfNViNTnB5lNIUXCORQp029wMUWK20Fzu/45G8WBykgm+fcMqkZoICAnEmIiMkBzTY3pDDxPAwiYgpPOJsDB1kTnmmJeXVyMHM2Oi/XXcoTAC0eyE9bh9S4rNTqK7JZLb88w26fjFJjJkfVK53gjlWoVsFzd+ZPCQeend2TC1kWA1f7+HXVsrQv14P/itguoO05K+enX1dcGpGnZ2+ssbg4MwOupwiXaeVllL9mPFurp++bZDN4no20Eei7au6mApTNzadmKNyJ5DQTfgYRrpt50YTrVOc1igi64EW6SOuWtf36lMSI2Zw9pfd+9p2fvlx53W+325on5cu04Dp716t8pRgveHeyjB73bdtWGNF1KnZ9tbzKOEliVSX55Drxy42ak62YE5EVp9vFpBLt+SlnKpGs22YFGV15uzidzJZhr59WZPJfMmSvHF7C3Mv1yttsrifILTY9L6XH/5+tf11yHEmSBlG7uQMkI7Kqume+Xdkf+yTnXc7LHzkiO990d1VGBAF3t8v+MAeIyJ6QlpasTAZI4uKupqammmqw7Ep5dp7ztN/X248fP1Qbk4/uHt1M6Yh6owVrKaUyZZAXIJhFawbMhWth5gLLrdVbK1uj4T4w3ead0XDsu7cAA0ZaxEOwrqUsiyziTGFmoZmRARBZMZ7JFoRSCIlDS7A5aneDJO5whlmRcLx6j8FRAARQCGvwCDEU5ArrSsvDsSqWpd6QSzi6T+tvc9UwhA6wbRUDyJMbHwMAdAzVXfu2t+ewrj7Cm6GWWqUEM9Zab+twDQIKCcaaFK5IBWIL6G7dY1cTH67ORPkogr8MfgKQiAtLKVwzBOPrCwi7ju6hmwKWcHafPV+AYJZlWbSLDjYHArCX+RshcriowvbstPRbUaEVQALJjw5PYASGIxAJIwAXqWVZuKzl3t9a27+eH8/962v71CfbGOa6mwUAFgwK53AJVGPKfOdNn2pDheH9sS5aaq0FQfdt+/hkFBJe6xLmi6zv7+8RYxH5+Pxr3/c/Pz6bKy203IQWCQTDbDhRMBMAoTCxSJUiC4kAqBkW5iKIa/iaOsXdKjbsMQKUIIiisBb+YoKAfQSZImAlvJNJQD2abMxcgM2B1NE7OHm4gQMDeZiwQWB6OKSpwJxnxJh7L0Jaa+YMXPaGGADACcEPMlzVuo5h3U1Du3kDHwTq4JjmTm5TGWk4lUfzhidCcgDH7HAhAQSEA6EjIjEcWpFpWw9xKrgvPje5XESGr8MkzIEwggEymDnNbwgxPa7oqHAM0RFTpBIQFMQwncymYDwA00WQWHJ9TtErvDznHIlw8nHEVAJ5/kpulzBvzYPgea19OP1Ov/8NCk6i6wBeU5RwiLYAzsDTX4AXwkSzcRjoAQSiM5VMWnrhVAhKJ488mR4RdjEWRg8bPk8AUbYPk59Et7xOaSRihpgR7BCKTkAyDYAQINP9ZtM2Iy89bbECOfV+SDQvzbQSBkweXurJTqGffNtBCCEGQJkeBGfb6yVvOht/52Z2QefzsKfXgE2eG87t7fz1PGDv3R1O//dzY44It1cjeFJi41UYnH2uPFQeITNqkjKhw27gFyLt/L7XvzkJtiuswSOgKT8snuOWAAHT/4lf8VO5SO6TtrHuoYB+jv6dED8iHdE4hwMRmw8F0EipEh/U3THcEIYIs/eUxzhpyEn2nI7zEcRMggCp2y35XnjpzP7yTfkSuJkQIZm5U7B1PSduBsxpn3Y5OXyCmF/wWd4hcXk26eIKQYgggrDipTHq7va9lw3HGGxacc5PEpr6gnyyzzvwvJpJeplZrbMBfQJ0hWnZmm3rK8hj5sxqPM3kjvOAR7xY2shlozlnb5MOBDNzfxUh+fnDASmQPA43/8TxRA4oM4UzvYUhiAhG+DA3NxsRZj66djOttd7i9tsYNnaMsVMbY1dTZoRQQbwR32qtlYAwIoabDnB9ag9csD6oUAWS99t9ez630lQVIkLNxhhK0BzUIagyEgcsUtelrJVr7eA2muowM3PTgNH6cFTiUbpSDZJspDO5IE2ta6ReF3JYXwQ8HAKR2AFBOCrAgnxHdqgApZQVlxuUxaA0J2EGxDFMPSSMgtxBw9Q2BaEKHmAQI130I0y7eQvrfWxJfbk1HGNd0mVqXjwpBCYOIFgBkGRe+GnJnzYh6DCfQmFmAgaPWY4AFC5Sym1Zl6UAQDAZQvcIrijNO4ksCEXVlLEgEjJzqXUdfVPLcbekbuZYDBiExvYctHSuThJZNCtkae6zJgQnoKBCuW+Uci+ymo3RyrLQZx0BRQe14tbcYvggJ2DIeAQWFiBsMbTnmltKXaW+l0rISylq/fPjL0S8//htWW+991KW++2NGesiwNT1H+1rf+rP9V6db1XAs4WEiIBcaiZGpc6ulEoIHNgsGByQmAgLUopzKELeWDvGHmSMIBSFjWnv1hEoHALWYCGwALeM/5up4wIBPnw0JRicrgHgRBHgDAbBiECMiAzHTZjqd4AI8JNFOYYcJ4dCmZP5bX00swGprnPDcAJ3cIgZUOqRZsiRWcrgATTFXIdOHgCCADwcwZGEYfbskohxV5xBRnBdheEEIjPGJCYTmss4E07DfQTCyHy51xwhIToCAwK8bHIyjzIXyowMREJBhJiJixem7YKiUhEEzOdiSy8Xmallw4NCxGOk8fwsVyx1HhOvWDPmFOEvL7viiYlEAVK1dsw5YjZE6dvv4eHY5ID5BGXc+UuTdCmOX/vouclpaAI3MHezQ7VIM/gv3yzgEMxl+QrMBQkBCDDZQZqWIAqOjiIv6JDfYGKZJCQoIvjgtE4m7IpgDuMMPrOu8zOfojE/rE1PeiMOmTMdXgb5GcxsDDtE8N9m6/JoiUyu8CILEj9+ckrm5HhO4fMYL/Ows5t2XMqLivG4s6/w4nzHoyunF5rzxdYALrmPznX7AF5q42TO4BiRuxAzLxyCB2frrsxMNhvleNjO5b2iEQAWR4jQRVL1LSdgcleHaP1g1MYYFt81SXBpAV9x7XmQE/HERUZ2kkl5rWutp7HZSf7xEdZ0ZY/iMCU5z+2LNbywpye7FgdnTBejkPw5cZj7ZAOOb3HWSK9PewryDlx1YebsqJ4vGrXrOnNetet5gG9rEZxHMNV935PCOG+24yXnzcyHRaomsmaeK8b57kRAwg5mPmKko95Q6+rqPorQGlXXte83WyrGglixtyKe3kU3lkcpt8o5qgeqNtzNlZGdgxZe2N1vdVm5CCFjhOf0mXYkUieHnDgvTFi5VJbKLDyS4FMzN/OBYar0dKtMrayNay9cUDDw6P0GhiNmOWpZyQnbJCzBHUMrlVWoB92YLKiUB95/H3zfXNRZyoIIQ3UMdQcNxCBV3fYGLH997IECpRzuHWo2IDpxBAy1XY+4Vu17a1LqMtT2Z7M+fKiOgSB7a7XcSWAMba116brMyUMLcwcmIpZSSuEqzCJ0X5dBLiS1LmVd6rrWWpfH23p7SFlu969906+fQ3cmEgKe2wMwkiByKSsiat9DDJgowIcCjrE9P//8AHrj8qPWweyM0dV2tbJEKQXBCUEKyUS0c1kGXgmtkgSSQgwfztax+aa67RoApIFgERxIQGYBuWYxUBZQZeG6nHYpX9unE/Ky1vVWSuHyVtfy3EoA9WGtm0FsfWtD42tbyUvUYBIBrgVmV5eWpTKRhsbwYeHuGOAEGkqgASEoa8GhuKyFqWjsbo3BCQczLiwBqgrmMZSgIcodaSlAOc5RsAAAOdnwAcMQCyFUB3ACx+DshjFLEDLgoSIHZEBA8Km3PdajBEkvW2Qb6qPbGG4DwcHVbYBruKUHBM35h2mbK8QMaD4CQqQiTy4bIocz5rPDhTAg3DQ1fBGcXE9ktuuUXmGEIDmBp+UCIc1ljbJ/j8TplEXZ7U8saS++Cg/dWDgCkBmkpSbRVP8hMBMTEjMFocVsUqQUIsbMqUzmssiKyACEPPsm4eGZpwSICGYG6HQsu8MNDByAC7+EX3QJ8U3m6IJ1dJb7c9c4dykGDojhmdPH7pr5lUdsMRARBqubmTEAM1UmAFDLMmzkqgoHOTdGy9U5vbgOSunYk83TTT5LZGJgIgR29eGdiIgLEaylAgCBW2b0onOpImLh4IyYdOD30YTpOB86Ug6fvJqmPgkR7YItjt86R+owJ1LPOHS75DD6xcTyyjDlBT33+Cm9OJpx51+mh9m50dIhtE/pd3p7zulFj/Pj+eF9mrjnlJqdgO8KsM7t7ZAww+W3XlnLcOFaDkfNNIYNVYs5E5AYBMPxMAqJ0xm/ygshXeOcS361Y0LFIxznVagstK4IPgDMPWPX3dXDiCQrk1K4MqsGAlY5DX75pHby/KD7Se2cbqit7cdIIyK+fO3PaccE2TrczIaPfPG2barjaPZBapiIECCYyBFPKQDnBKA7RJhquJcZvvmSxPmRV5055dnKPMyI5VSsj9HyTjhnV82sjc7Ot9st+TMNJ6Y09rfIcQ3P2dK8xK1vboMwGEn7CHMbWpaa36v3DhilnqkGes4T1Ok1AkdciNFh63r6vkaYCOWLz2+3LMuRGp4tyEyceVmxIK8whvZmZgkB0+qkpIJNeOJ/pgKLga3gRLDvpm2M0ZDCzVUbuNVS1mXpnYWYl+LjqwouhVemG2AFAoBB4GBI8Oy6PVvbBijBO0qtoWOp9e2+eugYAz1GU2YGNQEswqUUKoxVqBAxm41wZYiAJHHDAbb2NOJKvJXaaulIlbwQS+UV62ZMgyK9pwLCDQMkJIu7FNVDAVqRB4pRJVjGcvOyNF6HMiEHCaAERlB01dEGtNHa2LZtb0MhzNEZkctRhHiRKJWkAIDl3IFqtBbbU5mKUIyOrVnbbTRNc/sxhgcO3O2mCEFg6F3HFoHh5EQFAIQRgwWX4O6RVvJSmWqRdZF1FUS+3fF+f9v686v/83///Pnfuw0HXgLBgZAQ5SErOFbSPWgPa0mUhIOr9r0FPXn95OWvWoWZC4JFDsL6iI6IJSfnSFJ6AAaEU8eDwoKy2tKtuiy7ygDejdzI5pAZBIAQCaMUxsLeRxqWKQaDKo4lcsybGUrzfbHdc+/DwnKriz/e3Jx4qf/4839/7R/blpJ+lFIImZxIECADLsDAs2pA81Jlrg1ACmQeGmquStDDug6NIWgkdCtSCnd1sxhs4R4KjkjuyN1bsPuNkBlVLYYGKJJEqBE5hhMkuZxwCEhOKypEPHmjCIVpIzUNn+Y0gwX4dAE+97+ktTIGhjNpHnOc0OCQ5RMRBhBKkKaFgoZnE+vVCDu8PiMUp6f5a0rxZD7OWUIGYJZXEOGrAk4glp/wEEjlDn0YQCAwohOKT3uFs+DOg78kzzHbi3P+8dzOiQiImdKoKpiYSI70xmMiMq3A7Ui39QgLU4/ASOn5pQt5VrT4/Qfg29m+cmMHIQLnInvwYnkcPn3TDjH0i0tIc2ecLAvN8/TNzuI6nobgQQH2bUINkqCc0VLpE+AIAKpGlJ4aQIiObAFuSMxZUjucTUxM1HVlR05iwFSJKAfrkC7/iq8pvysh9AusOWFrOmeeQqv4LrU5oZIdWdRJcpwnM7e33AKvOvc4tEe5gUmd9vSnMPw8oB+Bzae662Qr4VA4nY/CwfDhCbZ+kYidtEemwfz79WqtuXtmLKY1w5TkxwRt+QWvTv3XG/58RxFB8GCsRSCcbMBcFxwg62IIRwxFYs5ywAV5skKnXzweYzsnMM0vcqYeXci815jntVeb4LuUevA9dILp0/7jekvAkXVzftnrU3ae1WtbEy595F8wMR2m9gCQxiVXoxA8hjFf3wte/xQRBJiudebj8hnmWEAWTHSxDjkbqRBIJCdjd50qhWOKU1X3fW+tqXZEZF6ykQqZsHRoH7/LFv3op/tpX5fnMBWNUwEJYeGg4RAZLnTizkwYnwe0gWGgBmqoiurhyfsaTa470CMMUGfsF3iYRe+674MES93LevcpuZussw81MwUcDoxkECIUQlCYC/FSaWFww/F65FV9hBcGDS1An7U+lvXBshJpDoQIgjBWwVPyCAiI0nieejhIXUFag1FuQjct91EeSPcO0p2cqnNFIcQB0ffWxrDtuT2fzzHGMO2WbqVca11y8DV4PrnMATXAzbpq3XeqhYNpNN6+4OOj78/N7OtWfyBiqXFDsPa0to7CG+FoDZGEyiLFCcIRnUJzIjwVk5VKxaV4ZSss5Vbv8Ptv7+6gT61vf3H91/6x87IEoFI4FiwV8Ya0o7Yim1sz72YtL2NvTwrtqN2+xvhr73+v248gHkRcal3WwkJyK2WluShDpPk1BVEghZS4PQi41rF2rUGLxsIdLIpCaAB6sMWRp2MaY7PmhqjCZVmwhix8GKLQRh3b2+MPwoXqWkg8igV3DUO4t2fv+2gjOshSClexUoxYMDAYAcAt3ELNh1vcaUknMiQEJDNSpGHQY3ToDXaggQhQMtcuGH0pgMAdTXsLVdQNqJLKAkSCrPa03nWYg5NAAAibRTg4i3AlXllSHegagRSChJQriE2LKM8l8tyuwCxj8QARiZEYWAPhMLmJc8oPHQ9707RZR8ig+OxguFtAzOmSIARgROD5tojo2UiKQKTXknwOcmbjD6Aui7urGkAY4snznGv3dVvKX00vC+ZAZrdpiOVpbAoY6axw2hEhQAQdcY4A6BYIIVKJCDkticDdCQPACaZ+CjGlUGFpOmoW4eGqOtJNJxdoN8u07zPo+gBekIE6kZQ4AjKlmGvCWoI5RzYxKIa55mGJmZhYiMgPHT1iMMAMbgwDwMy5pzmzebAsx1aEOR6ZopYj9e9sj4JHOEQEMmEAZS8y3XoAIdADUAAYRNhQAtids76y2XwhRMqRt5j7EEGQGzjoCQIsHEzRXw2UyUiNY27/EPGkJBQOG+7wmeUCc6ojJXuQ1TsEmlrKQq7y51/U3Ga5Gb86O8mFJK46/SByAz45Dzus9U4ddxxyVb6EGp2K6SuqPm/v691r3zNG4ehPXfBiZlDG+frWJm3pdpq5E6JbxLx5mGR2/zwicohhou858hURHqhZQxVCYOoJzFFzOBrJp3TLgakWYXNIrQQimkY3dUBEApJE6L/Ao8NwhC6ADK6818k/Jd16sIaTsRujAQAzAmQyhKsqBAkRsIR5hE+kP0u75EQCZhZZPpmOOXUYdm3ezQIogACFmAQjLM/8ydgFcroTDDcOP69RGgSEuYcHqYZDGIQAAAYIcaQZn41AyO+FASIghC50cCIKgUQvL70jdpXNQoTc6+GWKqpq9g0yxuUs55QQEqVRasLhKdJnkHm/RUTg9BY8Xmzmafpn6rmOE0spiIuZ2VjAu6qN0VyV3MkDUnLu6q6IpBASqA5moQER0R0dpXt7Dv3ZHcbW+UtrvUXUWlGKLFIaj93DY/gA8lKKMyMREqAQFqGlSGXvgW6ALkJk4iOzWEEDnqN9tO2tL+9rvVPtMBR8RNvBGoACASGAQDFElK8AAsj1lswBHcJLbk5RFOvAGrSOIiMKcrGysAiZm2zKMvYdRkVVEQLFyAAVwWXl+1JLWQgKEdGBZcM1bHXTtsnGFIuYDe2lbfDxs++7VflHKfz+KE1k/6xPRB7dtqesN+F6KyuvK2Eo2FBVLkg1UFAQBKGgkbcwc6fwUlYSLszrg6g+lvJj+9w/P3ZXCxsaBuHGZXBRF6xLxI62k1WzZraN1q3vn/tH+fzH28eP94+/rz9+o7oAC/Byf39fy/pYf/D6huVOsiAWwNy1PUAhBqIS67ICF/79xx1pBIy6lV1jqA1zwND2DPRuY+/b1j+f+z4MEaneVpMVbQhzBG5t222r289hsNQfS31HvlFl6Ob4EUHLclvXOxE9bvfH8hARDGYDVHVyB3ckhxg6hpqZ7Town6FCIhS1mkX3eLanxhjgDOFM6t5jRFdErlzqKso82LQNNwUbhe8eRAGGg6KH+gBA5FIeZCUiIk0NSFgKy9r3kZ0UdCCG0xvyFLd/q4XxtWISIwUJkmNmk2M4eRACzhoyQ7uy3RborodYmjyzLL4LVpBZHC3maJjgRBUJsPyoPy8kx6QZAGDOl33XMMFlOH8uRqcdV67yKM6uCjkqf5Jq1/XqF47pLIMzmCUQTGOM4Q5GuZDVVJG7qzuYjYkPINzD1FM2hIcbFgIa21m7/8JzxEVId36eyzd82XGd00nJQ4gIp4wpXg3HiCCGfCLck9Lw46oeLtv+sio4yaSX5iaF8nEY38+ZRkZMCuo09QB3wAwHo5mpGSAW5JoKG54xE2n+gnwOpX5jDiiYUXUajjPjOdJ1SqlOQiLhbB8K4AmYmMt8L7Ra19wrEXsGdOY7nr9+sgino0GGBZ0tucPgVNLpIP//JKtOoJ//lHRXNiLjGLtLZX1EnNlEv1x3OAjLC8X7mj47L0p8p0gvKYSvcGUiyRzVMQZEHPmPaDYA58sY5vRi7voAwDhrhXxyI6z1DgCpCyDKyDy3MEJOLWQPPZrPVkqxvSdtRMTuI/5NfhTTD2x+5gRVIuXEkXAYnuWfT+CVPxmOFFGTB+19JmRfH5CUpZcSzAwQ67omQZUXJQ43spM68vCT5TqZofMx9MPXtNZa19Jaa6M/n8/b7SZLpWmx+0oviLN/hwieTUEfPvIGSMf8UzSWpZdGQDQ4FGZHZLsmzZb8S/56ROhsvk9/O3fP+3xZllJ4jIaI6Vh2pe7wognLQ+WEx/1+J6JaFo8cIzUAOtMzZypAOvAheK6gBhYOxLXWuN0CxuhuHTjcwxlCIGiOwaCBI4QFWoQ5qCEAmvsIGIEtYHcYDqNt+lVv7n/Ib04otXARYfahGKAAeMQp5FURpMzKDXM3A4902KDW3QKJTL17bEM3s921xUBECmva97BG2A3QCZGFhIikxbQv4giMoNTAAAoAFiouFGLIVlaW+yZrr0uU0kyjlCB2hGFDfNhwFCYr7gpMpUKpVITBmbLQjZR8h/roo4xuGE7BGPdadKkupDZ+fuy+Lr4w9Of206O2zu973N/qGIPYZOlbXW8Pv99huUupThpcyIMgBjiD11qAoBT2pTihGhbG9e3BsY4fRv/9Z9vH3p55K4zAHXxAxQjCSjT1dBjWrW/tS+1JjF8fj+351/3rj/K4U70BlX17v9XHuG/66PebrssbL8BSufAc/ocOviN0IWPCH+93pkDEQvvnV//s3Zt6KA7X0K77c38++75bM0Ug9DYUnx1FRo47YZHbWpua3JbxuEGtNzfwIJZFar3BDfA3G4+11KUsBAzoCGG9OaqTdwaDaKO3YWoxhhJRWeoKa2FBYCcx0Oahrt0Gh4EBExUEclwX4UBiLILFOTPKAQkL9h7hKjgIlTPHrO3Ci6GeU/EGoQHsCEFZ+wFlukNAuIcSpHgZzqUweYJf1v3Mt0DIuTWkQAvCoLAMeXQKBzAHxLBkbWDarXnaVgRm+jNl4tsU9k6ZNxPATGD+H4BXAFCozQnsmMs/IhO+FOgBEWBzdIAgt+S5vBKfO1k2T+fGnwTYy/Z8fhw62ojH/3IX6apqFiGAFBI8zRfAEeDow03uSM2H+hgWKfFGE8nGW6AHhaNbTCPpbAEa4mFedmwFeEjgMZu7Pu1eAcDdzkYSp/z86D/m1DRiMAIFmDmCnUDytRvpAACUV0LOxH/D51VIdZYDWLi7BANAWtWegeKQ2j0DA3OIkDnQEUABjoDggGGZ3YUIAHZMJucYQZr6Ih2u/cwTXJ5zW0Ryioc4/brCLJf0CVhzCxYiSZh1MEOvJlJO8l+5rhMfnGzW+Td0MWvIZuLZZASAsw91lTxHhI6WPEda0hAR51yXCyTxd/JA6Un2vc/1nRzCs5C4cGPXWcgzxScB5UwQF54eXcxohh6zSRpX3OlzbgYRLadW3SJMeyOCyDldSktEh4BwTz9b8BEWGMToxHMByQi8bLTPxy1RaeZFmJu6a4BjGqELo8zuZEQgI3HmYwAKMSPBbEvDFR9P5kl7+LSeQuKIYOAqgkCCRJyIpABApK1SzEwMPEZ7MOAcK8jHVWZRBOBhxySgiNQiyhw90lq2ErGIQwAwkmSyaj5KU5mKThgYGB5u6gD3tU5LLSEvbDaRkGlXepnEEkuUSM+aI3oRAtxcfRgiCpfeIfVeta7p1CVSmcDdTdXN6DIQGnOYd0mXtawVI3wMY3YimuPsB56bVWuWR9mSCOCsM910aPjA5MyILXLOy33G5AaGZZivhxuCuqvRcE/l3Qh8dn0O7wCDoaeccfTBVHpnAqc5+sBOEORIvCxcBJgNwgMjwA083Ifb8FAEJgpGkAh1J3MfGn3YNvquY4+OQAzQKayIG2pgeA62ISNLOOA0vuZsCmA4gQEYcngyeMS0LOv97W1963XthJv2CBuj9T71ksDIQcKSUSGZbwAR2johE3EpwrxQl12UcISN0VEHrnW93QmCRxvP5w7QIcDM2nP73LdHbw/GSmgEI7DHl0jptyfo7+UdC6bba+jwaM1LqbcHllWWkLLU5RYA3ZtZCGApzCg/fn9/7j0+wZ6f7tbBW9gI86FCVgg4Ms0Z3V3HaH03U+2axnGrm6xmIPuz7cs2Nh2761v4O72JQCnz0cIpSIkwQECC+7oyIlFh+NL28RzDW5ha4TpMx7CRSsUcTovYxx5m0DTlC0zy/vi90G3bPlwX7SLFMqN3Xde6/u5eXd9H69ENM7cgzEF3QwTPBE9120fvw4aHORIXwCBxciaM4ayGBCUUbcToDRBK4VthkkIh4GBD3R0MC9OyrFwWBUGK4VaUVi0eNgwc1WOAF/Om2gYVT2WGBFGhaVZvARFumMGsoYiYrr7nLGF4nKajee9PWVoEeFBQkm0niMmFjBADPLLCTiNFh9Srmk8FlbvPiLI5LPhaFq+Ezal9ObecPvZwtEwGSoT2P9laHvsWm9k5q3/sqa+pqrgoP2j+Fh08PR3ILzVMioh+aIcRUYSrFMaJDg3gmK5HupjlzLgKj3APxkpzmPjFcqXa9+gTENHVh5G+t6VeIBIJAOSYjTq//i8oOV+WXZtZmiPapUUF7ge8+8a4zEiWdKGPw3vN0SOOiGwgpCCMTFxCijRPDwcUR8/lkugcMED1NPXI0w90tIlPjufsJJbya1cu42UOF8oaETmgSmlLG3EOn+X/t9bSueqqd0nfimQl4yIIg5etAP9Cgdjlx4+ARbhY4S/LkrdQplanAB8P+TMc5hcvGc1lwPAXogsv1/oEf/D953qH55HPf0qwNaHeodw/yQ8AEHzddWfFc15u02E2wpRoeuAREaIAOHhYqHkEkLm6W0TN6kUIuiazOBvceSbdgYh4Hl8vBNVrpPTY7DF1SzgjWl+8r7uv6yqS9qE54TFVeuu6ZiuYmXFaR4GIAMYJ0eDgY18LwvfJxPPZT+E5HcLI/LvWWsq3CwsQikggABMGM6Qs6cU+DjUAyNFsmqcWAMCGnt83LTz2PtvWyee5++kZBlNz9rINu94e2cseY6SnWryWMbw+/idSJ6JSJs+ab5TH6T1vP5Ty8lTLGiD7yanqy+0TGG3EMLPeMBx95OdgwEjBphq4JmkaYGkm7Y6u5uQGahDN/fnVm+mwSH2GgZMpmn/1feWCQMx8W1aqRFEMEdYChTEgTKcjdTcl8GYxws3NyAxC2S1Mwx0woGsMhaE2LCrPjLZADkBz14E558+CIgrMwAgyp8JzCxwMA3xqnkp0KYiPYo/Fb48t4OMZ2kvbeQh1QiXUbLNFeIADwsBwNI7WOlGOItXT77/WaoAJlGmV2/q4LSVc9337+voK7+jgag6u3H3rirtpxrxArasg2dJ9GU4j52IDwcBGG9pGOOtAKW9LfRMpwcHhHFn3+lLZHfuCrbtjH7ErtBE9oGMYuyIMARSkQswh7Kv21i02GQTNYONBI8KNam370rdHa8+u6kB4B+AiSLmJpqCEwiAMmPlWbwgSA58f/ZM+mzsGMpQRJVzCC7CziLqaK1h0H44NOABcpC5ctexUR4dn2CqD63J/rPX+9tuyvBHt4KNt/fnxZS0YUEfb9y/xbCDnUICTBwdEkFAhlAWXBdc1Fgpnh2ELW0W/6+i9kdrQglbDF3QkB7BIj0GpIlhWKas7lRLryhHmoQ6KgwwEwAO6R7P4UkdQJbAeYyl3oAyhMQ+LMJxidoYokAMeQHNe3SNitg/Mh/nwbOS7oqcPBSAykQuSM2M4QCAhG07ze0EGBgNEdAvKTg28ROIHupp374GaE70dQYOXhfKYk//3heb0zkmBBGGuI4zuHtOZkgFAPdinfPzbKp/qd0Kg67wbukMyUwCh/vL+rrUutZ5W8Gg5iWl56nLp88A4LOlz+WcuzJgOrecWnifD3dPzhoKJCGgOPeIsI17fMZESUTqoXHZTgHOCPTmkJOEiK37IeWLAIIPIAb+cDBQkObJlMo3zsqPnbnKEPc64R+TDCdYIA2IOFyYCS6gBZohkANNYLVKok4VmOsPSweHFIUtHJGYspeJFv3yeJSRBIkQGCKJgjiJzPA0mgThdx0ZPb4jcgfCobhPe4QlHTqfN6+4FF939aez54s0OE858TfIrpwb/ciFelNW5PZ/326U2wFPw/Qu0OtHJuSUTEQQRCoJBhLsePdmcCiwJTzPKNi+Ce/onw7V3eZngO+ymLDXXjh4JjGkCCLQT5EF4WBZP4DNYBhHDhlvOKhFOcpiQEVPPF2HGiJ6AJxvfpbAITZTMAEjc+dDwfQOaafTKc5zNz3TKfMgXYUQZw8wMCZkpBVVCfDKax9u8VPZ5SukI21ZVyNQLYsypUSICsDGGOjFnOuELzHGC/0KMCa2ScwKATEVMcz8GDMLn8ynCIiWp+ZTA0/E1+tjJKMBKKRip5kifc744puYK5uba+4nDpjoNLyj2mnCQ5G5cfFbzMckk7mvvFU6J7aE1j0xi80NGedrh6ggf7koAhQkZ0/ERfKp+EVGAyIPzgXZEI3XolsSGg3kmHKg7YkPExgUXKIzCVe5lIam8dgAVjsKu1vYnDnMNswjXtg8fHgaODgEFqgKZmxAXJKRigRqgHopYcvIuQKhQODoIiqAIkqABIbIT4/FIhAYMKt29oW9oBWMXGiwRBeVR2VxNVsFbpV5QCxnT3hoFZKiLWQDSIGMqZhYINMhHj9sNkTMMdbibj94JYF3XtcoKodv23PenpcUlojiShfe2g+PoKGWRhcQQAjyd8ocsTECVGQO1a2+m41/bU4lvtaxvP35fSUACiMBGRETvTj2oOw6DYdEtesQgidNaGxEk7VhZnGsPc4XRfOMR3FGhmW59FLl91Y/75+e+tWERhMPt8XiQYBEgEggJF7PmDqlCWKuMxe+1LEW0khq6ay7ZgZShdQAeOsOZIXlId9Bhex/yRPsKqVAb4SJCj8fjb39fbg8IfCJY/2qfZfHNyePr66P1TwIkSOVnBGIwIkDNWpG4ynKX2yqVCEfwQHh6hdAbPBAszIfZ7o0MCDk1j5hj9FAgSCMyE6gWibBhoyt7RiwCAAOjIVjA8CBzJAaPDDhOlamCa65LjBwRp3tnOIJTui2BzZEw0AHa0TqaeeRWhMdzjgypBjekxFJBubcBn4tCugXPMo4JItCODlc+3gh4DuQd3lcnOYHIiBqzgZlUWoSBQ8CxQFx3PgASQQsPx2zIQSoWQvrRWnr1MQ/+7fhGydujWTh6OPnEKlPSMf1+bPhhcjZ5kVm1vziMc1OnWcvi93I2d92rqyTgYasK01R/utVfmJgjh+90hLqM+8G/MVjzP49d7UQY53784ixPy7S5kUzlx6lG8oC45Gki5BjdsExbAjrSJM08xnBEBCZmznxnLkQop8fVN1z1Pzm35b6b2RtnjhMd1IWrwWFbdTJAiZlOBfd1guHsIcK0iZZfeK+4StwOh/pfdqlkL+BI/Tv/idPe8BKziKdw+4Lqrsc5hkgu1+jyk2f4hHqpnT+Pk6Aw//O0ZXd3jG9XPx9Vd0+blXm5560+nTsSHUcovnigRGkHJRQEPjAiXHHqfxTCElfqSIeqguGMhBQcjJzAgTIsKMdmkoM5vLJeZOdpOUH/9pPU3TlVmrmi81NRCJejHnORinHMWHyXbJ6P4bdnJOZ0iYanNCEnc48R14AjyDYi0IMA3RUBEKUwMvO4YOgwN/AwD8geP6Pjvk/gxUUOe4h5T15p1FQBIiI4Xv/TfeoXJ3y3l4A1dWxn6Li79yMpvNYqUv1A9Kc5sJkRRfK+7mqm5xAoHuKOiWpn8eW9D5pqKxoRGMFcsC4WDmoDB0GaI7OkT3IEBWI4Oph7uHePriOTJ6ZxlsIwiBiI3BcrJgWEEWvh+7IWWQpACwymEcOwu2k4aJibaje3yKFJoFJYAsqAwYxFuAoXqhDihpZFHokIVuO1WAFhLutSRFimPMURECmDgtzdm4IQV8TBPMy7tS8am+AbgzEAp4DVnCMYYGF+1HXf9+3Zuo7kTomIkHv3ABCRZVlG09vtxki1cG/eW9/Q3d/u9/t9FdPx22/vn8/30YW9MdMNqRL0tnuYtSFSl5Xqcr+XZamVDHVv+97rei8rMZbFiRBtuMPWPz639c87LbTeIf0hsO34NB5Ke4/eYygoUEhlZuxb91B3DwKNAHcR+fF2/wQXIh3uTjbs6+up23OEdxskz9bXbt0gUJiktNb677/Vml6/UBf24DEgIOcWZ2lSmN4ei4/+9XxypXtZYSFqdds2iI5CgtT7DliZnNkozec9to8vXyoKlIXjQXe7E8Gy3B6/LQMX020NEUMUbfs+Oi0LD6WSCWLAgnBnBiyIHCjLclvqjTnb9FqFFXh9473/vMnqt3t//vV8/tndFoJnH6UUQnJzIAV2d7duLMu61oVYmlkM9QEIzSLJ/6zCxxgKrqw6BhQTqcwcZtq7uxauIsI0BQUUJbd+N+06tO9zzRvqo8fYwbrpEymAKZgABHPpRAFks0HgwcGcIYzhgMhCDkDXOfYMVoxaBSCVQeGe0c3kCAxnIMes+dADItQBKI07ORN9HFwdhCLcLEeqkJAwfXQieZ5ICv3o1lGITBcAVQ2MbK0kACTAdJtzzyg6O1s6hEiZ1lXKDLchMe1qllEUSASW/bL5eibCaf6JBMGM+T8AT34AZmSHR9rYM4rQ4beE0zTUD6sMRAQHRGbyF2mCgZmSnXgU5uAZ+AVzvEBbzDjqCIgcI8u1u48Z5wc8+7GZIYFzhhHQg4Q4XSOO8f50MAMmzvxuYS6VhBGFHDf3zJME4FmCICBGETGzoXMGAoET146RAJpPcuKY4U89ipsqHIAGIogBzAPMI7Zdt/3r3MWRcFnLSQid+7pInXaRx2DpudEeUihPgdDVhXJd12y7J25T1VJKmG9fT7U+emMCRMotM9/uTOnJDtEVeF27q4TIBDlUmhfu2k+EdEIBzPQLBK+1pqK/yEIoHnrieAJEooDDod/V0+vYgJnTPZmORw/QDQCRRKoVAx0+3E1ZyDK8y83dVV011LqPTgwMoKo2ePQtIrSbqfXWe9vvt0etixsGughqDgLaAFdwtXBwJ1lKKSQcOB0Ew5CZq1AS1dlCmQ5whIUn8eNmZweNiEoVFjJws90mJYlj4LLckHP6+NX3P++lVHplS3HynQTZLDezZrbe6lpXEW5N3VVtDluUWhFRVQuiVBaCvm95J6xFergFjbDRNXuLhVgiiGjvLVqkt35yTQAkdUU2VSVjRBSuENMzVo4gp5O1mk6nI+2jc9AbzWLfexYGROOsH5Kkn7X0JVDcjzxTd884eFWMZqqac0xFak6+xExPo6xSqmBYzwyKsgg5hYZDkAUUWO/oEN278ajmrf/sbfPort4iRriGO7gzDvOsMySiAAwD6IS1hAYustBSmG6l3NZlWRapi5uo+/P5/Nl1x9bGYIvMuTT3IrIuq6FsY4gi3kiI10qP+/LbbXlbpRZhDAwsXJg50rnwLrfbbV0qEQjn6pY5c0GpTPKA0ObjK3pVZuVqo2L7iO3WRXYDbXvo4PBCvBbBtXpfMMKHmaVZVHcbHmhKFlgqu1muigA+Wm/bc28bRul7c9UsQpZlqbUiGDoUggWpYBwFBAsSA/I5NUgBCFv7HMOWgbf7j5ssCxWrJaQuhGjme6d08hAIdrnJs+8WY9i+296ta6iGYyhihJuH5sMK4RgGAGtdCBRC1dG6q/UOuscwMCkFIFikttvX1yfxP3vve3vWKiJ1Wcrjba0FkbjIGq7hQ1V9KCPciugq7pKBv1EYpDAvhXeTrtr1tliUMETYw7I1bUge2iCK0dP0Yd7C1SIs0AmBmSQfZheETErnQuACRIgstZS6lrIgV8JaSp0PjKr5UO1mi3l9LGt499j629u+3d1aZbHhpSyFJR0XLWIfgxC5IjCJlAKydKo9hvlI4uR0dtRhMdgH8KLoEcVU1E3VIGlhokwIwuRpEgaYg80I3DBIv3LQETqyqe5gv1ToiFiIATjAIsW2l3ny7691AAzMxBuMmFlCKSqDAEM4vU+PqUlw9EQ06U0fmAOUiId9olwZHWAkBrD5Zt9tJq6sQ8C51b0Gs2dv5UL/wHejgV/YtbOPczIov5BPp+QFXsOJhgAEZGnJQFdH70hxVRpMJPN1/sTpXI7ptxb4OldXmyI/uRYpv6qFTqrp5PyumqHJsmRSRbB7Zkk5Iga9pGP+nUIjIa6FSuFSEJgcLXInmJ3ngFQ4WQS7e/iLlMq4ktw5Dt/RI4Uz4mohe57YayPyVLHk7nKaOJzy/Cz9VTu8WjDfmD93T0XiiU2vBGe2+c5WDk0boTS5t/NCn52dK8A60/RO1RdcIpzPfTGOVvL1kfm3B2f+vNCkz/no8/t6+PVERcRB3ByTIzC1lye5PNtxhGYpvbQIOpvm7u7Deu8QFmEWjhStLxEhWNTNejOzGSAthalYGKXhIBzmCGnJfNDDl2YrXWhIYmaSYmbqdnI2EZGSd2YmWhEjm6qq3cxyvkK45mCmX+dkv1PO13v1eM4ujxWcuky/3mORoguCtJnHYHDzoxWbn8qPwQuHAA9FhHCKl2e9qnbVMhlqnIOEPG1ZLisM/fKxD/A9raRPXjM/ZM48njHe+ed8wS8CwYN5fbnE5Y1KRDwROQZR5kVoeMZXMIEGH+72nKpmC+QKBMAsxOzs0qG22HYYwm1/Pm0fo5u5GQRCcIRA6oUJgAMZAjN0GaUQMy2Fqa7LclvXdb3VWxiPbjCi81O5kgUTUoBwLdVDqtxuBlz7MEUUXktdKr3f1rdV7oUrhbiTOyATcUVmJqnL/e3t7b6KkAgJIhAgpfNmzI5p6AhW65uSDCxeVti+sPypHk/HrQ3rO3lUQqq3CiJGCxcOQoAPtV29b6PpGD0soJQCBoVYWQB87G37+no+v0bhx73+/uOBGGOouxeRUEEIIRDiylgXYRGkmlc9As1yzTBECI2tP02JebnLUkSWsvBtXZa6MIEO1WHhIAgLgoD56Dpa31rbumoeBBmBUzng6squYB1ycm2urAjuAWHmHYaGGjkxz+KGsOvYtk3V9/15+MHw+4/H+9tyu0u5Cwuahw21oeBRmJdSbKnbGMiEWKXGIrdeu/cRPjx6Hx/a0ZV07KppRKXpUhrUdLT0BZrrKRMip0IoMO2ijkUvKKNmqyy39XG/vUtdarkRTWHjaL33nYSdmHCREoUBcFf97Psfe/sw1dG1lKVWIaLe+7ZtZmFwtPALBWFtIYWoOXEgECASO4IP2/tQIoKlM1QyQaT8iETiQe4KHkepROEUBq4Yhq7hYcl4Z+FuY4AqueaAYbgfjqyprs22BQNa9k+mQdAMC8ytZXorwcs24ty/OTd1n6veBBme0aQeyAwxjdqOrS6XlbNHhwiMQMi5hJG5w+U410YSEcaUYeXSPDfdizR+bpZ5NL78XAHWlUm6gpgIOyaV5hbvoe4pYCNEds9ApWBmSINTOs4IOlymCgDp6DkmQky2ggAdgK946wq8zjqYJdmaK1icH+DfgNdrvICRiQhDZjmUo2THWdJMhZyzj8jMUkRqxVqDKwCQJ7ZGdz1A1Zwam6qmePXR4nhBROg0oYiz93cIWn5FJOeZz5vzBFUnpZQ7+uliOuuW2YvEX155PQ96pDrCkbF90hLn5td7R3wZz/3yqa4N5WSN6bCxyINkmzLRW3a5rse5XslX1wzdQwOMGGrN8L4poD73bEI6P/n3woDTmzYZr19qgxMBQ85h4gkc5xnrveto7ppwrdSdgrhKuJp2tTjlj0xpqWXogRjEU0bgADQFpjA9apizKWezuY8iQiJmZGEAka3kcyLhyJDGUkW1a9PRu1nikcTADm4Z/0MEzGgGRCCFWCY1nKeSKaeDM7o20eFskbuHu+ZgFkDyqcqRbmXIgAxoNsM2Mm00dQbpd3Att847aowBMzoJT+08pdzUvt02V3R4Jg1wTiJdgNc58wFHMGUSvXCwXGf3mY4Iprza5+IWMXWkKYRDnNZfAASRp3EGKyShSMiVINXaDg7gtdbbrdY7710+N/568r7Lk9D6GLv7AAsAmrm/eDg6ElHhQGIhLofofBFe13W53W/r7VZvjGXsI8zaV1UpBiHpSCqATLLey/pmQJ97MwvmspS63uR9XR8rLxTkCr27DQBG5lpqMC+3+2+/vf94e5QqQlghJ64ht4czRzcCzG3Y6EN2GJs+fyqENd2Ctg5DHQwrllLYuSxUxnpfy8LM4ega0V3V996aDhtapYyljloBPJnqfd97iz//LP94rAHDtO97dwOhmXgIAACAAElEQVQzwzFUCKqUstzvS10WwEXVKcfJhqqqsRFAlaJba9te5ElYamCtpRZ5LEvlIgjhbjrGsK5h5Htrz/b8fD6f+9ZyUJYIMVinhziCY1igaah798CDMA/N9LsZwasohTlKJRZHMvOGmkJOVFUm6G3z/kb+qLS8PQoA5XhDjG5tBx3khmAERZgJRZjui6MbxjDdeqNt662ZEXTsHXMV6KAS2Gzsqn2MvrcnPp3uAT5wmI7uvbW2bz3bvmAWZs6BJkFAIpmsdMtmVrcdRkT3cCPkdSm3pdzXgtwj3tV+bPvHtn25g3CtiyDitn0F0r5pIANxKrIjpvQ+whkCBYlJWAJR1cF7BIaFkx66b0IonJlcBJNpCooANEiO2DQRE2Jq8dXcLHS4WZiGDTAlt3ADR5zs2UxBcc/4x5kPOLc3/B94lzRjyCc/EAgIAPy7ZitL08CkQeHkQohIpkE5wTlPFHjZqK4cyVG+H4qiY8TpXPVegvdzruogGI6cnzQhJEqvjfNQF6p/khynr2ZOeGXd6gx+2kMcUNHjNS7377RcvIIEKMFKjjWclbtfyvTLkV8rOLxUUC9B9y9vdz1LRERIzNPzBhwBOL1v8bBGt2QvXps6kUzdG3DJ8h/xEPccs+sAEH567seVMf3+wV4GS0elfhhPX7DC9Yok6jr//upBev2C2SU8Kn6Ol3wQj5tlCq7TgA2OacFSSvicVTw/ajINfKHiTsnXqbU/P8852HjeIeelmVqcS4P1vA/jyKM8v/WJ1eDCe/37Y/XvrM9RMRBAhiocUPvgBUUkGJmQktp4ed25u7lZ35t5z9Pe962wGGaX1iCCIKowEwIFOwSRkBtRlWJxwJEj/tmOTAg8dGzJeKUQqmu2PkIvgAGneSiVmklfpyAvl52Xq9n5dJ8GWlcQ/DpdE0NPBpeOKu58OvAyPUoYBM5cr8ZvAMAHx/nL9T0KhpkZamYwCwM87xCcNlVxvbiX331xqH4Ar+tHugoQrwvINRTyFHj5959ZZ5+FTYbcM1FmviFxekMAhGMGFgF5ICEykjgZlyBAlqUE35SXNdYVnp/EEKN3MyNqlqmeBV04WFyNIAiiiEhZ7su6llplkUPyzsxcRERWvrFT47JIbVIcSVCYkQiwSr0/yvo2HCx4jJx05sp1qXWpSwGPNGN1NYzCxCux8HKX9Y3rm9QqAlABICAsDMM80q0wR0JyCeg+uvZtfP3c97bLs0UZzsEL0yJcS6lEhAua2dvyECochYAJWKiM5jlN4CPRVkMKHSOpNbOxfX399eefhIYUrTU3s27exlgkCpa63h9vt8d9KI+929ZMXVWtjyGDwN3BhhuO1hrJFkCy3sgCzXEMgIIA5KE6vtq+WdvVPp9fH/vzY//U4cy8lFqF0mz4kIU6uAJqgGb9hjAD6QKB2IVcQT2aw9a9FC+khIizJwiUqU+oSq4CSrGS3RDNh3pv/fnVnp+9teE6p2I5iOtS18rCAAy9bT93UraP4vsIZRvgMUhdOwK7NdNd+/7cPukv/9LKd0IybN0/N//60m1/9tbN1UMtVIPcuYQpghNlvrm5Dtfufbe2a4RXkbqsK6+3ZSE2hFvgfa3rWh750IkIEADyNtyjOwRxCcfRrZuPMVQHYEhhElyWUsvqSR+Dmw2C3ZwCLJwQivCNsBI75oU8onUAKMLCAiIICFEsE15SOuqKYT46qIVahKVBY2AcjveUSTueI7ZzapJmTGKa4x1wzP2YXY7ZbcmYyG/bCQlEEAJGjJ69OkDAZAk4x2qnr5W7e+bO5zQ0BUWgzsINzr1+2gYBIyJde2zTqTVXwBeUmSGU4XSwjFdYdt3gc2rhrEfPnNqIAoTu6DQH12OGYU67BgiIsKSBPAI9o+wQEcOvBfT0Szo34+9NwtdmP/tHmHrz19/j1ReX0gc10S2f+IaIDy8LRKLMLEdECIckM80jDAgRGJjk2NgS3ubUpAdljPvZOQEAn9qmPNrU9sHhYXawJuliOnHJFYb+AtR+sYg8d6/cbhMkHZOwKbqPU9SMGHzigNn1m5Zdvadh6jxgCpn9AmjiaBFOPuIgFc5Pe/rUX8nRX0DVxBZHuPXhVE7HveepbvQwcKcAP8YVE9CfvqyImBX7lbyMmSkx4ekx+SgJvAzNzWaJwkTBxQtgEj+Q2vuw5GxPktjMh/VBRH1voz59WXi5Ezi4muU8flThQAJIB+VgJmYqyStkVy7d89UjAsPnM5h+v5AKSJajZSw1zAwDwzg4ECMzzZPNYkHWeaIJA8IAPU1OiMiERMgMmVEOL/6UTpxsNGJwRj6EMpKIAJO7Bh2JHMnSOgYzgAizMBKhaVhYeLjLOQfARyz3L3fprMSmJYSnt4CIkOSqFWdn8KxJiOZs0sx3j5ftFv5PMx/nH65tXDp8wvwwNElbr7xJs3pMSdcsOfOBPiLPiShofjubYV/5SUhqMQ1mroIYvADVNdZKBR3DfThTaX0bqhpmBMCkTLYPbIoRQlCFl1pTwzefWQTA1HEVIQTkheUmResttcgkSARQeLnfy3rvw3v30EAgCky5Dwalh5qqmhpzMBITRUEqHbgHNUeXgTcChzQiS8fXFLsQKuAIH6ZNx9j3r2YfTp9QB9SgW13f17vcmBe5LcvCSIi4rzuR5EdfeflcvhDk5+fHGIOJXE17zy7v+Yi21j4+PpixFNahnK7FSQwABQtLlXrXUGd0JHejMZ5t1wYAtD+bWlBdWWpd73nTo3n7+rTWa1EpCxCA+dDRxujmbVgbfW+jtTZlsMFC5m4ISj4ozDGQnAjMeoC5D3dDQGGmSmUR0048um/YAT2sGniE3BELoVC4m7Xt+dP2sX98/CW//3gslYhjtK/29bk/f7a2NdMhrKQQsvC91vVR7wWdoqPuwWIswKXUwqEeGzoqKoY5eGEA0N6fHx8WDeILmEHM7PnEbY8xhqtBtK6qNoYhOpIudSy1E9axhZnb0DHG/nxu2xMRvcT7jdALRWVwQvDwhR+0UiBnsIODqcfDAnHvlhkL7u59WFdTDyJiKcuyPt5/ezze3XDb2nbfns/P0Z5qT3eH4KAArEg2DQhiJjWeVjr5GAsRBCGSQopQ4jD4Mg9DV4g5dxcRMAWUSQlw7qwAAWjTAvnCsri7haf/DUQ2JByPaauTs8EpF031Iw60q+nU+cpkL74zNxePotRpBV5/KZc2P+JyzwCWXxbNK3v0Cxf1C8HwS2V5bvAnegvwIznnJfw6kSgeHvpHyX4l4S5tzQw0yhIlgcUsYXOJ9+upmxjzckJOmu04A3RK0+gVk/f61nF6Pp3rO/qxPlgEMhMnUMa0DHbzMRANOMADCCB+GdeLy8nKv3D3wxcfEk+UUo788m/mC1eWMQ59Ohzk0LnJpQboypkdl0NT8E5EuT/6ka+X4HWM0Vrrvbc2kdwp2IJLz+tKYl25pesdcu7H2Wm6XvHrm56/PucW/WVkHxdMnW99EhjnrXLsr68Z1fCzfXna8F7v5deunCHfkS08CBJ2V0DP6UWFOJTdI9OZ0GNa2TfrbbHRhTEtJXtr2u7hShBIOIZBOIRNOpAJggKdUdJ7yOm4ZY9bcQIvnDOnKuKhyNWmD6rlvBxLIlRIz3dEdA0EPiasISOJpndSZTNhQWYulZGLaldFd00NEzEQgwghLkKcWD9i6tCvt9wMYw2L4Pj+RBxOKC8bGvg36vroX2sCrxzOKEuli68gXDSXuTqd0r3z5jl09y/DufPdr4/GFY1d9RXnk35d3/69pBFAY4wIWQQx0Mfu5tZnhhjN0VFmLgIYGhFMnbzb+OFqOgYzt7G03pv2AQ5MCtBHcABaEELBTLolcHT1wFD14ZaSA4hA8EK4FB61OFACL2Ak4VKrVA7EPDdhk78NjUEDTbUNa6qmUjwUVJUJY29QHViLVhl4Aw+EEWGISuCz2QbgyAo0gtRjN/0Y9s9mn4odKpW3hwnSW2GAyoRlXVdmqnVNMnCp9/f18fH8ut/e//nXP7++vlI5R4CMuEh5rDdwG42ESIf1rkyAiEWqcA1SQjKkAbFrQB9dfVcDD0QAc2+jqY5hz8/NA2W9gZT72++vPNGho2lDreuNlwqETJUFCEx4EV4Bvrp61w4ACGVhiNGhP8P24kagzI6E5oakgIrgCEhEpUIsEmtxMsfeurqqmZFDRKzlXoSJiztjWGvb8+vPn2Iff66PW1nXAjH29rE9/3p+fW69NUblB93gN3zACogMnhIvjaFkWIkRK5MFu3AMpsCCda2P+/3tXhbRsN50jMFCbMO2DfadMgAxQAHVo49kMhrTjrj1gYWLD3e1Mcb+tT23L0ayxZ5fLb1GSg33rrY7bIEmS5bm5BYIpZb7LhC2t97VzczUQgdEIKGUUn/8+PH3v/3H+/tvZrFvbdu2P//CP/+163MEaEQREOL0nobUMUAYUgZiTwOoY8UWAKRpwWMQhuC5QCEgoQOgTq+H6XefLqqICMBBgdNQ/YA1CGcl7e45yZ0uiEiEQBGQds9pW3DoTRAJilMEHjZE6dHzWrAm4nFDRAogJHOzQ6WbtGr6Nlzy4tAdzJymlUlGbE1rA0RMzbtf9l02nSYK4YToGWQIEP7yS3XTcIPDQIuRhFCKEMVl9URiQOCDzzpX86x681tbEnxzU58MUU75hWvAMRN6rqfn6kmz+fAi5w5QRSfvdUwJIAAyCQJ9Q4oT6mUh7gDuYXml3NXCA5FIAqe4LyKSSHEkIAYSmnZ6L5yRqYsAkpcK52yqp3/9uXWdO8JZtf+yn53EwEFQdXdPIuHAbS/Z1jlaOMbMNDy1MtfNySwSeLXWZtbT99ecDg5wkW25T9psooeD+UgAcbor4fdM9Lg0pk/U+ws3lrxX5jTM1CsEgGBOm03Kx4QIU0cjLIg49GTRGB0oXmZgEQET9+c7pNZtqsTYNULmUKQFOBqEhqvb8b3Ijdzd1ayP43IOtT5GH7qr7moFnF3VzFU1gJiZA4jIESjcZ8t9ZmoyBiLkXFma+iQqKIzgEtPbnyMKZTQaAkIQAgpxCAEaHbOxM0sbiYCZSkRhHoJESAylSK11DHhGG3rY/UEwQuF5yYjRzDIRg16d8Ai3cIJgHZ0JgRnCCZAAwc3dACAOiRsdsU7Xvud5Za/YHTnj2F9WI1dInWnZ8R2ent3D83k/JYPnA37e8/mHJIPnBPc8GF+PCQBAAsfNOcdxJkBnZmQY4b3vDjFD3VI1wiJIHmreI7s3EMjAwnVZjASxCKmImyNK4N69sgw0CORwDuAAMhg+IgKZpJS1jE5dKNCN0YWxChkAiRNRJvy4D/cSARDDdLdp5OBCbirgan2P0TFMSUcb4Da+Ogu87W9fj99rrdLgHmgUDOgYA7PoJ3AEZwogC1RkdWimex+bUg9iV6ouGoviMF5MCLO9Xu6L2wOEl1u93W6Pdb2LyM/ys2kzV2bkIgBeWESktx3AS0UmEa5I4UOZqvMAJANoap+9KaE6DYOIKIgQYKPrbn0frQ1zIDNZ7394Z0m3EnINM1V9ukMlwmURXhcuQVbXWOqO/BGxWdiwUHcCD1MbDcbmGIuAMApStmJHt64jFD0CXCJwvZcRsI99jFDX0BBgRGSMUrgud8ESzpt3zUW0fY1bvT+qsKs9dX/uz399bF/PICvPqrKs7/r43coC1m3/6vs+Wo+ujCCVBSsyCPsQQlrwdl9+vN3eb7Te9jCz2LUDhXmYq+tAs1yyqa7oCIKmOgy3obK3CMKbmFlknoObaTi6SHx8fKEjEVdFHXsbXx4bitaxSi3IpOFDbRgMje3Zux6hQIHD3JOBYL7f7z9+/Pjtt7+p6lLbslbV5+cnIjm5OxmxJ11PDJhdjW9VjwOk48C02GIMhJzTAQTP7GvAOTB11NE01ZiR0bSnO0ym7+Rs3iv/xCAMAiL7m6/d4NyWfqnDAKgUdAeNb4UdvEwH/Oz1XFc6P7TcF+4Ezo7htTo8tr0LP0DfxtzOo33/YPDrex3b51kKl1KqMKPS6weZGYL40Db9e/WZVNycd4PXG5l5DuXEkQfw7/NQSXhczwZezjBcmhFwSl8vgrBz/89sgNMnLKGhhas7MjlkihAC4ZH550EMZxL2aQ53yZMmQjOLbKdCmFkCryt2PM/zVaBz7egBQKKu9KlPdup0S7oKbg6yQVtrRHSk48HJhh6vyX69nr6peAkDOK9vnuGT18zJsrPp+csGebhP0RV1waWpdF6Ik8D45QY4z9751knCnXrq86Iz8fVzihB+v7F/4WvnbQCIBESkAYjsrkQ4AIgU6HVDZqfSjQlcR4Q7BbS+aZr1g0MYuGnfLTBdXtw8AAgLCAaMRPCISFN04CcCmH1hwOvZoJzyDyIiKek+SOkUSIQABNPUNKXfchI5R/DUjPs7n7VSBCBodMy16/ATyVlMkQmgVTvzK3jqvFIRkaq+64U7QfkVDP07l4mIMG+euexcmdHrg3+94tfXnK/MX7+6RVxvUTxMwuiwUDlRl5lFvCD+N+x1BGr8cqMiMkGEFuGqNFx7RtybWga9gZN1722MfbQ2hkY3d4cAYqmFEYQpVM0ZqBStUrogZHZUgAQlwTrcYN9LKZtsFWBd7mjDvSMY4Ag0D0xSygDcMJSGhurQsY1h+9bBlTGsFgILHeQG6T6D1sdz618Ofn9+fb5t63rn/+//5/8OWaSuVNcAbu7qOACduTtGXeuPvw1Z/rXrUwGXN6V1M9mMAhfAxYNn/jFyzrpHADGLFHBQMw/wMEQshaXUuiz322O93W63+7qs93Vdl/V+W3+8/3i73RnF3BCgslQCdhOWuqyGPBwBUaRwKerahlogSgni3cazdwuQWm/3x/3t7X5/eOAYCgFIAiR8v8vjbsSqESARPMz2rbe251ypWte+hfdaaC2C4K5dbUwHtEBTBQhDNzRnL4uUVdb7ggj7c3t+beFRRW7LsixyX1OI58JYC4kQc6huz6+f29ef+/6x7z8/v/758fz57O3zuRvI+48/fv/xNyGMno4JXdAKO7MTGTFgQS6pKyxc3srtUdZHWe+y1CCSpXqYuzIjoLfe99E9gEiW+xvLMszHCLUgKnVd1/XOLPNpT29PCjdvrT2f++fX18/Pz+fXx7C2t+eff/7z8/n0iLosLKUP/evnx8+fn9s+nm0E8rBoXXuPn19PM//x2x//6//4P//+H/9xW++ja1pct+dHeI9oAQFIRUpZVqYaju6oBohCVBBTw8CUwythbl3HFt7Ru/tuvoMNQcjV8+A5puFVBMyEnGPWGoiQOACnsQBOT9lDwJAzs0xM6caRt/HcOzHdOBP3hHs4oEPaW09q6ZfKcuq+iDNu7jQdBcSpmsH55u5mroDBJOe+Cg6ZKM4kM1BlBkvD9FuCCDc3TTJCu0KqusYIMyEqXPLt+XDCz7mnMr0THekMkCgsKWGfuPNcr4moSBERKTlXmAGVnktaAMw0+Iy+xiBGma+nqaqpkqxPzqN9W50dY34nZBYEmu5fJ1PGOW1NM4XZzEyzuZxVuLoCBBAQUykiVaQUKcIiyCylcKnAEkeY4PzoF1GKWdBkN4MIa611Ka9pr0N0fNn1JW2xrnwVHuMRedxa69vb2+PxSOx11vonNEnu4na7lVLGGL23s4uX29IYmn1GAFjX2+Px8G+D92xmBx82ZqoSEdLLBeAkM84mY7JxVwR88mFEdH7C8vqRZamlCNHpZvoC/WaDCGstRJjt5pwtOI5vEedZnoHo6R1N0w4Dpt/xtCmnNCz3AHNLas3BPTzlS4HBRKWKqZp2cEMEV48IqZVFPAIgmFiKLLNxdnDQ4Ke7CUQQojAvS02NIjETcZofRQQh1VJut1UKRzgTIqFZNq2QKNMPXccgpvvj9uPtbVnK0LHvDR2K5G/A4357e9zfHncm3NrW+k5pgMa0rosIAwQBIJweCVSXen/cl6UwU4SP0XvfxxipaxThWsuyVBFGBEmZYzhG8v3z6dYp6Oy9NzM9naLd9KiUDObFmoGhqopE9/u9luU1kwvTTraUIlJOTCYsRNNF/zpbnerG9FJJRJVDgvngn73y/M8xxqn1nOtAQCDBkVqR4tTwQEAREibwaH3bt6fpQJhmvGYeGGraWn9u22hNdfR9a+3r8+vj8+tja82SSQoPglKqBa7rWqQSiVAZTU3ttt7fbu/nM64REb6UsghVDHRDVCQLcYWx9c/P7WezfehwxEAbY3x9fX5+fm7bpm1/fn59fX6aD0YEDDcdrk37l7XP7evj+fHnx8+/vj4/v/rns8lON0a0cPDhRubp8u5oOCimBBuFl1thNL6Fu8LYu3V/7vqxNdCBo4d2e3/clqUici33WpxRiEsgZ0DmGEXDiaDWigSBUGvVvnqoFLzf18rU+hYRYa4e4d59PNVqG8WByw0PahixAJgpAtDurZk3M+r7X1+f//r8+f7xQVJFKmI4kbr5GKSBIJW5F6wutY6Fb6UsRGJmW3f2HbQXtEJhEYxOwpkfQkFWkQsNUwA3AIIYoyFBYIx97+1pPawuOj7V7uYSUEthxgKFh4R2358jpWYBFjbMmvtAMBu7xeLjae1jtI8FnczJB0EAoAEgAosAQyAGulpGEKYFThABMBcoEaTaDdlxGIJScuIkXIMrFi5VEb3KUm/3utyW260wCnHWQdbH8/ncn9tf//xrb+25bYTGpS8rCPdddxndHHY1LrJ3/dq2be/dPAA1YjhoQI/oQz2ojZ5zgkyyLAsBA0R/f1g81e/A0BsEuNmAaIwMUE+DTYiU5GQKtgNONX2YRhhm7vGVjzm388uw3qWqnlF97scM+cU5J3VVMfVVp/IJzyNMKmKaVOXATVwET36OCP2PJNmV2jlbV9cK+/ycZx2J8NrUAwjgm7L7ZfMNkPakV8bi/ABnYXqMGr36CMSv6tbdEQEB7d/osbPujKsR2tTX+TTmON7rPPOAflh1/FoufzszcWXOLtN/l9N1npbErERzdJaQAgyQLKV/ROmk+jrPQBEna0XuuZqPA3WcHZMCAKavHjEdjcVLzX1tur2+S/I95x1yZZhe5+1CP+Q/wbSUnHL7+N5OjYsO7OQwjpQVz/4jof2C/E5ixi72nld6L7c9PFKJ4qLZunJXJ6sHL07xG4d6jE749btf/3B+l/MMz2/kSoTML4P+OU35er5mpCMAEEqgp8PXnH8AnvPCRFyEoyrGGGP0wL1/yVek8NQgAzwRXLWjGQqHJzhPoAOEjBQIRgApxdIpP0BEYpSzyfW6cILQfLoRQAAEUgCm0SpmDhgSHI3ub6FPcCF0KW2CSymlIGIylEd1B4f717zlaGYPZMtC3XPoGxCFJjz1g9eUs9mXwP2qec8BariwZTH/fBLSdCr2XkMSx1zt+byc5jXfyezXE52DuudXTiB+5lydcD99OnOu+ahsGKY/ox24DWfqFM0pE3fX1l1PB4q53lqgB+qw0Zr1bfRnbz/b/qmjfzzHc98VuqEamFRe1/X2uN/vb+stEIXoaQa9KTv0vSFL5C7xmlIgKShuTqjhBBGuxkOp9+5AKNGr3k3h4/l87s/R3JsBAJKPUftgcwwdFvaMPqLtOr66tmFEMUbfOkrjihi7j9AAhwAWYiJwVwf04DCi++NHvVesTyz75/jCtnsbKtHUozPuhKVyZS5S19t6W5ZSSgnT3/a93u7Lcqt//XPbvpq23C08DACcmJebCD1uy9vbQxj3/ekG4LAruJlrdMNteAMTMCKKIgGMCBpmAQ7RAQbAcIPe/vr4+Y9//vO2PgxpXe4AGAZ9PIHbQ8pSK5alYnGCKnWptZSCyNv23J6t0Kg4gEMJO3ohX5iEiTn3yCKDGUgNSkGuQpUCw8LAjEMREaEhdKbB6MKwLFylYsRoMSTCB49lgA1tOUQmBIVDwAUV/Tn2v9rXf4v3JQQgCNxnkAcgE9eS5CEgOphrxzFEdQGvQsALaO8oAKAWPayHWUAAFGIQQeByQy6xSKnLTZYaCLLUx7rUIswc5n/99dfPf/3ZWvvUz6+vz96exHp/w3UN9cbMWx/w9QVMkfZcgCCCgeqmHg441J57Ixofn8/Pz+fn21bkjkDMpdZ6u92G3tTuKIGgrUfvHRCEqEghqIF+tBunV4Dnc+lqNmZWYyiAc87Epm/k0VxEPGyAI4IuKuM41/c5u5dTMxc2A8EusIPw3BqP/Sy1VojIkZGOHgBubmGHDknKBVsgAMS0JX71S3O+j2YnAojSQivn7iKmIRid+ndKSHTBZ4F+tglgDhgm60eXHpnThQLhVxZynF86jnxJjABQI4j5LRN5CPNR7CJH2mXFPH8p/AEASIt+QqCpRTsQ3pwsvPYTLzVuAH6bgXoBr4t96JGnmUb/QJgyNwQIAnKM3Cj4iEAKxEDM9vKkTRA8/NiPsm3HzJxGFczVzNwczjmsA3idEArxZWV5Tu8nGXAOaqVoPTuMF6T7grB8hDvhtPmGsy95bfldkda5YZ/7aDYomco5qJ/NynlYH6dJfRqU56FyM8sN7/l8XtHY+R0TCsAhYjtujNdsZkS4p3nE0bRFB+Cj8JiTsHj4zZ7gNQm/sCEiCUrO3V91xgohvRBedugiY7qIKAiFwQgIw6jUhQhQmBv3rgBtjLHvncrOIjgdXHPicjONdV19miUQojMSQxAEhTNhACMzpivfywcQy2Q6M/0cqpYWwDgnIuc1xZnSHhGFsKRpISfyw+MsWiolCmGGEC1V1qUst9paDJ3hSaVyYWQMcAXHwHlFAkw1r76puRAQI4bFUUEekMjOpzvSNOhyu+b9IBcPC5vjEXAK5JOIQtDz1k05nU+vkNeIRt5L58pzvX/OAeoE6Fd756wTslTIUNFjUZ0Lr7vbsDFG752Zl6WICKCnibFq96FjDB1NraupuqWOOBWi7t677s/W9mdre+ujbdvnvn0+Pzfdmu9B9njcfgC+/fj97e2NaVnKrZZPgfL1tQEVNMBwoAhGyS4BIlKgIAWAeFIBpjqgN9+23jQA2yb86crbx75tat1iOFMRIbPRtbCF2+hun9o2H3sf3dLJtMTgHiA71oARTjYcDZlKwRBCdSBk4IXL4/b+t/q3/2X18RnMT11/9re/nq0BQq2yvt3e3tf74/3t/cf777/9/vZ+v91uy1IwrI1xf3t/e/9x/8fjr8+/vp4fql1VW9vMDIAQQaSs6/3xeMuW1/O5uwaM9HlkFDYo7jR6ZEcol2cNGuHuvqs21+be9w3/+lOkMpc2+o/f/ihlQYOvbTdYBuJvy7q8CSMtRdZS1nW9L+tfQua6b5+3ilR8YXJwB/PMEcloUWFZYrmvyLwi0VLqY+GVLbS1jR1QAwwej+X+KOtaakEpsFRei0AEuaBzrMsQEAoeNrpakFtZQu4QEkzFMb769md1Q1oKMRNimIPFxTp5dNvH+Nz68LLYGnSr97fl/lhFzJyBTX2M0cfopm4YiEvGMjKQIGFkGusYI5Zaq7z/eFuWUoTcHVDVplrl4/k1TEf7sghzRjFya5s18yCq67reb/V2lyIWOPZm6OqxDf3cmxuU5ed//e9/1HJjWpeyChJTXeq6LOtNH44wRmvWdJhpc64eTag6WuBAIAbGyGRvd2tufYxuvdsYZjpd5V+4KpdtOLKvvwmVzlflbpJUAlxoI2RC95TzEwETy7l22ssZHzNEhgmRDCL0BHbmOj/G9X3xMsh1ARm52nwTMVw5A6aSnkn5FxEeju5wQJ5j0v8bzUB4eTM4FN/Z6kp8cPkVd3c4GlLMPMcS4zSuolOB8Y3piZzlzlZjxEFbTVB1SaZLLuMkS679uMRqVyrx18sE1wuXAHa2qyKuE6E5d5GJknNK4Xooz9OGaP7SaZ0wKEcccss5PwYeupzzJ9mpExJl3+TKDZz4NY+cA254qOVORups7Z0vTqWXiJTy63nOD3PkE+NJNWUnKBjzAySWSgYFAPqYZqpncwcP6/Ds9tZaW2txSM3MLD/POQF3BcFX5uwXyWCirvNO8MMs46S44LtOX1XB7eTVrictO/EZaA4v5mzqqZGcgc2EaCAXCiOsUhAHI2LZW6k92WGPaYmJUx04+lBVJQZCQWEiAUyfP8XAdIBP8yshmsEGQUnjXjtrSs48jf8QMdn3dNwgxvOyipA7MDO/4q3hfAxLKYyQsKPWWko50y3x0qXNG0yYWRCJPOREvdeHFzzQwc3cIQ71WzieSji62MofT/vLVO/kLuPoOM/bhuJUBSTwuhBVB2k3o7lPiJx+K3wyoKd68kLEznAFOJiw/BjZKj/vlvObmo0xoI9dCmWlM8bQ3sxMtZ0qMYLgo13gBmrR1ZtB1xgGn02fu302/2r7s384xQjnIlvrFvh+fwhV4bVQ+at+tO7DCJmQIZiolmVZRCSS3UB1cGd3NkVr0PfoT9/NwqMRlBi0b8O6gTNACM0+LByLj1q0ESPQoyLXpZZSlspCxPIEimAzVQtyXBANUALUtIhIuZf7jx9/+18//q//G++/PbH8aPgf2/j47EMxoBYuN1lvsr6/3d/uj9/ff9zuS62VebK+77/9/vjt98eP93/9659//fWv5/61bRtv0vcGAK6KjmGAQUwivNzWNx8ew0c4DUZBQ5omYxikQJQZ29AtIjCwkDgZgrkO//r6+vPPPxO5r8udAj4+n2oyAnBZfyMptzswrku538rjtt5vy+cXRXggAgNJjpdCplaaI1AgABZe7rf1/l7W2/K4398etGDv7fPr58rLymu4Px6Pt8fvb4+1SilMKQYHdyYoLLAsVUgZW4eOhtDBh6OS0ECKQhV7jJ8DgukusmApee8P1SAlwDbGtrWPr6+/nt6H142N7re3P97fvBRWZHYAnR13NceQAHCH8FwKM5fUns+njlYF3sYaMQAxSelAJXKqUJZS1/LcWHf9fO4GVCoE4d7Gs2uwvAHy7bZI4eUWHjDCUUfE3v25D1WVP//673/+tS7v9/Xv9LZSQaYisha5cdmLeq3ADQCGOQAooBo1jupRGCJcMCjCIIZ5V9uHbjqeqs1shDt973GcE5BACBMyAyJ4OE7hvqbi67W6Ax62pYGYJRTlOHehnD385mGIhCJpyELknmbdGQU0NzkEPGqxmC0vorQwS2kZwLR+P/goIjx7pucPBYDN2XXHX/pcniHeARaYUqt8uwAMYkbgeMlZcuoRgy7dogy3jiMJKJLfA49p0MpcmIWp8KHXnE6H0+5jVpoJhc4t9qKAfsGphF4p5ELEM1wZD3+vA4Gljh4Pam8egaYK7LDbOq7eLMczHAWOtmbGt0NgoKf7VLhiWuPMPSbbi0cvMg5rWT+/RZkSr/Tgzqqd/PAf8iMgJUvzbK/kQU5a64p9zxn7kzA4ZfiniqsU/kYOHXtdHvAVPfG9y3Pq918BBlBSc33SconPrvsiHbYX5z533nL5K2OMOC7c2RYMsAA7mv5wGqtF2ql75Nf/RY9/sikHUP4ffmY3AdNWGByCUvl+QvSLq6pCBcBAAHVA5rIsNw+kUorUo0OKZOHhodrdXbUzh3hMV3DBMA3ECMkhzHyLguxIEKT60iAiATGKH0iKgNwZ0ALocJvJmMekP8OAWeZ1E0SKPGlSCI5jlMIi6Xrs6Uqf6HR6IWe8BE1zDWRER3REO6+YEdE0B4yIcHQEgyBwADBAEsQjhdwwIpAJFc/C4IK99LxMeYsRztvYffYcrv3EfPvkXEVeDm2nMdsvNcZZPOBF+H8CTcQYAyJMVTFpdQYuhFzyyNlVL4Xp4Bothrmrj6Hm7kwz680dDNAgABmQBlFHbMEdeSAN4D1QR1Dr5bm9fXz9eN9/3GFd7vxeGEhQtm3sLYAwBLAS1mW51VorEaiO4BHhBjYwlELJB5phtDBTo7AYNFIgGEDIpZS6LmWpLCXMHcwAAZmoFKbHelvvb3VZOfMDGgkEGo4BAtEDyAzQfGjcCr3Lur79/v77//r9b/9n+fH3RsuPkL8P2wd6EOFKxAWkYrkt621d78sqcvQd3B3sjrDcHvf7/fF4rPfbx8dfHx8fzLzRMyL28WytM9LtdmNmIrnVh1X1xQZCtIIwAkBNu/twCx/uLBCmak4AEMTIUgoEGgaOMT4+/ooIC7+vz3D//Nj7gM/n7igO9Md//D0W4dBCWCovIrWwFBLJbGDKm90D1AHUDSNAMIhLfdx/+/H7H+9//PH24x0Rns/PP+s/F7yt9SdA5Hdcyo2jMKFpH+auAR5EVKgAcy1SCjf2gG7WAJQ4CjFUFOqoX+HgAhlWb64T9XtDhb2P53P7+fH18dQ+YNF1vW/a93BnB3YAc+1Dj6YDBmcAKyIxCTKbwtD27PuOvgoulZcaQ9ci7K6tPx0VwEGg1lqXZdvZ1FobIyIQnn304VRoBDgVkEJSQsNJA0RtdIsA8Yjnrn/9fL49nn//o99WEOTgJPkQQQAlJ3khZnjLcMNQgIGwO0aAkVOYRrQcFO99176r7u6d3BNMTJnIAbymD5ZPKgQueheI1AgZoAEcrhPwWuKPZeY11EZEFVGP7YqIcNa5iJgJjJiigLlBejbLUqVOiAg85+9Pjuf0yKbpF3Hu0wdScQ9zRHAPosxmm6N5153yBcXQs3l3YZu+W+l8U5hhXH735AsBpmFsSmdLKUzTMjEbQxFw4K88V7nuvZRG8J1iPN/dL1TEt7ONBN8/CRyNxcsHy7ZsbgzfzFojwsMSMhoEHSjw+AR0OrJmhwsOAdPMyLJICJXD7cwswqWUUrkc4CsnKyLsvEb5AVJEfOKY5MyuXb+T1joB2cme7vu+bdvz+dlaO8Bcue5PJ7twtDIBAJJImy4VxPnnk1270g+llHPOMQ5VTX6S3vv5Fnj4U5y35Ykp/eL+NbfMg2o9O7CH19dLOeRXw8zjTns1WAOvRlBXRIV4Fj8TXceZGxiRnr3MJaNCFdz69OYi4eV2xzkKA0mb4eHq6Yd1LZG5E5C6zq9TAEhgGoi5IiJJQeJwJLqMAV7g4hlkPjknnHDfXU+YDjydzJglJaRXAJ1fNjvRZwv4ZKfOgdlXVYJxvYh4VealyMEvLOncBhOWzlCK17NAaF2v7NrJeM1h2MklR9KfEcFFLt124YvB78mZneRW3uR40cadOsXz6/NhnR9HVuPrS1263vMOtJFtUqIgZiaEyh5IDGgIeCjr00ZnpnpXX13RxLdmzYkU2UBcCpq49qb21frH9vz58+N9/e3H7V1I7ust3qFKX6oHchRH4ajCSyEij7G1J7MiegMdoEbgjMFkCAqhucrEq/7PS7yu6xwsyNvFgLkiFlnvj7ffH++/r+sdEd1V+P5ANyAcbjHQOMDd1MJRgKms6+OP+/vfbm9/lPc/Ci93WobDcHISpoWxUBA7CXHhKiKAGKERRoKMwoCPdyyLLLe63tfPzx9fX18fH3/9+eeff/6r/ivg4/Ovbdu+vmplQURGEV6XxQuic8HoZmbRwkc4GqIBEBLLmveYqwoxlABztmAkN9v359IqgoX5tn9tT3tuA+u93u/3t1V4JSRhKILLWm63pY9FyEggOIXWlPdYsyBiD2LgWtb19uPHb//H3//2n++//SCiz68PhpvEba3viHF/uz1udwa04apufexjdzVGWaQUFpGlcNhSN/bw5tYAB6pCQRAGNB9fPQwwXGxUc9Cu7attgRsR7q1/Prdt2/bmZmtZ0jI0UB00PfGHtj5a69rHUAphPidNliBQwwFtjOHW//zTXTdrnz9+e9xvCxH13jMTwGwARBbWe/DwAW08exseFiKklm9oDubqGIhABciQl/X2KKKM4oamkN4z4RTIbqQuo0Nv0HZvu43uaoAE4s4MAeboCDqZch+uzaypdrVxaC1VwHOpSMyFh6Qi3CCuPbi5XQLFC57llowTbWQ5dgEEmCGNE/cAUhAw2YQFB8LAQJra8iDKASO1OIHXZLwws9muTu54cmwpMD+BV0SAKQSa5edyIhJgFonDZ/UCa14QBy5+OUTZGPoG6a4wKzMZj4XypJ3yqxAiIzDOfSXtymfjAe3Ub6VDWp6xg7C5IKvDYl5O4gQund0XBLxMP5wS8yvKQUeY06OHlSsgInbzgG8YNPeb6ZOZweiAGYWXM3Q4bS2/mTvkHo04pzvT6/I038oXnhtMRPRu1/HAhD6nZD6B0Tk5n++SRztZpX3fn8/nz58/8RitSBPLs0hg5lIAEZPQygYWHdZcV9130l3nOTxpLUTctu0E3/myq3TsukeeEOrcL/3i+uGhvyDCs7VER14NkgG+urE0g/Zm3ZJYEGPKqMMxn7urpjsjpSHSNd88HD3gGF4LAGIWRCAG93C1wYRSKkrBlEwGKOBU4h4oECT5XgiYk5I4bcgQc6bvl15awARe38uDIHopnF73cESGTwM6C5ZSJi2bJoCAePCsdDFU4wMEq6qrJStOOfz8Kv1O7DL93vB4wzFG6ivQzzGCo1NBgYg2DABy1ADihUFTg5g3VUkVl758WecS6XFOyP5SI51sFgRekff5nJ7I8qxG4sgtvT7RJwd8/BYyo4YHAFM9b3I3BHBBOrlG01zkHCAcYPiwMcKMEN01NDQcSaQWGCUaO7Aadg8FDJYIVfDWx+e2/fc//1Fxid98rSsBP273pd7W3R3C2Z1RETWitbb5k/1ZRFFwgHY3NfdAZ3RGIESeRVmkzJVEuJa6Lsut1hUAIgYiAygG1bI87r/9+O0///j9P+/3twN4rQ8CdQSy7gQA5qY+hgMHMJa13B7L+pB6K3LjenMUAS7AQIWhMAhAkGPYvGxxNJYDGQGGDSJ5rO8pr+79P/toz+fnf/3Xf/3v/3qjoN57259961tpQowgBFK5RgUoHLGadg8CKsBUKi9VKiEjJB6/LQU8CJIv9jCfhC8Rk4CrIAGM3p+tf42xAzojYKV1yH2Vx722fYV4PJ8fiJAcggEyCoC7GYMAkIFwrSiPentfb7/dbr9DrRSLbmYjKldgf7zd3++3cN33ff/sT+tt20fTyoIrLo+bSFmqAFYE7X1vrZl3BCOxEDO1rnsfzRAHB6kCQbO2td2jAUcb46vvwy2JW2YWKgwlAtOCXdvsZHQb6iZhBkHEQqXKAggs0FDAA3T8//9//88/F/zXPx5/+/uP33+8p0ZydDXDsW+97W4NwABDdWi0nz9/GnBwWZi33mpvtI8SIrUSChQHsVLX9R6hhgDLcqv1Xut9rY/KAthNbkhldGy7P3fd97Z3s2BhA7RSABgAwzM7MdxjhA8NMzjE9WboHjRnCRMIUc66mhOgx5X++Ub2HGU6Bs7+49wvwDIbLAEH+ux4ZfUek70NOzJ8MAgicgg+xeAQ+XfzKOkAixnARmQB6ZiP2Va51PfX5e8ABLPdNs3GnI/lj9MrCBHjFWAHMJ2s7XCNj6OYlpPq+6bRgRBZEKfZ7Ius8nAHNHB+qUMyH40ubcHLkCECADImaCLAQ30cp0btXHAPVuNV1v8b3fW9cYyIHkAIQIQZogE4k6Dzt+yK5A6eC/N/BOgBaZPEgPBy3p/TFYlNDyIHk+5Ksc5Bw6Q/uqXjaZoP7Xvb9721dvbvkuhKgHXOz2ejJCXGdJkzPVuN+77ni08aI+/MwxCLfwFeeLFYu8KgZVlOSU22iU8Z/kmWnC3R3H3Poctzy+TD+ssPp7RXn/HSNT6foGvv8per6UfmzPkrU9mmr633esDjQthl+6eEXIcHyBxyZWYA5mJhqjxIlpQBuAN4pplD5v4cne6ktF6I8OR4mBUju3PuQSf9mg7L00M4XcW+N0lfYOQwg81pAyIihhQY4PEMniMsV+BFx6W8ig5fq9M3/ttOm1yeIVcKHhFIAW4OPMVSE54GIGK/AC8EsjgMSszoaPyxyPn4XH/iGNO+ViY4QaDnTZIM5kkJn/fS+eeTGT2T16/P9VHtWH7v5N5MJzFERBklniEUku1dAj6iIzL5G8Ndx77vvbfRd/BD5l+XEaYGzUABu0ezUA+nAtQNood9bU+yqFSF+PfH7/e6LGW9VVnZB7iFtVzzRt/7c/QvwV2KUwFDb+jNdICP8GAKSXzN6Pn9gZyYSylLlVKkRoQmTUcYikRlqff3x++/vf/x9vZDECJC7m9vEUpFqAC1nV1t/2qq+747FQU2p8CllBvKSiiT60IiEIK09wYIZwKLbibzyQKGmCMwDgls1/e3Ym7uCn//z7//8R/vj7dQG2P847//a3t2sM/H4wHgbgDDmbjc3wNj9H29vX9+ftYqy9u6VCkBlfB+X9/vj1sty7Jg5lLbgNTDUVUnM7PR3t5+e3xtX3uvtXhoRAiSht0f9W/+1vpnjLehGzMA6hh7H7oSgQUhiNwIK5JwWeX27rwMZ4vqyoRcZP3t7Q9wf/6/dP1rk+PGkiYM+i0CAJlZVZLOOdM9uzZm+/9/1a7NTHefI6kqM0kCiPDLfnAARJb6pcnKSlImSOIS7vH4cyFCtOs4vVyuBB5qnTTMH7f7uvbr8IKxjjyOpQ5ljGCVaagvdVi6rizhcQeYmbyZPR63cC/VpRrX0r03tQ7WWpt1STfAYRiAxmEah3Fy4PttecyttRZhYdZa697XpoQkl2ld1yZ9YmIiIH8ZrvzS2mz3H+3jx+3+45+PH9fvL1M+P7WMj6UjFnBitGlglGJ3X+alm7feQbyOl4hYlga0FKMpSMPTUmm8vF6mVw4Ax2u9XKbX6/Ryvb4KAlLtN10bzUv/eH/8+PF2u8+rO1KtxSsVtHUq4zBJBPfHigBBod6brt1ad1PXcEV3CjPPEGvPJQaCKCg80IAQXd3AmTn5p8m2QgwW9ODIhhoyGssCIGdVZh0jpTvZQOkmPkyFokd3c3ewQ3uYoj5EDHVIy8bIK8RCxLkcM5AHBGyEHQAI82Q3b+oB9+RdGWxbzzCIQ/eHydlkIvAwM4OIrds5ljNPP9cs9tuOOSuu7WrNiPBkTXmICEkF9Nj/VyZVWvceCo6pNtr6VNg4a8wsyX5Dj4hSJLZy4/6Er7JyoHscDrFbacFcGT4ZFiCieoryIbtq2A3DEIM2QICzLuT+3qyTMGeSCQlw0olEpGbFw8IV2ADJUfdwTHc39Z2esjU3W/FA2ZoS5MhNDNhzmKK6NG2tzfOqquFYS5mm6cuXL7UKIiZkFYGttd4s8wLMAiKMIzxXQujNDmrXLhljRFZ1AD1NZPSAl5JfT0Ru2QVq/noONcxsmiYPfTwe66NvKdo79/9gc+PO5QeA5OPDFhm5Kx5wkxU8mwx08773ScnQlx0L3KSL2X5tPUTeAAjmPcBKKflEEZdxvFjr1tXUMq4HY7MWywqds6r9HKpqC/L0FclbDwAFCRHdDAqIQrOZPRDRvHu33pQCRCghEUdgQFVzdw9gTjVfhGkgIIYK10GYZe7QXFmiMgSokAN5EBMKJf9JzdUQ0SAcwcA03BEIJcFB03AEZA4kFqFAVTW3xPlFJC24tmkdQddmrsTIQqGeyt/4zOEDgNba/X7PPYwDCBIAgrt2t/ShCKKUtZYC8RRzmFlvliByRKhufryFuZvN61ojEHEYhn0UuxuZCiOimrXWBAYL21vnPo5j2g66WXZu+ExN6KrYGue9l/1WktOXZTlP/49e/7hn8v4s4zavN21mwYy1SK1SWAIy6UFVVUSmacJl6WtTbfP8eDxuy7KYapLGPHB6ncpwLW2l4VK8l9C2qHUNkMDoZo+2tPUhhNNQxIEvXy48jlK6+GL9Yaq93x63H/d31QXJmXuxYEMTW1F7aHPrAVmFEUkIkYkZM7dzrFOVWrkQcAOz8BWsefSAkctQxoFklPI6TLXWiBAciUKMWaLk38i7jxPXoY6TecxLb62jI1BuETgiwMKiRxqIJ+5KHEDpjYmISLK378lJjOAgIARgRkL45VuJCFe17rqsf8y/L48VHIfp4qrsKCLjcCFBqyO6v1xemZGGUqsMiFPhl5eXr9fLr19ex7FSqehGod7U1haB6xpm0dvS+7q09WNeOo21UG+PgHEYR2BpnZkRGETIqJi79/ANs8NAQHUuQjxSuQKPRoNGbSatl5ErBDJpoQfhCr6CEmogA+8Wxmaxrh101haVxlrGcTTeDFxqLZNNV7XZDCI6ggo5Ayx9Ubu/SPWI9N2AII9Qi6ZdqNQ6Sr2UUpZl+fPPP24fDxKOMCMba73qGBqmGAa6toa9UVtpvU7TNEyT8CC2sD0u1xlbW+63j7d1uRGRFJZSCStEiWB39+gREUAITFxCIzyd+GccKuoF3KCt5rCstqhWGS7jdUJxs7Fcrpev43AtUgnCHSMIQLTDsrT7bX2sK5DUkVDKtv9jIGFwdGbXfph3A0B624TvQfewJTzuJTwiAhwh3Dy3awxg4exhFg4QzE9sae8ADICYM1OG2YGQKIAAITZPdjSP9ENPbvtupkqRfjg5FgnMyULW2a1gfILc4PPrDDNkfiIRMWOEOZJhpGOlmZEhZZhQHFKAxPkJAtMcdOuccgayvbz3LZft/O7bL2429Jt0On99t6jPrTy6e3ejwAAg2LKrYeO67Y5NDkF+ZGUm2z2BJaKfQY5DsPgTyrW3ZficpXrAEXSTQtT8jOa6B0Hucc4JLe6RRBv+6Y6MgEQgQX1D+j7RiRAxzSHPvGDcIRPzLd5nR7D6sizL0iJCuOYIfhiGWuUYsqgm80zP4ZiJGCQt7PDfGoYpB1iJwSSBL3+YmWulbOZ2chiO46jdW2s79haHJiBONPkDUTg4/nRyJ/8Ea50c1NJUE3e7YNwCmftxLc5syKNwwpMzRwdv+hNg+d+asQHk+UzZxDGWeo78EJmKwrpPrglP4G6R6hbElSUgjAFBwajvraNwYfBIl+uj6sdG7lZ37x0ZAYaibTVmc0aptPtgZfYRggQhBYFvDxYRBQS65R0IoeZohhvcgqiIciIoZhQ1kfNO0MwTq0lQO1v3QTIWLYAQxUzn2QF8nuecM0ZE+h0LJcBhAG7dAYChuqdyN03EOPbZ5dF44RYZuSFtuZyKCPNmRHdi2pHvydWqerj6ZSw7BZhZKcNxU+1z57ysdE5fyPfK+cl+Nj756W9a5Ayz2oxuU/a4kRmyEffA3rtqS81AhBNDZngktGhm87IEWEQYxOpaL1cFNmZnUcIesJipGaHVAt3MDR7r8ng8LjhdaFRZu6FC9L7Oy3pfl/vjtixztwXJpwujhXOo+sq6uq7mzbwjBgQDBXIgR7gFMou6afe1m4Qu2h+t3+d1WbsD9N6XZWnrGq2DaSi6u8TQA4AEBAuVECWhCxGZhfAYgQmw74OdKEzguIGc6BHsHuCILFt8XAIRkJFYAUzomwmQAQAC5aAG+OuXX+3f9ePt9q///K8f/N3XHmrQLbEDAhqGaZhG146mVUqAAWOpPBKNQ/n69esvr9dv1+tlrFgqhjO6tbXPCxi0KcC8r4NaM/fbur6v0cHm2x+XV7rI32gcaS7OaIAgRXMziu7uluZIgSiMQ+FyGcbXMn5BuRpMXevcZawXCEUMghXt0VtXMq0WoNpMmy6P9fFYHvdZOZr4MEx16pP6UAgQiUspgzpzoda7m4MFIyCo62KBOtaxTJWiE6pBuIMHI7GMpV6kjg72/eN3e/vONJRSXl+/Ti/DZbwAQ13HO83tYd682TrHY5IJhkudxoJDFZ8GBG+Px/j29sfy+FBvhB5m6mbeTcmNkIIIDFxBUEYuJIGr6eqKbbFWvT6gy7J2B1y7a4d64cv15aWOoSE4jNNVykAk6GHWtYMpPB7rx31+v92Xto6XF0JmKoi0GUI4MoqjATDFxhzPRx2FAtiDTRV3VrhlNd3wGfcA3cwdnAVzYOkegE5U9vEJRwBBRHCE8zMkJOP9MLcHgBxwuNUHIjIwEm4zR8CI4DO/mDBttWCfG8RRrnAvYx4AkJyMTHc6pkg5snAkXT1C3c0dDAIM2TkCs30EfPKUc6YRltO0gD3bLfc/XXvXrv0Tg42Z1R22mLGNjBaUCUwnM8/0ozf3ve9JWjpSEEM6+6v2A8HaXF4B0w3s3GKeZw1xjFDjWRSJkRkpgAh2bZyf/caOVgEiEwPpTOo/jp823JtcLfviPTsvslNOEXRii4CI8nSjRc81PY021DQbHd+dS5dleTwWESky5GAxmWF5Svcdgqq2tJoLCOKS+ccBpmq999R1JrqTDmE5ThKRzcOTywFCxWbYi0QkBdzlPJ1MRo6qpv5m/++aSOe50TnTtH9qg56XYJ8Zbf1Zc9WekeE7yvV87fFECUk+r/JPx4/N7ss33mNOrULVPKHMpKhvmdpb/HPO0tJbzmHTqGxS5CPbJ53YiAgYDA2WGWUzZM88hPS1L5wNKLg7hJv2MIdQHUdcZ2cIGmsZNxfgDfzd+DpgGQZhGMBIG3nUFcJgw10bRM3tWWHcvO0cw9y6RkQQhABnz4Rk4ZsvfAQFCJKf4nREUolmralaW9a1tWaqudMrxFHKIccxt4iwWCJC3BO9ZsawzeciH2sAYALgpKD5WWAhUn9i9OfzSESlFPXc9+XyoK64Au59lUXYISnAHYfO8IODRJ9o1pF8BZ9NLsyevjW4G7iYmWo7Ng/ODjtezhgRRnm/CUohKUSVgKmZLsuiqt30Y14ur6tyKEETN8YGMKv1ZqUgEQRVBItOuobXcA3rruCrt/s6fzweb/fbx/q4rw8LJY46jMGIFh188VjCVvXVzQOzwjCThzdtpMJcW1g3bWpq/dHX2+PxmNvaG2KbmR51eFynZX3VfmUyd5cehohp0c+BQsaOBWR5zFyI0F1nffzQ+Xt9KcCVyBkZGQCIgXOrnH4FFGyYoZOhARR50gVIEZI5ERmelbYdRWSari/X1+v0MtbJnIswgmPkSkiEpZaBuLhaTQF5QSaCAFN0I8CKZQgqHvvWjJALEZvbghJki8QM5OyKpo/e9R56794J6yvA4rYs60fr994+hH0gBzZWxW4UwOHF+0XoOg51nMY6CdcI7F3VnNLYBRkc27KCGUJz11X7/Fgfj2VdWu/m3ixwXtZLa92cBIMYmCDVuGUCuqg6tka0EhjjwghhPxiNhLr11jtZVOLgAbmSsIfNy9vHrc2LIRSR+j/sf8rwj68vXy7D+Cjzhae7L/fbgubQw9XCnAKkSJEXH2QYpa9fX99e3t/+7OsHbalu9n5bmrY+dw0nhs3cALFQUbEghABV7cuK8ggg1SAemkEE9zSQLkKMoOiMGtpN0XRZ1sfjMS/tPq/raqZhgYCUvmuEAo4Z34HIFGQAaZeoW4Ow817RkeKwPk/3HXQ8DBOSSwvg6BwYWQXDN1QfIEV6OzMr9YO4ZWEX3KYCiKi2ORNsczTGnR+TJSQLzlZ1HHfKeWBgEEZ+5jjgmgh3S9MsPJmeb03bVldgp7zvPgIO7hwRDgkIxYHQGADYM53twAyOUgqfsf1j+ctiT2n4nljR3to+i/FhjhZJeTl3eyfzLdr6y236eCL+/7Uen72tD4wHADaSSGY+bv3bDhUw8BaUHhsFO3bbsmyvIgDQIfCpC42kguwNG0gdDpwmnhEyhyLBji+e76rx6XUcNdGC7LqOQVt+iz0AezUzd0WMNNI8uC+bw4uqaUjZyP5Hg3V8pOMMb/weBj6lEdPJnfUAMNTaWW52vo7ZNR72Y7K/jjO/fbyT+wPuNP/j2/2EY+EpyfFA+5636/51fiJ70d4LnrWQR8P36S7Fw+k3n6f9qcqULMsnjZi5yHY2hmFOZ3xmxmB3x+DI8PXTFiCBQghd2+zuWAuKZ0RTbmbSVzLQA5Px5WbhnsXIwI1SXUuAoBgC3sIZKLMIINzVAdK7wh12F0CkiAi3HuaB+aQHEbAFuuX0mMiz+XHtfZ3XdemtWdsg0hDBFLoCpwegqmpXMyvhEcNIBeUAvpLBiilvZCSutfeuvWeIOyKWstnEnwDpTflbSiHT/O7HhhA+hygcPL8dxNqWnZx0p15kc5/f8xJozwCNzxR7RMp7MiJaY7MO5q2pa4gQoYzj5bHcAQDRn4S5WoqWcar3B8Vi3dp9mX25vS83GIiuvJoGgiGYgRoyEZaCIMQRKB5iSAq4eoTran3tbZ7n+/yY19ld0yuxu7FhcHSwFrZ6dEM1SXsLSgjA7NE6LuqMlwKldV4akc5Le9yXeV27tTxjy/p4PO63+/tlGgKuRCTLigyIwGyIwIJRixA2NhOhYKX+Y37//73/Id/KO1xeMH5FGpgqIlMIoICzA0OyW0Ky1fY9rxZh50BvVxpzC1JECGkaX3/58tuv3379/q/fb+17NBXZkAazcAemoTAgG6kyI1dGhr62ttpjbsOodXTFSPdfASVf0e/ijfBe0QxvTd/QV3BD0FFiDpJ5hRu4f+33e7v/8/bj/9znG3FcikwTIEXc19YfaC6+TFYvPr3gl4pWEAYKBoNo8/xdICrGUKCWuNn8Nr/dbvhyfSUples4Xi6X1QJ6s6WtH8u9zMPwGByHIiFlGKcrcVePAbHw2OG+0Hem+1i7FJDBq6gBCljlMCY3VGOurGbNbvdVH235mFddzJRaW8ap/uMf/5im6cLjjOtLrHdaVB2CdFn7ONPLdRiGwjWislx7+zKOwzCUdb0gZRTHUqv/+PH4c/2jz2tbTQ2RBx4GRBYMIgqmnDi2x90stAdXDRYHXmye21xrZSRCarE+9FFnBvP59vH+/uP++FB1lnJ5eSkW0/UyTddapsCCUDDIuhOpd3UNTM0EYgB293ANP3y9YY8ge5bSNLA3tC0ekTw3vAABYHtcxkHmDcwYbcTMCjzMSTe/zhNUg8iZRrhRvjBdZFLeHZEG9Hv+ECIDOCC6BwCCeZiF6oYSg4ETItIpcBqTUBwUAVKLQ0QPMwsAd2+9I6ezF1JE/hNAGQfim98/RuDTYQMASALD0QySmRoU4OglnCG2YOnUn29NjwEAwzOHMrcyzJygFOan3AklaZaRlTtjQCLcMfVHgLZb5+8dYe5091U4CAk3I9OkMBA4bZnEyLlfR8RsvDK2yALxcDbbLNQPf9cgFCLOTMD0g83hZiKahITEyOF4KF99y+yEYEjTNAOD5N79lQQ9DEP6xaTxjbu3llSYyPzErs2s710XpzlTa0vv9rgvj8ejd827KYsNESWD6jzu3FGQjdp8WAB07B56tudofTmNNTcwD/fAq88oI8BuyorA6cYFAFv+GgAjE1B60jFKEXMzXxNKRUZiFALGbDz2+neUUgBw35rFTE341KOjQ8AJHgsgAPQAS2Mw2hQqaVbCx1Q9/Wxh828Lcw2EnL0hMxIjBAmP4+XgAGznc7MO3rYFDqEICJ5SyXV+wARVrhCmbZ0jYJrGcdyoAxHgQUhqbq27KiZQnbtW9EAnBIzQDoBMwOnhaw7oCGGC4OBgEa7em3WMQNXmZg5GgAEBYeFq7qEeVsCHsE5FPFe53mxdEiEjIgQP4kAy3GCo2DlY4OFuas27Q/J8Em9GwghCcIIi1d1xj11vrYm0wwR4M/yEjREPAFWKuzslEn+kSPkxzEYAR3AjN07UG7fQAofNdcKHoZTCAHIsLLCbye2CVjQLQtholpyKSAm1rjlVhyM41N3VgbAybWxIJGLJPTuWIDKf59vH+48QKDYpeF/X0ABHcIIQhCFAkCBo6MAtaIEga4VCra/eVm9dV9W2RbYxqLoTukYn7xFqYUbhgkhEhUCIqnIHqh06qBEarnMgUfC8Lo/HY+nNXfdILm9teX//kWFKtYqsixEAQRQItigAFFBF6mVEMo/u/lg//uv7f6jB9/r6S/36bzS8Sr0IDwAVYgQYiRm0AzDiZrtCSEAFYEPFAZGAETMR07dpJCCzvLx8+fr1l2kY3zXaOk+jYLh57520J/t6FAR73IRJmJNzPc+9+U2BG8D0MpWhEBrDDPrB7X3weYRFYEZ94/7D+411HUOF6qW8trXrB/T1z48f6+3Hf9y//0fry7dfri9l+loI0XxtD3iYNvZ1WGtZKt0ndEYcyuVVwARwfdyNUMYyDvh6Hd/fePkxL+tcy/A6TPV1BBYpVX58//3PH/f7DPMHfGCIf7XLy+s4jWUqr3WSj3dAKAVH8jKVPtd7wUWGZbgAkq09GOilvgqz3/q6rjJe3HpT83AWJe5rv93eewT/j//xP9npdXy5YH0R9Uu0pu+3j/ePe19nnccIH6c6FvEo06X2dmFGYpiXAaIhrG6Py2SM79rN+v12u9/eO+K1Xl5LKTSUMggyB7KHQ1eN2ZBcQZ2R69L47fEDMcYyYpDM9P2N++NBHvP98fbxY55nYr5cXogHRxim8TK9iAzhGM4RRLFxz101VN0VNqtGTZUduBF6YrSZons4xICDu25mj6m0A0LycN9NguLZeAESYCAyC+RsysPzvcGyPkSEQ9A+99rKw2fF9d4GoEMuThBhgXk0jMDQbTaUo5bcTGcHcnJd2vThET6ONYvx2ru7Wzj0bhAihOHujkREAlsOW/i+Yp6rXTY8BxqR736stgeCAntuYyJh+cMZ73Ic5ywg3/T2mSqXruupnUeApNgd2YsQR5ewfzA8g3P7ifNDu3e2SwAASpEYfIIGzWwHyxBSc2qEFOFey5b17gAUHACBhMCHRwA+bSS3d2fmZNbjJglUdx3GAijHUO8Yb72+ji8vL6+vr9M0EaGq7tav5mFquvFCyZlLOp6rNlVfluVxTx8KYiZCEZFxHJlTqbpZRSTtfX/Tg8qGObVJLCHFj3l+jtxxOmVKEhEinf7+Sft5wvm2biy57ccZPpqqYwx6hCIfRzsjZ4fXxhnNQkSig2cGZ2vVDdzar+Zxj53vk6Sbn1rSVFs4EQnXKGBGEGgRHghAw3hx6+4euPEst21VRjFgAEJhNOKOPcK6rqzCvqJRXzu0FWmTHSRVCTAyD2k31qEwDzcMZ4IIoAizZZ0XNQYtVApCcQc3wEAER7dwt7a2zrR6RDRT72oQR1KnWrOuFu4mpqvpkJx3UEUzNCN3SKm+R5gbWbJOM6OMWUopwgUBVRXNpI6UcuUUUZ9MUA/pxoGn7v69JW/FVH1qa0nPwqe7GMM+sMYzlH2yh/BoZ1rhZjypOgxDtm7HzPG4wQ5K2JFqlSN4qUIFuPEaS3IsI1BkNOuuQaSYtCoAQPdQIhQhAxxAFkNd1tba+mN2xlCz1sNAopQoAkMt41BYinTCGUysqeEkrt4aOBDabjMmSETc+spEQaQGBuhO5MiAQSwDDlSrDFPxAa9tWKADKZrZ7XaLiDRJzmdhGEvqeJr2t9uHA6m2YRhkXVeMwHCFQHOGqASFvLATaKACW+jt9qOpv8mXr+P8J1+/jtM3lheMC+GlytcqvwAKgCIZMe+KWoJ0qwxDYPC0/9nsVAjRrYeBiFyG8ciUSGJxaF8d5rV19RjSTHuIzVAAVX1+rO2xvK/tDjCZjWNFXCkepG+Dvb3ivdmHwb30N2rvYu+23tnXQabgf9P5XX+0G13ev6+373+2258kWIOqRWUcsGPtQ1nb+gBb68xErCZ6N+wFxle+XAXJyCHUupaBa61jHYnELeZ5nq6XWst4KVG+eInZeydd2/o2v62x3tbLr/ry6y9fr+OIdEH8hemF4oOk6Nin+r7CjPAgaMIDQhEZkSr32ldpypVFfUWwwsgXQRpUtRsCw+12+/7HH5c6XWv98vLCXHrvjO7a3+2ufW7LTdcrTq/TcE2hXIQRwzQX1ZvbPQKY3tuK6xKuvtzbh/auBgA4lspTGV+FCKkYC3JRIhiHR9fWW/SWfU9r61RHDHrMt/nj41oGCTLVeZ7XvkodkAlkIKJxmq7XFyLRDm21sHRDTIKdP+3UtsmR5arjaeoZnr2Ow2YAkVlPiA7QAThlyxHKmxFEHMZWG5KS/2yh5wAeFoEBKerZZmbEiEiZzL0N+zAbsg3u2q2y9tjF1BDkFBQjorf+nFvFltgYAECYfg17dhYCGiITATNSoUqiqraFaViiQQBBBJnxkwMN2Cwut/K7J5/gbn2an90CwBOb26h0QLQtpeexGuw2mLSL41LxltwRT+gMkCJqyDbiQwRAi+2MQOy5AD+bRMTTBGN7O8tzl5OojLcD8FQP7Fkt6Sv7DJAGz+xLR9xsQFJL4e64yajTqi3z9gSeId9HeHACBqlZd9xpv2bNzDay14kbnqOQYZgul8s4jiKb5OogBScNe4tA2FJEN8fZHHAnGXlrvDa/rmfaY56PXY0osaUzPX0ojgBsKVQKE4N5h5O1W56brF4Am73IQdvarq6jRcQ+Sj3X0aPpgc1zWAidKVNet9TOgxxNgBnSkPO/yMBSsySbR3iQhykxMwKKJIi3m4x8Suk2yxt1yzrf+n4kDwdgRkzDWAsLMDpGzBqw6VmIuMAWiN5xM3VJt2EDAPAgAgR0JCYwjIAw66qN+4IOrYMHDsI6TlSrd9NuIF54ZAxwS5wMXDEs+fYeatYtelNlJahD8UpYwtkdAxlMw9W1Kdo6A7ghgYVbV98br4iAUPA1wt3CwJWACQQJzDh8FO4ZnsoszGkiAO7pKgsQe3IR5NbkNAomyLMMYAgAHB6nLcfuemh25DH8tBk7/p5UrsNcZiNC7LmssE1vA8IzLzwgCUfPwfFuvurnlIjkVABoLsknSIwkCAl4z9fKGweJwyljnYhYpIoIiQQBFaJCQjyUesG64sNW13YPwDBANdEA4JHHsV6nOo2VEH1Vuy2LQzTvyqMgQUEsxIVwjSQWFsbe40iH4sCKhAQMaEgyDNfxeq1j4Qp/s/ax9PuyftzbfV0fc1vW3ju4C3Ot5TLUUtghuim0hRchhtqbtE5hTg4Wxm4EVjlENFwFW6lRBwzsTd8+3in0X9z+Va/fLpffqHxD/8L85TLqNMD12wRhgIagkCYr6A5WZACQw907LzRQIBKyRBiTEBEDMiMXQXAH0/CufV7bsuo6WmUpddQlq1SYQje7ry3UV/5jaqtUiljQ72zvX+i21vULfADOo9+mWDk6xRx2Z1SdxXVcEe4x3d/7+vhwXyaeQrsveW/oCMYlKqtZxw7x4N7ZijFfffk7mhIUHoa2RlMVQghiqUOd2rje5/uwDM6uEFx5fK0vbWzcf3x/X6Gtiy6+ODlWUcBCBfni3oOAAEp91PKjtXfvi87rUOo0jRHX5gNYaYMATc7Y1CUcCIdSpIzgtbBivMyP9f/87/8QkP/33//+7bdJBEz7WGIaQRsF9vnxfrsPly/jOL7M8yMCWIbryzcpsc6xLD1sjohCPI71cqnDUIV6D4MwM8CoTD4URhGQwYWKCE51tlXnRQEtXN1aa3OZQv1e6p3Hq0yjFAm22PRQBkFuTFzrMAwTBEFYmzWHRxscTRQEQBRq7pq02Q0rjT1j9bM5aA4eMzMo4a6AHO74z4MXN0CG3E6HRwQ7BAAF+O6ivkW+pFfh5ggfEYCyKytPGjGAzS7Cd4J5ROpO/IwxHI0OnIjP7p49Uy5SaW60rX0iYOYIROmasf/61tagezARgOHn/SiezJ+Oqpl/OU7VwcU5//3Msz6ApXydv+x2hN0Z1f5yTPz8OlX3g5x32J3HiXDyyTgqz9ZPV3p3+HciiUysCwKAbuoEyBTIm70lbm3TgST5nlQYEUR8nC7C53lYluUAgWAzAn3ahzIzUpi6WXd3xJDCENlWIlFyrxWAAAQxHVlFxHozs320/bOT2TmcakvQOwrePM/5gXezsSNs+xlmkN+L9oDOja70l6gD2LWisXtd5p9nVtaBP+1eG3zU4yyFgOCOB7tfVbfG6/O9cXxNFrF9KLlV/Xhy0X56fM+z1INZeLqFmMiFa6ADOJEHs60rohMGoBOEUWTQbpjCPlY+1HC7nUtXbRDYNTygtan3GcN7t9Z6DDYMJdsaDko3aQAP6AgW3vLXe18liNAQgxk8DEIQw7yHNTNFBOvcOXZVhGWnTsIAwGhOwR4UDoAUDqY5ymckKcxpjcGFiwgLEDlkNyPH0oGoIiJFmDn2p/W5CAAggtuTTvdX+DPTqdOpILlZh+VbKYX5KU48P8XHEfwZBYlP5BK2u+WQaxw3XkJiz24PnqvKuq6qLJQY+pM+mDzFcxhDrbVakVlKKVxEQQuWOo1DF3XUrujoHmDOgERcZZhkEGACCrWlr95b67PqGKRfXl6BWCrvs3gnAAIsQIiEJIFRs3kFVIAGdJGX1/Hl9fpynS6VuL8u88ftXf6805utcwdDsMo4DDJMAwsCuroCIBBZcvoVxPSrefc2R9NuTalzMSi98jKMKhjBHtI8WoN1nZn8i7RflvXBdF/bd4wvL9f27YsHlpeXv8FYIRwsqPDmzNJDpBAxAKo6hCETM/fehbf94nZVAFN7mWC1a8yt39f2FVjGi/ReWZb1MbcZpYyXLw+73du6fH/7cf/gQhAtYp5o6dMKtVt0ZX0lBipCV4JOYRgE4YTN+vJ2e/zxQ1eFYRy/fP3lMhJYa22dBISwDsUuvK6rY1d/a4+ICmP/zfTW14cSBcC6rNHbg5dC5khcahCoz+/3P3j0ep3mvi5+V2khRhe8fczzYy0iq3kP+LvTr6/fiMhRwYVgFPpa+GvYj+WxmMI0TNfrLzJ8m9cCBnHh0XE2dWP32hGDSYDLL79++VJuH9bW+P33PyYuXyp9vQhdBhFFWF8mamu8f7z9qTOwX79cfvvtV0R0D1Vva+vdzdAUe4Oucl9iXkG9IFeQO3VCxFprrUWERUimgerYw2frj7uGOWL01jJLCxy1dV31rftF6pfh5SLjZbjUWiGQiuQ0wXfn5UGq0OAdVAEM3Aw9CnGLvizLUTLRHcIDE/DyPVstY9oSc/Dd6/RIvQ1Ine2m54gERfJZB/RAJElZQfKvntbVxGJm4UFEgZu8iIoc85EDS/BTc2BucPrfGCG72CdbqlMp9A0Dc+hgQJRuVO4ODJyrWKaBwJMAeyx5Wd12iOvZIMU+WNw/Bezdg2xGiCIBYO5JroF9PBR7+nIuMUzs7t0UGQIMgvmU9BwR6kYQOQpMOqYDIguc2ohDgQh75EgacMCWkrQt12bm/rzQG85Ung7jvruPqmoAjeMIJACOvKUuMjE4RHcE45qaCTA02eD3ZzOaWkWiHCBvYoUAiwDPXPZtApLnMJgpHXuYS62VGA7szd0BHHZji2xY8y1aaxFY61jLICKIjGC9q7sdF+IY+hDBMAzHLBhg+9dUVmZLl2cedheG9MHPaKOkc+SH6R028A8jhw1EaIbuHthFZEvzBIDd3KFU9hDCtMbYeHLuYeZJVjvKKjMiDua6y9D0cHAtVbTbGTs51+kMfj56RAFKD4JdDYO7EjYAwLoSMclmWJDI9pYQ4Z5GBLhNaS0i0Aw90jctohMRMqdv1/7UH0OuAtCzEe+65ow8HNp6v98IxqsGIJJbmx8fiEhg1leIcOva195Wt9W8qTbz1a0bcAt39yLOVIkQAoQIJBtWRHAMo60Jik3K2jMSwLeYylAJcOs9LFF6phwqsG3WdeqUYeDEzGreVYkkWxB8Jg3kLD8QEYIjQnZkKbcFsXvqnr308snaIGeA3jsnGQCAiQoLBqTzfU4Pd9Z8bKIagBybINa8vgnlmqsZH6KNWmvez6q6q2MYEcztcNjPlYdERAgF3Itac3d1XdY7eCCFd+t99dC8V2xz6SMIZCpcKq1UCvfeA4KZmKRQnUodSC5lCLe1dV1XW7qtMmLwy9TamjA2UlRCRCnMwtw6FBDCghhIwEQ9kk7LBflSp19fv3378vU6jP3L/P77nxfkf/a2DgW0FPJSyuvr63S50DjelnVtDywjIM5apJM5C+DojmrNekRThxlp7TJfpxZsIh7disBwcQjVPpv72kI9zJd5vZi+v38sPz5ut/nxt78/fuV/5/GKzAAKAEies6FkryKgFEQMQudCAGZrW9c5SQzMTCAsqXVSAOwB97Xf1/5qcB2vgg6l2J2I3WhoIKjrvd3Doa/qYQHOFbvXFqAyKeBqWJwLY/WLRAMLZEcw0yXpsBj1Mn358vJ6qSWWGzbzroEmYLViRZqtgaMiAQxob2G38AV96obuEukmgy6lDC/1EsPH49FhbTAj8KPf/3j/8/v7x8e83uaWDoxr8/b2po5cr8N4fakjl4KI1h1gYv7K9C1i7UvTVsGnypco0op6YIHKChBjwLoChUhQYRmDpmmw97fb+n77z//63+I3tI+//eO3OlXElagjPNb1x+PD1NZpKtNlEK5m1pb5MT+W+8fa3/t6U12sUetlXfnx8GV1R0Jh5K1/YUARqoVBMBw5QOelm2lfTRUJTFsLUuDl/uhrW7HGVfnydaoDESFQV9cO3YzDtbsbBCeyXdwtJxi2pQZ5mJn3lGTGHlW2DQ5zdneCSbYeIueGuHlMH1YOAHR0LLBNAykIU/5NW8rHzkBBcOvpJxUhkYReQHCnv6AyR+TNvqnEADz6pDMycYJtntDUwa3Ov+xkzNjhfQqIDfE6vmZ2kQle8BPPOO9ot/aR8IlefI5NPCNYx3Dh3CptzV2KBjcY4+fj//SKbZL738Bdf0VfjkoM51TN039/jsk+n7TzcSw5L8RCh1yUUnLhQABKu8vX2RYOT77t5wtxahBPIcGbOo5OXW9CDh0w0LL2PMODIyJRBCIVLsw5I/HMds/ebp+1bfOXM3p6cBaPM5Pf9ehpDjXJ857fzvMTZzowMNxl/BsR5y/U++yc4vMECp5OXRmDk9/9E3ZyBn2PK3i+iyICaSccnR6Z41ucP8lx2Y83+unmOS5QRDrVEwBhGIqAAnCO9iXhxrShyR8GJKYCZTc9JoI9CSGHmgFqrq0vAABBgEKebXpzb9ZdbTFrHs2ju6tHc9euzYMBg42DLWdkhGLe85ZDRICnGOTZv8Y+/E6FD3y6vY8fc/fNvn8HRfF0Gs8nDRF3KfDxxD1PXV52P4lwD511Xm5V3eZRG5cfzngk7na+x8Vl5sNC73xlzxb2ZkZ7wtBBHNzRVjQzU9t6TJF8Ko+FiLkQpC2fm1nKjKwrUJiZxZZfvHNJGYERt1mKFOotmFHGIlghCgGPRYoIeFAYO5ibuzmYrnWdl2moBQGIK3JDYsSKUnmgAXgoKJXRMbYYNQtDZAmUwIJUiUeRWse4XvTxuF7Gdr0MDBSXcRqm8YLCDZw45yoK0VebpaEgiAc6pHGQeW/hC9ptwQ819XBwH9yupY5UC5NAIPWO97XhrO3xuCztg293ef/x+9u//nH/43/2j6+//DZdXodhImImAgi3ZpmoxIWJAbItQ9X1cb99vP+Y5zsAlKFC4FDIPTyiaDwC3+6P6f1xnV5+nV6k0MDcDcR9uNDw8u2hy9vjrUXvvastxMN1jJdrTIONvGK/W3u0WIyqsqHdEVqEgUOzxzKv66JYvn65DL99/TZymdX7Y9b+MO7CPpaAitxjceO2GH1UfBN443ggfCllKnUEV7cFZK5TvdZLjC/6561puy8PY5h1fbTH7x9v7x+P948VQZgHDJyXpel3LlMpRX7jgbCIqErASPKVy28I67p+rI/amyAMQiDQC1Lh4gZGolxDQRtRnYbhy3j9+vUbjcMf/zE//vVf//vx5/93vv/n/1r+X99++yYivffW3u+337+/Lx/3d5IIgl9//c0s1sf88fG2zu/mC2EjRO1sNnSty8pNSbjyIFz2/L7cDCGkURsDmjZTtb6EBgiFiXnrDvN8nx+P5sjhr3UgAhkEQfqju3u6Kgu3YeiMud8ABkyPwZ6+M7o27dY3fgAlZXsDitI6FDZfrFPIWlaBo/PaNpawxcXA/q+QHAgP9wzQiNRPAkOywdwtgADAwDAYwAwY4FBR4laLYVvnugEgyOb5DuGZXsPIz0xlt3D3PegjMO1biT5NstLtMDy2XnC3LYqnOMgB1S1xvi2bMOD4y6GXzB0wyLMi5jffuO6favYWVZvlGXatYiJqaXRxhtzwpMLb+2CHk3z/J7jraCDOvdRxqOekCQB216gd+jrDYCmEJCJGpE3ImTMcJMgV+3PrFhGh2cTAMbDgIwucGXcZ5u4msZnQ5shvSzOERKeeoT2fh2NHwpJliwvQW1PEQOxFar5RRDhvJrW7oiJUcyYl5wOa9ZR+x04Oi2166IfiL4v2RrLZLCh9d9bNpkvNtt1sgmH7GAjPpz0nQbhdX9gZh5vfGGzSwuTpw259KUeneDRqR5TyUZu31gpObnan/h5OHf+5C4zNBnRDb/fonlREkrsTHLa5SLmZyo0KOmpsMQsRERQoad1GhMJVQAiNlRPABpYgclIEAG+uy2qashVBy3ZJram13lvvza27dbNuvpp1c01Y0R3NVVzBLcgCkVECM6kiyQAAGohPWxaAoBy1O4ZjILiBpdYU6ZlIEehHHBMAQmRODQU+T9fJMgYTLg1KwfTphHM2Xic7t2fzvasotjP/XGbCTYIpbVQ3Uc4wDENmSG+g9aHt2NSseekPECs2LzpgfppQmGW1bogoNB7LyJPLG1sCE6EEpfRENMx3Ce/B39i6vWCPhhTMWKu4VQwsODAPYBIajEyAYYaY9MmMBXRdmy4rB5RARK7ElQoGFK5THadpwkpBTK7g2iC6JyPFoHVfV11XXRZnIsRpKOtYX6+X+Prax1JKeblMRHJfl8ft1vvabWMlI0IBUkKZ12ZuHpBcRQzUcDSb5xVjBTf1CF5CKk4kDFIR3SyWUHAKZ1OLdV1v85/39cf3+z9/+fb3X379xy+//Prly7dxuCByIoIIBDE4CAVZIAOu8/3t/Y8fP/6cl0dQDFMVHqqwWaCEdZ17fMzL8HH7crner19EJqAqJXnZ128sDXXWx9LXtTezVWpMI36Z9Fq1tndab35/4/aBeMdlDX1z77lWrast631tJjKNQ7nWkUAa1LWhdYoSyCDsxA6FWKOyO/k4tIl7oY7k43Sh4cXdl+UHxsqljDI6X+Z2vf25vP35Z5kfPIxYxgB+uy8/3j6Q6jB44QoOOlt9/7NUHgv+9vK11om6NhYqVxm+cL3F2h8rvH08pN6IqLe5NWR2aFJgHELmbuuj48DTVK71ytNQBfvtj9vv/c8//8P1e4+3vz/+/m9//8fS2+3j4/74sbS1Q/v9j8HRzbsb9KXd7h99uRP7ZWQZBmYdpy/TND/u6zQaYTGnzWrBoi1NZCYeOMACwl0gMDwRKUrachgGALr3tqr3tgQ6VSqlINQuqAqmq6pBzOngJWyhaBbhWzrKNslQdQf0oGPjGBG+2XIB0KHd2/st3//c9nDnSnla3xP22P5DLvHMjJF7bs7YXtvjZQAiozkwZzB74xX4aRO/L2qcT9hul0AHqm/oh+vSTwDAeb8Yu7OiGwEE0qEwOsjUTk6Gm23mf4sJHQjBMUY8a8fOlQ9396bz61yzjw95brZwl9L9P731GWM7OryfwL/z3/EzA2w/ou+Xaz8sb8l3kHM+Q/dMbTAukll1kaNSiJTemvWc2cApvHmPqYmjxTkQR99j+DInZ4sQMv1pi09EEfjXL46IEWimeQIjJebMLh6wOY4drqc/nbrYJsVPsCHHNMekJu+ERB18N8RPLnle4myGkrABQDmN2mlGTp+bY0xCzX5jxEn8vzdSeMqKTlMuPNrhfK/j/jnuouOm+uuNcfzk+bv/BPnANpL+lP1waCM+Ia/7sxPAyfKi9CZJENIUw5gorzWRMhcADwQH8GwowSK891VjTUIVQEUMAFLt7qa2mjePFqEe6q4e2b5/8rhC6OGCHIXrc4N0wh1JThuM3JsdAWLHUrBfHCKyPcx1sxl83mDJAoT9seJ0FsyVA09XFrcliM4YKp08246Lnv8zEa+DOHFIoQttxg611lIYANTtuGQ/rQnHGP2TsOMTcmbnZusMaub9DADB2zbAw4XLNF4IqLXZjA+PmyLitZqlH9pKQSxRXBiuDCw8MhZbo3mHXAi2kT2FF6cgUAwIc3ZiJwCvVCu2gKhYBh7GlzEQl9Deg90ogJ0QIHrrpjPTBxO21u+XUTjMwa0Kj+NQGMY6XF+m1lq/r7f7x31dHk5RehEnwW6FEeX2mCGUIwrWWqfCXbBxn92XZWkYa4bQzT3Gr+PweglGdfXwYJCJxoFVqau1Jf683d4e//z9z19++fNvf//bv//2299eXr4M44W5CBVCVizQRaggVVWb5/v948ft9jG3GZnGcayFh6GYhVTw3m+Pdn88Hsv8dn+8P+ZSShFEklrry8tLvVxDwCRWXVtrgVYHGiYfiw64YPsB83t7v+L8o/QfFB8+g6lZkCK01lufzUGiM4Cp9g5tBdNaYkAwBAV0DEWQgiQCWHAa8MpemaAQCMtQPLQpeocARKpEI+Cgxj/eFru1l29cpi+vX2x6b/cFH/f5Pr8XYmEehG+LvN/5/T798vKljiNBmC8BddBpXF+6td5vf/7402Mehrq01hYM+BD6SoyMNXpb70us/uVrI4Ra6MvX6R//eHn/16h3vd3++V//7E7rNNCq/Xa/mS9DRSwxP97++V+rFGIa0HELM0FhFhEaJEpJ83Ue6tRaW9e1NW2rqfrjtmqHplCmC0pRQgIkN9AeagYoUgErBrqamYVrdga5njiEO5h6a32e53Vt6Wla68jA7oBAYZCaJUDeC0baSjnsy31sLqmROqEAh2MtjqAAPAxX4Vjf08wqN+sIu7gw1yoHQHTO9R0BIjKfeRtABnhoBIQ6QvHdVTztFDG3onuSD6ILiqdOAGnLz875SHEgBGI8kZmO5iuHJ731bpoa7HBGREIKDk5bKwxAcEAHpAgH7KY7XW1XTB4BLBlyB8+2CQDs87Dp3Hv91D0cqyERCZIgMTEA2BEydCqfiBu6scsR8K+HPYrxp64rMSc/4ox2mWgu68cVwY3yX2qVWrZ2dqOvwNHj7kYGBExB4BbW23/bdR1V8+CbHz9ARBF+ypA+5oAWsYmvM8Q6twKYwu0MD0ckEuHSvcNJn0iUoVW8F5uNaH/uuXGPdsmfYa4Hry4/5LqulCF3RVS3up7N8UHG8rAt0xNARAGEuULmk5o5ZsjMEwRFImYUkZzEHVbjR29NT+xkC3M+NxaegYKx5aYf1/eJXny2Vz31BE/g7fNNErjbs3kmbOcWwg1275jMxwmMQ7JKgMhMaTTG5G6MZN7DPL8dYmDGUnjavtgxBDXvse5mKwyGCOoI7NYhLEwRnCElvDnJzsgHQsC0+AowBQVo5E6Ax6N9TJ8BoESBXfnsCUXETn5wUPUIC0FB2vK/0ocMGU7p8kTkiBQFHQO2/XDmwoBvHjrbbz1XpK2LSgNVESGSvM+Pp/IYNcb+UMGnOSMj4uVyEREgVFVwO7fapw2DI6JwQaDz2LF3U/VcM0UiQjZiIrh7IKaXigNs97lv26fcTpRpEkZBBHXLXPuhjhtT0yHAPKQ7MIIwExSKwlwoMIW8OaUYhiIcwAOTu5FZRxYECgtwSFd84cHMEESwjnIxMFMga9C3GQs7kYdan293srj/eK9SpiKJafd1CTBmRHEH67Yu7X6f3x9rn4EhTAFFuUlhRPmYf2cE4UAKZ0dEdhEY0GY37C3WR6wt/AaXvlyDYOxGRSmAqA6DsJubdAC0ZV7m9aP1j6V9v93+848/vl4vX1++/DJMl2m4pDkC81DLVMvFzD8+7vfH232+bUqKodZSh7FGBFfyrndZFgh3mNfltszTUC9jhT1oYKhSL1MnG72aGXCUkeqAzGuFhW2A6bKWKzwu5VH6+sNx7H5rAAvRrbWHdgURpO7+cZttHdpCCC9YmMcKAoa3gLXb4sEEwahCxqxMjViNO3JjcCnWMycmBCldza5Ij960Nbl+/fI//u0b1m/Xl9//9//9P//5f//PxzpX4etlnDqtWuf1fY1fgZUGYhWkOvj10r/03ubbMs8/Iu7jRADQFjIvAxuI9RhtUV06FNB18TYTSi329Yv84x8v/nj58eOxLO8ft/Ln98ERza1UrDwESdc2z/2//uN/D9PLpb7s2XNlqEXYS6FhKCJjkenl+rou98fj9ngst4/14+N+v83z0tbehmuXcYJacr8dBq4BYUrGHI7o3cFRsDAXADKNtfVwWOZ1ntfHvT3meYs3pmKGNbMvOW0AYWcGlIZIgOZhbmDqpq7qrggCG5nr06Z6g8WBduP4T6+ISKQfYLNn8DAAcgwwOnbVGk4kvhnke0YnuwMwCdJzeoJPctKRYAibPB4gkn2eheTZ08ApqO5T74VwYAnuaXqwM3uQD30f7KOCHC8Sop3Flftav5FVT/rw/Q3g8HX4Ca4790nHiDCtnpieTk5wsJG2aKFnOQUA/gvQ9RnJOGMYn8h5sBnTxmGIi9tkjPYAOvCIA6za/c8CAHAf1D5pQHmK8Hna85zk66gKR804Ptv+8Z6bctuTneIku9sxSNi9JDZUSbtBbDnERwAinoDPFMsmIpPHTLki7nT7NFTbyTHPbvUkyMc9IPLwhviZ93Oc5GO0d4xysvHarhd6brfyA7gdE968sX13BUMAB9xMwv7aQGdbfzRbBz/vfH3jxBw6n+3zfXIceRsnbdf+UxMfsEVTbH336SFiYkQBMg5jZDOJVJ4SIwUhENbeGkBqH3epo0Z3Bcjo6PyEBpCRkumLCsROAcRwOKztFAVEdEeXNLAh2qSLRBHmgBHmfnoETqcOEQUwKBzC1eATYrpB1JGIOz33TgiC6JlZup1/RER2h5+CNfe7Do4ucL+17OwugduEfeN48bGCnq7U0wAFfoYwj+3ZobcQfqagHrf0EVxxmPb1NOqKyG+WvEnPeehmSbP5J4oIDNZVMg1CmJFKwAiBWky0ilSJKlYcDQLTVjHDJ80sAjiIiLigAAmjKakyb4wZBAOCDOzSCMxLAgbMXEA4OB1jc70VKtrmVZu2rq2D+1RkrGWohcKLUGF0t7k9lv7osSB5kFlYBIDz6lyMBVCM/jQIjaCA4lRBgwGCMCrYqAbLsgY0Z7DA1TqOc4wFhoARSIqwALsjce1sVoPC2+Pxcf+IP38fpuuXy+XXMlym8bWUoeBYZJzGr+N4dZBl7h8/Pu6Pj9aaI1SpMtSNBMropb5KWQPb0tX99riPwgFTZTbhxGkKY25EBBCFWKQwESMhkjDQMMYFeECkuP1Q+eo033t7D/ze40OhoTCV1fn7w2116kOVgcdXGj+whPvNoim5mZIDUOuxNLuR3TnuyBNwADjXh9sS5t7RuyBcEK9EK5MiXIRfv3z58vrt36+X/wzg1tr7jz9MH93vc8e588fM3z/qdURGAjQuJGOtl2td7tqrqq/rDOQiAkTg4g7eererG4+FaeBRAKMRrgCtVv/tlwuuv7j++ON+v73/+V8El5cvtUzDUIDESZDBnHpfiWgF9Bgoaikp/xIkBpBhHIWH6XpZ5rfhfhkvc8T7vLjZ3LQ5hCFVQA4MLhyVyZkUgMkZsBDSNLxwlIHp9eWXoV7CpTdUt7X52rQ1XZfO7GvtbVAmR+8I5EgMHJ6MZkLEKkWVgwgd7bTcpwDMdhebne6A4IDpFJCuC08SD2wIWRpHHEsIQoC507bHjlDYx0C5pUUGIEfnAIRdFLnxf8+rEEWkHfc+I/B9KPP81LhloSSDIcLjgAM37+5jRcvSTkRVpIrkQp8wnLtDQGIbsLP780029hukGBp56598AxI2+iwg4DG9PVbJZ8OULW06LgTKJ1pVoEN4QDJg3QKTCoQpTePdpuGvXS8iBjhSSkoD4MQ4ieMbhJ86DNwbF2ZGJs+ChLIVwB1dI5GjfTEzj0BgC3CLo+M5SGzHBPbcExzeCjlSPDcr2Xgh/jeM8ud/cQiH3rU1jYhax1KGY1hJBIggkixCP/ffAFAKl5Kjw6100eb7tXGwzLa8lxMgt4Oa/JzqAkZKDolSa3AICJ5yyCcQteU1yfGviAiwJWsdBTXvqXThQn9W4kS5juiH4xud3+J8eo9dAZ5mTD9hn+cRpIcGGKBsdw5BBj5igKd3xM45+/SCyCEjRpDsnvjbkZ052xByV3CK3Jp5pP8quEWQB4aFbbTPPM/ACBEMzG64kYRiG4oDAHgcqwJvz3YgICB5ZDZ5RISm7fBGX0qbfiAUUOgesOVVOnAgAQHubEs5nh1GQqIkH1pSnSAiPFHITS0MRyAEAXE2gLy/snffrXH56Mtxj6AgIqbUvaJ79K4RwBEikaTS81Pj2UhualxK8hYRQdnuzSPg4/ONx4fz/q65hi0ywB3CADCCt0lDRECHDdWOOsjgxVzUoZsxK2IhKoSVsQrWDqbuhOQoDtBsaT2Z+14qJwrHzAQDAwrxIBMQGgQEAjFJxcBAcqe2Wq0iVAaqlbqqi5sBqIc2S13YfLuvbZ6KTEP98voy1cLXIUpZdTbVdZ3V1zphQWR3ZXdWw6Yg4SFUM2LMuoMSK3pFBWRDEZ7AoXUHNEJoKyw/ehSga+MrkpOgBKOhNENDJyEM8e7rPD8eM6Gs/fb28UPKdSwX4UH4MtTLZfo6DFcp195jvs3LfM8LxoycTEkWJuaASfjaFdzA/fF43ISZgoaqBU1bWE+8WZCAjAgYQpCYZPNeLISjAALYQvULyKuX+6zvD/C7xuKhREplhXFuhL0IlFoKDoATA7Wwq8NCgKbNOxjaasqtUX+wvtcYzDQQ3B7mi669z7Cshl50BV0wooSNYWPhL+NQl2/xj7/fl/U+Tni7/d6Wt27v8+o/HnF956HQdbgMXAcSEuFaUIjHQo3czUORYEsjw95sQZNBBr6M9Tq+XGQYgNgcGpFfXyb/9u33P6b+40d/f48IKjJMU0GycASjUlgG4RFQwn2dH0bd3TFMjKlMSMhpm5jxoghM9fZuRR4QlJATdSMNYCRhZp6EAroDMRVmRqD68k2HdZL69cvXabpyEQiCpJ8mVBC4UZ41IQdExGKwxenuD2opBa2AiTlFsAMjGYEcaYm7YScnNB1Z3XB/wmPz9cZDd+2HQoi2Krh3CZqIF4QnFuZItLFWMS098RNGdWopGAPcw3ePAgB0OmjyR4E589Mzxe2TPxZsZkXChMBJ1mYRFuGtFdlVnUHPFu04wvn1LEb754VUHPylGXp2Nqdy+9dN7blHSafZSCuNNLzdd/MHVPb5S/03QsifMLC/1un9lbRx2HQMnDvpJKNkfcztbAHipOKl1NEA3Q748ZlI+NO7n791NjrM6YJ7sM2SkLdNGw9RWARGWBaMbXxl0VpLYhY/HWh3MV1+Gf8kZQWAKpycfP2JNbWxwTLpsUdEgtN76MqTUrMfPPZZ0lZNz7LNrLtHIdxquWXf9sSc3D37ldMV0UhzFjuY1J/UHD9BesdFBEjDyU1M8rye+xYE9ufw+ed28A1LdX82qZvXxhYilLdE/HQF989M6e+WbhS5JBzxoO5OIWGABupETuq0p6cjOHryDjKcKIAB49O7bLsjhG13dyIyeIThBlUSAJk7AKdRcLdP2Zf7vQEcJUIVnOITFrg107TnCmyyCN5QwEivwUS8aN/NPZvgAyKDvV8/FA95gx0B7XmHHo3X0RAnnmpmZCoi0zRGib9e5aAn6JigF24aWPp8wTdCKhG464ZFQaZ+YYCpuofCyVIu0uuYIoLdFSlKKYMPXYdQQGy518UAAibkQAEsgRbIThzu5riqhVoYCK0UA9Qo+bAJiBCXNOAlIEyXKzODIHfXZoVFRIZSpIlgb+AUqGq9ae/dVN/v9/nW1gJ6LUNiF1iBrGub22PtS/eVKlOw6NaRA0WgOpGUkam7Nw+1pc8YgRxMJEQYBUEJKzFS8UBzg2YGAexdYm3gobMyu4uuRFGoF+/M6C+XIRCBOkS739abfme5CE+Edajfp/FlGr8iinVvrQMCsQC6Wqtl0u6GiFxGxq8vE4UuH4/W/f3dUBd+fRkkzIe2Pt5+OA6ljmUcK5JHGHRzB6BQ8CoV2CIcAw2pRX1YWWn4sXzMZqtBY6xU3xqSSrS4sLzyQJVBsI5aZTbVVe+60upLM+3NYzFYH8P6jr229r42793c1r767bu+vz3e3t7WrsvH+lAYr2WQV1NZ1Zjrt1//jmJ/f7y8vU9//oG3j3/9+fau/W6+RsS//frvMv3S1G1xAHr5cg3/saqw1VKQBSuiTGPr6CuwWkF/uYzXX1+vv0w8oQy+NEMWlInker3+JuXH//3nu8ZHvbx+++W3y3V4LLq2Voby8nq5Xr6tq86PPrc235f7/b5+uX758jpMVQqShFtb2rqsrSkBlp1gyd0qoQheBC/CkwMJ4TQIy7CoOYIQD8OIwNPr19fpcp0uL+NVeAgrjEBTAQe9KCMFQq2DA3QzDwrXZW6VeGDJLoeZI30cMeOjiUgAPW2cc4O010VEEAhDcNijpilJIU4QAeZpbZ08CKDdIMjAkm2TWRRMKfHa9rp7/gkhI6LvBTE/DwJTUj02pTr7jg4AMbglfpB2R/BUdZWE7ltragEA2a3GFqzLCJ507EPqeKqg5GYebg6RPQjHkdl3sKpLKZpg+taWpcwT3N0cgIkpM9o3jAF2o9GcByFAb+1AKUJESA4TMgNX01GmzLvfRgOxnZ2MDDg3XseU5OADETIkNOWbGIqkxB61QZDiyvTQQtrZdke34ghIhIDd3IlKKVIrcuFSIci8995bW7NrV9/6lZ1x8gzJTlAhobKTw6cRC3MWNoctAQY8AsjzMx1TGyJaljmrnarebh/LsozjeLmMpfBeQSF3MemctTHVaCPCq6prSBpWdQ+15AxRhSLCgOHW17WvM4YVGQpxtv9tbQhQa621BqbPpObHyBatlDLUAXc7iVrrOFYifTwera2ISASqnLBc/hYC7+ZM5O6826QR0TCUPPjWvCJK5TKU6AYEyJicTMGD00YE4Y4iAqbhmx1xhh8goXe18DwP6EbIlTdGuXcI84A870xlyM6UAjrlCBKICJLPFgF7DpgHApi7hytmwCoR0SYLpsxqQPRQcTbrG5SoQeSY5gZcIlBVD1syN9iwXnAIQVTYjEwPn9sUL4OHtq6FJuQN/c1maOeMUwB6PFXMuaC2HjnwSVFF70a0NUmlFBRWC1X1AA+EcApyd4zNZga38DQnJIPA/CdDMJNbNgzI7AC5CmUHnz5w2XgNw7BH/uz4M2KE9269P3WR1vXXv/02jkOGMkdEmJdSADCfiN57rXUYBlWd53mapmEYhmEQIWZsbVsD13lJ8u/eNEcP3UmMhp57Sk+1hEMw8X1eC8cw1dagxnhxjxmuU1jvDJFXGYgB2RBT4EyADoTAEBJOCnC7t3XVl8vwch2qMFIEwbEr3giXJchgQ/LN3F2iFC5FhuirK/ZwR+hgS1u19Zyg6uYphHUah8sE2FZr9/W+9MUcXFDG4eIpe2diMghzEyRlUTJDN3dt7o8WgTFilAB2gmAil8iIPAAHDzODVWdfmw2rMTsxuIhXsUomCEJIUBgQepvdQDVUdcUVorTaVLU1FR6FCiAiQYQvfVFVV0OqINUJzZr2OfojfNVgJ3Rl1aZN2jKvpQLidSwU7r27q7uyYK0FBi7MAGgBao7d7g0+evnQ+q9H/D7rj9keBhqFsURUkVeJUak2Lg25c20lePgwffRHrGhLqBkIQJ97f/sozqObUlGjdV2X+aM99P4ej3ufH+uy6v3j0Yzm2/z+dn9BBsEAvIyTyLfrSwz1Af4G9j4/+toej8ft/f1t4kuN6WW4GlJ3bwFahMaRQouUSlGZK9VSx1JHkqm0kakMRYYqMtSlra21tnRTRB5Lea3lWvj9dmsvt+V2X0qdRISk1HGcpin3PcyMBGtf1nV9LPfb4zb3++UyDpXd1jAFAECxgDpcxvEyTlc1RGDCwjQUqp6+gYYOXqA7QOUyyvhyeX2ZXl6u02WcxjJWGdGKdly7D8OllOF+/+i9B0KuAuFrRBQULCkd8BgAAIAASURBVFUACxAEEZEFBRIgBzKhBGa0RkRoJDU+njV+81rAnXfk++Rij4/+BLdsBCDamfIBiI4ZzwhVKiIyChDinp+dQM+xkdugctgCiHyjS+ecjyB7fntOUs5Uqgzz2nAmeKJNfoo4jN3wKTb50mlmiRiEjJyJzrhbQsDOyTgjOgckZu6pCTuaobPF14ELngXbeBK7Hb+Sc6fn9nr/j8d+/acR0k+w1vEhz0wyzXg2M9yc0zcLTQAIt4gUrZU8RAAF+cbb2Wy7GYEBiSiYIVEhZi5lY6cdvrLMJwTlZzL41o0lQfD0LTKIIwu8mm3W+QDOXFJXf7Ru51N6THPOpqnP67ifaFMlIj56IHdTdfeC2PTT7O88KzSz0GDmMlQicpeDJXMYjmdDf8AYZ4gId7jwfMnO2rds+wNYVXuHgpLNYl4/Zi6VzTnAeu/uQUQ5+dy+rLuZkW8xDMeIdmv3E9gCRzVFR8S+GUEgEaFQGgf4Zpr6TPOMMFVTawAQ4YX4ic8FJIztgZw7MMcDeckJmojElgrPquIOtQSC7A9jQQRGAt6aOUJxd7XWu5lCOBMiCWz4GDhgWpKmkzN6KhdOtL9dHrExLz8/cZjhnRXhrK5NV+ctzziTsSAcNph5u16EGAh7NKdt3tCfwMXjDsxWb7fhfcJa++SRDy7g0XafgLft1l3nxUxzdwo71l5rTSHwEcJNyACwLEs+0QmqZeSoqqbR666u9eNPIogg/BztAACbBQ8GAREKoQIKIpuGuxMDiRSGiiP5JBEBRkCMQgQyeB2sY6OAcG29LzOIADgBaARXNnXzCGEiZuKCFOhBgGDuXY05wIVgkEEBw2lxTQqGqvbmAFBGvrxcx8tEzN1as/k+3+/r4q5KVOvATuEBFMhCIgmFylDV1DQM3FTNw8PCzJWoBpZ0xyAGd+Sg6JNQj7603sz7GlY9Cjs7RG+uJdaKRXjAUtMu0Fw93CLcVrM5XLqbQXS3ofapvBIJIYd7N2/Weu9cVMADqOmqbVa9RWhEMQePotpb03XtRToivVwqunew1h6qyoX9MlSrUlHB13le3pf+0e93/LHS+yL/9Yj/vOvvc3yEQBRX8TpO5dXhAiAPrHekkXwsAOXDYb5Hm3uf22qdiKLAescPWk0eM5YaQeu6zvcfy2PtD9LOCNXUwAPD5tvH93/919IfZaq//O0LBbozdHWNQYaXyxdBmr/fYu3LY34Mj3lqw/gSRZqVWbGJxHhFACIlNGYSHgpeq00iF16GgAtzQWAEMkNt3nuGh45SX4b6Usv0cZ/ffjyuL7cil+nlWodpHF5KqbePBamQIFA0be/3H3GLt5vM+tvXl+s4iIcy0jhewrk1RRqH8fUyLabkDoVKISlce7q9K3g31wBCrlKgfrt++/r67duXlyplkKHKhF664tr0MvTLcLldr/M8L8syL0vvXdUBAImqIELO4iFcgTASWmIKZyAGM9hMUD2N0DdzhxSoeAA4AwZuEY/PXOwkF+GmSd5Qsd2wESiCmDJgG4BLIRKObX3sOQUKT5bGNudECATf+JwbUQkz6BAJ3QOgu3nk7os2OgOgAyytbXxw5ozsAAAkpI1g8qRUZ4tcdyd3N4NwBGfKtY8O0s+xep6Z48efe+X7RCM7d107vH8W1vGZeXO8i4j0vSGgvbM4qNNxIkL9NMH8qfxva6u7de2tde3uDpQyvZrtirtblvAATuraMfkFCNikeedKk2ciIoi41tT0+QFTAUgunUctP3oyOE1bzEz1ZHmQDm2qe28TzI5YiMgszcQAcc+S22lk9Nko5DhFOUmz3fwdANL3IQtz352QcA/boZztubrtMQOCaqbqIjIgSCnmnPfKZshiRqSQ/fneBBBFwnuwk97Szuy4Kw44cG9bS0DfgmUIaq3aLZsJAi5clczde2tOXhI8ZGFCSDaMKrklJ/oU6Y1HXT/e6yi0VISJqI6qqjqnO5qIFGKizau295725YhApR4jdPxkRYspPgxHJ4RMt0fgnerA5AFN3D2QuLg+HU+EGWF3YWA0a0vz1gwjiKoUyrp7pJ4isANvLMA9QRZ37+I9fLMzb7fHsUGKpJZLGVgOgS3Q82HZb6GEpfeH1DE2ry7ydJyOIPDnc+qHKBKPTU6mgCOi+/NEHQSsY/ZNDBFxUOxPSwQsy0zKpZTKw7EbObPEEvcSBgDI+XhrbRzHcbyUUs44cTJNNdK8+jlbTKX5c7nYPJLNHFAIQIgqolrQ3Namqu7IRFAYxxJDC2MKBGBgcCRgQVoec6j1Fl1b19YacoY6IK7d1+51RCJBTq5CbtEz7VajA2AIwCBsUQIADSkItvBD4ArT5XJ5+VKmkYTmrvdl/pjnhzZECGKCcA6UJNwxMSaXRa7Xq6p27qs9VEO1h3u3UG0VfcSoDJxWkKiAlVnchRRt7d3IjKwRCJkphHWIzjJVZ3A0c5BwD3CERAQCEAjMoxE5cUgBJsbgCNTuGrHqSuEcFgw9mvU5fAVXB/NgMzUzzR5R1Rottw8Wd7B1fSy9AfjjRlJZqqi1x+PxeH/vtx/3H++3D3276+8P++PhbysspSIMauImEAPDYFErlHvwEF28zr1Yl9sDHosvM7gGkxXvFDMtZu8fQAwh1tfePlwVrIIPTCGEL1duDmaPH9//42P9Pr6M97kOo7AoE7xMl+ivtx8/5ve5Lc3HYBB3bD1WCyDqVFUms6u5hgf4Yt7dAoSGUpiHOkzmQ+uihmtzWyKqQBTC0QkBnHCQ+jpOvyxrLKv9/q8fgfx3Yq4XC1/auvZGggAUiCgIwtoWXZXff/S+jFUYqdaxK0KQNqMgwHGcvrqJqrKUypPQoL2hB2igEhlHjlaQMaRyrTwNUoRKlYFjLAgQxmRVhmEY1mn+eNzL/b6sa++GAZXrOAxVKmdbFFVJiIWInDbllwWinznpcdBu3AHCESPnYk+P6M+vc9WnnZifhg0HUMFEEOiYbPVNAI7BySQNeDYNG9NoT2yEZD3Q02HygBxOH/jTX/Ids/ZruMF/85M/LZQASW0kfxpSP7GlY+FOX5xjLUuI47yhPN7lMHCCk4XPExg5wSF5nJxZZJHAE3nlcKiCz5SRnaj+bNfOH/Wovmc0Jpf7XM1VVUQAjYgzmw8pNbBJUZHdUexJ4z1wu//26h/Tz+ei//nz9N61+/FhAJ9d6dGQ5UGOGpk1VaQeleOn83xyrwAAsD1y5zwXPp8c/3yfH0NhZgZCEYnes836zIzZM0A3/s7zgAlOxC4mOMbZh2XrdvOfHC72VikO2VoqUfATaRIg8Ognnp82LVz2Nncv/H5c7qMXPya/53qfP5w4ShknpCAGpPBQ1X4U++365GN/NPeIsAPV5/s8YJPRpXqEqIggcwSfdxeEePDtPMJMwZQYEYkzv9KtIUVmfANRtl97KOR51E47C5Ge6ZPAgA5BDuF7Y+R7mEHa5gAJb/eYZBroYUKRZDDmAki7h+4nwPK8vfHPRip7S7qJHH/aCNFTd/JsuQ4w290zCPt8Nx5U/d0AD2DPlU/E6yBXnCHwDKyEeAZF5DG377aJwAG3uV+KODgA3NA0VL01ba1109hEupw2LlvrHCxDfblQf3lp93lZHn0u8wPAG1MQOYS5ujOsXQYdRGre1dsnDB9KIY4A89DkkTMiOHr3SIjBo5Raq0wvL3UcWIqhdffVvEX02D78Oi88jMNQiuTVJ48QR/ntb//Ler9/3N79zfTDFTpGeNNQxUBxRKsIRoHsEdZaX9znrqvH2kEbKQsQqiuCFzKrFhElnNAdOwJDBIMERBYsDAVTcGOIUngcR6bBzNelY9PVe7e22ErJL46G0SA6RLj2pmvvNfdzCYDf70upABSttXm5r+3uupqvAL6u6+PxWB5zW+5t+Vju39+Xjz/X9sesbx2AKvngLuxUgsjFQSqUOxB31dmIui7r/d7ne1vu6oaMc2k3Wh15yLGId4DoDCsjMI1E1fQHceU6iOCyvN/njg8pjzHQLy/jy+t4mWQqA12+vpc//1SZ76qjm6KaLC1oUS6DQTW5mLaO3a2vq0LvE+As8e2FiwjGADg4lFBoa6gYghBMhbkxO4TjOAxfv3xR83jMH9+/vznCMF2G6UpSUCN2D3YgrOMw+ZVnVm1rX1uf7yKX4TJozEuHEETh4AgZ6gtci6sxlzpMVIp55l54gAgHCk/lMvIEHaMBKhETA7EzY2EWr+oRUe1yGXu/XK/X++VjbmtrCkEMiZwQplthou7OxAWlgEoAWURkQGFABFDGz+1PLG4E2K0Y5AJ49D25K92siSBFe7k0Ym5JSLZ6E+b7sGOTCTIxyI7r7EpFANg332mpmjXJPFzVDvbVtrQB5wqW2HuyOgCCNuwq+w/0QEc6r+AAYCdHg5QFOcEmtd/k4AEJtm2uFhu37MCuUhAOLEfL6P9dbMuZin4upfnnYUvdWkfEPF2HJBB3Iyg4jVbj9EmOvu1Y6/cV3ImgUImIsy4y6303MzdQAEJmSQsJSjN95LSUiK07djM3DdNILpywHdVui4rZC8rZi+Q4D0d63NOwlAsRpQO+Zbyc+QnSS3NOEUlfJUNEsyDaZpp5siPCXZNXZGa08YfM3RgQCM0oIpp28557FwBXVfDAHbA8muw01Mgr77uNarZemfCYQ8btJBMgHQgKiJA7pZT/qNPu4e6mERGl1GTFATznX8l8cvdU/asbIqq19Mc/N/2+q3jBHdAhPAW0xIAeAeYeXTsimtuzSwvwYEJCLLHLHguVoAhXbWFVshVkBubUKEAytbOLym2P73T3bUKMsIsygIOSfLLbzSBTEYbAEhHIG1KYZG+ENJUHjzAHD/ZIMy+BYHckmbJjzPUEiZERMTLvEoj2jh4DyMOJC5KYJ9XeaRPHYEQgCzIzgwMm68jdcQP1iYiS02YWAOEIEUFJTkioezMXy38SUI9s0tLl6tiV7TzO7UE+NjxHr3ZaBALpnBG0Nc2JaUaY6pZ5Os+zuw/D8Lwn8RljkI9Kay0bLyLah6lPbsP+9AUAUG4AcqHYySAAHkFm5gFdN61JZmW4ezr2gAcBM7DnKkxlHC9fLi/M3B73+/1jvn1fF7H+YPJCYd3DVHtvq7WVC1I4gTqCMqEwDaMEdHMDDAhwQO1oAQSMjqERgcMwvrxcLpcLSQ1iw/DEk1jcWNVUbfH5hWiYRi7bwsuAgiL/89//P7332/UH00jBM+CqpgrgwBRKoeydQpJp4TovrXk0Cw1yYMNqWAKheyAHsmEEhkashCksTPW+M1YmCSwQ0de20qPWgYUul3GoV7N4yIz3xSxAFawjBIERuXMAg3dXa8vCQqXW2rStuiI6IDgASxhEgGlbPt6/L4/3dX08Ho/HbZ7XpbXFo/X+cVvfv7fbW28PBK4sXsK5OS7mFOEIBUJ67zbf+oP83td5fu/rDPPDXAFjEbpLceZmvbd17XOj0CqdJQoOzOwIUsuAL040t8d9XgzQP9gg6liu0/jtly+/ff0iBFN9eb388vHnoyk/FhsXX4aANRgCWRYrqw5LG3wZY+2w2Bw2EiD4wEDkqtE1kAiNwRhUUnWNCBZrYC3jl5fw5m3p68fbm/94n17fxpdXlKEURBmY2INFoozDBYJQWn+05d77iq0FkAYBKOS4GQdGkjJNWDG2Qh4sTSOHgbWAEyNTrWOlykCu7upUiZHJ8xkuUkYAAHRHM+9rX66XcVnXde2a7goGrq7RghCAmCVQUAq5ODFQdegABH54QwDlYps2pT/r9n7SzZ2ERYdGPsNUggF5G2pSiknTc8KTA3E0GREH4PXEsbYmBmHrM3DTHB2ovqrGzvIFgFyncsB6LEDmEFtLgSk1OloD9A3sA8hc4a0Gx648P9Rw5yFOa+2Y7yQkg1L89DrjE2fY5nBeOLrGn3bVR2n/9PU/93BHJT5ex9HO522nXnG2XAQHm2cbye0Hy+IKtDsyEIlvxGc4IsNPH5gAyB2ITnS0s2vGDkkeH2n7MOiH4STRVlGz5dKeqM9WqIiIsLII7XiJapgFQN/nvz83r1vAdl5x39zkY0vm9q7dzEpCvO6ttcOKLHamXQ4ldxwiWmu6thRjElF2XXGKTcy3TuzzuBPc3b3DU1SB67omwkfEtOW1W+uL7+1RHrmQbMJdDPVs6+lcoWO35d/QTYCMFdqP6dmFHydw/zDbhT6zi/KYmtl+phvxn0EKbZAIhIdhBKJEpOO/4f+Diva4J/fjSykMVMksAwQRFILNNL9gBDKjqhOl6ahHmDkgADJWKenpEujEvmGL+59Iz7xI2BhxaamFFkARDkRBjpAoGKVzqu9UvPi0tiQkiQiIZrGBynlQR2DYlo4zOH00r272RPG3W5ERsbV24PFxRHYerNPPmt+8r441QX1XHux3ETMnlR4R3TYs8wCV98E3nR+9Y2+2396OiNl4+bZ5C4AcrWO4WUBTO26eshvyubsBoAeagpo7uEMUGUr99u3b6+W6zPfbe71P5D6FPqKvpktfsd3vy7J4t77w7MZYGXgQnEQu03AZxR1bdHfsAWCpC4IqUrgWlohhHMbr9XWoFQi7OqBbuHkYiDmtarOCApRmXZ1LznM3hzb5xz/+l3n/uHxhGgrLR+Ubx3zrNvcMGzWEHo4OpN2thwWooyM6EDBDAZgcCaFSFEZmVQjV1pkIMAgrZu691FIuSMWUmwZ4YAAj1MLjUHZBbxjgYMW9IFjAah6EIlRmd7do5rO2ybW5rdocPKSYQiEChIw1ECFE6G1Z5vv8WO6Px9oXQFVYHn19LLOGgQwe4iCAxQAX6xUVgWcziHbTN7Y/OT50nXXBdcFlZu3BroytFhkKE8DazHsn6OArqyrNzMgVtYHJB0hBtDpid380e3v7QJbHOGlbUH2stS+BMP7y7X+qxffvM8CMpRsrKTnh3NuyWJsxeqV+iRXI2gLoFlVWRnZ3JKh0YRDAAXCg3B2GaVTDClJ5uEiZiKsD3Jf1x4/368u7lOF6kTGNKKkisjpAEGEpyohBZWM+GCACeUC37kijVEZiFkYZShWRINYhWlgNQi5YKvJmLMlIrqateR0AQb1TmFSoxEFIBMAOUFLOzIWZV7NQdW1dAzbzYmFfAZiQBKWwjCSNvYaTtuVIbNmWCUDyT2MFhGfT8Nfld4MDkHeDw1SV48H2yfWHDgtHoKR04ebjsxlXJuErzNN9fvPIQIhIpncxB3cLhwBjBESCbVQmkj0BUWKPRMGlABE58i7oi62pDIASEaH9PBWCk+T+gPqPgU4OAs5Eb9ox/2OBPnhOh97i7Hd1bo/Ov3ge2J0X03OzhTu16DzOOC+45yPT7j61IQgEAG4RvhPFWGRXv9PeVTBuTt+7ExgikGzTRwJi2Mlnpw/vm8XakbZ77j7NDLbF39RdECksa3yEmataV01feMk+NaHE3nvzjbBlhhEhIgBCRFI4klOIGRrkke2FB6Y21xEt3D3MwN3RzBQzuzLfhZAR1M3DrTcX3q6D5Ry2sbMLA4BZjzBmFKEN4wSICLWeYBkfeaDWI6xWYUZ3aK21VRGxlByVhpmpbckTOe9rrcU4EhEDImzgKxEyIwux0LYhCs99i1sHDNUkCyIiq6bhVByxXedzDxBhHbOdTZyHKNWyqro7syeaiImMIGBg8jvNHQJsA4tz2piR2LkmJAaQx0NiJkbBkpnNDqi4Masx1MIdCRipAsQmlQzVjKsUYiYpiJ6NF6AiExKSIKIgcZqfJHkJKRAcdw8IZEIWZIKg5C84oGUIBlMGQRk4b/u6FFAzM+XDvaX1nKQtwASEoM9HLLGuXMrOT98x8Tz3Q8eCecx/j/1JbDkXcvw67mkB2f333n0PeSPa8qm0m5mVUmKPPuvdjh0OM1s4ZhY7buwxANgWJ0Q//BoxKMDMMXOTIqmeCuhEICKFpUpRNwxrYd5WXedM7gjEgvDlMv369UsbuUCbitZypVjW5d7mj3Wm91isa6jagl2VZOBhmobpy2V4fbnWKhbKKt772jU0KYsaEWMZ4QW62zAM4zBQQFsaQDh0jbZYX7uZYw9QB0dYmt8eq0ZMg9QqjIQY8nL9JcAFhzCDMOIAUCD/0MUROgYDrBGuTmrRVVDCyC3cMLXSgBWQah0IB0KCmL2HhzkqJD+ZkZArDdNwIZ5UgVYttRZO1o4DODKLUK2lqgsBQQVYzb01YyqFUbu2BmquET1cMXqEm5GVQADyWqjWinHxdkXr2te29FWUWVAZyQlSbwHMRXgIHCCKg6hH9I7VHBYK1DbH4wP1TtCiRShp41WLa4BzSQUXUCUWHmFABiLwQEMyKhFoGs11FZmGcZimyZHfbwvx5X5bvv/48+Pj4/F2//XXv13q+Nu3fyP88ecfb99vd4ePMt6NBuPWw1v0ta26OrqIjuGBVpp77zFwJ5wRjAd4Ga8Czki1XrpHg9WjNqAOZMAG5Cggg2PR3j4ej7ePj8v1i1SbkKRMIhVBuiWIwsei3Hs3B+LCUlW9Ld3AzV0J0Yhls5sKgOvlUjwCsAwjD2MgmoU7eDfrvS2r1dFAPBxsJRAIQqatkkCuUsRIRVKKbk6G6MBEwhiSKDoyowuUwjqwe3jry3pMEnM9iI1r9YkahSfezIlz88lBihw9HQgtIAAYw4HSJAYQ0CAIMpMDkq/ohxM97INL9xDiQAg0B8SnI3MckPv5wxwTwGOTuv1rUKAld4kljQUjdt+uyKgz7Wfo6LCiOAZ58ZmPdbRHRxN2BqXOM83zTvT8H8+QGBx96I5J7BbgG5s+KbRn8tn5bP+EOR0HP8YTmwMkAuxgCfLzRURAvDdfBdNvfSvhaVAZWVosFX+yxRCdMZXjTbMeHN2JmZt3PHG0j09+0MMPMvLGkSpbFGDvfZvWQU4bewahMLNYXmVLnHJvZmPzNd/J5sfpzaK4GcgdE8P9siZ1hgESEutrs5x87KcTdwHE2Tbzp14ZTjBnbIaZ2nVNEd+BQh3WXxvpbS/Vycf/62uDhGE/veEYkcGbWZXPviqwt9TPXQSAqu6us3mobVJs2ZARRBhm/xrubsSJ+GAk0gIOwHiERfxlv3XcdZvVPRAExhbjSOwawJoWrESOUcsYhBobIwoRWTI7ARAo2HKDFRSxI6uJKjkGHsi6eESON5FQKAsfoOf9EJu7Wy4nyeLaDJlPD2k+B4k2Ha0k7nB8nIb4cXqdv/5+zrfIoMNF5fw8nteQ8yp6/plkSuTDmE3VAVojoiWXpNZ9SB2q24Pm7pfLJXcMey+e1yo+3UJ4UBcYUkeZ8DdYgBFBZWnbD0saOYOr9qbLPRlxYCjQB4bLKAVLH2Wg4XKRQuPjHou0lbrP3G7eV43NyC4qlOsArxf+cimlFIvKrTvgkgzz3mxddVEhfr2+JskSEeY2r2tz6Aaq3tdYFSww4SYHB7N4PBZ3ZxhFyEPRUaK5eR9k+PWXfzDzeBmGqfLvFRj6413XmwIIkmuDYJGLLx6B5MEOqq7WqUQdak7wTcWQAyn3CBa9CNWh1kLMZajjML1E8NQ9kIdhSIi+6SpSAX3pCzFcL9ehkpv0ZjbAqr01Uie/x9rACRWoGylVqUPrvfc+dIcJBw6yKGW4Xl8AgLAQXcrwuLS7+eO2dlEcamlmbsBRiKo7rl2B1uAZPJCKYFvW2eeloqMhO0ZUD/WAQhVA1EIUo2AdB8HCUDAfMjCQNowEzAro1GWsw0WChIo4RDPFx2Nd/e3tDYDi9ZdxnF6mL//U7x/vd6R3Gf/8c364EE/D4o7CZqCLVUCBEbxx6860NkN8lGJDkWJ3sRW1k0WQBOiq1J170H1t7x8f90UNCg9TX+D2aP/8/YeUFx6u16u/SB3qxaOPxtqpt5lJxnE0MxETEWT6uN8fy4IRq62MVIiAN/78ONYy1K5ugU5UhlHKYBDr2uelRQCq+9rbPJdA4THAFFoAkREEURCAmymYExBTgTBghILgpGpu0Hon4a6kDh4cKMEVuIUL1wG0g2makZiZurpnnvbmRogEAVtYom1qQX4uwZhurpQCJA8MpAiwzZjFiUhIADjJBFmjMAKB+BQak8gEVM6lJSCYhTLwzf0YL56IFDlCzfJApk/yU0I1k0hqizZPJt4KTpZrEQqmBGYAIKi4u7kHIQqbe+sth1ZByLUgIhWhIihssEV4/OQWkX8ezdk+3di8D47Kna/Ew8D8AHvsVO8P1O0oAHRSqp8ByHMDlL9epYiIQ7hvvrWU/zeRBBYRAab0OcCtT3e3jOokz+A3EkIpQjhQIigRkQOI08b9ySU/xqZEsJO3cusfQlh4Iw4fQ+Gj8WLGNC5iknOFC8dAJwJVJYKsQO56+GXQpm6C1Ehm08wnEAL3CwN7dhDu/OXYw2RsfxFRBLm7L3n/bz95TIqPiXMpZZr+/3S9aZfjSJIkqJcZANLdIyKzqrvnevv//9bM7Ex35RXhTuIw02M/KADSo3r91evO8IMkADvEREVFpnxGSUice/PBcXZmLEXOHoVngjPfPR8oIAd6IHCpwpWZk27eLyegu4VZBDbdRHag/LyXM3Oaq2UN68GAqmkAo3BK31kwgDjMuraeZvMQThAWHm5BGHkaYiQCdwjfbwumZQwC4dF4TMgsAEDIsVNpDoLMghbeHCwwCImcLCIlneQg1YtZzc5WYPJkvpgIKflsIiRhSma2DJSSsb2mnI7I0hMzkfgRxIQkxyPm/Z4jkBQARtoJtPMs5KmXo+zv3gFQKaUrZGtCYqtzchn6Tpr9Z6z/WVKkp69zWvkR733C9/yTPJOnfUn+aFm2+/2eS0Te9nz9/O9DZf84b6zryswiRwy2ewLKfZhl5ZERARk5Ihg5qDRV8x6hAJqgDRGZC2Df2jIvt/v8odvMpAQOEQWlsAo2sBltreTIMUqMRUrUCcYFt+0DZ7Forus9cBGfoFLF8XWUL5cRgDyIomiPW2zcOq4N2kZBwuV6fU1Lpo+PH9iDnRDIPNyDSRygm5uCRwBKb9nl41VQSsISkPv7B2LUsQ7D9Pb1FxkrD5XGkYos71O/jdxmW2ftTTTdiiTyHdRBIRw87gAOWJ3NER3Ynd3AdD9XlAAiGYbp5eXt+vqFqKr52jz3LQs1VzdoO62NHg1QpACzuAdpsNCq0MMNGKQ4lQY0RDUoKXcEzFawIKLCAnVU1XE0e0Fm3ho2NQ9eCsw9SqBBQeCwCDWHDrzNyw9GoiB27W2L5g5ccGAkJkZhh+AYM4BTCpVahgGnQgwlj4UgJqWUMTQamfcAGqhOjDLwgM2tqW7zMntvvi7rhxCqNsGS5lTz8t5+UyuFLkN9udD1WnGKwq3ztvXYlNSHQAQfMusZmvsNu8T8XVE6lPHlK5D0iKXrqvaxLP/48695vgEalgra79vS/vouw6VM18v1l8uLT5fLi1ARC//hWropATAGVZLKzZr5vHXFcA6oLECllDJwGcc6DKUMpVY0B0MmqVw4HIMthJs6QIBqqIUbk3M4ntLXiDCPsLAIczDHQ3xACMzOVES6W9FGSAzIgRQgDujBBp1QAhzhCIcmwkj9tEPaIR96r2fe61iDjiMk0p7GgczEsVcbIcKZmBj2lTt2oTdALtyerqrPC9nTGRMJwNMQkgP0k5rqmUY6D3nnDoqIzIAMtPNsu23YgYf88INGRPTQszXpGRg982e5XKYkNpfj3rfn3f3UWDz2qmPh9qP9+3kPPq80/Xv23f2h0X7KzH76vyel9Mw+/lSCfOqk+9QZl6B0r6UiJDiMw1ztCc8RESFXZt7bJnZWkiP0xHznNSb0fFYXEQFSuPreyf6kiMInHdIzj7gTfr5D5LzVvXezUDciR4ytrcTpVqp7UDHmRX4aNs8WA3sBiBme+hDh8B7bL+GJhwiPk1GIw4zg+T774Wj/zCuc49DdU3oyDMMJpp9H9T9TKZgVKKId/R+D+VHVyhOrZ1PFXsJ+Fhs9u+o/vz7u3aNq9nD0ZQb33CbsScVkp3l99jEcOsvHrP9nxivZ44Dgx4UkBoqUyEb6AKIHhMPOt4qI1LJLwZCejijJ/R529odXBQAk3GMkIgnCcCSgg03e7Yhj78jJzNXksAQAUtgOAG6AmHFmqUn1JPbhKXkpKa89V/Z4avuTjZCnm/ATkj6R1pnr+jxPz9/P+5bnB3MFAH46XCX4S0yWInrttm3buTicI9YP0/znx+3uZ57H56LEscwBI9pRjzyZa0dgD+zm29aXZVmW+7Ld3dZf3q4keB35WpC9+Xbv873dv2u7K9UILmjApthGbpfBfW3qjuESWGmdpI9sBRVhCCQo0mssxZayLbRusKGUYZq+vLxO0+RmHFCJ1XVpi/q22rbG5gYYSoEctHnqGh7SWFVEDPnx53+UWgNeptfpcnkp08jTWC6vVMbbX78tf/0etx8Wf2xLN7VMbnc1tU3N3CCcAE1hCbmkDA6IwqqFxr5tIBCyyDRNr6/Xt69fS5k84Da3dW0B7klUhJ6y0N6xFpcBeeAAJwtu1KIYhRNijEbSofaoBYehCNHGbCQWoIFEwgxSa50mxYCBYet9Xdm63UgplIELIRJDkJoB9oCtbyvWuplj36B16E5I0/A6VivkUXvfGpmEo0iRyjzAMPH1IgjQ2tJNWKBUrgOQoW0t1MzdQgkMmKZLvbRhWUYAt65db7e5t3YbYqBoY4Gbzn/9+ddCTi/TYF+u8rfr8I35smJft3u/LeLwJlIKAMdY3Nm2UNts+0Bp/br5F2QstZuu2jt4V78v6/v8PowyVmEvtt77un7cbz8+bq8/bterfnkr0+WVObaNl5nNNgDErPlOAsut93/M9wXQLrUEjWWQOtZJhmEodRRhESmm6EFBiISGOAijB2xuZtGbtw1qCSpITuBgCkSY0S6mXburAyAjeRgBMlFQKQW8OoJrW9xYpWCoGzuKAwcQS/Hduv7YGEgIkqs41BW7xQNCQK56kI1tcJjWEEMaHJMg12wgy6hg5iMCcS9B0kE41ZTbw+lV4XvT2b7c4r4eETEhe7ST1ThzSyLCDRAQ8FHwOtBSgHsARJ5wj8asp5UOiAgpWjsEUseBfr9iQgA83Zvk5IcAzG1b23N94Znxet4+E3U9xTDjuY39E07CcxlNQPO8r58L+lnFOP95CnufX5CZ05o1xebqpm7ZSGDZ5YWCwM+BJPvTf9J4Z+jHvvt+EqWl6VcAOsIDJSS2RORcH+HMQsi/AcAIDANXdNvFw/jAPX60QvKR8Kiq5hYBiJFOuYgJJgIdQzKDG+PpLp1b3aMXtZQkhM47nzXNgyuNfLhmBgYRoeHmuTPSkQr62N4ImfDBO+YtcbfeO/E+BoZhSCv8fy40P5Dc3jIHqSJPy4gcrQC7jcteZEd0g94slcFDGWQQDMRARhYSAgoPcMhvYqTsBCLMuhq2DMxJctEMtqZmTQoRUTwlDeRww9Ng9hjDcQR8OQISJsV19NikVgrSlg+QAIIEM9A6LBzd3MAAhYMwCUKitI46CoiMABkNxhBxmnoFIBBTECIHIaHk6A10CCJmol2iR5noSgQk4EZMAZbKNCZADHcHJZbPzsNITkcDacrVmPcK5HOAGOzKiZ8w9E8Tk/ZgUHw+IO2rWZAbQAEASAfU3tTdSTXFo/lSCbBaa4nP3CI7ghPEPyMt3zuyKUhg7+p1C2NmoUcQFsaRBwfIKIFuKIgtnjp7IsDM19bnbb0vy7Lcm24Yq7daSxkIJdTWj9WWZbmv9x+93QVriTLWqLR12qq0l9Fj3jQgDCR+UAdog7dLdKmFiKtICRQNUHXdNAIWk3G6vl2ul8sl/Syv49W9rX3r0FZd35eP78uPbtrCwMPNAgEEYEddDVARQX789e9cy9JfXvS1vrxgES7T9UsxAJE68ujTWy/T7NLjO6pG3PMESQhCgOABi4WGBnCJyL4wZJJwTitMwso8CJdSplKGYRgABUJUve+p7HEEepmqb5uxOFcRJiBOKmN8HRXCgswGhOrBhsWxykSlDBWVYUNfQtmBIoK4iMhYjEMI2BUYnUDBDZ0YoZBIrSp1A22+DCyVSfva2yIKECok0zS+TUOViN5WvOmm7l4K1gFlcB4MKgA0BEd1R1VwMHEnx+KAvTX9WFAciNOk+HIdkaItrW+6aettnjdiqnVggt7afbEO27bOCi8VWilMq+m9b721GlHZO5axAF+EsEfoFktb/opNPYozy3Tp3mTgIcbhMk3jdWkfgebow2X8St8AYLpezP12u72/f3x5W4q8mCJEYRqJEYAsItsOAqQbrF0ZNcZKgmUcpmmoMooQMqTBAgaoOezMcAgBMJkAmLqF9kVbKVyDelgBlky4A3DTZqppAwCEmM3mew0oSikItdd6NJ/1AHYgJBGpoFsgEvLetr57mBI8GWthUFp5xe7rAwC7ZPc4gjOeIV+ABCUAgXx3qthl84ToQJgrKVPJU/4hwkjraocMhAgMoCBG4sBz2+ADBzw5Rbk9S47g0LfSE45Jb4J983B3CEquCznQHajbvnU8sw4n+fR8qI1D0rT7bz2akh4g4yepx0+k1ElR/LOg/plp+6nbMT6XIJ9X/4hH2NHzTn/+9GSYEkcj4l6M3QHELqt3RAhCwvQMt/SV3xM5A+NRyd2JFjqB5mmL9WgIOOqMj1TpExM/Y5Hj8NrM6tm+Sk+W33mhmRyc43kX+BshYspbTwya2nw/HMueJV/ZjZi0xMla5U3Lf7q7hQKA7afqvejzzJOdfGful2d6jFlHxACvJUREZDyzlU6JXuwdl0ZE4zhqN8x+TNx7dXf+1VPChPlRGTGDYHprvW8R8fLycj70eIrcOY8B+5i0DgCGaMbpkfuE7N3d0xTq8MJ98C54Oor9k4Pa8y/G0ShxAhciIsoWgQChgCAFpEgDEdV23H+KKLAXyID2Sl1mwkZA35s26DGVsiIJQRaOTOSAwCScPhAA4HCmGWW/QAA4MRAhhLmrewDsJTzctWvJAz0sIRiNucIhcHuej/mYfpqMz0D/eS7jk9Pb8yLw0xIREb33eZ5TirdLzIhyROU3AWDbtlNAGXsH0c/l5nz6uxMQ7YKwE3jl6kvEDEwuCBwZZW6no6GFqaq69nArYIJEakIkpr7d149ojLqtvd3Rervf5xC+cKHO3grZpZi8knX3DohAtrTl+3qbKpb6NgJV4XqpxfyaRvlc69wB6zggk1OVOr6NDuFgjh5oc7///uOP+AOb6doaZEgaQjY7eKgZBBhAyO8//l9ilvs43l4vr9/Gl5d6ea3j9PL6K7lsNMLlmw9f7vT6Ib/F/F0Bpd27RsTewWuOGtH76uiIBWvFEAEiqgCAEOhDaAmt3ik6ReqEgNEBPHj3wCHVIKKAvmlgg6JMjgBigUG11KmOMlpsjcPFkBRCiTT1s1QgCA0IglzNTAREBKsBsBuxIBE4EEFKoHkSHofBhG7dUF0GAHDrH2259RYlEEuZ6peXl6+VybYZOnRb3JsMWKoOE4K0FgbYg5tDd9t6N1+FZQgaEEvvfW0NCJAZgbs5EpVSvDft3bQHkBtWBmAhMyleIJS629z7fZ3HztRbypUCCFFQ0UOICkiRiEDHrqq6bO1j+0tH/TK8XF7HF57hbf46f/vW4z4vP9D9y9fXl3/9l1prOG2btW378f2vafxdOzKNvRsXGYnNzFrrvVPbe4xFJFeZ3W6xCDFmj36gRxggYDq0pUeUICPbBtbdXNWg9VlEmISkYLAHhKlBOjR1dw8gD1DL/pfca50wMkosIntjGqEQSXaTqykQO/ST+sBstEWG7BdDCAr3SOF9VpIQUru9r3RAQlQiwFM7H+CASIIAbh0DANMvKFEXASPQmaCcZ2bfm3KYCJFIAsgAbTdCwOQeaE+x+wQ7cosFAGZhltyH2rHRHnCHAsgDzcGPTBQCdMAAQhI8druIzIIzwodvWUR4QLoymJnrp8alk+hKNuXU3Z+bbu6O56N/+lT7P89K1oFa/pMN79wGTgD0z4XR/RfCMqANAAJ2z6gkBrJAc0jvGYB2y6aAE1IbBKY7kUYc3ezpqgnPDBYlmNiHmgiJjO7e+qrN05MuYh85DthjQ8RShrO26G5gbr33bWtSETHr0qqW+t9TE+hJXkbsmQUA4HCqxM6djIi0NT8cSukgawFgbW1HgQDZkKKQf46ISMICMaCLSLQsU+7wN3dBEREuOFBCuoT+rWnLoN9sdSR47l/AwwX3ROetNQAfxjoMQ8ctIsDNIY2vWnbvulo5E7sJcM+UNNVm2l043PJ/bmpmhDu0Ne0AENlMg3Q8u33rRUDwCMu4BzhbbkXEsqNg71dIKy96hEDkhSHn2nTYXNEh+wpADHCHPacvAEkwAgkQGZAB0M37uikzMxUQYN9dcA6keBQEEdR2uV7yXijMzAIcEeoRGplvnU7vhJIoOVcMJJHd5SwAXAiI0AwcDCxSvJhHsicY6pEdsQDsgeHZjUJ7lgdCHhsRnnnln/DTTzP0XBaIKHzPNj+lhElo5SrRtC/Ltm0bM7++ftmFnkeqGJNkEO2paKRDygYAqu1cYSI8wmOPPgGC4CfgRUcISKZTPDS1iARYiSqhIJSwAknfUGUZiUYiCbXtPvuK5BSO0IdC4Gtfo2MhcbRW0KHSVYYcYNpBO2jb1uVe5HK5NqDObMwyVHm5jOqvxFJX2zT6fYnm5VVe3t7KMIBgGYuzrX0uv4+bt2Wb5/m29GAAI0A4YuV3yUrIj/mduOCy8O023O7X169vX/XLLyRcL5eXCuRlgDJUqWOd2sf1XsHWAVsL7Z6tLpuaRw9X694IvYswgwAiBZmCbrTdY7vGNsdaFF25VN0sDCgIgxhlkAKGrbWttR4hBpsBmYBFoDBfAkYpUkdy8N7Awru1bmVtAuHIYGAVuPDIJSLCjUo1ggzN69gvxpNjCRCEwlwq16lI1AIUhYMKbbapzuvyPRYbS+G3X2WgaSqDsJP6RugAAVxVJAxa71v0nvscBKpiGLbNpIYUVqPebN4MoCMFFwDA8BRjph9mEAFOHBweiuSl0oTSBTtE9NbWhYC9MzqISBUepgG8Zcef1IwFLKq1bwLYt0Vp4LfxhYeR2Nv81re/db27boT25fXrf/23f71er7fb/I//+MOsvb//SVi2rY3DSy2XUmqptDZnj603m9uqc0SUQYqUtL7DQ4NCu1m8BfQIQCJABEzlEASjFOSeygzvyltj5kJS0BBC0wawWVNVcwjEcFQPNXU72Y6UXualq5Tay0Yq7oLwUAYcDXAZl5vVJUKE9DY8aoJ2gLPTjX1XYxCRRbhius8crkm4u+1kuzcA8L7xxwM6QIQDYKBjnOar4kDh0ENTdfvMRX0q2x0Q55S1npaGQEBByETMCXDTdtEBHME9fRMpmBGA9dA/PVFHJ/V1kh96aOrDnT/bWT1zBv/pN/EwTcCj/w4PqbUf2oUTPP10gD5LDM8CqTOvEJ++TgYin8H5silFz72WqdCuOEZPTnPvdgDKjS1lxeZn4Y8P09Snc3YAwGHTBZlJ/BNSPDVw7p73Q2QXmJ+qlBPfpNztJKLiKLkmYRnHZpcbXEqGD53KowX1JABOTHbehPxUp1IwW8RqLYk7mBmxRoRBpFAdDz2N7w7Ej8Ju1o6TXTvf8bkfFp7Ub0QE6EkgJr5hZmc26xEOBmCm2tARiEhqJsVHOLhn0DzuOfHmrr1vvbO7RljeOQD23dUimDHbNohgv4sPrjo58f138Gj+kOz5BcdnbRlRxKeJcDzTHCrHkCPOFSOPTzkLEQkkzNMAlQ6KUEspUJyZiR0tiFMLcJrJkburwQ6PnkpmydjtrYt4HN5SK7AjIUKSdLAjKkmSMgRSwjIJUjzs+wnhWRgXkHWDIzghR/jTrcgv83Ppe3BdzwzuyWnF50LkOcJ3X1mAUkoZqohYeGutd03O9VnOhU9ezTk7EDFpmOd1CQ6xFxH5U1DHHte5XyAABDIROgYBp5WMCBlHoLAWuVTuVUJEWRhLJWd0Bou+tGXR5kVoGGotOI0cVgXMzbp11xhoLANidAIEIG2xzGpK69YR53Fc6igDDlypCk+jmI2I2Ldba22d5+AqUl+/fJmmK1W5fr2ixNzuq21/3f78/v79x48fjDMfqP+gvLMKExJ8CSK1WOY2r98/3uf5vurWvnz7WphYIhih4OXb63QRXV4uf7us87zc5r61vm0+z3GbvW+tty2smSFSoagcBYGDYoNouKEvHzqPvWCHLjKAmWMnRiJDDhi5QMWN15nErXfDrsiNAoHLIPIGVom5SFgJ7ava1jpLQ0aJDQx1wLgWlrEiBxZX08CKQkQFzVXuS0x3G+Y2G3ABSRFMKVyGwYk3R79vTEqgsy3TdL2+DS9f6/UrTYK+gFsIuVp37A6mbemxuTthrTwIDYQTcDArOPeN1KNv0VZVNSArlZlZeGQiJic0JCUGHEoAUdAoIyovoRtAA+xz9zYDYFjlIAxg4cJyvdZxJC4uArWK1Cli6o10la5rQAPsLGWahr//8usoHNpCDbx/mb58efny9vYyllG39v2vj95u7z/Ao1+m1+vL24u8MRRzddSuc2vrfb3P84eZ1iJSd8mtG2x7skV4EOzEDwEJpYgqJSbsKIEWAdZtJWXRhUyg274qp5DIXT08wh0sIDChMgS4ee+9J3suIrWO2lvf7pAxxbgXDRk5Z2tuqAG0syCYPl7mlOs1I1IQB5EjAhAHIVL60h/nPI5MGknGDA/VFCAlVcaHbASPNLhcYQHSvpKIw8ExrbeyiP4g6ne0AUxEDo9MnhP0MKchBRIwCiecTaKreeL7wPDwhG7CmQCd6UqqAJH5MLtS2x3MgtAg3CD5xzCHo4nseWfyIyPoJzIMn7QgzwzZjufc9ordk+X9ucT/BCDO+s7JxqUy9xlqxM5hfdo/uAhLPR1WIXaj2j1c5BDVIedTRvd2iuIOyLV/AFUF3DFEdleVUgKs6/bwNAL3MAR0pzx5A4B1TVlVrTVt1462QUvbfURyl1PmZWbummf241aEu/ORsAt7nvPeHpG71OFB/7DgOtvys6PTD4Yz7+J+l6QgAG6rH64c+z4aSMiJmI/Sz6NyxMwRfCYK+NHIljEIGfaSCAARE09oOmvH7iQUbrSfQQiCCZkJIhxcwyysmfeAlMPbti3M6X6S08pO+7n0m4soiFxZNDShGYIBeGY0n6j3RKJ7H9+n0AVGpGxrTGVVjocTeLkDEmV97xiWkcQ05p8DIuPevYDgEKqKCCKMyMGIgmRAnAUjDBIsxPp46Ckr2Pv7kvdCQkTdl8lURrJDnL4Q2WyJhOjhRybGPjc5czJQzZmDkqgLSyUbI2b7tpkJyxOcOiwG/8m6BQCI9jbeUwLx6XCYmtID9ZqZqh3hp3vJu/oeGxOBrbW9VPr0Opl8kB6tfiR3nSeH/ej+1KJwrjNZQj2srvMpuCOgICsSkSAhcQAQshV+HSpMQ+1Tx1YciyhUZ3FEC2ju3Z0BVGgUwTKOFTn6qpuH11qExivRcYebB9m6dO18n3v8+dfL1V+pXCVtOwUHJ8A+9OjY1qaBYUHAxIWLSB2Qo0QvMtQyjuM4DeNQim4dAdAALRXEOyKXcXpLZVzr921eu93WdXXdiO1yGYVo05tHv4w8vry6Ta//9sty+/j4Ma/zst0W+viw+u7boj/+aNYXV4Qw8AwaNwBQjIBthW227UNX7GQMHVGyIxlQgwwYpTKI1AgMRzVU400LIBeZBrwGMBKxAGsLDLOutGpHlYEUPNTBKUqpJMwB3BXMkVGcwHjsUOcY7lpvDYgJAR2Bwgei4WUo0+VjWbTjUniu0MiGkV6/Tq9fppcvdRLQUroKom+rbm3uqiDpVEAADDiKDGkGOlTvvW9dtWe3BJiCOViPcaIqpXDBCtrDcEOKYMKUs7OMDqX1e2+s1OYGogE93D1YCLAIIr59+WUQL6xIRqUM4xVhLASdsGkn0uhr9DKWev12uY7Ddv/o29K2+1BGAqpU5ML27Zfl/d7buq0fIgSgXKM0IJfNvHk0n9+Xj9vHx+1282iV+PJyLWVCEgtw7ZrzPxCcATyQ0TsRAWF4mlgBcQQZRliA2mI+eBRTtchtldDDADT3g8AgJizMyZA7mHrXk/bIoglQ9VjdEHIdTFXs7nUVcAihch1G9PP4lJALgyAoMOukaLs4i4Apg2fTqj5tlGE3mTuIEAQA4KzwHn6/uYtnXmwgOlDsLl+UtvP9KULnAF77OpWk0fNhlIRZ6XSgQBLfm7yg+XNTpO09JIgyFEZIbi41+UySWxRhpOmroUNgOJi5q+LhFvEMbs5W8JMfiqMb7pm7Onf0dV09bWGz1VPkGZz9BLx+qrGeq/wJU55fHxERdhF3egAQCjMTFyRCIEdAIIDw48SPvtuF824NuBthIAWKIAY6Anpvbp6VXEhjhWxrX7eelZETWe7KDH7sXr1rsqu7xYB7cnB49O8ToQiJJMDSw7LVIXZWIB/cs3QMngKtT4EXHpXcUopF1Ey1AiThNIpDg8AIdwvLYwnuAmoyS7oX00kWHyVaEKkA6t7PO8/MAHVdZ9M9gJK5ERGDubumqJ/h1CC5u25rwjLGIJLC1AkBMq2kExAFmpl5Dyftm/Y1NQPgan3TRiJUGBjBzJCIA5AMvHkAeCEQLOROR0h4KrgRM1KCJFUH6fN08pQJ/QD2GhlR6t9PB/YMU89saeQUJyMFGIDCbvxHpwHYTqLjJ6uzc2QSIXB6PwAc7Yd49FHmsnZQX8QUKJhuGh4a6ZG8w5TsVwazPa4RkYIcjQ2C/HHVe/t3GgZAee7U3pelNIMLTyf/xGLJ+lO2QhJQgIHnAmnWAXwYhlN0FfGpBPl8SvwJMMVx9jjbbpZl2dc03qftwUfK6Yb/zK2KUESkN72gEJFBBAQjJSt4cF05qYDYk9/GBL150CTX8EpxkYiBZWSHaQCW4q+/jo6b+Tw339oW0TzCHIkvl3qppfRZdLGwkMLDwON1VA83UA2qDrTM99aar3+9u8swXq7Xq/BYWDACg/z1SxEl4rn7OE4lfchL8UAEUAeHYEQhHoVHLs27wlE4MaQgCoQAEZw8rBbht7Is92WZ1Zbfv//7ZreX18vb29tlqFLJEX2QWi/R9Ppy5Zft4/uHTGt5+ebDn+sfv7N5n/9a1tUNasCqfuHriwyByFQIK+HAMAiU4oU6jVwvw+gEwSAgDKyApQyX6QW1t26bMpQCWARepsvfpMS2qhSr44AYf/Ye2hAqmKs7etdQ8yVoGgd27QqELB677ecGNDd833COKsCC4aDMNha4jjK+FKTeeplnELJxhOtLvbxOr9+uw8tQGQBWWXBw4SK8lrW5AkrhwEIkRS5DnaoIBMmAtCk2ddhauxMBIao1Fg6DMApACC5lIpLet+zwI2GkYgBDHQABzC7Q19XdulnLNt1v18vr6+t0/TIUJFS0TqXUei1YFXS2+TIJS9F5FRqYx7bOqq1WuU6XgeEyXCpXV3e3wsKEfV2W9t60v3gvg5RBIMpmvvX+vi7vy+3H+/f3v34UoMGGmKS+XIb64tHVAqN5j3XzO0NhSjUJA+PeXUFz37a+dmsQgWBIseldFzOUw7CYCThg92WmSHEVu3lrum1b31o33cU6gmAIxEyVy4QIunWnnX8i4BQ4BUB4qgOCstINkcHZhIJESAzAgGyAFhyAdIi4GBGZYNfkZHdeAMkhzcfTyD0IABiPOghEGmcnZgNL0u9I92PmVIOCR9YUAx7M0FlsywUOI0oe6zGvgVOlYREg5ewV38V2gBFGjOo9tdQohcIBSD0YGSAYUl/L6EwhKatEIARiEiYhpPDw8CBAMCbhIgiY7mIR0JuKCNMR3gHZUJMUiKVoNK8YdlXww8XjJ7ewnzi2OLhEJkLYjeoRAT3Dnxj3bs0CLEFsgOpB5ISSp33GcEBBTIoIEe0JTkKGXjKodlcDDAPTMEQUlr0sk36km4ZBFsuZa2FW9IgoUgYZHF1Vu3Vm3qtFAoVZBJmwsjAThkMAhglFFdLC2oCRELGKCDJDgmzsWy+l1KESEZhrWEqGsw+SWZhZ6sClAlG45USpTMAUapt2MM9eAhQGIlMnBxEpcimyqTZmKaWaxbq2aboyF9WWAUoRqOqqDkClDCJRWUQEiXvvFJB+8e4e3nM2eVa4mN1DESm8VM7kjDAPNeudmblWcLdYVDUtyd2U3QUwgHfLNe3AJcIyGBK6AVJhcEJt25YW/w6AlBo5JCYkUwcAt2xNhMzgBMY07k0iCYIAMBwRuZS9ComIHpGJq8CY/XtcRsDQBK6HOV6AcXBEELJw8YpqUUSt2rIs6r71nobIgchFgsh7Z2FmjDBBugxjJ3Z3QSpYChbKagsLMpmBOZnZbnhUSkS0MDPLsQyMgak4iwByBLDUagEEhW2ubuinGSHBESiJHOHeNyMAJgo6FIQinHlV7J7ZTn3P0kAABOvtMg4rwe12c39IPD0ZJ0QS3k3/CS28aUdO8x0qUsch3GLbNu22xgbB41iHoZpF7yYih3MenarB3UsihQ4aoRhA7ggBTCjCVFMX5L1v7q4sTNx1ZWA0RwUw53CLgOjkvYBdCuLA0sWxXGm8Xsrrt0HjNivQsgCBegBrh+7udZou5bpq7UOAUw+tWALkMg0sQ1O4vND1Nf7888dfv/1lrc3b+vHxISLeVaRG0Cil/vJ2bXB9fVssZLqOX37BOrSIZdXVl3W7taYAPhW6DuWDcXZQBypQSikkBaRQiTBRD3dADK7lS/0yXOqyfrS2ff/xZ+uz2eavL9M0RSmgvYdPdWSiSnIFEdmorEP32k1sE19BV22r9k0gQoRqrViRhIdhmC7jZRrGyzSOdSgvLxcq5ASbKTAbILCUOtXam4MDdgM2llKlXuv4Og50mfbEzW2ZmYNRLmNl4vDgIDdYW7ObTp0RzE0xjFy796Xr3HXWNH+VIAYGYkcMJi+kAnYdeK5SCwlhtphIISmFSEgCpXARrgVwiAhA7gYkhXjgMtZyGYahkADQ1gNAkTSgaEcH5tgASJDDw7tTUAQjCEEgKkTkmri3fweTE4GRmW/W1rWbdrPpktre4oEOgrvcR9LivRQcx9EsNMBa1613acuyrOvs7qUUxgkRXcNyyel7daMt69Z06+qB6sFDdeK59bUv3Vprbb6vIxaYSDfPTnUi9gQm1sEVPLrQWGrUCqUwOxIaRByRNQDATBbRrHEAloosHowRvvMBiCjumZ+rrbV1adu27eUYSZEWEgNT4VJFNTDMZgwBaBAMwIiA4Lv/DQHGbudDKdjAAKL0CMu2I0/hLR2OJwBBSO5HiSrV0BQYzzb3iboQ0OPkwFKBfYQV7ZbZhGGY7Ya+d0fu+AN3b4j9LPhUDji4lvTj2TGlZwIuuXCNww9ADktDd/Wwo3+AEMAzMnqvrewVln10BUHsSrVnyQU+mZydutezpnNe+NMXwZO7WF7AM5w6vz4ZtT8JR85/xpOTxfPrIwIE4e5HvyujM98wEiARE2I2lJ6Vjn0L3p0oFQEBvPct7dchAFM8t5/szZ084lCd78UOQnDHNIVNDi+eNCj58unDRZSxTqmrSamQReTmiiKpIORa6250ZBBgRDtbU0oBO0I8Dy4h4BGWh0yMeyOrQVCEpSM8GDgEcoRBnOl7eeAR5sheXURKDkxV7YjPe27S3MdA5kIetvfuXjDJxLykTGW2CGaidA8LQ6dDG3So+yAMgdLalCIodvZDkAICMRjjKI3lKUPRwvZavEN23G7NI5VMu/+UJz4CT+7ZfR/YWSAFANgDbfKKkp2liNDucRhlYUKkNJ51QALcm+iPgZcO2IS7nz15PiCzIZkheLh9UkKP50zD9M8QYgtIvIU7d/Op3pfsHT25xEUEMLHsM4gAXADNAShMIyBhRoIY3BtNBNHpdMJzzYOcu2HmHLlH4DEgPSNjPcFuLib7miDJ64vI2ZDBzEgPtdbzdD7CfzrzXos95l0OM1N1kb2kmALK52F2ysjSZoLSc9g57z7JnvNEhBEOTAEeYOAY7pgVEPfTIcV3VZ0h+FCYpgEIXnCYBp6kOClJcxg3u+nWVTVcA5lQilx8lGEz0yDcUJi5lGEsw2WEYs7LZh4EyPOPDybatL+/v29bH4ZpGi9lqEOROo4vL69bBIwXvlxXIG3rum1rX5a29N4ZaRqGscjAVAD1OKHnsgzpkossvS9dtwHr17fX169vt/vw48ef8+19vc/Wt/V2v14v1+v1Ok0iwkDTOE7TNPKw1VZKadqbt0XnHrraZmatN7dGUAs25mIEWJmnQpdSXqpcp2kcvvz6VQYxhHlrq/VgEeSxlrH5qujz3VxJrIzlenl9fX2VvWaPt9vt4+MjT11lLIiITgLV1G9Nl9uybliKYHS3jmYaOrflvszzurTegxAFWR61/BQUDbVWIU7vTQBGER5ERiQJQMCGNHFxDPEiBZUcSql1uNYy1vFa68jAEUjLStgFDV10iAhswQAU5mpdWw9HgBBigDCTbk29mxJSWLBHmEk4moZ237bNPNIMJkns3jtiMBu6bRCj+sjERQoQN9+2Pq9bx9VAfrx/v73/wHASJqoR0JqWwhBm5sMwllLM7D4vH/d1Xrb7sk7XVx7GHtb3pjB292Zt27Z5Xrd525YmBdBAu0N3N9OtEWMXHYY+jmOto7ADIe/qHTAIlkpUA9gzuCwCIMzUHSCcOWRPkA1VXdf14+PeWttVm4C5A5/bVVgN994ZnS0EINAh/b8sgkj2/T4iVQJZ5MllF3cVWianBeADPTxzM48llU4t0U9xQw8nhZ36On7+DCNwV2hlWwtm8jUkLDwgCRHBsdhFhHfFw1gjYv+ETEwsp3UW7xZKbkZtnfEJtByAJyxLXf4k0CYEwgx9BsIn968dC6aoJUMlPTylZLkkfuKonu4VH7E29Bl7HQWaR47kM9d1vBSdTQ+Pm/n59094+GCyjpuWP4fPyY/xbEKBSASttQNJ7x4iZ0lFVSNTd3rP9sYUkfhhCbGXWQ8IDBAJgxhQcNcUC0k4ns1fiaLgEWUtaY5FRIoaAAicCphhGHJvTqOvODxvzzu5t1wcVXSz0+Mj1eX7JT9f/jOYPuHCs5Q+eyzgsNVl3gN3mjVV+ynaDyI89AyQDGZAwL1I/SjBIwU9arK7ERQQZacN7RYbn2ZHNtCkpOycLKq+rmsAjuOY9dz9M4czcGrpDlHWHi0AAPnW52NN2XpEnAeZpJnzYhFRzREiQxD9FMlhnmOBdrY6H1FCluv5ZPEw9UhXklMeh09tIp9nYnbPPOaLJeF8NCwTETAdvaTo2bUHCADaNded584Vd+ejiH/qJvNwkh9vr5ACnSAbP/85PJUO85+lFERPfSER1aE8X4jvtiz7QMo7XGrFY0FOTJ8bU475iHgGXme3x36cs4d6Ye+FQiAShNNd+xjLQQARQJqrUtoaBnlW9CLNNoikThMgl8GFKXRTZwsIBqo8moQHEw4QDCBItQiXUSd0BCljSBURqVVqmZDqi9JQx8vl5c/xz75pX7ePZb0t62XY4g1eaaoXqS8Tl6kFRhmsVNz6fdFtuS/Lbe131z7JiJeX9fL6Y/wY6qq9WzY1Yy6JgohSxuG+Lu/3uazrNA1v317q8IsIDYW3db7f77e/fkjhL69v3759u16vbW3++vb6+qUUHi5jd5va5TW+rLZhxeAgojvOtiX3gM0aU1mjbdiVzQvIRerrRV7HOhZgQh2laQ8yD7Aoo+LSVH0zR9a3r+V6fbleXwXpOGTE9ToN0xDmAFbrgESjsG5xu9ttu0vHcRrQza27tu7t3u7f59vHMjdrKMiFSIQIPJra2lshIjDtW2vb0tfNmh0ldgkXQzBnhynCHRGQiZQZSx2m8ToOlzq+lFIZ0CzMBaKFbUwuPAwCWDkCt23D1lU7hohQyeqJqfauzTZdALtHcZKA0YySiQQkKqlVHNzjPq8iMllhcQgzplKGwnWsNRAcYet9XlqHuXv88ftff33/bRzq2/UyjRd3TeIdAt395fr2+rre79t902XZWv/emo8v6/hyreMo4zQUfnt5bW9rv23bts0ft+9jLYXHqRAaOyGwh6uBqW6r2tZ8c7vEODAXESnjyFSqp8uwhwPtbhREABQZQ2z5kZi5QKCZttbWdVXVYeCH+SdmxSMd7c3VmApSCergBlniQ0bMXjbcg1IhA84eRT1CCYQUTPsT7NpXRtg3vAcUONQbnxHDvhnuxgexe0fC4ZaeVok/UWX7GyWqeKbQkOVpu7UAzQ7PQ/Wffdh0dNGLCNPp4mOZG7yjE3cwP3JvUkLyUFAxM4CkT5L7WbZ4HMfx6LCDQwKPn3Vaz5Br39rzm885bgdY+kxifYJrB8xKYAt7kfbJAetxww5LthMQPIPaI4CAiCjgfNn46Xmdv4NPV7HLyXtPs8cT6xA+QEwKs9KM4/kznHCHmemIyjmjDE9jKmaudRiGoZTyhEd30DMMAwMeRkeRqS/Pex7udh6H3VEyM8dXKXuD56nUOUkFPxxA6Ighis8NjPnTpOIEycys2flrcGT/cQKFQ8bPAc7INafkfnuZOWDHIiKSRqb7TWYXkU0VH3yqRzwQAzzZ7Z5tmCzl5EHzI+fMJyJVVWv53BJ4IZKHntDzgNQp4c+Rn+HrcvYD4q49xwAK53ywAEAOEHlIQwhiZpG6Iz9r2Zpw4uOUgcfhCMPHunEOjxPmigg8Aa+D7Y7dgSS//0hMOojkw/k1YvfRwM/M8TlTEtgRke/TOe3tjyyK+HSwjEPVjmcaKWaqj63rmlZtLPVE7QcT/3OTIx8egY+beQDETy9+YFg82mzjMGxLjjHvQ35mCweLDDOxIxU29SEBYZA7MmXaUrJfyegzUcGBHKGZdWu6aNzW+L76HSDGciEZmKZCk3Zsm0Wg1KGMX5l6EUXoBtbaRkRjHYahUqnTdEUuy7LM7x/39/u2rG6zkCCW8fI6xaVKGuqDI8yhYBrbattq2ovw9XK9DNKX+fb+cZvuitbJOV1WYJ+wsuzer2sVnpdNu9VSxvESpoykW/tx+7h9rOtt3pb17e1tGEZtHQCu11di4bGML5OhG9l4nWqttYwf8mNZtjBkkL452ja3ZW7z3dYLbFodr6wlqKBUqVDYSZ22ZtB8uATfWoBsbYPSA7jUsdQqnCHsUafh+uXy+n5dl7tB41pKkXGsrSh8j83b3HWzJiJuvbXVvN22+5/3j1ufg1Eq8ShSJShUW9vuhNHa6sQf7z+W231bVjWgII4CURyKWXQfDEYFMCeLguQBwTQQTEwXprHIhECANooYgmII2iAThVSuleuH/4imaoaOQjzUkqoHg1jXtm1NrZu3oJGEAGpOcOaCwrVWqSUPx8vC7iolCNyRie6CYhbW+rxty9Zu61qDb2v/7Y/fv3//69vb69evby9vr66dMeowmjaWOhC8vn5Z5t4MgOat6f1+VwskHobLQBWR6Sr8LzLXW5/Xbesf329C/HIdr1OZihRgR2KO3rfee++bdwBHhhKBxDgMYyXspqq2bVsgSB3GcUzg1VkBmnagQwZr5qram5kFAKW+WEQQw0Pj2OryZCci3YmMEVISBJHYiwuBg0daxBFByqEtnIgQOHZUlvDn5FAeou/DqCIzsX+GXLudxP7byXX5wYjswMsP6b3Dbp25o4QjzWbP5I5dNeWBxzEYUYDMiJwghUNAyESETMfetsv2D1KHkpfLCoa62yHWBgCKLEk4Ue5e0FwjPDeMXB+TDDhZk3P/3hfsnHaEQPuF7BRQsk0Hmjw3i3PV/mcO5mn/2Ltajzt7ysIQ4EiMBvppj3nGVc8g7Kx1fXrH47EeNCGez3g/8e845BEg/bxlPu06kaHvn78wN0T0SK84Oyy4Tr7t6JrM/+3J03gMhtyQGHZ49BNlBc930uGpZL+PfEQsZUBEOvhIM1NrHqqqfGQN0ZHVeALNczs83bAEAcDpnzizPQ4P2B+o0wAEOXuXHyrsZ9yDx21GxOC9iQXw0xQ7JhqfICYCmfesAnk6AOyWfkkwYahCPrKcf/m+Hj8fjfDJCHSf9U+APtWlmLXOw9ojIgx2+/x8Ddhffk8bZHKnvXXnoJDxcUv3MY+5ZBNREKaU3cxIHiQrAaXyL+13gDBFDYew1NEjPO/YYcm1958evS+ersFBh5/EXlU8aHo6UCF6WBiXE3FGQBrWUMIyRAR6eM+qqlnZu1I+lUfzlv48E9M1Lc0xng9v+yq9M3B43sYjCCttch2DiAmzxS6XUXPvZqC2t0YykRBxeBBFOmtAnC1K+wMV5JLLZu8EFhbrtvxY3hvMdeTL8GWa3opcmC4evGzGXGoZp8tLHQxx27Yf2/Jxu9/Htn1FvkxSSiWuX4LkNrrDuvVY123bbvAREUOdWFAYsVTOU3dbuDdRHQClDMPA48QBPbZtva+3eVawD5s5khvZrb7lP/74836/tW5EuGm/zUsR1Na0aaHy9vIFPX78+Kuv6/c//lxu9y9fvoJ59r2PwwULD9cRC/Egl2UZhqHW8TJc7vd5XZordm6uttr20W/X9b2uZdwm6dUVatOCQ6mTjHXAgkNwg270stjlvt3bn+um69L2bRhKZiAgQxmkTtI6qK/qpQqVETQACnTo8za/zzCOI7i3tqqtH+v9x/1jbhtVHi/TNJXhOhCDeVs3670RsQbdbvdtvlvvSIW5MAsie1AEuFfHEYiDC0ojDHQLEovSOhIjMRIyODk4YiGyUgYAGsdID5vUJvRGUmCodRwlUyvUjYC8ezc3AyyGhCh4vbwCb9w0CEuteW5m5q6KnM4Jrjn5O5RSrPX7un3c1tut0Wqt6//5x2/rcr9exmGYvn75BSkIogqt6+IO67q+XN/630Dq9HKfv7/f1rVhIAEPMhSuEVDG4SrThHWRm7UOEduyFoziLkMIEQEOUhiCAlQj1Pq6rSTiwLWMZZKhspXWWnMjLuNluoxTYgWrXqv2FuGEWExDo+sRRsFHo1wKUdHRyYmESJiLRxep4TW0x15aACDchXJhAIHoqdvf3S0TJADvIlYEOBDEcdQ8l++dx8I0sD9264Mp2SmaT7zKY1+BcHTwcPzElsWuMIsDAcDhfIHHK+9M2+4RBDuq+2zNcHyYgyLy+KcP8OA2AID31MLk/GnHhQeDcladnt3tf8JM56r6E4qKw0DoJ0hyNkbRbrXwaTs8UMWzpdCOunIDfqzsu3rmE+oFeNQc8/89ns6u7zlR3t7zdaDVjGnaSQszwyM54FnRkqWQJ0QLZw3xqEk9mAZVBSA+8qrPX3iQYYfh6vOO9YkUOf55/v75t2dZGZ4c58+fnBv5QQ7ZmcB9mmKcvmu5xT7zcCeRjE99u3nT6GhjBCTfI+cP8wvKQuKnkXYC2XPwPPwp4qBqEE9a9p/Hw85/x25c/nzJqUYT4UxXikcJO07wqhbPt/fsv2MWIsoA+3gkeoGUXAdy/0ZCTCfxcAonN0wj02RTDmxhPzkvmBkgHZAo0kkGCSIwE1OC8HwQJyTNK/2EUZAszpADy8xNDMhyTEQgBRFDBEBS9RDxsP/4PKfg89udPPHj7c6hG2fCxJOtcb54euo+n52O6f9YCp5H8jlQ6TC1P5Mfnz/hAeUjCAHCzeOwsMk3ORFk5GET0y4VERjJAYlRFDvBPmdDc2wiI1YhQhRnClzbShtCtwincRzL+Hr9MgxfwgvEQDgQERWWUWQ0d/MGc9vu9/etLQDQPUq5Ek91qk0dhxrMCqG6oalrY4DwRmDD5RXq2Bz63KLNBeylMI/T9DKNU3Fv2LVvbVnuzbZ22wBQAikAzCNAPm7zvCzatuBhWbbvf73XggghgDX90hjR7cOh9W1WTUOX7MK4vNkwXkCASS71tdYhE8GmOs73dVm21tpyX7d5QcRN2/f5Q9k2WN+379M01VrHy9vl8nq5frlMX2q5DGN9fRsMhs3ltujv33+83+elbd1N2A26elv7fdNVo7XY3DquxuPbhAJkVIEH7IvNbb3rRgG9b83X+zJ/X+bN/DoN09vlMtZxFAFz6611gBYRXWOem24beJCQUCGScO6GCNxDDMbgEl4RlBkZjRAsfOuutnHf803BfOvqgFKHIpUYI6z3jRBFcFtvSF6rlMropuGrrikoEBCgwsNlGL9yHRHLfe3btmk4MtVaxrGUihHWLYuGtjku23q/r0JsZve5fdy3+9wD5X6//8d//DuG/f2Xb4B0eX27joOIEMZ8e2eufLtNl9fx8uXb13af53/88eeff/ylHqOUkct1GJGYSKAHKRQkW9tQZRBmxzY33BoIV+ah0kQyDtiEmqpp3+Z7044FZSrO6RMRyAiYIXvpDVGx0jiCKWqPCF7mrffdyf0oqZXDP8azO0YERcRNAgSsuopxgUiprAOlRYqj015NB9xzTFKMjbuSKUW6uBeVnktUWTpLymc384yHzAIRz+gzQoTdWxUZAAIMAcECTlUQQCoSIK16iB0JkZ7oGUwaIdJhzwMR4yhohOP+i/nJPP3Cw3ayCUK7WjPrcbqrYgBk1ODhlbWLqLII8vAi30sknO1oFZ6YnmcA8RNf9bysA0bse+tB9H0uqu5XEXF8mGdDy3O/T7aJ/pkTgc9v+vTCj++fqz8iggMRxVG+gX0/28OhmekM6D2BFxzlvLP84e66G6vSc6bNrjtGJmACwkDX6GDujfCBOXbFGxqm28JBJSYYfv5fhJupZ+owhhQOKES7gXwpUmvJRjPSR/xzhOw6esS9aAjpqkCqbTfIDYsAIiiFAaA1NdvxUPqNJcY7kLapPji/ZC+YGQky13K3q8CICGEpTLgrFhP4WpIoBx/m2UJo3rP6649e4BNVEoBEoO3GFvywIz9Kde4eYGdPAHlWlw6qEiP3oGM7/yTvOwE90y6OjAgLOBnHA/EgYkmlOULJkQrACeoCPlWWj3vux8rwUG7lE98rekCpC2BmO6rn7n4AuCzDMTPDMd72owWm/sfMzx6C/SvdufMq/PDW8tC0RaVgIvK99TBn5dPRyE8j35+p4gTrsEeORIQlI35MW3PHI5EWzsMJPGQYD+3BiYDzvZZlOeV08KQnOx+xhufHzPqGe4ookI4A+GxRBwB0iLBI2R1mwmoQIO9rabZDgTAV4iJYgxhA6sXx1eK2dGYWgSpQC49crxCFyxUAArZu4K033eZtmdf7si2qHQDW3sbxaxm/1OGlgxsCFEJBB1va0jbXvrTtrv1+/fIVZdoclg6uUIlpHK+vLy9vr6Ww+Ua9a9+2dl/6vPjWUUU4kX6Yi0O03td1C7D3UhjiMg1T4fE6Vtkzo6bh0oYNIzRsXdcgpEFkrFHYCaUOQFBkBIdxvLhGoTKNel+XbdtqnT+Et23roLftvtpyb7e/lh8AUGu9Xt5eX759+fr3b1/bt69/v17qcL2+Uv3SfPj9z/7HX/dlXrduZo2beWt9nuf7vLzP7X1rN/NuwGMn9cHYoBCPhQsp2rY0xKxztbn3uXsPACnjdB0nqYXAN/BmrtCju7XNtal5jzDeKyqkGRUK0Z0VC2IJNkADgVrYbbO+bVuLcNoMkMGjFu5qDCgiUpGZMIwZAyygEStgCEcpbIZsNAzDOFwChMtUhstwfZuuX0ud1s1em66tN1UPDfRMwerWwTFDDa2ra5AvEBiB87x+fGy3uXnQ+/vt9z/+HGpZlk3ViWW8vozjSOGIjFAIKyJeuvXel2UFYG+xdiUkoXKp0zBMALTG0kvBcUSpo3ARit5smTc3YqahDlS5YKm1Bi1bzK33vrm3+HCsUOwSTIis2h1sbcsghQABREpBkCisEmah3Yk22GUBVGs9T/ZH7m12m6bvnzgLSqFejBxDwDuygyOABgEFIHgKTtLr61yPMoMZH+zFvk/DHu/z3MK2n5WPBSvF3f/JqR12nWgA7tGOQQhOjnCka8MzNMnVPCIzec/MOIkAN0ud7/6+HnIoeI6FM3eXAHO1Hu4BDk9L6id08sTkxVOb4UHYfLIzPRkUeBKsPJcbPr34EyiKz6W6598/2JCfKkEneNqlLfjPyCs8NWQRP2lu/8lUbAdNBgCA9Hw5T5ZAn/7E3elp2zjJkmdI+kznPB3Nnz6kZcnjU1vAE2B9sFPn65jZWe40MzioRzrsMODwAd/LgE9M52cMulNxCI9S4/ko8an8F0ep8Xy49Dm+0z9Jl9IO7VQEOqLkpaKHMBNlQ9Lj+Z6fh566K55gcgiRw26W+/ypDkj3M6DPz5LE4zNBSwQeConlntRUJ2H5DLyeYQEki/yUHpFre1LkfCj/wBwfDxfT9ysZr7MF5PnLn1x/0cPdz4yC52F2iuqe58/zOkBH/3KcJ78AIDSzAEuT3f2PEojAg6MSzqrDA1Y+i1bh6CJ8QlQ/z2h4okKfH+I5B5/G/AN+Pb/U8/HsHITDMDzfhHMAI6KbFyY7PhsRyD4Nd/3bedbdL9NVTtklAAEIoTMaZZsUCASCUzgDCfHl5VVqR15/3LCH6da3pRPoy5eB5FqHS0TMa6x9Dm3relu2ee7r5i3Cbgtsvbfuo4MCNQsgoIHLSP3u2zK3bfO+mN7V7y/LVypXQ1aswCON08j1dSyvUyURNdTp8vX6Zfn26x9//fbnx19bNGRCAgx0CAnCWqv2vm3b9+/fBaKWQkOdpitjtG3OkKbL5VKY53Xtpqo6zzP+EGVU8BLKVLAUcw+EUoZC5XKJoU3LtgIAV956M+ub96XpXWde34mo9z4Ml+vl2y/ffvz9b/O/LPr//I/rl2uZruPLV72+vgzjqBbzuqibADbdPu7vf/z57//4x//586/f1uXurqVI8wUkXl5eZJAyVR6r/vDullxRY/prvs+tl/Hlcv0yTi+Xl2GqaOtHtjUBdQwcx9Fxq62nxbyZbdvWe3dEderdIrBKQXQMQ2GQICZkCRZt1lW3rfXWCmERKiyOkD40gIiCdRoGrY6jWYfo6l1Nm/ZmWmvlUofp+vr1l+vrt2F4pTptzeat3ef5vi5mXQpF+Lze1bp3RcHC5GDLtrqiIKv62nRzVfD39/vvv/8+L7Naeb/f3j/uf31/f3l5e+GhMGJwb/aFS2utiG+lu+PXt2+6xe9//lHKgBoMOA2jqjdAxlDLqHmeKgeHmvS1W/dVGyrbIDFVFERwQgszDdT5HoyDd6olAtSCy9R7m+cbo4yjTxMKo6XsLdOiti2XiVpL6mNK2Q9Sqt3DAIAZz+qbcAWxlOEAcgREKGA6HyFB+txkAy/QTzqe2BNb4qE/JYqHCDTVHv6p9xvNDIIQEcjP0lj2WFFaMWbQ0FERy/7ttEZFykzu3WsDkD0gjQSJKYA0hVkBOyeC+3ub2R70uBvyg7uba2SisxsRpLLEQ88DKNEeyx0Rh6dAJrf0bqpumVZCwoGgbgT7ErknzIQTBJe9GWJHJx7nxpl1oNhhB7s7wUM78mzeE5HuijvSOvmtcAzsh9o3X1ZP2EUCTIyZCAnZgWURgbTnPSMiEj+5mee6v+/HWQPKXUZ1d2yAA4WICLrhz1Tbo6p4bie5PaQAP8v9qZTf4eSewrC/Y3JUR0TdHmZwvm7+jkULMLVGCplfkqgrfwrH+5oZ9A4A29rCd6/dcDD1czdMx1dEzH5+Zrxep3mOZ5F+NqOlXPJ0zTh3RFUNTWMGYz6aCdKvmNCBEHEAFxwiFSqH7TgLlsrsGBFCWdpjZhYCxtJaFn9jGAYD7L2lhdUzxhKpJ+gkzPzjHhGlVjhE2X6As957ZgwQwSNA9ihq/wSJcsLmSkInA/qkPkyEktIsEXYDM0POY0lOXsg+Rs8OJyAiITL3B4BIp/jdh9agteZpQZxJ1w6naft5wsluhuM0kolMiADZRBDuwgzM3rW1tfUVA4IZkcFATQGAEFR3D4jkBT0Cgxlw10VRFtbF3Xu4mXFhs553JkcRUngoUc1X+Ak3I4V59zQh4mcJP6U2NKdADp78j4zMeqYb07P+lIud86j3jZkdPQJ67+4wDvusqbVkxv1OEyJpuJp6AMje8pKDGcKZMLKrsXcL8JADljkG1Cqv1zcimPs2N7t/rMzWG3x9eZkuX9UsmL6/L+8fN4Ot6bZ5Nm2Ah3oAymrLncdXBXPsFg3IeXBetW/r1uemH8v6/nH783L5ysM1ZAKpZNdamb0JGCGq9uhakF7G67/97V9b9I/1o0fvbhRAReRf//b39/di2j7e73PTm/DrZfKp3u+LIDDE9fo6lnq/vX9YELXerW9rMPBQy7pSkQIhItaMQ4i5joxO6fIkpuP1QkVIxcyWbb7P2zyvMRtQuIHQbP/x1/R/f/8v/3bXqL/8/b9//SahFMzD9eXLL7+q6rytH7dbrW8Rtrb1rx9//vnXHx8fP9o2qzXVdrmP4yhlEKlcx8KFqVB0ABSudYxalzf+eCdh4HG6fhtGKuJoGkUJ0InRDLCMiEMzWfougaCw8KV1wOKOzAWlEgeEIaOzMzFDgcYOq2pftG3bSm7MWEWGInYZJ6pCEBRuPShQEAC6qpl27c26qjqYDMPL2+vXr18vL6/EQyCRsKMDVCnRnQNs25rHpn1FplJESgaB2da1gTAKFxlCAvR2792sd8Dot/vy+19//vHHj2/ffn25vhFVljpNL/M8Q1gECuI0InwhCCGSZVkhoi2tl5WZq1BnahQQHQIwsDLIIGJsW/Ouf93updI0DdN1LOMwVnHCsH5bPjo00XsZJ6kjEgdyayt5EFC2LhYZEYoZaretWe8twlh4qEWk5n7/kIHDvo+m0ty3XSOfHt3hBBQQHNm1m9bj6Wm/1w13tdMp23qq9z0InMcpOR5Ndsd5EQBgXVeijGUk5L2vB46Euz2ZJHZjMAxIZ9aDg6Dkipg54pNU4jwf5+ncY+fQIHZW6PxUhxIidzI/XZ/gkAphPFi63ADyus3s6MN/xPuc59e8zz8JveGJLYtMJN6X4J85qvM/khl60FZH+TIOgdHTy8aefXT2ih4MQUQgZ79mELEHPt8ioqxL/CypjucberSxHrmQvh/bj/Ji7M0Wn47v5ybx0yWcvfQPjfxDpL83nH6+tMefnzQYESGG8JA7TRyF7aNAuZuM/gRbzz4JeBLI5+ad9zMiku1LLJK7YL6FPwWcPzNAT9zS/+9z3N8Ud7mbp53ScasTcJyviY+KrZ8vS4SMhMLunLDymRU7+bkH1HsKckiPhZ33RYwwc8PP2qN48LifogD3Cn7Ox8/JOXg6FWeJM3ZGNlMuADAcPNwsDS/2DwYuhEBkRB5h+P/T6fys7Qs8686P+wMAYR6EJ/W4y+of13V0Fahq6wAeIdlmuLurAh4p0o/PsM99fFzg00SwzKPab90z6/Y0x4/x8ESL4rOs8zn4qzMzSz2ViLtORuQox+8Ya1mWfOh+mJj03s00IgQE9raSwz+FCLkgagqhj9VJ0v0OIlTVuoYauLl1iO7WXbtrswB17YAlmAW0KVJUFrhceGPz1rp/vC91VJbxcvl6W+b148dt0aV7YKxdt961q0AgYpE9gsLB3LX75rEFbCw+jCBA67y42eJzwGa20XZxHBTL67e/Xy6D9TdrE8YAXdmjEl7K8OvbV0e9by/3bV3We9Ln8i9//7UWbttyv72v8/z+HpehFkbwEIrrOFwuk9fae6d55VJ1ufXeN9NgduHVbbQ+TZdOMck44cC7vy3WqB7hhNwbaem9Kzv21Ruo2ta21tQ2v300wcuyxMvLL//tv33/+99aROlmUsvbly/3+5zPLJkj137/eP/zz98/bn9pX61tXZfbvZbKZajDNMpQ6zjWcdgCiXgYJ0eY5juVa4ADjuP0VcQBO5EV0QAMKkZWhlqHWBWHpTPXPIOqtt4VhA7fY8kYPyYEUipUhWQQZOphuG0K2raZIYS51uKoiFOphODdu1EYumLfrLe+bn1dt611RSRBZMZhqJfLSDxoQGwqbHXAOg2G3NqqpoDNfCFiwImluEOpouoQVESQaikU2EQWgN12b962337/83+//t9v3759ffsmVIhKqRd7X9bmbVnz/PTl5YtgYaDffvttXdv9xzt4TNMUYOa997WbMgyTTKVwGbg7r90t2rLe5sXmha798vLlbbhMVSiEBVC9bfcmuk0vr8N4CejmfVmUQNyWiA/hodYxnHtzM5zntXcdx3J04FNEuHpamaakPE9jx6pHe6oGZFFpP0AjOAbvEoqnJXInqLKUEOi78DYOE0TEeECKQ0QfT38OB3xxSqNLeGxmvmtp01EwlyvKENzn7Q13r0Q89E8PkbiZm/lz1/rxqfZk+4Q++wl1d97aNS4RDhDEmObxEZSZb6p5r9QzsuCwkn8uij3Ij8My9Lni4G6IkI5uub7nNo/wBBx3niDvhpxL/6POsgtldvTpBxQEANxjrD9ZNjzv6Ac/8XgQdPSoWzxqfH4UVXMjRdpvYKYf7nLs8xMQpUtZfA6Eed66Hq+m5l1V3cXRkYGZmILAsq0sEDK2nndIms/D3YlADAGZIBgRyB1E5GTCjhJYZNZwspLndqjat21TtYiAQAgI2L2vENEdai0iJflgRNzdwrSVIiIE4GZdtbnvp46jcpvF912l7rjH9h5z5XB8wEduOqAD7hpCBGACIabUPAMGESIWRj4qoowAAELZVRzueu7TD7yy+8hhOCA9VSqJRaRIzWtUVd150DxXiD85oQAcp7FPGaOAiGmDh+HMnCaxO5z1BF4uIoDoDp5NxXtBP068G+4R8CCPwQDc7EwJe3Tz7amxtAOR/GSn3DAnL3PZO3YD03uMMM3GgBEyEyECVM2tqzbVFtmZSAgMERYIEUyBmHPbPbKwnrctgB71xIhIBApqmh2RkZb4iIjHQP1MFuZ83TGvHOk98Vge4clRAo8wbBEZhgGPTlJm7r1v25YZjnhYS5y5WLEzc0VE0kk/ozPzjXYIm2VNJEHqGN49bFNVdwtz12a6WG/eV+vL2swy35YKOlsoSCP0yhI16urbhi00nJmq1Am6akg33pw0vAf2AA1wc8lVk5AFt21pXbuu5htSk2ri4IgAqFtGWXi0jjprFMXCFcZLXebXWguzbN16a6BaCf/29vXldbzbcrvfP24/tBkiypfXN0bQttm2fvdw7e/vN3AdmHAcHLCbh1kQcx3IW71Muoap3e/3pTe5DS9f3779+uuX13IOnTBg5mEceai4Sixkm3tEHYbL25tMQ4T9/ucfy/Z9aVszC9QfH+//9z/+/X/9v//75frt+vItn1wQpeHN5XJhklLKOAxDreF6//jo2xLQCcJMf/vtN2L+9uvfpI4ycBlrrKsDKDoEKlCgFK5DeQOcAg2BiziMCDqYrmY2TVPzGOZNuGIpyNRUW2vIkoaXAB5xyCUQgMkJDIFrGRAVYtOu2rb11s3UukVnCZHMkHH3vrZla8umy9aX1tZlvd/vi7YYx4lVb7f3YbxcLhfmgh7L/LGui4PVqYpgABAbQu86u0aPWe1KWIFhGApiqWVCKE2x9Mgjb63LUAoiLsv6+++//8dvv//9b/9W61C4rq27YWt9njfEuFxepklqrbVWDOpbm3vvfWuXCxHO83y/vYNu4tfXQlCqkAeZlIiI6VJ6j9bW/mNd+v369jq9vsg4fqnTYv3WN9Ot90KS5+YWRkjk4evSItYiG0Lp3dpm69ogSESOpQ0jopRihm5s1nvXbdu2rau1XeiUdRkgB80UaYdI4SgFIgQFIaVU5QhpjkOz5e5AFo4YdMQGfF6JzlLao0DzfHT+RBIc2m3cs4Aomy384A8eW84h6n9QLPtb7N1Gz8jjmZ9ABGIg5P1V3c/j78lIEdFe6MRkp+DnL/TzEk526if64Vxnn7SxeJJSPzFMz5sfPkmm/lMIdbzmw13siWTy8xXODwB7r1OSK5TwYhiGFJF0Ow2uIGy3V93X+r3+eG7SD+UTHU6qcfROns/3J17k/IrDdOOZ3tgNivCT8Rs88XbnrTjBbqKfx+ubJdF4AFM8aTM7M7N3pyd+BqYAqZHf87YjIve8ZzRgZlm+zxF1uVySP34uOD63nn1iSsL2rMP0oIoUnFuA71vT0xR4UGLHcD3VmUiZpfCgV893OX/t/Cs6nPRFRDjNnwAOH7Us3eIp0jqrY8g/UYwA+BjVbmbGBc6HbqnHQn8ew3nPnoqD7ZxNiJidPR4cUSIsmd+fgBczCz1sWRLJpT/+Y3JF+NPZBtKbxvFoO8FTR7WTmmFqHZtnnQR5J02PrqCjnyAeXSN7nzY+BuTpvhF7gCM+iVY/fe26T+pnQ244nkeyYRhE5BTYxRGGfdK3J23pR1Nw4q38tSNpgzIO6Oh5kqfjjRIfzT07YRkRwchI4ERCYBDmPXqzvnhfbJt7m8GbhTkA0ciDUHEeHKkruquhR+UCdUDE232j4baaKmBDXNXW3pHBgAPYI7r62rqsa8DdWbuF2cbiPOzqNHMbgoRQFS0sYHVXhwHQtN96/2jbj/udIKR3603VLRDGoUzj8FVe59f5fn/pawcPuQyV4RXM0bQS3d5/uNntdvu4TCLsEWvbXDsyDdNoaF8GolmW27xsfXn/cI63tjjA6/UNMZAxYzprrVzEM+DdXbMLQ1CGGuBA0U3bpkzjy2vxzmtv/+t//a/L9FX4+t//2/+jDsuy9LUx8+vl5e31VYCR5e368vdffv2Pl9ff/x2W1lkC0c3ix48fatbUvv7ytzytzNusgNC7W7x/3D3KUF+ul1/AhzAHZBYSLuiDt6H1lWVA6w6Uw9Pdu25NNyEOc7XNyfic88zMrKGhwYJSuE513AbdhvleOoRpQzV16a7gCK5mbV7vt9v3zZrZ1nS7L/P7/d06kDCL3OaQ97+u1+tovnX9+PHXvK3AYDDVicG7w6a+3OcfTTsKXbdlHN4iCEIwcvpjVsFK5WEYwqZpGKfxCiS3efnHP37/41/+uk6XqDTPK3NBYNMw74K9sFh3bbYt6zovra2qrbeNGbdtWdaP6NtUw7w6hLl5NMAuJWgsUgKwzeu8fL+tev+Cv1zLtzKMhaFGrNraejPv4FGlTPWlcjGL3vu6tN40nHu3+b6pgnCtdVjXNWLvEhUqSBFqqn1dl3VdW1N3ZXo0HMHRWgV5DnRA8CPc/lR5HwBlF2PtpJeaA0ACr7309WR5EEdH3lkZPCmnFL1EZNUPIjceQno6IwYA+Ok4judfAqLBkxQ6y0wZavv0dZJbDhiUgR4kWQXfbYRSSmKZpRKfhL2JPTRLk4hIlFsm/7R1xaHheIY7j+3fyRHKvo4/8rOfiSJ4Aog/w7yfUJc91xORKKOj/YBGD+SBz0kjx49EZBzHJEQjQr2fv3PeyQSClt6brseOSyLCT3v/+ZvP1xIRQZnJCxoOqmaWZ/vr9fqEvTDlQbscLlJsA3v3hLl3hbRcMqe9Kgrhgb6LnXetfe+99zOwRbIf59BRHZI72YcB0fGQH6A5XVuzhxERsx56eoUndEtsd71eEx5l8CseJuy7AgniMKLLKyJERIpswn24qkAWXndFNphSeAQIkquBBxEQABzkX4QfXXWJh+iYpkcqADza5fK5n6GBOWuZ0ZERkyU60cvDFBeQH0LsAw/tGMtMTVWVA+iRU75LPONo2siC137Xfa+IAWSoIKlmj/CnTosAQ5ZH2T0LZ/hog9gnfK4PaIHklH2vmHwhIpp1c0Nk3NlY9NN8A0EKY9OMUEdgpCBkd4goj7mW4gEOBN77hzwSvj2fx07VxNFjlNknvDtE70dSzwEDlIGx++BW9d52c7hhGErZO6ATUZ0tI6ei6wRktdadPTkAGe791C2HN+JuZpEDGCHkIFmzdSwszKzIQBijYIg4unl362Bdt7uvs/YP0ObePaLQQF3qhRCJ2MK7GZBDLUJj3bbtt99+e29GdfjY1tuyvK9rNy0lIASpBEJTx7mbvtNtq9NbMoNSiagErZua9S1gA3GiAAN11ehBQEJclFjDt77dTHHbVLtHhAyVKw9FpMp1GH6ZXtraVVWIaKj19eUS/VcB+JPp/v7R2/rxfh/HsdZKBMQwDANLMY7oMIFrj2V73/2Zxnsdv//x1+/wBuVaBimllmGYiKiZ7stlHUopFiq6qWpgfH37hsCMBaK8/1j/8X/++PPPP//n//yf4/BFjcfx8v2v93Xdvry+FRaGTOyUabj88vXXv/3y999f/o9rY/Sl3S3UuqoZl6qAZrYsd0Qw7cuyftzX2/fVOxW5DvUVYnBrjgCZ1wloYBHWNLZN53Vdm47sTXVrbdrxvpoFAxPsHfiOCMTu0bSxQRWCcCJAwTpWQDuimgEZENEwNu339f5+v226uKuG3tf5tszWotaxSM3l+H6/35Z1mdd5nlsoFwHsFgzkvS/remt96b2Tow6D+QZRI8PM3JH9pBdKKfLy8uX17Zdffr2MU2j8eL/9x2+/vby8fPuSnbgkUk9mGBG3ttzv99QRmxn2hmBA0fra2wLWzKtHN8NQ23RVX8FNbQV0rkHutq3rpnwnLz7hW1RmCQEz37RpJ7RhBJmCLQXFbfO1tWVubfNtVQDCEc102xYzE67M7Bjmfdu2ZVnmed62zSyyJXc/UGbnNh7W88d59OCrEIPguZIFJ6x6EDxZePKfClz/2ddxsjfaQxEPcOaOyBAA5A5BtOt1njf1s8EHEbt/Ovefr38ekc9v7rTTzuWAux52Stl5nouUnaRC7KuhP0umTlKB/jPxVhzarM9amYfjFz85bz3ft/NDP47pn9skn2/dwf2dHtZytKdl7GC6sD36s57R2yklOdHPMwPk7gGfPvm5TZ7H95Nm8Cevsv/0tp+gM+sqRDSO48vLy9ml+J+OjfMVTroLPvF2R2Oj7z/1wzc/s4Dym3J8wjioEWQ5XzndyM57cnp3iZSz6fJkF57FYSdFkVsmPPF2uxQpU9KfeFzzHkCYs+Ow5sqhnmwcM5/Kc0Tcu0qfuL3Yj0ubP/miPY4T+1s/yBLc/bcerPODAcUEVXR0Oz4iPk849Dw44bAxs3gIjA49/v4LZoYPlIZ0KDXTCxoxfVv5mO+ej2lPhQI7c7oQUTKfcff+zWf9YEz3S0jpPTyiIAAAPNKN6jhgkJ85AZBGMxbBAAZxWJ4CwGFj8ZiJaLAHJeW37Lg/z/Arzt7uHH5EFPsSAeelcZFztOS80+6PdSA1hbH/fjbe2ZM9Xn4nw+hycEZE3vnzk7tDN2PO4bzfVZF9LXSnPCTvs0k3JOIwAWMwDjPv4Ru21fvs2z2shfdQXYF94xeYKLtE0DlAUDJvfF3ntkVx4Mvlr/n77x8/1rZRCfAoWKSMCExq7ritPSA2hToOw8hSohBFgBVUiUAlBmJwwfTtMVBkY3EkReqEaogR6tZVtQgJxMBci7AUvEw6aGsqwggshV4udbhepmmsv8s/3n/81Xu/3W6OMQzlchkHJhauOIZ4MIShqrduoWtr7a+//upb3/5lpb/Dt8vXOtVzcey9gzsjMhcHirBQ626vl2stw1gu2oPjY/6+ft/u94/b//7f/3tZfRwv87KFRRhsa9+2bZKJAAvxVIdfvnz917//KwP2vnj0aKbm4T7P82bu7s1DKhPENq8ft3lZ9XX65e3t2+vLL9NlDL2jt1T0AQTECiDzvLwv9/eP+7qupU4JPojSH5jAFBDADRCCIIIixDOp2jRs78aQwtfrNSWGAF7GgQcmBDfo1rq1rW/ztnbd1Pu6Lk3dG/x4/2CS8XoRkdv9fb6vt2VVVRapFwkqhoULdN3W7R7eEJ25pNIzXJlGJqZKQiUAzfZG1LcvX/77f/1vv/76d0S+vX9ExPfv77//9ud1enl9eWtLG4ZpHDeziDx7b6rNdpLZdr7BdFuX+XZ7rwLrKstaB5o4XG3tfTVtui1EgBSlEnB1iuaL3bRFq9eJakm1t6puK85cXZlpE66ILEIRsW3bfF/NsJYptw0zM1tMrJZR3cz7uq7Lstzvt9YaADKTkxMYPNk/EhGjgAc5HBL1XI4Bn2Zysie4G0N4wifMvOt/cor6568TFsRhgOmx124QHFO5FeTuJwV0nq3Bw8OyC9pUAQAOPuNc+M5VjIjwKfGDIuMbXQ0+Ay939xP6nC+VG/xZKTuxF0t5xnMnRMKnzQwPsTFEgBkiKjkicjgeVmT0TwEpx3/AT4BjV9S5n7c1rTR+gixmaVIGib2YBA9aA6kk5Eo65PHh/wnYeXxCmYcx4ycScYcXn00uzp3jKPokfoqEbqWUVFAxlxPW5L7ivvd54ZNB2ilp2vVkTx0GAeGuEXw+7nzg/rkDjohKzoWA03r+TEKMQzRz+oPjIbLJ+3y6mJ7MVjJq5yw470Y+Rwr0p2MHAOwancRDrvsYQ0gHSO+Kewg1MhETRbrZhbv7noR4oJgAYyo/Y6ndm5QOTPnJX/7Z/yX5uOOKsj9079VNv/6TAjxLyXDkbCbLrL6DRUSMtC8ANDNCzAeKGDnXcsPatg0A8v4fR5H/xKk4b+apMQdHVQU7qtxPqDD21PD97u3+f3nzMQD2lJwIVFXTZtb1c3Z7rjOtKzsDOuL4mGX7Ld3beB8fz7PNxhMTn7Dv+cM7QJppxRGDTb333jPh9CwZw2dpwYmi7CnAMTHZybnuQaZEANB7Pz8tMycRGYFF+FTuP7X1fDolhvUw1615W0mbhHp0sE62oa6kq9sWoaF90zAIwRbOpSIWplqrlADo2rvj3TQcfL39ef/+/f7DYiZbaukoLliQkFCBARzD4n6/q7XwAiMgNwojAikIo+SMZSZBVsO1Q49t67PZBmhSgIhc0XtoeNuW6ToUBGEsUgoLEqg0mYZKRIWFkb6+vV1qAVOI/vHxMa+rhk3XUSoPNopgkaFMpbaBQFq31nuffVnXeZ5//PGdHS48CqAUGqJASELgjMwUESEWFEWDCCPgUkqp3rXK8PLyssyqqt+/f5/vG/LgDsJlGoZ1XbU1ul4JOIAI+FIvv377m7f2cQuPF3dXXQlQm92XHw4o4wBQwjzUTFWQX6+vv/7yr3/79V+ngfpWoN8Fm2AHctWJwpf3H/e5zffWumuAZmcVMyIHoocQYEEgSK6FPRTQicDdtRt6EMIgRa5AaOgWYYNw5Uy82XcpyxzobevWeldzcIDbbSt8/9vf/oWI5nn+/v3HvK2qOl4GkAlYiTtSAe/Wky+ECA/rGhsCSolhGK7DFai4We99XRcPfX19/bf/+l9+/fY3bQYeobZt2/eP9//S7XJ9BbhPR6Zv7xsjqQgzDsPQtwVcEMFBVfu2fCy3D6+8CMxTmQpWJgdv1npbAhTcEIIZx6E4Qg/vurWbXcBGvKAwBR6He1hLINRhmK6XV+KEZdp1C2caplJYCgGEqh0bCai1XA2Tu0ZEKeQchMChEBboREToiIymSXR5WG74+5zHx2YT9HCh4vSdwFSnPliTgy2g5zZ4B6i1RkQg5VZkZua7yCZZM0TG0EwDzx3hPEE6KAK67gfo5w3mZOzDs2qVbvz7hxGkJBtc3dCxJ5MamB5lTwjiwQB9/jp+ZEd17xPjdW725/dP/HG+1E9g9Cct17Nm6/nPf9qizl3kn/awNN7cjTx2OgSpEKMUIpGylz+OD/mpPXNHNBFxItF9KZcTUeWbnYJx0581LueteMA4M3fftY+HA1aCmyRRtm1JgfAwDHQYScSTZ9WTaCxvozGFA7ir2ZnstKt2DAITjh/mFCLSzZ8RIf6TWnlXPoETkRTWDudPD6sOTC+JHLo/Xe+OhM56MTgAI/i5oZ6Y44mlQXtKBsz/YBZ33WmhiBP8mRmgEz6IugNGPALRzzuWIAFxVzHlgQOO8jQinnVGADDranv4YCLy3dwBMA5jqpL8U9cT15JgUboxwQAAgABJREFUFrkiLBXZzIevzKFzyoaMcGfmaZpyQEbs3s9EDi7nkz1HRViypKen3ifEj7iTW7EHJgLgYxKBh5qCp73OjljTaiSzBNzVzc955PwQRRASEAqy70e8QA9H8AwtcvWwtI3O23rOzfOQdhJjefmtNZEtIpJjzj6VPcZ7h/JnKflhHZzgPm/d4VrMSX0d9URCRBGKMPUAZMFduAZ8OspiTmAMIERiNu3e1LfV2gzeBcxC1VaKRrGSrhhb5jJbV/OQEuohBetYLvJFSrUwjb5tPiutm66A79vHrLPBovrj9YpRARhFPZwECR3cbVtnDwoo4EglCqT/MEllb+YGyEiFydBsa1vX7Xbps/qGHIVJFdvmgLpu64uOCF4QCkIllsIdUCj8Ok4iMkgZqwh5bn7ye/mYP5bebHauPFymOl0EeLpOETYOc4a4YRW5zes69779/ts/bNt+vP/+P/7b/wCwUV69J3bv4CHBFqrNBMt1uuT4680GhreX11quv3z713UL3eD9Y1VdTWOarvN8/7j9iAgFFTACvIzT33/5G7hWwo+P12X9uM0fv//4YzMFGWJZ57UZB4ZRUN9aW+aX6dd/+9d//a//+t//9rd/qWK68bagthuYBdTgosDB5eO2/PhYt97ltn354mlQUbhiAJbAACFgZshkINBAyFWJAiiCiKGCa9TXl1FItU3jOA4CGENl602tzdvaWmtqTc1MiRCYbncblq1tahpFhjrVta9UosdWO1qR3kT7ut1m8ChEjsBEsJ84vbAMw1TrgDz0toZ7t0ZCly8vv/z9b//yy9/W2xLWP97vZta75Vl2mqbLMNYqr6/XeZ4/vv+Q4OvrC3qAaykSFH27b6tq36K3rdvCvrxe5l7UMMyMoEWf291DB6KX18t0uRDRZtq0z21b55ta4zoIj5WpKdw/3t9tI6ovl5cwFaltU0Z/fZkQaBxrqZSyJHdQh62vZuaa7IKrZ6q2aYAIjkMxdNeO5ASQpGOABWh6vVBgmOVOkVsHEZ2SfCSWvayD7v5wuT+qZomDIMgRYF9xKhHpfuw+UE5Gbuc7ICA6IwE6024XFO4Wj1jZBGyaxJbl2/HpIJXCLACCIBJBAjDfbKOUoIUFhSABYFAgYu+a6pzdSMJ2/mBvPqcABvDDPDuyeXs3ew3AM31oV6swpbNXN2VgEcFI7ygVEZSj2QmxJddCh0V8QOSLZBQJ7Eqy7F3qvadlJTIeLvdpzOPEbIfAPG8p73tDFvWyX5CFJFO8mGDn/g53zUBApugHhRXE+wWGu6dmhiD9Fik8+QXPOx0RxIwAeT7svRcqYx0j7Ha7rdtca2WeiMi6YhDslvjuaq49zB2wd3OHWquqb1s368MwlMLHgd/d1bwDZBdaCp8MIm+/mln4kYlVK2bMM4J7uIda79pUjYgEk28HCKhcu28GwYhh6h3LMEiRZUddam4BTryL3EuVZZ3VOgulalsKB3jlEuAUBFlwDAhzB8cA124RgLGzFwDZ9HdCamFkZgoPhWYtd+i09TrGswWYm4f3/RCbIw+xklQWriXvZqQzOyECI6JjAAKSAxADI4YZPuIWCmel1bxn327CL5F6wrvd6coeWYT5ySuJhyE6oQC42kpQSykH6N+7LrZt67rVWpkxu0eJCuuu8APoHiAkpVRmJhQISiGYe6pMIiIyJwAYDax7J2JwNzAGZkK0J3PR1Mg7UkYXgSMGMQADCopQa7At6zzfS6mMNNaJEC2ZVHOITCNDJMoliwCCQwPUuoNlRCwDAkQQAlM3g8ObEJFrrRDYWgMI1b6us7uGqZfi7hA9XLVvzFzrsPNblGsBhLlGx2w7RfKIlHYlS33SwAnjmGkcRxFQB4PQMKGS7OfB3wUjOLiaQjdS99atq2sPV9NN+xy6aPuIdov+AdGZgCm8Qqj3NkeEGwAK3KOEe0GDElAB6L6sH10XWxro6ptqQ4DoaBSD46tM43CB8K199L4BORELCHVw0IwGd3dgAnJDgHAlNsHejaDd9f6xfYz68jKWcSraxfpmvZuufbkxBExRsSCyEAu3jqUxQCllmMZaeBrr3oz9J/z4+OEQatFVA6hUHodrUFCpjgAkwzBN5bbM97Xfzdrt/j2gA3rv9vX6C9PQe7eu6GRhhetVmASLFGaKiD5Yb6FXNhA1aM3//ONjGJat6bI0COy9b8vS2krwVaAKo1wcewPVgWX7dv94/7Fs8+vrl4/ltqhGoPYgLMN08WUOVzdF8EJUB5mGcZoCJupT3eaiG28LBM1B0nq0jmrQldRIDbuhKQyFCZABC1LJ9mh0I0xfbYsABwxgQEJCIGB0QEVGFEEqVChtEV8jIkwDgVk+pFQua2j01bf5h7b4+FhepmUcx1ov48V635wUERk4zD08zAVThghkEEZg7oTeMQzAGZHRgQIYiQRLKXwkKw910gkIOBy2rc3reqljnQoztnapdSSibR4JkMPD+ywI6CvZtoogQcS2rbPQ/X6vVcZKCOGmza25qq4dECsN0zgUqVxJeG2btt5756LTBGW8FCRjaL27w9pm2URa7T0Cgpkul2uRgRnNW5oFWvfzWK+qabx0ZNEGoAMbmAcGhjuaQxDsNptweI0CBUBQoJ3WD4e/85EYyAAHEfLPgdn+SZiS0ASfLL7O38xfR0TGk+VITJKqXzfcT/b5J4ShYWCk2gBq4i13pXAE9COvd//7SBmfZb+ncXCCKsLMN4Gjp+mZtsEnMcdZLCB+qLV2/crP7vZPlI+n+/+nmLbHj4iOLqpnH/mH1uQ4lD9O2Mc3H7TZ7gmCnlgzmSGOB8VCsUuAE467Z8DAJ1Xc8QgCIg1sP7kcPT8sODRwR9EKYI9/+tQc4O5pXHKqtt0P/Q3A0c7v7g7E4c8dA58KdvtXCtfIIXYqx3fialdtAx5P7WlkJhDXgxhD5DNZIV+/lIFZAz5lwvzz9T4zHM/P9/xiQHvWooESILoFZgPucXOOO3OO4XQ/0XAAIAYCEnkWLD5NE3hQp+cLnvWpfNm05PPsTvUA9rS92JndYwSmon5vRz1I1c/3/+hsfbr8z6XMAGCkDFp2j67mpu6H3xUzE5/Vty6y+5CdAO4YjX7eDXicFj4lN8SxLuQ1AoH7/0fXn2xJjixZgiANzAxARHQwMx/fEBGVmdVV1bmoXvQ5/f9f0NWne5GLqsyIfKO7m+kgEwBmGnpBAETMXqQeP+ZmqqIiGBhMRJcu3euAhpZC756XMiisosEXf0YCNPClsF/huiYiABgVwmYfyURoFGWYu6OT3YnRABJuDNi7R3V9nO+WQaJcUm3NNuG6Zas1NYkmLFIFwILLRK2Co9wIdgtmCbfGMa3WW9tZ5MxEhMmTIRITM2y6NiECFAJ/JqAGJq6KKmgVrKFW1wl08jaiTqQT20xeGRkJDQkY0ZTAwFVa4wZQWSELJBdUJVWrIgJmi1pFmdq0AJFApUFWYEwZcqFMNoOIgFQgB2FoCCLoGqwxcHNorgLeCGSueDl1p7duOAx5n3M3DB05iDTRdrlc1MAM0LjLRoDJzpcgJ5du1/f94+6gT89936uquMy1ijZ1C6nrrhtyP6REgw+llKEM5+F8Go6Xy2Vu49vpy+vp8+vxvYpdx/rp8XIYnsCQHAuWkruO+4RkaKCQkJi5Z2iMxIW7XXOYq+6GwzS1JnY6juNYu1Lilrc6p5IRCBXRqOPy6fDB94/fPX6sWj8eX397/fzl+FZnq80wl6EfpjpbE23VdVab1SpgmJPvd12ZCl2PXtukzgZJPZmzWBL11nCqPl7lfJWciIkS55zSwMwEBtbcFLBp1Wo+K1RVMMREBO6IyqDkgmCEnjPlnLkru1SGXPa523f92/F86qbJRFrfpMJ0Gt8+nwbef/q+9N0eia/XS/MGhOqIYmqmCggJFN1RLWaVCdAaWE3Q2DmBVNdm7EDEHWICnKY6VzNIudu5+Dy3ly/H/e7LH37+6XB4PAx7bXLNp8JpLFdyyO6umjK5a2KYp2tJHQHWGa40nY7nnLPtSmYw0wYmZrM0F0CmUgoyh9Z5Ip5bba1ps44Ldd4xgVNL5oAGfh1H10nECEtOfem7kgs4TZO0tjAegpYBAKbgoEyQeOVHgAEYEgCKoePCutUw+4gHmTy8nM1AcZHsSlviFRHOLADEpeGybdnRA1q7WLBu6ADmYDfqhruTr24XiKFdtEUeRAxtrgBm3AmACdGWiUlVlRV1AlABDVMUSMjhowZqC/9D1Ff1cE2YEgHDijkZAMR+DncfvW18CLekIY7OVznTSCNgHRpgZ7Cl87Bs0Jy2KLJBHVs7j/Eb1dAbJ34LeIsogPtdwrTYtsR+FwJst6QHQcH5FhMM0FeoBZtK0PBv5o+Gbl8lW1to2VpOS665jkHEKKisfT1cqcpximayDWpFZhDnfJ87BvJhBohuvrzyXoXr/nJteYZ7nLOjaqyi7QVL0rCw624CrSKq5gaI4LJwFhGRgCAlBEi1TgYgDgwOS3FyS5G/uXH3+daSPDmsbMSbx2iAiBhpNALEFC2AITRTRihA7h7Qr5u4e86ccw5FBViSG/KVmW4uZnnjuiEwMIXhPQC4Nw9iAKJ5MzBCIgsIOlYsJiRcbIKJiGOkhmBLsEhk6WflnIhow6S3Kx/nGCbQKYUug5tZa6IaY8sa86GllKA3iLTRbGslx9uy8FoKoikYgpLTXS2xPXpxgwHACR0UV6ajIasqA4K5oG6JY2SoeKfHQcGZAGmtrgOqPs9tmqacc9iRORsRAIbTHemiMsMGCGE1vUixEBHHeCg5UAJc5KUtBByilYYrwdHdaRX5jxCs6k1M1YgXyuMm8Ot+g0LjuQyO3daX15XWUkqCzaSBEjNjRiePPuP6qIlrMzWTSiKg1bS6zC6jyWR1dBmhjSQTW2VviZWJAcPmRBBkQeEqCLN7bpjEWJqJklpzdkqYqFA3tFFGqW4GTgmVRXap5DTs0w4QXauqVJ8NJWEFrE4WMlLiYObNsTkZQlV/v4zEr115fOw/lMOw2+0SprHOovZ2vpRme4VZoS+Sc06X13dSz8awPyTHnDOVLG6fPn16Ox6Pp9PcaioZU8aUUz8QM3EiJLSBD9hx2eXuut9VncpAkPR0OV6nS/21ns/Xp93HIR2e+sfDw36XhyEPaC5aW5sL9qVkzsWBMJfU76rheZoQ+XAA4lK/l8t5rlWJYZ5ndw9zJlf3ZqScCVIaeP9oaDl10nSeZV8usgPuCpbMCOAKJvM8no5fjm+/ve/7Uj70+91hOOz3nNjUxirVEah0nAdOHTZoitMo5/P4/nYm50IJ+qEbmLtUkAwUQeZJtDUZr22eoAoBCFEiDN5Pu8yqmoAFW8GcUspdKWno0pC5z9hnGvp8bk19MJvw7+e/vb0dM3f9bv+h7IbuME0VRN3BDQ2WwtcdVb2pIboKITR3cq1mI9iYkp5O58vp2uba9dm0TddLnVUFXSG0B6epvby8ZC4Pu/3T4an0A6TsIqIVHebpbLXv+95cQqO57qZT16dUAC6t2jjO0zSlRNCF8l0yIkUyt/M04ZGqWt/3OSXmnMJuzBzFUCxl9JT6HpwzA9fazudxnlvh/W5nIrXvBqYcA8zu0JpM07SQZKMtF3ulqrmkZcQhxp3cwBwkkKEQoUZkBFy0R1d5z9Cohg36WgrBpeTa5AbMvqZ++y3o1moiEiFHl/4F31M9IvH69h0WNXbwBVoDJGrxI1FHcaB1uD1Ej3g7kmWmrElcTCJgIIC06C8gbZ/1VbgFvL0b3nkyqsHWa13ZNl+BRnckfQi0cAVRth12i+JfjWjdhfOvoz6Ak8O/E/u3HAmD1IqMoBsiEr9vuEy+mZlIQzfCFD+8pxLfZ5x4O6pvkKdv9dmXgLFGaFwzb9Gqqtu1uUvLmCgBCCETcnSuYWUZrxNwt8t1SzW28P+1ac8dI20zgQ5+yzfg600IY+Mw5VSQ3MxqrSqmyQE8+Df3wMY3CiAb2LkQsLzBUpMgLYbEsOAP7uq2kcRXR4SvJO997SqaCSJmS1+rcy2kOwAwXxrKbgSw6IksObQ7OMZzAzCDqYEhMi8GU8taXcqDWNiAjKTEiHIPeqlqSst07XZe28wB3HEZaTEvF1ATidNxZsyFi6YmSVVakzbXlNIwDNsKWdldNw28f2dBB8Z8/3zBsv8sL3AI9DLacJsq6X29FMKniBiiGOvkDWzk90i8VJ050g6FxebVER02Bdd1g8K7r/vqyH0zOGp3JPdtzbi7i4i7Iiki9cMioMqAM8q2BtZFvrxtdKjjggf98YZ4cUeExADpNgYL4LY031sMo7o0aA11dpldq8ps9QptRJlJZvTGqIkshRMboqMxCKA4iCG4T9By87E6N6AmvQiqmxNSX1JXAIujQCVtopZa46l6Ll56PvRPBqTGoldwM4cGhgQG7gSGpI4K2BwUWIE1uVR7O172w+nT42Xf7woVLtz3/fFyGcdRDYBTM6+1llLSeDoWpn3XQ2umTcOzq3C/2/WHXf+wx5Y5Z+4HLJ0nMkYFNVNzTURlGPYpT/u+6ph7h9LwxV9eXo/n93Gu19P4afiuPLL1DwyewBkhUcrJ2TGLI6kzMgK5MmBm6Ao5UOkGwvz05KfjpTCZCfoi+dJmmccqU3VCyNKlPTF21CcoBfOh2xN3eVdm17xoxVir49v75y+f/3oYSqZK8Lzrnzhj7ih1mQuT5G63L7s+DzsWcODa7Hy6dnwE8R0XGGQQUEMsOaED+lRnuV6m43udR6+CYCmlnBO6m2idJlVlkaxWDA05p9LnrttnMgZBgtRRF16W9am9vbx9OV6+fH4ddruSu+GwQ0QGQrdgWa+baYDAAG6cErioUZNxFq6NmNLpfHx9f7lOFy67Wsfj6YVoh1Qyl5wzZw6vntfXL6+vHz48PvVdzpmJITNZz7tdL7Xrxq62yR0ByjAMw7AfytDnc5BHa5PaFBmQLB5E4Gw0TwJyul7mut/tdl3fl44xcSYAQDWrYq7GFLaeANCmdr1exnHqiiPTOF6GYd/3O4ABjFprrpYI14JsC71SW1WbkVKYiQCEP0yUbrfeGYA5ETqGpITdd6dWJGUjzkdk9ECiDN3QNLYBtdjJzKKqldgFTbfITcQEmIgTL4M8FubXkZogEIKBL1rda+jF4DCDEQC6QshTEwDw1puILquqBJjny+gTOBqSozJRUEG/4r8vfzogoAES4tqGQHcV0aU/CKHGCI66/W7sthSzmQusAwZugazbV1x7XM8rItwSUeCrwLwFJ1xVf7aAsfagHP1OgnXTrbgLDBAyZWbuaeGohPj7QrhxABAPU6nFG2DVKV0z5vX9AMBWxQpEhFWtcZutI4JNQT6lnFLaNDTv+NQpiMPubq6MhA6u5ioUglXmpooAssbOZYoWcROJvyXWdzZES/RCCoDCEVFkk14L+hfcrj8iIRAGJw8b5XWabwtmG8PpmwxyDaVOqLSY+yx5JSMkZgwOXCz2OEK/HW3Dxsi0IWTuItpay5K2yI13LjS3mc41fQ8OO6USNyGKkWgoqolFJaW3JbTwAGzJWgwBkTInyaF0cJt1XRHr5YoRIS/s+Ei82vrwx+ShSiB2zIBADMk551RKag1F1mlTUzFlZiAkzimvkwFEvubE8Z7bOcYtBXAH25y/1pQNY2aZiNo0b2jQKnzvYQUGkAJwCm4dutKiKbMgsgscT85uxCX2DVVv6ojETCGlA4CExMuyumcFAKARg8boeGuttdINMaQIQKHXHJVEUMdwmwFyZ0BMSVZI+JY44ldZ/rYe4r7UeeaUEuZ7FNbRjKL3q+4KpubiKiYNdUatprPK5O3qbUKtqDN5Q1AmKExEagAG6uaZDNAAzQAM3UCsTeJp9jSbVk0NyVPiLtOeOXU9qE8TTTO35EJSYVbIpvu+A2jKmqlXJTUwV3FTEAACYCNUSEYk5kbgCNVE53q8XN9P512/O3RAwCkRuoOJaJ2ma2ttJMo5Jw8pXxOVOk1TAueulJRLKbvdbnfYw8SUOHcdZBbAaEWZVKs1O6acShl2UK4tYXFPhokQKaezVkdzN2t1mqerjDvzRMQdp1R60WoKNomzuTE6GXOi3HXJnEvKqXTDkAAABDhBbdOEwCaX0+lyPLd5TuCIXq81deV6udSxmmDmMhBTKrVeoQk5dCkxk7bp/e23L30xvaieE9Z+SLVNYQxh4MiMOafc5c4IszsGVfaKo2Oj2XrFXp2HIWVytHaZLsfj68uX6XIFaZlTv+t2w8AGpmpzc7NmMBmxEQN3VHhf+tI97UiFwTJbYb/MVh8OHw77txd8O5+vn3/90vc7ytzlnggcBNETU+gOzFMDpyiyGIgoieI8t1av89WR6Hw+H49HQGFmAx3nMTExGWRnogQJ3WrV4/H45cuXp8M+J9rtOm1zs0oEZSh56iixIrgCIpdUum7oytD3u1lmB2piU60GzMkdTIwcGVOxVq8VxllELq03G7xjypzIwRXqNJuSJG/JYoZI5kmtrWUxxNBiV4Q5dV1BxBDbrDJHvA59naj21GrKYMJEaAgcnI9NUXnZBHkN7HY/DO43bhOu9fdal8IN17F/+PKFeSNb4rXF7/sJ6htKcdc+u+VDd7sewZ1eqCsgZmSiFOqVN6UB31QONf6PhmaYiBwsOiwbpnJflG+pxn0pvoX5LToi3iSCNhhj2zS3/OAbSbDtTL+p+H19/bqxoum3iZfbDS/5CqXDGOS8XVgnjOxw3ct11YlNbubLCD1s2TZSdITjnuodEvaV/NgN+1mpVO5OhCklNHdvtqpIhGC3G1KOLoyG8+ByBdBVbzLuW/5kZi7L8NqmK7G+bM0H7hCIb4DA7QWOtxW7BjCKFrW7qzVa9TJEFKAiopcbI2p5kzUo3mddC4FMhJA5UYaMHIZAxpSIIOyzoh+6pdQAEHPcccUKJyKy9VbGQNy2NuAr+NPX1ITMxRRaa8zVkVPKIfyOHH5UrIDaRMzyclXJg7j3NZgaV7XrYnwStjNdZjmBb2t4yQzWB/+bY1ucI+JHgePCzVY83d45fnEprkhjVOKbAuN+/jRm9SK+krulr3Ty8G6IMjgVm9ehby1y3FyMmrsTQVr8YRcnTVMP/DNOCMHNDMwVfFGrWJfcP8JdcPsB3NceiNF4jRQWCZGQY/KIcGnjttZCUe+uI7GwFwx8G2i9B/BgxUeRUqAJ620RcgZAwGgtmLuCGngDq+YK2lSayaxtNq1uLYEGey0hJA6r3UWKkQkWBzN0RlVo5k1sborNrEpSTuAMTJxLIqdh75AJ+g49KUGT1uQqtSuNc8sldQUtZ1GqbdG8QUfABJSYshkTqzZVEAEEg2me30/HLmc/+ND1EOxAZg/vcK9xQVLuckpsrtfpCm0uQ593JQ/dfugOu2HXD1UEQtsXSFVrdZfW5lmnqaeUDnvOOXEGBiqZ+7J/ePzp+5/H6zyf63wRukKxok2kVqECwbrJYICzNDWDzFBRx2bEmJJiEVPJnjsDxOPxTWt7fX3sU77kBFN7/fzb6cvnNs8gTUQIcP9wmHR8Ob1OWlW0aTNpr+9fjm9vMtd9P/T9wITn49tfVabpqU3v2q4PD3tAn6armIpBrU3FEZlSV7jk1BEWArZqDWSU6ezUG5JAzqykl+v49nL85e9frqczu+2G4QNQn3YEDgKo6OJqNskMgmQ508DUp5Q75n2HbYA6e63QKu4Gen76/svu5fXLy+k0nk6nxw+PHz48i5Ymk0hNCbqhFC7TqKVcxcQUSuoz7wl8EtCmVa5AdLmcpWo35GHYdd2whjNoc7VZMxcXa82ltl9++aXPSUWeng4O2tpYEgVlY7Y61dlEEwEl7krf97uhf/A5WBY4NxXX7AjkxBkQzRkcTKo1uEyqMoGClLzLWFICcCZQ8rB/F71K1XmaE3HZd10/lJyazMfjm4qVvEPMoiLW1De2jbXWapXWmqmaujZTdYL7sM0QnQnfHGMCEgsarW0BwMF9hbtW/pNCsKu2DdTDGOymy4AGeEfDjzeiu8RrY0jc9Y/oPtot2/1C6XJ3IEBaJwOjzZMTh42uh0qjK3p4Eiq4whKDk5maIQGpqkqNwKx882NeJryio2EIvmibhelfNFZ5VeS6T4O+Df+B0iz3QbdtNL6PNxbcpnAGdwgHbtGI6D7xusWqRI7uBrooa8RwKdNdVMDIFwHAIXRuLVS+V/OlG63q6zafhDDY9la08naD4GVmq4CkAUAI4lsTcHJDptx3Xdd1mwaVu6sJyPJ3IkqYlvzwTo3IXMzFWsyxLmnKpmu63SBevwKbSQSJICFkQkxIBOv8pGmrZsBIVJCZAg0ys9YsgBMwlzoD5Bgig9XRKA4yujz3cdfvSEUJyTzHRUYkQzQ0RiJACVb1IuOOTAxAnEtrs6ohEiUkZjJ1UXV1VZkbA5EDM6Mh2uJJevNyWLQ3HUBqrQbk7qV0nBIxASLnhEpuIK6IBEQI6OAaRooe3CMOHwJEJM4h6LV1dZcJx7urDXdt3/AMjUHmNesCIlJXBHRT1aVlvIhTFEJeFP8XIgFizhlydndXM5f4CEUVEHFx83AbNLzBjQaNjDElTAkQwQKUUF8FtDY7gRWJXPYKV4v52UDIiIgRCJxhBfuBCG5COMuDvBQeCBjotyMBIeACUXtCYkAFInTDcIbGrX8q0laxEsbMuAxpFcJCxKo6z3NoDwUJ8utE3wDgG53ezVmIYPVTXzLPjYkRwzG+/qlgCm4mzXRSnayN1iaTCbwBGicMwveyjQJSYkQiBAdXFzVTBCFTUMVmkBxqQIAEzgZslAiAMmciTxkoGaBU08vc2svrOOzlMXdD6VOiJgkQtSG10RUAM1PnqTMHlBkIBNQIDXA2eTufCNgFng5PQ7fLXVcAq1gzn2V1pOj7PsRqp+soprnNj4+PmXifu33udqlcHZsaqpO5i9VmKlIvVWqFBF12yZCQEu92xbth//GDp5TQ8PR6On45vv7t3UZhZwNSwybiMjPn83id59kcqWSjNGubHTB1pd8DcimFOzb3X3/9dRpHcrge3wsnvU4vv/16fHmRca7zOM/zw27/+OEZkk1t8oTidm2zgP76919eXl/aOA373ePhQRpcL6fxdHx/+/X1y+Px/cvT83PpsruPc53neZq1VRBldmDqSuq71CfuwEhNq+qI9UKVKGVhY79M+napn9/Hy/spOT4p9Xt8gESOHuMLwCoOAupGyfJo3EMeiiciJs5G1JyaA5QOHg7Tfvfp/W2ss9bZ0Xi/f2ytzCPPSplo1z0wjEOSgmfFagQD70ves4JZm5u02YncZ0CjLu933VNXDol3fd6RpzrNTYQSETAYqOjr59c+92BYayVysdYPCdGvdb7W+TJPrjrkjpFT6Urpuq4XF0dxZHVwNVRCRE6dK2F08xKY1iqgKpmFABMmRE4c+ooU+pta2zzWJpJSGYZ9V3ZIpc1yPp/nSYZhzmkwx1brXJuJhr9QsDst+l5Ba9XYn2ghaqPh4qoJAGQIaB69pDWfiPkj8jXzAiBEXQcHddt34mtp8C1bgYbAOseY+gqbfQ0v3QrfDSf4BsxwW8S67zOG7WUMi9+LLPX34oKCYBis/qj8TcEoZDJE6ibauSRUzO4ejiAr0HMvqXWDlLaZsnssYcvA7uP0Fh4AIPzj76Ga+3P85oy2K7mpesFqQL78FDfUwZAc7SYauzKWaTsFgMWjwMzCAukfPjcCj6o2NblH8iIx9xtpXWCdcLwTGSpN4iCJCHLqcurwq3mLW3qKBLQig/efAquZemAncKd5dg+R0p2e/j2KE/VxXCVTjWYfmAEnBk8IQosbsrUGRMBbnqm+yuLf9/sAQBeNj69mPJdhSWISAF66ZhGWFYmIQQ00eD8JwIgyojPnOxMqYubA9NRagF7MfKfzFHftXj7KANxc0FCkAoWaRyFCTgRgJMmJFVANyGJ6HN0xqK7r3CLdLhdmIsVVNmzLKRPf0nH6eqh2XXs3VTCisAa6TUfC14jvplAVOCgippTNTF2WB/ROgzeWuZkB8V0lJhkgvIOcbiYH246xWSz8Az1U1v3EaFETMXRAWtr6BJBooY+CO6GjmyMQOBKsLFhY/1zIowsVDxadGeYcuXqTkBFbxMxKKdFsjxNnSmFTVmvNmZm5JP5HIO3+1NYna7WpMN/cX4KQoS4EvB3YcpvA0I3AmlcwBZUwC3KTmClkZteohdHNkRE5U0LR6k7NoLqpo7g2Ujfl5EmtRNwC7wGLYgIE40SYOHGGOKZZpip6HY9eeAeFUy59IcmiaIbzDKiAlMFLws4QIMoEAGQiyAZ+nWbyIzNT6vrDMzolzPNca60NlpI/IYOZmDE0cwO9zqffvpDoXGuq2iv2hoXKQxoOaeCcq+h1dmlojarjPNlEXgpjwrzrDkNX+i5zctWuvqex012abARxNb6Oio7jJKfT+zzPrao4mEM1nKQ1B2QGzKUUygTks0zny5GI6nj95fGJDGSa3798Ob28TeNFazPVx8P+4enw+OlD7pKSE/Ok8/v59Pbl5eXlSzf0D/uHLvcdwXS8Ht/e3f31y8vp9fTp+485d2JqQMOwu5zlfKrWMKdD4T7BQNiBZ8JkVk/TPE/aKp6ujTLxLr+P0+dL/cvL6fW314duoO7hMNP7FVls6AqXIRxpa63T1UedKrU5qXeed1koaULPTgV2/Nh33KcHwmHoH//2tz+NV50nQ03fPf/8Di9t+oKaoOYO80MHe7o6TEy444cMu56xH2xEGdHe3t+n92bGad/v0vMPT//03XffDd1Qq1yOp/F6VXETN1FyzmnXKlyuCngpHVOmqU2tjZfp+Hq5vF+uJnXmKQOJ+sPTh6lWcR3ns6p1paMClDBlYubdYT9N19Qyp3bxk1aZJj/7LLOgE3JWtczOCObeWpuv03idHKnb9znnnBmRrtdpvF5UsJQhpw5Tzpi5FDU3A3M0D7wpAYTLnc5zI0BOdNuOKWkTdkIEU0UHdyBHcFD1lZHtC9PHDEAVIXQKAMzx1ljcKjYzI0y5MMKtsbXFtnUwUEyhmaikVcUR4I5jS5zWnANUggKcVFfHFQbkIDSDaA2OM7qCiWtTUdXmakiQmSAkB9HUGhiYGTE4uGgFhVJKwszECSlmoBDRgAI1dFfz2OITUXIkW5QsWbXeegFrTuaLFRIiQCKilNw9ggmGnx+wmYUoWVwNFUXElCjxSsJyT0Supt7QnJnTGpAgGMaoEAAVGhFwiuq6RDCwldMdIBGGJioiJk4pu6G63LWQFh5ea83BiCB8SWIUn3zpExFRydndQ1M7jLdTSrVWUwXDzKXvS9/vcBGN5JAPiGlKumliGKelAb0F7Ig0YQYcJKGbafQShpcsFh1Kyoysi1HjIjuZOBFRgyaqCAamrgYL5IkIzgSGLtqkGTK5aoRkNHfRsPUkpqUvL5IJc4o71eJhYYCUGMN+OWzBBLtccl8QEc1VBcByZsRsBmjqKqmwmyXmpWMuqmoI0JXCFGuszuNEgGmXCEhNwAmcVG28zioeHgB9P7h7qzpOJwctXQJMgUIZQk6dduS1ioIJdB3n0lc/m/oqC+8GZuAJHByYuZTS2qLpFSN44FRKKTkzszoiAvMmX3Kj0zGlADIRsdawtlQXUzVEHob9lq7F25oZcyol5dSJ1jrNIo0400LnN2Z0B4ZwNWttZcjdkQrAXKU2awJMDpYyO+S46uZKCIlJwa/Xq8xT3A5GVwAH2PXFEcmNwLuYGZxH1QauSTvmjICJHShkBNXBOEVf2y0yZkVZfVcpla7rVH2eqqktWxehV6mtzbU6AOfHYRiAsLbGDKX0CQsjhR1sbVOAySmTKZzPZ3Xb7/fbHrgKtMLSHF6gqdvwR2ScqgpmpAruXcoK3SxSZ2F00QqoTO60TGpGNwmJnJOaOzoREmVlhJyqzlOz6u6EwqAEkEHn6qoyglpip64MuzRwgjoLqqBzptQPnZKrUnXgks9y4Qt0h74Mu6HvEYo03Oc0yqwVmbIRiTYXy7nLAszWZjtfr14wEc9VJpFfj1dxEjPlgrtexvF6vbp7usy1qTf1khIBocL4fvbY7acZr6Lnirn0n8pjd6DSjXMVhhnrbCaNptkJdW6tlIKEngpQAaQ26fwu47sQpMSdmo2zQlNpdjxfvnx+HcepNZ2bm3ozr2pGyLkQRiXRMDuyT3Ilt9Pby1+QGFwnOR/frsczuibiRGTQFBt0OMAeM7ri+Xp5ef18PB6tWXpIfcodpaYNpMlcr9crME3X8Xg8dt2AxKl03TDN1eZZCEvOXeHMnNHJlQxhbnI9X63O53xKiZ0QCs3kv72+/fp6ejtdW8N+X3M/ChQSGUq3+EgQi+fWmrba6NryAGXqnR1oEva0KwO0Oj1/eO5/+OOHD993Zafi43Q6Hec6A1P/cPhuGnW6jmfVruu69NCnZ88jYzr0Dx0P1mHNMGd78+vFRptAHEBzx4fnhx9+99MfDsNBW30/vL+/Hsdxmq9jJgOnvh+YijS/nNt1roGdTO389v7rNF/GNluV2absWIhLN+TcAV7MEZQQKXHKmVOh/X7fdTnnPE1XgOuV2FEd/VrdTLomSTQxQxifAtY5zB2MExMmAjSDcN2ZpY2nWeHElEvpd7vDYIecO0RkR1UHUjOGmOh1dmN3jqoVgqENjkiGxouuLYRUgbvn3N0DMCqrp16+U2DHTcL0a10rNAj76xjF+qq3Bdv+siEccId/rDNlAZZgENrw6xKckGFx6FncZyMnWEeBmpkyB0cbI8R66JSRZ6RNfeA+KYwxqEi8wElDG9Nx46LdiDi4tGA2avA9W4W/PtOtug1sg+5Ar/u0A5ahyLievuZYG7Rmq2W4Oyx+W+4K6GEjg2npR9hyJL7wSzAhkRkgMVFC4I2rvl7PmLEIbIkWDv5mJWk3JhwwB4l+uyCICGroRJQC/twgOoxBSXJEBxQA3rj/emcHtF2fDQ29v2LxuRtV6P560j+yngEQMRM3pMToTgQOpq4A6mge3sXuHvyj7bdE6hbjt6OKzuM346gLCGECABoTJa5g5hyKUoAAzIiYFziWF1eiu/v7Lcx5j3nEmQXAu4Gy0XKNYTczM0X31tpYK3MWBA7CAC72OuaA5mSOlEpejCPFFjUHMLOS0z28en88dzjucpHdHSEj4mIEd0dZq61uxPz7N+n7fvv+DQtXMDZYLOebKSjqepUYADik3dZcbUm8YrxFFQlU1VTp7rPuQaP7djAAqC2OCOtSCVhLzTEsUsJHGMLw1OKqmbOjLSPeAIBIDKGrbAAU+VAIdvhi88WOVAqLaUoCAOEXElN4ADczVOIbU3DrIW4KLAZ+r8NiX++ZvjJwiSg0LhCRMfkyUWErvn2TY0UwcF3Gp9AAwcCZEIDRk6EBuC4PJxlhdW3Ezc0WWScRV9Emwi6I2mXVwaETJSOdBF1DuFkZiJV32HGn2s/zXNEurfWz8jDklA4D1PmVIamqzqCqguDGANZ1XRWdp1FEGOaSurFJ16zNzbk4Z0yMnNgpeQKAdBnrSDJUHUrX50Kqo1zrZUYmNcdqPiuiF0+HfEh9n5O6UZtaqybNrqO2OhJgzvkwu0uGXXJGnUCvIKONp+YOJjBd6+VyuV6nLy9vv/32xRRFTNqiT2RA1OWcDFHnWmu7OjUnaTYx+eVcHnb7HKmutlx4KP1+v++7DOB5yJg8FSx9ZwjjfFVt83Sdp2u+5nM+TWkGNW01J3o4HBwAAee5aVAQ0+yn0YFVvOuGUkqmHDRH1cacWmun0+n4/krqDjbHuN2uO46nl/N5nGYyKq9vanC6jtwsMUdXexdK7vNcW3u7TMdWr836w55SksXgBIm7VHa73WBNdrsD5Tyf/O14OZ7HD58wp13pHo7vU73Mts9EOfF+13X7fvjw4dNhd2DqVGia9bffXlq10/nawPbDQ9/tD4enHz7+/HDYgdl+OBTKry9vpJ7ImfLT0zNRUrPrdZzaPNXL+XI8X99ejr8AioOROqoVoMe+3/dDjJWrOjC4IXPp+qHr+Pn5kXPo6dg0VQBSh+agDiBwbo1qK8yehYXFoE61NTF1Tsvjat7UqIrU1i7TZa5KlLquqoE59gYABItaPxIANSFMFkiYLsJU4AnRwVZCyWpCCB6jVV+xrMxMFzllo9WNB26yXYvT4wKPYWjde2g5gmvoSgPAQnQKZ8boU5C6K6WNxEABZaGTmwUbdrH7WQftFhqek0eOuOrXi4i2ZiIITugJARF43aoWYH6ZWZNVA4DTOn3XllabLU02X8QoS+6YOacciZeIOG2qmEszCC1MGTxm04NNhb7SqwEZyWI4kldN/AVEdCqEGObHGJnBkhEShhqUxwikrxoHpgDhNxCUlFsPywBMQ8gKmDNyopSJCNE8unuEAAgKd6F3+UQHIwQizBRKj4jmCrpV2Lz2+G5TEWqh68WUQi0itBRwIcgToOFC8tY1OgLYopLrasswAAAiJGJ1cPBEzEjxHyJqHO7aAQsus4VKgrmpGpFRi5okETNBJjQCdNNWwXixNJbmGoLv7L44/oGryE3NcmsoBya06Za5e5iOM7NpMzPSFuaia6ri4EAMRBxcMVjHNJgyOCG5rLz7bVWYA8ZtVXAFTBTboIhE6oVYo2MV/ugAGY0AwFxbm4GcyB1CN44QGZANUAxQlFNiAEQXIWk1kmZE9OT3TW0AIEybsuryGlzAlehqAyIaQ7hZLLrK7I4eNAYDW1iRgIiUk6u6uKoFOXKx6F1OnT2SGDB1cXSChYYV6Wabq7tF1hUbDwZdQlWbKCHwIn5znzgCANoymgaBxa98UA5xLjCTpm5uhgshQQFDaDvQfQQwZCAyWHv2iMiRz5q5OREgMDk5ICIHmy4mN1NKiBwtxbm1Pg5jMRSPYZGlhX2Pjqs1czHHu5UWRh12X22qe1pyYSDGwL/NPeT6cX24IsNbyF4q7hrVaVDzDAmJCTIAAhgSKrI5GoAANSyKIKBqJGTNqjqqqpszYHIhrTRXRMziomJqDRC7nBKUgdJ+V5v6VcTqVaSrlbD12DHudsW7omOro41VGibKjObKjOqTI0zSTIlw6ofWiyZO3O+46zknA2pwoWZmlt7eR2asydrg2kFHKbERac65OYBygs6VZPI2Kyfsu2FMDSGr4HWcpTWp4qKu1uey2x0edvtd14O048vb6+vr+XopfdeXwcymaToe3y6Xk4GWfsiObhhjq6l0XTfkbpCGIjK18zieTtfXKo2QMmPJOPR9z5ngMRE+HPZPh4e+L6JTM8057Q77Yb8DIiK/zOe///r3eZ7wtHI7zLS2vjBQYs5iGiMfZt7meh1P/e4xlbLb9YfdjhYZITWfwcG11na5jiebm4FW15aQpGtgqUuddqB2Ph+jBbYrXVKSZoB2nQZmrrXO0vJ4Ok3nt9MxdcWIHYFTSpkedwe3eh368+n45eXtfBkv11Hdfvn1pR/2+93uOrVxaudxrEqIqIYp9/unD9/98PPz88eSexWaJuFu/3aZ3sdRyT5++tR1HWFi5k8fPmamh/2QGUviy36HBjkNOXdNbRzH2qZ5no+n85eX317fv5zGF/MJADrmQtxT8nmeLtd5GmtTdSAgQwLkkrv9w+7h8clBxssVgZlyTp0mVBqZXc1rs2utzoypJAzWsau6iBk0oNmckFQBz9dprLM6GIKrzvPsdprnltM1566UUlKXKeXUWVZVMRdTNwNQcApyFrgTIqMjopvL1sdC9611eAMnyDHMe8C3xGur2O9r0G0G7b70/Qe1m6hxHQB4FakHElisb+6Tg3UQ7yvoYxFr2GbiFwgtoo0zE+MqgxigwLJfk9/p9PBmTHtHrgqsCBGRCTdO9z0UtEQR+AqMia+FPQZfleawckS+hge2a7YqhN0Yzd+yQGCB2WC99kudu83x6cKGgw2x2EaoENHgK7Wq7VDXS9fMlYKrTTl+9xvuzkY/t1VWG1a0Y6NDLYkFEqJzCven5boGjvjvwlRxWbZpr2+mGr9COpc7BdFqWXpk28UAjiMvOQss1tc3cBYxQF4OjdG7yL1Bj1vXO2wf72HabRkg2LqSW+SyePdeeHec+A/jrsvDEDH07hbH7QvssOt6XSaBF/XzmHzs+z6lm/OBuaqJE4Lz4lHKixaMGQgZKgECc0ZEWLhZxJS3q3H/WOGmlxFi7rwAsUQkqu4UPNxwFNh8kBAZUQJX3u6CrF/ro8TBd9qkIaJWWdkOt99VValNRIjWCxiaI5ulkgjyokbxFWx8t0Li9gUsBzEA7o4eoqq3B5xj5NDNCU1VTWJ6lIwYCMCD8ReVZMgxu5EzYogjULiVxwQOAFBKpZRS6w1NVFWmvBVFG8pVa43VtS1sX5VKlpLv7vF0dyBiJkdwWrYjRFwmJgmWkg942TaBVXVuTaWhqTpqbO7E1sIrgQnQCRwhBOVVrDk5sEE2YHOvYs2aOxNzl5M5EajOs3hm5sKMglNtTaU173el21MeMnU9FpM6O6TL3Hy+TijsvNt/cHKWya5c20W9OZG6oDOlwqXAtY5NCOddbbP6cz/sHh7Lbs85i5m610lqrenl9cyMQ2fzLFNqJeeh6/tczNKs1gQp7dT9dKnl7bJ3xnF+fz++vr799vJyOp3G82U6T22eoamrEfDQdUPXo+vl/XQ6nTinx+enH7//7vHwsB/KdeQPHx9+/4ef+75nyswZKQFz7kpXBi6dzjC1ehlPr2+//fIrvJ+c0Luu7Pv8sB8+PD7td7v90D887PdDlxKP0+U8nt1xfzg8Pj9gYod2vOz6LjM6upXEqjqO1zaPwzBw7vqSrZq7AnnOud8VA0XSoc8fnh+en59NZJombVXUq1fwKWcfOsAuM/fOZIW1oDOZHC6n8/hyateJqH966P/w08+ZU2s6TddldMjc3ETOp+P1/fxFVCdtzTRM7Z8enj88Pn18fGCi9/P7LO0yje/XkzNN0j48P7v7y/F4Pp+77oLIZDwMeygl7fpy2HVl38QlNTgm6DntytCl3WHAhE3msY6I0Pcp8U7lKaPN88xYSu4vl6mJpcSOriBVxgCNE5IYmUlovlepqnoxN9Gmbd3KCYBK2R32T/v9U2sj8ynn7rAjdJ4HuXbXVqc2T9WcqxFbLkiM7qgOTW2cZvWaZ+mGRqkA8mWsTZdAJ2rzfD1frwBU8jAM+8f9I+05lxSWsURkzcPKzgh5i8EYg2QBUzGA+EKkd7VbSIuxRnRHBAsO0RYBEKPYBQTAmIdcd21AAGzWbtlbqDm6YehJ4QoLqruTATHkRBzDj4u6vHlMRAZC4KDgi5qUSUDXsJB20ZGcF0a4EgFBCHkvx0lLkDNC4JTyyl4yddVlqgBWbAgRiRIQmoET0NpTbU3nKiJtDRe2nNgysLDs+Mw3pnZ8banVmodsA5UpGkywNDVuXHmAxQTmLleDlS4VUsGrzpMqtIbIDgSE5MSM8d+qIHZr5BmCbbIL4GIqKmZKDABWuNDXttxbGEDEUoqqylyDSkxEAEYrPcXUt5ON+2Ura3hLNYhANYYwbGPZwyo64Os8I91sdu7zv9swR2QnoUQa6WO8w/JUUlg6hhgwImLOYEYGmFKKlJOQENhWK5utYLgtYKIt/douAmAMtyEC4TpqieigS3NcHAJ9CoakgSMTQOaMC6iJscYYaR0zRTYFJ8SETJxzKSUa6LfkEsmDsbc1LlXVkQgVMTFzRiIMpy+PWbylYYfuKZs5OvHdnb0liMsbRkHRzIwSxF3AxcMnhp8cFHBRHAWitGRdt9VlobMQiVfk0GuFgxYuzhRL3dbnERkX0qdoE2kirSyaoWvare5opmquaOSWYvVslQOu4mdbhQCGimKwZHihryEivBSQ0QsIHkNsZ+qu6oiGHRZ0MLKtAU0GsriBmbggMiERORGKuaoGG6vv+2YLIzAc0/mb6stMVedaVXUbb4w0dJ7nNbG/VWhrvZrWkQuITTWQ4JQ6MgVANEdXAEYgIFQnUWhNKSxvl7w0ehApYVRr4VyBACathSwgU9agMTQTMTViTH0pCh0iVq3sQphKKa5GPk3TXGFWY0gDlkRd12VMpbPa6mhtunQouzwMh5RS6hIlqSBTkzZpq67dUHLqhh3NM1QZx2aTuKibOQGWlEvp3VF3ZrPPPKd5EmYGrVp9Iulyqr213qvgLG1q2sSbQ3u/Ohyvs091/Pz+5W9///W3ly/n83m+juP1KuPcrtVFySlz6vqckKTOtU1Pjx/6vifgh/0e9n1K1O2Gn3/++XB4TCVnykDsCJRSKh1QcoH30+nt/cuX1/LwhG9v+2m+Sm1P+/3zw8N3Hz98fP7w9Hx42A8pkZm8vIh7M4Sn5/13330E8nk8DUO3P3TDsStDNwy5NRqv2tro3g5Pz12XgVzEgLDv8+HhOeV8Pl9yxofH4bvvn7W2L1/kIldzNefSwfOH3a6nknm326W+o77MyRtYHafTy9uvaEeszx92//wvP//n/+V/Pez27n46na7X6/lyOp1O0zRdx/E0nd9Pl/PlfJqu0zyrqhMlLrtu9/Tw+Px4AHM1U4Pz5Tr96c9zq58+fer7cj6fr9drGQo5MXSzQn++7E8nKP2wA/B8lXoVGbUJauZi6NM0vr5+/vzr4ePDoM+PXc6l46fng+pAnphzKZ0ZHOY27Lphl0uXECxnej+mJmNrs0r11uo82zSBWnibUWZgNkc3REql9AbkmBOXoT8MBfvu0NSmabqcjufLsY6TAZihGJKiqE+jXKZ5HOcmmorkZil3wAkpEybOZk2aa22tzaLquUjAk1H8JeRVwfmW/9DS4VGIJhwCkIKBrUyPzTZujXPBK3JbnHzc4R65uXN9+QdPwG1yyt3xDmnwjUq/sh9C23JLLXBVCdr27qi2Y+IvZBpVdRV9sBXDV3OLRsMNN1qxBUNzs43rH3tcM3W/zXJHaU7rL4o6gKG12OgX/nWQuAEwPhwX7W80xLUiX4PWbQ/dECZYx8nveTBbvPevtY7W73jMMa1wC7pjwGAKTmYuguhIaelShtprdPcckb7l2MFNzWvRSQcjpRsVCVflJ1hnCO6HCgPSSClRdC7Cyxw2e1BbyVSrpgZycMDgDkbdYn8kXmvOytHV3YDMu6zoJnC/5WShShXvvLHxlLjWKiFRwTfVEo1xgbsTDIHL8PK7Lc4V8d0y5u37iAgQrDpkYuSExAgOiArqvsjN2mJhDHGVUs4bLhgC6xvGBqveJrkRsOmieYbRE1/fJGIzJWfmzVCKDagrhE4poaMyyHJDjdHAbYOiCZO7qTjyoj61vc/2zMb1NrMo1u7nOjdjzPXZXhr94diEi8Qb3n/d/a67xY3+ypcparWFvrbJud09DjcPgM2lABaZ5fvHCm6vXTG8m2/E19gYAFB48LmZASkgL8LQbiHaorQ6+SywF/nC/opJbVRtmMK/fH1YEMM2e/AhCpKged0WMNs9pB1DwRtIDwDBbItN8R7qNgh7cFRwusssE1JiRmOHFkm2xQgRJeLsSM0XpWhVxUUaN+nS2bB4PsXdAGZRY0dKyMRoIbkozcSAGFLKGXuFBAC+VEcppcSU0aG1pjhhcePUlx2lTMimZNQMhNUl46yaEyGnVDJOYZUKSIlSSV121G6WOruJm4MAmoGqW1NjJ+Ih9a0TAk4JBzDQSrVJc5mwTlkuXSU6Cfjc5FynWY1K7t8vuevGefz8+vLXX//+5fV1blWbhD7ZdLyUlIcycJ9VgDL1u/0hPXx8/vTp04fn5+fD4cDku6F7fDz84Z/+8OHDh1T6zNzU1Q2ZMCeiVEWHN+r30u+0H/TpqTud3s/v5z7lvsslc0nYZUzsbnOdZ3AxF3BgAmZ0BDOVNjH4YTc8f/zw4btPalAy/q2N5/OZrumHH38c9o8AZEAp5X7or9NIRA7qaKmwuxqJo1KGoe/6rvugj9pkV/Lh8aHbdWnXX1Ev8zRdz+dDhzKSzx+/e/z9P//0f//P//PTwyMzn8/n6/lyuZ5Op9NUp88vX379/Plvv/ydsvBVz6OOs6i0aW7n49vry6/fffju4/OHYdg/fVAjPh6Pv35+vU7zh4/PQO6JBL1N1ZqMk1Tz8zQ/fn7dPTwk3tUmnz+//PLl89v5ZGCcYK6juWgb0drPP//43cenrqRh6BBRG5j6bugBaTfQbrd7eNg/Pj4+Hfavp48vr8+Xy/vp/D6eT9P5PDatiGoWgqOuDoLI1NQ07DxFmfN+/9T3SkCtNQeqtV4fnt5eX05v76KVMJvSPMk0t+P1MrVaW1NHMzWVhoiipWNEpsTswGxrL0Om+QrBI1GT2rrUmWhrLfG2tW3D6mRmFCylJWvCTTIrwAwPKS8MdWMHXHj0W+Ll7qGJE52WgFKi0tzM9cwCVnAh34Z33IIXThF17jMPAEB0IuAAzVZ/Q0VUcwezxQI7FLkW2C4xE4EZGLm6hpfZwpNd5PiX6X9yIHeGxandyQ1REYgIGIOmg4jBpI3ZKInNXX1jSC/aWqvKxuoMAxbi9ghBt/ZVBwiXS7l0CQAxSLC4WVgG1wXBLExdNkeUwI+WABlTkrQKMyzghrubIdHybhQyRnlFyzY/7G/TZdp8lzEhIjM56OKHw7AQu+BmzAx37bnI5kvmVfDrhtZtoW6JLo5hRA9Ad9P+sEIyuKkDROK1Nea2mmE91Fu3On5Lm4A5OgUSkIg9kk4C8xYTEmkNZhSUqJRsEYUjzimk7+wmhvmVsNw/VheGBBCuDLRwE2G1WbBVAwoIgCKoVmnAlHMm4JgxdNvkSWIhoLsrOLoRhHktro4Ot7EDlYCizQwIQyYBgZ2sEcJKOWI009ATWbQ1DQzQCUFBMQSoAAKv8mD4rVRxjIMLAO62VGgBzwBsa/P5nRn5XS7lq4sR+FcJ1jeKM8uT7nDLReKGrvDh3foBNTfQRbCUVoz023oPv1p4IaBzJ21HEDOFaqDADAEicrjGohPDZqe+pLRORCnR0qiFdfLodmoUiaqoRmufiSgMGe96+Ivca6KEa7EYeFjAgdtZb8Unom6PwFYc+iKhv6zhFPYCwATqROgptgFPRVPLww4vBYhUFycgNySHPnXg1Q3cxCzo8y6o1RwZmROnBEhiM4K7NoYElhgTUUJIDgyG6tZUHSGGbUXJtNZpMibLVPrMzKl0aKlJbaNPc8XrOWnJXRJwQW+mjphyoZSRClJNuSuDo2Ie+tz1xJ0b1dnUW8mMkIcyhJhbcrWqiuauBqYXqsxXEUXma5vfz6dRauqH0nVOaKC/vXz526+/vL+/N9Mc9ZfYftg/7A8fH58edvuYjO73w2HXD13/8cPTh8eHUgqT94UOD/uh73b7LtxMubWmgGypuKMhad/ZYcemudXetUPvQRo5cDKwucllngBgEqnjONZaL+ejgXd96rrkCO/H1/f31+t46Yfy088//Pz7PyLi58P+enx//fJaufZd9/333w+7gzs2VUc8n88nMlWp87XOVxExmQElp/z0POx3u0zsTftS9vtd2Q1pyINpHnHK0DGOx+f5eto/lIfH/ufffff8+JSYx3Ens9Q6zfM8y/zf/u1fhx0azlRkd0n7iU8XmquVsR1NTAyAht3jbrfLw45Knlsd2zQfK/fl6emx6ztEvFyPTeRS67GOv72/ln7YDQ8l70T0fL7+5W9/uZ5PahVQCLxO5zaepE2X69s0/+7D08PD/pCZ62x1ajntcupSTvvU9315eNg/Pz6cx0+fvxxeXn/95Rc+EhaiTHwBnPBiTZopiPMMQChNW9Na5eCHoXT5IQMAOrSmQGhm4/WZsZDlcbyYmTlJk/M4XcYm7uZMiSn1yAmQzeF6vebcBYdjCQCEBt5k3pInM2tdx86mmjgHZIK+WnY4IRKsrkF4c0aLrVPvA0/gTUQgQWb3265KDo6BccBiXI9kpnBnznOPo6zFXwi0kSO6xnxRhMyoNUOWIWJhaBwshjZmAkt0jAQlsrQUE3mJoBq4Bn85OO+GgJG5LHBW1M3BsF4PKZNDSra81aK148TsC9c2ELutG7Vs0eDuToChCIaLody/I821wSf3SADcadbf4wRmi5vTVvuGzmH8aBl2pxRtQ4s2MaJDTIvZ4iW3WqToyjdabPviO3HvkADY3WBR3rj5BhJR6G7DnSLXPQXN3VUbZL47Wd+6h7628MwMfEU+7mC/LZBsjMAtDgUeEHHrf0h6u+s5Ei0hDVZh/S3n29Kp+yvPRLaaEqryN1S2eJ+bI/jXuvm6VAK2OmaSA4GrLXONsCSriLAqNQSAt6ycUD6JO4IIlMKV3tcnhRkAOXKdeAa3vBwAQMUgAa2mX2Auak6UhDg7CBKCGbq6mcv63BkisJHDIhJ2k6+18C3flp9vO8DCkXJTAPAFrLoBtItAsDa4odSJVvlZu5O8v4dv467CmkADQLgoYohkpmRmvKW/vig7bxfBzHhNvO6yrRuP6u5xi4ncqGfQLJbfSr1XxBi9WSgBSz9+a7AvReHCjkd3RNO77GuZNnTHuc7uTpRCYCUuKaLbCjiJiLAw8wbgxSWKF5dSiHkzQfpmn8RFwQtW1J4ZkCgxrkAxEJCRE3pSzpxy7nrMnXMySc1JHMAMAYaUzMEVzMHEVFlVxcEosRNhR6kshSEouOfUGWWyhMwJSAzUWpsZHQiME5YutZaqkjaxCTVdDfd9n1LK3bCz+Xw5nSetk0lqudPSXKYqU2vO2CMbMEYd6ymXPlHp9o+53zuwCjYwk5p3OefM3VBSScdzDZZDnWarzbShRZpP1zpepnFq1RjLbuh3Axe+1Os4T9fLZbxeAcCZSymHw/6HD59+/PT9j88f+9IxERB0fb8/DH3JOQEx1Dq7SSmLyE2dRgThlNTm2gTE1HJMG+2yaQHtkj7tc4Ld0H3/4Vlqq23Wdr2MDWDqJhZptdbT9TJNEziezwmTn6+Xf/u3//r3X/7q3n738x//8Lvf/af/+B+Gfv/5hxd2vp7aZby2a/3xux//8E//0u8GMfvlt9/cHQinaWrzabq+AYDKqDIbKbM+HrqScs489H3putJ34gLN3ZiVoOHQU8pmOtbp+NvnvzweyrB7OOwe31/fCenjh0+fX397ehxe37gr2A+c+8MH2p+v17e34/vbmZGkJs5DU6DUPT/n1OHUprfjq5lxSo/PT4+Pj+N1ahVOdr0cj9Nx0hi5xZxzR8DR9gXX96NKvSaGa5cv5y/j9H6dXqqe//mP/yQ6g8H5NF1P17576HJ/2D89Pj4+PDzk7snMRKeX75///JchM/3G9MWsK+VwOBxf397f361OYx3JDBO01loVAMpc9v0j7hbbHzldU0o5dwmnXT487j59/vzr+/k0zuPY6li1GgIVLhxjs3VqRIqcRUwBU0wRF+6hayrjrCmRg9Z2BVdXabUrnBkJQRIN3HVEFLh1uH1svKJtUt+BzIzgrkK1JUdxd/PwK+CtVeeO4ZQhqubhB0kARpRSZnc0MOUQD0OzGLkERBCpBk4LuQfMQFrDnAMUcQttBnR3A0ViZKCEAKu7GZCDO0o035dGFULmxAtv1xAI0JYYh0hEtsoooGmAEzFiTOikLhTxmBHDal1TyuF1sqZR5MZqnjh0JjmMeKMdYGYdZXAyBYAlv2FgQo6EKd1hNpGeiUqEQBEzkzvazSIKusQbR2AgwpBnRCIndARZ1EeFCQ0cDJAoEWcuANSaUipEgEiOhosyJ4PImmEoEGeEnBLFKTrEwS9FNRAhEkOramboAqtRcWByWyMp1DaQlkzPAMVUmrpDStE9tNYW9s+GiGyiRPep523S3qy1kHtYpkUDBTDzDSslJAP3AJgXtpJtOiCR+BHhNNXIPGutwMApMZOh3X/ulh9vqRsRbXSceGXhG0kcANRcXclB1ZlgWcmqEbZzzu475tTMXaWpKaCtagXBtQRTStFLBXclDpeFEFZQd0cwFXUiSpw4JUKIm2RIuNiecklIHOOOuKCwEPpdidjRzRSRU07ubgrSjIiYMqELqps5uIG5m6qBYjI2E04pMYQEKCGCB29vnUBszUwB3cxyzokLoLvL2uN28Ls0GkBEqkjsGzmDCk11WtT+1pw7pRR6vqKaIklmdneV6o6ZkrtGKRZpVOBNboCIJmoSyrdLxkMMZs1ssRZXW6vcqXZlUDADSylG8sGitCEC8kWxBYEokTuRACgRmWOYemFmZGRWIprnGVFLSSUP29NRSo9ItYrqyMilFITo2PqqrAxBsY+tN+esqk0VzQIKS6XvSs85OaGLggIDo5OJp7TOzSKag2iYGxClXv3a9f1cd7NMQtgcETAjCzGFQYyZQLg5I0BGY8Yupy5zajHajJKSmyP4bQjJEc3aNIt5IQdC6Lrc8dM087ldrmNFpgnOD0b5oUcuuQxQ6vV0vbQrzdS3krqETDl1gqoO7TIBpXlu01QRUh723e6Rux0PB/fkVVOiTrnrurLrUinpT3/+i2jTqdVpqlPVVrUpmFJKYjq1WrWmoXvwR0AjzdRx8rQfBlulWR4eHr778PFf/vDHnz5+9+nhKRGDibpT4r4vhGqutc5dlw+H3W7XD0MHYHMdAYWNl7F5BHdZRo2sMcDQd11Xvv/40d3d5HK5nE/vx9eXeZxM5gYJ0XPmwtQYUyp9V1zlfDy+vb6+fv6t2x++//77//Qf/uN/+g//8bB//uffTT0P43n+L//lv7gCKP78w4+/++MfAOlPf/0LM0/zfDqd+r5PmV0ltCTmuV2v5/a07zvuh2G373NXUldIqGlLTDnxUMphN/SlXE6n//rf/q+fv/vYkbXvf3h+fgabr+e3Oh/Hy0XqtckE2HKhhIBESMVhlxKlVC8nADARMde+0A77h8fdLGOtlTN3fX94eOhKrw5AOMs8yiS1NUW3CpeLiLmazDMAMBmjlMQEFaG9vgEn67rk0J4fP5DT+f16Pl+tQtftPj59/9NPP/34448fPj7t9/tSdswwzefz8e3l86+hiOESWmuqJ4c6q5saBDeozq3v932/c/emAmhArAoiU6KOM+x3OD3arDCLO1cuQ58KEBImoMUOZW5N5lpSt3mBq+gsTcGZubUWZFh1UW2iyIDIjFjW0jM6EbQ1BaKD4u7h/bW4UrjdJ15L1oEbMBY/XXph4IvslZng5owGAgCldKpO1DZCw2Y/tASzBfnx0KcOHH4ledAKTjmi/WNc3AJ4CD2GuS+6CxETwNqr3EAjhMWid/XdBozmytL4dCaK4I6I7kaEcgeybF2SlBLoTTAWANBTdBxsLUY3PExctlbaBr3EVbVoQSLYv2uKt/bUousUKl+cyFdg7f6o1stLYBaeMKrOvPSqgjyypHShg6/mCzdp4cS4OVhEMltNC9TMQu87aCgEtmF1Cwqq4bAQWXscs6ou+dP/6LzwjkB2Dw1ukFUQtO+5iXe9v2/ND+77NXSna7+9/0YUizyLF/NvoPUObnjbAgLd9WHja0u81rm5uIlooVIal3fjItIGUWDotvuds3gcUlNDxBTmNc5IvrhNwY02vgB+ru4+DEM8huZCmBCdGTMxLMK0HnIPnJCBCbBNzQEBE9FizKB3bcH752hb1Zs/oC+pT4OmS0vXYiiF7sYxMUyIN2be/dn53Vek42EPi+RmoVGI97cb9QZPwt3QZTBKN8aCgrMD0uJ2sCyMFUW9h5ajtFoJbgvyGwYAxDkhA5q5aAv/yChmOKY31utjd915TKkgMtiClUcZubrXfwUGRxt36ZwCA0BrbRxHDolmD1bisuBTSplzWu09VG8PQrRMeRNVI6LQzTc3hTDkDOatqgfESQ6ccu6HIvveZrVZrUJzgNYM3EGA1EmdEEtCQ8TEIVCXwZP7YmgNmDMXo8ypICQARFdprm611i6noSs5M6ceUGZoJHYZZ0LIqdXZUtLmoEjCKOJsDq1lCk86VIP5OgGyeB2v81RrLrsdIKWSh33qhoG6XoDMGbBb9BuG9N//9G9mAs2lzVJV66zN1BozU0IDcPa8T31fdrseMmHH/a487IbWPtVaReTh4eHHj9/9/NMPP3787nm3M10d9sCBnJkyWNeVp6eHjx+e9/shJQp9DjNCAXNxUDAXoQBT0bCU0u+Gvu+7ros+yfV8eXv5/Espby8vrVVCDwDczLque3h42j0czqdLm6pUdYWnh+f/8M//8r/+z//LTz/9btcfGFKX+/EyusPr+/vr65uIPj09P+RnLt00ty8vb6WUlNLhcDBpx+PxfD7P8zzVWcw4p3439LshpUQ5mXsu7KNKnWqbcs6Hw+Ht5fWXv/31//f//f+AzOPl/N1337nK+/s7AIx1fHn97Xw+ahsZ1RAcLWd+2A8p5VZP9TLX+TpeaZpTNxxKhx+eHq7Xs0gl1JLx8WGAhz0lypkMzdGu12mqImLjtbZpXtH0ENEmLEREBj7Vy9vJ899RdHp/fMvE1/N8Po1vX46Juw9P372+fTme3n744Yeffvj+w6dnd8/EYD5dx1rrMAxcUrl0w25/nUYDd7PW2jji+XwdxxmcUsruLsFecGhTvZ7Hwn08eKZoinVWFUyp77oC5ETJyVUVplEvF5mUTMksu5tqrW2uc1MBJlJgpnzHlqBV+/GbTg0AudnSgbuL4l9vZxJzQ1vGtlHCAbZ0IfQFIlosxNZ1+yBMHh3DSAoAIGjX6/aq7mjxHRU1rb45xCFh2lAfWDhGy19EJExXNvpDEB9u8XL1zF0ntBdjyZDetohw6Ii3EX1mBkBCZk4ACwJAlJZNbrF8XUKXEQc+sBkyAgQh2sJPB6LfACBg5OCy9tEQF9nu8B+hEGv1DXq5j1jf3hRbtDrjSjuowY13vPRdVpbS9rv3bZkthq3dvki8yG1p7KjfCdsuyMkSiaODEyyWmCAEAAs7AYaQ+gJYOGr3/dNtSvHWOb3rDf1jyNzYXRs8ZquGhbszJ/z6a+MG3VqiCrBKeITZ8/IRC1xIYTS0UZ7X1fWVQNSWeN3raGyJV7zz1uKERECEtLTLMaoBxFxyQJJb1nNLDBA9HJXD2ZwcYwBgyX0XLvmWhCHiMuKQhJmTk7sisIOaIyguBQglRDQ2Z3O7Ted5a/cJ7m0ZwC3RWa+eBgF8MdM0U3U3ZyZCCt/RlGieI6OVTTt3e05jLGAT/NsAdaLFT1rDYWMblWiiqvc8we0Xt0dve0a2J2L5PkD4Yt83JeHrduT2YiLiGFAIbX1roALEKaWcOCWyOxP3NSNfBIGXcZT1o5Fi/DYhBt0NzCClJUsPKbhMOUru1lqOdcuLckesyVJKBljF23wbt7mxY11xZX0x8+biRWtKKipRabmZm2MpGQ57UABTFdXZ3Mx59haDSeYEyESM5IzIOeXETNkJvJkbERYmZM5EZeUwLAtDVQ00R3+WCQHIEjZGpyZOVaexXniEBN4ME5dhl9U4IYXDFlJCh8mmcTRAcZvmpgIpoQXjMnd93z/vPgyK9TISIlPe9fv9/pCu1yMsswdOZJgJwVDBXbpuyH3HHT9+/PD9j5/2+/2sFXvOmffDIWWap3Y9H4nSYV9yspQUSdnEyZHc1RwM3faH4dOnT999//Hp4dB1XYx5A3hKiXixwWoaxRAxUukK55S6XErhnBIxERRCkNbGawJsrTpogMN91x0enn788Ufm9Oc///nz55fH/eH58cO//PFf/qd//o8/fv9TSZ2ZD1R+/O6H/+3/9r+N4/z//j/+jy+/vfzp3/78+9/9cff7h64MXdc9PDzEuvn08aObTtN0vV7PqxHe+gAsej+wSphcr9c6zZnT8+PTfLkeX7781//6fx523TRe//aXPyfGiG2n8XQ6n9+PX6b5WlVmaQbGnJBSl1IuiXhyaCqjyYieibgrlMhMZ2mzuaRMpRSzHaCJS0o8ztM8yXWqp3J5A5NrAwZG4EypS8O+P+x3hWPgw07nNySTVrvSyyzT3H57+c0qfPnt5eXl81//+ufvv//+j3/43U+/+ylnPh7fTqfTOI7TNOWccyoRDtXcHR2pNa312nWX8/l6Ol0Oj0+lFGZAVrfxerl8/vJWp6biYCimp8vpeJ6aGmXqcsl9NwwDZ1bV0/VCqUA6TtcRao10R+YYtXN3RaaUUgh+EhKnRDmlnDkl4Fu1uu1QuGRUEdHvRFM1ODoL5rHunsvg+IYT3OUKq40uwDaNCAC11k2ImW4EIHfdRDUdYSEEuXtTiaoxpeTroPvdNmRRJYuIWpgWI6AtKkYYXQgCiKEBxXXmDuCr/HIhqyMCOgcPeqHIBuF/McMmd2CO6QFVNdNYn/ecp0i8Vh5Pgq+5cVs8C+mjhT++6jwhIiUKuHFjO23Z0vYm97dMRGL3MUJAk1USiel2c+nu7yEhf08bj0aehyIk3IbCLJhGd2F4+XNturk7fc2Id/cmsuFDG9oUCN+Wu4Q2wXbRttRny3vu0NCvxh6/ST3XC/LVmd6/VZCm3Zfu51ps3NIjhDDRSylnXJ1YVrBBt5gXX/cg5V3qfztZgMU4ATGyOGLihQFIC5a4KuDTFjsXSE8XhmKor0ZEN7dA45bUMPJyXaYat3SQEoe9tykMA2s8xBzWxwhqSJQ5QXJfVTYQ0e7ivd0nPXhLN5flsRLg1mEIUDVTQ+ScCBFBLefMiaBuwnXx2Nsm83FfQqyJV+CRFAwxt9sFD+I5rXc5Cqp/LDnulwTcIXYqoiLh53HvjHlfh8SBrcaRKfRsVdTAKWVETHclCixwZmwdDBDcOLj//GhDV2kbPSvS4vj1UNztUgcQItitEeecU0lbdbEVGMHKp3U4BtbhFVU1IwYmosypcNpg3XVwWNxd1VRDE9gS5VwM6FFcap3meqkippOJOpA6OiZOxGFYicDMnJmY1QNiy4SQmc2ZnMETGDo6EZUEjinnHP6ErbXmJhJSI5hTMcRZ5HQZNXnhwn1/6LlEOutS2zjLzKLuXmtVB+Scc8mJUgpHSwOgrgyPj48757NBrTX69aWU9PGHDwmJABkQ1KyJSlXVpvLwsB8O+7IrDx+en757ZubT5Nyl3KXnx8PjYafq5+Mwzw1NGQVsVkFGzyVT4uLJQRnt4XF4/nB4eto/Puy6rsscdIHljopbrXWapoV1YZRzzn1HCd3d1RAoMYM5OZSU98PO+k5Vr9erNNvvDr//+fd/+MMf1E2afX45/u3vn0t5/+7jDx8ePu37B+YsTY1g1+//+Pt/enk7/vVvv/z5b3/91//23z9++p5yUYPLZWxNmfnh4eHTp08Odhmvx+NRpSKiI4nB3Bper0SUuqyql/NYx6rNAKgUfnh4OL2+vZmdz+c//elPp/fjvh+GvoQiwHUaFbxOs7uLtGkaxVrXDbkAQMmEQ58YeejKYSi7LlPC0ZVBUVXqPI+jtGk3lN2+qzI/Pu1SptparXa9jJxQpB5bI4SElDLlwl1X+l0e+lLrqNbG+WpHddfD7gEhOUJr83Wc3t/fX96+/PWvf358fPzb33/3888/f/jwJFLf3t9aa+M0zbWW0jX1yxh3KJ4irbWWfHl/O729nz58rF0Zcpd2QNPUjjRKg9e38/Uy1amqW2ttrBMQpiFzteFh+PDpu93h4O5vx1fi5IS1SlOd6kVVfdGVd1DrcgF0ZGDmzDklSpk4YcqBtuA329bS3fg6yN0XxO6LPSFAyDR5jDdu8z3um8nP5rbBW4CMjmX8k+6424jLW4QpB4E1axLMNURgN/DAqtzA72QFPHxwtfmibaHoIYi4SVoAEYEH/u6ARmuodncCCxkx3ACiRebnNvHnuAheEaEv8ur3voHm4BE2FFABEV3BQx8rEX8zHIfR6SM2pKjPjYLvFejX0qO5T7zuU41vgo0tgD0arK7md5hQBLsNkgFYgail23W7jOs7uy+OlLeW0/breKcctkBWDvcvU1XigLvi48zXAdVwdw6t7fgPEB0QQsWKgBiRIHpVavp1lgkhtOSAKrercV8wxBWL+dPtYKK2BADCtImg3t+ISI9CcsLwq6W+sco2dte9di5ucqyg7hCxcAmBCTYPJQQMRylA35YWEQFlzgFPK0ZeosuTBQAKHp12d0srexIADFFEQkWhtXlr3TKz5AwWwB4hp2SZcuJUGDOFQFa8CXLUEsCY2VzDXODGHfSoDRFXSc+obsIJMAGkWIaqqgJECeKpsK/ax2aiqkGS2QRUN4utWJab8QQRENA6GfMVOrWgfdHSXVjqX0murJj6rdO+fLyISt1WCMZMrlPwCmydLtwo7USEbm6u1tQMwTlRtmzhLurkqw3tlt4HGkV0w4wZINKCTaluWzlwp2yyMe7FHGAROl1GiddFu03zfJPlLyidp2XKO0Bi9yhj1JsxgSEQgoIYoAMzMeWEnrodlYHzADyrSbPZDdyJwIASEiIvZSoSI1LkjaYpbNnBkbA4soV2bgQUwq7LkYjO0sBUXDTk2ADcvVUfVTBVLzTkPvf9w37XlWwm58ubnvxa59UoCXMqpevAkxqOU52qGBAm7rqho1yvszsiJzc0g/S//+//mYgycwYCc9PmTVRblbbbDWXo85CHh0O/78X0OPazNk6439F+lxHxYfdxnuc2zgnUfBRTTjllSiUjIuV+P+S+71N28waoXZ/63K0kaAegAuAJhU1wRgP05Eo6e53F3TkTD1RSTlgouHgGIioirYo2bU3CoqSk/Pz88XH/yMgJklSVqujcQZeyI1ACfn788Mff/fFf/unvn397/a//57+OY/318+uw3/328vm3Xz9zpqenD8zZXZm5lL7rd/uHw3730HWDO47XWbQCkapep/FyucxTdRXgvOv7n77/kcxff/v7X//01/Ph+Pvf/76kTIic8m6H5/GacxawbNKl3HFX+o45Xc6NELsu94UOw+H5oT/sirvnBCVxImjzdHp/Pb6+DCVzTomhy4RDGYbiTtddrybT5Xw9o6sjGZCa6Sxz3yjlUEyoImJeOTkzdt2eUtk/Du5+kvF8Pr2/v72+vZzOx99+++XD8yMzNq2vr6+/ffltarXv9v1uGKepNhVbqsBa2+l0/vLl5cuXlw/ffdfv97vdLnGnAtJABMRY7PV8Hs/XaZ7nKs3JU0uQy/7ZKPWHx6eUEuc01Xadxt3+cL1e5nlura0DZI5m1HdhM9L1pct9SV3hklOKjRnpK1KCqgIqgqKamaLJVll+E+/XPS5I+V+pEnwNUdwGvBdBQMKv4Ypbs4kAwg82hK1WoOUrAkqUnvdQxJ23IOI6e0UMREiATMCRGMoy9AX+lRIYYRwQhnujA9jyAWvdbxAJHxE5h+vAclJxYSMA11bvcoVNhdJS168EONv0uxFx6Pu7vOEOEvuHUcc42q2M3iLTir4sYmmxSW/3QpecgXLO6Q4h2yC0wLmWyE284purcObySg8G4H3pj3cg3OIWsAh32Qbj4UqKt1Ua4N9dQrC2/7YU075W6sI7Dtx2CtEhiuQg2sFxC+7DVcBd4ZSHiInLXThfbsc311lWbGYb8r//6LjXm5rr9qNoom3Q1/0rAZa16aAAhEiGbo5MkCKRsoXG5O5d10VgJY5kHQgsnJAIljBvqmY3IfjFKXzFPESEuU7jBSmx5Fy61BkWYCSkZIt6060gWfA2vzVt7x/eFcVEANDm2/6A6GYe4QMAwjdJpLY2i4itOwbiFK9vba61bpCnw7Ja1h6rEREjAJDoLSGOBaFxYe8Wrd2Jidzdx9smsy6hMGdUREAkX62uMJwlQYPk41+33W/F53LkzZ1KTg73p4+RUSdO7o6GIiLmIgLYACDnDNt86LqzbWssLmzOubVmoluatQ4/YnxuSimEf8MqCb7ut7r7zdJtQ0NjbUMQKs1RLEwdTJ2WAQggRMpAbA5VDBeZDQQi5KUVDoSOHK7urfk8SW1u5lxKokKJZw0qdfQtvLUZl8klBQBInKhjQpuuC4VLbTZ1aJgaED8/l9KXlAZiM7DZahpTl/N1EjQnYAOoVWS+XK9TrbVWmWrtMkXvEQBaa5fLJf0//1//D0bKzARI5ibNalNttVZkcALMWIaeCjeVYea346sTlg4Aa8m5DJ3v0lhApwpQm0iizhDVlJkT+7DbM3uT8XK1nKCUxIxMWVszAwRizuRMnsncwZkyOIiYITInRibPZphTX8qQuFe5XC5zrbXWWUTNwA2nsTJnqXY+jefTVMquVZdqWgESx7gOMGRKH58//vMf/un/+j//9V//9b//9W+//Pc//eXw9Cioc637w26/e3h8PIrI2+tpGhsAD/1Dvz/0wx7R6zyP1xZNxiptnquIuSoIdkP/6dP3u36wuf3lz//d5fTDd8KYH/ZP3VCaNjFyIDWSDLkMw2HIXWlVL6fPBNgxZS5Ph/7x0O/6YmYP/e5h2H3hdBmvn//+S99lBDs8PkzjeL2cRKzr+8P+abfrW53Ox/f3tzcRZYCUEVDG6UTY1AondBcDE4dZatU5Q58SPH967kpP6XTE03S5jvP184ter+cvn7th6Az0/fj28vraTPcHeWREYicU00Ckmrpfpy9fXv/bv/2p7PZI6YcfftjtDrv9Uy6Hw8PHjx9/+vvff/3v5U9/+dtf5yZiDQxtttbscp3fj5d+2D8+Hrp+dzgcLpdDPJyt1taauqkpmDMgEQEDJyqlDP3QlZLCxg6JMPSafa2oxFzcBN3I3EwxAqfdcIt1sHArbR3IV6OaSBsgpuHBMHwFF4ceiBlENnKzcNN2s00T6JayLCPMgMlZlQz9GypaqJyH4nmEvdihENGdePF/Jl6aasBIgDGpJaDg7uSelgYZoVMoS+qaSS5S/MB3nxjKEQmRSz80WVIoBwJkIHSEwDJ9Y3qHe517VdmKbJHgSyEhhvOtRTMI0AwEnNxjWmrDbLbYsOUcW4xfGmpIvka1LaD6ciq+ZaX3VkgAoFuDMcx5mFSbw0K18bCOIiLGtgwNgG+KIWgR5uErlHT5e1pigJstoAIt1nW3dupWyptZJCgbK2tLr785HbjrxcS5l1Iiv9FVp2K7blsAm+c5yEnhnbLyonwDFO/ZYLXWIN9ESF5+cRWsvwcgv4rWd7TuTVaUmUvpzExVTDcVP6DlYVvM0e/6vB75/300RcJkoNJCDQXXPM7VTBus+XFkU0wUQ5Qi1UGwzfM893XwwaEAl0CGGODGe4vxkZRuvd0lzXXYrGwCiVlUZVeml4jUWuepmkG8ptYalzquQvwl0vrW6tbw3dbJfYZHDBxCyQ229hyviZe7bzJdwT+DVYlj6wgDxbTQlnh9pQyH5BCP7zoIImJxl7fu813lxstwglmtTRVy2n11hzfVsbv8NY4sjiflEo9Oa80Jt946OEkzXgaMiohUm0UEWhRaX2ndbatoK1Pv65lYBpsWMVLG2OTuNEos5jBVwZRQXJcbZGbNtDUNTujCguXls2hxGEUzbiLjLOO1zVVVdfdQuj6V3Dk21Wvz2Lu9SQufLFsMTDtKBCoKWM2kmTRpOo+zVoGh6W7XO+4fd32/Gx7BROo0XWut4/XkwThDMrNpqu/v729vbx8Ob6+5g34PIgbWrOn1RBOl//if/hkA2MBNvEmdJplmkVprbVpnmY3cYXYjB8tsnMIeQdxcRSgjJROU3KOJoC2SIyZgztl243QMfFKkggVFTkvpCxdTZyamjomsZLdJGpTUhaokJsw558xhUJU4lbzLuUdMrdp4rarmSPvd0zDsEbnWdjpe/v73X19f3/vh0Hf7kncISdQtiH5A6IBOH54+/vj990PXv7wd/236U+663Ccgenx+eP7w8XA41FpfXt4ulzFAXzdkzimRKyTu3RqAjNfZjErpQRMIoBNz7nL//Pzh17//qk3Op+lymD9+6Eoepvm9476SIDamrhv6Dx8/cE7n8zXzsbBSwS6l3VD2u2G360XksOuHriTC6WrzeMz5L31Orc3jPL2djiLy9Pzx4XAYht3DbuiH0nWJ0Yioy4kIRNo4KoCkDMyLmpSqVpFiLaUy7HuE1My3+ljBr9NoJo7mrpfrdWqVc8p91/W9NiNM4tZUYlC/Vn07HuHPf9o/HLquK6VP3HfdsN/3jw8ffvoRDk/P4DyJVFEjUlUkcsPxOr98eYtV0Q1lNxwOh0d3r7WO1y6KOQtf2ARijTW4204MSBQoPzJhpF3xLONK9TAFU3Yzs1BPcpOIxLdw+FXn6yYoj19zcqN1dZdULe0DM/NtZOk2EebLmM5aI3KY46IB4CqTc+sdbLlIfOzSxwQN2UYiDJc1IiACRHQDMrI778ilTHQOTQswUwA3NFVZZa3A0VfNeyJy5t1uN81tA2aCWCPrhHI4N9/FAJjndq+gSKtRbmyavBgP30hy9x6O22DX/STE1laLf26tRiC8xbQ7Le8Na7z3HglFALOVMJ4ToquJ6k3rkogYqalsec9ya/4B2txG9ra7s+WaqhIYwKJ7vl58Wg22t0i2ndE3C+b+s7bYH98PYABRN/RiXUtbpiv3C/IeMV2shFYEK5CueHbi1iwSnSu0tvJ7bndquyb3CbrfDRDAIpkUl3RJuTbHp+0I4+OWo1VDcktszsyMpqaKm89LIEEMZNRWavyGFxIRE5iimDQxqNWamJmrZe1TKs4ACL7K+kcmnVLaDC5pNVRFxHEc3b3r8pblbPmZqkvT1hoiR25d66TrCEW8laoC0JZZ3hVXsf0YUujHWVQQ5jcglsKd8SaefEMxzZcrvyVMyzXfcnTQyL1g6fDaynPY/DE3ewPbPuKbTQwQPR4QJd/5hnjRInsGCKzhHQYhf3hDpnGxGXB310V3NaWUVAwABDH+mXNuc91KqRCvvpV5twncG7ON6La3BGk4ip8QNMZ1TGRVNlluWdWZXUTneby2uYpWa1JrZUAADE/HtMyWIDq6gwMZeDOXBrXqNFVVz72aAhOFPiK6OTiAKih5DjsiT1Qy51IS9kg8z+1kY510HEeAqOLt5YVVKuHTYVdKyrlwDijSlRwSOHJK1FT1ejq/vr5+evy0S4XFEkCm7FqtgoKmfmB3J3U3dnRwQkUHR1Ftc5NpbtUumvpsCNfpMk4XInDJ1A8DD2gzOgx9bnWqdY6FOYkSUQZ+P17fL2kYhv1+vxsO1/l6+dv19f346eOPBJTTsO8JwRLmhMO+H7wgcgInpBB0Ag+nABeAtj881yrvx6vay3VsXZc/fffphx9/6ofd4eHx118///Lb55cvb+fT+OHjjz/88LvHhw+IOQyGpc0yixPu+31J3fcff/jdj7/78nL862+/TPO8fz7kvuuG/uXlLRrnl/P4fjyrtQ8fPp0v0/Mz7fr9Yf+Uu/6XX36pzVPqMRTEWagwurWmqt53h+8+/fTb3/7697/9tusPj4/nubW51XGsc1PC0vc550LYldw/HMrz8xXt9aJnJA8ndgTLnBCc0aPMn2a4nM7Ht3dzqdqulwsA1GGc55FTAlSwht52u74vXcks0qQauE7zlRqkLu92fe663CVHF9Mqst8dDnkgzqagjmma3R3c+1IQkVJyQko87Pf9MAz7nYk3lct4XkwbeNmVLpfLX/7+lzL0yBmBP378zpG6bhhK//HTp5//ML1dTuNUh8ND3/fM7MnHOr6/RjrO+/2A5Im4y+Xx8CCtqiojWGewju0gg4LO0obF1IW1NQy2EgMT0roLMy8uq6a2pke2uvPcl/e2iFBAbKkcDNZt70AEJKDFjVfX8CMizZcpuaC6hsMiuTtyxBKN68bMiYD7Mk8thBnNkDlzSsFuNAUqUBJtzDNCZ85EVDjF3AmYm2l8mKhu4R+YNkLPyiBZRJi2qtbdgDwxpdylVIAJgZUIKTmZAs6irTWRqiIIPOwO5iIizMRInJKv1i63PIaX6VIAqGoFSEk3pGSTsNJV9ik25SCT+o22tTUZiWOijAkAaq2iFZhKKV3XraT+xfEwomnOGYhbayLq7illohQz88wMJkSUMJloyaXLWWpj5o0cvaU1Ww/R7w4pIgQv/LF4zTpYgBZu5QSYM+fMa+q54E9mLhIE5MXCZ00OFq2v1lrE+C0fDTp5RKmc84YWBJYTWV3XdRtPH27zkhiQWFwoZN46XPQPs5aB6MQd2TK/+8BPfOuTrkGX3GHNBWkbulwUfWGRJlkPRlubN5VRUyUCsAKYRMSluWnCZfwiETsnDCExEXKPFiaaLTBOsLEjgxGXqqpmzbjM/bB/eHgSh3G6EnIphTlI5TdR1iUHrbLBV4g+DMMwDNM0RVYaesIxdtfafL2GXXcKf9K4TSspze8phhu9aakr4uRVHcybik4hUBJvolbNjABKKbhe2A3s3J4FM8upEPMiM+G3dry7E0HiRESqsvDUAFxlmiZT6LtdzhmcRAwR1Jww5cwcch2Oqg5u43Xue0a0G3a1DLUoU4a1RkophfP3uhIKc14rMDSFYPFD2AHJ0rXcvkPE26oeVrQbYNlv4WuSpZkpKK/OoI7QVBISbEK362qvtbJJlYvKPE/TeLnM0wTmiZABCSghdhmJ3ETFlylNdDBFFW9N5moqSMRuGEyy1hqwJ8KqSgCZeZwnRUilM0JnLn2PwDkNY5pNsF7qVWxuYdMimbFkPB5xvkBfuKNUkEE0gdfxuut6Iu047ftO2nw5vX95+e3j48N1vnZMAtJkzqnjQul8Pi6WEOBkTm4pA1JubSIIcUgRmefzWKWex+u1XgGsLx09Px9KSQglpVRIOx4TqSouC0uqtioLuu7rRHQd55yPl3P98Phd3yN5RughO2EiZEyMlBdbEIJQ53YXcGfOzLYb2m54yGkgPg+7x0+fvv/48Yf946Ef9ikdVXxqgkyPD8+fPn633z8lLoSc0J055nIeH/bff/zw+9/99Lvf/e5f//In/au8v59mk8cPj+/vJ87per3mnM/n4ziOOafrdRrH2Q2HYd+lPE2VqeRUwBEJCBBMtJo0QQVALqXPuTPn8/n66y+fuzI8fXimhOrkRsu0CpgpJe4LD999mEg9Qbj7uWitNcpoQ4TMVAqYgYhdr1dMQITR4mrTfDmdRexyOs/zTESH/fDx+UMpWWq9XN7naVJtQIEuEBEhM+UUqCznBMal77r9MDRBJm3i2poKJmLKEGN1iUufd7sdcwbCWicAkNbcHd0oYdX6/v7+17/+FYHR8Hqdhv1hGPbfff8jIpa+PDw+/vjzD4j8+Pg4HPatzafL6eXls7p++e3L+3vqujxO59gN9/u9qrauuLuJzPMc2zrYCABD7rtu7nKfStmMvhDRHBDCatbd1U3Wgu3O7uNrNMItZhphcQZC3vQz4d/7WtEvd3ektXBcReO3aAqhBm1uaAvlgEF1Cww3eSFwYOZoe0UPKt4v4EkHBeCVeyQRnkI1lVaMYBFVX0IAuAfnwc3RAc0B1S2hAlIwbRAA4HQ6TU3msAp1D3+/wAnAKfZl9LvTIb4zhwy8ZHH4MVz4ZMG/2ehfWyC8ta/uQL7tn8uf6xCir6cRX0GO9tWoe3ur1Uk6kIANZKK1NUmbL+cGqGzQwsJH+VqI//7wiG5qcLeDRwsRc0REhw3A23gt8DWEuSU9G4nn/t3uj2pNlb7S9N++vy0VXMRJaf1EQvzKjuZ/9LXluNtf7u8LLY5G6a4N9JUs1npUvoIui0I8cXT93AxFEADMRUTVmokSAaEjKSKiG6/XKBAQThjEFpd+A8zuG9C2sOvCiAYRMREjonciUjUU58mRgBZr7ptoHK0DoXTnRxkNvjWvhcXNaEVkp2lCxFLK/VnTZjx1B3De44Xhb20rN97xq0W+3fTlyn+9Grc38XXUMV60JV6xgJGA1g+/wx2/NR6IS+srl5QpIXiwBkOja8vmQ+I/IC4ACGmbZendHZivxpeIdwNHd8uMaDmy+PSYIzG7Va329Tjk17vougLBDVzB2R3Wv9jSN4yPMzNTkVYna5PK3KaxzZO1Bq4EngkRqITYITpyHKcvE6UCIiLqi+2VLwi6mkWGTQy0eCWYkpmjomEizCkPu8IFBApO0Kxd2jw394kQQS260jOjsrUR5ul8PR1B5oGZU9l3BVN2hHFutc7/f7r+q0mSJc0SxD6iqmbmLCIyL61qMjuzMrLArOwLyAME//8FAogAWIhgpauru4vdmySIMzNT1Y/gQc08PG8N/KGkbmQQJ2aqR893SJ5HbNpLKwTswSGgB1P38Pr6TIiJQx9iF1Pfx0A9A/YpXlK6zjHX7jSdT+fz9Xw9X06GVmu13p52j33sd8Nu13dd17n75XKZcxY3ERFTKdVMxnEu1dWazBWv5xEhi7IK77aGkBwKeOxSF7kDJKBE4AAGtLz77uwWgRnIu37XD9uQEnPcbrff/fDD9z/+SMwAgULAwES02x1+97t/+P3v//FwOCz4vV2ppswE4Lvt8Lvf/fQ//pf/4c9/+/Nf/vKX59c3V3HRcRzplUsWIhqni6rudpvxOl0u4zwXN2bqQkgp9SkV4OCuDOjGWuZa1cQ65i4Nu91hu92/5Pz567MB/ljq/mGX+l4McpW5FM6S+mHYboeuf3r66CboNefMgMvs24wIQqR+SNtdp5pr9ev1yom2223gqG7zPNevX5HD6Xg5vR0J8XA4/PTTT8PQ52k6HeP1dB7zqC6Nim1HPQrsTepKHpjiJm3rHpw4hHmacjapEgibTtxAHSGEEPvYdYOCzvOh1jpez5UB1Ik4damqvL6+EgbJ8unTl36zPRwOVSV1g4ECYxq6lLqPP3z/888/A9jb2+ufUvj05deX56/VZLffmJXtdosIXUz77cY3AzOblHmeL5fLPM+5FHVDCO6+3/rQ9w68rFiLjdFacIaZrLaqhtpv8vb2v4vnsbFVCKGVpjQgBEsWJ7g7wVK/ioDgithCu8AXsYu3zdfdFyeeGq5zTzMhIGtg1wFc3bRtEoGwhTs4KKEjMUAbArf9A5holaBpW7IVTFQaA9+URrT8f0ZEW5LD0P19gzd3AeT1uGmOAAtEez2f1WCV5jR1DiOx5MnBI4ZGkNRSmsWv6zp81121lwu+qERa2CwBvKcn3MDr3Yr/DZj4LRS7/d72/bBIdtJCCL1PcBaxs7RN+pv+lnt8A+sY0w1b/XNrK1dVBXV3ugPh90+GGBY4uXgjvwFVROAOBE3Cu8h92j7bhIC0nNh9tSY0xrBJ3sWsvdvvu9fNYOj+jQwfVv8sLOELzel31/vU4MiNffk2tOI3UPIe4d1/KO9IheL9n/4tbgNogaXL5AsAALglzIMzczskqNZaikhp1FpLHo7UQpqcEJ2Whk4kjMRABH2vVqVQzjnnKtJuB6eQcKWSRZamZzF1QgfCwADIHGixiDTO0le7KgA4fZOpBqqusMjJzNQNnBZiKefcUBTxntaaZ3tXHN7MuYHWli1dH+grVw3A1MoQW0J7vWNSqVmv7z8avwscwVuaSSBVVblDbESBqYFOs3cvZKMdeeEpAyIvpRXE1P6pxa55VRNTb9lszPE3Y2W6yy/ENRHX3QEpJU6xY2bxbzDx7aJiJl57aWFRlL4zjreT0rJa/p3xHIxW6ZcrOLiQu3jANVp1Aa+qIqXkUfModap5klxUBVUIW9MGBYTYBAjUXomZupqJoljz+dAKxVlV0czRgJd5GoCXao5W3Q1CiEx93213D90uOpUudxChLkYWVSUErWUex+A1gHgt4/U4TSO7f9hth+02DhvFwNXHka7TXPPVrKhl85ANzSMzC7qIhNPpEhg3cUg7TiHutrtt18fIH56eLpfzlMds8nJ8+fT5s6qLGJBf7RIpDt3mcff48fHpcbvf7zbm/nY+na+XseRGuprqnKvaaxUZx4k5BO6rAILXqtcpd0lFvVat5Cm2AjqGRfCMaEvNiJu7tV4WMHVEJgwYOPbdfr8P3CuUonOR2g7Ku93u+++//+6774ZhcAMwAWZyQwRAk1IC+cenx3/+p9//j//5P/3pL/9xGs/cJ47MuGA9VZ3G7KDDMJhBnsvpdH59fYODM8XtdltEdL7WamraLisxd1UBTDE8PD7KPwgivr0+v76+ppRiSqnfILIKjnO2OVPqYtrI1jYpMsXW/Y4AxDGmFJCMcdhud4fdWOrlmscRxnHeHR5Sv+HOcs6XcZxPYy5yuYynU91uOYZuu91vNn0iRrdIHOdYpBpaa5AQ06AqpIAqphQx9mlwdAQlKypeJk7shE3LVVWKlrmWnHMIiYi6rkt9LDVyKcAGDJvdpo0hpvn617+WUkrsNo8fnhT9ux9+muf5eHp9eX2JodtsNgA/P+4PBH56ezyd3ghY8jiCZZlEhJoyyzSltN1uUyBVPR6Pr6+vr6/HkuWsZ7N1ShhTIDJyc2knlzYgAvOGjd435rslD5Z5kfuS9wm3BRtAfcUQuIoefhOXBWhNj7UeOhsD8Q1J4GtYK/qScnRbze9HWnfCc28ADu9VT1oRAy3LbjN7t01+XcicAMFtMQa4uy5eRmoZ/m1dAg4OpICt4dsc55zbEbkNQAEgfMud3J/aEfl+vKKq7rjuFt+oWO7X1va451fgbtbw3yVp7oAXLu8Y2/1P2a0DYDlFRbjjmZaftVWqguuww/0WX46IanUJLmsM+LcQsH0Kq6rv/Wv3kfS3T6jtrTfd2H0X8j371TTytgZmwqqtvo91uAdG65vznla/dA8D39iv9hfeq4hb7Ip/8/jvvsk31OV3Qq77zfKenFvcdtjCrlt2YSuXcfeI4EStcLqByypSRIuKEwNVd2dfhtKL2rvROg0srDCX2gjPVoemqgaGhuqIwauWPJkqzXMpZS552O6HYWhWgaa/qmI3xqtNUc2tjW7bR1BKMVxJUwNbQXwpS9UvoDcVxM1uuWrFpNbK3NEa3L+iokpExGvOX4uyJwLmFoR2fxm0m+T9ELLeR4vBENfWS34vbnd3JCfH23V18366OyB8e6m0WxUIiSiFEIiDOJghCrrXG1Jc8zXWgwTSLemtha+aVkT0VjhGFGNEf1do3Z1AFsy9LIKwpJXdprE3twci3icX+xqVfJvUGrTwHUB3deOF1vdWAeqqLgpqIqKlSi1Ss2lhkABOiBEhYss5MXQQVFEzNRGoFVRbQVbv1noUSFVBwFp2PrcIWbeaBby6KVgksECh6zf7/Z5660vHHQAZAsUwTZNodlMp82yZXG2+Xs5v4LrdDj98eNgeHoDCWITQ3wKwS8njOJ2n+Tz0AQAEa4Dg4iISahaIDJGYYkp93282wyZy6GLaDDuxaggfnr7b7h4324fD8W2arsdwZObD9ulh9+Fx//G7h6fHhz0Q9t1b6I/xei2lIBMj1VpD3Lwej9fz+XSeUoRalRDGKe/2RCG1TO3bRQlEXtVWb3mr0m1xTW6qUuZ5FhEM2HVdSgmZAKxZAS6X0/H8Ns5XRB+Gbjt0kVhM1AQckAyhuSg1oG9D+OG7x3/4/U//8Pufnt9exB1TGLabftOHEHKR9dACyGQG18v0/PwciR8fH3aHwzjP03wttUqtiUMIqd9sLdcAnkLYfOy3m01AklLHcSxVFTDErgs0KIwlF5V5LsfjudZau3Sd5iyq4JEipS4Ou5CiTbz/UK61XudKL8dpVmJ7mJUwhcimpDpdx3K5jterThPE5DnXacyIaMUQw9DvOXZFp6KlSGlbF1IBJHPONYfYpdj3OJhZlpzmmCWwgYNVkWxS1HIt5+slvqUiig7uGiKnFKVPBbwdE5s5y8xOb6/Pz8/I6eP5u4enRyCqtX55/vzrL5+ZYwjxw8MjSL1eLzWXxGG32yG7aMnTNM8z0hKmsNtvNtt+sz/0fT8M2xg7hHg6nbTqPM9jHAMxmTNSIGyluLxkcRmSg0PzyKDfi+VhQVG+lHgsWyw6rEoOAGgzx4axVnoLEAnAmn3GyXK+AACAAElEQVQPFqiE70fAJcthAUbu3uh3hKUrpqmFQiMS0d3UTEXKbWdFRGIEaAuWAFhTUBBBy3j1Zlps421ERzJAMWDAtQYE170NGdAZiRNxBI5O7N4clCZuROTEuCRgARFxCF3XNYu4qjoigHOKywKq4ObYtq5G+r2Dg1ZQtGa6toSzO0Dz/2++9o5QzcBW4fYyxIHVx1eYOYR4g31NsdANG2YGjDcI7msf1DtPQ+hqqtqA4W338uJVqmnbXJOvoub1swP3ViC+bKXrFI6a8QugyXH1hmPuzXS32eI9yrkNRm8v+ZY7+hvx9f0wqymL73cshPs+om8CL1rio9/RDPh3D1gb9+4vuTbcX7dSahdeuyFczUndCRlbthrampe/Fr23cGyEVuHuhI5Np9gyzhq910Ld2qXnjmA34LWES5uEQCH0CzrwxQYYiZyDcYNH1RzHee5KdsJ+0y0sj9acs5gzMzG1kAgzQ1qyDFRVRGuVVfW9vGPtMc9lnuecc0yhlLIGw+LdsaRJHrt7TmhliygArwzr8iUEtt/mt70fM1bsBbD6Hm5I+p5x/DvOshGobf64kKnMvLJruNTUAiIyITMlougOTEsssft78Nu6zzYzy/v40syk2sLHtiKguysZ7inV5R55v2Lx28at25W54NdvD1ctYNHdjciQDEHhllCtAMx3p6llhogtZLC6qGmxOjGqgyAScVN1yTK7RG/usZKtFjBlpth1CYERUUFFTMmQkJCMEAjUXcAL2GxCUtk0q1Q3JNrv96GHIfQEYC3x0eR6zSaap2powavO1zqNgT1Av+u7x93gyDEqYOkY2fV6fnt5/rTb9zEBM0NFXtWcwR0ZYuCUwhDDwJhAWR09YArDELchxc12n/rtZtg/vr2+vb0MaaOq237fx822222H/W7z5GB1B5OBGnGoKaWh7x0gdTsKn3KWaZpUMjgxexF1Q0cwgCpCWDdLfcp7nEzDYQgErowO5m7YFt+U0nY7xC64q0F193mev379+unTL29vb323xaVtAxHdTcAQXAEU1BCU0Ii468LD4/b7Hz4+/fIw5tJtN7uHh9QNZobj3GStgVNbT+d5Pp+uh+344cPTZrMZhuF8Xf3thF03bDYbqwJSE9CQku33qno+n/3r15tcoO83yMGZchUjL9V8LGXOebpWqe7mZJ2DAwJxiN1mf3gocpll/3J5fX6ZJ3g7XR+vcxp6A0aKSBGA3JUIarHj6fL56/Pm0jXFXgoUQmoZOmpmVqoK1grMBmEuJfXaI1IAjqEb+l4qMICoasWaOQQgUNVpGs/nOM8lpdBiNtuS7WqOUMoMhIwMDi22BIPnnC+X89fnL7nUl5ev58ux7zbjeP3y5ct4vU7X68vr16plt+n7IU55vI7H57dnVXHXEIJaTSk9PDxst9uH3cPhcNhtD1++fDm+HnPOOeezAxN1KZgFg+ZZ/o2Q4h1arSvIirrWlr/lekNcdluE1h7431v+2sqIiG7gdymIjfm4S373O5rd3H0tBn6341nbAG77tHur+mmbN6iiO9063Wg1Tvq3kwIAcm/tPTdR0TJ7bf4e4s6IgVgRzVFa2qgBxdReVtNhdF338LDf7/dMdLlcTqfTPM9E1Pc9mjcRzI0jIQbmteW3iWdtbehDbOIJxnDP+sAdB3ajvu5pFTBHfD8W2xq44IYxRmb/jbxmufYgSAuZvhtW4qoYaxuOigZmuDPN3dDeos65i4d4h4l3yvSWDklrauUNnDWqoP2Se/rh/it+12b4DUynd+D1GzrhtvuafXMF3l+QiNh40PW8CmrWUkBvv8RXK+i9OOnmg7tRmDeV2LsGdI1jWPlObF2lS3PekjkHrcOirdVEFMKyGrSPIkRqQmki4BY10oZKqm4CAE3MmGJzJ1gramutrCBiLuiMRCFwCuweTWu1KlkFvNtsSykpJWYTrbVWv2OAli2NF+ddKaUlPvpKmopYKa27qdwcoI36SindBON3mJjXm/Q9oW0BvvQ+vGsf723mu7JfC0kG66WuqrZWhN1/9N9+vu6rQdtsOcbcPtB2fwGANTd60/tRaINORCYKRIEcCI1IGzH87dW4HC8JabFRAnh1EamqRBTW2F4icnqXV67nouZWJftWuXh7Od/cXPie7Px+hEC6e9Pe/6ld+A2WAToTBMbIZNzsAkBuZOoqhhJAWgY0M7ortpOnmS2hKlYLIKREXQgRIQKYq1etIBq6aOuaUU2LawWdNYMglnzJ+Txex+EhPsQuUdhirXUs03Wezqc3E81lLFDQpENhE5BKSCTVSoEqseNNx7ni0IfNEMe389vxufsUU+Bu6LDFbzkgQgBdrCspdV1IhGzmJlIcgSimFLjbcIfQIUbCRB5dwjiOYLGMNl0ld3VOxRGlIkJi6mOIm2F72O+JOcWtYxynmsunuVR3DIwI8/l83mx2fRwDBom66fqh69tKSGDeEPnid11En7dG09RFh77rooMWmc+X8y+//vKvf/yXv/7lL+PlHENX6jzPE0BFMDOt1cArgqrl1kJDHAElRtpsuu22E5eh7w+H/Wa7U1UKnMuUcwY0E21KIwDYDt2HD0/DbtjtdkVySHG6joS4HfouRK8qpbD6EBIjSdXr6dIGG3ku4zhtYuiGzUNK6pDrPE9FVVy8CIiCGYgLjpk4R3HDihy2+4fvhObRz9fy+nq5XObPX98enh5jjMRd3+tchGZB9aJwOp0ZebfdJuYYaEgx9Nwaf5nZnG8NvUCeZc51TrF3R3WhgNv9ZrPp0QlM5nm65rFoQSJxy1JUFXEgBCJIKSB2TKC2JMpc5urGqtp1HQYmwuPxeJ2nOefT9bLdbn//u3/8x3/4x/1hp7nO83w6ndRl2Paxi2KRiHLOpWR1SykYKDHvDtv94fD9x4d+s9ttD7vd7tPm8/H1rc51VaO3itXGa7XkF6Gmf1/vc1tyvHwpO1xRy9LLjLgm1H8DEe62YV8prjX4xhbtvLuDoelaAYQt/d0ADG4qn8VZvejr29oXeGFx9C51vW1UIQRmbPzU7Tm05cmAwB3X5BpwuoVdw0LEARN7CEiBiQCjIikgOrg5ADm0Tg5DICcEpj70h8Ph559//v777931+flZRJp3uut6VS06z/PcGAJm7vpIS2bPOmdpgnon5iX79F4R8psV2e9GYO9fcbgN3G47BAC04dryDtxJntfl+hsx+P2fQ0Si0OQpuBoi8G7cg3fxCjcT++1P4z0RtRCafpsU33iC36DJ+xf1G5LgnTRboPnCNt2+v21hN9zT3q0bjFt+CdxlNd1J7tSslbDcci7uq41uvNo96m0+x9tAre3W7f1hDmbWaNtGzq7dDQ6meLsaYYltJ8TIoU8dgiEYBySHEAJBI24hhAAEtloWDN5lf+0IHQgWKZYZvmfMaktGG4YhJAtcSUouoq7zPM555IAhBHRoHhSRYka/ubTuh7/miAgiTRndJr+Lw7QRY9fr9c5NQqvtgG+hButJfomZYGak6reCpHch/4qh22HblwBVWyO7Wtzr/QVzR3PeWHNof4gJ2utq/7pwpRhu2Q12G1OubWftYAnuRIE5hmBtjHCDRO9X0dIEsCgbms2hXTwNjDZa8nZ1L7FbTTiP73q4b5753V+53bnfrAPLVbOGljU2b3nfcSEQ3cGWmzSlpAUDozECoxI4WgAL4GQemEK7NBfc4KQrwDVkgkaZgwd3RUMxBdMAsUG8qlpV1EXdsophwZr5etml8zmdr9srhoGRU0rDMGy6PnFw92ma3GasRdk2ERmB3aTM1+NbCrw57CD1jPi033HoKfCkej69vWy3gwxpszVuwB2CVQTlgImpC9wn7tEB0HPB1DF4RIuBsIs4xF0X5oAjU+86Tef5lU7sIShLhn4zzFW0gikhEseh6/YpJY6bqvj8cnp5Pl0vuZSCPk9p7vvNZrOLsWPgTaqH3U50GwARyJ2wxfyTLAdAELildqAzc0iRmRX8dD1//vr5D//2r3/4wx9+/fQp1yIi1+t5nkc1cXC1CuYABbyKlMiEizyhgldiQwJAE5mJYNj0olqkhi7M8zjPo1iL8QB16Yf4dj7FTeqG/gE/pL67xqQiKaY+BgvKiFCEYkghHg6Hp48fj+fz6XQa5ylcztynTdcPQ4dMOIciJ6mCjkCMxuqSq9o4A82xKEbnSDH1Dw8h/wgvr+frmOdaT+cxdRvcBaYYuyGlyjyBV3eY53LhEdz7GGMg0L6HgGl1ixC5hZYs6bQYp3MtYFikAEHfd0Q8dD0AzPl6up6u12utikgAGGNMKRKDRmIDEWlnxOv1Ok15vIyqHjhhIGY0l8/PX6tINe26/vf/9Pv/9j//7/6Hf/7PEcLr84urfv4c5nlGnJJpKXkas4vWau4gJNPkiOfj2/njh7HsyzBsHx8fAdAMI6frZZIy385L2JT1gAZLD+NCAq23/7qz/feFL22zXpeFd534b7+j/TFCWE+wALACr2X1acnVQM7MrYDbzJjfQcayiIeFbLhlXTZ+jmhJuTRHMtO7gPJluEOA7rgaKnGx8Dm0n0dGDkABmYmDQ3BAXcARuIMTNrsiIUBrK4tpv99/9913P/30UymziHz5/PmGnBCxqV5u5SQx8Y0PcAdamMSlWbydZW+Cm78HXr95S99hpb/HrPld5tYdgjHEEAg5hPZHcakrNgACQnR0QjLUZeNZEiiMyL/tP7ntrKpyA1jLcXv9jtsucs+E3S633+yUt8sDvuUw7i+bGx5qm/HqDnz3Fdy2/PWq9vs3zd2bIeMdEd7p52j9QwHJkPzvgNft6d2eyS2u9g6qEjM3d+oSYgLLzg64VPm0R7MYIiKgE9BKQC6iJQaMMaKbCABACgHIlQAgApgCI663J7QLu0UbLAPZ954HAGYOMXQAMUauCcdxKlVVcs6NqW1lRGoLUm84aWW25Dev0Zd2XSm51V0vwXsNgzZv44rsF38cIhL5qvoKvvavmolZXA5+DV35ghYaemNcXYqtOfueMWpxqbeH+QJvV1EEAzqwe20y0fu7qeH1QAGRVFVUyQE5EAYPiNBMvuTWZJ5KzkShJeY09LnAGiAn5HZJYjOoauOenRxX1rmVRgHhUjKjamtxBXBop01t9iOEG4/19xzeN1eaw92Lx2angPel5DcEMDBjCijsxoRMygTEETwiIigBBm8LmzuxAWVqF5W37qDlUncUJ1DU1p+wGI3MzNSqgiuouplqqXUu+TqN4zSdz+fYwRC74Bx5yTomBq1VaoZaOAJyDIEIHETz9TLGgIjdntB1v93sn3oI/Levz2YylYkqosborOIckP8v/9f/xapt+u3Hx48P+6eu3wRO4Eyc3DHFfjPsiKOogVFK/ZytzDWPZbrk+ZLBCJVPx2kepYrF2CFHcHLgmDZdv4uxZwqX6/T68nq9jOfxWkpGwmE3PD49JOZpnMkhhS5x7PqNFGk4Hwih1jrPJpkIsUPReSrjZTqfp6uBx5Q40mU8/csf/rf/9//6//mXf/nDp89fzOHp44eHx8eHp0PqEgUWyWbiUOd8US01T1rrnPN1up7Pp+P57cvXr//+H/+eaxm2w3fff7c/7KvqdbpO8zTnOYYQYhQtuWQgpMAxpt1uP/SbEEMtdZ5GAkyBmSgQovlmGAI1eyvkks+X82UaOQYk4hSAUV2LFFExszZ4QARzVLOiJgbqXqq4w2az3wzbqng8Xy7jNUtBYgfoU9psNw54Op1O56mKu8Fu2x+2u4hY57nOs9Ra8lQ115rNlQKnoe83Q0gdcSKKIUZRn6cxlwzom83w9PHp8Pj09PToqMfj2+vL8XodhzQ8Hh4fPjxu9ztOIddaioSYhj6mFAhCLSXn0qgjA2voQNxej6e5lO12/5//y3/5P/8f/o//y3/7bz//+OPHxw8pJRV5Pb6+PL+M4zhdL9fL+XKZarWcF8ucmVUxqdqlOHTpsHvoUg9GboRIMYQUYkqhCxwQ3NRUfDkegqmZtkFS03ECABLzKnAgwpa/2s5fbqpuxoRI1Mw0alVqi0EHpoAcFmVEs6EtFdzNUuXYkLMpEYYWVrB8Jy+YlQJxBGhFdRa7brvb7fY7YlLRVpGEgCmmZiuOXQycwEHNmksPlpZFoOWIDQjN30RMgYnbfohEGAIQI7MYCLiYtfIRMW3pLO7Q9d1ms+n7PnWp3wzb/a4fhjLPX79+fX19bZv9NE2XyynneZxz2w+JuYtdih1zAGjRx4BoaIrggYmRATHEQDFQYGQKbekj8CWusIlUwNDNTU3VtariUi2y5J9yDF3XpdQxc5v1aFU3CBxjDMMwEBK4iaqpmys2dRwwOKp5ybXmCgjIzSLptWopeZEzh9CCWkNgAAhMXdfFGMys1iIipsoBkVFtiYNqO3IKCRzJcUm3RW57ZoNNa8IFflNmJ9Kk1i1wchXzsWg10zYwVBNAjzEBQYiBQxDVec6tQ5pDaCeIxi0QUowxxsTMyO/VT8jYgrIcwKzVWbb06RhjRHIHE62AnmLX931KCRaaydsTYySEGxhc5XHYPJwAuGQomBuH0BouAVvrNqpKrUKLbdYAQFRyKSKlOdPctNl1IzGvkLF9Crhylu05NMOKqrhqDJy6LsbEgUMIHCikhIgiioBMkTgwR1ebp3mcJjNrRrU2hjPznHMRCzF13WDmp/PleDxOc+bApjJNo5kiYq1lnmctFdwDYWAmcgQDNzetZTatTNClCATuzhy6ro8cTa3W6uAxMAXMJV+uZ6uVwGMMRGgqorWd+wLznHOtNYZAiFLFwWOMqe+IGRABkJEQWUqu8wwt8RvBzIpk0UoIzBRTj0juWFXdkUOIqU+xR2Sk0Eai3ixowA7KoaW5BicEpPb9RBRCMmg1W1BLnXN2hxDjdrNnCoTkSxViy69BV6ulSK3tFG8Kao4EMUYOS8TX6lnGWzlV4NDiDqHpORBiiDGEoUshhhZDQeRMQG2tNgRDV1GpqgWsEmSwiq4I6lojQkRE8y5wF2MKEALEjjGggCu4iBYxN2SKgIE5hpSIyNCqVScz9lnmotVAFXSSnEWqmAI6xRSHLnVc3a4Ti2/T0KVUzaY8nufj5XK6nE9SilYjhyHCYbtJTNfL7FZS6jhEJKaUtrvtx48fHp8ezX0qeaoFe3YmIE8cVEp4/vxWDvW7Dz8ChJT6Lg0uXsuk0kS+jogcafDORUXq0MXURWYUnfNVwNyq9mmY8rw97A8EGAMAooJknbgeDgcmYdoQDgbBjERLUaFI6rXobK5qsdRrqVuVrRkRBmh1Tg6gYq7FcxeieTUXBTfwojKVGqb511//9r/9yx/+8K9//PT56zzmwzZYLdfz8fz6ej68sAOYBAYDsZJFZ0ZSQwOqcy6ltMwLRL9er8fj8XQ6cZ/6Pg1DhwxF6uvpKAYcMMaYhu7l+LbZ74bd9unwwCWAoRadi7BbIEbVVg3bilf6vtvvd13XHS/n8/kMiBjiYACE4zRdplHEHveHriOLCfHSDP5LCIKhGUgRTIGZ+75PfRfn2JgqM1vUE0vfCQxDjDGiq+vSrdc2zVgRIoaUQh+SuxFtYh9jrHXlhchdVMSrFgPvusRt54BWQUsxDH23+fD0XUxUpNaqk07MIRA42mYTJNdapfkezBWUoFrJU86FQ0IOpnC5Tmbw008/fPz4EQM+vz3/+5//eJ0utRZiMIVN37u7qZCDFK1ZVd5crOfo4gH7od8ftk+SvWQtU1E3FRMSIiQKCCxWzd1kUcQ7gIGLG4IjYVvjcdEdELo5opuCIwMrgpsb6k3G0Y7fiGQG5MS8hJWIibq15kRah09ETddCbt5KXhkYl+xvMTOvKy3f6ApCigErIxMyOQAyAxEG5pja3oGsLurg6AhOhoDuQC29isFJDUSU1h0SCA0IHQAJIairqlXRamqOwMQciXm7iU1V0wx3pZTX11cRma+Xl5eXOWcRyTmP4zjPs5mslAndxhBKhOhNa4KN5XhPWHg/+N4mgN9KbMEQrEEmXBqKYIXAyzjvzmLZpk5N0QRoYN6GIOZgYmoAtCTst5mvL/PDBo/ZibTo7Rh94+eW9AFqcj0VWVTwTaZvLZzpW39iI0gi8Y0+WceIfP9tv+HD6JtOxsarfcO8rmd/J6f7eej90f/2hG//SkSBw41GfY+pXF2QzAvwYmb/VkD2G7puYariuzFzeeZLHNqa3EFIcBeO5eYLN7zwRo1Z9Lt+bnBF80A3M6YDumFjXtGaWwURG+xoVhJ3029UQYDOzIkJaKDaioeXFktADmFRGSJiG5ARkVr7gNpYjW6ezcbdLt04y39mh+Wj13UjQPII3DJiVQVBAQ0WGQOZmzubiRqZqzfRm4sqmQkiuKs73dPGC3XdpP5rlWGDzo30andPkeri6I7WOupNvEXdQpOK0PsNRRwhaBCQd0YZW10hN22Fqao1VR8goDYSeJ3+IbAjEAZfZPuYOAoZAban1xQFrS4cbpPi9zJTXkSBHlsA781x8vf09j1/jMvngdCoOSDCJbN+mXo7Ggly0iguVVBAmGIIKZqHWIM6LXk7hE7iaEyOHDBQYA6iqeMquZoSLUnAZtyuCCJyCuBIFJhdsLoYqJFDpIgUkDp0tkKzySlf9tB9GB73FDdxOGz227RJHCInp2pkROoUnQMiU58n9VEUS5WSUwi7lJ4+PO6dXk/j1/PpeD35lTGGftOZiZQavjy/qNs0FwTuumEYtnXO0zRdr2cA4+DbXehTT6ECzeqXuXxVeTF/q3qa8jTXk3je7x5mG50l9p4sOaG5FR7JY2bLE7mmhr0AgzqUWk+ntw+Puw8Pw3DYblMfkitM4hOHAzibOmlVrW7VXdwlj7V6NqmN4ZyLFLmMef63//jLv/zhT59+fc6zAlCgmCDYmPPbuT6eMfQxcIzI7GDu4mJFkcRhHqd5nmut6JRC93J6+fz582a7j8Nmu90/Pn54PZ3Ha347ns2xiUC7vo/pawhxGDaH7T7GeNju6jTWeZrHaR6nOl/Z7WG/G9LQqOahT7vt5nRKL19fxvNUZn38zmKXxjmXIu7uPXQphS6xAxiaO3NAprkWrVKm2YppnsmM1mwbKbVNqW6rcBd9SF1sGdMAMTI4WPW5FlGnjlW8quSqnTlidKAQErVjM7FancuccmhKeUeo6rWqVGWOfbfZ7Q6Pjx+IbZymMWXJwATExAyMplutVdFwtuKlgKMB1KpWwNzzXJ/fjv/bH//48OHj7vFhv+uHx373cZv2EdnR4PC4/3H4oXkRvr68zHMRkWmax6nI9QWELuc8nu2Hj993aesWiRJCqLUWsGBGMcTmW2+Nv0iADhywlfK6AzkzKbZ8JDcEBm9GP4AWgYWAS+eO6kKc0SLrJHBA5Bg7TtHd0VBNRQwAIoeW08OIEFgXX9WSQ8EUiMica63u0rL0CUDA1azUWmotptXNUA0RQVAZhFVrVaui3iKTArU6OUK0JSuBmlNcRNvBEik04AXA6AxObq4GZm7qQMQUu9SFFGOMIUUi8lK0lOl8OV8uzAzutVZxQApqudQqqgAtynztN3QDqQAQAzk5ICAvI6MG+RZ5rFlAQljUW23tbTNTQ1raPtWxxcUSOaHBoupY0Ay8j9JwzehvJ4EGvNoMpx3sVdUQVJo78jZTW1pHVimUQUv+hPfELERywmqK5qXOiyeu6XKar2rVnre9JHFIIQLA3PgzgMCM4ZvUjNt02O8qJm+lgQAA9t4/46t9G4kC8m0Y3TbXRpiFkNpI2cyKgaMgBwocVtP+sps2ry5ACE04jymlmJiZbo2WsOSX+u1FIaKquQtz6FPi9VU0gwvgUt1gbbC+RtA130jT5BDharVRXjL0RatYy1Nlg/Ausgbw5mxxgObTjOF+6tpIUcU1M8VMmFtdW4gJQ41AeS5VROZ5dICUEiESQ/B2kMhEocXU1SohhJD62/BxJSAXfVKuJU9TldIC7SKxQw2MgZ0wMlPLYDNTU1VHjcGJTNSArYoDghm5kZOJqpu3zx1R3VAEEaF9OqBqaqKqtTVXEm0aJ7QgEiB31KJSLXC7bsHEXaqZx9ikCc31gKoVQqO2qbXmujK7h5A4IBOJ2K0tHdw8koLTb7Lu2tR49fcgUIwdugFAa6qIidfbR5mZAzYFba3ZzNoxbAVR79LD+8n1350cfpszvCjkbkeP5vBwbF1rIQSIEbEr1EPIECoaQ2xNQ6qoiKDBPQAGTt0AaTDvoYjZRW0MrAgMBkSN8hZ3ZyTAgOCBmaKj2Ww5QuhDDBSEeky7FDZonRas6ONYzudzSl1I4dA/HIbHXdwPvFWo1YsYzEZXx8A0x+DuV8aSM6p1WXlz+Fg8pLDbbruu05NfL1NMfZ9yHNh9SWTmdqIECiF2LQRPRNTyPOOcE0dRrXM+TePL8fhpnF+rjIC52jxLTmUz4MYoAqlpKVnAGaIrdAL10+XrLJZHNQiEESGaY67l7fR6mR44/fTxh4chbrw6khpIl5IJmZYqFWR2qIjODCKz4zIsiCE5Tudpkkv9y+evX9/O1Sn0g5WKyIE4ImGtnjNpjQwJAwFBDIzpnAu4uVit2lquiWgYtjFexnH+8uV5//Sh7zd932+G7ak/n65jzrnZoWutp9MpMO+GzYf908Nh93h4RLXj68vx7eV6Pl8vR5mveT5s+wGcCFFVuy4OfVdKmcbqzn23Tdwl7AxIveoskDyE0MXEW6IQHLmquBq4S6lZy+V4nsaxzrnk5VBFzblTNRBExkBMDCFQiiEgMDgBZTBUFBUXQnLJZlLEEDyI6uHw6K4xJiJyt3meLtO1vxz316cQQjNaN73t0PfbYceAALxqNhO3YZOBgcTYDcPWxF0JKwk4OQdHAs9FzufLL5++GiJxcLTvv3u4jseX87N45j5s9pt/+qd/+t1PP6nq29vbL3/79PL19Xq9nvh8Pp+l6MvXY5k1n/X4/fj0+CHGmLOYkYgLYDVnE2MPSCYAziE0XAKLAL+Jv5nWg3uT1RO4ozWpByI4A2qL6gemVpMS3ss9GtTmGM21OOZclvEBASJFZETkQEtAg5gpgCI1PR0AogCiIRiCmhWpc8nFdS7zJEW8dekaqJhgUWlWLDEggBAChYjECMHBwEiJkEgNqqs0SRO2SMlACy/ECASEDB6cgCISpZRiN8TI2hpFVFtV8HUaa85mNgzDMnxlwsCcugRLt1qT3AAuclo0d49EBAwBAJkWRymaW8MCd5JZopuTCgCcsOnBxY2QQjvlAtTW7MRtQt+0UO3cbADClFq5m7mgMQCooZmpI7gZgi06LvQ7+dSi28ObdbTFsXpDYL6kallL/mk6NkRoGJ6apbpRVgCu5qKYsDGFjbdoBSztK7ewhtt+ZmtzZfu2BSQh/P1WdJ9V1n7JzVVwU3zf6C5cVd63CV0L1biBsMBMi6z4vW3J7sq8b6wJLn0vcouV4ruYe1ttwm3I2PAhIroZIRM5IbVwUOYQo/saCiUCALVxYWYmi8S03XUr1gw3ayc0skrVlrnX+v7YGoAeIoUYABAI1dHAc1Vr4TiIMQQiCmv1lpmYQXPw3l7srfWyAc1GQqvWUkouc4N3BKZKIkWUoxGRAxqCuYmpqGktraLU0amGQNwSelefyRKSQMrk5q0+kvzmCtT7FJKm/V8pZGudE7WoiDDFFmWFhgZgIkQUORAhLA2lAoRMsR1IRBRsDiHFGJmx1VXV2tyu5qBtvL9KJxvbhwCo4svhRL3ZBRrSKrWGSO6pbTTmiuQM7KDmIlpW325qptkieam7uLMD3zuXcfVj3tPYZqTqxO7O90csZEJDD85WhQMoEydAViQBryACAlgUCxAgOjOF2GEMcdgjHiDaNFvsMLAuCVTVRKZazYEXN7phQk4BwTQyAVGAIBAFeoibGDaROlToht4BLvOUxsvA+xTjvt8dhodNfyw5l1KMdAZksUBYKYZIIzGKlnHi89U5dv0upO50vpRS3B3Nai7zPG9S18UUvvvhp91ul7rBDUTUzIkWlUbNPs/z5XI2z1Wm4/Ht7fj1fH69Xo7jdM55KprnoqlOj+zcxW7oQghexNRLBcmXkvE0WQG4XqdaVLWZ4gkADPU6ny7Tsdrjodu35BZt4y1icgJGd0Bv7RMOkQAwunVD39dNrLmO89v18vV4fpvmsRZUNxUHoMAxMqFjS7k1QgViSilBpAGouDpUAJBSpVQi2mw2h8NhLHUcx7e30+FwbdW7rRu7dY5jYEOotZ6Oly9fnp8evkYOD9vd0G+mdGmFdNJ1ZLVqfTuXWiVxCJzaeYsA51pdbNNvf3j6iUIcp/l6vXDwLnaRkbCD2BFzUdNSG0WvqtM0Xc+XMo2mlQBEIYZw2O2///jd9Xp9fX199ddSNAUmhMREqGQO5gQQkNSJnNDZFKSqWnEcF9EubLueY+qDIJDOpR4vp/74MqRuHMda1L0pHqiBToIAQDHGlBRNm7keEWOMm35wNRS4CnB1M0T3gCGrXad8ulzxJfx//+3fKtQPD73K/OnTp18+/1KtPu0ffvjxu3/+539OKZW5Pv/D69cvX15f3j59+vLXv/719fg25zxe64ufVMI0St/3YiZlDLxoqdp81lAYiTnGgOjWutjNA7oBOH4LvJplu0XjgC/0BhG5U/DQ1rWbZAHBujRsNpvU92Z20UsOlaGoKXibDgZETCEKigrKWiWi6uQC3P4CEXGjXmqtY56DhyKlgjoDc3BEQTeT6ihZa63qgA7MakBAhBTMpc1AzQyAHAOyOQfgDkMkjm3UiC00P2BwwIjREJlCCIETEgKagNdWrbokd7XpeGM3XNQcWuvbcgW2jcrUraqZWQIACLygkjZCU3BwbXYkd69ttYUATg6NXGl5mnablwGQI/niqzJ35DbfaoGxiODBWr4MLfMLUeWAsCa0LcZKIHfnGJcsJZfVV9FyZd3Q7oPXYa0GuCVRVNVqgutk6hbEsOyO5oraSg2WLbSKVrlhlIZHm5zrFs60zmGJmJHJWyRDuzKacvg3id7oCyZGpBiY0BCsgq8+CrdmqQUEIuR2TTExhaacBjMDwYaVl0z5ZfBXm1b6NnGD0HKnlhSJ9/EQkd35Ut1d3NR0Zem4ZWHhkl3eZsKO5oDsMcISigceYyvgAmwDZcNVjwa41jus0/8bMbLOwZprWESMHCoih4WKa35qxwFZzIzQ3USkYcr7rqd3MykA1BaqL9JWqqJZ3NSt7TXaIu1xzYrTUgrFgIQB0QkMXcHEAL0l/jgABTBtoc0A0CLs27kAEQmDuKi0rkbn1mLjCmBNLd6WFEInxLWmvmkbwFSb1pSZXXAJp7IFsjb1jYECkxMquCGIGboSvVcxumlAUmgwtv25d57Jbg+tbXkzMwVflkhyolYBtM67wVujJqydbGrakESMvqjbAe6zUW4m6HvS6+auhQV1LV0gt7NB1dpCTgIHAHNOyhVCoZiIo7NXkAxVoDhUx2quos5GAZgdGDtOh+DO4cICYpOBqIuCGKCjuZE7iriLxoiIIRFuUlQCca4aZ2V14Cb3B6VA4nWScS4p1MjMQ+x2m/22347jJaTZWI1xJg6EdY1+syo1C6rB1+cQOwzx1+fXL8e3WcuuP3TdsOk2MXQpdeH7779PKcWYcpXLderSQABmIAbzXKaxljrGRKLj6XQ8np6/fv78djpdLhcRy9mmon0uVZRTin3XdZ0YiOo85rkWCFm4E4dSiq/nqsgB2ErJr6/Pv3zefXz68PHx+82wleLzXLVOQ0cpRXKHWkCbmEOBWFVyLbkUNRCHS56+vh3P03zN5Xi5gtRtTGGI/abbboeUyLxInTRiJIYUkYgFQ1I3UoN2T7aT63Y77Ovex0nNz+fz8Xjc7nYxxs2mn/KmGaT7vjezUgQsvzy//aX/y64bdt228T3TODJFcOqH7Zwv4+U6z3MKXd/3l/F8PJ0u4zXP+vjou93u97///eHxqRY5nU5VZg4KXkqdq4qI5FxrVavm5E2Fc1vTicAyENF2u316egohDH1HCG7gZgSG1OINhJlTFxx70oAhGFARzVVlqjnncQxT6dUeQnSHbRVVy6XoGSC9fZn77WW8zvPcJAIiZZquu12P5AQeI0tkq+4m5kKM6GSRuxCFQ+RgVdSMbZU4qF6mC57J//a34+nrtkeyejweX59fmtZhs9k8PDz88P1P280GnU6n06dfP//Lv/zr//r//H/98T/+9PX1xYDyXF7k5XS6dF0XUkqBHh92CEzIhAbWor0DkwWCZb25rUT4ngW1ZBBCC4kjUF9VncAtq5cIkGlh7JdhSgiBY+yGvo38+ppyTljzspoQciv4AA+BgpIJuGttTd6hPRfipu7HRSpBRuJrmHXDLmbuLhVqrSLLchwNus4CBgFB4IXIc0I05hgScSvA5giBA0YFd2N3I2ACYIzQBllr8hMkMlnMO9M01Vobr9a6E7QuV1pKXbO22Ty3qlCRokXNBFp9rxJbAKAl12JpLjJa4+PdHR2YuaWbEoGCY5OaEDbpmpq5U4NPAZfQpwa8EM2xLhVJt65yVYCmZkEFr41FoGWcR0TgJGr37Uk3cmiV9juAOeitFMjXHLX2r0RLbfQti4GYENGqeKtJX6f8C7SyJZ6+be2/IbFW89j7nqdm9+mp8J7qBDeS7ObOs6WSEm7f2m4ZZgZ+Vy8ZvM9xREoTjd3IFVuzDBot2Z5MCIEQAfQ2A225tSs1Ykh3OSCqt52b72dGTr6C3OWZL5Hx7YWUtXxwSTxpJBDccsVEBW6mXeS2B+vyhBGxqcgKBUTUxsUix8jAJHX5nkZl+SouNDNVV5UYu/ZX1kqi5cJu3yAi1hpUQdckDlCt82zugiDuXQq8kgTmSOCKzgwI0AIoFybXXZeqGv8muEFVzU3Jm8IIyQkhQGirwfLhAjASOejqowRtknYiBtc7+RPeglHaS9DbVP0morphoPXk4OSmSxG53wbWalUk6NK4upBAZsYcY6R2GmoiPSJy0AbO3I0I11jaxpJa13W0mmfbs2o3QimlVY3dPso7usvJHRYwt3xkrVaNqCKRN4tzaxPGPqYpdIGVuQIwCqq3wwC7e60QiqtpQdWAAZg8DEJzARDVKgXNiRMnLoW0ep7VsHIymjUkH/qYNn1Vv85ok2atINXRq+nXtzyg6mYXE3IfUuyRfEmVZgIiZ1dyVSUBJSulFhjBHN1drL69qJsBvZ4uL+NoXfjww3c//PDDx8enQAzugWMAwrmW8/n88nokTDGEMsk0yvGc83TmN2MS0TyOl+t4fP56HserKqR+G0JUmES5CHDoU7dJKXlRca91vl5VsUC/AWZG71M3DEPRvkoxkJrL6VS/fPny68Ov237/dADQOI9lCD1jTF0PbXV2d3QFVfXrNL6cT2/jeCnzZRqPl+PL2/P5chQtc52tlM0Qul3qdmk4DMA25evbJTlj3CZOEQBbOpcCLh0XIu7e9z3GBKlLl+vb8Xy9Xl9eXpAoRj4cDmZGjDFGQtZSq1VPcDyeu/j8/eN3u80+BSLiFHtgErOsOs82TvV6nU2vzDxeprfz6e18KtUPZRKw0Kcff/ppGDbTNI7Tya2UfLmOp8vlcr5e51xTSrVmQAIyptj3m/1ezuN0HeeSq4vmcR7P1zxO7r7bbHcbe9w/7rZdIij5CggpIHgkIq5BAEv1OudpytmcM/AMCnOIHqLmfDWDcRrnLHPJZrAdxuvxeh6vpZSEsdY8jpc5DxECMLkJgYgXd0UzdjATk1JlUsvoiq5mCkhgGiMbwzRdDWSaL58/102ggDaOYx6n3W53OV5fnt++PDzvtofvvvvu5x9/5+5ffveFY3h9fX67nqspcgzItWrOeRxrj5suDqpNr07YmjK4KbzBZQEHgMaAHoK1SPd2vnMgBzIAh9CMQ4HWkjIkRHfwNQRfVVQ1pXSTRyBC16dcUuwjoLYSKiAHAnExNGTAgLxkW4i4sPM7/9F6gpliDF3XKSy/lu4WpkXdr+Jmqk6qoP1NKgVIAIuHm2OIMYbYGQICcwhMkRFU0FVa8gpQRCZEtiUOCkRVpDT5/DRP7t7FtNBFLdjBjdbzrpmBo4qVXEVFi5gpAYeglpaGXaI1aGhJRCN3a6EbhoSIamBmGJAa2lrzG5ddqoGBNqpZ3tEGOJq4W9fl28ylnZWJUGGxDSIuWrplwGFrkOniMTFAR1qDAIlunEij2bDFIjRYjLK2SFkT3Tfc48BN4YAOWquUsgzm2qtTd3ERq1Xb/t0ordgYoBUeNXDS9rDb5KXVQrZUOLoDT79Jrgdfmr+dGDkAkyGEuzxYudON3T9a+0r7cw14tXj6W8YEIjpyK8ZaCgMQKbRi6/eMDF3kOHAbg75jI7S1FWFBMMyMFsiB0VVb8FW7oVZK61bvIOqgNw0cOpg5Lr68BqlhGU+7UEjojMGJQiAkavJxAHCRCit6MzMRvWFNN2jAq8kAlqGeSJUFPTdVn6oGYhW1WqVmMg0EAToOCCZg4k6qiqBLrzUAIZqLrejH3FpAibS5Dq5EZiurXlJfIBC2vGEXdVAMHAIjOToExhYi4S7kRoDWjonki8UBsaUquoKaAmCr3CEER1Bv3QLWDDzMwRXFy+16BnBANxNRZVOpTuTMzZDoqhpC6rqOApY6t0NjjBEJVpzntPY7SetpMgenYbvcHSuN/dvuqdvhx+/iUW5DSURAXwL5VDXXvCB6aIoND5E4UowcU+BIOKOo12oqxlCZrCq422S7zp+yhhkgIwtHR3GPYI4YgSMqSJ7nUkVmYDKiDeKmT/tdV6qIlss1Sxab6+ToVb6Ox13H4+FRvRaXzWY751GgcGIMSAE9oJiWXKy4kVTTWWriMPQ9BJ1rfT2fRL0YuGOM3cPh6Xc//vT4+Fiz5GkOLRZlCvl0GYf+ktLQxZSnuQqUrJexoFeEqjaVksdc3SiGfjN0D0/fAwZ8fisGqhBj19BJmztUh2oqSDKOqetTSvvNdso7tXmaa9YCHlzr5Xj605/+Q4t/9/G8G57I+7g/mFfwACDQbh1CAq5qRfQ6zufLZdKa65xraVGcIhURgJQjUQRg5wRFptNYHSpFHR5S8r5qvV6v1/GKiOomWswUyfs+dRz2Hz8Ob2+i+no8HY9v/TDsdrvUxYfHAxH1MZVS3l7PUmrwONk0z+X1eN4ML12iQOBE/bAdtvOXL5/cidJg1/x6OpdSpJRrnopaVR1LPl+vl3xVss3Drt9vdmVjMs1z6s6EiFWlimFM7m4IXCtC5NBBSJdxOl+u83ystb69HANxKUVyedhvD4fDj9//kAJIns5Hq1M7VEG7k0Uxz3WeS85em+cvQK2S83WcoNSrO85TzcUQZylach0v+XodSynCnYlozXm8qkViVi2i2bSCinvrdKy5zCXPtbbkjhvlYCFGC5SlwqxuYrUYQeRQpjqOanL9JX7p47/lsc5zYY4P+8f9fr/ZbPb73Xa/G7b94bDb7A+H7cHUj8fj9XoFptgntVrEhbjjEGIMhG6mpbqZm7RlAqEVH9NScGYO637GSw8jEiOa1QXMrHZIs5az1TIPq9Vcc8gBsQ8xhhg5clV2d2NwBFsTE4wRmVq+fYsLQcRbcs8igIghpbTb7YiIAYtKWEuRETFry65bTIm5LRelLOtUG9BICz1mDiHGKG35XSS4bK5oSMzehMdM2Grk3BGgahO4LI+2mHZd10DM+17bClNa+d0ak+tLU3UbTjQag3FpoEBfE13v19bbuGKpDQZb2kyaZRk8ABgCtVmg+5JKdvsN68JtsE4bRUIgc7gpkygsFAIAmEJ75g4K8B6Nu769joiNhlkLwlvJXeOlmrJenOKNxWl4DQDiOvq/8zMSY4tstFsW7m1rWTgtWtiI2yDG72RMt6zzG7NFy5XwPhgiDGtmuN9//aZeKqU04LWEvX1TQAm3q+72I7cJ6ULFEYI3D59B0xQuuvtvtGjvQHzpLWjjMyAGtKW/HFfz2oqCyZ3cmx/XvakqcelsZ6TW1Y7mQNws2k2ScePnwAkRvaCBR2TC1kBqAVkWcs7ISES8wVkigGp3mXnq3sYayzzL1MxAUapVFVVVcWwNXYFF1URIoQss0nlKLTGrQSmSisBA3wTbmjkiAyxBuAAmIu4GTsCKTRjQGN/GwmOTta3CO2zhI9i4YSVyE1B1UHdFByRkQGquT0Y3ctHmemlXu69otum/jL4xFLdbGRoD6o3rbQcYsTakp4BITQcJYCEEIC+lqFZVD6EJ/9dM46UmNZiVWgWcCWtnCW5yQzNmvmXz3a72+9Xg9tyYgNclF5yYWeqixgM3RCUQwIpoxMABQqDmdqrqpWotE2IWBQQWvfQ19XIokDBYCQAcA3CQ4NXd2CpYQIVSqpVaaUaMELuAGJkMyczmkq/z2YqGWqCUksfj2HeqFdCq6UN5MNEsZdh1w5hmiYVIzbRqcRF0UQhREfGQEnVY5gyBUDxCNwQdDoeHh4eHh4f9djfB7Grhy8szEZWsqRv2+4dxHHGgEBKFGNMm8JSLmqioqzphIgqb3Wa/3R4eP4bYc9xeppw4NfKW+0Spy+fxUubTPGfBGHriFCPGmA67B0BlKjBPiiVEMpO34wsavb2eDrsPHw4/RdwEwj55SqRo0ppoiZwRQuQ++UyqDkxEmPOstaKa1gkckLzr4sOHXeqDaJU8EtSup+4UkL2qvL29vr299X1PgQEsRGCGSNzvdhi6fjM0uXEp8+l8dLBhGPabLTMGimCuVcbLJWA6HA593+ecn99eN30ahq7veHd4ENPT+ZrnWb2KwlzKOI6llOs8z67V/TyNv3z9/Mc//Ufoh9ns4bDrGGIfzSIy9EP6QI+b7S4rPD4+nq/TdZpSLP2gIc15ruOc57nkXJ+/vk6XSWQ28o8fn/7zf/rnH3/88bAZTq+//vqLXU5YcylZtdR5kmJIFJk6QiW0WoESdD0Te67jXE3FREwqEvbgQaqPlzqNuWbTIDWX6/mSIu1sgymIFNUiWrUUUGMDKUUlIyoHEAEFNbdSiyOJOAAxoUutpoGRIIB6CgkHrLV+/fIsuX7+/OXTp8/H4+l0Ov/000/u/uX5+Xy9mNl2u/3x+x9+//PvDofHIvXr168vb28OKvM0Xk8ihTcdM7tpG17UnKFpgQMv92pbFkXbEbrJUNAXUTqaYUCEAITNqdUu9WWWxGRmpZRWpCMutdapTApKkSLfSqwlEouKqAABR3ZHRjcxdXNHQvL1BMwBt7vhcNgBmGrF6q6gsmznXUwpxBmLGYAuO+s0TX3fhxCYYinFUJAJF1vMks/DTcHdXK5d58C17cdNdUTkjqbmornMc56qFDdNXRqGoes6bnGppTYB1G1qULO4eKTo4GJG0ILOiSi8gwkzM20NyC7WdNDeBm0hgNyZ9VoElFETKBF5Kxpa3aOL+KpBGF7yOExEkClGACYFN5HGEsYYDYF4OT2rqhSttZgZoAUyRDADJgayu7nGokRBbL0j6K7uSt6YqkBIsLYRNI0XIkLgGx5F97Rq4JYxGWBLp7jRQvBeTrcG57YAzBAUHEx5qU5YE7r1fYsyMHVrfEajOgkacnq3DjT5tpiqL9M6MROpAVu6QavQbhyq3FLab7+hYSam6MTg6Ov8aGVko1sjwJawU12njQ2L4xouBmgMji2ZBaAVO/pCLi0nHrCmVwTEFraOAFBKATNQE1MwTykxcxeTGXQdWyvkWVFprdWRIyYkdlUKkDgqeFGJiWNiNVA1cI8xVoFxHBGZWZBjCKFWnacy5ZxLqVUfdltmulxPtWqt1bS6x0TYHEvoKqWWOQsH0NDCswRtkeqGFci6q4GqA6ijqS7i/VIKEQZiIqZWrFHr+6h3nQ67a4DQssuYWdVMikoBcNBacnatDWauWSvYiixTSiBVRBfQDLSW1IKCVxWwNq7VdrQAFBElAqJg7gbqrqXO4MHRCVOKiaSKllJBbSil3PjCWoEdm3th+dxX1H6zZNpdY2kLtm1NIitJFm73/qq6a1cOqCp7iEgUIwKrumptfmEXUauEmoK6jQYGhOLv0kMzM/CayzRPZqaewpx6O8ThEdSHIaYQpRZr0TQWKJDXOterEYtBEYmGuVoIh5Z7Ml1P0+VUJsiFRPn568vlOn7/8WG/34+l8ulSsoRIAiV0dHjcZ891PCN67Ds3sloBrAhsN0mRUp+IeZ6uu92eaLMltkBEpFVa4om7h8vlgojs4XC45pwNoOv7oe9DajVPNk10uUgZL7nMTtqkrOBERJFTH7tprlrs/Ha97McYwqw6q42qk0ipqFZjlhiMmPvYSz+obt0m3gYOal4ZcJ7HUmQey3gt02jys3QDDNC5lsbfOiClnkXjsNmbcI16MXWZpus8N6IFAkNK3G1iN8S0CSReL/WaK18tnokDlCqnt5fT+VR1F/tOpBJB6gI4dV3cHh5m0YfXQ9/F4+lyOR0DYRcDBo7cIZKWmqfrNE1M577vPz5974iOIAYKzl3fDX3o0jyX5y9fn1/evr4dX4/XqsXMqgNxRFdx//r68q//9sdZ9PV8eXw8fNj3uyEQ1JKnEOihOzxyotAX0Ze34/Pz6/F0kQq7rQBAVblepuPr23yd85jVckoBnx77mH7+4ceHw/awpS7460t8fX398vl4PL7NlYtB6rZE1HUDYxUvfQ8phRg5RGjF8oCtzC/nHNBgnqqqq0ApknOOgbyK1IpuRYtr1VpUClgrM1EAR3JmbMHWrW7OXK2aO1nzqjG7o8doDogUY9fu59Pxcr1M8yQqPl7n3//+9ymlX3755de/fTodL13X7Xab3//+9z///HNI8Xg8fvr65Xo9f/71b6dX8nESkdkcTXlVM99O/GYGgLo0MDYGBVrUVsNesBRYRMQWggGyJjoSM8cAio2hqaZjnoMWdZtLrtpa51ZuRs0DLOkyy9myxZlya4BWs6q1ikBYM/KJYoxdSm5WRFSVAUMIqeuIQowVEa+iOedcJJfSogyIgWN0RKDgxOoYfImAopYmhkzsBljVwNlpJS64/WEs8p5Fcjt9tqNq2+Hav74zXrpMEJo2HhFj6EIITWjVZL+IS191C7q+pz0QGFGdEBwcwFpj7XumFK2jkFsHkNzGEN5SbmnhjQwgIJpZq3tqcZthGVQREbZepsZ0NJHTLTThxhUBLnV59074NoVEQOIGEG6jum+i7e+YJHzXCy+tA2Rmd6/rnfn7huVafmSRc92mkDfJzlIWBO+BXt/+nm/iAG6zm/ZKAxGgc4t5vaOpbpXMtw/lNyKzv3+Nt5EiLFXQevuobmRG0xK7qzogIi0OP1+KHRcjJJFDWyOW6eS3pem0hPr6XU9iS7dfynbap+MOLqpBiQ0N0anlm6SUnBgARB2gqryTK7UKsxCQOzYNU621JdQjcoOOLXUCmyPXABc9HSOyG6pak78vWz4zErUY0EULb6250g1cxFqvZXuTAICBWz29reIqgEU7c7vCEDEww11nlIq4iGplhEVtuk5RCZiW8CsKoQnV3x0LuFzMDkyLJm9ZeNQJtNHzjswsUokMwVscv4M2lv9mvbzxlyGEVsItIkQB4MasO6IRLm3F9+FkIYQmobudyG7Zwve4DYmavMzMsMW0rtxwOz+rCbUybBdHFTdoeskUY4yicSpjkVrLJKbiwnTVOoWuH2KnCSAGQHdzUwYMaIG6FLcllAx1VHQDbGmgnpujYjaZvboLaSEtU83Q9Mdd15UylzIPm67vU586x23xUqC4OLODBgHQms1hFu3UUosRB1JYXpeZTdfxeDxKrQAwTVOY5pmILjweL+fT5fw0z0642++fPnzo+9j19PaCU76Mebpcj0RgrgZ+nXO8jLCNIqKzXMvMRH3fO5KYnko5z/U0lzorQ3ZDIN9s+qFPqXvskg69A84xAZK5u4rlrJfxfL3k8aoxxsPTJiQylVyqiAg60jxJMfc09BKcp4uZVC1THudaxCFESEPa7Deb/SZtE2SdrnW6HqtcAKXKtRZ/eTseL1OupSvDXKVaRYaIHAJvNn0C/Pjx4+FwOJ3P4+UUCPqU+pQCkRvUUmouZc4Tjic+ftl8DTHGlMwsdqEbNg8Pe0LfpOE/Ynp9fVWHXKQliKgRx9QnwhBfTufj9Q9/+vXLH//05+8+PP7z7757OvS7PjDZpt8eDo+H/eNu/ySAIQ0IMcYdc4opPT19SKk/Hy/zmE+v51KqKfSber1ex3GUmrv00H/80AV9OHQP+32KX3P2Ly9TPk2X8zhVqQCYIA2w2Qzb7bDZIQdxJwDKuYpMtdicR6tSr+6C5GTVtRqau7rVZpHK3hJuVNHcAU3WnKQW7MILiGmApFmaiYDAiUI7ziByF2Lk3jyP12udbZrq9Xz5+vn5559/3mw2p9Pp86dPl+t1s+1N9eFx/5//y3/64ccfReTXL59fXr7+9c9//vLrr+fPX+bLuV6nKtXN0S2GgEsxnLubqRnazS0FjetqYd4IDLiEBuG62yksKadEESMzOyHRUp5j0PBnNbMQAjG1qqLWYcaASGtDEC5LaWMTaq1ZSpUakdWsWq2mhoAUAFm1iGgDrQFDin0IScTGcRYHLZWnmUKHHChEDJEptRQJA1RHhsUAhWGx5ZmDmACYuSM0vg3VrIqdTpfr9TpP2dQDxxS7prC55amWUtZhGsMqj2urbXP2xdgxEziqgRqgtr+zVKoSctuEkbmhQ3dANFPHu7SCNlBcmluAGAnA2o85GACo37pl3uHLAhZboiRxCLGVdtNSYQ53s0W/2drbF9wdm9TGF6oJFtedLiEPoXn8kFqiJ6EDMfMy/sM70NPyhtpGt8IjIiKk1mPTTgArF2itebOJCJkZln7jd6vXIiZbkZUZ6Krfb+7ENfX1GyB4e1tu4nRidKktJPaditSWyxCW8TQzc3jPlWhACIEIrXXkOoA5xaYDcwAgMG4f4doa2a4Wk2Im6ECMbRTbfJntnIMODTbfFGJNRb2CRWuf0VICuD4SczuX4N0LVDVkage825c5EHsEDogYDACg0d4NNTbhGb0TLSjVcq4hpKbrAiCpJiK0mFux1VDwetkUlQa5lmQK4BbTBdD0m7JiL3d3rWIuDUqir35RcAYGUtUlBETIuGmXAYCX5AV7tz54KUXz6FqJGei/00OKCIHRmd0dm4kYqB1OAKCNFJlZWZEBzVXrYmtUbqCtxkwYkIERoqu7AjZuWGvNDrdgjmViC0LOwMQthLUxze7ezlBNPthKtbuua/zibYDezm+NAF4l/8zMra1xMQrdVWS2LxYVNQGbqYpjJixm4ESh63sdzAsGEZsVkkCwYgpIkT0hJPZgzuCMzqTMYkjOhOwcOG1Ct8F8AVIKgSOIOlSd85RzVivEHA3EBN0jw3bo9vvtZtOPp/P1fHHo++FxM/Qpkli95HOZpKK7alZTgCzAs3LMTIERq2IRix2pyjzPv376G4J99/ThcDjE5jFuBOA0Xd/e3rbb7ePjo3334WG/Tx3G5ID1PL1uTlvxjOgiLCLjNCGxCKiAVsnT9GLWD1tICQhfr/NpHK9TlqyBmKdLTBgCdv3Qp02MkpKpXLsNd11MXXCg03H89Onz89fzdfwldd3Dh3236QLxdc6ny7lUueZZySmwsY51ej2+nMdrUalghgYBOGLsQuoj94EiiXiBcplO4/RWdDpd3sxwnspl1llrmrtc5Xw+5TxTgpZQQiFth+7xcHh9fX19e7ter1133G63TarbTo0hUEvzMvhLW92GYVC3p48fvvu+322HnrtSyi+/fup/+aszXy+llFJVdrvdZrMb+m0WfXs9/vr1+fPXr48Pu9ev333/uH3aD0MfDvv90+OlZK8CyFFLDSEddmG3f9rtdtvNJuf817/+9eX5eHnLUqsb5AleXl7++pe/PB32Q+SHh2633Wx6fjjsnj58//Thxz/88fN//OXL5y+v50lUARlSSo9Ph4eHvt8AcWmznjSXUmuepZRSZ5WJXBGBwRANA0VyAgNVE6lg6mBoSAje/HetMk3dl9pjiuxqTrYYB4k4hBgCm0tVaclLfWBmjqHTMGuVt7fTPJeXl7ftsDGz6/U6TVMu0/Pz8+l0AoCHhweO3G/777//+MN3H3/969++/OmvX3/95fXTl9Pbq+SiWvuuY+JmHqxqrg1t4bLRNmHX0i+GBOgCyMCtBaDFvbdjfdvjAyNhWxuqlFLrZRqbWbrnISAgguISG4rMROgOoiZNsE/Y5mxiqlrFhYCKlnmer9frPM9lakBHVw6A264UkGJIfTfkrtUrSK4CUdisC8wprsLjhepqUdTqLV4VW9OHU3UkdVc1Uy2lTNN4uVzmeWovIcXUdd0tNkJEWrwEtHpjAABQMFyrf+HmWDQWMUAndA2AYG0PQFSk2JBRG4O+44M1u+HGGBk4mgE4EiIhQwDX+6ZMA0dwNKNVE9PuQUBDDByQI4eQVpecr0MQNkOkJdP/3uj+/osBHAyWFuO7LjykEPC2ATTgtYjoRQG+UVDdNGffqL7WR4MU93PG9mtTSjnnKvV+s1kw3I1JWifdRMQBfQktx0ZO412m623jX0c5TIRNL9dGqDeFGdyaee7Ks8G/IfZuTwYWnNCeA2Db5rHJ3s1cVGuVrKW6KyGQU4v5cGtX8jJWvmn17iCUvsvFbmD5XostfsMatsJWcUMmNAN3XrqJGuJ0JAohLHoxATMLoe3oAk6qros00czMRYuVUko7QqwfKNGaNW8cAgIiu2MtirTwr0iBiIADOqm34Zo2XocIlv7r5tDEdza3LaCGjCi4tm0uoSfWAiAQ0bWK1upqrlbnKc8TumAXkeKC9kV1KVdybpMFYEcANcSlAtzMDFQhBPLGPIEZA4EggLqrualBCEGkMK8humDNb4HkgFZrQebGJq66SQIw5rheb8tVdIODN271doG5o97e8bU3s00nbzdIA14NhaM5rGqBFZxhFak5i05AE1NFVkKOXWLactDYowfFaJQsSK2QwmbT7bq4aWdqKdoMyNkqkwAaanExFGfH4JQwhhBZHeqc346n4+VcVVOXQuA618jwsKfDYfew3236vl6vojnPotIH2hpB6sIwDJO2zAEzZzEp1d0EYA7Ypci1GmJOqbZMqHEcvYhXCcwPDw8hROq6GCLXmr+8fBKXlNKw65Bs06fYRY7UDenpu6c0BNHCzI1iKWKcc+Quxi6y5lyPpwtsOwjxcp2uVcVM3CKzQJ3LHDP1lVLsIocuJmDk4EM37A7brt9s99Nc9Pn1+vb2Bn/903Y37Pb7D09PRfV0vlzn6Xi9ZC2GYKxTmb6+ffny/PXtevYA0DMDcCQnUNCqdSqTlGmS8VwuMk/n8ZKoQ4wIpJiwZAe85Hy8jtV8AAoiZc7O2rqft8PmdDqVOY+Xa+MA3NAB+k1fVS6XcbrMRZSZr/OUUvp4/BD7uH986Pt+d9h/+PHHn/7xH3/8+vnl9fR6vkxVzGzKdfuQhsOOs0xzOR+v8/OX0+n1cvz888eHn75//HDYjtfr8e389ct52P3Sb/bmbBBS7HY7DyEMw7DbHh4fnrbbfQivBJOhAcB0rV+/fv306dPDoQfb73dxt+sOh93DI253H7n/GDeP/e5z/PLlMl854cPT8Pj4+PjYx646suoSBTlNOU86s1dTM8Am1FQDcwYMxA2baDU0Q/LWubKU5DQ6RdxFCZwJImNdJLqAyEyRORKRVvV1VW2rcHtprVRnvIzzOJ/7vu97F53nmRN8+fLp3//9j//wD7/b7jfbww4ANtuB4Dst1cdcpzGfr3ka0by505EXiZEtIVMtO5tWUqbZ8QhbZyv4rS8OQBAJXAHAXAgJkVq7o7mDo5mXUpr4JripOyGqu5hFwhajqKpl1fMik7iK1Vap2yp4RWQcR3efpixZAICAmCIQN2ajqdEDhs1mZwbny1i9ikGrK+qZQoqEAZEarbO8OgQgRiZHcgOKISA5IDC1NvRpzKfxUsQUMMauPWLXI7Kqqq/+TFzfNHBCN9B2Pidm5jUXEaBIQywSDZEM15j65lAiQjDAlg221sTcbXULAenu2NoPHRBv8VvkjYNZvQ6NPW3aEVyRx4pa3NHdFnjRin3d3aESGoAxtYobwPfadHd3bikiq4DG3WkhOtt8bLloVp+mW5vCeFMpLRMWd8/zXGtV09tTWraWOyx1g5uLGEuEam3BGeS3wMnlzWkIwcwIlhkSkBPcBO/v72GDQe+t0oiEGGK4zfx8rW3+DWRc0JW/D+WX47cr4hI5KyIARg7r0Bbbi1CX2/yo4SKg9tY2CYq7LxYWo8afGZjexk62/qB/Y3CjRoYBmFptrgVstauqoipu0zQFN0QGRELwar7E8WvzlIQQQnAAaMPfNneupZQspdRaG+1IOefpygEJbbHp8Z1yzt2BGZnUzeqi8oSW+I+MwK0T21S15uUtImpODwCjABwImtNEzWEJ/UfkwMlBW2unA4A6NB7BmoyzzfhLlSxlBpfE5IGW9jdTBYdWBoHYZnzWVrR14Lh8KGQWiJkCRndPlGZnQwdC1/crx99tqu2KNmY0M7XarMUpxaY9EBGiRBRaBmfDi62uoN2VNzR/u9qbiKKh0hvpdaN4ltu2FZ3BOoI0N1x+0MzcrVTMUsfp7FBikBA1saUYYhiABZNXnatlpxJUxCMNMUZDLO5aCxb3OheZVAuyDuRSJyq5zkUdAlJquddzmcdx/PT8+nKcQoCu38YYgYoTbPf9w+Nu/9BHYg7mmmsGLQXA0DUyHba7LPWcswowRAZzLVkArSTO1kUpCoYXuiA6SJ2n6Wi27dJu6BNT2O+3KSV0qrWML+Pr6+t8vczz+N/+9//T999/BFVH2Gw2HH7Y7TYi0nXd8Xx6ef16uVyqaYwwdDHnOEu9TGN9CxjDlLOphhgZW+WfzHUOGfo5pEiBPWDIUlQLInZDvz90Hzeb6zi/nc7nMV+ny18//fr9jz93mw0RAYUqVko5j+drGYvVsU6vx9fn1+N1HClg6kPgmBiRtJT5ejkd2azM4zRNeRyvV5SLiRGlod/FYacGuejperlm4dSF1IlIraXkMk9XdG13Y5aS1wdhYObtdltrPZ+vpRSzy6dP9uX5hZm/++5j3/ffffxhv9lqFzl2T9//8OPv/+nT89vnl9fTdTSHqVRATN0QehDTbOV8ul6nC+jUB98M3CcixOPbOZdPgHHYHigOw7Df7x5LMRERq0SUOKW4idSZuTn0EbouhECXy+Xr169oV4DDdvshdZt+2ISwo/Rd6p62+6d+t3s+vlQow4ZSCtvdhkOZSymlAhgz9X0aBisb12zlqqpK1ZQDqIG1iiwysXbM5dD0GQQADKhECKC1qKgrRCBjDOakrrhsJ6JNhaqESCGEEBDWjCtEQ1aRqqWx1n3fhS4lSbXWl5eXf/u3f/vw4cnRHz9+2O/3j4+PLuYGRBQ4MXMIyYO4iZk1RS8RBQxExIbi1qJ+3gcV0DZ4ZKbbEsDMhr6QIa36h5aas2V4RMAxgKoTmpmYrfINd3cxxTURvtZq4CjQshkAIESKiEBkZq0YYJ5nLZ5S2nS7EANRACATFVga5WLsut6mucxTWdxzbsiUuiGEgM637dwUxJSIKQRHVPVAAQMAsYG3fLgxz9M0lVKQoOu63W7X932MER1KEZEW5NNEHqBaWwbsPWFD3KTBDV46oLfS7tCGJkAAbadfshiA/BYTdQ9E3nPlW54eOiAZ2m12c/t+uBux3Q9ciNZYsuaBBLj9EDM7qDujr5lRd+fyGz+0yr+a+xVWWIO373inYdoGpUq4RD7deJoWE9Vm0Et+xA3WrI+/Rzw3Hu7+Wd3/tft3YB3Mvb97NwlOQz909whhKaG+oxuWRxsP3T/aX24qaVx/7PbMVau7ExjaMvS7Hz+t/ynmigbuKCjrx2DobS91AnPzFT3Y3RN7l6/RqjdvWJacGs57h6ru5DDPM1nLivNgiYiWgiNCIuJAdMtyQ0dkVTCFsrSrLYbNGONlGqdpCgSN9O1iCnT7TG94G83U1dyVIbxftwsybuyaiNjSAAhqJkQY+R3DiYg2/s+NiGIXVDUEavDwNm8VLSKlSim11JpVq1lt1ZCtLqIVD60yMHL35gJZXMFrawTAEsdlCkzAzB6CQVpu6SaBWA4ATkSAQNxiaxWXflQ2E1FfAgqImq17GZKu3ot7phYAcJ2t3z5cotAuthvqurG/96zqwt2usTIOTgwxBnczr3PmNqGrcuFgXTLpHNFCQOeAFiAwMnNIyMSQMCBAEYG2PbXMestmlVEN1fIV8qzjNAcOFBCIFCGXep7mt8t1KrAJ4BwcgiFQAIrUbbp+00FVbFFhwG5CaESYurjxLo0RqsucVSGFLmKpAsVgngsiSjVEDXMOgdC8zuVqnscpj5M+SOi7GALnUorkcSrX63i9Xuda+j7NZdr0fZaa+iF2abPZIDozhhQNVFTLNK8ZIQJg1+lyfaseWVU77oYUKfa1VmR2hKIyTVNgYKoq0/nypl7SlBwgdd3u4aHrYhpSSGGe8+fnz3/6y5/3+8Pjw4f9fl+kXudrSmnUXMr4/Pry65dPr8e3UgqgpojEXSJg9Jrn89uRaibXy/XUun5dQbIiiHvcxr5UvVzn4+U0F+s2PpSSap2maRabpsnM4mK4clWd5zn1mxidE/dh05XcdZ0bitg4XuYiiCgij4+PP/74Y9d1u00fY9wfHn/3+3/8/PL6p7/9Ip+/TNn2+45TF/uOQ2BmJVOz6VwVvFSdcp5rCcTzmN+O85iVQxe77W77tH84Hk+Xl9fXmPhyvZYiiMQcTUEVIvPhcPjw4cMwDASYcz6fz0w6TdPh8EPfP37//Y7C9uHDx4ePH3/9+uk0HaucUoK+79VLKfPleoocUuo50GbTz6PMSQiliLECM8YQUoxL2a25Kzi0EpGADM1GF0MQZgJwaekzFjkWYxRZ2jRUqlmo2FKbORBTjJwQER0YUcWu16uqAAEyOhoypj5O8zzP09evX/71j/9ioB++/+7p6enx8TFSHM+X+XptmQi3iZKokAMzhhAiByUTAVaFFgipbT5HAAi+RDG12PY7lbSDawiEgde9wpGpCZ+JqJmx29G+sXmIQXNt27OIlFpExAEBvLXjESG2zaE9Ta2lai3FjW9TnnYSVBFehqOQOGgf+yEVK6XMQL6xbdtgGvBaJ0FkCioAQK19k9DBMTByTGJKRNW0Sm4tKyl2w3a/3R9ijIhoIoCOwIGTd4gctQgASMNDayI4ARgSQMseBanCbmYQAQGaXBmImoYKzdse7EBAQESLhhrUjKx1b7fsTVx3Klhk4OALW+nuRtbkSkpELqpE7EKQGhho/S/I7xEMt0V8PUwjevvg3nd6vKswoiW87X0cBgs1hjescG+Fp7v+E12Kj0VV22j7BozMjPk9KwvvxnnrfOp9YgiihqZL5sI7OrzhodtGtfx/c1ATuBnH2imm5ZxE1WrWDg7W0sVKyY1ysGUc5bief26D1yZGtDu8SIts3G5vqmn9DX+2vkW2PCtYmGZqNZiNz7xrCoK18LzRnTdsBWv8pqreOxuIIqEjSfMHq1kpBYmCG6/FkBSImVv7VAORaqbqzGzrKUjX9BMiCgiSSwVVFQRIKQVqBhF8L1LHRdRqpm3stnwiC5nXvJzUjDqg7XsVI6Nby2OzlqlfCwAE5hBCDK1YLBDHVkD3HkTiopprndVyi8AxFfNizgDmUFW9mgLeiCVAwBbb1TSr7kAcHMkcDdAQEAk5gGvwhO176N1Pc2Nfb5clMzsuEfJrzn6zW7aCMbU7LWPLh2sVo+bvY3e/5eh+i6cXgexdmCoDMhIGpJau0Yi791WQkKGdGMdx5ChFXBQQIEUzEKmigI7YWkoRDVxVRvU6XydVNdfWvOQaagEXP59knrTMeX/oQ0ocgNg001RkKl4RhEJ19mpTFUXkFDmSu7kKE/YxNTA9zzPHkFIazIeu3/XDPFVGwdDVVLFFHQqoojk2aqDvOt5sVITNQXU8n19TDKKTOeVSRauDqpXreHp7e/m//z/+b1++/uPj4yEw9n0KEQNSP4Rhu1GXa9mm61mlArcEIxWrY5bqs0dGRB4IGQJjN+wBmujSci1+EbS5lGmaz+Y1FkaG1HcKcLmMl8tlzuP1Ok3X+a+bP//048+PTx+3+90kpc9X6ANu4vQlXy6Xz58/H89vonOKFJhCpIhGgFLyNF3JciBvqEutEsSWQGeMhiQo2WQuJRejmGqtWuroY1Vd+r9SaFcPAJRSTArFoZGlKaVu03GMpdh4nT1XVRvH8cvz85//+pfYpf/6X//rZtjsH54odedp/vNf/vbLr59Lfe36Teq6EGPXdTFx1XK9XrWMLiVLnaZpnLpILLY4ly6XS6zoEEVxGuvxeA6Bci3TNBEslbdggEzDMOz3+9/99NPjQ084zfP41/FrCOl3P/mH73sO+48fP/7w8+9++N3Pn56//PrlL5++/rn4mZmlYClyvUwxBPBAQCl0jBZapnFL/Auh64eu3zB1jrYYgpxawTAgukMgwhASh9Jk1eaOEEJgA2bDdseKA6ggtukP4fpmxpRCYObrZWyeI2Z215yzu5tLM8tUyV+fn0OM5/H89eXLbrPtQueiQV1rdoCmrga1BryaVLmdqIioqraNBwEcjWypx0BANzdzbcYmdEcwUHEbUodM1koy3NBAwZsjTgHXJkFgZgwYHc5zMVOrKms2Izg6OgMzICEBUuCADGbL8XENIGXkRR7rLXKcKSAjB+4SaVfVncPXl2fnUMQMCJgQaRmUIeOytaljE0zhcgamJanU0MXa05LNbt+nuN/vt9utO5ZSSpZpmppCKUZEJG553dER0VZRzm1tFVlep7mCIyAQMGKr6HYC9Lupovu7wO42IDOzd8kXtNQEN79BH0ICFUcEJ21JEYjIpCTkai39vuF5ACCEdUMybY3O3myrtnCZLRoc7v6iuy0VQO9Ap/22FBPe1E93rBUCIDK+Qym4j4po0uZ7RopjeCe67uqBb8DrnjlbLqr2VnxDSq3Sq1UtB3e6qJtM6tYaGWOMkc2sFRr5nVvw9tyadqfZDe9Hjbdn6L6wIEhNsrXMBG/2tOYJwzZAVDNXciiojRJtMicybN2LhI6rU5TWOLGb6aE9ecJw2+AXAvRGHBKyRwAdcJtNGisGouoeAAyoI7vt6G2zb9bSWmvOdZ7neZ5VDYBqrbXmEEKpc61FtSJY82b40h/VntWSkOou7S5qKHwNeYd2YIghGAJUWXA+NCUrvV/5oiLSCm7by7wFf9xgfYOtt/hgUG3UhhuKySJvU1d1NQdQ92asATc0A3FwAyBwu7VTrBhxMYw4ETmQ+ft12y4HvOvzaBnCtPoebpfWzZ7yTVXDHXJjZnBrEPA2sKZ3KzHcX3I37nx5iwiZqE1yFRTht47g9kyKFLKshuhO1NQCuUpuiv5aq7dxe6tuN6rTVbVlkqVAG0Un01rr9XqZryqi+0MfYwyROKpzuGaZBYxAHC9ZavbjXFW86wZEllKt1hjjdjvkMpmU0+ltd3joQupiOgx7+Yhd2l2mchqnOYgzoFVcrvrWERUeNrvHx4d9P+R5DODPXz8f3174f/4//VxrdpPW+RkCg/v5ciy1vL49n8fjPF9fjy/ny2sa0uPHw2Y7cKIqdZxGFXU3E6uuReVaikWaS82lptj1Xbc/HLoUh75nAgRz8Fqny/U6zVMuWd2IueuHlIYq8vzy+vz8WkupNUNrd8Gwf3x8ePoIIQiBEwj4dZr/8ssvf/vbL9N4aedZN+uYN8MQY1sqzFxynnIZtcxaRdU5xG6/D9uNE0PgIjrNs5iHEGPqYkrmNo5TVSVmdRRTVS9SXTVw3A3bPnXubqYtPYVTPxdx9+1u2/X9XDMQb/f7/f7w8bvvHh4eDDB13el8/rd//3d1+/Gnn3786eePH56GYeiHDgAup+P59IZau4D90IcYmhZ8zvJ2uoqjO3KICHwZx7e34/F0PR5P59PLPF3H8VqWUAN7fNr++ON3//C73202idkMypSPOc/MO6lcFdUgpnR4etjvd5wg9dRv4g8/fRAt03T5/9X1Z92NJFmaIHgXEdEFAEHSzNxjy4qqOt3V0z3TPfP//0S95UudrKzK8PDFzLgB0EVE7jIPogDpkd188HOcNIKAQiFy5VtLySW3WsbE0OUFplPVTHURNDje3d8fH47He2SuVU/TtK4ZCcRUVVLg3TiOfT+ExIi11OmSRaAfRwpxKXVexRxj6JHQ7Vp4h+AmopUA+67vu44p1FJabUoTYqloqcXBQgrmtoWRkjvampeXl+fnp6dSMrq3ihAVkVykLoSYQoghInEIMaWeuhRiNEIxU1MkijGlGENgBHQFczDXOKT9/YG7KGZqDiE4kYJUFyDgFABRmvPTm40PYkxd3wNgzmVe87wupUjLVGjNJ0xM2FQ/zXeFhC1VEtZaOabUdyFEZEYmDjEwOWKMMXaJYuSQQteHlJB4rXXJGTHcHR/6YWCOgRmAUkip6wCoVDX3EDtEKmJO2PVj7DsxfTufX9+eT/NUVe4Ohx9++HG33zcjYs75fLmomagTEhJf62ZgW1C3tbill6O5i5pIzWUVq2YFUImJOMSQAgdCUtVSqqoFCjEmDnzjVpy2kXHbKAMTUpvJWhexmV8Zw9jAqZZm3hqXqwhSMHdkbjJ4v2py1bxKLbWK1m3NI0fwDZVVM6kmaqImYqrcig6RVExqBQemQIghJsRts3QTFWWnFCJRIAqBY0pdjAEAREqtpRZBxJhi3/cp9Q3AMnMmDhxUbZlXVem6LsSoqud5cgQKTIE5BGRSs1yLttiODYyjD2MQbNk9MaaUQgjuJlJtgx+Qt0S3LY2iVQoRsqmL3Jq/+QNmh+hk6tjAmNiFEBFI1UAVAQidN9C01QxLLaWUdSObTEspkrPW6mYtKt5Ur8WZZmqu7VyhaGZWTavb+0Fgs4l+gFsIt86ZK4i8ieVw8wEwEnGIyAyA7V5t2aKOFEIg5q0UYhtowB3WNdciS86l1M03UoupMAei1sAthJa6mEJkbhr9GGIAZLMtA7pZo7vY9V1PwK3UyxDNPcTUhoYqAm4pxRgDAEZiV5NatYqqEOC2CISrNjEwN42UeyklxgBqUsoyz1Uy4TV6BQHQiDkQq3ktolXcgWJ0ZDNQs4Z1AWKX+qEfwpZZqLa1wyIFEM0t0COE0MWOidtl7lLHGKjhjRyIWMVKztqQSwoxpoaIN5gHwAA8BI4xpNSn1DVPMRI2hQcydTGllJpzA1r1pNumQXW76vBCCCGkjghVrzgDADhVUWmSPqlrXvO6mFezMi2veb645VouazmprYhKqIEBCdeyzutimsmr18lkcZlVVnJP3AXspeAyy+nt8vb22vVpt++BdHccU89v8+nby4ugHe4Ow3gnxm/n9eW0IoZPx8O+6waO6M5E/ZDQ15eXb3nJKXS7cZfS0KexS0MIQ6AOgPtuN3Zj33UBkMz3w3A3jF/u9o/Hw/3d/rDryXW6nObz6fL2GqpMiEyYkLglMbe35nI55TLlMr2+9sTQ90GgUvI0/MXQKBIwZMlaFCoaOCeOwsqJLEvVtZQ5r0NeDrsDRwCMqhXc3BGZwClQDJGGceiHXeh6IkTgyDz2PTOjYQzpssw///Ibx6E/DI+fP8UpVvR+3D3cfz4cjpfTy7Iu2HcQUURqpYJaiNaSU4DQRabAaVCKIGAUOITQ9V0aAKhUi+deNAPR5sBqB0d3AQiRhqHvhiSma8nzfFnWMSZGhA0ZJQfA/d1hv7/rIhetuZTT5fzr19/++Mc/fjmdjsfjbrfb7/ePj49//etfP10+7Q+7z58/Pz7cE0OtdZ2nlFLk0BpIzEzFhczN15JzzqZlpeLuMopt9i8218DqLhw8BKQABlCrrGt5O0+AqUth3B+63i/LOs/z6+knp6c47D9/+cPnH38AppT4849f/th/Gkba7WPfp93ueHo9qzio5wKR+i5IjTlGAsAQYkhdSD0iSskl65oriThICNR3cb/fH3e7RHh+u6jYPJdcNMYoGG5H/UgMzMpgXqyRPAaquub5MrGUgkDNP9+cL6WUnLOBiYKBMhOiz8vlPI1pSFULOnShI3CvQuq6ZF2yg3KMZEYBQwj9OOz2+9h3Req0LjbPsh3ZCYmayQfVQQ0ROcVxP9493BkYMfvlnGupJYsbBQxdImYy4RRDiQa1iWda6wMAlVKrijo4OAM7OTPTO3QeEAixheswQov/ZGYOMcXUxxiZIrbkqgAUIscOKXDqOCROHcVekV9eXsTt6eUNkY93D7txDMQG0FRtMUZAjjE6UHQQQENQt1zKUnKu1dEaSE4cmuIZDN2QMAAabDmY23lXGhL4jru8Iy6/17uYqkvVwKrk0PT49jtwCw3eT7ofaI6WztXEWX794fW/dGXuGi117Yd2r7U6E4sRa1NlXQ/o2GhQB2e/Vh/6BrQ1cucm6/YrYGlbiw5cvX6wIWfNFgdNLLh1sADQ7VzesrKIoEm7YkoppQ3R+eAQhC2yVUWkedhupsKbMuYGb5ld7YsfAiMQbiJ7/HB9NmbzZm+8Ilsgwsz+8Urbu/7+/ev2gO16vNNs7e/C72BO0XKtU3cCtypSs2ptujD8wCRu4zVYS513sg0ew1buFG/PKjLdILT2Khp56AAtysvAW7ItIiKxugFAM6AAIQCJA6uWWts4g0iIQBSYLQQYhsHdl5JrZRERqSJV3VIMxMldHCoYhhCY0K8yTnBEYNgMNy2CqWFSDbV9f79yLURkbsRAFEJz5PlGq0mpZsa4WfngltwWmBuitQGZTQvXgGEDU0MDa1iymaGZqImZm1ZTALdaK3Ik8taoYFeA8N+Bl5u0jijQFUEEJzO3axoIAhMFYrgt1P/w6f54F/0DbrqR8kjg79HEbby9mRPbrX57nNuNqqqoStcLrOCuJiqm1ESl7Wbo0jDavuhbrn11US2LLJCXrkKXcDempiRby+LLpRaJYJGd2QTUDIgrWTFZLbMXIPTdOAzDgEQGvKx11fJ2XhVDP+yP98fU7y6T+NkEl2AAzlqtZqF4rb1HA9ec8zxN+3nZHfuxH5EGkWDWURicAwCsZTmd3ublhGBD4EQpIgdn8ApqLmpVrFooUpg5Bmo534DNwy0l1/WyzOsUI5lL10UgSH3sx44Z53VaS15z1mo9990QIUZPqVDAGmgtAFBVcs6Hw4Eiayv2s4oIEBiBu5j6PuwPu/1+n1ISkRZAMgzDw8MDYagFtNSff/p7jN1/2v8vXz5/Gsexql8ulx8/f/n73fHXnzFnQfSeYrUo1nQqMXIKIXVdTykiR12LsBVD5K5Lw35/p+BrqbHv1mJ4df8iMLOrKQG2Rpd5WZdluVwmZhyGoW8B39dbijjeHR52w95d306vT8/Pl8vl119//fnLr4fD8eHT577vDTD1w5///OeccxfDH3/48fHh2JI7ZJ3u9uN5v5u0olPNUkpBdxNfpnldLyJgAGq52gzIZmYQ0DzGqKpAzpGIQCpczuvry+V5d3Id9ocY+27YfXJaTi/5l68/T2vBFL6f/vjn/Jf+sEOm4+Phj3/+MUQ7Phzvj58f7v/w7bfv59fL6WXKlzN53iiAa+oRXnUtqtqGQkARr8MYmfn+8f6f/vCnu3F4+vasYusq05wxpqlcExRDGIYh9tG8VpkN1EFNXKqp1mk6Lz5t3S241VGTqReQCuTgWYjATDhg6vuYeKc7IvKINcubnbAIiUWkSBhStFLMHQj7YXh8fOx347TMcKZStRRBMOaAQKZiVdignfuBAZi6oecUq1kxy6+11lpUeh6YIyA6GiGnFNU1g9VafYFGHzTv1Y1C4rYiXvUKWybkxnuGxisxBQ6xuQtj6JrlkwADxpSGlBJRoJhCTD1TN3jqB6Dw/fv3l5c3NOzSbjfs/SqOQWDueuZIzI4UiUGViGuReV4ul2ldCwB1XRyGPXN0B92irZE5Ml8ZLtk6cc3MDVts920V/kiube2MBro5tyuRpAY6mF31MHaLZCT+HU0B12SPpiJCuzYKwJZte80macZGfGd6SnGmGJRUb5U4tp3+t3zUxiQSAJgabRt8E9PYFu/pjUBpuVMxRmaMkYkI/dYLpDemj64tdXh98Bu31X4r9V3Xde5eqyK871WAZi7t+nCLAL+2XH/c58yukif6iHVdd/sPX21YdMRGlbax6aZ6djcnjMhE0Kb/poC86dm3PRUNaCsMv9LBgEzeOqy3Esb2fByuoe03xMtFVYq7tpniVpO8jY+iaupuhAhk6K2S3ImIg8UYAycmal7aTXEPCIAInBBvCf4GZgq8eYHx6lcG32L5yBTcDLyiE0FAR0rh+o6EtrDnqqqaS5GlilVEJkKKkRkcVLWGGJnRRa1FXl5HGETkplDb2MZ3krdRoqJrCKFVYQaEwC18V0uRWqtWIaI0bON4+5UYYyAOxG6tB5ro+oFyk61fuR3BVQDAWVSrWWiVl2qAWLEWThEpXJHRbWK6yaca6YnesqKNiAKkdg+bea3V1Nx9XVdwQk4UIG5WD/+H0aoV2H4coVpwBlGL5N2MCIjEYKDWggCZI9EWphq3tiu8fU4bOQEMAcOWe7y1a2sbvNpfDyEMu57SzvkBMU8B8vo6z7nK3FevHTFBIDBgBDYDVOuJ9l0sdTECUVdXq4tkR0mE8fPDPcc9xwGYINlcZJ6Wl9OKyPv97vPnH+MwOs7Il8B9q4guWZclE3QppRa4aODzPMd43h+Oh+Nj3/dO3q3eCWEY9vcPh7tdrutvv/z829df83JmspS6yImAQBmMwdAVXCE41Jb7GAIwJeZGcmNrPVNVR1Upa1m+fv/W7zogD4Fyzk8vL5dl7kKX+tgNh86xE12BOilpXmsuZrbWkqWys5ouZdFSQyQmpJSG/bAb+91uiF0HTs0IxkgU+NPD4zju19XeXufztDw/vf7ln3LikI73TW33fHwZx30LralVuz4ShchxHO/u7+++HI+H/bDvY0DTaV5oWpZS1uzOQJFCdDdENkcDMEdzVMdAFGJnZKDKxIB4PneAvtbsM4zT6VgOqQsbbRs5xv7L5y/3d/c5Z3O9XC5VtInPdrvdw8PD3d3d169f53k+HI6HnQxD/3B/dzjs0DWi5cP+88ODLNMzQlnmNee0BDQ0AzUAIHUFgCLFZzQEVQWMzBy0AIBZxSbMLXA+T89Pb7vdHsmzhCz5+NB13RAHpnCuXubzeanrKpfhbj/sdt3+P/VD6sdu2I3Hw/H+8Plh9/3bb99+hq+yYl1OkUMKwoHwmgRNRE3NKVLFWzKnMPfDbvj06dNf/uNffnj4tN//fDqdT5cJaHbiRS4EGJnSMN4/3O3u9mp5XoJYBjBXUHXNnnPJ01KKu0II1DIOGrECkGHrI4NaLa91XdcW0xBCEJFpWefLpLn0FA79eBh6TKElZin4zhQDcwxYGYl8O1FAkyWZgRlQI3MZxes8z2/nadj15o5MIcXgnVYUt1zqdnQjDClRLVexziaDg1vYPVGgQOjoSC3+KgRkan11De4wQHbgGEJIMcYYupT6DbdHZEgx9RzCVgbiSBhjog5pHBfm8+XyduE55yKizOBAqo6ozAEQ1c2hHazJAdaST9PlcrnkUruuG/px2B0Cd1rFTc0UkUNIbapWrdejMX885oq0Nmi9rQlXHbQjmQoKWgityI9MrwVyiM3/dZ0heIuJuAX/XHedBmrdxoKPKpO2ZrubYVPsI9bKKaobfwBLmih7U7eYesOB3OBDkta7n65Vbhubi+umA9uGIXJVaeqRNgW1BBBAa3EYV6XLJl0jCk7exFVtMlNVu6Zt3UDBNnjFlNoe9hEFuW1yzUSLW2LtO7rwD4PXTT3zUX9207wDBBBp7NFtvzSj219B3EKVGhSpqkTerABXeOwWhY/u77FkbYbDNle1KHwERowxcriBZ6ZaBVHFUB3A1J3A3zNmr+JrZm5JpU103arTmRmYsXUOqooq3aSKrVcdHAkjtOPSJvs381qFqAAQoCJG4sCMMSZ1r+pmtpY8L6hKwGhokTFQqBJUIcbIBALA1f13wj5CYEC9xdBddX6bvlPNACylxIyRiMFN5SY8MtGu69q5CraQvHI7wXrLrfVN9GbehOfqrqZVtZq3zsp28aRBX5swD4A2cwZYAyAdmhweromm+N7p2SYnbOP+tWi0tZJUJomd3Q4YV5zsH+sW3jvdzdqU33wNbV9wQnJy3LoBQggxCjNHDswcIV4/ynBdZNqBHPzapIBu/r4stJRdahlD3QCxt5SkS3Q+Sc4va67LkmsBcA0IwJBFGanvuuMw3I19WaFKXnJdSpU8WdWAvB92+93nw/0fIXRTXrOVqbxO07wsJUTr+3F/dx/T+PyqBkycElGuNs/rJcZInFICZHc0hVyWeb6s69puTamS15pXhZCGND7cfxaTvKyvby+SV4bCHMGDVKjVVMCNwYO7BFdxBPBE6BwQkdRAzYEEmRCAIrv7Uqen1xcnvywXIhCxZVkihO44dLv9fn/EGJcqU9HONXXL6e3Ncl3zPC0XJ5Gi5/VS1xxjHPo0pBiHXRpG3hoG1vk8r9PsVVIKd+Nw//BYBJnOa3mepun79+f7T4+f7h//8PiHZZp//umnre+FKEbejYfdOIxDur+7//z46cv9/fEwDin2iLmfLuFEeJ7KKVcr1dUhV19zXUrNVY1cAI2QQ2IObFaqNtl4CNQMLCKyrPO8zt3QKRgHjM673e54PN4f75dlOV9Ofd/rZc7L+vTyHGIXU7/f75+/P83z/PDwMHSxi3E3dH1kFTPmu3H48dM9agHTr1/Lus4hpxD7GLvhMMThkIsQBUdUhyxVsqi7OToYuiro1nevkFefpnw5z7v9XtymdclaPn+564a+PwydyST6dr4sUsbT7uHz45cfv8zzvN+Pferu9/f3d5/uD48Px4chDQkjOudJoZ7yLNUUyTcRh9Zcq4IiAzGBYexCGtLx4e7HH7/86cuP6Prrz799//69VC+yeaZioLv97tOnx4fPDwr55RVyuSB6oA6RZLW31+lVnnOuJlCqqS7uHmPDBhKAiQkguIOIaK0uGon7mOa6Xi6X5+8vmsvdMDBzTAzi5qYqVvwyT2/nUzZZ1nVelytXAuLGRt44BUQKTIymdV4XeX5Kc6xVl5yBwjjsMZa1LDnX1BFzYEAxdSR1UAc3QDHctChbnW0AInNAI1RHII4tJ0rBCUMI0YAAKLQ4bArIgTiEzcId0CmEjqjJOECLkDVdDMfUh5gccC11uizLLvfDQJFVBJoyGMxa5QkxYci1zPN6Oc95rYjc9+NudxiGHTm5AqK0TS1w0zNVQzMCZjR2EqFWSwLF3VXZzURqrbUUESluimQC7uRsrAZbmFbbpYAcTNxak1yzwxNR09i3aoH2H22wm/9uknjH2DaKcUPbTAFI+/eUegXwlgLZ8LVb1ittUws4NOWkOCiYNyTg4+xyy7gHNL9SRapKhIECXZ9SUwWZuF89idfdwj88VNv2rGG079TbteTxo5f+Hwidm4b9BrNtm59vns1r9NKNyaR2Emg5tO7uyEBGH/ZLDYiGYNSGT0RUrc0EDACtSstR2D16Q0QaEyRIzlfsJBCnEFuenwC2Xh4yIt4CGmLiG+MpLXDUVRtSBI6uzRB7zWNzaYKThu9cv+kIxEREqOAAamYIpgrqhkDgzLHNbO1Z+bUErGUO51zduCXGp45jjBTi7grvFck5Lwaru2O7N504RRIMIWxZcCrXu7fxjg2SZcdbTG68xn7qRoD7NV+EyKTWXESkFlFvXaSEwODk2025WS/t1qLjgL+DkN1d3Q1cwZSQwNRMzIJdY+qQvMW4htZFpu5uH0wSfu02aE1l5k0Lh4TIRMG8FTCUm+/1Y67HP3Dcfj0+EbWEuPY2UfNxmm/dSswGAMDb49xOZU1LwBDbZH9jG8G2K8DG0ApDAZnJHA3tendjCKkPATmOAjHWEMTgfJnjtPi6zqZlXc7kEPuYunjYDYfED303BLLD3TzPWs+5Zl3ElboAsUuPx+OPf/wxDXeXdXlbz3/7bZIll3nSBO5ImAhjFVhnlQoScFnlzddInGIMXWKUIrpBD1IatgdLPp/Xt7fLaSr9PtTiUltlNIUtTZtVvFRzkFy0VBQlURDBoLWgu1LVoDEAM0dGixiCNAI/BELEAJJL/f78crqcG4/CzI+Hh9T1w/6wOxxCN9Ca8+XClEKMUusil6rlMp/VRVXnvOa8Us2G+5CiIhlArupavZbT69vlNJnWnhkdAjGnuBt1HNdc6i+//HK4PwxDt+8OXey1mlVNofNu9/jp/tOnh7FPXaD7/ePj4fH+cH+368cU+xBK6INH9fg81znnoiZGRcpUyrJmMY/IrdskdD2HZGaKq1xT/rZTIOqS8+Vy6brIKcYYHD0mbvWyANB0rzMuterz0+uS6/Pz8zAM6PD48PBP//HPnx7vGUFlLeuylNW0JsTjbtTj3fn17TtRyZJDlQGHcdjfH/p+pJD6vjfwOa/rWi7TdLpMOS+m2dQMq3tFhK31xr1FCiNHR12yTUvte6SA6ipe5zzN9SJYxkN3vrz8/PNPzHzY3R3vhsNw6D4fxnAPJepK5+flNV0ueGn7WSnlssyn6eSu4oUCJg6IRsZIAihIGiOPu3Q87h4eD8fj3TQtOjujEkhk7vtwPB5+/MMnwxJSPZ2NmfrUd2ln1fv+1atIfV1MTUArZMpmt8AYDCECSlsKaq0tVi3G2MLfz+czqHWBqxaxKI5EaIQOflmX375/C2+xqhSVUpokF1W9qhJACIkBHRyZmEJVXUs+L3POuar1qeuGPqZe3EQMWsoFYVW/Nepcz4XXUGZABtxsxIiMaEAE3CKTCJSRmGJovnphpkgUCJkoABNRQI7kpIgIZIRgLmYtCzJ2KaVut9tdLhet9nJ667rhc0gpArRubzff7HWOZog4r8vr6XSeLuqWhn53d7i/f+zSqEUJPbCbq2Hr7FARRWBChGjRXERUW8fvpswo16+t5xGMts2UWlCntl39use6YTsHb4G5G9+06breJUTbEPaeaP8OfdF1G7hmq26jCSE1CHOry93msjZYb50E2CLG7Lq536pjHJEdFMnJaROuX2EzM6s1i4hvBUw3NVUFJxHRullZmRm2Iky/7Z23P9R4TL+aCnkrU7daK/CtxQg+PrEbonYjMRHRHVV+RwB9/BV3N3jf1YCsiQdvP/0Y8fVxT72NkgBgtaoqxtDyF2rNLorkodFP4DeUzswQHTVKu78/JPXf7IoAwV3BAzbfChgZbSgz4oZ5lAIAjcIGgJbSv42kzEQt2tjQGsJmVYQMzFsxlCEQMiLybeAwM1Nwy+qg6qLedV2/o9RFoD1Qu6rG6byuK7Sm0Ba+ehVaMbPRta3pNttCaDSrO4o0cRVRDDfvYsNKCRwbnVzWUko1Z4oxxRBCW7JaIHHDRK/ol4BZRPLmYdHqrgTtE69oLR7PwNRUpLZUv02oxdzWDdq4fmyJsb9r27xlq3pzCwM4sVuLfBGESNg+lG1c3mJRP85eH+Hnq0sR/v2P4BobAWxXYBu3F7g9Gt8e8x3qtpYUqK7WPkwhtYWGtQkuA6VEXU8h9iKoMq9L10T5zOwKeSkv307uMOzHH788PD7efdqPRwbWChyEJTijOaqhSgjeB/7h8fjHz58PD19Wqb89//b68hNIqctKzOjgYtl1PufpPK9rhWhLQLIaGbs+hsSBTUwxcEgRyEXKPM9Vu3mqy1znqYivFF8NidmnaTHbcniqWlXnGIiH1Fk/eFVynIKJqYuSgCglII6UqPVsMteqCuyRyQhrzWKynOf2HozdYAd2CA5kALXWZVleX19Dl2LkhhWp1mmdWsC6gmYVyQKI3dBf1kwYArhLtpIv52U5TYQmjOtlunRvgEkEUkql6vPz89/+9rcQwuPj4/O370/fvpvol8cvAPKHP/zh86d7DohaHu6Ox/3j3Xi4G/pIGAkNK1NiSkwRgoWuA2Y1L1WymoJDYEodhxRTDxRMRA3Wdb3M01pyW00cvNZ6mk5pCHfhLqaEARF9ybMa5GVdcwZEjoEcl2WZ5/Xfpn9j5h+//PDl8+e//OUv/+Gf/hwRn59++/bLT/OrlHmqeUXVAMCArGjiUjwvdex1GHZfvnx5/PL5eDwQ45pzlfx6uvztb3/75bdf59nX1RRMQZwAGUIITDGlEELYjcduDMg5l1Vsqr6KXziusSuOkHqNvV+mt3/5l395+vp2f//5Tz/808PdD2Mcse6SPyR/xsq6Sp5zXtd1NcR5Wi6nuQ8BHSX26E6A7tXM85rPT09fn1++fXk8cID9oTse+9eXULUwOXh198A4DvH+4UBBHWaklRjGfrffHckSc8yXtZSqcqoIqiDiZhUA2jCTUkJiV0VUKXmezq+RSynzvE7TVEphQHFTN0ekwOgQCQGsqjw9P4spAGDgGDoiRkDRWk0TRuJIBI2XBOJAsajkmi/zUsRyrr1atxs4dUAuZkWqmUlt/BVe+3DQDQG2sFZyAFUwJYCGGhBgO5ciEiMyEjIFhFb9xswYGJgcqKojCEPcdBsUKLZcCG5jWdePd8eHUvXl6fX19YTIaegf+4Eo2Gbu22hNB8g5T9N0Op2WZQEKu/3d8f7xcHxgj4bNtYSGV/GTIYIgtpodRgaAxax9hFVVRVtrUVETc/UWewZ4a7oVsSIVAGIjJrzhHkpCzgrtgLDFzCNa6z60Ju/xG5jzu+EAweG2m2xkGb5v4RuSdB0jWg2LAoZbwqo7OKnphpHAJspueyYjITkG3iQqLlpdVSUXB+NmftsUwYqIYKIit2Ki27NtFUYfrfK3URWukuo2l5uLqyLEm+IYPmjIEO0jBnbLHTC3Nrjr7+qUNpYKtjrGZgS9tgxdFVc3gK09h38cxVqDX0tacmvBW6pqIkhbEQET3B6TGQGYUkJs4KYTEV5bK4nae8juAdo+7Qhg7ADotl0uNDMpxcwA6wdlGKo7ciSgENgR2I194+BMvQV7EilyYI4EiC10BEDBTeGajAW11lxKzqla7fs+hDTuesN7ThT77nw+F6mthjmlCMqNem4iPjPza4cBtTsG2dsGCVZZOTjyVkePH4T2LbWrtcs3yG03jiEEcxcRxkAxxC5SDECgVc2smTBbhWhjG5vEqvk9CFCluqsXDA5qJArE21Kz6SM378GVAL06VMwMoSXwGQCoIDSpRZvBnIjYnRwRObZTk5k11whe/bS3AeuDuPBdQ/bxKxKrA2yaRaJW51zFvTUXvUs7m/9lY9XNRFxEWIlCiDG2i2EODWxuv5uiu0Y3LsVKNjdKcdBuB6Kvy2ldYV7nnrv7fgcdkSFWyVBlEagenDsi8tRx6Jon1rQnTEM3d2EIvku4H3i8O4zjaOJ5nqe383yewYIHMMTstIieyxpy6CM4h35/QESEIG6XaUnWF+GqUCrMb/NSfZ7nboymMyLEyOYOSCH2+8N9Sv2D2DRN5/PbPM8BBdCbsQkJOHECYiYsxdQRtKoIhhATA1Kpue9i6wKj0JvzWuV8mcypqj+dTr9+/a0bh7u7fc5LrutalsTOQiEkY1SEVWqosorOS44UIwJWtSI1S841oq+8zKe3wMlCVy029eK0TN++fUspTdP0899/ef72HQw/P37p+/DDDz98erxHt5Knu/3+bne368cx9aBC7lo8ZxUBR6IQ09AjR6MoRgaIxBQjhUAxOTIgqFuROq+5VenVK/RSVZa8Lnnd+RhCFyC42rJM07Ssm4DMU+qRqWRbluX792ctBREAAD9LSURBVO8muu/HIXWfH7/85Yc/RSDUcvr2m9ayzovWtZa15gLNRm4oosta4lIVPA398eHu06fHrmeR4oRvb29rPr2dn3MpgGjQzmbQrg8z92lg5r4f7x8Oxaa305J9UZeYcB86Tm4Ix/v9uOtKWV9fzv/9v/305eFPb38uf/5RHu8+BUjTqS5nqdnKXMqaSzFV0FuYDAAE557A2cHI1LxKmb59++np2w+nH44M2CUYxtAPtBbGxhm4OAgHGPsQujivfa4doo99fzjsGcK6rvvDeD53p1ekrXQEtLaXZoghpQBIwKyWzWVdVzqfG/Ky5FXdiIMjaANCYgA1IkLXWus0T9O6EFHquuMxhcBg6LmIQoyAgREQ3ATACQADIApgVVf38zRXd49h2A1INk1TXnLbX1XcjdywSSFbhCQwtbaVVgsO7tCed6sqcjAwAg5ErWmJEJEbzxgBWR1bJlLiwADeXOe0bXzIZO4xxru7OxGZL8vb2xsiHu/vHx4/M3HYovoDBib3KlKkzus6r0tR6fo0DMNutxvHfZ0UwQgBA5uborSVt4laEAGpvQBqR+F/FEi5N9zIrmGMLeS/qVva2h2IwGHrxt4AKWD6UN90/Woapltn08fDsVm7aNfV2r0xlgAATg0ME7OGJLXHMbPWP9Qyf9gJnPSqL7lBQYDtxW5YDgBsVXdXCTnxhwP6FqyFALXJw25ZTYiMCIh6ayL6uGNdNWr2ruxpmUbIH/mdj8/tH2CGplyXd3/he1rSxwm1YW23X/9oQPu4QTJfk+3eB68GP75fGW/+RzSA26/jx18xsxAZIIqrmX4c7D6ExYZmDkRHd2VCbv+/6bFqiwXxVhDCbAjgxNcnjEwMV1XZNaPLDMyVCMjJXRioaZER0TeBVLvgLb641lrFDRGHwCGE3W5I3XZFz9Ml5yqt4BCt1urXFwnXZotWHsWb785bZI1U06R8BRW3u87cxa19ds1cLYSQUhqGobmzq2ye2VZFD64NpKQWIwjmrghtNXEE401O2D6SjlUqoDlXg4hs0KwKyIYGqIDgBExbG/lHOLMdfQDUAdUVAcEcyb1legDwdoNtH60rev3vR6uPd+m///7HEf/266pqWybte/zv9sTau2yCxmLKZqlJhlJwkJYNd2tKcCMzkCx5zuu6untKgcchgc37c61zWeB0Op+G7gI0BCIpFT03NTlgHxJjjBw6CueX5xhGpBSHVPJMCMf94PwwPhyOuz0BrPOynC5lyX0XU+wxRkfJBKv7KpUDcwxDHPuYahV3WmuB0MQ/QTwvS8lqorq32HcQ+46DmlYiSuNuf//lePfAHNa1nE6neb6EyD1zCJgCdgFjoAgYkDlFXaogaAydopZSQ+z3d0cwTSk1XJooLmv99nJ6Pi3u/v3l+fvLMzNPD3chkEixVtQe0MmBnBNFS4ZwWZfACWDuEFmVXChEZl7nCyNP5wtSyk7FY7+774Y+SrlcLj/9/Ldff/315eXFHR8fH4cxHY+Hz4+PIYT5co4Rx7i7G48/fPqEqlbyPJ1L1umyPj+9iPnx4X7cHYZhd5ozUqCQQgh3d3fH4zF1HRACoGpzWNRctVXT7/f7phCa83yawu5uF4cRwGut85xzuXrKYhhi5+7NCzh0/ev0Uta1NYg7WIJ02O0P+z0TeS0giipgUuradV2/271dprlCQeaff+Gh4zFwzzvsthYFsH7sW0B2KQUA1MEMmNAUEEnEwENj57quG3ajIaxFh/14CPsiec5rSoGZ81peXl6//nx5+nW+vEKZeHqULqTT66lm0+KRYp865ksbElbNSy19wtRx33WlqmaJCQNjqfPz09e//du/PtwN9/f3SNIPPB7SUvK4i/0AkgG8Slmn6byPw2Hfr7l/O73uxwMxuGhMjOhqNaXgXomBkJpYZJslmGOMxCCChiIml+l8Pp8VULKYWTu8hRaJ5MbbyY8NtCXTMjNeN0tijl1ScAdUNyTmGItkBW8X73B3DCE+v7xNlwW4hrXELonIy9uprnW32zHHEGIIGy/h7lZNqEZsJ3VAtTauKlIK6GoxsBJqO0kDq1sp5YaFYDNUmxKwg2truAscUpdS3xZHc891TSmFLi0lD7s+9dEBlmXJOe9S7Lqu6ZaB6eY5nOe5vfxxHIfdGLuERKpCxBjYTDCCVXdQAwRiN3UV8K34+TYfIG01aohXs6Erc2ridHdXADdnVWbOuQhzZCIidXOpwbElBRARuYGKXsNUkVBVQwicbvkR1/reRr25q6iIqXsTAUm1nHNYlhgjXMOrzAwI1BWcgFOjv6yI1goIBGgtqJOaKt4AoGWhbtAFqKq6KKhttmUK2MIjrhON+caatpKWK/DQfobm2oz0t7tCpMlcoNXPqWqjKcVKS6C4oWIfKRsEuvGSG7/jbQhyAG8xFE2GX0ohoogI5goVkbh1SJmjeTOPoDkDRmLiLaB1e8kOjI0bR2ipoWoCQoghBANrFjy/1l0DWDvgubuVDcxgJtyMqxXx1sQHRNDiZwkIkQIDoCGwbzmcigxoTkDiotraRt+9L1suWkiEjBAQi4i5ewOKtFYR4wohBGQHMIrbANHmjDbVzfM8qJiZugzDgIREMIwd0jGkOE3TfFlqrQ7IHJqfuhWxSy21VgRMKTGSmYXQroOHcG0Wv7LJt1mkzesAEELo+74LMSC0xga61nrWWilwEx9WESNiToG51vzBG7GFMqCZiDTzZlOCbvZoohCCO6q6urc0t2YRZY5iJrpVtjMzgTV6sRmJNp8CMBMGZgAIGAjZDVoQW3v+jfZlirTVf90EkbcuVIwxhsjtyapymyxVFdy4FUVuzRO+3RsUW4IcXONtP54lVJWQOCDWawQrI4CJiLuUZZ6XUykzugaGFBJ3uzmolPta15eTTWf5zX4N8xl3u0PkLLlqZcTAaRj3IT0YHOa15JD/9tO/vS357vHhdXqa5nnc3+0ex7uH/d3xoYg//foKpR5Sl4buhx9+GHdxXt6qzxk0u0aDfRfGYWe54lrKikUVqyqkmPphxKLrss5ENOwjx3h32HF4uEyvJdvu+Hj38Plw95hijxiO83w+n8O+P4ibO9dqtSoFJQ6t2jNwFNYKhsB9HzkSU3j8dEwpAcC6rlJqVYQlO4qIzEvOuZot4tLyn2MM4pZLQazqzpESRHcoUqvKWrIaRtAAXmpdi+RlCRRzzl3NgB0TVslg3nUxV13XdVlezucJEe/vH4/3u/v742HcmWq+zOIUuOv7/a4/uORsjsp1hbJIzlrMGJBicAxETDH2/TAMw/F4PByOIXbMsVZxdxUzwBBC6oZ+zMs0u7uYabU5r1OeUumZOzVe15xXpRD7PsbQKQAoSF5CCLthrMNa1vz969dvv/16/ssf4x2AGSP1Me33+7JObqXv4uFwuCw1TKs5rmux0wUDd7sudlzrMu76/X4Xu7Su61oyImapl2VZpqXWzQNSq+alnF4uQ3/pu4PcH/oh3t3dWehTZp6BWLhY9SxSzue3vNq6lnleqRtrsbzqMhcLbBpSHP7yx7+AVQhWJL/ixbntNRZjn3oG9ypuYArKbqo15+X787effvmbQEZHjobsiqUbw7DrFsnzfHl+/n73sg/xCMG6rsOtOEXBueYiUgCMA/SY3B2Ra60OStvW0JAJRIy6LU1WRAHIgNQk11Jkiw6vtRa11kfRVp/b9mxtIkZzJozmToZoCEhgjIZspo4OTCF2oUsckwGJ6lpKq3XDtAm6U0ptA1vX9dptjBu/1ugJBkLoQowxugEytXT2li7NwIjcjriIjCESBgqRkNtkGEMXODK30CNuUxRzxMABYbfb3T3cL0te13XJ5XQ6dUMfOGLg1p8hqrmW8zRNy5yldn0/7MZhGDBwVTFwxmbbRXdpiVmmbXhNYp5zqVUQKIQoYszswG1W4DbVmZgxkpsFg9bM6FfCUbrY3ZAY9C001W+65SuqczUzwi2kqqVywFVq/Y6KqTUTmYsBIWPIOafUXXd69DayXFfyopJ0S1HDwGRguAFj18mjqWta7UlzF/qN4HtnRsw2db75DTEyMwe9In8beYrXXP4r/vT+QukDNNVm2dh3N3TwNm81RcjtAW6v3Uxu1+eW/tXgxpv63j9WW4KrVpHNXHBzk93iMG6JGDdQjW8F1a7m79TnP2ByN3TQwBDRxM0UYAsfadNzewpX5rQJ7Da590feamtfbugNbChXu+AiEkNqrzSEwByZuRSpYgkNWpmpbQ0RrePBc22KO+SN7Lyp13POcHYRSUPPjCkF965k0b71Klkb+1rwRDN8bKTqtRnTzGoVIooxpJaRSuC4NZDTVbfXDGp936cQY+yIqNZKSoi0JRAF5sCIaKq1OYKbni+0TA35aBY2M1AtRZCJSBkAEePWCxWatFS1NQ61m+9dR+VXi2uD8Nr1viaXRt/8wu+ej9vZA+Bda//xrb/+7wYPE264taoS6kco63YTXvHUDXsTETD4mF231eim9nKwVb9WWc0gRObQml691ipSSlncJETqumge0GNER9gt0zSO41ov6KAK8zy/qVZGRFS31HfDMPa7+65/zLZzttPlvArMVV+nt8v6Ns2nbh+Pj/ePn4/jOL68zWAawA/7ftgfhrEbDkOxtVYxYkwp9JE75hAZOBczMDdICNwGY6Jh6ELiw/Hwww8PD4/j/X1PrOfz3TyvwHHOsgfud0c3zBVDguDEWkFVqk7mXBViEseoqhuZ7R4Cj/tdNyRmfnz41KWEiMuyTNNUi6qZm+Vc2lteSilaOPgwDCHt5VaPErjv+8hcq1ez8zIXDgkounfkOa/TMs/zRJjGsU/D2u1SiLSsi8A67ndIcV6Xy+WylLLb7R4fHz99Oh7vDwFpvkzPxA3UJ47IEcxNl1qsFJWCUr2axmpu2ORRCDyO4+Px/svjp+PdPYZYstQqKk0rnVKSruv6MuacHVHR1S1AXaweUIn0cjlP5yLVd/u7GDlGdnEV5YDguBu6tU/TdP7Xf/3Xf/mXf/nzn/5w3O36vh/HcRzH/X4/ueR1DrF7eLhfq+eipznnuk7TpFpTxBRhmd76Pt3fH8f9vtZ6Pl1yzrXWdV1zbsYUUIFV5XLOh7Fc+mU/rJZ1/Dxix6vNRS/DyEBi6Jztcr68nU95oXXBWgW6gBBNuWRHdaZ+f3gIQQwmgeUyv87L5bIYrNM0p37EaAnB2+KAwI0pgABPr0//8m9QPN/f3WUoFddsWUmblGme5+/fv4/HsR9odxxb3uayLDlXBhNpkhrs+8QcU+jAcV3XeZ6LqEjJmQA8Erm3mGMtarnUGAY3U3U1a9IKAJKqVqoCNsSlC1G6Tl0ArdYMhDEgMqEhOimAu5F5E3SomqMHJoohxAhEuRaYvTbBWRf6fe/ugI7mQQIQNvN4wwNUnGlDQQiZI7Wu2cZWgAoBhRA4JHEDCtgWIgyBU4x9iB1xRORAgTmGEJgTYWhmPndgjg0ECam7u38o2Z6enuY1v7y+7Y7H+8dAHNybNEdLka2l1LDrhv3+bhz3CJxzASdv/ZK+BVzd9Elts8k515xbxmPz/DNs5WuqzZGOVwO8A3LLlzTTqgZsCcHApeVfg9FVPkJkqo7ozNzkP3p1pQEAYmtURHdvMzQiSHt/1U0ahAgKHpxzCJGju4fAIQTY8qfaVrbt322LaJUmH+g5RITAjOjqSsREYGaoiIotQjlyuNIcvlGdVyawHfEBCGHzJ9ItImuT10CTJL3vW9Z2RHsfTL0DNQNpI0holBNZc7+pWYtnZkA3V5HWj0lEHDBt+KgC4bV7Xs0U4Jp3BtCCknBThal7q7Lhlv8nYqBGTuS0dS3bdfBs7JtZ269V2mi4IV4fN2MDbzopUHF3JmgitsY7t34DdDdRB2XArdRli4a5Ipot6cMNaSOhzb2KhJiaLISZoyGHhJSxFERyZHcsVSu0Nh6BsHW3E0eOod2QLY6nuZhzLbXWg/swDAwcgrdTEwpoqQUNbv5QqA1fQjNoRzJ3R6giXdfFLqW+i5EBt3BdUwEiBTRXMGXCbuj344iItdZaKhGlYUxdx8yOAESu73FouNkbTbRYFX1vM5cWJa1q6ODhCnpxjCmlmBjJAcxEP4TJ0fXscY2gcyJy5GupewycAkd3dwKDYtezDSNGZke6DmSwlZyiARq0SwFbxHFgiiEgohgYgIKzN6n8exv9BpAzIPBtmDMvrT4XgJvaIsYYQwohIFFT/qk5NWEJgCtX0VpBXErJDjB0PdEhUHYLzNLFVNcq1YFZcqaac/XXui4OfR8NACLt+/3h8Ydh/yWXpLy+Ti9rya+Xc/lN5/UcOvjL4cvn++MPXz4j4uW0aF7dZDf0Dw/3h+Ndf7fPWuq5aJOwxCGmgBEdxCBUWwjUXZksJuwSmVlI/fF4+PHHH//050+fPt8R2+Vyfnp9fX25ZFEn7oYdOBdBgxhepskN1Q0A56JhXrphCLEzgyJWxbayboJx7A/7/X7ctaSlwAmcFlxqFTOjwCl1fTc0pm6tAohhSGTayu84Bo7EsSNHN1zK7CGZczZdtZbpfMlTlpKqT3nmpQv9kBLUknOpqQup62awokWkAN5xCKFPwzgSYq0VkIr7mutlWqdxRZW8ainmFmPYdWldKoGRKgRGUAhEu373cLx/vH84HA7ueLa1roWJUohtpStSSymx62idpLgRVLTVyyVfUinzstYqDDGwB0aAxjYIoptJw2lOp7f/8T/+xz//8z9//vQwpvTp4dCw6N1uh26lFEDOVe/3u5p9mUTXp/OczYpc3upb58kD976CUnFHsgUxg62uxRE4gBdwAxfIc51Pcgrz/WEmh/vjIe7h66usa2FGMzIDFb9M69vrkldw7UWDuIjVrEu1kQz7lFLPsRsMPq3y9nY5nk6ny7TMs/LbKXVItEOyZak5SxdRkRVDdfh+fpnkUqn+mL+UIpeyFCuLrKtmNVC0aZp+/flXDvhZHqb5bZ5XKT52ly4O7h4jc6AYue/7sd8h8lD6EMLz68s0mepca+k9DkPc7/YYcFkLTLMpiHoRTcQthcENEUhEGIkRmDmlpKClQHW7zFNvCgOk2IXEri3p0TazDGq97rGOLWMaSyl1ycFC3/c/fPr8pz/8GdEvl9Pr6+vpdIqRuqGzFgB/7SmLHNA7NgjMHCJzaCAZEiFoTB3FwOZBFYmBQxMLh9il1HNIiBSpb5QCEbdCLHA0t8RB3NQKU7w7PCAENXx6enqb5od5XUX7wE7AhAaea53XRQxCiuO47/ueKap6zdJh1ypbPprJicjBrgfuJsXYUpeQQuPmPhypoR30TWHzW1lLPjUVq1SJMFCDxNzRUchMgMN2nm5RmIit2LOVCt9GQKBtIi0iZlZK3Q5u7gBE7lpF1yKxMDO12CswRGqCbnbkq2CZwNFa1eT787+Kn/Dqt6LbVNHO9O/M4IdEXCK4cq/qbkakygAFgFTrbVi8Hf1vUNYVkvpd0fVHXqkZ75k5pfbvb3YwbMCYOwJTM8S1gC7/kGexXbQPRkUzvAEqqvWGfDRylPwmtzJVJW/zjwOAMwIYuIsKAKjUxikDQBNxbzI4LVpy1WKioAJo4NzAZjMxoq1puYpIBRNvweS4jaHe0IwbNLUVnsabU/CW39tkXjFGMzBA5qhuphTZgNULSlUVjZHUTcz8CvSFEIloKRnRyQAgI7KZhZDcvYsxMlu1eV60bsVVLtXaXPLhSrZ3IUROXey6GOMW82Yiuk3SikCAzgwhxJAiNKuwu4IDvhsd1E1LNTQt1aTlVphaxYqgW4SHiXp1szaeIlNEJr8CCi0SLPWRmZpKzNXwQ9C1SW0NBO5+S8oHJyZAbnovBaAmoAOAZg2+0vp0w4Nv0b7NW4O4SQFVK1GDvbkhlK2u1/W9YeImNETcxmnamqDejyJ4vSOd0Ok2dXvrflfdnDHtF0uu01JyVtMQaN8nEQlu2Qy7+LAbCHCHbiSF6srLnJdJKgMhYwfdoT8+jnefYIFYoNtFLMv89vby9rqs591dD/VuYO6AprxO58s8z6WslHbj2N/f34dxuORlXVc3ydWLmhhGCFWr0tYaIJAZuxjDbqSQEqfuhy/3f/rTj//0H//8+fNjIL8s8/7pJcZfpmlpWl4kSt2AFMLzNLWoN1W7zKd6eUupT11HxKUUdQwhhBrVcuro7rBLKURCRIh8tUmDG3iXhkb0misA1FxzzjRNaUiGYGZVCzBELSkMqe+cOXCwbHmZZbnk6ZzzjGTZ69s624kw9geImrOroFY3klqm89vT22Vaa1bBng/HY5+CESrCUuvT2ymllCIPFLWoKBN2MYxdyj1RTGPEro99Cl0X+8T0eHd8vDvudjtTICet2oW5hA45OGGXhtgvqXQwo7ArAaNMeQYwEtjhfuhi5NQxghRDAQNCE9V1natkRBct379//ed//mdCl5z/9//Xf7kbu2F3aKqYt8ubzTOrHzjBeFd2c329oGdSuHM5Yv7rXbj/PKY+YHQPuIu8zvzbrwsxxAQKINspF1x4PZcLzOVzjoQ/fH44fBmy519+68xJCpVV8xLmyV/f1rw6gph0MZxezl93p4SUd8Og1N113bCLaXyw8KXoZVmW8/S3yxl0LXXOawwOejnnUkrt2B1EPRcpdel0iW+9sqv6W74sXhatq3gxIKa12G+/Pq0ln+dzCKhmKPVyma0Hd48xEuBhPw7Dru/GEBIA7Pd7DgT2fVqsFHGSL18e/tP/+p8Px/33b89/+/uv3769iKxmxKkP3JmiqvcxKoaAwEiMhIEU1MyqrOs6O0JIse/7wMnFBaqDE0FIEQkTN+0XVFUF5cS0gqiAWNft/vSXP/6f/+//Y9z1//N//vf/9t/KaXrmDgbikl2LVCl918WUujQwMDrE1p4NKFatcV0hYkwQgqsDB6IATuDk3tqXmSCgMwCDB/AAvqndgR1boYpqDOSEMcZ+3KtzFv3+/PRyudzPS+hS4CAAS67naZ6mxQz6fhz6XeBkmyzdOTCCm6pIVa1mG/RiDo3/6rqO0XPOCBwjtZAKBBUoNw1KlSp1s0NeBzhjshBEVWMKfUwtjMHMxA3AgI0DmStgijESASMaEjiYbIpjRwgUmBmIrGxhObXWprZusxo1FV1V6py05Qo5ATo5I1GMTcvVQAlQsa1Lp+UGbART8y26A5qTU1NaITT1C1+3rY0XY0YOVKbsYEhNJuOAIvKeOL9F5zahMeBtrtXNnYOEIUZiNjcjxHCtglCRJiUnQGdzdQRsof6+xUdpy67AGACs1VA2iJbA0LdEOTd04xaIi03srWoq7ckhYeOmNoWauYOpoYKJCCKGQMQREdR8I75MGgXmW4bnFRklF6muuhVfNb6SUbWaobWohsZ2tRlLxF1to/P4Ro/i1uHdfFqCTAGAmVueqoEaUAgMxByxIypFalP6BR5iF2JcltWlimktlmtz7xOiEwUiYNpSamuWUzmXNQ/DLkZuZYJdSkPXe+utcarm17DVjeptOBoG6uOYrlOXtY+MqoPGkFoISmSKMXYxOFNVERF1RSaOAbZsBTWzUrKBupmrMVGzwlY1AMPmFkEiYsLgjIDGMRlewxqgOWdC4uBojaonUADixrCa1Orujg6BqJU0m7hahcAB0ZEMEDggeohNwtHmHwBwAiMw3goiG6G8DV6bC4Ow3e3t4qQutDgVd8craI6IW+dio2vJiAiYyYkM3gX4LRZ6I+a38yoQNna1rLM7NmFDzTJd8vPT9HaaQCUlMulEtRZY5lqXpHrcD5/udmPfk+Xp8u3ry/ffXqeJI6W49/EeD4+0u3Mo2l144DiD+Zrza11mj9WXyebp9B1f5/n5+XlZplzXGFLowvF4L0i7br+mSZbTcl5PruRgoOQWEvf7DiEQVYeZQuyZe+piSodjHHdpGIZh2DEzcl8KnY+S6/e3y5Tr3xGpfQTDAhq7EPc7Fp31bb5MU11STUShrLldBY5hWS/EHhgjbsBmLZrXUkpRFXeIISJ2fd8icFoyeWltABDR0YqUOkmUtOshdmk87CJSwaVOMpcll9VdI1NxvSxzFVXHdRFTDCl6LQK2Tpenp6effv0W+9fLunAfjg8PuyFmrYJeTU+ldK/pMPTSDSyoiqZoQuxpiBjTGOPAGAJR4jB06W6//3Q87sa9AkZerEKeshmsUs0sUGQOyOBMEAACeIBKIlZJHKINfUyU3CSvFw6plVUsdV7zUkoGtBBoLuWnn/++rNPlcn55ffrf/9f/PPSRYjAiUc85WxN+pbDvh+OwwzwF0k9D+vPj4a9//PT5y70zVHILlHp9vnT9gF0P4KAF3AECMqWInVWqs9QsZL4fux8+3z+fjof9w7JOUn3N8zTrPOtaPBcAr24Q1tPz29eQXGzaDf393Z7icX/3edgNgvdVfrxc5u/fn7TMgFhzWS6kqtOUq0AVNUcBr71zIt73Euks2aqtrhbImZSgAgRnhlBrPZ0uKcX9/RgjSfV5WlzQqpiomTD3IVCIFJi6rhvHsdkILvOrVqgF+t3417/+9fHTJwr/8/vz2fSlmpsjcyRMKmiKGDmEwOCtd4+QuhAlFDJykaavcDQK6Ih8w/EZkdtcYGvJVYo1nzaB1GoVHC11fLjbff78MK0vf/81cgIw9BDCxDnnUlYbdu30jBQYkCgQsJkYBQOFRp50HQcSL47syECsbd1zQiQEBmBTgha9iFu6NxM6es7ZA4bQU2y2Kcyrv53m7y+nl/Nl//Lc73c9h1LW17fz9+fXt/Pkjrs0DMMYQmw5nCkGRDTd/HsNGtkWd/O2uBNRIHB3qMoBTW0DRYTctpCeWjZISGUbxdQqYaOM1TwyOGJCaFZ5RQcBd9h0uCEQYkTEgKAIbt5K0CmwIzbdUJu6cs6ghoyRAxNjIycd0IEBIzMAhrYzASJzUwgBGJi6tLSJ35W9NNDGzKgnMzRsGna+wULvloKNPDFAuk48dmtQAW8BVFszVINXN3E9YHO0NSTvg+cLiaiW9Qak2caSN20Z3cRV77zeNUXi5nVo4NPtGTJzUK3+Thlfd0fbakdwAxv0Gq10g+JUt6Sxjaoyx1s0mjfsU682i+vg5eIA5gJmjA6blkyvDmsyU74mqRkxujndYjw3If+GL26vemNgm6D7Kne7ufOQAiNTjN205lwEwPoYYpc8UHC3gqUIvOd2OqLHCCFQjF0I5O7rOpeSRQScaT9uTxW570fwpKpaKyKqbiIK/+AM5RACYwiE1Mqn1UzcjdBDIAByQmKMkRvRuUptryUwE7OB11obmFtKbtVJTBY5ELaUWX0XFW5SvEjELa0D0QDIAJu1tkmhAFSbvg6QCQkc3cBUXVt+bKv23K6JOFFFc7Lt28zc4u/xuo/fNAb+j8nAN8HfpvD7+M0QwvXdlHdp5oYUXn/nKupqIHqzczCTIbTUNAMHIGyTIeItJlCkI6J5nk+n87fvr9+/f5d16btAIGql1HmezlAVwe7uUojH3a6vcZxPy4pvkxXGsMchhz47B4QCJgTUUxyIoqEXBHHJl5eX7z//OhzvXuflcjrVWhW8C9xKfpcKQ5d7Pp/rNC2zllVVq8T9LsXEw9Chkzu6VdrCdiV0HljcstUiIoFT3+2H3sZhRnh9fXmp9QkAWupwgI7CLvXHEcwz1NWzlmpYzMWwmju6oCY3WObT0xOXZWkND47khro1XFEL+mtGrRhjjBENQojAxEyGpqLrmlEyAITEfd8DRY6UhuTSm+YCRa1ONYsxAJ4u53UqTGm/vzsxYwpvr8+vry9v59dOAV9i/KXrdt2nxzsEr27cJURZpbxepryUztgWzYstcy3FoI8InVW4LOfLeS5rHbvUp3TYjQ8PD8xh3+UUhxi7wzSfl/Xp9WVaclgSBg4dB4tOImTFa4XQM6nk1B3G1ImoI3QpQuhyFQBTrWtdRS12aU+E6C8vL//1v/7X1+fvv/z9p//wlz9wgLfX789P39fp4tXKInX1LJkCDsPQJT3sd/f73a5LMbIHBAYhoBT7sfvhx4c164vn5WLgwDH22LNHNJZiZVoup7d1uTA9jOP48PDgL7os07rmy3la1+wGRKAGQC4ub/OrP8mSL0Of5nIPoQ5jON4NnHx3HO4/He7uDtNFVDBC8OJrrSU3+xc4mBL0DIcxxd3gkQsYROrv7oZ9BJqrndflVQvF2O12h5ggxt4NzbwWcUetVte8rmtTwvb9EAljoC5GIuq6GEIYBhKxrguIvMzrOZ3P5/Nlnpac2+pjiqrmjq5g1QIS00ZgfQAtOERD9Gq1qiZvMLxTQHMVA28lg+4557UsBooEMfKSrdQyzZevX3/929/+TWyd1guwd10wMSfo+lBWVlPHq20IwDEQR6SAFiKDWGXw1IVuGIChOiALhYgcmSJzjBxT6AJ3AOwQEJiRCWhjh1pNiBEhB47mroZd1+0Oh7vj/Xh3d1mmr0/P++P9HeA0XV5O57fTpVSNMfX9sNsdxn5HbT4xtCbuvU5djW1riyYz+zV0IMaIzX5mjGhtc22/V9WqitYNUjEzEVVVQlB2ooIEdUsqaEhSS/yCmzDfPVxVPcRIxfRq4rtSbCq5bqswOURGAgTzBhehOTsEpEDcagkRCZCYtjBPbFQpktG1/HjjhkDV7UprujevVfu74YrBtDnjJnhHh02dhuToG08CiC7qYOCOuDXTtaiI39crtr4b+EAFbtLvjxXCqgrv3UH28Wq0tkS4OewBrlCWM7c2cVLRZgB1D6raILeWNQ+IyJvzExHR2tWi1m/c3CCuJm5kvinezBkQkBRQP2Z/IACg200gBNcBzswspWStrR2pSYsQmLgpUbcN3pBMAVqGvlvrz2r3nlQjrIhkAEDQ0AW1ygAhcKCAwIhiDuJGptICC5hil8AJWnu6iVotWVQRIYYQYgwbvgbu4pLrNmSIJQ7Y8brkarmxuiJi4BQ2dJWpRaCYuYsoEkCLtNgSSYyIDN3Ms9QGaqspMgMREgm2PlRvMngEUFF3DwGIkQHMwdTU5NbCJAbqLQhgEw4igl9TXVpbmrsauDoSx8hdoKsCTx0I4b0EglrOjaowN19v8726uJkJEbg7oTM1YZ6ZqxsyM1wdEtvgRISIMXLL1mLePibbWSGymbQ7wrfE4MpMpNsn8cokNuIVgYkb/syEyNceTN/iArXmvLaK8bfnt+/Pz79+/eXXn/8+vZ0YQa2Yi1kt68zgDH68P6y5Xh73KfniaKmjYW8BZoVv54lfX+/cVb2AKJmRGlVDDQyImKf55elZDOdS8lpyVUdIfd/vxhg7QxpijtSj4DrXZuatwoTDfgxDH7rIAAhqiAYEyMQBU/Qqy7LO67QydSmmvttH7Fw8z+uyXty96zoYhgBEyBxSIoaxDrmueUEAcHHqoysQUZ/SOA4h0JrnvCwm7gZEgTgSBaDAHACmGDuAVqyhoC3rDQMSMTYzs4iAyMqxS+scZ+pGZh73u0SAbq+Sy5y1CiX0DlXrZV0CRUDNsmLk09vbMl9chVDzOn/99RdC1frnYegcvB86DMHUL+syyxSdg1CpctGyuqAT6bpme3t7eX39vkyXoUdET124249dGoZe+mHY7XbTsr5clhDCPE3TcunXvu/GToqq5tW8Fo4G2A3cx9iN+52rO8LQ7xxpWvI5tL6Q4tWYYH/YM5LUbLX867/+y7qcv339g7u+PH9fpouD/fj4ZZ3WvOrlPK91BQJmRuKieJoKpIXH6ImUEZBCP3z58YeXS7ksrwYZADhBALJqa1mr2Nt8ejk9n06nIjWlcLw/vJ2exG1Z1+ZxQ0beslvQUdc666nMy1sXg9rcD3TYdalzVeUQxnEY9v04DlJ9GDtRR2l8E5QVRE0AsgF3dSzOWd1wHMf93d2Y9vtd5fA8X/z0vKSUjsdj6piTGVQRy+vq7ia6TnPDBsZd//B49+XxS9d1KQ7uvpby9va25gwAaWAX/fXXX78/P/3y29Ppbc5rRQ8E3DCYbfkW6QIDKDSyBprvJjBFJlAEVS1Sg1QGBnAkrFU2uoZcbMtnR+Rm3V3ymmtZluXr1+//uv/vuc5Z51prSqlANfDYx27oazYKkWPXdFoMibshcHQwIEerAJC6GIcO0KoaVeGoIbS9oYsxptQHTgAM0AFc01kNRR0ADCz2Q0jMzGtdVZz6sBsPx8eHw8vxbTq/nU5vpxMSzfMyzXOttemph2E3juPQ76CdlEXF6j+qu67TQBtBGi7IzA6oVa5Yyu9aGlW9lE3j1UQ5t6I7M1AxDW7iEpDBW1SnE9L2usjftSjbTHYTnQBAVWkmEjE1s6ZIaw+tqsgtB8s2A90GR22Zs4iO2AJG0BEDcZMG25VF+qjjad8nog+p3Kbamhyv2WEAao6bdRIc1Kx1NdqGp/0eITP8R4fXddvfoJ3b4AUALdS0/W/blT9aIm9ewo+etXdd19WDqaqocvsVM1Eivl7kK273ITf8JrV5HzTNVVcR2uJSgZjc1ZsGv8VZkaMHd9yugAM1oblq67j26ztqW7AUIpEBEZAhMKDT1tZJAOqI6EghBFQHt80S4URu1pT1AKAOUZAoqFnskjgUFXfMpdRas4gbRoqtwQycpJoIitZSHJxCCF3HjfQREUPItTqBqpIxcyRyB7uK2reEl2awaHFaiKQi0IT9W4Vmg2eCbtna1ILDmlgUEVNKfvWJtMqsj2ASqAHwdv2dEFGL1bqFr7Yu1PauVZWWs7Fp37YyCXVXR3DkuLlSgBHdDRt6iNCcxLcmq+vH/JbTi7cB/sONcRV1fUj0ZWairVnS3WMMzRt5E2uGJsYMkUXa5+V2unhHUoWct24rRoQmXUVskwNhQGA3d/SWhl1KybmarKWUl+eXp6enp2/Pv/769fX7Nym1lFVNAMVqCYiMvt+Pp9Ppyx8eP33Zp0i7h2MhqiqzyPfXk1JYxLuuM7c5r2stpawOSgFjZGAStZyzGohDVXOgbhi7rgOwIYUlYACFBul5hQyO0HeK1A1jjzFFDreVS0Wdai6Xt9dviFzWsj8c+27vGJ6+//rbr3///vxbyZOj931fZR9AQYvWtYZIYBgoctcyexAApKiIDN1wPD7EGGutKl6WZb6sKs4ciWPDLc1sN4zjOBKj1UrNYZMzcYipG1OH7lqliJS5vJbXHodoYdcPKcS42zMiuJ7Ms/uyLmR2GPoYCaGUeq6+eOH5cmGv9/s4jIETSlm+/vxTsPrp88PDw3E37hjJxCWvDrKU1YupqiafoeT1Ak/a525ep1+efkGVcY+vb9++fj+olsfHT4SpS+HLp/vdWlOcTHU6XZ6enwOm4HEXRilFsjGDFrFuiMMeuI/9oYvcxXR3d4dOb+fLOi3nGCTG0PHxcBj7wd3HLj09PV0ul6dvvz5//RkBRCQgdF33Vb674ZJLzlmkSM7m/HTK/dNlJXoopduFbuxo7BYVwwRxGA73RmdjgBEUihpTSKfTtN+lU6Wfnn75b//zfxz/fI9M63I5X14vl7fmp3H3EMKsVQxSIidxq1msCpYa+NmRLBDlMu/HnRQoBsgMXGOKlOhu2PGaBByW7MWlgpyBM3RR+7iUpaTAes+H7uF4fDiMUAs8fT3nVWLH+7ux6zmXqRSZ81mruKuEVFXWdTWs3RD++Ocf/sv/8r/t9/u///RbrfVwNxzuhnnhIpUIRcrLy9ua69ffnt9ez67k3ipVJNec8yJ97Dm6GpBzaimetqHipbqjVHWrSAsY7Yd9SqOrCUjRTGAmdZ7n6Xxxo64fAnFMogACuNb8fDrtvz8bAnq16l03MosruFJeANxEPXb9eHcHHswwdF3fjUSkoNGk8WshEDEY8JQLYG6hYqnruqHv+j7GDpGkEjhv2olWt+Zo6LT5CjVwAnYHHffDD/TDt9enX3775Xw+v76+AsDpdHp+fSlSYwhfvnz+4YfPu92u77paa15WEV2Wxa8JUoQOLZKaKKVQStmSpYiKZC211uJWyjqva1sT12VdS86bDF/hOgA0eZOqNGJWs1fXtlh705Rm1QYDkhpUMcDUvN/sIqbmSGQKYpJrybmcz1PTS3FgbuuzgAGIS6Dg1HgKoMAtRMquMJPDjS0isI3JRNt+hn6dkNSZCRDMjLllHIiIGryjTQAsUtQEwJppHJEcPOcsYirmzuCtVBSukySYwdWwT4yOhI7eGqZb8NVtqAInN7lOTX4TI9eam/aOCCIEbGGevrU9tkdo06hvF7/dLCgiEIJKDthyrdzdSAkB87q5R9g4Rm9aOkJSBTNvHrkW2AZmoH71HBjxFonOjoBEFMwUzB0UEZjARc0UqVVktuvmhkCIBMEQsZUbtoDN4AgYENyRmMysVK1WS9OIFUWMgY1jICLgoOoOIQExx74nNlexIlXVwKk1DBG1RPhSpDYdZ8Ouci2xhpQSMpU1qyozTQsw0RDHK/8rTgqb0aUD8xb+ULWoajNVOIAiBqcuRA5kZrXUm/StYfOJU4xsN5QdGMy1lrWUBl64u7mAO4qjmxG6mrnWqirb+MuBY0otqc4NDSwydyk2R+pa5zbvc4p9H/E6RW1vK3FLH21vAoAzBmJGZiJ2B0Rqs2l7q0UkhCBWAcfAARHb3aVVqEutBM8RRAS0TWecUp9SEoNSiiG0UHogSv2AXHPOoJu/tdbaiPU2SCC2gI4Wo8MUQwixYfDurexMGZOUvM51nhbJZZ7n5+fvp5fX89u5rHWd8/n8lpepUfPtMEoIJStRuCyTwx//j//rPyIbf/v29nY+z5O+XdRIjMZxJNNpXp++P5vB8Xjc912M7GqLVZCyOp7O0zxl5g6B6pqtrqozlFfGCakYLEteSOw8OdIdxfudeh9i6DoAWJeyTpMpua2EUzdN5/P5W//LkHqOnUN4fn06n/7+dvqalwsyi4xml6Cq67qez2ciKnkRkcQhpdQm94wFAEJIXdftdjtEnC6LGZSiKqUUUc3tVMxINRcrNXbRXdWzNi0hBiCPXXQ1bgy0gppeTmd0SsSx77q0G1MMCCnw0zcXcmrIOSi2NpwU306TWxn6MMY47MfqMK+5rOXl6Vsg249dOt7d7e4BYDlfpvMl5/NS17zWputf6lTLjLNkKZfphRHOl/Dz15+Q6tPd18fHz48PXxAieMzFllXRPBAH5ppFqyUPuzCwK6KzRwY2J+DQ9+P93f5uv3u4vwOloXv59tvXu93YE+3H3ZfHT/v93k1TSj98+fz9+/effvq356cncjgejw/H+2EY5jWLCFQR8KIyL7quqv4yW76/vD287Ydjd3d/2D0cKsGliABySsNh1x/m2UBXmOtKWoB1dZuVp3J5Pb39/OsvAP7bz39/fX2elssWZgtgTZuJ4ChAHpgwESmqyTSf+Nn7GNY83+/v0XGeZ7EK7Bxwdxj7cZeGHhAvl/l0Oi2rEsPuDoeUtNBlXSNDwLTc5ZIrASN6SmHcdUMXuz5ycBeokmstJppbw6AJksUYui79+S9/+P/+//4/+90BEb9+/Z5S7Pu42/exclspXl9fL+f19fWUpwLEG7jtDaXfhC5bNw0iEZojEpAHZtbVSxUgBeLEvQ0UQnBCNdBaa8mmJedqBoyBMIzDwcCJoxGXulCI87x8//acukAEBiFwq7SIpdAEq2JwiqHf9d0IwIFTjF1TDqlVRGcmDghgpWoMfddp1w0p9THGGLstm6NFUjiaE7oDIyAQMLe+IWAiQGYHbeFeFOhwONwd96W0QOR5nudcS4zx4Xh/f3+/2+1i5MZT1Cqq+rtW5w9fV3WQmJlaNTNxFRCrtWxm9/JBaeStQaa55Zqu1gwc3cUVvRYHEHcLTqBoYStwJA2qzgxmoKBEwd1NQU3RnYgUvP2xzYiHdK0fxIZatcN0a20XU1TCpoUhdncHa+PGltvtGxJ3O4gDfOQBb0jNx0RHvZ37N3hJ25AR3PUau4VXN6FtifkNcIJtfyF3dXmXav274G+/Jlbc8NrrP8DbU70Jq/9vv64AwzvScPsCAG0iIXNs8RMfkrQAblFbG6Lm1xgCcBMp7TI2OKyBLU3L1AhZZnJnN3EHNHIgQHRvHCuqASK2shqC5iqxZhPemK32EzAOqSFGSNWJNOdaGgMLbmDgTUiHiFQrAMTUtwalNhFqC0d3J2qeg22bv70XtVZEXFdquWs31KddoN+jj+KuTdANci01ryKmAJYaBoHW9GwqJiKl1Jxz+6Ndn8K2YSZAQ46q6sVqrXXNtVawqwvNtSUvbCyfqrk2dy1hwHD9ZwqNg21jrF+juaqaqBIFJxPV6Ft2PxEhowESAxleCfRrNO5Wj8pueJXYvUfWAYC5oP2uwwoAWtTIe/329d8TBXRt0fdXSJcckc2YuSXe3aRjLfUfrnXmhsCIxJE34vgDiNsq8KrlnOd5llzWdW0lB+xMVx5z8z0TgAMz1ArncyZ6HWvKf/kcuzTs01LWRQquS1VbcknragAg8vr69vL2ams+DP39w0M/pGVZFGmpMhWZpmUtEvueKKzr+vz029j1IjOhxWgcCdWriou8nk6xC/u7Q19GJ1bV83k6n6d1LaBE2KUwJOqIQjuOIscieV4n07PopEXFply70IL1Wh5/XmcREQ431PEmO4BNFRu091KkdNUNtYKIAJKqRg4fUHEEBxEpJbOyoqolRUDEgKRqavX19VXEQNQO+3C4G7uO7u4CeVmXTO5lNa/qkGLfp64f+yUXXGd0B3NTBSRGokA559PptHsd9/v93eFhN4wpxq7r0DyvdS2XpqcWsyWvxSa1mvOUIp8vr//2b/L09dc+9Q8Pnx4ffkhpYOodQog7Th2SIXpds1Uhxj51HMxBtQABum5kwTiOd3d3h8OhLIKIkXjX9/f7/R9/+PEvf/nL3f6QlxURl3V6uL9DMDdLHP7617/+6Q9/TP3wejrP6/L69vb6enp7fpH6fZ3l9SJTPb0t5+9vaTzE4+P94XT0yJdSCuCcazd2j58fA83z01qqmxsGbOWYuZbnt9effvpJtfz968+v5+dpXdQysTGDMTIDAnBAZiQHZmKGUrQUvVz8K1ItJR9yF7t1WXxLqb59xft7jF1PgXe1jmP/8OVut08OeVkvkudSytPTk4ql0H1/er1czma2/S1yRBfJqtVMRQFdzSxECoEOd8PDw/Hx8Z6Z1UrOE6AMYzzK0Vqqqujr+TLPc87F27rgm6qggfCqasYQGeg6eyEiEbuHkIizZatVgGjoNysfMtcqqr4uWaVUMabUpd0w7odh16y/3Kd1vYjrusg8P/Vjv9+PKfUcQt8Pqd+ZBtG3vLgBpm64f/jM3Lk7IYcQkKBtZq0GwN1ikZj6WDWmMcQ+xJ64Q4qAAZBamfRtD0XExhIAvuup1azWGmMkoru7u0+fPs3Term0i5P7cThev3a7HRFJkWYPtA/hnPCerQAAv2MSbxrt25b8D8IjImImI7gSI1ctB5BVFTGAqu6qFBQ9MCsHZgAXUjJlVUSEENCFEFTVfMtEUPBaa9s14UPz4E1BAteg8NaOt81kACHgVduL/zB4vfOMv38J2KTdV9TOrxkHba27XRxrgRnu/74xxX1Lk//IBpq9s4G3hruPf/R9F1FoL9a3YrsNA7jFoH+U238c496pUnsfKD8Olx/HSXX4+NPbs70Ngu8M5uZHuEYitBgzcuT3We0a1q/uig33ug6hABt/1TrN2+BF5EDexosbifo+/FFgZidS8QqLiLSmnC2wgLZPNyKGuIXTtu+ISFVvo+A1bZW7rrtpoc7nMzMvSxzGjojMBHFrqsZr8Gm7hbao93aPtaYd38h3ImiSg6aLbxcw55xzXpalRTyEELqu6/s+xgho6psBZV3XsqwiEije5vimpbo2M5n5e4gD3KqlDEUktBa/6+AlIllUVJktEn4slmi8IDjZtesakNvgBRucTfD/cPbYbnh/P1D93075H+/e2z28YXsc3B0NlA2v7+yHwa5R3kbX2eCWpHrjPW+3X8OA5nluA2v7sA/DMAxD13UpJa0RsW7uma2mtY0ZMM/z29tbljgtc1VNQx/isDscxmEvWi7z/P35+fn02jt+ery///Jpt9s9Pz+fLpfT+fR2WZ6fX2vV+0+7+/v7lFIppXG7RNT3fV960VyWXCuczjl10/h6CbGro1bT17fXl5e3eVrJOVDHlNBCWzIBIKQw7vrdrhtHAqJ5XmtZVRrgfD3btVeezZdlWZal67qmoWnaw8ZEtJUrhND3BIkBQM0b4sXMQ0wceUuiratIq+FwR3emm+pUzYqUaZpQzaQGpC4c2h08jqNrVisuLboHGuzZotVKWaVUAcQYkVKI5O6llMvlcrlc5sPc933f95FYq0zTAi9vVQXRb926ImIuZphzlppfzQn4+fn55+HXod+nuOfQ3T/+4fHLFwBAdBUxVQ4hxkiuYhWrbcuxXM9SiO5ec5kvU9sMDuPuhx9++Muf/jyO4+n1LeccE7v758+fl2XpQvzTn/70H/7yT90wflnz22V6fn4+HF76NIDCC3x3lWqAq4vlueZiOltVxlNeFZBC33VjfOzZO11eZVkdPXYdYG03dK3ldHorkqf5vCyLaMEm2A6IhKkj2Lo8ANQAnYljM6tzu4/Luq647Svti1S1SkaISBBjHMcxxvj58+N//i9/vTsOpczn6fny9vr29uJul+m8XL6/vJxfX2dT3g8H0cKAm+iKW6i1qhoixpiGYRjH3l1fX59F5OnpaZovZsKMXdeFGFPqq6gCnk9LjAXcgVndPqpersNBO28ReDunYqtc7bpurrmVgcEG06BbYyutFNEqFLDvhnHYDbsdeSDGjvs9e4y8lLnMy5qrgaeh75CQOaaeOS6z0GmptogBEQ/DjmMnogCUUkDz67rviGheWx53S7FH4FvPdNtzTdFMmx1YoXULNthMVRXJGUBVs9QQggdMKd3d3e33b9M0tcGLY2jbdtu5tfm0S2mxjTfk4+Mi+xEv+aiF+rgWvwMkrS/JYctmeteK4HXaAZFW7ayAwHCFxW4hC6rtiTWdcpuJNisW+C1h8oPWhPyDtun2IO2LiOzDS9heDoCbQ+vVvr2oa0jELXPyNmldr//HybIlPhAR6Ra9fVNKIRG13Ii2l18hDVfVJou77nDv+9a/n71Ub9lpdtuu2l7yEXX7B6js42jVTAD//s36HSoGfhu4b+v8Tdf/4dBi7wgHouoWpg9mYO/jY2svcJPb4EVqt8EFtilPoZGurfnbfUtm2rLstxaddjRi5hi6GLWUcmsP36jYD+PsNifJNpfXWtvgFTC1afI2K7fXskEJmUvd4ktCYIDrIHVtF73JQ5tmC35v6GvTsLvb7xHKWy1p25taHhMzXxuupD3BBqrduoPc3jGk6wcG/dbjRNvgpZuwbvvR7V0TkSoCQGzv694/fEIbRghXIhsa0PcBW7r99dtHQFUd1f+f0dmP99Lt4nx8nIarMfPHqvt3RO2DTfWjj/Ifzn54FZ/dMmbbnd9dv2KMNQQADyEQgWkl0gDNBgTzPH/79g3ffF3XIpr64fhw//j4KaT+/Pby5tYEDI09azHmr6eTmc3zPE3zulYkPhwOj4+P+/3etEouABBj7Pt+qEMuM+WWUQfrup5Plxi56B7AlmVZ13VdV8SQEAIDWEvbMXfrIO32cdx1MXJaEVEvl0ut+f8PtThTDKtqPrQAAAAASUVORK5CYII=", + "text/plain": [ + "500×808 Array{RGB{N0f8},2} with eltype RGB{Normed{UInt8,8}}:\n", + " RGB{N0f8}(0.325,0.412,0.467) … RGB{N0f8}(0.443,0.451,0.439)\n", + " RGB{N0f8}(0.325,0.412,0.467) RGB{N0f8}(0.435,0.443,0.431)\n", + " RGB{N0f8}(0.325,0.412,0.467) RGB{N0f8}(0.412,0.42,0.408) \n", + " RGB{N0f8}(0.325,0.412,0.467) RGB{N0f8}(0.384,0.392,0.38) \n", + " RGB{N0f8}(0.322,0.408,0.463) RGB{N0f8}(0.369,0.376,0.373)\n", + " RGB{N0f8}(0.322,0.408,0.463) … RGB{N0f8}(0.365,0.373,0.369)\n", + " RGB{N0f8}(0.318,0.408,0.471) RGB{N0f8}(0.345,0.361,0.365)\n", + " RGB{N0f8}(0.314,0.404,0.467) RGB{N0f8}(0.333,0.349,0.353)\n", + " RGB{N0f8}(0.306,0.396,0.459) RGB{N0f8}(0.318,0.337,0.349)\n", + " RGB{N0f8}(0.31,0.4,0.463) RGB{N0f8}(0.314,0.333,0.345)\n", + " RGB{N0f8}(0.306,0.396,0.459) … RGB{N0f8}(0.298,0.329,0.341)\n", + " RGB{N0f8}(0.302,0.392,0.455) RGB{N0f8}(0.294,0.325,0.337)\n", + " RGB{N0f8}(0.29,0.392,0.459) RGB{N0f8}(0.286,0.322,0.341)\n", + " ⋮ ⋱ \n", + " RGB{N0f8}(0.333,0.361,0.157) RGB{N0f8}(0.592,0.647,0.518)\n", + " RGB{N0f8}(0.38,0.392,0.208) RGB{N0f8}(0.608,0.671,0.569)\n", + " RGB{N0f8}(0.376,0.4,0.22) … RGB{N0f8}(0.647,0.718,0.631)\n", + " RGB{N0f8}(0.31,0.357,0.176) RGB{N0f8}(0.686,0.761,0.675)\n", + " RGB{N0f8}(0.239,0.314,0.133) RGB{N0f8}(0.624,0.714,0.612)\n", + " RGB{N0f8}(0.204,0.314,0.122) RGB{N0f8}(0.545,0.635,0.525)\n", + " RGB{N0f8}(0.204,0.341,0.129) RGB{N0f8}(0.525,0.608,0.486)\n", + " RGB{N0f8}(0.204,0.349,0.137) … RGB{N0f8}(0.471,0.557,0.404)\n", + " RGB{N0f8}(0.204,0.337,0.137) RGB{N0f8}(0.416,0.502,0.31) \n", + " RGB{N0f8}(0.192,0.325,0.125) RGB{N0f8}(0.349,0.443,0.216)\n", + " RGB{N0f8}(0.208,0.341,0.141) RGB{N0f8}(0.31,0.4,0.133) \n", + " RGB{N0f8}(0.22,0.353,0.153) RGB{N0f8}(0.29,0.38,0.098) " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "img = load(cb)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "channels = Float64.(channelview(s));" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAGrCAIAAACAGGl8AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42pT915IlaZaliS2lhxh1FiQjI1nVdKGpADMtGOkriACCdwGeA8+DeQsILoALCGYGgkEXy6rMoM6MHaYMFxrfiqXHPLKrTVxc3M2OnaP6/5usvfbavxb/F2mSemmUBmmSJBXStfQoPUiDdCXdSltJ0qU0SqN0lPZSLV1JrfReeildSQfpXpqkjSTplVRKj9IP0r1USmtpJQ1SL/XSJBXSIO2knbSXSmnkv0fpSTpKB0nSQXqSDlLHn1KapFGaeKuRV843Mv+Z70tSI62lG+lK2kgrqZYKSdJGupAaqZFafnSSGqni3VrpUtpKa+lCeiOtpFZqpE4apUJ6lA7Sg/ROei+9ld5Kd9IonaS9dJKq+ND54jvpIPVSK62l76UfpVF6Jd1Kt9Kvpc+lr1iE76W/lf4oHaVWeit1kqRK2kg30hvpVlpLT9K99KP0gRd0cQ3zjXRs2ZW0kho2pZOepJ10Jx2kQmqkN9JfSV9Lb6SW9/+z9E56Jf230v9W+kwapQ/Sf5b+n9LfSx+l76VCOkgb6VZ6KV1IhbSRfi39QfpMOknfSH8n/Ul6lBrpQjpKH6VJqtnlV9KFtJEm6U76RnorjdJ76YX0W+lL6XPpUiqlv5f+b9JJeiVdSY30lfR76UtWu5e+lb6RPkgfpEfpSdqyxX+QLqRvpT9LW+m19KV0IY3SnfRBepJ66YP0o/Reei9J2mLAjTRJg1RKG2kjlVIntXhcJVXSFJb5mbTCoh6l79iga2kr9dK1dJLW0v/1/ywN0kHaY1sdLnGSjhhZg4WlEezip3sM4iT1mPggjdKFVPHmpdRItbQjatRSI43SAa+T1ElHqZcqXLSXammUeklSKQlfza+Cf9hjy/jm7N5r6Uq6kNY4ZyHVRJYCE5m/f8s1zF8r6VK64M8rbqeSjoS2OcTspPfSnfROeiu9IzDNXjpf0rypJT86SYNUSSupl76RTtKltJK20mfSG+l1bMQ30g/SJF1Kb6Ujd91wbbeSpL30IH2UHohBQ0S32aQ6aZA20iURbWT7DtJRepSOUskVbtnKC+kkFVjkb6R/L/0H6Y00SB+lv5f+39K30kH6UTpJOz53hcG00r+R/lfS76VGupO+k76XdtKldCMV0p59mQ3jhh3spB9x+DkBXEpfSi+lz7H4P0r/s7SXrrCi19LX0mfS76RGOkh/lr6VPkpP5Ixb6UZ6KX0lvZAO0qNUSVcks4N0Jz1KvfQYUfK9NEit9CBNbO5st1ckvNnAThFJS2krNdKt9JV0zTf30g+4T8NSX0mDdCn9D/8naSAzHLEhSd/j1YO0lVaSeNlEhpzz81qqpUG6Ya1PpKzZ/uZVfpCepFJq+WlH0mix5qPUSYXUSweuZP6q8aKOGytwbDtnGc7W880pHHhkZS9YLKfoK7KuiIuzX835reUC5gS+xo1f86Na2kuj1Eo7lu69dB95uOLCRq58wN/mENCzdHNY+U46SlfSWtpKX0iv+MWjdCf9IH2QGula+oHFFEb2kuizkx6l99ID4XLGPiX+vJU6qZc2BLUGRDMQWHsCREewq6QWpDbvVyndSl9Iv5XeSJKepG+lv5PupBIItifzOxfNKfF30pfSJD2FtbyRrqRCupdG0sZJugUiddI76R9ZgUdpTe69kdaSpL8jwL2QVtJRupReSdfS5ySYj9I9mzJvX0t6fCFtpI/SB+kgXUk3Ui310p7FeSM9SHfSvfSRzPQYQaonH9xIK+lLaZQepHui54yAjgTfNWFuJGvuCARHQvN1/QeM+oDvFjjQBSY/28INO39gJ3tg9CCtpO+kD9IgPUkNgfqe3F0S+uYcccE9jXzcbEqfs0temCky/ozV9pjbQB7vAIXHSPoG6DVOOWB0LebT4u4FeSezbUHwnDPOFqOYMXTLEolY1Ul30kfpnfRO+k66Jyjecw09aboizY34ccW9j9JHqSNUrImgdWAP4WEnVmC+hQ3gZ86Ve0qRE+7YRf6d33O+wg3GMkbMG5dXWBBdarzfwfKIYfRY2cgeDfEmc4ito+CZcJcTVlyTZQ68ssJdpqiXhLnO8abkzWcLfKQYcIVz4k9BEfKRRHaQ3gOFj4QohV1tidy5GsKq5wQ1r/z8zh1r1XPxNes5o9D5+2tyyJFFmCHlJU5R8ev31GZ7FvZprlH/O1bfFWfPpTtBzAZUc/UnHOwBH+ukb8K1BtZ0wGicXkfW9BprVthxwX53YeUNQG0IhFAArNcsaB++MbKR85IZoQ6YXRVeUeIMJdbgVN7EO2xw4FvpEqB5ETs63/tH6SPW8IP0QFa9I/+OSycsww4q6QC78ABUmGH9OnKi6wQ75ETAF8vVEN1GaY9dirA7AWnSgVfhwL68dOBpWVromQOPkBN23U86cLMMmj2R15aTDnzBpgxcuaGXuB47cE3YepLW0p4I2+JLB0L2yPvvpDroiv0zB3Zim5fLi+AVKIATHWnpIbapY2cdEE/seEl0nh34KL3n8macUAFua+kOZ5k36wYkoP+0rIAPWNiOq58oGdfSJD3wskfpAwnwKL2DZyiIRhvSZhW3OhBXVgHRxjCpNY46LC17w04rCseJWqTnfWwu5TJMVvy0Yie2BGZ/TfHOY5jXbDQXOPAl5EaDA08YRCf9mST8UXor7aI+qTFN32zJpxiz1oShB+nEgqwBrAUBa65YHqhnetBzQRmwJszPofmJ7XeGn8jAFTbRSpvldqQDd7E4LmAUDtwBB0a+o6UDK9a/4v0rLvLEi71KA6ihYh3mN3dicJRJBxYkRBG1zZo3PLL+I9m4I/TMtawoEhqA70jp6dhh13UIa/h7XsMde1dFFjVnc8JjCyqQI0DpDkMtQd6XXPA/ExyNETppV78N6zuGx2yo5jo2Z+QaB4rtFzBnM8ExZ/eGlDGj7R9ZwmlpDu9YCfvTGkusMCuD9QF3HAO4z3fzbZjPGKD5wNqXXMnMpE7UPq+la6KIkUCL4Xdc8CXo+YX0grJ3LbWYpKHPWziadzCRH2FtCwKhgo8bAUZ2lz4w6CNs9yWsxwwHD9SAH6G6nVjnO7XvnsAhe+mRynrA0U3lllxbLbWsXpLie2okf0SDdSuy4YkXH5c4pwr7ndehimg3X/mM5Xb4zVbaBIk2EOSmCJbm1+pI2SMbuotORUNF/D0IYZLupW+lo3QjtdJe+lb6EWC5j7RwDJZmJe2XnZOGKr6PKxmpGA9crYi4HW5Vsp41uWJew0d2uSDaHWGHW8iB+aN/ysgjcWACJjrcTQEdLnAqRXI8sW1P0t9K/yTdYQqXNBeeuFbhJyWMtSKYl6SDhGgjVjixFk3E0gzsFW9rZHnkc01L7SFZWulKegMxUbKjIn6WmOCKLHmBA18HdT37/AEc9iN/z5TzR+kOwDCzSJl6+nBswVi5MTebiE15FRXw7N4ze/iIjTraVyzCCAdUA8c7UkCil4J9nAmPNuC4Y/o+djwhY5L9Q5RVx6j/njuwDWBkQzvSygE32GCQ3mWTnkN0CSf+6z5gCYDZ0WqZX7kGcfZ43Qk67xupkh5w4AE4ehOp4kikaAPnlPEnU5H7DCW7P/KjgV0w/vQF50ZcUlGUoNljxOJ7Xv84X8z8oi3vdUG0uIqKs6Fj0mCsHYGzI/3+v6TvpEeC5Y20hbopWOUj+zdnniGAWoVr1UEkD1jzhMM34XJdMNAll10EsSM+dw2XvCfbz0n4BkMZgzVs+fV5b+ZIdCO9ll4Ao9uosF1IvZd20j/QRHigADVjY8ZX4Q/HJWVk7PBE5l/Dtq25wSJyuDGZl7EFe82gY+DyTsvYYQcu8M+aXORE58rqENyReJ+sxX0NxwAXz324iAaCiYqSTzEIqthuO3DDJhbgrCIgQBucmEv/ht+ds9Etka4kYe4iZPfSW/BjRY/GG3QCcPVAzgk79+Ym/Ttym2P8bQc+BqcqMkGBiTZsRE04LqMMOMKPNbOH1zu24hTlRrMsajJ+VpA+Kz5n/ti3GP4GGNdL76Q/smYtaaUm5qz400T6MDpxgFota9IGb54Lgc8iWXTA/Ym8467sHkWKpA2+u6XGmberx2OE+VTSrXTN3xs+fUeRNTdyHlARPIQGYGLDT1GxKmKPMDG7woEe5pwNL6XXIJ81qzRv4HvpRyBUHUV0C4IqAnruI4O4yVRz4wWruuYf9q0DSHTPXlR8UPLTdmI3AdytLZ/l6551LqipC5i7PdqBK3DOQxStJun7+GOe0aDc0benoJ7Y1pb01yL82EsfkHC8Z9e64AoU7JvILR3ftDuIhtOaiDuynolneojCKshHA7lquYaCOzpgb/P23bNB7+eX9SQvQ+w2QFiBL82ahxrlR8GSmeCcLeADbNetNKATukcAsAumqQq/zQTUBoYeA1vUkR8LrGSUtkFGKvxhzWcVQJkuILur3mMwoyOe38ROz6D5Zag+jBefaOI/IKh4QLbxgJ+UEQc7QvdErDQCcwp7ZJVu4MsatqYm3MyoZu53jAS+q7i7ASsco2gW0cftvFMgvJaVb1hGl787/FyR8aflP4owhj1MQzqwwoFzuwv21F2kirp/xdseg7EuIwL23FQDqumWugBjFXdweqJhTdvojk9/B3oUbj/iTh3FaBGbVUdKc1WwoeA5ELL7wC09BJzhZTakvHem5B0WTVGMwfTPepKf0uMUa9oQFQb8p4pUeU0D2OrFI6qav5c+UP6+klbSvfQ/0gcdorYbA0iVEdrLyFSGRyUSiwlSvaLu7PAo25NprhtSkN9z4Grr6C8ewxTcUPTGl9JL6YX0Ga3fBk/rgTJ30hMZeFYs3AdSL8LEXScl3priH0nNNSThNhDQwEc/kufzymu2qQQF9iGMkbTCY6foidZLnsCxu0cvtYsAl27stl26yimgXLmE0caIGQiE6R+jd7ORDtJHbva4JHrH5V1Pwd933Fc2vIoArCV8RguF36HEnJt9a96hjDrbZICFgGIf64ASE1vQRAY+xJX0qCXMJTpe1CiLh/g4AyLT1eLu5vzR1H8MxzdCXYXJ1wBNhd0564tPuMWuW2S1T8Su2aJX/HoHO1MT9pvAiBfEujWhbE2FMgTesgDP+TR9dwg7OkUAHFBUuSgWAHekIDKgnBPBtfSl9DpwwhN6og/SHfrmD9J3AJ0DpEETiX4VQMpf2WvtokPmivuWxfEezrXhnOKPtJQqtmwVmXqgL3IMEF9HwBZLKjaiWDJHXlJHU3NwZZh2wSZWob3ZUSb14UxT3OyWi6yhX5x0VjDuH9hKCwS8C7tQ17QYzxEnMClxxF2SsZ5X7ImGzRY+6ECYabllV6wD3z8QJ1y8N8FyrFAKjHzuXdy7iYVSeiRQVbHgHVj8KWBqzzdLOpEz1P6pz/z/C1p0ihheR0hpo0u5xsFcCviKd1jbF9Kv4dLmj/gQbatZ5+aUUYRxOMu4L2+AtQ02ugztchfvkEh6H4InEXUnrrBgRepIgh2pedbdrRlrmMXHNW++x3k+0Oa9Q7b7RIrvA9UZTozcmkLq5Oa+G6ECit1QHhhIzQTDKRpkLUt0GeCyj9ccI9TmKmWkE1dbQF30zxw4O+rjMhcXlEMHUvZjOHC3dOCK9/ScRMXW7Ng1973LkNm1sel24HVoIdykNbw+ciPucpuxbmIgZg1hf2Ad2shqx+hdZBo1h2URThnN0B3A5nHpwOIiTbBmcLE+bBdk7oiFl/GPyT24/zncZgoNQBtaiHK5AU59I8vdSL8GjRXSG7Th30t3TKD0bLBi/2xPDctqiV/NRzd8REbiOgiorFr858Cb90SyuR3zEPFsH7c2g+kKmc4Icp2nTj4DD40hcv1AyXsvPUg/8KE9kW7LzdofxqU/K6LYFCXpHLyuiIA22Y6olP2jeVOvWcM2APQYDHdqHhMEe/3twMOnMnAGxxRUOQO3IZK22qkP/ZbCgYdw4JK+x9xwvOH262AFutBCtnS+s4kzO/BTzI71wL0qhmZKLKcmCt9LWzx8WvYiM7a6SK1Cx1ZG5rNZNqxhHRlbS+MsKUsssTLb5C6nOwarZ30rx+Kh/p+Cpy7CBPxRa2C/mXqjTEtaGzzyAGRxSu2k76UfIIBc5a3pyBm1t8/GrbZcTIXkckIfssFk0gMq3kG0T6ewnYpdcik6xr8PjOKYzttI1zR+r2BnzLB+YODke3qtd8GtVmTAEasZo9Cuoq63rxxx0JoZu1uEmi0I70HaMKb2hJHO23QVjH6FIfQ0DDsitHuEexbczRhHxC44xCZ6J8lz14GhzUUqEpb5lySqGmpb39RIDdCEhH2OmrfSO0iGMRKcWNvsS8zjj0943hMUwTXV7q/QCe759AcQ8479OvIRFnkO5JwTiWsTW1aE76as1GRl6nbKyIRD+KvZblcyUwhdrBUR79MsG3L6f4R2xEvcQhhNdG7doS35GEOB+fX30oV0JwnF0mydbwF/DXqw+R12YFZzpU3guSrWaIyfuuKxOu6sQ+EE0URX0KGywogtRWuinXtE+9HC6RZB6R+41Efoqne48T36t4GapqcJ5U93/k0B4chAThEq6iISzSp27ogS8hHmZcKvBpK+2cDkMg18XbQISFoGA2XyZVg6sCuzT3652knRsB04mWZzlF1kt/naNjjSQ3imWzBObclqH1nJFgh+BS4qwPEP0kug1GfSXnonPcRAzJGfGvz0YecuTGdx4Qpf6MADZexmEcZmAmYf21cGyh1i8je5V5OteyKFIhcq1qH2R//f8dtqmYG/4MNWLPEcMj9wz3Vs3oq20T0zxq9Z2T8RMhvpBffTS1ch/ezDSu7jbcvYY0XlZFNzP9KxTXHZZ6RBRaCtqMLLXIgly1iQ841ZH8EO98wozLWvk+FMKdwGG3pPAKrJxgUZsuA6TwwgChbW1f86AIVDnpZaxQ6Au4nKx929jnLWNYYDaM+mn8Iy1rFi6cCnuAwRmIqoZ9yfdv3toG/ePWWA5h5cko600q8x8YYE6Ka++y8129fgbHO77R6zNB+zRfH6Eo96whV3cUKEm/EDWEbLlFDEgGkXxU9DlDFjNKEP2aMJSQdWeHjatt/tSM0wRYO1jwbfGhp7J7X1Py3zsRvixhBrGnqKDkpN9FgTMB9hdmZVtttWJdHmM+m30m3INU8xKegi64FE8xGRmxDR2RYaLnIKJnsd1EMZfReLWebffRXYKDUMG0ZhXa6usI4e+z0xTPuR0v4RbNdCIT3AAU2xYxX2bv5+BfgrSfEH4uI8H3HLOSEWsRywtbfoDQ4YTrIbTvSHaMY6ercA4nk8e4qRmDbOhXCPxC448ZoVS20e2hnfAcMTjU1MXo2RQA03zY5tYsy4ZDr3Q1hRGdzlatndGZnKrkJVfKIgGaWN9BUTqHdSETOmritarn9gB+1tFsTP6NR90AyTdbBXFyy780ZKWRSYZyCfTKCI6xils5yhDHVxu6xt9He/4MCfERZW0kvpSfoSzywCdLooOeK0hiNjXPeV9JX0G+m1dEUf5Ii+5xDN7gPv0+Fme6ROBQD3ELRxisPMziioWZfsZcS0irc6RhY+RXex4MIayCmjrjmy/FH6uBTLH/mtVbCJubYuWD37NAbSdSiuydHumrY4sIIvOwThVcLdDpHc3R6yB1qgMhNbGxbBTthGP+7Mge1pioCY5Gt2Sk9LW0oHVryPwfEciHcxB9NygMZx6QNZCpsYmh34GpxjgHGM6fJfs3cfpUG6JiCuw4F9nbbtAds+BJViXZ2D0cRa1dH6TMnQcwe2EZqBLWml2TJdKPehoegCuXWS/jlsJQ3uQyg6Xkp76UvpikapZWtJsBh9btge0/U30tfSb6QXXOWGBb3H+ATPesCxe7jMA/qYiVc+YgobTC0BioLAtmimQyxpaxjiDZ2jBqLvY2SJBxjWewrf98z5PQWPVIDPcqTLb94DH63ZtSAp+6NNcBIl3ylZmRHLGwk6hl9T5EB3ZJx4J37FwHQbVH0ZIv1fysC+kWqp6Cjjbwcjg8sMVQajfrHfsyRDPvG5Gxhc51sRoWx1biDMyr+SWKA4V0zSWvqSdXsKib8NoI68vWdhfWFl7IiVDWMwx4rTNorQoHtZ0nvtwPVSJljDvrtuts24W9qHTU5SUb+LOqKKetA1/B0WepJeBGlSs2xrLnZ++xdUi+/pRM8XOHdiXnO8zyq0pN6ZEY7gke6OO/Lvgn20LbiTXnB/Q9jIFCm44vsXIVMyv1MwEOl1OsXxCPeg3nlS8FvpjrJ9DdU1sO3fM/1ygiyfaGPuKHWbEDCsQzEsqMMNcs3kDVMR+/RsTLqJeD4t1TKuTwvg3SDdM1U7RL1UYhdjpOw+0FQZdUX+ikJKlkC5xCc8jGhXHpcS6ib0XCUivpfSd88UkiIamcEcI4FOmLEi5FQEvOTay0C9l4g6nihjHuMGs2dj6D/Fjeeg7Uq6CLrDXVXDoYKc7j5PBalq+W4fCa2I2/SSrpBr/nS8WmprfMMuLy6lt9LXaP9dd/qzJ/oa95wa+CEOcJkj/LX0lfSV9JJftzh4imbjLkCYSBBPRLYTb9jxsl3kHY9lW4x1jKA34kgbmn6m6AXjbpn/GPqHb6QbGkxvpR85vGgfnKKjdBdQ/hKQ6g6zB11XWOSKIs9YecOhLc5r2bn7yKp2EfvKZbuhiIRuTtrt+hW/u156ZgKYRAV9eI7hRBUuKn5ripV/7sDHmCwS7+OesJtuHmG5ka5g6N3Jmr/qkAYUfMeCmYQu1dKBJ+63wba3Mdi2h9he8bnTknUalv8oApyYUrT29RQI+LkDd5FXqqBiB9CzScP62fcHvtMJOtCMoH34H7DjWUr1Lb53EQFvgk0SJz89oqZ/QsLm7sYL6SvK6JqpTGcSZ86WU1itI5tZQwXrdQyW/jGu06rJIeTC/TLPi9DlnpQ5KGMvUXOUDCi85ISUH6VvOGzkFHRfwQjMPmRxlrKNtNKPeHiDMVmzawjrQxBcNrmabwMxO+V2YdOu4KeYfqsJNCc8oSP55/RhGeboatUo319OXN0yaZv+VxhSOnBqZnydik7wMU5CXXFiwl2wkdlPcOGkZQYeYw61iIR0iJtqCKwCKF1GE7qCb1gFs7cOuJ/rYzg7xFDFBslgR+Qdl/yE0H4piHkboT+oiRGN47If/NMK17sg0sqABUVEuZ52yAsAn6cl51u3n034+gupk36Q/oFSax75qDgn8ALjLWMabIAsuJS+4tYtSDCOtMd7zuIUYh9Td0MIc8Xvvg3V3zbUJt/FSs/WMf/3A1txou+6gilsCVRPuOZO+g/8I2mREycc38NbO1A30htpz3ElL2NsoWCFWyqQmnDVsvldpBjjvC40ls4OJahjy+96VQcGug6x5rP84z6o8Sb82EXZlfTAVm4B7nvSx5HA/Ahk7KkiilASXtHy7aP+bSg/7rmLDTVAGcC0opwvqA0Oodr/yKGOtXSNzOOOxT9GyGyWdX0PW1Kid7vBjOfecim95BfX0h3amJ20Jf9MeGobDHfSLyMXPMWQs0mYMdCR65ZH6YIEsteSSFP0PB/wrpbCbpawXD6TO17By3wgyP8Jxu5H6Qepkb5EJ32S3lE3D6GFqnjBJZqYDW5jDV6LYfWEKQ8CHeNEgRMHzXiQes9y+MwKj+UUUXhVXOEYgOZPzLQNceTUHllYyestfjBVWTF5737NgNF4UmEunWeC/0epRHdlAUkdbMgYDLqCK51bTmUkKatiLHtw98EKnqtotE5QKoq21ASd5Ko0BQLW2BzCBw4sTid9CFHlJH2IYsmxyQ35gXh3TyC7Qoj2DuZANIddDQ+ht5mw7ydcaI6b30mj9Fti7uvomr1AcdTGYdu7qIgeMP59nGaR0qALOO+Jql3hogMZ0ZJaBTgcufeKzWqXLI5xVMFlHAgBn0fS+olpbrFXV71FkLIHzhl5wQm4a4ymIHCKtLyX/hfpBScifyMV0ku0LI9MCZzY0SHaosKSPiP4meF7Yuc8utujBj4GQ+IqIcX7VokcWYJDTCd1XFJFOBhCobmXLqTv+Fwnh0p6iVDGQ7476TL2oyaHHKRbjDvHHy9o+j5whssKs6i5vC1Q6DIAtHFtQYreRGE6gAtbct0MSS54ekHF0zKeWGTLly/oiI9wdxW40BjRmsoJGL2imDFl0rE7PYcoJ9UqIpEnv67C64zUR6yoxYocwkyNtqxGzWMndnGm2nfSQfqK/RVBqpBuOfXdG3EMWkwMChX8o42iZRaQ3JDGDlzJfFVb7mWDm3kmwwmmJwQ0gZgF2WMzMwvSsQuN9Bri523dkHZTr2Sye6AkrEk6T3Tqet7SZdTchXuS3gYjMIWBfIyJph/Z9noJy7Yh7agDGj4sK5qWW+l4zyqC0Ez0lMEBG7Iclt3IMeLHRHZ2J3P2j7f46JGcOPAEhgJbrpGhVTEK4Q5HBen+QtpwqJyQ1a5i2moT83Al4a2LParj3k1IbSEWh4DUJbDM0gjxzQ4ztNzlIhKQ8YmpBgv8xgio47JYq2KueB+pYKD+tQbVDM4h+nyHODPRCkOPLZwplarITQXhc83cob/5ABvTcfb6ZllXroI1L5D4PoK2hzjM8xRcm6vdEy8wlZbqFMMDp0cr7EfpJprDHnP0Op+xChPimYZB1Z/FF27QWf9myHUgE01McZTMbKzYrZ6a7A4TPErfSD/SDu24sp30ATdbEcktEisIy01EM5d0JZaRbWqDy45zypJ8HSEyK65hQttmjd8pSJMdpvYUWo6e9L0jYBmkruidCaTeEHhdvjThSBN+MsaRIIbIjk2bZ7MF7tF0eGwVWaxlVMkOY+CVXjd/3CoyuwB5BhtNzAIflzdbhljNv+6ObvrVtHTgIRy4i/GIMjalJmBpqWapoixRbEcThuF6sUC49p5vHpCkD8Erl7z/Ccuf2CA78A7iwWoQk8c1O9sv664UbFRR5PTkp3rp2F2g7SIEeWPMVmUTYIheqpsJ81LsVwFWpuDGpyUz6vKuo1TNvkMvfcSm99IP0js4wjIy1SOFURvRxaDZ028nAqEzSQmzMYUDW/RX03EwQpoIKw3OP0R4OoGzjbztsUm/dGhPdxSCQ/SPt0htrDqs4Fg8z1tjHL7OG5hs07dig7eE5D7CkAispjUe+WNiuAklvoF1hnPn8JQuFhHv2njeg9FHF4dyTeHtU0TbKZzZJOSJZw7Z+E6UiUP07IfAFOaz+3DggoLBxu2JwIaFVYgl5sGlR+7rFB7Yh3BVUWW60OyJvxUu1GJLbqEoJOmOj02YbhmkjuNmw+pZhTDG4ScncL99ZIro7AjoBc+RpUJq6obtcivPoMrLf6C2NSnY8bCaA/5RSNdxNkIdgton9Fbfg4MFgW41rbttl1ixAvxX0Qeql0WKOzSW59aQc6b6LORollO1Cjz0KppSY3SAq8jIlvA8gK6aZTCsAzenPKfkUrecD3YKrcW8k9fRHrDQqYr8a79ZUyNvA2u+ipPBykh/V2SigqVWzDX2NA1ugAFueKabjsuGas59pKu1oec2TeNUcIoFUbygBsuZOzfAW8EnpEB0jLsbA4jPBcBbAlIHpqpY5AuEMWNMLj1F9XLJTdVst/CwEzDP+eoQM8bWQRhQuTJ0Z7SMDS0YahyigdQh2XUhNIZbG6a7CTNf50+h76DFV7YoOyZGM/Q5DXma6kAsepA+wh8dgdEerbtbYgvXuM6qii50Hf/Qchq0jPQ9xHx2ze7ecJ1twLsxgoJD6ADG6ijUTqE6OEYZsKf6vw/x8RBGaXg68Fne1wKuyjn6RFSq6cQ5nVWRp7IZW5BS1/ib8beZgwGsf4KQGsjpBi0WPz13YFcaToWpB7JjO8haMu5mwgHPSQdOPtEYyb33Foxk+bs7ohe83uCyCAdONLmVrsNV5qxzG8HaizZF38MN/AoCQxGbxliEKXDLtCzf27jZBhn0gTdJB3ab/Tok4AVBYc+nTwGZDFSqcOCTHXhLaeJcUUREOS4NSNIFj7h7wX2uWZH5/n+UfgTvmrxa85SCHWunMIIiltLClFQF1YTnMcJYBvIpGI8KXlYk5KzYLsN6eu59iLC6jzbTEfb9yI10wbD5RkbWug3Cqo7NLqNL6tnbOQO7i3EbVzWF+rKLuDNyqOdhGb8G6U3I9hX60PVSROVLqsOxL3mwXxVPZO5pwyk+SMEHGpsmXhjQwL4KuOzSRRHs/N81vWFz511onY1xupj8tQObkSvg8f4siZJ6CkXHBIQ8kUt8L4a2GyKCWW3FAJpjcbbwslcz8YaWJA+RaVJVUtBS1DJ1eULIvNwmGoJ2CqvZ6toRfgiadgqTKaIDZop0i7G7bp9t5C6e+7DGpSau7p773ge/U8WJciXjwdYiivT0Ks59aiJANbE2NcG8om7yjGgih9x/9yRPS7xecWL7huReEIH+Tvog/SPR4oKueAnScgZ0xB7h0Q54dsMunaKaG6N6XYeLTGECV9KKdtQYo+fb8NoyTOwyal6HZHdBj3C3M1mxI33Y3lck4jyhog1uTpFB3PIdgq4qlyY8ho0XYfJO0zvY9DqOXx9wowEbd2XtOQ4TUj1cxBA00EOgfIcKwbWZfOh4h6c4+arnFPCCqq8Hl65ptggPajkS5ISUf4hukDGnFXNFRAIXyB0lq3nJEyZRxwHnhYKgVSSpKaBqEeT/PAz9hiehz1s79wwfYJ0O8VCCEwMk81V+YEX23I85SIf0MZ637NpiE42qDe/prJdtL/N/71hN52u374yZSlakQld5GXlqAieZDJ6L+P8s/b30A+tj4mMKV68DWJvc6aIBbsXSPhw4Pb8J+GEtTgVFfRt1xUQ0HOLFA/FOUVinoRhTzRNit9CrPgTHANppIpOmU8kUwcJpugOopHPmlzkaUQMMhDMTiBWMxUhYPEQSHFntPhbHioiKaOIGiMVzG4q3CcbiER8ro6rZ0Z3u4Q1nKdgLQoAL1oJO+wCUupBuADAPwWQ5AlbRQ0wHdgbtkTxUUcfaJU9xxsvPQE3LtXbVPIHbZn7pt9JX0hfMIvSYzmecDDDTF+9ioErs9D27+wBDeYy1s6ddgRKM6VfSa/Z1vTzf0RmgJiXO+eFdvKcoTUSDoIjYVoIU5ujwMux1AEINBLK30h+lP0p/okhoeBa0myyKtFPEn2PIcRpyZrdMHf5TR5BO3Lam3jLlOUSOsv0Z7tcBv04hBTaDV3BqaxVaVLEmlm344wx2kp3L7ejC+c2nTrFZhjm2OktZTxQw/sV1HIRyjPokq5cxlquMDPwQko9HAMUuoq3L9CRsj4SGjnBgOnlC8bbnO3UEsplWWqGBPlJ6aenALtALvC+LEPvjI9zSRAfWuarzPtaWwNjMpyU8nbWOT5heTdTq2PwJ22zp3JzYzw0PKOnQEI9wui46msjFA09XLvn1NbD4Ry7ZApwuUo+bT008vbmOmGwkZ6hkGZEReRXlVQYDNw/nRvG99L30RwqJWZi3DQ2JG1G+WsUI8RNaykuwl2PMFJblyRMLBpzZGy64gAvrwCSmCEostw1xhWKIZc81l3GiXM8FnJGmdaiTDJa0dMoiKNIMRV0AvIokq2gXH2lHTKzwKZDodTzJ5RTpxRyTK3SHsR1cVcGc+UVglY6taUPFMHOCj1z5Efqpjs6iFWSeLj1Gq9+Iq4kJv3apIxXxpkNbv2FTBnztBJN1wvgVaKShtO9cBe24UH85EA2Up0Mckfg1RxRf4T9z2T+Tf++ld9KEoZ+kL4K7fcKqnmJUdgiYaA3hDFxWbINDhluv5hE7EInT3CrOSmoirZcR5SyEaEKnZS68jJ048D4KBDZxBJ7xd85QZ3vTntDC7LzDXC7jc13pFjQhs0tyJow7g2L28JrwYUM5RvYcoL1a3m1LseuZxT4GMTPvD0tg5h+VARLOtFl24NPSgSde0AS562u2Azt5bGMO1R9agfrMQ9dRgJ4iAj5Kdzy8uWX7HkNBdCRsdZzh1lMETsHK22cKII17hXZ+K3ksIn2MExe8lfNHv+XovToWZMszjOcsuCV5GBu7NdQRRH6SOjimZpAQE1EdeaOVrqU30pfSG5LSRFW3lj5K/0wineHLr0Juf09Zdie9JM6dtPha4yGn6Fk20j8QmNfBFCoG41rwxwYxuxGVaWABdn2/dYz62XvtcoZHLat8zeWZtl+FA9s9UmBYgBEPgaguUN+mLsqL6S0fInLXUCi+nTpo4D6wRhFagqyDn2JAoSQD2yZ6Ulz5DB8PcdqLK+x8zRArPIVbmuZXhEUDH5PNrj06Zk/FqlpdY+jpvmkOdiT9uA/x79wBvMR4vNe7ECKf0Jc/xHjBFfq2ERm39QrraCoZephTqsHZnvDyUjjiHFC5WKRZxgFaHZ7SR4DO4NWxpH09hgkkLqm5QIsv57d5wDke8L86PGmUttKvoiFx5JGaJ2qQNaL9GvmfdQI76S6wy+wHT5wCbxnAFOuXqG4Kux4CQ9dxx6+DPSnYjfWy5zyv01zF7AMWz/f7T9I/Sd9DA8+OsosT6Dr2R2G2R8znyGOzHkIw2SzFG8foJLvFJbbaRUsDneehgE30+lcxoz/Eg4b6oCPfYDgVPrFjvwbaSMmKmDdwE3KM22yDMHFhfowDQ7Lp1fHOe542Ygxt2f8lfqMAUUlgu9+mqByOQRt9lL6TKulNHD72KB2DrOwikIgmtqHgCV78FGXJFKV6EYS3nchzetmwNFI6USV6MOSwtL2RRldHarpG3eQDBuyzP8U0Q4oiiI8y0pmLZ2/YbDcboNtch72S/rX0RvpO+ihtOSb5SOH7QtoAUBqERC5fHFcVQqgTlzsywlktL8MkqCvdkTtvl4TXJiTnFRewDhzmSD478LvoO8wb+TH0mVXUgobgYzSPkr7xqOkThxO1XIzN0XAtRXSWSZTLPNjE000tli8wvjXAyW3DnuAvUvlFVKIezuvimARrpA58qJW4XitzqHbO/pkDp4ggX9NzkW7GnqIq3RBcTsvix0xAahs6MuZjHCb4KP1I0dUASWfUtwnW+RjauxH8ug59xJ6VH7hfJ/Qm8ICtaIVdXYZ5pANv4SdMexfBbSgyVsO7jVj1KZqSP/Vrx3BgEZ57oN5tZOBddOPq2LwLDOVa+p3USX9mIQ7kgcfoB+2CKezCAkpKDeeuE2zcSG3dLFkUV6gWJ1RUqK6Ae6LATdSpJYB7jV4ymYANMKhGZHbkhKD7uLwOgqVlP7JsdeU9EemeeKL6kU93S6sPzU0XAizrBExI92DEi+ADVuzgGFXdKbL6xC2IV6753D3+MMQZLgOfsooj4aaYJDJedLWgAEcuBhz0i+Vr3MZ2LBuWGXiDb++iPJhwmDGesTnb8IoC9xAHKLyPQ4aveATwyGVswL5jXPaefuItnRODshMfd+L1Fd7h/r0p0Aazd/rxjhRBMGa/fM1CdVid363irDWvZ1f/NY+GPkmvpd+F+utBeqTsv+XCR5Z8H8DI0KqWfiX9B+n36FD/J+mt9CF4x5fx/Jk/UCDPGOJDDNwXoaY7LBv3Y/huE3rFIhBnHzm6Bg5OHAhrwC1w9poA2OLfs/s+hvseOMngOxKEaYUCMs5e0gfWHIneVcCmJ+meetlFvdloC3ydN0eQekOQaFC3zYX5GEm/RSSdUbADvs8X+Rq7s2z3gLsMcWaX3zDpqiHCzMQir4iUBzjKKex0CvAg/t2S76qoBI7BG94gHPAKjNhbFTLdIvQVgpbtePNHAPStdMsRFi2fuJfeSR1Q07y4+Om85nPX8yWo4xhO3EYJpPDgGm/yGIjpKhchHnjJGqMOCXXN46g3y9f81MP5Gxz4IL2GYJ4zph14K71Yqrk7UFqN5HyHM3wl/UHqpH+WvpU+MpLkYcRr6STdcbz2yzjw7kNU3kXkjimwRY6pjNH9d4uy449tbhOdC3PPdhL3n806P3fgJpb7Pb0GK+U2+KRZLRNPpoGPgeZHjhx4YFlWdBNcDBiTDHGdRYTRI9cwp+zX3JFxhZlLsVlJTg+EEhHkB0zN8Nf1vUOh828X9pq6jg4C4Em6WZpystQKnUZBQlwFVNjT97mMGD3FtE8VtIT39FJ6Kb1f9pVOYIBtDDF0Qf/vpbdg7oYAZHXaETA9qzhuuIUjhERNgPMggWPWOg5RcBU0sXFF5H0PlZb87onrLCGKDjyGz+h0kvQbHFjSC+k3OHDBWT4tDPxcJH3HUS9tRAIrPiW9kv6t9EL6O+lbcm8fvmGp9Er6XLqBM5mpjDUZ2DIsj3PloJXCaBT0gkW0RTRKW1CRpLfsvY3PnReXIHVUwGPoxo4IRWcAveJNVkHsD6ClAWzqSFGH3sOjx/c48CpkZFkpjoEaCxJOh5r8gvB0u5RDWX/qIqcJHnRg46rQHowgnacYwFEQUyay7L11bIcZEWfg9VIVVwd2dOu6JGGOGK4gS1ocQ5RDFdxMzbb60J/5fa6kF9KH5cBETzSfJZl3IObZnDYcMHEMMv7IMRAX6JcqotsF6GaKstONPzcffON1HAIzBX7Z8iZODEOggDUOfGQUqybUZl9yqv+d9C279J+k/6P0lXSQ/iR9J/2t9D0LsAvVhOk3u9EczK+k19JX0u/idKwto2CGKZ10I30h/RvpD/DZD1IlfY9pH1jRW+ml9Gccy/YyxUhkAd1gC1oBwQdeOWIIq2Vj6YTazf0ed2ga3t+yF1GgbULC8ZLzxY4hMxiCTz1ioc7aRRBzPizBJHQdzYYp3G6iHdLgxI+0hbKLPkQq34ZOT5S688JeRspuMcBrfne+2X2k4GpZe0xcWxnWWmCPj+g8V6jJh3iowsjb1hR07vqWMfYm+uRl3MIQeaOPE0UasGJFFPcbllhIKb1EpHBBUjvQ+33Nh7ak6QOpzKCowt4S6dmJU7Nq2GbKz+Fhrqk7FmSMvOHKoSE7N7SamnB0uYf676Vv+bz/JP3vceB/woG/WzrwIWpBH92wokqYbeKacHrJkTqX0hFksyaOvZL+lfQlR9DeExrMTc6g6o30Jp6KdCQSnnj9RCfoIhQUiiGtPgj1PhqJp6g8nndJ3ItxThwwmj5EFGsExI+hCDVJvAMr7/ncNRi6hz08kAhqNmYVh0OLYDtyYfbwfVS0m7iLIi7vaklju124D+6pIzJ+jKQpVikDfioFzIhX8aHCSB6xWjvwISpgN4032OUA7rcDzxHkIhoITtkVGGOITDqh2bqQ7uLgkZZMfUXMbYJbnH14TsovWWevjOWULYZURE3SwRCnuCX7800s/pkDW8RcBQj0fa3iAKOaReiiqvnZgf9G+hYl03+S/g+RgX+Q/lb6MX6nk/4EgN7wSWuO56limnUvvQ56pENM0+Ht88jXv5JeS9/jwF2QFT1iwzfSWvomphDMyw4spYgjBUHxMgQMzhXujpnSN/N9WGZgF4g3MRNwjNm7KgaFbrgpaxUcpE/BCwkbbeOn4tNvcA9LR8RvWaY2IZz3Zd+D5i1c64MwKTkIymulSB2rWIGBx01VwUoJxNGH27i7J1a4DSm5yNuP0vXSgccY49VSYbDjalsS8h4GbBvdj+PyBgu+6d7KmgMsPVJgMmB2jCvphvblHLOuiIC7OA1jhQ3fB9DrOE62jGrNn1KERSk6YobO5lomoJkbkQ4KIh6t4yl/NZt7Itv/7MD1hfSa/Pvvpc+lS+kLcOGN9L9I30a9NlMGV9KKowVnV35Hg/dL6d9JX+CIX9N0OWGVB3i1/076j9JnyAt/kP5ZOkr/IH1HUXYl/UdpK/0o3UFRF/FAmx11q0ivAzG8jKHcC+qpbWjOD4E+pxieK7jZgpZPNl2upN9KNzzo+5ZyouEJ0g2QY0QRZ83OKTR7ouLreFkFZLT46BgElkcD5qt6YP9dS1qJO0KrbUA7bra7un+MGDNisLNXfR5N4EdeeSuVnOjq8tMqlxVBuoQbqeOAB7d2rdIyauxZsZs4ErPBqyoOFrsA7w3sThN6sSKy22vpG8aKFMMIj8yufyU9SO8BRRvmU0t+uoIneh8d0DvpVvoCF7+S3krv2I51ZNuK+d4dnLGJqulZaMyOcQsYO4Yc1PzGDl5vjlhvpDvpo6SvpUsm8v976WuOS5zbRjOq+xYNwF56L/2P0nvpD9LnNIrd4il5ik8nfUbd8xac11BmzRXY/1r6t9JaeiN9lP4sDRwAcMI0b6X/nfSGx+5+DI3ZewzXArMpQrFVeSNg0RRpuRwutJBrHWDRnpZq4BKzmKPeOh4stAfCPuGfdczkXiOo6AiqLbqCmlBShwM7Yrst797ZB+kFrY2HAAxvI3FPMOgNGPcUZYDgFezAUyCzji7MHobuuERsazpTBWFlAJvesbY9vbYtZy2Ja3AVW8TYYs2z3716V2RS62Mfg/84kVJXy9HMyyAMNtxgx6GKFzGFc4oGzRUA4JX0a7pFH2HNBiz/QXoB0nBTzMXPELMyV1jaFce2GEFZ6JIpoaWsKukDnEJjt8aujDTuYNaOIrB9IV1I/1H6K+mldCX9Rvqz9Eb6/0jfxyBCJf0pDiz8WnotXUo/cJ+eTuhCdDJGE/ce//zfSP9GaqXPpXfSH7GGxxBUXEn/vXQjfeTp2fcArD0Icv7KLDfxt5bMyRQ6NTdiHLwtL56o4XrpI98p6ARL2kov8ZYVH/pS6jnNviTwH6AbD9H4cNd5NsQnOLfMwFNMqinwdIG3PMZ7Dkwli4tpORu2BgGLFFEjbEo5qqvYFQNwB/R6rjJLBtdbsmgVfegTJ4ooWgGupo7QwC4kWgKEK1ebbwvL0pDxakitU4iLCoKmQeoa6x1DQ1pFMqxghwY+/Yr7mnfwM3ovl7QajNcacJyFX+Xyfp0qLglVL6Ufo9iwIMBlhvBeV6Q1WX0VorpdPN5yh/y2lPZ1w5H/LQjjBgOZmbmX6P1miPZI8NRSv+ECzRG+JOpau9ySfQbpv5F+L/2K1H9gNtii3hlE/kr6G+maEyxnWWaHlPHIbMUU5/30IZOpYqWH6DNZZllGNWohTEXIqSjhe0zY/jdzma+iR+2Qvg4lwD6GVcQObOLAQ080GQ80rO2EFZi76eCeOrQutscHMFy5ZFjecQvO9X1U6F6iVRDnqwDlFzwsokYCYSX//PVAKnGadsI6RNhOTYLvzlqdluf+bkIuZ6XV5zzC5j5ET9kyNNc7odE1SE1d6CmeK3eKkTZ/0I30K+kVbcIGUs+JuICVsy8+8VS7V5iBpTstUmEjq6QRt4R/63P6yB5iZ8+6/W6pViSBn+B8iTrqlg++BC6/ku6lt3CNe/b1gZOOFEg0P74Cdh9JQ004899If5B+DWya/34hPUY3Z40Df4HA43uK4HfUpvcYypEtMe6sAiCWAXeskHbLtwqTtY5xjNHOIrjtEpe+iqMIzFCeludTWutYE58P1KY1ltHG0rlX0kdamQLGjKDtPmTcGw7Jb/DhFrhmpV8dNYaWnRGHYBMJG0rYIpbxgsK6CnnWFPikDnqrI4wOsc6G+0Uk4nJpPCdAp+dC5hQyxDySRfCOCBZAlkwcWaaSjF4VEzknKuyRXbiUPuMhXt/wwNi7OAWzXM53JjRq+ZG5V0vWfsmBbXUmWKugIqolSjR75W7dT2x3Q6lxGRn4mkJ+roM/SB95HOBMaLyX7qXPAg04A7u5b8K8CDhfgoS+lr6WvgQrzJKvO+kBWdXMO80O/Aan/TNn4T1IH6j3jZitmhjj0xXZzw3LLiaP7NJHQnUVhHTFr9Tc4EjD6A3oeYCNeYK3adlyzwFcYzRHpK5TTEA+d2AraxUkuuIEhhPJZ06Y33KnmbeHEMjXS3/rwoG9CJZt2YEVI31rvl+iSBV5LyUTxiNHlsW9OQeLYnkN7h9bCrZDt+ADWB74FRMM2drPrL4Jl3Ojp4zk6SRv9FSCj99whNVcg9p7W3gq6x4snKoCiIs1nyJJun2puNo6gn7Hp5RRY1RRU3UhVrBQoJDKWmxag92tkWo30hvc7m/RObwNvYzjiWUVjocWNNoz9iTZR9g+MxQul3ahNxggFL+WrqWPcaJcz0DVA7jNoh7PHXg6wPCx5KbGSGoNt+Ap35pYuots1UWqWkvX0t9Iv5c20nv6jZZ2XFDmGx5U8IgeLHsRkczxr6Yhl/miDkuc4tyGA461Dz3hGHrCHIxzB9up9iaShRVDZZQuJcxUT2RaAbXrwHxuVPqC5w26Y62yFTzFee5pLVVUZebFhI7iRrqVvotiXzz3o6DUtVFvpJtoLJX03q+QZVrJdY/vzmZ8jcT5S0nSj3TUjBz2nBHfIsV0F/AYK2Aosoaet46vC758H+5egNlmrtMBr2HFBsL/FGnQaf0n2yqXDjwj99eEpord+ihN0jvpM45HeFoqYhVBtYw23Yle30wKvJJu49mPI0y2HXjCgX8tfSk9woaUy4rEBNbASMkFK7Xi04vIdyYdvHwKWxmDodwxauC2ntHPWvor6TdSJb0lBe8pQ1vEUnuCnRWS899btC5jSDQ9Lqbo8iWY7rnBIuJFBhdDMYuDew4ZdFI+xvso5oUUIM+L4N7cCMVeBlro+KySS63JOx2PbN1woKHRv+UNRQhsJo6VmQPcnl9xXfchHoU2RlHoWnmI11/z9OghAlxP1XQtXfMk9pFwM8EiXfO0wvlO39GpFMPFr7hIjzD63lteOUZE3pJ4iuiK1PHohDGEPSXN3jHC7hPhbASXrtB4/NQSmTnqi6UDzxHihfQHqZD+CLN9L+2ogI8Iq82xlQFHVhHLzRj0MIuXnGxitsFUsfNeI30m/VZ6xWnwM4F3QQHxUboLUCIGxU7B51hDI8o+R+sqTGobhUsZTz8yS2pdeclRrr+WxpC47OkUbimLTwGv1yx3D8s7BDc8sCwrPNZaqDEAzhQnu55Y1RQWmylvol43dnAX2Zm8478jb9JRYpaIB7ZcnhUmRcxYWHBWBkM8B9aak4N2AQGff80L/iFOGC1DKDAb4Q5/G2gC9KFjG4kalpQ08QiYJ6LSIfo1VrD+EA+G3FAx9hRp90F4zvZ5EeNLOUcool72K1oeYbqPh4FPoYSYl+6EYdRRFq948wOHDtj8fg4fdc26elTDxjKzj19xbuy19K00QEgX0ft9CuWUm7FmBydpx+lPD4izmmjuDdzEIQr1+WuF8ECROlc0yvehEy0JX1dxdEYXsi9XvhVxssZACj5xzQm5Az23nfR9KC1b6ZX0O+lfSddxLmJDwT5w+MNbwKUZsTXbvuJXSjw7gX4TbcYBLzRhsQ0SUECLFtO2iu9EYnrAjro4E7BGFOZqehUnYrlH7TQ0Rhh2dq4DZQ2Yask3k++/ohJzU93F+wUq55GbnUAyVxRyjkwVHGgXAlcR9tb0lupIIx2qgRvicc11Hmhoz/H4mvx7y8o/UB3VhNinGO6/CMw2gcouohppqBhbykhFoB0CYjUxx75b6lLSldwwWWO9pbi4IkYDXVjMsfcL6RXc1vfoepulslvBFilynNHhjonXA4+3WCOvGaMwtfeO4at24CpIxEvpktQ/RI/mgqO/Ldh4jIRbxz9KrtMKobmj+IIjrp9Qhn2ID5J0Lf1a+g0Pdu8jS7ZEoo/S+wiwwiWqeJS8N2nN9lhl0cflmVqYDeUypNsFNd8aOUcZwGMiNY9BYHledQoHnsKUK75TEbAsnzIEbGIebBU77vWc3Wb+6WMIEobQBbTLZy89LeuHHd7imZyCXxnDScyOOyCu4tyYCuBbc/hExZzSO+mjdKCS2dI53dKBL9gIEyE9MMAp2HywBRHpz/N/H4NO8PcVrF8R9yI+boprGAMjTTHL9xOVVhNvusBzImPMQ35bVJM/gEEVS9ZRLptDdWA2Yr6X7jkhYS99FtMPBYXvtDw2af6UDRH66RlReoAUz8B2A4A+xHhLES8wuevgXUZF4omPU1QeDzjMiGj0DaHnKWSYbiicaD2M0W7oYyRiANWdAhkbHu2X50Icg4kq4tm+nvwzUHOQLiMx5rBtGcGrDwfuqZ38K8aCdYwy9EEnrJ9xHgWxzLn6Cfw6hvLBlEO5DPTHyEIHBhn7mN8xiesiqqKw8WxBHQXJkVjQ87t7MPoF71/E2aiXHHyzZlPWeKlZLMfNButyidJGyFsHFDrQwBYvK4LKs0ChIfrvuE3voJVkriobdznrFaXBsIwbK0LTTM79FvQzSd9Lb7n7fRCfChHjFCHBZbLi4XAt7ruiWtyw84qSqmFhfNUrjHG1ZMrKSAFnTfYhCgpFF2QM+VVNVfiag3bmK/+WVDKBvb6Q/kp6EVJaf/QVFd89xMclH+FdcoLY0nWsUbh6EGUX8f+IoD0dMQ1nfrfvcYs67m4A/12wwquYeVZM77UBQMXvWrB7pKh332UKj3TLcB07VYZ+4wpV/RFSds8siemFKbJzEUfvnMJOPOE3MWu0DeHYLGL6njcUN3iI84HMbPpm17yDZ8BalJ9XpNoRb5sFG2vgchWHA46BlxxHrZBxAWYmsQj3rZcz/Q6xbuYUWHgTvcmfUvkGUqBbOvAa5mJGDF9Tng7S+3DUkeBWhhdNcSfWYD3GINQGY1oTSy/Yj7uI6r7iEvdrueABQrQIUJIwTiDyHa+vSRCboN+NKbcAqVfMmRgJPAQJXaKU3UgfpHfxdI8RrvEQkrVLosOJ/SsBtU3MZ585cLmMQfVSFiYsIFmEs+qlwIx+JFyu45aLKFHcBHZ2cD/2FDZnseIYsT6rrz5yxAnvbeIZWqbe3JZfY47d0oSskRqiSb6OizfR7n5fjZ8P8B8bbmEKPnEAYl0wAtJGRpnNxma5Z5T/RAC9Zraq5t5PRNh6aXjODWaY3B8oKMRT+lItvamKdfa2pmzO2PrnguxMQlATe+Z/v6KcfxkFq52keOZCrmxm6HwH3Dyxedeso+jpetjENV8dnekW6t5M3nq562cOPABTHqJB02OLFo0Z1tQx37CBCps7hR9Jp+4Wz4267zjwwVbo99kR3S8CUAxxdr/Y3YulFTZUnHu28xTMxBzRDkHlmjY8sqOWUs3Z7z2u4gm5EstTsIXOBiMRrVqWDS1BxJDOQNweVYdbHpnEOVLlT3yurTZ9YMTnzSg6A2+WGkxn0Spk64rMX4TmbAjHGLjaBnn3CFJYxRkQZkS2YB/jlBXjZmKtTvh/kreuQu1pp0CpWrplydpO+IIJZi+LU5T7uT9ZeO0W1sS2+KJOQIdd7O2WZ5EMwXaVgQ9SKmCfrqJCHOODDsS9AuByE5nCPRLFkhSBDvuAp1nV2l482uVKcIN5KtZmkF7TPHxN0jwxTHFL9T3TeX+Qfi2t6fLXXF4XFl3yQVeR1EYm/l9yhrunxA5RIJf81w2Sp3hyzXu0cn0UJ6eQGhuHDcsAPsRWFjEyPkTNXken1zT2QNqqqNzvaavOuuEmZKu+0yO+Mv99Qfx7EwV+FZmxAB9P4ZEWTF3SmH0iALfwTS6ELuCtOsZPpiXQmkAIa+mGzT1GFj5S+ZRc8yvOcPP03o420iYOU3WnpYyjOUpsxl2FMdKLccgQlzeQqeqIOlo2aA3Kf2oNOucWEZx7At2RaVP3oN2AeKT8LQINKP52Wpwi35VLkvsUosQtz5S+pyI/sbuneMM6Ntg75ErCcFBBx46RZZrgI3IRXzKL+iqe6vWAfuBEgLiUfovy84n6rILgbMOBV6gCmviUhlbFipX8JQd2sLOX9ki7tiHA6Ki5T7HIbif1keya2NkixiibJfITtVNFaJgCUo9xdk+BgVZxuKFhxhFIkL2PlJokxT5FATpRhDwyb7YO7d2cB+to8ptIrSFILOOZgnfbE79cLt9BKrtPZ+Ksoh35QvqewJHhbC73n5iVugiDdAulJK1vyafpwE51Vay8m8AlscZN+5xwNXVYSNMU+ycsoAPDPXLGzZ6CoKeL9BQPjyiWAMKwwArBannpTYy4GdNsePTZB/bJ2LGPD7JudYpvuiDzN93kShmuN9jWbDLhGoPYLCl682Nr1ueWidePMZFwIHwqwJbn7XqcoQ+qp6Ya29C0SgfexWDUKaqfXQikFN0WZ1oFUjTmNpHgtyoDuaQD98SdOo43L8OwprBypwt3NKs4OqGP4Ltm19bggpT2F3BZrssdtgwoau50jkeHMFo7g/mMdfzII6RjTLHY9owuJ2LTBSt8RSR9hIC9XlYpBWFiFaDSQXMVVZ/vtFq6m73RibMOiHwKE7VQtIg1Ub1bxs9MSSco0h7cMEUArAPfFPHckNxJ9283gJ4V2KtkyQfeLYOVa7Qn1Le7eJhUVoVT5N8tpP+aBo+YenyMwuqEIDvTynuw+w0z9wf258hzYa6lX0m/ByRM0F5WkkxMYYxRxjbg6S0S29dxYNcFTd0hcmJH1jgSRA8E5Hexekc40Ucwg5PUIWrtOlD+ELIpx1orLobgti+JJcfQNO94md13ZFzeFHIf40lnVI7CrqtwGneqnYysoHDj/RJGrKMTvl0enNKgdS7IWbtwhTFq/GtOg04SdkB19ciFrTiL5jEwg6HRrEF4Ih47BT/hC7MNX0F76dmjNB1yTDkbUymgZhUM+hit4PmWf3Kn4ZkDm5naAiz2ABHL50qEZxugiSJaNkGFrOJY+uPSgaeAGle08m1SduBTOPD4jNIb0Q+tI4uN2OIQZc0RhtIcyryI30u3CLDmsnUuD15LI8eAz7Pmr6RL6R0seLt8UMg9DlxTUW24hq30QvpceonljSS75w7scGlv7PAW3+AAet7Hc0En1uoI+rR9WANZ0VlNyZS5qpp126JFVNjWnsuro6WcA4Vud+/Z3yYeatvGMJw3yBKIks2dP+UDhyUcpPc0k+tlGyEpyyP3tcFyJnjMR3JAi79ZbD0QbZ+IlVaMXHD2+1woN5F/N3yKokTpWVuXUp10Tfres7zu7hbhwOZpsg6sQjvo2qMPpmfch9oyHdjyuhkoPPJwwSMhx6K/FZoHf02AmNlkjxQxa/LqLWfhrQgkLTmqA91mBq7iJId04DHysJsphowjirwuZoT70OkWIU58QtlsOFAyePFSekEtW2Kv82ZcMA/VEXc+0oWvqBRLFrMmSF3EAVF/IQP3wQG4zrmDsW7Y710cY2QQ7DGIDbdTc78K6DTFqIf7OHWgpy780BZmBza2zvLJEdwvTsGjE4jZEYs3TWrNIrY5ZW1xjF3gpoEpxrQBj/etOYjjiC1NUQ3XmMfEG05xuvue0HnBUTW+wkPcQkV1ZLbbKl3xnXVM1bj92keo0pKMt0Blim63ovp3kO3cBKwdOfsodtoowi9IvnMN/yHmQwpiiJsihikKnbFi4rGK04oM/t33r2N7FUSVolFkyFssUfgqglXSq0Z180c8AdfqwNleklVI2Rtmrm7J7DfSlzyudWTTdpz1diTenFjDJy5sLX0mvZF+hURkg9WvaZt1bGAJ1XWiEF7ztiNz1yeyyYwHDtJvWf8nBJwPjJx0zJebS5oDlXkDN9IbzOBeEsdtDXGk0AO/XgJ19tE+8V34rJWORLaODG7JsmUtVTh9ze+ewJ0DyWHDTztCXcobBro+JWcWP0VatMChhdJuWOcD84Ir6UbaI69/QiJbIz0XUeQqVFd1TMSVgYI62pbr4KrH0OH0y5cpjiCbwuAdpXqijmFno4A+Zw7ccXuX5JE5+b6NxpTLXwtxHOvsIWUImNZwPdtl6V4G4J4iBJw5cI2rK9iZ7JXUYRNThKyOC2vJVhXgYYvddxx7WrPoBRZwy6kGW2a1n0JCNBDUDuTZE5n6nhp3Bgaf4cBX7NMYAqkzB95E/q1AeCOO54J1km5w0fked5w05KquolVXEtVXmM4UC1tSXw4cpXBDsjvCp9wBya7jhDULSPowNQ8rCDNwG2WKPOJseIyu8jHOV/9I2upB2w0Xf+TUKSevMSxhgJmYCKkH3sE6ySNk9tyba3lgUMEQmgHnKtQpXQhICqz9GDpVd1RHgOWaWKAQhU7hdy6HbpZ52YAqdQ1u/FVS14W5pwNP2P0G3PaeYaJLxGvlMpYoYkOJh9zwvJ+SMc+eo53XfFBDfVwvO+BFrIhrtSZ+6iJDEa5Mao3LcCB6nCc2vo118Vi1gg/Zgf43lMWT9CC9pZSZO6CPwRfNbrwBQI94y9wufcEirNmezaccuEAlcow+zvyjm9jUkZjShcJhB43mIqSPNx8jAU5sYhP98hIXKiknPFnS8QiomjbWihg0hhDIRNkRq7VCUAG18ztVwF+FqvcUEMkqERFldpGRDKNuubyHaG64rVOQOZtl8/UAc1VLrzkz7sD1tyEc6pYDKL6XU0yHZDRxfd9FV8saDL/hiQh4GxnYeL3j9e7G/ETV17eRNU6BZoRIqpHeSKP0zwysbzhNeUUTZeJXptDbGzcP0j9K38XoVYM894lMZ6rSsWQOboe43ex5rHG4gcrxxMOzNkvJ3wPzqz3X9hRN/0cUVXsg4630KijtLfTQSyYX7nmw6YW0k36UvuNwkomR4Dlffyl9RcPpD+TfK9TPA2nRU0wW8g3hWJdkTHdihhgKPeGgW5Rfe+mV9DlqhF9LT/E4iFNYtCtf690noN4OlFXHASYzVn7Cbzy4cU0L4kTeVBh4KkLF2jpttUSyzXJAsJXupB+lCRy/W2bhLUGipqIYcfeBR9t8JxXwiS0xz3qugYnANnqtO+nPZN4H6Z30Ab8/8ZyKR+jCC+laOkh/lEQsL7DhEw2/LUa+WrZ/LA2wgmUF4+kc4pj6hOOeqIvXlnBUyO2FA8+B5YoLnX/tb6V/RKPTIou5JCZM1EMWwlbMzM4pY2aCtiSXW1iSgl85sTd91PkdiOcxkmzLNRj5lSguLmIUZF6d4zKqu9U27/0djtoi4bjkyJKGtPvEKs1Xe49kYubmv0eMJcJpFzHzlh7vV9Jn0uegZzvwJcuV0rhDHItW8+cUiaaMScECjWvHL84Mzj1+eAwWTDH3cImdNUg9J3p8x+julstMulsyPh2AeE8o2YOVDWMKiDyBuasgnsbQeJ1I/VusfweOP7JQBy5jjEewemxihGzuAUIdfMaB8m9FuDQ9U2LGBxx4lO6kd+TlSzoSvk3XWp30nkPTi6XCrCEEb1gN1w9OcgrivJTeomVqIueeOEf8gA1b+/ATch2IQ8Y6K+mVVHJBR+mP0g9Sz5nbBTGgY+lXVIQjfnjEx94Trl5IF9JnzBEW2NBAu6oKO5vivEP7qqN7Ry0rAuSHIO3WjCCd8GdTFubaRYC4INxcgi8nDh3dSN+EplkMkNYcgfvElNicYS5RXbtYrIjWn0lf4M92YAU4dq/f/TITIx4Buw76waXkxOmJHhe4Qsp2AUVj1NVhnZcsxSXMzwx8HvnFArq9pzAoeZN6aXlTCD9nB75jEz3xuWd9pgj6FWGigBLeSQKpTXFo+V0k5xUOKaJbQw5/Fw+R6tggUQFnA66igJnX9hHHfpLaOLS24UN39MLd3xgjeG3CYouQaPdxas8pcLOXsUITVdLB2D6r5QRG3iNimSN+X1dkPSMeC3zcRZjRxlfS75BHHSLP1tGCr+NPFVCpxjnMBP2M4X+hzu2Cip7CTa0HcImdCWUWYbY8xHfHoeRJ7leRhV28OLNbQFLR5RNB74IA2/Hgzg6l33wvD5ElCyQfv+LEnWvGExvWpyZx+8Z9nUM0+ou4eIt9qvjjZHdNSpoRf8GJFjNIcKFqhzvFRl9TiSukpx3Z8DqOr51rko8Y+AcutSc3uTVh0ZCwhPfLXfZsxSoElmUwsp30bjmeWMScwoHX1ERuI8BZheL+XM1HjHzuSzishu17kn6E9xCqy4EYIwhN76AnESdo2ey0C97D8cl1UUmJ3bNcxiRP1DarADlFcLt5pysFAJ2WXuR9XXN9v5Z+zwShpREjBFbDvU1RYbiP487FBWD6Lzuwe4mmNqs4W8OrUIdgT9jZDV49Z4SPmKmCC58iZczg+zWquWsaBBOFl8hHFyzxkaNY9suj2g9xnvko3UifMwD7Fe9sHr1m2RXxtoyKv1oKZxWCpyH6gU1A8JpuvB14JgbeLfNXQ6Zwb7nFgZ/Y9zMHvgBi/YCU8ZGCck9xkvqfgTDkr/lHu9jczDJG0t4Rd68mliLbpCV78URc21CRH0OtehWMT7/kQpwfJ2z4gTB3iGaFA8qTdEcvqY8evkjBFbFvCEJoBQPdRMvFmzvwMie/RxZkE8LLjhcf+Gh3jX52YC1pInN1FaMMX0q/Zoy55p6L0AbU4bp1iHuOoXPdki3/sgNr6cDDMgMrHLgJNnfNo+YMsE7SBjp2jCClMA5RYVToKy6C+X8Lvpl7PXuA1CXvc4ztPCJ46In0r2Lg3A6c8dGET15b6v6EDwtPG8mEKT4eKGla0totC7vjOVLCwkQR6emQlnu/DycfMfQtooi5P7WPelRRkznrTjFBfPZlrZ6C/LY28ABcOnDXzqh2pCbQypFy5Qp72Me7tcTZLqLqgStsw4HnoHBHcH8CrXQROE4UG9l6M5J+AAQZQA2U4Ef2pQsA6Lhc4Yoz6PgALbmOoz86sMaJdZs9S3Xmr3H5rg1yi7mD92vpr6R7Soye8HsVCumEStkqqFmty9CPTfGCzLxughs9D9FnbgmGFezAga7MBZZr6u0Drjwt7bGAlbjkd7fSFwiU13jYLpZFbOwTzWozuz1uN3v2DRKzv5L+RvqSY8RWWIee0Rll5GLFMla4miWzY+QjF48TVqzlzKKk10gObpi6MWY4wnscmFYv45yDMQ4W2obs7gQke2Is/I5iYFgOvX3yKzWHRlDWEBpKukE6k4xrtC7uxN4tu8p1HJhkEHjNUcVPFMhTPEjhAueYSKlz69s8iSv0FTWp2d+C8ZMUZmTL5xRd7incdIxsa3sWjZEO866jYBC6lzGAlp3454D2Fxx4Npevpb+W3sGur0L6OWDxRSTQMSCRL90tu37pwNUzBzb2eu7AYxR/V1G4b9jma5z8Ccl8HznO8d/FREVAng39Yjmx07PNA0eLNnG0zcAejzTU1nzolzyv8QV9xToaj47DE57jZuYZWrB7ZFIu4++CvlgZ6WnEFU/SS+k9eKOjsfyEA1t0X5IIKhx4ihmULiBHQS4eOSjQmbcMuxyj8nNi0jJkC0O3AMMXX4QifIwSOVsc4hf3oczuKS3WgZsHSJGatO5SewRdvAuqq2OL19QPJw5kvGf7VkAy879tRASxLA2h1unN0cE97fn1nlxaQ6RW0IKpJJOnNht6b+PSgcsYxuqk19Ln0q/jhP2S5s4FS5a51ItyBGJ6TatnrmuPKiLtZN47c+AhiKyLUE16jskO/IBBD8siwVHQRUnD+XRXEAgzdfoNvP0lRdJjhK0JldWVJOktxMJstS+kL0PCtQKWKQJ2HVqUIpJwemkd50VZzOCMPVvAfhkKW359HfzPIWrEFraqWDrwwKqOMUa55QLmt72UihitM6rz9RvTZRWkZ8nZKMxNtxOvOUbMdaepxVGL+N0BXPCIrVqKW4EangAm5nG7MIAaZ9jT8d0TwQu6EGtC9p53a+ORB0ciizNwj1dfBGt+DABdExyNkg8Bpr3p9tU+Un3FNQ91tVQM91G7+UcFXf4XkJRrEEaN2G8flbYDhfUmHrudIpxOy7jtL3u/c7phR8m6VuH3Q0x9TGHChqFFpH5TQivpM3il+Qr/IP0+OKYJeNSyzHeUObeQqT/G+Rjz215Jv5G+lj7jWQ0vIMXPRHem4cY40sY93j7ybx0hwZRH9lcVPMOKZPEYh07MjatH5NFVxK0CsaL77RfRoS3wmwpW5Q1h8oP0J+xUcUdFtEmef1X8o1tues2yVCFzH+GPD3AFTpdHnmhjfndWXDhYbnCXjqrpyB01UBM3XIZnLj0FI7x/IHqVoUTtoPnnfuEumlIF6aUJ9WNDojP56Bhc8bI5WN6yL44Q5q1HlmKTbeRsQ5w+5cAmia6kV8s60h5lxa1nGhzn/c2OjrzR0hgO9jw+O0+lTYsLqMK3zQskcjA08fed6Qai9IYH0BqXrAK72M5q6KqZx534rXsUutYAzTv3GcOIX6LZuI4Ha7eRpBzhB4Kwxc36BQc+RIJ2M6WMg6dWhNQdkaVFeL2n4TUtOVSPMM0OvAnQNuIhW5QeFWf73kl/kr7nalu2Ne9Iwb65QFfcQppHbr3hcoVNThEaRq5/hTpC0p30gQZ7ja66C9V7CX3mCZ+ad3b8HXjNjqt6gvifvfoAD13SCe3oAPcxhOE2Ts9GrzmqwaoMsbkjIVjSi5im21LjufeXTenJEbFmmbpPObAjVoP0eRcAqGIO4GNo3CxgN3oW0GcPP3ATWbRYbmoRu5g7OrD6feTYgXy+CTzkLO33TOKoI9qtccV5NS+k1xzHMa/afUiOCuk9Lcw5Az9SEmS2nxByFTzWcRMTN0VwFyPXUMQSDRGkTUgbGedAhhNXwTscuYtVVG+z9Rg67SG7WoqKicP+CgKZmxcnuKBVALGXFAwP0p8Y9qkoAe1m5s7PvorYFGEzMqXKa8ZweAPHPoRWh2DcK56N8gHZr1nQE1a3iv70vOZbvGJYnjcyQvo2rInwqJ6x6wZN/BYasw4yI7OOQeg2Eq95DrMOJ7ZvjQ1UyxOPu1i3+mfc4s9UDI4WzzZhitxRBK1jxOwY4vDiKy3o8fRRqE/xQVreln80xZ8u6gLzlwXL2cEonwE4k7v+xSOrOEs+Ppc+B5Z9TrOnwsvXtBBnjeVHqtoX0gMMdM/xQvOW/kr619Jvpc+kL3nDq6h6qgjLils+67hk/Vjx60lyVWEFXucuTnQ2Mq4jXg5A6iuW4g42t6CnXYdSwo3TPRegwGw1+tghxh/cTBIWqohwZdymrdvqNiuIxtBmmJO6D4Ra4voXOOJO+kBI9njoA2eWvwjvsZrPyLNCq2N10AT4NCPURtFigGEvHGNYU7AxZh497dbhOKI/787flns5UlObjjTJdWT7Sjt0R0fAMHyM6nOK5a44XMY75NEO++Sw/Kl72TVLvOP1Gav1zJrTLidWxw48hKE8MZp6DcpxA8IWUwZaLSPZFYCwLkzhghKqBzheE6XfcRjwFfO5B3jNR8L+59JviQWvyIbXLHodFU82wLNZNsX6uxRThMJpuTgC+g8x9NLwek9bnTVB1mSch9ColXGypttbJxBXvZSzulTNEs3zY7/0ZV5Wy7soli8bIg25xM9YtkW5tYWlcmlxAeb5GA/K2NBgmkL2WUaWtLecQuojiG0PidawCy245Z7ucYHE32ZvOzTVWOJiLe7WYaIbBtLGgNdbOgCnmEZro8HUZSpIlivXtF8mz57ovoPMS/sbIxYkHB/jULMDG1OGg42xmme7e+bAUyCkRxBSQcVQx1RcwXe8Z54GEO+2plqal+8G4OIZgg2jBj8yp3mL3Quq+0fS+I30OYdIpZGV4cDT0oHL2OaEXGep+BQ/9YIbuDdLYfH8Wwc8tqUnUkFSeeTnAQbaGbjFsksc6RiKOgedgtU7Rtgdl/DXobmIf2TYShbL/bIyHNidJtNBgiYXdcUmnqk+YPErGtWPXHYflF21vCpTtXVAxRVKvo5H+ZiY7Qlb2ev1ISHekTZ07e5+jvTphjjHZ8AaC5S5brCYwHaTxwi0qU9Rh04sfxWJ2PZSYvtJEPo+GsJ4GbnbVV4LJquCKfhko79YphUtfdqbX8ZhJC6ih/jdhj8ryB2LfQQXM3PqX0mX0gekWwNBeI+zzrt9Qki5AVMWPH1ozmizCOTfSX8lfQbOXqH8FltURTnvuDVwU2VshJbYpqLnMS4rwRNl+AajsLZ/y9TuiKutoX5aqIxddCkOcUx5ap0q+t5jYO49dm3uLPvPhlXO7Ml5Z/NMUfAkqD3y4JUW6O/h2540WvACE/w9fOtG+hiKoy4IBFM6FeuQoMUi2DZGUU16es0fEOj6+5YJTJDfdZwXbD5u/nrCEUoeNPMFg3nvpG/Q2ziKJO3VEb1WYvur8MkCe7WdOSM00Yy2d+W6pwMnM1VH4jYNbJR85r1DuOsQGH1YmkUdH5FNqCIitqmoY1j8EJdUxMGyswDrBUNW94wFPMSJNitaefuAs6Y5Xki/l76WXkI8z43l23BghU24HBwChhon2IGncOB13IX/0XMjPeM0JSZ4iLyjJXkwxdHuImad+Gj72PzTh5gZ+yDdgSlP7ONR/6Kv8dllKJijPkQBJvLqSP0N1NuKKvNWuiFI3UsX0huqqZo3zAa7Efy0TE5tCLnMkWxw3RP4u6eimJPKA+eciFrUCGEisj9C/O/Y6z6MfL6pFxyPuKXTd4jBJAWmsnnPIbs7oTc8c2DjoWyjD/HTIZizIkiPMweeCBU1JtVg935x7u4UmbkISzXJf+bAXoV0gIr8vOXYqilkaA46pibWsDEuggdGAzds/x5wueX2G5pND2gDL6RfxzGTs5FdSy8jcBTLlNvF3eVVlbEj4vrduRtioXq2aY1lPLE4qzDHkjstCBBTDO2JAH9cQhuTH7vADkfywyls8aDFV817OnCUYWDJ5inidRlc+yHGBVwvuu1gl95wzG8BF3LJqHUXtYHbOmMg/n6ZgeuglToE9CMd4lPY6oQP30du8KyMiYGSFd5R6WWKShC6QjtkXXtHa3mMDqlJjnmV1rX7y+tnbucaJFmGMbKev28AofDIJCnsqWvsov8Uhi7iI0yKdwE7yvjEBhe5okAwas/qw5vv+xphi295rMm1NHBcxpxJ9+z8/LaPxPwbbPkxYuONdMXjgf+a+vcFZwOvIuD5K1uOY/RRijiHJMsML+YYm+It6OPE7kfAfUPrqw9N0yrctOS3RrSFe6CXKT9LXptY245wfsk13EPKlMTOJKrKiAeryOxtVG5PkfcbQubcxN6yLyOd+UfpLb77UnpFb2HDlhkrP6J4/CHKlYIC2XZlL/D9dowwGTRPdHe6eL73jlaTx2G68IWWUy5qTNRawofQpn6O2udW6nmYYhGzuWNgFXtim5euoC2SjUpbsXM2oZGwxkMRJcoIEeVyI1e4X7cEkWcObGomiTNF1CrCgS9w1yJSsNv0K7BBYibFeGYNgf2CWNAQMwfg2j3CuVkq+RC4c+D4s9fSr6TfcNrOC2TybskOkTiGOD3HYGYMQ88LFt8cYl9cOp/Cyi0Fto5lFe0YVxSWFNc8fNF05CYAd7bZFUjAEHAd58EV5LIhGxyxs1VYQhH36H7CxD36HIWOQzMaHOYyZMcrNGGvKEmvpVvo/4bDQ/Y0+w7RZy7jwky6WbRp7mwAhY/0ufb0PebbOVJzz631Om5qCprhnmueYmcLtuCWQ1oueMLlGOBqCHGkByLNef2MfX31ThG2konm9THYD0Vh2sKunQHoMoZNaiShnk+edP5lB9YyA2fuckCypKljywuMoOZRB1uGUIZn0uoc9ygjHM5275JFRNwDgy0F59a1UEZFVGOf0e1body4DEHfGCBi4gaLCFJp2aYKvDLilVOEjxnwXREODjhPE0eOPMSYqkJE3jAduMeBVySZ571bJ/8OPeMGk5r1x3W8eUm8UITjKkJ8FS+b4gBzG2TF+ljM2BKPHtBIXZKByzg98CK4f88fHPmIMvQKxrJFHAI3AVh25GGnsS1toyMZYrc8bfoQeLOJ+ejHkEr7vvzVUMe3mMoeS+7Z4jPa46ecXLfxkIQigs/07OUjvQQTcv5+ao7tH07ZttbU6Zxl9jRYcZdJchfLXJAUpqFPgUNvovFQR+QfSf0jRrFmP91LLLGFGT+9p06cC+SXcXjcfGzPPPb9V9K/kX5PC2oFHN/jHG3cVxV9tYyR2bR73lmZf7RflvDigo+E1XFZHs5zy3doMGpSm4kOD1y9A4hX0a9yp1ehfjEZ3CJYEyP+Nc3M7HZkuzjZMffGpuhRlHF0xAb9Q0v2cXSZd+pGeiFds18peDhG8/Z+aYoKX+8CMzRBhuzhQNaR7ObK+o4abBvx9Ym5ZdM1YqknNDNuv5TMNc6m+0J6I30u3Uo/xvz5hMF30lWEVdtDoxh1+C868BQ8+RnN1CxrtSKML5tTVRSj/0UHLgLWnDnwsOymtqHxq7n/cRnnFbWv39+WNwYt1UN87CLv++icG9jo2TjeSe8lSV9Jv5e+QG2z4QyXPlQBQyyI9dl5OF067ScdeMJKrBBwityx5d1yaPQSbOeyuCWFrfDwNXruPgQw2div4d2diDsIstl/nqI87ZkYmGJPDSpOcbNTCIEuwsfqOJXLldIeMdwUYus1Zw+4730p3QCBWirdw7N6wDZpjrkLgYrd5pEKqgua/IkVXnMLFaPKDe/gqLQPPuOMS27xlC1CvXXggSJ2wcOsHtbq3epqsP7jLzhwGRIO19RZH/fLE2HOvjxi7FS5CvMqwkanf5kD988cuI61q4DpLfTROvR9Y/RETEB1EZjsPMc4z2EgHr8kAztsv1/+6AoN7kh6N+dTxOVNsfH7pfjhlzKwHeAY+2LBQx/P7+mXlVwZTyJdBek08IYXDFi9C2BdcJvzV02SceOjIlRdk7S7eJqgqWtzEi6rrIJwq+Wsn2Kq0zKpuY3Qg3GPQZZu4qclzrMOta+JI1ugaz+vrRH8iaKiBODeB4B2ADrA111ES9jSSMVxNJP0EQcuozyog13uyDotTYaz3uKJdJ1V00/ttnqKdLCP4LaOky4aoqvVTybwLjghdA+oGuNiTXKZoHkPnTmTgkeusQ5h3gUUUgEXMwGJ+jg2MyuXgji0ijbAns2xeGNNoVoQ5Ld0WS6pBGfn2Eqd9DHOYF2RLgeUk/MlXYXo+Zq0ew2I38YmVEGlGZZV0dzKm/LYSRs7VjJK5OPn3BzqIj57Tsy7ZsGX+3kbKuU1UfaKNtiei9+zYicwqKQ7fOIBgXgfx9zXpPhdMBIeNKhw9O6ZLOcl1NVFZNuV9IpHHKyk78lEG/DrK3oIAzL0F8igBxqBE71xUbpM8RDv51+bKGPfRUydc9SrgHlPMZyyi0aU89UxpBptMH1r6TfxFIFLOHiPWlXk/QLXEOcbbWKSqFX8QslKOS2eot2UfeAxmocnjHvDaQw9ZH4RKa+CUbIdb/lRE3CwiO78wHK3oF7PY80ueoiG5wkU4v5qjeuOUQ5eSQ/8t+RDbwint5j7kSv8wJMFj5FPxazAPPTSS/9K+hpjmrvwNxRYRvwJ4BxEhuiLKuQEls/3kH1OAdvoalaRpHbARHM0J+7LvIyZspLrP8VwdMWjUo5xMEPNm9+x8jtIzA/xMhOIYlVXzIkfAvyU7LtT8BQBq8O4izhrWWzu59L3nMC9Z1vnWuUFKroP0i17N//6R8RSE99xVVBQ6ZqhE6n/wNWeKYp3EQSP8bsDE2tVzHqXSGjmS72CnKpCAeHEduTY3yPF9BSJu4FHH4CUPX73U20n9mkgrqyIOvPw2TxT8x2TlR183jbg/CEeXHnL0aNrYskGjq2ifehWroAj21CuDNyYxQw+xGAOchZO5ECl64YNJcITZtQi51jH2ShbHqhQcpJ+S4xfk/M7bFTQ0h/INu+lEfXMHPjnd34DkWX+3qjE7NPAHvTLiCtM01INVzWj9IJTrIRDjiEz8K8P+PmWJ15aHTkSpJ6IRAXKBx830wDm5hSxJ3ysOC95duAOK68iYM0b8SGeodoE71tHASp+OgbimEvSDwhvanzgFZh+jKOtrPecN/EVPaaZ1HnJcc4Wlk0RLk1sFsEHD0wMpF5SmKjZIBcY2QWrGCYqGB++x3Qrnkd6JEZck6J3cU5Eic6+492MNd5LH8CGL2hr1rXFJtmqGUOf6q8ioEMdzbQCc/MYzCmospFb6eLc3J7g7+n5CqBwATpPPUkyOOMSZyQb4mI520XemdSiOPw2UaFrqa7sEMALTFyH2HeNQueV9AcemHJJu2gbQSjJi/LZqtqbrSz3aidR6NoncadXxm9rpGRSRuF5Y5wIagm9J4fF0GFDR2pDeB4oaebIcSO9lj7EJSV9WQOpW0KXk3Ibs7v2ZhEhSkjf+fI+h214K73nRzXuuJWuOOHkAgJ+G6vqhWro0JRA2C5IIgWlNe/+GscqAgoXkYJNv7QBb4pAWTWJ2IPWq9CrzCH5eikOcU6YyLOGUgZUM7zcxIlbvZbNIG/DGZmSt1EtvXeMgGbEbOXGSCyai63reFLiYanua5458D4a4kUsou+5WOKhbMQMSw3xmQPrmQNPccHixo/SA5O/a8aKuhhnmki1v5e+5PDLq3hSdBEJ1PFf4aXTMwdOSn5a3u/07AWfdGBDug5SacCBFUWRBftHypsiHt1Vwuy2uNkuTmW4lV5R3pwCBTYRZwc+LpuibRRUJsK0jLx7kt0r6ZU0kovvl+XchXSL6maDo67jAvplne3R5i6ux245BpztlsNONjaHoT7sxHxfHwNgNTc7wQ+tYn+PBDjHvj2VWEN5sIsjur3jTTywvSbq/bTTCkb5uQOncVRx5/acMl4/Rd+5J5UdqJBMa3Rxz2X0dC9imuZMzPDJDHzmwI5Edtou/m339q97GsW3abp0FqG+B+ZeBPhbR17aSr8Gt13QPLqOJ7ZlBjZqFP/o40OLsJXk+LOd10fU88rUS6VHEcyuTS21nAXWfGLsd65lD2gw+3jo3ERxfCQDzw5cxy6P2J8HDoplcjY9PMYJcVoSwPPr76ndb5eCmQ8xwlxSsbyICesqaFrPuXpQ3USQuYQysMAxvu8GRQIim1AZWcHcbx1ycINvwSqVMdLfQYF6rMfqnT3aIa+YG69FtOerMPtjPdDP3HOmhEutYpkpFBflICBa3hV1Vkf0qLmPM/3UALl41gF2MHc8L+I1w/LFCqO2LCjf0HF1jF6Rk7iTfgvK6eN3a6LiXSh9Lmmz+ZWF9Fr6nfQb6TXV9BVvW8bLJuBOXqF918xlv3RZh6WzhGs2yqxQySl1T0jr3QEY8D8fqGoNzDZGGFpqqz3YcQNYmi/jMtbqIL2XvpcO0lekpA47HUIdarhSBe1dRxDNgVTH1GvOLP5S+iD9vXTHsx4rXPMSnHMZWicHJJ8e9BIu1dzLKQ5vHuF/jlHStqzD+MzkFDV4gsOalTHBWgWp18Sn1yTMOpzrBIFtXfUUUz+maze8m5D+H4WsSkHsO/9W4SquBvpIdlOUAlO8u2Lj0/gUf6cjWeZhiU+/LP7+iw5chhF80oHr5ecKn1kRSnLYeraSB2qvLoiJI7zsXAndSF9LX6F4XvHcS5O+bph7iuYsmY6RTMuInunAZyVvFbY+hQMfUP1NSwceceBMNBUSMc+rbjipyc1My2VHZh2sJn0vfSc9Sb8i3Vu2P4UPH+KJCq4oPMM7RJYpwx6ueWrAr6RS+ifp/8sDMRQsdQs9N5H+Uq0wr8NW+hJvyeEGI5MHGKCCf5TL+OsPHcK0MkFP3JrYuxnyHYks1fI9T/BiVSyIiXy3AocwhjG0cQN9g58o2iHCj1VyzrRnVzzFAFZi0DY8x2KPIew19ddZcSYiN55OB57+ZQ5cLROXIoE7R50FDvHRBiVtFGoVrP53KIPXcTTHNh7y/IX0GVRGy4MctkRfi36qkC97m9OB3co5q9SfO3AZQhRXwFscuF8mgS62qYgZ9QqF0IkcsuK+3Ke02GYIee4UDjzSbe1Atx56MrNyZPFr2G6TnBl5q7j9Vnop/ZrF/JP0j5y+ZxPas1MNSejA8jobzxv0Weinq1AvjUSuPZ9+iMUp4qwEEVunEIEU+HyxnC85YnjOBCLclGEGJs2MHLuIYkUkS5uBCdsT8fdYTwDoJ4TuaS9JMSoMLSvTAstdYQ4+P6Ei7l1DQByCHUg6Pn2xCwDdY1+mfrMA76L4cqPV6hXn+gZLrBh5UBi1b8d6roaa/SnIfetlDL8upFfSr6UbGK5tHL3t5Upu2KW3y7SzSse7l4CyWEamRCyKl03xW3brcbmJE/arOJDAXcpr3PcxckqJVVbsvgkNM1xdhOcBDaqrQoubmwAkjkMlCzX/fSt9Kf2N9AdOpfgoVdIHjsOpGDHaSNdx8FQPAFjT355hyWfSLcdXt3FWgXWYR57O2fGU8pLwnCNAHaPgfdTyHhhxmnZgnj/ognd2MPC7pRe8ZylWYc9l8DNVxOwhQuZPbuB97bCMMrxUscRT+E+2Y+w8/jyTMrNxH3HgNtQnCuM2u5Q8Wh83bAcenzmwIakNNx24pZ6wCNvhsQU8rJeTkY/Qz0Uc4TxQrHQ07r6Ae14xwtRGuj+7jOeIwsFZ4XVTOF4Z7q1Y/yoQ3hS/mA5cRPg4c+ATBe4qEFuNmuUhHg5S8IuPLEJDVjUmMc5x2EpKVMG+GzofA+iL9Z/QDvy19G+l30rXTHOK4yTnr2tCqgUFhzgDdxvaiXnK8AWtvZZgdAozO8Jz9DSWyyUPa8CQ/HQbRbNItTZUI2C3cDf49oBv+6uIw8ea2LKEWHU4vCUYPznwidvYx3GmJk0V35mCXMyE0IR+wGySIWwVB8PtA0yU4eRFLFkfSaNfInKXHenACrcvlvHFjuopB8/AZoYsseY6XHoPaljFr0/c3QGLv0GrsGarPJj4PFsay7gCzhbGFG7ZL73xbNnP/l39Qgaulx00e9EBuNwE5zPPOHeBPgwfh7BsA9YVd+eNsxvnpIJFGu7d+gjP/PJpGJc8tPaLeLr9PzC3bwc+huTO00Zd6DfcQXsZIwItt28H3tKfmgAjq6U3doEK+2hFOZDNDny55G+81FrmszoyQRGh+RiwKD3Cqp4Ne20AdZSOteuRA5MqyWHlVwkRs45ibYrzHLJ1MQEyGgSyFxQmQ0i1x7BBl2x5vMoQ07MOJM+rwjK++TxVFTHL4IkUF4n+rCbmILoYAa3DgWbY9CRtOTJrlj5fc2hdptciPMCwwW/S01GYwrkzkxo9G3lPTEyMy7xc8FzeFddwJCVtluTGvCNPAeBmyPEUB3ZZzO8IVPCaR7KhNQZdbOW4tPdT1CqGecIYX0bkK+Mg9dnVLpEE3vIcx/n1BcLoC56y/ELaMwlWRAA+ESk3TH/are0K5mRPy4ZtFcOaZ3zFPiriPh5FeQj0qLhre+0eo9rBc9tih9juAxfQRjFgzUYFYbf3KEexLIyy3VMts6QRunvNI2DoFEXkGDfg3LeJ85fcLh9jHX3FRroepDnicp904GpZExfLVzpB+CSHFSxyFYh5CulIS8x/CPnBBGwqmYmf2xMvpDcMQNzE5MwU+5cRsICJ8NYOcVNjfJyW2gzH9n0s3Scd+JLgvGPwUWyu6/tdTHhURPAKBnqgReJ9L9A55SR6Af4elzsyRXDvSVU2sIY4cg0AmD/lxId+Jv1B+q30hp29QJ+5pp6ZJwluyar2tDoc2DF3yzEXKzLHKcy7IM+mA5cx0mukNDvwY/Q0xuAPROo6xgOJBlrrJThBfN9fyVVVEUHOAOouMqg7IWM6cBd66DS47FzYIYeA+R4gT/rInlnEJrkG8vxj0jumgQ32y1gjf505cBl/T/Gy1DnUy1H/xyWmGCmV3BIumf220SukcwXJ7Qrh5AUDTRU6vjIc1eKKJBddnNgD+7iFrICNa+b3eQoH+6QDe6TPcFC4aMlSuK3T8/5HaOwriFiDFEVysPx6tpN2iaSmAM2ug60wsQL4KZClt69khTccyrglf665jPmrIdBkdPOJmN7BU5xxcyF9Rm6wA/tDT9ILNsvS6seARWPwQ2NgMUPXgRbbaYnO5y8DPbO71mBNAa/ERmT+8++6QF1jgb001YoIcyDjjEuZVUn0a5aHFib7mxqWZEBX2NSG8tM8on1uwC2qZe/BDLvijIFsuphCPiOthuWxa8OSwS/5rDwIwrFuTv33cdKRXdxQW0ywvQB03pL4FEWuIYE1FQbT5VIibKNwahvZeUfggWCWtY3vsQm61K27jLVu6s4m/B5Da3D3CRxyA8NVRt4veP8KHFnj0z2SiT4sp4qdGggnwtJfSr+VfgVQnsL8KuiUHb4794S/YsakQlEzZ9WN9D6aFZsoHk/MQQzMxbk/YNhm6Oi8MZFGvBfZDfb4+nNmeop1rgg572FL7qUH6Y5Au446U9GI2oXjeJ757ICRJoSmPxlBFe3vKSCCDd1g3Dc/hbloGU7P+h3ZabIiu1n6sJYObFjpj0gHHp45cBLedshPOnAdjlpHYPdZQg3zv/dL/miM/uFReg21eUtxdrFkkZIYNklvg9DyeKXknhQWYwzjtupzBxZr6/+eObB53zEeSfWIA1fxiEvRGBqx9QGr6MOBx3iWT2rXhjDEp2U71L9yTevnNQKpkrwz3/4V5/A2eLI40uiCLbtELXPBfo1hKrlrs5DdYo9V1F3z15733MZIa8XJHgqLcsfTsGeMlbHm7Aiqyb3YMVHuX2wDNJeR+X6pjeBRKIe8eULpXrirQrkyBrdjP5kd+CEMLnlfO7Z/MWcoOt6qZe1a/u2WcDqwaykbUDpwt3Tgnk85a3g5DXaYeBH+4xe7IefL8Pk4fTRrvPRHKrlLbOKF9JrpNwd4O54Tb0m5WYLLh8hRjqTeyGIZlUpK83Hp52eNgucOnCTJFj7knnqpDUcdMOUhvq/oDFgt4yGdQ8TrPhh99yUbdnlG3o+sgJGuPapACua44K7FjMI2QXi7ndyT4k4B2SvW4cDDEko2y8lm/voYGaVm2X2agMcyxtD0Zx/GIPQFjaEDzKcr6T5OxDxF8ZBDD0NspenKKca0HRTMqW7nwPZznOkjlKU3CAZ3I/0QHZ1TlM9HFsny6IpS1wKPEohwDAOfIvh7c0zQiGs740f8oyliVGbVFMXsQ97iX7HQUWGV8/0emXup4+EGA8B6Huh/LX3GMWo3lDOGHGfhYYpvahnwyqCTFQHGHn/G3NUB95O3bpl6fIrn1W0DsjcBbNoAIRX1/o6P8KiwT5AYMeQtOiwrm48BoCfIEEuxXCFaN/yK07J/y6R0yRjFCQ33FEeezk5/wwMuzLSsmOw0Gpwx9+dxoPAg3UsfpG85GmsbJ9zMW7/lPQ/w1o4lGRG9O5cRzgsgfgc77rLXpvWKU+9LxrBt5Hb05ArsESbsZ9LgFW++i3L4Z8KnjoMStXTgCveb592/jxCUzlNFWBsjs7ies4NNuJNjlEOiZ0jMy/wXHTiL2pJgkQ48/rID52CmDbqgJfEgiZNiDgSCDxw28lr6FUe4v4q5mjrUYFVYUja2cgyiCsynuBHFvefvNrHsZz4/EeFN5WyXa3sKB7Z8tA1y6iku4xSv7wniF+TWIy/rIvhmQqnj4n3IectyfS7dxINbnfprMINBToGu49dw0oaLczLtghhyQW8o1UnveDTJNjQndZQxM0R5wIEn+B5FDvAGbbmpnpw+Ec7KSEUupnswwMDRgR33eIgUOHAv7dJg/GW+xJAjxR4/d1KM5z7pwFvp22CWjHTL+JgmnLMKlx7D2aY4R93B2+59dul/2YETZZphTQfunjnwEJ5fkCVSovQg/SB9lEbpZUD2R6itghHUS+lG+kx6GX3/KS7JlIjx9xTBNVH787Tsr+RMqmXMsp80OPA+ep+XAdfOMnDue0OefIxVnWmADOgNqgmDLwMBM3VdiBxsbbugSdqQUgzcXcfMogcpdgyF3NMW3UpvIItOxIUnPv1AL/aCplIFfp31VXfAh6zrbAYd2KGLssGJagyDN/ffQzQVHEvpNxzRe7k99yT9iHDFaO5MxKJlwsj6W3H8r12glVRnszEvtl6+aw2GTlxoTrQJC7Vb2PtrAoAB3xQk+xRBwgfbrKC6TQz3kXfKyGvJAdl921j7YalLcbGWDHQ2VAtYj2NsrKe+Tqjy3khfIDa4xCmTRfLCV7HkSdKbhst8am9uQmiWpNh2ScyJXL+PyFHEPT4Fs7NfPsh1G7JacaeXmGQfRWgVd+TqdUT83y9fPy0N2S2TOb3+Rvo30r/m0LAXwPcJR/9IxfqEER45guwrPrfnGtZRfkwRgLuIW0feuYnc4oruBVV2hcByNqGHJfPg1uaPwQxUMZmWXa6C/eqXhwYZmBVh2GbNJDXS2/jRFC5zFxMlJfHpZGtzwTqFAxfhjQ1gvwrh+RRFcxU7N8Yfp0hv/xgo062TihR/FWdDVr/gwNMzBy6W+dc1kB24iwvzLRvn2YFLgstjHOziNv2RIuaV9IX0KybIr4mouejFMpOmvi6tbYrfKmOt6qU04rkDK9JEwWjFcwe2Y5sJmOIwtZS79RyraclyypTtwBPO40mF7JQNGPpL4OCeO53PbH4t/Vb6Ej3cFTTzA3m5QItsfkrSpfRG+pIdGTgzzvzmGKvasex1OPw/xalZ9sYyQKDZekM4p2BbSxODlR3vM8Uzoa2SSEByCohv1f46oHbJbdbSnT79dQzolRrOn3e6Whp9vUyhDVFQUdSmNiULC99GAsR88zESuD+lAfP5aLzqvyYDF38xA2erNUFHtqUGVnwXT1Fxl18xpfJaupY+Q29wSyVULZ0qCUWnwT7Cc5YBGea8Pc8deB19hymKzsdwYIfOio5BhQMfAHxVAE2Di4k2zcT9FsERmX8rQcD7gMImXkqonj6UFQIEX3OCx3tkEhMr7FMmZqpwDYI40NO5QGowsK2P2H0CuuSRXEx/sxTJutK7kgqKohpguuJJMdkYntfkntQ9IiYpYM98IyUeVNKXOMVpc858it03QzAsDaMkmhzDbyvfdd2GfN0nTzqpJzd8DYbuwuIcJGti8gNPmmjp7rSc3zpGtWsGzuB7AO15XnlEsFPFXU7g2j7i7RjHtXsTCtT4D1IhvY0znS7o2bYcGyp+6rDUh2m4WCs4VOGFtJFes4GZp0z3p8JI0YpQbE6SgNPyRyN4awxaagx/GqMe/AC4v0UhOXICgdv1FbdTorQyA7oJXHTBIX12i54X7KXHZZFbII/ek+weyaEFguYHHrw3r/lL6RbqyuFkIH67Oz3nuJlheIgzivYBIpMt6UOh4ANDPkoP0iC9i3K1of9cMqG4IzBfc77HPoK6kW7FdZ7wiLmM2UolkXWM2OAFf+Ch4j9ynS9iN8/mjhyHTrzJhvvaoPs7SN/Bsf4EDcsYbyjgXM0ub6Ubtm0fMyQriL0VuzgB1X0OV8sDiofo1Ntps/I/cdH21RYT7JYk8YG79VBHEtgdf5vxWWGRB+5xIgpUeI67RR2PX57X956zaXzMygVruoVwGcOa3Zi15/TRG0/M4HCTyNtf2cq3JfVLpm8isN8x4XMZQsd7YqsDviPIBljSRoe/jkvqlrDH06w7fqSAQ3tUH8PygX/z+jyQaismD16zKRuy/A1yq7nhMkSiEdRyzRHxpyUkGDhq/hCavzn0fwcCcY+mg3+8CVN84pkpl1Eo2hhKfNJV5WxCV6zDJeiixpDMn/ZU8zuMSuh1a5xlwy+W+N2wNIYa8NByONhRejsfo3zCA2eDeKA7PKBSuMIKj9JNQMOKixPjdI98vM+avsP95srjQB5WHJvQEPjdYU2o7XaX9StrZjwnYIrna1a4q/nCIfryH3jxkXy7isG4uaFolPyBx3+1QQe62y3ptfRK+hUPujtEqEr8aiFHzZunjuqTraKBMNGHenEf4h739AcQ6ongcsnxSB23vCcv9YGMS8DoSGptGSmYnjnwfFXXONI+CNc1AcWTDSMN3UPoIp4kSY10Jb3hDOl3DPmdopp8iYRzziUfiX2WpJtEPwSgbAg0DTXGCsz1gRsx1C5hri7J9pN0zyD9FSTqO+y2jgUZSWB7ioQ7MMspJvDr6Cd8DGs/YcwX0iWH0q+IF7MNfIy+jfVbJYz7vMg3UiW9l3Z10kyp2TBb4X9b7pSvn8KV+6hqHRtXgSOTgjWgTL5tjJkW23JiSjuEwvwrPsW/7rK9WvqQYgCpjAqhiJOb+2jDNKjSehLTWrqBgb4knpcRyXNlFP8d4sKcW4dlHaRln8xdN7FE7l6YRepDgDtyay6Kp1yHUY8AAIAASURBVHi4mAW1JZlUoVquSC5NlEzJv46hx9iHoCmb517SA5WjkHQVHBrpNm/uo5vAHmnzKPLlkjzJoFjEQvWApRVLdCA/HNjNJE+G2Dhrli6A9Sds4J7fXbF6PhNG8bCRa4JZA67wNFQTN3UiZDax476pLoBNGUXuliriFROrFfXAWkvwd+bA5dIKq2gDKUoQRQfBDuz80kYwcULJFpJTTx+HkZUhWjvF0EgVOctXaGxqB86SpSCP2Na1ZMonKgS3BuzAVaQ2SxCvpc95XnQdxLOWkSWvs46auIru6PDMz6fI9cNSniUS5Yin1VSlpzDEsy60Z5BqUu0pdnlYHpOVtbUjexl0uB1Ywe9Wcct2YG9KTYE4zy404cCpMjAt5SG8A9ecBVUROTRzjFUNzacc2N5bBdg7Bls8wOht3Zoh6T+Rh6zWEuTmlo2YwcllTB4ItxQ31ePJJaXayOLb8CwNqIN82lC+3vCsn0J6L72fD67KuSjF1mbP0v+tAwtOkXba5eSjU00ROieLEHpWPLstJqP6iCNdOJ4tqYjfsgPXzxy4XhqKOe88vsRhu1k6cB4NlaKLkQLrJQrKKirLMgwi00tBfBWX1EY40zJuPnfgYvnHdEeNLbqmH+LJLDZZn+rgFkEHhTBiqetPQaHnDjziwD0ouY3ifgCguadThAMfpRfSy+VtjsG2TpGBO7JcLkUXDj/FopkRHWPW+8yBTXNZp7Tnd+efzpl2i0rREdyBOzuqdmCfVHhNzVMHRhCrXRH7PGXfRl+ii2GAbmkPrtrnxHkdD+u6n39UOxklHFEkUFtiRYmUEtIx/k6tsJPLGQWfLdysL+zBOWBttrWJoZczhKDQ7I2RrLMT46ZLF72TbPE5WXdxmNDcfvgQrdpGuqX3+2WI7e2jeWFTmL+XqArrcycpC+FscSnesF5ClxMgzLCsjhiTbpckVEOEO8S9d6FUVKil3DQeYwxhZKl71rlZ4qJpWc/aqJrggKqARr79hmok22bFMkt4r5N+nii6Pedi6L/iDIP54n1Cg+O6JTctuvaX6L/cIXkiRu7jwOkjNzUn7pfwUA3hag3L2ZL33I4alv3RKa7wEOY0p74b6XMu7Evpc2nk1J/RJjdF/s2EWIa3lHSCfFZGhdOeYP4ceDNrVMuQ7l6x9bUiOxuZeZMU7znFe2b+HQl0xtxWSDohuhd94tpWsXYTRlkS9vdc5wrifKKavJI+5+znTXDDxRIUlrGYrjgnzNodYP2yAyeAzn0x1iwjhXVUWqbV3dJyTjTz5Stx0MwQtg9G3HDFHRk78AnUbgcewpcOkXnXLPiaGtHtpyzu64gRvvc+glGW41VMnChwlx3YDdUrSdH2siW4aq955Qr6rEN1+RQHSBzQWPrwGTvwzLvNPJ0L5YYTUVbsjkOY3dWKg57k8bRMVC1Cg5ccqPmabsOOTVw0eu0VLgLG8IcKdr2JKDItPa0Ps3NYVWjhbbXZQykDuRr+DhGAtXTgs0RXBIA+Bdp2BHG3soutLZep1VZ1CoJiitcMUcZ9JX0d3d8pDMuJznedRnOWl/pfduAzuq+Kd+hjUwZaSOsQkA2xL+uAs85yVl92vLmz7uGZA084YVJqCtK34ac13/dREubQPIzWLSNUETtSxwoUYZl9RH/jvsw3DtyNzZrgdY0OzKzahB36xMY+jltpUYCtA81raWMjNrbnrguuM0mXOk7zUQSLcunAJ6yxgyYvAmKsmfYopM+lV0jfZpBY1E34xBiDCd5h79iBu7GB+KKaOGxuWFp9ZnNHWkGHJeOQSMjWNwZrf0bNpmf4y9dwDAVgkmh1GLLVI7488Yue2DkEml9Jn0lfcYBdsbxUxxizv3ZEr8AYUlXDHkeaMa6/jPg0hqPY6EwhiyLhbHH8nv3SzPfQKNZeKT50IuB5NfK8xBLZ9yGgjkGIw6qD0CH8zNFCkQGFRTfxW+OzNakC3pxRV0XQXqsoxkb8bw4St9hAiRrkKti9WaPyufQi3LdF7ZOk+CmWtMdln9gaF7MrZi42zCA90Zo6cgtuDiQYcOwRmP5rTut7Ld3QEuusK3T6S/ezVTkYdqGgze7lGVi0EWd+HOJt7Wzd0qsnBp2TQHXPwunvuQMP8SP/VBG9x8iMXQCas2xeA26sCG3YS/HvrfSl9JX0BQoeB2f/7c0oYj2nJajol7zCmbEqIrwCmJrQHZZIJmnmfBNDDod6sfE7xMdmdrx6U7TkmqAUfQ2zA/s8xSmMp4jrH5f7omC7iwhPijRQhIEp3mpYUkhJ7btZ2uOENZ9lOmw2p4swj5a+jFV3NTj4Nh7iNV/kJloQxmZ517OJXgWAnJfiij7zgZb4lqabQnQ0hhJuiI0Q4zK/lT6T1tIr6YoxVjmAFrFeU6Rc73dP2H5CIDWF3RcAo6elsSp6h30YQSYfdxnsOd2ygCuIecUza5iehe104GlptXVcyQr+xxg0mwt2mDWx84jRzAH+DZTCG0LMEMDIQaFmGT0LU/GhiSP+ggOLpfamtJial7TkU1Zowsy1l5F+MwpPqIpNHKW/FZ9y4C5q5QJJzzG6bEm41QHHRZUsdtDvNoQZTITIcmkbCs/0smQ9VkT0d9g1Wd6RdebPug2YW0ac3cI9TwzQzG91GTFXofN2i6dYEpgb4Lv9Yu55H6NiXsMoFLGVacDZfxCil8+4+JfSNbOtP/lUvYkTRQ34xzhK7JEQ9Fb6Z+kb6Un6APO+QnXWPavjhihYPLZlhqJe1vO2nUO0NCciRwJ6v7+TnavahFb76CX6wjKw22tne1mTZBX+dw9tMb/tGve9jpybZdEZMiliWyz5G8J3LdUxFzvFHpZEtSFYtincokc3POff47IDP0EL+uNcV7jrsw5bOEUMa2Cp1nFHPnzDBxq6mXQkbTmnnLDuIdbKoeisA6RQtLvqqKJczVaGwUB2NswJVNEPmc8Cnps9bWzQNqSSE6jsEoBbxMGLl/SB32MMdTCqNsIqom/J1V7DTM+tr4/LWljxJAeHhHUE+DqGsua0eeTJeh/IpXtFAWous8dYjwhD55ncH6RvpB94wsgBO/BsUjJKiWhdKxcRA6fQDLiN3iGkPrIc7sWlA0/LDNUT3LyUE+D7FA/jcQCfIt1YgryOsk9Y4UckiPOVX0i/kn4t3UYnNrVH5rzrJeMzhq86YpeB0opl4NXSgT1O4fkMr1iJAx9i0dxt7sM+xJoco65YEz19JmVNXrYcsWOPTkT2VdTxHTHCXucJfgUYsO+NEZ6y9HKIMQCbYqccv85q3zIysusxJ499iHKrKMFbjHa1bIM3eO8Fn7UCeX6UHuIsudyyKm7QDd6KQZk14fVDKHvraHX1UfS3kbqc4Qo2q5Pupbsgqo+K5kvPBg8Qh0eWYJ4t+lH6MyLpE8cFlDwBaL8sfKuwbG+AixULo9t45fyjXTzPxX2lMZLnEMjYm2cxoPU6XTjwGIByE8oQpwU7cMO1ze2hR/LSQJnymfQrzs0pAl8o9rIiNHSBgBsudQzZUxu5aFqGcN+Oi6oag0v/qSIDZyvArV8XqQXA9wisSIXpcdnTTQd2J8EdQHfQ93yEGY6GIs8ktLGGKcoiXDQd2AqfTNo9Nplt4ynyRCb2Mt6qj15pE4TKuDS8TcRND6mt+a8D8RONxQydIgi2ce6uWyhrIOf8PntssgoXLcJIKqq7hGAm6FZg3jv69LXU1234mULH2BLSdyj/H6Q76QfpkQFOB/CEjGcYuiByrkONelpGTmfVMsJOHakq+SC/udfAFtqEPY7xxwW7waLjcMNF+v2dFjseOFKBU2cR6os4cLIIGGc8MMV37IjufIxLTy2XL87wnnfh2sC5NZthE4A1V2kKvVsdK1wBribajN73ZnnNx7gwN5+6wMprFnOInG7r60Or1Sz38YyyyDhqQYgPyrCkOxHzGEs3xocqyJmS9FIz2mi6YBUVXRdeWEav6wqQ+mOU0jUzBZZHXcXh0yIEXtL4MWbYxK2tlhec+dfq05pd/hhneM+jVrMDzqjp5w8YI/qN5N+nOGfgQXqQ3kn3HHRy+hTnn00ww50qBiCOkT2TxvbG+K5sx2cjyUNYtqKILCMDmoA7RnU+hhhvfDbwN8allgyo9KGxfCV9Lr3k3JwiUlgX71NFpqjDhVwHd8tfz5ySca2MPS4jUTqnd0s7LqIWTH7Um+LSyotWRWlhznuMA0/twPM7HBnILSJ8G8w4uYzxngUOXC8duFzGuLMOka+tIEBki3jgRqqwlinyb65bG0+vM/XSLglWBVQt46iuK+kovaeYnpCyDBELLuJwLSdfF9kNdW21nJF9/jWDwIfw3hIH7jjWfuSo0aeQ7/7clR5jM7ZAkAM45gl0OxG09oDRLhJdE+xyGV6Rmt308Gn5D8UdZlBw9azocSosNd3J4aAPbjLJaSfhitjmwRCr4cSDQ60efiF9ybNDFZ9ljX8TOWQMaquKCGItbyIX+6Qz+UAQKSI0FGEBbsxV8UpHKB/1MoQ/OFO51q9AE48Y5fDLDqzoSNRk7yp+yyx1Mg1T3K8rqAQgU8Tf5Ibt9iMOVsVtKhYwIbUjwsh/Vwyh+/I2MaGmEGA6II4BqZs4U2BY0sYVTr6JE6O7AIMK8k3LWZxjuJ7jdcOZfV6Egenmlltw+beV9j9roBUh3eRxyd4+EAf6GGiseH1eSBHv5kLGu1HF6ookvgoTu+KhJA+UjS13Zk6kiBTsd25C/FoHyVryghJQMUZ5UrIndYg3qlBCV6Cfz6XfS5+HHClBwlmLOzFiBtsymKBk+qZ4sUWnDjP+CJ+LYNGCNznhY00SObuwKdbTBa+HfFze2gPKONJuIrDNRWUdjI8T9xRqLwHrS4K6+ekyPMB1bhExvgoGp4quTx3JXRHG+ljtBrPsop984g19mOqKU7l8FMyt9CJuyhu0kyrm7321J8L/NUeL9KTLed3m89yuGIIcocyuMNpjXGT2FpLQGBFzeqD6njOOd7jP4isJvyEIlEG647G4HQ5sineukrfhwPlnjCtzuu8jFyQfmcLZI2z/RcxsJCuZLZt04BS2OgZW7F/Odbjr6I6JNTQHlOwl3PNr6a+kz0MnYIdJ38tOZtrZFNameH3qBpNBf06+itxXUJD1YcRTrL8zl33PJXgbKaZbFjze8TMHdoBY0RO4j190SJ3Cgf1liUsZcdYJLlfGodYtOf93Thsp4zThUSxBi2vHU4jwpqDAasygQcjhEZBrBmzn7dtiwHOY+whZUsdlNwz9WwN3xD8vcOAWD1QERAVh50yQjJgd+Ilf38G9HjlhYv6tRTdrCoTqTpj3bE9j+kT83tEkvotL+SSQ9S4WAbiT/HfhOHfj7gHua9DJil/pnzlwtXTgMhqZ7lu5I2BE0ES2WYcDr8BSJy5vRA3zO+lLmoVOtmVEqzre07uSpfxAc91IITO2HX6KftAY7aoUvPs4KFcpTra21GK5vMK++6hGCmDicdn4swN7E1f0BB7xHyMXo0BzjHU4m7FGSf5PJ6+W4buOWNZE79aOPUSKLiKyZ1duZDenGCR3tdPy95ql7uLgtImPa7C9PvZUEa1KztNYcSMeY/eCb5FhikVbL/tcY9xyydJZVHciAE2EG7H1a81PIjyrHQbuyYrue+l7yvjMC3qWKRTftBVkp7sMQx5w5Y52RYnq1DSBPb5ZXqQ/14nVQovMyA1h0/z+I1Fhy0L2IJ4Cp5d0L91LJwZ9L6VfS7+RbsLqMx30ATC0TBOfZCvObMFf3sOOFDnEs0EPPLDyCC7axI8K7NrjLubLcguqEM+PUbjlhXkNFcopH3DxIaaMLFMsluvfx70YaTQBisbljVvDMy7lHG3UrU4sJiunwHJF/Mh33ZAWW8DxBu55w6MNZ6XKrfQyHjEzsFYXyJctdykDSGyJ/W7gWBi94RlZJ9ZhBat9YFUPURDOi3CJtvMI4zQvy53USB9wxj2H2n+i+J+Coppv7730PadCJV06xYqnA+fO9c+CcMECmbVRxOeCdDOFSyt6PWcfXQTqKp6Zi4eLfLSZUcQ6PqgOB54/7gkHnq32Svpa+o10y82uAgzYgZPoPauAk5X7lzhwH2GxCVdpQp8wEpgUN15g96uIAgkxfSVHrKqJC5iWHuJavIvnsX8IXO4BHmP0LJye70geMpqBPsU5faSnFRfgVR2fXV42QNKBp6X2vcW6VjjYTYwn3TKY4pZ1Hc+XMioz3BfgcBX22QdGWkcfauSbG9pSbdToLqKmqBiPPGiiiDg1696+lx44hu/T7N0cEta8yzvpG+mtdABzlPG+HbRZGqWNtVvWKAonzDZt+vAqoFIZWaX/VAYulwWfzaV65sBVRPo1kdj87pYLaCEuHqOAW0tfSr+RXiyRuq3KmvQysodLf1cLxlXTcjU+mYENsDxkdqRle6Co2gSOLMKZfZLgGERHGTG0JodPUfAUn3LgkY+emZ+PPOKsg4o5aPFVhIlnTVWHCjxpg2K5Yu7pDNQb7k5kPh8jWmX6VThwH40YsTse0Z1PRHLtl1Ms3rgVfdmkeW3PLttETjpxZOmKXb6Syji8cz5R6LTclzHcwVn9FHK0gqLrgMxJc6KuS85g3ETkcWn9QA/prfRn6RvpG2mHtmHucX3kwQUu6w70GDbSB5iCkiJry5s/oiXxDpjHP7CKB+x3H77iyvpEx2yOInMxck2BY3XonnD6SApYBf8yAUlviU+19F0w6xfSF/juGIhfEWYaHMuTEUlyKT5oihUuYZEUJlzF3VXgtoaqxpTqmYtUYWhb1sp12UDx0NNOfAx6qORs3CIczl5VUvnO+bpHzPBEhpowm4You4t6di7ZfBxwHVyViTOHwI7DKMzJPMF2u9IfyGIOMCf8o0GFmO88IYk8hbHNIz1zb/Y1EqoLbmcKFmmC0LwLSf0GLH7JT/1xDr1r6Vo6SR+lOzoqVQSA7P/5v9c8iXnHdw5ony6YcXyBf91Id249TTiPSfgC9HCklfxRegC67SOAbxHLJkxs8BwXrw50K7jt4zIXn+KocMWGme9sI5a6ebGO1nFD9lxFDeDE9EggOAUr4cx4E/rA7wlAA42t12Q0+20RDtyi7PFZoskN9CxmFwWDqTSDn5SG7vFGr14ZT0WxLjTphzK8pSSs2JpdFBb04Vfxo8toYApPM65tsaQLvNRh2lSUaf6E1HU0wo5L2quOTewjCvdE7YHg6/f3ZRiCu3w/UdWsg4nzmNYlS+HUv+bQeMUz2MtwWgsBDhzwPC5pQQW7OgSQG0LFeMX1iDff8CjdTRQhE9c8IUgWZtPieiXPqfIE3Ur6Uvrz7BuXz1ZtvtCPzHHU9MneAuRnW7/k9H/LEsVqutU3R+tSegC1XKAJOXK2VlYttrMytBauq/olPdI+swM3HY78Ykcee4y37QMmzgn5FrBQSf8Mvz6zCl9JfyN9zbM0WxzbqaOOwTvLDMpw5lOw2htus1jqivLGfV6rCywFCXHCXJIktMLBvE0Dnqt48QrovONeCtBYBRutyNvmv72M61Cl7wJkVyFL9Ml6DZsy0mdc8Z4N//BsgfV/3vGaO51PjXkZx3KvCPdFTMO0JFUfBT3xgIoqknZHsu04a+oxJAvmylqK/lF6T/Qxq1bQP6rJYZ7XnPCRK06et/yjJM85PtbLitHCixPBZUav75HgP0nX0v1srrWLHZc/Ant10GDzMQLfSv8ovWNzirC+fbhsH7SOJcVtqOBS+VaEBc3b/oFhD1+Je2UKWHYmXC5CredmqftMBUZhnx7ij617xQjoO+kDnMVMP38uvWF92kj3Tg1JMyfQz28mVWd4XYa9KEp7MzJV5LVqOYumOA5is2wmWZfs908w0MV1mpFx60VECGvWS9owog9n+/KVJH9UR1N64sXHmERIGecUf5fLv4fo6hdhA0Os6rSMYYql0/K+zHNVgT3WwZC4kWtQqmXv3WcsNkFmuw864txb3HqIEOu2q5mKMYCHIsROQfYZgF0s258b3PrnhWtCEyP6xR1I7l76Tvoj9LU5i5q62o3+AcLPzL8XMYOFIlKdOfBT2Eo6sPmpMwqsi0Bt8egvOXC/fE+/oALfDNKP0gdWqpBuOHmjYWXacOAxblPxodn/VBB5VczJavk+6VRV/LQCwNmBk/Htg4p2XDDy+csOPD1z4GxWHwMKDxQkwqT6pducOXD3KQfOsjUd2P8uw0Kyea4wp7OwmL0Ir1gZtj6FAxcR5ef7tQTNk79uSqxwQt++u7sN9VUbBuxOdTqwzTWhY8aUKVTyVRDk7jy0cUm+wZZuwCInDLE0F3F0yLyXc/PpfslF1ChFFPrXIVY8OzhNFEDZAvT9n2XgdGCXhvUyQY1LNOmNGZ458BBerXBg478V8OstXZKW9sFL6YYQswVo2gptdmnW49KN7cCmzJMseu7ADebeRBhueISmy82Cu9gQtopIVl3Q5I53f9mBvbB9DOr71gps1JjolxzYgdIOXC8zqqJbJL555sDjcqOHiCZ6Zjz+KuP7Hkzr4mZ9AUPMRA/R0FBEn5F6w+yClhm4jhiU2o8zB54ClSRWGpaL0AT06yiyKx7+5mnIn5rQ9SrGX4d4D3/yXvpO+lvpP/M4VY8S7fGYLujnM4FHyd1MwXqWEbqr6ArOtfpj5CazWqbsa6zJyuZTrMFZrJ5Y8np5ekq7HNlP2d6eh6aXXNhrBveHZRjMaG/TyGyi2DqfYFtjI+My6SQTlEnE7+/mVhHXfwz3GiOKGAr3ocEYeZMNgliD9WPMEXmFXZnWhK75wq6hsU9hvHZH+4FNcozn4HoTi1i0Mm7ZQbpetlsNJ8pl+XSGnhWtROfffKV3v4r800ZjSVGM+d2ytVtgUetAYqcYhVjB6ng3PU95COLFbaoyrNeHRpTRFxQuaUTU+sye7JEazqaVd9KP0j9Ify/9E+8yZ5M97zXwvlUkNZM4VWxY4jP/1xlz5tuPAaDtwF7K6pmrdJH4vHOnCO8Ve2BTe+7ANTvxJL3l0Zcz9fhG+o30GeljE+teRKAWIT2bmf77bHSy5vJyq8TSpQM34cktZZCDV8c9nsITvAgOo+mrNY+NNNB3t9kOnJOFZdDDE4ZbxTDSX3Bgp5g9bNoU5ps3e+bAzVJ1ZwdO7iT5uzFuPCOs27PmN03JzP/2gQRrUKmCbDYd2YdOqeCVHj1y8dpTRm+JBd4UA+giPjSTh5m+gkUeY00mmnd7SOif3tni4yaMpgqULelO+g4dpXt+dtp6KRLIwte3OgWRWUNnJqCssMKPMHZnDmyquOBqq+iMlpHibJT2rpYttMf6CC4vYhMO/H08uG6SXki/4kz/kSC1+pQDpz2ZDxhJQWP4cB3HTaQDm/hyt6IN0cWaEq2OPlHW+o6J5bL8tWt5r0/LZuSIA/d8dA9wLBAin/jp3MX3WRBTZDk7sN2s5HdLRKDeBacXR6g6kkdmWsWSFvHOZwWxuYF08hKCxFdVRQLYxQjsFIrnIv4oLHzCAzfx0NEpsrRZLCsr/XFDhGwz9y3b4bVSgHj3Fi+B1CfusZOGesZSE+F0D0F/DA1xQSK4iA33qa+mh1zMO+2KX1zHVF/Nx/UxpJoxNonGAdhxDERVxgLXfLQhqY/KVCxGxVJ1S+7QjbsKwvUOWchsoS84HlhhFwZSaThjxA/FbusZPMjE4dvpw6Zs1I6U8+vXHORdxpsM3F1WWO4Pu87yx5nXNCnj7ZhoO7sEyyw5oWm8CDCTi2AnmOIWfJ2HOGivDC8s4t/inXOGdnrmpme5ootzGhJwZ6XpEFvFnwn7bCN9TcsYoIjQZdhwHdHCGfYUzEa9BCd9TEZtgoexyHO+yCtKSlNP89cDceU+osWQwWGiyvHYg28sHfiOS+kAYebYk/4oYo0UQcx31QHnU97ahQMnD3qg7W4TyVwzRTQzUfVLDlzRKG9jw+zAJSeFFVAbr6UveH5tz1sdl2XKGT0xLcmpItxby+/bxO35U2x55veBy/4iVFNTECvd8nf96+MyQZd0T0wbeKhxCAe+oCg8hBBxgudY8w4JPBR+krcgzGkXjFiydWedo/lHzhzpwF7YMaRLiruoiOnjMoqNsTtFuJ/4rTPT9fVP8etDvLh+VhMmJWd6sY3VGALwrJ45sLVMnrVzdT5nuEfu/T4YxsFL7Nb5ISB/g7LMIxtvQjNqMV0VSh2HMUcpB/t66X4HtnO1jHOZgdOB3XkpI3G5HjIt1kcySQd28/1E4yCJGjvwhNTMyrhL6XfSVwxgr+KBsDa+MhxYSztThJXsYhRhH779ITCiK5Ai3nALiChhLI50te9xyKwji2U71pbh8w47MpjDx5660NN+XfAcVuKbk/GNpPlOkZ0Mf/f8qWNZjBGqgG/Ok+MzB84VbmOVpggWZby/c6B/miWp54AqcKLnwZ2BmqivivhOHTncV55BLbslNlRrbIalAw8ESgu1XT+4Mp5B/BO/9SQNtfP3PPDwiP64BkGe+MCa+HzCJ8bAuEZOffzby7miLbwh92WgtseXgcJtuU4T5TKaZTA0FziFyz7PX2VYsfdziCQ4MLlVYshb6Vcce6UI2l2UVwr/aMJM0rTPXqll9LbRZS1RBDc5hLxzF/1VVyA1EXeMYOz8MsRqTCymayFFQi+WFq04+sXhcxVqr6egLJ1G3cFISOoiLcmmhCiZYRV+OWCBxuJT/G4y5ZnEXYb7HfwpKSJyud3GJ/r7w7LBo+A6LarKNojiZqdYJV9zT1vIVm1mwHbVh7m6MLiD59lDN/901/aQU+TEjqtPB55N/ExfoWcLmllmCvM1E75a+tUQ7zaBU587cH5QliPzd1ZLBy7CW1xyDcvfLeP9yxhBeOTAsgepkL6SvpSuoeqaAGdpE+Mzit0LYiIvc3S5NG77eX5VsZ5J/e6i2e701HwK9hnJubgc+EcZebmIbFJSjZl/6ZmTbRBhG+PO8c6f69WoliXpSHthPgzuGAElu2/pwC5Sh+URgVk7uUQeghU4E1QofmWKmJIXlr/ovfCbdDB3vjA78AgMqJfqduetOqJkgrGzVOQw2nHyekE1a1HlI7t2oAn4kwOPUVnvkUwObPYOFbxnRXfRJszMUy8Nt4wVKeKnZQyH99EBSdr7GNYwRQislv8tIog0UW30XE8ynTl8YBp4CotZgUQ+Qj/PsOKvpL+RvgqJTI1hJXt6tvFFFLUlVziFC9m4/8KXoZVXeM0W2CDcmExOJgtun2IxcAFFRLQpvNFY01x+E1y+HdhKspaf2k/crzHf76rJV7uLeTeFX6WyMlfV1HhNQhuXv+IKMF06L0wRsg1zxngaao22extivoYJ35RYrrgp4WB+zw4U4LQ0hQGUAcG6oO0VUdJ/n2Jgym2vQ3RaKuqoU72OzTdb2TCYMbcQ7rDc2evnu7yPCGZwYMzhRmgVpxVtkGS3pNoW3dP8iRdgRN+c01kbj50aw4IK3sotXMVOivXwFU5clWWmHRew5n4/ENJupC+kz6MY8e/ul42KzEHPudKCcjUpnjL8LKtFB78mxEFFZA2FFSuiQvaQzKn5rB2ns4ng1C3xdxUMXc8hYEUc4bPG1gZKhZG1HZaxMPk7c8Bl3OxZsFG887Rcoon82wQeTSJfS2licnb+MsVpTsb+VC3t0JfqCvRAQvNtzvvr8dZV5MciTldLajWXQrCxq+WWVdIWDGzKz3XaKc6DbfJ0H0vaPJteQFJUjPRZxbeJTz1F1Zhk/hDpe4w4WYXOeIrT2htue4MDn5b+MP/ZUje48lhLF8FAlWxqufReZ1I7sJYOXBA1XF9+hC7dSp9LXzDcYItporFy5sD5nSqsZ4OnOQUbQI+xi0YdKeRTuLTYxbMqpYu3VQRWH6yWqXwMHY6vpEY1OmC4YxhGyeytZwQL1tCCuQy7issTl3SK8i699ywXu/lVhnSkwY4zZafhldhSOvC0DJdnrpvdkqRfy2hKHmB1HVlKqKCJoOaMXDFIasDpNDrEOtiBd8ve1hYMLPZojHrdDlXngySL2EJHi5pZugODd9YbTEs04B5ksYyd09KmvVJNhIyahevJzBfxtLazDLyK1sAQYXJYwuWkKXx3fTiwuS+j4YHV9KDhO0DMpfRb6XcMTjdx5Y+/nIFdNqSNrnEzw9N04GnpwGJTDAT9blawnnEsh6iuXHgYvJqhd/B1CykLmz66Gz670ebY4vMm4M1xecfHuHixXP5mnnk2LperjHufAoBOQYFXEdzH2MR+GRBTRuIyyUxA9suHMMIL7n3+skWdng071yDaLl78hGmlzje5ypJjLOYgfhXv7Du9YLK2Igm79E/s1qCHHmob+4rfm5fhGA9JcdK5eJZen4I8S3bQ7tsGFqlx32T1Snpl6zjSXmF6Y3T8RhDhKc4pOyxDdxFtrZJ/ePfc5XeLy6qSebvupY9kol9Jfx0Pka3iZOiztqHN57k3TxHz0qXcj1EEZ4MHpxITZ4q1dfoYYzZGy00uohRxGq2W7F4RcXekyJog8sZ4ky6aZz6MYoqJ86y7hyVU8MyP804VN5KRRsu6YiIFn+XfClt1jnMlW5COx0imvuvc9/pTmj5FkjGAPkYEdSrwKZcC50wx2rB+pq4sAlg/j/Q1WHwC4Zzi8Ey7zEQa+XkfbdxbSuv5np9IGU7/JXW+U/sJReZ2yQ2l1a4iIjnpdOGBIjStUabtIgTYgdeEmNOzNDrFR5exKOnAQ8hGx+VGio2fX3Avvce1vpD+G+kyos9xmSIVWzs9c10tP1FL07RDjkvzFfm6D2X5WQMlq+QuTjoc4wIq7MxigFOEqrug28z4HILh2gfNMLGAdQhcm3DgU/iSbyTpJ9NM9bKblok7O/8iOpuRzBt0DLVTnVXAZw6cUc/Ar+Gt/KM6XtOAP31me7lscR8jbJ2C02zokzaxCGds2nNCrYFXrkECQ9ysYYbX1udz/3yWxyZww9ynWPPZ7g2boBjY7x1As4p3P+OerfHoo/U1xVMPKyYG5gz88KkMbCYk+1zW4Lr9WcYCJY1fRQQxW5mzC/O9H6WP0jsG47+Wfi9t47l6hxgFygpvij0+o3Fc3yjMMeHmWRGs2OCOMGTheL+sXAtW0t3iMT60DIyj8ARLODIDd3A1s6fdkdMM5lbLZmcLLSkAfbG8EWdXr4wimtuazddOy5sal3ydEYe9ro75MuchsT6uJRxtXblVYSFDvOEYUwIlzy7peKJsx/1O7OOJdzvFcT9tjMyWEcezS5WcpCI5r4ndzTJxZvAaeU0lqT4sKzLj41eBNdfQxuIULEuldzHHVoTdKVxkzmuH4BrmsvojJ/Qcw/vNJTu72WA7Tr47RbtrRRPyjJFtuZiWy1iBC83juIfubl7HJTXSpfSl9Gup4IFuCnusl6ZxlpTtQI66qc8a4tPL5cUbFPo4IhGczTopcKFbDp/R93KUreBE5s11BKr5fg30PLFoc4fWE58DA8/z3m25Wk/LaXnX5TKhZ9XmdLMK/FeE157R8MmFOSadxUJFbh3j+yniyz/VMv/WkSKniBlTRBeXai69Ol48hrP0XMbECq88phs3m1D+cflIZtutuabj8ji4i5gHPWWQ3jEy4cJovqZr7q0gtTfs6xFC+whTu342ZlsRADPeplbkxLjADg6rh6eoY/nswO5fz2co3nMmXc07JxGQmg0jiiZKlnTgMRx45JIqjp/8ms+95B1EgDhrf9ja9AxGKxjrabnx9dKB9cyBvf524PTPCo96wfmgp+ULSjY7JVklDuzMawd+gtd/lCbpUqpRunqUy2cAnJH93mXfyBB+WEaNWC2NPl0oO+rFX3RgQ7L/ogNrCbrKgF7esmz0NPGLnj40E2ATSoXWNq6thoduosVmrfn8sl3MlfreezhcIwT31Fzcj/FWhTio0xyRP+w21sLFzTwhO5JU91yHT+AsYtWcewviypFJnxmg3EgP0GLuLPySA8/F2SPPIn8vfaC9dQZAjfasQyghK3rK65HgWkaJkxm4ki6lr6XPiTgX5LEZDlwsuSDFbeZXZuBPOnC1dOBsargBbO3Xiasdwv7mCudz3C8lMRWYrAiHKcnAhvIDprnnYMGJBfdd12TgM9ncL2VgFwMpWVGM0Kc1T8tc7fxW/rIDp7EV0ed+7sCKF7iIMnP7xB7NzMpTSNxKLPYefDw+c+ApPs5b7AxckNgypM6/u4vqqMABe/j+MqpNxfu77vqpMqyd9VZc5oB+Y76DS+mvpV9Jv5H+XtpIfwrhj4/Uc3hP+qDhMM17aSvdcpheQc4dlk8od4q0ba5pw7roW8N8Tyz/hthwywWscfojkq6CFz9Jn1FrN3CilsB20jfSg/Qfpfc8Z86dN/t984ypSSSt+I6tr4xA6GBZgETbgLkj8baLsq4mvR4xkDpS4ZrMO0Smmz99w6km80a8kz6Aw+6BhgXQ1lXBPmK2wrlb0IgAYKsI5x5SN/rq2aaBze15txlgdNxp6jEqLLBBctmC9RX93hJMMq/ADnvfQjW2vNgJoYlDzLpIly33vmEXHsCcWx4GXEov2ZE+0l0tbXB07/Uq6sYnQOOANQ4MVzcBPzqgVBva0TKS6iYenTFHwUdhBwcuq2OtHawupN9Lb6Qvpb+VOunPcExF4IOszBQhYooufxsIYFjq3wvYqwt0I0/UATs8ORtPPef49AC+kdLtGAeBdZA1BgPOd+YL17Gpe+mfpDvpv5V+lH4n3QRhVwWlb5twBimeIQF79bgkdzxnpjgbzsgnaY4J5FADXXq2sGYRRqb9jtFU1JKL7LjTE8/mqHAJ14JVPNWh4+J9QIeL2os4cfjEXpSh1fSC1Fy/W2zW0nQxhV1hcrbjimPgynjKmEmrA7K5MvJdi9nMdGofvEhPLnGVNYEoTGmt+IiW+FXy7wvWsJBW0nV0LYY4C9jlTUNEa6Kt4aLOMpgHrsqAYRcHR9bR+a+oZ2xsZtAfxQnNO+mKfNjHAONMaP9BeiG9kW6lSvo+lGX78FWT2S3t/vuYVVnjS308nvFResQx2jg0t4yrL3jEgptHyX8/gBEl3bJeDrGnOJp/FYZSBhR7Id2GsOafpffS30h/ljrpirzh0ZvymQQ82ao6gPvEr5zwCkNVU6qnpR7Gork+Wq025cewrQrrLAhhxpRj5NUjQp8tOfAJx94DxLMhemId3Byxi+45LO8Qqa8g6LSBKZ3ZLKUwSH2EWd/ELgwcb5wPPxjhJ3PM2R2imo8+4PPzm9xIV6yVCShHJZ9M4RnwD9yp5YMjSGfPg4PdfGyoFUueXOARrYfoWK+kSwx+xxGQH6VD9FLvA7KtceC9dE2NtydjKzJwd5aB6zJSbdrjkZvect73S+lNNEjeAVksaTEFkKR5vWQcm+DHq3CFMqy4jlO6ZnLtktfssdl7ouJTdHcVxu5q1IfeVlG8FMs0N+J2c9fkS+kP0mvp6+gwmV9MoHxWA2YxmBja5WeS9AXgpI6r0rOOpQ3cwGMM5muI47pPyze0XZcYXSU9UbFMpLAu4tkOY68C6gmnyfk/W8sQbZ7nt5CAZIIfPMUqlbEsxirPG4dJjCr210xCEYedaingMqDP0+vMPafFKi67waf30AIGUYa8ZUw3mOCv4qbGiDc5sDOG4WXkdi6er8cS3yH22j3hn9a8jBVJBzadPIegN9JL6TXO8CGKc69X+Ww5njtwRWqewnXTgc0UloSaCx5uVIEHZnXBXnrLpz934GrpwA6Yzx14BHwXFAZfS38lvZB+G3I4N4/SV8/45vTwbOeeNX6T6UwIVTwz07zIId7HoG2II5YPy3Zxv/TGhpxubXQTxlEGhqtjm4bIemmjRaBqO3AZDpyGXoVJ3McJ8GeNmym+P4Z9f7ITZLWGUWyzfFxdOrDpqiaElHYzA3EtRQSOjLslUHaFUJKQquXu2yeHJafmKKylVMHt8YFHhpZROxXh8K7aFw78Sxl4vv+5KrqWtpyFPHJXDX5YLE2z4GOa5apNYDWPeXspTQqK13TL92n4rTUgbG7ovv+XOXDBe/4FBy4Bl79BO/n76DhMyx0qlnuWX9PyR86cOQBXYnPtM5LV/L1J/Tq+2cd7GoB20jsSZht40adk5PN1Bt5hHZfkDJyy4DGMzLzFFMWSiYQpHPisjzvG1kzSPQXPFPlHsfvOXfoFBxY1UhF+XsQT6p47cMkyNvHfInLdFLHYVlcQH43dq2VgUiTzpA0zNKyWk/yZ5+bXNyzvQIDLL9MP609m4DqXpIsWxTXX6yHmPZ1hCz0PYWg+JPgMPVfLFObm2ydR1BgGUsHOXkpXPFLGo29XkqQ76X2w4CIkFoEijtGsG+PaymVLzbv9msbvO+lV9CpsieXystNMMueWcYNJS3t9DDkc7e2aVZBcmZUq6SYIfhEYxqAahEM7pztITPhlGUHOxfgAY2gSI+1lXIaHDDbr5dO8x7jlcWnvvXRHNC2jiBpixabw+3SIjA1mD8aQoLSAqJ4nZTrrleHHwu3aUGmdNbSKaHfvUfwVUNROhX08V3fN7244Q9aa2y7O78uAYT13QdZq8a+Coq6hFjpEH7iJ6PizSbkp2rNPduADi3KSbtjCVdhEEzadwacKB3aKsRo48YQrnkNg9wnO74YZoTXPpRqke0apTp9y4OkXHDhtwjduk511zy+k31E2mLfOcvaTrpsJelqGXEWAneJ9WlienOp1LCtC55R8eUpwJjDxQygkzwpKi4EGIu9cfpiQtst1cU54G30N+7ntrAuvczdQEUH86RnORukDU66GEKKgf+7AuSZnDvYXHPgYDnzCmLN/5+wyLlNOfnRBRfHAQHSFMKPCe/tgL7zIFkBX6Atct9jSSqJD9qUrxgqdjjPEl/9FB54CLvQBGbsY5t/R85uikthA2mfCcbF75sBp9J+se5ylu0gOLhaLmGGeGe4/R9n3L3fgjOgj/MbcSPpKeoH06nVwCC5Kqgjkufda4rAp6suMULlEDcmtW15YFSss/lFLa+kFrtIAGed/fBe8wrT8kx3uMkieOlSlrmKdFjytosjAZVjqIRY8D5FJl8uCzwD6gmgyYhuniIy5YmelxRh+mA7sKcMLWHM7cMenJDhK4ihZcBtkHVtzij7dKuzBoKMPsaroSK55/WnZ/q9Y/3XIpt1E6zAwA4cNNOOnHbhuohg+xnTAUxwkbwxdL6dN5vU4Ri8h/5QsgJ4tT08/s4uI1wdMz+pyJiZe8VQin6N3HUP/daT1Mui9KQq6Ms4S8MtsEUf2/6t4duc20pYr0CRZFdHokzSWYimcf8+qQr/MWb5aeoMtbo0c2UOcfkCJG13mnos4WOjEw6jv4+GCVoF1ywEt89ZVEF5TqIGbuOCGTzHEzCovpUOzSfqMNcWujTEUmGXGtBRh5tIle2XqvY1wWERy1DOYVIQZVPGJjqAtn9WFNmaAk8qyekLxN2ewLQMDTrLel+SamsC6FZt1Kb3k/Axv4o5XljQNiji27+fMOKIj6ZB4ufvU42xl7P0xOrGbpVrylxy447oPkPNnDnxi2MlcScGAcBWFV8mpHS3l17/cgdOpXK652r6WfheJxtLwMmBAFlJ2SD1zYHOK/TL5ThHkyzCdIuqNJgY6bXkVAoAi3vbA7t7gyX0Y9IYsaX3zPi5jBFwNwXpOUcDkSlrv5Y0QYW5Dv7RYRt4zMG1HtVyvANqaDCoitCnKA1+YI5cd+PQpBz4sc6uiVWJdYrYFy+V1Ojtb6++oYf33tAx5W35rE0S4YkrGfjGHvzWR1LffIBeZ88cBnx+iqmyfO7BXzRrlE9jft3Fk+GhgMsJl8RTxNb3X0j8vhyd/rSKwAw/PLsAEVE4KV2yzUfsaGvVf7sApG1RAdjvwb2hRZXegWo7BO1ekx+Z/7b3jsvbNP2cdtyLyXh0AwQ78XBQ/xD+uA0paaGkH7kJ9Pr/hKnqTU+j1BgbFSz7O0cfp17WTS+oCB07jzgWpwhL8fVukh62KCGQ2mzGAUjYrp6j6iqUDe3ranzVEzHLxeoaJHM3bmJ48C0DdEruNLOkt/1jFr7s3XEJGDSFM7GKwyJ3TF6HoGCljPLDWnDlwvYorHaKQWdEyvUcndZAeaN5M0G9VhPTnX0WE1noZKnLY0q/sIh6chUQLZywsdJ3o8jYxugHcMfzDfuw3n9h5q7rnkf2PUiVdB/VrzPdLt3mWeqbII1nHTbGNNeZm3GzbHyPXZCd2g1eltnBLmjhEup+4ZTtlxzmQR2oYk8FWlq2jyTRflQ98d5HexmqPYcjJA5xRhM6VzpibmCupl7RggtopAlsZodeDvi5yS+y25iJH1qcKLZt3JGNJtjANfBXubkrriVnoObpfxZPBpshaPxNM/KiN2D9Fd9dbv0Hu/0a6QET2JH3Lw0/KyCE/v3kTSz/ETqwARh+lOyZ/HlDQOkE3cXsJmNKOFT8dApTsA0slnvMoufiHsc4Zf1z+1zvwGapLTmGkCul4lPcVvtSG86cfPs+5yWQlcWaBv120CKx8xglmSLV7iBqojgqpRTF8ik00eklzNJIzG3oIn7SS88yBpzjkqoMe0i848PTMgcsgDY1JTpRhLSerFLGbWZ4W8etahsj+mQOLvCYceE0WqyM0PH/DImKEEZEHKzt8uKDquwhydhs76PRt2UYfK2MuWfFK8V+Hrc+kl/A6M4qYZQ77JYXzs+218dZDeOMsdZyZvLfSD9JH6YP0AYCyixM2xmcGneSAI5wp4VnlaTl8FYs1LclsJ5PUHhSxXv+1Djw88+Ey9LsN2exHVKdlkLi+i0w1dmATmc6xU+RD9+KTRanpvyhqo5KMMYbzu/FxxVulyH1NTeJPFG/rMsYc/4l8dYpOfEd0P3Ngt0t8m90yvZw5cK6GAWjx7G+7U4ODZafCuogKHyhizf3rQ9ypOxUtjtHCTCrUZuWzsJjl3xS7YAgzRvyaP+uSy9uSjQ9Lu52ivLELNBHETW+IAneIotb94xOR2rG4OnPguqXeNheYlewJ0LzD7cxbdYDsY4ibxmfbaPddPSvsPbZURWg1lmoCT/vmunhPSw4s+7dL+V6HmNvxJhcRaRU06kDQmkvF15GXP4mbtbzNKa5NzxZhCI2SuZUq3iQhnfHWKZgXD/GaFjURY0MwUS02y4tZoIHfMZ8zxXSxP3S7fBKzWGTbxi7UeSKnH54RTwU8l+cL5u8/Sfcg+KQR7KBjMP0GKk2oQJ83iodY0gyiaYFbwrMjsaL16j+GDbsIXWN8aBMHUs1WPauJHolAflSQxYYOTgW2NNCXXkd+uJVupd9Kv5G+lEbpSfoOF/s+qpctg7O10CWm1kfhz7MDf8SH76g8DhS+LtQVC5og0g6cet+eRDwsfcnIbwwd0hCtNjPQRk524HbpwPXSgctITGkxBaVMHZNte+leuo4XmzGp4k717K7TgQ2aB0glm+wYpnPmwA5nm1ioDIvD8p2dLw4RE1uW92np4ResyYGYUkTrsmRSP2cXHGrtTkf2pQ947fB9FtQstjOFbK22M6yWEig7cJpQHQxKGT/K7K/YgiGA0HwXK9a/iTc/4/7PeLEpcpXRfxP4uKLf6+RbUXk2sZWZ8a3/fqI3OmHes+f/TvpKes3a7qQ/SzWHonzagZtlBnZoKfmkB6ppd8aPOHAVa2eol0ZvB24xtWPUUmOgUkX3t3j2wL8s0Adqkcd4t+YvOnD6f3pvgZ7Mw+QFR1G2eL7jlOJSzxzYf7yMyUGNgVbdt/qkA/tva17zTRRxtlve0RT4bIWXPpEKnHlO7KOzwSbqjXnTj+HS5TJaadkQFZtoovqMY64jRs+X7SLBN5L90QJcUAdMLMLVE767RM58m2HOpZSoixwabEhntVDBax7DQkxnHUPCMcesi7haBdNYxJUXkZk8QP0xPncI8P0BHrWIszA75kTPHbguYvcUQ9sFwepSuuVRgm85vcqn/x3AT5lAM//6m1VgfhenSQY5po1YlufUDww9H3jZIwOxCo8xBmqiUaRlfX3WrZmvpwErX0H6lzxUuYjYO/Cy/JqWt3BmDlOsjL3Wa+IYZih8Zto2qDFMI/OyC7o6kkhJ9O6kj7xsG32pIULsc46poslRRtZzejrRYWpig1L16pjk68nY855DHU/hHA4SLr0dBoa4TgumUz+jpfsmMPMQdTJfNcnRd2rauIylTihYUM9c4vFP0QpuiHk1FP6GZNWGCTlQzcTzfK6aD83fMGP/O+m30pd8ylZ6L/2Jw6tyIOinVRrD8hSGYsnRBe3pmdZppLe4hM+F6Jdx5jkLawZOSwbqDBemNsgNwH2IzU5s+SHOlPmkA+sXHFjxI9+jT+24IuLN1XARieaM0fByZdjKUOi4aibL6+BysAhi2D1Y13/D0g2SD+hjyuHsCh2e5lDyEPhsHc2pMnK3r9YObJRfUwgWsc5DLOMUuOKM3atiobxW95yVsY5QUocD9xFYs7pN3HxGIacD97iTzyQxBhhx4Cquqoz2vj+0j7gzLt1h7nylEMUHdzQAaA8x5KCnGy8bDkVyGj0w5ncrvZZeS28o+R6l+2g1fsKBE4soQOqK8uiGZxJ8lL6TJkrhAgi7i7PwzlBLJqIzJfQUacQwaMBph5AoiRqrZx7zIH0klv/XOrAzcHpLi4f4kK0jB73ZlO1OYyTJ6dmfIvzTvPhZbnE6KnDdDiMrl+abaMwea0TeBUzfhkUaiAs5Si3dxJl02XhOPGoHNhYwFepldDPbVnVYfq5flrINe/XI5o4wrF3cpr3Fu5/pJEGN31Zhcq4mT8G1NqHf8E1lwVPEZymssV+6+vx1zVE+M+7YUuqc4e8iLrInoOwYvi6DgJ/ic+frf2BzWzxcv+TAdfIjjhVdGPuF9FK6hXL+KH1DMN8tQ/H/n7U/+7Fl3bL7sBHd6rLZubvT3a5uNbeqyBJFAYIsm5YNCBAgSC9+MAQY8N/oF8kQTMAUbMiwLVIkxU4Wq+rWbU6/m+xXF50f4vzGHbFyn1NFgomNg31yZ8aK+L7ZjDnmmF8oFin/boGJvdnmaa8t53/xRrknvKWmG0krWw5Vt9E1gfZ2BNsmjg0wTi3mjuItmrjbyXdfUBsqsl4zj3YZnxR5IdOQo1eSpi6+sj9UhMTmIdbNjZwB+rOPlZ+W6CL8YzKNNanhAVs2yK6YKLP8SoABtwXGiG0J5S3y8UjtEW8uwpDMLZTzB7/FPLsQ3y8j//qzxnlQz+9kvaxwHc1xghNuQcZcRnBKxjCT8jiPbQWLMJ0ncRuxyuWBH9A3cNKRcGt2hC1tODToERHyNCz7ifQa7VDJ7H0FPJtWeBc01KzL7LDTxvFqE4C+4HStTvor+kHDnGP6oAMPISHS/KnSgTNVORkJ2OGDvXwo0wOHmywiM6YDu//ZgFmNYou5A5vUKDDWSZ1yJZ0/IVxPErFi805o6SFWIDO4/6mPG+uDcphYpMdgCOr5DOkY/1QQ3heoSd1n9ujRHQ5sn6ypQV3nud26mMOnKhy4CQa6DJzd8q/V/Em9zmNY+QOxOO2tjDVJFiyNZ5y79A848AnlUAKpbav5dI4yJw68jPxr01qFZdpsXFEMc9ZZURIY0JvaeS49o3XfxtFRZ9FXsvPv/40cOKf3Js3AlbSQboAO3yAK6WM+uYqHz4XwHmTzxXDND99HrPUY8hCrMF3ngZdW3CALW8RmfJ8DL8IJUypdRigdIr/dSYN0QbnTh/U4umsektLCfM9jrG22J8zR2ZJsEH6T7PU83NhvV0+2aZozfx5F9nRjPlvxMcB3BRvpA633JOc6EIpdaBEReQIRB9ahDtyk6K0kIqzmtujN9dduzgFmvTvy8134v+H7Bx04Kwc7cIUD71FsK8JfZuPkGMswlXT7PjB3GRzGKuqZLgJuB6rds+Z+Q+ASqNhG6C9pYu7AuabeP+DA9T1t3imRX9NdKPnkMsZLXIcWsHHraHm77f4gfSt9KW2lZ1THI3TYEqTo40MqcNiCBe45LmlEwFmSNaY64q30nhNHGnDtIeB1L11zdHHLCR5TC+GMI2s3EX5OCu0VFeUxXlZnXZ+jkWL/82v65j4OjPEAT1I200o+4/St6c7PYxhd4Ys++XOiQhfYfsn9n/Eq2Ydwgks8eB9noS45kFucIGyy6TC3IweYDurDgeFMatj3e7jVPiz3CJtzILhOZM1vpP+f9IwzEib+pIrMPtBCW4Y4u2P39xz4vWA1pkezcMLxZk9dcQzZSUXRagi0gDke4zzyinTZS0sKyJb3/blaL/jJAkn0K4RAyzj9YovvOs9eBGh+J9XSuXTJXe0hiCccuOb6BWzX71JfG6PJ6zjLdhlRaCqq24jtDTZ0Rig+BhAxWz5Aoe05JXMdRIlvwg3nZ9JGuow3mys6AjWx7l56R43bhGNsMehd4OBL/PzIzXuI3KDHB814umKFYmmINwDZApxBkkQv44ad45zI7PCWr01fW+RBNVzpGtriHs8f2bn7mPMugGW99Cg9p1p6YG60CWPdAuAqND33+NsRgxvnXJXFFQXrXNArbIgXBdF5F3MJZeika+xb9PUO0jvpDdKlA2tbx7DdERKixJrXkU8P1AYbAMaBFZgMso2q9xksoWeBKhhixSBOkmtT0PHw4j7WvAT/lBGUNZdqFfxKjSuNBIWGYYUSIOSWZR9YcU3k2vHUb6SOBc/k0Qs3u5POsadrjmm1r1r23khXZNEVMNdTuivpXLqTbpFtdSGSnkZQKz6lDfSwJMudRwx+hOS+k26Ir9Mz3Ev3NCNMNu+kd9InJIomzrl9CM8Rd35g1sMnrYzSI+8qOJOe4cM+nFiElT5kZ4Z6KRtaUffUPL6n91oKTQO7MyR7JRLbNW8VU0gmdnF+/ppdM2cvMvCeomoRCK8AZC2pQ+xdXYziL0JXY8rIM+QdFlmTyScnOWevm8C+I99pQnRlJey5dC69le6Q96wCHPeAXfuJs0LPDo5xZO6BJL/grhZ87hm2NIYU5xzMqKgEala7IYGt0HK0IbeqI42Jn3TpMgW7HU5YhM24az6ZxDlr1UUCMN2aJ5xccbzOJmQt02q0tcld94oMj6aUZCB7lL6R3lGEdsQ0j9CYK214o8IqjuEuoxKs0XBZnlNxA1dxBPYxNrAj0Xhou58X4CXTxTXBzbmj5l9zFa1AMMlyxEWsYVAkSidcf41PcLNwL83PJ3DkT2Z3Of95c0k96rikexVS43Xw0C3oZYW+uQUOHuD+Go7u3MaHrggMOfGWvYIyNrQCrFuHPQKdnaxPzGCMpyvjaqN0LX0p3UifBVORUo1cyZO29glV3D0hhoy/px107XdGQ9QxporcktZbx0enTrWIzzWJaXxVU0JsaO3mqGUxb1zYoW26dXCXFfFpBC431HvV/OlK6c01KPMsmldWNvvkmgmVfiN9wUlkxxgEHIOZc+zteI2NF2gkiTfSLf9kXqCBpXep5+awRz538fa0HfZ6YNE7Xjlj+UsVmbGY+1ITqbMkjLfSPWWKbTc5xWHutO4EJf1ZxNkuio/wkyZXZd4n6f8mpCyWF++oENbxeu2B/T7DXZ1YexSkFRh6GoATCOEYP6y5AxdzB64Jfylp2s+fS5G4i4h0J+FglG6krxiVe0onFHHB4ol3Vd/jwEU4sOYOXEF7KPhBS8rSgUuspY8JEtNzJ0ziiQM3BMozgJBp0yLiRRms3xDRYUFBXHAdc/lLdNUbiooqCv1395QUF2T9NexNAeh5hFP6RvqN9IZwvse9/TPuuVeBlY/zrV3EYYoGLj23dRHvSFX4YbYPCrw9T0BUWLlPJBFbkv19C4Ktx63JwI/QZWYZl4Em04GH+FPEn3LuwKkts17KDlxFCBsi8HU8sod2O1iEZVDLI6ZzCVPk9+B4AmiKzh0DKIs4syATlyg9exzV36zCdU+SsI24isV56sCZgcWJXGacjtFGqOddyJOmcjVXxtuBu9hlcxV24OnrLCQQin33+VtF+MYYkH2INOBHO3FgxSKs8KNyjr/K4AndLVVY12pegVQg+OkKa34gG6DFd9NxC+kl+2k2t8YhHmm6/lb659KvpTdxvGY3RznGBE0cImJ7d51/DGzdRxLxcztwTat1T8V3oD7qSJcdpE8inhRhLqI4XUaj1Q3AhluaygNznyfdSJOOJ9/0HmZzu8cEWr7TYB1mK47cYQ75+K6Max05xjgk2MWA4oCiPs4t3cY5J0PA94lDmQLVMQr5YT59Pc7xQz//+xjtkJRWmy0e53nNoGWQrqVfSd9If/KhDFiGOWUAqCIEpjD1EXa5itsw3muppuogm1O54Y8oIsAoOrfHwMfjPKUW/JjRV00CXLLRx7iO9ZxDxPguFtxrmyI+Q6yGiU+bZaUYJdogNvP82TlZ6Q7e93Ppn0l/BQGcRF0Vb+R2bNzHLGQRCXScR3t3VTawmGNE0ew0enbhkTN6H2hVrOZFth34xKrqMBSFzzR0ne5xYMGtZCfWMbOaK4QyAbmQdQ51cinmDjzO43kx95kh2rzWxp2Fh7tgeqpzGOKoHVO8NXu/iSbdcn7b3+fA7bxAEjfmMsDCm4L9SuybVcc76ZfSR9LHMW6i+b4khn7qwBaNDTEPsQhFYjqwCJ1jvKRiDAVVYqckpwbatmPcz0neTAcu5w7sYWEHx6QHMjpnvZor7KXYoFRbRoUwPfLvrG0VyusCrNbxHrVH6Vr6jfSPpV9yFodPlOziBZ6pFqjCQ7IObugllXiO92DDNoyUBRteLj0Sxgp6tBvpDbrSZaQCJ7cBT26CwqqocWu45yV80Tc05BpsfRkYPR3Y0GCYJ5khgMD01J6Bb9hjO7DlKym3LcI6+4DUxxgTFDy0X0fWBVi3NHKiYDtoV3fZG+k9sS+HCJ86cBq0/dlKxoFOcB1CHROrH8zA4pSiCfe38VBenOQGHZHd0lLUV6Y3zUk+deAyclcTN1NFNsv79M7aPxV6Baereu7AXYCsJsi03mxxsESO+8LOh0BnRaz/gY9YBjFjOd2inuD6c+79PnBzCSP7tfRGeid9Lv1S+opDKa3wH7DTAb5+z4dssPcuYuwEXPyKikPc1Bi8cubx6Tvv+OGOXPzATy5jOauArS3YwFG3CFcTQWJCCNPVLmiNdITEY2x7GuM4/3tP8CgDNhxilZLL0LxvtGDDrR8ouFSHx6+CWnYh34MclhjCPbXQFD5vpQHaYc+u1ZhVTSZ1PDvx1IFP9+r18X13OMdoL1WAqxRbOQw8Sl+h8DmP5XXCLecb5KJiDKM2aZAyqz5K+z6o2DJm/or4IPO4J59oCZUnxBy2kzxWKCa2/LzFYl2UNDtcZjWXiXrYYGpePnCTe9LjlsRYhXc4p5eKVajg8w+IV7wW19Jb6Y30ufQ52ibNl6yKhSgxxzNkK8kHd6G1NaNZQCqto3VZx6GcRkuPUU8cadDZge0nJ312Eyhl2GUXG7nkuILj/N0LzoOJ7Zp5rvQajmHrTUQie342LwqohYFmacU61PPJnD5QjY/CKZEiDOx9Q1/xHtSxhjwQ3Q0LEppYq44skPMKJw5s/iV5mcms6/lRbimkTLSX+feN9LX0C4jzjjUv5hpXL/JTB1Z8RzH03wbrlwXYPkQNissquGFFUTSEA++x8FyKKmRCNdbYx0dYj97THNgzrqH5eEcRfiQecAhq5AKPGyNAfNfiWJGFVtQWBm0Vf7+Tvpa+kn4r/UZ6j5WbuD0A+YvIsUvYuHWck2TPcbnsGyqDhxujql5Fx+QQPNuKEvwYjuG98Xi8T1gsYp8MsEpQ++Qz72g6OMIVgcLtwLVOvzIo1EEZ+Tz9PsguE5kP7NMxDtl3xkjkmp3ILVMdVno+Snc8SEUYKkD/d2jZlxH+l0GO9mTg5ZOjQrLKL4JCGMKYygDQQ2RpzdOaqJg7Epf1FQfCoh01I8hJ4WgrTTizIP0UJD07cMlGnDSYFbxFNY9WfaQWhzkzS0l/7dm1HajTfw6RiveAzWUsWhFX6+JNcc46NaobE3d13EYrqW5Q2U2F5zVH2yqOVCpQQh0QWgzIz+yyd6xrEyF0UnbWuK+lHZdRG7pBcuC06X2gCusnRZvKC9YyRFhQvBu9WTtrzruIMF5EeDRwHDhdRqjyjoQZ13onADpzyhhZsmHtLbwqIzsYgBZRIyvqqZHbMzDtI0V6ZtgBL3ueS5buIZSETQTzER6wZLmWtAIKlOIZ3hxCKp7d/GDPfWaPx42IMbp9YwQD0QT+K+kL6ZmkKPpOkvUYnprs7ziXLJbhtbaZIxTBGHVUMf8zPNlEO3GmlDHilrj+wBYfKLdSqtDHrpm7GOMBs1rvIcvsPi6cW9omy6DtFAnhu0h4jOHfrXQnPQ/t3NS7mXDzEuVhVlF75hb70FWeEUCsHFvOF9qTVZso7E3yZ53aBWY9aTdMsaaJk/+M5xJ1FUGOWNO4Cx5twuLXkLL7ED3m1iYQdztgnO9EJtmewGEHHuLHDDGrOOq0n0NAr4Di5Qn+FHdGBoSsA8zUSCliI+7nsG9JxbJjuUqEGfngdmAXAGOk1BOGK//XFcgJ4BZvoPsWQt10xVMfbsPNjEm8p0UIsxSANR24CE/Q3K6eOrBTsIKmNB3pTshx7sDCkv9NHXiI8Gf65ESdW0oXtFDTGr/rhNcR4XqaatfSZxG3RkZFWoYMtiS9EU+4iBc29nOMu4KZnmzuGLzaLZeyZ5ok98I5kA/xnOaIJgS5isZbEb3nDNtukJlZytM+D9ItPWAPOJ/Y5RDxb3jyr3ZgJ6s2qCQ78PjEgceoqpOwNHBo42QSn75uTtTCtRXh7A4/bMIhLfkdQS5rOEbPEZbzrnzWc+I75dy3hx904KcZ2LvzSKxcU54WkU6d644YoWNlFd0ul1gVKaF+4sA2pPrJbbs2GCIoDE9yiR/NcqNh7sBNnL6bDjx8vwNbIzSyj9PnrjEeBZJdceXEIK1U1mfh4w34eGoPuoW15FSKhfRa+kS6haxd4jQPwXf/RPpYOudqtvcaAP1c+kQS4Xekz3wrfSPdUBAVwV559MpR0SITRb+qwYpPGg8DUdqTHmYTpxu4k95w6Nsx1l7RaRieZJ9ynm0VR+WWkfJM7U2etyNdrrngAnDs2rALtG0us6IjsmEkaWI3zjBGZ1LX4LX0StpL38JL1nQEm3Aa91rSzxQ1pg2n47nMDNbzajG7O4mqxzDJrfRr6V9LH0UlngyuQ4g1uq4KmwgzJ3RbzxNlYd4FP1hHG8b+qgg5ft42AokR1EQp3FJobeIc2CHsoXwCIIdgcsqgMhQhv4qjkMUv7kBTGwjsLn5mJV6yMtAwepA+lzY48ER2fil9Ts9wcuZHrmKl/BCs8IgQoo++6xL92x5F/ES13IKz73lnxC2EvGHuFn7HQyYdJW+WXPZYqyNsfEUgDYt12iDC30lfS9+E5tOl84mubwyapgwCyEbjpD8EijUU62jPPWdYcATOtsEuD5EauvCWLsYvJuO+4jyHDi7PA+UTIppqoW+lVrqUeigwK7APUZ0nirVFJsZNCKt4zKcOrLnr5k5J+kL6S+kFwl+nRf+ugApPHTgPDEiH0Ycc2DDSDuxmexd17YkD95F5Exg0NC7rUCscg7DLP4qyuJy/yMCI13MqFck3b+YIe3QWZ/9Z2NmInb6X3mMBv0Jk10ArfS39htmFJQMd0+M9ctL7ixhW2jN7vyPjeRJxy29Nu/JOupaeBUa8i7bunqGEO+kF+9EEgZel8BCwpghbTCV0E9bQUQFPS/xe+q30JadGNaG7qudmOsY/lfFPJ+0Am2MTptCRJwuGFF0A1ZB1j3Pw7Qw88v06jvvppZfSRcg8RsLcyPM+g8PopVdE6n3QBh2LULPyZTysIjOPUcxonjY/6MBd/PA4j3130lsOeElS38V9T5ftgOG28/wpwnGyI1WkcVPjZlDMkXSBcTX3K4eAMsprZ+AFVGdDb3SI3VlEmDC8dgG9DOPMZKDAm/7fhkA8ufeSks922EqL+oL1OI+Kdcf/WkhSSp9IR46fzspuw4ziiBeeSz9iyj95/InDekFt0ks/IkhMOq97xlNX0ktO7fiYUzVrxmV7EPat9Cbw3zEQldmiMsjmnoJrHVL2kaz3VrqliVLNI3Mqy56Sl44ii8izy3jwY9TdI6Xfc+YOxohAbQzcepTDQD8ZdJ+Cs+Y7k5jwTPpIumKJ7qQ71OoFxzsspW+i/2fZRiqwTr6KCJBZMx4jOxeRQFNz5+SbufhW+kJ6L30c4S07N5p7xsjKVJR2w/zVbEXQtwMGM7JrbvPWka/H8E4XDN5f163Gu2YtDsTIJi5lGWQTHpyiZ4P4knU4xkdUdNRM7R8ZgHdjZBGrPY0d6Q2dz1vQ6qP0jfQL8O6OF5ntAL47YtdW+pbJexvoxJhYUf2eQ6UW8/S3xJ6+QlD/BWKv24Ajho8t/r8B3ywikLb0no6R/txGS/9p4nAh574jN/AmKBJFy76OVa4j+ZZhlC56OpCZd6udv8DvkUU4mx9540ZPyRY+bUuNmMU2JLYLiOeJxvosSK6v4+Q4westpLcxAd9HmLa7PnXgk4o2Xc5wMwnyDzqw2L4J193E+9LbsHX/1gcd2PNj9rGB/PV9DjwGH1QFwGjCt8cPObAfpwBNdfGu5SbWpJg7cDWXSGQVkc3NfRyZchaoxqZyzyzBiCbHMOZMMQoxRiPqW+lXNBT30nvpLR5yAy9Y0QhY85qVMyjPG+aFv46nHQhdQxyespW+oqS4YSrxODcaQ7SaEqGIQ/TaYIsfSebNXEln1ZdLjRT92fm/wNxr0loxd2BFtDZoNimuKIi74KHreDlqh+120ke0bz7owIYzqUYwXmzgHoa4sQd0EZ9ySzV0wiOYrOStWb+dO3CWHMI+8n+zSM2vDtSQdp8V8EksOMY7em4512LxRGXlCtXH39iBmzgZ2NxDFZn2BzLwGJSj5mVrem8RC9vHnGUXh32WT0T/irecWNB6jONfsltv1s6YpcAeXK6ULOaGJ/LJR9PmntcuJ61yXCDmv4xAcY6lN7R2RwLmRELfscY9SHcq19/FSjQw2ZX0kXTgHIYdKXg6keU5Zj4B+k+kj6nez4hXj4iVJ1/ZAGg8EtMFNHQGb2mcePStxy46jvlpYvOLiL0mdJ4iwtx5hTdXMeS3Z66piKjj/TESSNbcWdslVRnx3PNFRw4cmr5zwbTCBN0+Q/g6VcTfSB1hvMG+xlAw9k/IKfuH5g+e3Wkr1Lrwnsy5/pWW3DQgyMma54Qgc1C0vkUxjGR5j/UkbvCMgVwVb2vNaxYwyj7QqI+QbKb1GHCij58pAoYtIrM3gdHLiMReScPxPlKQr1OHtKNjo10BVuHumhjot0De+6CfJrnzGfn3Aeh8CNc12SzpTvoyLF7RVd+FiKrBzc4ZK+po3NxI30rvAoV4sqqCiivjGNAD4eYqZtNdc1QBpu3AE5exZBSgDlc8UG08EL/KQLG2mJFPSdfNlGH1TEf8mhLTlqMFBj5OjNB+nwOX0Qeu5pWTpzrM1+wDZjRM7U9P8an0j6TfUrF8JfUMES7nDlxFiaww5aessHNWhQPboLtIeU8dODNyGb2L8YkDl3NnayK4FPMY1waCd/9ujOEMsafD/JZ+2IH7+eHNvmw5X4GCz93zdzPcZaCIY6DcMeBcFz0yhf+7SXcMIsQ9Z1fJC0G4DljVFBXeSv8iJkRMgBzpDU32fYMzv5H+QrriNRP3cV5HjYUNsbXu/ky9my36pwMcWtY6ptEsNuriVq/AHLZ7W5Jh64A1Gw0vgjzukRDcxRFfblLkfMYYWOo4914H9TGEaAoB4za03RbcLb7fgYtgscq4hwKvOxCPdvy8eYKLWKWfS/9YekOb6Y7KqeesFjtwEw58koEV+OIEExsxn/QBiu9xYLG8pi6y1ZplSeL1Mv61Iv3axH2HJw7sRVjMFzndz6espAOPQJguJl1c6z914IosaAzoLkERQpQTRlRPGvx14IjsnZd8tFfpu8BUfxGUoTNLz+mITVTpZn/sE0mLG+QNsQk1ad6AeDru40fSjhHQMwjslfRM+tvS79N8mqDeH6ADaTHqqVP9TPp0LnSc0vFLeO4pz16T/rYc03spDdINE7BX0lr6OsD0eyC7GzxtlC3DvAPpwOCkecTnJp94jLMgOhTeNSZ/zxKJlr0ooFZUi4tAO98yvNByCNi0yROv95aTpGvKmOfS35KO0teEkykS/4RjdZYYkbkY8SDioQYcPWtbw8pDUP7+vqm3FVRmzw2UKAIO0o30M+kn0jchOnMmPVAOlXQ2BrzBEzRbRjZ6AtgD3Qybfx2HN1REX8FjLkL8XYZ5PwAPFHLWPlLnltMedxzLe4hfHyJvFk+Osijn8WApvZb+QPoYv7eSK/OvYYZ5a20jW5f03Hp8Zh90Uk3cHmg3TwDoS+lr6UXQh4sQ+I34XhfgY0UZ+ufSt5wr3kHHemS/lNbStfSXHAniWd33jO8PsegP0lu0EFvpmgHYFVS604c3Y/rFiRKeNn5iAT+OE0ULynpn/3VULZl2sxNxJIK4E77BgeuI596VEahTsM7TN89j8neQ3nFcbwXv5n5ygwPfkAieSc+lvysV0jdSyathNtLvSTeRwdtYlsyDCUKyDh7idJF9cE8Knt7LW0f68NXOiGiSzpk37ePcH9HlqED/PtDaAgaHBkeQLacMt2xWH4+jYMoLYlZFh7ki2SjKHtvwItyvit1p+LEq7sr0wDFqXLNgfTCkdZRJZ9JV3O0OarinDn7gESoqpd+R/49s0jfBuqV51eSrAbh2Q+VasRwbsGkfksAiNKnOYBM99T9K/wvCtOkeMvZMtdoX0lb6iApgxEbfSSXizWkhdkyzd+xiRwZoIdkGwrmhSQHL/o5Zql56jacZy5bRr1/NddJjFGcGSQd0c9f4WBOwviDkXwdI2WN5zgyTgqphI4+43BldpAfQ5EsaQ7fSC+lMupCeS7X0c96x8UCMOJeu2PFl2HoRSvE2yvr2yYS/LdiRS5Gc63gpwMiyF3EIXRmv/LEuomSLy3jdSYtftZz9XnLb6wgNLiFqptW24b2LMOYjGdgDYj4mzSC0lF4F4hiD0hgCyPYcFP9IcHmM0/ILYuWF9EwqiQiKU5/cJ+px9YYAV5HnJp3iBQBtgFI6Suf1R3yjD3ww9Zq2vJGkCZXQWazW9E93GPISReIRfcUZQNw6rIbPuozXwhUcfmXRysdBZ76GcDFWbqWXHLr4LmiFQbpE5jsi/PgUUDUt0k+lT6VP0f40LPMjm2873UY1VM5zqyLAjgDiEsvVvIt7BANYvNsR2Ew3KrCBkXQX1bQwnDX6qY30ES7YE1l30rfSPRB/hUVM4/ITApl0L5vAiFY8WYlhoFkQw2whT7+edomEN5y0i91BnaqUb6RveduOV9h/qQN6Wgnl/nC2AlIeOQYuSj67mAdXr7OL4mwyKDB3H5SIyGwbbH7Ldaq4SVfrLQ87zlVmfcQJB7AUhAiA/sDrY0yNjVFUvJL0f472ijuQHQD062ju1ZFEvD1e6Ltg+H1wjDjvyB9/IC12aEKmPLWF2akIUGv25kbqpK+IIBUvQ7qHMM7qZM+08gDJWtHZPkSRtGUhfKjFIzWTzWIfrfNi7sBd2McYAKAEZh1i7ycHXn/IgS05yAxuX0rBUENOvMTNnklLEFXBK392KLkXhO5X0oX0Z9JzYIAd+AL6soyOht3DX3WMAA0f8tXvc+AyrumfdMa8o+fwI7TgQyymDb0KX/JlvR32wCLiRRY2eYc/7MADT13Oc3EfUukK/FNSI23hAYuINWXcm7tOznnpwAMf5JoznX8fb8BJB/YHvZT0f8QyjtFx7pjbfwd1KjrIqzjhwdedHNjjBYoxeLO5LiWnrXoD6bvGgaetvZR66RyEWlGo/VVg/WO43HRvHpwcou3V4yG+n5GLdAHsdtItbt+QzMsoXGzETkpjwMcxzLoKslPInQ9guA868GKutbKFdSxyE6/kqKRLyNELxDPTdl7yLN9IX6M2vSdd/CFiu0q6lt6gUXWDs4hUf+LAfTC+9gdFo/f7HFhRdyoIkoFqfiocL+jo2WfMQBttO6ra9C/gKg4wDWdwJx90YHepThzYO6hoUJQ07IcoeGqgrSfjJjtcRKo/cWCrA/sQBJhmdtfMgcMEs0vQnghbYQACW62k5/WPIsfb/Kd88aX0RvotRdl0Cz8iNVTxmdMkzIqyfNqcJaf3XDHlNh0P0GJubjlalpa3eRb024EKKBtlK9795m5Bi0OIJb8IlnSH6nojPY/B0Ym/fMMrVLyEjzj0MI//BQF5jJhvZkfR81BYvXWrTtCHeDXVARdR2N20zw9caqp6LhlHeSDatdI15yi8hpDqiWHfSh9hYjvaBS25eAQq+LARW4JZJLtOOVc2F0/8I73WssCSBOrMYOrag2e7eZMs+6iJ5sdICAppRIG81iS6y3N/ZXPxRIeTzN1TCs8XdC4uKeTNiFVB6bif7PzbmS2O6Gis24duy9MZ/XwOqAt03lOOnkkvJP2f5kJSN8TfS7+S/rH0v3Bg8MDKnthZS54aeZI+9slaC/+xM1iX3HFnZ1IZZ32MmFqPBWieKTw04G8+xnLvgvMySJ1gwC7WcVqp93Dhjodu0AxRfplQd6BpwhSyx/g3ceDzYPrG4D4LGJwtWEjE1ld84kTNvpIO0rX0BeLJFXobN1Ne40v7uQMrHNim3z1JUorHSY9V/ORTB97HD1dx5fyxPVGyjYSVH9FGJi1ieY0+rb4y+5sOnFHG3ym/x4GL+Nc+NAsDLmoy3qIrr4wjzjJE1QnDnP39+G5N9pFPG/6pj9dd7ykF67D2BWpF/VehMXSfb/KE30j/QvorqtsywvAYyhhTYgIj9lF3V9yZOcIO/U2PMYmlX+NCAzlhz/vqtqHWbTH343yoZKAC3kpvwvNNTfh/W5xwQs8Vr040Am4g7Sss5oRrsvI17WZ80iXtAY4HYGI9d+AxuKNjBIua8OfIOJGar0Byj5woduTlYBvpE2irmqbYG+kzUr1pxj7I2jYOcv6gm53kDa9AOV+Q/BqRNLgkrSKMGjE5vzXoA+xXQ7Dgvqap8SW5rqfAWJPEfsCB+3kaHOYO3M8/K41qINJ1AYJtVCWrVwaAFr9oFaShxCK6vP18xKzkf0cQ0xi+ZjVGhQ7gsr6Y4yH/6pG0+xfSn6NRqqXnYc5uuE95YU1He4oEU5di6m1MhckjrzZr4u3EwtZ2jPf5CGoniKl1uceQUyy35H+tJSjovtZ0SjMYFniPhTbT5txC97s4nbDdizAB8xTW4xnuZMlzJAAUxBiflPqM0+ezO3rETvd8esXNN9zqQHNiJz3jznsOEOv43AooOcKSfsN85BvoyCWSP4tRzUumvMhVQR3HAo6hVNL3u6/msHJqL0yHE3iYYiowd7RVqmBnTrh8hUO0UZAW5K8iwHofMaaI+GEcn2I932f9xP6d0xRC9sO8wFjEy7jWcaC4n8V1iH1qRO9mDrcNzO3774CFVqe4onAtP8UwfTbXlY1c4k56xnmB78BeTXB1ZRixK0L35VzPbwJVeOccilP93QG+FbBjhDy+jJ5kEfnoGMDI7LKxYDYnKyCOS70OGVDHGSMveJaWPH4Z/JSxWhsRO6ULQ5ysWfIpLUixRse4ig7kiFse4kDenvcBP4sw8UCffGqETuz4iwDoA6ltIrzO6JAfKA++ArFUhMuR0JwLbqMXxm3x5xD9rCIs56kDKxx+MtBjSG7qCLX7+Un+SfZ388V3NVlGLu7nVbIjo03FifjEgTPQ1OFCw1x6ofDM3TwNLNhN58cE0NmQEtfsAZkGkFkkuGPYggwfojqtY5Vci+r35qW6FRSP0gvpUfqt9I6ctpS+DS2ON89TPEeGOu1sHi9wUJz+e07gdAY+YlLJxRrsngViK8BDPkrApcMDu76LYGnOuA5LKrhggQ4kpXkFMoAxTMG9Mw+VOBa43vXGV5Q4e46tqXDgRRytUhGJD9G/WyC0qqMnOsnEK1Q0U759ztY+hFWV88k8Ie9+T5R8xpJWAVLbJ9C5iEsZbWUX1j//lIRORZrnwlywrjFTh2MP9tp1qxjjcErsiPtH/MG6RWMQzb10CDyd5VbJTVYBJx0sHK2MekdQoQnGRbx0sOXHzPTYb/uwEwspbkPjbu9rI/r088M9LIwe4rCkor7AJDM999JbcOdb6TdEuYEUMK20EZukb9klVwob6Vz6RHqJUOWAItlLu4oGxl46k16CPheRSpxPGyLhijXb8k3XDtPmP4+R92Qu3semjdFkzy5Oh6hyNzfJIUK9ZVwONj6iwFZW0+XeUf+uQQ4enluSgA4MYJehnLeAaIFVvo0IWvLa0zWftef+txiUMd+V1Ep/jkx0GUq/pHKN+0fi/GSnd5ECXBUqfHcM8x8xbXPDNSs2RKvyEQTZh4eN8xxnyqLi0Q7BYSXd1rNoTkHj3JvryLOZIhM6C7+pwr38UIcPPan3ccX7AHxxp9QRf3H5f3KfJljS17ccwNDCLFlT5l7m7/za69WjkXopXcFcjliYYYdioRWYxrNM+WALcNghjqgTjEMJK3xGpK25jmm/94A/X6qKqRuneFc2RfxdoWGv4+j4PXnnjsfxcu9JwbbRgaTgR3Ze8JySw2aLK9qBj9T3FSSxieohzgF0UXEI9cI6nvpGek+LcuTEkhUt3y1pyKpcU5NTO+/PpRscuI4Haef+mVl4WvN9QJExNn34HgeuohzyIJnV965rD9H6KOe7VkRwdHLvw+j90akhG+aOUcavN1HIpaDixIGHiOOmWc24GAS6q+VSsKIvWTxxYOF+LdGnDJdpwqG68OQdMc6CrWPk6O+o0lU4ZBGy+kJ6ES/1UkAWxT75a7rCPuKrIKmWVKsFUaDi/OY6tuEQBmQUuw5efKSENYc/+Z75tGPA0POgRJIbccE0knluGVAqorG+R0Wd6bePhTIeOoSI0lX1IVD4I8eMWCi3ipbcguDVE+CndHrNIMImTuudvn8tCd39pBubmMOHOD/oHpajgLb6iXQh/ZV0TaA8C9PxkEH1JDrX9O+9hidV7/c5sA1xEXt0Hx/XhnErAsoY/zuEVVSs8IAV9eCOQrqVCqqLEwfO7u+Jg51kL1eDZwFhm2j6GpiUT261DPvJT7HLuGawKjmHewwuEh1k8bYIQmUKGYf6Zl4XuBa+wxwaJKp1nHDaIRQXt7bjIlbNTenmN+TxhlbHDSnDmN8edildcafT2l/yrNMabGK0sUA41oRiyxXux3MqxDHGHX/Tin0INftAKvZaL2TmHed6n9ox0LDN2Y0+8ssW2mgRZ2yPwUTuY45gSahzBXouSXrBsUgN7ivpDIC74A1030hvWeqOTfEwpVP8OD+Z1NR+CZo/xPFiSeiekJ5PG0h1rPkm9HQF4jgXns6eJ70iX9bYtwgJ23reBBrjltxqKuZl4QkkKyKZ+hPtZC4krB09zkkAcfbidIVF0FgFxadCO1RiV6ZNWv7SoGi9iFXt4T09IeYKwZRLLUqoBCgD8W2aCJrE8iX8fxeO5wkcYbUK2dsQ0awmC7cctOwQ5OZYS4hOqsKH1t3in4v4r91vHQr3MSBExtUTurQndbaU8hVP18wtybWyDcXx3L3TEry1j8GFMfJFy6usVuHAHfTzQ4xp1fCUE+yxw59Jz6WPoyQaovN1x1NskBS/4VQgO/ADhPQ6phLNMdjIFLtwpAAoYg2NIIvvd2BfpMJAJ0u9RgRv5zRzXEZpVIR/mnLKJpF/vYj7dy5z3HSI0fc4cJKw3nEvbze/stgdEy2P845VHbcqws0h1raIj3PToKL9uo4WUBvv3ewDbQ+Y7ndrvg+LHOKmd7jZlfRjqoc896Sd48smfl1xuzvMyPMHkyc8AB8d0Y/EoTZY3jXXeRtkjrmINtzVaWQMIrwKO8heQxKEmRbckDO+ORJcxpBnZSdrQwzqWJ9DvCnGVccuDvtbhH2M9Jt32M0ZWcsnAVVxfNdLjo+aPPOOh71jF86kM+mtdC29nwZFI4f0pEcr+86IvwpAoTiotgukqzDWYu7AiXTGsHtFG3iB5ZzQ1W4/26PKoDFr2molKHaIqDSE1Hg/z8AmVxx2c9+NngVtcMT/J1FwNi4mQLGa33YP0yBupozPErbnFJUciXvM5j9LmAaFsK8Pk/OfFtPq698QS8u5XO0b6Y0k6WfSC2b+dthyjwzXkeGWv2xpBU/zP7+Ot67sAX8KBJkWcSn9FV3Qaec3uH6PUfvAtcno1oitF1GYdBz77kd3xH6BesWJaSpIH3j2sxCWFOh9ThbSe57Ex4FsuAiclzF8O5epDPEWuT0TBx1pdMGirbmykNBcQoGV0xRKlAQ9hj+Joa+lr+JqO8z2gdO4Rcx/BC6fh3D5GAxdRiwb7Bg8zokHO3WuORF8qos+Bp3XQAU3Eyx7OOGS7Xlun4wQfNZbLfjjH7MkaiRC+A6HOYoo44ZTSuFENAYjWQaiLSMaNcEAKpLhANTpA1e4m+2nW4Q0YGSq9Zb8XgYJmL3llaSvwn/8l5Gh9lH6ufSSrPEYWe8Y0N4xYReqtpYm6gEgPzyJTg6SGbu6eYI4IfxN8VasThUnw9uO+7kDj7FhuWcl+W4AvpsjKwMCZsQewPSumUqeZSvdEmLayMIDYOuR0LaIxq8LnV0wPiUczXOOqZ7W4TUZf0oWF4iZLuh5Td419exuiMINXf2RlsImXvVVQAN1JEqnLffXLLxRVCAnuDm/LPZYQniPLGwHdrfwtwRc1VTnLkxNNldxS0fkoCYqrPdSOPAQ4SZDzBi7eUJF2d524fNjSF8KElgT92NbKsOBjQ329CIbPjFTtkLatCTiHFDsbAncTQQXb0Qt6ExTE36wO97H8HekP5KexWvTn2Zgo5kdZmeVyV9i2fu5wG2IPXa57LzkaX/PQOyC1R8jTHrkq4/BkBaLz0J8ZBHdmnHjc8kZHW1oCUb4h2WU1GWYRRtWVUBo3MYebGM6c6o3Lng1o+UHHcXxDbC4Zg0PpNxtZJufgjUOFBiTc15JBSVNSQv8QXorLaRLRPF7+MkLAuU6wuIBaU2ivS7Qc7J53TxEap6B+1jwDaBmLX0k3UWH2y5xxCRMFa9CaVPhMG5ClTF2PcBtbuKIMgOE6TaORDpFoWUH9pPaA7t4QDc9Lgi4Y5DNA/trRJYO3JDefHZxhx/1T6JGHelwDP5gGa8eaKKiK+t/GFCgJBRMhnAtvZPE2pwh3nMZ5aKph346AqA9jHBB//Y9PlSCq8ZgzEWJd4s5NNTw93FM52p+2loLpDbPVZEKr8LW+tCXXdFqdyUwSU0+5gqOjR1BeMl1qsgFCsmyCfUjkhLzx0fQgg8TclOtjXN6OiRz26hk30u7UOZPFvRHtOWT5enjba1uTe1CnTj98B5Lb8FFDf0qtyX2wIMlRtoA4ss58PiB5Ouy0eNxghZ4QVQTuN8jhonFHTCSsi0I0tnsFU+34QDsIjKDoYKvPM5vvgnWSQE83rBZi3AXB5tdnEe8iErcQc78STHvLdShLLc3p5SgAdneQW54CxZswRhbo//hCbyoQFQ3ZOcL6LHpv26FDZEHTbK2iI0m2PeWd6PsQAPCxzR/YIXzVDjqPnj75FAOEWatUjgxqewRODv44ua8xXjBmn+q2ZJHHDjLI4OqfZS5K5xnS0ntbnDKfJ86sKP9jgJ6R5UyJdMX0rMQcP+Cd7qOkQdbzLdikScI8UhlfxFd00s6ugfeuL4IUnOLrSxDPbgKVcM4h6Tf58AiGdiBJwR1Id3A+7hpVfH3Ony1YMXKSG19zGtZ/lFAcq3nDjwG3Bz/OgcW91yyDi5tD5Ga66A1re9vo9BSBNaBW93jVkbhVdyebfjII2zDgRewMm7X9xEi9a/mZY0X7oCK/1x6xisfe8rNISKx+759vKRtTY66lK6lX8+HKWoM3ft34F8fY+9N67oq6lgau/0hcmkb33+Ydz1OvlbIvEbpnHVp8NKKwuUhul09yLiLFp01mCs24IEDbjpu/hBdGDvwgSu4ep4iZoG4ouNUzmesvKvA59HtGikHP2IvHiCLyjiYcwo9N/GqiT2NqguifkUNk/JVFw+PrO0QwXcI03/qwBVWvsaOCwr6h0iSmqdcG2EN9inDXh3o6+CLakZir4LCyqw7hEtnba2I1wbu7ki0JHYfcLOJzukyoJ+bnkPAwwGbGbAixXbXYZZddEiauVZKHLDsMdAuwFdZ/zpkA6JvVJLjLAJ+K70nUDv/WlwzmcML5t4KhAGP0jOafn0oFQe8vMTwpxA3ZZzPpD+RfiZ9If2WV6Fd4vpvIlS6L6JgAQ3T/ZXuu573eCvpTPq5JOmKBPETiodvpU+D3upicPcIRVDhXtfRvSxZli2f0tCDPcDpmASZ4HtPzH8v3VNjPEpfSFfSa16i/ppoV5DcF0FclIErnkk/I1z/WvoL6chZWAdOLTrS0xrotxtamBkoqIhspJ6uU0gj0nFrQEhFKn+UbqQFTjbJuN9zdn9JBTLASS8JydbHVtCxBfK9koMKXNRvWJYdi1BGBjjwT/uQpJoJsrTySO99JBH3VEQdkrclWLQAV9g1ffpOYtSaQF7TgdlzglnNY56j/BLoy8xJFc2zkmt+1zB7E/pXN36LeFfURaSbApmR+JiSS9+TKXbhRQWXOuclAIkAFuHqbRA3fyT9Lenn0ufSr6U30nXs5bdRl+xD0+x+cjePgUkKGoSN0R+55kSpNVjnE+kdQzuP7JM7rg1GfEOmeyaNYaDLWPFb8uaWOYZL9OUFb21VkLJH6UuGF6e+7lfSlfSZ9In0ihekP5DNt+Cf9zEDMzn2hfSK7fhS+koqpY+Jni35yzOXBfXcGNSezyTaBuFSzXW9mXYT+zZR4z5K78lZ58i4+zhofIP5DXxoxzOuwGz3OOEKXmkLtPXMgb+qUKs+xkkSiuZGPb9tT1u5HitDlrcN8tvQ7sCHFjG54gZWgVmuQx1kQnaLFwgg5M/1KJpFHecEnQPETDnJ8tahbRri2LU1DdEiRlFcOGquU2ula+CLu0gtdvY1webraD/51IUGg6tokf5c+jPpp9KvpT+XvuT08pqjjhVHwnmi1rRYxxM5PyS34PBUcAT3jVTxUrWvpFvpM7DmgW7LQGh/hO0W2aOBOXkvFdKriCMTDThgTJNi+xEfrhkseIFxuNN0g4B0K/1auuCA3Bf00Rd4sm26DjXPhDivJPF0v5LeSOfSK1pIu4BC5zzgZYDLMeas93O61AioCi1d/mIBj9dhNlu01+fSmfQurGjD6QZTj3IBY/a59Jbao5y3EQ4cnHtA7VsARrYsyMClWnCQG/YD6avHaMtYQEufp6LlW5ywAIXVsBFLHmHq9D1C9lZYYxknCYo0M63VHQDWcpQJ2d2xRD1g/Yb73IXge8pe93VN3N5AUu5oBS0iZB0hU934MvMyhDrmQFTxzgs7XTARZVCbzQkXJr+Q/kvpP5Q+kb6U/pX0TzhZ3v36Fdf3yI37vX2QLGasbFaG3V0gp8mDByLKOazEjvP7xNPtiRNWLVuofyCRvSAXbxmKHgOCK3oAA+BpsrLnnABkRixt5Ez6sfQxcfsxvMdzp+5FuRG15h0lE8p/oK+4ZwzY5IO1YAn+TAWYqazi70nxOlsp0E5FonzgQIkCsN6gxp5abjeEAUVq8z24UhoJvevoVCt46EWgYVNIzrOCV2lYuioYwFRWdGH2ezZxz8o7/Kc8rWAjlnB/fcwg1nPXH6OGWZGOFnziAbRtfZZX3mBjTcD7LlQ6RGzn8zDLeOf2AybrJkXHijuS7HGqBStbgRqtMDTfbNa9DDf7Q+m/kP4j6RPpC+l/kv6RVIcIaQ3aKONdcU8d2EJVwyOTjgaI09deupaeM8JZc28P0huu7EbAPkbtizg2xQHuBSd7vMeN7cAVy2XWc8FanVOb7lnVJRhxAb78VPpUeuBMBQMYz9ga6VrXN4GZdwwODtJ9dAk+6MBuZ7hjYgfWPM/6K9fWX3UkgCkUPlLwNKCRR7ocNS2/IgSu2RVRpPUNR5Q0wVWV+LAlHy7hekCjeU+HGM0VEUVoZQ01c5j1COexjCjcx725kWvcsotCtg9tz5G5H0sYVrEX5rDswM6XU0ZZgUi/O8ZhEQ2Ix5AUa664F53CIVZ2yhhLLOCRVpawzhUHYl2DpBXMuRmz6fp/JP2X0v9K+kj6jfSPpP93nCJbRTOrAkz8gAO7TzFEkh/5RZN8D2D3tImD9CZ08cdAXR5oWGGOllu9lvbSO+kd6HYkS5vIXEZ/tAsHnqrq6VfOgpua+j4/k66IsIItFHHHXPg+5kaX0p/RS74MfnogAy9CLVOGjmKMG7agzVWv/VZzsiHdexm5bhtDbXbsCZ154PIi2lVLfGYdUbjAGjsWxw62jzKsmWdmV6VuHXpqtgYAVvHIroNX1JMGAiNWkYHVice56gwBRI8eqY/Yp2hiZEFS4mVObC7Ti1hzjz5MMKSpn8GobWDp9nGwSkmeveE0yIFirYrlGSHzmmiC91H+XMJWTDMRz4F63wbJPX3ic+k/lv5DONQRHf4zVvcbopw3v5uPhUzrtAOTHfnXMbRj2QBbRFjyaPsSbL3nsg9xgFoLJ7KMPlNJEfJInWt8kg2PnuXKzXdvcOCJbmNjl7R5rjmRrJc+gvJfcVzDjfQtL1JZhkN00iuqzr+IyYVb8NU1WMLc8wkgdp1rNFKEAfq/fdiM2791jGZ1yNBWAERj6wU1gCucPX3+MsLSMXKleMCG+19Tp61iSNSW7NhgDJDmOsRT9HOqq+XO3/NBmXBSCekItCA6io/zonWhvPPqVfBIdcyfH2GmL6BKDsy3P5NeTxTHM4x4Q/7exvE7SyLJuxhBeAw4aGx6RlhYRrwa+d+raHheSM+pX99CT9iyl9Lfkf42Af8raQ3jUxALVtF5+z4H3n/Igd0yHWNjChLTZegJCwrZ49yBWwZFSuiYLlLAJpD3+/mL5pt4q4vIAmME4SVFyBEJqJmGBUbzTvoGs/6Eka0lpfYDoucb7KZndvgj6ZV0I/2a7usVtNeS4mQVqcS4JUFtwtmTLHyCoUtUABvcr4vA90LaoL99RHQ6YLslYeKApeWWjXHiTBcf6iS1iPzRBm6u5+y423zV3If7qJtTB1LAZBck8QWOZx9eRpgwHdbF+vS0nPb0yCoAdxO6/yMoyw51Ga9CmKqjS3oU34nfF2TgJaSda6ApeNwh6KlB2CYFFfm24oIVBfuUJ19JQkc5OfAaQ885Skkb6T+Q/i7/+7X0HKJXUgMbvYq6+YMO/AgoOEJQjEFGLkIf0oYRj9ELmLSfBy57H2eMHMi3m+AxztnULaLRXehszKAXlAEuW+2lvuEyTqGewNELXi73NR3ZM3Rj0+68iYLykd8apY+kc+n3CM1fMYlyJt2Rke4BfyMgy3GtjBaEaaUTUt9fY7i9R72KmJY7cLD8Oiq8Mo5CWPBbI75qFF4EiD+b30Mfu/A8XnTSUdOLALrmBL0iyGbNJR9V9PXbcPJDHJNyMg2nIAkWMTrnqtc6RQH6z8Ad7p+6PewVE/2NC2RwBmhTVjuvFzFS6P57GYdK1fzeI2StCxlFCluQDtbEakvNW1brQnom/R3pT6Wt9Ln0T6VfxkmmU+H8UjpH7/FM+j3pZ9KP2OdfceSrpRp92JFX6xFn2nHZMWCZpY8j+oESlsGzVSO0yxDS5CQCa9b+gfQxSF/y9oN9bOYyzumyiMZ7bg7FLdxCeh/3NlEb33IG32vpD6RPpVG6lb6VvpB+KX0p/YbE/Vp6KTV0sF+S9foQlHes/GR3S5bOi1PG3Msu6riC5SrmSXkMiz5pAlTReOvjtyaHvgac+NSRMliFgu76Ywyhmu5YMnaxDmopI6Wztp9F0aMu5xDCWfsh3vJmAUbPxFoR7MGSjsE6Li7CwDYKtpYwsEO5YNxSRm+pJVV2YLxnvFL6AdrxisNtfjcMe8DKLbWsic/uKJU4j+OSfX5PK28dyDUfpiBh/S3pT6XmiQMXAOjXdPknaeInvOZ2ip/f0OWrg1556sDbcOBECzZQFzcjA6RN/FgNyXIIfaMBUwGIb4JQnG7gN9J7XqndxayrR8S6UGMeg7AcgbMTjL4lvix5J+rX4IGPiWiSHqSvpC94AeHX0i18kCHXBn8+Ay/toovhDVry92Mc2Gyjd2MuqUDX6Ao2sIyg4FZOw+mbmrv9jvr7msUsQiq5g265DUJiCFy3jRuw1uoYx7NaEbCMSbk+wpAdewwYeZzPEJhptsrFrTSPBm2pFjKWVYFkDNyHOIPBi1ZHE60PHdg5jNF5vHem5BUcKyGcV5wsasCRTLsYvmhhbNxq6bFCAdXdFm2k+8gza+m19KfSn0rn0m+eZOApqr2SzqV3BLzPpJfEhY30JdV9QeH4QQe+DVFKG6DgEPhpINw2JK6BxxyJAntg920Y3wjn30Srb9qDv5DeIQU5cM8bHLjBARr6R+5cKsQ6fbycYCNdMZ/1pbSXPpN+Lv2Ux3yHUu2N9Jag8IpB4DcMEX4S7OlASWeuusGBrTEyFF4EOd3Nqx3TPvk1Rjg2E1wHBEyOyN1ZF7tuRwrBqWLQwaBmIC5sCPTZP3JX2MXAKhR4x6B5uidlmAvfaU/Pgn4u4+DnPo5zGqQ30Sc2jGoBtlmNTIt8OY8+NWZwEf2ECT2/lF5Sl74HWE9di4v663jxxyLEwRdzhfkDhfdDcOIV5l9ET6+lsuhYkl1A0pfSvyf9x9Kj9BfSrfQF4wzDHM0UoKjn0kr6eRxy33BZoSBT4LYiDt0ygZWF2BFC1Js88mbEETnogVi3jVMUjLO7wEaWqG6lb6R33PmKx9+zPhWwtcUq6/CVHUY9hhJ9xyFXa7jtj6XX0nPpVvq19A03LOmt9K/x13f0VDti4QvpmfQZv/tXANae1d7SYDeToGDHV/jBib+W8c1hLlnuyeN9iBAKbriFzflGKqSXka0sK+oJw6Zmd5FGrIp2w6ljU4SfuadquNhFMjW6sLrG7f13vMHWqMCsdhGw8xxMZVJ1pEo1b73FijqWy6RK5vFllMNufaxpv6ywwAlVXzn/fh7N1UUgCQ8I1XCxN9JtzLT2RJ4xXizQBW0xgEX2FBCD9Fz6U+k/kjZzBy4CLy7gCFbShfQpLdA1VM63ZOfkBU4c2DjeI7QjLa02dtHt4ktkIYsw0C0/vEeu6XxRc1SCP33STP+S/GIt7OTA56EwtleMc2wgTMSk257KZMovD9Ir0vEbXpExhddz3j33huVaxlz+rXQtPYPPuoEIe8SMRppul6EuKuJWG3azD0iW8KwI1JgOXIRyaEDuYiX9XvoGDWQTUE0Ui3c0Yy3/FcD6Hlb4CEMzhch38ap2MytD9AqMVqsnD+KfeQMFWcznQkQMWuB4RgubIDZa/tuFhfhzizhteYXVLbBG+9eELi5pIVXSNR965iO5/jVBq5ofJvRjlrsK3nvH6hyjCd7xbAMOXIcR3PFK0xtww59I/7F0Jr0OB7ZKyfyDh7Q+lgrizZl0xhldjosfdGARws3VC3sawgp7tm0JoMjRwHtC6R7dkjnjRZBdBWrX30p/TpK3sPHIThhs9cGflBGVx6jtjMDcZNnjhFPr9630G+ktJc1PMeV7jsCbzO5bptAmO/hYesE7WXpeYO4BqyYOaFU0U0rMK9GzG4WZgRXHNfWRakpct8TrBtbf5dAuRI4Fj+88WYXXGZcXJKUluPMNb0YuYqTDj3MgFm9Bosu5utYs1iMX8QSkBa0i2lrAMwCUHzn+pUV8Zi3kGGdlGQuY8VtED3sI276gKF3FPIdcv9W/xISbiFej9Co0ygW5Erix7gAAgABJREFU5nGuZFnCSoxM0hbBDhTzLv8eDusVEzgveR+8F6+ACziye1tA+YiBuy99nEN8W1AZshrhRoY+C5408+AeZ6pB58dQ0w3BLh3ZuiFkrJYy3sH7LkkfqQh3Kz9FiS4ShTlbe30Oa/Ot1PE+mo+lTvpn0pfSjbSUPpKupFr6Gur9IRbhJ0wE/JW0ln4PemFLL7CdI/jVfDGHWMAqCht3Tau4/yFOc1rHWURm/YqAmKbw74Oxsim6c/me6aOG3FTE+MM11lLHCTBtjL1VEJHL6PqM0e/1kzp1DoE0yogcF9ICPsfJcRk9tkWot7IgPOktW9Fm7qyOgDTVqPcgjUXo9RbE1zNOY2rEEL/Ny5D0FbtSAnSuGZzw4ppfHMPBjqFuGQgBHazQ5MCvpQpatI4FFfE55VBCIlIFpDjG9KWh2xjpwJTHIgB0GQdIG/1L2nI+/DKOlHZzx1boiZEST96HbHpkOMDb9kBtsKaI3ICh+/AHi+5Lku8DTcgJNNuBLxhD+sf0qp5JP5FeSs/BxFsuMtVMn+LAvwwHviD470IQtucp0oHHsOAjNzmGXXrBvQumH8rY0yGWUTjMiAPv42THcm73HuBtWPMROU1DNfwgLaRrjP6OPWpiCCNVWUf+1Pi8k0cXszjuVFgKso4TvheB9YeIcWa1uiDyDDZKdn+YL5qiK2IpfB18WROUeRORSP8iztlfBkP+TVDcDdd9iKGBOiZfSpa4DgQsJAH3AIsJAbySXkml9CJeOFZG3j4E6dSHqL/iJs+jmzCEGY1zXzXz56ddBEtQxiJ6FNcOdgwEMYYDm7ITQNDixyNvCRt48eljaN59JyVW4mLaALGiNtqi0y9Qqm0Z3Xgl7aV/KH3J/N9PpBfSn0p30m+kgRcrPsCVTWb3ubSSfsoocTevRAsq4OeRDAs2oorZAgWw6gPapN5jiZ7UIg0DpSYgtXhAM4HmLXNapyOp2mc62Ko+jsV6ZHduIxy4Z1fioraWCkZ5wS1ZzmEwbe65Az9ueShDiS6Aqn/L3aKMdGMwfua/x/mSlsGgL4JPUgyd9Sbf6q+ij2cerpd+HXFpiafuEI+cUVS3xAq3AbswSUUf/4gaYclqrQAlZazTOR/nymJi775lD99RRrlhm/VsLlUb6cOpuYiz48UiGXYvYfAnyunyCUB04aNoGpkxnfRl2yDsu3hntVv8xzgZaEXuO48Et6R/sGautZeeST+ipP1CammtnUmS/pxTQ39G0/gVJVUtPUi/kt6GoudncF6PhGQbo1VRfaRUi/3MTFujVwVQaYJua+K32oijDSnVGqslL9a0yVXYZAcTv2D1mhh+uY23P+3iJXrryL9CuGs3fcDvl4TJdcTgbcivF9zhJWmtpKBexkuvMzYX4VAGxyUFwDL0oqsoFYwTHpHC3pO1zhgPVsSA0gOIn/NhRsMTffPbuK0Fi/iI3G6Iei6ve4yDXbwiPVzGiinnIhzYYq8p19fchmH65DM31Ge3IRdTnAKY3Y0q/u5H6yMpGyEI1zWdYZRcRxWVDjx9/xDdRVH8TbLGO+kG3+jmuuoaafKRRTvDqc4JTGW8dmQaArijIP6Uqe7PpU76sfQj9C1/waGhV1IjPYOzvJIq6Y7zBKdK7kr6CUemHDAdk7XpwH38vYqk6TapMY/iAXM4wKC5D5HhIqrAJbKwxOImcZ1UaloBZYxjez7vGHOr45P6cmAfe9L9I82pTShyixjg24UiytG/ixBWcQM5q2tA2PGXA3y5kbfm0x5jMBADGvr7OIL0DHsY+Lglq1RJ+pdk0T7AdUmp7nbMinKkJ6wu+eYU9t7NaaJ1WOqEoe9CulTQzbngt7zHS/5u3mmysBsC2E0wmjaRdGCDfheaikbGItbRuGQfCLsJmctr4m46cMkQWxuYrMWOXyOruKPBdM72rLlDi59qVuAS8fEtqK4hIix45AvpNeTx5MCfST9C9fuPpV+i9PS4zYaZtpawskDu9zw0Ko5EbnnYaRUoxuWvsdU4xzJmchaxoQoEVCO2XhCXyxj42oVZ2/+d8dbBTNrqvPi5R2PcpCIlmr0wCivjFx2Mhrk8znxjhYUcIu7v+K1loIll4Me30ZHw1yKAjFORIXgXQqMN9LODQhf71dRbLuOLdXB73ro1H3gkX1xCJIl++pYk+4iIxqVHDmo2LMnIy+YXLGcdzRi3Lgbag99SPt/Nzz04husUEc2cIKy0zFygUBTU0bdchcR9ja6gjM036vLu1RDMk+1/Rbf8MNe3vCKfmjSo42bcIG3BfztIYpEcz6UNr1UfpR9JfyKdkUOvpD/hNGsPyZQoTo8I8O4pga7gE1e0kUYcpYgZx4FQfeSGzUsUAeYMeRv+7MIkPZJgMrgkEBYYksU2Zl360KnvqSjsiw88kTXl5k+Nay1h82k3LQDyHsO4iDKjD5X8XYzvT7l7HQqTAYu1lmNBft/BPx6J3x0/U+KOLeeAOd0ZSbcUYI8g7KmQe8S/zOJN0f13x60qMnTLuFFFHVYFqtiEK2ZD5BgNzyO9tf18zG4B0CkB0FYjjSiWDnFOsEcEBgD0PWVxH1HRYdZQpnyCbEbwUCq9yihrxM8cuduzYOXN011Iz9CRmt8ZoVQepLfS27ltLaU/4Xl7nsvDIgaprtrX8faNdOAz6V9j4p9If1t6Ea2cz3jzqqmxPnRLW6qrKaZMaoQLFHIdW3ziwL7/Q/Qc3KZwQzi3oEKgZhxVBItk/LbnOxNCeDYfBzKz4ojcxixTgbhiiBp0S6pYY2Di5qcF6bjtMQzjLN7aVbCP7VxAVtCA7Tl1zQnANY+pyS3RYRKQ3VHOGtbXqBKceevwQYfaHYnznIKtDz/yvugv8czjXATnWY8azkoElTN0vefohEZ+3uT0OVl/HccdbSKECzBdcytd1N8mVTpsrqSOuY+OeRVBugi3LIgsTrbWSSeNar6wj1Ba8RRnVJNlpN89+vGz2IMCV7lFvvMtEvgB+/hpxPKaQ9SLYFXruQMX8DbCqaYl/Ut6HB9Lf0ynb0Lea+kXdI5b2JgpPh7iO1ZmH0kdj8GLj4FKTLUuo2hRiPq9khk3JxvdEUONxYeQYRXhrquYe+9jLwaUYZPDPIay7YjnjFzcq9cHVTgACsqgE5Pq7OPggEOUrQZrjg7rCG1DcJ4u3M+DBE4dsflM6wCmTP5tOLDmWk5jkAEHPsMmD3jydxqP+kWUmQci2CPX62OsqmXlhmAHzufR3jluDJqmk95IpXQFn3JEKmBF0hrN7o8j3Wuu6Gj4/ji39BF0ZUWYoKJ8DwYJ+yjHBrbonAiUqHfFYh9YjQEh2MiRuBPF8AKNxFuAl8Vfd8QbE7RLKpqKFT6GAHWC44/BRUyR9kzaS7+VvpB+T/oDptlatu9n0k848/eawvaGFeukF9IL6YozfnaQgwfM6oyDPi4AAI9YdxdzK0VQOUXgv8kwzpieNQvmLLkBFA4I+F1Qd1FBNTAkA0+3Ir3e0OVahgSgnuPpIoKfsM89/GnN5rqp8jzES6bwDnHkcR1DjVMwfgYwWHCig/uIj9IXbP0IU7GjVuxiZG5JPD6nTrtFRr9lcN+JaMrXZi1ek4I7gQkWcfjmFlTtRvMjAXMgmlXwWWadi3ng8s9Md/wtDvwK/N0Fty0qg1H6jPvpIkG3sTELOk33EX7NWHchJLUDp46qIzZaZ7zBOe/4xAPU0jkF8TnRZKLtrjmbb4BFfpTeS2+QmBZc+Q7m7l8yQPJzxjIUZJYVDlNj4gajX8CtXuDAt9S+C86unR7nI5isib2w1MFV7wvGq99TohVxjIFlBnu6LXtaLSPEbR8TdQO73FL87aLo3DM+ZCp6yuCPkjDQB9LWFb1IxzgPj/kspC6Y8uk+jRgX5NZdvPjaJfgaA7aafw/7YoKpIXwYdRzI72aUe4zKuaoFPLS8sMBo+y2J/pa57IE4eEfMspuI9HkLmn3gPIYd0HzFCt9htDbg74Q+ok4qeUgXZ/382J67QGN7qIM2iP1Ji3dBWlvTkCqll3C6HSfdOm8veSHvMx5sSae5iveKW9d2jgW85HMbYqq5vXX0pBXqjiXhZg+kPmObXVIveXvFxN6fc1fP43UFG8D9hnLnBrv5fbz9DklQgRVOMOQ8Djtzl60jLuziU26wjwmafyH9VPrDOHNrcuDf59ctLZwkzu8xa7dLbrGVCuBYBRzoIcX3cVZCTzY2pdaG5RUEWde7u2BgzPh2XOQBBxbn953hHkMUPHuwfoP176N7uI+ZyI4t66JH+RhOYonIEe5hjQU6Em2i8t7HcdoJ9/ZRiXXUpi2BaUOH3jTdfXSgPMFgpF6xBQ0Zu5BeEdAfUNUPqG7eSJ/zHufvFJT1ZZT61oY00kuWcIgyswd13RGvPHR1F2zlMpzplh+ooITOyCZjvBztSvpYWjHBbxn8gnT8HD3oAeB1gB0fo1K+JyYvQLr7YC4MnQ8UAx3y2U2gsQN17hjFSAH54nGRW+kF7wjbSl9Lv5V+I0l6DRReSD9ipsDNUjeuFJRKGTqsCsR2xil1FazTT2nhOhTVmE8fwqID42v3vDbvBa8BN9czUKDdhfOdw3K0oS4opVdP9P/lXBNYRoQ4UA+WFHemIFqstQmBpZtVFXfldUi23uxBjdns8a0CVuHrOJtBc13bmh1ZhszqHRtaz6cnzgJPd5H618Q8s5OuEyZ6+2vS2uQUn0tHDrcweTzAbCxDY/ONJE5q3VNu76RbCMEHejsVPngtOBrn8p4Fugz02cT8SU+G9Wcf4xiKRThwCSDYx2vLzmBwt/z8iir9lbSQXqPrGOYO/AoMdMAJdz/owFV0rdOBi6BFuoD4C+B4SRA+f+LAI/c8gbb3ONiRDfhc+lIa0XZXHPmVFmMHrjk08YMObE2I8dPkwH9I2ST0IYsgXysuu8PZ7tF7vYpw8xATyndBS5f0pG6i+TVFvcvoD5s0PHHgKhy4eqLiMMV+FmcTl9S4zrwnjZUab7wIqW1PCj6CyJ3FfiO9j/26CZLIxJylClWo/Zq5tvgQDtwGD1RFRt7xd8Vrho7St+zgPZLBC6iUY5iBiBrCbluy9iMOdS+95Vbv5tLlCVx99/tDYLjpjq9iCKyCnpxW+Ri1Uc06Wie6xK+W/PA+ZCtnzEVZrLOM2YpL3jVfEd4W6GM+YYlbVn+PwY00/x4AAguqnCI6ESasRsTcB8zUDFgTNb0XxJ84sOgrRBHPwJp3VC2mdRv++wod1fjEgddxXM7TDFyDC+wJz6T/PSrIChC/RP9wDAH6AxXRDTD0M+iHPSeEtLSWdoHwLmCpTR5PdnwVeqPjvDKxbKYMB04a2GzugAO7aWIZ1iFycioP3J4v4o2MAzvbY4EFJvc23krTo0sTJeKC5R0x4IfwooIFXIVcwA7coX8qorBs2MoDRcs07lOhkJmc9pxXdBx5ovM57LX0qqI6FTFiikFnc3XFVNLc1X08n9tfdtOWyvQQIsOJzljF69keWYYr3pVtLmDSTK1JRlcQRos5uiqxynKuQLG64zXJ3cMFXWi8Jx/6Oi61pKrdxQEIy2BSHuH8CozXveIpJa05uW9ioA6hfxvY4an8uJX+O+m/kWrpf+YEjGfSj6TPpB9TjpVxRuIAHDdzJJ7LPRhntCVpbiO9APUO2MU02baaS/SPFJuvSHwvKaMm+5oi3BXE8w0qoVXELVPjJR9kbHDk/s/Cn6z8crQrA48u4/VEJp7cmXMYOEaXo2TKa01V0IfUpw6mfwEV0/P6i5ogJ26gJhKUIS5TFCqrec1eB2vRRkjrpHu4Dj9jhV31vMZq4uDeUyha2bch5Pyuixs/+R6QveBujyFVFzf/wNl/31nSEEt5JOycOPCRFNaGP4gHeOAv1g0Pc8lZRU91E21Vx9sCXGgHHtj7yT8/ilbFiEctQm04OfBbhDUFDrydO/AZG3DHiatj1I5TXfJAv3pPSDTv4F0fEWxV0jvpv5f+W2khfS29481cLyBoPLfxScxB9XPq98SBLfAzkhEH0u25GZMBbbByYyCfgcBXSh+jlna/t8B7RxBzHe/xdsf7GEHW+cLC17SHRbykqo3nEpvuydYCP7T9uDfbxaFL7uTXMaJXEsTdlDnDTpZgMBN2DSvs+qfiJ6dLfQQPdeLAWxz4OH810R2l2m3MYRRx2/cxXrMlAm5wRUfkY3AMAnknMVNBG9xjG+/jNe83ANfvBs5MvLnSLcOBm+j+lmTgOiBUT0Nnzf0tAlskPXLFw4xBf3XBOwnTdI0yXe1T7MPiOzehGtoWX5KszsKB3fUuaa0dYYvfUFV01GF11IXPEMTVoehyyCthkUvpUfqn0t9nra6lX3Eq50p6JtXAoPPIUT0W8EEHdiHoCmFq9j2PE1i60Jx42KJnGadA/AI1zyfSJ1JJ6jBIbQCjzqJVOPCRtLOJvDoGM70Im3Hl4NtzBl5Tz5kVdiwuQxoxBjtkhN1xq2mZZbwh0u22aTjymmB0EernDX8vA5GLLr73ZYH7XfMzLSZ0gH8bELR1sAvm73c0RrwvB2KNu1ebGErIO2kpcy10WwErHqgPLTiZOuKr2kHJOLyLSYGK050fCYmXIcZxlXFgadfSa7TRPX8eqXEupSs8zBKVgSh6gHkxenaR0gQ1ZsXIMQ79XZLBN+SsBd0/w4ANvc2eZlpF42eHdXTA08d425TxmTH9FMZeSJJupf9e+q+lL6T/dRxF9TEFw1s0WZfSy0grDgMOCS61FPTwSPC4IZsPcZJgHcxoEdKkmrR7Rd9/Dba74wDxBUNTl7x+pWMg/gJa9BqbNT4xYKtRpZtGqCL8WC7sKmgRb92zZw8Y5hYGYIwBhCLMo2P8bE3AXgZvM4YdjhBefyL9nJrhQK/blxUl3yVZxRstLK0KAfCRMDAJLXbSGzCxomhsuE4RSWOFLbX88ENU8Vuea4xXda6j+3UfgVPAAK/STC164ONd8q7p6ZixKnnCJbdbgUTXZCURYY7cUy094w0Mhn0HIvwB4n0f6TIdeMUnrogOTTjwhHusE9qQHxUYZcPhIz3hayl9S6iysHMEOLbAkm3sq/t4E6ZvpG+lfyr9P6V76X8rvZL+P7RYS3CPRRSfRaodYvs/6MA9NdYENm7oN/bBcQz40jl3foAlnILjc+kF4WwidK4pD5pQw5oL3+LAFdjMonYrq0qyQw/WVLRSS8CiiLYlRc4KAD2wCH5845wyho5L8Nj0l13UmmMQA24sDJAHo/RK+mPpJ+g5j/GWTRFHFrTVrihUvNEuwbug8weIqm+lv0RfZVlpASK1qKvHOFfY0sA/bSMf1EzDmOct4tDDRzb9PW+SHxFJHxRJoI5DrRakXFHZdHj/OsYzq8DpDQ78LI7gEKSEADQvCC0t6rM9mHXq6T8SqFwmFvSYrHko4TKXkW0WcTxpOrBnec453rxFRDHt+ltMpAyL2QdBm1oxc9gVBeUb6V9I/1+pk/6etMKZ97Q2b3in9wahaM2u77/fgb1u4mGvpTPpBbHPGuKBtVWoBc+Ig+cg72c0FN9J78BWlyzLLdHkPo772UZ0a+ekYoEfWmCTadP8R4klVCTwkn+1Dw/gIHedFqHSPRAuC56oAgI4R9krSsL6QLvtx1KJ3z4GvmvJRtMivID2XGEt23DgfTjwGrrpt9LXwOgiRn9EeluF1rDmyPqRDbojXS9ixUoecBl4s0cS+wgaOvgQuPoY7a8qGl/WoVpdNuGD1yzeBksfYAGXnPJyRXl7xANWaJpe0Hw/hseYuXjEupfEoo6IXfF9998UEkr/2Ibvl2EaA8HpgsVex5l+bWCUHZyOS7lvCebrqMpHmpY30j+U/i/SG+l/I/0+qW2UPpX+EMXFlBY/gi4pIo+Yqm+ZF3JrpwEtlSyjK4GROsdM9sBrEfeYzzMkgmJn70lhF/E+4DUQZRJy/Do6DA0FfkH6tjuesEKLsEQ3h6vowRxJKwuCUxY8rpcUxvCApsyyxjsmaFyuFki9p1B3g+1vpD+Q/gPpF2hi70ijY4iRGhDjRVBamXwrug1rbq/j0Y7SNxwQKvD3OmaVK2q5NQbf0d29IR96Ge/ivGNXKQL+TdVaHWzmzvnXCjoDvoKrGBUlRLjEJayUmq54gdTQVWYbgVGkgBd08BdPHLifO7ClQgr2cRlFgDUefRjEOQGwZvXFNTecMTfgEufRgG1jXxdxINjXUk/zxXVeSR5/J/1P0t+XttJ/If1C+megzx9Lf0wefCtdS59Jn6DGLChYv8+BuzgwqsD9xpBldxCuBwDrkosI8m7gmHRf4R7hxy7g3cRY3KEi2vEzbnCYPxoDRtsEC3aznhdqdeyOKdWasmpkv1YeaA3Jh4W7izDlhzgkscFEt+j8Rs4waKRz6efSvy/9AbRKgfMk3baM3uUiuKQBGkuhuBrYjgnFvpN+S5oeo6VVx0t2Sprha/Zxy5CQQhM1kPePkDdjKEkM0rbxK7e8q+l37F0ZLclFEAIFAG7EMuzAVbjKGfDiLI57G6KyXMwz8DjHrAPGN2I3TbzEaM2GrXm2dm4iI9HuAv9ssBXrBM4hc9wauADTuPVYsP0HLPgbGjEr9qDglia1zT+R/m848J9KXxCSz6RXZMWpHfha+pgj1isqng868EAJYfXYHrJ8E2zbkl2sodr2oU69lAb64gteufvAL14TI5b0R6dffAdQOyMmHiMtmHJ0nrQDVzFzlLqrgaczwO1x4Jp37CXDXcaOuPk44sBbLKEn4e9o5FeoTSc7+Zn070u/h8j0SN9w92T26pzXBKwCkRcB4o5zB5445jewUosIZyLeef6mJoFPeGfHofqOVj3Aytm0iCKtp7CpQ2dWuo1Yn6OsszykY72XUeeuuZdPJYFX3MJWnBO4mdPlZ/xiFe2vBSDDGd/NgzGkFGavJpH0Il7cOQaLsQ/rWIbQSQGgxzANRTm2YkncC6ngiQbESs561gqWwLV/IP1T6bX0n0i/J/3P0p8zUPB3pb8tvULm8XPpSvopyLtgA72HbTCdXcQb8aETlvpC+giTr0J35yBxh/fsKWwqJEIljNUyFP6Kpah4YZbrUzel7kNQ6oR7xBKX4DFTtvfRuB6YAhoJWu4AbXiKBYZfA4vbiBzGDzccAe9JtoP0jrn5A0OBz6U/ln4KM9UgATX930VcX7BKVTzvIYRyVQCMbzGAAV1yjeddoFQ5C+mcezgNByy9l66lr2OqqoBmGVDRZANJtKAUJ2cc0CB915VtMKCRP9vIj77WggsdQwrTIEdW8OfmO9YsQUNpciI5TQV2F4/dBee9BuJsWN8xFGN24CJwfzpwT6QwWK+ICyuY0Y6dWMSJEEfpCxx4E5KdiYd+K/130j+TXkn/qfRH0p9L/0x6oPz9Odf8FC3lH0Yn04TrDzjwi8h3EyH9W4ZAjZdaCMeRLCOq2ENsXEeVfD4/pKEIIXKFbG+gWhD70gdDX8ThJPcs2jrq3QN4oJ7XJxX59wByvUTdVUcz3IqIMYLCMc6oP2cRpjT9jrHIFpXbK+kX0o85luQZEw/dE3iwCwcuw4EtbjZVN6XFLb91SYVjXUAVc2vnQIJbOLKl9GPpgSbA+0hRY0ghjCucaUbuucZop8+dYNJ3H1YCEe6jorJKRvFCOP9wHdMfQ2CpMuzyiC7SYHeDzyxAyQtutIhsqXi8JfLoBbm9h0Uf4RddIq+5iMOkt8Hll/j7iuVYMdk2xb8XQLej9Ntw4D5U5FOX/x9I/1x6Lv1n0t+W/lL6f0EufgTtMDXO/kR6Lf0+pZ6R1gcdWKzVBlTtVv4XTHsIdDuSAQ6kqZ6mTEuKq6OqPqdEKYBCzrcD3aIknfRECO5+cM3A8oIPStGSxT9jML5FVHVnqPvdmDO559UoQHA7JHElVuS+0jtqx156zuDIH3CIfcU/XQW7YBHoGjasiZ3tAw0XkSenDCyO5Xa5XBJzz4iG57FEa27jBYfEWr9ldVOLGfSRZmpuQDR5rCedHPi6XtEEG7GUO2kLpBaWO7BLn4VplMTYCcRcwIY8Rxzeh7re/MXkuLuQLO4JPkUcZOKYU4OimsDc9s5bsswCysPa2QK03RNy3AC0GEew1zWATNIZIwB9HG9QxFZMce6fSP+ddJD+U+nPEE/+ifS3pP9A+n24z+mznhOTrUg0c9xjIH2gDiOnCueYChID07PoaRXE5JKyZ3LHFmJrFY0K47MquG3XmEeWosZr7ZSKO+zZspoqazk/zuU+jkmo+G8fwquaW/IAgks/Y9klfZ09H3qHV31KuT3yqooFrmNJ1BDygUcCTBXZRgSMlupRIRwdMbyaNSlQN1xyYy6Bpkjwil7Uav7en0sOXjpKb6V30nukAXX0scUGVSEcnz79OgjWkqp/FLpkcx/Go5uYPDgni3uV74keU8zZRqm6YZq5hl7xWjRzpLIkinYhKu+/x4EtD1DUsoP0DgdexktxxnjdfDt34DqwkZsCAxsj8NkdByMsIZUKCoBzaZB+Lf0P0n8ttdJ/Jv2x9F76K+kj6RPp70g/Aj+1DOE+C9a54un673Fgq5dq4OkE466lguEDBearecwzOJeWKy/ZkZ5ed4/KqgyoXaBzKGgI+pYSIHmDnNBbwEwF8DX3NAT/7UDTxoBZBfYoQ6NcwqYMPM49wcITDz+lGXIfyuMqjhu36W/g5ldRH44RxQqMOR04S2SLqypkmVdg4prHnBzhI+RcayLCkt7Lc5iVt9Jb6Z/wqpMSF1BgZQPoJqy9pGhUoJrvgmLDrZfs9HnMFqxZ9BUymi2fV3G+0RbnXBCZ2ug++yEX8+ER09hjSMa66C8uolIsAhmb+blmz9zarrlOVg/WJ5UxNVOGkS1D1HvF2+w6hrcOwM0zXN0O3En/ufRH0jvpL3jV4h9ILyXxwr8C+VdBW8QQ4IMOnOi/mmvKr6US3NnN/cpTJgWP3+FanhcbsbnLaJp0SIscAZcwne4hugq3DbVxvKAp/57yt8clCh5T8XFt8GAtZYn1IQ0v6O64suePjoDOTUxFTbTu1Lx/DJ7Hz+sos451HmhjFZE57MCHyDp15PZzwsQFwb2JdvKLYGKOqAdqEpt1rNfSX8bxLCWBye3RLL5rWs6CN6t8zmN9Rdbvaf0ZTlURVw880DOe0tBwCRW3oUX0GnTYMuDxDLnteeDgZUzOmHtesGAWURSwKm3o5aoQyFhLuWeZS5p+dZyvbXVcGYjcxbvZXLO2R4L21Ly5imHRvfQX0v9DeiP9gkOcLqX/HSKQn6PZfeDeXHZdhvpF0SJywSW+f4fi/RxNmXP3Emut8KcFFnoe/lEDyIRyoMaoLUOrsEHDyjEyuyvWm1j5lJG8i7HOZNMHGPGR0GipVBc5ZRe8fhO904JfuY2+iwW3Z1EX10gjCszpQnqQvuLdqUuCWROPUIWvuH14RBByR7nScCqPx6uO8UL7LoqxV9Ir6cdxjMwj69lwRsVzdmopfcq8YBHNnybSq6AmGyTKR+ipKvrwek5LYhdn65rTrYFuRzb4eejKLQB4RIDyTHpJ8LzDDiYs9RIMkfFqExDExuH4mQ58Pz8oowxsYQcuw4EfIy8Y/SiAmmuajihQBU1bgQTWOPDz+JSt9D9J/1fpr6RfSKP0RiqkvyP9gbSSfsyhVR7gcG6tkDse/wYOLJrqqwBIrsWtHXUlV4daoANc2YHfs2tTVr2CRj1Ax/TS2+BNarzOnVinSAeOFrMpgmoxIG7ZMqePZ1HGjfDKZVykjnq6ilaAuY2ROuEZso0mxth2mOs149gjuMvNStdgJdjADnzAgR8DXq7iNJiGwfpHEl5BYnvJazGMBNwfuJQ+wXfOpDMmAj3CdGCz2kA4PXthqdKeH5Ol4UsCTMVCTIv1LDyqiP7fWTiwUCbeY0kXdMOPLNwF4eoFIb8hAW54VGHZzrqZJCu4CzcRa1zRfQdn4Dq0LwWu6wxs0FxSNpQBpwy5zMsdOLLrTnoRr4XbSf9S+m+lnXQlSXoj1dLfAQVM3b4vpQMV2C4ixUXgpO9zYCcEV1GKqqAiyjhZFTjGWSx+yeZODvwOEmbgTi7JKu6n9nMrr2KqIzPwgpt/4CZPHFjxjItw4E1Un30cw9my4znM11Cq7VnYxOJrhO8jD7iW7nlR5RsooOnXL3H+Mbgg37C5ny0v0rgJkfQ6bqwgtm6j5VqgTfo4SuophbzC2J5xeP4aQuKXNKTq+cFdCpXDMhyzoxb93Vddk7/WnDjxsfR8LgxxpF3zAsKN9CD9hiBwJb2VnkmfIVYSQOFRupY+IYY39AbdMbbKdqQzuWd/RPy/lr5iFV3ObAlHE121oiJrKRNuOaLUO++ek/FrxbGwA375lfRH0mfSWyBLzeuJnrMD/1r6+9Ja+q84m7VEJ10GOHkpnXHWx5GJoCXWWs0jUAe+XHAE/CM5pQCPblHBToDkGbj8jINbTKkcuOAlS3Gkz2CF3S7i2QVZb4uK8kim3jNKeBXz5QXRdMKyE7K6QVL4mbSS3k9zqqGrOcMMj0DJErrtHrL8GUcgDEw07njMqzjj1LzqS4BEPZ9WupH+Qmr5gV3M9BtXFNFYfojuzmMgBMvEVpQxvfS19BfxdoUlM2mf0t6b9uI9VUSJDtsxb8Qs3XIRJdAWIz8CSArisbslgydcFmhEXsDU7OLsw03AJsXZ5lOseOAwFLd1llFyr6UHctxFEFJtjD5YdGG0d4gR855/ekfv5pH82zLn01FI2YEPYL5bys2SCCXuNh1mjYEuOCbix9In0leYfindSD8F+vTSP5L+79Ja+j9gPVss7+NQbl0ApHYsdYXF7/HeY9C0FUOmuxjgc793D01TYcdXXNm0RE3AHUi1RxgThwwzaNv4laX0mjV/pJm4ijMiJF0FIPYuTAF0Al3v6dC+whmO0OeT/WwC9I8klzb02S2I7jnGsOGeHzgV7hxwKAjWBlRjhvurkPE9C1IsqdyB2iwd+B4HvmNTVgxKb+Ilmt9Iv4qXn09hd3LgZ0HjvuN+FPBvgeUfMG8zlSV4QDGdY+K5I6WZOD+KJX4lFYjRNlF/rOa/X1GQNez09MOfgVE+lT6llDyDul5LH8U7MztirZsjAkv1EBqmJlreLbQgItSkoEfIhJFGfB8jtJPvPQNQlhjignCzYALlnNcPVIyUT6XMr6U7zhScpnJeSkvpVvoH0n8jnUn/ifQxwXLBm8nvedXBhtruAVSy4lQN45E9m7RAuLxDqdyyqmZAWzDFIL1nHTrMK1G1cJipwXfNpayKEWs74ezLYBSdsd20vpEG6SqKqILQvIQXOedYokr6MWhuHwPIVr84fNsQp7u6psd3TlvTHHYPhbVDY3OGUrBgQOyS1dhJ3+KcDzHzv4k+q8n1i7kD3+HAX+P2KwKxJVDTFr9nkfesxsRzXFKKTB2rWzT0F6xnR+reUhSlXOQMkmoA/lQ8nTnJhZmbeoUQpqGQ9GDGEOzSgZNVN1j9QHhfEYEv8YbzwHCvpa9g6p/FTFVFa2odILKPZKRQl+2lb0Jh3pBzuyfubvHkXYibhkAR+wDQ98FBTIb/IL2RPpE+lgp6dG9oQr5kNd5Ikv5M+nsQAgdio+KwBcfMhoWy5Nct6F30CQxCLjmWqo2p4JHbSAlVx6GLHZ5RYsLTPbynJllynM+eqeASIzqQL15JvfSV9GW8CrcGvZgJKVDYKuaOjrGMYwzBtjFNZNcpo/YUEf3AWyPexdnu7wOMNdBzCkC1QaC34QY66t97aQsPPfLIQ7Cili3dwls9MChRx3DRJXXLCirjmnNLRrD1a+qrqyAKjkTiPe/IGjkF5VL6M+ax3xK/99GXbjDmJc0HS1L7qC2/89h1dCgWxAEj5gLJlEcQViSRCvRwiWNfxojRjoP/dwyKLWPieBXO/NSBx3Dgw/c7cB8O3IYD3xNELhnSKghlZej9rTBZ8q9vpeecovt1vIfpUXotSbqRvpAG6d+T/h5208ZowhanOkZfrJwPvTqyPMbMaQdUOCeVHIJ8ndbngbkQhXhoiD7hiQPv4YYueW3hIVTICh50xdDUN9I3/Fa2ESuSpn99DFDeAjcLYtY6xsDLYOLdax0jllnlfIetv5AamMGeusiE2hJcbgd+iWfeS3ewhwcyxJJ7K4IzHWm8PHVgRS/XRfkaTu1aehNn4pzHOfkXoatZxtkdd+SbKW2cS3+KGOsa8zDxV/Kk7gPscArHymkN9Vx6SQ/4wKzAOhzY+5SCigaOVoSKS+axLkgmFRTdDZXrBdWPpZSOoz+cgbfS10QTd4V2xLaea6b6+Zp8ewlpk1pV9zUfsbwleOWeXrx15W8pTF9hH19JhfTvS/85p1vcBeNnRrNlzyoCVjqwH62PBlYLquvD7mt44hYWuY4kdkTabwfr4swndzrO4N92MTfdguCne3vJuSJvgCorTHkTUWPgE41xjujwzA7VpJQ2YE4dgKudw7E7VuPI3yeHfM+nmK6cquHLOe6s4bavCKBbjKoirW2i3LdCpvuQA+8w7AYV+zLC2RT978mEVquvYJd79kLs6YAEcKTwq6XfRwv5ADWyj+jmr+lqN/O5iulrrC1lXMU29hxYUeJGHfnrOdG4AZydU7Occftn2F1HA2MPEejS7ID3L/GnirLa4FIswGOMWBUs4YFarIeQ8k0WBJVDnBfWEm9LoOeeeY3ziEw9r5o5Jzi/R2jbkNlvpOfSn3KS3TFGray97onkB2qWS4Kii/QueveGJUYmFU+957dakuyRLDySateB4C1ANS82Neqfcf19vJqtALxORMwLkNVXJNmGQCsQs0UXSxa5ixd9FjHs9EiHqYzbq+aub+VMhzlvWVIFgFmjETpAaVchzFhQBJacXD8RtNchAa8C4QwBmTq89jAfvjK9eBuTIM+kdxyjIdZwAY95HiMGPXd4AFQUQZn9SPp96UH6tfTPeaeHOceaVL6Jfo7AHkfcpJD+oYL4OMRBQItQVxriDHTSBkJKxXkUxjRncPsl/jPlrM/i1STuI/ywAxdzB04Blh14FXbgIF9EddhHc7+mMzyGaFBxcKBd4rn0nHx3GxxWKb2VvpaeS/+e9LdCmjjCN6+ZpX0fB6SvITIrTEd0VsVOF1EALbmfLnqkPTCjiyw81XDPovVvFW8Bb7iOMwweo5HY0y1yHHlOcnwTAxBteOAi+hfLmB15CKGzq9Ut+XfEIdvodoq9U3R3d8Hg1KGJ7QN6pTLbdOSGFtUdiqU9uKiI0f/hydh9F+c6D3E+REMUPkISTEXgO/gJX/mcEeB1jDP7aw92WgSh+Vr6qXQv/Vr6FzQxD6x2Q7h3E7uLLfNHV9K/cs6c2IwNd2nBkwHfZHNr8NzAQ274/jq4jpFcsSOGfTx/OdguYIodeBEAwn9pceAj+2cbMlI5hFkvQmRyw1B6Dam1j3J5FxSmlUkt2s/XHB73yAtCl8wlXEsvpD+TfoGF1UC0m2CudvjegiOcL2JiTPNDOp2X3Nhym3yMIdyOSLQmq7T8mP3B2L0ITnKD2mQRZ7SN8aqqAbvpGa3dhl51g8OY/xELsgVPdRRaBx55S/wV8sYlhfKC9DLd3kOosgZaUU2ci9xzMz218jmxpmPvpkbYt6EPOAbs9hKtCBAFd/jA2Iq/agzpwDtmS57iPiYs65iszR0sI5C10QRwh+5S+jGB8i/iXRpn7PIqxIVGbYoQU0hl3YasyVqOAaTSk632EY3r4J5b5qUWXL6kymiodhu6gq9ZkpaKw9lwIPUM8ykRb52lqAW694KWdxHDYRZFFETyfQiCC4zalWM7Lz0m5Hon/YqzoRYgzns2cOp7/1T6SBLt/mpealmnM8kgnzHrtQrYOoK2nYNWzIO01J4LSvUR06gDkFywZSMNhpLnWoTUWCEHH2EhLyjNLF/axsjDJLn5NtzU7ZyS75TMTteRIMzuL+hs5HSGkZXxRhftNGdqxZGvV/OuyYKFsmg+VWwCU+0woUeQT4tJ3MV7Fbwypj4XceBMyU9aDlY+yf4V27QI4VgRhepAQ8vqi8k+fyK9lD6WPpUK6Z9SITSUwy+kn0kfU9CuWdgu7lbSP7S8tQ5eqWHDLGO39dTxy8LEl1BuXoWKBGRd9RUA7khiugkRtx14nAPomiVbgQXtwOMPOnDH+2Os+14FSHX1eSD/toEudtIXcRJZySGeJT29Ufq59GMw1ipEm2tupg05ykZ6wRG6YxReRsYHnGcBYnOSKkGrJXm5R2BzEXMVy7lA1KTFFYvZsDIr/KEjjwjW5h5f/Zj5rg6H8WiCFYxe6hL3UwgnlgxB3wZvarWqrV8EU9/zCLq9o5IWu9xGfHeF0EVROMAHHeIgpJIlWoCqBwzAhOYx7moRyhCXFkU85pbjYv1Nc7tV2LAjy5Z++DJk9694ufoL6SD9k+hRPFJq/xTU2ocGtZuXHP/Kz+NmRBlTXNX87s0dOpenIkesfkNTZs0wf8sbRAtKzw4GbAym0HVJH6rzguphHSPo7kSkA5dhVWu89xbWwr20OrQEE6O1pijcACve0DuwGnXLLU1c1h9JPybdlXG6lXtqI2+0XkBpu69pLnzLw3pqpIlTD41lduTkLlr/A3j0nMCR22SscR77UoSu16awAibeSx1s3ktQ7B6btk7XZV8JFlfUDNMNmErZhEbZ4L4LvzX3OEYCaHjMgWtWXNbbYX8zaitgsu+BS1Vk7xsc2Eh0pOtfx5HbNqQLvn/gm2bnBuBnw91WYZCGA0NMXfXRA97DZFwQKzvpf4a2WlFYrplsWgC7xVIPbGj9uxep1AGj3Qtxql4Cy05u0BHVYo8h1nuNHO4j6Q+kz1Dv9+HEJevhXKA5gK5xiDUuaADdc58L8q+ooTr+0s+HUR9DfTfEShwDwd9I3wIqPiFi3UTN8BEnLCkK1X3wiztOGetovW7i2cfgoUqEQvd4cBXAo44IscDcBhJKDTO6CALBkKBniapwaGfqfQDoBi3YJIOaatKPeOFAG5p18WNJNpmKtrUKIN6RBPdh42NEpjFS6hHLLeZpwQzJNnhu9xqF/RxoFOy5vckeLqRPKPwO0ntUE9twCEWucPfVTrGMSSRzYQKrnMegqvOYAvAc45iECuLikn7ya+lr6ZfR/1uws5e8lsgG46c2vfvdNnulTNQtQzBa8k/LcLYOTjQVRUM8YYk1Tw78+9Kn1Octu3XiwIr9GyOd2YEXTxy4nDtwwZKZSTnwwwdSmCLpG0I88ImltEW06cqhQ+A31RWfSb/gJJeJiDnCX5rOvAFmXUofSa/p4PSRaw4xeXodMy194IohDMKEi1i6Da4yzrfJQlsHwTGYSyvRO4L1AsHJewLlK55aoDqRPkZsY0d+XOAzVkhW6JIHys2BarKM8FTGjvdhUce5WVaA48cQu7uQ6zCnIt7FYZ7jkuM8V5zXcU8d3IUZpO2V8BxWxXl5D3GQQBVosIwUOMTP79nics55XaKwvZK+kP6XwEgFv3tG43WMvr1Lze/q7D11qscxSgR31lGUgSH28zZQGxbZx+ZVpKNb2Juf8ZpuQVbcx0hBS1AwLk+EZAdeR6/B6UUBiB3LB8LHMSisEvLVNXrHRdxsalAC1azAEu3bHmT8E+mPebHfBqrkEdXUHUelPCDBm6ThV3GTppMPKOxu51WOc6PiAY/Ma4p0fU5+sCM1pNBcojLwSMGgUxfZ0nXLW474eEEDpY8zt0y72YE9n1Fj60Z4S+D7PkaeH6NXcMBPeoq8LuCbYV0Do+Dg1SNNrmOwdbqHb6T3hM7pUi95GcbEH+5gJtL27L0VrngLgDZ1vWH3FSDOPVbHeoek5A8V2v0SrNyg3/pE+iW/kl66ppHkDJyilEIqfyfhcPqvAiX3c/1eH6tbkqEsMq4jBVQ42UY6lz6WfoSS5UA0tvavDOxbBaNRRgquIqK67VZwM9nTa8OCLLAcY2FcLo0R9JbE/0cYq3cg4MnX76VHapYfQz8rJIU7AO4D0XICWFdo8m2ViqhzBGDd0WyrQ0LZRetowPxr6plJqfSMGrac45YiCtU67lbUUw27JljIEq69oEB7QzND+L17EQWuMyIfGPh7ww+c47gVZm6C0ojc/7QC4BXRNl+HRT0QZWtgVUOoa2Mo9yIOy+mlH0s/Y5V66Z30pfQr6XOqkQVPt468UQN4/DhrjmTxDFUTf7qwJQUoVYSiOv6pDjVWyz1sEYFsGDYTaMo50zHjO1uqA+8aAYwBNPtIxCb/S4BXH6nNiX9FRJh6sBfSx9KPOeFrGw48YmE/7MCLeSgrgBfm6heR2ro5Stac+bcPF2HTJQ5sZdjAeb2fsrh35L5z6Q+l34Pja4Ip63ndwT1ttVe8C/BVLLpZ2xLPv2MCr+VmnMis+SygdUqw3R3H91zOzaWMHenDbczd9KjSzffZgR85vG/JcLGleBUe3mPcAy9Kq+bs8hI7WQcmrvjFIXa2CKC8YEahhDw95wQS9w2cRbr43wEt6LQIDpfTA34kfRRg4E56I33Oa8hGeB2Dhy4YUkNVe/UWC3T0H8PtXT3brvyLK+TR0zXPCUOe8Gh5+V1FDTOytit2vAtA8p0DF5G5rZe3QGoMy+hZ1p6bWwTgMHpoqOhLYuSCdtdFZGDrhKp4zlyvhtWpogyyQNIBUjySAIjHQNLOCb5/F9xVVNLi49xVWTAO85pnuePMhHPpF9LvxcvNHtCKLDkg9D0ywCvpY+k1x5kVYb4F1NmeFwTug+VwDTCGpOwAF9TgwD2Ti4cghcZ5Bugjfpl4fARtj2CuKbM9cIjAOdPNBrJlnOnqZ7nAOQ+R/Bvuef0kYrZh7mYXvU0rYvr0fU8Nl8hpvN02M4/FlFTJZbyva/LnlxSdC1b7jfSWImTBDRjKmwW1iGiPJQ+gVM3rxjoor+O8izQ9yHPWs6ejuiST7XD7XVRxNeu2iONau6gnJQ11GSm1iWm2bp4BXTCbHK1oWrjzZLZLYUd9EKuObC1+lmA+AV8Z6aOPtJsppgyywD29jEYpUXDXoYmxPP9WFWeZiFt6YG7iXHqF8k1YzY4nqsibbYDFiyCPNnFWUMLcKk6scloxGyWMyMN5DSKjNVizCkN292II1FRHA99ITqy8TT7bdRfA9OlSZ2DT6f5XIea0wXQnnGiUT5qTuHV8UBEpcsoDj9FYPgR3burHWPmRJFACQL3dVzCGJT/zE+nHAaA3aHJu+YEeCFdHxXJObHOAadGLmkZoWcZNKCtGlnSIYGne3fb8Nf7aSV9g+c5O07LsYjxpx9W86YXdLBPfyfqOmGwqlWsedRWopYsfqPhdK1YXIKc6DMgOXIaLNhEF0oG9NK6DK3Y6CbUyor3duIg1Xc4pJCepRUTLBlnFNc9+Id2hnLzk14/g3VsIkW1UZgsc74IRtB4HLrlDd17aMAu3hIS91tQkNeXRMpZ6EefK9RE3vVlmsrtIGeYejvPAt6HW94zIlixcIv+wgGEZSLqPuGO1w8j+bvhdq0HG2McizoR1t8gUntWedfxvF3DCl+pZ8OdYeS99DIe1pq29RFvyEKtRhhhrYGSwDLDRRwXigNhFP3+IZTSy7eL6i9ia99zMpNCa0vcu5BkDb11RGM8wd/XvYuqa0GIV2CLq8WSU3d+1ns6Eds/mVVHeWYpU8JAFhWaHGsZCHFdIXqAxMFYV8VsEAnNTilZiEZHI33GWvogtN1QyyvBg1MD5Vdckvak0fM5UYhle92V0oPaANs+ovuLUCLuNN2kVCMzmXkVMLEJT74U642ec96rAQcd5Bk7qzxTmAYa4jtmI6frPABRTqXcRR+qUPNQuWlFF0Mn+LIvUMy5Yd+nCwPqKKkDnFKemCHIW+cDN0You0iFcSESoNXVzBw34EurlnOedgM89t+F9cWO+Rq1+iAOTBz7OvjrAc9TxeqCKfXE7pQedb8BoLUXXg9RKnwcUPUCrDJwhV0IkDNzn71JU7cTkwGICy5JvW0qLnMCxqKXneXyiPemCXm0DC7pjlkxwst1l8NxZtbmmy36dl8oSgoY8ewQeuDYZMT2jzC6wYBmQbs9Dfcno8pYez1Q8vmQDpzg5CW0fWcAqPGlDg8cch5PUMrzHbcbJKh+jk1Rg1xXN/QZUusKx7LX2cnfsS9SAiWgtStzOc9lkuQdK+DOEHM+CeegAHmtEZJ4rrbDQPjqCFetTz5NUEej5GO2xMza6ovDsgW0eNjY2NV6vYgr2kty9RLy6wR1ryg+z8n2Y0xhuWsUHDTjQTUh/nSXOo8/qMswA0tpu459SegNx2Uvv6Wz3QXTck+iuSc0K6/J/f/dqJ82LmAGL950ZQ4yxdn00kDX/V/vkIdRaJtL/Wgd2ykgHTuZYkWFNixipj8zq9AEeXLVY++FUWPCY7kZN8OA6zna4gd46UNRO7cQ3sAyTJywDzk68yRWrp+hglwAeyxVWmPIenqiLwGuhzzLSnHXSXgc78AIBcRUe4lTuKZDHaLoNjHR0jGxNzdU30MAutT3ifxMh0rSOt9tIYA0rsAh7Uziq6F41cAAmj1zLjexjF85T8SsLGILVXB3+XHpJK+oQUqURLx3CSPxlkyiJHSMBZR92OEb5UcWH9qHLbxGx2EoLztp6L+048bQMFLGjoXEgBS/Z1gxYpYLNXaKRb0AYntwuwty7sM4yqJt9HFfuLkBHXdgHkq4ICk6qf5MMfAKOx1hizXPpdNsryNoh6FIRzm1bztKruQPfYe43Uh3vkDti/RvS8j3nGD3jPlf0Prt4O8XwxIHrOLbT/TszbM4tI/DrnHeMW09nytGQ9MSBXSrVUZ5a3lgRf40OBt679YA4ePK6dzEEZMBVQrOMQQYXxKOO2t1qhHNyeM++LGLG/g3DAWNkYD2ZknYR5YboSSw4h1Paw9NfcFLKiohvTlexdGWA6SEW1pqwBfn/EZcWt7EKjf46hqaNoSzmdePlgfMZDzQfqnAf1yQHglrDttYBdsr6GvLFBj7yq6YAFX22gbBgt1uCpWpk+Wt20oGrwLJaHneQLqV3PGvB98cgFF1LLimg1tH19acL8HQIkNeic8kquIS2MIw+BJ/ax6s5FyzIe+lGOqchPGAF7nyOnHnXM7vvaGGsZqDmJXUeEbe6iRBtDO3q/p5g0FJzPaM941FIk811JGhbX8k97/ncLfGsC2J1Ms9vSQpirsHtq0lPdxMwuoAJOovxu8cQyl1x9J4DWMf5vJdBYpjNLMG7D+zdBhR3L408uOKUkj1rsqBRtKEzP2lOXoZ2oggtVRUMz7n02/Dslsze4Um7gKNuBKYixYxeFWLOKYTvI00vpN8wmfKWqcE+SoWBx/8S4LTkXzdA7e9y/S78vYjcvMWgU8BkMHeIJt6S8Xp3sXYQQ/dICh+kbyPJllSrY4zmd6ExNcXbhybbET67Qg5K5mWmemsnbaRPw9VHAMNDEPLHeP3Zkd7QGIXIHW2gqRDcBxY8sFafBJBacjNHDPQZzEWu28DGNET7ddBne4rLZfQ/30I277ilNch4xxx5Tziw6OIY+WWFA08x656f34dX16C9LYu2ZyOm1ZgUI3cBtArETJuI+EPM9lzgwEfphp09xsiT0+vI/a9jYHyMiHygoDwwj2LHaAkf5wzhlYS2NWNXTUA4U65Ol+fSLel7FXnfdfA950pq7sBlHPNUBb3lXai5bAOjf0us/Joi5BDnAj8Q497Nj8/8gAPfQHpZmJGRKb3X8EvBq1jpsUIhtEPf+UCd/sBrgYy2p504Z7J9hQOswH8uuBvpVYi6mnDgHqzmmsC80JITYT6Lasxp8IGyrwomxKHEnYuSu9pzWvBbcNgaf5tg6O+z7gfkwq4WLjg6p0E0l6IFERou0FG2qCMrGCQzVwcsuwcIrEMEogB8dmCXMV6ZnsA/4HUjUazDjGwDhmZXeHInnUnP0WZZN7IlT5ocG6MYWLMInfQel+hYn4by45YTcFw+bjkDtqS42hMRjgHQDTo21AOP4bRLkLqL0V243zIsf3JgRQEwEmEHos+BhT0plx9BEzuwUsGpvwO3tEHVU0uf85gtiOAW/Ci2oGU1CjRzpw5cL8NUhyCMXSE7Xhk3KLC9Cc4mXnRifZdLzk0wOIqyQtEsFYafbb0qwKhjne+njA8aAxP7VJDsbVpG0mOw5mvNqVk30uKRW/p1b4GJ62itmbtxebsKgmwTB6YbnxTxsDVjKuv5+4sawoZL9ZZXuizI18InygAk2car5zvl9bFKYbKUQzTq9jFMVUTYa6LDsEKOuI2k4Bq8j7rbLYuGmHpgPW2hXsYHkPEiVH41nvRI/HC8cfxLutOZx8qWNkbXFCYkNsKWIxC5/4gfmxxkG3gjv8y15Z3Y+H2TSQEfpbdMDE3J9xKwbnPtiOiP+O6CGOOJ3rUxezV3YM/zlVGU+CZ83z3PX5F3PNszsqO7gGu3XPwQsknreJwfvabWSQ7BL1SxWMv5yQxlFLWbELMZ7lQYQYt7CA8cv9+BS+mGU6FKOL5xXnoew4FbEuuGovAQ62kjm37xDM5gCtQ7Yv5joAtzDwUH0xS8WG0Zoa0nKg1Rk6QDa+7Aflj/bkcPqyf8dSFctux4jQOP4cAdG11hYaZs1nGfO3ZQEVPSgS1xGcOBD9TfttLvc+AhHLgmryznDjzyd83dzFHV3WAnd4Uc6N/Ugd33yT7sG+lOugGXrnEEm8qRk2qsCPghBy7mS1MiuHaKS1ZY7K7vskCikC1st4E7sPV9vGLrJAMfuY51zO6Jumj+oAMfo2PlZrCngMe4Q3cc7Oc9EMplUBlh0nNAkm44gr+O9/oYQNf4s2NKAcg+p2mSqhiX7JND7vjJMc6k6+a6DrOYF3GQ7CLEsmP4ecMtGUmnVqEPB67mZLwjWkmnbCAzeONWUOwnDtxHP3sRwOEAK7wM1JNukw68nIuF7MAtMdfG/X0OPIYUccqia4R3dmCnVmdgtxQVSi977CKkBk8dWHMH9nf8jKlC6XGK9+CdB5zTUUNsmXW7+TVz4PpEMGVytArD9GKYxU7kWsUbEkp+0T859dCXGPKGkm3LdVZIPLuIEwpjb+NQMxfgJgITBgzs9o4FaGNdqxiAcfbPNp3Juz6uX9MO/QbStI6QYJzasRQLUnxyz/6q5/9rnniJ+wrHfceDuL8l/LjmdNFrwslZDMf2cylCjbkZQ49hpOVcFW8QrCBTRIBvw6vWkbudYlpYyBRhVWTkMmK224cOJ3qSp4YIil6ZOp7Cl6oisZahKU3Y6rDt0UkjeDv0GHO0ySE44vbhvvlbY4TDk45mOoufq+IlnR0h8Ax6a2BMpgm4UkfT28lwaijqqQOXcweuY4M9dnbiwIvIL1Vcc2QLlxzKe4x/sgMvY+TDKig7Xs+xdx2lcDpwkmuigjxgcMco2d1brsOAKi7yQQc25HgMqn+FSMvW7LyfBMQZFeqRp3b3OyHBghP6+gh8PQHLRmCt4w25rMKrNxBMQ+AK81bLwEJj/FhJ6jwQGhb8gK3KTa4qqL1yDkLcOqjJ0auoGo9R6OeaF4HBThw4Aaj7iQcsxBX/DzhwEw5cRDpOBPy0blaYXPGEq7DRVk/yrx24nlu+A2UZP9kFnjSZWAISGviPKeNv58fE+bdMJFworp7UehfpZSAqLIgKZUTTgTRrMzVc8Oqs4t2B1hho7sB74qvL2RZTPkLde8YxHbgNB3brZw90O0aWKMIQj/xiM3fgvIEyyqBDvCdvE+6hcGD77Z7u73mktY7tzyK4oLF9DvR85FnuCEY9T7oLabIJWiHb33OfxyhJB0Zfi1BZOqKZ0zNGPEZe2tAQdAn41IEzMdbhYw5kGbmGmHgtQnJ74sDpnyMW3MZgq0Lq90EHtuuWYdJ1+MAJPau4rEO2h1YVEb+OoDbO2SBzpE4kQ+y4vbflzzpMt4ZAKqVdiOe2dAAyyhT4cCOt6jpS7Yo/PT+o4DKy4qjDR01Y+PJGLUfkS88hAtexEh4ga/Ds/Nwx4sSR1xOZ8d+H3SlYs46yYpg77onmrWNR3SEz0LHAdAUw7elgX0d5ojjhpo/h+3J+uoV/csBYMgn2gekb9m2i3q5pdE0buIoTvRcku7fku4/mpuTM4glnd2Xdf3YVkSpwR/ierWkhHIVj7YLqcsfeAMyi7TJebbGWxJE5PW5t+UdNFL+N2sN+3MfGFVHRPUWxQ7BsA/E7BU2TkaxiBNM2Nob3O4+Z2TRPUhGf0mud0DLpK6LLGPcgQt06rOUcRe4YK7bgBfUTMHucs5lbv6e5CVHWGK9E6sOBh3Bg32sXSaeOaGwzdQYsOd74mrhRRnBrIif6uBYHAhvZY2CvDzpwGQaUrNYw95map7Ov9mFz6cBLXsva81aUx7ChPnZrB1pwt9ZFjMv6JH3dVPcaNoy4tQghjli8+7fTk+65TzfVz0LelDVuB2BQgJZ0YFtDGzs7hHcZ6bbQn0M0kEvo9o5HtshnH12Yir9MUXiIbcqJ7xXZtoxG5EgUTgcuf9CB2wiOYyy4FZjeoCqAge/Ku9PGz5hLqJ84sNjWhkdO2leBDboAJ1bqWvS7DBbfQDw7P31g2qnn/12DMkPOIl65mRm4f5KB3fVM0knxPIL577lXT/GcBVdQxDFCZp3NCA7c7oFJH/MDduD6yTIdAx9bnu9GiW+sizvvA+g0XHDNqZk79DcHFtc8fYUD9yTtJXe+Aj0rzktWGIQzRgG5Z1zupp5Jbuv0U2J1S0D8KPKnbXpagbNw4OkH2oADhnQOTGXMOiz4YXvswMCKEccRW2+CAfNxMGYFBo7bNAXSsikFSzfGGSPfl4Gr6JJ+0IGdBiwpc0+t5D6bOImmDDRvI7HHVuGlS2iVLsKlIoct5ijGDRYHway71hSyNUKdMWR5FWbmiLMN53fK2dSrIK/HQKJeEiegA/VmIoOTJfSzDojcOmrGITqKO3zXiNlF0CGaul6bNazNCks09b+MtvMhFIMN2+jG2D7G2hSRzdyT5vi4Dj3hlBduo/ZRPHUb9YACLvchPknqzbpkL0jy6NPnPpfeS3dx/MUlTaOWTbH7Wtfj214E9bOMPpMbRTb2IwFyB1HoDNvN0ZejaR/ad2sS3HYakRx47reMCNrFf4vQLdyGin0ducZdkY6PNrRV4A3z2aa6zBaV4alLCIdlsJ/Za0xypop/KmLvTpivKjBbPacp+7iZE6tzcVjHC+0P7F0dUWoEGC/w9SkSTLSJ0oHTyJL3GrDjMkK3w2Mffusb7WlAO23dSN9Kd7xj6fxDDpy2kt2oNdhgDRdbxoq7t3UIF11xJwNl8S4mjvqI5IodsgPbkdyNOsYRZsmkWnhUh3DHPZc2RmU8Ve02oNuqVUDDEk7qIU6rWAesb+m43aHWu2A9Dc7MPG4BZ4uATIaMB1amZ5UMkZ2VOsivhEMjccGoxjlgjPHnJVbbU2Mcw7XMYBZzTeYyXNSO6tGsv9aB9xTlpiIWkSXryL92Tm+KAn8n92Rnziooeas6cH8VRjLMs5Gi8zwE3GrIJb74EI/chcDxLAZZ1oohtjLcMqvGA3Z/wMSrMPfhQzWBSLN3SDInguKtdIfQ5IMZ2Ps0BDNQM55lSVMbiaueO7Ch3gtupkfm/0jrvORDMzk85flqPsuBwHxqH2DOTPYiSPoh/qkKXDWExbsqUkRugdVKgHsfPlmggfZU6b20kN4HHzLG6UUdh8+792cth93pMCf7S+rdIuBMH7j/yKYvgwxQwM0R7ceGBlYZVc0+KCND54Kxpmnr/bAKmqHnT/3XOfBuTgfVkYGb2KkqTN2VlcswkwQKIGCzSQmKe69WzlQRKJOTsFKhD8KmCP7Aca2NMq8nQ6QDT3NJm1rzT8hO9AIZjvn9Mrg0B+cBoHaI2soF6YG2yjYi2z7kGX0Aey/JGM5XxskoG66wpLxaxcTI49woapbcUN5DYEPEqiISR25gFyLGnjg0PLk9c7HmgIu48yygHNiG4MVNsgwRbBVF6FR2nXOUU8WB+48xqTsVuZs4v1XRcUlKxXtt1F5Hnd6jhFrAMJRc8z6eLvVERrf7kC8PvBVhGRvaSFdQci0oWREbTIYo6pwqYupIpNyEy540bJbRyXfPWfyiPdj19UkMqOPH/APuER6iaZpfZfi397rD1D1GZV3DSEZyE3EJxLpgjKog7XQwAw3ziG24wMxnTrbHJ1q45C0jLiWN2gdh5McbolZreLnBjhcI9XPFT26SV8GR/0x6GQ58iA7ngvpfQX9UgWZ61CM9aNhY0H8v5vFwmDvwCDAYAqV4U42em/BD117ZyRriwY3dHX4PsfEtaMGKkQ0ReMXjPzLctUTvusDyatKoS8anDjz5dovbOC94BGjkX6f8eIj47j89i9yx+CcOXMeDL3gPvIGsB02S6jLX5nZuFmZTsfEDDtzMHVjRwXbhlxKOFE+mvKScz27VwQZ90IHrwAy2/z5ERMmRDEHwKRq4wmYqglES8DUnBLU00ktF4O8jsRRxwkMZd1lSfQ5xfx0GkRm4iKA1RdOpIH6UrkLo1wZ4LeKDUsLZSBfSq7kDuzvThAPvGOqppOchUdiif7yLMjSBjti59KIhbMs/08TGm3eqad9aMNAF2h7nbmw4o2jE7Odt7JGzLRWF75JNsfLklvfR3LNTPitjCBBWRpJ3PDqEgTbhANaZ9fMGgh3Yrb2nDlw/ceAqAn0Ro7iTCXlEK5mVzMBFxPEhyq3V9ztwFXBZLLuLV+cnu3cbNzmEUxlGOygk+/c3ceA+1tByRtecdfRbHMereGW6YIxtQhUT6C2sf1Efo8tSgNhchlSk4Gq+MCdPkAXOwG8teN9OzfER2Rxu5jswxv5keJ/SxBnDtEvYEwv8NgDoIsJ4zZHxC0xJvB+kjC111HXHy55RRJzow5uduF2knPTPnNbtNLYRRR5xXFwSYByiH2FhXFab4VpDhC2BZff4ayk9j8NSjQQs3nBtVUStasKrj9xXRaRZMHc+xNMVYaELCA13tlyKmn0ro6q1SVbkPk8W2bdSTWDK1l0od2uTBTN9sQ45osnHbHbaiXM7zGDW8+/UYaJHGAk3zB0LxyeRxnc4RGRy6j8hTxWV0oUkItwGQd9UnaY+QpbjuTFVhQO3sBiLeVirwi6NErKzYNm7f94LcYh/8mWtHzDlVsS2DXArZ9KzcOCCmewOsYQPWTNzfB6vI3mkT1uFqDIxZQVgckKxA5toO2G4qpgXWoSdHSIWlBHbFQFL0SNo8Z+aBnIX3fI0zTIczFNbkzhsAw5ZzgNHRsYuYI/joyn8kY9zG2UffSIHQVu/HXgZry8wcB9xNgvoBx7Q9jeSf32EUzqwI0WJ/ayCI/9hB17SbcxObAa1IX7eoaQIWqKf+5uVLXvo+XG+wunAprS7yODF/D5tSEZlZbzk4RjrM+AjO2CelT8TQfwd3+5ORypCXNi1H3LgJKrHuXDCzF8dKXFP8nQO90OmAzfxuTbcS+llOLBPserw1RX4rKItfhXqrgUNl2JeVRSxyqsoZ53M3UB9wHO8SVVQEznesZ9LRFzomOn0+pi2PNCgX/ACl6nY2HIzZeiM9/zihtNupx8uYT9M3HkoUOx6GxlAIUSrIl13BJdjvFPGblCwfScZuI9fNM96iIjgWZYyUoV5C/11Gbhgs9q/mQO7MzWGkwzx35PWoaIfMkbsFlc4Elj3AOKE2unAib+7uHgR1JGi/lRkjoJqxL0kF4oWxlh1s5Vu6xNIVGJTD8HmuNpNfOmM85Q/9tcYN6K4ThcMX3KiR24tjaXmDeXuKGbt6fb3GErONEzvQIsgP9v6w/yzFMaVLe4uFBe5A9Vcq98Qgeon62B7cf7NO8wsUwBGfQRWF6f9rukMC+d+Rz/QVdB5ADLxIG3YXQ0R1s6BkLsBHXHIsiOL17t48ILnTUw5kEcMkNI5Suo4cwjTgrRz/ZFZyHX8r2mBO+njeRhOL8zWkcKxTogI1551CJTFbbdxctwxUpynUXJDh/nfbTbGk+5dOya1fPoizq4+kHOrCGaTwT+XLhkcPNJAsszhu48xt7qIob2nDpwiEqNkL9aJ4Q5UHtlYK9nvpw58DPRZBIF1Tv7dhpceOFmo5jnLyMtmhSs+3Yx4ESdNDvMbfurANj7rTEyO1iHeHwmPY+yZ4mHTgc0TJw20iAlFr+3J/PrrcOCJRXgPkHUFvA79sVtmJw5cxNuhHSDaUOjtg70+4MBp9I5TDRfP8tdI1Avr1Si4h2UU6HbggvafRTtjmJ8d+KPvceAxHNgtwopPH2IH0+BPHFiU7E1QJt2ckC0ijg/xu0PYs7Oqt97suNmUKubQ6mj7K7D7KJ3FexnLJ2fR/y5K2S3Nzzx14Ho+jOX9sNrhxIGnB+6iPlZYtm3CDJ/tpqYBfMZx6Euwph34jLEd4ZYHcoj5hw7YfR8fmv+afasTB3b+zE5hwrt1fFwRRUJyF0NcxEXnksQ+RCxYQQ9nm2kfFzzjhiveWnTPd3rq/jqiqnGbaxsjdePRkn91C9ynKU0JYRsOnLx1RdiyA2fIHsKrXYwWIeleRZnUErvL6GQv4wDzkRZ1Dy/6QQdWrGcRnpkZeIgdt7IlHbjFtepwRfdJbRJp5CcObKRZxb53EdHSFyqyvePm8MTYPOq/pA5cSFVtdZnYkAs+sIpsYig2REWzofY88BdXXkUs5MD5VxtOeXNQNdApY/Z6HcW8eRnv7S2h+0F6wU2uAtu5M+RoNIlWHuLoj3JuXz2Pf07o2hGoVmHUX1OwNDErIr7jvxyjongKSMbAPQVGkT0bH1FSwZts4YAkvYVJGGA9HqQvpFH6KXOHHRNQ55RsiltqIaTMze3iBcNn/Ir7Bj6uoOHxrV2ytL3BBf1cGT7NhJipmSzNJ2IdMMyOO2yCYTgn/A9zsYTZFSejA0l8Fwz6Oa+lGoMM2uM0ZqaNDy/4+0T5e7V7YswYIbkG5V8QyIugYtODhpC2ubk1wNKMQPbplhzb7qJBq3lNOBU53xUx1kUdiTkTm2s9e2LHSUyzjVzmIDZw3SWfkcLLAYt0ldBFyFrBQK1DBDhEVJ8S9DuM6YEz3R45A+4BC17wOO52WcV/JCSalJ3+rEmmVbwHaM8Z5lP4+JaU5DbWCUWywzdc7iQlYNZ5AUpugacd99byJoQjlt2iY76QNtKbED1Oh+/cSd9Ikj6RnknnvDazYb6wCzRmuzkEO7mnYbugCXwIAc8xIqyrOhchk0GfnNroHfeDJxPvOqEIx1tGx8MHg2yBHNZFWbrTxXv3xGosnoAfK7FW8cIaowhzr6nZ2rA1NYJVG3biosyMy2CG3Bt1n8j21ofB+Lw4M/S9dCbdYD9u3vWs4QJv3WPenfCrOkiP6b8fhTCwwU8qtnPN+x3cm15hvlP8OyOcLDhj3Ht2wOIPoUoTJflhDmEd7/3D74idJw48ccy30gMzeQXxfuIHbiF33bLtwo03sbstr5+xxU/rfi21vInQ/JJdwqN1D9hKEYq/lpRSB1pqCRPGry3gcsnAvFPolXQhvcWGLK4cpUfpV9JriqQdROxr6TdxcMfJ3brYbcMfrjhBILFYTZg2SzZQdns6251jk2AVVr7A8ezhZ6zekohZhzDzwPfNW/uC06ds2NMFRVfH7/Z80+rniprByTDJ+DoYiIpa04MpawxPc4ixiNBchg+7oBqkZ7QX7Fk+groJ+OYHHEn+001OZx/c8/IJywoV2bSvk1lwU9RuvUdT13ObyWK4pHW3IBF+dsBOJnJ9j/5cN5A8E2UOqwTWrOIhmohvfqA2PNK8siFXFcp2W7ECwZt2HSPGOmkWjCILKt99y+SnirirMUJFESgw78GLUAW5Mzm949AQwUOk1JtoRd5Kl7yyabrajlnr1bxINJRasmJj9KjcyfCJWC4YDX+N9o7xA3l9P34dT93OpV7mdBUEuT/R5WQfIkzfuX+lnzeHhgghiRiHuP8hzls74S6HyOxFuJcv5fVxPEuyzFaUUb8LZ3laMg/xfX+uwrAd0dsIbCUFz6TUmHH76cDujJj7rIHF2Vhpo9YxmLY1j7FSTx34pN/kafIxft2La22rQ2Ux94QTB/Za242zwaj4V9dnPXICEz0ilBSkiYdoZRdxD/nI6cAuAIrA6ylZdAxPB65JrP6BnjO9a6znHkuq0EPfsWV96NJexCJo7sDu1lk71YXPjHP1kuYO3EUtqGjSDhHC3EG1dKcJNlegI6fdpw6c5t7/DRxYcwe28QxhVE+vnw7srHPiwEUYlaJrpnDg5kMOnFnqgw5chgPnBau5jSkC7j7PEjDP6nrRIXwH87PHejbzj7cDVzEBlrYyzJf+gw5czON0Yot8PBcZPqOgjM/KaOLIZx7Uy2oH9nqVMSLqaKfwwCboyQOofR/lr+/TK5MOnPVxH2ElKclh7sAWsSS7MDACciSp3kUn+0G6CgTR8yaRLqogYxk7cBexaYhbref3nz7w1IG9jAV+mA5sr3Cx6NAg8FQZ/WCvjA09lzG7Ez+cgce4k2xiJgN9kkJ8q9WHHFhPOhWK+yzjzzAvVBydi+9x4Kynx/nVTh7QdOIOxuJYO8za061qOQKgFZF2fPK4Hdeuwm/s38eAAnkiwcmjKzpsR+gbb8iRurWek6B9fFzLoW8H/umA8R5ixrGb9/Rt1/U86rh13jI+WEsPzNI9jY2ZLE6ur2ANDROzqeCoZgsdmBTccjN9vEJrzU4a+bSk4FUEpAKqSHM84CJxH8e8VuFYJaRSxtf0Ki/UMeJoeptwdEE7FvCSAxuxD6JqmMs5LB3JPootrQhH6eNfzZ3lz/fRyxnma+7MM8bjiL2uI8wP80CiuS+WUWsn+Oyj5E9wewKp63mhmNDFmohjtBvTrQf74Rilnv/e4cNlYLUsFLro7CRMOTGXbu7A/dy4Txz4ET9sIhlJuiMqHvjOCNrrKaeOEV0z2ZlEPHE2J6Zqrs2roJkdxaaV3QJhB/rMRRAG4zz7jPNwPcZv2SjHCCsnDjzGmSEVjZ6R0zFtCm5A7OmNGxA3LO9J7TV91TjwGErOdOD2Qw5cxneG6PWUEcvswDX+cIQDtqDU+bcPO0l31ZOkbAfW9zhwykVs1SfUb27HOF+TIXT8Qyh8unjwLJC8pFWAxqcO7PqqiI9OgiSDxRAMYBXrUM0/PX/rO0cdo73UoQWZks81iumJ2X7JdROzNvMIapori9Eu2IMM5+nAVZwvUUdyGHg1+SLeyWxk05MkXRmUoSgawkm62EvvxAlT0VODdjiYBzkfaVsu5jSX5phpjO87OYwEGsX/9kSrfYQbV3LHmNJ19dzGuyWLQJPL0JAUMQ62njuw7cAOXAf66HHgIowv6ZR8Lq/V0/LODmwUVtETGfHqkeBbxaIV8evVhxw4beapA+eEqLOf5p+SgDvz6hgZWAEBnPZPQv8YS2EXLZ44cBmOehJDXVSYzvFnpcJ3xDtSkvldaVoP0ZK1WfkWuhAxDxGTny6h1XdJNChOrPLtFE/+uFfkIsVJc8fxKs+YdG3jjaqH+IgDHRdzao6le14adRvwKD9LLIJDgiOeOemBFpQ4PrWYh9PcWM2/meAp/1dEHR/eNfIg73mLuG15arBdQ+et45SGFX+fUvBdPFrzoUOfshBWmF5y6kMguSHisavy8omhZVt1EVSDXaSCWknIMYZfFnGF9N0T1yk+NDGf5eSJ7YurFfHf/ONfqci2J/5UxwD2EP5SR54p54FhjB8rn2Tw7A9XcR0zmN6FPjLSIuzhuwBgdy6imnE+7eezJW2MmiWjmQvt+x4ifHkRu9jRIlbBX4lFTBtNOPIRAL0B8IlEuQsHNjA1AtuS5joep5o71Rh7MBmTiZV9qOZuOHWqJKQX8euGmKZXThiKPoJjlnFtQCC79AOMVRM4pEbvUUvPQyFzQZo7kK+rUCr64JgTBz6Bd1mEpQOPYS5PHdgAepw7cB0pb5inIUsA0uIVbvPUx05C5A84cH4nYa6z5AlgGOe/ou934DFmNxPaujtZxp1kDPJeu5gpAiUvwnuH+Y7kChxD2b8mDxUK1lnhft6wY7hcF32Q4okDe41OYmGWJsmoKTbADmyDyO7DAxMVa1bwnAzcAhlLDrs6UNU90hLqpK30HiHnLnp1WYwOmJ03ZoyqaPq6x4HdWNX8LwkEvRRJobQRXDuGKrYhjS/54YN0z3s4F3Hy2lvg8hKarkdC4Gy5jTrkNd6bblnOwXodfznMWVtfMx/wJAOXcziTDpzO4986Yb4NBJKL1dx8/+YZ2NEkv8qwyRPvzevbgesPOXBBerDZ58UNbcfwiHHuwFUEEWfgJpqYw9wZ+8AmA3a+zKK5HuZoRmzjgl81Ia34gYqonsxFMXeFkUKsjCsU8b9VfFY1D49FbE5Hb3PHUh3IjFO9cyDh5rO6BzDS+LmL5ffuuWI1w91FKmngcSezeodYcZiD/lzvOp70pOrUE8s6qSuqyMj3UZwaalfIqRao+w4wesu4eE/Qmi57jhrIdldEJ7Oaz32leCPzRR3fTwhYhcNlAVhTwyg8xiW8qxR7UvlkuTLM2+SriB8fLL1PHLScm6ivc8KauwWxCLTjf52edBVnzds8VhiJQdcJVdo/MTkHoW7ekTg5v8vwaT0/26mbR9PfBZmTxcqUcQL1uifOprhFIzOz9ye1VBEYxWtngLUOTXpD0+GRlFpGINoTu45PHHiEzDaB9RBsbhW+7XDj8OjtEZu6pMS/4d0lxZM9VhhWGSHMYaKbr5Lm/zuGA7txYBMxC1ZQBi1paT2ATIYw6AHfngLfuXQVd+vtd6XVxiIsYjIqK+Pvc+BsXBRhGHU8aRYVNoyTHFDFrxfxKU8dePh37cDmdIcYvjxx4AUd0jYKnjqUtM5w7TyNjnH/J55yEsXsPgk8Esq37IIXfNATyFKwtc+gR3Z8TBtB1AVZLl8S3eZTEy3lR/iZk5wr480KjrXT4EIbmuN7CFQPs4xA52kJllG4d4wP3sQZKE14zoB/FqSjMTJSgQsdpWvpbXy/4p6fJo0qvtnCJVdhoGOws4f4dHug+6bnodN1V2gKcw/xMoZVdKZ7ItGInOsy+m6OqmW8yN1+sojY7cDqDOPHTAfWEwcWv3si77NJOCjYhOq5SaShJ9XjXfthBx7/TRzYP9azhvWHHHgM0UM3t2RDJB8hdEJgVmHk6cBZbpWxYtlO8teJOniUhtpZvJuTR0uYdNdlGUaKiIdehjKCZ8rF67lzO5g78zoblnEDklbShXQV3V3NJVQ96dVNRasX9rFvflfPWZibYlddLxdhYgNEnoHgvfQ54iajCD+++2p5/enrAP3hQ1BKkuwWBloxsLCnnTbp2LcM+nrrJmu6i/EEq0BtbpOv32KVVcTFgbWyu9t1lkHDlRGGy/ivj0kZIqInCaXwniaCcQfit1FVfErBA7qAHeKuNMcnSfTkP9ld0lyr+Xfq+Nz0pxqzz3hj9502boGbmnBcBPDVvHRMJJbxz9kzNYP9vJComAF9yTiJiKwZUdaKkmj6By93xz4dw2KkGdSu5qHP5dcRFzLATz8vYsW9pppnrmydTzfzVbAAK/a7IfOOcwdePtHatTiJJ3D7uakVYUaWgjRE4+l+Jge+A49mUZtFjwNHwY1tGZquwgGsgXEL6YD3tgB3STVHaB8QJ9X0jB6izHV9MkRLYgwHLmM4fgQsblgfe+wyOMEiCMoTB1Z8nOYJzv2KNBI7sOLllNnbOuHXMi2eOLD+Zg6sSDMn5fVJvrYDD3RqnjrwEsNex5pUc7ioeXflqQNrnjm6CEZ92Hwf5lTDypxFU9rMd5MO6Qg63colR3E2PMNxns5PwpgfdcRv+7Dscp6By/mfdOACf9O8LfrbOBNnww3bgR1uFgDo2/DeY7wkyco+O3DqB0Xxd4wmkedG9zhwGQ58woAOEUpHAMKtNDBIpZCiT8j+EbxgaeHU81txwIr7xH30X3bMRHbcvFtdzgwF5IGxlaNzCSFjUVRB7GvDiMfvceAk38YIWE93s4rVMD1o5OVOk2lvO/D4b+XAJ8nW/G7K4/wnXbrmt47f48Ajx3RtIwM7nboispHXERSSuS3n4WyIJGqGwKHQw2JL8pZ566W0qg+x7YrVquIJsiHUBCLJgtd51hvVxu0k4K8hyKrYQ3Gbm9j/koM+/FKPgT3pwx4tqnedUsWrxUdS9khu6sMkvfZXgNEdnvoY6NCi4c+lt9JPI7os2IR+njhsHUfpNnJia/05nd4jv+6urwPelJSv8dQjE8gHQL9faFVw5TVL4THHe7prVwiyHNtHHmQdscexfYw3OThmaz78l4qdpBQUBz8nw2XDsOe58GhJcMb01XyP/NWHLM4e5oa8bbWMXT6p08uAIvaVMnq8Fi+NkQSNiI6xRzk++LRUb+M+T+riMfxeT+58GeWWD3/b4wUmp393OJKiXnnqwElP5Of5Po7hrtPi7iC/FA48zANgGbHO9N50LuoovUM4dcNJqQpSdiTbesXTgQ0n8j6L8Ml04ClIbuHpfMNVlHeTaGRy4OfYoqIi74OAKPj7BJFvwAYWS5XUgvfk1qN0P38fvUcobnmFxYG3WEzklA+qWsdLx0a80aHzDgd+/sSBp6JqyfEjrrw9FdrNHbhiqcdwYM33dIyQV4f7jdHkLOcW77Ru2lF4zr+FA49PrCtTZA40+MsMdB3Yr4vbsKV1EI5jdDOaebhJB04VRzL0Nsg6HqoN8LkI4H6I9+WaPfzuGEHz+R2X6/CTQ5B5RdxcRgvN90aBAzxmMs4dOElNB0JFbN4hA3wn3dEouSNjNFH2eVTZCt0Flp2yoZSOjPH3OkKyRV2+qwEnNHA4Sp9L76WPgjSruXk7sJHf9DN3HP2zwrUO1K8TL75nzQ8kZMPQknGkewB3Axw3hTVx5Pcsby1dSGeksum3vpHupWcxxy0q6Qw6JpEsvfJzDRHy/Pc00BNy3Q68mMsCug8ppwvWqp/7/L+dAzu3n4QJhaHm1ezARYy5mWa2A2teXI3zT1Hkf99MGVDRubeI1KgIjhlcCoJ4QazfhGS8IOZu6lRIFR/KubnMY8y+jnOH6D90hSFuLZetmgdhh9+W9LSPGH4ZojDXZT7HbYMb9eTfDnhqaJIFwBj92DLS8RVZcocw6mZel03x+Y30TvoU01bg1BPNg78mT11Kz6I5NMbMhWtJn9eyjFd5PvBSs+nH9iRTz5GfSVc8YB3hp8QF7xGgtdJLmuotd16Epiy51To4b08oeWf9WTvNvuygTi5pS5kcjd3FFnRx/TI2SHPjMVkxfA/BotgC/6WMT7e1V3GrdrgxtHKG4E0cHJrdTbt+ct76nqiTKMUoN383778BQO8oltKnfgdcu/iMIlKP16Wc+3BG4DFusYug1IU8yF+5B+U8PKYDv5feSJdSz6lW7rCY+cvcV4URVPyleLJbmofELhbUkWIXBPYi4vYAKXaQvuU4m2EeBYYwO6/k9M2pzC0jHJiITbnIiQOXdJSs0yiZDZsu6MGkNct1jFrI6WAJLn+QBulViLG8CwvC+xBnLtXRGGrm3jKE1eYW24HtXW7Cp0WlHffhwG2E2jF++N+JAyeyz6v5X5NoG7gfkzoNi7n/Gzjw+CEHHp84sPF31gzOhYaFfi1dwWLWsRSzIYOk0w5BaprlHud1Rv7JQNDzkW3c/YkDa+7AYuPfSW+kb6RRuiX5JHM8BOKsqCkV7mE5RJZcCe77eOQqMnARxOEh3iwsMvAkJnkvPadzqaiADbjTRgfqgcXcgfehfh5jzVPnOsSxqAP10B6AUAHEN7xecoxtbgIr3fOu744XNCqgmHmYIk5tsBXagY/f48CmCtOBvcI1O2KDO2F/UzScucUU8r9DB1YYwwnTWMQj22yqiCMNsPU4l4IN0aXKSjfbiIobSAcuIwklvu9jE62fyCLkdyCrXrOxBVvhQvqGn3JlN7UiP0Geu+EdtK6VphmBZ0H0TynjHUmt4zXFh4gN99Bsn0qd9EvpijdlTBZ3FtxKGU/Qz2PXEPZo6Ozd6LjCySabVltKd9IZmPIovaXtNjV+NpwkO/E+G1baeGsgNh5gK02cT8noTnovXUmX8UajHVGqkM5gAAQ8fS/tOFu2juqiYhbL8xQVktyBg5ynMPBSEjzalk8/g7HaQgXmgQHlPCNM63PPahQRjdw96MhQA+dYFtLvEV/NLYzSNUxzzYsFHqRvyPhu+TgAu+eg+VuqFvzwJBl/Ed0Mm0cbKb6O+yznNtOEkbTRXRvjuL1Jy/bwxCOTg59+8T0L20pr6S3xexMCkj5eUN+EJMPvzvN0/RWUiF8s6wNYfhfNjpzEKpjjiRwdsMLpNMQpJZ1L15jLeq4kdCY9hMTCcuSddA1abeKwiIG7OZdG6X+U3kqX0lb6MgjUpw68nZvaUwdWdCg6LNVPXcwNdEFe23Le1J5uVM1p6t9K72LioScXHCgZrf+e/HkrbaU30kr6THoglq2i9hpiUHLFMO+R5XrHXa05Zb2bS8oWc+LJ50SueMfwkuPov5bupBe09z0C0kgX0gMDWhYSmLyb/Oc+UsyCLOwXw5kPOEKWr6VnkiAcF+CHO3Bhy4RVngyoyKcjM851bKiCPtkH2DOzYxtoQ/Xli5uodeVTxvR/6kIHPOfsSfo2Iu1CezOtwArupA1fqGPupOLjmnj3wcj63M37bkvW4cCeViDbyYS+e/4dEoICs/uGptd00RQznDHN3nDu62QN+3CVLFL3zB8cYU8LQrVX1q+zXkj/XHqQ1tKN9BvePXD9b5WBE66ZULSJuCAe2Nfd/Ds7brsBnnxLDD5GITJE7+Oc9RT16166xV6/ku6kc4LxWvoJJwcd8YctVF5HB20EJTfS58SLM96OMy3FGi+dnvoBm15Izzh674YD786l50SlPSlokn+tglsrwL4btqNgT91jWpDoOmy9kq6lR14AuyH41lz8LT9cshQTTXdBGHJg3fGGhjI8cAhh/Th/Z4NTohN4T7jZkfe6eX3lE277yNIVB/tbDlVRwOwiirltXEuXEP+F9EbaERAb5tOfxzSnmArNA1XWCLxGbm+He++wugvpWaSfQ70MNn/EpR4kxQkuXs4x/MPQoQiJiu2ujg854bBFHV6EVty9r0fpnfQ53eoDP3Y+Pw/khGGx75oRdyWblVcmTZMUPm8mqYA9L+CoI8IX0lvpc9CqIVQ5l3H7MfccRWf40ca7e19Km3g79D0/vA9RxwgmWxBKl7SI6ziW00qDksXcYhdnUTNYSr6XXkqvpYGAX0LSveA+9zzXgnC4mssRk8JbxCJ3EOfvUPE2kXm/DiA+ErTGedIp5gld/JNlYv5ymh7nIz2JLVO/kJ2kJLDyJ6f0upGupJqYd4+LZ/NpmH/HVxjjnn3lI3HCKdWvyNnM9f3GhGXQixeSwkgGatfZ0MBI8XQfOrp04O5DDjzOuZVjgOm/uQMb5v5WKqUbXgJwJ91LdyHDOnHgk46Vr1/NH60kjC+Cw+rn2kvjIVFFuBI1UL6WviZQn1D6BT7gVvZ0htgNcq4phN5K76VK+gTWTNEQ3kJa7YGhIm57ersj4TasYTZKRIJexDoIl7jnxl5KH1MUNeHAz2MKy6CiBhqeOHAbRLsj6fSvUwG2ZgJKNCWu4zULmQPqeBA7sEn9E6Y2Hdi+2gemShc9QWInDuxfH+YOfEEKbuF+9GTCNx34hNU9odKHOA/R2eIYMyh+X1vJZYX32eeP3MmRmrYU/+ZuqIu2dSQWT7gUP+jA95GBk4H7AQfOS00r8qW0kN4Dtm5ISicx0rFqeLIBimS7iC1fxF35h9t5gu1YB3c9vKaTY99KX0dPOvsIBkY+O3cqYd9L99IFbnwnfSE10ivQ9hQLtug3D3jaPT6ccOYMS13GeFSCnWw3LMIr6hBS76RX0msOOTHb1qCBtmmmjHEVWzmE4VpDILZyICSdAaNFVr+hVVfS9lp8qLXknsYqHLj6kAMXc+lwPQdByenqQw6cNPMQPn+GXu0RfWvzIQce5//t5g9SzR24R7tQ8eyGOavIecnKVJSppiUe8bKVtKoXAVzq4C9HvrOiRMqQVcaHCEfxsKuRqH3UUdGBxRDQKdiHOE3Gu6KgUPDHRSxSjf95IcdwzU282tCGVsUmFIEpnWTXwUROiaOYv3fwQfot/JHmIa0MZzKvsSWJF2TtUnoj7aWPpZck633MDg6wP57bNutRBXnvNoZlABZ+jLGYCj6oiQF9kxtrzH9JCh6JDQsE6AdoR6+8ZTM+/akON5o4rK+wk0uplO7pDg68B8l0b54t5J1SBIbxSRLIstR6QrOiVfyiot1dzEP4OA/nQ+z+IQ58SwhupGGzdALJDOMej83bK18+yTMr9qKI++l4ohUqnZFS2l5WiC1PKxyIOQqu1JTk9znwisTRzZ/w+xw4D1xzG2JqsS6kBwrQnssevseB3as6ceALcoczdR1/L+J/sxFnl97GaFARyz2R4n20jr1u3my/m+w+BnUHWEPBBN9Ln0bbwoWvCZoqRjrqeDvj5DyrCO+Kw1wKgmAbgdW0sScae179uOEiy9hcvwiiDsv7oAN78ftY24oW5BJepqRCuMNkLdR2Pzkd2InVt1SGZ9pPPMhSxl6fAGWFnfy1Duw9PcTbK4so1b7PgRWXSoFlHUa7x8CK+Y35ELPk4MbgBnzWQhvC+t85sHe9QplwgPyb+kSPgTK/z4GX0bgyXvkBB04nLGJFrqVaegt7qnlwSTLN2/NBB76Mo5H7uJOSp2iCcklolfYhaG9jU0nfBHXt6i05wDZ6cLfwgUWwQG9Qdb+WNjQgtrCbx+hhKV5MP11/TWxeUBW1c0K9m6+D/7fks6ZW/Vt6TJtoo4zhKjXzDQMlQRPMsRmLLCSKeaPnHo7c9MsNwgKr3MyqleHMxTw2aR4lNXe/Yq5nKuNmThoO4xMHzn0/QcaHYPaGeNITBx7jXaZZQCuG7Nxia+kEVXMwu8BFx3k0sdBywSvcjQ6+O3Om7iIfu9jp4AuWIb0xEs3a0BMUJ840hEsVsX5dPFnCnQpiZcOen8dLlQf6KMJ9TUJVEfMdu9KICj5ac61tE2nXlUMNDHBjLIP/VIb8SnorfRo7lp9uXqyPxFTiPRW7MUnMbviUS65/oI/1kfRS+ij4L4duQ2pD9hrxxioKwAGyeerMnSOemTzmW+kg/b50yQH9A9k5BZBTh/8RwN0/QT413+li3mHk6aYafFKJ3CPemMDiBnrO9u6i2+nYRUIXxm4Qkt2PFTndyMp2pYj9GQBOvDxBZsV520ui44pW4lPKOcljxcfZfZJFdXkzhl+e8R7bY2TRBBUTEjsysXKM0PW7gyC6+WvhBoJkHy8fsgP3Txy4ihU39CnmpLov5UZiRfxpsLazIBqNB6ytyciZrKdXxw48EOjKMOghjkxfzOP2tPePsEhDoEOHwSkB/ZX0jnZlN+dcRph7E9gtuzIlnSuSzueY+DmNG4uxKo78ek4X2kKuNo5SWLI400aswtyN20qw4EBY7HHRb6RW+gPpMnTMN0FwDizLjtf9WquXDXavrW20hjc9wra0zGI90Fw9B7gn3nXQL2PHGzJKH7ucP1kFPZ+drDJs0ujoxIH9NcwduIQpn4zkgupi//0OnOy4DbKKIFKw9TnCuECZ48NPTlZjiKs1RPkqluK7dHEImcsYZ1AsCe1txI8POrD3L0tSzX3MELyMbO82Rxt5dR+Ebu5BEZfqIgPnRzvx9vNcZDGdtTJlNC+q+Mm88yEcZsJVX3CSzhAfYbPYU348gpYsZVlJLykHv4SNHojEK9LjntbgSyBXH+cgOpCV8d8xiISaay4xOzvwJuTX76Ve+glat4Jlf5hL6M5pKRYBx5bRBMjkY+BbEZFNo7UhF1lG5V3MJV8egK1JJNNDubVnB/ZZAFWcVL+Mcj+TXkaZEwcuIw8rau5rkMsQB6P2Txx4jFxVzMO9KTWFqY8hByxQIp84sJ5kqTHIG58hNUpjfWRM1M30ii1aBPE5wl/07KG1LYb3HZboZFSGNyjyrxvLIsYuQym7iJeOdwS9u1DduwzvOFDHJuwAaJRfx6V6nCD90huYzdI+UmcXWW+Ufiv9Wvo0EJj4b0mdmAj+EXccALJ/KP0IKWaNyuIAa7aEtZ3UWF9B+gwUPkWMAPYg3RX2W4YpdaF+t0jqQHj+RlpIPyKidGz6YxDYEyy55Xcd/4b5wGJWwVWAeMeDx7kItiKVDJHKfQWb9hia8vSzIQKtfzhzQg12N6A/2aNhvkd2xOzo2imXIZI+IaTH+LEy7qGmAVLMn9fsgY3fnFQL4WD4YUKjoEaeCNB1BLPfUSf7WI6B6N3EU9XRIGjDgZNUqiOvFeHA5jvy/BFviTU6R+kFnGUT5tLGQQdFUAYujLxMmqfFPnQOXYRKsUwlyXfBYvVojr2C3t1pF38l/VL6jB+u2dSkSITDHDnp1U2659KfSZ9Id1JHm6xG+nwfcv4J777nDTI9zfkS3sTVThmu65hYh1WNkXFGovc3aDgvsKoNH3FA/vdMqpggTgfuw4GT7s2+idF2z4m3x4jOJXmqnKen9Em7scXl1Zw+s/slMBO3cQLM/loHNrxxeMoK+zh3YM0duI6Hyo3wX8xCHmJgzypAM0BFuIaiajLfsIpBk0ps1dQrMcA/BnR2UfvUgZu5Aw+RBPTEgau5Ays0qVaXDvNN6gExmisKqvm6OwS61OhjrZ0cOlbK25/kZQU5oLla2mHCYOhr6UsYQYuxxjBiQ8aeM+y2cBSN9EK6kn4kvQdxTFKBM5ynQ/IxOfC1tAUKJztnt/FTK/Q2dbxsxXWFGYWOVnQlfcqWTWX3PUDgQHU+lYNjLEXyQpqz+/7+FGQX4Lg7iKwSMFqGoRvE9REH65DB+uALu98Jk5nM9BANwXSGDzpwOffGrOzTgZdzblix3f7drGrKKHXs4bZzQ8gh2GPFmQhVPOMIElRkmu9+si7nN5vK2jr23D/TB6wcMQdFZV7EDjgAar5RBhnuHJbxNNkx21G+WbeQq6JwsjGQ8UDCbcM1rfxXbGA19+wj93DgjwPgRI5cSHuOlT/59CJ81/F/L71nWYq4t7X0Ujoj69XSgWa9u3HTht8wYdnQlKrZgiJSnuZRrYswPH3t4557+kbvpEr6BRMKZ3Ad74IomJivIxDQbbMiTN6nGrgX5YKkZyv32M8ifjJjT1aIffzvCZFio0o6VdGMLSK25d/TiRONaJ6Cpk2cBDyraPlUIdFJFz+ht/2nipscI/M0EAgNe+S3C/huq4ht03+X8Y4bZcY4ceAyZBXGqTZK4cBWRBmcDZHR8iaGWLI+2G+Hvj6C1Rh9EOtgrANOutE57hir6bst+OgOIFjMgbj/uNTex1kTBT52BggWz76W7qUvEWaYyOsjWvq/HTMZkj7h+pPzvELvVeM2a1xlwaesSIUdUbch9vYBjU6YxDGi4TGoCEfYDoZD0lsgwRmymYGzUHykzoYRw4raKx3YzO4YJjhSg60AaY4pbfRCTxBn/q5bOY7UttoPOvCIm3mMJ43hhx3YsdUsZwFHvgAwWMr4fQ5cxd/Ta7q4GTvwyDUHAHAVpxr51/uwpVwBs5aFAsokH6yAIEXEv2LuwNkx98NXsamZlMT+jbH3PcHb7Gkf0c47VMT1T8TsWdQmaddGo3pa0wNjpyZKTb+U86HAMXKm5tawJqnu+CzHL+EebkZMDvwGamLBQp1F33SPzfmkpSKaBUZUjnF9TF5mL9amX83Zgjag02NYwxmCmUL6A2nDqPlZjK/uSJhLotgiYm4SLCdGUmCjK6YbbUumNJzWDM29+JasZkthnDuwf6XDNg5PMnYxjykfdOA00fS0c3r2pv8Lol6mymHuOw5G7l4lz1aGow6UOgdmVev5fY6YUxkCEkeryRLG78J2Ml4N7IOL0PGJeKPC89zFKdmTxDH5NGVg3DEcK1WXY4Q1W+i0ORfz8etpY49z/J3B2Qna7c0xIHgdNzlwFM1J2HQfxQrdgYz8lvnMtFzzVkPg1zvGbl+F/2nuCgbWJSO7izg7Z+rirOdS/+3c4hxrvVPmaM/gKPaxUxOeO4uJqSuuv+bFZ3e8RD0T6DI8rwDVCJLYtXaDeHLgFIE1KoN9iCcTwrYRMt1oLILz0vwgn2Jeq9oqnFKG8OwTv3/66bZJ95ltRQaWeS7R+D3SzWRjFMZcQOYsWJxHPsJYt5zfjC25AZI9suApE/pdGV/G5ep5HnnqwArSwa5oeJTxP6F5wp0k4br5Zjhw5ASbwtyT4SufOHBBLWt2I23dcrVj3HNLsXgMFGEyro/sNnVYfgMrnLWBjWaLFOSek3BfSZ/AB/kU4U04gJdxybT3JThnHWHLCfcwLx8ruKouAsqUjw4fcmAx5rzBgd0uXnNgwAPYvYxGxAI+pQp/cwpLtxFzJB3NZ4P4VSgnxzg2JPkp6wyPwd2mHDQXPw3AZZ6bJInvnzqwwpPTgU/4NfvwDztwAgaLTFwo7rHzZfSAqnlOEi7WRZlkBDXwiybvvrv7JOpKgJf5bTtwP3fgE9qqj7Ip2biUCHdPLnWIizTBgVRU+t28rDxx4AzbGWgfIzSc5OccTRIlQTXfgOQaneIknXEa5XY+FWFYc6Tpu0M2eCtdSR9JF/NacErml7jZZDqTGPAZ3N0OGfqSnbbdJ4tQzEOJg+B0/ND0vPvY6AqCuQr6zpl5SSk8cAJJRYZ0mDCUHCK4K/KDSP7Tb11I78jAq3mfrgyw42sa9x9BH0kHuczzVzXPyUM0sLr4xacOnDljmLtAGZvbzzNwfmIZZpD1ehGxw5XDEQc+ycBVBC9XpN387YJ2YAe4rt6FyK2IGYRjdETH2My8Nbtvw+X30SLKFl9+vusdE2RGA272FNHsEsDugH1lAXuIz0oOpSKDmwpxjy7PLndScHbrYmdcLaZe4k76DRywsUEWAAeMfccxuJtIMWOQbj3p1dy5Y9iCLVhDUdeEJS+yP7ckpBtvDHB/F/zYMXiGyY5+In2C5qvgtJtpVS8IIUaQ098XUbsZ+JrC70C6JUhx0pGeB+bJ2JO1YfZFnQor1soGdpIcijCVRRSqTmFd+OVJzj0hsMa5T7eU/w/QFydN45M0nSE8S/U6wue0QRM/+0DSWMZZWHvQyAC/5IDaBeRwddSL9q+VfiYIx0jbvuL/n7X/fNJszbL7sHXca9KXr+v7dk+PH8zAESApkUIICsqEJCpCf6k+UkHRBRlECCQAAhhgpntm2l1XLivta47Th3N/a9bJrGz0gMqouFE36zXnPM82a6+99nPcubrjwGXI/7s5IKgCamjuwMY6fRhitvXsIUVEHreCE3Xd4dWThBavt3LAzGId0LCdR/gMBA2lWMts+l/MHXi858C3zMyd48DVPJd1MXWbdz2ScNc8AOkw2o9lPJFNc4tchLEqUqGPmXNgnVbyQjqRXvJPBWf6tOHAyRk/5MBDOICpwxazG6UNGuIqOvDj3JMLbuqOA5eQE0sww/CAA/uZD4lDunli/aADpz3fcWCXOiLot5r93HFgG8AQ9+hytJv3wK9Z9mXoM7eRD7KfdadacNrrRafT09SeSNqTAfpY0O38htOBK1BRixXez8DpwENcqydK6hAJNJw4sZ/b9xCLZTXCfQdOJDSGzn3KaUviehNKjCrU3po7wxIjmw4b+Zn09wLG2YELHPgaQdVbHLgOUbzvt+AojFuudoTwmURLBQxuEX5eY+tG+eW9B8UqzEihYSr533PpI+kFWL/gQNct4L4gIXdUBVU4sNGhaRIfY+JYMy3ydILbMuSrxTxWulluRZ3trQBALwPEKxx4+qlJ+I5iZgKq2MeHMnB2W72ALda+C3rg1zhwFnhpgU5mHbTkGA4fyFAbAACAAElEQVRcfsiBh5Ab+3q8p77sXurrkVXvAy6PgdXbYFXT9xt0CJN5vo0GZoOJLVAmKJysgea8BkM/5jXJUFjmY9GKk6kvOM3WmGxa4wPuO4N8GdCkiqjg0Oo+wRlpesUeThvyTnosvZG+lf6QBs8GVlVRBrSc4nxI96gJEyhIea5xXIdMSeoayHsQBNZeesbFb/kcRykfiryPIZRLqksHgAqO+SDOJOl51MtGOiUw37AUT1BmKYh2Eys1R8H6XNoxVr6I0ycq6UQ6ojMsqGuXaorgtKYPP236hSROM6yDldtRFB3GrMEyWjspkXNoGSOWDODagZA8ADZMok97uoWAO5Juw34WoZjYxYETzl1GQYdUU0OkzQXm4TBjoNKys2JWreBU2OPp900coaWIgS4Z24haZUSABuOb5m2+43g8B97dPf8ZIz7XNBf6OILWxMGklFrwvbsw4ibIi8PoWzmtJ2uwiCDvZTLdsI+QsQ+WberaTIv4houvwHCNdCH9QvoP0Eae01ux7MRU9AUHjJ4Q1aew6Ea0j5Az1b1Dp7FDc+IJfk+JXgM8vLZD1ANtZIp9yNcKjnBdcTx+jQ+0UUZPLvorzqF7JJ0wwDuErNFf3cw5+BGjdOKYYsQKf/BGNKFo3Qf0mnLoOlD4ABg4YwvGKOsXkGWV9EQ6ow13Q0Qwk+F4bXWAofMyjL+NhD7EURBb8IkTbh09QUWPxcitCk2UOew2NLEm1Ke65bt5dbHnW87A36Kt9miq36r52dcikB8S6dckpUvpIiYylhEmF5zOvSYujvhzy8RYCSnbxTksT9jXLUZ8TNkkwG5DH7cO53TtezzXzhotOXK7K2RJYIGZ7gN0ejhgRwLfxIVZSnHB9WylH0jfgDuPOay3R0DsQygfoXtekNac6gu0TQU8RsG0tm/wIJD6HjmUa6kibsHqc7u6C3fx+bck24N4JNJkkVPQvGJlLqRzfOOEN5bzbuUeaNuzbtV81GgZyWcV44M1vu0++m7+CQUZ1Xz2tAWPpNeRD3ZspacwCwLEAgxYzwU5CrFEGfMlHmqs40Ejy9AUDyyCOzAnhCQTyQv+KXVmFVtTol01y+4OXcNfLrg2Pwqi5fJ2XMk1Ll3XxTxsZuNHkW0VzQkH3lSsjREDsjm2jkZLH/V1HxjFh/G3hLg21ikbJMX8Ct3rSuJjsvSbcOieKFoCG9JsO2JMF0V9Twwr4tZqjOKVdI4hGLqMgK3pEy4ZBD+UToNu910UAMeM3i5pW0CS29Q3+LqRieNWyUMSHPwNSM5j/QUkPeb4nCWnjfeM2XRzCqKGUFsFaF6EAfZhISV3V0cv0KjmDifooy+zbLPC0B9o8tQdx6SZmjiwKwVZCZnq+WcqTMIMUYO7WEZrMzYOtnPb//KjivjGKr7axGsRtXAxb/wWcxsoomHp7FxEF0LB2SkdOG3Lpu9b7eadC5cLPU/L20ays00vQyk38Bo3AtKBd2AU9yTF1ddYw30HzuZRdvC28XpHn5bLM+/jbDItzY7c10dsH+JLJ8Q5OXAJkCgCtiZRfc6JPI+i4FNsWHb8bVsjCGREbGkH3oJtfPqjW+LX9/oXzlA5E19SwNmBb8OBd3MdsLPkAvv2/47h6prfThH7Ze6y+5ADe050iODbhItWcwduw9XTjv05Zbi6QYvriiIWuY+lLuOoVkUFn2Jgl45W49mKkip+yIHFt3jkNDXTH3RgBYyuI4sM3FR1x4HvBIbdfJB+T7NpD8Da8vW30jvpvXTFo4wyXxmCjHjFPmLSHQfuOKuhwnwzTI7hwF5ZH09hqrWKrmpCCa9UVvk+KW+iqm6jT+FVTslvxSFSF3z7MHdgu/EVc69LKNiSjSxCMeKWraF/y5rrngPfUnJZS2AJ8mUsThWf3/IYlAbPryipJwd+Hw7cxSOyyznMXdGzdNesI3gN8ZYy7C8duMAr0oGNC7IY9Wl6NuiHHNi9S8E9VNT6TbhTPW8s3MnA9vBVOMwQDmx7M8NWzNOYoaJDRsXNZrouiSPd/PPvO7BL2cxz/r2J7Vqq6+reDtz5VMcNpzN3ltchmD5kk5cR8G2npoe3oVEsg1fy8HRG12rOFBaRvxJSl/PMW3PHJbe2C0RehCSnYRlWcJZW7/dxp2NQAVMh/630S0lsiLsyQ9Q+76VvGZo4I054nzW/F8UudDCDB/HgqpuYxVpAS7UwXEuqti7OIrKsoooK9Eg6YujokLuemIpjorJj/orIOqDBdZPZy5unHDqclBDJRo3dPGpWUX0X835pE6HarrbjXtJIRkrLmsCzno/GlXExadj+yS8q5jnRr6zhmB0Y7qh/3aIpouSoyUgFe+qkrDlAT5SY7lvOM7XmlUBy3jPex6FyoIx3PfTBqaQKgc5tSEGckob5WyzSyg803eDPNKZx2W+JWHqvXdeOqlj6FxEq03pMzZY8BPuAZe2lC8zFh5P4Kyp8eKqAf0kI2McmpXD8UnojDTwNaBUfZePwOZcjVj7E1TpX9iGuqAIVmFpehRH3rGGPpw2c/Txt/DF44I4DH8UDEYcQNlU0pXdzB85EOcQipM8Ugd3vO3AdMxxun7rSuO/A2zgj0w7sUynM4o+xwsV8hau5A9v+06Xt2I6wVaRUdww+6MBV7JEt3J6yiJu9czGuV8coHbuwarc4u+gDVIplytq5iYciuDcsltK24hJhz2DOGdmjwv+rWJE+hsmrkEYt5myoL3rkXe6o9eG6zrdDIFEX+6eBz9r5qjlGHIQ8aDLQt9Jb+q9dlE0V3zVZ/CvpK/7X7bp04Enk9FYapVPpBTS/HdiEUj+31BTPLENksgkIWMaytETiRbAlY1j5URyyYQ9Zo99chAOfBkUx4sANdcKaG5y20h0W33sdCS1ruwUb18WWGUDnjjuJZdAXvGISGEU48ORmGyRu7l6ZdMoKMrGk4u13vDcRrdllhQPbHcQuZM1dsYCOKT0mlO3OBJJj7J2tOtOSgV4fDlzXlWY/1dxgnUOTkDYkqqFpW1zzCZ2JDKp3wsgYKHCcMyZ2kQPgo02mmKvvivndK/C6grlYRPA3EO8DpK5jby2B2VOB7uZ4scLobqSvIqGX81g9xZJrJBDHnBM3cOUpC0ojHeZiYqOOEeLpmF5LB9dme/enpTplMvwL6Z0k6WPpqXQinRA1jbWKWKs9Xegj9F/CbLv4ZOM5l2mmETP6GnpZdF7G7btvXMVHNfOsYhPax7eMYY1j0IhlWIuwwz6uNqd6LGtqCQA2fhMvinza3gO7DrfdfDcdw8xYFffAdFa+JoubeS4usP+eC3ZR9H0Sq2J9c8XtWllsu/Zt5oW9tZ6KpLmP9G20boFlFREmWwYLFFrL6BsbZhlha/5Gxc5N3/UoEoSjluKSRC14BEGwld5gXnkCrKJRuUCz8SueV+THRN1x4Ft6yI+k41gc8xqae76bMm4M2ogH0MIIw93ClCtOrDP/WGDue5qK30lb6ZH0MQfnNXGYSf8hBy7iGI0xgOOIqSQvaST9axy4i20yf9THDfYRLpPYSgduw8CS2dxRdCUAyEaKy78mnMfcwHS/28izfVyzs3D1ax14nF92GZaT1JjNWHF5HcZZRGgzYbOPt08MY3PHgb2IdUj5cqEHIugOv/LOWXKUcNO+1IO3pt+0kcMNm2zEJd0KtypKlqmJ/Once9+BTSCcYaPLCNtlrLt4ovURhdQ1uh/x4AdjHVOqC46M+hYx0zaIhXRgD+A8kk7DgR2Vx7CwITjdHSKbNtBHjcRiE37uGmYRjyPxsNX0mhNpI71hatAFQx2b+EEHHuNxJ1n5OdA3EZS9I0Zb1t3bgZM69Y+NPg+4cAzqwvmHkNyM87f3jLgfhJo1TasP3NxENnLpvI/DHNOB+4gI9W/mwGO8xS4whAf24SmaT4p4mHWIvO3fT6u9R8JVSGWdbGiSNeJ9PuTmDhVuKfOEq06lCw6BLalWTKkO82TdzIOzw6nr3AXQzeo+9wm8gSPZ5z53XsfpDdW8lZ3K8Kx3HNVbNnMX1UqNne6Z3X0rnUuPMJOcn2mj2faC5+Damqq4ZQvw7LttoLEudt7NqguQfRdbfUcIMXE9F/T2LqUrAtVzngXhcXyTTY75O3QdFYeM16F4tFK0gydJxWAXTjOE1zpETTa4jeGrMvZ3BDM0LEgT4babsyJD7Gwbsdlxupw7kzNGEa8sCAB21jutnSQTFH9JQNzG9fgCinhLknf246wEsqHVx3HpWeHYuvq5ivWvDToDSBfuZ+Z8HwC6CssuSTFNLK7L+z0CgDKeoOYA5W9XfPhBxFKHle6eAw/Rgy0jay9Afuvohg8AgJ6UccRxgzWp4Za+qAmaHbs1cC+TcbyR3kmfx3J59fpQQj8BypdxnWXsnyUlXcwfdGGdiuhdx6n74mOzv1+HD1/jxm+kV9JS+lh6hhp7ycs+6MBXsO8LPC1H2H2DmSzKMJt0YKMsg2NxF0t2vIgMsWfl+zk5OMbuD5FdHPuquSFpbid3OjXpwA7cXQCJfHs3D6b+lnTgNrYsvV1zL9X8S/OPqIiM3S1KsWt0aH0P7NWOSWVAJS9farCcjhpW3EGi5zFZKZBN/tg82J1lKu4ttBU/RTw/yo2ADOoFF2PNox24gQpbR7fSV9VjNCu6v03ceAoAljF60wfHKelCupBO2cUM1d7RUXoqPY3+UfYjfD2ZQu94r+1V3NpFpGgL0Bc4g/2hB4u/ld5Jb5knOpYqBuMGyvcFuz9d0i4eYezJvCbGKYzyiwis7ujdcWAF/ynCwS6evbfgvyVL0QBhjRT7iHp3zGaIkt1zWEmW3Ilu2YXwR5nVrKN4VdxFP8+ZduA+XGOY377mW3wnFncR4LqANgp62zeY0+5blmWQijr1I85iNSMfDnG+Cl9gxXEv08I/ld7EA01dB1n8Mn34FqWMyZdFVF5tPM46194FkVthDow+yU5zHyrjNSne2UTl3ke+WMyDYRt7kqHollr+rfRzcquPhRx4YshNSO6PYt/si4YoTuiJLuzrDSMAe55vksnXrvaeJd1KN5xAdy5doQU/lj6VfiA9C0a5h7JZ8XfjnGvOjj+gpWCViMKEi4jfXTiN5ovmFNxjuVfR6VkEAFCccDDGQNQYCDuz+TAPEonoktErw1cyIyVjU5M9Crp3i6CfdoGzh/iiLB7KuEJ7Uxv7nl1PB4B8cTJuJq0NoG0nQySN2dIXkSBuQ4Fax6r5i7MzVpDRXW6arUj7VoysFZjRmvQkTLCPgFnEzZu46QOzGiSUsU/OCLsQCQ1z1y2YiTLFvkHq4JbKAQDaX3RFiT858GdMQFp9scV7p9T2jKcMJumYJr5jbVsue+RemtA5WHpqQsKFwdS/XRFwNwwvvo+ndlfSS+lTxCQjzMEHHbjlCBGXInUMmqcDj1HIDnNr/iCG7pjVu+Rdbqob2rYwg8KByw85cKplOkjZTPTD3D287+nAac/Gb2ZykwfcEUb7eZDqyeaK5JG+10Ug6+ctgjHecic2ZUcoXTrHA/7agR31K6LOMpr19j1P8XgyRYx5lTHrlrVdESOABSz9LjQhDRDWDjxGdDDPn4K7O7jzJjy5xshapmaKgFN3MrPwyVsi7o10jlxxjJaE5uXXdOPvpa8QM7X3HNhK7hfSU2w089KdjRnnG2/h3oJUuQu7VOSHgeS8Cv7NeTiH3g4Z3be20aOZ6cDTZ05TKQdcwDraK+nAwr3HMCSnI3tOElwNOKVEhLuI0kvQVg1btn7Age0JtlKb9R3muJpfYR9h6A7BXM/bwxYIt5hE+yEHzp8xXKbglpPqULAUQ9yR76uYu3Q5jwvDfBCnqPcBE6f1c/1YgCemy7HiwhB2Ec9ALOJcCF9XNT+LfMS+FhjRAqIqOe89C5bKMWMAT+P1GJ1XK1FRQSmUbFHJsW5jBHCX5I43dSxb4jPrehvpW+nfSH8yL6bcfdnjcMeQ9EPAAysu+kgTZQRI4S5FFIPJ6/eMCl/x6KQR2ecV4yS33P5H0o+l35OekK0OqTotod6y3bk4DVLpW9y6jUxnSFcQBftooVVhPIpktKPA6Om9u03oC8gC1l9h/1bsptWGyV1U8a6USWSy80/K+swC5eyGfTS7faloUoiFsgq1CMrB0gkkkb2nfyvCdvLfDi127uy0NArGRHHPTfiwP9FR1x1nf6VzdHbqF/BHSTeYYS2hkA7mPLEbN1aGNGHlbYCYZP7GuQO3kBHLiNJFlAQdZN4V7jTdyIYHB/YRSBV/6bjsb6Q/lf4u88temX2A3ZIjLJrYuX4e4/y/Rdifovgro6V1Pb+kFiq3Q7M6nYhyBQM1XdVU/n4uPWaDjoKBXuDA9paRhT3gBKohHLic05RmL7bRAbTbFGE2Y8RlQ9gDvncICtkOnKVhE5c3xgaNYbGWVisc4A5mu+PANvv8riI80FaXDJDwKKdU3/V4z4HLSDBVRKs73qgoUVwNplW4AmzCNnQnA1cg2oIuTNaUidvM8romK+PGnLeXc94jWyQfdOAEl97CBcD/DmNdRshwA0LRElpEsJzeu4rPv+bQA8HPbGh/tuEqduAyMvAb6c95CJivIR14CnyPpcepmJnnFm9hz4q5IjRsqbH7jvPmDI6GKEjcfrplFNKYu5GeSE8lSRd0dt2Pr3DgZYBUK/VWHD5fYwlNOLBbQlVI5az3r+ZmmnTWBLJO0aXYRUdglw9utX0v5tpoz77sWbR0Bqf9OyhAcwfOEjkzcDl34A4keIdgzgyc0uoyLqafp1BxeWU6YST83Tz8KVRVCrP/Po3XWbYkafcEsvA6eOg9BZf3pwkQU8+rA4O/VKp38a/GPTndlLVJG9ncoyxVeFJHheL820ZscF5zTHPPybz8EKJE76G1NlmcmoVd4L4/QyRZhHcqlrkIEVOil5ErqcJeXOKZuXQ86Klq90CUW2aMb7jydwwev2fLpm95If1Y+kPpI0nSuXQKp9bhf7aaZZhkiYTSqNpUfUETyFy4q05nrmoebo1eNiDpO/HMgcREb9rknVouA6qTb8Me2dHLuPJy/lEJshW7nFn4jkLhTtsvKYtqnoIdb5xV6wCKvh5btaH/ECcJWcNdA5Z28w/8vt64fxLKdB2P+fQ9+cXqi2HO+Y3z4VMHGc+ZaO7AriequQNnhHR/JysAL70VOfv5o0myTXBLSjWcmm7tIhqk5hT6kDT1uIq7uMIallhwdc+BywcC+xoY00UFrDBfb8k4z0Gbedq9hVQauPEdfya3uYDJuqb9N/0cSJ9LP5YeSZ30TnokPWMZB6LSDpxzx4HXIRS2A5dc4Rb7u+/Ad1JeOnBP93gRQb/njSmHSneqYlU1h9fJqy7v9aSyfeOGUTrwGJY5zGNxEdRFGfd1J0zfd+D8ijo2Ogm4Mty44nP6WMAxHPgOX+5INOs7Om020rNo++3DLDxEZfFA9j7udAHLkOmk5/8aB85Y28UAdjvfsCoycB2J3Z2CiQDe8kuHlWEe+E34+fPH4BpTGlnRz57In3Mc+Ciu6s5PEYoutxv7uFPNFUhZAPVxIs8OH74Ni+ziT8FjxzZxkIgT2sd47KV0I51RCg9RCO048veOA1uFasZ0gQ1sWOQ6HNhg6qEMPH3vLfDE0mcXdm0UuHrYgQ3fhiBsqvlzwrPwvTPncT8D93N8p7k9jA848MAm+jPvdKCGQMCpylBE8GTMem7Nsb4OZJQAvZCqegwTLsBnUzmziE02XbKlLBrwsOmeLqVL8JZr2ytu4j10owtDhX0V0CjTsXG3YexVQCvHZBuvPSzr5cm9NtiaF8+1jKctmgjynpyb+kNLHl50xSJcke4vpMfSt9I/l34h/Q5mO0oHdM6nwzc2Ed7Ftys2Z6TB5p1vaCm7IOmQZFxKV9J3dMVu4ZinBs9b6RobuWUjDqX/WPqhdCZVlPZHbO4eSXfBe484OK+hXlpGUu5Bz1ZiVNS/u/m5ExV2siA4rYMcmD7qHYa0hUQv4uim23i7Oa9D6TKCq5tDdXRum+jQTM2tI+l03svdEK2nxmceerbDYo+wooEG23seS9cgbtlwVUU85mKCKBs6CYdxhlgLXFnOmZl91IpmuNzBbcI+25BLTFf1fdgxrjVRVePAirsdSEBVnBK7Ry+bwfmIg6YvoIpWWN4W5mUV0yA+hWMIAW4VMco0RDLtNbbehPzfLq1AWv7fPkpkd1B3CAuzHLcgTISMhXQk9dKxdCv9pfRL6Qmmdk3emT72lKJ2DKmuG2cFDlzFKfFWD26j3bdBA3lBX7dC3HxDCXuAcHk1v9ml9CPpS+lEGtGWHHJe2eTAk0TsrXQiPY7zYgrsbyVdYvc+gbLk88UpP+YZi3je2TCfzLMRFyzsKti6qT5ZRhNqwdny0zz4mtGKETeo5rMy7lHeBvr0BIaZvl0Aj9xf8y5NRNsK55+6Exvu1BSeW4TZfN5HV8hJVjhwFoRWeilC0h3cYsDZx+HoEwupI1DyAFu8Q6K6wIa20Zq9lR7DWY7s6w3vcgmy5niat9Kt9JbHLdRY4SidSSdxUrewv+swkSosY4gFVXCxNQbRxU68mbMWZeAqS2bdROxII94bQ5wDNnhSekxnFjyWLqRvOZj5WyLoE5Zlmiy8DejpYNFHJ6uEC3IwXhCVCi5pspsrlCGTHY9wzzbl99ItE0/ZZV+GkNN67msOANpxFPB7qeRIwVo6oZh2CTHJQg4x05LU1OKBFXlm+oozwpMnP1aErX3E9BPpiiTcw1gUgTt9PnTLWlm6U6A1Gqi1TkGiOzLwAYclXYfCYMN+tdJTPmFH7TGhp8d86QAK2EmXAWoXkfYHPnnLvtiBjxAXFXzj9MZ16Jes4irmBP+dBtzkwEvozaU01Bv0chsOStmBftYsxhXLuYzvcbq0HMYNAwv8FixGSfCcqNPj2HZXOvvISn1wqD0+rUjKltUsgvDqI+yvovo25rbfm2gQodgZpw5i+wbNcct40p5NeyZdSF9Jv4MVO/tMVrmLx333kLVd9MyHuFS3BweC/E3kr/d45w2/mTLyjnOAKukR50lO+sOpcfVc+kR6LFV4v8PJnj2tQ9P4JPrqFcX7EKePNnHZJlxM1Su2z35vPYyiS9DjW2fkkcmP28hQZVixix+H8FVksSaKTWviPRHnN2Y1OEZYUsDLDq/dxza1QQH1ROIuigFn8zpy+kghmtOoI1FEcRnuUxagbZOeFb+5mTe0Oz7/e3fdzA8a6nmsUcVZ37vYtjsO7Mv11pbA9ikRHxIMrzHNHoxeEx6diJ1zx/lBW9t5y9uvqQOb7vkzxOckcTbEJ5g2dhHcBV7xKTPi7spAwxPX87X059IfEkQOyODTwZMbyqlifiCOxYE9V77iLyI7+FjAKea/kt7jgTeAuYlPPOaIjzNK5A3Ad2oVfSo9JQLehvRlGzzoHgd+HA3/CoGd4mAuH2llprYLYyjC6F2iLIG/K8ruKXavQwHfEeUdJmxRN/NuWh484g5OEyE4j1kzY9jFUcimBT3KJbiwNrZ7CC1+ySds5tbS8U9D6F3LQHdNnIWSLF4O4mSxV0RyyjLPocq5qjVGvUUFexjgcs/znJuY9/bfFZfiDmsShBXHBi8ItAV1vadpVrF2xm1VdG2sGxmpsaqAvEUwFUVgZbecu7hn8Zu8yCJ82GDdYKUANPuYAGOmEY3B1EX6HLs0Zl1Lp9ymkdOO/FDEDEdFYe3F3IYDb/DVSwi0CZVc84E9GfIGjPgeULPkgUAr6YlUSpcMiPTgRXd8WulSWkjPiDUb0E2DNC0deJw78BBOa+LlEg77IKqRmotvcbw1CH4dMXQR9p0NROf5HElOB1aEgCVO5aab/+s/onqpY9MV7K/toWURXMgO85S2COn2PnzP5x1YQZ5tjSH+rrkN27My2XRxjEIvqR6j1el0U8c5xALMmTEto8JvubQVhFSDcrJmBqYkDk+h74p62VcxRoTcRrwtwhcHPnyM/nU5Z77aANDuECr6Fi6r7e5jxAPDNR+9s0Gw6+OrG27zmfRa+hfSf8KdrrjyYyiFqwAPt/POe4HF3eCsDWrjc8xwiOPgb2nYrKRz6VvpO+byPwaFfweHdSp9In0ufS494xndt3NqZkN1doASbZReEr8ntHPKQSi3hM+GOOT1tzTJ7XQXyFmiGGAYOy3D5FcxirYOX1yANQucb4t9DgFzzdKU0vNInbZ3z9DaOVzvtYHUTaH08UzPO8yU/9cViBuEW4RsW9COB9gKVn5F4NnGhY2xno5z2Vgq52nHxUDpgGBAbeZvzeM2Koq5Md5fhJF1kQSHkCuVMV9kRfWG0yHOeNcijn/PrperpQHM6o5xEV2hMvJ1P5f5u32zY6sSoPteloBCh8GGU82vYueqSJ0T7/hL6X+W/pH0OAj1imexTbW+L2xDWDRJYKiw4elmS+mSw2fdeH8rvWbRpjLoUnon3XJA7cdSy0PsLki+T/DtM+kgZhpqNq7jUpc886WTXkQwLZnASEZmGe3ZIlRx2dscQ+Pu/o5oEXYku5SnJ/ArWGcFSLMxOAoY6Gs+e5ZlZREVav6yCK9wb9/+o9Ad9UEnVaF3N+ookYmPkeT6aFRVoZVYx1ysp2lzMesA0/mXYa4R6nH+7wHEDR0vO3oFNzIx/OfxxG/FlLX/V/PWwwJrXgfgaIjlF9EUcCw3V+Auwxjb5hO8LY6r+NjtHHaYzL6al+ll+HNiZf9vF7HN+Gwf6s5VIN1BeiR9K/0L6U9osphzOJV6gIa5yTYygDU6DWXZFWjiCgeuGLN4L71n8acG0E1Qjk+lA+m99LH0HQfGCg71Y7byeu7AbRTrKxy4IBbswFwH1IUbOkEeWRjnFJOCli4w5YrvcsXsDt2A3TcBTJyfy4jjCmmH+L1FgbuIvDuGKa3uSH1IItTsTlrGU3ILCrCeWgvjU5tNAXxYYaimkfZUJg03sojM193T+TkbpRZwjLjgzDSAarfSYX0QR0Sa000lThFpsQiUrFjIRNWKrF+CksUn19EoH6mPlgFoxnBH07d9hBYXWXWEnBqTv1OVKN6bOEFRGt9x/ekyfPrEPmLdABP3iEL1/yv9a+mPMJ+e+qHCdm6wMs+DbOnPFXRlB6i9hstecsHXYIADdmwkPU2U/CHc8w4Y/UR6Jr2QXgKI39PCXXAWbQtMqhl+ntDep9jIjvS3xi12gSbTilvg7BDOUYRgTRhgG0hmSbS7BWy4KXIY+e4YLUfJBYscPTXVzog3V+DXj4lhNVrwbai6FHfhe+lC4eMctw9dU83zK2rpzVz9uMaAnSsdFVJk4myziueo3gkJipTiitEF2BBXUufrTa+0wd028zncbTwh03vWQ6Hfma9yuilYvts49cgj5ge8tyO5m/zv57FjF9JBseJWV5pUXsRbFOG6jWUq5kNdXm5L11zlLynWdxHAB7jGpXQi/UL6V9JPpf+I6Or2RyG9woG3wb8OeEszrxDe85jQPmipaWrwUho4DLKjKX1F9vxI+oiD6ibU+0x6xOlbT6RCupLOCRDL2LiGAceCQHMVKzzCLrmITCFNvixTUjKA6efWvS0gmw+isTBR4JuI0ZYCV2HHVmgoHhlTR3fdMWUXajDPN4h6aRna3S5uqgz9p4Jcr4Pm+Q6DNypbRclehFmKt2yj9lvG+uQSuQfqOqGjXdWFINLKPFPR3790FwVigd/uaF7fkCI20gm43m3anN8xaeBRfLczj0huUxF8iPP0ZLMBnsRVziJG6Fy29jjn9PbbKDJyHb2dLiCKudJagacVla5LIjenBpJGGUOK00f9C+mn0hcsSAd+6XDCK/S+KzbjlvrBjHtHPimJaEuo+jfSa2kb4qdtrO0BwphLOpRT8D2TTqP+uSZFN9Eo3ZHiVuDjc8QzfRwBsMDh97FoikVTqJGch/s56PQWOGR08Jxj9AFr+lZizY+D8pqMbQPSuYmyaghyvYlOfBf7W3ElddAPTsj2ZON4d4urUHGtQwZjE81zoDRXQleBDasQTpZz2zOIH2L4rotkkzSDl7SX+vqEjD5G9lkFOVWC3joUtDVY0ODcFF0RD0py89qRuQpC323h5xzQNAXzk/nB6xXbbpWK+ZEhqPbkpKqA1Ao78poVEedNDSRdWvLUkscsTkM5f4g04pdSJf259N9LP+QpYEU8lG1a7wvpkdSDqm+kr6T3hNkLlNYHCDPWiBtrLHRSOT4ljN9IL6Ur6U0MF15Kr6WV9In025wtuObE+Um5ewAE3GGMfTRCJ5DwPnioAjJ4iDJtNzfzfu7NCjajIZi5InbPxtbS06/eUyq4ceqJAEs1lnCp70kLe/a3CFP0wQxL0HkX/7WtuhFt3Ow+yRiSmyJ2v4mTikoWsApLGyPjl6GDcEp1LVxzhLEDuV9zHJV4fU9tu0acPDgY7GFJXnFv19E6WQLjzO1N/7uIo46nWt1/v8EOBulCOg/4O23JjXQevYzLmGYdKO82yD0rjKzCYtqoj2tARj0nEQ0GXJO5o9HPXzDG6o9hXnWIrYdIxAN14aF0Iv1M+qfS35FOpXfBELQAifekxVPu/VfSO1DHe+kljznbs+CHlOBuUkxHae2lr6Reei6dSj+Liv9G+lqqpC+kH0gndF+nKPBKuiB9lODUZSBjK4oupcNQBq7mzdgizNp2qTkQzPzlN7ZhUf28EvVCZfxtgLln7ELJmkh6H+a0iqZeXtWW/F7FC+4kX9tAspbVfCrP3Z8lL7jlocuKbNjOV8klchWXlKroAge+DcmuFaTC6uzAhrhL/tUHx31PVlwzHuvM+Vq6hN+4CUVEByLchzi1ClR3yWTHRnodum+jgUnUewTZdkv55Z89fEs2AuqAYlZ6mSR2L8MoOZvyRaym4kZGUEMRYCu5uyIe51pi7s5Lkn4u/VPpE+mMAy7sJNOavGMU61iSdCP9gseAd9KV9Ann3O0YUFjFpkxvP5Secfs30jG41iKHQfqFtJdOpc9ATAsW8zUOfAwa1tziC3peW3JOF801Ba+wn5ONnm7Jhc3EZTlkH4jQzfsmjL7hcxZBz58F2+nxjjbijktk40frqFIcZm8s42pHXjbiwNOXbiJjF+HAK6DfHdwxhihScYNlrPCOjG1i6gh59AJjaJHOO+Wam++4+CbAQiWp/lRqpFP+xZrLgwhxp9KJVEi3zAK6dB2opEwGtdSkbjOuEWENBIxr6RFX90z6QrqRPpYkPUHItwWBjRHPvWDF3GWzo5s9wBQHlfPu5Rj/5MzbxiacSC+lL7kY86YfSY+lS+lj6ZX0Z9Ib6Uss3SFkBd6dTP6KRZhCwoX0rfQzSdJa+pH0x9LnGMKK51p06Js/Jaw+ilz/TvqWvftC+lL6HNb5JoLxe6QFBrLTkELHLJOVcefBxB0xcHVL8DYUcRuzuwdgbLm3UfQVlK5NkEQGrAvMZvK8N9IJ9MgO2sSyZh8atAgu7JH0WDqWTpiLOQzF5jIqtwoWyScGNdzvAUy/m/x1ZEz3Ec11LgOnLaIpaJ7Y+e0OMqn5dn+43dTRqw5PNFO+5AoPA45/n7YvpG9IlLdgvuxDigUdqeeuOQzUk5s1bY53EAoTmO6ZR5qs5630SzQuo/QtkGiS0k0r+BYfMM4zCW8nKYF6VSyEg14OCuzZ9ZGw7LrHtIuZSGeKFMLtA5p7hPNY+pX0P0tfSc8iVhdQjxXNl2nE0I2GW55l+DPaOr8t/Yn0Iyx1KnTOefDCI+lzaYugYoqMfya9ks4oKl5KH0kvpWeg1ZrwekXWdrehIEC7PTRSVq7wrpV0RFE0BsgzuzBG9zBJ3DKwdVacOz7qki07Cbs/iHpgxfCsO8aW6ZZYkatMJ/qJMj+GFTaATmFTExjalJOJqpGs4Ha3wiSsg+0jg3fRlB7vaUU0J/W68EYj7DrWc7j3gJslOc8MoMgl31O9Jdt8QaC9gvssSKRXQfruGAH0IQzmrAQoLFF9vEdrb+TeSufSNyz3UnoLQ14TUAXo7JEojcHbD3P4Yi5FOLNi4Yb5u5wfsiXkQOai2fdSRDjwGNGK65lQ77+U/jfSl/FM0T4ceNJOHErnEU0nDv476VfSmbSQfiD9vvRb1IgWsU21ymPpB9zCO6mS3lDY/IX0ubSUHkun9I9uycA9gr5tNNSnrvPzGJ5TyO0rTGdFxdmHi3YBzUcyYRWFYxEvdnLuyPC3XFKL/MtTiWP0KA/JwG2EAKsmrLop4lJXtGkPAvQdRhSrI8KaIlNMRbjZtAmWpZqDtY500kdDuoo7NTys5mY2BoPnHGMHdjoZkZ31MEDuAIzomv35C2msv4j2lEAGA5RKGTmoxs/Ke/GnjGroFvBkYx9CC9HFuXgV//pU+kPpGtc5o0yuY/QonbWYL1UR4c6kQzYhrQASWEIRHt3e2EehIelM+ixwmzuNZ9KZ9CPpufRM6qVvpC9DRyc6JSeBOC9hZI6kj6VL6VfSifRPpX8l/bl0Iv0O6/OU+Z9SeouUUQASSSfSc6YVJ+C44vMLDHDgVDtXtZluTDheM3p4K71jaL6ggdwydHAnyImFMrbu57Srq8UJmE0l+SGdhz1M6jGI6wmK+TXdrwWnJpgeLaUzdvmEHD3pRb+QCumJdIr0d4WY+zgG4UYC2LRoFyEEcou1AeCugjbNlo+drAXynlAgL5lkWZKvTSSPIcBoYqLbXXRXgFUkJfOtTj7ZEO1s8bcIbWu6EgVfP4R+dwOltea85MVcAzYyceiu3U3o06Y4/I3US0/xsa+ZKT9jOLRDRpPCaDMpVbirGZzs9d/hZfoI7MlYZcXsLGyWqgBzW/xk7d8BL5s43V9K/0r6rSBZRjY1HXjLPU5s1Dtm6/+Z9L9Ify495lj4Lc75VDqS3nCQ89Qnf8WBVwOrfQsEr5DCXrIpW7apwoGdRKyWcbppeUzMFFufonC6iUXuAsXeaR4NsREN220dgVuTm8DibfiMP3+IELwHPVsuvAlovuHkph2JdQW9qDAP23MbcsQ7Od0ZyBnL3aX9vD+1x8eaaKitwgKNCtxhVmi2xFff8GmZAosgqlJ6VEFga379WwGAOhxP0hYQbL35JkLCls1zbben4ik58+WW9bohDJuingjRQXotHUpr6Su24QnRayAbj/ODi7zW6cBl7ESm5UXULkMsaxMYyG8couvWBaRzW2o7bxb2eHIvvZF+Kn3O0NY1+OUElr0PKDyl2Y+kW+lb6bH0V9LPpZ9Lp9Lv0Rh+IlXSmbSWXknH0ic0+zqQ7vSzAbMcUDp3INSaxqrzQOLaMmovA+gdmGhKa0+iHLzTQXed52VRZIkqRgokrRm22rF0+6DCpqW+4hyiLZuywfCqeIxBFzY9xCNvDlmxJexTHZ+/hQDIWF8FUvNdpDrI3PmWL93GPFqFrGUVTcw63Luar5gD6PRzA+WfZbFRux3KpFkXHa7C6aR+FNTMEH/PdtYihGf9HNUP7MZ2ruxya/uQTdvw4htYz4V0CGnygmNLLnkA8BB507GrjAq3myfTMv4UwTLkmhVxPlJSDCObY4JmuranxPMdlcOWXTqTdtJH0jvpTXy+v/RQOo7ZuymJHPPnY+kH0m9LH0n/pfSn0r+Wfg919Q7+xTIl97cmbckXMMrP8PKvCZ8dZWYrvZHOOenHoaiMFlcfRMGWONriCiecgdRF4CznbTlFSBhD6bYA4ZWh8xcnCmzBrAtq1S+YFl7FRLqJ0S25uIoqwtMxRzThnnHxBZ5UUAhXAQMMdq1rzX5FzetXXKpd2Vq/iRm4DsnxGNVxF37RBTtmgnWMyS4rFivarsYDPgzAFaD1xjUNp+8teAsZuYgAvsNbdnEef+53C5T05wxRrJSRyPZBwp2HzKOS3rLlBxiKl8B31VNXub2mwEDFHEB7q8SXZhZ2gC3nDuzInNLQkbhtXcEARbKHWtpJP5XehDUMAOhjCm73Po6kx9KZ9In0qfRb0gvpv5V+Iv0b6e9LL0OzdwxocbN0jamdSn8giU8zbrkhTQtl5jllpXVsJURkM09AHZCupdY8jrN7qkivRSxaQtWs5BaspOu5Ff9akyKn1HYYopd1SBqmVHsUOXSI6f89ddcBIWa6sJtA5AeonSxT2UO8buZPfhH+YPmAYcaeKxkD1C44LtR90n2cAOOJgg1a7TvG1oYDu2DrYlizwLyNNDqSrw9vmPzir939lr9vODZ8ANp3kHMOMxX3X2LoV3HYbUFybkM17wL0XLqV3tAoeQNSP2RRxqBFOzgW58Yq8FwfZx0lKBgRmnUBGdxpGqIYUrxXoWjzPh0FKK8ofAdQ5oG0k75Cl1ZC/TZk4H0Q+Ts0mFMW+pH0u9LX0v9H+ivpJ9IfcGCkWI2W3TrgYlb47cQ6fgRqvMAybpmH6OhV7ZmoqiIJd7GSDTdlpUFNs/mKW7gjgejDgct5Ei6wCk8AraLFWwTL8j5s1CC1Aq+VCGbEp9UExxWvucKUKzLqbShAF2xZHaM2NgnLJLLJULLvJRByD6Is5w0g4+MdftFiV3vi6TYo8zL8ootmtov7fejUXa8a9WSrZO9Kr96Gp7uJKsKdmyhbrmWFMdZUwUU8yUtcqam1kWtcS1vphIG2U5y1iIObiqjvisiefRwDMLC0JTm6CCm2a5Z6bl821RRpVLGivoUhjqk8w32L+MwemfITqZR+Lr2V3kpPqAqmtd9LT7GyR9Ixh1oYq0x++Xelj6T/QfqX0j+T/jCO0z7g+q+lN2zsuSTpkfQR7YSReeCGmnFPOflaesfSraOM2rJBj1HDTojwXPqI/HvEyjSRg8p4bkMfKNwwyfa1ZCleMen4CWdCLgj8S9DzBPdPY65R2EyWZG9gpj234vx1RHV0yi47X1+FcHmQLqVvpXNS8x7g1PHhU/cgJ2vbUHHcBgg55TP/LRLzY5L7LacWdVi+1d7v4aFdMDQs6dTJF37XzXN3R6Y+5XDRY8XrxmCOhb2WiBYKEIm78COuW4QSzAHKeh3BKE907CmS63dEUee+NcT7OG9UWUVmjx2D3qtZF8egfJl/qohjH3TgO3LnEcA6xYunfM6OI9Mrgvwr6b+T/rb0j7Eby3Q+lr6VttJTqeGphJ63GVBKfCH9j9KfSv+19MfStfRj6QXYfaq/32Cg1+TfjzD0gjHNivOydgTBS+kSlzhlxQ5xiQ1IYAdJ9Ep6gec8h48bpbfs7A7AM/CWIqa8hxhkdrr5LtqzSzbolgmPPX9/HxzQkr7HGkubgPg7SvNbju0qiVkWUt7Q67RtTGDviDx+KX0nvacuF8jkNir7hoigILCsjjoC1DYU8W9oVE0B94LSZfqvUfghjVqjjorU2EBKbknoRaQrN67N6t5Qo3+/DW3A/BEXUgS/kTh0EGKRBVBVsa+b+JAeB95Cxx5I19IrPqoIAcoBlzGyQI6dbVQGBexHNW83ZANvkN7dq8mmF1w/4MAFtujkL+r+UXoRpP0Nqz+t7Ln0P0q/J/0DrEp84HPpG+kV3vtYegIxMkWcQ+lL6f9CBv7vycAVM0QntMyvcYNaegK6XbH957AXtzHtt4e5n5D3I9LvI2rlDVIedwzeSC+lnxMmbGcXnP27meuQOrzCe93we7N230oH0pH0An8TN1VGi3CgKriTgT3ItpDeoia/xUs3NEwGWiIO1ues5DQ6d4M/XDM0nZyS6aCSGeqDECmV1IFbkP0jLrWVDhhhvoYR2UTqmgzsgpZLFS3RKQldxflES2ZMFe2k6e/HdHsuSOy1dFD/AnMzN2maw3XlGBbtUQKFcyis3q3agqzqxveO4Yh30Z3yMNIKHYXdziXGAFtRBawp4pVpPponaGs5qrC4bAKP83v0LzV//RhF0I64Ml3Sa+nPpf8wHqvawMdt2IED8rJY3jWw6Y951tiN9OfSN9JfSX9Pes52TJq409jnIroBBZKGASpnGwM/FvsOUdd7xSabvcRUG+md1EI/u2Heo6JugiazUWcr1a2pfXSSJlLpMbKNiox/wKbfhGrCNlbTjm7hXFcxKTSQWyuce0qO76O3NFB077E3f/Uj6UvpRXymKbCec5fLIHor6sZVlJE7lLRrpum+i2BwA05bxH014WjH6FVO4DpG6XUQptO7fGLJBrjbACRaMZFqrJmOesdLjSc+6MDZScuPSsHbgFbzCnJnZLcsfvIYpm09WYOUnxUQZ2WYmrnSO+2hYX4XmXZdphfxRrGX4q6L0NN4NrOWTqVL6SfS3485k5pTym+pyK0JdA/TstKX0ufSP5NupX8lfSP9mfT3pJc8TeoVaH6D5lAsdYvhLgFeY/SK+5g46ea7kw58Hdzza6lFf5IOvKE6HGjsG+p80IFv5g68BwYcBQ26CFFudc+BFQr42/nAkke2svJpcJuKztFkCe9i4K2AOLuURLt7ARQewKYJcMvg+Cqg/CL6HtMufCMNwOVbhpGvKcTduqrZ9Pdckvu9W9iLIhDzEoxkQLvGoiZu8a/P+u3CLQfYg/sOfPlrHXicpy87sKXoLeDpBVhzCeXVzLtOVXR2FsCLXNAqLEzheNN6PYmKdogrXMS1ZQbWvRZVZmD/ZkV10VEPTDTtX0i/C+k7xYIj6TkrfhRc/o7ocwBkfyF9Jv1IupL+rfSV9BPp70lPJDHG+w0I+DASlKuLSjqJcNNxDZbqKrg7h6R+XnXtwdATm3QaZckIadngkIKxeMiBN3MHHpF8FkEDl9SsntUqI20OuGWL/9eY6yGA7j1/sVrLAt4+WlGHOHZNGbDn+lvQ3B67Ep+zIx/4Z4EJFaxGEY3LKSvu+ahyrmOpSf4WsdSoSk0Lu+8rYordfojTwkomdNf1/8AlOHu6C38nLxuS3nGX6cdDY3aLOrpwy3h45RvpLTG8o6C+Zg3ehxul1Nzf2LOoZdiLE6iZ/W4eXVzpDBGKFDe4ihXI/ptJhD725ADaaEKQfyntUUW7ydSgJ75BAbSIaOH6ZM0k5d+WvpNueZjSBd38HZXgivGEjnvckz48srahLbHFcKrA/W6D1RH2B2ouc14NdfqG1p0ValWM4JqP78gvRurZLC2o38/Rn6yiS7zm2krI6W2c5VjMd/OAGL+OrdFc2JN14BBo4W3c9Zb2wnGE85at2VFvCobxMGzvMBBCS1iaXNPaQ3ePbvG/M35ZxXkApzDQYjWyyeQCYB+HfxZcwBWdue+/sriXUg8jtGYd2T3gwPZAW7yFU058yYcX1CUHNEF2EHLZSCyxdYOqdt5SGwJeFPOBzUw3+WkfdOA+1mGIey8Jhn1s/w6MOHV5vpH+B+kfSr8HjJsiwhll0DS9W4YDOwNOWeCl9EfSNxwIv5X+UvqOJDvNzz6lu9GGuqAgMV2j2e+x+D6yQxGRtwLSdHG0lHWwF1IVDrwN9OIKsqeg1K914JqV7GgqLSNzKU6ZaEJwZge2THTy/yPyUc0rHd0SYLSRf3ty4pJKpogj2qwUqINXMAwYYwFXYdtGm6aoLulFX9BU6QgE23CccS4T34WA4goI2ksfBWKsiM4VUu8B/v7C9Nb5PasV2GsI780E+EEH3kb2G4Pw8Sq4bjikaWec16EHneggsbsVETdHQrpQiFbxje5G+Xa8EKkJq+YOnPrKXOiBj22pdK2N3kOpteif3kn/VPpj6TNeWcJLCO58FcWoi/IBB/5Y+hPpaw5K2Eo/k76RRF41Cq9jefdAzEa6ir67a3dTeWPcqfWtTnT7UL+dhwPvon4Y2ME9pfbAFz3kwIuoyEdW4IYdty6o4VvswHvWueUUsZEiwVI8x+iOEDBAhFYhOdzT8vs6SiOj/JpPXoSB3VIH76iwDRlKWlF9TE/7Bt/it0OcgO5WbAu1bFP06EMbrasXfObAFS5iFEH0GabRsL7+L+ZuV4bbjWECVfQG9KEUtoiKoIiPEtHjjGRxyeOBrxAlVUH43USurEMIO86d1XRSGwB6jHydXK8Za1/YHXrLRU0RdzRQ6jrzliTEpXTM88kb6WfShfRH0v89evE1h11so8hSfEWP1W+Rqn1MQj8nzO65+DXjXjugZMn/lrRJbljSNmisfn4IoBPKio22dEj894Qsbxp1iGM5yyBMbrDEgjKtjxDiMFxES2/BASB76Q1tyJazgpYhUt8SBcUkVRldULfxTD9ZPFUEWhPOseEyhojxdlbzVtMvJ1H1bcgNbIQnEbQKLmCqai95DobjipGYpw/8rjIKqo57mbY+Gws+yaCMUxC2oZX7Pt5mziqjldPeS8F3+Cybex+/T4BbsC7nxKUtWPk2hM4bTOQ20Mlv8mOPNVNWRt6x1SZ1/UEH7uPuxiC//GlGP04H1haP0k+k/0X6Q+5lR6PhNB4ddOfzWwQ617RvXpKzzsm8PftXU12U+FgR0v5S+hYi2YCnBcCtIwuPmMUhhj4E2p4u7BTd8IZRmTEeblmDg93t/zUOPOB1Hb33p9zRZO6KftMHHXiBE+640zHqY0WgV1xGzQqMNKIPwlVKqLdsNTriL1FH7WOCrgi85Lrc0soCJH0RtzxQbjUxoDAw6TjSgujmpptduWyGWEs9zq/2+xOVyrlqqoA1/OvXxQJ90IGLQGauHgoCgUHPiir+mtJhDR1UI+gT+zEEW5U6m2RUTCt1Ae6H+bl4RVxz8YADl/M7MoBecA1dOIa4nWlY8I30jfRT6Q+khiDaECPfgKKSYfMFHwHFltInLO95CIiNopqQB9T3AOsrXu8ScxvPu3ZROIQARnFVRaz5sXTIFW6IEXWws6v5SUO/3oENWy9DnVzGg6EnlcDFAw68xsrbCMpDlLAuz0rcz4ArHfiYd6XY1oWieH0RXOUelUsTaexxkMFVHKl1HcrmCgl7CdG0wJntwAIHmTrzLVif3c99YZxTxKXU1OdEsDEwYk3oLtnkJo6huAMERwyqj0aLK/Ce3N9D7E1R61w6RxQ3BoHdz7Ok44Sn8cqI+UWcENrG2KSgJFwl5YUlz2f39R6mRRdg9CZCdw+zfimdSY10Lf1C+n9JfyJ9Dj0xMm22DrLW0a4iSres3hLKYzrK6ZpEYFwoNKh7sNc1BM0tBr7hQN5d0MkeoesIJEtAZ4F1b8MXD+KYzRbwWgc7mzGyCbFidoasFF0DUi+kNohRj6VMAOYSMLOPA1s7Os9vowstbs0EyJI514rjEddcWI+9NbhXF5xURyLuWLSesmdPg+oKv3Gnx627Oji1XRCCTiljVCYOFVugVwON2Ad8vQz3NfNTc7WOmhUpZUblDGFhzuJDJNBEn/cduAo4Yn8wcJlKyWPucyIFrmL+wHWAUWb2sMQ2VAEVihhhHGOl8sIUfzHk+jUOfOePiZ7p8jyItQcSTFXOt9J/I/1vpU/B0CN1/w5Y3M5RkSv4ChByjXOekpHd9K9DRbQnylyih7kiI2xZkDEq1GVUWvaZBXfUBSO7J702XFhPV3MZS1EECaWHHbigBePDISQ9D7J5H+M6Iza6j4EV57gSf97dS5opsXA4cMoxfHpMgHOSaOOoyF0cdDj5/xMOTL2h0vOiHQQr7A26JoWMIfIZgqHZgzRqlncdR0rYCMuw+cxhLV49hvivkvRlZOicA+gCRBaBVqsHHPhgjgCS2RXWPODAVlN+GxVAVvdVJEPFR2WAcJ3qNmHKLYpIev9+P7l21VycbdAzMMd6If1z6X+H0veCDzkARo94yBi5fckGL+EG9vTLN5xuVRE4Wh4K5fAnusXXXF7HJ4+olIyz+4ChNu47PIG7WplXbygVshyqIr085MBl9D56qvOPaK/uOXRgj4VsSS9NTJNdo8S6YBrSsaOY9w1NvVbcQo2wvpJeICDeRCMidf95iEMdR/jtmZsr4+smH5sEGBON+W18csMF+Nq6gJaKs/PSge0FffRJjd3cwB6YsVhIy/ofBlXsnWmIS3bcJhzrzo/DRT336Yo6usZ92zjM9Kn0WvpZPKmg/3d5250XVKG3bMFG/tnExTjtKuK25jl6mH9XFfm3CwBd4yiP4jGBU9/vn0j/nfT/kA4RCYhgrgDuXuoeMOcqxRxCwwUvQw85QHi5JrmNB6kUvPKCzOI6zo23KgJzy383SP42cXcFJW1BDupjkHSIw6DM4PRxqlUVG3TAON10R29hbdecdT0tlP/uOViF8LqR3ku/ij5tbl8dLboXcGHuFU3X+QwppuvoVXjkglC6B7Wv+OU5DQHPXy6Jjl2UnSvCWPIJdaTOIrrWtxiAEYj9KHvICrbkmDrHVMP3pO1vz/PvGDjYZl3GNbmUvOPAWVr38yxT0SvZ0fidCIW30q+o2EaMzKVtGWCiiBf4NQssrMC8DEQUrp51sLuj6cAZg/ybVHokOe17XLHf16zJv5b+GSfvGAyY6y0iGirwg3sfFUnW/lBxZLep+iJ8e0fM2sYZU9sY6XMnJTvnXjo78BatVRudhxFDKXnq8DJGa4coJ4aHHXikvryJCs+6pc8oZ8UH3nHg99KWB3UeSu951FoZEl83NAdWuwqAYWbW8Hof0bzG5ab37qN3M/KgnGkr30NLnYa7NnFAz8iStoHmywjB20j6Pq9jGX0lJ5gVl+FfVjAuPnbnJB3470RF6NWvI8glei4BFvcdeBVanyH8sI073MfZ4Gvpl9KfS98BUBo6C3cSZhn/9Tk+AoC6kTaEJygCzRD/9c/9DJziivTVzZwYcBfjiG3wC/5M+tfSU+mE8NzhLXfIwDIyao2bLQgKTdjxpJhzMzgveEvvaRtPEOznDlbMM7B505xQGcFwQ9RwI1TxFlg/RmIX8WU5H95JBy4w3yoc2BzpsXRE/J0u7+IBB15TOF6h3LeexH3DHQu7iPOQ3Z2dUvTHSBrfos8uQknme++RuZ/gpa8JcBMdfgWIt7Zg8otnoYGz7qLil54e8l4oknBy9ivW1u2C6X7PKDsH0MEoDfV/GDtszFcGXZrZ0PE/+aBsxqTMZxGfvKOWOQHGX/Bsn19gziXGa3CZTaBVcHtVnBa8pXi5jFSela/92G56p4mdPqF73JZjQBnYpcU1txjIxKn/v6U/kX533utaRlYt40t78q8H3Rqio/k+ly47KJIdLMyG5ylV4LzboLG2MKkNS9eHKr6OerkLpdUQZ817F+yUKX0eAqDbfbs5we+YNMw5o5ZDcj8jQStk/y0udQ5VtyA5fMNMv/PmON+sjnmtJb9pKBgFi7ThuJ1T4tNkCSdEnS0s1SPpY+lMeiXtpBOO1l1zOlFLJDNcdtWfOcGgqIndbyKrFOG+RRhPFQa/Cv9aEHt2kn53njedcA1G7zhwOkM6cDNfStdGi1BnXwfvOF3oZQztlJF9NL+eYl7dltC0x3zvhpmtbu6QSTmnf2p+L/mbO/m6ivUt4ekEirqJF7+X/kvpd6UfxZkkI6OsDUGtjlwm3FvojQ7o6TjS9lF97sHKFcd5ii7Dm/lD53vm9dsgj90HrKN6a6NEc1fLetEuEoHTdwG+KmN57ziw4trcTzRenBz4ZWz35gEHHjkM5JX0r4Na6AInVCS7IvpBbpbV9NUbetcVPpx9mRvkaxUHsz+lUhql71iuEw7zFvCvjprE8KMKJYkRRcOdbmNEqsb2jADvCA1NnBRxF5aMfu/A9bxdaqGC7jnw0QMOvCCiO/Y4GlnXcQ0D00JiXEgXVPQTTjoKEe0+Kqd+7mkLZsL9ve68psPf6Qf9Ggd217MP21UsyHQ7x1jJSHvFqf5a+i+kT3gqQM1VHYcSo4lwto+Nd3FyQKL4jnZYQYJ6wwGTG7pvF1zYipNuRrDXnoqtJMb51IuSAslgx1tW0iWpA4nY/dr5JenXZmBhbbVm1YubsmfS0+Batg848I7TSC6knwRD08ZnlqxtBWRfYegHsIhnUBFWuUxLcRMPxc3yacVpJ4fSK+kyWp9uI3aUtiXdeg8LF2H57b3lNSzuIpKanE4OpgzHTuXm9wi7/pi7r+brMUbCziS14n8zNdu93GVZIF1YwENPueMR3Ppb6Q2JpsRXboDXVoNYhLIAN69whTXPNOjjWKptNDMV1EZ+VAY3sW/13NEtk3XmGsiM025ccY/TrO8R2qs/54C5iq9es5NDbF3JSr5GxrWHr5kEwU8ghrdMjPXMBbX43xT2bjAuq0F6ENsKAkiEqAMUQN08zotUeBy2uY+IWHMNSyLlEBM7NTnRpuIaZhkOvQePTSccPIlp+DIS9GQPx6RFM5U/Q1Ch8CGTkhMJcMlF9lDRAvLW0Yk9JLwdE6H3oLhJTPJU+lQ6lj5j5rWUjmj/XnDsskXY4kbc+7VbLeed8xUSnTHinEsLi61N5hQRDFLOMQEMPQsfT23lbh5mHXWz2ZQO7PiQnHwNWViH+w0haX0jvYk7GedV7/RTB0Iy7mnYhiV3Ys2+5td5JxI95MBiD8p5HE7FSA8D2rNnEzB6xMq+ln5KF6MiChygxxgjiFT40jlTokMUCS3a6FseJbhHMHQeM1G3oJr3cX5XwwpXDDgtQpi7ZOmKqASKUAMeE7M8GOau4pYFqULDXTzswO42lyyFVTpLHru24DX7Bxz4kqtacaRYwRJ5y0QRNcJMb6DPTnH1m7mbHfK4qas4SK7lCk95EsUpYsgVx1cc4MOp4TTfPIazNLjukihWgZjXMbzbBO53k/SDnZAKnzJzv5T0B2yt6z9nVM3XaPrv5QMOXMQhdAqqxBSsoFRLYNkGvLilqbYPFNuGQRdRQyzmBnfChrlc83amcyaj9UEHbiLlDuHwK2yri0tt8ZbpZYeEqm+kf4YE3on9URwZ04eU6gCHXKKsNZbaYnM9tOvtfPwuHXhHBh6x2pbSfEWJlnN+Zo6ryH6O7sdcQ0fNbVy4pZPgDOx49EEH7gKn9vECUZUeBTF/cs+BpzDxljNaDwCynoZL3D/EiEARvcUDMl4bLNNkTmfSofQt++h22xKQ8oTjM0+l7zghzAZjzL3D+duoQsW9HxAxh+DFFQ94WOI7bVR9Dnn2tVvAek1+HaWxXmP1FrCMcHgOsyOhYxs9WGtPBZYqEdoMhKyaptn0sQcB8m55BvCV9C34xqF1wSSM3WjJGysWr4CI3QAxF3A9zgvW1DggDZF6MvN2RFcvzz7+dcvnTEdhLLm1RxwIWdHI+SfSofSPpZJHjInut7elii99gqU3LGYlHRF++rjsnl9WlMBrbsGESMMK7FAMn2HgHeZck/Le0oKyUHAlvZdeBC14gz8JJ9hHVVtyvp7trsVUSpqcYitfSf38KOgxtrggnvXBLm/IXAvkKw6ZYxTpK5ai58HJSzrbV9IgnUuH3PvkJb8kkD+hej1GnnqNDRxLT6Uvef0gPSUwv8aZDAj3YM6S26kZbVjzUPQ+Oohfs2ueeqzw9TFAka30AO6o4mO/j5qn0aisAxO85/1t5P6W4xVHsLwB+4DD7OLG6tCUmDGZgtJbsMUJ9bEDlB24CgdObasiS97GPj3i3DeTpu4VO6WaOh3nGKOcZ2r36/bzTG3cNjFTj3jk5iFu/6fSY+k/oqu1JPx9h07S47eu/idyyo33abneBsexCWp5uovbqPNWLOn0sRvuvePAfEtMy3iU7Aq11nS/e5538THS3j2kRcEDq5bzJt0YkqDkPd3i2eB4k47lMp7IsySQPWHxB2o7c8xCnurJhlOOvRpxjz2EVBnE82lUWSW5+5S6f+JM30stx3uXDCi4LzMh7zPphOizDeVqRz4oIkR6Rm6ISnIfYMBF45IQtiMzNTE1uJmLqdyE9XZ71nbSzH0vSlYoYk3LF6GaKOA1V6EaqQM5HWKLjiurmFpaEGDE9tzQp2zIGIsw4iX0pB344J4DL3GbDZHpGD5nHwFFc93YEKtWhNO6oDHh2pBFyxDF7uNRNI6yRzSzeh4K+nekS+ldDBBcYsdrCtOCO+qk19z7Ldu/w5q36KuyVG0xnT4OZWvZmo7PX0hP8cOp33TCgpxyflyFunCDVR2CZa55DFITzbIryDdn2kOsTQimBw4GERa5BPMd05S5os86rf8j3Pia+HIktdIvw+iXsQglZJ34pxEHPqD6P+HrBMd4LC2BfhdR3dXgmq30lrK4lD6WvpCOpHdRo5cYdk98SXa3Cy1HyXn4B9FRsU224A7LkEpGLc2+uPxd0V6s04HrIkjEIQY7dxQjG2JjqkLGOAJievt1zFIneXwZ0lsf1lJLb6T3HOi5I981DIhOfTZXedfxIENxVRWw2yLwlOQOkdCbyLaG6Q5RI6mzIqgOsYTHcRrhgfScB/ROIfqxdBSkbyddS7+UvpM+5mMN/YfIXKb8qihaTNNaSGWFjsADG+7XE79j7IKIxD1L6sxYBqtYhaPvA3yv4sJa/qRSIjUCitEM99iagDfuLZXwkiVfseMZEcuQa3UUkps4FW4Aq7wlAAgbcK/b3zgQStdEUysV3e8VGGAjfUuDSggmF1F4LokBA/PqFWFpNycxV4yTLu5Bu2WAN5PQhfRpHITVU7B5l60LSxGEW1/LWN6/7umNWMY+RO5dDLRWRHvv8W00RNxNSFlJRUlUspouSd/GAJyvrILUuO/AN38TB07DKhlBGCK4jOHGBsRF+LOiK5vjEZbGTrF9cmAfeSTpSvqV9K30iDbvAkBSRcd1mDttpv6etSrCkeylCpWCl7qmtlMEqQqcWoZUyzMQpgjb8PZ04CEMaIz/9Te2BKB04HLuwPb2njSwotN3LV1SldboOmoC1p6Ut4cve4fOrKD6L+79qaGcjriLIiaCSiasFiEKNfhsiHdVEMZmcY7i+AoffrKMQY3jsP8cjlxFa9fFWxHH0jVEbfOPNomUvvhqPe9c24HFWqcDF9R/t0GatpHs+yiOS+l1DKsNEW9SP76PC30jfUcebikUlgDx+w68f8CBTf6lAydYEK9JIYHbzO5r2EUdy1uybhuPIFrGQWkrCM4lbN70RVPqOIEhXtzLEnZjT8KlA3c4sGJS1fXQdp6BRzarjqhvYa6ZIrHlPq7Mu5zUih04/2juwEXcSxsKjRRC2YEVDmzPH6PQL+Mk8kwGA5HdtrsjZPTzBohjimKIoQJFdjF0LMZ5hHxS8aCWEmez2rRGKbQHf49BghnLrukW2Yk8UzJEnVbTBMjrV/h2ijHTKop5wB3ijUP9LgiOfeAqxYkHbt5metrwSJaKYFLhDd5Pxe9TrS0qsq848emQRHYc7RyxkBWUikIesKdPWKMq78PF88dNcN1rw7px56HJMYL5tFRnkJETej6NLsVR6NIn+/259E76CQc5WjlQxoeP4SVi0fq4PHuzZU0d1qfgmDs231DY4/h1TPmWGNcyHmPlHOFKzVLDPabtCOGGzZ3rb6PqcO/Kgb9kGQ/43wM+dkPf5WY+xFHR7t7RqlyCas7xRXOpjrjuHlXSD1j5d1FjeOpOuFrN9OSGZ5ZNg7WHmJA1QpO7PwI9N7ClNat6iBSkjgzWR8zrYhPtHS8j7ewQgiWKSHhQzv9ewSFIcYzdHQdeRMiqIrWP1E9b1qiio23Oy4hKkTiGcGC3J75jnw7RY5z9r3Dg4WEHTimac0oKNrrQfBo/GCNOCOmM5zeu6XesI6NNhxp9J11IP2NTLzGspLH7aERX86lPO7Bpzi4SREeeTendENhpEycWVXF3VUC9NjJIx+uTpOtowOZ4TB+xu4gEYZLRIsYCgzOYXsMHHYLEeiznNp70M1n/JYz7TazSJWcViK/YzUdue6Lkc+klIqf3oTNZYv2HfN0N/KD4kCaQtDHMEjZtGcdml7R7pgRtHj3L2ZZlbKNcNoZuyMXFfCsVptLH6x0oi5BNSzQvMgPvw4dtSebJjNWMayt6h5mBx8hLZrJ3sdDvpHfSz6R3kmiUH/H8jiaixkBw+jUOvKLGN+a478Dp2H30x7MxlEMGCWQrxDcWRfT0v47w5+kv72CUf0/6iCdkdnFVI/s6hNMa39+pPu2rRg09Vc2O9Oisuw2NpwPWPny4iUhn5O2AW8eJA66SB/arDwMqqUo7vsLouYrrNFu8BuAchbqrRJN4ItXYT09W6GmRTDt7HacguzMwRsnkvtIJsKiD5D6D9e/5hCf0B26k6+BmLCVuYLUbeimHhKEaG2742FNozAIrXUFmZyOpRh5XBcrz2m6xCiuUhqCri1BZjvEJY/0/89o9efAowMSKvTpkby2T2EpvpJ/yNHSz5/vIF4ahfSy2IgF10oH0GK3aATG5i3ftSC5OGTUMhbCOaWFuYvTARnSHCtW8V+TE5+TbwBGsaDk8kT6VXiBTd8w3GltTBU+v/1r6l9ILpgndCK1i4X2FTmSJm8e5o7j8GNAquFwyw7WP7W0wFg8+mYVdUDs7yxvGmXLa05Mz8S++tAo80OG1BZFgnMMMb/cBbafTOJJxkN7HMbhbaI1z+sxTgn4a7ruJgCeyucfCa/ToH2HD70jZCs2PW56GGVsueEV4GEPF3oNol1GWpLpwTdrJhsYYoGjLcu3jaPguXFmRJ4ewYf+lCJCWRLAk/SRKClGDTvNnR5isW5dO5DfSN9Ib6efSVegyu+CDy+iwJYzLGnSE8z8huzU4cIc5bgOO/BoHHh9wYPe8DFz2gVQScFuFWAR+mrR2z9FpLPljtnKFPuZIWknPpV9Ify49k34YjXvfflbq1Zx47sKBy1jDMYjF07CSko1rAzj1cRfmd2o8eRFd/T6KhGSOPWu0C2SigPtWDzphZTVfsJhFOHAbg7c1X30JzGu4jBvpTUBbV3GXZDTv7B65cx8J4wgAfSq9BaXsYxHWfGbLAaI7JqzNwbur1dLDMj06hEd5QdacUVuwjzVyiy6OY/afkl3IVvAWkFnH52QZXQbPtY2361+wzVsc2EquJkaj1pD2a168lb6TfsaciNnT3dwmVgA+S+yzk3LLxMcjNKllPAazw4GNHkz7HYTFuITyDRfhwJr3j44DlNgxFNN1JcxoE8qQM4K6kdAp3YpHQKgJcr2T/kr6C+kRfb5bvs4CuiGoIcOE3LDMwE4ge3x+H6sxhgN7dthun6jXoteBG6zm4KgMWFTHv9pYhV2OUYKPrPydllwfJOFBDAfUif/mx3pspGvpO5qsWxDNwPFz2/n+LiNG72OudIKzl2hXOhbEOLFnNGwh3QIErjkWx+1w4dtWBDl8eMUaKCzjFOHtSzQBXaA2o7wBYygiIHqpDcccHIeIy94y1f8GyC3O734mPaG3ecCbPClVxrTPL5jM3DFF0wf2LaNl7/Jkxe55FvmJdMIUQANUct/lllGcDcF8T8d82qVtYHQFiZAlsJe2CBlAFZPPJVXtCmf9SHrBI0UWEH5tHBK1DFy1Dh56EvX+c6mQTqWXKKRG7r0IBFLFFmlum943d0pcqvu92RDo6Z8v8C3TdrbcZfAprqnbCL2uWG6YZdywlY5AXTzddjnHVEVEjiIiRBNY0zHMSWey9G841f08SqYVFEeJP90Swr+UzqRWeoOLHEgvpEPpTDqVttKJ9F5SUN1WOgiivY50fzA312kdVnECjEn3isBchyZrEUhPQRi7Y3BFOm4CGZZxhkwRDyYs4krGiIgtA4iTDehd3Nih9AQS/gklqf2wIUHvka5fS38lvUGzN2ReD9rIgaumpB7gAg8YBVizLrd/Qwfe4Yd93Pl4z4HtG2b1UnBSRtN7Ad88STVexKlkRZzN7vb9IXvsBua30r+kentMo21km8eQzVSkVLPjKe3INqzFUoY3BfWokZlZtgzX26CfLb/Ogtt/yXya3dEx1EtNyHgUB5vnlGs6sFPVEPi1IWPusJwlD9684NQpC8QPODdiirBXoK8n0pm0l16j1SyRO5/wTzkxX93Dx1U46hXV8BISdsfQ0QqNfh/q2YGI8GTehC+JL6aUnDE38VCL1TzfbDiqs5gP/bgEspKqjKenfd/k+WmcgLNGfPxIGqlK3d5rgmNbsovfSH8htXxxG8A32/EbNviAXW9Cff+Y8zSW1Dq/uQPfYl49MaL+UAY2v7uYzyh1GPQY1XMZqoxPY/JsxHrW0hdEn1NQV48otpD+VNpL/1g6ABe6Bh1je+7k3j4cuJ6TWkOoHfd8Qh21QR/NTlcOA/2OFbdTBdIt8L0yXNTrUIVgwBl4DSEhfNKcZCo604GHUC/4ZAePlRhQuGTsyBBTRnpDAd2z+wVMw2N4sKlsmEThS9BcG9G5iefA24DrYHN3yIEcTDvK4m0c+dlG6+oahaz3yCI5BTO2jpQ2zol5R3zFcVzuYNpFp9/f8psBBymkqv6I+xiQlL+QPoFr8OkTBohjSFqupVfSufQrlBj547pmDWWwId6aTLfMwHXijfSeEmyI+G863B2dNcFgE1WGpZ5jGJGv3I2clMSvaY2upcfSM+mF9BwK75or35Pj6gAkHpvZszm30ivpp9Jr6WPp/4QIc5/CmTBzzeUl9mnXRC05egnzMETAH4gKV0zw9sExFyTfNeWQA0Z2+zMRD1xqBwHkssuM2xazWhDqsgFTzYmYgeDazBPinq7SIrieCw6qW0gn0mPpS4YIWumt9D9J76VD6fek59JO+gUls3205r8Oun2EtDZEO+95wXUA6IOo8TQ/diZByzae2eUl8nyNeYkB+7niGNzpxV+Fg7aU/CKhZ/MhO8MVtzBYQvm7QVyvpE+kL6VPEaA03HZDbFnCgx4gVL2RfjUPd4rv6+M4gjZCX8UNH7CdLbjkvgPrYQfehwMLB07BUBEu3UWGtSu6wPXE9hkCDI9C73nBIUyzNRuO6h18x7n0Cxz4H0mPpfM4urSPJa0ICtU87iiIBItvati9NnLxGLGgDk7HxwkNceWe4fHnjHOVlR24BqtlM8GVRhuCTEUytc2NkYncOljCNIsbbMPuC2QbNzH2diI9lT5hwupC+qk0SGfSJ9JzaSutpG+ly/DbKvKdGYJV4NGBFP+O5whcEpUMr/eEsGNq5TYizkAi3vOvS+fEICWtMr9laGPPio3RVN2FA1dhIVXggfdETLGG3zvwR+TJHdt8Ij2XFFS05SmC2G+kF9Jn0sfSV9KbuQhBEf43AIuBxFLG4ZRLxCETbLp6wIGrhx24Rs7lXNRE4VgESBqJtQLBuw9XR73iCngilZ+Fv62pjFfw5Yeg2D013GQNv5S+k55L/1B6xF3XESv7ueQ/YZPIkEM0/EYc/oJlKSLXmaJpIlHveXtJrFmEq1s06uhupN4FS+pCKEnxDn+uIj52YXAJJS1BWc0Pr5ow8SKEEC5m3Jufjhl6LD0mKn0lDdKh9EJ6IfXSN9I5dLW51im4bAO2rqKabCk6X0vvgVcplRkYMdzx6IFtoOepdXXFfMOeKs7CwZrvbYPzSFVWHaLOCsufduQkEJZzw0i92uDA0yaW9T/k+68ibJZ8g/cn6wX3uMXmL6W/uqddrGifHkkV5zwYsK5DHOSO0Rj4z0Tv8Zx58SjEBYlgQy+xjnydP7a7QnrGDhwTRU7jzxPpEZBgCjbnwdcv4xlVTt9ORtPBF38h/VvpK+knpIn/IMZXNI8r9wG00VIX62m2xeoIl1QlF9bMMWIRleYSjUEyffuYI7AAo4yM3EWpawBdRBFihJqy/CX+vYzuXQe7dDRnM102Fhw1tCFLnEjPpM+lvyP9kHmQr6V30nfSmfSp9Ay0cwm1tCGXFZw8ZGqvjZVvubAtByA6h66kp+ieb2BU3U8dqCgapH9nAO42EHbJCu+4qesYPdxFb7mkftizSptQog5RhbrgdJb/Xrz6DwATl6FjVsxgDGxM/tO0Fj+Q/h4ynW/CYZLzewy/c80E2AGf5s3bBoDuHnDgxdyBW5w2Hbh62IHLebJbxPjaCYctTFngBOAxWecNrcVlHGFWkx2ayO9TDfcX0k+kb6Ur6Vh6If1xnF5gyYQhQUlyd/41HzzMFSbOy2089LJjGZsIEF3glgXI4SQ2zhVLQTJ1jDPbXc6Loip4qyGU3x0m2OPMZfxyfMCBy2CUlkSZ21gisR0/kj6TDqRbvLeVHks/kJ4zhLqLXLJHyfOORliqZUZufBJ7vYJ73jCaYEHBjlDYRdfJKqCKGv2QSkMY5xA7tWOzbunHmXVYxMYlc+opSUWvPttJxRyz6Y+kHQeL7IgWtxxw4R7HktBoDUYj/UC6hoo7J1o4kE8Ofwbi3FNaHQRvt6TTbd3V+IADa+7AW5qForwYwmiSfva6O5gVEd56GltnoaA8oB2+xlEnOuUMBy75OjuA685vpK+lW+mX0n8lPZd+BwztXqllYZmB+4CPw1xGOszbwN5XnyBxQDPV9bpHEwygDqK0cCJNmxBX1Qcdrvh9F4dYlxEos22Ui2Od5nS1Jziw79qgYye94AzYLaejOe0UcexOCax7IX1E93THt+8DmnuEqsfwOr7rUnovvZa+CvFxAZsizKOMUGie3rX+ij9CPtXyRpOEO/6ypQnj0NyEUqiNEwPHSDaKhUoJh7esr1/yVIj0Idfntn1/Rjrfp3Ge5ruQZjaA1FU8SXOHfyyxu13Ew2xjFLRhRJFbwqHvWaENnEUNDOpjPqdi2+0NrgeeMOl0RuZ9Set/Af7bcR7whuxQRBK/o4ItKAkmAPMa+vla+q+kvyv9DoeZWj9Qhi/aGxQ7P87ZQBeYfbAzXcyl1HRZNmTPYd47tRrH6ojdXObmy7DqyuS3QUKG5+y1lDiHa/w+yueBJDutdscdNVCNlhTVzPDVPMTkR9JvS59wDNdK+pLzISeYdA5nYsN4x7FM5/zeXQJXnV046BCq4FfS4xDB75F9rblgRQv3idQFgN5F4WHCpw9lXMcbxzlKNFItgiNecVUWtR+F/LBl8VtRRvRUqLfk0/18JkxYWEvG7KUT6cfSO44Gcx+hgZhYxeF/rsBTidvxmdvwtw86cP2AAzdghj7YOzc5U7xRB3I4ZOlNhZyCimys03tfRJ/LwMUNlCXwtOKk0TfST6A2/1vpD8F/qxjFGIPjSDxURk4cImRUhLl9NBG6qJxGNtg2Z25oH9DfxKqJ7YJ1c6Z25h3m9ZwwTTvwHQIuE8cdB57W/IRHvBURym21mwAVHeKNM56EsMD8pkJ5avOdcad9tHsu+OR3cby/k50wnutQFhQY4TlB5CgGpXxqxYILbrDtSSuxoK1mRsERzXSYKcga56oBSM4HIhs1EQetZTzGbNw3nNxKjxBw9VQM58jWbD1FBH73gxrpufQHLMQ/n5+olBn4iPPRWpynhvnbEUg2Ib38oAMPDzjwSNEzhkDCje+BFXTVv+dj61Cgn0ovA32kh08X85jjSV1I9fTIfUfvYAq/gfv8n6Q/lL7gdob58PkYaL4k+igcOEuRlgU0WnXyFD1yl4Be6jX2tIpl9DBLHw5czx24j8uoAn8N2FkVTl5GQquBks1cFrzAgbfxIQJzbcA7ffwxdrQj+cCa5yhnbpjGd0/0kvu6DfJ+jNZVz4DwJaDJtfgO2qoJrajvvSF/VtFMPA0OqoxqoQ5/3tFNL7D2mxgBXoYlVPPRDe9RyeHiVihNxtzWrwnae4ixd0TLF/F4NsOgW2yz4JJfSC+lP6QgXbBOFXFjR5TzYNZFzMy4+HJHcUVG2+Gaaz7hNgZ1JF3E3ysClGdEa+LNFEI+hmA+lZ5Jz9Bw+S2bENQu8eAFJbCpAF9kgTrF3axr6bF0LV1wNuN/L/1Y+k+kw3mXxUukyFMOkDW9roKYvAvr6CDOhQFugmFZcuSjEciSDZ2IjskiNhC0FgGdSGsCobHdGOXNNBdQkutN2+3nYjEn9CXGaxXYOkKOAnIUJJAyeiTbOAe6p1M49WyeSx8jg/ql9A6GcSp7L8CEW+kpZcAB/uctm8BVJ32Dpula+oaIfogZFLzrfZzbOHEyW6K7idSeCvqQSLyN83MPYQZW0gsiioXpAmS6ZhsxtlE6xN3KKF0GSd8hPLiGOJB0I30kPecoKo9MNOCJBaTJKvDWOWej5Pas4+Hja7LMeYC5Ow5c0BK0A99iWAUjJenAFssV8fuRiG1mYYRusCL+SHpCH/s5T+HdQv1U7PQ6vGIEfij0W01oZ68RBl3wrJ1/In0h/QP8uQSjm1QYA1j38RpJV2TGTbTEt/EwJAX34Zq1kk4xiAPu9IBIehE4rOBGRv5SBNFmgYFL9ornNB+EJmlBpDCzLgLQgi0riKEHUV5bF2XyteRl04UdA3uOMUID3JeUqpPLvY9W/BXnVk1Y5QmsmUm3IcrFyUTfxgJexPjjFu3XmifP94DPOoR6J2gsb8OBT/m6A0QHB8TTHR2VfWQCN3WzN5dYqJlzDN56fUfWfSO94rrPpc+kjzhSqMKBF7hQRV1SSX+CeZ2jClXEiUMYoS0Z7BoneSgD2212KHLW0fjoghx9G5KAKs4AH6PgMG9tJ6zjjNBH0gu2oYtyaiq/3Hv2eNma4HoYmXnk4q+lR8jVJ5P6U+kL6Y/Bjgb3Lh/7oKeGAFVrvKXGY01JjjGUfcHjWE+lMfJYTVhZo+t/JrVIecSXmm8UmrMyjuQb8QoXuOfksRb2cgEq2UUB0AR8EMt1hGbOoKOiLprizjseMHBE7iqkIzjjR4xjP5ae8xSla+lraSM9jrnSFUFhwEpNKLUA6xvmm95IXwcVsaXwe0dromd+dEf345qmdQ/e3eOZS265jrRxQyJZRUPgURxQPMZpZGNMzGTL3wjL/thKXf1zYvVAJ2aSlj2VNtILFIOeo2ojd/RAgR9LNVKsnFDdzx927f5ei8ev4ko96pOKpC1Gd8j/umaclAkXbJppAuPIhsv7DGH3Y4Yjz7CRTRiUO8NjKIMKYtWa3zdgCcVkx0TJPZY+kT6XGulHGNo76afS788bJ868TVz5GHbtwrYJeZ6k1+xhGSIEi5LX7MsIVmtCAzOw7TdxZMcYhfM+4oqD/xCZq+WazaMpOOw6rlO0HQZQypp1zoaTGfcyDhZr4wiRm8h6BeD1Cbiu5Yhhg4Ex5ubLQKL7yPsuNksy+26+BX1EU/t9zx2JUvSQ3dnwwEirvU0yFISTgsy2Qu7fz3NX1g/GMFUs0Tjfke/pnZ9HE8e95nfBex+T+4uoRYq41mfSD6Vb6Svp9QMOXMbJA3t4og86sB5w4KNw4JLlKIjSZViD79/A+oCDOw45c+mAge9jSpBF6JmcTxegmeM4e3KFUSq4jwksPpVecoT7l3zFlfRL6beCR/MCdnPA4OvPFpIdeMSBLXHsgr1Yh2OLFzfY2SpkXndmMtJq2zhfOe3YF9YFEivmo0opIykxlSkjr6OfJaKY208DDqZgza1UmUgFS4mmfXxGZtwibxrIfQNqUuPgBZ4zhk+ah1rFCRD5mvTkbGWLe2+YVpwywRWZfQz23eSgUUoB2q7i6WZuYzn5mhtIB64iBonV01+hIb6N47XfQWTu6ZUKk9rF6kxO+Fz6UuqlrygmupgmdHJowoHbwKl3HLjiBjqA75X0XnoMq2+RxvT2yyBrhwjwS8xihSZuiTM0YMoDhhUO45HxChXHGjc4oQ475JeH/JMTiKRLpAW19Fuh5nktvYz9MBhxvT7OfdibVAL3e5DZa8qSioQwbdwxihd/ThncmomgLg7N6kPJOGLE5Ycc2NdpBy5w4KRdswvminyMdU79RjH/onOQtL+oQ19xFMeRCgbykFWa2kDr6LBuwtsXFE72BKdTKzEyYdpvHUmLeWztiOkr6REV5jUSq30cMOkM5/GoIzLtPrq8xkqeFzEITZCSTeu/bozW7zDtA1TfNQq0hgR3HCPR3nM7dE15uJhvvhW0TXSARah8Go9w8pxcRZFrhCf27ZxOg3/uJxpFz8AU8h/Qhv0E9NyAtK44A3OMyy7AxycYxZKGU0FSNvRp5lqkWnop/b70A+lP8ONHMBTOO9lR7+PtRfx+JHT7at02cNraQZ3W/JM1LV2oOA7Zuy08y2U0ctwnd8xwddRG8h35BMeVMUqvCrNRWFkL/F1xtNom5CL2jz5AdpIAVZyiaEJtBbw+QXSwDUnxQIvV3bUuxj1yzb22bSx4EUY4hN98EBR5YkL0ot5ATRwQR1d84IKw55C/j0mkEeTgIY4Oc/KOtCHg2sVX6y0fvQSpTHfyfn66VA4ZmCi15S2oBu47cPmAA5884MB6wIHfx+kQ0891FFIekTLKOQAJeF7hBBJqGcfKLPhzNNewOm01xIIqpKReVvfLiojJvyV9Iv2J9EIa+d4hwkTFWzLnlh9yYMttO5aoCfTZ3jvCawmfMhVqK8KQ2yv7oAUdUBIipwzDvLgTa08FXPKbXQhOFCZegoAHlqUmaiT7Psb9FnzvNpjQOq6wZu6rof27i0OjWzD0Nt7SxXG3bgXb3jyn5BWo4mbTh7NSXxCSHktPpAod9iVB8wDV+4R5DlnMmm0q4ezGyBkFkWsgyxfxgiIwT5sG8yqeKnwW9vE22vHTKhwEAWwHNmd2GEOmRYiVxwcc+MkDDlyEA9sKCyq/m8i6d2JVQ97o+IoRH1uRk5cxR23gcMbEvmOzx4EPQGBHPBTHzpDKlh4vWqG7/0L6O9Jz0sVpjOV5JxS0ieKXadAlFtMSvJex2TsgSRMKiooayzFlhYrwBpDnVrrm00DOQkUATfH7IbJZFWHaHpu3U+Eq4niIJeHmTtE/kkJvYhbTH9uQiLKD3nDSVQ9G34dMcoiifAi6RTTjNqGQ9g4WEV7L+K9b8nXU0wfSY+ml9JQbf0vlfRo195QOjzBOC4otDqniEM0Gr7ZVl2EJiXr+eu6kPgrsZemntdw30qn0lIeJjOS4ISzonfRWeiO9oeexQ1AzRH3U4gQVU/JZvm0wty78XnG9e0y7jmsQ5FodaMOA4UT6bekfSH9LesYzUI7JXBfSdcRYC76ndH/ADHAVh8YqlEpdmOp0MVfkgs8kSZ8jnlxEmWy1iY3Fxq5o1Qx8lIO/i+VH8WyaEnxcxHR4Md/hJdG+o8CcPmcblXhNpWZLKEJLXYVNtdGoHwKD+V19QF6zHCt08zbPO+36PjCJYvD9NtqhbXx4GfremoC3Y7PKuGxHpjIEMz3XvMCJTaE4LBlWVTFNq7h4r97Esr2WXnNVq5CDLniQ8G3U3Q7SaQwDG+G5qT4uzETBjjmlqWr+3kZNdiwJDteIyi5pu40YbjrwXnonfSu9pYNXxBGGQ7zl1zjwLhy4nTuwMD7nC2t0EoGJAKUAdjVp9DCqtCXJ2i5UklgzHKxYjcXcgRd8zj7KienaLikxP5IK6SPpB6DwRViPsaCbMgq7cYPDCcIhqUcEbO3UHpJ7waYuQzBdhFsaRA2RKwuMbDLoJbmmmTuws1If9PMd/timP7LIZcwCHjGr00Zc7mPjRmDlyLXt6YEsYuwtWc46wJ5AAgMHvxcB8Ye5z/TzlJeB1cl3DCiS4xq+2qRcB+am3tMpy3UYedlViNUUYcJbP8wHje9/3cim78GT5fT+Y0zkGIpgZBZ6j/riSSQro5PJdt9Jr8jDVxjQTRzi/0EHfhEOvAkH3gY/qqjDdnxaE81I/xTzACmeo1MRoW4IDclzW4w1SThy3Y/JwEfR6FUcnerIbWHjNTDupdRIH0lfxuGxF/EgAceaau7AIwlKXHAdM7YTPH0SJxG63iqjRBYAsUZiMdBMyAZcG3CzjNEKO6fL6zIkED36IZPcbgC7bq7iBX2or4rQIQxxRxWvrAM4+KcHH7dc8zNaZq5i3a/p4tnaDlJDBCBXwLvocLlIqAIK1dGvWEU72UrEqaw6YgVupGvIkp4vXSP72UfzeOBL3TAxd1fhPonvhlheY43JEYr6U+kQvDLS8HjPZOFaOmPV3b8uI0e8l95Iv5J+Lv1KuoIUeE/noEY/v+Rxbtfc1jVGvQH9rDG6PsYKnSK72FjX/MdBoLp2W0gvpS+k35N+T/oReoyGY+lu40k4VifWVCgNmaiOfORN3of1dSjZrKZopedxFqLTRzZ7h8CLw/w2xSvrqNMFAF3wcLQukuZkVtcEcDN6a8oew9+eq73Cv5P8dvKtIiyVJLuByz5EVTdyd2VEgoG33PD2o1Dp+3bG8N3pZ0dGmyqcbRy0UkQV3IJQE9fWYd0FF1BFS6SZD/c6EZWBX21UBh4OS8IAXIA7ctsjr4NUbjn7oYpZ+i5OkhUSaiO6DetZ42u2vTGS9ThHApL0MULPaz6iky4w8bX0mCsQ91BiZJOjvrrnwJtw4CbY3P8/OrDxxABcTm10GfhmPZ8D6EM1VbBGNVDyANxcx94v5g7cAgB6SNAt9eXkwM9I6zXtG1NXw7xGrMNJ3J9UJGIb6AIHPiG8tgTc6fP3gT3c2zyme9+FEm8XvUoFDC3JNRb1WZtqGlg48B5rKWMSYsAil9DAC0SnFSGyjBxXhP+MvHGKxedA8CFEmwI4Hke8S+il2P2S0mUVI21jlCKKCyhZNOHAhuxFXHM2Ou984x6jMpFasBo1EcpFUSkdg/gnJdKGFzs713NyTQEnygwun3AW6wVrd8HpJBbo1fOze01V7qX30lvpG+nn0tc48B6t7cFcRfCbOHATuUJzB27nDjyE3fTkhD62tgxCY0fvw78pyJMnzAtaMbyK3HIajOwYbaYcEdvGcZg7Tg4yeFpQMVsQ7DbKGHFK8waBE6NJaE8GXODAXaSj99x7h2U0UOzFPS3RPkZ6LYp3c60InkMshWmPQ9o3Y1yVZZUji7xjhU/QvRXzw7Hchqu42irUWrX0Hg5mhbFdk3IK7NuMojO5CeMxArSHiIc4nirZIcXWZAZ2njdZZwDtgYOC+r4Kcs+TegveNcZp6EU8XnXJPxUUHprf4BAxrolAU0tFfcgQxQ0k/gQrH2PRK/bziifGmHa5Qvf8TvoZQxoHBMlH0lPu9Zggdk3PeUk4KukGH1C8JDaauLBrTqbZzpvA45yMSCHBGV96I53HEVsXuF3Hwd8lCnzXO02EWRPek0Xcsgm7GHTbh3JnwZE8j4heJeZv7JUkThMWVIWLn4VnlyGPWgAnLjkI8TDsy/H5kFP5lnMBfEelZg2dM1EZ0cK1YRNNqTLONHJz3mxrEYFzzy6XxIM+yIcyxB4GiLd81wHEcBXKGc1hgIcvnKHMJ7hTkYS35rLyMhKoWd5E3lUEPIftEVXGnRAo6IUyqJIqsrntp4vDOkwpNIC3joUd5k5sGs44YcnWlAJe7KCcJge+xf58jMbIoOEmSuj30lewVz+fO/AaB17dc+D30jsK5WmJH4UDu+Sq5w78XTiwkaJbML5br/gOen+gGD2Cq1pKZzzlZOrCn5IrDzEgAztXJCO9O8+KtbRVzSz2LNoxx0dUJLWb6FmkDaVSrgmO9izAlhsoY4T395w4cTyX1Q3s8RljVH0YaE/QSeVAQcx1EHQXw25j1nIFTeK3mOcaMdyOeqxi8QciZtLJCkhtBv0MidVEJ9eR+MyddRHLhoiJJX61iCJniCxvazHh9ZAD+2UpMlFEqKlt5BWYguYxUohFrJvCYvsgCvexoakz8bfc4cj9ggbLKYREqWKuewP58BzC+Jgyzkhx4IovpK+l19I76Zc48BG17+TA1T0HPpfeMlQ3WfNZOHARRlMwgOgMfBuDSG5VmuoxlylSxEQmLFEyrOGXzqRn0kvppfQpDbJloGeDs9RmZZl7iwPf8q8DBO0BztOQKCzDzJbTHQ5H0VqSdBIlhPupCinCeygK6166+PyK9rAFQA0ov498PoYpjMHXOSIYLzpvHBCPdK+dJ8LBjl7EAgFDiRhrzVtGAEsVAXfJuGFN6r6BlXEP0QStVUptaMS3xCzzdSZU3McYwiezKZuMVh9OPsT+LoinU6qraBE0XPk6kFQTSEcReirmqnpWZoBK7eaajTqylPP2gl1TXcbw+jk6zufSHzKqVVCWet7jW+kr3vWKQwZ24SINz0Q7jPM9NkT+awi5E56YNnnSo3tPtmv5lq30TjqX3jEocRuq6IG3WNA4SK+kZ/FsrD2LZxuv2Ocp1z8OjkMBBz0Js0OncQu/M853vqHYOIgHj5bRO/V9lZF2q3lSyGaMgWYPRPPdFfzS8y0iqrXBHDVxbHYRXpsaSH+jnczr4BaxsDuPA5jwctO+Dt+9iKjpBphb7uYTigCFC0D2kr5dTRbeRpnZhODH4DAlFvvoGOzu8VC+Kc0TtH9fz5/4pvDdErvdIXq+JlPt59dTsUrmDT0qtgUr11GJDSQlTwWLzTrEbn2DVegXvje/HU7yXnorSfpI+l3pCRd0GM+K20rfSr8Ec3+L3OqDDnzA1fdwYRtOP2gfcGCFoXfhwO9B3unAd0ocyxWcCs84yeEJQwyHKLbP4JvXGE0VxEQRcXhD/72NbbuN6G0AUFPNHwf3bJLFMb8LU3YUsDA1mxrG5VZL7ljPCSkdRCvbIh4T5xWxdR9sfQV6q8OFyrAMzR3Y+XEIkNNxR3Ucz2Ul3DXT8Acc3yS8qAqCSVzDEHm8ZC9GqghzHksy1C0OswIDeMVcgfTBVbUhSvYNdgGc7juwy/oxIHgVOvIK5vgspCbHcXiLE+4e6abTkthBE4XbsKUquuX1XJvqoG/w8NcCnZ5nSS2kj6XfwwMrMNMWmutb6Ves42sc+DaeSr/EgY8oELvIwFMteCmdSJ/cc+AyHHgPVJ0Ym7c48GvpVnobEgX31oeARI/jkPZjvuIx3Mgpo4GnYE0TVoYvJbd5wWWcc1DaVegoSt67kJ7S6MnJ0y6OO/KsqBHScG97CiKxWRRnYLN2N2CZKkhW18pV2MGOvGSl+BBB3WRdGRBG8U81AF0x7TWE59ugK0S40+Icg+BdUxpZunJwJhkJBCu8aIlGxfXMghspwbLL2K8eZNRwgzchEDqM8XP78BCViXCYRVBJXdjhtF8brtk9h1MmBBaU++aVx/nBn5Z/FWBSBzL/6yZ68GMQgE0MZ1k219W/wEJvqEw/ln4sfSl9jNCxRJN1hd/8s0ij00eewhBNSzsRn695+toKxHmEHPlPeFz2kiq7jj5+ASyzJHrL2cy/Qmw99ave0oa9DWKohH/9kfQD6RHxdhtPpczW1CqybReq64ITct/hc7fzR+5YnWLqeiTvFJFfblEm9FGwL+bRYgw464K0jAsrKWbW4P4hTMnTIiWJ6YQTaFpu+RYKMrVd9qEmBFljpCQ3ris8aQh8sozBzYYMdQuhY71HESVHH97jEHUQZyCZdm2lV8ySNGziSBFqmatHORPpDrGSi6gry7ipIUjxO2RoE/gkawwzIfs4222ia0vmF5o41bcnubmMvCDaWUzhDDswHuwmQAekMXxS/L2X9FdELZOaH0u/LX0hfcphhzVUwpXUSX8m/Us0lhs+8b4Dd9Jr0sR9B/5bDzjwEA7chgPvw4HfhgNfEmYzQ0n6WPpb0u9KnzCv/yKelrWKR6IY9jlnufgewCRvQxq+wVGto1tEdjsOwZB51luo05aNMdFu5jgduORGstlutrhCQLjHAvbhcoIyOwFe7zC7G4LdPh6soWBef40D7wLxm41WlJtOkbccpnjMnx1Q3q/MpusINbOb6zqmBPeKB3cvuGULbIwMLdoegzUvAhQt50Ire3uLA+/CcuzA94XyTbQCJkLoGKd9JhXSCX5+gLsOwfz2AaabgNTeVs31MH0UVyn5GoPO0S9C3jWVdz+Q/oAT8E9jxa9x4J9Kfwp627Jep/MnZUzo57X09gEH/tsPOLCnS1p21Dd/JV1Iv4I3+xrXuiHIlQHLvpT+SPptnrKwZgppFVTrKqr2OnKdFfQDzN4rVHIXdF7b0GytQwu1DEVhy0JvpGOEbq6BqnDdITbG9aj9v4rjx1ZcvGeChugKlSScmvnfVTRKtpzANEabw+j2oQxcAQTvNNScLY2nl2ziLQH9BOixADWkQMV5eCC6bQGLNwgO9rCCJULRqTbTfOq5wMRdrTqam0VM2YbpqYaq2tVOFg/jvV/a1SsYiBPiSA8PMaJ73oYAfaCY2fHK7J17I/zLfu7AZaAwGRbV/zKK044lWcf02yn3eopg6jnhcWqurHHcFQ1GEYR9HsJb6XPpD6UfSC/haJcYo0nfQ5CHZVMtUbeVDqVH0kckwRueBfkVzxK/ZHXX0ifSfyz9Pr47hKWXJFDv3pY9HJgvdEJ/z0OYt9HlO4qOV6o+7HDZ3C+o99MYLW66Y8IVhmx9wj4e3tHTOd9RtAxc8zaO2HOSmijzNg7QGKlSTG831K2ZxaxdrGIjEok62m3IjCVzuZvQUq3nWn1nbRHgB+qQm3hNiwn9kqOjL6QD6R2r9yhOFzjB0a3rGFnJtfQmkkyJnynUUlPmuWQXrvnkYh7DXOd00KZHnGJ6GKyZ1WQdIMQZUxzarfBIG6S72adx4pEFMAO34FxsDYL+KZvaY1KTXz2G1jngnacImJ7BEawgMiep9AcdeIKS76RPpD+UPpdehAOvQ3VUQHZ0tP7dNJmwyJH0WHrBkx8mB76YO/AtuOoH0v9N+n0GYAYixVHklIEIYtLaBKpjxEU86nngmpdA8HTgmobCGFnsBuGfex8d+K8MLqYNoNZRgSxjcGhBP2tFpfgkfGDquK44VPyWvy+ATB2iiwqctyePGxo6hbXz80+sikn+q8Gsey6pRzXac/ThIS39BSlpjHaxaaYiALE/ebrm76Rj6Ws+cxey5gWrdMIR66bq3Sk7Cml4FePt1xHjXuM5wisOueCaML1k41pO+nssPYUrehrIpApwvAVVuvK5DRKqiy5egaublXMFvwxmfR2gvCdm6V9BbrQwJAc8A/MxLelpzx5J59IofcPqO4Hcd+DrcOBJYfO59LekH0gfhwM32OXItzs8H8TM+dSFXXD6ejrw23sOPAXaL6X/XPp97qhnKY8fcOCeJWsprCd/+zla7R2l82N6HGsc2M2XMdBnhXBt+rmhRNkGqjMN5ah/AEgyYzM53iG5aMn6PGb9SwxryRHuI+eBHIQ03Cl0AM2X5KUiTvzvQ/O0wNTsdRVHW1mYWWHfLYOYvXTCcMwxC9LNb7NiNNt5xptSESkO2OgzHolxwaEx33DCSY0WyJ9vyecYw0e19IQkfx096Ql2HUnvwa+3RLSp0lhhGDtM7prp8iPpI+m3AaTX9xz4UjrjgRDTN15wMR0RrYwMPwHhR3NNSx10iIP4gKPt678MAmvgxLoiTths4P+m7PO19Ez6ArGSw7JpyJEUMOCmL5ho/yTQ5yZG1lI2WQf6tKB5isbHWM02ekvn0g+l76RvpL+SfoE46AvOHlhHd1RY9yIQ857PvOHPOXu1iZA+6fqeIi5dEBidRNooWIr5f8cgm2scIqvIbOsV819WIaJoOQ3MAFEBecUdrWExr8C+ZvFd11ts72tQeHAy04a/RdRrbj457i7BXV0YT/khjYTZ5THyuDvk/Vym9I10xfNNptrmDG6kDrZkuoUtDTxFI82BwbWKuJ46bnOM1zhWmZyumUNZQzAXSAyW0SUq49FeVooVcY7oiv8d2a8eAF0AZpbz+c4+0ItThJk+/YxytmeeYB99sAY9hh34HQ5stiJbWPcd+AWPnPiCZ0LeceA69A91WGdByiiBC1t2N+Ust9Jv3XPgUvpS+kh6ds+Biwcc+CaOSLqkX+bysYddPoNyXkfrpw/ga4IjOakxROterjrQ1R3vdcllB67Ys/eR+FKOuAqlsrnS8+Dv7cNb6ul6bv2KK+/nln3fga1L6YEHk6sY7h9EJefGR8Evu7kDW4QzRvhuMPQrbLLlEWAeWqsjlExb+YQ81RF2fRd24CGWfQnUyeCVnT57oAXih9Jj6TPph9IPYdPMJe8IT7sYdFiCDVakvRRPJsVmv7O79iQzK2HK0B3oFxTI04o8gTBJB15xh410jgOvoulT/rsc+KX0Q+kzKMklRxxVsKEjbnyn9irw5MMgxDaQxNOo8vk9B66lH0sfS8/RxAwR6e84cEcJsYHJPqcIvpTehakdIAsx4SOWKyWzCr8d+d8S0NMSof5OoOEAAIAASURBVFwBmxGy22juwAX7tw+6pgKB2cJ8Rx6nfS8JBJHcVBmDGkMYxAcz8DhvoI4B+yyAOyQebYkm63Bgm51icHgXDuy2rhXDNVHyBKvYUQc/kc7olSaJPqC1WvD5RQz8PeTAmoNUv2YMbr4gMW64qifSpzjwU0ng8oII3kYLwpkpFa+pi1R8r7msMji9nkGFEXQ+xYW63gQr0cdRwVeUtKnoOeAZy5/FA5G6edKZBsgupJfSb0n/e6Qgh3zzZGjP5tS8sdom+l1mxFc45QKOo6VyeQH2fSP9BU/hHel+rQJjVWSK2+AybuJY+XfSt9K30newjKX0CVOpJ/AyayKKseAQHQLN70i8po9R6irSXHKc2abvIibb3QfUg4t4NkqBhM/RfoHaxPFpR22wiQMtzUOXkafMzXuKZhcVfR36+THke1OJdckTPHyGgYOB3T2lMoo5lJRVWCRV01W4jnNRrE0tuPfrWKIesFSReUzSN7TK7Rle8CF81wmuiaHcmk0vWZwjBJPWr+3vpdpXGNKCs3SbOIduDHF8zaY3ManeB7Ou+RzHX8P9fQhr3IzwpM0YVV3DEN7kwJew3zv6Fx904P8z2gmzy5PpPL+HzMx02A2GmAi6RMY6ML/Rwdp80IG/lJ6S6xfBQFcwa7u5A09k85TK3xC9B/jyp9HoK+EX6nnmHWKti3nyHdn7OtDeEPtRBpnle7dBJ37akm0XMdLdIqXvA8a8D9pyD+jchAqxDi7cvFvDvSzmJm7U3sQNKg6iXqB0LWi01YHpnbKNqbp5ih/ZIO9+Cetg4x7jXDInTbe13Tgd4qaWrE8VTMAeeygiTg2xKfs4dc252BY++fYj6RkFVQ/DXcbE1DXtCzG79ZgT5yzIyZ5/F5hhhWntWbEhZEVWd4zi3hzg93MHXs4FN4fhwFc48J4o8EEH/j+SgY/mCoHTWDKr6lruzbr11ZzSL8DlduD6AQf+AQ98bljTGrB+S5xOB77kcYzfSa8CUxyBO0543spkTzcxYe483IVd5o+b3Omoqbxpwv6mH1dIPZ4zfc4m+CsLKjoc2I2PMc4Vt1EO0Uhaza/f1XwTrdkyBg76SNGOSgXxa4UDT/TDmofQmiVL/J1A1hKunNgqghR/iT14QufFfMK6B9eugvNccGHHRKJ9OHAbGbiY3773awjuoeYzna6XaPfPmMJe4sAtZrCHLy9pU5xAabfzZXdK2ARP0AQPNgQWK+J/+/ofSYP0RvpGeiMN0oX0jfRFKBx6OmYN4+mPOEB2EYfA7vm2qVz9A+k/k/4QNcr0zUdzwfEYS2I27obys6PFd8gOW6lYhnx9SZidmOlj6oUePmXPrk5ee0kxtaHIvZJeS6+kn0s/ly6kz6S/L/0uz688QhqxZZduaOoUUUwZI5bBtnqLqtBnNZGUy8gmRfi6Yn3McK1x0CEWbWS3FRCt4ti+fn6wZ8XXNfHfKtYnC5sBp+ziysvAA0bSe+mckd1ViFGHaJiN4SX1nAMewj/KEKO7QV2zYlfSt6CIHn6jBQ61cYTuwH21UfgP0ZQeonwyPeJazvHGEGtPJWsJwCIo7TGizrSYb6Rb+jAnpOBLZnDGWBlHzTKCpXjBCtquJkLsfBDr/0EaAY7vIfx+Qwd+IwkfWD7gwH+EAw9wQKu5ddqBXSpt47SaQ8D3HgduopMpDlw6jKeNPKIJORI42nDg9gEH/hXHef1SupY+lv6e9NtAjhMi5A0XvJs7cDnnO8p7sb0MnKOwkjFysfldhfUMGGIBHqgp7G7iZNB1QLENoqImimC7zRCSCbfwTB6lcu+OAzcfcuDk1ydpxFk8lMP9Kd+7w9My4EdJxe9AZnrAROoQqfM9WvMRiVEfeN240Zu+Betv5we5FPOYohCx7COeWpJlErBA97ueD1NVYduj9E66iIGSE1Q959JlLIXRbxWXUYXleHM9HvDXDvyfSb30CklxwelWP5478ECEu+/AV5yAawee9JWTA/8tHLglbS65iDZCfkeKqOPJiCOC12OSjFtO5hamhHMcjxJ8J/Ucn+nOaB+h9IMO/BPpjfRL6RfSlfQRDtwA10bYkp6wdcjKmuFJvy3jfzX3yT6Cq+kdFzdJ6zkZmiL1sGPHWdEj2g+FovcasOscWEesNF5vIqAkRe3I0oUDl3HOoqnlhp6RqExOOb7HvaE74t0iNIxJ/S7j2Io2YEiNsmVLG/jnwJAyTol3V8EqkRHk2sN5eOC9DQiTJKHiIpcRhtzessx6RXFVcfEFsXUPY3bNVG4Zg6o3KHMTuGX72ZnMkXTBxVfUBhOf0dX/IQD6K+k76S1t3rfSG/CrwpVXcOgTRbJmPUaW+Zn0ifSl9Pelv8My7Gj0l5jqTayTcN+W84Xe0epcMMfyOBRlVl2WcaMtIOyYb7lk5ca5jOEKgH4hvZV+If0S1tl19xOpjv25ld5LW8abm5CPicC4Cnhwx48VvzcjPoRWYZwPo9v1s+nXUEXUwKkB6mTNGGrBnVpP8jYQ5HQZazaliljir04erY7DNo1iXcWL/NgSFLeowFYRlhJ4FGSDGhWE255dLEsRLM9p8M17/O9SeowAsoID8Ua0xNrtvV66WDEv3T6wtWPMEPMOBocD6yAiX8PX1WEJJat9LX0nvUOYtoan75iY7LHbOtpy9tohosgiyIoauul7kPCfss3fMrS7CAde4cDjAw5cxZmzH3TgBa0zt++FlPOOA7cggw2jPr10IF2Q9OvYBoVNfNCBGwKBv9GTiB904F+walNH9wwjW+HAV7Azi3kH9Y4DpwfW4cDWKBpgdcFljHMkrUhzJdumiBENadFliTsjOxLKSLVg2nvFR9UYkxczHViRK+3AdxCwb8c15Za65VkcR2h+3Zu1nDuwhRZtrGcRTlVECJh25xL5XcWMgklJpyfLzT0U5A9392qKXPsYQSgDMWe570hqAFMQxBdxNq7hhLnRV9IrTq0+CM5xyzxVy3c1USm5PX7HgRdBNni4W/8ItfhX0rfSxTwDN5QaRdjQHQe+lG4edmDTb4ZrPRl4mDuwQf01h3uMPMv+kfSETyjCaH6NA9fhwH1oYm4fcOA/Y2unmvJUKmPIdNJOXIOcqnvCADOg5TzzpAMPvNhij57o3sbmmZFVGHEVK1mCw0YKmwM2qAiLHFHiNiEecIvUV2s0X0SGLObJxBOEFdfZUIDafKfo9kj6COI/6WQ7sH31KAqnOqTDiprE9GAZBe4rrH8hnXN3ntUq4Bh3YV2Jj/tY9j4ycBVNxgKx1B3Ep7ikZZwXXkf5XhAXttJb6VVAHnf9NuSnPlorHTHIMtL8ojdx8lHnwZT6EUe/fC5dS99wtt4vUTV8RPvHbaRd6B+mSz6RPpY+kj6TPpU+lz7i+YU9FYElIsa+jm9j8AV7ItuSZXjDEfMn9ITLiHgV/ZI98u8KtzvA0Tvcd0viXlC6WoPzEU3gi4A4r5A9vJbeSAtEN0ccMtlQiLlQOsTtirhTR37N28IdsFhUTIoa2ZS8P2oRL96Ru5fwNSseDLnFt64w+WvYro7kfjJP1g6u7k4LS3HXdxG4uYqhyToe/XkQT0ZMEJLMneIzez5kjWkN7O/IwIiFqYopyVc0lo7QQHWszABDXxONygAhrjqLiC6+NjfbCmrMZfSHLWI21jcIdrgtuLBrRtYf0Xk4xKR7zNhjsnU89sUp3hjAsplyLqMYJD2VltJL6cc48Fupkb5Cg/dxPIHzvgOvceAfPODATtkdwMJx7I4DJ2/iDd5y9tQEzvpQuIrb/qADGy86WG3jmcfLkEZMtvsY1HUFrzk58FS+v+XRyJ9Ln0sHpBgXFXbgRYDRJKGruZzf+e6OBqjC4NzKSVZlMW/o9yzUWrrikZXvpYGAe8MieIzX8fwIg2vjYqogrYU133dghQPvA/8s4/zcXYiiDE/tJNblWmDpzcoct54fxJiyszeUuZMDvw2eeBsIzSX7itcnldYFnlZ4sjCzMpqxY7SC7WmaK5FcyBrpfcvJtitkP9PGLaPBa+W6VQC+eEOdMsBnn3vxQmqkF9KPpEvpO4rgX1EZv0Q8aLD4N3LglrqtpXBx66GZO3CBaE4xk3JNAung4e848MEDDlzGad5dUI/2kwURcdr4Q+7oPcqHPRzA15QytfSZ9Bna3CoIpSU3dRDWkG6s2Jgy6EwPSbgBZNZ2vMfdLqJEc+dyzYJMQedC6sOBFwFYRC5axkhXH2GiBETez8DZqB7iSkoKVifMp9SdVch/E4+4GBCwu4xP7rmdgeHUDpprjYZJ0hsub2qsXpDcJoHdmot0j2wVbaYiXKWLwiY3yzLMCr6owKJMKBnldzibuJculEWHvP4mcMdiTttaOlDNY0FJwG1CkmjTGutXcfD0E05QVBjynm71M6mUrqW/on3ysfQxm/Y70mfSc3LTGRTJaq7+8uzNcSCDPeVzLz2SWjrdN9I76Z20kc7xb/PQpksrIn/FaPsBiaaOzseSSmQfLlIwE1FzzNdFnPbQUub/QvpKOpVeQr4c85kLvqinshuxRGuUSnDqED5dEkgGzFP3UoOLrz4Stwco27CaAZPZADd7ju27gffpqOyyb3THcl0bDlRqpq6XMRszmaFL44Fx3FUgDSsT+qgrDb7dOJxCy3I+cD9yqcW88qkIJBU1w4n0RHolvYWQGSJIWLk2hmdYzD0yamFubgh66L10yui1a5VFdL/8yX1w1TV71EWs3cNJeZuGeSx3zWsA4H3p6TbsefEt/7qR9A642fAIvdO5A7foGJ/RhUsHfkpb+I8ecGD3TtuoFezADQ7sTT3mEq+RIkwO/DYs2NWGwjiO6DgsSYLLCP4NHNNDDmx91SUF9yr6eF9LX3MW7QqVwoLqMx24CaBShM05AxoulwDiO5VDHZZtRsm528bxQQf2WX4ObcfRmfc6rHESX+qd/oWFHxveWAZpZbNraf6X5PRHFCdlDJ2k1HsI0NVHsLMDl+GlhxylOQbOGSG8W9StL6EorgKRLzCV5PUVnlzFdI7iXxVZ1a2lPjDuEp9PoOV45O2zf3prNBc7pHrEqzTOr0TAjyp0+bd87148TWcKsc9Rr05X/J4vnkz/GUH3jgOX0unDDmwx447O0bQ3j6IManGekQ075FmLW9iA7wgBB+zNGNCt4LTC43DgJtLXKngMB6l0YMXZWufBrVbSRvpO+qV0JL1khmyNA+fMSDsXdRSBDvsAx7YwcQLZPlxOXNudDCwceAc4a0kIZUR6ix+m3x+io+rxjQXLfqeMqzCXPnLFLgSwDRk1+wbu3U5F3lOqlz447/18TcxkpwKvYR2KsONl6OYrYPEAvzRgrs95UMd1+FIdjO8w92Ej+3IORsp5RGtjaG4fuMOzLE6YJffYEXB3WKYFS5tgBYY4YUbzBG4lt4NmQXHYYsZbFv+2/q8hHZ5LLwDQBWxIxzGSkp5LtXQufSu10ufSb0s/xqifS8/wmwOsxrN6F5FzbVYL4nkVazNd74n0WNpLr6lMyxgf6Am/NVjEYdCKm5q2cxtS+Yr0tAqVXcW4ZMe6XoUo9gIhx3R3n7I+x9FDcq4soq+T7KZhsW3WGK4KMGD5rEjNJe/aBUGzZ1y5i55QR/gZ6BtNlridA1NL2HYBZxW1rX+GOQYYomh18Dch2NDR9fUYv5qszfLQyNIVtwNJHWDMdI9I922wuTds5TMeCPuG7WuiYulDRmsxTM1NuZc2RtTsOfn3ii6KuwFbrnY/z8LNPYJsupfnBPh1tGIG1tM94TszLGkwHd7fhvypQpig/wZJ5DPp5cMOXODAE6nWSZ9LP+Q4jifSpw848JW0kd4Bpj3EfHDPgS0eKJnVbqV30prnTJo230fO6sOBNae39vcc2ETvfQe2zrBnTLhgsc6kY+kjaSV9CcN6GCzgHoJjRPnpGO44X4TVduFODaFb4fA1tjuyZ7fhz13M5ORnbuIpAVsY3C58r+aal5ia2I5qToQX9xy4e8CBdzGpfcQpgW3c3RD5NFvB5uzq+QtqxpmEBLDFSLooDyYHdmf1SHrEcMCGbN5FhZ3SNEV3ySDNP0bPO1pU49yBl7Tw3H2zAxsqOApPXuMD01peZge+0zf0eFKGUc8+FhQtFZ07/XeoMx9Jz3HgKpbgLeNoz6VSupW+JgNPDryQnj3swBvq15Ln4pSRwcyEVHQB9/zvhLxvODete8CBi7kD26NGrHlH7VKwE2P0TScHfhRNpY7Tc7yLj6Rj6WOplr6QHrFKC4zAjY8yht7HuX4w+YoxSrrMtOZbSi7PJdQmeOIW2N2zx3bgWz5hiwEZTy/BuCUtnjIycBE5UKEPvp+BDbj3NGvWRLTTeQVsUbKgX4aYHUtNoomgITCCcNoeex3CmdfMUy6IHafQJLcEhZ5as587sNurlq8aXrub1sUD+oagxrfE1vZhB7b7NdJLqr6DgCdDrGfD93ahBmuiY7VHWV7FY4O+pwfrf0MB+4n0EQ/HPcZsG1a0RQ9wzXkCv8fjwB5ThqzpMzlWbDn/uCeuPo32+ogBLqJ3WkZDvJI+lZ5zlF8dKbvEzzqmlRY4Xx/r5yLF1tFSNq5YiWUki8nLz/hLT/j9mIMKDtFAfxfH4NZh/h7+LsNAvKumTmpiqV3f1X1qRH0XCr9vaZM4IF1hRAbcWy5gS9Nuzdk2huMlV+IRzC2VzBj2VeCIa+CNA/NE1T+KvGxVg6HqMHcORaptoii+Dcq5AzyseJSeDeaWrHozZ3MaJnJ7Ttv/qfQ2KMIdmbqFJ000MnKbFY/MW8RpvKdhXUPARYO6FL63GPOSYbyPozHimaUttdNufgjJJetsbOPvvWFnR86u2En6cxz4I+klDnksDdJJxAE78C1h/EuORDjDlCd/LoIEuY0nXZes8pJ7HgPvF9HE3wc/ciTV0kXMUrvU30GxGWzVIXj1dN0dB+4fcGBH/grcVoT659M48XoZlbTdzGVNEQ5cRsY301SHzw/R17X8qMGgDSqyxK9Jwd0cMNgr/KVVwJsBCuEoigpf/wrL28JX9nPEbEnGOKdgpg7zGbLVVWTqmpe5RVCHG7tqcuPmNgKoL94TayakKuDZLs4nEKTSY5DJlfRznG0qw5aRWG8YRvGGTj99dEWKSK8FFnId7fHs9GbB6lNLK6D8JzwTcOpsXqN0SAc2U3JLzOpwYIfmXbCBjfvq/0QqpTPpU77pCTTwcQCgyVtKSvtj6QcRn1YILc9g4zq6aBv+d81J7EuYNjuwovaa1uURJfgJz5btA0L10NIb/l4A48YwuL9RBq4Duh1FBp6A5mdAwDqCYqJe8RXFvQzstpfJnDLOcX1OB/pttKtrRPpVKAQ6nGRDlhNXcsPf68D0FVF/R5PuJAob47xFdOKdzSbqQgTWNbdgsnbEnmokehXr1kcgc7PsYL5Qri7cN7mGlnD0OSIlWP9UwFhWEJhD6CvdCZ1mQ7+SKtomihBWoLSbgMxjgPgOHOfq3Du1xG1u4okI7jxY3GYxUkuYu5FupY/IwFOKuuRYryokRg7ols1tA7e28ZCCgXS1lzb1b3NR30lXzJA8lV5AJK0DmI48BegMeN2E01wToAzy3kt76Zn0jCpyTX7RvGx08eVBBne9hccXfLJ9UYw/+Zf++9G89ee3pJqijfGPFXvVRGvXh/cssayGNHRO5jok73giYAwbdxspW7XFXBhp1Uc1B5qmeAZ8q6WGWgCKOvKmiZgNUMFi+CIObBQx3Gy0eZMhsuQY0dQJ95YM1fNU5mt6aTZkN2C9UFn1G6go2I8ebrWIxSkDso8RPOqof91NHaOgXkgb+gmHMe1TEKhMNRobOOhuuF/PWdxGTXqnn6BIu95Wp/iWC1viIxkmF3QqTDiYZXeC8nKVcf2+2kPCuX5MlPiGicVn0mPpJU35gzD6kZs8QfPk7SnpcdW42ZX0Tupw4FPasw7jXYDC3GBTqh2fvI478cEaE4K8gmir8P8er/igAy8ecOAaB16FYGuBqR1HgpvM7v0c5LkTmPqN3PLqQw48xhG6ApRbwNTPwWjH1nZxGkMLkdTEZGiLuQwUmkfEQXMo4/xsmiHWx6BW4cauVivy4FSKHaBIGyMqldFqGOJms4lWzw+o/3c68CIYNBea6cAjOttboOrm3qiEgVYThf5UV2zmUX4XB94VsYPDb+DA48MOXOLA/a914CHYSWMec6wFB0ttJP2I+ZSvpffSGf72EYZrhXEPzqgg/LKfVxCuShjQ83Dgp9RJK9Y0TTwd2Od47IPNtdd10fI0IthSnZgUch3575GBrYtcYYUehXZo6HDgBS8ugy3+oAM3kcqqucMP0gGrl8McVmUOc9XkHlDQkn43WEkHhFmEgTa4rtXSjoyLiJUt0cqCMM0dbxf1wxazmfiSExBEGZ+cKGMMDGUHbigM0oH1IQfWfBK2CQf2wGzH0TbX3Ol07xMSfBof28y773VcmMPfdLO7IGnydn5zB04jX4CGTFr8GgduY6HcsjABMFFhQ/3/RPh7TVemgsPriR5rqNaSZTjhIXNdeJslBJKueRzJx4g31qzHlmRtYsW272DrM16tW0jQXMyBmu9sQPdovFXNEY/Ns4+bFSZwTe+3I8QdcdeHFBIHKLMuwTSncbC7NRhlhM0C085YYge9jn9yb6AMo+hj0sGyWlGb71m6Gwq0Pr5uDO19H+bZx+YOUNSeR9/CcFv0PLVwtuxXz4FgOwKYBfl2CPdFam5kiI0zTVGGWCmzs8tVnzO2DEOeGJshxngMiAtmWI6kF9JrDlW6DPzm8qyMyzbqtWUWDEfu5/xM8SEPHuN/RyJrNY8Nic1WEdIUlOLRnLTxl47UDFP4P/S5hP85j8q8hi0uER8PIZldz0+NOcRV9nHb+6CNrnhGr/P4GuLwJuDgfQcu2OZtPF7NAfa+A3tQxBIuI78POvDqAQeu6Il0ZPDDOEbnlIEll54XrM8xlGEdhuuGUTYzi7lbjoFlM+cOANMu6pYyCEvrhHahG27DXZuY+xriGJr86pLxx5ZOXBmrcR1PZa4Q723RiGZf7JinW7WRqqpQj9ShsqqiI216eyT/lmHoRehk7MDuHpYBS+44sKQlio7beJpeGxLTbs6mm5fswwP3sbxFIO/2AQdOGUI6sL1mmLvxHQfehwO71hpjnQvKSAGAv3/L/5V5hVsabD1ncexpiC6hGL3oRwTdLSDmGmHK9GXvpe+kS+mTew58Sx3wQQeefjyDZQfugv0oIta6kHIJm4jnvgM3DzhwiwTCV3UIZd7EQQbmQc+xgBOiWw3mUwA1O3AzT7MKdzXH5TtNwXQf02Ym9yys60IUOcYxz6Zrynl7O6kFn/uziSHOMjJwNadNpjbtMfFi2ppTnlHRRf/OPRcrSdMQDVIMuNooP/pI4wfRQrpzSlETDtyGAy8oFo+5zT7s8wqkaVbbOamPv3RUKW3EUN1DVb9JBi4CRjn6NOHAxlN2YJc9fQQ+t7eKGFrd1n+Xvl/H5M8t+LzkXlf0r5bBsG9YBldt++iwX/IJh1zIBphywXJ286brAZMFFR2ggZcVYDsnjio0gXvepTCrI6yvjojtXVJU0HuC0DnjvhfEoYp7PJGeUF6tuHfxoKc+ELYlvCme1LxV5v0cIvFVQJ3D6Nt11BIdMaCK3XYraMkRrruIYS6lC6x4z+dUETk09/gbMNJIRyfDgLCKW4QDC0JOG6HIzaEixoD7sMpyjiwVp4PbsSYQ7Hmz5Vwj7lERa5qMSaaNfswTk86lDnn0JuRs3g7PfSyAWw4MPiUjWdEP/hgl+qpGhpZXUc+INVlFci8DBmRBOGJ+BfDAwaNm6/XHOPCe54LdEn8qMuCa1XRXpaVy2kUMNB04ImTR3IF7Osm3vP6+A6ccaowhtiYc2CKYglOfFf2R7Oved2BXIXcc2PMZkwO3gdKERnwF8Lhh0GEtPWUGYsVVJc1pB24fcOCei7F31eFgPRrUXQSvFMJbaHFBSXQQHW+Fn/gbizkQtA/UgdGvqXpXoaBYET5u6EYeor1Lqq6IWyhC+DrGHIMiNxlQftCBPRzt5PGQA3ehzxEY75K29nbulmIFPPffB8ecTENC9iYo4d/QgY8ecODDCBzO7waTHuMwVDBpXfMJk4nqT2LC75a9cby8RLV9gAp7xbq32FbLKliC3TF+391z4C26js0DDpwu2kUGLsOBm7CMx9h9iigL8Pp9B+4ecOBBOpe+4WRoJ8Yprz6VnuOlFQTdQJnxCK60iPR7x4HvZOA2EGfakCuK6a53EMzWsTk/pAMf0G4fcGB/o6tYRQfK6Nxb2cPBF+T8Fv/pwTgLrn9L0+qQadH6XvpV4OAqsGBNfKkfcOBh7sBVNPKWwQSvAnqaNrB2xXSZh3euYDjOORPY9fQm1moRi+8g6HRdxn9/QwcusJkqolvDMS924IK1WsfQdIuQwzC9ij+DpPpTDGSIxegxh9tAyaaT3DLd8153uruIWgask8tOf3kjfSWdY/6H1AJPeNz3cQhzrbjN9bvTTd1HwaUguTw7kI2QMWJdQ59gIiz72LdjasnbmOqZYOV3KMKmwvMx0e4xp+wfhQkXsZP7IKq6cN9d4KclVfYxF2zfKmI9hwhyYo82kXAHyphdGKDNvArLHWK5JgBjRZ9zZUP1MglrLzgH/1R6yvJuo4wp53a6nJOpdtz0aetPjBxWnJlU0OxxA2bg0wrsZJgDdDvEpC15JG2lZ9CyB5xf3lDst/FRRi/7WJz0HsWNGMsparMkJRcBaXzs4D76Ntu4nSYCZFb0xpMWT/YMq/eSPsVMDeysUdxT6g2MLu2CGqyJw5uYuhsjPpg73PJUvGvpW+mXdJc+6MCPsTC3vF2CjEF1mUHs5g48xqIndW8e1xtQ0dIqoi89fcsxi37LqVxjOPCW65+Y6c+lVjoLsPFBB95F8rUYI3HwnjtacZ7VEM+UyfZpwY4W4aVGq84gO9x1DAceQ4GtiCPmj7p7dJIJsiW9qqmmfCp9BL/p2JGa3ToSbtJSpo1coFuPVVMtrNH8lFELLSLBFbHI6cAdQbBAuLtFzTstyA2xZkAtfYUcxfCmn5PTduCaxfnNHbgMb9qzkunA/dyBfTt32qY+pcQOfGUH3mAiJjr6eWOoR7G+B/X2WP8eB77EheqIZzXL9B6p7jfSr6Rz6e0DDnw2F/srOnBltJmskd/NHdjQ0FvozS4DhacDD2CKY7b2OODLFii2YwVupLfSFfTzZB+P0P0MDzhwGxbWzdsTLY7qszKaOHGvi+CVwNd0rGUMDTtdBWmdrZk+6ASF3Wdoa1mQMiJywxBWwWSZpJfSZ9KzUFl4AqCKoOCA0seyKxanCL1HhVfbgU3BrkIfZj64QjE8xPIecJsdTJFlCm5gKdjOTTihabp6DuJcvBZ/QwdW1LLiqtKBFTDEEaqLjxpYxiFEDzcTT1MfIxdU5LUxtHm3+Pc+SqE+ssM1vLwI+Ae41630E+kbTtz+hfRL6bW04XjNA5zgh9LvS3/MI7gPIi84udgFiwjyZfxd0eUvsP02srDXsuO9e5b5lqrggMbvKN1KnyNB7KVfST+TvpXOERjUCGDMjjWRK4vYgezutqFouwmDmsqia+mUur6lc2BcteOPmaZLQM4q9GXNPGaIz7fqdR05y4XnnqccmFe+hfcYiNNXKHlOpJMY5nOzN+Vdi3twuYrJjp53VbHd02UcUfzWmOUiPMkovAh7zw5Ny3etObHgsbSh23fEJ3hHmtgFkXbsx7axOnr16b7ZPTKs2kbxWUX30Z+8Bbia1WngFsWXGth4lm/DgMn3CfMI5nyMCx1JfNv4mj1pyF3KLX3aKzayZDxrinvX0l9K30glT+r9K+k78PsHHfgLhpo6vtEqmTIEPcU8DiuUG3bgMYCIHXjxgAMbyC64hRFWbqqiCulr6Wc8c9X0xPvQCfWh4hjmDrwLqNSGUH2PZ7a8/Zgt74KbGyKl2kR6mAnnLJe2BzDld/RDI9fWxPK6bbujFTWBmQ3FaEM3YM8QzhNGa6bQ7xntKhioKrK/t6AK7GSFSRGh5IMO3MwPb/WmO/T09xxYMSO4Y9nX4L1tnE2TnGYd4U+RM9LYig85sKPJHQfeBEQ0x/+QA+9Qxg7RK5w+/AbkvQMEXk7u8CgFWcH2K6SRu0gaPf9khH2D4qqBS15z9s1W+gsc+K30V9Jf8niDbyh07jjw5/ccuI0DZRaRY5PGsQP3EelNBfwmGdhkwhJVfhGHHT6VKukb6S+lr6XXUkdFeAUfMP0cPuzALYFvP5+c6iK1OoI0vH1FxWII6FAlPnmyXV9GjR76hjUpAnv1cOdtxOUSP5xqtSZ0GlX48/SbpfRU+kJ6QQjeRg3X0/Iw2TiivhrmukKj+TLKicmBTT+7ZF/MW0hjoAmF/5dRYVtUs2Ng+UR6FjN5QyB7f+wYfJobF/alhxxYDziw2Os7mcYO3PGNDSltG4Snt8ZNLmssLqSi/joipxFwxeRCjxNsIbD6SFU9Z71siR6Wf6ykK07n3ZImXtP670NgP0hX0tfs2156CWDtozttKnTkPoxpkqAZ4s84/0sfS+6jDwSBtQ7X70iFkxGtORN6C2twSP/zCe1fF4xbPsd8UBcJwjHGvPJtWMqIZuYmCEFbZRsTIsmJdHxvpn5XskNAajMAQ8RpB7Y+ehHuwDut7JHlTF33qX9zxdZ0IRc0cVvzmy5cwR3ykYuZdqEN92052Kqi+1JHqnW9NMR+GTG7dqoi5Ff8puI3LR7WxVzWLoLZhoIkez+JYZKHHsMpDbEuec6aG2y+C5c3HuWq44BFAxiXB8ZdHSfS3BKQ9F20Yc38F1QPJ1jANkRXA2hjYPks6jPmXsTxyZM5vpe+RlotujYd1/QrvmUvPceB7TP7mMTqY03HYN27MNYhlvWOA5cPOPDxnFNwRTL906k0ohW8JTkeSo+ks+BfBuazd/ccuIsir49O9W5OvtgufciBTaQPsFUE91QwaaPoxIpbM8dcByYpSNzuyDjFbO5VYCOffC1tpLX0Mk4864NYzI7BiF35vuoA1vauKni6X+/AVeQ4xfKOc4SmOdgo4qsH2gsnlHyXbNmW1RDrvyNbVIEWuntFplPCQw7svkQRDMQi8uIdBz6Ijyrik7d4xFW0fRbiWX0ezxqDdVsFNt1GyPdCD2TFLQ+qMCFd8VylX6BPuORJh0ZOCkLsF9FytgN3ZH6T56YbXWC5RdKFSvjXOPBDGfgoEqMAFwe0h6ZexjGkTQVgfYx+wzHlIsQb6beGqt45a4AUgdZ2XJM0cubSmc0Kqor+S8u8mIJA7aO3kMTRGO0zk/QDfYaBWDkGvrSe5IgDW86ibVdGz34Ex3mQ0SKcYS6GSy3E7gEHroO/KmMpxnnJ5761Xc5Zzl3kHsX2I+k9j617z1FttpaB66njajPC/o0c+IgL7iJcVtF52JOH7AttFH6OWY4vt+FldW160lDsgKNW3KdZor3aRAVu3dAVjMCV9BqRw8Se/Er6SvoGTqSkLz+Z1an0pfSUAYdCOmEUyvnFtGvL0EQ3J/f72M/s1+WxjY5jNqt9HChvfFbjZ7ecGFQycj1VoFd47RFt8EcoSx2ld+TxBMpDiOEViaMMfFyE8e7I4yVhzHYqmnPTTxPPKu5jEvgK0b47FoqvGGMUR5jhwNpab7WcP32mhyOfig3j6UVcv52giOJUkX3qKH68AllyNoDOEwq5ag6X7V6ueaefZRxxabnj7fzrep5S3EPbm88RZrajluiiHZhhQ/P/ao5DRMS6Dp3Sgns0m+6mRD8n9W6ir1JGUDc56Bb995KPIgDZHvJyHQ5swcAKXOgMtaFcO0Chcc650QvpQvpa+qn0qzjedAE5XT7gwO+Rt+4DQ28xlBVml+xmEUtZR2Yf2Mt04OYBB26A6XWc8jg58Jpdv4a+aThA5yQeU2Xaog368I4DKzY4fbKa30Vyc2U0eEuOYGuCmK+DcxUPab7GOgcsoMK+uwgTZmeyS2JF/yKEQbaBxzxto0OXsojqNsNEEa5ipLQMVxdpaIyjHJf07M7mDqxoJiqwirj+BXxMRe93wPAy4x9Lh2gWJrHHOYdiVZjBxOV4aM9R7w5j9Zs4sHtwFeG1iomchxy4irC146ZKlssDYwvfeRnnBniAtAicukS1aSscqKyvOUj2lpM3rqSGoZ6fSl9xWSNk0QTkl/cc+Ei6oLRyzW4d8AqLXJGFygjhNpQF0XSIYGYHrn+tA7vQvOD3b6RzHgR8S0I+hWU/pb5xjXUblG068G7uzFZrOKY0YWpmEZdxmvVkBJfRKezBhUt+v+SfbuPJv32cy+HGUxFHSypyVDpww6Lt8e1TDvw/Ji139xzYPxV91jLK0CKsPNt8duAFGv/T0PM5xzjfWuJS8+FLFFc1Db6Bc/XrOC12UrxeM/z+Z9LbuOYyiMEuoMQYZMCvcWAvox24B36mFqEORHDfgccITOaKF1FKDZhHUy8jHdz5jGJOGVr107M8R1IrnUovpAvpilmdCwregXu6AnzXpLkT6bc49/LjODv+JLpEhnSLSPq3cWFlIARHfnfSFcqsAlzhl3U0jczTvebcS7EC78h9KxLH50zze7Cyuafl80kGinrcjasiNsS52xREHQlRkT2NvJMoHSnTjuIsmSmgvg71totoZ+EaFUdPSVCSgEYOYD5mpvNcei19DQ8wMvTv7O/Sbx9AYlolHy0lbnOyNKvzWhZtqkneS3tMYhWE/RABYOR7rTt1SEhB0y4gxxhND6/SQKtf0oH0C7qhK+mUAka8qwnWokLp7hFDS4tN2kzJ8CuixbN4iFOJTw+ESffY+ziAwSVHyUzCAAq6oUNSaS4VEM2IPY5XhbA1ZXXTnykjTzF5hxrpSUzRtuTB8xj7bZH//0j6mBO3HpEEj+858DawoEnrKvDZBx3YNZ8deA3TlLXFIB3xkPA3bOoVGecChrLF4J5Jn7PuB/Q/nXCHkKndceA6qBw78EEoId3Im954TKy8IZd1FIgmwkSHc4VdToH9ljGbOkx/j003RBOLkBosflq0k1h/xajoM+lFnLGr4EhczFQQFdOC7MNainhNjTO3gXcbRiHTge20ZXige+BJuZYBaSr+fswrzUy01PEr6bn0Unos/VvpL+M47QWys2tIvTJSfz8XlDfRtXDEEbKlyZkf0/JtQyo3EMvSgY2zy3tAzlLbDUFnLQp5Rc42l1VE40oRALwfC9DbCRTWZNMXrNcnHOP5jrA9LUopHUq/I30hPUc4OTnbs3hAyeTAm3Dglv61Db14wIHbiEFFOHDKTDdwGlP4f8eDy3yg5gWCO/Ojn5LG13FAsmHNENNAdxx4iIXtiBRHMTu8gMQ1DirpvHqys42wWIYFr9n7Aej2fp4P93SvGyxmSyISR5T1UCsLOLRs3Gykl0Bnn2gzQKC5+KtgKRasxp0M7P6Og0jH66ctuOPAq3iXW7wDJ6mm7krcVEcTt+E8uzFm2w0BGumxdCo9l37K8zWz/9oh82hDEOrOusmuFbCrCfObiqIr6Z10Kp3yXoebHR5njqFnQeoY5jd2v4nqvyN9rupdrGsR4nP3BqwiGCK8OGXUVElr6VE88H4qPd5J33Bu9SvOK5/KyUfSD6QfS8/oGE3Md1JOji7bUP3uiEUDv8kypIgbGecoYoHVjCEXGnCI95y2cQSWmDq934A1D8FbawJ7FQs1xHS43TcbBmbNPeW2iMHXCve1RrQK6r2DKJyK6zNURXs+aoAN2NHY7KL6XhJsmnDoLirWkhd30imRYISFvWGYx7ioCNVAF2miCoSme/8duJgi8mYBtpleNjULn7Eyyf56fxXhbRnMrlvWXZiEOf4MHovQ1tYEsGPpnLtworfG0AmkAs+YTvZVGSdU8xtcoQgtwjCOY6bDte2ADdh6nVcP2aBlENiNopeYxKF/7MDW1mRXqsQypn+akPQdB/4RY9PfSFfSIL2VXknPpR9IvyU9l54zuHAUty122g7c4cD78OGHHLiI1Sw5RMJnGU77vQoHPpd2gOmOPaulVyzxAdXJlH+P5xig/3c5sNUIdxy4CqtaRjgoIlr1wJtrqZceS4f8q3CMNTdyQUuzi4rNf4p7DlzMHTgdrA9N0gloYQHCs6rTDlzOve6DDryYO7CNflq0q3sOXMwN0j7Qk8eLcCfTMwaTpo3rBxz4EDM+lr4JyXKKv8ewmTHuyN7RUavcceCaI+DO4unLdtF+3sMXibCOiCByvXPxEgb2e67WYr38b0dsG4LZGOKik0Racw9n0vN7Dvy59B42+jIc+LH0Q+n3pI+k55zFug6bFt94y2d2rO8Wa+vm4TYduL6n3VviM87ADXbQMn1zCm+zhfT9Lhx4AQqful1lGPqdmcv7DtxQ4N5x4JKEtoo5uQHhWqo+ztFXnPJ85C0X3wYNdcWYfRt2bJasnDuwc4iZMQ9WjvEJhfRIOqHqch1idu43d+Dlhxy4ooq7vefAZrUN0MfIwHbgKhx40Ozn1ztwhR72VPqW1luB+40U8V1YvuZhZYxVGrlI90NWnFWyiOUqIF3MGThwu4Lq48NbxozGsIpCWtbrWHKv+njv0jSPNneoc8GDNGjApu7C5KMd/jElhb+SfiKtpN+Tfl96CjZtMOfkO0Re20WO2weMLsJ7TCsUNBgMTK2FcJx0J+mWz59+OdE3z6U9Qv2ez1nE02wy1JtfMJ6pCbPJ4hcRS5p4hJbjdoHTpPrsCg74nXQrfcYZ+lZ1baSLOBzyAuivIOyXQTZNdmeyzNXc9JeDKFdvoUtK6bOYRBoiXzcB+MT2mUdX5HcrLpqoJfZxYa30VtpBzLuit3NUkZETjFbzkG+FqvDyMSpDQzLjtyXl9lvpklLK6gPzeo55/uomKod9eIoh39QKfcSIuJNJBUE2xm/M2zQhbfAdNbiAjziafP37R+4pVtzN5XRgt79SiJhpvnzAgT/D5d5hDT+V/kx6JP2u9AfSkzgI/SAiRTqwPdbO7CxcPuDARZAFdYToOuJeBUlxCWZYoKmaVu2J9Hn06JzE7cAd+2rZ29/Ugct7DryPeYIbSJDJgTfSC+lj6Sz6OO+kgec07zmTv0Gqfx3FQxMOkNKIdGA35kwdTq2uH5B5bSQd1vZBB3aIv+/AZaR+B9P6b+jAzvhZHgjXtRQ+O9sfdOCJwfycBxm+4qCVZTjSyF/64BBdTI7xvfcd+IATMZOptJuMIUOwu1bxvf5kS/+PoAUn6Pv92RFGA0NgPnHP6cxm7600El9Twczbgc+klzjwW+lG2kg/kf5MOpT+lvTHlL/WpnjOyJdkxacj4mY+zf5BB7aX2oWKADdDNKSdZKZ/PSVYTp2vj4PYr0OpV0WqNNfkK//NHXgMI7aV9MgwpsMW3kjf8uiwz+jFTkzgtLC99Bl37QxcUscXof4x1bOYO7CrkSEMveVQi2PpB6BnC04tvfibZmD7m/vHNaTcW4qBxdyBywjHdzJwyjwU/R0bavFrHXjqIX4hHUiPpG+lb5G5G7V5X/YUo33kmCIib95yiVDgqfSMak33EolBxIi124GdOxcIn/xd0xWu6mSsfK9j2HvSBwqK1IvURYwq59G1Ckz5CQ5xKf0yhvPWlJZJnSv+6/OeDRlbPHg/FyooGJmBpbKWt5nHm5HUeQ1la37qGKQyIlbsQxxkBDKwDltG25c4yjq6u2X4jYNEQwa0tGMgn94i4ZskPNMg5q20AtD/QDqGaV5g8hswliuZmnrW9p5XknPqDi01IGSExfNkxJR5d5HdihCEVJFNFJ1bRVrxMrrXbdOaaJ336O8WIbbq5/nEqOy+fY5YSxsAqQpDKsIABtZ8qjSmDsML6YYquOcWWljkIpJgBkIDXztOhbWcSqX0hATVYOT1PGcm67qZ74ijuzXQe6jMYW7PM9B5p1a/48Dj3IEzfdhAfW893MQLqZNeS5fSVzx/ZE1TZhU8ouPIHQfucOA93ag9+eW+AzdYxh0HLgKajDHcuoFCWkpn/FNHt92WV0aBMcxFJuW/lwM39xx4ik2vpFvpQnoLO76Wnkq/Lf2OdERZXHImgx2442PLcJ4+YGgdEj47cM27Lrhy280j6SkmaGCTb7zvwFlZ3XHg8UMWPKWq76TrgHA9d3fHgY2j7lDUfZhB5t+08PsOvESPcCR9JL2TfiFdSK+DxTNz4J5dH+G7jxyWDjwZUi29QMJRwaAs55qQvJH9PKfb12yEx8Gy1b7tbNl4TbOvlA7svO7oOAbdO4YLHTH6MErPpVZ6JV1Kv5LOOEjpDAWFbzvJ+TEoxg7SacnRXDUq9WFe3pXhzwugqmeFirCwibJ9T4tnsp4zvs6ikT7iooFyT0S8JUgtufH7Dlw94MCupDXPwK+kG+md9IajEA6k59Lfln4oraXvpK/Y8qvokRvu24KHCB+ZaV0jpnLzW1onHYKhxwEBi6iSF4EF72fg8gEHFjirnDvwgkh6ENVh+oxhpTnpYr6bxuKKGO1XPpSB19zIifRSeiP9XHor/YxwY5rOrQMFTLeRpCrL1fkhMx/uVzjkdXHZvrxCuggY6+2bbm3Ph3tcYVFvwuGqOay534LLZSijP561zzDv2Vg1485NyYEeVjytQmBQxlV7IrcMP3bsXWBfKWnzXVjHaG2xMD1n+TZIsS1PV+0jO4sn2VvWXGCG2zmpV4cquuKOjOOz7LUF9USC/ORJsHcjvZfe8nz1QvpI+qH0GU/4me5r0ge2lPD7SChjPFo+y23jPw9BuN5wp1HUFQPSmhLi2ZNURaRsS8bGeeJIJ0uquA6MV+JAPbMwH0vHc8agiPKsio/NhNPeS/qG2opApbjmej6e3ZHdBvLmnj5/A4DuAga4Ph3mf4pYnwNOWH0UwGO6tV0EVC/XEBShIvmaZygCSX8fDjdzPOSo6MHrMq7Ja+dg6HKwuufAFWTtNMdsTDYN/b/lMNYT5AdNTFn8ege2NbRx/M0dB3ZCqecdtjL80657y9SCNU9jDLeNcbCO1/SWLxUp79/PgbMVkg78FopqopM/k35L+kw6kJ6gIRzhiSvupQsH9skSZbTAKhakiCmmMvLIEDs7jXe8kB6FDi/dspmv9hgJsZu/8r4De/UW1Ny/iQPbJ20nzoYFZqa4DM2z230HNqcy1fpPJHHAxW3wH77NZMosx28jCPp+a2SFU/nRAS9XnKyXznXHgQd8MAsPG7P56VEYrt3Sjmq6LutRzXnyIZBT8t5FVFqWfi6Cs9whzLqOloEr1ALT7OJIl3RgR7gFA5X3HdiOseCPwNl2wm1MKE6/OY5jt/r5IUk9yz2QLrIMKgJ/f9CBmw85sD/Tmu8dJ7y8oXN0K9XSb0k/kj6j4+Y+fhcnNHdBGIzRvyxD/HQnAxt8DRD8aevH0lMO3PCEfBH76yqlnPtJGXZyx4ETcPc0sxbk/EPpIwZZvDJJsTjEpw+nA5fzL9U9RueOA2/jNMqF9ETqpTOpBPsUocBpIse6/PU88hhHbUyusaZhfxoigxKj8uW5XT1G/M01VFzDQCUzSqpX8+ZBy5KUseqZiO/TBxkJO+6gjbWcXOcGJfaV9J00SB9BlzcR893Bc1fG1p3Y2lZTB3ZxpsukZqsZSApVXKoT7oQBtjzDvMQLJzrpWxiugxBST6u7RJS8Dm6oDgP0RRaRQYwrnNd28CavOH9lwwjaJxyYfhjRdAoVj6SF9E56RdSZLuMmwPESaegyYu0Y3ixw5BYF6YZGzpMQD7RRBnrTM+h6x21IIqH7uzzC6KA+Jd830k76TPpSehSuv4prriPNOc8kKhijN1vMHTfLPM3NWxQhHd+45q4P4rlSHZ3hIjpJhlXF/NrMBqxRn3bzAjw5bBe5Y9T7mkPQ7CftkKqtxMEF+5h+G+K2yzC7O/RQYhQFlGnjl478iiezbFAdfAJqMZ1xx4H3cwfOePvvdODlhxy45QXjPVF1A4H/NkZBFgihXnOC21E4sKdZTkPjv/xf4cCX4cDfUNs8l76QPpdexoEBAwdwnUgL6VvpVzjwkt7vbi7kszSlJvk6wQkEuYsj+aZjGz7Ch7fBvCZ3eZ9J1bwCvuPAeeRfD6YfpbfS/v/H3X812ZKl2YHYcnVEaHF1ikpdXVVdaAlgAA4bAwx7xjA04xs4tCF/JB9IkDQjBwCHIwA0utFAi+quyqpKnVeGPsrFnoeda9Xa7ufEjbh5sxrNsLBrcSPO8eO+97c+sT6xgbeBd+nFggGfAFwYSFYpLHvBt3bZebRrANwyCMmY3OzomqppMqNOlHx23NyKP8uHDkTpmFpgScGQmc7Se3ZKO9imKCNWp1FfFq854t0oZBGR5gGE2OWCfozc62A7NwRwRhU7p+ZYsN/2LfbqyQKreK1hXrPmzTSmXBquBTYDuBr8rMUt6D031hIRdcQ58JjMmIaTnLGFakoIKXELckpTS3VdA+DMFlmqOgJ4wazQ10RybPZ8ALwDvAM8BLbZdp4Dd+mZxULtL6mFJwyjF1TNKh0bUUQ8ky1ltGCmWTHAAfC2nU3l6yw5ceI/M3BuArBCWwE4yvQLoCGAD0xZT/lDYcFfl4qZm1nPWuTrbEwPwIL6nD7uNs3+BYuPpXoyVi4tbfx2mbrvSiy2VJcTvqYxDRhMv2QWjNWm65X7y+0tKljqgLqc0uyurFq7TdWCFJq4j8q4JDkrmS1kaxeRVtHsy0jB7DL3O6ZbVrNu8NL6FDKLWTK7JbezHliVvAFnVZQYnJtf5dZEuZylcatR+mIvxjkb6yurr6tYoLRNGmhu1qc0mVUHuQQwox1s2Hb/FHgMvGC/4DbwBvA28AZTiGrcKFnqoNa0jvFaSc1ckByYEvcljXLG0heFomAZlKaa7rNXYmXjg/M0hO/xRO4gOtPkWYstGqaM1i1w9tIIeA+4z0vVBI2yXArzldLLTcBC6sI6z+B1SsKuUK4qjpnlBCpKQsdswIpp9paklWSySMuj3dwXJloCVJ7equcjtUFaBIcv2OB9xYFsv8ro1ua8DgFcGIAdTj2KWk6JUCG3oKH3PGE2eI8AntiEtcsBgHOLfjKjvXEtgLN1AFYk3VnAXVuflRiNks0KsUDiCXBBXmPfwriKE2c0WmF1SwA3BuBnBuA52d+3gTeBQ9Yz5MxJjpncjlKyMMJFi1MxqbRFAK+4ZaoB6NUxRgW3y9Btn/md1kS/Z+lgn6g1vx7Aws+UxrcH4HwA4GIDgHUnTlE5Xd2l/kAPwKDkLNPzmO8CO1yuFT2NLRq+xjyoklPPi1SdybMv6PiK2KpShQIDcG3i7RGwCMpLUpxF9NBGFNPWSM3aoOKEQGk5RdWaFKkF9hsqKB81vbrY9HEXWLH5aMSrtaRxrjgzXNmcIj1SVtRp2Axg7Z8Hwa1hVWqvsUee84CZJUmtJTm3C45z3zf3ugK2WU+W0yNfC+CaPk4PwC3LFV8Aj4GvWCwe5xM9At4F3gHuconEWytjVbLH+zxNGsAc99x8kMC9l7nuqObH5HAi63IHOKAtEi3qMW5xewBPzXHL2RsnAH8A3OXO1vTjO4ZhIy5yY3bMISpY9hLG11hghbDbwKVh+CGH9ssq5jxfpDUlAorBlQUGMOMpTF0arAqyEWKlBOC5LVdhpOuSchtrfmNwtSwzg2ZuYJ+Zp614syQox4bjgtaqoOdREbKFzSnT+Ja3ObbsTUplwytf8ZTv55xGo20R0AWIKYmVIUee0SDCPOmcTyHZKQz3nekG9WqWnBW7D+TAAXAMbFsrrFjn0kg3WOq4NU6gZkAUbOLljEdzxkqrM67Gh9ZupKzmyFiCOZdlnxXY0Txd8eOk5D1ECXy0Ha5Yy66QFf2zMQfWb9E3mFlysTS4Z8aP9sgsr4TqBWCtpUCixT8BZsAxRygtKEKqI8tN2KSJlbNsTDN5FtpzMG6FKuqqljXTwabQLriMIFezYlCc8TWZbWtmqRKF2L1kdU06bMRHUANFZ3KiPF8wtQoTmGCdnR1JsV8ppdyef7UZwCMKxIj/qrJkCOClAbhjO1r06t4E7lMgWpI4zxgP9QDs+kK57JsDWNmHEffVAZynjr6Y+JLhY6Qhj4BjWtuJkVYFHb5rAJxTL2TmQnRs1DtnyveMa/UBcA94xI/W/ZQEcFzY2OKy5OztjJudmaMmbQuKRcZCroxkvAAcqz4O2fcGG3jifJAnJ18BwAVlacrpwz0A5zcGcGZtdsFusrBbzWxiZQ/AvW7xFYt4JxzLeMW1HQPHwKk9XWcBmN7oAM6szCbWtE1SKjAMADy1HpHW6uTEcF0xvorDypLKLyVHcyYRaxtJX9J6yJZW5v7ubACwkq8jCtw7NAJv8YS/mq7qFfCUROzcysMzBnDKWapCcxOAlboLlljpNljg3ApxFjY8uDIA58ARcMS6wpLh+8iUgtcYwvavpW/ds8AVCaJIcj8lgHPgh8BD4C3giK68UhUS1o5ZnhY4JYAvTChVqyBBV4/alrkeS8Y2Oe/qLnCXY2MXnCjk4bVw+2oAVuS9CcAVB8P1AFyaUKkcSu5sSIWhtGBmkwVWOnJpxZIdHdaaE5LH7Oe4oNiIDK6Na+2R3J3t+xmzAbkxQ41taBSSiV1EwAwWCs9J0hTAsmwNuPI1lWXxApOO6Iy7IYM4YSFyafMJ5ZFvcSR6vJEt4C3gHhcvWkn5BBfAzxiGKH4ZW6FzZW7TgiwgzC5IoU3NnfK8RWZaCnyisZGs8THvWLoFTPDuW8fyFp+3I7OuXgaRmp3ZxMLc9BjWzehmPKcT+YK04js8jnHXirPirR5QpSlcyjlVMlJpFZf0DJgDB8A+cEhAyGlZUAMFuoDPONrxmBt0ydkpkzQbX1h9qUpMtfgCUGMbl3MZK04PWnIZvwY+BXLgba75Pj2oLcp4fPuKWkFTZLz8uqVDrKhW3Lwo2mAdUCVbYCaMf1U41AC7nMgRy1l/wjVcUL1NOdsqgknUQWcnxNV8oliwLicnsxKXng/seVx9dVQY8dN3gRPy9xCAQ2qLdQdLAhhmU3Lzmyf8FoCdHdwGZgRhQcv40CqYc/ooM+AC+JyDU3XrpTVAiJ8SNaDILLO3yH8dAthLOBZk/kemcS4Z+OYUHZXGHvIEvpL+wJjB6Mrah0QbhXRqG6g4ogmYcdjrCTBnD2ws43wDeIPB98hy8hUBkNsFp8B9JrHlPIjlaejxZ1Y21Fh8vGRF6CmwBzwEHjDbvCQRUrCJPHDBVf7hyh1pKYUDOGPU1DIcWnJC1GPgcyAAPwQALDiuu+RtN+Y/FGkHgMp4Gvsg8WgShsCWF7HCkis1YciYLrmJUdGcATkw5/FgHefPliSDx7yZhhTFgvez5MCjaNaVVFmk8bHQmwMXqW8jVk72egrsc2R1jtS5EZ4DJXJhDnS84ojCpJKjCRVqyaAwbvkWr3xplG1sqHqHIeMeUHCKzQlwCvwVHXxlYcc831hz37SdIXVVpW4D5XgTgDsmm+dWbNhxomzF3Kr4v0PggENFdsyZG9OnqQngegOAOwt9CtbIn5F7XvJIvGBVk3sEcGdnZWc2rhKEdAY85UiduZ3bntEJOmSwscuiHc9/18xAHQAPgYfAm8CeVWVtm9Ud059DWv3qBiCYBa4tOaLBnyPmU8fAZ8DPGTOAfJHy67D+1HpATOX23aQWOLeVz3hYl1cGlNQjSvmPmU+Is00KqzyugYecRleT3xtZd1LH5wV9Fi/12QPusq5mwQ3tfWW0OlKsDuOCKjhn1ghAVa4sPHYCTx2qhfUod+bMdQbrjr5snfJZueV45DhmvP0zGz+1YvT3hZH1Y1MPY5uUnNnWqWhbXlSPHUCqkEW01cZV5eZXBSvmD5xJU3Kc0T6wZ8XkKkj1om05kS254cKaw+TVXHDa9HOGELFw4hh4BGxZM0JngY38JdFt8Ym2LTlUc9E648in3KAlN2LF5YohXszuvGkHO4jZEXT0rUK8ztwtNyUjy5aVFlaNraFrxBFBOdurtGtjgkOOpueoFMVpyzyRAkOtwC0fVEF6oGXUaxQNrhitjdllA3pHgYhQTitwBVqKU0MfejvFcWE2wesUPLklyjkYJEG1UdlU6Zhl/Caz3KavzqzbJ0//tBwAGLyCA1jckJJHOTX2DmutXjDCiBTdM9YhqZZcLO81AF7aZrghWG0AsDdRLm0OYmamZMm7CnaGkwA8tdi3uTGAJwReyzLWS5JNz1m/NwJ2gWPgzQGA5WaIOxflkfH2dpi0nHELgqXZJzZhrKMOLZl/XjKk+75NHS8ooDK+UvHSyHLMcvOtYeUisnRSB2sB/MgmpQbzX+Waw7ZShVCKpjYBWHISrgWw1IEAnHOM2z4PRjpn0jCwTnrbxm8XDFoCDUPHunNVmWrj9Cw3B/CWpTJEOH5j7MM6AI8syGhtZdXloaLkNgWwSFlniytLA+0wo30GnFKIz4EvgWfAlwx0dqxK4XoAS4Y8Fd5sALDU4dIOUhYL3lG5XNKxvmIGdEoAb5vcBAsT6/SA2h6AR6YNVyxWuWDae85GijvAsfXtlYYZAbhILXC0LfscYTE2fZTRz6usbqwz1RNN2ZxO4T3gh8AuqTPZWzUxOIqUplEpkv4aCAP3btZa4BMC+A2eSBJoZwR7XRZGITuAsRnAMsJNGrv3AIwBgAtgxlz4CfvEM+AO+7ILLqz4qMYOAJvTj9ijR5OZTuk2W2B5lD0ATwi6nKFaA3RlY0suGk/gGJuObY3IVpjTmRXQZ1bcn5y+eMagXc8RK0qf8rCwkodoVKz326b/IWpMOUCYz+TP2lhklw/8iii2M96q+I7CRDtwH+Zch1hxs0Vedo+aSf1LS8YAnVEYjemSEVsPQXpyxiF0M5aVRl29zZFne7aknQVilU1JkguUsehRifGWJWwivyvqDzWJtJSFJY9gfAC8zfYbDeOqByqwMLkTgVVaQYhssVeejK1sSvTzCPgY+Aw4An5A06yi2alpBe1pQX+pNbC2dnsiGcDdVMZYJElILYCAJSKotJbd6CQsmBCOces+8ydjqrfGPGMxrTumUDsOnIhbNrcyMdmWYDsriQ32HcG1x/MyC1gZh7iMzvLjlQFYqbzWlqMzT84/RoQuWKi+MtcnkE/5iuXhSl1OaXZ3+fyyIGsB7PfmAO6uBTDMkSiM9Ygbv6Q2AXAK5BxSeI/GN6dtvS2AwwDAagiLqv4OsA8cmIpECmC17OdpBLzD05KWbHxcmJmbMNmxTB2GA6DhELDvAe8C9ykMjQUDznxIyArDcGlkloAhAI9fBuBj4IdUPWL9RxbIqTxDHp2QplvqAdjfcg2AvYi0MG9BV4j7Ehn6beCEkejYjpWBWb6Ki1OZ9OYGbCVyvWZBANYUjh6AJZzRpisX/at6I9lSabsegDsDcEi5fU+2NWlhVsXIRgDuaOXOgKfs32445ziiN1qhXR52fw2A2xS9omWaDQBe8l0ra9co6EjFiy+Y+8yYzNrmiU17lNS5pRucFbgewA3Dlyue8LbgyuwDu9YaKAJVG1ExjysbqDCmAI6MVDi3Z4HlnsCnXrFD7pBlPVPgQ+Aj4BHXVoMYRNnqS8aq4GIKS53BRtm9iuVNDQE854Z+AXwGHAAfkg8WrTLlVCC3scJYkX6oOwjOXrqJy+xZhgBGCuCcrbvRkFxQzRXUWUpryC9YWaWahGGLGbGR7WZnEOtZ4HyzBVagsgMcRIe+rPjWzlhG/yopJmKmW9NjTlLqOZCuX0uqaMpqgZalC38K/DnQAY/oOx4TtSKeK5Kjnpd3K+DsuDKfmfkG7lsrG+muYcsfutRzjb+cMnW0b2zAubUoBzMEOf1ObUJlOm/FOSRXtI+a+TBmzJCZN5ZZlWZm5RDSoIr9K6v2b3j9KPjbPGhZj1YzRhvRU7wLvAcc8MjopY2HavkUArHDt7PKO5j9VfoqJx+S8YL7vPkZ8ClwCfw+8IDOg/LMpVkohduFQU2VUJ71zUy9dSbMWsDO0oq5/dwyrMp4Wa1qzbxuzgOtL7nFK+CY3kUvRROvs2eWQWRcy8A5s7vSvzBrqf0trJ5ZLk0JM2d5Cnn5oKIbe4+qj1Ek77q6MyFbUSKn9JsXLPr5E+BPgQVwn8cL3KN/sEOBHlvZ2xDAeQpgcTrhWgC35sp0AwAjrd4c8zj1QxqmmpGruqGkB0s7O0eyUhqAZymAt/iMopALuw0ZGpcq2HbIRlds+1uyk+oCWLF07IjSBurTS9Z7RYP4APhN4B5D/2AOjFNIwaQFZuC0QbrtRYrzgoH1EMBXwN8lgC9Z4aDKihKJbdWuvS4A6y09q+PJqUAOJmakZ1TEzzmcaMscMJnLeJ09UjhNmszp0RiO/GsAXFO9qi73VxGGoC8tm1H4QvrYrT1YlgIYVgcja7bkZ0+ZuVhx3sW/A/4DsOREmCkT5Ucc3bSTFsoMASzqrElLPhcbAKxZCpnxuIrVtAe1qf8xp/nKjjUs/1CGcswfqgGAPe5fMXN0SU53h4dja2BSYUiozMEpbHeCbUFgAL1L5/ucCcKO6eEjpsMKu/+GU4F2ge8Bvwc8MrvtEuZ6XLiVs+ZOpBZWAM6t8HfFsqS4GhHA58Dv8hSEC7vtgvRXZv5dYQJ9PYDzdQAOAwDryq29EsaYlXQiJpaGOwMugRfAAXDIejVQDmubDF2ay9NYmFcNLGVLcK4FcEWLoqxLB7TlAX9cmZuih9MzKfzObAECn7Iy0Eu4Wsubq5GpZoh6CnwM/AnwZ/RHfwTcp/Hdt8RvlW6j+/fZQGXJZHTpwmjlpIdr01iN3XNj6jFj+mqfbm5rAcCS6k3BZma4GbFqdEoGwK1VyXBCjUylfWiwA3cLi/IaYkg3KUhptWMH75wK7JJchNi6jtb/KVADR8DbHG55ZZNnc5ME95tlhTtzUXLT98Fkxt+iYrSGpx79HHgGPAS+Z0OPSspJL+WT8YIiwiQMucFXi6wwI5h/5U6zHkHasUkfRDjeYnizZ/zjV6xi/x5wjyFQRvV8xtqPSwAk1+OXQqOOG+eI18uC/Qu2k7TpQaIAazQ9e+nmFeYTBz5/Z1cXgKX9YBvsEWGgDrlkBdLPgD8G/gSoge8BPwDus+L+mPnxbQp6/jIA42YAhhFYPfIrENjBPm6LZXVK1i/sQMTMvFswNbAJwMFahivCY9+a/KTtg6XMVIzhAK4NZjLBJauKowk+Y3KqsBqMeJ9zHpE2Bd4CHrAfTAFWYc0TIV1t9398oYp0HYYAHpv2EYCfvwzAXQrg3DoaewCWYEifthbXbgJwbWPCxZ0UxrjFF0+YCIt1LycsvInO9CPq+o4APuXhGDNeUKld3YzbjNqSs2sBnFuN0BVwqgNj92l+M7u61K1qRqW/W/tZCFdFfGZ3KRKjMXJuRRv1HPhrOtA18CbwEXCXY+uPyT1vc45YtgHA0ljiv+WcXWOBa2s7alML3BoswSzAHsP3lm+cM19fpkzk7FoAt8TqiM9yaC3VhSVixLiPzfEZAljWuOR9HrAZas6jv3Oj6uOlFswA7AH3gXeBD4A3DZClaXDPX4R0/bt0a0CZEVcKUzGlqcsxAfzkZQBemY64HsASVAewgqjcANxtBrAcijE/qyF690wMYgTyS7Kvh9T1ssAvWH77mKOj5CgtmcrVbxzATnI4gCfm8ixYGtiUW1ayqbggMONf8Llr/jfYIwbTV/pkB5kc+MD4K1C4fgb8CfBXwDkwoaDt8XwkWSWRl8IrBj/3AuHO+JcegiXCXdqR0tqY1J5TuG1jcEVsK1qRyLSmwAtmDiZWSpobeiTaJXW7EKa2SDHuciJ7SrvjynTcoJYo2WY+qSFNNjPPZMm6pzkLvnboGqkNGClHJjXpcbd7aFoHOZ3btOACzYR1pws66z8BcuDHLIyJ9NCKiykVVaUipw/NDL6FiUFh//XuG5UkCB+19YZ0xm1rwYMVMqnyOOYXz1kA/AQ4Bj4gCdsCJyxw72yseJve5MzWVsbHWZ2ekHs+rDBv7VclbZ0hEBbS91JkWbqabQpgj4x1B3L+ToEaOAEuga+AfwP8BXBB6YnNlfdJYE0tSy76fQjgLgUw+CDtBgCLdVZDW8uINpDMcgBXzKrPB1cOtgGNrXLFouSJLbdb1cLGRau9suRlS17EM4SSWuetRrx/8AoV8+ex5CDecySk3WuK/YstsAe8Tww3Nhy6x6QW6Q0gfU1u9ZP6YUoAC10jFtkKwH81AHBGAOfWdKyWBc9FDwEsqXCeq30ZgIMBuLW/yu/3UpCSpqWgBvyE0fCb5G+imEUfOrB3PzNiN2wGMGx59Wjgg/QIhm9QNrH4zzdpzE0qUinxtIgQW6S2H4bhlbGeMaSI/OjHwB8BP2FFabQnD4B7nFazzYaLiZFpQwA3KW8maJUbAAzak6lZ6doiYGW7RT87gPNUJiTcrTlq43UABgWlIKMJG+VRGCVZmbRVVgsBQkJqa5RK55hHn3QMVGYG4EDtEGhGcuAI+Ai4B9xh8kt0mTYxNxXpgWZIzYIkL15hZImz+NcJb3hGAP8FkAM/YrH/NkOslnuU26SAlwJYN+AA7kzRCMC6TrMOwLqm62iV9SuwfAq0wJfAObun7/PIsmdk0xcczTCye5YTfBMLLAA3tuaCcVtesiZokXI3mY33gkmNMrFV6nN7rZMz9XGHa6YcI/f8FfCnwF8Az/n6ETNG2/S0Jma2MvPdkXpvIX3cLsWx7x6M9MlNOQU6N53ZVtgFS9YEj5mXzolmWFRSMONXUOi8C0AqMGf8W3CGmsYeeITuzIWLZ52CyV8jSZxQ36zMo5Aa1righ8B7wLEtzpQ13yrekK2XOysF79iVXa74p20q74o3n1sUfAX8AngGfAi8xwcZmYJxdw621AqEfWEV7QbjImD7Dgs2ZIgkSE36OFLzw5jQqwvHbD/5FPiSIHrT2MaOL8v5ubVpRGXa1IHcM69DTzpYM8CSjPM31e4zpg/kpxY2Ws9T8xX/2gOwu1xadO1EzQ9aAE+Az4CfAX8KPANA3XsPeADcJ+M7MRql2wzgnmPt7HhIt1BOvygMRSStaeAegGvyykve55jO960AXJiNrmx3YQ12sEEZHly63antcRzAExZsxBrZOFrqiq+vrfYvrsAu8AbwO8Db3MrW0tcNyc7W1l+2QLvcmU4PjDckaqB6cgCPCOBfpgAOBL9XHHSpLIm3KlNL43clyqG9MYA7co4SIfEZMGjFF+yzg3+XPPTnHBN+SSo60KOrUr3ZmjseUgCLB2xsf12wRds0dL6fxRdfktC6tPoHJ71HKYOhjKw2JqNENrZqEuuGukf1vs+Az4G/AP4ceMECyV3gPvAQuGtU38gwsAnArmg72+lRaoFbc6lzLq73QYYNAI6wX/AYqz1qliUvpY+4HsAw9FbMi40td1imYwWk9YtUUl0fOYDjrIwD3tWS9dAlZdFNU3SdHwC/B7xNtjDwuVrLViii6AYONMwpl56tKC3RAi8M0tKeBSOoZ8D7BHDJVENjAC4MwK3pkR6AxZsFWy6PpoKJcWvqUtq8V1ErACtWFOT2ePFddoK+AJ5a7l8cacee96lR+F26kkMAu4J2AJfmxEXP6BToSiWy5qaactp4Z9I78nAFAxNlCMTLK6JsDbgtU2Hx1s6BT4CfAS8IrJr8+4i81YgPDa6f53UlOxhQs9oxj9pESEnq9Rv90h1ot90NxdBneY2sGzLQ/Z3QEo1MZgvqOe8TXtJRLphaqFOlXRqXBHPygt15z6f01Fplk6pnfFlODvEMWAJvAN8H3qFmmppEqww1N3FW7qpIJVEFYrphVfiLvi11bg9V9SfAL4EA3ON4mxkfKk9HW/RYf6fzJd3iB6RLXJeDJqJh7S7M/uxQbjNKsmbteMDg9SEZH3nEa86AT4AZcA4cWiC0k26ZMOp6PU8/S9NaelRPbWqmIqExAwe2XrKmThZHMjQ11qYY2Bcn5zpTnnIWa/K7l0xqnAK/BP6S3jOYZNtn+cEW42CYsgrXAtgN8fUAVqDTpkI/2gDgQADX1CxbNueqB+DSRuv2ALwYALgkz5UxJVuzJAiGHwXrjUlDL2AoTCLjg+ywBfPCsqk1Z3QE4CPgx8APgY4tfWIhW6uZy03DZrbana2AOJ3M3PRNAI6TRj7dAOCWbklmG+TrLAD79kn1vAKAt2xtlS1VdKQGFHCDdumoVOx6jOzIL1kVs0uCoWDNsK4mO6sKvCGAVUzfA/DEKimu6EZfgEz4OevHJf0C8ITKOwL4yGoA1SdSWJV6Y8mImh85t5FXL4CfAz8FXpj3E0et7RLAWzT1IhSdgYNBS3qxTbfNc3hdaml7XqA0iANYkUBNAC/JRm/bwGDdiXKc5QYAzwcAjr/fZ4StOpMJsZSbnsYAwB4aFox9YwVla9NCpEkLsr+XQAv8JvAj4EOKhWpdg6ldWdrWVEkv4hRCGlvekAI4pxgsaYF/MQCwRjOWxppq11xRbgJwdgMAr9h1JQBvpxY4t2cXUDuLYqcsVqiohSN59RkL3Hco54WNaC0ITum7bgOAew60fq5s9xvWMs7KBadNzsz+guK8ILbi7RzypqZcY7nxNaVbnd8Ng/Y5KckWeAHMeOZARECUpimbbA84KVEYgi1w75mQotkD5G6zqXLod7Y8XYr+uKgrtirMuSCNUTbiOLaoUb3pPG7aJYkk1anmTC+pBVzjNZRqGpmtQYpXhYF6kDnjuzhPWu7KiIagAy6BJ8CnwAXwEPiI57LlJNQ1llP0c2sx1djopDzlJWCmKrPHKbmP8SajkjgAToC/AD4Ffgx8n9Mvl7S8crEk1IrK5jaVpbYtVnzaWeVC4DQV2MT2hlsgNZnzeZHSOFIVqoBo2O4x4+0FYI83Ngf+CvgCeAhUwGMgcPisvGdRIhVdFC/JyJhmC6kotixYKHkKhPrPz8BarAtG4L0c0BDAlR0cCH52yflXW9ZX11IoNbK7BJ6SW1ly8ova6XZ47t2UFwT3vkj1Ve9LcO0hcy2AJ7bTIssdGz0A77I5Pnotu+zzq4ygHRuAnWaKIFySencA7xLAU4pOY9SMGs48ce/Zy4wvEy3d2ty3SGMf8UjFKHYNTwvPgN8Gfgc45LRI0UaFlaYpasrYeNPRPub0B9r0pN7cVG1jFDvomEZ/4wT4M+CXwI+BD4Ez4MAYWe2jisuVyVrSlRSBqC0emQPd2pI2BLCz4K0hJ6NjDWuSaE3Scgv6d0lmBEYCcfpeHML4CfAUeADkPFAqp/RWVD3ekVPYC3IDsGS1M1YpZj/OgI7FIdEE4xkHEl/Y4UMdQ/uFWeOcAN7i6mSmXWoSqyrtF1moEc4F8AS4BB4DT+n2iencZfWVLHBjAG4HFhiU3dz0jmMgs6WHlT12Ji4ZV2eyAcA1E/Fx27TTI4sTxiQaMzOhIjqWZAgF4JKlKaocHPFSpSFQukCOYGaQ6OgLyn3cSSuz77OQYwIcAmAMswV8CPwBcMj9WvJqM0ZBraVXchbqSZoVlHf2vKXZzDGrQcb2rpoHr50Afw58AvwY+Ag4Bw7MBgZTfxkT5LKBJQE8s32srOIoWK695X65YVeUL/p/bkbbEyk9AHd0PKfAMRXihMv+GfAMuACO+LnRXT0mJpt0rca2koUFHiMGMM4igk/9giFovKu2PDcDoZGyciau6Ddk1LR3bM6Ps2hjW/uOyyzbP+UEpyu6Eefcz4JHi05Tp9DNazCz61EnzIDKdZZ0669Onco509Uy+1lQUKynjPnCSOKwjml2hkVswIrdBLJrFUVgOnh7ZzFDL0+jr9bu0FOyYhjHjL8qzt9oGbQ8AyrgA+Bt4MA6C50p630FW0OYNs3Mv8/Sf7UjEy6CaNeo9T8BPgXuAh8Bdygn/kaYsz5MmAVq0MY6QYUAhe1yGApag4xiGdIBPDCvRp9VGpRliGRGNNMop4v1jOr5hJ0XBT3Vqb1ReyfOseTPMNPv26GudeWQF0YRfuPLXlF1N+Y2DQGcseBdXKP890kK4IpbOGaEcUHObEwOfGk1DK8MYP0ypBvgMOgB2GXF6aG1AM4HAG5TACMFsEi9QDpvYW8fAlj1GzIfrwxgWecYEB9wI+KGngCXPMXm+8A9q8AcJqHWArhHPxT2b25XKLierwZg3+VrADy2olwBuBgIT255uh6AlTdeC+BqA4BXGwCsevoLACw+G9sh6p6WylMDUNiQtMaWOmeuFrxmQ0qpD+ALlmyqlPKEvIfK+qYk2ApaY19lAVjhxY4lgFc8O+OSqD5nIXIks18ZwFr63h706llFRYsTA8Gs66wF8GQA4BVZea9j6VlgAbjmqs5fBmB8OwBHBzT6c5ccSJSxKDIHTvn7R8AHwCMjREW7ebyhKxe2zo4l+Ro9ACs+vgbAnw8AXKT4GT77kF1QY2hHDORWw3QNgLPvwAJfkvCcUex9eHlmAxZhjo+uIADLPJSWWyi5ksHyPAUQynNzRFR6odcqngIpqtxmeIxM6lXfpJBEhr9iuLEkDfGAFFXF4yPfAY7SrjuYScoHmHZRwjrD0aZQ0KXq9F0SCqdOtBQdS0q22dwr783jF/Ed4vfBnbxiURW4ShV3VeGV6MLOAhjdWzAdAwsM8sF7c6Yf56SWJrzzqDz2gSPgPnCXHzTn1erBBwkowTyE1lZAfWxaQNg9Dxc5plufAT8HZsDvAI8YRHnzTzZI8nvaTF8CX2uwKNPASaSvqu1K0zeBkh/Ml+iIp8ZWNbPPKuxhYWdzKRG44NUm6UnvEoyKczjjIyyYtQo8ThgpEqUpLzgY4GvglJYaJwzFV+SSGovnewCecg5u/M3EcgRF2l2XE8BjYmabYjQH3gT+hA9zANy5AYCHEBVQMdhdpKb8JgAebQDw9joAV+l99gCsJOqSvg64RA5gSZIkvhs80c0BnNGTUbmbivdi2UYs6ngEfI8nQbaUnsLoks4+y/HjzDdMa4sndkbE45kegB9fC2C9xeOcawDc3hjAeoGWvRsAOL8BgBVV9wD8ABgxHyp/YGLEc80gbcQ0sspNlbRaGdcmAIOW+oITbL4mbHPw5CGN+NaUnUi4Xtmk922g4YC5KKBb6QlLCn9zcrqZsTdb9EFXwFukICrgDnD/BgDe9BXSBdUriwGAlSYciohE0wHcGYC3UgDnZoEL87GCGZCamXXlwq4HcPh2AA7M8Y3IWxwCd4AvrfDoGHgIvA08Ykp+YUXSmY1LVNYmNwA7SejxrjiZLEXdWgA/TQEsPri05wopVq8BcDAA5ze2wHKdegDGDQDs7oYD+BEwBs643VucngXqOHEnhXEPtd1YdHsPzXHXXsSnuDIAxy3Oy4620oGfkXnX+K3O2r8US44ZA6rQvaW/OKX3oNqTHR7GNGOW6ByYA/eBBxymm9nkDYGsS+MaD4J6oaL/kJkz4OLvKQqkAPJt9zxTxd1QvdyY4lOYbnDiWTHvyipOJU2y2p1Jd240h746e0yk8qvfKJEThfRL4C+BMfA+sAcc8YIPgC3gDo/imvOzSpaXrPDyL2EoT0cBuXWWi6JiRYUKHfAx8DVwBLxLTVOk/E7P+e5SHYzUAahM6XbmQsjvHNl6uuuvYKC2OBTmSs3TywYaytIMcWNz56dWQJLxg1oeorVlOiOzgubAJrct/kktnm1KsavGZgE8YyLwLqzpZcyPbxmnwriqQOU8M1KjsUKilgotGqmpnUUlT2uLVQQRwC+AANy5GYAVFfUA3A5wK6qiM20sC1KakGUpgHXlPDVqObN8F/RVFlwWJ7wE4CVDETUrjKn2BWDVEnQpgOVsBNMODmD3bmXuW1IOAB4DfwUAeBt4Axhx2ssDHlW2B2TWQ1VayvEmX25/VaKUmwkLzGSuBfAvgMfAMfAes6+V2X15sT3P5LsAsMY25FbFJf5osQHAWQpgNS/tUxFoQKksbGtn8IEmVZ+1MiVepEFsbSnLFZuNFix7jrTvzxd8PJU1T0ztqRaqoXidmv5Y2BzUhQV/kUvBoEh6i0d4RADHopEHNwNwL0hyAMubEVcqj8cBHH855btgicbMfu4BGOzPmxGcaihEWpae8wZWDEUWLDxaC2CYqA0BDPvBlZcz7nm6MtGMvAA+AQA8BB4Au5xZmAH7wEPmEFYG4IayAvsgpBfvfYmR9bSIA3hipLgADODnwFMCeMpTT2WBne2+CYBBaN0KwCO7sj43p/Uq6fGtBXCRAljlLof0ZK/YOtkyA6CQCVQBtanmFfmujC/wobAd13bJw3cWwCmwjGdVlu4DZSYgS95goLfRUgbBz2x4fm1FB2LJWuEVOfScfTWKEBfMZERYvAF8D7iblgUX6Y45MyLhwiDrOzQT/l8RbVr+YBdZDWIuiYZkGUb2xZWpTIg6etiXNuF9xN1T/JunYtgamv2rZ878926COwuUSuAZ8K+A/x7YBf5L4O+xOixqhUlKC8gEqFTPWxV76+8lHMpMlnafCvw7+jk1X9MxEvsC+ClwBbzLUF1iq5ovV6LZ4ENdEtZmrcfcIDFNbtZ7j6b0zNhWI/51h1yQNm5kaHPfqSRLOEoLuFb0nuOq7pqLu6KNEs2yJKxXzBh0Zi4astQzXmqbCPrGjmS2qfFrwbvBAMAZa/Ma5pUqHpO4ZGg1Z5VgS20sQY+VWLuk4r4lgHvRof67NmOs2H0I4HodgLEOwCubT1KZZAvAVzYya8SpHcGylP44rwvAccVeAP+SAP4nwO8DB8y9V1xhZ8r11VkHWk/K/WW+C4XJQ24vDlyZmwA4TwHsDJRfcAjg3ICUG/inBLBKCWXW1wJY0Z3seH4tgOcbAAwzY4Eh6NwIsik9zChCuxbjNalP6wBWAV/F8BUkk3aAEfCvQbe1J7j7tqniz+RnLBkOriigU/r7SzJgS84/bm2Ycctu59dugXuVBj3PT1ituMRdCv7FBgsM2hZlDedGt1cGM2Hpilos+zUCOIrpC+B/BP4lsA38F8DvAvfY1lZyrraG5gSzY0gXJBgq8vRDPVwr08dxRXm9Bf7NgQV2DYvBNTcBGPZDRk/ULbDClaEFlg7KGUmvbgDg5QYAt2zU1deC6byCAJaRWwE7XJnc/KCGNPOM9+k0bCwU6XgQ8CEwKfUEvW9libST8UMuaUMXRmEUnIC7oOGO4c+2FS5WxG7kZbd5dvRvA+8Dh8ARsGcS0cvj+646djdhrk3lUcKu+KhHAGvhHdyBpIOIRtDLcXFWxlgZuIbO2cjoqsKckDDQSb0v/b5LJS5LHwe2zw3wOfA/AP8cAPAZ8BnwT3kka0XHqWI8c6VRaOZdYB1SlStSAUNpEq1bylNrOKUVjtTsKfDXwGPgAHiTBmXMRjXwZfrobgBf/6uKxTpbz9zaT1tb89Je6XDXg1RW2RQfuUrLtXJDWGvnNxf0iQM3fWF1yGB/XbStexzUODUPraJELRnknnFSypJZ35oJogbYBu7SogbYCUO+czlPmxoCWLU7tSVHKgJ4bgBuaa0yBsE1T8ibEcCPgN8G3gPuvCqAVSHqogzTtEP61okJt4NrATwiaHVZJ/ZhRcYt6cMVTfOEAdYrAHgt/dxjoB3AccDFL4H/Hvi/AjlLjf8xh2orIQ8SpTEl0drHeeMmzMA5S1UYKvIUDz1FsxbAT4ED4HtWi9yYiQkmjb1t/Y4ArA0SS5XRcVoL4LEBuKCQK6htLOaMXyvavB0Ov9tm1Bp48WBHSl8YgBfES20xeh/Azl/BApp7BHBr5FzgkQlzBtQlGegjezAAE6I0XlYTyk54ylME8DvAbwMfAsevCuDS9tuR0KUOk96iBvXadPw1AI7uyYrr1aaJA1jeraVBWzEpO/4WAO7FlBi8rAfgCIPPgP8B+L8DAfgc+Ar4BwxOxowTRITPLaNfWTe7A7hXnCR/WrWBuCWAn/PwNNUhqfwL6b9Ia8LWAri9MYCdou4BOLerCcDlBgBPNwB4wb6KJt3ckrmIjHTinoWjIDflFviEpSANfxkfRDmfu6LCSl+P3P6V59STndq2t2UILMUerE1izjLQwDbImqffTXm230fAe8AbdCxKm1TgCrmHWiHALayTL8FQKFCqTkc72Yv45K61VsDWmnOiPFAgfZjZttecZJKT1Btbqrz3CE6j+HexQVHpS/5uMP8hqoonwP8E/Du+8pfAnwO/S93Z8p7VMOP8MVJVARMA3ZUso7jnwlQgjB+MXyOD+wL4mrnfHwJv0HHymTH6lJ5mQhqnZ/Ya376Gjl/O2tGVvVf1zaV1T7qaBNdES1EZIqTvx5a/BcWjpvFdURF2jKYiE3LOn8ExVOAFOzrN5wTrGQ+hu2KZE5hj22KTcMWewKR61TV/SZHtZRPODdhy7WM45esoAMddjK3qsfprwfOlK+A9AviQJ91vAnAvjxdM664FcBgA2EE7tM7ZBgB3AwCX1wK4JYDV+wyrZO1RRa8AYDXT9wBcAV8C/wr4n3l86M+Ae8Bv8QDjuNFzClbOd9V2M70FgQFY8aJUfJFKP+zOXwrgRwMAi4bpMXSbAJzZ74XnmincbRo+pPbXAdzZAzqAZaBvBeB4tTGRP2b1/xlpqSUrpA94wxrtF23uEMCXwBmRVdF7HvEZvwFwa06SfihTVdSRogOrAjOzBoE1K+BtRUg/51Q10FtaAV8Cl0DBcXWywAevaoEL8339TysDKlI2XaqnSUF+DYBzA3C+DsCdpehyaq4JxbRNRfDbANgZJ6eQc+Br4H8E/jVZz4+BO8APqPJzdkMurXKwsnICXdM5t44AqFMHrTRnJEsXUD+PuD7xcx/z1K8fAm+lAC7siBkBOL8WwEjXUAxNZUWLqi8Uj1oYYbXJAme87VsBuKKLLO9mZDFxS1M84gSlpd1SHMR+zq05YQQsoy2/JrOu0ymQl8F2rLB9PrcFa00J79lDe/vHyjJpS6tCEpW/5G1G2Y/l6/EQxgPgiOAYDRIDsHDYWXUxDkitqnL3/hv1iyqGCqkhzk2Hz1muVrPYdB/YtQH8W9RGIf2UQGnVSNmcKF+Yw+qwc2faJVeaRncbV6OxZXHuYgr8Evj/Ap8D7/KAhd8H3gDukDQseecBOCOC89Qb2eRDl+nPpVlMSVaw1wTKuJz7Z0AD/AD4EbDFWLUjtoIhyXVqT8npN0qAyY+vCd8tej5XlivIuPUjlhW1XE+piswg0PIRFEc5bSIGU9SYagFAQOsOa6O3c/57YjVWC5462tpQ9oZImdCs1zynE6yIzLQ6pSm3nBFtbkAVgHfT3L32uzarLSK25gZXzIadcD7SI2BpAL5D56DXHttT7EMAIwWwFEo+AHCbJuh6AC43AHi5AcBITbwDeGyp7JKLs0rpHqXeegDWX5tbAjjSz/8f4GPgfeD3gXeBvwe8CdyjJt9lsfySGcCKjqZrsbUAVrqwNDj19sh/2WwA8G8QwEUK4M48wG8D4NmNAQwDcLCrOSE9BPBqA4C1I1VqCBs72mJF8wY780QR8CWJMM1Mi8A5tIb6wyGAO1v33PICJ6ZfW1vBA9tI378lfzNhqfUlu447xl5z4JSU1yOgSwGsIcprAdxjqwQYr2Z22qq2pF3HCLUx6fS8ebAzuDYBeJ+NtLvmn621wHKdq1QvfKcAHgO/BP4F8HPgI+B3gDd5TsoDVpXsso+kpoKu6N0qiZNtBnAvApYH4UpWctK9DMBIgxAvRPCA4SYADgbg7FoAZ8wJuAX2aETYazYAuLkWwJkdOhi/jmwE6cLOdL00AM8Y6bas31gQdBOOHo8FITs8oSYCOC9nJrnaljrVbBkXOzaWKG8mTQXgjOOtou2OQfiCRdcN/90DCmACvAG0rA/aZhiriq1sAFP9u+K3MkCt9c3C/BKY/7Dkhm9bv01rdGzGiGzOY3RfABfp8aZTMuUtl6LlLV3xfkYW9zXmE49Mz3sgLLwKJYH+gLIgkq+WEauiUeVIngFfAr8N/D3gA+AHwC6wshNVLvhisPvak2EZt9VJg5CmiwqT7sKeUWKQW3mXxClOnPgYeA68B/xWqsZGtiZSVKDaE7zyVD3IajeMoHNGO2POihybAHiLxMh0UkdRdwPq/GxN3ASWvjhMXDEszccLrBm+5IqppPOchFRM0Z/y0zPK3rnp9cym88ei54yzGX7lsl+QMKvMpIrdyIyCHXEhCqvj0WMsWScQnZinPA+1I3Rj0UkE8A7v+CGP746/2bbnkXfeI4w7i7wdwG1KTsHuvE6rUcUXtsZqYQDgE+AC2GGX1B2ed7pNIOWmhOekdfft/LXOrHxh8XrO93YmzW62BODOVqPjttW05rLdBY/E+x3g7wIfAj8GjpixjGxoDIIr83DatE1NDJoUItYB2MmSwh7BPeDWcB7HJP8COAM+An4/HcFTplsmAEuuwgYAg+5sTUHXuMCxsVT+UEVKsfQoE0Ext0VYDQAspexLVFoxbUv9njHZkrPwMoriKd8oAKs3cQZcpk7OlLVAd5l8ntLORZblmynr0n8wP8YprGB3WTCsFlsMGp+YkT8HngCPOf1/YYTPHlACe8AcKIAj+qYTuj5SikihmxueG8Nwlv4cTO6lwpdMnUQSXgPF1KibUR9JC54Cz9nv+AB4C7jPMcYC8IgrM6K3XbC2W2GilvQaCxxSmxAoLj0Ayx9VUUTFH2L18+fAbwK/B3wf+C1OR48AO2DNekWZCKljIinUl5yyjPffs8CqHyxN0QvA2QDAp8CHwG+nk3dUWtSzwPrB+TEtl6KLldHMNcP6iQFY2rlILbB8OveSsvTpWqusUGJomYb+UjdVygFss+KwZBNJQUV5Ts3+GXBKVV4wOA4ciF4z2i5YknxEWjhi/mugLA8s2C5M10nNdpYo6jhd3omMaLXvUu/Jq19y8IxKSCYcPxzYxXAfOGJiGuaOO5GxMu5JPXwLi3B7jqZr1Jwbe2Vdr4p0JHSetSpsACiAMS1vTu9ZeYLSanBA5iKzmx+aEhdJmK/W+8rSb4+RtSnSAfGHz4Ej4A+AY2rBL4BTYB8IZC0WqbsptecXl80NtiDS3Png3qT7e5SWCKMF8BS4APaB77PEIrMFyewKQqr/NUuf3YkRWIzX0FVd0JLkduJBMHTqyqX9Uixnx+fS9k3so/W8iuJWdL0Ka/EtDK8rWt5gu1nzQJIY+ZbADgDgkha2okM7pak8ZP5paobrm+hTw4IEYC9lbEyDVeb9OOlwQEdNxf4qQFnSfJe0v9Gr3mNkuXMDAEuJtJZVE4DrFB5ybqSl1ZilrhKvMxNVDANwrB7bAg4oJbscviEAa5sLKwdfC+C15G6W/tIBjJsBWFvwFLgL/BPgkG2/X7LbWgBefmcA7r41gMMtAdylK6k93QTgZgOAcUsATzYAONi+wwCs+UTuXMn5eU7uuaDBuLJmvB2e1DFm6qMgpQG5DYdpSasA3FgWJucbSsvUimGN75raqcENr1BT62ek0/bp2ZTAISPLfQK42AxgJ7VqKzbtjDeAAdhZr8ikzWwFJaOwcL+gZzzmgXkZDzMo6dnILAcL4FamBcYbALwJq5sAfL0FDqY6HcCPgDsE7ZfAFT/9EMgtqfcKAM6uBXD41gDObglgLZr4PQdwNQBwuwHAr8sCwy6eGYBzK/nKjPmOgn1GC1yRWs5tBGRl7FTOxsCJiV9Wbts+OCGVp9Kk3wgTtVnq0roVQOGastdlh6Y5vvKCBzLKexZBuDBx0IpqrEjHMtOZdfWJLPR7bm3nA3AFnLIONbcp6prAMDHKUzpsxKxYaUd/lrYmuYVXMsFOKksugqkfZ+VyE8bMllqC6XxwZmLrLwNXYASsgI+Zt4sy9T3gLnBI10jUdZsSBf4tw9Sl9renV4q0OhEp0xTItpwDXwIN8B7wrm1Qm6qNnrrqPXU+SFsGA3TG+LSmNl2kuAz29syckML8pTZdBDA8r/jijFyHAqcVc405i7B84ihsfLynNkV6bpMIOrECCuWrMo6g3WX8FsnTHdrfWJn5TU6/NBuU8wO0hcp3u3bt7EZFcGQm/btABcyMBI2rH1n0ePrRkXUKgyMe1wJYDnRt+SOkOg28Z08qNcAlQ40V2xm36aOMmLAtbdsyUlpLPuAFLa8X4+mroQbs5XhvAmBsAHC4JYBLYJ9H0l5wBQrggQG4vgGAQSvjAK42A3g0YNZ7AL4kgD8A3uVHDAGM2wNYi6zlKlgFUdmDaL8cwLp/J916+cqccHUAlwMA57yakvxSLhM7qUN2RXT7DnDA3IhKGFd2qvyIFQdjhshjxscRgHOwpLqw0DYzPRFoszvek4rppCdy2tv4szrYD4Ap8AKAZeYqjokaM7e6Z+NUvKKtB2Dl+msrZ3FpgIHENyMWkj8DTpgZ1/k0Ex5/Ki8AVkky4QyaHLgCdswZCimRIhazsAXMBxZgLYCzDQDG7QG8ByyBTzjhKDo1R6QZxmmdwyYAOxmYmafeS3UJACKzXwrg94F3LfveA3B+SwBLIAXgQFwtDXUjU6AO4GBifysAF+sssNxlAThnlkcFIZ4ja4At4JjCfGVpwZZCG4zYBrsPJZlxBZalrIBzK2K0Aw1Tz5/OjPeXULR0cBd0NSIzLdezYThcA/eBh8Aegwu5wivbLqQoVBGqyqlgW+1uSmubHOH7FDgB5hxJsUXgjjgVoaBazjnjZEkS/TGPbtzh+rnIey1cnoqVfJjGVqwz/ZyZ9sZghf0HxQPu57mxjov/HPgCWNhJwx3nsuSWeKstwpXCUzlEZqCRwObpLRX27dUy7p7FpZgBpzz1SMUJTcqThvRhO9tZCYOWVK/JzP1TJkE1Kg3bnlt6t5UNO/fI1J9UwNVbWrMqmdnQnMXu4M+1ZWy0QZ2pQLdLNWmfaDoueed3bNqdSBU9WsnrV3J7Sn78yHxcMQjuTLskibd32ki5ngjgMZlpldHUnKZ8DnyP1NXEKNUm1bcOYPcHWqOZe1l4QV3AXgEnBOGctSw7BPCElF5h5I4D+AT4lBpvG8iBLXrhDh5Zn9Z2tDRbswnA2ADgHpKHAO7slVKXF8DnwIKZ6liHFMtBta0dG8leI4DzGwO4F2rrLdU6AIfNANafZHtyE5shgHPzp4X/4ZO+FMDNBgA3VE8e72XpnUuk40C6fYKu4DlogfOUxayNGIXL1+/4aI0DuGAs6NRvINZbw6qYAd8tGAesEUETFpE0XIuOFU5xEuFDUlhjA/AmC+x8syeV2gGAG0N7w86JJ6wJG1G4J8zp7pJ/k9ey4Jzd2B7yuQG44hONTXOtZbV7AMYGABe3BHBjOOzsBqoUwHtc2NxaFr47CxxuDOBNFri4JYBbA7DMdTEAcG4WuLBZrz3m++YArjcAuOCqtoz3XEPJeHrIdGQHUl7yzo94G3OT7RVjOZmN6hv0FuluSFJUjKMCD1+2nthmFAGR7Fs2vVSwW7Ky6Rx40+KRhtdpDQeg8myMo2/SUMJ9gNbAXfO/DREceymjv7IHHAGH7HrScTArLoVSXxfAM+AnJPqnZOUCB270CtoFLEmf1rMzVRTs5pW/cexKkCW5w4SntGn8+WseeTQBjqlj4kcvOVAhsyXtRZqdSRxMWj2od5WjMNBfnPGJQP19AXwBVMAHwD3gLFVXIo86o/YdjgJWbt/ZgECMn1jSUMDsT2ZWqDC56uFekiyerrNSyc7eO+deqxhVRU2iwMXYSIdhEKZ2LM+Im3vGP23xQWoLzJVG1hCzLUaG39jcipkllSKtbG9ctba2x55siq8fE/xb1L2dNQLPgOfAV8Az4G2G154vdW6/B2CR8wJqMPlr7IcV4ddQa1zxTkqmwo+AA7rOIwNwPgDwZ8BfcLjYlHYttzKSzvTO0HzAUOHck9ZwE4B98dcCWNeJH/QM+IyVbXeZZcgHAM6/YwDjZQAuNwC4ShfhpQCOX4W9uDD7OwRwvgHArb0M9gIpI02sik+33ABgWfnASsHaPkvtBF7rOzUAn6f0vyudYEX8mqGzAzTx2HDZzMoYAAVYouKRAjhPnY+cRz+V3AwBeGEgjBY4+rLv0X8qbLfkwg4BvDROujP+qrF1cQCr/CXWb1ySJ97h1IC7ROM2hVuVNFMC+JwngwnAB3xxPWgFd0wOARwGWJUdfgUA+4vjB70AvuB8wDssIMvo2C2teP96ALttz00x/acG4MyuAwNwZm/X+l9jgT0IyYzsEafamGsJ87Yq8tNT+pK1WeCl+ZUlfffMzj1akTuNm3vKe95lzNMaKSormFmpfQtclVvGmEpSAoW0sL3yHA9SreWEVwHssfT2ggz7JfsbnwBfAmd08saMIPR2j/wVWXu3bU9YMiOtBNnaKGoAJXCH6z3lidZ7TPzmtp+5PfKSTcs/A/4t8BmbkVqmlLx7pzNB8yobNxM931f6qbAHGQI0N6nMzEFsUxmM91kBPwIesJEE1r4xMnRK1UkJeaTZGmL8BorBd24tmDJ88b9xqT8FngDvAm9zHVzl50YR+LP4BT2ccN5dN6z3CiIuPBlZszL9dMG0MZFz+Ba0ekvSu85eSTdEbTS2DLCi16Wtz8hyZvE36pedcIZy9KfPAFgaR1phBVyQKSo5Zf4C5p73nrw0FeeZbjnWMDlzQjFnTnUFnAKfAqc8eukc+AL4HHgBPAR2gUPg2Kg1l+wegBtTE9KZbYpbL9qsbcBwARwCdw3Ax8AeC0u0/VkK4BUPjfo58MfAV8CbwFsmuN4/m9kSNXZ7AkC4JYD1mk0Adgo2hlA/BwLwfeAeC3RynuM9BHBzSwCHDQD2N8LwvAnAfttytMKrAri3Sk62eibRfWvhE+bUfnsAq0oEZjlqJgfErOR8QAdwPMhvwqPOwa3JbN7AOT+uZrY/Tl37FRi6NLotbe08BlrayspoK3hVFcQdoAHO2P55QZF6DHwBnAEPgG3gCDhOuWRJ6loA+4q3KYDlNC/tvw395iMa4S2C+YBdHhKjxn6Ooh+rLz8G/hj4EngDeNu8Oq8EAPV6sG2WuHhH6msBMIxwjTJxAfwSyICPmHc/p7+1pBQGyxZnGwBcbgAwNgC4h7eXAliS45YQrwRgNyTxxZVNKXF/zTPHXXqR8JoAnBlBrq2v+ZppGl10PFoawAg4Zs5+DDwj5tUhmtHYxtcv6QC2wLw8Mxc5M4dyacZINcpuKIVs3awI4IYaKeYePwF+QR96xrkcfwJc8RhgbVfBo5pcxxYW/xek+go7bbflz53t2C5NxthOatoy4kBTCiTRDZ+uZuHlY+Azjk/8N8CbQAe8w6oxRSiwey5SDwGpJCo+8Sxoj04eQrlXyZWlBUrx474C/iMLKdV21nIU6RYv1TKYyqnk5KjA5LczqdcNFDaVPrPbg4WxrsbiR+8C7wE7wIXpG5g4OdScMchTHMOe2nGcm5hn1i8jTZCnh2uJrpZx6MyPKuw29IMrZtXoB4pfSd8GXL2Jpf21pEE5W/5mzqh2SomNucw5fSexOvLrRrZc3yQmP7a6rAllXeoxT3+WngzpKjhH0/Hchxa4Ap4BPwX+mrg9B54DC+CPWNi+xfECgv1aAGv/cruZzhqNJYjxwbYtKaDYN0bb6rIcWZqgYRY+pAD+AngGPAP+HfAeUPIUvalVo3tm73oAZ2YCQiqOPdzC3nITAH8J/EcmJiomqFs7m6OwN67MabkhgLEBwKBUvBTAV1yctQAWYPSJUm1rAdymopjZCKe1AC43ADi8JgCDl51ahYICj5IRV21ipvNmp3bMSs42nYXRKqBuyu3xv0lN/5Q2bWTJlIIlv5Ie3yTHlRZa4+oaAjjmqJ4DHwM/Iwd8xflYEcDvAh+w7Vx82/UArmgnI691bk5zmwJYTGF8hAlZAgFY/PeK+6EgobF4PRZg/hHwDgF8AOylAJbFyDcAONsA4PBKFjikUO+Ap8CfA2D2fcS3RABvcz1XDEhGmwEcTKCzkCmRvgAAgABJREFUVJVvssA3AfClGQOkqQZBxcOG3r9DAEt9IKUfbgVg3BLA4zQUqQcWeGIAjnc+NihlxHzH2YINqxBihYHmU0yMve6A55b8EXeH8jMLZyor2dLq5gNz3FoJqfob9ZuGjxX7YT4B/hL4GdAB+8R3AP4YWAI/pmLXMntvak7YVWYiPR+w4G5I0bkdLEgKqCuhIqsHKoDM0lEivKJQx/qNj1kXcQr834BL4J8CvwEcmHS0qVbL0lIjl4VgO9+tK10YfnnU7EkpOZFRY20B58AnwAXwY/LQJVPBK+YPS6N45Ic1pkt68a+EpbCu79xuQByW2+JYzPAEqIG3gYf01zNrgu8xWXX6yDC0ydcSzoLZJiEs5yZ6Xkpyq2xqj3HTpHWHr2RjYsMqPG8UKOELi+46+ywvbShNH0sbFWRd4yfG2DIzjXuVVpllJuElCxYA4E+oNKZmyEXN5vZ+YUPoqgwMgdeJNzEmpfJvgD8H/oozETtqmD8CCuAPTE0ohbQWwIu0a6VJbwx0oWQathj+qpGrNADn3KQyBXAwAF8Cz4Ff8s7Pgf8HUAP/e+A3bOpAbiSIJH4I4Py7AXBnAD4Bfgo8A34I/Ah4aDV+NwFwuBbA2bUAxo0BXG0AcJc+sgDcbAawwjZdpzR1c0MAd7aq+gp0xDX2TT7rZAOAlczqAVhS0dr6gLKxoDVvyTkFzmFbGGKLFMCVdRzj31sHw8TKko5tcZ1SaM1xHBsYrlj8EAjgS+AXwL8FfgL8NQA2AUSP7X8BAPxvU/kebQbwPOUUa8MqzH3RL3e4AROzyRXPQA9k2zKjdFTav+S8wKfAL5h/uQL+OVAD/w3wGzYzQRLc2loPAZxtALA8yFcAsAh7WeAI4B8APwTuARnvc2WN4iHFf88CV9+xBR7fEsDtZgB36XVcod8cwEjjB0VuC/LouZnljs7uEMDNBgB7sBGs9KglRDO+fUbKcc4TedSjNKbrKoXyzUjb8o+t/EpcXcVzEiWesn3O9nlBRWvzj3eBEfAY+DnwC+CXwAmj3Y7pyk+AJfCH7BSFaf6WciS2W/6x1iMyNXFm6MxiAG3CyCKIkSGpIO0ni6mKVZgCvAAec+j8Y676EwCcxNfYLSmpk1uEHiyZkZmASBACcwNl6lqAXGOX/tJXY2m6PePg7ahEY64rAA+Ahxz/DJrdgnc4I3lfUDQyeiOlwVSBobNFMLAqqRu7JKbUvmfAL4Ap8C6DvgOSmzDd06M+lVJqLVAVzmS2OoN74IrBCLieZi0Y+LWGmII6WzvSmMbSmisnpLGJNQUmZ0PaJddB+iCjbisHp9WoOr/mbrY8MPgU2OapZ3JoK86BuTLcqagY/xMJyzHfEH8+SEuvnDFRTOAsxpyteDkPKXsG/BL418BXDNRjBueAjX1fWUFI4OD8YEfaeLpqbEY5s8Boj6GDNLZe7wAGDY24QOX9Gpuf4AB+wsEdT6mEz20sZZmGvJ2JXWkul8ylC1xrf3LNCFttpGvujG/JDZZTFZc3zlr4c+BLAMAjVow1lBI5bSrgBg2r6v2uAXCeWq6e/V0wD9JSHr4ApsD71Dh7FNxhuU5hQ5F6APap1VKF7vWGVD9uAnCe5rozC36kQbyWveJST03+oyBpCEzJWuSZ3U9nQxVzMy21JVgVs21RAs85amKX9+mNTyA5PU6FoQDwp0Y/lzYuQ9nf0nYLdCyCefQjizXj5+0BU3qffww84ymDbzOQPeF3ZwOVC4YdcTMEYJBMcABX9D8OeUhXZs5oRv4qp1shzCy4ytpalXD1APyUo7OeUYYWwA7wPXZ6aYdEzMeld+9Z3UkyIz0A10zWeyF1m0aWbsY7DluBqS2VSbbAXwJfAznwCHiDqfdAFylnGDejSGV0KLTXY/6yB2D/dxOAt63I9DNgCrwH5MAS2KfpgK2JLr7cAOBxCmAR/BNzoLuUNXcAw8xgZwCWG61y154F1h2K1Gl4G7LAGbu9LtJkgmhY2Izihksa33tpweGKinWeEhtuWqIXuWMVXRnQlX9hAqi8c04nILdFcj/MnZ6MmqHi05fkkq84JTOOG3lM3fUCAHBBZdCZJDapLZP9hel/vbiysy1ye5mH/TDHxdV1Y4/WchZvRQow5q6/An4GfA3sAP8A+B3gPwc+4oAsiSEMYZktVy9c1ZcvrGdB/CvYvy6kmUlfFNUZa9w6o6u+AB6zy7qha6sD7ULaiiKGtVu343quzP6ru3J1K65nBrwACuABB2BGraOZUcNLZbaJLlrBntq/Wltzv9vSBEaXLQaPA7syKCR6zF7Q2tm/Eku/Pbn1Le1vQw+4M7kt7PZKaxVW4lO3oVTuyExHwZfljppPrEIyGMvVpk8iYRrb77UiOX3WijRWNJdzqp1IrzQMvKL0n5rvG/XqhIL4CgAOtujXABgpgEUnLTYA+GPgCXAI/BfA3wX+NwRwLwJzQV8LYKQve2UAlwbgqJmXPMm9IUQjgL8GHgD7NBwTOwekXgdgCeVrBPA9AjhLAZwPLvW6AFy8JgDn9koh8yYAljsXaHB7AG7pQLb2OJ2NWHDiTFvTEsBdD8Cfm0ukIoFedgbpw0iLeyZ42xLlYwasM6uLiJzuFdOr4HnFusWcfNStAOwVMGsBnNsFYbRSY3vQ8gSaIYB/DjwH9oB/Avw94B8RwItbAvh1WeBiA4AjeTAlLfMV8JRnpDd09cZGxQwBDDM1rwvA9zcAuOewvBqA3ffRbd8QwOGWAO5uBmAVQIiD8gqowgp+xgZXxU4dXxNJXQ3GAbe+s3L2DsjKnxLmfmu5xRFrJVTGVw70yF7Z8kYKwqs0W9mS5D7lmTAYmDMRxqIt8hQKnuQYW15R/Fo9yM1kKZ66tK9pRKJxRi7wMfA18JfANvCPgH8G/F3g2ChA2Dr0OKZeXrEHYo+Fs8GSukj2NIEvb87QaQY8A57wENwdBlkzoKL9VW5BBKrkPSfy2vQEKqT4KOwZpf89/s0phgVwCTwDdoC3gH3gggK7SqmAnoDlNFjtwHUJg9d3A0zLe4QpCaXBuhSvCuF7lHNPl8DeVVn02pn8N+Yxd1zh1nAUbA2VbajN4CqbodhZS5qZWQ9syQUTKQDPRStM7/lmvPTL3V+YcQRRukViOwxOTHsOnFlOLKNiWQvg8mUA9qUv6Cn67fUEQkzh9QD+KbAD/BPgvwP+AXDMTbpIhQ8vA3C2AcBDOe79Nwy+xXNXvOFnPDZlTApTAN7lSqredZXaIwFY+Z3XBeAtAvicn7JIieHvAsCV3eFNAOwX6blMbrh7RNsQwAuzCp5jymzLMrsZHwIhbq4w9Sr6uDFjM2eXTyFte2bKxlNrbr66dJnWwvgJf5CkllzNlk9+Ro7ZAeyBS7EZwNkGAGc2rBdc6MJKyCWCql5QtKeLgERjYA/IOfAUeAL8DNgB/hD4PwP/ALhL2V3yyjcEMDYAOLdvN8jhZQBW6icC+DEw57lNHWP6MbBNXGmW78p4XAcwLBf+7QH8FNgC3gT2rIMVA7Lx2wBYaPSFuiGA9cZNAIZtiqxLnsZ1DuA5t0YOdJdewbXA8GZkgRYplxU4eathjl/FSzMglCtbtsxYZPdcC3vE/TQTKA2zZ226rVEke3TgVhxOE9O/L4Cv7ZSklve1Y+PhAoEouARzU+RnVGbgQMVVpNhSCLyyZfaIRlz4BcsP/gj4CZAB/xj4PwG/D9wBurTLxWXctWBP9of+cW7i704L7IaD7XPPh24ssRFLPWtWFNwHtkj97lnzXEXvbUTzrcNWFPzkdrc9jrJIHzO3ZyzT/GpgadI7wF379IwMWi9+6C2LslYwmsbdtiGyPdrNTIXn6aaE9DUwxVOkS90NcO/BtWuLjsbXP9fxGkzV6RlbExL5/boNYVeMTawSCTziVuszhpVF647jz/N0TbVGc2psladkRFFnQqAG9y260bsA+K9qFE+BObBrbM5uCuDOALYWwPJytEbi1DLb3SGAmxTA7QDAsfizAv5r4P8C/EPgLqWzMwnQh74agIsNAHaSy61PzY/ImYa44ojrDhhzIEtkjg4sp6oC8ahn42xZB3Cd+gDfEsAzAlj0TcY0Zp5i79sD2PnsTQCG3UaWvmUtgLUCefoR7QYAq8RNHnMPup3dod+tYuUJrXlm4gq6THF/z1g3IadxzXPK09caVekdIG1RVp9Ta9tTp0YS/KV6byOWngMzYMdevJUCOHuZBRYGQqrk1KIvkxXfvjLQdnb9ngX+JfDvgZ8AE+C/Af47AhhWugpbolcG8CYLjEHMELiGIA2Y06l6QY25xTNTYu5m325VEbDOsZunAG5fK4DnKYALAriz591EHN0WwL6wmwAsk5iv24trLLDriGKwKUMAS/6DSWAYALg0Qjq3orfMxLXlCOUFA8Ir4NJs26g8THlzVV9PSFuW6SFlh3zcykSvtRfI9i3Z91JTsUzZa3EGPOUVmnT0X2HerVZ6lcLXd6w0fd7Yis5TAHVWN7hk+W9rg1IamqQzwvfPgOfA3wf+K+A3gdKOI/ECqKG890RjLWMgSRzSn7CLZ4NHlh4KzHtdcErsFhf5ELjHWm2l9wsTLtBwr0z7IrU1uaEnS5ndXmCoV8atPwNeACPgPrDNfmO9QAq+S3GQDb512TzdSphO6t1DTnXu8F1r4nt8ojIw4L2VFvIHu+GpkUrygzs7dFDsigJerS0o4bBRGTNDdk7N2tmaxHftU0QrU9V7oI+VmfaIivrY8OyV0MpHqJ8bfHiZ4wjgmvAYM2WaMbCPAPgldRdsk14ZwG0K4EUa8fQAvBgAONsA4D8A/inwW8CIx5E0wNwc9F8zgGXcM9LPF7yfWEIZ69cFYMmrBHpKhn6xDsDdawXwFgnvzGJfF/HXAmDcHsD5ywBcpReU3tkE4CoFsNignvHNKeFbzAAujPjPLfEK65/IgX0bBxzhsw3sAb/YXidzhbVDOznaDRg+0cxnNNQ9AJ8T9p25aBWwDTwDToET4I5FA+UGAHsEvBbA3ToAi8brbCDtknMSgk15qwcA/nPgOfCHwD8FfhcYM/pveDOvBcAykrBLwba898i9UtArArggCRFPirkD7JlF7VngnBW3vx4ASxDlpukBvw2AfXFuDuDMbv56AOfrAFxdC2CYI9lzoMELFuQqcvtQrfnYEgiKgGvgkIJdUAymwE55wKtqkkdMqO7Z4QyVecyFAbe0x82sWqTgPTa0vFFjTHg7l8AJB0Lqaor8O4vkQVRJ5WbpTl5wwRQRa11VSb60ke41bdYCWNABjT+c808rdlG/AfzXwAdAAC64OMKQo1OxUmbeT27r4wWcPdB7cOfIDvZeF0B99IwMYAEcAA+AEfAmcAy8BbxBY6GgErbUHdtNYVRAr51Rt1eafOUDdSUgxr7rJ8A58AZwh5UGcdFmZlmGxJyTAFlqMXr6z+Nf90Z6nJRrgpBex3+Zp0sqTaAsXWYtZ8GiQU+/aUR7Q09DLcGwZ4HRCCqAlmcYX6AmJfm9nenmeIVY2BjPGfvVNImKnbNjvlmV1OrwyXjRXp9ZD8AwAOtdXrnXAhcc/bGwNYXVuPQA3NgG+46ec5tVvNJy7dYCeLEBwIsNAI4t+wVlXdOTOpOD7wLArqfCAMAFbegpj5vaoRvzEDgE3gHeZI9a7yNG9K9UD+AAbl4TgB8Bx1y3SJnNUk/jNQK4uwGAexcXgejb5/siQyKPNpgnOQRwsGHHDR08lwqk67lKuRmVU+qgFik7uVX6fbTIMRD6Vd9eydBWY1pzM7N6+NJMvi9EngJYHPARFYzOHBrzvudkT5emIxr7jk+4MIZvCGBND2pSAKtUv6bHvKIvIJQ6mK8GAF4BD4H/A/AjoGQEr3rD8B0D2OW12wDgOQEcq2aP2PizD7xFg+yFBOAj5MA2hx32ANy9JgDfpXu1tMPfCvPaYB/0CgDOBgDuvb0HYL1Xv/Qn9dqhngUWCtwnGgK4s9b6hjjMLc0qXHjBsgAcXdTSTmAR2y2uWhUycfZqBRTlfZuyusspWBVHHXs/8Jjsl8PXpVXdm9I28U8LO1o0/vIIeATsMKeKwYCQYOuxsFjAVZbMq0jlhR2O/pjTDOIxLksCd8nQT7a4s5Xzrb4L/JfA3wHGwAserLuynmzpqiyFb5ZahIbuQZ7aiMz2Vna2J6QeD+jKWts5h2wcs/XrLvAesAfcA7aAJZnO3DRizr04ADqO8ZS6XaUKQ76WomA9gpPZORXDGfA1UAJvADtpGOjxRpeaUVj8iHWLgBQEvSsIyj3IhsHrkd6Gf2m/pKs6EjK5Sf6KRbba0LjyS6vlgNlTZ7WE2kCX0rNK8UOXpun9firW7YDR8R5wAKaKYgv+Nk/1GrFd2GdCV0wtSWW5N1laaK24xAMUWcZohS+BXWDPJsAqwl4L4HoDgDsCeE4Ax/Tjc8K1B+DZAMBxL8cbAPy7wDZwAewwBRasRPPXD2AX4jkJgJgumACHwLvAnqVvNKlMPVcFX3wAtAMAh9cKYH8oX6X2OwNw+ZoALE4ls3kS1wD4Ks17NJYT1mN65d9ywNwVlPnWfFrZzgmj3v0egGvbmDEj4IIjNL0mtbDVF0OuFOPIAOw+pdwIJaSmnJhzB6h5wnZBTm4TgD3t6gAuBwCeAXPgGXDB35/TRM94taW9uNsM4D8Efh/YJYCDOTGrWwK42QDgwhbWA7VNANbbAwEM4Bj4BVACB0TOITDibYsAbgcADgMAt68VwNkNAIxXBbD71gLDDQE8/OoBOBiAlfdpKUVDAF8yHYkUwH57nYHz0tqX5MM2nO5eG4ZH9JgW9GGjid4DDsofcTOndqqmiENp74Kwcz7Py/90X6WdWRl4oPcijZgK5hUqPpl6Jpf2HOcE3NIc6I4pnBnPSluytOyM2YszBoYy0HGlV8bkaVHHXBvwrzFmfA/4J8ABiZ6C/Xmw18D0px7NARqoeMXleSiEVCQdwZ19UDdwoHPLfkX26m2gAe4BbwM7PKu8tMKJLoVvCeyykGPO6MiJG88klYMnxeBZ4vVPgVPgPnCXREewGXnqIxz6G4XtC+yvYQOs28FvunQjYBSyXgDblJCqB91GyVtdWta6ZRlCzNidspxwSqMkqqug1VK2Eqae3bb6eDulbvSbhjdTkUaIN7PDxM4d4B6At0k/axR0tL+7djawqrxGbC+WdfepYW71s8ECdbwJH1a7bccUKzm+FsByoHsAPiOAnxHAz9jUPjc3SADOUwCDcUK7AcCH3LaxvUWvyX7tABZ4Amn1COA3gRlwRADfpQmW7dY6OIBX5AkE4Oa7BHCvMP11ATjcAMDdLQFc0DgKwPW1AK7MF5WwBZv6JePb2EY4SVfThim1pESSDjhYA+BY16vXqYiysaC2TpHZUscUlhtWE8M4rU/SDakGYAxsAZ8D+wCAc+DCbEW2AcByoHsArgng5wTwcxrkuWXsMt6zf2W84S16LSOT3Q+A/x1wbEdxOi36NwXgQDnrAfgRcAncYeboiFn8zu55COBmYIFX3yWAq3UAzl4JwF2qiHvR5EstsF95LYDLAYBXjMeuB7CCBJ3O4yqmMeaqoPGo7Vncn40CNmb3VoTADpFyBNwp36ajXHGNpxYM5mmA1qRT0XNzoINJWWHLtrTJ15LK+OL7lvWKwJ2x1Tumc54ROjNqrchGXQGnwDM2QbzgvFfhXlgXtxc/d0I90RFS2n9NDRuziyFOQq/Zgz4h9dakffCFQTa3DKeakFuqmWCCr3/HpA4806NMWJf+PpCviFRaHI95H5gBe8BvAMfAG3YU0sQyBsEkN8YtMaI/o5mQ7XDrpkebWJVskZozqd4F8AXQAe8B96xdTTPdVnxvZmiDWYPcXEz9KaPU59SvjQlnnq6nlJOcQC8XyUxogy2p0KOAV4UJrR2mvWIz3x7QcUrjlJORp7zVkpha2myTkVXet/aJFSUqKptt/nXOEZQNcALsMPxYAFNGSnsA3k8j3YoHfgmfArBq4X3tXgpg13VbRE4LbPOskyvgCTA21aSVurCq5TNSNpesPTrhjNcXPN2wpYvjdtY5cklhGGj7kjnxCZNQ/wD4oU3WC9ybQGMqU+gAlv6XRAbuUMnXSzRhTo4Io2CBuy9pMFu2RQBnBPAY+BA4Bt4mgMvBjD8n4Ep2rQnAsLtSnK1KnnwDgLUmcXO/BDrgLQPwhACON1Ol7oSE5IYA1iSgzIjR7wLAWgFhaUUTnLOgMXYERQDXwB4pnILHmc0J4JJpJp2WolsqbahayUvNeRhSvOczOoox0jsEpsCdeMjGvo2haeyplhx6UqSWYUKQyyzHhZvbxsCWVdIpVzIic0yK9K+BCfAGcJe55wUH2Ty3EbkzLqUA/IJHHL9gHUhniV5XQKX9sGU6YsHNW3J1Gpuy/PvA90lhxUvV3NHaTGIPwKXFkbnlbtxZzFJjWNriK7QtTU+XtoYd1XkAngABOOIk7PdSCzwxhdUT0JLOHwzAkl2YdXWHsjUAtKkFDgRqBPD3gDu8q7FFVuB/3SURvbYWwODtdVQHsJAsMzzIZbgJgD32vcYCiycUgKMcbhHAzwlg2KlxMU6tjbyJC75Mk57xTrZ4k0uOgxzz4J6O5+CcUgPWPI/hHnAX2CuPbdhd4OdUljPI7V9pyyxdAKQZFM+UqOUB6bsyRtkrHpI44s4seErDJ8BT4MrYqBn10gVdmRWH1aotaso+DSW6pEVURZ+ZcYx3GynbHS5tBvwusAd8DVzRVRBSp6nz7aLhouRJIIWfWWoyelSOLtXaGxV7yEZ3PIVxSo6/4vCNA5IShXUcIt0F8MSqHWCfHzfnBuVGRMiX6OzOQ3onSq7ESOZuJFbS0WRS6r1YdZg5w+Bd/qX16dJfuglG+nNIL5ilP/cSZiIKRgbrhkAMfKiMVrJlDWAv2smpYFSNlVG0GvNDGhtBKdJaZlB9YheU/xUdpykNKR4x7NMSq4rSvY08XdAedwML/noA7q2+yzSYjH5MRaTHuASeAF+RYJ4DTxgiX9C9mBmAI+Qq+7dLFa8i+MzCzWB3fsBT7Fv2eP0WsAOcA1dWiBZh/10A2J2qzK42JFxuBeA8faMkOxqyIYAzmtTMiEiVjA4BHMj1vBTAYTOA8785AHc3ALCK/K4BcD0AcH4tgBXXOYDdxSqIjoa1DDk3bsL5ZiPQWuu2RBvfSxddS9yYKDiq79oyOYB7SNb+nTEkegF8DDwH7jMGrWmEHwPnjEdfACCAZwbglpxVYUcYV6bPYFU1LV8jD0xe4A7wwGrl9oHfBQ4JYGcCyjRkvB7AGAA4HwBYu94jjnoi+GoWOLslgHODbmEALo35cJPeWbl5D8DjAXKyDQB+qQXOB37wdw3g8pYAbl4G4JACuEx51B6AQXlYcG76nGFtQQxvAaPyvlVaeUDXWx794CIgXZFZJRfM34JN9enlS1R81LLGQ5J4BnwO/Bnwp8Dn7HUr06Ns4i2NgGOL3QItTsfuJrWCgAsw4w4UvGBBj+SYchdZoY/Iji95jlOWOuUuJj3xhK1PZ2pWwPVNHsJ907e82JZKZZ/1e3vAIfCIRElpAbujLTPNX1ONd5xmqet7HVNPx/RAIJFfAF8CK+BD4NAYq9q23uVK6qEnYO579BAZNojlEPTOq4bUCvlT5JsR31jeVG1shS1RxRKzqHQ9yeo+T80uz4z59poMEozsz41ZV69R4FsWZHI7YN9SvJcA3k77ebWyvRS51qKyZfK3NAbgLlWJLgrgz+pFrTlGccqnOge+BP4S+HPgsdU6aiitHINYBFJZU/XKeIGVnWeRmcUsqEGU+4jBxAFwRHroHeADAATw2JipcC2AuxsDeBhpdLb3mwAMqstYPLkLTIDLzQCu7IZ7NEbNBXQAi5fMU5X0UgDPCOAP1gE4pIjtATi3FbsGwN1/AgBWHVtB7kkt58Eu/lIAx+EZC4M91hGjKqo8M6GVZW/AWQ0lw2pFafu2ai6ySkn3NPQ43RLtca9uQQs0Z+3HCx5icghs09tYAU+AXwAvrNug4nrpc0dWtB2MWm6ZH4m33bBsE6QDpUcLKoLAsQKR9vsI+Ih5zSXH0Xs4uAnAPQscBgB2LPWiC397j2DwUDij9s2AvZcBuLwlgPMBgF25uOufpwBepgDO7OANPcgmAF9vgXN7iwcb17jdLwVwSD/lFQBckh5uuZiC4loAhxTAI3MnxZdL3Su6q63WMHIzu7zzBrgqt61rarh+vW+kS+6BzDwtxQcfRQd09pR2Y3a/sRWNNUHxGPB4JmZUuQ/M59Z5qKN0akROLMo1V7ih076epyhc8YJTKrQ7bII/5jYu+eCw5Ifr8LX8i4JWcZOtvasw5QF7gda5x4zCHjNQw42YdYx8xR7LcxpDj7/R927Fxs3ogezw8V15uJoJg+s0xuJlwHPgCbAHPKQ7OLasmNvZLgVlML8l51JrNVyi3IEOphV0D+7V5Om7vHJBP3fpBCrXxAvbjqUdm7CwxPg2GU9p6IKZtpqSo9VrmLPMTERXdttS9o1piHh7Y55wFTOsW+xMaQEcmf1uDZNIcRsGW4sUwK3FNw5gpw8k06CGKe3Z4t2PgHPgC+AnwH8g3ipWSKvqrDAZrdIPLRnUtlauFkupzoFTy2bDADxioeYd4D7wfeCIFVexYUsArtN6yOsBHF4G4Cpd7eZ1A7hLt0mftdwA4B4TFEzWdR0HsH55DYCRqoO1AA4vA7ALzysAeO2LYULrHmPJnLOWWj8vrwVwxpWpDa5rAVylaquwG265KeDHjTiUcAQcWQtBDWDbYOaZ8YkJkHNj3vnrzuLVBguMdHX014bLfUGX92s2YzXsw//curImvOCE7YYZUTcm2ZkZgKdUhBE2MZF2bnQguILgal4BE+Au8CbwQ+C+HXmtJW5sO18NwCEFcG6L5pdtrgVwYwAubgxgdytXNwMwTASD8dMa9XQ9gDvbaNgQrCwF2DUAFjeTpxh2APd8+k0W2GNf2LLndjWYbZRKre2jr7fAOYXkpQAWI1pzSZ0fAsPLwLKGfd7kLi1wAXRlaRKU2RJqRYc+tB7FxU3OjViGwvbKg9ZAoW45Hyk3dCrcWDAmnfBgAYXuWxbO6HgB8WtjSmWWujLnwAXwiD76jLVasv4nxMQxx10HdhB6CjS3xEluFV4en/qaOIa8JKOgpgnpmrj9XRviKfEwYfPFiMRksGNoVRITUt0pfkQPmFEphtShzG0fdYd62Jq6M97wE+AK+AjYHzBxviYKIfNUWoJ9rqLObnDbMDHPDKbuHBcDhdq7B9dMfqnexuXWZNlwzVtaj9y6lXLGtiB8G1ZOl6xNq2k6JhxvkFmm0CHWpS5B3J1d9qRM7bztFpbZ6/lJ5QYAa6F7H1OZZCuFJcrddyiz0LM0aYapqQumrStgnxXcJZ2JLb5xCODSGjLka0av95LXHAJ4yZLiWK3xCLhDL6cH4IJmdBOAQyoH4ZYAlscZBgB2LskB3JgnvQnASAWls6ThEMCdYSOjNoEtZmUAzlMAv0sAuzhmLwOwMoybANz92gEcmNnuAbihKMLoFgG4M2t7PYDlxtSGEScEwVsqSK1uk7GtrOv3m2FIokglVVcmVe5Dj2xRnF88GwBY+Oy5zsF2qCIp1LIw+oqk3XPSYrs2HTNnrUJh/txaAOemSjuu7wVj4itrT5SAngBzhtp3GRbP2eMjlSn38dUsMNYBOEslHmlwuQnAY2bKRuQ0rgew64VNFlgugLubooBa24WWvZUO4PcJ4MwWRFFZxn2XW3lDACtublOkOYCzXwuAV2YhChsztiJkbghgZUXU+e50uD9mzuzqFi2lptlkpdzcnLccv+p0t3vqVEKkfXbJam3NWlsqvT3QO5F8VbauHreOrMMis1hgyr+q4FNiUqYbIou2YAfEM+AJu5h0S2fAkufHH7P9bsXOiPFgyoskIk9XwOXiegc6S3VMywcP5ghJovWhErEVMddxgkpLX0Ij7PMBO6N9jG1F0QnZpVdTAKe8scqaIBtT2+7ytlzhqBq3gHvUfxgMkumlr4aBwdrVy1PZ65U4OXwL04iuTYdI7alD2J+CWaQOmAMnNmy3NrozilzBpoNTpmp75U/xNQvOdupMcSrrWdhS69m1tlE+D4CH1JpC0EiC2DPhSB/ef9+kAF4bOjhoe0GMu1Z12kurHdLcuoLk1Mi6K6Zsoqo2A1gNGXqQnGZ9xnNzT4EX/MQI4Nh2MuEgi/BrB7BnHbEBwJ3J1ojlK6PNAHbp9F0orgVwZgDumO8TgFuT9YIFYQ7gYIFgD8B6tGwzhrPBw357ALvt6TlCawFcWObRAYwNAD4ngHEzABdGWikREcxz8EcugCPgARV3zg0agYNsdA6fIomZaYKQMiqZUapaUNXKyQJ7EssXMV7ngORSYylVYb42r0JTPgTgA6p5AbsHYHEvCsEzovECeAY8Y0YpVjJVdJXOgV3gQ55uqukfAnBOWXxlAPfAL7XY0fEKhpYsFXoHz4LPXtOTvhWAN1ng8w0AVjdZZ9cJdGp7AM74LJ4tytMk9A0tcLkOyWsBnF8LYIdrGPxpCOCctuQ0BXDYAOAz1uJnGwB8uQ7AOd1PJ9r95mXe9oA7QGApdpTtUZmbfGXpw/X8ZrmhbjUyg11P3Qn3kne/bGkugt6epSfUThjP5sABp+xtk7gfpSCWUsqIyMJ2u2Qd5i8ZVpeU2cbYB3BY5xHzWA3zb1s2QmEofWu9seEaZimaQXA4PzIUsd4Vos09t1BBmx8T3SfAHjlpL93M7LItvY4ZD7MbMSKrzW5mtncZwbrkg0RZWwJfAODwDQG9pvB2vMk8fXb3753E6NYhrzNYZIbX3K7m8O1tx5CHgd2elkilxtGmvbBjBkZm9RT2amqcRnDoflSkkDOIbhnJZkzQxnuLJUkzEkGF/QlE0Ihru2Bgrizxr9YrtxWcpFfRa1apjdfqS/I6E3Ffx54DXaQIz/jLOTsuwLzSHjAmDx3Ru8uFmNLJVnZJqkycS8bVj1WCv0gBPCWAZ3Z7O1ysJQG8z1fKRG4CcC/SeimAtWJtqkl7ptPBLABXNwBwSC+i700AntPKhMGDbALwfADg2srvegAOGwBc/A0BuLQFV8QZP2gIYBXcXgPgcGMA6xHG5CRUglGmli/iMbYFXhp7OwZ93JqJEnmreYpqLfQVH7U3I2JrA4B91fy7sSoo2D2N7NZHhtJ7Zn53uXBTKjBlsivzbLSRJeuBZsBfkpcY2ckQNZXcis7KXdqQCOBDYMfKP74NgJECOBjV01q7Xu/Lr1PxqJf8BgDeRGFdb4F7UOmpkpcCuDWdrjTn6FoLfD2As7TCtAdg3B7Auv4mAIcNAM5eBmCkAK5SAE8oddv24BHAF6RbitQIBwLzHhCAM5PwcakVdVrfA149jQKffGAdcpNcgRumtHvUPPiC0vazZUf+gtmRu0DJIqM3gUPggNngghNxlE9vU4U8tbCxopSdAzPgcwJ6i7HJyozyNnDEc05npPi3WI2lnXGyUMuSpUFFD3xufztbh3adUXbQ9OKZCNYrbnvG++lY635KL9abNWB3K0V7ZeP/ovO3w6GBniFzsHZ2CFdBB/orYMT0b052vOO9BQNoO0hK92J8h28vouvsl86cCr6e9Op9hOtL/+vIdg0m6lccSXwBBGu7PaDUlZwgDmBJX7FL/QRw1Oecrz9gIndsfbdTuo6N4SKzGLkDzslaRNnWQL2EZHEHGrZqDuAmBXDOPa7T5W7tBZldqrcZ+UCULylAI+AusMtk7B3gmACeshh6iySO0oaVUR6eZ6941uAVATxiLdecgz5KFhMeA/u0RDFgiABWlDwsTXllAHcpgN3wvRTAkxsAuLX76W4M4IURiALe9QDeJoAz6t+1AO5eB4BDitXvAsDzDQAeU+ocwHMDcHYzAG/Z+siNXHEXnNuIK3PJrY8cbqcRt4ExjRf7ltax11k9rt7mAhrX4tCWuzUAexLBo58TLndJUQh8yDlzvXGe8RG1+xEBPDEAj01LeeZSkpeRCoss4HPgC3PTp3beeLyTfeAuTwmaG4AL2/jCRKcH4PAyACMVYo1fyUy28psBuLoBgJv0Vm8I4LlxX3rwgutcrwPw1AC85CDGjP50ca0Fxi0BnNsq+RVeAcDjDQCeXQvgKgXw4sYWeM9KqVoDcE5RDMRtMAAHA7Bomw7ISlESwSaVS8cKtVp1ufR61uiNbzOUE42qVorSCmr0xoxNFDn9hgmpq5qh/pvAhAc23Y1j91iBpZZjLwH13e6l1wL3YcqD+u4DAZgBL4AnnDW0zQRVBmwBL4AWOKLLknGUx8rCuh652/EBG0sL6fELW2d3altb5JZTmJCqgdw2NpbVxVFD20BGV2GenjsDbkQglFckPuKyPAF2gV3gBLgCdhlCSF401qi2UaVC8BYwAx4DLfA+8CGQcSi/ihmE3ZYrU1FvNXyi1gAaTNJyk8BgMC2th6el8dI49crit44roBqJnqrQK2teLY5teA48Z1l8ySngW7QbogsWRPYZsLCzUQpgCewC20AD7LKJN05PPgEaYBs4oEmJ7uVPgQWL6USqynU84ZjaFaOUJXgIUG3KrTU94D60UpQiPn1lp1wOp6KV8uhZro4+VkOeKNYBnnAkew4cA29yMsYhcLgOwLkxeT0AFxsAvA3sAw+AR/STXvDc0UtgHzgk1Vewr/2Q47VLQrfXeizV3bMgWoEyXa7KZKi1Zsdgj+DEvL4yRvwjHoNyxor4mmHAfHDyqriBwKrlMVfmKxOpczKDI+CSzWACcK8MWgBugadAA7wFvE0AF6z6aAcADlbq2RlluQnA3ToAV3R8GzMqssWltbQ6gKVkXU5qfmLDu411Ps8ZbgUGrBNWPwrGGTBjBvM5S/rkQNfAPnOUO8Ap0LL/L74y9iXEkoQD4AB4zHE0lZ1rOGblwilwbBOUvqkYeQicENaZ5cTPU6uiRZynUWZgIVSduikyHRdWBanVbCjB53zm6LauaFtW9J7vsifoHfq1FVmszDTxEMDZOgAXwAFwjxF2QSr3KefdjzgNS9nNBfsDWhZ15DZIfEh5+oqJpC/MJKpPKuNt1KbUOkqVLLw7gnJn4yJEAG8RmTVzXuogblMAtwbgeLWhBa6oES6Bjr5dbYxWzwIvgK+BJfAh8BYlJ6cWDjTdud2MANyahy37rDvXgztJAKtAdGBXVBNa7Zz2xtdT7duqD5inbn0ghi9YVtVRhEbcuxi/TSghI54WfZ6KX822zoYmtCUDdgJ0PDAyDjXfB46AZ8Cc9mluJ2gvaZB3KckRwE1Z2nFX4OO2rCEUOe3/5vangoIwt8WWuBW21QpqApektsEkgTIy55M9ornZAY6AY+CYvsXYcpvjFL4KEiu7Z3n2cf2+B9whDRFdpa+Bp8T3sfmXGniXWw+Z0+0e2iP9DVJj2tm9yasu7O2u+Tysg71GSxqbfkt2sxQM1Ve2j0t64f6hunIstlpZd0Y0nRPaRGUWFZA0FlMFSv0JcAEcAw8AmO+uQg7ZBDkDw0eDPXtYt5i93LjyDL71TrQ7aaB1DukvkQq83Ms5OYQZM4sq2xjbAbtVqiHOeZbKmG7bmJbUdVLLT7+kLR6z+3AXuMdDPzpef0bFfAV8zR3J7E/YsaDBPb+x6UOXsKW5NSJTMtZmIaXNfMPkX/r2dwY8JYRzYBfY4fcBR9sIwCMD8HQDgMsNAN4ngLepRJ4DXwFfcBjXHZvyIXLNASzL+AoAxgDAveV9BQDnmwE8NshlKYBLnjgzohdRAjOy8jcH8OkGAIv+/5YA7lF+NwewLns9gGsLY3oAXrCJSIG1+n+KlOFtLd4YM4Uy5YzFTQDeZhuKA3hGoiJqQAG4A56wPaCjU7QEj3Ffks+RH7NjAHYVLnCqTiNqpufpWnuKRHcTaJDb9EwqGWqFRBGrd5j3PQYeAXcJYPW5YLMFzjcA+Bh4D7jP3sSa4yMe063Zp/IrLFJ8LRY4S1fy21vgnNu0CcAe6vQAnJNm1sMWzCuvBXC1AcAv1gG4W2eBe3UD3xLAeE0AdgnPzHs+NQtc8nvElSltTH1E5ozxhgC8fS2AZwxdpjYT+AFPJRHPJAA3PJXkgkK4BOqytqoTcVgua60hQwkul4jOjunN7QqKdn0rXPZbK8iv2afxBefNZVaeMTZJ9+3yDYGBozN3X7cRPY9DXnPbHOh7wFMu1XY61B52HHJjDsMmGczS583S2/DgTgRNGMBXwt5jr8B4I04aiOHYgluwtPOCOu55adsEWt6o/J4AHadQdpxYMOdqawQOKK2aty2WfQ48A5bA+8AbVl2Zm6ro1Ulh3aIFg5R0XkY8uc7zqpJgzp64rSzFLkh4SWVm6UdXtgUNexYiG1UzT7JN3mpKgi+3+2zZqqQCqyUNXUGdmjGjFsj2XpAbvWJZ8x2gBD4FThjBZryHjGf2Neb+RZ3xK60ObkxJiRcDontVlOD6qrG/5pYRUIZ6WBIdUtFUYUCE0xWwtHEhhbV8IMXPNQBuNgD4gHeySxPznCfXxlqOg7TjdQhgbd4rABgDALcbAJzZc10D4BFBq65xWPDQpp5Pl6qeWwF4dC2A300BnL0+AHc3A7Cw+moAjl+1cb1nvJnC6OepVRxkBoFXAPBzoOM503Mg5wzyL2mCx0zRLCioz8y9KUmnYotzjsc2DDK3fUJqVycpxZtZ3ku+Ts3N7my2Q8WnBa/TWuyly14yuzSxEGHb/JXSdME1AO42APghy7V3SJQ+Z4nzBY80yPnU+ToAh1cFsKi/nkZ7ZQtc8BTKjmFTTSkPdPcdwCG9+K0APL4NgPP0s4oBcoYAdjELfApfnB6Au9cHYFh/2RK45IkwaugcWdPMJJ3xglcF8BWQAUc8QHkMHHLNXwCBUtpxUEy0wDrcOW7xqhyZIejSoKxLtaLiWemlwoCuSDawmlnetqqrS9urlY0a1+SrM+ArcgdTqwGN+rZhv0Mwz1uD/rIBdkOK7wgan8gZaIiXrNmN3Z5b3OSG+qlM99y119COYPBDMNlxciBLxRP2e8duTyvkdvZcS/i2Rk9qyGFpOgP8U0G99YSBhEaNj4FLqoeYWp9zHz1gVALhnAmPR8A2Sw4Ky4plKaRCyg37c/U+RQ/b2WJm6XegPnNtoZd19gIpMI+FQVMTuAJXwAnwlG0LShftse6vd2aA6tcvgSvWyhemNha8/hS4y+qGBeu2rlgV/BlwRea0TOteKgpqbecBK0aawRzqJpX7mT1nnq6XVtODD1Vk5xQmVS+0Jr7aRZ0VEP+6ouPyjDxaYTjxy7p/1g1GYXfrMOwArticM6WS3KM26Vjqtn0DAOevBGC8bgB3LwOw4mzFM0rkrgXw7FsA+IoAVvPEdw1gl40egMPNAKxwa8EpDs+AUyauSzvrQyNf3I9qCKQ5Z5EpqVowJgx09s64TVMAwCWLGiKAD/gpHQU1I4AbArhheUy8h29qsBSbL7lwOX/2hYtfY4tuHTl7XM0stcC5ORPK6XdkkeUDie+cc6HBJRvbWfDCsLC9yQI3GwCskydKase4ArFx4ZIT/iT3mfG4DtRXsMCyDNcDOLsxgMNtAKylFtuxFsAXrwPAlT1IPoDcrQDcXgtgDAAcbgngQPOzIvf8nEVNShgpWVvZqdluga940M+2WcSC5HGUuvtE4IqJ9jlwHzjkvPNj8mMdY1yvNgNHtYGJrQxYlVMLbdzaLu02VfPiEMlsvQNdWxlc5x2cz5aGFDm6JC3+NfAE+JRR2xZ7kGISeMKoRzWgYNTm8i74ep1JsI3qUokGZ7DusFZtxUhELayKE6SBrvlSbBjW2Q4M7qo1QIfBddxmSSqr9CDojoHEykoOfJafCI3SniLO1R0z8avxmxllZM9GTbZsT1U4VNJlanl6acPqKseZnC5/HNdtvYXKKIFDBqNHbznEs/S/GPw1s4v0+sdqAiLWIsd8WM2sZ8VWmqkNZJPmaFgw/Yyt1PvpQWHyELbYy/AcyEk3nQFzuuYaz9Mywq3t2TNqU6fMYl3Hr5zgLC1UG1u5gls3L8wvUuWmr2Ao0m+a9K/KPc6ZPHoMPAWeAQC2gT3gAaG1b65JbRWY3aAdqEtVxhDAdQrgjEM2JgRwJPYnNl1ABOq3B3B4TQBWQaC2Y2UJao1pKkx2e6CKCYj4yhkp/xFp+F8/gN3++ltuCGD3T24F4JUB+JQeRaBoKdmr+skyBXAkrU+ABXAAHLIvp7MPui2APZkAkoBb1gfT0uLOwYLjbdazai1KSw/JzHZWeiGjBPuNZlN1dKQy/iwCp+a2TZlZrFkMsGQVwS7wgE1pse1g16RWguKi2QNw2ABgeRmdaaItAiPGK/tpBWVhW/LaLXD3SgDOKNwCsBL9mQVquYUBglPOZbyiUzgjZ1i9PguMWwJYVIf++usBcEP/e8bigwU/d2SxiroG1wL4BZOPRzZdVfHhrQAcbJ3FIQU2DmZkLyIwl2VrH5LbIgWzv1rIwO6I2gARLzkZTB7v+FFefSFONKcmmLMG6pfAC+AUOAIeAu9xnGtOYRFdFcyI+NZ5INmkLkHLG1gaq63wYMJi6zkbsjMTKFAwZc5CKoYuOJ35BiraGtJSuS1yuw6+QyHNTbO6IsypikUaVqx+URjV2VODfSyw2XwScOVaMlIBSgdK541ouVasBRtb6qihCHvlZEjV55Ar0MPmqb/Xy9j51byqKx94Yr7m4GNqNbTCBeXqDHhC+DbU1mMakx2blyOd2rLv64I1k1sMb68I9wu728Kgfwd4wnTdNjXHlvWSZTRuOUUUdgJaTrh/86XOFi2ZSjxdNAODhto8jIxOmyocBHixV61BKGOMO2bodgI8Bz5n4ctd4C3g+8C7zMdKj9QpgBsL73sAbq8FcGFORc568x1y/msB3PNHXw3A4TUBGDcGsJOykvhXAHB3SwCrUOlvCsC+KS8FsBK/F/TBYA702I4vUYwOOrIL9mttszFsiyfyTK2zsGTkE1fpDvCMbs82exYnVApKxgnAI1ZGxHtYEc/f9P7vkzOXx5xRBPUlr7emO5WZP7Eg7Cesx9Adl0bLZRaexwa1czZsLWhg7wEfAb8NfB/Y5UK3lmmW7XW+tgfgegOA5+YEaxrnFr+veMKQwCYAZ2knKV4JwHgZgHuU9loAy6O5CYB76NX1bwvg5mYAzgjg8cACe44sbF7GbwlgpNd8KYA1m+AKeMFzfMSyV3bm0Mj0voRQAG456HjFCo34xtNUHejtR8BT4BI4BLaYt5qSFrviW9wC17yHit5uUapjJLeHC5TxkBYTB2YOVqk9lTTVlNw5haKh7a95Fzlp9LjPXwOPga+Br4BA1/kD4BFwaAHygr64brVIh/7p394OF7ZjEg0Z05rKbZtRcG1hkZqdVnxLSO1v78uJG/ABh+Y1N0FoU1fBnyWz1/t3Zm9puZgrU6hjVoHWvH8RcBk/MY4C27eJdTDUKvKZcj5JbVqzotdYc3xEZZNJlPmQn9ela9VjJLpU0WYGX5/AlKVLlKXlRuWgNM/f4poDth0L8qdPgc+Br6m/M3KaU7ba71ojQ0vnZ2VmakSzWNAKg06I5mlkDAhn5HOeEUqXwFfAm8AR8BWzWd6fsKBAKgsb9+IbJ9oFXTxIj2gQ19ADcM4f5laE2ZmQVaxHabnK8eOjBLwAngFPgadABrwFfAT8BvAWjwOcW4Yrp/soALe3BDAI4JISmTOw2DLBauhYC8Ceu89fFcAhXe21AA43ADAGABavVDIeKFJd49xzC3wBVBz21ZofdVsA310H4GCpve8UwLK/QwBnNwPwkuNiv6RHG9+1D2zRCd6i/VUhQEvjG6xBOKfG3OVyjTcDeIcAbphDbmm0vrCErJA4N4XYuMwoTXNEjGW0tE7UCMBKlApR8ZEu09JPOQ2B1kAtPLDzUzIG76fsPPoI+CHwe8AHwEPOsplrbCYtYUk3YnlLAGtfc+aJcsY30W+eWWxdpRbYwfDKFjhbB2BdKthHrAWwvnoAVsY6Z8SWp93HsJV5jQA+SAHcUcNWxij7vmwCcG43+W0scJa+5qUABjmYr4DndkzJ2PK+2yxBEAHrAK4s8dIyI9ly9c43ADiWYT1hzu4UWAJvAMfAV3Q5c/MxV+YeCkdl2ZgBFTnVWO5H3rMCusYMX2cycmXnKSlPq6TLJR34uGBnZItOWTl5BRwC75K6kkcy59O3KT5ymuMeAxKfTGNM1ToR0byfOtMyW2AuVDY6etXySdz+ZqnOwABqWrfGVm8tlzSMfIeBsCNeHWKghhDfIY68V6rbu3i8mS+AfU7LbS1+nJuPVNr4+5zERWQ2Z9zQQzqXCqJHqX7q6bmQ6ir9sBa+SiwNlWWWRqP+ib2XBcvHuspsqYQugWfAc+CSSihw2uQ2T//Q6WwF5UFzp7aAPUbNF8AusAWcU3NXdoQoWOf4AphxKvnCqiDfBMbA55zH09Aut8w5dcSxGkZ/NdAxqrLaaBFPnWk5NGepB+CKzX8ZryPfFHaias74+JJW44oE1go4Bj4Efgh8wGq0pTXGtGlq0ZmOIYBHGwC8xyfy4veSJ7zO7Jc9AGeU3c68jtsCeOj83RbAItTWAjjfAGDHT3ycTQCefQsAw+gtLe8NAZylD3tDAGeD9bktgM95OOUJG/FLms4tOwlEyaOCGFnZiOFDwunmAL4i272yAbVvArvAZyxkasgLgw5GRwCq3g53mcrfJk2kbh1FWl5m0FnI5c54SfZOeYRAzz3ewQXhvaJP3DJoiK2XM+AO8APgt4AfAIcUiyWLa50GLl9mgcsNAN5KAdxR9Ds660sKUEWOvEsHc3apX3hDAPfuUC/bBGCXRRfQXopkaIGLawEM7uAmAF9uADBuA2DY3d4QwMoZi2dzSN/cAg9fdj2AI4X8jKCS5KvnaEp0BX6ovNQV0xcH3MqbAzjnKTZH9lmPgCnwGfCCmzs3WZLx/1VxZfnCKOfcaLbLdL1V7FNaqmBJZ3phCZ4F1XXG/uOYb7wiCJZs2JrT7Y9y9wj4PvADjqjK6NzMmFs64BCxgky6EiSwak8YXktjwSuu+tismBJIHXAONOwDiy8Y8UTRwHkXuVl2pFZSYujx0cyKtltzbCo6Q01624UJlxsjd6BllTLzqBqWlW9z/LBCoIwzXebAIdAAfw28AD7gQyn+LTi3WNFFy0WoOVYLbHm9AB4Ab1qqORjuc1NCSpUF3qrSe2L0O4OpUy61hQ0ZI9PK0pPgB2lNWsNxzpA2Y9PKkheM9xBLnz8BvqIbGWs2jkgjjHknFRG/4B3KhhwCLXBOyWxYy7FgkfQLYA7sA3esOGQb+BmPpn/MNod94OfAE95Jwf4I8JEv6Cc0cYTS3A6plkg1AwrATYnKtJd8vcpWWt5xybXLgSvgORuzFGdHb/uc6Iru/w+A7wMPeVj3FXtCznma2DSdy1FuwFLOD5LKGlFzFukp8zUBXPNk7+30HLfK8tUz63jJ7UOdN8lN362oetoUToVZMQcwTLO4a5hZgg/pURgNj2uq+SzyxrJB3cWcT/cx8BR4l17Tii++BsDNBgA/ouQIsY31XBYmWq8GYKREVUH0lraPDuDWPAHdT6BJhTGeC5Ir5wx/5WKpvXXCY6d1zEJLAOdWprJLYc5YiDumBbriYQEC8MQ4so+BHNgFvgaOgfeBF8BfcDErmuCIox1gZACuI4CfAhWwSzJSMvfUiqkbSqRYd+8n6LgWgnpnFq+m0ooYnptJr224+hbwIfAj4PeAR/TJVFce3YE9EoES6yIFhtPPBf9tWVGQ8X5G5qUFJo8a4AQo2MGgFCYIsz3m5VsDcDDRhOn+zDAg9wFUjmNzDXoAFv7l/8EeKvCajWnbwFmGoofHRmctuT5bHDNZAL8AngDvWKdqRhdtE4DPbBzhnCP3HwBvpCmLylz53B6ntYl4awHc2PY5WQoaH1DFKJ/tAHZv291lb0KfEA+Z7X5N6W0JmBXvv+OzV7QcUspS7vEBdwBw8HvFUwn0mxm9830Ou4ofugs84WToABzztKCfAp+Rg2l53Po2A/ETw9puuTJTq0b21lSox7wNzW5HhSyLHOjsLunS6ZXRpb6iw10zZ13z0I03gbeAHwA/YDfplEfBPQYCMAHu8wwZOaDukrqww+5c5Lqzv7Aa7gWdganlS8A1GVHHygqEwaf4V0YQrygUc/bowhgo5cCUrhM6N13WzbE2pTYXSCR6aY5dTur0gqqlAc6Bz9ienqejvYKVx4C7HAV/l5TNiiCYAA9o0IOhpLDJPTKjwdT22qqVzoysExq9nJ9zW1ouf41fsycVuWkURXozxqGC+xbTPGP2xmusMAzoOb1N7ciSwrMLHAJPgF/wdIsJj03ZZ5tTa+efBGaYZ2zlB5M5gfoYZK88y7sAfd+KGiP6RqKiMtOZK7powuHC7G80l3NqWlCpNnSCT8136VjsEuXgHeAt4EfAj4BHwB1ghyHp14yn7xmAc1tBL/IELw4DRg/YndVwCsDx2UvyFBWfei2AsY7pdKT1AKzQQhaqsO9rslFrAexZzRUBXNvIard9GfngC/MNzoEv/nYCOPvWANbPDcFwRSvZ8NmndkT8NKWfYQdmF9QCDuCImm0D8IsNAM7pDcalEID3rBe4osCAUHcAQwCurb5kDpwxKyYHura8r6omOrMt8TdXNlFWFmZGnLwAnlPVFRZMxB7Bd4EfAT8G3rGTh054SEdJAE+5Xpo+5oys+2RdKjGd1WxlNk9raRX3ID2VpwDW9hd8+zUAhjksc3KcjRX3FJsBvMkIuwSD4GxoAWr6rKAIeopqxFBMTv+VHaZ6cwB3f3MADq/PAns6oiYeLoALikRJ6BYbLPCSdFa8sVUK4CVjlQjgnwMnBPAUOAB2CWDVQcWvHoA7hiuKlbHOAs/LpUXjMSI7ZQW1yjZaqvqGfIdMGOzCZzQEBd8rAzEj8bziws94L3eAB8APgA+Aeww3YmnHJ8DXwB7wFiu9J1wqr4fq/ZCnwtLZLxsqGC3ec+CCub5j1tHk3GSFxiEdj1uY5hgKzooU+xXZJTBKLWwQC0yEsQG7fnFXVPKIlmk/mGYOKf6Vih3xE8+AT8gGwhL+HYMoBR7SbaJvTrnLI+CIR0UWKV9e2G962UftSLfh2TN7DWgHtA6FwUhhby+TBIbALf8Ftaa2tWbu9wR4wtqrmlNwVLYhLj+qxsaUd7S/C3LDY3JY8ZwEzTZ5zuHsx/SFcnbrfEZiJFaZ3QHu8D4zm8eQM66b2Y5UPAk8B4dIawPiIOsXnFMrgkYADvzUFUUTjMBOSSeX9nvNN7igrQczjfHnXeAt4O8APwDeJIoAnAKfAZ8CY+Aha1IFYFlAB3BnP+em2BsbjVyTI1ymAC6BO8CB6bKOdZWt5SBarvI1AK4NwAvb9ZLpj/EGAPfsxSYAZ1aJvrRzLbIUwDlrqlRjo5X/HLh7ewC3LJiLa3gEvPHrArBfPEvfktu/vX0fLmNm5I2458fAKWmVEdtJYxy8ayOMAy1Hxh1csQhTAJ7zQNGS7e3b6wC8BB4bexEBfGQMXUNT7qU1cwZLI46+ygFc0kJruOUz4BnwFzbmp+Y7Ow70lj8Nbi2MThbD2vEJa0Yb6o5y1+Fd4HeBHwBv8ySxDngB/BL4nFPSdkgMI807CMCtcbfBrGVnWUllc1RJ9hy44gSSOzZjVgCekpGLCGxuYIFr6ua5TSKcp4foKAHUE+IwAPDwZ6+lUdSlpLUAnBHAYCCVcZs+4wHHtwJwdIsuCeC7wMPNABaKbghgPeMQwJ0t8loAe0jjf3W9kKcLuGJpUAzSTsxV3WVnbg/AKqQDfagllze+S4xlydzcc2AHeMCD7ksCeAZ8at2ZGXAPuGucU5Myn2P+N6SlNWV5YenpjuXcLyzyVfBbk40K5poUFjjP+eHqw1MjVGDaVqFoJLwyes8/5NlEMcKNJvspcM6jkOTEiFDz2Eo7j8G/ncVH8Z5jVP4U+Az498Az3sN7wD0e2lxYDf8Vr1ZYvselz7/iQs0IX01xrLgPW2bOFMjoWTwN5urBmZce/axNrmz2fWXyvmDHC4AV8DnwFPgRNVPN9WkMeYqFG8u+3GOhbEtx26dcw+y78nlIMeSP2Q2yPplhtzHTI29KDnTvZ08oygFDKhWZpQyX7Np9DjwDngBPeNxtybN+t9k4qIlQuvLI9KXqbUb8rCuePBsjrofAfeA+50PM6LXP2Pe/ywaiPVbnn1iJiMxjwacLdA9GIj3OyJbX3J4z4Bnw2HDbGpLnJkDSh/FaC1txcLECs+c5i4xrhoPxCm8Cfwf4beANYI/H7q6AU+AxcA48pP/RWnJqNQBwzyL3jFpn+f3IbT9JAfybvKutAYBVaJGZZG8CcGdJxQXdoJLqt7JZhq1NBQpmca4HcDAFqnZPtf1MqCBKA3DNFGUE8BfAM+C3/pYAuDAoKgIWQ+eBr0PdLS9sYWt6vTN2volXVZvgFmNfhb/uP2wCcDAAx9UuWYwUAbxkIvUFB793wB6pnT2Wxz2njyo/pDQAg579rwB8wqrZmNy/5Nn0P6MIineKlzsw780tcGGSql2s+Zxjy6rXNMVXQAG8A/we8HvAm6ToFIg/Bk6oFL1iobXNdj6yMykRcSSbmaV50GfAZ8B/IIAfAh8COU9CkhxP01BBVOgmALe0jUruuHeoqeCZjW0OdvM96G6ywIE/e9A/YjXtxBzNqA0F4JoA/s3vGMC53dhNAIzNAPZF0H8FYF+fHo3tAFbTt6i/S5qriKgRpXRiFngrBXC3GcAtATzj2TQ9AM8I4GesIAZHV0ba9hgIbFCSr5xZaXtHhmmLNqAsT83Di+zGl8Bz4EvjR3zh1RmbMWr24Av8EM1xmdN3zFlmdkWS/Zx9F9/jIaHbTOGsWKQHU7md3UxmgqPt6gWkqnkrjFNToHQO/HvgnwNXwG8B79OcwW644jlRErfMtL1/tL4yIwdUd6rKXV97jwEl1MJNzzB5ICzlrMqvwqL1KVc+o0cBHpdUAOfAXwMj4E1qayWfXN51Wdn6iU3eB89Cz40r7Vm6PMWubrtnGTPbUIV+is28AFJmt7CARGkzmJKAabXMajulHhbU31+RwYzKb4vlQ9tpHBWoAAorH1M1yMpq/Z8BOfA9jr27ywMFW5Ytfc0DfS84OXHbiq1rniulIvKatNo2l+XADuMbg3efsXrhFPiC2eeVWRBtpNJoGR2OisstbanliLXFU1rtWHp3ypq9S2ALeAt4n0H+HgXunFUfqi7qLJiWiHcpkoMJCkyGClPL2uwz4E8MwN83AGsOQbRoc0OXm/uh7kAqha3ZX9ftI9pf10RyoGF4GAJYAOsBOGMANyXT2ZG36ki9RcR+zIrzWwF4bLP0BWCJ5ncH4N4LZHMr8zF08W5QZhNM+0uhx8LxC2bEZtbwOmHF87ZNMmkpFSKKag7Iyq2fryOA3zYATyyl5QC+BMbMq4wZ89ScSKtyA0nvNiXwgHRYxOw3ldcFTd8LdmR8SpOvKFYaruIiKieSsf8lpzSMSZJp7wOwBVQM3gsevPsu8CHwJnCHA5hb4IwMw5IJ5iWjvdaEoLOxa7C0BegXNqmyVCFUXKk/Av6fBPCBfYRSPDmHgjqAsU4uXXw7I5pc3ZQ2rkHOnHJJXSqmutraCNi/O6NxRhznnKfNoALwBfAzYHJ7AI9o2FsDMEyt9wCc3RLA+bUAhq1MZgDuRcDuQA9VHnjDgfmQUxYOqjJ+ZI2DE3ORQV45bABwFKonQA68xYM9jqnmVDj8JQE8AyYccK4+xRp4Sl8pNwUdLXA0e9u06iUwLv/fRmFmDLBP2WS/Su1Oy+TYiB8+YZnSnA8XxWSHtPGl8X9LnvR2yab5A+At4AHVVLzCkmY6B/Z5whLsaVzAkQq7/nX3Tp69sj7iua+AXeAD4A02KXqXhGdrJVPOR3pw55Fsk2bdurQ8T/DKUyq9NWPRg6+eq7CaTE+0VNwIDUvs6N6NeEvbwHPgU+Ad4MCOXMhNx4iek9rTLwMDHoXJrSnU3N4yNL5SA+66ZPb70n4ORhhjoMByY1Qco6rV6uy/rhR1/SUZzC85xmZEslI1POpSDUw6lgx+YX16Dcsv79Fe19T68oWkzhfkvOcE5a6Z+FgFdsnVaGm7xozBFYDvWC0Q/gX/FsX0iu0l5yZ/kqooc1uMgycMF2JvU27LdwQckZbW9l8BXwEl+ygK4AB4E7hP+iwiLea+n/KI4qnFi05GumAhtVCZxRAh3YxAABekG/aAD4FHwD7dBjdnYxNWDFIVQwBL+hUHy8tXjVRpJtvZhZ6391IANwbgMj0qT0uxsqPstoAT4FPgvf/0AFxsAHCP1BOAnZd1zqPHgrjZVfI5FgVGW/KERRe+3QKwIoSC3uZiA4CPNwC44st6AC6YDBIzdQas2P1fskREHWsemiYA/pe2KB1wxuOI5NZoHlnclfMUwAd2gk5Gh6MAjoBjdjxscd5wfPFj+tDRw/geO4/UQ7Aisb+iUNbGKPcc2c5EBPbfipLUpdN/40LEKpFT9h+9A7wN3GEOqzLb6AAONwBwlqLLbWlusY4TVs7LyshvssAOCddZBdeqtCsEHnPccsB4BPC7rw/A+d8QgBUBu/p2AOfrNqgj/JaMgJ8bw1Fa8+jIPK/GxlusNgD4DgG8SoPpEevIA+f1fE0ATxgxxtu74Nk0jQG4NsZYYdi2AFz+ez63MK5JBZUtRsvw8LG9+4ocTZwkEKwBJlLwI/NZWx53F7/OKapbJPwUX0SCsAOOgHvAm8ChHbAIYzFgW+d7CCt3ahnfLfmajnI9B7aA94G/A9xjbDA18c/tQKRAwYFRaUgFJFhl44oIljAWthVdqniCISaY8e0hWIJTWxttRoU/YrSbmd3XQo3ZID4H7vIpgpn70u42t2PjPepUeZpcC49kOsqAtJ0/Wmvvcli3JuAOUNgDOlGVW/Crxe/91+Hr1E3sW30BPAUeM0NZkbaPSaMRH7NaV2qXc3F84lRGs5Nbl40aXhumjqJXeQK0drrXmD3wMVfzhQ3OcemS0Mb00jYVA/7MGPLSVm2LTc8C8IKhQ0d/IjOdf0wpKTkh/NAAHDXVJV3qpU3HmrI8cmQzdyIPtwPcAx6yqKUbKFsY46gvEZAyc4XZlNIS0fEjPgR+G7hL0lEF+5nJCkxQWpNOpFIyBHBr6qaw4kal0B3AbsU2AdjBAF625AJWZtTcSQBP5fkLYAnc+08PwNkGAIcUvZsAnA3w7P6YljcauDM6eM+AU1s9sc6VTRIDH9PJxJrtoZ6EHwIYNHuRa4n++gv6ogeM2SJ7Fdu6zlg37wToEMA7OjXlL00IBNSchyKujJaP9/opX7Niu1CU+AcATG8dsBaiZZZrSSuqnv+WdK/KX+JOzPkYkQe7w7FYnZmpzLZKelppAtgTdfaD8jUtlUgFvAf8mP0T+9bFFUi3O0GrZPomAPeag0DcapF1M6oC71ng6wGsGUa9lNPEtMPaOmMBePFaAezocgB3twRw+VoBnNtHa4Vbjmw4J4Yj2RMI2jEtUG7HsbYpdOVGq6AoI0BiRZ18zG0jQuJAqOg9C8CHDCkjCR2l8cwmxqmsX7FWfI2omqb8x7bAjanNVarDFxy/c0m73BJ2FZ2AAOwBB1bvq8IJ+dkZC7sy4CumwpSjigtwwRHhcb7fNq/vqQWxjyIpke5zZpACZaRmvDbj5+6whkTWfEQz2nG7JClroyqkP6gRZWV3W5n3LF3YpEZK4tZ7it6XvGePx8Ve5XxYB+4FQ5qfAz8D7gHvW7Yso5NQctNLEwDwTxm5eVCjF4R4T6t1hjzXcE4hadE6+30wlBQpyn2Re8WTncUnmQ0ydue7NUdWwD3nZNQpayYPgT3SNWPzZ/REUkLqx8vpCo9ZdHTI1QOJlJou5QmNWMVJeaKicgr/GfMzesBABRN4qWjZYkYKf2jVtNqwjMyxADznTK5zAri2Q2K2eRP7bG4ZMagVflasBDok2faYpnbGLVwxkn8BzOjTTCwWGQI4M1vsJmlpbEjLG+h4MwtWY+8BbwPvGn9c2ZYXtAUKTPNUz68F8HIDgHMDcGvudQ/A7pLeBMC5nTXtAJblugBKYPfbAbizEo7OyMrXBeDilQAc7F1OiksqnB1pCeATgu2KdmVKzmYtgHUbesDanI1dYB8YbQBw2ADgu3ZAfWUOjwAsYQ5WKSAA7wJdrJb+Q96ZYCzBEo0ql3/BaHXFA8APWQgWk7iHNgZuixHtFo/eqEn7RTX5mBpBMXt0pOJrFgTwmEzXyuytQpzSBKK1be5MbkC/Vs91xa5kWWAvcqxMoxUpgIsbAHhBfiNQ+scsB3cHtzHH8VYW2CNm9fyp81cAlihfMCv/bQDcWkmD6IFmM4BxSwC/mgVGCmDwoXoLGFILfG4D5lrGHtN1AHaS2+92ZUz5Donk0xTAnVngiwGAY8eqAzhSGicEsAKDwDqo3AAcqxsvyj+0ss7GEJwN7jfS2Se2gYUVDETB36fLqygvXnlBCLbAp3yac+Az4N8APwCOGPzXNJdj4IidhaDPLUe25A3nqVVSycSOPb06LSuOyCh4WE3O2dl7rG2Z27jFgimfuCwj8wGUoFIlbsuwOpbHn9hBG7qOEjxzmyXoZJAKvuu0j0gcnDZIu+ZXzk1aQT+qY4r+3wJfAP8MuMtDl71IPj7UjrW+5Eafwwhy93Y6asTObt7NYmNkvAcP7gSr5rOz8Fa1u2rBHTG8kQ+QWXawtv+2toxLLtFz4ITjFC+AJ8AJg7R9gqmiLd62mYC1NeN55WoO7HAXYkX1ktMRrkxKax52+CXFeATsEcGFmaOvGdetUruxouKcAh1dx4uYxvmvUtyqWXATgGvTloV9TLMBwBKjEUfSfM53TYBT4OfAC+A941xWJOFGbM9Y0pqXxul2RAhMaKSxr/j7zialVtatDJapHFHaRjYFsOTzTqhWGiqgzMaAu4Fozb7ImVHcXBg9X3Al5fm4UQss+nE0Kjmwsv3SWIWet+eEi+L4M+D/B3wM/DNgi9NwhgDesiJ90LgHAsPd3M624yYAVrSwFsByfwsDMKg3hWRVRGQpgMGtyUnNdjTiGuHwlAWTsUX1c+AxH3nbuMsdE2B5Ag1JSf0QyApEnveKB5Dd58ReUOPHt0QAX3KdI4BVg5UxPzuzuEtU04wPFR25c7YVnwP4b63iz+8ybADwmTEkhTE82ADgPaAjc7ZFSXrK3vinwMfAqXkqFzyAobEwP9CAd7Z5HQtiYDZBMG5sPvmMP1ccYgKeLtABx0yqxe/anMWCqqcmpVZTRKSDC5upJ6ctN7qjIcxKW7E5AQAKrltaWPeGLqi4vKNcrvgyJYALU/xxC35Jd+MU+NfAl8D/ETjm5KchgLdN+jOuPKzrR7xZxwcvTemILK8NwI21d20CMKzdU1a0tR7bxsrXrgEwrBqktMnfAF6wQCJwruIpcAW8CewAd4G7XIEt6wWRX76ioVpwVnRGvzamVr8CViwm0CyOOSXhBHjCBr0p06PHqZ3/mgUhHbWDKm07lk3n1GULYFEeUN7lG9VW9pCZfLVEjMKrYNI0YaA3Ma8aHE8SuHUTO/N+AlwCnwL/DrgPvE+q/YpLJeku2DCcWeI0M+UviqohxE/s5hu6IMpggST+U4J4wjuvzVuVinI6xhMqTqO0pMauqOSlM9xXcVchS30G2C8x+H3vLbLsSi/nBix97ZHL+5QzASd2ipzyH55I9zAzWNiuZR/ekidIQ/qCzuwAzGkJg2fX4/jySpBgfy0M+l7MA1M8+riWjMcJG/efk0ItSTwfAYfkobaMy4fxdCvmT2p+dGau4ClQkfxRDN5ycM0LZps7cr671BDxJpfkZK4IQEX0OdVhx9+ccszaAoy3nUC5HsBFGgd0ZqPXAvjCDIpwMjYT/9fA/wwcAR9R1VxRTalWs2LYquvAFsgh1Jl5kqAsufojgjn+fh94wnhiSmc9t1W7BsDlBgCvWKOysvFZk1cFsKMFtwGwrrlDe/cp8ISB/vxvG4Az+vQvBbBHDg7gCzJWZzy2LNZCxCyKA3h8LYCXGwD8nAAeDQqfegDettYjATi64JfMarXp/l4H4L10oZuXAbhJAex8wloAt/Q4W/oEGosW5eNj4N8A9zkE44pKSEmoeKkZb2aVBpqF/bf3J4nRyipTlwTwivzfFdl0sd1es3VbADsDXZP8r24M4B5cXS5vZYH13iNuwefAUzKsV68PwLgxgPFKAAadrNzuKt8MYN2h64tlWsRwSi6rpTEUgFUM4wDO6ZleA+AXBPA4BfByAOAdTr2a2qSAmNA9I4XVpqshHEVRPBeAS9UAKMKqLE+TD/atMbwGArqzIqPc5DQD9viCFd3oXeCY5RNnwBPgX3GwzyM7YzSQaKhtxBYG5b8wm6saj0B+VwmSjtpFdXFbwLvUExVjGUG2sClBlXkLWSqtSGWwNeOrFE5gbbwqpIJJ8TBT2sOo/1UJ+dbsUcnrF6kgB2qpuAJ/CXwK/CZPs4M9nXq0WnuWwhBT2IO7atGLM5N3fxZtTUj/Xau6MlNyriaLVFcVZpRhaqP31RphXzNjdMVz42Nct8MyqDusvxvZTgUj8lpL6igu1lPEtMYufcUFk5E1MONAxudM/OxyaOwuRzR1nMr1ws6zCra5upOKZ5T9iofNbWlEQzSppDqAq3RXRNDkGwCsPGFDcxkf4Bnpjy+Bf2EAXvEZcj5YyRH1BZeyNs2/tDuRkxBMB8KK9BpuTzSLxxzH25CGzC2EchEfAjhsAPCKhLdct7FVWdwQwHh9ABbn9RPgc+A3eepZ8TcEYDlIuf3ppQDuTErLawHsy1Vb7d0VVf8Fu+xWbFw4BO7Q/hYvA3BIyfjAj7hiIVNJurZKAfyCAD4A7pOZnRJBMtMXafGtSCA5civ2TSmR8s0tRjhJ0DcBuLB1191L6IcADhYLNlR7B8BzHmv8GPiXwA5QAo/o5agGVCM7RAvUhJwXEjT8fU0kZ3bPrQXogQ5ZzUAkftbU+PzK2sU2ATjfAGAX2ZZUa/EyAGep3Pvq5aat5HeofgDpwbhDAHccgfJXwJe0wJcmIt8SwFrntQAOqbToQYY04CYA5/biXgS8FsA59zfYQOOaw0RrDmp8zsETuywcPKIDXbwSgGdMIQvAI/6+B+B94J5Z4EA/+xR4Zhy5r3z8oBHF8gVp0lDWqdHRYle2wCFdPG1vZjLS2gvk10ZYLPhMylhu2Y7Ngb/mf/+AFMA+3egLdisp3PYUNNKDxmBugDazZHXYhKZwhyv0iJO4Kl58SbXs4lma3EleWttYRZ2eMZKwl0aL9PpzsFm6e4rBXyzyIbPS6irVtXrXBUcgfsyB9UtqsjxFTDaAo2ewslRj9W4P6SPoN+KtYMa3FyDDxEbck9RYSKGpH7KBrvL7Dwa4WDx4yZGqJ5wvDtJ5W5x5M7Zq9YIGIUtLEZXDF3kag8OpFUyr/KbjoMtTGztzSKJatq4hr6qOoYILXhk8ReAsfHb/MgWelPBoA4Bh6jGzXcEGAGckZcUKj9lHnPNlPwP+X8AI+AMeB7FNi3DOauwrs1wK0GEhb48okQNdppvdsZLkkpb6glNES2vOcMSuBfDwB7f1SA3ErQAsSR060y8FcO8rcKrpAvgEmAN75F/KvyUA9nXO0x+uAbBQJ+sW5WFFAJ8AK2CXrd9bTC871XhbAAu0C76yIV8WATyhs36HCrQH4Np61UEAwxLmI3bJ/ArAs5TPU0HfZAOAtam5IaqjqzcEsHC7pGecm3YogCXwEwrQH5AK2+K6nwCn9MIFj9okQ+39mjulVBeMKs6oyRpgm92gHeeErKiAWxMFya4DOEvXBCm2JdniA1s+7yYAw94opxZ2HZjbivTtmY0C3WSBW/IHn3NmUE0q4rUAuBd6vjKAsw0Abu2X+eD11wNYXMjC8oZXdrDtLtG7beY3Y0RRkwCsbwngpXlnQwAfc7ydrGtnh+/UKfWu6qCSO6JiqgzIS82sLNL3lel2OcnVc861M5kZDi9W70wdaeuubP7mHPgPbHz4HZaxKeqcp/kYGIACvRaPAePq3iUUxBdO7SzAqMEOgGM6NCq3k9aRcipM6HqQ9f92DK9mNsNdrJ/SEq15LG5YlfFyM9rzoTv7Bh+2skkDPVSJVv8E+JzTUa+AQ2v9yNI7cRlwNVak6qFHYAXDXJZuUG/dOru9HqWQ2ZrLIDj9kg0esKer4ldjLV6qYJyxEegr4AlwxQzlnvW55TYyKmM+Qc+Vm00IVlkWP2WfOJbyCxxn/gI4Zy/PHs8VLWxxWmsqE4kkwZBoqX6t5A42wM9Wpoe19MXNAAz7ZbYBwCp+VZGr9lVJyyXwH6mRHvGHhqUzp8y8C8Cl3UmbfrrkTL6+6AbdyYqni5+wCHOb81OcWe+oTm8FYLUPNuZMFzcGcBggyo2dHGjJt9PPSN8iAAfgC+BLnsylgvK/FQDuBhzZ9QDObYlEYy1o3U6Ar3lAT8aRcFOOzsjMjGX0AHsADhbmevPAHu21qici/iOAz4AW2AGOWWPsAHbLoQVp0v66zoA9Bu6yAP2zqzT+8CBsqP8yy/Xn6T5hA4BX1nHV2PeSv4kNMn/EJfueBQfqh7/kzLUmtY0hPSXOjecWxa5K+UIAlzxRKtZhT9i/PTFstCajtwKwKsi9kuSlAA4WN/vF3YfuOTXaIJWdwK6pXTsASkrtDrADXAH73z2A8foA3BmMYfmE6wEMW7GacngBPKMD3bGBfWIVDCNz62SB25sBuEm7d4cA3maiaiutmWnsGHCY+gipnOiyJXAfKIBVObJtiYsX3fhFystogRf2myLd5N6W+jU9Io42cQc4Ij8Vm64+Af4I2Abuc4KlRlAGW6eS7nKwuy3oR6rPZ8zPrVKBGpOjj7dxADwE7jFm6WjLJC+t3XxnaqBI44dAnu6cI49WTDiDdT0VYdrayrgJ7i0d0v8G82eEM9nfIT6Ewi+Bfw18DbwH7FkuTdtRDSyd30OW7nWXYh0p7IKJRGeKCoPby0wk8xTBHfOFsgZIL9uzv73lUhJALUNz1kg8AZ5wNvkWiyf3OHJRWZ+MNqclY6O0c5sqqsruZ26/BKuuX/DowYwDr6ZMXIFxtDqTL+ypZfE63o84nG3ge8BW7GgapfIdUqAOAezlE5k5sqMNAHZz4HHbHiuxGoakfw6Mgd8AHgJ3uJGZHSsq5ryyLJ9bDVXnyNWQSxRsglPcm8fAUyADHgLvAodppXX7qgC+4PkVTprgZgAW79YzczcHsBdFKLEfAfwUeI9Hj01M8v4TB3D2SgCW81PTtEUAP2bVewFskUvat57fEd2nTQBuNgDYtyYagAsbPBlp4i1mrCbArhUAzzhX4NJcf8mJAzheeQd4hwD+X5ww9hW5xgL7uktHlhsAXFs42Nhsini+4CUNwhz4EyAAvw3cAw7s9Zc88nGWnl/aUHHIZQnmVs5SAIPbM2Ejd3RrRsAbwPvAEduNi2stcPYyAM+sizkyb8pAbwKwJDujZ1yka+io9gyaADzaDOAR8Az4E+AF8I7N+31dFji7AYB71R1S/fIXvTexB+AuVRMqMLwJgBvywQvW9ql4I2f4e2CHi2heSp4CGORR8vQ4TK3emPcmE9WxVuSZAXhKAMfaLxiAn3O+T5cunSxwQ2XRcBr3CLgs76S6UUu1SmGqr5Htm5u5lQljbt9ir0oyfFELPQACcMkiitjkNwO+YByxzcT6iM23eojKlnNk9yDiHDy8CIbCnKbqlPO4ToAdhhIjG3uv21YA0lEPKdPWk8rAmgEx63PWq4ytWD1YobZ/9aK8HvMgrEs2XX0q+HUvXKiqgU+A/wgUwPd5prK+fGtaXj9PPze31XYUOnocsuCCKwe7KRz229CzZCazw9dI2/U0jV5cp8hb0heaA+e0hoFVV3eZf9glCiu7Amx5RzS+GXdKCTblNEY0qStOYvmKpc8liyd37YiGmqC/ogN9aQ5ebhJY8tMDW2+OgKNYy348kCFY/DwEcBhoUXkPPQD7X5VmLNkIfMhzJRqu2gXwV0AGnAL3yJIWNjtwbhS9bFBlnwuqFaRUQke9XQKXLJ48B74Evgf8BvAW08Kt5dyKawHsciNLqikIoqInNwZwuwHADuNXAHBsH/wzoAJ+ADxIL/63FMDYDOBgjuzKWsLOgefAY+AF0LFx4Q1ylw7gpVmvmwP43CKZFau+vuLR3DHkPSBltsXaxCGAPXHhAC5NCKfsurgAcJRKhoBRbgYwbNVkGZYbLDD4tHrliIcoLrheJaH1U6ACngBHlru94smtC36Kq5Kp/ZyZ8M1Sx1oALnmK4yXwHHgf+A2e5KLis8IKBnoAli/r8YbA4+p/yYkAY5uJNgSwRy+6vi+4mKjulQAM4CvgJ8AY+BFwLx309usBsO/XJgCHawEcLKjAoMa9B2BPIelM9SsebxlpokgD32UdvANY46Jgt6Tp15sArEk3GSMoAXhGzvaARSPT1AJfsNDy3FjzLAUweFdzjm07AM5KtR44zvJ1WZN4VcEFZne6FMohnZUBNivHv1YM5iOYttmLOwIOyS88A/ZZX6EhSJIjhbqVFWSJGtSWKhzzTGzMSx1w6OeHwEPLdS1JXXcWWcPiVrVGq4bNgdJLn8ACBtEfbbp6emVn0t376slmL/CU0grpFbQjkRF/BHwIHDNCnxETYglaQ7aDdVgOENJHcBpEX71MdRg8XS++hq2nP45riNx2JE/frivICoUUvnNmDS/ov+6yhFIHEGoapPpiVdGhCYaKc1UDXJBSkHqeM1l1YgfXR099ywYjrljnVdtYrWA7oubzWIC0siKIEQ/sSpbMFXu9AcBb9ntFfr3Naw3AOddC/qWqdVf0MnPzDz4DToAv6WeUXP0Vd8ILVsQWu7jIyus+W2O+ngNj4A3On34D+CFwl3vf0CPv0s71mwMYqbNxQwCH2wMY1wJYf+o4MPcRI+C5Ffj//x+A2xTANcXmnAN0LjiwYZ8zy6d2fgpsZtdaALcG4MruoeSnN2RBZO4dwLs899frM2Xurwewj5gcM+31KwnIU8udbwDwOF1Z5T6Ua0bqNrXUTxN+lymA2/T8vE+AZzyRSA7N0povOmOyS+CFiQsoLjCqPzOFoqD2mCdWPAI+YhShkWcCsD+mCpql6dcCWLH+rQCcpxQC1kV7Wm3R0vKeHCFDBzpyOG8AH9H18GTHtwQwXhOAw2YAh4GIXgPgYCVDren9S84XvySEduzwOgFYerwxAGdMLfUALGHIUwDPqDJesF9TAN6h/W9TC7w0AV4L4MIgUJETC2Vla+AhxsS47GCwdqdZvnov/OxhOr5gTIcmAxYcr/GA+iAG81dUREsOxb5gucou+f2MRekz3uqK5yxlwNTOJI5LGEfnnpF/P2cT4S+BfeA3eebaY3LPsaiypIVSsBO4coWRWRUFv2X6d8n/ngEZxwzuAgV1letY/eyY7oxHg7lGLYOBhsydqu4V4MOcmYZrewEAeA/YYehSUz+N6FEorF5ZHXngUoxtr3v6ozN75yq8sxSEC49A1vLiJS9VmdHI6a0p/ByZLtFMJqlAJW/0cQvuQkwFPAX+A/CcH73Ls5/37diQwEPAVuZajGx9cqOTS95/Y1NNchqlOfAEOAXOyPbcAQ6Y/i1sfM6CZGv0iRe0dbmphwjMEfCUvzxmMh8O4N5XZ7vS2YXcHHdm5twMdSb6rSWYYtXZKfAMuOJx3+qxXnEO7nMevKJz3S4sNRpSpRcBvKJjoUKWmFs74B5MeZ0t4CnwFfA+8J8B71JbadR9Y5kpxTcCcGYefHyZykEXRl5ecKHHnNO/IkUlpZrZGD7XobJWSrq64Y5fY2s9am1fckqVABwTnh8AO0DG8CtsALDGcMpXyY2VF1ZlI+qB55DZG28OYFFFSqJKr+U6ttre0prIBbMWq3Tu0sLM3E/Zz7YAJsAdlmFN2GUSOJyytsUc2bMXvNq2iUdtaWGQ8J6z13jJKVv3GAHLwaso8EsWC8C6feVg5HTQx8AT7tEeY2IcbgCwskKNTbaE7VYPwMsNAK6tXHXBdPYlZ+XcI2+ncblPWeNWUzUGKjmVWIkxqwndMRd9iwAesfxjD8g5tzbw4ePNfAj8I+AHwCFBWHECfGmlTkgtsA/lCuY+uG2c0U+dsnl7ZPMBO+Kns3HlSEnHtaVLOdNt2lo5Tc0GAIO9Go/4idtsNdVgELd7yveVhr3SHEdJgqrPA9WWcyFyW3oAFgvkSdbMUvtSGW4DBOCMdH63Tt5g9OmMvmzNy/6c5w6ugD3gTeCAAC45AHZJ2Qh88LjCKlCesyhB9H/HMDfe3pLDhJ9Q2mPp8z2jsOSUzxnIrchSX2wAcJTtUyqso2iBS6k1WJTXcicbo8dgm5Pb4vXIFFlnR3lGB75mGfkp68Pjgo0oDpeWS4j3o+HdpdnBlflJNdtcG1ZoSDGe0vmTAx3fGNf179PzPrWq6JZPrdrLzJgRBWK9WUwd1y3e85wKY8z5DLCEiqxql64hbJ3d1fZwxRffla7A4SRXztBvG7jHiaMLIjuzTe9FSp0BWne1ll/L0p91w0NaE+ve68UCPU5dmbPcNsL1WWYFD60tVJSoFXtVZiwNesojcnZt+IY8WumnYHX2eRoeKA0prtqJ1Ibn/Z3bsNqKc9sn5J7HFJ7G+qM8Zg+2NQoPRqa/K7urX0VaPQBLKGtT+GsBLKplLYALU8gFbWKc9qOUY2fHVF6yMHrFuqiMbl9hCyrRr6lgg90/COxL3tgVjREYWGfAh8APgfu8TmEjEbrNAHZp88znEMDjbw3gHt8gm4WbARhMfg4BPLoZgHVX2a8dwMFe81IAu8FoqKnnnLg6Bz7j+MbKhm+sBTDWARj2Q8kNrW8A4DEZqx6AQe/rhgAebwKw01YO4GBp0ZU9m0CbpQtabgBwMMpZtaHPgHNrL+rsqZ6kQtPwAfaNcxWfIAM4TtEFqrcVma4Lusg5/RsAj6yu3xGrKouXAjgz9RQGAC6+NYDzDQAOGwDcDQDcMmkiAM+sMnsIYF3ZnfjrLXAv9n1dANZz3QrAMLla8MyJmha4YdnBFqvwt9iF6cUEJd2xzFa+I4FRWvCg2oIegE8IYFXR9gCcWa3eq1ngGmhLVSx4xFqT+FbSCbxxlTKXhqfMdqMniWLy4ivP2D7wGX/fWrq8YVje2ZLEz31so02u6HznDHBGHKwR6EDv8Cmm1BkVf38KPAHuAPeBu+RoQ3rPLokgpht7lp4O01p1JOxWPGJy12iOmoGP9MSQeZA8Ol0YTGYVeeV2q0oFiavOuT4XwH3gHeCAw/4dIlI8ih87s/5Zuiybvhymrmkc8T2SS4RdT4qQ4rhM0ez3oKLKzq4v5aF5vhfsHYxFUiKDVcgxNjBlJPXFYMpLFgMr7KrHbMWxkOcsDYpGIzKG+yz4mpAPUSZBLVL6FhPSe66ONFlOeY4yn5zNqCcXgJtvDWBPnXXAc7JRX/HOakvNNCbcoDhKEEsSBDPrjahZGVbzN+rxrK0T6Yr295iVpo+Afwj8Fvsx3V5sAnBBqDgRntl29gC8bQDujOGSYl8LjJsAOBsAOE8BDAp97OC6A7wF7No5WYX5RdcAOB886a8NwC5R1wA4SwVdgURjud/HPOQvZ/fqHm1iD8D5BgBjAOCWluZ6AI/tdL/JwBmrrcDhhgCOQnjJifEJ5dmlJw52JJ3UOlDywSoj/68H8JQrsiQtF126x3yBKp9KAlgVl2Nyh2NSdIE5ttqsekv6MDrrF/xc1anBlOWUQnwH+H3gx+yr2wRg4UcW2AHsX425WSuOOXQL3AwqtzwmuRWAcWMAx/rau8CbwB6JB/eJQgpgv6sehfUKAEaqBL8LC4wBgGEi3dLje0YLvEV7OGYf4ZiGIXpwlWm3zsxPD8CwVLEAfDYAcDUA8Ij6QiMG5gZgKQXn1OPX0pJC50AArsqlBbkrK2tcpstZksSfUjuNbGpf79u3VHnLnN0KNYtTSjq1Sj6tLG0o0ko9rhO2PFykqZpgHa1gbDvnApScizfiW2IK/vvA77CXUeCTbaroG0hkxIxkhpWhzCpwLmh/xzZcvrMEGIzdG6LBeW45xyIfxH/nA1S5Ku2Yx3oLuGf1TWV65daExbWFx6eFvcCh2cOlKCT/r5RB7z6FXecBu/SV+QDZYqaVCg5mhcSKLonIS+BT4BmQAVNgH7gPPATuAwfpKEhnl7XprXkjBT3girYiUCoa2t9z4IJ2Y48j5w4IXBVqqbazNkOsqXkSEl/YlaWGzpheSMqLHcCrAYBHJMPXAhgbAFyY5ZpbYvbCAKwgo7Y61GB4HlngOGNheGW0nKRZkIi12ls84WFlnCuAEfB7wH8G3CMjW9wYwGXqt8GIv2YzgPUaqSft01oAZ9cCOLsZgLEBwNVmAOsGegDuCVNYZ1izbwFgvCqAQwrgjvIj8uYK+Ax4BgS24j4AHnFWhAM43wzgfADgzBKOHYvwLvm9surZtQBemq/rAG5fBuCoSc8F4MsNAL5IV61gp8ZkA4CLDQBW3dKI/kTHtJy6Jls66ytiPiPyQVU3pz89p3UtLPHUWagUR8GX3I/4oUfmuJTAEvg94D8HHtli3dYCd4YoEYebALyy10jcS7NmtwJwfksAvwHcs6A23wxgL01BCmDpaE8vZK/JAr8ygLsNANZmdTzHJDrHO8AxDxPbs2yuZ38xAHBIATwmK6xUjqpoL9g1UrK6ehOA3QJrhMtLAQwrUlyUL/g+nQ7bMMFQ2WyvCUMGRQeVMSAeofR0smrzgvltMQLPSSovrDtgxsXICIuCU7Z3rPY7Y/wSbfSUNP2YUFbZyRZdc4+nDoDfA77PkquSm++esUo0FXsK37mJMAb7LByowvPSmDjYKfVlSkKHgWlD+ict9VBZ9qQ+4wfFjskPeBpDMyAfg8lgllrb3F7mCMPL4CsiKfDedIdZ+hRSQlrPNn0Wv6UebZendyIjuGK3whXwHPgK+DlQmym8w/kb20QDTKK0JtmgYUH8tO4tMKK74PmkpzwFc5s5qj3aED1vawMGVsRd78EL23FZDKntuU4sfb4BwFsbAFzeEsBSoZ0d7punlRKgxnbHNKMmL/m5E37omHm8Kd84Nk4t6oIdboOK0+UgRnXw94HvAznzR3sbANwMAFymouPWudkAYE/99ADcvhKAs5sBuAWugD3gPWCLWbYyJR97SePsxgDuBgAOg0vdHMBe53QNgPOXAXjFtP+5TW7/BTAHtoED9g5G+zsxAOfGtQwBrM8dpQDGywB8B9hnn3tla16bCb4tgAsH8Fc3s8BTAni8AcAqdO4BeGmM3XjAwHXW/OxaAET1koHL3FzkkjTUhK+cUH2OLbsU72HC24j3ozlY/xD4AScY5eaKwT4IaXVeSwuWW9G6KkYcDD0A18zeDQHcvRKA8xsD+BLYBd4HJmQ68xsDeEgPDwFcXAtgQVey8S0B/FILXLP66orh7wnwJbBkPBNnye2x+rljmBSsuGIIYN2GzpLWbawFcEcAHzELUaYA1mz5xW0ALGYyjjBflU/pfov0lZ6p2LU7tnPaesHX8KvnTikjB/ofmkKwoCipobyyEAD2HFNLxgTyTXH69glve4dNWiNiFJbxUjR0xsaH94EpO0BaBvUVaUsRVbndT2dd1BmjrcJkp+XtNYxxzshidFQwOVejSmdUZwMQdKlE94qwPSSEcah+tSgX94G3gJwTwPJUAfS0RZEG1IVp6GyA7yGr1Q2Erkd+Ib3z3g2HVFEh/Tk3i6FHXplmVUR5RRP8BfA5h7rsE0wHbKaHYaJIJ2kgdQUVtBQkRsTYvACeAE+Zq1tQIPdsaN3I4BssZF5R3uQDNBYCZ5aUbswVDHS+OwBfpQCWD7GTAnj0MgDn62yH0y6BJYVxBoJMcGEkTmnX0b5qglBUmOoS26ZNCQT5hNk8lUllzCd7Yu0FcAD8CDhMK9ZuCODS9GFnP2wCcE6ibWwdabcCsF/fUTEEcNgA4Le/NYCR7q/bXP21+5sAsLinhp1CHf3JC+Bz4DPgObDFZr4Djq5ToYGotFsBuCaKegBeUhoPOKlni3axsGIeB7BYotzg3QNwmwJ4pYHOXwwAHKtjt6z+emzE220BXNhe5nRfdljU0TArDOMHAoW1tqWMAN4iika8wyu6PlsccVDQLYaln1ZcozHzCL8B7KeFxWsBHAYAFupUq6i/ZusA3JHPHrPiTQAubwZgDADsK+8AxgYAvwHkrDvPB9AaAtj/u9bPwm0AjO8SwPUAwC0nHi6BJ+w3zxj+qnehssQF0gN3FOFsAnBL1Kg+5PG1AB6bghgCeGV9Qi3ZVzFDOYf4NCY8sUSkLi95d1PidWQslRJF3mmNVP9LibnoaW819gapiVeFy8o4gs4Ydtn6I+Atkg77dDLAVx7xv/scqB8f4Z5FcNIHOfAEGAF3gA/ox+fWQFswcaUISP8VIKo0mSzsCrViqdXF2BnKcxMKBXG9q4V0bcMAE3mKOdjyCjRSJNHoePhcpBmvxviHbB3ghMteWArKmqscWOogS6PsTdgNA7BmBqA8vXMnGT1eli1esU3jCvgU+JJviQWTd4A7PHghIzhKfrrqMVoTdZU/5PYsDYc9n1i/Ppg02qWPLr5VbbJOdPbAoivDsiIZ2859WMKvcn4XfIxJCuCJAbhcB2CkxERIN1L3JE3VUcLGlkPzsoHKMvKZ9U8fswIh4rOmiquYEI554y0umTjCtQBeADvAQ/qUS+tWvyGAi3UAbulUDQEcWGi7FsCZrecmAGMA4CHGMEgDBdYGHJJfV3KnZ1K15tlmAGcbANzYFYIBuBkA2N2D1w7gzOxEQ9cu9g5+zU2ccAT6MSsn49f4NgB24C05bHII4D1K465hKjPkD8GCmwHY97oDKaDcyKUR506X1vYkm7nJAg8FIn4t6T6Kp1JCClb4Eszyq9S4ITLv8dzeHa6v8sendD722N2pSo+1AC6ALeBN4G2bpyFoZQMvcAjg0o59AiEBvnEI4Do9ee4VANzzKT1p2gMw1gF4n3XeboQ9hHX6KxtgFfZXB7Ag9FILjFeywPGH5vYArknv1MDXwBmnpk84N2ePoWBhfDysis5zIxlfUKUrHwjgs3UA3iaAd1KvFrRnIbXDMFdiLYCdwspVYVbuWUXV2PRMlWYahgGXy29P0NbGUxn1wRYbhJQcB42ptq7k/YyBh8B79JWPDdbxNnaobKecKKiZKK19euDNdMAe8A7wPrDNShLNgFFSBKny18e1Kb+gBxd2FaXGMHnBcRwaSKDHbMmvuSKE3arXWGUmtj2sOwhCerWOA2NKKh5hpR3gb3gPvXg8pB8xFAPHaGvEkCxpD6z+ladXdvvrWkcAKjYoQg2hqjmK6pQxb3RqD2maNHWpYmXv0mRgZbWyksaC9QKdec/PWUbRMRA94LyckrxHRWvTpvbXl6j9X7n7ryZLkvRKEDxq5BKnwUmyyiJZBKQB9HSPyIjsrsj+7t2nfVqZl5Gdlm40UAAKVUkigzr3S4zoPmick0fNrnm4R2YN0O3iEuLhfq9dM9XvfOR8RG2wu5a9MxkoTJFUmlM+BeC9vNCusO0c6OebAeyJvpowO8yXviIdC2vI7XiXR8Bjpu8OuLggtGYEcOLF9glgDSoXYMANmANfAI8o3zOjBm4GcDQAD8zHDQBW7mAngMMtAAwDMCYAHExd3wBgKdP+7gDuJwDs6uMGAHe3ALCWOti7bgNg6VONgWwJ4LM8Kk3hRGDsflcAn90OwA8I4D3KtrzQjZ0QPgZwvB2A6w8C+B6dVNU6F1zonQLXTgDY09Y1o5CDfGNUEwLCABaA7tF7fsihe+KMCxY0t8Ahq9UWRvWVVjEDukQHwJfAcwAclicAhxGABwU3AwB7DhiGcAdwutX5jwCwW+B4I4DHFnhNAK9zguGuAI6jj1CJi94ytsCVLeZdAawtuBOANwRwcnDfAivgPmPCffIogT7oAcGwNdc5Wq5wAODLHMBnBPA1l3RpVHdFSkbpwsbyvtFivA8C2ENNgRnVE6KkNq6qMOUgLTRQ/rDFhpmqmEM57d6MYeCChOgj4Duek5LO301c9co28Ah4AvwC+BnpeGEIBO4V6ZI9Y+qjpfJcN6Sy83t2DqK6IWqLTwXHkhR1tJBWk3prG1cYiRWwvCQp2xOrXNtyflxpvg1ME3SWsuqYNoRtb7DtkEL1SK0meZ9efGEw3eOdiwpQo4GHWlJgNbNxwZbCHQyhNo5gHc1nG3Bqjk7/a88HV6yljyjovLmmbO2CG672JbDhsORXwP8BdAxCU9rhK+AR6Yu5WbG13Xlr5XKq+C+ta7/lJIlrdu2LUZ3TjKhhYd+cqI5vb/LpkK0dUVAwPFOJSOTYGXE1iVPaT+3uAvDc+GbPdw0SFsHMgW9hb3a2Na2e3jUnxhbAY46hvgaOgYogvB5xnAfAY+BL4DPgyQSA1yyW27Mhu40Noi9skmX60xPg5zy7KknD0qRhAOCVNQgW7JmouWIrs8XR0vE1o/wzYGEzahubx6cixmhpcG12S5IlWNoQpkoK05hysiveZ6cpDZSGGROhBT+xM/ulVfVpSwvbZS2CaDIB29MIkgeVQ0QznbDlugHA0V4vD6TKt8abPxoCOBXwpUERfwT+d7ZggYr7l8BDrs+ckLsNgAviVs33l3Sg33E8gANY9frirbf2+LBxKGBSRSppJ4BhtqR1AH9BzT0zqqygCvQgrM83oMj3TFI1APCxna55ROv3ADgGrjih4or2sKVAJCwdAs+Az4CfAY8mAByY8NtjtBFZ46E+UB3gklbhHvALfnRJ+19NAFg0YW9PB4N3ZCnz1kZMzdlAkOq9YMuiNpbCiLtBhU1ntGibe3KKnLwUTNAF1XNn/1Ycb3Ju7nhpMYyo92BbWXPRFDS3eaWXgNSPksQSUy8L6/hchcEy5K6wtl6E/YzmROsW6YnKRAvAK44FPgBeAv+VAfE5g9EvOTUpWmDaWg9NacraAZw8ODnZyfW74tngV7zPOQus92k25jmAlaPQTJyCrnNvlnIM4A1Ppo3kXfeBq+p+HhsH0//inmQQB2oW9qcxRV2YcAkWNTPpS3I6HdOqnuBKccRz4C+BvwB+xlqw3iS9tHNeo9WOKZ3gjp1UziE7yUpzSV3vYWQg9NXbg3c5rJ2tr/K+KR/JPQ7lYOs8oALHa45c8AdfwUATKBed/dXjeq+rBotndKuKvrUOnamWaDbXsTv4GsS5HtX6oznox3IV7GbGrL//t2H7YA+cAP8MvADA42MeMW9U0VjNbQyAnqIzt01UUWnaToUrl8A74JRdIXvs9Dm0Cq+ChZq93W3Jk+Q3/FeVhpW5LqXJrXOjEulkInCfQjzOFhW5Aw3bud4kA7yCww9mjvXkBdfugGd7bU3IBr0Le8CnwG+B3wI/Y/fIFIDVaxhyWxCNvUsoPaIHX1vMh1sDOBiA3QEteAOdiXhp5QFTAI53BHB5OwALdQMAO9XV56ewlgbgMAJwzJHmt3oDgHfe3k8F4MFndfShe+AtARwMwMd2+sz/ZQCucgDLWeps8pUDuJ0AcG80qwDcCsDKKpUjwSpyA/IRAIYp45rO+4IEbckh6i0FNMFjH/gc+CXwa85QvAHAXQ7gaHxLNB8o8dlPyWOAzx5vDeBBwt2LFio79kofXduZBw7g8LEWGDcC2O8TuwDsGO5z99cBXEwDOObL0t8awGUett4SwMU0gKNJZmAMkyjQUwK4Z7HQI5b3lDSMfw4Az+18YdVSDABccHjEFIBnlNjWXOCYb1kqsy6qvdGqOC4VDQ1+o6c4829BAACAAElEQVR037TNwV2wEsr9znQXInFaK4Ys8u16AnwF/CfgL4FnBMfW4FtYybrsYJv/t6eVkdvR8ESakrxSMFIG9kQDOZLYtrm0amcKM7WqIFdTYzSf1V0aj15i/kEwtyGaQnXs+sYVtsIKTnUPBTVla6UCrb3XnebKdmSnMogjBYAJneeILHKZGXjDMX+L3M1BvBy57IrKI0PIDQ/xfA28AC6AQ+AxsAd8wXRHzRqERa6NBo6ifEXFVx1j2C1bi99YT+q+Gd+lkY+1LY7IyoqJl5Y5jWsbclXZ5y5sUs3cZEaFHO/di2CmRwzCQBqcuRgDuJ8AsKg1V9TKVUntV7nHUACPgd8A/xn4C+AZOfkxgEEvEMbPC1R+t7r4J8ADmoOeqvWWAIY1FDvdE8zKS6Yr5v36uwPY8+0eyt8MYKfA+hzAMJqhtaq8zq5cmjAMANyPNLsLRp/fDOyGBwDubw1gqcKdAEZOdfTkqlK25TXwHQH8BNgDfmYATvWNs48CcJcD+HQawF58pqfTzav0qLEpGg0RPgbwhY1sl7CVAA5N6UpH9rvUeTTlNwYwpi2wbnRLAVIfnqqZBeA9PuEx8FtOq3piU68GAI72udGm8/S5HBdGYTqAJWH97QDsBbK+PQoZYUoU1r/90RbY/csi94AHN6lEzA0AlriXtlZjAJcjAMecopBg9DmAg92Mm4SCDx5+IgC7NPruJAy8A77nCTIPgBnwKfOVNQ9Dmv/UAJb3vGCHRLBNcVkKdvjeLQEMYuTaahlD1dsy+FZITOT0eBLFtXFBx9RJ8I4LEJn4To7sG+AF8NYqXFTepTKzVMf8HPg58HPgc+AhFcwml+WNOfe97Z6kRr+UXK+B+7SSnYWx7oEUtt4iv2BqY8vsqDegDj5UwUBF4RWjJFiolKy0lGyf77MUjO+FXuDyrnILIVIz/irbxC1LDmSyx/nkwrSRS7d/tabIe1uoYFvgaPPId0xFDUixkO9IGK2GtHVHrkMO9Gvgjywr6Flw94gzJ2uegwSbjRbtKVQzKH3fE7VbHqWZqq4uqCCX7I/Yp/FVCYoH1B4/1La8HTcl8vgsWB6rZzIJjKZrOo0NbMv7XHrqfL3ihwDcTwAYtL+JcnsDfAu8MgDvWQ5Q5ddz4DHwC+Ar4Oc8SfeDAFYbnwtEZ6o1vewBCzw6e5b57QDcE8ByWrrcQZfLK/ZUqAapOlDNNtaaeRsAD0TfHQaPBOQFOYA726atuY8DNm0AYDdPbkFiLhW3B3D4SQEsQrOz+Vevga9ZcBaAY+DnwGPg2BzoNA1ibZ94SwCvbgfgmrfaGIAdTTsB3PLE6ykAK8dU0Hb/sF5NvkmVLdltANxMA1jnRKwYmrxl3jcwGSwA36MCewB8BfwW+AULsj8I4DYfKdQZDy0j0wKPgGXumHa5uNwA4I4APiJClJ+TiRMwKmPnRPhINDtrnr8BwL5H7pIG+0QpC/cpbwBwa0WjNwPY1bevSTQxuAHAhYnEnwPAnpCWS3UGvGB/d2KgP2dZRbrCPodgbU3d3xLA6wkAzwjghfFXsPlN+k1vtmoA4G4awEqSRsacAeirrV1DkzzEnmj9PASO+WIH+zS9prNStOTbr4Ez4BXwe+Brzn4sjSKv2ez1gP8+BR5yOB34Gv/as1C0z6ml4ArKQuOVEQGFWU+v9/MvdzSFv5XRup5YL2xiSWsC6N6tC35n0PHNHAg4cuEdsEJ6QI+p0w9rZkQHkZ12WWIlQmSwCDHXKPpSHO3wdWWPEdrGQBxg0cVpfDXkC6IFlF+7ZmXjH4Df86APtbEtKV37ZIWl7weEYGVhj/SWHvMEeAt8D5zSjTlkOe4Bi63LXCY7M5qgIRqwh0pfONvbUAG0wDkLCkq+LD34DzM0O7NcytxKqnqzLHFiWXcCuKYYpYzZd8B/B/7IQ5ULqxupeFDNPc7cfg48YtdXZSlKcSJbA3BrTJbWTjRQb67MHu/TXZz6dgBuCODONt5zhkWOtGB66scDeIwKR1phVPoYwF3+QV1+wdIW9mYAu/X3uMuDB+y6Ve3FTwJgmQ0Roxsax38B/pFlkxXPAtxjm+kBASwIfRyA3+UAXhiAq48FsNZwDOAzAKwmiDaD6wcHwitii9yA4BYAnrLAqUfhggNHZIHXVg0jq3UAPGWtzBHwOY/rPSSWttMA7nIAR3IaMOcysjhkEL9Ge7qbAdwTwEeWZ+9MDkpzW2TZKruyHL6OOb9bAtiRGcwhVkhd5C++GcD9CMCDvqEBgAfesz+IvsbMesiNQXl3APcTAEauCvWMLfAN8C/AyoqZFmzQUZO4LPD2YwF8kgN4TvM+M3m7AcDrXQAu7GUCVMuZXktLE70PhKqNyXVnl/d98NsZLKEvvCDS2+dvGS+8AL4GXgL/yr4rDdqac9DlIfCM9nfJaQk3fA3cwTq/PTVeyudoiaTGfEdHwAAuGEVqHQOr6zxwizZjpLeFknma5XI6EN5ihFcPP4WGIkeMX0oxL2xNtuRo+hyUfa6YC1MzjSFswHs4J+ictL/At2aA0UG4PfhTtA/VFhT5pRy1EtqG9Q+XwDnZq1cAgIfAU+r+msOI0+Ep611WyPNzXpkFw/pb4DVTKDOOpj1iv+DSrhYpacqKqC2oNmGQD5CE8ICy5KDr8l7ejs5GC3JA0dzN0nQgdinSnQCO1qjX00B0dN5fA9+wqu33wDvmzWqyd/I/nvOc9AVz7r6y8kTTfs9sg4u8X7+w6VXqPlIOSDfc2UPdCcBXdgqEvOc5ibnC7qqy4PLjADxgcwZfDmBdLY4A3O8CcDRFVnFBHMD96L2DTb8lgPufGsAwhKw4kOqSAH5NAD9nw0oC8H1gD4h25t9HA3jDav4HbI/YZzeqA7jLrYXMzF0BXNsW9wMAhxx44yqfcAsAhwkAb3kY+tfAH4GXwB85i+SAJkuzdY6BL5irq4BHtNK1QdEBHGyD1Wynrw1vaWbGtrfsmIDttm4A4DAB4HVe8p/WZ251cJGLOcvz+B8NYN8C+TilbV+ZX+1OAJaiaW8B4Ggb/UEAaxkV29wMYN+CGwCseK9jLe2K+Z3XjBePaQxSNLikyHWagv4jALzNLXBNAPd22Uh6LVpVVmENAwMAh2kAF7bXDfM5bQVrSRUZWZjh86gt5pI+dkE6K7NqOM7kFPgG+K/A/w84Ba55mOMR7ew9Hs6Q6mXkN+/TfPf5MaDplupc36hbASZNrv9h4hCtldd1/uBxwkhLR+t1qXNdUrLRVJG4Gr4DNZDTCMjVT5ErpDK/MTnQXoUc8kfwOwlMIMEUvriPhiq9oKoo8/8qgopGEei/Ivsd3zAD0VkcN5CTQfCrFzhqHeVy7ssc7lpJdeSeAmfAn4CXQAAOgafAL4AH7Ms9ZJ1Ua2P9Xd9UFqFL43ZE4TlwTgEOPGJQl52xbaG13d+Q66ytC72jSanpCVxbqiQYoyphKOg2DDyrDnnVnPBQGx8mLXczgLsJAHc8kOb/BP536sY9aq0l3ZpjHrPwgFPGOg7LSp3xixsBHI0LQB7wlfkPKnXoTBRcknYSqDsBXObiWFqvgIgtmK10KxMsdfVBALsD7bLuQq8dCWaIHcAYAbgy/0Hmvh7RNyK/tA694SeMvl3jwLbjxwDYkzIx/9ZMjHPgjD4eDMCPOPzqiEjbGj30IwG8TwAvmQceAHhDAM8s7YxdANaqSr26HO5ZdkkA7mFrpP3wAz7GDPQUgOMEgHvgAvge+K/A/wGcAGsu7jGf/xEnfx1SXwJYM+eezoyopgEccmyAxsfLKvSkci5gt+0s1gDAcQLAa/NypEdUFuo14ko261LigOXv3gDgAYb9xA09bGV+m6PxlgD2JNcHAaxfSh6KfHm1F57UjPkzfrQF7u0eYI+zBi6BC5bolmxfeM6iqAPCrKRwOo/30QA+MMO+ZO5/m7u5nR2BKzRNAThQs2juV7qTpe1Xz3fFaj83YdpMT2mIa3Sb1eei3fLeVYmdKr3fAOfAC+CPwB+ADjgCPgMC8MhqNo6sJ/MACKwzTtR5T/vbmqDBPtd3PtrBnbJ0+uoIMq+flKwNEDxQUYKLXOTKPjSY8hP4dODUwlyCYLUfhclpYWJbjq4cc5HH6Klh+kCaps+1gq6Q4mI/ZEOLM8gGxxy42nrPDA8WDRMAHdtrx+7gN4pDS1NIA/EDDdY1cAVc8tiyQ57X/Yg4u5fPH+vJDeujxQBojyT8LXANnNq0yT0anKXVbAhbLSfTXTNBpTMSOjtzLDAS1xHrMPurG+iMBVOtYitie5/iIp3mQ2Ol4oIlrHYCuJ8A8BlwBnwH/CvwB2ANLNkQ8oSL+xi4xwCiprO/YcHYyoqfbgCw2+Jm9Eo3fLUxIHqoAWI/COBmAsAujtFeXEwAuL41gJ0Z+SCAoympnQBe2dAzB/DsQwBGDuCx3/LnAHCRC2SfL3XDIDgB+E0O4CNjsioDamfc5UcA+IhF1TcDOMntjHOgJDljAGuXdwK4NZvkJgT7efUceEMDl/GjLXBqt3oJfAv8EeiAY+BLw+0R8Jzc/pzResMQs6cXPhsBuODmSYYUsqdWEQlW4CIWRj/rWdw+3x7Ail87+/SQy6jcO3BNQt6fopKpKQBHey7kkIDpzTGAi48F8PxDAI45gN0w+lf5sQAexP1lDg/YDei/IkuvgW+BE0pXAnDBMqyZce3RUoofB+Bj1hrdAOBLEpg/HsAqRuooVBugrPZMt3sGFYROqvGoiMgN16kzAdEtvwXOgcCK58ia1H8G/hVYAz8Dfgs85TC7exwZtJcXfvf8xKtcl8AqiVr+sKZtlch3+SQbDWA+oqYBR4kpjqtsD4uRPKYluqbGXnP4+8xIg5RRuOBKKlGR9vaKL5MDl+7qkBpI21LlslDkJZdyHgT6yA9acE3WHMK5MlsDawbbGxXcpXXTVMyY6wMXdomY0ukz3uecikq74BgNlPTe1JI+qxglsUv6nSWpj4ZrosomncLZAOfAvwDfAwV79J/QGhxaMrI1qZZKqCzsCXwK5X5SevmcE3pqdhzN2LAggAhq13yv5smKJClYKdBzgo4WoeT5DzWNlXiMNMRVs4ZTLeUcwEEOWpXXgEK2oWxtKCUrhuUwPZyQ8Aa45H1cAhF4A3wP/AH478A58BT4a46l2wlgCdDM5GZuA95Vdqj8pxqTlEvqaGLUHwpmmGf8a8Xfe1UW8jSyhKzkRnb8aN2Y7NSGclxZzjk5IUe5sShIXrRc20G1jbceFiYZhQEYZq0G5aMbYGlDSEH1vrFB9PI6vNqkGDnEhSlQEYKOZ8GgYAwnmLWjlfwIAOtlG2u17jnAt7UpUlfAH3juYLKMTylIC3LPKn7QuSeq0vOEIBiqNgTkGXDKecw6TmRB6iqSvZJVXVEvK58jegkkpCUAA6diYYc2pO1YA1v6pZFXSGmm969WkCGrNec7hZwkKC9Y8oK8muQK6IAT4IIHYl/QAn8N/B74PXAJfA78LduqdwJYrrkmOicfseGyyv+4oCGVYDmArwzJ0QC8MNO6pehE0+teiAJzE+Vq19RQreWMQFepZC4pLemGc6ZDLs0g5hdW/9jZATwKd9Si0VH19iYNwlvD7UhGZp/LqBlgFV2V1rSYAzjQEDmAg23KTgsczfsX5SyPJnB8vcdmNwO4t0erufjBsrbyO2RUNtypE+AbbuIG2AfWTHQc0Qxe89gDjY0ocgtc8Cm2FLYN81PXfDRZ4D0CeOA/XtOZUkzS2nMtLEvT5Qu+Nv3em7O55Tm6WxIVNXBQbQyCXiOz4qi9C/685XOsgHcs4ZaBvwK2wClwwbrnFY31OWcTJQb/PvCUiaKDPATztEHkc8zy6h6xniE3/fre8m5F1K2BADzgjukxPRUMu0Jp++D+pdci+efqIqWlkcTry1r5VqhYot1V7TCIEIWhsWfvhtIDSRhJKW3U8p4H4bYH3bqsr3ORF2l42cYgQEZ+G3pMv0/kOWGxEGMGoMgVifyunsBKInrFwc//SNqkZf1Pyh49AY4M9HL9S9tQ3bNzBYFKYmX9MnPanIo6Rk+ULO8VY7NAfmlmcdGS8qABSzN73tWIAJE5rcw9bjTIvjWJVD+W6KoNjwtakaU/YzD/zgi8DjgDOjoZLZ9hQdhfA++AyCmuPwPuTwBYZc0LGrs6N16wHY32PLIRW5u2uOV3zVl4ng4tR8mInwTAwQAs4+iMcmHue/1nBrAUYm/r9j8QgPsRgGG70HEe6xnwL8C/MDzoedplQtpz9ozFPHYvR6Klnx0/PwbAixzAgQBe5gBuuebX+V6MAdwbgH+447RGWxvnsSUOLy1y2nC+QUoM9ebtXbFX8RLogUtgzWTQBX+fGqqfAV8AT6ctsDIssENUay5fzAGsDqOO7oiGFcnP2zD6WQBHhpDSnOxg0qnb2AlgydBOAOsFwfAsmqLIY+j6p7DAMGCMAQx7ljGGbw9g1ZP9m1jgaAAOdGrBUDg5gP8K/BMtWMt48Yih8BG9M4XmRb7IsLWCecN3BXDKuojj1SgB1cbIb3YAd/maFLZoDmAPYBqgqS5N9lWb0wEXnAj2AvgeeEvLe82qyLdAx/C5A97wWSubcataKpUC1YxDD1j0XNuwmcCUt1LtlT2ly6aWvLE+Ikd2y+1KHcjJoDdMRHUWzWmdeqsVl8XxHfbAsxnVAYN3uzH1UPBmWnuEnq5LwT859x9MduJIoHpzAxw3VY6bQJrmwGgBLx4oRwgucrhIQcI+t7N1GGgRB3TIn8WvrHT9mOR2XVXZG2GPrAW/orW6pBv9r8ALRrv7wEO2se2T95A/1o9W29VGsIyKDNeKxqpi+ndmnL3M+prYbUyA5zbYrqSHWefLKxXb2SthMU9p6a7el+7SygxWhOiW/OUZ8AZ4QwBfAt8RwCdAR5e0Y9+lCL8kK2kpN4yhax4I95Ts3RjAbS5P7nwM1OMAwH0ueRK4tKAz4L4JkFckFxMAHiyuA7icBvCcghKMDNIRVG67W5vG8OcD8OyOAMa/MwBL5cGkXCGTStxWwLfAaxb27QPPgD0eAn/fDusWZzQFYLEFW77+mgapYL/cGMD9LQCMEYDbvPSoN0JQcIh8Y8wB/F5EeztAWIUsW+B7OsqvgNfACXDGaKPjIcY9KfSO7HrPrNiGFPcxFUlqj70HPKJDsxPAnT2D/I8qd1MG3wNvo+K6JM5PJ7PLC4gGeHmHchk/COBgGrceARh51e8gZYvRU3w0gAc+6wDAIIDr/8EBPBBZfdbGOJukrb4GXgEPCJiHNhXxHj2jzmbDTQG4MPJzQ8P2QQB3VrZxzeb6inT1PB8JUvC2BzU2vQWlFcWjt9jMVyMAsfoH9vm9YxvWNQswVnbQ+ClbCUorIS3MLVcnYpqe8ZDwTS7sisYafIKlzeuD2ZRBQ5EfzTT48sioygu8exKQa1ZNFDyHuLDQVbIpQ9mZofdPkdRIbDdEg+4tMDhSe5I3XhcGymCb0I/UhuDr+lZfHsb6v6X9t6Bz2XLoU6QwDoLrwr6nlrczh6Hdhe84eouTTTC7Nri+KxsPzH3HBSYtvlzVZG3OgUvgTxwO8ZiNbZX1DgYa042ZcgXdWgevMN4wUdqZ4p/TgT6gcSzoXynXsSZvOOP3nJUCWr2OGuiKWG9NR7pi7oxrT7iT+U5HIOEfLUP9lrmhFQPcDYOMKwpEwQtV7ItKAP4512WfA+8jlf8F8Ar4lo+a3PkpAMuDibad5ahTYQxgrb4crI69ugtyZ3t5m5dTm2MAO70yAHAwAJc5gGXvkFekhPyVyN3BPx+AH/xPAWA9dcvvhpYx0b3fAX8ALoAnlMDk+z2goDcG4GAArkYA1vVXtL9bWiOV+O4bIDsa050AnlPOfa97ls1d0V5uqDUGNKUAvKGjWNNOpOpJfG08zzsa2yseaL6xIXTJe35uAwcKQiLSwS2BPR4UFjgl5x3wDfAnapGaS7DHi/hXbXKgcginsKKtAmz4Rmng74HHfK5T4BQoOCxgZrQADDwO4PJGCwwbEKhhB50pAtj9KyRwYAvexY8A8MABrXIAgwA++h8NwGEawPJZWksOJoP8PQF8346NXpAqLgiSDa8ZqA7KEYAjLfzKsjEDAMsCBwbi8UYAL22tlHUdALjJjwwZALg14SlYPbKo/l/snPweeMkaDD3lnOVRX/B9WyvY7swkaWJ7uveFpT0OgCVri054eJtHeRLPgRwVtp9NLnd6lLm9srRHr+myLzjIbC/vrXfCwk3tQKw6Q5iUdmSNT2uVtbIdlQG04g9uX6RjnHorRv028kNKigl23SHscQIV+JYDwe/zVtc0E768hakrOZSOMFWTtzbuBTl8B3eii/sjDEK8AdcGkwePNAb6I9IytpyjkOaLnwDf8tSjZBw+AWpW+T2gEm1M8Fx/FPmHdqYYFJDOLVc/M+Fv2eDgbn0kcJfscRiwLqBtFHDT5qqpUTHD1qi6jjdQsrA7Avh/A5ec7fOaXQiJil6Sb3rCqvCC9WB17ukKwFvCZo8flsLfxCa8Ak6B18A5BUuiGSl5ioAH3nOfb/YAwPqltnyPGa49lnDcY/2hOC8t1l0BDKAkgGvWYwQDoVvYgawXdh2RKT8JgGEAbgjgh2xo2Obs/v8oAB6ImbL6KhPa0ME7NwA/B2aknx9QozmA5SdMAbixJIPE/gYA4xYA7mzFlFhe8bO2PKFqJ4Abu8+SJFoH4P/DOscT4C0tZEJvSqT9nO3K6evYnsSD7kAV0pJDkDt4xh6Q7+iOr+hk+0VUpC/PpsgPUpaRcU90L7c/2ubAJHTaQnDOpeJFfbVWHILbAThpyo2RiyLOW+p7GDz6kZTAbvVOAMbtANwSwA9IJG5UdpcL7gDAlV3z3wOAMTJcrfFFaXcugZfAFQG8IIN6yJRltFOygrG5vS34TgvcGYDVYrgTwEohremgzVlopU4l2JMKwGsD8JavUf7ELXBBwykAV9X3HPP6mhMzkve8JM30gCd/pb26sM3p2b6Ybm3GbrnGGkhKJrsSC/Y98HP2APsM98q4eBmyOj9HSJGRcO/OkF6jKKMmY7dPwK1ZX1GZVnD1M8AHDGFaeBFkicOa57Ge0neVBTsg6CtKkFyiWV4RW+XacUBUxZHgB7tzKTA50ImLCPSe+7w+uzTmPuQfIenujC6Iu8DqgcFAncRdYPXfBFufcSLHCb4u182dBZvpdLzXwBx4zrKNz1g0eyRH05gTOUK1CZVe0BpRAIOL/C4Q2VqZlY3LF7c7p9utrfGeGgUD0dR/baRYpJCo0UZQCqwCWwH4jgkjQXfONqwF8Aj43E5RLaxGuTBvJlIv9Szi3CPrdk53dgWcAH8CvmddtSBa5kngkBtfzRi4GcCDQDaw/WPf0rON2YKKgXX34wC8yAEs3k1OqqyYuw29Bc3qR/wJAbz6nwvA0TCQ/rth8uUa+J4AfgZUwCEj4Md26KAHP+JL6nyzBgDWbZecgKNHUDK5ocx3EwCeW7Tmn65i/YFgK9kSTXKkRyQhycW9BvCCspi6l/apBj7nWPUvgWfsdWvNzugmWi5ooqKvmQlecsWPgAo4BV7ye0XbFfMijYprNM8lLDACcAB/8CtdUE0faV02I4rXHceBD70TwDEHsLLUKm/oifMiF0TJqxy1yEdrbR1uBrAjJIwwIwBv/mcBcJcDWNfUiOuOFQxL4DnnqD0FGs5mmrPps7Obj6ZqdwLYWf+SAzTALR4DuJkAsAaZI7fqotRiLtgwGYOx/rLAPfF1AHTVl8A1K0cPgHdsRoD1RQQ7VHFpqqw3/2ZF635ocVZkurgj3FdspDzgBD+VlqkVuTLh8i0d7LDWUnvioXHLv1bc5FVe7lRzVSrzaz04dfmSU16ZaG/ZZ1Xl91PSLXZvSQtVWyjn5QFV/uyDShL/chYv2FIP4HvFQvPeCoj0ODPDrgee0bZ1ADXkH4ccWHLJBprAv3ZGvrAY3/8kE6FllNZUfeM1cA78CXhNxCjh/4xzbtLVro3CEygFmmBS6iG/fpnCoa39pufeSceEPD27bwcHRrsyzPv3xmYtsrfJ6b0zc1Ajiy8aAF+wyvOSaV5NHgjAPhno+3QF3HL19uQrksFHlkeN9DwOgAfAfeBbYA4cTgN4YdbBax6qHMCwvR/84A8vsqOz9tvKIFfkEfYtAQwD8HLX4I6ZWW1fK7c4IkfAQOJHArjYBeDE2a1tU9LXTgDj3x+Ae/tlZ8TwikL7FvgD8B1XTyh6TJvUcQUcwMFcnTJ/ljFnFw3A+HEAbkYAlk8ro7UTwAt7QAF4C850jeYQtFzQGfAAeMx68N5I+N786Z4FKzPrlZCy7yyZfkADtT8N4GChQJFDS9TW7b+Eh8ZuWAutEsjK1uuDAI50gBKA5zmAG8Kjs21wcS9z11BKt7gjgMcYGFvgozsCOPy7BHC0tysXtqabewF8A7wyEUq+1QOe85EM+Nr43cI+pZqwwI0BGAbg+CEAq2xj3yismDvxDmC59aVdZCCKge74zFJUS2BdHdFYyJmv6Jps2apVMzSugEd0N9VWle7lyLJH2tL0AkW7c56HuMcpWEdW5FCZ/1/aBioHIyhEC4tgvy8szS30yARvjWtTTBHoV1zZlsYcvmHXfzsL/z35JD6iosT57xV7Svwb3k9vREZhIjb2K/xSfsOurtO9HbPibGt31ZPsLHPsFsw8+fL29inO8SPPyRema5HDbieaw+hPGL0gWHo8civVkHLNCqk15609Au4Bz4CnjIWTgL0BAofDxPwUwGA+ntilniGHbFRFCRQ9HIhCUQqa4Vaz5GpQrxvMNjZ2/00evHkFQbAfKov0nDV6P6xgn9bw2rqMViZbKTNe8zN6y3R1HJEjPtzLBUtmlD7jWn8KPAPuTwBYvQiSYIHZvyRhTv0iFzVPHMgrmuc1WJHqaZX/0s3KGMDSCzcAuLYoKuY6v7Q7/LMC+OEdAaxHGAMY/0YA7uy96i1oGexdMwjugIec9/yI+aPkxb4GImdR9BYvOYBlfAcAbskclOStwo8A8HYE4JXlQJQn2Qlg7ZcA/L4xcZ+fKj2UrvU9qbVz5o9UYFBRF7rOPubzzC1g1Q2tgOc8yvsx8BC4NwHgzjAzdiOiRQw9V9Nf4J5cYdiIZn79l/IvGhOdmy0w+NQ3AHjg/0lW3AIrJPo4APsGTwF4cUcA64b/DS2wP5p0Cqg0dYTmJU3Iht7TA7p1SVwfs1D4HCg55qnmeKaQL3icsMDiPEt6zPFDAC5Zs7Fnvi3sapHtNarf6GwRqlEsAQKqpnccSXK3lSooAqcZvAResfKwZT8SiNErJoclfZHvjdRRKhspgIdAB1wAJ1SAvwF+ZuFJzUVN+uTSEhjCZU92rLPhk54OuWS1hjjUymLebT73V8FOtHhQga2nE0pjiEuLBzc2Bv2QnomSAQVzaXKPBMeeq6pi1sQVqpoF2hkzBx4VjFGrJ7riDqcZvgUJB82NLfJsxCwvMIANzir532jKb7B0UhV93qwhfaxYUmLYsYLAK9GlIOWA6cY6PlRvaf+KPHQHfA/8f4GXwEPgEX3oJ8DPgYfAHHhjYaaSAHOzj7rPjkLSGMhaEh2RT3eVF8TJXVzY/S8oEtFiwiJPZb0mIgrrzV7bsGfpzooy09Ky1xxYtYHNNl/SCW45f+OSj3ROvkORueq7OoqXemC8KKLgBmiNAHzCxoIDNgXJ5PVUj9H+lfOR4LriU63J1NTAijG6Kqu2Rq8M4CpnBeZLVab/PerSG0uzPq2dz9QY0SjFUZivE5hRUpK5NYlUMtDteHEXAPe2vAVzlZem5nYCuDWPq7CV6XIAu6NySwCXtrYd31jywfWhAwBrfWDLoj5rz1f6mpwC/yfwhifTpvMWHgE/Zzf/iWmlgrId2RKuWTZdHp7KVnbminSU59LMt7Z+lgN4aWsuk1BTkjVHTipjQ0AtDMDizrZkpFSW2fBQiB84s5I3AdZdXPIxToGKOaAzkpqXZl5KgkoSL+URSeOfcurzZ8AM+JRdViJ3FTHLUnWWHA10UFY2GVvrsqaGk6dVjoInSZI7mmUeWAR7vYybjMPWuAjPws/s/n2Ces89mHGYbUGZEME8s9sLplm0gOKtBWCvcxAB0PCyBwC4O/00gMexIKwyTAD24g05l40puMIaxDqSo8gfFobbiqI5ALA3g9ZmgbW/Eq2aN38EvAP+kT0xCV2p5vjn7GNYU9vKq9pYPlWxlsLraBaos3Sq7nlsgXcCWBZ4tgvAqXPqlLhV0UiaW9ZYKFKyhL0GrgnmHrhMkX2lnFXPUOKKqJ1TJ7xld8SBOZpqrbxmTkhroMLNaAmxLVnvZ9QEM7N6vU3QK0yRSOuqSvyCNiLtwzGpIolzldeWyAQ41dXnrpunZyMNCizWlsmDoV85pIUhybFVGlz8o2ExlP7bm7LxkBD5fyWGA97KQ/4VKcWj3BeC/ezkCEx5uBMyyCEht/seNSN/gT+sxACmEf1mnP8e1Beo3qazPOUFz+g5B74BvgOu2a0wI3SWFAPlH1ZcPb3MM3/K6jcWAYp/7O1ZSguZg8HXCwlr04uSwMAf1sAph6M3ZiIU5Ea77eSxLPjRqvncsm4zK0Mprc6hpXvaAeeML/dYzR3Yx6+l6cyAahcL1mRq/OTnwCfAI45H2MsloDP3C/b8kRY2cCJPyyO+Z+aeqiZQK+5GTQmpzgA/AHA0Mw2zhmMABwJ4YyPqBvlq93QHABYUeyOwBEJ//Z8JwP2NAI4/GsB+zy4PUwBWNUWZm8XSok+N3Ug0yRnwDfANcE2HeD4B4C0NQLRTPecGP5W/CsBehuVadQrAcwPw3DDc5i54yzHqVzYSRJn5Ogfw1gCs3U/7vmLo/IPh9xqgnnfTkBuJHL5xaLxHNHZIJ6V5pBLMe7gHPAC+AD4DHnKJXbj9qyCTrS9xBTU/7sLi3U3eN6CKcpekwnIB2gyB1tPMPeWmN093AGBYGnhh6gAjAPsDDoLvYMjpc9b5x1jg9S0AjBsBjBGAd3LGOwE8wHDM/zoFYExb4N4AvOHwiuQufwe8AK6t3HlhAagA3LK3puKfFmY5BwBuRha4M402BeBZDmDZ9kEM3XHs3CXravTgDuDeNEhBsrS3tUoz6spqZgcsCo4l82YdOe4Nq6YPKPh7Jp77dj5Pw6Cj5Xq0dixPMsGHVlStAhkXfz2rpomt2D98zpRymjS4Rwe9tH6PlhGTy6ComT4XKyXQS3N6ZBzl8zkcA43mlU0DqvMuec/N3CDXrpkre5nDdycUBsguTAGcAWsmVFoKqT/LIE0Fe3Bpl87CQBiCdSeFXSeMFmpgtnSF3lSI+yqyvxJF+UXSeQ0jtKS5T4CX/HkfuM9HfsAckkbXabBNlac7YLpTynhDi+TaSytfGWQL67sp83ZYmVEXucKCwLeMVAMvG0gmKF/lOY0iN7AbjoYaVioqtVFzpOKaGsM124Jt/ZdchWs+UmkPLAU150CTGviS9tdLxdyIIK9AbakXVHCzoWwdMp/lPBdGMtTbCvqf9NRetN3m6EIulwMAJwJgQU6kNQQOAFzkAEb+EdK0PzmAm9zTEIDb3HpGwypy8mAn7f1BALe5I4FdhRO3AbCKzqXTW6ZnTzj4qWS31SMC+N4IwNsJAGMCwM554xYAnk0A2AusQebmlONulHgt6OI6gJEHZj5J+Yxe8Q8Hdze20CVwZGWaaVxnAu1jXqg2i14DZ7mo9bbfSXM8AJ4DEfgl8NBGOigP7oWTsN0FNVyKOFeWujrimiK3dYWtfjAPBnREBn5nT3JDZkferdtPp32itW4sqc5aQ7iiTH3Q2AIPfCx8FIAHui/cDsD9BIB12QGAi1sAOOZqDvk9+++LXBUG0/VjALvpjhSDPeACeJ38SHbvHwB7wAOWBmnKlE8MLVnPCwucevO2Na7yTha4vgWAAxnoM+AtcGFz6+RAO4A7A7Bcy3QzKTu0qBY2sFaR4wGD50u78TPgW8L9wPLpCxrrnktbWrHJiimfA2DO4o1oSPVJCFqtFIaccsDCGSd0vQZOgQA8An7FE4L3uGAKzMeS1ZJ517kEgo54N4UQQt6Au5FkgSZmSxlZmAPgbQh1jrlgBF9vSm7Q6ukIllra+eVeZvraAidABB7ZCcpFDh0Jsut5tzUxF9s4+lDdWGW/9EC4z29PUYp3dvgPhT17sBvoTTfIkqZlfwVccMrKgiY41fcdkutdcYNqpkhn3CnF14KseCtpsoHuSXciU+M5VzHQwUjYSC44mnJtmOeJVquzpLy9ZTw2swxWzyyHdIaIl/f4cYdyZo8hj3ADnAPfUlKP2N3RUfrdW4XdbsHlWADHwFPgMetsZPp94zt+b23OpkZ2nwHnLDh5BjzjPJHCPODCVl/fUiiloSjkKytp7ozAche/yHdUJblr6w+RKRH/FQ08+uiBek+3V5sQxzsCWK8ZAPh8AsCwFRPk5Mn1IwCH/EM/CGDkAPBFuyuAJVdb0iotcM6piDXp5wM2vD7aBWDpUxHPqj66E4CVx7klgAUNeeRb4Bx4wRTSmpUOaQvODcCtAbg0+xpZPF3BugNV7LLgKANRbgFYAZfAt0ABHHN4nNyCkmkURU7ay56u+ZyezTPWLcjnK61tR0IGUlhbAuOKLFYypE+Ae6zNkhh1JhDu8LXGJzjF5G5rSQmDCe7AAsMuKx3XmUflcbbT2BLWcqTpFO4r1bczY3ozgKcs8NkEgPsJAIcJAA8+dCeAx6+Jpr/EPXgo4ti4GcCwTYzMpF4SkzNa4ES0HFqj4YYlEB5kg3sHC3zb21ngnQCeGYBVG6M4yi+YRpS9YQ33moeEpQU5Z+/FjK5oAq0Qnq6TujcOqxmZqYVRXIfAOzrq2vZ0MGEgFoOl2mJO1kdT8nsUmZR8+jmwIEHgfJmTcw1PDv4G+APwB+At8ILbtWIBVypXSY7FkclykZcIyW6q/3vOIX0w4+V71dlDxVxL9SaAMBmJxkQWVkbSGvjEIwa7cvpS/Z7ky9HmVxjjQ7BIj3PBichH5lYVtjiFuSt68JiDdRD0DdA5sJtx11/9gh5mqiJ8EP/66zs+kUp6kphf8ECfVH/0DXDOYcdL4vgx6ecrNvqrSs7HJkpBNuaXt7nn6arLFUxtdnaWOzOu13tzJqV4Opqgjkb2HCg5qrwF3ph2b4y+0MIq1/t+zWd5vAWje2tibI+K/Q2zRUdG49VcICm0Lt+Shi78A+Ax71W2qTf8K/OWMHzBSrNLHiSevOqe8wVBhMyN+ARXygEQjcXQcDGPQZ1RgkFrAGDJaElnTgVnnpcZROGwP9V2n71VFzWmQx0VtwSwbnsA4C53RXR7lenNOPqeAnDI/70ZwCF/vRyhMYALQ3KwjXCzpVP21gx/vwHOeLpzMsEHIwBfcW33DMDekjIGsNdd+UPJQ9sJ4MrEQ8q0p4huef0tDwa5oAys2NsR88BvAODS7kG51wAGsgXdcGWfRfuUPJbimsnd58ATYqZmntiNcGf48fjyiL3GW1uCKpfRxh4+Dcg8YZeYzpWKHAQA1mbCVmoQAUvuO2pBHS0Vc/0qYepymXMAOwMtCVN22flCh1zMAax3OauqAuLC3nV7AEvaBgDuJyxwMQFg3Ahgh+gYwFOv129uAHBn+lSslyrXo3XOJv1+BnwPnDElVJAISvxVwYItdelprKusWcGP2FjVgjpNByIkZVRMAHg2AWCVQ26JyXOOWg+skmpZ2tjvAjCobrRi2s2u0tJW9EWS+/g5lUNLFjNB5zuyaM+BT4F7AAhfeQmVbUsy3y315Kekwy4sjkj3smKq+RT4FvgT8Efga+B7Tn7XbMCKEUGRT5Gb2c4r7g4mLD1L6SrDK0b5YeQIliJVYfSAMFrlBRhl/l2ZFwjLBLQmI2UeeDgTVOSaZic4BIvI0th9q/wP+c4Xtib+gC44vSktfYQDDvlNRt68C6/7ddJSg2gddleD1JHzPqpj3nLB0+TyNevpjzmI4j5Qc4zMiso+8PZkfKVrVwbf3oxPZ8+obZW8qeJCzfOuI53I9/VsaJE0KVINlyofOKR4r3j/tXEmhXVJNFIYhUVdsJ5HHcrdkqiLwBuWnzU89Q3AJTA3qrywfYoU/UPSxumvG7PyHY34hj+cA+d2gNqafucBOx174BT4Ew95UeWnlJj6hYpdAC7MamuDVRgtEZQLIQAXucxFmwtRm9pSMCQCsswB3JvNVXeQMwd3BXB/RwCHHMDIpc1z5ncF8ODeCnvNRwBYot/ZoUENT7hNbbP3OHLyaBrAPXEyMx+0sBqP1j5oCsBlTlQ5gMsJAMtCtOzAOAHO2F3uAG5uBPAgBJ9Zvc17P1ihfdIN19bMHEyU33AJEttXkveuczRKLOTO1jyZRfbTJSN9qdR1TWBc8Gi1Gbm1knzhCfACiOSjVLwZeJHI53IXc827mpkYiXAIJoVxtCWluTKF4VMNfHG05ZIDB7A0lxwsmGEvTYncHsDdjwPwIPz9MQDu7fX+spiXc4UcGHHaAjtB0tHDOgHeANc8K2fOXthjoCR5tSFOxsSdwtZLArg35SUAu/ec3jK/I4BdutY8GvOc7qEDuJ8A8MykTo5AcutiVebWsGL1yi+Z0lzRgQbF/wVR1dEzLiyLUzDBmx5rScd3z05/CMxM9pZHPQEuuS3/wtGCKxv0AT5ZUpsvgDnwG3Y06UxSxTVtLmtKPKRFPbAuRhU9D7rK4gi+is5gjkRiVWYEdDC/uWSdQGHMSGkXl9nd5voDecgz4NfGINZdqUC8tT0fSKIkS9Lqxm6gfWFiCPulkwCD8HkMekEQOax1qTKPptyJ974gLfj3LF495vCrh8ADNrMmllezN2f8d2nslQr6hHLfbmfWYOHQbBREF7u2BqMtS4h8B7wjgpMkrIGSTiZIKKvxRIllMVniBN7ToKUp5EHxQMrLXLF7eMHHfkM2IbKgygvGqlyBR6qsglUjK5ZcKsKP1q/Q2AHroq7n7KOaU4kkFuCPVFklYwivvhBf44K7NTmrLFXhxrEw8e1yAMPoKmWmkqqf274OvjENYPFfmij6cQCOdwSwPqIzF6vnA3amwhyHA9R9EMCFXUch9WBZSqs8LGw7dLUtv4XnK+AVcM0T2o9YAP2YMwzGAC54LvXM2pM2OYD7XHKcshSZMQBwaZ5YsEUu8sUXgN8Cb4B3tp4zo8yKaQA7lRZ5PxvdhBwgCaXYcmdY04on/Mx5oHFtx3mFUedzZStSmcqR2OniCj62ZniTe6QylOReXLOy8g88oHtuJ6tqgEO0pQ/UXg5gpWNF9Zc5utwgwGo8RIkESwMv+FDuhYviLXcBuKeSEoAXeXH9n88CDwDsGHOd5drhlhZY9gH5pw+u6WtVmhPkN9BR72/MVUmh5EvO+lqwjjIheUkRuqBbXFqdr7jqjnu3IgeM0TMG+6WkaP5TAPjEsiWB96MBz77dArCUWmc3ua32rM+nZLf9ntFVLzjtQxzqNaPjZFUfA/fYU1hwkWoqjTkvviACrsj8RSL1ikfZnHK81wvgHfuKZxZIKsMM9vBd0PypXzRYbD+Wr46eSp3bX/DnAXxdruWga3tFK25tUd330gaWeT+3PkKFnV0u3R5++v07vRVzDAnBFQnHIp+Ug7zuzK2tLtKZ9oWJEkYPOLg37Lph/+qoxf0K8kGr3P3z593wO0W1Z8D3wAvSz0vaxD1OiWmZOhLiNdpVlcQtSS7lfsv8rup8B1W9VRsljLwoYBCtSZuqie6a3Ucn1C4zIitwmo3OxZvTkAZq98in01S+DUbFkDW9hJVtfJffyoqPnbikI6JXisJZQ9hcggsAwBWw4CQUZWVBJJwwXRbzcpO5JYcD9fAV8I7nhNeMehOMD02S9EOf2+XCerjlwQR7/QcBLO78xwC4M0/9JwewP46vQ5EDuLCL9LmSj/kHfRDAen0xwnA/usIHAQzaJn1fAK+BVyzMWJKR3ad75gCGEc9Luje9NYBuJgCswgQHsBz9OwG4YQrsEnjHdpxAEyhapaEXKgD3+YQxWS+lehqw7rYzpkX3raY6DcbbsmG+YYV4wv8BL6J28UgHrjKN3rCIbMn+JolvWpGNjSYouTcFS4sEnpJ4SMb8yEalrC03jFE9qzwVcFdq457dLY656HuS2AEcbNzJGMDtBICd5PYqhdsAeFDF8UEAFzn2/I0OYD1slwM4jMB/SwAX9hrYHd7VAmvLNB9jBbwBXnIuY81XzpiL6AzAwTp/lxzjL8HbWHWUZ1GDWQ5tX8XffzSAr8jQvmNKW01q6blK6uiKVUZNbirARVi+L+HYJ8MnnZle9RhYA58A50AEXgFXQGBxdeqj+D1wDvwC+DV9lwWnY83zEzbVXfmWkr5hHJ1See9I5f+Ja+/xeNrbPXoYx8Aj4BnwCPgKuE+7DxvTt7AF2BCsHV+5tUi5zMu4HaZFLsuFxUGvGAYkX+V7YM8+q7DwbW7xSQKNjyWuKUdpTOXS+NEyp3U03rSyi/d0TgJwwMz5Q+AJM0mVCdpABzhf5rRr4H1G+6W0LHLYRXteKQa/grBbMnWgsFFeacUHLEzjKja/sAMIk1v5loJ0TDFTT9oVvbhrmxJbMq7TYdVblmJKuqRdfFyNZ55qCmFvDfMwjS69K+CubE1a4AT4I/A90AL3qTnmFIx9a0WrcoFp2eZQMwbvxdXMLUcjxSLidkX3d8vHO6Nub+izroEnnAQF0/aznL/Y2MDIK9aAqu65NZw0vL/eqvu3JmQAlsB9YI/FnEoy1xTKaNTjhhVmkUWxsowqBAXVsnsgoo31mp4BxpalAumhzoDHwJzDTWpOiigonRvekgRFFwTTIg9ZnC1SL+Qogjk5nYl74u8OgVPgBHgIPPwQgAv7vVg8TzMO1NbG6sOCyXeH4Zf8k96cMZjiKE3A3OTJd1eBWtqOS2sFAHAB/AunIKult+Ys9zWj5Ou8kEZ9q73Nueq5odqXkvAYAFh+8yynTFx/Ccby5Tp2+/Ys+0x80pwWf2OOx3IEYO9Wvma0kHbnkiUVP6j2wlZT+1dS512zKuuaJ5KdAqc0hom3r21ptjkxUrDqQ37n1nR8Y57ZzLKhbb5SK/ZGbRjjLvnLinNSwNC8phdSWu9Cb2y8yGYlaDsTR3lO55zRJc+ppSKbMaJIzSMV/bzAaKExE9RZ/QCoO8AhmitmMZSSn1kQBgPzFIBb4JC+zH2emXEDgOVrRAOPu8vOYgU+dWnFXoP0ZzBABkYm0a4ZqPHdEY+25p0hQe+9Zk9kusMlcAW8ZjF0QZU3Ax4DT4CazaYr+l8t6w9KpkHXlKL1CMCwDXJHTOatzjMSeo3oUPDp1Lug967J0JaU8Gvza/ZoLeYEcDDtf8Uzj5JQnSYJqVRDrBMY0i0cAE/Ik2mI0Nb6ZJKhfMVVeW5ORmke+7U1Na3JXm+B72l0LoBLdhmpgDyYoFXsX0qdyQ+Bp8AzG0f7iFCem5FSSz1y0ATKpobf+2r1tOO6jlKIaZcag05hb2mJlfnIxmmrFd66VusI9LUhZpxo0dfAAgp5B5zYPWPKbdwHOYAaDBa9gXtMHiOvGne6OtiN6V1egyGT5HGxx4mF/dVvoyc5qBfPgAvgO+AV0PPUo7SDz4D7tDPXHNIKKt008XBBOd/SyDR2ZrOTJIp2B6VbpbkNMB8JhKAykWJdtvzQEw7OaXnPWn/1J2+ozLpc/cuZrDmuYKmPW5jJcy6jYtsBOE8HjCy1ee9oiFfAJ7Z5Uqe9aSTR0oqG5Sq5DB1TNchnikwDljyBZY/5ghS+H3A51MilUL63BCO49F0O4MHQ+NJims5+E237e7u9noTCytwVGIB1EXn/0fRUacMWBPuxV/rRAIYpEdh7kcNmwIvfFcADuirYtn4QwB5ljQG8tSvUwCkBnPyNQ5KVAvClAXh2CwAXtwNwZQCOBmOXFudLJCFbolEA3t4IYE3QU3c5cjqkYjCQgPne/ogekcMqX7ske6AvVSq/4W19QuAJe735Lq5cFdkEiyRgbtk9bv/aXqBE5sxGVaS2sJdspChMvArTrDBSCPZxjbFYTuOUuU1A7lbIWmojVbGQ+I01JbszCxzzUa4xl101a2JkIX88gIWNwZdjW0H2bSywnGYHcDm687sCeKcF7lnw01Por4EXwBvWeaeSSQEY7BS+4vEx4WMBXNjzFoYF17ClvdKbu1sD8JqvPwXeAme0q1MA3ppw7gTwwnV9VY0KalQtdgR8Yabn29wvqUjjvQVeAF9zUPSCtFHLUXRbhiTynrfAH6x0RF5jb0ZzwUbfe8A+8NecRXsfuMehvwckpJcMFiRcLSmkmalN10Abw7pwIIgU5hUMist8pKFqlwK1S2OCUNsOtzmYFG92DFFmRtK10wgO+dsl+wvgBDjhKFVRYIPsjsPXvWePdqWZYq4kBvcghsTZ6GjKu88VFYx2GPumsGKSaOq/pXkpONTrG+CCM69SDeAR8ClwZK1Hmoiz5FidlOnccC6Hc4vueRZGioOq3V1nkSdidZArJKUyWtvNNDbkJU8frHMzXeSavrUg3QkQ95T03h8OPFSReGGl9/sUPp24pOangmUlW3LS8kSVdGjyb1d0LjHqgIqkG0UBejaqpspd2GE2BdsXVEMGilFSffsmIjsBDFum3v4rM6oOxd4Ygt62WQpzwTvpbIMLrpXH33p22Bg15/6nvqYAPJ8AcP8hAA+KrsoJALtCcWkLuRMpXTwFYEmIqJ8BZRINAx2HtfUG4K851PgBJxjeBz4DjkmxrLieBSOuB3TSNpRYPUh7OwC7nVO0UJhy991R477Sv2fA98D3wFvCcjYB4I4ydm0A1g42/Nxe3J/WcWtWorAayUCEL0gDB7vKGecJXFvWuzMPoB/F42mxakOL9/O/tfg40q4CeGjyoRTDBrhHX6QgywEKt5LBpVkGUF51vJwm1/S8PVgEXJEMCFSK11Rng30teWKbCq1KW5Bol3XvvKNHHqiD4rT5vQHA5QSAwwSA3YpqWWCexQDAruBkBDojX52QvtkCDwKA0iIcJ/FkwWa0wDXwCviO59MeUooOeDqPW+CEUgE4MTcrDmOSr9yMAFwagKWFtQKlOWVFHlcMAOy50RULP9+x7mjKAmvpVjmA/co/hBnVfQab6i9ojeU/5pUSnl6yQirQ2KV5c0nbLM3YBTuyZsVvkdyd7VXIq29mJM5SHcIT4ClwDPyCTRMywQsW4MwtVQs+Zao3BQs8gomzDAQMZLWptca2omDaYwOccQYmeE1xT6qLqQwQJU+B7A0QsuMdVZEOc2hzu7bzyxlKaZeC9TAVcMzxz56TdOx6kDu2v4X9dQz3aFiEBc4wbTSOZN2jKM3MOSPTmZLzPHBrdblr4DvgOwDAYyIypY6OiE7lFwubi/XIVO/aViZY7avMbm1WC7mRjfbgWhP3qXTnW+OUrlk5eWqaY20P25jLMbckpZdrpjduyEdJO+IBpdCHefVEac0Io2PzjzIdBa+7JcG24OtlzjRipsl1b+SYWhAGWohLVqwuOBjliNntmTWBSU+qai4agHt2GVZsHQu26CEHsDx1uYDerCoLu7FzmKJJ4dZAODP7GC1s6s1iyrgohbu1LQk3Gt8bALzJAXz1IQDDIoRBBPxBAMNAOwiO8SEAw64gGGtZPMum8LHicjmAj5kx3Aee0T27tMUsmHNMScZrAnhltxTMLbwZwGUOYD2IpxSioVcDGdOHvgFeAe/46dU0gEtzBQsDsCoXtybqEIC3ufltWI+h5VOoV5o1SyJ4TqzOLDbvWJnQmWvusdSe1QRvTe7X5pGUhN88Zwyk8DpgzyrOCkbAalCqOVV3kDSJdIKjXdnBpu2Z85oJIe8YDFRcog2X/oqEgTvQVe6eCoRSkS2ba5TnCiOJvw2AuxGAuxsB7E4wDMC4EcBy1nWrwaSt539vAHDI97fI+6S0SnIN/MpbxpEBOOZvFuyDC0TOhhasZtHAI/7prgAe8FRaE88Ew3w3wWdryaNUZfQKOLES/48AMCyCTzc2q5Z2SNuMvtfG/Iw02e8Z2/UuGdgGloWnRqCz/IgKcCGnvhY007W5wgXwBbAPPOaJDY+B+zYoZc86FGuTncZoxRRuvGKVyn6ucsLIBJdcqordGQ1p/YqRwDueWbmmf3/IF2+4RZfMRUfaZdgW6edId3xruycj2N2IXRD0Qp7g+wbYAI956GMgodbndm0A3wEDHU1I3RzDAD3WLn2uogZvHMS/MOK5sn3s7CN67oLYnOThvAT+CXjJCSopt/QE+BSomTe65KCzlKx4Qpa6t2YT8L8SAFVju4sYRvcPW6tg8gbTWzFfwDVbY0+tCq+yvStzfT+3jJTi697sQGnTYwKAA0phZXNznOUumcUFOfkNdUvFOuAz1m46Swe6/6BPXBlpL/MXLGMeOJT7gBWfhwRtb8c1SXuLtmzzhp+GOiVN1lxYqF2MAJzeMt8FYK31GfACeMmuhQPyYlsOKh0AuMhh5h8U+fgKGwYAvvnrrgDW18DxHVtJ/w12wXXgPYf8ibwe62YAI+eJlKJS2tx1ikp91sD3wO+B76k9L4Fj4BPgS2DB0U5njP4PgPvAQwJYfm1ralRlq7cHcDRNhzwo6u0pRI2k8Pclq38FvCkAlxMALux+PEGNwwkAyx2paFLSb/ZtFWo2ZVwR2KUtvbhVucIKEFsSwO1IaPZsXH4wJX3BEsXC5n4EKoKBl9OwU3rP8qlaOMlrYx+9T8Rucguc3Jdz4BXwPQP0JT9LA0OuWUjg3deCirR+YR/dULCUsOwN/HcF8KtpAA+84QFcJXzOSTvY3DLrh8JkN/KRpb5vBnAwC1xYcDm4DVUK6U9v2b7wAABwDgTgU+BTYE7+5pyn9O1boUDIOR4YpKPdjAMYBuOBYtIKCMad6SDBOG3oJXAKvATeWgcWaFTHAK6nASzTpZxaXcE44NSPNM/Lt2rgHvApcbC1uepLtk3LLW9yOMIoLdFp6fkeE/3HwCFwDzgEZsAnpJ/vcey75n7OzeZq7RXwdsRcJNmxzQvOxXcqC93ZPlS2WmKLO57b+gfgD8AboADukThL51HM7ORnZ45Lc7AKg0tvh0vr9Qs7iw55PfH4K/JWwX+Tiz8DHjEqxyjZHsxSdCM7KxR6qtzFdmO/7EcBYG960cXf4avYWbxVZYlWj3/HGcfkF30LfM99TxXzT4EvgUds0UsFvQ2N73PgGIjASc766xODDchyHm3K+PpzSZvCFsF9a+31GSNfqb3OkmfB6GpVCmzpeDTUYSoHWpDGTeml92tUMkU+5/hRGYXCfOiGkufho1ztTS4r5Ughi5yuSJlVbM/UUUz3eLCu0kNqylchVGshvUybqtoila2TLDBPXQZRMhfJQFc5ydXz8PA/Af8KvAMAHHNNZjmAB3gYPLIDRnGzPmtmowAl6z8JgMPtABw/BGAvexgAWMBzgzsF4GB2pMhvqcsB7P9Nkv2NAfiUxveXwDPmHC6AUxbu3udRd5FlBVvr3tWazD8WwJ6Y1SJIohRtr1hmfGX6KEwDONpq6GqN+QnKmb738aTsU59sQ3KgNxo8mPFM9v4qF/qWOiPmOink1XxgiUUBXHBpFBzPGAHP7KRlLbd6+CQ6hQmQilrkjnTmdsDe4g0N7iwqQG8NWoERxTfAN0wq77Mib2YniEYS9qU9e7B6Jm+e68waJEpyxpWJdK1uCIXvBOByAsCt4Q2mYqYA3I5+X+QADqZ9bgBwYRuhlLx7zCInWhP0OXAJfAe85u6kdMxT4DPgAWVyzZltqUn8KYuk31Ge9RTxQwAu8puPu55I1VHFCMDSQWvOeLu2p4vTAHYmW3q2MYs4Y1Vp9377y/xGwKKFa/u9cjkt8D2lZt/mgs0thymNUfGklZIGa0Y/eM9yvId0o5csmTm0kb3yO1XKKMZqy3CvMCzKz+jZ/Ckslmxt8BLVJOxXebkZzN8459glLUgyoI+YMVrY1aLtbclFkGiI2tBsALAidM9GqlT5nIcBdns+S/peMa31mPMMVDE8MLWwe+jysNTDnmCWMZoEDbCrKqQB+RWo5t0c64KlYdczdoOi4a31gCZhvwK+sVbYNXAf+BVP/DllMWAE9oHnwBdMMq1ZsdXZmgebJzku0oi5pnHgKgKUUEWDbGcB3pqN+ycs3uhzNHXm3wo7acaiHOiKikcZkpqaPn3c+/BX4hXNRGpNO1rnfSbQgsXqM+bKtxbVRWOsYDc9s/so8zYvOdAzm+BR2TbLEDTGjPa2sjBruwcUTDyNAVyOmmRWIyGLjMMSe/WGU1GSV6Qi+oJ6Ldq3RDbk+rEnwGT+vEoTRq9Mfd0SwLBpEgNf3JOrA9dQP48B3NsNeCwbc7Mi/dXfCGBPubcGWm1NmwcYAvAlc4LXwFPgK+BnQAmccapEByx5TFcKda45AaoZ3VJtqvZmAHtqxQsEkDNuuvM1B5mfs/VobUFCzRFzYwArJdpZ/JN+XtBfrWh4CuSsjnr7xHutc2a0MrtemDuS7PA23+aSpsmfFoTuQd6VVZNM2LNxJ4pTe9YnDtzByHdp/HXJSX4H/HcM4I1Jm1Ty2uLsmvfckdQ8YZos8DczkgkFxwwV1ngbchmVWy/WuecjtAwellYtU0470D8VgFvzX51OngJwZ3+V/+cBjMjsYLc6BeDS8K+VUaJN/1UtcgGsgO+AFUufT4AD4OfAJ0Ck+W3odj0DPgMOmcS5YsjYmfDUNudkDGCMnhG0KNHECbn3LGWkdqcTnr6gngxFkjcAeGuDIXrLohRkZd+3aFUrI24CAzoAFYNczb8Cy3zSaTM187R75IlXI5O/YJu1jqmR17JiSYY86eSOr3O/XKn2JTezoYqO/CCPSpTNOyRPXOdrX+fZHZAf2VgnRUkAtUZpB356cqbP2Mom0r/nTJ3e3DVpZukhL/ZVcLfkkD4ZuKmvaKO60t2mofb7nAUqT2DBYoaBWdS3o0oXV9m8gkF/PUwZuGi7evaSrpCDOBhwB/F4NI/OXXwlCk6AF1zh9N4nwM+BY9a7X9G9fgT8DHjGoLg1S+orLA5h4HuUJhXSMX7/IV8Kp5xEqq7Jkb8B3pDtUcJsSReitUC4p8XQV2mWZG6huqq0ImwOj1yKCthnEa0aKuVrJjm7B8zoLizYgHklWpuO9Z6tXZ3TFkc0NHoAjeOuzbgXJnaw7Qz5upcWbqZ3HVvNtFOGsxzAcRrAPal7pwFSIWUHHAIXzKDNzOFeEMnlCMDYBeCG3rNciM4s4+0BvJcDGB8CcPcjACyNKedyYOj7GwGMXQBubWf139LqOt7lAI7AY+AXwD0D8CVwSAA/BTpmg73sx7VP2PUtt94BXNhftbPyql3vKNWcetVeAW+B01xrLNlRMAawdGJnwW6qFNIZanLnAszBVQmEQA8OcbvOd7FkY0Eytsl+vqTeqi0tsuRuVeavJGvvtY26rEDuWYnIkpqKcYxktOdlF8aAJt/9mBWUHoUXBnVFOQldG2PMSl6tyan3JKmp0OeY4JFka6Rlb6GFA1gPJeHWAs6oXxWBTH1NAXh+RwAjr+wZXDyOAOwGx4MEGJ71gsLQOAawg2eQMQk5gEXMFCyD2wKP+MaHwOfAEWt7O55H9QD4GfCEUyTGFtgBrKXwB5HGF0enBVSXmbvXA8dhS9RszV8rTDPOSRGPAewGqTR3uLcJTT/4ONUlq5AHYw8BzBiEV9yTe8BXwDPKxWNOlzuyErUt1zvpCpngyuJc1VX5nIr0giNqP9gqzqmFlGutTI8JuDUpg7QbB5Y3ntOtKfizRsYnhfaQ4YnGAChDoyChtILv74EDNjUmZ/0+840ptJmz3hLWT7axQZ1a5MAI6IItzUJAxzsMvILKizTVOFV4/g11j6a5XJHKEBEp4ZXXgTx8cyPbmYnpcy3rXtCWt+GuF2xb5Rlr08G1bWzO74pt9y33rrXytCvgLfANcxfvgD3gNzSy4Gs2wBfAb4FnbAyRP7O2J3LqrR/9RgCSyq8IGvX2ba1JvqH6F33e8CCmd/m42xXftaF358IcmJTVwDe58jPzT2rmSlOIixMD8MxUROAw4w2wzwk4B5wFeAlccgxkzQNCOzsxrrDTzVxLq3R9P3fn9e3VtMFC9zL3O6WF6hzAWyqXDU1za8esOEsS7XQZEL2Vec+SwkSQ79OiremrnXNqfSrSuwKe2CiSGQfbVUx5tHlevifaVViS/L+DvPRCvFhL96alZi5IMp4Av7OUbyBNHiyTIBcrmrkJI8GVDW0NwBgBuLX6ihm3Xq4n8ulF0RTlwmoV1HKjPq6Ct12zX+iKhMcZ8I9ADzwCVsB94K+AB5zseM033qeNGQB4YwD2rifdQxitQ2foEoDnlsf0IcUqJdpSH70jgC+5WSuSqrX12vVm6zsCODBKBjddQiIXKC073lBAvYmqZ5CXPumAw7E3tA9pdR7Q5iQLdmyF4YWVMhfmr5Q2p1rqUKwkLDZXUFVRe23NJ3Nfp2c5bM1y5PT2faqJyqjZ0iZbb4mEyI6E0tyQdPEFcGnABvPyX/NU85oj4lfAMxr5K2rlJd+iAgkRz0mb7NF7ToZUY0HVQORRUcPIWyUTYJb6b6k65ZdvzVo2BuAu9ykV3/tN9iMLXOQA7u2uNP2r4F11zIgVhgTVGUdzKCoCWDfTc9mvmbtVPvEtX/MGuAa+AJ7wU1S88SnwBfCQ7UgdtUlPHNa52mpyZ0EAHjiSAxUfGfko53DB/dKAvAvO3GgY4KUUpHLYM1OpqvY9IIBntl8qQL6g8U+qpK4uaLZmVmIh3xR2U2s+pfJRD4FnjHNVsqnIpaIaUdRTGnxhgNZy9vZAipi0zE5aiSLZ5gRKtF1yBy7ksjP+UhVBMTI6aV7LEVdUA8E6Zh2Tf5+U2d+azVUer7BAsjUtKubV84dOBmk1PLF8QKuafKETY69VbtGZYtdFYE68LitlqZxtzL9ljsd1C15jrS9pa2epitxNhO14NEUezNOQy5j6RP4BeA08YiT4CHgCFMA5sAJeAz3wGfCXwKEFcs49hV1bP/WnYOvT21P0uRC2dM218humfy85g/6Cj9bTUYlkSxS3SDVe5k6sJEf8rHof32cKL+lfzyzLU5EJVg6zs7htxf6WY+AJ0X5tIph2qLI983WpzYnxPR4AuJgAsKirmwE8I96CAXhQe+RfunnkAE668YjJiDqPeM4YgSQ+5T7wdxYz+QCdPgeJnrfYBWDhTQyOlqhhfmrNzrkzAliuS2uUWTUB4GoCwPEnAnDIn0KMTLSXYReAYZOJlFVZAX8PvALu0fV8QuNxyQrSHvj8pwOwZx711zACsBstFW+oGVkADvQBoh0zEkx9t9TXUwCeWQWIMA/QO9wa3kQxOf2mGvaWS7ZgrwdI1yiF3Zu3hPz5C3PnPbsmO+k0iJbJAeyc3w0AFkU2AHBhIPGvOIoUQXewZAjhQVLL8oCOILwAHgK/sFIQ3X/FsnLXQQMAhxzAXhAsWQFPcNzShboGzgngYFB093cngOc/EYDDBID16dFcrTJ/2U4AN3lLpWLK/wa85AEx4FEcczJXCcCJv9oJ4LgLpf00gGfmKXj+aADgLS1qRzCvbRa1ABytpnWbt6r0ZjluAPAeeU5910BfvWUJwYJ1jCAT5gVEIqEueY97wBHwmFY72mJ39uFKt3r8W/Atg7yCiwzy3wjirn9kshXBlbzhfS7wxjTHwOILuK4e9Erp2wXwCGjY6pzQ+Y5BRWtTDb4D/s5ywoW1Krj37DbLEw+tUZseLDuwDlhunqiT18A58CQPdaUDQj4IpTcSrchvYyeHpf+6kycqQ+9SUd7grzC1XZpClY5URVKba6mtpQkb9uH9d3bnA3gK/Mz6i94BF8Cnlh65NmB5hOYmFfyrS4X0emUEYjBThpyDd/z1nOVwybaFCxuTJwWmJBlyx0wpGmlfWMpKisRNYgDwLgewHK8lfVAlfdIzp4mSZ2SCDu2Y1WgiIsx0uShoLfZM8WqbHa7IYeYAbm8B4IM8kzwF4LGDPh/t6JJdLmtSLXPgHYnGrTVWvuKnK4vuEUVvu45cZFur/W1NfbiWdgK14domAD+3WjF5Y5EpHgdwl5vaMYDjnxnAhQE4ms/mwVJr8xU6Unt/T1m9Bp4BvwQeA4UdbX9LAIfbAbieAHCwisfITFBjqa5zzvN9x94FLUVljKRCtc5U6g0Aru0FJW+sB/CGUe/Caj5gobAeXjm5U+CKmXQvrBatKEe24FHC+ir42YcjSxvoGkZ7zoEn1+UWLBK08g4F4KPcyAz2IOSgKnOKTDcJ2sOj3CEDR46IC0rNI2+A31qs0+bC2tvF5bPCKGE1KPmCBC5pR4ei5NSUigD+zFjSziQPeQ36IP6+E4AxAWDcCOBov9wJYHkEpelodcMoNXMN/BeOUShZi/CYHucb4Ap4DvxmGsCStD63xne1wAVZEFXmNMxhdYxnztj5e2ZMduDNS5IHAAbzNjKEg7cM7HAFVNU5cxUeiifvNiUzDpkjmTGKPgE6FkDvs5TZs5Q+7sAdOK/WQB4ZCVKVyWBr5TkD+lZpdydHZtb0H/N5rzAcj73nzl7sRbrpN3vAQ8abe9ZAsrZE5Yq2YM15PLIsckhEUXWmolpLbveGeFmuYBoLwAOS4mDP+hz41Mz0wBVWLZh76uMI123lwAuKpgykgwt7cWe+RBg5D3Bxs3KgYMFga1q/t36kaIf1JBoo2Y0vgV9xBa6AFfAA+C3wKf8Lsjq9wS4aAoI9iG93Yc+o3+h5tSYdXSBZyY5s9CVwxhJ5scNaE1G3a/7sBXougdHeorutDDvvl/rKCE5tf8s4L5njGbsBRHWV9u+cLng0ZSJ9ooZyT1UPXFg3iHokbedOAIcPARi5z9fn6vQGAAfTyZE+xgMgkitRMv2aH5QAXHGG2pKdTl2OvZj3GiK3gHpBn6MXBpJA6KZnvOSovk9tAZ32Cv8+AFwagAds7tbCR3lErVVcJFS8YxXiGfAQ+BT4LfsAUjHC/dsB2MGJnOC5JYCVkGnsDmX8BgBeka5w0ao4JyMQja2t8xSAC5sLV5g7DrfAM+5B2g/12xc2APLU4ncPLucGhtY+fpHfnGfqoy3KwEtucsKqs60Ft+dmABemjwrDUjQAa3cbg6tUsm4pdV011gHdc6xRzwTHOfsbwEdem8RLvnsTBQHYsefF+4W9Rt8+nuKSVR/PDUUumrg7gOXIDjhX13oDis+j6mCbEu1l0ollrlUdwJ2ZXz1jet7XwCnQM+H9GPg1AXzNkQp/AXxK2IwBrIDbyagitwS3AXBtIirhkRMxAPA14QoTvIpjb2Ex8QcBLEkumb4sgbKqKd1rW0gxREuyhgtjEDtqvOfAfcbOkgWRqYEMqN+Im7aYY7c1vKqMpaWi037WFrBXNuROERZsOVuTsj7HtGxENIUU8qx1oJ7Y5ziRBX+zZOX8W+A1EJkteAc8YNGtvEDZl878aTevwSbotdbc5ihJoX3NF1wAL4EAPGPZjuunaKZffnlj8Z2IDi0FcjmCwXdn4lpqyT9UX6qqC7aqlU1Q7G0amNAg/bS1hUrdv2nNT4GvgE+B+xxa1wHPga+Ar4Ala/FUDl4ziPZQyiXQ0amvYL5EYevZW/6/oSrS2NKGFbwXLHeOI+dW169MJbjaE82ipfbdcdPxvoRjzqBE9QbRXPKlHWsix3EF3APuAQ9ZGTzPSU2nM9o8MtNizezu3VFWJm0A4CYH8IJ3PgVgBaClAbi0R4PZlN4AXBptF3jNfe6c+gWXpBvf8ONSf8MJB1Wq2iYaJxVzmJX2swO4yBGF/OdI9fEaqIDnwH4+QxAEgzK0YwDDruYiEicA7J9+GwDDrhDsu7S7Uj+HmMFomk6O3Ar4llmLU2DOY8s0veA58CvgS9rcKQC7Az0IiMcAjjmAwXXYEMDqE13bzPk1izc2xnC4PvVYNpgvpIXaTABYBqzj5OL3qaXKYNbZTiRBn9P+zMwNXxG9x1Y8XeYQFXKWdh+wFfGgp7PkcaQ74NlqFdEW5NNq8mYDALvEt6wfjSbNMI/cnzSt5sYA7NYjdSrAduUTXueSaYJUi3wO3Ce11ZqLiXwXBeB+AsAiDJBfIZWsLDlQoAaeWWWYnGAPTu4EYEwAuLDX3wbArqwHfNFOACf/orGOLYWn6VyN1Cr6GvicRx+tOGDyOfAL4BcAPgRgPYVWfsoCw0LPMYDXIwC3TCmmHPDAAve2ielzq5E2Dzda4DVLClpjYorqkQlIwyeDxQU1U5r7FggDOALus3+usqqw2sK6BF8nXCWSDX+5tXr+aKXgHtAF6/Xds+NUytwRjNSNF2SX6twSleZSF7aHMDKitbR7yRquOecZbun6HPAI7gVFMjnTr4BPmd9ujWeNOXSiVSR5/rOx1jp3m5THXzFJ+I5szlMuYDT9pw3VQSReVzOuhILdA3LlIWvoUbDcSoXq7nQ6KeEJGEdwZ3VSrQmDe/xbBrkv7LYPrSkuVUX/FvgFVaa4/y2pekmduz3+3wGnCXuWYNhtCdbSnlR02xpYAafAG+CUJrKxox5qW41gwx40+6swTYOROqxZc1HZRkcAT+3+OiboSuZECvvgGYc+JqE/BO6zoL7Kq8I8vpQnNNAqMbcLcpevRwAu7gLgQACvyI6X5gJ6beQHASyKPdIED2iLPWaLwMrSN8Ar4Lnl8YIt95gDKgwYahBp+VADkh5UTwum1q9Yyy/152vbGSRuD2BxbZKh3rTeGMBVHqXIbylzklHPKwWh/JEMk6v1lvExgCvgO+vDSbXmyU99BTwAvgK+BAJwdncAxwkAx1sAGPzNmgB+ZwDe8BmRVxQXBHBnHoiWaArAntVvPDP7yP4sHkklufrUmjxVyQ1LAF6aO+ULEUeLMrA/mxFbtWEcOcgWpUvtW0f9nvVYVBh+NSxem5kpUxfdTkdTH1SYNZPrEZn97enqqfQimMo4JYCfEfYa2dXkmwHTJrofpUVbq6B3BiPSwUoDTJKUPOE5BO7m6PY61l7fHsDaIOTiO2WBnaJ2qyWTUpjk6YN868XaDXjU9FmpQ/EVE5o1Zw6fAdfAS+A+8HPgC3q3HwRwzGsOwh0B3JqLGknnCsAnOYBbUrglszStAbihIy7hLM1oIfdoWotRf/Bcqk+5kJvcgW54BpmaeSqam4KmTdVcjXkGJWXHrW1jAW/6zVtz8joD65bbrvTykpUklfU4SgAbu0JLF/w18JIn5Ii08u2S0y9mEWb3lbKbUeo1dWDDgtITOjSBv/kT0AKvgCva/cqCd9erkmgXhGg4E2Tde+6phwoG2kesQXcaSMpvQ0DA7E7JAGDnvFrfoGB2XAhzl2DgzFS5/ZXMBHsKTxxuLUnuBT/OSKQHOQfe8ZefAo+BLfAGCMBD4LfAl8Cc4WdNjrWxWE4r6c5AMPLBjZ3wKk0WTUT7fNEil/oMuALesNqkM2Vf2qxXgbK24EGWRPY62meV5KBqjnKWbMwBfG7kWQKwmJQ1AawKSZ3/qXSSvEktkD82RkZWC7EyP6mx1el3AXh+dwC/Aj4HPuezwAxEYZ5xZyLV2y2lFZzxxuR+KL/zjqhWLPsNsGI5n5xvSWdrelhSVZqjshPAjmFlo0oWKtxnGeHG7rnnx6nk9U4A7icAHCcAHCYAXOYAVjrJmY/NKMOyofbXfm1Yjpi245fAl0ANvAYAHANfAZ8ABddk79YAVvy6E8CeG3EAh3zROprRk2kAK5BwfaFaZ+VJbgZwbdRtVlz4qaVsOivyKqjshRZZ4IoCrfzxhsXQyFcBFlM2Fu7IAm8ZBAh+0o4lTVwaKPCQAF5aKRlyG+4Afgt8DnxBoYHRgYKE61G5LNGiyRmFINg8jS2DrUjf+shOJ0sA3rN0ic5k8qdTNNbZPTiARfQO4qHA41sb4AEL+Vf5IOFgfPPVHQGMCQD3EwCOEwB2/kBkVzA3YZuvDLhWclVEXaRcewEsgC+Bz4AAvAAAHAC/AJ4DIO0xuxHAMAw70ToGsHvPMbcu/tVy5PP5NIAlz61dXD3ptwRwSdytbKeq6oHFCxvjr3v6sumx5mSLFvnWDRLTHiy09H7knXtz9ipnTHWbqhWpOIj2kCbYTbxcvWv2W16QuH8FfEND+TzfjdYuUppPM2AKOqqr3gylZoepw29tU3mSOj2jFejJ/W3NILrT3JtQS9sLKMj1vEfr6SlOmDg5YDvDoF7c9SVMbINp0IGEDvivkIPY47LCuPmGvxF8K97toBhGPissptLTdYSvkFSwyuzaThX5EnjIVd0Dfg38J+CAw7JqTmyPdN6khlt7XklRaerTv5wHcDZwcPMqmxTZvMnHbYkHKOw60mcDqtfTZs6Oq+pyxnnqchtKsD2u5WdvLXO1tY+JVssRjLt1n8D1mGiIU45B0fW1cxJZJXgrElVjAC9NDm4D4FQR+umNABZunVzrcweut3vTsRItcJ9aqaAr0lIJr9n5MaOegm0qTOuFfMMGANZXYX52GtlzDgB4DhxyfJt7us7vRruIJKm9O4AFqgGA2wkAFzmAPejsDQPaDpXu+EeUwAXLU5ME/ooHL6S5yF8Bfwcs6Q6FuwA43AjgaMuyE8BJc23JXrXE8NaUfmG7KT1YmNm4PYC1IC6WAHuhO9MoIqt7cyWDzehQZDPgfwYUZrrUt3zITR4HK57z3HPgZNqaSaulAbi08KXjDUwBGDxZ+AYAwzTiGMC+0AWlQb5Ob7r2iKJwxdkLKizZ2sMqVnZ8FvbXMYAFocBXpjkCF0AAPgX2WU2rOHsQAevxy5EE7ARwnADwlAXW1MIpCxxtDd2Bdgsc+BuX/uTUnBMeKVb5EvgEALACFsAvgL8FFpwe3N8I4JgDuM+V+C0B7EmcaNlf/bDKI1SPl0TkO53sK9BNA9iVDvTGasn3LekBXNu8R9VVtmSOFAf1VIMd06GBCqRkLVkqbHgHnFiUWtAPKK0gRIWRe5x8V7BDUaosmlZouGbvgBccS/g95/59DRwAv6LSPmPYOAcuuGDKWkf7GYRCzeReJPfcsfSpNn14TcbkPhCBV0xi1xbcVcCV8QNSJAnZe3zGNRfngHn19LIF4ZgyKOnMgdfAM+AJd+rM8CrrtqE/ugSOmLG4zo+h6HI2B7Tm0sElVezSmBB3G2oDwdyES5ZXOsNJ9A15n46Ynpl6UADWAa+B/8aVV5FDGuH4H4C/YTYAvI6w6/OFo+l+fYq2wwNhVZyVOeY6u0jHv67pHqxtwFxNWCuIUghc2TRUxZBLq1+/sqWraNZqtrSli6y5gAlHPzxSRR5+TY4mMJaSpQjkCARgiYtWRJFfCuPPOY5Afc8Fa6Y14iOwJHJBmm0M4MqMlAP4LfCCRyV/TyLwa+Ae8FfM3J7ybmveQ2kBbrSkfDQ12JMQ3We+CRSLxN6vmVG64hK9BhrgEviE/mvBU2wrGw1TmBFvKfeKW8CnTrIyp0DMOIPiBHgJPAPuW5XSgGpRCUQ3AeBqAsCtXcqtwDwHcMmXVaZbZyMAi8nS2s7Nb5E96pmp3lAg1T50DfwDV+mBHX9xBfwl8NckE2Gl/DsBPAatpFqPOcgMR7KZnsP3rIUDeAuc0xcq8/yz17f0PGvgiHt3wIZC4UhVzY2tdjQXaOEkrNhl6YaVpZWle/w4EnGxrdFThzQjkez1FZVKouVENoOtkbXx2TX7Ie5NAHjPzIID+A/AS+CEp86k8smvOeh7SWMYmEj7ofqM9ly+XcjVWUFWap+1HzK8gSV7ay7LAnhK+38BPLWoYAac8VS8jtepaWquObhHgKl4JErBFzfUmxWdxRPgCfmrgs1qrRkNURrtBIB7cyu8I2Y9AeDZaC6hQCuaeWEAjuaAOIBhbM8qLxFuubCVVZWdA/+NiuyImcRkHhKAwSPWgx3iMwZwtP11SDub5yOiRQm3pnkDtU9HpXPBiuTAELGmHukpe7Lbwna64IX5ejAvrLIt6Pj2fcJtTTgEIFYt3zqgZj0z1vG/reX35G1EGojOzPcFP0ddmpLlBR1lTYkELdqMBRvy3rSxyvdsmSJ6A1wC3wOXDD1esAr59+xIKelLFLS/cjlgSqy30qRgolewlFRUPox5DZT9QKhtucBXXOwtK6paO56wG61esDLZlqCUS6CWirTPF1SBiiJb06baUDn6tfmFKjhW0VZhbEZn1mcAYtgvS+MotnlgoLUt8ovAvJ3GKsKiWX+lI7a0A2sq/pZHmB0S7ukUFZESok2DbTdyvPqjSbalb6TABOjO6K1gqw36pStOEVD51QUhuKXqGjRryj6s7ZdyA1wvas3BNS/s9kQfZSSCA7ifAHBvgh5MBDsrS28IKqUAVAk648g8md2Sf5oT3gKwPPXWJGMA4BckfVNB3RvgDfB74FcEcG87qrqrkD81pgEMw1JBPIRcGhKudLTShjWcPs2py90g5BFItJvc0p6K5i8ZbHQTAJaaGwO4nwDw4GAR1/Z3AvDmJwKwFxY7v/vK2M8lT5nZTgC4+1gA64adJ+5MzQVbvZ0APmHj/tZ83542wwFc2yr5zSN33MeJiJ6h89bMevblAO52AXjAADjOtyw+vrZj2CpgQzCD8a56ih3ANQF8LwdwkS/cGMD/bPmpV8AZ8Bb4PfDViHLpjRbwPGuwx3f0iu3fmGwFiyU8O1Byfa94SNLWEgrzXEW6cu1pnBUnbTk/CURUzQwocgBHq2AJEwDuJgAsi1dZFNuZN3xLADcTAO4nANxNADia+Gr0Wwu8pk+3YUox3f9dAYwbASzJF3gKaoreALydBvA5cApcMGhxMdsJYGcdpDuKaQC7gexIb9TVJa8EsxeDVRfpW9AnqHPBBzF0DpyxQrcE7rHgXCskC7u0bIo+VOYPVNQgmNTmcAm8Bl6Qdk2tCkc8zOWaBbJ7HJm8sY8QAqTzS/435vZXnkZhNFPgTc54HJWmdy6ojV5xHSqzNSWVh4a9yqC751ruqrWD/SmZ5jek+bx3a2NlaHqL2rN1Ha3AjBzwhkFCRaJKDokCMeXDKhOPkBvZIv9NlUtfb05CawiW59pbGHDNF7wjPQSueQowngJ/BTw0qigaPhwEcotdQ4d8bV0zqSJM96nAqTfPuGO77wWd5hVvO1LDBZtYBeMK0xqu7MZirld6w73UzIy4d00DsDgtLXd7CwAHhpKDDdvQcTzndwXcAw4J4CIHcGnGV/x8kSuF1tb0egLASS0fA3uMnL4DXgJHNvM82GZIGXo+DdYzMwBwZwBOq6SwJhgHpwzIKT0EmZJgKrLMZSuaSap5Y6rSdCGrKaxppluyRI1FwM0EgOMEgAMBrAMifloADxLdAwBvc1ZI8iYzl5blDDjlyXQF+zjXwKfA3xDAbe6DTgF45036u4LRTNFusjclfgOAr+y00rALwKDwaJc9lo12M14uovv0ApiOdxhgFfcgSgMjtp0ALoxAhaXarzkV4S1wShfwAXCfhyJEep+aD+9EbMwTZrBYJK3p6wkAJ2r2viHtBU/cOGAbUbD0M8xrKfiksj9jALf0gGsbzz43+VBJSVriVFJyknsTS6YVFWPpTx3DD9Df3TIR6xWIc2rJBjglS+0NHN0dLXBFALd2jI6DdgDg4o4AHvh/ve1mb96zy6gKZsSRX9El7SwDuAKeAv+BAG5uB2DniBzAbjAl9jEv+y1sbacAfGmTNxzAXW4OSxrP1iIHgVytKvpXgY1+6cBsqlMrdRu0+umrM4teWLwmnRB5RyrnvuRJ2k+YY2i5EqX925sN0oZXJt1SRB37bN8C3wNvgQ5YAM+AezRGSVWccXPmpjY8pQFb2nq0tC5ryP08sRiVlUTPmGFPh1G0BHHK2WhLFebLn47mfrTc58qoPZGXDXGzoT36FFgy1deZWAUjqpX0riwELu0jGsqg5v0Eu05tqrowf8kpS+EDpsnk2Aw4VJhWdk1TmL7sLfjtgJfAK+CSgwtTIdUB8NfsOxLVhZHpbw2pjqFgcIk5iHv7dmMazRPb8Cav7LSya+sFBJ+9tGpSfblW7nNkS88JuLInPR3XuflUqf7+vTKf8c2qTr4BwJGiIL9QNySZuKT5GwDYgzytXbTtxASAiw8BuONgrnNyTMv8g3yxnKqTfh4AOJq0jQFccRFqhsI1Hc2YT4PW5B1fT5gYiVrwtijPPihz1xDADwlg9YVoLENhirrn4o8BPLsjgENOivfmotwJwP3IVdDCSooiBSZ1c1/S35iR8PgNAaz6W4837gRgTABYB/P5rrXGAV/RaV7zEAa3PaL2BX4V1qetvMo/zom/aDJfmucg6romZCIYqtb0Hsb++BjAcgtESKutLTl/yas4AuoRgMF7qkxldqbUmwkAtxMA/gR4wLlTT4F7wAUZtoWpvcFWBZMzR3WwDxWRuTXA9ybWEvqaUJnz6OZzzvhTCOUMq1OhsOtIOfa2/XpBivYSgD/LAdxb8xnMAitwHwP4iAB2A1JMAxi5BYYJ2U4AhwkACzlO1EipybCnYPcd8A64JG2Y5P4x8DsCuL01gD0UdgC7tHcjAOvi0jtTAG4nALw2ptkB3NlqOJT8fhQJyHtN11xqslq1ZlgRrAA+mGHVJ+gRG5Nu988Dr720aVGdXSfaChW2fgOdozq6znY10JalrNoBD+h9BhyyfCyVhbwBfg48psGSQNUmWQXJGkminHvkmlkVpIoxShqInpcNxs13xs6UNBkiv3uLH2A7s83dqWj2t2WsFGl/Zxw1vbJqpiZHj6cr5py5pDLrmT1pCSwohkpB6I0zK9fxlExlT+S0qMPXKV7/kvlu7JdS4SqjPwVeAF8z95uC4kfA74CvzHuWd6SYZJDmDCN1MljnLv9urOhAUup5YHnPaj1a280MAv96pLH6POxEvmJ9jn7nTMpcm763v2uaD+dWbgCwMNnmAC7oQS6ZTgq53+CaZJAZk21KX9tdAK4nAPyUAO6BfWAJnAD/BDwxvMk5DrnG82FTYQLA7tZLf0ZjvlTnWjIaXnFVvX4/mDc/kO/eiA8Y1yaEtLZn5zzYpbQp6NufDsDrfwsAhxzASS0mAH8DNKQWSs7N+ZWVWXo04nc4ALC7QJ5XKg26vRkY8RbR/nQDgDcGXRfv2pDpRNvA0dXPEnjxjzBIq+BZGbf3ogbLTRc3Alghsi9ET/FNA1dXVvbY5esIWhLYZX3pW5PXLverdgL4CwPwIQH8S+CZeU6FiRds1epc7bm0aUGdWCtzIhmmHXpmgjc2EKFmEYtvbbRnL+iI9/k2dwbghn5w+hKAC+OPN6ZP7wTgwm57zfhnJ4DDHQEcJwAs57XPsdfZgifv44KphsQ0puLsL4BfA78kh+MA9lUdA7jeBWD3mzv+HC0gEVusF9wA4NbQOACwCAOPtseRKhguR1vJnnuXLqXCxAZoK/m1Ei7J48BSwG7Ny2eczqiYZ6+MH2noprSmCQsrCetsVwu6NSXXQz2LgaNsC+AesA8csmIr3dUBsGQ5TMV7mBmH7ftZMTMES4HK1iiKaUz7RfoqkftW5L2vc+AZk8Du8bQmCLLgcSQ4+m9ndXByinp2O98z+rmhqhiE9mX+LS3bGdoaftABD3YQpR0ZUGnRllQt4uySNK0tIHHLO1CHA95K5WnB7seVZQecAK/YHbPhVKTfAH8DHOad5DJ50bJlA1cKdj8DAPWWS+/y6p3K0CyC3Adu6L/XuScZRpmWwjY9jFA7MBq+iVo9CWRl/gAcwCAIS6tGC7tUaD8CsOYkHPGmNxMADgZgxdyDvR8DuKU2S90XxwTwfQK4BI7Zm3XJoup+VISq9ZX3D3uWQXgkni+a3hGN1eThb2BzyGt6ILXxXPKNYPsn32NAeDs/2BI2YPPcPRacbbnyNwA4TAC4tJyAA7ibAPD8JwXwxpqUg6W9VGmTEPsdEIH7HC/2GfA74O9yACPfteqOAC4MwJ1pTO21tGp7I4A3+Xt1S+qb6WkMOltbjxtd8OQxek4Y9kMnVk58mHP+Xsk+tsCDQE0qKunp+/S9GmKpsYmswfpPPaKXVHUTAO6JXgAz4BEB/MSI+mNq6ws7ubg0tPh+F7mciUFSqBpNTzUs5SvsNXLdBJUe+BQ4YQZRKSHPl4m+U47WA6bCxAh2D+ktKwJ4L6++aqcBXEwAGDamQwBec2fHABadX1rKLLAB+fYABmmixuqFCnte6cpzDpu8D5wB3wKPga+Av2aQNuaLPgLAwQAsJesZnNaW4gYAr02eneeW9LrbFfIpZRKAzjSawzDasCS56S0QK4/IOnuT03UDEOsuPEhccdXn7FA4A3rgta1ZsGRVb/MnvZ1hL2fBA3vcS4ZjM5rg1Iy4zwVQldBnwF+SkA62yU1OZ8BsX2MyqM1vDfEth9PNyVtvzZXpbeGPaBNn1EYqPe2NNWu5Fd61NWOllYpLgxmCNGZkxQkBftKOx/hKEcmPAhehsAo4bajAuqTCc7Fq7Aqih+d55n9MLwxAoydteedrO8wv5po7XfMUeAmcccHfAQH4NfBb4LHtqXiSwkAjaiKafehyqXYDonvz18Doy44C0HI4es9hICvStd5MWRp7MAiZ/JrpESrDqK4w9d0RLwLOD+l+2CUGpsoBXJgmdwDrARZ0Gk6AJgcwDMCwUUIliyoFYBkRAbhiDcqcs6zVTVzmtQqfA39lAI4G4Mr8YI9IMA3gYLvVW/FksAEAEqZ0A4fG/0uGGlMckgBx+S3ZrjJHiHtyG7rmn5Bd0PpXBuM7ATjkMa6SVj8ewP7lINnsAjB4J1t+yinwDfCGpOR3wAz4HfCXPPlJNU8DQZ0C8MAWC8Duw/QGAYz0rFgqPdTWHqQ1wShyOfdyyi4309FEbspquo4Ts6bKgh8upNrZgVjvtMAiXrQoaR1r1k7OOVnsde4fK3jqbNXqHMAicIIBOLKR+5rKIgH4kBCq+K4E4DgB4MEaedmTf8l0l9zCYJRXzKuBpZtKKpdr+pcVSSE5yi5YnU3Mamk/FSco6CmoL17lABa1Vea+lwPYKUcHsMf3HR2cirM2/3wWOE4AuLCapwicAt8Dp9zf74AA/Ar4LfCIFxSAY34nOwEc8ruKZn5b0wjRlGykQmnYHrodpURWljuHPUtFi7I2T9qh6+l2x2DIdxN8FgXiG769A0KlZkUxnaVthWTZeX+vWtK/OrqrpB+2YlODIt8ZC4XnFjgEys6+VebXzBBEO4xsQdHuzTr3vNsZcyqpp1Clxr0ZvoqkSUG73+cssnS4M5pa7wErIQPt+f2Sk+mUX1mbZi7NUHbchA0P8Flw/uw+H0o1a4kqek0pW9HhLrmwXa4dS1N+nV1HavLaZGptKlMWXD6SO3yCe+QiLE08BvSfh/yKeT1s7EwNiNpP+34GvAVWQMmCvl8D/xvwud1GZV6KB0W9bbFvzUBiO8uBtIa8YM8rsG6sTVBVGaL/WwuTBmV6jemVkKd6BuyVgqXB7wu7Qsf6CJGPP+gN92NKu8QAwN4Z72zFjJoq3fo+9ZUDuDYAy2sJDBf2eerCTgDHCQDr2dIhL9sRgFXbtmUl59h2RJP4MYADzUfMtVhnBKGbgL28GqSz6Aomc505Q6rZSItzMMozB57SsubPlwweEoDXdwTw2mCzzn2enQBu7ghgTADYi70cwMHMUwu8A14DV8ABLcGvgP8bTxwU9+fkihb8TgDWgXryfdMtbfOk3obF4uWNAB740JXVphYGFrkBQpknfmO+horoanrwvTmHP1R5inKuRrSoAxhmn7VqHYsEejphYGLsrUnPgmcxRYsbSmZP9625dQzgli87yAFcEqhLk9Gjke9b0IHe2JNKtw3o9jGABTZfTecconkZ+1Zz3Nmehfz16ZoLKj7Qj1gAR3yZEmdgVqUxAM9/BICvuXoN85c3W+B2AsDzO1pgXdMxo50SU3sKvAPWwAETZ58D/xvwGeWtMyD9GAt8bU6tE/aqb4sM3K843ugGADteKjv3xMkVLYhC0N6kZWFpk96ksbACpx8S1ZVibMWJemFvJsODgpCLpBxu37E94BHP5VZ1xx5zFUk9nAIXFnEkc3bFrKnmg4vkkqbyft2KMalmxgE45IzOJZn30kBZ2o6pTGww/1iGsjZHf8tTSwqO8uysmkx8hBqPt6YPCgtqWlLRa46yBptS0tEKC+58zauBFUkzpuUiD2be49KJNKmpXRp6HT1nHu7R+MIMgQb2NKax5D5qVndDHk3ZrII8K6x2ueK+OBzX9D6vOGGoy721hp20W84R/YYh5AvgIfD/BP4jayljbsVqy9OokNArC2KeEfQ41C0dcj3U2jXlRDVEturOZwxyI33ICBzxoUDLo7oJaeUlV7g2++BFIx3Fu2I/W7KNqqovYAxONKPT278DAHe2KGMAi7W5z6npbycAvGZk4/4+WCoWDcCtDakobIiQAKxSwyseRFSRZJ3bZJOaxqvKn26WF61JH4qu9k4IGUSR0E4hRDtrdMYqysBP2RpvXTK/0NErSgv7CYPg1EGs4fkAzoFXDFROGbT0lIPZHQEsQW9Nv6zyeVwCcMkptAJwYaPFl7n/Jxuk1QY1cse0i0AomGkX0oK8BL7hTr0A9oH/B49cUBu9+zMCsISzM2PT28cNACyOXw5ntCt43J8+aMPekSs+iJRXx+Rpy1YetQwPgvXeZj8rgZB8UdmbaPBO17wkiBqCuZT2HQC4zVWUA3jGjZGBd5Z7QRgnR/nCjPkAwEkiL2yPA8WiJiDBQFMGWRj2AqOayN9wgkCw0kUJ6NI+q7FNjeY8FdzL0pDTUxdUlmTdWCBRmnysqINLywT3lDlwp1WFLMFNntZDlitG4NqOjwFHlTqAU5xwcCOAW8rHFQFcG2Oqog7Qm6yt3lMsL0YADsat7hM/hWGj5NsrMkWK3q6t5bSjha9s7FnPgcB7wAz4GjgC/u/AXwKBSt+Dk8JKjXVXHdVoQcUKCwMk3p51cn6pywEsX3bLnqNrZhULSzMvbX/nRmDLGOgjVJgoADe8PnIDEwmic7o8Mv59pZSmak8cl30Oa31+YcDdmWEqmWZY0LUFiaokDlvb3iWD35roF0cmiBR2D9GWv2UIkxb7HDgFToD7hkhtxcDxCrZ7lRlZPX403etxEyzjrS9VOcJkZ86tFlUHJv3FQajXv7PiJt/wpMPPgBNgjxquZGyrhIAiX/m7G4pSa/ZF3i1y/QTbcd/K9Jo9c5wC3YNUzH/KGXOgngv2cWJbPOko9t2d18ROXgD/AvwDdVXyx34JfAUc5fypJ8lBnHkBUm+iq2dp7X60a4XJVSTQJfCK3CtzpuVH1bxPv6BEq+Qbuxwvur0BbyDroZ2qjOgI+RMFWE3CAMDFBIAxAnBtv9d9lAxM5xMAVmpRdnlxI4BLu4dogGwtUdnyjIJ3wCcGYFgEU0wA2POEzmQNAKwYK9h1nOxTwiUagMHUlYg5hVNqtlgb7BUkRHvM9GhLc3Nr5fEZY4wB3E8AuLc7dwDHCQAvqFkGAL4GLoA9OgPRdgpGNowB7BRLoA7dA94A/wL8d+CEGdQa+JUBWOqyyB1fVz0OYPkDYwCHXBgcwM0EgPtpAOvGXLT05SRmeSOAS7MlwVzNYPv1Q/hxVwu8NgBrHcV7yBEpWfb+yQSAVxSvkpmjOQFc7gKwaifGCnVlWfgLDrN9OoJBZ08xBnBh37BAf5u7a7CGFN8bGCu5x7fPGHZf5lMaZH+2dJHXeehcUytFE/oT4IQnMKmfrDXs7QRwMwFgL/aVFhCA5RT2/KtG5g4AnLipfeA4r8FQ6qS3BdcP3SiFlD7iEDgH/gj8HjgDFuxH+RnwSwI40KsqTKaFhypXrL1tjQSmyYE9eIFethPAcQLAYjIHuchg18ctAOw46k0yQ65i3ofp1Z7dUWOL7SIZcrXmYitXYG4vLrkVIGu7ttIFX9eKp/TsWzwrGVck4syIVlQliCrFbDgYsKcmGFDwsDhajCP4g9cQeXrJ07kyKzG/N21CY67hjFGEkmEVrynuPNoEa/CQilluIJLfdsIT2bbAMbAE9hg1B4vZRRi15kN7vi3kKrkzzQSzxTCLFmn001vS5u4DW9Y69qYvU/rwYb4gm/zMkZXdlUo6U8nACfA18Jas2RvgAfAfgV+TK1A1jvbRDSvyrelyfHemyN3k6b8yzQowlCXqmYZU5cLMomNJS2WOQeB4p8KMQJKlM7tVz10XxiYFro9XBMH+GgEc3hHA+jB/+D7Pp5csJAJrbqYAXBuAZ+byC8ADly6OANybmDY8TDvQhIkz6u2jdwIYeeVZnwO4NdFXVC0piQZgkZEd07mwO3cISVvVPL/iIQFc2y6I4DgDTmm1BeD1hwC8nQDwQPo9Ar4TgBPeTiwlm1ZerFZrx5at2MSwNQ2eJrdES6j9iXN4F8Ap8BD4j8BvGPEroHIGQrreHeXWAq0iB7AbpJAvRXMXALc5vVVYKS8Iv2hKJ44s/gDA8qAknzItXQ7g9yA6+FgAOx3Uc7dmlKSSyLyeALAeO/FXewTwLAewE+HINZnKABpq9A2H8hZ505u8wIH3PACwuzLC2Mx83zInsvQvzFtSxZKqKWAWWNqkNX1RkaHaY5eGeJVgG38KnBI2hwTwNT+9nABwPwFg3UxjBrk0AGvl440APge+Ac4tEQHLVYXcF0j5kZURmGorSycsgsfTnTPf+QI4BP4DT8bpjCbxnYI9hSv6Aecpx32QMII9dWvxxgcB3O0CMGwHlyb53sgyBeCK+17wVgN/7xRCWuqyqnepXHeUQ26YLk3Si1wHFqZbCpNfr0Nw/dbby5R7WJm2cfvuuHHL0loHdsOC43ucgTl4kMJssRviYIpOG+4KUIrHQ7kux4Fw3DDk39DcVMYZRasAUXHzllHtMb1qJScC81UXwAp4buWmugevaelpozeWkolWV6VugiLfbsk4TORFqajUruQqpb17B/wz8AZ4AnwGPKULIS9FZZOJq1blnfgBETSpRvQl8NYU8Bb4BfAfgHtWZ+x6VwSfyh2jyUkcfQ9UtUuIgl+9tzMjrrRTQxnWuxR3V4Y/4awzDaFgtrYo23ehNxwVppWDbUdhRgl3BfCVmYYxgD10r22K+BjAnQnBzG5ofTsAb40DkjO9JoCPWQgxfhBMAHiwox4BawUcrr3tN+xdMPRWLL2rRqSvtjmSZ00J+kMiUwVMhVW8bAndfTJ6ncnNxwG4zwEsi3BLAJ8CfwBOgOfAZ8BjFsp6EemW63BueWDVc6poZGMzggvWyrbAL4G/JYAFXS89EmLdYWjMkno0Mth0r2OUXfkIAI/tb2Gebpff6g0Ahl1E0UvIrYWj9c4AvraPQU5r+8uCVYvuBPDaagwlHD2LH8cAdoejtZqexqzxhmXmj4F7dviYMFZOW2AJ62CZ3KeQjwULp5zjVLC45TbMWThbkT2T61FRyiOZt0+BIwMwTBt2tMBPyC7M7R7qaQCXHwKwax/ntcYEXW82UBnNM+BfgXPgO+Az4D6PlStMQTRso74wpwnmnZWcP3jK0lpNNLgCvgJ+x3PLx66fm01nZwUPcD2jwdWDJSmC3sx4d0cAS9FXuRkTjB0yNwC4swC652Y5o6sEQg/EShkU1Qy4WnPJTb95kFM20nubPB5cMyG0Rz5LtVRypzbkhiTXSoqOCawuJyYaYyKUqyhJhC052113rhVydlBPirwQ1Gl991qkVIKpXE+0RNZjbGxjL8hMlVa9qpCnYwlschvu24DUaJt/BbwFIvAz4B4r3Tbc7UWOPKWOemv3UgjWGB0B27JolEKf73JBjqnmeQiKEJPifM2hKyk0PuKGbslbXTOxt7Z6wso8oi2DhBO2NyeTnXr3v+Q+1nRVxyLR0uwGM/0iImPuvw7Q72pA/+3ySr2WPusEf2IAAIAASURBVFXMx/BJk5U84to9YA3oGARFMwvG3WA2FlRU5pH3JrSlvf4HuqvIs2fdBIDvTwB4a3jrqGFuBnBrDKWWrJ0AcJvv1jYHsPy5gvnkp3aQisd2UwD2L1deA69r4J94yNiTdW52AXjfbJ9cGglTwlvKoxZGkchEpvARwGeMDXrOMyhtuPcYwIsJAMOcjZA/jkcFAvBsBGDtewLwJQnUPWNFtyw1vAIugTNioOI1Z3bbG5bQrQiSC2AO/AXwJZdilu+CICdHeW1uUpMDcieAg4mHx9AfBPCa6rjjBdW4L3OivFjkvTUfAjD4drnOglhrYPwhte5Z5jIXzZ0Avpc78nIiV5ZS77nWNwO4YXZTeVnFc2MAF7bQ8mkGAF5wBZfAI+DI3G7d1RSAXRrkaQXzpRRXyYmJIwD3dJQFYBDAivIHhbORUNyQsw/5HFoQwG+Bjk62jnzYMJTUkw4AvDcB4Gj7BRMU2M5ql0u69VMAfsnUe+B0lJZCv2YKYk1pLqnf1cEUeGMaXBrJCkTgl8BnRNQyt0gDkRCcYDsOegru0TrlOABwfxcAw8qKS8ufCFlr6/laW1w0BeAkb4nemFmU2JumkPihGnQruF6CPbF0tW9dz2famtbqTfpm5nD3LJm9YDV+y1a5KyvnVjjsGfnenm+gqZZEw5KZbpWNFjYoY6ByB1wVzND09mJPAuuXg8AcFjGJUFtbw9wr4BnwN+yh2LDPc0UlpyafR8BhTlRLOZ0BV8Ax8NiOowN/aE3PueNYmjsuG9TmgaEWwcN5PW9pLXrpq6bSTe7vXwBHwEPgLevdV2QhWh6KdQacAm+AC1aozYzf1KerGzl1iZ8DF8DvgF+TzFpYQ46HpZ2llDd2852tZGWGyIWqGMF3EPm6RvfCce17IhMW7DsaVBHCtkO0BmzZB/cjbt4ZEpgq9fzTe5zsBLBeNwBwmT+YAKybED9S8pDtKQBHAvjaKLdyAsB9/uQyEwtuw5ygrTiOpzB/JVgv0E4AC9sxF2uviYHpKU82aSM7QlcAPiOA/5MBuOJqtDSdEZgDDyi7TU5ddTmAvcajMrG4E4CL0ZO2Jl6FPbt3VARiryOWfgccAY/Zc5DCVk1T2TD2PQFOSGAd8IK6stRHck5SWdEpcA38FfAb/mZm/WkDmkmMUmt+hVRtYU80AAxyCy6pmwJwnwO4sX1ckucQySF2xIVWUr0TwE5+DTbUv34w2XcFcEWHLDJQ23DdhdItjf3NFri3JnkBeG8CwNJnbkhTB3hr3rNofD/sx73VKQA7GrVJldlnGdv07AuTmz53hjpyRCnsewU8B/6aAJYqSc2kSuXWZM17K/AouQinBuCZUekVdcddATwg6KS5tBoll11GABQAvWAGfAUcAI+Ad0ABXANntCG9DfO/ILWsLFiRE+eNBR4JrifAW+AT4Oes/JbdjmYt+xzAjT2OA7gyVDjlqECozQOzKQDHHMAyVzUBrI9wvT/gM262wDO+PW391vJuyk+9B2y1skfxkHAxunz62uSJNQU4p3Z4eUsycga8sfqHltY2Ve5EG3gnV7W3NtRgdHxhusTZn6SQa6td0ou9NMYN68DuBLM1pQm1nJU6j5giQSznKdqDb+2cnGR3/gg8Ag6An9PLn49OIUi/fGiHwsg0tFyiBfAYeMC0XLB+5kE2SO+SnHoKN44augYsgS9yaQGJxKOjwPbAI2APeAK8BS4pxS3Vc4ph33GkldpGa9rc1gwf6Ecds7b7EfCfgS+IzpqVWXqjOr46uzeM0jbqiEO++/5fv5k+j3w703Mr8y216Q1wCBywe8Vl2EuOg+3INr9VLb4UT2U+dGnC71gvwDhsDOCZfaQDeD0B4CsKZWPHjamKfyeAC7bar/M6pzGAkSNzDOAyP3VLjv7Wggk5RjsBvPO7MEdZS++qfptXG7d0SATgdwTwfQK4ptexpuQVnJ31wNrRHMA952U9ZXdz5N7XFKMpAMcJABc5gCVDyAEsRsFHTjUcMBJZNPYUOGG/UE3WpuPEn3fAW04RCCaUgo12pwT2gGMWsj8G/lfgZ9bwc0FBkjUETTC46XLKfRPdhRjAOBp7ISKsnQDwJgfwhrufKloF4BkfcGERS2/fmwkA1+YZeko32H8VG+AGAM8nAHydp9xasqfnNmFkw1uppi1wmpUxJxIKrnszArDbRv2sTZqbUp/lN9xz4ZST6/PCOgdwtF2Pue5UHZzq8ZXt0pYLwFvGvtdMmvwJ+BrYI4BLXnBlyi55/PeIsd4SpS33ew78Erg3Ygv6GwG8mQCwKyYw1JbD4oTPAMCRHofG2P0MeASckTAuOc8IJJVPmRiCbZYEt6WXLwL7mGTXEfC3wHNqhNTTkHxD+ZQOYE/3Om8ZaJD0+mhLIQA3phr62wF4awDe54yb3lZ4lh8nXX4IwF5EJOD40+kpAIRKUwoHLoViz9bUuGy/6o83HAd0YaPK0vrtcShQZepI1RcPAZiBhklKZfCVpViMiGTQWNd5QbsWyZPY2qJxsO9h0dj+DqoattyfSxtlraUQfBPtem2Z238G7pN7StCUgJfc/JQl3pBkiERVkoUj4JdszmutVsE5ILE51yyqWZLenjEwj/b6QZGDVkZhb2n6ZmmeaMvFeQsAuA8cA29JZayAMy6vRpP1TP8cUtm0xHRkpfg++/hTvcovgL8C7lmnxql1rW/lRPK269HOIi/O8eBE7oSjx+1SsNfIc0D+y464rBgFbfNC0958DPkbHXdnYDN7u74kszDt67f6/mtxRwBvJwCsOZtqnFiwmH0ngB9Yh2Npq1DfEcCV5Th6ftzgaQuTbEwAuM+9rgGAxW5uaNE2lgZsdwH4lAB+B/QG4DIn2noqsj2ektqR0IHFmiVwbxeAyw8BeG8CwLUtiIv7AMDVLQAcgGMCODFQ1wyQwEVYUZvMrDy9tX6knqWhCcCnQA/8HPgr4D796Qi8s0xCZ8pIUUHInQqY87YTwN0uAHem0AcA3twOwN6xJlgFg/QUgMv8N8hzEfpcGes7A3hjp2+1zOCu2Md6TfkO7IE9nQDwE0Z+S+It4fDoQwBWeVr60tQoucVqPu1t1QYM4hjAwfbMXWrdcE93cE3+WH1GDuCNTRNYW7JMAC5IYcGy1Br8B8qKlyKkpz7OASxJuhnARzcCGPZBMBkoDQ8DAGuz0s2nqPcAOODk5g64YF6/MBUfGCMemHVaUeKVyG/IPTfAF8wxv6O8nbO/eGtOSrCHguWJ5NmVlhK+jQWWXhsDePshAMccwIVZEZjjMwXgwc1HA/aArghAUe3bIaaN+dsyAZEuY8NG0HNOVLikGAruS+CAoahUtzL1aaP2gAo45ssUlo/1pAJej2qjwU749ukWhXV0tXnAqyqkgvejqzVcvN5iMTFlinBVr3Jtk6e3Nqy6of19zfLfPQDAt2zcvUeZ3afC65iyToJfmWvYAAsSC5+wFLgzAxG5XxXvvCHJ0FoQrWfsLAdzwTfCrgM+bLBMRknqrbIW/NpGmCadvQ8s6Oym5zqnH6LG7IXdWMs4V79ZsI401bL/Z+ArLsI5jfgpbY6eqzazVZpvAyNGB5pb0tIaEIXdnrsp21dYgZisQSRSDnlLLQn4dHsrM3SN1UqA7qJ8PxX/zOnlBrL+FYNoJQfSu5KQvJ/hErj9urT+C8uSpDjmnKJ5mecewQHGDuDKdrplcFDRi6oNwEpY7ASw6KSdAC5yY1qa4EZziQrKcfrT1ryLhmRwb0F8b3Wuje1BR8LOSaveykRXtIAt8BSYAd8D/wQcAvdYPnrANQzAkrUuK0NayZbKZMTvAU9sGaM5VZ1l5juqV1WTy2vc8pc1L96OAFybVXJvZDEB4JTEOaM41tQdDSX4glq+pBu2oahsaaY3JI/TGRSPOIPpb4GfA1dAyfHvkUyWK6bKAFzkZteBuhPAWwtSHcClCVW0bPba7IG4rWS3ArWYwhsd8pA+1wFcUt4Kg1ubP1fBvWjNRaksmI4A9gh3sWLpQns2XOraRhnNOGtZxRgwRV5w0rAAfM+GUbS86YrlCnPTKDVdvZ0ArvlB/lfxxG6ZPQCKNmUi2m8CN8/zLO6AtnwB+KcVeVClfjxtpNYEfVzL33wOzDhu5h5wBJwx7b2lK9xRjlWs0lPrz+mDPgU+tzKDaBLWmpvgYbqY44r3BtOwqWp5wUUrDMYNXRgVYc+pXjc5gNO+XPJ5KxOnLRMUUoItr1Cx97kjkve5+2sGSzXwW+AZcMHyzFSbeUoh2Qlg5ZLdWBUEngO4oooRgGWH4y7XT/Wh0dzujjSDgp8DikTJZ1d+amM0PMyiwsz+Q+L50pr1lGEobJsapCZChXvBqIHGAuYrpjQvaFw0SaOkOByYta2NSNYPWlpZ5DIvrpVbMGD//ct/44q0H3kknkBXAsBTKQM3SFUEvrqdkV+CxcYaMbamhFvKyAUtbA8cAwfWzvqGMWBkVeSc1kdHLqj8ShlsZZjd9EiC3MVXGKBa+soecMU16e0oMWWhkC9RTW5hZk0oCk4GqQ43SdKdbe6VBm6uSmIac8nkLNasvH0E/AY4ZqvLIcVfyRvscsAG3jPsrwpyO9PW+nZD6aags8Bpaxm7rXFVKjTqc/mMpuODXR92eM0gEymR1moP4nQMoFHYf3TrLedKpU+9Zj7zglpoDODFBIA1iAPGtopmLnNMin8dA7gY/WbAuMnyBis2E7Oj1F9tFWgO4JgDOFhtXrRVVj2bCCw5CUoBrOx8dlVWdcApj6RO4+fO6B/3NHACsHNnM5OYxs4l2gngjiI1s3zcTgC3EwBuDLG+U9WPAHBjKywmKHABZ6ZxZgbgIwJ4QwBfG4C1TTsBPJac6icCsEIyAbiwqjj/inSa19RfG4pTzD3SAYCDoQCmenYDGKYblLzeWlTXAGfAOduwYQBuCODUvL0TwIfmhyUpqU2713mia5yL1VdJ+MHcBL1AfrCIncLeK369N2pwAODeWgHcAruJ9r1X/Q34dMqDXJK0aVmYkUoU3gHfmbdyQif1agRg5ADuTOXXEwCONGjgpvTGKIwBvJkAcMe9GNveuwJYC6tKMpWvVcbbRCvaqQ3ASwJ4SwCvdllg32iQChvEkT8hgJ1xug2At4bbxgjV2q7fG4B1Dwr5brLAVZdLR2suskzMOXXIhlP1Ks71XrAptGA6d2ZlUyowEIyKfPDRDXZ2kNXo89SO1ru0Z/IYQNxhtIsHBoa+Mwp53PsUemRYN3TglOkVnVFaRHxGkjIRUods670A3gL/BWiBX1nNyR5wCSyZXor0aiL3Quni3rR3NKeiYGwrEZBnP7eChI3Nf5e66nKaRkFIRf0652Ypxx7NH/XIpLMfeprXa9YFbEldtRZxq+BnYQoj5R3vA18CvyFPPwf2gDNG0KUF5oXhFVRIAz+tHwmb7rMwDdTZqkqFN1w6zdNAvgWDgrWBoM6oOVSJ0RnX2duGFqYma4PSzpzwD//t8gCrI3RXVg95bscnLi1kWfBo3pnVYwwAPLP1jcx/1rl/EOzm2gkAhwkAu67ToiPn2/XfMldxDuAiB3CZ5361keKV5RiVppJ64B1P2tpjXvcQ6IEz4I9Uhb+1FahZpHHIOce9KXkHsJJ6ekxpojIf5ydRE53fGIBFOd8M4Nq+PcIbABi2Ha4oUximAqytFbIWNKAr8kdzA/CCAP4c+At2Vc55hHtrZWE7Aawb8IUK0wDu7w5goVetFYouJNJiWeQsCZkdn8KdRqfMkGfgQ57PHQK4tfYZkawXZL/Sf09tnHNKVUpT7nEoxHwCwMtcRIo8rlKRQGGPuhPAhe2ZRMeZK/23zalH5Evpas8BHCz1q4RXw3yHNF1ngt6RXSmtN/aKJOWCfW+qnfhn4B2wAn4HLGm9YTngmh/hBXeuARvrpnHJK0hjd+bbFWwUkhu3zuvL1QgjOkXGSgmBGV32KQAHu5PeMlaFDcFS6qTJtfCGuWFQdmc0DPeBZ8DvgAWPh96j0iloBnYC2HMUfleYAHD8EQBuGZJVubUItkSl/bKiMHTTFlj37O5yPQXg6sLI1Cvruk7FNfKhC6ugq3geaEE6RqZ2bh5zYXpSQVAwLwH2rFLj85zo1+vbHNO9vRGjmFcgRn6daNMvo6VzxcfJI5cDXVH8tyzyXhurFcxWbqy36gEzZAULsvbZznACbIDntDs904aPeZhfR3+9NBpumWfRlB8QnyIeZE2rp9SRoBZ5TUloa3ou8E8qrXFKqLBIQ1sgrChsF+WcsHtOni7a0cgNHYYr1jz0VspU25j4Za59K66DNBxyfRDzHwYuAcxt87BXvxd2Q/7LlrIRbNOLXAKdR4vmsdS2qqCO35Ie6c2PCtzums8+N2ej4gq7jgS4vmsWQ64t7b4TwEsWm0uk9qxTYQrAwnDIKYZoq9AzsI/5Uyn+G3ByyM0rcni3uVmXT3NpY8U2lvQOOYDlQPdEiOonRRVoe2o6qSmqK9haB9IJKSZ+BfweeAWsgJ9ZxjgN1nlgWcSSIaMW88CI/JsBvGXysOZH6DVy42SSxgDu8rEbWt7yRgALCfIBWh5SeG49ac5/qY5tZhtXMeo45jhaN08VrXBn7dLjsMqDWmH4pwJwM0p6OsaE6pC70QM9CDu/fQDg1iYrCa43AfjUzMsF+95OWaexousQCOAZCzD2id5Dq7IdA3iwcCF3r0MuQNE4Zrec46+Q4xnmzIn7LO2vEuVrqxtzAMNEXLF4w7mGTlfLQajM0QQLGzbk3Qsu7CkLrV4Cfw98D6yAX9KenJKiuU+D07EQojRuZJ/x0xSAeyvFvuaJ4uXIKNXMSWECwL1ZfleOUxa4sMVB7r9urFBPYb32Tu0CwdAoAB+x5tTxUJFZ7/KGIwdwtBuIuQ76aQHsolvkMetYsIPBoSO5J0A6gDdWmCjIqOdjCODqlentFc3uO4qA+Lw5D+tNdv0eG2bm5kkrl41c4ehGWlvR3uRCy++MssN0sAO+M4XJJszgakliHtQ0Fkp4A0Jnn9twmTt6wFt6JqrAEhkXWbyRcPMYOAQOgfssxnlr43M2wDvg98CWjuMaOAc+BZ7Sgd4S+mp27bnswvfGvDQRcFsqJ4lYT2VQ0idekjy65HYEWmpl15ZGYlTmxig81Ao7FShWe2NzYzd5+n1jQnptXn4kwdLxBlI3/EvgkGzMMctXovXk+S7v1Ou6287k0KmrIsc0CLWW+kbwKswg6KNLmkuPggu7ExGLAwJnYzLpn97TGC7MEBV5dYDgEwC8phxvbD7GCY2vGMo5u3oPmdXcI26XVKE7AewxeW9I8wSmA7g29w6mwQYA9i8P9fVDbzq5sz1rzC1WQdUg99uYIyiuUVlxFSTI0eltDR8SKskuX7LfvQLuA5fAn3gA2TFQsE34Z8BjQrohGveI+cAJS/uW7JUDoOiztQLlYMprJ4CvJwBckYV0y3IDgD2ZokhjyyjcARwZ+0rfrYmBwHLhSPubAPwaOGBHyD1b7RsAXOwSDMnbGMBxAsD9BIA3loMbA9hjNrGEW2PuYPV8/QgaYLpbrI/mWwjAnT1OAPCCGiJxVpecWvSWAE6YTEzzgrn1+8Cx9a5W0wDud62R38EgXinzV6qoQ4vb2TO7jdWSOS0t7SsJayyT6gB2r6sx2MOcQm1bxeKhmlHjht72A25DCmVOabRTh8474J+AJQ8OLYC3wAnwOY+OiAZgza0Ezwfb44NvzQIr3Pfsb2nu2k4AX00AODAKGuQHJHwDAIvB04qp2HdtNRse/EXzaGTkr62KQwB+BXxCUv+QykVEqAe4Y58Yo59/EgA3+ZVvD+DK1q0jgAeqEFZf7lndMALw++tXV+Y71hSciu8G1yy1du1xhOAh6VV5dXPT+ZELXOZICrbV0ZakMNBLUxV2Nd8Efcko69tZbWcHFSG6umst/m3tJkWWwdSPsgiqSFeQsiXcEz5+xdM0kpIDcAwAOGcX4Dt+4ikLKRvg18A9qvctjWlHk5oeZGaC4wkGLekmny1dsE2gMq9Gz3JJ6VtQbSio10DAGetjg0FZKx8oLTGvdb6m97yiwS3zxexMf+zzua65g3Pqqg3wR+Az4AR4AXwC/IqSWZmYuUhEcxsEQY+4onlWHbVFvyt1FO33/hGqtot8+4KekhM+wRTtlkl+8Sr6r8S+tfssuHd+G4JDbzYNYF9CpAjKFV6z4m7O7zQh4YEBOBiA6wkAF6a+okme67TCdmIKwM4swMR3oGbLfBUE8jZ3PlqL1ZQBdgCDt6cu0a3hvLJTWloLcWrgGd3BJLt7wCPgIbABHgGfAec8wO+cNxCBX3Fw9ZaQEHWy3bWjYwAHbllgFqYgEab8hSxyw7rNin65rlbldVeaOT0F4Nb2qM0jYPlv0ZwibcQl0NF561kbWVLSlgTwMwL4U+AXfKIbAIxRRYeHjGMAhzsCWALWEsByQUX59zmAGyK2MD1S55f10FYaueUttQaHbgDgM3tnYemDDTNHJRnBR8AB8ASYk96v6OvcAGB5rsVI+IIBWCs+BWA5cMhl12Va6VvYFRzA4lK6EYCRuwkShdpQGu36an+UDS85BHUDvLWQbsHTTD4HHpF9+g54Y3L8C2CfBOfW5Ky1owXqXIXphrWeW3rbC+MVN8bXFpSGLc/NlpmN1GJqMSxpnz2zPgbwYEnV57G2m5GKlCoEuYFDxsQbfnTiWgTgh8AJ8C3wDPgZpUiyMQaw874SjxsAXHwsgGXAxUyIwoq7ADzIpdbmM6p4HXYET2MRSDkC8PtdqBZ2GWmVNDlQ9AfMjV6yRmbG3zuMFEHI+LpW8egj5JLoLwj2DbuyYC1M+7/BUC4/w5sIVV6oSlHV4PYmC6ow0c3I52ssoAu55T2yUtfAsbBqHwTwEiiBT4Ath9ydGV11yAGyazqIYM65NY7slHMO2/ypO/MQHNCRUadIw62pHC9ZVHGmNlfJ7cqogML2C1xbOdANnXg1jYtaCZaUUhIl1QLt8/ZUep7qpFfAK+Bf6Vec8/Y6SoJvt3wwoU3PHs0OIJcQLWBjIVYwoXWst5YWALWjipWjPWDPjx50mpYm5F6Vqqr3kJe8VSPQu2f4/okWZozlYq4ooAqeA+3LHp3mmS16n2vpYuQ99/kPvQFycH/tBIBh6bUBgB32LtZyowVgBbINAbw2tDuAK7ssbESDbmNuxYpgGX5vLHX6WjI8OgMq4CkQ2ZR5RUdTo8DUO6xYQsFTz2L0ufmsXgOw0VwVk2Pxd7cHcG3MekVhugHAzgF1xkxtRgB297Fha+AeeXetYVrGBQ+RGgO4zTc6GGL9fsYEyU4A444A1goLEXPjG2DLogJd58V0fW/vdQB7S5gcSKfSVF7x/pFnph0bVrqdATVdvaQVDoBj4B6P0jowAFdcU0eaADwgjGWBnbaC/XUKwHpCWRjPgLcGP3eY5GoM4jORLZuRKLj71VtdcrQVDIwNGuukTPHlG2aFrrgUhwRnTZ6qY7/SikR18lMvrQYa1qdYGYArA7nErrOfKxNlRUtykVoTrJ0ArnKJ9FByJ4ClbryKc2UtINIgir97ZpEK9sF0BOeS70qlz6+AP1EXnFO/rHPchhy6urFgWh7TAO7vCOBg168MwDAAa0E0K8E/GgZg2WRFJk4zRmvW63OL8l4bVsf2P9WGVKayiryzt7ZscCDT0eTsb2kZ7a3dsvvQsFuLBuuBqhSr5/Gywz3yjaWRc5GupFd7gbHBNXdD7Lw7W9EKhRWVeCiU7u2St1SxZiNd4TtgCXzKMvF9pnn3WB69x8VJ2bgT8ly9nRpbMPfQsfBqw8JI2HK5obm0vOia4FhyKMvAEAfr0S9tJZG37EsBN/mOuOfj1k1OzpYyqL6YepRlCbQDS2qdBT2EDdf/Evgn4DMSCB031Fs5BlHw1oAScqMhfDi52Rs6Pf4NJqseHixMwqP1nlW5gyFKfk0Gw0n61m5GhqWnspd9kFPnpnxQpIRjk/stucnKNkn0p7Z2RpK/uAWANyYf0RbFdY72/gYAS/8PAKyraduUGyxzjswB3HBxt7cAsPZDTmSwFHxNEwagBf4eiMABd6ImnT9jMeEhKb+SQxkXFOKr3DnpcgBf8+1TAJb7sSZmUjPPRwBYZCo+BGAnPwYA7iwO9lZi7WbJxPiGTFCidQTga+CfgE92AbieBrB+9mhNEnJLABcTAFbFUbK2KlYuzdWJFIbW6IqBxe/tBhzA++bsOWktO+6hCAAcWoyrAYGF3dDMDolYUmUe2tnOwYgdB7A2CXn1sLNYPSUV9vA7AdzZupf8ry9xsMXtrQYauwAs7dhYRNLxB8XuLdkJEVkg2q/4QQUXJzGp/0QPrzRd0DII3gDHlispWAoyJ4AV+sjZHQB4bwLA6b0zKuI148t7HwXgQadYOw1gkQ1adgE4WpOXd3sIWpWVlEjM1gbgK+CfgE8NwDPK2w0WONqf3HL8JBZ4xitMAVjf6sZqcmPTcU30ESoiKrgCW7NA6XFWOYDfc0vVHndVMeCCTl5v/kFPYfSZsGpxm5uvKXOpUgf5LiXVw8wsb8hR62GIQKBd6gyj4CqGfJcUgyv3AyZI17QIWraeAis70tvdRkapK8rFHtfygBBJpvYBUNlpA8+BB0ALvKQdTNJ3CryyiU8F8EtetuRZuSKtFQXLneqACyaHxDcXprG9V6riLcl9qumhtsYu9+SbwGTmXk5rgqs0CCG8rk17d8VGmCvKY08JSdi9oENSAgfAEUEw40DUVKeWdu0b1oHsA5/QYqigRfmwjjGsDHSx6w5hmk8xqcfpwYqV5dp6YqwHXttR6mJO5rnKT79fk03a8PUbm8k5s0B+lacJlXgveAONYarh9r1HwdK2Pz2DrO2KBOqcCZFjcy63tljOvSl+Ai3COl8+KQLkqbxAX1xYCrl1ds0pO+IAHhTBzMzDC+zhPeNBCj2RPM+rtQZejpjUjiiq7fgPJVxKnpnSMQ/8gNHInA36AC6AV5SAtOv3qdJb1g0vKPQO4MBlPyWAN9Yo2RHSvUG0oKlSPmLGv/o2DQB8wPkhLvQdAdzbRnjg23ChrhifXFqMVLKGu+UtXdFUzFi8UTHobzlr9YCKoAWWHKcdGBdGK4cSDd/kthUj+vkGAIu1dJevN82oQvM5P1p9YhoLVfIZt1RSHfFW0f0TGtf8YcWf1XLWm3VWnNabgvgBwHKwFHhdAveB7/lUHZMdreWVNlYeXdPDAzE5aPtrzDtR4jvYy8QjuZMNQt1zxmMAK6c/jntC3vK1Zk/bygS9tyyYo1eFJZdWBxdt7HG65mPgmML9GviOJvcBcMgMEdjwkQon3+Q16Xs2Z3/Lsy4irTQs+kza7YTFM5rhUppn3FLTN3ngUTJn2ZkFmFMsVtRlC37Pcu98AGAYj9tYKm1NerCgC6AjY+YUkprse0tfY0W516SXc6AFHgBr4C1F/x4QjX7cy0c59gYVt8C4NYAdOeXoyiqdv7KhP/L1KjNaLfd6YxWacpQ8a+lIlse0ZgihThqnf6K9sgRQCciRH5u8mSOrx5MxbS0+GpQ+FrZUTvT0XBjkCtwh6D94bgDmGMAgPvjS9V3x6tFlRtf5qTsunrJuTpAp6llT03pUm8o29oH7jM5S+/4vmGkDDUfk8KuYDxAC/W/VbMjdL+gub4x31M20HA4t5k4W0AuLYFIpOkxv8SlpIiLnVj8AY3ADdn/F/Luj+35lsBh8F4T7vlmryCSWMmp7fJyXwBb4AviKWt8nkSI3Ui4tME0TjIscWGR/NNmHwvxgSaxTtHHEIThjIJepMWvjSwSrp5Ndqqjb5jTxnn9STj4aZCJszIrHFgnA610Argl/7b2Uw04ARwNYPwFg2A9jAMd84W4AcBgBWKSgANxNAFjPUvIROi7fxmpY1bgPupsHQADe8liDVAx5yLenPqJzXrDKA4zA0mcH8IYx8SBxoKx1a8OUxAepVA+53dwJ4HA7AMP26/YA3tgBobLXTnh1nJBd2g0vLOM9s/OEzoAGeA78kp4GSELvBHDMb++jAdxPALifBrBEaAzgOBKqmX26iNqa2nzOEq6WMqlzMHq75/cA7s0B7eg/HZGFGAC4yOHncHUAKxLtRwBWnDHALfLfuIj0+UKMAVzZa7TB8ssdwO0EgNWnI42mpJ1HC4XxOUsOIemBb4A/ARfAl6SAUliTOjzOeatLu1Ra7QOLqMSq9dYU2Bmb0VBNzHLet8/ZP2kEj1a7PFj0gYOFlRMNAIy7ADha5WAwDEjL6DXqdRXzOad3CJYMXZH0Sw2Xn3GPFPD8WQHcTQAYNwI4TABYKqzLy+wcwBVjjIIAXtk4NO8FUQIrVsXoMjPbWPA3S54AMst9aC1SZcsDS4SI9Q72BIVVVMGi7zE0/Te93edAoIqRp+Ihz5ZViyuLZAc0WWnPK53hFVsi48HOkwWwT185tbA+AT6jVF4SeaI/CisAkG7bmvkT8ekJGBgcCwpvRxDANlY+a0tua2OjmVqj4Srj3Qqz0UtjdmGrFEZbI9EuuKcbax+8YCysmZw1fYklKar7/GWwQgV1xmqi6TXwz/m8BGmsAXw90zsQnoELq6i2N8MSDbtKhrm3JqSIcilZClHZBvVWRbix16evkuLhOVrJ8KAOy5mc1jASTDtaMSWl6uMA7PbXlwMGVAdwMJNamLP74wGMkZoVgK8NwLrtMYALu9VIOz6zorGa3dCppSNN7myAB8An/MQLoLH2Hp844UUpasEcADjwOmEXgD2WqvIbVuIjLfvDEYArstEzg/cNAI43AhhmVtZMsF+R0nJ12ZFW27Apf2YxcbT+wmBGpwS+sbYope51k/3IBN8JwLI34XYAdsq/slqmyrZpy4sMci9+YwKwfj8FYNCUD8ocOgHYmd0u39r+1gBGvqCdIUFBenK1pX7EhHtZVZtfTc8fJwAsHBa5ZpJ/3JNfGlhg964GAHZnQRm42gKjmkdQ7DHA/Rp4C8yAL4GOZ6lsSLK2vJn5yAIvbQ68A3hFALtvUlhXn2RRVeye8hBgKj6mU62ywLIPys7UdwRwMC25sW+QtfUKpI5Wd0MXps2Jh0hdKSanAL4BwGrptZXu7ATwXS3wwGG8pQXucwCXVvgUzW9e8y0DebsTgOVxFMwMqLSDJxF6NOoOlpzd2qjTQcQ6WCRfTmejgsVoA5F0Skt3Mv4IydHA/ha2GJKs2u5HE+g2liZ1zs4/zolM4bVkLUpkeHJMa9Xz8JRPgOdADZyRja5YfrUwLnkg/o19xJy1lMFqx4MFtjHvtZaprYATe1nPm9zL+VrfyplpgoIRt0fi0hDBFjba+mgfRTzrW2cAbOlCyJMBMbFg3RmIfkllw/8eAqfAN8Bj46qr/GZ6Q2HMN9GDKAeKaziMxNWVd5uPTYPRIzAmt7bOkWAUh4RNgcrMpE6Btquc5LBp8G6dl3G5MniPgpDjIdIQ/FQAhn1ezAkah5DuwUH40QCOuZ+xtgMBNiY0brUHtLeWWJ6G5jqXLFNLKncFfAO8YuaoYClVb4HRnuUC9Cm9QdcBLGTCbIEs+MJMqlBdcZqK5EwA9grJkJ+NMs8BXFna2T1jjACMHMCRrPMqT2A2RnjrS2XBKhwtqaRqfkpD2O+zg//YIBcZmYRc9opcYG4J4IGfWnwIwHVubAZtGYptQD+qteYS8aQut30O4JRYXnFlZuZK6Ut3G7Q3qpWp+e+CfswAwB4xu7EKEwDuTC8GA3BtaITxGC4r+oq5FhgD2AnCgoVQ0jWSqk3uoJc5RD0mLrg9W75mxr0pbKhfKr36V+BbClwHvGMxljTL0gAsOZMFdgArClRZX2Vyhvy5FHJUTC3JAlfUMgPuvzR/XSGBR0qDHpEPArjMvecmf4Q23zW9t6V/DMOMuk8aLvs+8AL4ljxBeupBs637pshtxp0scLwdgIscwNriyhZKqQ9NTZNxqhmrdBMAntnEtZIR2uDTdauoCvtYcdOVSVnJxsE5w7eBZx5yVBX2gsEvBfci3wF9DVx5jF7mhjjYz4P3aq86jjS9IJHsdcOlbUVl9rG1ym9FvrVhccappgCugBdABL60AgYwsAVlfGkZLPDeWuCcnwius/a8oB/W5Fqntii1Ic25yrVCwUKIYBI0s3o/GY5BZBds76SukO+gkwOwQYsbm8LhIYqTRKqMn+eLrFi7tW2as9jqU+AR686CzeKASYLEzENdD97cCATbBa/tdm3XmbfgNqqiISrMuAXTnSq2dDXcm52RQwW7Qy8C0SjRBW9yld+wIuhhCBg/FsCdvSXaitwM4IGdhan6sfd8ewDrlwMANyP1UewC8KBWsLYIWIMjEoQ2wBvgn4Fz4IAe5AUQ+ZqSzoYDOBqAIwuqBGD5nQ7gjjfc82VpyzVsvzGjGQnghQFyAOCQAzjsAvDAdgzsryzsNv9ujDgvcgD3OTiVEnJNGi3gS/HfPvAp8JjuEGzo6U8IYPcGPwjg0iIcL6fscwA3dlpwm/sAuuYYwJq+MrN0d2tv3AHgwtZrdiOAIx8s2AZoj935GAB4wMO5zR/QWbDlmALzAMCl3Q9yVbLlkTzrPIE18Idm5uvrzgsCeEYAa8rMY9q9U+BfgNfAE6L3lCGamI2SqZNVHiSoPsQBHLlJYhwbcpngPSyocTb0NQdELxjjBsvLVJY9kHbwRIEA7Je6GcB9fop0a+4DbD213S2D3SULb5D7xL0RXwWrtVJXl8Rjvisd8SMBjNsBWHmilv9VKKJFa+1JZTM6u73A1+wEsAKSYA0uXnMmXrGsynzfCu5wZ37YPlvP5xYf9baxheEGI09usMB9Dr6BG+HxhW/pwEzrNZ39F/mVewr+BWceyiHeeQ+F7aT872BA7Fm8UQFHrA96DbzldJxkeWtGdiu7Zs3wcMXHaVjpUebga3gYWcXPaq3cfW73HM2Bdt1W5HZWfludG1/Fv05KykC47MMwLe+rz+1vwzvf0JuXEe9ZctVTfuZmklrKtZRZ4O+T/PwW+M/Ac65esBYp9/VBa7OTnGnz/yqIGsdvuufefoi5tMvoSR3K3xMpsTWDIGrINVw0Yqsy3KneqrOxPUdUQrLp74Nu8fYySTcDeEDgRwP/Twhg35J4I4DbXKP6lTvSzxc8lafl9sOEKdqNud/cG4BLA/A+LdcKeAP8CfiWjs6Fgadnu0jJjEmSSOWSlB3dGwF4zVM392wv03PVuZXZWsGey25lchANwDNDtQBcTQBYynEAYCeAlJhrKKBbzgBxkF/ZUaKdARi8gYLP3plqTgv1G+A/AU/tTL0ql1iHFv4vAbC+VNQ+qMmWMurtZloz6HrwPgdwwzuJNgJ8J4DfewK18cHqUainASxF4j5oYY83BWBFD639130a8ArBFhSjFwwAHM3CSB9J2pKBkgXuyCUjd2TlTcqR6u1zFyzoU6I0kdCXDH//xGzfGSVszq2quZgLahCl9TtyZbLAMACDBGSVG5kqF9yWVKWzKNqI3hSrQnkFGyohcL/ZAdzbLkwBuLUjlSONT2MYU3yp/gwYgP1ZGib4BN30dL8E/g54yDqcwDDj3wTA/sqdDqOIOAcwRgBuCIcBgDd8Fic2wWyg9P57Q12NvVXtf1Iswu7MvE/YYgwM5WD93KsrrflY4HP2HGZc3JIO4mLkLyjtUsHUiYKgrU3UDHQhOtP52rGQP0vkgFextods1IzACvgWeAUUwAPgmLe3ILW0pmWRzyTN7P2lpT2LXnBJSB0wDiporAcxaVrAS4JyxvzWERlo9Z+V5v/NGFzL/KX18VKKaI3+O7HrT+R1Mg3BIcdGX8ldTonuaztPpLBNqawy5B7wl8DnVhMC852wSx4GEuhGINrmKjfrBE5p1SauNR2voNT5QTOSq5LM5sroOVWu6279X+mAnp3Dte1UT2FTT7gc6OG1pEA+AsCDcsrxUnqiLOQi65/uWNULbgBwtI92AOtBBODO1l231NuGuSYSgCvTOxW957Q9J8A/A38EGuAJcJ8XSQuV2rX3cnpI5Qqt0SLYBeCrCQAvDRgeuqgsuGZn1BEHegjAlYlFsHogB3A3AnAxAnCcAPB13rgqnKuksCX2FgZg7Tv46ZqNmJqFf23HmXUGlZ8EwG5O7grgKgdwaRLY5AAu+UvnZB3AGAF4sObrXQAO4AcMnAMBuB4BuLSNcfJMfh5yPe0KpjbCREvmr3EAI8ehszRjAKunqbdtEIWytSzMwIHuzbWKtqb6rJkxvhW7eq/JXP0X4B+AE+A+sLC+abDeeo+fov5FQXfgug0A3BiAFbNGM1mlCVNnjUslq6/27fT1kPPNWodIV0xS1ZpCnALw2AJvzfbK8fEdFBLSfS64jMqsp5hBLrXU7gz4BfAIOAcu2FTnQPqpAIy7A7geAViFGetdAG5Hm74TwJEY9qe4Ms9RI6JnVZfDTttyTdZwznFjB6O+TRFYMS9BdzJlrN9cWge0lD/TmOTaCV/k6SL9WxoV4u9yvtDNemNcoMvdwojbBXAE9NYq9wK4Bp4CT4F7NkkI1kzbUmx1P70ZX5UBFCMB7KixK9v/lMqvrGV3lddezTi1bG7Fn/O8xKy0wBx5AdrYNBSm3sZWWAmPS7ocvYmk4us5JwBeUcN19IYlPFqE0lbgfwF+y+C3ZRfDhtM4B1IB+81A/GQooq3thuAr7Ab6/HlhCk+C3Vti1V3KwnTAlvoPpJXAR1OAp7uCWZtIelF+iGS4spV5Pw6yM8dc/90J4H3a2Z0ARm7C9IJiBOA4DWAXnZhL8xSA4zSAdT/up3qrT0GX0QE80O0zW/05x2ucA6+Ad8DXwClwD3gOPKRs9VShFW09bJzCoCg53Ajg7QSAZ/TerlnFAasKEoATizS33B9MjWpGkwO4/VgAryxCLUwbirlP6uaCH93R5qaLbK2W1Uca/A3wFfCAPf37dlb5TwLghdnWjwbwQGcJwCqUkJvhhk2Z4WCfCJv0Iry0OYBBr+k9gPXVjwC8yC3wfBrATiI5FMsJADv7Gwx1vmS+Q4PfjAHsgiUAD1BRGoA7A6oDePCWisMmSy5FOmjmX4HXwN8D3/D3C+uy6c1op0/Z5lmGho/pFjiOANyOAKzj/ZTGEtMpyr+yEs7aKhY7W4fCFnAQNugebgPgggC+JrQiZXrQSJ6E5xwIjONFxtd2FoDUa0ot/zVHi52znKOlZP4kAF6aNN4GwMWNAI45gMXIVeZlqAYz7AKw6I3a9qhnYFNxebtEQlaDB9Vdt3TvlTqSy+JVBNIqja2N8NRavURBk6Qhp+0IvsFWC7lYNfmfdAOzXOSFP+Vg0p1fsLGvt5xqkYs8TMcoZrniBQ+tBjd1Cr4AtsAD4K+A3/EtahrR0yW3TzN1KqtRasx+XVolcWMa6JL1SnOiueHRDZrieElVMaOuXbKjyTVEmS+1c3/OHsg3KE0S+1yU1nzAVPF8yU5KbZPiqJYH0fbW8ZtuYI8gaK1CVaL6ALgP/EcOL1adlzdjuy6P1hfj44KiKSFht7dFiAYy8E8r7lFta1WYQ1VZy3QHXPLsprWtmAYWy0VWOHGe30zFqNnr3Xt7V2UR8dK9ypCrYtlTVZrvM19Xm+bxXU/fUwDWdhZ0RjXk5WYAuwW/AcCVGY5oQiZ9HmitpDUkpjAj2JvMOYDlzyU294Js1CXwz8AroAQ+BT4HCpIE0ZAJK88o2EsjNi0Z/WvgHfCaL+5spEPFccIzSlV6tAO2j8+IImWF9tmhnPTv1jL2pe1LZY/shfZO3Kj+pMlL/rY50yw+qMth33IpajtIobTt2zPjW3ODOuqyNPv5r5mbi3YmS2FEKkx+XEN1Bh4HsOrGdMNy9KU++gkAS6JK+q9yCzek4bbmPa/zJHBrFvmacqgdL20ydGm2uDfLpAJU2Yn3QBLnLxikMpoD4D6TEUvqg9JcbRFvcQTgzqaVgWsx5wrODcAw7ej+69gCD8Jr7Zl2sTD8L/hQRwzRChurrCd1zarlk7fUMdzcA3rgnFNgLoHfA18DG+A58Bn97I50rHh+3ZWTWp6j73jN0mQu2CGzMlCXhrF9ct4X9Ko1HOcgn8YvoXRqKNrS9blh9Br5ymIqyVDDgeQqtFAGXeBRfbMqTFbMnct/lYOw4jixwIKtlPJ8CPwqP6xLAPaQ8WYAYxeAmxxa5QjAGwMwTFBlWlQZX1C37lk8s2WEoNFF4DJWHI8tT10vSMUwA9ZEINe/JavA15WwNbBrh2yVewTcY896bzVK8ry9qgX2+8j1DvmjOw/tdtb3wQEa8xcPvuLojQNaTYYscD91kEptn+5GP9rV9ugnKSfZAu+A74ETYA/4GfCUy9maE1YaUNp83mMC8cZo6UubhH7JhGrJPXfVpVVtGFQuaC8iXe0D+qY9fSfvXMDoSRXzdqZCoqmKYIa4t4da2/fGaik35i919rAN26TTL2em3UXupHTxI+Ax8Ah4SuUtQeqp/vUULkL9yIuAoTmaNpLBUYAcLe5WaW6VL1Rl9lenw3Sm8nurBR8YxsbGC3nYW1iNUJlrWWUcxVG25rIG5FgaALjeBWAHp5YMhoExgKtcbgYk9J8PwELmGMCBANY9DwZryy7PqQ8LlkZtgLfAd8A7YB94RgBHUqTIl/4aAOccF0xLqYojycoFc/RrHui9Zdgn01MZHhq6mHO6GRckGHTYnD/jTwVgB4aa5ITejRFDa4vyYaie87LBBmHCKLykuR4BD28B4IH87ASwHu3PCuBggHQAywEIjD1g+c2dAPZJvrpb0DkRgHsHsJPH6UaPgT3gAfAIeGAA7u01ssCFEbpjAPcjuSmnATwG510B7F+Kb/TMWkQJd8HXYLSjyWAuKf0qp37N0TlzCtmc17xnJQ0aSRE5XUFBj2YKXAABOOEZSGsb91NZiVJnmgXUDrLAATinBGjgYJ0DOJjHjDzguT2Avf6kze2tqtw6YgCWB5C51kiwYFV9Cn46OtmJv7oBwHW+xX9WAEuY5bWVdhKN6FBFI2MLHGxlbgawo1cMiuptxd+8F4Yq5JvZmWjMgPvAcd4L7tRPsHe5G9obQ7blTTkhFSyOLu3FfvEBQIscwdFu2+Nf5JsGW+lrWl6nh6v8ysE2UzHRgrvUcHs3wEvgAvgV8Ev2l6elu7Azqwsjmz3UmltVZyKwTniUrwzZ2iikuekSd+U1Qzzdf02u94jj8KLVzZWmq4LRaoNvda+Aj6yvNietdOSChm+srMDe63RLG4pVk1nztF+Ry/J94DGrYirivsvv37d4gOCYIxgWyXT0EBTj97bp2txNjn61csHcOQ2Fa00x9KbVtuZORMN0sH5yYcenE8pdBlVXm888yKK+KQCnhRZ7JQCXOcb0LkwDOOwCsMS6uB2AwwjAA956AODCPm5mtTsw2Q0kEf0OZbI1623GB+lJNq2A74Az4BMCuDTtXVkZ6zbv4S2oETqapATaMzIgaqdd01GeWT9PYScwbJmQ0ldJ7/mA0zyi2YvqRwO433W6hQN4Y8jRKzuTctmv2chbg0nzMfAYeAYcMbHyQQAPBGZggj8CwL4+5V0AvLVDa7u8prw1aEwBWJ8ltqln0DWGXgZgV1QtS94esLp3YIELo1c/COCZ0ZOFec9TAI6j/XBlMbhh5P8NOXodwCvrOhHtJr+5zCWjMqFfGk+fJPUC+APwBrgPfAkcm3fe8xNldlaWfwn0cQvaq+SUvwXOgcLaaSVDc3OFQcIqWoG1r96cZxPvcc1n+dP5qu78riYAHEz0e/5Xc+vU/ychU5jb57tTW0ij4D7ksN8nhZUW9kcCGB8FYFFPyAuEBeD5BICbfGSxUpm9VV3jRgusfFxrYr8wSlOEelHpcaUWOjpeqX+h5ptaA19n4iB1UeSCoEBD5K6i4CL35Af89Bi4MPEfQDnkd4J8h5GX/2ysJgim8TzNIz91xn9FrKTExjnwkpmMxLOUtgkNpXie3+SppW38OJVUOvwtaeNrCpc8zplxFpqw73ub1OqSJ4ofc9BeN4iVRqjtTa7HSjHYXwtDQ0956O0+W1ocaWgJAMjEyZAdAPvktjTaNAWGKWZ7AjyyEfmdZb867s5Afw8ecKdL7XZNN9ZZPrkzyiLY64PJhophkH+03qv0eLQ0iCf8K259ZelfGKG5sdRUzP0WBSSwNfkBft6sOmcGeG5SshPAMNXkGAY/ZpBjcrLgxwO4nwawlMUYwP4Cjw61PQJwTWOXyowugBPgeyZsH3E+otzKTX7NSAReWiXTPJe2c+AV8Ap4ZCedbpkYWlimVEXVjTEsHauyDoFj4NCcrT8HgPWC3nS0JK/MhcTtTk/v/IA8fWO+yoYCeszk0f6/GwA7evVZvS0IdgG4zV+vV1acqbQTwJE35jcMayGrBwAucrDJoicK88ikQeUjSnZKu0jvOoDTfW+Nw5P1KwzkMVcEdwVwnACwX7A2AC/tr5UNpuhth0qbRlJQtV0C74AT4BXwDXAKtMABK4QaSu2VXQem1y5sNNvMzH5kPP2tacbCUvYdi2eiVdOq2jjYXPRD4B6rsQtb7TASaJiAxnydpwA88IPHSJazKAGN1gopyrlhWh1ML6aluAJ6oAIOgIfAA/IE1xMA7uwG/twAhq1nnDBUYwC77wmzZP9/6v60SZJlSw7E1MzdY8m1lru++97rZRoDNIDGEEOKAB84JChCzsh8ofA3U/hlhByCFGA4wkF34613qT0rl1jc3Ywf7KpeNfeIrMyq+xpgSklJLhEethw9i55jx1qLIuYA3lqdjKARzaGTbUgobexGA0cgw1Lqni+AUyNr21oWJirds6ywVwaTYi2nlzpUjJpti4tVnn0obKP8l2G29h3PYuzsoI5qrJZ0N91P6ohgFW2rxcQV8I5m8XMWRi+YQzql4RZPBNqRlszgCd2bjkeFvwU64Nx4SgWDnlO94OYP3HAVdl0AnwNfEL6oS6KyeQjJfFlPB8qsOHw9mRSoDBTzqtas5ycqp51sqZO1hR3rGxhWXLcbaqCvgc95xkHlcjrBMRABcwC52o4GSq/lyDapSH2Zaz00cSZdBwfLLWhNGgvnM2kBsZZL4yiS4agxrjBzMffmmzkh07GmXy54FsGvoynhCIBPHgbg+AAAN6a95zQEZlBE/Slh9mOu8Z9nD0kMTNcEcG8lDQ7gaIN0AAdrMbFhvfIroAWeAc+teLdQBUvrtV/Gs2D1I/iyBQV3SQXxHviW/pP4IE1Zx/pPuZ3Z/K0y8lPgOfA5SYtUy/enA9jtVDaGRVSrvPnBrJg+WseZR8bxZWtWrKotfe4uCeDlwwCMGmMHAYx7ATw8AMDRAIwjANaaKCXek398FIBPOAUPgQTdvt7QBKtzVShZxOub2gK3pnsce2l2OmoOYCEctsShZqBlgSd+zz0WOJj4zr9Eiic60AsrbJ0DWIe6BDMdX9ix+uoGeA+8JIV1ClyQ3VJCwXkez/uOpk06/qacW3nFC7sCA1zPX4wEyYpNsETz62RxJn/11I4PDvVyJdudjwBwMEjIwPYWi0eLlGDVuvrSeDq6LZmXXAJ4T8r0S1OLD7fA9wA4fwKAJw/M9HfnAEbtLs0BPD4MwBqeXGMd4okcXqt5tZ0BdyRBmHi+ZUWmMBuA5iFVpkQImv6/PPZJJD8x0JgB0X9MR14juzmJu90iNyzpH4ArIltLuGYBpD/TdebOolGVQX9OQYvkm4sje2Kuc1+HWk0NmlL6+BzYA2+YBC47f2e3jG35+guKQ+aGl+LMEh48s2xfNOMlwfSdUkibanWohIoTFKiZGu/3vOWFx2pl2/MmYE+TLkwYTywXomOOpRvGJfuZrCx30dVHJLpZISjqvZs7e5hhNxv43HDlWlHJIsGUhJyr0UrkMvOFqj7bky1d8a9DrUpRz2JkjHHCqrolVULLZVccEkzT/Ihl38gzsgwLrm9vCnY4AuB4BMAqVHekSWFipuXmrvPHARgmgg7gd7UJFoCb+pmRLhGAWyb0dM6gnGwtmY7Gon/NFyYoLa8N3puRCkyzPwcuSNO840fcWe+53vYlk5cte3lrIvUUeAJcUrz2ZiwcgR8N4GDfq8ikHKYcWLENAli3RnQmGFJb6umzpPEtbz8HvgQ+swvd8HMAOH8UgEHxmAA42t0ILsOiwMQK7Jjay3XAk6xXyRzASz5NNU6ZH+cAVqYIsBYBgYIykIpZGoBDfWLPd1TE2BzA2U6aTJzjiWeDmcpE/fr5j3mGZ/ezswX3AvD+CIDd4RbbNvIUwp41mBtmbRvgKXBGw9LaursP3fD5iYTr0m64KUr6BRnlN9RHG3YNiBZT7utO7D2Nc7Fyl8Sw/urLq6hG4tvU+k77ewzATb0mvVFYEgCYBI8MeTv6vgWlatC1NwD3nMKXwOds+a60+kEAK0j7IIDTRwE4M701UQHRfhlt1jrksae635nHhFowJkfaHcCLetjJ5iuvRJEV2migzDzsGs37UXogMaIJZoK1YIqkFDs0JteTTG+aBb+KjrNti+/J/Js5+TUBsUbYsBvBSDJI7sTSyGDts3vPA89z3wHveSdacXx/BTyng7hiNFdUqyin0T5UCYaNbXWx4x1fszUfVIpBur0FzjnCBNyycqMDvqDxBdezq6vknIuZRDJz/ZcN8fpxsEZ1iYH5UF+QvrX2m41dexqIhs7AUcZWkPo5Y5IVdQPMSZDHKSsxIStDjU6YtZnQcHqgFHyYiXSuJXmszUJbS3ii7p9stFJcYipEXGwNVjBMdXZi1fdIofpYy3b0HQVl+oSyKAAHfvBQP9EB7PmxCTnV1QB23mSiPPMRqZqHyB8EsPNlDuDeqgXKemnJJgDWfhepvQLeAu+A94yAfwk8A0A3S7k7n52I+XMmSBuziaXp+lM2d9vSeF1zdq212kh26i7ysPsJW398xgRTrk3DzwvgnfWeU87T+9LvCGB1wZSFynZCToynikCeAZ8Dz8kzqkQvPwzA+TiA058GwKEGcLbAVym2YMdA5f/sTAPOAezP1GgbcqzJZBuqgJdiEIBBIrPl20ar3Ii149XU4IQBWPmaObU8ByTsCR8B4PlzxMs1ZDdHhrODFQ+U8au2ONUKr2f5VKlUfgW8ZSObL4ALO+03Zypaa4F3bme7Wsp3qSL8BRNMI3dXdSAtN2Jkpw7V4hQAL+kxfU4Ae6rCHWWh8VMAXFJp2aI95apBYm1rnZyKVIjNizXnI0c/0QJ/zlOGniv5RADjkwE8HAJwngG4N/pZdSDSRIrQ+hqfEwDPW+KAYZhWVeFo+1MbO21dS3dQcatKBIXyaLPxXJnCqMZ+gxq++QjywOdjBtZ7vvLsyRKcZN939Mwy+xk2dR/f1tSs5wN02k+dJU5ZJfQFY+olgduyG8aeHc2SBdFbbu+dEYo7RoU6dVdIqxeMItfAUyDymbdAttswzngn4hMeHOzpO8FKC8QDCAFjjeBJiCeplIT2rALfW6kduNFSdb0pDz8MJ4iowYgYgGwM+qnpMNTYyqZfg6kxl5xkYNKHhlohHUwp+XNcE4xGPLVWdeh8zqT2yl3nSCaxs9Emq63zFJGK40Vva+nkT+sUk7ZyOplgD3IApxrAmAEY9RMaE47GNOEEZn9SAIvAiiSqBOBhBmBnwQVgEGO7mlNc84j5GbCxCFVEu6RNC62ySWkW8RQX7DcHHivsgFeUm6fAMyqIOzrTCz7knCXFAvDAD1pwSD8XgHsCuLNNdwAPdc+GZNIvznvHSKMwO7p2QAAe6n4AzcMAnP7BAZzvBbB2f8P3BkvCb41FngBY49SjInd8AuBKf2nQweLohYEWNYAbW6MPAthdExBXfnz15wIw7rXAyohlOjcKyJKZFAFYufUdA9MN7W05bfCUwFNSMBqJlKw/dMtTfQv60zrcdE12fM8udSBUxGs+szLZWwpE2csTegRPGCT1NgwcAbBCoIcDeOT9TPvaBWusZ4U+qDWZDobthule2YYd8wPlOMh5fetNX6cIHcDxHwTAsEqSduZ33ANgPVbtGDSkVNObEwBfm+IbjP3zOpBG7H67q82WRhcPGc3EgYjX1k42swxn+dpTVD0JIT0BM0YuOx6G4JCU6WvBJcy1XRtNmsp4FrxF4YJSs6oJv8Zcn2AMa0eFuSS19DXwBU1eZA1GBt5xCgpXN/z/hnPf8zBiw1g4AGfmSeso/Pd2FVrLePkPwGd2qCECT4ALW1sHVjIZ9+g+mycwWU8xPoEAEgJEtHukWT7uPfBHxuNLiu2KmjKaN1l8uffAc8L6hMBt2QFMekX1KuNMEnzAqK2SEpkSgGRFm2JyJOG5ZmkyFaHwqvrPhjs72o9bHi1VkySQML2xex5aekQK3hbcpsaOt/S2iXLTPXLXjH782sxQEeqT37HWcrCwP9Yd4tThR4gabD9y/ddIX3C+H3MAw7oeTd6S7H+PFSZcBsgiCcCwI6gO4Gw7vWW4NnDAPwBborfjZvSUV9VPe/pxZMtUBTF3hOsJzyZF/rhkQeYIvGQxlkjoWwsNxYOckYROtkRuU8QnJlvhbOI72ZeDAIYlP2EiteHWv+NEFky3rcyIOw4jcMdCq57NXp4Ba+sfJOa1tTfKRfRoJxi25wB2fwzmfU0ArD/JtLjHHAjghQm/XIiBWb87audroAGekOzzIGowmRHFmenjOX8qF1QDVtCcHcC97bdGvDTjHWpTrEPBqJdpxf2TV5EtaJNqcUER9xXqpz3KAjf1j8Gek+qea6AKPKMzt7JYcGdC2TAltCU3vCML+EdgC1xyrQBckNuJwDtS3WfmOpdPf8qAO5PHDRTiTOFYAM9poN4AL8iXj3bj3R3DR8VGJ7R13vKmt8XUosm5bGxbJwA+ZoF7W0nlxRaMKMrZjoFLWpZuQYgGo0DLp98A5+T6yv1S5WD/DXVrGcaK4B9rdSwdFEwanajOEym3SAC0/A5gwV5+Yl8nW0SZqJtSa97fwDZgKqEr1uLaIvXAEoG9mcY1qZGNpZx6y8ppLlvruyQqOrepVmvzPFDLyaVa13ldhzQ87DViWAPnGg/pA/f2UGvXXIuefzk75ro92esn9gi0ccr3dKbAPeGeKFk7S8onit6SeVeli7Z0YxpzfRorbcv8xGAqF/YCWE1tWahivN6YrhYPqPY5OzriXvvmUWGu88ATHmO+mPrexSCbPKj9/4a67Rp4x1MYcjRFuAQyX62tdkNA74wK9NyJJ/Z2s6lNJCfXvwk22rlezzZB/SaZlz8RvFA/3+NDoTwZ9HtLX+vcZDT5jBZIROY9QAHoreRyQgRt6tA+6yOcK3UAy/BHU1yBXjJMJQ6GcNicJwBuagDPhcZDmTmAJ/sxATAMxu55+HNiDeBUA1ixgZCvOn01Ktdhwc4APLKsamEJXnWYVpp0Mmbtq84Lj1b4L574jWFGaNzTMO2ozBe1fGhScwCHWtyjrfAHAewlhTs6izfso3nN6YxGPAWSO5qXF/6LDfycHYhGswdNLW8TALuThvo1HwFg2OEuf5Tsu7IH9wNYchKOADgQwCLRXVw9LZBr+d8eA/BQb3awzwu2DQKnnJWJihrNRt1jgWEA9phjsnBzrMZDv/SvdEQWYZ/SsLvIwEBHxN4ksBsNwKPdmhDpB6/MaGx58ceSeZAnDGcbBj3ikWDRv2xaMgscLNhqaIHL15KugQDcczwqHWn5EdmEsqlLFz4OwE5sK+wbDcAwZeSS4+0GGi5UIkk/AbCCq/sBnOtBTlD6EQCOMxmDoUuacX0vgNXDEjMA9zWAYUoBtlCocat45rbW40VKYyvREM0pKdDe7g2pqyPocaufqV13jOG9+DXY0Y5Uc/Gp3oGD/0++cc7Y91NUq4yOZiQuUPIVbIvm6wfj9IN1xxrpGjpRMNciDQ1uotH3zxU1I9Xa8fxIIil7a543LL+y5w2Lp5bXkZnIVvekWWhsK3O6XNVPEowOeoFvYJT3HrgCXjPtIbYFtXEp3EIR/AUXrSxm6ThfUmjerjObVhNqJ4VDB2XDrXM0mfQVmNil0SAoOXcFkO2jO6tRAbuM7g0piUVbSr8Hy6V19onK6gkU4qR13h5UaTDWoqX6bGERRqwX3QkmV1NrW7I5gN3kDTz7nusrM4J1MZpEM6H2Nf3/NPvcSWTsvohmJN+g4W9AAOs0pCRvwrWX5w9cfW9mGriI2X5ckUtSe36Y77U3ldHZR0STVNVgrbkXS+abtszMZ7vH4I71ZMkADAu7e8viahMzgXQQwO44ggIkVOuE4sDs2DXbG/S0LCPzbqpYuLPWOV5YUgTjAnhqfX6T7dREtx4DsG+3k1yPArAj3xkgH0MwADczAI92Ta5SRQKwHNFkzJTWQYfT9oaU0UbotHfrTp0clLa2jeoeMAGwl49NEt8KxhVBbhgYLWqZUN+PaBrIkezQnf/+IIBh6gbmoOt7t8CublR+oCyDJyxUiLM1E5FJNag6tuENJr8AToBz1i5HcopygNr6bFfm9qhz4YobUQLKa1628oQn+dVLZMOaihPiBwa/zJFPxLf8Zn0EwM6FOPvr4JFSK87itd28PCl7DEwziXVQsK7VOAcuDMA+DMfbBMDad30zoekeC2DPuLkWmFBBArDo541lfwRg1dIIwFvTCJPDRJnyo1KJzuK6YGy0p6JGILRtzfWAzuKGMYsWrGXSZQIvgcCXRPZ3Y9FuNLZLYYg/ZFJU4HTjxHX2d7mwTIRRyPCqNjkiybY3m8viUZKGMdKjVT52b1pBWVyRFz2Xv+PaqxeCHM2xlhGtUmmNdUYOSwdKG+A57XLR/K+AH6wapLGoeeJWujWZKELMFvbgC2QTd2yn+x54S3SemWBGLoJCv57gXrNFRMNUuU41y1cWjTUyYTkZc7bBuOJ3UzBxJIK5Hx74ezbY4a63jPXAMi1gML1+yyqArcUAPbkLXcggq+qyOpgJFjvmrq8IQdGarc99AmA9dE8AK4vdMoEy2exka5ptng7gs9rjmVB9OATUBwLYz1d66mS0+ft5j2MAHq0KJ9k4XQsUtkAZqOK66LBWSWOe8yHyBYtv9NYSjxPTlmyo7qtdAAvgDfCDNUK/pFIo5OAb4KWRu8mg61LbPBjA/qN/ufs0MC6/pdFs7Di+PM4JgFu6lT0jhLaOFmQHHw7gPBthOgJgFdgFwyosEvXKUtguTKyF9OMEwJsawELdYEGFU9FNzSqC6YuNif3EgZwA+EfW1b3kVBvPWJcTtXUU6zsKI1lBoXEAn9d/lQOUao98Iklh9vs5mD0h7hiWKzZaXbn2T/MdagJYLkCupSRZhb50557nAkupxhPgDPiK0Z4XmUaStaizcsp6SuWplGpgfjRTPkpv1c9otYpqfwu8ssozdxlA5evEv6rPH2uBZbUa6xSjsH5lt+3IZXcA6xK5Pb3tFZXOygAsAzB+CMATWXIzexDAE/sRjgPY5+t2W/88lTZYabgDOM0ssNJqI0OjSDohWWpyIESjGefe0Nv4LYzthWmS0dIhniyByV2eqaZsxOpkaYUh92NSvZxOIcE0kvTkZPcmoXG0dw3mw6nCUJ0Sx1qW9cbyqEnbB1Xdo5aIFS8akqgKfD4vYbSx5JnWKtY6NpgBzVZZu+Ap/wt2rNvyzMKC2dfXPC/wNTfLCwMUt7onIyHSVzIh1e812lS7WCNwDbwEXgIvSF1lxgkScFhrLLB0aMMYbEVDcwZcsnBUGtQDUh+n4xK2mx66TiDre4f67S5F6dCP4IL0tcC3jJQkMyNzjRvGuWrh1dBPU1s6+UiD9TABsfvM/hTMniTbkUytEEGHbLT8my6jjWZKUFeUTSJFAVi/GW242RSj21bfmGy7Mgewf9YEwK09IRmAndbV1A4CGDQWMJ9GAPYjJWAB1inVI8wtU2mH1K9c87HuGeoiOGFnghmgSAyXcvgAvAe+Zt3dLe92+Q0wsBePom1VDGYLLsE5zjkPSYY7bRMvSAHiHfAOeA28pV/hw5Y1nAAYwIanOTvgloWml8CaJdQtyxS9oGIiMxOeY/L7jwOwyyEoe43JlXti3REA3/Hot0yXyAwBeCCAJbdjnaJ1dmQ0DeWpxuQAPucWStbVykgAVmJiAmD/6kxiko1skhN10mai7fSjA3hebjmx8xMd7NGk41AAbi1TlmzMQz2AwU6PCdKJwe7Kjnllmr5z4AlwalyEL6xse29cqcL0BWchplaHksovC5H/Cvg1q6sF4D+wrU+qG0RM0rfuGoZ62R3A+pr401Ixe1Zfveepx8Esp2i6NAPwSAAXDN/x4tNLYAW8Z5SsUwtONE0EINgawrbSv/kIAPtXNBXvBbaBnFti1bIAvGGzBgFYnogAvDdCQs/UVRbyWJNxaxPuxxmm2CprnLgtb4F3HOmK2h7M4MHi4kmazm1KsLvlVla3gDrQmGAItQ53z2/CL/pXsL+KAWn5TCd0BnsLakeiNX2bDV4Ls4/JvOHEJdeZVZ9ja8nSQPZAY5BTGG1J5edE7lsRhM+AvwQ2wPfAC+A3bJZ8xhTdH4Fr3s9yam3iA3dnknppavl1t2wSDExeEwjBd8AL4Dvgjd0X0ZmA6/nyIkqQWJoAfcGLks6Bp+wx0lNOYFFhPu5ABz6/MaBM/uoCM1dOyYRQXlmqX5ksk6BXCpRem54tXC3id8p0TaTiT6yEbJkVd5gWsV9aF34nnXYzyfxxjzRztVl4y1u6AssSFuSe1xZsO5kVa+kPVvi34JgmZlTrqP9F3ExS6rGG6ATAzihFC0m9cwhMueT6l5p+a2S8L1NjXGlkSKrDZMkijc7Q3tDHkku6IiaTgVY6panD/WKJyosvgF8Dt8C3wAvgPwJf8sajPfA98AOTOCeWdtbJzuEQgCWFcwDHIwDWYva8jOIlDy7IpxqptYNZfzmL19zNL4HAJppPgCdcdj+RrdLE+wGs38+DYMwEJtS6WGSW9OYkthbPONruHASwWHPPJ59aZj5Zg7LEdkvJzGsmJbpkAD3wlQU7G4twhNaf3GBx3XcEcK4BHAlgvzQI9SL6gc3R4ubOapJQK8JoQnMwAp7b24kW6GsGOtQAhmlZ6QhxCPIIknnVkmY1jmgM20LCxmqhAJwBT3mFz8LcO7ngi9rd0BylU3QspajqU9afPgO+BG6A3wMvgL8HvgK+AS64Xy9o2U4MA5rdvjYvwfblIIBxBMACRgJueSnjjYHBvRIVgYnJAYP4ksY+BW6BFQFchrQyXlbteI4BeEJC+2seBeBg8uzqO5gsqY5NAI4km7NVyHo2o2HHa8VO0V7TWhN+SUIBjk7cJtMOmqbC1x/1clsEcMdi1hfA74HveBfGOS8KOGWlTEsbtGYhvfJR0T5Btn9BT0IhiW9FroV6ou1TvZyYbRRM0Cb8hdbMo11t3SQlIAday5MtT+shfzRyf2Hx2qr2e2CHEUp0vDdd4pkk2Dlbp6XXXIdT4KlxYb9nD4AvgSXwnLv297xY7YyD6erlcjjC6s4m2JUX6D6P/rphN84XwJV5dWAIoRUbrZNdxwP6d5z1itnspyxHWVPH+6njaA4S6v3amypqjGOaCNhBrnDijDX1XksCJ7RAY/SClNOeinzLJFmwfW/4S8/9wuRE2NWJ4om18W9kQPzfj3+bA/jaAHzJczUXhsk1c3fSDxNF0VILndoFiXPmyxmKewDsu3LweymCaNuZrTAjmNROzA1qs+UAbrm4Sr4trKxFvvKa9fgTrqF8LdgoJ9gVVxp/qnWE5EyHWM4NAN+TJSk9z5/zEO5/BJ4Az4Fzo8PCZLNNTaTHAzjx0sQ3wBsmjxZ1Qyf1wz8G4IFJzgXwZ8Aly1HWxoFG/hK1/XWA9Ta7gxLyEQB2d2ginNF6tkwAfGcA1ntbSssxAE8Sc6o+GOoUfTiikn5S9yOl6h3vqf49pWQC4Et2TFxYqb5/yR/VmARg3xvwZbFer2ORMWwj5wAe7An+wFgvjV7smUWJ71CfqI+WiEk2F5gjdWdHvjrgCW/xOTNdMNSXgSsm9sppV8Px0LBbstrXwHvGuyPwNXACfA68BN4AvwWeAs/t8GJTA9gDlWBU1QTA6QiAAwnmGx4+2prfnGoHRweRHMCFoE12eeGvrfueLlAcOf2+RuYEwGO96e79fTqAJ58IboQ3jYIVgh8EsGZxEMDKS2i7s0XPjXmOwQKwQFUSC8HfRrIwb4HfA38P/M/Ab5htfwJ8BTxnnPKUCL4ALgHQE5qsmUicaEEZbLEnQJysk8M3zfZh8n80BGQ7CzAYmZ3rlJrIKReHaE9w06yGgVpXmeAllVPPZu69IVIWfGG54tE8bJAWVBytFcjmPo6MYcuCl+zrt0DgdhR2498DX/BuF/nQrXV18JX3yGuS4dvbyxrbhYblgu954nfk7BJ12JKmQM1hE/sYrtnv6zXf+2vgGfDEqMaFXebVWV5UEjIas5Nqygn2YpfGubRM4lzl2+JMJl1huPes+CcDd8AVW5FsTW0rit+YxRjMydEVgcJFiR+uqckStwPAzvqPTYb3U7JuAuBrmpWvgM/onD0FzgngJwCAdR2juJfccFirmaX2F6MGzDEA51rBBlOePh+lfDvL+kpjzwEMk92DAO7NXLZM/65MxFfsDbC26nI9v6HtbixhJOep/HXHRettdnKyB7bMWgNfAQF4C3wLRN5cVp5QAPwN6SGl7Vb1dCTWzREADzWA5TqDAC5pZx3uPqvPWGTaIwG4rwF8BbwFBuDPWHQqg7WwNEowX+UeAKPG8ESuPh3AMDHzw2MC8K0B+MYc6yKWdwz6YSMv35/yNQPDvPLwd3a6CWSyVJWa68FDAN4Ab4HfAr8hgLes6xWAn5FkXdHynFp7p2grJQDDmrVqOfyvEwxLaNJsY4bZZviWaHqyuk0N4FQDOBvMBi5Qqi0zSJUM5uOqKDIxc1QuEztngLG2MStsKoWH0XqsgBKzokPsrn9iV9LAGGsEVqzTuAa+BVoCOAMb4P8DfAb8Enhu7KL0ugN4tE+ZA7g/AuAF6/NK8cYGAKffW+UGSOk0ZoE7KvpSZFCM8Ne0B4oTdDZuSV5LuuN+APuCj38CAMMAPLHAWwPwrbl7DbW/ALw3SRtYCavny9u+onEezQjvqemCVUI3QGhvmZH/A/B74PdAD3zFtk5L+medlS6ckLKZRJpaMM3gGYsAXW9oUZMhNVtY4aVeWuPJLulPnixJjER0VHGwY7cZWNUXXyY7lTBaPJvqo4ewghaFlqWg5or9UjtWAN7Vfrm+VnQxl8B74nJkx0JfIgnLluTILWPJ4nj9ALwBboHnwF8AnwEB+FvgDaWp1HhE8pIXlI7ERRioVBqOBDT6owVf8hMCa7IzhSQyvbkwfeCltrq8onzEKfA180ZvgP8nKdGF3asy8rGBxj2ZzQJ9qj0HLD0Ne81ohIPQn2di03K+ML5C01cZp5S0NJnHs55G1gL2VmbVkwOZsGNi6DZ2uS/ov8l8q6ZUnKyIQt1HgwG4Ar4ngL8HAvANA5cls1g9z35GakhnlFxYowVwT605CGoAO8EscyDxnQC4qXOS0R7oXnW2ilIlzQcjjFe1X5tqMljCmk2zNFxrXYq8qY++AbjkKUmV4yglAXvm0vZ+MEFs7MWZsrsgTXbLKpGBwjQC74EXwAh8xezeHcuIr3mnwQnt3YUt6cBFiFaZ4ACGAVhrElkjtQO+Bf7AJJeKbVrjv8T36RKgBYX4FPgtcA38P4AL4Blb0DYs4YcV0wfzwkH5bmsAj/y9VL+qvoY6RhJRpXfBiLYJgFtqdsmA/ooawDAicmFlFT19j1RXAkvZLRkabQxHYrJaGneHmJ4Aa9PzY6hR8gKvgXfAEvhL4JbukTqQy9VoqDJ1lMpDN4V6HfAFXznh3t0CC8+w9ZIllDbyKjlXpQun022Geztpu7Bh9xZzgNVOjfXcngBYQlDcmmuD4poXgf4K+CWN84QZA+X7jIrvzrpXJl4s0tlbilickCHR7Z0jtcY18Iae9NfABfAZL3v4DXADPAc+B07ovV3YmbyRJY1rW4S97WOaAbjsyIbUyivgFTU7atc5cN8Dk6NbPucE+BJYA6+A18D/m9fBrbhTa+rcxp6TbEEmAM4WFyrnEomB1rxV1FLnv78HwOoHm80mibWLFn3JR4v8zd46DG/tpulkUOpqjSmLdW750x2zPQtu1qR+Dm3R2z/Q/TqhoWnsrR1LsZasw1Lud04fCGELDtOLLXP9sjx7+/xH/4jJx02iG9FPSpnAxDZbifjkadk8JI+SRiJSZ3uSddho6BiM9vqMw1+etxjM9/AowrW61y6B69kRwRuWFC95jd8/Ab4F3gC/o3Q/4URuAdiVbckihIGCCWMMnCZ336acWXzP7ERnYuUGTiug5PkJx6mG77c8i7mrD/pqK71AzKmSRO5/axGXO04TeYBtqKynxL8xh9vZD5i1UTolGIZABbzhxQueigu1bMirhPkz8hV3lisagacc5GDS2JETlLvY64TIDnjPA2E9cEZDIwB3BPCa27CqAXwQdQJw+w8FYNQAbo4AGEcA7PUnrS207OYJ28ZlwlhTc1rhfgCHGrfDIQDLf4A1gwsE8BZYAu+A78hMf8lLsL8FXgJ/IKV9wV0oAF5Zuk2rMRqAWyt/vQfA7+yEcmPt81IN2mymUPfiLYHXwHfADrgggNXmPZhICMDjEQDfHgHwXCYPAjhYYPYoAHePAbCsAupZ3APgC0qFWJyOVHe2oL8ntQMweLoCEnDOLv+BunNFq3vGo3IdAQxbkQkyBeD4UQC+B7EHAezec7ZCCwFY3P4xC7wwcUmUvB74zM5WXpGClSQt7F699sEAFu+rNgEOYPHEkWYzExu6o/mKjnUH/Ar4BngCfAu8Ar6zEvBIfjpZZKmFkt+8qxfqHgC/Aa64AmvGfMGe7MUnDX9c0gwsWQFyzcC9+KlLK1GYALg/AuCbIwAO9u8eAOePBfDDLbBgHKiLY22BE11tf+apeUbgvgO4tWCyJUMY2j/wErUFr9bbM0pasVRSZndJc7624NfrFWHL31hFukuxByNuOvMM3P4v1y9OszcOlOg9KTO5ICOHNNRG0GWz59a5HVSfBGWeelLyl/YQpfh2NqTJV/lcVaIpepL0iTfQCxraRGndUk75BS8Oewf8DuiAr4EFiypviLBL4BlwQv5L9HliAsML0LKFcnP1Vr568l9PDQrqQiYlDa7GyLhLHl3L1l4d8GfAU75soIJRNkMnz727iz4r8AVOM4uf0ciVIXOKzfkT584TlyKS4vDoWIq5MayrTdRdHZAoRtbqRRrZnXkUezuqICGULteaJ+PCpXrVsxTf8WrrE1L9cwAvDMDZIuNQQ/EggMMjAewJyclfJz/69w1nu6UooE4PBRLJbnMdwPsZv6hCrp5vFGmtgyJKJ63snNU9AI4mW6NJ2BzAA8V0tKigBZ4xs3ANXAG/AzKv8fuShukG+HvgnJdCLJhNUzp6IGGULeoYzWTPARwsh3VRG7XGkgyakU7wr0h1FQD/ih39/gp4SjZqZ8cfR1MH7hA/HMAulkIvHgng1SMBvKecJAMwzPNsGLmOfNpBAC8sj62KrmzVvwLwj5C+oi9yAXQ8mjYSsad2XuGEOxGsGFS7ixrA0eoH7gfwHMMHAXCPBU61Dcwcmw7YimJSNDnREdlqPCYeWEsxUk+jjRU36/D8KUHSPADAsI+bAxjc1IXd9yC1mIHPgUCgfk/ongG/4u13e+B3zNHoNIAyBlsrJJCekvZsjwBYxNqCQVRrMtrYwroTKV0vsfkC+CPQAX8JXFqXslQDePEJFjjUg0G9KcEcxnsAvKgBHB4PYJiUiizZWupdB96zsdeud0SZZooc+MryQW2rvRXlWZbknAHLwoIXMaBqMz2a0E32fBKG+AuSfe+4h6kjzNTDxHTm+mllN3ZWR6sCU/nNA5d5qIszwXVVvJNYgbBh/FjOZA+0wh2doRNqiw1vKJrP178aUjlbuiijKTwPAFWdkozYKmm5BY/Rv2ZCuKSRvgFugd8DfwfsgCc0c5e02ro7dW9QyDP4plrZaEdOgK+YuyquzprP8d338hjU9mIFfM2BLcjBbesqiGBFJp4NkEPV2DUDvQlANlly10LhkwdIerGbY4XSUgmuVkNtYUbTVf65Cm8VKSX75ciVHChUkWFqYoG4+KVyZmTPoAJc2I3auYgoGbkuZZ5nRwC8ILclSjzWe3yMe/oIAB/EwNxGyzQP1th0PATg0XJAEwBvZgDe1wBemR5paItbllCuuTfNkcFrtA5gqdZUm2aJaSQAtPcr4CvgjAfG3rKw+AnwGfArHvf/DQH8FzzrMNhpSC1ONOFLhoQ5gMtIShlnplRla+zv3hfs0txoc2yBz4G/Ak6Af0R2/CCARwK4+zQA5yMAHv+UAHaacjSpSAbgNQF8Sr3WkKHXGYjAmHBHXifS7m8oGD+i95ROySk35lkN4GV9wY/bCtCVOYjbh1hg4VAAzrO/OqnsgEf9BG+jM5o4lqHuja1KlguMs0LeRIsa7JrlnickAtVhB1wCnwHndKBDLUbzFXAA7+vXKzjOZoFHjkchUamvKlU318BvgQ1wAnwG/AXwnodRCoB/CTzlNQl7PranBESTRVlgfdw8YlmyZlN3Tbf2GhAqgQAerNqhLPhT4M+BBQF8wxUWgHVWuuXzPwXA6QiA04MBLMA/FsDSg6M5zQLwqdVBqWShAf5IKY2UqGvjHjpi7UdItw0t90ipKSr6nO5dYxx6w2x7Y0rGc3QHba7r84OozbUmgK2rYitPQU0oZMUjBb6l6fnSzvYo/tU9j3vLADX1jGTydMJzYylx+SHimBYs4BIFhlq3OcHngeGabnpvbxQIvCZLvpf65ali8wfgPbAFLoEN8AVwAnwBvAJ+A/w7YAd8A3xDn+yUqeAdlzfWPoPrEjclygmdAWc8AJxZkDlYcKqM2h1jbe3+glUGf8bjGAP9gRvTkeAhiNGKCCT4C47EdbYGrGG4LwGTPaEzmRmB/RhNZiQMEm91z1AR7FijTXJY1NuGWwYTsI7nqHtO7dba3g0MwJOF1WIey+70krc5gNsHADja1mbb7IMe86cDGKYj5gD23wx287aCPAfwSPX1QQD3BPyOClNHblac1BK4BE7MZj0KwLALCiYA1nGXbKs98E+n9svSe/gdcMf2dl8Bb4B/D/xPwJYAXrCSsyj8zREApyMAbjny4vNtGaisLKMBK7pfscBXBJlKWJ8A3zC1LqBuuIBqvnE/gKOt2FCv8NwQzwEsB9cZuk8HsAzxwH8C8KoG8BXwnlRKCXxXpG12FHihdLSoT55kGcNPZXqJq/MEaPi/l0A2NXQnEY8A/FgL7FI7+ZO/ZbIBGkNbv2XgVJfmIwrAG3tNskKiyeqDCB9oJEdLpd1a8UbJyD4hBnyCDwGwvPk5gGPt/Hm+NpI3a1lTsSVgPgNO2Zrjt8C/A/43wDfA1/RElUa4MQFtzBb1RwAscndZezenNYAlMy1PYAzmlXbANXAOfAk8IwYansYaqWRhv38sgJ3C/1kALO//sQDeE2ZjfTKjAPgGuCOwnfMI9WHhweDTmySXqfXtjixMQ4uwZJyl8/eNyaCsFWggvFjRIyYt2yQ00AtC/UrNbOIcK/fjLwsmzqKltmwTccuF75gJWxAHo41zYU0I1ianIz0/cYEtrwsQ1VJC11MeTLxjpeUEu4JvY1No6Sp1NFL7OnPgDK6YrJHNCcCK1lLv+i1pyxfAFvgF8CXwXwOnPFkI6qolcEEPuAxABWvy1EO9yE5glYU6AZ6THxjsT0oCo04LeyCZqUK+ps6Tjyg3XRs0Wnzt3K1ykxLCieVNFHMcEUivVBE/JRqxsfq1YEvkNTyJhztvuH36PUxoow1vsDlKF2qmgTahZUnVYBmeUnmx5SFA7d0ARkJL46iFWAG4tX1tZ7ubLNmB2XqFRwLYX++WPR8HsF6/Jx27qQG8NgC7lnEAL2sA7yw929H1DLVBWQPPeBPNjrYpHwFwMA0vAKsUcG+TFdqTFZ/ArEDZ1HPG4qXn4I4Nsn4JfAn8r4Ez4D8CV9ydJem2M+YBs7m2AjDqRfY9Kgt1ysztzmxuMEcO/OXCllSOTSSNfWb6F0ZXK6F2P4DjvQDWZ300gPMjAbx5GIDHIwCO5tQVnS7frOUibEnYn/CvPRiCrKjXsznNqnUWMxpMOgWbaOt40Ht+CIDDzMM+SN/6lyYvgRvI2N1xV1qaX52XgX3QigCOZgRUWaG0+4r0Cywh0tIR/JLpgMiELkxeXaDnAF6wZ8W+Xj0dCJLFbk0fFzkTDn8AboAR+APwDvgG+Bz4G2AB/C1wDbwAYGrohHnHWHPPmetwDMBSWxd0EAbGte1syo21xRGJLgB/wRt8evOhEgcQqLDuAXB7L4Dlsn80gL3sJxsaHwtgGHxGE4/GnNmR2fTCEA60E3vmLsV26iqpsrZje2IlJx4SBivLD7OdkVfnMe/kZXMDdDDs9XWdRBzZIg5ZPUVYMpSuxht21BxN/SzJ10de6ZdoMjoabrF4g93LLTJ1Qduq1og9w+FMb7urw5z5OvhvWuYDxA+ONgUdB8qHYBFIEi3417cAgB3wkq2avwD+MfAr4D8AV8B3JMuLLDwHfmGBpNpVuYsSTKdGCxXFnZXSfZ1Bl9EUdxMtYlHt9coayDashFF5UbKoXNvtufFct87Q+cXRIJi4Cw0/Hea9OKS0+EOts0WJjFRRRXnr5GIiZO/I5d1ZK5XGOEGPzVVPkrh9kQZzTVmCqcY9V2ZZdzVRBWYCXefMJ05I2c4sPQgzRcCxRu+nAHgS7KbHANif9kEAq4HDBMA6Zq06LR3CUPLomuZyweNYl2QNJ2mCBwJ4WYu+A9hLWSRP2WxlIaSeAYFHyG7ZN+0a+Ar4a+DPgP8FuAJ+4Hxf0u9/NgOwTq0dBLAC09J8OtD6bE1k5ZwMJlEqpBmNffvaugjsDVcPB3A8AmAJQzTFgTqT5QDujgAYHwVgHzN4jA22v6kGcOa+LAngPR1o0TALUi9bhrtl1sV0/VRDE+ojccG0yEFANrOkyTFn934A69Mnf5UqDbVX1FhdbGLoqaF2vKpntI6v5xbpenitohSVRqoAyAV3xb3ZsS3GksmjEsnBzHV6DIAXdI6jucsNT4mJ8ZDYua9fTOUZN/UOuAHeAm+Ar4DPgT8HvgBeA1fAC75lwfuHnhqZUb729U5NACy/dgk8BQLFVzOSoR7MGe2sAK63wOMX5Etb9hjxkr6HADgcAbDcllhb4McCOHwygKX9RavsZwDWWZ8lr+tQ6lB5kmhtfYKtTwDwowOtTVhyrl0td5GDGiwbLHM5sdHzhNCE2xKA3Ed0pI51F6NgBRLe+UEqXYA4M49iQQSfkn5q7YPAiW/pQKO2vwNzvCrCv+WR645bHW2HW9ND0kxO8yWbrywdrP5BuJ+kZBWcwsi7HaXpc+DSzvFqOy5Jcv074FsT5IZHiBULn1IePeyVLtFaJeuNdkZj0dZVKA0Fc8s1LOhcmxp4xuNSKrCKlH2JpwezoV6cYNOMFnrPrUE0+yt/RrSUa0TUfqBERRSS3DM9R1Ka7bO06bleENQJtnKKezBvSoUca+qDjonxrTk5Z4TeToNUKdrSxj3WNs49JNQa4Fj4O/nNBwHsXMmjAOwWas1UbTB3YgLgrQ3GAbygWDiAlUdb2CljWZaVkfky1s0RAI8G4GhLurb0qQO4MaPs6WW1V9vSy38OPCFL5SHNBQs2CoB7iwu/AN4RwKcE8I7+8T0A7hl1nBDAkZZC8rriqoKcS7ZCwQ1wYdeHymM5CGB8LID1smYGvGifAjtJ9UAAh3sBHOw1Tl2j9h5bntzVTMs4y7myW3pfW2pAVQGeUvZ2HPx+YY6R1Pxo7ubEQvpXPCSpvtY4BO8JgH3p9TVaIAX6uAcBLDa+pZ08Aa4I4CXD3xMLNN2Lgl1rnphnVQnXYIpgR3WY6PGsTdwb+lt4gAV2/kRaQ8IaGOxq78Gt0Wok4IrFsiU8uKph1tMZ+Qb4d+ytkyn3nwFXBPCaAE41Qg4CWMSUwjXvAw1rO1oArCIkle5teDtPazXZIIXon/XpAJYPnR8PYB0kf5QF1ggzQ94VX7w117Wx2qxEO1EAvLObORKVoETulI1Ziny27UkNqUwouDcQ7Z/7yvpfObdJoSM4dsmstiIaLaX6GpWNDbUVDuQpG3txMAPa0HZ8TtX0DjjnNX5nDEY2Nf0RuMaB2kKFai27SIFVgtdEeeFuOpL4d2TuY70msCWFAdFzG0IquGkrmuNAwdxbOLmgd5UYSMrqfWZpiZ5NNVfsd7EGXgOvgCsgUhWdkYb7nHdMNmzMM3C1A1M+DUn3QLt/wqVoWMYpVZdZh5CBz4AV8A64NgvVEjrgMRlR+DppI05NToUnVKMJUmNym2vRbYzfUHXQUG+BZO/UWomqlvrEFPOK67/nlIW8zj7Ok3/iKzqu4UBZTezBk+2MyQXTezuyVwWhNzbgzlDz0wFr2Ep5Pc0EwHGm6JR5l/5xEiceATAMNtEKt/MRAOvovOf9nFYoa3QKXPDqXAH4hLp6Y4XR5Tnaqq0BuCzxqdHPo1VZBW72c+KtrYMe/9JatbYyo61GS79ffMpPHVKIlj2foJhbZ7cbJoaezgD8gi/4FbAAXvHy7UjhO2Xy4pm1PgMBPFqGRYXOZcH3FKMzlrsJFToePgB3QM+rs655siSwQPcMGHnntDIpnXWLEgmBme3LdTldY5T8aNoTll9tjax0AGc7V7Y2AG/4hAXhBB5kEoBV9pnrKqa97b4DuLVTDi21ibplRwZylwAo8JHp30gxU6XHj8ZgsNkG8waS/TLaa2RAYIAEtbLELtU2Zw5g4VDsrz73IIC3fKUXgbVMj2U6OoXFegJcA2cE8Ck/rq8tcMMkVG+HG3q6LOr+VZB/xVLjQuKWE3vPLJk3zHquuQVubClSbVLU3SYTwLek1HSWIhtLNtqua0d/bbFEz0TSAviethq8wWhBRuGWCv65UX8ly7inwyfLs2QH+4Gx8tpeMFrjTFmw98AVtWr565khNgKnwDUAEoOtJcUHQ1o29Gbz4wdbW5m4vUmvAhu3wOPDALzjvJZcLpjQ7nnYLdUA1vp7ANbb9qkOR0zJ3iLgPUn9JSMQAJdA5ImHPYOW8vzUTsjOSdwKg93BGFar2xr6J/FsNIM7Af1grd8K3O+IoWSOSDQDp62WSZ2MsOMdH6u6ia0YfKFq5GYmuwAl2CVCwYq8W9vtxJJozVQGFLNV0gsOrkZDLgxWSjthBoMJ8oryqEiqzPGSxd+yfVt6ZsVVKGrmqRU6vWYE+hL4wly3pbmnqhjyTJsSje4kSM1v+K4z4BnwFRB5t+WeXtPC3DnYqexsk5LlnQiky+qcNvVgVnajsfWfCLOqw9zgZMt7OdBBYnhrV1pJiloz0FqNHRenM3Y4kTHsKQ8jH35KSVvyZQs7kSXtpSN2FbsZjgBYa32QbPZEpd7iMnoQwInLJAAHTvgggDMB7/eYeHZUz1+QH30UgG+OANgdhsZG8pxrPZjii7OV+UQAi4fWsLvZ7Z0nfPt7O3grAH9Zu9eX1P898IaW/bldQLqkDQo1Q9DUAJY3n60oKjK3tWee/AvgS6ABfk8WHAZgN1gSCa/NQN0cYg7gOfUZzVJ7ts6f83AAOy4U0Y5khQeTotHOSolshnkRDuDRKP9IBOk1JUpZ0uB2VHCy1H62derwuW2cAFgLB/uTJukM3HxN5wDO9Et2tpcLUh9zAEuON0Y9wupaYJ+y4PkgBzDsottjAB5nAJZQLuiiJbaDObVbH5OlFX8WADtR2pglXNgWKPwt833PoHNgMVZmdKsQsOcbBeAAPGcjkTVVPqyHfLLCNdS9eFq70LujXrjj/w1P+3bACxbGwWQ01g63cklN3dxDWPVIbKh191zYJhb44wDspLXL4ZaKUlK058lO1VoUHbSxfqUeoyeLjLO95oR/1Ym2BV8GipnsP9q2nr3z7D5XN0au97QM84U8KMjCmbzhO0YKiuq3tAuRW112e2GBBjhpyXg2ZnptKCzzHphMG+vXi/CW09PYSXRYXz9xga0duxwZ1CQuQjo0a5jD5ysAk1P9XtKazfPZmSYHUatzRDvge54Ld0I9856lMtpnlhf5O3O1fyCfVW52OrcrYgf7OFDdnnDYC3buE+3YcwGfAs+AXwFfADc8SdGzAvuS25fMyo+UARXu3lPOplyd2wQBWvGykDRabaS8qWDurG8cTE5QjyGyBdGtHfUT6Sk3t6lHAmN4hSyVGAh0K2b1IoONoji3poGCBezBBUjPvR/AwYTvHgAfs0QTAO9nAE6HAOwxaDR719dcsoT+hEZtDuBwBMBeqXIQwCVTqgP9T/h8WAp3cpDOvz4CwEpRis1RpKiWgg03eHcEwN/TLXvCTsEFwD/YXaavCeAFr0c4tXWD3ZMgADcE8OIQE7TkTaG/5rW0pU/IBlgAz4DzGsAS8Ww17o0t2jEANzMAB4NNMgAPRwCc7wUwLG/lAL49BOCVPVOxlpxjdx6Ew9bCITFoPXN5jRVD31rtaM/CmIDjltOdvDxThA5Iz+bo9R8E8EDp2TIwzWzdcNACN5Y/SgRwthBNNR4D5dUBnAjgeK8FFksvDbqk1BbtWOKeM/a7aE2R53vdkMcC2GsnAuel8uLObmrOHGEBcM/VKNHCa774kjWVIH/Vs5D3BXDHDOiKnnRrnEFrnvSOsXJgTlrrJhUTeMLja+ArG1JJApacgAMYtqFS1tkQeAzAsNyNAuh8L4DDYwAca9TBgoRjFtjz1pnnO8daMQWufGcWOFGBlm3dGXc+8P5ImMfXAKHVOjlGRaaGmWaD/d5ZrdFkLdbLMFEGieWeqbYpwvSOni4Y4i2YK+pME8iTFlU88owQ6A6Ca9Dz47I5RiMbaOyJRQ8nGiY/i506s6vZzqzmWCniCZmSZ9+7DvP1bMhrSotk4/VgURJs2Tsu4ztmI8UbgNgqdcYLC5NXVOBlr295kfwWuLHKkCfMumWuvCxmx/8XwLml5a8YTV/wkMIFHeXX/PeWtxSfWRUoCL7EASzMc3VG2RE81vkB/5OzQhLUxnS5UDvaN4NZfM+SOrjlJ+ys+Uaa2Tpp38H0kBgo/bWzd4F+y3Ou+Y4XN6qrkA5T7LwdhQeUwbTNxIGehL/6MdbSOVFW8h5y/RsBuK9FXxp+DuDGbvXKNhKV4KgAQw1uDgK4OQLgFf3mCYCX3FFpq54J1UQ12NhMfy4Ae/KzsYcrRizp3w3PkR8D8JYIXBqAB5ZN3rI6agO8pCxe1AAWz50J1x0HcM66jp43HAO4oBf+hKmrt7xn+poF0GfkIkfqxL2t58K8z8cCOM8AjBrAUvcC8FC/GPYWhYvZ8NlbPW1vjp+Hyw2jWCXtR/sUxWby6QXgrzjrDbBmR4obOwLcWcIn6IxmnonXpNYvHwKwG9uDXs7kN67S3vKbvS1l4BHIOYDPZwBu6vNqOvlckuBrAjiYptxb9nEC4LVFvdILMnQLtssJLC/2JEg8xEB/IoD9jRPioSEmi5t1bVFHb0RHyzRE5Pf+ruLCOoCv6Jqf8lK7hm9fcmziUsryXlKxBp4IzjwVccarmFoWb77lvQvPrIdOsoyvcsCL2njeD2BPwUwAjEMAlo19CIC1C47koQbwaIPXi5cWS4ADVs13x2l61imQJi2Sv2XNpjTdSMdnJwy2GmCygU8MrnsGjkiHoxjc1nQR6hR8NiHdzMg/ZfN3vC96Z/r5lB2cWkroiha8vH1nVT8NcF5XCPQUNIFMZ4p29Ai9SCrSYEUOwItoG7Mdgq+npuYgnjAJWmQvlm3pi8M6vAf7U2B1ypbXEr8nMaQgRExCy9yvhFfR+gL4JeF4DlwRXmX1XpOhO6fbveHKFI+wVB7pxJdUV2APzKesG3oDvAF+w+u731hXE9SZbakuZY/aet3my5htvrD1dIMzYmpwFIGo/G2iXGEBsvvZ+ixFfTp5FcwJlKuWrHgD9ldpgoUFdfI9nnOEO154fMO1berpeM1FlZ+c4HYC4Dn3LOXjS6P3eu2LA/jukQA+I4C7Wusqi7slM3cDLO0m+gmAw3EAe/k8rFgiEr3qfnDCqfVWSTIH7acAWC+WlS+248SqcG54se7GxGsC4As+ubEC1Ez4bXkniwB8DbwDXgJPDcA78zgF4JVVGApCpaL6CZflLXADfMsw/SWrHzurZFCpg7Dn0FUi5iATk2sLMQGwZ87n6I22vA8BsAtbb/8OAjgQwNEkpzcllY1aFYBb4EuOszjQN8AVD3o5gH8K55TNcYbkHgvsVJyTphMh1tcxC7wzBexvH3l90wTAXxHAKjCItqYjfe5b9sS+PALg9jiAOzPvmY77aFXOAvApA9DB+qxNvN5PBPDO3tjYrq8s+3ZLDb2zEoihBvAT28TG0Puci3bKLjxvadJfAy/JROkE9MAVixzbSV3OOxLVTwjg0nio4PYKuAVecx0ak7qJvYr0HX0BnU5OM3sYZ0sdfz4AD/XmDjWAB9sjceoKCQZa4CJ17qkHZki8YiywWg5chCKiC1tkWMkXWg918wyyE3Xnr4TpjYHPW5pTkhl7alGVth0seh1M9PY86/YH4AfgHVM+HfA58A3wK+A5cMGSKFgb9C37X92wWfmS5gaEYGfKQ/c/wniNbC5RtAXTVrcGuNHOxDrBMccu6tI+ibBHtf4ct0RSQoG+b6nfe8dbVHZc/ECfYcXw84Q32oo63VPWyvCW7AFQ8sAv6PK+YZHeGXfzmiugc2IL4B3wuXmiz4FzGu4RuALeAa+A9wDsxhkJg2CnYyOh1m0e/E7ik2AgdoD6gktosy0+6mc6gSPDnczSKUZO1FsSWg+xG/sUUZBSSAqlFS9HQ3xLXDyho5UZnGhSa5rj2zpsqJYm1GOaC2UyalDL1xuAFzVLj9qBdgB35o44gF/dC+A/p5QkO+alTKZOhlzwfgCpoYYRbX4YgGFuEAxFJYOqNIc0YbY5/lwA9hpOrWGkZFyT09Vps8DiMAdwUx/F67kaOiFTvJrnBHALvOEFhw5gzWLJneqA18BndqbkKQ9xnjInVcL0G0P+jan+aFpSAM78ZTcTtmMA9jytbx+It1ybuYcAeA51ZTz3VjWguTT1UDPp1K7WmNIFyXIjLYFwxqOrGlhnxPk1AeyZ8ynlosl4DtglclJWlk0bteaeYrYQEwAvzAVR0LkH3hwB8K+AXwF/Bjyn9PdE78DYd7TWpltrQZ+IOnG9cwA3tUyoBrqniBTFdMbqrjN6PxvjxdNsuT4awNkyEb4vkZJRPN0NM4uqVTjh8E7ZZEMr7JUGAvAFj1qe827SN8SeAziad5jJ2b8jCR1ZOCmiQoXCt0w5FTrh2kxiZBCSCWAtRSBB298L4In5dQUaLbb+CADPHc+Rg9lb3R5sAKP5DrDptNaUSkYrm6UN3MQz60WcGMWJ9OsYWP6Ut2ph/hnqqfg3mrf020j07O3QrKIV5eUkXMngOzJEl1+yY6br74DXwB+B74BXvEUxAF8DfwncAL/mEfCleR4OX911IsKltRO/2RIAKi9qavZKtRzqjhWt/H5CcKbaQzpmf5v69x7yZCIv0KPquZ6d7Wf5umOS7D3wlmcoW1buqABS/fdvzOHTEQlNcMlI8wlwDlwAr4EV8ALYAd9yZRQ7y4cJvE7874A18AvgL4ALwrHsxWvgDfCOF56WGf0S+AKIVA9CxmgCI/W2qNWeL1ewZdFvovlRsF+O5syI24rEooAoBdBbDOPGV237dI+bTKf21x/raqOxOrXB5AfM84Gsq6a/tNRHBJ6wEqbxUwwSLyf8Qi18DuBkMpqsZ1SiAME8oXAcwMkAvDUA/+YIgH8B/BWwWFh5tgAAgABJREFUB34NPGXHvpYaZMsDsBu7LugggNODAZwt1aZy2CV9O3VF6U2+J3rw2NdDABysnN95+oKEO1LFG25fy/W/qAG8OwLgkYAsXQrO6HM/Bf5IAH9vAN6Sc1nWAP7/AhfAr4H/gkeMpUxvrQLhhmRfOZUULX0aawpVaDyx3oL3AzjVAM73Ahg1gMWiKtEmKXVzLACrRrC3h4vHhDlIg/FryQAcLfWtXRgI4Jbk10il3LEGbksALw3Am1zLqBPMcwvsAXGmtDmATyxg8tT2HMDZLortuSj3WOBvgddGOe9Iju7rsq0Cy7OPssBNDeBoujnSmzmhL7imeupNIB749RAAo85byRu7ZgKuALi3IGnJ8olTwjLQ2ZoDOFN0ykRO2ZPykmf+tsAfOFn5Go2J3Qp4SbfvV8BfAk841B1rLbeWsS6m9Ru2LrnjHFVO4xZYOiJbsknL5UAVer26DscBnGsADxauiAsfWLejPRKGM4XNjx0NNXBGQt1VhnzrwXZtx10ogdyFIRykYZes5F1bN70fzwm0mQYFpuswA6vkLpkAJitFKV8LS1hrN5Q0Gm0rbrkGA3ANvAVe8qRokd9L9tO44W/uWAPwBlgzvbEifIutvLWKcUdGGbYn7jx7oVNMXvYVjSnwRymI9iREY1PGbN3mP2qJPPkRTJ+BQbdODQ38ZkdAlExsMZ2fs3tQqTvbsiTq9+Y1ZiufKCf113xmZF+RL4BL4AL4DvgjcMu7V07tsT0xXcbwOUsuz5iLKl1e3jK5tWHa/Az4a+AboKPYKDmnRR7ry/UW9XJJJmNtWBysrhq1cY0FP4FKOlBgUu1ej9YUSnBINKY69hINjvLQQKkebU8zHSSVdwtHLXs/N8AlA14PCVZMI5zwjSvgBnhXHiLN09SITccBLIdmZCHBln9d1Mevw3EAXx0B8A2F9QmwAK74m8Qyvx+AGx6VOaGPeMcyBpH8xwA8HgGw+LVgBxB77rT0+dLqVp0k/tkB3Fr2XzY00dURKjKbsa9nAH7H/x3A0UIFaYcdi2QWwFfAE+AS+LYGcKYbfWsAvuWlLc9o998A7/kR1xT0Lf2lX9YAvuMcJf0OYK3ABwEMql1ZW0c1agCL6WtJwzwKwPkIgFV6GPkacUW9AVgdTgZ+VjmjfUcAr6wpXIlViv3dcMtKfeEN9/e9zLxvsxSAvjzgCPWUvL15bypQ4eZBAN+ZA30NXNUADmxzIQCXh78HXgF3PG2+ZoWQiFi/mOcggNOHAKy1bizbFfj7ldFK8RCAgwncJ1pgyZkn2oqeKmFladm2JqFXALwkgN8DW+CNTTDTz27IxrT8uIZ1KSVDdwb8APwReEvtsOTy7piAb1jx9iW78JyTvVbENpiIF6brFwRwcaBPZheOZAJYwH4ggGWK0r0AFnfU0ok4CODhCIBDDWBwduLOYWGeqs161qvJxW9mAE7W5EiewoIa7Zpk40ALPAJ9m+v18EQW6um68Q0WLY6G7JF17LCkxZ7ekgiCHYti3/OWnu+5n6es+nvJPmsnFLpI41s8vGvyKZ1Fdj1/ueL4teqJa9bzaF1nBnew0uqlnV8I1EzqM94w+5WtWirT72lmSJ1QWlqczCePfGOwlT+hKh5Mm5aUzLfAt8B7VkgWPfc1R3XDJb0i4BouiEfKSw6gpVCU8HkD/BnwGfAVyawbSx2rkXYp4HoLrIB/BPwr4Evge+CarTxeMr91x6r0PwN+Afya95AurGPkqSWBtUd3M0IKddrJszWB9jpZcYibGp2bFBAHszaB2mLLsUXgxhp46gz93pwQ5eTWHNsNwTJyZ5fGW2lULR3Xht7zAFywRn8gvnWu3muiGh7hHouQt7UpwSE7IjMqH0IFZqNpiYbSjBrq6noNpq13LK67Yi3R98AtAB4ya4A3wB2lasHc5ltgTwDfGYAHar+OArSsVY+Ij4E1ky2XWErbAdyaoDjjnu1eYcXHiQ93pukTAQyO6o7rlilzL3hlKIBnPFT77AiAEwG8tBCw4aHAaIUEkScS/ox9sc6AP/CYcFmNax4W/AUwAH8AngG/AP4F8AR4Se/5hKcGy/Hkl0AggL+ky6SOsXtSdQKw/KgwW5NjAI78U5pZ3miqNpokKC2o9QftYNn9WwPwHVXYll7H3uzTyjJHsoitFb1Jxnpb9htyPKWPxTOeF9GuKW0XWTobebrpNZH8wnNjsBURmXNMFkOd91JIvjOid+Ss7ki2qYLiDVut3bBqfs/47Dnre74HLoHndNcugVvge+AptcnOMOzkYmc3p8BSWp3FjpFl+NFa1YCWWXm4hRnexIcs+GIFJfMt/EQAS23tLdVX7MNLZn874BJ4Apzwbt85gAcC+MS0UkMFN1LH9Uaw/BJ4AjwDVsAf2B2vMwD3wNcE8BL4a+CfAc+Bt+wtfcbGV1sCOAJ/AfzCeLM1CxIKOTNY65XADRKvLxzq+3YG4HbGOkZ+P1pkNWe3VOETLNAsEbwAvKGOG8ipJ3oKiWciI7XqyBcHin3gMAL3umTKV+w/+BbogJc83CkbKVr1lLuZ+PANEFs/tu6Bg7vFEx0YbAnViylbXwhfD138Ic/jmv9fke+4Zb7rEvjSwlUhvriJayuucxOvILel8j+vD4f5v9F2L9iMGv5GBeeu0rIpg2AfCuM7slmHUL8y22BC/emKm6KF5AvevFa2rjO3Uv1Dn/GQ7SkQ2P/qHVn8LTmpM5OF1ugVKVcP3DSAc+LsEvgOeMMbWFT19j2pn38K/GvgFzziewacAHvgj8BrUmOXrIA9Nc5kNAntzclxpetlitkKLWBbkOuVnLzA/wUT8mgHHDR9mIRkkwrPYPXkZJONNposefmDiM7GzryIhYTFdWqZsqtVi+ZSNJkOv8lW4H4Aw5zCCYA9pzoagBWMxnryOjNzRX/6ivfUlmj8BLgEfmEXvfTAFbAELoDnBDDqFkkTAKuM4SEAjrMZhTqXG+rVnNS3OIBh2v5nAfBpTZc2VP7iO5+x1+MJScCDAD7h9rc1gNu6PF0UXvnEE+AbrvwfWNcKOpc9neMR+MfA/xb4FfmywirugT8QwIFO1DEAD/9ZAjgcAfDuCIAbe3iaCcyCNn2wsmHYpFbWIl6S4+FZefsFX7YgC/nvlR+BTRsWi0z8P/8KFK/MIapURaK8q93oDU3uDduuiRy4BJ4CT6hTSmx0DSyAC+ALArghxTTZG3lUC+uDej+Avc471j3sgumgB1rgaITepwN4bWyb+IaGjkwAPgOe0c0d7wWwBNGrRIINNRpZVDbuFPiGFNkfeaxBun8EXtKT/q+A/wb4JR2rc1YI/ZYMZAROgS+Ar4ETeswCcEvZmABYJRNe/v8PCWA8EsDzD3WB6QzAA3Nw5WswhI+WfAhmRMWwnVPzlq3ct/6ZqRZ52BhdBjXqbAWa0bjMnu/t6LTfAN8DL3hsZsf0YE9hOQe+AD6jdtpZHWNLgmZNM7TidAvQZTE7VgNeWK1KNl3nurGpgagM3rJuTKT/HbsjaRftebJtdx8apjYmKqF8CbLByPIV424X6sZuaotcliW5zO+ADSPQhk8ohRkSkEWtjLO5YsEOuwayDee8XWVJdla1MSX++QL4L4G/BjLwG+AO+CWH1LEByAndp4Ul87VWyo1NAptcZ8JhqxHrhZ3MaPKjy200kVAdTsPv/SPkULW2L2V9NsxWjiYYYpezbVk0ELdmcBJXvrXdX5Oimpj+hhKeWeyxIJoblU4dBLCEXhNLtkAacWvS2Zp7pM8osl4k7HtWRe7IuhWol5RjAbB2VMUoBZNPZwDW0Q4Vnyyoox4IYBwBsNdshCMATjMAu9Z9OICTredARK1JBjthCXq0PV9wzkPBV+SkHcBrZmL7QwCWMdKCKPKLrBM4oT0ta1Lin/Ko8v0XwN8A/xUQge+ALfBL4JTAuyCAzz8BwM0MwMHsne+Ra9tPB3B8JIAbEzYfZ2sNjCSBOnTbcAzKhC5sdh6pKkQ8pUuzVA87fTmAmyPLIWZapH00O5wJ4GTuUbHAJdH7lgC+IVnbsvbgK+ALZihGK/9t2Hf5xAL5hSWPGmKp4SH2BwJY+dpgVndZY+8YgFW3HmoAp58JwK09U/LXssHIKeONFbsO/X4G4CULMxL1qU5UweaOGjMjxfGCnpE4/jsLxW6A98DnwN8AfwMsgP/AOt0l+doVCyefAJ8fB7D7Lw5FlbJ4IYeA4RrToftzATg8EsAuYA7g5hCAZQAUI8mBdvnxzQJfv6aELIB9O3GL51N3Rs2lONQ6XP5oY9m5xFL20mT8W+AVCdSm7pXRseji1Hp0PAEi8AT4JQ2KcmKtrY2Yo9asc5hhCDZT2Iyk5aLZdF8WvddBplMGeki0Z7qsHfvRo7bJSq5MgmJtGUcmqwbgijd63PGWoT3drDUJBB3c9Q91RaLUd1nGZ6aEWgK3qMNveZ0lWHXwNfDPgVPgt8wStzziCe6+TkBcA9f1lcMDS/cngpdsYL0pWhfUZAI52eVJODwJZoMBbrTqx0ASI5JrD2aR5CRseS7DYxutHkwaJTPBVBFobQf+37NoRKVzDUsMov3zWbSk+Zeoba5/uTLxsoSm1jmiLVtTOG0N+MTzB98bgHU6akHPoFAtF0aBPQECAXxCAKMGcGtr1/0cAF7UAM5HADweAfDkay5bc57lIQB2aViT/njHZNyN3RG/MAAPdV2ET7k1DOv5CbgwCMnyPgX+HviWh46XwA2wAP4S+K9ZML2xBL46HPh6XrMP9ATAc8H7hwRwewTA4yMBjPrj9L0fdpIWXvBi88YEqeH5S5klH+qSk9WAk/Wo+vEr1sLqSNawZA102igxYG3MI/EST1ngF8ArqqKOYfspvd7CuZ5z20YeiiwAVgTcWLFBYySlVmrxYABrA7Svop+dhgz1xquq+yCAE6ovDSAaYHxso73MAbyraa7RNmXNXXwPvCD1+wMB3BiAdwwkJB9eIA+TY1APnh0C8BMC+IazHlkXWQD8A3BH/+Upm1wmO2XckPVaWkYsccBeKaQ1lGvwnwTAwyMBHA6p73sALLJ0zztTRMbrewXiUrg6V1o+bt8Gm65zWJOALtoZD1jELqJfTnaytVGJmj9Nb284nI7wXbG3YQCuTAeOPJIkW79k2DKpqYm0wpPcQDYh9YhVia7OTgtrQcKhkshsvQdDjUvUam/ym/neBgu4Rh7LLsPY2KdnO/t4y3ME18B3TNKMbN5XVKA6GbhI6mmt9cWR5EYrtM1WVFn8mS/ouDfs39MCfw78K+DX7DOp5zwBGuAJU4MDK6FVndhyH0ertAocoTseQrCvWDCsZEPnQfQ4diW6MEOmHz1cRC3GUth9nUDK1C7KnDdcWBXoDTV2Ip3jDUEsPeFaaqAx9PSyZwyg3mv3A1gDdT0glTgBcDANA4pd4i76akZrRb+qD6CfURwF4GBnChN1pgDczoj3hwMYBuBJkYOohGMADof+SRvPAXxQvCZMlh8XVSpf49FR6IGc4LfAS7vO4yCAOwPqaMTiWI8tciV72zgHsHjDcpTzHPgV8G+Av2RBLAiSczbC2tCP2rIO8yCA3S35/0cABwOCC9hI9Dp9KYsc6bLubJzJkOJ+nSyyC9IkIfjj12QhJsMKpjDc50tml2A75EUkbiTlPazIYp3SApdSsrvjAEYNYDeG8uzDwwDshF9jUXWydfi5LPDcDuca7aolbJkY0o6Ur8G4gZ43CL4hpF8ZgO+sA6IKQrNR+52Ru6l21HTQdTwE4Ba448nCXwD/DfCXwB54a4bijO3YdpSWPXm2gwDubDGTQeh+AA+24+COz4PRfwAARxOYUAuY11pJWSsxuphpWz1qrK2d1ytIkDoA7WBElXu6sX63pDvYiCbYnTjKamxzy6r7rXH358b4rmh5T6iOxPKf81YOxaeRKI8mCBpwQ0Zszi84XTVXcZ2tE+wFE5DpX2MbIlU3klrKsw+Ntf7MpiHEUO745Ib5PW17zwuxf8cQ7D2XdEla94KFpg11e28GDpaol8pZ8v/WjLJml7ikJ7w4tRwu+ntgBP4R8E+BhqeyB67AyLfs6Rv0TPhHnozs7QxtsgNs2RRqImgmm+UkQ6r14lzXon5jrl8/4RAV8ulDR0tujTy91pt3Ot9Z+dCCb0NHKNSbDrOtS7vKxxWJV630tZNc7AyOAVhzk3mS4Ze2Ga26bLB5wg7337EB/1s74NFZIZG85zM72SYxKgVVZ4cAHMwv1LtaiuNDAKzfHwSwBOIggNt6PySInb39ZwTwngzut7RrN0SOTvUcBPDNIQBLyFqzRK35AMGWQhSP+mz8LZCBfwL8DRB5oFvl+Xtmqrc8QKX7LqKF0XIuFYAdBHA4AuCJlfxPDmD395xI8DyJPsWHIcOjL490g41Eb5SLGPw9EwAvbZJu/rs6xSWnQf0WBhPHO57hf827YsFs9aUdO1izNvCEuTcH8CU7t4MLcWJGQ+3cW3vNR1hg1axlW5B7OKhjFnhCf+ojmhq6k4EdBLCOhoDLeAu8slqCt5a4OT0C4Ct+0MAZRbsgRv8EYEm5hucAXjMJOAD/GPjnQMdhCMDqYrVjhmhgzri1MFppR9QAHmsAw+IoD1SkYScAngeFf2oAT9y0aGNTCsw7irjDKFuq7AcOTUHqIJuCaIDU7q3AJBlSlaFpaluTbZa9MelSleVLLS+L1XjDMyrgIfs1XWf1aFEfSD+Q1/I1KyZOGupwpc5cobmu0ypOEOyRheDi1Um5hpr/UnKkRQi26qmWNcyUQTgiX4O5mEqDSXx64Bp4BbxjB2idxexY5bQAzoEveSppwQ46ooFh67kELgEw2AhMxd2yO9neeMCCrUueMv+ci/8vga8o0StGDpH487h1tPhKaT8FvKgXyv+pfYpk3J3LbFiB/UmWzldYfxWGvB0FTDeI8xHRobiit+ymu3Co9zeaWwuzrZPZqXnLKbespT729G9Lv06RhlzNDKb47wdwNHBq5qC/NSmHC8zsveLdHNdU0Xtq4NKxtD0E4MEADMJ1xaxma07YaKvzcQAOtoWtbUC27TkG4GT7Kn7hZwfwwMV8D7wkgG/5f9nsU7s5ZQ7gxSEAL9hXcg7gDXmLzuKTwKu5lwRwAv4l8A3bMyxMkxb7uzfj1c8APNoyOgzmAMYRAMf/LAEMQ0pmCzWfnR++3tUBYZGi7YwPVegoRFRBQjoCYF+IyfzdH1cgJdI3cqqvGPhes1poILlxRid4RTwvCUsYgAMFbs0qM1FerRUiTyyqny3Agy2wU4A+0/ghACsi0bsOAhiPBPAJ442y2hte+wsGlBsWJS/JYh0EcGM9ESPp7QVLVucA3tLZVX7dAdzxstoe+JfAL+hM6wgpWAe2M7RMqNGmXsZkOHTVmc2OzQEsbifZ791j+k8IYInfWL8m21L4EnVWVjjJqUWTQK3DT+L04yFC53Eb++fFMiM/TRnd3kRD9FvDF78Fvge+o70Y2SLjAjilYT3nse+W71ranFZ0L86NtApEW2eOWjaF7Ks4YaBCjd1oY25mwJpgLtW/6a1gSiIDCvuEyfagchIHKSbZ29FQqYGGZRtv7abeG/ZXhl3cuQcugM+Az0hn9oTUHYEutmHJhoeNBaE3pMN6dthYmWBc85lnwK+AM+CvgMjDoJ11Gypofk/adcNAOFlZQms8dGPQnxCCmCFAPvfk7LrvWp5hFzXoYfanteC0q3GZZ7p8NPzB1PnEB/DByDcbbWAOqDUVcFdH9/KeI8OS0T7UKan7ACzt5Nmi3n7cz7JOLb2EK+B74G95bCPSkl6yzc0cwAP3MvIFgaflTgzAXkXkbsBjARxmAA716j8EwNIp9wM4HQGwJGCo45vMRRh4ceg73tp9S7e1APgp617O2NVOAG54TaiyrwLwySEA39D33ZCoAOdYALwF1sA3MwC7nOyAU2tpNRqA4yEAxzqT/0AAH2QVf0YAh8cD2JU1zFxGeqduBZVumzifLnteuaWcfOb0f1IWxwDsAj1YgYGyDNnCGvkuLT/sHfA98DsCGAx2n/L8+Yondv3MXODDZYFPeNx1YbpHymlvO+pw/TgL7Ln4bAZ2DuA9F62txeUYgHEEwPq+p+3SABp2W92SCSyHcHfWDWthrafO2T9SAG7ZsFO3lqyNb5gDeDAAq397Wd5rVmWUDjsnNYAFyAxsOR6wxkguW3fEAreHjiNN2K0JgI99/Se0wBMAZwMw+MZk8NaZ0aVVNsOe7CmCwfIbPwGz3dnnqCjZS7YkWYNFDZ77lU+gkwV7xu2l3A6WNNIBlYYHxBfU8zsLutd8rAI0lVzKI2koHSrkBT3+gQSQ72GmHhprkHVGfqd6eeTdaqMG4kn72VsCOXMu7ki5c5JnJlv8Q+KxjpZqozjT74EfgN8Bb4ABeMFOjyc88POcGfWnhLKe8IwIK6uxolLsapntaCIHa5of6sLXnr0oXwHnvLZMddsl1XdnjJsQmfkRt6zV2Zs4NTTZIknldI6mBfc2flUceGAICi1qswMDnNcDd/T0NjzxteFz1Mh8weITMMLJPOTXWrX6wgrcVgaKHR2eQCxkK/q9NqcZnGOyejSNvCiADU3r0nLpoWhdbVJ7CMDCrc6TytsbTKElOvKg6hgt8O1mAF4RwB0rNwr3tqFM94wP1nYyV6xKTwCMFk+EevwTTsEdo2wAVqAvTsoB3Jsy9JMwEriyyouaa4CpPwnlQQCHIwDektfYsYjtNRNzt+T1yumgz4j2AmBv/37Bo0oLA5L65ErlLe1OjBs6FdGGWsTgjnecnQN/xpZWWxr6M7rpgQT2aBsU2S/5nApUAN5zNw8CeGC40vFyrIcDONsGtcb+wq54zETdrRWXj8yT7w3AdxSGJflj6WiBojMR6skKtPVqD9QXK75RQjLpDOFFoTeHAJxglVmeR452N0QyGCcyZMnAII5rRcnY8pDFwFnpMKkAHHl3VrkHRArb3bjerlVo63XfmwVuaC5cvzi7GSxiyDMAd6aPYWYhcxv0mtYiGLU76etydaUMJk6Vs9TB/uloVbIbmCRzfo9GKRd+A1xzKQq/9wQIwBPgKXBhVYqJ5wkE4IXtReSSrmhqSvuODaWkM20F6uIl8Ap4AvwF8NRCqXKC+8ai3jV5MCFqz4SDXOrEZd/WulXMt+S7LMiFLc54BMDi2mF+Jyii2tbOkjIO4JH9NcPMAm/4ggXHrCgrEiML89f2dVNiRQiZ2rDhu2CPggUAyY4myQI3ViSTWo8HFWwL1lKVXirpPmVjXYq7+uaRIgVP7Ptz3rTVENatvWu08qvESisPkCe1MxOGXb4v7JUTTt+Vs35sbCcncavQLzd3x6vlR2sV5xkLnUlO9YAndmEyCxFqSpMESt8Vz05f17rnhKm4M7t9orFdy0xIdPSkYTUhwRTVhhnmUiin44PrGVxGnsp+QryKGVVXwWyTkkbM9WRRLzIMrF5u4GSQXFjfUHGIqBcWs1d63BpMMBrOCwaBbJY601xsSCNI8lPtbnnkq6e55fVw+MTqh9eUpcYQnMwuw4S843R+1Ez+5wmA0yEAhxmAW0uiLkzuHcBxBuBQAxj00d1uFgE9/RCAJ0IzQQhMIB4OYC2iDkxnypD08EEAuwwd++hc/zWbYEl8RfFc8eaUa6uFUGL8gv7MaQ3g4RCARwOwyLtEoqIA+A2x2jDIzoaTYwCOMwC77D4EwOleAOcawI29608E4HwEwJL8WAvkMQDDBNXppxXpnwWrG7zzaJoBWJ7nFMBefD2JG4JRVaMhU3+NRivpM2Cn8QTgjnnHJ0TjxAI3ZhlybYHPrAPlQQDLSE7AiZnEPATArlOTne0HvaiJBQ41gNNsDPOPnugX/6vEt7EiZh0WDMy7t5YgLyc8zh8A4GQAbmoA39jlY6WSRLZdkYlKtC8J4Ds7djQBcLTZ3Q/gzPjHAZzqhZIFbiirnw7gfC+A0xEAe8LUP06eiOeJgk3cVYPjP7HzUaZfDi4I7LMiH9vZFo9tW4NAMrjjPitUyfVTI7mPJS2FopWeRiqyPFdVQifc5DXfuOBvWvOiRsZr6hi7rCErV0FFnso/e+HYHCuhBpxI99FWINsGJutosmMpRVF9F8Al6Qxti9ISB2Ea6hd7ZU20XZDXWM4pvKalA8PtwDJIHZx+ZvUzqX7+wkKULeUr223qO2uv31tLelhJyY6s6jnwGXDBa3GEOZ256M1TDITdOIOv2xcl/2O9RCKqxHgouSg1n8xryrNlD/WeZhMDELJzuUqmjUQ59fWFoQrYR+qb0YxbNtcUthfgC07t2JtkYG/XD4S6HlDuk8eoGSSiYz0TkAmeANiVW6THvLK+dZlbuOXSnx4B8ImVRHakfpyBylawG+4FMGzCQnKe7dnEzE0AnI4AONja9bw6sWixgwAeaj8Bs0+fADg8AMCvaOkCeb3uQwBONnIBeM99GWk9t4xbyo1ytwRbNLPbEEgHAZw/BGBxwGFmJBzA4xEAg0s01HeNxk8GsMiSgwBujwA42XMmjn4yNMKeoG3VrEFcdKbEB14np1k7gDMHoFKFH2cajgA4cVl7W2v3+uUii8wTchzAFwTwmgBe0AKvDcCR3nOgKsoU0/L6+y1wmAHYdc0ETgcBvJ+FEMnULTiqd8AbDu+CSQ3tYqiZ0TmGH26Bxfergrys8Ja3U6oeY8XS5IMAdgvc84BCGeSdda/U5a7auI5e0oqS0MwAvLGeEjq2PAGwEmT3A3h/BMCS48RsQ6xp/rm/7oxCqPf00y2w5xnL10iTowtIehu5JEFO2cDcaOCPwrxDIFhYmOzFLe1EAHK7tPklOyuyq0+PwIAiIluhaxmjipJumM1vga8oZYs6kFyb/om0tsk6uDUkQfV2zLCLWd960X7ZQIB6h327WlM/TqZIBHq7/099azLfeGq1v8GIlcFS0MGkydW1LMjEPOkFRVu8ZlJNeqixLvaRUfCaG6smn7IjLXfHW+OMJK3u7MDCiQ17wemDhSuBmd5LINNDU0CqOETlzhI9Fcq7Ns3193JAYXvhdjbTN2hrdmxuDWEw1Y9zWgrUiNFEeqTDsLD3OgUETkqi4jSRB05qjaARiobbm2nu2RZwIsat6Tm5tXtTMD+qsWMA3tYAzjWAW4pRZ2VPI7WQn1q4rAGsRMbKfiOBbqyWLDJPfT+A9X+mhMWPAnBfAxg12LakMF4AbwngyOBBAicAz7m2fATA+TiAd7xt9caIB4WAUn8LqyMXgJtDAN4a8+gAlr94YtHVknq+p+Yvy/UceAJkbrFyrRMAq24hWdT+EQDWoomBnhx2fxSAY70FcwALZm7iHcD6flLTeAzALgwKlP1w4Y7G8sSmPAdwOAbgzhZiNHly73m0Ga5rPDhlKwzfcHc7Us6n1rDdAbwwNx+krTw6WdH5bu1zHcBtbXLDDMDgox4IYM1dQ9pze3bAK+Cl2YE1xx+o4/wTtW04DuBjFjjxhpT3xBiohlN9DqsjSe8AjocAvDsE4A1rM1pWgIKPTawWSLba5UxJZg2DXt+SrtZ5BXwCgFNtgeVky3ikjwJw/hCAVeLgR1EdwIOBULnOfC+Agw1mNDPZ2L6oKl1CruSG1FnPw6Y/AbjVeAcCXIstcVY4oyott6SDYXdvLY+KaF/aFQoy8T2f1vK9ijS3pt8iDYFu34i1wsiGQn1NYlg3iA7fibnXfJ3/C/Sb3/Ha+JLIWdiN6SIgJR2qAJRtUgTtX64thAA33OXs4Dv6uHsW4C5rf6ZjCduSMg6KxobGOpJ+hq7Q4QiLPl7WeAV3QYWFmY96yjrmO3tZpPMjuzna+vSzVZrQ5FJO8muzLZHMUG+IWdUb7bs/+XG+8i4J2mvP6Aycwp7C7HcfJculO+mpvFEycfUErWg4hdKdFY4XkvfWmK/GJjiRoqSbWQSqgaGeH+x1AKtUY5IUVQ2YgsVb3pbXAE8MwKkGcDwE4IFKRADurAx6DmBwqsncDo1ceblo/z8EwLLXiY1Tyxm7AuDlvQCWuyxkHhQjGR0dCg+myRs7/LuhblUvqZU50BMAF5QuCOCGOBeAi6q/MwBHhtSJ1yYIMxujQAIrrQXgbKIcyPW4ZQwUEjeRjwKwE14axmi//2gAh3sB3B8BsJu6XIvcQQB7CJfMjt9yHUrnk3NSkOMMwAKgL4L4+J8aHXgIm+tTSMESRirYAPdGB4EHuvM3vJTuOW8QXNsIpDzct9MS77g6A1dhYU1G5gCW6zPBT7LZ+p4dBDDsXe7EiLW9ZsbkFXBT3wAxmlw695lNF9wDYJ3HgQlQkYBSGnU9E6Zg1F84YoF1CizMALxiIzkBONAsJ2ufJAZvoIddXv8ZsOZgWqNMgtWI+/TzDNUTAE/iCieIHJwyjGC9R2MGUERoejCAcS+A4xEAS+fKxihAV2HMYJsu+zGhSa/pIpctXrHMZlur5omJ0kIVqIb2zlCrrhqeZ5OH2poRzNblN1MlDlag1PDE2Ik10HC3Q8+HRdl7LsPeXjbx3eepgtZ8C3G3rW1Unm2dKyTpfxjatO074CUrGMvR+RXvKj1j2JhNcDzOGm2oHrL5873G3rlqmNqI5JK29EZEHXa1a+SyPBgzsjSNrczfubUjAtct0o1WeilRDEdLAW7t7MZALRtt/POMI2qrJ93mItnWwBoNwRpGWztO2bysXDudLhKD2UEX7H6W6XHQj+aayouAjS3U251rlQB6pxMfL5nglRsLkvVXEFc72sNVMRe5ZT9epH3LUe7rgg13WGGpWkFopD+naQxsr1bOl59Qylc8XDjWMu37lGxMCsSXxpHdA2An6rRkXtrxEQCWRhiAN8APwHv6FR3bxp3Y4V85MF7NAjOs4ZEADuzWvuUiJLILawtjHMYHAZwpFoOFGRMAaxn3jINldzTm8r06Jt5RpsXITMrBPQ6RCjsIYEfLPQCGVaE1NPePBXD6ZAAP5nI8BMD6UDlsssWBncde2y3LpzWAFZi1xwC8MfyM5k+P5nupzsEvXxm4x9kmdkuPPrBm49IuThip5t3RFLBH+s1yoBcG3fstsJ++0XY+HMD+AgdSeeZrFgd7P6BzrvXkoFtj73UxxSMBnOiyC1QbOjhLc/g6us73WOD7Aaz6M9ACg+/dGwj35li11PvazTmAk73XF/aDFti5irGGorZVRmUOYJeNcC+A8QkATnb6VmPorcIx8JvB5t4YmAXRcsR7zRlJ6TfWByFzeHKsfwRw+8aiMBEKE6LKJaUohJ73eqicb7AKw57E84mVikkXLa3SxOOsO/Y+u2I34gt6q60ZYk9aRCLGS/f3lFnh3nkQh2k7qWcxzTwylv8B+D3wmju2AJ4Al8BnNMHRtnS0waTZx2XbPf3oYu4WakfKTPIlR2rJg9PndI4zZ5HtTGc2na9+LZ0Z3AVdiPdGct9xc+/sQGQW38mPG21DnWwCl84zBi6wsVZUqM1FNgXgxmusPzSQitEaSg3oLPfk+T7CCXs1+XHiQcEizGQSKLfNQ3uPPD3xFu04ZvmUcyq/TX2o+xmPM+TahxysWkm5rgHAG0suuXaaA1iZowmAWy5lAfBbdis8YQvJhSkWAXiYESUFwKXw6Iqeos46xOMA1t648T0xk30/gPMhACcC+A74lhcY75jTvmQ3ghNbylTnAINt8D0AHkzfuifQs3vVaBIv4K2YiT37EIDTAwB8wxJN3ZJ2S4pUO65878oso7s6WuSRKc1gItTY8n4EgKUm5EMHYtV9xQ8CWHgI9fdzADdHADzaYObqIJsujrYmsRawhq5szwTlloP8ygAcbZA7U1jg4owA3tV0oAoDBit7bJmLbekwjdz1nkH3xgC8o3FYsQZ6YZ+6tr5mMhFFI7wHIvAGeMtUqxd6O4UprYba6I0kXhY1gONxAE8scODK7uzK3XcEWwM843HmM9Y8qG5BeV/3np1MnQNYYVNTb9iGoQist0ORpFOWW/wsFnhBomw0AG+sTV5DAI+UPM3UaboJgFsDcOQ2PRzAk/DRk8e59lYU+wV+Sjr0/McCOB4BcLJZJ3uOZtHYY8dabbngyUhs6iqdE+YEpJLA46QLe3Jxr8f2tQlRw8O60TomtfYOHUfZE23JeBzts3qNTEqfVX7VMvcA85BugNes+n1NSRQ/Mq9aDyYXitrExK24ABNGwwVNMxrtHEugZ/MeuAVeAN+zrWpkG9wLloauTOK89lcfihrTk6S/S1CsRWnPjup76pJyZOBzOgBPWN22sDGDv8n0Mgu4b9i1ZcGVv6KblFmasrMWBTuTxB2PKqhu06sHhTYJ7J6NKINZojl8fVPSzAWauKep1oi92cHErXdr6B5wruEYTI+6wtZfG7KHDtwtFZiss1zhiZ529SAHprNwMfH3PZd6Sy+o/PXM9Ks4n8E0sac8oQg485OK67M6AuDMKQnAa+silZnCPTMAN4cALLfVAfwG+B54A7ymMzBa6HkMwMF0kHiKhY0ZpsDnABZzfBDA74Ef2PrxIIBRA1ibCpMJV9EPBPD2EIB3vJrxkg3sToxFLgBWMV4w63nDkindVnMFjDWAe55UkK3p6HFteLvCQQD74MVeL2sAN5T7jwBwrCtkQBL6IwCcDcD5XgDvjwDY3b+HALiry8gU2jZ8+I7K4sYaAma+9x4A//i570zsJlGLajbcvctMFb1n6B3s9s5Mv9MB3JmnK7WULWoM1Agl1foSeEEBEoCXNuiDFlihnvoaRnOycQTAYl0mSBOA3wI/sDm5AHxmAB756XvbQgew/3gPgFED2C1wMhk646dfAE/p/jQGYDGKcwscagvsAH7L0zHRgnL1S9mRwjoI4HgIwGe2yL5NDwQwjgBYDOriCIA7W0zfd2cgJqTWQQDvjgA42iBzLT/3WGCHj96ebG0TAXwHXHA8xRde1Csw2HoO7Ttugst7Y1fdz8mjQBkp/OsFcA60wHvgimtzC9wAZ0y3RMtSRMrUmrFSB+yAb4H/CLwAboAX/PRnDAfkDKiibLQVCsakjOxZ8Rn7ictlT5S+ljxaMgcDpGBF67wBNpZi6ciIP6V+aijsytS3zNZEolBKQvGpB7N77lLiYIogvGbH2MFqKkqN7Oc8mquACPzEJb3nDfFXKqfek9CQ51dSF+XU4DXwPR9yx0rrcyABVwxLypHBb4AVTUamt73i+q8NFh1BsLKERrYFV61IYElty7RZZ0GoMOQFGL01gVRyI9vKw+heUNgVt0YbjFpHJHI7DRn0Lfl4idyaHIiUUGfOTxF1xQ8jpTQSdmqQ45YkmkdUxO+SOmNlR/USw4YTpld/VBt3BuCl9WztLGRxzalVaCh5F2RS3hHAA3DNBk3JBFRazgG85xn674DfAH8AboAfuOtPgBb4jKVlDmC35sF04C1N52fABYM5vdez2Yl1gOr6Xlb/HFjTGXhl+G+YzVbuFLaywUpXVcC9N93rYdxo/pO8F9gBGx0ZGnlQ9CUt4CmtsHySwRZWLm+m/R2BO2BjZwSLndrSR/oOeM8RbrgmT4BszVUB3DKrf0cAF950xUIA9cAdWaj9lhZ8IAvjJmwkDpOdyRjsNP+Si5DrVFEyr121+EUg9wbgbJuiCmZPhiau4QCccDs6gmJLv2VnUtSbu5UZPbZc/FO6f9EALO9oNIdwJFzvaherJ4D3ZCfV5qUUa5yKey5buafcRFqPJd1w9wMGysqSW9LStKuj6RW3RJdYtrXvC27AmhuwI9m5AX4H/D3wO5q+ljfPluz2xlJRYtvAoMEB3DM0f0aV2VunvJbu15rK1e3SHrhl3dgPwBXvsl8agDs7dZutGsZZI52Z3Rtd6gFxpt3e0NkZOTwFf8pZ9MA7Hl5seHdoWdU7QnHFcTZHALy3PnclTNrxHpYXwDXXUPzxU7OxmbeTfUkv4I5isGdN5WgbFKlrro29aWmTA3HVMxm0txUezb4JwNL+OmM62JlCB7BT485ZuQpQ5kH+wmgAbhlsbNmWRB2wVpS3ZHX8C5rrwONdd4yslIdtuaGZhZNLEhup9keWfI0UQaS0X9Msy1lr22QVGkuDr4cbHqlF2q8Vbc0JXeQVNbDqvSW2owU42UxSpKYqdSh/AK54iikCPwALovkzgyDqJ4ip73h05z0D2K+BJ+SJMz8LVjccTDndsJ78lFeD9Rb1qKF85Oz8/OWOm6P8SsN9VqSjcMnhG2b/EgF3y+3NttWtxRLykUZLG7qVHyz55yRO5l1jPUtDtxQTmUiV7rsbWkKLDWVtb3m1hurKHUTle6LtF2wRxjpMzmakZGH1YglhYDmYansUGza1xKJmvmBGCYZvKZiFBTbuKSnW9rYWKv3rbQCjfRC4MspLROvVOZLfyNSaCXjFXyoLe87NFQsmtTeCEhY5egHYl1VsUaTOmQO4tRuJh+MATvcC+PfAq0MA/gL4cgbgYN/MAfwWeA/8glZYVltNKg4C+Bq4Zul2b4q3o+yuzUfUWdGHADjVAA6HABxtue54X6gDONSpPQfwqnY0PwjgFf3CngAWHy/XqGfQJlk/MVdBi6NqHJX2hscDGDSj4ne1v/77XNvftm4jM5iD8YkA9suuJgBWqvzhAM51Zhh8pQAs0/yGFn/LS3fPDMDBVr4s70/oXZFSXZkbpNBN5bOgOZ8AOPOajIYzHK3hp8qsfbGkOzIB/EfgpV3q8QOwAm6Bd8CFJarEs2lH5wD+AXjHq60X9SsPAjgzKXZFzSfqMZG+EJu+t6LCCYCbIwDOM8G6H8BbhhbO6yfg3FK5HWVirBnZhwB4TRP6npqis9i9YUbJz3cmUl7lS6eSowFYzLTMhRh6h/EcwJLORP9eooLarRCLJQscbR+d2v8UAO+OAzgZ+SkAa/y51lZdjeFsPoIDWKnPdwxBT8lfra2wzFOlHZBbud9+EA3G+XlZQkMoNBa6n1D5n9q10rD1TgS01qwh4mELv7dAsijVDfBHtmH8nQ2vMY5DlTvZYs9y/O5b4Br4J8BXhpUifYqAwL16C3wPvARugWfAr8hHtHzNvj7QAQvK1LpgAM65jZ6mG83LlD/q8I0mR4mouiYxlEg6Lnms+ilvqFDMuLK7byTOCpS02sm2oKOSuGMsuTaddMfgN5F/0fi3NSs8sZgjpVvQcYc41lgcDX/uCynzCYt89DRlaMsnelVnrtmGSRwYDL7Z/pdQiXBQjKTjAeB6ypXSSLbkQP3FnmDTlwL2xsK5NV+8pN8lMSiFjcUQT0qCfyxPUvJzAmCtL6zmQ4NuWX0nAIMAPmeE5CvoIcVBAEvbDzalHfAdcAtcGScdqNbuB/AG+A64Af4ZcEoQaqs8I9fz9Q7gP7duNRvua0uWZGH2JVOmi7ifHQGwXCj/mgA42s5dsbLxIICfGYCL1VsS7Z7Nvh/Akb7axhK8omY3th2ZHlGsASybHqzS9SCAW5vpBwEsaxhra5Uthe4AXnJqcoGajwXwomY+DgJYCXAxp85q9fUE5WGqtrOxLSjPWXN24r8cwHveeN9yjzINaobhYWkOoiTJNavzCZF+tpAsC3xh0QPMPVVoJU8XBuBU96MoTNEdM0pXtsSBvmO0JZgD+Bb4A/Br4J8CX9KGKFpoZwC+IYCvzQKfMDocLcnXmqqWFO7t2M49AJ5EZg7gbCppb2dE3D0pbaiesTnRKd8+Mvv4KAA39IA3xuBqPDve86v8RW/VZqPlaGQQJgCWv67x3ANgZzKUTQPFNM4ArDQwLIeg/mrxkwG8+xCAwTEPlih0jyOa0xFNkfnXyGBmMADvjCDpOOwl/V+F+A0Q2pXljURdabB7M7idaeBgBXVavHIbwI2FD3uuRzL/RtojcfbFY/7CQiqdTN7wUJPvBmwHpNsHIwUDk3ivuHXnFgBM/MtyXO874HfAD9ycL4DPgMAD1iIdI5XEJGTb0g1d1aZHPqUkMZm6Hm08oba/G4s99zxW/QT4DPiM9z8E82RaM0DBKloloZ6ET9bne2+2b2QBg7gOX6gVmRTZPhHAigRHq/fQOsuj9dysx+lt/UETCjmaqs72slKvJHzoI2KtJ6TSYH+F7VE2FdKYRlQzCfn0UnsiZ0VIqwQl29L5p6ikJNAKSc2v+ZByiL8nnzgw/7xnimtywiqAoF3S/s7XWjmCrgbeQQA/AT638oNtXXLkq+/kC4A18CXQA19z3ALwe2AE3lCnTAAcjgB4SwCX6VweB/CWVV8FwKMBOLHzxsY4siWVYbRt2BPAy3sBrAyRxKt5GIC3BPAzes/ay84OhTiA4wMAnKxDO2j1bsx6BuNWxO/sTRBVEXE/gLUCHwRwPgRgf4gDONQADqZ6nK0TeD4dwJJb8aHyQ8TNO4WHQ2AGhbk4YGeETFnPng5YzxR0CY1OSFNWAL4gQ7lkN1EP/xUAKXDEDMAqPColU1/S/0BdYNTbxFK95QE4Ab4hcgaL/Aq5NFq9dbY9yNYPaQLgUkX4gs85Ow7gvrbAexZgfgZkltHtLe23tLSF/NQd2cSzewGMGsCpFj4H8NZCTDV9vAAu2Qmy43gWjM5HAjgagIWKYAMbrbapt9cXRbAxqAfTpJEfqjokMay+myOwYSGvANyb/30PgIMl5sT8RHujA3hk6lomGn96ALemKYJReStGfY2Vsvj4nYLTIgwsguoZIHWMW3a1vdwb06UZxfYJRWBhGUWYJpTVl3BlWzDNWOROqe4DMAA3wEmtcyRNWztsnIA18EuW7Sm1WA4V33H/J154trVJVmZfLNoFReklcA58AVzawVRfwnLQ9zXwloVId/TM1iwuC0yVnZj3A37EnndxDqzed1HyJUe9DjClKEU9WmFOwwrmK2DJ4PcZK0ubQ+Vd8mj1EaPZBdWTXJtSKSqwqMwb4J1F+jrA8pytTlurY0z8MVh2NNBd0Z/keETKrLZStlU7Em1SsHUAX+Bucc9WuY29LJg6dIC6jvRAGPYup2KUEpF/LB42EmGD7aNMszvQuWa1nbdWZeaSZCLqlVywKmbPpTipqZsMioIA3Jplyab0UNOEcwAHap4T2iBVQk8AnCnoDuAV8A2v2JkDONpC5FqzzAHcMk51AA8EcDZ9Lh1eSj4K6RtZ//S5XeMCRidKj2uV5DLe3QtgfaIbINgCfhDALdH7HHg6A7D0rACcPgTgbLvW0f9+D7xhYN1yIh318rNaNQQbgyt9HSIWfdIbaXoQwPMv9wEa+6Xcicw8cFPrQcen6/qDAM71ux4C4GSsZbYV6GyR3fWSQffwzwGsjhzJKktHFqPvWHBW3ruokYindUmATwmmaJ0TcMmbLH25M+WCp1duWY3oDxzpmHbmR54AvwKekukcawCXAtBU882BsnUQwEs+5BXwR1pgJbDl0yQC+A3wjmLtAFbh5IIpdfmOyZTrji7vMQAHWzo8AMBS6ls73nVJjv+idhzbQxY4majNAXzFtSrVOFtLnbwFgnV0L2v+lL2K3QIkW0wnoHYkZFr6zdkk+B4AC+SOvWAmGgaDxLVqTFk8HMCwZX8UgLMBWDmEjnUyjX2KNE7iLoCD0bHunvGYwJxrWiwz/A3kV6TRcrs2Day0ajYcK+5rbZE8I++qUgiDfR/MSurFd3Yetfhhl/S8R4vIdoze70znw2j6nustcwwKJqj8S0HCmmdUGhOongd9X9MDLuUoN4w41tZ3T6IazLr1zFftGLqiRk9rojHYn+S/RoM1asUeLBu8pAt7CZzbCSjPiEb7N2FYnJftLVKWaSiy+YbHUBum0BLdqufMpYMP2fFDc/0piVxesGKMZHFuNrmSXkGtmBVreZCQ6te4Dx258m5/HJqYYVek3gTxI70R7w6n+Ffj0REDHdOYuPvaIOWiGmpl0V6+ZQMpqh21oI6Q6vCOKu/K9CEAq9+UVGKu9aSL7zEAT9JlvQFYDGKitslWdFfST5dcvjmAdwbg/AAAa5OW9ARWXJ2DAH5H4qYjgLdWZ+YWZCTOpSe93PEYgKNZAXDAsbYsDmBHZgHwU+CcPbhO6Usk38taGsK9AC7j9L7AZXav6TVleh0lyXDBrj3y/vUQUVcwAO/sKi6djLwHwAJtng3JAexGOdc+tPi1RwE4248PBDBsBTIJzXGSm50xSWKPgvFZsIGBLc4EYOWn9rTLufaTB/DcUFt7w2Kg3dz5hH2IE+HLNqDe1kXbkwwMLUm4Fe+o3BwC8MhTcaiX8oEWOJhTfswCv7XbE0eWBavuWY67Nq987bm+O0t73wNguYwTAOd6Dff0yUYC+IpFVxdsn6dCThUSHASwIja3CTs7gSdKo0D9FYnHwTp/F9790toGCcBy3ycWWK3INBiv7pwDWGIzmlXQnja28tl8bvehRRw9CsDh8QAO3GKR94sZRJMBWMIPyzl4NKwBDHZKRhgJdQqy5RNaYGiXFsm6G9EZOnMtF66ykslpsLtiIiPHxiyvpw2C/dLTlc7nuefh8f9o0cHEHHvc0VCJhTo3Jtp4ywTVK+CdIW/kBQiXLChTg5yOrJaCAcVBibJceOudZVklmBKivQmF77MUu/KuqgtfsPdzS22vCU7oJFf7A0UMJgt7kw55/5l78QR4RsLuOTVfQ6okcUN7dqvo+Fh3itRHJ5podTWatUcTIyhNPwldnXIazWbtyXIG66bj+adg4PbId6Lq2touOdstgvzGbMJoZnfevCcY6IWjQAMqd6WlAyxECMrZBOAPLI/eszVz2fofqxHa2j/2RFm2OdwD4JEAlmVp65PZEwC3hwCcTdUsagBnM+4PAXBvMUCwu4TFoYhBeA284MFhDeydneZf0CtQZaBrHI1Qsz4IYDFBOhUxGoDdstwP4Avrf+wADjMApw8BWFHvrdFMAThhXuKER1JG1ucEO6gnP2FhFqflmmwt9aZwa3EcwBJxyYm0+UEAuzjta4mdCPAxAAtd0aD1QQDf2YA9ip180GTMcdZoT3ZRBb1nNW3gHmMP/N4AfMGI90cA62OSrUucycTk41Gvo9SGPLmOjbIOArghYZytcUBkqYZimp7P9OAmM8XY1vplboEV/62YvlVV8UAAvwFesguRAHwF3LFdjpcXi83T5o026/YBAFZcOwdwNACnWgFnIuqM5XWxBnB8JIClBDNZf6WiljxLtQIuyaw3rMoY+bSRp2/0RhEnAw+xBu5m5vrcD2DY/opfmsieZAC2/ls6fdkw8xAAR/vTQwB8a6ZrNPdaNKBUj9JnckOGemAj16Qs9WD9wLKBcc8AcssuimsddmxPa33l6Azm7fvS6ku0eOIZO1nPJZNJzrA6fBcms0sbQG/ec7B37WwztfPeKzaYVWpqZsdVt+iVa94y9Jbes8KAgX9NPCmwN0K6nKu+qwkImPd8xvbuAr20Y6zx2tqCT8yKbHqmjSsjeWptkRQVZns4alM+muHb0+4P5BYStbrI1FJ39gwIwBPgGx7ibJmBC1ZI39v5aveDh9qtjybLTuFnG7DP3QVm/hXsLV63ua99SCfCYq0G/DkaXrZI0inFicB3ta1Q6choo9LzHayuSDqmOxQTqrTt2j5RQjuwpj/bUaMft/uU380zV8EUly+oy5wAvKkB3BqAm0MAbmsAB1PLDmDJ+vaRAN7ZUk5c/wLg9zMAa4kF4JHxrrJzanXQGroE4O5hAM4zAOdPBnCuN0tLfQzAItG2dp9GZBncUyADl8BXwHvgHbCk35YOAVjhhOi5xwLYk8AO4In9cAAr6zTavGD8rgfBE207ATAeA+CxVpfFaqtMCvbYiZWP9sZxBuBCDg71umVulg5xntjtQhnWIB3EBui5tjbKPBvfBMBjDeDOAOyAV6y8NACrB6FsvurRFGEvbJs9Sh6PANhdkGywEYBvZwCW7+UAXtt99AsWdaztBNtBAK9nAEa964+1wC3vVr60WGIC4PgYAIP/j5xpKaG9BDJLUE+BL4F3bEp4xuc4gMX0T/j1cQbg0eTYHW5HozjXxB8np+5gStwBnCw0l5acsFj3ADg8BsDiJMUEy2CMmH75lKP9Zn8IwIGlrB5bK1d1zVBwReFvWj+gH6yKdHFkrnt7cZn0nRXUgp7WaJpZsWE2GzqPmOQG6FxTa8M/sWDWK27kKinEg3ntLSMIkQILu4b6in0mvY3kDf2BbynLibn1hpjYUvwDq5/V4vOMjU9a85NgAZoeEpheHqifYMWygxVSlSd/Djy1DLYWJ1BVpFpMxBkVXbLjWu04gDXwjidEGm76Dvga+CXwjjLyhLmrr4ET4Bp4z7azgQMeqIOlwm/ZZ1qp/jWTpT2LAyP33QV2xX2UJhbdG7hcA+VBFAH4zaUVf8m7XXETQRlz30mWseGutczqj3T8PMerhLZsHYwTDFSEneGoN6Wi+uZrK5eQ5jvhmiTyEtri0ob0Cxt/B1M1o+k9NxPueYT6KFHgSQV320sud7QUkjK6ILpgpsEd9Jai2ZkbnajnDwK4MQAHA/D5EQCDAM5se3XD15T36tafK6bOdT5nwUH6iu3soP+Z0a4LliYOvPs6miyOpq1GEszRAOzF8nuu6iW7wUZbQ1imTKZEyn95BMAlNrjjRfDROhB8DXzNowxr1m8UW3zGfNPGEheZRUKezR4Ip7ccSRn2ivR/Zx/qAF7OXKmuBnAyNleqX6Zqad6gxtOaIRGAYX+FhWRqlKxC/IHUZ6xbEstx3xk/lW0jgmVC92ajBZxbvktPa0wFyxspk30PROBLAAx4hKkfX60w3Gc1scBbY9QCJf7WiLfW2iTLDjdWihj5m5Gug7zbhoZuYSUlyZpJu9eFWohldZN5UY60yOds6Ti8BN4Sxpn2KnF9X1nN/o4fKlW6Itu2MZO+ZooHzBPfUvv4IbzRqpyD2Si3wGNdHXEOfEVmacFHNaZeB8OAh48t7Y/KaXou+wlwB7zjAG5ogb8CvgLe8bOeA+fAEviS2bR3PJotl22wcKus5A2ZALX8W9NEb9mVYGEMbuaUFxY1tVZyNJo/IqHXfBtOsDWiV+ujDn2o7ae8zjADsCLUPR030QY62zGat62ae1kpjzEUZw5WgvAWeE2NvObgtzapTJe9IdBGkhMF6qt2wp7IsM7jBdBMwJ7tqdTW6LFs9leBrc6aK50wMRY65CcLq7cnW+lYHzjxWgjPo6i8fJLi0weBUNsSmokO3I6e4memYFaUwWBnbvd2g5AaZBUdsybFuzf3yxNRkzoZX3Np4N58noZuKMxYo44fJ89Z8uFiMBJfv7MLaBXdn7JDT6L3HCj4+5nt8x30//WJ2RRzV2fOtX0NXzDhoWFCMsmNaKZCTM+gsjcFH0yLS+qaWrw93zJhJ7L5e5G7HOog1wnfZBsBSyz5W0QBSZJHA7dGNVrqNJlbNdaPCrDNQD2lYwDu6uHOASx1MQFwUwNY2y90TRgBL7MOdcmfAzgagKN9lrPdEohgpHXgdDLNQW/0agHwDfDcire6xwM40reWp+vO4gTAsDWfAFiBwTEAy6Zks2igPnoIgBveMnHBo58tY24B+NrkLN0L4PEQgBfHARxsjyYAxnEA+9RED/1cAB5qAHvt2hzAvWk3Dz59eI2t/1h/nOgfnQrIhxbWAVxhU75IrhEyJ/DXpl0yPbMt6+mWFrZ2NYBhfkk2NIZ6DpNuAuBjldfUIPVXTxA0tXsN7pkcqdaCqsjR7slGZ6Jux6buX1jr/NbuT9FcBODWAAyGj9la8IQawPExFlhBwjEAi5cdbe9Rs9QTAPczAC+AS+CUt8wUMGdzJZ1QD/cCGIcA3NwLYKfPJabKRRwEsJIGfQ0bZzg/GsDjvQCWvgh8vkRUBx1QO/oaiU6BwZa3/NX7xvmXts+J/NgG2wHUI5rvBqw/WuIn79l4emmpIJgZbSxe0HluJQD62kq6z9FYGN7Ww3MCO5qYaPOj8VZDHUcsrJnVCcXn1trnlYC38NNPmbbJDOg8WaVYtVhAVUgps50JsmCKd7CIwv2fUKslLW9vTU6W9BkSBSHw45RK8VjCn5+tXqxnp+dsC9gBz6nA1FcpkDS4odMvPzjYxk1AqQRSpNuzqgnNlmZ9IqSuabIJfrYyvUnwKz2nMN9Ns1yyYD+6znNFIhWS7IivlIErJNcNrrpibUbkEaHuFZS4oSN1TyDrPNoN0KKkhCM/g9Sj1logJCa6zgEcTIc7gHfWybI5AuDBADzU+tbhJ1PiABbZdg+Ax/qbgwBW6CkAa2N6Ll/59Pc8+bNkXxEBuHkAgAMTRtkKyJLVNy9nAMYRABdBvx/AjQE4WxZJwjoB8J5EUqZxKTrlCecoKqc8agNcE4eTQDbXkd8EwM6jKT2Ua8PnwnYQwMJwrAVGbqUsQVMDWL95LIAVGqUawOkIgJP59KF2IKVHFuYBZ8ttgfu7oNfe29NgEi5GzwmDSm7coTkIYPHHrvl2PGfeGoDFUns3FvVQlVEda48Etn8uE9LW0cCQzcGC7Xo0VYf64wJhsGZVUxHH17zDorccx1vehHYOgGcaRHWjBnAwAIMq7IRq1TmDwTbDp4yZKA9MPQwfArCq8DxpMOczlPUooxKAxayfW4216+JS9NJyDMr+HAOwozRQOhdmAGIdL0pr414AZ9MLbnVkgYMB1RXZYwE8GCEWDwG4qQHsbkgwe+NOhJ6vFERrVz54SkGb6MHnYM7jj0Fd64FAqI2vh1GoV0v2d6QQ7UhVTvwqNyi+tyr/Ec4yaSA3xPI51vWoNIaVPXOs/Tb1M040/ctaiV1wwZa0nj+Y4n0LfAecs/tyttt/I9u87m3KHfVBYwqpZc4zUQmpVMBD9YP60pdaPuiEYUnmqImwC9Z7YPK0wVSOSuiXZKDXbFAbyTf1nMgte2wqD+QBj5sexUV7axEB9hDzUopoOAu1vIVa9Sob1NW7rwFoBXpTLcmIIcxWYxI3+idOzq3K/V2ZJlaJkcxrsueo8mTHZQ8zO76uTxqHOhvsBl06bDSs/djWYqKf9U2cARjE2CTWnAAYxwEsCyj1kgyryZSbzKgAvLT19S1c2GaMtdtxEMCR3zRsCpN56VG5/VctNTrgW7v6INdXvO3MMiZiZs27EUYb/8qEbG+waWqX434ANwTYPQD2TgbeUMU9XQHYE3mgxHds0BOsyVH5KmWWF+ZiaWwjox0XoT0bcSjzsGZ2dwJgAQAz58EB7GYaBi1ndg4CeKxt5ccBWFs81ACeUMWiH5ra0MsaNRxbZPw21BvXUFqicVj+zUDA7yey4vUAmGlEzBbaAby3u6M7A6rgGug3d6ZjFK0mloFnK8GRyx9MA8EUWKojYzBuKPKxPgLg0bLRF3zsmrTrSx7+K2fF/gCcAE+B5/QCNIutlbGC0n9mnaJAeJSGO0ozw/ZSavsggJOhNLAI7B4A+7mBzkQ21hyX9j5RxWSrmVHf7iJ/W36zoQU+o/+yOwJg+YgaXtmjlXW7BAc2mh2eZDezKWV5iNGssSzERJAiP13P/3QLrBC2Nzy7BRYDoYBbgHKKveFvkjm8gzHoS3rtsvzJ5D9TSZVlb1tfGGFOHJD7BD6VZE/qrZ+KYpBIqnJiiyWznZmAaL6vEzGoCXpXJPpfDVSkl7KZANWF9szoNOxtpVThJePWL4DP2QbqFohMAl/wTFFT66Q9k6g9yYiV0UkwRb3k6/cMcxZ2Kaov+0SytOcdHWgnED3tN5p+lcnzkCZSKncchiysLqx8QpCdmAXfkc7LVHjJBpZr0y9Z2lMwOroNC4YWsmWuqGASKpg6V+VGrSE7CTNVZcW2tiYepczJ+Al2JaUqZWy5R6qN7Pj8XJsUufiD6WPpUUe8QC8mfmChvOR5NJsghyRThG7tnHyEaTafnkQw1ysLKgdpBgF4x22TfzBJkbjKSpztviaA3UwI24EbcxDA7REApyMA7pjeFCtxxiZ6z4AL4DVwzUOXr1nPcGLOjQC8qwG8NIDFWmctLbBuzEtJJl4TAOubaOzP/QAWJa/g7BiAd5bWLhTYOU8ZLa37QjSReg9ElmQdBHBrA45kuFfUmCCAB8tmS6yzCeEEwKMZtWASNdTwzhasHwRwfCSAnW8a+Kd7AOyxssKn8qECMGx2fo5LldDBXonaJU4MX2/ZykeO7k8TmPhwoQawm3OtrPJHd3R/V5SerubhRFiqyHWweNonKc2k/QDrFuYAfs+FliOQzeGbAzgwFJO0nQMr4IJ99F4D74muN8windipFu30UAP4hHyaf8kCZ6vCcwBPBEg/jjZCbfk9AO7tx8bUzUBUg6K5Y7u0QM++JXRP+UZvbigAB+ByFhHNAVxGq7rwlqUsfoAjMZkYzdcL9nBYpiLVqHZXMts6S+NrTRozYvmjANzYRSrJkq9zADvSUG+EA1u+Lxhc7blWwc5wzfEoxF1zX1ZA12r4E343mnp07l7avmfNw87O2HkxFOq5RlPpje3AwFMAYm07Ew2NygsSfMyBInDD8wIKPRSYtPxmpGUZTSIamp6vgF/x/t0NO09f1j0GCw4KCvdsYXFLOmxhLnJjoWtke+nBKv9DjVeXKU22McJIhtVlULKsuNiLB5KtUqK69YJscDxrq5wsDeyWlmTa079qqIcSd2pv5FGuh7Th3Vt6rDvQbY0/2ApEE6RsYuBp7WTeqtj9bEU4aZaycsLB102rB9MKWvBoEcIxCdcmNrbUDZdIJIxmV9ZErv/IY7jR6nL7eu6BIndNLVtMZRX+wj6mOQJgd51H7m46BGDfAAewCI5Ew7ElgBvzDBzAkrM5gEGxmAB4PALgU+NKGo7nBDgHLoHPgCsSWMWj8NdrKfeE8R2P+7cGYJizmGsA760qL9S8zxzAin1bs4b3AFhGx0lGzAC8qwtwBw7vhNdWdexVMFCRyef2ihRJ5wTAMACr50G2u74VAd8PYNT5BAG4tS3wrIX+HQTweC+Agw1gDmBV3cTjAPaSlVSfahevqvVR9ZW8st4keahTBBpnIuLubCl+UtKTr3zcArvrXNiejYUmoy2Qh7M/faQxPAOp3C2dLd2QlKzcNrFYag5gnay8YT8nt28TAOswYm9VnIHHi54BXwLvgTueVO/5uc5jZAayWoENdeqKTqHXNkwALHZCsfIxAIPvbWff32+BA+eYrKA8W9J6NKkdaBNOyLB27PiVuTs7m1c2ae7MI5xY4BLDrKkOxvr4iwfQUmGOVeXRJxEwzLXV05yHTjWAFcX1n2CBe9u4YwCehJqay8oAuSd/ONAX78iOKEk8msuu8YDJb5CKKK72+Y8OtK99MrynGg0jLWNvG1s++ZQZDpEa/hUMRkLklmdQXwFv+JAT1lJ7hOJ0wCT6KAtfDvS+AzLtSOBgQKq1sUugBgqU9MGSV/2JHd+YnLrgi7O7IXb39D49L5ptJYtuW84KCx2CsEULJqSxVlrRvpGLNswgnklXeeZ8sBS02va11ty6tLZYcYm2wLXdSTya1I+GQtQ7pe0utOYJZU0dGqRipclGU9XyWDJ9VndRAhfZe9cGE13xEhKPWIfVjjPpUQ+TxeE6BSlFEm2Qvi+NaeJog1ka89Mw5l2zvWcxhnfsJBGBM+vJPdr4O7MzSyt5xQTAyfRPsmkHm48KQXrzxlQ/CQp62ZjlEQAP7F/xnn3UA1M5q0MATkcAnA8B+NR8+s7KRlWW5ElIBWSlwOgzjnxjXQeUuBeAUw3gtQFYo51nzfqZoLj35nzWYwG8MNEXpTXYmShJ9sj1DwbgpTHoyj3dWrfOXGPMAZzqndLWFLd7ZT1ovBJDREW0tdKCNKYBJ5YAdTJ2wtzIqZsAOB8BsMiGOYAH28HRGNWDAHYb09Z/nSyO2rkUJbVmumOkEO7MkdBQTzgS8aRl46Z6VBY4GIAnBNdI47nhv96I52DulCvOtp7Ynh2kroA3vP3unJTRwsx4Yjh1EMDl64YtNTJnmA3AaxtbYrJprGMy3WL8JZ2/G8ZwkXzCaABugBsuwh44ZfWw6xqpwtYAPMw29SEA1uvvscBO9YyUuQmAlcHp+ek6Vbmgtl1Rfe8Z/mr6Tg9qnGM9HeFzYBmWGrCAgUe06qgJRGXloomfAzhwc510Rw3gaHIrmbzHAsdDAB4NwMncsYMADuYsNLYRShR6vbCo8QVPeGlfSpnC7WxZdEOhDGECUutDziYpsji+lvo31N5za6o11yuRbB4KdsBDae+B18Dvge+BFngO/NKSH7leUSmV0cL7woNcA++AK2YvlS9trWYjmAMt160xx0iMw6l5VIlDLc1jemZHCnUlQsqNV+ayiCbT9rZ1qHiQ73NZmAimL6xWSQdD4uxTUOu8wWxKolAs6zMdgbmlvbVpUigKq590cYYNTCH8YLxMsOFFG5snhMLMXMBe4F/R9G42dPrvR/vnqsUVTzY8wYYRLNiQn7o3/mQSMsO2Q1pBNEi0TELHfOSSKFObNV8cXW+kjOzADN83wHM6GCtf93RISqTcJkHGWHvPDmDUVJxoggmAb9n/rgD4BQG8NNnNJnyoFeNgCmoO4I6hxhzASgqkOrIf7V6qogMvuKYyQzcUyi2PXR0E8N4A7BUmzewQ9M8L4GB0hZ/s0hr2BuDMBVlzzVdWcRGotq4J+6buIpUttzxxEAVOB3D+EICHxwAYRoepbYUTecn6TY1HVjgaXCdCHoxpkkNc/JD1vQCWqmrMyE4msjQuJNp6ipxuKK7B7NCKnvfXwDP6MGuNwEtAggE11Tlx1EXPG+uvrneNtt/BJFUKIhqAr4DXwO+AlwTwosath+aTjyjjOWEw+o6lFwoRDgLYtYB6eiXrMy2v9JxMYWIUeG0A1i/nAB6sAFdmQQD2soR7ABwMwO77fBDAgR6/A1j6VLlMAVgWYEkwr01t3dVnYSYAjoZGV/pzAGvkArBHw8H8gocAOMyuhtEaiplWmO5h2BzA+n4C4H0N4EQA6+aJgwD2GTn5FozHK3O5s5d5Zi0Q1UrtrSjVZc2fAacMmc7aXKt3wUWHbVZW1q4c5li7U61djLKzmbU1IRJogDY8Iv8S+BZ4CWyBJ9aDJ5hHGOr4JVnnGNjUQRfwCfC5nX4RbxLNBKiURjsvQYvk3ZQEUje3ckxjR2r2js0YT8mdr+z0yx15lmjVIw33zWs8JAILQ/zCOkO7ctaFNR73teY6w0pJW0JZ0jqpqBR1tSBqT5jHfge8JVFdBPmMDzznWzbUlA2Veqp7ZdwBr2tuXhUpN0bQlpkONUMSmHlySQumLRQO7bnmo81RYW9fNzWXFdLSbZjrUqJ4T9O0J5cCO1zg0Eet8jtORE6OTlMnbpCgrFKN4uyJxDjhRXJnJFWX3NkTHpNJvOh2yj3rxw3hEa3kf+R6ZWsNoctiM9Gl1hnSOaDjqOPgGwL4e+AlsAeeMNfjMQQ+BGBXmyc8MnQPgBf2ZHl78hNAV0kAjlSAV3zZLW+suWOd1gXrNxoKE+w8pWyBaHUBeMKqdFZhGMx0duaZJau9lJJdGJ7dS17WAIYZ5UjZ6qgs1jzBsOD1w285mD0j44YCVwawo9fR1MADx1NShKdU3NmIxWsgM2e+sGYjsVZY4LAdwOKwIpWvYDnWAB7YzLs8trMHggTwhkpEr0lM7+/tpr9l7XJk8yIyrULHhw8U1CXnLsbQVcCe2a41N/rCSkxP7Nh1WdXTGsAr1FkPZ1cmxIs2ZrTxRSpsNTsEBzpS3GUfRlq2Uoh9VQN4xzt49uaoRQsFRpMPbaH0woaKo8z5aV235AAG17qxmQbb1GSyokP758A1xXfDmu8bnrF7aod/xaqq3Fla5sTw3DC17GahtULL0bZDlU9blosMNS+0smrvwULVBWEWOCQldNd8WUerWCT4ogbwQGnOFLLebGxvXtJoo8p8zRZ4yzeO9okdcMfYJlE/yiRoxdxRmgBYilVt+cW7ZwOwVOfE3e8tl7whQSSWXdXtOzu53PBlCvr1QTAfAVZYumNsBv7mFngNjFzbnssL46QbWrJTArjjHBdMVpYhnba3tW8h1SfnYKxtk46MDrXfvjKNpLcEc4kC97NEvm+B74A/0pF6Ajxjrxofg5shj4liPU5FDaJU1a7KDZzWWFKWZlMOtu0j80xKk+oMz46xhIKUzmyQvrJBE3QZZZFzPS8fiTP3Ujbym+fxoMYs7kY0SvkarABabpVSRyuLlDZkA1WYHgw9GrO8tdaGJypzT3zf8Jyin2cJ9qMcKt/TXH/v+chQDyNS8MVsJM5XyZPRvJ0wWzd54V7gqgUcef5N1H5nDEOw8fshbW2rjp/BKAuhpmNge0IKIpmwLWxTVhZ+LJgYWQI4BmB5MLFOJQvAi7oYQNxQNIZV9I2igZ6Zo/fADwQwgAsCONUqI9arjOMS/EAAR1vHbOr6GIBFMXSk/ScAblgZ80AApxrA+WEAxr0AjqaPBnqQ3YcAvDgE4MjY5soObj4cwPJ2tjWA1+bMTACcDcCeGLofwJN9F26PAVgunOe8JFrymFXu6wDeWC5JpXsqIEnW6jvVEtvQ4XSnueHiwzA8Wul5a1FNZ8VRibZkSbWyAHuYzwE82AwFg2AxU2+/1ODko4gTTeb3jIx9S+r3ewPwJQGcTTJy/fyDAE62uxL37jiAG/uX6yn7prpslbXu7Czgzg4ptrbWE1xNPhdmxh9lgb1VUDiiJoJFq4PZWL1yDuDG6EcpvrYG8DylNQFwsMWU0EcymT1pTzEKwQAcOTBtX7R1uB/AqR7MhMWZA1j8TbZfuujqeMccwHfGRI0W5o40/jtSi4u6GqQxUmuwhyeynStukGK/WANY3UCb2htCyWe1vS2J+6nzGTslnMgOZHJpWm+XSo9BEpPGV8B74AXwBrhhquaSmVuYIEzULOoNFBkpJRyZyFGnxLmjLAc62sCkuuXDZUuVBaaFy/Ze0/72DFhOrJ90rkGZ6zKilh7VaB/nbNpEHqUsA+MpcF4OLEmr6zlhVHUOC+uplziYJUOqJcX2CnjNqFDC7u2fhSrx3E6WB7v2C7RNgU/Q5rZ8i6s31Ps10WrzKgM5hKNZQyXngpkUfanKN5NOBeVEZm5Ls6NPAWXmzm46g8mhNhG1iWhNoS5YvLGm9et4u7O249bu64l8TcuYN1v/iR9Zrf0MwKgBrGKdrgawVqGvm8qPtaqEfXBP3f4WeG0AvvwEAIdPA3D4EIATiZKl9bPS2edEZ/2EkiSf2I2CYLag4lOMkR4G4IGlvYN9EGqd61pDqDgG4LGufj6x5rDvCWCNoTEBOAjglj5lZ0qkzGvDmXas9pwDWC9uapm5B8CSAdGj+V4Aa4mU0BSAxxrAA5tN+tLJzRAnPdifvHagOQRgpTjlPbf1HAPldmNutBS0ImAYafhjQb8nzV1R+VGIZF2R5BZnbkZrfac9sJv44omx/BXwrrbAnwJgfCyAfyokPQRgMJrcEnhLMgx3djA2k8JSd4Bo++pYKl8lytnNPnQOYDlbS25eqjO4Ymz0jXxT39ZjAO7NO9fZloIoATjZxx0DsBy+ZElczyjpiOtZfeiwNXIl1dXDqZ4X6Iz6lwMYDwOwcslilCPD09Z8hMQNkvrTSi6YFYo1thO9jMGkThje8kR5tDPRupZ2QbaqkM3XVrYBUysn1mcGigqmNxHKwsoz3lFtnliyV/eEJrtPU9n2hpuTuQA68nDHy3e3bF2jHlPzONfZtMk3bm5gq9WZG6SCDdS7KiWZTZFmA8ck9BaHVW72VXGZYswTa28zmvCKjnESsOOiZTsEFur5RluQlpnhHZPPK4tqsolqoIcaODuvdWzZAqfjLixNLemg7A0vVw1ssgFK7kRsvZ5rUWduYMo1sWZtxZu9J7XUC0tTz6MvmE7Smo/2/LlUTCyA2IBcbwqsSieSiByYzlQToMacCj8H3vIJ0epYmtrBiwz/dzwa95Te2s0hwi6yUa8iDY1tw4/eGEUYUMvrQQBnyzstqG/XjKgTO0HurNpdEp/Mit0cAfA5vc+PA7CivZaGsjM5jh8CMGYAjoeiWJnOwd4CU2c6IuJcj0xhNFdBFyZI7d8DYGnDkUXYcwDDKiuiPU1m/SCAbywCdgBfE8CtxXkO4LEGsPIPQz0FN5cjC4ZOKSd5BuCxhmuo5zIHcGvPn1B7WvZkCY2mBrAG6fUeKzq7DmDl2jAjhNIRAHvdgSjFJZ3MxmJRb9ctf0DGr7exiWjePgrAOwbXKx7ODfwx0hkqD/ILMyM3eM8IQBZ4OwPw2cMArKKZZP/mQi/9Nxq2ZRAcwHKgJwDuZgCWlKxIGAy11lxb4U5zBMB6iHohT4B9EMBCzo7bobg524IIsc7yeuZuDuBbRizLunjoDrhifUVH37c7boEV0u3NfqJWMZnAOLPziC23W01X5gDO9psJgCWuKs/MJh6wmqfAKWjYMFdxNKlYcV8cwMHwNtpOtYa6lcUAor01qi0bLV2QxcpM0azqLWiNb9bGJe5LposUib6+VZm3JwMaLsCGWzSpf+us3k+yubNooiN9C0L2vbU+B/C55akzV8KVZDQEZIuDPAD02KSZLZu2NxjiY63eUedjE3WAthRW67Swhh7ZpE/2SxpLe67nKyEUKAi9sSFuFBRRzu3vNbBltVcwiPhCSe1Hm3imJjijihqt54mqpXbAK6aO1qbAVDnQWJgBU2Cd+ZeJi7knbkYa9DUnm2xDZW7GGmHR4AVDcDDlgVpHBrP7wdCc7JCOl3El8xxGThNW0+fQiCSC3Eap5GNXMwPKm2YqkiWzpH4hvA9yJFuqMXtZ8pYP3Bkv9qMiuh/AO2PaM8+ZdZQqacKWWktbMjCscQCrwO+ZndgNXIXO1C9Mo6IGsK9UfCSAYU/QBznMmhrAnkZuCWB/gdSQpEpZaAewnAEBbLBD9h8E8NZOTqxNml2L+cqEDwE4MRRbcisLgF8DV/WxYjGmC1PlEwCL1k2HADyw+ek9AA4mhO6E4AiAXZVHo5AeC+DOijGiHS8QgIURmO6DeQKZyxJsJJLPkX8qbdbOLC3sSXX9W5pPKGEeCMNHADhzGlv6iOcWuHSUXSWPWhY2SLIHqg13mpWXec7Eqk5lNXXkGmwV3IF27B2EoopxDwLYWS+XidHA0JpkDGarlaMPtebyxpnHAKyHeGCU7bPmANbBKN1hUJjvM/M4k3l1o4nsRAPOAdyzV52OmJWs9jvgio2BwmMAnO3jBODEPS0R1KmxRsJGNORMABxqMCTTKdLpkX6BpOgggEcDcObbU31xSWf1yhs7zCVPeiSAU526auyMTs/Nauw3o+XpMuVKxbmTyCeZygANodZ2R8phB4R2Z+vd2Fp61sd9dY/vGltd2Rdp1OIgvid7dcfZF/Lr0oKXbPT93sxHtM2cWF4HH+oFSGR5mjqyGw27MNsdTbvCcrPRcnp6/cKu8lRaZUH5hW2j52l9IsEE04uG9SUSREZ/adWnd8AlJxXqj/CISR80zv60rIsnA7Nixdd6x9SRGoV1VFoKVOdWPighaS6vDiwkGoHCeERDm6xMrJVcqFWvVLh/kAdCo+HSw3/MxLu3t+s8TrTnXLOp3MLkH9zr0S6zgjV8E9nklTwSzqI4z0mVLGxSYl3aWtQl3kNNDScbeYCdl8gGTin/RC0UmUvqzMVsap3psRfIWwnAW2rjQsKdGkKygW2w/fvPAcCNfXo0M5Tsx4WNs7c/SWdG254JgJuHAXjDLgICsITereHeqrtEvR8EcGsAHg3A78laKk32QQCDuNIKOJwaeuc3jJccwKgZnwmAw3EAywNxB3pC590PYPlp7mLtZwDe24USZbnkgeS6x5Dsu7MsIwGsQsNszmE2ZIp1Hg0F2QAcDgL4rp7hwmYuAGfa7M5iiEkMLr04mIO4IXTvqNeXhNYTU7GiQQTg5sEA9t+AE/bTqco15McAWIK1qN8le+s9ZVR5kgw/7lPG2j4IwL2J4DEAl/zdDe3Ylr5XNO2QTHPJBZCROQjgzKRYWWEVpdzYZVdiI1d8/f0AThQAfSMx3TLCbmivoqmw8QiA43EAJ1Ne0bbSaWzwXcMMwMlY3sHe2NcAjowrBguKFNi4YdCaCAgNxaClA3tqrfKHeqgeCidDNWo8J6OURyC2701PLk3f6tk6dORJEakLJxQaS430RO1bCx/WLI+SD6EHysx19nxZZw/mUQN6Yn/9ZWG2pbne6kmUDVNxQz01JziErSXjGpl4Lf9gM5roDFjGRYo91wvrPmJniY0tS2U6A71GnuyDnBDwSBDUwTq3M/BI887a3oD4kLcN2w7Y4kh1tQaXbHs0sBAok0hZ8lE6FNTbUN2p0A6m2pK0pmAiFV5n782m+5O58lISqvks+FvzZe+AV6xg8UJ5WNpGqrqlJ6YOMwsza43huDGqIZhic74lUKmM5p+kerKjqeEflfS1ATjSBOvouQRLAI61ZAdmg8Xd7kldlTqBH4yoVrfwzt4u1kyeNGy9DgLYv7RGqomZoHECYHdqs31KY2+ZEJYO4M4ArFRR+WZfS4xrHwdSIA2Q7PaJ+wG8tDjylhSJXi+GW+fYHg5gldnd1gBWILT4EIBdT7kn4+5QT6c8AJ/TAZsA2KfvtsF5dMm9Ej3awdZovo8A8IrkbgHw+9o1d0LTKxEiAdxbMaTQqDyMqMMTO1M4MbWK9eV3JfsUyeEBAL+pLbAn1mElqp3ZeMW47t9IEd5Z0dU18MJGuWIhTmedX5ysyLWsiAsXBrIt35xRBsfsJ0QmAPbn4DiAs0k5bL4ywplronNjYjYE4IMjD3Sn+gdb4DUvI97XpcmgOpdPNgme7gHwpSl1ddYc61kEA/BwBMCtzUs+sVzhzJXRYZ9npvK0fb2t/wTAGr+fF2trtzjYDqYjAB4NwNpZBzDIuL7h0XgFyq3tfrJ5NWaBG1aTN7Y4kfHVinz/yoRckqb1zNb0XjGDHwxQNPxjBVj7huhemnqRWZFQLKwCy/32YOoClJ0bdpi8ZkPqhsXbq7oYXvY0ziTO7W+qVw42Bk29sSFlC3Mmrpi7s8G2pal/OdaiFI19lz5sqNiixUFaDcXCjQ2+ofStuLAeTqKWxMwXL9mUbLSbUCaLAKt7FshUK5y4p+J6Opbc7C2sVjDjctfWy+jL7nE96s/amTpRJnIAvph5/3H2zEkkIFMlO9MYlF3nBXb/cAdAjI/eJdEaSAUWWJR475ZqTJpAWaWd0dVu5XZmbZr6cyVF8q1HG4/WobE8H2rVIjqlt+UNfCY+COAFTfVBAItxyJZb2bIx83veu9QxgF+TRfc4yUk7ff2JAOxfDuDJL0cDvExwqAHcGi+renH5dsl2MZqfJACPjwFwSzmbADjPFkH6SP76PQDuWXgzAXCoAYyarpgDWCWR+QiA7wiYixrAOATgiZJ9FIDDEQAPxwGcCOBr4C1v9fRId8GJ6BT2BMBORMoU+Ta1td3K5PIkXWW0A08ogWOQhLTmOmuvFwBeGYBhvSY6o1fL5Ffm9QrAuQ49Czd2SwC/A67ph8l7XlnGK9crMpFjB3DzJ7bAxwCczKwFc30aK66IVi9+agCGictoQ3UH+oMAXhiA0xELLHYWVCsNpTYeAXBjZRuD2RbfSgHYOaWDAE4muOWVG3Mx5KAnhk/uxUzU0CcCuD8CYNi7whEA6wSWkgMjAawtdhJIAPa6ndaGqoEJwC2V3V3tmoHDEMh7W8DIqQ11lUvXZkqTvNu5Ay/zr6hzsLMWBQFnnN+W35TXnFLMl3Vz5WRQE0BbU2WNRUmw8MeFXY5FZGQhPnjP/WntxcGyuzB5hKFNp8zL95d8wi0t5oLXyDXUcyObKCohvOOn98CZsZXgXFrgCXDGvGsy81H+nQOveWii5YxesL2NikZUOKtgqq8Vkkgft5UgESYZAUe4pulRV1kFoQuisOc6r8xVa2o0l03ckDIvY9sAvwf+HHjCzGVX64Zg1kf+UmsGUSmcbHOM1hkj0EtJBp1gf4q1Vg50u++AF8BvgbfAxhT2jnsdWccY7VhnoIoVtqTeMrmgDPwF8LV19U1WgaxZF5TdGfQG0zdSG0ri/thGbMPYLpoEa8+C0TQtc/2NZSkVALXGdvV8yAnw+QzA2U57S68mM2TBni+a4xiAA7ezozMQGSkeBPD+CID3/Ky9Ld/e3H01Yw0MBlr6Lb21lF1ak87ywDOza5GRQzkRdM7czd5orCLQa1JXGbg1NXHNc96dgXZllU/RDIQ4hqa2jyPP2HhDH9Vp9JyI86mZgByYOJPPE82h6uoamA1r7xIjqzXw58C5dV8ezf+Wcnc6QUGhPnE7C4d0iuLkCIDHIwAuIClqtFwrsLGVDIwuFF6rgGQCYNghDInohuP8HHhq2xF5WEFemWg1vcWpd63MaIj4EXELOsdrHrTu6GoE/gmWR9hx5s6rtzYaKfsTBtCN9QkXweLksaLDplYfeqX/mwA4Wo1btsEPtSsTKWG9SYYc6Mb4gZ39PgLnFuWARuOEbec72ts70pa9FWmVjMYZJ9KYwmqBpwZgpbS0Jr5WHU3BW3YR6zjCZDBIpvgm9hbGp+7pGvS2C5HT0QWqIto9Mt5RhpbAlbkk2fjgxiR14Om3gdo/Ar8GLiwX5v1oUMcDrvgE1GBKFuYdNLUFHmsAB26ixFUeXwLugC3wAvgd8J7PB19wR4ztTc3JzQR9E8Fb3tyGdvtz4DOTwIGHFSYA7ph+FhEqj1k5OD9FhLax5NXCdF1D++LRZeL+w0r3A/XbaJ/W0YKog4EHO8k+yLke5yN9ZvoH27EJGyWFqbcPHI8bkZH/y0h5PmZOio82pEA66ZxroqftCeKG5zJaq3XymxCUNIpWphhMXzr7q3IXHU3ZUVJQT6o16DsOZA5y/S/VS+TLqx2X0y+9COtm2ZuHp7wobP331vclUxWVpMSZJbGz+V3SpnraRJePtZw4YyV8T3hx50DkeiVLdGW2m38JvDPxdvQ0tSgmc3/F0mQTJCm8nt7a0rKwk5FrMMnuMEadvPSDUk5WwgGs5lkO4FgDeHgkgM/qSFoAbm2IDmBt3p8IwLgXwDgEYJenyBsdV/Xc1ZmyJYC7OmDQbqnpd7QtSTZ9B/DAcHNJbT8HsKtx2PbPAYwPAXjCTHnU/kEATzRFspcJwAMBvDaMZVuKhwO4tck+BMDxQwB+RwDv+HwlASX/89XzT58AuLxrb6octtQaz2jyr/BVrrOE3AEMB3CwVJG0uNrBrC1VJIw9CsBLfkRjL0714roE/FwWuLfILNZaLduKT4IMxdly2iYAbnjp98ocltEC2cEALK99VzOLssBjvbY4BODRDiI5gFtbn08BcLI18YL6xwJYajEagIeaJROAT+qUwj8AgBdHAIyZBd7ZkHoDsKu5gWBziZVEeey+ZxTamsS6syPcJvrczl4EG7Bz5z8CuO2M2gZ3BvTeVmYpeoYVxRVfkkbRyUkJ+IIeQ7b+tdlkROz/ZELZKMlJjDyJfGGKyMNV99GT6V5lQSY5m1iv01gvbaTvq/iuMwc6muUVOXXLkFDjcW4y2jei58QlB8MuLIApRH4hZW6BG+CMSw3CQuKsL1d4eaa6PCpobIIwglO0VDL4pnr75Er65yZWAWx5MrxlDPAOeAec18Uhsb5SKZqOD6bYxpovj6bt3H+NhjY5eI0JvkvUwGsXvwe+ZSYhWoV6oh1ozGRLxqJJkUuOlnEFPAUuaceyuea5HoYicdfi0UYbbNd+svWKfZV5KQBe2+22DuDhkQBe1RreVehBAEd7Wf4EAPcUi4GrrzkfBLBkZWLLFOgM9CsW7ObUEjyjDfKaHFYk9rYGsNZywsJty4dk/qmj3deWn/Ij7niXhTjjZE6Cc+ruz02M78MBLH3afAjAvlPFjlyT2d0wTSkAn7CVjLzJwTY02l4cA3B+JIBjDeBs4CwA/iPwHW9PhZVhjVyNiVM7AfB4BMCBdwc6fYn6/0QAewVsrOcCo6Nk5RsYuQQqzqIDFnbgL/AD9paLnwA4HwFwZ36SA3hSLK/lmNhPZ6nnM78HwDrgKXr7gwDO9tHigxVrKgfZ8uoadUBVli7x4p+FGU+QcQQ3QwBWkmu0BYlctMj3Rl4c2AAb4JbVbIt6Rw8CeKIfjwEYRwDcGMYmtKjg2tc2s0xkT455pLop03zHy0WVtRWFNQdwejyAXRf7zvriJBOGQAB/C3wLvLPijd5OdTR2NF7UiLSYe/AHAbw25ysYkjXmwdZKixANEcFII80itn4qDubdqhZdDvSeHEqpoj+1iKkzkVwwwaC4Q4MVYzLYsZPJ7INNESaY8z/BpqhKEiWWs+22L5vj1SPoYILsUUziUAcT9iVzISIOG+YedwyHi806s1EpLSwPQeTaaCsfqQLV116p4MyzIbf1kbVseIINPttqTADd2D8Jpuo9GvIbrvwbW3AxG9rQbCMZeF2dqjTXvEe1ZwzQUsFPPKs8Q7CfiRjoCGWjRD0C3deKKtSRsgcYBQfFmXnDo0dKEW9n+i/UVQaxlvm9Lb6b6QvgCzLunnC4q+2JEDdQNvRZ4GSD6ZWfIhYHcDDDlwzAjQG4NwBrFcQOzAEcjwB4kmhNNv+fBcD4NAA7Pz0agCUTSghLGS258b0J9IXtmftG2ahokVCyOI2dHQz0Z8rrtzwjoqq8CYBdUicAxiEARwOw7IsArMK7psbwwkI6R4sAfMsro9TGXPnPW96/0Vlw9VgAh58JwHsD8FtrJ5nq5crcFDEWDuCG5dEO4PK1Bi6pfz1xraOEjt7RvKDGqo8kkM0cwB6DDkab77lYMtu6CFoATjSw7XEAe/LYAbw1ls6//lNZYFlX6c6DAAY1sTZ4pNoubMG19SqPli1ubEFAW5TN9+lrALcszSu/OaHgbi0CbusnTwD8EAssb34wqXUAx3pUwda547L4MSVVXZeMeE+WT9fBCMBeJHsMwHl2KvGjAeyxL4y3HAzA7yxemmiWzGjQXdvRMBxNPBzAS/J1qW5cuLNBPgTACpYqALdNDYKO7yiq2NmczHf7nJSH8FpK4SAZOuVtu5xOOAWPeUP9zRy7sA9SFWhrNkJhgh4bam3hFI8vQqqH5NOX2uhsCs7KtRTeHaX1hJ2b99wH+VKeFY+0XGUNL4AeeG8hHgiFwmGp+xZq3s0XLdZx1lwRNib7e1ulaAY3mP73lY9WP5VtqVXetaMm0xl6ab6NHWnDjPrwmEqi6slSGFYwU04TQE8cksnr73j06NY2tDcxHuhCJJ7dCvWSOvHiFEH5/hS4YPDgHumkcibVMwJ1Q883TiaVhcR2FgyB1kHWx7NzjwWwf412hGaezkqmxueyqOk9EMCuNZwiVcTpD0G9E/mIZAjPqc4xjkYfRjv3Ogfw3vzOQGlwszVQC5wRVO/NFGY79rdjjr05AmAczDjYMrpJvR/AqAEcagCjBnBvAPbO3wuD6MaamTuAndv+OABL0EMNYNSvnAD4PXN/4BSUSe7tkuCx9hkmAD7I8V0C51bjqljWYwN3EZ2o1qekQ+v/o0WcTL61BgUSx0CdgeMAzkcALF9TB7N6U1F+ABHmrU6+JpL3EABrbP2s7nlutbJhPljmYjS0K4gXgPX6RE99ZIyyOQJgWHOEwKUOVLfZfn/O398AsCT9yG5YCztwlEzKJxbYI1TUyyhPXTHZHMBxtm4w5RsofKMpd+kyfaMsnk5LbVjKpr1wsQ6fAOA5aEO96ZPXl1z1lQE4111BREUXvnxlfmi2UNj1fjI/eM16FedFgvmhcjw99ZENwGDYLSelUavBVql5RYUNTcOk/K8s4ZIvWNRe3URShJ62Xkvpt2giEG34od6WSSin77VLWmZFDR4SiE+Ri+MOfTaBbWtYp/qztOE6mH5VR9N7kjX66nkWDdYzV4wjatsXmF/ZM/8kVTSRx2y+6c6KpJK9bBK/6yPcPOXaiCTzH/JM9iPfJfO6N8OaTPBHrkPicnmD5JI8X8xOHcOUgauZZGKO2X5JbgdztCY5XtGCi9l8e+5jKQoTvehHs2AhhEMtW79gOdbZXizUqHgSpu10RGI03CkAk3D2NXAchj+hoKslKc8APP4JADwcAnC2jwv1oD8CwHgkgN2P97LUaAMDA4CemTod796yExwsELylrJzWH102rJ0BOFuU7KB1CGUqCwHYq8kfCOBc27JHAVi1AP56yffIOCFTNuRRqJ2IALyyNZED7Z/+MwJ4EqEJwDc1gBPLHOIRAGcL8Ud7WVe/WKmojqmJzHgjMeCEbcQ4A/BYq7MJDLXsPxF7kjAJujSiOx8K2jpbCIfEBMBLeyzsqkb3zDTEZECdaJ3HArh5JID1Xq+4yrWAgtvWcwpyp5wYTvTMbvnXU7OlyqpiBmDUAHYJzhTZwQ49LYxe9V6sbrRH+wi3wKNJJB4AYMUJe3bV6C38TQbggQLaUl6jeeprA/DS1PqfGsDhCIDvagDLwVE5lDA58rMGU7WKMCdlc0pBVGCzUQlT/s8BnGoA+75Ela+1i3rlIv/3IcOUttLFrpBzjSpXLDsDjarf93W/50l4ghlA53kd1AqgsfE39VxHU4bRBjPaW+KhYcjZGm2BB7ak/xYAcAqc1pVBgUc/Sgv7N0AEroGveHJJO19QqPP3rVUORINaSw6ho7wPBNCCDgBs3WBxCGrBwUxluvem+Muxone5A72vaz5hQBntdIMWXx3VToEzqyfuLSUzEQZnFXINJgeoHLYJe6UZyQ8eatz05CheA3fsNADz+HWKuDFKR4hIpuDlQKea8oOhf2d2MjG+zvX6w7DmA5baLl864/1j6fnSAOyPkChPANw8EsAiSkK9zVLvE+TIXkwAnB8J4PEIgPEYAKN2Lgce6b7hYetL4GJW2tcQBu+BV0ALXAO/sDb8shd9DWAAW05trAHsnowAvLEwxuHqToUD2JduAu8PAlhxtgMYBuA0A7CAp3vQTu02g9GIxTj75mcHcD4C4MI93/GvezO+nuD1wENW2DXgkls/AfDC/GYPh1KNFzmWWtJsPnpj7X2nAJbBHoxyVip0mGGyOwLgfATAimhH7tne1Imm5HbgIICPWeBwBMAKYXu+cWEkUrCxlU3yyycGm0JrAB4J4FvgFmjYScMBDBvAFfAaaIBr4L8wCyzhcOK2rOrWUOTTbNgK8Npi0A2B8UAAw3Ci199vgbXmQoUDOBkvPs4c2WjpxZZ1picWqPQU958RwD5UB/D+CIDvDMDJgvutbWg0gI22g7B0zcJkdcI7gUoNdaphwrVo/QXg0QCsbWoM0kM7KehU3m9vVhUW3SiQFFxAzSPw+fC39hYlY50rh+2YIm45/5GudqppLA1YsiaRdzsbbQrBlkH7P+F9JOm5fqyI5zs2krvmX0/qNEx5V7lQ6LfA3wNvgM+B/xPwa+AramPdvyuZchoxssDtnKlg0FhnkzK1z8KMQEz1LmTTlMEEbajnO89eePzlsYRvPepMpnyVxNmt6EWszekXyxOIZh8eTMalNmDYHersdKzlZzQfwBVJMvgWP+odM9Wp3ovI1ze179HZ4gQbzyQGEHaLVpb11PN7Wz3JXuSZYbcwsW5S5XvRoz5NeT+A9f/HATjWAA71BFzrHgTwQU40mts6AbB/hLvyHgjeD2ARWMpn9gxqr7gTLW9IiHVFcnnl7wngL4H/Dvg18Av6AOoMK6KxqbVGaZNXLsaLfEvH18ibH2zWEwBPImMHMAzA+TEATjMAS5hQA7g3SDQG4Ggn1gTCpt7cTwFwOgLg4TiAt7S2I8NfOZ+pNj9zAPsY8iEAL8iHjobSQDd9DmDUWJCV1yK7fU8+eVmthh8Je1swZ+gggMMRAO/tN31tgdtDAB4OAbjlssJG64s1B3B+PIBDDWD5CIrqSv3uW+CKH7RkfVxDTDYkQF4Dvwd+A7wBvgD+L8Cvga85zs7UqkfADuCGRxY0zhNafvnQvdXUzwd/EMBKZ8gfeSyAhxrAcgR1lGlgzrX8082lK2PNs8nYzwjg/REAH7PA1zWAB+Mw9HbVRe3MCfIlneDIASx5kGAHng1PhwCcjwA4zjrpZGBsfdkk7Nn2RP4EzJnIppccBG4Qlcp3Gi8aZeYWHyYawRBTXKuFfdZgAFV7OB+V1turscZatXj8Xv56S4ZosJVO3C5t9Vtgy2PPIy+tX/HITSTmXgF/D/wG+APwClgCb4D/PfCvgad2icmCU16wpOEO+FvgfwWc8cbfSwAsGr7j+iztVvtU+0tNvY8SEP9m5LmjjrmcbEeR5fYlPlydHnaWRlAWrTHBTDS4PeuGO2baLhiqK+qQtHoMCKJzx1B0Q2+nfETHwbvrpS+pk2AyA3MC95b92ptgjFxDxRVqlyGxUfY0mvsUDXwjcGfdz74APgM6O1S65wZNSoa86YdmseCFd72pq4GrWixGlS8NNSAHA3Dgpyop76FwMthLSvaHAJxqSs+Zi8RpTAC8qPuWZ+ObNNtJ/CGr/XAAb23dJVVK64t1fsNXlpTBO9Yi3/LKGAC3wAvgb4G/A34LvARa4AXwfwD+NfA5e9L1dCW37OBdKgr+FvgXwCWwAl6xVLIHTgmYIoIr8tANb7/KZguC+WfaEanp0XZwsLSzENuaeyD3tzOiRwkXf6OIpI5tnuVBFu9ZwffSEguowX8/gMHBoA70hfxog2lsf2XsBqvM3huEtoRZZxNP5n+CtidRwLJRwjpHu2eK+w54DpwDYGYwkHbUpkRTqdnABQJ4wRIpkX07at4fLZ+CWtg7Zd8cwK3Rjam2wBMP1Z2GoQZw6Uy5ZLWD+xw9B3cQwEtzpFzrr+rnRNNHBwGMevkUz0lxSimUj9sQwCVlU0zuKa3oC+AtsLSj6eVRL4H/QCP8EuiAW+DfAP8a+IwbnOhZ7GhSimz9B+CfAxfAGfADjeSWXe2W9G4aHkYuVbZ3Mypsa365A1isrVZA55GdM5H0NySPi6MBy1cUAJzwsd2Ml830/IJZ+2DVV4p88hEA5xrAA7XnYK/PNb3jPI3sihyQCYBl+fdcMRVjTA7CgheBwq7yGu2g7YKux5IVeKcE8MZmujMpDfbp2YpAAt2WwEhJ1FZPB2oFLFpXm8Ku1FpTG0qYngx1wcvAgaj1iNf+NFY2JjLLoTaxGoOVFJcnr81oatsVpLiH5JEdLKAbZ43Lc/3AoaY5yr8N7ekV3YmGh39eAd8Dt0Ak5VxW7w3wPfA9W6KvgDPgf+Ellf9H4M9toaKZwgy8Av5H4AXw3wPnwCUvHLniDRKeix7N7Mq2ahPFyN7zFWZq2PWc+yrBJF06TxYNJDTE1jsn2FIfLGu2XuMUlGHTmfAY2qbRdhDmkslXhn3vdJtYNsXCEgMF9e4fJ/NhJOdOUaM2TagDUYmrNitwE2Ew1cRbm2+u/5qtVkeh9I9jeCyA070AHrkWvZEj9wPYsXQPgE+OALh/JIDjIwFcMoSv2R8p0RdcAq8JYDFN5UNfAt8Bf+TtKuWOi/8JeA28BP5b4K84r0hXTFUNPwD/A/B74P/Mq5KKwbphdzInKrwk5hiAJ17HPQAOVvT4cABna0iiGHqsgecADjMAO4HhIfv9AG4/BGAtxcS4HwSwcviSq4NZG+FFdF6soejsUsMFCbYme/vcUGeMnbwR/tM/MIBhZGSiUB4E8GCPdQD3MwCrny1qvEkRPArAeCSASzu2N8B7ftCC+Z1b4PfAewBkNMu6FwB/y44cpaPVv+Uv/1vgH9GTk6yo2dgr4P8OfAv89zxAmqxkPtepYrEfsdZuDuD7v5wAhMn6wwHs1QU6TjEaRSEGumEK6SCAs/37WSzwBMD5YwE8WY19vSDOHqE2m7F2SaTmvEZQW+ZRnwNYa7I8COBWAp5qNTLR55qW00DZvGQf5o5WQ9ddYaag5sLlxFlPBKuaVnZKchTJj8RaE8RaDfq2S+IEgtGmPxHesqUbOr5XvGPhgmTqK+AF8AOfvyGV+44XmJ/RQyjc09+xWv5fA/8IuKyzdCtWTv9b4N8C/yXwz4FlbyV8AAAVo0lEQVQnrK4/Y5x1S0ZjS+PuMusul2xEnom287KoV6OvvbcJUzlYpOSO6WAWYGQsuSebc8pjlOrc5YIJE9VQy2GsAwAnWzobc6oFwyMKuSiyZaPl3lzHOxC0Dsk2KNsaahkbk2ctSLLKb0lyrlXgYOsf6we6eR1tghPC/kdMaQ7J9J6jS9i+H8BuvHaM0h8C4Fx/0DEANzWApb4eC+DmCIBzvWcCcKGWX7MbxikB3ADfAX8AXhiASwXzWwPwGTmmV8D/zGvI/nfAXwPPjIRWMeR74H8AMvDXwL8ALrj3a0uuhbqqRPTQQQDnBwM4UuCcD44mKx8H4I5dnyP3a9KJZjIkT67eA+BYS4IadoV6wMl4goMA9oDVAbw/BODJ10SAR1OaIvLUB2yk04XaIjYmtIGu6VhDLNXxcQXgbNMO9TeoHyHKCLb6ArDsuoxwZPu9gwD2HkgOmGMA7moA64GPBbA87IlmzZb61esHy/7eAh1wDjwBLoAB+C3we+CPXFDdhPSadrKU/JYujK+BPwLfA6+AfwP8M+A5u+qAl1WugTvg/wX8j8A/Bv4GuGS17oKOst+IMNDEhfq0tbuh4QEAdonvbUFSDbBHATjZceAL+n/NcQvsAMYDANzZNh0DcDYA4wiABXJPg45GCWt9sj0KHJ5bO18QBzCYO29MZewNsb4CjZ1dCDa2eBDAra8i6uUMppTAZyxs1MkK2lX7rQVQH/C2vuNQ1sEXBlzIWP+mpx2XC9KacE2CQZfWiWZSmiQzM65+lc61ZXvxHZ3UnpmqUlBxCZywP9Vbpn8aZg5LeukZEIAtmeMt8EugBd4C/1fgW+BfAX8DfMGVLCqqZCxeAy+A/xvwFfAVC77OCNYtlWXJWK6YQmtsRmkmGtnUp+PYCcRgb4dJtNilwZQ0ZhLimdL/X3tn9yPJeZXxX1VXz+fu7G5sZ+04VrwhIBAR1kIkUBAB5L+EC674/3KDgoIQwgIbJZJJIAoE2YrXa6/HO/sxM91dH1xUnifPW909nhmvchFRWq3W7e6qt857nvN9zovmdJ2reONGlNHVgcshOLoqOcHXRPGlGHb4bOIt5EoydGUtkZ2OiK+aMCBdOWiGbCPBw5p+SGZelaHSIejcitpt7EuKhJkMquzEQT9EGPQCikJMr2wjgHO/Z1sA3OqpnXh6G4Cr8p2HLwLweWTwCdXpl3SyeijFu83N8YnzKwL4uVTSGEe7pbGCz3T01fOYZDLy5SHchkHn241q6BUY4BP4ATyE78KfwF2twVOhWngIH8MP4RV4Q4pmL1ZFKJGlJPk2AHdrAPY1ATAvFMBnIuAu3CqPQ66Da3PjJlGniwE83wJgNyamHXUBgF1oWAvArRpECPfPAJ7MTslIvxnYADbPs4kzzbd1vN1uzBdOD3grgG2vVOXKtgG4u1ADm1EM4GoLgDODb6vIsUwveiHUnWrdCeCsxRmCAyYAtkmEbLjLA9iJp0PYhTtwBw7ggXLAT6OcqJe/ewQ9nMOx2v4P4RQ+gO/DL+F78B14DY4AFXIdwgCP4CH8I3wVXteENZ9IlO1O9jU7xYgSwJMI7kYNXAW5XqwGto1woEF+7lfYqIHrKwL4Yg1spjWAqy0A9k9mcSTVQsEMEy1D1F5nUm8I3l5F+YrNevfieDa+kV/F+zblb10ctRnAzcSGz6VNUnNVSeBO9WDnMp1diTdXyayr+l0k4JvMyjjUUPLCBEmL0hlxv9MQA5eciWlUOZ0p+NTvN4Dgdzsvq7JT/7lKdeZqNBr937EG6jE8hBPJA1QZ9FyNSQ5D+rSo1+BlGOBT+Af4DL6rWudxo57CiY4g+Wf4DrwBR3CsANYzVeWM/95VUwDhYE6sqYlrlFBYV7t9+GjZlmaOc2VOZm7NNq62m+usmV4jcQ/LMl1KzTURHkMAZd1gG0p9ZFDmrSb+dR2/9c+dlmuDN1w9X4Vmc9VyF7kuBMqdOFrFJYo2/GbinJmMQKdXJ3nvjOpU0Q7jcflt+fmv7Aq/UspnS+9JFNPXNgD3cQDw7oUArmOf6hBHk8tifwLgTox1VQDvbQEwEURPAJ+rZuOGADxWg30OD+BxlOTuqJajVu15p2ODxz34ml72Afw9HMOfw6s67byHJ3ACp/AEfgj34Q04hJNofXGueKni6UbsZf6rtgC4KvfRerwqBdwEYHVIzMsD2DXrs+jdnzAAa/FUL+NLApjgrnz3jQA2hlOXzIMnHe6sywBMFVxn98CPy8zwXPSxTkp7OqOodSk4Mju2GcAT8VzFyqpSdE2spQmAe7lie4Feq4V1AO/L1Mjwvu/cBWWJQ3RYG154di0A10EI2y4bNXCluu1ah2KMNfvH8BEcC7ro0S476RXd2lXB9Muiz4fwffgU/gK+rpHPoxA80aSAf5IGPtR5DI1Knwdtp2ue0H9erIHTep4AuL8ugM24dubmIY8yeLCugRPAsxcK4LRok8k3AngV72XZl50Z1merUhBUIa3cJ0AwpP/eDR+6j5q5QYs3jOclAL8AwM1Ez+beZqY0bfs+gLsoGzVtargs0L7DeHOXwKbN7zxkHbLIL9qJBWYaXdiIbB5v38ea/VD70UP4LzuqBp8p+2q/vou46Zl64HbUI1ArxzMu40THPu+JLE6QeF7LTMc4N3ACR9G5dAw/hhZ+B+7BawpvfSaa/De8ryqOOzEy8VDvu1TjYw4EXFepKZ6Ti1NH5+ezsuukDrU+0VOms40/5zlqFc05Y9SUbQverCrYudZN+hJ5E0c7N7QO/uzj5l18WAd/+oaEnPA5Kb2ENJFjH4Klh1LkV6oLbYK3XZsxvtrZGp0tiduQYUaBiwSNF6L7i1j5r3C3MVZFuUmXAXAVsbTLAHgIstaixSwOeJoAeC7z1PV4zbUAfHRdAM9VwjEBsA0JS+OhBPBtpYVvqablCXwC78I5fBvuwV2oo1AE+E/4EbylQkrT0APJPUnHJwxdA8D12ufbAMzVAVyLvz2H0uZc3qENAA/lrl0AYMetxq85GdSX+EyTeiOAV3JFzhSc3dEN27XhcQngbk3/ztRdRki9M628iVB0LnuiOFdBCpvys7AQviyAz7cAuInE+mUAXIfIrMJ7aGN9XdQMLAXgfQn1HXXCXgnAN68I4AMBuJEaqQXgpyWAd6K8u9VO3FLB9EM5gmMh5AN4B07hPtyDVxUWeyQi/Bx+DN9W/KdVRee+yNXFpvQy3NcBPDGjJwC+vAa+BoBnIZdrRf3XAWxP7gUC2N+0qtwGYGfWlyWAPaqvCx83nS4H+hyEoATwuDZHX+2RznX/IVY1hAYe4r3q8kiFKYAb99NXawQjFKuTBwt1Ubrk11DYlbCdh5DJXrc6Cq9SBZvFMnPQxzIXOiiuVkvwTjjaXWjhPkhLvM4Q8naujl+/3VCmE8Y1jCb7jTD+xiL8Mel6rNO8G63QJ6gScdxaYfIdbc7oqN6BJbwHD+EY/hDuwgJuwtfgE3gC/wpvaXDHcz23kexslVTbkeB0k7aFbrr/kz+5y3UJkQloJhs0sdQnnqM3/VzHRDh1ZBvU928k7VbBCZPIcT4rucVpUvSmhH7v4yZDiHNCojjo1pXt7vlDSkljvmribr3oX6uX27MBlmpR8xirSkGhRZhtddgnj9VgfB4hHXvWqdbGZWwO+ppYlwfwrtJGe5cDMKFE1gXmOoAt3ufSv9cDcK0Uz04Z9ZhIk1rO7k7EX3aUyhljTI5PtcoWVdLpji+6KuBIezAC+DacwjvwKXwEfwR3YQlfgW+q6vpf4D78JdzWGcw3BN1WlGmlLpeXBjAXArgLjZD6rr4igE8VbnP1s3lxAuChtA5fFIAzMHoxgJcqf+3KIvtWepO4rQsQ6hD3XUzhGKKC2YMo5vG59W8XvGrT0adbtUHqWaByCuC6lLWUyx3WAHxyoQbeF4wN4HYLgJvA6iQ02Jfc2epMsEHK8EDz4/YVbL48gBtVdO2HBM2XtTs+Zj2O1jTwIqojR4FlY8iNn+nBAAu4FUp4VOxjmPkT+AN4C+7CCm7C6/ApPIV3pIFvqJ5kPzZyInqWkYOsggsz0TiBhz3gTOGl7kqBXpUA9tUGgOvSC3IjyxB7t4xNcTnKNQDcXgjgbm1bLwBwlkTPg6Rpx1vNVOWD0DedwnNt5hBjoWrp1TpSjX1Q2xn383BX7FVml2cB4GZiJw2xjb53q2qac/3aE65m0Z99oBO7+jVx0YfI6gSjLl7UjDDxu6voiWhF4F2BeL8s5+j15Va12rNwXjJE0saR7WZDQkHMpEx3w/FpFDs8hWPpl1kZNXTQoZOqHW9+IL/b40TO4BG8r8GSFbwEb8K34BfwGH4CP4U/lrWwH9x9HpVEiygd6kMeE5p0AosUbFWgpA6F3sUN2zjjnRCNg5jBiY1anxzDU+XbMhc1BJs5NVWHA7txbZSyqgqZ0ayFhPu1d0/Zk+9rPvfVhfHah91fl3HxIV6/10Y78OpusTOlHvt4kOVHqppKn69Cd6N9t5S1c9I68v1iAXwgxfqFAK4jIGJaXADgs4iU7Zb694UAmC0AbiKI4L7OU/hMAK5LLnFL3xAAHtQOWOksFeA5PIJ/h8fQw314Gb4Jvw8fwWfwPvwH/KlMmvFll5Hz7ANm2wBcrQF4YpmY4MOFAN67FoCPtBG2iOo1ANdBw8sD2GDYCOB+DW8T6z/TpqnWO5VQ+t0nAF7ohn0wrbVqWt6VeijrcklpnSaqxz+LWMYgbn+RAH6yBuA9OeYHcLPM8/UxHnMC4FnYxwhRFwB4KcE2FvvvKzQ7vCAA91sAvB/pcFs2z9SdYEij/WvFRk0ck9DBKzIobfOdwiN4Fz6HDu7DV+Eb8LvwAXwIP4WfwH3lU8fg91O9Qlb9zzYB2F+bKI0JSLicBt5d+9XFAB5P+KOMOlebANxFOuLyAL5YAw8BGC91I4AnbZErGTiGqN+rj0TKEPp2XL9n+SWAFyLvRAM3CnaZdc2fyxiE2UUmp94I4NnfrMUmVyEEVqroO9FMp0WkRg/VE3tbFf5NpPtcluKDKnyG0iBSZdHTKrRD6pTMdrS6m3uKhvhfbVS1zkJT76rw6qaKhifyqQ9WGqRq91T96MNcDyUJHsL78FCGbK8YeSXqOtJclR5fSpFOJHqqHMauzkr6JTyGx3AGb2rs3fMIC8zFF7sSaTOl1jIwlMK/CrGfIgpJJpe8NeU5LzPJQjPOGMJbxShVN7B0cb5QDy/B15X63o+Dk4dIpayi4afR3ZwWcEikKvWJgdiH6LW74jtkKCAt5lZBqyfwrDwU3XagbZhVcEUlui0VAkJxkqFkv1vwiu65CqG4kGaoQzMYmmOQZCFqdKoOOpBc9Eav4Dm897elZ97HCO5Wq3wS77lQ3Go8V/1IRUJfEfPtRjR6Hrq7K+2GLoZXrwM4A1h9GF6dmGMV24no3pZm5RhpviHX/FBjMXaCGyycret7CaA9tSzsBk5G7vkQfgaPInS1EhMs5aw7c+jxR2Y1G3kjAE5E6l2lSf8XnsBTOIM34E1oNdnD4b8q0oaj02LZ5HLERs9Kjk83vS6/1pWNFxnya4Lpl6ovdWjJWrvSbo7jd2/BqyqA2Stva1PEHXt+L6u5LAGoyr3eBmArBrONcWs12kkYLeEZnKjQIgWctWSWNVsszoOFGimzIcJhPRzCHf3kXKjpRWGPpauCt1eae+Z+uVZm21wG6lxTjJdjmOTvQpUhZXKuR55qCtSxxjvZQ98Xel+Cl+CW2hfc+Tuu71xTLFYlOFcCtpsxUerfYdQ+NHAnEfVch18s45652bZp5iWARw18FNTPRAwRg2qEpaNoqqoUkwYewI/ggQA86MgiRLpWtG7E2RmzJKTpAj4XEfbVWvEL0fwMvgH3YJAGHu+wF6fo9vr7hpwZt2z6vKVBHJktmFnBPAuTZ65d6PU1n0G8lCdzqpEjCeCZ9KeLYQ7hLhxK3O/GU5xMaUMOJoAH/cMqsQ34pUzfpoGrcJ/6KMAYoo9w1ExLZdOJJG5V2u42bXJuqL2sGxGVHSkwVsyfCpArbVmnTbHitMBdqaNlJUlhm+hAdBv1yqiQTxtHT4k36yLT+1xYsfDf11yFHe3tnnYvbZRefN2KR5rSO65llqW0HMq4xiyM/5kk0kqdC+dwW3rHxQydRmlnytGRiHnkOSbxv1obaPfKR27VkaB/Ah/DZ+Lf8RF7klJ7Ykx7Xk0oXCJsuVAI7Aw+gMfwDN6Cl+HP4Ajeg5/BO3APXoYePlzLmg6RxtuPagFL9ate9h8tUKtoH2rEU+7+miTeumhLNm/aWujKhS31j91QwZMrObOXoO1jBwkBvwoOIfjHhorF1SoKxCbBLAstS4W5IOVm7PGhzk746U5rjZ+cqsc7RZGV0qCf16G7q5Ketp0W8X3EYzNiuEylu9jvdKb3vLRuNwJ4di0AD1cHcCUAj0L+TglgQj57YpoBPJOCuxjAs+0AXmwCcF0ehlTFNhNivw9srALAT+ADnS5sAO/DvwnAvwevQgMfl3VLrfZopaCevbQMFf1mAFxdDsCzMLsTwKsXBODqywHY3l1VppBaefaNFGItAKf5a5MaAXivlNqZAbDJQfiTu2sAHl/qrGTpSr2tvyact80tvRl4XsV+bAQwlwZwFQCuw2O4JIBd1NHLBk0AGx459s4AHmv62A7gWSxjAuCZ3I51AA8qTrgAwE0ZKW8DwM/hA/H9fQH4EN4VgL+lIww/ikrPVWQ0zmXGeeOth696XQbAg/j4GgAetgD4/NIAHn4jGnheAriXa+TRqrNoiKtk5XdBnBHAXn+r9x3Xdlr6DJ002bykpzXwSl+2+zdnHGPnyMUyzmk7i8qUWs3o+zoP50achLcjA2gjfE1y+7OZDWtD/1byJjZee3G04UIm/viu+3Lp56JrEwa0Ted9CdKNV1OqBos42yedQi2n8phabUsdXs8eV7sadRk+gmewA38Nb8ObUMHP4VP4H5HrQGq3ivlXJnKrJWXJRH3F9fwWX1X598XibRFKpgqz9Sx+O4tkS1+aOpN8uwXDUkgdb9iEMKgCpuuXDWPv6ai4fp3N6aKzaKXxbW7M2PsiALMFwGdbAGxX4NoAbhQB2VcCK8NnSCXt6JsO62y8bOYSAEgA9zHZaQLg2ZcG8IHOQNqBv4K34XUY4L8E4FpRDARRK7gJgCkB3FxxPb/F11UBTBgP1sKn4rp5eGX1hQC27dGFA+AkoOsUhgvX48rJlWykscq3KGlYRlT4cTla0gC+uQXA3aUB7IS7I3PLyBFsA8Be1FE6Ru4ZNwZwE3JxHh/Oo91642VLiAgjXAbArvr9MgA+FID34HvwNrwBhAaeKRFoTNpM7EsAO26aedb/v7gWgOu1FioPQskCodkmAFNq4C4UVR8mPmVmYNvVhltr03/n/wDKAySNPBZAWwAAAABJRU5ErkJggg==", + "text/plain": [ + "427×960 Array{RGB{Float64},2} with eltype RGB{Float64}:\n", + " RGB{Float64}(0.513725,0.0,0.0) … RGB{Float64}(0.0,0.0,0.25098) \n", + " RGB{Float64}(0.647059,0.0,0.0) RGB{Float64}(0.0,0.0,0.156863) \n", + " RGB{Float64}(0.568627,0.0,0.0) RGB{Float64}(0.0,0.0,0.101961) \n", + " RGB{Float64}(0.529412,0.0,0.0) RGB{Float64}(0.0,0.0,0.0627451) \n", + " RGB{Float64}(0.407843,0.0,0.0) RGB{Float64}(0.0,0.0,0.0509804) \n", + " RGB{Float64}(0.235294,0.0,0.0) … RGB{Float64}(0.0,0.0,0.0745098) \n", + " RGB{Float64}(0.117647,0.0,0.0) RGB{Float64}(0.0,0.0,0.0784314) \n", + " RGB{Float64}(0.0431373,0.0,0.0) RGB{Float64}(0.0,0.0,0.0862745) \n", + " RGB{Float64}(0.00392157,0.0,0.0) RGB{Float64}(0.0,0.0,0.00784314)\n", + " RGB{Float64}(0.0235294,0.0,0.0) RGB{Float64}(0.0,0.0,0.027451) \n", + " RGB{Float64}(0.0431373,0.0,0.0) … RGB{Float64}(0.0,0.0,0.0431373) \n", + " RGB{Float64}(0.0470588,0.0,0.0) RGB{Float64}(0.0,0.0,0.0392157) \n", + " RGB{Float64}(0.00784314,0.0,0.0) RGB{Float64}(0.0,0.0,0.0235294) \n", + " ⋮ ⋱ \n", + " RGB{Float64}(0.752941,0.0,0.0) … RGB{Float64}(0.0,0.0,0.290196) \n", + " RGB{Float64}(0.752941,0.0,0.0) RGB{Float64}(0.0,0.0,0.337255) \n", + " RGB{Float64}(0.745098,0.0,0.0) RGB{Float64}(0.0,0.0,0.329412) \n", + " RGB{Float64}(0.745098,0.0,0.0) RGB{Float64}(0.0,0.0,0.32549) \n", + " RGB{Float64}(0.741176,0.0,0.0) RGB{Float64}(0.0,0.0,0.32549) \n", + " RGB{Float64}(0.74902,0.0,0.0) … RGB{Float64}(0.0,0.0,0.313725) \n", + " RGB{Float64}(0.756863,0.0,0.0) RGB{Float64}(0.0,0.0,0.298039) \n", + " RGB{Float64}(0.772549,0.0,0.0) RGB{Float64}(0.0,0.0,0.298039) \n", + " RGB{Float64}(0.776471,0.0,0.0) RGB{Float64}(0.0,0.0,0.313725) \n", + " RGB{Float64}(0.768627,0.0,0.0) RGB{Float64}(0.0,0.0,0.262745) \n", + " RGB{Float64}(0.74902,0.0,0.0) … RGB{Float64}(0.0,0.0,0.298039) \n", + " RGB{Float64}(0.745098,0.0,0.0) RGB{Float64}(0.0,0.0,0.337255) " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[ colorview(RGB, channels.*[1; 0; 0]) colorview(RGB, channels.*[0; 1; 0]) colorview(RGB, channels.*[0; 0; 1])]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "rank_approx (generic function with 1 method)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function rank_approx(M, k)\n", + " U, s, V = svd(M) \n", + " M = U[:, 1:k] * Diagonal(s[1:k]) * V[:, 1:k]' \n", + " M = min.(max.(M, 0.0), 1.) # Clip to between 0 and 1\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "14273498977628745222", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/860bb4a9e1927248d6fb4a7d59e926f541e3bfc2-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/4b164c07c3632d5e274899a8ab8726c70dab4aff-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/67252656a23d4f0f6f4ba7ab8e8eb9ffc4ae9b5d-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\",\"51\",\"52\",\"53\",\"54\",\"55\",\"56\",\"57\",\"58\",\"59\",\"60\",\"61\",\"62\",\"63\",\"64\",\"65\",\"66\",\"67\",\"68\",\"69\",\"70\",\"71\",\"72\",\"73\",\"74\",\"75\",\"76\",\"77\",\"78\",\"79\",\"80\",\"81\",\"82\",\"83\",\"84\",\"85\",\"86\",\"87\",\"88\",\"89\",\"90\",\"91\",\"92\",\"93\",\"94\",\"95\",\"96\",\"97\",\"98\",\"99\",\"100\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"14273498977628745222\",\"id\":\"ob_22\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"14273498977628745222\",\"id\":\"ob_21\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"14273498977628745222\",\"id\":\"ob_22\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"14273498977628745222\",\"id\":\"ob_21\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "ob_22", + "sync": false, + "value": 0 + }, + "index": { + "id": "ob_21", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "ob_28", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "5754259921083488021", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "ob_28", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(:className => \"interact \",:style => Dict{Any,Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(:max => 100,:min => 1,:attributes => Dict{Any,Any}(:type => \"range\",Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\" => \"horizontal\"),:step => 1,:className => \"slider slider is-fullwidth\",:style => Dict{Any,Any}()))], Dict{Symbol,Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\")), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing),\"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "1, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/SbgIk/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(sz_max:32,sz_curr:0), Set(AbstractConnection[]), Base.GenericCondition{Base.AlwaysLockedST}(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000011b082650, Task (runnable) @0x000000011b082650), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\",\\\"51\\\",\\\"52\\\",\\\"53\\\",\\\"54\\\",\\\"55\\\",\\\"56\\\",\\\"57\\\",\\\"58\\\",\\\"59\\\",\\\"60\\\",\\\"61\\\",\\\"62\\\",\\\"63\\\",\\\"64\\\",\\\"65\\\",\\\"66\\\",\\\"67\\\",\\\"68\\\",\\\"69\\\",\\\"70\\\",\\\"71\\\",\\\"72\\\",\\\"73\\\",\\\"74\\\",\\\"75\\\",\\\"76\\\",\\\"77\\\",\\\"78\\\",\\\"79\\\",\\\"80\\\",\\\"81\\\",\\\"82\\\",\\\"83\\\",\\\"84\\\",\\\"85\\\",\\\"86\\\",\\\"87\\\",\\\"88\\\",\\\"89\\\",\\\"90\\\",\\\"91\\\",\\\"92\\\",\\\"93\\\",\\\"94\\\",\\\"95\\\",\\\"96\\\",\\\"97\\\",\\\"98\\\",\\\"99\\\",\\\"100\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"14273498977628745222\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"14273498977628745222\\\",\\\"id\\\":\\\"ob_21\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"14273498977628745222\\\",\\\"id\\\":\\\"ob_22\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"14273498977628745222\\\",\\\"id\\\":\\\"ob_21\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className => \"field interact-widget\")), Observable{Any} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[RGB{Float64}[RGB{Float64}(0.3342089213920589,0.2152847127163525,0.16837023876055515) RGB{Float64}(0.33686810038179255,0.2178429719953674,0.16987535058720285) … RGB{Float64}(0.16179400859522752,0.08480541224866361,0.04160956427671658) RGB{Float64}(0.16496679080474794,0.08614596153618306,0.04342365188057557); RGB{Float64}(0.34512478191221413,0.2321550148595949,0.18927118713710248) RGB{Float64}(0.34787081443903817,0.2349137463711858,0.19096313878069926) … RGB{Float64}(0.16707849000124744,0.09145099757595153,0.046774843849403294) RGB{Float64}(0.17035490094669656,0.09289659599228746,0.04881412654497154); … ; RGB{Float64}(0.6497006500357961,0.668444030084461,0.6779649482137973) RGB{Float64}(0.6548700821113833,0.6763872468641807,0.6840254792739233) … RGB{Float64}(0.3145268298595281,0.2633148950578736,0.16754639238933994) RGB{Float64}(0.32069470429974767,0.2674772071745587,0.17485105512225094); RGB{Float64}(0.6478309118891695,0.666867665431811,0.6765028853506384) RGB{Float64}(0.6529854671374862,0.6747921500430973,0.6825503465943714) … RGB{Float64}(0.31362167021116777,0.26269393013874187,0.1671850708212941) RGB{Float64}(0.3197717944611669,0.26684642644228673,0.17447398071014167)]], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol,Any}())" + ] + }, + "execution_count": 17, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "72204d38-e54a-4268-a48a-0a2ea0dc94ec" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "n = 100\n", + "@manipulate for k ∈ slider(1:n,value=1)\n", + " colorview( RGB, \n", + " rank_approx(channels[1,:,:], k),\n", + " rank_approx(channels[2,:,:], k),\n", + " rank_approx(channels[3,:,:], k)\n", + " )\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "r" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "5108213605131979406", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/860bb4a9e1927248d6fb4a7d59e926f541e3bfc2-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/4b164c07c3632d5e274899a8ab8726c70dab4aff-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/67252656a23d4f0f6f4ba7ab8e8eb9ffc4ae9b5d-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\",\"51\",\"52\",\"53\",\"54\",\"55\",\"56\",\"57\",\"58\",\"59\",\"60\",\"61\",\"62\",\"63\",\"64\",\"65\",\"66\",\"67\",\"68\",\"69\",\"70\",\"71\",\"72\",\"73\",\"74\",\"75\",\"76\",\"77\",\"78\",\"79\",\"80\",\"81\",\"82\",\"83\",\"84\",\"85\",\"86\",\"87\",\"88\",\"89\",\"90\",\"91\",\"92\",\"93\",\"94\",\"95\",\"96\",\"97\",\"98\",\"99\",\"100\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"5108213605131979406\",\"id\":\"ob_30\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"5108213605131979406\",\"id\":\"ob_29\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"5108213605131979406\",\"id\":\"ob_30\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"5108213605131979406\",\"id\":\"ob_29\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "ob_30", + "sync": false, + "value": 0 + }, + "index": { + "id": "ob_29", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "g" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "8200273331619935102", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/860bb4a9e1927248d6fb4a7d59e926f541e3bfc2-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/4b164c07c3632d5e274899a8ab8726c70dab4aff-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/67252656a23d4f0f6f4ba7ab8e8eb9ffc4ae9b5d-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\",\"51\",\"52\",\"53\",\"54\",\"55\",\"56\",\"57\",\"58\",\"59\",\"60\",\"61\",\"62\",\"63\",\"64\",\"65\",\"66\",\"67\",\"68\",\"69\",\"70\",\"71\",\"72\",\"73\",\"74\",\"75\",\"76\",\"77\",\"78\",\"79\",\"80\",\"81\",\"82\",\"83\",\"84\",\"85\",\"86\",\"87\",\"88\",\"89\",\"90\",\"91\",\"92\",\"93\",\"94\",\"95\",\"96\",\"97\",\"98\",\"99\",\"100\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"8200273331619935102\",\"id\":\"ob_32\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"8200273331619935102\",\"id\":\"ob_31\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"8200273331619935102\",\"id\":\"ob_32\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"8200273331619935102\",\"id\":\"ob_31\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "ob_32", + "sync": false, + "value": 0 + }, + "index": { + "id": "ob_31", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "b" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "17642114798534241424", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/860bb4a9e1927248d6fb4a7d59e926f541e3bfc2-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/4b164c07c3632d5e274899a8ab8726c70dab4aff-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/67252656a23d4f0f6f4ba7ab8e8eb9ffc4ae9b5d-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\",\"51\",\"52\",\"53\",\"54\",\"55\",\"56\",\"57\",\"58\",\"59\",\"60\",\"61\",\"62\",\"63\",\"64\",\"65\",\"66\",\"67\",\"68\",\"69\",\"70\",\"71\",\"72\",\"73\",\"74\",\"75\",\"76\",\"77\",\"78\",\"79\",\"80\",\"81\",\"82\",\"83\",\"84\",\"85\",\"86\",\"87\",\"88\",\"89\",\"90\",\"91\",\"92\",\"93\",\"94\",\"95\",\"96\",\"97\",\"98\",\"99\",\"100\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"17642114798534241424\",\"id\":\"ob_34\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"17642114798534241424\",\"id\":\"ob_33\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"17642114798534241424\",\"id\":\"ob_34\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"17642114798534241424\",\"id\":\"ob_33\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "ob_34", + "sync": false, + "value": 0 + }, + "index": { + "id": "ob_33", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "ob_40", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "12263044567757463441", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "ob_40", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"r\"], Dict{Symbol,Any}(:className => \"interact \",:style => Dict{Any,Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(:max => 100,:min => 1,:attributes => Dict{Any,Any}(:type => \"range\",Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\" => \"horizontal\"),:step => 1,:className => \"slider slider is-fullwidth\",:style => Dict{Any,Any}()))], Dict{Symbol,Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\")), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing),\"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "1, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/SbgIk/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(sz_max:32,sz_curr:0), Set(AbstractConnection[]), Base.GenericCondition{Base.AlwaysLockedST}(Base.InvasiveLinkedList{Task}(Task (runnable) @0x00000001189c06d0, Task (runnable) @0x00000001189c06d0), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\",\\\"51\\\",\\\"52\\\",\\\"53\\\",\\\"54\\\",\\\"55\\\",\\\"56\\\",\\\"57\\\",\\\"58\\\",\\\"59\\\",\\\"60\\\",\\\"61\\\",\\\"62\\\",\\\"63\\\",\\\"64\\\",\\\"65\\\",\\\"66\\\",\\\"67\\\",\\\"68\\\",\\\"69\\\",\\\"70\\\",\\\"71\\\",\\\"72\\\",\\\"73\\\",\\\"74\\\",\\\"75\\\",\\\"76\\\",\\\"77\\\",\\\"78\\\",\\\"79\\\",\\\"80\\\",\\\"81\\\",\\\"82\\\",\\\"83\\\",\\\"84\\\",\\\"85\\\",\\\"86\\\",\\\"87\\\",\\\"88\\\",\\\"89\\\",\\\"90\\\",\\\"91\\\",\\\"92\\\",\\\"93\\\",\\\"94\\\",\\\"95\\\",\\\"96\\\",\\\"97\\\",\\\"98\\\",\\\"99\\\",\\\"100\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"5108213605131979406\\\",\\\"id\\\":\\\"ob_30\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"5108213605131979406\\\",\\\"id\\\":\\\"ob_29\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"5108213605131979406\\\",\\\"id\\\":\\\"ob_30\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"5108213605131979406\\\",\\\"id\\\":\\\"ob_29\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"g\"], Dict{Symbol,Any}(:className => \"interact \",:style => Dict{Any,Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(:max => 100,:min => 1,:attributes => Dict{Any,Any}(:type => \"range\",Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\" => \"horizontal\"),:step => 1,:className => \"slider slider is-fullwidth\",:style => Dict{Any,Any}()))], Dict{Symbol,Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\")), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing),\"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "1, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/SbgIk/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(sz_max:32,sz_curr:0), Set(AbstractConnection[]), Base.GenericCondition{Base.AlwaysLockedST}(Base.InvasiveLinkedList{Task}(Task (runnable) @0x00000001189c0b50, Task (runnable) @0x00000001189c0b50), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\",\\\"51\\\",\\\"52\\\",\\\"53\\\",\\\"54\\\",\\\"55\\\",\\\"56\\\",\\\"57\\\",\\\"58\\\",\\\"59\\\",\\\"60\\\",\\\"61\\\",\\\"62\\\",\\\"63\\\",\\\"64\\\",\\\"65\\\",\\\"66\\\",\\\"67\\\",\\\"68\\\",\\\"69\\\",\\\"70\\\",\\\"71\\\",\\\"72\\\",\\\"73\\\",\\\"74\\\",\\\"75\\\",\\\"76\\\",\\\"77\\\",\\\"78\\\",\\\"79\\\",\\\"80\\\",\\\"81\\\",\\\"82\\\",\\\"83\\\",\\\"84\\\",\\\"85\\\",\\\"86\\\",\\\"87\\\",\\\"88\\\",\\\"89\\\",\\\"90\\\",\\\"91\\\",\\\"92\\\",\\\"93\\\",\\\"94\\\",\\\"95\\\",\\\"96\\\",\\\"97\\\",\\\"98\\\",\\\"99\\\",\\\"100\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"8200273331619935102\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"8200273331619935102\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"8200273331619935102\\\",\\\"id\\\":\\\"ob_32\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"8200273331619935102\\\",\\\"id\\\":\\\"ob_31\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"b\"], Dict{Symbol,Any}(:className => \"interact \",:style => Dict{Any,Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(:max => 100,:min => 1,:attributes => Dict{Any,Any}(:type => \"range\",Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\" => \"horizontal\"),:step => 1,:className => \"slider slider is-fullwidth\",:style => Dict{Any,Any}()))], Dict{Symbol,Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\")), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing),\"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "1, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/SbgIk/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(sz_max:32,sz_curr:0), Set(AbstractConnection[]), Base.GenericCondition{Base.AlwaysLockedST}(Base.InvasiveLinkedList{Task}(Task (runnable) @0x00000001189c0fd0, Task (runnable) @0x00000001189c0fd0), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\",\\\"51\\\",\\\"52\\\",\\\"53\\\",\\\"54\\\",\\\"55\\\",\\\"56\\\",\\\"57\\\",\\\"58\\\",\\\"59\\\",\\\"60\\\",\\\"61\\\",\\\"62\\\",\\\"63\\\",\\\"64\\\",\\\"65\\\",\\\"66\\\",\\\"67\\\",\\\"68\\\",\\\"69\\\",\\\"70\\\",\\\"71\\\",\\\"72\\\",\\\"73\\\",\\\"74\\\",\\\"75\\\",\\\"76\\\",\\\"77\\\",\\\"78\\\",\\\"79\\\",\\\"80\\\",\\\"81\\\",\\\"82\\\",\\\"83\\\",\\\"84\\\",\\\"85\\\",\\\"86\\\",\\\"87\\\",\\\"88\\\",\\\"89\\\",\\\"90\\\",\\\"91\\\",\\\"92\\\",\\\"93\\\",\\\"94\\\",\\\"95\\\",\\\"96\\\",\\\"97\\\",\\\"98\\\",\\\"99\\\",\\\"100\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"17642114798534241424\\\",\\\"id\\\":\\\"ob_34\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"17642114798534241424\\\",\\\"id\\\":\\\"ob_33\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"17642114798534241424\\\",\\\"id\\\":\\\"ob_34\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"17642114798534241424\\\",\\\"id\\\":\\\"ob_33\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className => \"field interact-widget\")), Observable{Any} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[RGB{Float64}[RGB{Float64}(0.3342089213920589,0.2152847127163525,0.16837023876055515) RGB{Float64}(0.33686810038179255,0.2178429719953674,0.16987535058720285) … RGB{Float64}(0.16179400859522752,0.08480541224866361,0.04160956427671658) RGB{Float64}(0.16496679080474794,0.08614596153618306,0.04342365188057557); RGB{Float64}(0.34512478191221413,0.2321550148595949,0.18927118713710248) RGB{Float64}(0.34787081443903817,0.2349137463711858,0.19096313878069926) … RGB{Float64}(0.16707849000124744,0.09145099757595153,0.046774843849403294) RGB{Float64}(0.17035490094669656,0.09289659599228746,0.04881412654497154); … ; RGB{Float64}(0.6497006500357961,0.668444030084461,0.6779649482137973) RGB{Float64}(0.6548700821113833,0.6763872468641807,0.6840254792739233) … RGB{Float64}(0.3145268298595281,0.2633148950578736,0.16754639238933994) RGB{Float64}(0.32069470429974767,0.2674772071745587,0.17485105512225094); RGB{Float64}(0.6478309118891695,0.666867665431811,0.6765028853506384) RGB{Float64}(0.6529854671374862,0.6747921500430973,0.6825503465943714) … RGB{Float64}(0.31362167021116777,0.26269393013874187,0.1671850708212941) RGB{Float64}(0.3197717944611669,0.26684642644228673,0.17447398071014167)]], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol,Any}())" + ] + }, + "execution_count": 18, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "72204d38-e54a-4268-a48a-0a2ea0dc94ec" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "n = 100\n", + "@manipulate for r ∈ slider(1:n,value=1,label=\"r\"), \n", + " g ∈ slider(1:n,value=1,label=\"g\"), \n", + " b ∈ slider(1:n,value=1,label=\"b\")\n", + " colorview( RGB, \n", + " rank_approx(channels[1,:,:], r),\n", + " rank_approx(channels[2,:,:], g),\n", + " rank_approx(channels[3,:,:], b)\n", + " )\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "@webio": { + "lastCommId": "007cfe5de7024e8982cad2c86dd5dbe9", + "lastKernelId": "72204d38-e54a-4268-a48a-0a2ea0dc94ec" + }, + "kernelspec": { + "display_name": "Julia 1.3.1", + "language": "julia", + "name": "julia-1.3" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.3.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Conditioning.ipynb b/notes/Conditioning.ipynb new file mode 100644 index 00000000..c1d805be --- /dev/null +++ b/notes/Conditioning.ipynb @@ -0,0 +1,1186 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Errors, Norms, and Condition Numbers\n", + "\n", + "(See also section 9.2 of Strang, *Introduction to Linear Algebra*. The book *Numerical Linear Algebra* by Trefethen and Bau is a good source for a much more in-depth discussion.)\n", + "\n", + "Throughout the semester, when we solve problems like $Ax=b$ on the computer, we notice that the answer is correct \"up to roundoff errors\" — little errors that appear in the solution, typically $\\lesssim 10^{-15}$:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 0.0\n", + " 6.938893903907228e-18\n", + " 0.0\n", + " 0.0\n", + " 1.1102230246251565e-16" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = randn(5,5)\n", + "b = randn(5)\n", + "x = A \\ b # solve Ax = b\n", + "b - A*x # this \"residual\" should be zero" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These arise because the computer [only stores about 15 decimal digits](https://en.wikipedia.org/wiki/Floating-point_arithmetic) for each number, so almost every arithmetic operation makes a tiny [round-off error](https://en.wikipedia.org/wiki/Round-off_error).\n", + "\n", + "In real applications, there are lots of other sources of error, too. If $A$ or $b$ comes from measured data, they probably include [measurement errors](https://en.wikipedia.org/wiki/Observational_error). Often, the equations you solve on the computer are only approximations for the *real* equations of nature (which may not even be fully known!), so there could also be **systematic errors** or **modelling errors** in your problem.\n", + "\n", + "Such (hopefully) tiny errors are almost inevitable in most real problems. But the key question is **do tiny errors in the *inputs* produce equally tiny errors in the *outputs*,** or **do errors get amplified?**?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output error from input error\n", + "\n", + "Suppose that we we want to solve $Ax = b$, but we actually have a *little error Δb in b*. Does that mean **we have an equally little error in x**?\n", + "\n", + "Let's work it out: we solve $A(x+\\Delta x) = b + \\Delta b$, and we should obtain\n", + "$$\n", + "x + \\Delta x = A^{-1} (b + \\Delta b) = A^{-1} b + A^{-1} \\Delta b\n", + "$$\n", + "so our error should be $\\boxed{\\Delta x = A^{-1} \\Delta b}$.\n", + "\n", + "Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.3333333333333346\n", + " 0.3333333333333327" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [1 2\n", + " 2.01 3.99]\n", + "b = [1,2]\n", + "x = A \\ b # \"exact\" answer" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.930000000000043\n", + " -0.47000000000002146" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Δb = [-0.01, 0.004]\n", + "x′ = A \\ (b + Δb)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.5966666666667084\n", + " -0.8033333333333541" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x′ - x # the error Δx" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.5966666666667066\n", + " -0.8033333333333534" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Δx = A \\ Δb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Okay, great, our $\\Delta x$ formula worked. But look at what happened here — we put a \"tiny\" error $\\sim 0.01$ into b, and got a \"huge\" error $\\sim 1$ in x! Why?\n", + "\n", + "That is, if we compare $\\Vert \\Delta x \\Vert$ to $\\Vert \\Delta b \\Vert$, we get a big increase:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.010770329614269008" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm(Δb) # the size of the error in the input" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.787369264838424" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm(Δx) # the size of the error in the output" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Error growth and a matrix norm\n", + "\n", + "In general, what is the relationship between $\\Vert \\Delta x \\Vert$ and $\\Vert \\Delta b \\Vert$? If $\\Delta b$ is a \"random\" error that could be in *any direction*, how big can $\\Vert \\Delta x \\Vert / \\Vert \\Delta b \\Vert$ be?\n", + "\n", + "That is, we would like to know the **maximum possible value** of\n", + "$$\n", + "\\frac{\\Vert \\Delta x \\Vert}{\\Vert \\Delta b \\Vert} = \\frac{\\Vert A^{-1} \\Delta b \\Vert}{\\Vert \\Delta b \\Vert}\n", + "$$\n", + "over **all possible Δb ≠ 0**.\n", + "\n", + "More generally, for *any* matrix $B$, we define the [induced or \"operator\" matrix norm](https://en.wikipedia.org/wiki/Matrix_norm)\n", + "$$\n", + "\\Vert B \\Vert = \\max_{y\\ne 0} \\frac{\\Vert B y \\Vert}{\\Vert y \\Vert}\n", + "$$\n", + "This is a measure of \"how big\" the matrix is, according to the *maximum* amount by which it can \"stretch\" a vector.\n", + "\n", + "By this definition, $\\boxed{\\Vert \\Delta x \\Vert \\le \\Vert A^{-1} \\Vert \\; \\Vert \\Delta b \\Vert}$: the **norm of A⁻¹ *bounds* how much the error can increase**.\n", + "\n", + "In Julia, the induced norm $\\Vert B \\Vert$ is computed by `opnorm(B)`, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.996014806077393" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(A) # ‖A‖" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "166.53382686925062" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(inv(A)) # ‖A⁻¹‖" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The fact that our $A^{-1}$ from above has such a big norm explains why $\\Vert \\Delta x \\Vert$ could be 100× bigger than $\\Vert \\Delta b \\Vert$.\n", + "\n", + "But how can we get $\\Vert A^{-1} \\Vert$?\n", + "\n", + "One way is to simply compute $\\Vert A^{-1} y \\Vert / \\Vert y \\Vert$. Since $\\Vert A^{-1} y \\Vert / \\Vert y \\Vert = \\Vert A^{-1} \\alpha y \\Vert / \\Vert \\alpha y \\Vert$ for any scalar α, we can freely restrict ourselves to $\\Vert y \\Vert = 1$ (by choosing $\\alpha = 1 / \\Vert y \\Vert$), i.e. we can *equivalently* define\n", + "\n", + "$$\n", + "\\Vert B \\Vert = \\max_{\\Vert y \\Vert = 1} \\Vert B y \\Vert\n", + "$$\n", + "\n", + "So, we can just plot $\\Vert A^{-1} y \\Vert$ versus angle $\\theta$ for $y = (\\cos \\theta, \\sin \\theta)$ on the unit circle:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHMCAYAAADWN6wLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABoC0lEQVR4nO3dd3gUVdsG8HvTC0noKSSEIEUglNCCobcAUpQiKIog6KcCIiJ2KVYUAbug76tgAUQFFASV0DskgUhoghAISAISII30zPfHeWeTJYXsZndnZuf+XddemexOdp/d7M4+c85zzjFIkiSBiIiISKeclA6AiIiISElMhoiIiEjXmAwRERGRrjEZIiIiIl1jMkRERES6xmSIiIiIdI3JEBEREekakyEiIiLSNSZDREREpGtMhoiIiEjXmAwRERGRrjEZIiJdW7x4Mdq3bw9XV1fMnTtX6XCISAFMhohI1wIDA/Haa6/h3nvvVToUIlKIi9IBEBEpSU6CfvnlF2UDISLFsGWISGHLli2DwWDAuXPnFL1PW8RhjkaNGmHu3Lk4d+4cDAYDtm/fXuG+x44dg6urKwwGAy5fvmy/IG/DnOdAVWer92ZGRgZmzpyJkJAQeHh4oHPnzti3b59VH4O0gckQkcIGDx6Mffv2ITAwUNH7tEUctjJt2jQUFhYCABISEpQNhjTp6tWr6Nq1K3bs2IEPPvgAa9euRVFREYYMGYLr168rHR7ZGZMhIoXVq1cPXbp0gbu7u6L3aYs4bOGnn37C1q1bMXjwYAAVJ0N9+/aFh4dHuZdZs2bZMWJtuHnzptIh2NWECRMgSRJ27NiBkSNHYtCgQViyZAmuXbvGLlMdYjJEujN37lwYDAYcOXIE9913H/z8/FC7dm3MmDEDhYWF+OuvvzBw4ED4+PigUaNGmD9/vsnf//3333jkkUfQtGlTeHl5oUGDBhg6dCgSExON++Tm5iIiIgJNmjRBenq68frU1FQEBASgV69eKCoqAlC2C6C68ZV3nwaDocKLvE95XRFyLMeOHcMDDzwAPz8/+Pv7Y+LEiSbPCxA1N23atIG7uzsaN26MDz/80Pj31pKTk2Ps1vj666/h7OxcYTK0ZcsW5Obmlnt54403qvyYI0aMQHBwcJnrCwsL0a5dO/Tv39/SpwMA2L17N/r27QsfHx94eXkhKioKGzZsMN7+888/w2AwYMuWLWX+dvHixcb3iuz06dMYO3Ys6tevD3d3d7Ro0QKffvqpyd/J/5dDhw5h1KhRqFWrFu64445K46zK+770fdvjPVOV51qerVu3YsOGDVi0aBG8vLyM1zdu3BgAcPbs2So9PjkOFlCTbo0ePRoPPfQQHn/8ccTExGD+/PkoKCjA5s2bMXnyZMycORMrVqzACy+8gCZNmmDEiBEAgEuXLqFOnTp45513UK9ePVy7dg1ff/01IiMjcfjwYTRv3hweHh744Ycf0KFDB0ycOBGrV69GcXExHnzwQUiShJUrV8LZ2dkm8ZXn1jqInJwcjBs3DkVFRahdu/ZtX6uRI0dizJgxmDRpEhITE/HSSy8BAL766isAwO+//44RI0agR48eWLVqFQoLC7FgwQKr1/O8++67OH/+PL7//nvUqVMHTZs2rXY3WWFhIQoLC1FUVITCwkLk5ubC1dXV+P/p0aMH1q5di/PnzyM0NNT4d4sWLcLJkyfx448/WvzYO3bsQP/+/dGmTRt8+eWXcHd3x2effYahQ4di5cqVGDNmDIYMGYL69etj6dKl6Nu3r8nfL1u2DO3bt0ebNm0AAMePH0dUVBQaNmyIhQsXIiAgAH/88QemTZuGq1evYs6cOSZ/P2LECNx///144oknkJ2dXWmsVXnfl2br94y5z7W0L774Ao0aNULv3r2N3a2AqCECAFdX1yrFQA5EItKZOXPmSACkhQsXmlzfrl07CYC0Zs0a43UFBQVSvXr1pBEjRlR4f4WFhVJ+fr7UtGlT6ZlnnjG5bdWqVRIA6YMPPpBmz54tOTk5SZs2bTLZZ+nSpRIAKSkpyWrx3Xqft8Z7zz33SDVq1JDi4+Mr/Rs5lvnz55vcx+TJkyUPDw+puLhYkiRJ6tSpkxQSEiLl5eUZ98nMzJTq1KkjVfUwExoaKs2ZM0dKSkqSAEjbtm0zuf38+fOSp6en1LNnT+N1o0ePlpycnKTs7OwqPUZ55OdY+rJ06VLj7fHx8RIAacWKFcbrzp49K3l5eUmvv/66Wc/hVl26dJHq168vZWZmGq8rLCyUwsPDpeDgYOPrO2PGDMnT01O6ceOGcb/jx49LAKSPP/7YeN2AAQOk4OBgKT093eRxpk6dKnl4eEjXrl0zec6zZ8+u2otUjore97Z4z5T33qzqc71VUVGRVLNmzTL/89KXb7/91qLXhLSL3WSkW0OGDDH5vUWLFjAYDBg0aJDxOhcXFzRp0gTnz583XldYWIi3334bLVu2hJubG1xcXODm5obTp0/jxIkTJvc5evRoPPnkk3juuefw5ptv4uWXX65yt4ql8d3O1KlTsWHDBvz4449o3759lf5m2LBhJr+3adMGubm5uHLlCrKzsxEXF4d7770Xbm5uxn1q1KiBoUOHVjmu25kxYwby8/Px0UcfmcRRXFxcpqvGHHPnzoUkSSaXCRMmGG9v164dfH19sWfPHuN1Tz75JEJCQvDCCy9Y/LjZ2dk4cOAARo0ahRo1ahivd3Z2xrhx43Dx4kX89ddfAICJEyciJycHq1atMu63dOlSuLu7Y+zYsQBE1+yWLVswfPhweHl5GVu8CgsLcffddyM3Nxf79+83iWHkyJFVjtec9z1g2/eMJc9V9tdff+HGjRt44403EBsba3IZP348AKBz585Vfl3IMTAZIt26tXvIzc0NXl5e8PDwKHN9bm6u8fcZM2Zg1qxZuPfee7F+/XocOHAAsbGxaNu2LXJycso8zsSJE1FQUAAXFxdMmzbN5vFV5s0338SSJUvw+eefY+DAgVWOpU6dOia/y0XWOTk5uH79OiRJgr+/f5m/K+86S2zbtg2rV6/GQw89hIYNG+LGjRu4ceOGscbDliPKnJycEBUVhb179wIAli9fjj/++ANLliwx+SI3l/y6lTd6LygoCACQlpYGAGjVqhU6deqEpUuXAgCKiorw3Xff4Z577jG+T9LS0lBYWIiPP/4Yrq6uJpe7774bgBhBVZo5IwfNfd/b8j1jyXOVyTVxkZGR6Nixo8nl6NGjuOOOO9CsWbPbxkCOhTVDRGb67rvv8PDDD+Ptt982uf7q1auoWbOmyXXZ2dkYN24cmjVrhsuXL+PRRx9VbKTKsmXLMGvWLMydOxcTJ0602v3WqlWrwvl+UlNTq33/RUVFxiTy66+/xtdff11mH1sPr+/RowdmzZqF5ORkzJgxA+PHj0evXr2qdZ+1atWCk5MTUlJSytx26dIlAEDdunWN1z3yyCOYPHkyTpw4gbNnzyIlJQWPPPKIyf3JrUpTpkwp9zHDwsJMfjenuN2c9/3tVPc9Y8lzlRUUFABAmZq9hIQExMfH4913373t45PjYTJEZCaDwVBm+PmGDRvwzz//oEmTJibXP/HEE0hOTsbBgwdx8uRJjBo1Cu+//z6eeeYZe4aM33//HY899hgmTpxYaWGpJby9vdGxY0f8/PPPWLBggbG1JCsrC7/++mu17//TTz/F0aNH8dprr6FHjx5lbh85cqRdkiF5DpqioiIsWLCg2vfp7e2NyMhIrFmzBgsWLICnpycAoLi4GN999x2Cg4NNWigeeOABzJgxA8uWLcPZs2fRoEEDREdHG2/38vJC7969cfjwYbRp06ZarVblMed9fzvVfc9U57nKrYmJiYno06cPANEFOG3aNISFhWHq1KlmPRdyDEyGiMw0ZMgQLFu2DHfeeSfatGmD+Ph4vPfee2WGX//3v//Fd999h6VLl6JVq1Zo1aoVpk6dihdeeAFdu3a1W11CUlIS7rvvPjRu3BiPPPJImVqKiIiIas8t9Prrr2Pw4MEYMGAAnn76aRQVFeG9995DjRo1cO3aNYvv9+rVq5g7dy6ioqIwa9asclsy2rZti4MHD6K4uBhOTrbp+e/UqRM8PT2RmJiIr776yqTFpjrmzZuH/v37o3fv3pg5cybc3Nzw2Wef4ejRo1i5cqXJ861ZsyaGDx+OZcuW4caNG5g5c2aZ5/vhhx+iW7du6N69O5588kk0atQImZmZ+Pvvv7F+/Xps3brV4lir+r6vquq+Zyx9ruHh4ejQoQPefPNN+Pv7w8/PDwsXLsTx48exZcsWk6H2pB9MhojM9OGHH8LV1RXz5s1DVlYW2rdvjzVr1uDVV1817pOYmIhp06Zh/PjxJsW4CxYswL59+zBmzBgcPnzY7O4FS5w/fx5ZWVk4deoUunfvXub2pKQkNGrUqFqPMXDgQKxevRqzZ8/GmDFjEBAQgMmTJ+PSpUv49ttvLb7fV155BZmZmfj8888r7NJp27Yttm3bhtOnT5cZ3m0tTk5OqFWrFjp27Gjy/6yunj17YuvWrZgzZw4mTJiA4uJitG3bFuvWrStTQA+IrrKVK1cCQLlxtGzZEocOHcIbb7yBV199FVeuXEHNmjXRtGlTYy2NparyvjdHdd8z1Xmuq1evxuOPP45JkybBw8MDgwYNQlxcXLU/B6RdBkmSJKWDICLHU1BQgHbt2qFBgwbYtGnTbfdv1KgRJkyYgAkTJiAsLAzbtm2rdl2OtSxYsACvvPIKEhIS0KJFiwr3U/Nz0AJz3zNE1sKWISKyikmTJqF///4IDAxEamoqlixZghMnTuDDDz9UOjSL3Lx5E3/++SdiY2Pxyiuv4K233qo0ESLzOdp7hrSLyRARWUVmZiZmzpyJf//9F66urmjfvj02btyIfv36KR2aRTZt2oThw4cjICAAL7/8MmbOnKl0SA7H0d4zpF1MhojIKn744QelQ7Cqe++9F6wisC1He8+QdrFmiIiIiHSNM1ATERGRrjEZIiIiIl1jzVAVFBcX49KlS/Dx8TFr+noiIiJSjiRJyMzMRFBQUKWTsjIZqoJLly4hJCRE6TCIiIjIAhcuXKh0tnQmQ1Xg4+MDQLyYvr6+CkdDREREVZGRkYGQkBDj93hFmAxVgdw15uvry2SIiIhIY25X4sICaiIiItI1JkNERESka0yGiIiISNeYDBEREZGuMRkiIiIiXWMyRERERLrGZIiIiIh0jckQERER6RqTISIiItI1JkNERESka0yGiIiISNeYDBEREZGucaFWhWVnZ1d4m7OzMzw8PKq0r5OTEzw9PS3a9+bNm5Akqdx9DQYDvLy8LNo3JycHxcXFFcbh7e1t0b65ubkoKiqyyr5eXl7GBfzy8vJQWFholX09PT3h5CTONfLz81FQUGCVfT08PODs7Gz2vgUFBcjPz69wX3d3d7i4uJi9b2FhIfLy8irc183NDa6urmX3LS4GbtwA/PyA/8VYet+ioiLk5uZWeL+urq5wc3Mze9/i4mLk5ORYZV8XFxe4u7sDACRJws2bN62yrzmfex4jyt+XxwgzjxH5+SgoKkJ+Ja+vPY4RipLottLT0yUAUnp6utXvG0CFl7vvvttkXy8vrwr37dmzp8m+devWrXDfjh07muwbGhpa4b4tW7Y02bdly5YV7hsaGmqyb8eOHSvct27duib79uzZs8J9vby8TPa9++67K33dShs1alSl+2ZlZRn3HT9+fKX7Xrlyxbjv5MmTK903KSnJuO/MmTMr3ffo0aPGfefMmVPpvgcPHjTuO3/+/Er33bZtm3HfTz75pNJ9f/31V+O+S5curXTfH374wbjvDz/8UOm+S5cuFTteuCD9+uKLle77SYsWkvTqq5J05oy0bdu2SvedP3++MYaDBw9Wuu+cOXOM+x49erTSfWfOnGncNykpqdJ9J0+ebNz3ypUrle47fvx4475ZWVmV7jtq1CiT93Bl+/IYIS48RpRczDpG+PlJkru7JAHSJ66ule5r82OEjVT1+5stQ0RkOykpwEMPAStXitagypw4Abz5pri0b2+f+Ij0LD29ZLuSFiQ9MEhSBe2ZZJSRkQE/Pz+kp6fD19fXqvfNJnDz92UTuAa6yf7+G3jnHbitWgXX/71fCtu1Q1779iLR6dABaNJEdJVduQJcvgy31FS4/vwzEBODIklCLgDUrg289howYQLwv9ceYDeZJfvyGGHZvpo9RhQVIf/991EwezYgv4+dnIC+fYFRo4CwMHjUqwfnWrUAX18UJCcjf/t2YO9eYNcucSIDAG5uwBNPwP3ll+Hi7w9AW91kVf3+ZjJUBbZMhogcSn4+8PzzwMcfl7QEDR0KzJ1b9daec+eAr74Sl3/+EdfdfTfw3/8CgYG2iJrIsZw4AUyaBOzbJ37v0AF45BFg9GigXr3b/70kAQcPAi++CGzfLq7z8wNefhl49lljnZ8WMBmyIiZDRFWQmgrcdx+we7f4fcgQkQR16GDZ/RUVAR98IA7A+fmilWjJEvEYRFRWQQEwfz7w+uviM+PjA7z3HvDYY6JVyFySBPzxB/DCC8CRI+K6wYOBFSsAjXwXVvX7m0Prif5n+PDhqFWrFkaNGqV0KNpz4IBIenbvFgfJdeuA9estT4QAcfb57LPAoUNARARw7Zo4sx0/XhzoiahEdrZIVF59VXw+7r4bOHYMePxxyxIhQHRNDxwIHD4sWmY9PIANG4CoKCApybrxK4zJENH/TJs2Dd98843SYWjPl18CPXoAly4BLVoAsbGia8xaWrUC9u8HZs0SCdI334iah0rqEIh05cYNIDoaiIkBvL2Bb78Ffv0VCAmxzv07OYlut507RVf1sWNA586itshBMBkiTdi+fTsaNWoEQBRhnjt3zuqP0bt3b/j4+Cj2+Jr03nvAo4+KM9Hhw0ULUbNm1n8cNzfR9L9xozg7Xb8eGDECqKRwmkgX/v0X6N1bFD7XrAls3ixGcJYacGA1nTqJk5327YGrV0Ux9ooV1n8cBTAZIodx+PBhuLq6onv37kqHog9Ll4piaQCYPRv46SdRo2BL0dHijNfTUyRG99xTMlKGSG8uXhStsgkJQP36oti5SxfbPmaDBqJFaNQoUaP08MPis6hxTIbIYUybNg0zZ87En3/+We7Q3g4dOiA8PLzM5dKlSwpEq3G//CJahADguefE8HdL6xLM1bcv8Ntvojtg0yZRqF3JUHUih5SaKhKhkydFd9iuXUDbtvZ5bC8vYNUqkQgVFYlBDXFx9nlsG2EyRA5hxYoVqFWrFqZMmYLMzEycPXu2zD7x8fE4evRomUtQUJACEWvYjh3AmDFi6PwjjwDvvmv/GHr2BH7/HahRA9i6FRg79vaTOhI5irw8YORIUcR8xx0iEbJF93RlnJyA//wH6N9fnIwMHgycOWPfGKyIyRBpXnZ2Nl5++WW8++67CA4Ohp+fHxISEpQOyzEdPgwMGyYOxsOGAV98YZvahKro1k0M+3V3Fy1V8+YpEweRPUkS8NRTokbIz090UYWGKhOLmxuwejXQrp2YPHXgQFHDpEFMhkjz3nrrLQwcOBAtWrQAALRs2dKiZGjAgAG47777sHHjRgQHByM2NtbKkWrc1auiSyojQzTPf/894KLwij5RUcCnn4rtWbNEckTkyJYsES0yTk7iM2jvFqFb+fiUJGR//63ZbmuuTUaadvbsWXzxxRc4evSo8brw8HCLkqE/+EVaMUkCJk4Uw+ebNxctMaWWa1DUpElittwvvgAeeACIjwfCwpSOisj6du4Epk0T2/PmiZYYNQgMFN3WXbuKz+LMmcBnnykdlVnYMkSa9swzzyAtLQ3BwcFwcXGBi4sL/vvf/7KbzNo++0wMZ3dzE2ejNWsqHZGpjz4S855cvy6G3GvwzJSoUsnJYgRXYaFI+p97TumITN15pzg2AMDixWLUp4YwGSLNiomJwZ49e3D48GEkJCQYL19++SUuXryItLQ0pUN0DEeOiJmgATGvULt2ioZTLnd3MbS/Xj0xzPjJJ0VrFpEjKCoC7r9f1ONERIjZoJWq1atM//7AM8+I7YkTgcuXlY3HDEyGSJMKCwvx9NNP47nnnkO7du1Mhsr37dsXANg6ZA03b4qDcF6eGC3y1FNKR1SxkBAx3NfJScxS/dNPSkdEZB0ffigWXfXxAdasEUPb1ertt4HWrUXiNnGiZk5KmAyRJq1fvx5paWmYOnVqmdtCQkLg5eXFZMgannlGrIAdGCgmWVTj2WhpvXuLtZkAYOpUsZ4ZkZadPg288orYXrgQ+N9M+Krl4SFmpXZ3F4XVixcrHVGVMBkiTRo+fDguX74Mb2/vMrcZDAZkZ2fjWblrhyzzyy8lQ+e//VZ0QWnByy+LNdKuXCnp3iPSouJiMblpbq6YbFSe6FTtwsNL5h979llxQqVyTIaIqKzs7JIusZkzxYFYK9zdS2oqli0TazURadHixWIEmbe3GE6v9pbZ0p56Siyfk5sLjBsn6p5UjMkQEZX11lvAhQti7pC5c5WOxnxRUcCUKWL7//5PJHdEWnLuHPDCC2L7nXe0N12Ek5M4GfHzE9Nd/Pe/SkdUKSZDpAmNGjXC9OnTAQBz5sxBTTsP7Vb68e3qr7+ABQvE9ocfqrtYszJvvy2KqpOSgDlzlI6GqOokCXjsMZHEd+8OTJ6sdESWCQwEXn9dbL/yiqpr+AxSeStakomMjAz4+fkhPT0dvr6+SodDZDuSBAwYAMTEAHffLeYK0VLT/K02bhSj4JycgP37gU6dlI6I6PZWrAAefFAUIx85AjRtqnRElissFNMBHD0qkjp5xng7qer3N1uGiKjETz+JRMjdXUxkqOVECBAJnbyI6+TJXMyV1C83F3jpJbH96qvaToQAsWTPxx+L7SVLxDxgKsRkiIiErKySCdNefFGshu0IFi0Sq9vHxQE//qh0NESV+/BDMdt0cDAwY4bS0VhHr17A6NHiZOSpp1Q59xCTISIS3ngD+OcfUagpF246An9/4PnnxfbLLwP5+crGQ1SRf/8VtW6A+KmW9f+sYcECUX+4e7foBlQZJkNEJEauvP++2P7oI8c6CAPiDDsgADh7VjTVE6nR668DGRlA+/aiZsiRhISIkxFArKuWmalsPLdgMkREwGuvAQUFQL9+wJAhSkdjfd7e4jkC4gsnPV3ZeIhu9ddfJYn6ggWi6N/RPPss0LgxkJJSMmJVJRzw1SYis/z1l1jLCwDefFPZWGxp4kSxsnZaGjB/vtLREJl64QUx8mroULGsjCPy8CiZmfr991U11J7JEJHezZ0rChuHDgUiI5WOxnZcXEoOxIsWARcvKhsPkWzHDrH8jbNzyXvUUY0YAbRpI7rJFi5UOhojVSdDO3fuxNChQxEUFASDwYCff/7Z5PYJEybAYDCYXLp06WKyT15eHp566inUrVsX3t7eGDZsGC7yIEgkHDkCfP+92JYnR3NkQ4cC3bqJ4cuciJHUQJJKCvz/7//EunqOzMmppMv6ww+Bq1eVjed/VJ0MZWdno23btvjkk08q3GfgwIFISUkxXjZu3Ghy+/Tp07F27Vp8//332L17N7KysjBkyBAUqXydFCK7kBOC0aOBdu0UDcUuDAbgvffE9rJlwPHjioZDhJgY4OBBMWhBLwn6PfeIiRizs0s+jwpTdTI0aNAgvPnmmxgxYkSF+7i7uyMgIMB4qV27tvG29PR0fPnll1i4cCH69euHiIgIfPfdd0hMTMRmLt5IehcbC/z8szhT0+L6Y5bq0gUYPlx0Db7zjtLRkN7JdXqPPy6mgdADg6GkJfqTT4DLl5WNBypPhqpi+/btqF+/Ppo1a4bHHnsMV65cMd4WHx+PgoICREdHG68LCgpCeHg49u7dW+F95uXlISMjw+RC5HBmzRI/H3rI8ZvmbyUP8V2xQqxdRqSEnTuBXbsANzdg5kylo7GvwYPF8jg3b6piQIOmk6FBgwZh+fLl2Lp1KxYuXIjY2Fj06dMHeXl5AIDU1FS4ubmhVq1aJn/n7++P1NTUCu933rx58PPzM15CQkJs+jyI7G7XLuCPP0RRsV6a5kvr2BGIjgaKilQ3xJd05K23xM+JE4EGDZSNxd5Ktw599pkYbq8gTSdDY8aMweDBgxEeHo6hQ4fit99+w6lTp7Bhw4ZK/06SJBgqWXPppZdeQnp6uvFy4cIFa4cumujXrwdmz7b+fRPdTumDcOPGysaiFHn9py+/BCo5OSKyidhYYNMmMYJMLqDWmwEDgLvuEgMaFO6y1nQydKvAwECEhobi9OnTAICAgADk5+fj+vXrJvtduXIF/pX0zbq7u8PX19fkYnVnz4oisjfeEPO8ENnLkSOiVcjJybGW3TBXz57iQJyXVzL7NpG9yCckDz0klsDRo9KtQ59/ruh0Fw6VDKWlpeHChQsIDAwEAHTo0AGurq6IiYkx7pOSkoKjR48iKipKqTCFJk3EMF8A+OADRUMhnVm0SPwcOVK/rUKAOBDLtUOLFwO3nDQR2UxiophXyGAoaaHUq759gWHDxGfRFg0PVaTqZCgrKwsJCQlISEgAACQlJSEhIQHJycnIysrCzJkzsW/fPpw7dw7bt2/H0KFDUbduXQwfPhwA4Ofnh0mTJuHZZ5/Fli1bcPjwYTz00ENo3bo1+vXrp+Az+x95ReJly1Qz1wI5uH/+KVkkUW8Fm+UZPBho3VpMAPfpp0pHQ3ohL8Z6331A8+bKxqI0g0EkhrNnK5oMQVKxbdu2SQDKXMaPHy/dvHlTio6OlurVqye5urpKDRs2lMaPHy8lJyeb3EdOTo40depUqXbt2pKnp6c0ZMiQMvvcTnp6ugRASk9Pt+bTk6TiYknq0EGSAEl64w3r3jdReV54QbzfevRQOhL1WLFCvCZ16khSVpbS0ZCj++svSTIYxHvuzz+VjsbhVfX72yBJkqRcKqYNGRkZ8PPzQ3p6uvXrh1asEKsT+/uLlcM9PKx7/0SyzEyxcnR6OrBuXUk3rd4VFoo1y86cEbVD06crHRE5ssmTRbfskCFiEA3ZVFW/v1XdTaYL990HBAeLSadWrlQ6GnJk//2vSISaNxfdQyS4uJSM5nn/fZEcEdnCjRsliyLLZRKkCkyGlObqCkybJrYXLRLr1BBZW0FBSaH+s8+KkWRU4uGHgTp1gORk4NdflY6GHNXSpWIJivBwoFcvpaOhUnhEVIPHHgNq1ACOHhXr1BBZ208/iS/6+vWBceOUjkZ9PDzE5xAQywMQWVtRUcl7a9o0UThMqsFkSA1q1gQmTRLbCxcqGgo5IEkqmWX5qadYl1aRJ54QLWZbtnABV7K+334T88vVqiXqRElVmAypxdNPiwPxpk2ihYjIWvbsAQ4dEqtiP/mk0tGoV2iomAgV4DB7sr6PPhI/H30U8PJSNhYqg8mQWoSFASNGiG1OwkjWtGSJ+Dl2rKiLoYpNnSp+fv21KDYnsobjx0UJhJOTGE1GqsNkSE2eflr8XLmSB2KyjqtXgR9/FNtPPKFsLFrQuzfQooUocpVH/RBVl1wrNGwY0KiRoqFQ+ZgMqUnXruJAfPNmySzBRNWxbBmQnw906CBWaqfKGQwlrUOffCIWVCaqjtLD6eWRw6Q6TIbUxGAAHn9cbH/+OYfZU/UUF4v3EcBWIXOMGwf4+ACnToliaqLq4HB6TWAypDbjxonRPn/+CRw8qHQ0pGVbtwJ//y3W+7n/fqWj0Q4fH+CRR8T2xx8rGwtpW3FxSTH+U09xOL2KMRlSm9q1xazUAPDFF8rGQtomF06PGyfmsaKqk4tcf/0VSEpSNhbSru3bxTIvvr4cTq9yTIbUSO4q+/57FlKTZS5dAn7+WWzL7yequubNgf79RVf1l18qHQ1plfzeGTsW8PZWNhaqFJMhNYqKAlq1EoXU332ndDSkRV99JWa87doVaN1a6Wi0SZ6Retky8VoSmeP6dWD1arEtT6pLqsVkSI0MBuD//k9ss5CazFVUVNLFysJpyw0bJrqt//mHy+SQ+VasAPLygDZtxGhOUjUmQ2olF1InJgIHDigdDWnJb78BFy6IL/JRo5SORrvc3UvqPJYuVTYW0h65i2ziRBZOawCTIbWqVQsYPVpsy8OjiapCbhWaMIHrkFXXxIni588/A2lpioZCGnL4sLi4uQEPPaR0NFQFTIbUTC58XbVKTNxFdDtXroiWIYB1CtbQrh0QESEmruREqFRVcqvQvfdyCRyNYDKkZnfdJQqpc3JKllQgqszKlUBhoZhtumVLpaNxDHLr0FdfKRsHaUNODrB8udjmCYlmMBlSM4MBePhhsf3tt8rGQtogT/s/fryycTiSsWNFd0dCguj6IKrM2rWiJb9hQ6BfP6WjoSpiMqR2Dz4okqJduzj5G1Xu6FHg0CHA1ZUzTltT7dqiuwNgITXdntyC+MgjYpV60gT+p9SuQQOgb1+xzTmHqDJyq9DgwUDdusrG4mjkrrLvvgNyc5WNhdQrKUmsZ2cwlCzpQprAZEgL5K6yb77hnENUvqKikmRZfr+Q9fTrBwQHi4n01q1TOhpSq6+/Fj/79QNCQ5WNhczCZEgLhg8HvLzEopucc4jKs3kzkJIiunQGD1Y6Gsfj7FxSh8VCaiqPJJUUTrNmT3OYDGlBjRrAiBFim4XUVB65i+yBB0SxL1nfhAniZ0wMkJqqaCikQnFx4oTVywu45x6loyEzMRnSCrnr4/vvxZwnRLKMDDGCBeAZqS01aQJERgLFxcAPPygdDamN3Cp0zz3iBJY0hcmQVvTpAwQFAdeuARs3Kh0NqclPP4m5Te68U8wvRLYzdqz4uXKlsnGQuhQViRNVoGQJF9IUJkNa4exc8iGTu0SIANO5hbgGkm2NHi2GS+/fD5w9q3Q0pBZbtwKXL4vZpqOjlY6GLMBkSEvGjRM/f/1VtBARnTsH7NghkiCugWR7AQGilRYoaQkgkpdque8+Mc8XaQ6TIS1p3VqslVRQwJoFElatEj979xZDv8n2HnhA/GRXGQGii3r1arHNLjLNYjKkNXLrECdgJKAkGRozRtk49GTECDFi7+hRIDFR6WhIaRs2AJmZYvmNqCiloyELMRnSmjFjRJfInj3AxYtKR0NKOn1arJXl7Fwy9QLZXs2awN13i222DpHcRfbAA1x+Q8P4n9OaBg2Abt3E9k8/KRsLKUvuKu3Xj8tv2FvpUWWcFV6/btwQLUMAu8g0jsmQFo0eLX6ybkjf2EWmnCFDxFwy586JkWWkT6tXi3nfwsNFTSdpFpMhLRo5UnSV7dsHJCcrHQ0p4cQJUa/i6lqyojrZj6enWCYHKOkmIf2R//dySyFpFpMhLQoMBHr0ENvsKtMnuVUoOhqoVUvZWPRKHlX2ww9AYaGysZD9paQA27aJbfm9QJrFZEir2FWmX5LELjI1kGu1rlwRk+6RvqxdKz6LkZFAo0ZKR0PVxGRIq0aMEF1lBw6IugXSj8RE4ORJwN2dC0IqydVVTLIH8KREj+S5hUaNUjYOsgomQ1oVEAD07Cm22VWmL3Kr0KBBgK+vsrHonfxF+Msv7CrTk3//BbZvF9sjRyoaClkHkyEtY1eZ/rCLTF169BDrUV29CuzapXQ0ZC+//AIUFwPt2wNhYUpHQ1bAZEjLRowQk3zFxrKrTC8OHwbOnBGjmYYMUToacnEp6aqUu03I8cmt8WwVchiqToZ27tyJoUOHIigoCAaDAT///LPxtoKCArzwwgto3bo1vL29ERQUhIcffhiXLl0yuY9evXrBYDCYXO6//347PxMb8fcHevUS2z/+qGgoZCdyq9DgwWKeG1Ke/IW4Zo1oLSDHdv06sGWL2Ga9kMNQdTKUnZ2Ntm3b4pNPPilz282bN3Ho0CHMmjULhw4dwpo1a3Dq1CkMGzaszL6PPfYYUlJSjJfPP//cHuHbB7vK9EOSSpJe+f9OyuvbV9RupaRwAkY9WLdO1IeFhwPNmikdDVmJi9IBVGbQoEEYNGhQubf5+fkhJibG5LqPP/4YnTt3RnJyMho2bGi83svLCwEBATaNVTEjRgCTJwNxccDZs0DjxkpHRLaSmAgkJQEeHiVrY5Hy3N1Fl+WKFaKrjIt1Oja5i4ytQg5F1S1D5kpPT4fBYEDNmjVNrl++fDnq1q2LVq1aYebMmcjMzKz0fvLy8pCRkWFyUa169YDevcX22rXKxkK2Jf9/o6MBb29lYyFTpbvKuFaZ48rIADZtEtusF3IoDpMM5ebm4sUXX8TYsWPhW2q48YMPPoiVK1di+/btmDVrFlavXo0Rt1nhe968efDz8zNeQkJCbB1+9cjLApSqqSIHJP9/5f83qcfAgYCXlxjIcPiw0tGQrfz6q1iLrHlzoFUrpaMhK3KIZKigoAD3338/iouL8dlnn5nc9thjj6Ffv34IDw/H/fffj59++gmbN2/GoUOHKry/l156Cenp6cbLhQsXbP0Uqkeuk9qzR8yGS44nKQlISBCjBzmKTH28vMS8TwBHlTky+X8rrw9JDkPzyVBBQQFGjx6NpKQkxMTEmLQKlad9+/ZwdXXF6dOnK9zH3d0dvr6+JhdVCwkBOnYUzfPr1ysdDdmC3CrUo4dYAoLUR25xXr2aXWWOKDsb+O03sc16IYej6WRIToROnz6NzZs3o06dOrf9m2PHjqGgoACBgYF2iNCO5JXL2VXmmOT/K1eoV68hQwA3N+Cvv4Djx5WOhqztt9+AnBwxyWK7dkpHQ1am6mQoKysLCQkJSEhIAAAkJSUhISEBycnJKCwsxKhRoxAXF4fly5ejqKgIqampSE1NRX5+PgDgzJkzeP311xEXF4dz585h48aNuO+++xAREYGuXbsq+MxsQP6SjIkBsrIUDYWs7N9/gd27xTaTIfXy9QX69xfba9YoGwtZn/w/ZReZQ1J1MhQXF4eIiAhEREQAAGbMmIGIiAjMnj0bFy9exLp163Dx4kW0a9cOgYGBxsvevXsBAG5ubtiyZQsGDBiA5s2bY9q0aYiOjsbmzZvh7Oys5FOzvpYtgSZNgLw84I8/lI6GrGn9+pKp/0NDlY6GKiOPMGLdkGMpKAA2bhTbHMDgkFQ9z1CvXr0gVdL3XtltABASEoIdO3ZYOyx1MhhEq8GCBaJLhcM+HYc8pJ6tQuo3bBjg7Az8+acoeue6VY5h1y4gPV1MZRIZqXQ0ZAOqbhkiM8lrJP36qziTIe3LyhJdnwDPSLWgTh2gWzexzcEMjmPdOvFzyBCR7JLDYTLkSO66S5y53LgB7NypdDRkDb//Lro+77iD85poxdCh4ieTIccgSSXJUDnLPZFjYDLkSJydSz6sHFXmGOQusuHDWbSpFfJncPt20bVC2nbsmOjydHcvKZAnh8NkyNGUHmLPuU60LT8f2LBBbLNeSDuaNhUzFBcWcjCDI5Bbhfr14zI4DozJkKPp21d8YC9eBCqZZZs0YMcO0bLg7y+6QEk72FXmONhFpgtMhhyNp6dYJwlgV5nWyV+kQ4eKZThIO+Qvzg0bRAsRaVNqKnDggNjmMjgOjUdYR8TZqLVPksSoQIAHYS266y6gdm3g+nXgf/OekQbJn8FOnYCgIGVjIZtiMuSI7r5btCQcPQokJysdDVni5ElRtOnmJro+SVtcXMTnEGBXmZaxi0w3mAw5otq1S2pM5AJc0hb5/9a7N1CjhrKxkGXkL1D5C5W05ebNkjm+mAw5PCZDjmrwYPGTyZA2sYtM+wYMAFxdgVOnxOKtpC1btgC5uWIJnNatlY6GbIzJkKOSk6GtW8VKy6QdN26ULMwq/x9Je3x9gV69xDa7yrSndBcZ5/hyeEyGHFXr1kBwsEiEtm1TOhoyxx9/AEVFYvFdrm2lbRxir03FxSX/M3aR6QKTIUdlMLCrTKvk/xdbhbRPTob27AHS0pSNhaouLg64fFm07vXooXQ0ZAdMhhxZ6WSIs1FrQ1ERsHGj2Ga9kPY1aiRaaYuKgN9+Uzoaqir5MxgdLUZ0ksNjMuTI+vQR6+mcPw8cP650NFQVBw+KFoSaNYGoKKWjIWuQW4fkonhSPzlxHTRI2TjIbpgMOTJvbzE0G2BXmVbIX5gDB4q5akj75PmGNm0SLUSkbv/+C8TGim15Nn9yeEyGHB3rhrSFQ+odT2SkaOm7fl20/JG6/fGHKCto146zTusIkyFHJydDe/aIgzGp14ULwJEjYvZwnpE6DhcXUXsCsG5IC9hFpktMhhxdWBjQooVont+0SeloqDJy691ddwF16igbC1mXnNwyGVK3oiLg99/FNpMhXWEypAfsKtMGDql3XHIyFBcHXLmibCxUsdhY4No1wM+vZEkj0gUmQ3ogf7n+9hsLONUqN1dM/w8wGXJEgYGiBgUQNSmkTnLLXXQ0BzDoDJMhPejaVZzpXL1aMkqC1GX3bjFbeFAQ10FyVHK3i9wNQ+ojzy/ELjLdYTKkB66uLOBUO/kLcsAAroPkqOQvWHm5FVKXy5dFNybAAQw6xGRIL+QPN5vo1Un+vwwYoGwcZDtduojlHdLSSr50ST3kz2BEhOjWJF1hMqQXcsuQXCBI6vHPP8DRo2JIfb9+SkdDtuLqCvTvL7bZQqs+HFKva0yG9CI4WKyCXlwMbN6sdDRUmnxG2qkTh9Q7OvmLlsmQuhQVlXwO5RnDSVeYDOmJ3AXD+YbUhV1k+iF3V8fGigENpA4HDohJaWvWFDOGk+4wGdIT+ctWnm6elFdUBMTEiG0WbTq+Bg2ANm3E548nJerBIfW6x2RIT3r0ADw8gIsXgRMnlI6GANFCIJ+RduqkdDRkD+wqUx/OOq17TIb0xNNTJEQAR5Wphfx/6NePZ6R6UXpkZ3GxsrGQGN0XHy+25YEmpDtMhvSmdFcZKU/+P7CLTD+6dgV8fIB//wUOHVI6GtqyRXRbhodzlXodYzKkN/KZz44dYsZjUs7166JwE2DxtJ64ugK9e4ttuV6MlCPXbsnTHpAuMRnSm1atRBFnbi6wa5fS0ejb5s2im6RlSzH1AemH/MXLZEhZklTyP2AXma4xGdIbg6HkQ8+uMmWxi0y/5GRozx7g5k1lY9Gz06eB5GTAza2knpJ0icmQHnG+IeVJkul6ZKQvzZoBISFAfj6wc6fS0eiXfAzs1g3w8lI2FlIUkyE96tdPtBAdPSqWgiD7O35cvPYeHkD37kpHQ/ZmMLCrTA3k1571QrrHZEiP6tQpmdOGrUPKkLvIevYUUx6Q/sjd1UyGlFFQAGzbJrZZL6R7TIb0ikPslSWvD8eDsH717StaiBITgdRUpaPRnwMHgMxMoG5doF07paMhhTEZ0qvSZ6Wc+M2+SteJcJV6/apbF4iIENtcPNn+5Fbxfv0AJ34V6h3fAXrVpYuY+O3aNSAhQelo9OXAASA7G6hfX0z0RvrFuiHlsF6ISlF1MrRz504MHToUQUFBMBgM+Pnnn01ulyQJc+fORVBQEDw9PdGrVy8cO3bMZJ+8vDw89dRTqFu3Lry9vTFs2DBcvHjRjs9CpVxcRL0KwLNSe5Nf7759eUaqd6WTIS6ebD/XrwMHD4ptJkMElSdD2dnZaNu2LT755JNyb58/fz4WLVqETz75BLGxsQgICED//v2RmZlp3Gf69OlYu3Ytvv/+e+zevRtZWVkYMmQIioqK7PU01EvuotmyRdk49EZOhthFRl27ihGFKSlihCHZx7ZtojzgzjvFFAdEkkYAkNauXWv8vbi4WAoICJDeeecd43W5ubmSn5+ftGTJEkmSJOnGjRuSq6ur9P333xv3+eeffyQnJyfp999/r/Jjp6enSwCk9PT06j8RNUlMlCRAkjw9JSk3V+lo9CE9XZKcncXrfu6c0tGQGkRHi/fD++8rHYl+PPGEeM2nTVM6ErKxqn5/q7plqDJJSUlITU1FdKnROO7u7ujZsyf27t0LAIiPj0dBQYHJPkFBQQgPDzfuU568vDxkZGSYXBxSq1aAv79Yo2zfPqWj0YcdO4CiIqBJEyA0VOloSA1YN2R/XI+MbqHZZCj1f0NR/f39Ta739/c33paamgo3NzfUqlWrwn3KM2/ePPj5+RkvIY7ajGowiLoVgF1l9sIuMrqV/IW8Y4cYaUi2dfasuLi6Ar16KR0NqYRmkyGZwWAw+V2SpDLX3ep2+7z00ktIT083Xi5cuGCVWFVJ/lJmEbV9yEknkyGStW4tRhZmZ7OF1h7kY12XLkCNGsrGQqqh2WQoICAAAMq08Fy5csXYWhQQEID8/Hxcv369wn3K4+7uDl9fX5OLw5JbhmJjAUftDlSLlBTg2DHRIte7t9LRkFo4OZUkx+wqs72tW8VP+dhHBA0nQ2FhYQgICEBMqYNHfn4+duzYgaioKABAhw4d4OrqarJPSkoKjh49atxH9xo2FPUrRUWimZ5sR24Vat8eqF1b2VhIXeSuMrbQ2lZxMZMhKpeL0gFUJisrC3///bfx96SkJCQkJKB27dpo2LAhpk+fjrfffhtNmzZF06ZN8fbbb8PLywtjx44FAPj5+WHSpEl49tlnUadOHdSuXRszZ85E69at0Y/dFCX69QP+/lsciIcOVToax8V6IapInz7iZ1ycaKF15NZoJR07Bvz7r1ihvnNnpaMhFVF1MhQXF4fepboTZsyYAQAYP348li1bhueffx45OTmYPHkyrl+/jsjISGzatAk+Pj7Gv3n//ffh4uKC0aNHIycnB3379sWyZcvg7Oxs9+ejWn37AkuWsIjaliSJyRBVTG6h/ftvYNcuYPBgpSNyTHKrUPfugJubsrGQqhgkidOe3k5GRgb8/PyQnp7umPVDaWlAvXriCzslBfhfPRZZ0cmTQIsWgLu7mP2WK9XTrR5/HPjiC2DGDGDhQqWjcUzDhgHr1wPz5wPPPad0NGQHVf3+1mzNEFlRnTolC0aydcg25Ne1WzcmQlQ+uatMbr0g6yosLKmLlF9rov9hMkQCl+awLXaR0e3Ic94kJIjWWrKuQ4dEPVbNmkC7dkpHQyrDZIgEeWTF5s1cMNLaCgvFWkgAR7BQxfz9gfBwsb19u6KhOCS5xa1XL4A1o3QLJkMkdOsmCgovXBBFnGQ9hw8D6emAn58YVk9UEXnACLvKrE9u9eYJCZXDotFkycnJFj1YzZo1HbMA2RF4eQFRUeKMdPNmoGlTpSNyHHKrUM+ePCOlyvXpA3z8MZMha8vLA3bvFtusF6JyWJQMNWrUyOy/MRgMmDNnDmbPnm3JQ5I99O0rkqFt24Ann1Q6GschJ0OcdZpup2dPMUP5yZPApUtAUJDSETmG/fuB3FwxUrZFC6WjIRWyKBkqLi62dhykBnIB5/btom7oNmu8URUUFIh5YwAmQ3R7tWqJrtT4eJFEP/ig0hE5BrmLrE8fHteoXBYlQ2FhYbddDLU806dPx7Rp0yx5SLKHzp3FsO9//wWOHwdatVI6Iu2LjxcLcNauLRbkJLqdPn3E+2brViZD1iJ3O7KLjCpgUTK0bNkyix7Mku41siM3N6BrV1EztG0bkyFrKF0v5MTxClQFffoA773HuiFrycoCDhwQ20yGqAIWJUM9e/Y0bl+4cAEhISFWC4gU1ru3SIa2bwemTlU6Gu1jvRCZq1s3wMUFOHcOSEoCwsKUjkjbdu0S01uEhfG1pApV+1T1zjvvxKxZs5CdnW2NeEhp8pf29u1ihWeyXH4+sGeP2GYyRFVVowYQGSm22TpUfewioyqodjIUExODTZs2oWnTpli6dKk1YiIldewIeHuLGXCPHlU6Gm07eBC4eVOs+8YuRzIHl+awHiZDVAXVToaioqJw4MABvPPOO5g9ezYiIiKwnbOnaperq2imBzgLbnXJXWS9enEEC5mndDLEGeEtd+OGmPQUKBktS1QOq1V0Pvzwwzh16hSGDh2KwYMHY/jw4fibMxlrk3zQkL/MyTKsFyJLdekCeHgAqaliziGyzK5dIpls1oxzNlGlrDq8RZIkREdH4//+7/+wbt06hIeH49lnn0VmZqY1H4ZsTf7y3rGDdUOWys0F9u4V20yGyFweHmJGeIAttNUhr1JfatAPUXmqnQwtWbIEkyZNQps2beDn54d+/fphz549mDJlCj777DMkJCSgZcuWiIuLs0a8ZA/t24sizuvXgSNHlI5Gm/bvF0sABAQAzZsrHQ1pkfwFLn+hk/nkRJJdZHQbFg2tL+2tt95Cly5dMH78eHTp0gUdO3aEu7u78faJEyfi7bffxoQJE3CUBbna4OoKdO8O/PabOJi0a6d0RNrDeiGqLjkZ4ozwlklPL6kXYssQ3Ua1k6ELFy7cdp9JkyZh1qxZ1X0osqdevUQytG0bMH260tFoD+uFqLoiIwF3d+DyZeDUKbYwmmv3btHN36QJ0KCB0tGQytllStz69etjK4eIakvpuqGiImVj0ZqbN0U3GcBkiCzn4SEKqQF2lVmCXWRkBqslQ/Hx8RXeZjAYTGatJg2IiAB8fUVT859/Kh2NtuzbJxZobdBAnJUSWap0VxmZh8kQmcFqydDw4cOtdVekBi4uom4I4BB7c5XuImOdB1WH/EW+YwfnGzJHRgZw6JDY5ok4VYFZNUOjR48u93pJknDt2jWrBEQq0rs3sGGDOMN69lmlo9EOuUuDZ6RUXV26iAWUL10CzpxhS2NVyfVCd9wBBAcrHQ1pgFnJ0ObNm/Htt9+iRo0aJtdLkoSdO3daNTBSAfnLfOdOsdChS7Xr7R1fTo5YhgPgGSlVn6cn0Lmz+HLfvp3JUFWxi4zMZNa3W69evVCjRo1y638iIiKsFhSpRLt2gJ9fSd1Qhw5KR6R+Bw6IBVoDA8VZKVF19eolkqEdO4BHH1U6Gm3gZItkJrNqhtasWVNhIfTvv/9ulYBIRZydS9YpY8tf1civU8+erBci6yg9+SLrhm4vMxOQB/QwGaIqqlYBdWpqqrXiILXq0UP8ZDJUNfIZqfy6EVXXXXeJLuoLF4CkJKWjUb89e8R0II0bAw0bKh0NaUS1kqHo6GhrxUFqVToZ4jpllcvPF8PqAZ6RkvV4ewOdOoltzjd0e3K9ED+DZIZqJUMSm2wdX4cOgJcXcO0acPy40tGoW1ycKKCuWxdo0ULpaMiRlB5iT5Vj8TRZoFrJkIE1EY7P1bVk9Wx2lVVOfn169GC9EFkXJ1+smqwscVICsGWIzGKX5ThI41g3VDWlkyEia4qKEgMazp8XFyqfXC/UqBEQGqp0NKQhTIbo9uQvd45mqVhhoRj+DPCMlKzPxwfo2FFss6usYqVHcxKZoVrJkJubm7XiIDXr3FnMgpuaCvz9t9LRqNOff4ohvX5+QOvWSkdDjohdZbfH1lmyULWSoTi5b5Ycm6cnEBkpttlVVj75bL17d9GdQWRtpecborJyc0tmf5fXVSSqInaTUdWwbqhyPCMlW+vaVRTmnz0r1iojUwcPiuktAgK4bAmZjckQVU3puiEyVVwM7NoltpkMka34+QFt24pt+f1GJeTXpHt3juYks9kkGbp+/Tq2bduG999/3xZ3T0q46y6OZqnIsWNiHiZvb6B9e6WjIUcmd/8wGSqrdDJEZKZqL0OelJSEhIQEk8vFixchSRK8vb3xzDPPWCNOUpqPj5iA8eBBcdDhsNUScmtZVJSYl4nIVrp3Bz7+mMnQrQoLxbB6gK2zZBGLW4Z69uyJmjVr4o477sDEiROxefNmBAQE4J9//sGXX36J8+fPIzMz05qxktJYN1Q+Ducle5FbPRITgRs3FA1FVf78U0y46OcHhIcrHQ1pkMXJ0L59+zBlyhRcuHAB169fx549e/D555/DYDCgc+fOCAkJsWacpAZMhsqSJBZPk/0EBABNm4r3ndwSQiUtZd26cTQnWcTiZOjAgQPYtWsXpkyZglOnTlkzpipr1KgRDAZDmcuUKVMAABMmTChzW5cuXRSJ1SF06yYKE//6S8w5RMDp08Dly4C7u5iPicjWWDdUlnxCwnohspDFyVBERAR27tyJ0aNHY8CAAZgyZQquXLlizdhuKzY2FikpKcZLTEwMAOC+++4z7jNw4ECTfTZu3GjXGB1KrVpAmzZimwdiQX4dIiNFQkRka/IXPltoBUli8TRVW7VHk40dOxbHjh1DzZo10apVKxQXF6OoqMgasd1WvXr1EBAQYLz8+uuvuOOOO9CzVO2Gu7u7yT61a9e2S2wOi0PsTclLcHTrpmwcpB/yF35cHJCTo2wsanDyJHD1KuDhUbJkCZGZrDK03svLC2+99RYOHDiAIUOGoG/fvliwYAFy7PhBzc/Px3fffYeJEyfCUGqOie3bt6N+/fpo1qwZHnvssSq1XuXl5SEjI8PkQv8jH4jlJEDveEZK9ta4MRAYCBQUAAcOKB2N8uTPYJcuYtkgIgtYdZ6hxo0b45dffsHy5cuxdOlSNG7c2Jp3X6mff/4ZN27cwIQJE4zXDRo0CMuXL8fWrVuxcOFCxMbGok+fPsjLy6v0vubNmwc/Pz/jhcXgpcgtIEeOAOnpysaitJQU4MwZUUd1111KR0N6YTCUtNCyu5onJGQVBkkyfxny5OTk2+5TUFCAX3/9FcOHDzdeV7NmTfj6+pr7cFUyYMAAuLm5Yf369RXuk5KSgtDQUHz//fcYMWJEhfvl5eWZJEwZGRkICQlBenq6zeLXlCZNRBLw22/AwIFKR6OcH38ERo8G2rUDDh9WOhrSk08/BaZOBfr3BzZtUjoaZYWGAsnJQEwM0K+f0tGQymRkZMDPz++2398WTbrYqFGjKu8rT7poMBgwZ84czJ4925KHrNT58+exefNmrFmzptL9AgMDERoaitOnT1e6n7u7O9xZDFuxbt1EMrR7t76TIdYLkVLkVpB9+8SEgy7Vnj9Xm86fF4mQs7PoJiOykEWfoOLiYmvHUS1Lly5F/fr1MXjw4Er3S0tLw4ULFxAYGGinyBxUt27A11+zbqj03CZE9hQeDtSsKSZeTEjQb+Gw/Bls3x6oUUPZWEjTLEqGwsLCTIqUq2r69OmYNm2aJQ9ZoeLiYixduhTjx4+HS6mzo6ysLMydOxcjR45EYGAgzp07h5dffhl169Y16bojC8hf/gcOiFWi9Vi0mJEhZr0FmAyR/Tk5iVXsN2wQCYHekyFOeErVZFEytGzZMosezJzutaravHkzkpOTMXHiRJPrnZ2dkZiYiG+++QY3btxAYGAgevfujVWrVsHHx8fqcehK8+ZAnTpAWhoQH6/P4uF9+8Rq9WFhQIMGSkdDetS9u0iGdu4E9LoGJIunyUosSoZ6qmgNpujoaJRXA+7p6Yk//vhDgYh0wGAQrSG//CK6yvSYDMldhDwIk1Lk1pDdu8XEgxa01mva1avAiRNiu2tXZWMhzbPq0HrSEb3PN8TiaVJahw6Ap6dICk6eVDoa+9u7V/xs0QKoW1fZWEjzmAyRZeQkYM8e0V2kJ/n5wP79YpvJECnFzU0sAwPoc74heaFafgbJCpgMkWUiIsRZaVqaWLhVTw4dAnJzRd3UnXcqHQ3pWemTEr2RW2fZRUZWwGSILKPns9LSQ+r1VqdB6iInAnpLhnJzxdpsAFuGyCqYDJHl5IOQ3uqGWDxNanHXXSIhP3MGSE1VOhr7iYsT3dX+/mKtNqJqYjJEltNjEXVxMYunST38/IDWrcW2nlqHSn8G2TpLVsBkiCzXpYuY/C0pCfjnH6WjsY+TJ4Fr10S9VESE0tEQ6bOrTH6urBciK2EyRJbz9QXathXbejkQy/VCXbroc+ZtUh+9dVcXF3MkGVkdkyGqHr0diNlFRmojt44cPgzcvKlsLPZw8iRw/Trg5QW0a6d0NOQgmAxR9chJgV5GlPGMlNSmYUOxJExhIXDwoNLR2J58QhIZCbi6KhsLOQwmQ1Q9clJw5AiQnq5sLLaWkiLqowwG0U1GpAby8jiAPlpoeUJCNsBkiKonKEgsVlpcXDIrs6OSD8KtW4t6KSK10FMRNSdbJBtgMkTVJx+U5LWCHJX8/HgQJrWRW0n27gWKipSNxZZSUoCzZ8UoVj0uEE02w2SIqk8vZ6Uczktq1bo1UKMGkJEBHDumdDS2w9ZZshEmQ1R9UVHi54EDoojTEd28KdYkA5gMkfq4uJTUsTnySQnrhchGmAxR9bVqJc7SsrKAxESlo7GN2FiR6AUGAqGhSkdDVJYeiqg5tQXZCJMhqj5n55KzUketGypdL8Tp/0mNHL27OjtbzKUEsHWWrI7JEFmHox+IWS9EahcZKQqLz58HLl5UOhrrO3BAFIc3bAiEhCgdDTkYJkNkHXLdkCO2DBUXcyQZqZ+PT8mMzI54UsITErIhJkNkHaXPSh1t0VZ5+n9PT07/T+rmyC20PCEhG2IyRNbh41OyaKujtQ7Jz6dzZ07/T+omJwqOVkRdXAzs2ye25VZoIitiMkTWIx+kHO2slM3zpBXyKKs//xSjOx3FiRNiuR9vbzHHEJGVMRki63HUJnomQ6QVDRqIAuPiYsdatFX+DEZGijmViKyMyRBZj9wydPiwGAbrCK5cAU6fFtuc/p+0wBEHM8jPhV1kZCNMhsh6GjYUZ6ZFRWKSQkcg1ym0bAnUqqVsLERVISftTIaIqozJEFmPweB4i7ayi4y0Rk4Y9u8X3WVa9++/Ja2z8uSuRFbGZIisy9GKqJkMkda0bSumgbh+HfjrL6WjqT62zpIdMBki65KThn37tH9WmpsLxMWJbSZDpBWurmIaCMAxWmjZRUZ2wGSIrKttW8DLS5yVnjypdDTVc+gQkJ8P1KsH3HGH0tEQVZ0jFVEzGSI7YDJE1lX6rFTrXWVcnJW0ylGSofz8ksEYTIbIhpgMkfU5St2QXKvAIfWkNXKh8cmTQFqasrFUR0KC6K6uXRto1kzpaMiBMRki6ytdN6RVklRyVs1kiLSmbt2S5GH/fmVjqY7SXWRsnSUbYjJE1ieflZ46BVy9qmwsljp/HkhNFbPdduyodDRE5nOErjLWC5GdMBki66tdG2jeXGxr9axUbtWKiBDDlIm0Rk4gtNpCK0klXe1MhsjGmAyRbWj9QMwzUtI6+b174ABQWKhsLJZITgYuXQKcnYFOnZSOhhwckyGyDbnORqvJEIunSetatAD8/ICbN4EjR5SOxnzyCUlEhJiug8iGmAyRbchJxMGD2jsrzc4Wo1gAJkOkXU5O2l6njK2zZEdMhsg2WrYEfH1FYpGYqHQ05omLE4vNNmgAhIQoHQ2R5ZgMEVUJkyGyDSenklFlWusqK91FxuG8pGVaHVGWnQ38+afYZjJEdsBkiGxHq3VDcrw8CJPWde4sTkzOnxfFyFoRG8vWWbIrTSdDc+fOhcFgMLkEBAQYb5ckCXPnzkVQUBA8PT3Rq1cvHDt2TMGIdUaLTfScbJEcia8v0Lq12NbSSQkHMJCdaToZAoBWrVohJSXFeEksVZ8yf/58LFq0CJ988gliY2MREBCA/v37IzMzU8GIdSQyUnQznT0LXLmidDRVc+aMmCjSzU2MYiHSOi2elDAZIjvTfDLk4uKCgIAA46VevXoARKvQBx98gFdeeQUjRoxAeHg4vv76a9y8eRMrVqxQOGqdqFlTFFID2jkrlb8wOnYE3N2VjYXIGrTWXS1JJZO1MhkiO9F8MnT69GkEBQUhLCwM999/P86ePQsASEpKQmpqKqKjo437uru7o2fPnth7mzOkvLw8ZGRkmFzIQlo7EPOMlByN/F4+dAjIy1M2lqo4exb491/ROtu+vdLRkE5oOhmKjIzEN998gz/++AP/+c9/kJqaiqioKKSlpSE1NRUA4O/vb/I3/v7+xtsqMm/ePPj5+RkvISzgs5zWmuhZPE2OpkkToE4dkQjJ82epmfwZbN+erbNkN5pOhgYNGoSRI0eidevW6NevHzZs2AAA+Prrr437GG4ZGi1JUpnrbvXSSy8hPT3deLlw4YL1g9cLOamIiwMKCpSN5XYyM0vmRGLLEDkKg0Fb01zIMcoxE9mBppOhW3l7e6N169Y4ffq0cVTZra1AV65cKdNadCt3d3f4+vqaXMhCzZoBtWoBOTkl84ao1cGDQHEx0KgREBiodDRE1qOl7mp2VZMCHCoZysvLw4kTJxAYGIiwsDAEBAQgJibGeHt+fj527NiBKHaB2E/pyRfV3lXGIfXkqOT3tFyYrFbZ2SXrqPFzSHak6WRo5syZ2LFjB5KSknDgwAGMGjUKGRkZGD9+PAwGA6ZPn463334ba9euxdGjRzFhwgR4eXlh7NixSoeuL1o5K+UZKTmqTp3EiYm8ErxacSkcUoiL0gFUx8WLF/HAAw/g6tWrqFevHrp06YL9+/cjNDQUAPD8888jJycHkydPxvXr1xEZGYlNmzbBx8dH4ch1Rm6JU3MyxOG85Mh8fIDwcNHqsm8fMHKk0hGVjyckpBBNJ0Pff/99pbcbDAbMnTsXc+fOtU9AVL5blwQIClI6orJOnQKuXwc8PIC2bZWOhsj67rpLJEP79zMZIrqFprvJSCPks1JAva1DcqtQx46Aq6uysRDZgtq7qyWJI8lIMUyGyD7kA/GBA8rGURE5GeJBmByV/N6OiwPy85WNpTzyZIuurpxskeyOyRDZh9rnOWHzPDm6Zs2A2rXF5ItqnOZCPiFp3150VxPZEZMhso/SZ6Vqm3wxK6tkskW2DJGjUvvkizwhIQUxGSL7kCdfzM0tmUdELeLixGSLISHqLO4mshY11w0xGSIFMRki+3ByAiIjxbbaJn7jQZj0Qm4ZUttnMDu7pOuOn0NSAJMhsh+1HohZPE160bmz6C47dw64zYLVdiVPthgUBAQHKx0N6RCTIbIfNdYrlJ5skckQOTpfX3VOc1G6dfY2C2kT2QKTIbKfzp3FzzNnxBBaNUhKAq5cEcN5IyKUjobI9tTYQsvZ30lhTIbIfmrVAlq0ENtqmW+Iw3lJb9RWRC1JJccDts6SQpgMkX2p7ayUXWSkN3IypJZpLpKTRf2SiwsnWyTFMBki+2IyRKSsZs2AmjWBnJyS+bWUJH8G27UDPD0VDYX0i8kQ2ZecdBw4IEaPKCknBzh8WGyzVoH0Qm3TXPCEhFSAyRDZV6tWQI0aYtbn48eVjeXQIaCwEAgIABo2VDYWIntSUwstkyFSASZDZF/OziWjypQ+EJc+CHM4L+mJWpKhvDxxUgIwGSJFMRki+1PLgVgeTcODMOmNfEJy+jSQlqZcHAkJQH4+ULcu0LixcnGQ7jEZIvtTSzLEuU1Ir2rXFoXUAHDwoHJxsHWWVILJENmfXLx5/Dhw44YyMVy8CPzzj+i269BBmRiIlKSGkxLOL0QqwWSI7K9+feCOO8S2Umel8hdAmzaAt7cyMRApSQ3JkPzY8gkSkUKYDJEylD4QcwQL6V3paS6Ki+3/+Jcvi+VwDAagUyf7Pz5RKUyGSBlMhoiU1bq1mOQwPR04dcr+jy93kbVsCfj52f/xiUphMkTKKJ0MSZJ9H7ugAIiPF9tsnie9cnEBOnYU20qclPCEhFSEyRApo00bwN0duH5dDO+1pyNHgNxcsXBs06b2fWwiNVGyhZbJEKkIkyFShptbySgue69gLz9e585iaQIivVIqGSoqKhk8wWSIVIDfBKQcpdZH4hkpkSB/BhITxRI59nLsGJCdDfj4AC1a2O9xiSrAZIiUU3o0iz1xOC+REBQEBAeL0WRyHZ09lG6ddXa23+MSVYDJEClHTkb+/FOsIG8PaWklNUrykgREeqZEVxlbZ0llmAyRcho2BPz9xcrx8mKNtibXKTRtCtSpY5/HJFIzJZMhts6SSjAZIuUYDPbvKuP0/0Sm7D3NRXo6cOKE2GYyRCrBZIiUZe8iap6REplq317MOZSaCiQn2/7xDh4USVdYmFiah0gFmAyRsuzZMlRczOG8RLfy9ATathXb9vgcsnWWVIjJECmrY0fRXZacDKSk2PaxTp8Wkzx6eIhJH4lIkBOTffts/1hyMsTWWVIRJkOkLB8foFUrsW3rs1L5/jt0AFxdbftYRFoiJya2/gxKEruqSZWYDJHy7NVVxoMwUfnkz8ShQ0B+vu0eJykJuHpVzEAfEWG7xyEyE5MhUp69iqhZq0BUvqZNxVp9eXli7T5bkT+D7dqJtQmJVILJEClPToZiY8WaRbZw86aY3LH04xGRYDDYp6uM9UKkUkyGSHktWwI1aoi1io4ds81jxMeLRCswEAgJsc1jEGkZkyHSMSZDpDxnZ6BTJ7FtqwNx6YOwwWCbxyDSMlsnQ3l5JTPNMxkilWEyROpg6yJqroVEVDl5rb5Tp8QUFNb255+iOLtOHeCOO6x//0TVwGSI1MHWRdRsnieqXJ06QJMmYluenNSa2DpLKqbpZGjevHno1KkTfHx8UL9+fdx7773466+/TPaZMGECDAaDyaULWwfUR05Sjh8HMjKse9+XLgEXLwJOTmKSRyIqny27ynhCQiqm6WRox44dmDJlCvbv34+YmBgUFhYiOjoa2dnZJvsNHDgQKSkpxsvGjRsVipgqFBAAhIaKSdliY6173/JBuFUrUahNROWzZQstkyFSMRelA6iO33//3eT3pUuXon79+oiPj0ePHj2M17u7uyMgIMDe4ZG5IiOB8+fFQbNvX+vdLw/CRFUjt5rLi6laqzsrLQ34+2+xLdcmEamIpluGbpWeng4AqF27tsn127dvR/369dGsWTM89thjuHLlSqX3k5eXh4yMDJML2YGtmuiZDBFVTdu2YjLEtDTgzBnr3a/8GWzeXEzuSKQyDpMMSZKEGTNmoFu3bggPDzdeP2jQICxfvhxbt27FwoULERsbiz59+iAvL6/C+5o3bx78/PyMlxDOS2MfpZMhSbLOfRYVAXFxpvdPROUrvUyGNU9KeEJCKucwydDUqVNx5MgRrFy50uT6MWPGYPDgwQgPD8fQoUPx22+/4dSpU9iwYUOF9/XSSy8hPT3deLlw4YKtwycAaN8ecHEBLl8Wq9hbw/HjQFaWqBVq2dI690nkyGzRQstkiFTOIZKhp556CuvWrcO2bdsQHBxc6b6BgYEIDQ3F6dOnK9zH3d0dvr6+JheyA09PoE0bsW2tA7F8Px07iskdiahy1k6GJKlkqD6TIVIpTSdDkiRh6tSpWLNmDbZu3YqwsLDb/k1aWhouXLiAwMBAO0RIZpOLK601zwnPSInMI39WEhLErNHVdfq0mMTRw6PkZIdIZTSdDE2ZMgXfffcdVqxYAR8fH6SmpiI1NRU5OTkAgKysLMycORP79u3DuXPnsH37dgwdOhR169bF8OHDFY6eymXts1ImQ0TmCQsD6tYVs0UnJFT//uRh+h06AK6u1b8/IhvQdDK0ePFipKeno1evXggMDDReVq1aBQBwdnZGYmIi7rnnHjRr1gzjx49Hs2bNsG/fPvj4+CgcPZVLTlri44GCgurdV1ZWycKvTIaIqsbaK9jzhIQ0QNPzDEm3GXHk6emJP/74w07RkFU0bw74+QHp6cDRoyUjWywRFwcUFwPBwUBQkPViJHJ0XboAGzaIVp1p06p3X0yGSAM03TJEDsjJyXor2PMgTGQZa7UM5eSIBVpL3yeRCjEZIvWx1oGYyRCRZeQTkrNngX//tfx+EhKAwkLA3x9o2NAqoRHZApMhUh8mQ0TKqlkTuPNOsV2dtQLlz2DnzlypnlSNyRCpj5y8nDwpaocs8c8/YrV6Z2cxioWIzGONkxKekJBGMBki9alfH2jUSEzWJi+lYS75IBweDnh7Wy00It2Q5/yqTjLEyRZJI5gMkTpV90BcunmeiMwnJzDyCvbm+vdfUXMElNQgEakUkyFSp+o20bN5nqh62rQRK9hfvw78/bf5fy+3Ct15p5gug0jFmAyROlVnBXuuVE9Ufa6uYvFkwLKTEp6QkIYwGSJ1qs4K9seOAdnZYqX6Fi1sEx+RHlSnhZb1QqQhTIZInaqzgr28f6dOXKmeqDpK1w2ZgyvVk8YwGSL1svSslM3zRNZh6Qr2pVeqb93aJqERWROTIVIvS89KeUZKZB2NGlm2gr18QtK+PVeqJ01gMkTqZckK9qVXqueweqLqKb2CvTknJTwhIY1hMkTq1ayZGJKbkyNWsK+K+HiuVE9kTZZ0V3OeL9IYJkOkXqVXsK/qWSnrhYisy9wJUHNzS7rU+DkkjWAyROpm7lmpnDTxjJTIOuTP0t9/A9eu3X7/P/8U3dr16omaIyINYDJE6iYfiNkyRKSMWrVElzVQtc9h6c8gV6onjWAyROomJ0PHjwMZGZXve+kScPGi6F7jSvVE1mNOCy3rhUiDmAyRugUEAA0biknc4uMr31c+a23VSsw+TUTWYU4LLVtnSYOYDJH6VfWslAdhItuo6lqBaWnAmTNimy1DpCFMhkj9qpoMsXiayDbatgXc3ESyc/ZsxfvJn8FmzYCaNe0SGpE1MBki9atKE31RERAbK7bZMkRkXW5uQESE2K7sc8jWWdIoJkOkfu3biwVX5QLp8pw8CWRmAl5eQMuW9o2PSA+q0kLLmadJo5gMkfp5ewPh4WK7orNS+fqOHQEXF/vERaQnXbqIn3v2lH87V6onDWMyRNpwu7NSNs8T2Vb37uLnoUOiFfZWZ86ImiJ3d6BNG/vGRlRNTIZIG25XN8TiaSLbCg4GGjcWa//t3Vv2dvmEJCJC1BgRaQiTIdIGucUnLk4US5d28yZw5IjpfkRkfT16iJ87dpS9jV1kpGFMhkgbWrQQEylmZYnZqEs7fFgkSAEB4uyViGyjZ0/xc+fOsrdx5mnSMCZDpA3OzqI4GijbVca1kIjsQ24ZOngQyMkpuT4vT5yUAGwZIk1iMkTaUVERNYuniewjLAxo0ECsSr9/f8n1R44A+flAnTqirohIY5gMkXaUV0R96RKwe7fp7URkGwZD+V1lpbvI2DpLGsRkiLRDbvlJTASuXQPmzRPT/l+6BNSqBXTqpGx8RHogd5WVlwyxdZY0irPTkXY0aCAu//wjkqC0NHF9ZCTw6aeAr6+y8RHpgZwM7dsnusbc3Di1BWkeW4ZIW+SDbVoaEBgIfPONmPOkQwdl4yLSizvvBOrVEwXUcXHA9evAqVPiNiZDpFFMhkhbJk0CQkOBl14SB+Bx4wAnvo2J7MZgMO0qk1uFmjQRBdREGsRuMtKWwYPFhYiU06MHsHq1mHyxoEBcx1Yh0jAmQ0REZB65Zaj0oq0sniYNY/8CERGZp3VroGZNsWDrpk3iOiZDpGFMhoiIyDzOzkC3bmK7uBhwdQXatlU2JqJq0E0y9NlnnyEsLAweHh7o0KEDdu3apXRIRETaJXeVAUC7doCHh2KhEFWXLpKhVatWYfr06XjllVdw+PBhdO/eHYMGDUJycrLSoRERaVPpZIhdZKRxukiGFi1ahEmTJuHRRx9FixYt8MEHHyAkJASLFy9WOjQiIm1q3x7w9hbbHElGGufwyVB+fj7i4+MRHR1tcn10dDT27t1b7t/k5eUhIyPD5EJERKW4ugLPPgt07MjpLkjzHD4Zunr1KoqKiuDv729yvb+/P1JTU8v9m3nz5sHPz894CQkJsUeoRETa8tprQGwsULu20pEQVYvDJ0Mywy0rKUuSVOY62UsvvYT09HTj5cKFC/YIkYiIiBTg8JMu1q1bF87OzmVaga5cuVKmtUjm7u4Od3d3e4RHRERECnP4liE3Nzd06NABMTExJtfHxMQgKipKoaiIiIhILRy+ZQgAZsyYgXHjxqFjx46466678MUXXyA5ORlPPPGE0qERERGRwnSRDI0ZMwZpaWl4/fXXkZKSgvDwcGzcuBGhoaFKh0ZEREQKM0iSJCkdhNplZGTAz88P6enp8PX1VTocIiIiqoKqfn87fM0QERERUWWYDBEREZGuMRkiIiIiXWMyRERERLrGZIiIiIh0jckQERER6RqTISIiItI1JkNERESka7qYgbq65HkpMzIyFI6EiIiIqkr+3r7d/NJMhqogMzMTABASEqJwJERERGSuzMxM+Pn5VXg7l+OoguLiYly6dAk+Pj4wGAxWu9+MjAyEhITgwoULXObDhvg62wdfZ/vha20ffJ3tw5avsyRJyMzMRFBQEJycKq4MYstQFTg5OSE4ONhm9+/r68sPmh3wdbYPvs72w9faPvg624etXufKWoRkLKAmIiIiXWMyRERERLrGZEhB7u7umDNnDtzd3ZUOxaHxdbYPvs72w9faPvg624caXmcWUBMREZGusWWIiIiIdI3JEBEREekakyEiIiLSNSZDREREpGtMhmzss88+Q1hYGDw8PNChQwfs2rWr0v137NiBDh06wMPDA40bN8aSJUvsFKm2mfM6r1mzBv3790e9evXg6+uLu+66C3/88Ycdo9Uuc9/Psj179sDFxQXt2rWzbYAOwtzXOS8vD6+88gpCQ0Ph7u6OO+64A1999ZWdotU2c1/r5cuXo23btvDy8kJgYCAeeeQRpKWl2Sla7dm5cyeGDh2KoKAgGAwG/Pzzz7f9G0W+ByWyme+//15ydXWV/vOf/0jHjx+Xnn76acnb21s6f/58ufufPXtW8vLykp5++mnp+PHj0n/+8x/J1dVV+umnn+wcubaY+zo//fTT0rvvvisdPHhQOnXqlPTSSy9Jrq6u0qFDh+wcubaY+zrLbty4ITVu3FiKjo6W2rZta59gNcyS13nYsGFSZGSkFBMTIyUlJUkHDhyQ9uzZY8eotcnc13rXrl2Sk5OT9OGHH0pnz56Vdu3aJbVq1Uq699577Ry5dmzcuFF65ZVXpNWrV0sApLVr11a6v1Lfg0yGbKhz587SE088YXLdnXfeKb344ovl7v/8889Ld955p8l1jz/+uNSlSxebxegIzH2dy9OyZUvptddes3ZoDsXS13nMmDHSq6++Ks2ZM4fJUBWY+zr/9ttvkp+fn5SWlmaP8ByKua/1e++9JzVu3Njkuo8++kgKDg62WYyOpCrJkFLfg+wms5H8/HzEx8cjOjra5Pro6Gjs3bu33L/Zt29fmf0HDBiAuLg4FBQU2CxWLbPkdb5VcXExMjMzUbt2bVuE6BAsfZ2XLl2KM2fOYM6cObYO0SFY8jqvW7cOHTt2xPz589GgQQM0a9YMM2fORE5Ojj1C1ixLXuuoqChcvHgRGzduhCRJuHz5Mn766ScMHjzYHiHrglLfg1yo1UauXr2KoqIi+Pv7m1zv7++P1NTUcv8mNTW13P0LCwtx9epVBAYG2ixerbLkdb7VwoULkZ2djdGjR9siRIdgyet8+vRpvPjii9i1axdcXHioqQpLXuezZ89i9+7d8PDwwNq1a3H16lVMnjwZ165dY91QJSx5raOiorB8+XKMGTMGubm5KCwsxLBhw/Dxxx/bI2RdUOp7kC1DNmYwGEx+lySpzHW327+868mUua+zbOXKlZg7dy5WrVqF+vXr2yo8h1HV17moqAhjx47Fa6+9hmbNmtkrPIdhzvu5uLgYBoMBy5cvR+fOnXH33Xdj0aJFWLZsGVuHqsCc1/r48eOYNm0aZs+ejfj4ePz+++9ISkrCE088YY9QdUOJ70GertlI3bp14ezsXOYM48qVK2WyXllAQEC5+7u4uKBOnTo2i1XLLHmdZatWrcKkSZPw448/ol+/frYMU/PMfZ0zMzMRFxeHw4cPY+rUqQDEl7YkSXBxccGmTZvQp08fu8SuJZa8nwMDA9GgQQP4+fkZr2vRogUkScLFixfRtGlTm8asVZa81vPmzUPXrl3x3HPPAQDatGkDb29vdO/eHW+++SZb761Aqe9BtgzZiJubGzp06ICYmBiT62NiYhAVFVXu39x1111l9t+0aRM6duwIV1dXm8WqZZa8zoBoEZowYQJWrFjB/v4qMPd19vX1RWJiIhISEoyXJ554As2bN0dCQgIiIyPtFbqmWPJ+7tq1Ky5duoSsrCzjdadOnYKTkxOCg4NtGq+WWfJa37x5E05Opl+bzs7OAEpaL6h6FPsetGl5ts7Jwza//PJL6fjx49L06dMlb29v6dy5c5IkSdKLL74ojRs3zri/PKTwmWeekY4fPy59+eWXHFpfBea+zitWrJBcXFykTz/9VEpJSTFebty4odRT0ARzX+dbcTRZ1Zj7OmdmZkrBwcHSqFGjpGPHjkk7duyQmjZtKj366KNKPQXNMPe1Xrp0qeTi4iJ99tln0pkzZ6Tdu3dLHTt2lDp37qzUU1C9zMxM6fDhw9Lhw4clANKiRYukw4cPG6cvUMv3IJMhG/v000+l0NBQyc3NTWrfvr20Y8cO423jx4+XevbsabL/9u3bpYiICMnNzU1q1KiRtHjxYjtHrE3mvM49e/aUAJS5jB8/3v6Ba4y57+fSmAxVnbmv84kTJ6R+/fpJnp6eUnBwsDRjxgzp5s2bdo5am8x9rT/66COpZcuWkqenpxQYGCg9+OCD0sWLF+0ctXZs27at0uOtWr4HDZLEtj0iIiLSL9YMERERka4xGSIiIiJdYzJEREREusZkiIiIiHSNyRARERHpGpMhIiIi0jUmQ0RERKRrTIaIiIhI15gMERERka4xGSIiIiJdYzJERA7lww8/RFhYGLy8vHDvvfciPT1d6ZCISOW4NhkROYyXX34ZP/74I7788kvUqFEDw4cPx8iRI7Fo0SLjPhMmTEBAQAD8/PywZs0anDx5Ep6enoiKisK7776L5s2bK/gMiEgJTIaIyCHExsaiS5cuiI2NRfv27QEAb7/9NpYtW4ZTp04BAIqLi+Hv749169bhtddew/33349OnTqhsLAQr7zyChITE3H8+HF4e3sr+VSIyM7YTUZEDmHBggXo06ePMRECgHr16uHq1avG3/fs2QMnJydERkbi999/x4QJE9CqVSu0bdsWS5cuRXJyMuLj443733nnnTAYDOVePvroI7s+PyKyHSZDRKR5eXl5WL9+PYYPH25yfU5ODvz8/Iy/r1u3DkOHDoWTU9lDn1xbVLt2beN1a9euBQBs2bIFKSkpSE5OhouLC3788Uc8/vjjtngqRKQAJkNEpHmHDh1CTk4Onn32WdSoUcN4ee6550xqgNatW4d77rmnzN9LkoQZM2agW7duCA8PN16fmpoKFxcXdO3aFQEBAUhLS0NhYSG6d+8Od3d3uzw3IrI9F6UDICKqrlOnTsHDwwOJiYkm1w8bNgxdu3YFAJw4cQIXL15Ev379yvz91KlTceTIEezevdvk+sTERDRr1syY+CQkJKBevXrw9/e30TMhIiUwGSIizcvIyED9+vXRpEkT43XJyck4efIkRo4cCUC0CvXv3x+enp4mf/vUU09h3bp12LlzJ4KDg01uO3LkCFq3bm38PSEhAW3atLHhMyEiJbCbjIg0r27dusjIyEDpwbFvvfUW7r77brRs2RIA8Msvv2DYsGHG2yVJwtSpU7FmzRps3boVYWFhZe73yJEjJskPkyEix8RkiIg0r0+fPsjNzcU777yDc+fO4e2338a6deuwePFiAMCVK1cQGxuLIUOGGP9mypQp+O6777BixQr4+PggNTUVqampyMnJASCG4R87dswk+Tl79ixCQ0Pt++SIyOaYDBGR5vn7+2PZsmVYvHgxWrZsib1792L37t0ICQkBAKxfvx6RkZGoX7++8W8WL16M9PR09OrVC4GBgcbLqlWrAABnzpzBzZs3TZKhtm3bYu7cudi5c6d9nyAR2RQnXSQihzds2DB069YNzz//vNKhEJEKsWWIiBxet27d8MADDygdBhGpFFuGiIiISNfYMkRERES6xmSIiIiIdI3JEBEREekakyEiIiLSNSZDREREpGtMhoiIiEjXmAwRERGRrjEZIiIiIl1jMkRERES69v9EvKan26kAswAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'maximizing $\\\\Vert A^{-1} y \\\\Vert$ over angle $\\\\theta$')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "θ = range(0,2π,length=100)\n", + "plot(θ/(2π), [norm(A \\ [cos(θ), sin(θ)]) for θ in θ], \"r-\")\n", + "plot(θ/(2π), ones(length(θ))*norm(inv(A)), \"k--\")\n", + "xlabel(L\"\\theta / 2\\pi\")\n", + "ylabel(L\"\\Vert A^{-1} y \\Vert\")\n", + "text(0.16,opnorm(inv(A))*0.95, L\"\\Vert A^{-1} \\Vert\")\n", + "title(L\"maximizing $\\Vert A^{-1} y \\Vert$ over angle $\\theta$\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, the maximum certainly seems to be matching what Julia's `norm` function computes for $\\Vert A^{-1} \\Vert$.\n", + "\n", + "But there must be a better way to compute it. Maybe $\\Vert A^{-1} \\Vert$ is related to $|\\lambda|$?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -166.5334932692097\n", + " 0.20015993587216604" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(inv(A))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 166.5334932692097\n", + " 0.20015993587216604" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs.(eigvals(inv(A)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hey, it certainly *looks* like $\\Vert A^{-1} \\Vert$ is the magnitude of the biggest $\\lambda$ of $A^{-1}$. Let's check it more carefully:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.0003336000409035478" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs.(eigvals(inv(A)))[1] - opnorm(inv(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hmm, this difference of 0.0003 is *much* bigger than the $\\sim 10^{-15}$ we normally get from mere roundoff errors. Let's try another matrix $B$, chosen at random:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.8720563752626838" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = randn(2,2)\n", + "opnorm(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.7338448966661324\n", + " 1.7338448966661324" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs.(eigvals(B))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Whoops, no, in this case the eigenvalues have *much* smaller magnitudes than $\\Vert B \\Vert$. So the near-match in the case of $A^{-1}$ was just a coincidence?\n", + "\n", + "In fact, the right answer involves the **singular values** of the matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 2.8720563752626838\n", + " 1.0467127844662298" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svdvals(B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The **norm is the biggest singular value** of the matrix!" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svdvals(B)[1] - opnorm(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svdvals(inv(A))[1] - opnorm(inv(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(In fact, computing the singular values is precisely how Julia's `norm` function works.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The Rayleigh quotient and the min–max theorem\n", + "\n", + "Why is $\\Vert B \\Vert$ equal to the largest singular value of $B$? We can derive it!\n", + "\n", + "To avoid square roots, it is convenient to look at $\\Vert B \\Vert^2$:\n", + "\n", + "$$\n", + "\\Vert B \\Vert^2 = \\max_{y\\ne 0} \\frac{\\Vert By \\Vert^2}{\\Vert y \\Vert^2} \\\\ = \\max_{y\\ne 0} \\frac{(By)^H (By)}{y^H y} = \\max_{y\\ne 0} \\frac{y^H (B^H B) y}{y^H y}\n", + "$$\n", + "\n", + "This final ratio is called the [Rayleigh quotient](https://en.wikipedia.org/wiki/Rayleigh_quotient) of the *Hermitian* matrix $S = B^H B$:\n", + "$$\n", + "R_S(y) = \\frac{y^H S y}{y^H y}\n", + "$$\n", + "\n", + "It is a remarkable and important fact, known as the [min–max theorem](https://en.wikipedia.org/wiki/Min-max_theorem) that the *maximum* of the Rayleigh quotient is given by the *biggest λ of S*!\n", + "\n", + "To prove this, since $S$ is an $m\\times m$ Hermitian matrix, we use that it's eigenvalues $\\lambda_1,\\ldots,\\lambda_m$ are real and the corresponding eigenvectors $q_1,\\ldots,q_m$ can be chosen orthonormality. Any vector $y$ can be written in this basis as $y = c_1 q_1 + \\cdots + c_m q_m$ for some coefficients $c_1,\\ldots,c_m$, and then orthonormality means:\n", + "$$\n", + "R_S(y) = \\frac{(c_1 q_1 + \\cdots + c_m q_m)^H (\\lambda_1 c_1 q_1 + \\cdots \\lambda_m c_m q_m)}{(c_1 q_1 + \\cdots + c_m q_m)^H (c_1 q_1 + \\cdots + c_m q_m)} = \\frac{\\lambda_1 |c_1|^2 + \\cdots + \\lambda_m |c_m|^2}{ |c_1|^2 + \\cdots + |c_m|^2}\n", + "$$\n", + "which is just a [weighted average](https://en.wikipedia.org/wiki/Weighted_arithmetic_mean) of the eigenvalues λ. If we number the eigenvalues in order $\\lambda_1 \\ge \\lambda_2 \\ge \\cdots \\lambda_m$, we immediately get:\n", + "$$\n", + "R_S(y) = \\frac{\\lambda_1 |c_1|^2 + \\cdots + \\lambda_m |c_m|^2}{ |c_1|^2 + \\cdots + |c_m|^2} \\le \\frac{\\lambda_1 |c_1|^2 + \\cdots + \\lambda_1 |c_m|^2}{ |c_1|^2 + \\cdots + |c_m|^2} = \\lambda_1\n", + "$$\n", + "so $\\lambda_1$ is an upper bound, achieved by $R_S(q_1) = \\lambda_1$.\n", + "\n", + "So,\n", + "$$\n", + "\\Vert B \\Vert = \\sqrt{\\max\\;\\lambda\\;\\mathrm{of}\\;B^T B}\n", + "$$\n", + "Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.8720563752626838" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.0467127844662298\n", + " 2.8720563752626838" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sqrt.(eigvals(B'B))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But we already learned, in a previous lecture, that the **eigenvalues of BᴴB** are precisely the **the squares σ² of the singular values σ of B**." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 2.8720563752626838\n", + " 1.0467127844662298" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svdvals(B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Key properties of the matrix norm\n", + "\n", + "Note that $\\Vert B\\Vert$ is defined above for *any* matrix, including non-square matrices. Some key properties of this norm are:\n", + "\n", + "* Positivity: $\\Vert B \\Vert \\ge 0$, and $= 0$ only if $B = 0$. (Obvious from the definition and the SVD.)\n", + "\n", + "* Scaling: $\\Vert \\alpha B \\Vert = |\\alpha|\\;\\Vert B \\Vert$. (Obvious from the definition.)\n", + "\n", + "* [Triangle inequality](https://en.wikipedia.org/wiki/Triangle_inequality): $\\Vert B_1 + B_2 \\Vert \\le \\Vert B_1 \\Vert + \\Vert B_2 \\Vert$. (Not so obvious, but easy to show from the definition and the triangle inequality for vector norms.)\n", + "\n", + "* Products: $\\Vert B_1 B_2 \\Vert \\le \\Vert B_1 \\Vert \\; \\Vert B_2 \\Vert$. (Not so obvious, but easy to show from the definition above.)\n", + "\n", + "It's easy to try some of these:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10.0" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(10*B) / opnorm(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6003396253535439" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B₂ = randn(size(B))\n", + "opnorm(B + B₂) / (opnorm(B) + opnorm(B₂))" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8142010561693229" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(B * B₂) / (opnorm(B) * opnorm(B₂))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Norm of the inverse\n", + "\n", + "One thing to be careful of is the inverse. Even if $A$ is invertible, $\\Vert A \\Vert^{-1} \\ne \\Vert A^{-1} \\Vert$ in general! However, there is a cute trick to get $A^{-1}$. Let's look at the definition:\n", + "\n", + "$$\n", + "\\Vert A^{-1} \\Vert = \\max_{y\\ne 0} \\frac{\\Vert A^{-1} y \\Vert}{\\Vert y \\Vert} = \\max_{z\\ne 0} \\frac{\\Vert z \\Vert}{\\Vert Az \\Vert}\n", + "$$\n", + "\n", + "where we have substituted $z = A^{-1} y$, i.e. $y = Az$. But then\n", + "\n", + "$$\n", + "\\frac{1}{\\Vert A^{-1} \\Vert} = \\min_{z\\ne 0} \\frac{\\Vert Az \\Vert}{\\Vert z \\Vert}\n", + "$$\n", + "\n", + "since the maximum is 1 over the minimum. But, exactly analogous to the discussion above, $\\Vert Az \\Vert / \\Vert z \\Vert$ is has a minimum for the *minimum* singular value of $A$! So\n", + "\n", + "* $\\Vert A^{-1} \\Vert$ is the *inverse* of the *minimum* singular value of $A$ (assuming $A$ is invertible) \n", + "\n", + "Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "166.53382686925062" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(inv(A))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.20015953491241695\n", + " 166.53382686924056" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "1 ./ svdvals(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, they match!" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0061285138363019e-11" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(inv(A)) - 1/svdvals(A)[2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(At least up to roundoff errors.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compared to what? Relative errors\n", + "\n", + "There is still a problem with our presentation above. How do we decide whether an error $\\Vert \\Delta x \\Vert$ is big or small? Compared to what?\n", + "\n", + "Above, we compared to $\\Vert \\Delta b \\Vert$. But this is often *not* the right thing to do. We can see that in a couple of ways:\n", + "\n", + "* In a physical system, $x$ and $b$ may have *different units*. e.g. $b$ may be a current and $x$ may be a voltage. $\\Vert \\Delta x \\Vert / \\Vert \\Delta b \\Vert$ is therefore a *dimensionful* quantity, and we can't say whether it is big or small without comparing to some other dimensionful quantity with the same units.\n", + "\n", + "* If we multiply $A$ by 1000, it is easy to see from above that $\\Vert A \\Vert$ multiples by 1000 and $\\Vert A^{-1} \\Vert$ is *divided* by 1000. But simply scaling the problem shouldn't change whether the errors are big or small! (You can't reduce the errors in your experiment by changing units from meters to millimeters!)\n", + "\n", + "The right thing to do is generally to compare $\\Vert \\Delta x \\Vert$ to $\\Vert x \\Vert$ and $\\Vert \\Delta b \\Vert$ to $\\Vert b \\Vert$. The ratio\n", + "$$\n", + "\\frac{\\Vert \\Delta x \\Vert}{\\Vert x \\Vert}\n", + "$$\n", + "is called the [relative error](https://en.wikipedia.org/wiki/Approximation_error), as opposed to the *absolute* error $\\Vert \\Delta x \\Vert$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Condition number of a matrix\n", + "\n", + "How much can the relative error grow when we solve $Ax = b$? Well, from above:\n", + "\n", + "$$\n", + "\\frac{\\Vert \\Delta x \\Vert}{\\Vert x \\Vert} \\le \\frac{\\Vert A^{-1} \\Vert \\; \\Vert \\Delta b \\Vert}{\\Vert x \\Vert} = \\frac{\\Vert A^{-1} \\Vert \\; \\Vert \\Delta b \\Vert}{\\Vert b \\Vert} \\frac{\\Vert Ax \\Vert}{\\Vert x \\Vert} \\le \\boxed{\\Vert A \\Vert \\; \\Vert A^{-1} \\Vert \\frac{\\Vert \\Delta b \\Vert}{\\Vert b \\Vert}}\n", + "$$\n", + "\n", + "The quantity $\\kappa(A) = \\Vert A \\Vert \\; \\Vert A^{-1} \\Vert$ is called the [condition number](https://en.wikipedia.org/wiki/Condition_number) of the matrix A. It gives an **upper bound** on how much the **relative error can grow** when comparing input to output. Since $\\kappa(A) = \\kappa(A^{-1})$, it is the same for computing $x = A^{-1} b$ or for computing $b = Ax$ (i.e. x from b or b from x)! In Julia, it is computed by `cond(A)`." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "832.005464751455" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cond(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "832.0054647515053" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opnorm(A) * opnorm(inv(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the definition above and the relationship of the matrix norm to the singular values, the **condition number is the ratio of the largest to the smallest singular value** of A:\n", + "\n", + "$$\n", + "\\boxed{\\kappa(A) = \\Vert A \\Vert \\; \\Vert A^{-1} \\Vert = \\frac{\\sigma_\\max}{\\sigma_\\min}}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "832.005464751455" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "σ = svdvals(A)\n", + "maximum(σ) / minimum(σ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, we can see that $\\kappa(A) \\ge 1$. **The smallest possible condition number is 1**. This happens for $\\kappa(I) = 1$, or for any multiple of $I$, and in fact **any unitary matrix** has condition number 1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ill-conditioned matrices\n", + "\n", + "If the condition number is $\\gg 1$, we say that the matrix is **ill-conditioned** (or \"badly conditioned\"). When you solve an ill-conditioned problem, **any error can be greatly magnified**. This includes both measurement errors and things like roundoff errors during the calculations.\n", + "\n", + "Our matrix $A$ above pretty badly conditioned — it can magnify erros by a factor of $\\sim 1000$:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "832.005464751455" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cond(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An **ill-conditioned matrix is a matrix that is *almost* singular**. A singular matrix has a condition number of \"∞\": the condition number blows up as one of the singular values goes to zero.\n", + "\n", + "It is easy to see that our matrix $A$ from above is almost singular: the second row is *almost* twice the first row:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 1.0 2.0\n", + " 2.01 3.99" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That's why our error increased by so much:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "787.1845290391896" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm(Δx)/norm(x) / (norm(Δb)/norm(b))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(In fact, I didn't pick `Δb` at random: I picked it to lie almost parallel to the singular vector for the smallest singular value, to magnify the error as much as possible.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just because a matrix is ill-conditioned does not mean that you can't get accurate answers, but it indicates that you need to be **much more careful** about errors." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nearly defective matrices\n", + "\n", + "In class, we discussed defective matrices, in which we are \"missing\" some eigenvectors (due to repeated roots) and hence don't have a basis. In practice, *exactly* defective matrices are extremely uncommon.\n", + "\n", + "However, it is much more common to have a *nearly* defective matrix $A$, in which two or more eigenvectors are *nearly* parallel. Such matrices are still diagonalizable, $A = X \\Lambda X^{-1}$, so why worry?\n", + "\n", + "The problem with a *nearly* defective matrix is that the eigenvector matrix $X$ is *nearly* singular — it is **ill-conditioned**! That means that *working with eigenvectors of a nearly-defective matrix is very sensitive to errors (roundoff, measurement, …)*!\n", + "\n", + "For example, let's construct a nearly defective matrix $M$ with eigenvectors $(1,0)$ and $(1,10^{-14})$, and eigenvalues $\\lambda = 1$ and $\\lambda = 1 + 10^{-14}$." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 1.0 0.999201\n", + " 0.0 1.0" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = [1 1\n", + " 0 1e-14]\n", + "M = X * Diagonal([1,1+1e-14]) / X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's compute the matrix exponential $e^M$, both by the built-in Julia function `expm` and by the 18.06 formula involving the diagonalization $X e^\\Lambda X^{-1}$:" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 2.71828 2.71611\n", + " 0.0 2.71828" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(M)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 2.71828 2.70894\n", + " 0.0 2.71828" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X * exp(Diagonal([1,1+1e-14])) / X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two don't match very well, and in fact the diagonalization-based formula gives horribly wrong results (off by about 10%). Computing matrix exponentials (and many other matrix functions) robustly for arbitrary matrices (including nearly defective matrices) is a tricky problem. There is a famous paper called [Nineteen Dubious Ways to Compute the Exponential of a Matrix](http://epubs.siam.org/doi/abs/10.1137/S00361445024180) on the many possible approaches." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The \"opposite\" of a nearly defective matrix is a matrix with an *orthonormal* basis $X=Q$ of eigenvectors (e.g. a Hermitian, unitary, or other [\"normal\"](https://en.wikipedia.org/wiki/Normal_matrix) matrix). In this case, the eigenvector basis has condition number $= 1$, the best possible conditioning, and working with eigenvectors is great!" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/materials/Demo-Mar18.ipynb b/notes/Demo-Mar18.ipynb similarity index 100% rename from materials/Demo-Mar18.ipynb rename to notes/Demo-Mar18.ipynb diff --git a/materials/Demo-Mar18.pdf b/notes/Demo-Mar18.pdf similarity index 100% rename from materials/Demo-Mar18.pdf rename to notes/Demo-Mar18.pdf diff --git a/notes/Dense-and-Sparse.ipynb b/notes/Dense-and-Sparse.ipynb new file mode 100644 index 00000000..c9d66274 --- /dev/null +++ b/notes/Dense-and-Sparse.ipynb @@ -0,0 +1,1690 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using PyPlot, LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Large-scale linear algebra: Dense matrix methods\n", + "\n", + "The basic problem with most of the linear algebra techniques we have learned so far is that they **scale badly for large matrices**. Ordinary Gaussian elimination (LU factorization), Gram–Schmidt and other QR factorization algorithms, and techniques that computes *all* the eigenvalues and eigenvectors, all require $\\sim n^3$ operations and $\\sim n^2$ storage for $n \\times n$ matrices.\n", + "\n", + "This all assumes that you explicitly store and compute with all of the entries of the matrix, regardless of their values. Hence, they are sometimes called **dense matrix** algorithms (the opposite of \"sparse\" matrices, discussed below).\n", + "\n", + "So, doubling the size of the matrix *asymptotically* requires about 8× more time. For any *finite* $n$, it is not quite a factor of 8 because *computers are complicated*; e.g. for larger matrices, it can use multiple processors more efficiently:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7.452728373426796" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A1 = randn(500,500)\n", + "A2 = randn(1000,1000)\n", + "lu(A1); # do it once to make sure it is compiled\n", + "@elapsed(lu(A2)) / @elapsed(lu(A1))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5.632284577629675" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qr(A1); # do it once to make sure it is compiled\n", + "@elapsed(qr(A2)) / @elapsed(qr(A1))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.824137183667503" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigen(A1); # do it once to make sure it is compiled\n", + "@elapsed(eigen(A2)) / @elapsed(eigen(A1))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0.005051 seconds (4 allocations: 7.637 MiB)\n", + " 0.456980 seconds (21 allocations: 31.580 MiB)\n" + ] + } + ], + "source": [ + "@time lu(A2)\n", + "@time eigen(A2);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Still, if we take the $O(n^3)$ scaling as a rough guide, this would suggest that LU-factorizing (`lufact`) a $10^6 \\times 10^6$ matrix would take $0.01\\mbox{sec} \\times 1000^3 \\sim \\mbox{months}$ and finding the eigenvectors and eigenvalues (`eigfact`) would take $1 \\mbox{sec} \\times 1000^3 \\sim \\mbox{decades}$.\n", + "\n", + "In practice, we actually usually **run out of space before we run out of time**. If we have 16GB of memory, the biggest matrix we can *store* (each number requires 8 bytes) is $8n^2\\mbox{ bytes} = 16\\times 10^9 \\implies 40000 \\times 40000$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sparse Matrices\n", + "\n", + "The saving grace is that most *really* large matrices are **sparse = mostly zeros** (or have some other special structure with similar consequences). You only have to **store the nonzero entries**, and you can **multiply matrix × vector quickly** (you can skip the zeros).\n", + "\n", + "In Julia, there are many functions to work with sparse matrices by only storing the nonzero elements. The simplest one is the `sparse` function. Given a matrix $A$, the `sparse(A)` function creates a special data structure that only stores the nonzero elements:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Matrix{Int64}:\n", + " 2 -1 0 0 0 0\n", + " -1 2 -1 0 0 0\n", + " 0 -1 2 -1 0 0\n", + " 0 0 -1 2 -1 0\n", + " 0 0 0 -1 2 -1\n", + " 0 0 0 0 -1 2" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 2 -1 0 0 0 0\n", + " -1 2 -1 0 0 0\n", + " 0 -1 2 -1 0 0\n", + " 0 0 -1 2 -1 0\n", + " 0 0 0 -1 2 -1\n", + " 0 0 0 0 -1 2]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 SparseMatrixCSC{Int64, Int64} with 16 stored entries:\n", + " 2 -1 ⋅ ⋅ ⋅ ⋅\n", + " -1 2 -1 ⋅ ⋅ ⋅\n", + " ⋅ -1 2 -1 ⋅ ⋅\n", + " ⋅ ⋅ -1 2 -1 ⋅\n", + " ⋅ ⋅ ⋅ -1 2 -1\n", + " ⋅ ⋅ ⋅ ⋅ -1 2" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using SparseArrays\n", + "\n", + "sparse(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(Of course, in practice you would want to create the sparse matrix directly, rather than first making the \"dense\" matrix `A` and then converting it to a sparse data structure.)\n", + "\n", + "For example, in **graph/network-based problems**, we often get matrices of the form:\n", + "\n", + "$$A = G^T D G$$\n", + "\n", + "where D is diagonal (very sparse!) and G is the incidence matrix. Since each graph node is typically only connected to a few other nodes, **G is sparse** and so is A.\n", + "\n", + "If each node is connected to a bounded number of other nodes (say, ≤ 20), then A only has $\\sim n$ (i.e. *proportional to n, not equal to n*) entries, and $Ax$ can be computed in $\\sim n$ operations and $\\sim n$ storage (unlike $\\sim n^2$ for a general matrix).\n", + "\n", + "So, a $10^6 \\times 10^6$ sparse matrix might be stored in only a few megabytes and take only a few milliseconds to multiply by a vector.\n", + "\n", + "Much of large-scale linear algebra is about devising techniques to exploit sparsity or **any case where matrix × vector is faster than n²**." + ] + }, + { + "attachments": { + "image-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAQ6CAYAAABJSFDuAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBCCV1K6E0QkRJASggtgPQiiEpIAoQSYyCo2MuigmtBRRRs6KqIYqdZUMTOotj7YkFFWRcLduVNCui6r3xvvm/u/PefM/85c+7MvXcAUD/OFYtzUQ0A8kQFktiQAMbY5BQG6QkgAxqgA0NgxOXli1nR0REAlsH27+XddYDI2iuOMq1/9v/XoskX5PMAQKIhTufn8/IgPggAXsUTSwoAIMp4iykFYhmGFWhLYIAQL5LhTAWukuF0Bd4rt4mPZUPcBoCKGpcryQSAdgnyjEJeJtSg9UHsLOILRQCoMyD2zcubxIc4DWJbaCOGWKbPTP9BJ/NvmulDmlxu5hBWzEVeVAKF+eJc7rT/Mx3/u+TlSgd9WMOqliUJjZXNGebtZs6kcBlWg7hXlB4ZBbEWxB+EfLk9xCglSxqaoLBHjXj5bJgzoAuxM58bGA6xEcTBotzICCWfniEM5kAMVwg6VVjAiYdYH+JFgvygOKXNJsmkWKUvtD5DwmYp+bNcidyvzNd9aU4CS6n/OkvAUepjtKKs+CSIKRBbFgoTIyGmQeyUnxMXrrQZXZTFjhy0kUhjZfFbQhwrEIUEKPSxwgxJcKzSviQvf3C+2KYsISdSifcXZMWHKvKDtfG48vjhXLBLAhErYVBHkD82YnAufEFgkGLu2DOBKCFOqfNBXBAQqxiLU8S50Up73FyQGyLjzSF2zS+MU47FEwvgglTo4xniguh4RZx4UTY3LFoRD74cRAA2CAQMIIU1HUwC2UDY0dvQC+8UPcGACyQgEwiAo5IZHJEk7xHBaxwoAn9CJAD5Q+MC5L0CUAj5r0Os4uoIMuS9hfIROeAJxHkgHOTCe6l8lGjIWyJ4DBnhP7xzYeXBeHNhlfX/e36Q/c6wIBOhZKSDHhnqg5bEIGIgMZQYTLTDDXFf3BuPgFd/WF1wJu45OI/v9oQnhE7CQ8I1Qhfh1kThPMlPUY4BXVA/WJmL9B9zgVtDTTc8APeB6lAZ18UNgSPuCv2wcD/o2Q2ybGXcsqwwftL+2wx+eBpKO7IzGSXrkf3Jtj+PpNnT3IZUZLn+MT+KWNOH8s0e6vnZP/uH7PNhG/6zJbYIO4CdwU5g57AjWANgYC1YI9aOHZXhodX1WL66Br3FyuPJgTrCf/gbfLKyTOY71zr3OH9R9BUIpsre0YA9STxNIszMKmCw4BdBwOCIeE7DGS7OLi4AyL4vitfXmxj5dwPRbf/Ozf8DAJ+WgYGBw9+5sBYA9nnA7d/0nbNlwk+HKgBnm3hSSaGCw2UXAnxLqMOdZgBMgAWwhfNxAe7AG/iDIBAGokA8SAYTYPRZcJ1LwBQwA8wFxaAULAerwTqwEWwBO8BusB80gCPgBDgNLoBL4Bq4A1dPN3gB+sA78BlBEBJCReiIAWKKWCEOiAvCRHyRICQCiUWSkTQkExEhUmQGMh8pRcqQdchmpAbZhzQhJ5BzSCdyC3mA9CCvkU8ohqqh2qgxao2OQJkoCw1H49HxaCY6GS1CF6BL0Qq0Gt2F1qMn0AvoNbQLfYH2YwBTxXQxM8wRY2JsLApLwTIwCTYLK8HKsWqsDmuGz/kK1oX1Yh9xIk7HGbgjXMGheALOwyfjs/Al+Dp8B16Pt+FX8Ad4H/6NQCUYERwIXgQOYSwhkzCFUEwoJ2wjHCKcgnupm/COSCTqEm2IHnAvJhOzidOJS4jriXuIx4mdxEfEfhKJZEByIPmQokhcUgGpmLSWtIvUQrpM6iZ9UFFVMVVxUQlWSVERqcxTKVfZqXJM5bLKU5XPZA2yFdmLHEXmk6eRl5G3kpvJF8nd5M8UTYoNxYcST8mmzKVUUOoopyh3KW9UVVXNVT1VY1SFqnNUK1T3qp5VfaD6UU1LzV6NrZaqJlVbqrZd7bjaLbU3VCrVmupPTaEWUJdSa6gnqfepH2h0mhONQ+PTZtMqafW0y7SX6mR1K3WW+gT1IvVy9QPqF9V7Ncga1hpsDa7GLI1KjSaNGxr9mnTNkZpRmnmaSzR3ap7TfKZF0rLWCtLiay3Q2qJ1UusRHaNb0Nl0Hn0+fSv9FL1bm6hto83RztYu1d6t3aHdp6Ol46qTqDNVp1LnqE6XLqZrrcvRzdVdprtf97ruJz1jPZaeQG+xXp3eZb33+sP0/fUF+iX6e/Sv6X8yYBgEGeQYrDBoMLhniBvaG8YYTjHcYHjKsHeY9jDvYbxhJcP2D7tthBrZG8UaTTfaYtRu1G9sYhxiLDZea3zSuNdE18TfJNtklckxkx5TuqmvqdB0lWmL6XOGDoPFyGVUMNoYfWZGZqFmUrPNZh1mn81tzBPM55nvMb9nQbFgWmRYrLJoteizNLUcYznDstbythXZimmVZbXG6ozVe2sb6yTrhdYN1s9s9G04NkU2tTZ3bam2fraTbattr9oR7Zh2OXbr7S7Zo/Zu9ln2lfYXHVAHdwehw3qHzuGE4Z7DRcOrh99wVHNkORY61jo+cNJ1inCa59Tg9HKE5YiUEStGnBnxzdnNOdd5q/OdkVojw0bOG9k88rWLvQvPpdLl6ijqqOBRs0c1jnrl6uAqcN3getON7jbGbaFbq9tXdw93iXude4+HpUeaR5XHDaY2M5q5hHnWk+AZ4Dnb84jnRy93rwKv/V5/eTt653jv9H422ma0YPTW0Y98zH24Ppt9unwZvmm+m3y7/Mz8uH7Vfg/9Lfz5/tv8n7LsWNmsXayXAc4BkoBDAe/ZXuyZ7OOBWGBIYElgR5BWUELQuqD7webBmcG1wX0hbiHTQ46HEkLDQ1eE3uAYc3icGk5fmEfYzLC2cLXwuPB14Q8j7CMkEc1j0DFhY1aOuRtpFSmKbIgCUZyolVH3om2iJ0cfjiHGRMdUxjyJHRk7I/ZMHD1uYtzOuHfxAfHL4u8k2CZIE1oT1RNTE2sS3ycFJpUldY0dMXbm2AvJhsnC5MYUUkpiyraU/nFB41aP6051Sy1OvT7eZvzU8ecmGE7InXB0ovpE7sQDaYS0pLSdaV+4Udxqbn86J70qvY/H5q3hveD781fxewQ+gjLB0wyfjLKMZ5k+mSsze7L8ssqzeoVs4Trhq+zQ7I3Z73OicrbnDOQm5e7JU8lLy2sSaYlyRG2TTCZNndQpdhAXi7sme01ePblPEi7Zlo/kj89vLNCGP/LtUlvpL9IHhb6FlYUfpiROOTBVc6poavs0+2mLpz0tCi76bTo+nTe9dYbZjLkzHsxkzdw8C5mVPqt1tsXsBbO754TM2TGXMjdn7u/znOeVzXs7P2l+8wLjBXMWPPol5JfaYlqxpPjGQu+FGxfhi4SLOhaPWrx28bcSfsn5UufS8tIvS3hLzv868teKXweWZiztWOa+bMNy4nLR8usr/FbsKNMsKyp7tHLMyvpVjFUlq96unrj6XLlr+cY1lDXSNV0VERWNay3XLl/7ZV3WumuVAZV7qoyqFle9X89ff3mD/4a6jcYbSzd+2iTcdHNzyOb6auvq8i3ELYVbnmxN3HrmN+ZvNdsMt5Vu+7pdtL1rR+yOthqPmpqdRjuX1aK10tqeXam7Lu0O3N1Y51i3eY/untK9YK907/N9afuu7w/f33qAeaDuoNXBqkP0QyX1SP20+r6GrIauxuTGzqawptZm7+ZDh50Obz9idqTyqM7RZccoxxYcG2gpauk/Lj7eeyLzxKPWia13To49ebUtpq3jVPips6eDT588wzrTctbn7JFzXueazjPPN1xwv1Df7tZ+6He33w91uHfUX/S42HjJ81Jz5+jOY5f9Lp+4Enjl9FXO1QvXIq91Xk+4fvNG6o2um/ybz27l3np1u/D25ztz7hLultzTuFd+3+h+9R92f+zpcu86+iDwQfvDuId3HvEevXic//hL94In1CflT02f1jxzeXakJ7jn0vNxz7tfiF987i3+U/PPqpe2Lw/+5f9Xe9/Yvu5XklcDr5e8MXiz/a3r29b+6P777/LefX5f8sHgw46PzI9nPiV9evp5yhfSl4qvdl+bv4V/uzuQNzAg5kq48l8BDFY0IwOA19sBoCYDQIfnM8o4xflPXhDFmVWOwH/CijOivLgDUAf/32N64d/NDQD2boXHL6ivngpANBWAeE+Ajho1VAfPavJzpawQ4TlgU+TX9Lx08G+K4sz5Q9w/t0Cm6gp+bv8FNmx8ZgQz/LsAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAAOooAMABAAAAAEAAAQ6AAAAAEFTQ0lJAAAAU2NyZWVuc2hvdHnAJgAAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjEwODI8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+OTM2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Co+IaJ0AAAAcaURPVAAAAAIAAAAAAAACHQAAACgAAAIdAAACHQACUaWxbI7GAABAAElEQVR4AeydB3gV15n+PyQBEh2J3kTvvfdmsMEU21Tb4BJ7bSex0x3vs/9ks0k2ySbrlI3jODhxL2CDMWBscKGZajqm9ybRm+md+X/vEecyuhpJV+jq1vfwDLfMzCm/M5o77znf+b5ijiZhIgESIAESIAESIAESIAESIAESIIEwEyhGgRrmHmDxJEACJEACJEACJEACJEACJEAChgAFKi8EEiABEiABEiABEiABEiABEiCBiCBAgRoR3cBKkAAJkAAJkAAJkAAJkAAJkAAJUKDyGiABEiABEiABEiABEiABEiABEogIAhSoEdENrAQJkAAJkAAJkAAJkAAJkAAJkAAFKq8BEiABEiABEiABEiABEiABEiCBiCBAgRoR3cBKkAAJkAAJkAAJkAAJkAAJkAAJUKDyGiABEiABEiABEiABEiABEiABEogIAhSoEdENrAQJkAAJkAAJkAAJkAAJkAAJkAAFKq8BEiABEiABEiABEiABEiABEiCBiCBAgRoR3cBKkAAJkAAJkAAJkAAJkAAJkAAJUKDyGiABEiABEiABEiABEiABEiABEogIAhSoEdENrAQJkAAJkAAJkAAJkAAJkAAJkAAFKq8BEiABEiABEiABEiABEiABEiCBiCBAgRoR3cBKkAAJkAAJkAAJkAAJkAAJkAAJUKDyGiABEiABEggrgYsXL8qFixfk+vXrUiqllKSkpEhiYmJY6xRo4ZcvXxbU/9KlS1KqVFbdixcv7jsd32P/lStXfPuTkpJ8+/mGBEiABEiABEggOwEK1Ow8+IkESIAESCDEBLZv3y6bN2+WM2fOSIsWLaRp06ZSunTpENfi9orLzMyULVu2yM6dO6Vly5am7pUrV/ZltmfPHtO2w4cPZ7WtWVOpUL6Cbz/fkAAJkAAJkAAJZCdAgZqdBz+RAAmQAAmEmMAXc76QaR9Ok4yMDBkzZowMHjxYKlWqFOJa3F5xa9askRkfzZCPZ34sDz30kAwZMkQaNWrky2zx4sUyY8YMWbVqldz/wP0y5O4hUqtWLd9+viEBEiABEiABEshOgAI1Ow9+IgESIIGIIYAZxWPHjsnJkycFs3LYomVmsSAQly1bJvPnz5cjR47IgAEDpGevXlKxQnTMMqLu7777rrz66qvy3HPPydixY6V58+a+5kPALliwQLZt2yYDBg6Q3r16S9WqVX37g/Xm3Llz5lrB9QJxj2ulbNmywcqe+ZAACZAACZBAyAhQoIYMNQsiARIggYIRgNnoihUrBCKnR8+e0qlTJ6lVs2bBMomCow8cOGBmT7FWs3bt2maGMTk5OQpqLpKfQIVpL8yAT506JbXr1JHaOntaFIMM+/fvN9fKkiVLpGvXrtK5c2epV69eVDBkJUmABEiABEjATYAC1U2D70mABEgggggs+2qZTHx3ovzzn/+Uf//3fzezc1ijyRQ5BPITqKGq6ddffy2TJk2S559/Xn74wx/Kgw8+KB06dAhV8SyHBEiABEiABIJGgAI1aCiZEQmQAAkElwAFanB5FkVuFKhFQZV5kgAJkAAJxDMBCtR47n22nQRIIKIJUKBGdPeYylGgRn4fsYYkQAIkQALRRYACNbr6i7UlARKIIgKIfXn27FmzIcanf8I6SziyKVuunBS7ufPatWtyBueog6SVK1caD7Dvv/++PPnkkzJ06FATqqScHo/zEhIS/LM08ThtmY7j5NiPWJ04t0yZMjn2ub9AfW0+KKdsOa1n2XJy7hzqdtbE9rTHe+Xp1XbENrV1d8cKPXszT7Td8ND65Rcr9Pz586Z+ePVKWVzLSkpyitfugL9DHFPLwfJE3W3+K1eszNNJkq0n8vFqu63I1WtXDVeUBQ7+qWTJkj42tt/dfQQT35kzZ8orr7wijzzyiNxzzz3Srl07Xz2TEnPGXrV9BGdcN27c8C9ScH3aOufYqV9c0DXDuE4vXLjgq1uxYsUML3eeufV7XnnC6ZNXwnUL9rjm8kpXryrPm397gfLMKz/uIwESIAESCB0BCtTQsWZJJEACcUbg+PHjsnHjRlm3bp1cvHQxR+vhEKhN6zZGdFrRgQd7e8769euNgyQ4SeqpTpLatm0rbdq0kdatW5uYmxAt/unQoUOyYcMGU+b1GzlFcYP6DUweTZo08T8122c4LEI9IHySU5J99dy6daugXnv27vEd37BBQ1Mnd55ebS9dqrRpQ8tWrSS1YkXf+YiBijxPnz5t6oZ4ovkJaDiQwjnbtm/z5eN+07ZNW2ml5RQ2pMtB5blRea5du1ZuOFkiLrViqq+eYJ2XF98dO3aY/oAjqDZt20irlq2koqvtts5ou+n3r9eZeLD2e/tarWo1U2aLli2kZImsfr9w8YJs2rjJ9JG9VpYuXWqcJEGc4jppo9dMS1237MUTfWSvlUuXL9mifK911KmTvT4hPP3Tvn37zPnwUIxrE7xxnL1+bZ5lSpfJ6nftV6+2u/NFnmjLxk0b3V/73jdv1ty0Kz8HUD6e+rd35uwZ3/n2TfVq1aW1/i2BTYkSJezXfCUBEiABEogAAhSoEdAJrAIJkEBsEti9e7eZAX3ttddMCBD/Vvbv3984PsLMKGaZkA4dPiQzP5opb775pmzatMnMTmE2CA/R8P7ao0cP4wBn2LBhnqID53w47UP558v/FJznn4YPH25ijSKcS17pm9PfmNie77zzjqSmpsr992sMT43x+cUXX8jkyZNl1qxZvtMxWzd69GgTIsZ+ibZPnz5dXn/9dV/ba6oH4kcffdTM7kH82PTpp58KZon37NkjDz/8sKBtCJOSV/ryyy9lypQp8sEHH3ge9sQTT8iIkSOlnQqnwiSIrWnTp8nLE172zWwijMz48eMFLCFA8xKoC75cIB9M+UC++uoreUTbfq+ywsCEf4IQnvnRR6bfwc4/wSvvuHHjzCy69QL8zTffmFlT9BG8PWMmE7OimOHFMRCpiM0Knl5xZXehj6ZNE1yfJ06c8C/S9CfC5gzR6zPBQ6CizA8//FCmTp0q4H3vvfea6xj9jrA7CI+EhEEC2+9ebXcXjDyRH65/rwQGo0aNkm7dunnt9n138OBB+egmT1xX/qmLejoep46k8LeX32ys/7n8TAIkQAIkULQEKFCLli9zJwESiDMCMJVEaBHMZGZkZAjEBkTM5cuXc5BAPMwGDRpI/fr1pXr16mbD+Vh7+uWCL41A3b59u8mjWbNm0qhRIyM6emmcUIQSSUnJMl+FEEWZBw8dlIz9GbJr1y5TppfZJkRiw4YNpW7dulKjRg2pVq2aMZn0rxzCokAowIMwTFvvvvtu6d27tyCcCfKHALAJAgTtcItOzGDt2r1Ldu7Y6Ws76ouycSzOQZtRPkxT33jjDVPn73znO0aAVKlSxWbve4W5LAT8oYOHZO/evaYeqI9XaqisGijXOunpUuNmOV4zzl7ngif6D2Xt37ff8N+ufejcNIOF2SvagX6DyJujov3zzz/3jIP6xZwv5J233zFxXp955hkzIJGudbLp8JHDcvhQVigae614mS2npqVKo4aNTOgY9CG4oT0QvgsXLjSzqLjOMMPduHFjc61gRrNPnz7mWilfvrwp8rq9PrX/MjT8ze6b1wqErX+qWq2qYHYcs5XmWqleTSqUvxWfFrO1EydOlH/965/arvsFAy4ox7bD5ol+x7ULXrVUnFfXulfTPrFzsrAuAAMwxwwqri8vkY764bpt0LCB1E2v6/ubsX8H2G/+9hDaB397Kkx3KhMvnmlpaaYP0TbwxLWIgRgmEiABEiCB8BOgQA1/H7AGJEACMUQA690gGhYtWmRmpayQca+5tM3FrBVE3I7tOwSiE7OjEG5GbKqAgGkvZiwxW4mZLAgAiA4r7Ow6TTyAo0zMKkJcoUw8eHuZZR45csQIAIjnfv36Sbfu3aRO7VuzmbZuboEK0dC0aVMjMBqp+IHwcwtI1BeCAsLCJjzs+7cdIh2zWRBSaAPMlrt06SIff/xxQAIVAmbpsqWyYP4CM8MKoQvh5JUgYGEGDHHtL9K8jnd/d+78OflqWZbw8+IJ3laE4RWDCIh1+txzz5l+wgyrTfkJVMwYLl682Ah/y8stuGw+36jgt2IS4WO69+gujRs1zhLSygVmsXPnzjWzyvfdd5+Z/YTZrb1WrDhHe+z1efLUSZ/o9bo+YQJs2weGuD7B3CYrUP/xj38I2oz62w3Xn80T/Y580B+23zHAYq9P/B3A2RSuX7Tdf7DDlodXcN65a6dZr9u3b18zk+qebQ+Yp84+2z7s0LGD9Ojew7TBXRbfkwAJkAAJhImA/ngzkQAJkAAJBImAPow7OvPoqMmro+aDjs4wOeqsxTN3Xd/p/Md//Iej5r2Oxq509OE623EqxhyddXPUvNf5z//8T0fNTbPttx9UTDr/+te/nE6dOjmDBw921PTVUaFsd2d7DTRPNc/05Yn6qcmoo6LU+fnPf+6ocM6e59KseuqMmKmrrjM0bde4nNna7s5TZ2RNPdXRjzNjxgxHRZWja0+dv//9746K6Gz52w8qbJ3f/OY3jopfR01KnQULFthdOV5nz57tqFmpo8LKUXNT5+jRozmOye0L1FNnjg1Pdz3t8QcOHnQmTJjgqJmpozOGjgoxRx0KOb/4xS8cNbG2h5nXz7/43FGzZUdNW50//OEPjgrnbPvVHNa0XQcestp+1LvtO3ftcv74xz86KgSdH//4x86SJUuy5aPrnB2NlevoWmazf9WqVdn22w/qrMlRs2hn5MiRjpr+Ou+9956jDons7myvuu72Zp7FPPNEHZ5++mlHhaav34ffc4/JU0W8Ly8VoM7LL7/sdOzY0RkydIgz5YMpjq6P9u3XwRLnz3/+s6MzrM4DDzzgoO9yS/MXzHe++/R3HRXpzt/+9jdnv57rTtOmTXPU1NjR9bfOSy+9lGu/67pZ59e//rVToUIF56mnnnJUHLuz4XsSIAESIIEwEsDoMhMJkAAJkECQCFxVYQix8OZbbzm6ts+BUIAo8ErRIlAhHHQNqvPb3/7W0dlcR81qszVHZ9KMkIaQhSD8wQ9+YNq+evXqbG0PpUCFUIRAhpDU2blsQjlb5T0+5CdQde2no7Oezot/f9GIGwwMFLVAPXbsmDNv3jwj5CBqdfYvW80DFag6g+pAeOoaz1t9dNn7+gxUoKqHYEdnM80gi645dtDvGKixKZgCVWerjcB+4YUXHDVtdtBX7kSB6qbB9yRAAiQQnQQoUKOz31hrEiCBCCWg6z4dXX/p6Po+I+QgZjBL6JWiRaDq2lMzW7VNxQFmN9UZT7bmWIGKmV7MqKnTI8+2h1KgqudWRz3nOmqebEQMhFmgKT+BeuXqFQeiC7Oh6jDKUcc9RS5QIfjU5NYIUzWpdtwzlGhXoALVd33qzCNmLvO6PgMVqGo+7Hzve99zPv3sU888gylQMdurpt6OmoqbPtB1rtm6lQI1Gw5+IAESIIGoJMA1qGEyrWaxJEACsU8AsS9P6Vq3U+rNFDEr/RPWLmJ96ZvqIOh73/++8c6rs3G+w+AsaeK7E42jIjXfNOsbW2hYDP8Eb67wZguHRvDW+thjjwnWIVrPwO7jA83TvQY13zx1/SCc5SAG509/+lPj8de9DtOW784T6wa/9a1vyYgRIwJeg4o1jPD2q+agoiaqxqutztja7IP2inqCp5pNm7Wutp42FJC7IKydzMuLb35rULFWGQ6WsGYW6zJt7FJ3GXiPtZkI0VKhYgVJTMjy+Ow+BuGAdMZYnn/+eVFzcXMtYa1qXslcn9pWtNfr+oTDJTW3NeuDf/SjH+XI065Bff3117Tfs9bfwpmXf1LB7+MJx0vw6It+TyiWFccX60rhkfnFF180a5LhyXnQoEH+2QT0GR6E4QEY3pfHjB0jd915l2doG6yrRttwLDwyP6gefeEEjIkESIAESCD8BChQw98HrAEJkECMElCzTBM/c+XKlYK4ov4JzoXwIA3HLmoWS4GqzpPy8uIbiwIVQgmOo+C0CkIRGxwZ+Sc4g9I1nCYWqnV45D7mdgSqrsvNuj5XrZRLF3PGQYVTKlyfuH6jTaDC4RJ4YUDHhuVx8zp+QmMUb8Df3nId0HmcAtUNh+9JgARIINwEonLel5UmARIggSggsGPnTuf3v/+9o555jSMdONNxb+qF1zi10d+BiHaSlK/jpZtrULEOE86c/B0F2a4KpYmvLfN2XvMz8XXnCfNmmDXf7hpUmH9fvXbVmAv/5S9/MU6Q3NeIfa8enJ23334717W0gZr4uusOp1O/+93vHA2zku26tGW6r084ZvJ3vGSdJJUqleL813/9l7N582Z39r73wTTx9WWayxtr4gvHTXAYhTbY9rhf3W2jk6RcYPJrEiABEggTAc6ghnuEgOWTAAnEFAHEHoXJImbE8Ip4oZkHMuXa1Ws52nlUZ1i3btliYlhyBjX/OKixOINqL4qTOnO6SmcqYTaLWVT/VLZsWROvEzOp6hFY44nWkiqVb8WKDXQGFaa8uB4RL1fX6Ip6JJYDep0iPJJ/wgzrFr0+EcIm2mZQ1aGUmW1u0qSJlCpVyr9p2T5jprVz586CY5lIgARIgATCT4ACNfx9wBqQAAnEEAGYZ+rMkuABGWvvELcU6zHVgVCOViIeKNYfYg3j97kG1cRHjTcTX3tRIFbosePH5NjRY6KOf+zXvledhRSdoTSDGRBTffr2kdatWvv2BypQkTeuz7nz5srpb06b6xPrRr2uT6yRttdntAlUiGqscx0wYIBoKBkfJ683aWlpZu12fsd5ncvvSIAESIAEioBAmGZuWSwJkAAJxCQBeFtF7NMBAwc6PXr0cBB248yZM762wqQTnkgRNmTu3LnG+2mkx0GNRhNfeBqGaSninyIO7bXr3nFhfR3jehNKE9+c9fT2+IzwKv/93/9tYsA++eSTOWLABmriq2uhHR0QcWAy3LNnTxNuxh2n1319fvHFF744p5Fi4ov6o3/gTRp/VzCPdidr4ptfHFR4dT595rQDj8g6Y50tHJI7P74nARIgARIIPQGGmQk9c5ZIAiQQwwTyE6h4wEb4DoiE5557zgiFhIRiXIN6331Oy5Ytnb///e9GfHhdIlgz+Zvf/MaItCeeeCKHSHOfs23bNgdiBfE+sXYSgwKBplAKVF89NW5uXvUMlUCFYF6zZo3zzjvvOOqR2enXr5+D9ZyRIlAR//Xjjz921GO0iW+LMDnuFKhARcieRYsXORNenmDCIiEcERMJkAAJkEBkEKBAjYx+YC1IgARihEB+AhUxUt977z1n1KhRTt26dZ1y5co5ahxDgRpkgYrZv+9+97vOsGHDjHMhzFgHmkIpUNWE1tRz+PDhpp4QTl4pVAIVgm/ipEmOmsc66enpjq59NddnpAhUDcvjPPvss0Y4a1glR9d5Z8MVqECF0H3hhRecbt26OT//+c+d5cuXZ8uHH0iABEiABMJHgGtQi8BsmlmSAAnEL4H81qAi9iTWEm7YsEGwxg/xL/VhOc8wMy+//LKJ1Thw4EDRWUYTmxNxRG2cU50dlMWLF8ucOXMETpqw7rWpritMKFYsR0fAcRNCh2D961133SW9evUSFco5joOjnqlTpwYWWzVEcVDh1GfhwoVmXSQcBYGFiqgcdccXOjNpGGPNJdYh9tR2VsxnLaLNCDwRn1RNsH08sU5TZxLtIb5X9CPiaSKerc6Im1i17hiw+cVBXarsFsyfLwg3Y9cre4VFKcga1DFjNP6n9i1iquI6qVS5kpQonrUGOr81qAiHZK9PXCO4Pnft2iUqUIssDirCMeH61UEFKV++vOnXhg0b+hi73+BvBdevCnnB3wNil1apcstZFJxMzVee+/fvFzXzNeu/vZwkgad6mzYOoLp06SKIpwv+TCRAAiRAAuEnQIEa/j5gDUiABGKIAAQiPPhaL76IJQlhZb2kFi9RXGrWqCnVq1cXXUdnBJfO+uTpJOmll16Stm3bCkQSXrt27WpiPGpoE0MOogPCEw/lKMuWqWOfOcjCIQw8waL8OnXqGI+wEAX+KRIFqq6VNFzRTrQRHpIhbrySaWON6oY12qmhfsTy8jre/R14ZijPjAB4gjcEHYTT7QjUTD0/I2O/ZGZk+tqEQQz/BC++tt8gzrG5hZnbSRJif0IkQ3B1795dOnToIDpTb7I0XnxxrWiZBzJvXSv2+oSzJA07Y64PMEY80enTpxepF181K/Zdv+hTbIgR7JWqVq2axUGv4Tp1lEOt2tninOLvwP9vDw6o/JObp7k+/Lwi+x/PzyRAAiRAAiEkEL7JW5ZMAiRAArFNwCsOav369Z0//vGPzp49exz1NOr8/D9/7qSkpBizxZUrV2YD8tVXXxnTX3f8RqwJxLpKt2Mb90nI82c//5nJ032efT9u3DhHZ/zcp3i+h+OY1157zTh6Gn7PcEdnUx0VMZ7HLlu2zNQzNTXV+eUvf5lrPEx3nvfee6/JE055Zs6c6eisn6NCyvnHP/6R6xpUd+FwMPX44497xrhEW7F+0j9up/v8QN+r8DM8EefUMvR6Rdt/9atf5Wi7zmqbeuqMoOl3nZH0LBqmqjA5VXHpWU5+cVBRz//3s/9n4rHa+mn4FGfChAnGUZRXoVjT6x8HFfX805/+ZOKywvES8lTRatZLr169Ols2iAGr4ZEcHfRwfv3rXzsakibbfvsBJtNYM6pi2blPTbk//PBD5/oNb2dQyFM9WnsyQLtgtg0z3/ySDjA4f/3rX3ONK3vHHXeYdbYFWZucX5ncTwIkQAIkEBwCnEEN4WAAiyIBEogvAkePHZV1a9fJihUrBKaTSKXLlJbOnTqbmdBLOrOzbu1a0fVv0r59e7O5TVZVxIo6rDGbJYdZNMyItW3XVpJLZs2g2n14xYzcWj0HZWI21z8h1iPOxyxbXgmzWipQREWepJRKkY4dOpq4kgkJCTlOw+yhOn4yJrUIgQLTUszQ+id3njC7NO3QGeENGzfI6lWrTfzPTp06GTaY4corbd261XCBmaZXQmxLMHXz9Douv+8wI4e25cbTnq/iycTS9G+7rSdmfTt26mjYpKWm2dN8r7r20/DWQQrBe/+EfkebMINesmRJ/91mBnKN1nOlq9/TKqVJp46580ScU7QNZdrrE9xNH+j1dfHCRUGeK/T6tDwx22gT+h3XJ/oA/d4W/V6tmt3te0W/oxxcS7j+O7TX61fb4WUybfPE8V6pdZvW5vzcTIDtObAAwPWLtum6b/u17xWzxGhTmzZtPHn6DuQbEiABEiCBkBOgQA05chZIAiQQLwRgqnlKxcYpjYcK00qkpKQkqVixotnwHR6ksSEGI753rz/EWkjscwsWmKna8+0aVDdPiAGbp45juneZ9xAgON/LrNd9sIZlkW9OfSMntXyUk6rnoI5eosLWU8N++Oqms8Lu7Mx7d55JmifqUUG302Ck5cC0tmKqsqlQUSD48kooC+fg1StZRm6eXsfl911+PO35EO62THfbbT2Rj22bl8BE2099o9fCyVOCdcz+CXlm8aogiQmJ/rvFq54lSpbQfktVxhWkeFJOnub6VIbgmO36TE0163UDvT5Nv988x912W0mYD9tr0n392/3uV3stua95935ct+CQ3wCG4XmzbXnxRF5egy7uMvmeBEiABEggtAQoUEPLm6WRAAmQAAmQAAmQAAmQAAmQAAnkQoACNRcw/JoESIAESIAESIAESIAESIAESCC0BChQQ8ubpZEACZAACZAACZAACZAACZAACeRCgAI1FzD8mgRIgARIgARIgARIgARIgARIILQEKFBDy5ulkQAJkAAJkAAJkAAJkAAJkAAJ5EKAAjUXMPyaBEiABEiABEiABEiABEiABEggtAQoUEPLm6WRAAmQAAmQAAmQAAmQAAmQAAnkQoACNRcw/JoESIAESIAESIAESIAESIAESCC0BChQQ8ubpZEACZAACZAACZAACZAACZAACeRCgAI1FzD8mgRIgARIgARIgARIgARIgARIILQEKFBDy5ulkQAJkAAJkAAJkAAJkAAJkAAJ5EKAAjUXMPyaBEggvgicO3dOMjIyzJaWlia1a9eWKlWqxBcEtpYESCAoBA4fPiwZmRly+pvT5l5Sq1YtKV26dFDyZiaxReDYsWN6rWTK0SNHpE6dOoJrpVy5cmFtZKbWB7+Hly9f9l2/JUuWDGudwln4ocOHJDMjU06f1r9n7aPa2kelSpUKZ5VivmwK1JjvYjaQBEggEAIHDx6URYsWyRdffCGtW7eWPn37SJvWbQI5lceQAAmQQDYCa9askQULFsj2Hdtl4ICB0qtXLw54ZSPED5bApk2bzLWycuVKufPOO821ggHScKYlS5bI/Pnz5dSpU3LHHXdIz549wy6aw8lj1epV8uWCL2XXrl0yYMAA00eVK1cOZ5VivmwK1JjvYjaQBEggEAI79Ydn8vvvy//93//J8OHDZfz48dK3b99ATuUxJEACJJCNAAa63n77bfnyyy/lmWeekTFjx0h6nfRsx/BD3gSuXbsmFy5ckIsXLwpm71JSUsxr3mdF314I048++kg+//xzGTdunAwZMkQaNGgQ1oZ8+OGH8uabb5pZ1Ke+/ZSMGjlKYFkUr+mzzz4zf89Lly6Vp59+WsaMGWNmluOVRyjaTYEaCsosgwRIIOIJUKBGfBexgiQQNQQoUAvfVSdOnJCtW7cKZhjr1q0rTZs2NSawhc85snLYv3+/bNmyRfbs2SMtWraQZk2bSaVKlcJaSQrU7PgpULPzCMUnCtRQUGYZJEACEU+AAjXiu4gVJIGoIUCBWviu2r17t3zyyScyceJEGTBwoAwfNkw6depU+IwjLAes88RMMV6xrhEzxcWLFw9rLSlQs+OnQM3OIxSfKFBDQZllkAAJRDwBCtSI7yJWkASihgAFauG7atu2bfK+Lrv485//LA888IA8+OCDZu1f4XNmDvkRoEDNTogCNTuPUHyiQA0FZZZBAiQQ8QQoUCO+i1hBEogaAhSohe8qCtTCM7zdHChQs5OjQM3OIxSfKFBDQZll5CDgOI7cuHFD8JqQkCDFihUzW44D+QUJhIgABWqIQLMYEogDAhSoWZ1sf+fxW++f7O8+ngHcyZ4DgTp58mT5y1/+Ivfff7+ZRe3Zq6ckFNNnhgR9ZtB//skR/XdDny+cG6Jvc6TcyrQHmmcTraujzyfFtF4J+myCYrzy9Hp2cT/b2DxNmTYv+6Xr1X2OV56uQ33PTQXh6T4/0PdeAjU1NdVXvs0nP572OLzeuMnVq+7Yn1fb3f2KfrfH2mvFnSfqZPcj30CSuw/s8e62UaBaKqF7pUANHWuW5CJw8NAh4xDg2NGjUr9+famrDhDCHffLVT2+jUMCFKhx2OlsMgkUEQEKVJFLly7Jvn37BGtJz549m4N02bJlpV69eub3Pzk52eyH5157zsaNGwXhTmbOnGnCnPTu3VvatWvne2YoU6ZMjjzPnT8ne/fsNc8X8P7rnypWrOgrMykpyX+3HD9+XPbu3WvqbJ9NklOSc+SJc+3+ChUq+PLJPJBpyj508JDvO4Qjse30fel6c/jIYZM/Qp155WkPBU/UDc6UAuVpzy3oq5dAvXr1qikfTp1sAk/UOT09Xbx42uPwauuOuK/+Kam48qxX33AqX768/25BnHKcj2upYmpWH1arWs2XJ8Lh2IRYsnXr1RXsDzTZPsitbXPnzqUX30BhBuk4CtQggWQ2BSOAGHH4AV+3bp1xqd6vXz+pWbNmwTLh0SQQRAIUqEGEyaxIIM4JUKCKnD592sT3nP3pbNm3d1+OKwKiZtCgQdK3X1+pUD5L5MFREELzfPrpp4LwK5mZmQLRUKVKFRPWA558B999t/TXZ4aqVavmyPPI0SMyf958mT17thzVAXD/hPNRZp8+fcSKYvcx27Zvl3kqRhD2ZZg6ZbpDY15WqFA+R56lS5eWoUOHCp5d0A6bVqxYYZ5tFi9ebL+S9h3ay50D7zRl+r50vVm/fr3MmTNHEMLEK097qI+ntg0i3j+l102XwYMGS18Nj+Yl8vyPz+uzl0BFX0Co4dq2qVmzZj6eCAWUW8IM6MIvF5pQOnj+80+WZ//+/T09NR85ov2qcVlnzZolTZo0kYHqNKtNmzbm+sLsJrwg24R9iFWKeOaBJtsHubUNMY0RNophZgIlWvjjKFALz5A53AYB3Gjwx46bzQ9++AMZM3pM2ON+3UYzeEoMEQiWQIWpEEa3seFhyyb8AGPGAF4amUiABCKHwPnz583fKzyp2gTxgr9XbLeT4lmgWp4QFXignzdvnomn6c+xVu1aKjT7S/fu3aVatWqGdWJiohFrEIhfffWVEZmYcYOFFY6BOLnvvvvkzjvvlOrVq/uytPdciCjMukJIYTbUPzVq1MiIym7dupm4nmXKlpFSKbfuyRBP7733njz//PPy+L89LvcMv8cIYf88cR+HEOrRs4fUqlnLV8zatWtl4cKFsnz5ct93EFKY/UWZ9ppyi2OI2Xfffddszz77rImxCSFtkz/PufPmSmZGpt3te61du7ZA4IEnxDvKwu/O7SQrUHfs2CEPjnvQCN9Davm2aNEiM4Bg82zcuLHh2RU81QTYnydmfW3fLFu2zJwLMeifUE+Iyp49e5oZWcsJZrZIGKSYMmWKvPjii0Z4jhgxQjp36SLL9PqCeNyuAws2YfChV+9e0qpVKylbJutv2MsrMmaETd3OnZUNGzbIooW5t225XovTpk0zxzEOqiVdtK8UqEXLl7nnQoACNRcw/DpsBIIlUK9dvy6b1DQNP8IHDh7wtQex7fCDCXMoJhIggcghgIdwPKBu33HrIbdO7TrmQbhFixa35R8hngUqeK7fsF527dolySWTzUwlhKd/uq73ykuXL8nlS5fNfdHeH3fu3ClYf7pB76MQBp9//rl07tzZCK+2bdsakdpQhWY51+ABYqXinguBCvGHDesQ/RNMiFHmJS2zuc7+ocy6dev6DnMLVAi99u3bmxk9/zwxEAnxhbyQp00lS5Q0ZZcoUcJ+JRBCWWVeknZt20nLli2zWYzlJ1ANT23brt0B8LxZpwb1G5jrF4L8dpIVqBCV3ZRDG52NrKDmvMk6S+qeKTU8UaZuzZs3z8HzwIEDAlPttWotl5ysbPR68BKLPp6aD0yiIerxt2ePdQtUmHZ37NjRxMWF+TXydJsXY2AY9UE9kU/LVi19M/RuFt98842p29dff20Gk9HHubUN8XhXrVolGCygQHVTLLr3FKhFx5Y550GAAjUPONwVFgLBEqhXrlyRjz/+2IRHwEi6TQiTMHLUKOmhP/ZMJEACkUMAMzAffPCBTJ061VcpzOaMHTtW7h4yJMtRjm9PYG/iWaDi9x08Ye4K50Z3q0lujRo1coDDjBxMcSdNmiQdOnSQ0aNHm9k4CDrcRyEKIJQwazZK751jxowxIhXiD5tbgMIaCyFpMjIyzHEw48X6SP9kY6tixhImvCNHjpQuOhNnk1ugogzM7EEUo2x3nhdVAH2mZsi4ZmCKbBOOGz58uBFQ9juIZ/wmvP766/Ltb3/bzAC7zU/zE6jgidlDlIPfEfB0zx7bcrCG1fJEvFjL0+4vyKsVqKg3hGVpFYX33nOvaVuvXr18We0ysWo/lnffeVeG33OPjNSZTTdPiL/p06fLy/98WR595FEZqsxbqJD1T1gvDFNdXDcQpQgpBHNniEYkt0DFIARmsMFg/Pjx5m+0gWvgF7O8M2bMMOLz4YcfNnX2WkKG9cIzP5opb7zxhhHz92j9c2sbrlVYWGCWmgLVv/eK5jMFatFwjflcYRZx+PBhwQ0RI1/+CT8MuHlg3YhN+OM25xw6KCuWrzCjohidszdRrGWopufAjMd4zrMn3nzFaBduEjAb8kqVKlUyZaalpXntNqZCOB83QtQN5eC9f574QbL77ajc1WtXte5H5LCejxE0m6pqHtV1cztJsPvcr2g7yjl0+JBcu3prtNUeA/MlW6Y1abH7+BoaArcjUDFKi2safWvNefFwhTVUeGCCuZdNjz/+uDz00EO5rkOyx/GVBEggtASsmMSyE5swYwchANNMe09OSUnx3afdM2T2HPerzRP3gmeeeUbGjB0j6XVurVV0Hxtr7+FbAqJrtzrz6avmljBtxayYf4KYtGabOAZi4q677vIdVpAwMzC/hNCAkIEIhPDEM4F/8s9z3LhxxqzUHucWqDAnxgwkxCTMRrt27epz5njh4gUjTl979TUzcwuTXFjH9O7TW3r26Cl4nrHJnSdMeCEyMTNrU34CFTPIb731ljFdNteSimAIJf8EU2iYRc/XAZf66nwK5rIQ17eTrECFeTZmRtG2Hj165MgTgwgYGPjTn/5kxCKEJcq1afXq1cZkGvtt2+Hoyj/hGWnqh1Pl1VdeNX9v+L1EH+JvDsktUDHzDtNia16MGd5aLh8mlld+60XdeaJtuP5gOm5Tps7+LlVz8QXKEybE2PBMSIFqCRXtKwVq0fKN2dzxh40/fvzh4oHcP+GGjj94mGHYhAd53DxxDm5qcEZwIDNDzThaSsOGDc2xuLHhR8DLHAhmLlgHgtExr4QHCpQJ8xmvBPMMnI964KEDayaO6w3dP094gMN+jALa9YK4eaLuKBtttwnHwQwoPzMalGnXX0Dc+yf8EKLtKNOr7f7H83PwCdyOQD158qS5LjBTaj0Twu09TNvgtMG9BooCNfh9xhxJIBgErJh0C1Ss4YPIcJvkYxDR/Ha4hEpu5ds841Gg4l6IQbszZ89Ijeo1jKi3QsPNK9IFKmZtMZMOM1H0PTY7MOEWqCdOnDCDGRCxeH7AcQjJYlOoBKodcD+okwBYwwn2XgMDtl55vVqBCvNczAijbfhbQNvceYZDoMIjMgYy8KyImXnUye3ROVgCFZ6DcR1jIgbPb8h3r3oSpkDN68oJ4j6d/WIigYAI6IO3o7NEjv7ROmq64/ziF79wdBTP0ZtVjk1nihy9wTlnzpxx9Kbp6DoFR12jOxrPzNE1H47ePB0diXJ0ZNrRG76jM66OmsaYc1Tw+upz/cZ1R2epHBV1jv7QOz/5yU9ylGXL11FTRz3/OfqjaM7RUTZfPnijruod/cFxdNTN+d///V9HBa9nnjqC5rzyyiuOrp1wTp85bTY1KTHfqVOEbOXriKDJA/VDPVFfd1IzJcNL1zc5//M//+Pomops59u660ihM3HiREcFj6Ni2LmqvJhCS2DHzp3Ob3/7W9M/KiYdNavKVgFcw7iWcU3b60JH453f//73jg6wwIwgzw156uBMtjz5gQRIIPwE9MHTwW9Wfn/DuH//+c9/dtRM1HcPcP/GuVti81TBYn5v9u7b694dF+/tM8PZc2d9vOy9E6+bN28291z1guvozJv5/XaDUfHj/OpXv3LUI62D33cdCHTvzvYezxsqpBydMXQmTJjgqEjOtt9+8M9TB53tLvOqM37OT3/6U3Mt4Pcdn73S+QvnnbfefstRj7lmw3t855XyyxN1QPvwXIT26uBmtmzU9NXRmV5H18o6f/zjHx0dJM+2vyg+qOmy4amznc6Elyc4OtjqWQzq+stf/tLU/Tvf+Y7jz1MnBhxwxLMeuKpY98xHLdMMTxXChqcOFplnIXuwei02bQcDsACT3JLlpUI2T14FyRPPlig3vzxzqxO/LzgBzqAGUezHelZYEwLnBTBzgPt2jNZhZhF3cv9UskQJY5oBc1nMDmKGFGZSGzZukHVr1xmHFDD92Lp1i/TU9Qxt27Q1o5St27Q2M6CJCVkOFWBOa8vEbBXKw9oPr4TF+5jxhLmsLdPtah1rKd58801jfnnHHXeY2UqM6vrnWVxNOPA9NrvGBbNiaC82FY++4lN0gT48AKampUrjRo1NO9FmpOuYSVNemPnFCJzlhWDV/qlE8eJZZWr9GzVqKI0aNjImyP7H8XPREchvBvXY8WOyc4c679DrH0HckU6p2fkK9daYm8dId205g+qmwfckEDkE7GynewbVq3aYqYGXVFjrYIYKCfEbmzTO+o1zz5rZPONxBtWyu3jpov4G7jLPDAiR4p9OnDxhlvuAFcypI83E15qkus1xbRvcM6j47rHHHzMmqW6PwPbYUM2g2vKC8WpnUDHL/dS3n5JRI0cZr8f+eYdjBtXLHNddr2DNoLrzxPpY3B/yMxt2n8P3hSNAgVo4fnF1NswdEKsLQbNVbUpvFZbGHFcFnX/aoQ/xMJ3FBjMZ2PUjVhjMW3XE2XyPhfNY/P+tb33L/DhhPQHEJX747ZofiII5X8wxi+xhVoIF7B1cZsPucjeqF0as5cANEy7IUWatWrV8h1iBinLxoIH1sai/f55H1BzXusZHXZEgdBHvzLhv1zWnNq1Ws2GY/cKUEwvs4XbernvButV5c+fJTBXGp1RcIzYZyktREeqf9u3bq2sdlhq+Q4cNNS7dczNV9j+Xn4NDID+BioEZ/EjBiYP12oh1p1gTDRNu+11utaFAzY0MvyeB8BKwYjI/gQrnLfa3w5p6YkASvzcwOYTpoU02z3gWqPAbgWcGhIzBsgf/hDX89v4Jh1QUqO+adZpwtOQOM2MFF56n8lqD6s+3MJ8pULPTo0DNziMknwo+6coz4pUATHthJqv298ZkQ3+AHbc5rpuLrtd0fvCDHzj6g+787Gc/c9T9u3u3owvvHRWmjq7zcX73P79zdJY02377QWcenRdeeMHRm7Uxz5358Uy7K8erf576g5jtGGviizrBJFPXEhkzZRW12Y5DXX77u9+ZusEEFyYu+uPpqJMCB6a+7mTz1LVKpp66XsG3+/KVy47GU3NgMqwOIJzXXnvN0VFk3373G5gbv/zyy46OIjt//etfHfX6597N9yEg4Dbx1Th7zqvaXzDNtpsKUwdmuokJCfmaAurNO8cxNPENQSeyCBK4DQLWHNfr7za/7zQshTHPVK+hvnsF7hm4n6sXUiceTXzxO6dr9Rxdt+e89NJLzkMPP2x+B/Fb6N50cNjRdY1muQ9NfGniCzNpmvjexg0sRk/hDGpIhgFioxCY+O7RBeJ71K04PJlhwbyuB/CZwbpbiSDVcB2vP07y3HPPGXf9iDdmE2ZOMVoNT6c/+OEPZMzoMdKgQQO72/eKBeqYsUI+mFF85NFHZOiQob797jf+eY4dMzabgws7g4oZT4x2w2ug9bwHxwY2YaT3/cmT5YW//tWYCpsZVnWBj/ZihByzvDbZPOFGXtdfGI/E8A6MdOXqFZn24TRRYWpmjp944gljAuQ+3+YD82Vdo2tGmTHTjHLcHpDtcXwtOgLuGVQ4SIFjDPeMCGZJ9cHThE7Q34MCV4QzqAVGxhNIICQE7GxnfjOoXpVJSkySzl06m/iPsPKxCUtTEGIDy1TizYvvFl26s3bNWrO8BR794eXezjhbPniFcyFYK+n6PhPChTOonEENxIsvTXzdf0Ux/D5GhTebVUQErl2/7sDxD2ZO/Z0QuYuM5BlUzMbCWRMcDXi1wz2D+uijjzoYXUeb4SQHTh/cKVgzqMgX+Ru2167mKMddJt8XDQH3DKquPTaj+nDgZTc49cL3+nNwWxtnUIum35grCRSWQGFmUHE/wH2hePEk370C9wx7v4jHGVRYV8FCSn1BGCc1sGaCRZH/hu/hsFAHuukkiU6S6CSpsDeyGDufM6gxPPhQlE2DwwMES0bIFTgQ8k+INYYZTdjtR9oMqtdsp7v+7hnUIRqkHYGgsf7UK+U1g3rt+jVZvWq1cU8Ot/tYDwuX6Jh99k8VUytK7Vq1zTF2/a3/MfxctATcM6g2ZEwwS0S4AjjnclsSBDN/5kUCJHB7BODEBo7OsF402AnWOfE2g4o1k5iNhk8IG5LDbaWE+JKZ6nwH/iJg0YQ1qvAZwRnUws2gwuEjnsvg2Khc+XLmmcJadBX0uuYa1OzEuAY1O49QfKJADQXlGCwDsaAQ+xF/tHAG5J+OHztuTFY1VEvcClR460WcVYgdCHl1qW9MROH9zz+1aN7CiGCYrjAOqj+d0HwuaoGKAQqYiVetVjU0DWIpJEACARE4dPCQaOgY4209oBMKcBAF6tMCpz9ugboEMdR1ABuxJfEsAQd0o0ePpkB9t3ACFdEVMCgAk3VEToBjxg66POl2EgVqdmoUqNl5hOITBWooKMdIGTecG3Lp4iUTLgUjn/DOp7Gy5LKuTfVPF3TdDdZVqglt3ApUNxONtyWffPKJaKxTOaYef/1TR/0RgZt9zNTCKyRC3Hit2fE/j5+DR8AtUOFtGiEj0A/wRAmLgfy89OZXk+TkZJNnmZvhKfI7nvtJgARCQ+CsemvH7xW8chcmwToG6y2xYe0p8sR69nibQcXgNbzlI5QcvNvDcsQ9k6fxoGX27NlmkPvUqVPGs//999+fp0AdrvmMVG/J8KRvw8C5B3MhICCqMHs4bNgwEw4I/eCf8FuMZ5dp06YZXxSoX6dOnXyH5RcSxh4YyjAz2Xjee68MUJ64rvwT/CTMnTdPZih7CNN79Vh1Bul/WECfrUDFwA1mttXhl/n98j8ZAwyW5+DBg0Vj0WbjCb8NiGTw9ltvmYgOiHSAMID+CR6dYXUHqzR1PCajdMBi8KBBgt9NJAzyT5kyRV588UUJ1hpUhP/7ZNYnMmniJFOnQVoeIi14JdQN5a9du9ZnFVC7dm2vQ/ldkAhQoAYJZDxkgx9vCFPMBB5X5waiM4Rq8u7ZdNy0Vq5cKXCWFK8mvm4w+BHWgNaycdNGI/Ld++x7mPZiU4/AZoM5MFPoCLgFKpx/IdZhLf0BWqvmfxiVxo9ZYRIegrp06aJxbhsVJhueSwIkEGQCuDfjtwoPn4VJcHCHh+e2bduaGVnkCUdA8SZQd+3eJVs2bzEM7O+amyueG7DhdxGCEIIVAigvE1/8LuL+Ced1zZs3Nw4O3XHOt27TZ5NNm42Jq1eZtnzzxHKzfAgl5Oue3Y1EgQqeaBscKebVNrTRsoWDv+YtmkuD+jmdT1oWeb1agbpixQrp1buXtG/XXsqUKZPjlPx4wtGlefbZuNEXPhBt8Eq27hDfqHuzps18S6KKQqBi4BnPtBu1bucvnBd9AvPV0b9+WBqGv2cMWFuzdQpUf0rB/UyBGlyeMZ3b2XNn5dPZn5pZU4wU3zXoLunbp6+nSSp+6DFCqaFZKFD1qsDsG9aHYPNas4t1rxomxzBD3FiMAOOHmCl0BNwCFetFEdsQnqMxovuuml6tW7euUJV54IEHjBdneI9mIgESiBwCX+qM31T1Fg+LoMIkDGqNGzfOWMOs1BjZyBMDtfEmUDEbht+6I2py+qWKT1gPQVzZpGG8zAwnYp6ro0Hj6R4zfXkJVPyGpqWlSWMVlWPVZBgWR+5BXMxomjWYGZm+mTjEWPVPED6Y6evTu4/Aw3ApjUuOGTubIlGgunnCNBqzfnv37LVV9r1ClIJLX7XEqqpx3tE2OwPpOyjAN1agItICOFVUi6LiHv4zWrRokcWzTx9jOeDPE9Ef7LMP/s4+U4/Nq/Rvwz9B/GL2tX///iaiA/LBZsVsUQhUXFMXL1409cMzK2aC4VHaK0HMIt494iBToHoRCv53FKjBZxqzOZ5RMyiEfHnllVdMqBX10mce4hG8HAk3IpivYt0lTHtgcgORGq8zqBgNxA0Na1Cv37gulStVlkqVKvlGBN0XyvoN6+X9994X9Whobn4aE87M4LmP4fuiJeAWqPihhHOsjh07yqLFi2TunLkCqwCb4IgCpk8FcabEMDOWHl9JILII3E6YGZisQhC4RRKsI2DO2rNnT+P8B46C4Hgp3gSq7V08M9g1kTC9tQmmlBrv0ggaOEmCUyWEmcMSF9xzbcI5MG/FfphMI0GkwkwUgtYrFBvuyTgHfYrfX//UqHEjNZEdYGa6vcTbjp07ZOGXC40Jsqln3z7SqGFOqxdYlKFtcK6FZPvdLXZt2fnliRk8zCJjthIh8NA2r9k58AQvCCk3T1sOzsHgKkLjeYWzs8cF8oq2wawVoZLySo0bN86z7fZcnTOXJYuXmIH49evX2699r1jaBEdZubUd62vttdKwUcOsa6XDrWvFl5G+WbV6lan7rp27fNeKOwSU+1j73vYB+iGvhGc4e/3ll2de+XBf/gQoUPNnxCNuEshPoGKECSNjcHyAdQcwBYY333gVqPDiu2b1GtGQO0a8Y20D1oVg/Yx/okD1JxL6z14CFeudMjIzJGN/holla2sFUx88JOA10ESBGigpHkcCoSVwOwIVIhSzPW5BVa58eUlXr71wiIaH+3gXqBBxGfAqq+sHz5075+tUmNRCTEEgQmhhdgyCCt9jhsomPHPY/dYHAASgPR+ixj9hts6eg5lH/wSzYJyPPvLyqI91w/Z8Ww78EfgnDblnPBGj7kgmT21TUmKi/6FmLXJeeVpHihBhtkwvgWl43uRlBbu7MMxCgis2L6HsPja/96gvNpio55V8PHNpu/tcw0DzPOmRJ/oir7ajvRgYxhpirC1GG93XirscmBWjLDyT2jwxG5tXsn2Q31IeXLOB5plXedwXAAGd5WEigYAI6B+78/rrrzs6wuWoGYkzadIkR81qTCxRxBPVm4fzwgsvOK1bt3bUeYGjphkaG66487Of/czREbNsZag5q4mTpiOgzm9+8xtHhayJA6ozjdmO0xuNo4viTZ5jx4511B29rzyU6d5UMDiINak3D+cPf/iDozNc2fLKK2ap+0B3HNTHHnvMQV1zS3nliZimkydPNqx0RNN59bXXHL3ZZ6uzrb+alxhOKl6dH//4x46OpOZWJL8vIgLuOKi4jvQBM9eS0O/qmdLEOtQfVvNqr3m97WJZTo4NeerobK55cgcJkEB4COQXBzVBf8vw923/1vGq5qjOp599lmuFbZ74PUKsz7379uZ6LHeQAAmQAAlkJ8AZ1ABEPA/JIgBbfazDwywpRjZT01IlLTXNt0YAJr4YfcSIG8wfYTKBLa8ZVBVwxjkCHEtgLQNMpuBoQgOfm0IxAoYyYfpi16BgPYRXwrEnTp6Qq1euGvPY9u3bG5Nae2xeMUvtMXgNVhzU6zrCanlhLQxMkzASi5FC/2Q9PoIdZllRdzjqYQodAa8ZVLjp90qY8UaM2x07dvh2Y3QXlgO5rVXlDKoPFd+QQEQRyG8GFfdkrEd3m/PCuQ6+h8Mer2TzjGcTXy8u/I4ESIAEAiFAgRoIJR5jCEBwweseRCgEKJwJwJzXmt5AgMHLXrt27YwZBhbXwy13XgIVTpTqpKu5Tc1aAucxWIOAtSlWxOkMo69MxErD2laIVa8Ep0Iwt8IDQ8XUipJaMTWbmUuoBaqOBfnqDjMg8IK5r5dpDuJjwssrvD+CI+pfpnROj3le7eZ3wSFQEIEKT374Ozh3/pbZ2vqv1xtnIO+9955nhShQPbHwSxIIOwErJmGS65Ueeugh43wGDnZsKle2nHEe4/Yka/fh1eZJgeqmwvckQAIkEBgBCtTAOPEoPwKYOYK3M8yAYuYUqXad2jLivhFmATnWAGA/PPQhSDecDbjDa0BkwrOf22MaxCW812KRvxWo7mKxsB6x0+BdziuhjCFDhuTqXAiL31EmnN3AiyDEMBa8+yesXYCDJ3h0hOCGVzx4Z/RKt5MnhI1/gjgdOmyoDBww0NMrsv/x/Bx8AgURqF6lw5kErk84BrMJVgdYV4T1LXAqhgddDMAwkQAJRA4BKyYRpxqOd+D8xO1Ax/6Gwcon0GTzpEANlBiPy48AJgkQTeHc2XPmOQFekL1Cv+SXD/eTQDQQoECNhl6KwDrCOx5EKpwg4aaJhJslPLpBiJ45e0Z2bN9hZloRawzfucUgRCBmRCEWbULsK5zfsGFDn4mv3YfXQ4cPmTzdZpXu/TCJxflYPO+VMOuLc2EKbOvpRzCQPQAAQABJREFU5WQBs2M4DvXDInzUPZh5ejluyK/tXu3hd8ElUFiBikGZ7Xrd7NTNJph2YzAGAzHwCkyBasnwlQQih4AVkzNmzDADpBiYhCWLTfY3DPfpQJPNkwI1UGI8Lj8CcACFZVMYDIUwVX8fZmlUfudxPwlEIwEK1GjstQioM0TpZZ05vXLlcpY7GK0T1o2WKFHCbIj1iZnVK1ev6OeSUlK/VycTvprDdBf78WpTYlKiHlfSnG+/c7/ClNjkeXPG1r0P7xHuBuXbsDf+++25qJutp13r6j4WbbPHYiY32HnC9Nc/2XJQFlN4CBRWoHpdnxgUwYzqSy+9ZGbtKVDD07cslQTyImDF5Dz1vPvkE0+Yv1X3oKT9vfCy7MktX5snBWpuhPh9QQnA+gpWaYjLjcFzdRxpLLwKmg+PJ4FoIECBGg29FMd1vHT5khw5fEQO6uxUKQ3PgpuyV+yzOEbEpgeJQGEFqlc1MKuKddoIOQEnKwhNURAzQa88+R0JkEBwCaz7ep2J0QgHeTDBR3ipwsY4pEANbh8xNzEOKBGLfsKECSbUyaOPPmoGU8iGBGKRAAVqLPZqDLUJTpkQaxKj0BCn8PYLz4lMJBBsAkUhUOEQCyL1wIEDxoNz9RrVpVJaznXPwW4L8yMBEgicANaIHzx0UM6cPmM89eLvtFRK3nET88udAjU/QtxfUALw8k+BWlBqPD5aCVCgRmvPxXi9YfqLDQ/38AasMVfN2tQRI0ZI/zv6+1qfmJBoTHph1qtxV33f8w0JFJRAUQjUgtaBx5MACcQGAQrU2OjHSGiFWT6iy6WOHztunofgKR4m6Pfff79xDBkJdWQdSCDYBChQg02U+QWFwJ49e2THzp2SoeFZ4BgAG9b/lCpVSlLU1NcmxESFEyM4VuL6TUuFr7dDgAL1dqjxHBIgAS8CFKheVPjd7RDYt3+fOt/bKXv37dVnoYtyQS1zatWqJQith6UjTCQQiwQoUGOxV2OgTQsXLjQhYeBNt1+/fiZGKsywlixZYtbz2SY2bdrUF5qG7tYtFb7eDgEK1NuhxnNIgAS8CFCgelHhd7dDYOnSpWbmFN57+/fvb9ZIQ6CWK1fORE+4nTx5DglEOgEK1EjvoRivHzzmIqzLqW9OyeVL6hH4ZkLMU6w9RUgYxCHFTfnw4cMm+PknavJrU61aNaVr167SoX0H38wqvAVjZrVChQpSsmRJeyhfSSBPAhSoeeLhThIggQIQoEAtACwemoMAwtGZZyP1w7FhwwYTrgxLnoYOHWqehwoS8ihH5vyCBKKAAAVqFHRSLFcRN+F169bJ6tWrjQC1bYW4xAaPvfUb1Jd6devJuXPnBKa/2Gy6fPmy7yZu47HCDLhTp07Stm3bbLFX7Tl8JQEvAhSoXlT4HQmQwO0QoEC9HWo8xxJADG08G61cuVKSk5PN8xA8S9evr89D9eqZOKj2WL6SQCwSoECNxV6NojadOXPGxIl88803jfmurfp3v/tdGT16tHTs1FHgCAnxShE/FDFMsdkEsYo4k//85z+Np1R8D9OX73znOzJy5EhzI7fH8pUE8iJAgZoXHe4jARIoCAEK1ILQ4rH+BLZv32489r744osmlMyYMWPMUidYiOF5iE4h/Ynxc6wRoECNtR6NkvYcPXpUMjIyJDMz0whLhOE4e/asr/Yw2+3SpYs0aNDA953XG+SDEUasTcUMKxI8+sLDXY0aNYxYxfuaNWuam7pXHvyOBECAApXXAQmQQLAIUKAGi2T85AMrMDwT2WejgwcPmvft27c3z0ONGzeOHxhsadwToECN+0sgPACw2B+xTdeuXSutWrUSODuqmFrRV5nKlSob8144AcgrXbx4UeA8CUL16rWr5lCsZd26dats3LjRBFuHk6XuGj81SUcemUggNwIUqLmR4fckQAIFJUCBWlBiPB5LlqwjSFiXwUMvno2qVatmnmWw7ImJBOKFAAVqvPR0BLQTsbwgKC9euigrV6yUzz77TNasWSPjxo0zjpDS09ODUkvMxM6ePVumTJliZlOHDBkiffv2NWFqUABMZJJTkiUlOcW8D0qhzCTqCVCgRn0XsgEkEDEEKFAjpiuipiIXLl6QqVOnymuvvmbq/Njjj5mlSqVSSkVNG1hREggWAQrUYJFkPvkSOKXe6LZu2yabN20yQhVrSbH434wSNmsmqep5NxgJo5BbtmyRTVrOiRMnzFoNrNmwCbOyzZs3lyZNmtDRgIXCV5r48hogARIIGgEK1KChjJuMKFDjpqvZ0AAIUKAGAImHBIfA/v37TSyvSZMmGQ+7AwcOlI4dOwq87mJLSkoKSkEQvrjRX9SA1ttUEM+dO1emT58uV69mmQDDAx4cMA0ePNiYzQSlUGYS9QQ4gxr1XcgGkEDEEKBAjZiuiJqKUKBGTVexoiEgQIEaAsjxWMSZs2fk+PHjcuL4CV/zT548adaFwnU6Fv1jbShCwRRlgpdfrHX99NNPfQIVMVLbtGkjLVq08AW5hkc8uHCvVKmSlC5duiirxLwjlAAFaoR2DKtFAlFIgAI1CjstTFVGvHc8LyG0DCy/EAe+TNkyckf/O6RXr16M5x6mfmGx4SVAgRpe/jFb+u7du4133a+++srXxjJlykj16tXNgv/adWpLndp1pKiDTSPQNTzi7dPZW+dmeBrEXj18+LDAQx7eI2H2tnv37iZ+KsLUMMUfAQrU+OtztpgEiooABWpRkY29fLfv2C4rVqyQdWvXmegDeE5C5IE6depILY1CQAePsdfnbFH+BChQ82fEIwpA4IZzQ4WgIys09Mvk99+Xv/3tb76zIQAfe+wxGTFihOTnndd3UhG8OaTi9EN1RPDyyy/L5s2bTQklSpSQn/zkJzJq9Chp2aIl44wVAfdIz5ICNdJ7iPUjgeghQIEaPX0Vjpo6WigGzRHffenSpYKlT5MnT5Yf/vCHZgkSfGQwkUA8E6BAjefeD3LbsX5i3959ArNazFDCpBebTRgVxJpTmPWmpKTYr0P+CnMamBljxBKOm5Bg4puWlmY21BPrVNPrpkuJ4iVCXj8WGB4CFKjh4c5SSSAWCVCgxmKvBq9NiNu+b98+gbUZwuThWenChQvSuXNnadeunbE0C15pzIkEoo8ABWr09VnE1hgecxcsWGDWe5YtW1Y6dOhgYpzaCsNjL9Z/pqamhjW8C5wlWfFsHSchQDZE66pVq0zdBg0aJH369OF6VNt5cfBKgRoHncwmkkCICFCghgh0lBaD9aZ4Xpo1a5aJ+Y7Be/jFwPMRnpPCOYgfpUhZ7RgjQIEaYx0ajuZgJBAb1nQiyDS85jZq1Ehs/NFw1KmgZSJG65w5c2TmzJlGvPbv39+sSYV3YaSExAQpW6ascapUvHjxgmbP46OAAAVqFHQSq0gCUUKAAjVKOirE1cSzEmK1wzcGnpfw3AGnjXhe6tGjR4hrw+JIIHIJUKBGbt9ETc22bt0qGzZsMOYqJUuWNB7nsLi/cePGUr9+/ahoB0LT7NixQ7Zv326ENmKpYsP3SBCq+BFBzFaMcDLFHgEK1NjrU7aIBMJFgAI1XOQju1z4vYCX3szMTPOsVDK5pNRNr2uel+rWrRvZlWftSCCEBChQQwg7VovCDzEW92/ZskXGjh0rMI/FOk44HsIWLenKlSty+cpl2bN7j8yaPUvem/SeHDt2zFS/WrVq8sgjj8g999wj6enp0dIk1rMABChQCwCLh5IACeRJgAI1TzxxuxMmve+rA0kIVMRjx/MSQtzhWYnWWXF7WbDhHgQoUD2g8Kv8CcBEBY6QDh06JLvVKRJmH6+qwOvbt69069bNrKHIP5fIPALtgle9+fPnG1Mc1BLrZzEj3LBhQylfvryv4giTA/FaoUIF33d8E50EKFCjs99YaxKIRAIUqJHYK+Gv07Rp0+SNN94wJr5PPfWUjBo1yjhnDH/NWAMSiCwCFKiR1R9RU5v9Gld02bJlskAX+dfWOF3weguz3ho1apjZUwi6aE3nz583whtraq0TJcyu7t27V3bt2iWIrWpT7969jSDHmlum6CZAgRrd/cfak0AkEaBAjaTeiJy6UKBGTl+wJpFNgAI1svsnImoHB0IQani1adu2bcah0GuvvSbjx483o4Dw2hur6cyZM6a9b7/9tqxevdrXTGv22759e2Oek6QOlBI0ZA1T9BGgQI2+PmONSSBSCVCgRmrPhL5eiBKAZyhsn332mXzwwQdm+dBDDz0kw4cPp1+L0HcJS4wCAhSoUdBJ4a4i1krs3LnTzCDaumBGETG7sLVu3dpsmEGN1XTp0iXZsHGDfL3uaxOzzLYTruDhQAkxVGEC3KBBA4amsXCi7JUCNco6jNUlgQgmQIEawZ0T4qohzimeoeCE0T43IRQfYsK3bNVSSpcqHeIasTgSiHwCFKiR30dhr+HKlStNbFOM/NnUtGlT6dWrl3Tp2kUqVqgo5cqVi+m4XRgBxbpbzKRCnNuEuKmLFy8WxIAdrg6UBg4YIJUqVbK7+RpFBChQo6izWFUSiHACFKgR3kEhrB4cSH7++ecyZcoUGaDPCN27d5cmTZqY5yY8OyUmJoawNiyKBKKDAAVqdPRTyGuJECtYa3nq1CnZtGmTQKSuXrPGV482bVrLoLsGGadISUlJvu/j7Q3EKX54MDoK51Awc7ZOlIqpqS8CbsOBEoNuR/6VQYEa+X3EGpJAtBCgQI2WniqaemJJlH2G2rFzh6xauUoW6fPCvTqQDZEKgcpEAiSQOwEK1NzZxPWe48ePy7p168x6y4SEBCOyypQp42OCWULEOIVzJOyP17Rv3z7Zo16M4TTq9OnT5gfJOlaCcO/YsaO0bddOamjYHabIJkCBGtn9w9qRQDQRoECNpt4Kfl3hbBHPUGt0YB/vMVCNwWssA8KzEy2tgs+cOcYWAQrU2OrPoLUGomvq1KkyYcIE6d+/v4weM1r69O7jyx+zgwmJCZKYEN+mKTdu3BCY/yLczowZMwROoxCIGwmC/vvf/76Jdda8eXMfO76JTAIUqJHZL6wVCUQjAQrUaOy14NX5xMkTMu3DafL666+bUHQPPvigDBs2zAzoJ6hJL50pBo81c4pNAhSosdmvt9UqiK0DBw6YANJwjJR5QLeMTGnRsqV07dJFKLJyxwpTHphBL1myxKxHxZGYWUYInpq1akl5XWdiE+Km1tLvqlSpYr/iawQQoECNgE5gFUggRghQoMZIRxawGYijbp6f9BkKz1MZGRnm975r167GoqqA2fFwEohbAhSocdv1ORt+TWcCl6rAmj9/vnGB3lKFKZwhVa9RXapUrmLWU+Y8i9+AANbsHjt2zHj4vXzlsoFy4/oN2bp1q1nDi5iqNsFBQp8+faRNmzb2K75GAAEK1AjoBFaBBGKEAAVqjHRkAZuBMHQLvvxSNqvvjlatWkmzZs2kVm0dkNZnqMqVKxcwNx5OAvFLgAI1fvve13J4pUUYlXPnzhlx+sknnxhPtWPGjJFBgwdLOXWHzlRwAliL+umnn5qYZ8uWLfNlMGjQIMHWqVMn4zwpOTlZ4tnRlA9MmN9QoIa5A1g8CcQQAQrUGOrMAjQFThPfeustY031zDPPmCU+sRyCrwBoeCgJFIgABWqBcMXmwQd0dm/r1i2ydctWgZmv4zgmrmeLFi3MDCoEFFPBCWBtqp1BxRpVm8z6XTX/TSmVombTWYwrqgMFpvASoEANL3+WTgKxRIACNZZ6M/C2UKAGzopHkkBeBChQ86ITJ/vWfb1OPvn4E/nwww9l+PDhxikSXKCXKlXKbPHspbcwlwCEvg3KfUVnU21aoyZAc+bOkfVfr5f7779fBt89WOrUrmN38zVMBChQwwSexZJADBKgQI3BTg2gSRSoAUDiISQQAAEK1AAgxdIhJ0+eNGslz5w542sWFvFv3LjReJ+F6SnWRyJ8DFPREFi7dq0sWLDAuJ9v27atYK1vamqqr7C0SmlSuVJlKUvTah+TULyhQA0FZZZBAvFBgAI1PvoZrcRANELzwQ/Ftm3bZMOGDcZZ4p133Sm9e/WmQ8T4uRTY0iASoEANIsxoyOrrr7+WFStWyJYtW3zVrZhaUapXq25coddJr2Nm8xCzi6loCBw+clgy9meY2KlHjhwxIWoQJ82mLuoxGetTESuNKXQEKFBDx5olkUCsE6BAjfUevtU+LOFZtWqVLF22VD32lzfPUtVr1JD0OnWMJ//SpUvfOpjvSIAEAiJAgRoQpug+CKamdps1e5a88/Y7JsapbdXo0aNl/PjxMmTIEPsVX0NA4PTp0zJt2jR55ZVX5KuvvvKV+L3vfU/Gjh1rRKr9EutW7Wa/42twCVCgBpcncyOBeCZAgRr7vY/nqhvODdm2dZtxhvjCCy+Y327EPO3Ro0fsA2ALSaAICVCgFiHcSMn61KlTsnfvXtmzZ48xQzlx4oS4TXyx3rRDhw7GJXqk1Dke6nHx4kVZu26tiZ96+NBhX5PT0tKMkyq3iW/VqlWlbt26ZjTWdyDfBJUABWpQcTIzEohrAhSosd39165dk3379plnK8Q7xXMVzHxbt25tnqcaNmwY2wDYOhIoYgIUqEUMOBKy3717t8ybN08+/vhjE3sTYhRix6YyZcqYNZA067VEQvMKL79YE3xSBxAua5gfm7B+BeZCWMtiE4J8DxgwQBBDlaloCFCgFg1X5koC8UiAAjW2ex2xz+FLAk6RsESnY8eOAp8SiHUKnxLuAebYJsHWkUDREKBALRquYc8V4WIQ1/Ts2bOyY+cOWbRwkXz22WcydOhQufvuu80oX9gryQp4EsCPHgYTFi5c6NuPH7++ffsK1qdiQAFbyZIlffv5pvAEKFALz5A5kAAJZBGgQI3NKwGWT3i2wuDykiVLTOx4hOJDBISBAwcKw/LFZr+zVaEnQIEaeuYhKfGSzsht2rRJ1q9frzN0JyW5ZLIRNI0aNZLGjRtL9erVQ1IPFlJwApjx3rZ9mxzIPOA7+aqGqcGILWZd27RpY8yxYfbLFDwCFKjBY8mcSCDeCVCgxuYVgOVSNuoBxCgGiqtVq2aeq/B8lZSUFJsNZ6tIIMQEKFBDDDxUxWHmFLNwkyZNkhIlSsh9990nA+8cKKVLlTY3VN5EQ9UTBS/nypUrgg2i1CZ4X/7kk09k+vTp8vjjj8u9994rTZs2tbv5GgQCFKhBgMgsSIAEDAEK1Ni8EJYvX26cG3700Ufy4LhxMlhD8zVq3EhKlihpnrXgzJCJBEig8AQoUAvPMOw5IAbX4cOH5ZBu126KmssqcHbv2iXbt2+XSpUqSe/evQXrGClMw95dt1UB9CPMiRYvXixwagUHDHCmZBP6GKO47u/sPr4GRoACNTBOPIoESCB/AhSo+TOKxiPwGzxx4kR555135Nlnn5UxY8ZwsDgaO5J1jngCFKgR30X5VxCxNBGmBGsWMXOKhFnT+g3qS7269aRWrVpSQ2Nywaw3ISEh/wx5RMQRgCfmgwcPCrwFwnMgzIDhNdAmxE2FA6UWLVrYr/haQAIUqAUExsNJgARyJUCBmiuaqN5BgRrV3cfKRxEBCtQo6iz/qsIEFBvCx8Cc9+233xaIVSTMpj322GPGtNftsdc/D36OLgLob/Q1RnAXqDMlmxDLFma/3bp1s19JYmKiFC9e3Gy+L/kmVwIUqLmi4Q4SIIECEqBALSCwCD4cTifN89a1q7Ji+QqZMWOGzJo1S5588knzu4u1p0wkQALBJUCBGlyeIcsNN8xdasILD70HDxwUmPnC1Tm+R0pJSZF27doZb700+wxZtxR5QXCSBAcN69atk8zMTF956O9SpUqZfrdfVqlSxZgCN2jQgDPnFkoerxSoecDhLhIggQIRoEAtEK6IPhiWaeZ5a8cO470Xz1r4LW7fvr1xWIjfWiYSIIHgEqBADS7PkOWGINE2tilMPfv06WNCkJQuXdrUAaa85cqVMxvMfZlig4DjOHLm7Bk5c/qM8eprW4XYqTA9ggMHmxDvdsiQIXLHHXeY2VT7PV+9CVCgenPhtyRAAgUnQIFacGaRegZ8fKA/MXOKJVM9e/aUdu3bZT1jlS3HkG+R2nGsV1QToECNsu7DyN0333xjRvHWrFkjy5YtE3iNQ2zTfv36mfiYUdYkVjcIBFatWmUChmPQwiaYHcExFkZ5Ye6LBJPfChUqmA3vmW4RoEC9xYLvSIAECkeAArVw/CLhbDxrYYO1En5j4aiwVatWcuedd5rf1kioI+tAArFKgAI1ynoWDnLWrl1rNgiN8rpV1/Wm9eurQ6R69YxzpChrEqsbBAJwngTHSW6zXwQUP336tPmBxcwrUsWKFaVjx44mlipm2JluEaBAvcWC70iABApHgAK1cPwi4WzEkcdEAH5XzfNW+fKSnp5unrVq164dCVVkHUggZglQoEZZ12IUb/LkyfLKK6/I008/LSNGjDCeWzFDlqAbI3BFWYcGqbpYe4w1MXYNMrLdtGmTidf24osvyqVLl0xJ8PL7b//2b8Z5VtWqVYNUemxkQ4EaG/3IVpBAJBCgQI2EXihcHRDrFOFkMjIy5JFHHpHhw4dL5cqVjUUSIyIUji3PJoH8CFCg5kcoAvZDXGQeyJTMDN10JA/vjxw+YtZBdO7cWTiSFwGdFIFVwI/qihUrZNGiRUa8oopwpoTrpWbNmuYV62kQfohJhAKVVwEJkECwCFCgBotk+PKZNm2avPHGG7J//3759re/LSNHjjRx5cNXI5ZMAvFDgAI1CvoaMTDhAGfu3LmSnJwszZs3l8aNGws8x2ErU6ZMFLSCVQw1gXPnzsnRo0fNZk188d2WrVtk08ZNxsNv3759BTFUmShQeQ2QAAkEjwAFavBYhisnCtRwkWe5JCBCgRphVwFibWHGFOsHbTp+/Ljx2AsPcnB8A7PeAQMG2N18JYGACUCwfvLJJ/L++++bGdTBgwebmXibQWJSoqQkp0iyzrQmqPOteEqcQY2n3mZbSaBoCVCgFi3fosodz2B4/sJz2Pz58028U0wSjB07VvB7mZqaWlRFM18SIAEXAQpUF4xIeHvs2DHZunWrbN682WeWidkvrC3EVqdOHbPmFDOoTCRQUAKI57ZlyxYTSxWzqVhH415Lg5i5zZo3kyZNmkjJEiULmn1UH0+BGtXdx8qTQEQRoECNqO4IuDIIKbN1mz6Dbdpsnrmu37guFcpXkJYtW0qzZs1MvPGAM+OBJEACt02AAvW20RXNidu3bzczXBMnTvQ5tsF6QYSR6duvr9SoXkNKaazTUjrDxUQCBSUAR0oXLlwwGzwUwmwcM6o2wYU+ZugHDRoUd6bjFKj2KuArCZBAYQlQoBaWYHjOh3NB/Ca+/fbbcu+995o44kaYli5lxGliQlbItvDUjqWSQPwQoECNgL6+dv2anDh+QmDKu2fvHtmwYYOsXbNWrl27ZmpXTcPIDBw4UHr36S1pqWkRUGNWIRYIYCYVJkxz5szxNQfXWps2baRFyxaSXDLZfJ+UlGQcQ1SqVMmsgfYdHGNvKFBjrEPZHBIIIwEK1DDCL2DRMOs9fuKEPocdl127dhkLo9WrVxuTXvhpwNIqJhIggdASoEANLW/P0rDeATfDr5Z/JefOnjNeVRECxJpeppRKkfQ66WbNILywMpFAMAhgQATeCd2xU8+fPy9HjhyRgwcP+gZI4ISrW7duJn4qXOzHaqJAjdWeZbtIIPQEKFBDz/x2S8RyF4TwW758uVy+fFkwUIutTnodqVO7Dted3i5YnkcChSBAgVoIeIU9FWtL8e/06TMyXd2Zv/rqq1K2bFn51re+ZeJUFi9evLBF8HwSKBABjB5PmTJFXnjhBSNUcXKNGjXkmWeekZGjRkn9evWkmDpPwhZriQI11nqU7SGB8BGgQA0f+0BLNs9g+hx2QmdPp06dap7BEHrt4YcfNs9ggebD40iABIJPgAI1+EwDzvHQoUOyd+9e2bdvn5w4CfOSEyZsDMJ+tG3b1gSDDjgzHkgCQSAAJ11r1q6RFctXmHWqyNKa+MKBEtZD161bV9LrpquX34QglBg5WVCgRk5fsCYkEO0EKFAjvwcPHDhgnsFgSQSRig2/cR07djTPYJHfAtaQBGKXAAVqGPt2zZo1xknNypUrpXPnztKuXTvjpRduzLHF4ixVGHGz6AAIwLX+yZMnzQaHSkgwQf/6668F1ylMfLEeuk+fPjE3gEKBGsAFwkNIgAQCIkCBGhCmsB60YsUK44Nh48aN5hkMEwO1ateS1IpZz2BhrRwLJ4E4J0CBGuILAIvxsd4B4T7WrVsnX375pcBr3MiRI43n1Nq1a4e4RiyOBPImgGsVD1uIw5uYmCj9+vWT7t27+wQqZlixTrVM2TKSlJiUd2YRvJcCNYI7h1UjgSgjQIEa+R32+eefy1tvvSVLliwxy1hGjx5tJgkiv+asIQnEPgEK1BD3MWanIEgxIwUvvSVKlDDrTps0bSKNGzWWChUqhLhGLI4E8iYApxE7duyQbdu2CUyA8fnKlSuC9TtIFSpWkNatWps4cRCq0ZooUKO151hvEog8AhSokdcn/jWiQPUnws8kEDkEKFBD3BdYb/rRRx/Jm2++KV26dJGhQ4dKt+7dpGSJkkasYoaKiQQiiQCEqBWlmzU0zexZs0yMOIhUpMaNG8u48eNk+LDhxgQ4kupekLpQoBaEFo8lARLIiwAFal50ImMfBWpk9ANrQQJeBChQvagE6btvvvlGDmvIjiOHD/tyPHPmjOzcuVO2bt1q4k327NlTWrdu7dvPNyQQyQTg1Gvp0qVm7bSN01uuXDkjUhs2bGgCmaP+CJFUvXp1QbgkeKaOhkSBGg29xDqSQHQQoECNzH5CKLXD+kyGbffu3bJ9x3YT3g9LVxBOLZZDqUVmj7BWJOBNgALVm0tQvoUQxcP84sWLffmVL19e6tevL+np6QJ35tVrVJfKlWI3tqSv4XwTEwQwwIIYqdhu3Lhh2nThwgXZq5YBuzVEDd4jYV0qApx37do1atb0UKCaruN/JEACQSBAgRoEiEWQBX67li1bJgsXLjRitJ6GTqtTp47UqFlDB1VrSCnGmi8C6sySBApOgAK14MzyPAPmkHCEhNkleOmdPn26vP76675z4L58/Pjxcs899whmnphIINoJYCQaDpTeeOMN2b59u2lOiv7IP/5vjxuz32bNmgli+kK0RrJnagrUaL8SWX8SiBwCFKiR0xeIN3/t6jW5eu2q7Ni+Q2bOnGl+r/AcBsdIGEhlIgESiCwCFKhB7o/zF87LLp1Jwk0QMbVgTmJnlVBUlSpVTHytVq1aSXJycpBLZ3YkEHoCmFXdsGGDrF27Vk6fPu2rQOnSpQUbzHwbNWokDRo0MOusfQdE2BsK1AjrEFaHBKKYAAVq5HQeJgzMc5k6+8OAKp7LsDVv0ULa6BIrzKIykQAJRBYBCtQg98fx48fN+jzMKCGWKdaYdujQwVcKvPZi5hQbHSL5sPBNFBPAqPTZM2eNOLXrUvG6XGPMLV60yKxHHTJ0iAy4Y4ARrJHaVArUSO0Z1osEoo8ABWrk9Bnie8+bN08+/vhjM2HQu3dvE/c0LS1NsOyqVKlSkVNZ1oQESMAQoEAN0oWAmSM4RcL6hlWrV8tSjavVoGEDGXTXICNSg1QMsyGBqCAAgTp//nz59NNPBaGV4HwCAzUw/UXC4AxCKmErWbJkRLSJAjUiuoGVIIGYIECBGv5uRMx5PJdh4mC1Ppd99dVX5jdo8N2DpV/ffrRiC38XsQYkkCsBCtRc0RRsB2KbwsQRXk4xIoetdu3aPodIBcuNR5NAdBOAA6U9e/YYsyoM2pgBnNPfyI3rWY6VYPoLwdq2bVvBKHYkJArUSOgF1oEEYoMABWr4+xFeevFctnHjRt9zGbzLY7kJzHrhF4GJBEggMglQoAapX2bPni2TJk0yN8JHH31U7rn3HqmhHuESEhMkMYGxTYOEmdlEEYHr16/L9RvX1bvvbpk2bZr861//kkOHDpkWwGvik08+KSNHjpS6detGRKsoUCOiG1gJEogJAhSo4e9GRFGYPHmyTJkyRZ566ikZMWKECYkGCx4usQp//7AGJJAXAQrUvOh47IOH3gMHDkhGRoacPXvWdwQevDMzMwVefLv36CGdO3Uy5ou+A/iGBOKUwBGNBbxy5UoTbgmOKZCwFhsWBjVr1sy2LhWhl7Bh/XaoEwVqqImzPBKIXQIUqOHvW4T4mzhxorzzzjvyk5/8RMaOHStNmzYNf8VYAxIggXwJUKDmiyj7AfDIu0TXl2J9HUwYbWrevLkgnAZinMJTL4I9R8raOltHvpJAOAhcuHhBjh09JkePHjXhl1AHOK3Ytm2bsTiAt2ub7rjjDunVq5c0adLEfhWyVwrUkKFmQSQQ8wQoUMPfxRSo4e8D1oAEbpcABWqA5C5fuSyXLl6SU6dOyZy5c+TjmR8L1p3aNG7cOBk+fLi0b9/efsVXEiCBXAggNM2sWbOM+RVC1NgEk9+77rpLWqvrf4RhglOlhIQEu7tIXylQixQvMyeBuCJAgRqe7sbSEgyAXrx0UdasXiOfffaZLFiwQB566CEZNmyYWX8anpqxVBIggYIQoEANkNa+fftk69atsnPnToEDGGww57UJM6jYYJ7IRAIkkDcBPEBs2bJFNm7aKCeO35pBhRjFBu++sEiAORYcKoUiUaCGgjLLIIH4IECBGp5+xuAnrHM2b95slmHhWQ3OkFq2bGme0SpVqhSeirFUEiCBAhGgQA0QF9yTz5w5UxYuXGhG4fr27Ss1XWK0lM70IJYWzXoDBMrD4poAHhpgLo/tqoaksQnhmfBgh3Wro0aNksGDB0uoHigoUG0v8JUESKCwBChQC0vw9s6HPxBY58AxErz1DhgwQLp27Wqez/CMVrx48dvLmGeRAAmElAAFah64McuD+FnYtm/fLuvXrzeOkGCC2LtPH6lZo0YeZ3MXCZBAQQksW7bMBFRHeACEoMGod9myZU02xYoVM2u70yqlSelSwZ9VpUAtaG/xeBIggdwIUKDmRqZovocvg2P6rJapDiwRVmbdunVmxrRfv37SSZ1WMpEACUQXAQrUPPrr2LFjsmrVKsFDM9bDIX5WtWrVJD093XggtQ/OeWTBXSRAAgUgkAkP2fv3Gy/ZmEXFaDgGipAw8t2te3fp1LGj8f5bgGwDOpQCNSBMPIgESCAAAhSoAUAK4iFr1qyR5cuXm0kE+6wGT/G1NaRZDX12YyIBEoguAhEvULHM07XUs1B0dQJGsAWa4KUXZiJ/+9vf5M4775Tx48cLRuOYSIAEipbAQRWmUz/4QCZMmGDWfqM0OEz60Y9+ZEIFYL23L+HvGv8C+OPO636yc9dOmfz++/LCC3+VYerwbNyD4wWm/J7p5r2kALcTz2z4JQmQQHQRyOse4m4JBOo777yry4IWydNPf1dGjxkt6SqWCvoc4s6T77MTcET/wRWI/jd9xnR56623dAY108TYRszTUC0PyV4rfiKBghMI9L6SW86xeF+JeIGaceCG7N17Q44cvZFbvwT0fVpqMambnqA/EInqhCWgU4xp75q1a2WFjsrVq19POnboGJbwF4HVlkeRQOwQOH36tKzF396KFcZzNloG50lpaWnmoQNriWyqWaum/m3XNRYO9juv1wsXHdmn95I9+7H+9ZaDM3vs4UO7ZfGiybrW/G/SufMw6dP3QWnZqrfdne21bh29l+j9pHKlAG8m2c7mBxIggWgkcF7vG/v26T1Et4t6P8krfb1ui3y5eLVs3ZEhd/XvpPHR20vzpml6r0rU5xDeN/JiF+g+mPXu3bvXhPzDeyzHwkAmTHrbtWsnZcqUCTQrHkcCYSNw6bLeV/S5BFrn7Lm87ytelaxYQfVN3Sx9k5TodUR0fhfxAnXZ8msyd8F1Wbm2cAK1ReNicke/ROnTq7h6dAussy5d1rAyJ08Jbny40VVMTZXy5coFdjKPIgESuG0CV65ckZMa0umk/u1dvXrV5HNNnSlhHTjM7vFQYhOsGhA/FQ8keaXjJ27IgkXX5PN5GPDK+SNw7uxu2b/nA9mz40WpUn2opNe/X6pU8xaod/VLkH59k6RZkxj6NcgLHveRAAnI0WM37yFzr8uxW87HPckcPXFaDh0/Jec0DnQ1fXaoUaWidG2frM8hSdK7V5LafDAVlsD2HTtk3ty5xoElHCHhN6Bhw4aSqryxwXsvEwlEOoHTpx3zbPLFvOuScTDns0l+9W/asJgMUH2D+0rJErFzZ4kYgapOPeXceceMHly9cqs7Fnx5TabPvi7Ltt3sNP++8+8L//03s2pRq5iMuDtB7rozSYonQezekMRERx2wJEqZ0kl6I/PP6FYdYvGdc/2aOOfOyQ3diunavmKly0hCiMJ5xCLP/NrkqMgyvM+f00vvetbhCTqbrwMfYI8+YMqbAITqnDlzZMaMGYL1Rjb17t1bsMGpEtaFYzDpxo2km/cTPermPQFWGLM/uyZTPnXkuN5rsj0h6serl3bL+eMfyJUTf5fE0kOkVOX7JaW8t0Ad1r2YDBucJG1aYSYE/Yl7SlZBMLUpUyZJt0T9sYiPmRJHYw7iXuLow3ix0mWzrusSJZQJU1EQcNT79Q29l4C3TcVKJmfdxzlrZJEU+FVDaJr7xjmdxbg5LpYtj0OHb95DPrshJy/qrpv3lmwH5fGhbT19DhmcoEuGIFCznkOy7h1ZJ6WkJJh7R+lS8THw5eigY9bv4ln9DSwhxfTaTSiAAzxY2UyaNEmef/55efbZZ+WBBx5gLPo8rj/3rhsXzhv2jj5wJ+g9G+yLUdC7ERXJex1792kdB7cATadO6X3li+vywawbckDFakHvK02qF5ORN/VNckmrZXBzyno2SU4uZnQOnkmiKUWMQL2sU9ybt1yX9RtvqCe2W3f9rTscWa/iNOPk/2fvvd+juNYt4bfVQQmQBAIkokDkZDA5BxsbG3A+9ok+9565537PPHOf+W/mp3lm7p2THI4TwTYmm5xzzknkKCGpQ1X3t9ZbtbtLrVaOYG27qVZ1hV21q9Z+1xsZbeCOW+pnFTK9w9HQwBbn+2TaOJHJ47PEn4WkK4la6V1gyyuT8pHprZf06f3L0rTFn1dJ9NwZsc6cEl9BoYQmTJLg6LEv0rP7QvU1/uSxRM+exv0+KQk36Y8PrkiBCZMlNG6CZBX1faGupys6ywLsF1GH+Pz5c3L/3v1kF0hcaXFlEqUpU6bIxIkTJRorlFNnbDl5Mi62OwlUVgJLzibk6KWEhIHbxA1+DK7EaptPUMcN8snUCT4ZOhgHB5Yk8HEmA5FA0Adc6YV+9JKBA34ZJM26dQPP9xmxL19wnunxE8Xff0ByjHq+tO8diF25LLGzp8S+ejl54KxBgyU4fpLiSYuSLSSP0POFYQBniBuQQx498Qoazr2hpeMU5JFjlxNSC8cO3aL+Zg3eyIF9IIdgmp08AYqrJG6kNPLlI3NlMmSS0aPaP0t5g53qwh/ilc8UNzgvZgEv+PwGy0c1u0c9BLXZt6rehjHkXCCGxB/cB2YDN4DZWX0K6m3Xs6J978CDh3E5DYw5Adkk6jiHacjRyXMJOQ6+UxlpOa70RcTTtLE+xZVgksqkZJNhwwKKKxPGvVgu792GoFJj+f2GmHz5HSaHKynEtyBIxvCxsSqOj/6S+lnnYWOjoBya/rt5tLIgiQaxYQ4NVfFKiVvPZFhJVH77UV9Z9XaxlAzMNpv+IpY2QKn2p+8l+uNX4h9cJqG33pfcpa//Iq69Ky7SunFdajesk9iGf4rUPnO6kFcowRW/ktwVqyUwdFhXdOuFOiff7WgkomSU7r6m7d23V9avWy8HDx6UTz/9VN59911oKAfL2u8t+dt3mAQIHGgkqhHsZhG38Tdxg9ZOJicgdrSEoPqxczYmgqAPlvH4M0nYT3EcZ7bJzc6ST4Er764ulrFjfhmCZvjoYWDJWrH2bpDgGx9LzlurJThqDO5qT+uIO1C7e6dEN3wn9qEtycP7xkyX7Lc/lLzlKxiwnVzf86X5d+DJU0cO+eJbW87fdHDDuzehJOZiiJFHNEmPd6NGvqscAiNGDoVI4AblkESiOrnH24v7yPvv9pNlS34ZCkvrzm0JqxzypfjLJ0IOeU9yFy5J3o+mvvQQ1KbuUMO/1+7cDsxeA6XiKdz3X0nOm6skUDqo4R16fmmXO3Dpsq2yyd8hm1SFHYwhhhBXYpRN8J3ySItxhTIJ+A1lGm0J25FLrKeyeFZIPnqvn7y1otj98cVYdAlBpZby3r243L2XcqNh8oGdu2z5cWdCbtPEjcb7rB/3hnPAnF+c9boNfnN/1t/SB5Xb6z5mR/zNScG2nkhRbq2sWlqAuNQCKe5H5prQwS0tzVbLR++X0KpqP3wg1r27Yl+7IrG9O8Q+DAGnsFSCc5ZKcNY88Q8sEf+AgXDRc2pP8h53lxZ/9lTs+/fEup+ynmXl56G/Tp+7nXsK/Dds9JX327p4Hvf7Z4kf3wam5KrN/CHJmrpEgnOXSADW6wDuO+99CmG6y53v3v3YsvWY/P3vO2TtDyfkg3fGybJlY5DApLfGrn+/Kw63pYESCOGZDqTixxVXeFkebDEuvuGH/0sCvVZKfpqLbyYsISmNx56IbT8BUXUsIQG/T1Yt6CNLFxfIpAn5KE0VAp5kv3RhBAnE6Ov7iHJA1okjeL63S+LKEfFNWiShuYslMA5WVMWTAeLzJ9W63eNhQkyJgyX3JF5VlexToLjYwb9u6NFAl7w48Q/3O3Z4v1j7tkni1ulk36XfMAnMfg1YvkACJaXOdfRYRFL3p5FvjE+/dzehCdR2QA75AXLIgyqP0ODihMGNlBCYkkkaObwjm3ADzyHjEBzjUGzFbbhauoLLzLG58sbSPjJ7JrHKOWl+vh8J4IghIYQluR1p7GQv0G9WxS2pXfu1xNb/RXxFpRKYs0yCM+YANzgXlmQMO4rCJfXe3Xty9+5dJKy6LhcRh3ru3DnNQzB/wXwpH1neoXcg/hR4z/cQZQgztUBxf+1/VmFRpp87fx08j5JYhzAM06yjB8XaDwy5f03805ZKgJhdPjolh5gNe5atvgOP4YXB0KIHD1Iv/g0kQ9q605YNBxJqeOPB2xNXTGcTCQtcB88qPpOR0PENcJ1F8wvxsyPJMJygpCQbxrkQvM+6p0KzSwgqEw3sO2DLrj22VLrvSzSKyeGWyBVMEl73O4VjLybz3uJvrqI2Un/Sf5z7nnoMMAz4g1pOGGDTJgaHoAZ9NTJqULaMHJYj+XkYIJ8Tl7poQYHMnd1Hhg3N5Z4vVYscPyrRA3sgUB6SxN3rcH6/DTMQYpf6D5OswSMkMGuBZM+cLYEhw7rddceuXJLowX0SO7Q32besUri1zZwnOTNmiS83ldk1uUEXfmGcb+TwQYnxfp855tzvZ3fxLFI/hubDM1dQKr6S4RKYONW9DhQUR2xqT2v+Hdi67a78/fOb8s3GWzKq5IaUl12HlbUS7sBxOXc1Idl9FkhOn9l4zEcmD+rFDX6nwEkL6nPEoNaCoAaVoP5G8gsXJvehF4fBFLMyE0HNwsFGQJgcOTwkUyflyfx5EDhnFUpuTvecBMy1tHRJt/XwoQNiHdgt9pVzEHSAJzVPRHoP1GfaP3ayKr1ypuPdRB3p7tQSVkwi6Hvs4F6xb1xNdi3wCqyQM+dKcOz45Lru8sW+ewd93g882S3xG5dwv2+IhF1vDHYymAccH6r3PjibOD5HAmWpZ767XEd37MeJk8hzgYSMew8hQ+9NkatQnkdUcHB7C3zg20uscP5xFvw7SVb5W4ZmMCOTHBK3YUUFQaWAksC8MABK8fJhIRk2BPGYPFGCmTmzZf7c3sCQ3pIN74yXqXkJKudFX//hkjW0XIKz50sIRDWTRa8KCiXWO925c6fQk2bkyJFam37w4MFSOqhUChGy1JEtduE83sN9Yh09kPE0gakzHQwZ0z1CphIIf4kcBtbt3yN2xfVknxP3KyTxABgSxfNXOMiRQya9CsyeKzmvQg7paW2+A2fP27Jvvy37D7syH474BAY4ch2GLXJtOq7wpLpOwYZ/ZW4QR5Broz6/MVt7CWpRblxGDc1RrqP2WV9CSgcEZP78PjJnVoHGvZv9utOySwjq1Wu2/PMbS/73P0FQEQ5qAN/cGI4LyaeBYg4EP2a89Df8QTe7xhoHjyZzI1iabWlBjcPi4UwMOIiPhABngEk8C4/Mv33YTz54r1gmT+6FhEpZavloahIyx+6WS9wITdIDMK/d8pNE138piUuH6ncVhCmw+EMJrfxAsidMZDCdEzTflReP2Z3CJP0fwkcOou9fi33gh1TfYTUIvf2J5L71jqjGEg74XW6tgcZSkz8ggUnthvXo8xeSuH0u1ecM33xDJuC+f6zuvhTm1Rrs7yGqGW5VvVVbt8fkH/+0ZM2OZ1L95HuJPPgHrJpHHbwAToQKP5X8vqsllD/Fs68f+gE8K76A0CjBWx0LX5PKB2ul+sF/gdS+Jr2L3wdBnZfch+EGFmCCeKKAxEUiinPBsq8WVNcyntwDsWZlOfL7j/upu29hATKIIz6VFtYXufHZFryTFC7DP6yB2/rncFt/Wv+SihE6sBKJplaskiwKjUzG1tXPtL6bsHpX891cJ9HvvxC5cyHZ96xXlkn2qo8ke+58vIMu/nWxuyyxG5K4RC9flMj334q1GX22HWt9suNpX/xz38F1AMdfeRX3Hc85rqVJJpV2jJf9T5UP8EJzetmy3ZIvv7Vk02G+3Ghpr6gRGLk0rz9fY8oiEBEMHOiu6f80LIcg1IjhRiSoqrTEPE026zYfFZiQSKaMIIYUAkOKkCuDGIJ5uinhxxykOy3NvMgb7jb7dgUwZK3EfvoMypZKZ20WrnHZx5K98j0JkeTxPdTAOmdQHj9+LGvXrtWapyUlJZoYafXq1eaQHbPE+CQgg6hia/9evIffSPzIxoznynp1Ofr+oWTPnutgCPuuY5lx8w5fmaitlZp130rku7+K3L3Y6Pl8w1+R0CrKIStT+NfVmN1oj7vfjzSKWTF4h2Ka3L3Xkq8QtrgGnlzamsAVbkNxm9jSFK4QKaI4B8+nR09Bh54qRVAxN2v4EfCEz6FijS3lA4Pyx18zFKmfDOhPDy9yHWJO92ldTlCrEBDMMfNyIA5OCO90LjLrMn5MY1AhHPI94YRgGrGcsoNJwEvB0SRE4TYcL+7LCQLwohpKainVpSaODIg22LEez4ffsKESVFvmgZjOmdFLg4pHjcqFy0jOC52N036MUh1IpmFfviTWqaNin4Lm72mFuY2pJQbBN2yK+CfPkACTFYwcJYERI8UXyk5t08nf6NYWu3oFFhr0/cwJsU8erEv2cvpI1riZEpgyXfyjxqLP5RIYNKSTe1n3dDZcenm/LQiU9skjYp/B/X7+sO5G6X/1glvQhJnix3UERo7W61B33/Ttev6udweSBHVXrcSqT0MhfByCxAPHwwLvt88Py3pWPl711HPszx4kodxyyc6BWyRwJYhP3Hok1ZWn8DkugZwyyek1SbJzRybPx9hVfjghEEecD2JQrSpgTBX+xmxhmvt7SYFfFs7IRw3lXjJuTB5KIOTK4EHdy5poutzcpXX9qjBJj3XhrOOJcRHKLgtAnt5yCyRr/CwJQCvvhwt7cATfzcHpW3Xq3/puEkv4bp44LPbZgyLVnnohA9DHybPwLk5Rd7cg8C+rd8o1vFM7i5MlINRbwD96j9jnkWSNni9Xj+IhxHzVSKPCyz8ZuDh+sviB4yHceyZl62mpO8B408uXkXjtclyOHo/L3qMJuQAPLooEKqZ5ZA2Tv4KySRS3nh9uQ+5BmY5yR7oi3JyJcgiGUZVbJKAqg3jlkDjfHYIK/8eBgCPcxqdCkU9KCnzAEJ/MeDVLxo0tlFHlKFkzqOueSXNdLV0yvMiRQ1IkiV4Y1snDkiCGGKULhGjfiKl4D2eIf5xHDnEzzFZXV8upU6e0TjYztjN7+6RJk1ranRZtzwzlOqfzPTx9HHIUcKMhslcCN9lJmMu9GNKFIVMtIajSB+FSE4Ebk4HZcPclZvvhstzTmn8HWMfU4MrxE/AWPZaQk9ed8MFMuKK5LAAsEQAISS1hh486Mac5uELciXtwxTkCj2JDpqECrNKVTSDf491SOQVcp29eXBbNyAKu+GX8uALIJv3gNdq9kmR1OUF9Dmwm6fQqBElOeyFVci/Mp7X4/TkCiUk0KUQGyUaB4VGMCoVFrgthHbE8Sq0FtuOEwMZlamIAMY3DJ5vgz1ixRBhLavKM1pLr8XTg94K8oPQvDMq0iXny9psF8vqyQi0ZwWO+iI3CZGT7ZoltWy+Jp/cdTaWJg/ReEG9iADc9v1CyRiJhwbK3JWfRUi0Z4d2sM7/bjx5K+OetEt36A+KtLsGFENogi2Z3t9H6ndMLfS5C/NUyCS19A+4pM8yvXbKMIDNydNsmie38EQ8vXB7DiHHjs9VYgzVPchD326tIgovexnVAC4usej2t6TtgCOpahAwQkBMAZGoMVQuJx6O26gg8IfeAvJ5KHixUMB+PzBv4zJOQwZBERMKRKmBOJfAkV/yIWc0iuXWbmSxUYwmCYLAkYTtZfFXJ5W7rTAIWhNeE9ENq9wFFAXlzWR9ZsbyvTJ/+4gmX5h5wWbt7B7DkJ7GO7QG5w/tIFzEI1PUaXdWz8UwDT4JzX3ee6anT623WmSsip0447+aun9B3vpt4VrxkLwAlBoi1byA8M5atkpzFy8TfhYlD6J5Xu2ObxLb+CIIKYsr7HUNpGY+lLeP9CwLH83Adw8YqjucuWoZM4d0kJi5jhzt/5XXEgm3eYsnan2y5cU/kMQRLhhfhqVV5RPmh261eSMbdK9enSvLnmH5qUHUAsyUSpfmUpFL2IGklNqQ3ruLrofIItOUW5gIbHyrImf2bcohDRh3hkV4ZjmziHCmYFZV+eZXSv+CZvL1iqKx4c6RMmzoo/TTd/u8Y8jCEOS9CDnHuBhasKZiOIbzxcFcXJBH0j3lFgsveklzIISZMgNncKysr5dmzZxDkA9IHten56cjGGM7w9i3ADsght686HiOZlHLshGJIofhK4UGybKWDIYjF76rWIoJKOSQX95JyyNLVkrPkdQmOGddVXX8hz3sX+XU2AVfWb7Tl0g3gCkra1YBqEFdoUPMa2fKJKygBwyqD1SgE8By4wpZNmQTeViSsJK40sqW3dFyxMY8prgCZHCIKbsP49jhj3Cl/ErE4deA75SMJS9/cKikurJTlSwcigVK5zJk9VLfpLv90GkHlfMoyD0/xuXTJlp822/L1lrjUAp9ITkk0OXgUKrMxMPkwMpCgKsF0SSeJKweSgxXBfjRvc13IXVeFebsKCZiMlYOTBYVKntvGThQgSVIZN8YJgAPlCJVwydTveIp0INERaBpGwEf7/RVIWrA8TwaV5iK2IRd1FlNWmO4yiBn7gRtnA8ATSCzE8iax7T8hIdJGXJ/7pNPUD+uj9O6HSYJagMeO4GMO1geJZRatktDi15BwYxBc9GAN6UQtINPPx9H/2I1rEvt5s1i7MKkZFyDTx7Slb9QMCS55S+M/sgpBstHnrrD+hhEnFlnzpdi716T1sHl/+he8J9nvfdITB9LI7WJZqqeI5eBn715bvt9iy86ThGw84vjg6U7iSrhyj0SeboKC/qDkAVdy+ek1R3J7vw7+hHhDYA9xhfDNtO/EFdYqYwxaDIKnaijx2hBLlJwST4AlVGhpDCosIAlo/4E87tmBNfob/3bfN3x7fUaOrFqRj0mglxQV5kpBIT0zAGAvQKOQwyRl/ER2bQeeQFCrONvsnvvGIAZ48Qq8m7PV3Zcuv75OqpNKF1nT9yizDW/7URJndzfed+fsZ6QAAEAASURBVMTl++euBP4t17IX7K+6KTe+V7v/ykRUNeu/k+i3f6vrOdLcM8EiEnr3D5K7+oMeSwjuGd/fp7CcPn0WR7mquPwE3Ph2W7xOvCkFSFov6FlhlOf5UJjnQx6hrKEe7sAGlVvwNy2oSdwAfjBTOHGD5yIWUf4wuGEBRGLITRCHMJkAbsSJHcANHxWtiDeFih3rqTzHnOw2CphW9L7Eo3dl9dLBqDpQLrNnD5ZCYEhhQY6EqGF7AVrkxDGdF63t/3RuSnP6XDQEuIH3cNFrTtIvyiGoG95ZjTIIsSPGpJLbN4q1B+FFVMg1p0G+Cq7+FO/eh8jp0fmCP+sks/+s2BCFDBX7+XsEQN5K9ZxKrPy+ELixrIIXSS0Vu3iw3ZY1FQnXlrwpoUmvIHwK+IeEa90uEaXpbDdYGnnkyhVbNgJXvgO/eeqxpRBLiBXKdfCdXCfPxZUcEFWSUYYRGVyhaKByCNYnlxlwhfgSA65YkPlVaa64A69Q/kccoTFOSSllEYcHOfJJtdiRe8jZeVden9Nf3llZLgsWDHNwBbJJDk27Xdw6jaCSVGrtn9NOjbHTqCV2/KpDJmkUpatMDr5woDgJKPHE9z754FA0kEF7SYU8B4/H0sHEZKDrsJ4C6/2HIvfAs2pIXjGQmrIZ23JYjGsNXWeoZYiDoPKj7jQULClwuoQV+gdIqz7pHUKd1FE1Mn5sWF6d2k9enTZIRo9+MdwdWGszcvoEXMLg0nsO9fKunRN5eI03wnnkAE6+cRAaX5kh8SePxD5+oG5GSP4+eKz4R+AzeZqEJkOTCZePzmqs0RrDhGadPibxq+clwTixTFZfb4dAqn3Dx0lg1Hi4/L6qffb3BQHv5NZDUDv+hrOW2PETthw5hkRIF5kMSeQ6MuXx6eYjTiW8saBmWTckEL+KyeCeDOznk354JHJzkOU0OEL8ISSVYXfxD/cjtkB+lGewpjxB/pmnVZi3ARNhElViCT7cznHvJXklliAOFc+mKr4gYBoXPcwOOkmYuzGiOCJTgCUTxifg8jtYXplSir4A4F6AxnIQ0ZNwbUO2Xk2IdAN4woRIzW0gSvpujp6Ad9PBE38nZcqlsityElh4Elh44bTEr4FYP73deM85sQwcBfwbp656wclTJXvSFOfBanzPdv21h6C26+1UueHECUuOHoMcgprI568k5NwNWD9VSHDOZQRJyiA5IcgklEdcmYTKLcojfXozljz1OChuQLhkhQLixmPI+iSyJKZUmJOwUuFlQ9tFZXlc5RAHN+IkBXRrhVrNUZ5DGQSSalrCfg7l2m3okStkQlkfeWViMWosF8MToxQYUiJ9i0AwXoDWKoIaQmjGEMggIzGvUw4BWWLYUWe1yOmTKofYZ49LnIng7l7CoGJgm9O6mKBaINWK2cQ99v3W+Trk2jcI93UKFIYDB4l1/KDEz+6HIP08dWXI75FVhvs+dpKD2cC/rLwXY75KXUTnfWOitaPHUd8UNZQvAFfOAFcoO1Aowf+q7CJBVVyBES4XmBIk3yHOwO7Vh7iSj0AkfFdjHfCFPIefWuIKnGceAVeYkoC4Qnkkihh6KtQtL65AQDFhBKpwMNxGqwxAkQ7swREgs9SAoN4GtlRI+aBc1G4vlgkTiiGblMhU4MqAAehQF7dOI6jUDGz4KSZfr7VkzwnHHYY3loKkaiwxGH1g6u6N55+1fJQjYjG0VJDRzifFfVWMVGGSFg0KkRwg057DjH7jlpMdi5mB6YJTi20ytShG3AY55cdxpaFwiQ7y47F40Dwex+AlrJvym3eHya8/niRLFpVnOmS3WxevqpTaH5AEZN1nDrljD/XBdLua30+CK38nuSvfFevWLYms/0rsvetS18GB0UGAW9MMaNFWfyS58xelfu/gbzWbf5LIWiRzOrML/ebrjY8uGzmx6TMnBr229yUwvKyRHTrmpx6C2jH31XvUK1dt+WaNJf/1VVyeIQSAGMInVoGbjwsaCSrj1ntlx6U3stj1L4rLcGDJsMGYHJhRV5OjZamXhiGfzp4i90F2b91BySt4xBvPDLrwpTcbO9IiQiyJ27CGqOUjZf3wbh+P3YdnzS0pLaySP//LZPng/QlSNhwa7Beg0W09sv4bsTZ9jptMYG3G++i9LvNu5sF17O3fSu6q91D7d7h3iw77zuy3td/DCrn+M7jx3G1m3/lA8YmCunIUMvuu/kTy3l7tSA4d1tP6B+4hqPXvSVvWhCEXrFnPpGq2HL7o4AZ1ESSY+sHBqTAnnuRSQQ7FOAkpnwT+0xtckPLIUGAISSuMFnXkkCqUpqm4J3LrNtyFoSgnrlDArAEkUCYhWTUtCknTgmKLZNVgkSDMwIQMmO1shC3YkVsgqDeAaQlgWlCGl/SWf/vjeHn/vfHdLm7M9Dt92SqCanADS//cVZrALAfJhzqr1SDJYWQtkhyeP4BTGsxzJ5imOtHFBDV8AMmc1lGug/dZBhnKP2OFynWsV81kd9H1f4dmlvjoNnPv+5dhu98C/5CIspOUiqYLL9Jy7fcx+exrS3Yed3EFeMHXnTIJPyqPYB0VXoor4DokosQVYs3woY5skufqm7BaLarEmOcow1lxB7gCmaQGrsDEEXKqGuixiCs0xpkWA+A4YQTYgJ6S9Cdj2ICGIsHN1G3MxWMRV8I3gHcWcCUgxb3z5P/71/Hy4QfjZTRiUru6dThBZR2gioq43LgZlwOHbNmB2j8XcZPZOADUQtLfOhuayjwMEjUJdKVBeUvphQ+JaTGsHtQumMbB5uBw4Ex7Dq+L69BYXEFx7WoMGicHWlE5kCS0Xm5DgmopQcXMgcnBIadw11PrB1Ue7JkPAudzDOBNze7529XD5fe/myLLlowyp+zWSxJUZm6LMnPbw2v1+9qrWILvfCp5cP2K3brhuKTu+q7+dliTNQ2ukO8iUy7iQDqr1Wz8QSLf/gMTw76WnxLW3+BKuNa88xHKLIxo+f6t2IMWa+tOhWY2tU7B0nRwp2gyE3MsxqUUI4U+Svn4qDZDS8C1Ol5xFeNzAw90itT4Rr4qgZkLkWgB2uJBg5Fqf3Ay/sYc7pe4pABZcTsut4An587F5We49m455HphAIOJJSpk4n3nZEDNJMMF+hcQR0T6E0uwJJ5QuDTNYAlxxbR796HwgpB5G/M1wxAoYMaY8ZN44pkM4tjJgrseP1R20WUvzmQfPoCTq6k0x7SiqJ0HITPP/1hWLR+OmmTDZPz4/jJkSAESJ8F9SgUCs3X3WtKSEPnuS7G2fuFeV1r/IIz5Bo6ANn6wPtOsrYe6PWkb4c9sZEZ/Gy6n78LtbVhZ/d87YA2tv1prcR2wsAYuNi1svjJktnzvd5IPUu1IFC08QCs2Z2I7CxlO7ZvXgSV7xTryM8g1mI9pcM3zleB+9x9k1kj86UMnPq4K25kJDzHA/qmLgCfzYHlC0jvgCWvT/tIa65xSDrkO+WA3cWNPQm7C1ReQoWSUUz7+14/XmysXsK1WU8gkeZBHCvoAT1wMoXBZj6DC8+JmBWSRCkgTrqWDmER5hNYUgyFcFwPwKG5QBsG5OWSOFxc2BpY44UdQfrFuuxLUm9iAQqdPBvXNl//x50ny0YcTUYamsNsOJ2OomanXun0LSQ5hjTy4CwmRDvJqnT6DbLN+L+fFRBVCku5cQTAe3E0zNP+styGHfCw5cxdk+LVjVtV8vwZyyN+F9Z3rNQr/qCHvKx2hPyXuXIVnBliE4j5WdTVB3bcbmP1F3aoHnovwz16p9zOIBHa1lBXXAB+f3fZs4X4tHOyGCbwvXeGRVr9D3WcNE60RV27is3cfcGUvQhhRooq4wulcP253VR6htZTW0xzgCrCFYYzkOvTIMLiS7YiHuhfxhTIHy9fehDxyA7hSC35DrCCviUAu8eKKKsTwD+O06ZnBt8zBFXqIEldoQSVxgueX8ptbwJabkFvwGzrbGy6s//PPk+XjX02QsWO63lu0wwnq+Yuod7obA7fDVmvErYfQADj3Qt11aebOh+U0D4NFAZPZqwp6i5QU+1CYmpMDXGzwm1egbIqgUqDkBEAXmzA/IKr827QUQeVAsTGLL2YPTZyE0afGAeATt0hQb7gEdVgPQe0hqPq0ZPpHa0Kizlhs93a4EMIl+TGAvha+XqYhS29gDuLZ5i0Wn+smk0CMSGzvDrH2bQQCPTRb4qEHWemLuF+4FwbnL5Gc2fOcEjqpLX6R32iJ2IO07T/vsuQwtJQ3IYffQQwqG11niB+UDbiGk4HGjWEiGAJ5fHCJ44XBcpzEE4YKmJaJoN7FJEMhk9YQ/R3npscHsYQxZqbxXHHMFI7LnuuZQYLKOHdOCMikZ5ohqFn2AxkxqLeUDe0lM2eWypLFI1DnsAzchyJy92xNEVTfILiCzXtdAihros/03k2Id4Kknt56CGr6Hcn4d+z8OYns3YnahTsk8RD38Sk0JSbLKfagEis4bxmUWFOT+9tXUSd691ZJnN6J5895LzQGhqEP/QZJYNocJKtaKDnTpif3+aV8OXMWMeq7Ldm2Gwou3MqbkEPq1FvHq0elFuPDGBfWCzhBDDEyycBiyCT9fVJUBOES+EEcUSERr7dXYVUJCyo9ua5hyCh/mFfaccNziGrExRAqt5h9ky6/THCiAqWOm6IKsAzWVFhUbZaxgicXSWpc5ZS4DOqXJ//j36bIRx+RoBZ122GkojyMsizWnu1iXzrjzItMdGgIam4haq8vlwDmuTgU5bHdWyRx+VDG6+l2BBWm96ypy/AeLtH+xvZg7j+2lROC0/8egurch5f430tXwG922bIJ/ObWHQdXqkElOJPrx8UV4kiem1uHBNTgygAou4grfaE8N7jilU0MQa0CQSWuXMeHyi7FFRybMhE/EZwzEsVv+G5whTIJFWBx4Ivj1ktcceJSiStMKGkZXGFIAbCnd05A/ue/TwFBnfTLIKgHDlnyBczef9uQYojUKlCgZAyuydZLq6lpfaEQLIMbDU3eBuD5mzvlKtlM11x6LaicDNhIZGkCr2YW4NTpHc2lca0hOVUTON19mVEPO8Awz5jVuF2V1Fx+8PpgaCvHy6KFIyQnN4AJCrW6vE+SnrHr/0lEManBmhd/9EhqN/2A+mJf1Q2MZ5Y2WPN8A8skuOJDyX19BSx/tyWy8Xuxtn2Lpx3XrwJ26oZ1lgVVa4eGMQbofxhZh6M/fiN1rJDUWNISiQQmyUZfb2b1pduhTu74JZAjgaUfSQj1F0MjUF4hB/G0lCg6sLF8Rc26byS29i91yaY5Z3EZrDB/gMX6/WTZijgKjtdu3iDRDd9K4sYZ597r5OY+6SC1IVi5c7HPL9HqYW6dWUYBwN+sjclfPod73mWDBinBkgKlabSc0h2PXhjEEn5oPfU2PQL+oYBJPCFemHYH5SauYTKouO9MNFxPXKF3RjVcakzjJGQaLSIxPIeaiI0ZOilgMumJxrZjfewBFF4QNJHwxLSFiPf45FfjZeXb4yQfKf1ygStBSsndoXFiQ5IeJ579JJ7TtXAXW5t6zwjkqFnI99H/6hIJvfmOKlNYazny43ewlMDqkP5udiJBNX2P3bopkZ/Wi7UFWGiURuw7auBKkNoKXINpTBgHV+2kkIn1vsHjJfjmB5L7xtso1ZKnWOJjVq0ObOED+xzrxz5P2IXnfOqeR6+W+QuTa2Pnz0oY1xnb9DUeVkg0FhUlKRz3TViA5Gu/kbzX30zu80v5smefJZ+hVvKXW937YV5c91U25JQKc2brJXYwFoxyCsMEhg7yyRB8iuCNYZrBjXSCSivt1Zt4jHBs7k9Lqyq5cGpaPIghNSCpptkAnhjYrIYc6UomS4JcAnmESnM7hlIsxA1aOlyl10AkR/rX30+Qd1aPk5FlfVUeyYFw2d0aPQGS1rlMpe0KUO7r3d9rEi8mRIzCpVYTItL7AjKa9/ntNgSVoSEBsIxefSX4xkeSA1ygNqJ27Vdibfib028OBLAu8BpqKr+xSoLDy8SXjfrmHSyHcCKLQ34i9kUO7oMM9Z3ET2xLPRaUoYh38DILLIB89CZlpJGuHAJ5q+IiroX45wrR3LPHgpq6f2nfjh6z5POvEGr0fQpnvZsQV0hG6dbbG8Y2Wky9FlKGMJLnDIRBztsMOijPgWxSRQ9R4gpkEiZMIvXQ0AT8RvwhQTXZxc2+CeBKlOFH+DjZOYArnPdUNgGu2E9TuEKsgTI9H0LUn4Er774zDiWtBgBXHK7D3bqidbgFNRNBJemkOy8HjFoDxpx6LaSZCCpvOvkHZKbk0itQegkqS83wHNz+Oe57lVumJrkvJm1qF0yiE6eGEHZSQRKxqdYTCJP42PzAvQYazKmjC2TWjAEIHh6AQOIB0C4MgDbVw6q7YvQynNOCSxjTuVtIMmQhsD9x6Rie3qrUlv1Hin/sK1pfLDAOpWSQQpxJRCjcWEimxE/i8nHMoKkEKJ1FULVOGvuOvthnUfOUZRU0Zsztfu8BkjUafUeiFdMSTPB0/oQkbp5OCZV4c33DUc91PGqp4RqZJp1xFh3pntcagspJJHqBY3Ua14tEVhdwHXfOOw8uL7CHoJph1mVDBJUZN3sBR+iJYRo9MYgrnAwyEVTiSRIPgCnEEqPf4DEMQWUMKrGEAM1JgBNFJfBE+Q220xgS7oBGQdNJ9c6SVszQySQoyJQHLLGtx/DOQxZcuOvFUTfVtJGD+8jcmSUoGzFQJgJXOCmUlvYxP3fpksQ0eumCWBfOOYnWzh51MsmaGwVFkK8MdTbHoWYo6xWOQ3Ky4WXuM33G2Yfv5i0oX4xVoRMJauzyJYmx76wfeuaYJK6dcIQv3lUIarT6+sdOEV//gcn7HL+K+qgXgH9eYTq/WLLGAEsmAHvGTJDQ6DHiL4Fk0YGtNQSVpTCi5xwcZ2K8+CVcx/MHyV72EFSXoPJ9du8KcQDSm1pOmaCfJR+YXFoFSsSIFeJVLEQdUi4LsGQWcNPai6ASh5K4QbkE/1EmceQRKLYgj8TC16DruQK+BunUF4cgGZRFs0pl+qulMmniQIQKFEMmgZm3m7WWEFRmClc5BHOhdf6kI4d4Mvd3G4JagAR7lEPGTUadYUe+iJOIpxNUEEGGB/jHI1SH+DgGtaAph3Rgi6P8joPZlKFOAoMhQz24mjojQzHK0Z+x7Dv6NBYY2K9YoufPqRxC+Y9ySJ0arz0ENXX/0r41RVCpoKJsQq5DWYQyCWUT0zIRVLz59WQT5TcuQWUFEyOTmONQNqmsgXyCZEpsxDd+aEG1k3zHiytw+QW3cXDlKqZn7AxcCUGgWTRzkOLK5EkDNASJuBLghXRB6xKCSvaPDOnSD/EcmnIZGgbecNMaIqiqTXAJKicVZyicvbwEldpKY9xkgpNKDBoHkEIotZo6uDoNIH5ME5ywXAR+oNSJpRW5hvCpK2rxwJDqb3mhLClCPcPhQ/PkE1hSV6wY0y1da5igJwrLqbqNhiFN04KBB9Q0ks3QG6slG/UI6WqahcAatVzW1oCowh0H1o/opm/rAFRnEdQYhOEwLIqxzTg/axRSi2oEW1yAxoK9gRIsqOlnmnXzhkQ343p//sYjfGIc/UQDXN+4mXq9uUtf79AU6a0hqEShOO57oqZGoojxi276Xux961Pj1UNQzTDrsiGCSsNBv14+KYBAaRpfZWoY+a4zMVK6BVWxwNU+GiDx4omXoBJL+GHowDMYpp4CT3hcfgzO8Lzcn1pLCpcxemggjsyyoKUMQ2kU5iSA51ld9HBit4UQ8FaEIotFfULyyUdjYUkdK1Mmdyz5Meduakk8qN26UaIb1zoW/gjAlFYNc8OYaO21DyT0+lsaJ00soYUgjuc5geea7zOfaWvHd9gPN4+tEwlqLesnb1wv9ondsCgSC9EHg4V4OPzz3pHQ8pXizU4eQdxWdOMaSVzY7/SX/9JiQq8N1FsOLntPrzd7wqTU7x3wrTUElfF+xBJiShjjFtsIK/bNU8ne9RBUh6AqNrh3hTMjp344RUlfYkgv572m4olyyJBSnwzGh0IlLSHe9729CKqDG3yrKI84tQxJWFUeQf/iUJDHwhclWgPlpeAZBsb40ZE+yKZShNJ3SxYMkndXj5Y3Xh9ldnGvrusXLSGoLGOXqIFC78kTyCGQAyiHPLyWvIjuQlB9oyBTLIe3yEInXIdeFcyYW4+g8kHz0wKTL/5JcxVrcpctT15PR3zRhHCQ4fTdf3ATjwswG/NQshWXSXD5+5Lz2grxoy6yj5gNbxDFbMohyNQe3bhO7IM/JnfpsaCmbkX6t6YIKr1E+yIzbxHCFlVmAK7wsTAtE0E1solRoHPb5xhGY0ENR5y99fGiHIJjkt+w4gATRrKZc3G6I64QTwy2mA4koCiPhaHEBa7EE3xOoHjHjn1yHVyZO2OgvP8OcOXNUQiLwoV0QesQgsqaYI+QlOAh4jyOIJ37pu34HHFuHO6VgnwR3Gj6QitJ0GfjDaWbL+4NJgaflAwQGQCzN9ezcW8SVJJPTijpLZ2g8rjcle40NH0zdoy+2shzQodePS6DhaMoeh6zIFBhJFnclo2JkazoDchisHroyTDK0C5QuOkHYfI//vyKfPzRJCkv734ay9qd25Hw6AuJH9mk15L+j3/+u06Nzemz0n8CUY2h5h6yubHmnkew6SyCqplCqYXc9A+91+kd9I2dI9nvI5scXWrcRkAO70Gs1q7NSM5yDW/oPUcYdX/3DZ0kofd/L3mr3gVBhfqqg1qrCKqnLxrjx2vf/Fnq2qHtDMx+U4ILlsIyhZIo/fr9IrPoMa6LeMK40O07bflhK9K4wwVXGxZJggrh0jR6ZLCWMvGEMR4DB0D4xCRhGicBdbtLcUXzky69BJXKQyS409rLRuFVZ+O0P9izSKRaccWC5TTpngerKq0imugkbR/++d8/nSy//fVkmTljaIZfO39V/OlT4AETrf0FdTMg7KQ3xDaG3nFrbPYHYKe12JVLUrsGz/SPf8PNBgizdSJBrfkRGTi/Q4ITTcrinD75Lwhq4A1kMX/nV2r5Nesjx48ijnO7WId2I17uLiaPh5i4U+5u/kUfOolaOjiOszUE1VwDlzXI4K7XfulQcrVvyES49S2X0Oz5ajUhnlC4flkbS889epyQB5BDDh+xZcNWW35GBQEKdpQNVLTQf2DlgD6zIM9RcjGLJnGjH+JNjRziblbnVrUXQfUeNAoX8xisGRaUsz5Kngkka4wjVwFyYdjItknPDAdDKJPgd3zenD9E/vj7ScjoO8HInt5Ddsn3+FN4jTDRFxTIsV3bxNr7Ex7Kx6m+5BTASjFQ/OVwn1+wTBMfsc4mGy2prP0bYYJHlpdzW2cRVK0fihAp69FDxMT+jP6j7/cvm26Ib9IiyXnv15K77I3kOothBIgZj+7cjFI0Nxw5xJskbkA5rvMNzSkRgMUyi3N5B9RzZT9q130tsXXAbI/1OdnR0jGQ/xBqhIRvPj7kaY34xxruWqvW/JbXVwJzXTlk6DBNlJRV2H3jnk23O2NZh6C6IMGFfvBPHuSQQuAKq5OYxugQI5vQtXcgY9udR183MQSV8olp1eCPGtsOF99aQoAr/lBhRuUZrapPoDyvRLZf/uTFOMKEBQVxFMoKC1yHJJQ1l+Nw62XYQCxy3bGgGtmEClnstGBqifzrpxPlgw8maOiR6UtnLjuEoD6rBDE9aiFrb1xOIdvmJbyv10yNQlwdLh8mbwwcNJZGI0lLailknFIIkkXQXOZjUJndigPNxpveYoKKgeHA8RMGaQ4jhs0kOCH208IRDj+SWPSRfjdno1uvuuJhYhB11aNwxaclAYKa3UNQcSc6orWGoMafI04YZXJit5DtEjVfrcO7MKmdT3bvhSaojBXpXyb+oajHiBpwwakznFqMyav7ZXy5ctWWg4dt2Q88uXItIRfg6vKExkhcPoGaWcApXCJDerIVgqyW9McHeNILOMNYVG/sR2sIKsKMFEuY5I11DVk7kVrO9EYrahiYEo1AyIEFlckI+ElAS6lWVAqZGVoPQc1wU9qwqjUElYomxqwy4ZB1eB+sr8ATE7eKvrzIBFWQkMY3CFhSNloCr86WbJDsjnZVbsPwtXlXVhCgHLL/YFxOn4/L+Wso04B1FCooV0AEUAU5jQOMWXfiTx05hLhRCKGxlyuHZOpMRxDUSLQKgiRlkic4JXvJHBlOQpN4DFluvRjiCppvLgBB/R0I6vuTug1BjZ49LdFjh/H+HJb4zUuSuHc15UXBq2Km+unILD0B4QFDhuGDetQM+kXraoKqXlnoewzvf/zmZYQ1gJx6wqQyEVR6m8QqgBsg5NbxQ44c4iG1gmzavtJyyRoGoop3LzRtBspsDdPrbc9/OoSgwhtNM7RTDpkyXULwvgvBtbmnCeope2JQ8boSU0gOqdRmTgxm7KUCnWEDpvWBLEKuQ4zpDdmEPIeJG03LRFBh3NYsvkzcCP2NeoJS9jEElXGpT+EkRILK/fG/NrWyoi+xWLXKI8QWgyv05rLBdejqSxdfRzYB13FxZcG0gSCoKIf3wcSXi6Deux+Xr7+Nyf/5AhnzkIbZDBpvKOU5ElRTY4xBxGwUHseNFBlTnqXxHs7a1I3mvuriC57I7+mtCnVQTXICdfHFSTh4xkpCkloNgspyEWb3OIKFa2sqYO2ocDQIaQdlvAcTJZGsGqtHXzDr//jzFPnVh44FVTUV/KcrGm9E2s1QCyrqh8aPbvb0CP1zu+ifDxdZpmqfPtPzu/O1yyyo7nU4BPVrsbZ4rIjsuNt337i5TpKP5W/V6ztX6LV/93mda1eC+h5reMGCSpTQY7kHzHiUFq50+25BsK1lkiSWsvCmyTfPBmJ/Q+/+TjWXWb3hOpDWkte++R8YU7wl+pCaJxXdNtfusR6nHeKl/XP/ASQ4QSKCzzbRy8GZBDiOBojhfe/EoCL7pmklcG4YO9Ino/Ah3rKl7qZDLA2eOL/W/fcOrLVMksQYVDMJcFgolBJTWHuMCdgi1FulN2xocMWCe55pcasaQ0uyCsVXhtblBDUNT2xYQWphyYiu/VtdC6p5pvuUOBZUaOP93cmC6l6H1jD8DnWgLx303G08DHwekCzOsaB+iDis8Z7fna9qPcb7rKUXPNZj/8IPJBtWV82Ey/tg7kW9I7Ryhdv3MBKcsKyPvX+950Bu37HGP/Mtpx/zFnp+T31Vcr4G137xgLPSiyd67ahFi3mAMWgva2M5Ksoh//vLuDyAF0Z6o+zBXBisSWgwguUfxpX7ZAxww1vazuzrPQqVU+kYQm+Paxor5mCMenIBn4xyXeUQuOHVQGGeqVGpFQ5XSDR8Bz97z+ZszdIQCSq8ENtuGgnqH1AC7/33Jqp1hOWq+Ih3WkvDDZ63dttmCa/5XBKndni6kXp+A0s+xvOLBEKvTPP87nxtkKDimQ+987Hkzp3vvHft/e65PVEr4tp/irXtS0/fUn33TV4sOe8gQVkD7rq1WzdJmLhT59pThwos+ZXKYJmuPbVV6741SFDde8W4e5VDVkIeymRBPXEMFlRc+3b32r24gS7ptb9L6/Hy1nXwJdvLS1B5i/GqKzklv2E2cMNvvJfdH8bnscCYUSMQ4gjyyuZ90zPhCmufsgbqTRBUyh2UQSj/qGyCk7JGeyU4UBW2Y0JYHgP/J2s6W4hjJ65EaivSzsaz4/xxEFRVpKfyY8yfViL/8gfWa58kuTAFE1U66JVzOpHh3w6xoKYTVIKlfvAPB4zWUmoVclD71EwM5A6jh4mMLKMrHrd2mrrlwnJhwTeXA8LQDOJheuMA3oZQeeseBgjbK2ZiI27P/SIY0VqYUWvpf4xi13wkWLeQAqRaORAfprWANEuec3TNvomsvprZl5ZUaByoZX1ryVCZN3eIJjUpKyvSWNROLxGBJ9C6BfeZG9fhikatiNMsJgQ5treOawzd6nyDRot/ODRgU2diUoD2cniZ2SW57AqCmmCxctb6w3VYTI5wdJ8kLh/mG+P0i4kGBo6E5hGJSVBSIQjtXUPxX5kIqsAN0f/KfAnguv1lIyVIF5VimNbaqVkVqO/Gvl9CsqOj+yV+eg8eQDyMbHyb+w51+j4WCQloAZ3yCuL06rvWsOZhlBbgowfFvnYBiWUuYpZPkZseguoQVAIJJwEiBG8v8YTuvLnQVHrDJJi+vXy4T0bgYzCGOKB4AghgQiPFBvcx43B52wN4o5Gk3nO90ognCvrushYqy1pIm1FmZEtrCYQDMLEarSB0z6OnhlN2Btm1oRRDmkXgE+uRQWvGg7qtKwkqy0HEoP23r1/DTUK/0BgPZh09IPZJPNNhKOlMKxwkvqFjJDAGLqP6TE9FZmqP/7S7XVe4+LLck3MdV4GDsGQc3w1yfcv0HFID4q6GAEtGoP/TgIVTpmW0IjZEUBkHH5g6VwITYfkZNhxWkOEad5s6Qeu/MX5Uk9zduCY2aykf3QscOJ06IDJv+kpHSxZwPPDKDAlBuPfGz6Y2xHx36oTEaME6fQxjCiy5fwXPGiZGtl8iQUV9UmIGG/EgKYcQOyCHmN+YZNXIIb0RO5beFEPwOtObIhOGMFaMcogpT6VyCF5x7sdPBHhRg4CxsEcOcc6Bc8Gd12ZtQiRVo0xCBbkmRfKUqtLyEIxlV88uvqdRmTSiUJYsGiJzZg2RESOKpGx4kfTr5/EpTL+I9vwbzNt5ZiGHQKFlmnXmBN4/4AafO9OYoGcw5RBY8PHuhfDuZbIiNkRQmU3bz3dvMhKWDSvTdy8rv/2vMyNBpRWxZBTePfSd3kyQoULjJpgrq7PsdgSVPp6sNTscmMfETkYOceuxeztPghs9fsSRQ4AbmtXX4yrcQ1C9d6uuBZVkkQkbaTmlR0YIPMfIHt69+sFDdJQrm5gQR2IDMYXyic2ydeQtKdFASelthDWR3yh0eKCJGENcqUZB1GqUGohDi05HX66nsioLnzgIqAV5JAaiqrhC2YMuvW5zsMapYqKyCWSWUYN7ybLFQ2Tu7CEIZ+wrw4f3RaiUJ47K7NyBy44nqB6XGg4eCV4Ig0cTOAfU3Gf6ZY8Y7CQ0YdFa02qRkEQtFbyfuOFUNXCR3sLQSj6CMHkfMj2DiCk3WsyIhMb9okjuEYnWolQEZhC1UHEQ8cFAxDFQCZi4E/FqDK7HuoEdtagtfo8nMHjQWmbB3WZw/3zUVsyTWahhuPz1clm8cCT8wHExndgSSO4U3rNLYju2iH35TPLMiUpMElUPcANcksRf+g2X4CJoHxcuVXKWVdQ3Y/xDVxDUOITg8O4dznVcPAk1EPpOdxodbPSdcZhz30L/X9NU7dr3ArzhGVpGgko32V6ItSocgBiQ5ZK9YElGi0mGwzVrFWu8RXduFRtKgcQz9J3Zjw25xsSQNe01CS1G7AmyCbPvTEygdQvSjs6kMkwOYUPAju5BbdSff3Qyprrb9RDUFEHlLQH26wRAC0gg4IQKUOg0jZMAEyMNw8dMEtQ6Kp7g1aBFg+hgHjOzn1k+RX3VhxjKx+BliiWcOBQPnP0iiOcIo5SHzZIkaU0nB3pfUMBkbWV1nyHusOQMTqxFsok1sIKQvLqtKwkqFSSRXdslumMTnmFXi4oZM/H0vhM7xhnTbXRxCy1CLCMETH0fEY+UqexKVxBUnjOyC3FjO35yY0ihvGPZBNN3xKQHF62Q4BzEYfbF+1jYN6MloSGCSmWf9OkPZRcygy96XXLmL0aN4sx4ZM7Z3CWzmDtYuEndIhULmdzJNGQPDSx8W3E8MLAU974oWbLKbGKWGgMILLGuXcW92IykeRuAq+7c9gslqJyhqdSix4VWDnBxwzt108vUyCG9MhBUyhSAapVJMmEI8eUh5JAHkENoLTVyiEoilEOQ5yHMvBc6P0MC1bkCP5BEQLqgUlxxQwkolFv0tvAozenJRQxBRg2VR+ia1wcZQoeU5KPWc768/Va5LFta3mk1DFnWLrwbOSAoh1y/YB4/zIV47xi/zbJ1pg0cpe9eCDkV/H2ZTwHPr1sT3GzCZUMEVUJ5iA3rL1lD4CYL/MmZv0j8AwZ6d22X7xkJKuMw57tyyBAonYEbWQUFGc/X7QgqE8LNQAwp7hkrGiTlEMa5pTXKY3Ejh0CuIY7KvYvJrXoIavJW6BevBZWGN8ac0vBGbkO5wyOSJHcs6gPZZDBkk6GQXVyhhZ5ZtXDPVesoZI102YS4chfiZQVeKW5L8stzGNkkAlyphUwSBa6wnnISV4ApzK2jmKEyCUrfQe6g4twpqel2CzjkyCbgQyqvVMO7JCHDBubLoNJ8JGArk9eWlcvkSaXJ6+iMLx1PUOHiy0Hiq8DU7fkwe3stHSY7Hl1rSmHYYgwqEoslWzXmZ5Z24AA11jgZUJjkh/GmMVhcTe1TCqEWBjCKgWGQcAKaZKc2oa2DpxMDTdwxuM7EcYAMra57Hq4IF7R0xiD5I03gHyARD5/ODmokownciPhzTFZUs6BxXYQZNjevAYBcqn9mzsQoAyE5vZHmfIYEX18puUuWNZooiNl8a3/egux5yCZ79hBuJARVJDfxjUHMxOvI/DtnnhJbH4L7Mwmk9TvR9BpabmrW0pXub3Uy9iX3RCbbIBKx5K3+oMlaoBkJavJAeKEXGPfmWZ61bfta89P3cMWDO8/5ffUPBGAILP8t3Hng0tOCmA095rf/qJNJ1Df8FYzhaslBBuOsXrj/HANvYEP9s780a9JdfIknxHWSU5aFMARUH3loL+k2wwRsjPFgHKrKftgHEKDZ8KpgTXFfowbvUSUe/ceViOvAK0etZgyCqeq7gCVEoghiOqxYFZRgUFwpuGPW0F/YOzYHrxzNJMMESPq4DRq21wkCwqepa4gVnZYkSeskV2OCIri6LcbyVJt/QA3CtZgBAaaNNHVzZZjAqzMa2Qr3GxZZzSa7BVmAH8NlkQSJ5Gjhu8ATCHsjUKMYz3J7Jguh5VBd1LZ+jvvsjIG3k77x851Ea03UAiUu0U0xunk9ytNAAahYyPviHlPdm1G/8Z0P280jg0oCJ0zgL46iy9txfh9YLkxwkguX6ubeMz3mWiRNWf/X1DEpsM5F/UPMCSG4NxNL1BKVQWBN78KL9LfXxfch3nniBDipyiG5kEOoME9vDDUaNsipe8rYsPRGDKE8QgwhQU1vTGDyxMghwA16fnnlkBjerRiTlUAWUaERSit9TgleKiU5bnRah50lqVCaqo4g6Z6Q+8ZtJ7ZdIHgaEPyPP06R3yDR2vRpg9O71ua/Nds/cEPlEPfiEyjsGt6KrLFbIIc8vNboOXwjpuHdQ5gL3EtVU9DA1iy/Vrt9i0Q3rZf4xWPuu4cba95nKK2Dq/AewEWYsavt0nA9mhwJmBg9eUyx0D4EpY5pWq+VCeFQkxxJjhpr4f17gBs/ItHadgiumESojFBFhLNX1vQ3NaNvCJZgvnf6LvvbJj+y78Tz2LUrEkUGZOvn76ANcfEdSvrACmAV5JCWlLlxElVBDrlyJHm5vlHw3HgNsiCUA+y3r1c+ZEG8NL/Qduw4MoN/Y8l/rosn+Q29Q9NbUjbBMBfC2ah0IGufQo5xt4U4L0z0WoUpktwlvRFX7kPncw9J32htpVKeirUotmV99ig8ETW5GvgNPbbS+Q2pskIMDmwjlp15dujWW6/hObWTuIKTusLVn1Cr/Xe/mSzz55XV26UjV3Q4Qb0NgsobqWZvDI6xnpqLYnYrpmAugEDJgOHeUFB75W7KUM0hqBxA1VxicqCW0zjtWBhNC3KhBfOJjcnARqmBOFzs7KSLjNMTBggnODD4ZGp1CConcmTBWgoL6h//MEmDiDuSoDIRUJR1Tc+ckgRqlmqDRcO6cFoSV08BBKGuTW8QBH0j4I428VXU+puowBQsL8cD1wgQQkimBYLlIexzcBU+fQTHPw6LAeqPlsM1BMehaxtdW6iFa4/WQ1Dr38VMBFU1xyNRc5JulRMma5KCjtAe1+9N169JEtTNccc1D68flVzEEi4NJaSyi+DPmoX0wugDbNHsedierSUE9Slg4D4sqE8RU0Y3GTaWjyGWUIPJrHgWrKdxfGy47drqtmu2xfbY1rGkQmMZTyeo+AX4g6nFWXJfHKOzLKjqxnX2tNjnQbzclnjyUOyLwJeK8+h7BsnbbIhlcwkqrZDRy6grSvf3M8fFPgNB50kF3PxQe2/MJCjOnFp82XSVM7On5zyt+dpeBFVrFF++hL6jDuxZ1BNE37WeqxGSX2SCSo1NCVwVR7OG7STgCRSsGIOXTeHlJaiPQSg1tAhK8iCEO373elyYZ62tBJUWEMoh9zFNxyF7UA4hDtB7gwouRw6JQg6BLKJyCEOIQFKTjVjj4k1zCSqsqZRHKEz+x6eTQFAndQhBZb306FnKIahRCkKkDdehcsg1yCEeV9Dk5Xi+NJugQntoUQ65iHcPIUv2qcOSuH4C1+gq+DqAoNK9PqIyFmuHohboJVyPN8lRCwgqQ34oQ1kXUJP4NGpHXwTuGbLI+zEAtehHmXdvshD/WO6lLY3yYYyYTqwijt8EthuX/nYkqALcyyoHdiNkKSmHNEHY23Jd3X3fEydt+W5dTP7f2rgma0znN6b/pAy0nNaRTcB1jPK8KYIahg7qEeQRemZoCCMwhf+rPIKlDdmdMkkc/MZOODKJhiyaDiimkKQijKC5BBXyieIK9v3TJ+Pkd8CV+fOGJ4/YGV86nKDegascLR0sVKvQi38c+HUub2A/kUElPhmApZrFMZBm0LhFcwkqJ4Z7MH/fpUsxWogaBkxC9NeOQMvAyYHZNRl/GoX1g1mtbMZy0M0XwJdAyuUEEyLhk6nVIaiahtkPggoL6u8ngKCieHsHWlDtB/elduMPEvvxK0k8qnC7h2vBw6ggZIDb23FYTwOvwXK34h0JjoSlIpSdzJLn3Sz9OzWidNuJXb0ikR/XirX1nzgP2D9dZeFeE3wLSQreWCmMv2qP1kNQ69/FjASVLwWUDlqLcTmsV2+tluDosfV3fgnXeAlqNm4DC19nM24MQII/k41hAkNKRAZDOwnFroMnHn1MSwjqY0wEd6GxpGBLdxpOPISPKLP3QtgkliSAJTaEy1gU8ZuwphJHjKsepgwXVzIRVHYZB1PsYYZOh8D+dwiXnVFmJoLYRH23d6xN3jvFEdY4Vfcg9q3h1lyCShMTsYT1OcO7fsY5v5XE2d24R2QHiOkaP0uy33pf8pj0rJ2sd+1FUFXB4GJh9NRJiWxYI/ZuWCVeBoLKGZj3m2NQBnL61ofA9Lcyuls2/BR0/1/qEFQkEGEpGXpcEDe8Moj3StpKUKshUhg5hMaHIMOZsKQMwgoCxJCkHMJSVAgpooLLyCGOMoyoBrxpNkHFgTXowS//8ccJIKgTQVAHeS+rXb5bd25LeOP3Ev0RMgHDWbThgigfMAQgkxziOXNzCaq+e8AMYkf04nmcD3LI9q8AqS6R7wCCSrfWWr22ryVx56JzLk9Yg7SAoCYQw5+AS5/94J6EN6yX2E9fInQJwYOm0UgAeYrx5M67t1Ldnc3PrVnWbPoR9+k7iZ/ei76TWHA8XBxvT4JKOYSyYF6hBN+EHLJilXrCtKbPL8M+p0/bsn4DMvnCgqq40gC2UHk+GN7olE2YfI0Gc6+tqCmCqnVOofSihygTrLGKAD0zzBBzpJO4Ag8NxRUrxW+UfWHs6O7bfIKKE3G8E37508djQVAnvJwElSbvPAA1B8X4ZpuHs7QY7jTwxx7Y36ypu2wuQTUmcFo9aOnwQz3KSYiuefTTpjzIe81JI4yJwYkfc9zzdHKgRQOElcHENI87tcYcV2AgMPCXmk645XAycesELSzPl0/fLJZ3FxdDK8tJpWNa4ikSf+zbIfahLY6bXGOnAXj7+g1x0pnPWSTZs+Y26Rqb6XCMXWLh6dgPf4VU7roCIElHcOWncHP5UAIjRmbarcXrGiSoTGZSPET8I8dLYM5CyZk1B3EfRY0en5lwY/t2S+wI4kHv3YT563ZqUsOe7eXiq6Vt7t8TLUlxYA/OuQ1SCSY100JgR/0GS1ZpmQTncgyQTr8FKeUzElRzbDzErXEbNru355KKEwv3gZay9moBxBTRMuyN7/ESVLrlMc6DSQiIJfzwPWej58WwUrroIXU7hiC9tYSg0k2PWPIYFlTnPLCEYEKIAk+otVRyjBPHoaWuRQKhCLWSEGicWsrsEQgsdlBLaSYLKjGGuALcETfm499fK5aPXx8o08cVpHe9Xf+m5TS2d5skLh9q/LgETCQZ8w0YgjhNzKpuC8xeqM90sHyUWdXksvbnrXCFR4bt41uT2zLhUOi930k+XFY7lKBSsVNQgmRrQ5FcaJaE5izImD002bG0LxlJL3DWPwNx8cBYf9kI0ee2lcnXzHtkX7mIcdkp9hHgvMFcPmi9isXXfyisFlNwvgWSM3NOsxMzZXTx9V5fK9yGvbu313e6ndvAEuv+XRXu2+O4FQ9D8u2OfvKfu/rLUysouXgMmExNhTnICCSDVGJrpl33hG0lqFSU0xXvPhTlPE9SDgFBNa6+HFJab2sgh7CsjKU1ggEqGgJA7OCHiVKoNKc8AtlDXYFdeYQufBqDytIQNVKI0jMjs6pleKBaliwbIfPxKR8NwaqdW/wh8J5yyBG8wxpD28gJcgt0/vYVDUhu5C9H3LY+v7OwjtfYdKMlspZZZTf83SFe3CWYI/5py5CbYrEEyuEJ4M4ZTR+t4S1Ys7WWoUbMWP60IrVhPvJX9IccUj7Bmctnzm4w7ju1k/OtwWOaDQsHIysxwwQQvoSY3La0TO64wuSYlAUHA59wr7JnI8FU6eBmnybjMc3eUG4FVqCOdAvdhs3u7baEEtTBDcghDIFrh+YDUfEPLHHkkEyChOccp0BQ1/5gyT/WYK7HerrmE1fIdWizMk85CSplk6GQTfrAyyu9NYegPoKYxQ8VXUykRE8uVXjxxGjEFeU3mDsUV4gfqjRyN3C2cnAlAddUeoAprjguwZRH6M2hOTPU/Zc8iAJWFggqLagTXz6CShdfCni0QtAdj4Kll8u1F0FVE7g7gLSaMqEJB8+xnHL0nD4wKLm69rlUh5EtTwfQGTxOAOpqw+yasKayiC0Ja0KTI3GSML9j0PgU4IDze0fkd+Oq5J2xNYhn8T4E+iS02z/xMM5/9zqkZQAnBOLGmhZjnwXgZp2tkkHiL0UyjQyJCBo7Bn/raoLqK58ugVmLJMiMfaW4jpJSWIARU9tIs1FYm1pe+wZcbA7sEvvwNpjg4W/ltvYiqHSRjBzaJ9b+3RKvuCqJBxgbk4CE54LQF5i5RIIz5iT7nqm0jOlX+vJFIaiRY0ckenAv4oTOpl9Cq/8OzJgnoRmz1epvDuIlqBTsTMhADv6gQMm3ka09CeozOFI8BJ4wBhXeM5gMPHiCV93BNJLWGFK7P0NG32fYhu8mFWOOW5+SVMSH1XfxRQyqYgsUP/hdJwkc578Nfy4fja+WV0ugAe/AFn98HwocPLPeckiZzhcISRZKKgRBSLM8yUj4LgbwaUph5D1klxJU1CD0v7oEeLIAijW8m8STDGVxvP31fs9IUEl6+4K4lyIB3ZSZEoQCLRtY1ZoWPoqai3iPrJNwZSTOww0aD4hzKAgHvgnzMQaLkIFzgtN3JEjyUeJpRntRCCqF+cjhg2Id2I0EO9AMtUOreN5P1lyeJX+5P0Oe+vAMQA6h0Mj3GeKBTuOmHITBkLYSVCrKKUQSOxjnnpRDXGFSraroA2PIntc8R1IUxrGTgBr5gUt88LeTtIRCIzGESdUgB1CZBZlEgB9M7gimKBMTj2RZ7k2ZW3hDBiF9ecnQvlLUAVl8mUAncfeao/g1z2cD48ScCZy/A+MnJbfIQnJDM5cnVzbxJSNBpYGgCJnES5BFe9KrEpw5N2PZvCYOXefnhsgk82/ou8d6rcQNyiHeGLQ6R6n7R0PHTG7V0QS1dCxwCbLgq7Pcvg/S/BXJ8zfx5UUgqPTOiRw+oPgZvwXsbI8GOTM4G0rMGbMw3o17ItDF91u6+IKgkjDyNSZRZDJYxrlTXmFrK0Elv3kAxdc94ArJqR8nof44aYDDOYhtQZywJlwNflMFV2Dylwy4wqzgsLDXwZVkfWVyHxAohg2QQBGwkF085eJbht86r7W7i+9zuNLcfxCXNess+X9fx+VuJeMwPIMG1zwSVccqAVkeiqPBpXDxbUDh11wLKpMkPUHcGE3gyLasrniM+zDDw/NlY/BYkuI5CGolJgcOoGnOQNItDx+43DFQ2AiWrA/EAU1v83x35bfFJ2XVgGuCy+rkhhOqygRPJZ9Ut/lnvinZK9+XnHkLzapWLTMTVLgNL/+NZL+NJCcQ9JiNxhfADW1FY5InOtMz22QtXHiiP3yBmf1G8kj++e8iIcgnmHiobW1ZS1ll/wpJ4XpyZ/9sJAVZ+QGSu8xM9Z33sIVNa5ZSq7v5MzwXQKW01taMu7VbNkpk/VcSP7XLFVRd5ON5MNadbkGlsERpCybIBKU7t9Vu2iDR7/8pWhbIrGzj0r/gfYz7xyhkPlNjRpkw4MBBS776zpavtqfqoJKkMukaa43RAsKJgBk4h5YATxAykEnx2RILKuPeiSUkqFR40XLKCcg0TgZUtjEz77PnzzAhGIJqtnCWOgmY2Hb3WdEEJ8aqCuHTtH/JOSO/GnBSpvUB3nR243tAHFHvEPedyC+CSz9q3r39DpKRDGtTjzISVGTUDa1EyMBbq5wQBM7iVD23tHmeTyWT338r9s5vMDYu+sMKHEKitVwmWmsBMTXdyEhQzY9YNjfxkmeXOl9rfliHxE5IRnLxYJ31+geIcOCN1tcste/eSeHrE3iU8Bn0YlZXWFDp+g08YdZ402y6j/6wRmIbkNzKW9LIbNCCZQwClQXNf0V4qHxf9ZF8lrVSKoOwhOEYfMz5WPBV5pNGgsrwI4MhLDNjMCRTWCC73FiSJAqS9L7gR+UQ4Fc9OQS4QRmoEhafylqHoJrLUzmEMgh66OO7iCAGln2Io+xMHCUiGIJE+cRbB3WJv0J+049yyE29RnOszlkSN/Chv6JXDpm3ypFDYO1vS8tIUD0HTLoN0wujDa0hMtmWmqUNHTPZzQ4mqMy2nvPeb1pds1QV5evh8nxuH14YKkPw4hhMpdvwMtSyhawZYqgRsNunRT35lnVQA24lIDMqbrj9YMbn2h/XQX6EG3WmZKGt6UoTLtE8NeNALbjZHjvBGFRL/rYBfePtwfl4B0hQGU5gsu0y/EhxBVyHeXbSW1MWVCq+NHQASZJ4DoYwUgah62+EVjg0KuzJb6pBUCuhTGJGX6dHHDYiHvtILy+DK8zYC1xBSTzm3tEQxwZqtP/pkwkvR5Kkv/w9KpUgpQePxmXXiQTq8jgDRgxjLAYnAgqVxQgY7lfkBg4XZB403vTmElRODCwLwSBiytIEeg4b3fGoCGCjUBuERoDW0xpYvGhBNc1LUHUiiD1Wkqrud9RY6suJA7Ah9ox/z0vc6TqCyhvafwRcYFGcuzjlRhMYDTeaiZNhgRqlXW3tPxkJKoQl3yhYNidPdxIvjUS697KRmJzc+9KCk1Gzz4RMmoQEloP42QN1kix0BEHVOmqTZmqiJz8INkl2a5ITdDRBjZ0/K1HUQbSRjIIlhDRxDeNK2LqAoFJLaV29jLjky7Bu4AVzm3UKNRZPQ6j2ukSZH1u5NATVHjtDLl+Jy6Urtpw4GZe9RzAZXKX7DEU2fLCk0ol4UoRyEMWFMGjhU9THp4kIEHJdr7WEoDJJklpQYUnVtx14wnnAuNXouXF+ZgR/DgtqOEqCCvDn9MROKv5gQoAnhg0siVsPdXJwOsUDoSYqfvMqvrqUoMIt3TcUdQbLxzumaHTUB8+LwKRXJBt40takaJkIqvQeIP6J0FJPRl1muOooM0LWAABAAElEQVQxq29rCCTj5q2rV/B8XtJayvbJg5K4cVLHQO/3L5igamKb0yclRjw5f1riV8+APd1KvRtdQFDp6UIssS9fQj/4dmGOfoKSOLQgX4TbuacskP7Ywn+uhQfL1fA4ORedKEfsKXIwNFGifjzfOA5fTZ3K+R0flQlAFvt6MKQQ8giTmWQylDVFUGtoQYXTzgMQVPDwjHIIwxQCALDnkENqUVKNFlTTMhJUxZAHwBF4PjChGsORqNiiHALhZon/VtcRVJJSPEP+kUj00zdlZWBCxRBwI1A2wlxaq5Y9BLV5ty2TtbOtBJVyjoWs6PZZfCiH3L6A541EFQ0kxzcS3m2TUV8eJfSY5yQAWbC5nh3OQVr2L0OrmBuFCbQk7MjuKpucoPwIOaQGL157tCYIai1KWl6BbHLxclxOn43LoWNx2X8e76Lzv+IK5QMmhi3Mqy+bZHIEbIqgGn7DsCNmBndi1clvnJAjXrbhN2HEQIdjyCODD72znHJ3DkE1eMvtiSN2DMkRrQcQQ+Cd4cUVF5cVJZMWVGbxHc5dO621uwV12WrWGgVIg6Q+wzPE25KcGHhZGMR8CI9jUJ9w5HBYOnLVmCUNGeKaS1CNhuEeYz9wDlMbkcHEEZ0o0A90hJ8IYz9iTE7gPOTaLe6kiU2QbjzmTAaqWcAAq7nbeezwHQegNsJndzFBzXJqW72Gcg3lY3gJ2pi23Ne7j6YvN+tas8xIUHnzggjuyy8U/wSkG1/6JsqeLG0VKIWPHJLoto1wk90KLQTeOkzWXmG9Iwiqlt1BcL9vKJITLH1Lcpa81qrYj44mqATieGWllumIbvtJrB3rUlaFLiCojO0I79gq0a0/wqX5Supxeg6yysyNJnlF6pdWfzMEtWrYdNmyzZJ1G2y5cA14gmRFquzCIwjs19dQT4LXdnCRT8qHQUMJ7SQ1lVTkehMQ6Hb4pyUElUmS7uGxZAyqCpTQrhEimNadMe18FdhIUOneGwVBZf0xJwaVPaS2Eh8mQYnexecOfncnd53JHAyhgGlalxLUwkESXPqOhJYsT4YEMBZHsQRBM20tJZCRoNJNFrGc0guW2iVvSzbOzWyyLW30mAgjxjW6bYPEr5yGoILB0/qL7r39BRNUWhuIJYmqKokcOYh3+AdJnN6ZusVdQFCZnTX882aJbQWuqWYf3YFQJdUYN2Y7NetSvWzRt13PFsnm2jdkX9ZUeQzX3ucBPGMUqHEU894mD+g+IkP6+mQUMITeXMSPxjCkMQtqNWNQHxI7cGCckCFF9O7QchBpcghzYUSRXM1JkuT0KBNBpbXUjiJ0JXIrI4Ys8XUhQQXQqmfSshVKUMx9ZSk0hrW0RgFsjsFlD0H13o2Gv3cEQSWu8kNSGKMcsmu9836yGyoL5sHaBFlw7FQJLntLchctaTIMq+EraPoX5vxQnN/6PRTleMnY4phHn2OihqIHZkBnXVv/bYKgPkXY4pbtMSRHsuXcFej7IJtUQjFVp7m4UgJlF3FlOPLsKK5APskkmzRFUGkpfQJ4fATFF8toslIJ5RCeRqkLlhwSYlwc+BnHfbEgm7CsZgwfmJ3d7XQPxVjm23Fkk9tKYp3+43fiL/iNNiRIInb+6eMxL0cM6ooPatXsTA0iM2DiUpMTA28kbw/N36MRLDxymBND5tyJ1L9qncAkQY8v5E5AzChJJfdsuGUkqBgtugimE9Qwk5pEnuA3PNTaOx6XneOII+jaeqSfVO1CrufoU/DkElcFwXJe1m35bV+61lxtPxdfCm146aU3XJLqzabsp9vA6FWoW7xMLQ9mdXstMxJUz8F9dM9DgpO81e+1ys03Y81Sz7UHF8JVefFrEmpB/VDTvYZcfM3v0oLaqsl9PF8yElQ+GxS2e6Og97T5Elr8uuTMme/Zq+VfCcg1rGG47q8AYReQcR7/9DdAJlBLDfE9TCakCYUyoV7LT1lnDyXKz56JBTfBKARKawcmKG82wjpbt88fXoK67WdLfthoy/lrEPqQDfw5JgG+EoagEk+ILyWwmo4aygy++LGRRi6IcmEgk8Al7thII0GltvKRh6Dq/mkEldrJ2vAjiUYe4Zg4uGIEeqhCNi2oEC6h8LKizOIIguohpOmn7xCCGoQQ0atvnSRH6efl31lDR+kzlbtwMbbFPu3cMhJUzzk0MzBd+qdN96xt3lcm6apZx1rKeE8e30zt5F571rAxUEitkJyFS1plCX6RXXxTNwNz6f69cCX+Uux9IIamUTGxeJXilUlO1twaq+YQzVkmYE6Mw/siATyJnj4h0e0/SfzoZrwneCnbue1+tkC21S6Xfb5X5FFWgVT6C5DrA94/OE/6lMrXkV2gIDl6GAgqsmxmahQuKY9w2xrIIzWoy04LaXrzElSei0mS6O1BOUSzf2N/xTCsqw0/hRyCBIgWSHm6HEIZw01QwnqFdgwJpCJ3sA7rjRyi3+Oy1Fchv+53AnLIjeRR0vvVpr9DwIP8BjAkG4kTl76tiurAsLI2nSbTzlpLGcrR2LYfJfGwAjceoOyxsLfVxTcOxQ2fS3p0RbdvEmsn5jhPbH5bXHzpvRDesQ3H3SjquUBFvLfcTBtdfOneyr7H8U6pwufnH0TuwMrptrZaUM1xmHNDE2aylnKmUkKlY7Q+cx7crH25sDi1czNjpCUQOUZ7SJRBujqqNUVQIYts+zkmP26Ky5lLCVViP03ZurRXRjbpDwsqcWUYCGqmRkyhqy5fXIMr9ABNbySolElMCCPjUE0WXwOhxBV+9G/gDAmq8pzoE3h3QQGYbMQWhBHQMyMK2QTYQgKbxBXlQtiGzcUaJ4vvS5Ak6bMvo/IMA7j/SFx2HoVQifvCoeGNY+PNo0WiGHUK+8PFly566S0HFlbWL+yNbThYMQiUjONorBkTON3ytE4QTsRbbFzyuK8xgT+vuYOiuBUYPEQds3ccBFeg5MBpJl9oLZ06QjwKZxV83DHjsXhB8wQuvv2OY2K40n4EFaVc/JOQXGfKjMw3R0+Of+BW6y+Dm2rZiFYJXeYwDS27hKDS5W/SbGTanCH+ERCYcW2tcfnrEoKKDMe+cUio8ApcXuhmjb63JHNvpnHITFDxvBaXYexRS5I1DKeg+PmkKR2iuYxdvijRE3DjpSvv1XNwNcbk11T2xkwX0oJ1hqDa42bI1atxuYzPiVO27DmUkCOXUy6+Cip4JfG/9AZeFEPAZD3lxhoVX3SvYdxZU17pz2AYZrjAU+iweA5aNjAnJPEk6eKLDJuVVbekpvqmYwkBLiimuLMExFJ4RTHByXMchJMAQKQBktoRBJWKJD8y1/qHj2zs1oivAFbMspESGF4Gayk0iO3cuoKgOtcOPEHdYLqfBYePaJUA9VITVJAP3+CxcNEEnkyeJqHJr3SIwjNRi8ySJ0/AjfcoXI1RZ/LaOfjQ38BTxrerfdv1cKlcD4+R83DxPRyfKvuCk+u6+HpOZwgqS1cNAIb0hY4xU2PcWB/Uaafbryq54JmlIkPaxlSUsw7qQyjoNfaUcghxAx9VigEejEdG1fPb8vz5LSjMQFwyyCFAKaxmIjZgSPw5cARgRMtGmhyyNOuW/Lov5ZDrCotpXWrzn77hU8Q/BRgyrKz+sfyIkYZrPt+trMLC+r+3cQ0JWAwVBaxrV8TGs2OdQDzkw2vJo7aVoMYuoIzNSYaq4HMFcxzdWD0EuC0ElbWUrWvX0H/0HeE61on9Tj1X0/s2ElSrAs/OyeM47mH0/Txqn56H1gOTltteFoIau3BOx8g6dghEH2N09xLeAcylHdWaIKhhuPhevQ7Z5ApcfM/E5QDCGfeerYtjnP75mrLiwEDgSr+CzJ1lOTxynVzEq9LzlFwnk/Jc+Q3oCusrGxdfShoxgAvDGNkMv7FwcmJPDGFhtTVQvIQrIJuA0Ltk0zHE0cOLuALZRONOsYPKLM6x6hA2rPrTJywzwzqoZe4GnbNodxdfDt79Bwn5bm1M/vOruLAOqops/Mdt/Ko3E+RU5Tnzg7tk0oKSfpgw8OHvOvR1xz9tD1hYQYSZJInJCVgniPUKtbyMu6UKp9BmMkvfs2dXYS5H+vJaaOR0EiBLxgnUgsrRZvwqT5g6qQYZ83cKmK7ZW5MkFR2TVQMvtRtBZZxkaDUC21Hn0seI58YaXfDwcR68xjZs+W9dQVB9Q1BPdpWTlMWHjDd6bU0xiQyX1iUENR+lht7GuEGLqJn+aNHk2LShZSSoKsjgpcCL4YPmMrTauV9ZvZpgZ63oR+3uHRJd9xXKG/2EZ959H7wg1opjNrWLIajZSJJECwU1hfsP2vLlt5b8c2sqSZJXEqMLHRVdxJTGGpMalUCG6l/MBEeNbekkQqG28hl4pUlE4J04TG1U5LYHllwEpqAwO8IG6rcUljhZOXFR3gN5dugIguqfh2Rjqz6U7Gmves6U4SsnL4MnGX5u66quIKh67as/cq4d76ODlZx9WtZeaoKqE7CDJ/45KyUb9ytn9ryW3aBmbM1keDU/IBne+s/h/3oFe3C+dSWrZuzfkk0YCU5CWIFY1PWVH8s/slbLM0+SJO+xDEElhtCSwbixTG1gIUrhATf6QJhkawgGKUhqkiTIIrX4bkICnL3wiuE1Iw4xSdLTp5dUDgmH7+JnnFwFSN4XCot1742jbgeWmN88cohjQYUcAk+ulj/dpmcNL9W7YdUHkj1laoaNcEbFDZLpJgA4w95NrsKNpvWdk0Ht9i0SWfelJM7sSu7WVoKquLTunxI/ttUdVN5/fNzWFoLK4yTodoq+R44fQ+LDb5C87WtzaAQotq3MTATklMe0tnzhPi91+/6yEFRn3DFGx7dlHKPUDW2nb00QVD4e+kgCPI4ft+WbtZb85Ye09xXbcA0lQMomfN8ztWJ4f5HrMOadzfPoOSvcf42H6N20JElM4Bgm2KFpkiQq0EB0IwxthDGhpvqShKsvwCOUyi2+n+wR8cXBGEon+APnRW/T+A3XKw5BKfanX6HMzG+mvPgEFVcr9+7H5ds1Mfm/n8flBmIxDGjqEv9wyQlBuRV3SGusm1oA62kRtJaZCGza5vpnFGy08nlMKqsjOjjUKsCrJtlUiMX4cBKqhrWjuvqqRML3cHwOmAusGCDYSfA3hH+31/Tn1keNS04KFC6VNPllfgHKzIx/Lu+MY5mZ5Kna9CVr2AiUJ5kNoWo6BKoGnuo2naF5O7M2H2OWrEN7YT27AK3VVce9xt29NS6+cQQU23cqhJo/6/hhsQ7ugFXubLJDrTlmcmfPF7q+MMaVfbcunIJWFH2vhBBg3v5WuPgmoDbXvsMVyDqLeqsoY5O4sN95gXnuVhzT0+WMXzMTVM+msKSG3vsD3Kw/QLxP+xDUeDViJm/fhssTxggaS+vgTty/1Bh5zg7V3wCQZGjO+w6os7otfwSm49lnWvwRI5OH2Y8svl98jVpjG0FQ3bW6dP/QhEnEkybeQRJYJlQqwGSgbjXJM9T/Ug0tVyWCXqtqYwr4mmzNsxkT+NI9h0nUqp5fw0RwFZMWXfUabslJgBNBhvbfRlTLRxNq5dXS9tMOB6aj/Ml0JAYrS93PDKfu8FWRs6clhnIA1rGDEuf7yNJMJvEXzt4aF1+tH8r38RoSZxzcLfbRHXUsCK05ZqYbQTdDxcKDeyR+6wpK9FyDBIAJ3zTEcQZmoBwPsoMHBqFm4iDUQEb8XWPNuBXaTBZHnDqMvnsyjjNcwFeCd2sYPElmzJUQspmzzEVbWkYXX88B/TNWwFXv18gAv8Cztm1fdYyI9zpGe8Q+VneMkkeHUCj9hmnNRh/cRtuj3X7eV9ZeniF/vfOqPBTEUbsH1aX7B6cE/K9uuCaJY6ZzF8BVrxDkNK+JrlEOeQa3MWIHleSNyiHPr8OT6yrCAx64cghlEcgXkDWaJYdQdoHQOUGeyJKcGzKnz3XE0PaVwcP7SVExhKd2aoGZ84DJeLaHl7XTEVt3mNqtmyS85nNJnPw5dYC+qG08HeVs0Ec/3r0g370WWHL1mN99JolTeC4ztDYRVM/xIsePSmQtMv9v+zK1NqdA/FOdvmv5K/SdbvbNbXpMuOxb2/+Z2oXvUTHeo0HwhoEnmsqSEyalfm/Ft65w8aVbr5EVY0cph2J87l6s33uSrkKU/qEc0qeo/u+tWEPjiHnmaWxorB07jgoDUJ7/33V4bz2tubjSO9fBlV5NRNVE4M/76EkUYZMoOQV8oCxD4ksjXB0LKtbResp1UdRXjoWvS6T2inpxgVAoXijphAzicBuin/tR+ZjfAY4kXvQaJe8B5/nTJ+NfLoJKC+p/fRmXaw8djs6x45yg141lYwTVWDvpTsN9mtNiVhT1f1DfFCVkmE2TzfARfjdEl0vGg0UjEGyij92JAaPN5hJUn1pVsQ7j4xSyhcDIwXJWOLMZerZwdC/5dMVAeXcJyhg0Zb7REzT9jw/JBQIoheDv3x/ndPvV9G7tvgVJns3C3CCqMRLVPVskce148jytIZP2vTsS3rcHx9ou9q3LcKi/DUEvZXVqzTGTHfJ8YQmD+MMH2neSyejubc4ExJeNrRVkkjXgIojhiu35WeyLIL2PKhzCbh6yVhzT6UzD/3YFQWVZivB+jBHumc2ESGlj5O2tb+wcCc5bJoEx472r2/Sdz70fWamz+qQEfJaZ+fIbENSfKLjpW6jnMHjSXILKdz8bGJ2NmlDcp7FWiwQm1ShFFUasS/Kc/OI2gyfMqmlFbgNPmGggLRDFbOwumyKo/758gHy8vERmjG8/Vzm9n8CTpghTWlfb/U9mabUf4J28hRrFe3YgOdqmOrFerSGTtCBE9+4EudvjxKc9uwfATpH71hwz04VrLDb7Tizct1Nie7dAC3sptSlj9FCXMat0mL4P2XPmNVmWhx4qkX27JLoH2HT/FsxudyBtpJ4f36BxEpj3OuoYztX5IIvvRKbaSaleNPmtKwhqBCECOkZH9mYco2SncwsgFC6XwPzFePfb5/mveBiSNTuL5C87+8m92qC+xzyfwY3kufFe832m3NHQNG48JppSbFEOqa6tUlnEdj0lzBSh5/7/2XsP7iiubV10VkcFskgiSQgRhQCRcwaDAYO9be/tHc85955xxxvnjPdz3hvvvRvG3dH2tk0ONtEGTM45ZzA5SupQ1f2+uSp0SSq1Wih2ay5odXXl+lbVV/Nba645Ld5RdgjGlDJv6PGXlh0CcnIJ1JQdwm7CuK/VEAGLjbjrV5EYGtzgqleqVdNQfw0tXjac5i8po/JR6O5tpeLvD3ukb78O5xBPgRrMMwVKv8F49hZReNbcZrmod6hAxbhoQgA3DeceqJpJoVnzKDyxKuNa8xSoBb2Rf3YpuAMNZkNLycfv0z7oomtB6QiByp0Y0cMH8a7YiwbNO+BH2Iru8bv29cAzxjdxkap7fwtTodm75J4z0wZHA7xXrilnRaLGBKpaxeYVPPNeQxl5HeW1gdZu5pd0JY5gd29hj3B+U9XTiZWZQ5hbmBG4MLXY8/g3D1GMM78gwFqSA8I2EKisk2AT23ax0hvYi+qI45PnPeMDrskpgcp5UDdsjNH/+qdBt5/yJXLielwvPkpyYYJbKxvrQcVqTuHtMim6EQXZI/ARxnOkomV6b5ngIEgIXJLQX1svBksIOgLVamnAWddJWquuwtonXg6LphbTn/4wgT75BAGDmnpzeZ9KVsxVAY02fkWJkzAqrfI+YpJTQdRuRtCfrX+uY4y1ZJ/2to19ewY0KuhDwaW/otAHq1WLq5aH8aOcRDNN4YAHNZvXm4FY3D0d9jZtIVBhENfu3E7x778ze214bIzLAOexqC3pQeVe4STCtXOaDrvE79ym2A9bSN/7DVpyrPnMevwyDcAYcPXqBxato/By5LvDuLW2LEePw733uzhyjZkNT2ybMZuwfcaBxPhbNXhZj3Em59IUr8RibzA2DOOf4vDzrVN4S/7goPzBS4C5RKWASKZwrLOJ9aMpgfp//LGSfvubSpo2dajX5jkxTwU02oLnaAM4wBXQ6H3EpHLPW/8PSpzd64nN++zTc0eumelzlsKwWf47yv/oMwqOSd9oo9yGN6D3Y+9XuJ0a3o0tza3qOmVnMnrqBEX52eao4BzlmHuwbeMEa7VWD6rKcYrxd0lEOIwc+JFiO9ZT8sph5zxUw6sfrc+hfGee1r+EQiuQv3vZSvL37uPMb8nEg4fsyWXaIQ8ReZNh5iZKH3MGP7v8CFuFqYMFalNeGA1ryt6D+c0ReTkwCY8rNV366y53/+IUD5wxgHMQmp5cboHK3iI4IWU0prdDzAvhbX30n3+qoC9+U0FTqlrW2+4+z84y7SlQXSf3Pr2dngKVMQ/g/kRcieDSTynE77hxFa4jNX8yevEC3qtbKb4LvZ3cEIWGDPezl7E7Lho9+LlK4Pni+BCxHRvJOLI1dUItdBtO7Sg1pXOO4h+2UQx2CL1AY5qyQ8x3sVoL6Q5DH2BoAJ5d7r3WEOhB88rRlNql9xQeUL42/sSuYdzpjs3gKhzTtnm4XtgOQb04QSTCBRRcjmMv/7BZDRPeJ9D8uSxQ/7ke3qKbGA/4XbKt5Co4Y3WqjTV82as2zSvwyGBeQWOWqUnsLdN9w+sPQZDYPsENY3EJ8wTOFbyvelBVo5d57mA/LLOW8zpWAxsbWP/2GfegcpqZ0nQHbPVlrT4Glc/w8RMDL4YI/c+vYnT3Gb8IMP6H1btVuArZS5ZbFbgC0xXGiF8qbm3ILxbeju9Xfr/ycgMCNY7KY4GaZNDTlKYFqtq72gOnjrAr1GlZ4JNHVN9F0wZBoI6HQEXOLxGoaRA3F3UagQqhpZVNRPCUSWY+11GjmyS3jhCo3HMTu3KZ9MsXyLiMwCJX0YP99FYK5xYKVH7xxK9dIePGVWefCeQoNC6dNoM52GHbefze0Aryj6okrXeqNTYwehwFR4+lAFyT2rIcPRaDi2+E/rYDghpMrsgcD78PnOLDC+t9BCrzCu+njjZgqsI8fry9BSqTDYYBgF8Un2l4WWJaBGrmtS8C1cSqIwQq94RwjmX2KtGvnKPkzbNwiU41wLSWQOXe8th1jMnGsYxLyOV8+SR6QGDY2gURYX0jJoJ74XpoGXRaz14UQD7FEPjE10Svhb2bpr7vP4QdsiFC/+PLKD1C2jvzWYfsYz7Ds6uMSYtP+DTSufjax2LOUNyhSMiea14G80brCVQeSWvbIdyDCjtEBUjCge0eDssOwQznRP7zX8ZDoI6HQG1bTnYO2I4T7SZQC4vIV27enwFEyud7silXz6ZgYM+kmPXscZCwxHW8y13RgjMVqOzZpp4tBA5SNsGlkxiCcyV1+DYQqCqXsjp3yw65Bt54fid1THg/+EZORupB2FSjYBOMHEWBwUNSyzOc4gZzDszIQZHUtV08hcBPF/COZQsfhQNRllYiOCTskPxCNYvTnwWQ6YHtEH9R63kNqJ1n8OfU6Ri8u6L0vzbFFKeYWof1gfqv6K2lvMI6J4HGxJYIVPb0Mhu8UlxhilTWSnF8eH49gaosJMxHNPF/+zXGoKogSSUZoNJ6q7SRQNXpu/U19N//UUv3X/ILAQFvfHCxsSqNT597PHjcJnNsumJH4TV7Tcw12SBVH2xrL2eBqusv0TDVcoHqJny+zVRuMlMGm28n1VXuh0BFD+rvKyBQEdxHBGq6alTLOo1A5SeeW0jD3TAGZB6Flq2i/HkL055/RwhUHomfqIGLKbsXn0Le2J1bzNQM9pm2UKCqIAs7t6GV0tUCy70qcG81e1fwwHKBoA8s+Bg4fVjHdZENSXaB0ULpe5/Nnbz/3yNHI/TlP2vQg4peHxQ+K1OchsArIfR6mLkGm+r9UBtbf2zecPMKG6lK7OL28BSoEKMc+Y4TWvNxNQ3XjZenCFQ3sumnRaCa+HSEQGVPiST4JPH6JUV2f48enfVo8LrpVFhrCVQdXhhq/zuxf3a7jqHHyO4FwdG0QWMpuGwt5S1dgR946HgeBnQzl/g4xRG7VrVCuf9Ap2/XV9P/Bzvk8RvLyGUzDc+uDz243MjENgkv4SPa47rSHZrX5XY75g2LHdXqbM8wdyQQ1bt1elC5YdzExjyfenYIH12lobGwUgI2gR7UCRColSJQTdCa/OvVg8rBGoPL1lHekg9UY4lWgNzy79Mj6Dp6Mob3Bj97eJdH9vxAcTx7yfsXnTUyFajMn7V7+NndZEbt5XQr/M62SxsIVOURgSjcfP7RY4fhhbEZQ6Z+tI+I2xQvTO7VDBdSYC7yWaMnNTxpSmp5hlPszcX1EcP+E9dPgzesa7NbkRHzIrgEdshSeFn06q32quGhU/UD3miL6PNNnfqp01E0nlfT/0BDmOIVpXVSvAJkFK80JQ+YSzjwUuO80lKBysNHTD4xhSqfme2ZwfcPL/MQqE4eVI7iOw49qCVYr/1KmwnUb9e/o//+9xolUDUNLwQIVHUjAwj+x8I0kx5UFZwEbwV+MTCE6oM/9jffuxzEKgGjkcdy8KdZPajcSskPGBfVUoMXgfPq4dvGLLZ7nt+XpGEDetDQwT1o+tSBtGRRKc2bW4KAKdY+7A1y6NvLxZeKSig45wMKzl1ojpEqQqtjE5FkO41AddUNj6MMf/xbKoCLSLrSqEANIzhRrwHkL0Uv7NzFCDAyr03S/kSOHzFzGB7cmDpNEHZg9goKzsMYjGIEh+A66NFIPPPUVs6U2ifcDI2fXft0lmIihFbKnhj7NgiBu+Yjr+useS1uSXbvPtPpI0dr6R//rKa/bjcFKm+n4Zk1XwhBGIZIuQRCCbCVmGGxBSpzh70VG5g8zTZzXEeC8vouvjACOW0Mu/UCHCVSeTyICNQMQcdqjQlUbdxcCs3DGES4iwfQEu7DuKmmDI6OcPHl8dmxg/vIOHOUki8hvrgXxG7h53uyCuNG5y2mEHoD+RrU+C8PweUpUNGzR+i90foMpMCkWYpb8xDgqrULp7+o2bKBYuv/it4XpHuxijYCQVVQBxzsiXsj+NybGvpgb8vdisYL5ALGh3tA4vt3k3FiJyrc8mbidyzGx2m9B5K/ciqF5iwEn8w1HzZnJ607cf9BnL79rpr+33/UpAQqnm0/7BFuMOdeVPWwwwbItAdVeXRZNgdbB4ov8M3cwT8S6KlgL65mu/hmbIewcLUsWcYUn14FYRpWnE9DBuXTiuVltHBhGY0a2Q/r5VaJwEU9jmdPP3HQfPY4N7jt5YNLzdTFV8XXwH1qwFsofhRxJfZ/D7F33gFLK5uMYGGwCRCRvy1KzdaNFF3/N0rehGeBVXjIFOd+5zHnzrPnkVOUn7HaTVbO59cP7c1T320gUFM7R8TYQwdMO+ToNvdsZ9o/A5HA137erBzwiTdvFG/ovyCWA9fvwe8R4tp1behIoJ6wsUYCI7axYIe4Y1Q4B++AiVOn0Xj+DQvUWqVxWOeYvMJ6IHNeYS5RkYEx4eYV5iX+JNAwHuchjO/p4ss9qFxYeymiYu7AkRLMz0nuQUVR8/iALLiS1C0vRCWDutNQfJYsHkqLFpbS+IoB5rrt9LfNBeq9F7heXDi3VmrKHS+ojEkGnXs8GK50xS1Q+SXAsNqFK9JuAeVejfcTqHwG1lnwSfE0DA5UHe8dH7PYAjU/5KPVi0tozpxhNG5cPyoZ2ouGDoWLg3pD2Wvn1renQIV40YpHkG8oIlhWTUfU4amIFDo87YXnokDVSmFQT0ZQlPGTKDAEEQXx4TGtrV08BSq7Kg8oQ6RP1AEi9oVQB8GRozM+dFMClQO1+CfPQa7VyQi4MIz8g4eiEQIvi3Yu3gIVVMucAm7xwdAMIHphsLFIBB7n6xao6lViUQCvyk99PP4GHhlI4F5nDCqWQJCqj/KiwJYgeBGoHgA3MqsxgUo9ByIfZzkFRlbgeQKfTKpqMihLRwhUFYEcrrL69SswlA9T4sIB3CxWwwm/P3oPId+QcuWGFkSqpPCkyZ4iz1OgskdHJZ63KTBSy0ZSEFziLx7UCJLvP7sxgcrB47TBI8g/AnmcJ8+gEM490wAr7J7HQVs44qZx6Swl7l03xxjb4h09lr4KXNtk5PgehQBQCGgSGDIEF+F68N7/kjy39BSofESbN2CPsDHJRiW3bdk2iefOrJlugcqzVKMWXwJTA77YxZftEDYkmzUGVeFgYZHWDrEFKuwTPjh6UStH9KbFC4fQ7BlDqKS0Fw0b2pv69GkiLCiffJYVdpON49kzbl4n/eRhMs7i2Ysgn49VMhWoHHwwehpZBE4eNTMUPMS9WvPS3g11hEBVjTeDwBulI/H8I5I9eiD9AwY652RP5KJAVfnW0figIrzfu4GMETfAqdzjZxYeXhSYPBeNdlOIc8sHYIdk3HBm76SNvt0C1dE54BfmFB5+5MeznAmvmNwB/uAJlPq8ogIegVPYQ1QFbjVXa+JvagxqysWXrR0mKz4QDx1gnWNpHWue4mSc9MghPWkp88rMIVRW1hu80pP69TNdq5s4cKstbjOB+t0G9KDCtebuMzbo1H8YkWEYkQjhrPIzZHYNypAEfgyn7UbD09wVblcm7+n9BOor3lQVs9sbLdhKAvM52yLVXG4L1KLuQfrPf59In386nkaMaH+fd/Ns2vdv7YEf0WrmCpLEFaBqxDwPlW9wHVrNkApBFfWCNSfNv9gA/+O3blKEgyRt+0sdAlJPMFbUhlVSaC23XK6Fyxd63FuhcHACFd591z9UnZqnrS5A7V31oK77Aj2oK/HbslLqHxcPbuI1giRxcJeNf60z/sI/F4GCuMXQvvb627bS78jxo+o6jIMbzD3WqwPf5GUqRUT+3AVNH1EREd7t3CvLPaiHNrm2YQzMn84+58x3LW//SRao3Er5N/Sg2pedqkHwAozfIHNLMP09w5dlb+c2NJlX+MOFOUV90INqxCFQEUgtbZEgSWnhqb/QEaj8HL24a1WIXStYG14BoY/+SPlrPkYk8/7WvWhVjr0z6/5VAhUpIhJn99lL8I11rdUD85D/de1nKmWXa4VWmdSRHqZ283cU3/znOsats3Okngmv/b26Dl+hq1HHOvfoeeQw3PhPUmknrHnUYyCuHdt89CsVNdXZVytPmAJ1I7gMvTic5kvB76oDeIUEV/8B5/4rCgwrafroOH8ObGLy49/r9Mo69eHs8xMYmRnss+mjNrkGC9TvlItvDf3CLr64RNdVwoBEUCvwRgg2CbsKZlLYnrNtD37N8Wbc0G73frBANXioUcYC9Qk6AVMiq2k7xCVQrRP+YO5QDDWqpI8/xti8zC4jk0vttOsokWYHLHyFaPpWCSzAs87Pux0JtxEw4hgfXcvP3o6/oeLYG8Yq1vpa2RS8S2ETrFprL2nVb68eVOcAaGgNrGAO+LRhYzOeM/Pa7R7UR85mznNm96Ayf7Yweq9r585kBJF1o0htY9g9qOqBSj1VzepBtXjP6ZU9tt05jnM9mGPu89fIzzzLtbxzTLoFqn1GyqMLnQfhZvAKb2tzCD/C7GGqeIX5Bh8DdkZqCKPV42kfsNFvW6A+wU5wn9uN6kxiyhsM31ax9Y3Z+B5Q686tGkD/+gcewjiW8vPS21b2flr7u00E6pu3CeKKO34iSucuxenidYNuPjbMFgVuWVBEAAGo1HvDS3L3tvJS+/avz708n+9xhrk5AtXQEQgmhhcDXiSmIOVWjvp7532rI2AdqyLxu6h7GAK10hKoqYAxWClnCxN67PRJ0s+eoMSda2jhQouj3WuAq2ZhGahCq3/FRArCoGEDRLPdU/B0cR7B+L07ZFy5iBb2I5S8jIiObtcvRIHzDxupBtkH0WofrpyEp5MbC1peOBBQ7AzOnVv2byOf6/1rdXIlcu69wCS07E9Ei2UJXFnRQuezxjfw0VWrLZ87t9qeQovruZ/rbN9eAlW/g7QU6KEwkEfSuHMdRiCuw5WixxGTTQhUdm/ScT3xu7im86dxTUj/4HJvUoEIBqJnvBSBDionq16UYPmolldEC/Zw63acTpyK0LETMbp8XaeLN3V6WWOzAhuJ7O7LPalgdTs0ujoenmkEM1M9JOy9gXtKGZi8zNqcv9xPPhuf/LQbboFq95rydorkXfcmPDc4gq8Rf4wXSZTXaLzwwfn8+I3jUbpCFN8kxjJx6pE4cuxyIIzEPdzHHEDHMlbYrdxXAY8E9OAFRuAeZD5xBeFKvIXrNfjEwPOgnz2FVnc8j+6ULxBC2mBwSQl6IibBq2Di5MxElkd9pJv1PgI1GYOXD85dv3ub9IsIVMTP3q1TqWtvL4GKlAXRs2eAHXotuLfz7lUzB6v9PnbEZNMClfOcKm6/hVy0zI9nUR/vEDXSLmhw0IaiHtErG0CPcmgCAtO1geFsH879/fKVATskSseOR+nClThdgB1y5ykEnnrXgxcszy4/96TyU4/rTw3vce+JDUbTdY9tEy71eYN/K+HaLIHKETbBG6oRDNyFs2hoh+CMeOemlcMT1v2CmRaXiEA1YdGGw4sJdkhgHOyRYaWqt40jytYvngKV3ev7l5l2SMUkCoI3wrhX26K8j0BlO0bHO1tHECEdNlTiPJ4zdy5m9txgG2oU3GDR0xiaAA+UFqal8rr2OOygGOwQ/cxx0xbk3uc4xopaJVOBmqiuVnaI4sJzp2HXgAu5scwuSN2lFeN60KPsn4DrgV0YHD7CXtppvusI1Aa8Ag8vdaaNax0fsiJoxNyS4hXeRG3H5gsec2WTvK9Ajdq2CXv5sCdrytqpo2/4QMq1FzzI6hieGXOrBtK//pGDwI7LLYEaR4LqFy8Nev7CoJOnovT97ghtP8xRrmyAAIZS8LpFtqoWnT+aFoQ+yYdBiaAJwJMxZVhVZeGbp9UHf3ge93g0Zwyq6ZL3C0K8oweVjVrVa4ov9ZLiiuK983wubExyjyrmYd2i7vn0n/91PATqOPSgdg2BqsYIIDKj/ugBxfbvwRiBHURvMP7KLjxGoAfypA0bRaEF6MmbjbGKlhGSNHSKHETuQN7u4gkEzYDxwpEjbWMIvV/+6RhHOX8JsRDy9e5jphlwPUj2Yd7nmw1i4wVyMHJkyZ+Rf5HHm7iJEK1c1B2ubUXFFFzwAeXNWVDHVZlFYezAXtKP/kTJV2iJqobPui2ucULtJVAT794RR8fUkZs2vn8fPmhtdEXSy1Sgcgts9OBPFPtpl2mYcn3E3qWgRV62wJyVFJqP/KYDkduxDyJudu+RWt4BU+/ecZJqg56gkWvPj7W0+YcIXX7APQlmUcYlk6u6p+xvLLOe7UAgH14b+OBes117FX/wKhaH4KlXLwLeI0+nBCo4Ai8HDo7EKyNjGagBH7uooQWP0eD1COs0IVB5z0wn6gj2DlLfXUKgco7il3BTevmcYhfO4T7GfXhmDyBh1FH4RV2IsYq9kHuxajaFML46b+oMcxn+sjCMwqMj9tMPaCi7S/QW96/LHYyNzODcFWo7P4/J7o1PGxhq7yNQOfl85GdwIZ4948YFcCj4BLm7nfuhnQQqN5AYr1AH4MU40jmo8zn+A256q2W+GQJVpc84gHFjyA2bfMn8iDG59n64OsunKV7lca0BcDvze3u558ViKTuEG8u374zQLjRyMS+YPZWYtO8stkeSsEf4Xe9RfL58yyaBqzKWK97AN9+26sPT+CSaJVBhPMZgh7BAVVzFRqrai7lTNc8+QyaOlB2izpwbzsB7H8weIj2oQIdw31JP5P0cjiBc85fhXc5jFXvykjrFU6AGC8g/k+M5wA4pg5u7da/W2bCVfryPQI2cPG7aUDz+lu2QGrZDUveqb8JCdc2h8RPVM6aes2Z4KmZ6acxhyg6Bm3TsAGw6tkNc40UzFajcsMUpqOL7d1Li/g1w4TPYIQjOaJfegxFwCXYIxvMH+g8w7ZAmYpzYm7bnd12ByryC51XZCdZZNMkredA5zC3htLySfB+BmkAPavwXk2OSteAU5hLz/OroG7ab2H7iwmqYRRfWmzsJPah/5DSaFbklUNWFWn+OHqulr+Ce97+32uN0sIBbKgEeLAt8LGCs9fmLBSq/EHx+VB4qmwU9Q8YdD4yfgg9/nC5wzGOBqlxr0CvKoihdUWlmdDP/GKkoVfzKwU7sinLm8Wx+KSSoMD9MfXsW0PBhPehXH5fTB8tHwCe7V7rD5Nwy7r2oUQP04Z737HbD6+vWl4JwzytY84kzfiKJ1vqazQjIsQHuZO6eOriycBRdrQgJtpd+RHmLECAFY67asrCrcnz3drRAHjDHrnAvMNc5FxgDgWW/pTBca0IjR1OyGoIQn+hhBEXZhah17jx+3NrKAYTye8D4Wk0hRPsLV1Sa+2njvzzWSwU42YAAJxyC3SpNCVSOHpiEyOUxPDHGYB8CI9VCfNUvnNMMrolch77ueOF3osIG53cb39Gfv6ymo1dczzgMSxW8iL/VC8GsU3usmR8NXQF8/IjcnEBrFo+74MzMbGSmOMTM1YwbQl0xu93paMAyYDyydwZ/eAOOSI4b14WKmQdVR74xlWvMtSSTybxQgIp6hKmodx59+vFIWrliFFWOL85k06xfR43DZFe7PV8CdhN390WpXKDsarcM0V6twi34tRu/IX37X6BWrQYBrki4VFFeD3hxTKfQ0g8pf+ESvGiZ19umGE8eU2TvLnADomn+cssUmm53QZeLr4bz4AYmnY06ROCM79lQt4HPPsX2Eqj28fAdv8F4srsjON3GswmBqqJ6WvwYO3GMoru2UvLcvtReWVgpfuyOIG7gxiUr2sTNOnXApqd+PmQGWvsHGreUQFXij287cIX6IIUV2yNKpDbcn6axEQl7hCMA43ZTnQxYzbZJ7C2SiOJrYJxYJi6+CfbkQo7CROItjot3ijon2w7hbzZ8rHtY2SGwRSwPDj/eQX26BahPzwAtmDuI1qwaRUuXjFKcZp9Lrn4nXiOSrXr2tlDy7mU8e8DPvnf5onsOwjuMXdTh5opgX6qAX/h9zu/AGFKrxXZtI+MghrbYjc3gjuAaHloAr4G2tkN+3IPjb4U31mG8g/ncXXYIj1uc8xFsCogzjNXWMDyA4z7w9UYwnCF5/ifzeur9DSz6HLaLy7253vLW/skRfdkOiW4AD/9yzdk9RyMOLUXeWAx54vPm8+cI3fULp7yq3fQNxbdge9c4Yme94lFws/4D7JB1bRLTwzlOCycaClR+ZvHoOrzCtgnzCmudhkXz5cEGYV6BQE3HK0rf8JCjF03qm9RRIFCVt+hTnA/uMRZPXBSHMK/wiYL/lDjFMiznWDq9usEe6RWmmdMG0kerR9HypaiLcMM6VPtq4z9t4uLrPuc6ApUNCSUv+aWAXgn2i/YQqOb2MCDZiLR3xhMWvs4sxteaZwpUGJRq7IfLeLVXdn0nEgiZbYCsDLQqqDeNfV5YievNtG8xgZ1bbjSTx/SjmTMG0aQJxTRmTBGi5BVRr16tHwzHdZqdbrJVBWrfEvKPxaD3cRMQnW00hUaMJB9y4bVl4SBNMeT8NC5fRG/uKUpeh3sdvxy4wBCwBWqweBDF1DrI4YecZcb182glfGCux385T9oYPne4q+Elwufe0jxpqZ2nn3pfgcr5TmOXkMfsEq7p6nm82CFu3Qa1fdgcFKhmgxcHRAGjoGHMbByDsacIhQmEn3+fSS9M2JgyjLdKnKrxYU4rKNbkyJ/kJmv0CBrVsHPQE9aIcYsNGi3lCEQwe8ZApIUAr4ztB17pS8UDO7bHutGTbeUFrSZQ2UWzDO59FQjqMxo58coRYAjPZFta65yjmMWdznmE8Uwp7xC3q7FLoLKYjePZ0y/i2bt2gZK3z9Xt9bVxzRKByu+B2CVwKHMJ52dmfnR5cxDnRRwFfoSrpH8kAi7BM+Z98iLasLTGd12B6nrf81OvukDTC1Q+B9MesQwO3oU1aX2p0+RgJIYKrobhQywq05REwuINbvxi65QFqV0asUNsgdotL0wLZ/SnqVP60fjx/Wk0eGNkDkbuteFwf3M6kpj97PH9d+FEXa8oD4HK702VhxSu9eqevYY8wJw/VPE99t6OApUb2eLXYIdcASdcgB1yE3aI7XUAO0QbNFpFrOV8n5zjMzRmHEXgNZUNApX6IJhi+XgEiRuPc0dMkbHjPHuxc1OgevFKeoHK97XZNO7SOtbNXpdX0BCOzrdM9I21ubq3ldYBzyibxx5e5Kl5cDQI1RBa7BdOL6ZpU4vRUD6ARo8Gr5T3o47KUtLOApVdfMG8IAXVK6Fc4hw16OCaYCMSRl8SwGZaeH+GAbelDIIT8PFVqwE3f3KxXw6qtdJ+M+DloloczNvk0xVl9NmnFbRgPnqY0JoQDvnRoup6oZh7yum/rSlQtYp5FP7wE5WWhfNoqjxjfrQit2FRucgwDsyAm2BkxxbkIvsqFeDEJVD9cCWp/R7Ld/zTdCHkl4f9IsP5cXTb4MpPKR+paVQOrjDO36OVsC0u5X0Fqmpx3r4eY8T2Q5SjYUi1yLsp0DrbHBSozlgLCMhkotb8oEXTHAPPHGDxEr8qlFEJfoLgNNCLmkBDFsDCf3z4cbfdZCy4zGU2n3jg6aznPTEfL4IvPh9Hq1ePpYL8oGqp7KiXgfcZtt3cVhOoGK8UWIIehBVrKFhaBhdSpBFp49y83HXGY0qT0RhFTyDY2Lb1lDi5MwWWS6CqYQLbN5JxDMu5UYh7beyW1dQWGCbRPkGS3Id8nx5U4/Ej8ONWim3/BsL0vmlcu8VY31IKrfyM8j5YjUbHnqoumkoZ5D6ntpiuI1C9DsB8kKYHNWFwozY+TbjxmwIVdgh7crneGV6HNO0Q287AGhnYIbZAHdi7kP7L78fQ2o9G0fDS3rBJ/LBJ3A1nnkfMjZlsP+K54+ePc3nHtm9AqjRXoD8vgco5NnfuwHP6LQThGfM55Pqxn8N2FKg2b/DY7eiOzaTv/Do1npQ7cdgOxXAUrWwinqNPVADHyM8HskOgcu8ce8f1QS/2CuaAVRRAg3/9kpMCtf5F8m+2OdL0oCbQSWbyitVR4rUP3g068xKWvkk0qyGcRTMXtmHANQ5PYz7zDd9r7L3BvXJ4HgrBI//tjxW0bu0YGjO6v7JHQuAV1beo9tO+f9pcoF69HqOfD0Vo7/4I3X2QpFuPk/QuyqTM47rYRYsNxLqFe0PZQGTXF9O4rLvc8xf2xS2XiTh881WXtatilNDkCuEt683nSuJ5bHhyZanlXJlsdLLBiQ+2/+3akfT7302gxQvLMa9rliYFKqdJmIIxHLPmq7FfjBK7W8cP7yf98G4zGIoFHecLDK/7DeXPW2jNab8vDjNfwxE4N/0ZAT0w9oEL6p5Fc3DWAhi4eRQ/tI8Sp/emWjbNtcxVkbMs9DHcYFsx2rBr92knGxOoWskECsxaTEFO99MfuQb7IzgJklfbpQYGZXQ9ImxePWLPSn0z+xT2Ja3fYPQIT6DgzLmUh3xsTqCr1JodOqXrSTp0pJb2H4jQibNxuo1xqPeeJ8AT/BJg0Y1vELBtGNouvra7TZKNUO7tZA8KdrlRZM38A4K2n301z4CByQ1kEKjcM9rKhdPhlA/tQWXDutNUCNT580pp1swS5V7Tyofq1LtrSqBSMXILz8Q9jbQLdjEe3cez+aP5bNrueeCd4Cq4532ECLHDSu1V2+07chTJ6zd8RcbhzaljIjhQYLrJhTqCw+mH9iBAG7wWvEoBxmX2HUL+EWPxDM9Tz57X2DmvTVs6z1OgYly+f/ISCsycTwHu/cQYMD8+PG5MR28wB4zjOjBO7sG4sVSAFOdcBpSD260IxgUYCtEJyqUrUTr4c4R+PBihO/dr6NajaqrGkAF2sdM0uIc7hqS395UBHkjCHuExpmmLaiiHHQJbBC8PfEz7QRmDjdkeaof2erBBbNdetmPYdnHZIabHl48GFXWj//j38fTpryqoZFjbeh6lvd4OXsgB1ziqrIqGbZ9Lfi/yT8Ozx/dvSam6d324Dx2X1EdX7TUxTAcNKEUIMFQKrwu8+8PTZrZpBO3UgdFOzG6unNWAI4F7ubki9ZbDIRfPmhzijp8RhAdfn8FINTeEQrMWUng6gssNL3Mfos2mk9EoRY4dVradcfksJZ+ioYqDo9mCH+fmn4zxo8A0AG8WxSGIys7eJMwhKtgTc8gpcIgdcJPfwRgmpvUDF45BwE3mQtSH6rxosytp2Y5v3IopXtnzE/QNeOXmw2p6U2ugHcnmFTSmpBWosEfQCM4NYGkLPE55rDprHHNopM0XsN0a4xW7MZ3tOy5cN0obYZp5BXCrBq8kN2yBa2D7dM/30//JWUo+q6TRo/phfseWNheoHEnv4SOd7t/X6eChKP3wU4yu/wLjEJXWmItvywUqwFckj4pRQhPgc7GJ36koez2uKV6O3/xC4Qp3KtWsOBGouIWbGoMKVzvC4HatGMZ2nimOkuhpSDy6gzGrd+u4tXU+gYo654iTA0rgwRmgJJ/za4Rx5/unXuGk2p1NoBJeynzuKnrp9LkUnjrdTNNhnXt6gQpxPnY2BafPg1sOXHPQ4skuy+3VK1wP3kZ/4laiR+COBw91uoSonD8diNKOQ+jBgvtWNgnUHgUh+uiDUlowr0S59Q4q7kH8cUfYaxSEHFrQpEDFWEitP7gEBphdEu/eYMznbTybv6Sezc4oUDn4WhHyBoMLky+eUPIJ+C+CYDgeRRuJQELTYUwjwAkHJvMX49lr6x5g6zw8BSobir0GgcdL4aZbRcFps5BGaxpFEMk9fvQQ6efhUsn8yMMeXIFanEvrhAL1BQI2PvxFp7t3Y3Tg4EPasech3cBvX7Avxqb3UfdSuh7UjAUqGsp5WIDB+ZO5p0OJTBCXPe7Ltj2YzJSrHbBmW4PfM/zBT8zAND78bdshLHbVNub8QX0K6T/+6wT6FF5dJcN6O9B3tQlPgap68IaQNrAEEW2n4/6dqYbheAlUrQTP3IwFFETUW38xAvPwe8/OQNDGYDYpUHlcfV+LQ54/BofcqStkixDhfBqCI7EwVe9sBDWEx0K7FORE0ZGXVkUX5uwMR/ZT8uKBFB9wnA7mkIHgEGQDUBwyeSpFMGY9fow55CR4HNfz8iHudW7IQcE2WsVcCs4AF45GYx24kOsDrorm8k7499VrU988hE1y4OAj+mHvQ7pwp5Z8AYtX8Ay3mkBljy4VEwP6yeYV5hBuYFfF5gjMc/SPrWmwgrsR3haqzEtdWaBayGFwb5K2bK9GPsMa2n8GyazhNskf3NH2Ks53iwUq74mBV2zPNz+3ijKx4wHAfNONj+ej8lRwAl6XpzFPCVp+aSDZLio06E/CL5vo1+tGIHJvBXo7yrBu1ywcwa0WLimxLV9jzMdlEytH1DcPk04nUJs6fWUo4B5iEh2BEPRrPqd8uK+0t4jjHlR2r4tuRh3w2BVlIPK9y0SEgpbLwPIv4D69loIlpWoW/6nd9T3FeJsbx515irD4uvAiDH7wBeV9uI6Co8eklnfiKU49swEBk/73t7X0+BVyhGFYgBoagGc48x5U5h7+8POODxfVIIFGFdVj0ro9qAEMCQjiZTusuJD+DeHb1300jkpKurBxifFg0W0b4eL2D8tNFHVh38dmbWT2tzMK1KbOnJ87vufwngkshnvyKuRTbqO0FulOReWm3rYBwxm+tKKrM5fwM2EWlZt6Fbhu5Rq4SG43uZ9T4zQofD3mNWnD0IC3+jMqgMu1VpDy4miwSQfMiER12rz5Gv39q6t04CR6JQIQJP6BePvj3JWdwHZBw9I8gQrPL6SpSigvDWDJxmADOwPHYRuFP3xstj00fLhnwy7OcsxQdolBARikQXzKhnRDjsLxtHbtOBo6RHpQ6/Sg2vjhmxtew6sQPAg5NGsxrCe2Bfe5a6y4f/qH6O1Hjs2Zc1xbtc+k/vA+RbbDntoK/uOI3lzHrmevqbPQymCHfPy7GDEbmgAAQABJREFUNsvX2tTx7eUc30IFWvv+b94eZ6WTFB+wvVS7A0MDtnxFyTtn7c1T33BrDqz4HeUjl21Hp7ZLnVTmU5u3XKOv/nmNfjiABio/3JqDA1Gf/IzjuebGKo+i4ldk1IMK+wYCNcUrzBc2r7hsF3Us872CFXBci1ea0D9w6gKvEPXrHaJ//xNsE/DKyPK+HmfcvrPavAfVvhxu/Dt/Pkqnz0Xp7PkI8qPW0unryMnIC+qVdhOoqpubKxE1w3XsPhW8bPv1yKMplX1ofEURVU0cSBMnFVP5iI6vtHpwtdtPTvAevYD8fUgyrwIN3LxI9PQm8HO9VDM8m6wTqCxMByKQ04hxavA/93aEx1UowZrhJbfOami5jMKwj1t1kLhxEb0Z10wi4iNwwJhyBCipnEq+vikXDf0C6uz80XrBnuBOMxzXU47WyvF4iSASsX8ASDULyrPnBp0Dl5w+w7mWa+kMPrefYmhAxgKVXxh44O17l41rLtbvZAJuN2itTOiIsthKZVxZbwRZ60eV4/pR1eRimoBovX36dC4DvpUuNaPdGMjtF+XAQciDp1+/hOBB4BNOn9Dcko0ClT0eSsaabr2VVerZ64hAQsbzZyrdj865CK9dpMQtuCG/hbFsF6Sd8o9DihjkItSRN9m4AA5hz5L6hcU2xt36y3BNCO4SBD+Gxo3vdO55up6gc+efID/qE/DHWzp7KUmnb8CuTmLMH0fS9GH8nEfJWKDCxTdhsCseelCV4HTtTAl4vCvddgbbHdxbavMQN5Sr3hF81+lhNd+x48t6gUOKYJP0pclVg1TE7969u1awRheiKqdyAxdf9wqc53w8IsqWjQLPnCTjIu5fF8d0pEBNvHpFMfBf3H722J5yB2N0X4fHdLYIVIKrsn/cdNgkVaRzHTCHuNMU2teW5QKVeeXMmSfQOK/p/MUknYIneTSBHKeKV1yp6ezrxXfmApXHoHKD+SswBGwXN4fUs13U7m09o3pKmTvYvvHqoOMVNRo1rCdNhtapULyCAEmVxdS/Xze1q478024Clfn3zdsEvXlj0LXryEn2w2v6evs7czxqPQTaT6CiltUYVJyA7f5rK1W0ZI0t6UmffjKSViwvR2TN7tSjZz51K/S+0epdQm7+RG+dyon6hqM4QiTt/R6BP3YAO/fTktmlZ51A5XFZs5FSZtEHKkKor0cPMz+oTQ6ZXXbL18KDxK7WXA9xJO2O7dmBABFbYGFhDCYXPh9O8YBckhSEm6FdqjF2gfPP2tECedVhMCQXr6LwnIWItIfrwccrsbm9i870zSlnXr8x+eTAz+9o8443tPckjy3NtAfVbtFk8sbHvodVTyrcciBMEwaPJWs9gfrRklKEbR9Js2aVUE80fvXAJ8TuGV20JCMR615+TdGf9iL9yhZ4ZsBIa27JRoGKxq7gotWUt2Ap+Xr1UlzSXq6Fbng5YIvN6dHDB1AH2+CZcSK1Cg/bwDg96gY+effSdDF0cYizIhrw2NgPLv6AQqM5cqfFj8oFzVmrwycS4M83b6L05nWULl99Sdu2PaC/bURDSRLpPODq6w94p9bKXKAiii/zBudYV2LTNAAVv6geD/Cz4hjLgmTe4TGmjv3BfIReD8edl3eDda1tPl46DCllRiCjwBDYIxaHBLsuh3i6+LrvMogedf8WoF7t+9fllt6RApW9ofhdnnwD/oPra4yfvUsH3WefdjprBCo3+iAln8MhbIfY8QPcV5jlApV55TU+N268hr55QF9ueEAvapBGhnklCA71KM0SqBCnagyq6hVl/nBxCO+7Aa9YdrnqiON16wlUF8esmDOU1q4ZSfPmlTq2SUelluFLsUu7CVT7gPx963Ytff3NU/p//vaMXlSzoWgZiWolEDhHrOLQyAhoYi7jBdwCwMX+trfh3xx9025heIOfvIxJG8vs1kj8arIC8SLQ8KId0DNMA/uGqWpSX+QlLKfFC0dQN+QGkpJCgHvxoshjpe/8O6ooQ4EKbCkPD2qPIoybWEihhQiUNGlKaqftNMW9Bhy2PbZvB3KJovfxHXpt4kg55FV4HAjEnjZgGMTpSgrPx8B/jPfoDIXT5qhcYtv+jPOPZHZKTGKIWEjd+1Cgag7qAAnNZ8zObNtOutaevS/ob189o2/3wCi0XVr4luRr5Y8yAhGsAAG7kkhYzZE21XrW9ZguwfY9DA7ANop/lEhlDnr/wnlOi/sW0MD++fTB0lJavqwcPR9D3n+HObplzfYtCDSEXMnXjmV+hfazWYyosQtXUt78Re2W7sl9ktEL5yj2426KH9yJVtjnaAjCfehlgPG9CDFN3YswthPjTvHs5c9dYPaUuXfYQdO1+3abkULP7sv8DFgAMD8WFeN6PkQdgB9LSjPfvgPXvHv3Ne3ac4e2bLtNt+4H6cnrQqqOg+/r2yM8B4HV2Jgk5g6n2LYIf7PNwetB8CvvC27Ywjyuc7ZDLA5KBWNkXrLc9Hg9Lxdgq/E8PxgChxSCQwppxbIScEgZTZqIsXlSKH79KkX52du7lZJv8ezV4NnzakBxY2U3uuA5DM5eSqEFSyhcOdG9RrtPq2jEfB2Hdlkc0oiIUxwCsc3v78oZKQ5p9zNOHVC/e4ciP+2h+L7tlHz2wKwDd17a1KreUzxevwAc0ncwGu2Yx8EhQ4d5r5sFc395/I52g1e2bb9NV25q9ORVIb2JsZcDc4TJE+ZlQLcgii/bGoTsAqniwSsYLpBA6jv+mFzi5hXwCBfFITyf+QT2jEdwNXNIAZZheSjgA6/kU3G/PFq8sIQ+QEfcjOmdC/cOEqjvIFDv0v/953v0/I1tLDLIAJcfQI6ox8EGQPYKbPxVJA+iN9PUJFEFXNEAGtvwPDWulCsbBqi5Db8UuLJQ7F4ux43Gmse/bQGrVtWQNNdPS2cOopkz4YJX2Z9GlBVR2fA+6OngSFdSbATeS6ByfryxMygwEZFmOTpkaVmHiD1OMh27c4uMWzfM3IRnjyDCZiM9Nwj4EaiEewpcYP3DR1CwdLjZc2oD0YHf7yVQMUZVG4MXG+pA5SjkOsjilwHDv2fvI/rbl/fo6x8e45nn4Gt2oxc4gJ999dybpM0BC1QEX8Uf2JhpRP1RE5jmlwNvw41k4B80lrWkDIPnxcK5g2jGtME0alRfxSccEElKXQTeS6CiFzIwAXxSMdF8Nkv42YTx1s5F5Tm9fZP0m9fJOHMcLmxH0OhlRQd3nwuCt3BApMBEfNDLyClxlJiz30/udTtg+r0EKrtQwlD2IxBKwObHXuhtzYLy6nWEbt58hR6Pl3Ti9BsEcXxHp2/W4NkHf7B4VIVtEhiS4AK2SUzusC8O9oiyWbiBnPmDDT9sy+Phefypsi3sdfFt17Nth/Byh4fQeKvGozJP4dj8sVx8S4uZQwbTjKmDwCF9qKysj/Locu25y05yY3P8Nr/LkZP47Am48eLZ83JBdyOEqNn+CtyzbIeMgCcDnsOOHtrCmQXizCHwilIcchHXUY2G8/oFDULaaNgjzCGjxqY4pP567fg78fqVee5oMGc3av0cXHif3c78DPpyICXmkKoUh/Tslfn2nWzNd+9idPPWS/DKKzp1Brxy5C0dvQQRaj/X6pm3ecXMZsIdbKnCNoita5gjmFfAB4pXsJ7DK+AKW4SqjdlusewXS/qoMe2KZ3gFXm4tABcVY2jAIrZNpg9ESpl+ilc623j2DhKor+jrf16h/+t/XqWnrxG+HZWjjEoQtA8fJT+5QogNTasw8FhmBjnilwEv5485j9cygx/xC4KXo3ALZIOWSVS2xjeH1cPKx3EFJwhgtPB//Mt4+gzh29kPm3Od8oerXUoKgfcSqIg6F1r9BeUjgA+7tWkcna0jXMBgICQxlhO+WBQ9eQwBh75Bigi4yXoU38TFFF6DfF5z5uNWw73G52wbGh7rt+es9xKoSCcTXPVbyl+11ozUy73afE1ZXHbvvU1//8dV+sfW23j2ISyZ7LkF0asoQvdaUH8eOETtwuKS+osz/D21oh/96Xfj6eN1FdQTLnnMJT57WEGG++gKq72PQFXDBPjZnDW3Y59NuEoxnyRra6h22yYViCX58ErDamNXZA5GtvpjlQ5HcUknevbeR6BqY2aBHxFEafFyqw743WpbRw0h6Exz2N03YWBEl5Gg3bvv0JdfX6Nvd95NcQhOVqWqgo2RUMYlbAvH2MNC5XrL9ofVQK5sFt6Ir585Fe8Yp+eU3xs8D3yi9sW2i1U87RS2S8xtplf0p3/5/VgELhlL3buHhENs3Pibnz122cXzxxwS2/QlxrKfdq/RcBqNzqE1X1ABAn9pyHneYXaI+8xsDql+RzXMIZv/USeYk7NqXnfkYP8d5a0ChwwZap57R3OIy57ifOsqgGNzXJXHIesAc8jCJR3L4w7ILZvgxioDvGKAVw78fJ++Bq/8ZdMtPPdouFIN3mxT2FqHhyQxF7j4wOIV1kIm7/AybKN4hbnFg0Mw1ykWb2ADk2tc+katYy2vQMfbv/1xLGyTMdQXHhpK63Qy26RDBOqTp9V09OhDtFg+xLhUdpkxKBaLocXhDV28/pZe1aDnApVsVor1zciqirNefvZyrgRbMNjz7FYFFqqqMry3KUCv6LgRPWgkPgUF8JNHCQQ0mjenhKZPH0rDhmZvK466mDb8oz+4RzEVMvwg2hFcD1eaY/oGImz41JmUN3lau4VyT3M6alH85g1cx1HST6LF0qP40XMaRh7G4JixHks7dhbnJYzyuR/7mbhXOJOi9YZbE9JGhFEH7RaSPpMTa8E6Fy4+pcNHHtJJBD4xiV6n509r6ApaMC/fQVABu8GqBcdozqY+v4bx671oVHkvmjhhAM2ePZSmTx1KeXkmxzRnX11l3egZpDA5foSM6x7CrhEQuMU9PBXP5qgxjazRvrOTehwNXsfVdSTu3W5wcDaGA9MQVRQpW/xFfRss7+gZKvga18Glcxmfin90BQVRB+HxEzLepjOuyAFOmEMOH/mFbtx6RheuPqe3yPVY1+bgxm3LHrHHdSmbhG0QzLd5RglONg7Z/sA2EB+edoi9LwbEsm2GwFAcU94dqWPgCWAZpCXImTx71hCaNnUwdYZxYZ2x/vicIqdO4Nk7TImbGLaTpvgGD8U9y+/AKe2WzinN6dRZlIQdbHIIruPB3TrL+IfWoyc4xHx/+/sUNVje0TN4uIPi8cvnMz4V/1jEwpgyncII0phr5Qp4hHnl6PHHuDTucNPp1YsIbJM3sE3eqMaxlNZhrgBnKP6AZlHPPzZxGtsb0Tr1ecdDEw1Eb+nY8p7oJcUQO4tXBg4opDmzh8A2GYIhjBiq0QlLhwjU2lqdWKQ+eVJN8TiLmwRV18Ro377btHn7Lbp6j8eRsqhkkmdyt0heqXuexxVlLVetCViuijU/w2240tatGk6LF5VS36ICcw8QuwMGdFMRrGTcqYLE808CLX2Jp09Jf4oHz35APNdMzeSUAwEka+bosu2dniV1FnWnEghQYOA6jGdP6y6wfvn7wB2Iz7kTuq0la2tx7k9QBxBmOpNf00ULI9gTrsffD3XQTrkWmz6rlq3x4kWt4pMXIH7mEhAEXb/+HOPLbtK3O+D+hZbM9ixBeGF8+mEZLVk0nMZXDqABiIbXr3834jQzUrwR4OePP4nXGHuVYWEDje/jTvNsQojwNfDzmHz3ruFVBIOK//j50/J4rGPnKomXLxSfGC9fZnxifg7wxHzSCY3ljC8CKz5nDoE9cgcNWnv33aSN227Q7UcY76UeWbY5MOE0hINP2MZwlmG5h1FYV8xa67htF2WnwP6xjVLsYz6ie69YVoohRkPMfWJeIQIz9sf4U46q6UfjlxRvBJxnDwEE0xWtsNB8DjnKfUf3PtY/UfQGsz2iOKQabqH1S4g5BJG1+f0d7nwcYrx4ruxC41UzOKR3b2UTZjuH1K8q/v3qVUTZJs+e8dBD0za5c+clbJPb9O22WxSJY56bV5TWwaoOt7h5x2oc4x3b+od7X3kbLoqjbC8Na57FS9OROWDlByW0YP4wrGhyUX5+ALzCWqeQgp000FqHCFQFZr0/794hsu/2K/T1txfpzEXc3LZrrqoAFrFcOWaJRBL0tjZBtVy5qtLt5TxO1E8hilEBxosUsqufU1Apdtd3IES+ghANL+9Nv/l8HK36cDQN6N/+Y5ecU5MJQUAQaFUELl1+Qps2X6K//OMSxZBaorHC7jhvq+P0LqJD4zOP1C3sjpsPo6B7QSDjiLv5YT/98bfjEG1zDMaMwQiSIggIAlmBwMtXtbBDLiOf4SW6dP2V65zZYmTjD3aEZZNwQ/vb2jhFYuz6C9uD7QsuvJzHoqqCUaoQlQXBAHUvDJqGYBrbZiWi9H4MV96FC0ZY28uXICAI5BICN248o01bLiNuxiV6U802h5tX2FaxtQ7bJklkOklQnG0Tu0HL8rZgF+C8oEY9CqB5QuAnO0iSWs/SRhbXLJxbTJ+sG4WMJCOzCspOI1CjSKDNRuX584/p6TN2V2SVzy8Frix3pRHdufsG7nxP6eh5DkSB5XYLApkCdQw9p6rgL1QedveKsUA198m5H4OV46jP+DLkERtAY8cMwNgOidILMKUIAjmBwOPHb+nipcfIefhYjQdp7KK4d/XsObj3wQXnLqLv1S8sTudM6U+TJg2goj759Rd7/g4gOl4lek7HjR3QKXKJeZ6kzBQEBIEGCNRCcF66/FjZIdyrmiq2PcJzTJvk5q1XCK70mE5ehB3iJVAtV72CcAgcgtzHE/uRmbPU3pdt19gGKcEFrzdVjBvQpfOtpzCXKUEg9xB49qzasU1iMeYA1jlcmAfsj5pBZ88+pSMnn9LNh/DmqFfYU2tOFXhlUj/VC+qtmXjfGoYr9kSO034qGFK93XTqn51GoCbg5lIDN9/q6hhaC7jS6pcUiZ8+/Yg2bL5Cf91w1VzJcZExBeoK/21a0/MiTe91p/5O8FvDOEjks1yxmgomV1EhelIL4EIj7nceUMksQSBLEYjFDDVsgPnEJH3vC+H1tu+4iqjil+kIhGr9UoRcpX/6YiytXjUq4zHpHNuT3fKYV0Kd1HWm/nXKb0FAEMAIdrZDwBk85KiuRwWLyrrl2LF7tGHTFfpqy/VGBCobh0hb16uQ/vDrkfCoKKfBgzEGrEFJ2TZ54aDijvx8Ga/eACaZIQjkAAI8rJHtEuYYFTanwTWZfMDLdsA2+ed3V+ink7/AjAGfKC8N6CP0khbAU+tffzOGPlozWmUHaLAb14ww4u2wPVJoxdpxLerUk51GoDYHpctXnmC86k3aueuWazO8QJRftp+qXl2geTUHqTJ0w7U8NemfvZbC6z6nPAR3kCIICAJdF4E43PN+3HiMvv/LIbp0LMUnWs8i8g3qT0XlA5G/dATNnz8cqR0kPUzXvVPkygWBugicPXSFdn91BB/k7lWGo90TwgakQVovxC4YNJD6lQ9C7tJSjP8qwVAi5MGVIggIAoJAEwiwTD1w8BZyqt6k00fukfHwGSWfPkcrGoK3IbBsQV6IVv6XObTksxk0bFRxE3vLzsVZKVCfPa+mu3dfqU9d2LmVU6Pel4/RwFPbqN+T43UXW79EoHrCIjMFgS6HgBGL0/VNe+j6V1vp5eWzzvVrI6ZSaMYM6lZVSSUlvVXvqQRNc+CRCUGgyyPw8PBpuvbN93Tv++3Agm0Pl0CFq55WPoNCM2dS96rxiMrbS7nZsWeFFEFAEBAEMkHg7j3WOS/p8RVkzThyjAxkbKA4B6BKUiBYQGW/XkvlnyynPiNLM9ld1q2TlQK1KZRrD/xI0Q1fUuLkTs9VRaB6wiIzBYEuhwCH9a/ZsoFiG/5KyfsXnev3TV4OL4tfU/7cBc48mRAEBAFBwEYgcuRn2Blfk3Fkiz2rzrd/2koKr/015c2eW2e+/BAEBAFBoDkI6PfvUe2mbyi+5S/Ip2RFqfZjaOKK31H+2s8oWD6qObvLmnVFoGZNVcmJCgKCQGsjIAK1tRGV/QkCXQMBEahdo57lKgWBjkZABGpH10ArHl96UFsRTNmVIJDDCIhAzeHKlUsTBNoQARGobQiu7FoQEAQcBESgOlBk/4QI1OyvQ7kCQaA9EBCB2h4oyzEEgdxDQARq7tWpXJEg0BkREIHaGWvlPc9JBOp7AiebCQJdDAERqF2swuVyBYFWQkAEaisBKbsRBASBtAiIQE0LT3YtFIGaXfUlZysIdBQCIlA7Cnk5riCQ3QiIQM3u+pOzFwSyBQERqNlSUxmcpwjUDECSVQSBLoxA4vUrMp48Jv3RQ4of3k/64d1Erx44iEgUXwcKmRAEBAEPBESgeoAiswQBQaDVERCB2uqQdtwORaB2HPZyZEEgGxCI37hGseNHKH78Z0o8vEP07C7yi9U6py4C1YFCJgQBQcADARGoHqDILEFAEGh1BESgtjqkHbdDEagdh70cWRDIBgQiJ49TbOt60n9aj5zXBj4JfJLOqYtAdaCQCUFAEPBAQASqBygySxAQBFodARGorQ5px+1QBGrHYS9HFgSyAQH97h2KXThH+vlTZNy4TMm7F5EA+61z6iJQHShkQhAQBDwQEIHqAYrMEgQEgVZHQARqq0PacTsUgdpx2MuRBYFsQCBZW0OJN2/IePGcoj/uovjeLURPbzmnLgLVgUImBAFBwAMBEageoMgsQUAQaHUERKC2OqQdt0MRqB2HvRxZEMgmBCSKbzbVlpyrINB5EBCB2nnqQs5EEMhlBESg5lDtikDNocqUSxEE2hABEahtCK7sWhDIYQREoOZw5cqlCQKdCAERqJ2oMlp6KiJQW4qgbC8IdA0ERKB2jXqWqxQEWhsBEaitjajsTxAQBLwQEIHqhUqWzhOBmqUVJ6ctCLQzAiJQ2xlwOZwgkCMIiEDNkYqUyxAEOjkCIlA7eQU15/REoDYHLVlXEOi6CIhA7bp1L1cuCLQEARGoLUFPthUEBIFMERCBmilSWbBe5Ohhiu3YRPrh74n0CJERN/McWufOETpDK9dS3uRppIXzSMsLE/n8WXBlcoqCgCDQmgiIQG1NNGVfgkDXQUDlUv5hC+n7NxPFG9oZ/mkrKbz215Q3e27XAUWuVBAQBFodAW+BGqTA/E8otGINhUaOUTqG9QxpWqsfv6N2qCVROurgbXVc/c5til2+SMbl86RfOUfJW+eIou9ShxtQToGxk8k/djwFRo2hYPko8hV2Sy2XKUFAEOgSCIhA7RLVLBcpCLQ6Avr9u7AzLpFxCfmUr5yn5M2zyKX8xjmOCFQHCpkQBASBFiDgKVA1H2nDxpN/XBUFxkDLjByttIwWCLTgSJ1r05wUqMlIhBI11ZR49owiu7ZTfPd6opcPUsj7g0ShQtIGDqfQcvSkLl5O/n79U8tlShAQBLoEAiJQu0Q1y0UKAq2OQDIaoWRNDRkvX1Jk9w6K79pQJ5eyCNRWh1x2KAh0SQS8BSp6Sv0honAh+UZWUWjZasqHltHC8AjNkZKTAtWum8Tbt1Sz+TuKbfxrnReHvZwKiyj40R+pYM0n5B9Y7MyWCUFAEOgaCDQmULWyKRSct4yCU6aTv6gv+fv0UcMBugYqcpWCgCCQKQLJSC3VbNlAsQ1/peTDK85mWvk0k0MwlMjfp0h9csl4dC5UJgQBQaBNEfAUqK4jaoNGU2jt76Fl1sHVN9+1JLsnRaCKQM3uO1jOXhBoAQKNCVTq1pe0weXkL8MQAIjU0EQMCYBQlSIICAKCgBuBxgQqde9ncsiIsRSsmkahSeAQCFUpgoAgIAg0BwERqM1BK0vWzagHdc0fKB89qIFi7kHNncHFWVJFcpqCQIcioATqVvR+rP8bJe9ftM7FNSwfQwGCq/5I+R/9igIlpR16rnJwQUAQ6HwINCpQ7VPN6w4OgZ3x0acUGDrMnivfgoAgIAhkhIApUL+l+Na/ENXa49xTdor0oGYEY+daqUmBGswnX8VsClTNUAOMA0NLKDB4SOe6CDkbQUAQaDMEkrpO0XOnST91gvRLZylx9yrRszupqN8iUNsMe9mxIJALCIhAzYValGsQBDovAomXLyh65hTpp4+Tfv0SJe9dI3r72DlhEagOFNkz0aRARRQsKsDYst79yT9xJoXmLaK86bOy5wLlTAUBQaBlCCCIuQHyT7x4TvFrVym+fxcZx35AaqqYuV8RqC3DV7YWBHIcARGoOV7BcnmCQAcjkIxFYaO8IB22SvzkMYr/9AMlrx11zkoEqgNF9kwkqqspsncnxXZtpcRNpJqJvDUNT4/MOtqwSgouQ0TfBUuQcgYRfpF2RgshQpYUQUAQ6BIIxG/doMjGbyi+HW40nNeQC7wsAvPXUmjJSgqWlYMXEDFPUlKZ2MhfQUAQoGQ0SrX7dlFs5xZKXD1t2RlReGFYLnho5FIcshQcUlqmbAu2MaQIAoKAINBcBCKHDlB049dkHN2W2rRvKQWXQL8s+YB8vfsoG0XLQ07ULC85HSSJx5fFblwj49oV0pET1bh4Cl3jF1Lue+7K69aPfOWV5B+FfELjKik0Zhz5+w9wryHTgoAgkMMIeApUn5+0IeCCUeAGzjU2toLCY8ZiuDq8L6QIAoJAl0eAhwnoN65T/LplZ1yAnXEHDeJJw8TGFyBtqMUhyL0eHFOh7IsuD5wAIAgIAs1GwFOg5vUgbXglBaBf/OPGg18qcmK8e04LVG7B5NZN7h6PXbpAsR2bSP/pO2+ByganlR81uPwzyvtgDQVHj2n2zSMbCAKCQHYi4ClQNQRO0/xEgRBpo6dTeOXHVLBsBbgC86QIAoKAIMB2BmwMtjVi169SbDvsjH3fwFsrbmLjcEiYfOMwlGjFOpNDeL4UQUAQEASagYCnQGX9goYwCoQpMHc1hVaiN3Xy1GbstXOumtsC1YW5fu8uRY/8TPFD+yjxCEFQXjwkilW71rAm8dLQKuZRcNZCCqIn1d8P41PRk6oFUPlSBAFBIGcRMH55RJGjh0g/9CMl7t2g5PMHRFEMC7BL0TAKzFgCbphHgQHF4IX+5OvR014q34KAINDFEdAfPVR2BnOIcf8m7AzmkHcpVOCKF5i5hELgELYr+OPr3iO1XKYEAUFAEEiDQOzyRYodOUjxYwco+QT88hJaxo6Zge20sskUnL0Y3l7jnb1osFMCzDfQM9lUuoxATbx9Q8ajR6Q/ekDxE0dIP7qP6MmNhnXFrZrd+5M2sFS5+wanzaa8qdNIyy9ouK7MEQQEgZxBgMesG788BEfgc+oYOOInSj6wU8/gMoMFpPUbRr5BMDLBC6GpMyg4fETOXL9ciCAgCLQMgUT1O9gZFoecPEr6MXDIw8upnWI8aopD5lAYHBIoHZ5aLlOCgCAgCKRBwEBAR7ZRDHS66ccOkn58HyL6PkltUYjArwNKyVeUGqLoGzGaglNnZl2vapcRqKnaQxqhPTspuuUbSpz7iSjB40QQzMAOaOBesc9QCq36DeV/uJZ8vXqbvaji2udGSKYFgZxEoPanvRTd8CUlTu/2vD7/zDUUXvMrCldNgbsvxpixhwU3bkkRBAQBQQAI1O7dhaBrX1Ly7D5PPPxz1lF49ScUnlglHOKJkMwUBASBxhBI1tZQzY6tFNv8FSXvnjeHLiodk8qPam+rlU6i0OrPqWDFargBW/aKr/PH0eiSAjV+5TLFzp9B0KSzZNy4iF6SK3W6yO1KJQw89o2dToEJU8hfjhYI9JYEBg12FsuEICAI5CYCTQlUFTipEtzAwwCGl1No+HDxssjNW0GuShB4LwSaEqjaUAQ0qZymOCQADgkyh+Tlv9exZCNBQBDoWggk4wgCe+E8xVnLXDpHxq1LRI/hFZpMNASiJ4YkVbCWmUx+ZCMIlo4gf9++DdfrZHO6pEDl/KiJN69Jv3+PYnt/IH3/ZjR3vmpYNYjgSeHuRN36YOzZIgotXJZ1XeQNL0rmCAKCQFMINCVQOf0MFfQibdgoCi1aSXnzF5O/T5+mdivLBQFBoIsg0JRAVRxS2Jt8JWPAISvAIYuUp1YXgUcuUxAQBFqCQCJBPHQx8fo1xa5eovje78k4gtQzyiu03o45AGw+4mV070PBhasob+FSCo4cXW+lzvezSwpUuxoMJL6N7N+jKjb5DAONUZLcRf72BVENBGtCt1clrXwqBRd9SOEp01Pz0Nrp69nTDJQi7n0OLjIhCGQ7ApGTxyn24y4yTux3LiVZi6Bq1S8RXK0G8yw3mvxeFJiHqHlovPL3KTLXRUQ9mxdyIReZA4BMCAKCQMYIRI4fNTnk1EFnG5NDYF8oDrFmY8yYzSGBwUOVPeHrjoZxKYKAICAIZICAfvc2RX6CltmzjZIvHpl2iitwUmoXGvmqEKQNDWKh8ROIgyf5eqKhvZMOXezSApV9uGO3b6FrHBE7ESBFFbQ+6GdOkHHhSN2Bxz0QybdkLPmHljp17SseQsHKSRSuqJS0Ew4qMiEIZD8C+sMHpN++ScaD+87FJB4gKMHZY8hxeIZbssz5fqSfGTwabr5ISVVYqOZpgSBcaaooVDGB/AMGOtvLhCAgCHQdBHRwRxwckgCX2MW4f4eMs0fNPKl2IxdSQ9gc4h8/EYbjRAqOkhR3NmbyLQgIAukRSLx6Ca65RTq0jHHuFOnnoF+eI1tJg4I4GchG4B8OLTMaed0nsH6BUC3onEFgu7RAVXlSDQRJ4o/lt53UDapFHjM18Pj+hVT1qh5SDCp29ZRqwzHweA0GHq9cQ1oQXehSBAFBIDcQACckmRdc7jLRi8ilvOU70n9EjkN7nIfiA5A+5yGzC0RrYMVvEVxtneRStjGRb0GgqyHgxSHnzyJA43dk7Od87FYjl4tDfJMWIXDSp5S/cElXQ0uuVxAQBN4XAdgjrF1Yy9Tu20XRTV9T8vLP3ntjW4U5p99w6JcvoF8+Il/v3t7rdvDcri1QvcCHQcruffHjh0m/cJqSj24jzxBaQG2D1L0NBh4HpiygwPTZ5B8yjILFg1DRMg7NDZFMCwK5goDKpcypI44epMT9W8hBdrtujkP7QvEC0MbOpuC0uchFVkGB4sHkBzdILmUbIPkWBLomAuyKFz3BKawOUOLBbXAIejlirjypA0dSYOp8Ck5CdHCraN16qOCMikM6qSuefa7yLQgIAh2LQBSNYPHjSKV59ji8N26hJ/UehGu84Unl9ST/ZOiXaXOQ6qrM5JhOlidVBGr9akOrpvH0Cen8uX6F9J+RcPvkbu8ov3DNoV7FyGs2mIIzF1B45pysGHhc/5LltyAgCDSNQOIdgqs9fQpueEzxw0iUfWgXouZdb7ght04WFpFWNAhuNBMoOGs+5U2fhSi/EqGzIVgyRxDoOghwgEbj2RMynjCHHDA55MnNFADIk0p90JhVlBoa4B9SSsHZC0wOCcPmkCIICAKCQCMIcJ7UBPRL/M5t0g/9iMYw2CmeQWCRGq8nhi72G0KBqpkUmjWPwnD57UxFBGqa2uAek8jObRTbAZe+149Nkepy+XNv6p+zlsJrP6c8JN6WIggIArmNAEfojO3YgPFkB4j0qBlQzXbZc186xnsEP4DL3vJVyrtCy8N4s2DIvYZMCwKCQBdEoHb3DxTdvoESF+CKl45D+pZSaMWnlMccwgFNhEO64N0ilywINA+BxMsXVPvDdtgp38ET9JrFMXAD9ijaaAjUlZ9Q3twFpIXzTI5BfveOLiJQ09QADzyOXblE+qXzZFzG59pZuPumgqa4NxWB6kZDpgWB3EYgfu0qxS9fIJ154co5BD1BomyvqHnIpayVV1GgYhIFRo1VHhaBIUNzGxy5OkFAEGgSgfhV5GO/fBE5DMEhV89S8i5iXjTiiqeNAoeMc3HI4CFN7l9WEAQEga6LQLIGQWChX9hOUfoFHOPp8cUQ9R5C/jHIkTpuAuwUpL0qH9UphiuKQE1z/yb1OKL71lCippqiR36m2A+bGh14LAI1DZCySBDIMQSY/JkX1LjUXdtJ37cebjSvG14lByTgnKl53SgwazmFln5IeVOmNVxP5ggCgkCXQoD5g+2LOMalxnZtA4dswJj2tw0xcDikOwXmrKDw0pUUrkqNUW24gcwRBASBLo8AAiYpjoGtEj17muI7t5BxfIc3LD70loYQyRcuv6Fl6yhvyXIKlAz3Xrcd54pAzRDs6LkzFDuwj/RjPyHPENx93z2rkydVBGqGQMpqgkAOIcDjPaI/76f4/t1k3LlqDgWIuoKeuK7VN3k5hT/+DeXPme+aK5OCgCDQlREwnj2liMUhiXtwxXv9xDv4GkDyT4M4Xfdryps1tytDJtcuCAgCzUAgfv0a7JQfYafsNPXL26emy2/9fUCo+qcso+C8JSrVlQ+53VV+dx8a2jugiEDNEHQV1ABjUjlnqn7yMMaeHSSqeelsLQLVgUImBIEug0Cytpb0+8iPeu8O6efPgBt+hqveOc/rF4HqCYvMFAS6NALsjcEcEgeHGOdOk34KHHLPleLOhY4IVBcYMikICAIZIWC8eKE4xoC3hn4KmQhOQb+8etBwW/bWKBpKvqEjyT8WAR4nTaXwxKoOS6MpArVhFaWZkySOwlezeT3FNv6V6ClCOFtFBKqNhHwLAl0TgcixIxTd+DUZhzYhLRVjYOU5tOAQgdo17wu5akEgUwQiGEqkOOTIVk8OEYGaKZKyniAgCDRAAIEca7ZupOiGv1Py5ilrcV07xd5GGzSaQmt/TwVr1iFoUsdkIBCBatdGE9/G41/Qwmn3oB5BS6f0oDYBmSwWBLoUAvrtmxQ9fZL008cocec6IuchBU2s2sFABKoDhUwIAoKABwLxmzcodsbikLs2h9Q4a4pAdaCQCUFAEHgPBNR41FPHybh4hoy7GFLAHW0e2UlEoL4HuB21CVeqGoN69EdKvsIYkXfPZQxqR1WGHFcQ6IQIqDypCO2uP0EOsgN78UFAgud3nTMVgepAIROCgCDggQB7aHF6CP0JGsT3WxziyhwgAtUDNJklCAgCGSPA/MIuv/Fb1yn+E2JnHIGdEq9tsL0I1AaQdIYZcOOt5uh6+MRizglFjx2m2M7NEsXXQUQmBAFBwI1AMhpR3JF4/Yqiu79HZM6NRE9uOKuIQHWgkAlBQBDwQCAZAYcgui8bkRHkSY3vQnTwZ7edNUWgOlDIhCAgCLQAAf3+Pard9A3Ft/yZKNIwergI1BaA22abJhIUVblPL1Dil9Qg4sSdm2Rc5zyoqXnuc5AxqG40ZFoQ6HoIMOGbeQ3PkX7lPCVvIViSK/WMCNSud0/IFQsCzUGA01YpDrkIDrlqcUjkjbMLEagOFDIhCAgCLUBABGoLwOuoTZPIHVS7cztFt2+g5LWTqdMw0JuKvKiUNFLzXFMiUF1gyKQg0AUR4PGn0e83k/4jek7jEXMIQDLhICEC1YFCJgQBQcADgcjJ4xRjDtmPQGvxaAMOEYHqAZrMEgQEgWYjIAK12ZC1zwbGs2ekP32MsaSpNDH2kVmgxg/tJ/3IbqIX9+zZqW8Ow9y9H2l9hxAVdnPmB6fNpfCMORQcOcqZJxOCgCCQmwhw7kL9CTgE7rx20a9cBHfsRcPWMXtWnW8RqHXgkB+CQJdGwHj6xOSQN68dHPRL500OuXHCmeeeEIHqRkOmBQFBIBMEEm/fkIHYGAbGttslAf6JH/qRjBPQOjoa1LmwvunWF/pmMNLMTKLgzLmUN30WaaGQubyd/3bJKL4qitVx5DK9erEh3HDxTTy8TcmnCG4ST0XPc1b0BclXOY8C0+eSf0BxavbAYgoWDyJf7z7OPJkQBASB3EQgikibcYxLN65fdi4w8RyC9fEdBFB75sxzT4hAdaMh04JA10YgcuoEOOQQJW5edYBIPPvF5JBqBGH0KCJQPUCRWYKAIJAWAf3OLYoeR/7TY8g+YpVEzTtKQuuoYYu2Z6jPT1rFXApOh8YZPZYC0DSBgYOI/H57s3b9zk2Bil7QpK4T4dur1O75gaKbv0ZPx1Gvxd7zuGVB04jye1Hwwy8of+VaCpQO915X5goCgkD2IYDGqaQB3tDBG8gXlq7UYBhAbAs4pJGeDmdb5gwCd/h85J+xksKrf0V5M+c4i2VCEBAEcggBh0PAI+kphGq+30qxzV9R8vZpDwDAG8wdyu4Af1jFP2uVySHTZ9qz5FsQEAS6KAJK57DWAe+kK9Fzpym6dT0ZBxB0zavY+ibcjYIrf0t5H66lYFm515rtOi8nBar+6CHpt26QgaAlXkXn/D/njqDl4L7XYu95PQaQr3Qc+UeiVaGyikIVleQv6uu9rswVBASBrEMgAVe7+K2bijvIFcHb60L086fIOI8GrlfeQdOcbUIFpA0ZQ/4R4I3xcJkZP4GCw0c4i2VCEBAEcgcBjuDtcEgcMSvSFP3cSXAI7JDXjxquxQZj/zLyl40lrU/KzgiMrqDQ+InSON4QMZkjCHQpBFic6rdvgW9uUBJRv9MV495taJ5jlLyLwI1ehYctQt8Eyl36pl9/rzXbdV5OCtTo6RMU3bsT3dk/eoP5DuPGavEx0r9A3Btr5dMotPhDCk2fTb4ePfDp2WF+2e7zkmlBQBBoHQT0B/cp8uNuiu/dhjRTqciZnnt/h/HrHKG3KQ7pNYiCC1ZTaOEyCvQfQBp4w1dY6LlLmSkICALZjQBH4XU4pPZd+otJxyFwtfNPX0nBxSsoWFrm7MfXrTs4BPZHgXCIA4pMCAJdEAFOSVW7fx/F9+wg486V9AhEqomqYbN45DvlDbXhVeAaeGfMmku+7rBRwDFaOJx+n+2wNLsFKtzwEm/e4POakpFUotnYyWMU2wMjsykXXm6lDHfHoODeRMH0g4ADU+YpIzNv8tR2qBY5hCAgCLQlAsmaGsUbHDzALipNzN7vyTi0FcIzlQPZXu75zRySxxyCseeBYINV/EPLKbjoA8qft4i0goIGy2WGICAIZCcCnK80Cdsj8TaVQ1C/e4die2EwHt4Ot7sMG8AVh/Qw7RCLQ7RwPgUXfkh5C5ZQoKQ0OwGSsxYEBIEWIcDaRumb2pS+sXeYgOaJ7UOD+r7NTXuD+mGb5PdEgFfvGDmBqtnQN8spb+p0e/ed4ju7BSr8rqMXzlEc/tWJhyl33sT9O5S4fYnoTSpilSfawTzSRk+n4ISppPWESE1T/IOHwK2mjAKDBqdZSxYJAoJANiCgDMnzZ0i/eNY5XY7qbdwEbzy+0Wg6KWdleyIIF94x4JCJ4BC0PNYvWi+MWS8doVzytGBDAVt/ffktCAgC2YEABx6JnT9L+qWU2xy72hm3bA5JPy7MucpQIfnGTqcA2yHdIFS5BAIUwFCAIOJc+Hqlt03MDeSvICAI5BoCrG906BsDmqZBwRAC4+ZlSt5DoMYYekjTlZ7F5B8/AxwzxXMtH4Ih8dCjAHROZypZLVA5oEntjq1mwKMbrpylnHuQg5y4chB6gl7Qxwx4hAHB7oi8nuv6faT5Ax0WzcrznGSmICAIvBcCEfay2LIe+QbXp7a3OUMFSGoiwom9FUKyBz/8LeUzh3iN2fAh0Al4QwtwFDxMSxEEBIGcQCBy7AgCj3xHxsFNqet5Hw5BfAuTQz6qG9cCIlXj6JkIsCZFEBAEuhgC4BIOpKYCul71Tl1HCQ4Ey1onvb2iDZ9EodWfU8GKNd4gdlJ90+kFqvH4F9IfPaDEi4Zh15NGAuNMfyb9OMaaNhWsJJhPWr8S8g0uBeGzsQhzsRcE6rTZFIbbrrRSKkjkjyCQswjwmA3mEv0hgqidOwXu2E/JW6fSXy+73/UeTFpxKfns3g3XFlpvCFTkCQtPnqbGpbsWyaQgIAjkCALGL48o/vABcqengpFw3mPFIbfPpL9KDfYGc8ggcEghhgPUK1pRf9ghzCGwQ7pbPaj11pGfgoAg0DUQSLx6BTvlIRkP76s0VPrxfUQv7mV+8YVFpA0E1/Qd6GzjKxtFwakzKK8qu4YodnqBGjl1HMlkD5B+OeWK56COVoPkE0TifYkoeHaiWWdhvYnecNGduYSCs+ajNwM9oVxCYRW4hHs+OsOAYPOk5K8gIAi0BQIJuN9FjhxSyakTt65Q8vkDM1hauoMFQuSvwjiw2Qs8vSy0cB75EfxIcUgHJbNOd/qyTBAQBFqOAPeWxg/DDrl2IbWzl88o+YI55HVqntdUABwxeTEFZy8kH7iiftHy8hV/+PvDDmkiFkb9beW3ICAI5BYC8Zs3KHrkIOyUfSl900hwI68r18qmgGsWU2DceGcxB2cMQOd4enk5a3W+ic4jUFlsRiMIdhQ1cxFaWEUwCDi2/TtK3jyRHj3u6fBBeGJcqcofVm9tbcQkCq9cR/lLV+AlIGPB6sEjPwWBrEUgiZQwijuaSg3z5DHFvt9C8Z3/dAlTuN2yR0UAEevYhb9+KexNoRWfUd7yDykwZGj9pfJbEBAEcgCBpjgksmsHxXbADrnj0VCu8pWm4ZDufcEhyH+8fJXEsMiBe0UuQRBoNgJK30DbsMbhvKVpSgzjTmM7NiLQ2pbUWra+YTulCZf/wBxkDYArby4EdO00ApVfELEb19BCiZ4NlzuvceUCGZchTr1yhaWqD72hhaSVjif/6ErS8iBS6xXfgGIKjKmg8OixMo60HjbyUxDIZgT0e3cofv0qQq3fTnsZybevSb9wCo1dp+FxETXXBfFrxSOR33gCaZ69GwWqJTIE3pBhAGnhlYWCQNYioN+9bXIIovB6FePSWTKuIM7Fm8cNFzOHDBpN/lGwPfo2zB2o5RdSYOx4Co0Bh/Ts1XB7mSMICAI5jUASAY3ilr5JPH+W9lo54Ktx8SQlHyL4kV14iGJpJThmfJPZAPzlY8A1yGk6dJi9ddZ+dxqBmqiupghyl0Z3bkYy2WspQKPIJRarQcj29K0OhChVwSUfUxg9pF7jODS432nIHebjVA/c4ilFEBAEcgKByLHDFNu1nfSje9NfD6d9iIBPWJzaAdRgXPpnraHQslUULB/VcHu0VnLeUuYOZ2hAw7VkjiAgCGQxApEjP4NDtiGexU/eVxFBKpk42yEclKRe4Zylsz8yOaSsvN5CmBvgEE04pAEuMkMQ6CoIcBrM2r27KPbDZmQYcQlPLwDYnTeKqLzuVHfd+0HffEKhJSvI30RUby0/37RZMPwo20vnEajIJVaDqJqxDX8henorPa4Y00Fwm9F6p1orfYNKKDhvCeXNnqcqJ/0OZKkgIAhkHQJwkzHgXZF48YI4B6Fd4qeOUXz/zgwCHsENr7CPyRtBKwk1xnwF5y2jvDkLJN+gDah8CwK5igBS0xkYi85BFxPIhWyX+AmMMd3/g7cLr70Sf/NwAOaQXhhLao8XRc7S0LylFGYOyYFeC/flyrQgIAg0D4FkNEoc70JnT1D0nHJh197Ygb2kH9iBgK4PM99hHoKm9cTY0bJxFJwPfTML+qZH1wmklp0CtWgYBSbNwScVkUrr1h0vhxJ8hkqggcxvf1lTEMgaBHjsRvTsadIhSBMP7jrnbcAlJvkAXhfVeCGkK5xvcDx4Y/KMlKsd937AqAziI+536cCTZYJA9iPArnbRs6cojuCLSfCGXYwHd/D7OjjkhT3L+zvcjfyVzCEzkffYMhQxdt3hEAQjkSIICAJdFwEWp9HTJ8ExSA3z7o0Cgm2XxN3rlHwEjsk44JFGWlkVuGY2hhlVmvoGcTC6UkDXrBSo2qgZFF73BXL6rO66T4FcuSDQxRDgceo1WzbAy+KvlLx/sflX370/hT76I+Wv+VhF3m3+DmQLQUAQyGYEuCejZjN7aoFDHl5p/qVgKFFo7R8of/Un5O/bt/nbyxaCgCCQ0wjo9+9R7aZvKL4F3qARU6C+1wVjKGJg4WcUXvs5hSdMeq9dZPtGHSJQE+/ekX7/LukckCBmBitJ1taiZ+QIGWcPEtW8TOHaYyBpQxHEpH+xM883fCQFJ02h8PgJzjyZEAQEgdxGoFkCFT0dWnE5+UswJsyKesd5jwNV0yg8scpznHpuoydXJwh0XQSMZ08pDnvDuHOL9JOwM87Aznj3ND0g4e4IfmRxiBW3QuvT1+QQGIw+eG1JEQQEAUHAjUCzBGqP/5+9s/BvG0vX/yNLhqScMqWcUopTZuaZdmB3Fu7+/ri7996lgTIzM6XMzAyJbUnW7zmyZTux4qQznYnhPZ/NWD6C6HzVfXJenRd6QutLjenVN/sSqW0aqBOmIDR+YtlWEGgTA1UVvY4e3s+Yj51QmTXdZltwXjND3ge66WUlRNJGzEBozmI3C573BAMdOkDv0hWBLl28LvkUAkKgxAl8koHabSCCs5chOHMeNJ1xY2wa6x7rVVUIVLGQtZSaKvF/LTI8IZAhELt8kTFge2Ed2ZOaZzCTpp2MD8sc1WSrx2BXQ0LUEC+xonKv06kfgS6MQxUNaQJMvgoBIfApBqryBlU5MIK143LB8aWYO19Rtg6TrJVjaxMD1WI5iIZ1XALfzCXweCbZSfoBqEQETKsMBggH565EaNFyWS1Nw5ENIVBeBJRbnsrynXj7BrHd2xHfsRZ4djMDQWddY8aXIpwRcb1mHILMzFs5b5GUlcqQki0hUDYEVNyXw2RqSjvip46zQsBGOHV7M+NXtQVDzOof4Uqo2m7S9BET3My8FUpDJPN/EzryVQgIgWwCSmeU3ph3biczgu/jPMWzb5R+6EzMGGmfrLmeOtGYuRRhZuYNc5VUWi6BwjRQmSUvUMNl7dHjWZ+QNX2G1XAJvE/u3UuPEBACJU/AevgA5pVLsC7Vwbp2gXVMzwMNKc8LNXquluojJ0Kn67/XAj16IUjdCA5hX8rF19snn0JACJQ+gcS7d4hfpW5w9dS+cgH2derGy6w6p5FO7jxDHzWe3hWhHCCqdnpw2HBqCMMExEDN4SMdQkAIZAiYVy8jznmKfbmONZPrknkyPC8NVSu5mnVMRzO8qBszgKeazrJUqryd0cfPxdc7qnw/C9NA7V2D0LLvULFkBeuHMZaMbjXiTlO+/0hl5OVNIHbuDGJb18Pat44Z8KLJEACvjinRaLVzEF7OGshTZ6RBqZqlGuuAlVPGu/TgZUMICAGoUKKG7ZsR3/oDDdMHybqC2XVM+WIrtOwPiKh5hqqP3qSJhjQBIl+FgBBolkD9jq3UmrVIXDzCWutx1pax+OMkj6eXlzH3W+rNVwgOHpK+hnox5s5TJFwgzSR7o00MVPvZU8RYGNs8si+ZevkV6wJlZ7vq0g/GtIUITp8D9UfCbYwfM3r0hN69h0w6s5+gbAuBEicQPXkMsbX/hn2YBqpPC0xcwqze36Ni1lyfvdIlBIRAORKwHj1gNs2fYG74b3pcvMlFwAQlxtRF7jzD6NvPnVsEOktei1xQ0iMEhEBLBFSFgdja/6OH1+ncQ/UQjGV/RcXqP7grprkHSI8fgTYxUBP007YfP4Klfs6ehHViP5z7FzP3x/hTrfsABPoMTLvnqQycwSkzEJ44GfJHJINKtoRAqRMQA7XUn7CMTwh8fgItGqgGY8K6qXkG66ezrml4EhOW1Iz4/DciVxQCQqDkCYiB+vkfcZsYqNnDiB45iNjGn2Af28zl8AR3cUncWxbPPrCSBuqKP6NixWrojA3JaQEVhEy3PpWxU+JFcvBIhxAoVgItGqjjFiC86jtEZszODFHFnRo69SDlgZHZI1tCQAiUAQH1Ajy6eT3im/4PeMcKAWpekRUakI0gMHFxUkOywgTc2HXRkGxMsi0EhEAzBOq3bkRsw3/gXD2W0pksW0a5+C78EzXma4RUXgyv0V7RqDFQiWGl5RBocwPVvHUT5sXzsOrOwr51mYHFV5j5qj7nRmEwnmz4FBhjv0CgU64bjtapE4KDhsAYONg34UHuBaVHCAiBYiDQkoGKnkNh1E5mQrWR6eEEurFeIfUgOHAQX1jlZuhMHygbQkAIlJ9BV5gAAEAASURBVCQBlfU7frEOpppbXLuIxO3LwJuH/mPtNQzGmCnQhwxP7w8wnCg4aDCMAUpD+AJcmhAQAkKgGQKxSxdox5xjMsdzSChb5vH1TMlMjYbokAm0X+gB2iOzwKZXD+AcZTCTwGb6mrl8WXa3uYGa+PgBKtue/fQJ4vt2wty7AXj7OPdhqEkmC2ejPY3ToE/GvT6DEFqwDJE581kziKmcpQkBIVASBFo0UJWrXiV1oV3H9Hj1oWMQmr8EFbPn0bNC3k6mwciGECgTAo5pcm7x1v2Jnz6J+J4tcC4d9B89X4CjXWfqSEZDDFWqytMQMVD9uUmvEBACLgFPa8zbt2Du2Q7r8MbMYpvSD1UKrx3nKWGW0Ey14PSFCM1dhPAYnzqo3kFl/NnmBqrHXsWlRg/shbl7K+wbdcDH18zYyZVUP3df76TsT5XwYO4qhOYtht6ehqxqXDYPcGU10LEjV1U5iZUmBIRA0RFQbybje/ny6uA24P2rZImZBDPk5Ws9uHo6fxXCcxcm3f55rMoErnVUetApk3wt3zVknxAQAiVBIHbhfFJDDm0HPigNeZdZ3WhuhFxVVRoSoYZ4K6gaX44nNYRzCi+BY3PnS78QEAJlR8B6cJ/J2X6AufHvjZO/+pDQRs7ki/RlCI3zr4Oq5irufKUiY9T6XKZkuwrGQHXMOCwWuDVv32QdIS6Vnz8B5865ZmNGcp6ISqzUbwRddOjmx7I0qmmRCrrtsNj2aNYf6tot5xTpEAJCoPAJqKzf6q2kdes67POnYF88xknmi/w3HuEEsnok9YBJT1J1UFVogDFmvKsHAe8lVv6ryF4hIARKgIDy0EpryLmTsC9RQz7SUM3XKvgiq3pU0u03tYIa6Nw1pSG14qmVj53sEwJlSuBTDFR07oPAwFEI9O3vQ0tL2i+1Y8u2TmrBGKjZT8e8cQ3RHZthbv8xWU8oe6fatmKZeohN92V/p+ufMY+1h5asRLB6YHqPFmE8K41Xv+Lc6YNkQwgIgYIioFz2GnZtY62xdUjcPJ+5N1Ub1VL1Ue1Mn99WOyZaW/QdQotXwOjWPfcIrogElC6ot5Xi0pfLR3qEQJETcGIxV0NirFfo3M6qHGA2JOcVLWlI++4ILmZCNmqIihvTKlStZboHSxMCQkAIkICqUNKwYwvtl5/hvH2eZKKSs8WpMbaqj6qSwbamadCnrnRrp4Zqx7lao+Yn3gv31lyh2I8pSAPVfv4M8WtXYF+5CMfOnXQmHt6DfZWrq89u5udPF1+tmqunI8chUJWZkOpDa9x08kbvPvnPl71CQAgUDgFqQfzaVZhXLyHx7En6vhK3ubJ6jXrw+kG6z3dDJVobPA4G9UBrn4k1847Vqrg6wjIToWE1EhLgQZFPIVBCBBzLcucWltIQzjO8lrh5FfZ1asgb1mTP15Sn1uDxroboI0YjVDPcTcyY7xTZJwSEQPkQULGoyn6xrlyCw9BFtykP0St1cG5SY6IML2hVY9xq7xpqzQToI2phDOfcZOjw5Av0Vp1f/AcVpIGqVkqchnr3R1WdadpizMoX374BiVOMJ8nX1CoIC+QiVMnPYPpIYw5j05asYGDy+HSfbAgBIVDgBBiP7jQ0IEFtADXCa9Gjh6gH6+BcOeJ1+X+qRGtKD8LUg0Bu+Rmtfw3CS1cjsmCxuO/5E5ReIVDcBKghSj+UjjTSkMMHkhpyja6/+ZrSEEPNKdpB/2IevTFWoWLm7HxnyD4hIATKiIBjWzRMG5L2SyK5Wpqg3kR3clV1x0/Ai7utp6HslmAltP7DEeLcpGLBUgQ6M5lbmbSCNFBbYm9ev4rY4f0wD+/JHBrlH51XXFWpZ1xJC0vo2vBpCM5eDINvQL2md+iIAONU9aoqr0s+hYAQKAICsfN8YXV4H6wz/pNL59VTZgbnj3IDztc69IAxYymCM+dBq2TGPTaVCEVnyRq9qhvDAsSVLx8+2ScEipVA7OzppIacO5EZwse3cF5zTqESKvm8Kdf6jYYxazGCk6ZlzvHZUsnZVA4M9aOl8mP4HCZdQkAIlCgBJxZF9OhhJnrcA/uej+cnV1idV4+TuTX8wgwqq2BMT81NmDgpXzO6VLm2jEoOW+ytKA1U+9VLWA8fwH54P81fueuYJw8zjfwh+nlnVlfSB2RvcCKq9R2KQLee6V5V/yw4cbKke04TkQ0hUBwE3CRK1IIEE6H4NevMSVinDwAvW3hzqVyAew5CoN8QvrVMelxoLFllfDEN4fETaahmwgT8fo/0CQEhUJwE3CRKSkOYkM1r9t3bsE4dolveKdqnPq5cFZ2h9R6CQJ9q7xTfT40vv4MTpyI04Qu+6Orqe4x0CgEhULoE1KqqTZtFJVBSLsBNm/P+PbXmCJNAcp4Sfd90d9Lzq8dA6Gpu0kLMuzF2IrVmMoJDhuZep8h6itJA9WNs3b2Dhg0/wdz0dwYjp/y+Gx2Y+gPj94eGx2nDpiC85s+opOuvb1Puwt6P7wHSKQSEQCESqN+2GbF1/4BzNXuFNb8epMdBV77giv9CZNU3CA4YmO5utBFQ2kDXP2lCQAiUDAFVmia27j+wdv+rmTG1UkNYv11pSMVX38Do14wxqzKNS2K2ZjhLtxAobQJq0a1hw8+Ib/hf5tJ4mDXYVmpM1hn65OW0Zb5HZMr0rN6sTc+OKQK9KRkDVT3g+PkzdPM7mfT9znoeajPx6jkS965xFeWe/9vQqv4wxs2AzrcPfk1nQiWVCVhl7pMmBIRA8RCIXayDee40EncyrjX200dw7l2l6y/davI1xoBow6ciOGEqtG49co5UrsDKcDX6Dyir5AU5IKRDCJQYAeWl5c4pzp70nTPYTx7Auc85xVt/z400Dsa9ayOUhkyD5lPuTnlppDVEwgjS2GRDCJQLgcTHD9Sas+48xXmVKaFn37kG5wE1ptWJlfieqy/L642fDp0JlfyaMWAQjOoBReHNUTIGqkofn3jzGvbrV76Zf+1bNxDfvxOJ0zv4xyaR+9xYkgbtu0Lr5F8v1Zg4A6HZC1xXv9yTpUcICIFCJZB484ba8Ar2x4xnhXXxPOL7tsO5zJCAfE2tjLKmKjp1Z/xYRc6RWrfeCM1djMjMOQgw9kOaEBACpUHAqa+HrXTj9WvfAVkqWaPSkKtHfPenO5WGsKYqOioNyY1jD/Toi6CnIZ3KJwFKmo9sCIEyJ6CyiydouygbJhGPJ2nQ2zN+YA/M/VuApzdaT0glhe3AePf2PlrCVdPgnKUIz55PF+Bhrb9mGx1ZMgZqS/xMGqixPTsQ37mOyVJS/wCyT4oxM6jy/VY1Vn2aVsMYkkXM/jt1JgLt2/Phd4BKfiBNCAiB4iOg3Pfiu7fBPEDx92sNH4AY9aClePbKLqy1vAYhZtczvNUR/hHQqBGuToT44kuaEBACJUfATc6mNOTQNv+xtVZD2rG81fw1CCsN6dM3qR2pJG3+F5ZeISAESp4ADdSG/Xtos2xmyc3TucNVGYJVArcYX7w7du5+3x7WVp20BMGFrK9aOxaBDh2SFQt03ffotu4sGwPVfvkCyki1mAEYqdTP2fAT95gQ4SKTITzmfr/WqTcCQ1lTtYaZ+0aNRWjkqKJYIvcbivQJgXInYD95jPhN1k+9nXH7zWZi32Ad5kt07WspJTw9L7T+1IJho6G165C8BDP/GqOpESPY3yOTiC37+rItBIRAcROwHj+CqTTkzi3fgdjXLsG+zDmFCivK11RyturRroYYo8YgOLIWwaGFv7qRb0iyTwgIgV9PQNks5o3rjeq+p68aj8G6cBaJq5ynNLxJd+ffYL6MHoPp/lubrK1KvQnTltEquOpagK1sDFTYNhwunasfvm7IeRSxc2cQ3/wz7OObc/a5HcpNJ8DaiXQDDi7/HhVLV8Fg7Jk0ISAEio+AcqmB0gOmd/drUdZFjG3+Cc5FZtXL19yEA3z7qOqVeYmSWCcxuJRJCpZ9ieAw/ziQfJeUfUJACBQ+gRY15MA+xLb8yDCCw/kHk6Uh+sQFCC1fg4o58/OfI3uFgBAoeQKuzaLmKGq+0qSpWs4N2zbRbvk38Nz/JVmTU5JfNTVfMZiBfBhCK76jLbOStVW7+B7a1p3lY6C2QFq9CY0dOwLrxMH0kU79BzjP7gPvmHrei1vlRDQwbh6C0+bCqBkBgyskek+ukniT0/TZsiEEhECxEnATKx07DKuOKyCp5rx7Dec59eDjS+pB7ksu7zgEdBiL/4rI6u/cVdR0v2wIASFQNgRidedgHqeGXDiTHrPzljkynj9IaojPi3KtD+cUUxkfxtqqes9e7twiwCRK0oSAEBAC2QRU3p3oyWMwjx5E4sGd9C7n+WM4LzlPiTFMKV9jmSx98kLaMrOhMwGsofTGC1PKd97vuE8M1BRslUjFfvoYVlYtxQTdAM3jB5A4t4+xaKmVFmWIdurFeonVdPWdgCBTOYcnTYHGNxLShIAQKA0CKiTA4v//E/z0mnLlM4/th3OFKyJioHpY5FMICAEfAvaL50kNYYUBr6lkjeZxpSFH2eXzkoslabTu1Qj0HwxjyiyEJ09z41K98+VTCAgBIeASoFeoslesJ6xI8CFjjFrMOm4e29t8uKKHT3l9dWHMe68BzDA+BcHJtGUYl1pITQzUPE/DunMbDet/hLn5v+kOyCRKTZp62xlc+UdULlvl+nC7SZMKNNi4ya3LVyEgBD6RQPzyRUS3rIe1/Z+MY08lJVCeFSpBgfuZmnDShcaYz9XTFUx8MmI0wGRqGuNSpc7hJwKXw4VAiRFQnhmxLetg7aCGePap0g5XT5SWpDoZTmTM/wPCK79GiJ5aroYE1UtwxpBJEwJCQAg0Q8BNrLTpR9hn9vofkaC7sDtfod6kmjZyJsKrvkOEoQWawfmKSgCrajO3cRMDNc8DaMlARftu0EdOhj5mIoyhNQgOGuK65eS5pOwSAkKgSAm4iZUuXXATE3iJ1pwP72HfuAjnIZOrZXlZaAPGUhcmwRjBhCeDh8IYPESyfhfpc5fbFgKfi4BKrBS/VAebJWq85rx/l9SQR0pDzGQ3PbW0geNgUEN0vuRSJSEMzi/cF13eifIpBISAEGhCwLxxDXG+CEvc9ilNw/df1s3LcO5cBOqzymd1pUfo6CnQa8dBp9aEqDWFEJcqBmqTh5v9tUUDVSVNinQA2nVmbaHlCM1bjPDoMdmXkG0hIARKhIATiyLx/j0S75jaPbX8YT9/7parsQ6szxTTVklPDNZMrezEzN/M5rtgOSrmLoBWWZiZ8krk8cgwhEDBE3CiSkPeuT/ezdpPn1JDtsI6uCETN6Y0JKg0hHFiw8Yh6GlIJOKdJp9CQAgIgRwCiY/MnaM0hnWccxoN1NjendQbak12xRI9xFrNHaFV9abWrEJk3iIY1QNyTv+9O8RAbUqcLjaJt2/cH5U4Kb53B+yjzOzbTH1U73R95mqEV/8RkUlTvS75FAJCoMQJqFjV6IG9MPduQ+L+deDDK8DM+sPA8lTGHNYcm7vQTUIQ6NSZ9VH5UkuaEBACQoAE7OfPXA2JU0Ochyx79YExq2ZDhk3nvgjOTWqI3r0nVzaoIZI4KcNHtoSAEGgdAdo39ZvWIfbz/8K5nUnelj6Zhqqx7L9QwQSPQXqFtnUTA7XpE2CN1NiF8zDPn2ENs/Osk0i3m2f8o+HFnDU9PvVdDNRmwEi3EChhAg7fUsbv3mYtRFVH+Rzs88fgPLiUGXGwElrfGuiDh9N9ZgJCY8e7Lr+ZA2RLCAiBciaQ+PgRZlpDzsI+Rw15dCWDJKQ0hPoxeATDBqghY6ghgwZn9suWEBACQqA1BMRAbQ2lwj1G1TZr2LIBsfX/gnPrdPJG3cQFqeQFzdy6GKjNgJFuIVDKBJQ28KWWo15sMeV7bMMP9LjYmBmxctVzE5to0KcsQ/irPyAyfVZmv2wJASFQ3gTSGmIjylJ3caUhJ7ZkmGRryLSV1BAmM5k6I7NftoSAEBACrSEgBmprKBXGMSqmzHr0ENbDB1BFb93GlVLrBOuhnt4PvHmU/0bV6kjPgQj0HQTji+kITZzM1ZEh+c+RvUJACJQMASfakNYQ68JZt46ycyeTACV7oIGJSxD++k+omDknu1u2hYAQKEMCKmGSmnskXjMsINXsa5dgnTwI5+55r6vRpz55OcJrvpeXXI2oyBchIATyEUi8eQ2Tto798D715SisU7RvXrFWatMmLr5NibTdd/XQokcPwzy8l/UOnyZvJOHAeUHD9O2TFuNOUdUfxvTFCM2Yw+y9vaF3645Ax45tNyD5zUJACPyuBOxXrxA7eiipIXeuwnn1mMmS3vregxiovlikUwiUJYHo8aPUjX2wrjOjZqo5bxh/+lppiErEltvEQM1lIj1CQAjkJ2Cy/nLsyEGYh3Yn7Zs3yr6J5p4kBmouk9+sh8vZaoUjwcx5oOtu02axkHZ8+yaYO38APmbeYjY9zv0e0JmZM8yfTBa9wNBxCC1bjYqFS6WEhC806RQCRU5Aue+qzJtKQ2wfDXn2FLFtG2Ht+hFoeJMaLN16dWb4VlqhimGnmjFtCUJLv0RksiRS85jIpxAoeQJpDaGXls2ayanWsHMbzG0/wblX53VlPpVbr6oS0FRDZrJawFJm2aS3ljQhIASEgCKgQhOVraPmKulaylloVNmZ+Lb1sI9tyurN2lT2jU77pkNXBJd+h4rFy2EMbPs495JOkuTEY4hfvwbr2hWubPDNZJPmfHgH6/I5xpqe83+bkH18l37Qa8YhMGhYujfQoxeCw0exkPZwPlw+YGlCQAiUFAEVBpDUENYOe51VNyw1Suf9W2rIWWbEo0uel+lb1TDsw4Qmw8dCo0Z4TR80FKHhIwsifbt3T/IpBITAb0tATRxdDblKDWGFAK9ZV84jcY2ZNN8/97oyn0pD+o5Maggz93rNrVGoNKRftdcln0JACJQ5AZv2jXntKm0dJmg0c1+kJx7RtfcKQ4+yS8tkM+vcxy1npY8Yw9rtrLs8nPOXqq7ZR7TJdkkbqCo7XnTXNsS2b2BmzWu5gNWKSPwjJ5ZxvnVI5O7P6tFGMMZ0CUvJZCUn0IIh1jasQKCC9Q3dRAZZJ8imEBACRU9A1Sxs2LWdnhbrmVmT2bybNqUhMWqInaUhnFyqpGmhxSsbpWoPsIahqoWqhTNeGE0vJ9+FgBAoLQKqbF3DbmrItnVwntzJDC76Ifli3K9CAFdP9Zlfcc6xqlHW70CkIqUhXO2QJgSEgBAgAfP2Ldo6W2Fu/4k2TSqfTjYZkyurcZa/s83s3vS2NmyKa99EmB/DnaPQptGCGe+v9IG/80bJGKhqaVvVJFQ/arlbNaee6dsP7YV1eBvfUj5rHVplaEY6QevClY92mXhSY8JUxprORZhlIqQJASFQ3ASU4Zl4+RKWj2dF9sicDx+oIXtgHaGGfHiRvSt3O1gBdOrJVdN+CM1ehPD02bJamktJeoRASRBIvKOGvHpBDckfHuRQa8yD1JCj1JCWQok8DelVjdCshQgzv4XRr39J8JJBCAEh8MsIOLFYxr4xc41M+/4dasxuJM7saqEkJu2bCto1nXtBa98pfTPG2MkIzaR9M35iuq8QNkrGQLVfvEDs7Clmp2INsXq+mVTNjCNx/yacp7eTbyqTvfn/SwNVGzqZWXlnQO8/MH1soCfdefmHQu+RcbdJ75QNISAEioqAefsm4meoF+dO5r9vhgm4GvJMaUgs/7Hdmc17wiwYjA/T6YIX7NsfgU6ZPwL5T5a9QkAIFBMBlXgkfuYkrPOn8982wwQSD1LzEOVpka/1GEL9mAljPDWkf0pDJPFiPmKyTwiUPAGVjDFO+8Y8fRwqrKhpc96+psbcYIK1hy14g9K+GTKR9s1M6AMyMaaBHj1o31Qz2WsmJKnp72iL78VloCo3XGbZ9Wvm3TuIbvgR5ub/oWHKpex8Le2Oy7cJTRv3GYv/gvCX3yI8qrbpXvkuBIRAsRFQdQa9n9S9R1XN0vX/gX1kwyeMhnrhSoaPbvAq2qiZCK/+HpWLln3CNeVQISAECp6Apx/qM9Wix48gtu7fsI9v9rpa/sw39+DZWu0cRKghFQsWt3wtOUIICIHSIaC0hQnV/Jr14D4aNvyUtG+ayfCdPq8FjTEW/NGtxx4eMy59SqFuFI2BquqUWvfvwrx3hyukuQao8/wZzDNH4Vw91qyfdfohdOoNrbqGq6F90l3pDSY7Um8vQ3TlNfr0TXfLhhAQAsVJQIm7Rd2wmbXba4mbTJ52lnpx/4LX1fJnuAMTlwyDPnAYZ5KBnOMDQ2oQHDuRL7ZG5+yTDiEgBIqXgHX/HucedxkWkNEQ+8ZV2GePML/FpdYPLNIxpSE1vufoQ4cjOG4iQiNG+e6XTiEgBEqPgErGaN27585TEh9THqBZw3QYuujaN1do37TkydWR7rvKvunpY7+oBbjxk2jfTCiK0IGiMVBVMevowX2I79/JOj6Psx5dctOJMTD4Lf94qLcLLSU8GjkToblLYYwek3MdlexI79wFepcu0FTyI2lCQAgUNYHoscPUjV2wL51Jj8P5QDeZ94wpVUnSWtu6D0ZwzjLGly7wzdqtt2uPAHUj0Klza68oxwkBIVAEBKKsIRjfvxu2yoSZas6HNykNyX1h7h2T89lzaEZD0isdmaP09h2SGtJRQgMyVGRLCJQ2gcS7t659Y9K+STx9kDNYJ84kR8q+aeC8pSX7Zvi0pH0zxj9fjrJvAl2qEGDCxkJvhWOgcmlbvTlIMCmJih1t2iy+QYgzS5W1dx1Q/7rp7sbfVe3BcHsmO+KPTwvOWYHQgqUI14712StdQkAIFBMBp6He1Q316dei+3az1jGz8H7KaqmrIR2oIe3Sl9RrxiO0aDkq5i1kjUIpK5UGIxtCoMgJKK8sNf9oVkP27IS5S1UDuNj6kbLovTsHCWdpyAiuji5agYq5fMnlY6C2/uJypBAQAkVDgEalsm0cpTHxXPvGZgm7mGfftJSM0Ru00g9VJznCeUowk9XbmEnbZuGykkjoWjAGqspSFb9yCealOq6Q8k1Bk+Z8fA/7+kVOMulO09ISd7cB0EdNgj50RJOrJL/qg4YgNISuer16++6XTiEgBIqHgEp4ZF6+CPvmdd+btm6y/uAtuvK2VvjVVVTCo1FfIDCENY5TLcB6hEHqRnDIUJlcelDkUwiUAAGV8Mi8dAE2tcSvWdcvsdYxNeRjbj11v+PdPpXwSGnIYIYEpJpbO93TEK9TPoWAEChpAg4z7yr7xqJ9k3j2NGesTsNH2NeUfcMXYKokTGuaqpU8cBz00ROhdMVr+kB6elFjjN4+IYzeQUXyWTAGqnq70LBjM+KbfoTz8GouPhU87NYatLnEnUlUkHsg546jZyO84htEWObBt4WC0EJhaIbhu1s6hYAQKB4Cyv0utmUd7BM7/G9a1TlOsPRUC64x2SdrY5hyfTk1ZNrMTLehUzdY+5jaIU0ICIHSIdBwaD/iW9bCPrXbf1C/QEMC4xYgtOJrRCZPz1zT1RDOPagj0oSAECgPAiqHTv2OLbRvfoBzzydmXc1NlMY4Lds3aWL08jLmfYfQctZcH8yX5l5z7RvOUwx6khZ5KxwD9f171G/8GfG1fwee3/50rMolr0sf1iBkavaJ0xCcOgNhvxjTT7+ynCEEhECBEVAuefazJ7CePmHq9ROsMbjn01x4Q+2hdesLrbtPIgGO1Rg3GcEp1BBJeFRgT15uRwh8HgKJj1y1oIbYSkNOHU9qyEOfyWNzv45hRFrXftQQ/5UKt3b6lOmS8Kg5ftIvBEqcQIKuu+485eF9mEcPwjq+C3iXu4Lqj4EuvO2qqC/9oXWqyjlEi1TAmDYHYWpMKayW5gyQHaVjoFZWQZ80n4bpLOjVA2HQfVfv2s1vzNInBIRAkRNQk8oYS8WYxw8hcfc6nOf3kgkEWjsuJisxpszjy6wpvmcEunUXDfElI51CoDQI2E8eJzXk2EHWOr4B5xk1pKUSDtlD782s3dQQlRXTrwW690hqSFVXv93SJwSEQIkTMK9dQezEUVinjiDx+C7w8n7LIYppJqxZOnwqbZo50AdlrZB6+1XFEbrxqlDFABM0lmJrcwPVseh6Z5lIvHmDhq0buAT+Lz5EPkivqXIOKiGJlj8pidZ7KEIr/4iK5asQ6NDRO1s+hYAQKHYCtg0Vw+FQJ7xm3rmN2Oa1sHb+m/rhE7OhEggozQj4u/EHxvLN48pvUDF/kXdJ+RQCQqBECTjUEDTVkFs3kxqyixqiwoeaNjX3cOcf/hqiT5hHF15qiEp4JE0ICAEhoAgwHFHNVRzTQowVBGKbfkLiTDPhRx4xN2GaZ+vwUzVOYYxF3zNccU3ZeoO2uYFqPXoIleTEvn4VVt0pJC6f4FtMplL2WlV/6INHQ+vdz+vx/Qx05YpH7Ti65NVCizCzlTQhIARKgoDrgqc04s6t9HgSL57BOn+SyY9YOkbFlzZtFZ2gDRgFfchIGqkpwc86RiUSCI0ei2CNfyK1rENlUwgIgSInoFZL3XnG3Uz4UEKFCNRRQ26zdEyCBmzTVtEZ2sDR1BBqhE/GXbWqEWIYUXBYJpFa00vIdyEgBMqLQOLDe1drrJs3WNruPKwLtGmeXM8PgS/Stb4jkvOVDskSU1w/hc5SMUpjStWFNz8Uyq7D1tJBv+X+6JlTiO/ZzviPncyQx7pi0Q/JQOHUL1XJSkILVyLUQkkYLRhCoGNHrp4y5bKUgPgtH5lcWwj8rgRiF+uoETtgHtya+b3xGMtNUS/Mev+kaare4IIvEZnHFVK6wjRtqsax8rQItC9N15im45XvQqCcCcTqzrnzDPNw1kqGqi3oaghrqPtNg+jCG6KGhJWG+Bioqo6gpjSkRN3ryvnfi4xdCPxSAuqFenTvLsR3b4Lz5E4y9KilyiOhdjBmf+WWv9R7ZjLyunMUaky5Lrq1uYHacHAfYmv/hcTp7b7/HvQZqxFe80dEJk313S+dQkAIlDaBKGNNY2v/DfswayD7NVULrD2TCbRLvnlUh+hDaxGctxgVs+b6Gqh+l5E+ISAESpNA9NgRd55hH9voP8BgBROSdGmsITX0sPA0xMdA9b+Q9AoBIVDOBKwH99Gw/geYG//uH9Ouwo4qOwMdujKCIOXd1bkbQvOXITJrHvQePcsZX6Oxi4HaCId8EQJCoNAItGig9mLNr7FTodfQnTfVAlXdEKQbrzFgAFc/cl18vePkUwgIgdIn0KKB2nt4UkOy3HVV2JCrIdVKQxgQJk0ICAEh0AKBFg3Udl2h105jpQAmV0uVm1IZed36pQMGikdGFl8xULNgyKYQEAKFR6AlAzUwfiHCX/4BkRmzMzfPN5Pu20kf997MQbIlBIRAORBoyUANTFxCDfmucd1j0ZBy+KchYxQCn5VAiwYqX6iHvvwzKld8Rdddem6opl6A6WrOwnAkeRmWZKKwtHUMaksuvtrA8TAmz6bLXiYRQaBrVwT79GV6Zf/6Y+nRyYYQEAJFT6AlA1XrNwrGpNl8I/kFjD79oFMbAu3aFf24ZQBCQAh8HgItGaha/9qUhkx0NcSghmiMMZUmBISAEPgUAi0aqIxtD6/5GypXrYFWkTJQP+UXlNGxBW+gIsJsnF1piHbMFKo1RjA2ZPpsxqX61zAso+cnQxUCJU+gJQMVYSZGq2Ld435DYMyc766CSBxHyf+zkAEKgVYTaMlARYQa0oU1BauZXG3GPISnzYTOOqbShIAQEAKfQkAM1E+hlf/YNjdQoyxiG9+2EdYRZug0mU3PZq1DJ5H3rtWqamjZ14jMX5w5TjcQqIgks11JzFmGi2wJgSInEDt/FjGlEfuYJCmuNII1C/00golOjPnfIrR0FYL9qtOjVhnwlCuNFgym+2RDCAiB8iEQO3sqqSEHmCQpn4aobJoLvkV46ZdcSe2bBiQakkYhG0JACOQh0KKB2n0Q5yjfIrJ4ecbFV4UTcI4SUCUyJSwpTbfNDVTr3h3Er16GffkCrKsXWNfwHBBjqZl8rWNPJkSZAH1EbfoorXMVDNY0DDHJgRYOp/tlQwgIgeIm4NZKvnIJ1hVqBH+cm9SIBpaYadpULbEBY6CPGo9Al67pvfqwpC7ovXqn+2RDCAiB8iGgJo0m5xnWlYv8OU8NOd+43rqHQg9SQ8YmNaRzF6/XTcCm5hbZJSDSO2VDCAgBIZAi0KKBqmq0D5sAY+S49EtzrbJdSmNq3PJ3AjNJoM0NVCcWhVNfD/vlC0R3boW54yfg9YP8z0cFEqu08OFMnJnWZwjfSqxGxcIlrG1Idx1pQkAIlAQBhzVPlUYk3r2lRmxDfMfPwNMbuWNzEw2EmBmPumBkVkuD81hfbPEKhFnwWpoQEALlR8CJUUMaqCFv3rjzjLiaZzy/nQvC0xA1t6Cx6rXggjUILVqO8KjMS3Fvn3wKASEgBDwCLRqoysMzyJVSpTEpb0+tEzOGL/natV/kRbpHsgCSJHm3ov54RI8cgnlwN+yHd7xuOK+eAe+e0v2XRbXztfbdYMxYhuCs+axl1j7nSJ1JUwJVTO/ctZtkycqhIx1CoPAJOJaZ0oi99Lg4Def1E6CeK6l+7r5Zw9FGzkRo9iLow0ele/WOHaFTDwJdMrHt6Z2yIQSEQEkScMx4UkMOcJ5x5VxSQxpeU0OcvOPVRs9GaBY1hF5aXtM7duJ8ghqStdLq7ZNPISAEypOA/fwZoocPuLZM4j5fpL+l/dKSV2iwEvrUpa79EuieWwdVeYUatF1Uglgt6+V7qRNu8xVUD7BjmjRMH8B8cA/O+/deN6xzp2CdPgC8uJPu890wwtB6DEKg/9B0baHs4wL9ByI4YTLC4ydCEx/vbDSyLQSKg0AiAYsaYVEjrGuXYZ48DOfyESBh5b//jr2g9R2CQLeM8OtDRyA4kXogq6r52cleIVBKBGw7oyF0+TVPHYJz5Sg1xM4/yk69kxrSNZM4Sa8ZxTnFJFlVzU9O9gqBsiKQqP8I+0FqnlJ3BpbSmAcX8zNQXqHdWAOViR79FtgC3XrAmDjFtV8CPgtw+S9evHsLxkBtDmH9jq2IrfsHJ6KHmzuEbz/VrhbegPYbjdDqvzC182r6fdMN0GvKpUfqDnk05FMIFAUB8/YtRNf/CHPL/9C7or7xPbdGD0ZMR3j1n1DJRAWNmuhBIxzyRQiUKgHz5nU0UEOsrdQQK9Z4mK3RkFGzkhrCsKJGTTSkEQ75IgTKlUD06CHaL/+BfXxT8whaoTXo3Aehr/6GCpamUZ5f6VbiWlPwBmrs0kWYXEVN3LqefibpDa6o2Hevw3nIfbHMqmt6f/ZGhx7Qx86AMYGlaQzD3aNqEAWrB8GormY9Iql5lo1LtoVAIROwXzxH/PwZmMzOCYYHqObEo0jcoR48pluN1UJIQLcBrJs6HfqYielhBuj2a1QPhNF/QDp5QXqnbAgBIVBSBJQrXuwcVzjOnuT8IakXTqwhqSFPlIY0MVqbjp7ZOF0NqR2f3hOg268xIKUhqXlGeqdsCAEhUFYEzFs3OU85Dfsik7L5NPvBba6u0n75+NJnb1YXS+kFapP2i5bKsaNRX3TOV4LVA6B0pxRbwRuoibdvkHj9CvYHn8y+dNeJH9gD88AW/4QH2U9MJTxoR//tLnTRSa2YalU9EJq7BOEZc9xYkuzDZVsICIHCJaCSqyVev4ZFbQB1QDXnw3vqwW5YBzcD75/nv3mGBKBDN2idGJOeaoF+gxCcsxgVM2ZDq5QXVh4X+RQCpUjAiUZhq7mF0hC+7FbNYSK2tIa0NGk0mOjE1ZDMikaAdVRDcxYhojRElYyQJgSEQNkSSDBcMfGGGvP2rS8D8/gR2i/b4Nz1N2DTJykX4Mou0DrTfvFiUCOV1BraL7PmwejXP31oKW0UvIGaFzYnpg37diG+czPsSye4kvIuuXLSQsKD9DUjfNs5j9n5Fi6FkS7KrUFr356ZgNtDC0m5mjQr2RACBU5A/TGI7t2J2M5N9Kq4mbnbBnpXqCQFLcWqdu6L4MLVCC1YCpVUzW38w+BqAeM+pI5qBqlsCYFSJKAyhTfs2ck5xUZ6YtzJDFHNLWIfW9aQqv7UkDWILFhCryxWGlDN0xA1p/Aml8k98l8hIATKmED06GHEd2+FdXIvEz5SY1S4UgtJH9O4WFZPn/Els4uvQIjJ21TsqpqreAtw6eOKeKO4DVS+9TRv3YB54xrsq6yTeIGZPW+fbfmPiPfA9BC06lHQh9XSKO2Y7GXBXGP0WIRGsL9nL+9I+RQCQqDACahSEnHqgX39KpTnhdfsy+eZ9ZdufG+feF3+nyxPow2spR6MZi3l5OqHmmQao5J6EOiSqYvofwHpFQJCoJgJqFVVpSEWNUStpnrNvniWWX8ZTqAqCuRrYRqhA1mLuYYaksp1oWocGqNqERo5GoFOnfOdLfuEgBAoIwLWvTu0X667SR9d++XGaSBOI7U1jSVqtN6szUz7RR9Zy7qqSmNGldRLsOI2UPkQ3RqJ8ThU0pTYlvWwdv2bbyEaWvN4k28aNC6d01AFDVO38a1EcMkfEVn2JYLDR7buOnKUEBACbU+AnhMOtUBpAuyky566qYZdrJ26+Qe+vDqT/x5VTTLlSqP0IBUGgHZdEFpOPVi6km401fnPl71CQAgUNwFXQ1gzlTrSSEN2bEZ8y49w7pzLPz4/DaEbcGjZHzinoIb06Zf/fNkrBIRA2RBQ1UvUfMV+9hTRrRtgbvtPyy/BPDpugiTOWdRC2+BxCC//BhVLV6RfrnuHFfNn0RuoHnz1gGPKn/vIfjgf8ydMSjx/BLx8wDcVdNlp2vjQtVGzEZw+F/qAwem9qt6Z3qNn4wxa6b2yIQSEQKESiJ4+CfPoQdjXLqZv0XnzAs4LakA9ayDmaxR/fcICGNPmINCzd86RKs7M6EldoDZISEAOHukQAiVBIHryOMxjh+idcSk9Huf186SGNGS8NdI7szcYq6pPmA+DcwrfGocV1JAevVIawpdj0oSAECgrAon372i/HOU85QASz3M9vZyGj3Ce3U8ar34uwCyDZUxZgOC02SyzmRuaGOjEcEZlv/CnmFrJGKhOfT2sJ4/5Q+OTbyXyNfP0cVjH9wJPmamvaVNvJZjxV+vJzL4dq9J7jdoJCE5haQq66UgTAkKgeAiol1fW40dMVpAxRlUdVesYX2bdottevqZWRDqzBmJPZvZt1yHnyEBVdwSnzkT4iyl03yvNTHo5g5YOIVBmBOynT9z5RSMNuXKR84h9ybCifDyUl5bSkF7UkErGiDVpqsZhWkM6pEKNmhwjX4WAEChdAspjw07ZL05Drgdo4sWzpPF6bp9/hQKVsK1rPwR6D+CKarJKSTYtfchw136JsPZ7MbWSMVA/BXrDnh2IbfwRiboDmdNUoW71ZsLv7QSP0mrnIrzqO0Rm8g1FqmnKHTBolJTPtzc2+RQCpUxArarGN6+Ftf9n/2G2oAfpk9p3Q3D5n1Gx/CuujnRPddMLw9MFL3QgfYJsCAEhUAoE1KpqfPPPzBq+3n84rdWQjj2pIX9Kagg9tZJNNMQfqvQKgfIjYD16gOjmDQwz+CcrFLzIBaDsFldvVFFV9dO4aQPHI7TyD6hgmIFf05RRy7I1qnRNIbWyNFDNa1cQv8DEKXdvpZ+F8+Qh7Ft0AXx5L93XaEPVPKudzIDkTFyq1pWrJ4OHIDhoSCaGtdFJ8kUICIFCJGDdv4f4xTpYl+t8by9x7xYSt+nO9y7X3abRCcEKaMMnwxjzBQLe6oeuQx88zNUFvSrjhdHoPPkiBIRAURNQCU5cDeFKql9L3L3JmqpKQ1pIrKSSsw2fhCA1xKtxqCaLSkNCnFtIcjY/utInBMqHgEr6qLTGvHCOIYy5JTedV89h36TWPGX1Ar9Ftk4MIRil5ikTfaEFGBsfHDy04MrVlKWBmvjA2kT0+XbqM0vpJgvpxndvQeL8Ht8H6CZOqaQLX2XGBUcfwqxZLEkRmbOg4N48+A9CeoWAEFAEnIZ6JN69Q8KvvjL3x08cQXzPZjjXT+QHplyAmbkT7ZidM1VCQguGEVywCuG5i2ikZuLY819I9goBIVBMBFRYkZpHNKchMcasmkpDbrYijMDVEGYJT61gaKEKV0Mi8xbBGDCwmLDIvQoBIfCZCahkSq7NwjmLk6r7nv0rrDu33HI19rFNyZXU7J1qm8lfUUHbpb1/JQJjwkyE5tOWmTy16Zlt+r0sDVQ/4vErlxBjTVXr4Pb0bice5XL6y2QNRb+3Et0GIjh3JUJzF0Lv2s2NQQswpbw0ISAEiptA9AwTKyk9OHXQdyDO+1fAR8a02sz22bTRaNUnLUVw3hIaqEPTe7UOHdwyE26tsnSvbAgBIVCKBKKn6AJMDbHPHPYdnvOOcwuVpM32yZnB8CF98rKkhmQla9Q6pjSENQ+lCQEhIAQUAeXNEd2/B+beLbRXkgtvjkVdUfaLquHsMIQxT1MuwMH5KxCeNjM5R2E+Da/UXp7TfvNdYqCmENvPGYR89zbdfm+noSdePId17jica1xFSVjp/vRGuAO0/qxDNHgEjLETEaodB6N6QHq3bAgBIVCcBKxHD2EpPWDsh1+z6s7ArjsKvH6Yu1slWus2CPogFs+u6pberw8fjdCYca4rTbpTNoSAEChJAtbDB0kNeeyjERyxdf4UNeQY8IaJHZs25ZnRfSA1ZCS0Ll5cKhdYR9Bra8x4GOKZ0ZSYfBcCZUsg8eaNa79Yt+niaydtFYfeYdbZ40hcOZ5cZMtHp313aANoxwzhz7gvaMuMhd69R74zfpd9YqB6mBMJum4z0Dhr+dy6ewcNm5gEYev/MTNwvXdk5lNNRMEffhpzvkFo1TcotixZmcHIlhAQAmkCSg+UFihN8GkN2zcjtuFfcG6c9Nmb1AR3h6sRyUP0KcsR/pKJ1qbP8jlHuoSAECgpAi1oSP3WjYiv/2cz9Zk9DVGfGSr6NIYOKA2ZOj3TKVtCQAiUNwFVv9mdr3DOksqRZL96ieimtYhvov3ytoVcGp4tE6pkwra/IrJyDYJDhrU5UzFQ8zwCtaoaY7ZP6+Rh2Levw3nCpErN1E3UZ65GePUfEZlUWD7ceYYnu4SAEPiFBGLnzsA8dQz2javpKyRePoXzmB4YH56n+7I3AhOXIPw1s3XOnJPdLdtCQAiUIYHY2dMwTx5lcsbr6dEnXjzhPENpiE+mTh6lT+ZLrjXfy0uuNDHZEAJCwI+AyrWj7BelMQ7L1CSbg8TDO3CeUmPiH3NPY913Y9l/oWL1dwgOrcnd/zv3iIGaB7iqR2QrN18aqtaZEzAP7YRz55zvGWKg+mKRTiFQkgTsly+gXmCpREtes5jN0zy8myEBdNvzaWKg+kCRLiFQpgTU3EL9NNKQS8zUeXhXM54ZYqCW6T8VGbYQ+GQCKrGSqzGcpzhR5tNxmwPzyAFqzA7gOY3Upk0M1KZECve7WjJXD9aJNiB29BBiW9fCuZhVOzXr1sVAzYIhm0KgDAmoVdXY9o2w9q5jSAD/IKgESlnJ1cRALcN/FDJkIfAJBKLHDiO29t+wj230PUtWUH2xSKcQEAKtIUBX4Ppd2xHfug6JS8yhYTKhksqvw3636UEYcxmuuORLhGqGu4mStEjEDWNszeU/9zGygpqHqFt76Po1WNcuw2a9RPvK6WbrpIqBmgek7BICZUBAJUUxr16GdeUCf+pYXuI8M+i9SY9cDNQ0CtkQAkLAh4AYqD5QpEsICIHPRsC8dgUmq5aoeYp99Tycu6zjnEhlEmdyNq26FvrI8dCZkC1YM8J19dVS5a8+20208kJioOYBZT24j+jubTC3c+X01SP6bDNRkl82X15DDNQ8IGWXECgDAk4sxtrKqr7qW0R3bkV858/JwtmpsYuBWgb/CGSIQuBXEBAD9VfAk1OFgBBokYA7R+E8RVUtie/YTI+vnzLxqCpZEt18EWqHwLDx7kpqxYIlXEkNt3jd3+IAMVCbUuVSt8p+lWCMmXnjGsyDu2GfZG1Uy6feoXqQHZmeuao3gjMWIDxjDoLDRzS9onwXAkKgDAioQtoJaof19Cnih/bCOrQNeHU/PXIxUNMoZEMICIEUASceg/3yJX845zh7inMO5rpoJo5dXHzln40QEAK/hkDavrl1k1rDOs3Had8oV98mTeszHKHV/4XKL9dAi1Q02fv7fBUDtSlnpoaPMruedYbZey+dReIB6wq9uNsolix9Ssde0MfPRPCLadCrB8Lo1x9610zdw/RxsiEEhEDJEzBv30KcE0zrzDEk7t1MZv3OypQnBmrJ/xOQAQqBTyaQeP0asXM0TE+fYFbwS3Aecs7x3su62fhyYqA25iHfhIAQ+DQCbgUCao1r39y/kbRvEixP06SJgdoEyG/+VQUCe8HAzfwyx7JQr2oHrfsHnHt1maOy6hl6nVr1GIS++jMqV/ENQzDodcunEBACpUSgFbqhhhs9cQyx9f+BfWR91ugzdQz1L5byjeT3LDMzO2u/bAoBIVDOBKxHD9Cw7keYG//eKGbdj4kYqH5UpE8ICIH8BJTtwyO4AFe/eR0TsdG+uX3G/5SUraP1Gcn5yl+S9o1KlNQGrWxWUBNvXsO8fw/2vTvMrpn7tsBj7/ABWmeOwz53GHj3xOsG2neD1q8Gep/qdF+gXzWMcV8gMnY8/bb1dL9sCAEhUBoEnHgc1v27sO7dhUMX3nxN1TO0zhyBc/9C5rBgBbTeQxEYMAzG2C8QGjeRSQfavgB25gZlSwgIgbYkIAZqW9KX3y0ESp+Acut15zF378BmyUzr3CHgzaPcgTNJEroNQKCa85WRY137Jkz7pq0W4MrGQLXu3Eb00D6Y+xgX5hdP6j0qrpY4b+he8+ElDdlUZivu0wZzYjlnKYITJ3tHIlBRiUCXLtC7VLVZGub0zciGEBACn51A4sMH6sZ+mAd2IvGIrv55mvPhLV9qPc8kHFDHduoFY+ZyhOYsgNGrj6sXgQ4d81xFdgkBIVBOBMRALaenLWMVAr8/AZVPJ3ZwL8z92+C89uwbn7w6AQP6ZNo5sxe5+XQCnato33QBAjRc26AVuYHqIPHhI5yPH6AyaOZr5s1rzKq5BfZR1hfLqk2Y7xyotwmhSqCiI4ypCxFauByRSVPyniI7hYAQKCICfCGVUPrxkTrioyE2V03ju5jJe89a4G2WR0W+IbqZ8Jj1LtIBgSEMA1i0EpH5ixCobJfvLNknBIRAMRLwNIQvs5THxac26+kTaswWWPtYPzn2Pnm6pyEVHYBgJoOmMX0xwpyHhMdP/NRfI8cLASFQAgScaEPS7qn/2OrRxC9fpP2zCYlTXKDzmrJv6OGl7BvPA1SLtENw0WrOV5bAGDDQO7LNPovbQKU7buwK6w6yRmnisc9ydRbWxPMnTEBA17sn11uMQ02fFu4ArWYijFr+DEvWA1KJkKQJASFQIgTo7h9TNcEuXUDi6eOcQak/Bvb1C8laYarMVGuaV0tsFHVjZC2MoTUIDhlKN5lQa86WY4SAECgiAo5lIq7mIZc4D3n29JPv3GFZKvs66yY/uJzx2lIaMmAM9NFfINCjV/qa+oBBbl1Co0/fdJ9sCAEhUD4EVLiRMjjt61daPejEk4e0f5hT59mtzDksJaMNS9o3WurluXLl1Ycye++QYa63V+bgttkqagPVsS007NiK2Oaf4FxvJuDX46rql9p8u0mjNhkt7O3I89mlH4LL/oCKpasQ6NoVWijcZr7Yee5SdgkBIfALCThmPKMhN8/lXkV5W7i6Qf1QyZJa0zQdxtxvEFr2FUIjRrOGWMjVDqSSD7TmEnKMEBACxUHAiUXRsH0LYls4D7mdFX/e2tt3mBNDhR2pT09j6GpnzP0WoeWr3cli+lIhpSX8kaSMaSSyIQTKiUD05HHEt65nGbtNrR92guGKKmQxO1tvx560b5i0Udk3nenGqxrnKOn5SgHk1SlIAzXx4T1svom0WU9QJS1qthG2efQgrGO7GtUbbPb4pjsCTGzEGDGtR38+lNw6P4HeNFCnzUZ48jS659HVV5oQEAJFR8B+/gwW9STx5k3uvXP1I60hbx7m7v+UHr6RRNd+CPQZiOD0uQhPme6WnvqUS8ixQkAIFB4BV0Poipt4+zb35ljH1DyWmoe8zfXCyD0hT0+4PTSlIX0HwZg2J6khffvlOUF2CQEhUEoEEu/eufaPcv33a8pj1Dqyp/ksvH4n+fV17sssvX9D5VffcLWUeXQKsBWkgWo9uI/YqeM0PA/wzSJXLpppDlc3nMfMrvn8nm+h2WZOy3RzQqmPn8f40pl8QF0z/aktrV07N7GJ3rs3NCOYs186hIAQKHwCMdY1jp84gsR1utA1aQ5fciWoIXhx/5dpSPb1eg6FMXkugpOmwejdB7pKitSBMWTShIAQKGoC0dMnYZ44isTNXLc65cmV1hAr+uvG2ZvhANQQ44upKQ3pjUB70ZBfB1XOFgLFQ0AldI2dPAbr+EHfm068fALnKW2e+le++1vdKQZqy6iUuMO06N2SMUTjVy8jzlqk1t7/0OUlzwpqc5dXwb/qR62Q5mudeyO08k+oWLYKes9MnEe+U2SfEBAChUXAT0Oy71CFAcQ3/gfOrVPZ3a3bdt1yWctUaYnSlDwtMJYrHiu/QcX8xXmOkl1CQAgUGgFV/1y9DM+eh2TfY8O2zZyTUEOaqx2YfbC33dp5iHc8P/Xx8zknoYbMXZDVK5tCQAgUNwFWB6GdA3ps5fUK5SDjdecQ2/Qz7ENMzJi3qRrrrZub+F1G605Pr1Xfo3L5lxkXX78D27CvzVdQrUcPYd6+icSDe2kMiccPYdWdgHPn/C8zUDv2QmDQKAT6D0pf028j0LETEyCNR2h0LVc6pPSDHyPpEwKFTsB6+CCpIQ+5CurTrAtnYV887l/3y+f4Rl00TDWuagQGj4TWKRWn0eiAzBd94BCEasciWDMi0ylbQkAIFDwB5bXlzkMePfC9V6vuTFJDPsWFtzM9KNQ8pO8A32v6deqDh3I+Qg0ZNtxvt/QJASFQhATUCzDrzi2Yt26wzEv+lU/7/h3YdScb11P3G7N6AdZzCPQho6B16eZ3RN4+5TVqjBmH8Kgx0Ao0hLHNDdTomVOI793B5ew9GZixBi5fM17M5KeXNCCzt8UtbdhkhBasRIiudvmaZhgIdOwIjcap2pYmBIRA8RGInjpBDdkO6+R+/5v/QC2JvksmCfA/ovleIwJj1pcIzl8Ko0+/5o/jHiXyyqVXXPLyYpKdQqDgCERPHEtqyGl/tzooDWmghqhkI61s2ogZnIesQGjCpFae4WlIR2pI+1afIwcKASFQ2AScKBOp7d8DczdLXd69mv9moywfU89Yd2X/5GuqZuk02jkLlrEkTP7FOL/LqERryv5xF+cKICGS7z06bH47fss+VSss8faNm3AgxrgOc+8WZuHlCsevacoFL9IJ6NjVjeEIzluMyIQvfs0V5VwhIAQKiQClSiUpUdqhBN9rKl7D1ZCbJ72ulj91lnxp1wVa+/yroujQGaH5rDs4e74bE9byheUIISAECo1AgnWOEyzn4jABiV+LnTjMWsech3yKC6/B+qSVnZvVEGMq3XXnLkR47Hi/Xyl9QkAIlCABVRnAm6fAYmZutgTL1cX37YK5byPw2t9LwxeFSrzYvgqqPmlOUzVLOTeJzFkAo391zu5S6GiTFVT71UvEL5yHdf40rOuXWGPwCvDu0+uHNXoAEb4JGMXkJOMnw2ANH2PgYJlQNgIkX4RAcRNQ8WHxC3Uw684i8Sjjzms/uJPUkPfPWj/Aqmq6t0yFXjsu7zlaOAKdWhLkG0pJeJQXlewUAgVLwLp7243tsi4xbMin2fdvJzXkw3Ofvc10dRuQ1JBRY30P0PtVu7qh9+rShE28AABAAElEQVTtu186hYAQKD0CiTevEaujfVN3Gg4rkriNLr72rSusdczV0zhXSFvVWPKFtZCNcVMZrugTJsDErcrOCQ7k3KRT51ZdsdgOahMDVRWabWASJHPz/3Ep+zWZcRH31y7kVvVHaNVfULFytRvwq6kl6wB9tKUJASFQEgSU50X91o2Ir/9nMj7dG5WbSO3TNESrmYbwl6xxvGipd5VmPpmEgFri6ombMKmZw6RbCAiBgiUQpZdFbMOPTDyy3v8ef4mGjJxBDfkjk6It8r+mil+XeYg/G+kVAiVKQOXESNo3/wA+vMyM8lM1hvMNfdY31JhvER7j9xKs9OcmbWOg3r2DhnU/0ED9u//bhGAla5MOcGuBtZiJN/X4Az17w2DMaWTiJGgVUrM08/8K2RICxU3AfvUKFhOn2ffvwmK5GOv0PuCtT40wlTSgSz9orCEYaJc/6ZleMxJBlnIIM0mANCEgBEqPgNPQ4OqGmjBa9LqwTuznKqn/Cmp69CpUSGlIH6Uh+cu76MNHU0OmIMzEaNKEgBAobwJqjqKSvtrXr7Ek1UEk6hjP7ld2KhiByqCrah1DN5qHRvvTmMSXYNQYo9pnBbX5M0tmT2EaqFwNNaYthCp239rkRVplBYzuPRDo1qPV55TMU5SBCIESJmBev4rYkYMwj+6D8+Ihs/HSOLViuSNmTJg+gfEYM+ezbFR+tzq9c2dqRXfoXT89+13uL5YeISAECo2A/fIFYscYW3p4LxJ3r8N5Se1QydLyNU4e9Ymce1BDAt175jsSeucuPIYaUpVbQz3vibJTCAiBkiMQPX4E5pEDfBnGDLxqnvKe4QJ+ZTI7cTFt2mIEZ8yBFmIce3NNLZDSplE/5Zp4sTAN1F41CC39BpElK9xsdlqkAirjlDQhIATKhEDCZmKBqJsMKXb6JOJb1yJxekdm8Gq1VKcmcEKZrk/KhEehpd8isngFjH79M8fKlhAQAmVHwGLJmIb1P8Hc8N/MwMssvE1bWkMqkvUE1f6O3ZJzD6Uhffo2PUO+CwEhIAR8CdRvXIvY2v9jvfXTufvdeqVcLWVVAG0IS7ss+9oNL9IinL9Ia5ZAYRqolVUI1EyAMWocXFc81gQzevdpdhCyQwgIgdIikPjwAeaNa7CuXYF9pQ7W5TPA0xuZQYbbQxs0FsbwMUA4+RZSq6AXxYjRCA0fWbCFpzMDkC0hIAR+SwItGqjhDpwspjQkyKzebFplu4yGdOr0W96eXFsICIESIpDfQA0w9Ggk9OFjoY+opcaMQoj10mXhLf8/gMI0UNWbzSDfakbaw5izCmG+zZRYsfwPUvYKgVIiYD9/huju7YhvXwvnyW3Gqtc3rmPKOLHg4q8RWbgMWrtkzUCNSdFULVI1yWxtaEApMZOxCAEhkCHQooHalVl2F9NTa+HSdN4KldTI1RDmsRANybCULSEgBPITyGugBphxd9ZqhJasRJALbmqOEuBcBZJ4MS/UNjFQ7adPED28H+aBXUg8vMWEJywP0UzqZW3EdARn0197ZG16IKrcg4r7CHSpSvfJhhAQAqVDQJWicuNOqRH23WuMO2UZqlgqZbsaZseeMGYsQ3DWPAp9qkaYwcLV1AW9a1eo8jDShIAQKF8CLRqoKhZs5jKEqCEqjMhtSkMYl650REt5ZpQvQRm5EBACrSWQ30ClrkxcRFuG8e1M0BjgHMWNXZdKI3nxtomBmvj4AfaD+zDv33NrodqnD8F5xFqofo0TUa3vUCYj6JXeqw+uQXDCJFlVTRORDSFQWgTcDJwP78NSGnHhHDP3UiOyM3CqWI5eg1kfbAi9LVLueVxJNSYyq+b4LyT5UWn9c5DRCIFPJtCigUovrbSGsKagalr7jghSQ0LjJyYnkJ/8W+UEISAEypFAXgNVeYVW9UOg31DoI8dSYyYjPG4CXXyTc5dy5NWaMbeJgZp9Yw2H9iO+7l+wT23P7nZLo6b+07if37QalodY/SdULlupvvF//JEmBIRASRKInjyO2Lp/wz68Ljk+ljz11YZQOwRX/BcqvvoWxoCByWPd/4pGZMGQTSFQFgRUyYeGDSpJEsvZNbDeenO6kU0j0oEa8rekhvSvdqcXqf9kHyXbQkAICIFGBOo3rWOSpH8wSdKpZL/jCk6jY9wvvWtov3Cesmo1AsybkWwpG0ZsmUa82txAVYlQ4ufOwL5cl76xxOsXSNyjW9+r+/yj4vOQq6phjJ/On8nQqwciyBpBAaZ8lyYEhEDpEbDu3kbs7GnY507S3ZflIh5e9w8JYFZfbfg0vp2c6pab8kjo/Qe4dcSkpIxHRD6FQOkTSLx5jdh51j89cxLWjUtw7lM33rFEVb6mh6CNVBoyDfqwEe7cwlCGqnoRLk0ICAEh0AwBpTXmOc5TLp6FfY9a8+wWwGoEOa09QwjGzqD9MoVlZlIrqAwxCNKW0aurMyFLOSeWX0ebG6iJ9++QePUK9ru3afrW7Zsw9+9E4sxOGqiJdH96g/UO0aEbtK696dO9BJFZ82AMGpzeLRtCQAiUDgGV0Tfx+hUsJk4yD+5h7PoW4OW93AEqN5oKZt7sxFrIXkwZjwrOXIQwNSLIrHnShIAQKA8CTjzu6oZN7YjTSDX3b4dz9Wj+wbsa0hlaZ9YfrJ3kxoxVzJglXlr5qcleIVD2BNQcRWmNeYv2y4GdsI9uA0wmd2zamDAJ7auoMayzrHPOwqZ16orgnMWIzJzj1j1tekq5fm9zA9UPvHnzBqJ7tsPcuZbFbl8yOcpHvomwcg/lHxN9ynKEFq1EaFQt40faI6AyekrgcS4r6RECRU7AMU007N1FXdjE0jN0o4kyaZIV9feyyBprYMKipEaMm5isq0yNUNk6pQkBIVAeBNTqRmzXVliHtmYGbMapIe+oITFfDdH6DEdw0WpE5i/JGKisxx5oxwycap4hGpJhKVtCQAi4BOwnj9GwZwfnKRvgvH2epJKgJ2gDtUZVI3B8VlVZNs+YuwYhViUIDhjkViZQOlPurSANVPvlC5g3r8O6fpXL5eeSk9E3j3KflfLX7smg42Fj3NpCQRqpIdYXkgyeuaikRwgUPQHb5tvJGzCvsz7q1YvUhtNw7pzzd6PJHmz3QdCHJjXCSGmEO8HMPka2hYAQKFkC1uNHbl1lm95ZXks8f5rUkLsML/KbNLIeuzZ4DIya0WkPX61TF9ZnH8N5BjNxetnDvQvKpxAQAmVPQHmFJu2Xa3AaUiuofBlm0fU3cZUv1hve5DJS4Un9RkGvqWUSJerLyNEIsp57ubeCNFAdm6ulsTiceIxvInYivvkHODdTgceNnhgNVLVaquJG+o1AaMW3qFiyAoEOHRsdJV+EgBAoBQIOnJQuKC+L2Nb1sHb/J7kCkm94Aa6W0q1G6zkIweXfuRqhd+ue7wzZJwSEQAkRcCzT1Q7Q7ddrcRqr8S3rYO39oXGNZe8A5e4bMABDxYklY1C1HtUILf8DIkuWS5Zfj5N8CgEhkCGQSFBrYq79ArVyypagoRrdvpl682/g+e3Msd6WWmzTOE+h1gRGzaAtswaVi5Z5e8v2syAN1OynETtzCvGjB7likkmihDcv4bx4ANQzM5/X2nWFMWUhjOlzEOzHpEk9evIPiNRJ9fDIpxAoJQL208eIHTsC88h+iv+H5ND4ltJ5Rl1489h/whlm/eTJrEM2jXEeAwfDUBohhmop/bOQsQiBVhNQq6qxY4dhHaWGRFMrHXwpntYQv7Aixrjrk6ghnGfodMVzNYR1U6UJASEgBJojoAzW6ImjMI8eoEfoeTjPOU/5QPdfvySw9Pgypi1EaNos6GqOwp9yXXQreAPVfvYU6g+JCkD2mn3jKszj++HcOOl1uauo6Mo6Q70HwpgwFcHJ0xDmMrk0ISAESo9A4uNHqFgP6/FDrqAm49Md1lc2jx9iyaq9fHmV0Yv06NVqCGuRab0GIDiOCVAmUSNYi0yaEBAC5UfArcf+mBryhOFDnoZ8eE8NOZjUED9XPJXgpKovNM4zgqwi4GrImHHlB09GLASEQOsJMDzJcucrj7jYdgnmsQNwLh30D09iuTytO7P59qEtM2UWwpOmNimb1/pfW+xHFryB6gdYlZyIbV4Law9dc1TsiMr0m/UmQqudi/CXdOWbOZdL5gY0/kjiJD+S0icESodAgpnAG7ZuRHzjv+A8YpmqtC4k3WyyR6qNnMFaZH9GJV31pAkBISAEFAFVmqZ+y0aYm/4J5wnjVV0N8akkwGO10bMRWfNnVCxkEiVpQkAICIFWEFDxqVHWTDW3/YNJkxpSZ3COQtdg/idjy9DtV5+5BuFV3yA8ZnzGlimjWqlFaaBaD+4jfrEOVh3rp968AufuJWbjy5SpgVoir53CNPHjYAwehiBL0AQ6svyENCEgBEqWgBNtQOzSBeoCE6tdvQD7FnVBxXtkvbzyBi8GqkdCPoWAEPAIOPX1SQ25kK0hd7jb5yWXGKgeNvkUAkKglQRslstz7ZcLZxmnmoqJZ4yqffMynAdX6M0RTV1Jg1Y9GvqYKTBG1tKWGYogQ5O0SKSVv6n4DytKA9VpaIBaLVFvO6P7WHZi9wYWxc1k54Oqk8pYEa17PwQXrERkLmNT+/Yr/qclIxACQqB5AnSjcesqv3uHOA1Vc/cWuuptT66CNDlLDNQmQOSrEBACjF2nhlA/Eu/fIn6hDnFqSOLMDv+XXGKgyr8YISAEPpGAikf15inJVVPKDm2ZOEtrWvtpy3xkaU2vBSuAyi4IDGQS2AXLEZmzAIFO5bPYVpQGqvfsHMaN1HOpPP7z/8C5l5VEyTsgGEFwxf9D5KtvuYo6xOuVTyEgBEqcgCpHE9u3G+bezXDePGNMKlO725kMnlr1GATnLUeYYQDKuyLQqXNZvZks8ccvwxMCv5qAeeM6NYQvwPdRQ96+SCZltM30dbUB4xCcTw2ZPtvVDzVxlBJ3aTyyIQSEQCsJqNKaDRt+Qnzd/wBvfUpqdu6L0Oq/oeLLr8sqe7gYqK38BySHCQEhUDwE7FcvYd65DfvOTVjnTsO+cBR4zYRKXmPWb616BOujjoQxdgLCDAfQe/by9sqnEBACZU7Arcee1pBT1JBjzBCeNXls340aQv0YOoIaMhGh2rFuxs0yxybDFwJC4BMJiIHqD0wMVH8u0isEhEAxE1C1yBJMoEaXvYbtWxBbz8RJN7OyfruJBlh7jOEAxhImOmEiguDwEcU8Yrl3ISAEPieBLA2pV8nXNvwbzq3Tmd/gaQjd8ILL/oLIqq8RHFqT2S9bQkAICIFWEBAD1R9SURuo4AQ0evoUzJNHYV1iwPEjJkRRqyQq855qTAkfqJ0FY/JMGDV809mnL4zefSSjb5KO/FcIlAWB2LkzSY2oO42E0ohXD5gsL1maBloA2ojpLEtFnWBZKqURem+WkVCZv6UJASEgBEggdlbNM47BvHA6Oc9wNYQvwFTTdKiY9iBLQhjDRyU1pE8fdouGJAHJf4WAEMhHIMHyVrFTJ9x5in39IjOI3wHePc2cEmH95QlzacvMgMFwRWXHqPqopd6K20Bldk77xXNYzIpl3bgG69Ae2Kd3ZWLNOPmEcsPpyoc5eoJbXDsyZbpMPkv9X7WMTwhkEVBvJ1XmPOv2TZiH98E+uZMzzg/JI9QqSGUVNYKG6XDGpU6fi8jUadAqKrOuIJtCQAiUMwE1z3A15JbSEM4zTnKeYdYnkSgNUSEDap4xnHGpM+ZQQzjPCJdPts1y/rchYxcCv5aAY5quviiNMS+eh3loN5zLhzKXVTXcO/Zk4lcusk2cjtA01kctgxruxW2gZh4frLt30LDuB5ib/5u1hVJ/OLL2a/1HM8j4r6hkkLEWZLFtaUJACJQVAZuFsuvX/whzw98bZ8rzKLA8VWjN31BJV71Ahw5er3wKASEgBFwC1qMHnGdQQzZSQxqYeK1p6zkUYWpIxZdrEKhs13SvfBcCQkAI5CUQY86M2Lr/wNr7H9/jtDF8ib76T6hYsNh3fyl1ioFaSk9TxiIEhECzBMRAbRaN7BACQqAVBMRAbQUkOUQICIFfTEAM1Aw6MVAzLGRLCAiBEiYgBmoJP1wZmhD4HQiIgfo7QJZfIQTKmIAYqJmHXzIGqv30CaKH98PcvzOZCOUtax/GP6ZHKi6+aRSyIQTKkoAqPRM7fADmwd2w715lyQhqROx9hoW4+GZYyJYQEAI5BFQsalJDdsG+d4M1C5nIxItnV0eLi28OM+kQAkKg9QTMm6y/fIi2zMEdcF4+Ad4/B6xY+gJuDfdZS5iUbTr0rt3cuqhaRUV6fyltlIyBmvj4Afb9+zDv34XFbJ326UPMtsdJaKqJgeqRkE8hUJ4EnIYGWA/uwbrPnwvnYJ0+DOfe+QwMMVAzLGRLCAiBHAJOfX1SQ5SO1J1Nasj9C5njxEDNsJAtISAEPpmA/fqVqzH2Pdoyp4/DOnOQL9NZncRrKqlj3yHQBw2HMWEKwuMnlmwN95IxUL1npz4bDu5DbO0/kTi9I90tBmoahWwIgbInED1xjIkI/g378LoMCzFQMyxkSwgIgbwEoscOc55BDTm2MXOcGKgZFrIlBITALyfAKiX1m9Yh9vP/wrl9Jvc6egjGsr+iYvUfSrb+shiouY9deoSAEChxAmKglvgDluEJgd+YgBiovzFgubwQKGcCYqBCDNRy/j+AjF0IlCkBMVDL9MHLsIXAZyIgBupnAimXEQJCIJeAGKhioOb+q5AeISAESp2Ar4HauS+Ci9YgvGAp9G49EGjXDqWafKDUn6+MTwj81gR8DdSq/tSQrxFZsAQBJjBxNSRSmglMfmu+cn0hUNYExEAVA7Ws/w8ggxcCZUrA10AN0SAdNAb6sNEwRo1BaCQ/BwwqU0IybCEgBPIR8DVQwx2oIbUwqCH6qLHUkFEwqgfmu4zsEwJCQAjkEhADVQzU3H8V0iMEhECpE/A1ULUAENABIwxj2nKEln2FyNTppY5CxicEhMAvIOBroLoaYlBDmMBk5sqkhkya+guuLqcIASFQ1gTEQBUDtaz/DyCDFwJlSsDXQM1iEZi4BOE136Ni1tysXtkUAkJACCQJ+BqoWXD0ycsRXv09IjNmZfXKphAQAkKgNQQcqHmKefQgy+KdgvPsAfCOdZedRPJkyeLbGoiFd4yUmSm8ZyJ3JAQKiYAYqIX0NORehEDxERADtfiemdyxECgmAvaTx7AeP4J18xrMYweROLcPsKLJIYiBWkyPMnOvYqBmWMiWEBACuQTEQM1lIj1CQAi0noAYqK1nJUcKASHwywlYD+6jYf0PMDf+HYi+S15IDNRfDrQtzxQDtS3py+8WAoVPQAzUwn9GcodCoJAJiIFayE9H7k0IlA4BMVBL51lCDNQSepgyFCHwGxAQA/U3gCqXFAJlREAM1DJ62DJUIdCGBMRAbUP4n/tX+xmo6D4IwbkrEJq7CHpVVwQ6dUKgst3n/tVyPSEgBIqAgBioRfCQ5BaFQAETEAO1gB+O3JoQKCECYqCW0MP0NVBVfbL+I6APHgFj7ASEasexPtmAEhq1DEUICIHWEhADtbWk5DghIAT8CIiB6kdF+oSAEPjcBMRA/dxE2/B6vgaqpvGO+MM6ZcbsrxH68ltEJk5qw7uUXy0EhEBbERADta3Iy+8VAqVBQAzU0niOMgohUOgExEAt9Cf0Cffna6AGK6H1GIBAn4EwJk1H6IspCA4e+glXlUOFgBAoFQJioJbKk5RxCIG2ISAGattwl98qBMqNgBioJfTEfQ3Uqv4wpi1EcPpcGL16Q+/eHYGOnUpo1DIUISAEWktADNTWkpLjhIAQ8CMgBqofFekTAkLgcxMQA/VzE23D6/kZqFr/0Qit/isqv/waWjDYhncnv1oICIG2JiAGals/Afn9QqC4CYiBWtzPT+5eCBQLATFQi+VJteI+xUBtBSQ5RAiUMQExUMv44cvQhcBnICAG6meAKJcQAkKgRQJioLaIqHgOEAO1eJ6V3KkQaAsCYqC2BXX5nUKgdAiIgVo6z1JGIgQKmYAYqIX8dD7x3sRA/URgcrgQKDMCYqCW2QOX4QqBz0xADNTPDFQuJwSEgC8BMVB9sRRnpxioxfnc5K6FwO9FQAzU34u0/B4hUJoExEAtzecqoxIChUZADNRCeyK/4n4aDu1HbO0/kTi9I30VrX8tkyT9BZWr1kiSpDQV2RAC5UlADNTyfO4yaiHwuQiIgfq5SMp1hIAQyEdADNR8dIpsn3njGuJnT8G+fCF954F+1TDGf4HI2AmArqf7ZUMICIHyIyAGavk9cxmxEPicBMRA/Zw05VpCQAg0R0AM1ObIFGF/4v07JF69gv3ubfruA5WVCHSpgs4faFq6XzaEgBAoPwJioJbfM5cRC4HPSUAM1M9JU64lBIRAcwTEQG2OTAH3O7y3jx8dfPjgIB7/dTcaDgPt22toVynG668jKWcLgcIn8PbEWbz6eQve7d3oe7Mdpi9Gl69XoMusKb77pVMICIHyJvDm6Gm8XksN2b/ZF0SHmctQ9fVydJ4xyXe/dAoBISAE8hH4QPtG2Tgf7zxGdMc2WLvWw4k+T56it4Mxbw0iS5aismYQ2rfT3J9SWn/THLZ8gAp5XyIBXLpso+6SjUePft0wBlRrGDNax/Aacf8t5Gcu9yYEPgeB2yce4MwPV1C36arv5UYuHIIJ343AsNkDffdLpxAQAuVN4NbR+9SQy7iw9boviFH/n7338I/qyvJ9V6mqFAGRczQ5Yww2yRhsMDY4YLc7uHu6596emTef9+Y/ejPvfu7tMB3ctjHGYAMGB8AGbHLOOecgqfL7/vapU3UkSllCAmvbhypVnbBrh99ev7XWXuvVMWDIRBszb3jB77s+7GqBrhboaoGGWsDnN2cP3LXEweOWOnrUMqkqd0koVGzhseMsMnmcDZncx6ZOKrJJkyIWjTR0xyfruyeaoCZTZuu+SNiHnyRt+4HWEdRFs4vs3TfDtvSV6JPVg1217WqBrhZodgv8sL3aPvlHlf3185qC165cXGIr3yu3+QvLC37f9WFXC3S1wE+7BXZ8V22r/vHQPlgfK9gQ775SYu+8V2FzFpQV/L7rw64W6GqBrhaorwVkOly33uM3W3elLJOIWZrDfJsiptJQuNiKcP+cCTF97+2wLV8WtdLSp8cL9IkhqLF4xq5e1ZG2mqxMmUpn7NttKVv/TcaOXckS1Bby1CnDQvbqS0U274UixkuSI2FsW7UBA4ttYP8Si0Senk6vb0Jo4KeuXbUkh6VSFu4/wB2hyFOkkqn3xz/+LzLJpGtvtXmmytOKqRbh/v1duxf1qHz8lXqKnxiLZezKNTDkStp270nZxm/T9s3+woAxZ3zIliwsshnT8h4VPXqABwOKbED/op/0NvbU9WsOIzKxmEV8jCgufopHTgf+NNyEfEzOPHiQq0i4b18L9xtAXIVeuc+63rR/C9TUgB9gyBXkkF27wZBv0rblYGEMmTfRw5BpU/IYUlkZAkM4wJCu0ngLpKseWloyydWrxA/p5a2LPbvGfOMt17IzFL9FeJOivXOlrCyP89EuA06uXdrpzb17klPSdgVOI37zxddpO9qIh+jIPiFbtjBkCxeEbehQT0bp1fPJ5yxPDEG9czdjO3Ymbet3Kbt+yxsZcvE9dzFjp+i8u5BWLRO+cqG5Y6cnSs4xQ0I2YihXph9yo4c2ZHDG5s/tYc/ProSs5heZ5t77iTkfUlqza6cldn6Hn3uNRZ+fZ6XPzbZQWZcVqT36MFNdZTU/0t47tlnm6qXcIyLPzbHiWXMs+szo3Gddb1rfArfvZGz7DjDk+5QdOpaxkxfMLoMrhUq/7iHwwGzwwDzIj30mZHNfCNvzsyJW9BOWL2NESI/v/N4yt246jCgBI7qUKYVGUes/yyQSFhMm7/jO0hfO5G4YnvaclQgjxk/Ifdb1pv1b4OattG3fmXJyyGEw5MRFs6sIlIVK/x4ehgyCkPpl/Bgw5PmwzZ4dsfyn/rddr3VbIHXlssV+2M7432rhCVMY8y9YdFzXmK/bTm31d/LsGdr7e0vS3n4JoQiLzp5nDue7dfc/7nptpxY4fSZl3+9IQU7Tdvo8GAO/uVfY0StXgwr0w6MHhWwUWxXn4Q06dw7bFcc++ZylUxJUEc9EMmMYmDzWycu162lbtTppf/gobZd8oRKEF8g7WZE3Iqdc2rRSeE3hWqyIyTuWTt6yCYPS9ttf9bG33+xnlT08K6I2IMuaGokUPXVCaiaZsKo1n1j84z/Bz+9a8Yr3rez1N130Y34w7gSdcMAzWGSJ1GDJOBVF7e4PiUlEotaZrMAZFAGqb/r2Late96nFP/uL2a3zuYqHX3jDit9410pnElzDr/vTtPM990vb9o3mvzcUMoZzxSPlCpZTYcj/+Thdr1D5yEWBD2YhXL7/TtjeejNq4SI9oPZDwmHhgncELns63rp5lnBzrXr9Oouv+cAyNy5Y8Vu/tbI338Wa17/T/c4cLqSZbwVKyJ9bnVHbAEao/umHD636czBizd/MrhzL/YqiGa9YyRvvWenc+VqQPHwL/YS1JrmWad2bxjDk4qUshiCH3CB4SXPLC+NC9qufgSErWJMcftS+x1ONIc1tLM5XysDqTz6w5Od/tqLpL1nJip9Z6Zx5nXrMZ1JZeUTrfIEiWcTJI0WdRJ5i0PtYGdu322JrPrLU1lX5mlcOsujyXyELvgXO9/PaPtzlVZdvoOa9E79Jwm8SAX7j7iAyQ9mzN+W2Lf75iyazGe/C7L8rXyyyXyCnzHleffSonOJklGgIGSb7wFpXd64/OiVBvXkLq+iplB0/iXtTdo7L7L1jF+40+4jaS8Rev2n12lzZPUdka68N2Z7JE9R+FQl7cXZ3mz2rm5WXafHPWEkxWtExZTZ6VLlVVj5dk7QWQb1+zoomPm8RNPXhMeMtOmq0RQZjUupkJU0qocSZ05Y8dcIMl8O6JYQrXHTUGIuOHIUmo3MIcMlLFy1x+qSlThy15L4fLX14h1nNvVzVQ0MmWngabT9xmoWxohaPfMZC8jfvKg22gLYBnDqdthPgxl3wQrgQxIa7WFAdhuzN2P1Hh4q7t4OEgrhgNrQX2smZIZs1Q8op3UBHIlenwYNKbMzoMhsxHHeMp6ykbt70xuzpE4zZXZY6yJiF+HVmgiprgOZZ+uqVR3sjEmZujXFzS+nHOltJUWfVPXmSwBhgROoQ7f3wZr6aA8ZYZOrzFp483SL8jigYUdS9y7qRb6CWvZMLr8OQU2m7d/9RDLmNbOLLIQ/ryRzQEIYM753HEAs9iiFDB5fYaDBk+LCnD0Na0iNBgmr9RjLmZ3tjHnkkOoox3wktekoJ4nCHdb5QEe6o7uG+kL1OUOQtlzhzyslQycMHwJsdljl/IF+zkm5WNAF5ZCqy4NisLDh0WP77rnfNagF5cp08lXJyCg4yuSL9ojjj2XN4esF1vj9ajyDCFQ1hzLSReGk8G7KxY3WijzF5ZclY8GX06HLr1xezaycvnZKgqvM2bkraJ5+nLZZdBOJoG25iOb1TzfZIGlVUIyh8iqiqc/WaY696X6AkUUzIwiKi+mjJE9Qwndu3R9T69SZaVlgXpK0nbjtvLe9lS17ubcOGlj56+RP8SS2CeuGwWSkCT7deFnnhZStetNSz6HWy35e8eMFqvtlkiU2fWeZBPu+tX83w2ClWvPg1K31xUaexotbs+sHiX22w5PZNZg9uQ07vM7byAGJRxlV5TwsNHWvFLy+30pdetnDvPv5P6nqtpwXuk25q01dJ+2x9yk4D8mEBPoePEzEWgxt3MFZzHgrMR4rwQB8XxgWzKArv3oRy78vW4FBGfUa+5XR+7/CC57vZsqW9bMH8p2+PVAKiFPtqoyU2M8/u3mDMMtcqendqglq99RvqS2j+gz8+0teh4lKLvryCufWKRSB3na3EDuxzGJHYsh6MYE+LFFjpAEZEyIsmjBgwIosRr1h44KDO9jOeuPpIsbXpq4R99kXKzsIvhCFBx6Ea5L0bdIUwJNUCDCkOYIjww8CRIIYsnNPdYci8uT2fuLZrjwrXIqgCco35QaNY0193czc8YGB7PLZV96xh+0N883pL7t5W8D7RxW9Y6aIlncZVOX33DjLUZotvWmvpM0fMqlgkEwjafhFzkixYgSw46yXaHllw9hz/267XZrbAmbNp2/hlwlZjIX2YbWY1scMaXh8gUtwAh8R1CpXG5JRyeGdfUmb26AZpSiGjOFnFI1Ih5tDKFT3t1SW9bcK4ikK371SfdUqCeuBgyj74KGH/uQoLKouAI52BZhMRxZvOUIID7h7Z1Nf+Z27d4J8C64e7S4J1Xvet6waojDs4B+Leew++cBd5AMdvJ90yauQ8DIkoj5r9cnlPe21pbxs3rtx6YkWVJdUXgt0DnoB/REbTd/mNWCAtq8ZJ41IW/+ZLJ4Ta9VO5XxEaM9uiLAglz891e82KKistVIyA1FGFflK9VX8JzvGv1lvqu8/wm5C2qE7p9wx1X2HFCxFEIXnaK9cR1shMnAhs2faOsZ8ssXmdZU7srFPZOn+WVVpkwZsoB5ZYZNgIU7sXdSdST1dBccW+cymsOIQBKvKy+HJzylYB/OewdGhO1sUO78zC//q4kb1d7qQcjuhN9obphPCBrQAp9qtny7zJ5SivetqihZVZXFBEPWHHE1pwX/HnWfzQfoSuzy29awM4mG2RcgSWF3FHf2mpRdCod4bxmampzs+zbzd7hPoiyra6JYQF9fnXLLroVSueMDmHa06jUffcx/S39pvm2ns3SixhxKEtDT89SgCTeSvc79Ce9aIePV0/NHxR17dqAQVNE36IlPoYcgfrhjDk4/Vpu3i7jTHEB5JaGHIbDJGSy/vwxWnl9ubrlbbwxQCGlDzBGNKMoeYCIrFGZgjU45fEObwgUDKltq9DBJNPJKW4nDH/Buv6q57ngNbFDg4oqIBx3ty9Y7HvtlDntZY5s8erb51/I4t+biVv/8JKpj9b55vH+2f6PsoR5Cgp+eNfozD/Zk1tL40C1QmNehasQRacuwCcAWskTxFFtqs03ALCF+HMnbtpO3wkbZ9vwI13c9opyn0Zxc1y/vD/ru+OghGfpAbPcfCif/wbZNgikrjjtixmMiKo3hc/e7kH0X572qSJea+8ioqwk1m6d+9cXqGdnqCKROYso9neUJ6fco5S3G1rEFRrwC0NAH1eDEtN03sJ/vYXnWAn6n1K33HfIEHVNRkIaAotdQariHeoU123u+9w1LdIUdqmYSKfMqHcpk+tsGenVdg0Du0deZKKorXF0dIn9u/BIoIVT4UGS50iz9J5tGgBl1PrMcBCIyZYZOwkXH5nWvHkqRbu09e7piP+RXCOHdzv6p46vM9Sp6nvlZN0VcDC4NertIeFhk3AnW+8V/cp0xzZ879+XK+pmzdceyf377bk8UOWOUud711t+PGEEA8NHmfhUdQfV77o1OkI05MavuYn8u2Nm2nbuy9lu/akrbram6Oybhw7lbHDp1kM+Ky5BFVNpzsFcUF/azEAMlzRLNeRTt5n+wERD7M5yfTl0F5hmzah2CaNL7bnZnaz6dO626CBT+7inamuZp7tw6V3D/nXcP06DdG7edZrEP1gjc8h4xmfHJNnWDHjMzp+or7psJK8fIl5tteSe3FDFpado85VWXwL1koqa1wGw6Nwp58wFfe1GVYyZWqHKt6kwIrT3gn2gaWOHfSsGXcw4zVU2McWGjjWioQRk6aBEfwO8PmJ05g29Bvb6TvFtXAYshdPLVx7VarRSR87DYaAIwpM0p4YkkIRLgzJ5BThIRvWO2xTx0ds8oSoPfdsd5s+vRsRf59cDGlO1yXZquPm7uH9ucsyt2966/u1U+BOFoWLMAgMHGNFzzB3g2M+d9Xjf6PI5pKntP0heeKwt74/uF6wIp2FoCaOHXHtnQIvJUNlLh4trOQP/opu/TxZcMzEnDzVGeMPBKvcGd7HoRL7DiRtD9kD9h7K2EHcdw8T4FWo4/Mb/7Up9dVMkFziF711coreIKBIRpE8LGNbCmNbRsodZ0UjV+rQsE0BYwYNzO+BHj+uzJ6d0d3GdzKraqcnqGp04hE5a6naXKUMItq9LGTdUADcR/l4D2FUVtFSApSUYOEUOY0nvM+8K2r/G+jX3BdJkqom2NyeShMIJIMvYDrO4KFTHShCWiGnGb5TpxchFEQ4FsyosPd/3svefqOPRdl0/CQVhRKvXrvaC9Bz+1K+6u730kLB0Z8d2FZeyWb5X1vZ8pUWGTEyf81jfqcN/QouFPv075Y5tcurq6tvgZ51ddeMLbLISz/zgg89+9xjrjG4f/aMVX/2sSXW/QWBGau1s8gXqG+wZoG6F0150YrffM/KX1kWPOMn+/4Uke4+Jv/x//4wbXeq8u2oJpMmUvyjLYqUXE7ZpSnBDd29eUYq+RDgRwMt4TJbith8EAIzKorT9m/v97F3V/a1iRO6+V8/ca9y/fLm2V8JVXoiO8+0NGZLcHxOI4AJQXvKXl7qf9shr7FDByzGPEuuZ545i4s6Lj8+8pUSJniH9nwXv/lLFwSkqKLj3J5SVy55mLzmvz3llertC+X5itd+l+sDcuKNnW0lb/7Cyl97g4HaRhOg9tOeqr9OnEzZR2DI//koVStK5uPDkAdgyAO6WJ4/9BegFULOCFncKkuT9i8EaHz3nX5E4+y4Mfk4O7xm53aLrfmQAD2rA4/Nzt/g+h4c8+NeyI75Fd58Dlz5ON8mThy3mrWrWN+Zu3FZxMHJgriDLNtJLKjVX29ChvqHpfdsyuJMfVgZaEnX9ozVkgqLvva+la54x6KjxwRO6HpbqAWq4CirP0vYf3+Qsh9P4LFBU2slFUrX5TeFrm/sM8Xq0bYl3+OUlY2CwS0pjNF2JE7Aa8gyxM8AX0Lsfy8Sv8mWtxdX2i9/1tdeXtzb/6hTvHYagqrom5eJsnnpctoOHkzb1+T/2fAjLU6BdzrrqDoyyh+lENQytumVoVj095nJ3ZegjI7IwjWd16q0Fg+QH6uqwQw+c5jBS5LRoX2oQfxIYlaV9dSzoOJqBUmVRdU7SZoO/mYhcSTVSb8ESyIn4hIiZs2fG7HhI3rY0MGV1rt33myuunfWoiAcVZ9+ZInVf6SRCmv6Hql7OGoiSpHZ8y1CqPfIoCEEThrsFtZHzm2HDxT1NkHggdTF85bcuc2SP35jdidArht5ZnjBSudaU/rc842c2fZfJ0+fsurV/7DEWto7uL+jiY8KTZhrJSvft/JXlzfxiqf7NO1T//tHSfsvAP8BeiMBvUBZ66fv6q89o8UCj2wRRnQj9ogUW7K23ga3pdzyr9FpbuHwYMddpbfCEwG/tgDwL/+zDQAs0CHXGQ8nUGCBFzrCobQtm1NhC+d3symTyslLVkLKqlIX4dfdtJP/4/KcMs+SZwk+xjxL7foK0xL7khoqCtoza6FFZxJMY/BQC4MLHeGOrr2bMUX93ASpDgJ8g3UfDS78E9GI37Giio5TKCh4WrUw+dM/FLb6NvQb+C40cjoY8Rsrf2NlF0FtpK309bETbCX6MGn/7z9Ir8YcbwqGCFMqwJDuYEgVssWdB49iiIcV+QpIEJUAWS+GOKU4Z4Eb8tKSgjyMcLlsboW9tKCbTcYVTxgyWBjyhHlq5Vuh8DulWpPXg8Z+Es+B5M5vsD7uK3xyoU97D3P7IiOz5lp4yFCLIpMU9exZ6My2/4xOTV6m3qr70UOk59uKS/5WFhE6u4EiRVJ0NnLUZLy5CDwZps6hDsgjXb1pvdWs+qtlDiBHNbfgPRN57TdW9vbPLTpmXHOv/smcL0+vixfTdoaYGEpvt3Frxi6yrcDJKrRCFNApK64tp5TCY3w5RTLKHY4qDG7SOWr6+zJKcHmTV6jvGerZZcluIXkk5cspQiEKwk6G2Do5LuPU7hmbOSZsryyMkkKvBKypRF6ptO7dIVgdXDoNQZWb3o4fkrbte9xuDqXtLLzj7A2vI0VCFVygvCTEoc70iKhyBvftxUFkvAoWDHWgzOTqKBFeBVi6fjNj14gxoc3IsoZooYjxnVyDRVL9ou/SCJ4SQhMpCKq/aGgoqVOdMFrjXvnAXVYRqbHh/e7YiCF37eVFw+zFBSNt/Pj+/i079WuLCKqIebe+FuoLqE7G1Xfui1bKvtRaUSTa8VcrYILb37GdRezaBWbuZTpa2uemlS6C2rR2ehLOChLUhyKoTElfdhONFF50K8XLAmFSBFSlDLwYyPQc0C/k9p6dOg/GXMu44EdR3YDhrfRW8sbwi+4lbNBikHLEFLcZbQNA25WRdUuLgI8NvOcD0CFjQ3oV2YjBIXt2aqm9xH4yBT0pK6NST0CJ7d9r8e+3oAAiP+/1i/hLX6URaOSGSjFWnl6DrGjQCIvOW2wlpIKIDB3e0BXt8l0XQe0iqE0dWEGCKgV2UFGleV/CdK0AQ7qDIdkl3ynFB7K7ZSAYcov9qsKQc9ezGJJVhrUYQ7BsODwBV4rAl8FgyEhhyLQyt69dGFLylO1H1daX2PZtltj2taXPHrPMTfAmuL2osc5UQMGegy3Uf0gWd+abMg48jqK4EjXbiSfx3beWOrKXtFvU/SEB5ILMoVBF2Lsf6oMMNWayReYutNIXiO3RAbElughqoc5p288OHkrZlm1JDG7ExUBcPQ+niYE1vrwicio5RcY2v/RERzqQAM/9+4bszAUw5hxBkwjKJjIrA53kkTjaLvEcv+itE0cAriTySdrJJb6c4qQYNy4defXlFXEcZ8fNWO/ShzZi4H2yk8RsyeJRNn/+SBs6hGiQHVw6nKDGtYcUjnHrVtrWb0zaR2vZRIy2QU2qf1xHslDkBE6IaAmd6llTzYYNCcH2Q9aTIGN+cdoEBoEI6gWS3J7nuMO+e6dhoCereV4VR002lGcQT/TcOMEqkrj7irA6txtM404ITVWDPZBUdb40nQRJScbR/sUu2L//epK9/6up5B4a7lejU75qM38mVuO0frEv1lhiwz9oDBi8KxLSaWxFiNRqLfInN7lgA/lnDiM6rrT1b64kOi6S/2MoNT/usNiqv+EC9Enhp6nuaPYMS68lUW8rH5n6MFs6HUFVG7OfxrW3Xv2iuiclrOTrHnoGhcBr5EZdvISgBKUWKuUgn9pPqWhuaq8YUfHtONaP1Z8l7c/gRQ3cSXigaJuOTHJeCU3TszxkleCCT1BFVkcNC9nwoQiXBEA5jKvNkbPeucUMGQ1z4UIVwVPckKd7VPReWkt5WQgXtA2AjuMQFeU/hwtowBxBdVfQdfLASLDfI0Lew572JpG/exMNvBT1aLHArBMX5/qFZj29d1PhWroxyzyTy5DGahAjmIORpVnN+oSJha9v60+ZJxkWEaVL0J7Z+BerLbUNN0Eft9w8o4MlzKquDtekTMiWPkTCXUZ+xVdXkPMZ4VHz6zFaNBwmK9XDhXMWW7/GksJkRUlWUd3VzhHqHg7Md/0GhxH539FlQfWarKF/NSQUHMntVz+Wsk/WJO2PYIi8JKQI9wMv6jxZMnoStdthSPam3dDDjAI/hCE3UH4LQ46ea2sM4eHCFcaqMGTKiCgYUgmG9CaQiTAk0ukxpKE+CH6nAD3Vqz+0xJo/IJhlx3zwBCnFtZ5r7vpaAq2LCR938mvk43ad1R79qk8/xmPjT7j/HQvWumnvew4hCjqeG2+RR7oDovQXJKiuvcF2197ZnyGLcF2cp08iC99FJiGI49gJyCMlDjdzi23TWuCpPEtGsBphDLLKd9vZivRp0tZ8rzntFUa0k1dkaOueVaKXa3hnSz+8bEeCL8M4jp3M2KHjGbt8M48ximlahXhYjVXVlfyt3Z9xwCyuIKhOfpSMoifqJOYKwOZZT1k/UIj5Xl/p5A2WxYtWGrpp//bbSfb2WxNsAsa2UgQp4Y2i/3ZE6XCCeu582o6yUCiy1V5ce3885IVw117SUvZ1+lZRCaAipvq8BxqGSoKZKuVLT71WooEIdHCOoNIH5yCn59BC3MUVxy9KNyHyKkuqS5jr9Zv7Wt1YmKBK4FSH1rjIWGlF+U3cxiJLFL7kLQjq5CeCoCo/V+L4UUvhkpI8RICkk0SaE/ioaBAOHIf77jQ0AsWcs88yF+gQAVSdEuqMBLUXWsmx061o4BBcbg5Y5jSuQvF8lNVOR1AR5kNDJ1l4/DQL9QSVsiVFkIX0ib1ssA64XpMsOzz+WYJCkPcQ9+oouWnD5Hj9KRUBv6weR46m7NDhjO0WXhBsQBZP59YLRkjAlJZRHFB4UcrhjKN8J9den6DWMP+vXs3YFTSaukbkVlsCbhBPR6lo5I6n61T8QGzCCoG+004K6Dn4i/khXBBplTVVApOnwBJh7Uuo97nTU/bs9LRNntTLeVgMH/aYXNBU+RaURglq/9HMMwIKda/0MOLcQX4yjafSAQRVCrf48WMEHwPXjhDM6dBuy1wiOJJYhgrkLjRyioXHTTUXdOU4uHDjjL7xigKpjX3WIpNmWIQgT5pbikr8uEri5AlLkBM5deSgh8mnwGS/PREYQ4OZ62ByqG/eOyd9mvyoJ/gdgS0OXQS18R4TEZX3xfHjbCU6nLadBEjaTtASzXcZQOXC62OIthIhdzvZwhfPggRVAZWu4IFxNYAhkitugiHXwRANPy2peq1BmFQwx5TDEFk4PG+tPIaIjEqhKqtG9tWdk7IB3VM2ZwZueNMzNkkYMq4vwmvHWzcab+3Gz2iUoJLeJDQKV9jxU+gcwJwit+DU0f1Eyd1fa7tMF0FtvL2DZxQkqBVkOhhD/vVxtHe2ZO4RCVay4HlkQbwLXREuDQdTJ4GbE6YQQJP8qLj6/tSU5n4bBV+VP1mc5sjRtB3AG3T3wYwdwOgmjsj/Tq5QKhhZTiWfiNNIQe4Xn6BKCXYF74wr13Bi4p6+nPIAkfYW+HIbTiNs8ZXy/vUx3EGqcQ9NcDh84ST9lyvCGKdk914lu6TiN+jai1aUum4vzR5AkMf+Nm1Kf5swsb+NG9vPIiJgHVA6nKBu35m0tZ+Tu3AzUfNw830AwEvYrMT60Rvrhy8kCuidoMkCIrfeoQNDRKEK0XDegiLtp198giotqcjp2SxB1Tkyssn9VwtVThOBFVcWEhW9FCSo0kbIaop5PBljDySHiGka4dT47N//6ckgqNVbvrY4WvrUni0wdEa4NPH6bSqATngOaSOWrrBQWbnFN3xG6PFVeQLrneWd2gkJqvZpFr/6thVPmmI1G9dZYuPHtQS4TkdQEZwjC1e69o4MywvENQQvSKxfVXsvjgZuFIZFXtroknesdAkpMkaPDfTI0/9W83X9l+QPW5uynfszVp2N4K3hK8Wv8KEb2wC0R0yCppvS/KN5L+OT9o35BFWEVAKmNJ3CFmkIH+BGc+EyCi1ccYQhuk4LwF0WhHsEYtKWgFAIfSTnewHV8LJwyhtO0iLgBMysoAlJ5S4EPXloFeFrWHOvkoJmmL25Yrw9P3t4p+6sxghq0XOkZln6hoX7DbDYxrWW3Mw8893yOoCgpu/dMwlb8Q2fMmcQomJ0mBOk3Ahw+VojL79rJUtet9T5s+Dfp5betznfBxo8pGux0m643Om3kXt45uz89+38Tu0trE3t2+rVPYjJtGd43lsOI4LBSGLfbeWa1ZY5tj1Xuy6CmmuKet/IY0u5kj/fmLIfDmTs9j2WCO1D5wopw4UbEhwrUHjLC8Pt++IzvwQJqr4rhCHy2BKGSKZoGoY4YOER1CLnfidPLT1V9o8q6xa+iTX3OjkMh9sbK8bYrOeG+FV6ol8bJah4N0SXst4RHDBUxhylpO7csbjW9y/BnftI79nSRVD9lmjaayGCKoV5dOlK2vvV3E1cZPQN4PxXtLev8NeiKW81giUVjSGC+6tvWtnipc6zK3fhT/TNJWLpfPEF3qCfpewcw7MaGUPGMOGBFGFy1XXeXRjaRDp9I5zfXEGCKm9PeYwlUHBJRlGz38T765KU69gvHNcBPjys8O6g58kLTBZWz+MLmcR9xYN1A3l6Zb1Acad0nCYVv+68QdOJq9ajPGy9SDcz9/kBtvKt8fbq0nHOkurX73G+djhB/eqbhP2FIAWrvqWVs0VkvReuNX2xjgrgfeHT/75/n6wJHPdev3gd4HWUNArqOLxZHTk9cx7yi8zi3ABZdGSJ0RFn0CjQwUMR1OzjdR8X0de510gDIRO5OhUriRYPUtAk45fROFyEoGJFdQQ1bu8sHWXLlo12C0efPuXWp3dFp3HDyVShcbxFuHaOOPslkt9+gYXhiN90NAyrcQ/Ch/djH8eCJVY6/yUHNDVbSXS/ZaOlL55GQmemueh03mWPy4KaScQtfeuWJdmroiAK8W83WObwtnzd5W7YrY+Feg0keBORbhcsYg/KM1a1+iOLf/JHLCVnc+eGJs634hfJKUqqnEgfNIW9e1soq5XNndSWb0ANtXmaQ/tnE99+aamd6xl8KDVUyOcWXf5bXHzes8jIUd5n/OsSfZPDMbV3OxafKwzQ2x6o6AwmQ2TprwnqQi61iZNz1zzNb+5DHG8SbEAWz83fpOzTL9N2ivcSJpWXWIRRpQjNVgVrZjlyjAio5rjmtQirPpOr3sD+IbcHVfvXpaTSOX7Rc86i6Tx9ge+4Tngh4FcgFEUKlqVWz9KCkuDi3DYArKjSVOZBX8S1CseDh3x0F650Dcy4Zq8vGGSvv/aMzXlhqPXpU+EwQu4znaHIPdbHiMRO9lVpngXz+EkY6Q5G9B7gMKJEGNGtu+ee9ynzzN8mwPgsevYVizLPlBKpCNc1576mDmmnkkZgVcA3N99vnX/0KaTJKn6Lefbmu+bSPW35in1jm5lbVz0vBd8qwJWh0c9Rd/IrEkhN9Q4LI3D5bc9StZaI5J/8t2WO78w/Ri52Pfqzt26Yw6yS+Qtrpceq/upLtjvghh0k2v1G0TcorsDACGnAioRxHRj0Kf9jOv6drBo32UZ09UrGviUA4/qv8dwizYPkCzenmdfOCwMzqsipYl0obZ1fnKWDzysRKrX/dAA44mOMZA2/6DlnkTdOMwydVTaLIbJ2CEOEOYIryYkKyJjMyhnm5AzhjacEd7JGhpy+pLHKKJ0VLngSIpcvHGyvLxuFkmuI9ZWcwVEiJv2ElRRrulsXT+PRtWUTeU4/z8sXapxS8muypsu7KPriK1Y6d35uHgqnqnGtdfM9kIbpcRFUpehzMsmVyxbfstmSW7+gcy/me0D78StJzdcDS0q2ZB5KEwLe+Io8fV7em3yumq+LTfv1w5qv5BZtzyK35BzOa+/vlvWk4sISnS0hthKVvMPWrRVv+x+ZgubVbEMWRH5Jnz+BxlayIAK1XwaNIzjbb11wNl+J4H/1U3oVvtwk//qJE2nbuJntA2DMQ0Q94Yu8M3zZQUt+d/iNFOb6TEUyhTCGnVvWp6fwhVgZ7EGVfCJZxOcnOvc6HhtSgl284pFeiR4iv3pVkdLsoQgqvCbJDTyMkQ01y2UcXeWmIqny/uLwZJQL2KsucQcJRSmylPS3//m7afbuu1PwIkFg6oDSKQmqFo1KOqpnt5BbJCSIBuWb+giqOlGH32Fy2ZP1tLkENc3KIhecFDfzXPp4JVyzc+t1pJT0EuRBTKelqUcQzVTZxOGV5D/sbVOm9LMXnh+KiXyIVVYiFXeCokhz8d3k59q93VJnjkNOAZngfo++Iywyg8i8zyKUDRtuUQ6ZnJIXzlnyPAe5vVK7iVB36Wju1zwugqpE0rE9qvtOc/lDL1D3e8xMvxBwIDyNus+cY2GCI6juAslCBNUqB5K3kWijyuf6LCkZZsxs1wTfGcAhtpfIhKo7+VrT546j/jrHAGWQqtRDUF1UQLX7SdwWf/zO0ge2wYiqvGt+ggT11GmsZqwOgwAAQABJREFUHbtStv2HtB0/xb4vSORDlE/dECLlaeFjg+QaCZXCCwG+mlktLY2kAg70roSssjDI1VdKryYRVK7X9oC7WYKq9cS7FvAHHxQoSfs4PEsqT3N/s08VTWQyfpVtALf43hM0xwypsMnjlSC7tyOpM2cOtX59EWY6QZEQ4ubZrh3kxDtKTjzm2UM2vvgFF/PIswuYZy9YePhIBKphKF9jBQgqLdRrqBUNG4twOYWovswzEtK3J8lrDkEVM0hewAPm7GlL7voeT5KttawwLgjcEOo+Gpc1fmsxdW/vnM8FCSpk07X3s7PAZKxItHdRDwZwthQkqCXdLDSI/JDDR7t+KpnxnEWGj/Av+Um/nsCt94cf8bz4MW0nz2TsGCTyPhjiu9pJ5tC8lsDo5VPnPTjiFxeMsU/IeqE074ZcoqCMKhIgm0JQ5YXhlFxJ7zrJkk6pBUI5GSMra7jAawiH2n/qYchl56mVkZyB0mvs0B5gSG9cffuCIYORMwaj6MpWxrv1E/FvjNzKid0/WOogOX/Pn0TqPg1YSzCmsOc6NP55lETzwBAseqzp4SHDcu6jHU1Q5ZIf3/OjJffsZE0/YZkrp/Lrs6qPFTIycz5ushPdz9E/qTOnwJvvLHPqx9xnLo/0gGfAyjHIMMSYYK63d55zBceMqe4O5495smAgT3QhgpquIqWaMFMyifK470IW1NYvv3QRVNcSu/YkHcbs2oeLL3LKMUgkHv1uB6hkEwVplIeXAiLJpVeuvfpcRZgjOUUBX3sIY5BrhDGFCOo13H7PoVy7gBis63UL4Ym4j4iqT1DdlgLAyecywhYFevSu0FWSV6QQE9ZcYaffWUsQT4enuuMnT1BFJL/+9lELqhYLWUJ6kOvU7TuV0Eln+sURVIKdDCM4kl/UMW6xoG3VWSpyCWwuQfWu9P5VUBTnyoeGPZXEAonQmUrkhTYl2E6nlQuRzf2qAGU0C8i//36a/fy9qbggM9I6QYkdPuilXtjw3zSOBmjtEho/x0thsmxF7S+yf1V/+xXX/83SuzbkvvcI6q/Rmr2DFTLQObkz2uZNPtrwH0iHc+PRm/YdacWkiCgn0IAfCU8aTgUviK/6Y8CC6o8KbkGy6eibuuZnFh4wgA/y4+jRB7T8kwwDsGrNKurxJ/ZvHHz0RvUQVP9E99sVQEIWKv+3i6AueT9vQfURzr/oKXzdviOJlwXHhvzYFUb0gWz2Q2ZvLFbUCPZyKOhAXxYAv2i6NoWg6nx5X/i5lv3rfa1mChDTfg4vLVV2jEFYE7GTOBwcR7jUmJWkq0MLAnvKKkvsP/4vDyNGjQxUyr95B7wmTp2w6k/+Ycl1f6JhUMHmijc3QiOnuaBoFdKsZzUCcv1yAU6CFtTcdbzp/4zTrJeR9qQIa2t7leYQVD+pvMh11RphxJ8h4+xXrVsge9EVv3MBTCLDR9b9tu3+ZvxUKafzqr9Y5kTegipvj5J3wNclywo+yxFUYbIsqG7YZcde9uzwQoI+rfylU8IVvMFP7MNt34MfHyTt75vyGCIPiT6QTWGIr+Sqr1m0NUA40idvFHPEtEkElZveB0Pu4kqs+BdOVqG7ZLH1LCgZvLmQMRRYza1FVAysSIAf8eojbHG/lq+WAmZxDOnTzf6ff51s7/1sko0Y3r5Wt/zD2+5d1WefMObxGjgZIGz+7RWAZ1k20Bp7G+uWjiaoNd9vRR76O1bfz+pWzf0dfn45uPdLK50zP/e9CLlLf/XV3wvO19AUovmSRq6MIIg51pK7uu3eKP5ItdJwffFnBGYGY51SiKAGT6n5bov323eszX/sCCry1AoCZpY/ecqS/A9p3buPV8ftT38nai97TusWiWkyuvUlXo48NOoWkdaRwhgOeXz5pSBBZd+7ovueh6BKDvLlH21dlLLMJ6hyK/aLPL68bUn0uTRxkke0tIsPIJOk4leIO3aK4ywf5gnq//jtVCyoU8lAEG0nKdmvYeHXDrGgypXu3FnlBmIDMUEKtu7k9bS3t0ugrQAnCpAkk7c0C/LTloW5koVELjZ9emENQdMgi4hfWkJQ5bIXp7/8YEkSOoPa0CSLRhxLaSIhF5t7ztUmTWJtv9QiqO7DkI0mf9C//34qBHUKBLX9hDK/Dk15bQ+CarjNhad7VtfICLT9aOrbw9LQEoKaqanGcomGdg8aWoIlpc8dY0f5BSZiFjgghkWT5jqra4SN/REsFJEhQ5vSlM06p70IqtwQIzOpv4IT0O4RWY3bUUnQrB/dDifXR1B7AvS9CJQmvJDFNChkCju0X6w7AqiESmGG/vZLUwmqMFzWWu0FibOnI5HFCOGEhlOaf6Sh9KLhedpKaSQTsbNOIymC6tz2WAS0ELAp1Qb0KH0yCKpMSH1HWngEFsWJ0y367HNWMnWG19i0SxdB9UdT819dTmcsEqlzZzwPi73biHxxPnejxghq4ugRi+/FEoJ3izwzMldO0iEM0mzpIqh+S3ivhQiqhLueCIO9u3ueWo4wMuT94jAEeUPueA5DkDnkfeEXYUBTCKrO96KDI2vgdkcME7ddQEKrREWAAW8M5WDPemTwSRoMcRYNhMY0ynEFMhGuuMKFg9lC9B//NgWCOrmLoHqtYo/LxbclBFXeaHF5U8lyKavrxeO13X1R5jkvtukznYeKrMZBj4nsT2z1S7sQVFIPOi82eeCxvSqKPOUrAltd4SfoBrUIKnNbsoOKpE69l9FNCjFF7BX2aHlVCqtuYEwPMEheGr2RU2SU80tbEdQUXqEexgA+1Ejyj5NLtIUAD9AU8XS0hcAZ4NIyvMVMHl8vvzTU5s0Zas8808dGjuhl/ftT2cdYOoSgXmYT8VffJgl4knJ5xK7dIcouSvtiOk1EVFE4nWZAnaiOpiO1J2TEENLKYDVVZzrLaqAjW0JQ3QLDIqNrRVQVrTOodUgmq9mgfJ3onrjquVQSnMRC4ZfaBFVDMGyjyR307/9zMgR18tNNULUnze39ZE/a/FesZMEiixIBs61LSwiqpAa3x+U2e26xHie+2WDpPZvoOzpbRQOqgnQSPftbeAaBlV5cbKWz53jfteG/7UNQGWclWOZV9zG4UC5cYmXzXnyqNZcFCSrNIBdfBRtQRhDn2osyyy890A0N1n5TDkXiFF7oHL80maCCQcKGBLKhIv9KwJTrjBYdp3zUKyRV/2lPmQTLFJrpZOIyfEH71BEu5Z7HYSEWB4bgAKTiJ8KCyt708PPLGGPsKSUgV1Gv3hbm8DX8XQTVH03Nf02cOmmxLV95e31vXcbEdqMWwWyMoKbvEv/g9i1LXDzPPTZbctu6vJcF1ekiqLX7pD6C2g1cUCoZudy5/OoBjNCe9UHgh/atlxTAkKYSVBksghiiICbVYIokBmfM4DUNIEnZ5WGIyCoY4lLYCUPYJpDWNgF5NoAhAM9g9p7+x79Os/eQM0YMD5h1a//sTvvXT82Cmn740M1XWX/jbt5/Thj5E/n+UZC27uSYH8Ce84Wvmttzzr7Uti7tQlCVBojov6Fe/Qky97IVL1hkJQSq/KmVHEE9lPeDkJyQlTpdvIxKvEJFUIU1sikMIJ6OMKYPyi8fY8R9/NJWBFXuv15EX1JqOTlFGAMRVaBXHSKqYIzHaRirGOJEqIcPrCCNZ4UtfWWkvbz4GZs6ZZBftcfy2iEE9fSZlH3wUdL+84OU2wfigJp/fB9t7SGrW6S5HPdMyMaMzO//0DkSNCUoqgP8BcO/Vi6+LqIe/tpy05OVRYTXJ6aygEiLqefH4mxoJm/RQ5lIJH66+1VZvOYaBPWK0yi4B+WGm55LAB860rOqaiiSH61fhf36F2NtxfIxNnxYJVabEva90dOPu9AgAsXMwweOpMU3EiXye1xSciSNxlAgDsK4h2cssOIly61swUsFa1nIxTd4Ynj+255LC4FF2roUJqj0WIQ2dSHop1jJkhVW+vLSggFBYocOeK41G/+S/+2BSjr3ZrnSvbo88Gnr3irthVuQ7t6xmKKLbiQS8tWT+ZsK0AmkEOo7lIi8b1H3VwtacFM3rlvNpg1cT3TSS1yvqMt+gCXdDetWsYITEPylqHvnsNbnf2Tr3sld5SH7PhVZV/tPV6/1colpruqQtcPfP+aTTwmZwg65vPTG620IUb4Hc2iOqwRfNfcF/sICvxQKkiTMcK7AnKeIvw+qFfgAS0cWI9y1nKNapfC4SNI/qVTMbQmQ9TSVuAN2gBHsYdd+DwulO9yCqoBIDhvYW+SXxLkzRL1eZ8ktn+THmNxcFcTr7Z9hqR/pn5p7dcEz3PhmfF4+/ej4bGcXXwX8SINvyWtXvaiem6h7cH+6lGhE5g2xp7R4KfMM9zk/32CGAAXVX2100XPTR3dR9/seQdTAUGlnF9/YgX24OP7dkpv/xrjIPlNsxWFyDzwkFjpMLp23wKtPPf+mb9/2XJU/+QMW2Au5s4pmepGWi6fNcLhYVIH7QNDFIHfm0/tGGPLgIWs6x44fki7699odnvDYFAzpIwwZ5GGI30q1MMTJCLUxpFCQpFoYgozxoKYpGELQMret6AbYgfcWVg4v37IsqQkIKtsE/nU6BHXKE0NQ5VbvyyQ1m9eDN0ShDu5lVMBDosIqwFCxWxeX1Qoe6PdBfS6+4Vko05a8gZfHdAsRHKy9xnxBC6qU3sWQzDLm7vzXkEk4sIYWKo6cf8zWglPgTt0i9+bXlBv1PYsWcG+ue3qT/gZfhJMZ5MH4MTwvFDF826fIuEwQFeFOBA2MZMGpc2j7FVa26BXvuzr/Kk5B7MvPWScg2Ar4pMCZvkzJueEXVrD96Be13Jvr3OKp+lM5lT2MMftifcI+IqfyrtN5gqofK3QX3ojfVGQjhMvgJldeySeDB3oeXjpXxXGSrMzieA1yiniOX6414uJbhYwijKnWBtgCckoigXwiOYUYOqk4Wxe1Dck3vNGXKYKyCXMUUTy7B8F+//OJ9pv3p9r8eSP9ajyW1w4nqPdoA/WFZDxZTxXiXS57dYuicI4ZbjZyOBoItBB+USAkDRIJkZ6WgG+ynSkX3qvZPEL3mUfqZEXWkzzgd7j2oeiogc3eJ/ttlRKZIUTqJi66VfIhUX2Z3C7QCRpMwjL7RW59+lvmcC8XYtx6lBbZnJn9bMa0vmgbBtjUqQPIW9bfv+SxvWoxiB89TF498gLi5po8RqS2K7i6+sIQ1pHQaHJYTZ5BIILJphxWin5bqHQ6gsoMDg2dTA4u3GEm4uZK3YvHjLVQMbO+TukIgqrQ+YkjyjO7j3Y/yEJE21ffydcMYhmeSCThSeQbI+ei6l4oep8Wc0X/TSpH4qH9BFpiQbtyvNZ9nlaCep9omIcOp2z/wZQdIOfpXo4jKJqkYFKYdllDS9gGoACWmr9ylxFB7QVP93Mky4paiQuwXwT8ktF9Od0ptrJYoXMaI6jV1UlSzsTYj5rHCKevUqVAMUX0liYyCWZkAH8XxRetpCKAexghrKiBoEY61IKqIEFxxmfq2CG/aSyDZj8FRmQuHqG+4JpKIwQ1/eCBJU4eN5d/lCBgyUOMz6BVoJ0JavL0KX6Hcofup+7kPT57wBOYvNqjmiafqcOIqS5PXzFW4NweKbQTqrssCknu4XKnnt0Hjgd+ezvuQS1IULGihMYIkwnMNG4SuMD2g5Gj/F9T8LU+gqr9v+Gx4AvYHpk01YrxbnECe8G7PJ0f3r3nYciBA2DIEQ9DjhK4RMotYYasGMV1MESBS3wMEXbIitojgCGa6j6GaCkNyhJqxcYIalUWQ+7XiyESHuVyJ4uGhyEGZrhomyZyinIJb67BvcGQJ4ygphT11q2LrGWarydZF4OB2JTHfOJzXq5vyJnGv7w26pb6CKopPzP5gr0xj+KaAEu5+V73Jq34uyBBLetpReNY0yVPERxJ8lRk8JCCT3ncBFWeXDlZUHmij4PzCnjpE0sUeaFnyAEt3KHNlAc6mNIq+COSl5BtToD5xw4T4GqPpY/9iGxzN3fKT42gXrpMPuVDklPStk85TwlncAXZRUVSgfBCWCPFeYmTUfAAxdjWF+VXL46e7EmVvBLkNP52JVlSfXzxxXbdtzGCep/QwZJTqmWhcwSV+nAvV6NMETII+EKGgVoY4/ad6vQAQTXkHM7Xdb//5QT7za+mQFBH6EaPrXQ8QYXzqSfVmSKo3SGo6si6pQxj30jmu1x8s+mwXNs/hHg+4BCv9I2b3vCQZpM8Z/CCm8yfB8iJcrOJw1DdwsLpGjy+kFsTr8HK+tCqFD5bE5cDvVOuGl7KCDQLgT2oHtmTLYX/+FwHVBdNScS6lUXstVeG23vvTrSlS8bl7vO43qQf3LfqDessvvZDwogjiKIxYWTy+GzrEP02+iqarmXkMxw8lCibJRC8wpbezkdQydf64jtW8hr5AXElETFV/XMmskAjdwRBVeTe2OerLfnVKs8qI02lvxhQNwVEKHmd3G5zF2Tbnbr7rClQd/WXFA2ZeMxiu3ZafN0nlvrh8/wZT7EF9eq1tH22Lml/XcU2AHKTat+W9ogrRHs5QqXcY0Q4HXwKPCgavkMHoJUcQAh3FPEO6DnfL0VcoOtEZHWtio8Vet8YQX3IRrJbuGLcr4GAOhInnOAO0kCjQfdcebVf/T6fi+hkv+fVYQQCZ4bv+iH0dqSLr9OCa3x+g8XRLyJmSS1IvPqrYSMEtdb4/GGHxdatIpDaev+O7R4kyQXs0JzYuSE7z1R3YZxXFKyk+PWVLlCQh2/MMw0KV+gRFg2nyEMJFP/iU0tu+sDDSX3fERZUBW979edW+hqYPGBQg5js/QZGWD0WVKexkeA58Bna4D0rxUPEtx771z7tr8pHuHYtQRhXpe0sVgellZNRgaWZNbowhsgbYwgYIu8LeW25vWJBDEFokHKsPgxpjKA+QHC8RcSk+zXyqBA+aLwWwhAsGO47H0OEVEgkeGMIQwayV+1JI6ixQwRrFO5sZJ4pEFuqzro4jqjZr79rZS+97CmbJZMUWBfrJajSUmrME8laY77s1dcLEtzWjvuCBBWFUPFrmmcrUDaTIkcyiRabAuWxE1Q8ZqrXrwWfP7LMKZRwkgVr4Xx3Ai+Stu71t7wsCE4WfFTZr58isit5JI13WA33jK+jL6+fzv3KnxpB3Y/ya/VnSfvT6hTcQfwCTNZUVUHGUHoZOVBWEL1XMocOxdEZOtDDGOGIhm1uWeKyCBo0DR03fLL38m+p2zZGUO9gjbsNxlQnID2un4UxerjkFAgq1tG0rKTaduRjjC8J8XfOgiqCKs+ATNh+/4vxENRJPz2CqlDvTitJ+4mgltORspD4RfvHRE4lcPbDT1sbiXOGMtpdllFFyIvhOlO3yH3vlk9QwUOlj5EFVYcvg+lZEUZRgnybVTGC69CpaVxodHAmBxXj8HMa1iKogQemU/dZOLKdrh/ENW8tHmG/IwrWG8snBs5s37fal5S6Rt7FC+fI9feNJXdsrLU3Kfd0NrZH3/qdcw8ND2C2NFA6gqDKvTXJ70idOcnv+Bpi9iWdLAUAhUnmcoHiBtPYXoeOIKg1P2z3It1tDRAAr+bu36KZS3GD+aWVvbgo8GnDbwvekz6MPL/EovPIkTiEUPz9+7fLgtxwzdrnWwmXH32csP/8W9quYAnRjNK0knBZXo8SSwR1+CAOlFjyaCxU3CKhL3TDOgWDILnFiI532Qti4n8tDBeWVBOC8z5upcIJ4UPG5UYGI3RTbuhyF2ovh7wthB9y6fU1k7xz+ztw1etenLZ3lg9zAQjGj+9jAwZ0Z68srqjuPv5T2/ZVRCx1ndQ3uMMqn3Bi22YLRo2t9bTSHhbqM4R0JWMtOhdlyguke+jXv9Ypdf+o2fG9N+a/W53/qjt7kl5gfM550aWlCfcbwPgEwNuoVH+9yWIf/6V2LlC5yPYaTP5Q3OfnvGQlc+Zb9JkxDT5RaSOqVyuC8R89oquzcXkLP/sye6pech4akf4EhVMbtFEfFbSg9hhIvla59xFdvG+/Buvsfykrdmzn9w7rU8fx1rhxAavULb7Oroe659teDtim3tO/95P+euFi2j4Uhvw9bdfZKpDDkKycUUgRLoI6fLCnCPdTydRth4Yw5D66KYchVxhKEh+yxccQeWg9IPl6VTwrZ4AhToh0tQtiiNLKiMBJDgF8/Pu4zAFVBHfK2MoshowbJwzpBoag+epkRYRGuJMCdxIH93u44/KYZ8en3HqV/o35GpkBQZ2zwKWlauhn1EtQ/YsqB2fH/DttFrjR5Yl2+IlsRZqWxHebrJaLriLZKpvAm2Q1yFlQ/ArVfn3sBFVrFlkNYspqEPTA8qtVVmnRN7L52IcM9T9t8DVTVeUyFNS9p6IAR9mHGlGKK+QRYX5IyT2f0rKb1DJ/JcPA//6MOZqVKRzO8HuFE/LwkkJdAdf80hOCOnwIJJXtA2RzfKS42/BPfUvNjZtGipmMXb6ev1R8Roe2LT1AIfGgivg5KIFchgHHZbLzjUq6/aZuywDfS0ZxGJP9npv43zuvUCnXAa/XFwxhH+oIe27WIBuYlVdKRdjauXS4BVWJbNWJsow4zYG0Ca6HvF+ufSAipb0whYuo6sh1KmOiIYKqBeI6a/W129g1CW4iC4o0FUkYqraayqCoZ+mzNH8oDHNSAU4IjpRyCwGVcwu9Og3rByS0UYKKcOrM4pCotxYPh6BOgaBOaOduzN9eLjTxH74nWtx2S18+a3bjHKNWv6NO6eQEVVbIhASv/T+wv+0MmoaLdJIEfkoXQfXaQXvs+hLtbxCRfJWzcRb7RyZM8r57wv+tS1D1cwQLbhsASizhRd3SGEGVkVBeFPK2kMBYtyA3uiTYV8AMbR2QxVaHM4TyoqTXcTa26UjhuiuckFuvjxEuhyGA76Lj4UbjaSjzc88tBozhSFHKxg8vZj99sT33XF+bN3e4PT+bfgwCX93KtfJvWdpqiCCZ3LHNUiePWObqmdrudYH7h4bjNj8bYiYhY9BgiwyE8DWSPqAgQdW+pj7k7xw80kXMLpn1QpsGUitIUHsj6M5aZNHnIdV4hqjuRT1ZRBooBQkqGGO4HIYGMrdwfYvOnmulz81y2NPArZr8VVsR1AyK1dRlAnKR8id5GAKw/RvLHNvOkMwKHF0ENUdQ1Tn0ag5DJHfULY0RVIchTGmliymEIQ+zGHK1HgxJyLU8iyFOzgBHmoUhjrQmcRnMY8is5/rZvHnDbTYYEhCd6v60DvlbnlyxH3eyloM7xw8RbfoMQpsk6+z4RBkWfnYRiqwFuLMTyRa8aUwZ1hEEVc+M4SWS1O84BX5eQ7ZyiqBss3YRVK8hKnqjbCCK7zMTWEPmWcksIvv27pNtpKfvJUhQfcWVXmX4Er4UYw1VTAy5+fqlMYJKKAvP2zMvOviXutfbKOyvQ1JvwGucjIJcI6ObJ6fIU8STUxLcyJdTnOyhOce6gJmOV+U/xYPIl1N8Rbo7hQqwncDhkvAJLjRqUIWNH11pE8nh/uKCEfbC7GHWp089VoBatW3dHx1OUGUWVzRO7T1VqQuww3C3GTZEUa4K/FCEx8YI6lX2/15msYiRIkLuvNp3IlcfpYxwwmed26qfY1jqEuw7TbHXQ70uwVPuexmX8xSTbZa0ehirK/KuNzovgqAZ4Ze8uXCo/er9ifb6snGc83hK9bZvLb7mH7WtCk4VwwxxfgTZFu45yIrfIO/W629ieaORGyg128h99dlHltqxjuZgcOuH+wIQf7VHkKQquaR8TJ60o98/WrNmEFQR9prPVlly/V+ZxZjrJVUE6h4aM9tK3vyFlS1Z5jQfIaFJ0N/i0ac3+klBa6frA9oef47w869byYp3rbEAKMEHFbxn4ARnlV35q3oDXQVOfWxvMwhisDjGjFhe88rlq2n7ZHXC/vgP0lHdL7JMKMIRtlIUWN3Ygx4kqGpacTt5ect1ZijueYUsqAJ+bQeQK6+qVbcoSu+du+hC8K5TlE2XVkbDvU7RDKpJsD84QYAeSCoDy2EETjxZAoOWMkmUVfIjKzLeIwW3m1DyjhWlbtuSWX3t1+9PsbfemoSXd2AVe+Si1n2QZP9XDe6wiXV/IecFK5srqm+2ziJk2RKekx2fWB+bWgoS1MDFRc8tc4HUyuYvDHzaureFCGpo5HQvXyu5V5s6jwsS1EDVWnLPwOX5txIO5NbI4HMEdQ2Y+u1HeTxqgQU1f3PWrUKBlzojQQUPctgQ/AGtea+5g+ba4Xf2PrUsqNoXpqHOdw1hiDy2huKFIQwppJMRhshjSxgia0XdIgy5DYbcFobwPo5PsWJh1C2qhzAknriPpyus9hEMATZzGKLvaxdtMXBuenhtLZs3wP75n6baO+9MLWx1oaLeuCtQkdq3bfO/Unh0Va9bbYnPwJ27l/P3F97o6DcKOQRvIskhTSQy8hJT7uD4Gtb0a6eza3pgjWkHC6riSsjLIrEGK2Ruz6UGlI4iC41gn/cbv7Dy19/AYkjAlAZK1RefWezTDyxzBNnGaTkC8lRbBknK9ru8LKrXrs6218l8zVwfUH9SBhYv/5WVLn+73n2z+Yu8d/VZUHPntcAqm7u2Ld8Ic7XYC3dzvretfID6HDlRWLN7bypnQfXlELn1lmE7kDeo9rvXLY0RVAygBF7yMKbutfpbnEcYcwdvDadwh53Kw6tuSYMRsThcBjnFU4KJyyB7yG0XVZ1LXYWMkgJnPG+v2nfIKL5O1h3Yl+GG4anxf//LdJdGc9jQhhW/te/Wsr86nKA2ZkFtLUGVluE6h0K7y4VO4yXJQBU51Xh16xof8tZ1sjQReYKqhUE9zyAnEFImg0kcbYLn2ue5+HkBUFiJFLyAo4J9ZjOKbtukkls2bXQPmz5nqE2ePph7PJ6SOk5gpAM7Ae4AEMllb/hEC4+e4AiSahKq7GnRKTOsePIUIsD2aLBySomQOEgQlAN7sL4ctsz5IyhYRNS90pkJauoqgRkOEJRhPznITlD3s4drW44UmGHKCxaZSoAAXAGjIwku0sSF0v/9dV8LkslouYWGTaAPJlqEdo9Onobr4ei6l9b7d8F7Bs7udARVHglnSPzM2MncREvUzHL3btr2/5iy3RzHqwfZicgzdrZ4uLN+lBTX3gagaHg9UOZ1x3VGnhY9Gc65bQCB5zZGUJXr9CbKrOsIl1rTvPQxwov82qYFR5hRxT7UGoF/CwhqBM3ltNQZmxQ5ZVOHh23GnOE2dSaWxva0oN69zRz4EYUP2OAEYhpGK6qC6YwimEifvEtpRIEyJk8laFozxmchF99A23cRVMYTbtZJNydOYO0kWMn+ncQH2K+B5rXUT4SgpsCDxOlTljp1Iv/bA2OlJW+LcL8WniontxvX3CRIUG9CKDW9tH9UBLUUDAlaNeTO+wiGBNzy/Do1RlCV79RhCDKfCGxjGFIdh6A6mUJjICBlMibSabYMISAqMFLd0hyCquBErr3Pnal7m3b/W1kEhDvpIzsQrLJbdPTUvljZwJ3weLw1iLpbTCCvpgbxShN9PE7wx+R+5JGjBDg7dQhz0llump1Hj4ugiuANIDDTM8hWE8DLKfwOcLO+vad+Y2vbUfLAXhdEMX0KmeTSMbqeBUelDQmq1+8nLXnyuKX2/UggODwrcspJntWTbRyjqPs4AqmR37qEuhcK1ujqVeefJ4WgyjVbckgSrMnI/74Nily4fVlx74nSHEGVXKBUmdpXWgxLlTGMPx8prSWo9/gZ1+94SjCNeC99DMs6f8gW4PgzDxZGVLHXXSRVaas8fMnOEV3HZzkCatnxF6htLYLqjFJFNqwfBPVfp7o0mj8JgvoAQFeDyiQu972yOgtHawiqtAragyqLyAMwPiVtZlbYlEyg5ypisPKuiqz62k6foIpwerIDX9LZTuOAv7ZnFpfLL1H2FPhEAZL4nifYIIIYvFN+wpb0PmHDKlJEAKyw7pWsfo+rVPFjq/jRgaTt0lJGF79pxS+9YkXZjfuhSNRCPXq4ZNBBrXOhaiqabPoemparVyz+1QZLfP0p2tAruVM7M0F1KTWoe/rePfIObrbE5rUQ7AO5umtBMCLwhXoSoGQxIeppo+YQx/yN8u8Kkkn22URfog8WLSUAykDX7k1dkHXngvfMP9I6G0GV1rLmm82Mly8sdeJgoKZNeytB8N7dFNHoMna4+jnbElpqWytw2wQnZODm/1zp18tsIPyqL3vUJYBqiCvwQN3SGEGVi+9VXGeu3ZYbDEpS2KgIqXBBwQ+EF9q3Jry4X/XAHlaTwqkFBLUbVtV3w7ttaeUP9ky3e+R17mY9esKwuX+7FQVAeoCmTkKi09rzJAQsWfOji0nPgHLGL0WkaAj1qGyywKjruiyofuvV/5q+f8+bE5s+t/RphOqH9IcCWfiC9U+EoCoyeezrLy2+aU1+LNbfbE36JjJ+uhvHbl+/JiolSFBvgSNK81COfOGU0gBIcLr17+1hSB+CD7kAJRIu68GQhiyocvG9hj7uKhiiaoQLYoiHU/chbw9q7rN1ICBnuLEA/kjeIBiSApag2XikDZpDUGP794LDG9k3ufGR+7T7B7JcPUDrx+/M4Q4PLXp2iRUvfs2KIadFYI1kkVBu71bDtcrIMphd0+MQvbjm0279NqE25XERVPbPhl9Y7sZd8fgJ3pouZX8jHliSRSRPOQXu5vWW3Io8pXQtKm1IUF2/b0Ze27Yh2weMJecB5z1KuZaLF+MtQ3rAnCyYlQ+9M+r/90khqC6Y0zfIIZvWWfrq+fp/UDO+kayodislmNe+S31yBFVcQqnvpPySMkxHEGP8R7SWoN6hG7WF4Aauvn4MHfGURFZOcRHK8RYNWZLArw+ImSELqgxqqoH+4UAGkKFNsXNEUsVd6pbaBFXfhiGo3bGgToGgTrJhQyvrXtLmfz82C6oaR2Hf797N2PETKft8Y8o++jJtVQii6kR1pny2dYikuuBIdPaAvlo4CMVcqC0gmw25+DZEUF0/8UyfoKp+bm8q/VSNxiHOIYLqF29/mToVrYPLEyQXPrSbkFNF1nPKTxa9kbgB/3Plfnu7/2EbWPJop/v3a7dX7fsiQm+oW77BikZPhhi9aqUvLqrlAtXcOkjAqlr9kcU/+ROz40zuckWl1YQtnjHTA2lFsYMAN7fkyKTyh2752hJffQaZDJAb7bksF5lEW76YfFsLX24WmXSuNav+0mq34UK/KwP7Sd8VEb5rcYIoxDd/bpkD3+RP7Tsym7P0nUYt1vmL8u+kdY1/86Ulvv0C5gY6KW2Nr3XltI4gqP5Cmwnk0/RrnIagOqHo689Q9532P27R676Hs+yL1C/ts4rXHGHU+h8E/sGQU0X37s9rQ6UpBPUaBFXCJXBQkKAKL6QdFUF9AEFtlgXVLQop6wVe/L5su63s+72NKMt7IjRU9zb9zp9HvVGaLFruFlrt/2pNiREAJQ7pSGxZDyjTiHKDC47PNnLx9SJIMs+Ya7HtWz2FUyCfYEvccZV2p+abTd69rl/0rAwBBV9L7lmoLeuNuOuf3B4ElbUg8qIUY0tcoCqRgcY8ZvzqtPRVlmLhoPooKBD790scOwo2ZEmFJzX5X7X4NTQKC9DK31j5G28DDgAEpS5BLRdBzbrd1cWQIf09DOmHvNFQEYa0B0H1nylriKcMh4QhPKY4ahHULIa4PWJSkHMsmzewQRffmu3bCJDzN0ttB4sfd1FfEBHburE3MeDWEllE7nKt3+Pw6mpFie3b44KzJb/6gHYSalMq+lhk4RtW/NJSl1/cG/Pdve+a+a8/jh2Z/EpkkjZUpgeVVpJJ4U71px9a4tM/QOBFEiiO9KI0XLTMimkbRQRW/Rsjvd7Ftf910YbV7zvW1v4i+1drIu5KVqve8hWYiQL62F6PALsMGNk+6AAX3zzuSDaCHFBSd+6wLm0gYj3KsGBKo2wbtOgl8Nv2Xx/4CEHVVkK1goajeI1TiAUElvYiqL6BzSeoctuVnOITVP+35rkMe1Dd1kX2mSpQkoxsUoyJrOoVxZhnhIPfOInrKSaoGi/7DiRtz17yBR1I24FjGTtwDjcWOlF957SNvNFrJXvMBrNQDELg7N6NcO8YFwoGAmuEoCpIUlNdfJ22w2leSbyL4CmSKtcbv+Q7VWZxJbe96TQPXuROztMNyBk00iCoPfZBUA92DEElF1hkKhvTyaPnl6I+APbI0bivjmoR0Pn3qY+gWq+hOVeR6LRnnZtLS4QguaTE5EpMlFHnSuzccSFjfuE54alyxyX/Ke6Hnjtub//bRl/bk6CqbeKKUqi6k/s0fRpX4tsX8nXq2zqC6qIgnjmNOxM5yOSucwB3nQfXc/fvCIIaP3zIEnL7PnsqV4/cG7RDLpjEedpB2vNWlL0PZtma2C/tk3L2MWKRkJU06J7XVgTVufiytsl9pj1cfF1QArYJ9GLv6b+U77KV/XZDUPMY04omat6lvYcxh15gLpFzc5Tc2ke1OvqzG5+4bSYZn86d7KDGZ961u61cfOUeGmevZXLfLs9l/wzj6/613O9vCZkUkXJuYKdPMq/24DpI3QNKlZbcM1ehwJsOIagoLEODx+GShivfZFwQsVi1lhQEflLBt4rA7vXRbnbAPDq+M4rqKnwMumUWvFPTP2yMoMrFV9YGud8JQ+R+J8HRL21FUAu5+EpUlrLcycyICfLK0LO1TcB38fXr0RhB9YRGLK5uyxECJkLksnlDOi9BVdqXcbMtMn02GNPH/5nZ9XtUk6NV5y6s86YgQdWYHzKeMc+WGvKSujE/dnydK5v2p3PHxZVYOc2dO+7l43nFW3sQVBF6t+2C+ToRt2G5P7MdqDG34UK/pl0JKgtkEnkkQZaFlHJR72W7ghSFvndOgMRFhgwtVL02/yx1/VoedxJZr4Nqcn4qqNXFo7W9Clvz9MBvCxJUzWln0USJLXKq+S5ZRYQ1GDOjtQS1kIuvtibq0DNFYyQfBV18HQHN/uY8lxEJFTFVYEfIKJ5dGeLuaCujM86BMd7eVbyvVOA3T62LrwS+T9fG7S8fpmzrAY+YCrhpyxxBdcpD/u5VZjbpmZBNGM0+ETpbDZ5VivJtoHCDhiyoIqh1gyTJQhujLnWDJPlah+JwxpnF70NS5Xrjl3ynxi2ZYIGNX4WgSrvJzXRo4zHHyMwDCOpeCOoBCCqfP+ZSNG0xm/XJAbZgYf7JUhcrgESYOrai1EtQ1TnqpJ6Ed3/j11a2/K1GAy8VqkY+oNF/AyaaFMw4XyvKX6GxCmhEQIUlr/F7wt7vacSdJvic9iSoEtC9QATU/c4lr94+WKsSrSSoQh7n2lRTTdAJAkR8+ldAFyEvWzqCoFZt+Nxiawj2cHCrX43ar+731+7D2ic07a9d92fZJ9W/tI9LlrltALKCyJLpl7YiqE0NkqTnxloQJMltBwAzeiVv2L9232cr+x+CoGbB3/8xj+E1RL7BkreYRy+/2qJ5VLCK/vgk/YCCosQYn3YZoSBb2oqgJk+fsmqCniXW/RnFhzS7LAJBjGhBkCQJVZpbAL5Vf7vZC2AS8H54ogmqcFkrLBhdNH2RlWhtWLzE75Z2eU2cOkFgOgXkAgt9a1OtJ2UxIYiPtb5v/h+NEdQb2oPKbaVHVsoHufoGMaStCGpTgyTpF8Zi7KV0mQGCcobaRoIjRwELajrJliLtTSX6Jicy/DO2bMGwzktQS7tbdNmvrZSgZbWIii+PNGP9VpvVLQUJanDMz3gZmYExjztmS0rV5wpo9HfP68rhTGA9aw+C6uaq5isumkRTVwCpcgJINZa6ptBva0+Cquf5gbfix48iB3xkyS//BkuC8KgESFytfve+bZd/EyeOW81arQ3gjts6kX1MG8khuUoHfluQoGrYCV9UfC4jXtENvPGDwOq71hLUlgRJckRUD6fkuAz44aW2IzeqLKkETPICsylbCWkzIaquyIqYLU9tkCRpEH/4IWnf7UjZrn1pO3HO7Mz12hZUh7c0hBLbjugfcvnI/A73G6juq6weinqVKMAFU6gUbt6J46sdJ5Je2mkVogi2Iq4uPHO+3Q2vPfd9BIL6sOYu97zLOdXABV9kMNmHJAjpIHRz4g4dqKOa6mQ/zwLLyIwsqCKobWhBxe3DSJ9QNHgUQNXwflanMSSdQ3ukG6mXoPqd0ozUNf4lwVeXs1T5CDcAMAWEl9D4OVbyzq+tnKTzLSntSlDZn1v16UeWWP2HWpajXD1bS1CzN1Jeuao1qyy+6k+13J9DQyflU4MMJvCT0msUCmWbq1DL3sjlKaWUFpcuWkLpjH74upa1qWV3bfgqEdRVENSPIKjSUEorKQGzEs8KgX1v9qBq71hlj4bv05iLr7BEe9Zv4JlIM6OR9PBJmkk3HIEC4ZGOaoRLBUmqP4rvDZRYNxAkH+YqpWAnwow+6dsQ1P1Zgppd0HNntfCNlERKiwJGFFU07M4m74ooKYlK0M63dZGbVRUEMv4x4zOgQAkNU+oa8qFOJ3WNxifpJIrK6cBmFpGf6k/q5CwN/HaXEgb8K505y5GyZt7eCkUGlodIZBZpd0ibEMYaEFXdezLomlnqtaCSLzY0cKSFx9AvpLMpeQ5rUyOB6wo9Onn+HKkwtrtUGOmLp7xUGIHANKFJ5Jhc+b6VK2J5Wxf2trlUN5fAhqN4VuzcguJqC8sji+1jKEGCeonwCBcvpe3Y8bR9+13aNmxPm4IxMm2dHtXHkAphCPihQ+nshCFshWywNObi63th3Mh6YQQxxLdu1MYQL0iS/9C8BTXpyRiJ2wiKWDWcq1k2WKMsHQRaM8kkHUVQFXhxwEgrGjjMr3rB11D3SuaNxnT7pBspSFADNdH2o1JFt5cyrgWlYM7SUrYwDRhBnmi8T56f7+ar1tvmloIuvsGbNCN1TfAy/317E1T/OQkIavUnH1jyC5SGPkElH3XR1IW0zwJwbZzDTGF+mxcUiw53Ll+0JBkbHO4cQmHejrgTD/ewa1N/Y7eef9cO3R1sm7el7Zt93p5zVmEHND5B1Vx32xaRWSrxBhXW9AJj+hAvQ5hTaJ97o1F8ESnkGXoL+5gwJc3DxK+cnIKskiPKKLnk3qsgSfUTVNU4THPdo+uQV/AMlSVVqWWQgji4obBHPwQEHdZXQZKmPX1BktRh166n7eq1DAtHyjZ9k7a1W9JWw/rlLxy0gGsPWU3l5isB1CnD3BeF/xHZ1D58dU7dkmaQyhL6AD9sz1Tt3U91UfFf9d5/juqSpJOS8Vvcl5Eg4cfpXj0iSvxfOhBJVuZvBoCrsDpRB1LsyMy97B7UQ23n4ssejvAsEt7Pe8mKGokwG+7V2+URK+K1rUsXQa2/RRVAqiMJqpV0JxIrgvNQXJ/nYylRHkiCMbV1SZ47Y7Hvt7mE6+kr53BjJnVAIKJzWz9P9wsSVP2tOdqdrdajSHQ9nBRUbgsASq3AFied9khpjKAqSJL2oF6/4xFTBTjRsxKAi1JF6L0UXAqSJEx5iAWv8B5U8Ch+BQy5hHNFdm8R16az3hZ98LJoc4KKW1t45isWmbeo0X5XpEblGgz3YR9FG5f6CKphSQn1JmqkhLq5L1nJC4zPRtJbFapaQYIa+O0RhKGIflvffnlQL3Sjej4rSFAjpUgVgyzUbwgYvJi6z7fo6DH13KH+j+sjqKEJc7kv+/GIAur6hfqHlNS3mUU5J+Xmlrp2zRLfb/GC4gSiubcnQVU+1prt3/HMby11eA+Ruy+iqGMyFVA0NvNnNen0IEH9fgcC49aUbd+dtvPA0wX2lDt+x52C63wPutXHEEXxVdyLxpq9MYLqY4gfaC2HIdkAjY9iiBckyf+RtQgqnhapxDWERTwF1I4c/BLkFt77inFI6rJ5Qx+7BTU0hGj08wgoOPN5v+qFX6PF3nzUmC64T6vwZU39tCMIamgIymDN11lzLQKGFfXr1yJl21NNUCU3S/EGZkamzgLzX7TS2XOa2q1NPk8xCXK4c2SvZW6AOw9vMFcKEIIm37XhE++lu9vO4vftu/7v2rH4EDuLQuwaaawcMdSlmuQqqkL2vSypIzG6jYSjSxGmlHjCG0cv3Mn5fxojqC5IkggqMX3cdgH+0aMUJElyilyNlX+VXHakq2EPqounk1eE17agcrIjqLeIq3rJ0vFrj2KMeI48HeTi298PkjT56QqSlG9+s9NnU/aPj5Ik0E7ZPbie+tBfOHSe/vYa3nuvzwqVxoagOiIWu0XAo9u19pMWulf+M7QRaBK0MCgAkp8zyI227ALhnVv76XLJQSy1objf/Kr7EXu9z1EbUpbA/zzKYIzmb9+Cd6Hegy362s+sDMthY0msW3D7Jl8iAah6wzqLr/uY9AiHYPIi6vrd2bYgIEd06c+tZNkbzkoSKim1kGZiE0t7W1CrvyJy5OefWGrvt9QdNuKSnmfrDlJElv4a18f3rGTSlCbWmF+OxSgTq3EWxdgXayyx4YNAKHdGslRkCNCh4ZOs+PV3rWzpa1bUrWELV0MPr8+CmrumuNyiy39nZW/9jH3Ho3Ift+oNYK/fmKmJEd5/v8U+X22prZ/w4yUo1SlCXAXhiTa93+vcwf0pj8tYnPkL6O55MNfWxd60taWL3LqjHpOXxcThIRv3DK56TZxeuqfyoD4koqcUW3VLdXXGrtxK27U7aYdH2qcma4vbEiAPDbpTKSr0PEXgvM/e2kSSG6oddDgQE+AzvCCnqfhFpgfmWEnHuRKyXlZj/1Rx2Jb3OWIjK6odRpRKMhbwtbRU9LLi135upcuW40o3rKV3afV19RJU/84o26LLf2tlbzM+h4/0P2341Y0/b57FTx5nDn9qyc3/kBbAu073XKEx/27T71nPEwsS1MC54YU/s5K3f2Glzz4X+LTht5k4ewWZPyKPNeR3TnwBRgRyQrbkng0/EQha+ymBcf5smRM/5E7VFoni18i/jLujj82NRXDPXdzIG/2+qk8/xrODZ1468ujZmhvyBAILC5oNHr2iWZ8UjZ8Fvr7jrMNfbEzax2tStnln2stFmoUpTS9VQ7KrZqRc7yaO8DBEXhlNKcKNh0z5B2CI8KRuqQJDroIhV8EQGR2EIRJOXe51METPVyRwhyFV91GgC0NYi3JFlZOLbxIZ5LpHUN1WIh4W4kBIzCnN3d8iqNqDOo08qFM8CMrdy3tTs+sHb85sXVPnm5b/GX52EWPprQ7Pu90eBFUBD926DlOocfLOh7Ui/7fWKuu3uix/woP452DZLYiV8Cxo+WuJBZVB6cskNTu/R1ZbZem9m/xHemMH12TNw8gCgqe99gbeJrPz37fgXUELauA+odHP4bmB59uKtwOftu6t5CA/qGbN+s9oww/RLJ969KbtgDu3k31sw8O3bXX6dTuWGegwRh6Z7lGqgYDGL0xnwY8+GktuZW1b7I3ltKESYxj4GFPovDsQ06s303bzYdptUxDGqPgYIyW6PguBD/cf3mevO0owl2bGO8+T21QroaCHJ+mkCOpF8Aa2neEGPnN2co2PO36QpMlPXxTfbNO4lzMiqB8n7f/7IGV35CWbLa5f+UevTSWoaj81tc+R3K24gRMT0S62mqCqNn5nueeoUxXl03t1z9MnWYLaHfP4vPA1m15+xSYNrbAJ5EAdPXGgf1qLXkO4e0UmEol3/MRWkZsWPTxwkYAvfpQ8q2yKTx0mj9/xfZa5fEw/3jtLRGw0gVcmziAvGO5qY8Zbc1K2tDdBVXqDBG4gLgfhsf3kRD3gkWzVvoUE1eWIPXGUQAG6L5aDk7sD98QCxyITHjeN9sDFcYLXh80h7YHmd287gqC6fqftkrjyuH4/TPCTiygo/H4PVhKtadEYLEFjJgQ/bfb7B2gkjx1I2ZFDKTtcNdz2hSfZkeIxmnpu5mn/2GA0kQMxAjYxO4HDZYG/DrnE1C0xEP72vRq7IzMIwCJNpHBI58KTXdFWAH0eixFFFve7pPaECYRcrfgyuzpltAWABNja22EhLpYvjiRWBMxSvDDmFV2xGWWXbdKgKBgxxMZNwUKnFa6FRa7/HkZMwv20kRWwhc9oymUaK4VcfHPXtoCgan9o8sRxSxw/4mHPIcbf2f20ZZYhdHKCKq+DxHHmD66vyUNgxAkwIrA383ERVMUICE8gwNykaRYZO8GiYwkk04hHTq7fGnnTKEGFnIaGTSbvJXkiK5vvHt3I461o0BArZo1UAKgjuPYeBDf2E4xx76GM/UhARnRdbma6KZbFEBHFQbjaDerD1MwKeY09R1OdIW41GCQ0peuWGrRZt+/XkB5Lgg0WjjoYohkuTBFprYkTrZ4jKSUXtdP8lwXVyRIQ1AzRvhXnwssmoEoXeCBXLlsgC+oUe2flZCck81GtkrxwzhTfIQV+t1UJk282ynrWnPW9rZ4dvE97EFTFk4iz3qWOHSZ36F5LHSX4z/3ruce2FUF1Ef8lT0mWkkx1fK/ZzXO551gLCKoL1ujqDlYe3s96DdYEiZtcs59h/pN/NjyRPa7kvI4MG55/ZgvedQRBTV68YJLnkrRfCkxNH+d3VuNXX7dAxnO406Nt1sVqq7BjqQmQ0/F26FJ3232QgK/nC1hQVRct/dk69cPFdwiOPfL4aqjISzrGof3shcoDIrHdAWPusZ9AOCI84THOi1SyiuNOfK7YOMIYGeiUZiaPMfLC0Nqpq4oc7igaeDopmSXv8cWXj5R8kCSlmWmb9nzkIYEPHluamcAz7czZtH20KmH/60O0AAQvUDN5TUUT0tg+iCumj97XV1yn0CEyUARlZcmBOkKtJqj3ebRXAzIb8Va9rr+DHezVzieoYQZFd/IL9QrFbQmazbfemWiLXxnrndTCfxXcKMR+rRB7Clsb6KiFVfAuY0VWkuwMeVHjhw9afMNnlvoeray/cKp9pCEvxSV5xotWvGS5ubx0TXxoexNU5e5S/eVaE/tynSU3fZwHtRYS1Opvv7L4xrWW2vMtiPLAI6eB9gjPIdz9Uo6Jk1z/uX13rQgM0REE1VnON22gvz+1zJmDoOdDfqfQUzOwdgmNnIEV/W1SCCyu/UUz/7p2LW1ffJ6wjz5N26kHJVZVVGGxMNHTskXz28+brPdNKcIIhxVghnOlq3NRIhVH2wjxjJE+Cm+I4G19fPE5ZCrBNgDnglcPoEvAZL+6J2xKA8nh+j3slGfdFc2XvWUvzuxnb/1sor26DLIgabalhXtrz7HDiUgTpe2WPquB69qFoGKBrCaPY3z9Gksf/dEbfylYgt8pnZygygVNGJHcsYm6s6YkPAWI34yPjaCKheFhYT36WnTJSit9hT3dRENvi9IoQeW5kZfeYU14He+aoW3xyFr3kEu01kfh68Mq4khg4ZScsfbzpP11bdru0OSaz/781cUS5OTcpLR2bYYh4KLDkPhdMARPjEAt/eHq1yEJhmifeorUdNSGumn++wQ1ixnCESdv6EbCW4EXh5ReWWvqsvkiqJMhqKwxwQfqEor6RrnMM9UBa4D3VYv/lbuu2rolwXta/NACF7YHQRWZj335hSU2Ih8oAr22sAQsm21FUJUrXCnaJE9p73hM62sgOFtLCKoyIVRvWo8n1yfsQT/nKcLEePzSd2Ru7msbmOvDVrpedwRBje3ZZTFh6pbPs33E2PblLv+36pW1weHOUnCnBfuEg7fy3+MbYVVWbtWZcttzKGSr15Iy82vP68qt4ME5KJmDCzVzS/iyAvG4mKi+DRVfTkkX2rfIhTUoN6uQURLx+7Xmu57hHsTt9YQMpDSFjJLAI1R71n0O4ynUhS/uCl1F4W88Ct02JFdj/nYFEuYkFg93hvUvJw+q9qBOeZoJaso+XBW3//VBwm49VAAidau330ttIpB1loqmElTaToNAneIO/nFAjVAo7UECS0cwZYyeUX+p7eKr87ya+TfVE+hYOtdbONTJ2SHoLxz6Hkn4rZdH2u9+O1aljQ8AAEAASURBVM3eWDFRt3mqSpPIpAJyLFvR4O+WdSR9i5Q9HPFDB8ij+KWl92zS7PKuU3TkCnKo9RoA6Z1jxQsWs5fhhQbv2diXBfeLMgaLiPgXXfCKFePiq72+OhpTCDQp8NLbuD2j3W+LokWt5jv2l23ZjOZwl2VuX/VItt9eCIJt5eLrcsDdvGmJS2greV5y2xe1Unpo36uRkzbULa9Ji0yaadEXF1kpgWpaUy5f8ZRY//W3tF0md7Kb17qh3mRfnKawEYzwzvb+1Uz1m0nv/eLuDQSlID2xGHghjSOCYUPFpZrS/jCspPniVU544andBBOMY5FTR1D5XlgnwVJ/o0Bb8sJg+2cw4l3c81pFUPOV6NB3UqC48fntJqe9z9zR+KSN/IYXmWymi2+TSG8bufjG9u6y+JavCP5FkB/NLe2jDORzbQmZ1NaC2Kq/Wnrf5oJ905J7FrxR4MNCLr65ryGqkVeJto6rcnR86zwdZLFJ38I97NoVixMBObkVjAim1yrGXFCJV8UQ9sYvXGKl815s0d7jXN2b8UZ5UKUI/6+/47avPWJc62aoN03d+5ZiSBA/VCV3b4chNQ5DJHd4Suv6K+yCkuDGqwAlvvDoznZzRQjiPcVTpul99tD3tQiqXHxlQS1MUOuvwZP/jfaku5zpWzaw7xn3RFk6gzmMh5OqZcGrFtWed9ZzHY2R6tje3RZbTdCfzX8v2EBtRVCDNy8Y0Kgn+zfnkw8VmScycKAnkzQSPK1J+1pX/pZ8wSsbbYdg/Rp67xT+W79m/m+0zNXz5Gm/BqnPK0PaysVX60D6NophySS7f/j/2fvuL6mONMsvbRm8hwKKKgpXVXhvhAcJgUBqSd2SRt2zZ2Znds7ZObvzv+xPe3Z2ps9Oa7pbHiQkhATCSTgJ4b0rvLeiTPq9N96Lly+zMisLymVWRUBWvnw23hfv3fhuxGeQEx5tfv5gsmo0XUagTs/AYeBUUAxQPP0GQR9ZCdxZAvc4TF+2czl8JCoffhqVP35lDUalYwxfWf3mchCMM578tFTU/lQbXDspyMJx/A5HEPsCekoYwVpbLNBh6GIUj3IGlYOith5CvqLIqcYYfKuL2TWFXkL+oorNzVT/jfWjh5CgTuveBPXylah8+lkjOg5MVTdS6piGJxFBoVjYfpxMUClmuDJL4b6c0qapjToOraca0t6fQYxITqNtIKhWx2GfVY846GFK/NaBT9SVnfWoEBpzw7IxhqDmIqhIm8IOgYATO3tc4tcuWAqOljUIl7d2ofhnISBB1XiYo4xR/q1ZHolWrc5MUNHGzOc6epwyQwvMQEqbadMR2KGkxXN2NkHlw84OIXLtCkyQzkjkl32SOL0vqUS3I0GN4PzhI4dU3tX41QuSuH0JnT+Azi5Mv+GfgY5/LExv7eIdPFSZDDFSa1sKCernm2BlAeXyBoKc2HBpKYL2e/4iyiWxQmOvrh9fW2JOHLnA2kpQHUUTSqQ1gEVw0gSVV8TFEBVcm/2uWgDlshsRVM40WM/nVbzPiKrI5/PMgeTzmecENXbnFt4t1P3SRYn+sl9ix3+0CLb9sLwImezOBDVy+SIw4heJHvlJ4lfOAyMuQoOiyapVGEzHN3MRAqXAsgLY7RtV3iHRxfX13N/XEcn3c1pqfRyX2xjk6hwMeVGCCkzQ2oujR7DOaUGRuI9rOzUfZeL7/hT4oNY6m9xy6M7L8UcPrfcV/WH0l4N4Dn+A/nAjeculGNweiT69EsHTZsyVoukwcc8RPDBvCGqgFC5CVSqwnH8afKzh9x5w9bXJm0wudQVB5UB2BDpJ7Cra4OjPEj28V8QdnK2dfFDZ1kpXRDvHLiK36fXzqQPmIKe+acCamfMQZA5TlSyIg6JwZ/RoNVtsrWy/v0eORuUjxNP5Iyy9WDTGUJ/QrzNXcr3SV7Ahl6GU0lF4Ln0y+1RKT8HxrSaoxA4MujNdTIImvHAZSNCfXWEIvliUnkKCyvpTV+F3c4xR+gruYvSQXj2AoNZF5ONPn8n/+bBBnjb5MdhRBOu3oGoQWzyqMZWjL4WYpbD93ARVK6xsYM6Ox6AsxTB6QIJqhU3OcqKU1akzqBZxJnlm48EBHf8sJdRap6IDq5Dv+K1INn1JLIV0w/Ix8gfOoK6tTrlCd/jRqhnU1zmDuhZyYeebueSODDxEAhsw4rf+zZwdS+YrNF9LgtqIlDDhL/6EGZL79g4uNIAZTJCjjOt/kzPdQ6cTVNftqJyQSMsT+fo/LLNBblMEFUFonCBJ2WXvOlXzRaAjzZfVzM+R7c23Y43vpd8g+AECxrQxyEKmk5OgbvwiIv/vk7hcvU81zQJsBdJY5rd+31t7h5qcEhtcrW2dBydpK0FN4gK7J2IATOI1OeV3ylXxE6XbEVTrttTfZMTdD5IDG4qg/h7P59viHzMG++VuvewzqPaxPOdreOaBEa0OvOSqZ6bF+OPHKip3eBMw4uE1ZxdFUDcgGBWDJLWAa84BfI92cQb1wwwzqKg//vsZeAnnLHqOwEvO+bMsNGxBkKTP/yzJIEmuJ96ZQf2t8tls1X1kug7urengPglt+shy9UjZx7o33+w1wIh3pHjBSylbO+MHU80QQ/4IgnqTkXxxUSp9HYshL0JQk1YYLWMIrDqoY9h6hhU0KZYzim9nyDofrpExJYyuGHOWvvI+rAbwzMP3uqXSpQT1py12N+F6X1FZ39y11ns0f1FLVVeDg41ffiqRL6ETNLndT2yspF/rG79v1xlUd4VoXtwEaxG3qbKaQaUuyCBJrcFM9wmdZQQ2vHZN6W2Rzen3Zu/0Aj67zulfcIEElfF0/h0EldhCjGGhBpB+q0pfQTPk8vBSnAbnclv4svW0vtN6gsqaWEXlVI4i6Bqi9HrgTmBhCLex3gzKZnEWNZjugSuIPWGofrusybptHlRbTurrcgpBpZMuZ1ARRIHTyRAMgwU8r4kvX2dOoduvobpOx8+gUgGFfT8dkPnUwXSvF7KAT5vUXyZN7C+zZgyXObNHydQpI9y33y2WcxFUGYSZzumY+cRMpK8cfg8cOc8QvKUrCCpH/NgJRQ//hMA/p6yRuCcwD9KlkAkqgwJMmo/w//MRnKlajR6qIAjpaKnvNe07/iuiSiKohhoNPYaZkcOYQbqNkcoMpWMJagwzqCH597+GVZoIvt9qaAgYwUEjL+5HA7b7nc9QTWeVm6ByJY+jWPTxcaSOCmMwiya+jKLZUslm4uvMoJKMoseyZkB4Ln0+XM2ZQU2AoHYvE1+3zDISVER49lRbz6cfzyefTT+wQTWE+2DXclaC2mcIZkfGi68KAX+Q7iI4dQZS5wxyHfnii9kIKn2s/TNhzcFAQ+XAONQ9U/oM4pqaieXMzlFYIXBW4c6FZIWYFqoMMztjxqmZneC0mep8yR3athQ6flQisH6InTyCdxnv793L6KfsZ5DvECL6qvtgoBvcB2c2WxvRl778DLwTwYxJ7MQR3Btmya8h4JwugRJ75gcWL5z5waxVANYvnV2u3wSGbASGfBiWW0/5llMxw73bFeG7TwzJZanlrncuDKErUQSD4haGcFAqe0k18WWt7JoprOZyGoaw/ajkKN9Tfluo2JNnUN3SLWSCSqxUlgiYgVSWCLcuWr6v9g22iaBSrx4E/Ws03sfqKdDLZlvWYUgB1N4lE0FVeaSVLohcuOXQBYH5z5MGUeU5JY4i7knk8H5JnILFmMuM27mHLiCoh49ysg0Yg4Ew621kbaAFKB2FeIOffI3xpU18c82gugkqD9c6CpdZolGY+FJPyWXia+2u/qYSVPIsfHQBjlgD6cAX6j02l1EXtjGmx86gPlGm6lQ64QPoxSgXFBgvA35AeJShbhQtS/c3G13PoHLkQjUmv7GgMB6jAu3rg6oblU9ceqNaNS0b2Fve3jBWVq+qksrKAUjI20sGDGjZTNR9T4WynJOgMndgH/gDDEaKnCUvS/EiJLqvqGx2e11BUJmzj35TMZoHgaiGd38LM1kQMV0KmaDypSlBIvH+8NmthUkQ/FdK4PcFB0d9dy1+R5HwOvTjbsgE/h23rjTzJ3Ef3LEEFW4AnzfIv/21CSa+GOVTFwbwAyPUBx1AWwkqjydOEIN5/ijMYWIK+F+coLKaSZ91tIWaRcUAlvCDi1FJ5jdHLOEG0N18UHFzTslIUNXz2R/PJ3KVTkZ+vMUrpGTBS1an6ByZupCNoHrG4XhgC8mpH75lVHraEiHbfdVsBFX5XfcbIr5KDP7Qt2nREmFe2fTCKJOhvfZ7dPsK3iP4xrn8smTIWBy/RoIvLVP5aL0DEbCkV+/007zwb+ZcjdFfq+4S3uXtmOFEMBEdOZgPPaJ50jfUP2EaZIj7QBvk8s3TlYndvy9NuLfI7m1wyQD5fQKfM31u7tSvDCkscG+L4Ts3bAR853BvOXzn9Lnb8/v6jah8Bgz5V2DI3V+pX2BwBAPhfNf5UW8j/jDFDJdbU9wElceoQXEsJDEEKceAIfy01QcVZ0fFeHJ7IFxhiK4l13O7V15Z1HN9ULU0+F3IBJUDw8q/EtZdypebwX8e33Bur00EFf6YvlnASfiABzAoyPfRB6zEC+Gcv70WMhJUBs60fUMDi1+WImDe8+SRbvrlJ/ibwr/95z2iYho0wPdSmaKm1borCOqREHxQG+TfMZhOTGHhILXCGugqVjwKVBfrNUHN5YPqJqg8hq2k9RTynCh8UKPKMjSHDyr21cVNUFlDS0fBVvbH+EV9JDnZht9qHb6d7bgy9JUe4YN6/UZEtn7XIJ9tbpTLMMN5gqh7YehrPnQgJKg+/eIwEECmghkIK+KdB0K1ptV1B8Hd2aiW8vmiaWZc+cfYlGwn1VnoxqTCzKlxNBpHHKhs2heuKusr//T3VpSrEcOhBHTTErlwXpq+Z6S7jTCTfWj5HekRevc94wHPlF80Ad9TRhZkbsDQ9m8ksh3neXwzeSRzaRYhSiBmGYKr10vxipeVIpfcoX2Wmg4dVOZ3Kq+nPiXSMQRWwnwVUS6Zd1ZFR3X5oqq8hqh7vOGZNO36HhHzvkDaC4SI10VHy+w90ImY1xEzCPQ3UW3AiH0Pb1nRTTmbbxcPAkQE33jfMudpKbIrB1vsaIIR5plkdLw9m4CEiJTKwheAnQyDIvmTo66BZYhOvBImfLVTrP3a8e/NW1Qu4QbwlwaY5xGWreLjDBxwwgtF04cX3Y8XHbVrVcmkXBIrNIYwSFJSucR73ULJPIOaPMAyoyFeQLaqTdAuaubUC2zySf9efhnYzy+LF46QDesnYkAL6YhYmW5UovDlbFLRMPF8PtLPZ1Ku9GHm89kLATsyKUs6+ijJYghYE/4OGOFKmeCd9QrM1d6VkkUYgGnnkpWg6uv0HS7BDTRVfkt8g5sH34hcvCCNML+PbvlT8j3Sx+Kb915kv5uZ7t21a5sWozdvoB4w+duMejQ8an6uYVWoB8yj0Qa5CLKDEZg5DW9DFPRdaA9tRkiMUJjdW6WZYuTykuWrW016m1es7WuoZ3z6Wb3CkHvPtNJI/GIQMws3qCe0laCmYkhbCCoHr6DQQK+gfpHUOVwYwu0ALAZU69+7FBhSIsteKpP1r42T1SvHKahuu+QK8wwqzzkzC5zYh+cyLaI++mTfog0qs0AQqYg8GAxiv+4IjMEadURdWh9sw3lobqsLFfUABt2L+4h/9jL0e2sxqLNIb223b0ZaZj7h0Ca4RTCFn10YmKkIelAQwQczRWtXUZpR/0jdZQkzQ8FORCDWg0Y0b14DrKJ587gJ+pQd8t2070dcH/rDzzvRBoyAzOA8dv8NjPAvgysDgrMVTZ3e4vVVnlPkGud9hX5EACbqWBcPJY+hjgX9kFF6dfFi0DC4ap2FO22MTKzPmev78JEm+esn9fJvG9VMm9rdmmzjRBuwBs+NDs9GnGBe9eeZQeUx/OC/GgRTrouYQW0rQWVFFQIqAopKaYKqB8GoFPHCKieqT3oX+2UQ9JUJY/vIW29MkldeGS+dwW+6JM3MkycxOXs+ImfPheXosbAcxDT56etI6wClk1Pj7Ossm+ikYqpa3v7jIdhQSeUDYBeIUzUgj6Bc20ZQ78JW+w78Vm2HYpBTq068GK9kkVYVXU8TVDUt7pGqkf1AUCerKFcjhkOh76aFo+iRi3ZuzJPIFXYG4OFKPu/cdhaCGiWQIveXygGG4EiJOpiIaUDlwcNhjlIzC7m6YJICnxESPNWhOCdun4WMBBWRJz2VU2Aii9yluH4QOV3ds78qTxrznp5CnrFzJyR+8XhKnjTpNwL5BlH3WgQRYt3RKfgGDW6fCrvOEn+CHFcYKIgxP+SpY4iainxtD644e7SaoKJzDql8bCdxDtzT+RPIc3oaipAeeIH5fSVym9bMwOhr8j58uK8g2sU3vP1N2LMRVC9Ggy13AB+i4fklgCSoCmOdu86+4Cao3IvvNCmkLiSoSfO8JJHS293fuQkqz4wLUNVUHTRkyVE0lFLktlg2b5jMmjlMpkwZKhMnDJbx44cAt7h/9ynxx4g0iOdT5c9lPsEzfD6vOjeYi6ByAEblb8SzHT13UhKX8J4hDZAuhqBqSWT/bk+CqoKmwcxO5UJmHulrJ2HCZA+I4SX0lCMSNaJ4M9+zxmxPIJC9ch28xU1Q76IrV/qFjR90JfKhzkpXAC9s7ZuXG0PaaOKbCQOAH0kMgYaDmYzeQWDI/DKZNatMJtcCQyYOkgnjk9jcwaLNy9NzUChyAbm6mW/45GHgxRE8n3YyST6fZUjlNR79OnOS1zAHaDXic1rPZ6KxQUIqlzme7zPM8Q6scZvkI7aDZxye7RqY+E9kjncEXRpT0e5yyEZQZWC5VXfkL1V1h07i7dvPuX4E/TdT/6n+GzpJ4top9N/2u9mJBDV6pc7OT0r9iDmfgfk6aBqe7dYS1NiD++p+LP0QOtYFtMdTlxsWAlr6qqFjjU/Gd/FCxwqMmyj+ceNb7a7gCPAFFzITVPKDpJ5CvkJeQ05CvNHzb9ku6Z5BJS7xGH7rEiFBbauJL8/oxhqFMdRRqPNBTwHGWAX7wVJj7uTBMm/OMJk2dZhUTxqi9JW+fTBp0cGlSwgq9GFEy4xLUyghP/zYKJ9+0SBf7UWeHtUKFAhHEGHTTfKnCGGqFLyeYvH5e2EUERFesTs/LCT9HGHg7zYRVJDTWOSWTVA5qskPGoyKpmo4/rZVW01Q8QBSU64a2V/+6e9qQVBrMMLQfQmqyuGFsN80v2vagRyZWz5FhwAwSi+QSaYZ1KYDeyX8zRcS3Y+0BJyp4+wr5WsX32yEV3/1DQQOmQ2zvWLLdC/Xm60Pfo7vjAQVdVaZ2zFr6J8PU7U1mMFFmHpdqKg1bd0skW8/xoP8zFLSXHVnUIDgmjelmDMIRUXWp6UZTH3i5/3Gi0T5c6apae8eCW35HP4ZPzhnaS1B5Whl43ffSOgbHH8OAw1sDwKVTagEPmX+FRj5XPMafAbHJM/Pe0O0PN3JOxvaYSEbQdUYwQ7Aj+BqQczoejUA5LiuW7kETKhC6NAYEgdBpQ+qlSKibQQVYGBfgV+MksdvyjQug/sG5b/+vkZe31AtVVWDpKjIL8X4dLvCWQk8n8LnE2bj6vl0mdLnIqihw4cktPVLie7+whqJT8MIQ1BzPzHtSVBpvhfaslHix/fiUdaYbb9JIH4M9hRcg1kqKv427qUoQbmr2657uAnqnaeYkVTgAdsG4EZAWWpBibS7cffb2lIlcmII0jkQP54vzQwHXawaJGdN+dvSOejJnoIhwJFh/Yrlv/6hVjZsmCSVFQMVfhBHenKx+kIMMsJfMfQNcGMb+2eMTLCw7amjob/gYGvR2jelZNUaZ4afg2mN334NPeYzSdzEzCWJrR6g5fF9hkrgFQQERFYC39Dh1vON3LvtXbISVLxfykJhQBn0ot9KyctrxTeizLl8A/rv8Dd4N09i9ljVnfqU/W52IkFV1mXA/BjSTjVt/UoiWz9KRtpFG7SWoEYuXbR0rK1oQ5r08p7cOtaEeRJc+5YUv7TUkQF96JU+AuzpLNzJRFBZIQtroFvAzJd6SgBt0FqscRNUfXNEA01wIzDxVbEyXtgH1eIqqCXOSktQm5TilzXpht8M9EpCxQIF6W/Wj5e3ka99wbxypa8UIQl9Z1h8dQlBte7a+rtzd4P85eN6+XQHOjxL+4SUoHir0R88lBkIKoZHVMN7xWp0rZ/yfSTFoditD9LMoLOIRh8/Vx7UePQhBp+YCxHh8m0/D1Vb9cKz0XB2p678nZAxIKNjy/tJbc0gWbakXBYuLJeB3dD3VMkh7U8DgF1FjDy7P20LfmYhqE6E2MPbmh+DNb5Fr8P0DNEfZ83NuL29VmYkqK6Te2euhknKO1KyeJmzVvnfbkKetG1/QdMnSbXewTNpAeqOqHXoRDqrNO7e0Szibi6CGn/yBCbWd4RBCCL79kj0wPbUHIbwU/MMGongCshhuGCpFM1d0G6RlHPJ5eGjmOzd1yg79zTJ6fNRqYMrAJVMXTjb6FWWFJlnUJPm9xxFttBAvan4o86SPJXqOIghJKg6LVUu/zHmP1U5xhC+nednh2TpAxYe6HqmfPNZwQDXsL7F8s//jW4AU4TKZU8ojTCFVxGhj37v3G4ugtp0cL8VIXYfCKouNCPtP0I8Q0dJYPYiCcxf1G45hvUl+B2HeVkI14/s243ZFMze3r8uUv8QW9i+KHg3fHNWqvfCN6ZS/EPh8w2/LrosRO/inWIKqH07kdN5B05mD3ZQQ4Giy7r7axE4aP5iKZ47T2GkddL2/9tWgkrfOGIErUYi+5F/eT8w4u6l5hXFu6iipCIacVtzqzY/+Yutuf8AGLIfGLK7Sc5csDDk3rO40h18UBy9SmNEezqzBanXSeYwTg5WqbcbfxR8qD84Bs1KhLEwxJpBjapAa3qH1PPqX/EocsgyT2EMeoZ6rmAMiDo57gHQg1TwEv3MqQNxceBI2aBS+ed/mCpvv10rY8oH6FOab0iA/t80r1dm7czBnF5gnUWzdpULtLRUbY0hD3vjF4zs/0GK76cwTc0QzNZVYdZ0Acxs587vUH/qrARV3wNwJ7D+b1UUdG/fvngvYe3HHMT70X/v/x4uEJf1npb568CR4htZIf4Fy6QIg+xtTf+WPHnLS5wBbYSpsoqC/uSmtTP6yBYJKgY0HfzEjHBk3w5EPt+Flw1kKa1YuWjfk5IVq9O2dO7Pi5fD8sPeJvl+V5NcRd7lutsx+RUTb5of+BRXocUnB4+AB8ptEdvTC8gg8ofg3UbuUixRl0hRLTlngmNIOxgkifgSTcnBnn7C1N+JeAMymjAn6mOcAwNzKmAcrkGupS7kqhPxkORU1xXLf/9Otbz/3lRZtLAi9cQd/CvPCCrBmYoeH8gwGgikNQWcLWmo7WhIj5phxTq2HIu7P+A6nCeGUQammml9mhk+GPCPZGJbkmTbdBetZT0dvI5DVLHMXgm+ZWteGiXLl5bLDETuHQk/VH6KYbfdE4ohqKmtXCgEVUUO/PkA/EX2SfxmnSTuXUkJ5OIZBVO9uUsQiXOW6tg4Yusthd9HJ5SmpoTcvBURBjo5cjQsO34IyZ7jJJtWoRcZXjyQSxew6o38xrubgOIXT1gEUg00KQ3SvZNrGXhBvGGQJJrPqBlk1+b0xQRyppLQCqN4K0UXo5KqTgChlJ7FdaQN+MP6lhiCCrG8EEFFsA3/rGXin7MIESERRRfPZEeYz9OqIIaBGwYNi546IZGDCNBxDgNw1igEcB+mgYOQN3kElD9Eqg3Mni/B6hoJHUICebxPUZg0J27VWW4P+nmARYZ3ymIJzF0M0zSYCI4YKX6ax1Pr6KDSVoIahb9pCH760YM/SPxGnYURtBpJL3lIUBsbkV4GvuzEkMNHwvI9MGTvyYgiplTSLAXMTrGQQc9QGAI9IJ5I+pep23brGW45EEMQxZc6B33EcmMIsAP4EVcDGFROcWISVKVAei1yqnQhN8bhWcHzUobgi//8j5Mxq0GC2t9dix6/3J4E1TN+Lt5X9IGIs8D3lX2gpwNmTnWjPQ9BxUMmIfbfP/2YfDfdblIIGhSYg+CUDCKn6o6AZb07x6rvRQhqIow85L8AP5G6KnrmGHIq1wE/Ydar8VMLCd/5QlAfw13xxs2o3ADG/LgvJNuBMWcQPZykhNYQhHZyGrVgW1smMg2I4R4TwBpyD0VUW8CYOAgq9RQSztYWZY1KLCOnIr4Q/1CcgfyUE9n1VetwLzAb6bEEdc+PDSpa5yfbEaAEjRKPM/ARZ1A5e5p5BpVkMxHHyC4aquWCEUjOnlLhJOFsS1HmpWxUMl8+PXwIWbjOJ//0/iR5750amT93tFrbk/40bofp1+ZPJH5iD0RDuaBD1YocOlyOmgXXIegQ/CZ0aaRJ6uaPJXFsp15lvcSUL2TtX/qmFK3Dpx1zAyYvlFxSZoRffYaAH5/x4cMGfHTd8cs7dbkEX3vbioRrH0ZflfBmHvMJ9uUxKErJxIsNUxzvFIy0rntLSla+bG3rhL8ZZ1BBMIOv/U5KXl2fNDNGe9A8m50bZ4/Dmz+V2MGvM9ZQzR4zCI3LjCbjjh288sDBRmVl8cEW9zusrSxIWt0KnFUZYoSeobDahu8t2qelQoIaw2BWKwiqcxo1QAUMUIDP5x7Pv1IqnT2aLQzrj9kPM4MqntHwA3sN1gl8PqH0eVS+D9fzCeVLPZ/uYCVDx1pBfZijGIFOOqMoi4mvN0r0278CHkgqUjHCM3G+FL2G3KiLlkjD119K+KsPRW6dbV41BBkLrLNzFINcd0aJ3b4ljV9vQp1Qd8YIILZpzGIFhlSiDTATATcGbz9YTMCnm/ibiFkYETp+TELAx9ge4KPGRRfWOe8UyHdgzXtSvPYN5Jmc0Bm39lzXoDUGLbX+8q0bQ6gUUsfIgiHAgwR0DCa4x82rfxmgJrUe0DNiscetwxBihsIN4BIxQ+VPB045A17sS/FR/ZJ9GfuYkYN6y3//h1oQ1BpDUFNbIPcM6tAqPPPo14A73hJ7BvXRQ/WeRL623xP7nM6M37QZaVfpmJ8MHtmwZTNw7yMEXoTfpYM1dh9HDFnzN1K87g2JPbwPHQrv5g+fZ6xMV5K4bATVtwhuW68h7/PUaTC3hvUT8QbPN/GG1hqNyN8c3ow2uHux+T25cMc3YwXaEHrZkuXN9+uiNZ9veiZ/+rBedh/H5Bn1WPUeczaU/QXfZQyas/9wuEOyopx0I/Ekr7GCKia3pS8lYsAkpae0nqCmnCMT7mhzXu6IWV/ikg/y9vkScKNKyH/53UT5LQbD5s/rnH5L17fLZ1AvXGKgpJAcPtokJ08/lSNnnsrjRnSOHvqWZQ6w8EIEVTByQAVVRdLky44PG8WZIeVmPEhqHfejQst13A/rlSJqP3S6o7b2wD4e+ae/qZb33kUDzi3Xa3vMt3LQR+S7GAOhXDyd9OGgBCAblTtwyhzxlo1yZBI7f1qixw+kmovRpLS8WnxjJ4l/ynQJTkaQIeTM6sjCSKPhE0dRlyMSu3RGElcRHEhHpuSF0Zn5pyB/l8sZP37zukSPHbQi9+pngdFlyxAMqQr1r0F00ilI3wBfrM4qmQgqzQl9tRg9nYpgAmPHSaCySkUvjNRdktjliwgkgcBKx3EfDIiUoRQyQU1gViLO0UjOfmCZI4hJn3a+/3jHnY99889DUDUeqHPwVMQM4EQ6XvDUep19GUNQbUH0ZSok1/NZMVY8mKFv9nzePGMfgK8uIKg0gQ/jXYkeO2zh2xW8L+6IuANHAyMQXRMYETvG3KPAtfoHyTrrpS4gqMz5HD5xTCLENwSaiteh7o9u6BohJVV/8dbMUxjhR+AXYgTT9TA9TYQYwaBpx34CLlJZ5nuDAjLqGYmAM8BpsS0qPPDt8yMPbRAzTT6YO+dbSSGofFeVLkClkZZamQfCiSG0qlAfez/LuquFu3MTVOoTKXoE9Q0e69YvWBcULVsucx/qKc46HKcxxNZXykBQ//kfp5gZVMorreScQS0dgD56nvjQL9JnkSUBk/7oMeQgPXPQiithn7PTCSosN8Inj0sEOokKeHQZ7+sdkDU9qEQ9YwJyGE+djTpjkka/m3Z93V95R1Dx3KtAalOB+dWTgTXIAV1RKfT/JeZHL5yz8PMU8NONr/qmkLpQ4Q51LASgpH6YT4NhSYJKEsoZVNp5ETPxUe3XngSV5rpPLVxQ16CQiBn4ECu4Liu/AcAo18V0jAFe8RiboI4YUCozpwyQmpoBMnP6cJk+vUw62yWpywnqs/q4PIVv2e3bTbJ121X5ZGOdnMMUuS8wAJNRA6D3QYhp5YUJqh0y2RqpRGOoB4ekk7OgbFR0WCSjaoSBvQQbEOvU6Ad+UilV63gMt6MopTQOgloDgjqlRxJUlcMLipAiezu/RYqSL0W07wfbD0F2pNcA+ERYo5VKbg14uej8rlOZcCWUT6YuKVq2Svlz0cfCY49wqmM64A+j98WfPlU5UUM7t0lk5+ZU0gxlTEphQlXaN3n1EHyG6jErz7yGWolA7lH/YoSBX/ayItWMsOft0znmNKxYRoJKvwfUS3oPQA60Vy25Qnls2v29hL/fIonrF6yOgKHgM5SCJqhsF7y3NJdJxEBU4YOhzPbVDDnffTyX6h2232Pe/3MRVB5H3CBGEDNsPOEXscTBEP7ESo0h+GkIKmWEop/PPkjHtPRVKV66WryDB6vUTeEdeD5v8PkERrifzy4gqIkmzMYD3/gJ4d2J7PgqdVCHfrGleM/4+RV+qhzgUmab1m06f7uAoNJUmfiWYN0P/yThHd9I4uQep0q0+FA5UZkSa8FK4NdqCYytQhvsUPvGLyNSbz3bAFin+kh8wS/Pv4RYt1p8yKmoCnBeYR5wr71y0Vonbp+/qQTVMr9DfG31zicSxD/2/6lFBQzBPiSldBewMIQD3S2UFILKc7oxgoSYeEH9geuJC/hQoVTriClczrJOYQiOx27KxFf5oE42PqiQmrvkJKiuZ15NUPBgWgwwXR5To1D+dulsgkr9k7nh1cDSWfix79gqsQOwcNJ4wj6L6VV64b1jBG2th+gKu77zj6CicgHogL0wKFaBlDArgPmLl0vkCjI6UPfa+53dBsRPvitphe4dS5DajjpWGWJjQD/sLJPltJpk/OkQ1GNoF7ym9h88T8QBftqJoMaR4jCGZyRqP6u0vGBR/MbGEDVLq3GFWGPjigtDVP3cuOPwH2sGdcaEQfLm62PllZfHyuDBvaQfArP1KkVf14mlywmqvtf6+ojs2FknX22pk18wm3rvSS95FOpt6/9sXIxHYEbVg5lVa1TzOU18lbmwZXttjYKyUdloaDxNUNl4/DjKZbryyXqg2NtLEep9+KAiGTY4KOvXVSGX4TiZMnmEtU8P/BtDkumGLz+TyBd/AtDce24JKJM/5gZc/wYGcTLPnj/3SVt5QCIaQd03SnjjfyJE+4lWHoXdbPLtGT1egsvXSPGSFVDaBrX++Hbaswm+G+Gd38FXbGdGkPdMWYr6vaqCHIURdTn6A4i4K2WHUw1X5x2YDzMaDBYUTZ/lbO6KheMnQrJte4Ns3gZceBQCNoSRNxkKRYZijRdY76ke3KIrQAJmelYwElspZA+Si6CqASn7IhxZdBfOZDjKJzED59XWF44SancWNkHt37tIRgwulXFj+wIvJsjKlVXwVQep6QGl6RDI0S77+VQkjp0rMdgqNKUPQGFhTtHwDgxy8fl0R+CkYgMS5Rs3RQJ4z2ja5SnBwFcnF5rwhjb9WRLnf2r9lTHyz0Euz4gK9Q4qjOiA1Ey5KhTCTGp413aJ/LDVwojGVCJNU+XgCkQHHTseWII22I02+DUDjjMH7OswVV7/ZsYcsLnq0RXbj8FK61tgyJbvm+Tuo4jcfxq1MESREb7bae93WiUtDIH5HVwHWixugsodlW4BHPAAr7RymIugpimK6npKN4nKgD7FwJASmVDVT157DRiyoqpT8hG2eM95tpEBvdQgLAe5bl62SFw0R7tluYdOJ6iuekTOn7VyKX/zgUVGXduyLrJPgyUasdI/e7Eic8Vz5mXdvaM2MAVe056daiA8XnfGJtIMBmYXRTY5yLUK1lyXgPloqzN79dbUb+InJji8Y+GypHSs5SkpdlJ37rpfO3Y1YJKtUQ4hbaYuj36NyL3HIXkWopVG9vJcJr5ugqqJJ0+t9BkyY2BZxkEurHcG0rFM/Yb4lAAhVYNlMYzXJGRov14yfEgvmTt7uLy6ZqysWFapIvfyEp1d8oaghiMxuXz5sVy48EiOn3wi+w/+KrsOweyCIymKNCLBPWZVPT7MZuH3c/ugPg9BzWm+BxDAVPr4Uf1kyaIRaMgRMgGjDWMrB8mwYZ03a9bZD0uu6/VEguoZVSM+mAD7a6eKrwK+LZWVHT7rm6kdGAyFZnk0k4kehanSaZjJuE2VYYbIUUtvH0T+u3TaNsNOAqlzTsy4eqth8ofAL/4qBHKpHIsAC2XO5q5YuHM3KhcvReT8hZD8dOie7N53V67cR1oqby9MACFnrcvKQs96WPVkkAKP8lVPElQAs1JGCeT6Y9+VewZVzWpgO7FAmb3YBNTe1TH552/H/A776hFJPbPOa9nb508diih4I2XGtBEybhzxYqD0RUTfnlCiMIuPXL4ssQtnLVM69XyCpOrC57OyRpmgx2lqzyT1nCFgQcfrqUT+QZiG+aprhWaofkTO7Yj0RtYFs/99IYLKnM7EiMnTgRGwEsE71RUj/8TnSN1liSJ/dUZTZORvVhgxaKiFETfOps5ea7EUIEG9fceFIT8DQw7cl2sPiCHIb8mPC0P0bbq/24+g8qw2TqhFLLOk4IWNNbapnbWdelBUFk4fJosWjJTp04ZbGDJ2kPTBwJcpSQkwAjefc+XGotx3YLabySc8eUjWpYIjqEW9xTsJWIP+24ecoMQa/8jRWe+vozbQ6oS57iN1cBNgvni6RNFNQBdtrgs3gfije3A9AIl9fFNvTf0egdymNAtGsMYAdCyaBXuK86/fvFQXkUtwWbxzNznwevbsY/nx4F35+cwjpa94oK9kcl18LoKqfFBp4mv3nxq7HAyB+EBRUt0EbJFyX0VegTEsaQQ16PfI6kWj4Gs6UiZPHobB9IFSOXYAUuXwhJ1f8oagUm2MIUpSFJ8Tp+7JJ59dkP/9H+cljJEvOg2zUX1F8PUJjlRS6lCCqtvBmSVh46BB7ZkQvXkJiOnv36uV11+vlRLmBfKDRLtnXfSOPeS7JxJU33yYnMDpv3jmHPhmYYaeTv8aMDqz3ZkTlYEGHiGf29dfICjKX0QeXkvWgKNrql42QKlRNr51aWXwGAS0QgCJta8jaApmfXwYYeOnCwvzgsWiCWmAb/oXX1yQP/35nOw70QA8gI9tAGk7CLJ2YUACgr2HSiCJDT7JGVSaKbZQ3ASVu1FmRHo1QIZOJ30WNf1UDl6wPuykeIzdEeDXe6+Pl/d+N1kWL0ZaEgA+8YLpcnpE0c/nQwYjsZ/PR9eTt97S84lZff/y3yG4xpsSnFSN5xHBNRhQSQ0wJE/RGUsvQlC9M2CFgIAexQsW2XXvIozAYG8iik9DPQKx2MFIOBCgS0ttoPfhdwESVI0h9fVR2fjFefkAGHLgdBNSSxJDhqRgiPtW9XK7EVQ3hhC3FHYRk4EV7tyDvHAGgvr7NyfIu8CQRQsRPRoY4geG5CLX+h56zDcUdRUIEJjDfOshBAKMH4LVwAuUgiOoGGQKrEX/ve51Zd2g9JGu6L/ZBpC/ijR89LAVaM0dzEnrIqqPhR5CckX9OkNR+a7XAz+R5s4KrMT3Jv/6zWgMDkUwlIi53vG9+67LRx+fl//88iqwBjEXoK94fS5XN/t+n5+gMjMJLGAcs16cSBFPyNyx0HDhiuor2Wfyg33UBzJPI6i9i3zy3/9+irz1Zq1MnDjEwRgc0CUlbwiq++5PnLwnH358Rv7Xv8EGHwl6GdyEeXu8/oGI7g/bexTLzJdmGxQyPu5nm3ql7SzMyFhxjDjQ/tuZ3cAva8QSxylF1n7Y1QiEPh++eR7h9DcbFRdAJxLAYnVlf2Viw5QyCxeUy5w5IM5dNMLAGuZLoVlHCKZ8TLMQu4BZutt1uU19CVBIPu0ZAaW9ZrpK11A8czZETpl3YmFnxhDnP++X+NVLzoXjd29I4s6VVKd9mBt6ho5B0CcoCbMXShC5Wum3lQ+FvisNOv/YfdS7NYVgD6WTJoj+iQinj5QZxbPmYJSy800oW6ouB69++vkm8qPeRNqIX+V8nVcu3PJJ1Onc+I7yndZggGeL94b3lh2Ale+rhSu4CSoxRQE9j+c58eE6frMDUgNR2KaKXofr4RgfCNWkMX1kfFVfGTgwObsxe+YIWQC8qJ40zD6u533FQY5UKoGfgBHnTlipWH69Y8s4TR4Mmsb3rBx5eJFWhu9ZZ+XxS6uJ8zN05BAw4gCCDv2Cul/GIBBIdiZ/KfquDy4HRgDXZs6TotnzJDBhknOerlxIhJqkYTPcGT7/AJYUmLlobWEO1+EVmJlBTsg5C6Vo1uwOzQnZ2mo9z34RWGodBIbsI4YcfSbnLnvl4m2fxBwMwbtMnYD6A4t+51WQtdZgiCuKrzqe/RhxSJv4qpX2+XENrWinYQwjaE5CjuQJVQNkwEDOFhHb4rDWKpP588tl0sShPJEpOSQQOX9Owofwvh5Cv36zDnlCr4A0UW9soQRhlUPcGYl3Vz3nsCgaU9HCAR2zKXb7pqVPHUQamasXoYfUZXbL4eURcE69m+NhYTIHedihQ3WFlUYmSYSO/gK3COSN3/lxps2Z19Gsd8gYK4frTLgeED8RxK3QypmzD+TAAeosd+TCFa+cveqDuS9fZeCMMrflHdlYozAGfqoKC7LfqYriy9SZTDPjDIpjf40hKZwGuKGuw2tkcnEkNnllNHxMJ43rA0vQ/rJ40RiZi2wkZSNgKt7FpQAIKn3NbIXTA79EfChqFeBANQhHDLidHYsultDVLyidKvcPRyi1UqkVT+7gNCqW1WgOzq5HItQJUgkqRxjefK1SVi6rlEmThsiwoX1k6DCYVeiORh3TM/8wjxUTR0eZrB4RL5loOXEOpqYtFQQYYchw/wLk6xoPUw4mvB+Czrez5YnnQCeJTjxLmh5GcB/Rfd8jYu+x5F0wauf8VQgqsljlMWR9GSAkH8qLEVSMwiM1TnDBMhVdz8/7wceDMPD5VOIA9bv36uXOnXo5c+axfL/zrnz+3T1pwHOnIvTyHUc7aiSwZlH5KCH6nxcdHvGjpZJCUIkpxAKiDT7O84hrcFaUHQPxgtsVXtgYhX0DGFx56xVgxIoxUlmJ4GB2YaCBoUN7y0BEx+uphb7esXv3gBN3JALTr8heYMSpH1S7pcvEUwY8mL8SeQgXKFzgM9lZqWXS66J/x+7fkyjqTvPByN5dEju0DYFgXb5Vesc+w8Q/D3VfgByKo0YrTPP2Tz4Lereu+H5Rgsr8zoGFKyQwGe4MQyyc7sickB0hG2LInbv1chefU6cey3ZgyEZgSBOC9VkYgvcY+oFHKX7AEqVbxJ8DQ1pBUJ1ZDyCVOj/v1MYY6iNQKIMY8H5r7VhZtbxSxozhc0NUS6hgJXQjGtA/vwYPeQf5WOKPkWaQ+ghdDPbtkegBvK9Mt9RSQeol4k4Q/TsjUqv+Ha4xnV04mBdX+hSwkvlO925HcLZTGavhqV6EdxN+/HQ1suvcFS4QmSr3QgQVM8H+edCxFgI/RyD/7FBgPyy6Cq08egyfd2DNtetwWdx9VzZ/e0/OX+eEmc4qAC2FegRmMj2CAERefKyZsay3mkpQbf2Eegj5DbkNsULpJBZmWAPqXJ9GUJUeYx2/dNYIeWV1BQbQR8twchroKb16sS5dW/KSoJ4990C+2HxB/uPPFyQUhkKIEoWNzq/1DdKACKpqtFPNalLoVAy5DxqDoxIszqhClu2c1lZkFNup1HKEgQ2s19nn9OM8pQhD3qcXEqyrkdSYDBoYkN+/WyOvrZskFWOs2VzrouavWwKhY0cktPVLjJptdK9uvozgIcE1MN94eS2i345pvr2L19BEKPwN7uPgt05NPONmSNGrb0jJqjX5R+KYS+y7r1Hnz9GZnXfq3OICBgkCryCP48vrELZ9You75svGuiuP5cvNF+XPH16Qq7efyrOGRgnpkXGNA3ZlvX741QYQXdTTMjGkVYYVHQ8jk8QFpRTauEDMYFEkmJhBDOE6dgr8jY+6rkeKAn75F+Q5fee3k6W2Zrg6zPxpLoEw8gmHvv1KIt9iZF3JO3Uf3zQMmqzZkFe57nQN6c6g3rMtn8J36rZe7XwzXVZwzW+kZPUa8dqpWJyNXbyQCIWkcds3EtoCjLjs8gvLUS//CuQvRL7UIqSS6Q7l0uVHCkM+AIbcvP2r/IoclGFGlVcDT3y3oU/Y77s3gMijPmCIt2ViaGEI/MOQCzVFpyA+OGSU507TTdKCNZYGffI//3EqzHmnYCDczJa29XmjT6T1zH8miTpEpm6heKvn4t19XUrRv+dLafxxN/r0TRL7ZWfGKgVWIdf8K8iAUDM54/auXBlC2hzifHRb62dQPRW10LHeVPjpKcLgcoGXxsaIfL3lonJd3Hvorjwjl8HAZkJNltHVh3nA+4C6ILc3TftbKIkYo/jaaWa4n554c3MiRVDBa7QulIET+aC6MNBrn1K/bFhbKW++US1LFo9t4cqdvykvCSpHOE+dui/HjmOknc4jKE9/DcnRo7dk3y+35HED58gB8GwYazP2QGdCEqlHBdRIArY7xb2dxJTb3NvtHXW/gZ9MBzFv5lCZhuAmJcXsVOJSjO+pU4dLTfUwmO+1rPDaZ+yRXwz1zvyo0bMtdwaeohKY9k6WIHKGMv9evhU6+lORjl1Okj3vsDLMNAJAmedUvfj5U2vOjoTPQO5nkPMQibxbVeDTx7xkwUkI+IRZqkIoDx82ykn4qh8/AZw4dlcOHbkrxy89xHvtJovWnXh8JUqxZBTwlgrNgJlqRqWjcQM821iPTDoY48IQDnC5cKcoEJB/QY7Cd35bC4Lac815W5I1t5Hk8d2Knj4B+TpA7hzmK6+UAJ7JQNV4Z12+LDAVhHrPUHfmI0wvXgQaIkYQ1/JtlpH+eWFi82lgxL3m5Dr9XvRv/yTkLkR7dHXQNF2ftn7ff9Agp07eB4bck6PQNQ4duSMnQVrxMFofhQGWTqH8xlSAE2QRUM+qvY+qhK1L0MpC5U5lSivOqmOfZnqIOsDmp9iusAPrnNkPa3tpUUD+5z9MkXffqTXmvLbI2vLFdEvhc2cU1sTv3WnxVN6y0aov7Mw85i1WCBsjl2CxgT49duVSxl391VOs/rsLooNnrJBrJU2VLaxs/WCYFxYaSichfuaZJZfr1lq9SNeCU6fvywnqKyfuwEUJXAafCPUGYgRIqddHSy8MgKkBMuKLu0+0MIazrbQIJUll+jylf7q5jIu/qMopfMG5uJ7XcXGmwQjQOH/mEPCbweA0w2QydJWqqsGtvqfO2DEvCWoYs6ZMO1PfQP9TSwz37j+Tr746K//50WmpuwWFQI0aUOggjmrmk8t6lJINYncaqvHZOno79mHJtl3NplrnrIV53rtvj5d1a8dLnz70JUvgefCoqW/mAwrQIdWUjBLgKD2DccQb2FG3UKD8c4bB0wt+nZ2cWqaFWjmbEhhVj9cDDDACqwsVTg/q7C3FAIVj+qm3dvE3AI+mQQnWGYpoqwpeFdUGbAfcWyGUSCSu8IE4sWfPVfl800X5cuc1gHcE1ceHwK+LM3pITGipuLfzeBJWflNA9nF6RJI/NQapSxFzuJMPM6hB+Zd/qLUJamEQfvvuOvUrEQa+EyPwrGYqzKfp7YVnsoNzIWe6dq51DEiWwCg466+CgaQdQPM6hRHANad/Stuny36iU3UwAop7awvxjveUj3lOW3sP7v2oNCo9Axiyc/cVhSFf776OVx64mYBctHLHgzC45VUuRnjHQVDj1DUUkeVGy0xPBWujbHmswqAW9BCem8XBExtjbH2lF579/wEMefd3JKhDrH3N3xeXwHM886p/B+7kk+VDohF6CLHGpYe4heHoULD4y7dC1y/qIzl1QVfFFX7qNsg3HctVz9YuxvH8NZDT1Ifl9Jm7sBA9K3/862lpDAErNBcRYIw9iG7FzLC5iroI8kxrqy1gj8IY6jp6HfdRA2o4xuE8wBS9jjij9RW13ScTRveTv/mtxW+GD+8jvWHSW1LS8iB+a++3vfbLS4Ka6eYePmqQ3bsuydbtl+TWTdpwW8WK4Oloj67RTW637buT2iW2pza6sv92tltBEPQ5Kyr7yeqVFZj2rlCNZ1/SfBkJGAnkkQR+OXxLvt9xTXZAubx+84lcvfUEwA8rCwf4Ac5aEXSv4z3o9VzmNj3gpYAdSiQJqnMMd7LPpdbxN46x1w3sUyqjR/SRivJ+8ip8UJctHSMVFfnhd8iammIkYCSQWQI/HyKGXJWde27IjZtP5crtJ9IUCWNn/b5bg0/qfdfYoAkqMUQpirYeAmVUkVt1rH09DqI7A+nu7VhmsTFmUO8ShSFjx/STV16pAIZUyJjywvO9s27K/DUSMBJIl8CZs3flw4+Oy//612NSH+ZgFgt1D40RwIQUDMFv4gMxhvoJcUVNxoHLZMIdzqgqrOE5ORCG/ZWLIr6BVWWD+0r5yD4ydfIQeXkl+M2SCqS7y7+BDSUVRIxCrfO/NDZF5OrVx3Ll6iOpf8aOQxc0glIS+c1b0R9ub2lbS9ut4/r2K0bn0E/K0UEEzWwpBWaKkUDeSeDW7WfAhifIk/pQ9u2/Kt/uuCLX7mEQSwO+o1Ci6s464ISaISGA64L3nh2BAngbR6h8cmaUgM9d9TFcp87F/bEBn1k1g2XZknKZN2cUiGl/KR/dX/r3L3z/GS0d820k0F0lcBNWWVevPpXz5x/K3v3XgCHX5AastpLvu6UTOK5BnNXRSqQexCIeKJ2DXzYuOC4B/G1v5xcxJgMuza0ZIkuXjFLReisqoHsAQ/pBDzHFSMBIoHtIIJWg0loDgKDxRPEXYEMmjMhEUJW+YuMKxcPzsChaRx0Gv/W5ldVGXNYsKpfFL5XDtHc4ArBRT+knRUUt+72qc3bBn4KZQe0C2ZhLGgkYCRSQBB4/bpRPPz8h//ffj8lhKJrNotYR/NOCkaiRyJbuUXUANPnPNHLJdVQ0OZIZk9+sqpA/vD9V1r46qaUzmm1GAkYCeSqBhw8b5NPPTsu//vGkHLv4wHq33VZX2fBA34/jTkBsoLUWPhncDWilZVlzcZ8kLv0Wlhfvv18ja17OP79rfYvm20jASODFJZBCUEPUHVL1CKVTpEfcJUZkIqi6Gplwx4UrFsYgPzz0lP/xd9PkvXemyIzpI/XRefttCGreNo2pmJGAkcDzSKChIYLgAzfk4E/X5dZt+jXqkUWOJNqmLmqdGp7EOqyPRSRy4TJyciLP3K/JoFLeYeXim1CFyNJl9nlcx6hz6XNzxJLnjkv1xMEye/ZImTJ5BH6bYiRgJFBoEqCP2C8IXnLw4E2ko6ErkcYOfSd83/lx4UE0nMSQZxwY4za9HQoocjr6qoAl48ciHRnTlWjscJ/bOmdt9WCZhZQPk2tNcDUIyhQjgW4ngduIGH7o8HXkR70uTSFigMYUraPwlrNjROzGTYlCX4nfuuSSjcYkxHQZMQb57CvEV0YMcWNRAgQ1LvPnjgLGjFLWGa4T5OWiIah52SymUkYCRgLPK4FoNC6cAXnwoF4am2A6o81deCLtyeBeR+UTQWIad++S6I5vJXH7lHNJb81SCSxfKUXTZ1r9h+pE1IksnZX9gbMOizg//TgGDewlAwa0nIoA9Gs4AAARBUlEQVSCR5piJGAkkH8SIIY8UBjSAOURGKJmIdLqmYYhDAjYpDBkqyTunsXOAAdtVsfjiwaKb/GrUrxsufiGIe2U+/g0XOqHyJoDB5aYPKdpIjc/jQS6iwSYcubBw3roKUiZSReiND1C3WcLGBE6elQiO7dJ/Pj3aSKxcMc7GbmqqbtMQTow93mARVRbBiH7yKBBvfIiz2naDTT72W0IKhPAq0hhjAipTWow7a2iQDLyIKIqmmIkYCRgJOCWACPJNmzeKOGNH0jiuougznxZit54R0peWure3SwbCRgJGAmkSICR3h0MuUmCmlaK+0hg3R+kZMPbsMgoT9tofhoJGAkYCbReAk37fpDQpo8kdvDrjAf55q1TukvxvIUZtxfSym5DUOOPHzk59dhhsDDBr5UfKj9zbBbSg2LqaiTQHSVgCGp3bFVzT0YCnScBQ1A7T9bmSkYCPV0ChqAW4BMQvX5NmrZ+JeFvPhapZ7JtlNJ+ElzzWyl+ea34yyvUKvPHSMBIwEhAS8AQVC0J820kYCTwIhIwBPVFpGaOMRIwEngRCRiC+iJS6+JjolfqpHHTJxL5+j9Ewg1WbQLFElj7t1K84S0JVFZ1cQ3N5Y0EjATyTQKGoOZbi5j6GAkUlgQMQS2s9jK1NRIoZAkYglqArWcIagE2mqmykUAXS8AQ1C5uAHN5I4ECl4AhqAXegKb6RgIFJAFDUAuosXRVDUHVkjDfRgJGAq2VgCGorZWU2c9IwEggkwSyElQPUjwwimbvIbDkeldK1r0u/pGjM53CrDMSMBIwEmiVBAxBbZWY8msnQ1Dzqz1MbYwECkEChqAWQiuZOhoJ5K8EshLU/mXirahGPuUa8U+eLkWTp4q3/4D8vRFTMyMBI4G8l4AhqHnfRM0raAhqc5mYNUYCRgItS8AQ1JblY7YaCRgJtCyBbATVM2mBBJe/KsFZ88Tbt594+/VFurtgyyczW40EjASMBFqQgCGoLQgnXzcZgpqvLWPqZSSQvxIwBDV/28bUzEigECRgCGohtJKpo5FA95CAIagF2I6GoBZgo5kqGwl0sQQMQe3iBjCXNxIocAlkI6hiTHwLvGVN9Y0E8k8ChqDmX5vkrJEhqDlFZHYwEjASSJOAIahpAjE/jQSMBJ5LAlkJqgmS9FxyNDsbCRgJ5JaAIai5ZZR3exiCmndNYipkJJD3EjAENe+byFTQSCCvJZCVoOpaF/eRwLo/SMmGt8U/ulyvNd9GAkYCRgLPLQFDUJ9bZF1/gCGoXd8GpgZGAoUmAUNQC63FTH2NBPJLAoag5ld7mNoYCXRnCRiCWoCtawhqATaaqbKRQBdLwBDULm4Ac3kjgQKXgCGoBd6ApvpGAgUkAUNQC6ixdFUNQdWSMN9GAkYCrZWAIaitlZTZz0jASCCTBAxBzSQVs85IwEigIyRgCGpHSLWDz2kIagcL2JzeSKAbSsAQ1G7YqOaWjAQ6UQKGoHaisM2ljAR6uAQMQS3AByAjQfUFxTfnZQksXimB8RPFO2Cg+AYOEvF4CvAOTZWNBIwE2lsC2Qiqp2oWcAPYMWuuwgzfwIHiKSpu78ub8xkJGAkUuAQMQS3wBjTVNxIoIAmETh6X8I+7JLp/hyQe3RF59kAkFnHuwDdvnRS98Y4Uz1vorCvUBU8CpVAr7653RoLKMO+Dx4i3fLz4q6eJf/osKZo2Qzw+n/tQs2wkYCTQQyWQjaBK7yHiGTVOfFXVEpgxR4LADd+gwT1USua2jQSMBLJJwBDUbJIx640EjATaWwKxe3clcu2qxOouSvSXgxI7+oNIPUiqXQxB1ZLIo++MBNVVP8/oWgm+/r6Urv+NeAIB1xazaCRgJNBTJZCVoGqBBHshRcTfIkXEW+IfU6HXmm8jASMBIwElAUNQzYNgJGAk0NkSSDQ0SMPmjRLa+CeR2+edyxuC6ogifxYMQc2ftjA1MRIoFAkYglooLWXqaSSQnxJIRCISOnZYIod/ltjpYxK/BmXxwTWRRNyqsMmDmp8NZ2plJFDAEshGUD2jasU/c6H4Jk+XQPkY8Y0aLd7SXgV5p93bxNfVJGYG1SUMs2gkYCSgJGAIqnkQjASMBNokgXhcYo8eSvzhA4mcOyOR3dskdug7kXjUOq0hqG0SrznYSMBIoLkEshFUgdWX9Bsq3tHjEEdjlRQvXCy+IUObn6AA1nQfgnrjujRt3yqR7zZJ4uENkVADOoik47AhqAXwNJoqGgl0sgQ4+9G4Y5uEv/tS4md/EWl6hoADIcx+2K75xsS3k1vEXM5IoHAlELlwXho3fSzRbz4AjoStGwGG+Je+IcFVayVQUSmeXr0KdkajcFvG1NxIoHtJICtB1bdZ0k8Cr9nuSSNH6bUF9d1tCGr8yRMJXzgnsfNnJHr6OExtDoncv+I0hiGojijMgpGAkYCWQCwmkYvnJXL+rETPnJTYqcOSuHIMg1sxaw9DULWkzLeRgJFADglkJKhev3hG14hvwlTxVU+WYHWtBCZW5ziT2WwkYCRgJJBdAoagZpdN/m2BohkPNWHmNCQqT9CWzyVxco9TT0NQHVGYBSMBIwFHAglJNIUkAewIX7wg4a1fSnTHJyJRzKKyGIJqycH8NRIwEsgpgYwElWntQFLFXyTemvkSXPOGlK56xaS7yylNs4ORgJFANgkYgppNMnm+vvGHXYhs9VeJ/wI/EF0GjBL/fORDXbBE/MNHiG/oMPH27ae3mm8jASOBHi6ByOWL0rTpE4lsQVS8CAa7WPzIpTxjpfgXLhX/uInihy+H8ucwuZQt+Zi/RgJGAo4EMhJUZysWBlcoPSQIPYQ6iG8ofMX69HXvYZaNBIwEjARySiDBybiD+yWyb7fEzhyVxH24NtbfT7onBUrEN2uV4jy+KqTa1LpLzjPnzw7dxsTXLdKMBBWN5RmCnKgj0UHMWiDB2fMkMHac+zCzbCRgJNCDJZCRoDKX8oCR4hkB3KidIYHZ86V45mzMiGC9KUYCRgJGAi4J5CSosMjwDIUeUgY8mbNIiqCHmPRVLgGaRSMBI4FWSSABq9HYrZsSvXlDomdPSeTgHkmc2guCarsneX3QXUaJh1gzeSZ0l3lSPAO6SwGVnkNQXY3im7tWguvfluJZc0X8PvH4YH5jZkRcEjKLRgI9TwLRusvS+NVGiXzzF5HGJ9ZIpE4VAXF4RsN/7LXfScmrG8QTDIrHD9wwRLXnPSjmjo0EskggcglWGApD/gx3IwRcI37ogGtpx/gWvSFFr70lRdNmQA+Bn6oPCqXRQ9KkZH4aCRgJ5JIAo4c3fvGJFZxNRw93HeSpnK50l9I165OcpwB0lx5JUD0jq8U3da74axC0oLJKRdYr1DxBrmfQLBoJGAm0QQKxB/clfOKYRI8fluj50wiWdFrk6Z3kGfvAvHcyZjymzhbfWOLG2IIN3568KbNkJGAk0F4SiN2/Z2EI8qJGL5wChpwR+fVuxtN7yidDDwGeIHCS39ZDPMUlGfc1K40EjASMBLJJIBdBlX5wa1S6yyyL81RCdxk0ONvp8mZ9jySoAnNfKR0gnlHjJLjiVSlesrwgGitvnhpTESOBbiiBRDgk8adPhRHBQwf3SmTH15K48HPyThnoBKHbpc8gCSxZI0XLVklwUk1yu1kyEjAS6NESoF9Y/OkT9Qnt/9HCkEtIX5WpBEpFeg0Q75iJlh6yeLl4+/fPtKdZZyRgJGAkkFUCOQmqL+DoLsHl66RoKXxTx0/Ier582dAtCWroyCEJ7fhOoge+F3n2ELkNf02mjXBLvriv+Bevl+Cy1eIvr0DQpL4mYIFbPmbZSKCHSqBx9w4r0NqR7Rkl4J26XAIY3CqaOkM8xA0EXFMmvxn3NiuNBIwEepoEmn4+IOGd0EN+2gU95BH0kKeWyW+6IHoNFP8SWw8ZOdrSQ3r3Sd/L/DYSMBIwEsgogeiVOmnatR0DYl9J4uFtkYbHyTzMKUd4xDsDA+sr1khw8jQLaxgslu4FeVi6JUGN0nEYETmjyIsaPfazxE8ftHzK0hsAowqesokw14PJb+1UCaDBzIxIupDMbyOBnieBXARVBkKRrKwR/8Ra8U+Bf0ftFPEapbLnPSjmjo0EskggeuOaRC5fktgF5Fg+dgh6yAHLLzV9f6Sf8YzUegh0EOghgQkT0/cyv40EjASMBDJKIP74kUTqLkkUPvCxE3AvOA6seXA1w75IeTV4DMx8wXkmwrUAuksRdBdPKaw58rB0S4IqiG6ViEZhqvdYGr/+QsJf/RWNdaW5+FVAAjSYxyfeyS+pwEmlK5GfzBQjASOBHi2BnASV0X35GTRaguveReCk9cYftUc/MebmjQTSJGDrIbEH96Rpy5cS3ozga09upu2En1oPQdRN7/TlUrTuLSlZtrL5fmaNkYCRgJFAJgnE4wjeG0X+9qg07twuoS8/lsSZvZn2tPQW6i5DKxE46V0pXbsBrgUDMu/bxWu7J0G1hZpoapSmQz/BxGYfwjAfl8TtOivoSaaoekMqEfZ9mUoj4R8xUnwjRiizvS5uH3N5IwEjgS6QQOj0SYnARC96+IDEb9ZhgOtaZpOZot7im75M/HMXibef7T8GRdNfVgYMKTMuA13QduaSRgL5JIF4/TMJQQ+JQA+JnTsBPQSD5SpwUqJ5NYcjX+GcpRKYiSCOZdRDgCHGMqO5nMwaIwEjgYwSCCHQY+Tn/RI9CutR6i4PqbtEmu+LeBq+GeA80F18CPjoB9aoHO/N9+yyNd2boGI0IXbvrsTu3pEoFM7wvp2SOLE7sx9IEFPcA0eKd3g5Etsuk6J5C+GXOqbLGsZc2EjASKDrJBB7+FDi9+5I5NpVie7bJdGD8EWtf9C8QiCj0m84ciyPEikqVts9/qAEFhJDFoh/VHnzY8waIwEjgR4jgUQk4ughkZNQHqmHnPoR95+BoAZ7wyoDpLSsEnrIUksPGQlsMcVIwEjASKAVEmA2AvIe+qVGoLvEfoLu0gif1PTCoI/9RyjdxT9jvgTnIy/z1Onpe3Xp725NUN2SjZw/K01bv5LItx9ZQZM4ouDKcejsi6lv30vIT7ZmgwRrJounCP4hVDyVGY6zl1kwEjAS6AESYFTfxu++lvCWzyRx80LyjqMha1QyI4ZgBnXJbyRIDJlUa2NIkcGQpPTMkpFAj5QALTPCWzdL5DvoIZGm7BgC5dG/5E0JIudycEK1wZAe+bSYmzYSeHEJxB89lMZvobt8A93lTl3yRBl0F8/E+VL06ptS9NJSZz8GffQEyX+6TnfpMQSVIwrhM6ckeuq4xM6ekPjF45nzk4GIekbViq9mhvgmwYl4PELAV423GslpOrNgJGAk0BMkkGhqUrgRgWKZeHTfueUY8qTGLx5DdM7kOmcjBrk8o4khM1WOQ9+4CRIcBwwJBJ1dzIKRgJFAz5NA7PatpB5y7qSFIZksM4ghzJNKDMEgF/WQADHEj3QRphgJGAkYCeSQQKKhQULkPKfhVvAEUcRZYLQRBe4kLkF3qUeGE10Q9NFXPVN846r1GvEOHgLMmSB+8h+Q1a4oPYagJsJhSTTUS7y+Xpp2f48RzC8kUXckg8w9IjDRE/iWeSprpWjVa1K8YrXxA8kgKbPKSKDbSwDBB4gZiYZnkoggCIFdVEj37zZJ4ioGutILrS18FoZ4q6ZKUGHIKvGW9krf0/w2EjAS6EESYK7lBPBE6SFIhRf5bqMkrp9qLgEHQ/qIdxwwZPV6KVmxSjzFyOFuipGAkYCRQC4JIEhbHJyHeMOgsaog/k7T999KZBt0lxunk2eguW8R9BPwHl2YpSC4ep2ULF/dZRN0/x8AAP//RtyRrAAAQABJREFU7J2Hf9vYta0XCICk3OUid1vuvfc67uM2LZPkJjfv3j/uveTmJpnMeNx7773L3bLce5dIAiDeOgCbSYiSPTOWSO7zG5ogCkV81Cztfc4umsuBChuxE8eQOLAbzqXTmTt3370G3jwB4u8y+9C5Bsa8lQgvWAKjb3+EundHqEvX7HHZEgJCoCIJxI4d8TXk/DG4Lx8DjS8BN1nIoksfX0MWUkP69PM1pHOXwvNkjxAQAhVFIHb0kK8hV85n7tt9Sx158xRIvM/sQ9d+MOan7JA+fRCqph0iGpLlI1tCQAi0koCL2GGlO7vgXDwJ95WyXV4F2y7VA1K6sxhGTW/qTg/qTudW/pxf5zStEh1U+8F92HfvIPmUDmlqOLdvwD59GO6d7B8LGFFofYYhNHg4jAnTEJ4yDeaIUelL5FkICIEKJWDfv+dpiH3jGnXjKJKXDgNWUyENsyqrIROpIZOpIcNHFp4ne4SAEKgoAva9u74d8vxZ5r6d61dhn6Edcu9SZh+UhvQdjtAg2iGTpvsaMmx49rhsCQEhIARaScC+1wC7gY/rV2DRdnHraLvYicKrwx1ou1B3lP+T1p2hwwrP+w33VKSD6vPkwnHO2nHs9EnE1/0DzqF1ebg1gP+FJi1F5Ls/oWrBorzj8lIICIHKJODCfvgQTev/DWvjX4H3z5vBkNKQqSsQ+fY/UDVvYTPnyW4hIAQqi0CeHXLsMOI//xPOsU15GHwN0WesQuSb/0B0zry84/JSCAgBIdBaArRd7t71bZdN/xeIvW3mwpTuzFzt2S7RWXObOe+32V3BDuqHQGOnT/gO6sF8BzV1Xp+RMKbOgzFxKoyBg/kYiFCnz7vc/eEnlldCQAi0NYHk61eInzvDVY8TnJG8zJWPGwzRexT4sULKQVWTXOKgBvKRnUKg0glYt24icfYU7LMnkGy4AffRTYb7NmawaP3HQp86lxFdU2AOHAR9wCCEOnbMHJcNISAEhEBrCCRfvkD87GlYtF2cm3W+7fI2G1Wa+x76rDXioOYC+dzbLTqoXO5GlxqG2tQivHAZInMXMi+13+f+mPLzhIAQaEcE3EQCyRfPYfNhnaPYH9gB98qRwE8oDmogFtkpBIRAikDy7RvqyQvYjx8icXAv7ENbgZf3s3zCdEa71iA0YBhM2iHROQugMz9MhhAQAkLgYwi48XjWdjlzEtb+7XBvnAh8C3FQA7F8vp3xSxeQ2LkF1t6N2R/qMC47xqJJTpzhwKl4YCMCY8G3CC9bzVyyEdA6dESoA51XjUvhMoSAEKhYAvEL53wN2U8NUbqRYE6q62R4aGPmIbzia0RmzvFWPZR2aIaROS4bQkAICAFFQBmPTXt2IrFjA5LXzvjFG5U9krZDop1hrv1vVH31PaO5Bgk0ISAEhMAnE4ifOYU4/R9vQkyF+6p6GjlFH8VB/WS0v86FziPOWLJAgXPzWuYNky+ewbl8Fm49CyclbX9/SIc2gGE2IydAHz0exuhxiIwaDeh65jrZEAJCoPII2A8fwGLRJOdqHWzqRvIaq4Sr6r7pwap4+shJ0EdRN8aMQ3jUGIS6VaePyrMQEAJCwCPg2jbsm9dhXbsC+8ol2iFn4DZcyBqN4qDKb4oQEAK/EgFV9NFSBdqu+baLe52TYk3sbJIa4qCmSbTRs2tZnLWMeTOX6Y9g321AfNsG2Lt/yFboVCulGlc9jDC0kdMRWfUtqpathGaa6cvkWQgIgQokkNGQd+/QtH0TElv/DTy6niXByS3oYYbo9UZ45R8QXbEaxoCB2eOyJQSEgBBQBLhSqlZRlU2SuH6NWrIe9j7qiWP5fMRBld8TISAEfiUCrpWAG2PIL2tqxJTtso1a8/R25t3FQc2gaD8bdv1tv8rVZla5yilUkP6E2kCugnzzF3T46jtxUNNQ5FkIVDgBlZfauPEnJNb9jYUHLhfSYB6ZuYbheV8zPG9wbeFx2SMEhEBlE0gm4bANnq0eXNWwDu1F8txuRnKlUgbEQa3s3w+5eyHwKxJIvnrl680DrqQe2Q/72E7gdbbYoziovyLsX+utxEH9tUjK+wiByiEgDmrlfNdyp0LgtyCgVjTibH1nnTjKEN9zcB/U02B8KCG+vwVseU8hUOEEVHhv/OQx9nQ/huQDrpw+bWBv1FiGijioGRRtv+E6nKV0mANy+xaaNq2Dve1/siG+OR9PVlBzYMimEKhEAioUL6UX6QImykFt2rweiY3/oGF5JUvFK6QWAjpWw1z9n6ha/Q2MQYOzx2VLCAiByiMQpCGxGBq3bEBiw98/TBNI05EV1DQJeRYCQuBjCNBecenfgFEa6RE7dgTxDf9C8vSO9K4PnsVB/QBHG75g5SqLob3KObWvXoZ9/gTc6yezRZJyPpo4qDkwZFMIVCCBZON7Ty+c2zfhNvr9Cl3bgnP+FJxLx4B3z7JUuvZBqHYM9OFj2U95CsLjJkLv3j17XLaEgBCoOALJ9++yGtLE6pkcagU1oyHvnxcyEQe1kInsEQJCoEUCKjLUqr+FJNMH0sO5yQJJ549zMixbJDZ9TD2Lg5pLoy23ObvQdGAvEnu3s3IeHdN3L1ji/X02tCbns4mDmgNDNoVABRJwnj9DbP9uJPawX+GLxx4BN8mWVG9pVKoqeOnq3zyijZiJ8JLVCE+fhVDXbgh16QotzKJJMoSAEKhYAirXNKMhr556HFy1uvGWtkeehmQgiYOaQSEbQkAItJaAS/9mH9tp0r+5ei5zkfv+DfCeHQdywnozB7khDmoujd94O/n2LZJvXsNt8lc8PvhxtoPY3h38AjcBT25+cCj/hTio+UTktRAoMwKcsEq+eYPkW+oFQ3fzhzIuE3u2wz6oep9S5POHqtwb7QJ0Yljv7KUIL1qOyOSp+WfJayEgBMqVgKchrz0dUSuj+cN+/AiW0pBD1JA4+yfnj4yGMNoixBQBDq1rD4QXr0b0iyXQe/fJv0JeCwEhUOEEVBivq2wX5euwS4k3mE4Q37eLNgu15mHAaqlKQzI70l7pBoSrMgTNOctouyxDZMKkzL7PsaG5HJ/jB7Wnn2FdvYLExXNw6gMcUIb4OjeusOdYHQ3ObB+goM8vDmoQFdknBMqHgBtrQvzSBdjUi+Qzf3Xjg7t7/5a9k+uYa3o12wIi94QqrpSOmcGQ3ukM7R0Jc8gwGH375Z4h20JACJQxARX6H79MDblADWFv9YLx7k1KQ2gwJlOGZO5JHaqpITOpIdMYcRHxj1RVwaCWmEOGItSpc+7Zsi0EhIAQQPL9eyTSuvMymybg3KR/c4fdBZpeFVLSdGjDpsCYMAOhmuzElz6o1tMavU/fwmt+wz0V6aA27d6B+MYfkLxwIAAt/XUveZghNi347uKgBuCTXUKgjAio2ccmVaxEFTx6FDShRb1wWVQN6pmP/NGzFuE1f2JBpK/9kF6DPZR1rqrKEAJCoCIIJF+99AsebfxfRmXVF96z0o1iGlIzNKshVR3869VKB7VEU3riFV8rfFvZIwSEQOUScF48z9gueHYnC0JpDRfiAu0V3YSx7E+IrP4W4WEjstcYdFz1z2+7lKWDqvLC7IcPPkgCzpJmQd4zJ2Af39tiCC905of1GIhQv1r2OS3MFQsNGgpzxmxEps3wv7zcHyLbQkAItH8CnIyyHz309MKlM5o/XM5CWscPwjm9D2hkTlhrhjIYu/SG1qcWxqgJMGbMQXTaTGjRaGuulnOEgBAoUQKq4JFD20PZH7BZKZPDffeWGnKIGrI3eNXCOyvvH42hvGkNGT0B5sy5vp2RXkHNO11eCgEhUGEEmDpgP/K1xmXaYv5Ivn3Dfqa0Xc7sDU4/yr0gynoYvQcjNJBRGbPmU2tm4nOvluZ+nPR2WTqo8csXYR09COvcifR9fvDsPuUfjxd8JFj8qNjo1JPG5VIYcxYi1JFx2XlDY2iNUdMbek0NZzH93JC8U+SlEBAC7ZiASyMyzl6DiSMH4Ny5UfhJmTPmPrnnN612AsLvCq/wtCA0YSHMOYtgjB5HffA1wpuBDDpf9gkBIVAWBJRjGj92GPaRfUjGUjUumLvuPqWGvGIf05yiaUVvmHmnoQlfwJxLDRnFqt9KQ3rRzpDoi6LY5KAQqBQCbjyOGG0XS9ku924X3nYinrVdWtAdbQA1Zs5SmNNmeVoTok8T6lDo8xT+kN92T0k6qKqNgxtnsQF+AUEjdvQw4lt+hHtxf9DhFvZx9UMVIuDqqTZwLMKrfoeqFasQ6sxCJzKEgBAoXQJcLVWi7ird8ML4ubqhepZu34zElh+aLbGeuWE1CRVimIvBPDDKRLODx80Vf0T0y7UwR4xs9jQ5IASEQIkRCNCQ3DtIsN1UYst62HupJ0ETWmkNMVO5pLkX526HO1BD/oDoSmrI0OG5R2RbCAiBSiOQZO9S+jzKfvHCc3n/SRZ5jXm2y7+ApwEOqorkYk6pZ6+kiqs1h02fuoS+zjeomrewuVPaZH9JOqgOQ/ISN6+zmFFAFSpidG5dg1N3GnhW//FQ1ZfaZwT0EQzNGz0expjxCI8eAy0i4XkfD1OuEALth4DXb/DGddjXr8JlKJ43WOnOvsTiJVdPtRzCy2Il2lDqwsjxdFSLeKjM1TDGTqBujPVXPdoPAvkkQkAI/AICSRWum9YQ9kDOH8lnj9n/+AyLkFygIaly0/NGx+5ZDSkiIWBKkW97UEN69sp7E3kpBIRAJRFQ4bqe7tyg7ZLut656JV86i+Q12i6qHVX+YD6pWmTTR06AxpZ2xYZey9BeRnuZQ4cVO+2zHytJB1VV1Uzs3sZWMBuCgam+peoRNIMZfEV2L2c49VnsVbhsDcJjx0NjaG+oYycapBLCm4UkW0Kg9Ag4T58ixnYOiR0b4L5guJ0aqkBJE/M3LIbjcZay6OgzkrrwDaJLV1APihQ64iSX0gylHdLntChROSgESoqA8+QxmnZvh7VjPdxX2Ub3mZtQbWRi1BNHrXRQW/KG1m80zLSGFAvDSGtIJ2pIQP2LvLeVl0JACJQxAbUo5+nOTtour5/6d6r6ravWdgnaLqroUf6IdILxBYsdLV0Fo4Xquxqrgqs0Ri1dhC3/vdrodbt3UFUFPOflC/YhpOinhn3lEhL7d8C9fDC96+Oe+cWhSy9oqtdP/uDqh7lwBaLzv4BROzT/qLwWAkKgnRFQlXaTL17ACShylPtRkyyeZu3fBfvoVk5gZfUk95zMNkPs0Jka0YW9B1NDHz4W5oIlqJq7QCas0lDkWQiUEQGVk55U9gYrYCZVOF3eSKq+x9QQ5xg1pKUaFmHmcCk7o3N15l10Rl+EqSHRufO5r9gSauYS2RACQqBMCSRfv/L0xmG/0mLDecJeyZ7ubPMn0/NP5mopOvaAVt07Y5to3XrQl1lOrVlQspFc7d5B9QoenT2F5M1sOK/z9BHcu9dZuISFjj5haIMYpjdlDvShOWWU0+/DlVKv58/AQQh1y/5hSR+WZyEgBNoXAevaVSTOnYLDiatiw21khc0G6sZj5msE9RvMvbjvKGrEXK9ASXq31p2CP3AwDGqDtHZIU5FnIVA+BLzegefPwjp7Eu6zwhVSV/U9VhryRGmIX6W3ubvX+o+BPnkOUwLGZE4J9WDhxbSGZPbKhhAQApVIIHHlMrXmNJzrdUVv39OdO/SBVK5pUKQXC7rqE+fBmMpuAemIi2gVzEGDoStfph0UPCp6g80cbPcOauOOLYj/9He4V49kb4Er2/7IbKR3tOpZn/s1It/8B6LTZwafr/JQZQgBIVASBJr270F83T+QPLer+OfNyEVmo9nzQ1NXUCP+iCpGUmSGJwuiDRkesiEEyoyAWj1t3PATEj//P1bdvV94dxnpyGwUnpPao89Y5WlIdI5aLU0N0ZA0CXkWAhVPoGn3DsTW/S/cS/uLs8jITWbjw/M5oR759i/osPa7D9vZlbgv024cVNey4Ny/C+tuA1wmBKeHfe407DMM5W2p4BErZ2q9hyI0aDjzvopXyNMnTkNkyjQJ4U1DlmchUGIEVLES+95d2HfvwNeIQ8DDbJRFq29HCXj1AIQGDEeoukfmMn3sRIQnT2MV3lGZfbIhBIRA+RDwCo9QQxxqSG7PUvv0MTjnaXOo/K7WDFWZt3tKQ7rlpASMm+xryPCASK3WvK+cIwSEQNkRSDKc17rXQN1pgM1IDfsMbZcnN1t/nx1YaK3/MOj9Bmeu0foNhDllOiKTpnIF1czsL/WN9uOgsjJV7Ah7lx7YTUf1doar+5IJwW8YamPHMvsCNzr1gjFvJcz5ixHqxBzTIkOv7o4Qw/VC7GMqQwgIgdIj4PUbPLQfiQM74T6s9zVCFQv42EHjMjSZ/b8WLuOE1ZDM1XrXamoEdaKF6neZC2RDCAiBkiJg37+HuNKQgztZKI1FFdVQLexePgbePQsOpfPP+vBf1bN0yjKEFy710oPSB30NoZ3RRVrUpZnIsxCodAJqYj1+aJ9vuzy+69suVlOrsagURXPBCpjTZ2WuCbG4kfJpdD7KqaBrmzioqhCByxLtqlyym4qndt+9R2zXVlg7fwRe3s+Az2yoWUrVfzDCwgMqIThvqBmF8IqvUbVkuTieeWzkpRAoCwKsiplUmkHtsNhmKrFjM+wD62hUFhYz8fp/hauoF5ysKhbmwnwNc9l3rMzLya1h0m+wLH5P5CaEQHMEcjWE7aYSOzbBPvhzyxX/2RcdqnCa0pT8wX3h5d96GmIMkcKK+XjktRCoeAKe7vg+T+LaFSS2b4RzaH1wHrvqEGBSZ6LBC2jG1IXUm9WIzp5X9ljbxEFVlXkTV+tg112Cy2az3kjEYV+9APf2BVbYTPUozMWvQniHTmZ/wcmBPX00htYYDMcLDx/JnqXFQ3xz31a2hYAQKBECjoP41StQVbydKxfhXD0P9z6LCwQVDWBFu9CoqdSLScVnFFXP0hFs/TBiJHQWMJEhBIRA+RJQk+Oe7cHiJM6VC9QQ2hxKQ4LaNORg0JjjpY+ZwlQAFkjLH4aZ1RC1giFDCAgBIZBDQKUw+rqTtl2oOw+uBOtO5xroo6ZAV7ZLwAgNGIwwfR1jcG3A0fLa1SYOqlrijm3fjMS2HxhK89InqnqGqTBe1bs06I9FVTeYy//AVdI1MGr6FHwLmqHTMY36CcLFVkwKrpQdQkAIlAIBlz0Gm3ZuQ3zLOrjX2ZxarZyqSppKO/KG129w5feoWr6KERdG3tGcl0xB1aLUDaUdRpHzci6RTSEgBEqTgMvWMU07tyK+lRpy4wxbNlBD3GANyb1DfRb7on/5NcLjA4xG0ZBcVLItBIRAHgG3qSmlOz/BvXWeukNfx2Xf9SDbhSG84ZW/Q3QZbZeAoYVN32ZpodZOwKUlt6ttHNQ79Wj6+QdYm1kpL6iXmArl7dYXWq/+mdWPUHVPmHMXITprDouZZAsRlBxx+cBCQAh8FAHV59Rh/0GVd2odOcA+pswZe3mv8D1UGgBz0ZVu6GOnIDx3IaIzZtNBZciMDCEgBCqWgOo3mNWQ/b6GvApoU6c0RPU/7jkAyGlab85ZhAhD6syhkgZQsb9EcuNC4CMJJF9Rd9iuSuW7e7bLsR1sj/ko+y7RLtB60M/plo3eMkaw3/qcBb7tkj2zIrfap4PatS+MaV/AmDE3u6rBVQ6jX38Yfft/WEa5Ir82uWkhUDkErFs3kDh1HPbJI0g+qIf7pJ4zkAFFBZgnFho/H8ZMPlQITL8B1It+xXNQKwej3KkQqFgC1g3mrJ86Bvv0USTvU0Oe3gnWEE6OhyYsgEkNCfWsyfAK0fYwqSXSGz2DRDaEgBBogYCl8tyV7ULdcag7ULqTU/BVGzyRfs4C9lsfl3knrbra83M82yWztzI3PquD6jKHDI4Nu/42mjb+BHv737mCmq68qeJk/Ic2hKsfX/0RHVZ9VVYlkyvzV0zuWgj8MgKxk8fY5/SfcA6zmEnQ8EL6ufLRsRrmqj+jas23MNigWoYQEAJCQBGIHTvi9Up2jm0MBqJWTkH7ozMjtVZTQ1Z/A2PAwOBzZa8QEAJCoBUEVGeS+M+0XY5vDjxbpQ6ofuuVUPAoEEALOz+fg8q8Uru+Hlb9LRZDuszehSeYA3IyWz1P/YHozd4+Q8YwPG8izAmTERk3QcLzWvgC5bAQKHcCLTqoXfpAqx3NVdOxMCZwcmv8RL/cermDkfsTAkKgVQRadFAZtRWihugjxnkaEqGGhLiSIUMICAEh8KkExEH9VHL+dZ/PQeXqadNB9v7Zsw3OZTqm716wWi97j6ULIjE8T5+9GuHFX8JkJd5Q165+D0IpePTLvmG5WgiUOIGWHFRtxEzqxiqEmW8a6trN0w0tzLYQMoSAEBACJNCSg6qNmkMNWYkwewuq3sfK/tDYgkqGEBACQuBTCYiD+qnk/Os+m4Oqyrs3bvoZiZ/+CreBrWTyh3JQ57JSHv9IeA4qm1uHOrPBtTio+aTktRCoKAItOqgjZyG8hJNbM1hATekGH2JcVtSviNysEChKIH7xPCfHd8A6tN2fHI+9+aA9lTZ6LjVkFSJ0UDXaHcpJ1czCfutFf4gcFAJCQAjkEBAHNQfGJ2y2HwdVY6XNPsOhD2OI7xiG+DLEJjJWQnw/4TuVS4RAWRFoyUGFF55H3RjJ8Dy2gfBCfKXSd1n9DsjNCIFfQsB5/AjW7Zuwb16Hc/4Uo7iOA++fZ9+yGwsg1aY0JJVeJAWRsnhkSwgIgY8nIA7qxzPLvaIdOagsUKCKFITYz3ToFETW/gFVK9fKLGbutyXbQqACCbTooKr8dfXo2IMFTv7EAidfwxgoRZIq8FdFblkIBBNgipGK4kq+f4+mLeuR2PRP4NG17LlpDWGLGV9DWCSpP1vNyBACQkAIfCIBcVA/EVzqss/moCLpIHb6JKzjR2BfPgv3YT2g+pClc1Bz74OzmV6bmZnzMm1mNNVmhi1m9D7sj8ptGUJACFQGAesm28ycPArr5GG2mbkDPGsIbhGh2sxMWAhzFltE1PQpgKNVVXltZ/Q+/aBF2GtZhhAQAhVFwLUsxE+dgHWCdkjdObiP6v2+hGk7RLWZmfiFryE5bWaCIIV69PT1pFe2HU3QebJPCAiByiRgXbuCOLsQ2KfY3uphPW2Xux+2mamdxDYzC2GMzraZCSKldeiQ9X8qqL7G53NQXRfOk8ew1ePGNdhH9sE5s5tVfBOF34dBB7SaRmRvzmCGuDLCoVfzj8HshYjOZCEUCd8rZCZ7hECZEki+ZrNrpRsPH8A6egD20V2c3LpfeLdqFaRzDbQa6kaHTgXH9e41MOakNITFlGQIASFQYQSSyawdcq0O1uG9SJ7fx3xU2wehNKRLb2i9lIZ0LArHGDsZ4VnzEJk0peh5clAICIHKJJB89dLXm/v3fNvlGG2XN4+yMKqY696DWtO9V3ZfwJbeqy9M2i4RVQiyc+eAM8pz1+dzUHP42fcaENu2CYmtPzAPhNV81aADCzvuFy5Iz2b6R/x/q7rBXMF+QV9+Bb137+wRroRoYT4MI7tPtoSAECg7Aq6VQNOOrYhv/hHurXPZ+7Mtf6IrSDeyZ/khwEpDmDqg9wz4g6AzvUBpiVpdleJsueRkWwiUHQGbLe+atm6Ete1fvh3iUEda0pAcCpoqzrbqd6hauDi7V2lIyiYRDclikS0hUMkE3KYm2i5bEN9C2+XOpSwKmwt0rdEdTpqZXyr/Zw0X67r719NGydgr1J1yHG3ioKpZhUQde6HWXYDb1OhxdeNxONcvwb3NCr8Jtp/JHwy90YZNhTFuCjRW2PMGV1eNEaNgDhsRbHDmv4e8FgJCoHQJMI8sfrWOKQIXkXzM9IDUcOpvInmTuqFSBooNMwptODVkLDVEVQjPGyoyw2CLK6Un0qYmD468FAJlRsB5/gyJK7RDLl+Ac/WSryGvH7b+LqsHsKDjVK84W/qiUHfmwQ8fBWPYcKmfkYYiz0Kgwgmo1AJPa+pouzx9nKHh3Lru607uqmrmaM5GuCO0Ecr/mQwtHR3GKuPK/wnTXinXqNI2cVBdrni4LFaQfP+OswdJ71tQ2/Hd22DtXNd8+B4NTES5vK2nVkt1E+bSbxBd6vdOzfk6ZVMICIFyI8AoC1XkxKVWuIlsakD8+GEkdm6Ee/Vo8TtW4Xv5GpJzRWjgSISXr0V00TKEOhYP78u5TDaFgBAoQQLKaFRaojQlfng/Ejs2wL1xovV3EqIdEqFORLPpBKHBoz0NqaKGqJx3GUJACAgBFSGqfBzl93xguxw+QNtlPdybp4pD8mwX6onn/6RWS6MdEV5G/2fJlzAG1xa/vkSPtomDGsTKbWxEE78sa/9OrqRyNeT1EyD+1g/9DbpA7eOXFpq0GOYXK2AMHV54Fpe9je7dvdkFLULnVoYQEAJlRyB+9jQSB/fCPnM4c29uI7Xj9dOWNSRzBTcYRmPMZz/VBYs5S5lyUJk6YHBlVc1QSmGlXFiyLQTKh0DsDAs4HtgD+9yxwJtyX9Ieece2NCoNqdhQBR7nr/I1JJpyUNMaQltEheTJEAJCQAgoAjFVsO0gdec8216lhvuePZrTtkt6Z9AzJ8j0acvp/yyHHtC1QPVxVuHAnu1SooWV2o+DytlMlZtqN9xh6O9FGptHOZt5snhOiMoTY5hNaCCXuLsH5JRVdYA5ZQbCLGIQmHMW9KXLPiEgBEqKgPPoIay7DUg+yob4OkpLTh9hripnJlV+e2uGCgFmL+bQYIb4mmH/Cq6kmlNmIjxxMnRW7ZQhBIRA+RFwqB1WAzXkcXCIr332BOyznAB7ea/4zZtV0PqmNMQw/XM7dc7aITQYZQgBISAEFAFV+NG+e4e6ky2c5Ny5Tf+HtsvtM8UhqVXVHoMQGkT/p2uhrqg0JoP+T2TiFDqp1cXfq50ebTcOqscnZUjG6y4hvv4H2Dv+p7iD6l1EJ5X/BQ7+sTBX/xeiX/0O5pBhgafITiEgBMqAgKcdWUc0fuki4j//C/buf7RCQ9L3H6AlzP0w1/w3qqgh5RpGk757eRYCFU0gT0NyWTRu3oD4ur8zFI+T5kVHgIZEu1BD/g815Hv2Zx5U9Go5KASEQIURyNOd+Nkzvv+z71+tABGgN+mrVGHZtf/l2y4l2tO5fTmoKbD2w/tIMGzPPs1wGzbXVkMVU3IabgBPb/tVr1LnFn3iErg2Zg7MqXMQ6h3QF5EhOAaXxo0BAyVfpChIOSgESouA/eAeEmdSGsIezGq4je/h3KWGPKGGpNtKtHRbzHPXxsyFOW02jJFjqBWDPL2QCp0tgZPjQqB8CMTPn4V19iSSt6kfqeE8eQD3Hl+/ZfhvsaEKPI5N2SE51cN1pSV0WDNVOYu9hxwTAkKgIgioFdWM/5O64+S7t0gq2+VZvd/ppDUkqDuhcfNgTKXtwmJKGdulNde2k3PapYOq8lGdF8+hquylw/OSL58zR2Q3eyBuY+A2Y7RbM9QSeIdu0LrROWW4b/4IsS+iuWApInPmQ2f1PRlCQAiUB4EkndHkc2oIdSStIc7zp56GOMeoIXEWaGvN8DSkGlp1b+jjpsOcvwhV1It0f+bWvIWcIwSEQGkTUDqSVI93Wd2wLp5j/thOuNeC81Yzd5zRENoh6bxUHjTnL0Nk3hde1fDMubIhBIRARRNQxZQytkuKhPPkkW+7HKftYjW1jo/SnY7Me6/uA30CUx1pu0Rnz2vdte3krHbpoAaxUc5qbPd2JLaz4tWz+4WnqH5CcbancVjEIBUqXHhS3h42yTUW/w6RZau82YVQxw5cSS10ZPOukpdCQAiUIAHn6RPEdlFDdvwM90U25yNzK56GqMri1JIgDenLku7LVdXwlawkTvFvdmheFWCtA/Ukncva7LlyQAgIgVIkED93GvGdW2Af3Br88ZU9kmAbvWaiNfTpK9nbfS3CY8cXXk/jMqT0g8XaVLETGUJACFQuAVVno2kXu5wo2+U1F+7yhyre5vk/wbaLNmAcTM92WZF/pfdaFZENKa1pZ5XHS8ZBVSsi1vVrsK9dgfuucAVVzW46dWfh1p9v9g9CwTejh6HVTmAfswkwxoyHOXose5iNLDhNdggBIVD6BNTqh3UjpSHvWeU3byQ5CeZcPgO34UJwGE0HzkYOmwhjNA1KNTvZ3FBVO6kn4ZGjofeqae4s2S8EhEAJE1BpBMomUb0Mg4Zz4wqcKyx00lxhpd7DaXtMRKjvgILLvQqc1Jnw6DFSnK2AjuwQApVFIPn2DRJKa5T/08SJr7yRfPKY/g9tl7uXOLmezDvKl516IkTbRR8VMBnGw/rgodSasTCGDC28tg33lIyDimQSbiwGN85HqndqLjdVATi+bQOLovzwEUvgTDAOcXaSsdr6pAUIr/wGVYuW5r6tbAsBIVAuBJiL6sbizWqI1VCPxNb1sPf+O7idhHJKmZMKFl8rOswIV0b+gOiK1TLhVRSUHBQCpUvAtRIpPeHqRcCIHdpHPVnH/sxHAo5yl+qjStvD05T8M8Is8Lji94h+uQZmUAu9/PPltRAQAuVLwHGQVL4P7RflC+UPi5Nkia30f/b/GLxA59kuYb8PfP7FfK1PW4zIyq8Rnbsg4Gjb7SodB7UFRg5nEGJHD8E+vJd5IqkVVhZY8sKBXzOcz7GKv0OfETDnLoM5Y27geTp7mOk9a0q2XHPgTclOISAEMgRUGE1GQxqzuWaZE969hvv8PtD4MjgEOH2iCs+buIh6soirreNgcBU1xIfGvswyhIAQqAwCqrBS4sgB2BfY6ipguE8fAK/Y1iYopyyk+xoybzGMUVzZoH54rfJEQwJIyi4hUNkE7Pt3ET96GNbhPd4EfAGNty9pu1BvlO0SMFQIsDF3KczpLKhUo7SG9gpTDNp6lI2DqkKAnQfsKcSwG7Cnqhqq8q914hCc0/uB9yyWUmxEOkPrXctwm8GBZ+njJiE8fZa3DB54guwUAkKgpAmo4gQZDUlVD8+9IdWfzDpxkEVRjrbgoDIyo0tfaP1qaVxO8EQ/MnUGtGg09+1kWwgIgTImoHLe7Qf3kXz2NPAurZNHYJ/cBzxvKDyuVjy69mFP1SGc5JrIifPZiEydDi3MFVcZQkAICIEcAsm3b+Gw+4nSG3C1NX/YrD5unzgA9/qJ/EP+a9bj0XoPYajvcBhcpFP2it6nb/C5n3Fv2TioQcxUaeamzeuR2PAPuA+vBZzCvonpHkRBRVFyrtAmsALW139EdP4XXA/X/dUQjYaoDCEgBCqCQPwye6tu+gn29r9TN9JhNi1oSK8hCK/5E6rWfINQF/4RUCsgIRqfMoSAEKhoAo3bNrHf4T8ZApxTBdjTlbSmpPDUDEP4qz+jw+qvoXXiRLpoSEX/3sjNC4GPJRC/cBbxjbRddv0j59K0zqSfeYgpTMbyPyOy5juE2ZrG05o2jNooawdV5avGL15giM1ZJJ8yzDd/qFXXW0w6fkDnVVXuLDZqhsKYOBv6+MleIrE5eIhncBa7RI4JASFQPgTshw+QuHge9vnTmSJKrioJrzRETYAFpRGwWXZo7CwYk6bDGDYS5hDOUvbpVz5Q5E6EgBD4JAJqwkvZJk7D7cz1yYf3kKyvY+gvw/HSo0M1W1zR9lAaMpSpSLVKQ9p+dSP98eRZCAiB9k3Avs++8GyL5dkuqY/qsvBS8lYd3Efsr5quNK5x8W34VPo6M/30pFr6PbW1dFSZL98Go6wdVLAoSvL1a+/hxgsLGTgvniGxdwfLxG8Cml4Vx6+KGaieQjUDEV68CpEFzA3pX1h9r/ibyFEhIARKlYAba0rpCbWCk45q2M+ewFIacogaEtSfmblkYPgMOveAOWsJwovY+3DSFP9i+VcICIGKJZB8o2yTV3Abs30NE+fP0CbZCrfuUJaLpyHdfA2Zs9TXkAmTssdlSwgIASFQhIBKd0z7QunT7McPabts920Xi+2w1FBRoeFOrPrLmjujp8BctBxVCxa1WWpBeTuoPvJm/1XNt2P7diOxZwu8ggXembQ83zGRuImFltKzCrnvYEZhrv5vhvt+z9WQYblHZFsICIEKI+AwvyyjIfc4E9lI59WOBVIITV2ByHcM9523MPC47BQCQqCyCcQvnKODuhPWoW2+HaImvTjRnh76DE6Of/sfiM6Zn94lz0JACAiBjybgPH5E22UXErs3cxW1PmW75Czk9RhEB5V9mumkGj3YpkalKH3mwkkV7aCqWYXE7VsM870BFaqnhssEY+fCafZDPA68DShuIA6qx0n+EQJCgLaj6s+c0hD78nlqxwmmDFwJRCMOaiAW2SkEhECKgKokbt2+Cfsmex4ylcCpox3y/kWGjzioGRSyIQSEwC8goGr0KNvFpv/jXGL470UWUHqU09M50gnaoLHQh42BMZ5FYsexB/zg2l/wEz/+0op2UFWBJFdV67QtbqZj9mw0bdmAxCYWL7h3uZCoOKiFTGSPEKhUAjkaEjt5nLrxI5zjmwNpiIMaiEV2CgEhkCbACXJlk6iK4r4dwqImOUajOKhpUPIsBITALyLAgmy+/2Ozvd5hFlH6AckzO7NvqcJ9VTVx5qUa875GeO13iLKTyeccle2gBpBWX1jjxnVIrPsb3IYLhWeIg1rIRPYIgQol4MZiUKseqoCSdeEM7OP74d5iEaWAIQ5qABTZJQQqnIDKbXceUkMePWAPQz/Ezk0kqCXs635yD/DmcYaQOKgZFLIhBITALyDgNjV5muMo2+XcaerNPrh3zge+oz5rjZ9aMGtu4PHfaqc4qHlkxUHNAyIvhYAQaJZA8uULxI6zn+HRA35F8Gfsw9xMwTVxUJvFKAeEQMUScJ4/R5waYh3dz0ImqXBetZL6hFryktV87WxemDioFftrIjcuBH5VAqp+hqc7R6g7d67DVbZL7HXgzxAHNRDLb7wzySXuRNyfteS2GspBbdq+GdaWH4JzyWQF9Tf+UuTthUA7IqBCeLmqoXQiqAG28/gxYls3wNrxz2DHVIXIqCqcrAJuzF6F8KpvEJ05ux3doHwUISAEPhcBZV94q6RKT1LD4gpGnBpi7/xXcCVwT0PY5sEIM9RuDcIrqSHTZ6Yvl2chIASEQCGBjH/DFpo5hdbSJ1oP7lN31vu6E/dr8KSPec8Z3aHtMp/FkpTtMnX6B6f81i8qegXVK3By8zrs69fgMmHYG/xS7UtnkLzCML33zwr5i4NayET2CIEyJaCMyYTSiBvUiFes7p03XLaKsC+dhnvzzAcrHZnTVKGB2vHQR46HMWY8wnx87kIDmc8iG0JACLQpAecp21LdUDZHtpCa+/qlZ3N4GhLUjz3SGdoQ6gY1RB8zgRoyDsagwW16H/LDhYAQaN8EVAhvxnahnZI/3FcvfN25RdslqId7tAuU7WKMytGdgYPy3+Y3fV3RDqrXZmb3DiR2buDy9n0ftKqVpFrMJN4HzjpAHNTf9BdS3lwItCcCybdvEduzA/GdmxhRcbPwo3FFxOt/arG1DIsOFIzqATCXfIPI0i+h9+yFUEc6rFVVBafJDiEgBMqfgHX1CmK7t8HatY43my7MaNHm4AS5ak8VpCHdB8Jc+i2i1JBQ9x4IdaKGREVDyv+3Re5QCHw6gSQn1Jv27KR/sxHu4zuFb8TisL7usA9zukhs7lk9a6k7XDVdonSnO22Xjp9dd8rbQVUtY5gjpvLEkixmkj+S7INqHdgF+/DWZmOvM9eY/IPQpRe0PoMRXsh+huxlaPTrnzksG0JACJQgAQpzRiMaU82qc25DRVYk9u+mRmwJbjuVc25mU1W/i3QBuvbiyulEmAuWsvfpAjqmHTKnyIYQEALlR8ArmkZ7Q2lKUEqAff0qbY4dSJ7by5tPOahBGJSGRJWG1HgaEl64DFGlIZFo0NmyTwgIgUojwGjPjO3C1dL8kXz9Ctb+lH/TSD1qzfB0p6tnuxijp9B2WeLrTjjSmqt/9XPK2kFVfyzi58/AOnuKMwgPC+C5Te/95OAnt4KXuHOv6DMCxpS5MCZOhT6QMwtc6g517px7hmwLASFQYgRUTlj8wlnYZ04heb+h4NOr3FOvgMAjrp6qFY7WDOZuaMOnw5g6B8ZoPxzPGDAImmm25mo5RwgIgRIl4Dx5jPg5VvM+y56CQZPiz58geZe9Bl+qiK1iDio1ZMSMjIaYDOnVlYYYzEWVIQSEQMUTUJW+4+dpu5w9ieTDVARoDhVVHTzZwOJHynYJSh3IOTezyXoZ2siZ9HVme7aLOXAwDBXWq7OORhuMsnZQVXhe48afkPj5b8BTOqHNDe/vRJE/FrwuNGkJyyz/CVULF/vvomYaZAgBIVDSBJTIN2762W8rde9S8/fSCo3IXEyRN5b/JyJf/R6RMWP93aIXGTyyIQTKlYDFfPWmn3+AvZU2h5MthPTB/bZGS0IGjBV/QdU3v4c5crR/uWjIBxjlhRCoZAIuI74aN61DnC0x8eha8yhaozfpq3UWYltJ3aHtYo4Y6e9tQ90pbQeV4Xn2vbuw7zYgyYTf/OH1+Tl1FM75g0BjYYGT/PO91+rL6NYf2sDh0Kt7Zk7RR7M4wZRp2T8WmSOyIQSEQCkQ8PTgXoOnF2p2UQ21gmqfPgbnLDUip99gq+9HN4GaIYyqGJ4N4TVMrnzMQnjyVBh9+7X6reREISAE2jcBZRTaSkP4UBFa+SPJXqbWqSNwrx4NrmGRf4F6TaNQo4aEBlFD0rmlDKkzpsxEhBqi9+kbdJXsEwJCoEIIqIKuTsrXceO+7qgCjp7tco62y7uAgq6BbJR/0xfagBHQe/QqPIMpBMZU6s4k6k7vPoXHP/Oe0nZQmWPadPQQrIN74NysK0SnSrq/fMTcMX55SRYzac1geF5o0mKY85fCGDo8c0Woa1fo3XtCPcsQAkKg9AioomjxwweoF7uRfPHEvwFViv3FYz+/tLVhMLm3zjwxY85K6sVihKp7+Ec4yaX36Em96AGtg+Sd5uKSbSFQygS83oGehuzipPjzwlth2pBnc6heyEGFRwqvAKq6ZTWkW7V/Rijk6YfegxoiuetB1GSfEKgYAqr6dyylO25ur+QX9G+UcxpUhTeQjgZtwkKEFyyDMXxU4RlKd9K2Szso5tjuHVS3qRFJzlqmZw0+IGo7XkW8xHZWxCu2xP3BRTkvVJ8f9idEpCNnMbkSooZuwFz2HSvm0ehML3H7R+RfISAE2jMBOptqplGtcriqQl3ecJ48QXzHZth7f2L1usKy63mn+y9VRIWe0gj2IcwfWs/+CK9Qle6We8Kef1xeCwEhUJoEVPi/Sz1R9kc6X9R+9AiJtIbEU63pWrq9tIZEO2XtjJxrtJqBnoZUUUNC1d1zjsimEBACFUGAfUqT72m3KPvFKVxMs9krOaM7qsNIsaF8mTAnxtUjYHj+zbJVMEeNCTjavna1ewdV5XRYVy7DuXunkJzqWXr1InsQnmt9CG/uu9A51YZOZn/CSdC6pFZGOYNgjBxD53SU1xYi93TZFgJCoP0SUCF3iWtXYF+5xBXSwtUN9+0bOFfPw71z8SOKBhjQaiey/+Bkr8VD/t1rnbiCyhwxNZkV6sCJLhlCQAiUBQHnMZ3Rq3Ww66gXqdVQ1ffY05AGpSGFk2CBN06D0dOQsdSQboUOqLI9lIaEh4+U1dJAgLJTCJQ3ATWpnrhWB6vuMlRf5PzhsiKvpzt3WSejJd3pNZT2yhTog4fmvw1fM7pLaY3yb2p6BxxvX7vavYPatH8PElt/hqPirIOGxVwy9YUF9Q8LOj93H0NrzOV/4OzlGhg1qXhrLpioUu5alA+pmJdLS7aFQLsmkKQD2rRjK/XiR7j3bxR+Vs5SepV4Vbh/a8Pv2F7KWPIHRL5cC1WJN39oOqttKq2gZoCTWzKEgBAoDwIJTozHt22EteOHrH3xKRoS7ghjKQumffkVW9MNKIAjGlKARHYIgYoioFphNu3YQtvlJ3YcqS+894/QHVXQNbzqW0SYS1owPP+GC3Oef5OKGi04qf3saJcOavL9OySfPoXNuGvrOHNMD+8EHhapUpXPM8JQmu79oFXX5B/54HWIOaXm3EWIzporoTUfkJEXQqB9E1Ch/05KI8BcczVc6oZ1ZB/sozuA94UrqIF3pMLvOnSH1qM/wNXQ/BHiPnPeYkSoEaUw45j/+eW1EBACwQTUqoXz7IlnZ4DpQvnDvsXorcN74F7m5HixCS2lIR2ZK9qDBdE6BmhIF06E087wNKRXcZsk/zPIayEgBMqLgEpDSvs36V7JSUZm2If3wj5OX0flrxcbnPDy/JvuwSug5vS5iMxeAHN0+w/hLXab6li7dFDt+/eQOH3Cc06T9275MwqxNy3dS+a41n8MjBkLYYyblNkXuMFZBKNff1baZNVebssQAkKgNAh4/QZPnYB98rCXc6o+tWuxZ+mDeraUutP6EF7Vs3T0HJgz5rMS7+DCm2fvUrXqoffrJyG8hXRkjxAoWQIqhDd+6jjsE6y6m6rqnXszyVfP4D68zereqqCa16sh93B2W2PvwDFzYc6khvQfmN2f3gqzdUPazpCiaWkq8iwEKpKAw0rfcdou1onDACvxquHG2bNU2S7P2Yu9pRDeviNhTF8Ic+JU79r8f0Ksvqv0RhVpLPXR9g6qqqLJarxQS9ipkbhSh/jGH2Hv/ge/uWR6d/CzKnSkZjAZW50e+vQVCLOPT9W8held8iwEhEA5EKBWKL2wbt1AjD2O7e1/98N28+8trQlKH4oN5ocZK/6MqrW/Y9GA0cXOlGNCQAiUA4GUhiRuXPPtjB3/2/KElqcjtDE8XcmDwFoW5sr/RHTtdzCZRypDCAgBIeARCPJvrqd0Zxf9myBntAXbJTRlCSJr6d98saTsIbe5g6qqU9n1t+Hc58xBaiQf3IN9/gTc22eLO6jqi+wxGPqQMdB6ZkNn9BFjEJ4wCeawEem3lGchIARKnQAnsaz6eurFLRZHuwz73HG4N04Ft5Bi+xdt4GjoQ0cVzw1VPUsnTkFk/KR20fer1L8i+fxCoF0TUJNbd27Dvq005JKvITdPfzBBHvj5ewxCqHY0QjWFPUk1kyukXM0Ij2cxtRIoPBJ4f7JTCAiBX52A8+ihpze5RV6Tjx9mdSdoAY61cbRBKdsl4BPpw0b5/g0LHZX7aHMHNX72NBL7djHMZl+GtRtrZA7ZC0CVUy6a+8GepVOXI7z4Szqj2ZlLrVMnr19pqFPnzHvKhhAQAqVNwLUsxA7uQ2Lvdjh1NCrfMs808S5YI2qGwly0FuGFSxBi66hmR0hDiFU0Q135R0HC/JvFJAeEQDkQUK1jYgf2+hpy5Qx7CCo7oxkNyblhVXjEXPQlwqPH5exNbSoNoX6oHulesbTCM2SPEBACFUggfuGc798c3Z25exXOi3fKdmnGv+k7ilqzGtGFSzPX5G5onTrSZqHedC5//6ZNHFTXSiD55o33SDD/I7F7M9xrx3K/g+y2wdzQjt0A1UMsb2iqZ+nitYgsWkYHdXjeUXkpBIRAORFQxmXjxnVIrPsr3HuXC29NheGp3l8dq6GPnY7wkpWoWrCIvQf1wnNljxAQAhVHQPVTb9zwEzXkb3AfXCm8f09DWIRE2RxmJHPcXLQGUWVnlEDvwMyHlg0hIATalEDsyEHEf/4nnOObi3+OtO50qoYxYTb9mhW+7VL8qrI/2iYOqiqpHL90AfbFs3CuXUbyNo3N1w8DYWv9uNQ9YQb02mGFx/ml6kOHwxw6rCwSggtvUPYIASGQJtCigxpiv8HhUxluN529vsZSF6gNtUOKh/im31yehYAQKHsCLTqoepgaMs3TkFBOkRF9CLVkCPsLShXesv8dkRsUAr8WgVY7qEp3Rk6nc8oHJ8HMIcNg1A79tT5Gyb5Pmzio9t07aNq8HtZmFidQ7SBUHHZQLDax6jNXI7z2e/b0mR4IWfUq1ZhHJj0IA/HITiFQNgRadFC5emos/xOia771HVPqgvQyLpuvX25ECPxiAi06qGxRZ67wNUQfkK3I69kZKlVAojF+8XcgbyAEKoVAqx1U1swwV/4Z0dXf+P3WPb+mSGpShQBsGwf1Tj2afv6BDur/8+Ow82GbVUDPgQj1rWX7h7kIT+eSt4Tw5lOS10KgIggkX76ExdLszv277BN2mPnqez6MuFBFBXqzWNpgll+fOQ+R6TNlpaMifjPkJoXAxxFo0UGNdoa55r9Q9fXvYQwc9HFvLmcLASEgBHIItOigqh7synYZMgrGLNou02i75ERu5LxVRW62Twe1egC/LBYlYLNZo28/rzKeKkIgQwgIgcojYKl2EEcPsS/yAfZEvge8vM/WMn7/MEVDGzwJxpzFMKcwPKamj6cXWhUnuWQIASEgBHIIiIOaA0M2hYAQ+E0JtOSgakOnwqTtYkxiWgErgKsq4FKsMfuVtEsHVRs4DuFv/oIOX30HzWT4rgwhIAQqlkD83GnEt6yHvW8dHdOE31YmJyVAm/AFIqu+Q5QzkJlh6KyoGYEWzhY6yRyTDSEgBCqSQIsOKkN8jaV/oJ58DXNQLTWEuWGiIRX5uyI3LQR+KYGWHNTQ5GUIr/oW0Zmzs/ZKiMUeZXgExEGVXwQhIATaNQGbob2JustwLp+Hfe0S+yNfAJpeZz9zz1pW7Z3GgmnZVlOhXr1hjhjpFUqS/PQsKtkSApVMoEUHVWfe+pDJMMZNhT6ahdaGpzRE9VyXIQSEgBD4CAItOaioYTGksdSasRNhDGd7mWEjKqJ9TGsRioPaWlJynhAQAm1CwI3FkHz/DslXrxDbsx3WTq6kPrmV/Sw0KsGVD0TZHiI19BGTEF62BlWL2EtMCpukscizEKhoAi06qMoRVa3tqrpAHzeLGrLa1xBxUCv690ZuXgh8CoEWHVRW71W2i8pDDS//GtHFy6H37vMpP6osr2kTB9V59BCxQ/uQ2L+DvchuA2+eAVZjFnCPwTAXrORjsV+hl0dUqK9KHg5VV3ObX6oMISAEKoqAa1uIHT4Ia/8u2HWngVdPgNib4ArgXFU1F65CeP7ijIMaCoepH929h6QOVNSvjtysEPAIqErgscMHYB1QGnKWxdaUhjAaw3ULCXF1w1y40teQlIMaYrhvqLvSENohqnuADCEgBIRAMwRUO83EwT2wj+yBq+yVd+xakrQLz2YHAn027ZUFSxFiHmr+CDFdKWO7sMJvpYw2cVCT797CutsAp6Ee9vkzsM8eAR5ezTJXMwr9hrMq5wi2j9G9/RqLJBmTZyAycTJCXbtmz5UtISAEKoNAMgmbumFRN5xrdbBOH4V79Viw4HsaMoL9k6khqgk2h9atOwwWUvI0pHOXymAmdykEhECWgONkNMS+ehm20pDrx6khTvac9BYr+mr9RlJDhnOPH+Krde8Jc/J0hJUd0olRGzKEgBAQAs0QcJ489n2d2zdhnzkO5/whv7Vm/vkhOp01Q7xOBFrHzvlHofXoldWdjtlIsYITy2xHmzioHsPUjGXTwX2I//wPJE/vyEHLPwb+34Psvo78w/D1f6HD2u+g9+mb3S9bQkAIVA6BlG5Yt26iaf0PsLf+ldEXsYD7D9CQzjUIU0OqlIYEzFIGvInsEgJCoNwIpDWE1cF9Dfkb4LD4WsEI0JCufX0NYQFHvUfPgitkhxAQAkLgAwLUm2TjezRt/Jm+Du2VR9c/OJx5USyNoFt/Fo5Vtsu3FdWGpu0c1NS3Yl2/isSZU7DPnUDy7k24j5hbZgcYnOyNGpowH8bU2QhxJaTYCPXpA3PAIDFCi0GSY0KghAk4T58gfvY0V0COwbl1lakCN4NnJnPvMdzR15Bp1JAuhW2rNK6qmux9qPcfINXDc7nJthAoQwJqdSOubI/Tx+HGm/w7jDPfXdkhj2mHBDmtkc7QJ87z7BCtc2Ekl9YlrSEDGQLMVREZQkAIVDwBlVqguhFYp+nnPLyX4WTKHysAAEAASURBVJF8cMe3XRpfZvYFbkSZEz/R93+0TgErrIwqVT6PMWBgJqUp8H1KbGebO6jJN6+RfP4c1sP7sA7uhX14K3NSHxdiVGF6HXtA68747DCLGBQZxuTZzBtZ5IXyFTlNDgkBIVCiBFThJOfFMzhKO04eZU4Z89nrmVNWbKh0AaUh1UpDCtvP6P2Zt7pgCaKz50Pr0KHYO8kxISAESpyA29REDXnu6QicpHc3yh6xvJyxbcETXmkN6c5CJgG1MPSBzFtl7QxPQ6LF7ZQSxycfXwgIgdYSYAqB8+IFfZ1nSFJ30iNB28U+sB3u3YvpXcHPSnc69fRtlyDdYTqkyXob0Tm0XVhro1xGmzuoaZDJ9+8R270d8e3r+WXlLIHH3/sFlIJyRNIX5z1ro+Yg/CUrYqUMTWVsSkGDPEjyUgiUCYHY8aNI7NwM+/ju7B3ZcUBph2NxX0ABlOyZ2a3qATCXs5/q0pXQOvr5ZRp7kmkdOnoOq6yIZFHJlhAoRwLJ16/QtHsHEtt/hvuwPnuL8Xe0Q2hYtmSH9BhEDfkdNeRLaFWFk1yqp2pI2SMyAZZlK1tCoEIJqCq/iR2bYJ8+kCWgUpYSLBobFMGRPevDrV5DYC5jP9Vlq7x+quqgxu4Fnu+j9EYvzWiOduOgqiXwBHNC7GtX4L5kpavUcK5egnP1DKvtPUzvavm5uj9Umwl91HgYY8YhPGqMVwGr5QvlDCEgBEqNgN1wB9aNq3DusCJ4aiQfPYBTdwbu/brgCp3pE3OfVWGlIexHNmoCS7/7K6xaVRWM0eOpIaOZWlCde7ZsCwEhUGYE3FgT7ZDrtEPq4NJZTQ+n7rxvh7xlJc5igyHA2rCUhgSsdIT6DaCWsL8q9USGEBAClU3Arr9NvbnKtII7GRDJ+3fhXKHt8iCncGzmaDMb0a7Qhk6grULbJVVdXE2yG6OV/0PbpUthOkIz79SudrcbB1WVeVdhe+oPhMtKe+kR27sLia0/wr3FthKtHWo5XKeB2ZVFUb78HtHlq2EMGtzaq+U8ISAESoiAm4j72sFJrvRIXK2jbqyHc3h9cBua9Im5zyqNQPVUNRmal6r8i07V1JDfU0NW+fkduefLthAQAuVFgJXCVa9UzxbJtUN2bkVi209w75wvfr8ZDamihuRXemRTgtEzEF75NTpwhTXoePE3l6NCQAiUEwE3TttF6U2u7XLxPLWGtsuxTa2/1SDdUf7Pyu9RRdulVAvLth8HtZmvInb6JKwjB9iz7Fz2jDcv4D5/ADRlZzizB3O2aGzqU5bCmLsIet/+OQf8TY2rJHqvGug9e2WWxQtOkh1CQAiUHAH7Tj3iRw8hcXgPQ2UC+o69fg73hdIQ9kAsNgxqxNSUhvQurB6uRdMaUlNWuR/FkMgxIVBpBGInmOeu7JBrlwpvnWG/7tP77Mv8qOWwPBWKN3spzLkL+T6+A6sxV9WzQ3rRDglYdS38gbJHCAiBciWgOhTEj7Lfu7JdgsarZ77tonrAFxssLKtPX0atWYRQzxr/TEqOrzU1bJNVWGyp2Nu1xbF276A6jx/BenDPK6SUBuTcZCjwiQMtr6qqWQWG+2r9hvDLKFzi1hiyZ86Yiwh7I4a6FVb1TP88eRYCQqC0CKhiJ/aD+3CoHW7SLfjwzvUrsE9SQ263UFhJaUh3VvVVGtKxsHeq1r0HzOlzEJlKDSnRMJoCOLJDCAiBDwjYDx94epJ8+eKD/d4Lrn7YJw/DPrUPaCkEmJXEtd61CPUfwktTDqrqcTiDGqLskM7t32gsBCB7hIAQ+LUIJF+9pM/DFCXaLkHDuXLJt10aLgQdzu5TkaTdByJE20XrkOrZTMkxptPnmTazJKJK272DmqWd3YqfPYX4xh9h7/13dmfulqsq8tEoTfU7yz30wXaH7jDX/CeqVrO3EFvTZIZKLlZfLgukyBACQqD8CMROnUBCaciBn3JuLqUZnm4UOrU5J2Y3WVnPXPMXasg3bGuVmqVUR5WG8JEJFc5eIVtCQAiUEQEVDty4ZQMSG/4XbgOrcSr9+BgN6dLb15A1X+f0VqUl6WkIbRA1SSZDCAgBIUACsWNH6P/8G86RjdSZVvo6aXJMO9Dn/w6Rr75HZMLE9F76Ospeoc4ov6cdjZJ0UO27DUhcPAf7AosnBQznPnsL3bkS3K4m93zmmmmjZ8GcNANa19QKKv8Y6ENYKn7wEDbELd5vNfetZFsICIHSIWA31CNxgRpyKZs64L5+Cec2deMxe6p6wt+K+zE7IDRmFoxJ06GlV1Ap8kZKQ0LVUlipFRTlFCFQsgRcy0Li0gVY58+wuMkFX0Oe3Gq9hqj+zJ6G0A5Jr6Cy6mZGQyS6q2R/N+SDC4Ffm4B9+1bG/3FusajsPRZTSrBjQauGBm0wiylNmoXQwMGZK0J9+sOsHQKDPeDb0yhJB9VtbETyzSskXwfHYMfZDNfauxnu9RPFWauZyShDajqzN6KR6h3EPwzm4jWILFwMc+jw4tfLUSEgBEqSQLLxPfXjNdw3WQ2x73Pia892OEc3t5xLlr5rT0MY+utpCAssqWFGqCGrEaWGGLVD/X3yrxAQAuVJgIWVvH7u1JMEUwesPdtY4GQLW9IE5L4HEVAaUsUUpE7ds+3wIlUwF61C9IslDMWrDbpK9gkBIVCBBFRLTtUOy3n6BIl9u2Dt40rqy+Bw4EA8nBDztCbK59TQp8xF+ItliE6fmd7VLp5L0kFtiVzszCnP0LRP7A0+9T0Lo6jiKF6PxLxT+MdCn/4lzCUrYQ4flTkY6sjckc5dmIeW/VIzB2VDCAiBkidg378LVTXc2r0JbmPWcc3cWKwRaKRuqH6IxXqrKg2ZuZoa8iXCLPMe6kLdoHZIykCGpGwIgbIkoKK7Ynt3+hoSY+/UYuMdizwqOyTIkWUUhj5rNcJLWD08Z5Ir1KmTpyXSR7UYWDkmBMqfgEotaNq/h1qzhS32WmhJE+MKa8Z2KWSjDZ1Ke4ULc7PmZQ6qIrLKbgl14SKemkRrg1GWDqoqjmLdvonkvYZApPZl9jS7eDx41kGVhmelPX3oWGg9e2euN+ismuMnyqpqhohsCIHyIqBWQZRu2LduMGQm27ImfZcOHVjnwknmmZ2nf1okR1VpSM0wasgY6OxLZoyfhMjY8VIpPA1SnoVAmRJQKxuqCqd9mxrC0N9iQ6UoOZeOscc7q//mD2UQ9lYaQjuke8/MUYM9VMPj2GeV4XgyhIAQqFwCrm3Drr9FvbkBN6h4Ww4a5269b7vcvZizN2ezM7sQDBkLfdCwzM5Q736ezxNWtouZig7LHP08G2XpoLqqrYRls59qcIhNbPcOJhn/s5kQYBqXysDkDGburIE+YwUia36H6NwFn+ebkZ8iBITA5yWgeiDaFh/UjQAHNHH5EhKbf4K9/0ceV8UJmhtZDdEG0KBc8wdUrVrL6ItUJb3mLpP9QkAIlDaBtIbQ/igaZcGjTds2s1Ab7ZD6oEriWQ35wA6Zw1WOtbRDZswubU7y6YWAEPiFBFy4SmeUzULdKTZUvY34pp/gHFoXfJqaEFMP5fekhjZ4vGe7dFi5FqoVVluMsnRQWwIZP3cGFvuaOTk9zZIvn8J9fAd49yzwcmVoGjMXwZg8DQZ7qqrGtxLuG4hKdgqBsiSgwvfiJ4/BPnaAYXn+H4Qkw37dh/WMxmAfRPZDLBis8mtMo27MnM/ZycEwqBt6j+yKSMH5skMICIGKIOD1eD9xBMmb2fC85PPHcJ/QDnn/IpCBPmMVIt/+B6Jz5gcel51CQAgIgXwCdv1t33Y5fjBzKNn4Du4jas1L9oN3A2wXVhc3pqdslwEDabv0++yFYyvSQXWePYX95DGSL19mvizVF9E6soerqgz9DRrRLtB6DGDlK1b4nbMQkZlzoPfuE3Sm7BMCQqAMCSTfvoVD3XCePOKMpR/i6758Tt3YB+fU7uBKejqLr1X3g1YzgP1S58JkjkdkzLgypCO3JASEwMcQUEVObPZ5V8Xa0sO5cpF6spc93k+ld33wLA7qBzjkhRAQAq0gkGQxSGW7KL1Jj+Qz6o+yXU7TdrFj6d3ZZyPi2y69B9J2od0yex7MkaOzxz/DVkU6qEFc4+fPIr5lPXurMnzPZv6ZKlwQFMbHL81Y+kdEvvwK5rDh0MIRyS0LAir7hEAFEFCi37RtExJbfuBM5MPUHdN5DdCQ0FSmCXz3J1TNW1gBZOQWhYAQ+FgCMXYgSCg75OAGakjcj8rIsUNCk5YgvPo7RDlB7tsenADLCcv72J8n5wsBIVCZBFStnphnu/wTeEXbRaVEBq2kEo8+i6kFKnJj1tzPCksc1BRu+/49JOouwWEBJZuhv+5tJhM3scpe/uAfA23IZBhjp7AAynhW+h3hOaryRyIflLwWAuVPQK2qJq5cgn35Ity3qcq/FPqMhsSyqyPioJb/74PcoRD4JQS8Hu+5dkg97ZBYTkXxmqG0PaZDH8via6pwIyfJvQrhv+SHyrVCQAhUHAEVueHZLuzh7Fy9COcmtebF3UAO4qAGYvl8O914DMl3jMnmUnhs9zYkdq0HHl0v/ACqgJLBhGH2T9XHTIe5dDWqFi/N9i8rvEL2CAEhUKYEVEElV/Ule/+OKx6cgeRwWb1TaYi162fgya3MnYuDmkEhG0JACAQQcGNN1BLqyYsXWQ15Vp89U2c1zUhnpgwMgrn8a9oey716GNkTZEsICAEh0DIB33Z55/k9qrZGYscGuJezOaq57yAOai6Nttx2HDQdPgBr/y7Yl5gH8uap36ssJ8wm/fG0geMQ/uYv6PDVd21Whjn9WeRZCAiB9kHAZYuaxo0/IbHub3DvXc58KHFQMyhkQwgIgQACyXdvvdoYqkaGdWA3H1uC2+Fxgtxc+9+o+up7GAMHBbyT7BICQkAItI5A7MhBxNf9A84J6k3AEAc1AEqb7KIjqsJsrIY7rPJbB+v0MbhXjzI+u7CnmTiobfINyQ8VAu2agDio7frrkQ8nBNotAdWHOcEuA865k3DuXIf74EZw8TVxUNvtdygfTAiUGgFxUEvpG1M9EPmwWJo5tuHfsDb/lX1VGwvuQBzUAiSyQwhUPAFxUCv+V0AACIFPIhA7dgTx9f+Cc5RFktTwioX7FcP9Hal/xUH9AIe8EAJC4NMJiIP66ew+75V0TO17d/loYKETtp45dQRu3WFZQf2834L8NCFQEgTcpqaMXqhtb7Bxtoq8cM4yn+PN48x9SIhvBoVsCAEhkCLgNjbCvk+bg5Fb9oWzsE8fgnuXBUuCRqde0PoPhz5sNMxpMxGeNJW9CXsEnSn7hIAQEAIFBNL+jcpzTw/n2mVfd3JSktLH1LOE+ObSaMttlYN69BCsg3vhMAfVfcm+QY3slyo5qG35rcjPFgLtkoDz4jnihw9SL3Yxd4z56mokk3CfUzfe8rXDllWpIQ5qmoQ8CwEhkCag+rLHmQOmNMRpYGHGV5zUirPoWsDQhrMw4/zlMKfOgN6jB53TntLmLoCT7BICQiCIgIvY0cNIHNwD5/qlzAnuazqrr5vXHXFQM6h+mw1VWdNtZHU8zlaq8N1mBx3U2M6trGi1jlV8rxWepqr46uw9FumI0KjpCK9Yi6oly6WKbyEp2SMESoqAy5VPtZrhPehktmY4T58gvmMz7D3sn9yUbSmTuVYLASarfkc6wZizAuHlaxCdNiNzWDaEgBAoTwJeRV6lJ7FY0Ru0Hz+kvaE05Cc6pm+LnqvPWOX3I5wzv+h5clAICIHKIeD7N9SapvdcSyvi3zBnILZrO6ztP8G9X1cckGe7VHm+jjF/NSLL+Zg8tfg1v/LRiumDqgzJBEN2nTr2K6QT2uygYWpfuQD35jl/5TT/RNUHddAEtphhL9Qx7IM6gr3IRoyUZtn5nOS1ECgxAsmXL5C4eoX//7MPMttOtWao3qfO1fNw6y98sFqauZa5YtrwKdSKSTBGjYU5chSMAVJ1M8NHNoRAmRKwb9+intSx2FG21VTQrbpvXsG5Qg1pYFhvQDHG3GvEQc2lIdtCQAgoAs7zZ7CoNZ7twsW4YsOhf5O8Qf/m/fNipwFV3aCNUH5Oynahr2P0H1D8ml/5aMU4qNb1a4jt2MSZgx/YrzAbdhfIM8FcMhWaFxDWCyMCY/HvvZXTMJtka9Go9wC4sipDCAiBkiVgs3J3bPtmJLb/m5NTAauhQXeW5GSXRWc2yT8KQZEZ3dmv8MvvUbViNULV3akVVdDCjMCQIQSEQFkTiLFdXXzbBjin9hS/z5Y0JOdqcVBzYMimEBACHgHr1k36N5thbfsXq36namE0x8biceUDBfk3udfUDKWf8z2iynbp2pWpBPR1PrPtUjYOqgqncZ4+hc2VUth2LmZvW81iWof3IHl+X8tfTPpq1RS7Sw20nv0Bg9scoY4M1Zu7GNHZ86RBdpqTPAuBdkxAzS6qCIrkmzdFP6Xz8D7sQ8zNOLOrxZWMwDcKdwC69YXWo0/msN6/FubchYjOmgutiuEyMoSAEChZAm487mmJyhtV1bqLDevMCdiHdzVf8Cjo4nBHoJoa0r130FEWRpoDc84CRMaMCzwuO4WAECgfAkpnPNvlbfHQf+fuHd+/OcfJMDXh9bEjQHf0QcOytstndkzTH79sHFSv0MAp/kE4eRju+/fp+8s8J5kE7D68zUTgh8ErHZkzczY6dIc+ZSGMGTQuO/APB4dmmjD6DYDer5/nrOacLZtCQAi0QwJx9hW0TrGq7o2rRT9d8t1r9h2kRry83/pJrNx3rBkGY/oCGJOzOaahTp2pF/2pF/2Zp27kni3bQkAIlBgBlQYQO00748RRqNDcYiP5+C7cR/XMTS9+3gfv0WcEjGnUkEnTPtidfqH37uPrSY+e6V3yLASEQJkSiJ05BevkUSRvsx9ykZF889K3XTz/pnX1Mz54uz4j6efQ15kwJbM71KWLpzVGXy7Q6Xpm/+fcKE0HVVXJVEVMcnJJVXhe08YfYW/9n8CepS1CVcWPVJiu95w6u/dwRL76E6pWfwP1ZckQAkKgRAgwfMV1fI1oYthufMM/4N44+QkfPq0J6rn45aHxC6kXf0DV0hXFT5SjQkAIlBYBrkooPXHYDqZp40+wttDOCCqK1tJdBdkZOdeEJi7yNWTxspy9sikEhEDFEMjYLjYat2xAYv3/ssYFc0Y/enyE7TJ5CSJf/xFVCxd/9E/5LS8oSQdVLXlbd26z+ABXO1IjyaVw+9xxuNdOcIm7MMQ3fV6zz1wt1QaNhl47PHNKqGdvGBMnIzJ+opc7ljkgG0JACLRrAg57fFkM63dYqMQ+fwrOhaP+yujHfmoWRQMnqvQho6B16Vb0an3ICJgTJiE8emzR8+SgEBACpUXAbqiHVU+b41odrHMn4F49zlSi+MffRBVzuQbSzhg6KvBafdhIhCdMZjG10YHHZacQEALlTcAreKS05vZN2i4nfdvlNdvWfewIGdD6jkBI2S6dii+w6cNH+brDQkjtaZSkg5q4chnx/bthH9iWYekmWKjkLatSqf5hLSX/Zq7KbmgDWGFzEcsoz/0iuzMS8ZKD9a40TNtoiTv7YWRLCAiB1hJQRQPi+3fB2rsF7ivmpb9nL+OcnqStfR8YUehzViO8aAW8UJciF2od2XqKWiHRFkUgySEhUIIEmg7th7VvJw1GTnQpOyPGnLBPsDPAEF7zC9oZXyxlQEZhSIbWKaUhnYsblCWIUD6yEBACrSBgXb/q+TfW3s1MI6DWNCrbpXhl3sC3ZV6pMW8N9WY5jJpsXYygc7VOnXzbpXPnoMNttq/9OKgM2U2yZYMqZNJi8YFL55HYswVJlRBcbKhwGpOFSzpWA+FIsTNhjJuB8JIvEZ27oOh5clAICIE2IsAquRmNYLGSYsNivqm1eyuck5zEKmZIehrB4kUdOAkVKSxipHWqhrmUvUtpUBp9+xX7kXJMCAiB9k7gIzQk91bi+zjZtWdjcO/AjIbQzmCly2LDGDUF5uIVfiidF+5b7Gw5JgSEQFkQ8Pybt7RfWOci3kJxNba5S9B2SZ7ZUfzW0/6NZ7sU6o7WrRd9mtWe7aLXBBddK/4D2v5ou3FQVXW8xOWLsC6eQ/IZVzyKDPfRfTi3LgHPG4qcxUNqiXvYVCb+TkOoZ03Rc0O9+8IcOhzG4Nqi58lBISAE2oaA6l/sa8R5JKkBxYb79LGvEU+ZBhDU/iV9MZtRa4MnUiOmI6SKAeQPGpwGdcEcMkxWRvPZyGshUGIEXFb49zSEk9zJRw9a/emdm1eYB3aZqxkvCq9RGjKE/QKVhtCOKDZCvZg2NJTVMaknMoSAEKgMAq6VoO5c8v2bJ8XDdd3HD2i7UGue1ReHo+m+7kyk7gStkFZ1yNouXCEtxdFuHNTku7do2roJiU3/5Czl1eIsVRlltSpSbGVEvQPD84zlf0KERY7M2iFF31NTIbxsJSOVNotikoNCoM0IKJFXGhHf+C+4t1soGqC0wdMJl59XPZoZFHljEfsar/kO4VGjC0/iLKWW1oVQqPC47BECQqBkCKiJ8MatG2lnUEPqL7T+c6u6FmqiK8jm4ES4seSPiKz5FubwkUXfU1M57ewEIHZGUUxyUAiUFQG3qRGN2+jfbKB/c5fOZ7GhCsC6KR+n2Hlsg+nrzncwh2Vr52QuSdsuJrsHcBKtFEebOKhuYyPsRw/hcAbTtfzYavUF2scOwVZNrd89ax1LtcTdqRe0PoNZwKR7wTWqNYw5az4i02ZClWeXIQSEQOkRSL566emFfe8u7OOH2eKBGvG69asfmTumIYlqtnvpS71IhfN6baNmUiNmzIbRf0DmVNkQAkKgfAio9jCWsjk8DaGdcVJpSPGVjBbvPtoZWq/BCA0YCkPZGdNneW0ZWrxOThACQqAiCDgvnvu+zr0G2i7UHWW7vC0eIRoIhs4oug+grzMIWtgP59WiUZjKdqHu6GWaftQmDqrz5DHix4/AOnoA7rs33vfh2hbcJ/dYaZOGZ2uLmagZgrHz2bh6EfTBQwu+VzVLadAxVfHXWgfmosoQAkKg5AhYN64hfuwwrGPUiyd3gRfUCJtF0T52RDpDn74U5uwF0Lr5E1oaV0X13r2pEX0QKtEwmI/FIOcLgUojYF274mvIiYNw2Z/UszM+pQpvDjit32gYsxfDnD7bmwBXdkaoY2mG0uXclmwKASHwKxGwrtTR16HtonTH82+YmmQXz0EN/NFV3aDPULbLQmipAmqaoXt2i687HQMvK/Wdn9VBdRNxrwCSdfsW4lvWw971r+CepWo5WoXC6GEuTRdWustA54qIufyPiK76CuaoMZndsiEEhECJE2CYiyqWpjQjfvokEpt/9AsepW+rtRqRPp/PWo8BMFezT+mK1dB79so5IptCQAiUM4HYsSOIr/sHnGMbg29T6YlapVCPVg59yiKEV37LgkeLWnmFnCYEhEDZE/BsF9/XUbqT2PITkmd3ZW/7U2yXmlqEU7ZLqJrF2CpkfD4HlV+adesG1GqIc/Uy7IunmUd2NrhnqeoVNmQ8jBHj+QeDjmpzg6sfxtiJCI8ZKyG8zTGS/UKgBAkk37+DdfMGbKUXdRdgXzoFPLqWvROWUNdqx0MfMY7hun7IS/Zg8JbWpSv1YoLXp1RWS4MZyV4hUI4EWnRQuw+EPmw8QgOL16rIZaPXDoU5Zhzzv0bk7pZtISAEKpiA6jSQsV0un4d9mbbLk5tZIozk0oZMoH8zlvnoXIRrxdC6VXu2S4Q91ispGvTzOaiswNnEUu2JnZvhXD4BNDG0V4XpBVXYrGGVu6VfI8q2L5pK8G12MMRX9e/hQ2uhjUyzbyEHhIAQaHcEnGdPEduzk3qxAe4DirvqO5gb+t+tPzXiG681lM7+o60aDPkPdeQfB6UXxSa+WvVmcpIQEAKlQqAlB1WlCoWXrUVk6vRW35IWrfLtD9a6kCEEhIAQUAQc5ro37dkBaxfbUj2up+3y7kPbpcdgz3aJLlkBlUfaqsFCjcrP8VIIKsh2+WwOqirv3rjpZyR++ivchoDqeWrZO8rm1F17caZgGswFSxCdx3hrGpUyhIAQqCwCzvPniB/ej8S+7Ug2XAfePAUS77MQuvSBMX8VwtQJLeWgKqdTr+6OEB9apHjf4+wbyZYQEALlTqBFB3XETJgLV8CcNDWDIkTHU2c4ndITGUJACAiB1hBQNXZih/bD2r8DyXucXH+rbJfG7KUs1GguWA1z/uKMg6r8nIztEm7dqmr2Dct3q/04qMwn1Ubxj8QUFhwYNRbmoMEwBg5mLiodVxlCQAhUFAGvqndDA6yG23DYs9A+c4Tl2S9mGZhcveg7HKHakYyySAm6qto9eTrCEydD79Eze65sCQEhUNEEWnJQ0YWFFAeOhN4nW8k7NGiI57BGJkwqXgujosnKzQsBIZBLIPn+Pey7d2DfqWcq4xk4Z4+ydWZd9pRwB2j9RrCw60i2tvQX4FThI4O2S4S2S4jhvDJ8Au3HQTXZs3Tl/0HV19/7TaxVcaRiBZLkGxQCQqC8CXh9B13ETh5H/Od/wjmyPud+lT7kvFSb4U4w11BDvvoexuDavIPyUggIgUol0KKDGmBraEOmIvLtn9FhzdfUGpkor9TfHblvIfDRBFK2S9ORQ/+fvffgruLK1kXnjgpICCSBSAIJRBQ5GBuwydkGnLrd8Zx73733jR73/KNzx3tvdPc5fbrttk0wNphsMDmajMg5Z2mHCu/7VlXtXZK2EihsSWvZxS5VXDVX1bdmnpLYAN7l8Pe+S2TgXfL6S+SjP0jehx/rcnd+Stlovr87bLVFF19aUMe/h5TtcyQ4cHCqH6EhQyU8DAkMtEUkRRO9oinQmyhgMOv38SOwoh4S6+Zlse/BbcbvMuMRAxk4AxPmSGTGHAmPQQkI4EZ4aLlWdHn00b+aAr2UAkzQmFAYctjFkCuZKwj46YM49/D0eVjg1VU+XCLAE+3u6yeQXtcU0BRojgLJmkuSOEHexcWd+8SdusanhHMlOHGuhGe8J+GqsS7vkvbmaHxC79iSPRZUaijz+0mg/yCRvHTSgcjsBZIzdz7KyIzrHSOin1JTQFOgHgWsly/FevJIjPv3JblvF5YtqIWKWoYNm8KQ/gpDQtWIY5+3QPLendt8JvCG19B/awpoCvQ4CjCzpoW4duP+PUns3SnGz1tRCxV115trYcSx9x0ogeJBwJIlkjPnA4lU6Yy9zZFM79MU0BRIU8B68Ry8C3Dn7l1JgHcxyLs8v5M+wFsj79IHuTMg/4QmvyNRyDy55F16ees8AZVZfHf8KImtG8U6d9hJeMKsnC0YcINTF0t0+RrElU1LDRUToATz4Medl5faplc0BTQFejYF7GTSxZANYl1A6nZaUZvCkMFjJLrsY8ldvBwCqhvngSRKTNFO7Gi2fFXPJqN+Ok2BXksB1lWu277V4UOunknTIQ4soWXDMtLbfGuhWStQc/0jyZkyDXwHMCQfvAdrteumKaApoCnQAgXsWJ3iXeJbNoh9+aRIHAkfrWRG+SdQjtJVS9cp3iUIfoV4E+iliZM6TUAV1kFFTcPkxfNiXDiDUjMnxL6ObL5NTAip8R5QKaExUyQ4DAmT3BYaBnebseOhzUSQsW6aApoCvYMCUHKlMOQ8MOQcMIQZwS2z8fPnw5JaNUXCYyelEq0FClEHFTWTo3D/VenaG5+lt2gKaAr0YAow1IgYYoAPsR49SD2pWXMB9dmPN21VLatSfEh4POqzj6tWGNKb6hGmCKVXNAU0BdpMASrXEy7umOdPO7zLTSjIbKvxtQpKJQjeJTQWWAO8iULWCZXBs7QXts4TUEFcahHsWEwSVy9LYssmMXb+M7M/tn8gEJsqdLXh4rbQpPeUVTVvwWJvk/7VFNAU6OkUgLcF8UNhyGXEdmzZKMbur1FPOd74yekyE46iEDa9LJxsSoEBw4Abn0ju0hU6pr0xxfQWTYGeT4EUhoAXgbDqNZaFSGz5VuwLB7xN9X/JhyCRY2BIlURXfCJ5S1boeNT6FNJ/aQpoCjRFAR/uJKAcU7zLnm8yG+gU7wJ5B9l+I0s+lZxlqyU6vrqpK/fo7Z0qoHqUVHWCDuyDP/ZOsV69cDabhtgPb6Pe4X247cH03VwbNFoic5ZIZDYSGAwYKMEBA7RFpDl66X2aAj2MAiyGHSOG/AwMeY1C2GxGUuxHwJDnwJBMnhmFAyW65o/I8vuxhAaWOefofzUFNAV6PQXiJ49L4sBeMY7+DAxBjBj5kEwYUjRYomuZbfMTCZXqUla9/sXRBNAUaCMFjNu3JA7eJUne5c41eG3cdUIeG10ngKSPcyUyd5FEqidLCLJOqHQAyupFGh3ZUzd0iYDKOkHmndti3LkldgJxqGx1tZI8sl/M43tEXj92tjX1b26hBMoqJVg+SsIz35Oc6bNU1qumDtfbNQU0BXoWBSiUKgwB2NN9hs2uRf2xIz87GFL7tPEDawG1MU30Fk0BTQGh0twgTwLvLoUhJ8CH1D1vTBktoDamid6iKaAp0GoKMOmjCdmH8k/y2GEoxX4SuXcpw/nw/GJ95iEIcxyNuNSZ70rOtJkSLCjIcGzP3NQlAmomUlqvXkrd5o2S2Pg3se9eTB+ikiihEo76TW9WazCFhxd8LjmoexitnohSZUhagEQoumkKaAr0PgowY17d5g0S3/A3kfs1DgH8MR4FA1An9beSt3qdiukIECuCcAXWTVNAU0BTABSwnj6V2u83oHbhf4o8vIotDXgPMIzRD38nuavWpsMEGEEA3kPhSYZ6qpqwmgKaApoCmShQt2u7xDd+KdbJnendmWQeKsaAO3mr10oQJTd7C++SNQKqHY9J/PQvYpw6Jha0mV4zr9eIffM8rKpPvE3pX0wGgYqpEp46W0LjJkqkYqSER1T02oxXacLoNU2B3kcBu65O4mdOiQF3PfMCEhFcA248vp5WbkWQfXPCbAlPmQWN5DiJjKjUnhe97zXRT6wp0CQFLHhhJFw+xACGWApDbuJ4CKps0T7AkHcVhgQKC51tyBIeBu9BPAn26+ds0/9qCmgKaAq0QAEmjU2cOiHm5bRRznp4F7hzAaX0bqTPzilI4U4YyWHD5F2G9vw6qVkjoAoydKqaQc+eiR1PJz2J7/9Jkrs2Q0g9nR4sb43aSjCdUlgioVEQUBcsk9z3F+h4VI8++ldToDdRABhiPn8mFpbk2dOS2LVFrGPbwFu6mfKYfCC3L9xmSiU8bY5E5y+R3NlzehOF9LNqCmgKNEMBG7kwrOeoXQg+JAlll8KQE9vTSi5iSF6R4jkCYTcWLCcPvMdKyf1goYSHVzRzdb1LU0BTQFMgTQFVnxl4Y79y82hgV+LCWcg84F1O7kgfGIC3Vx54l0LwLjPfd3iXme+k9/fQtewRUJsgcGz/Xkns2CLG8b2woj5zgok9htN/DlxvIgtQL3XRcgkjAUqgb1/UKuvjP0KvawpoCvQSCiSR5Te+axuwYyMSniCmPYZkbL7ka4ERkyWy6EPJmTdfgoXACiysr6ybpoCmgKYAKZC8dEFiO7dJcicw5BU8uOqAIZkSJ8G9NzQbmTYXo1bqmPEunsC6qsMH9IukKaAp0EYKJC+ckxh4Fwd3IPOQd/HhTmDkdPAuqyV3zvsSULwLcvJEeybvkvUCqnHjuiSv1IhxCfVTTx0R++KRzKVpUE4iUD5BQlXjJVw9RWW9iowc1cZXQx+uKaAp0BMoYD5+LMmrNWISO36By++ZQyLPkJ3Ta6g1FqiYIOHRWCZORQz7JJ3Z16ON/tUU0BQQ89GjNIYg9Mg8exgZwpFxs2GjVbVsFLy4wH+MmySRiZNRFgI5MaIoc6WbpoCmgKZAGyhgPnwA3LkiBpTs5i/EHfAuzCruNSR7DFZWI0yJvMsUh3dBdt+e2LJeQFW1ypClk2Ul6r5fL8kf/g5t5qPGY0F3X04UqFcWmrVcclaj3uGceY2P01s0BTQFej4F4O5L7GCG37ptP0hi0z/EvnIs/dzECi6sNbbs1yrpSWTMuPR+vaYpoCnQuymgMASlq5KG1G39ThLffSn21RMZaELeAwt4j8DwaiQz+ZXkL18tgXyEH+mmKaApoCnQFgp4uJMA77IFuEPe5cap9BU83gUuv5HlX4B3WSORkVXp/T1oLesFVI/WjAuJHzkoyUMoI3H5rNj3b8DlN4OgihOCUxdLzrovJA8xIbppCmgK9G4KxE8clcSh/bCkHhX73nXUHUOtVMt0iAKwV7XGZn8g4XHVEh40WEJYAuFw7yaafnpNAU2BFAVix45I8rAPQ+iN4WFI6iislFWB90Cd1I/W6RAjP130uqaApkCbKRA7eljJPMbpYw7v8gweHLbLu4SiEl6BzL5rP5cIEif1xNZtBFQ7ERfzPmqV3b8nxukTkty/S+xLMH1naFpAzUAUvUlToJdSgC4zxA0TNQ6T+/eIeQzJBxKvHWrQ8kF33wHlEhoL97x335fcmbMlkJfXS6mlH1tTQFOgIQVUnVTWSoXbnXHAxZBkXcPDtIDamCJ6i6aApsAbUkDhDmUe4s7+3WKeQDmaZMy5mhZQ35CqHXxaHGmZ4z9sEGPHP5H4JOFoMn2Jk7SA2sEDoC+vKdANKcAwgdoN/5Tkxr/A+wKJkxq2AZUShfUj/8OPkegESU500xTQFNAU8FHAuHNL6tYDQzYBQ+qQwKRhI4as/Fxyl62WYFE/JF6LwhvDzfbb8Fj9t6aApoCmQCsoYNy6KXUbvnJwh0mT2EIRCS/4DHizVqKjx6qYdxX3TqV7D2ndxoLqp7dx+5Ykzp1B4hPUPLx0BnEhKEHjmyy0gOqnll7XFNAUIAW0gKrfA00BTYG3oUCLAipK0ATHzkTykmlOreVRoyU8ZOjb3FKfqymgKdDLKZBRQGV4UsUUCVVPR3gSymxWAWsQi9qTwpO6pYBqx2JivX6l6pXFd/4oie3rRe5dSr3CWkBNkUKvaApoCrgU0AKqfhU0BTQF3oYCLQqorFeIxGuS31fCc5CscTGWqTPe5pb6XE0BTYFeToHMAiospeFc1HYvlOCYaRJdskryFizpUeXyuqWA6r2rzNJZ+916SXzzV2S5+sXbLKpO0PwVEp31roT69Zdg//4YNAykbpoCmgK9lgLm40cS27dHkrt/FOvGRZGXSLLmxaKSKtrFt9e+G/rBNQVaQwHz4UNgyC4HQ27VuBhSm/HU0KyVkrMWGcJ1NYGM9NEbNQU0BVpHgYwCqu/UwJCxEl37e8lHcrZAbs/Jn9EjBVQpGICaqGNQl2ycRKbOlOjkqRLqoXWCfO+oXtUU0BRohgJ2Xa2ouso3rol5+qQYJw6IfRPhAV7TAqpHCf2rKaApkIECVu1rhSEGMMQAhpgn9ot962yGIxEipgXUjHTRGzUFNAXaRgEtoLaNXllxdFMWVFWTjD2MoMbhaqR8//ATCVeOzIo+605oCmgKdCEFmEzNsiWGklXxDV+KuX9jujNaQE3TQq9pCmgKZKaAhyEoXRVf/w8xD23OeJwWUDOSRW/UFNAUaCMFtIDaRoJlw+FNCqhe5yK5Eln1R8ld86lEKkd5W/WvpoCmQC+nQOwwBFQylz8jft1r+cUSmjpPwjMQGlAxSiJDh0loYJm3V/9qCmgKaAqkKBA7+LPEvwWGHNyU2uZf0QKqnxp6XVNAU+BNKWA+eSIJ1HNPHjsk5uVzYt++LPLqYepy2sU3RYrsWdECavaMhe6JpkB3okBGATUYFikcKIGSQRKe9b5E586XnImTu9Nj6b5qCmgKdBIFtIDaSYTWt9EU6OUUsONxYQ4NLsnjRyS5d5vYNYdTVNECaooU2bNim6bU7UAW360bxTqHwWLCE9ZFtW2nk9qCmj2DpXuiKZBFFMgooPr6F5y+THLW/Vry5s33bdWrmgKaApoCDgW0gKrfBE0BTYHOpkBs/95GoQVaQO3sUWjN/SxLkjUXJXnxvBjnURf13AmxryObr2U4Z2sBtTVU1MdoCvQ6CmgBtdcNuX5gTYF2pYAWUNuVnPpimgKaAq2ggBZQW0GkbDnEjtUJ66Imrl6WxJZNYuz8SiQZc7qnBdRsGSbdD02BrKKAFlCzajh0ZzQFuh0FtIDa7YZMd1hToNtTQAuo3XAIjevXpG79V5Lc/Ge4+rp1ybSA2g1HUndZU6DjKaAF1I6nsb6DpkBPpkDi/FlJwN0ueXC32I/uiDy/74QYuQ+tkyT15NHXz6Yp0DUU0AJq19D9re6qBdS3Ip8+WVOgV1FAC6i9arj1w2oKtDsFmLDEuHNbzJvXxTi8X4xju0VePkjdRwuoKVLoFU0BTYF2ooAWUNuJkJ15GS2gdia19b00Bbo3BbSA2r3HT/deUyBbKMAwo9pN30ri27+KfedCqltaQE2RQq9oCmgKtBMFtIDaToTszMtoAbUzqa3vpSnQvSmgBdTuPX6695oC2UIBLaBmy0jofmgK9HwKaAG1G46xFlC74aDpLmsKdBEFtIDaRYTXt9UU6GEU0AJqDxtQ/TiaAllMAS2gZvHgNNU1LaA2RRm9XVNAU6AhBbSA2pAi+m9NAU2BN6GAFlDfhGr6HE0BTYE3oUAmAVVKRkhk4UcSXbhUwsUlEuzbVwJ5+W9y+aw6J2CjZVWP3rAzWkB9Q8Lp0zQFeiEFtIDaCwddP7KmQAdQQAuoHUBUfUlNAU2BjBTIKKDmFEpgxAQJVY2XcPUUiVZPkvDwioznd6eNWkDtTqOl+6opoCnQLhTQAmq7kFFfRFOg11NAC6i9/hXQBNAU6DQKZBRQAwGRQFAkGJbw3DUSXf2x5M58p9P61FE30gJqR1FWX1dTQFMgaymQrLkk8cMHUB5ir1j3bog8vimSjKX6G5y+THLW/Vry5s1PbdMrmgKaApoCDSmgBdSGFNF/awpoCnQUBTIKqL6bhWavVrxL7uw5vq3dc1ULqN1z3HSvNQU0Bd6CAtazZ2I+uKfqGCYP7hXj4A6RZ7dTV9QCaooUekVTQFOgGQpoAbUZ4uhdmgKaAu1KAS2gtis5O+diOga1c+is76Ip0BMoYBuGSCIh1utXUrd1syQ2/0Pk7sXUo2kBNUUKvaIpoCnQDAW0gNoMcfQuTQFNgXalQEYBVbn3hkRCEQnPQ7Kkleskd8asdr1vV1xMW1C7gur6npoCmgJdSgHz3l1JXL4k5qULYpw5Ltb5IyKvn6T6pAXUFCn0iqaApkAzFNACajPE0bs0BTQF2pUCGQXUXCRJqpgoodHVEp4wWaIT8Fs+ol3v2xUX0wJqV1Bd31NTQFOgSykQP31KEju2SHLPZpHa57CmvhaxzFSftICaIoVe0RTQFGiGAlpAbYY4epemgKZAu1Igo4BaijIzi9ZK7qJlEuyPMjMFBSgzk9eu9+2Ki2kBtSuoru+pKaAp0KUU0Fl8u5T8+uaaAj2GAlpA7TFDqR9EUyDrKZBJQA0MGSvRtb+X/I/WSSC3+wum3iBoAdWjhP7VFNAU6DUU0AJqrxlq/aCaAh1KAS2gdih59cU1BTQFfBTQAqqPGN1lVSdJ6i4jpfupKdD1FNACatePge6BpkBPoIAWUHvCKOpn0BToHhTQAmr3GKd6vdQCaj1y6D80BTQFmqGAFlCbIY7epSmgKdBqCmgBtdWk0gdqCmgKvCUFtID6lgTsitO1gNoVVNf31BTonhTQAmr3HDfda02BbKOAFlCzbUR0fzQFei4FtIDaDcdWC6jdcNB0lzUFuogC8VMnJP7jZjH2bMrYg/C7SyW6dJXkzpydcb/eqCmgKaApQArY8bjU7dgqiS0bxLp6JkWU8JzlDoZM7/71CFMPpVc0BTQFupQCsWNHJLENvMu+H1L9CFZWS3TZR5K3eLkEcnJS27v7ik6S1N1HUPdfU0BToM0UMO7cliRqoJo1FzOeG6ocKZHR41BLbHjG/XqjpoCmgKYAKWAbhiSBI8kL58R+9DBFlNDIKmDIWAkPK09t0yuaApoCmgJvQwHj1k2Hd7lSk7pMoHSARMaMU3gTCIdT27v7ihZQu/sI6v5rCmgKtJkCdiIhdM2zY7GM51ILyXTtPUkbmfFB9UZNAU2Bt6OAbSssseqAJUYyda1ATi5qEWKJ9hyLRurh9IqmgKZAl1DATsQV31KPdwlHJEisYYmZQKBL+tURN+2WAuqLl7Y8fGhhsVM0Me7dk/ievWL+vEMk+cLZHi6U0JxFkvP+XAkPGYRtprs4u6PRgAwcGJEBpWHJyQk6G/W/mgKaAj2SAvEEccOWB8AOYHybW2FhQAYMwFIa7ElzQJvpoE/QFOitFIjHgR+PgCMPgCGJtlOBGDJwoIMhbT9bn6EpoCnQGykQiwFzgDvkXZJvgDt9+6Z5l+5Ev24poF65asqhI6YcOGylaG29fC3Jq7fEgvlbLFeLGYRWYegwiVQOk2BhLo6ltYSLI9gW9w/Je7P7yMwZfaR/v55jFk8RRa9oCmgKpCjw9JktR44asv+QKU+epja3eqWqMiDvzArJzOlhCWp9Vqvppg/UFOgpFHjy1JbDRwzwHqY8fdb2pxo9MiCzgSEzZoSl59g52k4HfYamgKZA6ynw+IkF3DFl/0FTnr9s/XnekWOrwLvMBO6Ad+lOLSsFVHjMiAljp6Xkz7SV1CPs4aOmfPmNIX/7MS2gevua+rXthFjGK7GtVzjEueYQCKX//Yu+8sm6fjJ4UCR1ajAYkFAo0DutJJYptgm6chC8Bm48QI4827lyvDA2XxobSzDk9Dnb3R3wojt9bkDvEOgd0FKQ9wq25pcUxOurcMP2v7/uyXfv2fL1+qT8v19Zcv+Fj96tuTiOmTU6IL/7LCTrPooAH3hS/WsEiBvqM+mBrCfdGNOg7FAM31YKF7L5O+O74GGDv8/OU2Tnv15/iWfNNbxqAWCdwuZsHoPmniFL91l8bRSepL/zW3cs+fpbQ/4/YMjD1+ntrX2E98YG5DefA0M+jLj8Rf1r9GgMaS2R/McRd/gNEHu8pt95jxLt9It3EDxfIz4k09W7Cy+Yqe9ZvI0o0BzvcvMWcGe9If/PV1Cu17b9QeaOB+6Ad1kL3HGarfCHsk6Qsk7bL9kpZ2SlgEot5bVrply+avG7adSuXLXlwBFLDl0CeHl7Uyvehvq/tm3gA4TvNhavFSI0ZP4MajSDsKA6QxTEJD9qZJ5UVuRJcbE3mN4ZPfwXE4Fx47okr10R68nj1MOGhsAKPaJCQoOHpLZl44p57w76fk2sRw8kVIEkN+hzsLBvNnZV9YlxkMaNa+jzVbFfPE/1MzS8QiIVlRJC4LturacAXXivXbfkCnDjeQYB9Dlw5eAxS346YctLwICCjBZww3/34cUBmTczILNmBCUYoJ8NsSQdcza4LEcqK/NkeDm9NXpWM588EeP6VSxXMJM6RAv0KVDvaRjvayAPsS9Z2qxaeNdcvyYm+h8oLEKfKyQ8tDxLe+t0y3xw3+nzzevN9jOQmyuhEZUO1hUUNnus3tk2CtBqcRVYcvkamHcXJ54+AYYcBYactOU1IEBtdve15uoVJWkMEWmMIUMGORhSPqznYUhr6NPwGOv5c3wHV9W3aycdrGWcXQjzo5rfgUG6vR0FGMuY4kNeNW+eIw8YBl8VBk+oW/tRgC68V13e5eWrxoDy5LGDO3uJO/gM2oo7lQhNmgdZZyZ4F6QdR8cT0rfAlpGurJOtIY5ZKaDShXfHLkM2bUWcR5r/S70NL16LPAYD+rzOGSiLexqPaep4ZwXCLC1rKg7V2RLEekneaxnY/7XkRB0NXQTahI9W9ZNFC/tL1cj8Btfo2X/apiGxvXskuetHMS/70uXPmCfRDxZLzrQZWU2A+Iljkti9TYzzv0h0wQrJ+WChhLNYqLZevwK9d4PeW8W6fTVF2/C8Zej7IomOm5DapldapgCBfdceQ37YZsrVG40BIQ5+8BHC05/iuCSggEd4jGfLVxfJgaFqAGI5BvaH1cp+CTkNk7kNEHLbezP7yNLF/WXOe/28TT3mN4mMgfE9O/Cufu+oevFkgQFD8J0tl9x5CyTYH0TJ0mYis2rsp13Ahi0SGlqBPi+R3FnvZmlvnW7Fz55Gf7eLsX978/3sWyzR+RgDYF2ojHkWdGsvClysAR+y0+FDXJ2MKAyBLvEJrKfGW2BIWTF6aRFDAEg2w46cNuedAlm2uJ+8O7vnYYj3jG35NW7ewLe7E7jzA6KzwPixFZU4uPM+3vmBZc42/e8bU8B6/kzxIYldW8S+f6vZ64Smvqd4wdyZ7zR7nN7ZNgo8e27Lzt1J+WG7JTdvN+ZdYuRdgDtP3xR34Nk7kPHvPtypGGbJiqX9ZOGCYinqm52uv1kpoJ4+Axfer5Py7982sKA6Rk5ljlbOj/wbY6kYzVa8D2rYfWNPq6plvIBV9QU8wGhSMSUolnyxsp+sWl4skycVSGFhCEsYrnvuzVtxn+5wCFPj2y8xQb7C82NdNfzGdm6T5I4NIg8upx4jMGa2RBetkpzZc2GBKIRVslACkWhqf1eu2IgYt/AcfJb4oZ8lsf07sa+ckPDcjySyaIVERo1W/Q3SupAlLnC06LC/xv17koAyILlzvcjzeykyBqcslOji1RKpnpTelpcvATxDsEBrjEkUJih58dKSl0iY5nlBvoDSaut2U77abMkNWDoa+q3wC1aL+ylTOPXBQYrWDVfUMQ0OtIzncMl5KibCBrz2/qQ+cKEB4M+nsObcJBoNKgzpCxyhO013bfEzv0j823+IsePvIBoVfWj5/SU8f61EFy6TCEppKGzIIouGBWsAsYFeIYkdP4jx00YJDILlZfFHkjv3A/S3L74nYFmW1I2zkQFWYTKx7Dhq3RHLTu9xaN3Uv5E8Cc9b42AdSiMRm7PZa6Spx+jq7a/A+BFLamvTH/rZ85Z8t8WUb35y33d0UuEHf9sDQ0y8nyZ4DxOCF3gPG8uCaX1kzapimf++J6DaQgzpCx6EfEi2R9m0yzgCX/jdcklePK++XXM/6lVbLp8S7YN3/iPMkSskDEtqsADfMd77bGnWa87vGNe6zL6YxBx+o/R+yIZmPn4kdRu/kcT6v4APudNslwIjZwA/V0vue++7vCCeI5odvGCzHc+infT0ItYw2as3ldJrdMuP4F1+sOQuhNWO5F1M4xk+pSdSXmzI5x/1k5XLSqSfysEDt1/wKORViDU5wJ2ubt1HQMWE4E0OJJo3QXgEdOcL789Gv5x2qAX1W0zA2iqXX9uKYX5AyQlaQ6w6mTwyV6ZMyJNJE/NlCoTUSRMLJTe36wer0UO9xQYyb4kzp8U4cwrupU62B8YgmDVnxb52FtpKqGu8VjRYgpUTJDSmWsITp0h0wkQJFZd4e7v014QrcgLWBuP0STEvnRXrCiy/Lx9IYPAYCY2qltD4iRKuniw5E6pVXGqXdta9efLKZUme/QW0R59rUDvvBuid9E1mJcMlNLJagoPTbjTBESMlCoGVta50gzbxsSWnT5ty4hdLWN2BLVZny+mLtpyA6/8rCLB+vHCOcHHfBxa+Ve+Qer/EDWKGYlH5h9uo2LJMAD2ZS+IIDhoxICJTx+fJ2NFgPBA/zMiOsrKoTAaOTJrYp1tnCs8ooIZRimfYeHxnWKqBC3w/UfcxW1ry/Dlg3Ckxz2Ehrt0+L5LXTwIoah4ePSGNZVlihbHg5p84e8bBsotnxCSWPbnZPDmDSLYzxMO6SXgmYN14YF3DCbL5q/T6vbSW/gI8uViT/sgZs37qvC3n7jjbPDxRmOEDDt9qRjry7IwYQqW4Cjuqg5IN/IdVqzBk2oR8GVOVB+UZUceWwWURmTKlQCZWF0g00rP4kEwEoytv4twZSXJOP3/a8ea6VwNSuIoCvvNDx7rzu++dz3SxLtiWrLmkcMe6ij5naKGJUxUPFR4yNMPezt/UFgFV+pZBo89fAABAAElEQVRJsKIBL6hDkdo0aMzES6w5ecqSuOshWgsF2WlgzYkrUJJhm4c1/gu3F+54AmpBJC7Tx4M3Ad7k5wWBNDZ4FJFpkyHzQO4ZUNr1ioduJ6A2NELAIxfxYM6A+gez4TqFU7rkmOn5xz2Ew4L/wGhaSrPwXCVIiuLC08fmIrC4VD5aXSp9s9QE3vA5W/u3+fCB1H2/URLf/wNM0O30aXDzVROBNxlwD5P1MBFHn2KJrPxC8lZ+JIw7y4bG2Ak+R/L7/xJ5/QQTPl21OcjoMzLZBKpmSs6Hn0neslWSLQWMY/v3SnzzN2Ie3IL+Ao1Ia7/mxKM3ae624KT3JWfVJ5K3aKm3qVf/Xr1myvpNhvz1a0u5vZAYZF8SeH35jbtvQJN8Otk84kZDPOF1/I3XoTtwQ+WWY/nwWz8sIRZFwgGJugmukH5Apo7Nky8+6w8MKZaCPunx9N+jO6xnFFApBKl3FR4mUxdIlO/ngsVZ8zi127ZI4rt/inVmHwbQxTVO/exzDuJnl38huSthfRw9Jiv6bN67K3U/bJLEZlipnwKTiWV+HM7US98YBMbMUliXD6zrHaa2TAR5s2279iTln+tN2byXKOI0fveKZ8AvyUzMUJyju/9tMYQopf6zUJMZyi4z+Qx4ZAFDYL0I4+oYe4YlzZiQo/iQD8GH5Od1XwxxydbiD+tT127ZjG/3S7GvnvJ9B0RjNP87P2625Kz+TPKXrXS2O0d06b91PyGc4LuvxTy+I2M/wkt+jbl8neT4PKQyHthJG9skoBI7A3gH8/pKZMWvgZ9rJTJyVCf1tGfc5tJl8C4bDfnzN5a8RuwpG1Gns3gXT0ClMS4MHjM3yoziRCJLihDV+K+/KpG1a0qlahT+6OKWNQIqvUzv3rPkzl1Lzp61ZPd+U348DJJ5mERCNTNJKJ6Q+4nrOKchQ8lkS5xs1HZcSl0WB6rkSXSvURpMCKkmLVnYi31Di8OyckGBvD+3UCoqcmXI4BwpLel6rQJJ8bbNhHtp7cavJbnhLyKvHrbucnAni6z+o+R99KmE4U7WZQ1jY4CZI0NnXDovyYM/iXVqNyQTVx3l71j/oRKetVAi76AW7tBhKk4r2I8umF3X6vbslPj6v4t1fFvrO1FWJeF3Fkhk5rsqrjZUBqt2Frk1tf5B2ufIy1dM+cfXhvyfL01lLfWuqngX/AEocPACK5AZVdZdCqOK4QTfz+PCmGfJByqB1vnkvcukfokTBo53jiEeETOwmK9g9YBruQnvC4UmvACnGYepDPAGYGmHl4ZkxfwoMCRHRowokMGDC4EhXQ/8qQfMsGI+egT387tiwfXLayYSpyUP7hb7/H6Fjd527zcwfq7krPuN5C9d4W3qkl/rxQsx0XfjLhKmHd4vxqGdIg+vNu4LGK1A9TyJzP5AwuNgUR00WEKDBoH36rpYHOPObbjaAZM3/lmktu11kAIVUzAGv5P8D9dpAbXxiDfaQrdexXPAQsqyddshnB6/4mS35Nfrb8SJKPCC/AUxhJhAPKmHIdhOvGjYVBJa7CCGpPADGKKwgqwplJSsLmAaTFBDDKHvBSwaCEHCWcqqunJBX3l/Xj8ZPjwHFQeiUtIDEzhaT59IkvM6SgUah/aKcXgn4jjugwZNt0DlNMn5GO/86rUOqDd9aIfusV5h/Ig75EmOHlK4Y9+5kPGegTHvSuRd4A48uxTuYC7vCjdZ8+FDhfMOtu8V8yjo7fecy9h7d2MoKuEVv5O8tZ9LpCo7FHzNdTeb9p2/iBDGfyKE8Z+woOJzJ9b48Uat4x+FL/hlxQCPd2kr7njKdeIO0YkKLwuhBTbDC+A56mANxVMqQ02JhGxZPa8vQgyKpHp8H/ArUYU3rGrSFS1rBNQ6uOcdOGTITz/D1eacLbceiNxG5ipFV5cy3sD5ScV1pcTHCr1faMEwIYUmyVQS693GSYJ/8nrORIG/qaGka68aKEwSnBAorLqMZi54lVGDQlIxPChz3i2QeXOKZFJ19sQ6eM/2Jr/dWkBFyvnYkYNgmPfBTfa42A9uOhOZGrcG1IjA3bIYdXAHlUPAgxXynfeEcald2d5IQEXcTaC0XIJDKiT8rvMc4WHDu/IxuvTeGQVUYAAgQIG5h6eUE/MiWHICShithVddXdJhQslwhoEXhmFLgvhMDG/QuInYwX0GVizggwnLlqPQqsUvfInJUOJGStlFZlMxltiKbflhQyoH1cnI8jqZO7dM5s0dLtUTBja4S3b9SWtp8uDPcDU9luqY/eKp8529htCagVDZIqAa169J/PABSR7YLdbdG8imB2xI+NznvSfii1EwQAIDyyU0bjIUWPOQOGl2l8aFaQHVG5zO+aUy/OcDhuzZZ8mla8gAfteWJ4jy8TCETKHXiCF9cp0yUnXAkFpgCPe/DYYg+YPLbxAzvAoDRBznxg4/YkifKCoLDM2VivIcmfdegcyd01cmjMtuJZdHt7b8Mt6UeSSSh/chWQ++W3p2GSB2My1bBFR+u8Qd48AesW5dEfvRLSR5p8IhQ+tTAtxBGE9VNQRVKPagdO4KZXP81AlJkt4nDoHewMqndzDZUSnSiqYF1FYQKfMhfgE1Ad6COOLxKzzDgx2Pd8kH70LFWCPcwUkGhJmmeBfyLZR1uCjBFHwL+RfFu0DuYQUCpxwf5SxikQHsM6WiLFcqgTXTJ/eBzFOIhG2FKg4+89N07NYuF1CToEsSQcNPntmy6buk/AfM3jWI/VDgDwGRkwVHzBs0/qkGFDtYEsZr9IbMwfFRTCTM/MvBjIHxrNc4UNhA4dWxpmLAkORExZHBtUZsp94nkxU4gioSCamBS8qHcwvk80+QvOCDIgxWCPeBW5v/rap3o+z9g/EdLG9i3r0tMbrGboU7GV1jVQM9+SUEQUSSlhZJCn0eQwphL7z4V5JDt7jKKqX160zNn0rmhL4z+UDdD9/BrRcuQHcQV+Y1pangS4PFhOCgxjH9DoTmwa1m7a8kd8Y73hmd90uhBn3nEtv3k8S//7p+AhTVd7zEAH7VdxyvaN+whzguvPS3eI7PnVizhvt78N8cyQSwAiSUGsSM0cX3zxvhJuMznNNaCo+VeoBfAMayEPwcPlkVr/oa2EDoIF5wG/EiBhyioEoPCyq20m8Nboo/+LeBHUm4wJvK4gGG0sQiOBFjEoDbk+1udzSTzkAwrt1MPBArcV8+XzlcfvXpWJn3/ggHQ9DRbEy+Vrd7BxIi/ZdYJ3c4D9GKfwOj34GL76eSt3CJSqCmcIGq385owCfv22LMafz7b8Xc+y0GzR1FDjbd0kLANeKZh2te30orJLryc8ld/qEE+yFGFUk/AmEc20mNid4UJsNyFPvBxeQ6LwcA+u5hss/lXz1Dym3Z6ai2oLY8YHwjPAy5CEvGt3S122RJDHDrNU7rVHZ7Xln4U1IYgteISi5iCI8jhvBVISa1BkOSwBAD75+JsVN4YWM+5jgq/gPvpkIa9hJYBDxRQqzahg4BZz6BR9dnHxchU3ghkpiEFY505+Rr1P6pbxffQPzQAYS+fN0mz6LA8EnAHYbwrEayM8yd/HY7ywuCuON+u4mLFxAutV6MnV+2XsjrN1Sia34veWs+6ZKcHnU7tkoMOF8vEZufD/E+CIWZ5Kc4MbqYCiwNL/gMtF8nUYRIKMxk4kwfT+6drn8dsiWh1CJOnL+AxGvAnb8AdyiH0DuDnhge6Yg3XivMC0hBHvCoAe6Qx0EkgOJd4hl4Fw4TR4rlgx2DHL4z4AlxBy8thrE+7qi/sU0pKPgOYJmKXDy/+bSvrEHix8LCiMKbMDvbia3LBdTbKHx95YolFy9ZcuSkJfuO2/II2a04OXDQqKGMguvkAHktH0ax/jBk9vUZMzm4FFw5l7+A4uoR8v48Q/4SbzuZzgRfEAwYXwr+TQuqBU0CF0ANLu8MjHK5QZ0gDiiOwmCaUl1uyXszRKZMDsvYsSUyehQzX6Ej3awZqLmZvHxJjIvnlIXErjkKid3NMkNiDRwlodETwaBFkVjkNATACyCBO3szOcHIqXBNmQ6rA7R/sERGRlY5RO8EOtDqq/pec1FMWHfM8+j7q7QbovQbIsGREyVYNgR9PyP2dSQZ8VlPulJAZT23xJVL6BeWsydh+T2Cl/RammpM3lLB5C3VYly9KPbV0/WfzTsSwNFbBVSCbc0VJDIBVpxDhs2jSDJwGN4WMfJxoA+BPRfMIjWOxA2vkW/JwfZcJADIw8JEAMQWxffjJLrNcInjM3gOzGAZK/5NkCe4U3Clqwy1lbSemrSkwnLKzN82vw0KPwR1CqgQSOsJqNZrMeP3xEjckZnjWD5isEybUgYMYYwH0rsXZR+GvImAKnClD02YCWyYCsvAGIULnZVIzY7H8W3V4Nu6iBJTSKpy+qjYt/Dte8wUkzmVI7EHvi372RMch2/ryQ3v9cBLUSTBsej7xGk4ZpzCtc5MYJK8CvdpYLJ54Sxw4ZjYNbBce5YjvleDqkBT4FpJ2vJuXq8R6wqew5f9Wwuo6SFtao3fdQ1iwIghZ88BQ5Bk7fBZ1wrhnkQ+Qrn0ggHMgRRKpTcxhNhCDOFCDKFyizhCPQyVXFS218Ew8eKViyHAjOYxhExiEnwIOqUQjD9QZLK2MhTj5Dscby4H3QJ4FyZXWPLudAvJGx0+pKqqBHwQOtNNG5M1MmmgUXMB8yITB2JevF/T+qcpHIhEiLOEiYfCVWPx7eJbGZD+Tlp/obYfSYW5AdxRPInCHXy7105i7DDwrWnZKKDmF4PHQ2LJqgmpJ2ASTcVP3TqHOQ4vORveReJNaOIMFSJBXjAMXjBb8nyoPmbRPwxhvIK8GTWXHdw5eNyS/WcchTiV6sQSJetE4KVBRsZtCneIPVxc7CHeNORdUMpW4Q75FwqslHXIs4BVcTGICi8HTywlnJJXSeOOoywDP2NDggYnRe+vQX1tmTvdlBlTTRk3vhiJ20plyJAir2ud8tvlAuqx44Zs3+XEf1CofIRSETR7c9A4EH0wYAWwfnCAvFaCEMKhgwLIbucbSWA4B4O+1g8QUnkL7jr3HjsDSWGXk8crDCKDknGYwhAem4SlzcLiCKi4IT68VEZfDqTL5OQEnktx/mMZMaROPllXJcuWjpLh5Z07WN7zv81v3T7UOd3+vRgn9kEVDC19EjOqB6h49tA7KyWyBAmFcvOd4/ai5IzhE2DDUOcgQJ7MaGTxSsmbv7jTQImuh4kdWyS5+zv0/QW+QnACFBDcFkBsR3TJhxJGFkt13I71YODuerulKwVU4zasIztQUmb7RrEf34a6HVoUWnK8hhjT6OI1krNomcR/xhhtw3E3fvH2pn8xRr1VQGWd9m07k7LpB1OOnkamXnhuvgYQk+mk5ZON8l5RQUAJpM4WYABggsanPthHzBg0gIr2gDrHxon8xHk6qgPI3QeISwN+sN4hlVjMGcasejFYbqnY4vHEDUNZUimkYiPGxBFQiSVQdjEbuNssxKqa8duSjN+QwtyQDOifL6MqiuTjtQ6GDBva1zs0a37fSECl10IuNIZ9B7jv8VJ4WYzqlGeyUNKB5bHi2zeDQTwDKQHflhLw3JcCTFd4IcrhLFoO97ubEt+2Sexfdqf7RgVDDiYZCKrh95ZKDspXdGbNZ5VUBZhsnvwZfQeu+TEZL27o3dWg6SpHGej2Oo7whgSfo+Zw6jm0gJoiRZMrLPGwbYehysccBYP4GhjyKg7FE14VLmxkELlQIKXltA+mPPIQxJACYgh4j0GQgXKAIdTpciEDSgUWKqM4GPIA0xO2EUO4rw54wtAC/l0fQzwB1cEQFTKAuqiqsoDqj9spp2uSG3gmxX0eS9XwhMKQpeBDhiCuvbs2Kp1ju7bhXcZ8d++aOy+SSW5lI+7k9IFWsgilltZKLubPyNjxrTz57Q6zodGs27Udfd8s1qUTzrdLXsnlGVu8ehYKqIGh48HXrZHchUtT3Tfu3UHJK5Tp2gN+KoFJko0vfRgfA3jB4GhkJV6yGgnyFsGKjW26NaJADHLH7p8M2bLdlOPAHdY0ZS1lUFEJmxROPazxG+M83oVWVPIug4E7DEsiv2PxH/4PTHmJYbn3ELwLcOclMQ0hk3XAHTbu56Em3kvyLvTYUEKqElA93KFHGHkX8vrsFTBPaqVfzgMpLngga1ZXyKqVY2Ta1KFqX2f90+UC6k/7DGTPM+TrHbBU4qn5bXNQPI0CrSFkLPMxQBRSWXKptNiZIMpKHUKSWGoAwKjSynL3PuJJbtly+747sWAMyMTWgva1eFGoWVATByYUAwKOhQFTiU8wMOyDk/qd7nvgTJXwhvIrCQSUg9HMDz+RL9aNkuXLRsrYMSVS3D9P+mNxkqLw5OxutVs3S/yb/xT7woHGHaXws+Q3yn003L8YxZt3oVj8VrHvXsMbD2mfjJPbAuUTJcqEHB+t6zR3uBiSD8S//buY+wCUGVpw2hIkCflCcqZOl9oNXzt1vR5dTx0ZqH5fovOXSXTKdLjy9VdLIAIupKMaAeEZamU+fQot60UI1j8ic+8PePncCZiCTS4ElL6lsDxB4P9gseTN/UBqt/3gjNHFg417xjHqZS6+TGbyFHXCmJ59B5RZG350wgAI5IwNY+P3zDmTLjF9IWvQ6uE1Wk9p8SgEH6ME1IHwyMA2YgLxwmuvAPIskn0DSVNglHMwBddlGRsymEngBZlYYlQSJyeJGxBQnWmGMai0iNCqipPZAhh/lKMx4jfhpHANJ2LGwPiV9cuX//0/Jsrnn1VLZUV/dWhX/0Nmy8J7auJ9TRzaj3f1B7GvHk93i+6xyOId6DcA2xzctZN4zueQ5umO6ldyzQCTOB8C6rgJ+MaKJQS3WaVtTF+tXdesZ89UwjdVxy9TWRaURoiu+QOSu30iBrKXJ37aKcbP22BNRd9fP8VAA+fdFpyxXGFI3tz3vU0d/lu7eSOSpgGTLx1ufC8w4OFlv0Uykl+B8R6X2k/GWLlhn9qZ2kbvl8gHKyX6/kLlMhjsD4zLx0uvm7x65YQRPXhgyfadwJBtllwGn6CspXidiR2eVYLbKKBSACXvQQGVvAetGX0L0hjiYQzgwHGlA5Y8h/fXzTsiN4AjdOcjX0KcieFTIYYkACCKr8T2pjGEAqo3R+BA4IbjrREHnjyGXvOBlPVNKAz57NMJMmI4vq9u1jgvclHeA3u2ibH/+7Tw438WCqDEnSLgDgeIjfWCFe7AouFTUIcXIOwF30nOlGnOcR38rw1zeS3qh8bX/xVM58XGd+P8DqUX53f2WV7C2ysOpbrXEIsanovvdf4SlcBR8SR9cXwHNhumNo8nSRzYK8k9wPnryJTstsDI6emkU+42A0q9ug1fSXLTX/AiQ4HWsKGkX866P6jkbIE8fCy6pSjwErhD3uX+fUv27DXl+13wFgU2KKzBUfwl1kQAOh7W0HXXa8r7C7xLEXEHfEsZFhruyLeQ5/Eaa6reAu5cx7UpoL4Gq06FmGO0w2eCYx0hlevEEyrGyDR54Un0GAXuKOUYeRi8J6j1bibvg3+5K2sXl8vqlVUya9YwyDz5SuaJ0s+4g1uXC6h79hryd2Tj/Ga3pdgeNVh47jxODpgQyEiSDhRQS8HLlUA4LYLCsKAP9oMR9VpTAqqaePACeBMFB+o1BVXGsoFfpAuNCiB2f00OmlpoDqcKgkxnAvhyH5aQmxI0H8m08SVIUlAiU6cMlJkzBuMXGSCpYu0GrbUCaqR8hCRvXhfz+lUxfjkOi+t+qGgupZ6wOwqodAEODB+j3GjDU2dIzuSpqmB26qHaewUoEv/lpCRPwh2ZtRivXXAyivL9YgPTHxjzjkSmzZbQ2AkSGV6B8j3DpXbr91pAdSik/r163ZRjx005csySCzW2nLkGEMY33AfA3S/fsWJQaGSjAouWD4K410rAv1Gp1Q9zfyGsq8QNTgwNBdSX4B3IWF6HcovWWgVIuK7jMgP+CXDghQmYitGE4gqAokIFXPzAtKHwBIhDcAH/9BzCKb6j2FUcB6YT28r65cn//p+TXAG12Otml/6ajx5K4tRxJMw4Kubl82LfxLvqd5/vO0hCU+ZIeOqsFKNId9nk8YNin4OyKxUmAMKijm9wBL6zcahRCGVQzqSp0KxjsDqotUVAZReSN66JefUKMO2QmKeAa74s5t1aQIWyKzB0tIQqQPupMyU6eZqEy4d3ENW712WvXIXXxQksPgx5DqERrIHKc0ELRh8ow/OAHx7PwFBG8h4UROm1Vdo/IP2BIQXAkALI/d6UT+hRDCMFVHiAXb8FRhFKLsokvAGxycEOD0uAL2QwW4khrI9qJh+phQovG9nDB/ULKAz57NNqCKjoXDdral4E3phnToDHgHB3/wogk/xWgwYhLjTpPbzP7zhaRuy24RbMb9c6jW/Xl4go6wRUhhagDA7nd9Xn4wfg4XEi/YDcD/f9IL9XhBdEIVh3tPXXfHBf4qC7QZy/QpwH7V/D+OA2LaB6lGifX4YkHXNxpwZ8yzmXd8kHzhBviCHEG/IrnlGOnhpeo8yjeBfYMTzc4b5GAipwh7zLtdsQTIFr5F88fiUOrKH8Q9mHWMQ8Go0EVMo6DFGCct00XKwxoURS9d5fyPjhTBBbjASPAyCkDkWY0hAIqT4BzOtwO/92uYDK+mN/+wrJCpDincIpYz8omCpLCLQGHDw2ahcqygMyfCgyY1JJg+3uLrU/k4B6677apY7jdXhtvgjP4IbzFFaZOgwi70mNKWPLkm7yAuWup6YtCK8oO8MJwlBxZDcwSdzDnjAY3LAsRDzZH347Xj5eB7cIv13euW1W/ttaAVUVe8fbTOE99tNuiW/4h1gntqeeqVsKqOplwmDTovIRUqR/+LGEBpalnqm9V5iQqnbzBlhyYR25TnddoAP+d/8BIuWjruzvJBeWnUjFSOdFhEardst3WkD1Dcahw44S6z+3uF4W2MfvtgRKqlIwjIwDSzVsZ3N/1PqIIQEZAewogSzIV4D7PIUVgd5r1HZev2HLVTCYXvICT5ClMEu331oucAlUw8jrgMlMKNwAuKsrUyPJEhE4Ad+OhfqGBoTTZN1lTAqQqrG9rF8OmMvJEFAnSWVFdgioyauXJQavg+T3f8UMBhUsG2czt6lkJGt/K/mr1jggiu0mXL/qYEFIfodz/GVRvO8MzFfOWnxnq9ZKsABg3kGtLQJqiEXlOS6wJNRtWi+JDfg2fYnWurWAquhOIiNjNRKY5KyBRamTrEkdNLTtdtn9B4Eh/8QCyynfaj8M8ybkOUogePbze8u6IMKfimHgPbBQUPUwhOex8VqegPqMAupNYMhNB2OUazD4DuJHCkOoIId1w/u6LJhCEipkII0h6iZ4TxtjCLhPMJNDSnJhQZ0in302sVsKqMprYAMS9CivAVCi4YAoyuIfhL4oDEEZmUCewxCzHE3dpm8lsRG48+yOdyTe+SyzoEJhFFmNJEjgM4zHj9Hfr8TY/VWqv2omUu8YsrROXoDn/HWH15FOIk6/bsM/xdjyH3gh8S6x+XFeW1AdmrTTv/t+dniXL3ekcYfhi8SaUgidfkU62Qf1OvjuTZlnBHCnGEp2D3doOW0ooCrFmIs79BDl98TjlNeoG57kXTaBeEcmaqtnQSXWQKmujHHgV4w4lgQUFxRcsQQgJDEpbcWgAvlf/32yfPpxtQwbhk51cOsSAZUuezdvWXLjpgXLCGqeHkD9sau25FA4haKdbr1MZpIHobQQwmgfaCv7FgZkAHg5WlA91xrSht8WmU31CxpTS3APcWQ0dd+BgOrt4+AqATWMYGIIqM9qbcVsqhcC/9BVzwTzyEBiNnWeO2DMemXE7yhGk+56yvwCJnThzCHyL7+vlk8+qUaf/FyyukTW/MMEPcnbN536YsdQo+vYT/UT9OQWSWDwSAmNQK3NGYjjnIbA9yHDUv1njJSq23nsx9Q2KRoMreY8CSNFegjW1vAwlGsoLknvb6c1Fu02bt8SupkYp5Fc6OheaCFPpq9OLeTASgmWj4K1BlaD6bNgNRgh8RPHJHnsoBgXkOjp1mWotjGReUCM8hIRuPzlQzAMlQ1KX6ud15SAyon0279CU3mm8dWjEFBXwfVwzWcSrqhM7Vfa5WOH8bzHETOHvj+8hhfS1S7jvQuMnoV6qHORHGKiRIaC7sOGdZqbdaqTnbhyEOWn/vYVFrj2eo2MH3OUFfeFuy6+aaVo8n2CdOullaMAFtZSvJbEDbr4eq0lAZUWDl6TuEHeia9OHAotxnq8hIDKRuGV8WQME6CCywkTIHaA+VTxHLWum8xDKLYeKGUXXfUYx7Z60XCUnCmXCeMHSnl5Pykfhm+QN+uilrxSI3XrwUBRQPVizn19CYyYLNGPfy99wCh6syprjZLZSW78C2bCJ76j3dWBI4WuX3moyxks8HP+jQ99my1tElDdBCpMrFS76Rt8m/8h9u1zqdsHhk4ABgLXaH0kpuH7CnIC6sCW0cWXSdOIyRVIPgJMZkxsaNCQVC8S589K4tgRWICx3ARGPLgKjgTaE7eFPvhUctf9WoU7eNt68y/LyfztS0P+AUYxU2NJuWIwjUUYauXiCyzxf45kFCmkUkD1mocL5O2gp1K8h59R5DbyHJ6SiwwjQweUBxcEVK8xliwzhkA5zqRryeeIY2UmcGAI6rUTQ4oQyrBqCTBkTrmMHzfAxZCOZxi9Pr/tb+136+GiDuXQ5aONL4U5jknXAsMwp7ME1PR31HusMoPjaPPJY6UYUy79z2AycltnCaj0NlE8yXUw8Uf2i3libz0vDFW+aiiSTY5EwrUZsyUKby379UuJHz+qjldlaO5ewcsARtRtgYkf4Hv9jeQtWupt6pDf5KULwPkvHQHVnwPD60cGAdV88kQSJ45IEiFW5uVzUOih7z6vEz5vaNr7CqfCIyqdevNUBOomDGH8LyjGvtqJj99t5F364/sthoDqJVkj5niN4QSccuglOgB4U1Li5OHx9rckoHI/sYu/L+Hq+wphjVSO8Rb8tAz8QX6FAmoawxA+YANvDCR1NBx+hS6+KmQJJbCcFpDy0kL50/9wvL/Ke6qAek/5YyM5Etx6L12F7/QjW16ABtRiFmNQKJh6wmQZmEv6XhfDvcbLnscB9hoHgUIpF4/YDxAsTHM3A4a9/Rwd75pkMp9DSKY1hIwnTlUnI/RYrThxqc4AOvfBAMdvwQqC7Lexa84MhgsunDlY/uUPkyCgIh4ziwVU48Y1JN75SRJ7t6OW4S08PCR3XzypDEb2u7mIGXsPjFnJAGSLLK3HlGUUUFkOpahMAiWDcd5CyZnzvkTGjHPI1Y7/Ulsa279Pknt3wBXoAkzf9+rHQSCLX/hdxLzNW6CE6lBpqQRgrbEePYLWEsu50+pc69QuShNOz7JcQOUEbKHvSWZc3rtTzENb05MZkYfMa3+4XI6ehOdeKLnvzU1pl9uR9FlzqYwCKshQACVWP+AFFVZ0xfPHbjBWbBBjNjBP5iHRCbGDgqzXWhJQ6R5DUuN/xWByAmEM2XO4AT8H4BOCuI2ATwaTQqkCfSWswoXGQDwnFtt8ASsqkg8oxhITAJImhQJxaCILYZEpkHdmDZZFCyohrELJ4p+lvI520q8WUF1C5+DF6TdIgsNG4ttajG9rXod6WfCumQRUJisJz0O8/Ow5EgImh4DJgfy0S5WKIyO+3UR888+7EMO3pZ6rnhZQ3fF0f1oSUHMgkPaFMosKceVqB0zxf46ZBFRiCPkO8hhkPshLMAbVs6C2VkDFaS6GuCEDfgxJPgF2vPRhyGtgyGskkUxIxeACeJQVIDP4EFkIDJkLDCFedYfWrIAKH8fg1MX4/hYpl1d6PYRKwAi6vo9dLaDGz53BN4dEhgd3I+HhXVg8yGhCe+m2QBXyScwDPwXB1Ol7KWwcsFjxe338UJL7cO4+zOkPoFjyzsliAZXKPBN9p2CePA5BdR/i92uOeF2HwhIfS9+BDi84e75E5nzQ60rgpYlRf60pAZWJtxmexJAkig5+3qUIguvgAeRdkOwRxzXkXYg3zVlQiUtUihGbWMnkBRImUUAlnnlKdfIrTPCoZB0a5oyX4FeeKI8vj1+h5yixxrIYN+0wO0pA/b+c/BlUqnd06xIL6lWkW/4Scaf//qUpL+Duwmcnw9cXgmkJLCLMWEWGkxPFkMEBGYaFJu5MjYTnYHFQvEYB9SZiQJiNU+3jBIJGwZYYxwBiZvStgyWE56OKhGpqALGWgOuDYSJIGBMFOVAYt1WZCCOGcgDIxqkEHdQte2/SQPnVZ+OQ3WqsFKHzeflOrSDnal38L14+C0H8NmqGJgCoia0bxfx5Y1pII2dNIRPZK0NTkDxo2YeS98HCjJ3OKKD6jgzNXQtLya87pL4os/zVboTr4YY/Y9AeuXfFC0NQjCI5VQWUA8vWSN7i5RndCONnT8P6C43htr+lnz2/v4QXfSI5qJ3GchJBMH6BXLx07dyatKAy8UME9yseLNGlH0vukhVCa03DxgkhhoRJia3rkeHwCl5MvLi+hC5SWoFEVY4luCsKfTfsb3v+ze+2FsBaC0+HI0cRArAZiU32OXHqvA+tm4zjKITwyUQCHlNJjSQX4gVxYygWCppe89bJTDYEeeXiCzcZxnHQnddrnmKrDoLp05eWPK2zUgIqAd9rBssOwIplMo4DMWMWYjlUjWX3AAvaSRsxqaltAJwls4c6Sq6PJ8Iw6buYd9EO+LUTSIJQC2yAd4LXktev4T3bhEyN34Aw7sOTWMQIWPqD41HndPlHkr9wKbaBwGiMZ6rbhqzaP36LQu/X8H7CNdiz9POADragMuEH8c1E4qPYj5uR+Rp992XtVhiB7ywwBBmyl6+TXGCE5+XB2ousA5jYukGsC8fcvoPJ5IvBBkE1svqPqkZheHiF2tSe/6j6iRwD1nRGP5JbQUN6WShM7iOh6fMdTJ77QbO3ZWIrZQleD3x8cit1rBZQU6RQK40EVBcT+MNFZdFkQkYwhCrvBacXLMQVLh6WMAbVa5kYRSYraauA6l2PvwkEribhwWCqBfhBHEGpKq8xK7it4sLcbcCQ5XOGwZNrsnwMDPHwzTs+m37rvfPbgRvqnT+d7iKZM86LhaUSwbyYt3QlPItGpve7a00JqKF3VuGb+Uiik6YoZU6QLsF+gG50pTfbEDuwDzzFP5Dw8Lv0BchPwZtLkFE4PG+V5Cxd3WQmcCWcfwPPjSvAHbcFqmY5GDVvvlI2BxDH1m61mCmMAGeI+clL5yWxBTjPOtEeVvtwPjTxPYXzecT5DC0Grw1mLTb2bsYkiXeQbsKe4h/Hh2bjuZGoKvfduRnO7h2bKFPU0UMT/Mv+g6jX/p0hmw85AUCkAHkXGuMKYEWlp5cX5+5hTSk8RYk3Q5AtPFPLhDt+zw3OYGQlOJU9o0Id/aBHGDbV+xxMXCgBnKGsYxooJZQgv/IkdUu6+xJvLNOz9MOCOqCP/EkJqBOU11fq4A5a6XoBFe83h4HCYQEGjRaRYkwC/uDgIgitKu40AxEyCqieiy8UW5kaS85wwFi7jEIq6yj6BdxEAnFjHDBYPlTv8AEz2YkFn2xqGZjll/FkI8ry5d0ZZTJ1aplMmlgm48YNlGFDfTNYppt30jZVGxDuHAZcwUzW6Lpw0om18hgwusZWTlEuNKFxcBWF9ZM1xDK1rBNQMR6BIeNRixV1uODmGh4zXqKjx2ZMxJJRQOWzV0zG+ZPx/Hh2pKVv6tkz0aO125oUUIuHIykS6kWORxIZ3DuK2otBZjpt0KzXr4QFwM2LqFl77heM44l6WteeLKBSWGRB6zNnLTmNeoXHT9tyFsmLiBMUGAnqrFFI4dQTILmNMWSsj9wPmEFNJLHDY9rUPIxzKV8RxDmv+r/7VwBzlSQJ3hcUULmPn4t3/VrkbX/8IgGtJHZCQeXm/MaV0CmbWXwhmAIzTMStWwaAnZpHVVfMGdh6AqpSZQZlybsIE/jDRPkEMR2dJaAad1D25gLeKdQe9JoNzb55Hhhx6yweHODIBkVKYMQkvKfAibGoe8zvBEXZldkYu1nDsN77eYHvJxQpXutgAdW4flUSeA7z/Bng3CkwfKcA6mlmXgbBPVZ9Z8AI1fexqay2NrQTdHcjHRQ+8tlvnMF4uc/ewQIqhfvEhfPAZfb9F6dMRewVMBmYBHqrOtPE5BZK9WgB1XvZmv+tJ6Dic8X/imEjI0eFFi2oUZS0ywGGEB+40N1XJUdyEzMWFYEPgRLda5kYxbcWUJOvkf33GZKcPAOGuNYLP4b4BVQXQ5bPo4A6EbkwqlNY5/Uxm36pbE5cPI/3/Qy+OfedTymd0VMkMQyN4byIb4DfK95/T6Hkf46mBNT63/sEiY4BT+DGrfrPf9v1jAIqsvUGRqEWK/uO7OXse3hoecZbZRJQU88OfkRhLZ+dVuN2aDaUHsRpA3WWTRgrTOC0zZqmnmAJZT9DOBTOs749aY9a1pkaQ60o5JKvNJD40a45Xs+jTQuoEAgRh37+vKnqLP8C/oVlZc7DYFaPd3GxxuMtmNiRgikTIlEJRr6FyWAztUy4k0lA5bm1kK8YUsDkjjTE0arqNSrTiTVcyKuQZ6HV1GtOHg3KOrgIhFXWSB2G2Pc/uRUIeqyLr9+C+tInoHqZrYYOEBk5PCCVWKjNVBMGxf8MLZOAeh8C6jVYQm5DQKW2wlOicWA5QGRUufDvV5BBX7oaBjKkrBXEhEjJxF0Iqc/VHcHiYnAg1ULjxEHytAqRoAm3oAhSz0flN5+NkY8+HNfpdYIykERtIvNYtx0Wgh++QYIeMF7MsolEDEAl5xRYESOLP4PGcRXiGBHDCAtiINc3+/ounH0CKuq1wmpLq290AgrYs+/0C6cWs0HLKKAqSQWSDbS1oamwHi+HBbYJ63GDy7Xpz6YE1MCEeZKzHFZnuA8quqPvAaaMbNjARDOZCy1dcWout8Dac2xr+qjSih5rQb2PchDfb0HsxkZTLkNgVCUa8L0yViwP4E5tIwGfi/qeQZUIhnToQHhdoF4Y402JG6wZ5jXiAPGE5/IcNvdrUOssM3MLEwmFVJaFUHiBA7xJ5DXQ/iF8Zp6heKICbzckQLG6ePcYd8qsd6bSOELQUQwAOu22tICKSYDvKupvLnkXFlTGsX8MhUsnWVDjJ49LXFlLN3ldw8NCS0e3f2rVPSUWkniFF36C7wPfWcVI9131eRqo95OW2JjEEZ+k3s/j29LX7GABlYyisgYcxj1pveUzeEwXehGauUKiK4ATSBTE7yzIEgjeZIBnVBZYfFuJmovOdXZ/jWu41uMOFlApGMe2fger7z/B4EGRYeC+fYDJSz51PDsGDQamAddyMmOyR2QtoHqUaP7XL6Dy2+dMwc+NjCErBnDdjyU8ZiAYxlEjAlIBPoQueBRkeYzXMjGKbyugxuNPJR67i1jV+7gNMYQKkzRKpSyoiBcT28GQ5XMpoFZDQJ2QwjWvj9n0y7jpOBIAJrfjnc9gfVNWxBXwKHp/gfPuc173+z66D9OkgOp6JjGTdRTXyUM9Y5Zaau+WUUAdUAl+5BPJXbpKKZvVvE7/zQwto4BK6zEtsAUlElmG+HFcJ1I5MsPZbd9EnKOnS3wLvDQun2yM8zmF8ChzcIeVBMhLsf+ZmvK+wfWIO7Ft3wM3MZaPrqUO1QKqyJ27lmz+ISlfbrTkOkpZxQDtiRZ4F7KvVSNEKkcEVSkrYg35l0wtE+5kElDJYjCbL41xVLgrYxxFALcZ4FdidfeAN3cgF0E+UFiT5lccPgDzJOZUx933pQwtDcGCygSPE2FBbWxU8a7dXr+dZkElz/PwkSUP4X57scaU7bss2fSTJUyBTCGSTCOZzxwwn0NKMVgVARmJJRPPlhognEuBk397PBUJc58uvmAy78DFl+dzoNh4LBfyKFyY4OQlrCKvYtCmQ72gkptgMAzWGqO1FPFjSjClcOpNEtjP7WREaUl1ZqyA/N+/rZbffDFR3n1nuLpXV/3DhCEmrCFK0/XzbjEObIUEDkI0bAVwo1nzx1YlCuoKAZWTkMWYh2twq963C3GYP+Irc10NMKCqFiiSC+VAQG2uZRRQfScExiIBycfITgpBvb2a9RJCCvquNMY/70HNRYyBrz5jcPpSJ2MfJuLWttiRg45bkb8GbA8WUO/cs+Trb5Ly73+35B40kvyEyTTmASPy6dabAbzJDwwfjAVZe/tAQG3YyFvyGioZEf9o0Fgr8fY9xMTfw4SCT97DFHUo/olhpnkGjdZLCDUqTTvdrQnqvCiVWMADL+s3C2GrDHhOhLu6k63CBiAFYzIA2uD6tkwf219Wr6iQhQtGSFlZoQyAC03fwuaFkgbdbtWfZCxMxGWrOCKUPUruQzx6pjq7/qtRSGMSr7WfovxRhX9Po/XYoQPO+7l/Q3ofsmWr+PC585UrPeOxgkXtN6nV7d6BbNd/E8tfCzR9dwm9Dzd+hh4gwVBzLXkZCaJQ58/4/i+OyxoPBrMYmok4srkLJTwKpVsYB4f4do5ze7T46VNIEvMPMXb+Pf2ioZRPdA2yfq75VN2vNfehIjJ28Ge43AEjL58R+8ldqM2fSWD8HBVDG5kIa6zq+wDp0JrPrelsFx6TElB3oloA+kGlk8NzID4duJFpVAfBgFVVCT4EQqr6xHGeUmLjk2d4gMd78NdrL1mPEBhyE8NA5XnqPPIe+DuGFJt1qFtVS67R4ym8k9ELAwmRknHEKiL2NCOGMJYdHhp+DJmFsnerVoxQGDJwYIEMKC2QQga5ZUFLxV5iPjTOnHLyYJzZi56BIWzQWKc892MmClrWYE/9P5sUUL3DioZIdC3rHiNLP2K326OpOEzO6ViSTBhE/PTHYbIW6Nrfg5/6WAnXzd0zo4DqnQBrZngFMeAzeKuM9ba+1W+qXuu3wDdfqcDURWH9jXzoJmuEsaI1za6tRWjBt8Cw+tdU8bdzET+MMlcp3OnAEmOt6WtnH3MDCWC/+jop/+fvpjyGzjfFu0AZxtIyDCdo2OiZMboCCrHKYL1kjt5xLeEOFWO37zq4Q3lIARo+MZ7n4U4tcKfOhzsW+JEk5JwkXXvJk1DOUbKOd9f0r8qhAdwpQYqGT1YPl8ULhkvV6GIZOKBASkszMFvpU99qrdMEVBLt6DFDDh5CXaBTSI50Q+QKtAtsnlVEWTwwmsxcVcn0ylgyCah0zY0hHowZ8TgAipF0LqWu9/AJGU0Iqk8xTrieN/nwEMiXqW0WmMtaaINiCfhgY8ax4bbnaAugIcLgMYMeGU41IXiMpl9AFagllBYzCAF1AgTUagio5aoPXfUPNfNxZIA1T2C5dcXJAOulE/d3KssFVJXJFlYZ45ejYt3GczzCC5OKmchuAZUlOxLMwnv0ALLwXkViqquOhcelvxZQ/S9i5vWGAiqP4nec54I8MaNha0lAJVATO7gQBxo2xqbfASZRsUVcIfZQecaSM1ySAPcY4gPicJky4JFgqsRHwADFbDmaRgI8gZ4aR4UbPvc8W72/KCUB4dURVuukrCgqE0YXSVVVkcx9r1zeAX6MrGwf1y7/8zGpDrNIJo8cgCBzrnEmRv/B3vrbCqhhaOIHVkhwKDI7TkMMKzJst2citQ4VUGHdlpJhEhyCTLrVU1U2ztxp053Jw6PPW/y2l4DKWFqTLtu3b8F97xdJHkaW85rDiOND0hL2vQruhsi0zizAwUL4vPfS5hdQoQNX9U6pDOc3TmHV4xH85GHVAMWHIHuvJ2hSMCXvoTwssE7ew1Nk8VxiyEMkfbyHSCDijPLw8o4BhhA7yG8w9osgBNTAWVxYngqhRCruC3HV4DscphAKLSq73JbCEFWzkIqyGGqiehjST2HIbGBIRZaUr7IQNxFHzU0DuGNchAKFGWBf0DrMZ67fsllAVZlsmSCI+Mn6oczC63dP1gKqM5jgK1X2cWYwBu5Ep0FQLcaH1ItaQwGVjw6IUd4aBU0o12lBHQndAEvKsN5pw9Ya3HlA3HkMPgVyZmPcSQB34vVxB3yKSaU5LKkqW7iLOQ3vzb893IkELamuzJHRo3Jk5oyBSNBWLjOmt06pkem6LW3rNAHVANG+2ZCQP0OrcOhiGpwiGDmWXSiAZsFr9MGmJYSBwvR8aNggU6pyD7R4ZGpPnkFRhIF6BK1Cc41CaQJ+18kksuSp5DMQUjFpBMic4JUiI6liTxEPAp2pcym/gEptgzLPhuR/fjFWfv35eJn9Dpga+AEFYaL1JrXm+tCqfZwBoaZl3zLger1LxPaiZunGL+vVLK13gOoUaF0Ebf2HqFGIshEtlVqp27dH1fAyD//gXgr98c3KHZEkqcV6rUt/izp/LVtQmSAqhiRLxo9/cwXc+n3vCAtqRmunbxDaT0Ad4dRzXY0yHgi4DNAtQL2Pvpt109V6AupzjJkLD7n4NFkj2S+g8pXmwqQm5cCNcuBGJgsqeEN5BeMD41uJRw0bYzXuQzi99xQJDXA9MrBkXlleJq48LNJnxBkrlnwFr3lwpMAGhRvspKI/GE2EBxA7yGQ2alCMpb0wKOA67U9/nCS//WKSzJpZ7m1q2y8kcJbLyoQRJkvCfPdt45ql3h08XPD+5i8166uAEbAKsHRTcy2jBdV3glNfFHX+5n7g2/p2qxkFVN9zqLITH8F1bSoEy2ZaRguq7/hAxRS40v9O+qBcjnK98e1r86o7RglaUGm1ZV1ED0vfwILqv3+TQq+yJqGkFiyp3a5x3nNNlArfiHFv0Cig/hdKVbHMDDGECUr8GJK6JD9h/MHXqAR8yDB4YwwDpniNGPISMiMxhExjw0Z3vqeIDHr6Ai51WE8AN5TRwj0wmQSTCNwwGEuq5nN8s/iPtZOhDlP35aH0rnAw5BmeH8DUoDHEwEp5cqUx5N/+22QoyifJjGkdxzSqrqDvalyoyWumWfCEqkNJmcTG/0Bw3p30kb7v1Nvo1AL9FWqBLvE2ZfylsFi3mTWMcc3HN3BM/TldOsCCyrIy9LJIbvoLBhYDrJr7suCNCQxDzOuaL1Anem2vtqC6hHHmjjZaZVPndtWK751OYY16T9vWoXoCKvgNxRbgx+NdGOfuNV6eC704yLtQ5vEla/cOg0K8edypiyMhEjCH2FPn8isUUr3WEu6obL0qgSMu0kxL485zWTVvsPzxD5Nl3drqZs54u109UkDlQD2A9fQJXANVfTIXQxk/QoaT1lxuZz2g+gIqD3QP5hqEVrryktFMC6i0lDiaSydw2LGYLJg5CNrLwSph0sjKYqmEBjOfQbXt0Jjp0bh+XZLXr6CeFmbHZpp5EcHrJw+C076U+ah+yFpbMRYlShAMP2W6ROECFuzbvGY9efmSJE6dEPOX42JevQAt6EWoadKMdzYLqOa9OxI/hfqpJ49C84m+3zwPFzi8HG7r1gIqBIhQ9XuIo0XtV7ghRkZUolaij5vyHrIb/voF1Pv4jmnJ5LfLmLFcxIxRseU1JlArRMLGQrifFCORST8wlpm8iloSUAnyD6HYeoDP3QJA0KKB20oSTBgtqGzsB60utbHX0EiS0aT2kTvTuMHjlGIL2JGJuaRbcEpAFcwmvAuSLP3pD9WugNp25pKWNOP6NQcjXjSeZGxYUJMnD4l9DthA603DhnjTwNAxEqqEWxmDedECkPLDk4ERyIqZKVmJ/xJZI6DmQlEzDPiG5wgT3yYhcUn5cH9XG613loBKN0GW/GL5KBPlr4yTB5yazlpAbTQmagMkQGaXZjIsfGSiaiyOqMgYl5j5AumtBw8b8s9vIaButaB4aowh3pFMBUAPe8awc1pUeOLzSm8No/gI1tNHwBAyiErQBDQoPgQwYcCLwoCQaiChmmUyAQmTj3jaMqKNt7RBQPVhyL/96yQVajRj2lDvkTrkl0m+khgX8+aNZq9vI9GfAW8u6+x+aPkQa+21YtQXHoHkgAMGeVskNGqMRFF/ODJ2XGpbphULPBAVPMlTx5Dw57RY1y64ITQuBneWgEqlwoAKCVUgodE4JDxE33OYQZiJDpppPdnFN/XYb+A2nDq3i1YYkkW8scAzhipQZgz8VLAIzEQbm19AfQo2mXIH+RWPdyEf47U+5F2ANX7eJVPocku4U4sp/THY2ofAHSrOmsQdYg6xpwHusLKAUxLPDaPzOtjgVwuoIMjbWlBfQIbjYDHFMjWYCQwYYZ++3xFYRWg9SWDGSEC16Qmoyi1P4Rv/wUyCCdFJiMR4Uw6aq47Aboi9+IdWE8acIdMeTOMDi3JQrzVfJozvL6uWV8nChaOktARvXjs0xlzEYRlN7NqCulv3mr2i/RLW3te082dgQnEm3WiiC5Yjcch0BPP3VzFhLQEq45wY22rgw03s3i7GT5vhppPuRzYLqIy/sJ4jLhcMemLfbknu/t7JVOpSsVsLqHQvyOsvgaJSCb+zQKLzF0sOEsL0hOYXUB/CE4Kxp3nwsvDcbgn6XmPG70GlsHggA56qiQr+IJPnRUsCKq0f9L54DJBHuAYYTEcwpfzAhcabKBZiyKvaV0iw5gmo7Alxw1kI4jbrilkQFBmn3rA1FFBtjCOYnT/9fgIE1GpYUNsuoNKVLrZ3lyR3bRXr7vWGd0QyYfTjJXCB2n8lUDc4pGiwhD9YLdEPFqfqbQbBrTO7NJdANKfBCfX/zBoBdeAoicxHuYkPFkmof7HT//zmcbizBFTGpsf2ogbi7q3CeFF5hfFgshj13uBHW1DrvVRUutAjKLF7G74jE+O6RPJYhqOJBC71Tm7wxxGEF23YZMjX26DswjfMBf83apQtBg8QKSuFqx1eG4Unjr5GHdsSo0gvjAePoB9+BgUXzghBo0WsYo4L8iEmMIX8g4VvMInEXoYKBSBGODyHY0J1etZqC6oArNyESf/2L8yFUQ0L6pBGz9aeG+JnfnF4gYM7m70sM8jKCxCEuIMx9FpwCmqczl+msvV620KoXx4sAk/SgsLcBgPHOZ1hC0pQBV9knWQ/iL9onSWgYpIJzVqJ50CsOoRq8lMhxti3YOXXAqozTNn2Lz1QEnvA3544JJEFK5CsC/kHWlBuZnoGv4D6DHjAsCQvEVtD3GEitjLwLsX9W+ZdmvPcYGjBfSrXXe+vlnGHcgs9LxzcYSkrG8kdmYStudY7BNRLDngTwL36Y3m+SeBtBVQO5GMwmhRQnZIytIZQiwGXPTC6KqaMEwZUnLSCJODim9ZiAuZo6gcTydgPGwNHAVTt5zYOqNucODIOKsEXGzGvjByQL//r0wr5dOUIGQSBtT0ak5skdm6BO9gGAD0erK2N3DoytUmffhL5AMwbkhC0lFwo0y3IYNVu+FoS6/8KFfG11CF0zYkuBnMLV7pgASwYhYVvpOVOXRArGV18kUBAcvEcfUvxDGskZ+ESiYys8p/W7HotMgjGv/2b2BcOpI4LDJ+EbMYfSu68harfjNMKZDK/pc5oeSWjiy/dxhHTJ32KkDhmiUQXLpPc6TNbvph7hGIIdv4oyT1QDrzGO8CEUf4Jn4mX1n2hGLhWX7QDDlQKASo0sLxNe4gsvtu2gqn8zpKbtXmSxLib+WBg8B1zIXZ4bQgYynK44g3Eb3OtVQIqPmUKqTEKqMAIYoUSO/EP+Q6WtmFyFU9ATcKC6jVqLanIUgKqiudAHCoFVIUbxBPiCsvTJKQo+VhK7MeSCyUXs/kSPNatqZKVH46W6kmDvEu2+td6iZIvO1BbcBcwQsV4teJUgiLiRCW/SIJVk/ENr0I260UpAbUVV0gd0lkCKoUWvls2sCjOLL7bN4k/WcmbuOMasALFdm2T5A5c6/EdYOwLDCMnb6e9yTW9c/2/TWXcTR3TEQJqn2IJz0cmY+CNytYObA72AQ51doNaXyk68Z6yHmZrGi3OcWLezo0YD0MiC9eouUtlY25wBnuZ5gAAQABJREFUAWY7JnY3VQ+a+S82bjbkmx8pIDrfNDHEU3h5l2PZquGQ7YgnfTJM3y0KqICDB2AU74NRJEhFKKACN1jmgQIqIYKfHe8dQ0kk8h6G8mgg0GDhDld0Vhl7wTCmM2ymMQScDeCfvAkZSm7HTYAjmQRUemARH1i2rL1a4sQxfHvfiX127xtdUrnfr/0cCtXpb3S+d1Icnl2sSWrs+tIhLnd0loD6hgmN6vbsBFb/AI808CG1mHCYgZxjz4ZMxKH3kDV90QoVr8/3Wb3TygXcOaS1/3rjbjwm/4hayzswN/iSNaqswXngdwYhA/Gi1ZILfio0sKxVl28qSVLq5C62oNLKzjmC9V9b2xKIlU5s3yz2+QOpMQhXVDY6nRUXOCaBAiwZrOUNBVSvOkkm3mXYQLj1Dg3IgJJGt6m3oSXcYTUSD3d4n7CrGPMMdPVxhzIPlOs+3LEQiuTJOg6/wveRSOk2l3dxcAeYBOzpsS6+hyGgsvqDqmUIZi+CP/yZrd5WQKWL70NYUJ/C8qIydnpExq9iInFvOu+ZcLd5DStIXaIpAZXMJrWTTGxCszjeAp9FpJ6AypkFbnqVmNT+23RLPp4Kq07znrO+XjW/aoMhMy+fhXvquXqMU/Nn+fb2KZXQhFkSmjhNwqhvRaGupbhT39mp1aYEVClBXc9RE1HDrFrCE8HoojZpU4xC6mItrGQUUFknrRrurNXTkPwDLq2VeI6SFr5s330yCajCoP5K9BvJRMJwd2bZmjehje82klFAhethcBz6PnE63KvHqjEIDx3mP63ZdeV+cqUGtSsvinkartZnD0NQhWbabSquNQsEVOPWDUmcQd1d1N59m/YK3+7lc4ZcumDJ+VilnA1PlPN5cAED8BI3yFh6rb0EVOXiC/e8hxBQTbj1Og6+VGjVd/Gli04tLF91cFmji6/X0gIqmU0qt+D+D2GU5Wfo6qsWOyY5YCrnBW7I9LxrUhom0wjsAFM6alSZVFWXyaA3qKXMUgJmzRnU8jyLOSTdJ69vGX/B9Kj6dxNnoH4f6gGPRN3QkSMx6fq0hRlPbLyxswRU8/FjSZz9BRlBT6I+8Fmxrpyp583xJsIkrTGJK5eBsfi2cF3jDL6tR9dTD/km10yd7FvpEgEV2YgD5RNUsqTQBGDzBCjkWMu2kxsVV8yozkyu9lNIcK1otJSZNZj3WCYNHFZguPMcgQw+cMEh5ZgXJkvO+An4nPg91W+Hj0A43QAX3x+pJMI0joWMXC54D38W37cVUFl38DExBHKH52pHNo+KLt6TjfhBZfkrlBeqg6LRUAkZudNbeBQEaSZCQpI1x1OL+EEcgdcWMET9ch2ueqzJrDAEQuq//evERi6+xo3r6psxUQezvZp1+zq+F4zL01tvdMneLKAyiSK9NjgexumjULAdS/N1FERRvzk0Cu866qRH8E5Hx6O+bQZBqCXCM5wgcYZYeSr9HfndrFknuhpJjIALKkRo5CgYGGAAaEXLdgE1WYOwNMwT1tWaVjyNc4h567qo+eQZlJQcg6pqCRaXNjo/AAVfuJq8IvZnyEpfT0DFVKzqLINnUcpt2FjAwqRaewmodPF95Lr40m5BXiSFOy48EHe4vFa4Q94FOEIwVFgDnFF4QoW64wbsz+irMEjtJ/Y4mLQK9Zd7ZAzqEQioNHszoxUJ5mkUvVF7WwHVS5L0GIkMvALcHAZPi0l/cBbl5gC8gFbxdQzaxVQcCAfXtaDiHMWkooNpH+20FrKegOpqMCvktfxLv/OytuyCDMptJaPoPXhTv2pGpaBMxpdP0rYWGIKMaquRfAD1DIMM2AMDGmiqyFIzl25SQCWo0kpbUi7RVUiEsuLDVmvimrpdJgE1MGomEjt9jvpmyxRg///svQd3HEe2JnizHAy9twAdaEHvPSlKIkVSNDKt9q9fz76dd96Zt79mzszs7tlnplvdLdcSjehFipRoRYree++9AVB+vy8yoyqrUKgq+AIQQSYyK23kjYwv7o3rLB97O7VP+ZWMAirrzgU5Uf3LfiXFy1fDXGdsfjes46yMAmrPcgmsRMoL0qZ7TzwPybEz5Hir45YQcoA60DzEqqqletu3CHbzBXyBzydOLxQBlZFig5vXSeSHbxJ1a8gG46KEYQ7H5cTrObIp+IF8W7xE+XGUwgfVPaHVVAIqQf4+ZH4VJAmVJkYQnxiN0x0kiXhF7UeYQZLqEFChN1HARjC3g5kgaFIME2Ew/e2GNFZ/6HxW3u99VsqK3+BJ9ojlh9Ttw/fsc0vf+RKPsMBAb/XBCGhcfIuRC3nFWjBByKGovkn0qQwMfq5qtJSAGoH/ZvWWDRLe8pltTaJGY47AdmmQMMlAPEgYR82eCjL37VcpmqEG3VNXyLVuFQFVDa74FqmZmfwWMOhDKVm0xFWrltnkJED11m8ltOlLiT+4kt9D1TfNcQ/Yx0JLA7yH013sfc5fa9QMKXr/Y1HpwjJ8vwd/isiX3yBQEnxQ1W3xhwJqJ8zFdAEfwm2WxgqoOkjSUwioNeiO1GAoX1T79mpijYwqn/MSZvkvq20B1TmseA90ZLXOiCHAjzhwhCZ5IExS6lU3sORf/0gf1NQgSTVHkKN48zcS2QdNdFMV9ru0vlefW3dkAZVYwwSVkVs3pIZYtg1YplPo8eN2+ClrGITTFfim31vZILN28iGhTRiL2e6YLFX9yMU/Kp5hBVJxzZoDXgT8CIXgHObJuo0LXUBlasTQpq8lemyXrnLudeKbRr/SPG0meiBCemDFJ4pX9A2AuUVacQuoTyECEFsolNIHlbyL38WyNpWAqoMkZcUd8DNFvri8AO68Uu5JYHicYss8/EZgPh+DhhTBY+EXpA/jNzTSabizYmF52xdQn8MX496DmNy+E5N9+6Oy7ce4XEeeUjKYVH17ncGE3wMDnXTFwiAnveFPRt8y7k8vuaL4UoP6ALOYT6GF4Yfh4R/wMPQ75Uwm+T9qYvBLmepxFrNOARUVYFTfKPKTRSPIF6Qi+to1AvuM+zIvGQVRPAPvMjT+Sv7Q9YSs6XtG+hc5A2v6CzT1by8I2XMQTDXKATLYTivecvhlzZonRdNnYIzHAN/AUqeAqu9Xj9Q1+hL3mvenpjBy/55EDh+Q8E/foyGTzExj/UUzCqi6AmjnfHOr6kvc63gQGixd91PHJXxwj8SvHEme0nsoIoH+XuVJa0y6Bw5uzD8WWvcpNOqYwXaKVTYepsNvIf/YNARKGii+fv0bZKqp71fX2t1GQLJap0Uvnce778a7/1zrWEN3HH01XdZV/1K+Llqmgg1Qg0qfjm6dgBdYegEniBcIZJy15DLxpYCqgiRBg8qcyAqbgBU09UX6QlUIV4STamhQ6R5Qp4BKZhpCKmclY8CNqMo1RpCvkp7RZ/JPXU7J2r5nZUgJMKQ5S6deSPUCXOiRYSYYTIlv9kLgwizxDS5rVC3C0OwHfzqAfrsPQSZuQo10G4RLDoDU1PpmLhL/lOn4NgfgG8X3WQKwr2cJw4qgen1azlIOEvChtfqVw0IBQVZmzpXi6TMzDx45npcxMjACuvhmom/Nmi9kSGhhkWnmPMetVXL7qm+/gYvEnzA4gT66wMLF6lumtJw2Ts+CHx4GwXoWakyCyEcbPvQj0mDckPjjWxj0KMjYxRo3H24Av5bSd5bpXc2ypnld9ME9iQLHqQVliYMpYr2iPwPTqzDV38TFGjYZ7/ZbKX1/TaLdq5EO5j7yKd9FfsATJ6Oye39M9p4G84n/7M74ahSzSMaxK6L6Eku6A0Poy967O4RVWL+nl1ymdmQU6V5EP3bKIVHgCIMyUnuqtbZkUGk19gp+7FWYHKcmQxel0YBAzjzJiWwCsL6IMTd7+BF4DbgbUZNK14CEgApAIhcMCy5bg0oBdZC+pcqTG1z3uUQPbUrsa5YNaOulJ7IYgA9RvlRZHuKftUCKZswW39DhWc7KfSijiS+DB06Djyv6qxeBbnz9gTcNjGCdGNOvXkJOeXy/x3ejYR3FQwNNfPVbMVd99ca/S3gj8KAGTGt6qUfqmvRL+bsGLhCq3X/anOmweGetRO5WCFqz52U8nm2nMr9HGsDQoX2wloJVxIObiHHwEN+gM1Biwt87eTHGlwXQzo5S/EhjLdMy1gcT9xGH76KloS4Mihk5tDtlEl8fa/S6DvNlyjn378XkwqWY7NkXk20HYsh3rCQD1T2pGKN7UCliaVDO6QZPC8W7wP80h9t1zii+5F0onD4G9hBy68Id6kReQylXpay/MuAOBdQo/Lsh5zAYLDEmDuCyrTZScaddCKiXrkRl/4EoGiwqN+6IXEeewTdoNOIpA46Qt2ChpqK8D0K690eQpO4wuwHWlTAuh3NcneT8ySWgvsR3yih6zzAJwEkRmutBNlUDBCeQyGQqPMdAwIYK1WXii+cx/LsSUJHQNhK6h4HiUbIq6IwcSDj7wIZk5xwafyl/6HYKAurZlhNQwYT6ZrwtPgAyI2+mFwpEFFi8/folCZ5+Uh6/m1tApS9YkILpgR8yM1ijkc/vg9/Ys+R51Df9lOYUUBmwoebwIXsQY560R2AOqzBLokszC6hS3E2sPoiMWF4hfgwKHPzz9SfRVcxnTXOx4GEwwRDAlQ1b2kXxZ4/x7jeblAl1C6jouqp0BfM4pL8FfzE7mAnxIpfrcC4BlcwlrS+IHbmYS/qg0lSmLhPfJHOJQCih+xBQ7wIeaB4Tge/pqxYTUK1Rs8CoLVJm5WlNBez1ABPAvAEX8jXtSr+H/s3vP/rggUTu3oYgslciP+1CEIC7+jDAHN9nb0buhGm+/j779E0ez3Mro4AKxpjaQcUMVSB6L7GOvlQE+nqWjAIqmC2VE7VfGeq+UAIz5oh/+Ih63hnjz7NnmFyqLaCqNpoNZg4uBjZOQ3jPYMaa64GJySMwbGEwjpFDaINH1xKXtZSAypRGNkYAx2tsZp6+w4qJ5TcRBQPQxCWTgPr4SUwOIu/6D3ujcvFqXG4+gHUEU1axOCvOK5PFGAgmkantBvQF7wFsIe+RaS43l4BKRpG+YAxWwkcwWAlL3ZNccN/JJaBCKI2EIfADQ2glwfzt2FD8hm3ei59OoLWkD+ogPlaVmkP7bUGluQXUrv3Ah0AwRP/OBcZqkoq404CJGP1eXGcUUKll7zFQTVj5J89UE1ZFEye7L8t7m9pn1ZdoivsAY/qL+6A16Y/SgQVUjv0RRHLmRFTkwjnwbHskdvoHfJYObThBi1SGFjDTN2Ea2mCePWloU67J/jL4H/kutlHs9vXEfeOPMN4+xiRgQjOdONT4jToEVFppUNb56XhMrkPWufkE0gFAgAjAochGApAFw8lQ8C7az51YkyMGYU4BVeVfBrupfN/xvGy4UwW+JaisvzIJqMxcggn1MJRx9G9Xso2NNem4s2J+WdvXoB49HpH1GyPyFwQ7UZEx8a74rwYFN//A2YVRSFI7aijSRLg0IdSwqwXfuy65BFQGSeJsggqShLEwCOmUyh49JvE+/FiiAJogtCDMg5oSJIm+Y8rkFxc5mhA2WiSIZOhBjHL6Tkr9z4pxiOMDIKBaL+Ufe1yS1f2uwMQ3+QHghGYr1sCRMDmA6euyFfD9dBGviZ/IIBfVWzfBXAgmcLfPgYA0CWBrOpRtpAaVPkoqN+COvzr3TX2BxmpQq3ftgPnpNxI7BSBVdQeYapMXTEQ0RoPKmdYq5FsNb/gTpqiSvqGJN2huAVU/KFAq/hX/ICWrP8Ls9DC9t3Fr0Ijmj3HYutKvI7R5PSI5f52xjZIPIiKjX5DLyxRSN3lixi32VzvyZVyOKxPfNfJt0RLVXPzaaJo3boglo4fb5nIZb5K2k6Z2zIP6+o1tdpd2GFgAzHgZwxJHLjF4jwI7tOaU55LXZIoK5jGj9uNV1SvUMdnHOVmVAHRiAt6fUb4jYCwjwVuACJsx7yE1MPE9Jyt7nZPBJaiQUwIw7/WDXj7O1jVR8b2FXMEwW28og1bfanBmvQpmZaFvoOG/A4xILwgU5l/xeylZg++zfGj60Tp/KwEH3yB9t5QJ+c4v0IcdEyTecyW/+Q/rdc9MD8sooLpO9C5EXlVqHaZMc+3NvslIpuw7scePbPP8LZ+nCO8NuWf2J2J+aPNGCCV/kZQAUpisCKz4SOWZtBCeVlnb4JtrmgKMwDsSJ8KXoE3fAozY9WWyjdwPIS4QE8DgN1VRJr4rP8Lk5XL0O47uAs1pTL7dHJa/fB2Tm0hiTy8JGEOkFDKQHALKIKCOHcEASfa1KSe5fjCnKTO9KQzh0JdWqqugtQVjev95TOEFowAn3ARwLZ+nS8jhPVIE1LowJHgHOAKGm+Ot4kmIr7ihGn95R7YjgySNqxXFt+bnw8Bsx9RTP7wZ1lZ5pfq+SpfBJLUEXHgLlIwCquu51viFUszYDAgMmW9R7jScUMG3XL1tM2gHs/QbJ5OX6++Xgsp7dNtZhQmriuTxPLcid+9IDdx1QpuBZc/v4ePQ/JRzg+bQoLLuXChcz18tgeVrGi04hi9dgFXLlxLZ9hf0d3uMc5PAGjEN1g1QLKyEdUMTFWWZgfaJIaWach3YAqx5eKX23ZVkSLxBR1T8eu1T6r2nK0x8l/9CtbvbxHfT1rB8hVRWe47FbVkHfZ1oohb8Ic4QMrpCIK0E7zJqhB1wMZ/nM9ir5l1okZFeqsDT3H8aR/RwG3fIp9BSlDxMMA13glDIRdIFVAd34oidEQ0/VIvKXsLJGIUz/G6IMXwR7oshSFI78EG9BdPe02eiMLHB+nxMjp/HpC5AHK+rxxHVcPyO+ne1hP5k7uh53bCvO/y23YrBXALqC2hQGSTpOdYcD2g2w4GBgxMZX2pP2XiMtsnZhBqXBlV9RAi3rEIuwzzPDrLkwWwCzIAjUH0jt6E9a8k78+a4EW/ofDTDSuPyx2kMkmSp97FPat6/Vq/etjP9GPiRcfq3mQrNWEPnzkoYQkr0PBYEZZEHl0lI+4kFLqCGL56HgIUAPudQ90sIKHPrbJKBAmgbATXzh8NZSgoGkSswczoH+p3BbPKt08l2z3QZO3Q/BLGqQMCs3tBm1bO8fhWTy+eg+QBmnKsaKie8lXImMArPVP+Vi8BAmOIRL/J15SWwM9sK/cTcjKKuWigUgdBZI6/eBOE7FktYXejjeCOFGwx6UBN8IcEgUi/BN0NjBEFARfAF00jLC4K5MvGFyUyUrgGc9AKwF8MvdYH3vkwpvY8gSdUOEHqkoqKfjKzs36AgSbqO6WsvguIwyEZ9AnKl36M+v5tFQIVkEb7KwCIIYnT+DAKLHEX+0OMgNwZKlgIXUGkZQs1v5OI5u+4XYf7uClbSUgKq9BiMgCgwsa6cjH4JTTZyJzMVT1OUOCb8ImwjBCdRbUSMuHYC37zTRu6HlCI11lC4JIwah73sVY0vnkGDxYdvvQhjoGYsXmCiibzHyVNROXsB2xfjcuGuM1Y5j9QCanfIU4ORWqZ3DnLkwpAahP9++qpGniPfDHq/ElI5sUXeg+5F7hKB21AkAsuDSFUODKEfO3zYwX+o7AJ6QliPu/qmwFxbgzo+xcRXBUkibkPT1ZzFA6sFtkFDg/o0pG7NIaBGHz20+6sOSHgOrjruyOjQFHuGO0EhnSBGDTEhVsHZzgHPEMgoehHtcxljqjvoVHMIqMjmYA2thEUNxgRVd/TD8iENIX3imtYQUCOw0giDH4lCOOZ4ELsATM3kOgBB3BqEPLUjxyNLQ7dEnRuzYSEdkv2dg7dx5Uk9czYqp4g3p2Ny8hzcCq7arkFEOLJDmnehS8EATIiRd8l3fpC4g7lfNYmeiXepBu48I+68Bu5YwB2wHxQnM+MO+JYQeBK4G9XmXaCcU7IO/dw5+U6GywVcZGucnysWQkD93QRZu4Y43jzFgvCWithN/Bz6gbxGsKLnMK3ZvgN5yDZDUL3tElDxdP36xaBoZ/iCuAOglIG3LUcY5t69khXLJaA+g/aUPqhP4INKzawP/h58SwYs4AwoGcwA9pFh1H4g2geV5IiGHoGhfIAGgoSrB1Ayl8q8BlMSahYTN+KXQuGURQVJQiTOPp3k//y4XD5aUY58aqX2seb+C+d2FY6cEdiaapYoU50h3atUAdCkhs6ekfDOLRKlf4P+gAtcQGWYfeULBYaRYd4je9bDmRAfC4sRUG06ZPircmwiDQdDsMeuYhClvwySzaPhM5zt7AI9vbNWIIXPcgnAB6W+5eGjmOzYBuuLTVG58rpEXns7S7U3ab5Opo9A3wn+HLoL5noGa0ugVwCvQcd1URhJrKvwbjXBlw4jmPqGTk9XV0QjT4ETsKoAmNvCKJGbvhq8MZlyjQv4jVnJmNKecn9UPGDau8OHrJdVI8WkoWOl8cGakSrNzIQGpJnBjTMWDqY0323OiSv3g5tDQFWajD27JPzdZjDZR8GI4PuLQLDXQ1eBC6g1MIlnCqAIfepVWok3qHvyA2wxAZUaSzKo3fuKf8kqKV7ybqN9AHXbcxKrejfaCBgRvXAMuJrWRvpErgeMlsDbq5Am7F2n77gPNmzbgo0/0z64TdWV1gG8xyvwAcyDunl7VDYfTMUsYgE/I/IJnaHZoH9YtsKrs2JIJAjT/xcKQ5KcjX3H1CfjPkg1RVO6KEzpUjGEOMHvQ2OIeioqamcVsK27cI7Dc6i7OzzJv/5hohMkaZD9UPzVqb/iVP02Z4FZOunv6QLnOjVB15wPs+/dHAJq+MJ5qfmeaVnAH7wBf8DJJGo3nWINn4pxDanp5i1MfHMNMclXlhWvEJAG/FSQ/pzfIc2VO21PcwioyLjgXwKtKdJOeXr1sseGRmq7W0NADZ44JkFi6r5tSUzVE5a6objG2OBbAE3x2+/BfWKA+0jDtyFVqjEV37kK1Onc6RWxBsvVqzHZghR5X2yLySuwSezFSkB1ziPvwiCxxJq8eRdAgHZTTAhMrjcIwZJL8y6Nwh3iCPgVyka0CEuKh9yPBcKvxp0VC2Di+7tKCKhjXTVp2s1mF1B1dem4+82GkPzpc9hoI4ov2Tk9q0AoZmFjcaCg9K/LwF7wDelvBy7Q+2B9IW+gha1OWtfpQ2r9/GUUPiAReVGF5N4QRumYzAIFiS2g4v4001NBkt6AIQ0hOI9jfsfRyg6GBF86DBy2J0lyaLF5Ig4gFFixX31hqDgCFBCURyBFxD//sVJ+8XGlDOgPgbGdlozmuEil4psLoWTh2+IfMlQlrs4ZTATakSj81+jDFoZ2M/TDDokd/c7uDKQdB7qS7jDc7yO+yXMkgHsXI+pcY0pGc1w8xzMV+UkXIuk2Us2opNtIvJ1riksnDA/fuI4cpUjyvB8Cuw54wA88gMG6ax81g8eE3hzUPKVJQau+70HTlpp9P+BZ30nkLJj1l4/wPJoKOL2oCU186dNGv7nI/bt2Uva9eDcGQkgvbKNStBHeMxGkyxewk13PX9wgU+N7CG7y93Vh+bfPY3IPk1ugpM2uccPZJtBzBtLZZR/I8pe9WPVkkEr3aH0tXyEKATUYxHcYwvfICaksxQ5a8lBZVNjRNnEDFtUORA39BL3GIQX+ZCyxpOEG3+JffjdOfvOrSpkxfbB9rzb4l0G81Pe5B9/neQgq6vuEsOIWJutp4puX0NtEJr41iEKt+vERBBp6gb7FWXkX49MQYbJ6906Y234msZPfZ2zRhtwz441cOzOZ+CYOw0fPt/Q3MLP+BBHLxyR2N2SDk1fK/xhaJya5D/+4Bf41t5K3ov9uFwSB6gx8cIp3FNJnAMdLgIUpnJs+oRnW9A/74mtE8UWaGXfhZ8keyu7IOWtOXmcrPJcLmUS1xmYqhtQoDAkBQ2xtJ0/OXOLQikbDwBpEzVSYoLCDN2Yd3RjCZwBfOJEFXIqRgeQkWEJARU0cbPnXP2oBte1iSGZqZd5LjX3wx+/RZ7dK/DnGptfQTGjTf1zC4Gz+he9JYDYCJvXoocb1XJN1SvjZAJPV77/I+NCGmA1nvJFrZ8aARrB48C9YrvqKr29fm5+iEiJLUXmiyU9h3A4dg2n37m0Sv3gweQWF3rUI1vj+2iYzw1Z5pFUbbJf4Q5ihv34C9jjJnDeViW/Od6PvMfI+W+AVtaLG6g7rQvJd8xeLtwExD5KEy3/r1u2YfPU1eJcvYvIYcgrxQWGEAxRcNTXvwpymxJxQ6KnNZ2SprvIvhRkvrUKz8S62cKpRzsGlFAGVGtTx7VxAJSGJr7rRgMNuAbULNKrdwc93crk00JdM+YfVwUO+hpneC8wWVsMklTICPwYWzkAoPknvA9CzUcPhpxgkHH8mdQ4SWzMyL8MsA/jdQmqKgMqb6kGCDYc2HDGoi/zzf5kAAXV8xxNQaU7RvwKBUBC1bfxk8U2cIkUQ9rIV5m8MIupt5MRRMLSnJXbzAlTfN52GwpX+UvGMQ7Q/BDvwIgAKBd/GRhzNLKDio8DsoqccQVbGwOxlEvwmJkzKqXlSuf1OHoOZyXGJ3bgo8fuX8aGRgUCB1GMNR+7ZKag/78m6w5wmIcTZZ9XvL7TYNNkK37hmmwweO4QB6Cd8e05naEIBlZFZQ5ipjJ7Ccv0CAlddwgxPcuBJVBzP9IzFO06ZJZYT9EIF4Bk6XPx4Xwr79S0UUL9ZH5Z/B8jfYdJ7FP5lV2af5rohIE8Tf82U4haq8H4UL2PQajZMQFW1St6MW3iI8klVtbYPpQqoeKLCDlyrQCUu//L7SgioE9q0gEpHP6ZP4IRNhHn++H1eOpz8PqntLGABlaZjEdb9KszZj/0ksTMHkhNOaMaGCJPtWUBl2p8Q8Q9RM6PXgX93LmJwdmnqoC3lxKJ3ZFIQ9tAlxcFCuyfb/aM5/9YloLJ7KlxBN8xXQK0TQ9ClYwh4RAzJR0BFBCmwF4jQiyBIFFLjKrUDAIpwwpLAEO6yMcbWauAcJSHbuKjegLlQMWHe0QTU6FMEr2R/vYHx8PhhiZ5Ef3UHZ2MU87LR4h2B73DSdOWLnyt4YMEIqIFOwvgi3mGjxDtxqgTAT/mHjVCfRl1/KJja/BSi2F46h7zY4Kde3k+e3gwCauzFCwnfvC5RtsFJ8HEn0Abu4GxN5IOa893Q1t4JcxSvKE6QOU5GMJKzv3yoeNx+gkmKNPkWBVROrv/7lzF5BOsN3UtVD8YfrpuUdwHuRBssoNq4omrFTRYHd2xrMOCK4k+wn4wSi/O7XZj42m+ECRXwzxk1qPoErFWjgQbpVqqaLq5Ts27SCThETUgYM/dZCsKgOOa8mCmHv2miUJ2iWFasaFbDwcD5zOy2gYRMDar9qWHNaVfui8qIgVpAnQABtSv2tc+SUYNKeqhvGMPp2LlStPqXdtCKLCRQkYGZNmXD3xwnd3Rn3SF4Hc2GV/5WSlYhAAqic6qPo74fRNrzMwqoPEfdFy/Qd4QUrYGGAU79uYJOVW3fgsBOn0v83H7cgHXnjRxIwnfke/tXoAMC1cAPUN0//ePm6fUtnC0HMxK+dlWFqY9s/TQpODahgFq9d48E139ua7TT381d5y59Em3knqWkkGpLk+qjcF+Rc5sC6roNYfnPr2JyCwFOVA8EWdlE7J1c1xfkyVjS6EFNVLlqoHGnYQIqTMCcktByqBpSw8HJLdbcLgkBlcykirpJ3ECFqFHF8i//MMERUMv0JW1zrb/Pq0gJs+HvCJ7xV8ClM7FR4AKqwh58KLTqqGbE3Y2ou0sjaATU1E+S5ssMbBfdv8H+lnnYhd+eaUuBpQgkM3te4kLl90SVpRpnE7ubdaNOAdV5KqujcIDgkqXkxpB6CKj6ORBU6S7A4CTUkGqTf8VTpGFI4hLSWAUvAXYQ1JzS0QRU9a2BFnE0TPXmDRiv/ibxa7Dc0EXzCoj07VsGPgLBA/0Vo/TRjOuCEVB13cFU2SlhEJhn1tyMddY7I3eQugb8VPjbP9vWHzzg6o/SDAJqog3wrVbv+s7mh878qKskTaVBzflu/UeC1yLf5tIOg4YJvLGZ00S9mmuDcXe+gYBK3oVRwxXvgocBYpSlBtdNzbtEMdFVfw1qUj7KxLuoqL0Ob6KwOiVIUhRBktpBFF/9EVBAXbcxJJ9+EZWDCFjARmJRa+eHZhRz8fCEYw4USVi278PbcMxj2hhbM5pkHvmsWgXEj0VhxghVN/MT2mkgGNwAjKNqDFyhBggMAs7T7L7O3xRQUbQGVW3HO7YGVRHE+dMb2sKpyIE1DZrPQfB7GIT8aC6Hcn1q7tQ1EH5WM3/ohyr/oL6uMWua5QaPH5XwzwcRmACzjHeupJquou755izNK3XNml/YAmpjKp3h2sg1CKhgDsOb/5QUUKnFHjdP/NPnIgjJGATHQZh30F5JdBnukW1X9Q/f26aJx3dmPg3BIqyBw1XABf/UmVKEyKaNTRugH3TvfhQa1CA0qGG5jaiY7OtcPOjgTOHiwcDTGJDncxRe4I8DP8AUBEeCyR1NfN1RvXluekk18VV3sk9RTAV/o7YKLDBAUWDTw5SzTz2V5/K30n7E2o+A6hArmRIGEyhaQEXOZk/lPPHx+4RWzTcYwW0GZv8+6zTxpXZk4AjxDod2ZBpSUOH780I71xQl9vy5isodWg9GzyWg0v/MNw31Z0oY9CsuVoaEmfQri965Lcx1GD5+RCJH94rcg3ZRF5j+W/2HiadsOO43B3VH8KIhQ/XRRq/JZIePHoZlxzGJEd8e38Qn6IxZ7ENI2eWfjvdAUCFapHjRBlae0cbi1Uh7wnfjAuuKyM/7UqOc+ouR1xXvNngErCpmSGDqjJxCQaNfOMcNDhwKyed/D8LEN+qM78QR9j/1X8Ejo+1yyVbcAirPUz0ff7hmiUHYVLxHHia+9hW8KAjhlHEvHAGVd1PCexJDkghoX6VgxEJ7koFUBdeoPKgT4IOaGiTJOaHdr6o2rZfgN4hcfRWuL+kF46ISUDEW+0eOTj+a8rs1BFQG/Amxv9Jq49ZVmMpew5gOKz6neGeukKK1qRM9+ph7nTG3Kr+lHoMQLAj9cSxMnjlWT57aoFRW7mdl2q7etV1q4M4QZ8oZXXqCB1G8IFLfAWsUL1gPqyoqFMLAUWWRc2Q/0tkAS+HrXas00me31v0auOPW7ah8vS4IE9+wPHxFZAD9ibnO/Qg75F3oTqD35XpULtxhJPAwAq6F623iyxo4tUjjXShaKz6I7o8UytIsvlYspA9qGw+SpAkfAZau/zYkf/kqKgfOAnhR+DdBHmzkK6DqxnJNHKoBRjU86Ji3gMoawLQXuiiM3fClYYJaRMrLW0BlBTj1yrdwGq9D+6CyUXWh71E3CDB9B0tg/ttSNAfCagYGrDUEVPoyRJ9gxhpLGOZp4R+/k/gFmKXo0pYFVA5G9MPoifyWlQjmMHeRlFB7QWfNepZcAiq15P558DeG6ZEPgoGnN3zN/IF6PiXz6ffuI6DaN1Xy/31Wo0x8bcQgTiIgGBcIqY0VUHm94lFxc96fPqiMqll/AdUegNSbKGGUd+M+4gIFVAC89mlVjCf3U2jFeXQNUDgEE9/2okFVhAB/RQ3q+q8kssUloLq/z/HTJDB3MbRr0ApkmZWsS0BVwUrmw2ccAhAFUy65/MucquVc1SWgMt+w9ECe1eFj8e2/JcVz5mHiLelfqW/MFBLBA3slvHenxO5dh9nhg1TTV2CMf94yLAvFB98omr26A/zo+zR0TdNHprWhlUV43y4Es9uRfD6/yxJE0u2J9xgFhnU+3gNtYBW7/GiyPJi4qd5t3/cw64PQ/QwmhO58g8h/6JuzFO+2WHwDBokXuNBUE1dZqpX10IGDNfK3r6rls+0hhR+WJ4DuiTRQ6H6qt4Ik+Zj4at6DVhgs6RgSAaMYwSQXl1w+qPYd8NcloDLNA4tt0utgCHeoiXIHM/iTz3cLqFnyoPLyjlDasoAaewl/ZPIk9+9JaO9uiRzYnmKq3CgBFSmdPFPeQT9HjtpRY1V/VBN5WTC3od9LRgHVVwxesC/yYA8EJoAXnLuwXnmkg4gLENq3BxNheyX+9J7t46rGz7RaFoyAGoEPKniXz2vk8WvQHvyKZfkUzqhui2oTNxgbB6u8iht3eI0yQMGGxq8k7jTeBzXJuyAoKvFICaisJh/Ip2MBdq5Y0M58UDdsggb1y7ASUKlD5eK8ruLl2GhccvWbKHBam+o5ZFP3YaNxCUWQn1D5lubQoPJipzC0cjSE/D+RR7gXpzYwOPCuqiPYfqhJp2EOFJy5xOfmSMmlsHXv3rlYxo3qKb/4ENE4l4+Uvojo214Lc93VfLdFwjv+bkdRo4bEFUwk8d6gY7b0La0hoCbqho0aRM8LrvtcovvWJ3djttH/7kdS/M5yBeZWSSm0JEXJ466tjBpU5vgjKCNwkP/dD6X4XQQ6yGFW5Lpl3psqOAHaILT9a5sB5oyrqw2scoT8X/tbOyBCNu0IUC5eUy2xalyPIDe6MHBDaNt6iZ/fr3fZ/YLvVlQqvrfWStG7mNkdPzF5vIm27t6jgPpa/t+/VcndZ+xvKOiOXk8R8IHMpU/5qvsAGNidV8kE8sQLdmGFJ2AUk8ylo22q486pGlQykpwAwI0cRtI2mSGGQEAlwGMSTAdSswcA4AfODcDhvlupX7p1CcivfzFaVr0/WiZOGFjHU9vW7owCqusVrKGT1PfZCQE7soF+XQKqZ9oyaBWQ43DeAtddm2azTgFV375rfwms/p0yGcyUYoJpmWjdENny54yz/Xz3IqdvZnt3/biGriko08w6xeTPfbN+cGdA0JQStIGnEwK65VEy3pNCLxgxCZSINXyiFC1bIyVvL0UgltI87tj8p+w/UC1/+/KN/G1HTQJDoDJWDyYfQhyor4BK3NE8RwJDKKBikqvhAmoId+Wd+Ze4ovmQpKuREk4V1gBDYH0RQO7k7p2KpVvXYvnNJyNl1cqRMr6yn7pHR/qTVUBFAB3fgrUSWPo+hLQx6rv0MHotv9u00hoaVF0FRlyu2vgNTJUxqeeyuMgloKpIzbRsuHFdgjs2S+R78GU6lRW1x+8Bq6g9bgY+RNed65r9P0pw+7cSPfI9GPEqsMn4nrUwCVr7FsOaDMHZ6pOXWwm938B022U2rPIokw+BS5Mu1rBxUrR0NXBnWZNNVOp712d98xbyoX5N3qVanlYh+CZ4FovYiB6tZZ6mEFBTeJcE7tRXQNWyTg7ehXgDkPOCX+mCicxuXYrl7UWDECBppCx9p6I+5KnXuS0YxTcODWqNfPp5UA6cA8OJwYFMpruoQQJ47A6S5D6ut90Cqh4k3DATDiMRLTUhyDOWb0kVUJ1BwQ1e6GQJm+zETdFoKjhSTGZN7CfTpw6QSRP6ybhxfWTM6D7SuXPTaJMSjyugjegjzM5fOq/MLlRe0YuM2AktQXppiwIq/OSs4TDhGzNRvGOQfHz0WBXcKP3V+DujgArm1TsKuQZhTuPDtRwQMzGxme5Xn32Mnhm6eMFuA+alvXA81RwxXwEVgW1CyCcWRp682MP7iSrEriHPGO/pzs0G7aynwnk30gbmUt4BTS9QZRRQUTMPGA2a+BI7fNAK+/mb3TWP4hZQebriqV3XUYNqm8k00MTXjRf6vgo3nAktm7PUR9R6OHzWZ03rK1Mm91FM5ZgxfWXggPbhu24E1I4koMKEbfA44OUkLAgIB9wjNlhIgVYIJSGgbq9JwRCFJcAQNTEOJiIX75EbQ7SpXcM1qLZg6uZokhS08yzbk1t6b8XgbsCQfsCQflJJ3mNM73YdoFG/d/o6q4CKQcIaDO3haI5dyAE6elyd32dbFFCZ6oXjt8pTfuEkTO5PQTh0JptbUECNXL8KnuS8nQv5HOpxFfyDNlVuSgG1+0C05RQEvxqT+Ays3sj0AA1xYNSolPQviRNaaMMtoD55o3kWm2+h3NMk7kmABzfbo0x8YbXBgK92cKO6XzY1ii9xBkudvAuwhu5JnGTAZFhn5PZbOGMgsKa/TBjfV8aN7SOjRjWNW02mGreogPrNhjfyp8+q5NB5pJmhFgQLiQMxTy1qVqGeAqoeWPhy5P9oehOFBtWexWyYgKoaTNWMDcfPAAtM9Ozw7vT70LMOfCgHi6j87sPR8uGaMYjAWSYlSHLExcvKtdPCdBLUunHmroY5Mrd9I/FrAKP00hYFVLY5fOU4O+ebswyzriuleMbs9DdTvzMJqNawKRJYtlaKF7+jQrnTdK45GDWmnEm0wYG9Etq6LkXbma8GlfnYqr/bDk3sBoldPpF8zxA0qumaceYwXPqB0gp7kGNTvZsTMS95YeO36hJQ7cTS1HjAxBdtFEA6Gw9ntvIobuaSmMPCKxNaEAio9EG1I3Dmq0ElxtjPT9F4OKCufcds64sk0GsMmT+ln/zyo1GyYsVI6dypSOFGwJ0ImpVso8UIqB1IQIXViG/+B8AGaKjGjBUPMa8ODVVrfM5uATUdQ3wIoMNRnrCfC0lyYkgiWEnDBFQ7SBJrw8XBCxKsFh9CvoMV9sii6QPkE2IIrLZKyXvAIiPA/HodrGQXUNGymIhgVgBrBDT8762VkiXU8Nc2a2+LAmr1To7fGyV6Gq5KYWouabHjjHItKKDGkTmDPGH0/n2pgSY3/N1XiO+BIKQsTSigWiNn2jwWU1XpgsmwQsAdt4D6+E0MmMJ/0KSCX/Fj8QIrVXcmSXTdc6xz4Q6DJNFqtH5pZhgkqR68C6xGB/QokX/8zVhYeo2RoUN6JGSdHNVv8OEWE1ChpJH9B6pk9w81cvhEVO499sq9Z14IlDbIklAN0aAq5pKvTzqjPwLSYV7TeAE1YXysZhYgRENAjdNUjwIpzfmUSR+fSYE1Kv+MfEC/RoqI2TPLsbNjlartmxGc4K/w4zxY+8XREzOZ+NKELgofKUZmC++Hf8HB7Ukg412QU9XqOVA8w5BaZi59pODrhTxmTV0ymvi6HuKZ+q6KQlmyYHFibwwpjOjfFaGP10H4me3/DuY4FxLHrTEIerL214hgvCKxr7k3MvmL5i2gYrKBZkWh9QgwcetM7aoSTRmQppft1xqAX6uKJtgAv9baN8+858nTqOzbXy07d9fIuUsRufkAOcVeo3crPCVWAPAppCqwrw3z9C/zwFTf49SRE4AcrjlmEyP02M19GkMYJCmcp4DKWUgGNaHPOiulmd4EbuBp6p96kHoyHsr6Y+FoozDEI+/MHiR/QLLrDz+A9imX+gZPakuFKVu0r2Ls7jVo4uE/5EpBksvEV/llPQadH8Avixixf0eKNr9ZTXzfvBaauEf27ZHo5dO271MV25ptiVLSTXwz3xUf/FBVzudeyHXcvbvyIyMuRKBFiNBHkzmddXAi+0r1t62Y+Ko8p0/wPrCY0e+ufFv37ZboYbSHbk8w/3aUVJgRNjK3qotMTbbpFlCTGEL/MNRbmd85fVT5hNd+LN1+qG1VnCVOTccQzkVzYZCkvNPM6McoH1S4F4UfABoiCtuIKaS3PcHFX/xtOVZc5EOIITbvtGzeYGDIePlg7biMihD9mPa+rjl0QOFE9NQRiT+5C1/Fxzad0l+c0V51LtBS20SUE+4xfufAm8jpE/B53JVmUgrhFtHqrV4DEfAH+djnLkCgoWnpd27077pMfK0R0+FDingPk6crayxaZLndjqoQuTe4DjxYXQGiWsjEVxOA/rTViqf4s8gLtAVLPQTUeFWVzR+Sxzp8AFi6Q+K3z9r34a3GL5Ri8FglS95N7CuUjYePIrJ3H3iXPTVy4UpUbj6MyTMIqlTKEWtUdgPVf52xJK3imXgX4g2HnnTcSUyuOxNj+QVJYkA2YE3EFlDz4l34cNS5DG6L//JPE5FGs1LKBndPq3nT/2wxAZV82u07Ybl1KyLnL4Rl36GI7DwclZoIZxNgI09GExgMyEVDZn/RdBNfBd34wzX/RBrtg2oDv31HNgwDnXDGUg8MRkB1t1BDBNTwhfMSPPqTRJm77PZV5M26nuKrZQ1FHtXp8+1omYj8xkifTRUAxV33hgiojF4ZOnZEwkcOIG/rFeQ+Rf1rXCG725uAihlYO/Iqon6OZGRgO3ppc3JD1dUxuX03IrduRuT4yaDs3h+S/WfQ/wASSlOpujoiclLgy1AsMp7eYgQiKFbyIPEH/xMYocAeO3i1xo9YPYIk2VE37yN+ADSoZBQVcrEifIp+Eu/MbTwlMSDxoVg4smBy7p3ZA+UPv58AAbWy3QmodiTbO/YkFCPZIshFykRODh9UamBDR3Hd0YMSu31N4g+u2doBUJSlOQXUeBiB1O7ckTAm0CJnT0nkCCLVXj6MNmN7oqBPSG/k+B2MKLwTpokf0crpCsCAHmHgWuTsCUQHBy7QPJ5tn1baioBKP/cgsC4CrNPvEa/CBN3tK8hXfQvfsmNp0KYEVEbURP8DlqjYmmQ8VP/kZHPttmLTeaxiTHbR/x0MJnfwj9OVeUWjBFQItZEQGEYuMfjssT7qAXqNnxpXVD3xRE5yORiSEFA/GG9fytM7YKFvNCe8I8jfHTmso7066a3c9MggoHIihn03cvQQJpfOSPwuvu8XSXcXTph7JyHQ43Tk9B1WoSLRepn2rolLXQIq0+1ZAxAxHyatfkQsD0yFoNqjZ+Lp7U1AZbAojTvRG5eRg/2qSDUnCO1SyAJqVRVS490B7wJf1KPHQ7JnfxBWo5h4UjKOI9xQntCZQPRLOWtijNcD3sVfVA/eBRiSt4kvJsNC4F0ooCZ4F45rztiWwB7+Bs4oTAQWAZfKeneGgDreEVARMLCZS4sJqO73uHY9LF/+HU7En1fJq6APau8iNAbNfbMVjgb2cRXQhD81PbGbmE685kARAuHtIElJoSHbnXksjnQzNtP5GM3jFkDt4AQqIp/SnrLB7OP27AVmRjDr+l9/N04+wazCzBnluR7V7o7nLaAyFygGVuYsq9mLHJsbvpDYiV1JeiQGZgSsWPihBFZ9LMUA4uYsNWCAQxu/ksgPCDSkCj4qzYTit2cyos6tQv6x+Yuc4/i+zp1Ruf8i33/hdF4eYge211blfOTj+kRK33kvcU1zb2TUoJaNRyCXX0npijUwV6ZJPSdeVCXt6uA92RY0y6lGiP7QRoSHd81S2ufifAzOKhftyg8yRmJu7nc79JMd4OTTLWA2AKhKkwHQVGmh4gw37wCDqyIMTOD3d5YiX2fb7J/NiuNJRtLGDzeGxDALGc0zwAm1pwrkEflb44F6gprIwuCjtC3ACX4UCjewTz8MzeDFe9AX5d15g+S3vx6PYAPtT0B1NYdU79llpyxy9XdryET0cXyfK1ejwzszy7zIwYggc2yib0YPbUreyoUR3pnLVT9jJN3mLMHTJxG05EuJ7PoMbcmvKLUoiwn0M2KE3Y8Q0OPu+dST1C98C6r7QTxi8vo1ePflqwAyDtOS4YrG7qIWm/lcw5v+6liosCO43qHvcLTBb9AGa8Tq0sXBiGR9gqdO2O/+/eep1+mK6faAqb3SoL7/IXzuR+ujBbNO1aA6GILa2eM6x3S4rKhAZo7AnVZzj6ezeH2dMIkEQRVtaGtLkxjC32xGYghzsIfy8AXTj4gjwEk0fB9CKgQiaFMTJQuGkK+0rUgseW/hYGDIBFmzujIF3hP36WAbnEBW6deYC7SaLhhpxS2gIrglx8AYNX6bkI+deY+1xo+X6e+7Vxn6CfKoop94e/ZKu2HT/VQC6maMxRv0WMz+yvs7fZZj8ap/QHC2jzFpP0jVnXhJ8+bQRuRjr5UDFh8mJmn9y38rxUjV5x8xsukqm+VOdWpQF3wEngR54SdOsrEGQltKcbCfsTWCG5FDewfaQ0+C6bbABZ5JbynsL1n8dsrlhfbjx31V8hmCs33+natfw1RWWWMSb3S7uiruoXAKvqUIsVCi8FnUEcMz4Y6+LBaDWTV5F6a3ysAP6fP4PBUMNnwP8TQhH6XnY+eEf/o+xb+gnYBHZX26yL/8H5UQUMdBg9oBBNSXNWDUMPvqhfMwSAfigECZzGzA3HEAYRh27QTsHmfZAPx+8d/lg1oPARUDC/OhclGBEyikorBOiXDx6oEECj7IUvbYkyt7IChBD5kxbZBMnTJQhg7tqa7rSH/yFVD9ZeUSvnlDotevwozmuESOY1b+weUkqYrAIA0eJV6Y9fomTpUA05eUD0keb4atCOoTQqqZyMmjEr12AQLaxdSUCRjMfJNmI+jRuMTTY5ylPX7QHgz0RwiNitW/QjxDUffx0P6i7kUUyFuoZBJQBXlKvRNmi28y0nAMHaFMEd3BmqKPHkr4xnW0xxW8DzTZpw6m5oPtgtDw5XifCgSJmoSUIBMQAAXpMFq6pAqotgbVxgqkiKLGIQMgWxZ9wIvUQrM5Dgg009cY4Qz32Jd8G5r4agFVCZXJQ7W2CO7xyAvgBfx0bW4RYAFcSMMIdaHep3AtLkUwO55a2Usqx/aSyZP6y7SpA2XSRJizcwRqpyWTgCoMJjZRf5/DxV8+TCyY3EVuXpfI9WsSOXNCoifQz9yTJkhfZQ0CRqCfeRVGTEbKgopmpVouAVV6DUH/gGYFgVcS/eg1TWLTCpmxvsjbyrqPQ3qXSVPtCNj8KJupqJzPEDIjJ6AdunQWwVPgivACpta6lPYQ7/g5NkYMH2ljhEszlFNApel/GdoDmh3fpOlSRIxwXa8f09rrVAHVxhDWSTFz7J85BFQyZyoHM8b+TBiimzAODElGAqeWJI+CZ0fJeyiTO4dp5WQWJV4nfV0CVxwMKUFUdmLIuLE9ZQowZOrUQTJp0kB7/iOPR7bnU+ojoEYRaDByA1hzBVrXY4cldhZjoDtlEnJ4eoagv46qRH/lGDgx72jXDaExTY3Z5xQ/cg6BD9lfaV2mtFi4o0tAZfyH8M1rGL9Rfz1+P7+bfCz7ZjkCNCJPNE2DAxMRIAoprVqiZBRQ2XdgNeObPAuBqiaIf+gwxd/pPNKMqUF+TLXH+TN4p0MSv3wk+e7wFbcGjEzwWIFJUzAZNqYlXqfBz0gRUBVIkEeg0gt8i+JdXAyI85RU3gV8C/mXnLxLcnI98a3UUesE7xIH75JwscTJmk9x5Bv1W7skOVhU1oca1AkdR4P6gvydQxCVFJZqb90Z3QRmo8aqFEMYr0M1rk+PwcSXjKYN+HpvjjXunwiCBOFUaWlwiS2cUnDGh0VGVNUVQjQGkGlgMNeuqpB33xkuvaH67tG9RDp1CuR4UPs7nK+A6u3eQ4J7d0to91aYxd4UefMEJnsuE5w+w8S/cLkEFr6tBCHmF/R06tSsBFP+pC/gD4sZ1NAPOyX8wxYMCNeSz0TSeeV/2SVpbx+vRmi2V/Bvof+V6tQ4HfkRffNWiH8R8o2VDxUP/NFaMvdfRgGVZohgQK1uvRHAZJkUL0QeNAQw0UVpgn/YZft3vMD7VD2zgys4J1gV8HtZDC3V9Fl4nx4q36Pb70Xfp7nXqQIqn0aQpwaVwimX2iAP7g592NaUxCFExoAdcaVt5fWZC5nLKMxkiB25BFQ1UaZ80oFXSrBknVwYwTppHONxDgSqnlHpURqQXyEV1XtLR8jIkb2BG6XSHdihmdzMtWvbezMKqInvE9EXF9rfp6dnb1hXfC/h3dthRorJq1fECAT90KXbAJy7UgKL3hZf3/52P+vcRR9tlnVOARWMk8o93Lm7xF+iH73B96Nn/d01gnDtnQ18W4zcrTATVBiBftWcRfnWgQmnzz/dEkJ7tkn83L7kIzE5zHRYVldgxOwliq4UMnXJJaDSz92/CBgBnzyF13if5nDF0PVp6DpVQOVd0CdVYT/FRg4BlZNXtnaTAmTdhVYdsfBzFaQxF4Yk78I6kP+gQAveghP10CTZuIKfCSaS+IL9wJXeXYoUhix7d4RUjOgt3RG8hPyHKTCcrIcGNXjutBr3I0d+RBYC9N1qaFxdqdo8kzBmLkagRKRSS4yB2VK2NbYB0B9UklgAAEAASURBVO5R8COM0E83qPCeHfD1Bk+i6+QSUONIKxPE+B3es0XiHL+JO0zr4hRryCR7/Gb8Do7f4Em0MKjPaa51ZgEVTwuAn+uCnNXDkN1g8VJldaL5pHhNjdTs+wEYtR3ZA07YPBZT5WgeCwK3b/4KCYDHopuReqcuhR3xPlVABT8CvsSeXA+iG1OrSvBJLzbfQv4lFgXfwkXxOennJX/HYIURA99i8y7EkLqLzbvgOyHeZONdiDUsyvIL2AMWpqw3NKhKQB3fvnxQ7Te1/965G5bt31XJepjsXb8TlSev4lIdJjE4W8ABgECdWigoUvCMxzDTmGnwd53OlDEMXhKLORpURWCc4NZQZNunTGvIUJKxRL3UoMDBwb0vKm8het4ffj9RPvwQppQdMGqeJjlzX4V2bsWMF3zMqgDwzH+lmXPQjKZ4/iXLFeMS3rUNAtGGFH9TfR+LJqnMDbhqbYuHCWck26qNMPFZx0BBp3WV8l937iP+1b9H3T9sFQ1Czc+HJbQLbXBol90GCtgdgMFbcKANvA1wr5yYeKcQgkEEv9sk8VO7E/uUaWoRBhEwrb7Zb0tgCQSHZjazTj4889bJU0HZtqNKNiBFxJMXcXkGH48woq5lM5Nx3ykaeY1zX6vJLff+WtsUUKNg5iGkJsHbOSsbXmhcSTCSwAmCv6VxDEIAJr2A9Gp/v25F8t/+KwMNTJBhHcTiIqOA6moAmtIH3l4pnj598B0DI34ARrj8uhOnwiRV5e1c9UGzajISz8OGyvm8e4eEd6JOr5+iXq/QlJiYyLcwIngJgr71HSJ+vGPJW++It//AfK9usvMobIa+3y7hH7cCI2CaTozQjC+eYo2dizZ4X4qmTE88M3TxHN57i0R/3oZv12GmOA6S0SzFpNy0hTZGgAku5HL8RA0wpFo2fgcMeR6Sp29CEkGftgSTeLDeYrDDbCa+NobQwso1oZrphekmALN/Cqmq/2fEDV5IWtpMn1onsIPCqsNz8DRer0zAiR9ciClRGdizRP7bP02Sjz8eL0PKm3eSAw9sUyX6ABFkmVlgJ8a2+9fs/hqhMOAUaEX9S9ZI4K13JXwcPuO7cN6Vn/XRlHUibye0dS1dmDpG5VLe+ima3JkYQb/zLViNfvqexJ7BlHznZokd3Z6smu6bndg3F+M8jN8z5ySPt9AWJ8Sq9+y02+AG3B2qwYszI4Au4Jd8b62WoreWiReKCJYoskKEvgfO7lqfki5POAEIwdxCntPAkhVCs15OhrWFcvQYcAeyziaY+D55acnzKkvCHDswWV63gJp8s/rhDpVynBwFfmiehLfKiEHEHxR9XgJ/KOOQbyTO4BxuYt0NGQb69CyW0SO6y9rVo6CUGyn9+zfvxDCf3Co+qC9exuTy5ZBcuhJGAJSQHDwaltM32AGbSkAlMwrzOwi0ish6JkA3gh4ASHw2EPezMWg+oxqXDCb2cwBhoWpDD876PKyNgGqTh8mhw1cviYpceepniV8C2LtyXymzthHwj0EY8OhlBCBgAmoXY2TfBWQ2AqomRb3XnDUOX0He0svIi3rqqMQuHEll8GGG6EUbeAYMTtw7dveWRK+eQbCTm4l91AR7xkxH4Jep4q2AadCIChWgKnlCy2/dfxCRS5dCcuFSWH5G0IH9wIs7zzRWEDccsK2jag0SUNWkFHGBGEBsUEiNTewjE5AJQ3i6c5p9vq6XEVBzCajSe6j6Pq1OXWyMuAOmRjNl7nZtBQE1isie4WuXhcFXoqePSfQs+pbbTNZdv0zbMOv1VSKoSSXM2+AD5h8+QjytMPPPwCMMPBVRGHFMYucPQ+sCgVuX7oPEA4zwDh6q9yAv8j2JXgFG0KpEj4FM1TEaGDF+qso7SBPr5nbFSFSogRtMW0We48KloBz5+bHsPfJI7jyJiscPSxdvN7wbze6AJRBUM5X8GcWg4j2iMP9X9yJuaCFT8Rm4u9qH/cpsDvii8ERjhfN0hSUad4hBRkDN1C6Z9jE4W/gq3FY4Hp49CVcB9Nf7l5KnMs/5EHznFeMkdueGxK7h+86Uwx1XFJyACosHaxDMdisqkc7lTbJv6reDAFurb8K1qqUL09+F0AZRtEGEpsqnwRfeBp11gWWaVYbI9WgDqyQZSTl6mW4IOI+TZ7rQzQr4STcjL7AmgKUQrTR0dd3rOwj0ePkKcOdiWI4cQ3DYYxF58II8i3ZPSuv37ouxnT/ucGLMEVB5Dy2/KL7FeUY676KeRdkGYOPmXbhf/3awas6kfjJnFl2R+qm8pxUVvaVLZ0wcNHNpFQGVMmAojOEgFJcf4ET81boq2biXM1ya6dSah+Tb10+DiiiD0J7GoDlJajI0yGvKOzMEmRyC9WMTM5fONWRKuTgM8VszGYHTaFBpRob8HMKAHDVbNkh4GwJq0HxXFWcApv8VBX01e0Q61u6YRkB1SNaAFf030KEk+vSp1GzdKKEtCOD09FbyTmSCMLiBG0vu4ySBbg+9t1e5BJb/UoqXv4+0GT2QNw7BlZrTpEk/N8s6EgFWAC/eVMVl46bX8tevquXYVc5AEui51P6W3LdrmIDKe5JWoFtCG6oxhPuJH3VhSBIj7BlKI6DmFFD198k121VhbYZ2bQUBFSM/LEAxNqF/VW/fIqHNX0lKMBJ8CdmKsl5Y+aFKlWWxP2GiztaKZbuq6Y/ZGIF0Gq9fS/W2b/EewAg3467aAN82cUKXTBiBdBv+934lJe+tsq1F8D7NkedZV6Ep1hpDXr2OyIaNl+Uvn12SIxdCSHeNiOSBAXiEHeOi0QIqNCOMYxGHP6ntMlQXRmC/stQilgBXNMZoJjLBIfJ6Fp6XxB2jQVVEyfwHDKbur8GfEGht89fQMu5Inks+hLSniwHHP37jiq9LnqK3Ck5AVXV3xnLyUOnjN/z6/Ri/SxB8zdsb/qYB9E0EoGvxgroRL+OhsIrxEdy8TqL7oRnVRbcBsYbbunBSkn3BxR+qVH8rPpSiWXMUzhBDU67R1xbgmrhDWecllHLfbn4jn4J3OX1DC6f58i75Wm44AmrC1agBvAsFUiUT4VoW1RZR+d0Ho1QQ2DmzhyDephcBKJmiy9Vu9tlN/rdVBFT3W5w5G5QDh2pk70GY+94MyuV7iCgaqj2LWT8BlRpUDBAYKOwP3WF03NrSBCARrBxCq06Bc5UmFWu2UWLA4HYcEYctGVXeVUYM64LgJv1l/rwhMgu5T30+p0HdL9fBthmQo+YwwrQf2gvN3DmJP7zlElTrIAaZom79xeoHGo6D0/vMuVI8fSYGDw7GLVcabOLLQAR9yzCzh0BCs+ZL8Qz4a7ai+QlzR9o5Tf8s8vhG/QkIP+DAmt8pU2UPonoWUiHYH/qpRvYdqJGfYbJ39XaN3HgAs9xEX85c2wYJqLwVmRgFAmQSiUnECds/PeGbTuE4DSOwIyOGMIfYqGGdZfToHrJo4RCZPatc+vUtLBrjBZulBM+cUvnswkjjEL+P7/LZncwa0kxPJz4zYFffcgQigs/jrHnAiFmtMotetXkjotoi3+AlaB+zFZql9RyEwGnlSAsB09kZSA0xJhloLdulzX2MUbuZliL0zad1RBuuowadkOoCOO0dAf8xYF0RcFr7j9VxRcHtDoejcvCnO7J37x05eqJKrt4qkuuPimH4AM0UTH3p95Wp5K3JUAIqMwJAg8oJLM1TEDvS+YyUfWQMsSimj7jDhbjDJYkx5cSQ4V1UYEaNIX0Q/8KUzBQIIx8xo4EzTVSMcS+e3M7oXpRydQAaPUTt9QxA352FfKczEERs6LCUU1riR0YT37oezDQ0xMeRCOY0cx7qDD6kmX3z66pK+v7giaN2JPDdX6Yfqvs38bMX/Ez7IwDd9LmqDQoxOnjdL5B6JBgE73K4Wvbur5FjcFm6erNGbj6G36jCh9Rz3b/yxh3lWuAWUIkfwBw98VUf3sXBpR6lRcCazjJ8aBfIOWUyb+4QGTMakx4tWFpdQH3yNCr37kfkBkx8f9z3Srbsfi23n3JmIbXUX0CFH4gy8c01MAD8OQCwqMFJNyoGC2Wag9+qoTFwYYDpVBSQtcvK5a1FZTJ2bB8ZMKCr9O/XpUVmE1QdC/hPPAhhAf4fkQf3YGZ6XMIH94jKHZitzpjF9ExajIFgIczFEDG23wB7Vl4P5tmubcJjDRVQrYoZ4p+9CCaxiNzr1L01AglpUrRnAZWWFzT3vQdzvXMXa2T3D69k849vJMjEyFlKswqorJRiKokbxBqHwSWzqcxjgC3O8bdhcfHO20NlxoyBMrA/cAM+HKUImNQRCoNmRIAN0ZvXJXJwLxjGXfCDdJmXZiMCaMrUTaqfjakUX39E/0WkWMvr0vRlu74Jj+UtoELL6Ju+BH7cyJ04GIwj6uvt2bMJa9LwWzVUQLVGzUIbLIZp70QH6/qJFWh+M6+Gv2ntK6MY0+/ffw2e47WcPftCdu95Iht2P5VwvFSZ+nq8EE4ylPwZRfqxk/eADyqZTz2OJQRV3FzzGUrwJE44PIg2BU7TliZ9ypCWavYgYMgQmY6sAQMGdJEBwJGSklbQkGWgUSHuij17qnBH5Uc9tE8iP+2s05w3Uf/eQ8U38y3wJMj73d/mR1pjIqY+AipTXflngQ9BjIkEPuZM3Zh442bdaJCAigwEvplv453mi5d518FbeXrAoquNFhjhgHcJg3eJypnz1eBdXsumfTDRJv+QpeSPOy4TX8WH5CGg1sW7OAq6sUO7y/KlQ2ThgnIpH9xd+gNvevbIjI9ZXqFRh1pdQNW1f/kqKl+veyL/8ekzOXUD5ntaaNQnYCYgHqXp7hvgPmcV6y52kCTOJkCDysFAaUJwvmIaca3SeOTZgOoxCKUAM6ZidPiy/p3kD78dI6tXjZZhQ9tuh6mbek1zRIESzH0ju7/OfsOSbrZJCszFWtOPieZv1ds2wxzo7xK/cix7nV1HfYtherIczv5IGVEIJfbqJd5jk22GePdSvatkDRotgRUfS8kyBKzpXLgz81euVssXXz2V/+evz+RlDUy60vHCeXNGCI9FnSBJmGXMVhi0IMbUMWQuWRQjSfwgZuiBhLjBhRiEhUylfna6SwCOMz9iwOfFxJZPPvmgQj7+cJzMnTMU13TMEnvxAmay+D43fQlN6pX8iIDZdP9SmJ2vWC3+ilH5XdNMZ1V9tw19CyaDZw9kfYJVNhb96CO7H5UioFABFU4kVm8H1m2CqfL1U3nXzLcE+QuXr1GpZPK+qIBPvHL1mazbcEn+918vyYPnnSVi9cIcU1dV43Q8Ie+hAq3lhSEQUFV+ZD1h1XgMKQKGlBb75NcfjZSPPhgH64shBUzZwqsafSKraJ7Pb/7G6awV9IyZhb77gZQuXZH1vOY+SH9xuuuEt8JlioEnsxTfO7+0+ZDKCVnOap1DKgr6VvCC332RdwWsIQiYufJjKV22osUiD+dduUaeeP5ilXzx5VP5X397LsFI3bwLHxNP8C6uIF8Zns9cyiruTgJ33PJN/rwLs5fAgldKApYsmNlXfvmLSnl/5VgpBva0RikgATUMAfWO/Puf7sqJq2AoKZCCKbTUDCSAXqmoncYkT5ilJAVURA5TgQgwQOB/IoAJr9W/U7QcaeZ7akYTz8aMxLhhPWXq5D4yobKPyl04vrKv9OrVsrMJWV654A5Fbt+SEEK4R7FkLcjlxVm/wNjxrathgB9K8NxZBFQ4BVMgmB/mWbyoN+vuG1yW5xXNexpDtQfPIYfY2VMSf/Ko3g+zesG/TLUHgloVFa525Aow4vOv7sj/Dbx4UQ2fDmCFzo+sXpq8oerkFhjLGhyrxjrkogfzGRIEiC1gR9X19EcC0JMJ1aY3xB+9ra9O2QcwUjOOGAS0CwHv61zTD6kfZkzuJRPG90aAgf4yEcvwYb30nTrcmonog8xxh34Wf/o4v/eHD7QPAYYC44ARLZTHr66Khc+fkxD6Vuz2jbpOUfst+H8l+lGgsLTknIxjiiliRAzWLvkW5m5lG/gGDsr3koI+79HjKjl9+qEcP/FITp+B6d2ZsFy5T76Dk0/EExejEU/6jSnhVR3Tx4kRwBP0f6bKsyfSHYFCW1W470Wq1AND+iOFzMzJvWU8MGTy5P7Akv7SUaJ/N9UHRJ/UEHAnTNx5eD/rbT2DYNqL7zzQgnnMM1Uo+vgRsIZYeULFl8h0jt5HfGSdfQMG6l0Fs47cvSNh4g3fI89iIYWYH8I226BVfGjzrGdDTjt/8aV8/sUd+V9/uQd3RsQ2ULKOxhLcEXCSL++i8zirFJ1NwLv4MdbOmgheZXwvmTihL3Ir95fKcWiLVspSUkACaki+/uaK/Nv/vixHLz4BMwlmEbnJtBbD8sDZ20KuQC9zfXF2oO6SIqCytcmHJvzEHMmUGhEKpywu0xrOINgDFAcpfDSOw/CqxeUIr1wh8+Bz2rVLQDojD1lHTi2j6JblD2csGYwjjiVrwQQCfR0t+Eu0aqANMBCsLyMACjQM+RYLWkZqGpk0uyAKzDb4DrFXeA8Gr6pvATPN91H+K0ojWN8btMz5V64+l8+/vCz/8z+uyLPXzHGKd02xrCDKAyeUsEjBE8FhXMc58WXnOqYwCaZUMaR6ppHvgG2FEcQAnKOEWexW+4ANiX14Du+bMtHFffY1E0b0kF9Ac7r8vQrp27eTinzXUcx6M34JsHWKvUE/q8/3ybYCRqh+1sompTamvRJOBGUthdyPFNYBI4jN9cY64HQxckO3gxIKReXV65C8ehWUH364K+u+vSXb9j9wsIR44mIaE+9LPOBEOQXZxE7MTbG/ky8BkqiJMFyvJ7jJgyTwgqeQ99AY4vAyWTBkUkVP+eSjCnlvWQXyrZdKly7FUmrMepPEz2cLNFfjO3En5J6orH0xv297XG/d+ABx1JNjeZw8ibLUqV1XvSeBj0WF1zfpUkC8z8kL6pfhmvipMB9twMmcdlTOX3wKAfWK/I//uCxvQJvsvAtxJNJEvIvDp6QHQXLxLqWwFP3DL0fLyhUjZeyYvopf6QJZx1YUtnwjFIyA+qYqLHv23JCtO27I0WMP5e6Dl3Lv6QvAPT9ORIyy4GfhBePsQRhtZyCoTS77Q1bJbXUUX+X/hTMTAwTPsQeZWr4fOMdClNP+3YtkUP9i6doZz1TP8sjC+YOQ+2c4AiMV3gxVbTqYPYYC7ZsCt++8lF3f35AtW2/Ii5fVeNkI5PEQcKNK7jyskpoIGUBHQM3S323B08EDkkxrQXmNNuFVzCcYUBZypQR0hSfEEiyK4YxJd/iTDupbKv36cLLCFlBHVvSQZUuHyeKFw+BvanzFSEJTDAUKjQI/Hb4r3+28gSAm1Cjbk+MvXtXInftVcv85taHs/xQmk/0dHV/NY6m1ngzLeJyX2XiALZyeDUPAe/QrkX69kxgyamRPCKc2hrSWqZ2qt/ljKGAo0GgK3Lj5QnbtuiGbwLtUVXGiMyJBTEbcBdbceVQlIcbUSMgrwArFX2Ct8AZrKg6IJzxH8zasFfcRfxR/gnuoYzzXnjhLx50iaEsH9SmWgf2KoWwjLyPSqZNfVi4fKUveGi7lBZBfuWAEVEbXu37jhVy79lxOnnog+w/clG17byJCJxuGxPOhXWBy6OEMEX+zEdkIurBhIGBiIImrSHpgWuFTljDxTZjUOPfjb8cZOKFJxdVeCKhL5w6En9ggJMBGfjT1LEsGDe4q9DkdCEdhUwwFDAValwIvXwaBF8/l6tUXmBDHLCPw4M2boIrQuXPPbbn95A32oY/TxI5r3d+JGUqzwfqnHecuhTfACGKDe0DQ9+E5+l4p8GPJ1FE9ZcH8gTJtSn+epJbuPYqFuDF0SPdWM5NhlU0xFDAUqJsCd+6+kmvXn8vdO9BWkbfAcu36M9m3/7bsOHCHSAA4cBhAbmt+QmkfcH5iYov9Xh/H/oR2AtdqDOFtuK34D3W2/Qf3nD6ml8KQKcg7qDGkB0x8hw3rDgzpYbIFuMhlNg0F2iIFnr9AxpLrL8C7PJcI0wMCa15iMuzAodtC3uX+c064Ax80XmTCmvTjJEQu3iUNdwb0LJF3Fg1S+U07OzlN/X6PDB/eU2FNt26tbxVYMAIq6RsD48jl9Jn78uVXp+W///tJ5BCCJoRFaUIZBp4muBgulEmMc0ydwIGBPqQ+HKf2hAsHCGpR9AyCsz+xjx8B9tHcxjGh8CEYwf/1xwnyyS/Gy/hKMposEHvRuPQx8fBjMcVQwFCgVSlACGCI9jj6rcJlsJAvAPxfrzsj//6fJ+U43AQSJUt/V+fkOq5vpEyeiSVcgBlqIRbZGLN2yRD5za/Hwpx3pL4CeETssJfETrNhKGAoUFAU0FiSDKoZlxMn78GN4JT8j/+Er67DH9iCqN3f0fFt/oE8hC6ZMCJ5U3vCXPEpmVyJvPLRu0PlN78aK0uXVjh3pCsCLzMYokls1oYCbZkCincBnqgUM4AQ4siTJ1Xy929Oy78Ba85ee5Z8vay8CYAhcZy3AQ4pLFI3Td6DWw4uuV0YKxGl95/+cYJ8+GFlMjqvwhq43fHWBSDrFJSAqil6+84LOXL4luw7eAtme5zNZAHFuEBLev/eazl/6amcv440BaRkttkEdQ3O4VeRmO3kbKZHSpEyZsKorjKyopt0hmqbxev1yLw5ZUgFMVjKEFrZFEMBQ4G2QYGqqpAcOXpbDgI37gIjkoVTh5xhwkpZXRDA3SCuZp/s09VxjTn2ruRf3sA5N+U87AcuVY7pLTNnDlLBkJLXmC1DAUOBtkiBmzefyU+HbyPv8i17Uly9hMYArNXMGHHEjRf6OHAigRFurMl0nDcmrlgyYVwfhSETxlODaoqhgKFAR6DAq9dBOfKzzbs8eEjrL11y8Sa5juv71Madfv1KZc7sMqSsKoP8U1iB/BK1hjbSjZ56f6uu37wJyaPHr+XRI6SVSakeiWzJ2TMPZPuOq/INFj0zoCqcGDB4GhpOCacYPDj7mWKyZ9+nf/dS+XDVcHl7yTAVfID3wHyl9EUy7N59Ohdso7GephgKGAqkUiCCkO0aN6praParC/s7C9eEu3TI08d5Dkv6cXuv/dfGjtT72Pu6dS2SPsCOXj1NdG83xcy2oUBbpMBrMI2PHr8BH4Jgfykv4MYAHkg9auMMz+H+9GM83329Pm7v696tWPogEFJPgyEklCmGAh2CAnRx1FhTE6TZry7EBZa68EQft8/KjDf6mI0xGpeKkfquL+Sc3r07Faz7UUFqUDU561qfOHlXvt10QT776gJOobmNI4wq9TbNbTirQDM8NIiaxeQ+PRBg0ynlgzsjOt5Yee+90dKvb+HmfNT1NWtDAUOBJqYAJrVUxGmkP3FHPWaKHauktKBT7TQxJcztDAUMBRpCAWII8CNWjWBKyqcs7SYwr7NKkIGAi7d18gmm1cj8NBQwFGjrFADuxIA78TTcUVGoiTWtHPG+KcjbJgXUu3dfyPkLj+TsOeZ51LMCJId7xtIRWpX5jXt/kmxd4BhciXymo0fb4ZSTR8yWoYChQIegANKehC5dkPCFsxJ7+CDxyt5hFRIYNUZ85UMS+8yGoYChgKFAOgVUXllgSOQ8MOTxw/TDaqLLN2acwhNPVwZeNMVQwFDAUKBxFFC5fYk75F2QM1cX34hR4h8N3mVQmd7VZtdtUkBl/rLq6rBaFOW1ltutJM20L62ZvF5LSpBPjAt9T00xFDAU6FgUIMhX79wuoW3rJXblZOLlfbPelcDS96V4xqzEPrNhKGAoYCiQTgHmeSSGBIEh8Wtn0g+L1bW3+Jd+IMXvLhffAJOmrhaBzA5DAUOBelOAVhvVu4A7W9dJ/Ma5xPW+eculCLxL0ZRpiX1tdaNNCqiZiM3E6VHMInCJR9z+Z/bZnk6dxdu7j1pUWLxMNzH7DAUMBToUBZgMverbdRJa96nEb59NvLtn6lIpWvtLKZm/KLHPbBgKGAoYCqRTgC4CCQy5S7ejtFLcRfwrfy8lqz8WX1l52kHz01DAUMBQoP4UiFdVKdwJrvuzyP1LiRt4Z61UvEvxrLmJfW11o90IqBRMg8eOSOTIQYlXuSN42k3jKRsm/qkz1ayC5aV/qimGAoYCHZ0CRkDt6F+AeX9DgcZRwAiojaOfudpQwFCg/hQwAmr9adZqV0RuXJfq9V9JePOfREIIVpBWrLJKCaz5rZSu+kAsv51SJu0U89NQwFCgg1HACKgdrMHN6xoKNDEFjIDaxAQ1tzMUMBTISQEjoOYkUeGcYATUwmkLUxNDgbZCASOgtpWWMvU0FChMChgBtTDbxdTKUKA9U8AIqG2odY2A2oYay1TVUKBAKGAE1AJpCFMNQ4E2SgEjoLbRhjPVNhRowxQwAmobajwjoLahxjJVNRQoEAoYAbVAGsJUw1CgjVLACKhttOFMtQ0F2iAFmPc09uqVRJ48ltD3OyS8a73I01uJNzFBkhKkKJwNI6AWTluYmhgKtBUKGAG1rbSUqaehQGFSwAiohdkuplaGAu2RApR1QmdPSeTMSYlePosUM0htFUwGhjUCagG2uhFQC7BRTJUMBQqcAkZALfAGMtUzFChwChgBtcAbyFTPUKAdUaDm8CEJbVknkX3fikSRUjMexRJPvKERUBOkKJwNI6AWTluYmhgKtBUKGAG1rbSUqaehQGFSwAiohdkuplaGAu2RAuEL5yV4+ABSau6X2P2bMO+9LRIJJl7VCKgJUhTOhhFQC6ctTE0MBdoKBYyA2lZaytTTUKAwKWAE1MJsF1MrQ4H2SIHYs6cSeXBfIrdvSeTQXokc3iXy8kHiVY2AmiBF4WwYAbVw2sLUxFCgrVDACKhtpaVMPQ0FCpMCRkAtzHYxtTIUaM8UMFF821DrGgG1DTWWqaqhQIFQwAioBdIQphqGAm2UAkZAbaMNZ6ptKNCGKWAE1DbUeEZAbUONZapqKFAgFDACaoE0hKmGoUAbpYARUNtow5lqGwq0YQoYAbUNNZ4RUNtQY5mqGgoUCAXqElCtihniX7RMiqbPFk+PHuLp3l2sQFGB1NpUw1DAUKBQKGAE1EJpCVMPQ4GOQwEjoLahtjYCahtqLFNVQ4ECoUBdAqp06StW+WjxVYwV36RpEpg4Wbw9exVIrU01DAUMBQqFAkZALZSWMPUwFOg4FDACahtqayOgtqHGMlU1FCgQCtQpoFoWaoiluKv4V/5OSt5fK77yoQVSa1MNQwFDgUKhgBFQC6UlTD0MBToOBYyA2oba2giobaixTFUNBQqEAnUKqLp+gU4QUP9BSlZ/JL4hQ/VeszYUMBQwFFAUiIfDEjz+s4R//kki509K/PYVkWd3ROIxm0LFXYAhvweGfCy+snJDNUMBQwFDgUZToC4B1SofL75pC8Q3YbL4BpeJb+BgsUpLG/281riBFUdpjQc39TONgNrUFDX3MxRo/xQwAmr7b2PzhoYCzUqBWEyiTx5L5PEjiVw8L+G9uyR2bKdILGI/1giozUp+c3NDgY5IgboEVCnqItJjgHjLK8Q/f4kUzZ4n3t592iSJ2o+Aeue21OzYIqHtX2P28p5IuCY5QKBprLJKCaz5rZSu+kAsv79NNpaptKGAoUDTUsAIqE1LT3M3Q4GOTIHw5UtSvf5LiWz9VCQasklhBNSO/EmYdzcUaBYK1Cmg6qeVdBP/+47116DBem+bWrcbATX24rmEMHsZOX9WoudPS/TCMZGntxKNYQTUBCnMhqGAoYBDASOgmk/BUMBQoKkoYATUpqKkuY+hgKFANgoYATUbdQrsWDwakXh1tVqCB/dJcNt6iZ/dm6ilEVATpDAbhgKGAg4FjIBqPgVDAUOBpqKAEVCbipLmPoYChgLZKGAE1GzUKeBj1Xv3SHDdZxI7uiNZy55wFp67VALzFom3b3/YZPcWT5euyeNmy1DAUKDDUSAeCUvNwf0S3rdHoueOSfwp3APePE0GOPEViXf6u+Kf95b4R4wSD3DD26s3fAYY5dcUQwFDAUOBJAUyCqj+YgdDlgBDKoAhfWwMSV5mtgwFDAUMBepFASOg1otchXNyRgE1UCpW32HiKRsuvqmzJDB1hviHjSicSpuaGAoYCrQ8BRDgJHL3tkTgwx65eE7Ch/fD8mJf0n/d8oj0KhPPoBHiHTdJ/NNmSvHkaSIe7DfFUMBQwFDARYGMAqrHK4IJcs9g8B6VU8Q/daYUTQGGmGIoYChgKNBAChgBtYGEa+3LMgqorkp5566RorWfSPH0Wa69ZtNQwFCgI1MgfO2K1Kz/SsJb/mwHWUsjhjVkogTW/lY6ISeqeMF0mmIoYChgKOCiQPjKZanZ+HcJb/0rMKQaR5AkwZUowRo6WQKrfyWlK9eIxUkuLsYaw0VBs2koYCiQDwXi1VVStWmDhDb8VeJ3zuMSYg2vdBKzFCNIksrh/oF4kW7GIs60sYn1dhMkyd2gRkB1U8NsGwoYCuRDASOg5kMlc46hgKFAXRSIPnoooVPHJXziZ4lePi/xWxdEXj9Ont4N6R8mzhHf5OniHTJc/MitrFwGkmeYLUMBQwFDgZwUYPyM4OmTEjlxFIFhT0n0OrDm8XXIp07+ZbgnWWNmiX/yTPGOHAOsGSa+8iE571tIJxgBtZBaw9TFUMBQoNUoYATUViO9ebChQLugQDxYI7HnzyT27LkED+2T8J6tEr9+PPlu3oBIpx5idesj/kXvSdEC+LaPHJ08brYMBQwFDAXyoQDzLxNrnj+X8IWzwJodEj2yDe5JUftquieVIM5O1z7imzBT/AvfkZJ5C/K5c8Gc0y4F1JqjRyS0a5tEDiJZdtVzkeAbzCo4jQbSWxMWS9E7KyUAXzJPly5idcbi8xVMo5iKGAoYCrQ8BSK3b0nN7u8kvHOjxB/fEal5lcxlyOr0Hyn+Jauk+K13xdO1mwqyZhUXt3xFzRMNBQwFCp4C1d9/B5eBzyR+cnfGunqmviuBt1dIYMLkJB9iXAcy0srsNBQwFKibApHr15K8y/P7Du8STlxgDRrr8C7vKHlHyT1Fhc+7tEsBlQFPwlcvS/QS8qKeOiqxC0fQYC8TjSW9ysU7Yrx4R1ciaAH8ysZWmoi+SeqYLUOBDkkBlUuZuHHlkkTPnJDIGeAGTWZ0Keku1lBgxshx4q2cJIFx48XXRhNg61cya0MBQ4HmoUAuAVX6DKvNh3Tq1DyVMXc1FDAUaLcUiD17KqGrV+BWcBF8y3GJngXv8vRW8n079RTNu/gc3sU7YGDyeIFutUsBNR6JIEBBSKm/a7Z8K6Etn4s8uZlsAqq+PdCY9hosgRW/lJL33kfqmX7J42bLUMBQoONRACYzceBGPITUM0g7E9z0tcTP/JCkA3GDi9cvvrc+kqIVa6Vo4uTkcbNlKGAoYCjgUCCngOrwIVY/+KKu/ERKlq0Ub89ehn6GAoYChgL1o0A0Ct4lrPiXmj27wLt8JfELB5P30LyLLyC+dz6xeRdMsBd6aZcCqiZ67NUrqdr4tYTWfyry6JrenVwHOol36lvim7VAfMMrxNcfAQz69E0eN1uGAoYCHZICwTOnkHLmgISPHpT4/Zsiz2DyG3WZzIyET8fsReIbP8nGDeRWtoqKOiStzEsbChgK1KYAA5iEf0KO5WOHJP6AGHI3BUMSVyBwUmDN76Xk/Q9VfvbEfrNhKGAoYChQTwoEGaTtEHDn+GHgzg0bd2JQ2qliIXDSbJt3GTcRvEt/8fYbIJbfX8+ntMzpHVtAZX6y7gPF6lcmvokzJDBzrslP1jLfnXmKoUBBUyD65LFEHtyX6M0b8GX/USI/7xJ58zRZ5069xOpTBhO9seKbPV+lrPJ06548brYMBQwFOjQFEhhy45qEgSHRI8CQasTESC9GQE2niPltKGAo0EAKRB8/snkX+KWGD/0g0Z+/B+68cO6GVDOdwbv0hZtjxTgIqvOlaPps8XTu3MCnNe9l7VtAff1aqrfBxJfq7ttnMXuJQEkqBLOTJ8hFW2v4NAm8/7GUvL0MswkBe0bBBCxwUchsGgp0PArEXr6Q6q2bJLT5S+QaQxh3zkSqvIYOhnTqLf7lv5Ti91alWF8YDOl434p5Y0OBTBRgVN/qbcCQTcCQe5ccDHFSQfCCLn2BIb+Cq9Eq8fRKmvgaDMlETbPPUMBQIB8KROGXWr31WwmTd7l/pTbudO2veJeS5avF06OHc0toWKFNtQLQqFKB18qlXQuo8WBQQufOSPjMSeQJOo3gJ2dEHlx2GMw0ykOT6h2H3GSVk8VXMUr8MPk1+cnSaGR+Ggp0MArEa6olCAyJwOQ3gSEPAfZKSAUx/CVijZwGU9+pYnVBSHcUy+vD7CQi/hJDjE+Zoon5YyjQUSkQr65yYQhwhHzIQ7ocOZNcgVKxRk23MaSTrcmwfH6FIQFgiKdHz45KOvPehgKGAg2kQKzqjYTOgnc5q3mX06mujnBxtEY7uFNqB2fjpBh5F4U73bXQ2sAKNMFl7VpAFQQ9ib1+JfRFVYLqri0SPbQZ44Jr9lITkUGTisFgdumF0O+rpAipJPwjRuqjZm0oYCjQESmAnGLED+JI6MxpCRNDDm9JCqgMPgAGU0ph3gvBVBV/ETBkNTDkHfEPG9ERqWbe2VDAUEBTAJZbCT6Efqm7NsPcdzuOOgKqwhAwiKXdEhhiFZWK/+33pXjxu+IbOkzfyawNBQwFDAXyo4Abd+CXGtq5RWJHiTtO0bjTCbyLoy21SjoBd5BKb/E74isfqs9stXX7FlBdZFV5gn78XiXOZoRflngE6xePbb8QLbSi0TxT3pHAIgio4yaIp3t38XImwZj7uqhpNg0FOh4FwgjjHlQYskXizx6KvH6SmidVkwQY4p22VPzEEKawAn546Z9qMERTyKwNBTokBcKXLyUx5Pkj2689avMjKQQBw+idvkxhiHdIUkD1Mv8y8KRQfcZS3sH8MBQwFCgICoQvXQDu7Ib8A96FMg/jaWTEHVh/zXxP/AvBu4waY/MukIHEg4n4VigdRkCNPXsm4ZvXJXL9KmyxbQ1qHP5lkeM/SewcwjGHqmzyW3AiRp5Uz5DR4hs9QXyTpkjRhEliFZe0QvOYRxoKGAoUCgWYayx8w8aQ6ImfJXLyACLk3a5dPYUhQ8Q7dLR4xwBDJk61McRE+a1NK7PHUKADUSD69IlEHAyJnDgiUWLIc0T3TS/UbvQmhowRq0fSL9U7doIEkNrKWGakE8z8NhQwFKiLAgzYRvknCvknctzBnRf3ap9O3OkzVLyQf7xjEeV3oiP/tFKU3w4joCqfMeY51JpSNE304UOp/vYbCX/7F2hDMJupCxlMwdJ3uARW/0ZKV64RD2YuTTEUMBTowBSg36mDIdXbNktw/WcSv3w4M0EcDLEGwJ9j1a+lZOVao/XITCmz11Cg41DAjSHI0R5c/zeJXz2a4f3Bf5ANsf8kjntnrZSiNb+Q4llzE/vMhqGAoYChQFYKaNwB/1K1eQNSbwJ3rh/PcEkSd6zB4yD//FrJP1ZxcYZzm39XxxFQM9CSETqDx36W8M+HJHrprMTvIvjJK5ju6VIK07zJyJE6fa7yA/ENQloJkydVU8esDQU6LAWCJ5Fr7OhPEjl1TGJ3gBuPb9pR8tIpgnQ0NobMER9M9XyDBhsMSaeR+W0o0AEpEDxxzOY9riGyr1Nij+6DD4GVl3vCXB/E2jtjuRStRdTwOfNde82moYChgKFAfhQIHqfMA97lzHGJ3Qbv8vQWeJdo7YsRXdw7ZYH4p88RL/xRFe/Sq3ft85pxT4cWUOOhkFD1zbxBYSa33fudxM/D5EYXBk7q2lesXgMgpM6XwNyFylRPHzZrQwFDgY5JAZrqxYgbMJkJ7/0egZN2iARf1yaG16/SSFi9gSEzFtgYUjmh9nlmj6GAoUCHogB5j9hj8B+vXybem9HCw/t2SvzST4l97g0joLqpYbYNBQwF6ksBG3fAu1y9bPMuDNgWrql9G2/Aln/Au/hnLVK8S2DMuNrnNeOeDi2guukaRHS94PZvJfL9etsfNRJEFKVktF9rzFwJvLc21bQGdtmeEqSZoH+qMulz39FsGwoYCrR3CkQfwU1gxxYJb18n8aeOTwfNaejTno4hlQukaNkaKYJ5nkXc4KIj/7Z3Qpn3MxQwFMhJAVp0BXdsksiPmzJjyIRFNobMmOPCkNbPV5jzxcwJhgKGAgVFgei9u1L93VYJb/ta4k/+f/bew79t7Er/PiAAkpJ7lbtsy5aL3HvvbVzGM5lJ2c3+9o97N8km2Uxm7HEb9957lXvvcrfFgvY+ByBImoAoeoolked+oiF0AdDCl8qjc+49BbU02EnlPu8hw00t4MiNz5xaIA5q5sMw8WEZ1xrJbLyEfocXyL6O+OxmVLryR0+E5tVPpsjwkf4MRfqi0S0qXUVHjpIKnVkqciAEKoeA237m2lUyr14h58M778FNEzpyHvmp56Ahr3IwUHxNrZ+E4gMonDQK+R31oyjC1X1lCAEhIARAwHz4IGuHeBoCOyTxJseGCyeNgoaMztMQqY+R4yNHQkAIlESAUxzTru1y2fV5rKvQmqa7ofeKgxqK5fNNcrgvN9S237+nJFYV0tu/J3p8NfcDcJ8gHTul/JUZkRETKLryS6pauoK4sbYMISAEKowA9xpLJFztyFYHh5Ykd271NOTpjRwQThnQUWygxwDoxu8ovmyVm9eRu0COhIAQqGQCTjoFLUmQ/fp1xg75juj57RwSV0MQedF7EOkrvvY0pP+A3Hk5EgJCQAiUQMCB7cI+D+tN6sRRSv20gZwL+0LvFAc1FEsbTOJDSxw9TMbhfWRdOuWF7XHPoLxwX/+nUgY3UHT9n6l63dektFEZZv9nkVchIATaBwFe7GpGdfD0D38l58Hl4A8VRTPsNf9NVV9+g8JJQ4PnZUYICIGKJsAakjwGO+TgXuxunPXsEI7o4vQBHvEupK+FhqyDhgwe4s3Jf4WAEBACP4NA6vIl+Dz7yTi+H+G+aHv1FsViLSP7TsqI6aTPW0b6pKmk9u5DKoolKZ+hbZ6E+GY/gswB/gBwmI358D6ZCPk1Th4m5/Khjz4s/xZxUH0S8ioEhIBPQBxUn4S8CgEh8LMIYKHcfAQ75AHsEKQPGCcPeQUc/Wqb4qD+LKxykxAQAkECXCiW/R7r7m1ozRGyzh5AJfGm3IWd+5AyYDipdaNJnzqLYpOnUqRHz9z53+hIHNQiYLmhttsndfNfUKGT88uweumvYOI7cVCLwJNTQqBCCYiDWqEfvDy2EPg1CXDPZXyZN69TYuN3ZG7/a26hXBzUX5O0vJcQqGwC7NdAa+wP76l58wZKb/wbUX56kk+nqpsXucHRX2iZ91sPcVCLEOZyzOkL58g8exJ/JBrJuYec1Lw+qeKgFoEnp4RAhRIQB7VCP3h5bCHwKxHg/DDz3l0ysaNhXr1M5pljaD1zAgvkmX6F4qD+SqTlbYSAELCePSUDWmPdvgmtOU7WxaNEH14EwYiDGmTSVjNOKoViBa/cggWpk0fJ2LcNlTlPZn8ccVCzKORACAiBDAFxUOVXQQgIgV9CgIslJQ/tp/TenWRdPYOcMITbcRSXH8ElDuovwSv3CgEhkEeA22ym9+8i88gect4897oPhLWcEQc1j1obHzqGQc77d6js+45Sx45Qetcmcq5iZSEzxEH1ScirEKhMAg5aynga8R49IrweYo6BAie7t5Ox+0dU4LyVA8ONr2FYKn0Gk75sHcUXLSNtwMDceTkSAkKg4ghkNeQdHFDsnPJwUklK7tkBDUFf9rDWD+KgVtzviTywEPg1CLA/46BbiZNE39PMSJ056fk3XG8nbLDtUtWVlH5DKbqUbZelpNb0C7vyV52TEN8iOO1XL4mrW5mXzpF17TLZty4SvX6UvUMc1CwKORACFUnAfveW0qwRl9H3FMc8HMsk6/plcu5cIkp6c+6JPsNJa5hGasME0urqSR9eRxHpYeiikf8IgUol4PYjvHwRdsaFbC9lXhy3bmQ0xK1/UUBHHNQCIPKtEBACpRBIX0HFXmiN/eh+9nL7wR2ybsJeefUgO/fRQc0I0sZNJ3Us+i/7tkvnLh9d8lt8Iw5qEarm/buU2LaJjK3/QO4pQmx4yzuv3Yw4qEXgySkhUAEEOHeDNSK95Z9YvHrsPTF3grDSnlbk68WERRRb/Q3FZ89FW6ooKVGsSkYiFUBJHlEICIGWCFhPHuU0hNs78OBQXm7zwPqRpyHeSfxXHNQsCjkQAkKgRALQleYdWym1+d+IBj2euwmL6oX+Te4kzJTJyym25ncUmz4Ldovu2i+fw3YRBzXzKdhvXpP19AmZ+PKH/fQxGUcPkH1ur2dw+icyr+KgFgCRb4VAmRFwTOxkPPF0wWn+EHg6++ULMo8dIOv0HqJ08DxxaEzPgQiNGUL6lNkUnTmHoqPHBt5HJoSAEChPAu5uKNsWTx6Tk2gOPKSNYozm0f1knYGGGInAedJiWQ1RVM09r3RBNc1Z8yk2babblzB4k8wIASFQyQS4Fobv0+TrjnHsEGyW3UQv7hbH4+rOIIrAdtGmzaHYjNmk148ufs+vfFYc1AxQ49YNSh8/4vY99Rk7HxCr/fQe0Rs4rSGrmOKg+qTkVQiUJwEbTmnqxDE0sD5M9tOHgYdk4Xc1gkP//R6F+Vehf5g2bTFps+aROghC368/qT175V8hx0JACJQxARv5XqmT0BAYhvbzTJRF3vM6iQ/kPGE7A+fCNKRLX9KmLyFt5jxSYnBWMTj6Qus3wM0DU6qq8t5NDoWAEBACkBKkHKVOHofuHCS76amHBIEZNmtNE8J7jeBi2UfcuvaD7sB2ge5ogwaThpzTz9H7NP9nKG8HFdvZbqEjFC3hHj/FRursaUpj29s6viX8MgWheBEVX94KJl+k1E1yQ/aqVq7Blrcefp/MCgEh0K4JcFEjJ41wuhDj0H7zhpLbfqT0VoTwtpSfEXg6BeIAvVBVr1fymm+JNSLSqXPgSpkQAkKgjAhAQ1hL2O7Aqrb7YParVwjh/dFLFWIntKTha4hGSu04iq75PVWznSHOaEn05CIhUPYEsv5NC7YLorsSW6E725Ci+DbjoLYEJcy/GTqeokhJcnUnHm/pzt90vqwdVN7iNm/fJOPmDbSKeVkUpH0PPYAuniTnUWP4dd36U2R4A6lDhmfPR/oNRNGT8RQb0+Aao9kTciAEhEDHIICqmcbtW9CI62S/QHn1wpFIkHnhFNlXT3ptHgrPh33PYl9TR2od9GL0ONJRFCk6tgG7Ht7uR9gtMicEhEDHJ8Bt6dK3bqLgyHU4qVgY54EoDOPCaXKusYag2ncpw9WQEaSOyNeQcbIQXgo7uUYIVAABTj8yfdsFzmjhcD68d20X59qp8PSj/Bu61lBkGLRm6IjsrNK3P2wXOKlsu2htswFX1g6q/eEDJfftQvnkrWTfv54FH3qQwnZ34g1aRaRCTysjZ1B02VrkfMzKnUe4TaRLF4pwNSsFK54yhIAQ6FAEeKcjsX83GdAI6waqdBcO3lVthi6wYRkS5l94ufs9jEt15hrSl65CvmlDTiOkIFIoLpkUAuVCwLx3l5J70R6GW9IlMs6oqyGvoSHIUS9VQxCtpc5ag5YOq928L9fOgK3hRmaUCyx5DiEgBH42AW4Tk9jHtssWsu6EbKxx4SO2Xbg2Riu6o9RNhdbAv5k5N/fzsH8D34a1p638m7JxULmxtf36Nb5eIVIv00sMDmp6/04yDyBsl/NISxnsaEY7EXXpjXAavGaGNmUuRRcupdikqf6UvAoBIdCBCLAz6uoDCqLZbggefni8ptlB3b85vN9g/vOpWEWs7kFKtz4Q7PwTBcd6jPSFqyg+H/kbQ4cVnJRvhYAQ6KgEeFfUszOgIdjBKBwWKv8be7cjVWgbUga8vsgfXcMa0qknKV17F9eQaBXpizIaMqT2o7eQb4SAEKgsAhwNyoVcXfvF77cOB9XYv8uzXV49LA6EizV2YtsFuhMy1EmzKLpgGcWnTg8523ZTZeOgWtjiTp8/S+a5U7lKeXBardvXELZ7Lbw6Xhh3OKjKsMmkTZpJkYFDsleoAwaSXjuUVBQmkCEEhEDHI8D9BlMXzkEjEG73FjsaPLCY5WrEw6uth98hDEYdPxvaABEvthuK3FOtdpirF5HuPbx/R/4rBIRAhyfAzmnqAtsZ0JD3eT2OM0/mIJXI3c14fid81wKpQuoE1pBpuKPlVS5F00j1NaRb9w7PTR5ACAiBn0+A89izuoPire7A4rp1B/4N2y7pVgoedUdBNdadiaw7waGieCPbLBr8nPY0ysZBNe/docSm78nY/FeiZOEfDhQr4L5ipQyE52mL/0Cxdd8g9npc7g52XNkoLWaY5q6WIyEgBNoZAQttoxKbfqD0pr+FFA1oXSOUIcjHWPcnql6zvtWc86xWcESGDCEgBMqCgPnooashrp3xvqmFZ2It4VNBm0MZOomiX0JDVn8J/7S4NoiGtIBXpoVAhREwHz7I+TcfCuvplGC7DJ8C2+WPnu6EsWun/k27d1At9A4zHt5HAZOW/hh4tO1nT8k8iTLulw55Da7DPgR/DmXblQHDKdK7xp/JvaJKrz4d/QonTyVt4ODcvBwJASHQLglY/P/9Rw+IX4sN59VLt42Uff5g6yXWO/UipT80oiYXMRFBgTR96gyKc5i/LFQVQy3nhECHJOD2DoSWGA/uU2jf4xfoe8x2xkXWkGTxZ+yMNCHWEBQb8QcXIdGnzKAY7AsZQkAIVDYB7lNqwPm0m54VBWE3PYfuoNUd605YnRy9ipS+wygyCEVcNXQbKRjqsJGe7kyaUnCmfX/b7h3U5KkTZBzeT+aVs8VJci+xFyjh/uFFeGhN3t1K/UzS5y0jbfTYvNnMIe+g9u4D57W3tIUI0pEZIdDuCHDoS/rwAYTdHS/+s6WS0Aj0K32HxS7Hy1Nv6QYO89fnLiVtwuTsJVwwQIU2qL04f6z47kf2JjkQAkKgwxCw372j5LHDZB7agyb3IXldyYSnIbx7WkLhEVdDxk3MPr/auatrW7COyBACQqCyCaTOnvJsl4unioNoTXcQwqvNXk76nEXolYx804KhdmHdydguBefa87ftx0GF2NsJGJBofE+ZJGAGl0QBk/S278m5faZ0jtyvVEPfHhQaCBvagnUUW7GGYhMmhZ2WOSEgBNo5AQca4bBoow1MEs5p+qcN5DQeLv2ndjUCbV+i1aH3aDOXU3TFWopPnxl6XiaFgBAoHwIOL15BSzgKI7ljCxk7vgtJAyh43tbsjDmo4r18TbsrPFLwFPKtEBACn5GAa7vAz3Ftl4N7PdvleiuL6/k/X4juKGgRE1uxnqqWrYCD2jY9S/N/xF/ruN04qFyFN339GplXr5CT19PHun6JrKvYPX1bYhVeJtNjEKmjJqGvz8hQTtrIUSjdPqbdJQSH/rAyKQSEQICA22/wWqOrF9aVC2Rdg0a8vB+4rsWJrv1IrZ9IkZEhURS4SR02gqL1o0mTCpotIpQTQqBcCJh3bsP+aCSr8RKitc6Tcwt60lrhES54VA87Y8ToUAzacITVsYYMzhVbDL1QJoWAEKgYAlzQ1cjaLuc92+U1IrtKHVzwiHWnblT2jkjvvqSNGuPaLFxgrVxGu3FQbTSVTe7aTineCbmPqrv+4D8SJnI9uJdYiUMZPYeiK9dTfFZeT5+8e5V4HC1kqkmJBrfC8y6TQyEgBNopARPtHJI7tlF6x7+JXiP31Eh8mkZw0YAVX1F84ZLQJ1TQA8zVCLzKEAJCoLwJJI8cgpZsIvPELlTzhs1hpVsP4R0xHRoCO2P+olA4vJOhVCE3TDQklI9MCoFKJGDevkWJnVvJ2A7bhdONPtW/GTnD82/mLszhg1MaYZ8GelNO6Udt7qBybx8LBZDMhw+Ra7qXzMM/4UNV1oNGAABAAElEQVR7lgMfdqRjC7tbDSk9+4WddVvERPHhxcbncj9CL5RJISAEOg4BpAFYKFJiccGAG9fIOLCLrNM7Wy+KFu+KqIr+pHTpnn1WrQE5pnMWSvhdlogcCIHKIuCG9L54Dj1povSJI8g73UnOvQvhEKq6EXXv97GGjJuKPPUFFJ8c3roh/I1kVggIgYojgA0233YxECVqHNxN9lkshoVtvHF6YjcUcu2VK66Wz0ubMI2icxZQjIs1lvlocweVt7rTZ06SefYE2fdvkvPsjreiUAx876GkTZlH2uTwprKRvv1IH4gw374hVXqLva+cEwJCoN0S4NyN1NnTZJw+TtaVc2Q/uImw3get73RwX+Np80gdPiL7bJFefUgfBI2QvsZZJnIgBCqJAFfQTJ05Reapo14/wce3iJpfhSJQ6lDVf+pchP7XZc9zWJ1rZ6CHoAwhIASEQEsEOIXRtV1OHSezESkED6E1r1CELazQWs/B8G/mQ2/C619E+tR4ulMTvkHX0s/QEefb3EFNHNxHqR/+Qfbp7a3wQ9VMt3Am+pGOnk2x9ejps2J1K/fIaSEgBDo8Ae5hDCF3kilq3rKB0hv+BoG/EvJYOY3IP6kt+B3Fvvy9tHbIhyLHQqCSCPgaYkNLMsO8eZ0SP35H5k9/80J63fkWNGQR9OPLbyk2MVfV238feRUCQkAIhBLI6I794QMlNm+g1Ia/Ej29kbs02w3AdW7ceWXkdGgN90pel7uuQo86joOq6qTU1FFk6ChSGyaRjj8UsbHjKvRjk8cWApVDwHr+jIx7d8m6fdONtLAuoFrvu+dBAFzdrs8wUqERSte8cN4JyDdFxW5tcG3wHpkRAkKg7AlwdV7j3h2y0N/UH/bTx2SeOUbOjRO5UDvWkL510JB6hPMirDcztIlTPQ0ZJAWPfCbyKgSEQHECru7che7cvpGxXY54rTD927ohbWAwfJr+g/wZigwZBv9mCsXGTcjOVepBx3FQY11Im7ua9AXLSK8dSpHuPSjSLWeEVuoHKM8tBMqdQLrxMqXQbsrNEXsDx/TDy/C8Uy1G6swvSF+4HII/IItFZa3gr06dsnNyIASEQOUQSF2+SGnWkKN7sg/tJFEM6S2KlKTeIkIjs7OKhvfqrC8oCg2J5IXQqT0yGlItGpIFKAdCQAgUJZC6eJ7SB/aQeWQ3Ob7tYpvZe5RRs6A1K0kbPyk7p8JOce0V2CyVPtrEQXUMg5z378jGV+rYEUrv3kzO1aPoXYoKVNUoaKIHK2dyQaTosnUUX7SUpMl1pf/ayvNXEoHkyWNIA/gnWYc3hD+2imrc8S6k9BlM+lL0Ll28XFpIhZOSWSFQkQSSsDM4lcg6tin8+V0N6YoorVpoyBqqgoaoklsazkpmhYAQKIlA8shBhPXCdjm+JXc9R2lEsdBV3Y30eeiVvHiFpA7k6Hx01CYOqv3qFaWvXCTjEvcvvEj2zUtun1NlGMLwUBlPQfGBwqFg5VIbUU86Cp3ITkghHfleCJQvgVYdVIT1amOnIfR/Iml16D1YB43omgvPK18y8mRCQAiUQqBVBxVhvVrDVFLHQkNGQEPYzuiCxXIZQkAICIGfSSDUQa1GNMaoafB1JpM6chTslZGk5UV8/cx/qixvaxMH1bx/jxLbfiRj6z+9XDLe8sYKprYUhQi+WE/60GFB2ErE7Vuq6DpRJBI8LzNCQAiUJYHWHFRlwiLoxu8oPmceKXrU628sGlGWvwvyUELg5xBozUGNTFpK0dVfU3zmnIydgagM0ZCfg1ruEQJCIEMg1EHFYlh09R+oauUaLKRzxChsFvQxlREk0DYOKpKGExv+RcaW/yFKf/B+KhRBikxYSPqshaTVjyYN+R9qDdrEwDGVIQSEQOUSaNVBHTKBtFmLSEc/Qq2mv6sbCppWyxACQkAIMAHj+lWkEx0m48Qhcp7eQ3sqtHgwU1k4ylBEb0FDtLHjs3McheHZIeXfziH70HIgBITAr0Yg1EHt2o+0GUtInzmPKOalMypRbND5tkscqY4yXALtx0FlR7RrDXJAhuCPxGR8eHMoNm0GKaqsLMjvqhCoZAKtOahU1Q35p0MoUovQPIh+bPosUvsE0wQqmaE8uxCoZAKcVmSiaq/18AEZxw6SeQLFkt48ziGp6k5K3yGk9Mr1TleHIaUIdkh86gwslOfaQORukiMhIASEQMsEQh1UFHOkXoMo0g8VwTP+TQRdB7SZ8+HzzCS1V6+W37DCzrQfBzUPvDJgNOmrf09Vq9YhZA8hvTwi6H+KY/d72VX1mMh/hUAFEEidOUWpLT+Que97tINAOoBj5apu5j+/Xk3a8j9SbDXSBMJaymQ1BOF7YnDmk5NjIVARBJxUkpp//J7SP/yVnEeNRZ9ZGTKOomu8ULxsJBfCfnN2iDitRQHKSSFQ4QRCHdQwJvGupK/8E8W/+BIdCAYGr6hQ3WmXDip16k3qGBQ9GT8FKwyoeIWhdOrsFUAZhl6o0i4i+AssM0KgTAmYD+5R+tJFMi+dI+vGZXLuoKhaEq0hCkdEI6VuCkq2o9Baz96FZ0npjFZVKEgQhYYo1RICHAAkE0KgzAl8ioNKXfqiaNJ0UlHMxF/Q4sJJqq8hVRKKV+a/LvJ4QuAXESjZQUUNHmXkVK9IbEh7GU43yOpOPP6LfqaOdHP7dFC5DDP6nlIn9DnN7HQovdBmBuXf4wulzUxH+gWTn1UI/FICTiLhtqSyX72k5J4dZOzeSPT8dvBtWSuwi8rl20NbVfUZmNGQJaT2lDCaIECZEQLlTeCTHFQseHH7KtcOyWBRaga7GlK1cInbq7C8acnTCQEh8EsIlOygclRoNGO7aIjwKhhKv1qKLV0N/we60w1+UYWMNnFQrSePKHlgL6X3/kT0/rWH2rLI4abZza8QxocQvsKBPxTanDWkL1xGkd59Cs9SBMnG3NxW5Q8vs+sauEgmhIAQ6LAEuH9y8tB+MvbtIOvWlexzOO+gGe9fouhJMjsXeoBcVW1uRkNCHNRILA4N6S4aEgpPJoVAxyfgpNOUPLiP0vt2kn0nGOLrmEghYDskAbskzA6p7knavDUUxUK5ErbTgd2NSDfYIdARqQLc8X9f5AmEwC8hkLpwjtIHdpN5bG/o2zhvYbd8YNslV7At9MJOvUibD91ZAN3JOKgRhP2yz8M2iwLbpRxHmzio9rt3ZNy7Q9adW+SkvA/GSSbIOneSrItHvD8OhbRR5Vfph95kw0YhPA+rmgUjgqIo2oQpFBs/gRSpglVAR74VAmVAAAajefcuGXdvk/3yRfaBrKuXyDx/lOjpzexc6AGH0fQfCQ2pJ6Wqc+CSSN+anIaUqeAHHlomhEAlEcBCuIEuAiZrCCIyCofz4T2Z506QfQl6knpXeJoIBU48DYEdEg+mCURQiVObCDtkHOwQVOaUIQSEQOUSsJ4+cfXGQppS2LAun/dsl6Y7Yadzc6w7A+opMhS2i6872JTToTXR8ZPKtihkmzio5DhYnbTJwZc/2GlNbNlA6Y1/JQr9sBC+59YkaKEwQd/hFP3yP6l6zXr0FkKInwwhIATKj4CvG6whmcHRGKmN/yT7PCpzFh2taEi/kRRb/59UtfpLiiBfVYYQEAJlSCBEQ/ynZKc1sRl2yI9/IXr9yJ/OvbopRy3YILhKGTgadsh/eBpS3Sl3nxwJASFQeQScjJ9j5+yVfAgJpCyx7eJcPpg/HTwO0x29ivRV/0nxdb8jHXnx5TjaxkENIck7qKkzp8k4dZTMxguosHfLKwOfZ4iG3JabqkZYzaQFpE2bjR3W4B8GjtvWBg4ibQAqZEkD7hw3ORICHZxAuvEypU+fIF6N9If9+gU5D7Gj+vZJeMVf/8L81049SZ2MPsysIZkoDLc/2cDBpEI3pDhbPiw5FgLlR8DGDipXDTdPHiO76Wn2Ae0Ht9E/9Xb4rmr2Khx0RoHHyQtIh4ZQJgpDwU4H2x7qALSWkOJs+bTkWAhUNIHU5YvweY4TR4H5w375DP4PtIZtl2IDtXqU0XNInz6XIiGVf13dGTTY9Xk6al/49uOgIvTGbnpOJn9duUTGod3YEdkL4zK3y1rssyIuaNC1Lym9ByAMRw9c6vY0m7OQ4uhrpmi4VoYQEAJlQcB+/YqspiayXudC9qzbNyl9cDc5F/eXriFII3A1pBdriKcRkc6ct7qY4rPmklrTryx4yUMIASEQTsAxDdghTa4dwovm/jCOHCDj8E6kEdzwp8JfXQ1BP3e2QzK1MCJde5A+dxHFZs0r21C8cBgyKwSEQDECHLFhweex3mRq8eBi8/o1+D+7SttVRU68wvZKdUjKUree0J3F0B3YLiF1e4r9XO3lXLtxUPOBGDeuUXLHFjK2f4dPK51/yjvmhGIDBVG4J2KpA+F70RW/o/jyL3K9VfEHhHdKIly2WQorlUpSrhMC7Z6Ace0qJbdvJmMnNMTK6AQXPTGa8b1R+q4qwmi0xd9AO9aiPc1wVy8UaS/R7j9/+QGFwK9JILF7B6W3/0jWpWO5tzVgh3BhttbskGgn0pZ8QzFoiBvBlXkHtj1YS7K93nPvLEdCQAhUKAHeVU2z/8O2iz9YY9JYMLM/wXZBJxRtKXRnOQpDDhkKrYlnI8P8t23vr+3SQbWeP6f0tUZ329vBzmrhsJFwbF071/pqZv6NCAGOjEAy8RgUL1C93RGlc2dSR42l6MhRyDkLrkDk3y7HQkAIdBwC1vNnlL56BRqCvqmZXHfn7RuyGs+Tc/cCDEsYl6UM7q1aO57U0RNJG91A+qgxpI+sR7IZysLLEAJCoCIIGLyrcQ168uhB9nnte7c9OySs5VX2KhxwgceMhkS698yeUaEl0frREpmRJSIHQkAIWE8eu/6PCdvFHw5HiTWeI+feRW+B3T9R7JV1Z+iEjO0yDrbLaNJHwHbpQKNdOqjcTsJJNLtfFJJbnLpw1l3NtE9tLx01G5Q6dkqxmpntrdqzP0VXfkXxpSsl9KZ0knKlEGj3BLIa0owd08wwnz2lFFYmzd3/Dq8U7l+Y/8rFCVD9l3uURcbMwE7qOqpeslwiLvIZybEQKHMCbi9m2CSENjX+SJ0+CTtkY+vF2fI0hJ1Vf+hLv6bo8tUUG9PgT8mrEBACFU6AW2F5/k9eisHjh9CazWTu/R558O9LI5SnO+r4OW4UWNVi2C4daLRLB7U1fsb1q5Q6jJyQI3tylybh0L587PUUKjVvNYYd1BkrSZ+3iCK9emfeSyEN8dr8vRRFyeGVIyHQ0QlYaE2TOnIQ+R170KbmefBxEh88DeFezGEa0nso6XOWu/lkpAZ3UNUu3dCjGUVSeuR2SYL/iMwIASFQDgTSqJWR5tzU4wdyj5N4Dw1BcZOWNCR3JSlj51F0/jJSEcFVOBQUclR79cFXbxR9DLazKbxevhcCQqB8CXBEWNZ2eZOptYHoUtfnefus9V3VmjrYLitguywIhaR2Rf932C7cV7U9jQ7poLKhaT58QNbD+1mWNj5A4+RhJBYfav3D8u/iwkp9hlJkEHLLqrzKvwpyUbmKZ3TSVOLKezKEgBAoDwK8C8K6YSJFIL8Aiv90NvcsO8Uacjg8rwzRF0q/4RQZXJeNwvDv5Vd1JMJ/J09zeyDmz8uxEBAC5UeAi5u4dgh2N/xhP3nk2SGN6OfOOe/FRrd+aEuD3u49+wSuUqKo/Dt1JsWgJ2q//oHzMiEEhEDlELCbP8DfYdvlPjkp5L1jOKkUmeh6Yp3FAtn7puIwkI+q9IftAl8nbKijxlF0yjSKtrNojg7poIYBNu/docSP/yZj81+KbIEjXri1tjUIBdaW/JFi61AYZey47D+l8HY5t6fhVxlCQAiUHQHz9i1oyHdkbP0rQvlyocEfP2jLGqKMmo0+qn+kqmWrsre4uuFrR3ZWDoSAEChHAsbN65RkO4Q1hAsoFR2Z/KUwmwSL59ry/6DYl99SDHmqFIHdIXnvRWnKSSFQSQQ4DLh580ZKb/gr2tJcLeHRi9gu4xZ4tsuipXBxMn5OO/B1ysZB5V3V9PkzZJ456eWuFnxcHNJn37tG9OJecScVH4oyfAppk2ZhtWFI9l3U/gPcSliymplFIgdCoKwI8I5I+vxZMs6eJMprMeE/pP3imachLxG5EWZU9qolbeJsUsdP9m+hSFe0qakdStrgWqnWmaUiB0KgPAm4oXhsh5w9hYXy4g6qdec6ejXDJkm8CcKAkaiMmEba5FlucTZtCDRkCDREWuQFWcmMEKhAApyrmrpwjsxzp4gjN4oN+/kTz3Z5lSvy9tH1fYbD55lN2oQppNYOg69T69ouH13TBt+UjYPK293cD9H9MoPtZ9y+iPt2kH16B4xLu2XUvGoQRUXfrsj9qMJrZmhT5lJ0wRKKTZriT8mrEBACZUTA1xALvcnCqoeb2B0xWEPO7gx3ULUYUedepHTtlaXC4cD6gmVUNW8B9ERyybJg5EAIlCEBJ5l0bRALtkiYhuQ/cvrgXujJVqIncFILB9shCMtjO0Stn0jRhcspzhoSQ6FHGUJACAgBdCdgnXF9HqQvFRsmKpC7tsv5PeGXadCVLrBd+gwifdEqaM1C0vI26MJv+u1ny8ZBbQ2VcesGpfagl9nODbneqtwfsRmrlwY+3GJOK95cqZ9J0WVrKTZzrtuSRumMmG5db+2flfNCQAiUCQG3PzP6IRq7oCF+70MTfckSb1vWkB4DSV+8nqJLVpLWB8XX0M5KHNUy+YWQxxACv4BAYv8eSu/aQtZl7Lb6I/kB0RvvUEcjVy2Yeg4mfcl6t9tApGcvaAhsD+nF7BOTVyEgBFohYDReoeSe7WTshu3iD9d2Yf8HkR6+/4PUAnXul7BXVpE+dLh/JQq1dcrYLlXZuc9xUDEOKocAGzdvkHkDsdp+X8R3b8i8cJqcG6c9A7MY8W79KVI3DquZDaQ1THCTiVX8sZAhBIRAZRCwmprIuHUdGoIdj0yIr/PmNZkXMxoSlnPGhZVqG1BACboxFrqBvHZt6LDKACZPKQSEQIsEjNs3YZNcJy7O5g/7NmwUdlifXPensJOKRS1fQ9j2YA1ByK8MISAEhEApBDj1wPV/buaiNRxEipkXT5FzE/6PhYV2Hpxa0L+eIiMaPire5vZsHsO6U+td95n+WzEOKnFJZu4v5PYxc1y8nHOW3PojGT/9A+1pXhRHzonDWF3gED79CxRCWbnWzS0rfpOcFQJCoFwIuCF7hRry9Cklt20kY/s/vdYShQ/LoXqK6vZSVWd/QbEv0Hd55uzCq+R7ISAEKoyAY2TskbyUpNTJ45Ta+r2XiuTzYNuDNUTTSZuzlqKrsZs6baZ/Vl6FgBAQAkUJOKwxvt5krjQePYTWbCRzB/wfv7eqa6+wr4Po0Ag0JzO0edAdtl2mTvenPstr5TioITht7H4kTxwj8+iB0L6Izod35DxDQZS3T3Nb4Gi0HZm4iPSZC0hDdT2tph+pNTXuykPIPyFTQkAIlDEB+9UraMhRMo8dIOtWIznPoRfcAzFkRKasoNjXf6KqFnqRhdwiU0JACFQQAeNaI6WOHyHjxCFynt4jevkQKUmpLAFl6CTSZsH+mIg2eGg/o/atkXDfLB05EAJCoFQC1osmaM1RMo7uJ/suCrax7ZJ4HXq7OnMNxb76IxbX54Se/60mK9pB5aIo1tPHZD55jL6IwYp7Nua5Cbd9bl8uJ4RXM7l/Wc0QhOxNJn0GWktMm4EFTuyuyhACQqCiCHBPMuvJE2gI+h+iArB5fB9CZvJyyvJoiIOaB0MOhYAQCBCwOewOdoeJHu/msUNknkBRk7e5EGCq7oFCJkNIHVoPR3UexdArVe3dO/A+MiEEhIAQKEaA+8K7/s9j+DnnT2GjDrbL3XOht4iDGoqlbSYdA/HY+EojR8TbAv97aI6qMriBouv/TNXrvpaCSW3zUcm/KgTalgCKC7Be8BeH56W3fE/Wia2hP5M4qKFYZFIIVDYB1MRwNYSLlthe+hEvmCd+2kTpzQi/e3ojyCfehfS1/01V6NeuDc61wwteKDNCQAgIgRACvu6w7XL8MKU2fYcOBbtCLkSGkuyghnL5/JP40Izbt1AM5QZZVy+hiFImidiv2pn3E4mDmgdDDoVABRKwP3yAXtwkbkFjXb5A1qUTLTbNFge1An9B5JGFQCsE7PfvsxriJJq9q2E0cgFH+8oJpAy8DL6DOKhBJjIjBIRAyQTs9+/g5/i2y3kUTILWhC2G4R3FQS0Z6298IYopJfbtpvTubTA4+Y8Dl2HGH41M1c78f10c1HwaciwEKo+AW2ht7y7oxWZyHt5EDgf0Ii9nLJ+IOKj5NORYCAgBJmA9Q6E1X0NePfOgsL3xAflgKbScsa0gKHFQg0xkRggIgZIJWKgenty7E62uNpHz5C7aW6FdXgu2izioJWP9bS60mz+g4e1rspADkt63C01ttxA9vxX8x/wG2mhqq42dSrrbQHshKZrkoAZhyYwQ6OAEsGBloZgaa4OTzhUr8Z+KHVRj7w4yD2/2+hf6J/xXroRX1Z2oa2/SZy2m6IKlFJs42T8rr0JACFQQAd4h5eKMFvTEH+ygZjUkjT6oxYZehU4CPdEKYhhFF6+i+LxFKNLYr9gdck4ICIEKJMCVe1lr+MvrXvIxBK6dYezb7tkuRuLjk/wddy2p7k4KbBdtzjLYLksoNm5C8LrfcKaiiyTlczXv36U0Fzk5f5qs21fJeYB+qdwwu3DgQ1Pqp5M2cQZpo8aSXjvMazcTQfEkGUJACJQVAS4kkLp4Drpwhmz0EiscTvM7slkvniBPzO8lln8RipqoDbNInQTNGD7C1QsV1TdlCAEhUHkEzIcPKH0BenLuJKKyvOd33r8l+05GQ0JSiT6i1H8UbI9ZpI2biEJJw0kfMpQinTt/dIl8IwSEgBDg9CPWGgM+jfMy2EbTef/G9XXcsN6wKI1OvUgdB62B7aL6tguqhn/OIQ5qhnbyzClK//gvMvf/OxPOi78eIWG9pMVJW/Vnqlr7NWnD6lC9l3sGYZdEhhAQAmVHwH77hpo3b4A2/C/Rs5CIiqxGtKAXfbDTsfY/qGrNVxTp2hV9sFkvZDGr7H5R5IGEQAkEUhfPU+rHf5O5C3riD19D3NeM1+qfK3iNTEWrqi//QPFZc6AlsDtYSziqS4YQEAJCII+ABac04douf0O7KrSQKRyt6U6/eoqu+xNVr1lPSnWnNrFdKsZBZUPTRGNa8wE+KBRCKhzWrWso6X6QnNtnCk99/L0eJ331f1P8y29Ih4MqQwgIgfIgwMVKrEcP0OLhgVtVk5/KQei/eeIwWecOtNjfNPD0bDB2G0DKwOGIshhPOlpBxCZPJSUeD1wqE0JACJQnAQ7dZS2x8iIvrLu3yDwJO+M6dlD9LdTWHh+L4kpf7JQOgp5MnkHRqTNIH1Hf2l1yXggIgQohYL97C9sF/g3aUzmml7PuYM48mbFdOL+0lMFtNHsMJGUAIkPHTITtMgO2y7Q261JSMQ6qee8upY4epPSh3UgERjn3wvH2FbbBH3lFTgrP5X8vDmo+DTkWAmVDwEL/weSRg2Qc3gPH9L33XNxCpgm68PYpFrbM0p4VIh+ZsIj0uUsg8g2k9e6DXoV9UApPLe1+uUoICIEOTyB17gyljxxANV52RjPjHfLBXj7GYhfnoBbfLfVvoa79SJu9HHqyiLT+A1wtiXRDXrsMISAEhAAI8MZb6ughMuDfOOmkxySdhu3ykOjd89JtF6QwRiYtgdYsxuL6mJzt0kZRX2XjoDqWSU4iSU4Syb4hO6Tp61cpvf1Hsg5uwN+F4A5q7rccux8qkoOxaklaNDftH1V3pejKbyi+7AvShtT6s/IqBIRAeyeAgkc2+gu6GoHjwmHcu0Np9B409yHMv4VqdoX3fPQ9h9ypMaJO3UlfDo1Yvho7HSM/ukS+EQJCoDwIcOER1hLuWRo2kof3Q082kHP1aNjp8DnWEA0awsWQMkOpHUOxVV9R1dKVpFTl5v3z8ioEhECZE3BtF2gNamKE+TfcFtO1XQ58X7ozyrulqu5pDesOj3gn0ld8Q1XL4d8gx72tR9k4qFypip1Q8+oVFDcK/sGwnz4iq/EcWkFchoNaZOUS4XkKChGooyaSUhMsZqLEkIM6eixF60dTpEfPtv785N8XAkKgRAIcwssaYV27Qg6OC4f98jlZV86Sc+8iRD7owBZeH/geOx2RkROhD+NJHd1A0VGjvZ3TwIUyIQSEQEcnwOG7BusJeiCHDetmI3qpnyV69SDsdPhct/6kQkMiI0Znz0d69cnaHIoOg1KGEBACFUXAfvvW829gu1BzpldyHgH7+RPPv7l/qZUNuLybsAimDIe9MgqVeaur3ROKHoXWNJDOtkvPXnkXt81h2Tio/MciuXMrdkmxgvA+V8I9i5V3RNJYfXArbRZzUCOkzl5H0RVrXSc0e79/wA4sPkylCl/SWsanIq9CoN0T4FywxM5tZGzHrgaH2RUO1gZu88CvxRaxCu/LfK8MnwLdWE/xhUvdnQ5XI8SgbIGWTAuBjk0gdfY0pXZsIfMgWtKFjTQMSW7f8AmLXcqIaZ6GzFuUe0fYGWxzRGBzSEGkHBY5EgKVQsB68gi2y0+wXb4n501T8LHNNGwX6I39CbZLl76kL/MivSLdMykD7N+wb1MN51Vr+8WwDumg2u/Q2uFlE5kvcqWTbXyAxsHdZJ3YDgMTH1YpQ8G2dudepPREH7FopoAJwnv1+csoPns+triHlfIuco0QEALtgIDb9wuV68ymJi+Mt+Bnsl80eRpxHBqRCu6gFlzufcthMJ3Qd7AHNCLurTKGXodJrWEycjcWUhyFBWQIASHQsQnYH94Ta4aJr7B0UfPSeejJThQ8Ol78QX0N6YmIrFjxEF1tPHqrz4GGTJlW/D3lrBAQAmVDwEGtC1drYL+EpQzY3CvZ92/CepaGkXB1J+PfhOhOpGYg6fOWwNeZR5EuXcLeoc3nOqSDat65TakzJ8k8k/vD4PYSe3CT6MW9T9jixqrk+HmkTZ2NcN0e3oeBZGB10BDSBw4iKUTQ5r+f8gMIgZIJOIlm4l0N49Rxsp8Fd0idxAey70Mjmu6WnqeBHA2lYS6q2c2hSJ++RX+WSG+sSEI3VBQykSEEhEDHJmA+uEfp0yehJ8dCbQr7+WNyHkFPuAhJsYGc0kjDHNgZ0BAullZksMboAweT9EouAklOCYEyI8DpR6mzp8g8Ddul6Vng6RxeLHuAXuvs35QakYE6OpFxcz3d6RUM11U6dSZt0GDSYLMoUeS9t8PRPh1UDq/zv0KgJfFHI7Xx/8g69EPI2fwpFDzC/7yRPfAnsHvaG31+/h96mn4lfxByVORICHQsAhmtsF6/8vp+bfyLJ+SlPgXCWrzhv+bdGOtM+hrWCPQ9rh2ad0IOhYAQKBsCvr3Br5mRuniOUhvQG33f/3n2iH8i7LWYhlR1g4agd/q638EgHBJ2t8wJASFQiQR826XpOSU2fY9+638lehNcXG8RTTHdqUaxxrUZ2wVOaEcc7dJBtWFoGmgLY929jYK7wYq79u0bZJ49imImF4oz5y3uPsNIra0npVtmhzTvDqVrd9ImTaXYhEkU6dot74wcCgEh0FEIcHsYrsBroliJdfY4WReOoFDam9J+fBb4XkMoMmQURXr2DtzDDaq1ScgLg0a0h6IBgR9QJoSAEPjFBMzHj8iEhrCW+MO+D005AzvjDgod5Tmu/vnsK9sZrCG10JAeYTsVXXJ2hhRWzGKTAyFQ6QRM7l2asV3MM8fIvgTb5VPSj3rXwr8ZRUr3YMFWpXPXnO50D/o/HYF9u3RQOYQ3eXAvGft+QruHYD6p8wFNZ98irIYLmhQbapTUGatIX7AMYbuDA1dGUMAkgg+Oq/FKdbwAHpkQAh2CAIf1pg/sJvPEfnJeQxeaX5YeBgPjMjJlOUUXLid1WF3geRX0LlWhD6wTSiwWOC8TQkAIdHwCHJVlsIZg4dsfTvM72BnIP3UNxtzOqn8++4oWDerUFaSzhtQOy077BxEUOfLsDGhIOw2l839WeRUCQuDzEUgiHck4sIfMUwdhuyC0N4ECr6WG8KJnqTotoztDhgZ+aFd3fNslGtIyM3BH+5tocweV88Y4/trJK51s3LhG6V1byTq2GSuXwR3UUIy8ihnthHLJXYkyPX2UTgitWbqO4ouXu7HWoffJpBAQAh2DAHYxXK348I6cVG7hKnX8CPRiEznXkCsWNrivYBxFAGLVwbN6jKJLv6TYYgj98KCDGrxBZoSAEOiwBFwNQZFFbjOFPqb+SB096GnIjZP+1MevrobAtggpNqJAVzw7Y4UUVvyYmnwnBIQAE4Afw5pTqDvJIwfI2Anb5dapHCc4noTUIteXyc0GjhTuWQrbJb4E/k2Igxq4oQNOtLmDyrul6SsXyYJT6g+7CT19rl8ieor+YsVCa/wb+DXWhZT6qaSNm+yWSeYpXq1UR9RTtG6EFDxiIDKEQEcmgGbVqcbLZF6+QHZeKJ519ybZNxHu30LuhjIAPb0aplJk8NDg02OHVING6HUjJYQ3SEdmhEBZEeBK32lfQ54+yT6bdec62bcuQkNyc9mTOFAGjvE0ZFBt/rR7zO3mPDtjpPRGD9CRCSEgBLhKb1Z3UJHXH9bta57uvM3NUdca9FGfSip8mWKDoz7VOvZvWHc6Zghvsefjc23uoCaPHabU1g1kHd2W+1l5i5v7+bj5p0VCa3J3EPVAyeQv/khVq9aiZDJWOnkgv0zB1jY3nyUYojKEgBDouAQcI02J7Vsptfk7rDieyz0I9y21zRajLdQZqym6+ncUmzgpd49/xBoBfWCdEI3wocirEChPAk4qBQ3ZQqkt0JDbeTUsWtMQ7o3+xVcUGz8xCEY0JMhEZoSAEMgScBIJaobupFl37mLzzR8huqPUToC98i1VrVjtXxX+WgH+TZs4qBzWaz19SiZWMI2zJ8g8uhcf2vnwD6EaeRt9BiMJOFjAJP+GSD84qLPmU3z6LLepdf45ORYCQqDjErDfvIZePCEuKGAcO0jmsd1Erx8GH4jD/LH6qPSFXlQjRCYztBnzKDZzDkJ4R/hT8ioEhEAFEnBSSWr+EdUyf/grWsQ0FiegV6H4EdrN1QyCbbGQojNmkx6Sp178TeSsEBAClUrAfvWKrGewXR7eJwNpBObxXchrz9st9cEo2EDr1g+2yyDSxk8jfeZcik+Tfupt4qBaz59R6sQxMo4fJBuhNc7ze15ysP9h5b0qdWhcPXMhqfVj8maDh0p1NWn9BqBdDD5kTQ9eIDNCQAh0SAIGqvOmjh9FESToxRNoxYv7REYy+CwoihaZuBB6sQBGZb/seQ3H3FdQ+hpnkciBEKhIAp/koPYcQtqMxaTPQC/BAbAtoCOiIRX5ayMPLQR+FgHjWiN8HdguJw/nbBczFXwvLIapkxaRNnMeaQjb1WCvsN5U+mgTB9W8e4cS6C9mbPmf8Eq82Lom3g1BsrC28GuKrcbX5KmV/lnJ8wuBiiSQPHmMUj/8k6zDG4o/P4qk6avR92v9t9KztDgpOSsEKpJAqw4q2x7EtodKyqiZFFv7LVWvRKidO1+RyOShhYAQ+JkEkkcOopcybJfjW8LfwfVzvN3T6Oo/UfyLtaT1Hxh+bQXOtk8HNd6VlNoGFB4Yg6JHEyk6djxpg6XBdQX+fsojCwESB1V+CYSAEPg1CLTqoGJRXBkwCrbHWFLHwO5omECxMQ3ioP4a8OU9hECFEWjVQe2BFILh0Jr6caS7vk6DRGnk/Y60Twe1z3DSl6yl+KIVbnUqLnqkVCEfRIYQEAIVR0Ac1Ir7yOWBhcBvQqBVBzWKVKG562B/rHTzTSNduuSKLv4mP5G8qRAQAuVKoDUHVRk7j6JLVlNs6gxS4Oew3nB1XhkegXbpoCqDGyi6/s9Uve5r+bDkN1UIVDiB1JVLlN6/i8yDO8h500TU/Mqr2lvIRYuTOusLimJhS8+0lnJzxiQ8r5CUfC8EKpJAqw4q54LNRtVv1hAURIp07y47GhX5myIPLQR+OYHUhXOwXXaTeWQXOW/Zdnn9ke2ijJ4NrVlF0SnTXZ1hvXG7jvzyf7os3kEc1LL4GOUhhED5EuCiagb6JVu3b5B57iRZF44SvX8efGDkjVHfOlKHoe8pwvP0CZMpNm4C8smQUyZDCAiBiifQqoOKEF+qyWjI2AmehjSMlxDfiv/NEQBC4NMJcPcB4+5tMlHo0WLb5RJslw8vc2/UDcUba2GvjBxL2sQprr0S6V6ePU1zD136kTiopbOSK4WAEGgLAo5NjoWvZJISWzZS+sf/JefhlZCfhIurcZETvAyH2H+JvshfrENVbxidMoSAEKh4Aq06qJSnISOmUWz9n6gahUvcoo0VT08ACAEh8EkEbNgt/PXhPTWz7bLxb0RPb+TewrVXoDmde5O+9s9UtWY9KoYPyp2v8KM2cVCtpueUOo3+pyePYlfkKjlPbgdWFbQpC0ibPptIDRqXkV69SB8wEK0jBlT4xyePLwQqh4BjmpQ6e4oMVPU1L59DH8NbRK/QDxUObGB0H0DaVGjINGgI76xicB67NhB9xqAdSiweuEUmhIAQKG8CjmFQ6sxJMk4dJ/vB3ezD2k/ue3ZIAiF4/kABk6yGhKQJRHr38ewQaQfhE5NXISAEQgg46RR0J2O7NJ73bJfXj3O2C9KTIhPmkz5tDim9+gTeQalGhwLYLiraXSnRWOB8uU60iYPqJBPETqr1/DkZcFSNwzvJuX02x1jDB9CthpTecEBDwvO00Qi9mb1AGtnmiMmRECh/AnBEraYmMhHya16/SuahPWSdQeNrywg+u6sh6Insaoi3qxrpVUP63EUUnzkHuWUSRhOEJjNCoMwJYDeDbQ8TX86HD9mHNc5gwfwQ7JD7F7NzBKORumc0xJOQ3DkcaQ1TKDp7vrTA+4iKfCMEhECAgGWR9SJju1y7QsbBPWSf2418VMu7lNvNdOkD5xQ+TzxYEFbtiwV333ZBMaVKGW3ioObDTaKJbfqnTUgi3kZkJDxjM2xHJO8mZegkiq76muKLl+dmsdMaqYqTEscfFf6wZQgBIVC2BMx7dym5Ywu04zsUHnjrPSfrRjEN6dST9GW/p+iK1aRh9yMwEAocgX4o/AciZMckcL1MCAEhUBYE3GqbP/1I1gkseBXTkLynVUZOp+hK2CHzF+XN5g6VWMzVEiUazU3KkRAQAhVNwLh9k5Lbt5CxHbbLe+SjWqmco9oSma5YXF/+LcVhu4QtrnMaE9stnv8TsprW0vu28/k2d1DZ0ExfvUJW40UyGy+Qc+scUep9cWz4sNT6yaSOGpe9TunRg7T6MRQdOQrhe5WzBZ4FIAdCoIII2K9eUvpaIzTjMnFemTsQmZHVkHRudySLBTsiyvCJpI2ZSErn4Cqk0rMXNGQ0NKS+osJosnzkQAhUKAHzzi3PDkHFcPMqQvBunYej2lycBtIIXDtk5JjQ69ThI0iHPaINGhx6XiaFgBCoPAK8k2q4tssl1++xriF69A3CfYsNvZqUukme7YJw38KhcLoBbBfWm3KqudHmDiobl05zs7v9ndy5jYwd/0Ze2YNC/h9/zzllKAdPsdwHpQyow2rmeqpait6pnbt8fL18JwSEQFkR4HxU1g0ngS+E7fFw3r2l5M6tnoaECT5HVmjYzYhCN0Jy25VB9RRb+SXFl0BDOuW0pazAycMIASEQIMAF2Gy2Q549oRRryE7YIW+fBq77aCLEDsk/r81eSdHlqyk+ZVr+tBwLASFQwQQ4D961W6A3yYP7KL19Azk3ThQn4tou2HhjnydTUyP/hsgwtOZcvs71f8ppg67NHVQfMn9gySOH3Nhs6+Edf5qcV8+wuoA/FBx2U2ygChb/QdDnLSalU2f3Sl5JUHv1xlcvL2yv2P1yTggIgQ5NwEalvOTRQ+iXitzU6xehHU+Ikm/guTqlPVeXvqTNgYYg14OLEvBwNaQ3NKRnby98prR3kquEgBDogATsd++gIQe9HLEnIQvlqQQ5L6ErH17kCpy08JxK3TTYI8tIGz8pe4XauTNFXJukd3ZODoSAEKhMAkkunHRoH5kXToYCcF5Aa3ihzEQYcLHRfSBslxUUnbcIC/BeBKmi66T6tksHjSptPw4qVhWshw/IeHAPOyHvsh+Fee4UmacPEDXdyc6FHqAoitJ3GEUGj8AH5OV8KFXVqMI3i2KTppDap2/obTIpBIRAeRBwjDRZDzwNMa8gZeDUYW9lslQHlUOAa1hD6hChkdEQLHZpU2dSbOJUV+zLg5Q8hRAQAmEEuNqmCTvEvA87JK+Ikn+t/RKFTk4dIfviIRiNmdQC/2Tha2cUPRlYRxEUOPGHOrSO9MnTXZvEn5NXISAEKpOA9eQxfJ77ZKPwY3A40Bp0LDgD/4e7FRQbHALcL2O7ZKLDlC7dSGfbBf5PpEfPYne323PtxkFtiVAzwn5TP/ydnCuH8y7J7Ii0ZnjqcdJW/RdVrfuG9GHD8+7PO4wgoViKKuUBkUMh0PEJpC5fpNTGf5G5839L2EGFnriSErLTinBgffV/UXzt70ivHRoORjQknIvMCoEyI2A+ekiJH/9Nxqa/oDjbq7ynK6IheVcpw1Dg8cv/oGr0O1TyC7Fxt4L87/PukUMhIAQqkAD8G+6dmtqAvu83T+cByNgprfk/cTioa+H/wHbh9nrZwTrjf2Un2+dBu3dQU5cvkYFdVPvW9SxB69ljlIO/RvT6UXYu9CCCylajZmLFciZ2V/sFLuG+iPqQYaQNGYIeidWB8zIhBIRAxyTAhmT6/BkyzyJ0BiXeWxxc/v3udfQlg76EFWdTdVJGzyJ9EjQkJApDqa6GhgwlbXCt22e1xX9HTggBIdDhCdivX1Hq/FlXVzjn3R3Ih89qSFhxtvyn5sJKE2aTNnlG1iFVkO/u2iGDYYdwFwIZQkAICAEQSF04RwZ6v9v3bmd5WEg9cP2f1nLkOap0zGz4PzNIQYqSPzS2V4bUIm2plz/Vbl/bvYNqv3lN9qtXZCG/zB8cvpfet52cS9j6LjZ4ZzSOap1dEWoT0ltI6VlD0YXLKTZ3gZurWuyt5JwQEAIdhwDntFusGzAoi+agIiw4fWAPGfu3Er24G3xAX0O6QUNiKMxWMJTe/V0NiUNDOmoYTcEjybdCQAi0QMBJp4mdVK4ibsMx5eGkUmQc2A0N2dJ6gUcVqQOdUROje67NVaTvQNJhh7ga0q17C/+yTAsBIVBpBFhrLNYaFFTyh4GFd2PfT+RcO+ZPhb+y7VLVjYhtl2hm4Qs7p/qClRSbv5j0upHh97Wj2XbvoIax4vC99O6fyNi7Kew0CqOgxUQKeayWEX7en8UWuLboK4ouXUladndEQQsKFDLAl5JJNvYvl1chIATKiwBX1Evs24WqnVvIunEh+HDcSDuBnZI0/kCE9WeuRnsrX0NQ/MQd+COgdOqS0RAvlzX4xjIjBIRAORBgB5U1JL1jM9m3LwcfqTUN6YT2Vou/ohjsENXPFYNx6dogyIGXPqpBpDIjBCqVQOrsaUrB/zEPbw9HkMRmHn/ZYf6PQuo0FIJctpqio8cG7/d1h/2fTB2O4EWfb6ZDOqjW0ydk3LxO5q0boaTsm1fJvITQvtYKK2E1Uxk8ltSRDbm+iMgF0RomUHRMA6k1wbDg0H9QJoWAEOiYBBDia9y6CT25RnbT88Az8E6sefE0ViuRA8KLXoWDw2h8DYFT6g5UD3c1BH8A1L41hXfI90JACJQRAW55xbaIceM6cRGlwuE0f8hoyCksdLXQn3kI7A22Q/weh6jAmbVD0ONQhhAQAkKACXD6Evs/1t1c2G8+Gesq+qtehv8T2q4T+ad9h5M6YhxFanLF27L3o8BsVnf8Bffsyc9/0CEdVLcHIkJtiL9CBreaSG35NzkX94WczZtyE4VV9ETELgcXKeCBvFV9xR8ovmod6aPGeHPyXyEgBMqWAFfu5NA9MoO5qvbbN5TYtomMn/4ZXkkvTEPQa1Vf8UdoyFq3cXbZgpMHEwJCwE0hYP1wNSQk353D9BI/QUO2/QMt89A2onD4GsI9mjksjwf6vOsrM3ZIHToTyBACQkAIgIBjoo+q6/+E7ZBi83T/bvg/37UcAsx9VCN6aC947rPq6Q5sl2F1bc67QzqorVFzCysdRz/Ec1hFyAzn3Wtynt8neo8VzmLVrzg8b+w80mctJHXocP92N6GYd1Q7QmJx9oeWAyEgBH4RARu7H6njR8k4dpCsa+ityhri9kB0Wn5fGJnKuPmehqAggT+4J7MGDZFcVZ+IvAqB8idgv39HqRPHyDh6gGwUePSH/RRa8gLtI4xcfpl/jhSVIuMXkD57IUUGDclOa9hNVVHwMdKjR3ZODoSAEBACPgEu4pY+dgi7qOf8KXLevMzZLtnZkAM4r5EJi2C7LCANG3QatEatQRQYO7VtMMrSQbVeoFcZ+gvlh+xZ9+6QcfwAOZcPheeS+fB5NbNLX/RDREW9rrneQdq4yaTPmE0xhP7KEAJCoDIIcI4q9ypjPTEvX/A0pPFwq4tc1KUmoyE5Q1KbMJWi02eF535UBk55SiFQcQTc/sxPnpD5+BFxyoA/jOOHyTyxNzwVie2QrqwhqA7eJVc4SZuEHqrQEL1+tP828ioEhIAQyBKw0FPV9X9evsjNoQuKcWx/y7uq/pUcwcG606+WtDETSZ8On2caqgC3UT5qWTqoPuv8V+NaIyW3bECo3t/Diyc5CO/jYgZhhVDwRsq4BRRb+y3F58zPvq2iYlVBQxsK5IvIEAJCoLwJpK9couTWjWRuh4awVvBgvWDtcF+L7Kri0siUFRT7+k9UhYq/MoSAEKhsAs3bt1Jq87/Q4z2vGmcrdkhk8jKKrfmGYjPnwO5AGz3YH9n0pMrGKU8vBIRACwRSF88j7PcH9IVHqpI/2GZx7Ri2YUJsl5oRFF3zB6pCumOkM+prwM9xfR7//s/wWjEOKhdWSqP6r3nhLOxJrzx8Pl/nyUOybl1CyM29/OnccR/0Sx03HYUMcnmpSq8+pA+v82K1/RzW3B1yJASEQBkR4J3UNHZRXQ2xIeo8EL5n3bxMzsPG8IUv7yr3v+Kg5sGQQyFQ4QR4wcu4dJ6s+3ezJOxH98i+hUrAoQVOcBmMRm38DFLHTiANuan60DqKdIHxKEMICAEh0AIBty/8JdguF8/mrkB9Ddd2eXQVjmrQJ6LqnhQZM5048kurq3d9HbVf/9z9n+GoYhxULgVvo7E2f4WtFhj48NK7tpB9fk84di6kxD2FqnN/DNS6cRRdsoriC5dgJVMLv09mhYAQKAsCTioJ/XhH9ltoCHkrjtbz527LK/PARlQn4PmWhzioLbORM0Kg0gi4WgJ7xEkmso+ePncGerKl5R7vqBrOdgiH/kaXrnVtj89tNGZ/WDkQAkKgQxBwkmy7ZPyfzE/sLrhzu5qDsF24jV7h4LzTGPydTt1Jn7sSvg4iwMZPLLzqN/2+YhzU1iimGy9TCr3MzIPbs5c66STRuxdoL4GeQiGhv8rgBoqu/zNVr/tawnyz1ORACFQOAc53T+7fQ2k0zqYXT70HR7iM8xbF2Jpff7QyqYycQfqiL5BDNpMi3brjC4am9FqunF8WeVIh0AoBDsVLowqncWiHZ3sUaEj29ngX0tf+N1Wt+4a0wUOy03IgBISAECiFgPXsqWe77N2G6uLwczAcjgxj2yXx5iPbRZ25hmJfoTMBUgs+5xAHNUObE4uNu3fIunc7y9/mZONzJ5BYfPyjD8u/QBxUn4S8CoHKJOA0N1Ma/cisO7dRACXT45D7Ip49SdbFowgBzuutysUHakeTNgLV8SaiYNK4CVIVvDJ/beSphUAoATYaDWiJhaIm3IXA1RCuGl44xEEtJCLfCwEh8AkE7A/vPZ/n9k3i6DAeHGlqse5cgu3y4WX23cRBzaJoowOsHLirB3l9zEw4rInN35O57W+hpeDFQW2jz0r+WSHQXgjwbikXGrByhQa4R1liy0ZK//h3ch5dyf2kXJmT8FWNkJnVf6aqNV+RNqQ2d16OhIAQqGwCrh1ikfOhmZpRkC298X+JnlwLMhEHNchEZoSAECidQJjtgirjzZs3UHoTCkE+vZF9L3FQsyjaz4GJlczExu/I2PL/hcZoi4Pafj4r+UmEQFsTsFDWnYsRcNET88QRMs/sR+jMk+CPFUUz7DUIz/sS4Xm1Q4PnZUYICIGKJOC2yMvXkNP7EOr7LMhCHNQgE5kRAkLgZxFwdefhA0SQ3iXj5GGyTsN2yYv+Egf1Z2H9bW8SB/W35SvvLgTKiQC3skodPUjG0X1oiv0QzilyUs1U8BHFQQ0ykRkhIASIa2GkWUO4Z2HTI6LXWOCy0kEy4qAGmciMEBACP4tAiiuKHzlAxomDOdslT3fEQf1ZWH+bm7iqHle9St+6Sentm8jc8y+E+Hox2vn/ouyg5tOQYyFQgQSQEmBDK1gzUqdPUPqnjWSfRoGTsMFV8bQ4Ufd+FF31DcWXfUHaoMFhV8qcEBACFUggeewwpX74J1nHNoU/va8hPQdmNGQVaQMGhl8rs0JACAiBlgjk2y7Hj1Jq2w/kXNgberU4qKFY2mASOSDGjWvEuyFm4yWyrqBv6t0LUiSpDT4K+SeFQHsnYL9HoYHrV8m83gitQJ+xxjPI3bgZ/mP3HExq/URSR40jbQwqgNePoUj37uHXyqwQEAIVR6BVB7XXEE9DRo8nbfRYT0NQDVyGEBACQuBTCHC7vPQN2C5Xr5DVeAH2C2yXpjuhbyEOaiiWzz/pYFUhsXu7u3NqXzmB3FNU5uStbiQUFw7ZQS0kIt8LgcoiwNW/E7t+ImP7BnKe3EKkBXoaWkYoBGXsPIqt+JJiKNWuVFeTUoUv6Z8cykomhUAlEmjNQVXGLYCGrHdbVYmGVOJviDyzEPh1CHAf1MTObbBdvkc6wQOvzo5thr65OKihWH69Sbv5A9kvXhAnAzshzmb2X4KDahzaiy/0NWy6m53OHigRVOHsQUqPGlLHTkED20UUnz1PDM0sIDkQAh2fgP3mNbQCeoHXYsOGnhgHdyMkD3rB/ZJ5cLXequ6kdK9Bk2s0us4Mbcocis5dSDG0l5EhBIRAeROwX0NDXjZBQ9BTsMRhXjoPPdmJ1nbHcneoOlGXPqT07EfazIWehowdlzsvR0JACAiBDAH79SvPdnlbXHdsbml1cBdZx7d7C+t8v2u7eP4NVXfOMtWnz4evA9sFkV+fc1RMH1Surpk+e4rMU8fIMcN3OFzwcF7teze83RDePS0cEY2UsXNInzqbNIToaYOGkDZwEFEEjqsMISAEyoKAgbCX9JmTZCJst9hweOHrAUJ6n9/JpQFgEUupnwGNmEORgUOyt0f69ScdOadqn77ZOTkQAkKgPAm4BY+gIVbjxZIf0H72GK2poCf5lXs79SZ10jzSps1C1e9hrs2h9u5T8nvKhUJACFQOAbfgEephWNcuF31o58M7su9Da15gI45b5fFAjrsyepZnu/TL5bar/Qe49TI+t+6Ul4PKO6Mt7I7yh5ZCyxhzJ3qaOuhZWNLATgj+99HQq9HD8L8ovu4b0ocN/+iUfCMEhEA7J1BEI/J/8sT+PZTa8A+yz+3On27lOKMXikrayj+7GhFFnpgMISAEyohAqRqydycloSHOhX2f8PAhNke/eoqt/zNVr/3KTQ34hDeTS4WAECgXAiXqTvPuHSi09r/kXD74CU+e0R01RtoX/0VV635H+oj6T7j/t7m0bBxU+/07MtDDx7p3h5x0sCy7/fA++hIeJefmqdIdVFTcVPqPoMjQelKiMe8TQN6YPmkaRSdMos+9mvDb/ArIuwqByiDgoAm1yX2+WCMSm1wLnAAAQABJREFUyBUtMtyCR+eOEj25XuSqglMc+j+ontRh9aRNnk6xCZNJxa6pDCEgBMqDAKcKsYaYrCGo3l1sWJfPk3n2CNEz7FKUOjr19DRk0LDsHZF+2L2YOBV6Mgl2SDQ7LwdCQAhUBgH7A3SH+6vfhe6kWtGdS+egO4cR1XW7dDidepEyGLbL8FGkTWLbBf5NX6QotfEoGweVE36TB/dRej/iqd8HY6+dZuSHvX2OPLF3cFCDBY9CP4cufUmb9wVF5y8hpXMml0zF7kiPnhTpAWM0hpYRMoSAEOgQBDinNHloHxn7d5Dz8lnRn9l5+xJhdk253IyiV3snlUENpC9YSfrs+aRCI/hLqaoq4U65RAgIgY5AwGp67toZroa8hj4UGc7bFxkNKW5Q5r+FMmS8pyEz5mSnI/E47A1PTySVKItFDoRAxRCwkC+aPLTfs13eQFeKDIfPs+1ifoLu1E4kfSFsF+hO1naB7rT16JAOKq9c2h/ek4Mvf5gPH1B651YyD2z4pA/Gvz/3iq1uDbulaIQdGY5WEEvXUHzxMor4DmruQjkSAkKgPRFAiyhu+8LaQEYwisJExd00qtaZ+6ARyeAiVuijcNEADU5mFRaotOK7F9rE2aQv+YKq5s4PfSuZFAJCoJ0T4N6A0A/WEQqpVWE+feJpyH5oCC92f+rgPqbRzii02DX0Tm3yPNgcqyg+a27oeZkUAkKgDAm0pjuPH1N6F/wb1p2w2jhhSLigqw4nMw6t0VBorcjQpsynKPqyx2fMLnLV5z/VIR1U1xl1e5ReyhJzXr8k6/pFch5eySX8Zs9+wgEMUm4fwxV6tTHjSUUcdnT4COyWZkJ8P+Gt5FIhIAQ+HwFeuOLCJMblC9ghDa4yOu/fonAANOI+igdw66hSBhdFGz6JtIYpqKLZu+gd6oBBpNeNJG1oLjyv6A1yUggIgXZFgNMAUo1XyGQNeYUoioLhoDKmdR3nHsDOaKGdVMEtH3+LqCx19FRSGyZ5FTM/PkvqwMGehtQOLTgj3woBIVCuBOzmZtgul6A7sE9QhbdwOG9REZxtlwewXVpoBVN4D6lRUuomw3aZjI4CPQOn8ydUFHt1bZchtfnTbX7cIR3U1PmzlNq2kcw9/84B5CpU/AfDwWupIby5u3NHWHVQ539NsVXrKdowzs09dfM+eCdFhhAQAu2WADeeTmzfQukt/yLn8Y3gz4kdVq+n8SdoBIqiacv+AD1YR/rgVsRbhzOLHDFFL77TGvzBZEYICIH2QIBbNCS2b4WG/B85T0NyuH6hnaEMHkfR1d9S1co1eNwQm8LVkBg0pPiOR3tgJT+DEBACvw4BG4thiZ82U3orbJdnd4Nv+nN0B1Gg2vI/erZL/1xF3uCbY6ad6k67cVAd0ySOs+YvTgguNqzrjWQc3ftxr7BiN/A5FDyingNIqRmMVj9FWsIgx1SfvYhi2OrW2tlqQmuPKOeFQKUQcLDiyFrBIXesHTw45N88eoDME7uIPgR3UFtlgxVH6gGN6DsIfY09A1Hp3BV6sIBi02e1i6IBrT6DXCAEhEBJBNze6E+hIc9YQ7BohcFRFlkNaQ7uZLT6xr6GsJ2haoHL1brRpCN8Nz59Js6FOKiBO2RCCAiBDk8AIbyuvcL+DacPFAzn3Rsyjuwn6yRsl0SJ6Uf578FpiWy7sO5wGgGG0q1HznbpVTz6K/+t2tNx+3FQUVUzeeo4GccPk/34QVFGzqvnWN28ByO0eJGCj96kOyrhTVtM+kzkdmjBPxzZa7FTqqHnD1ffjHRB7LYMISAE2h0BC45p6uQx6MUh4l6k7kDeqf0Yq48voR+lhvDmP1nn3qRNXUwaNEJBtW4evJOhchVN6IFS7c3l3yLHQkAIdEwCXFjR1ZBjB1GRN+E+hJNOoQe6ryGIyPrUwYUVYWdoM6AhIUVGIt26u1oi1b0/FaxcLwQ6LgEnlaIUepMaxw6T9TC4Q+qkk4j6wvyrhz8vdaBrP+jOIs92yXQc4Wgu15epge3SQYs1to2DilA73vVwuAhBJhzXwapCYuuPlN78d69xbEm/iwosSHzxikGxXVG8F+eRxdYgtGbVWgmfKYmtXCQE2h8BVzMMk9K3blBq8w/oa/yPn1cUjfWCvzKrjfykysBRFF3zB2jEGimK1v4+evmJhMCvQsAxYHfA/kjfuAYN+Z7MXf/8eQtaYRoyeCxF1/6eqlfCzpAFrV/l85I3EQIdnQBHfDVv+gH9Sf/n01rX+Q/Ofo6rN+zr4LhgKLVIHVgD3WH/JmRhrODyDvNtmzionCtm3L5JJoxMyvT04QIn5oVTZF858WkVNvsMQ++eBlL61BSFriIGW2uYQLGx44gQxitDCAiBDkYAYTLGnVtkQDesq5fJPH+SnFtnSi8akP+42C1Vho51e5b605HefUkfN5Gi0AgpiuZTkVchUD4EHGiICdvDuHWTrMaLsDmgIbfP/rzCil36kDIUBRWHjsgCivTtBw2ZQNEx0BDpWZrlIgdCoJIJ/GIHFSmKyuAxpNaNQUeBYCRXBLukOvwbt25OKxV7O9Ln0CYOqvn4ESX37iRj9xbkfGTyPPCHgz689kq3c0JwKQMrCuo09O5Zsor0EaOK3qHEY27Irhu2G7ICUfRmOSkEhECbE+Cdj+SBPSi3vg3G5WnoBbTDaM5GYXzKD6jUTiB98RqKzV2YvY0NykjXrl5of6RInnr2DjkQAkKgIxFw0mlK7N8N2wMachWLW2xz/FwNGTbJ0xD0PfaHEoOGIDXItTNEQ3ws8ioEKprAL3ZQOf1o4ZcUXbycVOSWFg5eUHd1pyva4fFOa5mMz+egIpTXfvMGX6/dHZD03u1kHdlSengeQ+d+Pl165apkogiBvugLii1YSvrwujL5SOQxhIAQyCfgFjOBblhNTZRm43LfZqKmO7lLuABa556kdOqWm2vlSB0/naILl1F85pxWrpTTQkAIdHQCXHiRbQ+r6Tml9+1Cw3toyIt7ucfS0eu4U49P05CJs6AhS1HwaFbufeRICAgBIZAh4PZUht/DBZLS+6E7bLu8yqux4+oO2y7F690o/QZTdNFKis9fhEX00u2cjv5BfD4HFXmnqUsXyDh/hqwr58m63Uj09GbpoTVoOKuMnkn6xOmoTtXd4847qMOGk147nNSexfv8dPQPSn5+IVCpBMx7dyl94SxCek9DN66ij+lVL9LCB1KD3qMTZpBaj/CXEocbEjN0GGno/yVDCAiB8iZg3r0NDTmHkF7YH7ca0U+QNSSvmmb/emjITPQ9Lx6JlU8pguJpei1ryOD8aTkWAkJACLgEzNu3KH2xQHfSmaKOuEIZMIpU1p26+qLE3G4C8HU09EdWYliQr5Dx2RxULoqU2LaJUhv/Ts5NhNaQkwnNw2spo7on6Wv+TFVr1pOKeOvsQD6pomJ3tYy2tbPPJgdCQAhQEtXv0j9+R+aB73OakdfrODJpKcXW/Z7ic3Khdq1iQ/idwrnoEobXKiq5QAh0dAJJVPxObfwXWYc3hmvIlBXQkG8pjhYwJQ/RkJJRyYVCoBIJJI8dodQm6M6RTaG6o05bRVHWHbS1LDqQlpi1VyooRfGzOqjNmzdQ+vu/kHPvQvCzYAezx0CsKAxDBc3gFrbSHT19ps+h2ORpFOme2UENvovMCAEhUGYEXOPyh3/CuNwQ+mTKoAaUWJ9P2sQppA0cRFwQLdKpU+i1MikEhEDlEXANxR/+QdYxGIohQxkyztOQCZ6GaNAQqcIbAkqmhIAQKJlA8shBSm2A7XIc6Ywhg2thuLbLhMmkDRiEL/QyDSmCFHJrRUy1HwdVRb/ByUtJm7vYNTAL6XPxARVVNtU+qJyX6fNTeI18LwSEQPkRaM1BpRgKA/TsT+qgOlc/eBdE7Vu8qnf5UZInEgJCoCUCrTmoFIeGoNG9OmQE6XMWUYw1pE/flt5O5oWAEBACrRJozUHlujoKbJfIkHrS50J3UBND7d2n1fetlAvaj4OqxUhb9A1FV65DXsfQLH+uTqXEq6R3aZaIHAiByiKQOneGUts3kbkXO6hG0utZ6NhBCCg4oC3+hmLQEG1wLrdUNCSISmaEQCURSJ05RamfoCEHfoSGJKAh3IM9REOinUhb8i00ZK0bjeEz4rwv7i+o6Lo/Ja9CQAgIgaIEkqeQnsS2y0EURyqmO1hk15ZBd1asJX1IrZtnWk79TItCKnKy/TioEeSSDhlP6phJFOnVO/sjc9ECfeQo0voPyM7JgRAQApVDwHz0kIxG9D3lvoX4cm6eI0qgPUThiGik1EJDxkJDevTKnlVHjqYoNETtl5e7nj0rB0JACJQ7AfPBfTKuXoF+XMLXefRPPg8NeRN8bERycdidqyFIK/IHF2BzNaSmnz8lr0JACAiBogTM+/coDd1xey6z7XILtkvybfAe1p1hE13/Rxvd4Po8+ojihZOCb1J+M+3HQeXEXzVKFEPuGL9mhrYAvQqXr6bY+In+lLwKASFQQQScVIq4j5j99g0l0QM1vQPFkrgCeOFoQUP0RegfthztqBrGF94h3wsBIVABBDwN8VrNJHeyhvxA9PxW8MldDYll7JDcbqm+9CuKLoWGjG0I3iMzQkAICIEQAk4q6dou1quXlNz5Exk7/o32VneDV+bpjjp+NuyVtVS1eFnwugqb+WwOKlkWJY4eIuPgXpR5v5LF7Lx+QfTmKVFe6eXsSRwoo2aTPn8ZaWPGZafVLl3cXVa1h7SWyUKRAyFQ5gQc06DkkYyGXDlNzqsnRM3YSQ0L1ctjoc77mmJf/ZHiU6blzcqhEBAClUbAMdIZDdmDdndnPQ1JvMpU2GyZhrYQ4Xfr/0CxSVNavkjOCAEhIARCCPACe/OmHyj1w/8QPbkeckXeVA3y4OeuoOjchaQimjTSqxeKPnbOu6ByDj+fg4q2EBxmYz64R/Yr/EHIDA7Zs04fIucR+qKGja41pAwcQZE+udAadTgSilHNV3ZVw4DJnBAoUwLopexriHmtkYxTh8m5cgS9lM2iDywOalE8clIIVA4BLJSbDxHue/8+WVcvexpy9Wir/djFQa2cXxF5UiHwaxP4JAcVBduU/5+9t/6O41rTRt9GoSWDZGZmZrZjx5TYDp0cPjNnzf3mh5k1/9B8a927DufkBOw4hsTMzMxMMtuSurug7/Ps6uouSSWw1ZJa1t5Jq8qFu95d9eyX315DVMK28OQZEp04pUZOjWz3LZev13oCaj1UqN63WxJMw3xsi3OEKovacG3UwPAZ0Gb+UgqXrYKJFa7B/OmmKaAp0GEoYKAAdmz9N2Js+guSD1TVfO5aGBKau1byVv/CsaBqvKhJK/0vTYEOSgHj2hWpBoaYm4EhZrwmFWpjyHwkX1uNWsteC6piOzT/UZNw+l+aApoCtSmgBFSW2Vz3V0k+uFRzdy2sSe8Er6IUY8CdvPETO6Ss0+YCqnH1iiROHxcTP/vmZQzeVSfbVXqUfFa69kPNw9kSnjhVQgMGSaTfACRFySQ08DlDb9IU0BR4jyhgPamQBLL7GiePItmJI6AmE3Gxb11xMMREtt9UU7XGJs1C4pPxKkM4M/wyM7humgKaAh2XAtbjRxI/fULME8AQxIqxJePVDoY8RIy7R2gNDJwo4UkzwW8MThMsiIRJYfAe4d590tv0iqaApoCmQG0KJBMJiZ85KebJY2I/uJfebd29Kcl7l0Uqn6W3ZVYCEhhE3Jkl4dHjJNx/oLKksipBR2ltLqDar18pl1/zwX1J7NmOdMybRF4htqyhhpI0UtxNAt16SWT+Msmfu1DCgzITR0On6n2aApoC7Z8CTD7AUAETyQcY386WfPM6hSEoiv26IvOQeYjfKCkHc4mM4POXSv6ceVBo6fj1DIH0mqZAx6NAMhYTJi/hTxA+wJZEIjaHDwGGVCI/httSGBIoKnG3SHj8dInMXST5U6ent+kVTQFNAU2BOhQAvhBnyLPYMZS5SjXj8AEx9myR5K3T7qaaS9Z4J+8yeJREFoB3mQ3epaS05jHv8b/aXEB1aWtXVkps51ZJbN0g9h1PEHH1a2g3K/3jzAJBCU1fIdElqyQ6eqwEioudYOJg0L2sXmoKaAp0EArYL1+oRASJ7/+ETHm36z51YRfUSYW77+LlKvmAOgBuNEHgRgBJCALRTPbwuifrLZoCmgLvOwXsly+lmnzIzz9I8jbyYsTAf5gJPLbyw6vx+IHBk8F7fCx5cxcovkNjSA3y6H9oCmgKNEKBGBLHJlCZwDy6E55grxzvUb+kj8XlElnMTOLLJYxyeUyaFCgsbOTq7X93zgioNIEb16+KefUytAwZc7d18Qyy7R0TeXG/LrUZT4aMV6GhYyU0cqxEYAaPjhqtitzWPVhv0RTQFHifKdCogArPi0D/MRIaNgYCKTSTbOEQ3GfGAzewvby7s03/1RTQFOiQFKBVNUE+5MolVbvQOncMLnioOoAkj3UaEjgGB6Pu8ogxygVPYUhZeZ3D9AZNAU0BTQE/Cpi3bwrDHM3LqNF8FpUJrh5HRZOquodGClCf2eFdyK9EwK9EBg+te9x7tiVnBFROABRSGUcmluNuQ1pX7/hZEhu/keQ1xInUaRBQaS0Nosht35ESXfm5FCxbKcFOGTecOqfoDZoCmgLvJQUaFVBVgqQQhFJYSgNYsmE98iESKC3/GMWxhzvb9F9NAU2BjkkBWC+ScYcPiZ89Dd7je7EOrPcXUOHBJSHUSi0olcgyJFBaBgwZ8v4zjR3zxdBPrSmQfQqw7BXxxnr8UGKbN4ix5WuEJ6HsZu1G3iUYBt5EJTT1A4kuXyMF8Nx431vuCKj1UDqOoOIEzODmqSOSfHwHNVMRn+pXVqKom4SnfSDhWfNVIHGoew8Jde1Wz1X1Zk0BTYH3jQJ2VaXEjxwS48AesR/eTT+e/RhJCZ7h336aySAsqEt+Lflrv5DoyNHpc/SKpoCmQMemgHnrhsQP7Qee7EoLqMlYVYoPAROZdGLfqewKjpsvkVnIhTFylIS6I3kS+A8JpZRgHZuM+uk1BTQFGqEAc/HEDx8U4yB4l4pMDh77EWSeZ+BfjEzcaqDPKAnPXCyRqTMU1lDWCRYVNXKH9rk75wVUZtozHz4Q88Y1MQ/tEevETsSkvqlLbWgWpGtfCfZCVr1JMyQyfZbkwQyum6aApkDHoEDSMMR6BKx48ECSEFbdZhw9KObhnSIV191NmaUWUDO00GuaApoCaQrYSJhkkfdAAke32U8rHD7kJIRWl2mkdYP12nuA9xgJ97vpsyVvynSEGnWcbJsuffRSU0BT4O0pQO9RhTUP70uyOiWMwqvUOLxfzCM7aubUyC+RQHl/CfYfAqyZK3kUVHv1fvubtoMzcl5AdWloVVRI9ab1cLn5SuQJEqAwkNgvmBgnBCd+IHlrfykF8xe5p+ulpoCmQAelQBVcZ+Lf/U2SVw7XpQCsH+GFn0t01SdQaMGCGka4QBiuNGQ6ddMU0BTQFPBQwLx/V6rXof7yhj8j/uiFZ09qFTkx8tb+Tgo+XivBwvfTqlH3ofUWTQFNgaxTAAJqFWqnxr9D7dQbJ+peHka58PLfSMGaLyQy9P0MT2o3AqrNEhLnzop57pRYl86Jdf1cTa2CZ/i0gOohhl7VFOjgFGhYQA1KYOB4CY+b5iRaGzxElawKROCRoZumgKaApoCHAlpA9RBDr2oKaAq0HAW0gCrtRkBNmqYkWTMVv8TJ45LYsUnsUzB9+zQtoPoQRW/SFOigFGhYQIWlFBnypLCzBIcgC/gHKyQfnhfa+tFBXxb92JoCDVBAC6gNEEfv0hTQFMgeBbSA2n4EVO+oJy6el/ju7WLu3ozC2iimXQVXG9tIH6IF1DQp9IqmQIenQOzAXkmgtqF56gAy5AEvYqg35hceUD5IonDPK/zoE2QCT5Wh6fDU0wTQFNAUcClgVTyW2J4dwJMtkrx7TaQSJfHcWFQe1LmPRBagLvuCD5DABMlLSqH4Qs1C3TQFNAU0Bd6OAkmp3rtbjJ0/i3kG4UnkXeKoy+zyLsjqG5q+XCILl0l0+EgHa0pLncomb3ejnD263VhQvRTkJGEgw551HYmTTh8V68xBDN7j9CFaQE2TQq9oCnR4Cph3bolxA3hx9aIYJw9L8hLA3ojVpYsWUOvSRG/RFNAUSFPArqx0eI+b11G3EOFGpw9J8v7F9H6JFqHk3QgJDRqBsIFJEhk3QSKDhmT26zVNAU0BTYEmUsC8dVMMYg3rpLKSCXkXK+GczTJX3QdJaCAyh48aB6yZKNGx4yUQQemr96S1SwFVbNQq4w81U6s3/iCJH/4uyTuISU01LaC6lNBLTQFNAbEtVISwxXpwT6o3fC/Gxr/B6wKWj9pNC6i1KaL/rSmgKeClANzuksAT1mqPHT4A3uNfYh3ZlDlCJVdD2ACWoZkfSd5Hn0n+zNmZ/XpNU0BTQFOgqRSwwLtA1jHv3JbYhm/F2Px3xwNMne/gDMBGAv3HSvTjL6Vw5WoJ5Oc39eo5f1z7FFBTZGVcKrNcJb77iyRvn0kTO9AbdYKmzZPwxKkS7t1XQr17azebNHX0iqZAx6SA/eKFxI8fEePoAbGuXZTkgxsibyoyxEAt5dDkBagvNktCAwYBO/pIqKw8s1+vaQpoCmgKpCgQQ43U+Pf/FOvQBl+ahKatkLw1X0r+7Lm++/VGTQFNAU2BplDAevZU8S7mkYPwHAXv8hC8SyVcflMt0HuERNf8VgqRPTyQj5wa70l7LwVUyUPMR5deEuo7WMKzF0GDOUdCPXu9J0OmH0NTQFPgXShAjwuWq7KeIETg1Akx9m+X5OVDmUuF4BrDeobliCObOlcis1BjbMy4zH69pimgKaApkKKAFlD1q6ApoCnQGhRIxmMO78LwxpPHwLtsk+S1Y+lbawE1TYrcWUnC/F29dYskNn8v9sUjIibiymwTQcRJp5ORfIms/L3kr/5Mx4HkzrDpnmgKtDkFYkcOSXwdrB/71/n2JTj5Q9Qz/FIK5i7w3a83agpoCnRsCmgBtWOPv356TYG2oACTPire5fDG9O21gJomRQ6twDc7cRmJT5DV17qI2qiXTjmxqIwRYdMCqkMH/VdTQFOgBgW0gFqDHPofmgKaAm9JAS2gviXB9OGaApoCzaaAFlCbTcLWu4BdVSnJqipk6bwmiZ9+FHPXd44llV3QAmrrDYS+k6ZAO6KAFlDb0WDprmoK5CAFtICag4Oiu6Qp8J5TQAuo7XCAmY65et2/kKHzTyKJKucJtIDaDkdSd1lToOUpoAXUlqexvoOmwPtMgfiFc4gFQ53CAzsl+eyhU+rOytRj10mS3ufR18+mKdA2FNACatvQvVl31QJqs8inT9YU6FAU0AJqhxpu/bCaAlmngPWkQsy7d8RETXbzOLJrntwLITWTFVwLqFknub6gpkCHp4AWUNvhK6AF1HY4aLrLmgJtRIHYUSRJWv+1WPtSSZJUXrVUcjX0SSdJaqOB0bfVFGhnFEjGqqUK9ZUT36Pc3f1L6d5rATVNCr2iKaApkCUK+Amo0msESlr9Wgo+WivBApaZcWukZummbXSZdl1mxkszLaB6qaHXNQU0BRqigHnzhsRPHRfr1FGxbl2R5L0rCA2oTJ+iBdQ0KfSKpoCmQAMU0AJqA8TRuzQFNAWySgFfAbW4TELjZ0t40gwJDRwskf4DJFTePav3bYuLaQG1Laiu76kpoCnQphSw37wR+8UzMVEX1dizAz+kbH96O90nLaCmSaFXNAU0BRqggBZQGyCO3qUpoCmQVQr4CqhB1HAv7iqBzt0lPGuxROctkrzRY7N637a4mBZQ24Lq+p6aApoCOUGBZCKRcc+7ez7dJy2gpkmhVzQFNAUaoIAWUBsgjt6lKaApkFUK+AqonjuEZqxSNdzzZ8z2bG2fq1pAbZ/jpnutKaApkAUKaAE1C0TUl9AU6MAU0AJqBx58/eiaAq1MAS2gtjLBs3E7HYOaDSrqa2gKdCwKaAG1Y423flpNgWxTQAuo2aaovp6mgKZAfRTQAmp9lMnh7VpAzeHB0V3TFMhRCmgBNUcHRndLU6CdUEALqO1koHQ3NQXeAwpoAbUdDqIWUNvhoOkuawq0MQW0gNrGA6BvrynQzimgBdR2PoC6+5oC7YgCWkBtR4PldtVXQA3nS3jpLyVv5RqJDh4qEglLIIxsV7ppCmgKaAqAAlpA1a+BpoCmQHMoUJ+AGpy0RPJWfSZ5M2crviMQDqPAcrA5t9LnagpoCnRwCmgBtR2+AL4CahAC6ZDJEh43VUIjR0tk0FD8ButJoh2Or+6ypkBLUEALqC1BVX1NTYGOQ4H6BFTpOUzCY6dJaMwECQ8eAt5jiASLO3Ucwugn1RTQFMg6BbSAmnWStvwFfQXUQABW00KRoi4SGjVFoouXSf78xdBmQpOpm6aApkCHp4AWUDv8K6AJoCnQLArUK6CG80QKSiXQcyB4j5WSv/ADCfXo1ax76ZM1BTQFOjYFtIDaDse/XgE1rxgFbLs5AurCpZI/b6EWUNvh+Oouawq0BAW0gNoSVNXX1BToOBSoV0CN5IsUdpVA70ESXbgcyvFFEFB7dhzC6CfVFNAUyDoFtICadZK2/AV9BVS6+A6bKuEJ0yU8YrSEBw6SyIBB2sW35YdD30FToF1QQAuo7WKYdCc1BXKWAvUKqL2GS3j8DLj5TpTQwMGK9wgWQ2Gum6aApoCmwDtSQAuo70i4tjzNV0BlkqRlv5b8VWslgiRJgVBIhD/dNAU0BTQFQAEtoOrXQFNAU6A5FKhPQA1O/lDyPv5c8mfOUXyH4j8YdqSbpoCmgKbAO1JAC6jvSLi2PM1XQIWLTWTl7yV/9WcqQUFb9k/fW1NAUyD3KKAF1NwbE90jTYH2RIH6BNTQtBWSt+ZLyZ89tz09ju6rpoCmQA5TQAuoOTw49XVNC6j1UUZv1xTQFKiPAlpArY8yerumgKZAUyigBdSmUEkfoymgKZANCmgBNRtUbOVraAG1lQmub6cp8B5QQAuo78Eg6kfQFGhDCmgBtQ2Jr2+tKdDBKKAF1HY44FpAbYeDprusKdDGFNACahsPgL69pkA7p4AWUNv5AOruawq0IwpoAbUdDZbbVS2gupTQS00BTYGmUkALqE2llD5OU0BTwI8CWkD1o4repimgKdASFNACaktQtYWvqQXUFiawvrymwHtIgaRpSOzAPjH27hDrxqX0E4Ynz5bonAWSN25Cepte0RTQFNAUqE0BKrnINCoMuXUlvTs8da6DIWPGpbfpFU0BTQFNgeZQIH7+rCT27RLzyB7fy4SnzZfoXPAuo8b47m9PGwNJtPbU4fr6qgXU+iijt2sKaArUSwHbFvPuHfxui/3iRfqwYM9eEunbT0Lde6S36RVNAU0BTYE6FLAsMe/dEePObUm+fJneHerVW8LEkPLu6W16RVNAU0BToDkUsCoeK57FenDf9zKh3sSd/hIqK/fd3542vjcCqnHrplSv+0YSP/5JxKhyxiBcgDIzv5OCjz9FHdQhapsuQ9bY6wl9hVJZePUWqN2mCdcY4Zq/X+mKSHdN7+YT0/8KrjrO+3b7H1l3q6pgyKGpu6uDbQH1vATU2NCy4+++tDWJrjG5Zale79Xd4fB+AvUe3MAO4oj+dBogkLvLJXj6/U8hsCaeS6HsLhW9vW+3pnd2CfxuV3M/A+/INPVKagTxJzWSTT2tzY97bwTUl7cq5PK3x+TqVwclXl3pEDZcKKFJ0yRv2iQpH9ldBg4IyoD+IQkG25zuudkBZU26LcbtW5J89jTdxyA0wZF+AyQEq5JuLUMB+8VzRXfr9k0J9uknkf6gd7eylrlZB71qVXVSbt225eZNW7j+tq1b1wAwJAQMCXZoxlJZnO/cEruqEu/pQAn36y+B/IK3Jac+vikUoHUOljkDuJAERrgt2LuvgxHawu+SpFWWlVXAkFvAEPyqY2+PId5Okh/hr1tXzZB46eJdt1+9VJZpzotiGM6u/HwJK9wZIMGiIu/her2ZFLDA95nAdgsGH7cFijul6A2cz8tzN+tlK1LgTWUKd8C/xN4Bd8rLHKzp3699Yc17I6Dev1Ut2755LD/+rUJeVZnOqxMMSaC0G1xsusjYCQWyZFFI5s+NSDjcim9WO7pV0jIlth+xNLu3iXX9QrrnKh5v7iLJmzApvU2vZJcC5o3rEkNcgbF7i0RmIH4A9I6MGJndm3Twqz15asuuPab8tN2WxxVvz1yOHRmQD4Ah84AhofaF81kd+djB/ZLYu12SFY8kMn+p5M+ZJ8HOXbJ6D30xhwIqvpGYvGerWDcvp8kSnjoPcUYLdYx0miKts1JRYctOYsg2W548e3sM8fZy+QdBWbQgLMOHhbyb9bqHAlSGxffuksSen0RijmdcoLSrROYBdxBnp92nPcTKwqpx9QrovRN4syV9tWAPKMPmL5H82cD5ktL0dr3SehR49NjFHUueZfSUTe7AhDHkXcIyb077En5yXkClxvLNmyS0BvWPBT097tyx5cfNpvxjiy2VibrHjukbkM9WBWXZh2GJhP0M3TZOsvCzpbg4jF9I8qIdgwtNgrh25RuhtjK+/SdJbF0n8uhqmoiBETMluuRjyZs5GxrLYgnwF4mk97flShJa1ST7jp9YHMOajRo/9ldpWnPEJShZXYX+VkqyKuWKji4bVy5JYttGsQ5tlOCERaD3RxIdOz79MAFojQPFeI5CrTFOE6XWChwAFFZQ2+gq272HEOQ3/WTK1xuTUgFcSXuMeQ9qYH38gIB8utLBkFCQ75r7c07Kzw8p3CgqfP8YzmQiLvabN/jWKiW2c6sY29ZL8sl9CS9aK3kfLJdwn774zopy6v1U3xhwgfhWpwUDGSyLRuvsbusNaUx+/kxiwGRjGzC54ka6W4HRSMCzZBW8g2Y5z1FcJIFwbmByupPtfCUeB+8BLMFrn24PHtqyEXzGPzfb8rwam72sxFvKq2vnBeXjFSEZN4Z8hsN7uKDEqUrxIUUhiXYQPiRNZM+KcfUyQre+FnPzX0GiFGMXLZLw/DV4/1dIZMAgZ17EHJ8rjfM6+ZFkNV+Quk3N4+ShcsUaCS8Nxf8B2xNnTkri5x/FPpYRUKW4XCKL10qUOA8vOsUDFhbWfTC95Z0pgCFIYU1SzJR9zXux+/eBO1uAO5BvXnA6e0usmTwEvMuKoHy4lHOEizUZfrmgALwLsKYwx3iXnBdQL1+x5Mw5Cy41/iMCPkMCwPdn0GaePJeUY1cxwBm6p8e4vCggE2GQGj86KCE//jFJ8KvGtWIyYVyxjBldJD17dAx3BvPeXUlcPCfW+TNiXj4nyetnQIpMwhjp3EdCQ8dKaMRYCY8eJ9GRoyXYpWuatm25YoOBS1w8Lyb6znT/tVuwZx8JI5tZ3shRIrCo50Izb16XxIXzsFJfTnfHfvxQrCtnoRhAFshucO8dNl7oxue2UP+BEhk5ViLDhrub9LIWBej6cv6CJafP2vLUx7rx6lVSzl4CTgAjqMRSiOIPK7Wu7PyzvFNAJo8QGQcMCQYwSySrcY0U04RDBg3Kl7FjimTEsPdPiWA9eqjeWfPCabEunRObGBF7LYH+wIXhY/CNjZPIKLyfQ4f50q4tNhqXL6LP6OvdW3VvD2HOxbJctMLQcsS+W+dPO5h8g/R+lXmOLn2ByeMkBEwIg+7RkWNgxe6c2a/Xmk0BCqNnz4P/AJ648V8vXybl1PmknACGxMFnUD7ljzDytngyGkrziaMD0rc3LkQswc9ReolEogGZMLZIxowplvKy3FOgoKOt0nwF1GBEAv1GYY7E+893n7jD+T1HmnH9qhj8dm9e8+1RePR49Hk0QqZ6++5v7Y0UqOPkoS6cFesifleANY89fY8USGAAcH4YcB78XwT8VGTw0Nbu5nt9PxrizgNrzp6z5dmLukzJC2w7exG4cx3GOni6vy3W9CwNyKQU75LBmpTLPCg7dAh5l2Isc0vxkPMC6tYdhny73pLth3ykThA2BAmVAic1EK+h8Uxg6U4m3jeagmwExxVAgcAJpXZLJqH1Ml9KJPBKfv9FV1nzcTcZNTJ3tHK1+5vNf8dPnZD45h/E3PmtiAmG24YKJ+mhNzUAIRCuEzRpK34hBR+uQkzCgGx24Z2vZSJetvqnH8XY9E+Rqpd1rhMYOlHyVn4qBUtXwMKQG+4NsYP7JL5pvViHf8r0lzSnhphmQAZJYxJWNE8dERoPi8mKtVKw8IPMOXqtBgVeQgDduNmQf35vyYWbdUHewiYDZDZAYhvrPMIPK2pc1PMPL4bA3QCfCZQ4wA23fTi3WD5Z002WLO7mbnpvlsbFCxLbvF6Mn78WSeCZ+b6SggF8U+EoYv0XSnT5GilYsDhnnrl6+88S3/it2OcO1u1TJE8iy34h+cs+glCde0qf2Iljkti0Tsw964HJcdCbE5sPJnfuBbp/rp6DVmzdskeBs1CMr//RlL+sg4WJYIFG5XcMr76rBFcCKv4QR9TopI5zjm74L8ME8vH5RILwArJeYHgxfyX5XYkUFQTld+BDVq8qk2FDc4tpbPipsrvXV0CleTkAZi4UleBoeHet/EQKlyzHNj/OLrv9acrVqvfCJXnT92Id3+l7eHjJF5K3YrXkjR7ru7+1N1LJX/3TRkls/JckH14FHwLBhXjjNtI1iBcV9A5N/cDBebhX65Y9Cjx7npQNG8G7AGuu3q0LIuRdEoAG8i7EGh7xtrxLNCX/2MCZpOJdMgadlYs6yaery2TB/C7Ze6gsXCknBdTXcOmlO97Dh0k5cMiSLbtsOUMLKnGp1kPz32lcSg1crUPS/+SgsrnLzAq/x0r84NyNgVs1t0QWL+wM15si6dEzKj27RyXs6xbsXK89/qXLnvX4kZj8nT4pxoEdkrxyuOFHgSYtsur3yIr8mYQHDW742Jbciy8z3Xe4xhoHdol9crsDrLXvC0tDeOYSicycK2EkewqV95BgadvGUVTv3iHxdV+JfWJr7d7W++/AyFmSt/ZXUvjhynqP6ag7nj6z5dGjpNxEAoHdey3ZtCcpD2HpSLcUbrhY4WIIj2gKyKvj0hdzMMg2X4kFrCBuuIgyeVi+fLioRGbP6JQ+mu6+xJAe3fPaHYawRqz1+DF+D8VA7TXjwE5Jnt/rS7TAqDnO+7kUjGIbNvv1a7EQG0uLr3EI9W0PAhe81gC3b1C6BcctkMisBRKG9ZHlhPgL+LrXuCe17DIZjyl6m6C3CaWhwuRrRxu+aTgPyoHFEuZzQNAO8zlY1iQ9KTZ8ut7rUIDx6cQQemK57eo1W7busWTrcWebwg93J5YKR/AHcmZN4RTbuE+dhT9cOlfAik9L2obiPUwDCi+sJ/FfJBSQj+eRDymR0Slvrh7gQ0LY/r42JgrkvG49eZJ+RIvlew7sFPv0TjJp6e3uSmDQJMn75DdSuGpNm77zDCewgTvmo0diHDso5gHE6N+74HazxjIwcrZEZi+S8JjxzvdK3GmDkCnr6RNFb5ZoNA7uFuvItpqeczV67fwj0Gc0sAb5MabMlHAP8FLouw478iFUA5sqETbwEPLNI8g3NKyxvYByfRewZjN4lwrsT7cUlvCrV3oCLF08eVfexQLO2FCIkXdxq4zOGFUoHy4ukVnTS6Rnil8pgstvW7ecFFDv3LXl4GFT9uy35RoE02v3kvIcHnVqkGpRzDsPu4PIZe3mWkw4utR0qlfA8x64Aio1CwO758uQAXkyYUyhzJnVSWZM75Rzvtm1n+9t/22/fCHxo4fFOLxfrGsXJPn4FpzgMxOD7/VyRUDFVx07dkSMIwfg2nsCWj/0/cUDDCpHtlZDn6WsvwR7DZDI9DkSnTqjzd1TtIBaa4ya+U9aOg4eMmX/EVtu3BW5BuCPO4YIdWVaPokT5O3wv/Mn9e17IMC3F5wEiB0ua8Tz+bNNCEL42XYVsATvHd69sk4hGdovLAP7wvqdav36RoEhpTJ9eqkU5JOVbT+NTFf8OL6zw/vEouv/w5vAiAo8a12q5YqASo+K+LFDYh7aK/b9m8C121A9e4IIXfLzhSgBY9hjAARUMIqI5cyfOh1xYfnuEa2+pCUjduww+g5637gkyUegd+WzhvtB75bOvSXQC9mUx0yUyLTZkj9lKl7S9vWuNfyQLb/39BkHQ06czbzbTIJ0HXhyF+51pKaLId7eEAtcaZRn8hh6aoVxAlMiGAAOWj+UBRbLzNUzV0kmoQgyXoJZpRWVbnc27peUQT2iig+ZOK5A5s4Ghkwrlby893dcmYchfuSgWCePpIljv4a1h7jz6pHC2PSO1EquCKgmalIm8O0axJ071xx+yuuS7+04PNGIO3SZ5feaB9wJIlNua7f42dPgoQ6KcfKww0M9w8tO62lDLb9EAt2RPbnfECRznKv6niuuyg11O5f23Xtgy6GUfBODcwwbw5Ou3xG5ASVZ3GU2sL0leBcLnqL8ucr1JHiXHiVhGdo/KiOG5iORUglknlLp3avtQxxzRkAlz8PgYNOErzV8sb9bZ8r/96OtwF2NIAcLP04Afo2byYBSAe4ewqU7IdBzkhMFf7wXt3v5LFdApXYhQPcRTPCj+uTL777sDHffrtK1K7P/BiTczjWYSYfIYj18INUbv4dr7D/ABGVKyvjRNr0tgvTuS38Fl1kEzA8ejFkYsSCt6TYLwZT9ZwKR6k0/oObtV/VqKdN99qyE5iKhyxq49U2Z7tnaSqt4AV3aV+/bJfEN30jyzM7Mzflik6nku5cEQqmXNCNwB4ZNl7xVcOVbsgw0T9G9A9dL4vfs4sWO3Uge8J0pmw/zq0ZzASC1qlxzQdowSZs6RB2X2l9rk7tLLXkfutUQN9h4af4saB8tE4kwkjH8cADGzBFUseT4pdq4gXny2190lbUfl0lp5wgStDEGnkiWuy1JtS6tp0+fwq2X39nfRZ7fa7DDgeEzJO+jLyR/8dI2fT/JdMWZVGU7cK32YNf3BD2GABd+C8+QT1QCkPoOa+nt5v17Uv3Dt2L88CeEKzx/69sFBk6AFRvWpI/WYrLM7XfsrR+uhU/4eZshf/valI2HaqFBCks47UdSGELmodZR6d7x087DwVHoqCicxg0kbCN+YF3xHukjMysUSi16ZFhUeCHMg1jiwZAJg8mHlIEPKZOSTmHFh7w3llRgpzsvxg6jROCGfyFBjyf0JUMm37XAAMRzfvSlFCxfpayQih9pxVwT9DLhRJS4DOEa/JS59SvoFxoR8twnQW6P6GrgzupPJdS19cNCqpF8Lfb9PyR5drfbo6Yv4e4bXv4bKVjzheRiiETTH6T1j7x42ZKvvzHkf7+xawijqicpvOE6V1uEdwHWmBZClCy4+BJniDcpRCsAyP2fX3STT9aWyYjhhcCaINj8gJelUt1srT85I6AmgMvXb1py5aqNRCe2HDkFLQOSEbiMIQniDpgfcbiPPL4K38OSGkwOLmNFlAUEMwqZTY4DZGC1TfEvOAb/Y4yqMEHQbY9xjKhziP/KoVWYNzlPpk7Nl5HDCmQoYkH6Qmhtz40WBgbxm1cuwrX3qCQvw4XMyPiiN/hsiEMIDJ0i4XFTkDCJgfLQog0c7BC9wROzs5PuP8aNa2JeuyLW6WNIIAJNKy06TWxtKaCqem43rosJ2ltnT4p5Fn2vuJ7peX4pEhEg8cOQUahBdlWSN8/XVBwwKcqYaaD9ZAkhQUFk0OA2mdQyHW7bNSYruXYdeAE3vBPAioMnknLhftLBCHRNAXtYhHEXXA+lNFsGwMCNHyPTSYaSlg5XcVX7qciIKnkNK8odhgwVLBxJMJI23fFg/aD11GEoyVhCy5ZmME3p0Skp86YFZNrkoIwY2QVJCLpJn96ltW+TU/9m0jR+ZxYsGuaZY2JfgOt//HXDfezaL/V+TlLvZ3TQkDZJpKYFVC2gNvyi+u/1FVCBD4AHxVfkAUsKwahRyZUAA1E71wX5DkYBEWsCwBosgDMO1hBbyHsonSO2kx8hrjiKLWKHif3Ikm3FsT2hsMXBFXWU9OwclvlTC2UafsPBg5APyQXrBh6h2Y2ZwQ0kDVTz4rlTwBvMiw8vN/268IIIjZnuzItDhmFeHCKhsvKmn9+MIylYM+GhcR1YieRC5hnwU9dPYGDJaDahaQG1CUR6/w7xFVCJG3hU4g2xhF4Y5F3IowS9vAvkSR5IvoX7GuJd+BbSK57yTk3excEaYg7QDNhDpRiPTip8mz+xUKZPLkKII7GmQAYPoqDK3rV+yxkBlVmstu+EBvMnZOFEps1XCO16Ve3K9Q5hSKKGyOR6NVHTGcXohTCpGNBg0mTuTgr0xnOTpHBIeD2+FLaN+B8loNIdzLkLhdxuRUkp75KUpQs7yfKlXTBJ5DZzic432GIH9kpix09intgHAQha+jiet6mAyg8FKd6lqIuERk+R6KJlkj9vUatZUeOIg0uwxMXuTRBM0Xe60KhkLQ0+cnpnWwqoZPpju7aJsWMj3H/uINYDihAmP3Fbdwj7iz6S/IVLJI4xMnZskOSdc+5eoBFU8gUQYjt3x3EoL4HjOBl31Hbnni3btpnyA/Di5n2RJ6+R3Q7fOTBdgTcZyuL8gBRBn+QwgyA3ZMdqyJPVCbjs8VUGRkRwnGI4sY8YUbupcwEUXFrgMk28b3bqnVOHKy0XBVMehIsILPxKcHUYzbBUSrfCF1Le+YUs/7CfLF82TKZM7lv7Njn1b7qZJnb8LOaRnfjO4GIaI0ZwZmygQaMuBXD/6tJTvZ/5SOYVpvKqlZsWULWA+i6vnJ+AyumOOEE+oBjebp2AJ+QpKhFuVAmXPC9ekJlk+TqeQy8wl8cgcJDPYCNEcJ3nKX4E3KMNzHCUW+B1sD0JpjEJXoSeGTyByrBIKCllxUHwIQFZ8UEpSuV1kUkTStQ12/sfKp1ju7ZLYjvmxQfXnUSHJp69qS2IAcG8KMVd0vNnZPjIpp7drOMYM85wHWP7FoRAnMBLgRhiAwnk1JzQhEtrAbUJRHr/DqlPQHV5l3ywekV54F0QnaYwAbigeBewi9XAFmISvTRc+YbKMi8WuRTDaQpzuKzDu6gLk1ch1jCDuOO1wdCCzoUwzpUGZdqkAlkJrFm8qGubhRa0uYDKOmMs//AQKd237oBrL+qL3XySVNoBMo8Yi3Qj+FNrwCW3cxmFVpOZ8DhYLi5QyxnlNixfAy9ew0BIVxs1KWC0vHEhAc4g+CmLCK2oNs3enEY4YbgWEVMWTymSj5Z3QTxZiXQuDUtpKeqktsN4kCpka4t/9zdJXjqYpmt6hQSNIGNgMUrI0E2GzGk9AmygH9K7053s47XKpS99jRZcIeMc//4rsfat879LGNIIhGcpKIZ2A27LMQiBVCGlWmDsAiVURydMRqKkzipZUmvVDjRhPa1e/y8xNv4ZL2Bdi3WgP8r3pNzzqrdtccbo8iG365kltDDhpb+GSyIyASLde0dq/L5fwHL64qUtV67YsmUb8GK7LVUejyoqp/IA8IUo01AMgCfI8xWgppFWDBcDiA10w1MCKhSIcVwjgR9jV6nUUseBuLwn1/kzcRHTMnEt552ivRabeZTzI7NJ9y7FdEJLSWYTHhlm4gF+9+TjBb3lo1XDZNas/tK5cwFwJB81DgFUOdCScfQXdZBVbPqh/WLs3CTJa8cyPWNW6cLOEijJuKIlDRDuDb8zWFcVZuJwuKiHpi2TyMJlTjkqJCRTScla0u0OJm4LMfXJly8lce4MlFhbkIDsZ2fw+ATUXCJ2Sjqh7wlKF8A17zeIGM7I/FUSXbhUJUpif1nrr7WaQ/eXYty6AbpDMbBvg4O7qu+c5KAUBCYH8oDNqZZ8A2aYbsAeJZd28XWp07Ql65w6eJKUffst+XGrJftQqo6Nf8lrsASpYhip7AKWEDPILJKHcPkNHKZwxM1zQ28wZtx08SSRwhOFIykMUlZV8hdQdlG55fh+AE/gkeEwjeBGFY5wP29GnsSWZTPywYcUy4xpRQgZIIYUAEMAZu20UXFbvf4bMTb8yVHa1n4OVwDlt1sFhXStd957eHgh5kSE8ORNmOTd3GLrrHNa9cN3CCn4i8iDy3XvQ9zJ6wTcAT9FV2AaBBKwvLitqJuE56HeOXAn3LuPw5N0wvGt1HxdfKkIJ86T3qmWNPAuvgbOe3lBjEtoOurQLvpQolAIKH6qBIoCHVrgkq3GkrwHvb7Iu1y4BN4FWPPdDlsS/KxTjVijeBcKp2Blyb+o0ABiBn8AJWIOeRcV5w7WgRijsvtiSd6FWMNjiF+1eRcDvIujXCffwh9wh1ZUhikpHCLW4CJUowFvRvUNy9qVRbJ0SbF0LwPWAG+KiqCIbsXW5gIq3XpZZ+z0WUvOwXJ6+jIGETwEJwcKmgR/NiWMkqmElpIDpDSbWHbDN9ENMklhQcBhJIHl5IVoAucAVTyF8Itv6xUEVTKe1DYoZhX7HLc+ThKO9kC52nCAYPKGDlQNGo7CdWwZhAx640fky5iRBTJ5cgFqpRZKWRk+5nbWGhNQAwMnSnjCdBA6D5kkETx/BS7AKYuR91FzUkCFFTI8fgYC+Aei70fFPn/IEVLdjsNNNjgQbrR0Tx43UaJjUWu0U+toorWA6g7Cuy9NfLtnzpjKpffMeVsuXYNb751UQiQiMsCiEJ9kJ2BBPnCUsl8USwXYwFyGS5di/i8tcWLEiBGcT1l6hkwnvTieQ6fxDHwQ/80JgVhB0KcXhgXAoCbSBh5YuChxwebFVcPNFSNJvMDJKVc9Zvq14nCZjd+WUf2LZPzYMtQbK5cpU3rLhPG9pVvXjNCRulCbLJg5M3GWLnYn4P5/XpK3LoIpeZzpC13pxs7A9zUlzYQkX7wQgxhxCW55rtWDTFn5QAkN4neGGp3jkWVzzLgWLUpPRpGWUxNF5q1LZ5BgCH1/essZeD5BtFCCI9H3CVPFfoKsxKcOSfI+jnEb9gf6joRrMn5jgQvjJrSqdwI9Q8wzoP35U2Kj78kHV/CygeNgAz0DgycpTA566iZaqFttngG+VdxwjuOhOgY1TYumrDyusOXUaUuOI0Tg4mX8QMrbUI7zi+ZnTWVXES2nwBMKpsSTAjCOnaC7KCl2+BD3PkppTgjAeYqpBF48h+L9KWSS53BA8HpykdnkcUowrYEldPflTmAI+A5J0pqKH/EEJ/C/IeVxGT8yhjrtAXhi9Jbx43tJ1y65gSEuLd5m2aiAWtgVLrwzJMRv99pl551/ctP3FjknoMKrJDAC7sfjp0myEkn1TgMrb53O9B0ZuAN9RgAriTsTgDtIcjZsRGZ/C6/5CqilvSQ0LoXzqfvbz545vOBl4DxL4bER57sjzIh9H4naqMD5KHHe1dI4R+m/KQpQaXX6rCknT0LeuZCUS9fBu9x2PC0U4JB3Aa9CL418YA49wIg5SigFJJCsindBLXbyMThc/XEF2CrwLi/AtzwD/0I+iecxlMnFnZq8CwVTiqcprCHfomQeen1BYGUD3nQpNGTCsJiMHhGTyZN6yMSJveHuC2VLK7Y2F1APHDRlHWqNrd/uBAxTG0DiUkClIKoGAgShQFpIzQIGj1YPpUXAciCKXffHj4NHZpID5g64gTn+NjIA30JdoQpMFFV4SaqgNcXlVbNxowQ4UcaS4VQ0fHS4Y5KZORlADCbTbewHfcHLkanzj78sQb3DzhgszFbtrDUsoMI6Ry0kysgECwulesN3Ym75G95yH4tfDlpQg+MXSd7qXyigr964ThIb0PentzMjRFDlG9WlNxIr/EoKVq5RFpPMAS23pgXU5tOWIL/+x4T8/RtLDqNoNZlCjii/XTJ9/Hcp3FO6gIHMA9grpjF1W37z1EoOAFb06xNQjGZql8IMgjrLW919IHLvQVKqgdPEEwqvVVgnbrixqzwvgR0WcIMCq5PcCj0h14eyTH0AAEAASURBVOmCvrKkMvnJcxi5bosRuwFMM6E4C0jf7kXy//zbOCQiGC0DB7Qu4LvPXHup3s8fv0PStL9DqYOZjiipnsc5UimkVv9SClZ8nC7FYj1AorUfmWgN31k6qQ8GQREe7o69R0r0Y5yz8uMWtUjS6lu1cb0kfviHyKNrqb7zrUg11m9ehYQe+N5ppUys/xolFTa5e53+EhfQ79CMlcA/JCObOSezv4XXqrbAq2XD15K8sD9Fcw/tYakIf/AlElB9CkvFiHRPVCbwH3COJ8GJFlDT5GnSytVrlnyLZIz/L/CkEt+4ixfkP6i8pmdW5yLgCXSYeDvUn06wapDfIIaQkWTjZ6KU3uTzsK4+HSweICPnLfAf9x75YwjPZbNwMq0bxBPHkkpUw2XgzUVeRBjnnmq28Qj/vCf9yyrlP/4wFhgyRvr16+zubnfLRgXUHkOBISivBtxRSZR++KdT6srnSXNOQM3vhLrxv5H8VWtVwrn4hm/F2vNNpud84VK4E5y4GLjzRavWkfYTUGmgiALnC1d8lO6nCk8CL2hsBs7TW0Y1D873G+OcsxxzQwE+EN3qUKAK4YrrNxjy139ZchKKdQ49leNkH1zeha61Lu+iXgtchXDCRtxxeRfkyEx7hamdOOgVQpzuoXoB+Rd6g6V5Fxj7qhDSVJN3MZQnGBXtinchF0VlGGQeuvu6LYlkSrZ5XwLGHfm3L4fKL74YK7NmDHB3t8qyzQXUPftM+RoZOL/d6TAUqU82PYCM/6A5m/EdnDBoESmGwlBpMTF5lMMTobwbGE4MoKu5dAeVAiqF05uwsjyFZoH/piWEWgW66CQwC9mwnlrK8uEIrs4E48SPQQeBAaP2EgenXhVqNpbNDMi82SEZPapA+vQpQdKTErxs7Hnut0YF1CXI0gv30TBq6bHEhIlSLumSB2kmFO91KwmozNjLFO7m/btILAQrw+HdkrxxIkNoaCFVGZnegyQ8CZlup0Db2qePVK3/VhLr/ozgxFuZY921YjCsq38H92Rkz+vR092a/SWQx+n7PScp1WGkoD+3Fy9qiuGgwNylDxh59H00tKcogZM/eSqsQWfEOIpaameOo1TGDQjZd4BIeA/ZaFEZMRMlc+ap+o10DQrh16rZlJ2etNpf1ia8i5jT23ds2X8QdQn3g/HDNsCCUlzREkpvizz8VNwpsMCryKVrXhEwowTax3LIg2XAC2on3UbhlNjxCnPvHSRaIlNJYVgxngATpoJn7KqB+A8CvwP+FkDf8a4g3vBYLp2/WFMuM6xvCCtj7CYMjDdwDC6Eo3qUFMh//Z/x8sXn42TQwNwQUJk4rXrdv8Tc9BfAHma1Wk1ly/zkt1LEeoPUDqLx3VbueT/8GbMg3GZrN2jY89b+TgqQVbYlyyjYsORWIfut+t6f3andC1VOJorvvQDfO91pWQ7CRK1C+x7GpAL44FHAEdfC0/BtwVIcBo6EevVu8Tp/VRt/gJsgwi6uwELhNpZz6DFQgv2REA2lKKLIPM46zm6r3rkN4Q7/QH3IHe4mYAlqPk9FPdSps4CBfSUCXAh2hnuRbmkK8Nu9f99WeHIByRh3wbV36zHnyy0Ab5GPkCHybfSMIM/hhgmoJTCE3hcuhlBRzsazXd5D8Q9qK+4DhpG8x73HKd4DEO56cdGTC7Cl+ENaM0xcwHT5EFyQTr+qJmqSvEg1cAQZfvkzUCvUfCo9Sw35r/8YL59/PkYG9G9/Y6zmxQf3xLp6GaVO9ol9ancGdzgvwpKn5kVa5/A+502eIokrOJbf7qkj6ttVymd3LgUtW0tAZXZzk32/cwv8yH4xj++q6W0C191Az4HKI4Plq/ImTxPzzm2JQzFm7vhn6u2ouQiMnS/5qHNesHhpzR1Z/pf9BpZcZAtnxnDjOGh5dE+NpFSBwZMzdWVT97aePUXpLvCCR8ELXoeHx8ObcDeCW6Lbeg1XOM/s4VpAdYniLFlf+R54l5uwlu4j77IvKQ/g6uvGmVKfTW8sGr+oQCev4uIKr0Dcga2oBu5QsFV4g3PdRgH1zn1H3vF6f8XBx1TjR94F/yvexQTDU4d3gZzDMEca5Vg+L2njPWG9VGCNZTyVJTN6yqKF/eG10QsyT6n6FRZ4mCi3I1letrmAumuPKV99a8p3u2wllGJOcDSZGASsqsx5hZBBaBFRmauwvSvwuFd5QLrjR5cbajLJM7mTBCcMNq+A+iKl+OG+SigJXiPJATUN9MTmdGBhVnKEVYw6uU1sV8KpcrEhY+m8DUEs+3R+Kf17vZKpyHS1cH5/mT2rv0rHjINyvjVVQGUWTgvucGbFYwAZwGn/NmSWPZV+vtYSUFVtwEMHxNi/U+wblyT57F7NWBUIm+EZSBg0G4xZX2QShWDNlyEXBFRm+YsfPiCJAyiCzXqtT4AgrDVLDogNLkChyUgmM3uhhOHaE0b2QfafE4IFuqsMgft2inV0qxP/wXOoeoPbU6BbbwkNx+SN586fMQsTA1DsPW1MKrB3rynb99py5yGEyApYOMHgER/4o2DaCdpHahmVMgv/9oY89igT6QGs6NoZSi4XL4AjbnMF1JcA+dt3BEmXoMACNrg6JzKTBP0Y8Jux7Iz1oPcFmVibSggIqtRGOiqu1IWVUgvb4eLrCKjXwGBC8Auw5li+FlBd4mdh+TYCaiAvz/m2IFwb+C7Ng/i2vCV0EDPGbyvYD4Ihvsu8GbNb3MvCT0Cl9Tk8G7g2fZZSFgbLusMKXZSmlq+Ayhj8LmDsyxFTOwveJLPmItP60PQ5eoWeDyL7Dxiye68lx07je38E/hwMI3GDFgxiiJr98Yf8hsIT8GHEkJ7AkC4pDCHf4eIDj3d5Dz8B9T4EVDYeh1BvxXtUAkuIFLwG5TGbynJgiBNCQKV5hg+xWRYCVlMrfgfHwaIKRrInyt7913+Mlc8/o4Da/iyotIYaB/ZACXvEmRcZTuDOiwDv4IRF+P4WSXjEKPX+MzMv48ztJxVi3L4JfgTf7uGfPZ4brSegJi6el8RBJDI8vAcKLvAjLzApua6vGNPA4CkSmYN5feJk9B2hEeh74tKFnBBQaQ2NH9zn8FP3bwL7wJN44mL9BFQaCVxe0DxxDOdul+T1Y3jSVNMCqkuJOstzKJm5F0a4nfsd3oUhBLRmIv2EdEaYANk5ihtculjj4gov1hMJqcm7EHcKIOeQf+HxdQRUhBMoY9xd7MP13Wuo+FTwLxRUybvEavEuzKdhg1dRWX5TMo+JkCQrgZ8JpTOwhll++3TLl8EIURo5oot8sGiQzJkzQMrL4KrWwq1NBFQSl4VpY3Cb27MPbjY/mLLlqJMYiVZSb5x1Mdx6O4H3LsTAuJYSWk379gpI754Y1VTjxOBOEpwI2LwCKrMC0xrLZEovIaw+R3ImuvzSlZjMrAUu1YDVwwkiZi4rTh8YOGX2BmOpkhfQohpHwpNHGMCHMnNsofzyixEq8UknpPnLR+cjfMtyrFFQIsgw61xsx1ZJbEINTq8VkjNkGBoAuqQshXvbso9qxEJU79kJDf9XYh/HhOC2XiMkuuxTKfhwpQSQUCSAL6cl4g+sRw+VdcRY/ydHuFP3Tw0aYzgGwL1k+SdSsHR52kpDLWH1z5vxnN9K8vZ5SBfgCvAhYhCd3reSBTWJF7Bqw/eS+P4vNTPy8oWDcCqlPUBD0Bs0DPfr71I2vaSQWv3TJjG2YLwe3/Q8R+qQsoFIrORYgoOtmFwh3cFWWmFR67//C7+fgbxs7mefGs4CfNNlsI529rjiuSECtKwSK/r2poDqnO7+dXHCxQ0KqLeg6bwBkOckQrwgFikBFv8mc0nGku6+brMAPAa+L4sWU/V+ATs429DiDa0kLaiOi+8trEMzBhwpK4nKH38zWtasHilDBndTuJFPlWqrN/QY5mHiQuLqFUlsXi/mrm+d94x94XMwSQkEn+DIaRJdsVYKP1iGd9fBuJy3oKq+Iw6s5xBgxGeSD4wIdYOkgcakUFVwW0t8/1f/Wsp5xXAL/r2qURjuP1Cdk80/rJ/o0j62FVi1+TvEp3kUgKPmwJLxaylE3WO/xmzscdSotY4Akw3MT+p9S30fOCE0H8+7Fq7BYJJ1y1CAfMe36wz501eWnLiR+Y4Z/1UGhpGhQgpe8EctU6cO7BdQ4UTMd+Ft6gr4ozwrMMX4CagPKjK8RzWG6gViUl/A5Y9MpPoBY9xG64aXD8ERKSUXvs8qWK+AKexZz85F8u+/GSGrPx4ugwZ1gZI+rHDEvU6uL6t+XAcPAHgNeBOxsQY4+RAkOox8SD5klW8sOBW41UhOpDwmXkBATLXWsqDGIODF1/1TrEM/urfGkGAQmWCIteLnIOEa3F3zYTl1m6pA8NOPYvz8tfO9UqB1BXIc1FoWVAOlw6pZJ3rLX/HSQlvD5sX5MbOA82scnHf21vircIfPfnhjZnv5IDwvxmvpSpUQz+EFMY66Qb4x5R/fmPKvHRlsJl/RFd6fZaXOVErye7GGPIeSVfA5MJSAvAvDDNzmYg2XbntJARXeGjfuOBjEKdpraVW8C7CnEkKq26hkd3gXhhawgXeBsGpUX8WUcllZTp2esXe4Gd7XXl3z5Y+/HQ3cGSkDBgB3wLcQe1qqtYmAysx5l2AVuXCRyZFQ8/RMUq7AHUZZQpCQwPu8dMVjZiuavsmA0sWGg1Va6kwmLmHeRkB9DWH1OeLNaPpW3yZeCAYRK0sILCJkNKlRcLLnUbtARhMZLmHqplbBRjka+mcP6BGVWdN6yuSJPWX0mDIZObxMesPdN9eaRa0j3GPMKxdgyTuNRCLHIaVD6+e2TtDODx2vgt3DIyHwjRztWCJT+30F1KKuEhyG5B1wTQ0NHyXR4cMl5Eni4V66uUtfARWDFoCAHBrOPsMlD/2NQtNK6wgbmU9qLE0kEmEyEevSKbilXMaO1MfZ1gIqa5oOS9EbmXjZdz9XPAraiUuoV6ue4yxS2YOB9SRFkY4ooHrAXI0m/hAvusD6UQIDEwVSgnMxFFpIxgrMcATXzsCLQmCI23guPnX1SnBJ/KCbzNsKqDyXWkjH8uFgh7Kmmm9wffyAEwozgBuMJ6MVtSBiy4LpPeEu01PGje0hI0eWy/Dh5WBWvdOU29MWXEIyN+hix3qnqONnnT8Jhc4ZEIPKHDQIeIF+wIIRzncWBTZERowAaAIw0XJeQEXStDRG8DsDTrlWyLYWUKl8UnS/fBF0P4Vv+wReQJjzUi3QiIBK74rEReD5hTNiXjoL75bTsITAupZqWkB1KVFzWZ+A6sablkIZTvxQDJ7nc/QTUDmdEDfUMoUh7hTDu7ouvl4BleECL8B/vEJSE5cxVRbUFBaR76BFQ2GIWse/kQncSMCdNHYzpTBPIKFKUGHI5Mk9UK+wOzCkTEaA/2gvzVdALe2JeXEC8GachPG9RjAvugol73PlpIBKl/zB42HxHSehUahwMBKW37790922Hj5weJILwFl8r/ZVzOUeN9k2FVAhWAf6j/Hg/Gipr1SPr4CKMj/BYajPPnqChIfj3GHDER7RN/3sHXnFT0Cloa0z+JPOUKqraiP4N/HGbXT1LYUYQZ5FyTzkXbDNbY0JqBBllOLLy04Qd5golp6jCnc4hQO8yLfU4F0QB0+Fuhm7Bb4Fbty0oDIGPgVsnRAHMX96d5U0ady47jJqRLkMG1budi3ryzYRUBlPtnmLId/8aMstJBJ4DcmedcM6Qb6gJYTuvG6jFoA/DhotIX3wYzwZM1mRGXXb2wiobzBBvExZUFO8lmJWaQ1xsnNigqBFhBouNcoBWEzhElZ93XGzoRYTvyg60LVTvnRBqvfPPxkiq1YMlYkTerldypmlce2KUEtvbP0OVsjnIDbeVJcJRS+ZXCOydI3kL/hAxVsFQOBAJDMIvgIqtZ0RcPz5sDQs+FiiS1dIHrLiZrv5C6hBCc1CevYl0FSOHiuBwiKV1CltesdHZ1ch0VVVpSRYO/XnH8U6uAFjhvFka2MBNTAKMWVLVyMRy2zVd/bfN4YUAoSNZ0jiWeLHj+I5Noh9cqvzDPzbAQXUNFOHx+doEjdZZaEE2e/oacH4DYI+LR0uXnAb8YITg9tcvKCAmcJeeQWl1dsKqLi9eq2o1LIwXqyTqpInQZllG0+w7RUOIJYwKzjGEvEd8FFHMqc8KNoA9nN6y5qPR8iHS6Bwodm3FRst/NXbf3beq0tw2WIZAaXZ51Oh4fsOL/gE7+pKiQwcAk8JZMPFu+q2XBdQg1NQAmHpx6rsRBojUpxAWwuoBgRThcnbgMksn1EbkxsRUJMxxCUCF0x4mCSI7du+rSHgagHVfUtrLusTUP0wxMs0+gmofhiS+nLUTX0FVCjFVY13MoqprvEcTse8HlsgwH3Mk+HwIRZdfOGxRR5EKcetN9gfl1Jo7bvAV3Dh3D6y+qOhwJChDrviXCan//oJqIEhqK3+4RrJm7tQzedqXvQmE0g9UU4KqJiLI0vWSv4SeHJ1hvKePFReRqpIJuCpgu+V83ls20+wpH4vybvn02PUpgIqvEXCC4HzS4DzAwY6PCADH32ar4BKJjrFC4bnIsncEvCC2nNDUa8+AbUY7DUTOjKnDvkVb9wpPb36wju0N2QdV87x8i6NCahuQiTySjyPXho0xr2AAv4lZC3lNYptHDayxORdGANPLzAL879pPADW4AcBNWlWAnPAF7DhhBBAsRQua11KQrJ4fh/wLiNlyQfDnP0t8LdNBNQbKC3zNeJO//drS15Bsmcj74jQLAh8iBPLyEZKc8AESKVwd2YMSI/uNQVYdTL+uJMF6AxyO60+F98qeNqx2HY1sltR20AmVf24jp/JeqgmwATahABHNxnEoKE8ATULmCQcNxtaGXBwEtwxBu4/fzNKfvXlGJk5vV/q7m2zsFEL0GYMI+I13GbeuCbGnq1IRLAD/cXDslHAZG29Lj1RwgBJd+YilnHaTGdfrb++AqrnmNAcTCpwJ8tHIo9sNcaeciIyb94QY+8OxIptBgNN5h4N9Fa1QFd/LnkQUBtqdK2J06Vl698zzw5tZ3gGajXOWyxhAHKoazcJduna0GXeaV99Lr7ByUuRiOpLKZi3sMnXjR095LgVeWvAvscCagLf5lMkQnqCmI1jJyzZssOS7Sc8VgdSDp8mG60fhUhuQsUVcYK/sq5wg+vO2DEnzsM5MvPX+c7pOZHZxiy+byugZs5mfFscTCWEBoC6hWQmNjL4qiycqYNsbE/SE8OChoy4ggdYMqOP/OF34+TTT6DB9s5C3gtned1+jWQr/LYeP5IEv619W5Cf/k7du9DNdSWSC635TPzcXK2nTyS+fw++z+1i3YKHwktYACnkuq2FkyQxe69KWHLvjoMRB/AcjPFOtdC8Tx1cmjTF3ZRe8tsks0VssS4gPvw5+l4NzHTxsYVdfFkWJ/79P8Xc8RXuiXmEja7/TLDSFZg8cRYweSEwdZqzr56/9vPnjqvyuj9hDO+mjwqMmSfReUskjLI54W7AN2BcS4RgpG+Y4yv0jniKhCUP4Km1czdqnu6w5RqU4+orxB8XQxjnRZmIkTpcp+WC/EdP8B2MBaMLsNv8GEV3H5d+AipjYJkDoxICquI9MPSKdyEPgnXyQWQsGWQUh9LCAB9iqeRImA893lsqFpUcJn7L5vSVP/yWGX1H55yASld2VaYEWKFiJFIESuzbiW/vJ2TdvpragkfBO5v/CRMFfZje5reSkwIq4zDX/BaJFz9pNFGQEs6/Q2jBdXiypRpzekTmgSdBzDmtxuRJspZwCMwtaWZjDAx4liX2bEOdaCi6XSMFLKCRj4Dz4Kcas3wqV+V9u8CP7UQ+kIcO3rquwniW0IxVoMMvWjULukvDXFmyvvIT8C5PwbscPWbJ5p2W7Ea8u4s1dN9lObwiKNXpIUpDG41yzLVDrCHv0qPc4V38nskPd155YlC9NZpdjzI3tOAlQguUkl9hDK5OCMHCULxLJeQc8C7gW8i70PvLhlJdwNMArTBNcZ7CDx4ezKWxcm4/+f3vxsvaNWP8upmVbTkhoJJA5NdYA1ZpFTBobutV5gimZZAfiuC3TSbUazl1j1MgD7o1RUBlhk4mSGLSE7fGIc93rCnI4Gk8g0sN3XlhaeTw4f8kmEq62igNpsqqh1kmQO6WOwMQUEfLr345FgJqf7dLbbKk21jixDEwXafT97efA5zuXnGSgbjMUATWkHFzJDx5poSHwiUD7ijMCOvX2kJAjZ9DJtsTR8VCJlvrDiaxxzcxQBg0tuYKqIwVKYdg2n8Y6o9NksikqapWo3Px7P3VAuq705JhAMdPmHL4qC1nEQpw6QZKRgH0U5+jYuQUsEM4jUIlSE0jAb5vT5E+PRBvCgtqETSUxAt8oXUav3c3OZK7s/kCKlyy48+AH9A8wpXXBk7UKBFRQ0B1mEsloIK5/PQTuNK2koBq3rgu8ZPHxDxxWOzb1+D+fq1GogyXHtKIgJqshjB+947KUGmePYlslvsdF2H3Ai0soCpmCxhhnka2a2BE8tH1TPws+tCQgErmjH037tyGy90FJII7IMmLBzJMW1sIqLhncOwciUyZKaEhwxxM7tXbpabvsj4BVWVB7TsULndjkN18GqzIk1Hz2SNd+V7t/d149bqlmMXDxyCY3kzKZcRr0ZrAWqe0YBBDaMWgYEo9AfkRhhL1AqNIxXgR4lOLgSVe7y4/RtFLQT8BlfyJk2wNn5xJPoShRYAJCqg4mVilfmAAY8SSOPgQeGEwft3N5qvKP7hKLijPl82FgPoblK2CkovMZy41u/KNJE6dUIkWk08fp7tmEXceAHdUSStnc0cWUKWwC2qiDpXQQPBik2coC2S2KgwkjQTwHmNw4ghCns4AK8ELUpnlKuPeQkBVoQnATQshBubxQ6gpvbemUlALqMKqA8dSvMt51Fe+ckvkLrZRMCXG0FuDGcKJNZzyYZRURrleUKgz+StDk4pTvEv6g/Gs+OGON4svlWDkb8jquwJqOrQAAqqSMXE9B2eAdehDIvEKP8g9kH2Yd8e2AY74JVXpK3p/wQNA/RtCEzw8KCytRILY90pAxWMp4rgW1P+LmkCvYUEFfdSEQMtpUdQZOB7KNmygyIjBAekFprO+xutyMAj+SkBVN4JWABOAW2bGmyQJJcdgznYmCGoyWeeQ2kzVMLLVsXsSx8+EFaROw0etJgxoF8QtaouD/hNM5q9+Oa51BFRXk1GnczAC7NkFSxsSGlFD5ttAR5KyuAz1xZAEBBq/xoCwLQTURrMNL/01ap42xYJ6zsme51pQ1Ti7gw1SoGSLSkaCREVZbRijJDQh1JaqRCx3z6Uvry2oaVLUu3L/oS3ffmfI/35lqyybtQ+kmwrLQpQgZp3rbMzmPXKwyPAhwRqWDmdv5i9Hn8ooFy/cPRRQWRbiJuZuCq8Ed4K3K8gyE94b4AVLzmTeIPds4AmYyRhwIxG7n9noWVMWVDullVSeFyFYUHvL75F04JO1iFnCDBbIFofZAEbEjsAaD+uddfAHT+9SuODZkhZQV9OCOsC7p866qlHI5BkH1mf2QUCN0qrglpnJ1rOl7lC9a7vEv/t7zVIrBLfU+xCe9xm0+ajr7GNBzXQS88Q1lNhZzxI7f84IuFEmSXJK09DLwrlm6sLek992XY0LBBOUzFKeHSw7kdomJT1RT/C3sGR8pjJ/NuXS9gtaUJGIjSW1aAVXL6bn7eQ11zjPwWyiHbXtR731v39tyj+3O9UCyHMoSwYwpBCWDP67dqNwSt5jKH7ekXep64ch3msoARVl7rwxqJQJyHsQU6pSvAdL39VuzH8Rq7oPPgTl1aAYdxvd7dICamrjMlgyfgcB9dNPEO7C1z/L35l773qX7vvrg4rWs2dOQqP1eD9feHGRHa15xcAYllpB3eRGSq0oC6r7zjNJUuqdDy/At87vfcIk58LZpkPqOdNJkryJgt7KgrreSRDlZsJN0w/dhvI8vJwY8LlEkNk/Gy1ZXY1Ek9/hnhiDhxBOa7e3EFDdU+muTNypfc3QdLj4ei2o2R4DtwM5vLx915Z/fWvI/0Uitme0Y6GvVHixKkshkr5SQK3dmB9j1JCADBuEUCV4gPm1hnCH4UmsgXoHJfJofCNvQyGVGMfEsE4MqhNO6e7j9cg78ZdAOJLDu+AiPs0Pd1bMhwX1t+NlDSyofMaWwJ1Ws6CSWKxjeOuWkxxp32HUIIPLHmNPXS1mHrQKNHm7DCfpNLifyJABjntNbbqRwEigqQRRy2RyAQwKBsb93jkJ3Icbz/1HCA6mMRT7eQ4nFv4MzBTVGM1qSLJMdKIaZhAT9X/4szAZ2KhDxkDhFAqqi7OYrSoZgYy+TMHM/a0loNKtzkT9LevObae/tf4yoY55cj+qhF+utSf1T9YX6wft/LDRjmZ9/EQJlkBl00BrzwIq65UloD00qT28eRkZOwHQdOVLtZYQUJmUinXPzFs3lJXKOrWvRnyYFlBd6te/rCGgwn2FjSBIoCc+UPtIt7x8AL7LXDJH1rD+wIyBSJgEi0ftRnxQeEEAxz/4yRMH3EbXO+LFPeAFlVvEEYUXPA4rcfjOKLygipJaRLWXZ+Ne8KKwYNWgUstEaRlH40jcSOEKjyZesNQMtZNMvAYmdPTAElk0vzcUW71l8OCuqqZhWVkmzpNXf9tGq5pBjLh9C/fxPGDqQhZi0s0TsHbeOZu5NGKIAr2Gqrqb6fhzZOeOwPoWBcNHl7OGmq+AinJIofGzgTOoTYyyVREIuaHuPRq6zFvt8xVQWSamNywRA4Bxqu8o9dCIcO0roCLLdmAUQh8mwZo5fKRE+g1wMm03g+FiHJp5Bxbn2zfFRLIUk1bbG3DzcyesdxFQGWd/+qTjbXL5HCziwH3FtPP9RNMCqiJDbQGV6EAcYfZe1k4mrtRuPfDKk/cYhJ+7mzhAbIDnqi+GeK9R8Qx4Apfixyk9N4dZ8R6ppYslCTIqtfEE2GImyIeg7in5EPIZrImahGcGs4EDQxiCBNZSxg7qDAzpKzNn9BVm9GVd1G7dmoch3udocB3cLuc64k0SypLaTdXdhKeGdQZzoBuiw4M6o3Y3PZi6ZfAgNAzf2UTEoSLpYUPNruQ7T4sgPKz4zt/BO49yKYFBcGefjLJMo5Bkqf9A9b26iRMbul5T9jF2lDyXAUw1z5wQ6yS+XU8MqbyFgBo/w+8VXm5MjnbrChIfXsd4puaJdi6gBvrCEwjhCeFx8Ewj3qM6gTdvQVNo3d6P8QqoT/GpEjvIo1BAVW69PgIqy1YNGwDeZUBQin0+XYU7+NzJv/jxLkz8eg+8y114Xasp3wUs3Je4E0OtvEpo1ish76gEsMAXbEbfiH3kXd54eBfWXvbjXWrizvjBnWXhgn7gXRzc6U/c6VqIq2avtZqASql9zz5Dtm635PApaBWfijyB1M/5nv7Y1Cwo5hMj6aGtDOgtMqAvimN38251CEACVyMbXhX4PfKMpLg71/MI4j59wSuAm28goNI324Qgy/N4HLNXxZD5MGHSpI2RT6VSJvCrzL3KpE3X3tfOPvxV9xAeC59smr3p+gs/7f/89ZhWsaAayOoaR9yUgbqkfi35CrPiK8R7MOmGT2N2yOgCJA8ZD5evrgjmR+xlY7FJ7VlApRsitbgWYloT+3eLuWdLjbISLSGgqjppe3eJsW8rJu3HdeI0tIDq82LW2lRbQCXAEyuozGJFFrrIhLFOFxkXGZhwYFAfBy86+QioxKAquLgwHoNATxxw/jg3r4ZF4wk+HzKUtJYqvEi5VhAvEoi1iSeqgRf4tjgLuMKfElqYoh1CJ4CduEBMsJHJFymlnYurezGOA50AfjCGjLGonfKC0q9XofTpWSgrlg2WxYuGICNn98w577Bm3LgGjMD7txsxmS7j47lO8jUUNK8q8ECY1dyGDJrhuSskOncxEnelJhn4TYeBDwojUhmy3cNrL30FVJZ5KUYsVefuiPlegGujNue4CbVPfed/+wqosNpG5i6X6LxFYH4ZW46fp36o3818BVTG98GyIKXo+9ipKl69YPY8x6Tud5EmbGPsb4wxu7u3inXtHMYA2BDDO+K+hO8goLKEGOP1+UswLGL3z45F2Z0ItYCqRsYroLqAQQGVYUWd6hFQyxAmMBC8R3+UelCfOK5kAg8wpSieg3hSG0O8r8EzhCkQT57D2crhPcA1YFw4NDyPWBIzqsEcEiNcPEGn+O6hkw6WsA4h3HsppOKnyt0BQ6DaT/MeJfkh6dcDGNKrSFYuHyKLgCEjkBW8NRqVLrF9eKf3pOLQa98Usd5qDqwCITxYFBi3UKLzl8IFfWT6jFCnEnyvXVCqpHN6m99KjXcesdzG7p/wzu+C/zVMT6WoJT5olERw7fw58xpVvvtd328bXVtj+3Y739fda3Xx8y0EVJVfA9+rcZ25QbbBk2Vzhl9r5wKqRCFdlSAjfV8oJNUYzK9REcKPtu/bttoCKp+PPAoFVJbN9FYpcZ+d3l+D+oJ3AdYwlLF2awx3XiPp60NM6ffA+is+CUIw8c3FnWq4eStZB3gD1TxwBD82YA2F1Bq8S6oCARVi6UbM4U/JRuRtKhGOCdzpWaRwZ9UK4s5gGTY0u7jTagIqGcLv1idU/bHDlxWsq2cnw8mSEBw4t5HpZEwZ/bV7lsEvG+69ncEr1GmgMS2j1B7EwVzWbnSleQ7vmKf4MSmSAeGUA8YjOUnYmGESYBSZiMCZDJht08QAOxMEM2865WVwAY8lxL0PtQycNPj71UeDkdFqqEyb1FMKA4YUYgIJqagS9+jsLBNwDXOyuW5r+gUZVIOYUylAndMFzH6LLGtjxjX5/NjRw5LYthmB8T9DIwBhncKv+4LjKsGJi3FNZPKFKx2ZwQB/9CtoRsuWi6+3C1VbfoRLyt8leelgenNgwHgng/H8xam+o6YrJZ1mNN+ERnynohgD1JoNz1wq0Q+WS/7U6U2+C5OqcAyMXRsyY1DSQyIfrJU8XIvue0HWo2WUfRs21tSkhjuJX3Pa4wpbftpsync/WHK9Ml+qg0WSCBcq4bSgVhiAex8OW/9e+KFumJ9MQqsHFVV05SUe1W6MDXPxIoZjqcyihwcb8cJEhrsEFFomysUkVZZvHMQdKQGV0xBXVakIFa/+EsdB61irBXBusflESq0KyUNGX7d9/slIWYWseOPGQyvXjMYMsYmtyFxNFzT2r77GzoYwMyITd3DIOPUN5y9yMnnXd0p9230FVM/BwSnLVMKigjnzPVubt+onoDIjeXTtb6QIbsXprN6N3MaEVSS2g5k11yFZElTQcby7yjrlnPgu1/S7Zb3xou7B7yCguqdy6Zt4CUmXwouBEYuXqxwDCiNcBYT35JZeh3Di4gJj87PdaCljPe76lBFeAZWvPbkNPwsq97m8R9cSh/dgsjW3EUPIbxBDKKA21F5hqiTv8RLH0+pqQLhV+i58kvwq48QS8B8WvCrIdxBTVMeUvYU8iAMtNhVeBvNf0PPHASQyi8yHwUQmysMrZQL+7z+MV4ryKZP6qPP5hzXQGQtKt8xsN1VbfdsWZJFeB2vAzSZf3qlZSnfcyU0+x+/AOLwHWJPU3Pl1ButKe6fc2hG+lKp77Hfu22wz791VYQDGhj9j/iU/iObFT5Tciy5dJQULl6ia8M4BDf9lDHz1D9+I8cOfMrG4WRRQ3XFnkqoYeYdt3+OFvJ3pFO5FoT7QYyAyEH+sklM1Fu7lnlyfi6+7n8q9piZeSp+TxRUaJhTewL056w1Bow6fC9oRLGq12gIqsYZfs58FlaczlIhlNBmDynh3PxauMdx5g8d8DOH04QvUV8a9qMBneJKBGHeGECTMBPLqEG/AmxFr8FO8Ad9hdYbLu6ACRpp3gdBUq2VwB98A50jgDv/7nz+Ol1/+YqxMmpjBnVqnvtM/c1JApbm7C/I5sBYQXfXok+03aMTqhgRUZUF9Dg8K/Jixl4Rko4mcjCdrnzKtsgVNAbWY/Kng4BQpHQE0NQn4CaiYJGghoXA7aVixTJpQIuP6h2VE6Cl+T6Q44LGepK7Z3IV9/65YV06/1WTAzJDBEVMkPIY1S0dKFAk4Qj3ByTexqWQiV1FH9TJqi55DxssrxwGotCqnWtlA1C9D/a8RqEmKrLp00QkWNy8hR2sJqNIJgt1g9h3JREaPV31vrhuir4AKwTQwzBmDMOoxRlRiqn4uBRtdqjpq167ApQl1Uc+dFJtlQYyYBAaOxZiS7hAwUDsuPGBQo9dqyQNMZFRNXDiPxDPnmnWbN8i6eeWcJZcuIMlAfIBcCI2Wy4XDMskFnE+5xj2aK6BW43NVFlRir+IknZsYwAsVNwZAUViB2cJSLnbOt5/pBI93zsmAfN0JMgrMmGVflYnRS9ItDHBKteHDesnwcb2lZ9+GLQju8fUt7ccoSXHljJMhs0EBFdpTZI8MjUE9Y9YTRsxTZAhKVXhKTNV3j9rb27OAyjjOBL8tJJgzWSf6Ar4tDyPXrgXUcL4EBiBD9DAHIyKsLwn8b+3GODh6lhhwbU4iaV+2W7B3X4mw/iRqZzoKo5p3SAuoO2wnRADMGy0Z0Yhj0XDhhAxjZ0xdqv4gKgp0gkHIm1uqMUbRe1cquyogU7K8gxufZeN7ZFIkB0+AI4r3IP8RU5jiVfw6WELPjEYEVCjDWWmAzOJ//565MMaKV0ClC27iwjm83xe83cvOOjR9Th3esxkhqwlXfj8EVOAnFNwufqo5Hd+Wn9DiR5KWFlAZCqbG/TxqJcMVOnkDc4LXzRp1osOjWb8U9VuHEvuHNTmRWq4LqMb1q8AavPM3r/mRvlnbqAijG3l0FPhcn/A4r4D6HNM/jXA0tuVBEM0D3tAA57YSyDZMxsbs4PT6oqzjU1lJGsMdepGSd6kg7wJ8oZ8op35iDd2DTfIuXllHeYcCN9LN5V2cuss0zDEpUu1WQ0ClJylwhwa9//njOAioYyCgNk+5Xvt+OSmgdsYg9ekp0hu1gNxEJTQC1mkgfmMC6iPMhQ/xY7Y8TkYMUIY7tvq3qheE0Usi/sMAs28YiCGDhgFDCsLbzsTAFO/KxRcn1W6K+VOvgkQCMSkMV8uw6DP5tPCyLOt8Scqj2ddYIrUwZjeYejzuMrW7VeffvUZIdMXnUoBEQMq6SW1zGNqzJjZqvFk3kKUpqrdsEGPLv5yEHO75HBxo4wLlAyWSuk+oHOqgZrRWE1Bp2VSaxCKJfIj06Ms+qrdIdVMfx1dA7dpPosu/kPwPVzklHzgGfkhUz02Yrp9jQMtk9U8bJbEJY8CEB6R9OA9WWbg1Lkct2xmz6rlC62yOI2NjfNN6MXdDW9uMRpCNQ6kUhxXzfPUs2SGrZXvxIsV7ulBa+/LNFVAJ8g+fQK57TmUWJxUHfxg+EEM/CPRJ/gFeJIAVxAuL8WDAC9ZMVgqwlPdFQwJqCSywv4kekZVdDkrffMwqqZYHr4MogvAjBL3mtDRGgIjKVlPPxVBqKjz/U7w3q9Vkq6xQUVhUlVa1nnPq2dyeBVQMovNt0V0RrtHxTd9K8sL+9JO2awGVY0lXa8TUhiYvUhhRMH9R+tlaa4UlgRzcAm2ZNTrLLTgCsdIrPpHCpct931+vgAqvenhsgVmEJ4Yij6cvxJC+Pch/OBnAyUx6eY/GGEXPpeQpdE/kPZ7D/Y58B/kPwgcrB5AHIZaQ92D9QcN4AysrrBvKck88oVBLTpYCKjy1GrKgqpAjYkZQ/vsPDDUaAwE1wyjGWEN70zqUk4L3TbYbnkdMaPZo/fV4VTV2m/dCQMV3FV74uYOfw0eg7inm9LfAz5YWUGPHjkhiM8Z974++YxSc+AG+GdRunTbL6TtTVHtf9gYGMdcF1Gq4Yyc2fi/WiR0NPMU77irpjjEHP71slYR6Zb4z92peAfUFeAqGEdBDlFijfu6BWLJKCeUcVilRWINPXn32nmO42hjuULlOhdgzOFTQ+4veoio7OL9PNC4c3sVGMkfwLpBzqBRL8y7sGHw+eWSGd+H+mq2mgEqZKIRnCsn//PtYCKijIaD2qnlCM//VNgLqFccMTa8UajFZw9Bb+7RLqeOq1xeFahv8XpogoDJRwWP8aEEN44a8Hl33EjiXTDDHha4+CTOGTFecJOAKowRPTBLK3xrufIwX48RBs7iPJZVjYEOQZXa9fvYj+beSM7Km+0Xpmecj1DZzwBo9Pb9EAt36iHiTDwwYKtFZ8yRv6owma/f87mO/fiVV679Fxsi/+FtwkRk4svr3qAX2aaOZgX2v/+a1WI9RbxYWIOPwfjEObneEMPdgxjd07SPBXv0lMmuh5EEYC/cb4O5tdOnn4ps+CajQ1Nqq6XM8KxQerYpHYj7CD0kUjAM7YWk+nDkCVubo2t+pOmlBxNq8a2uwdA0zIM5d8K6XfuvzrAokg8IzJ1/ATJBq5mVYSfbvkOTVI+6mZi9PV06VTeaX8mPBcgdoFfPmCI+U5fD5qpYNAbUCDOVjPA4tHSEAA6+tQgOAFWzEC+JWDCAfSyCxAOLXCfLOj0fzRzxwcINJTRx3GigYFH6Y0gU48ceCI7K2/LAMKGgBJZbqQQN/+B0BI4K9oFCavUDyUHuPZaaa04zLlyTOb/bQbkk+vovZ8r7DFKUumi0XXzJGFuq3msSIY4fFPLAdyUoy1vrmCpPZchv2o2WbuPh6OhIYPRdu1r+SwiXLPFuzv8qEMjZwnGMEja+6AZPlmAdQP/EIMJ3xiFluTJCTB9fuwo/W4BOkYFezeQXUKHbT3c61ZjCW3W3k0fuD5+zHMAFEZNRujTGK3uOfAUcYz/4c7sBkPkMADspwCXhnkHl0sYT5L6rBeyQgpDqJj7CTPAgPAJ44nlxw8YXrHcOOKAyCg8F2JmsE/tCTSz0zLKhpARU8QKrFDu1HaMtXYh2CoNLajf1CKEqge18QHbiTatGZCyWK+TsyaIi76Z2Wvi6+BZ0lNO0Dicyc79Q5R2K2d3X1Zeyp+eihmLDI8f21juP9RRyfas10x/UVUMGgBscvBH+zQMIjkMiSfaeyH26lb9tUtmGOuzfbsOcizalZSn4nduQgeLQ9KF1zWpIVwPw3Fc57y3u0gYsvXXrtFA9mHDvozA33LnieOEurjTxbbQGVWMOwJAcDqEbKtL4Y2r6IOy3vltnmt9YY7lC5/gwC6hNgDsOXGOtOLw0qxJROHVDi4k018h7EgTUmZB7sTf1c3gUCKqynFjOHe6qUUDClSy9MeY48BP5GldlENYKMBZUCal2B3e95mrqtTQTUIxBQOUkw2Ylbw9A7SWRLQOUAUYv5FINWmQB96dKbGjAOGhvvS0tJPF6NEhLOJMG5AV+aAn5qLzlBqOx5jCfzDBqPcluuCKjMohaeBnAbO8HtmgTghhCGpidMt146pr9ja2kBlYAdJ9N5aK/Y926A0b0FM5rHlRgJUMLTAN5TUbsVz0Pt1dsIey0poNoQ0uLHDyvB2rp2ATUZ0fc3MMe57T0UUOMnj4tx9GAN1zH72WNYSG7ig4Okl6V28s1U+SH2pawrWKZAl98nhUSWmSHwc52tuQIqtZBkKp8AmxkmR5AnThAzyFgS4Jk9OAzBtbL6DeLaAfJgEB2FFnuAAxVuwDJCQIdlQ2EHEyalBFYbGcC7WM/lP4pOQEA9CQEVN23t1gP1MYERkSkzVFwi3f3f5jvy6y4TfxgP7ouFb9g8sl/MozsQfAcBJdWyJaBaYBaJEQYx4vZVByPcmDDcSwuo/xRzx1d4Dfku1mytJaAyHEGN0eF90OQ4zDyT6dgPbmIyvoMPCh9XltvbCKhUSHPeZ/3TfPyDQmkKQtR6tgTUF7BmEEtevgHbAPxQ2TcxLApPsFS8B+5PRfhr4Ek1FF5OskaOnfvDGmNQU/GmSlkODFE1CoEx9NzAP1LjnZT//jen3J3XxbdNBVS4mAcnzJfIdCQsQp4Et4V79cH8DdxpJCGSe3x9S18BlR5RXfsqBVx44jTFL+SNHV/fJRrcTuuzceSAmGePo27rTadUjuu91hICKgV6JKwL9ETW8JETJALrZt6Uae+UF6MlBVR6nZgP74sJzDdZR5qKyfP43l3aNCLENUj0d9zJviQ4NwB30nODp87uO1627mmNPJtXQKWLr8Ia8A3EGyrF+G+3ZUtAZQUCZYyD9xdbkCCH5ubR4L8U74I+vEE8ehUUYqaKfXeOd/GGfEsSHqMspQm3InUN/lF13Yk74HdspWgnhvNcWoYRg/rvbgzqeyCgHoWA6qZ3p1aBjQQko0lFEeNP6WJDN9/mWFApoL7ABPEUtGaSpLRrTWpMyHDSL5yuN8yo96rqjbKKqA7hT9qSykGDSVwJocyk59Nsm/XJXkv/5GP5Q+klWdPjKiyo1FDUbv9/e+/BJdWVpYnuyIx0eO9NGpxwEiAhQIBwEkjIl6qqu0pdNdVrZmr19Kz3a956s9b01HR3OXmBhBzCCmEl4RHeg0BYYTMz/Pu+fe6JuJF5MyLSG86BGxF57bn73PPd7TcurpMY35aJYEdIAb1Z/m55K56LZCSr35DyBYtafpImjmxvATVy9AhqlqIe4Ya/gzZ88Wa31mbcrdv0lUQ+/UCSR74JGIPWWVDJONeu+0hin/w5WzC1t9DeAupMuO+9BLcTjjsCqTQOphXKCNtt/cZzysyJVM0ZhshsrdvwpUQ/fV9SZ77P2r3RH/p8Y6LnnMzZR1EwjOODy4EH8yGgviHrypbrlOGTgWmrAipLRBB4icfwsEJWOc89L6OsT5+YWsh8SZKIF3STYa1T4gUNQB5cqAa0zGNoiRX3AfQxWjC8ZvDCMI10e8ENo79wz0PZGV0A+sSIAYlb8l/6HJXVQ47JOJ8FNYzxCoNGiokNMYL4QDqSgVFrib1q87+LZi6WMj4rS1c0/+A8R1CzXvsZ6nKu+WtWtmwmUitb/aaUz19IjaBJotaC55OxRXUfN6hZ6sPP0MSn9N56rXoJ5PdeLnn67N8caEFFnG7pS7+SilUvwxUO5WeYAK4ZFo0Us+ng4UvcQp1cuL9HP3vbMLr2wnZMh1ZK6epfS8ULL7fI4qP4CdrHN75jhEBiqH3H4FrtLaAyDIEYET11UiJwr4tvhKDMcJRCWhojOGbNfweGJmHcX/6l9ILbnc4TnEUxRGErJbtQB/X9tQlZsy27DqpVctETgxjCbJpjRxoMCcollc+S4b9VJkkiljBJEsMEIpBMKajaZt1+aRW9Byyhwst4WZg9iLXKMEJATVFA1YWeWgg7SsGC4dVSVoSiQgzL/wSjyHrsc2aNsZcRhpxEP10DF99P0uuyfuix5Ed8nUtjDXGsFa0v6q2/+A9S/uIrUIZl+tSKM2YdGiig+vYITbe1VZ/3rS38J+uYR9b8TVJn92UO0vmKhwUJhkpW/UbvrSVx3XHkE6n/Yp3BA2b01vnqG4NmZAbOdC7zq10F1MxlJIbY/bqP35f4+r8Z3OE2ePKVrMS4r37NeOdYnsR3XKt+MiyD/AjDWbwWO30qgzv0eMzVLOa25F2KLMX6TL/AZ3p0+iqGRUId9YtJWftJXP5jTULugD0gmlG2oUGuFxTqFFT5jufraTQsqNbFN32igB/5cIdJkq7BHvITBFTiGGUaXsOGJ/H6FI7LwikozMC7QCFGAdU25V0o50D4TCYZ1gjg8hnjWJXA1F8G7jRoIZz8//nnx3tOkiS/BZWEY6P7C7PmcaEFdUB/ZO7F75zPD+ZyrhhUCqg3YUHlQusI4F7f11xPLaZeF9cvwYhG4LbBFwTdbGzLElAxYIn4z3hJwMRClpVMe5p1xSpqORFUXFUWkT/MTsrrj4sMh6DdsKXu4hxnYWFj/KDVNoEpDcGqUVQzVUL9BzY8pFl/h1lLDNrCkuoJzTqukJ27u4AaO34MpRhQe+wHJELhGPx4IsNA4UFrjYtvZwuowoQHM+YiYcPjEsbYl1RWI4AfE6gNWioalfi5s8LyJSnEktnGZE2JI3BjZt3FXA3Zi0NjpkhxDRKYMEangPYQbnFnjyfkzKmk/FBXJQdCM+Vw2WQz9XA8YUMtEAD7gUjLPmQAsAO4MdDDjaDLEORzCajEiFu3oYkENvNlw/lPmLCJBthtvSawit4WdMujBdW2QAEVmJCI3cACy7KGCtRLBZRZz4avyZxeP8mQEnCv6maTkuqqEVLz2AgZ1q/IPJ9X+Hx6L1oyjPAgKK4CRgzOWCLstZvzzZqkpfCwKPGVeGjO8bn2bUpAFVptpz8lxdNRqxDXL6nC89kCV/dAAZX4CWauqPoxTXQWnjbTZClXoSdXbxtvCxJQpe8wzKu5Ep45B88wEnVhbjUnxp4ZQDl3NAnT4b2SPIY54/cMGYx6gSiNoUnmUIanFBnWmW23uU0tCMC2OOosJk4D3y4chTstXn5ea08BlUK4xQgmSIsf+t4w9fYdZzvR1Dfi6EOjPYyoCPCtbeo4b30xXNTpNVSGJH1WQH2A2M+zZ5Fk7UxCDh1Oyq59KTl4nrGdVB0ZppFMHIXTQcCQwcQQLGkMgWW1YcvHKPr3pwWVSZLuQlAljhAfyHeQ/6DwrNfG9Zm9l3jCkIFgARVWizhKCXEhhtC9jswjOVwmR+INeYoIY0FtkCTpwnmJIgt8/PgRf/fSvxMXz0rqPJ6V+xCSbIObbGg8alrWTLFrWvQdQrJEHRfMyaIBIG4bt04RUJFYkbTRWvIzntD52hw8sCRQrysmMOJ8RRKj5DmMwZ0rdjMCFCdJ2atvaVhQS7Lzd6qAyjrSk54EZj6FUkJICgnMD1dWZe6tlb/opaGYevFC+kzJ61czuONXtqT38P2AwYCYGxo20reysJ/6TGPcWQnD7wFw9hz4FeDNUSR23LMvKTsOmwy6mJ06ReGoqVjDWqhDwJoNBqtvsSao9qm/N/lwhwY4TZIEuGd4kk3KZhM88lxM1kTMoZxjeJcmBFTgDGWdFHJlAFgUt2hNNd5gUDiyZjMBDOfCH7gWkiT9gUmSmMW3B1hQv4UFlVI+B8w2ZrmqRsxpFeqOUUDl33mTSeYRUGn9uA5Pw2tgOuthDSkBY8ksfUz5zjgQviiI7exGjDGoGlMWLKAmMWCJ6HW8JHBCajZZB9V7KZh7wMmwrnpImfy3X1TKm6vGI2V04xcts5zGtn4FbeY6cL54ybDh5Vw8f7WUshTA6LFmXQs/i/Ckh/r2B4MTYEJq4TntYd1dQGUdQt6DZrfbgjHYhjGoh8mMrbsLqHiGGPcRGob43GWrpfzZZVnaPXOTLftMQuNWv22zRLd8KcnLZzMneQjui+6VVojKbMn+1X+klCxBGaIlzxXMeN9AmZlNG+Ky7nOA/sNecq+onzwMN2DagZFsoweGpGYcLR+wpkJLSeyAzNKo5RNQGcfBpGrXoYXk1A4DoIwW0ktqgnWKFwAMxqBSmWWSJJlLBQmoZCYT0R91YbkIYkQRNJWDEcsxNBSVcvzNdbR+vPrKZFm5erJMGV4k0a0bULP3E1wI3C0bns/iuS9IydJVrVY+sc4plRetzbRtOpb92aSAqs8nmN4R46R06Yt4PpcHJpjIPlvjvwIF1JIKCT+D5GZLVyojpPcWkF2x8dkarwkUUJlkqAIcRZ9BeI5XSxn6zkzlhTYt00XM/3YruANwEBxTHwOlyUowrqUzZ+m4hCC4F5oJ1N8HLStxD7GKwLjI15sltuXTLCt2uwqoUGLVbduCa36JmLT95j61HJk3Sf0dDfrdexASdgEjlj4vxQMGBe2Rc10Iqf+L+N7zKeWuXQeGbI3Lp18m5NQFMHBQetWSv8L89Xgrc050ccwggyFj4LmVD0MKLTPDcAHiyW0IymQOiSfk62y5O/aDjQIq3XuZKClQQGVCEyi4VMlls2/Szc5q91VI5R0FJ0li3HaSzwVwPKhp7Pjmz7KthBAsK8rOAABAAElEQVSOSpe+LGVLluMQr6NBB+dZF4L0r/wIxqU5SQHznDa9uTME1FDVLGDNi1K2YLHBUc5Xuu80szGfBOdqCmMTYUKjzZ8jOduOzFm6s4CK95XWRO0zEIrzeaDX81KxaEnm3lr5KwKhPrplA3J9bMqcCV6QQp6kANxhLfpSvksR59vcRmwO8f3Jcfcluty8NSbrNyZk+94UykvBUgl+gujH2WPnOq/Vv1xkIuSc6vHIvYPHhqegXJKr5RNQNTwJrBjjUCOABrr2apIknNSKKRnexRjiTJIkc1XlXdSCCk+ftELdvKeSWJ9puCO+u0JchztjFl8wW5kkSd1MQK2tTcmdeym5fSslm7bEZe16aBh+NEmS/INGYbUK9U6rx7K8TAYQkdRS40ICk86CTrksqK0XUCGEMv4UjGUCcWPJ2C0MHhgMZSg5SFjY+NbhYGFO1ozqL39EyuVfvjldRo4AU9Ogxa/+KBG8yKNbvoA5B5OJrTdqRi15oU2FCnPitv1kEHr9N2RC1kviDLSxDyD5+8EAbh3hRWAynkUB7nHjoV0Cw9AMK0l7u/haagRaOykAPAkGd8nzUopyBdp3Mrl5XPn4gknevSuspRj9mkIFhV6oztn4gLP+LBjb4prpKlyUA6RbozxoKkmSuSA+Ya0sefF3UvHKL9pMY0nmpnbdGiTH+gu4vAvpSwX+gOZUekEQ6TswvVmLdi9ZKeWLce+9ClOcXPkpKR+ticm/vZuUa8APIoIfL3hyTjvOvOEoBzFxnBFQub6pRjwgHjFeg16XDVsdainf+DmOVO1AeDS6/3P4o/iT9ZOt1wW3xWJI+hKDsiNtQWUPgQcWvD2mkYlMElEk9Yle5VEZrOALXN2AeRNYgCX/8tY0+Q3c82ZXlus8i27+EhlWrvFyeI7K8GxSsIPiobLarOuCn00KqLavdIt78Z+k4lU8n+Mq7drc36AP51jy3h2JnT4J7AT+7P4cA+JZl3nO1Xzm3yj8nE1cMVBA9e1bvPgXsGog2zdqPhfa6rZuQpKadyR5aEvgIS05Z+CJfCtrP1+Ha8I18fT36bVa8xnPUNkzZKyBzcDnUBm4pTZorIepGMFrXjne+Ix83jFOxELNdNpgDybRIcNYvmhpm1naWEuZAupn6xNy+iKsmWAaHzQQUDn1+BYfBc+LCeA9GFqUq9Gz4mEdBN0mMMR/7M93E1B2JeReXULDEKg4I2ART5jF1zYmRooRS7BkM4PEE/IgUHKB90jGbmI7nnmLMTyBWjJAW8WbYl+SpMIZRaNA2SCJAzttl2DNh4cF3oUVi57Futw0SR/UCT9idCf/epPEtkLAvgdtQB14KosL7HkLXHxZEkkFengLUTFLRY9cPZm+u5acM31wEz8CrZ0tEFBTMYSUKFbeRTwmhF7wmanjmXHVjN5QZEtfKNsWQEiDsq0MXhutaYEuvr4ThmrmIIHZb6TX6ld9a1v3M5BeQadsAndKlrwEReMyKZk4OeioFq3b8nVMvtqUkB0QUG+iHinjTzHd07wLsYZ/M6vvJCRGooCqmFDA1RR3wLtQiR7Eu0QiSZSzSsB9Nw5vUIMvFFCDmsWajIuv5V0ASlB8JWCESxBrbEUTlXewD2nJu1H8ITaZdcaCarP4Fo47QX1ruK7dkyRduJSUg4cSsm9/Qo7CcnrkNLQLGDi9VdIFTfkz/KabzTDMnV6+dybN4EMGh6RfX7Nv1idolEtApYU0r4svOkLLapCLL+ubJmOIH4NbbwpueZroBAynsZRwgPC4UUhlYInnblMzmgLqdAio0yCgNu40BZrY+XOSoLskEkew8YVdXFUtJePbzi0zi05t9Ie6el44h/6fRa3AIxI/+C1cgw4YOvAaSBoQGgVXu6opqLmKFxzdX5phaehcARUPoOf2UcyakDNmqQtHqNz3MAbQUWv7QZsXh+tw8txxMGd4kdkXJCY0k7aEH4frLYTekkq4uYyvbFHCA3vpLi+gopxOeMbTQldj20JIhKH3XlmVpXG024O+myOg9gHgDwODObixPijr1OTllDmMenJi1lZsg0b7LnyA75L7BAjTy4NCMQVT1UH59o8DF+LqdkcXXe5IJpGvH4I88EDXmQQoJqaD2khwpooX2E/xAsfp64tfIQioUyGgwj1v6kAPI+B6V8fzo0FSVtdY1LktGth8C5M5Sft/toeAylij6A+HJUZXuGOHgZ3HYJo649EZ9+QE1EYDGySgCrKsh8YBmyfAFRrWWrp5t7bms71wXgGV74ZJdJN+UooGD7GHpb/Vba4S70BiRHlFen1rftDF99y5pJzBcvBwQnZ+j3j2cxkXX516mIqctX0B80OBIQMbOGk0vL5iCPCDVgqd7g138P19H5qwuw9rYR2NqLGTeKIIAXjgt21UgsfhoRWP3sY5iRGWETRYonHsiAETuveqNQNHWxzhtzaeHFl8/8uMRnVQ7XWa+lYXdLzTk1Ce21Y0ZJjQDb+z62rb/jT1nbh1M81P0a08cXgPfKqpDDStJcIk6aEu0Yf2ItTihKQuQuFCwbcV57THNvUdKHC1QEBlTecI3bkP7UdIwVFJngdW+ugh8FQonjZPihGuELbhCsNHNNWtgtZ3aQEVnjshxKeHH38q671ZXMUwqKoWxfo3RZRz5+HtBaw5djwpu/cmZfvBbBdfHkfMYOz5UBjhhg7Aa51TvYBGHgROKsq/BOFODLzLfXhKPGCWe4AUDKhNtjiMbPGYCRdQSYxMjvIs8AwF/lAhpjl3NI6X+EK8wWKhhmfmMWzoDOGq27r47t0Xlw8/jstfPkumGT3STiGY9+jdN9fRisqyM/5Bo9tvDTQNw4dih4YNBMsnoNqkJw+geWgqSRLrodUji2/DJEkUSGn5SESvYHBgSdXXCntqmiaM4QuDC60hWFRA/cM0CKhTAwVUDqgGdlMNkn7ScON0hWHyDTvw9iJd6ht9pxkKfY8yodFnSLyw5T3ch/fkat9xL3hiQ9NR0uAlJK1YsbLgO+hUAdUTKEj/EOvGvoySLS+8lNcCXLtxPRIvIVHQke0eHfB82HEFHcJLfwU6oNbkY9NUyKDLEwhUME0a7tjVBdTQxLlS9goSvSx/PtN1IhgErObce3MEVFKUiZKYfCBf09nLIQrYMZFA6vzIHbwIEH+BOW1HKXBfelNEb+DRp7Wcc5+IxhNjLigTmbkA7H+6jedUAZYKLdsoqPJ4LP/y1mMQUKfJU3NG4RScZ34uGL0hDWnS1WPsCbrWd7sIqGDwa7/4VKLr3oVC7CDoSzpzVLyRcQJqo4cgUEBVfMbzVlKOBCb/KOUvvd5mFoS8AirHSBPKIGnK2LGN+qvzxz7fbfQO5CPCaRQHd8ckSe8haclHX2eSJKUnOHpD3oPQ7Oc9GnfSrNGnDh/e09fUbsCR+6gO8DNceqGcQmsKT1KI70pEb0KveR0npYBKPCAuoPPEDNyIxRCeh8265KmrnU97FpQkyRyR4xNEUrzxxwsDY5qbDCzHFdpvE7DUYmUGI6A091pLBNTI4YPgbZjk620Q2mC3wRtz0pac0/anqe+2ElApXNd9/rHEmIjNln2x/BkvjlwApS+j1BQSsYX69DFj3Mr3SZcWUJmsaZXBOn9CIwGv3dbvUos1F5Ek6SPIPP/xUUKtqJz3fkjjzGYuC7r1Wkzg0ORruXAnoSGKhnfhM5sLm2gdpRtvCqUxlfdQvPH4Fu9598s6+qq1incqxBokZwthXbdNknTmXEL2fAez9+6knL2YklOXU3IfmgAOkg6aB/QkKEMqbCCvHazhA0IycjCTJtk12d/0vWYme8aVNmzUJNyDT8891Jipg08N3fSsXzb3tQ8KzexRuKrWIp4uGvXcM7kDXxzQbDL+lC8O/6DpZo4cXyh8iXCSw82mZgwsqCha25QFlcf1hJZPmJSh0L4+ifTyc1DKYvQYUxImIC6MmR8TV5Cq/MqPEodVNvbddkmd2A1aekw8478Gj5WiUVWwzM1ByvinpWzmE60iYaCLr/+MQyoLrllaUOmaV38pZRRQ26BRuRHZt1fLu8SPHjCp73+G5tvSqw1dfLXOKbTqiQuwmiN1e2L/tuwahkwWMQIWvUHD0ndWzIQIKAPUWrehq3TxXRuTP8HF9wpc8yyQ67f3h04/XJm4YRnMdEcCfhBjSCb99m1XLMIHBVRlKCGgmlTqvp0a/EyhXnIyCbdTZreD8gquFtjDMJNmV6JF9pWyFFoaP4aO002Gv/FtXHwhoD45psHVus+fnM/p5/PYQXgUnDOJP+zzSUGlmS6+TQq9veAuiuevuGoSyuYskLLZT0qxr5RFS6gWOfYD5tYeeId8p6Wu5OZFDCvG12uhCUj88eQiTURHhqd45Oi88WeBLr6oRRsahjCI0cC1J9H3ObAuVlbZy7T6O1BAtWcFpoaf/w3crH+FGKwpdm3B33SBZKgKMRsTRo+ja2EcdXDj+74GRiAQaug4xeyQF5ujFtK5HCMkygqwoBZ88RbuSAH1nQ/j8u4mCKjeOfTb+4NTkBbOQgRU2wXObuqa+G0bT6cL8CQCXiIGLKFLXc7GECIv7kv5CZ4hrfAyGNIYS3ghj/fQk+OYFlpQc/atG20MzLg7AtjA+Tob84vzFUu+2PvIwf2oJoCstFS+B7QOE1CRnC08GyUDMW+KUe9dS/MMBjOcowXWVvXvT6ss67G/9Jq0JPGS/1T2dwLlZhhDG0N5MS3vcu28yU3h7dBaF1+tew2sScJablucidi+RWmbi4ftKlW8yRAknAOmUgBl0xKLLNVD3BmUm3aZE7Xu16XLSfkA4Ul/ej+pce/EAzYrpPJvxRrooew23SHHh6JAA96Fx+oCrGFNUyrWo+qF4fHOTZxP3XehDGNVEhTpw0mwEMWMJKq/lXvRvw3+ZLbzb1yVN8PtEE4RWe8JqDOQJGl0E1dt2ep2d/G9i/gxxoJcvZqSbTsS8sXWpJy+1jgGld0PeklUIDVyb7jfsFZZUFODHnDaHx9m90tCI1iLjFWsWRiNGyaD5E2/UUhn/MklARdeutjEYRmxjVrLbOaTmonM4BstphVQzZlqRvWDi+9MT0DN43NoL9QNv/MKqBCUZCDqlI4Yi1iHpVL29DMal9rwVpnAof7bXQh23yaJk4cldRNMDwu528lS1tcU3V6wBAycyZ7ZWganOwuolLBUcGQBcaR3j+/cAsFxMx5gCkhobSig0lUounu7xPfuRCFujAvrWtrr4FIs+1MyfykKiiM7r9eY1Y4ZDVs7RhRQ13wck39/LymXmbTIO7/OMn7YRozE32Qs/fXF7Gb/N89Bt38+WvZ83E54JvYkoZAqVEBlPCmxIUmXf5Z/iIEpV+uH9hC/LVZkrpQloKrHBa+M5gH9v7w1XV18n3pyrFnfHT/BsSdu3pD4dcTd4vmM4flMHtiSeW7aUEANVT4hJc8sl/ATEBq1oD0UJq10D2U91wTmVuzSBcytbWCCNiLoMPNOkF4DkUUZNZirkcUTSVLKn16g8Zy5hipQQEXm3vD8FVI6f5EUw8WOc6Y58fq5rsdt7SmgJm7fksienRjbryV5x6MN3rWp6x5GIAY9/PQK4P6zGA+8vNmQCSQ8dDjus/VjZE7YvM9de2BB/QgC6gZjXbCzUmcrPoJ4j3xXoHBK42WGIzC8BM9FfXVLBFSWnIEPj3dpnES5WlwkjSdmk74e/QKqWjX8SZLallHMR4uusD1QQIUiSAaBD4GCm8+j8iFQmOdqXUZAZT6HAaiJOnQM6sgulNJ5WPKETHWGgJqsRQlG8iPXgZvfo2bszs1IzoaMxF5rrYDK8Yju+gZhVPvtKaH0vCmpW8Abm++DW5CM0eDO4ozSEJlWw+RHhg1rs3j7TCeCf1FApXL9/36QlOuQfxpiDWd3SwTUXLxLAsnTWiKg8g4M3qBXijX49rBG+RWiG/5WZPNtx0qs4p3ReJDqvgIqCcDGIN8166Lyl3dgUUUsKlkzvV/daj500ECfQj0O7MD7TpH1kwSORG7rwPkzVmXt5P1Bczez9CbiN7CGjxA/OWjsKRdcLf2SwEOnF/cGjxmt9C2VggXVCqgzApMk8bw9odGto379ZxLb8D5A4j4GGAoAfZAb3B3ol6t8C2Nyaz/5CAl4/oqA4fMNDsaffYZKySvQ+L38hjJyjXdo/hoyoHUbvpDYlx+CqTqPvsMK4HdvGogXwspfSsXzLyJearACW6g0WEMSaEHlMxPG/nQveQ61H1e+BFe6Sc3vaJ4jWNahDnVjY5//GfISfNjZmNF02ZtS9jyuWV1j+m6ZRLNHzk+6SzEbKF32Iju/kcgXa7IzC/LeWAid11n6upTh3lprLQ3qEAXUtZ9E5T/eT8hFJFgzQiVmJPFB52XmKM5OYkY+AdUylFRmWezgTFeGEj+SsKBGEZ9hXHwBWIU0CKkZ6weUBGm8MNhgXk8WL2hhxfq0mwx7jkYPDCz/8rsZmiSpWwuo5o70M5NxF3MbGl5tUKCEl+L5RJ1Slmthkp60EOM71v+zKQtq0RzUfH4NrvjPLPLv3ia/WQKCdY01MdjtS43P2W+ElL7yliYjC7La0tMhVY/U/JhH9du/luiXmEfHd6XPw9j0std+q5aMgl946aPz/6jbvAHXXIuYvJ2G9sgU67208MAjnnnR61K66hUphXKJ9NdkSQ1fyE1chpbTuk8+lNinf4EkDO+ihg1uhGWvgTYvv15wUrSGp2jrv3fviamA+vYGzDU04xUL+wHuWTEF87+5FlQyjDyPXzmuWESMwhJFabrmWlAZb0rOg81YN+juiwZ8sG6+hvfAhcl3pN+53M8voI7Swx6lj0AB1RIA76zwyt/Ca+CXed3au4yAavuO7+K5SG722q+lfN4zvrWNfwYKqHzAqRCFa3+oGrjzwutSsWJVXtxtfPb8a+o2fyX1SAiXOrItvXNo3AxgzRtS/twLwBnEhBJvArOepg/J+qHnXPO2pH74Jmu9/tHw3la9JhW8TjN4nsYnbd2aS5dRb5nKdfAuP1FAVX4jw7uwy80VUPPyLi0SUOnZ4ccaohf/NryLxrsrb4J3R1qhjn24jjwMuSgAIFke4+LbDS2ouAttFFDXfhqVv72bkN0ncGO+xgFja4mASnwmqdIcJ3/jfCQ1idgSAVVfDDyJ7RjPZRueNlNixgyiXa0dwPVqRvX1LKg9W0Cl20X0xDF1y02cOCLJ04ey66hZwuDp7WoCavLBffT9eLrviZPo+41ztscw1/eV0MRZqKmImo2Tp0rJBLgJjR2X2e77FSigwjWnaMJMZEKcIWG49lLr2ZI6ab7LBP4MFFDhvheqxLXZdyR7KpkwGctETAidEYHn8a9kkoXo6VMSP3nMJKQ5vg/FQS9mdqEFqXom6IJEUlNnwEUQCVfgNtXW7epPAPm19fKn96Jy+TasHh7IF4O5DoVwj5ybus5M00JcfP0gz/7yFH6q0MU3Bnd+MpX+cg85780noJK5NEwlTmwbACqpTCSZyWzcM7tgnSYgQBbfR0FA1ecTyXns84ksivp8BmGtR8PuKKAmf+Y8Ogkr8nFJHEXtZZZe8Qm67S2gUoEYg7sya18mTsAz5eIPkKSMFxE5itDYaRiDWaIJ4TAGpcCIUN66bmZAuqOAumt3RN79MCLvbIDng4cbpEMxsQSYQoGyNQIqZzzP4Zv56tobY0ISFr3P1XwuvsaCClRqYj4wjl1j2dOCafaJg+qgZu/Rc/9yAip0UZcvSd06KI/W/TljXeR8Z43hSeALmACSPAlqYPtLpLTVUxEkoGod6cnAGmB+Ma5bCn6qOcnZcguo9t5m4N7Ab4HXUqUba7d0UqOA+uGaOuVdMhZUcAYe70KlWGsEVN5WY96lHnjDcAImWlOJqMm7z3bxJWIRuPzIZQ41WAPBjcpNMkrMFJ6FcIZ36dYuvuZWMXFwj598BgEVWoVdR60u0Nwub5v33RIB1Wox/bwfXxT6smixgAptEya1dkoHmwPOQTTr+BJR1181cRvNpRGTExBQ+zwSAipjjlLIUEj3jnrW3Nuw1iQw4Vj6G2jW1QRUZs5gv+leHNm/V6JfrYMb4sZMrznO0DYyO2h4PsrOrEAJIMS+BrUgAVVdD597VUuCsKxKqHevgpm/oGs0tS5QQCXQFJeh772ROfgpWHBfkoplz5mEAE2dyLc+fumi1G9eD5qsRYmTqzADoFgzAco2xPSU8t6WrzJ1wFBTsyU14Ozpmvq+8lMcZWYeyv95u05+/NkCLkG+FAYgFAGHRo9znls4A+niy0RJuZpfQAWVFCOIE9ZNjwKqyXDXcgHVXt8IqsQLYJ3Gp8K6ynhTxRCsT1s/eBNY0B4JAdX/fE57Gs/naum19DkMBmkV3LqjgMqyU/WbMI82rIE7GkoFNZhH7S2gau1LYBxdlaPwFolvRT+sO5yOATw8GAdbMxPeFi9LBcaA9XELad1RQN25u17eef+hvP2VFzOLGy0ChiieFJXp49caAZXHEkvYiEu0qlIwZVm65gioJkyAc4EL0M0ymxY3EEagpWY03p044s0bz6rxP38/E1l8Z8icWW2vNOS9deXmBNQmBFQoBYsXvor39mojmLIONsu9BQglrR3fQAEVghk9rqS8r5SseF3KwU9RsV1oyymgduC9Fdrfi5eRGPbDhyiRVyc37vt4F/AtijfAndYIqIQZK+Mo70K8SdQDZ0x23uYJqMQQMk44CbCGklk270KlJngXXkgBDlf3SujZY0LgZXqEBfXjTyPy1/djshsCqqY98cCVBOdc4f3TEpKDV8GemQaSaUyZMp74refhN37o3ANo012PmoXmuPhmBohnNAOnZ9eTQl+gDKenjQZ7TGZ55MByGTuyXKY+NlCeX1EtixdXy+BBhb3wcZFu3Wq/+lwia/5ukhs1vBOMcZCAqnXGEMtEZif6zRbELXyZbYGFFVP6I3agEhaWRculfMGirDThDS/T0r/r936LeoHvSmLHx4GnYEHnsleRlXbRkvT2JATbJPrOWKzoTsSpbf8qq/ZfaAqC8l9Dpjy4CLdnS1y9IvW4fnTbRpMs6d51wwh7F1XXGs+NkMWlm2zgqHgvvCe1vGzfLInvvsqyuGht0wGIIZuGRFULl0rF/IWQCvNIhE1eMP+GK1cpoD6Q//12rVxJC6jEBoI8SlbA8mEmOTSomKYtsaDyJcFjyVASS+IQUJkUrTUWVN6ZhgakFVqegMr4VN1IhpIX5YsrJf16lcj4kb1lzMhe8vzz1bJ0SbVMmZxJOqXHdNMPzu0In89v+HxeQAwznk/WTfYahbRSPJ+9kbAjCPST9+/rM8l41tiOrRLbDozwWSHb1cX3wQPMrW9wTcyF06j5fAd9VwGPTwpakIsvxjRxG+n7OY9OHpfYN5sk8f0GvNzxgm/Q2ltAtZfLL0zWAKtQlxZjUNS7cY0V1r62WGdmCWDhxg1zb3vWA29Q/oSNE6m8P2LmhsO7AiXGFi2V8vmLOtXVznTMfO7cVSdvq4DquZprl4vSeFKE91QxGI8wQaHAZpXjFEYtw6iH4m/ycxRMVeHVDAtqRkBlP3ASghObx3uYMhB4nlQgNQJq/4oyGT+qQkaPrJBVKw2GTJoYVPbAnKqnfjITLnmJxOHvJPUz8iXQ/dwK+BCSimcjLnoRFghHRUiYo0lzPGaTpazscx47ctBg1uGvM6SikNUb4T4D8XzPeQax70ukHEnZ2qoxp0d0+1aJ79kqqdtQaD1AQiB/vgdkxy9Z9JyUzEK8PcKO2H9/PWHz/r4tDKtQzNoDrIwheygb3ZtXweWe7s2wXrZnq9/3vWJ1fO8OjAHug/H7NnwKz3B4CRJGIjlbvkSXTMTGe+ISY7z7N+sldQk4bBsF3n6IKx0+VkoXg0dDPoDwmLF2a6d+X7wUkw8+Iu9ShyRJRkDl9C0KQbFO3gVCdRiAEYZWvVC0CVKu85xp3gUhNC0XUMmToHk8CXpq8AZ/a7JI8i506U3L2gZ3BvQqk3HAnDHAnhdX1cizz1bLxAmNS4iZk7fss92TJNluxVGYZ+26OvnLu/Wy+xj9lummZ8zwhGAOlAqouPdCM+nxOH1JgHD8zeP9A04fanWxaaaAyrNkmEyekQuuoC8LMJzKbFqrkhFQlz89QhY9M0pmzRou48cNkHFjB0pFRee5GaDDHdZaIqBSEIru/x7ZMvdK8tJpSf10Fm90H/MwHm6ks5FYCbX66F5L8GltApQggrREQFWh+sBeie/7FhluT0E4PZ2dta6DBFS6KtOlJw4rSfzQPvRnh2QVFGfsRwECKuNOIwdxPMcD7ogcD3XrtS93vOBCj81HJsT5EkaWXpaJCI8Zh2nhn21B1G35uqYEVCqDWBi6SPEjrMKqFTTz4YYf5Nkzndn4sHeRhKsdY1BbI6BmlFt+vCCyw8WXzcMQvSroN61ygCx7drTMnzdaKisHyjhgx5DB0G73gEYBM375Ip5PLJjn8f14Pn86lb6zfAJq7NwZiR7gc/ktskOeAUbguaQl0mvtKaBqzWfOLfb/6GHMLSQKO7PXGz90IEBAJZObnkfHDjWeR7bj+O4uAirxRcdg3+70vacePpAEMeLGeTAtcXNXmJOhScjYPgcYMWWalAAfionZuRRj5sgO+QwWUBkXZvEETDwwpUTLgBXWJb+A6scSxRN8xJDFl0xjc7L4ZpIk4QQN8RXYkWYYKaCS4YE1Y0bNQFn67BhZ8PQYGQ88GTdu4COjHPePlL4LOV/BW8T37ZLkD4y/NhZztTQPGiNFYyeqK2jJrKek7PFZ6ZrkSTzTkQP7gTXfIbzliKQu4/m+cyVzeiZrnLkQPAlqfFdPlBLwJMUjRma2t/KXJmbDXEtcOIukhHskcXC7EVLteRE2FBo9QYprpmhG4rInZmcp7Bk3GzuA9/eRAwZ3mM/DCoYdKKAmfroqMeB94izChPbhPg7hPiLIUcKG57lQAZWJLCOWxzp30vBY/nj3YagpT/7wcWRux1gQb4r6dY2kpEECqrl9izUUUIE1cENWrFDi5P7Ix7vQAGfCk1ro4ms6iE/2KIB3IS+oQiq2UakDb7CZEwbJsiVjZP7c0cAd8C5jB8igNjbKdaiAuuaTB/Lnd2plDwrZFsGtJsQF/8i+4bbV7M1EJ1wKaTzGL6BaszkHk1rNBCYoLSLUYiYxgLladpIku6d5gaFnWIGT4qWQjicTvpg5mEZA/e+/mSL/+OupMm9u19Di2DvoiG8VUNciiP04mBhtHBmvgXEJsqDWfbMVlst3JLl/o90z67v4mVdNUgCUX2jPVo/06GpB3QkLqnbb13dcuGgWtHNITlCx8FkFWPZFMxh/jDT06TpptocGbowF9R/a3YJqr8rvum1bDD0PbEqvLtSCSma89tM1El0LK/hlxKqlmwefzAy8GlaWl3/RpqUw0pcJ+GEF1H8DXlxhDGqDfRjPEYYrcykLcZNRK6ARY2nZIDb4z6e4gVM0L4uvd0FfDKrA9d+4yxDAwEDignSZsU1db9TyQSwBpoA5XjFvlPz+rWnyxuuPwSBdIPDZE3aj7zqEAeh8P7g53WsVUF/9jbGgFhNjfQ3MeP13uyXy8XuS2LXOt4E/MVj4X6xJkpA4BN4V7dmYzTrC+b75HYyb9+T0G44kSZwTSN6GzLTskLoi6zz6G7JYHmuiS+ZZVQH1dSRJWv2qeeE3sXdrV7fWgqo1IXnvW97N3HtWp8z9aOKllUwa9WaLStdknbId/ti5u85z8QUf0GD+83LFcL8rAZ6QaczVeLcWOxoyjTyO2y0f0rIsvtYzi5wR8AAYoQ24QSwxsfHAFl7caysXjgWGzJDXX5/RSKa1+zxK31oLlMkDmcQLpQMbtRET1WtAS614bu201NUxWeMnf4Vg+qPvEO/5HjBSSl/9nXoatDZDve/kjX7Scsh3cWTt33zKZvvEYXcmXnwZ/cA8Y/k+bcAkdW/m+/ssckakm9f3tICKudnOFlR76QRKwtStA0/xMcbgrifoFyygpuCBckLqPv5A4usxHlYJpifHPfH/NGRQf/0fEZqwwl6yy3xfvAwL6ocP5N/egQUVLr6+0dM+tgfv0rIsvpnY+AzWNMW7AHPI0/hw58XF4+R3/zRTXnt1WrvRvsMEVAqSBw7Uy979ETlwKC4nz4XkxOWQxNWf2dMs4MFrqYsvHwIqHP0sXttZUD3665Pmmb1VQMUKzx/7j7+ZitiPaY+kgEqBLbZ/rySQBpwWRbl+Fs8ymHW2Li6gxi+cV01dAtpHtYZeheY08sD0nZ+oGxZ+YoGEZ86W4nHjVXMaQ3yZMqx+ARUvARmGMjjjoaGdPktKnpgjZVOnZ87Tzr9aIqCyHIhqOy+c87Sd0Djfg1uObcigHBqD+6HWFhrnUmic2/PlbC/L7zt3E7L/QES++z4iR47H5OjphJy/AYBUqwLglBYbMG/FtKTqK4DMW4Zp85/LugRzfzZOY104ffG7dQIqaxgi+3fsGrAbSZLQL3QSi2laisrrn7rQeAmRjBaySFbMHw3mcjoEVCTSesQEVJYFKH4ccwtWifC4SljmURe0V4VaXDnHErAGxPfvauTaFRo5QYowz8Iz50gpLAklNRMtudvlO1BALe0jRdNhLZw9T8K4PvvOuWEUPU0IqHQTHFoJHEGSkKlwgyVGsKazPtPt0nUNocidcTe3i29eAZVJ00YDI6onS5hWqZnAiDa0LLUVVc6cjSrvQTw5fiYhx87H5U4tZn8aTwymMIFJUCuGa55iDRQpqujiTgQP74t6C6IPj7aeXLScUjkeK8jF9xpyWAFDqOTCWTQJnA9HsBKNGUF9jKJnyVi5cIz8/rcUUKe156NkutANPttUQB2Auqnj8HxPglcA34GYr0Gu8G1FFub2iBwE7tF6eBxeGBfBTzFJoX23+QRU1jGld0ri4nn1MokfwPvbL1z3Rp1o/9x8HDwMynF1RGuJgEoPlAQs4MT++ImjagVPnfw2c++ojBAaXmOwf/psYD/CjaY81hG306xr3P45Ifv218t3eyPyw7G4HD0bl4s3gQ4+rOH8LlZeIfepA3kXYA2hh4vlXZonoN4w/EqcyhvyUUSthrhnsg8bVOOV0FQ5i98eD9OjBFTeGwfu1u2EnDoVk42bI7J2S0xq42QyUatIXfaMMrkhqQx1Gn+SbNaCal8OSmp8KM0B5i2PQTXMrD4GCg48qRF/0zGo1Cao9SYkf/zNNAio0yGgjmvc0R6+hplfGXsVB1Ay7iq+C/EP6YQcXduCmkSsWfJnxMJSWEP8Smw74qroHmNbSS+480FQQx21UsSvlMOSGoe2tZGAihdHeP4qYbxseDyY0IGDpGjAQHuWdv9uiYAaO35MItsR27dzk4kXaRj3Uo0XwOLnpQQJosK8n0F44aEsSEe0aDSVxou9+yLy5cZ6+eo7WBcomKplAT9tR2hdULd7Mm+NW1FRBYS/Ck2upOIjDlSGEgBC3LAg3zILKhMrkbm8inPCnYyJkNizLEGVV2HfvAvy28ONFU9DQP2nGRBQkVX1URNQWeev7xCN6ypZuELKFi7R2KrIDhO3qszZ3Rtw6/UpjOBaG174AubiMglDEOIz2Zb1QzFIjVqggEphk8IZYy5nL9C4bJZbyimgIvFa8VxgxOLlUlINIXsg4+CIEeknudG1W7uivS2oobHIFL4IGDFvocb0EffIOHe1dh+WDPIe167FZfPWOlm3ISInUcqKdkqdqxT8cmBIOFwB91/iSKnhOTCFvZmuvIZNVoLV6fUFx6CmED8WAYbEfoIcAgGVGIfFKNx4RjYKrVxnBVR2AGiGZeUzEFCh5Hr9tamG7zEHPLKfbSmghmY8K6V4B5ZOn6kutfoObEaJlGYPAnjKxM+MY0c8KaokxBC/n9iLfBDWXdcnoKbq68z7extyYPyMGPkHwEqW+/MaPahKFq9EDdUFZm7y/d3KOtH23Pm+WySgsiTXzu0S2wYe8sRBk7OgHkKUCka4IgTu8HwkWFq8DC69Y814oO56V2sR8i7AGuLNd9/Xyxcb6mXzfm9eqwkNc1e9rYg5dn4H34XhXZDUCgaQXLxL8wRU8is/wTANCyoxRD1E2Q/wKeyPrrPvJI93IV9j1xOD4O77Ijw3eowF1U/+c+dj8j5M4P/73Vq5X48MY+peE1aNgCn+6t/b/uagklj8JjFNs3EgmTWG96NyMQRCRpAkKY4lgZdArpaMQ1CJo0g70jQzu5/ftYZuvdQyGAsM7DV4uPRFwoHy3AuNgDrjkRRQLV0ZN8DagbFP/mLAkhvwUBfPQ/a4FS/CvWSy3VUicN+LbliHxEqZ2oB0ExMKhBVwY3mWx7wgZdNmpI9pzx+pOJQl69bCzRXWD38wvr1ouBy1A5EJD/eRqq9F3z+TxJ7PvWcSO7VDvVZ76UK+gwRUgStT6XJm3F0JDAJtG7To4QO4j08l6XO79O+iCaJYZxJCeWe2Pd+aBCd//QJzGM+TsVISBgioXFBzUvBiVgazcU9DITKW5TBaIsEScFYND9iN+iUylhRQib0pxqBGaPFgHAcZwQIaXXyjNyGkgjkQCKg8IVsWhuBCjN8gdmF7ES44sHeZDB5QJosWjJKXX5osz62AVc3DEj2+h30Eufj6b7F40RvqSk+hUy1+64Ahtbf9u5jf8FLQpD6ssRmQ1KfxAa1fEyig+k4bqpqFDJmoKfrUfM2AHdv4MeIzz/r28H4ijk1d5V+Bqzy8MTqisRxYPWuibvwEMbzn8IgiqZEtN8MODBorJctfk/JlK6VoyBDQFJl9UfOZyZFSWHjvsY3Auu++wONrn21MFi8rZ3gOGPjlyHK+YGFH3E6rr1Ffn5KPPr4v/4nka3thSTXKLgh+mMec/9CGBF6juKi3lCDUgYlOyA8kAR5k4agIp14piA9JJowFNYHvnA3XZS3leJQYEsdCrMZJVX1mcci3DtfnNQf26QUMqZDFC0fJK6snyIrlNdofHPhIt7wC6mDELPKZx3vRCmwJllfb9KXEtiB7/X2Og2npmEl4D3V0Y54O1jmPfwk3V+uRhszb4WdRwxi8URKCbGzjp0jEBqV6QAtNhxsskjUyi39Ht0ABFTOm+EkIzKgswNJ7DRsFbmY+j23CGPhL29kdYc02tacRVoEkUd2hfbOjVkML3t0IbPF4F8O3oNa84o2HqU3cTBEV6+BfaEltyLsQju26RKIOMe93sIB3UV6jiRNidRL8CvEmmURssIYaEWtwMvJStI56XqF6BvJBXDx+JgwefWCfsAzqH5Yli0bLKy9NkuXL2s+DqcNcfP3k8guo9+og+MF6Spc9ZQpJXMvk+Q/Ceg6olndR4DYb7TvTP8x8cZjmxaBCQGUClFwtBQE2lUB2ViwcDBVScYAWq9XrGQGVLzTjhsMXiTeYmHh//K118R2X6zI9eluwgIrRQGmS4onTpWjYiPT9Jy+clcSpQw1cUpCdbvJsCU9DvayJXr0sMKwd0fIKqJiYodGIE5w0A8ovCCWnDpuEL/YB7IoCKi08Vah7hpqlKpU1IGTyR7gH8T5unm+wxfzZNQVUZQu9/nL+ccktoHJnugGncYE/PMDgl67HRwpx6on4HQib+RMN8JymIfujxQ3ViuKM6lkB0LfWVO6o/Ca2AccqSsKydN5ImTN7hMyYMVwmTxoiE5F1syn3Qu9C3fqrJwuognjUohrU4RtfI/GTP0jqLOYUNf8NWycIqEykFjuNhCWnT6AeK5I9HUOM2jWEMdiGUlqhKtQPnDQdZamQVA01ElmzOQoXO9ZRTRw/DIw4Yo6xWAfhNDTBw+lJqDuIuLZwZZU9Y5f+zhZQ+Q7Hex2TkzWMuahlI+AOQlBu0dOLimq68qeQ8duCCIVUSxoPVvQMycRdYMkdKL7BCOZsMWAIFeTwFCD/QwYxg1aBR/YpL5Ul80YohkyfNkwmTx4skyYOCdz3UVuZV0DFPAxVm2ceQcdKHpZlSjA50gU86zb7LbZ0OQEVgkpoLMJBUGM9hTJSWsP9+pnAIe6KAqrARbd44gwpGjGqcZ9jMeAnxoD4aRMr+ffq9gIqOQ2CBeY4lNlGlvEjhv9mM78L412Q9TjNu+Q6JyLZk8jMTqyhTEQJV/HGu57yKfba5FewkJ/xBNS+FeWy5OmhwJ2hMn06cGfS0DbP3Guvzu9OF1Dv1pGYHDg2Y5n0JxYx6/EJKT5FEE9As9uEpSS9b/oHkhrhBcFESclkbgsqLmAeHH1BQFvJAdF+UYOJF5lqFUysbNrNRq9jNJt//O1jj2ySJEvuQAGVNKTJiu58xWG7K0gKlwdq8nWymtWhUSgps+pNqVi5Wmvysb5mqD3daTK9gYyTx4JKLoTPBOIglBth3zlxraTTFQVUmgWh/BEkEkpPMd89q1aWmlnrPuTfht9dUkBt0Ef9M4+AmoR2MaW4kUdJBcBOJIAViBsr2IKqHbD4ReaSCzGDjc8+txmMAKHxOyFD+pbJf/2nqfLqK49JTfVgKSsL68Ijemrr0QIq5xlj0IlxzBrKpB4+XEuPaScIqMQoJm9KRSNIOrVHol+uleS+DekuqeuAYgTCbBbAa+UFWIInTpY6lA6LfvERkj2dMDjtxwhi3cpfSTlwmvGmLHdBq2t3aFkC6mkKqGicohizXF4YmMjejlBIxcGDJB/kxQi60Cme5BVQfbyHVc4r4wjc4LPFxudJayfjb7yHRgzsLf/81mR59eXJUoUMmmVlxT0eQwwh8n/mFVDT70U8s3yvs5HuVDro3CVPalqXE1DTfAje6XwmlA+x7xvba/Pd9QRU9Itecg15QdttannootwUfnZ3AdXeJ/gAI5yC97L8Y3pb9g8qv1MQKM3+2dv8f6Ug36icA1mnqVwc6f0tlmRhDXGFWMPF8CnGUOjNBU9AHT24j/zht8CdVybJ+PEDpKy0fXmXThFQr12Pyw7UJdu6DXEgZ+JyHrEgNx9wknmusxqvlSan/iDRU2Q0k1hU24kXSpoRzN438xcF1Ls4DlpMdfEFsTkoyjR6wMQHRAcKf+tLgeuxWODiYPpM3GYAjdA6sHe51IzvL1VIr7xkyVhZ+Mw4tYZkrv9o/QoWUAunAeOZtCzKy691mGBqe5dXQLU7NvymlXLwaCmunoL4CLjUzJ3fobGntjuRHw5LbDfiN/Yiqcz1y4jfuIqXFwGwmY2MNjIWhoaNkZI5iK2bt7BDkz0F9fbEqahs3wG82F4vFy/XyrmrD+UB4jxCReWYpuZFnYu5TEBbSIaSgmrOpgIqLR53sBvneA68sBhiraRpvMAxVHJlHUvFDIVUgyXD+5fJv/73mfLLN2dIVeUgrO/5TV1F+Xyi/IN5Pn/Kej5Dk+dJyfyliCkdIrFdWxF3tTm7xiZrEA4ZA8vBTOy3SOdZqLxj4qHjF85JhLX4dm6V5LVLSKZwBa+qTLmbwNEjE+bNI/FKrRT17Y++PytlwAhaKTu6sTZrBLUiY99+Y8bgDjDCluFAZ0JVT6B/y5CEpAp1qbdJ/LtNwW7WLLHzqpfBeEj3qrcZjaVkFzL6fgMs2XsoJheuJOQysoQzrwRyh2LaekJrE4OTAvOcTKA+L5Z8/EcqeU+VXWpBtXih520hrhBTPN5k1KDe8q//bbq8+YtpWtauie4+kqvpXhrZsws48rUkL5yU1K0fg7P5FkCdLieg5uszlU39R+j7OzxrnpTy/c1EbB3ckvfvSeTb3RiDbagjDa+SmxiDoJCNQvpV0R88FrAf3msl4LGIn0V9+xZyZKfv88OxiOzYWS9f74jIRWDNhWtJqY1BdtHa2PkFVMO7EG/yGNgooFK5DgFVeQ/VuvH2Pazh34pBHklU5sE2i0v+GFPyL9xO66l3/Nhh/aSmsj9qtA9BWbxxMn/BWBk6pLd3svb76hQB9WFtUlhG4scf48IEKJu3R1B6hoOVS0BlVilqpjm40Ain6vIPGpjMFOI/kshWpQIqhc20+x01Bhg0rlOGkmNBjSXWqVk7e4CsidsvoE6D5nLlikpZtHC8jB3bX0aN6ieDBna9BBHt9/hkn/lRFFBDNXMkPHexlEx/QsIjR0nxSAh3HZRIyE99ZuSNX72iGf1i3+6QxL6tKJIdEMPnPyjoNwSB4jlLkFjhGWQbrTT3hOykndmYXI14cfFiFGB/VdZvuSKnrsRgHEZfsRBE20RATUWAKQYvyIgqLqTdW4gXwIRADPGAvKFiy+KKOAE1/XxeOAcByXs+/XXtYJULjRiPMgq9JHX1vMjPYGis1Q6a3dBjUJY8jWLsiF0Kj4RCiJa7Dqqxmbx3VxJXr2J+/Six73ZBcNvapFs8HkbTcD+MzwxjHtk4N4GVkRjBJVSBWPsObky+ohhxGbUiv90p8e+3Ims3FAW2Udk2vFJC/QZK8up5xIFBGA9ScnVjAZWxoleuxuQKeI+jx6PKOK7fHUXceTsLqGqBAIbQSqQMIDqiwfA+PoTYQoZRvbV8fAjHR9djHRvOMWpwhfzrf50pb75JAXWgWe8+lQIs1RL/Ce9CvA9jrO/93TZJnT/YIup0OwEVwlzxLO/9XVlt3t+doAxj6boExoB4E/8Bcex7MAanvm3RGLAkV3jus8ii/KS5H7gHdxePjVu3wLtcgRHuUgxGuYh8BaPcxVtWzmkvARVkthiSJd8Qa4hBfpnHW8eRITZRIPXzMVTUgwd6DgLpsqWVcO0dJaNH95NRI/tKRUUJ9m3f1ikCqv+WGET84Zpa+QBZOmNwV0hQk5nHMkptQgoBvtQu5G60upLhxEIXX7WEYnA8d10dCF1HawnBn1YOLvzbDAx+mMaXCbYxUVK4KCUlWJYtGAm33mnyystTEcrA4x7txmLTdZ9/ItHP3oGVAVY8TgQuuZpanvgyBhNaM1vKXvqlVLzwcocxn7ZrTHFe98U6iXz6vqTOHrCr836Hn0Vyl9WvS9msOXn37YgdyEzX2vpjNy8UeEnS3xuD0Yj9felXOgZFfbqWljIaTci6T0/J3989KV8jO14qDCGleCQgFX3X5CKct41bwRZUeGZQQE0RLxhPaoHcq1mKFfiPa+h6AjvnPK7dAEOIEQbD2B8ypNgP5wjji2W0xo0ol3/+HcpCvDoVbjKPFnOZvHPHy3T7Z2DEpcaD5V/jPZNMyFOy8h+lfPVrUgL3085stV99AYz4QFLHduXsRmgM5tFqbx4h8VBXailky6z9FAnh1vxVUleOF941MjdchowHRiB5GnC6o8pOFd7Jwvc8fTYqaz9+KP/+fp3cegDeA8K4yS/R9DlaZEGF94ate6x4oBgCbCAuNIEhWXyIdgf7wv2OGFICDKka3Uv+8LvpqEE4VcaOGdB0hx/xLVpL+bM1ktjxiTFOqBcLmfAczeIOxia8/NfgSfB+Rxbfjm6xM6ek/vOPJfbF27Dd5PH+sZ0bauZmL8zNImTU7gotAiWBVj3Y+n7h3VG+EFgDvrv4mVcwBm9IOaoJdNdWW5eUdZ89lL9/UCvfwaoaB9YkknBnVoGw6btqkQVVraHEiwJ4k4a8DZVnuq4IOjHiTQq15lPy+19Nll/CW2Pe0+Ob7mw7bOl0AZX1yQ4eish+LD8cq5MDJ+vkbl1uN5vCBVSfBRVWV6Mh8KiIZ1+TmKjWwEdZToz0OjKXWNTqyvVFUoqg+rnTB8n0aYPliZnD5IknRsqM6ajnx7R6j3hL3r8vUbiaxlm/8MQPkjx3ND8TyuRDyDZbVI0EREjSUTL9cWTuZVIfTrAObLDWRH5APdcjByV5BcJ1gS087XEpRabh8NhxBR7Rvru1SEDlMz8UNVw5BlNwLzoGKPqOGOCu1OIwfxw5ch31Ua/LoUP35fDxlBw4DdE0heQlRWV4lwVr9AoXUGFBZdwYXXwZ7+XXregLE9RIYwN+c8pzH7WIACfUXcYosbIEVCrEsG0qYjYenz4YeDFYZs8ahQRJI2XwoI63pKHHndaaJaD2QQma8bCYTnwMz+QTWuqho+r4NUWgCBIHxZHZNnHxXFO76HomhDPzaLrGaObcuYM3tlhAHYxar9VI0IKakOEZGA/gdEdlUm4PEt24GQeOgPc4GJUj4D0OHq9DvULwCTla+wuouLgq0IEZfqxhn4BB06v6y+MzB8v0qUNkNqwZM8F7DHyEvbZyDJVuil84J9Ej5ElQo/3McWToP4b8NHkMG/QkGId3Iep/h2cgQzeE0/Co0fku1ebbqfBXfgrZ9hlDXkgrQnZb4g55kqJeXUMx1iIBlcnbxnIMMtjP8n3dtTG04PCRiMo6hw7Xy2HgzaHz8AJtOMcb3GD7C6hkYsD/WV7GXh9YMxK4MnvGIJkGWWc25JzHHx8pHR2S1OkC6oOHSbl3Lyk//RSTDRvvyQef35ez16hZaLo1R0BlPBkXDTKm9teOhFpBwFTal4FaR8Btqhsf9tN9sbvVdrI7YDL7VZTJW29OkhdWTtB40379y6V/P8bCYZAf8UYrJAWk1D3EH6DQdHTLl5I6vDU3VZDAp3g+0o4vRS29Ggiq/fpj6acv49wHtvFWAEUS/db+w8JQaGMNRva3M1z2gvrYMgEVWsqnUJ9x6Upk8QTTifvRMehoJUHQDfnWpTBGd+9F5O5dxK6fuiOff/GjvP3xFalN9Ia770C4++K5CWgFC6j+GFRrJSV4q1YR2JCO0/DQ3FpYeU2Nbef6BgKqVW5hyytLKlFSZoLMnz9O+vevUNwoLe1gRQz72omtOQJqaDziTZeulrJnFuN5NLjQGe7zfnIxtoo4karLHYPKxEFmHvXHe4PPRddpLRVQix5fJqXLUIMWwmmoP8YD2NdRbtbtQb1IhHiSUP5j2477sg68x7ZDuce13QVUxRHyEljSvAn+9LDmteXAkNUTZd68sYof5D9KnfdWk49HEpluyY+wznl060aJbV2XX2k+cjL4EeDOkhUGd/icd0JtXyY34/uceKPj3+RdZjaESlBKjfwI8DIUUFous2fH/WqRgMryV0texjg8J2GEGIXIk3QRgbsllCMbcA9YcxeyzjEowj5ff0/eW/9AYtyQo7WrgOrjTTJYQ+yhXJSUWZMGyRuvTZSVz0+QIYg37Q+s6d2rY5PhdbqAasfm3v24fLT2hvz7X2/KwXN0ZwCRdOEeJJptWK9uwJi8tIrmbEiSBOE0gaycpr5ZA+ZRBwLMg7rZmEHJCKj2JUGhNSkDMDAjh1RIdWU/MJkTZcWyGhnjXGuapD4tDdGvUXB5+/om99ENvfsDhFDvFMWXO0NLmbtz3W9r8uEDqd+2BS/iryT549nCbgCZiVUQYAHsqurCjunkvS5fvicbN52XTz8/L2cuheX63d7yMEZrJAGf2JFpTKym5aMUL7K3ZfZifWPj4msKWHM/z02mOQIqFVt0kVFXsqSUg3kcMaRcRgyt0Hj15wH2c2aNyVz2EftFL4v6b7Ya5dXV8znvvnjG01IKJrH86QU593Mbm0cBxofVb+cYACPOwaJUYAsvRr3TZ1dIyeQpBR7RfXbbsPGW/O3dm7L267voNOd+EE5QaIRXFss0ICu4Kq+zbtHyKeZYlnNIMaFSEkJvWtjENlpNFFPIe2TzGdhoIIzf5EuAJxXw2hoxuBQYUiarnq9ShvGJxzveopd1q93sDwp7dcCd2Jb1SJx0ImfviycjWdiS56Ri0ZKc+7mNhVGAydnqt22W+NbPCjsAexWNR0UHKMw5Bl3Nk6vgm2hix+MnH8p779+Q//X3W1IX88KAFG8sfvBAzH9+AjsUa9QdmGvsPmY713BdCmVrNJQRIUqmebyLVaIXqFxnec3hA4A1Q8pk7pPDZNWqibJsSU2nZQjvQgJqTD5ac1H+9OdLcuAMNUYYOM2oRxDHwqbmcDKgXEfwZvKRXC2PgKoaBJyLg8eB52X4W6/jOy9eInOnDZFn5o+EqXu4TJgwWKqrBqtGwbeX++mjcOFXIAAADYxJREFUAN1TYudQ6/TCOd/agJ9MHFJdIyXjq1XzF7CHW9UMCpD5jJ8/KzEsqbtktgpocE8vrpogpZVVXSZuJV+vaUU9e+5nOX36Z9l38L7s2HNf9p8iI0jcIOgTJ0xLIT7VJFgDc0nAVvD3Azzin4Ex6paLTL9JJGDTfchU2heC9ZDwYwPXWWZTLR+8HtfxOP4MybihvWXJwpEy96mR6nFRUz0IydRgVXtEGxlFut3Fzp1Ry0YuMhQhEVJJZXWXcZ/P1ddutS2RkJgdg9uFJ1IrhvKK41HczTL3FjI2GzZekb+9c0k+3HQd87cxhhieg7wC8lpA0WWqAmQwhtuJIWwGY7BNFenMqYGQJT9ucCeLHfxtm67DcemwIl4vJONH9FUMefrJkTIJNZNZmmrkyGBvEXsq951NAXp3GdzBexHJwnK1IiQVUtyprMq1m9tWIAWYIC92/pwkgPmFthDiZ6ksZ33lkL88YaEn6ML7HT95V95976L8f3+5LLUReIum+RXwDh6GKM6okpv1mYkh5GmIMYbnYFpIw+NY3gUYk+ZdsKlZvAswR8OTQog3LUFCpJGINR2ldU4ngF+pAt6EOymEsQsJqBEIqKfkT/95XPYeuwkCI2EBtQYYMCYdYTHtpA5SAh5TFQhRHAD5NB9IFyCg2gfZS4LUVHKCX79YjYRIj8mSZys13rQ4zCBiPCyuBVMAwn8KjBAC+oK3p9eChsj8oCDk6JmmSot/gBEydCeTBeApqGEM4A6kLkFdzB2xqe4zdiMRx4K41C1bL8o7752S99dfUKYwCUto1r0rhpB5pJWUdMFCJjDdjGcF/6Qwq9spcLIRuBsmEtDjqSCzWkqeD4s9hkKqKtCK5MkpQ+X3bz2GZCZTVKFF3CjWl4E5/SP32Zznk/HpdFPj4lqbUiBFXCY+U0lbaAOj2J0wotDb4n4bNp2Tv/39pLz3JTEEnhQ2SZo9CXkQ4gj+KR9CobMpDPH4lIzVlHgAWqfxmM8zF6zTBVgThDHetefOGAYMYUKkadK3D0JiHnUM8ejS3C995uP+cWjiDHgHKj/icKcJAjVzdcG8oO+8FNQsX+hb3RN+Hj9xS959/4T8v//3pDysh4UUiiwJke8oBrth3nUGY4gPwAbiDA1nikFMwEjexGKH4V10lSrCcB7bWsC79IGn6P/4wwx5841pUKgPVazpLOGUt9FlBNQ6JEb67rsrsmP3j3Lp8n10jQMWlwsXHsix0/fkym1aR/AyhWtMKISYz+I+EFQZBO4NoP89S15UBxRxhcj0m0wwKJ5ZObGBDz6bGVE9nzKW3mAWQVMweWw/mVTTVwYjlbvZv0gtp/PnjZFpU4eZ492no4CjQJegwJGjN2T37iuye89VOX3mthzFcq/Os4KqZRNzXuc+QD497wnyWOx24gIxI2i7J2zqzdrtKoRifzZv3ajBveSxCf2RmRfZjxVnimTcmH6yYP4YWFDHSHl5Po8Pczr36SjgKNCxFDiM5Gu7gCEHDt3Ahcl7JOTmzYdy4vQdOXkJOSygIG82hmRhhOFd9K6y+BDLuJABzeAJZaMpqLE+qaa/PPH4MHlmwTh56smxneZq17Gj4a7mKNBzKXDl6n3Zs+eKfLPzitTXM0wxIXV1UTlz9p4chazzIEJZxeNPVAnG32hZuOFtz8KYBscQWsiHNJR5Ao4ZC0+vKeBdJk0aIIueGS9z545FKZl8BkDtVbt+dBkBNR5PyvUbD+X69Yfy8CEGSF30UrJz1yX58qtzsuPgNazDAChDWQLhFBlGQwzYxSioZtIbRCWXb1DojsPYM2o11XJBJpTb7cvAe3FwMLG9GNqzN1dWyfJllVJTwzTd3C+kwuqwoX1k0KBHt86pktZ9OAp0MQrcvl2n2HHh4l1YU8/Lui8Ql3qF7s2Y87QQpee9mcs691UriW0Nt6uiisyoxYUGxyvY8zzAm7RFBH8DT56B+/+q58arQGpIFJLevUtl2LA+WHp3mptMFxsu1x1HgS5HgVvEEPAexBKd2+ArTp26iTj3c/Ih+A/DXWCeU4mlDF4OjLAYYjHCMpnqYYHjcaieI4sP4RU8HgYYU4Yav2+sGi/PLR8vU6EUHz4cGAL+w1ULIO1ccxTovhSgfENZ59q1h3BiMVbSu3frZDN4l0++OCcXsd4IlcQb8iHkY4ANfj7G8iGMZVdcAT0s7jSbdymSJU8Ol5XPVcr8eaOBNX2VZ+nohEhBI9plBNSgznHdpi2n4fp7VL7acimzC4EdLjLUaj6ojcBMjhqqiDHQZgdJB5D7YQCtG40dSLWIFEMYLUYCgpD06RWSEhYoRCuF+8zvfzsViZCmyGNThus69+Eo4CjQ9Slw7149Mvuekvc+OIESNEiMpq64fAHYRsCHaUKxAYBvwd9uJuNpXe1U+MSxfAHYprgDTCF+pLfzPOaczy8bi6x3k2T50mp7hPt2FHAU6KYU+OHoT/LxJ8flP/9+FDygJzz6McIqx8lAplseDEnvhx9pLOIxHiOqAnCxuvK+9Q+TUGN9kkyoGew/yv12FHAU6GEUuA0P0c8+Pw7e5ZgchxVVQwDIp6T5jIZ8iMfH+HmcvLyLPcaTiVRJz3XFsvr5ccq7LF5U2aUo2+UF1JOnbsgPP1yTc+dRmzDdAOh4UdD4cfjwNdm97ye5cI1uwQR6CqVBDS8YDggP8gTU/hXlsmDOYK0r1q+fqflYXBySmTOGy9THhqsmIehMbp2jgKNA16NAfX0cKdyvAxNuyM1bCAlQ5ZRlLG1/iR3ECK63i93Gb27jPnZbw+ODtptzVlUOQM2woTJp4hCeyDVHAUeBbkyBqz/B5e7oNTkEHiMtn+r9BGGA/0bzbbf7Wizi32QaiTVch2QlpWHUSx4G6+lQGYoSD645CjgK9FwK1NZG5eixa6jzfk1u/8wyh34MITb4m8GIDJ9it/uPsfyL/zj/9uxjJlQPlGnAGyZx7EqtywuoHLiHD5EWP+JZSNPUCyFJSlK+WH9S3v/wmOw8xOx7RhugYK8aSQySutFwYNCobVCNg9lv7NC+8tavJ8rqF2rUhYa7cOh79y7DUqIvCa5zzVHAUaDrUyAJDwliBZcYsAGTvYlOc5azBW2325q7PaQxpnSL6dWrRM/uPhwFHAW6LwUi0XgaTxrfhcWJlmCI/2xB50EqJoQMkAdhiICrc+qnl/vtKNDzKMBkjw89WYfhjkYSsfdZKMZYLOFxhR7DfQ3v0gdYU1HRtXiXLi+gknxNNQ7qNzvOyaZNZ2FlvQU6UxDlwsHBIKuQyr8hkDZaVyTDhvdGbcIqWbxoPGJMWUPRNUcBRwFHAUcBRwFHAUcBRwFHAUcBRwFHgc6iQLcWUBkXcgkZ9i5c+Flu3WJyA2oQuFBAtRqEhuu43qzrBY1B5bj+MnbcAOnVxTQH6KRrjgKOAo4CjgKOAo4CjgKOAo4CjgKOAo8UBbq1gPpIjZS7WUcBRwFHAUcBRwFHAUcBRwFHAUcBR4EeTgEnoPbwAXa35yjgKOAo4CjgKOAo4CjgKOAo4CjgKNBdKOAE1O4yUq6fjgKOAo4CjgKOAo4CjgKOAo4CjgKOAj2cAk5A7eED7G7PUcBRwFHAUcBRwFHAUcBRwFHAUcBRoLtQwAmo3WWkXD8dBRwFHAUcBRwFHAUcBRwFHAUcBRwFejgFnIDawwfY3Z6jgKOAo4CjgKOAo4CjgKOAo4CjgKNAd6GAE1C7y0i5fjoKOAo4CjgKOAo4CjgKOAo4CjgKOAr0cAo4AbWHD7C7PUcBRwFHAUcBRwFHAUcBRwFHAUcBR4HuQgEnoHaXkXL9dBRwFHAUcBRwFHAUcBRwFHAUcBRwFOjhFHACag8fYHd7jgKOAo4CjgKOAo4CjgKOAo4CjgKOAt2FAk5A7S4j5frpKOAo4CjgKOAo4CjgKOAo4CjgKOAo0MMp4ATUHj7A7vYcBRwFHAUcBRwFHAUcBRwFHAUcBRwFugsFnIDaXUbK9dNRwFHAUcBRwFHAUcBRwFHAUcBRwFGgh1PACag9fIDd7TkKOAo4CjgKOAo4CjgKOAo4CjgKOAp0Fwo4AbW7jJTrp6OAo4CjgKOAo4CjgKOAo4CjgKOAo0APp4ATUHv4ALvbcxRwFHAUcBRwFHAUcBRwFHAUcBRwFOguFHACancZKddPRwFHAUcBRwFHAUcBRwFHAUcBRwFHgR5OASeg9vABdrfnKOAo4CjgKOAo4CjgKOAo4CjgKOAo0F0o4ATU7jJSrp+OAo4CjgKOAo4CjgKOAo4CjgKOAo4CPZwCTkDt4QPsbs9RwFHAUcBRwFHAUcBRwFHAUcBRwFGgu1DACajdZaRcPx0FHAUcBRwFHAUcBRwFHAUcBRwFHAV6OAWcgNrDB9jdnqOAo4CjgKOAo4CjgKOAo4CjgKOAo0B3oYATULvLSLl+Ogo4CjgKOAo4CjgKOAo4CjgKOAo4CvRwCjgBtYcPsLs9RwFHAUcBRwFHAUcBRwFHAUcBRwFHge5CASegdpeRcv10FHAUcBRwFHAUcBRwFHAUcBRwFHAU6OEUcAJqDx9gd3uOAo4CjgKOAo4CjgKOAo4CjgKOAo4C3YUCTkDtLiPl+uko4CjgKOAo4CjgKOAo4CjgKOAo4CjQwynw/wMsCgibjs674QAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Scalable computation of eigenvalues\n", + "\n", + "In fact, we already learned one algorithm that works well for sparse matrices: the [power method](Power-Method.ipynb) to compute eigenvalues and eigenvectors. If we just repeatedly multiply a random vector by $A$, it converges towards the eigenvector of the largest $|\\lambda|$. And since this only involves matrix × vector operations, it can take advantage of sparse matrices.\n", + "\n", + "Moreover, there are variants of this algorithm that work for the smallest eigenvalues as well, and it turns out that there are more sophisticated [\"Krylov\"](http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/KrylovSubspace.html) variants that converge even faster than power iterations. In Julia, these are provided by the `eigs` function in packages like [Arpack.jl](https://github.com/JuliaLinearAlgebra/Arpack.jl), [ArnoldiMethod.jl](https://github.com/JuliaLinearAlgebra/ArnoldiMethod.jl), or [KrylovKit.jl](https://github.com/Jutho/KrylovKit.jl), which lets you compute a **few** of the biggest or smallest eigenvalues quickly even for huge sparse matrices.\n", + "\n", + "## Example\n", + "\n", + "![image-2.png](attachment:image-2.png)\n", + "\n", + "As an example, let's consider the **two-dimensional grid of masses and springs** analogous to the mass-and-spring system analyzed in an earlier lecture, whose eigenvectors are the **vibrating modes**.\n", + "\n", + "This can be thought of as a discretized approximation of a **vibrating drum**, which is described by the partial differential equation $\\nabla^2 h = \\frac{\\partial^2 h}{\\partial t^2}$ where $h(x,y,t)$ is the height of the drum surface (= zero at the edges of the drum). (This is an example taken from the class [18.303: Linear Partial Differential Equations](http://math.mit.edu/~stevenj/18.303/) at MIT.) It can also be thought of as a model for vibrations (\"phonon modes\") in crystalline atomic solids.\n", + "\n", + "For 18.06, don't worry too much about how the matrix is constructed." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Laplacian (generic function with 2 methods)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# compute the first-derivative finite-difference matrix\n", + "# for Dirichlet boundaries, given a grid x[:] of x points\n", + "# (including the endpoints where the function = 0!).\n", + "function sdiff1(x)\n", + " N = length(x) - 2\n", + " dx1 = [1/(x[i+1] - x[i]) for i = 1:N]\n", + " dx2 = [-1/(x[i+1] - x[i]) for i = 2:N+1]\n", + " spdiagm(N+1, N, 0=>dx1, -1=>dx2)\n", + "end\n", + "\n", + "# compute the -∇⋅ c ∇ operator for a function c(x,y)\n", + "# and arrays x[:] and y[:] of the x and y points,\n", + "# including the endpoints where functions are zero\n", + "# (i.e. Dirichlet boundary conditions).\n", + "function Laplacian(x, y, c = (x,y) -> 1.0)\n", + " Dx = sdiff1(x)\n", + " Nx = size(Dx,2)\n", + " Dy = sdiff1(y)\n", + " Ny = size(Dy,2)\n", + " \n", + " # discrete Gradient operator:\n", + " G = [kron(sparse(I,Ny,Ny), Dx); kron(Dy, sparse(I,Nx,Nx))]\n", + " \n", + " # grids for derivatives in x and y directions\n", + " x′ = [0.5*(x[i]+x[i+1]) for i = 1:length(x)-1]\n", + " y′ = [0.5*(y[i]+y[i+1]) for i = 1:length(y)-1]\n", + " \n", + " # evaluate c(x)\n", + " C = spdiagm([ vec([c(X,Y) for X in x′, Y in y[2:end-1]]);\n", + " vec([c(X,Y) for X in x[2:end-1], Y in y′]) ])\n", + " \n", + " return G' * C * G # -∇⋅ c ∇\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above code defines the matrix for a box-shaped drum, but for fun I will change it to define a drum over an oddly shaped domain:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOqklEQVR4nO3deVhUZf8G8HuAmUFQRhBZ3ADLQMUN3Ms9Ucq1xTVCM9O31wWXFOrN7TVRs0xTK8u1TC0RW1yScskCd3DXLBdMQUJlQJL9+f3R6/wcYdhk5pnl/lzXuS7nmWfOuecwnu+cM885RyGEECAiIqJi7GQHICIiMlcskkRERAawSBIRERnAIklERGQAiyQREZEBLJJEREQGsEgSEREZwCJJRERkAIskERGRASySRGWIj4/HrFmzkJGRUew5X19f9OnTx/ShHlj+iBEjpC2/PEaMGAFfX1/ZMYgqhUWSqAzx8fGYPXt2iUWSyvb2228jNjZWdgyiSnGQHYCIrNtjjz0mOwJRpXFPkqgUs2bNwhtvvAEA8PPzg0KhgEKhwL59+/T67dq1C0FBQahWrRoCAgKwevXqYvNKTU3FmDFjUK9ePahUKvj5+WH27NkoKCgoM0d+fj6mTZsGLy8vODk54amnnsLhw4dL7Hv69Gn0798frq6ucHR0RMuWLbFu3Tq9Pvv27YNCocCXX36J6dOnw9vbG9WrV0ffvn1x8+ZNZGVl4bXXXoO7uzvc3d0xcuRI3L17V28ey5cvR+fOneHh4QFnZ2c0a9YMCxcuRH5+vl6/kg63KhQKjBs3Dp9//jkaN24MJycntGjRAt9//32Z64LIlLgnSVSKV199Fbdv38aHH36IrVu3wtvbGwDQpEkTXZ8TJ05gypQpiIyMhKenJz777DOMGjUKjz/+ODp37gzgnwLZtm1b2NnZYcaMGXjssceQkJCAuXPn4sqVK1izZk2pOUaPHo3169dj6tSp6NmzJ06fPo3nnnsOWVlZev0uXLiAjh07wsPDA0uXLkWtWrXwxRdfYMSIEbh58yamTZum1//NN99Et27dsHbtWly5cgVTp07F0KFD4eDggBYtWmDjxo1ITEzEm2++iRo1amDp0qW61/7xxx8YNmwY/Pz8oFKpcOLECbzzzjs4f/58iV8SHrZ9+3YcOXIEc+bMQfXq1bFw4UIMHDgQFy5cQMOGDct8PZFJCCIq1bvvvisAiMuXLxd7zsfHRzg6OoqrV6/q2u7duyfc3NzEmDFjdG1jxowR1atX1+snhBCLFi0SAMSZM2cMLv/cuXMCgJg0aZJe+4YNGwQAER4ermsbMmSIUKvVIjk5Wa9vaGiocHJyEhkZGUIIIfbu3SsAiL59++r1i4iIEADEhAkT9NoHDBgg3NzcDGYsLCwU+fn5Yv369cLe3l7cvn1b91x4eLjw8fHR6w9AeHp6iszMTF1bamqqsLOzE9HR0QaXQ2RqPNxK9IhatmyJBg0a6B47OjriiSeewNWrV3Vt33//Pbp164Y6deqgoKBAN4WGhgIA9u/fb3D+e/fuBQAMHz5cr33QoEFwcNA/GLRnzx706NED9evX12sfMWIE/v77byQkJOi1Pzwyt3HjxgCAZ599tlj77du39Q65JiYmol+/fqhVqxbs7e2hVCrx8ssvo7CwEL/99pvB93Nft27dUKNGDd1jT09PeHh46K03Itl4uJXoEdWqVatYm1qtxr1793SPb968ie+++w5KpbLEeaSnpxuc/61btwAAXl5eeu0ODg7Fln3r1i3dIeEH1alTR29e97m5uek9VqlUpbbn5OSgevXqSE5ORqdOneDv748lS5bA19cXjo6OOHz4MP7973/rvXdDyrPeiGRjkSQyAXd3dzRv3hzvvPNOic/fL2IluV9MUlNTUbduXV17QUFBsaJXq1YtpKSkFJvHjRs3dDmqwrZt25CdnY2tW7fCx8dH156UlFQl8ycyFyySRGVQq9UA8Eh7OH369MGOHTvw2GOPwdXVtUKv7dq1KwBgw4YNCA4O1rV/9dVXxUbG9ujRA7Gxsbhx44Ze4V2/fj2cnJzQvn37Sr+HBykUCgD/v24AQAiBTz/9tErmT2QuWCSJytCsWTMAwJIlSxAeHg6lUgl/f3+939PKMmfOHMTFxaFjx46YMGEC/P39kZOTgytXrmDHjh34+OOPUa9evRJf27hxY7z00kv44IMPoFQq8fTTT+P06dNYtGgRXFxc9PrOnDlT9/vnjBkz4Obmhg0bNmD79u1YuHAhNBpN5VfEA3r27AmVSoWhQ4di2rRpyMnJwUcffYQ7d+5UyfyJzAUH7hCVoWvXroiKisJ3332Hp556Cm3atMGxY8cqNA9vb28cPXoUISEhePfdd9G7d2+EhYVh9erVaNmyZZl7l6tWrcLkyZOxdu1a9OvXD1999RViYmKKvc7f3x/x8fHw9/fHv//9bwwYMACnT5/GmjVrdOd7VoWAgADExMTgzp07eO655zB+/Hi0bNlS7xQRImugEEII2SGIiIjMEfckiYiIDGCRJCIiMoBFkoiIyACjFsmff/4Zffv2RZ06daBQKLBt27YyX7N//34EBwfD0dERDRs2xMcff1ysT0xMDJo0aQK1Wo0mTZrwNjxERGQURi2S2dnZaNGiBZYtW1au/pcvX8YzzzyDTp066S6qPGHCBMTExOj6JCQkYPDgwQgLC8OJEycQFhaGQYMG4dChQ8Z6G0REZKNMNrpVoVAgNjYWAwYMMNhn+vTp+Pbbb3Hu3Dld29ixY3HixAndNScHDx6MzMxM7Ny5U9end+/ecHV1xcaNG42Wn4iIbI9ZXUwgISEBISEhem29evXCqlWrkJ+fD6VSiYSEBEyaNKlYnw8++MDgfHNzc5Gbm6t7XFRUhNu3b6NWrVq6K4cQEZHlEEIgKysLderUgZ2d8Q6KmlWRTE1Nhaenp16bp6cnCgoKkJ6eDm9vb4N9UlNTDc43Ojoas2fPNkpmIiKS59q1awavVlUVzKpIAii2Z3f/aPCD7SX1KW2PMCoqCpMnT9Y91mq1aNCgAa5du1bssl5E1qKqLkFH8jRo0AA7d+40ahGwVJmZmahfv36FLg9ZGWZVJL28vIrtEaalpendEshQn4f3Lh+kVqv1LsR8n4uLC4skEZmt5ORkDB06FMuWLUPdunXRsGFD2ZHMjrF/MjOr8yQ7dOiAuLg4vbbdu3ejdevWuvvwGerTsWNHk+UkIjKVkydPonPnzhg3bly5bmZNVcuoe5J3797F77//rnt8+fJlJCUlwc3NDQ0aNEBUVBSuX7+O9evXA/hnJOuyZcswefJkjB49GgkJCVi1apXeqNWJEyeic+fOWLBgAfr3749vvvkGP/74I3755RdjvhUiIql27twJBwcHvPvuu/D395cdx3YII9q7d68AUGwKDw8XQggRHh4uunTpoveaffv2iVatWgmVSiV8fX3FRx99VGy+X3/9tfD39xdKpVIEBASImJiYCuXSarUCgNBqtZV9a0Rmr6T/e5wsf3r22WfFxYsXZX+8pDPVdtwm7wKSmZkJjUYDrVbL3yTJavH0JuvVvXt3rFu3zqYH9JhqO25Wv0kSEVHZ9uzZgxdeeAG3b9+WHcXqsUgSEVmgQ4cO4cknn0ROTo7sKFaNRZKIyEKdP38evr6+sMFfzUyGRZKIyILdvHkTrq6usmNYLRZJIiILp9VqYWdnh4YNG6KwsFB2HKvCIklEZAWEELh8+TLatGmD7Oxs2XGsBoskEZEVSUxMRN++fXHr1i3ZUawCiyQRkZXZu3cvXn31Vdy4cUN2FIvHIklEZIW2bduGqVOn4tq1a7KjWDQWSSIiK7Vx40a89dZbSE5Olh3FYrFIEhFZsc8//xwnT56UHcNisUgSEVm5Dz/8EFevXpUdwyKxSBIRWbndu3dj+PDhSEtLkx3F4rBIEhHZgF9//RU9evTgOZQVxCJJRGQjTp8+jcaNG/OqPBXAIklEZEOuXbsGd3d32TEsBoskEZGNycjIQM2aNVFUVCQ7itljkSQiskFarRZ169bFvXv3ZEcxayySREQ2KjU1FUFBQbzOaylYJImIbNj58+cxaNAg2THMFoskEZGNu337Nk6fPi07hllikSQisnFJSUkYO3YsEhMTZUcxOyySRESEX3/9FZMmTcKxY8dkRzErLJJERAQA2L9/PyZPnowTJ07IjmI2WCSJiEjn559/xpgxY3D+/HnZUcwCiyQREek5dOgQ0tPTZccwCyySRERUzNChQ3l7LbBIEhFRCf7880+0bNkSt2/flh1FKhZJIiIqUUZGBry9vZGbmys7ijQskkREZFBeXh6LJBERkSEajQZ//fWX7BhSsEgSEVGZ6tWrhz/++EN2DJNjkSQiojLl5eWhQ4cOsmOYHIskERGVS25uLn744QfZMUyKRZKIiMolMzMTYWFh2LJli+woJmOSIrlixQr4+fnB0dERwcHBOHDggMG+I0aMgEKhKDY1bdpU12ft2rUl9snJyTHF2yEisll//fUXli5dKjuGyRi9SG7evBkRERF46623kJiYiE6dOiE0NBTJyckl9l+yZAlSUlJ007Vr1+Dm5oYXX3xRr5+Li4tev5SUFDg6Ohr77RAR2bwLFy7YTqEURta2bVsxduxYvbaAgAARGRlZrtfHxsYKhUIhrly5omtbs2aN0Gg0lc6k1WoFAKHVais9DyJzB4ATJ6NNHh4eYvny5dI+36bajht1TzIvLw/Hjh1DSEiIXntISAji4+PLNY9Vq1bh6aefho+Pj1773bt34ePjg3r16qFPnz6l3iw0NzcXmZmZehORtTt16pRuWrt2rew4ZGXS0tLw9ttvY82aNbKjGJVRi2R6ejoKCwvh6emp1+7p6YnU1NQyX5+SkoKdO3fi1Vdf1WsPCAjA2rVr8e2332Ljxo1wdHTEk08+iYsXL5Y4n+joaGg0Gt1Uv379yr8pIgsRGBiom4YNG6b308TAgQNlxyMrcPv2beu/W4gxd1OvX78uAIj4+Hi99rlz5wp/f/8yXz9v3jxRq1YtkZubW2q/wsJC0aJFCzF+/PgSn8/JyRFarVY3Xbt2zSS76UTmKjc3V2RnZ4vs7Gzh6ekp/dAdJ8udlEql2LRpk8k/w6Y63OoAI3J3d4e9vX2xvca0tLRie5cPE0Jg9erVCAsLg0qlKrWvnZ0d2rRpY3BPUq1WQ61WVyw8kRVTqVS6/1cpKSkQQgAAtFotPDw8AABFRUUoKiqSlpEsQ35+PoYMGYLatWuje/fusuNUOaMeblWpVAgODkZcXJxee1xcHDp27Fjqa/fv34/ff/8do0aNKnM5QggkJSXB29v7kfIS2SKFQgE7OzvY2dnB1dUV+fn5yM/Px/bt26HRaPgFk8rl7t271vmlyqj7qUKITZs2CaVSKVatWiXOnj0rIiIihLOzs260amRkpAgLCyv2updeekm0a9euxHnOmjVL7Nq1S/zxxx8iMTFRjBw5Ujg4OIhDhw6VKxNHtxKV3+LFi4Wvr6/w9fUVKpVK+uE9TuY7nTp1ymSfS6s43AoAgwcPxq1btzBnzhykpKQgMDAQO3bs0I1WTUlJKXbOpFarRUxMDJYsWVLiPDMyMvDaa68hNTUVGo0GrVq1ws8//4y2bdsa++0Q2ZyIiAhEREQAAF5++WWcP38eAHDkyBGJqcgcnT59Gv7+/lAqlbKjVBmFEP/7McKGZGZmQqPRQKvVwsXFRXYcIos0cOBA5ObmYufOnbKjkBlZt24dhg8fDnt7e6Mux1TbcRZJFkmiSsvNzcWECROQnp6OrVu3yo5DZiI7OxtOTk5GXYaptuO8wDkRVZparcYnn3yCFStWYNasWTz/kgAAc+fOhbXsf3FPknuSRFXm999/x/79+7Fhwwbs3btXdhySqLCwEHZ2xtsP454kEVmcxx9/HKNGjcKyZcuwfft2NG7cWHYkkmTAgAGyI1QJ7klyT5LIaC5cuIC7d++iR48e0Gq1suOQiXXp0gX79u0zyrxNtR03+ikgRGS7/P39AfxzakBhYSF8fX3lBiKTSkpKkh3hkfFwKxEZXb169eDj4wOtVos//vhDdhwyEa1Wi+bNm8uO8UhYJInIZFxcXNCwYUOcOXMGCoVCdhwygaysLIu+XB2LJBGZXJMmTVBUVITY2Fg4Oztb1RVaSN+VK1fQvn172TEqjUWSiKQZMGAA7t69ixkzZsDR0VF2HDKSvLw83L59W3aMSmGRJCLp/vOf/2DSpElo3rw5i6UVOnHiBMLDw2XHqBQWSSIyC/PmzcOJEyfKdQ9Zsjzp6ek4d+6c7BgVxiJJRGZl5cqVGDNmDF5++WXZUagKHTx4EB988IHsGBXG8ySJyOwsXboUAODt7Y0FCxZITkNVJSkpCb/88gueeuop2VHKjXuSRGS25s2bxyJpRQ4fPoyffvpJdowKYZEkIrNlZ2eHSZMmISYmhsXSSmzatMmiCiUPtxKRWVMqlXjuuedw9+5dAMD06dMlJ6JHcf78eVy5ckV2jHLjniQRWYTq1avj3//+N/773//KjkKP6M033zTahc+rGoskEVkMZ2dnvPHGG3jjjTdkR6FHkJaWpjsyYO5YJInIoqjVakRHRyM3NxehoaGy41AlDRw4EImJibJjlIlFkogsjr29PVQqFXbs2GHR1wW1ZQUFBcjJyZEdo0wskkRk0RISEtCyZUvZMagSOnbsiKtXr8qOUSoWSSKyeImJiQgKCpIdgyrh0qVLZn0rLRZJIrIKx44dQ9euXWXHoArq3r27WQ/iYZEkIquxZ88eDBgwQHYMqqBt27ZBCCE7RolYJInIaigUCmzevBmvvvqq7ChUAeHh4SgsLJQdo0QskkRkVVQqFRYvXoxJkybJjkJWgEWSiKxO9erVMWPGDERGRsqOQuU0YsQI2RFKxCJJRFapZs2amDZtGq/1aiG+/PJL2RFKxCJJRFbL1dUVkZGRiIiIkB2FyiCEQLt27WTHKIZFkoisWs2aNTF37lyMHDlSdhQqw5kzZ2RHKIZFkoisnrOzMz7++GOeHkIVxiJJRDZBpVJh69at6Ny5s+woZEB2djbq168vO4YeFkkishkKhQL79+/H448/LjsKGVBQUICsrCzZMXRYJInI5tSvXx8KhUJ2DCpBamoqnnrqKdkxdExSJFesWAE/Pz84OjoiODgYBw4cMNh33759UCgUxabz58/r9YuJiUGTJk2gVqvRpEkTxMbGGvttEJGV2LNnD3r06CE7BlkAoxfJzZs3IyIiAm+99RYSExPRqVMnhIaGIjk5udTXXbhwASkpKbqpUaNGuucSEhIwePBghIWF4cSJEwgLC8OgQYNw6NAhY78dIrIScXFxGDhwoOwYVILMzEwcPHhQdgwAgEIY+aqy7dq1Q1BQED766CNdW+PGjTFgwABER0cX679v3z5069YNd+7cQc2aNUuc5+DBg5GZmYmdO3fq2nr37g1XV1ds3LixzEyZmZnQaDTQarVwcXGp+JsiIqsxatQorF69WnYMekj37t3x008/GXzeVNtxo+5J5uXl4dixYwgJCdFrDwkJQXx8fKmvbdWqFby9vdGjRw/s3btX77mEhIRi8+zVq5fBeebm5iIzM1NvIiIC/vk5iMgQoxbJ9PR0FBYWwtPTU6/d09MTqampJb7G29sbK1euRExMDLZu3Qp/f3/06NEDP//8s65PampqheYZHR0NjUajm8xtiDERyePg4IDFixfLjkEPOXfunFns4TuYYiEPjyITQhgcWebv7w9/f3/d4w4dOuDatWtYtGiR3vlNFZlnVFQUJk+erHucmZnJQklEAAB7e3u8/vrrcHJywpgxY2THof9JSUnB/v378corr0jNYdQ9SXd3d9jb2xfbw0tLSyu2J1ia9u3b4+LFi7rHXl5eFZqnWq2Gi4uL3kREdJ9KpUJ4eDg+/fRT2VHIzBi1SKpUKgQHByMuLk6vPS4uDh07diz3fBITE+Ht7a173KFDh2Lz3L17d4XmSUT0ILVarXcUi+SLiYnBggULpGYw+uHWyZMnIywsDK1bt0aHDh2wcuVKJCcnY+zYsQD+ORR6/fp1rF+/HgDwwQcfwNfXF02bNkVeXh6++OILxMTEICYmRjfPiRMnonPnzliwYAH69++Pb775Bj/++CN++eUXY78dIrJiHTt2xLp16xAeHi47CuGfy9RlZGRIzWD0Ijl48GDcunULc+bMQUpKCgIDA7Fjxw74+PgA+Oe484PnTObl5WHq1Km4fv06qlWrhqZNm2L79u145plndH06duyITZs24T//+Q/efvttPPbYY9i8ebNZ3maFiCyHvb09wsLCkJ6ejilTpsiOQ/hnvElpY06MzejnSZojnidJRKVZsWIFIiIikJ+fLzsKAVi6dCnGjx+v12YV50kSEVmi119/HTNmzICjo6PsKCQZiyQRUQn+85//4Pnnn5cdgwDcuHEDWq1WyrJZJImIDAgMDISrq6vsGDZv/vz5+PHHH6Usm0WSiMiAyMhItGzZUnYMkohFkoioFMOGDYO7u7vsGCQJiyQRUSleffVVeHl5yY5h81atWoVLly6ZfLkskkREZfjggw8M3rqPTGPnzp24ceOGyZfLIklEVIYePXpg9+7dPCXEBrFIEhGVQ5s2baRd9YX+MXToUFy9etWky2SRJCIqp2vXrsmOYNP+/PNPk18FiUWSiKicatWqBTs7bjZtCf/aREQVkJOTIzsCmRCLJBFRBSgUCri5ucmOYbNu3boFU96Xg0WSiKgCHBwcpJyvR/9o3749bt++bbLlsUgSEREZwCJJRFRBSqUSoaGhsmOQCbBIEhFVkJOTE1asWCE7hs366KOPUFhYaJJlsUgSEVWCq6srxo8fLzuGTXr77bdRUFBgkmWxSBIRVYJGo0FYWJjsGGRkLJJEREQGsEgSEVVSYGAgPvzwQ9kxyIhYJImIKqlatWrw9fWVHcMmNW3a1CTLYZEkInoEoaGh3JuU4K+//jLJclgkiYgegb29PVQqlewYZCQskkREj0itVkOtVsuOQUbAIklE9IjCw8MRGRkpOwYZAYskERGRASySREREBrBIEhFVgeDgYPj7+8uOQVWMRZKIqAr07dsXTz75pOwYVMVYJImIiAxwkB2AyJpcv34do0ePrtRrQ0NDeVcJCxcREYFTp07hyJEjsqNQFWGRJHoE3bt3h1ar1T3Ozc3FmTNnKjWvI0eOYO3atcXaf/75Zzg7O1c2IplQs2bN4OHhITsGVSEWSaIKmDVrll4hS05OhhCiSuadnp6O9PT0Yu2NGzeGnZ0dqlWrhnPnzlXJsoiofFgkicqwb98+9O/fHwCQk5ODvLw8ky7/2rVrun9rNBoAQNeuXfHNN9+YNAeRLTLJwJ0VK1bAz88Pjo6OCA4OxoEDBwz23bp1K3r27InatWvDxcUFHTp0wA8//KDXZ+3atVAoFMWmnJwcY78VsnJFRUUoKipCZmYmlEollEolevTogczMTGRmZpq8QD7sfo5vv/1Wl2/ZsmUoKiqSmov+37fffotWrVrJjkFVxOhFcvPmzYiIiMBbb72FxMREdOrUCaGhoUhOTi6x/88//4yePXtix44dOHbsGLp164a+ffsiMTFRr5+LiwtSUlL0JkdHR2O/HbJS9+7dQ3Z2NmrWrAl7e3toNBoUFBSgoKDAbAvQ/Xzjx4+Hvb09fvzxR2RnZ8uOZfPs7OygUChkx6CqIoysbdu2YuzYsXptAQEBIjIystzzaNKkiZg9e7bu8Zo1a4RGo6l0Jq1WKwAIrVZb6XmQdbhz5464fv26aNasmQBgFdOpU6dkr1abFxQUJP1zYCuTsbfjRt2TzMvLw7FjxxASEqLXHhISgvj4+HLNo6ioCFlZWXBzc9Nrv3v3Lnx8fFCvXj306dOn2J7mg3Jzc3WHqe5PZNtu376NkydP4pVXXkHdunVx6tQp2ZGqTLNmzXD06FHZMYisglGLZHp6OgoLC+Hp6anX7unpidTU1HLN47333kN2djYGDRqkawsICMDatWvx7bffYuPGjXB0dMSTTz6JixcvljiP6OhoaDQa3VS/fv3KvymyaJmZmYiLi8N///tftGjRArGxsbIjGUWbNm1kRyCyDsbcTb1+/boAIOLj4/Xa586dK/z9/ct8/ZdffimcnJxEXFxcqf0KCwtFixYtxPjx40t8PicnR2i1Wt107do1k+ymk3nJysoSs2bNkn54yFQTyTNjxgzh7Ows/TNgC5Oxt+NGPQXE3d0d9vb2xfYa09LSiu1dPmzz5s0YNWoUvv76azz99NOl9rWzs0ObNm0M7knyhqi2raioCAsXLsSdO3ewcOFC2XHIBsyePRvr1q3jQCorYNQiqVKpEBwcjLi4OAwcOFDXHhcXpzvvrCQbN27EK6+8go0bN+LZZ58tczlCCCQlJaFZs2ZVkpusy8SJE7Fs2TLZMYjIAhn9YgKTJ09GWFgYWrdujQ4dOmDlypVITk7G2LFjAQBRUVG4fv061q9fD+CfAvnyyy9jyZIlaN++vW4vtFq1aroTqWfPno327dujUaNGyMzMxNKlS5GUlITly5cb++2QBXnllVeQkZFhtb87EpEJGPVg7v8sX75c+Pj4CJVKJYKCgsT+/ft1z4WHh4suXbroHnfp0qXE487h4eG6PhEREaJBgwZCpVKJ2rVri5CQkGK/e5aGp4BYv7CwMKFUKqX/XiJzIrl8fHykfwZsYTL2dlwhRBVdeNKCZGZmQqPRQKvVwsXFRXYcqmLh4eHYtGmT9KvjyGaD/7XNiq+vL65evSo7htUz9nac95MkqzF79mzUqlULGzdutPkCSURVgxc4J6vw4YcfYs6cOWZ7CTmyPRcvXoS7uzsvXmLhWCTJogkhsGnTJkyYMEF2FCI9SqVSdgSqAiySZLEKCwuxY8cODBs2THYUIrJS/E2SLFJhYSHi4uLQr18/2VGIyIqxSJLFEUJgx44dCA0NlR2FiKwciyRZnE2bNnEPkohMgkWSLMqHH37I3yCJyGRYJMlizJ49GxEREbJjEJEN4ehWsghTpkzB8uXLeR4kEZkUiySZvYkTJ2LlypXIzc2VHYWIbAwPt5LZO3bsGHJycmTHICIbxCJJZm306NE4fPiw7BhEZKN4uJXM1pQpU7B69Wr+DklE0rBIktkRQmD+/Pl4//33ZUchIhvHw61kdj7//HO8+eabsmMQEbFIknnJyclBenq67BhERAB4uJXMyL1797Bq1SpMmTJFdhQiIgDckyQzcvHiRYwfP152DCIiHRZJMgt///03tmzZIjsGUZXZuHEj8vLyZMegR6QQQgjZIUwtMzMTGo0GWq0WLi4usuMQgBs3bqBu3bqyY1gVG/yvbVZ8fX1x9epV2TGsnrG349yTJOlyc3MxdepU2TGIiIrhwB2SSgiBfv36Yffu3bKjEBEVwz1JkkoIwQJJRGaLRZKkevzxx2VHICIyiEWSpLp27ZrsCEREBrFIkjRubm4oKCiQHYOoyhUVFXF0sZVgkSQp/v77bxZIslpt2rRBcnKy7BhUBVgkSYomTZogKytLdgwiolKxSJLJXbx4Ebm5ubJjEBGViUWSTG7IkCFITU2VHYOIqEwskkREVWjPnj24ffu27BhURVgkyaS2bNmCmzdvyo5BZDTvv/8+rly5IjsGVREWSTKptWvX4vr167JjEBGVC4skmcyKFStw7Ngx2TGIiMqNRZJM5tixYxywQ1Zt/vz5+PXXX2XHoCpkkiK5YsUK+Pn5wdHREcHBwThw4ECp/ffv34/g4GA4OjqiYcOG+Pjjj4v1iYmJQZMmTaBWq9GkSRPExsYaKz4RUblcvHgRGRkZsmNQFTJ6kdy8eTMiIiLw1ltvITExEZ06dUJoaKjBq1FcvnwZzzzzDDp16oTExES8+eabmDBhAmJiYnR9EhISMHjwYISFheHEiRMICwvDoEGDcOjQIWO/HaqkhQsXYsOGDbJjEBFVjDCytm3birFjx+q1BQQEiMjIyBL7T5s2TQQEBOi1jRkzRrRv3173eNCgQaJ37956fXr16iWGDBlS4jxzcnKEVqvVTdeuXRMAhFarrcxbokqYOXOmAMDJRJNCoZD9J7c5c+bMEQqFQvrf3tYmY2/HjbonmZeXh2PHjiEkJESvPSQkBPHx8SW+JiEhoVj/Xr164ejRo8jPzy+1j6F5RkdHQ6PR6Kb69etX9i1RJRQWFvI6rUZiZ2cHtVoNtVqNX3/9FUIICCFQVFQkO5rNKSws5EXNrZBRi2R6ejoKCwvh6emp1+7p6WlwAEdqamqJ/QsKCpCenl5qH0PzjIqKglar1U28PZNprVq1Cu+8847sGFZFqVSidu3amD17NnJycpCTk4OOHTvKjmWzcnJykJ2dLTsGGYGDKRaiUCj0HgshirWV1f/h9orM8/43bSJroFarMXToUKxZs0Z2FPqf9evXY9GiRbJjkBEYdU/S3d0d9vb2xfbw0tLSiu0J3ufl5VVifwcHB9SqVavUPobmSfLcvn0bFy9elB3DaqhUKgwbNowFkshEjFokVSoVgoODERcXp9ceFxdn8NBQhw4divXfvXs3WrduDaVSWWofHm4yP/Hx8fyGXUXs7OwwYsQIrF69WnYUekBKSgovkiFBnz59TLMgow4LEkJs2rRJKJVKsWrVKnH27FkREREhnJ2dxZUrV4QQQkRGRoqwsDBd/0uXLgknJycxadIkcfbsWbFq1SqhVCrFli1bdH1+/fVXYW9vL+bPny/OnTsn5s+fLxwcHMTBgwfLlUmr1ZpkVBQJ8d1330kf/WYt07Rp02T/OakE/IzLmdLS0gRg/O240YukEEIsX75c+Pj4CJVKJYKCgsT+/ft1z4WHh4suXbro9d+3b59o1aqVUKlUwtfXV3z00UfF5vn1118Lf39/oVQqRUBAgIiJiSl3HhZJ0+EGpGqmBQsWyP5TkgH8jMuZTFUkFULY3pjlzMxMaDQaaLVauLi4yI5j1b7//nv07dtXdgyL9umnn2LUqFGlDnYjOS5duoRXXnkF+/fvlx3F5qSlpcHDw8Po23Feu5WM5sKFC3jrrbdkx7B4gwYNYoE0U7du3WKBtHIskmQ0mZmZOHnypOwYFu2HH35A9erVZcegEly/fh1DhgyRHcMmHThwACqVyiTLYpEkMmP+/v6ws+N/U3OUn5+PS5cuyY5hkxo3bmyyoyv830dkpg4cOIAGDRrIjkEl0Gq1aNy4sewYZAIskmQ0vF7ro6lWrRp/izRT+fn5yMnJkR2DTIBFkoziypUrvLgDWaWCggLUrl1bdgybVaNGDZN+eWSRJDJDnp6evN6wmbp8+bLsCDbt+PHjcHNzM9nyWCTJKGzw9Nsq9dlnnyEwMFB2DCqBv7+/7AhkQiySZBT8LY2s0c6dO/kF0MawSBIRldPzzz8vO4JN69evn8mvksYiSURUDosWLeKIbcneeOMNeHh4mHSZJrnpMhGRJZs5cyYWLlyI/Px82VHIxLgnSVUuOzsbI0eOlB2DqMps3bqV50XaKBZJqnIFBQXYt2+f7BhEVeJf//oXfv/9d9kxbN7ChQvRqlUrky+XRZKIyICIiAisXbuWe5FmoGHDhnB2djb5clkkiYgMSE9PZ4G0cSySRGaoX79+OH78uOwYNksIgenTp2PDhg2yoxCADz74AM8995yUZXN0K5EZEkLwpHVJCgsL8d5772HhwoWyo9D/2NnZSbtACfckiYgeEBsbi+nTp8uOQf9TvXp1qTceZ5EkMlMXL17keXkmlp2djatXr8qOQQ8YN26c1FPKWCSJzNTQoUNx48YN2TFsxt9//41PPvkEU6dOlR2FzAiLJJEZ27p1K/cmTSA3NxfLli3DlClTZEehB/j5+SEoKEhqBhZJIjM2efJk3Lt3T3YMq1ZYWIi5c+fyd0gz1KlTJ7z44otSM3B0KxHZtPHjx+Ojjz6SHYPMFPckiczcSy+9hMLCQtkxrNLgwYNZIM1U8+bNMWHCBNkxWCSJzN13332Hrl27yo5hdZ555hl89dVXsmOQAe7u7ggODpYdg4dbiSzBr7/+KjuCVenZsyd++ukn2THIAnBPksgCCCHg4+MjO4ZVeOaZZ/DTTz/xikZmrGnTpoiNjZUdAwCLJJHFSE5Ohp+fn+wYFm3IkCHYuXMnC6SZc3BwgIuLi+wYAFgkyQg0Gg0uXbokO4ZVysnJQV5enuwYFqewsBCvv/46Nm/eLDsKlcHb2xtJSUmyY+iwSJJRyLoYsbVLTU1Fy5YtodVqZUexGLm5uZg1axZHsVKlsEgSWZhz586hd+/eSE1NlR3FrOXm5uLChQtYsmQJ5s6dKzsOldPjjz8uO4IeFkkiC3Tw4EGMGDECV65ckR3FLOXl5eHLL79EQEAAr6RjQZydnfHzzz/LjqGHRZLIQv3www+YNGkSfv/9d9lRzMqWLVuwdu1avPLKK7KjUAUNHDhQdoRieJ4kkQXbtm0bFAoFFi5caHaHqWRYsmQJIiIiZMegSlAoFPj8889lxyjGqHuSd+7cQVhYGDQaDTQaDcLCwpCRkWGwf35+PqZPn45mzZrB2dkZderUwcsvv1zsdkFdu3aFQqHQm4YMGWLMt0JktmJjYzF16lSbPvQaHR2NadOmYdKkSbKjkLURRtS7d28RGBgo4uPjRXx8vAgMDBR9+vQx2D8jI0M8/fTTYvPmzeL8+fMiISFBtGvXTgQHB+v169Klixg9erRISUnRTRkZGeXOpdVqBQCh1Wor/d6odHfv3hVz5swRADiZaAoJCRHDhw8XWVlZsv/8JvWf//xHODs7S1//nB5tWr9+fYX+7qbajhutSJ49e1YAEAcPHtS1JSQkCADi/Pnz5Z7P4cOHBQBx9epVXVuXLl3ExIkTK52NRdI07v/tOJl26tSpk8jLy5P95ze6RYsWiW7duokaNWpIX+ecHn3Kz8+v0N/fVNtxox1uTUhIgEajQbt27XRt7du3h0ajQXx8fLnno9VqoVAoULNmTb32DRs2wN3dHU2bNsXUqVORlZVlcB65ubnIzMzUm4is1YEDB9CqVSvpN6s1li1btqBZs2aYO3cu9u7dW+r/fbIMCQkJcHAwzyEyRkuVmpoKDw+PYu0eHh7lPr8rJycHkZGRGDZsmN4lioYPHw4/Pz94eXnh9OnTiIqKwokTJxAXF1fifKKjozF79uzKvREiC3TmzBkAQGBgIE6fPi05TdVISkpCaGgo/v77b37RtTJNmjSRHcGgCu9Jzpo1q9igmYeno0ePAij5qitCiHJdjSU/Px9DhgxBUVERVqxYoffc6NGj8fTTTyMwMBBDhgzBli1b8OOPP+L48eMlzisqKgparVY3Xbt2raJvm8ginTlzBk5OTggJCZEdpdK0Wi2cnJzQoUMHpKamskBamXPnzpnNdVpLUuE9yXHjxpU5ktTX1xcnT57EzZs3iz33119/wdPTs9TX5+fnY9CgQbh8+TL27NlT5goMCgqCUqnExYsXSzzEpFaroVarS50HVb02bdrgm2++Qf/+/WVHsWn37t1DXFwc7OzsMH78eLz33nsAAHt7e7O8fGBBQQEAwNXVFdnZ2bwYuRWzs7ODk5OT7BilM9aPnfcH7hw6dEjXdvDgQQGUPnAnLy9PDBgwQDRt2lSkpaWVa1mnTp0SAMT+/fvL1Z8Dd0znu+++kz4ggFPJ0zfffCMyMjJEUVGR7I+JuHfvnsjIyBAZGRkiICBA+rrhZJrp6NGjlf7MmGo7brTfJBs3bozevXtj9OjR+OSTTwAAr732Gvr06QN/f39dv4CAAERHR2PgwIEoKCjACy+8gOPHj+P7779HYWGh7vdLNzc3qFQq/PHHH9iwYQOeeeYZuLu74+zZs5gyZQpatWqFJ5980lhvh8jq3N/DP3TokG78gJ2dHRo0aGD0Zefn5+P69eu6x9HR0Vi5cqXRl0vmw9PT0yKO8Bl1ONGGDRswYcIE3e8h/fr1w7Jly/T6XLhwQXdHgz///BPffvstAKBly5Z6/fbu3YuuXbtCpVLhp59+wpIlS3D37l3Ur18fzz77LGbOnAl7e3tjvh2qhJo1a8LX19emT3Q3dw+OQK9evTr27Nmj93zdunVRp06dSs//1KlTyMnJ0Wu7evUqXnzxxUrPkyzfZ599hsDAQNkxyqQQwvYO+GdmZkKj0UCr1Zr1D8bWYuXKlRgzZozsGFRJQ4cOxbBhwyr9+tGjR/OOJaSnefPmWLVqFVq3bl3peZhqO26eJ6YQkdnYuHEjNm7cKDsGWZEJEyY8UoE0Jd4FhIiITKZr164WdaELFkkyui5duqBv376yYxCRGejatStatWolO0a5sUiS0fn7+1vUN0ciMo7evXtj+PDhsmNUCIskERGZRIMGDSzuvqcskmQSkyZNwuDBg2XHICJJunfvjujoaNkxKoyjW8kkNBoNnJ2dZccgIglatWqF7777zvwvQVcC7kmSyfBiD0S2SaVSWWSBBFgkyYRWrlyJZ599VnYMIjIhX19fHDx4UHaMSmORJCIio/Hy8pId4ZGwSJJJ+fn5wdHRUXYMIjKBJ598EgkJCbJjPBIWSTKpDz/80KzvQk5EVcPBwQG//PKL7BiPjEWSiIiq3EsvvSQ7QpVgkSSTGzlyJO++QmTlVq1aJTtClWCRJJMbN24cXF1dZccgIiNZtGgR7Oyso7xYx7sgi/Pxxx9zAA+RFVq1ahUiIiJkx6gyLJIkRe/evaFSqWTHIKIq9swzz1jVhUNYJEmaxMREqzkkQ0TA9u3bUbt2bdkxqhS3UCRNw4YNWSSJrMTWrVvRq1cvq9qLBFgkSbKsrCzZEYioCmg0GqsrkACLJEmmUqmgVqtlxyCiSnJwcMCXX36J7t27y45iFCySJJWdnR1u3bolOwYRVYKjoyMWL16MoUOHyo5iNCySJJ1CoUDDhg1lxyCiChozZgzGjRsnO4ZRsUiSdE5OTjhw4IDsGERUAe7u7njsscdkxzA6FkkyC9WqVUPPnj1lxyCicnB3d0dUVBTGjx8vO4rRsUiSWXB1dcWiRYtkxyCiMtSsWRMzZszA5MmTZUcxCRZJMhve3t4YPXq07BhEVApPT0+b2IO8j0WSzEbt2rUxePBg2TGIyIAaNWrg3XfflR3DpFgkyawEBQVh+vTpsmMQ0UOUSiW2b9+Ovn37yo5iUg6yAxA9yNXVFZGRkcjNzcUHH3wgOw4R/c/x48cRGBgoO4bJsUiS2alZsyY8PT1lxyCi/7ly5Qp8fHxkx5CCh1vJLE2dOhVjx46VHYOIAHh5ecmOIA2LJJklBwcHrFixAgMHDpQdhchmOTg4IC0tzaavr8wiSWZLoVCgRo0avJ0WkQTVq1fHhQsXrO7+kBXFrQ+ZtXXr1uG5556DgwN/PicyFQ8PD+zbt4/XVIaRi+SdO3cQFhYGjUYDjUaDsLAwZGRklPqaESNGQKFQ6E3t27fX65Obm4vx48fD3d0dzs7O6NevH/78808jvhOS6euvv4avr6/sGEQ2oUGDBti0aROCg4NlRzELRi2Sw4YNQ1JSEnbt2oVdu3YhKSkJYWFhZb6ud+/eSElJ0U07duzQez4iIgKxsbHYtGkTfvnlF9y9exd9+vRBYWGhsd4KSda9e3colUrZMYis2uOPP47ly5ejW7dusqOYD2EkZ8+eFQDEwYMHdW0JCQkCgDh//rzB14WHh4v+/fsbfD4jI0MolUqxadMmXdv169eFnZ2d2LVrV7myabVaAUBotdpy9SfzMGnSJKFQKAQATpw4VfHUqFEjsXXrVtn/zcvNVNtxo+1JJiQkQKPRoF27drq29u3bQ6PRID4+vtTX7tu3Dx4eHnjiiScwevRopKWl6Z47duwY8vPzERISomurU6cOAgMDDc43NzcXmZmZehNZnvfffx8qlUp2DCKr4+fnh4ULF3I0eQmMViRTU1Ph4eFRrN3DwwOpqakGXxcaGooNGzZgz549eO+993DkyBF0794dubm5uvmqVCq4urrqvc7T09PgfKOjo3W/i2o0GtSvX/8R3hnJ9NFHH8mOQGRV6tWrh+XLl2PAgAGyo5ilChfJWbNmFRtY8/B09OhRAP8M4X+YEKLE9vsGDx6MZ599FoGBgejbty927tyJ3377Ddu3by81V2nzjYqKglar1U3Xrl2rwDsmczJy5Ehs27ZNdgwiq+Hm5obQ0FDZMcxWhcfVjxs3DkOGDCm1j6+vL06ePImbN28We+6vv/6q0CXHvL294ePjg4sXLwL458oPeXl5uHPnjt7eZFpaGjp27FjiPNRqtU2fDGtt+vXrh7i4ON6kmegR1a5dG5s2bZIdw7wZ68fO+wN3Dh06pGs7ePCgAEofuPOw9PR0oVarxbp164QQ/z9wZ/Pmzbo+N27c4MAdG1NYWCj27NkjfbADJ06WOlWrVk38+eefsv8rV5qptuNGK5JCCNG7d2/RvHlzkZCQIBISEkSzZs1Enz599Pr4+/vrRlRlZWWJKVOmiPj4eHH58mWxd+9e0aFDB1G3bl2RmZmpe83YsWNFvXr1xI8//iiOHz8uunfvLlq0aCEKCgrKlYtF0joUFhaKnTt3St/YcOJkaZNCodDbploiU23HjXoZkw0bNmDChAm6kaj9+vXDsmXL9PpcuHABWq0WAGBvb49Tp05h/fr1yMjIgLe3N7p164bNmzejRo0autcsXrwYDg4OGDRoEO7du4cePXpg7dq1sLe3N+bbITNjZ2cHZ2dn2TGILIZCoUB6ejpcXFx4FatyUgghhOwQppaZmQmNRgOtVgsXFxfZcegRbdu2DYMHD0ZeXp7sKERmy9HREb/99pvVjO431Xac124lizdgwAAsX74c1atXlx2FyCy5urri8OHDVlMgTYlFkqzCq6++ijlz5qBmzZqyoxCZlXr16uGbb75Bs2bNZEexSCySZDUmTZqE6dOnF7vQBJGt8vPzw6effopOnTrJjmKxWCTJqkRGRmL69OncoySb16hRI7z//vvo3bu37CgWjUWSrM706dMxc+ZMjnwlm/X4449jwYIFvNRcFWCRJKsUERGBpUuX8oLoZHMaNGiAxYsX82LlVYQnypDVeuWVV+Du7o7+/fvLjkJkdNWqVcMXX3wBNzc3dO3aVXYcq8EiSVatX79+2L9/P7p06SI7CpHR2NnZYe/evXq3JqSqwcOtZPU6d+6MY8eOyY5BZDTnzp1jgTQSFkmyCa1atWKhJKuUnJyMJ554QnYMq8UiSTZBoVAgKCgIv/76q+woRFXi+PHjyM3N5VV0jIxFkmxKx44dIYTAZ599Bjs7fvzJ8jg4OGDPnj1o1aoVR2+bALcSZJNGjRqF+fPnw9HRUXYUonJxdHTU3SS5W7dusuPYDBZJsllvvPEGpkyZwosOkNmrXr063n77baSlpeH555+XHcem8BQQsmlz585FQUEBli9fjrt378qOQ6TH0dERbdq0Qbdu3fDmm2/KjmOTWCTJ5s2fPx9CCFy6dAnbtm1DQUGB7EhEUKvVeO2117BkyRLZUWwab7rMmy7TA6KiojB//nzZMcjGTZw4EdWrV8fcuXNlRzFbptqOc0+S6AHR0dFwd3fHvXv38Pbbb8uOQzZo3rx5iIqKkh2D/odFkughU6ZMQUFBAWrWrInx48fLjkM2YtGiRfD09MSwYcNkR6EHsEgSlcDBwQGvvfaa7nchImNasmQJRo8ejWrVqsmOQg/hKSBEBqhUKoSFheHUqVN45513ZMchKxQVFYVTp07h1VdfZYE0U9yTJCqFo6MjAgMD8dhjj+Hu3buIjo6WHYmswIsvvoilS5fCxcUFTk5OsuNQKbgnSVQO1apVw5w5c5Cdnc27vVOlBQYGIjs7G1988QW8vLxYIC0AiyRROTk4OMDJyQlbt25FYWEhAgICZEciC+Hg4IAGDRrg5MmTcHJy4jVXLQgPtxJVkEKhgEKhwLlz59CwYUPcvn0bWq1WdiwyQxqNBnZ2drh9+7bsKFRJLJJEj+DSpUsAAD8/PxQVFSE5OVlyIjIH3t7eUKvVOHXqFKpXry47Dj0CFkmiKnD58mVkZGQgJCQEWVlZOH/+vOxIJIGvry9q166N9evX83C8lWCRJKoiNWvWxOHDh3H69GlERUXh8uXLOHPmjOxYZAINGjRA8+bNMWHCBPTs2VN2HKpCvHYrr91KRvLTTz/hq6++wp49e/D777/LjkNGULt2bQwcOBCdOnXCSy+9JDuOTTHVdpxFkkWSjCw2NhYnT57EihUrkJaWJjsOPSKFQoGZM2cCAOrWrYtXX31VciLbxCJpRCySJMPWrVtx584dvP7668jLy5Mdhyph+fLlqFatGkaOHCk7is3jXUCIrMxzzz0HAKhXrx4KCwuRnZ2NQYMGSU5FZZk3bx5atGgBAOjVqxfs7e0lJyJTYpEkMrFevXoBAAoLC3H06FGcPXsWL7/8suRU9LAJEybg5ZdfxhNPPIEaNWrIjkOS8HArD7eSZHl5eUhJSQEALF68mHeil6ht27b46quvAACurq7cPpgx/iZpRCySZK5yc3ORm5sLAOjSpQuSkpLkBrIBarVaN6Dq/qUHyfyZajtu1Gu33rlzB2FhYdBoNNBoNAgLC0NGRkapr7l/ya+Hp3fffVfXp2vXrsWeHzJkiDHfCpFJqNVquLi4wMXFBUePHkV+fj7y8/OhVqt1n3V6NPfXY2pqKvLz85Gdna1b5yyQ9DCjFslhw4YhKSkJu3btwq5du5CUlISwsLBSX5OSkqI3rV69GgqFAs8//7xev9GjR+v1++STT4z5VohMzt7eHg4ODnBwcEBOTg6Kiopw/fp1ODs7w9nZGWq1WnZEs2dnZ6dbX87Ozti2bRuKiopQVFQET09PODg4cCAOlcpoA3fOnTuHXbt24eDBg2jXrh0A4NNPP0WHDh1w4cIF+Pv7l/g6Ly8vvcfffPMNunXrhoYNG+q1Ozk5FetLZO28vb1x9+5dAMCWLVswYcIE3XO3bt3iqSX4Zx3d17lzZ2zatEliGrJ0RiuSCQkJ0Gg0ugIJAO3bt4dGo0F8fLzBIvmgmzdvYvv27Vi3bl2x5zZs2IAvvvgCnp6eCA0NxcyZMw2OQHvwdx7gn2PZRJbuhRdewAsvvKB7PGLECCQmJuoeCyFw6tQpGdFMxtfXV+/3KDs7O711QPSojFYkU1NT4eHhUazdw8MDqamp5ZrHunXrUKNGDd35ZfcNHz4cfn5+8PLy0l0n88SJE4iLiytxPtHR0Zg9e3bF3wSRBVm7dq3e4/z8fDz77LN6bVevXsVvv/1mwlRVx8XFRe9LNwD897//LdZGVJUqXCRnzZpVZsE5cuQIAJQ4yEAIUe7BB6tXr8bw4cPh6Oio1z569GjdvwMDA9GoUSO0bt0ax48fR1BQULH5REVFYfLkybrHmZmZqF+/frkyEFkqpVKJ3bt367Xt3r0bGzZsKLH/+vXrTRGrTH379oWrq2uxdj8/P8yaNcv0gcimVbhIjhs3rsyRpL6+vjh58iRu3rxZ7Lm//voLnp6eZS7nwIEDuHDhAjZv3lxm36CgICiVSly8eLHEIqlWqznIgQhASEgIQkJCSnyubt26qMgZYQsWLCiz/0svvYR69epVKGNERES5thFEplDhIunu7g53d/cy+3Xo0AFarRaHDx9G27ZtAQCHDh2CVqtFx44dy3z9qlWrEBwcrLscVGnOnDmD/Px8vR/siahi5s2bV6H+5SmqL7zwAv9fkkUz6sUEQkNDcePGDd3pGa+99hp8fHzw3Xff6foEBAQgOjoaAwcO1LVlZmbC29sb7733HsaOHas3zz/++AMbNmzAM888A3d3d5w9exZTpkxBtWrVcOTIkXIN5+bFBIiILJtVXExgw4YNaNasme4QT/PmzfH555/r9blw4QK0Wq1e26ZNmyCEwNChQ4vNU6VS4aeffkKvXr3g7++PCRMmICQkBD/++CPPdyIioirFy9JxT5KIyOJYxZ4kERGRJWORJCIiMoBFkoiIyAAWSSIiIgNYJImIiAxgkSQiIjKARZKIiMgAFkkiIiIDWCSJiIgMYJEkIiIygEWSiIjIABZJIiIiA1gkiYiIDGCRJCIiMoBFkoiIyAAWSSIiIgNYJImIiAxgkSQiIjKARZKIiMgAFkkiIiIDWCSJiIgMYJEkIiIygEWSiIjIABZJIiIiA1gkiYiIDGCRJCIiMoBFkoiIyAAWSSIiIgNYJImIiAxgkSQiIjKARZKIiMgAFkkiIiIDWCSJiIgMYJEkIiIygEWSiIjIAKMWyXfeeQcdO3aEk5MTatasWa7XCCEwa9Ys1KlTB9WqVUPXrl1x5swZvT65ubkYP3483N3d4ezsjH79+uHPP/80wjsgIiJbZtQimZeXhxdffBH/+te/yv2ahQsX4v3338eyZctw5MgReHl5oWfPnsjKytL1iYiIQGxsLDZt2oRffvkFd+/eRZ8+fVBYWGiMt0FERLZKmMCaNWuERqMps19RUZHw8vIS8+fP17Xl5OQIjUYjPv74YyGEEBkZGUKpVIpNmzbp+ly/fl3Y2dmJXbt2lSuPVqsVAIRWq63YGyEiIrNgqu24g+wi/aDLly8jNTUVISEhuja1Wo0uXbogPj4eY8aMwbFjx5Cfn6/Xp06dOggMDER8fDx69epVbL65ubnIzc3VPdZqtQCAzMxMI74bIiIylvvbbyGEUZdjVkUyNTUVAODp6anX7unpiatXr+r6qFQquLq6Futz//UPi46OxuzZs4u1169fvypiExGRJLdu3YJGozHa/CtcJGfNmlViwXnQkSNH0Lp160qHUigUeo+FEMXaHlZan6ioKEyePFn3OCMjAz4+PkhOTjbqyjWGzMxM1K9fH9euXYOLi4vsOOXG3KbF3KZnqdktNbdWq0WDBg3g5uZm1OVUuEiOGzcOQ4YMKbWPr69vpcJ4eXkB+Gdv0dvbW9eelpam27v08vJCXl4e7ty5o7c3mZaWho4dO5Y4X7VaDbVaXaxdo9FY1IfiQS4uLhaZnblNi7lNz1KzW2puOzvjnslY4SLp7u4Od3d3Y2SBn58fvLy8EBcXh1atWgH4Z4Ts/v37sWDBAgBAcHAwlEol4uLiMGjQIABASkoKTp8+jYULFxolFxER2Saj/iaZnJyM27dvIzk5GYWFhUhKSgIAPP7446hevToAICAgANHR0Rg4cCAUCgUiIiIwb948NGrUCI0aNcK8efPg5OSEYcOGAfhn72/UqFGYMmUKatWqBTc3N0ydOhXNmjXD008/bcy3Q0RENsaoRXLGjBlYt26d7vH9vcO9e/eia9euAIALFy7oRpsCwLRp03Dv3j28/vrruHPnDtq1a4fdu3ejRo0auj6LFy+Gg4MDBg0ahHv37qFHjx5Yu3Yt7O3ty5VLrVZj5syZJR6CNXeWmp25TYu5Tc9SszN36RTC2ONniYiILBSv3UpERGQAiyQREZEBLJJEREQGsEgSEREZwCJJRERkgNUWSUu9l+WdO3cQFhYGjUYDjUaDsLAwZGRklPoahUJR4vTuu+/q+nTt2rXY82VdOcnYuUeMGFEsU/v27fX6mNv6zs/Px/Tp09GsWTM4OzujTp06ePnll3Hjxg29fsZY3ytWrICfnx8cHR0RHByMAwcOlNp///79CA4OhqOjIxo2bIiPP/64WJ+YmBg0adIEarUaTZo0QWxs7CNlfNTcW7duRc+ePVG7dm24uLigQ4cO+OGHH/T6rF27tsTPe05OjrTc+/btKzHT+fPn9fqZ2/ou6f+gQqFA06ZNdX1Msb5//vln9O3bF3Xq1IFCocC2bdvKfI3JPt9GvceIRDNmzBDvv/++mDx5crlu0yWEEPPnzxc1atQQMTEx4tSpU2Lw4MHC29tbZGZm6vqMHTtW1K1bV8TFxYnjx4+Lbt26iRYtWoiCgoIqyd27d28RGBgo4uPjRXx8vAgMDBR9+vQp9TUpKSl60+rVq4VCoRB//PGHrk+XLl3E6NGj9fplZGRUSebK5g4PDxe9e/fWy3Tr1i29Pua2vjMyMsTTTz8tNm/eLM6fPy8SEhJEu3btRHBwsF6/ql7fmzZtEkqlUnz66afi7NmzYuLEicLZ2VlcvXq1xP6XLl0STk5OYuLEieLs2bPi008/FUqlUmzZskXXJz4+Xtjb24t58+aJc+fOiXnz5gkHBwdx8ODBSud81NwTJ04UCxYsEIcPHxa//fabiIqKEkqlUhw/flzXZ82aNcLFxaXY574qVTT33r17BQBx4cIFvUwPfk7NcX1nZGTo5b127Zpwc3MTM2fO1PUxxfresWOHeOutt0RMTIwAIGJjY0vtb8rPt9UWyfvM7V6WpTl79qwAoPdHTEhIEADE+fPnyz2f/v37i+7du+u1denSRUycOPGRM5aksrnDw8NF//79DT5vKev78OHDAoDehqiq13fbtm3F2LFj9doCAgJEZGRkif2nTZsmAgIC9NrGjBkj2rdvr3s8aNAg0bt3b70+vXr1EkOGDKmi1BXPXZImTZqI2bNn6x6X9//0o6ho7vtF8s6dOwbnaQnrOzY2VigUCnHlyhVdmynW94PKUyRN+fm22sOtFVXWvSwBlHkvy0eVkJAAjUaDdu3a6drat28PjUZT7vnfvHkT27dvx6hRo4o9t2HDBri7u6Np06aYOnUqsrKyHjnzo+bet28fPDw88MQTT2D06NFIS0vTPWcJ6xv4524ECoWi2GH9qlrfeXl5OHbsmN56AICQkBCDORMSEor179WrF44ePYr8/PxS+1TFuq1s7ocVFRUhKyur2J0e7t69Cx8fH9SrVw99+vRBYmJilWR+1NytWrWCt7c3evTogb179+o9Zwnre9WqVXj66afh4+Oj127M9V0Zpvx8m9X9JGUy1r0sK5rBw8OjWLuHh0e5579u3TrUqFEDzz33nF778OHDdReQP336NKKionDixAnExcVJyx0aGooXX3wRPj4+uHz5Mt5++210794dx44dg1qttoj1nZOTg8jISAwbNkzvDgpVub7T09NRWFhY4mfTUM7U1NQS+xcUFCA9PR3e3t4G+1TFuq1s7oe99957yM7O1t3MAPjnes9r165Fs2bNkJmZiSVLluDJJ5/EiRMn0KhRIym5vb29sXLlSgQHByM3Nxeff/45evTogX379qFz584ADP9NzGV9p6SkYOfOnfjyyy/12o29vivDlJ9viyqSlngvS6D8uUtafnkz3Ld69WoMHz4cjo6Oeu2jR4/W/TswMBCNGjVC69atcfz4cQQFBUnJPXjwYL1MrVu3ho+PD7Zv316syFdkvqZa3/n5+RgyZAiKioqwYsUKvecqs77LUtHPZkn9H26vzOe9oiq7jI0bN2LWrFn45ptv9L7MtG/fXm+A15NPPomgoCB8+OGHWLp0qZTc/v7+8Pf31z3u0KEDrl27hkWLFumKZEXnWVmVXcbatWtRs2ZNDBgwQK/dVOu7okz1+baoImmJ97KsSO6TJ0/i5s2bxZ7766+/in0jKsmBAwdw4cIFbN68ucy+QUFBUCqVuHjxosGNtqly3+ft7Q0fHx9cvHgRgHmv7/z8fAwaNAiXL1/Gnj17yrwPX3nWtyHu7u6wt7cv9g34wc/mw7y8vErs7+DggFq1apXapyJ/s6rOfd/mzZsxatQofP3112Xe3cfOzg5t2rTRfW4e1aPkflD79u3xxRdf6B6b8/oWQmD16tUICwuDSqUqtW9Vr+/KMOnnu0K/YFqgig7cWbBgga4tNze3xIE7mzdv1vW5ceNGlQ8kOXTokK7t4MGD5R5IEh4eXmyUpSGnTp0SAMT+/fsrnfe+R819X3p6ulCr1WLdunVCCPNd33l5eWLAgAGiadOmIi0trVzLetT13bZtW/Gvf/1Lr61x48alDtxp3LixXtvYsWOLDWwIDQ3V69O7d+8qH0hSkdxCCPHll18KR0fHMgdv3FdUVCRat24tRo4c+ShR9VQm98Oef/550a1bN91jc13fQvz/wKNTp06VuQxjrO8HoZwDd0z1+bbaInn16lWRmJgoZs+eLapXry4SExNFYmKiyMrK0vXx9/cXW7du1T2eP3++0Gg0YuvWreLUqVNi6NChJZ4CUq9ePfHjjz+K48ePi+7du1f5KQnNmzcXCQkJIiEhQTRr1qzYKQkP5xZCCK1WK5ycnMRHH31UbJ6///67mD17tjhy5Ii4fPmy2L59uwgICBCtWrWSljsrK0tMmTJFxMfHi8uXL4u9e/eKDh06iLp165r1+s7Pzxf9+vUT9erVE0lJSXpD4nNzc4UQxlnf94f2r1q1Spw9e1ZEREQIZ2dn3SjEyMhIERYWput/f4j8pEmTxNmzZ8WqVauKDZH/9ddfhb29vZg/f744d+6cmD9/vtFOSShv7i+//FI4ODiI5cuXGzx9ZtasWWLXrl3ijz/+EImJiWLkyJHCwcFB78uOqXMvXrxYxMbGit9++02cPn1aREZGCgAiJiZG18cc1/d9L730kmjXrl2J8zTF+s7KytJtowGI999/XyQmJupGjMv8fFttkQwPDxcAik179+7V9QEg1qxZo3tcVFQkZs6cKby8vIRarRadO3cu9s3q3r17Yty4ccLNzU1Uq1ZN9OnTRyQnJ1dZ7lu3bonhw4eLGjVqiBo1aojhw4cXG1b+cG4hhPjkk09EtWrVSjwXLzk5WXTu3Fm4ubkJlUolHnvsMTFhwoRi5ySaMvfff/8tQkJCRO3atYVSqRQNGjQQ4eHhxdalua3vy5cvl/i5evCzZaz1vXz5cuHj4yNUKpUICgrS2ysNDw8XXbp00eu/b98+0apVK6FSqYSvr2+JX6C+/vpr4e/vL5RKpQgICNDbqFeViuTu0qVLies2PDxc1yciIkI0aNBAqFQqUbt2bRESEiLi4+Ol5l6wYIF47LHHhKOjo3B1dRVPPfWU2L59e7F5mtv6FuKfIzbVqlUTK1euLHF+pljf9/dkDf3dZX6+eT9JIiIiA3ieJBERkQEskkRERAawSBIRERnAIklERGQAiyQREZEBLJJEREQGsEgSEREZwCJJRERkAIskERGRASySREREBrBIEhERGfB/uYck2oP5dm4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'the domain')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N = 400\n", + "x = range(-1,1,length=N+2)[2:end-1]\n", + "y = x' # a row vector\n", + "r = hypot.(x,y) # use broadcasting (.+) to make Nx x Ny matrix of radii\n", + "θ = atan.(y, x) # and angles\n", + "φ = @. exp(-(r - θ*0.5/π - 0.5)^2 / 0.3^2) - 0.5\n", + "imshow(φ .> 0, extent=[-1,1,-1,1], cmap=\"binary\")\n", + "title(\"the domain\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Imagine that **every black \"pixel\"** is a **mass** which is **connected to its adjacent neighbors** by springs.\n", + "\n", + "This all eventually leads to the following matrix, whose eigenvalues $\n", + "\\lambda = \\omega^2$ are the squares of the frequencies and whose eigenvectors are the vibrating modes:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(59779, 59779)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x0 = range(-1,1,length=N+2) # includes boundary points, unlike x\n", + "Abox = Laplacian(x0, x0, (x,y) -> 1.0);\n", + "i = findall(>(0), vec(φ))\n", + "A = Abox[i,i]\n", + "size(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also look at the sparsity pattern of $A$:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "59779×59779 SparseMatrixCSC{Float64, Int64} with 297099 stored entries:\n", + "⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a $60000\\times60000$ matrix, which would too big to even store on my laptop if we stored every entry. Because it is sparse, however, almost all of the entries are zero and we only need to store those.\n", + "\n", + "The `nnz` function computes the number of nonzero entries, and we can use it to compute the fraction of nonzero entries in A:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8.313882809376213e-5" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nnz(A) / length(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Less than 0.01% of the entries are nonzero!\n", + "\n", + "It's a bit easier to understand if you look at the average **number of nonzeros per row**:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.969956004617006" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nnz(A) / size(A,1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is **about 5**: each \"mass\" is connected to 4 neighbors, plus there is a diagonal term. (It's slightly $< 5$ because masses on the *boundaries* have fewer neighbors.)\n", + "\n", + "It really pays to take advantage of this sparsity.\n", + "\n", + "Now we'll compute a few of the smallest-|λ| eigenvectors using [`eigsolve`](https://jutho.github.io/KrylovKit.jl/stable/man/eig/) from [KrylovKit.jl](https://github.com/Jutho/KrylovKit.jl)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2.845904 seconds (17.52 M allocations: 1.113 GiB, 8.02% gc time, 85.11% compilation time)\n", + "size(X) = (21,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5e0lEQVR4nO2de7wVVd3/PzOzzwUQjiLCAUO8pHhBC0EEfbyloSbeKi9ppEUYlaWhv5SnNLTnES2zMtPSNPKSkiHqo4hi4S3AvID3yErDC0eS9BxIOZeZ7++PmTWz1pq1Zmbvc/a58X372u49a9Zc9uac/Tnf63KIiMAwDMMwTAq3p2+AYRiGYXorLJIMwzAMY4FFkmEYhmEssEgyDMMwjAUWSYZhGIaxwCLJMAzDMBZYJBmGYRjGAoskwzAMw1hgkWQYhmEYCyySnWTu3LlwHEcZ23HHHTFt2rRuuf4HH3yAuXPn4pFHHkntmz9/PhzHweuvv94t99KbeP311+E4DubPn99l57z55ptx6qmnYuzYsXBdFzvuuGOXnbs7+c9//oOLL74Yu+22G+rq6rDtttvisMMOw6uvvpp77I477gjHcVKPWbNmKfM2btyIb3/725g6dSq22247OI6DuXPn5p6fiHDwwQfDcRycffbZxjn//Oc/8aUvfQmjRo1CXV0dtt9+e5x44ompeQ8++CAOPPBADBgwAA0NDTj22GPx0ksvGc/58MMPY8qUKRg4cCCGDRuGM888E+vXr1fmvPHGGzjxxBOx8847Y9CgQWhoaMD48eNxzTXXoKOjQ5n7q1/9CieccAJ23HFHDBgwAB/96Efx1a9+FevWrUtdu6WlBd/5znew2267YeDAgdh+++1x0kknpe71zDPPNH724rFy5cqKPlPb+S6//PLU3GXLluGTn/wkhg8fjq222gr77LMPrr76avi+r8xra2vDxRdfjJ122gm1tbUYM2YM5syZgw8//FCZJ35PTY877rjD+H66m1JP30Bf58tf/jKOOuqoHrv+Bx98gEsuuQQAcOihhyr7jjnmGKxYsQIjR47sgTvrf9xyyy1oamrCpEmTEAQB2tvbe/qWymbTpk047LDD8Pbbb+PCCy/EPvvsg+bmZixfvhwffPBBoXMceOCBuPLKK5WxESNGKNsbNmzA9ddfj4997GM44YQT8Ktf/arQuX/+85/jb3/7m3X/iy++iEMPPRQ777wzrrzySnzkIx/BunXr8OCDDyrz7rnnHpx44ok4/vjjsXDhQjQ3N+OSSy7BQQcdhKeeegq77LJLPPfRRx/F0UcfjWOOOQb33HMP1q9fjwsuuACHH344nn76adTV1QEI/7gYMmQILrroIuywww5oa2vD4sWL8Y1vfAOrV69W3uP3vvc9HHbYYbjsssuw/fbbY82aNfj+97+Pe+65B6tWrVI+r2OPPRZPP/005s6di4kTJ+LNN9/EpZdeiilTpuCFF17AmDFjAAAXXXRR6o8RcXxdXR3222+/ij5TAPjsZz+L8847TxnbYYcdlO2HH34YRx55JA4++GDccMMNGDRoEO69916cc845+Pvf/46f/vSn8dzPfe5zWLx4MS6++GLst99+WLFiBf7nf/4HL730Eu69997U9b/xjW/gtNNOU8Z23XXXzHvuNojpcsaMGUPHHHNMRce2tbVRe3t74fn/+te/CAB973vfq+h6/ZXXXnuNANCvf/3rLjun7/vx62OOOYbGjBnTZefuLs455xwaNGgQ/f3vf6/o+KI/20EQUBAERFT8Z/S1116jrbbaiu666y4CQF//+tdT5/z4xz9OH//4x2nz5s2Z5xo7dizts88+8T0QEb3++utUW1tLp512mjJ3v/32oz333FP5vfvTn/5EAOjaa6/Nfa8nn3wylUol5Z7eeeed1LynnnqKAND3v//9eOzVV18lAPTd735Xmbt8+XICQFdddVXmtR955BHj8YK8z5SIrOM6p59+OtXV1dGmTZuU8alTp9KQIUPi7RUrVhAA+tGPfqTMu+yyywgAPfTQQ8r9AaAf/vCHudfvKdjdauDuu++G4zj4wx/+kNp33XXXwXEcPP/88wDM7lbBokWLsM8++6C+vh4777wzrr76amX/I488AsdxcMstt+C8887D9ttvj7q6Ovztb3/Dv/71L3zta1/Dnnvuia222grDhw/HJz7xCTz++OPx8a+//jq22247AMAll1wSuynOPPNMAGZ366GHHopx48bhqaeewkEHHYSBAwdi5513xuWXX44gCJT7e+mllzB16lQMHDgQ2223Hb7+9a/j/vvvh+M4RveujPhcnn/+eZx00kloaGjA0KFDMXv2bHR0dGDNmjU46qijMHjwYOy44474wQ9+kDrH2rVr8fnPfx7Dhw9HXV0d9thjD/zoRz9K3efbb7+Nk08+GYMHD0ZDQwNOOeUUNDU1Ge/r6aefxnHHHYehQ4eivr4e48ePx+9+97vM9yJw3a7/dVm9ejUcx0n9bAiefPJJOI6j/JVeKR988AF+9atf4aSTTsLOO+/c6fNlIX4Wy+Gss87CJz/5SaPrFAAee+wxrF69Gueee25s3ZnYsGED1qxZg6OPPlq5hzFjxmDcuHG4++67Y/fgW2+9haeeegrTp09HqZQ41g444ADstttuWLRoUe59b7fddnBdF57nxWPDhw9PzZswYQI8z8Mbb7wRj9XU1AAAGhoalLlbb701AKC+vj7z2jfeeCMcx8GXvvQl4/68z7QcampqUFtbiwEDBqTuVb7PP/3pTwCAT33qU8o8EYJauHBhp++lW+lple6NtLe30/Dhw+n0009P7Zs0aRLtu+++8fb3vvc90j/GMWPG0Pbbb0877LAD3XTTTbR48WI6/fTTU38xLVu2jADQ9ttvT5/97Gfp3nvvpfvuu482bNhAf/nLX+irX/0q3XHHHfTII4/QfffdRzNmzCDXdWnZsmVERLR582ZasmQJAaAZM2bQihUraMWKFfS3v/2NiIh+/etfEwB67bXX4msecsghtO2229Kuu+5Kv/jFL2jp0qX0ta99jQDQb37zm3je22+/Tdtuuy3tsMMONH/+fFq8eDFNnz6ddtxxRwIQ34MN8bmMHTuWvv/979PSpUvp29/+NgGgs88+m3bffXe6+uqraenSpfTFL36RANDChQvj49evX0/bb789bbfddvSLX/yClixZQmeffTYBoK9+9avxvA8++ID22GMPamhooJ/97Gf04IMP0je/+U3aYYcdUpbkH//4R6qtraWDDjqIFixYQEuWLKEzzzyzIouzqyzJM888k0qlEm3YsME6Z++996add95ZGfN9n9rb23MfHR0d8TGPPfYYAaD//d//pVmzZtHWW29NNTU1NGHCBLrvvvsK3e+YMWNo8ODBtNVWW1GpVKI99tiDrrzySuU6OkUsyRtuuIEaGhrorbfeIiKzdXPppZfGPydHH3001dXV0aBBg+iYY46hV155JZ739ttvEwC6+OKLU9eZMmUKAaA1a9YQEcW/P/fff39q7mc/+1kaOXJkajwIAmpvb6d///vfdMcdd9CgQYNozpw51vcmEL/vP/3pT5Xx448/nkaNGkV//OMfaePGjfTKK6/QEUccQTvssAP9+9//tp7v/fffpwEDBtARRxxh3F/kMxXj22yzDdXX11NtbS3tu+++dNNNN6XmrVy5kurq6ujrX/86vfXWW/Tee+/RzTffTDU1NXTllVfG84TF+I9//EM5fs2aNQSApkyZEo8JS3LbbbelmpoaGjBgAB144IF0zz33WN93d8MiaWH27Nk0YMAAev/99+Oxl19+mQDQz372s3jMJpKO49Dq1auV8U9+8pM0ZMgQ+s9//kNEyS/NwQcfnHs/HR0d1N7eTocffjideOKJ8XjWF5BNJAHQk08+qczdc8896cgjj4y3/9//+3/kOA699NJLyrwjjzyyLJHUXS4f//jHCQDddddd8Vh7ezttt9129OlPfzoeu/DCC433+dWvfpUcx4m/5K677joCkPqlmjlzZkr8dt99dxo/fnzKnT1t2jQaOXKk4k7NoytEsqOjg4YMGUIHHXRQ5rz//u//JgD01FNPxWNnnHEGAch9HHLIIfExt99+OwGgIUOG0IEHHhj/UXbYYYeR4zi0ZMmS3Hv+2te+RjfddBM9+uijdPfdd8d//H3+85+3HpMnkm+++SY1NDTQL3/5y3jM9IX+la98Jb7/GTNm0MMPP0y33HILjRkzhoYNG0Zvv/02EYV/QAwdOpQOP/xw5fj33nuPBg8eTABo+fLlRER02223EQBasWJF6r7OOussqq2tTY3Pmzcv/nwdx6HvfOc71vcuaGlpoT322INGjx5NGzduVPa1tbXFP6/isc8++yi/tybEz/7tt9+e2lf0MyUiOu200+i2226jxx57jH7/+9/T0UcfbXXh/ulPf6JRo0bF9+l5Hv3gBz9Q5tx9990EgG655RZl/MYbbyQAtNtuu8Vjb7/9Ns2cOZN+97vf0eOPP0633XYbTZ48mQDQDTfckPn+uwsWSQsvvvgiAVB+yP7f//t/VFdXp/zVbxPJcePGpc4pROvxxx8nIvtfloLrrruOxo8fT3V1dcov0O677x7PqUQkGxsbU3NPPfVU5byTJk2ivffeOzVv/vz5ZYmkEDPB5z73OXIchz788ENlfMqUKTRhwgTl+nvuuWfqvE8++SQBoOuuu46IwnjQ4MGDU/PEZytEUsR+rrzyypS1de211xIAevnllzPfk0xXiKT4GfvGN74RjzU3N9OPf/xjeuONN+KxO++8kwDQz3/+83jstddeo6eeeir38Ze//CU+RgjCsGHDqKWlJR7/z3/+Q6NGjaIDDzywovchLPxnn33WuD9PJKdNm0YHH3ywEj80faELIZH/mCMiWrVqFQFQxOqiiy4iAHTppZfSO++8Q6+++iodc8wx5HkeAaCVK1cSUfKZiG2Zs846i+rq6lLj69ato6eeeooefPBBuuCCC6i2tpbOPvts84dDRB9++CEdccQRNHDgQON1ZsyYQUOHDqUf//jH9Oijj9KCBQto4sSJtNNOO9Hrr79uPe/EiRNp2223NcZni36mNqZNm0alUonWr18fjz399NM0fPhwOvbYY+n//u//6I9//CN997vfpdraWrr00kvjea2trfTRj36URo0aRQ899BC999579MADD9CIESPI8zzle8ZEW1sbjR8/nrbddtuy8jOqBWe3Wthrr72w33774de//jXOOuss+L6PW2+9FccffzyGDh2ae3xjY6N1bMOGDcq4Kfv0qquuwnnnnYdZs2bh+9//PoYNGwbP83DRRRfhlVdeqfBdhWy77bapsbq6OiU9e8OGDdhpp51S8/Qsxjz0z6q2thYDBw5MxVpqa2vR0tKiXN9UYjFq1Kh4v3g23ZP++b/zzjsAgPPPPx/nn3++8V7ffffdnHfTtbz33nsAgCFDhsRjb7/9Nr71rW9hjz32wEc+8hEASbxKzAfCzEOxPws5Jif+3Q844AAMHjw4Hh84cCAOOeQQ3H333RW9j89//vO45pprsHLlSowfP76sY3//+99jyZIleOKJJ9Dc3Kzsa2trw/vvv49BgwahpqYmvv8jjzxSmffxj38cI0eOxLPPPhuPXXzxxdi0aRP+53/+BxdffDGAMNv7i1/8In71q19h++23B5B8JvrvJAD8+9//Nv6uNzY2xj9fU6dOxTbbbIMLL7wQX/rSl1Lvv7W1FSeeeCKeeOIJ3Hfffdh///2V/UuWLMGNN96IO++8E5/97Gfj8alTp2LHHXfE3Llz8etf/zp1D88//zyefvppnHPOOan4bDmfqY3Pf/7zuO+++/D000/j6KOPBgB8/etfx4gRI7Bo0aI4/nrYYYfBdV3MnTsXp59+OnbeeWfU1tbigQcewPTp0zF16lQAwKBBg3DZZZfh+9//fvzZ26ipqcEpp5yCCy+8EK+++ir22GOPzPnVhhN3MvjiF7+IlStX4pVXXsGSJUuwbt06fPGLXyx0rClxRIzpImVKcLj11ltx6KGH4rrrrsMxxxyD/fffHxMnTsTGjRsreCfls+2228bCImNLiKnG9U01ZW+//TYAYNiwYfG8Ivcp5s+ZMwdPPfWU8fHxj3+8i99FNibxE/ctv/d///vfynwA+NKXvoSamprcx+GHHx4fs88++1jvhYgqTkwiIgCVJTa9+OKL6OjowOTJk7HNNtvEDwC44YYbsM022+D+++8HUN79l0olXHXVVdiwYQOef/55vP3227jvvvuwdu1a7LTTTvEfGOPGjQMAvPDCC6lzvvDCC/H+LCZNmgQA+Otf/6qMt7a24oQTTsCyZctw9913K/8WgtWrVwNAqnxj6623xkc/+lG8+OKLxmveeOONAMISNJ1yPlMbpn/T1atXx8lHMvvttx+CIFD+eP/oRz+KFStW4M0338Tzzz+P9evX46STTsK7776Lgw8+OPPatuv3FGxJZvC5z30Os2fPxvz58/GPf/wD22+/ffyXUR4vvfQSnnvuOXzsYx+Lx377299i8ODB2HfffXOPdxwn9Rfi888/jxUrVmD06NHxmJijF+l2lkMOOQRXXnklXn75Zey5557xeHcV+B5++OGYN28enn32WeXzuvnmm+E4Dg477DAA4V+yv/vd73DvvffiuOOOi+f99re/Vc43duxY7Lrrrnjuuedw2WWXdct7yGPXXXfFgAEDsHz58nhs5cqVqK+vxxNPPBFnKT/xxBMAoFgpc+fOtRbby8gW48iRIzFlyhT86U9/QktLS2zBfvDBB3j00UcxefLkit7HzTffDAAVHX/mmWem6nuB8N/1hBNOwDnnnBML1dFHH42BAwfigQcewLe+9a147rPPPoumpibj9bfaaivsvffe8bw//OEP+NGPfhTv33777TFp0iTceuutOP/882MBWLlyJdasWYNzzz039z0sW7YMQCgMAmFB/vGPf8Rdd92Vsn4FwjOycuXKuB4SCC3bv/71r0ZhbW1txa233opJkyYZRbycz9TGLbfcgpqaGkyYMEG516effhq+7ytCuWLFCgAweja233772HL87ne/i0GDBmHGjBmZ125vb8eCBQswbNgw5TPtMXrU2dsH+NznPkfDhw+n2tpa+u///u/U/iLZrQ888ECc4HDFFVfE80Tc7M4770yd9+KLLybHcejiiy+mP/zhD3TttddSY2Mj7bLLLqlY2JgxY2js2LH04IMP0lNPPRXHIG0xyb322it1vTPOOEM571tvvaVktz7wwAM0ffp0GjNmDAGgRx99NPNzE5/Lv/71r9R1Bg0alJqv35fIbm1sbKTrr78+zlp1HIe+9rWvxfP+85//0G677UYNDQ10zTXX0IMPPkjnnHOONbu1rq6Opk6dSr/97W/p0UcfpUWLFtFll11Gn/3sZzPfDxHRSy+9RHfeeSfdeeedNGHCBNpuu+3ibT3BCVrSjI1Zs2YRADrvvPPorrvuouHDh9NFF11E9fX1NH/+fLrmmmuotraW9tlnn7ISi2z86U9/otraWpo8eTItWrSI7r77bjrooIOopqYmTmYhCmsKPc+jL33pS/HYbbfdRp/5zGfopptuoj/84Q+0cOFCOvXUUwkAnXnmmalrLV68mO6880666aabCACddNJJ8eclktdswBI/u/LKKwkAnXHGGbRkyRKaP38+jR49mnbYYQclV2DZsmX0gx/8gJYsWUIPPPAAXXLJJTRw4EA65phjUpm4y5Yto1KpRCeeeCItXbqUbrvtNho9ejSNGzdOifddfPHF9JWvfIVuu+02euSRR+juu++mWbNmked5dNJJJynnnDZtWhwnFVnn4iH/rGzcuJHGjBlD22yzDV155ZX0xz/+kW677Tb6+Mc/Tp7nGWP/d9xxBwGg66+/PvMzLPKZ/uAHP6AzzzyTbrnlFlq2bBktWLCApk6dSgBo7ty5ytyrr76aANDRRx9Nd999Nz300EN0wQUXUKlUSmXYXnHFFfSb3/yGli1bRnfccQd9+tOfJtd16bbbblPmfetb36Kzzz6bbr/9dlq2bBndfPPNtN9++1WUcV4tWCRzeOihh+KEmb/+9a+p/TaRPOaYY+j3v/897bXXXlRbW0s77rhjqjA4SyRbW1vp/PPPp+23357q6+tp3333pbvvvjslZkREDz/8sJLgc8YZZxBR50SSKEwsOeKII6i+vp6GDh1KM2bMoN/85jcEgJ577rmMT63zIklE9M9//pNOO+20OD187Nix9MMf/jAlFm+++SZ95jOfoa222ooGDx5Mn/nMZ+JibP0X7bnnnqOTTz6Zhg8fTjU1NdTY2Eif+MQn6Be/+EXm+5Hfk+khJ6Vs3LiRANCpp56ae84PPviAZs6cSVtvvTU1NDTQOeecQ0REl19+OW233XY0cOBA+tSnPkX//Oc/c89VlMcff5wOOeQQGjhwIA0cOJA+8YlP0J/+9CdljkjNFz9LRGGR+OGHH06NjY1UU1NDAwcOpP3224+uvfZao4CLP6hMj7zMTZtIEoWlDePGjaPa2lradttt6fTTT1cSnYjCPwb2339/GjJkCNXV1dG4cePoyiuvpLa2NuM5H3roIZo8eXL8s/6FL3wh1RDg3nvvpSOOOIJGjBhBpVKJttpqK5o0aRJdffXVqQQT2/s2/fG0bt06Ovvss+mjH/0o1dfX06hRo+iYY44xZtwShVnygwYNUpKvimD6TO+99176r//6L9puu+2oVCrR4MGD6aCDDjJmzBIRLVy4kP7rv/6Lhg0bRoMGDaK99tqLvv/976caDFxyySW0yy67UF1dHW299dZ01FFH0WOPPZY634033kiTJk2ioUOHUqlUom222YaOPPJIevDBB8t6b9XEIYqcvwxTgLPOOgu33347NmzYgNra2p6+nV7J4sWLMW3aNDz33HOxq49hmL4JxyQZK5deeilGjRqFnXfeGZs2bcJ9992HX/3qV/jud7/LApnBsmXLcOqpp7JAMkw/gC1Jxsq8efMwf/58vPnmm+jo6MCuu+6KL3/5yzjnnHPKbjnGMAzTF2GRZBiGYRgLVS1Ceeyxx3Dsscdi1KhRcBynULHyo48+igkTJsRNwX/xi1+k5ixcuBB77rkn6urqsOeeexZqQswwDMMw5VJVkfzPf/6Dj33sY7jmmmsKzX/ttdfwqU99CgcddBBWrVqF//7v/8Y3v/lNpWv8ihUrcMopp2D69Ol47rnnMH36dJx88sl48sknq/U2GIZhmC2UbnO3Oo6DRYsW4YQTTrDOueCCC3DvvfcqnRtmzZqF5557Li5YPeWUU9DS0oIHHnggnnPUUUdhm222we233161+2cYhmG2PHpVduuKFStSHW2OPPJI3HjjjWhvb0dNTQ1WrFihdNsQc37yk59Yz9va2orW1tZ4OwgC/Pvf/8a2227LCSgMwzB9ECLCxo0bMWrUqKq2r+tVItnU1JRqVj1ixAh0dHTg3XffxciRI61zsnqKzps3D5dccklV7plhGIbpOd54441Czf4rpVeJJJBu9i28wfK4aU6WRThnzhzMnj073m5ubsYOO+yAV199VeltyTBM1xBUIYjTlaesxv2Vi2v5ynIKzGGAjRs3Ytddd636d3ivEsnGxsaURbh+/XqUSqV45QzbnKwlnOrq6lLNwoGw+bO8TBHDMOXRFWJT6SkqvXZvqXoz/WEvi6JjGGPSVDtk1vPrkEhMmTIFS5cuVcYeeughTJw4MV77zDbngAMO6Lb7ZJgtlYDURznYmpkWvVbWtSnsQ13oEQC94uGb7k16f+LzqeSzZrqOqlqSmzZtwt/+9rd4+7XXXsPq1asxdOhQ7LDDDpgzZw7eeuuteKmdWbNm4ZprrsHs2bMxc+ZMrFixAjfeeKOStXrOOefg4IMPxhVXXIHjjz8e99xzDx5++OF4OSGGYbqWSr6gyzmkyPmLWH9BwetVYkgGFVqfbo6VE2i7Xek6QWRLuk5oVQbEVmVPUNUSkEceeSRe90/mjDPOwPz583HmmWfi9ddfxyOPPBLve/TRR/Gtb30LL730EkaNGoULLrgAs2bNUo7//e9/j+9+97v4xz/+gV122QX/+7//i09/+tOF76ulpQUNDQ1oampidyvDGKimMOadO+8rKU8M877RigpeV38xmvRNF1Gx6cbbiVCKc7BQhrS0tKCxsRHNzc1V/R7fItvSsUgyjJ1yBLLI1M6IYpYgZn1zZQlh3j1X07VpEjg1USfcyhJLFsqQ7hLJXpW4wzBMz9GV4lipMNpE0aZ5NjHMi3Xa7yvjwC7Ap0QABbLgiffjRtIp3LFulMEvXK7seu0+WCQZhikskJ0Rx64QxnJE0XYv5Qpu0evJZOoXqW5W+f0L4TOJpYhXBnBYKLsRFkmG2cIplDjTiXOUI45FhbGoKHZWaPPOXwSTkCn3IImmLpiyWMpWJQtl98EiyTBbMNUUyM6IYxFhrFQUbe+nWm5Yk4sVMLtZdcGULUvdqmSh7B5YJBmGsVJJbK8rxbGIxdgV5zCdJ57bFXmulLhOk/Mm2OKSQmBdJ6yrdJBYlUIoo9NzQk+VYJFkmC2U3OSaCo41CWRXiGNnhTHveMAshl2ZyOODVItSEk7Z2jTFJcVnKFywsfuVCC44TllNWCQZhklRLYHsSnEr59jUdQsKYuGEJungzDZpmogFTnKcS2pc0uhqhRSrjFyz7H6tLiySDLMFUmkSSlGB7Kz1WKk4FhXGIoJYcVMD6ThT38/QaoxUTBK0WDApx9Uqzq1ZlSyU1YFFkmEYhXITW/IEMi+ZpqgFWNExGcKYJ4rl1mya8KPnlHEZuUkBSTQNgulSWhRjCxIslN0BiyTDMLl0lUBWbAVaBFIcU9RqVK9RibinxwphECy5b6tcAwkkFmjgUGxZGi1IbdsH4ERpPCyUXQOLJMMwMeVoQHcIZJ44yvPLFcas+zVmv3Yyy9WPDneQdrX6iKzNyMLUrUtdLBVhjNyyhMQl67NQdhkskgyzhVGuNWQulyjvJF0lkHlu1TxxlIUxy/1qEsRy6yjt+TuUiCMlohm7X6NjFetSEkvZBSsLY9qqZKHsClgkGYYB0LlVL7KtsvIEshzXqsl6LEccbcJYpGREv7/UPmmnrk9qgwGKknNUwTSJpYtsq5KFsuthkWQYxkoRK7JILC/eZzl3ZwSyXHEsIoz6ezC9Jb9Mk9zTFUp5L8mgLJi6WAo3rG5VZgklgZN5OgOLJMMwVaOcmKJMlkBmWY+mmGNRcSRlv4pJEMtdiDnwKbV+pBBOosTaTBJ0yCqWslXpkhqX9DShBBx4LJQVwyLJMExhyrEibSKSF4PsrEBmWY9CHG33IF9bFkb9vfgVtuLxieDJK4BIwqkLpk0sA82qJIci8RSxSoJDAFyHhbILYJFkGKbq5ElKVwukTRxN5y0ijLooBlmrQecQgOBKXQaEcOqCaRLLgMIkHnLsVqWwIv1ICVkoOweLJMMwXdHCu1CRfZ6bVZ9ndMVWKJBZblUhjjZh1EUxy5LUrU7dxQoAvg/FooRL8XllwUyLJUUCp1qVLJTVg0WSYRgjFRfOwx6LzJpL8bZhjiVJp1KBLCKOsjCmLEmLSPqGYXGspzcToMRyVETTlcTZIpbCqoxjlaBwf2heslB2ISySDMNURCc8joWsTt3NWm2BzBNHVUjT9xvk/FURAHA1NQotR3WeEEzZLSuLJUiUkFBU4KHFKoMoTglAlH/4AYEcB55rFkrGDoskwzDdgtFCLGBFmihHIDsjjjZh1AWxaCKP7wurUna1OvE5dMFEkC2WulWpu1/VOkkCArNQOmBr0gaLJMMwVaNSj22eFWmc2wUCqYujTRiLul9tqK7WJONVWJtCMON5mlgigNmqJAfkILESUUwoyXHY7WqBRZJhmG6lwuqJzFKPzBKP6FkWyErE0eZ61ecXRbYcTaKZuGdJEUu44f0H5FitSkBqdI5QKIkkcZSE0nHCwKTnslCaYJFkGAbhV7GKSOqoFjZXq82KVI4FUvtMMcjOCKQujlkxybx4pA05Tml2tyItluSElqcbf1BW96sfJfR4rhO2swvSQikSe1gozbBIMgzTZzA1Vpf1yVTmUVQgyxHHIjFJm27qAlTM3aqKZXhcZFi6qlVJkfsVUkJPLIAslGXDIskwTEW46FyGazlkxSIBtVmAqUmALHSVCKRJHFX3q3pvWYk8PmmJOxBiKDaSp7S7VYxLJSWB2ar0o0/FixZktgmlQ2G8MtJMOCyQCiySDMP0WrJcrYDZigRUN6ucpFNUIPNcr/r10h15st2vwpWsloQ48T3JgmkTS2guWNmqrPHc2P0K0c/VIpSxFRnNE4k+nPEawiLJMFsYtlhjkbik4zhlryVZCUHqTsyuVsBsRQJqizlZxDorkOK0akceTSQLfkRhSUf0GiTFJ6NaSSGYRncrIXAcZSy2Kv0AruOg5Mr9XJ3I/LcLpYNk5RBfLNu1hQsliyTDMFXDJLxdQVGdNrlZ0+PZAllEHMtxt6bRG55HG26yPy2WsrsVsSUYbifu144gaZzuOmGjAZtQEoXdexBZklwaEsIiyTBMTLmiJsclHafy8o7OYnK1CkxWZPi6coE0iWNWiUj2vetLaEVu10gwEwtTFcu0u9WB6yLu3wpPXACxytmE0qHE3UpOUhrC8UkWSYbZIimnvKMSl6sbuQpNCDHNmlOErPvX13/UrUjfIm42gSwijqnayTLKQnxQbPGpohkXUipiCZDF3YpYPNuj7NcaD7lCmcQhdcuS45MskgzDKFTLmiwrFgrHGJfMQr9u3hqQchxRj08WEUhjiYhyzrJuXzlAiKYQzDgjVhLLMEOWDO5WbdsvJpSExN2qWJZbeHySRZJhtlC6y5qsVlyyCKb2cboVaYpPhnPNApkljlkZr/n3qpWGiJO5hjkBAW7kMnaifq2auzVwnFAcAcAPM18B1yiUDgFJdmt07SiRZ0uPT7JIMswWTFdlunZFbLIrOvyYDjctkJxuBiC/JrW0JEMgdXGsNC4pHxO3p4sEUcQmZZesT4AnBMsF4n8xgxXputGcwEF7OEERSqLE3SrHJeXSELl13ZYGiyTDbOF0Rijzz61ak+L4rLikLLJdlQxksupM7lc9ySdPIPPE0TcJtHZdfVHmUAyTubq7VRZLIBTRwAldsLJVWSMl7rQDVqFM1UdqGa+yYDqELS4+6eZP6TzXXnstdtppJ9TX12PChAl4/PHHrXPPPPPMMKtKe+y1117xnPnz5xvnbN68uTveDsP0O2xfennfhY70Be8q4+Vdv8h0p9yTapgsO939Go6lmwYUEcggct36AeKHGJMfvvZoD4LUnHafUucI54bX9QNCux+gPQhiy1eIvLjfdj+cL8S+PYiuFSA8LjqXmE/Rsx+EGbWBtE1Asp86b/H3JaoukgsWLMC5556L73znO1i1ahUOOuggHH300Vi7dq1x/k9/+lOsW7cufrzxxhsYOnQoTjrpJGXekCFDlHnr1q1DfX19td8Ow/RbigqlPs8mlMl8RzmPON6kefK53RzprMSasa3WYeqQEwSa2zVHIIWoiW2TIIaik360+UFqni6Y7b5ZLOWxDl+Ip0kcQ4HLE0oS70WIr7Qt9m9BGll9d+tVV12FGTNm4Mtf/jIA4Cc/+QkefPBBXHfddZg3b15qfkNDAxoaGuLtu+++G++99x6++MUvKvMcx0FjY2N1b55htjCKul6LxCdNrlLd7RqeK53gox+bvl4nltyymEF6LFIdNwtkMh6dW2xbMl5N2/K4HPNT3ari5h3FHSusOtdRXbAICO2ISkCA6AMMovpJFwgC1MBNuV7FGbxoaS2CmvHqSPFJuE561ZJ+SFUtyba2NjzzzDOYOnWqMj516lQsX7680DluvPFGHHHEERgzZowyvmnTJowZMwYf+chHMG3aNKxatcp6jtbWVrS0tCgPhmHMuI7ZSjNZlPI8k0UphvS4G7T9+nmz5mR9aRX9ztazWlP7grRg6m3u8gTSZDHmPdo6gkxLU7hmdctStypl92t75Jr1I6tQvDZZlPGx4v6F9RhvR9cBYgu0v1NVkXz33Xfh+z5GjBihjI8YMQJNTU25x69btw4PPPBAbIUKdt99d8yfPx/33nsvbr/9dtTX1+PAAw/Eq6++ajzPvHnzYgu1oaEBo0ePrvxNMcwWgkksRSm7Pi/eb1A9XSh1t6tpXzyujWTFJSsJWeYtlpwqESHdShTjdndqOM++XbZoamIZRNuhGCaxyvaAlDhlEaFU45LJ+5XjkvGzIZ7bH+mW7Fb9B5uICgXh58+fj6233honnHCCMj558mRMnjw53j7wwAOx77774mc/+xmuvvrq1HnmzJmD2bNnx9stLS0slAxTEJMLNsv9KlyvprKQLNeqnumqZ7lGde8pHDjRQsOVvb8iCybLblYgidPFryXrMetZ0JFxzY6AUDKY8ro7Vpg4gR/9keHGn2hcR9kehKUiYYs6B+1+ELpbQcnryPUaOISOACi5DiiuoUwyXkWDAUjjHgg+9W+3a1VFctiwYfA8L2U1rl+/PmVd6hARbrrpJkyfPh21tbWZc13XxX777We1JOvq6lBXV1fezTMMExOvVCHHBaNnkuZkCWVyrkQM9ZIQcV4lZmnoviMWE7YJZ7nY4pGmeTKmhgK6xSjQhbFo2zpdNGWxVOKWkXgFRKhx3Vgoo4kIHEKN56LdD+ISEVkoARc1HkBwEA6LuKQmmFp8sr+XhVTV3VpbW4sJEyZg6dKlyvjSpUtxwAEHZB776KOP4m9/+xtmzJiRex0iwurVqzFy5MhO3S/DMNnYXLDy/ng88hbp8Un9OJPbVYyn4pFO50tBspDjkbaOObIVKY7JEsiOgGKBLOp21d2s4hy2OW3CxSoyYSX3qxynbPcDpUREdr3GZSN++CdJ7GoVGa2kuVuBLSLbteru1tmzZ2P69OmYOHEipkyZguuvvx5r167FrFmzAISu0Lfeegs333yzctyNN96I/fffH+PGjUud85JLLsHkyZOx6667oqWlBVdffTVWr16Nn//859V+OwzDwJBtimIWpc3tGq52oVqTsjs2bLNG1ozW2OWK8EBPnBAILaAgsrzKTIkNIgE0GX2ymxWwC6S8XTTTVUdYj+JZti4VN6z4i0RaLgt+mP0aullDl2tN5HJ1IxdqEFDccMANs3SiOVEc2kFimYpzS9Zlf852rbpInnLKKdiwYQMuvfRSrFu3DuPGjcPixYvjbNV169alaiabm5uxcOFC/PSnPzWe8/3338dZZ52FpqYmNDQ0YPz48XjssccwadKkar8dhmEidBes7H6V9xUVSkDEHpNxU+lHeB4n6ixTnsvVi09afts4kcSjd9GRxVFsA4gtP3lMfx1uG9ryACji6DPFL5Pm6FLXHSUemQilHpdsF9M9wA0IjlghROrxKuKTJrdrfxRJh7pjmfFeRktLCxoaGtDU1IQhQ4b09O0wTL9A/u4nw7j4qhGSIL55hFiRMjccJ+kcRGEnmHBfeL4gngtQ1CVGLlmIXY2BJHIkd6eJivVJKoEI5HKIxJKURVJP1tHdqCaBVIUykF7bv4LlRB3PdZVxsc9znVgoxXj8cBy4joMaT7wO59S4LlwHqPGSZ88BalwXNV603w23S27Yos5zQkvRcZLtGm2f143WZEtLCxobG9Hc3FzV73Hu3cowTJegWI/RWOxKJSlGKcTSYFGamgzIEuIidLuarUm7yzVr2S23QssSSFuRQLZACnGsxO3qB74kmq6awKNnviKeBgDh2pKulNCDADWum7IoXaKoe4Ca8QqoGa1xowFK3K79NYmHRZJhmC5FiUkix/1qKP+Q45NiXI9Zln1P0cWyhNB18usmbcgJNvJYsi8tjkWE0iZ+iWCaxbIkWZO1JVEr4gAIpOQog1DCjeKSTirjVfzx4zhmt6sfZ9M6LJIMwzBZFLEqbUJpS+QRYyKJp4g1mb6vKFHFct+eU/5izzrp7FVVIDuTxKOLpk0sZdo6Ask9G2bmtMcfgCqUcQIPEstSTeSREnakxB2XwtVCKHJ796faSRZJhmGqhi6WilUJVSiBJGlHFkoxJpCzXV1kW382l2uWi9V1w+WnbMTddbQ4pI7JauwKoTRfKxHLbIS1aBZKwEUNwn+P2LIElEQecpL6Sd3t6vRDtyuLJMMwVUfPhE1EMIlTiszXLKE0dv9x7NakrIEml2ueZaljWh8yHCclFpmMB7kCWU43Hv2acllISBA1AnDDfZEFWZLdrgjizFddKEOxC0dqvDDBKRTMcE74CScWpO529Sn8B3JdgBxHVIb0aVgkGYbpNmSx1N2vZQklst2uwhB0kFiTfhzzTAuj6zrwfVk8Ox+fNGWwdkU3HlvbOnFcKJiSFZgcmAilC8CHIpSuEyXteKEG6nHJIIhqVaX4pLAgQ1GUFmkmALZkoj4GiyTDMN2OmsXaeaHUw4hycwFhOHpRf1Pfj66ruVw9rXesvl0Juss1r9lA3jnyrqWKklko42SelFBGccgAhriko2S+1nqu4nYNRTFyt/azlnUskgzD9AixOEKNU8olIrJQJsc5qc45wnWbZU2KOKMXZXfKlmXyWrUgXScqpo/wXCDwy3ufWc0G5O1K45G2a4bJOhSJoqfsbxNWpQu4cc9XR4tLOmoiT5z5Ku5dK/1wJHer58RJPFTFNoLdAYskwzA9hh6rFGInJ/To1iNRfrarj7Q1KUofRAKPl+T0xJ14fJ86leFqcrXK+wQ2gSxXKE1xSVOWa1uHD891pbikJJSxxRnGJcOltxCPi0QeEZ/U3a6hrobWJiFytwboN0k8LJIMw/Q4ulWpJPQYhDIrPumTvLRWGH+UrUk5gcfmcpUzXGUrNLzXtCULmDNVTVak3uxcP7YrLUqVAG0dUYw2EktdKEVcssYLPzs/LgEBZDEVc+VsVz8gOB6UJB63H1iTLJIMw/QKZKtSd78WFUo/ioWJY0Dp5gTheUlJ4DG5XGXXa2cSeQC7y1V+3RVCae28ExN+cm3hwpEAEqH0HAqzWD3AlSxJAHGDATk+2R4l9TiOEzcZ8AMoSTw+9X1rkkWSYZheRSqpp6BQKhZkdEwYIgvdrkR2azJ0syLlcpWTd/TXfgUuWb1lXXZ/184nDZm776SF0g8IbVFCTkBqxqsbhPHJpG4ygOe4sdtVWOuuJYnHl0pC+iIskgzD9Dp0q7KIUOpNBoJogWDZBQuDNekTKck8ustVTt6RX4tYYCUUaTRgmpt3zrxerm1xdiugCGVkTbaJOGTkbpWFUXTkCesmCbrbVbEaHcndGv079VVrkkWSYZhei7AqiwglCdepVBYikn+cyJr0KambdKPWaoFDkgUZnU9zuepxyXLI6sjTFZ148l2saUIXK2ASSt9NSj1EIo8cnzS5XT3XMybx+NT3rUkWSYZhejVFhdKDFGOkMKFEd7s6Uk2lcKnK1qTqflVdrolgJmUgsjVpsixl0ROu1qw5Rd2tXSGaJqH0AopjlG7gJA0GlJrLtNtV9H51DUk8flQS4lPftCZZJBmG6fWIL1UHoTUSfndTSigdKVEnEc3E7SqchDZr0o3ia4HF5ZoIpjnDVSZPyPIaDeSdowhJvaSjtKmrU5J2AEQN0ls7AtSV3Oi6kRhGiTxyfFJ3u7quG/Z2hQPHTSfxhJnLFHXk6UMKCRZJhmH6ELJVCTgpoURkzcWiidDmEcseOnoSDzmxe1C3Jl0io8tVFkwf1OnYZG6ma5GuP0Wbz0YIMQQSoWzrAGpLLlrDBSTjjNckkUcrAXETt2u7T/Ci2kmf1CQekzXZl1YIYZFkGKZPoQtl2I8nEUqS3KMUxSdFWYjudlVcrZI1mYwh1+Uqk+d+tWEUSkkcg4zzuK5k1Upimed2zRJKId56Io8cnxRJPZ6TWJWmJB7Rz1W2JvvSUloskgzD9Dn0OKUnCaUnlXeIjFcRnzS5XY3WpENxAo/N5QokQui5TuHVO4C0BamPCdGTxZEs51eMSNc0aEcWSuFi9QNHsSZ9l+L4pMnt2u4EcF3PmMTjun3fmmSRZBimTyIbSTahBCha2CJ8bXK7xiUhDhRr0nWRJPBImbEiyzW2QiOhLEmCaVtSC7A3PY/HNIHUxVHedlxH2Y4vW4ZYCqEUCTttHT5qSx46AoIX3585ccd13MjdqibxiAboPkXx4yiO2xetSRZJhmH6NOKLVhdKsZKIKA0Ju8Kk3a5yEk/KmpRilB4hdrnqccmiFCkHAdICabMic61LN9nQk3jkPq6mEhSRyAOo8UnZ7doeUMrdKhqgi048RGHGa2hd9j1rkkWSYZg+j9zz1YmSeYQVKTJeKXKr+oHqdpWTeEzWpJzAo7hcXULgI8kcDUh6duEHftlJPXIcUhfIrLikQFsYK9RHySKWaZPWl9StST8IUvFJm9u13UkSnULRTDrxuP3AmmSRZBimz2PLeqWoeWsoXAAC0ZA7cbvKSTxWa1JO4DG4XAGUHZe0EQSUKZBkyXZ1ohghoIqlyaoUyEIpN14XiTx+EL2nyKJEKTm756pJPKG7VcQow5IQN8OaFCU7LJIMwzDdgJrIGVl8IhbpJC5YB6JOMnS7xnNzrEk5gcd11EQeU1ar/mwjttQ08dMFkgxWpvoBJC/FSl0psTQIpbi3VOedgNDWEaXwRo0GfOFeJalG0nGj3q7C3ZqUhGRZk6ILT2+3JlkkGYbpVyRfuNGqIFHJBoKkXESsFuJF8UThdpWtybipgGxNygk8hNjlCiBuJp4liLpg6nNlK1JsA4lA2mKQqX2uOB5AEC0JBrNQytZkLPQBSa5XUh+a2zV0t4axSDlG6RMpDQb6qjXJIskwTL9DFkq4UNytYZarGp90pCSegBzAA9p9RFakak2KBB4gElUnXR8pMlwrLRGRBU8XyLJik5JYKgmvFqEUz3LnHRGfVIjcrqIcpkNkAUslIXKDAUJiTcp1k8KaDC3Owh9Pt8IiyTBMv0QIJRHiuKTjROUgUTs6EZ8UbleAUOO5gB/ElqPJmhQuV7nnuRDHjlgsw+SdSgkCsgpklkXpuIbYpJsvlLYMVz0+Kbtd24OoDMQJ45J6SUjcYECyJkXdZCyWQBn5wd0PiyTDMP0WsUZk0nkgyXhNBBMQC1ia3K5Wa1J2uZJaCmKKUea5Ym1kCaQxiSdIv3Sj/8nuV3KdMAYZTdKtSZGwY3S5Sm7XdofiJB7V3Rp+XgGZrUmxQgiR6MbTOxufs0gyDNOvkYWSkkUlE8EEopq+tNu1iDUpu1z1uKQpaScrkYeimKTuUk3VTWb0c1X2BcmTEMrwfOFLXyTrSLWU4lleGURJ4pHfS40TJ/HoJSFZ1mQYixQCKUpseqFCgkWSYZgtAMWijKwacqJnUt2unbEm5WJ9ufNOkXpJXRiJ1CQeXSDzYpOu64CiHqoUkNIzR3a/ykKpW5N6QwE/CBS3a5sfwHW82N3qOR58ImWVENdRrckATrxCSDzei61JFkmGYbYI5NIPSHHJ5BnxvqCgNZmH57rwXMq0LPMw1UgmlmXGcZH715UCkSb3qyvOF8UoTetbGt2t0SPs1+pG7tYwLik3GAiIEkvTEQJJUSwy3Hbc3ruMlt6ggWEYpl/iOpJrNX4tPTvJPi9yoYbWpHh2pGdxTmme4yguV30FDnlbvC6yODIQuWFzBFK4apPt8BFE7lthmQp3rjhnEBCCjgBBENZqygLY1hFAXzC6rcNPjbX7ybFBFG9s94NYIP1ILANC3CaQKGyCHlqThXuydztsSTIMs8WQaJJkOcpuWM3tWrJYk+2A1eUqo7peK7cmBbpAmrJc0w3Qo2NBKatStiidyCXbhgC1cFNWpOx2FfFJEX/1XSGCiTUZOI6SvCPqJl1Hcq9GJSKBSOYJwqW2epPLlUWSYZgtCleKO8ZxyejZC7uiIwiSJJ4az4VPvhKb9AwJPAKTMAoqzXCVMQmkqNtMvddorhDLUCjDWKUulHEWLQDfUZsJ2BoLtHYE8fuUk3cCF0ps0o+SezxHaigQLc4cC6SIn3bq0+l6WCQZhtnisMUnA4fCfU5kVSL8Aq9xXQRBEFuTNV7Ys1S2JsMuNFqWq+vEcUldNPMsSpNbVN4HpMVRjDuiw45oehD7Mh01VikJZeBQHH/zXYrjk7JFKddJiiQeuSREtyZFbDIRy+gzRSKWIsO1t5aDdEtM8tprr8VOO+2E+vp6TJgwAY8//rh17iOPPBLFBdTHX/7yF2XewoULseeee6Kurg577rknFi1aVO23wTBMP8EWn/SkeKR47UTCp8cmveghvszDHq5IrbahI0RU3gYQt47LQo5DCgEUcUY9E1YeC0S9YkBKrFLEKQNJiMW2iDGKuKTt0SrtN8Umgyi5x6fQrRvORSSQhADJHyMBRfeU/0/YbVRdJBcsWIBzzz0X3/nOd7Bq1SocdNBBOProo7F27drM49asWYN169bFj1133TXet2LFCpxyyimYPn06nnvuOUyfPh0nn3wynnzyyWq/HYZh+gmyEHpu2GQ7rnmM/0CPXiO0JkNhjIQ0ip3FCT1OUuunl4LIDxlb4k5mHaTBohSvsx4AJKGklFD6HUFaKA2PDmU7UIVSStBpD4JIICkSyHB/exDE1mRfSOBxKOtfowvYf//9se++++K6666Lx/bYYw+ccMIJmDdvXmr+I488gsMOOwzvvfcett56a+M5TznlFLS0tOCBBx6Ix4466ihss802uP3223PvqaWlBQ0NDWhqasKQIUPKf1MMw/QbQosnXCoqtIIQfbGHPUl9CrcDAtr9AJs7ArQHYfZma/Q6fA7Q7lO0P0BbR/ho7QjwYVuHsi0sNPnhUyRUAcH3A6O7NbQCKWVFKu8nEO5UVYCFC9aJRF28dtxwruM48EpuOBa99krhHwa1JTdceNlNXteVXAyo9VBb8lBbcjGwNnyu9cJ9Na6D+pKHkuegXox5rvTaQU30x0kpel1ypbGcBJ6WlhY0Njaiubm5qt/jVbUk29ra8Mwzz2Dq1KnK+NSpU7F8+fLMY8ePH4+RI0fi8MMPx7Jly5R9K1asSJ3zyCOPtJ6ztbUVLS0tyoNhGAYQiylr7lUHcBFafrI16UbxyJQ1KVuhbmKdCsK4ZBKr1NEtSsfgsjWVfMiIUg99W+7WE5eAaO5X3d0qW5dZbtdwzG5NCnerHy3IHEj7RfxRWJNyfLI39XOtqki+++678H0fI0aMUMZHjBiBpqYm4zEjR47E9ddfj4ULF+Kuu+7C2LFjcfjhh+Oxxx6L5zQ1NZV1znnz5qGhoSF+jB49upPvjGGY/oQXxR3juKQbxhflmknPjcadpF5SFksRixQ1k4DZ7Zq6tjTmWEwnWejkZB3TmpOmh0ksAaSFMiDjc77bVWswEMUmw1rJSAwlgRQJPL4klnFMEolo9ga6JbtV/6tItEoyMXbsWIwdOzbenjJlCt544w1ceeWVOPjggys655w5czB79ux4u6WlhYWSYRgFzwGCqASEAorLPMihcB8lvVprvHCJqBrXhU8BaijM4JTXmZQtxzb5OqnWdeWrgSJ0kkBa58eNCMJtZTFmV2S/OiA3KQ1xXIrrJ9ujHFiTILbFZSBOUhIiZboKsXQdN+7TGgSh67rWc6UEnnQHnt6whFZVRXLYsGHwPC9l4a1fvz5lCWYxefJk3HrrrfF2Y2NjWeesq6tDXV1dGXfOMMyWSLi8lhMu4RSJI0Vi6bmhxSUaDIhuPF4Qiqsbl4FETQMkl6unlYKYr52UZ8hkiV85izI7btLLNQjCco+wfpJioQyCpDSEAlLqJ33XbE16sVDqIoq4b2sQ10ZCWnPSlRJ45PKPqMFA9j9Vt1FVd2ttbS0mTJiApUuXKuNLly7FAQccUPg8q1atwsiRI+PtKVOmpM750EMPlXVOhmEYHRFfjOOScQlI+GUpYpZybNKV3K1CGG0uV0GpgBu2KCaBlOORqZgkqfFH+VhTfDLP7apnuso9XeW2dLZykMTVGjV4QPLat2t+t1F1d+vs2bMxffp0TJw4EVOmTMH111+PtWvXYtasWQBCV+hbb72Fm2++GQDwk5/8BDvuuCP22msvtLW14dZbb8XChQuxcOHC+JznnHMODj74YFxxxRU4/vjjcc899+Dhhx/GE088Ue23wzBMP0dxu0J8iYcxyiAguI5qTdZ4LgLyw3HPgS868hhcrkUE0YmbHNjRLUZdIHXkjFcKKLYqRYNzxw3dx8LtGoDgOJRyu2ZZk6YuPIo1GR3vRq5p4ZJNmgqkl9DqDS7XqovkKaecgg0bNuDSSy/FunXrMG7cOCxevBhjxowBAKxbt06pmWxra8P555+Pt956CwMGDMBee+2F+++/H5/61KfiOQcccADuuOMOfPe738VFF12EXXbZBQsWLMD+++9f7bfDMMwWgOeElozozENIBMWL+rfKsUnRXCDQmqObXK5AYLUgXSlGaRNLORapu2JNCzMLnKjzDWBeMgswxydlt2sQEHwnz5pMuvDEWa6RSzdO4HHVBB7Z5Rpakr3H5Vr1OsneCNdJMgyTh6iP7IizNcNaSjHmB0BbVDfZ2hFgsx/EtZOtvloz+WGbH9VL+mjr8NHWEeCDNj9VK9nmB2HZRVTYr9ZNIq6flLvkpBJ4cqxQkUEr6ihFXaTrOlHdpAPPc+P6Sddz42dRO1nruXG9pHjEdZIlDwNqvbiOssZ1UV9KaifrSmLbS9VMlqKsYrlmMnxOv4/uqpPk3q0MwzAGkh6uoYVFASHywirWpCgBCTNckwQegOC5QHsAzZoMX+tZrzKu68AvIyCnC6RtnUlHa2Qu3K+6RUkOweR2zbImkyzXAH6QJPF4jlw7qSbwmFyuek/Xnna5skgyDMMYEF/KftxsICoJkWKTniuanScC6QWO0eUqGp4DadHUayXzrEETNoGMm5w7ybJZQiytizC7ZHS7Bg5lxiaN28K1GoSrhPhSfNLkcvXKfufVhRddZhiGsSDEMclqTRoM6EIomgvEHXykxgOyEHrRoo6mRud5zdHLQXTVMW2LJuep3q9SpqyYK6xUvSF6dqar/ojikVIHHrlm0pTlKvdy7cmYIFuSDMMwGYS1kogaCyQNBhxJDEW9pCyYomZSdrmayj6ysl3lRB4dWbDiMbHAsqErD5BksQKyZUmx6xVAXEMJJG7XotaknsAjMl2TRZcRJ/BkuVxFYwFZOL0ecreyJckwDJNBaD06Sc2kZEkmy2o5mkUZNep2nZTLFYASlxTbsnCKZBobepmHaQFmU/NzvSVdOGZeu1JYk6mltDKsSWuruqheMhRHUnq6pl2uBosyypLtCdiSZBiGyUG3Jh2HYter6wA1nht94UfxSTd8doPE5QrAaEFmlYGUgxyLtC2nBagxzyAyk0SikViAOfxf0o3HCZIknnKtSWMCjxKTTFyuruMYXK49WwrCIskwDJODcKuGbsAofha5Xn2ErdRS1qSUwBM3R48fSb0kkN9koKhwym5WwFwOIsaEWCaNBFShDByz2zUIKDPT1ZbAAw9xAk8lLlef0CMZruxuZRiGKYDsZhWu10QAsxN4xD5AbUkHqJakKXnHtjKIDb3VnN6izrR0VnKsdB5K5spJPEqdZuQytVmTABSXq0jgqcTl2lOwSDIMwxQkzm51Q9EUdZMOwnij6yY9X5P1JtUsVyAdgzSVgYji/jzEUlf6GGBuUSfGdbGUY5n6upLJA9bYJACLyzXZFmJYbpYrgB6LS7K7lWEYpiCirys5Yf2kF9VN+hRmu9a4LtodynW5AmIh5kBpKtCZRuciySbeVizEdFTPcd0wk1WLUcpuV89NVgwRtZNBgNzYpN7PtTMu19CZ3XOlIGxJMgzDlIFsTSZ1k1ptZIbL1VgfqW3br63uM1mK6YxWc9qLGFfFVGS0Jtv6KiNZ1mTu6iCS2zTP5RrfE6BYl90NW5IMwzBlIKxJP0rW8REKpYPQ5qnxHLQbaiZll6spLimLo+s6INeBE1RmWSau1CB69lNzHNcDBUFiUUKNf4qOPHIST+ASPITWpWxNukAqDtkR2NywSVZt5nuAye3a/Zk7bEkyDMOUibAOZYvScxGvNanXTNqzXLOtSiAUTMdx4JT5bZ0lkGI8fCQWpRyflDvyyNakPibG9QQeACkXbKVxyfg6PZDAwyLJMAxTJl7c6DxphO4iEc8az+xytVHSxbIL29MJElH0FeHMEkp5LNAENN6ndf4pkuUaxyVJi0uSiEsijksCaou67l6ImUWSYRimAkQXHlEO4ogerxClIuksVz0uGSbv2DNcy0EuzUjGfOVZne8r+02xyyxr0lgOoj2Smskg7XItUAoCAEH0SrcquwsWSYZhmAoQJSC6u1W4XGtcV3G5hseY45K2xB23TKEUyIKXthrTlmSyLzC6XW3WpJzAAyB2uQJIWZCCIi5XgRyXjMfYkmQYhun9iJ6tibvVideaFE3PZZerrRREYGswUMSiNBXb69ajadtkacpCmYxlW5NiLG91kI6CCqfHJcNrJ31cuxMWSYZhmArxpAQeJy71gNnlKpWCxMdnWJKuJpRuBRamWQSzLEldSM3WZPo6qmCa45FB2XHJ+PzUc3FJFkmGYZgKcaMEHtdJ3K+JC1bNcpW775jikiWDJalbkU7BLjwyNhE0WZJyxqvsdg33JdZkOS7XDoNwFolLAknyTtCDK0qySDIMw3QCJ7YUE5erAyeV5SrEEYASl9SJhTKam7Vklg1b2UfWXFvGKwDFmgTMPVzD4+xZrmLMVApivC8kfVzFtu6C7Q5YJBmGYTqBbkHaXK6iFESOSwLpukkxVilyfaQugEHgpx7yft3aNFmTiiBq3Xn0LFcg7Xo1YauXjN9TD3XbAVgkGYZhOoXrJGLoIBFMvbFAnOkqxSVtCTwC4VotGoO0NTQP95mtS5tQmqxJcQ09ecbkcgUSoTOWgmTEJZNr6s0Eun8RZhZJhmGYTuJJgihcrnovVyF0sUBmrAoixmQqcbsC2TWSsoVpm6u6U8Xx5jpJeZ/JgjS5YE3obtjEzar2dO0OWCQZhmG6ANmCdBwH4X+AG33LynFJEcMEECfvCEx9XDtLYHGnijHTHN2aTNyr6dIQeVuOSYpnmyjaknfi8xncrCLDtbtgkWQYhukkch2kHHd0HHtcEkgvuKwn8ugCmdW/VResctCFUke3JmXXqpzlqt+LzYrUk3dS1yNdLHsuw5VXAWEYhukClNhktDKGa4hLAsJaTITR2ug80qxKyj6y6iF1whVBfDiuhyDwzdaT64Xi5znReZL1JMkhQKwO4qbjklmuVQBJ5x2XUi7VsDrSibe7O4GHLUmGYZguQE7a8RwndrnqcclUbDJnFRBdIPU1JfMIDEKpkyWgyXlky9Fg/VnikoBa+mFL3pExtadT7rcbs11ZJBmGYbqIxHpMHqa4pJy8A5jFUd4PFLcmbYk66bEAph6vFJWGmFYNMblcbaUggLlvq82qlDNc5fnx/XEJCMMwTN/FjRN20qUgwg0r5umuV4FtnUmdct2vgCyCujgm21mWpJzAY51DiUDaWtTpYyJ5R0YvA+lJOCbJMAzTRSQxyMiqBClxSWFBJpam2p4uDkJqmMo/Ki0JsUFBAMd1kyQeqFZUGK8keK6DgAhOYI5LAkjVSwL5TQV8LVlHz3IFekYw2ZJkGIbpInQLUo9LyhYkEGbAAoizWk1LaMlWYznlILLbNBmTLEjfjx+m/abzhc/mLFcgHZcEzC5WPcNVRrUie9iMBIskwzBMl2EqBZHjknLyjt6CrpJWdLpo2kQuVRvp52xH4hqkYpJml6spLgmogicLo47ePMBUFhJfi7NbGYZh+i5CFG1xSTl5R89wzRLKcq3I9FgkcL4lw9VXhdB2Tj3LVV8+K66fzLQkA+O43ExAiGZPuloBFkmGYZguR25Rl4enxRZNiTtd0XUHgOZaNWSv+nJyj59y2eouV+XckqtVT97JImslkN4AiyTDMEwXIluQAFJNBURiT7q5gKEERKqrjM/fBYKZVSZitTSDtKUpL58liAVSW1/S9JDxDbFIeV3JnqJbRPLaa6/FTjvthPr6ekyYMAGPP/64de5dd92FT37yk9huu+0wZMgQTJkyBQ8++KAyZ/78+WFAXHts3ry52m+FYRgmkzizNSN5R5mrJPJ0rQCaVvPILvNQk3hsXXvkBB0gWYg5mVfMkky5W+UaScOhPWFwVl0kFyxYgHPPPRff+c53sGrVKhx00EE4+uijsXbtWuP8xx57DJ/85CexePFiPPPMMzjssMNw7LHHYtWqVcq8IUOGYN26dcqjvr6+2m+HYRgmF1GeofdqFYjkHmXMzbYqbZAlIVXvw2pLzjE2Pdfmmlyuxmsa+rcC2at/iFrJ5BzqOXvaEVv1OsmrrroKM2bMwJe//GUAwE9+8hM8+OCDuO666zBv3rzU/J/85CfK9mWXXYZ77rkH//d//4fx48fH447joLGxsar3zjAMUykieUfe1jNcAX0B5qRW0iSUofia44FFyBI60btVPNuOD+cEoMBB4Kr1ki5C0SZXLQuBdjpj0k5Pq6GFqlqSbW1teOaZZzB16lRlfOrUqVi+fHmhcwRBgI0bN2Lo0KHK+KZNmzBmzBh85CMfwbRp01KWpkxraytaWlqUB8N0NaKtlv5gtjxkfZMzXHXyLMaucL+Wg+Ja9f1Ml6v5eHvNo4mOVM9WEYsUx0vnVtaX7L5frKqK5Lvvvgvf9zFixAhlfMSIEWhqaip0jh/96Ef4z3/+g5NPPjke23333TF//nzce++9uP3221FfX48DDzwQr776qvEc8+bNQ0NDQ/wYPXp05W+K2aKxCWHWdwGL55aJvggzoJaByMjLZOnC6DlhQ4G8hB2lDEOPLfpmkbO6W42LL+suWFECol87neFqWiZLkLdCSE/TLYk7evskIirUUun222/H3LlzsWDBAgwfPjwenzx5Mj7/+c/jYx/7GA466CD87ne/w2677Yaf/exnxvPMmTMHzc3N8eONN97o3BtithiqKWwsmP0XPcMVMCTpaLWSMvq6kjbyLLUsC9C2bbIms+bE+7TOO/qYji+d19RIIO+9dRdVjUkOGzYMnuelrMb169enrEudBQsWYMaMGbjzzjtxxBFHZM51XRf77bef1ZKsq6tDXV1deTfPbLH0xO+mfM1u9rAxVcCU4SpiiTZhBDrvXs1yhcr7s5bMEnFJAHFsMp6fG7NM4o+669XYaSdIi6PxvNKakt1NVS3J2tpaTJgwAUuXLlXGly5digMOOMB63O23344zzzwTv/3tb3HMMcfkXoeIsHr1aowcObLT98xsmfQmq6633AfTOeQMVwBxGYhA1EoCkRtWd7NWSTDz3K3Za0omIhvGK0U7OqmRgCZ2JHXRKVof2VusSKAbsltnz56N6dOnY+LEiZgyZQquv/56rF27FrNmzQIQukLfeust3HzzzQBCgfzCF76An/70p5g8eXJshQ4YMAANDQ0AgEsuuQSTJ0/GrrvuipaWFlx99dVYvXo1fv7zn1f77TD9jF70u5giILYq+wvyv2Oqw46h405nyLMmbfN0C1HfL1uVNksyCJIMV3iqZSlTThzSD6iw+7kaVF0kTznlFGzYsAGXXnop1q1bh3HjxmHx4sUYM2YMAGDdunVKzeQvf/lLdHR04Otf/zq+/vWvx+NnnHEG5s+fDwB4//33cdZZZ6GpqQkNDQ0YP348HnvsMUyaNKnab4fpJ3SFONpO0ZW/ziyUfRu5DET0dAXSwlhNwrhiMWsxqwzENBYE4TJZciaSEMaseCRQ3NWqE1qb3ff5OZT3TvohLS0taGhoQFNTE4YMGdLTt8N0I+WKY1f9cnT2V5qFsu/RHgBtfoA2n9AWEFo7CG0+4cMOH5tafXzQHj42tUXPrR34oM3Hps3t2LQ5fP1hm49NmzvQ1u6jo91HR5uPjvYAHe0+/I7wOegg+H4AvyNA0NGOoKMNfkdb2He1o10RSWNyjhZ/FK+Vh+fBcV04rgevVAvH9eCWauGWauCVXHieC7fkoFTjwSu50XO47XouSrUe6ms8DKj1sFV9CQNrw9cDaksYXF/CgFoP9SUXA2s81Hnh88AaD3VirOSg1nVQ67kouUCt52DzfzZh9KhGNDc3V/V7nHu3MlsMRQWSpEdX0dlz9ma3MGNG7tcKmOskxbzuxGZRmtyv8UMqIdFLQZRjxModgT22WNTVWo51WU1YJJl+T5FEmGoIY1dfi4Wyb+FJTQTEaiBx03NNGV0tcadIXJK0FnD6EldFM11NY1lLbeljRbv9yHCdJMP0AsoRx56ChbJ/41peA123/JXaL9XcGKCcDNYsZBGVz2Hq2ZqXoZpXEmIi6IHf1qon7jBMT1BEHHsL4l447Nh/cTKyW7sTXRx116mrJe2Y4pX2c6ulHMJ6FiuEmMo/BKmykF7iagVYJJl+SJZAdoflVqmBUDRnjzNet1z0PEubqzNrbchkuat8d2xaLN3wdYFmArb7q9TValnspOqwu5XpV9h+54q6VbuiDV1nztF7/n5mugr5D5rO/HFTdI3GzhBkxCTT9xO6XHtT4X81YJFk+gU2QSoijtXutlPuuYuKOdP3scUlhYVls7RMQpmOOwbWfYEWn7TtS18jMM5RXK2xmFtPk1r9A0C8pqTpLffkzzu7W5k+T5b1WMlx1UJcr4g10XOdKpnupKgVZhbFtDCFr+2NzLOanHe2406WKMqt6XRMginT3c0DdNiSZPo0lViPPd0btej1e5vIM70Tm1UpP8tkuVSz4pVFXLDy8lim++tLpR8CtiSZPotNIMuZb6IzTaiKLAEn4AQcpgiZq2NkWW+GpJ3kuApLQHwfjuvG5wgfHmz2VmcbunXn4so2WCSZPkk5AplbDtKFv4jyuYoIZp5Qstt1y0EvkTBZWkG06obJTWuqkZTHwyQbzd0qCanj5Tcwl88JxTWbZLWW07NVH+uNxiW7W5k+R1GBzHNrElGXCmSl5++NXwxM96IsOmz5gdCFMVBcmumFkfXX+phuaerbQZDu+ZqFaYmsPHxDFx/b+XoKFkmmT1GOQNqotjiarpdHpbWdLLB9C/nfK8iwnkQyS2xhZfxDm2OSlVUVCqHMblnXUxWLPQO7W5k+Q2cFshxhLPI1UM5fmOLa5cQsmf5BZ/+QyRLILGtLtyiVso+MeGVXYFtHUtBXknYAFkmmj1BEIDsjjpX8bawfU0Q0icgqlFnxSY5N9h/kRBz5ZzYvJhk2MY+eU67NJOaYV+Zh2weEZR7k+3F8UoeCZF8Q+HDi64l4ZjFXcV+C3a1Mr6dSgcxzqwbSoysoeq7Me+q73yVMBvo/uS4aviUmKV6bfmayGolnuk0z9qnnN4tukWNlggIu494MiyTT5ygqkDa6UhgrPf8WuNb5Fk8AVSyFMJpKPGShzEqAyd6ndtEpsgqINaknRxRtAthXhVGGRZLp1ei/Y50RyHLFkSj9KIe861nv0+Y2Lu/yTC9FznuRBbIjICXbM+VujVbTEA9ln5KJal9XsjOxyKym6f0ZjkkyvZZyBTJLHLMoR/xMc/NycQJU969RbkrQexHWo74OohqXTMci9d6t5gxW8WxaDDk/S1V/ndd2rih5STt9DbYkmV5JVwhkliVXqXWYda4s7PdRnjXJ9F2Iwp9jIZBhHa8mnqZ4pBTTE40ETO3fsnq2Gu+nzPl5FKuL7Hs/2CySTK+nUoE0nquLhLGSc5crlEzfxqdQFAKi0JqUayQpafjtB2nrMX5NiUDqCIGVi/0p8O1NAXw/08LUx8V8fcWQLQ12tzK9Dvn7oFyBzBLH4tc3T3YL1jgS2V2w1Xa9Mr0H8bNK0mshmgKbm1Xep3bWUTO2bYkxeWKoz9Xdq511ufYnWCSZXkWWN6YSgcx1g5bTYECbmyWaYmrR3gFZ9ZPKPHC9ZF9CFkhCIpA+yR13VHHskMRSdqvKzczl5B09aaeotZi1TJbpGJOQbgmWJf9Ry/RaZEnqSoEMiOJHZyhyHtOuohm2fTB8w1ggosSaVAQyGouE0Zi0Q7JQqpmtthZx8pJXuqtV3m86ppj1WVkRldcHM8xYJJleg83NWq5A2mKDXSGMNqollEzfRQijXhspC6RP5sWI9aSddIeddNKOKR6Zuqc+ZPkVDW9UGxZJpk9RRCB1iogjFXjk0VkR5gSe/ktcChL9wMri6AcU10jqFqVsOcqZraakHUE5yTldta8/wzFJpldQxIqsVCBtlCtJ8vysv3EDotRfwaZkHk7i6d/INZKi/AOIrMloI5CEMuVulTJbjdmtittVbSKgZ7tmiamg2ok6bgFXqz6lN1iT/DvK9DhF3azKMdp2qjemxaorxzLMIu8cxmuzobjF4EduVrn8ww8oEkjpOUAqBim/ThJ3ksxWU9KOQN7W6ybFfvk5i66wHG3CKGKTnusq28Zz9LBQskgyfQIl7T21T93OEseuJuu8vWXRWKb7EY0CRHYrQcpkjRJ3RDmIbD12SNZkIImiwJa00xWNAUyJPV3Rgs51nUJWZG+F3a1Mj1Kum7VSgSxy/Tyyfs+Llmbobld2ufZfYoGM3KuyQAL2zFZT0o5qPUKxJANJ0FJi6cvlIcWtyM7gdFIQTYf3pMby7yfT6+gqgbRZeQElj3LvK+s40/XKtSY5ead/IGe2itikyGwVMUmRvNOZpJ34epZ4ZOq+LK5Z2xzbeQRyHLOoOOqu1VLses0+rqfEikWS6TGyOuvkUUQgTdfrqtrDcs6VurdO3IPpa6gPe7L6LaaknSCAIpCyq7VI0o7eacdkIZrikeU0Oe9OsuKQniUO6fZAKw0WSaZXUcSKzBJIszWXL2iittL0KHq/8j0wWy7lJu2Ihx6PDGJrUnavijHVcpRjh2Rwv+a5W8t1xTqum5kNa7Mq+2IzAY5JMj1CnhVZqUBmXUc9f+4tGuea/sAV15B///UYpakshOmfJK7UUARFO7r2wJ60Y3S1Gjrt2OKRYru74o42ZHHUhVK2DhMXq/lZny/T3b9HbEkyvYYi1p463y6QNuuxiHWYdw+24/XrFb1MZ7rv9ME/zLcI5HikHyTxyHY/QECIBFOIYqC6WmVRJHV5LD0eKfdr1V2tak/X6oqnLXvVcRw4rqMIZp416RYQyu6ERZLpUcqxImXyBDJ9zq6tU7SdL7O2U77nCu6l578umDyEFanHI9t9MsYjWzvSCTu+LIpahiugxiN1ipZu6OKZRblNBoo06gfS1qPNQuxpF223iOS1116LnXbaCfX19ZgwYQIef/zxzPmPPvooJkyYgPr6euy88874xS9+kZqzcOFC7Lnnnqirq8Oee+6JRYsWVev2mS7GJCTGMem1LCrlCGS25UdlPUzkiV0145NsRfY+CEn8UViQwrVaTjwSQMq9moyFvxl68/JKVv8w7bdhE0sxLotcXkwy9eyoQqlbpo72J2J3ulyrLpILFizAueeei+985ztYtWoVDjroIBx99NFYu3atcf5rr72GT33qUzjooIOwatUq/Pd//ze++c1vYuHChfGcFStW4JRTTsH06dPx3HPPYfr06Tj55JPx5JNPVvvtMF1InhWZjCWvyxVInc6sAGLt4pNyA5d96hj5r3D5e0L/SmCB7J0EIpOVkjKQ9iCAT6E1Gbpcw5+jNpMVKblZ5fpIWTBVQQwUcctytYpxnWq5YB03FEvhci3XIkwJZQ+5Xh2qcmHW/vvvj3333RfXXXddPLbHHnvghBNOwLx581LzL7jgAtx777145ZVX4rFZs2bhueeew4oVKwAAp5xyClpaWvDAAw/Ec4466ihss802uP3221PnbG1tRWtra7zd0tKC0aNHo6mpCUOGDOmS98kUw5SwY8poNVmRRQXSJo5diekvWX3IJHLKX9vSfjceY5HsqwQEtAWE1g7CZj9AawehzSf8p83HxrYOfNDuY1Objw/aw8f7H7Rj0+Z2bNrcgY2bO7Bpcwc2tXago81HR7uPttYOdLQH8bZ4HXS0w2/7EH5HG4KOdgTtbQg6okfgI2hvS4lknhUprEHH9VIPt6YWruvBLdWG26VauDU1cEu1KNUOiJ5L8DwXpVoXrueiVOuhVOOiVOOFj1oP9TUeBtR62Kq+hIHR84DaEgbXlzCgxsPAGg91JVd5HljjYkDJQ8l1UOuFj5ro9QebNmL0qEY0NzdX9Xu8qpZkW1sbnnnmGUydOlUZnzp1KpYvX248ZsWKFan5Rx55JJ5++mm0t7dnzrGdc968eWhoaIgfo0ePrvQtMV1EJVakjSyBzHSVFnyYr5k+b7F77bxYs0D2Tgjp0o8OqfQjoOTnxmZFyrHIrH6t4jnL1VrEiiwXx/XgeJF4WtyvWf1abe5W8cejFz9r5+yvHXfeffdd+L6PESNGKOMjRoxAU1OT8Zimpibj/I6ODrz77ruZc2znnDNnDpqbm+PHG2+8UelbYrqYvFhkMs9sReYJpIks8cuaby4xsQtlZ9yuNiuSBbJ3I5d+CHEUpR/tfiiM7T5Z45G6KMquViBxr5qal+uuVkFnxNHx8pN2nKhJuSOpies4cc9WvXdrXnNzsek5anarGO9ur2u31EnqvmQiyvQvm+br4+Wcs66uDnV1dWXdM9P1ZIlGlhXZVQLZFQ5XQtr1WaQG0nQcUff/wjPVIS7rEOUeCP99kzikqfQjtChlqzKr9EPEI4F06UdeVqtNNItmrhafl/0DbaqHFMhD1rCE5XU1qapIDhs2DJ7npSy89evXpyxBQWNjo3F+qVTCtttumznHdk6md5ElVsKKNBmBlQpk5vVylNP0iygOsTULkMUvoM79MrMV2XeQXa1+kLha2wMhkIFS+tHW4StiqZd+yFYlkG5FZ3O12pJ25DmVYBLKJJapZraaGgkIYSxJ+/S+rVlCKTZdp3v/uKyqu7W2thYTJkzA0qVLlfGlS5figAMOMB4zZcqU1PyHHnoIEydORE1NTeYc2zmZ3okQqKzcMZNFWFQg7S7S4r1Xs+amk4eka2ecu5K4JAtk74ZQ3NUqW46yq9XvCCRXK5DOai3mak3dW4WNBGyiKFrSxaUf0Q+nLoxZjQREfFI8XElEPcdRSkKMCXBIe2aqRdXdrbNnz8b06dMxceJETJkyBddffz3Wrl2LWbNmAQjjhW+99RZuvvlmAGEm6zXXXIPZs2dj5syZWLFiBW688UYla/Wcc87BwQcfjCuuuALHH3887rnnHjz88MN44oknqv12mCpS1Iq0Hp+R/Rrur+Su0sdntZ/LoujcOPaibTO9E93VKnq3tvuhm7USV6vvB2ozgTJdrUUFkQI/15VqS9AB0jWSiTCq87KSdhRBlOKXsvXpImlu7kTX6RfuViAs19iwYQMuvfRSrFu3DuPGjcPixYsxZswYAMC6deuUmsmddtoJixcvxre+9S38/Oc/x6hRo3D11VfjM5/5TDzngAMOwB133IHvfve7uOiii7DLLrtgwYIF2H///av9dpgKia1GbTv7mOJWZLkdeEznMGHr1WoTSpPbtajLtafqwJjOQ4S4gYDIahXu1XbpdVtHkOtq9TtUV6uITZbjajW9LgddOLNcrYJUXaNUIynIE8pYMGX3LZz4d6Mn+h9XvU6yN9LS0oKGhgauk+xGbCJZpC7SJKydEchKf+JNv5/2LFTxl7U6T6+XjPcD0hcBW5F9ifYAaPUDbO4gfNgRoM2nsCay1U/VRm5qFTWR7Ult5OYOfNjagY52H+2tHehoC6K6SB8dbQF8P0BHW4dUG9kGv3Uzgo6wHtLvaLPWRhYRSbkmEkBcD6nXSIb1kbVwSzXwxLZWI5nURUb1kjUeaqM6yAG14WNwfSmql6zBwFoPg2pLqFfqI13Ulcw1kqJOsuQ6+HBTCxobq18nyauAML0Km0Ca5sjz9LldKY768bJYylZiOa5Xpv/gUxhr7AiS+sh2P7QehYu1PQjQ5idWpHC1CncrRTHJILBntSYPbZksQ21kpVZk2X1apfIPPSZpKv2wlX+42h+TcvmH6yQPIPz9684/HlkkmW6nktigsZ6yoEDaxDEoEOk0LfKql26Y3KnC7aq7XPOEtCdS3JnKaY+zWJOEnXY/UBJ2wqQdtVer/GiP4o9Kko5UKylcrUC6gYCtNtKELK5C3LIQNZKylZkcn4zJyTnitZy0o2e2CrFMXiNK3gmF0Y0eQJLVKntkXKSbDVQTXgWEqTq6q1Wgu1rLtSLjMcO1suYHoEICKc/V59v6tW5xsYstHKWROQEdgZqwE8YjI0tSsh5bpdcUEAI/gL1Xa5LVWiRhx1QTKQukTDmWo5zZKlBih0669ENQpNuOnLAjxoUoAlHCTuG77TpYJJleTxK/lMfSQponkOWIo/E+tONtFmoSQyXrvKwyEDYg+wbtUi2kEMpQGBNxDCgp+5BdrfKyWLGb1eBq1RN2dExJOvJ4pSTlHcUyWxWxtDQ2NwplVO7hiufIRSusT7H6hwvZuuze3xB2tzJ9jrJrJy3CWDRGqf9OBqDYDVtO44ByGguwq7X3E4tjkLwOrchQLDv8ZMUPvQ2dsCIDOYu1gxB0BKFVGVuTshVpd7WayLMibcjNzsWz3rPV1ETAjeod9XZ0ujjq9ZFAumer6yZ/LDqOI7lbu/8Xgy1JpluxZbXmZbRWXDtpmEVUXhKPab7Nokxn8bIDtj/SHkgxyKhGUpR9JJZkkJuwE0TuVt8PFCtSXxYrrzYyq8tOHrL7tEjphxjXk3ayWtLZknY8V03MCS1Kc9KOiE129x+QLJJMt9BVUpHnZlUEyxBHzO6Ek19TaTt/nhbK+1k2+z4+ETokKzIWyMh67IgtSkrFIvWEHb8jSCXs+HEyjyqIpjrIbDdsMStST86RG5snJSLpTju6OJabtANYmgpE1mNPJ+0A7G5lqkwlmaxFrEjT+csVMNu9mcaV5gGyi9Xges3KZE01IqC0O5fp3VitSKnsw2RF6p12ykvYUQUxiFyvgkqtSBPlxiMBtdOOHo+0PqRMViUWKVuRCOORPZW0A7AlyfQgNlerdX7R2skMgRTWYrnirR+Tdz15Lrtc+xc2K7K1I5AyW9NWpOJq1RJ2fD9sGuB3BMaEHVttZFYT8zwrMrthefF4ZBx/zIhHmjJbRbJO8hDnQpy046Ssy+6XSrYkmW6nq5o8GbNecwSy3PvRfymV5gEk5qgWpXJuJH8Bp+sr85fYYnoXckZre5SE0xGEq3oIK7LVN1uRrVIsUjQzD/wAQUcBKzInYae8hgFm26iz8ci88o/w4SqiaYtHOkjHIh2n+12tAFuSTDdSxHqzuVqzWtTF589IpkmXh1D8yLwfwzybVSmuX8SaZNuy7xGQ7FYVK3hAiUUm1qTdimyLLEZbh50wRmlP2NFF09yrtbxYZGfikfo6v3o8Um0cYGgiILlZTfHIWETRM1nfLJJMr6BSl6QuUPJYeF59fr4w2q+VFkvbfdgSdcgg2EzvJyCgLUiWvurwQ2tSWIvtQYDNcY1kOqPVZEXqZR+JRRmKoh/1Zi2n7KOzyPFI+1JZ6frIzsQjTfWRvSUeCbBIMt1AliZk6VU5VqTpfCaB1AkKPmznyRJKfT/HJvsuou2ccK+q3XUImzuCzIxW2YoUfVr1so8iViSQX/ZRxIrMbjOnWZJSPDIcc5XlsIrEI43rR8bWo+jVmtRHinik4/RsPBJgkWR6iKxf46KWlkmUTOcwWY8m8ctCny+f05bQk1X2EVA4JlayD9B1sVqma/EjN2tHAKnNXJigs9kXFqS9LjJeDksSx7zmAVlLYuWVfWQhxyOzXK3yPtnVqvdrVR65rlZXcbUKN6puVSou1h6ORwIskkwVMYldlhBkWpzaOY3NBQyxwKLiKGog9YeOSSz1a4bzErerbk0WLWlhep6AVGGUyz02dwRxj9bWjgCbo8eHbT4+bPONVqSIRepWpO+rq33ofVoBteyjM1akjaKuVmE5AhWWfghL0k2Xfoh+rXFMEkk8sqdgkWR6nCw3ZG5ZiCEGKDAJpLo/v8GAbU6WUNrcrqx/fQ/dzSon67R2JA9R9qH3aFXKPiyxSGFF+h3m5BwgXfah05nlsCp1tRYt/TDFIz3HQY3rWks/PMeJ+7V6kau1J5J2ABZJppdSqefR2iBAO3cl50933JFrPc1Cqb8O5yTrDsou13h+xvtgug+Rzaq7WeVkHcX9mrHSh6iLLG5FquUdgUU0y7Eie8LVair9iFf36OWlHwKuk2S6BbPrteA8bV+RkgsluaaCa5oQf8nK9ZHi/G50Tcdxko47BAROUj8pxm2/7wEAl1vw9ArkbNb2IGwzJ7tZxUO2Jj9s83OtSJHFGnSonXZSVqSh7APIbh5QhKzaRyBxtarLYSVj5bpaTaUfNV7iapWtytAFay796El6+voMY6XyspBiAllu553srjvqtZU4JNJxSN2a1K/D9Cyye1XOZg0tSNV6lJN1PmzrSFmR7Za6yNCqNFuRXV32YbMidVerblmq+zrnaq0tuUrs0XNCwdRdraL0Q1iWPelqBdiSZHoAY+JMwWPzrMgiAmkTIcq4C0ey/8TxwloERNcdg0WJxDAUWawmazKgyOIUc613wlQbXyTr+JTKZg1jkX5sPQqLMqtxQFwHKVmRmbFIS/MAIJ2wU+lyWDIi9ui6urs1o4FAQVdrbck1ulprXMfqahWlH44j2td17t+zs7AlyfQ6OuMSjedbzpeqnZT+y7wnwzxzjaTYJmWfKYlHtibl+7ZlzDLVJyCgzQ/jkB0Bct2sIlnngzY/drN+0OYrblY/tiST1T1sscigox1Be5vRiqzUkkxayGmWoiFhx9arNXwklmMRV2tdyU29LuJqVZbPQs82EgBYJJkeJs+lmlkWkmFF6nPkeeF57cIo3Ko2d6x8rDzHJJTyPpPbNTmnmsDDAtn96HHI9oDQFhBaO0iJPYYWpB922enwY1FMYpLpkg85/ih315GtyKCjzWwxdnHZRyUJO7Kr1Sngaq2VBFLPau1LrlaARZLpQ2Q1D5DRVxcB0gKpzM8RRdt+XSzVexTbpFmK5sxWOTYprEnOcu0+hEC2+epDxCE/aPfjxgGtUfMA2c0qYpEfalZkvD5kR3qlD7m7TtiCTnWz5lmR5TQP0IVRHyuasKO7V3VXa23JRW3JVRoIyFak7mqtcZOuO27kXk0Sd3peIAEWSaYXoRfdl0Psosw5r+4urUSETGIpj9uEUi8LkYUyOTdbk92NLJB6ws7mDkkcJReryGb9oM3PTdaRxVGs9BF0BMjq0VptKzJ2r3rmUhCbFRlbjJ6bcrWarEd5TG4gUOO51gYCXtyJp+ddrQAn7jB9gKzyEWsSjmG/LZ4ozy9CXPohJ/BE53aQJOwAQOAkyTxB5E6Sy0Lk64ukHiApByEuB6kqIklHCKRqSQph9DVXa4AP2/1UNmtsRVqSdYiknq1RLDIQAtmNVqQulGrcMXG1irm2hB3Pc+GVwkeNZxJIL34tGgfIDQRCdytQctMNBHqLqxVgS5LpY2S5Wk1uVkFWwk25lSappgJyXNLgfpX/1hcWZZbbVbcmfbYoq4JJIOWGAR+0+0qizuYOse2nXKu6m9WUrKOWfAQIOtqMJR9FrchyybIY4/2phB03EkTZgsxP2BEWZCm2JqG5W53I3eoqyTpJ8k7vEEiARZLpxRTVBls/WF245LHwOPM18x7y8bJg5gmlnLVqE0pxDwFRfEylbmHGjk0g23w1kzV2sQZBvJiycLO2dfjS62w3q5ysEwQkWZDmHq1AvhWZ5WrVrchU9qpkRarjScKOW6o1WpHlJOyI2kghimJ+7G4VMUloHXfQO1ytAIsk08uwZn9aEmps82wJOKbzmQQw8x4N8+XrhqIX/leOUMbzItGUj+Eknq7DJpCi1OODdqkOMkrUkZuXi646pmzWLDerSNYJOtqtjQOyrMiiyAKpjmfFHe1WpF724ZbKS9iRE3TCZ8TuVr02Ml5CqxdZkhyTZPocRsG0zdWsOv14k+74BdTIi36DxUxHOq/jIGlNB0JAjtSmLow1irXxROs6D05sQbpwEABwEL12AId6ZlX2/kaWQMqlHnKyjrAoRQ3kh20daYHMcbPqyTq2xgFZVmS5S2GF2wYxzIlFyhmttrIPr+TGMUmT9SiPidrIkqfWRZpqI+O2dF30790VsCXJVI2iX+qdMZDKXYMxSyD9gAoJpDxXzJctS5P71WRR6sKtxyeV1+x27TRFBFLPZBXZrB+2q25VORb5YZuPtnYfHe2+0c1KASnJOiKjNehoN68X6Xe+T2tWj9ZiscikeYBXcsMkmpJrLPvI6rCjJ+yI2kghnHLCjnC3ipKQ3gJbkkyvRq8xzKJIbDCeKx1nEsa8EhTR5Fk+3nOd5LziXpBtUSoZr+TE8wMiONH8ILI8RbarsFKZ4gQFBVJ2tSZt50SpR2JFfiCtGan0ZjVms6rJOraSj0AbExR1t+pu1qwerXlWpFfyjFakV1LrI2Vx1Dvs2BJ29NpI2YLsLbWRMiySTLfgOl1rBXXmXFkCWbQ+U5/nOk5KLIULNojnhEIJIBLGbKH0IzWUXyMgeC4LZTkUtSDVnqxJJmuSuWpeSFmOQ9rcrH6Hb03WkeOTgkpikOqYuXGAsbtOmVakXPahu1ZrS16yLbtWtYSdGs9NaiGlxZV7S22kDIsk0+M46JzL1dww3W5FCmSBNImjX0AwPUcsgxXO1cUyuhkpTklKLSULZfUICPEKHsZSD18VyA/aE4EMk3V8pWGAbEEK4TTFIWWLUnez2pJ1AJhdrxnCaRNHWyarWQw7b0Xayj5kC1I85IQdsZiy3Kqut9RGyrBIMv2KPAtT7M4SyCLiaJrrOU5KLGMXrOJ+FQLusFBWiYDCLjodAcEPoGawSgIp2s3JFqTIZtUTdVIxSRGDlOKQwqoU2awUUNi0XHazZliRXRWHLJysowmnW6op24pULUlXKfuo8VzVgrQ0M4+3e+HPMosk06dQW7uRcVygW5Em6ZMF0iSORbp+iT/oxfGyWAozV7YqdferEEpESTqO4wBuWigp+nJhobSjW49CFDt8QnuAyJKUGgRYBFKuhZRdrMKKFHHIjnZfbVguXK0+xW5WRRC1ZB3SLEtB+WUf5jUh4zFryYe5LtKNrEav5OZakaVYHD1lYWW97MPWYae3JuwIqprd+t5772H69OloaGhAQ0MDpk+fjvfff986v729HRdccAH23ntvDBo0CKNGjcIXvvAFvP3228q8Qw89NKqrSR6nnnpqNd8K0wn0n/tqp1TnLXslrEibQAZB8iiCPt8nis8XULjIrpIFS3I2a5i16gdq5qsfJOeRs179IHztR0Ignrf0rNeAwtijWMVDaVJuEMgsCzLPxdruB+ho81NxyDh5R2oakOdmDXKEsVjCjrrclXhdJFnHLdXCK9XCLdXm1kXarEhhScbbnhtbkXrZR1/osKNT1e+r0047DatXr8aSJUuwZMkSrF69GtOnT7fO/+CDD/Dss8/ioosuwrPPPou77roLf/3rX3Hcccel5s6cORPr1q2LH7/85S+r+VaYPopuRZoyWXWB1PcVfYjjxUMXS1EyIspFhFD6lDQe0EtEKNofimYilPHrqDxkSxZKYT3qK3jEj0g4P+zw8UG7H2ewitcftOcLpHCxbm73FZeqHocU1qRoGpDlZgXQaStSF0hjXaRnEEhDfNJmRYq6yEqtSL3sQzQ2Tx6IOu507c9FV1E1d+srr7yCJUuWYOXKldh///0BADfccAOmTJmCNWvWYOzYsaljGhoasHTpUmXsZz/7GSZNmoS1a9dihx12iMcHDhyIxsbGat0+00XoWa2O45Rd25iF3hfV9Np4XHQPNoG0xSVNWa2mYzzHSc7naueSXbBarDIvTukjtD49JK/DtuqhqzasPdsy3K/CevQpiT22B+EfJsJ69CmdoLO5I1zqSi/zMMUghUB+2ObHAqnXQyqiKZV75LlZ9cYBlbhX5dc2gTQ3FDCvF6n3aHVLDtzodWesyDBxx42tR92K9HrxD2zVLMkVK1agoaEhFkgAmDx5MhoaGrB8+fLC52lubobjONh6662V8dtuuw3Dhg3DXnvthfPPPx8bN260nqO1tRUtLS3Kg+kdyCJTbXQ3a1GBFC5TUwasvE+eY7IuE/dp4oLVrUoCKZajH1ugqvs1NW5wv/Zny1K4Vtv8wGo9dgSkWIxCIFs7klU85DIPW5LOh21+XOoRu1X9AB3tyZgehww62jIbmMvjMtnZrKoLVYzJ+5T5lmxWt6bGaEXGwihEMUq6Efs8rbNOpVak3Ke1t1uRQBUtyaamJgwfPjw1Pnz4cDQ1NRU6x+bNm3HhhRfitNNOw5AhQ+Lx008/HTvttBMaGxvx4osvYs6cOXjuuedSVqhg3rx5uOSSSyp7I0yXUaRW0nHs/VsrJe90NoE0l4XYzyN+0a21lkE0QbYsNavSJ1FUbbcqfRCInGjJLgKC8LVuVYrWd734j/Sykf8QaA+SPw46otey9dgeJB1zlPUgA6nVnG9vWB7HIaMYpC89y4k6WXHIwLCYsqnko5IaySKxSJubVcQhw5ikF2WwInSxxoIJuJ6biKbUo7VcK1JfWNlzoQhub6ZskZw7d26u4Dz11FMAkl9SGZL6VmbR3t6OU089FUEQ4Nprr1X2zZw5M349btw47Lrrrpg4cSKeffZZ7LvvvqlzzZkzB7Nnz463W1paMHr06Nx7YKpLdQQxO+NVIFt5+higJ/UUu7Y+z3O0+sk44zURS58orLXUxFJ2v4IAcqCIHzmqy9UhhGtPuslr0dIg/H/fFktZHIUIJpa2yGgV5R6JMLb7QhgpTtARrz9sT1ysJoEUzQJ8zYIMpDhkWOKRjkMqTQMsVqROpdms4rkzblZTyYewHkVMUhbHuvi1p9RF2qzIZJHlvmVFAhWI5Nlnn52bSbrjjjvi+eefxzvvvJPa969//QsjRozIPL69vR0nn3wyXnvtNfzxj39UrEgT++67L2pqavDqq68aRbKurg51dXWZ52CqS5GGAUUszc5is/KKCmRQ8AZd19GONRxnsSw914kzYB2Hos8lbVUCFHX1kSxJyap0InENu5r0PbEUbmORmJS4odX4o69ZjyIGKSxGIYrt0ooeiTgmCyfrAvlhFHsUMchAE0i9HlK2GG2t5wBYx4tSVCCLulnlZB1T4wA3shL1RZX1usga1y1kRSbZrL3figQqEMlhw4Zh2LBhufOmTJmC5uZm/PnPf8akSZMAAE8++SSam5txwAEHWI8TAvnqq69i2bJl2HbbbXOv9dJLL6G9vR0jR44s/kaYbsMkfi7sK3fkHVsJRRuX2wSyqDia5suCKVuXyWQHASiutwx8Sr5ASHxOkTOVHKNVKcQycAieE1mSTlJi4jqiWDvpL9tb/4IXVmOAxHqklEgmLteAgHbNetSFUawRKdaDbI3F0C8skHomq0jU0dvOBbIVGaStSBOygAoc10tt66+LCqTsZlVLQNw4WUcIol7y4WqCaLMiXbm7jsWKFA0D5Edvp2oxyT322ANHHXUUZs6cGZdnnHXWWZg2bZqS2br77rtj3rx5OPHEE9HR0YHPfvazePbZZ3HffffB9/04fjl06FDU1tbi73//O2677TZ86lOfwrBhw/Dyyy/jvPPOw/jx43HggQdW6+0wXYgpw7WzrelsmM6pu1rlMo1kTjJfFrxyuvEAIstVOkb5yzktlrZ4pYPEBetTvlg6BrEUlqXjiJZ4Ttwvs6cRmaqy1RiQSSTTblZhNcqW5GY/iDJcI2vSJyWDVfRiVQUzUARSblouBJICigWSAqTikEq5h9ZmzpTEk4eejCOP2RJ50hakqIGUmgaUauISD5GsI5a/kpfCclwHtZ7ZzWqyIkV3HWss0nH6lBUJVLnjzm233YZvfvObmDp1KgDguOOOwzXXXKPMWbNmDZqbmwEAb775Ju69914AwMc//nFl3rJly3DooYeitrYWf/jDH/DTn/4UmzZtwujRo3HMMcfge9/7HjzPvDwM0zepVDhtRl/R5uVCIHXr0diRJ+OcShwyPkCZEL2QRNiP+sFa4pWkJfbY4pWyWLqOcLPq2+G5fKhJPt0hmrIohnWhct2nJJKigQKlxTERRlJij8KSlK1IkaDTKrlXVcFMC6TophM3LZcyWSmANQ5p66pjojNlH3qzAL0e0o2tRjfqppN2s9qSdcRSWKYm5vKqH3Es0kv3Z7VZkeJnrDf8cVYEh7qyaK2P0NLSgoaGBjQ1NeXGO5muQXSNiV9LX47hGEVdZZIvTADqWCQE+jmAdAcbMSau6QdqeYbNijRZkKaSkErQy11Ec3RX+os6/BJxtP2iZVc0HlmWjpPorAMnFj0XiBtFh9tOPFeIJaTjU2PRvTjxfVT0dmOSf8Pos0bybyz/+8bdhUwiCbs4ys+69dge6GKY1D7KreaUJJ0MgRSZrEniThCXewgrMmhvlwRTc8EampibnnVsccj4tcGd6pZqQ+Es1RizWT0vahjguSjVevA8F6Wa0KIs1Xgo1XoYUONhQG1oNQ6sDV8PqC1hQK2HwfUl1Jc81EeCObDGQ13JRb2XvBbiWetFJSPSdmd/rlpaWtDY2Ijm5uaqfo9z71am2zBZhrYMV1fuf1pgfldjEsh0I/Ryz2pJGvIpFkS4TmRBhtdzHUeKWYbz5JilsCxtMUtAEsNYMENrEqRamNHl4zaCQoB9cWsF36Uea5YFEVD/EDKLZFLrKbtdi4ij7HJt84NYDOX4o8mCFAJpikGaBFJeH1KphzR01bHR2Thk/DojDhk2LDdns8puVpGsI0RTJOukyjwkt2tcFylZkUk8MuzRKme0ynHIPmJEAmCRZLqJcpJ3qimEWS5T3c1aTklIXmJPOtsVMGe8Jk9upGRCLH0/Clu6QjzU2I7IhqXo1LF1mSGY4RhJFml0v054bUm7CyN/FLqnQOyXPQO6MAqrkRAm5CSZq6EoBtq2+pxYj4lAdijbbZoF2a4LYQGBtCbqGNysuhWZR5E4ZPxaEkhXtiKlOGRiRdYkcUchiJGb1dZZR3et1pa8xM0qddKp8dzYvRqOu1EtpFoXKX5e+0g4EgCLJNND2JJ3srJZXYQWlTqWnyVry2wtmoTTFRmvxrmGJJ7YegSAIBFLxbqk8C90YV3GCzlL1iVgF0yfhEs2uY34tSScxtuEagXYPgHZ5R2+FbOrnAzCKKzGIADagyDMYo1EMAjs4hiQaj3a3Kvyo1KBTCfqqCKY1Vmns3HI+LW11KM2Nw6ZiKPaXUfURtoEUm4cIESxFFmSrlQfmViR8ioffc+KBFgkmW7GJoQ292p8XJXdrDYrshoZr8lJ1JciNqm7W4U7VhbMQLhHyUnKLQ2CGUQuVSfKig2FMmxC4DqhpShEE0jEMjxH8rpI90D5Y0hEUo1Din1yQ3ddGH2iWBDF69CClMRSq4uUxdEPKBZI1aL0U+5VvyMIrdgcgRS1kEIg1YYBahyy3CQd3cUqxvTXikim1oFUSztk69IWh0waBqTdrCYXaypZR3OxytakvF6k3l2nL1mRAIsk043YrMQsAcyyLm3N0ruqtlLGlPFqdt2Wc1ZtsiHztahgyu5YIC2YACQrUxJHKfEnnJvcky6MppikyYqXxTC8WjqZSiRSiSQq0dM27KSjv7aLo0+UcqX6mrtVtx5lgUzqHYM4Y9UkkPLakCY3K4BMN2v82eQk5tjGiwqkaBiQLH+V7qojl3vI2aymBuZ2N6u55CNuYu442iPyXhjfZe+GRZLpMRzHibrHmPZF7lWLenaVEJr7s6pWpCkGqcYrzefOsjDDhZnT9xIny0jJPEaXa0owo3NIFmY7xDnCRgUm0RSWphBsmyVZBFMsUgzJoghAEUbhThWvhUs1FFBKiaMfuWHbIqtRdq22SZZklns1kOodRau5WAzllnPRmFwLmerLanGzynRJVx0vvTakTSCTDFc1Dim66sRxSUkwy3OzmixJR03WcZE891ErEmCRZHoIq3WYsS+ek2l5OrmLLtvIizGaE3rUOUVdr/Z5ybeISTRlwQRUUQy3IyEsIJrtQVJmAhhKVMr4RpPjvvoqK0IQxT4hhLJIJtuIXathwk7kZpXEURZB3bWqimagiKYefxQNypV4o7IvEcigoz22IrMSdWRMq3zkYXWz5gik3qtVJOrIbecSsVR7s3qems1azM0qknVce7KOo68fWdZH0WtgkWS6FSGAJonIi0sC5uSdPDzXUb/Ei/TDi8jOeJXnqfdUbhu7GM2n6VMiZEI0/eimdNFUGqpbRDMUSgBB+Hm3IzmX/K8iRLQIpibxpoxhu1BGa0JKrlZfsiB1cZSFUHatquOUcq8qq3b4QvyKC6TqYk2vBZnXek4nz8UqXgsBDP9dzAIpSj0UK9J1jG3nRBxSXhareDarqyTryJaknqzTFxsHmGCRZHoc0bg7Sx9dR03+0IlbrRXQJtfNF8o8sbYJpC6O5WplWAOpjYGkpB67aCaCmLY0hSjK8yCdNxHL+KKFyWrAIARR7BOiKOYEAUmWYiKYckxSF8dwW3WtdkiiKAukHyXlKMIYJegowhjNEwKZtJszNC2XrEgb5bpXAYsVKcUfxXieQNoSdeR6yDguWUrcrFmt54xu1iLJOn2w5EOHRZLpMULhMyffAGpcMktrijZLL0KWuzT54jeMFRDH4lmw6W8UWTyFJa02TnckK1ISbdmdqluT4cnCfY4Qy/IxZQDLYmkSRdliVLcRl3KEi0pTShzNoqkKpC8yYrX4YyiGcjmHWSDlbjppa9FcD6lbkSYRLZzJanCvph4ZAik3DBBJOXFc0nHUOGSlbtYCyTp9seRDh0WS6RFU516CcLkWSczJE9ms65SDzXVqEsgiMcp8K5VS8cHwXGoMMYgUKfwc0sIJJNmugCqe7VDPpbpa7V9rps/C5IIWgijGFMvSIoxxA3PJOky2fWVfpkAqoqe6WuUMViGeocWYLZB5DQNk8qzI3EzWTgikyGSVGwaIRuV6oo4pDlmWm7VAsk6pj1uRAIsk0wMY6ySR73IFIusyWhKqyNzCxpsBY2cdSQQAu0BmtbNTrmETYJAxcUZexFm/T9GyTiCLJ5AWPzUeqVzEer/h9ezxV0UkRVwyoNS4SRjFo0MRwyBTHJXnOM6oCqAcf5SzVfVxWSBNpRxZVOJeBTQr0lMzWisRSL2jjhBDz0ssR1EPmVXuUcjN6rqoL3mKe7XGVZN1+rpAAiySTA9TxBosx7oERHcZMs71HMPKHAXIO8bogtWOyVrT0rTLFJ+MzyWJnxBT+XrhCiTpi6QEEUCH3sWowOdsbdlntR6TuVnCmDxUAZTF0SSQuvWoulJJHRdLXmUIZLoWMt+KzErYsVmPgFkcxXaXCWRJjU3aBHJAbam4m9VzMt2sfTlZR4ZFkukRbFmuchwyL1knOSaqt8xJ3imSPVsOsjtRYOzUUyBeqR+fbCevTQIHQLEegfCz9S1O5qATf9pnvY9UVqtBFMU58oRRf8jimBJIEec0uk8T9yoFlBbQyJpN6iDNFmReuYe1QYDnZSb3OF46Filbj2Jcr4PME0hTJqvruUqyji0GKa/2kedmrZWWwUqsyb5dE2mCRZLpFWQ1FkjPTVyuRTNa9TIQQSXCabMq8wSySLxSPz5v3Ba7NKG7Y4uQF1OVxVA+RhdF8bojMAlmWgTTAqpalW2yGEYWo/zaaCVK1maWQKq1kKpAyhRqVp6zxm1R61FeNDlPIHMzWb20KJrikGIJLLH8lXCz1pXSblbP0UtAcj+aPgOLJNNjCGuySPMAxbos43telP91nf2okopRWlyP8Zgez7MJbsF0XZvFKPCkusvCi05brq0LYTKfrM8dBgsy3DZbjXniKLJWhWVosx5T3XI0gZRdrqblrWw9WIssgZWH7HrVxVF+rQukvlakyGI1CaS8soeeySrWhxxQ65UVh6wreaFYGrJZxWLL/cnNKmCRZHoNqtu0clEMrUt7XBKIyiGCdHwyK2YpnyuvWUCeQKbjlabrdV7ay/k+zyx/CdKiKL8Wzx1BWiiFtahuq6KpJuuk54i4o+xaNVmPuntVF9E8gUyVcWhuVh3TmCyCFPjGeKQsjuI5JZKRQMqreYgaySICWU4m64BaL7Yo8+KQqWzWfupmFbBIMj1KUWsydQw0lyuKuWuFe7LilTsykLM5w+1kn9nSNB8vU859ZiUGdeZ4m0CaBFF9DoyxSLFtshqzxFF3rdqsR/s8UsTTJpBFGgYUtSZ1gTSJo3i2uVe7QiDtmazqdn3JRZ1nj0OKpgFyNmt/dbMKWCSZXokpgadIYwHr+WCPSwpc16monVyekOUJpM2NmcwtZuEVIW++aX9HYBZJkyiK7fJikvniGAub7DaVrEc9a1UWSDk2WVQgZbKSdOTmAK4kiEHgK9vyfP1Z79GqC6TcYUcXSK/kKs0BZIEs1XixQOou1mS7ZKyHFHHIukg4xT7ZzapYlP3QzSpgkWR6HMWaLGgRWs8FSFmukcsV+RmynpNOeDGNFUVoSZZAZomjLlZFrLxy93cUPKdZGAPDGBmE0xyXzBRKizjmWY/6XDmDtahACnQrstw4pCyQtqbl4lltYJ5O0AmtyJq4F6vrOLkCmV8LmSTqDKj1cush6yQ3bMmVYpD92M0qYJFk+gS6NWlzuWbVW6bOKRQVxeJ/heoHc0ULqeuZkmBM5zKd23a9ogJY5Fo2QTSNmWKTNlHUt4uIo249ygKoxhqpsEDKyOtDim0TsgWZVQMpz7c929yreQIpOumYBNJUC1mrCaScqFNXciuIQ/ZvN6uARZLpFRityYK9W4sgslw9oa6wu0nlBuJdgal2UOCTXXT016ZtkxgWFdP0uQPr/jxxlO8ly91q3O6kOBrnFxBIgcnNWmSJK1MfVn2//loXx/C1Pf7ouK6ymofchzVLIGtrEhEUrtWBkotV3hYWYn1kWcaCaYlD9temATZYJJk+hTFWaUrgKZjlqmOLS1bSqadorLKoGAlsMULTtnmOXQyzrp0livpzIZG0iCOAqgmkjHlx5GxHvy6MeVak1YLMsR6FQHolIYZ6o3LJqtQE0tQsQC/1kBN1TA0DRI1kfclDydW76vSv3qx5sEgyvQoHdmuy3HKQIsguV4CMMUiTcFaa5KMvSJydCJPOJNXHbedItjsniPJr0z3kxSNNViOAlDgCKGQ9AqhIIAXldMyxIYQur/xD3tbFUYxluVeFpei4kMQyaTXnuDAK5ADNikwSdTxlWyTjpK3HdKKOiEOWXCju1/4ukACLJNOLKNybtVJrEijscg3vJ/TRVpq8I5PXHKCIQBZ3yaZjiOZ5+efLL/MoaE2SJIaRgAGwulbjfTnWYzLPLJCCvF6rRVbuyFriyjZejjjq7tVwqSskiTix2zVpNZdV5pEnkPVKTaSwHr04q3VLjkPKsEgyvY7utiZlvOTiRgEN/3JWXa8VN03PEZosyy39Ol8YKxHFIveZKZAGcTRZjvF+zXoEDJahJqrhsWaBlOOQAtnNWo44FknQkefJMUcxburRqluPsntVroEUlmQ5Aqm7WHWBrBNJO4ZEndB6ROyG1eOQW4IVCbBIMr2M3BZ1KJ7pWtSahEu5Wa5uhnCWS9mxzQwrs2jmadbrrhJG8ay7VAEYxVGeQ4qYpq3HeG4BgRTocchy3Kpyc/Ky3KtK0/J8ccyyHh1XXSA5jEmWJ5CpJB1NIEUmq1ITaUnUKW0B5R4mWCSZXkdepmt3kay6YY9VIlCTgvIaFtgoJykmOSbI2JdthRYRxqzr26xGoHxxTLbt1qN8fJ5AmuKQptcmHNeNj9VX8bC6Vy3CKD9niaOwHkUijhyPNCXoyPtkgRRZrDaBrC95ccaqEEi1eXkYjyy5kGKQaqKOqI/ckmCRZPoMWV14utKaBEKFtiXmmFyu4bgq4kXcsFmCWolAliuOXWI9WsQxHtMyVsVrm/UY75fcq/LxJoEU6HFI0+s8dKEsMj95bRdHMW6zHkX2qrAelcQdUwaroQ4yTyDltnNysk5WJqtwv26JAgmwSDK9lK7swtP5e4mKLDNcrpXGJU3YGgEI8gQyKzO1WuIImBNyxLgujvGc6B9Vdq/Kx+QJpECPQybjxXusqqUdbsbs9LHyc/bKHvnWo/JcSlyuRQRSJOnYBFJuOyeXetgyWbfERB0dFkmmV5ObxIPqWpN5cUiTyxVAKrbqucUzXE1jyXMxgSxatlHRs0EcxXOWa1WM69YjgEICKZAFUo9DJnPKF0d99Q7bfNt2ueKoW496Vx0laUfEJg0CmawH6eYKpFzuIfdkrfH0VnNqA/Oa4n8z9DtYJJleS7UzWctFznwNV6g0u1zhqoJXiRu2CEUFsqsScoB0tqr8rAtbPNZFAinKPARmcSzmb3BdL85wNSXmFCnvEOeRx23iGI6lM1fl5Bzdvao3DzC1mdN7seYJpFzuIfdkFZaiKZN1S0rSMcEiyfRq8pJ4usuaBPIyX82imSeIcqJP0aSfShKDxHHVth5TY5p7NRzLFkgBWV6b/h3yGjsIi9G0aocullmYGpebBTItjjbrMcu9KqzLIgIpZ7XaBFIu95BrIWsyMlm3VDergEWS6VNYF2ZGcaGstBGsHpu0WZOAEF6TGzaxKsvNhNW754RjxazIYq7c4gIpW4pA1wqk7qoVkMFINFmTMllNAExLXOWdy7RdjjhmWY8296rnOBkJOkkMsqhAys0CSq6jtJirkba31EQdHRZJptejWJNd4H4Nz1Od2GQYRU1bO6EblqxxyUpLR0wU7ZIjUw2BFNgEUqBYjIbPOE8IZURmqh5rFFZkeL7ymgMk586yIouLo5rVqlqPqlWZncFqaxSQJ5ByswDPRarUY0vOZDVR1XDse++9h+nTp6OhoQENDQ2YPn063n///cxjzjzzTDiOozwmT56szGltbcU3vvENDBs2DIMGDcJxxx2HN998s4rvhOlpXCdJ4nEcBy6ikhDHkcYN23Cicf04wIETz3OAqEg66kkZpcK7UWzGdR3LtlxPqSKKrvX94hryPJlShUGgcly1hQSzkwKpxyAFctJNPGa4jyK9cZ3os3INn5lJ1MTrch+usrZjLUSXnLAJuRcLXNw2zpOWtBKZqaKMI44zqs0BXC9ZKLm2xiskkANrw0c5AlnruUaB3NJLPWxUVSRPO+00rF69GkuWLMGSJUuwevVqTJ8+Pfe4o446CuvWrYsfixcvVvafe+65WLRoEe644w488cQT2LRpE6ZNmwa/wPI2TN+ns0JZDTxhITiJuKbvO/xiUo7Tvtyztr0yyhJ0yrEeZUyWoUBP0pFfk2IpIjVPn583VoTEklPrFtPJNJ0RyEQY3cjacyULsIg4itZyXiSKXil59kou6mu82JUqHrIYDqgtYUBtSclqrZceWS5WXSD1WsgtudTDRtXcra+88gqWLFmClStXYv/99wcA3HDDDZgyZQrWrFmDsWPHWo+tq6tDY2OjcV9zczNuvPFG3HLLLTjiiCMAALfeeitGjx6Nhx9+GEceeWTXvxmmVyA8mp11SoqFPzqTxKPHJvXv9dhSDC8CPXYpRFTpAau5XLvCBZsljlnzTa5lU5xQUK4lmCW65eK4Tnw+sTqLEMq4KUCZrtXk3G58Xvl64ln8O9rcqqrr1VEyV0UMUk7O8dwk/iheZ7lXa0W3HNdNddIJGwWYY5BCIEvaqh5bcqmHjap9JCtWrEBDQ0MskAAwefJkNDQ0YPny5ZnHPvLIIxg+fDh22203zJw5E+vXr4/3PfPMM2hvb8fUqVPjsVGjRmHcuHHW87a2tqKlpUV5MH2T3u52Fdakifg4gzWZ53JVLcr81+WSJZxFrUh9n4mstoI2Kz8RpXA7ESZHESyBGwlQOO5W9AhdqIm1KFypijXohaJXxHIUrlXZYoytyFovzl4dUKsuczVQsiZDCzIZEwIpmpTrAllfKiaQIqOVBdJM1SzJpqYmDB8+PDU+fPhwNDU1WY87+uijcdJJJ2HMmDF47bXXcNFFF+ETn/gEnnnmGdTV1aGpqQm1tbXYZpttlONGjBhhPe+8efNwySWXdO4NMb0GJZGnC8tCOmujht/LjmI9hjtg6PGK2ErVrUkgEa30thtnuRaxNLsyIai7EJahac1Oxw3dt3KWsJgvC6U4vtLr669li1GMK4k6GZaj66qJOfLrPOsx2WdO0BHWom45CusySyC9+DULZBZlfzRz585NJdboj6effhqA+S9DIsqMC51yyik45phjMG7cOBx77LF44IEH8Ne//hX3339/5n1lnXfOnDlobm6OH2+88UYZ75jprXTWotTprDVpIrEezfFKcQ3dmhQp+cq5MqxGeTsv8aczFmdnka3ALPSEHFW4knPpVqVsWZb7EJZiEl8MM1BNFmNcx5hjOXrRnFKtF88t1Xqp2KNuPSbbSfzRlKBTX/JSlqPoxSoaBQgRFEk6QiDjDjscg8ykbEvy7LPPxqmnnpo5Z8cdd8Tzzz+Pd955J7XvX//6F0aMGFH4eiNHjsSYMWPw6quvAgAaGxvR1taG9957T7Em169fjwMOOMB4jrq6OtTV1RW+JtP7EdZkZ1BrLrsuPilbk+k6SSCxMNWSEFm89NikPKZbk+o+c3OCPIuyXIvTcRyrWzVrX2quZjXKx6b2Re81tBoRvQb0JKmgzD/99eNlaxFIC7WwGsWYzXI0Ng2Q6h6FlShbj7JVqdc/6vFHpYuOvC3NkRsFyFmsyWLKW9ayV5VQtkgOGzYMw4YNy503ZcoUNDc3489//jMmTZoEAHjyySfR3NxsFTMTGzZswBtvvIGRI0cCACZMmICamhosXboUJ598MgBg3bp1ePHFF/GDH/yg3LfD9GGq5XbtaqGU3a56uzr5nCa3K5DUPWYJor5dch3luCzhzBNTOTFGJ8s1mohbKGbx3MhVKrtJdaEEIu+QtA+AIpbx567hBsW+9R1X31bjmvKYSRgBWMVRTsoR82XXarZAevE+XSDjNSCj8yWreHjx6/qSF3stxKLJcharLJBsReZTNU/0HnvsgaOOOgozZ87EypUrsXLlSsycORPTpk1TMlt33313LFq0CACwadMmnH/++VixYgVef/11PPLIIzj22GMxbNgwnHjiiQCAhoYGzJgxA+eddx7+8Ic/YNWqVfj85z+PvffeO852ZbYcXKdnEnlkiiTymNyu8fFuvttVjMWtwqQyB8+wX96X99q431GtKCC7JlGf42jHp6wzze0qn9vVzqGIkhAgTbDUB6wPt+TEj7iXqnCfyq9lV6q0jqPsUi3VpN2qIiFHJOW4WlmH/hioLJDsxUtc1UX7BtR6sUtVFkjhTg0fXuJujQQy7NGaCKQQUBGfFFYlk09VO+7cdttt+OY3vxlnoh533HG45pprlDlr1qxBc3MzAMDzPLzwwgu4+eab8f7772PkyJE47LDDsGDBAgwePDg+5sc//jFKpRJOPvlkfPjhhzj88MMxf/58eAXWfmP6H91hUaav6QA5604CkdhYEnnEtkhAid1+0p+usmUob4eCFt65sAbT+0MrVN6X9TplYTpJ2Ypu9QGJW9XkFiXJdVqORQlAsxzlD137N7B96BkiLqPEOeU4sW5FunrsM7Ea4/0Gy1H8wSSswjzrMVXyYXCvlqRkHWUlD2nBZLlZuRBI7qRTOQ5VWpzUh2lpaUFDQwOampowZMiQnr4dpgsQOkXRa4rWnySKeoTG44ZtUDSeHOcHAEX1jxTVZvpBuOZhuBJGtCIGEXwK3YDm7WTlDHGP8bxA2k9hfFIIph/tlx9AKHr6mB8Eqebl8uuOjH2mhgLK6zK77uhz5f169x1T03JbU3P5+Hh/pXWVBkEEDFatJoxivuxSNWa2ZoijcKGqGa3pbjqe41gFUhFGN+mi421hAtnS0oLGxkY0NzdX9Xuce7cy/QJhTQrKbYTua+ZieL7qJfK4RgszPKfcAF3GDyiVuRpagaFFmWyrVqVshZZlSUbvwSdz8oyebFOORRn9KyXnigQpK+kmvSvbio+PM1iWpjIPIFsYxXieOOqiaBfItPUYZp2q5R16/FFP0ImblDuO8ro/C2R3wiLJ9BsUt6simHahVOd0XyKPT5QplEAoTp0VSv2YPKFMn9culEAiXLFb1IUxI1V8LiKUahJLAHDlHq8FMibKLWcxCaI8nieMAApZjlniGD57amJOjvVoE8s4EUdYkYZaSBbIzsEiyfQrFKEUggezUMo61mMZr0C3CGV6brZFmdoviaBiJerWoxB+yAJqF8twSLYGk3v2oGXVemoMtwjp8g5ZGKV5kgDKSUJ5wiiLokkgS66ezZpYjHLs0Y0FMhFC182OP7pOksHquapYskB2HSySTL/DJpThvsSCFK97TigBWzKPek6kfI1FhDK9r/i3pdWylERQv4rJqtRvPUi9yBJMkeSjXsdDed/6eqmHnj0rriP2mYRRzMkSR9lyLLm6yzVxrYp9tZHohdafaj3KGal6XaTsUk1KOeQuOiyQXQmLJNMvMQqlEybhxPvRuYzXzgil50WZo4owoiyhzHj30LNedWxZr4XQRLCoWCov3SSe6EgWoxd9qytJObKIVhqDtAiivC2XreQJI4CUe7WoOHquE2euuk7aneo6sLpXlYWSnbRYxl10WCC7DBZJpt9iE0rPcUAEOCCQgzhZRuiYByeUModA5MAhwAd1mVB6jmgcYIpJqtuuF7kXA2k/inTIMVuUXUpBsZQTbBwv6ajjuZI71VWTcBwpqUfGK/jNr7e9M2axpmo5zcIo7jXrUZeKR6riKFuaSjccLfZoikvq7lU9McckliyQXQeLJNOvMQklACXr1XMBhyThRNqqFHscB/CDtFB6cOAGFM4nIAgkK5RCARDbvrhARmceBKKOULyRtFDqyF12AMBzvUhI02Ipi6x+nA2rMEenj61jV81uFccmgmcXTUATxnIsXAldJHPrIIUYliGMJcNYnjjKrtW0FRmNGaxHk3tVZK7KY9yovOthkWT6PbpQAuhUwwG4CC1MAOQktZRdmdDjelHs1OB+jeOq0hditmUZfjn7QXHLMut8cnKPXj6iW5eKWzVDNAEowimTVw9pW9ggswZSEkVxP+JZd6vmiaNIyCkijsKV6jlOKnM1ZUUarEeTxcjxx+rCIslsEchCCejxxt7R61VYYm4g5fUUcL+aBM1sHYbvQJ5vey0wCqGBlHBCOq+XdO7RRROAIpzxp6NcK//bP2U5StuyWNpE0fY6y2oMH3ZxFKLnxq5Re2JOksmabz2ye7V7YZFkthiEUMave4FQep4Tu2Oz4pQeoIlncatSFUKzC9YkliahzbQiLXMApEQTgCKcAl1Ai6In66i9cdPCqD+bxLFkGJPFUS7zKCKOwooUz8KK9BwYrcfw2V7eIc9hqgeLJLNFEVuShoSe7hLKtDDa3a+hCIpYH8q2Ku2WotkFm2WV2gTSKIrSGGDuBCSXcugCWi6yFapvlyOO4v1mWY26dZkljuK1XPMoi6LrmK1HR3ezau5Vjj92HyySzBaJsCq7UihFTqaIUzquAzIk9KSFEdCF0nUcBKLBeAGrMkwcUq3KLFdqsp2IpU3k5OciggmYW93J4wJ9f6WYRFF+nfWcZTGG4+nOOcpDEkddKIU4KuN6DLKA9cju1Z6DRZLZYikqlHrJiEPpEhECRaJavvvVhZr9KqzMIlalOpa4YD0naU5uEj9Z6ELhStywRS1Gk2AC5s498rhtu1IqsSLNy4/J22arUX6IhJw8ccyyIsu1HoWIMt0HiySzRWMTSkUY0bXuV8+DWiZCdqvSc4T2qVZl+IVJSgasOlZMLOXX4bN4rVqXRQQTgFE0gcoEssicIgIpW4ri2fw6XxiTdUFhdat6mVakENdkXVEhivp2SjydiitimE7AIsls8chCCSeyDDtTIuKEvWL1MhHhfo3dngWsSrmmUnbBBoZyEb+AWKrWowMveq1bhbJ1mSWYgLrMlj4GqN199HmdQT+H3KaviJtViGKyrQqjGBe9VWWr0Y2su3LE0XMS16orCZ/nqkIorEdX22Z6BhZJhkHlCT0wuF8DQiGrMhQ9yrQqXQdGF6ypXCRLLOWYpec58F1SBM/kRgVgFMxw3L40ly6CnpYIlN0pqBiVuFi9qEmsLoImYTRZjXrs0XVgdKvaxNEBjK5VF+bYo8PWY6+ARZJhJEzuV0RfWKm4JKGQ+9WzWpVQYpWhFZnu1BNiLhfJE0s5Zhlmw4YLSpusSwC5gimePdfTxgKjFWnato0VoYg4hq9dZUwXRfE6JY4GYZStRtEEQHaPGpN2DOLoQIiimpjjILEW43EWx14DiyTDaIgvp1DUdMuwPKtSdd0mViUiMVYyYKXkG3EfsliKrNgiYqlakbCMa9alQTCBxBIU2x2KWAphVN2pMqZOP+WKpMk9K4RQ329K0hHbJmsRQK4wCqtRdqkKl6hIyCkqjrprNeV6BQtkb4JFkmEsmKxKpeerg0JWZRznjHq/xi5ZyQVbck3lItJ9aGJpHlNjlqoVmW1dAoAbCZ3nRCLopi1IIC2aAJSmA2mRtH/jZ7W+s2GzJm0xSd1SBBJRjF/nCKMQMiGOoktOJeIYi6JiRbL12FthkWSYDGShVMXOIIxRIo1eKhKgmAvW3ixduhfNDauPydmwAGLrEpCsWET3LY2H5xL7EpessDIBu2gC+XHHIg3U89DXzywUh8wQxfB1cWGM5yhxSJQtjk707++5juR67fTHw1QJFkmGyUF8F9usSiARxoAMdZaGpbdkF6zehIAyxNJz0jFLecwX1zdYly7SbtfwfckWpr4vfO9CNIG0pSnwM6zJWsNYEcxuVkscUhLEcB/ibV0U5fGiwqhuIy7lMImjoyXlyHFHOWuVXau9HxZJhimIzaq0xiZFog9UF2xsRZLahKCIWPpRWYdNGJWlwCILMRxHNJ40G7dZmPq+8L0nAie0rgYOfCnc6Elz4Em9WTXyxNLmapX7sYb3pIqhMpYhimJcF0YAKTFUslnjekZRGxmep4g4ynFHzlrtW7BIMkwZ2KxKOQM21wVLyBTLgJwo3pktlko2LKkJPbGIpsaREkxhYQIm12v4XCPVd4o58jzxmcjoIhqPl9lz1NPmu5JYyqKXzHeMYikvjyVbjOFYcavRqUAc5WQdFse+BYskw1RAVgas3sZOdsGmkn2syT3h2XXLUknwIVK69wAwWpfyePjaLJgAjFZm8p5V4ZTniU8jJZSu3aLMI205Svtc+b7SggikRTF+LYmgacxkNcouVdeJhBJJzFEWRxH/jIVSzAMLZF+ERZJhOoHRBVswC1YuGRHJPWk3LpBqnA61e49oSqBblwAKCSYAaR+i41TRBGRBTMTQJIKBtl0TWdOVulldTSxl8TQJojxusxbFMXnCKFuNoVUYWo2JULI49ndYJBmmk5hcsB7MWbByvDIloAjF0uSGlbNhAbUpAYDYugQQJ/oASAkmoGXHGvaFx0lu1nhO8k0vC2NJEuCQtEUJlO9m1YXFtHiyYl1q4hfuN4uimF9EGIXVKMRRuE/DOYlblcWxf8IiyTBdhOKChV0sTZalPhbGOJNsWMDuigXkxgSIY5dAWjCBPEuS4jcTJ/FILleTeCbzzZ9LUXer7l6VTm2cI1uI4TzNmjSIpeg/UK4wCqtRzDMKJVgc+yMskgzTxVQqluExSRxTLR2B4ooFkibqYdmGVG8Ju4UJCJeqgyAAahCJWCSKofiF50gEURI6STzluTKBppY1KF8xXE1l5DpCXQzl+bqlGO5LRBGAVRgBGGONshi6cRJO8prFsX/DIskwVaKIWIb7JWF01NIROW4JqE3Uk3OF+3R3LICUSxaARTRVS1O8AZsgygIKIGVVxvMKWJF6zFGQStxR3K3qsbIgim2TKIrb0y1GQLUaRbKPLIzythKbBItjf4ZFkmGqTJZYphZ1jiYWsS4BGN2xYlxcE050LYOVCSSiCReSNRnLctzxx2ZRhvvCc5ksy3LQO8+Yyj0AVQzleSL5xySK8WuDKxVIW41yrFG2GkWdozgf079hkWSYbkIXSzkbVq6zDOeYrUsgcdEiOo8smB7CY2SXbLwvOp8QTURzXS+5rhDOGkjZqK5WLykJKJC0zRPH6Zhikrb4I5AIoGmuLobiLhxNtEyiCJhjjPE8qFajpwkjW41bJiySDNPNyF+yDpI6S5t1CWjCmCGYQOKSBaBYmeG+aFu2NJG4ZwF1ya1E3xKXryKgQKJAMLtXi8QkTS5XXQjj1xmCKPbropiMq9aiuLYp7sixRgZgkWSYHkW2LoFQMFX3aY4wauNAtM+J9klWZrgvOTcQujeD6A6EvsUWZ3RjBLOAiuurdE5NdK1U/6BIiyGgCqLYr7tQ43EkImgaY6uR0WGRZJheQMq6BIzuWCBbMMPjk32eqFmMRDMUxXAgni8LIqkWZ3xGk4CKm42QxbQojkFUdWHSxTAcM1mPjjo/w1pUxsDCyNhhkWSYXobJHQugkGCG8+yiqeyPrpEIZ2JxitimfCNCQEXSSrota+XqovcZcDSTMm09pgVRvgObtSiOYWFkilJmD4zyeO+99zB9+nQ0NDSgoaEB06dPx/vvv595jOM4xscPf/jDeM6hhx6a2n/qqadW860wTI8Qt0JDsgahWKTXNYzFK9w7Ya/R8JG3H/G+kjSvxnWUOSXPSc7lhvtrlPMWf9S46kOcs+Q50XXCa8rXEPcm7qvkhu9D3l/jhQ95Xyk+B+LX4bOod+zpf2WmN1NVS/K0007Dm2++iSVLlgAAzjrrLEyfPh3/93//Zz1m3bp1yvYDDzyAGTNm4DOf+YwyPnPmTFx66aXx9oABA7rwzhmmdyF/kSfNA8xxRtnKBOyWpDwndKPGByRWJhyje1WOReplG8IqdcuwLLNjkWLMSc3X3adinzFxByyITPlUTSRfeeUVLFmyBCtXrsT+++8PALjhhhswZcoUrFmzBmPHjjUe19jYqGzfc889OOyww7Dzzjsr4wMHDkzNZZgtAZNgAmqWLGAXTVkQSRYjg3iK+eG1pEFxTcP9eTnimLXXJIThuHqsLIiAXRTlYxmmEqrmbl2xYgUaGhpigQSAyZMno6GhAcuXLy90jnfeeQf3338/ZsyYkdp32223YdiwYdhrr71w/vnnY+PGjdbztLa2oqWlRXkwTH/AdZKHpz1Kmpu15Mqu1si9qbtX42Mjd6b0EK5M2eVa0s4hP0qu+eFpD3HeGi9xo8ruUsXdanCd1ijvJXn/4nNhmM5QNUuyqakJw4cPT40PHz4cTU1Nhc7xm9/8BoMHD8anP/1pZfz000/HTjvthMbGRrz44ouYM2cOnnvuOSxdutR4nnnz5uGSSy4p/00wTB/DJArykO6iFROSpBzHkJBT3LK031e+WpmyWMNxLZNVOW/uaRmmU5QtknPnzs0VnKeeegpAOkMNCH8ZTeMmbrrpJpx++umor69XxmfOnBm/HjduHHbddVdMnDgRzz77LPbdd9/UeebMmYPZs2fH2y0tLRg9enShe2CYvk6ecIYDUn9Ykw9VOiBPUOPrZuyzfQeYhFDfxzDdSdkiefbZZ+dmku644454/vnn8c4776T2/etf/8KIESNyr/P4449jzZo1WLBgQe7cfffdFzU1NXj11VeNIllXV4e6urrc8zDMlkKW4KRqIXVEjBNJ/FOfnyV2ld4Xw/QEZYvksGHDMGzYsNx5U6ZMQXNzM/785z9j0qRJAIAnn3wSzc3NOOCAA3KPv/HGGzFhwgR87GMfy5370ksvob29HSNHjsx/AwzD5FKuWOkZrgzTX6ha4s4ee+yBo446CjNnzsTKlSuxcuVKzJw5E9OmTVMyW3fffXcsWrRIObalpQV33nknvvzlL6fO+/e//x2XXnopnn76abz++utYvHgxTjrpJIwfPx4HHnhgtd4OwzAMswVS1WYCt912G/bee29MnToVU6dOxT777INbbrlFmbNmzRo0NzcrY3fccQeICJ/73OdS56ytrcUf/vAHHHnkkRg7diy++c1vYurUqXj44YfheV5qPsMwDMNUikNkaNvfz2lpaUFDQwOampowZMiQnr4dhmEYpkxaWlrQ2NiI5ubmqn6PV9WSZBiGYZi+DIskwzAMw1hgkWQYhmEYCyySDMMwDGOBRZJhGIZhLLBIMgzDMIwFFkmGYRiGscAiyTAMwzAWWCQZhmEYxgKLJMMwDMNYYJFkGIZhGAsskgzDMAxjgUWSYRiGYSywSDIMwzCMBRZJhmEYhrHAIskwDMMwFlgkGYZhGMYCiyTDMAzDWGCRZBiGYRgLLJIMwzAMY4FFkmEYhmEssEgyDMMwjAUWSYZhGIaxwCLJMAzDMBZYJBmGYRjGAoskwzAMw1hgkWQYhmEYCyySDMMwDGOBRZJhGIZhLLBIMgzDMIwFFkmGYRiGscAiyTAMwzAWWCQZhmEYxgKLJMMwDMNYYJFkGIZhGAtVFcn//d//xQEHHICBAwdi6623LnQMEWHu3LkYNWoUBgwYgEMPPRQvvfSSMqe1tRXf+MY3MGzYMAwaNAjHHXcc3nzzzSq8A4ZhGGZLpqoi2dbWhpNOOglf/epXCx/zgx/8AFdddRWuueYaPPXUU2hsbMQnP/lJbNy4MZ5z7rnnYtGiRbjjjjvwxBNPYNOmTZg2bRp836/G22AYhmG2UBwiompfZP78+Tj33HPx/vvvZ84jIowaNQrnnnsuLrjgAgCh1ThixAhcccUV+MpXvoLm5mZst912uOWWW3DKKacAAN5++22MHj0aixcvxpFHHpl7Py0tLWhoaEBTUxOGDBnS6ffHMAzDdC8tLS1obGxEc3NzVb/HS1U7cwW89tpraGpqwtSpU+Oxuro6HHLIIVi+fDm+8pWv4JlnnkF7e7syZ9SoURg3bhyWL19uFMnW1la0trbG283NzQCgWKcMwzBM30F8f1fbzutVItnU1AQAGDFihDI+YsQI/POf/4zn1NbWYptttknNEcfrzJs3D5dccklqfNddd+2K22YYhmF6iA0bNqChoaFq5y9bJOfOnWsUHJmnnnoKEydOrPimHMdRtokoNaaTNWfOnDmYPXt2vP3+++9jzJgxWLt2bVU/3GrQ0tKC0aNH44033uhTrmK+7+6F77v76av33lfvu7m5GTvssAOGDh1a1euULZJnn302Tj311Mw5O+64Y0U309jYCCC0FkeOHBmPr1+/PrYuGxsb0dbWhvfee0+xJtevX48DDjjAeN66ujrU1dWlxhsaGvrUD4XMkCFD+uS98313L3zf3U9fvfe+et+uW91KxrJFctiwYRg2bFg17gU77bQTGhsbsXTpUowfPx5AmCH76KOP4oorrgAATJgwATU1NVi6dClOPvlkAMC6devw4osv4gc/+EFV7othGIbZMqlqTHLt2rX497//jbVr18L3faxevRoA8NGPfhRbbbUVAGD33XfHvHnzcOKJJ8JxHJx77rm47LLLsOuuu2LXXXfFZZddhoEDB+K0004DEFp/M2bMwHnnnYdtt90WQ4cOxfnnn4+9994bRxxxRDXfDsMwDLOFUVWRvPjii/Gb3/wm3hbW4bJly3DooYcCANasWRNnmwLAt7/9bXz44Yf42te+hvfeew/7778/HnroIQwePDie8+Mf/xilUgknn3wyPvzwQxx++OGYP38+PM8rdF91dXX43ve+Z3TB9nb66r3zfXcvfN/dT1+9d77vbLqlTpJhGIZh+iLcu5VhGIZhLLBIMgzDMIwFFkmGYRiGscAiyTAMwzAWWCQZhmEYxkK/Fcm+upble++9h+nTp6OhoQENDQ2YPn167uopjuMYHz/84Q/jOYceemhqf17npGrf95lnnpm6p8mTJytzetvn3d7ejgsuuAB77703Bg0ahFGjRuELX/gC3n77bWVeNT7va6+9FjvttBPq6+sxYcIEPP7445nzH330UUyYMAH19fXYeeed8Ytf/CI1Z+HChdhzzz1RV1eHPffcE4sWLerUPXb2vu+66y588pOfxHbbbYchQ4ZgypQpePDBB5U58+fPN/68b968ucfu+5FHHjHe01/+8hdlXm/7vE2/g47jYK+99orndMfn/dhjj+HYY4/FqFGj4DgO7r777txjuu3nm/opF198MV111VU0e/ZsamhoKHTM5ZdfToMHD6aFCxfSCy+8QKeccgqNHDmSWlpa4jmzZs2i7bffnpYuXUrPPvssHXbYYfSxj32MOjo6uuS+jzrqKBo3bhwtX76cli9fTuPGjaNp06ZlHrNu3TrlcdNNN5HjOPT3v/89nnPIIYfQzJkzlXnvv/9+l9xzpfd9xhln0FFHHaXc04YNG5Q5ve3zfv/99+mII46gBQsW0F/+8hdasWIF7b///jRhwgRlXld/3nfccQfV1NTQDTfcQC+//DKdc845NGjQIPrnP/9pnP+Pf/yDBg4cSOeccw69/PLLdMMNN1BNTQ39/ve/j+csX76cPM+jyy67jF555RW67LLLqFQq0cqVKyu+z87e9znnnENXXHEF/fnPf6a//vWvNGfOHKqpqaFnn302nvPrX/+ahgwZkvq570rKve9ly5YRAFqzZo1yT/LPaW/8vN9//33lft944w0aOnQofe9734vndMfnvXjxYvrOd75DCxcuJAC0aNGizPnd+fPdb0VS8Otf/7qQSAZBQI2NjXT55ZfHY5s3b6aGhgb6xS9+QUThD1RNTQ3dcccd8Zy33nqLXNelJUuWdPpeX375ZQKg/COuWLGCANBf/vKXwuc5/vjj6ROf+IQydsghh9A555zT6Xs0Uel9n3HGGXT88cdb9/eVz/vPf/4zAVC+iLr68540aRLNmjVLGdt9993pwgsvNM7/9re/Tbvvvrsy9pWvfIUmT54cb5988sl01FFHKXOOPPJIOvXUU7vorsu/bxN77rknXXLJJfF20d/pzlDufQuRfO+996zn7Auf96JFi8hxHHr99dfjse74vGWKiGR3/nz3W3drueStZQkgdy3LzrJixQo0NDRg//33j8cmT56MhoaGwud/5513cP/992PGjBmpfbfddhuGDRuGvfbaC+eff36XrafZmft+5JFHMHz4cOy2226YOXMm1q9fH+/rC583EK5G4DhOyq3fVZ93W1sbnnnmGeVzAICpU6da73PFihWp+UceeSSefvpptLe3Z87pis+20vvWCYIAGzduTK30sGnTJowZMwYf+chHMG3aNKxatapL7rmz9z1+/HiMHDkShx9+OJYtW6bs6wuf94033ogjjjgCY8aMUcar+XlXQnf+fPeq9SR7kmqtZVnuPQwfPjw1Pnz48MLn/81vfoPBgwfj05/+tDJ++umnxw3kX3zxRcyZMwfPPfccli5d2mP3ffTRR+Okk07CmDFj8Nprr+Giiy7CJz7xCTzzzDOoq6vrE5/35s2bceGFF+K0005TVlDoys/73Xffhe/7xp9N2302NTUZ53d0dODdd9/FyJEjrXO64rOt9L51fvSjH+E///lPvJgBEPZ7nj9/Pvbee2+0tLTgpz/9KQ488EA899xzXbJGbCX3PXLkSFx//fWYMGECWltbccstt+Dwww/HI488goMPPhiA/d+kt3ze69atwwMPPIDf/va3yni1P+9K6M6f7z4lkn1xLUug+H2brl/0HgQ33XQTTj/9dNTX1yvjM2fOjF+PGzcOu+66KyZOnIhnn30W++67b4/c9ymnnKLc08SJEzFmzBjcf//9KZEv57zd9Xm3t7fj1FNPRRAEuPbaa5V9lXzeeZT7s2mar49X8vNeLpVe4/bbb8fcuXNxzz33KH/MTJ48WUnwOvDAA7HvvvviZz/7Ga6++uoeue+xY8di7Nix8faUKVPwxhtv4Morr4xFstxzVkql15g/fz623nprnHDCCcp4d33e5dJdP999SiT74lqW5dz3888/j3feeSe171//+lfqLyITjz/+ONasWYMFCxbkzt13331RU1ODV1991fql3V33LRg5ciTGjBmDV199FUDv/rzb29tx8skn47XXXsMf//jH3HX4inzeNoYNGwbP81J/Acs/mzqNjY3G+aVSCdtuu23mnHL+zbr6vgULFizAjBkzcOedd+au7uO6Lvbbb7/456azdOa+ZSZPnoxbb7013u7NnzcR4aabbsL06dNRW1ubOberP+9K6Naf77IimH2QchN3rrjiinistbXVmLizYMGCeM7bb7/d5YkkTz75ZDy2cuXKwokkZ5xxRirL0sYLL7xAAOjRRx+t+H4Fnb1vwbvvvkt1dXX0m9/8hoh67+fd1tZGJ5xwAu211160fv36Qtfq7Oc9adIk+upXv6qM7bHHHpmJO3vssYcyNmvWrFRiw9FHH63MOeqoo7o8kaSc+yYi+u1vf0v19fW5yRuCIAho4sSJ9MUvfrEzt6pQyX3rfOYzn6HDDjss3u6tnzdRknj0wgsv5F6jGp+3DAom7nTXz3e/Fcl//vOftGrVKrrkkktoq622olWrVtGqVato48aN8ZyxY8fSXXfdFW9ffvnl1NDQQHfddRe98MIL9LnPfc5YAvKRj3yEHn74YXr22WfpE5/4RJeXJOyzzz60YsUKWrFiBe29996pkgT9vomImpubaeDAgXTdddelzvm3v/2NLrnkEnrqqafotddeo/vvv5923313Gj9+fI/d98aNG+m8886j5cuX02uvvUbLli2jKVOm0Pbbb9+rP+/29nY67rjj6CMf+QitXr1aSYlvbW0loup83iK1/8Ybb6SXX36Zzj33XBo0aFCchXjhhRfS9OnT4/kiRf5b3/oWvfzyy3TjjTemUuT/9Kc/ked5dPnll9Mrr7xCl19+edVKEore929/+1sqlUr085//3Fo+M3fuXFqyZAn9/e9/p1WrVtEXv/hFKpVKyh873X3fP/7xj2nRokX017/+lV588UW68MILCQAtXLgwntMbP2/B5z//edp///2N5+yOz3vjxo3xdzQAuuqqq2jVqlVxxnhP/nz3W5E844wzCEDqsWzZsngOAPr1r38dbwdBQN/73veosbGR6urq6OCDD079ZfXhhx/S2WefTUOHDqUBAwbQtGnTaO3atV123xs2bKDTTz+dBg8eTIMHD6bTTz89lVau3zcR0S9/+UsaMGCAsRZv7dq1dPDBB9PQoUOptraWdtllF/rmN7+Zqknszvv+4IMPaOrUqbTddttRTU0N7bDDDnTGGWekPsve9nm/9tprxp8r+WerWp/3z3/+cxozZgzV1tbSvvvuq1ilZ5xxBh1yyCHK/EceeYTGjx9PtbW1tOOOOxr/gLrzzjtp7NixVFNTQ7vvvrvypd5VlHPfhxxyiPGzPeOMM+I55557Lu2www5UW1tL2223HU2dOpWWL1/eo/d9xRVX0C677EL19fW0zTbb0H/913/R/fffnzpnb/u8iUKPzYABA+j66683nq87Pm9hydr+3Xvy55vXk2QYhmEYC1wnyTAMwzAWWCQZhmEYxgKLJMMwDMNYYJFkGIZhGAsskgzDMAxjgUWSYRiGYSywSDIMwzCMBRZJhmEYhrHAIskwDMMwFlgkGYZhGMYCiyTDMAzDWPj//79tRmptgwoAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADVVUlEQVR4nOy9ebxcRZn//6k63X0vAXJZIlkQAiiLEBAIQhJ+iAiyCC6MI+ASQVkGlZFF56sIyDI60RFRXNgcJCKIjCKLyhZlVQIDCCiiDOPARDERQchlS273qfr9Uct5qk6dpe/aN6nP69Xps/Xp052+/e7P8zz1FJNSSkRFRUVFRUXlxCf6AqKioqKionpVEZJRUVFRUVEFipCMioqKiooqUIRkVFRUVFRUgSIko6KioqKiChQhGRUVFRUVVaAIyaioqKioqAJFSEZFRUVFRRUoQjIqKioqKqpAEZIj1FlnnQXGmLNtiy22wCGHHDIuz//KK6/grLPOwh133JHbt3jxYjDG8NRTT43LtfSSnnrqKTDGsHjx4lE53/Lly3H66adj/vz5mDZtGqZOnYq5c+fikksuQZqmo/Ic46WXX34Zn/vc57DNNtugr68PG2+8MfbZZx888cQTlY8dHBzEaaedhm222QZTpkzBpptuive+97343e9+5xx322234SMf+Qi22247rLvuuth0003xrne9Cw8++GDunEcddRQYY7nbdtttF7yGb3zjG9huu+3Q19eHLbfcEmeffTba7XbuuFtuuQV77rkn1llnHQwMDOAd73hH7jqNfv7zn2P+/PmYMmUKpk2bhqOOOgrPPPNM8NhHH30U733ve/Ga17wGfX192GKLLfCxj30sd5yUEpdddhl23313rLvuupg6dSp23XVXXH/99c5xW2yxRfD1H3/88cHnN/qP//gPMMaw3nrr5faFzlf2vv7f//0fPvKRj2DWrFno6+vDpptuikMPPbT0+U8//XQwxjBnzpzcvre85S3B5z7wwAOd4x588EF8/OMfx4477oj1118f06dPx3777Yfbbrut9LnHU42JvoDJrmOOOSb3Hz+eeuWVV3D22WcDUB9MqoMPPhhLly7FzJkzJ+DK1iw9+OCDuPzyy/GhD30IZ5xxBprNJm666SZ89KMfxb333ovvfOc7E32JtfTSSy9hn332wV/+8hd85jOfwU477YSVK1finnvuwSuvvFL5+He84x144IEHcNZZZ2G33XbDn//8Z5xzzjmYP38+fvvb32L27NkAgAsvvBDPPfccTjzxRGy//fb429/+hq985SuYN28ebrnlFrz1rW91zrvOOuvkvhjXWWed3PN/4QtfwBlnnIHPfOYz2H///XH//ffj9NNPx9NPP41LLrnEHnf99dfj0EMPxbve9S5cc801WLlyJc4++2zstddeuP/++/G6173OHnvnnXfioIMOwsEHH4zrr78ezzzzDD796U9j3333xQMPPIC+vj577O23346DDz4Ye+21Fy666CJMmzYNy5Ytw0MPPZS71o9+9KNYvHgxTj75ZCxatAidTge//e1vg+/znnvuiXPPPdfZNn369ML/h6effhqf+tSnMGvWLKxcuTK3f+nSpblt9913H0466aQc/B599FG85S1vwVZbbYVzzz0Xr33ta7F8+XLccssthc//8MMP49xzzy29xq222gpXXnmls22DDTZw1q+66ir813/9Fz7ykY/gjW98I15++WVcdNFF2HffffHd734XH/rQhwrPP26SUaOu2bNny4MPPnhYjx0aGpLtdrv28X/7298kAHnmmWcO6/nWVD355JMSgLzssstG5Xx///vf5dDQUG77xz/+cQlALlu2bFSeZ6x14oknynXXXVf+8Y9/7PqxTzzxhAQgTz/9dGf7PffcIwHI8847z27761//mnv8iy++KKdPny733XdfZ/uRRx4p11133crnf/bZZ2V/f7887rjjnO1f+MIXJGNM/u53v7Pbtt12W7nTTjtJIYTd9tRTT8lWqyXf//73O49/05veJLfffnvn7+5Xv/qVBCAvuOACu+3ll1+WM2fOlAcffLBz3pCuvfZaCUBeffXVla9rON8XhxxyiHzHO95R+72TUsqjjjpKMsbkE088YbcJIeTOO+8sd955Z7lq1apa52m323LnnXeWn/jEJ+Tee+8td9hhh9wxRdt9hT4nnU5H7rTTTvJ1r3tdresZa8Vwa0DXXXcdGGP4xS9+kdt34YUXgjGG3/zmNwDC4Vaja6+9FjvttBP6+/ux1VZb4etf/7qz/4477gBjDN/73vfwyU9+Eptuuin6+vrwP//zP/jb3/6Gj33sY9h+++2x3nrrYZNNNsFb3/pW3H333fbxTz31FF7zmtcAAM4++2wb0jjqqKMAhMOtb3nLWzBnzhzcf//92GuvvTBlyhRstdVW+OIXvwghhHN9v/vd77D//vtjypQpeM1rXoOPf/zj+NnPfgbGWDC8S2Xel9/85jd473vfi4GBAWy00UY45ZRT0Ol08Pjjj+PAAw/E+uuvjy222AL//u//njvHsmXL8MEPfhCbbLIJ+vr68IY3vAFf+cpXctf5l7/8BYcddhjWX399DAwM4PDDD8eKFSuC1/XAAw/gne98JzbaaCP09/djl112wX/+53+WvhYA2HDDDdFsNnPbd999dwDAn//858pzhPTwww+DMZb7bBjdd999YIzh/PPPH9b5qV555RX8x3/8B9773vdiq6226vrx5vUPDAw424076O/vt9s22WST3OPXW289bL/99vjTn/7U9XMDwM0334xVq1bhwx/+sLP9wx/+MKSUuO666wAAzz33HB5//HEcdNBBzt/m7NmzMWfOHFx33XU2RP7000/j/vvvx8KFC9FoZIG1BQsWYJtttsG1115rt/3whz/E8uXL8S//8i+Ff/NG559/PrbYYgscdthhw3qtZbriiitw55134oILLqj9mBdffBE//OEPsffee+P1r3+93X7XXXfh4YcfxkknneQ45jJ98YtfxN///nd84Qtf6PrafYU+J0mSYO7cucP+nIy2IiQDOuSQQ7DJJpvgsssuy+1bvHgxdt11V+y0006l5zAfvJNPPhnXXnstFixYgBNPPDEXUgGAU089FcuWLcNFF12En/zkJ9hkk03w97//HQBw5pln4mc/+xkuu+wybLXVVnjLW95iATVz5kzcfPPNAICjjz4aS5cuxdKlS3HGGWeUXtuKFSvwgQ98AB/84Adxww034KCDDsKpp56KK664wh6zfPly7L333nj88cdx4YUX4vLLL8eLL76IE044ofTcvg477DC88Y1vxDXXXINjjz0WX/3qV3HyySfj3e9+Nw4++GBce+21eOtb34pPf/rT+PGPf2wf97e//Q0LFizArbfein/913/FDTfcgP322w+f+tSnnGt49dVXsd9+++HWW2/FokWL8MMf/hAzZszA4YcfnruW22+/HXvuuSdeeOEFXHTRRbj++uux88474/DDDx927vK2225Do9HANttsM6zHn3/++Wg0GvjgBz8Y3L/HHntgxx13zEFUCIFOp1N5o/nSBx98EC+//DK23nprfPSjH8WGG26IVquF3XbbDT/72c8qr3X27Nl417veha9+9au4/fbb8dJLL+EPf/gDPvGJT2DzzTfHEUccUfr4lStX4te//jV22GGH3L5XX30VM2bMQJIkeO1rX4sTTjjB/g0YPfroowCAHXfc0dk+c+ZMTJs2ze4fGhoCgOCXfl9fH1555RX88Y9/dM4Z+nveaaed7H5AAQUA0jTF//f//X9otVrYcMMN8b73vQ9/+ctf7HGdTgdLly7FLrvsgvPOOw+zZ89GkiQ2nCkDEy/dddddWH/99dFsNrH99tvjK1/5SjDX/cwzz+Ckk07CF7/4Rbz2ta/N7S/SD37wA7z88ss45phjcs8LAOuvvz7e/va3o7+/H+uttx4OOeQQ/OEPf8id57HHHsPnP/95XHjhhcFcKNUf//hHbLTRRmg0Gnjd616H0047Da+++mrltXY6Hdx9993Bz8mEaKKtbK/qlFNOkeuss4584YUX7LbHHntMApDf+MY37LYzzzxT+m/j7NmzJWNMPvzww872t73tbXLq1Kny5ZdfllJKefvtt0sA8s1vfnPl9XQ6Hdlut+W+++4rDz30ULu9LNx62WWXSQDyySeftNv23ntvCUDed999zrHbb7+9POCAA+z6v/zLv+RCWFJKecABB0gA8vbbby+9XvO+fOUrX3G277zzzhKA/PGPf2y3tdtt+ZrXvEb+wz/8g932mc98JnidH/3oRyVjTD7++ONSSikvvPBCCUBef/31znHHHntsLty63XbbyV122SUXzj7kkEPkzJkzZZqmpa/J1y233CI55/Lkk0/u6nFGnU5HTp06Ve61116lx332s5+VAOT9999vtx155JESQOVt7733to+56qqrJAA5depUueeee8obbrhB/vSnP5X77LOPZIzJm2++ufKah4aG7HtrbjvttJPzGSvSBz7wAdloNOQDDzzgbD/vvPPkeeedJ2+99VZ56623ytNOO01OmTJFbrfddvLFF1+0xx177LGyr68veO5tttlG7r///lJKKdM0lRtttFEurPv888/L9ddfXwKQ99xzj5RSyiuvvFICkEuXLs2d87jjjpOtVsuum8/+BhtsIP/f//t/8rbbbpMXXXSR3HjjjeXrX/96+3e9fPly+z6/9rWvld/97nflL37xC3n88cdLAPKzn/2s8zwf+9jH5He+8x155513yuuuu05+4AMfkADkBz/4wdw1vec975ELFiyw4d664dY99thDbrDBBvLVV191tv/TP/2Tvdajjz5a/vznP5ff+9735OzZs+W0adPkX/7yF3tsmqZyjz32kO973/vstqKw6mmnnSYvuOACedttt8mf/exn8oQTTpCNRkO++c1vrvw7O+200yQAed1111W+rvFQhGSBHn30UQlAXnzxxXbbv/zLv8i+vj753HPP2W1FkJwzZ07unAZad999t5Qyg+T5558fvIYLL7xQ7rLLLrKvr8/5Utpuu+3sMcOB5IwZM3LHHnHEEc55d999d7njjjvmjlu8eHFXkDQwM3rf+94nGWO5P9b58+fLuXPnOs+//fbb58573333SQDywgsvlFJKedhhh8n1118/d5x5bw0kTT7t3HPPle1227ldcMEFEoB87LHHSl8T1YMPPigHBgbkggULaudyfJnP2D//8z/bbStXrpRf/epX5Z/+9Ce77Yc//KEEIL/1rW/ZbU8++aS8//77K29/+MMf7GMMEKZNmyYHBwft9pdfflnOmjVL7rnnnpXXfPTRR8uNNtpIfvWrX5V33nmnvPrqq+Vuu+0mt9xyS/nUU08VPu7000/P/cAs049+9KNcnvPYY4+V/f39weO32WYb50feGWecIQHIc845R/71r3+VTzzxhDz44INlkiQSgLz33nullNl7YtapjjvuOAfKb3vb2yQA+U//9E/Ocdddd50EIL/97W9LKaV8+umn7d+qD993v/vdsr+/34F/SCeccIIEIH/9618770mr1XJ+uNaBpPmcffzjH8/tMz946HsnpZQPPfSQBCBPO+00u+3LX/6y3GijjZw8Yt3co5RSnnvuubkfyL6+/e1vSwDyk5/8ZK1zjodiuLVAO+ywA970pjfZkGuaprjiiivwrne9CxtttFHl42fMmFG47bnnnnO2h6pPzzvvPHz0ox/FHnvsgWuuuQb33nsv7r//fhx44IG1QhZl2njjjXPb+vr6nPM+99xzwcq1smq2kPz3qtVqYcqUKU7+ymxftWqV8/yh92XWrFl2f9l1+u//X//6VwDApz71KTSbTedmyvefffbZWq/poYcewtve9jZsvfXWuPHGG2vncnw9//zzAICpU6fabX/5y19w8sknO0MVTA7QHA8Am2++OXbeeefKG80/mf/3BQsWYP3117fbp0yZgr333hu//vWvS6/35ptvxqWXXoqLL74YJ510Et785jfjsMMOw5IlS/D3v/8dZ511VvBxZ599Nj7/+c/jC1/4Qu1w/aGHHop1110X9957r3P9q1atClaH/v3vf3c+a5/73Odw8skn4/Of/zymT5+OrbfeGgBsPnPTTTe15wTyf5Ohc5pjDzjgAOe4Aw44AIwx+/5tuOGGYIxh6tSpmDdvnnPsQQcdhFWrVuGxxx4rff0m/G5e/0svvYSPf/zj+Od//mfMmjULL7zwAl544QUbWn7hhRfw8ssvB8916aWXAkAu1Fr2mnbeeWfMnDnTvqZly5bhc5/7HM4880y0Wi37/J1OB0IIvPDCC5XfS/5r8nXZZZfhn/7pn3Dcccfhy1/+cum5xlMRkiX68Ic/jHvvvRe///3vcfPNN2P58uW5ooEihQpHzDYfUqEigCuuuAJvectbcOGFF+Lggw/GHnvsgd122w0vvvjiMF5J99p4440tWKiKCmLG4vmXL1+e225yP9OmTbPH1blOc/ypp56K+++/P3jbeeedK6/roYcewn777YfZs2fj1ltvzRWxdKMQ/Mx109ducnP0uT7ykY/kYB+67bvvvvYxZXl0KSU4L/86ePjhhwEAb3rTm5ztG2ywAV7/+tc7+Tujs88+G2eddRbOOussfPazny09f9U1mVzkb3/7W+e4FStW4Nlnn3XG6zUaDZx33nl47rnn8Jvf/AZ/+ctf8NOf/hTLli3DlltuafN55jH+Oc02es6qOgRzreuss46Fcug10WOL5B/37LPP4q9//Su+8pWvYMMNN7S3q666Ci+//DI23HBDfOADH8idZ2hoCN/73vcwd+7c4Oe77mfif//3f/Hqq6/ixBNPdJ7/V7/6FX7/+99jww03xKmnnlr6moxCr/2yyy7DMcccgyOPPBIXXXRRZWHUeCpCskTve9/70N/fj8WLF2Px4sXYdNNNsf/++9d67O9+9zs88sgjzrbvf//7WH/99bHrrrtWPp4xlnMov/nNb3Ljn8wxI3WXvvbee288+uijuV+8P/jBD0b1eYq077774rHHHsu5m8svvxyMMeyzzz4AgH322QcvvvgibrjhBue473//+876tttui6233hqPPPIIdtttt+CNuquQHn74Yey333547WtfiyVLlmDDDTcc0Wvceuutsc466+Cee+6x2+6991709/fjl7/8pd1mlnfZZRe77ayzziqEPb1dfPHF9jEzZ87E/Pnz8atf/QqDg4N2+yuvvII777wz53p8GRfvO4HnnnsO//3f/50rJPnXf/1XnHXWWTj99NNx5pln1n1bAAA/+tGP8MorrzjXdOCBB9q/RypTxf3ud787d5711lsPO+64o3VFv/jFL3DiiSfa/Ztuuil23313XHHFFU6hzL333ovHH38c//AP/2C3HXrooWCM4aabbnKe46abboKU0rnW97znPRgcHHT+bwHgxhtvxHrrrVdZlHL55ZcDgD3njBkzcPvtt+duBxxwAPr7+3H77bfj85//fO48N9xwA5599lkcffTRwec56KCDMGXKlNxr+vWvf40VK1bY5995552Dz//GN74RW2yxBW6//fbKKMF3v/td5zUZLV68GMcccww++MEP2gYJPaWJjPVOBr3vfe+Tm2yyiWy1WrmEu5TFOclNN91Ubr755vI73/mOvOmmm2wy/ktf+pI9zuTNfvjDH+bO+7nPfU4yxuTnPvc5+Ytf/EJecMEFcsaMGfJ1r3udnD17du75tt12W3nLLbfI+++/3+Ygi3KSoRzCkUce6Zz36aeflhtvvLHcfPPN5eLFi+VNN90kFy5cKGfPni0ByDvvvLP0fTPvy9/+9rfc84RyKP51PfPMM3LTTTeVM2bMkJdccom85ZZb5Cc+8QnJGJMf+9jH7HEvv/yy3GabbeTAwID85je/KW+55RZ54oknys033zxXuHPbbbfJvr4+uf/++8vvf//78s4775TXXnut/Ld/+zf5j//4j6Wv5w9/+IPceOON5UYbbSR/8pOfyKVLlzq3Z555xjkeXtFMkUwxxyc/+Un54x//WG6yySbyjDPOkP39/XLx4sXym9/8pmy1WnKnnXbqurAopF/96ley1WrJefPmyWuvvVZed911cq+99pLNZtMWs0ipxhQmSSI/8pGP2G0vvviinD17ttxwww3lueeeK2+77TZ55ZVXyp133lkmSeLkqU3+6cADD8y9VzRP99RTT8kFCxbIr3/96/LGG2+UN910k/zMZz4j+/v75Q477CBfeukl5/o///nPS8aY/OxnPyvvuOMO+eUvf1n29fXJY4891jnu9ttvl//+7/8ub775ZnnTTTfJs88+W06ZMkUefPDBstPp5I5tNBry0EMPlUuWLJFXXnml3GyzzeScOXNy+eYTTjhBcs7lKaecIpcsWSK/9a1vyQ033FDusssucvXq1fa45557Tm6++eZy1qxZ8tJLL5W33HKLzf+de+659rgrr7xSvuc975Hf+c535C9+8Qt5zTXXyCOOOEICkEcddVTl/2dVTvLAAw/MFSD6Mv9XRx55pLz55pvl4sWL5WabbSY333xzp/4ipND3yV133SUPOOAAedFFF8lbb71V3nDDDfKjH/2oTJJEvvWtb3U+x//5n/8pOedy1113lb/61a9yn5Ph5vtHUxGSFbr11lttEv6///u/c/uLIHnwwQfLH/3oR3KHHXaQrVZLbrHFFk4RgpTlkFy9erX81Kc+JTfddFPZ398vd911V3ndddflYCallD//+c+dAp8jjzxSSjkySEqpEv777bef7O/vlxtttJE8+uij5Xe/+10JQD7yyCMl79rIISmllP/3f/8n3//+98uNN95YNptNue2228ovf/nLOVj8+c9/lu95z3vkeuutJ9dff335nve8xw5w95sJPPLII/Kwww6Tm2yyiWw2m3LGjBnyrW99q7zoootKX495L4tu9HlefPFFCUAeccQRpeeUUspXXnlFHnvssXKDDTaQAwMD8sQTT5RSSvnFL35RvuY1r5FTpkyRb3/72+X//d//VZ6rru6++2659957yylTpsgpU6bIt771rfJXv/qVc4xpxmA+S0bLly+XJ5xwgnz9618v+/v75axZs+TBBx+cK1AxVdRFN6O///3v8tBDD5VbbLGFXGeddWSr1ZJbb721/H//7/8VfrGff/75cptttpGtVktuvvnm8swzz8w1evjVr34l99hjDzl16lTZ19cn58yZI88999xgQwgp1d/5vHnz7Gf9Qx/6UOFA9y9+8Yvy9a9/vWw2m3LmzJnyox/9qHz++edzxy5btkweccQRcsMNN7Q/dL7zne84xyxdulTuu+++csaMGbLZbMopU6bIN73pTfKCCy6o9aOoDJLLli2TnHP5oQ99qPI83/72t+WcOXNkq9WSG2+8sfzABz7gFI8VKfR3+8QTT8i3v/3tctNNN5V9fX2yv79f7rjjjvILX/hCDnpVVdp1qqbHWkzKwKCdqKgCHXfccbjqqqvw3HPPodVqTfTl9KRuvPFGHHLIIXjkkUdyY/qioqIml2Lv1qhCnXPOOZg1axa22morvPTSS/jpT3+K//iP/8Dpp58eAVmi22+/HUcccUQEZFTUGqDoJKMKtWjRIixevBh//vOf0el0sPXWW+OYY47BiSee2HvJ9aioqKgxUIRkVFRUVFRUgcZ0CMhdd92Fd7zjHZg1axYYY7YBcZnuvPNOzJ071zYFv+iii3LHXHPNNdh+++3R19eH7bff3mlCHBUVFRUVNVoaU0i+/PLLeOMb34hvfvObtY5/8skn8fa3vx177bUXHnroIXz2s5/FJz7xCVxzzTX2mKVLl+Lwww/HwoUL8cgjj2DhwoU47LDDcN99943Vy4iKioqKWks1buFWxhiuvfba4IBfo09/+tO44YYb8Pvf/95uO/744/HII4/YQfSHH344BgcHncGvBx54oO0+ERUVFRUVNVrqqerWpUuX5jraHHDAAbj00kvRbrfRbDaxdOlSnHzyybljvva1rxWed/Xq1Vi9erVdF0Lg73//OzbeeONYgBIVFRU1CSWlxIsvvohZs2ZVtvkbiXoKkitWrMg1q54+fTo6nQ6effZZzJw5s/CYsp6iixYtwtlnnz0m1xwVFRUVNXH605/+1NXcmt2qpyAJ5Jt9m2gw3R46pswRnnrqqTjllFPs+sqVK7H55pvjiSeeqOzXGRW1tkuMICHTzUPrPk83GSLRxfNn5x/GgypUFrCiHsh8j3EGmIfwGOwK6sUXX8TWW2895t/hPQXJGTNm5BzhM888g0ajYWfOKDqmbAqnvr6+4HRG66+/vjNNUVRUVPdQrHN4nXNWwa8MeFVgEzXJN5YFGiHWcefHv95m15mFZQRlscY6ZdZTs4DMnz8fS5Yscbbdeuut2G233dBsNkuPWbBgwbhdZ1TUmiYhs1uZQg02y87ln1OqftHBmwCCt1Sqm/RuqZD2JmR2SwM3c63mXKFbRwDpWN6851PXo65PSPU6pN4n9Hsl9HEjcfNRI9OYOsmXXnoJ//M//2PXn3zySTz88MPYaKONsPnmm+PUU0/F008/baeFOf744/HNb34Tp5xyCo499lgsXboUl156qVO1euKJJ+LNb34zvvSlL+Fd73oXrr/+evz85z93phaKioqqp1oOb5jnKHKGRY4wdHjIARaBebjnKztvkULPV+n2pOsmZcBFSkh1jFT7GRQ4GWOQiK5yIjSmQ0DuuOMOO+8f1ZFHHonFixfjqKOOwlNPPYU77rjD7rvzzjvtzOyzZs3Cpz/9aRx//PHO43/0ox/h9NNPx//+7//ida97Hb7whS84875VaXBwEAMDA1ixYkUMt0attarjGrt9bOjrJATFOgDzD6kDwqpzFJ2n6Jqcx3WBUR4Mrrq5SQO7LPfI7DFuTpIhYTH86mtwcBAzZszAypUrx/R7fK1sSxchGbW2qwyQRbtGAsaRQrFbGPrXmnt84FUWfROOJNTpw8yBJJizjUKTM+bA0q4DSDiLoMT4QbKnCneioqLGXt0CMuzgugfjaEFROtuLn9MHobNvmK+pW6UyX/hhCk0k05X79vmZG3Y1IVeWrYMzQEgknEHICMrxUIRkVFRUV+7Rh0k3cKwLxjpQLAJiEQy7vW7/8cOV9N2kvlbzfBSaDMphphI5OHKmipUkU6Ckw0Wixk4RklFRa5GC0Kt57GjBcTTAWAVFeq30OsvcpAy8E/WGrpSPg0w9x8ekgaJeJ9BkjClYMqjiHcmQ8AyOzFT1gCGBRIoIyrFWhGRUVFRO3QBytOA4HDDWhaJzPnKeqtxlGSPTAEGTAlrR8zLmvl4mtUsEnGpWzgDBJCCykGsChtS+Boas5jWCcqwUIRkVtZaorossA2SZexxNOA4XjGVQLLoO+vw++IqGjKQF29sCSAK2kjYNMCDNwq3SAaZkLixNGFZKBnCSm7TQVKA0uIywHF1FSPaIdHSlpxSvqZ568ZqGq7EC5HDhWBZKLQJjyClKuy+TAaIPQgpAUVC5UwRJAGhDBkApYXpwC2mcn7pPOMsBMwRL8MxVwuQmLTTVaxyrgp5e/IyP12+BCMkeUa99AIF4TXXVi9dUR/51jyYgg+HSkuOK4BgqvBGB/WVu0WzyoVgEQ2d7AIZpjf9wBUp3G9dwFGbIBzfXw3LADMESInOVGp95aI5RQU8vfsbH65oiJKOionIqGz49rHyid1xZzlHK7l1jkWMsAqOBYgiIFIIiEKMuc5FUwnOTxklagArlJoUuxuE8A2YIluCuq/TDryZPGQt6RlcRklFRa6GqXKSzjz6uy7Bp6Li67tH0cw3uI3CsA0YfitQhGihSIJa5yTpOEgi4SZGFWA1AOdfFOVBOUzDlMEOwVE7SdZWh8GsE5egqQjIqai1QN+P96g2fyJ9wpIAsc4914VjmGH2naKBYBk56HD22rtpwC3lsXtIBowvMYlhKJNx1leDIhV8jKEdXEZJRUWu56o4FzI7PVorgR48LHdOtewyFVYvgGHKNVWAs2k+f099eV04hj5DgLIMn55njNMAsgyXAHFdpc5Ak/OqDUgaqbaPqK0IyKirKqqxYJ3esOS7AjW4BWeUeu4VjCH71oJm9hsyNhoHZjYxzBADOSQGPhiaFownLKogyNAksAe64SiEZEu6GX31QQkgw3bEnqntFSEZFrWXq9nu+Kg/pHzfWgKQ5RxpWLYJgNTSh97lQ9LfT1+bLH18ZaipgK1jNNZiQK9cQlNJxmNZNCoZmwvSyUMueq6Th1yJQNiIoh6UIyaiotVhFzqhuY+9cjrEiB+ke6z5fUXiV5h5D7rEuHKlrDIExt43mKCvcpB+GbYv8WEmuodhGBlHOGBIZBqbjLsG95cxVAhLSNDEQMoJylBUhGRUVBaB82AdQ7iLDx5vz6vXgIH/pAHk4gPRB6EOzCI7UMeZylF26yTTwq0Lw/HG2ulWadQkRAKYPy1QKHXbNlgEBIRmaCdcuMoNhBOXoKUIyKiqqUGXcrHKRzrGBDjp+kY7jLLsAZJV7DMEx5BqLwJiBk16f+ypDBT2msw6VgZMBKGcsB8wiWALchmABDiElmpwDEDb8GkE5+oqQjIqKGnVVhVmpa3WO0TnIkQAy5B5DzpG6xjA0YZfpPvMYX3XykmZb1ppOV7fyDJiFsJQCTc70MBKhh44IpFLlLBUVFQyFZOqHSQTliBUhOUz1ai/DeE3VitfUvYoKVnyVuUh1HrodznZapGPORcETAqQLQ4l8yNV1j75zdBwmcYw+GM11ONdTkNA128sg6d8LPROI4BKcMbSFRJOzHCwB7rhKk6vM3lEOCabyn0J/qgpAaQpuxwuUvf4ZL1KE5DDVi//Z8ZrqKV7T8FV0nSGIhlykWnZdpM8aU8VKz13kIIEwIEPhVXtcoaN0K2Z9MIZA2SkZExLa1yiAZMKZbk6uUKJcpQQXzIElIBxXCQgbfgVgq1+bCQdMc4EiUApYQo4HKCfLZ9xXhGRUVJSjOpWtoXDqSJ7Dd5FAFmalYyCdcwRCrFXh1dQDpnqePBwpEM1yJ+Aii9xkkVJCo4QzB5ohYHKmrq0puQrDSoamzFxkKqUGorBDRTQRa4FSucnYladMEZJRUVGjKjekGg61AmHAGhcZzPkFgTh8QPph1RAcOx4Mw2HXugNmgCSLjSLhDENwAdnQy/QmJEOqHaJ6WuG4yhAg64KS6W08duUpVIRkVFSUI/M1Oxbyh5nQIR++isKsVYCk564CZB045gEpnHV/uUwJGRaSOUdul1MNxiJYNhOmCnXMuuQQwrhJgAKytqOEVMFaznLTe0VFSEZFRY2x6oRkTUXraOStQjnIKkD6YVV/GwVjERzrg9LPR2aFPgaYRbAEuBOCpa7ShF/TBEgls/cASkHJJKMDNyMoPUVIRkVFjauqXKqfi+w2zDpcQHZyYJRIhQjmJ7st4qEqL96ROYfZanALy1RItBpcF/gI6yrVuEmBRpIB0953BFIp0d9IEAKlCrkyVfSqxqBEUBJFSEZFRdXWaJXxD7fgp0ijCcgqOPqFPN26yfrFO9KCkcLSgFIBUle1SkFykkA+7AoAaSEo7f8qjw3RfUVIRkWtxeIk0sYYy+UMGVNAM0MSQo+bCIWGezj7RwGQwy3kCa0bGejR9erincxdph5I0YDNVRooplINGREStuVdESi5BqUJuarD1RjKCEmlCMmoqLVMozmo20B0POS3nfP3UShSjQSQ9Qp56oMy8VwkbTxQVbyjHGRil/sanJyTq2sn4VcablUqcZSACrkK2KEhXMawKxAhGRUVFVC3Fa7UafoucyQgDTUPoDJgdB5TAMyRALIo5FoFytzr8VykuTchVbNeVLxjQq1mKEknAEv9zqAuKLl2kbb+BypPGStelSIkK9SLrZTiNdVTvKZMZeHRbkOu5jXUCblyMGespH/OMpUNP6St54yqXGS2bXiArAtKf7lIRS3q/KEfPizVMdJ5jIGn+kavB8qEqeEhbaFiq0y7SC7hVLx2m5/sxb+7kShCskK9+J8dr6me4jUVq84XWV03SYE3muftRj6Tylykv94NICtB6Y8DLYAl5wyptseJKIekD0tzjAUj3GKglEsIySGsBSwApV5uJmroCJPQeUo4Fa/d5id75TM+WoqQjIqKqnST2XGumwztM/LdImeAQPG5c8/FgTTNb/dDrz6I6GqRi8zWuwdkERzpdcguwq6muCaVDAnLQq9FNwCOqzS5SsANv7o/RzJQciHtcpKqZYVGVcRDnSRnWOvzkxGSUVFrqbpxfUXhUQPXIBBHKS/ZjdyQp7s95CL9/XUBGYKj9O6LXCQV5yx7HGcuMEWBo7R5SdeBpkJYWJJnACDU/0WDQLORB2gLHCqr6RbyMLK+NoIyQjIqai1RVQ5xuLlJ9xxqnySP4TKcl6yjxHOnvtw2dOHjKAyLXKQ5ri4gfTj6YHRmOil40xkJuTKmnZsGngFmESwBOK6SruelgdhBEJQKfKqBuireUf+zjHmuElgrQRkhGRW1FssHXQiUVTnEum7SbgMDl1J1RQP0bBcSAkVulTkwTFh1TjMEzKLCmjJXWQZIH44GjLWdJNlv4ajbyDHBlMssgKVxk+beDbOGVALKjgAaUMM/wIFE/bBhwpT4uPnJCMmoqKg1ViFwdQPKOpWuhW6SycqQK4NyRMJLPBaBMWHlLtWfG5IuF7lIuq8KkD4c/dArkG/qnnvNLBsvyTQsOWeQkpXCEshXxrrXnmSvsQWEQMm1izS5STSAhCekkAewQ0LW0vxk2U+PUdMFF1yALbfcEv39/Zg7dy7uvvvuwmOPOuooMMZytx122MEes3jx4uAxq1atGo+XExU1qRWKyvmb6DFMT6PE7bo5hjmP5SzbZ7b7z8WYOU5XUbLw9XCmilicbeRAHnpQDWUQFLltZrkQlAWAdNbNTapbmgrV6EBIpJ38TQh1TJoKSCkhUgEpJNKOQNoREHpf2hEQels7FRhKBYY66vbqUGqXXyHLQx21vNockwq0U4m2UNvaQqr7VGCV2ZdKtFOBjtCN3k0TBqlyvB0h0RbF41bXRI25k7z66qtx0kkn4YILLsCee+6Jiy++GAcddBAee+wxbL755rnjzz//fHzxi1+0651OB2984xvx3ve+1zlu6tSpePzxx51t/f39Y/MioqLWMI2Vo4Tex+E1F0B5bpIhHHLlureoOVdZjpIzhrTL3GeVw7TrJYA02wHlGjM3CX1ffE2S2GOpf4UwPQaSSwYpmBqnGHCWq4SaIis3VrJMxFHyVC2bateEAVwwOzSEkUKeUKOBtaW/65hD8rzzzsPRRx+NY445BgDwta99DbfccgsuvPBCLFq0KHf8wMAABgYG7Pp1112H559/Hh/+8Ied4xhjmDFjxthefFTUGizzBUe/w813niTHdANKmp80oAyFXdU53NykcScm5AqRhUtpXtIsG2DyQHi2TKHB/0XNys16FSBNSFWt6/fQPLZmEY95A7gwxTsKmGWwbCObDqu4cMcTDb0aNUzINQUaCZJU2kIeLvW1JVkhz3DGT05WjSkkh4aG8OCDD+Izn/mMs33//ffHPffcU+scl156Kfbbbz/Mnj3b2f7SSy9h9uzZSNMUO++8M/71X/8Vu+yyS/Acq1evxurVq+364OBgl68kKmrNVREsRwpK9VgNsorKWvWceTeZ6BLLNHXzkmbZsMXcm3xmN66yrGOOcZFGRYCk7lGKrJGBPyykSGY/4+q6DTS5YKWwBFQl7BCypgT2uoU7JtSRBiVnxkUyrDLjKJlxleoYALYjj2k0sDblJ8cUks8++yzSNMX06dOd7dOnT8eKFSsqH798+XLcdNNN+P73v+9s32677bB48WLsuOOOGBwcxPnnn48999wTjzzyCLbeeuvceRYtWoSzzz57ZC8mKmoNlw9L6irpvipQmnNR2DGyrRs3aRwidY0QxcM9fCUjCMFSaNJKVmebDcNm24SUOTg6jQYKrp0OA5FCZsCUrBCWgKqEBeiMH3lXmYZg2dL3DQ50UvQjQZtJcCELC3msk9TjJ9eGsOu4VLcyLwEvpcxtC2nx4sXYYIMN8O53v9vZPm/ePMybN8+u77nnnth1113xjW98A1//+tdz5zn11FNxyimn2PXBwUFsttlmXb6KqKi1QyFY+q7SFvOYMKMHSlvxiizsWgZKQ1PfTZriIAGpl6V2kEx35JG2wjUhrnW4hSUhQAoCOuoifVFAhoaGmGOKJLWDtGMnTf5RSEjOcrBMwJF2hC1iysKvEq0kn5v0wWnWzXucCJWnzA5TTjNhIpefXJvCrmMKyWnTpiFJkpxrfOaZZ3Lu0peUEt/5znewcOFCtFqt0mM553jTm96EJ554Iri/r68PfX193V18VNRaLsc96m2lrtJUvaIYlIALSuPyzOPNuElAOm6SFvCYvqcJA4SXl6Rh1oQDQre186elot14ypR6YVMAuTArDbHSvCUAC1XzOCp6Tub9MuGcQUKq/CN1mASWgLCuUj2XG36tkjt8hCNhKg9pCndMIY+fn1zbwq5jOgSk1Wph7ty5WLJkibN9yZIlWLBgQelj77zzTvzP//wPjj766MrnkVLi4YcfxsyZM0d0vROpXvx8xWuqpzX9mjgZpsHIue22wBARzpg91gwNMduc62T5ISEgj1GPz4aDWNdj1kmoz9wn3B0+4s/hWFcGqs6YxxzowoA0Q0DMujM8REiIjoGruomO2SbtEBBh7s3wELPeERBSHZ92pB0iknb0UBJ9HB0mkr+leHUotcND2kI4Q0PaIhsOYvYJCbR1npMOC/GrgcdL4/V3N+bh1lNOOQULFy7Ebrvthvnz5+OSSy7BsmXLcPzxxwNQodCnn34al19+ufO4Sy+9FHvssQfmzJmTO+fZZ5+NefPmYeutt8bg4CC+/vWv4+GHH8a3vvWtsX45Y6bx/4hVK15TPa0t1xRylnYbsvCryVMGw6wghTwI5ydVFzQVdjXFOBAA51K5SR3f45JUuTI4IVd1bUyHXjMHSQtZqLusIydsGmhoXtRcIMtPmvev5DlT876avKSCkCnWYZypKcQ6IugqjUye0neURSHX7IeFCrkmjDn5SVXgo+agTKVEWyAXdm0LoDkuI++Vxuvvbswhefjhh+O5557DOeecg+XLl2POnDm48cYbbbXq8uXLsWzZMucxK1euxDXXXIPzzz8/eM4XXngBxx13HFasWIGBgQHssssuuOuuu7D77ruP9cuJilrrVQRLE36leUquj3DAWALKVBrAKlAyJgFTtSrVt7ILR2mrXGnI1QAWUF/4PhATzpGKwBQjBSqa4YNWslK5zQXM+xWudA2FXbMK1wyYksvgMBBVeGPGWaono80WykKviRosafu/AonKQ5L8ZMKguvSAO/nJlLlh10SaHzclTzgJxWTdeWvWIA0ODmJgYAArVqzA1KlTJ/pyoqImtcx3vPTXpTucw+QphVTbcutQbetSkT1OzQupjkmF6hYjBNAWAqmEDgcqIKkQoV6X0naXaacSQ6lqZm460NCONKmQZFt23FBHqLCiDmVKvSyF1GHNDJJCh0dzw0MIIEPDQcrmmwQyaNp2dYyBcVhY8oRbh8k4Q5JwJA2Vx0waHDzhSBrq1ko4Wg2OdVoJWg2Ovka2vk6rgT693N9I0K/3NzlDX4Pr9QT9id6eMDQ5QytRk0G7y6PwoaqhwcFBzJgxAytXrhzT7/HYuzUqKmpE8qthaQiWS2U3gw6ywFEaNyqYDuWx7MTUTQJSFe54bjKRmXM1IddQaJU2C6fbugnBUvgBeQdJ3WNuphDSGs9XKgDGeW5IiOCm2YDUnlFYV5k0OFLzzvL8ayhylCrk2gHQyGYZ6eidDU5Crtn4STMsJCVh1ywEu2YV8URIRkVFjYpCsHRylSRPmTBAMmQVqwSU4BKp0IDlUMu6OXoz4UAqskparh7D9aBNwaBCt7rKNWEMgksIGZqXMbv2BmdIawIyFHzzh3o4x/sVrxqOsiLcK0UKxpM8MG0uEk4IVr0f+l7nKX0ZUIaKmRIusu0tIBEozE+asGvK4FS72hDsGjR2MkIyKipqVEVhGXKVatiIclkJV24xFS4oJZO5Qh6Tn1RjJLMiHuMmVTGPzNwkz5oRcJbB0QAx4RwJl4XuMeHZmMWQisKn1EWGAGngSCHpA5PxxG5nPMkB04el+iYXzjAQFExyNmT/yV6nuk9zhTyh/KQ/LIQW8KTSLK85YycjJKOiosZEOVgyppY9V8l1+asyYiqMmMCEFBmSrPurcocaAG1d0ck50AQHhNDAzNwkZ+7YyZB8hxkKw9ZRsCOPE4pVgKwDSbNOAWnuAUBAOcukwSE4dOGOtCHXBFnotQiUSScDYnavwq4N/R6o4TcKiIVhV5E1GUgF7NjJZA0p4omQjIqKGlOZyle77LSic8OtGRxdUJoWaJKcVEgFRHCgjSzsmnOTEoUh17owNA0M6ojmIgHjLvOApGAURaFXkYIHQGluaQeOqwSELfKpBCVzIdngrqO0t4qwK2fcNhlINTwZpJ62cvKDMkIyKipqzEVdpcpHMqjoqbThVwpHBokUGSiti9TrpmVdMwGQwgm7FrlJU8BTFHLNtlFAqMmOnWEazFxTJjo2kooC0h5LACkCrtKXxZsGJj0P4wkkT5A01Hb1ngGpme7KNj13Qck5Q1snZUMTOJv8ZJ2wazOB7e2ahVvXnJZ1EZJRUVHjJj8ES10lhSPXMAyBkkmGhKv1jm4y4IRdLQzUspDVbtJWdVZdfxdh2Hz4Nc0BMhR6zZ+HhllhYckIMNNOlqsEuJ7BQyBpcDVkhThK1R9WvUdthMOuxk3WCbu2U7ZGj52MkIyKihp3mRAsdZUppIWjqXwNgdJUvzKW5ScNGENh16ZUjQOK3CRVMBwrdThTqH6qdVQ1NVYIkGVDQqQQYJxbYBrk0fArb7RUrrIjbIMB874k4BBcggkG4TWuHXLgyLC6IxxQVoVd2zwr4qFOMtHOcrK7yQjJYSofcJl4xWuqp3hN9TTW15SvgjUQYrbyNQRKKQGQfTQ/WRR2bSYcQooCNxkOuZZeO1ezcdSZboQ6SCnSHCDtkJC0fgcgKVJIA0e9TXSGlLtsNIOgJFfvbGMdZgt5aH6ybti1LVSFbYMU8SQsq1g2bjJhvfcZr6MIyWGqF/+z4zXVU7ymehqvazI8YgBSXc3K9JesGSICQUCpetZBki/dZmK++N37lBTxNBPlCn03WRR29fOSth0cZ5AeHBkLu8xyd5gHZNXYyZDMq7XrHdQGJecMaUeFYIc6Iv/aK8KuTQm0dRFPk2czhagcpYJnyia3m4yQjIqK6gmZL1Gpp4aiw0JMfNYHJbxCHpqf5JJZeAqhineaXLnUMjcJIAfMMjETO64h4eUlAQXIsuEgdLs/FESFYYmrNGFXD5RMt9BLqYPk3Bb4iA6z+cmEALMy7MqFLeJpC4GEJ7aFINMuMpWTOzcZIRkVFdUzsl+iPKt+hS7oKQUlN8B0C3eETCEYI+FWk6PMINDX4Nq1+pWvGTBpXlK1iWNgXIKL8jGYRj4Y1TbhALJOEY9/Tlq8A/PKO0N5UOr3JWlw1fpPqKm2zHtlho0MceYU8lSFXRu2sYBAm7PCISGT2U1GSEZFRfWcEqY9onGVJkNaE5RCCJWL5FnYtZGofalI0TTL2j22LCglWg2ODoGmH3ItYphpMl5VtBPScEFpH5+mYIkAb2SgtAD1QOmKg3PVuJ0xFXodYsVu0g+7NrlEm0k0pWowT4eEGBfJSQHPZGwwECEZFRXVk6KuEkLlKbOxI6QCVoPStK5LOLMQVIB0w660iKeVKDj6ucnQmMm25paBIZeqeIdJ1lWzAcB1kUWArDssxB8iwngKNFrq1Xd0/7lGE0z/uHCKdjhDqh2l0G9423OTRWHXplQhVp6qx/hDQkxf14SpTjyJqX6NkIyKiooaPSneqfCrdY4mX2l7uEKNndQVrwaKLiCzsCst4jEukrrJUDGP7WxDQq5F5U1ljjIEv7qdePxZqEIhV0DDUYNSilSFXtFU4yYZgxASjKspvsyZGcvyk0PcdZOhsGuTc1vE0xb5Qh5VdDX53WSEZFRUVM/LhF+hQ6zqS1dD0YRZVXd0B5SpmQBaMA1GFXZNpSriAVRBiQtKEQAn0zOKZFWuAMD01FUOPLkErOvkXeUY/U48vuj2qmkbDSidHCWa5NGkAw9TDQZMowHWYZVh11ZD2CIe5SS1C9V5yIZInAYDKZucbjJCMioqalKIM32TpusNy6DI9fyKgrmg5FnXHYAjTYAstOi6SpOLbDUSp5An1FgAKXIhV1+06tVUpdZRnVZ16lXo90XfO40F0FLHeKCUIoEUzHbg4VxCMKkBmUCk2bAQE3ZNOLMTUxtQthpcwZOpSZaNk7R5SQ50RNZgIIG6n4xuMkIyKipqUsmEX5EDJQBIB5SSA4CeKUOHX0Nh1yZXRTy00rXlVb3SAh7G8iFXOo6SC3RV9ZobFuINESmTP04SUHD0QclEqnOULSSNBEIX7Bgx/cOBMeUoRUfYalf7I0FIpEJiqCNsCLaZMPAUaHLVDzbUYGAyu8kIyaioqEmnuqDUPg7CwDDhdoaOlFS4CpkV8ShAJjlYmvtUuo0FaMgVHs9U+LV7Fwm4cAzNN0n3+64ScEEpRYq0M4Sk0dLL9grBeJaftGHXDstVu4aKeFoNbnOQobykaTDgu8nJNG4yQrJCa2O7sOEoXlM9xWuqpzrXlDBdaWqG+5EiHusk9XITJD/JOVIp0JSMVLvCyUVWuclU5yAB2qIOmcPkquOMM3sITwDbEKC8E0/ZOt0WgmUIlAIAb5giHp2jFNwZL8lsXlKFXU3+NZXSyUsaB9lqZNubiXKR1E2a6lfqJk2l62QaNxkhWaFe+/IA4jXVVbymeprM12S+ZFVKMF/Eo7jInDGTQipXqXKScMKuphOPCrvm3aQBBdMAoY0FzDbp5ScZ513lJIF8m7puHuuD0p6Dc8dNmvykanyOLB+ZqmbqQkjrKlOWhVo7NuRa300mPHORnLhJU47Vy4qQjIqKmtTiTE8YTEKvQn8BSzOGkrn5SVrAk5JqVxWWzYddfVg2E44hIZ0xk5x5RT0Cap24Sc4TpF1Uu9J7up2OkQyJgtJWzLYB3tQhXTN+UodjOUsyKHIG0ZEQPFzEMyw3SSpdqZtMpQ6d97AiJKOioia9cqA0CTAzzMNMswXY/KRykirHmFW7AikH0oZ04FjkJpNEzdeo3CQDkywXcjV5SeomGeeqS04XDrOosIf2c3XGWAK2oQBvmNxk4hTyqFlJuJ5fknTf4arJgCnikUJiKBUOKFWFa7WbNJWu1E2abjypAJIep2SEZFRU1BqhIlBKlhX0SCCfn0wQCLtypA0TWgy7SdtcgLsFPLSox59Ki3mwrFLITYYAWSQ67yTghnGzWxZ2NYA0RTxSZi3rGKluNRWuddykrXQVieMiLSh73E1GSEZFRa0x8kEpSLWrYLCFPP2NBEBq85N+2LXNsrCigiJ38nEJZ2glHKt0uzybn+S6mMgU9TAD0nxekiVhB+irLC/pFPAUnEsAYCbkqgt5TH4yU0s5Rl3RypwqVwkpZXBISMhN0nGTITfpuEjW+24yQjIqKmqNkgNKHW6VJNwKAVvIY/KTws7krJabiesm1VRawo6jNDfOmWr1JqV2W1kBT1HIlfNEDwsprnAtU3A4SIUz9Z2oFLrXq0ht2DXtcA34rIhHkuIdptvZ1XGTdNxkk6u8ZFMypILlXCTvcTcZIRkVFbXGKQRKQHXlUd3sdCFPg9aBpspV6vGStIhH3XgwR2ncpF/AY4t6RH7uDcCteh1zN8lTp5BHtIfAm61c2FV0mC3iyQp5Ekgh1bAQ09e1CzfZpo5SzxCiXKSeWJupMZMRklFRUVHjqDAojfKFPDQ/2RQyUMSTOC7KAJO6SWkqXv0CHhJy9fOSzkTK3QwTKclN+jOESJEG85OSc8dNmiIexrk3JESFkS08PTdpfjCYZTM7iHGTbc7sMmccAno6LTVTqJ5aqzebC0RIRkVFrbGioFQ5SZ2b5KrilRby0PxkNhykuIiH3qib9At4AGRjKL2QK0tE13NHAsUNB0Kw9CtemaDFO4mdTksdq3u7pqoLjxkSInUIVnCWc5O2j2tBT9emVPdqWf/4EO5QkF5uVRchGRUVtUbLghIAdZCZVCGPEFl+sk+a4SBZ2NWdDSM/jZZ1lEJCCmELeOiYScbzc3dQZ1k2jrKbeSbrhm5ptavQEzWbTjyS3GiDAd9NDnWyXK1dltLmIWm1q3KUEqbwN4Fy7r3cqi5CMioqao2XD0ohiatkqpDHfLmbsKtyPtnYSTNLSJGbFA2p52lUbtKMoaQFPACckCvjGaicnGJFU3OjqhCrL5YkECK1YVfajUeIFEyDsq6bbOk87WpSwGOWm9zNTyoXKW2rOinzw0HyM2NOvCIko6Ki1goZUAqYWRWVq5Qy68jT38gaDPQn2jklDG0Bp69r6sGBukl/OAjX5+EChSFXJty8pBkeUqaqkCudjDkHX31M5iqzdZOb9N2kFBJCwHGTWXWrcZKpXbZOUgg0JEM7lWhzBc0sDwlI2dsFPBGSUVFRa404A5lsWQ0Naeh26iY/2SclUqmHggjlJJtcOkU8Q53wkBDRUBWdXEjlzPzhIKSAx1dZ8U1of5FCTjKXm+RpYREPJw0GJIEirXQ1RUqlIVchtZOU6KQSKZc2DNtOWa6AJ9UTafMeA2XV5NZR46Qe+kxYxWuqp3hN9dQr15Qw6MIS3YOUNA5QEOVo6nBhkzM0EjX2r5moBgKtRv5W5CY5ox15ssboAA27utDkHkDNcWXyx1zmx0WmnnNMIbx1KYTnJlV4lELRX1bDOaR11WpZ2GVhCnX0fVtIC0NTwGPupdTDc2p2tx+vz1N0kj2iyTwTw3gqXlM9xWsqV2Jzka6zbHL1RW3Crn1S5ynJ2Mmh1J0lhA6BSIVEyoUNs/KGqpq1XXnsGMpwyHV4eUnh3JviIOpA3eNdZ0qfT3IeHDdpuvAIKZ2erqzDkCbccZSh4SC0gEcQh9ngwy/gGa/P07g4yQsuuABbbrkl+vv7MXfuXNx9992Fx95xxx2qlNq7/eEPf3COu+aaa7D99tujr68P22+/Pa699tqxfhlRUVFriEx+ssmZapWmYZmY7QlXTjLxbpw7btLk46ibTBocScIdN5k0uC3o8cdMUtFtLKl2kCGFXGWVm3RCsV26yaFUWEh2NBzdZdVIwDjKthDaYUrHQaYyA2Uv/aAac0heffXVOOmkk3DaaafhoYcewl577YWDDjoIy5YtK33c448/juXLl9vb1ltvbfctXboUhx9+OBYuXIhHHnkECxcuxGGHHYb77rtvrF9OVFTUGiIDyoZupZZwoKHvOQP6Girc2p+Y8CsJuzY4+hocrUaCVoPbHq+thoKoDa8yBt7IlpmGJidu0g+5GodpNBJQFuUw/eEf2U0E1iWkgAqvdjTghMwV8LgNBtIsTyt1WFZKEm5V4JQw4Vapq12zEG2viEkpx/Ry9thjD+y666648MIL7bY3vOENePe7341Fixbljr/jjjuwzz774Pnnn8cGG2wQPOfhhx+OwcFB3HTTTXbbgQceiA033BBXXXVV5TUNDg5iYGAAK1aswNSpU7t/UVFRUWuMhASGhMRQqm4dsjyUCrzSTvFKO8WqjsCrbYFVnRSv6PsXV3Xw6lCKl1a18cpQipf0+qvtFJ2hFJ22vg0JdNop0lTo7UIBp9NGOvQq0s4QRKcN0R6C6AxB9VIdgmgPBZ2g6wiLe8Ca0KsLZB3qbbSsW00aLXBzazbBGy27rdFqgTc4Gk2OpMHRaCb6xtFoqeVWM8E6rQTr9TcwpaWW12k1sH5/A+u0EqzbStCXcExpJpjSTNDXyJZVrlfdmlzdNzhDi5eHXAcHBzFjxgysXLlyTL/Hx9RJDg0N4cEHH8T+++/vbN9///1xzz33lD52l112wcyZM7Hvvvvi9ttvd/YtXbo0d84DDjig8JyrV6/G4OCgc4uKiooClGs0hTxNXciTOUwddtWhV1XEw20RTx8p3qHLITfJG9y6SROODblJ4xw5T4Ydcq2jOm4SUNWt/lCQogKeoY6wM6WkIls24VZTvGPCrW0hsnCrX8QzJq+6e40pJJ999lmkaYrp06c726dPn44VK1YEHzNz5kxccskluOaaa/DjH/8Y2267Lfbdd1/cdddd9pgVK1Z0dc5FixZhYGDA3jbbbLMRvrKoqKg1SYlujdbg6pbomwm7mtCrc/PCrrn8pM5NJg1uc5MmT+nnJrkBZZI4oPTvqerAk4Zdy3KTzjGpyUfmQ642xBoIudLindyyzIZ/pHqITTtV4y7NmEkppa5u7a2Q67hUtzLmemYzrUxI2267Lbbddlu7Pn/+fPzpT3/Cueeeize/+c3DOuepp56KU045xa4PDg5GUEZFRVnRjjzS3GR2ayYMTcHRr7+8TQP0ViIxxIWFY67aVVe62nxkg+sxlNmUWoJTMLYBkAIe0liguEqVl4ZcyyT1+YVIkQSgS5sLCCnBBIiDRHDMZNFNaLdpocozB8oZ69mm52PqJKdNm4YkSXIO75lnnsk5wTLNmzcPTzzxhF2fMWNGV+fs6+vD1KlTnVtUVFQUlQFlwuhNOcr+RqILeJSj7GvwYBFPmZtMGq6bzMZQUucYLuAZSciVAjToJGsU8Kj9BIzDGDNZJ+Rq9vdSyHVMIdlqtTB37lwsWbLE2b5kyRIsWLCg9nkeeughzJw5067Pnz8/d85bb721q3NGRUVF+coqXnXoNSFNBjQUs9BrfkiIAaaFpZebdJoKmKrXgpArgFzoNTRkpK5Cla51Qq5quwq5AvVCrsFbIOSaSvR8yHXMw62nnHIKFi5ciN122w3z58/HJZdcgmXLluH4448HoEKhTz/9NC6//HIAwNe+9jVsscUW2GGHHTA0NIQrrrgC11xzDa655hp7zhNPPBFvfvOb8aUvfQnvete7cP311+PnP/85fvnLX471y4mKilrDZcZMmoHtJl/ZTLKWdU2hp34SDE2hZgnpa3AMNRIbbrWzhpiZQRrGeXHrvoyzlJwW8KR22cwMIkkvV78nq9o2OUOupsFAL4dcxxyShx9+OJ577jmcc845WL58OebMmYMbb7wRs2fPBgAsX77cGTM5NDSET33qU3j66aexzjrrYIcddsDPfvYzvP3tb7fHLFiwAD/4wQ9w+umn44wzzsDrXvc6XH311dhjjz3G+uVERUWt4bKNBiTNS+rerpyjyaUt3unodTNLiJObJDnKtMBNhgp4ijrw+L1cu5GausvtxGNkuu3QDjym444bcm0qN5mwWiHXUJVrKgDBTdMASRyjhJTMCbkK2Rsh1zEfJ9mLGo1xkqolcm8pXlM9xWuqp7X5moSEGi/pjJlUt1f1OEkzfvJVMo7ypVUdvLiqUzhucmh1R4+dFHYcpehIPZZSjZFUYyaHINptda+3SZGWjpsEqsdM+qFbf8ykGRtptvFmE43WOnYMZdLQYyRbHDwx4yTJ2MlWgv6mGi+5TiuxYybX629iSivBen0NZ4ykWe5POKa0Ev3jA2glHA0OPX6SoxlIDK4R4yTXZPXalwcQr6mu4jXV09p8TbQbT1bMo4p4sgbozMlNNrmbm6RdeBIzPtIU8thiHm7dJG80C4eDjEYBD1DegQfIWtJR+a3rTC5SPa7LkCtxjinJaRoHKiEhAAg9K4uqMp7Y3GRscB4VFRUVEDe5SaEacQuonJlIgH7JneKSthB2zkmTm2w1hO1f2tITOqcd4YZZSfjVHw5Cc5M2R5mG54nMloefm/RFQ65GQkg9xZaCoj1WA9IoH3KVTsjV5CXNMJCsl6v6MeKEXUfl1Qxf0UlGRUVFFYgBWeNyMjTE6cTDGfr0esJYqZs07tFvLuAPBwlNlxXqwBNaNrnHbuUPBXH2eUNBzL25Zce5ecnsljUYMD8ssls2fZbp5WrzkaT5+UQpOsmoqKioAlE3acKtif7SVg0GzI2jr2GGNxS7yXaqppwy02hxqZoL2Cm1SGs6Rgp4aPGO7yaN3EmWXUcZAmfhBM8lIV01FERNxgyg1lAQALmQq3szw0pgXbvUDpICc6JmJI1OMioqKqpEDMhmACH9XX03afKTRW4y0b1grZMMuEmVo8yajnfbz9V1ltzeqlTkHPMt6rrLSwLILdvH+zlJEr4WyCpbJTJgToSik4yKiooqEWc65ErHTHI9JMRzk81EoCmyiZmpmzRDQ9qpUE5SSDAu3eEgJW6SVqaWuUkzlCOk0WiWXpSXDKkyL8mRK+bxu+9M9FCQ6CSjoqKiKpSQTjyq+blyk62cm8y68NAWdb6bNO4xaTCn2rVsrskqNxlqjD4cCQLY0KwgarubhywbL5m5yHxeEsgcosk7mrykdIA5cRWuEZJRUVFRNdTUcMwNCUmyyZgbZNlA0UzMnBBQ8gYvbC6g9hXPDhJqVRcu4OmuhV0o5Bo6JptZxIVlUV4SCIdcy/KSdCiI0AU9EzWkP0IyKioqqqYMHBs13STt40qXuZ5Tko6TZDonSd2kGdhf5iaL4GnuQz1f6THDUQ6OJQCrGi9ZlJcEsjCryVNORJVrhGRUVFRUTTW5KuLJHKXvJnnOTVIXaZdJ43Mabi1qVVfkJllSDL86xT0jlRA07FrcVMAo5yaJqwRgYevnJen6eCtCskITPJVZUPGa6ileUz3Fa6onc03MhFpZ5iazSlcWdJNmGq0+bxqtLNzqNhdIdN6yKjcJ5FvMmW303r6GmiFYJ//oVbgaZUBzx0qG1CGw7FhAusU5ofGS6vzu8423YnVrhdbm1lzdKF5TPcVrqqdevqYmB1Kpq10FkDBJptLiaAo1nyJnUMM6iIs0M4PY5QaHSEVuOIi0Va/Fjc+BcsjR5ui+6uQwC98HkQIoeN5axTvcFu8AmYs0oVQzvFNCOuMlAabzkuP7Eyo6yaioqKguRQt3jJvkjPRzTbi+MVvdmpDergaUjOvGAjr8yhvZsmlVV1npWgLBurnIbkOwdIykua9yk0XFO/Se9nE1eUggGy85EYpOMioqKqpLWTcpAMYkEq6n10oYkg5tfs6cxudDHTN+UjnJZsIhuLDDQaTI3GSS6PVGM5tXMuAmoeeDpKpykkA5GEc2hKS48w4QzkPa4znNTTKbi1TbsuKdZBzNZHSSUVFRUcMQh3aSpqermSGEFPFQN0lzk/WGg1S7ybLCHqC6eGc0Klz9StciFXXeKSveUesTW7wTnWRUVFTUMJR14VFOMhEElFyCM+E0Radw7NNOstXgGEoFkoRDNiRSs6zDl5wxSK/xOXWTgG5+Dt3KrWSWkLGWkBKc5Av99nRGPijVY7NzVBfvxJxkVFRUVM/Lr3BNGGwBD+flw0Gok/SHgzgusmHmofSHf+QnUAbghF3Lxkia/f7jAeRmICmTLJjHyh/4b1rSGfkVroC6DxfvyFxTgfF0k9FJRkVFRQ1TCWdIhMz6uwro4SDC5iQ72lm2Eun0c11tnKSucvXnmjSOso6bBBTcKLO6zUuWNU6vkunnqp63KuQqACRunpJAVQgJJGZGEOYU7wDaMQ/rKoen6CSjoqKihinXSapwK0M2HERVvcIZDuJ34LGPJ7ODuI7SbS5QVOkayk+a7d1WwDr7Aw0LihRyln64lW6jYx9TMrNIlp/U5yVuc7yHS0YnGRUVFTUCmQIeJnQRD5d6yiyhZwlRYyebQpJ8pBt2HdIu0swOIkQK2qpOCqHv824ScEFn8pNUVeMlyyZzHq7MWEkA5blJKXOwBNwKV7XuwnK8FCEZFRUVNQI1ONPDEsIFPE0ucwU8Jj/pF/DYuSXJ/JJSShROo8VVBxwadgVcUNJintBEy9Qp+uMuR6MKlioHykCYFQhXuNrjxrl4J0IyKioqagTipICHex14eKqA1yDzTrYaHKt15x3qJFsJR8qFdZC8wSBkNjSECwTdJOBCLARCIF/5CmSAHO0G6GXyQRlykXSZhlwzdzl+xTsRklFRUVEjlCngUWFXU+nqNhVYrbvy2ObouskABaaCoIRsqKpO06pObU+DbhKADbvSsCoHdNhWF+8U5Bb97j1+DpNxbvfnHxt+PyRxhSEFQ6+eiwSyAh3ajk5ifIt3IiSjoqKiRigGBUUGBUouQOad1E3QCzrwNIibTBhDagp2aHMBkblJ1ds1c5MCKA27AiT06s0R6TdLz70uD6yj6S7zjpLsCxBQYPzHSAIRkj0jht5r6hyvqZ7iNdXTmn5NfsiVmabnIgu7KseIzDnyLPxKC3jo7CB2KEig8blpJBAKuxqZlnaioHinaDaRokIeBWd1fSNVGSjpWEnqIsdbEZI9ol778gDiNdVVvKZ6WpOvKRsnmQ+50rBraMzkkJ+fJAU8CpACtMGA7cgTaD9nwq7Bayy5/jp9XMuO4R4wRwLQsIsky+M8DCRCMioqKmqUZEKuZmykH3INjZk080zaabQSDtGQeiiIzDUXkFyCN7jel4VLadjVF81VFhX25Jxkkth8ZOj4kIpylEB4vKTajsL8pWkoEFIs3ImKioqaRGIAmAEgU7OD0JCrCbv6IdeWdpN0vknu32zXHbfSFWhCdLL+rbICYqHxknWaCnDuFvIYp2iup46SLtylCBT+TNCcyxGSUVFRUaMhzvKNBTiTNuRqwq65kKsGY4M4S7+Ahw4HsblJyZwiHmD4hTV+dx7jIssaDHDGSte7UZkrHO9ZP3xFSEZFRUWNkhLOwIS0zc4TxtCg02mVtKkzbjIV0ingMQ0F3OYCyk1KUsQD5Pu3dqOi9nXcg7Cff1TbWW55NAp7ekERklFRUVGjJAZa4ZoPuYaqXP02dQaaKRkvaatdS9wk4E6b5atq2iy3RR3PQdNdVpW3XIN8NJR68VR/HZgYVxkhGRU1ihrp10UvVoBG1ZcJuTKm85PIXCOtcjWNBVoJxxAXjpuksKTDQZIGgxTFbhIg4x4RBqVRYfGOB0jaYEAdWz4nhnGZBpzJKAF0IhUhGRU1Ao32V0DR+SI8J48YY7Y1nQq/qjxlqLFA26ty9W+0eEeKYjepptqqbnReeM1JOQRdUCrA+yFWs+6HY+sW7PQqUCMko6K60ET9GZvnjbDsfRnnyKBCrQkHOgLgOjxpx0AGQq65NnW6gIcn3A4H4UIDUmaVrkKfGw1V7WqvBaEZQUSgk47rRItcpN9EgOnXYtdZPjdZ9z3rVUVIRkVVqPLvt2h69q6epN7UrvRaIjB7U3QoCAfADSz10JCEmcpXlhsv6Y+ZpP1craPksOMkjZvkQg0RCQ0DqesoiwDpu0h1H2ogQJ4z4CaLHGXS47Maj8vlXXDBBdhyyy3R39+PuXPn4u677y489sc//jHe9ra34TWveQ2mTp2K+fPn45ZbbnGOWbx4sYrTe7dVq1aN9UuJWsPFArecpHBvo6FhnLPWtUaNu/y8JLMVrYzc3PCrD0rT27XVUBM32/GRCVeA0pWujJv7LOSZn04rDL2iW1EfVwM+OtTDzlBS4CB9MIZCykXqlfDrmEPy6quvxkknnYTTTjsNDz30EPbaay8cdNBBWLZsWfD4u+66C29729tw44034sEHH8Q+++yDd7zjHXjooYec46ZOnYrly5c7t/7+/rF+OVa98d/nKl5TPYWuqRQy3QDMP3a4MB3m40YTlpPl/26iFfw8OUM9AIYsfOoPBWkmFBo8P2aSFPAYN0lb1FmAGmCVgLIMlkBZH1cTji1uIuCHYg1Uu2ki0Isa83Dreeedh6OPPhrHHHMMAOBrX/sabrnlFlx44YVYtGhR7vivfe1rzvq//du/4frrr8dPfvIT7LLLLnY7YwwzZswY02svUy+GuuI11RO9plIwDmdf6RMXPK4q1GoeVzMkC4xO4+5e/7/rFRVdE/3BokAZzktywYJgDBXwSDu/ZBZiZYIFw66iwAPV6eHqA5IC0A+rhoDpr09mUI6pkxwaGsKDDz6I/fff39m+//7745577ql1DiEEXnzxRWy00UbO9pdeegmzZ8/Ga1/7WhxyyCE5p0m1evVqDA4OOreotVuVodTQttEMrxadv85xNTV5v5Ymv0x4FaBh13Be0jjLVoMXQtKGXB23mF+mYdciR9ndjbvPRZ+f0W2wTpcO/6BwLOrBGnz/egiqYwrJZ599FmmaYvr06c726dOnY8WKFbXO8ZWvfAUvv/wyDjvsMLttu+22w+LFi3HDDTfgqquuQn9/P/bcc0888cQTwXMsWrQIAwMD9rbZZpsN/0VFTWoF4RiCVBW4ysKqVbcy1TluLEAdNSZSxTssN16S5iXN9qqQa9LgdgJmpsHECTxNjtJuGwYogZLOO/o51THlECvKS9LXV6TE20UPnQh2jkt1q9+RwXSQqNJVV12Fs846C9dffz022WQTu33evHmYN2+eXd9zzz2x66674hvf+Aa+/vWv585z6qmn4pRTTrHrg4ODEZRroYJwLFuv2j5c+ecrnt69eP8wQrBR4ydT4UqLd1Q3nnyLOjoUpCzkmgjdz9VMwCxVpavpuiOEGQYCoKOGhQAoDb0Gr53kIP1wKnWRRW6WBwAZgqJxyOYHAme9ORRkTCE5bdo0JEmSc43PPPNMzl36uvrqq3H00Ufjhz/8Ifbbb7/SYznneNOb3lToJPv6+tDX19fdxUetMRoWHEvAyIYBTVkGM3q+IiBGGE4qcUa77dACnnxekgsSdi0ApGlTx8jjVHMBb/iHNMNA1PbhgDIEyJCL9Ktas8dn+VbABeVkzE2O6V9eq9XC3LlzsWTJEmf7kiVLsGDBgsLHXXXVVTjqqKPw/e9/HwcffHDl80gp8fDDD2PmzJkjvuaoNUulgKwZYmVSOLdhXYd3jsLzFIVay7ZH9aSMe/RdpZ+XzFxldcjVgIvrqlazbqtcbQu7bKgIdXhZ+LX45lfQ2pxjwEUCCOYjAReKfsi1bn6yF6A65uHWU045BQsXLsRuu+2G+fPn45JLLsGyZctw/PHHA1Ch0KeffhqXX345AAXID33oQzj//PMxb94860LXWWcdDAwMAADOPvtszJs3D1tvvTUGBwfx9a9/HQ8//DC+9a1vjfXLiZpEcv68fBgW7UMNpyi6AFNJr0vzPEGXWeQeQ9uj05w0CuUlza1WyJUxCOPUdJOBpAHVks62pxMAN44vc5SMM9WUoOIafafoAJLss8cEwq6JB0t6T7cbBx18r7wLnahhk2MOycMPPxzPPfcczjnnHCxfvhxz5szBjTfeiNmzZwMAli9f7oyZvPjii9HpdPDxj38cH//4x+32I488EosXLwYAvPDCCzjuuOOwYsUKDAwMYJdddsFdd92F3XfffaxfTtQkURCQJXAsBGM3QKz7eH+29yJYFuUdIxQnjSwIoTrvGFEHCZiZQ8Jg7NOhVht2ldIO/TBQZCS8avKTFpgalAAcWBbJ9mANAJK6SFrV6stvFtAgoAy5Q67Pm1X8DuvtHhMxKSdqvueJ0+DgIAYGBrBixQpMnTp1oi8napRl/76K3GMZHKug2E14swpkBS4z6Cz9bXWOQW+OK1xblEpgKJVoC4mhNLu1hcQrQylWpQKvtFO80k6xuiOwuqPWX22neGUoxatDKV4d6mCoI+z6UEfg1aEU7VRAdATSVCDtCIhUIO1ISCGRpgJSSAihptlSoASkkPbjK0q+9u3QlRJAmhBv0sgqa3nCkTTUrZWobkHrtBK0Ghx9ZHmdVgNTWgnWaSVoco5+vb+vwdGf6Huz3kjQ4ECLMzQS1RS+wdX9Ky+9iM1mzcDKlSvH9Hs89m6NWmNU6R67heNI831VVazmOQPOMugq6bboJnteJhdp5BfvIHXzkuqY6sYCCWdIpddIQDAn7AroYh3tKKWQun+rgqNxlsHrJgU6NMRaVsjjh1p9x5iFXLm3vTcrWqkiJCs0Gp1LRlvxmvLPbRWCYjdwHK3xiWXDNvz9AVgGQRk63yiAMn6e6qnba7JhVm9oAy3eKcpL+rccNEWWmzSzgUAAjEsk4Eg1Eg0owf1G5zXCrTQHad1lvqFA0cTLfsg1BE27XpKbZBPcFiNCskK99ocKxGuiGrZ7FOFjSrd1oyoXGco3qoFu2UN8UFZBcZjQjJ+nehrONakKV+lUuBqZsGYuL5mrcpW13KQAwCWDQGD4hwZlYvKRnEEU5CXtxMkEfn7Rju8izTLneRfZKAIlyw8hcfOS5XgcLwcaIRk1aVUXkLXhWABG1mXaXoZ+EdctwhkpKKN6WrTzDpABkhNA1g25+m6SA5CCgXOo6bQE8qA0K9ldTtQ9OsAkYVbqIs31+6FW30XSIh7fVXYLvPGsdI2QjJqUKgVkyD0WwTEAxm6hWPV4B5ohWPrbqkDpnDxCc7KIk4Ct7TZj3JcFZD7kao5vcNVxp0WqXY2bNCFWE3Y1+UkflEAellQ0bOq7RxNmNcfZfrEk/BoCo5+PNOs5F1kTfOOdw4yQjJp0qgPIoHssgWMhGIcTdvWgZc5dC5Z1QBnBOOmkgKA+B0zDkhbv+F/8dUOuxk0CcIaEmPwkwCwo8+Mk8yFX2lKOhlKzpgQZPP3GAqGxkf567t4LuSasvLn5RGQnIySjJpW6AmQFHINgHI0ONgUFOoWwrAnKqMkpB5B62XwCTPGOOi7LSwIyGHI1btJ1aRxtCKd/qwCQgENyCSEUQKWQuXGSCVlmHiCza4cLyFzHnSzsWlRwZPa59+Q98qGq4clMRbBuFD8RipCMmpzqFpBlcBztwp1QKJVsz8GyJigL3WTRclRPyfx3Gx5QF2VDr15e0nWTwq6bkGurwTHUETbsSvu3Cqh/OAcEMlcJZCFYwIWjkQ9HIAMkDbOW5SJDuUnbVID+MPDys72mCMmoSSP7J0TB14V7dOBYs2inch9QXLnq7/MAxqQsBmXUGiUfkJQHBpB+XlLIMGxobnKoI2zYFTrUavKTIVAqFwkkqNd1x7hHdc3hMCsvgKLrgjl8J+mGWbNtvdRtB4iQjJokGhYgQ+6xomhnWA6ybLiHn3v01gtBWcdNRk1KZcDMineQmm3hkKsfYg06NQGbnywCpVo0cCwYl0ico7pet6EAT9yJmOkQFn/4B1WoaIdWttKQay9lGSIko3peIwFkLTiOBiwrQqxBWA4TlM7zRGD2tCgvipYBt3jHwjMYci0GJwCkktmGARSUZlykFDL7GHGUF+7QBgLcBSXtslM25KN4uxtepSFo+55ogE50FDZCMmpyqC4gy0Kr3YKSiFbLFs7aYQ+ucJLdgLLgWqKbnJxywqxcjWlMhOcqhcyFXKvGTJrQawscQxAOKAVTPVyNq2Qk1Jro2KaUMtc1JwdFr3erGfhfN9QaykeaxuZqO/T2UI50FN78YSpCMqqnxYBqQHbjHivHSFY7yKJjpO8agerimiJQ0musA8ToKieNyv6XTHu2NrKq2DpuEiBVo4Ipl0ier6rjjt/bhjYRAFAbkOY6qgp4ct2GSFMFuk41UY4yQjKqJ5X7exguIGvAMQi9OuHW3HhI9ZjCDjndgDIEvTgkZFIq9OXOlJ9zWrC5LpJBsaw6F+lD0rjKICjNCsph7fdsresgfRdJZbbRfCRQXNUa2hpymWOtCMmonpPzZ0DgCIwQkKHz0OfpVgUFOzlY0pCrv1xn6MZw90X1jOqEC/28pHKRKuQKgDhH103ChFoNHAFbyENBaVykgSVLGEIzJfpddwDUBmQe3G6oVW1zQ67Ze5SH5kQ3NwciJHtG6k+itzTh1yRdEFYCsoZ7ZIFtjrqdZJl7rhEoh6W/HIBcqZu0x0y+vOSEf54CGs9rYlCt6dQAeanvqYskw0Ekydmx8hAmAKRFblKDkoZXbchVX1Xtrjs1AFnZb9bLR9rlkryk/ykfb2xGSPaIeu3LA5iYa8pVsurlYQOyCo5FUCxzlqFproAMmAFYlraUKwFmTpM45Bo/48XKOu+oEGxH5yKFBNokLxlyk0C+mw0A23DA3KirdJ67wOZSOKprrA9IdV6e2869NnQUyFleUj8/uayJrHCNkIzqGZXlIQF0B8hQaLUMjt2EWwvCrLl5IQksg6AsdYqem4xh1TVW3A5mhJOXVEDJQq5lTtKEM2nINSehqllTWT5VVnZdLhyB6qKcsmtUjyewJeFV30FmBT7kemLhTlSUloEcdYEeIIP5xyL3WATHXAHPMKfE8qtZQ7CsAmWE4VonE0ZtiyzsKpi04cdEwla50pArdZOtBmw+EhqORaBMOFOOUu+ywAwoYXmHGgJlq5F3i4l1umTYB4Ei6GsinXaKGpuHJnQez7+QCMmonpATZvVdoAe2YQEy1K4OBWCsGWqljw2OcaSh0RAoo9Z4CQmEPmKk57ke8iGdvKRgcEKugsugmwRU2BXIh1ppEY8NuZJ1QLWnA+DsowqB0V8vAqR/rAm1+u7QD7mGinomUhGSUb0pk4cMNArIrYeKe3w4km21GpyXXJejUNNympMsA2WFm4wh18mtomgmZ0Cq9xkOWFAypsOvbsi1yE0CgWIdLZqTNDKApKCk56AK5Tu7KdRx9jGWC7Xm4Zg9t1m0LfzAnPXxVIRk1IQr5yJDwzP8HGTARVa5x2E3OA9edHEvVgAu3ALFNjlQdiN9vuhKe19miEUImHZeSVuwo8KrAJyQqyhwk30NjtUdgYQkNYuKcMy+EDCLjqXL9Ryk6yLpjbpIGmr14cg5mYGkB4Z/ABGSUROsYDUrvDxkqEjHPCYEyLpwDIGxCpZFXXUCsAyCsgiK0S2u1TKcM3lJoUOuwrrIvJsEYPOCQx0AENX5yMAyUC/cau7rALLIReZfN7P5SFr1Sg81lzRRyIyQjOodaejl8pAIVLH6gKxyj6EintB6nWu0F1XeLKAKlKVushtYRrBOGplcJIea+IN5xTucA1yae1nqJgE4hTG6r44TZk30fccDZDfhVrNMn9MHZKuRFAKUDvugodaQ6aWVtEC4QGe8u+5ESEZNvCrCrF0Bsg4cQ66120sOuEcHVkV5xbJxjgHYBfu5Rk0KVdVK09ykyUkWH5t3kwABmXWQZDyJpwZnFpbmsXXDrebxZfnJ4E27SPN6Q6FWeu+/P0ZxnGRUlJYfZs2FSv3K124A6T+Wqi4oQ910fCdZBEr/+WK161opP5QoCCizUKsbck1l1s9VcAkDQ8cBloCSApHC0g+30m3mWLotVOVa6CJZ5iL9gh2Tc6WhVpOPZOgdQAIRklETKAY4zjAUZoV3jFkvBWRdONbNSZbMFZmDZVlescxNBuBaWxGyk1oKCgycSxJqzYdcAVg3CR12zeUgA6AM5SN9F0l7q1KVV7i6RTp+mFUdb647c5FdvTcl7nK8FCE5TJFhTj2jyXRNpZ91P8zqgW04gAw2FgitF12Pc/F5mFUN6xjRNFgTpMn0eZpIVV2TKGgiziBLH5gwFLpJgExU7JPD5iTN+Mg8LEPruecPANLcVwGyyEWq1xUOtZrjGFOVrf6fy0TMAAJESA5bvfaHCkzCawq5yFBukhzrOMEyQPpwNNvpvb+9SpWFOhXjH81jPTfZqyHXSfd5miCFrklIfat4rIKBaRqQAVEwBqFdZMhNAkyFXQVDK1ETLRfLDb+WVbfSbf66gWO2XA5IU9FqXCSAXKi1ribCQRpFSEaNu+p83h0X6QOSAtU/1uxHwD2WFu+Uf/06TQKA/LAPP8cYAGStIpwu3GUvgjVqZHJDraptXELcpIIj080GVNi1CpQKiibMCqRC1KpupdspHM190VAQA0hnyErB2MiifCRndvIS20hgohQhGTUxKnGROUD6j6sAZF04dtOrNdeCLlSsUwRK87xVy1FrhTgYJJOQEpBMOVGpJ1g2vVSzUKtqRm7cZAZH0qCAgDLlMteOLj/8I7HABGDDsb4Skjf34QiEh4I0ObeANOFT20SAuEj1GsNVrXXE2Pi1GoiQjOp90TzkcAFJH2NOm6ZdXwpLknBXnSJQmufuxk1WaZJOlRXlDvvwRUOuQOYqgazSFRw27NpMoAZbAhaUQLgdXdnwj4Qnpdfs5yTzU2KFAWnCrHaOTKcvq9tAwM9HhqT2jX+1a4Rk1LiqsKK1yEX6gDTnqQJkXTiKmqDUXyTmsQaWhWFYA0qzzVyLPxdlN8CLjnPSKMRB6hSNGAOYVHlJ4yY5l0jTzE0CsJWuAAMIHItASUfhlw3/KCvcMceYx9H1ohwkBaQfZjUukhbs2NfmkY8x7RZZBseJUoRk1OSSD1K7LQ9Ge6x5qIGjB0ZZAUrGE/cxPHFgCZSEYOn1+ENJakCvyHVal+rfR/WMZEk430DATBHCs0WbgwSydnWCSSDhaKcCALP5SUCBkgugLWBBqWAlkfL87B8+NAE4LpNuN4+jyw4oSwBJw6zmdanXyryQq1qm+cheUoRk1LhpxC5Set139PlygPTcYwiOQTD6uRnt8uixDjA1LB1Xaa7BHxpC34eRhFyrnGeE5YSrwpw502RxqLxkKmFb1IlUgnNkbhLGaUntLLP8pPVY3Dy36swjpOsqfUD6Va1VhTt0mQ7nKAMkDbP6LtI81nycTajVqFeKdoAIyaheUh1AeseWAbISjgUFC4X7ObePt7D0QQmSm1QHutfsb6ujouOji+xZ+aAM5SLpNjMjiHJTCgy+m3SWuZ4xxAelsy6RgIELNZzETLIcai4QUhCQHhztcgCQjcSvas1cpA9L80zh8ZHDa0QwWhqXv64LLrgAW265Jfr7+zF37lzcfffdpcffeeedmDt3Lvr7+7HVVlvhoosuyh1zzTXXYPvtt0dfXx+23357XHvttWN1+VGjrSIXWfOxZYBkUgYBKUWqACcEuaX1b0D2OBDYmvOb8KvvdAH3OqtUBUSgeOhHhGXPyf9Ym+/5bH7EDAqcZW7SuCwLF1v4ki03edbiLQt7qvWmLqQxMGsman+TcyRMVcKa0GmrwYM3uz/hNixqGwRo92jOl3OQJA+ZtaJjHizdhuY01ErfF6qJaCgw5n9VV199NU466SScdtppeOihh7DXXnvhoIMOwrJly4LHP/nkk3j729+OvfbaCw899BA++9nP4hOf+ASuueYae8zSpUtx+OGHY+HChXjkkUewcOFCHHbYYbjvvvvG+uVEDVNOqLVIdcKsdL/3OCe8quGWgyPggE+SY4pu/mPMuYpAmXs9Xb9ZHGA8H5LlPOYiJ4HqNDYHsipNE1o0foqBzpZhnBoIaFxQNhOORsIsGJsagAZQFJbZ+EV9LM8AGLqZx3LG0Exc4BoIqu3uNgfexDmG8pPmvTCvn36iQ0U74/2JZ7IsuzwK2mOPPbDrrrviwgsvtNve8IY34N3vfjcWLVqUO/7Tn/40brjhBvz+97+3244//ng88sgjWLp0KQDg8MMPx+DgIG666SZ7zIEHHogNN9wQV111Ve6cq1evxurVq+364OAgNttsM6xYsQJTp04tvX6SPugZTcZryuUj0069XGTaKS/UKQIkqNsjcKTbqUKhV3+iZFoqb5ZN1xye2G0sSRTgNOwU8Li3rvfz8H7nGANCTo5TT+reB1TnczIZP08ToTrXJHSnOSFV4U4qVVs6sy0VajkVgICqaE2FhNDbJKTt1pMKlVtspxKpVMupBNqpsMtCmH1Q94Is67+JVG8D4FTX+u3yUvInkHgfKergDAjVcS4cAQXIpoV85hwTDVoLXKYAz/TzMWiHiuxHAmMqL0uhn+iip5dfHMSsmTOwcuXKyu/xkWhMoTw0NIQHH3wQ+++/v7N9//33xz333BN8zNKlS3PHH3DAAXjggQfQbrdLjyk656JFizAwMGBvm222We3X0Gt/qMDkuybnl6DvAsn2siEfucfTm9nlA9ILq7rOULi3kLz9OWdpjrHHB+Drvyb/h0FdURcJjBoguzluPLWmXFM+v5Y5JxpyVfsUKDjL3CQNSxoXSZdpYQydYcMNtxo4wcLLd4kGXObmbCdus2lgxcPusZnwQkDSkKv/XpjXT98Pug2YuGEgYwrJZ599FmmaYvr06c726dOnY8WKFcHHrFixInh8p9PBs88+W3pM0TlPPfVUrFy50t7+9Kc/DfclRQ1XodBjGSzKwqzeuWwO0g+vAsVw1PtGIx/ph15lmnYPwboKOElZcIvqDeXGANJllrVgM8tmux92TZjrwoKhVw0qGu40MDRhWAPMDKZl4VZybGKAy3P5yBCsfUDScZG2eYB9T9xQK33L6PvnA3U8NC7Vrf50J1LK3Laq4/3t3Zyzr68PfX19XV1z1BhKhIGZK8apkoYoBaQ9f0XIFQjkEAsU+lRJuo8nCpTwQrLDlR9q5V441hwz8meKGicxuNWsnOmCVVPdylTruRTGTUq730KCNAtoJqobjxASXEoIc257UmarWYVuZSekglMqJXjCnHBr1afWD7ea10BzjFWA5AS+jqNmWdGSOa/Zlz1/rbd5TDSmkJw2bRqSJMk5vGeeeSbnBI1mzJgRPL7RaGDjjTcuPabonFETp7JQa3AqLKCei/QA6TzWD7kCxXCs6rjjNw7Qwz5Mtxwp0gyU+jlN7oolCSRtOl2nyCZwjJOH1MdEQPaeqsZHAlmY1QCK68YAamSHmj5LjeTIQKm65OgT0K46iqDIPmK6zyuYzVVSWHIgB0wAuS5AvmhvVZp3NPtsfrIGIJ1xkeY9IS7Shp5JEVP23G54erw0puHWVquFuXPnYsmSJc72JUuWYMGCBcHHzJ8/P3f8rbfeit122w3NZrP0mKJzRk2wfBAWhl5rOEwfkPaw1AIyFHIFFBxp5WsulBrKUdJK2NzjSfiVPl+BgrlY5wAv52gKe7xtEZBrhox74mRsIA272vwkU6CkoAmHW00+0BsmQnKRXA8baQRCrm6+MruZ4xpJ9vjMEWZdc+oA0lw3Q7GLLHOU/vs3HhrzcOspp5yChQsXYrfddsP8+fNxySWXYNmyZTj++OMBqHzh008/jcsvvxyAqmT95je/iVNOOQXHHnssli5diksvvdSpWj3xxBPx5je/GV/60pfwrne9C9dffz1+/vOf45e//OVYv5yokcoHSbe5ytz50hwg7fP4QzMqGglIkWbh0iLgkeYBWecd0+5EPx/gukn6xyxFpaOkQz9yVbGlj4zqNXEo42fcozF+/npmCpkNn4YcpQQDF1K5TwkIwQLhVn0uvc04S0BaNyYkkCR5J1n0yQy5SRt2pfnGGoCk4yKLXCQj5wPo+FI46+OhMYfk4Ycfjueeew7nnHMOli9fjjlz5uDGG2/E7NmzAQDLly93xkxuueWWuPHGG3HyySfjW9/6FmbNmoWvf/3reM973mOPWbBgAX7wgx/g9NNPxxlnnIHXve51uPrqq7HHHnuM9cuJGoGCoVa6z69orRFmrQXIQCVqUb/W0HZmwqv0OMABZWk+0gdjCJShYR3cGxYSNanEGCvt30rlh12LQAmpu98UhF+ThNlcJaBhKfPbE5bBkYIzd10ejRxYBuBItxcB0rhIc/7CZe8aJqJoB8DYj5PsRQ0ODmJgYKDWOMmokYkBGn6drMuOIGMfRccFoT8uUgow0akEpHoaAkzfPfqVqXRflcz4R29sJHhiG5yDJwDn2XhJvcyaLTImspE5Q95Q25OGcoi8kW3nidqWZNuAWLHa6zKQkWRdyiwrLb0xk8F1PXaSPtau6zGUUo/FNOMoDeyE8MZH6nGUalk6hTq0RZ6ok0xFlocE4MBRrdNGAdWApOFkM+7RQNKEcRnc8ZH+vpdeHMSMGWM/TjL2bo0aM9k/KT8fWbRc5CJrqBCQRcM2gMocIgAFROIWAVPRqrZbR1l0XTo0q6YFrAi10n3cdZYRkJNTpmrVGj9WHnblsr6jdMKvUlpXaSpYjbM0Ydhse+YwARp2Db+GxHNuFIwAcnA0++oA0neRtGDHD7W611DjzR8lRUhGja0o5DSUgqFWuyzz8KwTZq0CZAEcy6bJcsKsBpY8IRWtBJTmfP6ycZ8akHZWECkAloer04ouhlknlRR4sny0WQey3KSZM7IbUCZQLpIxQErdCp3pLjok/MqZelwqXVj6+UlAuUe/urUOePxwq9pmXj8NudYDJM1FghxD31O73RxTfZmjqgjJqHGRMyGyUajqlSz7LrJbQBZ1x8mBMQRKDUN7/d5uC8MiUNoCoBQocZpBMbf9XHSRk08OKKFykxSU5pgyUILBTsZc5ioZAMaZ+px4sFRFO+r5fPdox2yC1Qq5hsKt6rwuHNV+F5C594cA0neR5px+8Y55DeOtCMmosVdRGzq6LAhEAyBlOndTqRAg6+Qj6dhJWrkKOMAMgjE0x6OtfNXjLBuNLNxao8I1usjeFv2upp9L6h7LQGkdXYGjhD5PWfjV1IZK+CFYZLDUYVgDy6qQK5APu/rhVvVYP+QKu273hYp0wHKgo8NgaMGO/z6P9/hIowjJqDFR8OMccJO5UCvdHujLWuoi6wDS3Jd12ynaN4xQqxlWoiZaRh6QQrjdpL2xkdFF9p78zzb9Pwcyt5MLvZrhDhp0RaFX9dhw+BWMgckMjMZVJswNwYZgmSTIuctQQ4Eqt+aGXN1tdIhHESB9F+nLuEgn7Fp+SWOqCMkekflj6iWN+Joo6Gg+ku6vsey4yC4BWQZHWaNwh5kp4unLQhehVpPLTJIcIC04syervJ66WiM/T2Og0bymECxDOUpbzGMAEnKQXvg1gYKegOsqoaGjKmBdWNIwbAI1uTIFJkDykQScZaJBE3fspOseATe/WATIMhdpzuuk6UHPOT6KkOwR9dqXBzCKXx5V4dZQqJUs53qzVqkCkBaONc5H3wMG2FCsH2pVjtFtKpC1ryMhV6j3Q3ZT6ToMrcmfp9FUt9dU54uZwpK6StB1AznAaTZgjqGukkEPE0HmKhOminhUSFYBN/FhiSxnKYm7NMBUz8VIyDV7DdRZJgVhTgpG+rp992iXawCSusg8MN318fo8RUhGjZ+KincQCLXa5S5dZAiQJXCsrm4luUUhnD9c6iBBKmH9UKsTcq3VcSd215k0KhqixLjzWQnB0g+/JozZsZNFrhIMYFIf54dgS2BpzuUDE1DQBGDBqa6v/OdAQogVgqPanoVTQ5WsdTTcx42mIiSjxlYl4xwLK17NvcygFqpI7RqQtOmAPU/x9eVcJAwAsxBsUU4SvosdTpVrVO+qavwu3U+ASWFZ5irVMSTc6gE0FIKlsKRhWMA0NM8DE8iqbRv6gqp+nPm4CsHRWfdAV9dFVoF6vBQhGTU+8oHo5SqD+4DcjB1O43Kq0LCONM25x9zUWaHHhi5f3zNv2ezzISpT10Xa18JY9gNACrhJyahJoaL8eQ0xHUXIwZJloVOQcKuQOrSK4hBsCJb+uZIiYKpNTku6bj6RNAQagiNQD5B1nofmI8dTEZJR4yYbUi3JUVJ3aUKtOTAWFusQR+kBsmxeSQA5p+qEWulxKIEj4IRdqYuUgpf3drX30W32qpzv5xGAEqgPS0YcpCrKcUOwFKAUljRnmSBzlyFgAtkwj5oDrfT74RIrBEe17odd3WIc9dgCV4mJDbUCEZJR46GikKafjwyFXx3Q+LAMhFmLAFnkKAuu0/+qyOUiuVfAY7YLns0CQt2kUMczmUDqRgkyQnHSyP7/+8VlZn8JKMuwUweWRflKk5tU1+c5S52ztEBkxcAEspCreaVVvQVCYx3tPrvNdY9qH3PCs36YtRcVIRk16nK+UHwFHGPRsVkHnQIX6Zx2GIAsq3mn+/TkyvS1+eHXnIs0TpQMA5FC5zJNyBW6MEkIgHfvRqLGWQFAOnAs+Dw5E8DQc5HGEmWwdItyiot7gAyWDkQZdZfIAxOw0DSiDQT8KTBCxo47+4vCrmFAOudG3kVOZKgViJCMGisVwbD240io1dyXuMicAoCsCrlWSsMy5yrNPXGW5jjjJi1ARQr7Z2e/dBNnnUkRK1t7SAxw88ggn+tQTt0XreGByIYN0WMMLAGA8RHD0t9u3GURMIEsppGbGKoGnGhINARHZ90DZDe5yYlQhGTU+Mv/gikCql8hCuRdZCjMWgVI/3wV8v94pbfNrqfZl58Nu4rMRZqcpBkKYmEYwdizKgSkCPz4K4JkrsuSObcGptP03jScQ9ewpDnL3HZ90lJg2hfNKsOtVEWhVzoIxm0skAdkdq7eyUUaRUhGjb3quEnvmKJQa3Z4KOQqXCDqxwRDrmYIR1o/zOmDkW6TACCS7BiR2HvrJkMhV+Mk/R61dfq7Ro2PQoAM5iVLyCLTbIYX+n9rgKlX/f/7YcMScIaOqMdKMuxEyQemUQ6cJcoV4XhwBKoBGQq9msdNZKgViJCMGkvVgGLZF0twPKMXXqUu0lGRowzAsU57OqqgizTn1+uSp1nYlbpJWsCjnjyfl9TLLDYUmDD5eXUnvOpAk/wPVaQUmKr40sdqaBogpibcqtylA0upPgvDhWUoFGv3kf0WmN6bUBXj4F6sxSniIRBU6yx3TA6c6B0XCURIDlsmD9VL6sVryqmsRZ2Xj8x2u+4PQACWHhRrANLAUVS4yZCfC+YlBc/nJwUvdpM8yVe5eqG9iVQvfp7G45ocQEoBJjpueFX/sLHr9L5K1CUaaPrAFIFQrH5sHVjSoSPqGC8/6e0DiFNj+crWHDz99yvAM+5BUG0L5yaLztMrecoIyWGq1748gN68JqOgYyz7Ygl1rAGyHCQ9riqv6AEyBMeysKvZUwZLBcQkl5+EMENA8m7SASIdFtIjOcqJfv6Qxu2a6P9NyD1WVWfTdT9sHgilM5h8tsi7S46uYBlqSqCOCeQnA8B0XGZ2gYV5ylAolDn783CkxzhzRyLvIid6aEiEZNS4KzSmLFgFa11goBo1AMuyabSoezRw7DbkWgRLC8rOEFij5eQnJU8L3STrdICmDqeJFDLtALyRhV9lDLmOt3IuMu247pF+TuuOlyTbKOicuUVNdavvLoFRgyUNxQLI5yeZ6xiF98M2CE+g0O3RHGMZIO3xzmMLTjoBipCMmliVjY8s2kbhSMdF6n25Buj2qfKApI+tW8QjACAV4GQeSJqXBBQw0Wgp+HWyYyQAcNdNMtGx1Y1MdCC5nqBZdICkVeuaokau7P+wUwxID44OFGuEXBl1kX5VaxCYMgvFSl4JS1u048HSjImkeUugOD8J5KFJRQFa1GM1lJvUT+E8zslPUrCGn3rcFSEZ1Tuiv7gLOuO44yZLuvHQx+gQKwWkgaOsGXI1+xkBowplZWIAZAdg5q9KpJBtgDXhhl07bahZRTw3aWYJER31pafDr9FNjr1KAUlD44ALR1rQY1QESxti1fs5z6BZBExkuUsbijWwNEU+njtlHiyzalcW6LhTkp/MrjSnsmId57gAHNV2LwSLDJC8AK4TpQjJqPFTKJTqbw8p1wSgIExaEGYtA6QPxjpuksKyDJQWmCnPhV3RaWddeqibTBlgnKQOv8ahIGOrIkCygrxxDow1KrXVcfoHnhdGhYZdITC9Clcnb0mKfLqBJQBn5hHABV9pflK/aX6OsghoITgCLiD9c/QAG60iJKN6Su78kYEQqxdqBYCQiywDpPRDrgSMIuBGqxCVamgm+s/JAaXgQMetymQAkCR6X1vlKYmbhAEmT7Lwa9SYiALSVrGKThZeNeD04eiDsU7YlTpDs25yjwXAzI2ZJbBUjy2AJQFsESyL+rkCYWBSSdSDolEIjup5zLb8o3rBRQIRklG9qND4yKJjcg0GhPt4sy8ASLMsKvKSdIsPTOoqU3TABVehI0CHUwHZgCrkEakNu6I9ZJ2k7AyBJwnAMjfJGAdEQxfzdMB4I4Zcx0L+MA8DSEHzkRqKppiKgrGbnKTZ7zs+v1iHAJPxzEmaybidx6IElvR5PVgCJG+JvLukwAzlJkPg9BXKVYbcY67Xa+WZx1cRklETproDsWXq5iezezfUSo+nLrIOIOvmJrNf2vkcZba/k4GyoYeGdIay1w39RcUT6yRlewhgLAup0dykdpYxNzm6YhSQgRArM6CkcAxUt9Yu3qGAA4I5yEJgcm5b5HUNy0AYFnCbqfvuEiDARBaSNfJzkqXvc+6xdF8YkL3iIoEIyaheVaGD1NvTgNsscJFUBpA+HMuGg0ihf9EjA6MJsYZCsTlQAmCNlro2mp/stG21K7gu4jEhso6GJeNAh6ntsdJ11MTMjxCd+7VwpOFVA05a2Qpk+/Wyc18megyrLtpxCna6gGUuZxmohi2CpbNOQMg95+hDs45yQ6cChTq9qAjJqLGT+YMvWvclfThVh11DVbBFLjIEyNBQELWv3gwhQl8bTzlYwjU4Gy4oeYGTBBR8TbUr4IVdk+zLLDV5yvgnO1JZQFL3SMOrJvRKcsQA8rlJ776ycAfI92+1QCwAJtA1LJ0CH6B0nGUdWAIuMKWUlXn6MoVmDAF600UCEZKVol9ovaK1/pqKuvEgDzcfkNlxeUDSx/qt6oq+FIyzFOQYgU4elE3lJOmYSZWPbOsnMM0HkizsmnIbLmOmg08Do17Is7Z8ngxULCBp/tG4SuMsvXGRjCz7ULTpAPNEoWgGdyfXZkmShVSrgBmqblW/ziwscwU+MHCVGZhJStR5bytgSbep07gUy02tFVBVYU6PcdFRhGSFeu3LA5gk1+S5Rql7S3atUIVrxbHUReYOESIHSPMl54ORuktnj9dIgB5DQckEh/oT62RVfKbiVSRAZ8jNT+p7xhM37Aqdv2IMkI1RB8ik+DyNUEFAkhCr4x5pXjI3BCQDo+qsFB7Pm5Peb6ZLkyK1/+elwNTXLYvgpz90TjWsea3GiYZCsH5xD32vArA0EPOrWoUMA7BMuam1Svb1giIko0Zdtn+pUUGYddjgBAGYdx8a90jDrFWAzIddw2FeATiwlEKApRwy4WAiGw4i0AHQAOMCgAq5+pCzrhKw+cl8tasO1+o8Zax2ra9CQBo4+u6RukoCRwrG3ATeenupeJJ9vjgHhGpTWAhMc90+LAn8IFNV5MW4giU9jr4HNGRrr5dEaUPvmwdLwHWXoWEgZfNQVvV47VVFSEaNqSTTnUFGIn+Yh/8cgVlCaNOA4HVpQPpwLGouEKpkBfKwNErRAU85eKuhQQkNzjAobY4pSQCeKIPQR64DUF+WZmLnZn8EZYXsF7ABX2coyz+Soh3qHhnJTTpwDIGxyEXSzx0nnwvqJjUYM2iGgRmCpRNapcU6Xr6yyFU6EC4KwdL3UT+WQpG6S7MP6M4J+of2oosEIiSjxlJlhTqcqz/qEagoxOXP7uG7SOog1Xny+crQsvPcGpp+TlKmKZhIspzkUMcBpRlHCXigtOFWnu2j+UnGgc6Q49IjKIuVaxKQdlxAmm1kTCQFZA6OpHK6CJZB+fs8MAIZNCUXrsM0r8WDZZabJK+XOkUTgtXH+65SvT8FVbDoDpZAHpil5yjY3quABCIkoyZA0hQndPOYQKcdR4Gxk1Ut5kSNDjz0nHQoSO76UgEpOBhXEBSADb8CIC7Uy1GiPP/GAKCV/9UeQRlWzj2GwqvekA9T7VoGR39uUsCNXNQJtQKwn12WeG7SRBKcbSWwBApDsKWu0nmvDPTM69LbKSz9oSlwYQmEC326YV4vAxKIkIwab5W5Sz2IuisVfDk5RTcBFxkCZNFwEKegx89Dcu6EYi0sU4Gk1VQPQQcJGhBDHX2MzvWYl42aoCRhwAjKAoXGP/ru0Q+t6ipXC8dOO593pDPKBPKRZYU7yim6IVgbVk1TC0zfSarzurBkSeI6QJaHYJGrDFXAAgSsRgK2NV5ZQR4j5wm5yzrqdUAC1W0pR6Tnn38eCxcuxMDAAAYGBrBw4UK88MILhce32218+tOfxo477oh1110Xs2bNwoc+9CH85S9/cY57y1veAsaYczviiCPG8qVEjUSmtVYg7GNVti+kgtZz9N5fLlIIkCIV9ia9G92XtjsWtmKo48A4HWpDtNsQ7Q5SfRNDHbWu72V7SH0pd9qQnSHI1asgO23IoVVq39AqyKFVwNBqsLQNlg6p+/YqsM4qu4x0aFIUQYyVmK5EZemQyj22V4N1VgOdVdm2ThssbWuHOaTv20Cn47zXskP+T1br/4f2kBrP2mmr/x/z/6VvEKndb296php6XAZhYY+R7SEFYHMOPVeqPS9ZV9cRHqLC9I8BpxJXiqxqNzSUxT/W3IS6FT4GcH7sMuSrVOvcJoPG1Em+//3vx5///GfcfPPNAIDjjjsOCxcuxE9+8pPg8a+88gp+/etf44wzzsAb3/hGPP/88zjppJPwzne+Ew888IBz7LHHHotzzjnHrq+zzjpj90KihicyxqvyuC7Dr45KpsiiyyEX6QOyzoTMftjVL94xzpIlHFJwJMjCrwDAU/LYVCBJBXgrdcHvuRU1zVaaK+axlZvGXepZQ9YmV+k0BwiEVm1hDqlmZWaWGN85UtdIAAUg+H9SKm+/dZTUSRrXaJ6HuksTajXHGDcJ1HeVKBlXqS4qc4bg2TAUs8+Egv0mB14INgv3Kq1Jn78xg+Tvf/973Hzzzbj33nuxxx57AAC+/e1vY/78+Xj88cex7bbb5h4zMDCAJUuWONu+8Y1vYPfdd8eyZcuw+eab2+1TpkzBjBkzxuryo0ao3DCQkBhXsaGRANJTEHKBHGMVIKtym06IVUPTtqoLVLoyClECU97K/gQ59JeLM6xAL5uhKgBYIwVrml/1mQNgUkImTchGa60Ivzq9V2nlqtlGwq0WpCVwlO2hMBgpFKty4yEl3thIAkYKTJWTFNn4RQ+WFECMnM/C0rwvKAAlkA+/+u+pn6e0jykAJeBCk1yDudbJrjGD5NKlSzEwMGABCQDz5s3DwMAA7rnnniAkQ1q5ciUYY9hggw2c7VdeeSWuuOIKTJ8+HQcddBDOPPNMrL/++sFzrF69GqtXr7brg4OD3b+gqJGJcUhGpvlhprxldFTURs6d4SMb8uE81ms+UHdCZj8XaWcDMbAUasiGcZXqz60NJnSJv8iHmC0ogWJn2VI9T5wwmNATNJv1pAHwxho5zZaCSUXVKs07mhBkp+PC0dz7rjEESttkn8KjBiRJPpJxnp1Hw89xkjwMSwc4pvKVu66wFiiNS/RBGWgfqaasIzAsAqV6U4Ku0v5fYXLDcsz+glasWIFNNtkkt32TTTbBihUrap1j1apV+MxnPoP3v//9mDp1qt3+gQ98AFtuuSVmzJiBRx99FKeeeioeeeSRnAs1WrRoEc4+++zhvZCokckMfh8hEO0YshoKQi7QJMCfb9IcV6fpOd1OQ69lsFTHq6IeIAu/UlebCAHedIccICUOhtyzVn+uoMcUokC0AN4Bmv1rDChrwVEP6fDhiCo4dobyjjFNs//30JjIknG4AGwRDuB9fjUUGU/1vKIuHB1YmufUjrHQVaIeKNVjRgBKc2iZkwwWB2XXO9nU9V/PWWedVQmc+++/HwCC7YqklLXaGLXbbRxxxBEQQuCCCy5w9h177LF2ec6cOdh6662x22674de//jV23XXX3LlOPfVUnHLKKXZ9cHAQm222WeU1RI2TDEi12wRPsoo+Lpxf48ORD7siVxgcDkIKeYpkvg78alcDS/19BDHUcbb74dfQOdV5UzADzVa/ei/6+kmech0CyBRImspV8oZyU42WAqWG5WT5onK+JbqBo/mhUAbHTjvvGgNgrBoTGfrhZipTQaAY7LSjz2tnmBEeHPU5bKUr8nCky3VA6YAsBEqzT6/nQGlyj6HxlxWgNNdjX9skUdeQPOGEEyorSbfYYgv85je/wV//+tfcvr/97W+YPn166ePb7TYOO+wwPPnkk7jtttscFxnSrrvuimaziSeeeCIIyb6+PvT19QUeGTXmMqFVzgGpc5C2tRrXIcLReaqyDjtAGHR0phB7HrLuNiYIX2iapmCJ/vMPFfAIDqnDrr6rFGSoiBCqiEcKAe4X9FBnqb/UmQamEAKs0QRrCQVCU5jSaGqY6FxYowWZtHKl+70m2ggAUoSbkQ/HObaHHCCa7U4oNTAmstI9mvdXy/kcem7SjoPUjwvC0u4Lh1xHCkobejWvx89RhkKnNKRaJ/TqL3uaTLDsGpLTpk3DtGnTKo+bP38+Vq5cif/6r//C7rvvDgC47777sHLlSixYsKDwcQaQTzzxBG6//XZsvPHGlc/1u9/9Du12GzNnzqz/QnpMVWPlJkIjvaZaxTvDlfnCKXrugsYAdH9RCNYoK+SRer3k3UgluAal0IO5y2AJwHGVMk3Bm03nOkLhVylSAs7sJhtNMJGCNVqqqIc3FDQSDcpEz2fJh1SuUucs/YHhY6myz1Opa7RFN6TPalFBjg6b2ntajNNxIWldo1fZCiAHSqPCKdQC223DAMBpGuBUq/rjIM25knBYtc5ybVDChZgzLpKAzslnmu1FVa/6MXVAGbqubjReI0jGLFnxhje8AQceeCCOPfZYXHzxxQDUEJBDDjnEKdrZbrvtsGjRIhx66KHodDr4x3/8R/z617/GT3/6U6RpavOXG220EVqtFv74xz/iyiuvxNvf/nZMmzYNjz32GD75yU9il112wZ577jlWL2fM1WuABMbpmljmLmuPlUy6D7/6fV3z+92QLAUkhWPZuMs0VeAzwFQOMwxLANZVylRA6ipXKQRks2GPD7lKIQRYpw309esv/7Z1lWi0FSybKifJRAdStNRQCA1G8AZY2lBt75LGuLlL90vaE52Jw5+hg4LRAybTDlEIEkLttG2+0bpFA8k6YDTrxmHWyE1T+RN0A3CaBuSGdpj3xjhSL+Q65qA0+QD69+cP7ZAy10fWgNJ5TOhvuAKUw9V4fWeOaUb/yiuvxCc+8Qnsv//+AIB3vvOd+OY3v+kc8/jjj2PlypUAgD//+c+44YYbAAA777yzc9ztt9+Ot7zlLWi1WvjFL36B888/Hy+99BI222wzHHzwwTjzzDORJO6cbVE9Ii/nWFrhyrj+MjH5SPXlIvXExIyTqsPc0/DKfrC+U6SO0i/koYA0jyt1kwCQphqQGTBlIh1YAoBAxwnBmufgzYZyRHp4SJWrZI02WF8/zEB02WiqQfONJlirX89j2VFDQtKGutdwBG8AaUO5S9MPNFHHmP8L+76Vv+pSOUCkA9BTXSxjh3LkwUi3h0KqoiykSvOOGo62QMfPN5pcJcrC7TUAmWSfQZ5wex4nV61O7BbheOvDhSNdtqAssVw251gjP2nX/aKcqvxkiXrRHPgaU0hutNFGuOKKK0qPoRN2brHFFpUTeG622Wa48847R+X6osZeEnBcyrBFcjujoSpH4APSLtdwEqkwwHaBaWFJh4boEKxIBZJmw7pKoaEom416ucpGE7Kp4OjDEo2mCsM2Miep4KhgyRhXhT1MzV8pzXyWQB6cw5EZ6K/eQHtP523MICjyYLTglKo7zQhcI61iNWAMQTHUorAKksyDYmqqmDU4cxEFcw1kOAeA0QOlyZN6nXGChTy+QsM5RuImJ7HWjNrwqN5XVfGOX+Hajbhyn4X5R5H/wnP2e8NBqgDpF/CY/SYnqY5RxTwUmDJhFbAUSLR75K0GpBBIdJhOajiKoQ5EqwHe7iBptsFbGoiNlgrBhmDZbEHyVRqUTfBmC5InylV2uM1NSsYyaBK3zzraZXY5uS6AfLsz9UZmw1YMFOlsHKY61TRI0GCkTrAw19geCoZT/W46+aiBG1Gg9/5y8HXqGWGCyyLcbMKBJfKQs+FXIcCaw4CjSIcVdmWA6wyH6yYrNBlcJBAhGdWr8oeBePuYHksmeZZDqqu6OSYfkEUFPGZ7qu+zSleVm3SAmUoHlkCKpJVYWEqhQ67ecJJEf7Gr5SwEy8pgmSgwqu1NoNlWcDTukicKmIxloNRAtNMxMWZ/4Dh5y4ovREaAqN60DJKhvqOOWyTOkM7GMVwwqt6o2Q+lYJjdA6PwPhdlkGQJd3Lkpu0gnUotOH6WhN+zMZHCfu6dcKypiEY9ONL9EgAaw/iqr+sm13BFSEaNj8ryknWKd0w+kqe1oOj8muc8WJXof/FRF5kfW+kCkrrJ3NCSNBsDmaZSQZMAUwoGlkqkUO5T6H0GljIVEAm3sOQ6DKuA6C6bvGUOljzRYda2ev1N5SLVmEmu3aUGJk8UBBstcDMdE8tgaYFI7mt5Sg+UzHOT1ikaKIpA3jAUSi0DIxkL6UYHMkj6UBQlDtI8pkjmh4xdTzLHCCHAA7PE+ONns+26uAchV1lSzGPCnR4cAdihKTb3aK7TnNeuV7hJ9UaMGhQni4sEIiSjxkE2L2lCrlXRVL94B+2uns//4qp1jYEvQpHKHCCzZRqKy//Jp3beQAZoPmdzSzLwRObcZSEsdT7LOssCWIp2x4ZhWcLdMGtHu8imgqKBo71Pkhw01XuZqJv58qYh16p8FrRrBECnmaIFM7l5G/0WcYHiG3sOuy8cRqUNIoqgGM49Zj+oSptIJO6PL5YkuQiAdY1wAZl9TkpcpVnW+fhiOAr3eHVx+nWlI3OTRj4gA8NB1lRFSEaNv4hzDOYl/eNNzlHnaBgXqvclHWPG1S9xLrKCibqqA9QQIGWNYh4psi8z23QgVcA0YVmeSOsuKSxZwiwMqbP0Yang2FDLOmfJOEfS6oBxrtylBqAc0vcamFJDUHKu31sNSAJOCkx9wfXfWzq8AsgPsaBA9JcLhmt0A8YQFLMwa+r8f4b+L4s+GyzhSMmxprLagJMCU/3fZ7Ck5w65SsCDnRD5Yh7ShcqBY+LCkcIr6CbrOMNRDqtOJhcJREhGjadKh4L4xwmblxzRU+bCrtVANLlI4yKFF1oNwbG80YB6DTxhFpq0S48Bpg9Lde1tvS9zloxzJIGcpWhrKLYb4JxDtBvqi7ndAdeQpY5RDukwq3GQBopAHpyAWlcvpOa7jyw0bounMkcZaiI+GlBUTyeCULQ/cLwQq78cWgfghE39dQNOCkzzXAaWQr8XnDSVsG8VPFDqfq+VzpJ2+0k9OBLAIjREzql8LZioOVekI7sr4prkecsIyahxUWX3nZK8JO3havOSPEFVGNYvqKijItgpWOYBGcpRFinLT6ZBYJbCMlHPb8Ou+ovXusmhDrh2kLzdBm82wdqqV2zSbNjuPrzZsOfgraYufuK2UMRAM4MlV64dyPJbw3CS+s0yb0T2A6NiUH8RFNV77rpFP3zqQ9HPOVYVcFGHSYFnRH90hYp0BODA0jk3XCDS7UlRjpET6KqLyt5DeMA0cPQBWjFucqw12VwkECEZNZ6q08eVHGvzkgUwZNrp0KYDzJTVC7+gIqnRaKDenzAFZFkBj9nHyNAQU9STVcLq4SOCQWqIqoIerhsQqLAr41wvcyQtAknypczbHfBmQ7lN7SqTVtNprE6ByVYN2XyYORcNsdq+ojbM6oVdjeh6oKiqqEl41WD+0YSin3vstkmAH8IPNQ2gzt6c18DSFuh4rtJ1jgEQmwUv7FroJs02Wunq5wsDVavjockISCBCcthaE3utjoVCg5edkGvuAdl+W/FihoP4ecm610AGeYfWi5RVurouEijPUdrHC+ncM65erV/UY6DJEgkumD1Xobu0xR4KoA4ch1z3KLSbDAGTWzByewwtIjHr6lozN2lfZVWxBn2PCTyNO1TvTQatIiCqUxWHT4uGcoxGg4CQ6NhHIJxvzL0VKHGOnkulx7KCHGOhm6Qu1A+5+j9uRivXSD8HgUpouwu99/1URxGSw1Qv/mf3+jUFQ65FQ0GgKynpeEnfURYU76CdfcHz1C3koTnKYb0eISqKeMqHhgA0dCfBOHOgmVXASusuzb5Sd0lCsRaOBHpcF/gYGHLtGhkBJTdOkYBT/Rdl241CIcQihVxbEdiKKk9pkU2ZSywCYt0Qa5n8nqx+tapTyUogat8HfZ8B0M1v+scmeuhS0E06TpE6eeGEXHMu38tLDqsJwDCaSvTid1NdRUhGja8qQq7WcZhxekkCqTua2ebPFXlJnoQrXLlfkVjiKOt8gVJAGjjWnVpLPT9zwCmFdKCogCkUIEk4NgNpBkyZJq67pMAkDtMNrXIHmuqciQNFO/dlAJSh9ey1598/f6B+LkdYUGBTB4hFMHSLq6r/b4qk/q+Kw6sUmGXO0p+gG6gOuzpuMhBGzVwm2Rd6TJFGwVE6oPVc5GQGJBAhGTXOMmMmg1WuUL9SmRdyZV7ekRaDFOUlAeKI7Gwb3uNo0YUQMIP+C6/dc5FAGJC1ptYC7HOZGUPUtehhIYIXA1O7SBqOpcdShxmCph9a9aHoO0gKUOf9q6n8sAp36EUh4ApCpqHjy+b/rDuLS5FMo3og+78y0KTA9FUWYvW3F4VdHTdJf0Tqabbo/0nOVQYk03Rk4yWNakJ1sgMSiJCM6iV1E3L1x0t6jrLIJdJiF7Neb1iI36/Vz1FmgBQeRKvktLNzptnKgCnaAowzr7DHBSbs9nBI1myzx/E8FK1z9OBp37+aTjJ7/T4gi0OvdUOl/kwt6rF5EObaBw4zvGqqkfWihSZPmJo7FH7nnOw9qQPKUNiVukl7Pj98ai4oAEaZhl3nqMpEhOh6aHmSK0IyavxVt8qVhFxtlWtRyNUOXciaCtipqFKuHJdwK1yLwrLqqcOt7HxJIYOADHXmMcfnn8v0etXHWOdmxlESiLZNpxc/V6mAKdqphaYBpnqteWjS7eb98MHou0q6jcrPURZ1qgnlBOuB028LmAehW5DjFll1K9NCEFDvsblEOruLgAvLIiwUgRIeHH036VbJuuHTfOiV7u8SUGVAK2sVqRUMta5BipCMGneVhlzJLTcrSKDKFWjnQq5FMrk3KbJm4oAOM6Zch89YaJL56tdUAkgKxpCz9IeKpDqkxtKs2QDdT6Hpu0zAdZnmdRtoAmnmQMl+eyyBJ31Op23aCFxJnRxhHRCGj8+7/eHIHaKTuXt9Vv2vC0sVDHddpXMt3naWqOnRQm7ScZZ2OZBbHCuHCNi/P7oO2vA+cHxweQ1QhGTUxKjMTdL95g/OnxXEAjJxWtQBgD9eMjRuUj2FC0v15Uh7cZbnKEOigLRDQMqaoVMROFO3aCHbVq6ThltTCAdoPCmGplrOh2cpOO3rhgtDOg1YVYi1SvT/oRsnWPQ+5ofeDA+OgHrNxUN0KDAzWHLtI827Uugqyftm34MCONp2danImgsYjQCOatqsTMHK1jrn9kOtZhs535qQjwQiJKMmSKVu0oRcyX6n4bmBIU9syJXxbBB1VcjVANRtNuA6S99OMt0hx3kNIj9+EggDkn6pi0DI1ZcgxUk8zQBFh4/40FTXKYIu0IR0M0eJHDjpNjjnpNvy5f8ssI0q5J6LphtT++oBsOwc3Sqb3izLP/odkQwGXVcoXFCWvBch5yhSgcSEUlORVaymWTGQDb0OF45FxTweIAtdYomkB0a7vauz9LYiJKMmTgVuMlfA4/VyZTxRfUa9xgJ+FSzaneKnNmMDNUiz9mKkeEaYasYaUPOqXoE8IA0cQ6dLpbsxIWPRzPMnLIOnAacDTagQrQvNsNsE4IATqIaiH2atgmNIwXCz5/zKCp+KuhqNRP5QHOsaAXAyupHCMtsK5ECJajfpOscsjyiECOYlR0UUloF+yTnl0h/M/ZsNHbsGKkIyasJU5Cb9mUFqFfD4jQV0rtIPubKU58ZLAvXykqZoo0z+l3gRIH0o+t/1dL81OeQYnZZEYhxnG+A8g51oC1voE3Kb6riyvCMNr+bdpa8yYJaBLBR+LupcVPW4buU3dQDcmVooMCkWaXA1c5VhUPqhUho+DbpFuADtViZvyZLyoSDeg3LrdRoMSApRur3+M08KRUhWqBdbKa1R11TDTToFPLYRtzdmUodcwTOI1gm5srQ4L2kqXKnTqCPaFABwAUnhR1ngQ5PKgaN2mOZ4yiYDTqSp2l4CTvX6fAdJK3/DkKTHj4aKq2CrQ7TDVTacI597dJ7PFuK4iLSgdHKMMmik/IboZhsjbhGj6RY9WWgWuUh/ORTO9V1k+IkAwJnSa01RhGSFevE/e427pi7dpJm1whbw5OaYzCAaKuAxbtJUuVKQmqYCJi+ZhV8VPGn4lfFyeFIAUECG3GTd73/fYboADSwLqcBKwAnk4Qm4MKRO0ocHheloqFunOVyZ1+FUrgL5sakeMI03ZIme65OC0qwlTI3fJG4y8X5cVLnFrh2kP79njdlZaEs56hZzreYKXKJ6Hu66yOgko6LGTibk6rrJ/M2BqJ979At4aoyZ9LvZUYCakKssyEvmc1jFpPSLdHxA1nGTRSD0HWYoRFu4TOBpt3sANcpDsvtcZF2NRo7RV25oDRmXal6bm2ME3HrVmqCEywuZylzIlQ7rGLaqYOjN2mJnbzGVrRRsPuQCoVY/FxkKxa5pYKSKkIzqDVEQ8sQ2Xlb9XF1gsmYrG1TNBdBoAiK1btKHKHWT9ukSN+RKW9RxEQ650gpXJyxbMVSkKN9Yx1H6PipUGMuRB6zLMekUAmX73O12nzCh3Kzi09lfPo1nDrK+6lT3joa416TB5iBJYQ4Nqap1fazeZ3rqmmMNKItk3CRNCdYtwCk6xhZMheCYhIFY6DLrhlrLnKS3f00GJBAhGdUDqnKTDjSNm2y0VD4n5CYbTQeivpssC7maYgqWiGDIVabSQkNBU31FqEHlKAy/FhXqhBylcI6r/grynzJhLAfTYoh6QHT2U2daDIYcM0YRgv6Phjom1uZtSVUwoCqDbZjZqz2lsMzcYgZKIHOGnPhI4yYTr1BGOcYuimeIQl2O7L5AjtHfZop2/O02pErdosk3muv2xzqGXGQVQNcwRUhG9Y5K3KSUar0wN1nTTfJWQzXELijgMU0HeMIhE5kLuZoZOYrykqpyNkzKIrNptgu7Xl75WqUQEP0r8mfybEsZHLLgwzTbPnYh1yJV9XYoKmpKpQtOM5SGcxaEZRCUyMaahiTVkwz/xRUo1Fw+m/w6lC+sEWo1oss8EIKtU+Fa50VMckVIRvWEgm6SN8yIbr29QZoMjJ2bzPqWGoBKmBk4kEI7TQkOU8zjderxwnxFojDzAdltrjKk0NARf1/V9rYZasLyUKUaa09RBshacJSSvDZjLdX/K5A5SClkaVjV5hkDLlGkMlesU1d2xpWypvIUiqFwas1QK3WLtIGA4yID4yJ9F7k2ABKIkIzqNeWKdDQYTaUrASdLEusgg27Sg2g3bhKAgqbnJqVX5Wq+WNVYOjgFPsoFCEBIGKORz0/S5fq5ylph2BKolD0+/D0fDst2d47uZZ6vKBcLDAOOOherfvuYE7tgVN1xsoIc300qWHZfg1PWOL7oGPViM+DZUCvJR5aFWlmS5Idw0OWQi7QXs3YDEoiQjOohhXOT0nOUEpI31FgsqYd7GDhqaGadeFK1D6Z4InOTvKU++ja06rlJABqamZv0C3gyZ8msqzQdWfyQaxWYfIUAOdIwbOjcvqpDmt0913Bh6bvD0DlT71ghXXCWwtF+zbMsZ5lmFa1loVWq3JyOARU1hGdeKNVxj4GQqpuH5Nm2nHPkmbMscpGeU8xBMOQw16I8JFWEZFTviTcUMIXIxk3yhspR0p6uvAGWSEAkgHWNykFCCKfxOTMg9cZN8lZDfdF5bhLIKl2Nm5RCuUWpC3g4lBsVENZNGsLUDbn6KnKaoTAs3V51niL5EKsbwq2rbo53WvGVVOtSp6hEjqXbZbZQBkfjKKuqckOqAmDoWLdxvOcsE3dOT7WNhlI5wiFWblMOwYId30Wae06W/RCsX/GqtTa5SCBCMqrHJAE7C4hMlGOElGqdu+um8tU2DzChV6EcJANgJqU14VgO9evfGTfZzP8ZpOjYvGUoN6nCcio3Sd2kTKRT5WpCrnX6v+auoeaYyjq9YKueo0h+eLXOeYvGcladv2icpzmPf2wovErDwiZUWgpHbxgMdZO0krVOrjHU3NyHoL8OuPnIXDg2caHIeKKO18VpFoqhgh0bai1wkTzsIvVFrfVhVqMIyaiekx929StbJU9suJUxDjQaYDQvmeq8JE+BZksdS4p4uIaiGb9WVcRD3aSa6UE6ucmQm+RmmzMMgSH7GZDdD7d6taq4ZzTG5VdBMcSOqgKbovOH4FoERiVmH5edx4UlGLOgLIPjcNxkUeu+3JRjIfDBFIBloVY/T+ns98Onnos02xxwwnOFZaFU9STZvrV0uEdIEZJRvSt/SAiQK+KRAJgUYM2WeoxQYJR62SniMdt0EQ9vqgKesp6u1E0mrQQYSiEFy7lJDhOCdd2knTWiYFhIXQ3XVXaTBx3JdVEVFfeUOUVzrvxj/ScoBqPZZkKr9hgNSnMNOTgGmipQlU1/5cu6QgNIngcfoEP5NKxPtpt91kUaV0gKdpyQqnaMfi7SukjfLQJZsU5BjlKf3A3D1n4X1ixFSEb1pKybNEU7pIjH5CttM3RdARss4gE0LFO9X8GSpbqIh4RaQ0U89E8kRceGXXkigVaCdCgFFyq0x4iDMLlL4yY5Z7qSMnORFBoc0Pm07pxl3VzlGHR7K1QVDNUxRTANQ9Gcqy4Y6TqgB3rI4uspUmgYCJ3E2qzTY4tCq3TddYtF2z0Xqbc7RTkFuUinolVtBIDSYh2ah6wzC8jaogjJHpH56uwlTfQ1GVDSalYbhk0yFxks4gFs2DWDZTaVFpqtYBFPXp1g2LWsiIcLdW9cpBTSTp5Ec5M0BFs0lnGkjQTG21n6KoYhEP50haGYFd7UA6PvGMPXVuUgA8U3NMTKM1hy774s1EqrWv3tpS5Sz6Oay0XyvIsshWEo11gSZrV1Aj2m8bqmCMkeUa8BEuiNa7Kg1CC0XsyGXRNdzCNUSJb0dfXDrmhmw0HAU/BWM3ueLsKuLOFIAKTIhoSUhV1ZmlW6FuUmKQxCTrMMmOHCHX99bHKWVXLdny9WeGwIinR7N2As2l4ESJYw+ENAeOJ23AnlI0OhVuMOub4PrXOyPXtcPhdJXSRzXCRZLwmz0mKdbgAJ9MZ3ga/xuqYx9dTPP/88Fi5ciIGBAQwMDGDhwoV44YUXSh9z1FFHgTHm3ObNm+ccs3r1avzzP/8zpk2bhnXXXRfvfOc78ec//3kMX0nUREqasCv9A+cNSN7I/ph5Q21jTA0BaTTtlwhrNFW1a6OlvoD0MhpN+8udNxvgrQaSZgO82UDSaua2meWkRb/sGJJWolxjkuUqGWd2m/mC5QkH56q6MtQrteiP0W1OHvqyL3///JylufnHjPbNfz7/eYuOpftC2802/7XR11hX5v8iYVBt6jz3yO2PILOeuUem/2/NMeqe2+1+GDXkIjnZXuYi/YrWzDnmnWVhsU7SCIOzwHH2IhgnQmMKyfe///14+OGHcfPNN+Pmm2/Gww8/jIULF1Y+7sADD8Ty5cvt7cYbb3T2n3TSSbj22mvxgx/8AL/85S/x0ksv4ZBDDimdsihqksuAMGmoYR807MoTDUgN00ZDfbEYEDZb2S/yZktB0/zqbrY0FBvOl5X9tU+/vHi2bODIm4kFIV1m5J552zJQZl/Q9osa+W1GRctlqirqoTBy9w3vVnT+KlBXQbH6ddY6rLb8vKP50aP2MVKAk3eRIdeojg24Su/zxpuNzB02WhkMdfFZ5hrDxTpoNHLQo38v9m8kEIKNgAxrzMKtv//973HzzTfj3nvvxR577AEA+Pa3v4358+fj8ccfx7bbblv42L6+PsyYMSO4b+XKlbj00kvxve99D/vttx8A4IorrsBmm22Gn//85zjggANG/8VETbgkAEZ7t5pqVyBrMhCqdoUOr5pxk9DDQUwBD2CbDPDAeMlSDaWQCQOgqw6HVLuypKWW7fPrsGuCBClSm59MpH1l7r2KMef2uSHH/HJI3XT6GZ0hI/7z0300fMyc47PhGfnQ6HDyje41sEo3YFykH2o1P2yA+i5S7XdB6TrFsIu0YVbrCnnmIkPFOo1mdlyjlQ+zUhiGQqkGnpy7UZna7+zaoTFzkkuXLsXAwIAFJADMmzcPAwMDuOeee0ofe8cdd2CTTTbBNttsg2OPPRbPPPOM3ffggw+i3W5j//33t9tmzZqFOXPmFJ539erVGBwcdG5Rk08SUI4x0aFV/Ueec5h6H2vqX97aTaoQrPpFzpo65KorYnmrmQur8lYDvNkMf9k1G0haiXKT+osyaXEVeuUcScs4BuYck4VhedBJFn3513WW5vHdhGDrSFTcip+nKGda/fzdhk3pclFYOvR+++9V5vqzUDmjMLRRBvN/agDIiBt0w6e81bAQpPvNZ4mGWZn5nJplWqyj91mQalDSalY3DZG4EOQm5MoiIGtqzJzkihUrsMkmm+S2b7LJJlixYkXh4w466CC8973vxezZs/Hkk0/ijDPOwFvf+lY8+OCD6Ovrw4oVK9BqtbDhhhs6j5s+fXrheRctWoSzzz57ZC8oqjdEw0NmphAgGxbiF/dQxwiojjzeunm8+cUoTSN0XciTkAIf+zB03PGTyAp5klaCdAhgidTLqR1jaYaNAEADCdBOAc9JJnbVdZF+0Q/dZpaLxi36+7txmGUQDB0T+uVNh2OEVLWfqviHRD7PW+QiQ7lI6iJpLtJxjZwHgEny0V6Y1QLRC7Mm3nYaZnVgmJC0gYGjTRkkNmWginKoc2yUF+roHL+Tn6z39q916tpJnnXWWbnCGv/2wAMPAABY4MMspQxuNzr88MNx8MEHY86cOXjHO96Bm266Cf/93/+Nn/3sZ6XXVXbeU089FStXrrS3P/3pT1284qiekynaIfnI0vwkLeQxXzDWVTZzhTxJq9FVIY8BY9JMdFFPtm6WqaM06yxhaDSTnLNp8XB+Esi7IbottOzLdVz1Q5ZjrbJrDb0eum84LpKKAjKXR3YAylEWZqXgS6xzJHnsZtMJs1KA2vApyUOypnGNPHONAZBSQErqFBN3mwVnIPwaAVmsrp3kCSecgCOOOKL0mC222AK/+c1v8Ne//jW3729/+xumT59e+/lmzpyJ2bNn44knngAAzJgxA0NDQ3j++ecdN/nMM89gwYIFwXP09fWhr6+v9nNG9a6sC6SOEQCT/vCQbB0NgIk0ayRgThZylc3WsHIQKTrWUQJAOuQ6zG4dZYsDQyKUn6TvQrGjdI/N1sscZZYXdF+beT/qOMqR5m+qwF1U6VsES448IH0XCcCBYWGY1YTJzQ+hZqJ/VJGwqgM+6hoTu8xJkZhaz1yhzS8SENqCnQBInUIdC8okt80BZNLId+CJKlTXkJw2bRqmTZtWedz8+fOxcuVK/Nd//Rd23313AMB9992HlStXFsIspOeeew5/+tOfMHPmTADA3Llz0Ww2sWTJEhx22GEAgOXLl+PRRx/Fv//7v3f7cqImoXKgFMIt5ElErhyGNaXzeKSqeMeue8U94wVKmUqkSNFAAp4KqMboGShVTk+C68bcCmj5oh76zlAQ+qHWotArgNqw7FZhl8hy+8u2VTln31nWBaRfieznjm0+uYs8pHGUWaRB5SETmqsk69YVmvyiU4Wd2AhIYaEOb+QrWT0QFgIyushKjVlO8g1veAMOPPBAHHvssbj44osBAMcddxwOOeQQp7J1u+22w6JFi3DooYfipZdewllnnYX3vOc9mDlzJp566il89rOfxbRp03DooYcCAAYGBnD00Ufjk5/8JDbeeGNstNFG+NSnPoUdd9zRVrtGrflyQJkIt9LVdOgxx5BGA1ZC5F0kXOSEoOC3rku8P6FuQelXvTbhgrJO1avrFn1oqu0+KOn+KljSY7pRXTjS7f62OrAcKSBNWNwWYNn1LA9pxsImLW7Xs9B5vgCnqFDHbLfDi/z8YqOpAEkKdVQBGinUMYD0Uwt0WBQt0vHBqfP4EZD1NKYdd6688kp84hOfsJWo73znO/HNb37TOebxxx/HypUrAQBJkuC3v/0tLr/8crzwwguYOXMm9tlnH1x99dVYf/317WO++tWvotFo4LDDDsOrr76KfffdF4sXL0ZSMflp1Joli4OiQh4AkNKFJm2ETo8TIn9euKCUqci1rhNDnWGBUqTq+Vgq1H4kEFxta0IgETrcWgOU7lyJPjT9V5SB0YdlfnsYmN0qVFAT2leUg5woQFIglgGSgo87ecmsMtrPV/Jmw1Zf09y4rWQ167SqlVaymspuH4Y8sC0ATvd/PapMTMpxbubYAxocHMTAwABWrFiBqVOnDusc9KuoV7Q2XlPmBDtgogOkHZV/FB2wdMhdFx19n0KsfhXotCE7bcj2EOTQKr0+BNlW93S/aHfQWTUEMdRB2u5ADHUg2m2k7Q5kKrLtep/aLpEOpUjbKdIhYdelUGAUqYBoq3u1z90mhLTh1tC9QHgfgNJlIL9Ot2Xr4fe8evqsMFHrwtFsC8EyBEV6/FgDknZYsvlFCj47PKhpAZo42xtZJatxhcZJNptuJatphEGLzJotd+iTD0iagywA5ER9R4z2d8Hg4CBmzJiBlStXDvt7vI5i79ZhqtdgBKyd12Q9k1/IA13AA+S3A9VDQ5B3lA0AncA1GAeYu7bE3W7mlhS6l6vp6co40w6TZ9sSBp7K4BCR7lwlAtth92V5ToC++vzcjWZ7varYqlArPaYImHWdpNlWF5C8meUXR8NBdgNIv5K1CpCO0zRDPSYhIIHe/H6qowjJqDVCEgFQygA4YSpeXYA65ylYN6BMeRaEZQkHa4fQqcKzVIKrr4kMjlIfp+8TWVjQk4iiVnC0qAcWhAaKtFsN3R6CI91GG4zn3+lq1ekxWxZWLVqvco90O71vaAjSKlba8MEv0hkrQPJWsytAmuPoWMjJCMjJrAjJqDVGOVCWOUn9mBwoeVIJSiOWcIihMCB5wpGSfSxhSId0HlI7zAyOap3mKa3r5MK6Sr/61XeVnBXDMgTIMmAC/nazTe0vK+Qpyl/WLdqpG2bl5Fx1wqsGkGYIB+2IZId+NBMHokWANEU6ZYDMg3QEIdYqQFbkICMgh68Iyag1Sg4oG4BMO92DErCl9855za6S5+cJRxqAJ+MCJlgrtZMsC7/KJHOdMpW5op4iVxmCZX65epLiKkfZTSFPkYOk+7op1gHKQ6vmWG4AyPNDPGh4NRhutduycZAUiHTmGFOkY/YHAek5wxwg7bYucpB1qlgjIEesCMmoNU7B0GvJPQLrvrtkXH8JmU3k+Ux5fxiOersOyfJE2CYCZeFX31WyVH2Bp+3UusoyWCaAM7YyFH4tc5TUMVLIddPztayqle7vBpQhOMLbVsc9FoVXMzfpFujQRgFV4yBzTtMHn6liJYC0wzxoFWtdQNoWdKTVXATkqClCMmqNVBCUjBeDknHwJFGTJNNzBJaNy0yStoJgICfJkgQpz+ConiJbN+FXnjAFPr3OEgbRTjMoDqWQiSwNwYZgCbg5SyBzlHRf3kG69yFn2a3qDAGpAiPd1g0cu3WPVflHu24co241RzvpGGDaTjoUfHQcJAUkDbcWjIN0nKLfSccAMjYrH3VFSEatsQo7ylbWcaQzlAMm71tHfznpcGuShV1DuUrzBc4TjlSPiRMeOI3TzADJwYY61lUyDUMFTgpHobelNgTLEgaZcjVcpASWQAiaxcA0+0M5x7KpqcqmxnK3h0FZBEkfjHTZz09WwTGUeyxyj1Xh1VD+kZM8Za5Ah4KPdNKxreYMIBtZOBYNCkbXPQZdJeNqZhzSKCACcvQUIRm15isQegUA2YAaN9nxnCWdixK+g0w0OLNG05wnkG0ygSRgw6/KPbbtNuM8jaukTpTmKjM4SusyRSpqwbIJRsZY5qGpll1gmv1GRcv+tmIohraVF+6UgZEum8fWhaMfWnXWC9yjH16l7pF20akq0LF5yCYNt5pm+vlCHjQoAEko1XOPhXnJ8H9H1AgUIRm1RstCrgiUgB7XwWyYCqwDMAZGQJg7X+78JPyaeGHWRI2NS4cyWIp2x7nnScdzlYLAUX2R0yYEPixFKm0uUwrpuEugKBRrltUCRxhiZZAsUhUkeeDYqmId6hrV+1gNRzru0Qm1BpoDVLlHOpOHH16tnX+sW8FKQ6yxgnVCFSEZtcarDiiDecqGt27DsGS6IlPQ02nb8CtLOAQNv+piHsb1dg1GFXLNhooYV8kTBqG785gQrAJgCSxJgY+phmUJQwLlTEPANMtANhOID07AhadRVXVr0RyO2XIeyEUNBMxMHb5rBFAKx1Aesii0SnOPZcU5zj7HTXr5Ry+8SmFYWKDDA9WqZQU6tF9r1JgpQrJC5kuylxSvqZ7oNfmgBONAqh1jWUGPD8rQshd+RadtIUFnoLdw1K7SAJS6T+suU+MkUwLGPCyNg6QFPgBcdxkAJg3JAvn8JAWnu91V0ThKX91WtobASNfLwEjDquHiHeIg6ZyPNdxjsHq1TnjVn8nDhl1r5B+9Ah0//2g+h72iXvwuGIkiJCvUi//Z8Zrqyb8mCkq6Tgt6GONqbKVuHs30L3Vuqw29gh4NRStyTJK0wUyIlbhKk5sU7XaWm9TuU6RCfRGnQm9nFoIGjDYXmTIwLm2Bjw23ptJxlwlcYPImtyHZBlQTAwNNoFtQVle7FgGS7vOhqN6zPBgBjBiOzgTJBIZ+5WqVe8zN4lERXvXHSXadf5wkBTq9eE0jUYRk1Fol+gfMklahgwzehwp6vPArTAEPKephyZAFoQ2zavfI2jrkGgjBFsFS8HAu0gwdAeACU4QdJpoKkAaaxmkacAJw4GlUlY+k8gFpYKjeuixkCrhQNNuLwGiO6xaO+Zk6shArbQzgV67mnWZSWr1aK7zabYOAOLxjQhQhGbXWKjdExDhJk+cRneqCHp2LNDPJ2+rXttnuukozVMRAM004ZCrAkgQyTbN1G2INw1KBTiBtp06zgcxJijAwEwVD4blMc5wPTgAwZUtmnOZwvjSYR8sQENW6C0VzbDdgNAU5Rc6xCI5FoVV3jCTJPVa5x0AYdqTh1QjH8VeEZNRaLcm4AiXjYKLj5hu7Cb922uGink7bcZUQqc1BSh1alamw3XpovpLCkoZhZSo0QFN7nEilDcU6la4afDR/aSGoXaaBJgALTgAuPAGgmb1v5vgyGchRUVhSINLjQ1A0x4fAaM5B4UgLcrqBY1Vo1cLOhE67cY+xenVSKkIyaq1XzkGagh4yfVbunvGgq3RyldpVsjS1QJWdIRuCNXA0sBScQwjqIjNY8lTYnKWBJOMdC1DqLkPABBISfjUN1aUFIIUkAAtPuo/uT0o72LpywUhmUOEFkPSgaLZVgdEt5nHHOjrbKuBYGVoNdc6pyD1a91ize451j+ZzGTVhipCMigJsxWvmKl0HmQu/ik7YVYo0P1RECLcBgRDqi1QIB5Y2rKphyZsNiHYHMk3DTlLDlG4rAibg5SORhVwBOOBUx2a+JQTJbuSHWh1Q+mFWzlHoIgk0y8DIKBBpDtK6yaZzbNdwNKFV6irLWsv5YVTqHuP0Vj2vCMmoKKJCV0nCrRaeopPLVcrOUOYuExeKNgRr1n1YNhtqnKSFY+Y0HScpFBTNcdRdFgETQCE01XLYUQIZQNX+7r+2eeLnI0OQDBfrhKCYHVcMxtDQDpaQqa68/S5Qu4Sjn6PUodUs5zi8oR0RkL2hCMmoKE8SUC6xRlEPE2k+V5mmbshVkPVGE+i0y2HphWGlBp9oNSCGOhqSyl1ys80BowtMAKXQNPvVNjcfqbaFXWVd+bnJsrykCZ+qbWEomn1lYDT7/JCqgWOocUAIjuCJM+bRuQ/kKCtDq0WVq2S7+QxG9YYiJKOiArKgTFpOUU/IVUIKtwKWJ8UhWLNcE5ay1UCqwchTYd2mcZdSBLbp7QAqoQkgB04jH6BKSVch13xVawZMCkN3nYRbA1A062VgNK7RD6f64yKdgpwRwDEXWg1NjDxJxz2u7YqQjIoqkNOlR0OQpZ1s2i2zTXRcpymFO1zEQtKAMADLZhOy3QZrNCE72T1EmgurUvcobOi16ThMG5L1wq8AHGiadQAOWNV26iDdr29Zw1Eyz0ECbug1X9XKnceVQdHuLwBjkWt0Qqr6/8TCjoRVa8GRVK1Kv2pVNwUoCq2G2spFQPamIiSjokpkvrhs+NUU9QjhuEpwkYVgpXRCsJAiy1M6rpHAsuxepEiaArw9lAFPg9NCkALTQtIFpmoWEHaaQAZJTgBIYeg6StjHhxQc/uHkIvPLPhDNtjIo0mMoGAtdY+K6RWcoB8k5dgPHXN6xKrQa4TipFCEZFVVDNvxqHaTquWqKeCBF5ialcJoQMB2OZY0G0OnUhiV1kzQUC5GCp6kTZnWKdjxgAshBE4C7v9BNuhD0QZmgniggARpiLXaR5t5AUa2H3aJ/PB0P6bhGP6Rqxjl6rnLU4WhCqzHvOOkUIRkVVVOOq0xaCoamAlaQ4SJm2VTBGkjqe6e4R4gsxNpsQbaHwBotyM6QAmOzBdYeUuMiG01IkarxmCIFEwK8lUKmqe6+kwHTcY0l0AQIEEXmKs3jgWpQVqkIkHTZd5NFThFAzi2Gi3c8MAZco4IkhWZWrRrMOQbgWCfv6IdWIxwnlyIke0S92Dk/XlNYWf9vDlYUgjUAFR0FQrqNC4B3MmcZDLVql+mFXVmaQjZagIGo2e4BM1TpCsCBplnnnos08ARcgObeh4q8ZCgn6RbuZO6Q7qPg5H7hjheGrQXGAtfohFS9PKRfkCMtEGvAsSDvWPdz2wufcV+9ek3joQjJHlGvfQCBeE115BTscGGbEEBqMPKGBmUelsZZ2pylSG0hj71P1TYmROYuRaoqL9PUDccSYJqQLIAcNIHMNfpukcITcB2ledxwVOQmqTsMba8u3qkBRj/XSCFJK1s9aBo45sAYcIdlRTndfmZ77TMOrN3XFCEZFTVC2W49FpYNVfFKYUmLeygs9bHQMOVSZk6x0VLjMA0IG011T8HYVMcgTVVIVqQqJEuWDTQV8DKnCeQLd3JQLFgGMqAWiXtgBOqFWmm+0h0CojOgVVAEysEYKt4h+UbjGKUPQJpzHEXnGNXbipCMihollcKSJwpaxllKoXKZGpQgoFSOhoRiG00FRO0kWbOlQqI+MGlIVgOMQtPuB+y6ASfQffHOSIt2gLLCHReI6hgPinp/LsdYBMbAkA/fNYL831kAmqEcdMB/hONaowjJqKhRVg6WOrTqOEviIk01LJPSQpQReHIpIdM0V7jjA5MJoYHoLRsIUqcJZKFbQDlOsw2wAAXcHGWd8ZFFcl0kQawFHoGh2e4DEiiHojlPUZ6RgtG0gyP/T7VCqnY9wnFtUIRkVNQYycKSVMIyqUOdouNAEbyRuUueAFK62xPhhGNDYVW7HIAmhMhgqMOzAPKO04jA0k4dRpZzx4UUCrfyYjja/RSGQNYc3u4vh2JhKNaA0Q+nUmdIXWNRSNVs1/+/EY5rtiIko6LGWDlYcgHIBgm36lCs7y5FovaL9P9v796DojrvN4A/C+wFDGxCEBaiokkpqJAMlwpoR7wFcYYmaTJeIqU0Y6mmYyM1mUSm0wiZ+SkkrZlekqZxVBijlbFKMx2MLWnR2gLRCDEalFhLxFTRaLmlVSTy/f0Be9yzuweWyy67+nxmduS85z2H774ceXjPnt1z+7SsNTClD342gWh/yhW24XfLMSgxEIhKkA70BeAQoABUYak8L9tQ1aAKRSubNlUQ2qyzD0ClzXZZIxRv9x18xqiEn/1rjfYzSut7HG3XDfnM6U7BkCTyENvTsABUp1YdZpfSd3ud9PWHnm1gWsN2IDB10te/7a1bDq9D3g5Gm+Vb6qAEbELPrl21zsrZrFKLXVCqZ5N+Dv10NmHnEIgD22i+PmkzW7TOCIcTjJqzRt3tOhmQdxeGJJGHOf1QAuvs0uaCHp1fwEBAfgX49TkGpohjmPrrHUJTMyhtZpyq8BxYVgzMQJX6XZhB2nOYUToLR7vZpLPXI1UBObCN01Ds33B4wagxa7T9mdHdhyFJNE5UYWn9ZWx7WtX2dKxI/zpnM0zra5jW9QMhKYAy04T0B53T4ARUp2fhpF2hMYO0vbhHdVGOrUGCUnWxzsA6+zYlEPs3cC0U/WyuWB0qGAHOGskBQ5JonNn+IlYFpvWiHuB2YNrOMJ097GeZMhBy0ucw27QNTkA9i7S9WEfh7CId66lZrSc32AwSjuFoDVhVGA78aw1DsZvlOQtFh36DBaPthThgMJKa4+VnY6i9vR25ubkwm80wm83Izc1FR0fHoNvodDqnj9dee03pM2/ePIf1K1ascOdTIfIIsXlg4HQs/A2QgIGH3gTx1ysPZb31EWAAAgwQvbH/EWDs7xtghASY+h/+httfB5iUPjCYAL0BMAb2PwxG6ExB0JmC4GcMhF/gBOWhM5j6H6YJgz8MJtV2fsZAZZ86UxBgMPZ/L70BMJiUWmGt0bZW5Wvj7TEYeJ6wjo8yDibA2lfV36SMpXXsrDfXVsadyIZbZ5IrV67E559/joMHDwIAfvCDHyA3Nxd//OMfNbe5dOmSavm9997DqlWr8NRTT6na8/Pz8corryjLgYGBY1j50Lz1swxZ09B8pSbVDNN2pqPzuz1DtM4wgYHZoqhnmf5QzyKB27NNDJx+HdgWzv4Fbp+6VQoYmI3as37MnrPn4azdts32lKnNv6oZpZ/drFLrNKttm59dXzfMGH3leBpv3liTK9wWkqdPn8bBgwdRX1+P1NRUAMDWrVuRnp6O5uZmxMbGOt3OYrGolt99913Mnz8fDz74oKo9KCjIoa8neeMPmzW5xhdrUq0f+EWvg03QWIOwz/4Ua/9pVyUI7YPT2g7cPp2qCkhxDMjBlm3ZB6PToNQ5rvezD0ongTjwtXL61LrOPhRtX7N0E188nsaDN9bkCreFZF1dHcxmsxKQAJCWlgaz2Yza2lrNkLR1+fJlVFVVoby83GHdrl278M477yAiIgJLlizBxo0bERwc7HQ/PT096OnpUZa7urpG8IyIvIsAqpmR8rYQ22Xb1ykH2pTXILVmj8os08kM0pYrH3Zu/4ECdoHlymxSNascLBCt7XwfI40ht4VkW1sbwsPDHdrDw8PR1tbm0j7Ky8sRHByMJ598UtWek5ODadOmwWKx4NSpUygsLMSJEydQXV3tdD+bN29GcXHx8J8EkQ+xDwwdcPvtJUonm+C0LtusswYo7APSvq+zZWdcmE3atquC0LY/A5HGybBDsqioaMjAOXbsGID+i3DsiYjTdme2b9+OnJwcmEwmVXt+fr7ydXx8PGJiYpCSkoKGhgYkJSU57KewsBDr169Xlru6ujB58mSXaiDyVcprgc6Cc+CUq3oDuwB12KHzkFSC1XaV/dWpSgGDnPr0s7mq19k2DEQaB8MOybVr1w55JenUqVPx8ccf4/Llyw7rvvjiC0RERAz5fY4cOYLm5mZUVFQM2TcpKQl6vR5nz551GpJGoxFGo3HI/RDd6VQX0diFpzJ7HOz2Hg4zTyczTutqZzM/VzAMyYsMOyTDwsIQFhY2ZL/09HR0dnbi6NGjmDVrFgDggw8+QGdnJ2bPnj3k9tu2bUNycjIeeeSRIft+8skn6O3tRWRk5NBPgIgcaF2B6sDZrHSIvgw88mVuu+xr+vTpyMrKQn5+Purr61FfX4/8/HxkZ2erLtqJi4tDZWWlatuuri7s3bsX3//+9x32e+7cObzyyiv48MMP8dlnn+HAgQNYunQpEhMTMWfOHHc9HSKyI4DyiTdOH2BAku9z67XRu3btQkJCAjIzM5GZmYmHH34YO3fuVPVpbm5GZ2enqm3Pnj0QETz99NMO+zQYDPjLX/6CxYsXIzY2Fs899xwyMzPx/vvvw1/r47CIiIhGQCfi5FX3O1xXVxfMZjPa2toQEhIy3uUQEdEwdXV1wWKxoLOz062/x937LlsiIiIfxpAcgsv3zPMg1uQa1uQa1uQa1uQab6xpNBiSQ/DGc9GsyTWsyTWsyTWsyTXeWNNoMCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCS9hDd+cj5rcg1rcg1rcg1rco2namJIeglv/OR81uQa1uQa1uQa1uQaT9XEkCQiItLAkCQiItLAkCQiItLAkCQiItLAkCQiItLAkCQiItLAkCQiItLAkCQiItLAkCQiItLAkCQiItLAkByhu/mzDIeDNbmGNbmGNbmGNY0dhuQI3c2fZTgcrMk1rMk1rMk1rGnsMCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0uDUk/+///g+zZ89GUFAQ7r33Xpe2EREUFRUhKioKgYGBmDdvHj755BNVn56eHvzoRz9CWFgYJkyYgMceewyff/65G54BERHdzdwakjdv3sTSpUvx7LPPurzNq6++ii1btuDXv/41jh07BovFgkcffRTd3d1Kn4KCAlRWVmLPnj34+9//ji+//BLZ2dm4deuWO54GERHdpXQi4vb3eJaVlaGgoAAdHR2D9hMRREVFoaCgAC+99BKA/lljREQESktLsXr1anR2dmLixInYuXMnli9fDgC4ePEiJk+ejAMHDmDx4sVD1tPV1QWz2Yy2tjaEhISM+vkREZFndXV1wWKxoLOz062/xwPctucRaGlpQVtbGzIzM5U2o9GIjIwM1NbWYvXq1Th+/Dh6e3tVfaKiohAfH4/a2lqnIdnT04Oenh5lubOzEwBUs1MtOnjfJ0WwJtewJtewJtewJtd4qibr7293z/O8KiTb2toAABEREar2iIgInD9/XuljMBhw3333OfSxbm9v8+bNKC4udmiPiYkZi7KJiGicXLt2DWaz2W37H3ZIFhUVOQ0cW8eOHUNKSsqIi9Lp1B+FKyIObfYG61NYWIj169cryx0dHYiOjkZra6tbB9cdurq6MHnyZFy4cMGnThWzbs9i3Z7nq7X7at2dnZ2YMmUKQkND3fp9hh2Sa9euxYoVKwbtM3Xq1BEVY7FYAPTPFiMjI5X2K1euKLNLi8WCmzdvor29XTWbvHLlCmbPnu10v0ajEUaj0aHdbDb71EFhKyQkxCdrZ92exbo9z1dr99W6/fzc+07GYYdkWFgYwsLC3FELpk2bBovFgurqaiQmJgLov0L28OHDKC0tBQAkJydDr9ejuroay5YtAwBcunQJp06dwquvvuqWuoiI6O7k1tckW1tb8Z///Aetra24desWPvroIwDA1772Ndxzzz0AgLi4OGzevBnf/va3odPpUFBQgE2bNiEmJgYxMTHYtGkTgoKCsHLlSgD9s79Vq1bh+eefx/3334/Q0FC88MILSEhIwKJFi9z5dIiI6C7j1pB8+eWXUV5erixbZ4c1NTWYN28eAKC5uVm52hQAXnzxRVy/fh0//OEP0d7ejtTUVPz5z39GcHCw0uf1119HQEAAli1bhuvXr2PhwoUoKyuDv7+/S3UZjUZs3LjR6SlYb+ertbNuz2LdnuertbPuwXnkfZJERES+iJ/dSkREpIEhSUREpIEhSUREpIEhSUREpIEhSUREpOGODUlfvZdle3s7cnNzYTabYTabkZubO+TdU3Q6ndPHa6+9pvSZN2+ew/qhPjnJ3XV/73vfc6gpLS1N1cfbxru3txcvvfQSEhISMGHCBERFReG73/0uLl68qOrnjvF+8803MW3aNJhMJiQnJ+PIkSOD9j98+DCSk5NhMpnw4IMP4q233nLos2/fPsyYMQNGoxEzZsxAZWXlqGocbd379+/Ho48+iokTJyIkJATp6en405/+pOpTVlbm9Hi/cePGuNV96NAhpzWdOXNG1c/bxtvZ/0GdToeZM2cqfTwx3n/729/wrW99C1FRUdDpdPjDH/4w5DYeO77lDvXyyy/Lli1bZP369WI2m13apqSkRIKDg2Xfvn1y8uRJWb58uURGRkpXV5fSZ82aNfLAAw9IdXW1NDQ0yPz58+WRRx6Rr776akzqzsrKkvj4eKmtrZXa2lqJj4+X7OzsQbe5dOmS6rF9+3bR6XRy7tw5pU9GRobk5+er+nV0dIxJzSOtOy8vT7KyslQ1Xbt2TdXH28a7o6NDFi1aJBUVFXLmzBmpq6uT1NRUSU5OVvUb6/Hes2eP6PV62bp1qzQ1Ncm6detkwoQJcv78eaf9//Wvf0lQUJCsW7dOmpqaZOvWraLX6+X3v/+90qe2tlb8/f1l06ZNcvr0adm0aZMEBARIfX39iOscbd3r1q2T0tJSOXr0qHz66adSWFgoer1eGhoalD47duyQkJAQh+N+LA237pqaGgEgzc3Nqppsj1NvHO+Ojg5VvRcuXJDQ0FDZuHGj0scT433gwAH5yU9+Ivv27RMAUllZOWh/Tx7fd2xIWu3YscOlkOzr6xOLxSIlJSVK240bN8RsNstbb70lIv0HlF6vlz179ih9/v3vf4ufn58cPHhw1LU2NTUJANUPsa6uTgDImTNnXN7P448/LgsWLFC1ZWRkyLp160ZdozMjrTsvL08ef/xxzfW+Mt5Hjx4VAKpfRGM93rNmzZI1a9ao2uLi4mTDhg1O+7/44osSFxenalu9erWkpaUpy8uWLZOsrCxVn8WLF8uKFSvGqOrh1+3MjBkzpLi4WFl29f/0aAy3bmtItre3a+7TF8a7srJSdDqdfPbZZ0qbJ8bblish6cnj+4493TpcQ93LEsCQ97Icrbq6OpjNZqSmpiptaWlpMJvNLu//8uXLqKqqwqpVqxzW7dq1C2FhYZg5cyZeeOEFl+6n6e66Dx06hPDwcHz9619Hfn4+rly5oqzzhfEG+u9GoNPpHE7rj9V437x5E8ePH1eNAwBkZmZq1llXV+fQf/Hixfjwww/R29s7aJ+xGNuR1m2vr68P3d3dDnd6+PLLLxEdHY1JkyYhOzsbjY2NY1LzaOtOTExEZGQkFi5ciJqaGtU6Xxjvbdu2YdGiRYiOjla1u3O8R8KTx7dX3U9yPLnrXpbDrSE8PNyhPTw83OX9l5eXIzg4GE8++aSqPScnR/kA+VOnTqGwsBAnTpxAdXX1uNW9ZMkSLF26FNHR0WhpacFPf/pTLFiwAMePH4fRaPSJ8b5x4wY2bNiAlStXqu6gMJbjffXqVdy6dcvpsalVZ1tbm9P+X331Fa5evYrIyEjNPmMxtiOt297Pf/5z/Pe//1VuZgD0f95zWVkZEhIS0NXVhV/84heYM2cOTpw4MSb3iB1J3ZGRkXj77beRnJyMnp4e7Ny5EwsXLsShQ4cwd+5cANo/E28Z70uXLuG9997D7t27Ve3uHu+R8OTx7VMh6Yv3sgRcr9vZ93e1Bqvt27cjJycHJpNJ1Z6fn698HR8fj5iYGKSkpKChoQFJSUnjUvfy5ctVNaWkpCA6OhpVVVUOIT+c/XpqvHt7e7FixQr09fXhzTffVK0byXgPZbjHprP+9u0jOd6Ha6Tf43e/+x2Kiorw7rvvqv6YSUtLU13gNWfOHCQlJeFXv/oVfvnLX45L3bGxsYiNjVWW09PTceHCBfzsZz9TQnK4+xypkX6PsrIy3HvvvXjiiSdU7Z4a7+Hy1PHtUyHpi/eyHE7dH3/8MS5fvuyw7osvvnD4i8iZI0eOoLm5GRUVFUP2TUpKgl6vx9mzZzV/aXuqbqvIyEhER0fj7NmzALx7vHt7e7Fs2TK0tLTgr3/965D34XNlvLWEhYXB39/f4S9g22PTnsVicdo/ICAA999//6B9hvMzG+u6rSoqKrBq1Srs3bt3yLv7+Pn54Rvf+IZy3IzWaOq2lZaWhnfeeUdZ9ubxFhFs374dubm5MBgMg/Yd6/EeCY8e38N6BdMHDffCndLSUqWtp6fH6YU7FRUVSp+LFy+O+YUkH3zwgdJWX1/v8oUkeXl5DldZajl58qQAkMOHD4+4XqvR1m119epVMRqNUl5eLiLeO943b96UJ554QmbOnClXrlxx6XuNdrxnzZolzz77rKpt+vTpg164M336dFXbmjVrHC5sWLJkiapPVlbWmF9IMpy6RUR2794tJpNpyIs3rPr6+iQlJUWeeeaZ0ZSqMpK67T311FMyf/58Zdlbx1vk9oVHJ0+eHPJ7uGO8bcHFC3c8dXzfsSF5/vx5aWxslOLiYrnnnnuksbFRGhsbpbu7W+kTGxsr+/fvV5ZLSkrEbDbL/v375eTJk/L00087fQvIpEmT5P3335eGhgZZsGDBmL8l4eGHH5a6ujqpq6uThIQEh7ck2NctItLZ2SlBQUHym9/8xmGf//znP6W4uFiOHTsmLS0tUlVVJXFxcZKYmDhudXd3d8vzzz8vtbW10tLSIjU1NZKeni4PPPCAV493b2+vPPbYYzJp0iT56KOPVJfE9/T0iIh7xtt6af+2bdukqalJCgoKZMKECcpViBs2bJDc3Fylv/US+R//+MfS1NQk27Ztc7hE/h//+If4+/tLSUmJnD59WkpKStz2lgRX6969e7cEBATIG2+8ofn2maKiIjl48KCcO3dOGhsb5ZlnnpGAgADVHzuervv111+XyspK+fTTT+XUqVOyYcMGASD79u1T+njjeFt95zvfkdTUVKf79MR4d3d3K7+jAciWLVuksbFRuWJ8PI/vOzYk8/LyBIDDo6amRukDQHbs2KEs9/X1ycaNG8VisYjRaJS5c+c6/GV1/fp1Wbt2rYSGhkpgYKBkZ2dLa2vrmNV97do1ycnJkeDgYAkODpacnByHy8rt6xYR+e1vfyuBgYFO34vX2toqc+fOldDQUDEYDPLQQw/Jc8895/CeRE/W/b///U8yMzNl4sSJotfrZcqUKZKXl+cwlt423i0tLU6PK9tjy13j/cYbb0h0dLQYDAZJSkpSzUrz8vIkIyND1f/QoUOSmJgoBoNBpk6d6vQPqL1790psbKzo9XqJi4tT/VIfK8OpOyMjw+nY5uXlKX0KCgpkypQpYjAYZOLEiZKZmSm1tbXjWndpaak89NBDYjKZ5L777pNvfvObUlVV5bBPbxtvkf4zNoGBgfL222873Z8nxts6k9X6uY/n8c37SRIREWng+ySJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0MCSJiIg0/D/AMJinE7tK7gAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgkRZU+/EZkVd3bLN3szSKrIrvKvv0QFEQERdwAnWl3FEdHFHUQURQcZVw/QQTFZRhckMFWQGRrERCH1kFZHBERHRgUumVRaRC7qyrjfH/EkiciI7e79e1beZ7n3sqMjMw6lRmZb75nC0FEhFZaaaWVVlppJSdydSvQSiuttNJKK7NVWpBspZVWWmmllQJpQbKVVlpppZVWCqQFyVZaaaWVVlopkBYkW2mllVZaaaVAWpBspZVWWmmllQJpQbKVVlpppZVWCqQFyVZaaaWVVlopkBYkW2mllVZaaaVAWpCcpHzkIx+BEMJr22abbfDiF794Rr7/qaeewkc+8hHceOONuW0XXnghhBC4//77Z0SX2ST3338/hBC48MILp+yYb37zm7HrrrtivfXWw7x58/DMZz4T73vf+/Doo49O2XdMp9hzUvR3xBFHlO6/bNkyfPCDH8T++++PjTbaCPPnz8eee+6JCy64AGmaRvf5yU9+giOPPBLrr78+5s2bh+233x4f/ehHc/1uu+02HHbYYVhnnXWw3nrr4eUvfzn+93//1+vz29/+Fu9973ux5557Yr311sMGG2yAAw88EN/5znei333ttdfiwAMPxLx587BgwQK85CUvwV133ZXrt2rVKnzqU5/CrrvuirXXXhsLFy7Ei170Itxyyy25voPBAGeccQa22WYbjI2NYccdd8TnP//56PcvXrwYBx54IDbYYAOst9562GefffD1r3892vfRRx/FSSed5I5rdfjzn//s9bv99ttxzDHHYPPNN8daa62FHXfcEWeeeSaeeuop1ydNU3z2s5/FEUccgac97WlYa621sNNOO+H9738//vrXv+a++3Of+xxe/vKXY9ttt4UQAoccckhUxx/+8Id4wQtegM033xxjY2PYZJNN8PznPx9XXXVVru8hhxxSa4z94Q9/wMte9jJst912WHvttbFgwQLsvvvuOPfcczEcDqN6zLhQK5OSP/zhD7R06VKvbeutt6ajjjpqRr7/kUceIQD04Q9/OLft4YcfpqVLl9LKlStnRJfZJPfddx8BoH//93+fsmMef/zxdPbZZ9MPfvADuv766+kTn/gEzZ8/n3beeWdatWrVlH3PdMnKlStp6dKlub9TTjmFANAXv/jF0v2///3v05ZbbkmnnXYa/eAHP6DrrruO3v3ud5OUkt7whjfk+n/zm98kKSUdf/zxdMUVV9CPfvQj+vKXv0xnnHGG1+/uu++mddddlw466CD6wQ9+QIsXL6ZddtmFNt98c3r44Yddv89//vO044470sc+9jG67rrr6KqrrqLXve51BCB3zMsuu4yEEHTMMcfQD37wA/rWt75FO+ywA62//vr0u9/9zuu7aNEiklLSaaedRtdffz1deumltOeee1Kn06Gf/exnXt83v/nNNDY2Rp/85CfphhtuoPe///0khKCPfexjXr+vfvWrBIBe8YpX0FVXXUVXX301HX/88QSAPvvZz3p9H3zwQdpuu+3omc98Jn3lK1+hm266iRYvXkzveMc7aNmyZa7fXXfdRePj4/TsZz+bLrnkErr++uvpwx/+MCVJQkcffbTr98QTT9C6665Lb3nLW+jSSy+lG264gT7zmc/Q+uuvTzvvvDM99dRT3vfvsMMOtMcee9Ab3/hG2njjjenggw/OXUsiom9/+9t00kkn0be//W268cYb6bvf/S4dfvjhBIC+/vWve30PPvhg2m677XJj7e677/b63X333fTa176Wvva1r9EPf/hDuuqqq+gd73gHAaA3velNUT1mWlqQnAaZDEj2+30aDAa1+5eB5CjLdIBkTM477zwCQNdff/20fs90yiGHHEJrrbUWPf7446X9/vznP1O/38+1v/3tbycA9MADD7i2P/7xj7T22mvT2972tsrvf9WrXkUbbbSR9/33338/dbtd+pd/+RfX9sgjj5BSKrf/UUcdRWuttZb3MrjDDjvQs571LK///fffT71ej17zmte4tpUrV1KSJPSP//iP3jEfeughAkDvfOc7XduvfvUrEkLQxz/+ca/vCSecQPPmzaPHHnvMtR144IG09dZbU5qmrk0pRTvuuCM961nP8vZ/6UtfSltssQX9+c9/Lj5JRHTaaacRgBzIv+UtbyEAbv/hcEiPPvpobv9LL700Cmhcx1122aUQJGPS7/dpiy22oIMOOshrP/jgg2mXXXapfZxQjj32WOp0OrPiBb81t0bksssugxAC119/fW7b+eefDyEEfvnLXwKIm1utfO9738OznvUsjI+PY7vttsM555zjbb/xxhshhMDXv/51vOc978EWW2yBsbEx/O53v8MjjzyCf/qnf8LOO++MddZZx5k2br75Zrf//fffj4033hgAcMYZZziTxutf/3oAcXPrIYccgl133RW33norDjroIKy11lrYbrvt8G//9m9QSnn63XXXXTj88MOx1lprYeONN8bb3/52/OAHP4AQImre5WLPyy9/+Uu86lWvwoIFC7DBBhvg5JNPxnA4xD333IMjjjgC6667LrbZZht88pOfzB3jgQcewD/+4z9ik002wdjYGHbaaSd85jOfyen50EMP4dhjj8W6666LBQsW4LjjjsPy5cujev385z/H0UcfjQ022ADj4+PYfffd8Z//+Z+lv6VM7PnvdDoT2v+OO+6AECI3Nqz87Gc/gxACZ5999oR1LJPf//73uOmmm3Dsscdi/vz5pX3XX399dLvdXPs+++wDAPjjH//o2r7yla/gb3/7G0455ZTSYw6HQ1x55ZV4xSte4X3/1ltvjec973n43ve+59o22mij6L22zz774KmnnnKmycceewz33HMPXvSiF3n9t956a+y666647LLLnHlYSgkpJRYsWOAdc/78+ZBSYnx83LVddtllICK84Q1v8Pq+4Q1vwN///ndcc801rq3b7WKdddaBlNkjVgiB+fPne8e8//77ccUVV+CEE07A+uuvX3qu7LkPdV1vvfUgpUSv1wMAJEmCDTfcMHqeAG3i5MJ1bCrdbhfrrbfehMd/kWy88caQUiJJkik97oRkdaP0bJTBYECbbLIJ/cM//ENu2z777EN77LGHW//whz9M4WnceuutaYsttqCtttqKvva1r9FVV11F//AP/0AA6FOf+pTrd8MNNxAA2mKLLeiVr3wlXXHFFXTllVfSY489Rr/5zW/obW97mzNtXHnllfSmN72JpJR0ww03EJF+C77mmmucacKaNOyb5r//+78TALrvvvvcdx588MG04YYb0vbbb09f/OIXacmSJfRP//RPBID+4z/+w/V76KGHaMMNN6StttqKLrzwQrrqqqto0aJFtM022xAAp0OR2POyww470Ec/+lFasmQJ/cu//AsBoHe84x2044470jnnnENLliyhN7zhDQSAFi9e7PZ/+OGHaYsttqCNN96YvvjFL9I111zjzDCcnTz11FO000470YIFC+jzn/88XXvttfTOd76TttpqqxyT/NGPfkS9Xo8OOugguuSSS+iaa66h17/+9Y0Z52AwoCeffJJ+8pOf0I477kj/7//9PxoOh7X35/L617+eOp2Ox0JC2W233Wi77bbz2tI0pcFgUPlXpdcHPvABAkA/+clPJqQ/EdHrXvc66nQ6Hnt5/vOfTxtssAFdc8019OxnP5uSJKGNN96Y3vrWt3qM8Te/+Q0BoC984Qu54773ve8lIQT9/e9/L/3+Qw45hDbeeGP3Wy0LPP3003N9999/fwJA99xzj2s76aSTaJ111qHvfe979Pjjj9N9991Hr371q2n99dene++91/U7/vjjaeONN84d88knnyQAdOqpp7q2xYsXk5SS/vVf/5UefvhheuSRR+hTn/oUJUlC//mf/+n6XXTRRQSALrjgAjr++ONp7bXXprGxMTr44IPplltu8b7nvvvuo/XWW49e+cpX0u9//3tasWIFff/736cFCxbQP//zP5eeI6LseXD55ZcX9qnDJO3Ye/DBB+n000+nbrdLV155pdfn4IMPpvHxcVp//fUpSRLabrvt6AMf+EDO1GtFKUWDwYD+/Oc/07e//W1ae+21vfO5OqUFyQI5+eSTad68efTXv/7Vtf36178mAPT5z3/etRWBpBCC7rjjDq/9BS94Ac2fP5/+9re/EVEGks997nMr9RkOhzQYDOjQQw+ll73sZa69zNxaBJIAcr6WnXfemV74whe69fe9730khKC77rrL6/fCF76wEUh+5jOf8dqf85znEAD67ne/69oGgwFtvPHG9PKXv9y1vf/974/q+ba3vY2EEO4hd/7550dv/BNOOCEHfjvuuCPtvvvuOXP2i1/8Ytpss808s1ORLF26lAC4vyOPPJJWrFhRuV9MhsMhzZ8/P2eqCsUC2a233urarC+u6q/sgTccDmmLLbagHXfccUL6ExFde+21JKWkd7/73V77DjvsQOPj47TuuuvSxz/+cbrhhhvok5/8JM2bN48OPPBAZwb9r//6LwJAF198ce7YH//4xwkAPfTQQ4Xf/+Uvf5kA0Nlnn+3a0jSlDTbYgA499FCv71/+8hdad911CYAHQEopOv3000lK6c7bVlttRbfffru3/wte8ALaYYcdonr0ej16y1ve4rVddtlltGDBAnfMefPm0Te+8Q2vz1lnnUUAaP78+fTSl76UrrnmGlq8eDE961nPovHxcbrzzju9/nfffTftuOOO3jV+5zvfGTVDc/njH/9ICxcupL322qt0nNcBSfsMsHrze9nKaaedRueddx796Ec/oh/84Af0jne8gzqdDj33uc+Nfr89DwBICEGnnXZaqQ4zKS1IFsivfvUrAkBf+tKXXNv73vc+Ghsb8976i0By1113zR3TgtbNN99MRBlI8hucy/nnn0+77747jY2NeTcFf6hNBCQ33XTTXN/jjz/eO+4+++xDu+22W67fhRde2Agk+Rs7EdGrX/3qKDvYf//9ac899/S+f+edd84d92c/+xkBoPPPP5+ItO9i3XXXzfWz59aC5L333ksA6NOf/nSObVm/4q9//evS30SkWcOtt95KN910E5199tm02Wab0b777utefJqIHWOcBTz++OP0//1//x/94Q9/cG3Wl8TZ1n333Ue33npr5d9vfvObwu+/8sorc9aNJvKLX/yCFixYQAcccEDOd7T99tsTADrrrLO89s997nMEgJYsWUJEGUh++9vfzh3fgiQPXuFy1VVXUa/Xo1e+8pU5kPjQhz5EAOjMM8+kP/3pT3TvvffSUUcdRUmSEAD66U9/6vp+9KMfpbXWWovOPPNMuuGGG+jyyy+nF7zgBbTRRhvRbbfd5vq94AUvKHyh6PV69Na3vtWtX3311bTOOuvQG97wBrr66qtpyZIl9M///M/U6XToa1/7muv3sY99jADQzjvv7LH+hx56iNZaay3PmnXffffRM57xDDrwwAPpO9/5Dt100030yU9+kubPn09vfOMbo3oRET322GP0rGc9izbZZBP6/e9/X9iPqB5I/va3v6X//u//pssvv5xe9apXUbfbpW9961ul+xARffrTn869IFtZtmwZ3XrrrXTttdfSKaecQr1ej97xjndUHnMmpAXJEtl7771pv/32IyL91r3ZZpvRscce6/UpAsnDDjssd7yrr76aANBll11GRNmDnJtfrHzmM58hAHTiiSfSlVdeST/96U/p1ltvpSOOOIK23npr128iIBlzqL/uda/zjvv0pz+99DfUBclHHnkk9z1rr712rn+o19Of/vQcEyDS0cQA6F//9V+JiOjQQw+lZzzjGbl+d999tweSP/nJTypZ149//OPS3xSTn/70p9GIxTpy8803EwDvrdnqfc0117i26667zvvNRFNjbn3Zy15G3W6X/vSnPzXW/bbbbqMNNtiA9tprL8/aYmW//fYjAB7IEBHdc889BIA+8YlPENHEza3XXHMNjY+P01FHHRWNLB4MBvTud7+ber2eu75HHXUUvfnNbyYA7iXk17/+NQkhci8K/X6fnvGMZ9Ahhxzi2uqaW5VStNlmm9GRRx6Z6/va176W1l57bXryySeJiOiLX/xiLkDIyv7770877bSTWz/uuONok002cfta+drXvkYA6MYbb8wd489//jPtsccetOGGG+ZYaUyaBu4QER1xxBG0/vrrV1pili9fTgC8YKwi+bd/+7fo+Fkd0gbulMgb3vAG/PSnP8Xdd9+Na665BsuWLcs57YskFjhi20KneiwY4Rvf+AYOOeQQnH/++TjqqKOw7777Yq+99sITTzwxgV/SXDbccEP86U9/yrUXBcRMx/cvW7Ys1/7QQw8B0EEctl8dPW3/U089Fbfeemv07znPeU5jPffaay9IKfHb3/628b42AOMvf/lLTm/+221ACg/YeOMb34hut1v5d+ihh0a/++GHH8aVV16Jo48+GptsskkjvW+//XYcdthh2HrrrXHdddflAkkA4FnPelZ0XyICkAWLPP3pT8e8efPwP//zP7m+//M//4NnPOMZXqALoPMfjznmGBx88MFYvHixC1jh0ul08NnPfhaPPfYYfvnLX+Khhx7ClVdeiQceeADbbrstnva0pwEA7rzzThAR9t57b2//breLZz/72fjVr37l2nbbbTc88sgjubFldd91110BAH/605+wbNkyFyjDZe+998bf/vY3F0xXdJ7sueJBNXfccQd23nlnrL322rljAvB0BfS4Ouyww3DfffdhyZIlpd81Gdlnn33wl7/8BY888kit/nUChey5m8h9NdXSgmSJvPrVr8b4+DguvPBCXHjhhdhiiy1w+OGH19r3rrvuwp133um1fetb38K6666LPfbYo3J/IQTGxsa8tl/+8pdYunSp12b7/P3vf6+lV105+OCD8atf/Qq//vWvvfZvf/vbU/o9RXLooYfi17/+NW677Tav/aKLLoIQAs973vMAAM973vPwxBNP4IorrvD6fetb3/LWd9hhB2y//fa48847sddee0X/1l133cZ63nTTTVBK4RnPeEbjfbfffnvMmzfPS1r/6U9/ivHxcfzkJz9xbXZ59913d20f+chHCsGe/33pS1+KfvdFF12EwWCAN73pTY10vuOOO3DYYYfhaU97GpYsWVIYkfmKV7wCAHD11Vd77TbxfL/99gOgwewlL3kJvvvd73ovgA888ABuuOEGvPzlL/f2v+6663DMMcfg//2//4fLLrssd4+Ess4662C33XbDZptthttuuw3XX389TjrpJLd98803B6DPO5dVq1bhtttuc2AKAC996UshhMB//Md/eH0vvPBCzJs3zyXKr7/++hgfH88dEwCWLl0KKSU222wzAMC+++6Lpz3tabjuuuu8ggwPPfQQ7rzzTneerK533XUXnnzyydwxAXi6WoD83//9X1x33XXe2JlKISLcdNNNWG+99aIRtVzseeO/qUhuuOEGAJjQfTXlsnqJ7OyXV7/61bTJJptQr9ejD3zgA7ntdaJbr776ahfdas1MRJm59dJLL80d9/TTTychBJ1++ul0/fXX03nnnUebbropPf3pT/fMovb7dthhB7r22mvp1ltvdebVyZhbH3zwQS+69eqrr6ZFixbR1ltvTQDopptuKj1vkzW32ujWTTfdlC644AIXtSqEoH/6p39y/f72t7/RM5/5TFqwYAGde+65dO2119JJJ51UGN06NjZGhx9+OH3rW9+im266ib73ve/Rxz/+cXrlK19Z+nu+//3v09FHH01f+cpXaMmSJXTVVVfRmWeeSRtssAE94xnPyJkcURE0Y+XEE08kAPSe97yHvvvd79Imm2xCH/rQh2h8fJwuvPBCOvfcc6nX69GznvWsWoFFdWXHHXekLbfcsvCY999/PyVJ4vm6fvOb39CGG25IG2ywAX3/+9/PJYrzxH8iope85CU0NjbmopvPOussGh8fpxe/+MVev7vvvpvWWWcdeu5zn0tXXXUVffe736Vdd901V0zg5ptvpnnz5tE222xDP/rRj3Lfz6NmbaDQNddcQ1dffTWdccYZtNZaa9FRRx3lmaDTNKW9996bxsfH6fTTT6cf/vCHtHjxYjrkkEMIyOcU2mICn/rUp+jGG2+kD3zgA9FiAieffDIBoEWLFtGVV15JV199Nb31rW8lIJ8kf+mll5IQgo466ii68sor6ZJLLqFdd92VFixY4OVEXn755SSEoP32288VE/jYxz5G66yzjlfQ4qmnnqK9996bhBB09tln585TmGd566230qWXXkqXXnopbbnllrTzzju79fvvv9/1O/roo+lDH/oQLV68mG688Ub61re+5YoJcHP5j3/8Y3rhC19IX/ziF+m6666jK664gt72trdRkiT0/Oc/3xtzp59+Or31rW+lb37zm3TjjTfSZZddRieeeCIlSUKvetWraDZIC5IVYv1BAOi3v/1tbnsRSB511FH0ne98h3bZZRfq9Xq0zTbb5PxWZSC5atUqeu9730tbbLEFjY+P0x577EGXXXZZDsyIiH74wx96AT6ve93riGhyIEmkA0sOO+wwGh8fpw022IDe9KY30X/8x38QgEr/xmRBkojo//7v/+g1r3kNbbjhhtTtdmmHHXagT33qU7kH+x//+Ed6xSteQeussw6tu+669IpXvIJuueWWHEgSEd1555107LHH0iabbELdbpc23XRTev7zn19Zbebuu++mV77ylbT11lvT+Pg4jY+P04477kjve9/7cukbTzzxBAGg448/vvSYRPqBdsIJJ9B6661HCxYsoJNOOomItE9m4403prXWWouOPPJI+r//+7/KY9UVGywTS5GwYosx2LFElI2nor/wXD/11FN0yimn0JZbbkmdToe22morOvXUU6MJ4j//+c/p0EMPpbXWWovmz59PxxxzTO5hbsdU0R/3k//Xf/0X7bvvvjR//nwaGxujXXfdlT796U9HiyH89a9/pdNOO4122mknWmuttWiTTTahQw45hK666qpc336/Tx/+8Idpq622ol6vR8985jPpnHPOyfVL05S+/OUv01577UXrrbcezZ8/n3bffXc699xzozpcdtllDqwXLFhARx99dC6ynEi/6B1++OG06aab0rx58+iZz3wmvec97/HSb+y1K/rj15SoPFKaX9NPfOITtPfee7u0jg033JBe+MIX5tI/7r33XjryyCNpiy22oLGxMRofH6fddtuNPvaxj+Wu/RVXXEGHHXYYLVy4kDqdDq2zzjq0zz770DnnnNOoqMp0iiAyToJWWqkhb3nLW3DxxRfjsccei/qCWtEmxRe/+MW48847sdtuu61udVpppZVJyNSWSWhlTsmZZ56JzTffHNtttx2efPJJXHnllfjKV76CD37wgy1AlsgNN9yA448/vgXIVlqZA9IyyVYK5ayzzsKFF16IP/7xjxgOh9h+++3x5je/GSeddFJhKb5WWmmllbkkLUi20korrbTSSoFMawrIj3/8Y7zkJS/B5ptvDiEELrvsssp9brrpJuy5556uKPgXv/jFXJ/Fixdj5513xtjYGHbeeWevCHIrrbTSSiutTJVMK0j+7W9/w7Of/Wyce+65tfrfd999OPLII3HQQQfh9ttvxwc+8AG8853vxOLFi12fpUuX4rjjjsOiRYtw5513YtGiRTj22GPxs5/9bLp+RiuttNJKKyMqM2ZuFULge9/7Ho455pjCPqeccgquuOIK3H333a7txBNPxJ133ukSZo877jisWLHCS1I+4ogjsP766+Piiy+eNv1baaWVVloZPZlV0a1Lly7NVbR54QtfiK9+9asYDAbodrtYunQp3v3ud+f6fO5znys87qpVq7Bq1Sq3rpTCn//8Z2y44YZtAEorrbTSyhooRIQnnngCm2+++aTmxKySWQWSy5cvx8KFC722hQsXYjgc4tFHH8Vmm21W2KespuhZZ52FM844Y1p0bqWVVlppZfXJH/7wB68k31TLrAJJIF/s21qDeXusTxkjPPXUU3HyySe79ccffxxbbbUV7r333gnV65wuEdBlLmaTtDrVk9mm06TsI6Smp39FP1HnOKriLE+RLtMmIsJ4eJsUILsupPubDWNrto3xJ554Attvv/20P8NnFUhuuummOUb48MMPo9PpuOK5RX1CdsllbGwsWgh53XXXxfz586dA80zCgVQ0sGZywLU61ZO5pFMjkJwqYCnZXgqAqmBb2T4F20RZiMUk9J+UVAAj2Rd8Do5SarDkf5j8uJtLY9y1T7PLbFaB5P7774/vf//7Xtt1112HvfbaC91u1/VZsmSJ55e87rrrcMABB0yJDpMdHOG+RRc/7Ff2va1OrU5Ndap38EmARlNAbAKEkbYo+NXct1DXGqBYi92Gh42BojugzC0LB45k9lcASd0egKWYJKucS2N8pqJJphUkn3zySfzud79z6/fddx/uuOMObLDBBthqq61w6qmn4sEHH8RFF10EQEeynnvuuTj55JNxwgknYOnSpfjqV7/qRa2edNJJeO5zn4tPfOITeOlLX4rLL78cP/zhD72phSYqsYtt25oOhFj/sv2bDMBWp1anKp0qZSIAWMjeaoBiDfDKAWG4T9P1It2Kfl8RkFftH4Bi9OEt8+AIIG9ahQFNQXmwlB233Z6pUR7jM8Z0pzMF5MYbb3Tz/nF53etehwsvvBCvf/3rcf/99+PGG29022666Sa8+93vxl133YXNN98cp5xyCk488URv/+985zv44Ac/iP/93//F05/+dHzsYx/LzTtXJitWrMCCBQuwfPlyZ26d7NvQdJgnWp1m5phzUafSt+wmIFgXeKpAsQkglu2bO07JfjWAujZDnagEAJozrUrpredMrELqfWQnY5Wy09hPORfH+IoVK7Dpppvi8ccfn3K3GZeRLEsXA8mpkKI3qDqDYbp8AK1Oo6tTVCZhosyBYwNgrA2KBcuFYKjKAJQKt9VhobnvbSA5k2vEzJoBo/BBU+T9kSQTvZx0Jg2Uc2WMP7FiBRbOAEjOKp/kTIsIlic7CIps53WOG5pPWp1anSajU/0vqWMGbQCOTYGxCSgWAGIhGMa+o+jYRXrWaXcHzoBQFLR7jNGsa59kqkGPlG4LwFJoxTWgWHCUnUY+yrk2xmeK3Y00SFLBcpEU2d/r7l/n2K1OrU5ToVNU6rCnMkCZCDhOBBhj32naoseOHK8QCEtNt/5ZpzTFZEQkiVlKMzMrwECPRa2ywBwIyoMl24+EysYOA8pRG+NzInBntkt4kqvejGJvUEX9675xhYOvqdmh1anVqahfYylickCxWbMKHCtAMgeMke9xxw37lh0nCpyZfh4AKr3sroGKgGPdoB7A+RlpaHSTCduml0WS6MAc3cGAoywGS2TsMweKAaMclTHeMskZkCKKX/fCWymKyprIAGt1anWaSp2yAzTxH9YAyOkCx5rAWAiKEb0sIHLwc8sh+MX6TFAsOBIGDhyBgQZRZdZl4gGmBUvth+xkYAlAyIBRIg+UwPSOp1k9xqdJRhokQ+FmgLoXp4njuWq91anVabp1ikoRQDZhj2WgWGYCjYHjBIGxCBRzgFgEhPz3BgDZxPRqzayEgW6QCeCWJYRMMuCUKWhoAJUDppAQpHTah12mxJlp7RiBPV8J61sjRWTkxvgkZKRBMjS3UrBcx0RQtD128Yvs82UDpdWp1WkyOsW/pCJwpWb/QrYXaavFHOuAYwQY64JiKVhGzK9e3wZCwwwQnXAzq2OWgww0pQJkqhkmA0tBCpA6otWCIskku84hqzSRrxYoR3aMT6GMNEhWneiq7UU29CYXtumbUqtTq1MTnZpIaZAOgJCx8bba7K8mOJaxRs4Yy4CxECwtIEZMrj6zDNhjXcAMZ6QwgChkogHUbrdgaACyECyBjB1yULRME2Y8kIKQHd2vxE85ymN8IjLSIFlHyt5ayt6oYn2n6g2o1anVaSp1AmqYWacKIGM+x9h+EfZoWSMBhSAYbSsAxaxvQ7C0wtlnksT7cIBEAJBSZaApE30MmWTrna4DS3Q6Gas058iaX8mcJwuQoZ+SM0pgdMf4RKUFyQopu0B1L2CV+cEeq6pPq1OrU12dinduYGqNmVGLtpUBZBV7nAw4ciZZBIwxUAzbbDvggR+V+Ck9sSZWKyxQxwXcJAnbNvAAUUildeHs0qyj04VQKUS35zFI55OUShcZQMRMWSOXck0d46G7bLqkBcmINLmQk33Tsfs3MVO0OrU6NfquCjCMssjIPpWpGDGwY8eL7h+aVgvMqjFwjIKl6WvbC4ExAERqEtTj2gLQ5KkeLFDHmRRNcI4DTg6anEFaYORg2ellfTsWIDOwjAFkE6Asktk8xmeKYY48SJZFVFXZzFHQxt+6yo5RdMxWp1anqdRpUlIzJSMawVoEkEW+xwh7zDHFyHohaywBxhAUJxQBmxPGJplfMpcKYoDTRbTKVAOmZZQy9Vmk8UtqsLSs0g/g0eZXBZGYT/T88ZL0Mn3s70I7xuvIyINknRPe9MJQjeWy7251anWaSp3iB40xo+aRnPxYRSbWUoDMscoIewx9jjHmGGGN3noAjJOOgHVt2TkTSX6KLBfNCsQjWjEAmXXHJpMEotPLwLLT1Yy32/NYpej2NCAWMkoGlEI6n+XIjPEpkpEHSaD6baXowjSx08eOnTOLtDq1Ok2RTrX3r+FvbFzxZhIAyVmhxxZDUysDR32IACxD1ljGSNlxgQwMOQBy36RKI+cM8ImkBcyBLrsjpAQwgEiknwYSpoDIROuSphlYqjT7NH5Je05Epwd0ik2tDiiVZa+d0vE1F8f4ZKUFSUz8jWkibzV1zQ+tThNvq/Odc12naX+IxIJ6ypYnC5BhUE4IiEXMsYEv04KiBUQLhkVgWSbKAKbgZtdEmngdXZNVJEaPMKrVRbYqxiBVrs0BhjG/ZufZN7UK9EDDPkQHlUC5Jo3xmZIWJCMy2QtQ15Y/UXPERKTVqZ7MaZ3KAniqHv4lka5F6SNeFKvZN1d1py5ARnyPUfZYwhxjYMuBMQRFC4gUAUv3EyJtodnVrQ/0MqXStctEQqQKIkm9nElnZrXMstvNfJKAY5M58yvsC1JgagVA6TADzghQzokxPg0y0iBZ9LY9Eecw36fIDFHnmE2c5a1OrU5TLmV5kUV9y5bteoxZhv2qALLM9xhjjxXgyBkjB8YQFO2nCl4kYgAJwJldOThKKb02kUhtAg0AU3Y70RQQqBSi0zXgqPKAaaQQKGOfphDByI3xhjLSIFlmMpiI47ko6qvJsVqdWp2mUqdpkZgvEihnkbZvro3yQTpVADkR9hiAI2eNITCGoBhjkrXMroPM3KqQmVtFIiEZOHLAVKnKgaUATJAPHKv0xkDq+1mbACVYwE8dGZkxzmSkQbJMmlwge0HLBlCsP1+uMyhanVqd6uo0LVJVfCDWJ8YYQzNrmG9YS5Wa7LHArMrBkYMgB8a82TXTszB4JyI2iEeYmT9EKh1oCqUBswwsnenVfmZKGIbZ8645qRRybF4eKIMptjhQcllTxvhMBe+0IInJP1jCQVR1vFi/skHR6tTq1FSnaZcS82rMRBtjkf7hmrFIAI0Asg44UsAu9XKasU5etq4BSKqBZZFDxyxlIiFU4gNmIpF0OzmwTLodCB6sY36bM78iP14UkAdKHrzDATOYOWRNGeMzNdZbkET9N3P+5kJB/7LjlX1v0eBodWp1mkqdJiV1GGTdfSLBOhM2swKTAkgOjr5P0gfGqLk1AMnQ/CpkPHjHfpLKQJMDJqVKm2OlhOx1DFgqJL0OpPm9nE2K4Pzx9kqgNAwTZuYQCF/nkRrjJdKCZET4hQiXrUzVhQoHU5n5odWp1amuTjMuMR9dHXCtYWot80PWBUg1GEbBEQADTw2OPKo1F8QTpIc4HauiXE3qB/dTWvZISke4emCZSCilHLO035l0NVhyBi1sdCvM9be+SfhA6WYQCYAS6TDHJt3vsr8lWM9dI6y++266ZeRBss6bUpPtdQZCkbO61anVaap0mjXSlIUWFAvItucDdcoAMu0PS9ljGTjWSQ9xPzNmfh34QMkjWQFAKgnB2hQ3uTJmmXQ7oFRB9vRnopT2VSJ/7b11lXpACfQzALPpIHaeSgDUQS7i1ele9B0FfWb6vptOGXmQnOoTXed4VX1aner1aXWanu/MiZDNwY7vXuGPzCX557YHqR+mzU/tKDCxNgBI3i9MD6nKmSyMdmXMEYAX4eqlfxjA1O3KA0sOkLKXPbJFqiB77GXCvECE7LwQKNknhHBVecJAnlDm5BgvkZEGyaZ0vckbe6xvURtYe1NW0OrU6hTTKX6QyYHdpCUS1doUGP0arD64Rn2QEYDUptc4OGo18z5MffxikyulxVdSJFk/qQwwpvl8yRhYym4HMpFaD8MerV6WTUpUM7MyoPQmcg6q8qxxY3waZKRBsunFazI4Yrb8KhNEq1Or01TpNNMPEkgZ90s2FWtqDSTKIt06z5GMB+l4DLKEPRaBo88sySxnV6Aq2tWaWFMoyEQ44OSgiAFAxgdp2ylVoF4HgunC2WRmfg1yJRGMDztjiEwguj1ADDUICgkM+9rUKmTmr6zwUVbJTN530y0jDZJ1peyixKK6wgE6HRe11anVaUrFgpxlmzHWydtmipUGfslwEuSQReplH+RCE2tdgMwXHiAHjO7YHChLXhIE75doGBCJBCWkAdME9lhTqzI5ktJEt8peB2QCeez3JwFghnOQlLE4DkQCPUAN3TKlQ3192fRaTWVWjvEJSguSFVI10GIXtmoATDbQotWp1WmqdCIh4zOBuO2ivDQdMHWAGQbDhKbYNM33jbBIADlTK/dBNgVIC44hMGZ+yuz8qIjZVSbCY8ekDEimFAVMj0Wy6FYvyrXXRUwmBJRCQgwBMAbpIl4rZg0pOu5sGuOTlZEGyTomqbILU3XRwgFQR+oMhlanVqdJS1NgK2CRpSBr8u7sQ88JNa+ww4NRYn7MopJxroIOD9IpAUhlomE5ONrjq5RywJhtL74qabBNGGCUCeUAMwRLAF6upN7fh0KlNKskpSBTlXuoC/1letyYCaDdpxDZuE2FNrEKqduHcBGvIYiVyawZ41MkIw2S4RtLXcdxkUw0lLnVqdVpunTSnWoC4lSYXIUEQUGg+DtJCF2XdALl6LzjMFOrawuYJG/LpXnUAEgLjvr7QuAkd1y+XiYiEYBRlxKZA8wQLF3FnSBXMvu9KWTXZ5WGFOa/G5HxKBM9H6WQ+tqZ1BCYvuE8lLN2jE+jjDRIhlL3Yhe1l13IiTiyW51anaZapxiw1Ta5lgGkkNrW1yR4RyZ+uoKU1cUFSraHuYx+wYDUbfNAM/RfRgAyBo4hMPqTMsevikwEO30SaZpCJAIykUhTMst5sASGHqu0YoN6oucikZnp1bLGJAlYpTkmxvX1Y1GusIE71j+J+DidlWN8imXkQbIJM0BkPdYWe9OqOkarU6vTdOlUKDEm2JRNohpky1VISgNeCoVPl4UMpGLHCrd5eY+BD1IfMg6QnDkSM73WMbkCvtlVJHpZKuH2E4lw7JKDJQCQ6W9TR/S+oQcyE8smi3oIAEgysJRJApcaIqQO5An8kygoNMBl1o3xKZCRB8kqqXpzqurT5O2p7kBodWp1qqNTE5kwmwR8EJUSUIAzuTIdC/2SnEHKxAXoaACdmEk2ZmoN18NoWAd+BQDJ0z90/zyztOtlYk2uGYMkxzLJMEoOlgBYgA/TuVv++PaA0hY0cD7JjB1CJlkOpTCAWMM/WSSzdYxPVFqQnGKpG5VVx3TR6tTqNBmd/A4FptJYEE4Bm/QiXYNjOBCsyShzfklmeo36Ky14hibaOt/FTK1aRZ9FAr6ZNduWB8gicMzA078KHDztlFm2T8gg9TI5dsnbXYBPYH6tktTOOoKVRokIWLIcSgjh+Se9QgM1K/I0lSkb49MkLUgGMtkLUfbw5MeuMj+0OrU6TUanSpkgUJbt69YlytmkxzwZOHLTq0z099vPUGqAZSzBP1ZWLpwCSzmzahwgQ7OrPkY1m0xZgBFnk6TIgaIEY5cGGNGHC/AJza9WlMmbpEh0q5UkGeTHiQVLsyxk4vknAWSFBgLQdL8Fq+++mwlpQZJJme286UBoyjaaPGRbnVqdqnSKHyQCaA2BkqAysyuQAaj9XXWYpOuvzKrxjak0ML1Kvy2JACYzz5ZJkd+TGBMMWWTWxwdIzh45OMYq8fB2IAM7pNrEaoN3kMIUDqAsAraXAEizNiBnfnXHZcwyjG51eZbSBPOY8y0kq6gjE8MqNQi6cVrgn+Rl62bbfTfVUo+zT1LOO+88bLvtthgfH8eee+6Jm2++ubDv61//egghcn+77LKL63PhhRdG+6xcuXLCOlZFX1VdkPCtZiouYKtTPWl1aiDBnIHeOlsmu2zNcyL7JCGytmB/sm1SZn1tG99ud0mSfO6eTHQ7NIDyz+K2+o+ymH8y25Znke6cFAAkub6ZeZZSQtpPkfZ1bqb9s216u3J/rv8ghRqw9b4ybalbVwPdzx5ruLIP1R9CDYZIB0OovvkcDHS72ab7DUD9lcBwABoOgEEfGA7cH/VX6tJ0KoVQQ0ANgXSYLashxLCvPzFLx/gUy7QzyUsuuQTvete7cN555+HAAw/El770JbzoRS/Cr3/9a2y11Va5/meffTb+7d/+za0Ph0M8+9nPxqte9Sqv3/z583HPPfd4bePj4xPWc7IXiL85TcQcMR1+rlan0dWpVKaDUQL+fkDc7BoE/XhsUqmAVQYmV5lASFOKjjFOkSRR02pToYAR2mXuh8zaMoAsDOBRxVcpdSZmzRpdzmRKppiA8Jil800yP6YV66csEs4sUztNFzezJkkukKfKPwnqeFaEichU3HczIdMOkp/97Gfxpje9CW9+85sBAJ/73Odw7bXX4vzzz8dZZ52V679gwQIsWLDArV922WX4y1/+gje84Q1ePyEENt1000npJoLlqXiw8c+wvc6+omC51anVqYlOlRIDSsB/8JFqDpT2GCXfax+Ktq9wqQgsrcMF6hSYXEOTrDu8dGBnZ9Iok1waB6uoo9Jsm++b9AHS81EGQTlWwkmaJQM9kQikKoVI/ZxJDpYAjG8yD5IJgLQPhEDJK/OkQWk7kfStIoFfUro2zz8ppFcI3S0nvUmNx6m476ZbphUk+/0+fvGLX+D973+/13744YfjlltuqXWMr371qzjssMOw9dZbe+1PPvkktt56a6Rpiuc85zn46Ec/it133z16jFWrVmHVqlVufcWKFQD8k1znhBfZ3+vuX+fYrU6tTlOhUy2JpXBEWOVEgNIBYVkQDzuG/jrrKzOfiV3XU2bxlBAhE5BUjE3qmTNSBpDcf8nBs4nkJleuAMiwCg8AqAijVCqFlNY/aYubawAWUgfwKHf6MuBOeglSpEiQIO2zlwMHyhlQKgaSznxtK/fYYgPGDwkgA0zmn5RJApsWIoBS/2RMpvu+mwmZVp/ko48+ijRNsXDhQq994cKFWL58eeX+y5Ytw9VXX+1YqJUdd9wRF154Ia644gpcfPHFGB8fx4EHHoh77703epyzzjrLMdQFCxZgyy23BJA/yVUnnbME3ha72CFLLZJwwLQ6tTpNlU5Fb+n5nfK+Re6DtL5Esr5G6W/P+ShD/2OBf5L/Ffkm9adkD+4k8z9KqdkO900m0mNQep0xpRoSKw7AI1nz/fMAqRS5v5QQ/RukWR/rs6SUoAaK+Ryt3zIFqczPmQ5Sz29JSjEf5hCUKqTGF6n6Q6T9ge+zNNucL3LYz/knMRyABsb/mPbj/kk1LLUczMR9N90yI9GtQvg/mYhybTG58MILsd566+GYY47x2vfbbz/st99+bv3AAw/EHnvsgc9//vM455xzcsc59dRTcfLJJ7v1FStWYMsttyyk+FWmstibUexYIcOoY3dvdWp1mg6dit7m/cbAvxiaYHOskn+PYXDBe3cZo3TsBAAJbXaFqsEmIyZXkSR6zkXGJGWaMUsu2qRZn1XGwNIzwUYAEtBAqD+Lr35KQCIE0pSQiIxh2qJyCsqxSvR1JCxnkd5yD6BUgFKhAdCIkNKt2xcML+KV50kmGYv0zK5dqQGR+yf5splWq+iXTucYn26ZVpDcaKONkCRJjjU+/PDDOXYZChHha1/7GhYtWoRer3xeMykl9t5770ImOTY2hrGxsUp9+RtK3YvTxPFctd7q1Oq0OnQqBcxIcAYFXRxY2oIDdYGS+yet2dU9sJX/GQTyCJmaABPlfJgiSU2wi29aFVKafETNMikww6ImYJYF4gAZQMbAsbwIT8C3FGmwND5KUgSRCqCXQAI5c2toeg2F+yPVYKC/woBlmsi8f7LA7EqAA8eysnVWVtcYn2qZVnNrr9fDnnvuiSVLlnjtS5YswQEHHFC670033YTf/e53eNOb3lT5PUSEO+64A5tttlkj/cKHA3+DCR8eVW9IZRdTBJ9lOrQ6tTrNtE5U8KcPEJheWZuXJuKZWfNm1TLTK7F+zuwamFgdo7EmVtYvTAWxJtfQ9Oqdl5JtdYWzSM4ggQwgM/MqlfzpPn2l1/sGaJXyg4WcaTUl39wamF55egilKpcaQiozyaqBMbuqFDTsl5tdSRWnhSjDVNn5makxPt0y7ebWk08+GYsWLcJee+2F/fffHxdccAEeeOABnHjiiQC0KfTBBx/ERRdd5O331a9+Ffvuuy923XXX3DHPOOMM7Lfffth+++2xYsUKnHPOObjjjjvwhS98oZFuVW8lVdv5m0/Rcqxv2Xe0OrU6zRadPGAvCPX3WGVgfq1klBIQih/AtAFxs6tlk0CeTcrUpYLoIBjpTK6USAilzbEi0RMac/YozbRUtiaBTvIvPjM8YCcUC4jhsl2P76NNreZE+GdLEWBMroAJ4ukDSU9GGaXL2ZQEkRJSZma1JteUsUi7bs2uGA6amV1lB4JMsXc1rCxZNx1jfLpl2kHyuOOOw2OPPYYzzzwTy5Ytw6677oqrrrrKRasuW7YMDzzwgLfP448/jsWLF+Pss8+OHvOvf/0r3vKWt2D58uVYsGABdt99d/z4xz/GPvvsM+X6l9nAqcYyb5sqe3qrU6vT6tAJgDaveQ3GVwkAifFXKrtvfaAk2XFshISC6PaAQd8zu0ImEB2AhtA+SuublKmLdhVJWmtWEQ6kofmValTwqZIQLLP2ojPNwdGua0aZEJAY82vSS0qBMiYyUZ5Pki9Ls+7MrlJq9lhmdrXRzYZZuiLoSjoT7Gwb45MRQVTiVZ6jsmLFCixYsADLly/H/PnzJ3ycqbyA4S0ymeO0OtU7TqtTveNUPdbtA9Mua6BU3jZBlPWzZjvTT6g00j4EhtYMaKIvldJmP7NuK8aQqR5DQ71N9Qem4gyrPtPXFWiy5SzCUw2GphqOjhDV1W1MlRxvWbl+PGgn7acsitX3SdbxT/IKc4kJaLRtiRBIRPYppQZKIbW/MunpIgRJN9HtbDnpSXTGO2Y5gex2kIz3kHQ7SOaZz/Ext94Z7yEZH4PojQOdLmRvHGJsHkRvHGJsXH/2xoHeGJD0QEkPlHRBnZ5Zz5ZRMG6mcow/sWIFFm66KR5//PFJPcerpK3dGpG6F3Iq3nS4T6jVqdVpTdLJsULrU7QVd4BKVklSV2wRGOrjqKzdmvPQ6QBDQJinFA37ntm1jE3aAJ4yk6tIJITKm19FIrL6qVXnp9DsSrnlYnNreFaBnNmVm1/7aY5RUqLBOukloERBpQIiFUgHfqEFNRhCJhKqb9hkkujz0B96ZldXbH7Yj5tdeZGBGkE8iPyaiUrdMT5VMvIgWRZRVWUzR0FbbHjHjlF0zFanVqc1TSfdyMDSmGC1dVYn9hMpgETmh4QBRQOUdptNUIcaOqB0INgp+O5g3cIxKeWBIY9y9YBUaaChRHjBrjoQiIAUsCXkqnyWVmIm10pDMIULDCALgFKkIltPNXByEVI6/6RIJFIHkBJpf1BsdjWgCaU0ay8oMpCbe7LC7DodY3w6ZeRBss4Jb3phqMZy2Xe3OrU6rak6OWZpPsmaUVlgD0lAkAFTNdRAKZRmISZwh9TQA0oHEUNk/kmpQNKyynwQj0gVZLejg3lqsEmR2HaCTAiUSDe9lWTL3nmryTgBHyBjvslEiKyPB5blQJn2Uz1jiFeBR0BIE8QzsL8hy5+07NGmhaQm2lcNhlCJRJIMshquiSngMBy4qOJcbVdmVielANmsrutkx/h0ysiDJFD9tlJ0YSbi94m9JcUeUK1OrU5rok6OzQUVfIgUIDJ/JZHSjNKYXUkNIZKOD5Skg3aghqZqTs9ji96ySovNrgYoi9ikGhT/Hl07NWOOFiybgGNIOouCd7x2W2yF+C/NA6XkxdUB/QIghQvkEYk2u4pEZW2B2VVICeFYpIRKFUR/oKNdw7801XmpKoUkcuCIdBhlkyFQTuUYnylpQRITfwOfyFtNXfNDq9PE2+p8Z6tTve+crE5hNCwBjlWSBJz5VXYyULRAaaNe7X6ATg3hKR/WP9np+d8BACp1rFH2NFBG2aTMm1xJ+X5J66ckZed7zH6lTCRUxQTQliHWSQnRh6eMWZYApUx1eoiNcqWUvGUV+CSLzK4WMJU9F4l0uZPO7GqBsohNxirxyE6WT4vpHePTJS1IRmSyF6Cub2ii5q2JSKtTPWl1qidNdRLMX+mxSguIJDPTKwDn0wyBshsBQ/s9KvXNrp0uJGAmUdZAqZTKsckqkyul5CZ2tn5JwLBKA45S1vNTWinrqkvV1QTKFOja0nXSD+RRqcqZXWWSla2zrFGmygBnos9PEMQDpSYXxFPD7DodY3yqZKRBsoiyT8Q5zPcpMmvVOWaT4ItWp1anNUUnB2gcLK2J1ZpfAQaOQyDp1AJKpCmEAUXPFKdSkNR+SWXMrYkzvWZs0rUVsElrcrU+yqz4gJ6xoyjCtUiq8iYTIVgfsyBEFCh1vVcCoCAS4QJ5rNmVUspFu+qXAA2G1vQaBvGQAUYa5IN4XN1c+2fSfsim/sgg1YdXZ2IyVWN8umWkQbLqhm76Zh7bp+mxWp1aneaqTo5VAhoojYnVskqNASI7lgFOgmaaHjx0e67gObqBr9L6JztdZ3ZNuvpRR6lyoMjZZNLr6EjYEjYpzPyO1uRqzbH2M7DCVkqVb9KCpc2ZjDFK/X15/ySZyZtDNmnL18lEaPA0AGmDeGzJOpFIxyaFAUZygTv12aROB1HRSNepGuPTLSMNkmXS5ALZC1r2QIr158tNHjKtTq1Oa7JOrj0wwWpAUxngUbZMqY52deukIDr5QB6o1PdPWrBM/SAe2dOPPsV8ky4StoJNavMrDNBok6v1S+piANQILIvEmltTA4xJZOYkuw3MP6lkOZu0QTwiERBSuSAePb3WAHbuzQwwGZtM02ZsUg2jQTxTNZ5mQlqQxOTfWsKHUtXxYv3KBkWrU6vTXNTJtfGcOuGzR++7Fd+mgE7wwFSpb3JN9TpUCnR7uhKeAUgbxJP0ui6X0ouEDdikDX/JADOLchWpBiLulwzBMihtm5OiKjwhUFaZXWUCV3Tdskke1cpru6Z9BZkoXejcml8Nm7S+SQuYQqnquq5FbNKAJmeT0zWepkNakES9txa7HNsnfKOpe/HK3vhbnVqdRkknAnRepCtCoCMkHUsUEkIMA2iAB5RQaZ5VAtosa9aTgEla86tddpGwSnlsMunpaFEJxcyv2r5qp7OKmVwnyiy5mdUCpV0OgdIG+RSxSQlpSuj5bJJSocFRKvPSoDw2GfVNqrQZm1RDxFJCpmM8TZe0IBkRfiHCZStTdaHCh1PRMVudWp1GQifmqxQAy7tLcwDpTLS2Cg831QI6cAeAMO1QKSSAxNSVtWCpfZHZMhnTa2aK1WxSJ+7D+SatWdYG8MhE88XEAFh5ikf1eeNAGVvP2n02aYN4LGtEYk8Heb5Jziatb1JasGRs0vNNToRNsgIDZcXP60rshW46ZeRBsu5bbt3tdR4ssT51jtHq1Oo0EjrxoA8x9IHR+2Q+yQ4gMO6OYUETgGY5Zp1UFu3qzK6WSapYJOyg1Dfp2pBnk5ZFOo31W0AQmFMPMhqxScCAYLVvMmSTFiwpTaH6w2ljk1M9nqZTRh4kp/pE1zleVZ9Wp3p9Wp3q9VkTdfJYJZj51YCnB5RmPQRKpGkeLA1gJmnGJu2nNcV6kbC9RDOwgkjXqWKTRexyomwy5puMRboqu2zZYyRvUqYKqa3MYyNdOTiyKjxiOGzMJqdiPE2njDRINqXrTcxPsb5FbWDtTU1crU6tTnNVJweUSU/nVNq2kk90AKG6+gDMzCoAIE2df1L2NFhakJQGSKUFTaVcEE/Sk65ttrBJwE8J8Vim8U0mSZIBYwmb1C8BGgzJ+idTBUpTzS5ZQE9VFR6Dzo0iXa00HU8zJSMNkk0fBk0eNvyBYNerTFqtTq1OrU55nQSgGaV9uA772cMzWBcA0Ms/SB1YFvgnEwMMNtrVM8maIJ6kq517loVxNokekPY1IIVsEsgDYSygp0meZQiYYZqIMnmTDhhL2KQGRJEF76gs4lWmCioxn7ymawmbdDVd1bBWpKt3jdB8PE23jDRI1pWyi8LfdMI32zr7tzq1OrU6levkvtuaXzvQBbXt9g6KgdL5IzNTq17XYCm7qQNDa4JNDINykbBdm1Opza5JL/5ryZpjFUFCIlEpLEBqE2nGJm06iG3PmGU1UBaZXGPbSJEL3AHAAFPBbrC/i4OjkCrzRabsLwl8kN6fMcUO+rA1XWNVeNyfZzaf/vE0UWlBskLKTENFF7bqgdLUBNbq1OrU6mS+h/kpdUdToacDzVyGmT6iy47gASQDTKWi/klrduWRsHXNriLVKCVTAagAIGuYXYsAsK64mq8Rk2siM8R07SXpIJSmIJMrmUXAMh9kmrK5Jtl8k3yGEFOeLqzpGuZNRs6Sk8mOp8nISINknbFYdmGqLlo4AOpIncHQ6tTqVFfmmk4eUApdmNy2EaB9kkPoB7T9LpY/6SIy3Xrq+SdtWkgSi4StYXa1bFJBNTa7NvFPcuFVd7LcSrgoVyFFpm+ByRVdZJ/sxUCZwgpKKXM8lRUXMKXqRJLk2WRqZmfhtVtDNllwffnnbJCRBsnwjaWu47hI6vSt6tPq1OrU6lR+DAeUPNJ12IdNCfEKDACQY8a8yXxnAvADeQAHjIBhjmkWCVtlds0AU2jG2UfO7ArEza4hUALFhc/1Z/G55b5KG+Vq9SvbsdTkaszP3GdpQZFUcak6oVINjm5CZpVNzmzZJLcKFMjqZJHAiINkKHVv1KL2sgtp92l6sVudWp1anfLtDmCFBCW9PFBKlS2bOq+cQRKQD+TpppmZNWXBK4ZZAig0u9o2AEiRRs2uRdGuIVACQKxO60SF+yVVSZQroE2zsqt/J4JP4ufEvmyopDCAB4ZNaoD0g3kceKL6eq9uVjnyINnkjReR9Vhb7C256hitTq1OrU4T1MmYX0UnAMphH4Kyoui+yTUfyBP6J6VSHjhawNTrg0qzK3qJmXFDm117APqK/7o4UALlEzJXiTdziPFL6mVCUnIA7ZOV0SjXQpOrPnA0gCdXXMDmuXJmqYb62mFy42k6ZeRBskrCC1Pn7ZpKthW1AfUHQqtTq1OrU6CD7AAx06v5TpACOkrnUHJwBLwHvBwHgJXG3KqyYJ4AQJMeA57A7Oqkn4ISng/o+yeLgDKLhtWSscusjTPNOsDJwdKuF/kldeQrMlbJXhSamFxJ+QE8gjhAEig1hQcCaTKeZkJakJxiqfMGXNQ+XQOh1anVaSR0MoUHHFCSSRdhfbwcSs56mMhe6vyTYVoIAPepArD0/JGRIgOhfzIGlFpR3y8ZgqAFSBlpqyN2PsxQnK/V/sYu2G/Oolztb3cmV3SjJlehEi+Ah4QM0kGExyatNHUBTLe0IBnIZC9E2UMh5lOp872tTq1OrU41deI+SnNcJMpnlZFiAwBcIA/3T5alhWgAHXp+SoABpnEEpn2FBAlSpOggAQbFQGmjUjPza31JhN6njFnygudFwv2SNhVESd1my9RZABX8JSNncs3qufI/C4yuuIDwfZNNxtNMSAuSTMr8Hk1v4qZv0U0eHq1OrU6tTmWK+UDpjkcKoA4EKYguOUD0ao86k6HyHo7l/klyn5RI56tM+2muGg+QBfIUMsrgZIXJEj6DbHpyMikK3rG/EV14y6HZFV34wJhKz+RKShdD902ufv6k57OsaXqts20qpQVJI0U3Y9FbTNX+U3EBW51anVqdJqaTKAJK1telhpSIK1dX0z9ZJDyQJ+klQD8tAcrsl1hmGdVN2M9i9iiTor0L9DTBO0AGinyZA6ZrU9zsmr14CFu+Lk0BIbx6rkJk6SDOBBsBydkgLUgamewNX/A+CETWYzId/ptWp1anUdWJ0BAowymfrNl1Ev5JW43HST+tCZRW0+oz5Afw+Egp5cRopg3isb9LyMwvCVOqz26TaQrR6cLWchV6QxYc5ZY7CM2uMWZpi0LUHU8zISMNkiJYnoobln+G7XX2LbuhW51anVqdmulUBJTgJsBOD+jlOWXon3TtDfyTAFwgjwPGSqDkv8aHgrCwOZD5IvlyyCwto4wF7MSEs0j7m8O8Sc8vCTBA7FabXGMBPMzk2mQ8TbeMNEg2NR0V+U7q7l/n2K1OrU6tTlOnUxQobTqI3W6PF+T5yV7qzLEdAEPA5U/ydX1Iy7aKNeLAaEvXJb0EMiUXzMMnTw5/Ia/IE0sHKcI/MWFGmfklgSygh+dLen5JdI1/N2OejmXaKFcLhsiWBbEAngLfZPR3TehXNZeRBsnwJFe91cbefov6131bDh8cTc1YrU6tTq1O5Tp5QKkUkFDAKg1o9saz74wE8nD/JOCXsQuZpQomaU56+rhpP/VSRZSB4Q4SPR2VxyqdhtFfHcuVtCxSmgmgOXOUAYrWYZUhUMZ8k/yccb+kUNKPfI2YW3MBPOxX1x1P0y0jDZJFJqO6N62VIl/LRB4OrU6tTq1O06OTEBLU6WVtZEx+hmWihyzK1QJmgX8SQGV9Vy5pHxAJOb9lijQHlNImfzigDH91HtRCRlnIJtmGpswyNL3G2jOAZH5JdPOFBXRnbXI1y7Cfkbkmm75QTYeMNEiGwodl3YsjGvSvWm91anVqdZo+nQjQBbXNU48zF8tk5Ng8KF45xoAl909aU6sX8ZqqaH3XUGxdV5s3mfQkRCqQ9jXYWqCUAGOV4S/xJTS3chYppPAiXMNoVyGbR5Tm2CUzqwLw/ZJgAGpruepGL8pVkMxAs8Q3OdMACYw4SIbvUxQs1zHvFG2P3bixG7jqJm91anVqdZo6nQjQ1V2SzMSHRLmptUAqYJF5/6TESldoQDJza+iftIE8pGwR9CyLP+2nDiglAPQSUEpQUhdN175NDpb2F+WFs8eYmRXQplbf9FoMnDHJAyOLcO2iGCBDAOVmVc4ig5zJsijXmWaTIw2SVSe6aju/WEXLsb5l39Hq1OrU6jT9OlmgdPNOkgKItN+STI3X3rhmPxP0T5JSATCqoBKPBkpKCOhrEJaQzvyaJIkDSwABYLKfIn3ws2AoIoApZAaWssRfOSlJU5PxoRmkD6BZKgiv5QoAzuQq/HSQUGYSIIHiPNUplfPOOw/bbrstxsfHseeee+Lmm28u7HvjjTdCCJH7+81vfuP1W7x4MXbeeWeMjY1h5513xve+971p0b1s6JS9Dcf6TtUwbHWqJ61O9WQUdSITyINOT0/gnPRAna4Bzx7QGwM6XYixcYjeOESnC9Ht6s9OF7LXRdLrIBnvIel2ILsd/dnruHXZ7SDpJfqvmyDpSSS9RANlN3HbhBRmWTrGmXQTB2hJL4FMpP6TIv9ntxUApGWRnDG6fh6ASoiGxQeAjFXmCsfzNvMp7DyZFhg9hklZO6Z2PE1Gph0kL7nkErzrXe/Caaedhttvvx0HHXQQXvSiF+GBBx4o3e+ee+7BsmXL3N/222/vti1duhTHHXccFi1ahDvvvBOLFi3Csccei5/97GdTrn/ZW0vdC1hlOrLHanq8ouM0OUarU71jtDrVO8aapJMFSkq6QNIDyQ4o6WrwlB3IsXkQnR5Et6eBsjeegWZvHMn4GJIeB8ZuY6C0IGhBLelJD9Q4WOYAkwGj+5OiECDtcVzOpIznTurjaMAUiSwETweOvM2AIXHADNs4c4Rl8Sq3XmVWnSkAFUSRKbCnUPbdd1/sscceOP/8813bTjvthGOOOQZnnXVWrv+NN96I5z3vefjLX/6C9dZbL3rM4447DitWrMDVV1/t2o444gisv/76uPjiiyt1WrFiBRYsWIDly5dj/vz5ue1NbN6TtY/X3b/VqdVpKvdvdWJMhRTEYCXEcBWQ9vVyOoAYrgQGfdDKv4H6K0GrVprPv0P1V7q24co+0pV9qP4Qw5V9DFeughoMka7sI+0PoQb6L+2n+m+QIu0rpP0UlBLSgf5UqdL1VFW2rOw0VtD+vyrhRQMkY4sWJC1ASwOEDrB7BpANUFuw5wxZA37XZ82WSfe62pfb6UL2xoFuT7Pu3jhEt6dZeW9cF27oMvYuEyDpuBcTkonZ1tGfkZxJe+1WrFiBTTfdFI8//nj0OT5VMq1Mst/v4xe/+AUOP/xwr/3www/HLbfcUrrv7rvvjs022wyHHnoobrjhBm/b0qVLc8d84QtfWHjMVatWYcWKFd6flagpJrKt6K0ldqPyN+ayYxTd6K1OrU6tTjOjEwHQBdE1i4TseCZYdDqOOaLT1X/dnmaYhmU61mhZpQESDSrljJKvhxGpDryYGTZkkUWsUjJ2yVmkOwcyM81OtW/SSxmJLVNgYrVtfJ1dq3B9pn2S0xq48+ijjyJNUyxcuNBrX7hwIZYvXx7dZ7PNNsMFF1yAPffcE6tWrcLXv/51HHroobjxxhvx3Oc+FwCwfPnyRsc866yzcMYZZ0S3TfUbbnjMMp9JoRmo1anVqdVpZnXigTy2uACZHEozY4gYG4/tCQnE00IK8gu5pH0d3JP2tStUpMKxSiGFZpVQSGzEayIKC6lzgPPNqgwsGcP0fZiZSVUyM2uZlPovbZQrkEW4unZWxxXIUkHsviUzg8w0QAIzFN0qglqDRJRrs7LDDjtghx12cOv7778//vCHP+DTn/60A8mmxzz11FNx8sknu/UVK1Zgyy23zI4F/+SH60UXRlRsL9qHguXYw6DVqdWp1WlmdCLAK10Hm+iuzIM8UboQOs+frFkIvY5k5lQBIcmkhegoV8ssSRGQmELqBth4CbxYeoctGhACpGWRvs8y68vB0QGmYarZ9zU0QrIXBldIADBAyXInTS3XoihXfu1mSqYVJDfaaCMkSZJjeA8//HCOCZbJfvvth2984xtufdNNN210zLGxMYyNjRUef6JvuxN5q4ntU7etzne2OtX7zlanet85KjpxoISyLLLjz1DRG8/Vd41N1OyOGfgQVaoglIRIpStTByBXVECnhaiMVSLLnUxkogETKJw8mYMjgChAct+lBUWficaDdRpFwIZMmrFLHsWKIHAnlCZjZzpkWn2SvV4Pe+65J5YsWeK1L1myBAcccEDt49x+++3YbLPN3Pr++++fO+Z1113X6JhlMtkLUPSWE7ZP1JQ0EWl1qietTvVkLupEQOaflIkGzMSkhMiO808632QN/2Q04rXXcUEz1icpuwmkTf/o6XXuu9SRrybopitdFGv4J7vS80WGgTpxs6swoCgcc3Tnri4oygLELhERA0WWCsKjXL1rNMMy7ebWk08+GYsWLcJee+2F/fffHxdccAEeeOABnHjiiQC0KfTBBx/ERRddBAD43Oc+h2222Qa77LIL+v0+vvGNb2Dx4sVYvHixO+ZJJ52E5z73ufjEJz6Bl770pbj88svxwx/+ED/5yU8a6VZ2UzW9GLlggIr2OsdpdWp1anVaDTrZ4B1TXADK+CZJQXQJIpwrMTC7AvAKDVjJMcv+MGOU/RRAApHoqNaspqtEIgFKFFRKWYGBCkwKg3JiAMlTPXg/+ylzYKmjX2XEHFtXdIEBryGbBWR2zrk8/SB53HHH4bHHHsOZZ56JZcuWYdddd8VVV12FrbfeGgCwbNkyL2ey3+/jve99Lx588EHMmzcPu+yyC37wgx/gyCOPdH0OOOAAfPvb38YHP/hBfOhDH8LTn/50XHLJJdh3330b6Vb2RjmRoIHYPk2P1erU6tTqtPp0KjW7Sh1wIjoGOMdUzuwqoJ/1vAIPAJDKip9z4UApUkLaBwDlzK8uiCdJIKSZh7EkeAcIzKZeFGseIGWYS8n+gMzsmqv5WiOwp0i8Gq78mMQCp0r8kjMt054nORulKk+yqTS9sesGNrQ6tTq1Oq0enQSQy5kUQ5M7mfaB/iqdJ9lfCfV3lkc57Hv5k2owdPmTOldy4NpSkz9JqdJtqULa19GxKtWAyHMlbZ4kD9gJI2g5cIXgqJd9gLQsUhc0kMwU3MnWE+mKJcheB9K08xQXYfIi0elq0/OYqVLUMTmSwXZ0Oq6Ag8uPTDr+OsuXRCR454kVK7BwBvIkR7p2q5XJ3rzhzVZ1vFi/sH+rU6tTq9Pq04kACG52lR09rZbsOLOrmzexF6SGsPquVkLTq9cdQ0ibRNIDKBUQKYFSASXJmWAts7SmVsswY8IDc/R6licZAiQ3u+p9fBZpTa3uHHHGabdJqSdVlkl9hunNJym8dVvXNUwFaWpGnwppQRLlN2+4HNsn9G02MfEU3ditTq1OrU6rVycSUrMYOdSAyfMoudm1JC3EHauiWg5JU5JNKlCiTMFzmwgiISQyfyXg/JP62JnWsdk/bLsFR72eAWTS7XigJ4NSdHxdTrC+61TIdFkkqqQFyYjwCxEuW5mqCxU+CIqO2erU6tTqNPM6QUgvFUQkBhBtwQHVRVFaiEAWi1IJkolyn9ZPKVLFWKUCkgTK+CW9XMlIlZywuk4MHDn48Rqt+bbE7etYpgXTRE4osrWWBLOChHNM5n/19MjIg2StN8oG2+vcxLE+dY7R6tTq1Oo0szpZNimkAmSqwZLNRcnNrgim1SJAM0rATchcJHx+RrtuWaUFS80eAUqF6UthQZqchOCol4sBsoxV2qjWWA6lkJnJFYk2u05Y3MTLid+2mqrvjDxITvWJrnO8qj6tTvX6tDrV69PqVK9P4XbZ0UxPDSGogdkVAAxYym559R3LJIUxu5IByBAsAXiA6fZnTDUEsBAc9ffkATKMbtXrie+DZFGtoT8yf97MtgYiSOWKmsfaZlJGGiSb0vUmpp5Y36I2sPam5qRWp1anVqfp1YkACOufJNIBJXXMroAHlmWP+bQ/gOx1srqvidIzgYRgqRSQgAGm0ToSwBOWqhMyH5Bj1z0GycysRSwyZmp1QTsBYDogrRKlAJ6bac61M1qbVJCZlpEGyaY3XpMbO+bzqDIftTq1OrU6zVKdLJskBUE2b3IIUD7a1ZpdBaCXAQeWZY94SlOkGDqwtAwyBEuAMc6k3IzLgdD75OxR5pli0uvmgnWiLBKBqdWdL5k3ucoGZtjQvBrxSc6UjDRI1pWyixKLyAvfSqfjorY6tTq1Os2cTgRAJD3ApCRos2vGLGNmVwIcWPJKM0VASQaAFAPEKFgqBZFIva1GpCkHRrseNbtGADL257FIlvoBIO+PjBUNSJJm5lPLMCN+yZmQFiQrpMwMU3RTVt28k43Qa3VqdWp1mnmdAIBsEA/LnRRkpn6KmV07Xa2L8U2WAaWyfslEgdK0FCy1Ln5Fn1D8wgJZOofdFoKj80GybcWBPAGLtN9nQZH7I5swSP1jMjCMAONUXMcmMtIgWccnWXYxqi5UePPWkToDoNWp1amutDrVk7o6CR7E4+VOxs2uAtBg2e1mxzDHC4FSsMhWkhIiUUj7g2y7ZY8RU6sqSDEJ66/a43gFAwoAMjSz2io8IYs0X5T5RZmp1St2EPolG7BCF7yzGtjkSINk+LZZ1+lfJHX6VvVpdWp1anWavTrphSCIRwx1m5AgITRAGNMrAZl/0n6X0ukkIkk8oHS5klJBuXzJrmOVtg8xMLWfSUlgTKySjv4ZGTja9SIG6edPJhkQms/MV5n4wAnkwJT4vL+rMWq1row0SIZS90Ytai+7CScShNDq1OrU6jT7dPLYpFdswGeTomNMr8bkCpVCSL1uv0MgY5RpPwvaQX8ImGXLKilNgURqM+wk/ZJZ2boS9hjNn0wy8yn7hGnPTKyZqdXpwE2udcDR5kraCNfWJ7l6pMnbJSLrsbbYG2nVMVqdWp1andYgnWIpIUEQj8ciuX8yPK7MGKUNzgGgiwgYVmnBEkAGmIBjmJ6uSkXrp3Jg1D8hA0MA9QGy0w2CdmQUOKN+yyTJn2cRAGsNqeMqmyoZeZCskvCC1nmTpZJtRW1AfRNTq1OrU6vT6tNJA1vAJq2p1YJnR+l5Jzs9bV7tdN2DPQeUwz5EtwcJQEil00DQyfIjA7AUifQA0x3HpptwPyQvTF6QDlIEjjJnYmV+SG5mtRGtMRYZ+i21IlrfIlZYxhZbn+SaL3XegIva69yorU6tTq1Os0SnEjYphITomokiTY4kB8cQKG0fkZi+sWICjGXaSFheaYciTCxXPo4Bo10Pa7IWASRnkFEza8gieQCP+XT+SAt04WcdmWGgbEEykCYBAzEpuwH5satMR61OrU6tTrNcJyEBKUFK+GzSTM5MgAYQziJVasBEgbo91i719ykJCc0KS4sJRNJAVEFhASk5s8yzyTB/MsYeHSiyZdHtRsysbD/7+0NT60SAMajGA8ycybUFSSZlfo+mN3HTN9YmN2qrU6tTq9Pq10kICRLSmVg9NmnmnUSnY8DPRLQadkkAxBAZUOriPRAqMebcBCJJo2AJIIuE5TVbC9JARBIBycD0Gk6PVQaQotN1DFJ4fawpNsIibVRrxNTKo109E+wsiXxtQdJI0c1Y9AZatf9UmJVanVqdWp1muU4sV9KxSZnovD47QXOS5CJa3bKSWZtKWK3XVLPLCFjqzZGCAgVMMlZUAIgVFvDZX5Q9Gh+kB5CdXmZuTfL72nbHIjmTbACKq6vQeQuSRiZ7c3lvmMHx6rwNT4f/ptWp1anVafp0yrFJIR0wEmmghOzoftY/yXQFABoComMBMwUNzLqSEAY0OVgCcIAJ5IExVlRAhmbKXAAPN48GAAcUA2Sn6zHIMD2Es8kciwzBcRKFBqZbRhokRbA8FTcs/wzb6+wrCpZbnVqdWp1mqU4xBqlUZoIVEiSUAY4UQibatGr3V4n/mUrHKkOw1F/nA6avSqQ8XS54J5LsD9QHRy9IJwDISHCPq9UaAUevsAA7l4Vig3aovLD7VMpIg2RTM02Rn6Lu/nWO3erU6tTqtIbpJCQoMT5I+5CXUgOkZZIA0GGsdwiQVBDdHmjQ13mVQ/MpU50+EgNLIAeYnl5JZN7KsG6qDPYNWaRp4+Do+k8IIEV2nmJgKWW2rY600a0zJ2F0VNUbZOxNs6h/3TfT8CZtajJqdWp1anVafTrpztmDP8cmBXnbNYvrOeB0Ua0pmy1EaXCMgSXsPgwwfenqCFpPvRAkIwyStTcFx0L/ZcKCdUI/pGWRs8isWiQjDZJF5plGN0hBf8LEbsRWp1anVqc1SycBOPYIYkwp6Xj68E8oY3K1Ua12mwXIArDU1XR8wAzFAaiVwN8Xm8rKAaNpExxIY+tNATLGFO05CxlmCKKWma8mQB1pkAyFm3DqvlmGN0BZ/6r1VqdWp1anNU8nAnIBPPbBL6zZlW0nCR3IM+j7QCkT0KCf+w4hA7AENLsEMj8ml5BdhiZZDppJyCJ55ZxycMz61wTIEADXEBlpkAwvU27gs7aiG6toe+ymit3AdW7AVqdWp1an2a+TYzysuED2R3DRr2oIEsoHSpW48nRQJuWDsUrIxK0DAElToSdnbkUGoEAGglwYaHogyLblwLIkApbP/FEbIMtYZJm0KSAzK1VvlFXbvbe9guVY37LvaHVqdWp1WvN00l/G2STl2aTsAMpMqyU7IDXUoJimLmiHp3x4YAlkgAlkbejqajRcqp7qnElyUOTbGOgVMUe+bsHRS++oC5DR8yhWCyDGZKRBso6U+STK3jxjfav8G61OrU6tTmuuTs4yZVI+PDaZdEDp0JhbNZt0QGmCeWIpH57/MQBM990xNln2OzyfZAQU2XoY8VoIjuZ35/yPRQDpK1TMImcBULYgWSFlN1fdm6/STIPsBmtyvFanVqdWp9mjEw8y0Y5HxibNdpKAUPCBkhQgBDBkv03G8yM5YLrvjgTvlAo3t5blTAbtXnpIEhQJYCCXS/OIMMhcv1hfp28EVGdQWpCMSJObcLJvqXb/JiamVqdWp1an2akTN7k6NmkZo5SAggZPMKC00ulAUAKkqQZDmXjM0q7rrwl8jXXZZIOcyVh7EXMEkDO1egE6ZQBpJQzoYdtWV2Qr0IJkaTRclb8DBW387bTsGEXHbHVqdWp1WjN1co94ziYBuKAdDHU/40YkM2OIMJM1W1YpKDHl5wI2WZAfGUsFyf2+onxJqy/vE5hfLXjlzKi2rQoc7TmImGGzbWyfQK9c+wzKyINknbfEpm+tVGO57LtbnVqdWp3WUJ3sg99UhSGhIBCAiDTHIJGBJRjACpmZYIGMXQIMHP2iASIWwMMlNtdkLF+yDBTZZwwso0AXY4919mPgujpZJNCCJIDqN82im6KJPyN2bLscu/FandZMnUS4U8H3lvUbhfM0V3XSK9YPaeuMph5QCACQAJQlmzJjkZZVWqAlBRLwAdNKWmBiteAZMkeuIksNiU5VFZhBc9tyoBlnjm6/GNjG9g2+uwikZ5JVtiCJib9ZNrlJy/ap21bnO1ud6n3nVOkEFABe3QLMkZs9drwmv3M2nqdR0sn6JmF8kI5NApl/EsiAEmy7ZZEGKIUdR+aT+LgqTMiveKwL6f+eMkDk28uAEcizxpJ9KwEywnxXl7QgGZGJ3IRc6vo8JmpKmoi0OtWTKp1E0Dbp2QiK9g/AM8aeZvN5msj3zBmdDAvkbDIHhEYv3aTLzYEEBFHAIjPTLYAMNIGJjb3IS1kpILLlKCjm+kwdOBYea4ZlpEGy6D2sqS8k3KfoQTYZn0er0+rTyTORxh5MUzFtT/gA8BhDto2P2dl2nlqd+I4G3GxEKxhjNME6nnnVskoBA4qJNsMC2VgIJx2eCpCMASSAaJRpHVDky0XAGOvDjh8F7bLfMM0yI9923nnnYdttt8X4+Dj23HNP3HzzzYV9v/vd7+IFL3gBNt54Y8yfPx/7778/rr32Wq/PhRdeCCFE7m/lypWN9CozrVT5luru0/RYrU6rVyfB/uy6favnD6vKtjp/nhI1tzERkb/Yb6v6zXVltl+72aKTExvNWZY8b/qQ7ABJR/dNOrpdmnQLmYBkosF1Mn9JL9dmjx3+Ienk/4yeJDuZzsKAvv0M20xQTi6f0v7J7I9EJPqVn7PVJNP+zZdccgne9a534bTTTsPtt9+Ogw46CC960YvwwAMPRPv/+Mc/xgte8AJcddVV+MUvfoHnPe95eMlLXoLbb7/d6zd//nwsW7bM+xsfH58yvZu8PVYFEoTtOZMd6t2IrU7Tp1Pu2BMEPGGYQdEfqr4jti22T8nvKQLMUObKtZttOhEQZ2xhFGcRWArpAyYHTfvHwLPWX9LNt3W6cTBMOhkYBn9R8A1B0epndCwFR6AaHFczWAoimqwroFT23Xdf7LHHHjj//PNd20477YRjjjkGZ511Vq1j7LLLLjjuuONw+umnA9BM8l3vehf++te/TkinFStWYMGCBVi+fDnmz58/cZMKk1j0XJN9mmxrdZo6nXLAWLUM5MFuklJUv3LCbfa4vBvm3rWbzToB8F50BCmdosFecgSRb4mIfaJgvDUZgwVjJDp1VdE+Tcyysf0DNj0hk2rQtmLFCizcdFM8/vjjmD9/fr7/FMm0+iT7/T5+8Ytf4P3vf7/Xfvjhh+OWW26pdQylFJ544glssMEGXvuTTz6JrbfeGmma4jnPeQ4++tGPYvfdd48eY9WqVVi1apVbX7Fihbc99sYZu/GK/EHh22jdm8yacmL9W52mV6dKcKx6SJXlpNUVm8DNju8eHjGfpG0L/VIFD8Eyv9yafO3WJJ08Yf5JvR8L5nEH8AN1cn5I01aLUZX1KQPByHohGMbWywCxSK8mus6wTCtIPvroo0jTFAsXLvTaFy5ciOXLl9c6xmc+8xn87W9/w7HHHuvadtxxR1x44YXYbbfdsGLFCpx99tk48MADceedd2L77bfPHeOss87CGWecUVtvfhOFy1am4o3Tfpc9Hl9vdZoenTxTZAQQs7d81hYDxMmySSHzx5WyHDD5ek2gLJI18dqtkTrZoBWYMRUCpQCyQB3y9ole1zrXuiHgROd2nCwQFukxGd1Xk8xIdKsILgIR5dpicvHFF+MjH/kILr/8cmyyySaufb/99sN+++3n1g888EDsscce+PznP49zzjknd5xTTz0VJ598sltfsWIFttxyS60bqt8om2yvcxPH+tQ5RqvT5HQqBMcqYJzKiNYypmi/M2CYFHtoVgEn/0qs+dduTdNJABkrNMtum71MobvZIbbdJ5gs2aaHFEjlRMZ1QSuSo1iLDZa1V22bxTKtILnRRhshSZIca3z44Ydz7DKUSy65BG9605tw6aWX4rDDDivtK6XE3nvvjXvvvTe6fWxsDGNjY9FtU/FW2vR4VX1aner1qatTNCDHLoOBYxEw5nySEzsbJEQeXPmD1K5HwDIKlOF6AVCuydeursw2nSzrBOCbUNm1zC5VYFUIr69dLMPAMgAqSMyfNPurAL2pvsYzfXwr0wqSvV4Pe+65J5YsWYKXvexlrn3JkiV46UtfWrjfxRdfjDe+8Y24+OKLcdRRR1V+DxHhjjvuwG677dZIvzqRbWH/Jg/msG9RG1h7U3NSq1P18fWOQaoGIuBYAIw5UGzKIu1DMTiOB5oxhsjA0mOVDcyra/K1mxM6BQBZ6GtMZEFAWPV1Lq1t2gTgigJ8Sr5bTTNSyaYP6WmQaTe3nnzyyVi0aBH22msv7L///rjgggvwwAMP4MQTTwSgTaEPPvggLrroIgAaIF/72tfi7LPPxn777edY6Lx587BgwQIAwBlnnIH99tsP22+/PVasWIFzzjkHd9xxB77whS800q3pjddkPMR8HlWmmlanqdXJA0gGkoXgyKMO+b45ZaYgaEdI9z2FYMnNsCGrLGKQAYCuqdduLumUA8gCmVAh76b+x4KuquBHTQQDOXBOBOT4LpM91lTItIPkcccdh8ceewxnnnkmli1bhl133RVXXXUVtt56awDAsmXLvJzJL33pSxgOh3j729+Ot7/97a79da97HS688EIAwF//+le85S1vwfLly7FgwQLsvvvu+PGPf4x99tlnWn5D2UCJRb+Fb5nT8bLV6lQuAihmj1XgWGJqLWwrVETm+we+qkKwDFllGVBOUmbTtZsrOvkbSyKUq6Rmmg+XGOjF+pYxwanIDkwjhyiKR7EgyHcJAXN1AOW050nORgnzJMukzKxSZXIpunknG6HX6lStS5iMXwSOlcAYS+avrUiFSasq9yy2vax0V/iJ+ox7tly7uaTTRJ/npcBXo2+0X+QxXzaSpwIVyuKIwjsjBM4QDEVk24oVK7Dpmp4nOdulziAuGytV44iCzzpS50Zudap4KIVJ3ECWyG2258CxJB3E+46aIElVDLKo3TBLxypDM6phlF4wT4msKdeuyfeuiTrV6VMHBMM+IfjFRmcM8FQJCk4UH3PPU89U6m9VQWfJ9BFCuN/J2aXdZaYZ5UiDZPi2WdfpXyR1+lb1aXVqrlOp75GzR25WLQJHL2Bn4iwyvIdzoBkGdARtUwWUs/3azWWd7HFjkgO7qu0MRMJRyPEuBL/mJtbibTEpZYtsW0rks0G2JkT2mySy32rBMgaUMykjDZKh1L0pitrrmICavqW1OpVLjD0CzLxaBxyLgDEExbpVdmSeMfKbu5RlVgFlTMLoyZL+s+najaJOHKCoqL0AEIvAsOg44T7hfqE0Zd6xnThjTCkPohbwOGhywLQM04JlCJSrQ0YeJJu8XSKyHmuLvZFWHaPVqblOmQKBeTVgj55ptSwVhANXCIhNfJFhVxmaUyPpHAWfOaAM2GQdmY3XblR0slIFjhYYY6AYA0QfVPnx4uAZ7hNKEwZZxB6l0OAH5EHUgqcK+mu9yPUhyphlDCjtdZju1BMuIw+SVRJeizpvjVSyragNqA8KrU68UwQgY+yxDjgWFBNoWjyAQpT0ngz2oAwsYwepySjr+ibL9S1fr+ozF8bTdOlUtL0IHENgzPfPjhX24f1yfQs0m5B5NWSP5o60kawcRHPMkfKAmQNLiFKgnGlpQXKKpc7bZlH7dL0czTWdnJQAZM60GvoqbXukkEBlnmSF8KLVubQOVyAAri2X0lHmo7Q6hWxyCtNBqmSujafp1skBnGlXFAfHKmCsBZxma97M6q9PNKkhlr5Bgtj2TEEJ4ZlcY2Codc62C7M9BMrVKS1IBtLEOR+TshuQH7uumabVKf+9ekMNgGwAjtFUkNh6Q/EAEwFYSg6CJUUCYm2T0qkdT6tDJyAPkBwAfRDN2u2xcqAZAGIdvybvPxERwa+S4AxSGKao11OQA00OmIXMkUqAktX7JgTWpGmWFiSZlPkYmt4wTd9Ym9yoo6yT7tAAIEvAsXGO5GSEFw2wjy33Co08UJp9OChG2SQCk2sFiLbjaeZ1st/DQcwCZAiClaAJyoFiuT8z1GMysA8IVkBWCiC17SL7UjeZCQNNZdimpDhYclYZA0orq8Pk2oKkkaKBX/QGWrX/5IZiq1PRvqUAqcwtG/apAsdI4E6tiW4nUOsy6mNUKg+U9vuqlhsE8LTjafXo5B2DyAPIEAhtG2eNnDFyYMz7Ma1+jEV67LJAp4LfEP1tzLTK97PgaYHTgqYEoBAHS25mVUQucIcDpfsd8NnkTEoLkkYme3PxN8y6/hFU9Gl18rdFAVIN67HHEBwDYCxN/ShilAWszd7G0VQP18dUzkEBUAJ5/yQCNtlQ2vE08zoVSRQMWZsFRw6AITCGoBiaY/n3p5Fw0LJ0ECBfAAAAEkbjMsaov01HtwLCA0UUgqUknz3GgDLGJmdaRhokRbA8FTcH/wzb6+wrCpZHWacoQKbDDPhiAMlZJhCPcgWQi3Bt6pMsMW/mwLIoxSMClNFjN13H6r92sT6jpJMiMOAjzw9pJVU+OAIZQMb208ekQlC0gGhBMA2+sH66bwxYLWPMnp4WOG36hgeYJKJgKZFnlRwoZ5OMNEhSwXKRFPkp6u5f59itThGZBEDGolwLgTEAxLqpH7mUj0Civ70IKI0eAvDNrnYffk5qBPCs9msXOfYo6xRjjDH2WAWOHBiLQNGCYQ4k60buqAAMhXCmXwugiRBQaQZsiRQQAPM7Ug4sJZEDSiBjlSF7zK3zfUXe3zpdMtIgGb6vVL1Bxt40y9hPnTfT8CZtajKa6zpxFili4FcHIBmDFGzZY5bwQZHStPYDWCT+DPJFoOmAr8i3ScrYmVhADt9u+gjInMm1KF+yHU+rXycr/KpzH2QVQIbgGAIjB0W3zMYyn4lDNUQW7u5WzB/pTKVC90mJPMBMTOY/B0tFlkH6YKfPjQ+Us0lGGiTD4VLn5ortV+TXmMiN2OoUvLzU9UGqYRwczTGKwNFFnHJQtAFANcU7f0mSj2IFHHP02IbHHBnwhWZXfi5i7LEkeKcdT6tfJwBZBKoXrKOXYwCZloAjZ4whMFpAtGDIWWRtBslEsmhWZcanlMKAomF5JBzLtMMwBEsNfgVACeR8jiGbXJ0y0iAZCn+A1X2zFA36V623OoXKWFCsYJBFAFkBjg4YGShSDCBDJ04ISCqFkIk7J0AGll4xAfejWXCOWXc6IQKEMXMr39Ygb3IUx9Pq1ilfFACemZUDZEpUyh4tc7TgGAJjyCQnxyKFO54FRICzSOH6KKFBMU0zdqk7oTZQhmZXLi5NZDUA5kiDZHi+KViuY0op2h67qYrMiWU34CjqpDdETKwqnRhAVoCjA8YQDIsYpUoBGZpYs9/grScWPFnADuCbWN0J4LYtzSadiTaQQkAN+2Fmr91sHE+rW6dYH25m5QySA2SqqsExBMZyJlmiWET49FXVLFIDYyLcDoA0OpNwrFIH9+gzWgSUibmLYsCoAPh33vTLSINk1Zip2l7k/6hzUxZ9R6uTPajvX4z9NQHIEBxzwFjFJov0DCQGlo5VBkDpAaBrk+XgV8YqS/SZ6Pa5MJ5Wp05WFDImZpmhbifETKwhQA5SioIjZ4w+YMK0M6CbAJN0+5pFC5wxFgnmUresMBEaLO1JsKySIozS2ly1+TkDXEUMfFeDjDRI1pEyc2DZm2esb5V/o9XJbsgDXcgicwCphrl93DYAlKZ5cAyZpG2vIRT4AYusEt7DM0l8ALRRrEAp6MVMs1Mpc3k8rW6dQlGUZ5E2SCcEyEGqcuwxBpaA3c4jW4vBMtMla4vmRLJdXLqGNMyRCNIG64ABo6sjx86WygOlrpyTASWE1pWzSTI6JsIvhkcMUGdCWpCskLIBX/fmo+Cz6FhVfea6TvpAETNryBIbAGQtcIywyaYSMkgAgJQgleo2mYDSNANKALmUDncMwyYV4gE8UyxzdTzNBp0IcGZUvZx9WhapAAOMcYAcKOUxxYGiHGvUfSkHio5pBiwyTyop7wc0DVLoUnI2epUDphIGDw0wOmZJwrBNgNFFc2BASOH5KAUzuyZCnx97ceyyBcyZlhYkI9LkJpzsW6rdv+oYc12nIjPrlAFkCI4BMFIaAGQRYHJfpAG98Ld6v4f9fruvM72yvpOd7qqpzPXxtCboZFkkGQZpCw9YgBykGWMcpCpiavXB0TO/ljDJoijXkE3afaUBRQ6aHDAdWFoQ81gkMAByQEnQZldrViXSmxNwUFy9ZlYrIw+SsYFNkW11fRu2r91WdoyiY46iTnrBN7M6EysHwjKANOkhlGpgLATHEBibmFsDM2uUQSIARqW88x4C63TLKI6n2aCTNq1m/khuauUs0vUjDW4cILl5NVuOg2MaMMkMMEO9ikAy6GcAzc3/SLY2K0FJYdqZndSemZy5NQ+UUlHOP6nBkgCTTmJNrva7OcNsJ12eQalzrhu/IdZYLvvuUdOJs8jcxMkcOHmlHQ84s/YYe4yCYySitU7Ajt4nS/ko/C2oBsocm2T7TqXJddTG02zSiR/bM7mSzyLJAORAqRxAcvOqXY6BYwiMsbJ0sRquXHhtVsWKlgMaNH3AzMAyIeRYpRICXXubBECphAbTjvFPcjYpDOaSOeGry8xqZeRBEqh+0ywaVk38GbFjuwdm5BijopMb+gboYgUDRGBGrQTI4cAHR0CvR8Ax80uG5tbg9TvIjSxlkEmSATIYUE5CvOAdoDFojsp4mm06WSAE4iwyJe2HHJooVmXALQTIgQHJIQ/cyYGlD4wWEDkwNgFJu5zYYJ1UA2Zihp6NxrVg2ZUyzypTeECZRcna81XMJvU5y0yuM0gePWlBEhN/s5zoG+VE2+p85xqpU2hm5QBpwTONAGcAkDTsR9ljCI45YKzDJiPs0fWXiQeWIYBSZLmQTdYFP1KAqA+8IzWeJvH9U6kTb+MFBSyL1KCm+1lgtEE6IUBqn6RpZ8scHENgjIHksAQkO1K4volZ5p+JDcwxdVgTN1St/VM5VqmTGfVI18UH9HHtsmJm15BN2sMJljPJA3kUZjZXsgXJiEz2jaWuz6PJ98xVnfSBis2sll06gLQVeHiAzqBfaF51ABmCY8gkbXvZ7+VFBALQzDFLG83KtueWY77JBnmQuqJPZbeozNXxNNt0AjSAWVOrXtcPem5mTS3IkQ7SiQHkQCnHHvWyD44hMA4jIFnGJNMIi+xwNmmBEmTSOEyhcUkBi4SeVNIA5SBVBlH1b4IUkGTKzhF5bBIQHggSYcJjfKpkpEGy6NxPxO/A9yky19Q5ZpOggrmgU1lR8hhwFgXpOFC0plYGjoABuNi6lTC6tYbkgNH+JrtSYWL1UkKidVon/748auNptumk+DLBlKDjlXXgzKyZv7EYIAdBcQEOjiEwxs2t8cC0REqvnwNEwyKHhvHZdgAZICoByyJ5u7T+dAgPHK3ZNcYmBZh51buZ7Dmcef/kSINkmWllIkEDsX2aHmuUdBIh8BX8WeB0plcOkNzEGgHIUnBMbdQre3DE2CQHO6UgIv7JIqAsWs4BKEWAskLqTL48SuNpNunkls2KY5OGRSqznKrMzKpY4I71QVqAdD5KlxZC6A+VB46hqdUCYh0mmbC5IzU4auC06xYYQ7BMpEAvkS5qdWBvJQkMFNA1y5LgwDExeZchm3T3CWmWzQsGKCII47OcaRlpkCyTJjeFvYnKbrRYf75c50acSzpxU2uURZp8SB6oE+ZANgHIEBwdMNYpR1dlWrW/yUSxunW+DfBTR2yRAW5yDYByMubUOjKXxtNs08mmdACMMYIXLLdzSmZmVv9TB+nEALKfZuC4igFlBpIqxyLLgDKJ+CL1MnmA6bFIJn0o0y5zQKlIOxh17VftnwzZpL0FtGnVf+VUWH3gaKUFSUzMpMIlvNmqjhfrV3ZDz0mdQhYZthWZWUn5ptQIQNr1KnBsUo6Ol6Hj4Beu54DSm5AvSwOxx3ImV3OQonkhczLJ6NamMuvH0yzTCYAuN8dMq1mbTtGwLDI0rw5UBpA8b9KuWwY5VKG5NQaYeZAMJTSz2k8esAMoDyxT0z7WycZhIsgxSguO0oBeamynSlGeTRKcyRWwQTuAoLaYwKyROm+cdjm2T3gd695kZW+yc1mnKhaZM7OySFYMhz4wcoAcDuLs0YLjFJWji4IjXw7Ms4XtE00LmUDO5FweT7NRJ80cLav0Ta0xFmnNrYrgciJTB5x5gPQZpArAMgPJWPBOkXDfYyyy1YJl5owEVg2VA8o+lDO9WnB002spIEk0WFo2Kc3ZUgpQQptcbZTrbJIWJCPCb6Jw2cpk3zj5d9nj8fU5rVNZygePZo2ZWV30KvusCZDRcnR12GQ2k6xhijrKNXx4lvohZZY7acGRuBm3rk9yisrXzanxNEt18oJzoIHLtnEWqcvQwWOS2acPkBYcNVjGwTH0T/LPMrEsMmVs0rI7Hyz1cq+jx24MKAcmutUG7ygyACkyNslZpX/OCUTCfebehmZYRh4k67xRNtle5yaO9al1080RnQTgscjSoB2eC2lTPSwgDgc5gHSm1hJwbMwkWepHEZMoBEqWMmLZpAeOKo2nggD5wJwJAuRcH0+zUafMvJoF6SjwSZXD8nPKBeooyhikLRoQA8h+4I/k5lfAj3C160USy4tMFTmzaifmixymUaBMTRCQ/i2Z2VUqQAntX8xMrcIzuQqZB0WbBrK60kFGHiSn4q206fGq+sxlnSxAVrLIiB+SOEu0AMkZZRlAhuAY1m+to3dwPqqA0rJHDY4ZG9XzCqW5Kj5lEvVTCqn/pCz1Y87l8dTkeDOlkwZF42vk6R7mc6j8KFW9DC9Qx+7bT5UDyL4DybTCN9kMJMPAHfuZMBbJwVKzSMMcGVB6rFUCMjC7OjZJcKbWiUgsNWQ6ZaRBsul5bmLqifUtagNrb2pOWuN0CvIiw6Cd6J/xQ0IpF9GaK0EXAGSu+g6QA0dilZ+pwNQqXICNgkikN/OHDeYJ2SMBOhhHZdNkeT5Iu1zXL8kB0ABjNP0jApRzfjzNQp0ImT9SL5ML2AlZpE314DN/WKAsAkjOIMPo1qqgnTqRrXFfpC/9ocoBpWWT7ngiK7guFTw2GZpclannav2SAuW+SaImV2tyMtIg2fTGa3JZQrNc0f5l5p+5ptNEWKTzQ/KI1UG/GCCd6TXCJG1eZGpzJvWnCqdJ4JIqyCQOPvz85AJ3LENlPswi0yqlKdAJbkULeFLm28ok6DOXx9Ns1knnQPqmVhuwk02anEW1KsqmyEoVKgHSN72Ws8hwwmWldCFyAEjTbFui4izSy4lk0awcKHmgUGK/V5Jmk/bdkLHJbg2KooDSCNeZgsmRBsm6UnYxYtFv4VvmdFzMNVGn4h2LWWRmZs0+efqH+6wBkJSqHDBSGUAaSR2LzANm3gcpMxOrZZN28mUpdcpH6JfkpyJkjbbNtlsWGZpaJxnQsyaOp9mqU6ryplad8mFKzqUZi8zKz5nKOjz1g/1ZgOwPFYYBOPJlICtzp8w6RcysIaPUkyAb8FQ+OHLpD01OZACOunCBzOlh2aQi4dVb9aJcmV+yGzmvdtqs1SUzMtPreeedh2233Rbj4+PYc889cfPNN5f2v+mmm7DnnntifHwc2223Hb74xS/m+ixevBg777wzxsbGsPPOO+N73/vetOhedmmKbsrYzVv3mHNap5iptYJFetGqzg/JzK7Dfg4gadjX7HI4AA36UP0B1GAIUgoqVUj7Q1CqXBspvRz+2W2klAbYVO9v++s2v6JPGFkbbqt3MiPsMQRCA5DR/SaQQ1m2bdaOp1mok3KsMTO1pkSFLNIWMk8dUJIDQ8siYwDJ/zwwTZVmpEMFUgRlPtOhKvwL+2WMtvwvBGsbbeuVxjPM2B2Psqm+YmIjgGeTTDtIXnLJJXjXu96F0047DbfffjsOOuggvOhFL8IDDzwQ7X/ffffhyCOPxEEHHYTbb78dH/jAB/DOd74Tixcvdn2WLl2K4447DosWLcKdd96JRYsW4dhjj8XPfvazRrrVuWnKrlelyaVmPy5zVacyU2sdFun8kBwMuQ8y8FmG7JGDow9yCqqfLfM/r52BpWJgyYEyXwLPfgZ1YmvkZXo+xxiLdP2kD6AiznRLv2uC2/j2doxnn9zUmirk0j44ixza6FazzVbTqQLIVAVgycDRA8ZU/xGRG7du/JL2laapztG0gMnB0pp9Q0AuCxoK2aRl1SEw8jq1+fM5e5BS0DR7QPfdd1/sscceOP/8813bTjvthGOOOQZnnXVWrv8pp5yCK664AnfffbdrO/HEE3HnnXdi6dKlAIDjjjsOK1aswNVXX+36HHHEEVh//fVx8cUX5465atUqrFq1yq2vWLECW265JZYvX44F8+eXOu8nGzQw2T5zRScBAGkfIh0CagihUvM51NNg8XWznQaaEdKw71ih54cc9L0gnTKAJAZqAHKfpb/dmFhFIvWfzNalWZe9rvY7SgnR6blPISXQ7UF09HbR6UJ0e0Cnq7ebdZKJBkHZAWRHrycdvS4kYD5tP8/MWsIgQzPkXBlPs1EnRSZyVRH6KaGvbOUcnQO5cphi1VBhpWGJK1P9adsGSuHv/TQKkKuGBWBlAM6Cm1LkglqsmTUGQlysf1LYTyEgpYAwf9LMJ8n9kvxzrCO9tl4nQa8jXXsvkegmer5J+9lJBMaD9rGO1NukQCL1DCT6e3UuZVdmy4kA/vbkE9his03x+OOPY/78+RVXd+IyrUyy3+/jF7/4BQ4//HCv/fDDD8ctt9wS3Wfp0qW5/i984Qvx85//HIPBoLRP0THPOussLFiwwP1tueWW0X51b4qit846PrmmbyRzQSfLIl37RFlkWIYu9EsygFSDIdLBEGmfmU8DhpgOhlBKQSm9zP9su1IRhmlNseaNHECuVB6PpAVQz9TKQS8EP84iQ4As8EnGrslcGE+zWSedC5kxSpsbmSo904crGmABNFWemTVjiOUAadmjMqZSyxqJMibI2WHIIrUlJN6XDLvjwFtmfo0XV2d/gcnVSj6gKLgGs4RMTitIPvroo0jTFAsXLvTaFy5ciOXLl0f3Wb58ebT/cDjEo48+Wtqn6JinnnoqHn/8cff3hz/8wW2rZSZkUvSGWbQeu0mrTDtzUqdIndbavkgvcCcL1CkqT6cGwxx75OBoQbHM3MrbisDSHZubXQGXckIcyCcqdQASmQ+M//HrUyRr7HiahTpZYIybW21qh8pAh9Vx5WZWbkotAsiUyJlWLXvkvkcLhNbcqgzY8b/QFOsAccj2HapaQBnLyQyLG7htDP3S4KSrAmQMs1CEEJXXc6pkRqJbRVh2iCjXVtU/bG9yzLGxMYyNjTXS2R23Yr2qT53+VuqamNZUnXK5kUApi+RmVi9i1QvU8cvTFQGkBbucubWE4ZFSJiJVR7cq8xskC5gRUkKlyr1tisTmZEaKBagU8fg9JhYQC9iia5OdKTExItJnTRlPs00nz/+GLGDHFg8oYpE2mpWbWYtAqG98hRYQLTg65keZiTV7H43/OsHSPGwcGKX6OapjVfW/dKiQdMz4l/n8SwuIidNTIQkitzOfpHD6WeSrmxLi9J7hQNdpBcmNNtoISZLkGN7DDz+cY4JWNt1002j/TqeDDTfcsLRP0TFnUsIbrsxMUwtY1nCdnKnV3LE5U6vZHuZFalDMzKx+cQAWqMOiXjlAeubVABxdQE1QbUdFUjy8c8HA0vaixKSUQM+Q4KV4KJMbmUqQ1Ckg9jeJTgCWglXNyQGjZpGUdAoBclTG02zVSTnTqvlTnFHmWaQGRwOeXkCOKmSRRQBpl7OUjwwYi5gZoJV1EyVDeGAJhUKgTEUGjq58XRXDdLmSVifhBfKkVPn6uNpkWs2tvV4Pe+65J5YsWeK1L1myBAcccEB0n/333z/X/7rrrsNee+2Fbrdb2qfomE1ksi8pZTegKOlXFV4+GVntOlWZWk1b3hfpm1ltukes+o5LzygASN+XmCLtDzKTlPFDEvNNum39gdEpMN1ylhqYXWuZV4sYbJgbyfIhQ4Ac2fEUkdWtEze16j/LJBFlkZZ12smTVzE/pM8q4wCpUpbC4XyIgBqaaFUTtWrTO2J/pPJ99W1JUYbqfJiB2RXIm1fTYHxbv2Qo8cjWetckUghoWmTaza0nn3wyFi1ahL322gv7778/LrjgAjzwwAM48cQTAWh/4YMPPoiLLroIgI5kPffcc3HyySfjhBNOwNKlS/HVr37Vi1o96aST8NznPhef+MQn8NKXvhSXX345fvjDH+InP/nJpHQti2hrEm1XdKwqn8ec16miDB1nkWQr5JSYWbNAnczHWASQFhxdoI3KmGVUVcMaAf1GjQjLVAAE29+aXS2b1HpLQCUmereikDkztToWyaNcAwY58uNpFunkAlTcH1wVHc4iMxOrSfkYhlV1VM4vGQNIpch9WuaoDJABcABXKkoXDyClC4srqcvHkQJIAkkHHqNUgvSnImd2tX+x0nXcDOvajGm1TDXHbc2CLfzIzawzBZDADIDkcccdh8ceewxnnnkmli1bhl133RVXXXUVtt56awDAsmXLvJzJbbfdFldddRXe/e534wtf+AI233xznHPOOXjFK17h+hxwwAH49re/jQ9+8IP40Ic+hKc//em45JJLsO+++05Yz6KbkYLPuvtPhQlnzuhkCwjY5cD0Kigzf+YA0Ftm5lXTT/UHkQAaE2zTH0bBsW76hwXKmJnV9ZHKX3b9NUCKAmDMSaQ+awaUGiAnK3NmPM0ynayp1QbhaJZoQdJnkboPebVZuZmVM0geHVoEkGqYgSNP+eCZfTGfpPNHGh+kNP3Ipn0oIB36QCmkjtAVxp9YN4gH0L+5O0V2yxmpgMNk2vMkZ6OsWLECCxYswPLly6c0v6boTbPO23DTN+Y1RScB6PzIYT/LhUz7WW5k2ne5keiv8vMiV63Mque4nMlBZmYd9HWqhwFDHr0aAmQIjlXFzXkupP20OZIykRBJAiF1W9Lt6JzJXgey20HS7ei8SZ4L2elCjM3Tbb1xiG5Pf/bGdd3WpAdKeqCkC+r0zHq2DHYtRnk8zUadUgJWDpXLjeyn+m/VUOGpQeryIp8apFiVZnmSfx+keKqf4u/9FH/vD12O5N/7WfpHn5lVrYmViJAOyWOPPEdyyvIjhYDsmDYhkHQkhBRIEgnZkegmPDdSYl4vyXIjWb7kWr3E5UvqXEiB8U7ilsfMsWzeZC+RXp5kVwp0pK4p25U6RzKRAn97YgU23XT68yRHunZrGDI+2Zul6E2zznFjD8A1XScbtCNCEytb9gJ2AC8vMsoiWZFzXiaujEGGUa76603ATRGbNOZVG+HKJWSUKrFmVgWSCpQoz+RqQxL0rCCR8AQvajWe/9iULc3F8TRbddIzeWQBOzb9I8YibcUdv5JNmqvJWgcgnc8xAo6cPVIwxK3RIjVmVjeWdVyZW1cSEErXdE0SPXNHIvWnUIRU+jVVY+ZV2x6TOlGt3Kxql2cy/QMYcZBs+uAp8lPU3b/OseecThwU7ScvS2faXNpHLGiHB+u4dI98DmQMIK2PEoBXgceul4ndqk1RCiKVjlECnSzCNVU6ZSPVAKlSBSGVSQfp5sGxKrCH+yYnaGads+NplumUEjyzqP3Lpr5S2Z/K/sJgnVg+JA+asUBYBpBZAYBMz2h0awoW1Uo+WDKgFMZfCQiQ1DZlUgSRCPd9qSjOk7RFzyciHAa9Co3WTzmXfJKzWcLzXPUGGXvTLOpf9800vEmbmoxms05OVACUEf+kV/M0zZajLNJEm6Z9VvnG80v6ABkDR25iDcHSmlgti7SzgPDbnRLlGCVJGWWT+hg6FYSU0uOtJFfSm93D+iKRNyWO6niajTqlJSzSY5DKpnugvEiAynIh1TBL6NdM0gdIDygZOFpgLMqPBDRLBPTEyPYX8ZQP63u0wTxKmQluFEFIOyLzEvNFus8a7nnJEFEWtc8kjcSIg2SReaYpCBRF1E3kRpxLOunOLEgH8E2v5jM0tXoBOwUsMmZGtVVvigDSz5EsZpM8spULfy9W/SFkr6MDGhID1ABEygAyDabDKismwFM/7Dpjke14mn06ZeBYg0WmfuGAcNYMDzCJSgEyWkTA5GPy6FYr1jcpGbrwiFbAgqUPlO4YidC3q2kjRVAiM7nGWGSR2BxJfdhMn6I5Iz0WWXjU6ZWRBslQuAmn7ptlk6CBqvW5pJM3oAtNrn5Uqzdbhl0HoiwyVklHDQZ58AwAsm7FnbDajhUOlNmxUpDxW9poV2dy7SIzH9dNl2bTYJU9rEdpPM0mnaxk4OizSDv9Ff+z7LKoSIBjkRYYVRCQw5ijV0QgAo48YIeP71TB8697fnXpA6X1PSZSQJH2PSqlfZNFUhcoqySsqOP5JSd81InLSINkeLkpWK5j3inaXgQcVW/D4foarVMYtOPaKGsLTLBZbmQWsFPGIl0NVpW1q/6wECA5mywM2jFSdEM6M6vZX0kFYSvvJAqSm1wV80sGvy0nvMJOIO14mj06AX5lnZBFDtKMRfLcSFs4oB/xRVozq1c71bBJWyDAM7UGAMnB0ZuirUQUZBQohWWRjE2S0MzT+keFZN/JjCVNwZGzWx4fJwWCMqSZyXWmGeVIg2TV5azaXuT/qHNTFn3HnNIpxiAD/2RWQCAwtQKZqRUoZJHczBpjkNzsqr/WAmemtQqqLEvztpymKUQiPOYoe/qW0Xlj5pgmmhWsHze5oiiqteQhRixvsh1Ps08nz8Ra4Iv0/gyL1KbVOEBaPyQP1OFAGANINTQvZ4oy3z2qAdKKgvQKCuh942xSKBF9c2wCjDLyAuiZXQOHo4QfySqEaH2Ss03KfBJlb56xvrV8eHNNpzBohy9T8MYbmFr9gJ08i+TBOiotB0g/cIccMMZ8kmkKZ2KVsGCpU0KsLxIAUgyRoKN1kUHgTsqiXB0bVu63FN7nkQLm7XiaXTrZ+SEtIHosUmU+SFfEPFc4IF+0vM+YIvdDpiyAhwOkH7STB8cqkLT1hQEfKEM2aSNZLYAqRRDCmHcrGGQReMaq84SBOTGT60wXNrfSgmSFlN1cdW++KtORPVZVnzVWJx604xgkY1rgQBmYI70HQIRBRhimivSx7DEEx5BFOklTyEQ4wNQ1nzUQcqAkF7QzBNCBTBVUonQAT6q0G5KntdjzlRqgnMA0WiM/nlazTs4PScizSI9JKuOPzNdnDf2S4dyPHCCdT7IEIEmltQEyJp7p1QAjjHkV0OvW5Or2UTp4J4xaHSpCr+L7YmwwCfIfLTBK1s73mynMbEEyIk1uwsm+pdr9m5iY1hidYuyRL5NlVsovIACwqNYsYCfKIm176vsoVeirNACpQdT33QBw5lfBAhPsBFjSwCMHygxkFYAhJDo6LWQw0KXspNE1DAxiYElljHKCMqfH0yzQaaCK8yJdHqRjkVnhgKJgHW5mtX7IMGjHFRIIAFLZ8oyAB5KqBCTLAl8UpDOtSuUXD4ixv1BC5sj3ibNHHdUqg20C2sWRY5PwgXEqrAN1ZORBMnaz1fV3oKCNv52WHaPomHNKpwAcedCOl/rBPnNvxMbUCiDOEMParTkzrA+QWRoImcMzjc2yTIRme4nQsJimoEQg6SXQyR4aGC2DFNbEKpVjk9KwWskAX6T531r1+GnH0+zQSbPHChZpytGFhQNiwTqhmdVOhGwDdXitVg6Q6TBjjjFwLGOS9m7UxQLyiYs87cOu8xdHXfy8HJ46BYAa80daSYQug1dkZtXbZt4fCbQgWettpOlbK9VYLvvuOadTWBeLrcf8kWFUKzenuv0iwTohYBYBpG92jf8y/jDxwLKfOqB0gTuuFJ35jJiFuV/SLkeLKoTnCu14mg06paTNiLE/v5pOFqjjp3zUM7N6EatkGSOVAqSKsMmYuHlOZQKl0jirZMBpTa52WbEydEoRQoyNscWwzYKhNHVZpRC5HEkb2WqDdlanPxJoQRJAs3DwcL+y7VXfZZdjD4M1WScBGKYYmFiVv17ojwQ8n6Re9U2tXHIpHqkPkGk/deCoj0VsuSANJAVkIvUsCS7CVXlA6QJ3WCk6SvUclDbH0plcw1J7KjUF3xmjjgBklYzCeJoNOtkarJY9WnPrUBFWDnXRcp76MVAqGqwTzu4Rmll5oE46VN4sH5pR5gHS90fWG0MxoNRtfm4kAOeXnKjUMdVKU8A8Y47x4B2n64S1aS4tSGLib7tNbtKyfeq21fnOWaNTrKi5WffAk+VHev5IwItq1X1iwThxFskZpL+egSNnkfzhYhOusxQQPk2WD5SU6LxMt28iHZtMB0OIRCKVErLbyUyu9oGWZsuC1Oy5dg22191nTdZJMTNrFpSjwZKzx5WpyqV8hCySzxPp8iCZmdWvokMuzYP7IGMASew+iolITGlEKd19FppbNcuUCKNZ64BcKDkGKQUSaf2QhkV6bLLYRCuw+vyRQAuSUZnsBajr85ioKWkisrp1EiUmV84wY4EI3NTKA3Zi80i69A8DkOkg9QCSg2NWVCD4JSayVYt0YEmJhEgEkp4OchApGbCES/1QFhgDNqkGQyRdw5RTn1VSmgKJYZThSwVW/7WLyajoFJpZebBOP/XZY5jyURWsE5pZ/fQPhTTloOlHsabDfnB/sMjpwOQqZOJt50BpX/4sYJJSzuRKCt40p3XED9ZptrOAH7QzG/yRwIiDZNE5b+oLCfcpMiFNxg+zRuoUmn5CAOBpEV7Up/IYpm3LFwTIs0gLgs4HGQHIEBxjfklrZs0AM4txTfsKSQ9I+wB6CYQ1tSY2UCfzTSqVBfAk3N86HEB0elm6CyvVV+ZDG+nxtBp0sqZWa2YdphosbbCODtLxUz7qBuvoWT0yJunN+KGALO1DQRlQ5ADJ2WMIjJwtesupXZa5/iL0R5aUoAsjUosiWTWDZIzRmFR5ZCsP2inyR64ugARGHCTLzD0TCRooio5rcqy5ppOLZvV2jKRFRJd5mkVmbtWHiLNI3Z9yUawcIDk4lpWmk87ACmdwtUCpgVWBUqH/bOAOY5OUpr6ftD+A7HSBYR+ia0rVmQefyyEl5SajRme8HU+rUSflmVdt4QANliuHqQvWWTUMUj4C0yoHSDsFlp0nkog8M6tjl67cnM8gMxNr3qcfC9oJwdIHwvL1OiJKwLGOaKCM+yOLTK0zLSMNkmXSyJRo+tf1sdQNIpgzOkUCUgSRn8+l4gyTg0y2Hr418+15P2QIkEV+yVBCnyTSFAlMCkgfSHoSSmqTq/tdiXRsUvskE6SJhOx1MobMTK6UphDDQWZqVQYsSwIwRn48zYBOqsDMOnARrfyvOOUjV10nzXIiNVPUgJjytpRYEYHUsUjlln2ArCoiwAGS97FmVwUgYeA4UT8kkAfKjrTsUUQjW6vEmlq934Ps2s2EtCCJiZl5uIQ3W9XxYv3Kbug5oVNB5CaFQJnGWSWPag1NrVl35VikXicDmj5A+n5J8vYHdFQrFweWiUSKDChFKgCkABKIlLTZtT+EkDLHJlV/CNXtQA76EJ1uZnK1zGDQh0i6xhw7dKwSQq7+a4dZOJ6mWScXpGPmgORmVmtiDQN16qR8WPMqN7F69VqNmTUM1FEcDAOALDO12vUYk5yoWNCyJldrUrUSrocSC9op8kcCcOZZoLkZfSqkBUnUe+O0y7F9wuHQxMRT5gtZU3UqEkEUBcs8MwyCdhRjkV6Qj29qDVmkA8QIQFpw5PVcrVhQ1CsZaDqfpAHKtJ9qn2SikPZNAYIkM7daNim7XbgqQN0OaDjITK7DAYR5GArml4RKJ2QynIvjaaZ1sizSFg2ImlnT4C9I+SgK1rGBOjxYJ4xmDc2s0SjWXOpHM1PrRCUM5JER5sjXs78sspXvW8cfGV7/yb5cNZUWJCPCL0S4bGWqLlT4ICgzHa0pOlV/QcxkGnkjDmbWsG1hEI9llCGL9BhjAJAhOOYjXMlFuGZF6QqAEjCBPFlQhBoMoRKpza+DgTO5poMhZC8FhgPQYADRGWQmV8si0yGQDCHSPqgzXueMZufJfM6l8TSTOikC+iwH0ppaQzOrZZOrDJtcaYCwkEU6U6qKBuvYaFZuZs3/2ajufLUdIA+UIZMM+/HgnTogys2joS8yzyRlZdAOUM8fWXXtpltGHiTrvOU22V6LUUX61DnGmqhTqUT8bmEytDWtAhlQ2uWioBtnYmVm1hAgQ3Asi3DNZgIRkEoH7ehiAhooHWuVBJFSlh9pTK9pIiG7Xai+bucBPKTGNZMcDvIm12EfSHoQQpae21EaT9OpE/dDuhk+VLGZNRasY4Nz6gbrWNCsMrOWAWSRL7IYHLN0D7vM+0kpHAhKqX2CHBTtspAiN80V/wslVmmnzNTKgbXq2k2njDxITvWJrnO8qj6joJOTWICKygeuhP5IAIWmVguKun8WqMMBskmEKwfLLA0kdUCZ2ycRmU/SMt2QTQ4HQKcHDPqgThcYGNOrGgJqaD51lGsVm2zH0+R1sgBp/YtD44ccKGDIzKyrhqkzsfII1zDlIxasQ3ZeSBasU8/MWg8geSCcLGCRTSSWI2nNq6IAHLmEQTtA3h+pj1Vtap1J82ooIw2STel6E1NPrG9RG1h7U3PSbNSpsRS9CTNAzG1jIMpNreSBovLMrH4tV3L78uCdUFKVQki/6k4IlGR8kgAgEsHMrkOkUjo2KZIkYJN90LCrA3iGA9CwD9FfBSE7wLADSozptTPa42m6deIAOVS+H9LVZk0pKz3HzKxNgnVshZ2yYJ2ombUCIGOzfiiVOqC0fSfjkxQBu7RtRUE7Rf7IWH5kE1Mrv3YzJSMNkk1vvCY3dsznUWU+mis6TUgKgBLIzKw8gMeuF4JowBazQB3y2CMp8kythRGuKoVIs6o76MEBJaB9kioVSPvmAZLIzOxqfJO2PJ1IJNKuZpPUX6mjXTtdYNVKUKeXsclUm1vJfAKjOZ6mU6cQIK3vMfRD8qIBq1ydVpqSYJ3M5BpnkQAK/Y9l02KFQBlKWFBAyMRrs8DIg3N4ZGssaKfKHwnAmVql1GyzytRadO1mSkYaJOtKXX+QXQ7BYjou6pqmUy1pAJTcRBoztfJ+oR/S7acoZ25VFkxVmj0EYhGufQVKtG9SpTpv0oo0bJKbXZUxtarBUJtdB0OkK1chkQlUfyVktxdnk3Kljk4UUrehHU9TpVMRQNpP64dcafMgU2UA0s+JrBOsoxxT9Gf4sKXnqsys7jcxsCybGqtJkYAQSIXM5zBKIZz5lbPKOHMsz4/0Uj9KTK2zRVqQrJAydlR0U1bdvJM1X65pOjUSW0ggFtJu88M4QOZmBGHm1mDZSwNhAGmBEXDTSerllFhlrqzSDikyuZLwCwmkAkIS0r7WKU0ERCIg+kPDIjPzq+raNpM3uWplnk2mfYhhAsgOICSo12nH0xTpxAFSp3qYggHK5EXm0j34PJHxYJ3wLzYNFmeRfkHzYpNqrL3O3JGl5zcJgTEOojxoxwb0WDaZiDhAFplaEyHQTURtUyvHyWl3+ZTISINknZeVsgtTddHCm7eO1BkMa5pOE5WqaX84WHI/o13PgneC8nQBQHrAmCujZ0aJIscueQqIAiAiJl+RCKSDVOdL2jqujFWmg45JDxlCdHXepDa99pwJVsgOkA50iTrZcWbXUR9Pk9UpBEjHHl2gTuaHtD5IVzggamaNs0jrdyxK+SgK1gHgWGRU/4YAGQIgXw+XHRBK3/dY5o+sa2qVwje1JhFTayIzdhozta4OGWmQDN826zr9i6RO36o+c0YnfZeBlIAQEo2nE7DfHZk7kn8Cfo4jN7Xq/cn3TxYApAXHfLqkZpMpmURoRUAuV1IBvWwf6QXvaLNrLohnZR9Sat+kkCshpQQZgISUoE4XstvTDNKwSTEQel1mt+3IjKcp0skCpC0UMFRsjkjDKHkKiF+btaaZlVfVcVGtYKxxYsE6Pog2Y5Da35hEAbKQRTK/o5AZq7T+yMmaWi1wWlNrMgtZJDDiIBlK3Ru1qL2OD6XpxV5jdYqAIgkDmE2/ryRFIwvAUR5Y8oo7dp0zS6UyMxuAHFgGP8YeFYBAmhK6BUAppHDmVplIqEGamV1jQTwr+5ptmiAekhLodEH9lVCdrnkwdYDBSn1Oh32gl/kmR2Y8TYFOHCBtDmQaBOsoggPCjE02M7PayZRtykdslo+QRQLwWKT3+yoA0c3skdSPXrUBOpIBpZDS+SN5LqRL1QjyI6sjW/PzRxaZWhPJzK12GyY2nqZaRh4km7zxIrIea4u9JTfx16zpOrl1IeOgKHQ6BEnNNicqZeDJJWSRocTAMvgm8ykcs0QKJCpFB4kPlEyEtA8va3bNzK0ikUhXroKwrDKROohHSshuDyQTwL79WyYemF3d92Buj6ep0EkRHHvMigQwXyRR5odkVXViZtYMEFUtFhmbTJmzSAClLNJuj7HIIpNsmcT8kRmrzEytgoGjBTjLJjlAZqBYbmrtynhUq2OQDDRRcm1nWkYeJKskvDB13mSpZFtRG1B/IKwJOvkHqQBCAwgoicArD9bxI12zCNdMqyIWyT+BOJO0plYHkDw0ZOADJaUESvT3pwMLksKZXYG+eWPPm129IB6ZOLMrB0oSukCe6gHC+CdHYTxNRicLkG42DwaQA2Zu5QE6flUdZVgm5arp9ENGGWGRjjUGeZFO18AXWVeqAFJGzKvCY47+di/Vw4KiAc0iU2uvIzHWkeh1ZKmptZvIaFRrIkVpwE7ses60tCA5xVLnDbiofboGwmzQqZBVhjKJhOcYSwwjXAFUAmQVmwT0Pj1p1hlQxkTPICIwsOsyyxexgCkMu+wm+mXBsmwlE0iZQCYJIFZCCKHh2X4aoBy18VTnuwA7YXJ2rQcpu+4ukjXvh7RVdZwJNhKsY0vW2Xkj6/kiNWgC8AJ29Hp5RCvvk/v9STwYx677YNnM1MqjWkNTa52o1oxB2ghXmVXUERmDzFhoM3P7dEsLkoFM9kKUPRRCk2Td751TOtUFyvBGTyQcyjAJAbBIXDEB5ffjAGmXo+/ylC1YZtlXmln2pAZKmebfgTO/pP7dOf+kMbUOV0pjkmVmVwuYiY6ilfOQe9HgQMllZMZTwXdZ9kiUB0gLbAPFAnVCP6Sy4BgP1uHA6JhkDV9kLGAHYABZEdHqnbMk0cXxI77IWBEBIRPXN2SUYVSrBUQLjs7c2iCqtZtIdBK/Vms3yWq1Jiw3MhEZi2wynmZCWpBkUub3aHoTN32LbvLwWGN0sr60EBiF1EE8Min9fs6yYgBZqDcL2gkjXwGfRfJ1C45Rkys0MCqy5bKyX9tX+ibvAV7epP4N9lYeAOg6/yTQd/7J4UrNLC2bFNKYVIHcZzgBrdMkAMo5OZ5qSkoWJCljkSpgkGbZBeqknElqEIsF67h6rJF1r2BACYuMBezw6jpNpCzfkZtUM1CUBhT5Np9FOrOqKSDgwLJmVGs3sewxC9jRjFK6abEs07QMkgfscJnIeJpqmXjURA35y1/+gkWLFmHBggVYsGABFi1ahL/+9a+F/QeDAU455RTstttuWHvttbH55pvjta99LR566CGv3yGHHKLfdNjf8ccfPyldi27GoreY2P6x/SYjc0onEQ/SsW+3UzHXHRD36fCKOn5OZDFA2iAP/8+wBbO9r8hNq2TXlQkOSgcp0r4yn2bZfA5XDvT6yj6GK/tIV/aRDob68++6Ta1cqaNdVwWfK5+CGK6EGK6CGKyEGPwdsv93XXig4tzMqfHE9rfignOY7zEEyGEaACRjjpZJWl9lmBOpwdAvYB5jkTYvMqyuE7JIAFFzaszMWutcmnso9EXabRNhkWHATi+RhSDZ60j0EhkN2NFFBEzRc5EF7CTM3BoC5GyRaWWSr3nNa/DHP/4R11xzDQDgLW95CxYtWoTvf//70f5PPfUUbrvtNnzoQx/Cs5/9bPzlL3/Bu971Lhx99NH4+c9/7vU94YQTcOaZZ7r1efPmTUrXyd7w/K23rs8GFX3WeJ14riRrK/JPChus0uQ7aoo3qTIVsMWKAJ7skUyOWcKAozW79vWTFx0kUFK5Wq4Asomc0XGRr4B9u++7ZSvdROoAHmRs0u3DJgYhs426SlfnKShft8aPpwKdgIw9WvOqohiDhLfsASRbDnMire+Rg2MdFpn5Hn1fpNM9AMGYqbVpwQBZwCT1en0WmSTSC9hJOtKxyJ4J1LEBO71OgjETuMMDdrqJ9AJ2ulJGA3YS98d+D+qNp5mQaQPJu+++G9dccw1++tOfYt999wUAfPnLX8b++++Pe+65BzvssENunwULFmDJkiVe2+c//3nss88+eOCBB7DVVlu59rXWWgubbrrppHQUwfJU3bATeRDYPqJgeU3TiRD4z2Jm16Ko1orUkLAwc13J+yMzFlkngCdXWACkX4EJsGZXHygDvc1TQLCngS404Afy6D76s4sMHD2gVApyHoHI+MA0TQGSLqjT8wqiz4XxVCSK9P7WvEqMJeYBktxyFqhja7Hmzaw66pWY31EVskgvBzJI8/DOQcTUqtvrmVqFTDzg9KNT85Gr7i8JAbMei0w6slHATjfJzK06cAcmujVjl4k1swqeH+n/zibjabpl2kBy6dKlWLBggQNIANhvv/2wYMEC3HLLLVGQjMnjjz8OIQTWW289r/2b3/wmvvGNb2DhwoV40YtehA9/+MNYd911o8dYtWoVVq1a5dZXrFgBwD/JdU54ke+k7v51jj3XdApZoysokAPMPDA6H11igSNxy1mf8vfJMKCnPILVB0ven32jPTLA8iYV808WA+XQW+MRr/q36EAeu2w/O4gApUpdMI9Wx4Ck6mXLsuNV55kL48mKxR6CBjIFVAOk4iXplAvmUUQ5M6sicsE6wwAUOYtMA1B0AWIFaR8cNKsmTQbyoGjbQgkB0uufZLN71GGRYdqHZZG9SKpHIjNG2ZUZa7RpH10pnX/SRrsKxjZ10I7PIuvKGs8kly9fjk022STXvskmm2D58uW1jrFy5Uq8//3vx2te8xrMnz/ftf/DP/wDtt12W2y66ab41a9+hVNPPRV33nlnjoVaOeuss3DGGWfk2sOTXPVWG3v7Lepf9205fHA0NWPNZp38g+bNrNGCAuaNN/egjgTvVAX08MmWuXDg4yyyyNzqA2p2VmJ5k3a/IqCUia3GI0woD4t4Xdln/fyXgRAohUqzYJ5eCtEzwNixYJkCSRfo9EATKDwwm8cTZ49kfcSKMkbJANICpwVKRTCgaGu3WlDUkywrytp8xlhQXYcxRlURsON+zwSKkkuZFE6LxQHSndMcGObZZRGLTBJZyiJ7zsyagaZN+7Askqd9aHYpWaCOX6fVssiJjqfplsYg+ZGPfCQKOFxuvfVWAIhH4hFF20MZDAY4/vjjoZTCeeed52074YQT3PKuu+6K7bffHnvttRduu+027LHHHrljnXrqqTj55JPd+ooVK7DlllsWmoya3rRFvpaJPBzmkk66UyTCtcz06rokQEmZrRAgqxhlTMrYZNH2rC08C5n5ta+KgVIaPQcYootijA8ZM+ADpWOSZlmoFGJMA6RQKagzdKxSkNKMsmHNV0+fSNtMjyfOHqsAksxfqjRQEvSn9T1a9pgBpc8sUyKPRdq/cJ2bWgE4YIxJWECAf9aR8rkhC0ytLFhnMr7IIhbpzKxSuuhVHs1qWWTGGPN1Wu2tO9HxNN3SGCTf8Y53VEaSbrPNNvjlL3+JP/3pT7ltjzzyCBYuXFi6/2AwwLHHHov77rsPP/rRjzwWGZM99tgD3W4X9957bxQkx8bGMDY2VnoMIDSk1bs4TQIZqtbnpE42qjVly8okUZg0EHDmGICltHMxSglVkBKi121BccuvfODkEa5Aninm00Ly/crOgmWVPTOlQQwou4nwSteliZ1SS0IkzM+USKSMVXLpIGORML9UpKlrc4ySFKAYq5SJY5WWza8J48mKZY9uuQAgCWDskTJLgWIVdxgYKuuLNAAaskhefs7zQzJTK2eMWr+8qdWdjwZpHtbUGjO58j7hp++HzAfryE63kS+SR7SGLDKrtsMiWaU/JVY3kc73qNmjXfZrv07VeJpqaQySG220ETbaaKPKfvvvvz8ef/xx/Pd//zf22WcfAMDPfvYzPP744zjggAMK97MAee+99+KGG27AhhtuWPldd911FwaDATbbbLP6PwR5cysFy3VMTkXbYw+TIn9P2YNnTdaJAPdADoubx0yv4IBZUabOikwk0nj6fy0pKkNX5bvk77rc7JqLdIVeTgmQ/diDrgOO+LqgQBwgAYBShS58k6udf1MpBTEcQPTGIbqaSTpWKTsGLE3916QDJD0PoFbneBIF+3L2aNfLADJVgIIxq9p1suyToExBc/tSZIN1uCk2K12XZ5Ew38tZJADP1Bo9hxEWWSZlATqxvvYzBpBFZlbOIpOOdCxSJjIa0VpWPKArdSRryCJjxQNc6gfg+SInOp6mW6bNJ7nTTjvhiCOOwAknnIAvfelLAHQKyItf/GIvaGfHHXfEWWedhZe97GUYDod45Stfidtuuw1XXnkl0jR1/ssNNtgAvV4Pv//97/HNb34TRx55JDbaaCP8+te/xnve8x7svvvuOPDAAxvpWHWiq7YX2dCbXNimb0prok4OEF39UQaYkQhXIaX2VZplXrbNMUvzGTO5cgYpEgGRCt2/oS+ofgCPXc9uay+Ah0sBUPKUkDrSSRWkUtrkmqaaNSrlAFMo46dUxuyadPVy0gNkqpfTYQ4s+S/iv6psOdaXS2w81TGOlwGkvRy6zYKgBkgy/biZ1YLaQClXT9UvO6cy3yUDRltdJ/YHwDO1uvUIuwTy0dVFwgHSAmAMWAtZZACQSadnGGTPmVmTREJ2ODgG/kjT1ksyM2sRi+wmopJFcj+kS/2oYJF1x9N0y7TmSX7zm9/EO9/5Thx++OEAgKOPPhrnnnuu1+eee+7B448/DgD44x//iCuuuAIA8JznPMfrd8MNN+CQQw5Br9fD9ddfj7PPPhtPPvkkttxySxx11FH48Ic/jKTBVDF1peytpYxdxfpO1RvQmqYT90F6DJLPBgJkEa72OkoZ9c2FotMoMjPrRCRmctXt5PXJhMOFXZ8YUApZBzLMXJnmD8h8lEopCKV9kUKlzvyasUoFoYYg1QPSIZB0XD6lSDsg2XemcBISggX62F8YMs0m46m5tzj/PSFAKspMq8oAHfdDKrMPZ5Fe3VazLWSRtog5B0L+yZcVB0q2PhkJATIEy1h/+xkDyNAPWWRmlUIg6ZhlA5DdwMw65oJ08r7IOiwy801mf+F15jKVz6fJyLSC5AYbbIBvfOMbpX34W9g222zjrcdkyy23xE033TQl+tWRMm3qXsAic1V4rKo+a6JOBGNylUEAD2OVAAxAZoyS+yp5KohNA3EMU0rAFBaXJkoUA7jPiUqVyTUWwGPNrvavJ1ETKP3UkJioVKEz7oMXKYWOUkgMe/T+hgNgbNws9yHH5gFqCCE7oLSjmWXSMeBoQFOY1/zU6GNAE8GLTZGI4JMpWv7juNkdGSt0vz04dRYgLbA5sGRm1pBFch+k/cybWFFqao2xyDrAGBYR8H+69Tual8g0DdozcAzXbT/7GQNIaVikNbPKjkSS5IN1ZMekZnSyyFbOHkOfZJUv0ka0hizSFRyoeDFs8nyabmlrt0akCdBM9k0n9pY+13Sy4sysJnjHskoLiEjy/kiRJJlpNaZDIt0sG8qAokwEUtT3VxYH5zQN4LHr+ir0FU0JUBYBpFKaVapUoWPZo0ohBgOIsXGz3IcYmwc1HACdrgZLOdTMMrWMcpi9xMgOIAbZC40Q2XKQx0pFgNlkYm0hMxAt2a/IzGqXQzNryCLDNJ+UAWVqgZNCk6qKskprug31s1V2QhNs9SnI+x85IIZsMkz1AFDBIBMknQSyI50f0ppZZUfmgnVkR+c7coAMq+vYvEjOIsO8SM0a4yxyMgBX9/k0VTLyIFkWUVXlg0FBW1G0XtNowjmjE8+RrPBLetGurs0mQvsRrrE0EDvrhv5UkIkAmeWJSrHJNTwLdt0HSmtWSgTyFuEaQEkpYxPW5MqiJG2b9VOiM8gYZacHcmbXHhRbhhzmmSQDzPCaZSZz4/uNFK53UlAVyQPWECBJuWNIkWeQ7hjmk7NIvZ6d3tAXCcBjkRZErakWyLNIIG5qdXqwCNYmUhStytkkB8iYqTUER9vGAdKyyKSTOJOq9UPynMikI3LBOkUA6XySifSq63AmyVkkj2jllXlCIjnZ59N0ysiDZJ0T3pgx1Vgu++45qVPML2lNeRG/pAve4QE8BcE70gGmnwbCfX0iEZCpQELZ26x9eNoJla0U13bN/6yivElvvknmnwSyJ7lmNQI97yGbAaUFQl41KElDcExB42Ouf0cpyG4n8El2nQmWOl3d3ukCnS5EpwfR4eZWCc/0ykzlzvQaXE93fZFm5nOFyHZAQLlrSnwbA8gisf5Huwyw4B7KXDchi1SsjiovVA/wYuh5n6NdHrLrw1M/qiTsI6VA6t4JTK1VMGBnZlfAB0su/tyRGXvU3+GbWC1AushVmZlVeU6kXU8MAIZBOvaPT6rclVlUq63RmuVL+iySR7TGWORkn0/TKSMPkkD120pdQ1vT7/LDPOauTrpz4Je0+ZJ82izul0wyVun7JON+SRu8IxI/R7JpkYEi1tjE7BqdbzIClJ4JdiVnkUMTFWnTQ7qw4JlVEVLoKG2CVY5J9kCpQjLeQ5IqyHEd7UrDLmSagroGHC1YdnuadVqwtGk4augDppK+qdxcT8cKeSCWt250FcIHwcC6St6KghD1itw7Rsl6xyJaw4AsHrCj17OKOEVAGWOSVaJBkSCFQFrjF3H/JCkVnSdS98uYo/0MzasxgEw6Zr5SZ2oVDhjrmFn5TB+2FmsnEYE/Mpvpw9Zm5f7IGIusPC+IP59mSlqQxMTZ00TeamL71G2r852zVScBY2pjtVvJMBX98DWgaCcaLvBLcpNrKNL4JsPgHZsGEpOQReZZZdEyPwbfljccufkmmX/SAqWH4SuHBgT5bamBUhmTq50fMzEsk/srSSkkSgOl6nUyVtntuRxKdLqFYEky0e0yATodfV04YBaay30rAQLwdFYDSn3A5JZW+3ML2CS3UnOsCk2tRTjGTa2uPzO1AvBAMGXm7KbgWCbRcQsTbFRgWs0fw/dNNgHILLo180Na4OwyBhkDSJ7yYVmkTvPg/kjpm1eZP7KIRVZJk2fRdEgLkhGZ7AWo69ebqLl0IrLadfKYSVpgcrW+SRvMI12bNwGzPaTHLrPbTybSC96hhNxyolIvAtU+/+zsHjHJzwZStk4GaO0ZigfyJPapgSCgZ2B9VdmtqVLpStgl5sssWNp0EOuntObXxLBLxypVqgGx04Nw+ZQKGPY9sKRhH6LTA4bGjNft+UXpY75KlWYvPCHT5KZUITW5FBLEEVIpHyhtOxNtzI1LSO6LTK36WlHuxcdGtQLw/JFAHCBtEYGyEnShCClK+0qZBGbX6uIBHBxtO6+mwwHSzQ3pzKq+HzKMZi3MiWTBOh0GlpZJdqTwUj4SxiI7JSxyOp5PUyUjDZJFbzUTcQ7zfYpMknWO2SRwZk3SiYB8KojkD16R5UkagNSsUrp8Sf5X5Jd0Zlap26x5UiZSP6RqpIXUBcyQgWbbi4zXGVA6cKwJlAMMHUACmb8yYSBpP1WqQONjkDb61bFKW3RAm2BFZ2D8lRlYwjBMGEZJ1n9pUgxigOmsAcJM2aUvgAZM24cBpf7FAVAGIqDNdEXXITc3o4lqLZLY7C4hANZZr8sqhRAgkAeOQgrDGuNs2baWhZiFxczDQuZFAGkjWTlA8kIC3A9ZZWbt5kys5SkficimzvLOEabm+TTdMtIgWWY+nEhgTFEEaFMwmdM6BSZXzkw0gxnoVBDLIFmbBcQ6fklhza5AtjzQfqIweIfPEVkUzBNKuM1fj0e6cqD0SteVAKVK8w/UzCQ7cJGvFiwTlUW/dtSYZpOGVcpuB51xBdlLMyapUtAgAMtODxj0gW7P+ChTYwLn7FIxcIwF9RjA5GAZ/A4PKBUzuzLQbGqeK/JHcokF3TQFTKdfJAzXtmWfgFRxv2QYxUoqbVTIPFuWjinqNI96ACkDM2s4mXJYWScM1nEsMhKsI1Ce8jFVz6fplpEGyTJpcoHsBS0Dk1h/vlxnUKzpOuX9WsYXqfImV5c7GTG5xlJBeL5kZmrV4CiVzpe01UQQmQE+BopljJKL7WMtvhp44ybX0FdZBZQaCodQKSEJANNPDTHmV6UgDTACQJKmGiCVAUulIAdDJN0BZG/gTLA5sJSSfaYZu+/0MnNgE3YZMkszI0kIlEgM67TjZQrFpn54bSxox0pdtiilQBoMkDBIxwbvAAY8AY9N1vVD6v1jLDLwMxYApG0XZpYOmwJiAZJX1QmjWYvNrFnKR+Z/9FM+bOGAIhY52efTTEgLkpj8W0sIKFXHi/UrGxRzSqcwCKTI5NrpalYTMbnKXgdiMCw1uVpTa/aZ5Utyn6SdMDljkGFQjv7VRWbWWARsPpCnGVCmhAwsIxM3U0peWgil5AX08FxKGu9p0DTtllWSaeMmWMca01Sf9wAsRbenzbzWJN7pAoqDZcYuyZuWywChmdtLACA1zAOlkHpaLyBjpcjMrmISAzBW9SaGhVEfZKQt5mMUDN85gAoTqCWVsBPgFJpdi3Mow7kiNTja4/M8SG5ytQDJI1kdk4z4HjO/ZFY0oMjMyoN1QvOqA8yaLHIqnk/TJS1Iot5bi12O7RMOgiZmzKLBMZd1oqSjS6RZcJQJoJqZXJNuB2owbGxyDfMlrYaZ+bXa1Gqlym+ZgWUGjN6UWkVAGUa95oCSnV+loFNEtLtVM06Vz6dUKs4qTV/Zy0DSsZsysJR8Cq4ALCUgTFQsZ5VkwzgtUPJydSLRCMPZpJClfsnJSFmpuFB4CbVECiRKeGknAMwcuRkokjLz5koTdMQANcYoy8QHyDg46tNsgnOSzPTqfJMxgIyYWef1Er9oQJWZ1QTrhPmQPFjHjuXpfj5Nl7QgGRF+IcJlK1N1oUJgKTM/zAmdiqJcpQHOJAGZ4BGbpgApszZmZpXdDkR/UGhyJRPlWmZytYCYAu4G51Nf1QFLwA+2sI+9lGJAqY/LA3iamF7jolNEkpQYaJq8SgaElKpSVimkzPyVNmev09PnqtvTINnpuk8NiMpV9tGzi+R9lpZVCgUfKNUw20YBm+TBPjAgxK6FrPkiA8R9kE3F5viFrNKaL1NFkFLo35eSC9KJskkiDygBHyxjaSIAKsFRyKxQgBe8UxMgY37I8U65mZUH68RSP6SozxbrSuxlfDpl5EGyDmtqsr3OQChyVo+KTjbKlaw/0tZytUDJCwsYs6swyyLpe6CY9LrOz8ZNrrKbQKUEHuVqgZMUFZpcOaMEEAXLKqZpAdM8Lz2g5MsTBUpSBEoTz+Tqy8Bt5+ZXHtQTY5VCyswE2+1lwT0WGG3lng77tOwRxlQorb3RZ5VFQOnsk6S02ZXMBuvHhP8wlCZqdDrYZVPhQTtCClCaBekoiRybNPHHkEr/IsWwMClJEfEqRxlw1Ms+QIZTXiW8aHktgCxK96gws5ro1dDMGtbxmM7n03TKyIPkVJ/oOser6jPndeK5drJjAjuGGaOUw8zEKhMdLDLQy6Kr8/7UYOgF8MhuBzL1GZJlkUlPQqUKSc8AZyoqo1ytKTYEy9A/WSYWB/zSdZMHSukVRtDVeVQqNZNMMwBV5s+aX6tYpex1AhOsfgHhwCg6XccwvU9AA6SdF1OmAHqmnZlfZccDSiGM4dKyRlIakJnJFdB+SaLiXMmpEssYq/qkFATkWECEYYmMTSozEDhQAhpMkQhn+g39nBwcOTDabZw9+pGtwkWxWvNrFUBaM6szuTI/5FhSZWbN7hnHJCPBOkUyFc+n6ZSRBsmmdL2JuSDWt6gNrL2pSWJN1ImAfABP0tFPQTUEOh1gaIJ3Bn3jB+uChn0XwCO7HVCqJhzAEy0sABEFzCJgrBP9GrLKOkCp+/nRsRwoE0LB5M1lUjzLCHFW2e2YNhvY04FXLN2aYAFXEYl/8oIENOyDA6U+sCkbaM2rpDL/JGOT3OQqhZwUc5RS5JIPZUUUEC/GHf5xcLQBOtzkqmJBOgwoIYUxATOwdF+cfypxYLS/h4NjLHDHAqOryxoByLV63PcYKV7O/JBjHVloZu0kIhq0A0zv82mmZKRBsunFa3Kfxvx6VebIkdJJdkCJeTCSNrPq6NYOhGJM0vjCdFK78Ysx82piwFKmCqo/9AJ4kq5lVMqxSRe805WaMUXYpGWNnE0m7qGafdb1iQEhq8yAErBFt7P2cIqtECh7EppS1QBKZfyUpebXXvYY4KxS76+BU1ot7AwtllUCEFL5n9z8qjX2GGVmVu+YaFlo8AzZpGA+SWj/nwBBEHTtdfuJvM8ylBgoSlENljHhwTtCCgilTarCgbFhkQpRoLTrFiwtCOajZRmT5P7ICDjaiZStyZUXCqgCyHm9jtfG2SP3Q453LFjWN7POxPNpumWkQbKulF0UPxzDf4zW2X+kdeK5dbKji5OrVANlosuoQaXAoK+DeAZ9NzOINa+q/tBV4JG9jn7wKw0AKqUcm7TAOdVsMjOl1RMezJP5OH1AnAxQkgFH2a2Xg+fMr72u38YAVJgAHmdatRoniWlL/fHWAYRKcozSpXmQAkhkZlcHlIl5edJtuSm5CkQDp4AQhEQKhLOjSeZD9NpFxhI7UqAfOXbIJLnJlbNJBUCSjX7NAyVgWKTX5hTJ/yYLjiJgkQE48tk9vPQPKWoxyFjZOZ895n2UYSHzumbW1fV8mqi0IFkhZe+ZRRe2agA0f3edmzp5bNLOCGLSQbyCAl09JyK6tu6oAoaDDBgNMxKDjEnOdjYZSw/JH1t/90SAsjioJ+hnfZBdzibTHEACgFQye6hL9p2mRJ41seZ+CTO9QoiMRZLSZleBjEnyNmTt0lTsIQLIBu9U/LZECAwi7LFK9MNeIpHkgNOaWD2gFALKgphhk5oU69kwQqC0PkcOljZFKZyk2YIiUBTV6oNjLP0jrKSTD9JJMK/nT6I83vEDdTR7TOJ+yEg0a8Ra7P8urJ7n02RkpEGyjm277MJUXbRwANSROoNhrujksUn70BTDLB2kq31gLh3EsEoyxQZkN/XYpDW9xthk0ksas0nN8vQZyHIq85GuFkTrsMkQKAHf1Mo/rW8yXLYAatlmopADyqSXIK0wx6oAHN11UXHmRqbijwSc7xEARAcgUxPXBfIMmXnWFk1XKQQlsL7I7C/CJklkATwFYiNdiQRIFDF9ASXIK9lrg7aUFNDlfMtHd4xF2uCelAx7lAJKAbZeq502kwMl4IOlH9FazCLtsgVHvQ4PFMP0jzoA6ad6JJWBOn66R3U0a0ym4/k03TLSIBm+scTAoMkbTJ2+VX1GTqeQTSYm2lV2dJtLVk8r2WRRcQELirFI1zI2iQhY8m3cBDsRs6sFx6w4emiCzc4+D+5JhAVIxioByJSQMn5VBZRJL0EaCegRBcDE20uBEtbUKkGDvp6KS6UafM06cXNqhDkKkn4fmw7C/JKhSGhstYzT+60RsHTbJKCoOlAnZ261bBJZJKsdAQrwgFIDIzywBDIg5EXQvd/kolqF811y9ujmgpTZei/Jz+gRA0hndq0RqDPeSSITKcfNrDP9fJpuGWmQDKXug7+ovexC2n2aXuyR0KmKTZpUkCo2Kbsdl/8XsknZTVyKRMYqdaRr0kugVg6DN2ILVno5BMuY2bUuULL4DQB+DmXWZs9U3vyaagru9nNl7AYpOkigpIJ1rOmXgWw9lBhQJuhA9fPgmUC/0KRmWwwokUrtm1QSNDRtBiCFMoE8aarNriGb5BMz1xAevBMbaFIISEnexdBgCagYyvLfWmBy5SwyZJP2nBAJNwYEtI+UiDywTBDkRQY0zGeRzOTKTKthbmSXgSMHySqAtIA43klygTo8H1IH6ZSbWWfD82mqZeRBsgmDQmQ91hZjXU3s66Omk7Bs0paqS0w1HssmLTjWYJOhb1IDZ5Y3mfQSM+u78PImO92ETVGlQafK7DoZoCySIj8l92GGAOqljPDKPAEw6omnI8XdC4CSUhVlmrLX0cCLoQNKxxSHTOsOAJWA0jRudg3ZpFJxk6uI+yW52VsIzjL9kabBEtE0ECnIfGaMiPsgAd/cate9T+OPtIdPIKEEQUgz7yT0dyeJ0L5HCRPVWm6fDIHRtuVyIw1YcXCMFywvYZAmknXc5UdqcBzrSM8P2Ul8YORl54DV93yaThl5kKyS8MLUeRuikm1FbUD9gTAXdbJMEkSm+HXiUkOivkmVagZTxzfZ7XjJ9T6r1MyFFHk1XS0oaZMmokzSL4Su20OgBMrBMvRNFvl1OHhy/6RkpljbLlndVpEK31/ZS/TDOyWk/axf0ktAicoxSNnrQEkFkagIaHYgpIJFY2tmhUoglC5RR0qzStii3RZMy9hkicnV000gC+IJBpcwoKcoC96xYCmJcn5JJanQ5GoZZKcIJI0PkgNlUW6kMAwyqRGww4HRrofpH5Y9xhhkRwoPIHmQjgVI63/k5tUwUKcj/TxIHdlq1/PBUDP5fJoJaUFyiqXOW1RR+3QNhNmuk8cmSUHIjo5G4WyS+SZtrqToDNxyYiYX5tVk+KdljTpnkJyfEoBbBwD0UweOANzcjzEmGQbzxIASCML8C8ROr2WXY2xSg7TPJBOzORfIA82W036qgTHVdWu5j9KanZUkB6RJDzp3UhawSHRA0kzmbLYnMCk7xqSqZxLJzK5QifNN8j6VbLJg3FjGyAenhA7e0SwzP5OLEgQViXaNiWOTzORq24cGMO06APQ6Ev2hKgRKYRikC9SRwtWTFZGAHQ6KML83F+EqhfM9hgDpT5qcD9IJATJvXjXLLFAny4f0Ta0VZLiWTOb5NBPSgmQgk70QZSATAkPd7x0FnQBoJmn8kTp4Z6jZJKmMTdqpnIZ9M/ehbhNJ31XhkYqxSF7EuydZyTYVL1eXSPQUeeCoIEzOYsYsAX8Z7mEXLpdX5akTEcglWrUn4p+0gTwA3NRaKVIksJG9Cqlnjk0gUvJYpzQ+SEqV+UxBUjrwlD0DmGabcLOIaGAUg35mQuv08n1ibBIsr7PA5GrPpwZMxIN4hDbLhsUCEgEo5peMmVy57zE0s451JFYNlVu3EgNKXWiAjO8xS/mwgFkkPCcSyIDRtnHTagiSY50waCcPkBlr1J9jHemZV625tSP9QJ0OA8eJVtWJyWSeTzMhLUgyKbOdNx0ITVlZEzCaizoRoGeMSAwo8khXmzfJKu5gaFhkaqZ2MjVdee3WMIiHVAaIiZ1/0X1mfK8DeP5JmIecBUpucvWBMmvnU275qR6ZcIBMRPEtH/ogQ8aZFT3wJ3yWqYKEdIE8SU+CEvr/27v2IDmK+/x1z+6eBJYWxCHdyWCBHSIBkl1ICpIghXhZiCoFGygERlFklyKDUxgUoGyUlI3kKvNyApXEdmxTgAiGoCKguChhJSIBQiIJsJB5GJAJEa/A8Yp0JxJ0j5nOHzPd093TPdNzt3va0/ZXtbUzPT09307Pzte/X/+6WwTyBDUgCglISEC4aAqrMxY/3vcog6KKKIhAQjUPv4PiGajUjG5XkzUpoLhfNZcrv34igHK/pDzzjt4vGbtYifad73INI6ZYk0AkhI27XYUwJqhVKMKIxR/CEDImxFId8pH/eieSOMb8E1EyuILtAhlk+iXFMA+DQKZ9kWoka+pqjQUynUQgrodWfD81Gl4kE9gq1NaKKTq/ERXYlpw0a1LMwsMioBKBRMlwEKlvkkQRUBkErYUZC1J3uwLpVG1AamVxd2s8U43aP1mjEELJ9wei9DVQoyQztZwqmlDEsgxkN2yall7HZk0CTHG7RohiMdT6K+X+ydjVSsBCYux7ZGGk9E8yKvdhxnkK3a6aNcl/WW4AD7cupaEgHHK/JGMEofREyf2S3HI0DQGxBfAA8rbqduXIswgDECGW6RR0an5mSOMWJK/3vHlked+j6nLVrEfuRpUEUrYmuUDKU87JkayKq5Xw6fxa8/3UDHiRTDDSCpJfja4+dhTkaTdO8UUla5KlblewCgiLQKpMWI5i4u0oBBuKRZMH8djcrgCS7SAdDhKlwqHMVJO4HuXAHSSWoy6U5m/5julCl7xwcyxIF9isSSGWEcu4XRGk29ztKvdPkjCeFYZJYmhyu0ZBvAqimsfgdrVZk6iC2QJ4ZMhzuSZLadnGS6ZWZuKhyFjvaf8kF86QcTFVrUkAwpoEDH2QcYbUejR85HGWoURWROZqgihfRxdq/dNRMfVJBpmgHVkglWEeBoGsBqkgypGswtVKUzdrK7yfRgNtLZJE225EpcvferrLuboN0m6cCBBbkwG3LCrgK4SIlSIqNaAyqATx0FqISArisbldAS6ScaQrAERhkHzH7lgFA/KwEDXilUeUqv2SZkuS76eTD2T/4vzlMxzhDBmTFiImius1CiMEQTxekluTFFTsBxTpsSACCwki0IzbVbcmo4EhoFZR3K4ZazIPyTJcSgAPP2ZwuXJQSQBDQBkvKbtceWF8vGSuy5UxMeE5tyYB3apMx5HkWZAcmYkHknPCiCHQXvEm6zRPJLMCSbNBO2KIR/ptEkg+FpIP9ahqkayyq1X2hrTK+6nZaGuRLGvq2/zvrue7lN3unBggVrMnNIrFkVYAGokgHlQikNq4OJAnTK1JMhQLp83tKq4RpYI5CGT6JzPQZq0xBfBwd6v+sYmlDbpA2gTTNFxEDntR+iaBZEFgYrUmASr2I8pAEYtlnjVJKE2P6dZkJZko3cHlijCEWG4rJ8rVNBRETE2njZuM73g62bnsco0M1iQlJA64kaxJ0DTSFeAWZHynef+j3CcJpMKoW5KKQBoE1iaS+naFmoJ2AkUcA0pyBXKcYl2mYyHloR683zGgsTWtCyTQGu+n0UBbi6R+k4taRiZrypbf1frShais2+Fg5CSEkrtdgxrAeB9V6nYlPHiHu107xokIWN3tWkEcflLUP2mFJpS8n0nMdjNMt6sNalCP0ykJr+y4yyhioAHioJEASSRvhIAGVmsSQSDy5VmTtinseL24uFzj26MG7FijXPl0bjBZjBDzuOouVz3K1ThmUrMmAQhLDUpEa2pRcrEMElEckqawk4USsAtkWq66LQuj2eVKjUE7VUqTvkRVCMU0c1R1scoCqQ71KI5kbYX3U7PR1iJpM/FdK57DlF9+TZYRG88pkRE+uUDidgVfSkt2u9bGSf2SdrcrF8i8/kkA4luGPDSkKk0LILtYudvVJJhyH6HprmQnJJD3iXHblFctU42A1V2uQcCHgSRDEhJrkvD0xJoMZJ0q6JvMdbkarMn0Bqsu1/SCFtGUVgUxDQWxuVwBNco15N6DHGsSUXaWHQgLEjBNE8HFcUjvj8wRSPlc+TtPHE1BO7WAghKSiWBNv/MFUu9/5NajTLsV30/NRluLpA75NeZaObrdkJe/aN9zUjkoblcaJmLp4HZNLEMKpAKp9U/K6XmQh4YAMAollX6dLJjxRxXLdDIA/dcm18sRw+FExwIwulx5Ydz1mtmOIhHpygwWoynS1RjAY4FTlKuUnySNI9tQENvSWUUuV1CiWJNxuVwwU7erebgHtxYjxcUKpGJZoeoEBHmQZ/Qx90embtZMnyRJRZASWAVSjIPkfZB8eIfW/yjmMTa4WdX7m9QnWuf91Gi0tUjqdc+0bRcXge24qfJND0HRg9LOnBgkt2uUTCwQGNyuwpIMMx9T/6RuWQJQZt9R+BlcsLJQytYjjzAtZ01m30B54ydHGg0rI0pcrvE2U1yugUQiMrhcrW7W7EXsLlcJIspVOdd9KAiQXTrL5HLVA3gAtW8SSNeIHIyAaoA4OojmBeuoAT22/kiOon7JrEiqfZCKQErWo10o1anmZIFMg3Xk/cTtahDIVnw/NRttLZJFN7rouM2HXqZiy7aU2o0TIzSepq5SA3e1ZtyulRpQ4yIZKZMMyP2THEOA6JeUBROAiHjN/T0BEX2UPLtsNZaxJlMBVaG6WtW0uJXfYLEM+MTvgZQeDwcJDKZEKZcr73fMXjgbBes6FCSBPBTE5nIlLMeaTKxIbk0iUt2uQOpulCcLgGRVxmKYWpW6m1WGLJC6UJqEMd03BO0kokhJ6l4NCFEiWE3WpO5irUrbwnq0WJCt+H5qNtzXpRkG9uzZg+XLl6Ner6Ner2P58uXYu3dv7jlf/epX44db+syfP1/J09/fj29+85vo7OzEoYceivPOOw9vv/12U35D3qsor0Vlytuo11q7cWKJ25UFVSCoxds0iPssaQWoVEAqVZDaOJCOcXFfZbUGUqmJtMq4Gmi1AlqLP0GtioCnVSsIxtUQ1AJUx1fiCdBr8RJaQTVAZXwFlXEVVMfHn6AaxHkDghpNPwEhqBKgStT09DhEPr7P03i6fowLokkg02PxN4W7gBY1BkwWNJ/eTx5X6gRu5UsNF+hlRCEIY4nFKF9UHgrClHRKkoHtSNddzAOBFLBDklU0pPtXpUTMbiOGgkhCJM96wwfr627PONJUnfGmJkedKnOqpp/xtUoyCXlFjHXkK3bwz3h59Q4RjEPFPKtiBp2C/kibQOp9kcNFK76fRoKmWpKXXnop3n77bWzevBkA8PWvfx3Lly/Hww8/nHve4sWLcdddd4n9Wq2mHF+9ejUefvhh3H///TjiiCNwzTXXYMmSJdixYweCoGBsVknkvUpczf4i9wMvqyhPW3PSol0V14w0yQB/GZPauDSDFMiTuaYU+RojntA0DAj06dhMoCEDBkPNokzGLUouWPlj65/MezGNxJo0lUtzLib3WfJ9U78kkLhiLf2SRZD7JSFZm/rsO0pT3nFVEJPLNZ00QLUmAYiltCKC2KsbAggoBsMIAAHkldSkywaUKJGtqhWZ3sPYglR/f97YSGPQTiLePHKVu1S59chFTx/6wedi5aI/HIFsqXeBxqnZaJpIvvzyy9i8eTO2b9+OefPmAQBuv/12LFiwALt27cL06dOt53Z0dKCrq8t4rLe3F3fccQfuuecenH322QCAn//85zj66KPx6KOP4pxzzhkx9zIVOVL/OD+/jJuiHTnp0a5K/2QQN6JoB0Rkq9I3mSB+R+0XEw1wDAFGoQQAEpjCQfixeFWNCmL3bUD4hANS3yQDQHSxTAUyHa5hvzsurlfZitS/Zb6NArcqCbU7o/Jm38nk5cFXBuHnomhywapu1WKXq6lvMhZHJoJ4ACL6J3WhjBhAI4KAMIRUDdThYqkH67iMjcwN2jGIYyxoqVCmgolCgRTDPBwEshXfBa6cGoWmieS2bdtQr9eFQALA/PnzUa/XsXXr1lyRfPzxxzF58mQcdthhWLhwIb7//e9j8uTJAIAdO3ZgcHAQixYtEvmnTp2KmTNnYuvWrUaR7O/vR39/v9jv6+sT26YKc/WZw5Imt7ryyrCV6TlZOCVCKSYZMPVPyhakjEQsecSr4CX1S8pCSahqRZKAgAQENCAIg2TZqcS0oAFFOBgqViWf4HwgiufuDJOXMxdLQP6Wh2yotG3DQmSxpIZ8OqhkxpQRSxbGYyYbDXWdyap+0N4vCUBfFYQBSpRrnjXJNGsSNJ5QQg7iARiqijhK2wCQDA+J6zMVS9mKDKS+SL1fEsi3IrkwAhDiSIXll/ZBctcwtx7jAJ7UvRqQVCDTuVjLC6SOlngXjCKaJpI9PT1C2GRMnjwZPT091vPOPfdcXHTRRZg2bRp2796N73znOzjzzDOxY8cOdHR0oKenB7VaDYcffrhy3pQpU6zl3njjjVi3bp3xmMsNL1sxzGE779qeU861+bqTMP+ZCJBYKxYLMIl4lR98WSBloaygWFBoQMUajRGN4pfVQIgg0oN6+Hbsho1gdru6uFzj7eQlClUwTdYklV7Isljybar5AeXfbHOxBjkWZFnEgpkjxDlT1OXBZk1CsiYRJVZjIoQimhVpIA8Xyogx0AiIWDwhesQ0sWQjnGHHIIx8zUYujrJr1WQ9puMkqTb+MSuQ8rqQZYJ0WuZdMEooLZJr1661Cg7HM888AwDKKtscjDFjOsfFF18stmfOnIm5c+di2rRp2LRpEy644ALreXnlrlmzBldffbXY7+vrw9FHHy32i1ortoohBcdt55he7HoZnpOZE4A4eAeAOgm6NH6y1pHmNQWJIGtR6kIZBVTpkSQBBaFhYknG22JRY3DXKxEBLzRkwgUbMpIMC9EjXgE+kEF+SRVFu1Il3R7IwwWSBjS2hKUXMxdCRRAdhU8X1YbBNKmABXK/pCqEqctV8CWw9k0icbumVmTaPwmKeKFmxYoE0hVhUrEMQEAjXg+SFUnNT71Sn7z+qLRtEEfZtapEtupu1iC+J0UCWTEI5Jh7F4wCSovkFVdcgUsuuSQ3zzHHHIPnn38e7733XubYBx98gClTpjhfr7u7G9OmTcOrr74KAOjq6sLAwAD27NmjWJPvv/8+TjnlFGMZHR0d6OjosF5juC2m4bRqXN0PnpM9jQCpUML8h0XN8EfSxJICYugHAITJyz9MxKKSbMfWlLJCsVpOYk3yby6eJCCaWOrzukp9lEj3iyI1Tf2SfF8WSBlEEksetEMUC5OI3wLo1mS5VxKLhjHzjobcpbNMLlgkEyYYXK4hmNWaBJJgHajiOIhkO3G9hgYrMkyGi0QsnjeWBhCCCQBhZK9LuZ3BRTDeTi1LWRypcIkSZVu2HmX3asZiVMRStSBlQ3esvQtGA6VFsrOzE52dnYX5FixYgN7eXjz99NM4+eSTAQBPPfUUent7rWJmwkcffYS33noL3d3dAIA5c+agWq1iy5YtWLp0KQDg3XffxYsvvohbbrml7M8xYqQVYHM1uLa2TPCc1H1FKPVAHn1ZLf0CYeqKzettk12NFQA0GEosSQIShKKfMhqUhDHpq6QBQTjAZ6WRxDIyiWS6reuRbUkt3fWqCyV3sXJh5KCib5VmjhMhlOo3kLUy8yYTcLVIARTOzGOFoV9S7s/VA3jAuIjGz0+ERIwiqG7XJE0XSoDkWJFIBDStJy6aNsiiCNiFUViUhPdBJsE7yjaEe5WMQCDH4rtgNNC0Psnjjz8eixcvxqpVq/DTn/4UQDwEZMmSJUrQzowZM3DjjTfi/PPPx8cff4y1a9fiwgsvRHd3N15//XX82Z/9GTo7O3H++ecDAOr1OlauXIlrrrkGRxxxBCZNmoRrr70Ws2bNEtGurrC1j20VVlQWP8fmhhiJL99zsiCZaMBmVdKO+D2XZwsFMIgApVIQDxVWZubyifs1tiRjYYyFM1JcsCaxBLIiyZG33qQt2pVvcxcrAOFmlcWQBhSEEkUU+e8XgkmpOCbuSabv0i6G8fVKuGW16enKgPCP5HIFsjPwREitSZoE9Mhu1ypoMom6XSiDILYaI0ksY0GMJyYAICzMPMiiCKiiaRNHLqAm61F3rxKLQFZpPPacC+RB9S5oEpo6TvLee+/FlVdeKSJRzzvvPPzwhz9U8uzatQu9vb0AgCAI8MILL+Dv/u7vsHfvXnR3d+OMM87Ahg0bMGHCBHHObbfdhkqlgqVLl+KTTz7BWWedhfXr15ceI5nnMihb6bZzypblOZXjlFlWS494RSqUMFmVCeQ+SpL0R/K+SVkg477JocSKpFqfZLKdTIjOXbBRGGXEMgDADILJUTTxj0kodeuRaPvciuR8dStSd7USxdqkIk1uUBT2T9KglKVoXYTZELwjhobIS2chdbmGjItn1pqMDG5XuX9SFsqIxNGvURKprItl7HKFIphF0C1JLow8zSSOqssVyWofkpgS2AN0NLEU9xtj/13QbBDGcgZoHaTo6+tDvV5HT08PJk6cOOLyylaonJ9vN/qhaBdO4v8eDoAMDcSRreEASDgQL6UVDoBEQyDhIKL+T8AG9gNDg2D9+8EG9oP1fwI2NBhvD+xHNDCIcHAI4f4BRANDyXY/wsEhRANDiAaHEA7Ex1kUIRwI489gCBYyhANxWtwvx+LtkIFFDJG02HP8HcXLVwFinyMyDBswQRZGQLYEdesxdbMSShDUglQ4aZwvqAUiX1ANQAKKoEZBAypmJiIBRZDMXCS2q1UlnVYrCJJvUq3Fa0tWqiA0iLeTtHjx7Kqap1IDKvFMSozy7wAI0v1MGqFgyaogYRSLY5QMuwkjFrtio9g6j1j8zVi6HyX54nMYBkMmzufCKO8D6bl8u0ydyfWmCyM/pouj7FrVrUeCJBoW5QTShrHyLtjX14cpXV3o7e1tyHvchraeu5VjpA+A/hAVlWfKp+f3nNw4iXJ5/+TQQBzxajiXW5QMiGflMZRFaQBgf3yuYkEGIqCHIxocSo6lViXvp2SJQIq+yTAeW8mCeI1GlizBxaNhIxqBVqkQTaqZklxATZabLIxyHtl6lF2simVJqUjjeUkSrETFedRsVVLNwnawKkcM2brk/ZKSJSkvkUUJxGLMujUZIhYX2e0q5q0Xs+tIFiWSTcJXVUktS2FJSgqkRyjrbnPRF6kJY3yMZCxJ7lqNh4cQMSVfQNR+SIpigTyY3wXNgBdJ5D8A+rbpHP1lW8Z1YXs4PKdynBgAQitgFYkPi4CKWSgBqIPk+TYNQAGQYACR5GLMulzjNBJQkIEh0CBKBDEEoVQL5qGKZUkoAapQrEsSxndHFk0ZeoSpHJka01YtSdm16iKQRBJIEf2quV1lV2uaFmiNCZpxySoYxsQEhLE0wpUYytVWBeEuVyGOjKerfZNxHE7qdtWFMoriGXhkdyuQiGWy6Da/qmxFcuHM/HR52IewJJN9SRh5ut4HGVBitR6FUPLzClysLhhr74JmwYukAXJF6Nscjaoo/WGylek5FXPiK4YoQglYhZJzjhOTly+3digFxX5tGEhsPfF+ShIk24kI8r5KFjKEQRrlmoojE/vcvaoLJhALZQCamYRcnnRcF001wEbqX6SaWFoEkkoCabIi42OqQFJJDCnNWpIkCNL7KqeXsSi1Pkf9GGGpcFIS12nIoIpj0kfJA7gogGQegGTMaTxMJCOUSdRrcjEhilEUTwBBuZuVpSulcCvTBLnKMgE7GRcrFMuRAEIIKVG3U2sSSh+lLJDD/R+OhXdBs9H2IunSUipz3OVBMOVxKcNzKi7DKJSEZraFRSmJIgz7QTCoRLdGwoIMhHgSShEODglBiQbTwB4WRopYir7IkAnrkqfRKk0mE49/VQAo/ZRFkIURgFUc+TGeHtRoRiBlt2vmW2wHSVmSJSmJqUQsK4zULKBO4ME7RE3jYkoIARJrTogjS0SUxUM9CJGsRMTPEQ9iNQklF0UuiLLLVRn2kfPmtlmSygQCFnGMI1HN1qNRKKFakK5uTVueVn8XNBNtL5KNvtEu5RXl8Zzc8lhbtTaLEgAZUi1KRlM3q/xNKAWjAdjAflAagATxZAJcJMJEKGSrkoWR2KZhBBoMJatkxMeiRBhFpGtIQKtQBBOAEsTDhdMFsiiq+0T8poz1aLAg48CdSiqIARV9kbIVye8HlcVTtjY1YTS5YEmO+1W2EgV0y1LqlyRIrYu03zHZl9yvVBoSwoWSDwvRhZKSWFRDloolF0NZMONr5ts2NkuS35Y8ceSRq8Qgity9Grti5eEjWQ4H67ugmWhrkSxrrpdxF5jy2tIgpZd1SXhOZjBCIS+pRZIB5wCAUKp5Er+QdJEEDZR+SlCaDgnhFqNmVcaLFsfCycVRFksm3K5xXhZSYUkCQWphBlHG3eoilPqkAQCMlqPc51gokIllaLIi5YAepb9StjJ1i9FkQdKsoBqhC6S8L21TkrpcEy+pGA4iH4sn2EncpjS2MoE4Y8Rii5wBwqoMAmnu3QiKYMrg4yXz+iV1YQRgFUebmzUVRe6mhTIGMg8Hw7tgtNDWIlm28so8HCZffpELwnNqLCcGqFGviLdlwSSExlPYmdyu2jahAUiwXw3aSSxJWq3Ew0NoaknqYsndsOkwkNS61IN3YvcrxD5fKMO24HF2RpysVVkkjiYxDGqVTJqcT7Yi+fWE+1UWP7nRAXO/pJ5mDNIRByOAJEKs9UvGIhiLHyPxIP9YFKXtxO0qC2VEgABxpKpuVQYg0jR0TBFMDl41qltVpS1PYg6owsj5y+JIATExAIXdetTdq0U4mN4FzUZbi6Qr8ipFceUl23rrpxmV6jmVABfKcCi9diW5Ho+K5N+iia+KJHe/xlkCEf3KRVG4WmnWktT3WRiJ+U1NggkALEz6QCUXbEJM/CyXYSGZSFVNHPmxUgKZRLQqH6nfMr1nqTWZWpmSENIg65INguE/Byx1u5qsSS56Yp4Ai1DyqFculAQAY/GE4LHNT5RZdbjlaPMcyxYln2mHp8hWIxLesjjKrlXZetSHf9jcq/5dMHJ4kSxAnrvAVrFFD0BZl4XnNDJOBEBmQvTkZcrCZPI5/nINgjSgh38G9qeWkNinIqiH1SoIB4YUF6zRkkz2uUjmCSaqsUDSqmo9ym7XAGZLy7SyRyqIxeIo+iCldFqtCIHkkwrofZFpv6XcwNCsSXFv5WCfksNCdDcrqCKQolwpgEd2gUa8TxHFQhkQgAf/xNeLv7hgAhATmudBFsWYB09PrUZAFUdu/XKLker9kAXu1QP9v3M5NlqcRoK2FkkXz0RexRRVmv4AuMDlYfCcynFShJK/XPlbSUREJi5YMgQyjgAD/UaXK7cqo4F4m9J4dQvZBUtrlXi2HidL0i6YcXRrbLswHuWauF314SEyTPOt6halLoLxrcgKJE2syVyBlFyw/F6RpIEhBFD076oTNKSkJcHPc7NKIIwZI1y5FQkkYqdZk9ztKi4Ni+s11lhFLHl/JSC5BS1VoXdJysLI97nVGOdXxZFbj0ZLEqmr1tb/eKD/d2WPyce9Jdki0FsspgegTAvGJW9RHs+pOZyEUCZRrySKRVGIYzSUWphyP6Xufk1e/jQIwPr3A5UqMDSouGC5IMpuWMWSjGJBJANDYEEiijRKxkumgglAiCZ/lXJLUra9otA+X2imb1KaDECfHCBjVWouVl0gqeyOpRYrUr6mLJx6H3BM0vADHAQziiDWnjK4XAEo1qS4XCKacdxOVigBeSxlLJYAUsEUHPPpyaIIZK1GfkwXR249Zi1Ju3s1n8fB+S5oNtpaJHW4VrYt3cUPX7ayPafGcVKEUnK3cnEEEEe+Sv2URverbFUODsR9lUlaEAyChqE6yYAmlrFIhgiTdN2KRBViHwComGQgMgbw2JyV+rRxyrcUmWq0KkW/ZFV1uxoEUnWzBlkxDKR7BqjWufwNgGkWvivk4B3d5UoZA18cTbcm84QSQCyWSR5uWUK6im26Vt26k4VR8FLcrFlxNFmPLtGrrfa/G21OjUbbi2SZVhMM+6Y0U0urjH/dcxoFToQCQS11t/JzCFX6KY3uV82qVESgUgOGBtL+yijKiGXELckgAAtDxbqUBVEXTWj9kzyfCZnZb6gqkrJ71CSOIkDHRSBpKpDpfUld03oQT3wdbV+2IksKpAmUqAImR7fahBJQ+ygBTSwBIZgcRdacLIqcl8xHbFvEUbceCVSBHHP/uyZxaibaXiSLYLJGyuQp03pyfRA8p8Zwykw6kKwmofRTmtyvNqsyEUO+TxNXrC6W3HJULMnEuowkC1IXTSAVSTETT7X4PsjRr3nCyPPaxNEU3BO7YNP7QCo1iOEySYOCGMTTZFlmIluTehDWpQmWsZLit5PUfRpqp2aEk0EZHgKkIgdChOgGAPIWTyIa36yblWhDPuziqEa5Gn5+wX5RnrH+LhgNeJFsMFxaUbb0Zj0InpMdilCGQwAhqViGA8L9CkJByEDcFym/5GWrUhbFJKBHFks+lpIH7PAAH9m6pIpIhul8rlGkWI00LLYos3OpZl2uQCqMPE0Z92gQSHVoiFkgFQs7vkjqhlUmGtD6KIUwGqxJFwszWUPUlNcqilIakLhWQZAsHYkImmDywgogZ9GtRsBdHHXrcSRolf9doziNBrxIahhpReQ9WHLZrr58z6n5nIRQEhoH9IRDkhU5oOwjSoSUquJIhgbBBgdSK6laS/srE7FEFCKoRqCDA6k7NRFO0S+ZCCYAo2gCEC5YIOt+tcG0ULIujHFabDny7fyhIXaBJNWqJIAUShCUzYo09UcO0/XKhSWeGEAf3mEXSgCKWAJIFmKGIph5kAeiZId88H1iF0zYrceD6X/XCE6jAS+SEvJ852UfhLItsTIPoOfUeE7Czco/iVUZ7w/E4ihblXQIpFIBhoaAoVQcSbUWi+XQoCqWSV8lEncsiSIgCkHDEKxayQwJYZJoAhCWJqBaka4iKe6J1jcpW4x8X3fD5oojzW5nBDIRUGFFynl1K1IM0ZG2Y4Lyj9AqL43+dYUyXlISSgBWsQQkC9MA+5CP9Jo8X5E4mqzHg/F/1wxOjYYXyQS2CrW1YorOb0QFek6jz0nM+UorIOGAEv3Kg3qUvsokApZJ7lZhTfJ97oatVsEGB0EqVbAojI9FoSqYhjGUANRhIZJwKr83Z8UQ2fVKJcHJuGBzh4WokwHoAkkqVeFiNfVD6tGvNitSdrUy3lBpAOSVP6Q4HEUM42UizWKZFlRwHWlbFkZeVsaa5NxyXKsH+/+uUZyaAS+SCUZaQXLLydXHjoI8ntOB40QIBePRr4SChFJQj2ZVgkZx32MUiv5KUqmCccGU3K38m4Shal1GoVUwAQjRBJAZGgJAGR6Se/8Cg0AaIl95umI5AnbrUfTP5lmQqpvVakWa9gElqCoDfaxkUoeKy1V6UJS5XBHXuRzlahJLF8hT0JlcrYo1iWJx5GiX/11ZTqOBthZJom03otLlbz3d5Vxi2facRpcTF0oxnR2lwBBRrEjGIiBMxC8ZLgIagHKXqySW3A1LKjUwSRi5dclFMiOYgCKaALIRrsi3Ik1QLEvjRAOq1Rgft4gjkApkRXW16gKpu1mNVqQuhDRHHOXfxJIeQ0tepW8SJVysxO5iFdcu42oF1EkEYBbIdvzfDYdTs9HWIlnW1Lf5313Pdynbc2odTryFi6AWCyLvq4wCIKrEs/TILlhaSQJ74v5MWSwVa5K7YbkYVmpgURj3XUoiCUAVTXkfAE0CeXQrMq+fMrtaiBrEExdsEEYgY/2ZrEcngeRCygXS1BdJqJurNc+6lLNBerkTVSi51citSkAVLd5naYOp7zBO11ytKCeO7fq/K8NpNNDWImnqasirOFMLypbftcWlP3xl3Q6eU3M58XyEUMASAQtCYxefnCYEUxJLWRyrNWBwQLUeK1WQKIoFMwqBMLSLJiC+iSyKkT4a0AJ58D6giqJ8nItbkpaxHHVx5GXpAqlHv+oCqfVFqhVCs4FVXEQ1/safKrlalW0gI5QAFLHk59igHzK6WzE8cWzn/10ZTs1GW4ukzcR3rXgOm79+OA+Y59SanOLM0stcioAVrlfeXxkFIFGYFUvGlH5I0W+ZCKLublWsSG41GkQSwxFJGbJgGsRSF0ZxnAfmaPuF0a82gTRZkTni5wLbi5cQAsaYIpSAKpZAVjB16Asrm6afi/PZxVHnxuH/d+VFuRloa5HUIbsBXCuHlMhftO85jQ1Ooq9SsirBIsmKjERwT7xShSSWNJkcnYui4nqN8gUTUKxKRTj5McnvygoEM7NElexG5dCFEci3HHk5jRLIPAuzCNIMPCZrUhZKQBVLICuYOjL9kMoxVRz5tpVq4Y/x/ztXTo1GW4uk/swybdvFRWA7bqp800NQ9KB4Tq3HSbRyE/craAUkGorFkhqsSFksWRSLKI2FlTKWTjhgsiJDu0iCu2Y5WVkUwxDEJdyVQ++ThCaKerqUlieOaf4SAmmCQz4XMeX1KAslgIxYAlkR1KFfLTM/K88nlTNWnvGxxKnZaGuRLLrRRcetrhzDubaKLdtS8pxajBOPdOVDRVgk+ivBV6bgYsndsHw5JxbF23z4iBDEHCsyVEVSdb1W03Ttn22yKo2LHctWZJFY2oaGaPtcHPn9sgmkREy1Im3BOY4Wpu1FL1uXJrEsLNc2R6u2X8SHo2Wf8Rbn1Gy0tUi6IK/VkteiMuVtVAvIc2otTkIs5ShYKZAnFcvEDRtFaaQri1LrMoiPU8ayggnYRZNvc0h9lFwci6zKrOvVIJayxZjkUQJ9DJYjAGMEq0kgC92sJrEs4YrVx0ryNCArlmXKFFQMaSaMxWd8rHMaCbxIFiCvglwrsMj9wMsqyuM5jQFOFrEUbtjEqhRWZDgUu2KFWFbi7yDeJyyKj8uiCaTjLJEIoS14J8xakEXIDAcR244RsC7imOwrrlOTQBosyczQkLwp6zQINyvUOtXF0nauDldh5DgonvEW49RseJE0oExFjrSlw88v46bwnFqbk0ksuRtWBPjIositSy6I/Fgiktwly/swAaSiCWSty8RqZFEYj0mUYRtDaYgiVaxLB7E0ulWTbZvoZaJYLUKaHpNNN1k4ywf3mF78RWKnH85b23E4fMbKMz4WODUKbS+Spgpz9ZnDkib/+fLKsJXpOR0cnKxiGUWJNckAFsXWJYvi4B8W5QsmkIhrLJoAUvcsoLldNSuyzGTo+qQDuvUIqBYjkBVCnianJ98m69GY33YOT3ccIiLXS2aKOqcSUtiEtB2f8Vbh1Ey0vUi63PCyFcMctvOu7TkdXJwyYkkjgCVuVW5dMpbO2EMlC1IWTEAIJhdNAHG+oJoeS0CludTYMNyuAFTXK6BYcswgftZ02XLkabr1qOW1CiQHtVzPAab+yby8w0W7POMHmlMz0fYiCRS3VmwVU8ZPbyqbb5seKM/p4OQkVg9BIm58+EjE3a9BxoJUPjbRTLaJJJJMSs/MsMMcrEpC1d+mR6BKvymTbhNGwC6O2nnW8yWBHfbizMiKH58IfTjwz/jocxoteJHE8FtMw2nVuLofPKfhp7lc80ByEn94HrjCLUjuUo1ka5EB3KpMrFBhZQJCNAGk4gqoIihtExdxNHHPiyo1bOcJo1Keq9VpKMsqzhYUWTeNshhHcs7B8oyXKb8IZa7fDHiRNGCkFeDqyx+uO2I48JzcMJqc5NYxaPxXTN2xDoIJCNEE76+MVJEk8vIVPI+07wQHay3PHWoVRnnbxXqUyjQKpAvvUUa7P+OuaAanRqGtRdLWcBxO53AmYKMg3aUcz6k9OCnXlC2pIsEEjKIJQO2vBBLxDMQ5MQyTCbhCFyDLMIxhCaMpD3Us07Y/TIzF56ndODUbTW1q7dmzB8uXL0e9Xke9Xsfy5cuxd+/e3HMIIcbPD37wA5Hn9NNPzxy/5JJLSvPLa+GX9bzYzilblufU3pyY9In73irxPLFBDawSf1CpgQVVMBrE30EVCGoiL2glzs+/5XODCpCUAb7fiE/iNmbJVH18W/wGLv6GNEZIZrq6NL/a/zhSgWzUszGcc/wz3hxOzUZTLclLL70Ub7/9NjZv3gwA+PrXv47ly5fj4Ycftp7z7rvvKvu//OUvsXLlSlx44YVK+qpVq/C9731P7I8fP76BzMu1YHjLx9VP79o57jl5TiItx8IEkFqZ8U58jmRt8m9RpsnVWqa/0sXFaQ30MViM+rbJcszLX8TLgnZ9ng4WTqOBponkyy+/jM2bN2P79u2YN28eAOD222/HggULsGvXLkyfPt14XldXl7L/i1/8AmeccQY++9nPKumHHHJIJu9wMRxXgQz9IXJ1r+W5FTwnz8nKKRFMAkgBPVBEE5E0phJB+g1k+imzBArEskiIbIKon5vjss3tcyzpWs2rH/88HTycmoWmuVu3bduGer0uBBIA5s+fj3q9jq1btzqV8d5772HTpk1YuXJl5ti9996Lzs5OnHjiibj22muxb98+azn9/f3o6+tTPjJMD4Btm2hpeh5TeTbktYY8J8+piBMDVNcmd61K7tWMi5VWUlet5K4V+3Ka7SPnNX0IEduKm1V2uwaV1JVKKVhQEe5U48Tn+r6cZrs3lnvXCnXnOTWeU7PQNEuyp6cHkydPzqRPnjwZPT09TmXcfffdmDBhAi644AIlfdmyZTj22GPR1dWFF198EWvWrMFzzz2HLVu2GMu58cYbsW7dOmfucitH3+YYaUtKvhYvT973nDynYfFJRIOPxcxEtFJ1woHMkJAys/IUwTAbjtO4xpLRqsO5b61Wd57T8Dk1G6VFcu3atYWC88wzzwCAcUZ9xpjzTPt33nknli1bhnHjxinpq1atEtszZ87Ecccdh7lz5+LZZ5/F7NmzM+WsWbMGV199tdjv6+vD0UcfHXOEvbVp2i467vIgmPK4lOE5eU6lOXG3LN8lVBFJ5TzJbVsGygQGZVyhwxi6YbsXB2XdeU7OnJqJ0iJ5xRVXFEaSHnPMMXj++efx3nvvZY598MEHmDJlSuF1nnzySezatQsbNmwozDt79mxUq1W8+uqrRpHs6OhAR0eH8dxG32iX8oryeE5ueTwntzyZl5NBhIicXkYk+TJgmQIdxjHmFduE/GO97hqBg5VTM1FaJDs7O9HZ2VmYb8GCBejt7cXTTz+Nk08+GQDw1FNPobe3F6ecckrh+XfccQfmzJmDL3zhC4V5f/Ob32BwcBDd3d3FP0BCWXO9jLvAlNeWBim9rEvCc/KcGsFJye8oaoqwlr2G81mtdZ88p9bhNFpoWuDO8ccfj8WLF2PVqlXYvn07tm/fjlWrVmHJkiVKZOuMGTOwceNG5dy+vj488MAD+OM//uNMua+99hq+973v4Ve/+hVef/11PPLII7joootw0kkn4dRTTy3FsUzllckv55U7rW0uiCI3hefkObUqJ/1aeZ/R4sTPbaX75Dk1j1Oz0dTJBO69917MmjULixYtwqJFi/D5z38e99xzj5Jn165d6O3tVdLuv/9+MMbwla98JVNmrVbDv/zLv+Ccc87B9OnTceWVV2LRokV49NFHEQQjmEEkB3kVQgzbekunGRXqObnBc3KD5+QGz8kNrchpuCCMsVbiMyro6+tDvV5HT08PJk6cmJs3z11Q5Ergx/V8ZV0WnpPn5Dl5Tp6Tir6+PnR1daG3t7fwPT4SHPgZgA8gXHzbeRVa9CAx7dsFnpMbPCc3eE5u8Jzc0Iqcmo22FkneYuEwPQBlOold8ha1pDwnz8lz8pw8J3dOzUZbi6QOvSJslWOrWBc/fNnK9pw8J8/Jc/KcDhzaXiTLtJoA80NgyqNv6/51z8lz8pw8J8+pMZyaibYXySLolWt6QPLyuOTncH0QPCfPyXPynDyn0YEXyQYjr4VUlN6sB8FzcoPn5AbPyQ2ekxtGwmk04EVSw0grIq+FRHLy5V3Xc3K7rufkdl3Pye26npPbdVuRUyPhRVJCnu+8bIWUbYnluTg8J8/Jc/KcPCf3Y42EF8kEpsqGlFZUIXoFN6ICPSc3eE5u8Jzc4Dm5oRU5NQNeJBOMtIIY7C0olxZVM/oAPCc3eE5u8Jzc4Dm5oRmcmoG2Fkli2R4ubC0ol4eJ5/Gc3M71nNzO9ZzczvWc3M5tRU7NRluLJLNs22B6KIglvSx4GZ6TW9mek1vZnpNb2Z6TW9mtyKnZaGuRLGvim1pTDOaHxbXFpT98npPn5Dl5Tp6TO6dmo61F0mbiu1Y8h81f7/KAFbkZPCfPyXPynDwnO6dmo61FUgd3A8iVJR+znWPL7/qAeU6ek+fkOXlOjeHUaLS1SOqVJLsB9Eq0VQ6zHJf3ifadx8Fz8pw8J8/Jc3Ln1Gy0tUgWtUqKjhOHbTnNVF7ZlpLn5Dl5Tp6T5zR6aGuRdEFeq4U5bMtpjWoBeU5u8Jzc4Dm5wXNyQytyGgm8SBYgr9XiWoE294JeVtnybOWUKcNzcivDc3Irw3NyK8NzciujEWWNFF4kDShTkSOtKH6+7NvPy1cEz8kNnpMbPCc3eE5uaDSn0UDbi6SpwpjhmK1iTRUlt7ryyrD53D0nz8lz8pw8J3dOzURllK/XcnC54WUrxtXvbivTc/KcPCfPyXNy59RMtL0lCZhbKzJsFVPGT28q29Ry8pw8J8/Jc/KcynNqFtrekgSG32IaTqvGdI5rmss1PSe3a3pObtf0nNyu6Tm5XbOZnJoFb0kaMNIKsLVyXFtbJnhObvCc3OA5ucFzckMrcmoU2lokXSumbFnMId2lHJd017I8J7eyPCe3sjwnt7I8J7eyRsKp2WhrkcxzGZStdNs5ZcvynDwnz8lz8pxaB20tknko04LhFerqpx9uR7Tn5Dl5Tp6T5+TOqRHwIomR32y95VNUHn8AiLSd91B4Tp6T5+Q5eU75nJoFL5Jwa7XwbYJsher7rpWX51bwnDwnz8lz8pzcOTULXiQNkCtC32ZobEXJLaS8Mj0nz8lz8pw8J5XTaKDtRdKlpWRq5ejHy1ScKY9LGZ6T5+Q5eU6ek/0azUDbi2Sjb7RLeUV5PCe3PJ6TWx7PyS2P5+SWpxU5NRNtLZJlzfUy+U15bWk2f/5wr1Mmr+fkfn1TmufkluY5uaV5Tm5po+VqBdpcJF1bJ7J/vWzZcoXaXBBFbgrPyXPynDwnz8nMqdloqkh+//vfxymnnIJDDjkEhx12mNM5jDGsXbsWU6dOxfjx43H66afjN7/5jZKnv78f3/zmN9HZ2YlDDz0U5513Ht5+++0m/IKEU84xUytLb+U0o0I9Jzd4Tm7wnNzgObmhFTkNF00VyYGBAVx00UX4xje+4XzOLbfcgltvvRU//OEP8cwzz6Crqwtf/OIXsW/fPpFn9erV2LhxI+6//378+7//Oz7++GMsWbIEYRg2/DfkmfUE5lYW047rZYzUVeA5eU6ek+fkOY0OCGOs6aK9fv16rF69Gnv37s3NxxjD1KlTsXr1anz7298GEFuNU6ZMwc0334zLLrsMvb29OPLII3HPPffg4osvBgC88847OProo/HII4/gnHPOKeTT19eHer2O93p6MGHixBH/vrLQHxTXY82E5+QGz8kNnpMbPCc3mK7b19eHrq4u9Pb2YmIT3+MttVTW7t270dPTg0WLFom0jo4OLFy4EFu3bsVll12GHTt2YHBwUMkzdepUzJw5E1u3bjWKZH9/P/r7+8V+b28vAKAvsU71VoyMMg+FS96yeTwnz8lz8pw8pyy4d7HZdl5LiWRPTw8AYMqUKUr6lClT8MYbb4g8tVoNhx9+eCYPP1/HjTfeiHXr1mXSjzvuuEbQ9vDw8PA4QPjoo49Qr9ebVn5pkVy7dq1RcGQ888wzmDt37rBJEaJ6oBljmTQdeXnWrFmDq6++Wuzv3bsX06ZNw5tvvtnUm9sM9PX14eijj8Zbb73VVBdDo+F5jy4879HHWOU+Vnn39vbiM5/5DCZNmtTU65QWySuuuAKXXHJJbp5jjjlmWGS6uroAxNZid3e3SH///feFddnV1YWBgQHs2bNHsSbff/99nHLKKcZyOzo60NHRkUmv1+tj6qGQMXHixDHJ3fMeXXjeo4+xyn2s8qa0uSMZS4tkZ2cnOjs7m8EFxx57LLq6urBlyxacdNJJAOII2SeeeAI333wzAGDOnDmoVqvYsmULli5dCgB499138eKLL+KWW25pCi8PDw8Pj/ZEU/sk33zzTfzP//wP3nzzTYRhiF//+tcAgN/5nd/Bpz71KQDAjBkzcOONN+L8888HIQSrV6/GDTfcgOOOOw7HHXccbrjhBhxyyCG49NJLAcTW38qVK3HNNdfgiCOOwKRJk3Dttddi1qxZOPvss5v5czw8PDw82gxNFcnvfve7uPvuu8U+tw4fe+wxnH766QCAXbt2iWhTAPjWt76FTz75BH/yJ3+CPXv2YN68efjnf/5nTJgwQeS57bbbUKlUsHTpUnzyySc466yzsH79egRB4MSro6MD119/vdEF2+oYq9w979GF5z36GKvcPe98jMo4SQ8PDw8Pj7GItp671cPDw8PDIw9eJD08PDw8PCzwIunh4eHh4WGBF0kPDw8PDw8LvEh6eHh4eHhYcNCK5Fhdy3LPnj1Yvnw56vU66vU6li9fXrh6CiHE+PnBD34g8px++umZ40UzJzWb91e/+tUMp/nz5yt5Wu1+Dw4O4tvf/jZmzZqFQw89FFOnTsUf/dEf4Z133lHyNeN+//jHP8axxx6LcePGYc6cOXjyySdz8z/xxBOYM2cOxo0bh89+9rP4yU9+ksnz4IMP4oQTTkBHRwdOOOEEbNy4cUQcR8r7oYcewhe/+EUceeSRmDhxIhYsWIB/+qd/UvKsX7/e+Lzv37//gPF+/PHHjZxeeeUVJV+r3W/Tf5AQghNPPFHkGY37/W//9m/4gz/4A0ydOhWEEPzjP/5j4Tmj9nyzgxTf/e532a233squvvpqVq/Xnc656aab2IQJE9iDDz7IXnjhBXbxxRez7u5u1tfXJ/Jcfvnl7NOf/jTbsmULe/bZZ9kZZ5zBvvCFL7ChoaGG8F68eDGbOXMm27p1K9u6dSubOXMmW7JkSe457777rvK58847GSGEvfbaayLPwoUL2apVq5R8e/fubQjn4fJesWIFW7x4scLpo48+UvK02v3eu3cvO/vss9mGDRvYK6+8wrZt28bmzZvH5syZo+Rr9P2+//77WbVaZbfffjt76aWX2FVXXcUOPfRQ9sYbbxjz/9d//Rc75JBD2FVXXcVeeukldvvtt7Nqtcr+4R/+QeTZunUrC4KA3XDDDezll19mN9xwA6tUKmz79u3D5jlS3ldddRW7+eab2dNPP81++9vfsjVr1rBqtcqeffZZkeeuu+5iEydOzDz3jURZ3o899hgDwHbt2qVwkp/TVrzfe/fuVfi+9dZbbNKkSez6668XeUbjfj/yyCPsz//8z9mDDz7IALCNGzfm5h/N5/ugFUmOu+66y0kkoyhiXV1d7KabbhJp+/fvZ/V6nf3kJz9hjMUPVLVaZffff7/I89///d+MUso2b948Yq4vvfQSA6BU4rZt2xgA9sorrziX86UvfYmdeeaZStrChQvZVVddNWKOJgyX94oVK9iXvvQl6/Gxcr+ffvppBkB5ETX6fp988sns8ssvV9JmzJjBrrvuOmP+b33rW2zGjBlK2mWXXcbmz58v9pcuXcoWL16s5DnnnHPYJZdc0iDW5XmbcMIJJ7B169aJfdf/9EhQljcXyT179ljLHAv3e+PGjYwQwl5//XWRNhr3W4aLSI7m833QulvLomgtSwCFa1mOFNu2bUO9Xse8efNE2vz581Gv153Lf++997Bp0yasXLkyc+zee+9FZ2cnTjzxRFx77bViPbYDyfvxxx/H5MmT8bu/+7tYtWoV3n//fXFsLNxvIF6NgBCSces36n4PDAxgx44dyn0AgEWLFll5btu2LZP/nHPOwa9+9SsMDg7m5mnEvR0ubx1RFGHfvn2ZlR4+/vhjTJs2DUcddRSWLFmCnTt3NoTzSHmfdNJJ6O7uxllnnYXHHntMOTYW7vcdd9yBs88+G9OmTVPSm3m/h4PRfL5baj3JA4lmrWVZlsPkyZMz6ZMnT3Yu/+6778aECRNwwQUXKOnLli0TE8i/+OKLWLNmDZ577jls2bLlgPE+99xzcdFFF2HatGnYvXs3vvOd7+DMM8/Ejh070NHRMSbu9/79+3Hdddfh0ksvVVZQaOT9/vDDDxGGofHZtPHs6ekx5h8aGsKHH36I7u5ua55G3Nvh8tbxl3/5l/jf//1fsZgBEM/3vH79esyaNQt9fX34q7/6K5x66ql47rnnGrJG7HB4d3d342c/+xnmzJmD/v5+3HPPPTjrrLPw+OOP47TTTgNgr5NWud/vvvsufvnLX+K+++5T0pt9v4eD0Xy+x5RIjsW1LAF33qbru3LguPPOO7Fs2TKMGzdOSV+1apXYnjlzJo477jjMnTsXzz77LGbPnn1AeF988cUKp7lz52LatGnYtGlTRuTLlDta93twcBCXXHIJoijCj3/8Y+XYcO53Eco+m6b8evpwnveyGO41/v7v/x5r167FL37xC6UxM3/+fCXA69RTT8Xs2bPxN3/zN/jrv/7rA8J7+vTpmD59uthfsGAB3nrrLfzFX/yFEMmyZQ4Xw73G+vXrcdhhh+HLX/6ykj5a97ssRuv5HlMiORbXsizD+/nnn8d7772XOfbBBx9kWkQmPPnkk9i1axc2bNhQmHf27NmoVqt49dVXrS/t0eLN0d3djWnTpuHVV18F0Nr3e3BwEEuXLsXu3bvxr//6r4Xr8Lncbxs6OzsRBEGmBSw/mzq6urqM+SuVCo444ojcPGXqrNG8OTZs2ICVK1figQceKFzdh1KK3/u93xPPzUgxEt4y5s+fj5///Odiv5XvN2MMd955J5YvX45arZabt9H3ezgY1ee7VA/mGETZwJ2bb75ZpPX39xsDdzZs2CDyvPPOOw0PJHnqqadE2vbt250DSVasWJGJsrThhRdeYADYE088MWy+HCPlzfHhhx+yjo4OdvfddzPGWvd+DwwMsC9/+cvsxBNPZO+//77TtUZ6v08++WT2jW98Q0k7/vjjcwN3jj/+eCXt8ssvzwQ2nHvuuUqexYsXNzyQpAxvxhi777772Lhx4wqDNziiKGJz585lX/va10ZCVcFweOu48MIL2RlnnCH2W/V+M5YGHr3wwguF12jG/ZYBx8Cd0Xq+D1qRfOONN9jOnTvZunXr2Kc+9Sm2c+dOtnPnwjj37gAAA0hJREFUTrZv3z6RZ/r06eyhhx4S+zfddBOr1+vsoYceYi+88AL7yle+YhwCctRRR7FHH32UPfvss+zMM89s+JCEz3/+82zbtm1s27ZtbNasWZkhCTpvxhjr7e1lhxxyCPvbv/3bTJn/+Z//ydatW8eeeeYZtnv3brZp0yY2Y8YMdtJJJx0w3vv27WPXXHMN27p1K9u9ezd77LHH2IIFC9inP/3plr7fg4OD7LzzzmNHHXUU+/Wvf62ExPf39zPGmnO/eWj/HXfcwV566SW2evVqduihh4ooxOuuu44tX75c5Och8n/6p3/KXnrpJXbHHXdkQuT/4z/+gwVBwG666Sb28ssvs5tuuqlpQxJced93332sUqmwH/3oR9bhM2vXrmWbN29mr732Gtu5cyf72te+xiqVitLYGW3et912G9u4cSP77W9/y1588UV23XXXMQDswQcfFHla8X5z/OEf/iGbN2+esczRuN/79u0T72gA7NZbb2U7d+4UEeMH8vk+aEVyxYoVDEDm89hjj4k8ANhdd90l9qMoYtdffz3r6upiHR0d7LTTTsu0rD755BN2xRVXsEmTJrHx48ezJUuWsDfffLNhvD/66CO2bNkyNmHCBDZhwgS2bNmyTFi5zpsxxn7605+y8ePHG8fivfnmm+y0005jkyZNYrVajX3uc59jV155ZWZM4mjy/r//+z+2aNEiduSRR7Jqtco+85nPsBUrVmTuZavd7927dxufK/nZatb9/tGPfsSmTZvGarUamz17tmKVrlixgi1cuFDJ//jjj7OTTjqJ1Wo1dswxxxgbUA888ACbPn06q1arbMaMGcpLvVEow3vhwoXGe7tixQqRZ/Xq1ewzn/kMq9Vq7Mgjj2SLFi1iW7duPaC8b775Zva5z32OjRs3jh1++OHs93//99mmTZsyZbba/WYs9tiMHz+e/exnPzOWNxr3m1uytno/kM+3X0/Sw8PDw8PDAj9O0sPDw8PDwwIvkh4eHh4eHhZ4kfTw8PDw8LDAi6SHh4eHh4cFXiQ9PDw8PDws8CLp4eHh4eFhgRdJDw8PDw8PC7xIenh4eHh4WOBF0sPDw8PDwwIvkh4eHh4eHhZ4kfTw8PDw8LDg/wEutApdAd7hCwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADrQUlEQVR4nOy9ebxcRZn//6mq7r6XNewJQQjIviirsg2ioxNBUHADRo04Ag4jDiL4HQVBAUcjjhuooPwGjYgiIiKooKAibpFRBBTcYIRhMRFBSUBMuvvU8/ujtqfq1Onb9yb35iapz4umu0+fPr2kb7/782wliIhQVFRUVFRUVJNc1U+gqKioqKhouqpAsqioqKioqEEFkkVFRUVFRQ0qkCwqKioqKmpQgWRRUVFRUVGDCiSLioqKiooaVCBZVFRUVFTUoALJoqKioqKiBhVIFhUVFRUVNahAckide+65EEJE27bddlsceeSRU/L4Tz/9NM4991x8//vfr922YMECCCHwwAMPTMlzmU564IEHIITAggULJuX4f/rTn7DppptCCIGvfOUrk/IYK1vuPWk6HXbYYWMeY+nSpXjXu96FnXbaCeuuuy622morvPrVr8Y999wT7ffkk0/iP/7jPzB37lxsvvnmEELg3HPPzR7zoosuwgEHHIDNNtsMIyMj2GabbXDcccfVjun08Y9/HLvssgtGRkaw3Xbb4bzzzkOv14v2cZ/93Gnx4sUTfk9+//vf45WvfCU23nhjrLvuuth///1x/fXXZ5/nF77wBey9994YHR3FZptthte85jV46KGHavtdfvnlOO6447DzzjtDSoltt902ezwAuOOOO3D00Udj9uzZWHfddbHLLrvg/PPPx9NPP13bt9fr4SMf+Qie9axnYZ111sFGG22Egw46CD/5yU+i/RYtWoQ3vOEN2GKLLTA6OopnP/vZuOyyy2rHe/jhh3Haaafh0EMPxUYbbTTw76vb7eLd7343tttuO3Q6HcyZMwdnnnkm/v73vze+NgD4zne+49/7xx57LLrNfdemp9HR0YHHnCy1VsmjroY68cQTh/pymSw9/fTTOO+88wAAz3/+86PbjjjiCCxcuBBbbrnlKnhma7ZOOeWUVfbHOVFtueWWWLhwYW371772NVxwwQV4+ctfPuYxXvrSl+LnP/85zj33XOy33354+OGHcf755+PAAw/Er371K8yZMwcA8Pjjj+PSSy/FnnvuiaOPPhr//d//3XjMxx9/HIcffjj23HNPbLzxxvjDH/6AD3zgA9h///1x++23Y+edd/b7vu9978M555yDd77znZg7dy5+9rOf4eyzz8YjjzyCSy+9tHbsz372s9hll12ibZtuuumE3pMHHngABx54ILbcckt86lOfwvrrr49LLrkERx99NK6++mq88pWv9Pt+/OMfx6mnnooTTzwRH/jAB/Dwww/jnHPOwSGHHII77rgDG2+8sd/385//PBYvXoznPve50FrXgO/061//GgcddBB23nlnfOxjH8Nmm22GH/zgBzj//PNx++2347rrrvP7VlWFl7/85fjRj36E//iP/8BBBx2Ev/3tb7j99tvxt7/9ze+3ZMkS/MM//AO63S4++MEPYsstt8SVV16JE088EUuWLMHpp5/u973vvvvwhS98AXvttRde8pKX4Morr8w+TwD453/+Z9xwww1497vfjec85zlYuHAh/vM//xP33HNP44+Kp556CieddBJmz56NP/7xj43H/ta3voUZM2b461KuIk9HRRPWnDlz6IgjjpjQfbvdLvV6vaH3//Of/0wA6D3vec+EHm9N1f33308A6LOf/exKP/ZXvvIVWn/99elzn/scAaCrr756pT/GVOr5z38+rbvuurRkyZKB+917770EgM4+++xo+09+8hMCQB/5yEf8Nq01aa2JaGKf0V//+tcEgM455xy/7bHHHqPR0VF605veFO37vve9j4QQdM899/htn/3sZwkA/exnPxv6Mbly78m//uu/0ujoKD388MN+W7/fp1133ZW23nprqqqKiIiWLVtGM2bMoJe+9KXRMd37dNZZZ0Xb3f2IiI444giaM2dO9jm9613vIgB03333Rdvf9KY3EQD6y1/+4rd99KMfJSklLVy4cODrnD9/PgGgn//859H2uXPn0nrrrUd//etfs8/zZz/7WePf18KFCwkAffjDH462v//97ycAdNNNN2WfyymnnEJ77703nX322QSA/vznP0e3v+c978luX1Vaq8OtX/va1yCEwHe/+93abZdccgmEEPjlL38JIB9udbr22mvx7Gc/G6Ojo3jmM5+Jiy66KLr9+9//PoQQ+PznP48zzjgDW221FUZGRnDffffhz3/+M9785jdjt912w/rrr48tttgC//iP/4gf/vCH/v4PPPAANt98cwDAeeed58MPb3jDGwDkw63Pf/7zsccee+BnP/sZDjnkEKy77rp45jOfiQ984APQWkfP75577sHcuXOx7rrrYvPNN8cpp5yCb37zmxBCZMO7XO59+eUvf4lXv/rVmDFjBjbZZBOcfvrp6Pf7+N3vfofDDjsMG2ywAbbddlt88IMfrB3jwQcfxOte9zpsscUWGBkZwa677ooPf/jDtef5xz/+Eccccww22GADzJgxA8cee2wUUuP6+c9/jpe97GXYZJNNMDo6ir333htf/vKXB74Wrr/85S845ZRT8L73vQ/bbLPN0Pdr0p133gkhRO2z4XTbbbdBCIELL7xwhR8rp//93//FrbfeimOOOQYbbrjhwH3b7TYARL/iAWCjjTYCgMhZu8/iROU+161WCGp961vfwrJly/Av//Iv0b7/8i//AiLC1772tQk/HlfTe/LjH/8Ye+65J7baaiu/TSmFww8/HA899BD+53/+BwBw9913Y8mSJXjJS14SHffAAw/EJptsgmuuuSbaPqwTGvT+SynR6XT8tgsvvBDPe97zcMABBww85o9//GPMnDkT++67b7T9yCOPxN/+9jd861vfGvfz/PGPfwwAtdfvUlDp6weAH/7wh7j00kvx3//931BKDfU4q1prNSSPPPJIbLHFFvjsZz9bu23BggXYZ5998OxnP3vgMe68806cdtppeNvb3oZrr70WBx10EN761rfiQx/6UG3fM888Ew8++CA+9alP4etf/zq22GIL/OUvfwEAvOc978E3v/lNfPazn8Uzn/lMPP/5z/eA2nLLLf2H+IQTTsDChQuxcOFCnHPOOQOf2+LFi/Ha174Wr3vd63D99dfj8MMPx5lnnokrrrjC77No0SIceuih+N3vfodLLrkEl19+OZ588km85S1vGXjsVMcccwz23HNPXHPNNTjppJPw0Y9+FG9729tw9NFH44gjjsC1116Lf/zHf8Q73vEOfPWrX/X3+/Of/4yDDjoIN910E9773vfi+uuvx4te9CK8/e1vj57D3//+d7zoRS/CTTfdhPnz5+Pqq6/GrFmzcOyxx9aeyy233IKDDz4YTzzxBD71qU/huuuuw1577YVjjz126Nzlqaeeiu22227c70OTLrzwQrRaLbzuda/L3r7//vvjWc96Vg2iWmv0+/0xT1VVDXz8z3zmMyAinHjiiWM+1zlz5uCoo47CRz/6Udxyyy146qmn8Nvf/hannnqqzyOuiKqqwvLly/Hb3/4WJ554IrbYYosIiHfffTcA4FnPelZ0vy233BKbbbaZv53ryCOPhFIKm2yyCV7xildk90nV9J50u12MjIzU9nfb3A/nbrcbbU/3vffee7Fs2bIxn0eq448/HhtttBH+7d/+DX/4wx/w5JNP4hvf+AY+/elP45RTTsF6660HAHjooYfwwAMP4FnPehbOOusszJw5E61WC7vvvjs+97nPTeg1jUdNr7/pmH//+99xwgkn4LTTTsM+++wz5vGf9axnQSmFmTNn4vWvfz0efPDBcT/HlaJV7GRXuU4//XRaZ5116IknnvDbXAjo4x//uN/mQgBcc+bMISEE3XnnndH2f/qnf6INN9yQ/va3vxER0S233EIA6HnPe96Yz6ff71Ov16MXvvCF9PKXv9xvHxTKciGn+++/32879NBDCQDddttt0b677bYbvfjFL/bX/9//+3+1EBYR0Ytf/GICQLfccsvA5+velzTkstdeexEA+upXv+q39Xo92nzzzekVr3iF3/bOd74z+zz/7d/+jYQQ9Lvf/Y6IiC655BICQNddd12030knnVQLB+2yyy60995718LZRx55JG255ZZROCmnb3zjG9Rut+lXv/oVEYV/v4mGW/v9Pm244YZ0yCGHDNzvrLPOqoUOjz/+eAIw5unQQw8d+PhbbbUV7bLLLkM/5263699bd3r2s58dfcZSDRtuHRkZ8cfcaaed6Ne//nV0+0knnUQjIyPZ++600040d+5cf/3GG2+kd73rXfT1r3+dbr31VvrEJz5Bz3jGM2i99dar/V1yDXpPjj76aNpoo43oySefjLYfcsghBIDe//73ExHR448/TlJKOuGEE6L97rvvPv/6/vjHP2Yff1C4lYjoN7/5De2yyy7R+3/qqaf60DZRCHduuOGGtNtuu9GXv/xl+va3v02vetWrCABdeumlft/TTjuNpJT0f//3f9HjzJs3jwDUQttOg8KtX/va1wgAff7zn4+2X3bZZf7fluuMM86gZz7zmfT0008TUXNY9fLLL6f3ve99dMMNN9D3vvc9+sAHPkCbbLIJzZw5MwqBT5XWekjefffdBIA+/elP+23/7//9PxoZGaHHH3/cb2uC5B577FE7poPWD3/4QyIKX7IXXnhh9jlccskltPfee0dfHgCiP+CJQHLWrFm1fY877rjouM997nPpWc96Vm2/BQsWjAuSDmZO//zP/0xCCPr73/8ebT/wwANp3333jR5/t912qx33tttuIwB0ySWXEBHRMcccQxtssEFtP/feuj9il0/70Ic+RL1eLzpdfPHFBKD2pcz1xBNP0FZbbRXl41YUku4z9u///u9+25IlS+ijH/0oPfTQQ37b1VdfTQDok5/8pN92//33089+9rMxT7/97W8bH/8b3/gGAaD/+q//Gvo5n3DCCbTJJpvQRz/6Ubr11lvpqquuov3224+22247euCBB7L3GRaSt99+Oy1cuJCuuOIK2nfffWnmzJl09913+9tPOukkGh0dzd53p512in7k5XT//ffT+uuvTy972csa9xn0nnznO98hIQS9/OUvp//93/+lxYsX09lnn01KKQJAH/jAB/y+8+bNo3a7TZ/61Kfo8ccfp7vuuov2339/v+/ixYuzjz8Ikvfffz/tsMMOdPDBB9NXvvIVuvXWW+mDH/wgbbjhhvTGN77R7/fjH/+YAFCn04n+TbTWtM8++9AznvEMv+3Xv/41jYyM0D/8wz/Q3XffTY899hh94hOfoE6nQwDo5JNPzj6XQZBcvnw57bDDDjR79my66aab6K9//SvdeOONNHPmTFJKRd8zt912Gyml6Oabb/bbxpN7vO2220hKSaeeeuqY+65srfXVrbvvvjue85zn4LOf/Sze9KY3oaoqXHHFFTjqqKOwySabjHn/WbNmNW57/PHHo+256tOPfOQjOOOMM3DyySfjve99LzbbbDMopXDOOefgN7/5zQRflRGv7nMaGRmJyrMff/xxbLfddrX9Zs6cOa7HSt+rTqeDddddt1YZ2ul0sHTp0ujxc6Xws2fP9re789xzSt//P/3pTwCAt7/97Xj729+efa5pyTnXu971LrTbbbzlLW/BE088AcBU4wGmwviJJ57AjBkzxpWH++tf/woAUd7rj3/8I972trdh1113xTOe8QwAIQfl9geAbbbZxt8+SIOez2WXXYZ2u43Xv/71Qz3fb33rW7jssstw9dVX41WvepXfPnfuXGy77bY499xzsymKYeVCbQcccABe9rKXYYcddsBZZ53lqzY33XRTLFu2DE8//TTWXXfd6L5/+ctfanm1VNtuuy3+4R/+AT/96U8b9xn0nrzwhS/EZz/7WZxxxhnYfvvtAQC77bYb3vve9+Kss86KcpWXXHIJiAhvfvObcfLJJ0NKiXnz5mHmzJn49re/nf0bHEvvfOc7sXTpUtx5550+tPq85z0Pm222Gd74xjfi9a9/PQ499FB/7F122cVXGwPms/DiF78Y8+fPx6OPPootttgCu+66K6699lr867/+K/bYYw8AwNZbb40Pf/jD+Pd///foNQ2rTqeDG2+8EfPmzcPcuXMBAOuttx7e//73473vfW90zDe+8Y14xStegf3228//XblQ9NKlSzEyMoINNtig8bGe+9znYqeddhr4bzpZWushCZiCgDe/+c34zW9+gz/84Q9YtGhRrWigSbnCEbct/QPJfZFdccUVeP7zn49LLrkk2v7kk08O+/RXSJtuuqkHC1dTQcxkPP6iRYtq211p+Gabbeb3cwUTXOnzdPufeeaZeMUrXpF9TN5qkOruu+/GAw88kP3xc/zxxwMwEHNFLMMoBz/3vPlrd/lpXrDxxje+sZZfyunQQw/NFlk9+uij+MY3voGXvexl2GKLLYZ6vnfeeScA4DnPeU60faONNsIOO+wwVL5vWG2wwQbYZZdd8Pvf/95vc7nIX/3qV9h///399sWLF+Oxxx7zX/KDRESNBSjDvCfHH388Xvva1+Lee+9Fu93GDjvsgPnz50MIgUMOOcTvt9566+Hzn/88LrroIjz00EOYPXs2NttsM+yyyy446KCDooKkYXXnnXdit91284B0cv8ed999Nw499FBsv/32tR8R/PUDcRHO4Ycfjv/7v//Dfffdh36/j5122skXsz3vec8b9/MEgB122AELFy7EI488gr/85S/YfvvtsWTJErz1rW+NjnnPPffgnnvuwdVXX107xvbbb48999zTf+6aNOjfdDJVIAnT63P66adjwYIF+MMf/oCtttrK/zIaS/fccw/uuusu7Lnnnn7bF7/4RWywwQZDJaeFELXE9y9/+UssXLgQW2+9td/m9hmrSXe8OvTQQ/GhD30Iv/71r7Hbbrv57V/60pdW6uM06YUvfCHmz5+PX/ziF9H7dfnll0MIgRe84AUAgBe84AX48pe/jOuvvx4ve9nL/H5f/OIXo+PtvPPO2HHHHXHXXXfh/e9//7ifz8c+9jH/S9fpzjvvxNve9jace+65OPTQQ7H++uuP65g77rgj1llnnai5+6c//SlGR0fxox/9yFcp/+hHPwIA7L333n6/c889d6jioaZf4Zdffjl6vR5OOOGEoZ+vc/E//elPI4fy+OOP4/e//z1e+MIXDn2ssfTYY4/hV7/6FQ4++GC/7bDDDsPo6CgWLFgQQdJVcR999NEDj3n//ffjxz/+MV70ohdlbx/2PWm1Wth1110BmD7DSy+9FEcddVT0njhtvPHGvify+uuvx+9+9ztccMEFA4/fpNmzZ+Puu+/GU089FX3WXJ+niyy0Wi0cddRR+MpXvoIHHnjAR2SICN/61rew/fbb+x+NTkII7LjjjgBM4c2FF16Ivfbaa8KQdNpqq628czz77LOx3nrrRe/vLbfcUrvPggUL8LnPfQ5f+9rXxnSyP/3pT3Hvvffi1FNPXaHnOSFNeYB3muqf//mfaYsttqBOp1PrbyJqzklutdVWtM0229BnPvMZuvHGG+m1r30tAaALLrjA7zcop/Xud7+bhBD07ne/m7773e/SxRdfTLNmzaLtt9++lrOYM2cO7bzzzvTtb3+bfvazn/kcZFNOcvfdd6893vHHHx8d95FHHqFNN92UttlmG1qwYAHdeOONNG/ePJozZw4BoFtvvXXg+9aUVzj++ONpvfXWq+2fPq9HH32UttpqK5o1axZdeuml9O1vf5tOPfVUEkLQm9/8Zr/f3/72N9ppp51oxowZ9IlPfIK+/e1v01vf+lbaZpttajmT733vezQyMkJz586lL37xi3TrrbfStddeS+9///vpVa961cDXk9Ogfz+MUTTjdPLJJxMAOuOMM+irX/0qbbHFFnTOOefQ6OgoLViwwOeHnv3sZ49ZWDQe7bLLLlFvX6oHHniAlFJRruvJJ5+kOXPm0MYbb0wf+tCH6Hvf+x594QtfoL322ouUUrU89Q033EBXX301feYznyEA9OpXv5quvvpquvrqq33x2hNPPEHPec5z6KMf/Sh94xvfoO9+97t0ySWX0C677ELrrrturc/xP//zP0kIQWeddRZ9//vfp//6r/+ikZEROumkk6L9XvjCF9J5551H1157LX33u9+lj33sYzR79mzaYIMNfOHVeN+TP/3pT/Qf//EfdN1119H3vvc9uvjii2nbbbelZz7zmfTII49E+37lK1+hiy66iG6++Wb6+te/TmeccQa1Wq1sju+ee+7x78u+++5Lm2++ub/OC+euu+46EkLQAQccQFdddRV997vfpfe97320/vrr02677UbLly/3+95333200UYb0c4770xXXnklffOb36SXv/zlJISofV7f8pa30Fe+8hW65ZZb6LLLLqM999yTNt100ygf7OSe1wUXXEAA6JRTTvHbuC644AL63Oc+R7fccgt96Utfole84hUkpaQvfOEL2feWq+m749nPfjZ98IMfpK9//et088030/ve9z7aaKONaPbs2Y2FUJOpAkmrm266yRfM/P73v6/d3gTJI444gr7yla/Q7rvvTp1Oh7bddtuo2Zpo8Jfs8uXL6e1vfztttdVWNDo6Svvssw997Wtfq8GMyBQU8AKf448/nohWDJJEprDkRS96EY2OjtImm2xCJ5xwgm+gv+uuuwa8aysOSSKi//u//6PXvOY1tOmmm1K73aadd96Z/uu//qv2Jfbwww/TK1/5Slp//fVpgw02oFe+8pW+cTstLLjrrrvomGOOoS222ILa7TbNmjWL/vEf/5E+9alPDXw9OTX9+z355JMEgI477rgxj/H000/TSSedRBtttBHNmDGD3vrWtxIR0Qc+8AHafPPNad1116WXvOQlterDFZEr7Hj3u9/duI8bxuA+S06LFi2it7zlLbTDDjvQ6OgozZ49m4444ohs07r7QZU7uc/ksmXL6MQTT6Rdd92V1l9/fWq1WvSMZzyDXve619Uqq50uvPBC2mmnnajT6dA222xD73nPe6jb7Ub7nHbaabTbbrvRBhtsQK1Wi2bPnk2ve93raoVk43lPHn/8cZo7dy5tvvnm1G63aZtttqF///d/zxaYXHvttbTXXnvReuutR+ussw7tt99+dNlll0VVqE7ubyV3Soudvve979HcuXNp1qxZtM4669BOO+1EZ5xxBj322GO14/7qV7+iI444gjbYYAMaHR2lAw44gL7+9a/X9jvqqKNoyy239H8Pb3jDGxqLsJqeZ/odeN5559H2229PIyMjtNFGG9Fhhx1GP/jBDxrf29z7kb6vxx13HO2www603nrrUbvdpjlz5tDJJ5+8SgBJRCSIbPC6qIjpTW96E6688ko8/vjjUfNyUdANN9yAI488EnfddVetp6+oqGjNUMlJFuH888/H7Nmz8cxnPhNPPfUUvvGNb+C///u/cfbZZxdADtAtt9yC4447rgCyqGgNVnGSRZg/fz4WLFiAhx9+GP1+HzvuuCNOPPFEvPWtb12hkWNFRUVFq7sKJIuKioqKiho0qU0nP/jBD/DSl74Us2fPhhBiqMHEt956K/bdd18/LPxTn/pUbZ9rrrkGu+22G0ZGRrDbbrvh2muvnYRnX1RUVFS0tmtSIfm3v/0Ne+65Jz7xiU8Mtf/999+Pl7zkJX4ttrPOOgunnnpqNE1+4cKFOPbYYzFv3jzcddddmDdvHo455hjcdtttk/UyioqKiorWUk1ZuFUIgWuvvXZgI/A73vEOXH/99dE4tpNPPhl33XWXb6Q99thjsXTpUtx4441+n8MOOwwbb7zxwMVBi4qKioqKxqtpVd26cOHC2qSbF7/4xbjsssvQ6/XQbrexcOFCvO1tb6vt87GPfazxuMuXL8fy5cv9da01/vKXv2DTTTcthSlFRUVFq6GICE8++SRmz549qePqphUkFy9eXBtiPXPmTPT7fTz22GPYcsstG/cZNGt0/vz5OO+88yblORcVFRUVrTo99NBDQy0CMFFNK0gC9SHgLhrMt+f2GeQIzzzzTJx++un++pIlS7DNNtvg3nvvHTh5vqhobZAeIuEy1i5jHWNQVkcPvN/4jweM/XyB4V73iko2fC3xze67y32FSbtNCrNf0zHWdj355JPYcccdJ/07fFpBctasWTVH+Oijj6LVavkVNZr2GbS008jISHZV7g022CBavqioaG3RmFAb5/2aoJUDYG5XndmYO2Lu8Zt4mTvmoGMPUu5xh4VXupuMfvDHxxL2diECLJUooBykyU6ZTStIHnjggfj6178ebbvpppuw3377od1u+31uvvnmKC9500034aCDDprS51pUtLqqEXRD7psD4jAwTKGVHiV9rBW9f+4YAKDHQORESxmbvqslYihWbhkrAYAMGCsEOBIIggASAgIE+P8XWK4KTSokn3rqKdx3333++v33348777wTm2yyCbbZZhuceeaZeOSRR3D55ZcDMJWsn/jEJ3D66afjpJNOwsKFC3HZZZdFVatunbILLrgARx11FK677jp85zvf8csMFRUVNSsLkiH2S8GYQnEQ0AbBbNj7DQJoCr36MdP7Du96J6K0hITDk0POuMUQao3gGF0HlAiOqYByajWpkPz5z3/u1wME4POCxx9/PBYsWIBFixbhwQcf9Ldvt912uOGGG/C2t70Nn/zkJzF79mxcdNFFeOUrX+n3Oeigg/ClL30JZ599Ns455xxsv/32uOqqq6J154qKiuqqwWKs28cBxgnBzV5p2r8JhPEx8s+XP9exoGmew2D7ON5wq4iCrBTCqSzv6K57R2mhKYTZXzFYmiM6P1lAOZVaK8fSLV26FDNmzMDixYtLTrJordCKALIJOMOA0e0y1r45IOZgmHtejdBkjzTIvTZ9AVbjqOxRGWrFxTnmPOQeA+x4/jFcN4A0+UgBJc3xlBRQJU8JwHyPz5o1C0uWLJnU7/FplZMsKiqafA0Of04MjsOCcRgopkDMPQ+/j71vEwTdRQ68NLdZZXyCnkDsNW3VUyzO6op1HEwFyOYnLSghIAV5YDooEgkoSdCVva8ma0OLo5wqFUgWFa3FGg8gxwvHJjAOC8WxgEh+e5CDoXsOHIAcfNH2GjQxMVXG+XF5OLp8ogWpEsI6RAEiQAgbVCUBEoDW5GGptb2/NkQlTSBhcpUtKQooJ1kFkkVFa7jiEGTD9jHDmHnw8f0mAsfxgDGFYhMQHQz9dX87ez3sBaROclDryDDiLR4BjhaW2tzeAxlQyhiYzmEqEWCphAAkgUiAEK4DBpwmBLtCT7logAoki4rWcg0C5DAh02HgOMg15sCYc4s5KI4FRAfD9PbcPmF7HpJpirLJwUVhVgZHcx9h4WhBqcO2tuLukkzIlSwgK+MqoS0gdQxKFFBOmgoki4rWQg1TCDMsIFcGHJsc41hg5FBsAmIzMMP7EYdlVwySHowuRGr3NfAkSCk8HLV1k1oQKhLeXbalBNk8JUXhVuOUtTu0AjgoSy/lyleBZFHRWqJBQcRciJXfbzzukYdVxwtHHkodLxgHAxPxdR1v57fx15eKFwDlKloBQOokD+kqW21lKnRo8eDA9G6SBLTW3lm2pIAWBC0EdBpurQhaWmhmHrNoxVUgWVS0linnIuv7xBA0++dv4+4vdY8ThSPPL3JnmAMjd4ocijkgZsOuYwAz974AAYZczi0CAVQOplKLCGIGkMIDs62Ed5PuclsJaBJoK2mOOyDcWipfJ0cFkkVFa7mawqxZCI4TkPzYac4xDavm4Ji6w6Zt7jGN62yGonkc2PvngMnelyY3abfz3KNTVLRjK1m5s5TCQFNaR9mWxk1qO64uhaUmgbaUqKgyIVhp3i8S9seFBEiYgp5wDk/IAsoVV4FkUVGR16Aq1mEAyV1qCsi0IIfDEQhh1SaHmHeSeTA2QTFsj19TxfZ3Gs8wASceglU8N4kwFMA5SmP+RHS9rWQNlpUC2iRgfs5IAKmLRN1hahRQriQVSBYVrUUaqycxv2/YNh5ApuHVQe6xKaw6DBxTx1hlt4EdOwZi0zkA9McJylYOklLEl33LB2qA1KQjWJptFbSU0CRM/lEJtCGjPKXLScbARAHlSlCBZFHRGizNoDT2vrFTBJqrWHMhVrP/YEC6XXOAbIIjwLfV4cjBCPBtsVOsNGWB2M/AcaKOMuskpfDwdMD0JwtMk3vUESxbdltbGhfpXGVFwgBUSlPdyl2kBaZzm4LM5QLJiatAsqhoLdcgF2kuU377gByk35YAkrd0DAPIYeGYhlLd8VMwplCsQ1NH19PLY4mD0ZxLfz2FptvWaRmX6Nylq8Npk4QSApUv4pEIIVf4yzxP6UOx2l6GCcdKKn2UE1WBZFHRWqrsGpAN+6bukq/KwatY/e2TDMhepYeCYxMYORSHCbvmrqfKu0jtr5tTDM2RlkSlKQBTSVS2/UOTOQekf+1aCmiiKPyKFstTOjhKMmlLbab4SKAMHJigCiSLioqylZzpppQRtduRB2T6OIMA2dM0bvc4FhybwJg6THcZiHORY8Ey7Zd011s1VymgpI6AyQHpgOmcpS/ckdToIgEN9E2esmMsY81FujAsgALKCahAsqhoLdNYq+M1hVrNfev7pmHW2uNhuBzkeADZ03pccEwdYwrOQSHY9PIgNeUkOTgDJLUNtyooKVBpipxlRRJtKY1zJANCTfDh10oBHpT2vN0ASkFh+k8B5fhUIFlUVDRQKR7SYh2/34Aw6zAhVqC5clUToVdRo3vs9vVAODblJge5yfGEXZvcZArKyp5zWDoodlrKX3awrFqEjopBGLtJ5IHJQCndv6IsoJyICiSLitZiNZnKsUKtbttE12xvykGOB5DdKgbgWIAcHIIdDMz0cpPGcpK16lYLzA5zkA6WnZYMz4ckKokQfiVpc5EcnvCXhQWlICSuUthcJRVQDqkCyaKiIgBjt4k08bApFznIRfr7Jo4SQDbEOgwgnZscFo45MNZcJHtOw6hXmXMpBcz6ks1w5O6yb0OtqQN1IVgA9ts6dpHaQ7kOyg7sKDtrLF0Rj9mlrB4yrAoki4qKhpYeE6VjK4Wi2RYPAEhzkIMKdJb3ORRjQHb7uhGOWUgmUKTk3L8PGWhK5iLJXnYQqyhAM4Vkx8KR5yQ7/lyF98iGX+3SH/Ausm8qfYOzBDgozTPIF/FAE4QsfZSDVCBZVFSU1YouPhwdK+MigQBMczmEWYEwUq4aAMgYgDrKT+bcI7/NPYZ3qgyIDop+G29xaXCV2rpIYV2kYAsua7tdSzuXVedykikgbV5SS1Ra+fArAGiS0CrjIi0ozU0SUrjnKiCTIh5p+yoFY2ZRXQWSRUVF49Kw7OSh1tpttbBr/rb08lgh1hSQ3X4+9JrCMQWjg2INlkOEXQWjjZQCujLbhBYemJUUENIMCOCw5IB0IdhmGSDWXGTLuEu0APTNdSFQd5EVAQoQFA9mL4pVIFlUVJSVFGLCbrLpXtw5AvlcJJAMJncucpwOMgdIvy2BI3eM0fXESQ6Vm6xC6JXsCiAOnNLC0QGza8OdDpYAImD6Q/rXoJICotAr2QRK6Ya6uhF2IANNCHtbqXgdpALJoqIiAL7+cez9xPBukisXag2XqbZf6iKBfI9jrkAnBWR0PQNIDkcOxgBL2PPhXrgGWTAShB0LZ+5vICmlAFEMS8VcJC/ciYp3+PunCegAOVBKG25VlS1vbQFKKgBknot1kWUqz9gqkCwqWos1UeCtTKWhVr4tGlJuN8aN/2O1gdQBWfX1UHDkYOSAHxaUwoJRauGhKaSBVA6WAGzOkux4uthNNikU8zBQ9vl4B5ebrDDaUvY9FhDORZZhAwNVIFlUtJZJCDFmf2MOnkIYR7QyKlxzYVweak1Va80YcD4o/zgIkByOPhdJDJ5JfnIs+ZCrPRd27UiSAEBQrRSWBKUkSAp0ASg9XlIZUMoKACSkNi5SCRh4QkKJwcMGXA9lqXgNKpAsKiqK8o98MEu4PT9QoEkr4/u1aUHkcN7sIt1+uRDrMIB0cGyqch3GTZJ1ks4lSilAUniHSVpAtkTkLPn+mlEqfZ05mRAtbwMB0AohV6mFv8yHDUQhV1bxWiBpVCBZVLQGaxDckq/ThvsbeE7EOyopoFniUQrhgccvj0eD1n5scpMAGgGpK52FI4Bof3fdHcupCZaCvfHeUbIcpGkHAdAHSMKHYfn+Ugr07PHSsXeNsjlKKZyLFOgJ956HHkpzu4DBagi5Sg0GzxJ2BQoki4rWCg0qyuGhVb5fU75SQkALCgPQyCz0KxEX4wATh6FTmo/kl/m2FJ4RMBNXyB1kk3tM4VgfLjD4ebv9hDTPwUEzLdhxzjKEYbWviHVOtAc7jCBRKwNOB1PX0qF0yFPy8KureOWtIUKUQp6cCiSLitYiOYOTy0sOCrkKtw2DC30EBKSgCJZKhDymEmO71/FoLEcJBOfnwMdDrEAzIFM4OjAOW8TjhgpIIUCaImDmYKkgUfWNq/T3d2pJdNk7p6TA8n79nYzH2kko6yhlhaji1TtNqey/lynkMWAkA+6SnwRQIFlUtFbLhVwHuUmJ8fdLisS6SglUbK5pVZEHputrd+fR82twopXW7PKAQp8kVDqognVgxSursm0aVZeKLGAq+0YIEh6YJGNYKkhU0BDssoFmnF+sRKjYTaWkQLfPINkClAakkOgJSpyk3U/U85OCTJ+mFObHlPu3WVtVIFlUVOQ1rJuU1Bxy1RQIyfOSih3bXXbA5EpzmeNRzlmmAwE4+GrtHWlBD3OPg6pcScfQElK6O0YzXSvbCiJtiNOt4VFBQ2hheiVtkQ2gfZ7SqYe8DCB1dFlJgR53jUKYHGVFNj/JXWXIT/JBA8IPSF97w64FkkVFa4kcutKQ64q4SdGYiwyhWZcf0yB72cKBuUQXklURpIMLc1NonJSUqNyw1CGkE7ClxTc8tFq7b1OlqwUjZZ6H2yakQqUtNF1OUhPLRcK7StUyzlFKYXsdAbQAIShylCko09CrkgGWQJyf5O0hShB6QkNqM2igIlM8JGzxjnOV0Gt3frJAsqhoLVYKSiC4Se8cKd4euUkXShT5Ah6B4AylXYWCO0glAM1cpXOQPPSqGCyBOjBT8dtylahpLtLfnnGRaa7S3C+GYw6S4TErCKn8uQOmX/BKwrtKD0i4kXIWlJnQa4+9D90IkALdfuUvu3MlpXeVUhJ6VTwEXQmNtpKoKFS2VtZJSmVCrmtrfrJAsqhoDRcHXeomo/1gCh2d+4vCrohd5qCwa4VQwNPkJiuiKOQqiXzuyzlIJQS0JL+6hlugOAWkkiLqHRwLoqlSFzkWIFM4DoJkkzSYs7Su0s7MAV8CKwUlaYIWBKHNmprp+xCHXM371e2bUKsUDo4WnhaaPU3+suBhV2Wqan1byFqanyyQLCpaS5WrdM2B0kMVcdg1B8qKQgjW5SazbtJ2q0tiwBQIIdfIVYpMuDVeamq8ys1iHRRyNbcbQI4Xkqmb5Ns0gqusgEZQCi1QZeqCu6g7yhSWSgp0Kx2HXbPFPM1hV98WIg0416aw69iDAVeCLr74Ymy33XYYHR3Fvvvuix/+8IeN+77hDW+AEKJ22n333f0+CxYsyO6zbNmyqXg5RUWrnfivf4EwEcdtd39DgPlScCsnSSGifYWItwEhZ+mO4+4vRbiPsMdSQkBKd9kuQixMxasUrJFeCO8qgfpixTnlbpMTtD21lhDmIIE6ILWuBp6InXS/y65rFt4lVFV90IHua1SVNoVGVK/A7fa1P1XaLELtLnf72i9K3dMamgi9yrjHXqXRq9i2ymwjssuSEZnLfi1P8yOIr9CyNmjSIXnVVVfhtNNOw7ve9S7ccccdOOSQQ3D44YfjwQcfzO5/4YUXYtGiRf700EMPYZNNNsGrX/3qaL8NN9ww2m/RokUYHR2d7JdTVLTaKuUFhx+HJRBAmUIxBWUEXw/FAEoTdjWXlRQelC7kJ/02+O1SMCgKAcW+pVzI1eXZHBjTxvpBMM0pXlR5wH4ZJ6nZ9dzJ7ZPCchhQRn2dmlD1DTwrC07d19E6m90EkJWOAdqrDPwMHGFhabfZy30LwUpbIMIA0sFTo16otSZr0iH5kY98BCeccAJOPPFE7LrrrvjYxz6GrbfeGpdcckl2/xkzZmDWrFn+9POf/xx//etf8S//8i/RfkKIaL9Zs2ZN9kspKlrtxYEIxDNWc6A01wMUHRhTUDo3mYJSclAigFJKoC2lh6PZ1uwmXcg1FXeXg5ymGwXnX/c4vvnSMKvZVgckvy2FqXeRjbDMg7Lqa+8ajZusL/NV9TW6lY5WO1nej9fY9O7SukYDSPOYPXtya3saxwmQhWOlg7N04KyI1hpQTioku90ubr/9dsydOzfaPnfuXPzkJz8Z6hiXXXYZXvSiF2HOnDnR9qeeegpz5szBM57xDBx55JG44447Go+xfPlyLF26NDoVFa3Nitwj6q7ShV8lwMKnog5Ge101gFKJAEolAyh52FU6x8jcZEuJmptMQ65jhV3dfUWyn/sRAISpNnwbV5qj5DBMAZmClG/Luc+xQOn6OCNAEjWGXdNlwZb7yzpymtqCsLJwdMPfe1pbWAK9StswK7JhVyIHy+zbtkZpUiH52GOPoaoqzJw5M9o+c+ZMLF68eMz7L1q0CDfeeCNOPPHEaPsuu+yCBQsW4Prrr8eVV16J0dFRHHzwwbj33nuzx5k/fz5mzJjhT1tvvfXEX1RR0RqkYWAJ5MOv9TAqoGQdlIKBMs1PKiHQlsKHXZ2bdGHXnJscFHId5CKFPb5TCs9hNSg3aS7r2sntk4Zgm0AJwAMxnjPbfNmFXZsWnPbu0gKwZ6GrPSzhYVnZgq0AyHrYtSID0TU9PzklhTvprzQiavzlxrVgwQJstNFGOProo6PtBxxwAF73utdhzz33xCGHHIIvf/nL2GmnnfDxj388e5wzzzwTS5Ys8aeHHnpowq+lqGhNlIOiC4vGOci8q3QOsuYqE1AqUb/cslBsq9hFtqVAW0kfdh3GTY51SuXGwfHr8Tl7X8YJ0nTyTm77MKD0AOSTfohva3aT/BTCrlW0XZM55dykgSWiIh4N4yT9dXKucmIrxKxOmtQWkM022wxKqZprfPTRR2vuMhUR4TOf+QzmzZuHTqczcF8pJZ7znOc0OsmRkRGMjIyM78kXFa2lclxwDsFft+h0QwOUECD7ZSlF3CKi7NJLlVtNAvXLLSnQ14C0y0S1FYAK0ILMgAFhLrelG3UQzitt7l95N0mhjzIFpTYtJW5OqnthwjbyV8iPx3MSUg5s8whucvDodnc7P55rCUmltXmvhBTeTZruGdMjScKERYWwgLTbKzlg0WkLzdASotATBCUtIIUd6KDtJB4p0de2P9L+O1V8tqsS3mWuydN4JtVJdjod7Lvvvrj55puj7TfffDMOOuiggfe99dZbcd999+GEE04Y83GICHfeeSe23HLLFXq+RUVFQamz5CHYnKvMFfTkXCS/rKRAW0q0FQ+3GocZucok7NppSXRacmg3mYZcXSRLsIIeHo51rSdOQioPtCawcVFVRafG/QYU8pjbV9xNhpMet5vUNtxKdpSgz1Ei5Cjd9jVVkz5M4PTTT8e8efOw33774cADD8Sll16KBx98ECeffDIAEwp95JFHcPnll0f3u+yyy7D//vtjjz32qB3zvPPOwwEHHIAdd9wRS5cuxUUXXYQ777wTn/zkJyf75RQVrXXKOkshoMm4Sgg3kMCMMSMRryRhx2TDzPoRCAE6YbZJYQYPePZI9CptCnvsRB5FMAMGCGYKDxn4jbTM7/xK07jcpJB2kIE2E4BICj92zbg3CjlLRgA3FIArty0VVRWEcoMEtHeTg4Cbc5PKOr3xuMm+JqjcdSJIbRZ/9rnJIdwkkfl3EDBLbElfCbtmuslJh+Sxxx6Lxx9/HOeffz4WLVqEPfbYAzfccIOvVl20aFGtZ3LJkiW45pprcOGFF2aP+cQTT+BNb3oTFi9ejBkzZmDvvffGD37wAzz3uc+d7JdTVLTWiqfnNJl8JDFYahHCrdJaSQdOM01GmGHdWkAloGwrCVTarP9rpmkjDrHWt1UUCnY6rTgo1rdAiSbzkB0B59Zw1AJCGkfm8pRV5UbFURyKbYikckAa8DWHXDkoo+268q8qPra0t5s32+UphSWRJoLQ5rlqTfa1mPd1sJuU/roSDpZmjqxzk5UNgWttQrxEAuTWnbRuUtofRpWtMRH2M7GmSVC68upaoKVLl2LGjBlYvHgxNtxww1X9dIqKVltpCquFaLLhP8DnKl01pOYhOlDUQuBCeJpgp8CEkF+v0mE6jM2phW1mv25f4+luZZvmK988v7yv8fduFU2k6bkGfNuQbxrzQ5uF22Ym3diQZN+1ZuhaWJSHSoGkQCcTZuWQFFJGIVxpQ7rxSUK1pFklRAl2WUK2JJSSUC0Bqcx+bntbmXD0Oh3lQ9Pr2svrdFrR9dGWRFtKjLQk2tadt5XEqLLbVAiJm+Kq0MbTki5k7qqbp85NLl26FLNmzcKSJUsm9Xu8zG4tKiqasHhE0hTvmEHdpkjHuEQXfiUC3Kr3FYzTg7brF2rmKJ2v0hraNF9Ca1PI05bOatoJp0nYFXCh19hhum1NbhKwS1fZcKwEvJskaa4PcpOAm8ca3KRQKgJlk4scJsfp5EKu5r6DQ67udVdjuktACpejtCFtewwThhWRm9QwrlEIAqHuJl0+ek1RgWRRUdEKy30p2iwjXO6R5yp9yNXnJmF5R/CT1VNQQgMV0Pb2JNymSdvtAYSVFOi0AnRc2JWHY5dpinKTCmGhYwdQSNRyk34hZf66EYYKhCHmMShzcscaqgjIPgcTFoaHIW9vcQU8QobAYA6Q5rJGpUVSwAObn7XhV+v+/fJaNmKg7VCBNDfpc9DShODXJBVIFhUVrTRFsLTOwsFSOsdh2zDIOkihrEuT1AzKTG5Sq+AqK6rnJStNSWGPcZ1tJaOFi6u+hiQBsm0rpnAFUW5SS3NdZxoC3DOLV/sYnJ9cWXJ5Sf60fJWraHaTgPkB0QGiAh7AThmSZlmsNuDdZOVgzdwkz02SwBq57mSBZFFR0UpXEyxhnaRUwoNRkAiAZKDsKLMgsNRADpTmu972TUpE32aVpijU2knCsU1hV+Vo09cgMjnAqq+jsKsDJe91bAKlE++RnIh48Q5YuHWsqUF8GTEHRb7dQbPtinYyIVdJdkFtMuFVbfPMhLqbFAjrTgJrRti1QLKoqGjSlIOlK+bx+Ult4An3hQzy60zaDJf9popBWSVO0u2XgyK/7G7rZp5vU9gVFgKwj1jpNBdZB6W7DcjDcTx9l8OM0PNTegRFfrc57Boua/tec2C6kGtwlmb9SaksGAXMjx/rIqNz0BoTdi2QLCoqmnRxWEoRwCjgKn7IbkfIU1pwNoGyopCnrHwuTqJqpVBk4UUefm3onSQJ7yirvrZhVvg2CQBQLYWqH15fCkq+bZDc7ZINK1gZIla84xT/WDB5Sb9dwbtI1xKSC7nyAh4iM2lCcxfJ3OSaUsRTIFlUVDRl8l+YMrhKaTkZ5SWHAWULQN8gaRQK6Nt5qFR3kWl+kjtNnp800qj6IT/p3WsLQL8ZlP41+qME5QYQ+P2lym4P2+pzZocVB2PuOs9LthH6L2HDqoBzlSbk2rYFV75Pliw0sea6yQLJoqKiKZcSboi68LlKF371jkQAQsM7EqNmULbJwSwHyXz4FbBj1obIT0qgEZS5qTselgMcpcyEXHmPZDyIPb7vRFcxaQJnpYG2K94h99zNkAi/b0PIVQjzb+aKkPUa1BJSIFlUVLRKJO0cVzfFRVAYlh25SM3dJJCCslL2cit4OFf56kKvlQ4QquUolRyYn3THrWzJDq94BQwo03Uno9c54D3Iw7EOVD5LtgmO44FmDpQuF+kcZeQuPSxt0RAhCrk6aQqwXFPcZIFkUVHRKhV3lWZeqwWotpcBy0ObxxRAPUdpLmsfHnW31YGTQtIpB0pAA32AWD+lakkDReYoedXreJUr4HEukg9gBxAGsDcOYl9xIDlgAiHU2ra3+TF1jIxNIVfA/Aus7m6yQLKoqGiVi7vKJhdpgGm3KSAPStjwa2gRqWyOss/yk06po2oEpQOkGzwAAC0TDnZBVgfK8fZIppBMASmFgJABgHwFE3MeH8/d16292aT0tWsKbr0iQouBMIWl2d/snYZceQGPWU5t9XaTBZJFRUXTRkqYL38XfhVJ5aTRkKBsSaAP/y0Xcm/xRJ5UuYk8fsqPrRjVggBo71VJCGhpV+fQFMFyrFVCOByBALlUfHvtnC3zNawGARQIQwW4XGtIu+E+XATb6iMCUFdHN1kgWVRUNK3kvkilW7fSfVdX5oIxJcbZAIDyYcpmUFYSwOC1270qTbWJPB6Ufdhj2iWmJaHqa/N8eJ7SjrRzIdhB7pLD0VwP5zkXmYZao+IekQcsl5s8tCLi03dMqLUecjVwNAU8CmEQ/uqmAsmioqJpJ99XyVwlYPKU3r5ZaPY0YdTOa5V2Rz/qtc8KevoYGpToxq0h5B2nNkMGADNIvG9ylG4UnNBu+TC7NqUOy1fBwpwX+cTVqzEczWX4Zbz4eTgFMKa5y6YFqMejAfVIY9yvXsDj1yBdzdxkgWRRUdG0VfhCNb2Tbji665MX1pxV5EBZAYjDrCsDlFoEWpAkABJkt/nVN+x6jh6WdviAg5eDZROo3H7OPbptHoyiDtFaIQ/LR45XaRHQROQGC7gfKeGnhfmhs7oBEiiQLCoqmuZyRT2KBEzvfjwiDoCvfh1tKShHzgSUfiD6OECp+gJdKWxI1T6UtvlIbZ6By0VWfQ1I+5yk8LAEDDChhC2OSV9fvRfSwdFddmFW2ZIWonUX6S67+6UOshVdl7VtOQ0DNd4vyeHIQ66ugGd1dJMFkkVFRauFpABazjE5J+kGEcCFZI3L8+KgBODzluNxlIirXsNyVNpWuArfGuJcJRHFsLRLXCk008E7yQSOblvIURpARiFYIaLCnhUJsQKAGqMQiA87TxdZZkWybDIPfAHPVC3KvLJUIFlUVLTayIHS5yhtEQ8PwQIEkYCyitolVwyUxBJ1QlAUfo0qXO2TdGFYZ59ygwfS3GQKxywgRT1XKVnrBwdkU37Sn4SAkhizbcQ/3yFCs95BuuuAL+BZndxkgWRRUdFqJf/lymCJqEXEXO8MbO6fOCgd5IQQ0JWOwq9CixosAeGBSUTNOUkGnrTdIwdI1ZJRmFUMAGQaap0scReZv93GZlcjFUgWFRWtdnJ5SsnAKGsdFnlQBiM3flAqKdDta/RgqluBEH51rjKFJey+DphjKQdHcz0PyMhFDnFyr4ODUwp3gj9XwkK34SkPeiX1MCv5YqLVyUUCBZJFRUWrsVTUoZ6DEKG9go6Sw6TLCnjcUlQu/OorW1NYWmLoEA+OQrZOUQtHAxzTaldfzJNxkbmCHSATeh3C2TXBcjywS13m6gLLAsmioqLVWhyUogGUgLSLOOeAObHQa6UpCr/W2kAYLAH4/koaUL2SjppzcHS3cUA6N+kA2WmZilV3rqTACLs8qKqV5yNd0Y4UqBXvOHc5HvGXa4qQV6+Qa4FkUVHRaq9hHKXro9RkW0EijQ+U3FVWglBJ0yaS7Zl0+Ug30m6Msa6+urUBjlExTwMgOzU4GkCm2wE0hlr98/HQDNt4XnUibpAv9jLd3WSBZFFR0RohB0qDv0GgBGoj7Pi2BJQGKFUEFwdId5m7Sl7d6itbwQt+Bo+xaWoF4ddVS9bCqykAW2NsV1KgLWXWRZr304RYI2Cyt4ybQZnZtqaoQLKoqGiNkRuQbrTyQJl9LAvI9LySFMESysIzyWE2iecmUzjm2jxSCHZaEq1ke6elPCD9dtv2kbpIAD7U6twjh6UUwr+roqF8Z7q7w/GoQLKoqGiNkmRDB8YCpWSuLnyxx6CM3Zf2rtKHW9kSXB6UgnxhTwRMwEOz8flzSEoROcum4hwORA5Ccy5r+cmOkj7M2paxi+RVrSoJtfI+Svc0BQMrvz6MVoeeyQLJoqKiNU7Dg9LOeq3d385ZHZA/dMBZzl2kBWWlKZwSYAKhfSSn2qByB6gMHNPTSC0nafKQ6XaZDA/guci2DGA0j+9gGYYI1MFowZlxltMZgMOoQLKoqGiN1AqBMlmPMufgun2zRmQt3MoBaU8APDDNnWCrbeviOcCBrRtj5B9diDUFpMtDtqX0YdYARkRgVC4My4DqaqQEzLJluXyk2UcMdJXT3UE6FUgWFRWtsVppoMzmLwElJbr9EH5tSYG+pgiWAGqXnarEUfKqUQ5Hdz6oBzKF4zCAbCvpQ6ptH2qNK1pd+NXlInMukodaJwK+6QzMAsmioqI1WisDlLIyIVgpYkCFUGsApdLkYZlzk/x8kAZBMgdHF15tKt5pAmRLBRC2lc1TKlkLsyopPARzLjIXah3r32V1UIFkUVHRGi8OSgJBk10c2bdMNoNSsgWX7Rb/zelykkBSuKMJysKxP4abzCl1lO76WHBMHSQv0mkr5wjrgOR5SOcm21I2hlmlBWTORfJQa3p9dVSBZFFR0VohKWylqt/iBosCZr5A08ABtmgzXH+kgUy3Mtedq6y08CFYB8UOYkD2hwAlhyK/PhYcOUQ7tpfSucPIKcpQyeouu3Cr28cBsq2kD7M6QAoRAJm6yEFAnLzR6pOnAsmioqK1RvFkHiAKv2ozWi7fR2lAqYSA0hq9ivztvHBnea3CVddCrmpAThJozkvGl5vhmIZXeZuHL9ZhUMwB0rlODkjpnKF1kRyQ3DU6NblIsZpZygLJoqKitUpKAFoIkAC0tOFXAO4rvqcJbelCqgkoAXvdbJeCDDBbcbg15CMDLIGJ5STdZbfE1Zi5SSEaw6vusnTtHkkOchAglQh5SOEv58Oq/LoTd5E+RDvcP9kqVYFkUVHRWiclXIg1dpVmBrrbFoNSCUBVhJ4gX8jTq0L4tVeZfkielwyhVZkp3hk8xJVD0Z0PzE2K0P/I3WNTeDVAUdZykByQDq4ckEqODUinuMAnj8XpXMQzJSHiiy++GNtttx1GR0ex77774oc//GHjvt///vftr5T49Nvf/jba75prrsFuu+2GkZER7Lbbbrj22msn+2UUFRWtIXKFPKaCMzTRm0KW4LLa0jTiu8vm3EDEnY+2ZNhPSnSUxDodhXU6Cut2FEZsM38nOa3TaaHTUrXTOp2Wvc0cp9OS0XHWtcf2x1IyPDf7PEdb0j5HGT9fln8095H+srSVrw6QbtgAB6QB8nCA9NvsdT9wIHGR0xmQwBQ4yauuugqnnXYaLr74Yhx88MH49Kc/jcMPPxy//vWvsc022zTe73e/+x023HBDf33zzTf3lxcuXIhjjz0W733ve/Hyl78c1157LY455hj86Ec/wv777z+pr6eoqGjNkAOlEQHaVLuSDNehgNRRurCrFBJSE/oVeVephEBPa0gtoOyknbF6JZvUVOGac40OZn6ajuCDAZrdYxyWdc4zrmJVmSKdYUKsKwpIYf4VVrkEUcPYh5Wk/fffH/vssw8uueQSv23XXXfF0Ucfjfnz59f2//73v48XvOAF+Otf/4qNNtooe8xjjz0WS5cuxY033ui3HXbYYdh4441x5ZVXjvmcli5dihkzZmDx4sURiIuKitY+aQK6vl3D5CT7mtDThEqbalRz3RTs9LQBojvXBH9dkzmOJjNRx1yHOaexhwk4ZYt3GBiB4eAY8pFhf17tmguv5vKP4wGki6i6+5rnaralhT2p0k2D4LR06VLMmjULS5YsmdTv8UkNt3a7Xdx+++2YO3dutH3u3Ln4yU9+MvC+e++9N7bccku88IUvxC233BLdtnDhwtoxX/ziFzcec/ny5Vi6dGl0KioqKgLMl7Uf8i3j8KuSxm22ZD7cakKt5roLt7YV24+FQV1YdrSl0FE2LNtW2VNHmf1GW8qHT3nYd8SFeZWIwqotFZ7bSEuG52efV3iOgoWQbSGP64kUbCydf0+EXzWkflsCTAwGpHOqToKdpqMmNdz62GOPoaoqzJw5M9o+c+ZMLF68OHufLbfcEpdeein23XdfLF++HJ///Ofxwhe+EN///vfxvOc9DwCwePHicR1z/vz5OO+881bCKyoqKloTxSteTYjVhltd6BXOIZlwqwOJawWRUvhwa0UhBKuJ0Ibw7rIt3cxWgwTdEMiLFjhmsHGussk1hpU82D6yPhzAT9CBgSPvf+TuUWWcIpAfHODenWFCq8MCcTqEXKekujWtaCKixiqnnXfeGTvvvLO/fuCBB+Khhx7Chz70IQ/J8R7zzDPPxOmnn+6vL126FFtvvfW4X0dRUdGaK99DqUNriMtTQoYcpZLKVrUaYEp7XQlT4SoJHpbawtGtKsKhadSMCx5ydcCDfYp8dZCJwnGqQqurU7tHTpMKyc022wxKqZrDe/TRR2tOcJAOOOAAXHHFFf76rFmzxnXMkZERjIyMjOOZFxUVrW1yX+YkDA9JCEDaHkotAihBaCvWK2n6RuwyWBqSBLQmu7uBZQvC3i4SR5mXSoDj1ph0jtFfbgBjmnOcKjiO6RppcNtLuNP0mc0zqc+k0+lg3333xc033xxtv/nmm3HQQQcNfZw77rgDW265pb9+4IEH1o550003jeuYRUVFRalcSNM06qe5uHDuCmJCntDk+EZayl/2eUvWLtJWEi1lcoeupSN3cre7+6TH8TlK3sqRyYO621q2arVl2z9C+8vweUc/w9WCNaxFyfOSAZYCgCBtwOhOQHydb+di21a1A530cOvpp5+OefPmYb/99sOBBx6ISy+9FA8++CBOPvlkACYU+sgjj+Dyyy8HAHzsYx/Dtttui9133x3dbhdXXHEFrrnmGlxzzTX+mG9961vxvOc9DxdccAGOOuooXHfddfjOd76DH/3oR5P9coqKitZw8fykkiZcCjAnyRylWSBZQtnJO5IISkhUZBZYrqTJS0qyOUhtw61jNBXwNSWdOwSSsGvGNbr7SmFAGBxgPuc4HufI2zl4CLUWTuXQG9Y58v2ciyQ9LRzlpEPy2GOPxeOPP47zzz8fixYtwh577IEbbrgBc+bMAQAsWrQIDz74oN+/2+3i7W9/Ox555BGss8462H333fHNb34TL3nJS/w+Bx10EL70pS/h7LPPxjnnnIPtt98eV111VemRLCoqWinyE3kgoCVMn0gGlCTMdoKACbUCWgtIIrubC73anKQliQFl/nGd0uKdEHJNYdkcUl1ZcGwKqdbAOBFAOg2Ao/lJsmo06X2S01GlT7KoqGgsVQTbK0moCOHc9j66c4I7h61iJVu0E3ol3fEA2NzkYDkgAmhwkXUwAmPDkVerAsPBsdE1pmDkIdJxAJJSt+iuJ+fpuzZVfZJldmtRUVFRRi7sCgmQJpAQIBCIYkfprmsChDSuUmqCFuSdJQDvJiFFY+uHuTl2kECAort9PGCcaDFOuM0+DtAIxgiKY8ykjV+s9Pel1EmuLeHWoqKiotVVSgBkWzpqOUkXcnV9lABI1GEJCZuX5EcWNZbIhAccigCiUKrZXgcjsGIh1Ww4NS24AYOiXoHwKsAWVklgyQFpL6+qkGuBZFFRUVGDfAO/7Xc0nR8xKCstoEAQAiCqwxIACAJtJGPoGkwS749M3aLZtnLB6F6nQAJGwmAw5vKQAESDSybmkM2OMtw3gWXNVa5CFUgWFRUVDZBxb6YVotIGhsoW8QgKIVdBJj+ZwhKwdT8I0Gx8LHZzCkV3ew1uQ4ARaHaNTWAcC4oRDIdwkabGKQDPreIZhVa1DqAE238VwrJAsqioqGiApLDsIOeGCBUsKOGqWwHztW8qW2HhRbb1w7NP2Ek+iUKGMWnEz7jFsH0ACMcIp9YqU3NgZFD0QBxUvZoDZQo2BjsBV5CT3E8jxJ6JgXQVqUCyqKioaAwJhLCra0jgoNT2shDGVWoyI2AdEONIo4BjThqB5ChI3aK5ffhZquMCI3eL3CkOqGAdKgc5BOQiWDpX6S5Og1aQAsmioqKiMeT4KITJP6agFCCQAAQZVylsmNU7yfSbPRN1TR0kEKDobh8vGPn9xgJj5BaHqWIdBpIsXDowzygkBFEApdvswq7p8aZQBZJFRUVFQ8iFXbWFomSglDBtHVLAhFrJukUBaFA0JCB7bEZNDkUg06Ix3gIcnYAxDaPmxsWBAXFQe0cTKD3M7O2uerWh59HfDTKEX3nYdRWqQLKoqKhoSDkAkV9Jy4CSGBg5LAGzfSylo91StxgeOz8ibkJgpHR7AsWkYCdbtZobJwcAVJkzR/bKAtLNB7D3jcKpNtSagjINu051yLVAsqioqGhI8bCrHz3HXKSG6W90PNE0tos0xw1QdI+Tq0o1+wwGI4AYjjkw8v0yxTpDFeqkSm8XMqpoJegsLIcKpzbBeApUIFlUVFQ0DvGwaw6UQGj748DkqhXsJG7R7TMmGNOWjfGAkTnFgflId58h1TQ5xwEzhWXOGdbCrqpUtxYVFRWtNnKwSkEJBPdIfOeGYziNBUZgjAKcHBjZvhEY0+rVpuKcXE5yzDcmTM5xgEwn6ESw1BgMSh+y1vUZr1OkAsmioqKiccqFXVNQAnERDoBoTiufyxoNDkC9+Ca6nOYZgTFdYwrGmlvMhVyzLnL4DCCJGJAemkIaCHJYYgAouRt171B036lTgWRRUVHRCoiDEgjLYTmpJLba2AvJjjewn3EFwViDYpKHpKoKT1BXwxfJSBVel1KmaIeFXIWQAZZuvxwo2bg67ya1NiFX7lKnSAWSRUVFRROQc5OEAEoAYbWPRILBsl7NOgCMwMTgmLudwTGCooUhaQ7IJMzKb2NADNvM7UIqcxypIJQCqIrmtqah1RSUtSId5khXRci1QLKoqKhoBeS+9EPRTuIcRX1/vj3KM9rLE3aNTWBkbrEGRQdDC8EIlEDD0le9Wg+jsOAkqc1tugK0SmBpgSckSAb8hEKdZG4raUAo+/xXzfJZBZJFRUVFE5RvCbHXOSyBeu4sdZCT7hrt7Q6MOoGiB2ICSiAJuzZIKOsopQLpAEchFdsWw9JVrQrdr4NS6xB29WDPhFxFmvmdPBVIFhUVFa2AvIOkZigCCRjdOXeN0bYGOFb9iYORO0V+3cFwUKi1QR6y1kU6aBo3WQV36WCJzkBQglyzKXONpM12HnKl4Z7fylCBZFFRUdFKUG4VrGhTU0iV3bYicBS6yoIxcotuH8CGQ7V9+Awo3X2iF5mEOh0cJTuOVEBVGRimsOx3Aa0g2p0ASgrzWQXZsCvp4CbdXNdVFHItkCwqKipaiaqBMTkfd1i16ufhqAM4qTIwpBSOHIwpFJNQa1y0MyDUyqtYHRxlcJTC5iR58Q5JDWFpQwDQ6wZQ6j6EbPkWER92dW6SQ9Ftn0IVSBYVFRWtBNWMZBJWBYYbF1fLOepqaDgapzYGGLWuO0eWf6QxQ609COsoieUkAQNNkhaOzj3a94b6MK6y1amDMnGOERz9eyMy/ZOTrwLJoqKiohXQQDiy86EAqfv1ghzdz4ZVPRz7vUbXWAMjg6KHYVNVK2COmVuJw7lJewwhK0Cx1o8IluaxRbtjHqffDaB0Ydk0T2vdpBCh7cOFXKe6FaRAsqioqGiyNEx4lUMw5x6tcwRpoN8fyjlG8ATMdgfGtIDH3R497TowBQuzkg2zgoVZoXVwmA6WLeYkrXOMHs8NK3Bj+UjX3WQacrXv61S5yQLJoqKiohWQg4C5Ug+xAsgD0odN87lHDkfvHjkU+706HO3t3jUyMKYFPOZpNreA1F9nLzhINjgAgC/QqcGyH0KwotXxoKQ+DEC1aeUQpEybRwTFZGCBC7lOcV6yQLKoqKhokjRWiDULyMhZmu3U69ZCq9Tr5p1jDo6DQFm587GdmVAWjqo+OEBIlYFlBWp3bE6yG4NSS4g+QC2YnGjiJgWxkOsUV7RyFUgWFRUVraCybjLaYZyAdC7ShVeda+TukUHRba/BMQq5srAsDBR5kY4eApJS2/yg3VeoKtsb6apZCYDodQModWXOK7sfAKGVgWzOTZKY0iKdnAoki4qKila2fCVqEnZN82w6U6DDAIkEkJF7dKHVfjeGo9s/KeZxTpG09kDk2/xTTGApWGiTKhltk1pCVBpCyWjqEK9mRasTQGmdo9Ay5Ch1BdIyuMmcY/Q/LKQv3pkqFUgWFRUVTbI8CIEIoL5AJ+cgOQRZeJX6vdhF9np155jA0YGRu0dKQJlejp4/A6VQEsI6SqokhJIMlskQgVbHPH8OSi19TtIBMnKTroKVhVyRi7SWwp2ioqKi1Uy5kWlpe0PqJpP+x0ZAOgD2e8E98hxlUulKlUbV60dukapwAgA9wEFG6jH3yNykA2YWlu1OyEM6UOqKAVL5sGvNTSaFT77qdRWoQLKoqKhoJSjKS/qNOn+u6zlKHmLNApKB07vHfuIiEzimYNQNLnLsAQKAqNwAAQtJLSEtHDksVcdhpVsHJQDRhgGkrowjbXCT/v0i9q6SBpBZpmsSVSBZVFRUtDLVNIA7bQ9JWj0EkS/SGRaQ3D3qbs+HVbWDJIMj1cKtpoCHF+yksBRskID0cLTTdSoJsnB0sJSdFqpuH0JJKLSQgtIUF0nTEqJls5uUirlHFb+fU+woCySLilaiVnT5nqFXgS9abeQWNzaX42Id4UEZpuh4J9kAyCgUa92j7vV9zpEDMoUjVVUo2tEaY+Ujo6IdVtkqlTRw08rDUqEFbQEp0UKFfgRKD8G+/TuRDW7SPJiHoSDyc11XhQoki4pWQNlh1ityvIZesALP1UM+5Jq6Se4eM9v8oADe65hM1skB0rnHqtv30NPdfiMcefgVSIp2ciHXXnCTDphCyQiYqtMGAFToQ2gLS3sZgAcl7HtDNh+Jftccm7tJIIRc3XsE2PF47noJtxYVTVtle+EGhdYaDzSOxmgRl9cXrebKjVRLhwL0uqGKlYVYBwFSd/uZfGQVrjMwOiCmrSA58XYPwIRZXR4SAKpuD1IZF+gcpKxM6JWk9o5SqDj3iEr61+zcpHeU7n3y5wkYh1zvcmWoQLKoaAxlR46l29y+w7pJGnJIc+JIuNMswJymGmNR4Fqolciu/2ghWCUTcqowMCAHSBdedTA014NzdPDkYEwLdgZCkrV7AGBVrAGWpCUUAA1b4NNpQVQaGn1ItEBK13OPrlDHXYYdNmCdJYQIa026tpAV+5eZkKZkzs/FF1+M7bbbDqOjo9h3333xwx/+sHHfr371q/inf/onbL755thwww1x4IEH4tvf/na0z4IFCyCEqJ2WLVs22S+laA2XSE9sPBg/F7pvTvaPV1R9iMqu4DDkyd+XnWphuabruec6xe9V0QBlfgBFiywDUajVXK2HWc1lbQt6Qg6SA1J3+6jsue71UXV75jrf1uuj6vbDffjt6TZ28uFbB2Ot7WP0o8dwkK5c8ZC9Pe3RTF8bd9D+xwHgR+b59yl6H6cWlZMOyauuugqnnXYa3vWud+GOO+7AIYccgsMPPxwPPvhgdv8f/OAH+Kd/+ifccMMNuP322/GCF7wAL33pS3HHHXdE+2244YZYtGhRdBodHZ3sl1O0hiqCzCAwWiB62FV9v2r8uE8ZqA4FzPRy0+soWiUa6iucFaX4NR8zLtLnIfs9f7uDlIecc4taR5Dy8LPuUifg9PDs9VF1q/zJ3u7g6IDoj8XcavocHDg5qHW3V3PJ0Uol7oTguHPv21RKEE0ulvfff3/ss88+uOSSS/y2XXfdFUcffTTmz58/1DF23313HHvssXj3u98NwDjJ0047DU888cSEntPSpUsxY8YMLF68GBtuuOGEjlG0ZqhWeMMgFC1xxPfJXcbYv3BJZPCVOg53nZXeR2HZYS67+w18NkWTKfNjqmvmsuoKqLqm1aPqQ1Q9M2Gn6kLoCnr5341D7C6Lc5HL/25DrAGU1bLltRCrgVAvav3g1a5Rr6R3debToe35WJWtUtnh40qY/KNk/ZHS9Ea6bbLTgmq3IJSCbJvLstMylzstqNERoNWGaHUgOqMQ7bY5b3UgRkbNbZ1RyJF1QKoNki1AdUCtNkh1zGXVxpKnl2Hm7GdgyZIlk/o9Pqk5yW63i9tvvx3vfOc7o+1z587FT37yk6GOobXGk08+iU022STa/tRTT2HOnDmoqgp77bUX3vve92LvvffOHmP58uVYvny5v7506dJxvpKiNU1ZOPpf9ywslslDRjAcxy9bQajDjKo8PNlh/WLsPNflLvOV2pNjCxRQrkoRK7gKG9lnDPDOsTaEvN/1YVbYYh7d7UUVqjlAOjdX65VkcNQVhYk7FbGnlvzo47cpYaBZEUgRhNI+L5n2RlLlinUAkhJaaYhKg5R5DqLbg7S5ybSAB1UF0WoHVy2ntpI1p0kNtz722GOoqgozZ86Mts+cOROLFy8e6hgf/vCH8be//Q3HHHOM37bLLrtgwYIFuP7663HllVdidHQUBx98MO69997sMebPn48ZM2b409Zbbz3xF1W0WqsWVtV986ueh1KrNMxaQRCZczZrEzoTZnXbc7fxEC47CSJ/qu0P1EKx/rnz8/Ry0fQV/7djcAx9ktoX65hq1pCHdDnCQYCMQrFROFWzMKo5aXYyt5sTVeS3k9Zm/66d5sOO5UOtibOlStcLh/gwAxdOZjlX8z6wvOQ00ZRUt4rklzIR1bbldOWVV+Lcc8/Fddddhy222MJvP+CAA3DAAQf46wcffDD22WcffPzjH8dFF11UO86ZZ56J008/3V9funRpAeVaqFrO0UGHu0aeK8oBaDxQ4renq6o3VLYK+7uVkBxbSNsrJk2VH3eSYzjKolUg928gJIDMQsb8s8FzcQk4TF+kg1M/6w5zgHS3V93KO0ddkQVtCLVSlY81VGy7sKFWqQikBYSUkNDQkEC3glDa90a6Slbd7fv7q04bVc84Tecmpa90ZYU6ugLQjt8PV9Xq/k7l1AN0UiG52WabQSlVc42PPvpozV2muuqqq3DCCSfg6quvxote9KKB+0op8ZznPKfRSY6MjGBkZGR8T75ojdFAOEY5SKrDMBtuzfyhpttqYVUbXhsSZo2w1BgblEWrXITMYIhMDltrXrjiCriCi3QO0xXPuCk6roq1CZCmspQCJDUPtTpIupBvc1BeKAFUZiRdVZHNSVpYVgR0FMzPANMLSco8D9UxYVfX+kFSBlBK8zqEYjC0IdehXGRD0dpkaVL/qjqdDvbdd1/cfPPN0fabb74ZBx10UOP9rrzySrzhDW/AF7/4RRxxxBFjPg4R4c4778SWW265ws+5aM1SFpCuqtRdd2HUpJrVh2FdKNZehqtM5ae0xYPfxh+btY0MCsFGjtY9f3eu47zWIKAXTS81FXe5UGtU8emcJQtVhnBmCL+OBcg4lGr6J6suC7MOOIVQbOVzmi4c65yqCcNSCK2ylg8edo0mALn+TPYjwYdf2XuRrXD1b9rUfM4nPdx6+umnY968edhvv/1w4IEH4tJLL8WDDz6Ik08+GYAJhT7yyCO4/PLLARhAvv71r8eFF16IAw44wLvQddZZBzNmzAAAnHfeeTjggAOw4447YunSpbjoootw55134pOf/ORkv5yi1Uh+akfOPXLn2FTVmla3Zv4oG7/0eDrBVQ76ylV33+D+BhXYRK7SucbUURatPrKft9DuwdwjbAEN6x10UKmFWX1fZHCZJv/oLleRe3SQM/d3Va2xq+Ti7hFVBakFyF3vGpepOoCGNK6yW0F1YJ6jnbTjQqzOTXJw8pAraT24dWkV/vCbdEgee+yxePzxx3H++edj0aJF2GOPPXDDDTdgzpw5AIBFixZFPZOf/vSn0e/3ccopp+CUU07x248//ngsWLAAAPDEE0/gTW96ExYvXowZM2Zg7733xg9+8AM897nPneyXU7SaSACh8GYsOPKKwzRHiYlVswp3lygXaStZK10HptvF3ScTvjWDnuug9M+rwHL1V5Sf1D4XySfquDBrWhzjHCQHZNXVNTg6YAKDQ61VVUXhVm02Qmqbo4RE1dVQHaDqAugoiEoD6NvbW9A2xKqlhlAmVCyYyzTLZlWZUwg1Q5nZsKsKlJPeJzkdVfok12zVAFn1G+EoGCR5jjIb5nQa5o+1qf+Rj5UTot4XKWRwhkLG93Ou092P3Zea9h37mRZNknx4vt+F6C83fZH9numZrLrA8r+b3sjuMtByd/53aLvN9UX2l3Whu31z3uujv2x55CL9YABWuZoCMrjKAEfSzS4SYEtjyaRHUglIJWx/pLKOUkK1lWkD6ci4N7LdglqnY85HR/z11mgHanTE9Eh2RiFabYiRdczlddbz29HugFqjINUGWuHykqeXYeZW26zefZJFRVMpHl4Vul93jyz3l3ONAwt3METBTlrBikyhDnN8AjK4S3cYmbhKd1z3OPx4uccsbnL6aNCwh+SzxNsh3GfSz1+NTiFHmQOkc4oOkLpXZcKteSfpQrBucEDqJAHYmlbjKiU0qi6gOso8JirTG1kJG2I1YVd3WUsNWWmgjSjk6tyjQBvsyYT2mMz7NZUqkCxa7ZX2Pfrwqu4Pdo86E351x0GmMCa9nCoDzGHyjgIyVLGabx8bXtUxKO1jCMjaAIKSm5yGslGBNNfGf2z5maWpdAxHbfN2FS/O0SG/p23u0UExBaTpaYzhmOYlnVz7hwEkQSrhgSm1DHnJjjKtIJXJUaqOhJYEURFEpSGkZi0fFpbavBYJhJCrz8FqBkz3PozRPjMFKpAsWq0V/pgawqtN7rGhcEdkYJn+UQ4aP+fhxV2dveyBmQFaVJzTBEog61aj3GTRtJFfW7Lpdg6ATF6uVrBTVYmrdLcTK+ghX22aA2RTG0hWaesHgpMELGgBCEnQ0BCVgFDaOEnmJp1zNPcJr4Ebx9p7U1Xxj18gLL48xSqQLFptVQNkFSbkRM7Rt3Tk4VgDY6Zgh//aH+YPVSgVQqnuuAxwLjScg2UKSn//dL8hBnIUTU/5L3znngDf+uHcZbSkVcXaKhg8uYskdgp5yTwgvaPUeTfpBghoG+EIIdYAyqpbQXWUDbMq/9g1N+n7JUPINWoFyRXuwPyImA6f8ALJotVSYwJyiMKd3EobDoxUVfZLjC1jNMzzkmFdPDd3Uii7DToLyxS6KSgFUEKpa4qaQoUDmuhdqJWDkbtI1/PoC3XYdgdIP2qu0jUwZt2kdZEutKqhgQogW5jjc5OVOTdhVZF3kzqEXNFGCLnyVpDai45BuarWkgQKJItWQ2UB6fKPbFmryD0yd5nCMQJjCkX+5TUIlB6Odn9pVloXUtWAmcLSg5IV6GRBWXsf4lymkKjnMIumr/xINufqXC49LdZhoVZ2mxsK4MKsPA/pYJgDJHeSWjejR+sKUgoDQQ5Ll3+EhpAihFol1dykKeTRfspOOkTdyQ1PEDw/m9t3FRTwFEgWrVYaE5CucCd1j257AscaGPksSTBY+sfN/JFaIPrn6FY4kMp8KXBgInGW7HU1gnIig7FKpev0FdV/eKVrKqb5SM3PdXCLaZg1zklqtj0GpIMjj7JW9sei4mF8TREsAXgoSgCkgivNuUltQ67OQTblViMnma5GkstFTiEsCySLVj+5/jNXwcpCrLz1I3KPUQFPgGMKxpqDHCbMyvfJgNEDExaG9rp3lVYRKKPj60Y3CbHqlxIqGkJpy4drfUACSLiLcVUrJe7S5SK5iwxFPOSBGEKwMSArClAE6rBUnlr2giYgV7RThbBr6iZNwQ75kKu5Hwu9crEKV+Gu8/PMezhVKpAsWm3khgTUAMlDrDrOS4aK1n4ejrUB0/aLq6p/cQ2UW/euqoxTTJyk731k152rzILSX28o5HG38yk8Raud0s9Z2hKShlrDNmLnwUU6IPq5rQyQ/V7lYVgRRZfrSrt1RQRKLbUPw7qwa+omdRWHXHWlIVlFazrH1W93BTulT7KoaHgNBciqIS9JGuj383BMwZjJRY5VtBMt+SNlyEE6YMLBsQqFPcDQoORuMds7aR4Ak7xeQdGKik10irfHjpI7xlQOKr4vMuMivctkjlJX2rvHFI75yXQMjv56AKXLT/KwK3eT/rnakKtss9flXoPW8J/sdHjANFKBZNG01yBA8lU5nIMMRTvMPfa7WTimYMyFvgYu3+OgCBgwarZOnpTmq4bDErWvnWZQ+oEEFNykKhN2VntREsEA7CLLOiriyeYjM9WtqYuM8pD2vFeRB2QKx6GdJAOl5IMIlMs9hsxiLeTa0BfpXk8ESzA3CfvjVXELOrWuskCyaPqLDwEYBEg/badfd4/9Xh6OKRj9l1TS6J2TyzcCMRidk9SVKVqwsEzhyC/XQJkOOXduknTcEkI63KZ1DNGi6S+eE7fXKYpi1PORxAHl9klcJK9u5UU6HJATcpIgKCF864eWxj0qm8TkIVcFCe3CrbXcahU55Wh4wDB/e1OoAsmiaS0HPV/FOgiQOvRK1txjv5eHYwpG1tjNxb+4hJtu4/ZRKgFj7CSj3+TWVZLUEK2wPQKlqe7Ju0lwOLLbpkPXddGE5ZvqERft8Nt5/o6HWv19mIsEbHENK9JJQ63uctaXUbighLD7ssuaIBWix+QhV9k2z9GdN5WXRaBMhgdQtn9So/Fgk6QCyaJpKT6SatyA7HVr7pF63SwcUzBS8qs+p8hlsnykkFUETMH3l6rmKknLurtUKjjI3GBz7hYz4dYyw3Way0ZFQlRDR5+npqIdLlfVavYJM1jjhwkA5UDk1/lRechVCeF/jnE4gl0HBGSloZQKuchKQ7ZD9at5HhqA8hWt/NyxbhAop4MKJIumnXgvpIdfOmc1BaTLP/a6wTVy9+iBmcCRgzHNEw3KRQJRf6QfGqC1d5oBjg35SNYWYo6nzK/nnJskN9gc+VxkyU9Ob/HRhzmxz15atJPLR5rt1BxqjVwkonwkB2QuH+m3+ZGK7n8hL6kEoG1uclAu0j3/XFFZ+hrjXsnMD9TSAlJUxOTgx2CY25YDpAuzRu7RbUvhOKA3clBVq2D5yLTVowZL5POR/nGQOMucm2xyjAWO014DB+Inn7EcHPO3NYdaUxdpzpsBmctJmgVA6g4yXA+XozCvXx/ZOMhoW6ZiN1fBm1VpASkqMuJrQvqexzEA6Qt0HCD7vZp7dK6yBkfeApJp/8j+onVQBOKhAUAMS+ThaFykjHMuPo9Zd5MRKEurx2ovQRTlINMIhitu4Ze5e9QsxJqGWjlUuYtMlQvBOrm8owMlhPCfuDQ36UKu4bmTDaVKdk41WGbl/qbSpcNWcfFOgWTRtFEuD+mAOQiQSAHZ69bdY6+bhWN2FF1atGP/qIWKC3bqQwPiPkjoCmh1GlwkC8HaUG3WTbrlsjwoVchLFhc57cXXjhRE+YW7nZLG+nqTfZiyA/BwZgi1+uuaGl3kWIMEwjYRgRIWnO6Y7rKZ1WqA6F8KK9qRudaPAa8z3m/V5ygLJIuml5IiHN4f6QYFRA6yz4BoAZnmJFFZiObg6HKWQPTrPae0wpUqbcDZNDRAKvO8eBEPwmi6Wsl74ibRag0HQt4GUjQtVYMjr7Su2A81dzOfrpObSpO2gWRCrUAMQZ1cbxpLpxiVOAzDfQI8lQ7DpsyEnVC8M5ayf2dj1QGsAhVIFk0LRWHWdDBA2gdpC3l0EyAdEK17HDRIgI/7Cqu2D/5DNWA0+0gtGTCbhwagn4RbtYzDrs5NsvOotcO7ShpcvFNCsdNGfgYpByTpWqTCSyc/1pL9/BCBqHLUhDhTuVCruZyGVgfnI3molecgJRt8zm9LlQLcPHfKwt7fJwvMVd8jCRRIFk0nuTCrGwiQdZR93+bRCMh+N3aPmUECYSV3XXOQY0JS2/5EKVFZNylZE39THhJa1cKt4ZwNNHBVsyoMEGgq4Gl6H0sYdhqIj0XMVbf6SmvNNtU/g/wzmu6na/tRtPxVflBA/bZ0BZAoJ+mqWYEo5MofV6QbmVwRT3zd3pePppumKpAsWuVyLjIKszIX6S8zQKY5SA5I6iUtIKwVJIVjVCQxhJMUKoRZfbgVCLDU0qzIbl0lteJqVj8wQFfGRbrzKuQzXcgV9n0Z6BgLEFcv5UbSAdmwfw6O8V3I75cW8KS5Rp6LTG/LhWB58U6qtOrVffq4c0zbQFZnFUgWrVL5MGuygke0osc4ARnlKW0rSBMceeWgHsNJCiV9zkRWMgKlg2Ua8OS9kL4op3KDAZibtC0lpGUo/nF5SZQhAauluINMw65Nd8n8UOPj6Hhlq7mtGUJjhVT5PhNRE0TXNBVIFq16kY5nruYqWUkPD0geZq0q6F6/EY464yTNU4q/0FzeETCwrCoNoSWk64V0sNQSQIuBsgvR7tg8pIrCriSZm9QyhFcBn5csWsOUm7aTtoA09EZGhxljyo7TRCE4KOc4SLzVY01RgWTRqhUv1uHVq3w9yKgXcghA2vCq7vZAWqPq9hvhGK/TVy+UcLlGYm0fxAYFpLAEAI0+OCiFyuQb3blzkf7OOtzO36PiIldfNeUk093SRvsxKj1r4U0rXrTDlYZahwUoz0uujSqQLFq1Sop18gsn20rWfi+ETwcA0oVXq17fANGe5+BIVRWKJTJfSlU62NyCk6oKQisPyzTMSlL7bVH1KneTihXtaBXnJYvWCGWn7USV1vVBAvycb+c9ktFtQ+T9xgKiO8QgEKYVrmuLCiSLVplEplgnLdzxlawMgNB6ICBdeNXBUXf7jXBMK1oH5SNdSLWyTtIXLGgNUUmgE9yjRh8SLWgAQuq6mwRMBa4NuTa/RxNY4aO4zlUugdAbKWzLkjvP4mpgQ32+R3KqNUz4dVCVa05ywGd/uqhAsmiVKBTsDK5mJdbKEWDZtdfzgHThVd3tR44yhWM87qvZTab5SAdMspWsLiSru/0IlKRsFax9XO4mayHVCb+RMn+5aNVqjGKdaLFvf5e4gIxvqx++uUdyIhrENiUmHmrNQTP3o9Bv47dNk6hKgWTRqhFzkWBFOy4vGYVZbREObE6S+j2gF7Y3ATIOt9bhmBsk4J8ea+/wgwMs8EQVqlmBONTKQUmV9mFX7yb5CiFa2eIkB0+3qsgYlQ8FhtNfaX+kWyIrhWMybWeYop2p0DCuMeUfB2J0mYFvUNQkp+mQfiiQLJpyZV2kLd7hU3XCwAA+bk6bSToOjtZhOkC6EGvV6xsnaV1cxfKSvB0EQARLrnQMne+FBCJYyk4rAiVVFoyVzrrJsVykGVlnQElC5KFYHOT0F2//GEuTPF3GQM8U4MS9kON3ohygSpgfj3y5rJx7lErUADk0MFcxKAski6ZeORfpqlsz1ay1PKQDpF/xQ2cBqXs97x5d6DXtlQTGl480sJMeloBxjxyU5Nyi1N5NQg0PstyvZxKyDsMCyumrNMzqP+uhYKdp2g5Qr7Qer8y0nIneV/hj5I7L9xmkQfnJrLt05yoDxdznf4pUIFk09cq5SF7dar9MYCtYQ5jVFuqwVhDd7RmXaMOoKSA1C7nmeiXN08mHXAEWYpXxhB2gHmZ1oBTKHk9p7yZ1pX3IlbQMeclKjuuvkISIXWjyxVEGDqx6uaKd2kLhTS0gA9aUbHwMKQHoyMHl1OQWHUT5bFa3f3p/Jcx5+slK95VK+Py8tICUuZwkH+HY9OOxyT2ugkKfAsmiKVU0yDznIknb1T2sW3SFO/2enccaWkEcILUFIwdkxSpbs72SDIxptaCuyP9xV74/UtdykungAD6Y2kGVu0lSQ4Tdcl8OmV/R3FmS+7JaDSoF1wqxop109Q8+SGBliTs2qSSUrmqreujourDDAnjrRwrH5sfjt0kpIBgc3XOIz80+fDKVed71yzyKInKOchWoQLJoasWdY8ZFCl2FYh3uJqPeSJOjHATIXGWrAyYHY1iDL5lUwn7cm1U/CKTIfCGw/fjgAO8mpYZQOvsreTy9kGbh5cQ18pPbxs+LVr0S59jU/hFP2Vmx8KpQAqIS0Q8+7iIlYNaEBNUA2rRMVuoi3eV0v+h5WGfrQqhNIVc5CJD876PpR+MUqkCyaMpklg6KR84hCUuRrfYLxTr25LaxQh3nFHOATHslAzApAqO/3PDL3gwQqCCVgEaApeqEfTgoyYZXqapAUkYh10i5Klb2JeG/MIT0rtGFWmkQIFOIFq1apaFWN1HJaSKhVgueQTm/nFsMtwFxAU/+/k2H56B0RTvCusXc83Or5PDz8FocTJt/OAql8r2lU6QCyaKpU85FuopW5iKjYh2tQ5jVz2ONC3UGATJ1j7oiD0cTfo3XvOOSShjnpwQqDQgbhtWQQLeCUBrK/gnxVg+qtHeTvnAHCHnJIWdbEg+B5RykA6eQMTyLVpkEkBSl5YtxaquADHt8m4v015UAeoiuy0qgqijJO5Itbg3wZOvT1HKSvECHu8hoe5IPNQBMANmQAhBKeUByV+l+KNaiLavwsz0lj3zxxRdju+22w+joKPbdd1/88Ic/HLj/rbfein333Rejo6N45jOfiU996lO1fa655hrstttuGBkZwW677YZrr712sp5+0cqUjp1jzkX6sV0OmG4cXVKo43shtR4IyKpboeq68wpVr4LumW26InubASY/8dvJQjWCrAetbjjPD63OKYSapD2pCIyRi0wBiYbq16KplytKayraybjIYYHJi2DSPCQvmgEGV6HmQqYGgHlA8mOGEGx4Hu7x+XPhz9e1f/hTLi8pVR2QUjUXqU3hZ33SH+mqq67Caaedhne961244447cMghh+Dwww/Hgw8+mN3//vvvx0te8hIccsghuOOOO3DWWWfh1FNPxTXXXOP3WbhwIY499ljMmzcPd911F+bNm4djjjkGt91222S/nKIJyodaM8sHhbyknWXJeyKrKmoFIa3jPGSvj6rbC7NZq/j2qltZ0MVwdOAztzOAspPbTgykumeO40CpEzCG1eNDW8lYS3D590jVixY4FP1JtpLrmXBr0apRGilx24AAxQH5xzSPzeHixOEja/uHbRx6Dm5u7/i2+ORuD/umvZEBiDzUyvORadFO7jW5kXQD20GQiahMsQTRCiwoNoT2339/7LPPPrjkkkv8tl133RVHH3005s+fX9v/He94B66//nr85je/8dtOPvlk3HXXXVi4cCEA4Nhjj8XSpUtx4403+n0OO+wwbLzxxrjyyitrx1y+fDmWL1/ury9duhRbb701Fi9ejA033HClvM6iwRKkIaou0O9CVD2IqgvRWw5UXbO91wV1l5nT8r+zy8v8Zd3tob/M5CP7y7o+zOoup4U8AYJkHaULuTpoxQOjXbg1+sXOChBcOEkqAdlW9gtAQnUkVLsF2WlBSInWaAey04Jst6A6bajRjtnWbtnb2hCdUXMaGYVodcJlux2dEUC2QKpjzlttkGwZQMoWyDpNUq1aCJZr9V/ydvWRWSu0C9FbVv+M95cB3eXQy/4WPtP2stvWX9ZFtazLzpej+ju/3kPVrdBf1kfV1fa69j8A3WXS5nPfqyhaaJmfAzxoW1cKSH7ekSbUqjoKqq3M57+jINvSb2ut04LqSLRG2/a84/8OzPkI2uuNhr+NddeF6IxCdkYh1lnP/B2489F1Qa1RQHVA7RGQ6oBaI1jy9DLM3GobLFmyZFK/xycVy91uF7fffjvmzp0bbZ87dy5+8pOfZO+zcOHC2v4vfvGL8fOf/xy9Xm/gPk3HnD9/PmbMmOFPW2+99URfUtEE5JHDw1BuRmviIsFL5J2LtKu28zCr6X0MrR6DAOncowMkuW29Khtu9a6xIuMadXJfe38XeuVhVwCRs3Qa6CJ5iNWdeFi14boHJHeXTAWQU6zUPbIB5zVNICeZy/eJJMzJ2y/SPCIQX5eoA4BvywEydZGpuHN0PzDToh1evJO2hfhBApncpHeUU+wmJ/XRHnvsMVRVhZkzZ0bbZ86cicWLF2fvs3jx4uz+/X4fjz322MB9mo555plnYsmSJf700EMPTfQlFU1ULNQqkrCrIIpgGOUi7Sld0cPnHlkBT8gFxuFVH27tVh6Og8Kt2oZtXajVwdIcixUAaRdyJfBBBToKt1bxPM6x+uOkNKFWIY1zdEU5OQfptgkJAmqnoqlT9oeg5qCkiRfrJFAx5w1zUlnYU8q40Ca9nMIyFOg0A1KJ0BvpH88+pgGnZMAWUT4yPEdV75nkFd0pIBkUV0Vx2pRUt4okeUxEtW1j7Z9uH88xR0ZGMDIyMq7nXLQSlVS1Nhbs+Ak7dReZLn1FVRXG0LmCHZuDdIAMxTcWiHYbEA8RSFdScNeFFKhsdatU0oanzBedhLT316BKmBOvZm1b99jmx20ApHeQbDgAc40OliSVDcEGOBZNI/Eff065STtDwtIXudjqVakkKrgFv7X5XGoBUuazKGw5qxl6QZCQ0LqK5raGn0/uuzI3jaeey+SAdC6Su9e0BSS+HHKPadGOuS8v1LGATBxldiTjFH3+JxWSm222GZRSNYf36KOP1pyg06xZs7L7t1otbLrppgP3aTpm0arToF/YfpC5c44cjAyatV5HraMwqx9J550gRYAModEQMiUdcpMAolYQ/8u8CuXpGtp86bgbAIjKFDdoSRAVQdgWD7RjIPJCnkjJl4L/Nc16IyFZOLUAcvqqaUhGquxSbHEfoJQSOirUkdAWllIJVLDtSR6OdsiFliBFdri+dZOVsON2OCiBOiyNmoYJRIBMwMiBKbh7ZKFVf8oV7SSVrbWhAk0DNKZIk/ponU4H++67L26++eZo+80334yDDjooe58DDzywtv9NN92E/fbbD+12e+A+TccsWsVKq1r5qd+P2j6gKztdp1tzkR6Mtpq1NlCA5QtdEUM93KptLlIjzT+6E89R6sru30t7LeOiIIqcKatsbcpF8vFbMvklbaHoXaS7XAA5LdUUE8tGS5r2VarWaB/l7ljIMox5i9tAhAyQityeTMOmoeWjXt0qktvqgKw9joelRFTcpgSa8pIOmOZG82Mwvq6i1IPfztqh1ggnCQCnn3465s2bh/322w8HHnggLr30Ujz44IM4+eSTAZh84SOPPILLL78cgKlk/cQnPoHTTz8dJ510EhYuXIjLLrssqlp961vfiuc973m44IILcNRRR+G6667Dd77zHfzoRz+a7JdTNFGxX9hRD1lSsGOm6mgPzmh5K1us44p3fAjWVq76nKMLsWodhVude+Sgc+IwC+4RNnwloFktoIS0E3SkL/ZxbtIBU1casmloQCMgJdBixTgOiqoNanUKIKezcv2RE5TP19kwa6iwdkCSEDbU70KuGvBuUrvtCGFXQDNHCTgnaSbzwF4OzyGaqpMA0rlG1VE1F+lgGT1X1h/J85EBltY9KtYXyVMP5k2IzqeyL3jSIXnsscfi8ccfx/nnn49FixZhjz32wA033IA5c+YAABYtWhT1TG633Xa44YYb8La3vQ2f/OQnMXv2bFx00UV45Stf6fc56KCD8KUvfQlnn302zjnnHGy//fa46qqrsP/++0/2yymagGoVfzzUmhTscGjy+ax+YDkbWh5ykhUrmiEfYg3h1roL9G0gmZXdK12Z4gcbbjU4RARKE2rV0JWZmWlW/lAejlEh0aCRdwD7JR0KdriLdLAs/Y/TWGmEZAIDzAcVuLiB+lKZkGoacpXQ7HIIuyooVKg8KCUArakRjk6+qCcDSNWJHSV3karDi3aaQ62N+Uh74mHXgWMYp0CT3ic5HbV06VLMmDGj9ElOgQRp3zeG/jKIfheiv9z0RnaXxb2Ry54GLf87dHcZaNnT0MvS3rHlvieS90umPWPDAJJ03knGg5dZ1Z4LHykB1Vbm3PeJKdsL1oLqKNMb5nrC1jE9YWq0g/Z6o2ab6wkbXdf0go2uB2nP0RkFtUZNP1h7XVBrBNQeNfCc8n+9orEkAPOjz/UA68r2RYZ+YOh+vg+434v7gO3n3X+ul3VRdXuokt7gqtdH/+/9uDfSFqbxy02fefdZ15kfiAD8uLlozFwCSKlk1BcplEB7nRZk9PfAe4NbtkdyJOqZlKOhN1i6vkjXLzy6HtDumL8H1TZ/B6rjLy996mnMnDVr0vsky+zWokmT+wKBPU8rXGuhVl6wYy/z5a1ca4Xvl2T9kHycXHCTrpVDD/1FoW3loZTCV7CSJlMI0VFmiLlyA9LJrhUpoCChK4ICwvNmvZNDvV921Q/nIn0esgByeos7x8zyWDX5QpVetJmHWV3xjivaEVUIWUotfchVKgI6ClW38pWuGpo5SLfuqfSREKWUcZyqvobqMD8SHSB5mFV1VJSLrLnIhlBrcz5SIVoFZ8DAjMlWgWTR5Kph2SB3PRdq5QU7YVBALwamzUmaCSNuxmoV/ZoeBEitafDK7ZqgdeVhCRgomspBW+laaRNqlQbMQmkPyugtqNw4MvaFJKXNwZgvA0gFEoJVtYY+yKLpKf8jMG1rcttzyg38dsMkwCpZAQ/MNOQqKuPozOdJAah8qFV1AHRtNbbNT3JQIgGjalh9QyRuMgdI1Yn7InkuUrZbrJCnOdRay0e63LxMoJgW7Uzh30X5CyyaVNXcI4Ol9tN1qqg3EgkM01xkcGlxpanbxsNNlLhKDke38gGHpe/+cKsnaFMgISFRoYKCsrA0q8JTRbYn0jlZW7Rjz4deNtZV60VtH7K4yOmu3IzWISUsEHwzhlJArx9goy1IKu3BQlVwk6qjgG4F0sHNVV1AKPI/7IQUZh1UlnLIwZJLekgbOIbLAZAuD+kcJHeRqt2K85BKQnXatdxkmodM20CiH43mBvM2u/NxvdsTV4Fk0aRLuLS3DqAMK34koVa3AogFoU5ClxWDpgNjcIuxY0zzkg6QfH5llaTkPRwB+L4yBkotte+PJBUGnPOQq4MlgNp5Vqw/0rR7uFBrp/k+RatUkYtkk3XgtvNzp2iQtwLZcKuwgCCpmRuTkFUIuZKWMTwrCbewtwu7ugpXXqzjQqzusgQAJUzEY8AajikcQ9uHjPLyBs6S5eaVB6FU0s8z5q8rF2p1YHRRFd8KhXi4xqooXiuQLJoU8SECAOKyeL7ih3OPQLSNr6bhRrt5cLLFk0Mo1c1ktUBscJC5Qc+p4vX2YlAKJeKwa9uA0YVceduHA+MgR1lbN89sDBN3hnu7i6ZQzbPCMJSbFEqZkYsu5N7v+RxlPsTK3KSO3SQpAikBF3Z1+UkFZdqUuqEqW0nlf9gp+znOP78QagXQCEjVUbUwawR56yhdyFVF13OhVhkN14iXhSs5yaI1UbpvzhsGP9fg6PORSW9k5pzPTvXzVf0c1rAaAgdkV1MUYk1dZCwDSOMszcoH0ARZEbTUoajHnVSy5uSQy2MBCF8OfI3I0u4xvZW0MkX5SCf2b2jAyBykL1RxzqnyzfM8rCps0Y5UEtRpgSwsuZt0YdcUlICE6ph2JV6spqQyrU8DcgF+2SuVFO7YoeoOkG41nKhYRwYgCikh2+0YnE2hVpaPrP0drMK/iQLJoslTQ9FOUz7SDxDgVa1JhatfdcNPzGG5SM2g5Yp0EkByOLof0vyrLfwZEgu9OtcpICvjJk0FofQgVraQhyrpwehBmVToNn03RWtHNqzoXrRqFbnICeQgDSD52LUehM1LijTkqg1sqNLeTcpO/Su7Qj8LSvP3AR90dVWt2n6GgXgco3+eqt4CMgiQLswq2255uJCT9JN2WMGO7LQbQ62DRjPyop2pjLAUSBZNrjIOEkAIw+oYKG74s1usOA21xitv1F1kWJGD0O9VWUBWFMBYc5MuH+k3m3Cr+S4hKA3Iyg1Jd/NahQ+1an+bKd7JDhLIDLgWys7vdF8IqlNCrdNZFH9+G3cTEkJIuHm/wTUqCKlNLtLCgaQGZFULq0ZuUsva7QqtLCg1ANVRZuCFtNENJfxcV6qa3WQOjrn1VH3hDs85umKddsu7SJ6bhFRmDdVWpx5qZQU8UWTFXy85yaI1SFGIleUmTdFOHGJtykfmQq18SawmF6krzaBYB2SushUI+cgK1kVaODonWREgK+1/lZtQa3hsANHIO/58i9YQTWDknHFBFpCwP4p0lcChMi6q3fE5SOcmnbTLTbKvbo1+FpTCpgBCuNWcKwkPzCY1LTYepusEQLoFx2W7FV12fZEu9OocZuQiLSxFuxO25/KRq2jaDlAgWTTJEtyp8SECCP2D/nomH2n2i0OtvGDHF+gkLlJH7rEOyKbqVvus3RM2ztK60Y601a/WTbpKV+HgzcDtFmTmilYDyUGTV/MVTXs1Dg3wX/CUrcr0rhEIjrLdNj8SrZuUnbb9PIVKV7KtFIABo+mXbPnrHJSiIlAl/EAB5yDDj7d8uLU2NJ07ygGAjHoiXZg1yU0KKSHancaCHdHqhNYPtpZq9B4WSBatkUpyk2YTm7bD+iPNbSyXp+uhVl6wUztFLjJ2khyQg6pbES0jFEBZsZPLTfqVP3gLSiXD82cVuv7oVZWvkFyBodhFk690eEB+J9l4m1AK0CGs6gBJ9jJ3kyQ1ZHvsr2fd7XtQmqH75lxUGlXXRFO1DbW6ilbe/jE4J8nWhJRuug4fbh7CqMq6R9lp+TCrZLnJyEW22o0FO6LdCeun8nVV2cofU52GKJAsmlrZoeZemdxkmo8EEIdaPRCdg6MGF0k2H5kHZHN1a9InaUHJnSl3k1TJKOTKXSQfTed6Pr0ScKJp1ZCiVa6hvD0HpJQg0hA2XGjOdS2sakKuzE3C/kiUVTRIQLhRdDrkJ93XtwNl1e1D2gpYoA90AKqEd5WmVQkQDqaudDt9GX5eq5sCFOAY+ibrgAz5SOWLdXzoNXGRot2GaLVrBTtpT2S2DWSKVSBZtNLlf3GzxZX9ODonNzgAcdGOZlB057nJIL4NhMGx7iLtvsgDcmgnac+lzUmmbtIV8LiQq3l+ruo1PN9osAALMYsk9CqIStHOaiYSAsKUqBooks6GXFM3KdodU9HtnWVlnBbMJ28wFnpwX+G8J1ejD4mWcanWVTpYmn0NBLVs/pQFF1mHIy/Q4YA0la3tKDcZhgq08y4yvZ5bcHwVhlqBAsmiyVJDWEoQRW6K90ryGaccjmk+kodaze0s5MlcZBMYJ+QkYRafzbnJdLh6VFCUaWNxr5u0NqtG+PdGFzhOQ2VdpHBtGwDcjzjnJP0XujbwHOAmSWqg1Q6fOJd2YLcLVflq1noLiAElByMAkAUkVTqCJRAgKZp/JdYm7piXVx8SkAMkH4TgIMpzjqLdjts+Wu1awU5TqHVVqECyaHKUjulK8zQ6nrRDOgakuVt8WXP4eBfKVv1IXGQIs64cJ1kRsm7S9Um6tSldXtKFXVMXmba7+NwsMKF1CIumWGne0X15U+VvI2HbHSpdc0M1N+krXQ1InNwnDwiOsur2fduHf3iWi/SfM2U/dwks3W0APDRzSsFoHidu7+ADAlSnHbd+8DArB6Fzji3XK6n86x4z1LqKJlAVSBZNnlIw8vYPJ83zctxhxsU7OWnuNrVr6Qgu0l0353lAjlndagHpFqnNuUkHagXU8pJR8Y4ODlmxXKwbzVcbBl+m7kwLcVhFgEzcJAkBgfqUGEKSm5QwYVZ2fFSVL+IZC5RAqGYFeGqigpbhx5hzkByWfH8HzZw4GM2+cdUq7310gPRFO1E7SNuHVF1Fa8hL1ts+pluoFSiQLJpsNVT6RdWeHJQ8FNtQtMPzkeb2MF2HK3aR+VBr3k3WnWTF+iW5m4wevyEvGUbUVbYgSUc9osKF2GzulnQfot8FOlM7WaSoWTVQAlk36YAIwEBRtYCqb3KTdlKM0P18EY99DOp3Q37ShVztNzVHhYeeD7FKuPCrc48pLKP91QBIyhiStXykz0nGgOTDzU01qwViq511kbztA2NUta4qFUgWTb6aQoi5KleYKtCwS3xfnVCNz6RMQ60pCJsAyd1k6hh5LtLBMnaTwodczUi6hrxkbRCCLdjh4/lyy4oVNzltxH868X8X7ybdR1XYPb3TtOca+bBrqx67qF3uowbKtMhNuzCq0t5VprAEAhyblspySkOuHI5uSLnLQaooN2lDre2OAaODow271lxkuxO7yIaq1lX1g7FAsmhq1NRbVjW5yHh0m4OPu+yqWZ34H3xFFI2dy+Ufmwp3wjbB1pasF+4EN0lRyJUv7MzzktkZtP2u7xGlfg+i3wdafeM0Ss/kKpfOfCtLweDVAEoSuh52lQgtIbIVYhTtDtDrxvlJDAdKBz0N0/ohGDRJyiws3e1g929SlIu0cAQQ5R9zgHR5SO8WpempFK1OVNEauUgHRNczmYZai5MsWmvEC3b8tnqIlV8etJKGZrDkuUhzPe8ixwq3cueYFu5wN8kfo5WGXJO8ZOwiNapeH1JrA0c2WEGQ9lWv/kt1iLe1aOWKA5I7SLfdLpLhQ6tuP3O1ZULmsgXovoGi7gOq5R2lKexpBVDyY2CAo9TSXxbK/B1JJc06q3Z9Sd3tQzsHmcASQC032SSejwwLMYchArKWm7QtHzYPaUbO2TCrdY6i1WYAlaHtw03YiRzkqhsgwFUgWbRqVANlQwFPUszDhwhw98jzkalL5CDMXa47ynwLSBqGDQ5VMDjKKNQa1rXsI1obk+cl+z2zvd+D0H0DSJuXpMyqD0WTK/dRouS6A2O6bUKgBMztDYU8jaDUit1fmsW/bdTFFegApnKVpI5gKdvwoX4AHppNSsFoLodVPfxEnQZAegi6Yh3nJJmLRCuBo4yBuaoGCHCVv8CiaamxcpFO6VitGIL59SNzfZKxOwzVrLkeSWWn7wwKufKiHZeX1L2+aVPp9aG0hu72oDo98wOh3wP1u5AOkLoP0n1TzFPc5JRJUx2OxD5Dgs3VlYLD0q72ofvjAyVsIU8OlDIOvUIqoN8NtztgSuXDr95N2h9lDpZoIxSN2eW3HDRzclAEAhgBePfI2z9Cv6SKAGkGl9vrrBfSt4O4XGSmYGe6hFqBAsmiaaSmQoKxVtBwoGzqe4xhSGM6S3tUu5YkP0bcIxnAKWoh1/qAAT4EXUN3+6BRM6KPegaQQmtQrwvRGjHXVQeouqDW6MDXX7Ry5ACpKYARiNcbBVEonLH4crCUAgaIpE2oHH0ALXsZZjuQB6W7jYHST2Vy++kw81dICerbxZvtubARCSE1pJK1EL9gTlOrfLTGyUERCGB02/P9kgMA6cKs7U6Uj6xBUbXiYQLTINQKFEgWTWM15UxyrpJvCq0f/PYUjvXrADwYuYvMuUk/TICFXXnI1QEx7ZfU3T50uweqOqi6fSjrIKnfA/W6tZArqn75K50CpYB0n7xcG20FmGVHLTAdLN2nRblqTNkChIaorFPU8G0gsOD0nzB+vW3CktTvBheplCnwcfvLKg6/ajvWrd+DUJWHZVOfZDRIoB3/rXFAjtUvacbNKQ9GDsh4u4rbQVxf5AAXOR1CrUD58ytazRTK3qkWagXq+cXmqTpN+wdY5sKtbrs7tQWbEatDqDVe0otiF8lCrlRVEP0e0Ov6kKvodQHVMb2SqgOqjKtc1b+o11RVFMPRfSQ0+2zw4h23QQphgIkAS2k/D1H4VbXCyEESsauEc5Iyug4hYoiygh0fdrXnzlWSliZE2+8aGCWwBFjeckColWtwv6TLL7bj83a47kKtaTsI74vMushpEmoFCiSLVpXc6uPRJokqs+sgpa0fOaUh1aaWECcOxPjYcWUrwIenxyFX3gqiexWqroJq91G1HRytq+z1IUbMHFfqd03IrN+FqBggeyqqhixaOcq5RyIDxzQvmUraz4gBHuy0HQLZvKV3lVH4FWbCEmJXaSCoGSClCcm6/knrEH2esteNwq9kW0fQs/ltKc3jMFgCqAETGF+vJIAIjmbhZDUYkLl2EKVAsgGKyTqS0+HzXiBZNLlKR0y5JXFWwVNpco05YObaQHLh1qaQa1MryDAhV2HbQqjqQvSV+eIola4rVQ6Qla7D0UCT7xt/QKSPMpiwqwdmAkslReQqDQAtDIX0w+0JgBDBWXKXibaMhuD7KnAbfvWuUtsfnZU0lxksXRV1CkwA4+iVtMdP4Ogui1bbLqKcANLmIX07SLtjeiEH5SKnUagVKJAsmkyN54OecZY8NzJe5Xom8/s1b0+X2suFW5tCri4cXPUqqI4aGHL1Va42J+lhqexq9boPUfVA1l0WrZhSQFY6hqODIiX3AQIQAcQu0n5WCAGW0JR3lWCFOoCBgu4HJ0ks1MoLelie0oVf3QLeBoIy9N0yWJKWJmepKwBtD0wAEG3U27G43N+lc5Iy4yKltNN0Qk7SA9LNbLVOMoKgGx6QVrLyH9XTQAWSRZOjYT/gLhSTiIdeeTm6TMAplYTurfh0Gn4E/gjcTfKRdel9XcgVCNOBouk7WqPqah9ylbZEX3ftdQtHdJeBWm1Qqw3Z7oCkcZMkpHGVrtihaELS9ocNOedvz3Nh1mzRDtuWghHgwDSfGx6CBayrlK2oUIdD0YVajbtk8BTS5yld+NWfO1fpinfcBKcMLAFb5AOE6lnd/LcqJHOQQBaOHIQ1QNo8pA+z8sIcex9KILkqV/zIqfy1FU2OMhM0YOdVks9L1N0jMLaDdIvAipRWQyrtkUwRq2FAmQIxbvtoCrkKtACk03coCbmavskeql4LqtKhsjV1k9KGW6XN16hWqJAsGpc0hX97suea6k4SAGyZTRaUTr7Rn0Qt7AopIlfp/CTBVL+68GuUpwSC0xQSVHF3aXOaLUCQ+bvxbtIV7PS6EFoGWPZ7Jl9pHaSoTO47haMwTZT5F8kdJBDgCETh1QiUHJBsxQ+yn2WSrez3QzTMfJq4SKBAsmgS5P/gMw6xUTJUzXGFqrqxgWgKbchfDnnF8cuBEqjPbh0Ucq2IwzFM36m6GrIdXKXu9U241Q0Z6NkJO/22Kd7pdUHdZZBt2yspFSC7gHWTpdp1fOKArHTsHv1l6/rc/kDcL5nKuUMSZNs4hN1uDuBcpXea0kJXCh9+Na6pX89TcqcphMlRI7hLdEbMrF/nJl0O0vVKauldpRui74FZ2U+2Zj9Sm0KuLizLwWi38zCqsDNZmypea2FWC8Tp7iKBAsmiyZb/4Iv8Cu8DCnlqwJQSGHf964qpaRJPLuTq9o9aQZLpOy7kqu3UE93r+5Crcg6y3zVh13YHevnfzS/xqhd/mQAFlEPKAbKvyUPRucdKBzgO0yPJJZjbFEKgApmBAjDAVJI5SQZOrUPltA+/sjArh2JT+BWk666SOUjoKsBSK7skm3WZLTaYwMOxDVSZvy3FQOpgCMRwdJfdQIGk4hWtvHOsuchp1PbBVSBZNGVysOR/YPx7yC/D48rG2fZwuY5aocKKHUoI9DLfbooV1wwr7iadBoVcw0k0Tt9Jq1yrds+snmALeGSrC+r1IFo90PK/my+aXtf03PGiBvt+lraQwXJADC6ShVmpDkd3HTAO0MlN1OESLgdtBwsIEYBJgqC1CcNzWLrLzlUqKaLwK4Q0wweAeMwdD7/a7TVX6Yp0WK9kCksAAZhA5CZJ1iHpoQiEyFAOjryYh4GSz2Z1YdYmFzmd2j64CiSLJlXmV3Tzr0MhbY4y4ybdZI8KMRzdqgRmTTtt1pkdh8yhxIRDsWkPZdgebs9N3+EhV93rgzqtBJiugMeEXdFvg7rLAKkgVaYKEAC1RwsoM8qFVzksHQwjUNp3MS3a4cU8AFhExICxsgAVJEACcb+khaUSJkepKwNGcm5SE7RNDUgZhg4IGaAYVb9KCVQMkK6n0rWKVFW2V9K8AAZMlod0q/KY3GQCSgbJ1EUCiAHpinZSQKY9kaqVDDEXAaLTzEUCBZJFkygSMg6xuuIdqcwfe5KzFErV1q4z20Nesik3KaWAst9iEmDOMrhIN5h8vEon7/Dt45m+E4dcNapuH7JteiarXguy17duchmo1TFustcFWm1Qr21cuHPj7r0V0izaW0AJoDn3ONBFgjwYTQjWwbL5HZX2R5Ky9tJAkWzbRh6WKgm7QprHVamrVJ24qjW9zFwlSIdQrbDOLgNL7jJ94Y7rlYyqW1kRT1pTwMHorud6JttsLqsDZC7cKluhBWQ89QtTrEl9Zn/9618xb948zJgxAzNmzMC8efPwxBNPNO7f6/Xwjne8A8961rOw3nrrYfbs2Xj961+PP/7xj9F+z3/+8yGEiE7HHXfcZL6Uookq1/vkwzXuD0tGv1iBEHp1sJRJyFUoASENNAWLg3GIDVv8Op4/gkHrUIZWEHOdLw6dhlyrXj/qmdRdm5vs9U3xRXcZaPnf7fky4yj7fYiqC1H1zMg6ftnlqtZS8bxjOJnr3YrQ0+Hkbu+x/XoVoVtpLOtX6GmN5X2NXkXoVYRlfe1PbtvyvkZP2/0rbY5Xhcd0x+bA7mnTu9u3sO5V5J+zc7o9bT9bsgVSHZBqAa0OSLVtdXPHOC7VMq1CrmLUbZcts2+rZUfBhXFwvqG/MxpGxWVOcPuPdTsfO+eOPwCQTS0fvGBnOmpSneRrXvMaPPzww/jWt74FAHjTm96EefPm4etf/3p2/6effhq/+MUvcM4552DPPffEX//6V5x22ml42ctehp///OfRvieddBLOP/98f32dddaZvBdSNDHJFiD6gz/8UoVeSalsCDV2kfFILFHrlTSHkVAVwfQzAr0EYs5FTiQ3OUhpbrIt4lYQgA0+ZyFXDkvZ64M6bd8aQlVlJuz022ZgNeuhlEoBVTfOS9rHoRZ8aHttcpVjhVadg+RtH671Q9uhE848mdubfwj1fPU0AG0cZc/20EoJaBKQQpiQKgFamGIe5SbxVMY5+hCsC7syV+lKgsbjKkEihGDd8mqkTREQqeAs3TCBqFeyHS2ELlrNbjLqm3Qu0l43fZAiQDHT3pELs07Htg+uSYPkb37zG3zrW9/CT3/6U+y///4AgP/v//v/cOCBB+J3v/sddt5559p9ZsyYgZtvvjna9vGPfxzPfe5z8eCDD2Kbbbbx29ddd13MmjVrsp5+0QrKFx44sT+YqFfS32xCsGF4Ms9H2oIeZg15ryQfKODaQFwLSAi3UhR2ZaOjxw1NXryT5iab8pJpyFVXBN3rQ9oq16prCnikbQdRbR36JlttYLn5MtHLJcSoMLNdhTTtIfaVgLRxGKqzVqxBySfn9BrgSBSup3A0Ti6Golu8O+qjZZddmLWH8DmSUhgYUgzMtpQRLJUwYVhX3epCsJAhV2lCsebz5XKVja0iSV6StA6VsaRjWEplrhMxYLJeybQdJB0i4N8Au38GjjEUmYO0echsZauMXeR0/MxOGiQXLlyIGTNmeEACwAEHHIAZM2bgJz/5SRaSOS1ZsgRCCGy00UbR9i984Qu44oorMHPmTBx++OF4z3vegw022CB7jOXLl2P58uX++tKlS8f/goomJsn+aHhOjVe48uKApMLVL8tjXaSBqK4V76QVrvxLbpi8pER9qMBElc1LZkKuvGdSdlpRO4hsd80XiHWTkMqsFiIV0F0OjBhAehcJQKDDllJqmS/IafrrfEWVAtGFLkP+MQ/HntbQLtypKYKiaw8BAizrsnlv6YAIC0dYOAZgaq0TWBKUtFWx0vZkMlfpcpWqyVWmrSLpiiJCs7F3Em6wuoGjDteduwRC2wdzkukEHlEDZchNejiaHeMCnKS1o+Ysk23TVZMGycWLF2OLLbaobd9iiy2wePHioY6xbNkyvPOd78RrXvMabLjhhn77a1/7Wmy33XaYNWsW7r77bpx55pm46667ai7Uaf78+TjvvPMm9kKKVlhRhWumeCdX4coXdnXXgVC8k7aCCCl88U6uaMdcDyFXQDAnSHZqTvN4ukHi4dbQU8leP5++41ykK+jpmp5J3e2D2i1oHYYLcDcJO1ElWpfPfclUfNanXVlCa7NEk3Mha4iaQqnhvA7HXqU9SB0ItaYIjO46EKpYzePFsPSRA23CqFk4utArg2VbmTAsQUAKMqaf90xK8r2V0LzAx36mpICAhJJJq0jqKp17dCHYQbAE4GbreWgC+X5JhIId8kMUEjjW8owWkGyAuc9N8mKdaewigQlA8txzzx0TOD/72c8AwE+k4CKi7PZUvV4Pxx13HLTWuPjii6PbTjrpJH95jz32wI477oj99tsPv/jFL7DPPvvUjnXmmWfi9NNP99eXLl2KrbfeesznULTiIiGzPX4APBxd8Y4LwUaroMtw4o7S3B6KdyrU85IazSFXIAUoPChTjXf6HV9Wq1UR0E7eEzuFR9tzP6bOFvBQu2UrX7sQrbbJRyoF9MNCtqbkvuVD2i68HZykCuBMfq1P1y+jQVoZcOTh1RiUAYbOQTYZyb5zkvYzYeAID00HTKWNg3SwrEigrYTPWbYsVD0gba4S2m03D0LuX1SH783coPTIVZKOQ7BNsLT7AwjQJG1aNzJycEZynsKyEZBJhevq4CKBCUDyLW95y5iVpNtuuy1++ctf4k9/+lPttj//+c+YOXPmwPv3ej0cc8wxuP/++/G9730vcpE57bPPPmi327j33nuzkBwZGcHIyMjAYxRNknLFO7bCFUCY4dpQvMMv87ykCbXW85JK1EfSxaCs5ySDq2wu6sn1RQKxe4y3m+M25iUrGYVcXdjVF/A4eLpQayuEXd3MTPT75n2x7ymf9cnPfcGE3Y8/3ekMzIpCo//KgKMLr3Iwap1AkjnHKkNKxSqppRBQZMApRQCmJNP7WJGOYUlkL5s4qzlWcJWmZ5KFWccq6mGD0qF1cJXEwq4uBJuDJRCA6f4+icdSGsSKxvx1/iOswUF6eAK1Yp3p/DkcNyQ322wzbLbZZmPud+CBB2LJkiX4n//5Hzz3uc8FANx2221YsmQJDjrooMb7OUDee++9uOWWW7DpppuO+Vj33HMPer0ettxyy+FfSNGky39JO2WKd3heMle8E/VODpGXlFU95MrDrWZ7vVgnDsXm4TcRR9m270Cal+QhVwdLaStbK5ujrHp9CJW4SSlNCb42FbBSqVC8wZ0kOwdaEOjXS+/Zv890+pLirpHPVh0GjikQe1qjsrflwKjtsYDgHgf10vaikXJkwq1SeGBqQVlYtm0Y1l+2Idi2kjY3af7FBEy4tamoJ57/asOvrqiHu0qy8PEFPBlYAjVg+s9FBpaU/tBNztNq1cbwa+I+p9NnL6dJy0nuuuuuOOyww3DSSSfh05/+NADTAnLkkUdGRTu77LIL5s+fj5e//OXo9/t41atehV/84hf4xje+gaqqfP5yk002QafTwf/+7//iC1/4Al7ykpdgs802w69//WucccYZ2HvvvXHwwQdP1sspmqhqfzRp8U49L8mLd7QMla5aSe8guYvk/ZIu5GqcI0UhVxeGBQIsHUrSop6431JElwf1YlZEaCeukxJHYlwiC7lWcchV2rCrq3ylfs/0olVmULVfHsmFqzsjvpnchFqldxNCWwCShFCZgQPTBJa8jYMD0c9addvT6lXU4WiAyMOrCSQtGPl1AKi0ey7N74Jr+QCMs5NCeHBKYYGphb/eVtLAUptwqyQBQELb2XQVVWhLCSAJv5qbo/wkkkk9TctvQetwmecga7DUgFARMN35wDx2AkjvDgcAMq1oXR3CrE6T2if5hS98Aaeeeirmzp0LAHjZy16GT3ziE9E+v/vd77BkyRIAwMMPP4zrr78eALDXXntF+91yyy14/vOfj06ng+9+97u48MIL8dRTT2HrrbfGEUccgfe85z1QKqnCKpoW8gPOM8U7GJCXlJ0WRK9vgNluQXT7zGWKbMiVNCGEV4M7TKtbHSxzoMxpGBfJB6A7aU1wn0oXelVJ5tOFW/lJs8vGNfaSsLSMinjMWDLrFvkSS7IFQRIEDWgNIRkIhYzcw1TKQZHPTE2XrnLDx9M+x0qHYeW9yrjFuoMk7xp7Og/GAGEHyeFDrUqa/CJAkEJAS3tOxmFq6y41abSUcZYVEdpKQlswOlcJaGgyrnJQ+JVP6vGuM7P8FoSuu8oGWAJIgEn1z0PDZ6QGR3s5PywghFmjIp7hPzKrTJMKyU022QRXXHHFwH34UjTbbrvtwKVpAGDrrbfGrbfeulKeX9HkiwAInrBnvyJFu2OqNzN5SdU2LRHcRbqQq+pIVN2GkGtlCyfIOMm0gIe7yXr2zn5Z1kKx7lwk2wdfj94HdtBcXlL63KUJubp5rrrdgnR9bboKbtLB023XVa3ZXAhtQrH238Bcbk0ZKB1nCCG3CIANEo/XcUxHxoWQa9jW1wGKHJI8pOrPta6B0cEUsMfXIdyaA2NODpZKiviycIMEgDZJD8uKBNq2+lqTRlsKBkjpc5WA9kU9Jg8Zql3T6tdQ3MPDr6yoJ3GVjbAkbefiMWCaC+EFi8R88M9KCkd3+6Aw62riIJ3K7NaiqVH6hyNbgO7X+iXDunRd5PolXchVdRR0r4pCrqpjimOkklC6igp4lAA6UqCrAyxdwQ4QDz3PuUYHQF4YFG6r75+2gLgK1zosQ17S3M7zk+EkLBiJw7GqQjGPVN6tE+mw/qBqhS9E2MZyy0RKAMkRkfKiCR85rvAfuhyI7jgOihyS6dBxE0qNQ6qVh2LIN+YcZK2SVQdgpmDsJ4AcC5QcigDQsqDkJ00CldYxLEmgTSHMKm08Vftwq1lzxhX1AAJCMECy6lfIsLCzd5dp+DVxlWPBEkImwBwCZE0FPOxytASWTG4b+xGmhQoki6ZGksFR9s1QZZH0S9qZkM5d+sk77RaEnUjjQq5SCci2guIN+pqiAp4OBUC6JWyDowzX44xcsxscBM/0em5fB0v3fOu361DZmgu56squ6hBCrVBhYV1BKnzp2S9E8Oupa2xwkJqagZkCMGzn+8dAdLenzpGv49g0Ns41/3O3yIGYc43msnm8bhXDsd/gHivroJogGYdapd9WMTfpgNlpyQiWpvUDqHRlw60mBAtoaJNwhMlP5sOvppAHvnCnlqdEPfyaukoIDVH17b+L+cHkPw+8DWSM4h3/791UxJMr5LGAXB1dJFAgWTQVSuGYG3ZuQ69pK4jLSzoXqTouDCsaC3hUW4EqgtIVOu7LTZuvDh52jQt4AB5yBeIeSqcw7q7ZTY6nCjbql3QnN78V3Fm6sKqqu0l+WSqTjyJtcpHa5J/CF6Aa6BQ4INMQKdAMQ7e/2yfrHBkU0/UbeTg117bRBMloXz8sgNDt6ywYzUlnIMn+3RNQprlIQCchVxkBs9JUg6UbJgBoaGnDrJosCBGFXwFjGAEd8pQAXF4S0v2Ui/OU6TqVFQVXCd03wyUiV8kKd/iPKPPBDCBMYZmCLgPJRkCuZi4SKJAsmgIRUCva8adWy7Q09Hu1kKtzjlJKyHY7KuJRlRkWnhbwqI6Crii0g1B9mIALuwKEjv0yMUBMnWT4Ux7kEAfdNvB9aWrK9LdnQq5OLB8Z5Si5c6wd0IJTwOyfGRTvD89ABuTB57ab/SmBq4FiuG++SIeoHk7NQ9KuoOGBqCPX6Jykg2MTGJvykH099td2Kwm1hhArNcLSgdLkJW3+kUL+0YdZQzkrePWrAyVvE/GhVemcIyGe0hP2IZjPpUhdpYWl6adkRTtOHJgTrXRtAOTqpgLJoqlT2goiWxC6P2bI1blJZce38QIeqpTtOwyh19RN8mEC9TArZc6dmIMYw0363rkx3gLXDmIKJOyYr6R4R6Z5yTQXaVduABAV8JA2X7ZR3xsPuTZ9Qdlf9s5F1p1eBoAZpwgMdovpuo0OjGk41bV95ApxUtfIw6nL+ykIdeQoAUQAddf5eZOUFOgiBmSrBkttHaTysOxrwogFJVqwFbHaF/M4EEoZgJmGYQNQk8pWVtADSVAwk6fcZ1mwH30C1lW6z6F54jEsTcVXgCUHZZNycHTnDWtErk4uEiiQLJoq8ZCrXQ8PduakmSjTAdq9WtO8avfsHNOWHwSuKjsUXOXbQZyblG1pPuC9MIuyq01GpiPN5TwonZKwW6Z4Jw278v38Sx+vxWwQ5apc2XaBtrnMQq5Api1qADCbAJkrtpkIGNMh4yvLNQYYxrc15SGHCbMCuVBrgGKXXeYFPMFBSn+f2IVKhMMaECqKr3MnCUi0FdDXgAOlAWIAZVrQQwj7uPCr5uFXPpVHwjyW+zwJMBeZOMz0o8Q/6xlAru4uEiiQLJoiefw0hVz7LD/Z6kC0eiYEawt3XHO96IZtVGmoSmfdpKt0JU21sKt7NjlQ8nF2aREPd425aTz1oQPCOoQgkVznla/Rdla8451lO77dA5O7SnNjeDwy+c5Gi2u/uKJcJOpAdL2Lw+QXc2DMzU4dyzW6JbD4fR38uGvs9qvIQXb7OhNubQbkMK0fjW0fDowJLM3t5C9XmVBt+EcJeUr/L+AWnRwnKJW0r8eOvFMIs2VD9SvCMna2Ghqka7B0CkH3jHIFPAMAubq5SKBAsmgqxfokSbgKzRByRatt1k60FZxkV0eX1kGKXh+q0wZpbdZdTJbRcm5SdZQZKtAx/YihJSTkIysiQMSgDICMglJeae6Ru0nAfJ0FEGde/hCO0uUfm25zrSCRdHCVJhTbqoXJgrNE7Rd9HEqlCJCuSpQDMuQTm+HoCnBcODWdnZq73FSIkwupGljG4dR8yHUAJHmlbgaU/AeO0k35SJGFJd/HXJbR/TutAD/2D4lhQEkQZjrQkKB07lISoWJBWB5+5Z+DGiwHhV0zPZNRS0jm+KubCiSLpk4u5Cq6JuQq7eBz2YoGC6DVAbV7EP0eiE3b8TlJu83l7FI36UKtutJQHRNudGHXrubFOwGUbtQZz0um03PS/GMadq3fBgNxmVvay5bZDxmKpUpnHWeUn6zdaYADSFZk4S7SXdepm6TgHvnlJjimS1O5vON4QqrcGXY9IKvabWmINQtICutHUnKek3svhDS5PiEFehXsKh95SHIwpq7SnId/7xwopSDAZwcMKCW5bQGYppXE/EspW7xTNYBSCnaZbAOIgOsgiVylC8G6q7U3IyeWe6wBcjUOszoVSBZNmbxHkyEfSVIB2hTyCOcke90wVKDVAfo93/ohOy0oG4rMuUnVUb4PUbVdYUwIu3bsc+lqikDJ85IcjvlqVnceAClr25vhN94cZRaQaQGP29YETCD/ZSXcl23sInmI1Y2HI7stV6HaBMdcSHU8+cblDWDMucYaJBMoOiBqTbXJXikseVhcWBfpnCVJ4SfpNMESMCHWkZZEt6+Zg1To9gNx6qC0DpKDEtL8RyICZttXJ9tIyMoAJX9PxvjoRPuO0Te5urpIoECyaKrFQ66yBSGCmzRFPaxnst/14BSy51s/xnKTJtxqixBs2NWrW0ERfJjVtIAQpA+3hhVAmlaDSJ2kROoqzX5SiigMLNlamECApRjQipHVGDAUrBp16EOS+Tp2ztHlEzXFgPTLV7FpOE1N/2PlG1M41sGoa4U4cS4yA0kLxhwU+XWnQU6Sg1JKYX/XCQhtcs1kHaZqyRosgTg062AJ5EGpBLH6MusgNaCFQK+KQ64GmID0IdWQIFAw1a5aEAQlcBwASqAZlmMOPA9vWPby6gxIoECyaIoVFmBVZrCAq3LV/bhnstU2YddeD6LVgez0oOyai9xNqgiSYQkq2Q5h15q6FVChXrhDAKJRdnG4Fai3gtQBKfxlOQB+TW5y3MAcUukvfffvQICFIsVgdG6SBs9RHavxPwfHsYpx0nxjLqSac41VX4M0c48WjA6abhtQz0Fm07UVc4/WTQppAUkBllVfR86yk7jHtMIVqIMSADo2hKopBmNbmcEDWsCf91j41YSDzefY9Uoqtk0KV2yFLChhtw9yldk3i32estdXs6EBTSqQLJp6eVDaodu8gKfVAVo9UK9rwq3tNqjftcMFKu8mDRjNIHAPTDa9BkAyJ1VDddgfc7eCsn/rzj36JZgIZgUHNBfhuCM1tYM4F+nykWEiUFg42rwV5kgcqCkoa+CUg1e7qfWsRTmjuGRfU+wiXfjUu8kMIF0odqyRcWOFVYeFYw6MOdfIHaPfHoVc7XvgHGUuUmDdnBQutOreKrOvJAHSIgtLF4YF4CfudPvan6MlXXkqAANK/nrsIwPQfvCAJjtf2N8tFPBoO+jcHNqsQWnCrYAgcySy9xAw0ZIcKIVfvSSAEsjAcqzhAg1OcnVXgWTR1Eu2QEoDuh8KeGTLgFJVvqoV/V5oB7HrKKpOK3KQbgqPO/EBA65ox+UnK5iB6Mr1DnYrdGDg6Cbw8CpXhfqKIMDYBTzcRaahVrdoNIelzIRdRUMj9gqJQ5OHw5iLdLlGl4cMAK0Dsmkljly16qCc47Bw9JBMXGMTGE1nQwzEYQp2AJN3BADYEKvUAZpCUiMsVUuiZ0EW5yIDKFUERaORljSvTZJ9rCTEqmyI1eYleX7SVbwawJlwa3CWZl83ZICDksgVxeZB6WIsvrp1WPCtQYAECiSLVoFMVFP6Ah5T8epAmbSD6Aqibc7JuUkGSOX6Jd1UGsCHXf3jJS0TVVd7UErzzR6Np+OhVgfEsFoIawsQeVC22irrIlO5+bNAg6OUze7SDzhPt4U7m9eem4Riz12oFQgu0p/bnKMDZg6QTatx9D0U3RDy0MqRK8iZKBx1pRvByKGY5iLHWo4PgIGja+2xLhGAyfNpkYWlaklUfTM9pwegIoEOeC4yXPZQ1BqVNpN5PDxbAGBWD5Ea/lwLEYVde2a3bH7SuMiQn5RkhqRrm38Hu9wESsCGX/nnxrypze/bGgZIoECyaFWJu0liE3hcO4iuIjfpcpPgeUgLSAdNafsLXdgVgM9PpnKhWC01WgBkpaF0HHrlgBy02ge/zMOs3EUCwVU6cALwVbkAbwuR4T6DQGkO2nw9V46PkJ/koVagHmYNDjPkJTkgXXFOfB1sHx3lHXOtHHVHORiOVaUj12iuBzByp8irWHNFO3y7eXvif2Ofj+QhVU0gKWqwVAiABGxYtSXRhUYH0r+ejodjGmY1cvBUwv1oEVHYlbtJaFhgGhCaJdBM2FWTyU+6sKufjW5fYoBhMygF4vv4d2dIEK4J+UigQLJoFSnrJmUfoMFuErqC7FRmZZBOC1LrqIgHgC/kAeou0j++mwPWNWdmIDpFsATygHRK4ehDqvay6siMowyhVu4eHQBz7pFDE3bGbSSp4m1N5fjpeQTC2EVGYVYdL3bcBMgcKFP3yEOrYwKyAY7BQcZwTMOvAOKinXQGQ+IoJbtd2PYJYW2VD6naYi3AdC5JOwGngoaCtD84bIjUgrISdUAuZ+4y29tpw66D3CTAw68mj0r230wJ+B84moVdIweJZlACIdxaC78OoTUFkECBZNGq1LBuUldAqwNUFciCUrV7rKo1FPEAHJJ9UJUvcqm6lc9ZikqYEK3UESy1DoBsqnJ1biMFpIOiu5y6SL7UF+AcJT8pv93JbQNgc7CpizT3I7AqYgTnaJZUiqtao4IdxC7ShVk9QLU7p0ZA5sKrMQTr7rEGyEo3hlVT56j7uhGMDoppPtIpdZEV+2oXZP9ddQzMXLGOIGGcJAOlkOb9Epp8jpK7x05L+hBrLuw6lJtk1a6D3KSCyz+GthA94McfsfaQHCiB4WG5JqhAsmiVaUw3aStdzWLD5tyNZXMtIbyIh4dbcxWuqbTdX9j2EXQBDe2dn/QhW50dfSq90ws5RwdF1ZF+2o53lYmLFB6scT6Sh13ddb/Nzbe1ElKZ1VJyYVYgOEw++YRVtfIQa+oieZjV5BvjMGoTINPKVQPCOPeYukd3uWcdY9XXBtSRk2yGYw6MaZFObvRc+DCE21xY1YHTgMW0Cfm2f2lqydw77QDpz/saqiX9Y1cyBmTTZKDxukmXOx/GTbrrjnC8LSRyk+wt4RFofn2Qq1yTXCRQIFm0qjXITdpKV9836ZaE4i0hDpA27AqgBswmiSr0vlWoDMisq4Qy+UrSBKWaWy5SOEruIKWZACQ8FOsu0k8LchW6boKQlJAyOEv7IOGBVRJihQEmL9Spre0H5jCJ9Qzagp3URTp3GXKLoUXGnLMK1iEA6eDIwZhzj1UCSq0Juh/Cqm57CsdcTtJcdqH3sBpM87+nQqXtDxUbZgUQYKkBksFVAtJDhYRBB0lDH9JkimZgAF0JC0wGwhV2k64QBwbaWtgxdRSej0Zwkzw3OZabTMOutX3ce5bZtiapQLJo1WtIN+kWF/YtIbVhAiEP6XKSRt2Gh7VfotYxkiLvKnVl4EjMTXLFfY2hlSMHSL6EV85FpqFWc8z8ua9qdcCUsr4tcY25yzzU6nOSDS6Sh1m5a+yzFhDzBR4PGs8BMnWPPPfY5B4dNHOFOxyOKRgdFDkcm0DpnDjpyvzYsOcaMSxNHjK4Spd/lAC0tE5Pm38WrSkKu1ZuIPkwLnIcbjJ2lQSpyQ8uCI6SACGg7axX/36sgJv0x8CaHX4tkCxapSIAIucmiQw4W9pM4dEV4NZNTIp40sIdnp8EMGBVDQdH+3VXmVCrgyXfx7nOVCGnGOAY5yIFZFtFOcmci+ShVrfYNL9NOOfI3aOHY1yow4dMN+Ujeag1GiJAfHC5GxRgx8tpbfORiFo/0iKdQYBMIcnDqy736M/79dCqA2gOjtwxpoAcy0W62zkg3XYHy7hgJ4CSg1BLQGgDIyGss5XB2VaCoiHnK0s+5MpwxUOunGLp9WE01l3WRAfpVCBZND3U0DcpSPvWD7g1FJMiHhd2daLKtHX0Bz6chLbDMrULu7oCHgtLIFTBigbQBrglsEwA6cKsqq3yLrIh1OqeqzlX9iRruUlftJNZ+NY5SN76wUOtcU4yHkXnXGSv0j7M6pykb8/QGBqQHJK9SnsA6oo7ydg11ts+6nBMwegu63G4SABR7pnDEkAjKDkIARPmFFL4ULGSxvU5N5m6xYmEXGH/ndKQq/k3JRBEDWoOmunlJvGQ69qsAsmiVa5BbpJIQ7RaEDq4R7fOnZtHAsBD0eUnAUTgBGwFqexDKIGqG24TlQFb1a1ASoe8JFhxz4Bf/yHcyvKSUkbAdIU7whbxpC7SLSQduUgeguXhVJaPdEU72XxkZtFbCOlDbJq5RjPEPO8ifThVuxwkannIuPdveEDy/GMaXk3Dr849emfZAEc9ARfpYFjZy02dgCkoFQwAJWw+UBqQCRuzdDB3nxHnJlNQjlcVkR+dFz0/bT4e/rUhn5c0txUNowLJoukj5yaJbG5SG2DKFkSbvHN0YVde7crzkw6Yg92kuUUqgapXgSqy8KxMrrJt8louzDqoSpbnJM3LCIAMvZLS5ySlBaKBYt1FDgy18vzjoHxkFHJl8EQ91OoKdjS7jbvIEG6NJ+zwPGSac0wb5vnlJkCm4dW49aPZPXI41sOs8Q8lqgIweUsNaR31qLp75WCpo2Id4yZhnaOriiX7/iklfG7S3ZbTWHnJ9hDx0bQQZ5iw6qDinSKjAsmiaaGam5QtQGkQaQvOTNg1OclO5cHo8pODQCmVRtW1YTlJEEpDKmGGpFcEXYlQ3KPy4VYnvohyWunKAak6KgKharfMUATmImUCSsjgFqP+SJnkKdnqHgCrZGXLk+VCra5gx7ULOHhyF2nCrWE0XRpmDat0DC7UGS8ga1WtQ8AxtP/EDjJ1lGk4NSff8lH/8Nj3kLyb5GFVKGFaVmQ98Nm0BNsgVbZopwmWWhPUWPHT3MsYtO4pu81dmoR06rRXgWTR9JIddO5DrcoCkTTQ0vWwq9Y+P2kHgtXaPnKgNDlJs9WFX6kSHpZUURJ2HfztwHsmORzNZRkB0kFRsnAqd5Gy0/IuUnbasWO0rpL3R7rLfvkrVqSTAjMXanUFO9pedxDkLpIX64Rwa+wQ+cLIfR1XsPIiHe8OBwDSALE5vJoCMgfHYapaB8kV8XBQOqi6EKtxjbarhodVKaki1aYdRGjjOicaaq00Ibf6W9HkqUCyaNqIYIYLkLLOkVrWSZqWEEE6G3Z1cNQAoCuo0fqxWwC0kqgslAIgJUS3712lqCiCJQAPzEHiVa5hOABvA5EekB6AUbh1sIuEDNdzodZsDjLJTTaFWl3Bjmv7CGs9htaP1EX2qrjdg3/pZ8OuzA3yIp0UhGMBUve7NTgCtuWjas5F5iDpIMgvC6nikGziNMP+9seHd42hNyINq/LbcppITnJlaBhTyJ/22ugigQLJoukoFmoV1DLVrNZZ+rArEwFRfpIAyPYwjeMSlYUlVdpfp0pAVARAgSpt+t/a9fxWeiyAw5K3fMRAVBaUrlhHddrm3IZeeTEPOCiZcxw61AqMGWoFEBXsOBdp4Ai/biN3kRWlubOGxZDtqbZah61ibZrJmgLSwTHnHjkcm8CYQrIRkFH7R/j31gCUjHOYacjVvI9xInCiYdAmNbWPyMx2HkmVmW05CdYj6bcN//TWSBVIFk0reTcpWxBSBzi2zBrq7itIAPn8JJPEMn9ZKOlDrkIpVCzcaipb+6ayVUlQZXJfutIMmAANcJOuXaPeN8lCqi7EmoZcMwMFhJQQ7U5wka12BMahQ60MnmOFWnnBDhDgmIZhm1wkz002FepE60CysGs6WacpxJoDZFNP5KAQawpI/+/I4amaXGQIua6MnsdhjqEkxiywkULUZt/zfGiTK3QrfvD8pBCiuEirAsmiaafmsKt1lrn8JBe7zkHZAqCZewQM3HS3H1yk1CBl16u0lxVcK4hsrHIVzC3kqlRd3tE5SgdI2W4bYMqwr3GU7ayLROY0nlCre3+zoVYgyUO6yyHcOshFZqtaKR0fFybp+GEAfChAtP/4ADmeCTtAfXCA23+sYp7xKOfwuMYCpJJi3NWnaTFOend+fUxnibUbkECBZNF0lWsH4WFXV+2a5Cf937Bzlok4KOOH+P/bO/cgq4o7j3+7z30MELiKI8wQcTRZAiokxWMFdEt8BbCKNVFLJJIJSRGi2TLKqpXIbiVCqiJgEq08N4mF4hoNlFGSsjAkuAvGZEAJEIWgxHVRdGVAXZjBDc7jnt4/zuk+3X2672OYO8zA71N1695zTt97zz1c7md+v/51N0fY1QUgTrfGfZVhMVSyVMfidZRKVbnqE5OXGtqhC1L2Q8rIMshl1LhIVxTJMtkoisxkjQkEKkm1AmZa1U61AulUqyzYkStpyKGnsjjHHhRfSZpVTlSuy1Nf+kr0giArKdSxU6y9LUgJ4+ai2wFjkfw89pHHXMd5HOFFC3wzY7Fv4z1hyk0tIB3/b7EjR86YSrXKKPIUd6OCJEn0S3xpVxZoKVgRgucHqYIdFIve/9hB0KUeS1kVVfFOgGJnl0q3sjj1Gr1sWpg+jFU7VPrVU7UaCzKQfZWGWJPCHJbJeaNIZkWRpVKtUGlVYUixXKoVcFS8eqJIwBzvByAVRSavaclTE3Ey/6pZnOP8npQRZOh4Lu9lEdppSm87S5Y65cXIykZ0Spxcl1+6P9KVavWeM5mSJEn0X8qlXaOf0s5k/CS0Ih4gqn7VXiuoM4t1AIAbxTvFeE3JuF9SS7lGLxtGkwx4RKmLEQBSfY2cI8hl1X4pSBVFZrUoMpOLokZVxZoM+zAmFnCkWV2p1ihyTFKtQDKBgEAirkpTrd0eMdoVrdH7JHIE0lFktC8dRUb7/VFkTwQp9/dUlMYUdppBmPWYM6aCeR8+MQacIeM7xqLVRzhDfM+0e+08WdQfaYsx2Wapx3YUSYKMIEkS/RrBOJgn7coAs38SMGTJAGOOLgGzcs8cKxn3TQahkqXsm5RSlClXeCpdU+tAOmbOUUU7juiSBXGxTkYbG6lHkXHa1S7YUdEi585UK5AU6aTSrlo/ZVGL5GTXqy/VKu/lY5c0dQlG75le0ir6J/RHkZVQjSCPB3MdT/mHkCVHyywslhhjTB235acLMbAqb6LIEKkIMTqWLubhjDlTrZEEzTSqHUWSIN3UdFjq4cOH0dzcjEKhgEKhgObmZhw5cqTkcz7/+c/H/6jJbdq0aUabjo4OfOUrX0F9fT2GDBmCq6++Gm+99VYNPwlxIhFx2lVONCB4NCxE8CDZn8tHkVeuLhJNrg7IZKOILF8X7Y9vvK4OmbocAhnBDcohyGaifXU58GwWQS5r7stF7XgumSFHv8k2xi2ODqMhHtEwDylI2UYOCZEz7ujFOiqKzGRVX6Q+PjKVak1Fk+bQD3tZLHsCASCJFqPH6b5KO53qfewo2HFJ044wo3tTdr4o0kc5QfqiyNSk8dp+bggyiO/j/j2ejiqlEO3Hen+kLkt7n35Mplrt/khJwMxUqx49cvijSKY9VinZklfu1KSmkeSNN96It956Cxs2bAAAfOlLX0JzczOeeuqpks+bPXs2HnroIbWdy5nj4hYvXoynnnoKa9aswRlnnIE77rgDc+bMwfbt20sukEsMYOy0K5D0TyIeFpKV4Y+ZZtX/4+vb0YwpUbpVRpWsGIJzjjBMokgZXQJAqEWTPpLZd8wp6LiVfk0KeGJBSqnHUkRWplzNfkgpTCOK1Id66MKEmWoFtKhSXhM1aQCMCLIoEvmF2mN5X4yjaZ8offhSrdFjbTWXMrLzHec8qCiSTGQXpParfztLjnKbawJTspTRYpxq9fVP+mQYcJ5Ktcr+TlnlWirVqkeRMtXqiiIZM8Wpp1kBiiJtaibJl19+GRs2bMDWrVsxdepUAMADDzyA6dOnY+/evRg7dqz3ufl8Hg0NDc5jbW1tWLVqFR555BFceeWVAICf//znGD16NJ555hnMmjWr9z8MccIx0q6I/rNH4ycB1h0/hucvYa5HaBxCG4zPurtUVau8F8UwWnyZhwi1gh1RDMtOKgCkq1y5ts31iQQcgnSmWfVinjjlGhXpZCIpys/nmKtVDv2QadVU4Y7qkdTSrVo0Kfsj9ePdHiHqj31VrVK26t/VI9SeTCNXDnc0mNzbkaTc5tr+ZP5cGSXKtunIMXrPdKoVSESZcQhT3bRUa6mq1nJRJIcZOXL9MSjNWo6aSXLLli0oFApKkAAwbdo0FAoFtLS0lJTk5s2bMWLECJx22mmYMWMGvvWtb2HEiBEAgO3bt6OrqwszZ85U7UeNGoXx48ejpaXFKcmOjg50dHSo7fb29t74iEQfI+JhIVKQDLnoB55rj5EWpR492pEleAB0dyEIArDOLvCAx5MIRBMKcPmYR0U7YVh5lauxJqRRvJOIUglSDfHIgWUTYRpRZCbn7ot0Fu5UPssO0LP+SEl3CVm68IkxLPM8m1ITAZQqzPEJUh2Po0i9vT7BvJQh1+TniiKDDHemWnMZ7hWjHUXqcqw0igyYGUXKyNGVZiVBlqdmkmxtbVVi0xkxYgRaW1u9z7vqqqtw/fXXo6mpCfv27cPXv/51XH755di+fTvy+TxaW1uRy+Vw+umnG88bOXKk93WXL1+OZcuWHd8HIvoHPE618jiiFBmIDIDuTq3iVRNhLB9h7wvifr3uzujHtbsTnAcQXZ2QFa3O8ZJFrXjHIUopRfnYHhZijJnM5pQYlSD1atZMLhKoVcyT6n/k3Dnjjl7V6hv6AaSXxQKSdgCMtKt+73pc6TykQoso7eiyElzTytmPXc+xHzM7StTSrHoUmWybMlTbjv5HxhmCgINnOLIBRy7DDUHqQsxlAmcUmeUM2YBXHEXKNKseRdppVr0fkgRZnqoluXTp0rLC2bZtGwB3Tr7catc33HCDejx+/HhMmTIFTU1NWL9+Pa699lrv80q97pIlS3D77ber7fb2dowePbrkZyD6MTwSI+vWq1i1NGzcLPVtiFOWortLHWPxNjgH4nsWT3XHi0Vziro4mjT6zTRRGoK0Kl3NCQUCU4S6IJUQrTSrXdEqU62Ogp34BACkZ9kB3P2RgNkfqT8X2nNLCdKFLNopBWcMRQhwzlTEWk52vnlX5T4frihS3pcTpJ1m1UVoR5G+ilb7FokzSEkzGzBk4z5KO4rMcq6OZ4NIolJ0Ms2qpOlIs+r9kAAJshxVS/KWW27BvHnzSrY555xz8NJLL+HgwYOpY++88w5GjhxZ8fs1NjaiqakJr776KgCgoaEBnZ2dOHz4sBFNHjp0CBdddJHzNfL5PPL5fMXvSfRflBTjtScZYBTvlBJlKpqUwgwCoKtLpV4RFiFCOS6xCFEsglmCDIulC3j0sZIA0nLkpiiVIFVqNYog9VSsbwo6YcnRTrW6hn5E10OTnNYfqW/75Fcs0y8LlE6fMsaM93e24UGyuouGLKLqyWw5Xkl6BMllipvzJH0ayy/IcCXCKGKsvKI1b0WViTA5spw7K1qzAUeWu9Ossu9ST7MG2msEHHG7dD8kUZqqJVlfX4/6+vqy7aZPn462tja88MILuPDCCwEAzz//PNra2rwyc/Hee+/hzTffRGNjIwBg8uTJyGaz2LhxI+bOnQsAOHDgAHbv3o1777232o9DDECS6DHuh4zHTAr7Xj6BMUM0kGlVIBEjABR5koINA1OWWUTb6ge6TPGOVuEK+T62HFXFqiZIWdmqVbOqop6MNgTGMcOOK9UKaBEkzP5IaG1cpMTpFWY52TH/nLecGZEm47xs0Y68pqUE6YsqfXKU+3yC1NOsSoZav6OUIg8imbrSrPKWN+Ro7bPGRcp0a5ZXlmZVYkQiVxlNugRJUWR5atYned5552H27NlYtGgRfvrTnwKIhoDMmTPHKNoZN24cli9fjmuuuQbvv/8+li5diuuuuw6NjY14/fXX8S//8i+or6/HNddcAwAoFApYuHAh7rjjDpxxxhkYPnw47rzzTkyYMEFVuxInPylRan2SLINIdHq7jBlpAojSr12dcR9nHFWGxfiHWl9dJEyEmckCYaik6UX+OGs/wPo+OZRD9o0qGUo5ZpNKV3ulj1I3PaoMU2lV+dhMp+pFO/q2j0r7HTlnEIKZeVtEYnTtk7K0xWZHkyIMUyt0wDheTMkweZ9EjtF2qfRqOoKUguRBIs4g4AgyrEdp1lyGqzRrLrDSqLGc9WIdO83KDTEmhTsycozEaVayynleSZCVUdNxko8++ihuvfVWVYl69dVX44c//KHRZu/evWhrawMABEGAXbt24d///d9x5MgRNDY24rLLLsPatWsxdOhQ9Zz7778fmUwGc+fOxbFjx3DFFVdg9erVNEbyFEMJj3EgyBgRZFlRyogRSKLJ+F7wIlhYjCJLPaIM4++XmuHFPxeH8eMso1gksmScJ4LUZtKBNmmAPiREplntAh2hJjVnRspVT6/a/ZEAjKIdABX1S/qoZrko2f8YnWYkS8YBFKPtSIjpaJLzIJV2LUdKkNrvgz4GsqeC5HHEqFezqkgyw5HzRJF6mjWvHdOrWTljyARmJBlJMV3NymMR2v2QAdfSrSwRJMmxOpgQPSgtG+C0t7ejUCigtbUVw4YNO9GnQxwH6v972A0WdkcRZVhMtovdYMWuKCUbdsf7ixBdnVHBTliE6O6C6OpUUaPo7ozuZSRZLCbFOvZsL6X65nQxAmk5ailgQ5AyopSTCwRBPBYyo2YYEjyI/jCQ20HW2O4WclJyoCuU861GUWK0HQ3d6A6jNSG7whBdRYEPitH6j9G+5NgH3SE649vfOovo7C6q7Y74/lhnss+1hmSxGBrrRcoFl6PjKLmOpLzmYeiar7UyfTLr38M9BjIAz2StClUznWoLMojF6BOkjBwH5wJNmIEhzbpMEEeJphSzcRFPPhOox1kuo88k/cqYuS0FGZzEgmxvb0dDQwPa2tpq+jtOc7cSAxpVoGMPDYFZxMPCormdjWZxEmG8eFBc3RoV6fBIft2dUSSZQZJ6LXIwZA1peuFJSg+AKcf4PfVoMSVImWblgT+KdCyRpfoiYfZHAu6iHUmpNKsxDZrnl1ZPJxYFg+AMLGRx1aoWPRZFJKAwyhFGM9aIVDTpvKRIF/KUwzX0wyVHu/9RRYlakY6MLH2CdBXq2P2QtiBzATeGe9iCzHJesh/SFqRe7MNOUkH2JSRJ4qQgEmR6aIj3PsqRgXV3p9KtskBHylKERbAwSr0KHheEKDlmjdVGDPSiHchUK1f7jEjSJchsLkmzxsU67n7IdKpVH/qhUqwOMfZkjCKAeCLuynXFOAMXkSyNIR/F6D4EwENAZrDLiRLau0vZ2SnaVN+mJUX9sS5HfTiHKUXtPsNSKVYWy82XYtWHe+iC1Id7uATp64dMCnzSlaxSkAEJ8rghSRInDRWLkvEo7QpE/ZRC/sjypK+SB4kspSDDIhiycVSZ/ABLcdqY/ZI8LUspR73aVSve0aeeQ6koUpuGTl4HOfRDovctuipbi562pdAHxRft4pSQIYxTlLJ4Jypoif4VmIh+tWU0yQEILsBD5hSla2xkYMvRkqKk5NhIjxxd6VVnv6SVYtWHcrgEaaRdHYU6xyPIgARZE0iSxEmFV5RSJrKfUrZlHCLsjlYR6e6OBCgjSFuWliDVj7bcb+NI8xlylG30SQVkFWwmo4kxvo/Trq4o0k61SkJhRouVlCDoP6r6Y9+iwKWQaVUVLQqGEIkMOWdRt66WdtVFGXAGETJVSFTt5AH2cSlGACXlyDjzplft9GslRTqVCDKf6ZkgA4ogawpJkjjpMEQZcohit0qPGlFlLEgGREtRZHlc1Vo0ZJkaCiLHSurVraHjh1qb/1NFkRWMm1SC5Bk1X60eMXqjSC3VqvdHquvSg2gRQLwSRfIE74Tc1q0o06txNMkBiDCqzhQ8Sq8K2QcZRqlNuUIIC6OKXfkZdFnKITq6/MqlWm0xRvv8ctSjRzu9qk83xzkrKUhXkU4tBXmyFumcSEiSxEmJEiXMVKs6xmJ5Qku/ijDpqxSBkqUa/mGNlQRgRJDC6ps0xvL5xk3KbVnFqs2oI+yIkZtyNPoifddBmP2SQFqQroIdzs2xjJxVFkW6Uq4AzCKdECrtGoCjGCdVZUSZ9HZGUSUCW5bCiNKlOFPnr+ESo9q25Kj3PfqiR7v/UU+zVirIRIw9F+SpUMV6oiFJEictXlFqEaTgPEq/yrSrCJPHLlkim0SXMMdKOtN+3HHcNW7SFiTPpGXI0hWtgFnVqvdHVhosBoyhy9E62m/tM/ogOQIujH3FUKSiyRBJWlWmXaUcpShDLsDi4SAsiPou9XUnA7DoOgAIuZY+jt/Phmn75JqMLjEC8MrR7ntU0aUWPVYsx3i6uVLDPHoiSCVKJNtE70KSJE5+dFFqRTsCSKa0C0OVdhUiBBgHC7vjx5osASVMAMkEA/F+9/ubBTzGuEk5xZoUoUyx2v2Q3BFZelKtpfDVowYMKSEC0Q9vKCIxhcIcBuK76cdz4OhEqNKqMk60RSkrW5OUKwxZAskEB0z7EFKcOnZwLWXoE6M+H6stR7OilSNgLCVHOWtOTwWZz6QLduxxkHLKOjmDji7IpHCn5D890UNIksRJjYoeY1GChUafJMLu+HE8QEIwMMEjWcaiVOLkQSRVS5jqvSqZgcfqm7QnLHdOPccd+6IXNSc3j5H9kbJoJ+qjFGUFGjCGkAmEjCFkQLcruozlJxdedkWTejsACEIGZDiK3aFTlILHUgwZBBMqqozkGJ2TEEnEqM/1ak+i7k2zMlOUSpwl5GinVvW1IPU0a7X9j66ZdCoRpB5NMmj7Kb1aU0iSxEmPLkqE3RCBvnBz3EaPHsNQyVLvr4wahiq6BJAMHymWX4VCF2MkbI/wHP2Q3ihS+4wy1dpbcDUwXSQD1DnzClEKo6M7VCLpjB8jREqUMkosdodRjRRkP2UiSwCaMCNCpvWVlrjkUpjMurfFqM+1astRplZdgvRFj6pNFYKsi6NJmV6VkaFLkNT/2LeQJIlTAkOUQi7YnMzOAxEm+1n8WMoSsUTjdixuC32/I+3nOgddivJe6Pt0EQYZpzzt59uRZG9PNGmnXI0+x1AY0aRsrz+WspSiDEMBdIeqUCeI9zEm4qgymZFHhCIq3NH6IVkFpbl2n2QiykSMsl26P9IvR/mHQGAJ0o4oe7v/0a5gpf7HvoMkSZwy6IU7CHJJ8Q6QpFkRi0+EkSyL3RAc6piKJGM56hFm8kaOnj9dZHLQv0OO0X5/oY4eRaZW/NAnDKjiunAejV8076OhG4E1zlJWucpoElq0KGWo789p98VQRLLkADJcRYghE0ahDosjRRFXwIahAAdLLmtgplzNy8y0x/LzJSlXu38y1TepybG8IIN0ytW1kgdDSUHKaemMMY5UoNNvIEkSpxT6T6te+RpNP9cNFkeaUoaqmCeMxcgC1Wcp+y0Rp2qBWJolhmUIVyQY39vFOM7+Scdz9c9kLClVwpScRcc5Y6khIAGD6pcMVao1mU5On5sUgKp0BRJZojs0RCkFKR8XmUBRRo0OWUb/JHG61ZCmpLQl9EgRMFOvLjG65lv1yVGfHEBPudrRY8DcK3lQ/+PAgiRJnLLoQ0RUQY9I+iMRdkdDMWRUKcJIplGZrBFdyntRQpAKK6pUFZplBJmKIrXXMkRZJt/KmTkNHWAV7eiRo4wmtZQrwnQlaxQxArkMlAx1UQJIBKnfHLJEIMc+xnIsUaiT+mxGJGlWssp9PjG6JOmSox45Bjy9DiRnxzcHK6VX+xckSeKURopSFfRIEWpRpJ5iVbIEt6JLkcjPlW6VGOMbmbmvEkE60rb2Ysql4AD0gSpRfyNTk59zzoyUa1GYBTzZOGIMRZJelcU6pUSZkmMJWQJJv6MuTaB0oY76jNyMIvVospQY7QIknxz1wpxkIeREipz3LHr0De+g6PHEQpIkTnmUKFXlaggW90XqQ0JS/ZEseayWzoqlWRZddvrk5HZq1cbqi5RarGSaOTuCZCxJycr+yKIQqaEg4FDRJMKk0hVIls0qJcpArWdZRpSxENW9SNKu+tWw+yOZZRApSbm8l11Q5LtlrCjSJ8eAJxFhwDT5xbLU95WKHpP+Rape7c+QJAkCSeWpGjtpRZW2LPX+SCZCIOAqwlT4FgPm6WjQV8RTMop0iLSSylbGEK/CIeLV7S05xvtkNIl4rCJnDOCxkAOgqwjkgmiyAMAUZTGM+ys1AZaTpWyfuo//5pD74PgbRJ91R5eife8To5lqDZQQbXG65Mg9hTmc+aNH1yLJFD32T0iSBKHhjCpLyZJxY3gIoFW8BqX7J4UjdVpSkNw9eYDLi3ZkyREV3TAtfJSRpZ5ylXJECBVNIl77MQugKwSyAaKcrSbKIhcq9VoMRSzLIBZgWFKWAEqK0n7sopwk9ccuMUa3pJ8xo4lRT6tKOdr9jukUq2zr7nvkcEePAWfxHy4lPy7Rh5AkCcJCzcYTR4pR1StU6ahRuCOrWbV7Jb9SfZOAs3/RNxTEiD6189Tdob+bnVq1kcelMyM5RkU5IYs6IrlgSoh62hUwRRmK6LFexZrPcC1iZF5ZAlDClI/1e/uxj1KS1KUo9+titKNGFTlaQpSRpIwczQiSI2BIpVaVIB2Vq2YfJEWP/RWSJEE4MMZU8kwqqgR0WYqUKCGfC6RlaadJS1W7GoU+juEgFaALESIp3omnSVCDKQLGAC7A41RsqKZyA7IA4nnkVOVPNoiWu5LRJQ8ZApZILp1eTWQp28hbDm5BdlcgSCASocQXQepSLJVuzfJo3KJPjnrkaPc/csYqTq1yqlwdEJAkCcKDIUoZJXplaVW56mIsJzRfxatW9epKsxrnWqYzUglSEyaPP2OIWCxy9S+m3lalXRGnW6UopRxlF2wooupXPf3qSq8CQDHkVno19EaQuZKfKsHfD8lTonSmW7WoUU4Lp491DGJhuuTIOYx+R+ZIpaZSrlSYM2AgSRJECeRPtpKlvj/giSxVqhVGhSurcI641HAQW5ASOSQEUZrTTrnqSDFK9H5JLoSKJjmLltaSorTTrlnw6DPqooyjSynHUAgj/SqjSl2WMlpMp1e5oz+yTKpaI9BS0S5ZetOtjBl9jTyO6rhHiJyZaVVdjvZMObYUKbU6cCFJEkQFuKJKOderkqWUiRZJCu/iVBau/klHFWy1cGtyABlB6tGknoqVRTzgwpKjKcrIo/FsPVb6NRGnloKNh3SUSq/a4qwUvT8yY4lQfyylKFOpthj1qDGJJKUQmdHnKNOquhztIR1MbVNqdSBDkiSICklFlbYsobks1HaUK+CROORopFmr7IvUUdnU+ERd0aQ8LhcpdomSCxGlY4vyxZhKv+pRpdzO8kiO0b5oOxRCjYHURamLsxq8qdZYitE+vxg5gxE1+h5XIkc9YtSLdii1OnAhSRJElRgziOoC0+dyVdEloCLMcthy1LFTvWXw/RZzOeYRQAgGhvixSESZ4Qzd6tSFkmMXoOSfDaLJB8JQGFGlLksAHmECWTAUQyhpqrGQjvS0FGfgMIycMABASojyuJSibOMTo4z4ZARpDvvgcWSY9DlKOTJNhvZ0ciTHgQ9JkiCOAzVcxHNMUk0AmJoEvUI4oqIbjijFKqPH1LaI+ibN55QWpWwUMl2OwtpOZJmJV+9wCROI5oGV0pRKD4VA1qH3YugfcqrLMNqO9stIUR6TUtT7C3Uxpgp34v5GGRHK50ghmtumHE1pVvVPSPRDSJIEcZyoVGup6tNqX9Q3hjLGzkoyxqpacFn2R4ZgieyQFqUAAw+jFTq4AMKQOeRobmcRidIlzESM8nPoaVePUTyz/OnRIZAWpS5FebycGPWo0RRiMpSDg+R4KkGSJIheIiXLUv2R5dactPdVG1Wy8tGknnb1iVIW88CKKgPmliV4/D6WMKP90Uvoc7KqKLLKrlZdQvpcrbYQo8damtWSpBSj3teoR4l2StU4xkiOpwIkSYLoZXzDRpIGpdechO95cEeknJmRJWPmHK6VijIAICDi58dTDcRVqsyKKosiWghZjywjISIlTLkfQEqcQGWTs9ufV6KiR0uI8lgpKcop4KTw9L7GUlGjrFpV7UiOJzUkSYKoEU5ZViJIm2pm14EW9MXRZBLh+kUZxGJ1RZUBc8sSgErDAiwqgrWECUgxwhKjNmlAhZK0h06k0qza8AopxWh/5WLkzE6z+qPG6H0qO3di4EKSJIgaUzKyrHDtSf11vM3jfklZjCPnZFVSFG5RBmCRIL1RpVuW0Tn5hamLUS/KsaVYbiFlIIkUAVOWaVHqfZNuKUoR+sTIQFEjkUCSJIg+wpClpIfjHtXT49dNJJgU8DCHKAEz9RqwZGo6LiJDsHgGHpcs1YyvqmIV4EEkWYFoooFiKKJKWKGlVmXfYyxPnSL3S1If4gEYo2QMGQJQQpSfXZei2od0KlUXo55apb5GAiBJEkSf45Rlldj9kPo+OVFAiLQolVARSQJAItD4+bYswRiYiGQJ9ZrM+AwuaQIMAokUpTx1fMM+os9j7tfHSeoylJ9dKlJGhkA6WqxEjBQ1EjokSYI4QVQjy1IJSaYdt0UJaBOWI5mizpCiJssopRrtD2LJhZB9lrEYLWECaWmCJW2i147kaXwm4f/0zLFbRYSaDPW2Um7ymC1FwOxj1CVJYiR8kCQJ4gRjTDpQxfP0aNInStVHiUQaACqTZfzCTMj+R7cw5QmI+HlJLytTVba6H8MK/jqwRaVLk6t9zCFKU4qGCD1ilOMgCcLF8XWIlOHw4cNobm5GoVBAoVBAc3Mzjhw5UvI5jDHn7dvf/rZqc+mll6aOz5s3r5YfhSD6BKHdKkGXSew7Y7/8/8EhpSD766JqT/mcaOq2uICFJwPsGaCiq2S6teQWrbcYH+Ny7cXkeIYntyCWUZaXv+nPy8SvmeUMuSCahDwXr+uoH89xhgyH2p8LkltWa5fRXivLSZBEaWoaSd5444146623sGHDBgDAl770JTQ3N+Opp57yPufAgQPG9m9+8xssXLgQ1113nbF/0aJF+OY3v6m2Bw0a1ItnThAnnmpFaUeV+n6VhrRSsAFLoj07ggxFUhwj1GtHD4QuZ7nBkIocwx7GyVxra0SRVoSoH9cjRblfjxb18yKISqmZJF9++WVs2LABW7duxdSpUwEADzzwAKZPn469e/di7Nixzuc1NDQY27/+9a9x2WWX4SMf+Yixf/Dgwam2BHEqY0jRsR+IKlaBaKY3UYEwgUSagJZ61ScvgLFhaDHoQXmS/QyXDGW71DFYaVikU7cEUQ01S7du2bIFhUJBCRIApk2bhkKhgJaWlope4+DBg1i/fj0WLlyYOvboo4+ivr4eF1xwAe68804cPXrU+zodHR1ob283bgRxssJZcgOSNCyzjslUbKClYwOWpFz1tKueeg1k6tVKs8qbnSq1b3q61nU8G5i3DIdKo9opVplW1Y/JFCoV4RC9Qc0iydbWVowYMSK1f8SIEWhtba3oNR5++GEMHToU1157rbF//vz5OPfcc9HQ0IDdu3djyZIlePHFF7Fx40bn6yxfvhzLli2r/kMQxADHloQ+bCTQoz7G1HE5n7gQZkjKmPliempVn0GnLA5x6cM9XEU68v118UfPq/xtCaInVC3JpUuXlhXOtm3bAKT/UwHRfzzXfhcPPvgg5s+fj7q6OmP/okWL1OPx48djzJgxmDJlCnbs2IFJkyalXmfJkiW4/fbb1XZ7eztGjx5d0TkQxMmETyqhJjxbnGrT8qA+xCNgDPbcQdWmqYzhG47jJETiRFC1JG+55ZaylaTnnHMOXnrpJRw8eDB17J133sHIkSPLvs9zzz2HvXv3Yu3atWXbTpo0CdlsFq+++qpTkvl8Hvl8vuzrEMSpSiUCCpgZiQp7sL/jOdV6jURI9DeqlmR9fT3q6+vLtps+fTra2trwwgsv4MILLwQAPP/882hra8NFF11U9vmrVq3C5MmT8YlPfKJs27/85S/o6upCY2Nj+Q9AEESPIYkRpxo1K9w577zzMHv2bCxatAhbt27F1q1bsWjRIsyZM8eobB03bhzWrVtnPLe9vR2PP/44vvjFL6Ze97XXXsM3v/lN/OlPf8Lrr7+Op59+Gtdffz0mTpyIiy++uFYfhyAIgjgFqelkAo8++igmTJiAmTNnYubMmfj4xz+ORx55xGizd+9etLW1GfvWrFkDIQQ+85nPpF4zl8vhP/7jPzBr1iyMHTsWt956K2bOnIlnnnkGQeBZwpwgCIIgegATopqytJOD9vZ2FAoFtLa2YtiwYSf6dAiCIIgqaW9vR0NDA9ra2mr6O17TSJIgCIIgBjIkSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA8kSYIgCILwQJIkCIIgCA81leS3vvUtXHTRRRg8eDBOO+20ip4jhMDSpUsxatQoDBo0CJdeein+8pe/GG06Ojrwla98BfX19RgyZAiuvvpqvPXWWzX4BARBEMSpTE0l2dnZieuvvx5f/vKXK37Ovffei/vuuw8//OEPsW3bNjQ0NOCTn/wkjh49qtosXrwY69atw5o1a/CHP/wB77//PubMmYNisViLj0EQBEGcojAhhKj1m6xevRqLFy/GkSNHSrYTQmDUqFFYvHgxvva1rwGIosaRI0di5cqVuOmmm9DW1oYzzzwTjzzyCG644QYAwNtvv43Ro0fj6aefxqxZs8qeT3t7OwqFAlpbWzFs2LDj/nwEQRBE39Le3o6Ghga0tbXV9Hc8U7NX7gH79u1Da2srZs6cqfbl83nMmDEDLS0tuOmmm7B9+3Z0dXUZbUaNGoXx48ejpaXFKcmOjg50dHSo7ba2NgAwolOCIAhi4CB/v2sd5/UrSba2tgIARo4caewfOXIk3njjDdUml8vh9NNPT7WRz7dZvnw5li1blto/ZsyY3jhtgiAI4gTx3nvvoVAo1Oz1q5bk0qVLncLR2bZtG6ZMmdLjk2KMGdtCiNQ+m1JtlixZgttvv11tHzlyBE1NTdi/f39NL24taG9vx+jRo/Hmm28OqFQxnXffQufd9wzUcx+o593W1oazzz4bw4cPr+n7VC3JW265BfPmzSvZ5pxzzunRyTQ0NACIosXGxka1/9ChQyq6bGhoQGdnJw4fPmxEk4cOHcJFF13kfN18Po98Pp/aXygUBtSXQmfYsGED8tzpvPsWOu++Z6Ce+0A9b85rO5KxaknW19ejvr6+FueCc889Fw0NDdi4cSMmTpwIIKqQffbZZ7Fy5UoAwOTJk5HNZrFx40bMnTsXAHDgwAHs3r0b9957b03OiyAIgjg1qWmf5P79+/G///u/2L9/P4rFIv785z8DAP7u7/4OH/rQhwAA48aNw/Lly3HNNdeAMYbFixfjnnvuwZgxYzBmzBjcc889GDx4MG688UYAUfS3cOFC3HHHHTjjjDMwfPhw3HnnnZgwYQKuvPLKWn4cgiAI4hSjppL8xje+gYcfflhty+hw06ZNuPTSSwEAe/fuVdWmAPDVr34Vx44dwz/90z/h8OHDmDp1Kn73u99h6NChqs3999+PTCaDuXPn4tixY7jiiiuwevVqBEFQ0Xnl83ncfffdzhRsf2egnjudd99C5933DNRzp/MuTZ+MkyQIgiCIgQjN3UoQBEEQHkiSBEEQBOGBJEkQBEEQHkiSBEEQBOGBJEkQBEEQHk5aSQ7UtSwPHz6M5uZmFAoFFAoFNDc3l109hTHmvH37299WbS699NLU8XIzJ9X6vD//+c+nzmnatGlGm/52vbu6uvC1r30NEyZMwJAhQzBq1Ch87nOfw9tvv220q8X1/vGPf4xzzz0XdXV1mDx5Mp577rmS7Z999llMnjwZdXV1+MhHPoKf/OQnqTZPPPEEzj//fOTzeZx//vlYt27dcZ3j8Z73k08+iU9+8pM488wzMWzYMEyfPh2//e1vjTarV692ft8/+OCDE3bemzdvdp7TK6+8YrTrb9fb9X+QMYYLLrhAtemL6/373/8e//iP/4hRo0aBMYZf/epXZZ/TZ99vcZLyjW98Q9x3333i9ttvF4VCoaLnrFixQgwdOlQ88cQTYteuXeKGG24QjY2Nor29XbW5+eabxYc//GGxceNGsWPHDnHZZZeJT3ziE6K7u7tXznv27Nli/PjxoqWlRbS0tIjx48eLOXPmlHzOgQMHjNuDDz4oGGPitddeU21mzJghFi1aZLQ7cuRIr5xzT897wYIFYvbs2cY5vffee0ab/na9jxw5Iq688kqxdu1a8corr4gtW7aIqVOnismTJxvtevt6r1mzRmSzWfHAAw+IPXv2iNtuu00MGTJEvPHGG872//3f/y0GDx4sbrvtNrFnzx7xwAMPiGw2K375y1+qNi0tLSIIAnHPPfeIl19+Wdxzzz0ik8mIrVu39vg8j/e8b7vtNrFy5UrxwgsviL/+9a9iyZIlIpvNih07dqg2Dz30kBg2bFjqe9+bVHvemzZtEgDE3r17jXPSv6f98XofOXLEON8333xTDB8+XNx9992qTV9c76efflr867/+q3jiiScEALFu3bqS7fvy+33SSlLy0EMPVSTJMAxFQ0ODWLFihdr3wQcfiEKhIH7yk58IIaIvVDabFWvWrFFt/ud//kdwzsWGDRuO+1z37NkjABj/iFu2bBEAxCuvvFLx63zqU58Sl19+ubFvxowZ4rbbbjvuc3TR0/NesGCB+NSnPuU9PlCu9wsvvCAAGD9EvX29L7zwQnHzzTcb+8aNGyfuuusuZ/uvfvWrYty4cca+m266SUybNk1tz507V8yePdtoM2vWLDFv3rxeOuvqz9vF+eefL5YtW6a2K/0/fTxUe95SkocPH/a+5kC43uvWrROMMfH666+rfX1xvXUqkWRffr9P2nRrtZRbyxJA2bUsj5ctW7agUChg6tSpat+0adNQKBQqfv2DBw9i/fr1WLhwYerYo48+ivr6elxwwQW48847e209zeM5782bN2PEiBH42Mc+hkWLFuHQoUPq2EC43kC0GgFjLJXW763r3dnZie3btxvXAQBmzpzpPc8tW7ak2s+aNQt/+tOf0NXVVbJNb1zbnp63TRiGOHr0aGqlh/fffx9NTU0466yzMGfOHOzcubNXzvl4z3vixIlobGzEFVdcgU2bNhnHBsL1XrVqFa688ko0NTUZ+2t5vXtCX36/+9V6kieSWq1lWe05jBgxIrV/xIgRFb/+ww8/jKFDh+Laa6819s+fP19NIL97924sWbIEL774IjZu3HjCzvuqq67C9ddfj6amJuzbtw9f//rXcfnll2P79u3I5/MD4np/8MEHuOuuu3DjjTcaKyj05vV+9913USwWnd9N33m2trY623d3d+Pdd99FY2Ojt01vXNuenrfNd7/7Xfzf//2fWswAiOZ7Xr16NSZMmID29nZ873vfw8UXX4wXX3yxV9aI7cl5NzY24mc/+xkmT56Mjo4OPPLII7jiiiuwefNmXHLJJQD8/yb95XofOHAAv/nNb/DYY48Z+2t9vXtCX36/B5QkB+JalkDl5+16/0rPQfLggw9i/vz5qKurM/YvWrRIPR4/fjzGjBmDKVOmYMeOHZg0adIJOe8bbrjBOKcpU6agqakJ69evT0m+mtftq+vd1dWFefPmIQxD/PjHPzaO9eR6l6Pa76arvb2/J9/3aunpe/ziF7/A0qVL8etf/9r4Y2batGlGgdfFF1+MSZMm4Qc/+AG+//3vn5DzHjt2LMaOHau2p0+fjjfffBPf+c53lCSrfc2e0tP3WL16NU477TR8+tOfNvb31fWulr76fg8oSQ7EtSyrOe+XXnoJBw8eTB175513Un8RuXjuueewd+9erF27tmzbSZMmIZvN4tVXX/X+aPfVeUsaGxvR1NSEV199FUD/vt5dXV2YO3cu9u3bh//8z/8suw5fJdfbR319PYIgSP0FrH83bRoaGpztM5kMzjjjjJJtqvk36+3zlqxduxYLFy7E448/XnZ1H845/v7v/159b46X4zlvnWnTpuHnP/+52u7P11sIgQcffBDNzc3I5XIl2/b29e4Jffr9rqoHcwBSbeHOypUr1b6Ojg5n4c7atWtVm7fffrvXC0mef/55tW/r1q0VF5IsWLAgVWXpY9euXQKAePbZZ3t8vpLjPW/Ju+++K/L5vHj44YeFEP33end2dopPf/rT4oILLhCHDh2q6L2O93pfeOGF4stf/rKx77zzzitZuHPeeecZ+26++eZUYcNVV11ltJk9e3avF5JUc95CCPHYY4+Jurq6ssUbkjAMxZQpU8QXvvCF4zlVg56ct811110nLrvsMrXdX6+3EEnh0a5du8q+Ry2utw4qLNzpq+/3SSvJN954Q+zcuVMsW7ZMfOhDHxI7d+4UO3fuFEePHlVtxo4dK5588km1vWLFClEoFMSTTz4pdu3aJT7zmc84h4CcddZZ4plnnhE7duwQl19+ea8PSfj4xz8utmzZIrZs2SImTJiQGpJgn7cQQrS1tYnBgweLf/u3f0u95n/913+JZcuWiW3btol9+/aJ9evXi3HjxomJEyeesPM+evSouOOOO0RLS4vYt2+f2LRpk5g+fbr48Ic/3K+vd1dXl7j66qvFWWedJf785z8bJfEdHR1CiNpcb1nav2rVKrFnzx6xePFiMWTIEFWFeNddd4nm5mbVXpbI//M//7PYs2ePWLVqVapE/o9//KMIgkCsWLFCvPzyy2LFihU1G5JQ6Xk/9thjIpPJiB/96Efe4TNLly4VGzZsEK+99prYuXOn+MIXviAymYzxx05fn/f9998v1q1bJ/7617+K3bt3i7vuuksAEE888YRq0x+vt+Szn/2smDp1qvM1++J6Hz16VP1GAxD33Xef2Llzp6oYP5Hf75NWkgsWLBAAUrdNmzapNgDEQw89pLbDMBR33323aGhoEPl8XlxyySWpv6yOHTsmbrnlFjF8+HAxaNAgMWfOHLF///5eO+/33ntPzJ8/XwwdOlQMHTpUzJ8/P1VWbp+3EEL89Kc/FYMGDXKOxdu/f7+45JJLxPDhw0UulxMf/ehHxa233poak9iX5/23v/1NzJw5U5x55pkim82Ks88+WyxYsCB1Lfvb9d63b5/ze6V/t2p1vX/0ox+JpqYmkcvlxKRJk4yodMGCBWLGjBlG+82bN4uJEyeKXC4nzjnnHOcfUI8//rgYO3asyGazYty4ccaPem9RzXnPmDHDeW0XLFig2ixevFicffbZIpfLiTPPPFPMnDlTtLS0nNDzXrlypfjoRz8q6urqxOmnny7+4R/+Qaxfvz71mv3tegsRZWwGDRokfvaznzlfry+ut4xkff/uJ/L7TetJEgRBEIQHGidJEARBEB5IkgRBEAThgSRJEARBEB5IkgRBEAThgSRJEARBEB5IkgRBEAThgSRJEARBEB5IkgRBEAThgSRJEARBEB5IkgRBEAThgSRJEARBEB7+HyARxpTmyhdiAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9edglRXX+W1X33vnYZmSRGUAWMSibGhZli4CagFs0iQm4BJcgStSIYhJ/CCpqEkzURBFBTTC4IkmISgiLoyJqHI0LkLjEaIJBcUYFgWGbufdWnd8ftZ2qru7b99vmm/n6PM99bt/u6u5ze3v7fc+pU4KICJ111llnnXXWWcXklnags84666yzzpaqdSDZWWedddZZZzXWgWRnnXXWWWed1VgHkp111llnnXVWYx1IdtZZZ5111lmNdSDZWWedddZZZzXWgWRnnXXWWWed1VgHkp111llnnXVWYx1IdtZZZ5111lmNdSA5Rzv//PMhhEjm7bfffnjGM56xKPt/4IEHcP755+MLX/hCZdlll10GIQR+9KMfLYovS8l+9KMfQQiByy67bN62ud9++0EIUfmceeaZ87aPhbbNmzfj7W9/Ow499FDssMMOWL16NZ761KfiK1/5ytTb+tnPfoZdd90VQgj80z/9U7Ls85//PP7gD/4ABx54IHbYYQfstddeeNaznoVvfvOble1ceOGFOProo7HbbrthxYoV2GefffCc5zwH3/nOd5J2/nqu+7ztbW+rbPvTn/40TjjhBKxcuRI77LADDjnkEHzgAx9I2px77rk47LDDsMsuu2BmZgb7778/XvrSl+L//u//Gv//Zz/72bDvO+64o7L8yiuvxHHHHYdddtkFD3nIQ/D4xz8eH/nIRyrtprmu/v3f/x0nn3wydtppJ+y444544hOfiH/7t3+rtCMi/O3f/i2OOOIIrFy5ErvuuitOOOEE/Ou//mul7fr16/GiF70Iu+++O2ZmZvCYxzwGl156ae3/bnNMTzzxxOJ/espTnpK088/Pus8nPvGJWj8Wy3pb2oGt3V7ykpdUTvxi2gMPPIA3v/nNAOyFye3pT3861q1bhz322GMLeLZt2nHHHYd3vOMdybzVq1dvIW+mtzPOOAMf+9jHcM455+BJT3oSfvnLX+Jtb3sbTjjhBPzbv/0bHv/4x7fe1ite8QrMzMwUl11yySW48847cdZZZ+Hggw/GL37xC7zzne/E0Ucfjeuvvx5PetKTQts777wTT33qU/HYxz4WO++8M/73f/8Xb3vb23DUUUfhm9/8Jh71qEcBiNdzbm984xuxdu1a/PZv/3Yy/21vexvOPfdcnHnmmTjnnHPQ7/fxX//1XxgOh0m7u+++G8997nNx0EEHYaeddsJ3v/td/Nmf/RmuuuoqfOc738Guu+5a2ed9992HM844A3vuuSd++tOfVpZ/8IMfxOmnn45nP/vZOO+88yCEwIc+9CG84AUvwB133IHXvOY1Sfs219XXv/51HH/88QFsiQh/9Vd/hSc/+cm44YYbcMwxx4S2b3rTm/DWt74VZ555Jt72trdh06ZNeM973oNnPOMZuPLKK/E7v/M7AIB77rkHv/Zrv4bhcIi/+qu/wh577IHLL78cL3nJS3DPPffg7LPPntUxBYD9998fH/vYx5J5D3nIQ5Lfdc/PM844A//zP/+zRZ+twaizebd9992Xnv70p89q3eFwSKPRqHX7X/ziFwSA3vSmN81qf9uq3XrrrQSA/v7v/37etjmX87oUbNOmTaSUot///d9P5v/0pz8lAPSqV72q9bb+6Z/+iXbccUf60Ic+RADoH//xH5PlP/vZzyrr3HvvvbR69Wp68pOfPHH73/3udwkAveENb2hsd99999GOO+5Iv/Zrv5bM/8Y3vkFSSvrLv/zLFv+matdccw0BoEsvvbS4/BWveAUddthhdN555xEA+sUvfpEsP+6442jfffclrXWYZ4yhAw88kB7zmMckbdteVyeffDKtXr2a7r///jBv48aNtNtuu9Gxxx6btN1rr70qx+TBBx+kVatW0TOf+cww74ILLiAA9I1vfCNpe9JJJ9EOO+xAd911V5g3zTE94YQT6JBDDpnYrmS33norCSEq1+mWsk5uLdinPvUpCCHwuc99rrLskksugRAC//Ef/wGgLLd6++QnP4nHPOYxQcK58MILk+Vf+MIXIITARz7yEbz2ta/FXnvthRUrVuCHP/whfvGLX+DlL385Dj74YOy4447Yfffd8aQnPQlf+tKXwvo/+tGP8NCHPhQA8OY3vzlIFC960YsAlOXWE088EYceeii+/vWv4wlPeAK233577L///njb294GY0zi33e+8x2cdNJJ2H777fHQhz4Ur3jFK/Cv//qvEEIU5V1u/rj8x3/8B37v934Pq1atwi677IKzzz4b4/EY3//+9/GUpzwFO+20E/bbbz/81V/9VWUbt912G37/938fu+++O1asWIGDDjoI73znOyt+/vSnP8Upp5yCnXbaCatWrcKpp56KDRs2FP36xje+gWc+85lBWjvssMPwD//wD43/ZSHt5ptvhhCicm14+9rXvgYhBN797nfPeV9SSkgpsWrVqmT+ypUrIaWsZYW5/fKXv8QrXvEK/Pmf/zn22WefYpvdd9+9Mm/HHXfEwQcfjB//+McT9+Gv616vWey64oorcN999+ElL3lJMv+iiy7CihUr8Ed/9EcT9zXt/r/0pS/hAx/4AP7u7/4OSqni+v1+HzvuuCOkjI9YIQRWrlzZ+jjn9m//9m848cQTsf3224d5O+20E44//nh85Stfwfr165P95+d5ZmYmfPg2V69ejSOOOCJp+4xnPAP3338/rrvuujBvrse0rX3wgx8EEVXO6RazLY3SS9FGoxHtvvvu9PznP7+y7PGPfzwdfvjh4feb3vQmyg/jvvvuS3vttRfts88+9MEPfpCuueYaev7zn08A6O1vf3tod8MNNxAA2muvveh3f/d36aqrrqKrr76a7rzzTvqv//ov+sM//EP6xCc+QV/4whfo6quvptNPP52klHTDDTcQkWUG1113HQGg008/ndatW0fr1q2jH/7wh0RE9Pd///cEgG699dawzxNOOIF23XVXOuCAA+h973sfrV27ll7+8pcTAPrQhz4U2v30pz+lXXfdlfbZZx+67LLL6JprrqHTTjuN9ttvPwIQfKgzf1we9ahH0Vvf+lZau3Yt/emf/ikBoFe+8pV04IEH0oUXXkhr166lF7/4xQSArrzyyrD+z3/+c9prr73ooQ99KL3vfe+j6667jl75ylcSAPrDP/zD0O6BBx6ggw46iFatWkXvec976Prrr6dXvepVtM8++1SY5Oc//3kaDAb0hCc8ga644gq67rrr6EUvelFrxrnvvvvSTjvtRDvuuCP1ej066KCD6B3veAeNx+OJ69bZi170Iur1enTnnXfWtnn0ox9N+++/fzJPa02j0WjiJ/ftrLPOoh133JE++clP0j333EO33norPfe5z6Wdd96ZfvCDH7Ty+fnPfz4dffTRpLUO13DOJEt2991306pVq+i3f/u3i8vH4zFt2rSJvve979GznvUs2n333em2225r3Oaxxx5LK1euTNgVEdH+++9Phx9+OH3kIx+hRz7ykSSlpL322ote97rX0ebNm4vbGo1G9MADD9C3vvUtOu644+iRj3wk3XvvvUmbBx54gA444AD6kz/5EyKK13nOJK+88kqSUtKf/dmf0c9//nP6xS9+QW9/+9tJKUX/8A//kLRte10NBgN6wQteUPH7uc99LgGg66+/Psz7m7/5G1JK0d/93d/RL3/5S/rpT39Kr3nNa2hmZoa+/OUvh3YnnXQS7bPPPpVtvv/97ycAdM4558zqmJ5wwgk0MzNDO++8MymlaP/996fXv/719MADDxSPvTetNe299970K7/yK43tFtM6kKyxs88+m7bbbju6++67wzwvAb3nPe8J8+pAUghBN998czL/N37jN5Ib2j9gjj/++In+jMdjGo1G9OQnPzl5yDTJrXUgCYC+9rWvJW0PPvhgOvnkk8PvP/mTPyEhBH3nO99J2p188slTgeQ73/nOZP6v/uqvEgD653/+5zBvNBrRQx/6UPqd3/mdMO///b//V/TzD//wD0kIQd///veJiOiSSy4hAPTpT386aXfGGWdUwO/AAw+kww47rCJnP+MZz6A99tgjkcZK9vKXv5w++MEP0o033kif+tSnwovPbGWh8XhMK1eupCc84QmN7V7/+tcTAPr6178e5r3whS8kABM/J5xwQrItYwy98Y1vJCllaLPPPvvQTTfd1Mrnq6++mvr9Pv3nf/4nEdFUIPn85z+fer1eRdrztmLFiuDTIx/5SPrud7/buL3vfe97BIBe9rKXFbe100470c4770wXXXQRff7zn6dzzz2XlFL0vOc9r9J+/fr1yXE76qij6Pbbb6+0e+1rX0v7779/eNjXgSQR0ac+9SlatWpV2OZ2221HH/3oRyvt2l5Xv/qrv0qPfOQjk+t0NBrR/vvvTwDo4x//eNL+fe97X3JMd9llF1q7dm3S5tWvfjVJKen//u//kvmnnXYaAaCXvvSlszqm5557Ll188cX0+c9/nv71X/+VXvnKV1Kv16Pjjz++8T679tprCQBdcMEFtW0W2zqQrLFvf/vbBIDe//73h3l/8id/QitWrEje+utA8tBDD61s04PWl770JSKKD5h3v/vdRR8uueQSOuyww5ILHQAdeOCBoc1sQHLNmjWVts95znOS7T7+8Y+nRz/60ZV2l1122VQg6cHM23Of+1wSQtCDDz6YzD/mmGPoiCOOSPZ/8MEHV7b7ta99jQDQJZdcQkREp5xyCu20006Vdv7YepD8wQ9+QADoHe94R4VtXXzxxQRg4kO5ZJ7dfutb35p6XX+N/dEf/VGYd88999Df/M3f0I9//OMw7x//8R8JAL33ve8N82699Vb6+te/PvHzX//1X8k+3/rWt9L2229Pb3nLW+iGG26gT3/60/Qbv/EbtNtuu038D3fffTfttddedN5554V5bUHSx+74C2Zu3/zmN2ndunX00Y9+lI444ghavXo1ffvb365t/8d//MeVlwdv/X6fANDll1+ezH/1q19NACqseTQa0de//nX68pe/TH/7t39LBxxwAD3ykY+kn/70p6HN1772NVJKJUBTB5LXXnst7bjjjvTiF7+Yrr32Wlq7di390R/9EfV6PfrgBz9Y+5+8la6rSy+9NCgpP/nJT+i2226j008/nZRSBIA+8YlPhLYf/OAHacWKFfTa176WPvvZz9I111xDz3nOc2j77ben6667LrT77ne/SytWrKBf+7Vfo29/+9t0xx130EUXXUSDwYAA0JlnnjnrY5rbO97xjsoLcm6/+7u/S71ej9avXz/xGC2WdSDZYI973OPo6KOPJiL71r/HHnvQKaeckrSpA8lf//Vfr2zPvyV96lOfIqL4gMnlFyKid77zneEivfrqq+mrX/0qff3rX6enPOUptO+++4Z2swHJUkD9hS98YbLdRzziEY3/oS1I5g+PF77whbTDDjtU2ud+PeIRjygmePz4xz8mAPRnf/ZnRET05Cc/uSjNeJbhQfLLX/7yRNb1xS9+sfE/leyrX/0qAaCLL7546nW/9KUvEQA699xzK37zB9lnPvOZ5D8TzU5u/e53v0tCiETyJ7LJYr/yK79CJ554YqO/r3jFK2i//fajDRs20F133UV33XUX/cu//EuQ6u+66y4yxlTWO//88wkA/fmf/3nrY7Nx40bafffdkyST3Ofdd9+dHvvYxxaXr1mzhgDQL3/5y2T+9ddfTwDoiiuuaNz/j3/8Y+r1ekky0yGHHEK/93u/F/77XXfdRa973esIAP3P//wPbdy4kYgsW99jjz3oaU97WmW7L3jBC2iHHXag++67r3H/ddfV2972Ntpxxx3DNXvMMccEH/zL9y9/+Uvabrvt6BWveEVluyeccALtt99+ybxrrrmG9t5777DNvffem97znvcQAHrrW98a2s31mG7YsIEA0J/+6Z8Wl//iF7+gwWBAz3rWsxq3s9jWdQFpsBe/+MV4+ctfju9973v43//9X6xfvx4vfvGLW61bShzx8/KU8lLiz0c/+lGceOKJuOSSS5L59957b1v352S77rorfvazn1Xm1yXELMT+eSKCN59uv9tuu4V2//7v/15pl/vp259zzjkh/T0339VgGiMiAEgSNNqaT6y46667wjzvN//vv/zlL5P2APAHf/AH+NCHPjRxHyeccEJIsrrllltARHjc4x6XtOn3+3jsYx+LG2+8sXFb3/72t/GjH/0Ia9asqSx74QtfGP4LT/N/85vfjPPPPx/nn38+Xv/610/019tOO+2EAw88EP/93/9dXH711Vfj5z//Od7whjcUlz/mMY8pXqttz9fDHvYw7Lnnnsn+v/Od7+A73/kO/vEf/7HS/hGPeAQe+9jH4uabb8bPfvYzrF+/Hi972csq7R73uMfhwx/+MH70ox/hkEMOqd1/nZ+ve93r8OpXvxo/+MEPsNNOO2HffffFy172Muywww4h+eb73/8+Hnzwwcp5BoAjjzwSN954I+677z7suOOOAICnPvWp+L//+z/88Ic/xHg8xiMf+ciQzHb88ceHded6TL3VtfvIRz6C4XC4dBJ2nHUg2WDPfe5zcfbZZ+Oyyy7D//7v/2KvvfbCSSed1Grd73znO7jlllvw2Mc+Nsz7+Mc/jp122gmHH374xPWFEFixYkUy7z/+4z+wbt067L333mGeb/Pggw+28qutnXDCCXjHO96B7373uzj44IPD/MXq3PvkJz8ZF1xwAb71rW8lx+vDH/4whBB44hOfCAB44hOfiH/4h3/AVVddhWc+85mh3cc//vFke4961KNwwAEH4JZbbsFf/MVfzJufH/7whwEARx999NTrHnDAAdhuu+2Sjvxf/epXMTMzgy9/+cshS/nLX/4yAOCwww4L7c4//3y88pWvnLiPnXbaKUzvueeeYR8nnHBCmL9582Z861vfwsMe9rDGbb3rXe/C3Xffncy7+eab8ZrXvAbnn38+TjjhhPDgBYC3vvWtOP/883HeeefhTW9600Rfud1xxx34z//8Txx33HHF5ZdeeilmZmbw/Oc/v7j82c9+Nj7zmc/g2muvxfOe97ww/5prroGUsggg3H74wx/iJz/5SXJN3XDDDZV2l112GT70oQ/hU5/6FPbaay8AwM4774yZmRl89atfrbRft24dpJQT+y43XVcrVqzAoYceCsBmgF9xxRU444wzsN122wFIz7N/eQEsmH31q1/FzjvvjB122CHZphACBxxwAABgOBzi3e9+N371V381Acm5HlP/Uld3r1x66aXYc8898dSnPrVxO4tuW5LGbg323Oc+l3bffXcaDAb0+te/vrK8TXbrtddeG4LxvI9RUzznjW98Iwkh6I1vfCN97nOfo4svvpjWrFlDj3jEIxJZ1O/vUY96FF1//fX09a9/Pcirc5Fbb7/99iS79dprr6XTTjuN9t13XwJAN954Y+Nxm6vc6rNb16xZQx/4wAdC1qoQgl7+8peHdvfffz898pGPpFWrVtFFF11E119/PZ111lm12a0rVqygk046iT7+8Y/TjTfeSJ/85CfpL/7iL+h3f/d3G//Pxz72MXr2s59NH/zgB+lzn/scXXnllfSc5zyHANCLXvSiSnsUkmZKduaZZxIAeu1rX0v//M//TLvvvju94Q1voJmZGbrssstCfOgxj3nMxMSiSaa1psc97nE0MzNDb3zjG+mzn/0sXXnllXTiiScSAPrIRz4S2v7oRz8ipRT9wR/8QeM2665hH396ylOeErKu+cfb3XffTY973OPob/7mb+jqq6+mz33uc3TJJZfQgQceSNtvv30x3nj77bfXJuB4Gw6HdPjhh9OqVavo3e9+N61du5Ze97rXkVKKXvnKV4Z2t9xyCz3pSU+iiy++mK677jr6zGc+Q+985zvpYQ97GD30oQ+lH/3oR43/v+46P/vsswkAnXbaaXT11VfTtddeSy972csIsJno3qa5rv7zP/+Tzj//fLr66qtp7dq19I53vIN22203OvLIIytZuL/zO79DUko666yz6Prrr6errrqKnv3sZ1ckVCIb//ynf/onuuGGG+jSSy+lxz72sbTrrrtW4sFtj+kXv/hFOvnkk+l973sffeYzn6GrrrqK/vAP/5CUUvSkJz2peB17ebn0jN3S1oHkBPPxIAD03//935XldSD59Kc/nf7pn/6JDjnkEBoMBrTffvvRX//1XyftmkBy8+bN9Md//Me011570czMDB1++OH0qU99qgJmRESf/exnkwSfF77whUQ0N5Aksoklv/7rv04zMzO0yy670Omnnx46j99yyy0NR23uIElE9H//93/0vOc9j3bddVfq9/v0qEc9it7+9rdXbrKf/OQn9OxnP5t23HFH2mmnnejZz342feUrX6mAJJF9KJ5yyim0++67U7/fpzVr1tCTnvQket/73tf4f9atW0dPfvKTac2aNdTv92n77benxz3ucXTxxRdX/Ln33nsJAD3nOc9p3CaR7VJwxhln0EMe8hBatWoVnXXWWURkY08PfehDafvtt6enPe1plezD2drdd99N5557Lh100EG0/fbb0+67704nnngiXXPNNUk7X4zBX0t1VncN+yzquo+3TZs20Ute8hI66KCDQheIhz3sYfT7v//7lcxqb3/+539OAOjzn/98o2933nknvexlL6PVq1dTv9+nRz7ykZXrZ8OGDfT7v//79IhHPIK23357GgwGtP/++9OZZ545sfsJUf11rrWmv/3bv6UjjzySHvKQh9DKlSvpsMMOo4suuoiGw2FoN8119f3vf5+OP/542mWXXWgwGNCv/Mqv0HnnnVeMbz744IP09re/nR7zmMfQTjvtRLvssgsdffTR9NGPfrQSN37Ws55Fe+yxR7gfXvSiF9W+HLQ5pj/4wQ/oaU97Gu211160YsUKmpmZoUc/+tH053/+57Rp06bids844wwSQtD//M//NB/wLWCCyAnKnXXWwl760pfi8ssvx5133onBYLCl3VmSds011+AZz3gGbrnlFjz60Y/e0u501llnc7AuJtlZrb3lLW/Bnnvuif333x/33Xcfrr76avzd3/0dzjvvvA4gG+yGG27Ac57znA4gO+tsG7COSXZWaxdccAEuu+wy/OQnP8F4PMYBBxyAl7zkJTjrrLNqS/F11llnnW1L1oFkZ5111llnndXYghY4/+IXv4jf/M3fxJ577gkhBD71qU9NXOfGG2/EEUccEYqCv+9976u0ufLKK3HwwQdjxYoVOPjgg/HJT35yAbzvrLPOOutsuduCguT999+Pxz72sbjoootatb/11lvxtKc9DU94whNw00034fWvfz1e9apX4corrwxt1q1bh1NPPRWnnXYabrnlFpx22mk45ZRT8LWvfW2h/kZnnXXWWWfL1BZNbhVC4JOf/CR+67d+q7bN6173Olx11VX43ve+F+adeeaZuOWWW8Jgq6eeeio2btyIa6+9NrR5ylOegp133hmXX375gvnfWWedddbZ8rMlld26bt26SkWbk08+GZdeeilGoxH6/T7WrVtXGdX75JNPxrve9a7a7W7evBmbN28Ov40x+OUvf4ldd921S0DprLPOOtsKjYhw7733Ys8995xVWci2tqRAcsOGDVi9enUyb/Xq1RiPx7jjjjuwxx571LZpqil6wQUX4M1vfvOC+NxZZ5111tmWsx//+McTSyrOxZYUSALVYt9eDebzS22aGOE555yDs88+O/y+5557sM8++4QiwQAgYEuB+Gmw37OxfHtU2C5vM+l351Pn0zQ+NeojZKZfVjNf1LU3hX9balu73dLRms63ictm046bmMBeSsuTeXaa/LPLLxMSkAIkJCB7YX53jadt7r33XhxwwAFJfeKFsCUFkmvWrKkwwp///Ofo9Xph5Iy6Njm75LZixYpKsXDAFn9euXLlPHhuLb+ImtqhZdu5WudTO9vWfKoFybZAlc0rgqHJ5uVtKtugxuXT/i761MbP4jqquU2d1QFlLv+xdsTBMP8W0oKmn1a9IlDOytWW628t13hYtsAhsyUFkscccwz+5V/+JZn3mc98BkceeST6/X5os3bt2iQu+ZnPfAbHHnvsovhY90AiNJ9sfjHM98XX+dT51MrmAkJNgMimG4GwxbSoa5P70HafTfOa5k9jkxhjApDCnnM/T3pgjEApHIMkYezxUAbkgFIIOfG6AJbxNb4AtqAged999+GHP/xh+H3rrbfi5ptvxi677IJ99tkH55xzDm6//fYwLMyZZ56Jiy66CGeffTbOOOMMrFu3DpdeemmStXrWWWfh+OOPx1/+5V/iWc96Fj796U/js5/9bBhOaKGs6U3GywJ1J7Lt21LnU+fTgvnUBD51IFUDSrUAVWpTmFcEwkkAOC3ANq1T12a2loNkLUDKCJB+vrHM0QIjA0wyESwBCGMCqywBZXeNL5wtKEh+4xvfCOP+AQhxwRe+8IW47LLLsH79etx2221h+cMf/nBcc801eM1rXoP3vve92HPPPXHhhRfi2c9+dmhz7LHH4hOf+ATOO+88vOENb8AjHvEIXHHFFTjqqKPm3f+2bzKLKWN0PnU+zcmnNgBTAqy2wFVsn80z6e8i0FLeph0A59sjrdn/YtMAKPs9WxMyk2rZb6HsdMIgGWskzxyFTAFT9SJYUg8kVbwuHFACS+B6atjXUvFprrYsy9Jt3LgRq1atwoYNG7Bq5crWJ2Cat5vZBLV5sLrzqfNpLj4lUZoJACNy8Cq0mwYYW4NiYf3KukUmatcPAOjALgE9/l/Y/AowNsUredscCLll8ccAmuFbxvlunlAqiT0GBhmkVrdM9YLUCmnBEqoHUgO7Dt8vltc1vnHjRqxZswb33HPPvOaW5LakYpJbwqZ5Q+AnsCR3UKHtNPuYjf7e+dT51H6HLQByEjjOAhinBsUJYGiMjtvPAbIAjk1ssg4kSyyzwhi9cZCUygKJqgIl+W1IBZIyTHvA9IySuNRKBsLHJJEBlexBODkW6K7xhbJlD5K5tdHJSyd+rtLCbPX5zqfOp9narACyCRwnASNfpwYUOSASHFiVADGflwGpXx7Bs4Zl8ja55fJsDUgm4OkA07e1QOiTdBSgHJuU0n2ngIlezx4fD5ayBxAB0iXwkIHAIGF0HiiX2zUuJiyfL+tAMrOmE5NLDdO+gc1lv51PnU/T+FRdqQbcmgCykeW1AMecMU4ARjK6AoAJQ+SAyOZXgLAOIBmjpJxBzjY+6ZgjAAgPhoxFRvYoK7/JsUj0+gEwhemnYEmWReZSp6AUGHOgBOb3elqK1/hisc1lDZJt30S4Pp6fdN6mblmb7ft1/X46nzqf5uJTsKbszbYAWSePNoFjzhopbTsRGPnvJlAsgWTYtkFjvHKOiTwpg3RgyeOPbj44eMoqk4TWcZnRASxFf2CZIzkGSUx+hbs2yED0IlACy/AaX2Bb1iBZd9LaWukNaTZvN00XSudT59NsfardT0PyzVQAma9TYo4FcCQOXA7IaoGRs8ISKNYB4qSYJU/m0RlY6oYXCwBCZRVwVAqWlfgjAHBJVcoUMB0wote30+6bjIboDYBeFVACQGIAGg8hpAEpkxQeWM7X+HzasgbJ3OpOVrgZEN+M/Py5vplNulA6nzqfZuNTecc8qaUma7QJILlEW8MeRb5+W3CsY4wcGBlTJL6+96kGJANr1R5wjVsUj8EkYKwzD5gAIJUMkqtQDignxSCljCDpvz2zdP/Dskr2IpJLrdlv3pdyW77GZwOus7EOJJ21OXGl5fmJm2Y7k9p1PnU+zadP1RUjMDQVBagFyAwQE/bIQNSD30RwzIDRbloHxkiFdWObNGZJ2lTAkM+jGoBsC5YcHP20dtMcKD1wJqDJYpAkJYQxVbDs9S1Ysv8segOgzxgUEdCL1wz8OVEGpAZFoFx21/g8WAeSzGbzhoNsnbr1ZytXdD51Ps3ZpwQMTe2yyjRnhkAVIOvkVR53nAU4NgIjUNxODoo5IJJOwdFMAEv7t6qAKfI+kRlYSgaQQskEOCNojiAHfcYkTRUsHSj6Y5HEBXsuTglAjBEzX5ExLgaU4T9V/pHzvWbZVnONL6Ate5DM5YC5bKPJppErOp86n+bTp4plD/8Ki+QA6OctJECOh5PBsQEY60CRAyIV2aTrd9kCHEvGAVMqCaGUBcUMKKUDSKEkjAfM0Riq37MgG8DRuHikiWy612fnLcqvGGRxSdT8LgBlyba5a3webdmDZJsDPumE5svavgHxDLBptfbOp86nJp8mWolRUg6epgqQ2ToTAXI8as8eR8NZgyMHRmNSkLTLdZRdMxaZf6d/MTsmNUzSKJn8FlIG4DQMJDlgkjYQSkK57wCOXnINx8r9fy+/wp5r0XdyNqpxSQ+UvlIPB8pt5RrvEneWkLV9c+FvWIk8wubXbXfat6POp86nJp+qOy2wo7p5ucxaWD4vABmWR/boWWUJHM1o3AoYS6CYS66TkncmsUkOlh4YJQPIwBrZPDXoJ4DpwZGDpRxEkCSjrQTrGSTYOXbxV+HOScIkQ5xyAIyHoB4ANdjmrvHFYpQdSDqbVnsvtS+dwElvb03b63zqfJqtT20tScDJrU5mnQNA0nhUYZI0GiWgmAClY456NK4FRzMcNwIjZ55ACpIlFjkbubUUfwSQJO6Y0Riy3wsMM2eSpA2UMZD9XsogWXeVMD/4qiFXbAdgGIFmPLRA6Ucd0eM4gLNfL/veGq/xjkkusi3Um1Lb9qXlnU/tlnc+tbNadghEwJvKifoYZCuAzOVVBqw0GibgZjxINoBjHTAW45WVzNd4RI1uf3Slso9q4b7zbiBGpUk7pE1gmErrAJaq3wt+SfdbIjvPWheBxwBVoNTj2FYICOP7bvZmdb0uxWu8Y5KLaHMJIs/mjb7NOp1PnU/z6VOwSSyJs8RJLDLZbrVrRqUoQB1AjkcpUNawRzMcJ7KqGY1agWN1Pjn3KCb3MGDMmaRv74EwOfbSM0YPljIBzoRJKgmpTZhH2rJG/3/loJf8D8sqa9gk9wE1QGkdjDImq8wzLWucTZstdo3Ps3UgibldELNZt7RO3q7zqfNpLj412rSMsW4bnEV6K3TX4MwySKxJ3LEZIM1wXGSPOmOXRUmWAaMHQtLGAqRJWWRc3v6ICmW3wYHRJu2koKkGCkJHJin7vQj+DjyVMaB+L/hIxqAHgKcKkdFVhokaoBQyxCSFkFGGRQTKrfka7+TWJWRzeYNpu+5iyG3Trtv5tDD7WAyfJm9oFkBZxyKBDBi5zGpSIGRZmxWJNQNILrFyANTDUQKeRUk2A0cOjCmT9NMpYLaJS6YxSRETd5SBVMICpiaQEjCawrwgrfZ7ME5a9ftUjFUCwBiwAKoN5AwDQ5SBkqSC6A8AMXYgOABMnOYy7CRGmZzflu1m234263Zy6xa0NgHnprZw89pKBLORNzqfOp+a9tfGGpN2uNUAI49FxqYFWZADqM9izRmmi0E2ASSXVz1AViTZkAFbBkcPjFx2jfHJKpPM+1B6s4DoumMoAYwsm4zxSCe1csCUEmqgQHpkwZJJrCFhp9E2BaAkqex5ZqOQpCdH2HZCAjpO8wxSErJVH8qt+RqfD+tAsmD5yWo6aXVtp9HQ21wcnU+dT9P61NoaslsrfSPr1inFIhFBM5dZfbvYnsmkTC7NAbIMnpxl6lbgaJlmE5NsPtpm5ABSRplVwxcVEJBGgDRBKAHy85Tdr+orl/1qpWMOjv6/BflVm+QhLdSw4ku4NtjII0IqWxjdD+QMxDJ1vFxdi2ID28Q1PgfrQJJZ25OcGz/p/rv0VlW6CErtO586n+bq09SWJ+U0yY0ZQBaHoeLTjEWG9pxFsso3HCCNyaTTInhyRhnZox7pieCYskkqZrpav6pHVLIknsgkZZLkEwDTsUjhYpOkCbLvsloHyu3TVADT2xjxQc2nAyiqjFV6NosZ+MQdcKmVMUpebADYuq7xWV3ns7BlD5JNJ2E2D5xS+6aLqDSv86nzaT59mlcrZLXGRTVS64TvxuIAPlZZkFhzgAws0rFHPTSN4JgDYy631kmtAAJr9GaZZJRWpZEZk6TALtVAwWiCGrhqPWy6zjg4GiVtMo+PibJxLQUAqAiW0k9zaZUNpQU9dm17VprNbFle45kta5DM6Xp+YqY56W3fgvI2nU+dTwvp05awotQKxGQY9p2zSLs+B0wdu3MUJNkSQOqhCWBoRroWHHNgjIUIUrCsMzMyoVuI0PbbS6sJYCoJ2ZcBLAGE9TyrtDZu3J92oOwBU2JTtZGUduxKwI0ywhJ5PKt0iTzWERavbFm6jttyuMaXNUi2fUuqW17Xto38ULpA/Pz8Qux86nya1qepjDGI+B/moZtIwXLgtNMW8AAEFunnmwwYk8QdFm+cBJB6qCvgmANjziDNhLgkACuzurikVNIC7AgQMsYiSZHLYlX2t2OOnlUmx0ePQiyyEo9k2bTaTSs1CqzROZHEJsO0EBEEfSIPEOOTWbGBbe4an4Mta5AEJr+Z5MupYdl8+dD5NP0+pm2/rfvU5iFCQkBAopi4IyXQIDdObbwvpTcntQZ/dAqWfLDkdD7r9uFikNMCpB56sI5g6UHRE0hdl7SUmSOHUEZD6hQwhY5gCSDIsAACq+RGWcECzSRdk8i7rJC63aEDOclikyrGJ6WK8UmewGNcnJLHKycMr7VUrvHFsmUNkoJ9t3mTmZQoMVs5oLSNzqfOp7n41NzAPWwndf8QEgQDQem8qfpYlhKAsooxlaGquPTKWCZnlbYdy2JlzLAOIDmI1oGjB8ZpgNLjmhJVwORgCQCkKEq0hQo+ZOI8IW29V2869MOUMMOxrRc7st8YjyCkstWLWCJPbXwSGTAaHZY1jRqy1Vzj82jLGiTbnORS+7p5+cUzrR9tL7zOp86nSdutfYj4cQunsRwY+W8/rFPj/hqWOyt13k9G6GASpF/GZVajy1JqG4D04MiBkYcjm4BSCQFNBCUssCqBOE0pWAJIWKWCCow2bG8gYSRBaIIepTHKwB6VSn4XE3mkAsZDG5+UyhZtkAoYrIAw4yowAlaSZYk8HiiX6jW+WLasQTK3pmB16WSW3ojmcvKa9t351Pk0VyMhm4ucN1kRKN1wTVKBjInfSqWZrm39K8i7HBjDPFY1x7aJ8UReuDxJ1skAcjzSFeaYA6Wf74174YVP3y5hk8KCZzjLhsLaZMiBo/1dAsrULFB6VimUhB6OIGRkkXo4tl1MxiMrtY6HUXZ18yAj2/T9Jy1ACguaQNp/0vWvTI57wbuldo0vhHUgyazuZNW9PeVvRCWbrZzQ+dT5tBA+1VopeUcijUv6h6gDSxKMr3rGyJijBU0HAEpFBjuJfRas1B0jxiYdQDIW6bNYY2JPyiA5KNYBpd9jiUl675U7BoY8cFLCKMPHscoeFDR0BShJEzSqx0QqAVImAKQYWtD08Uk/PmWt7OrAEUoFAJVKgczYyq6OTYb4pJB2TEoPnBNK121V1/gsbVmDZFtdey4nbZq3r2n21fnU+TTV9kqxRB9zrEveqWvDYpoJa+TgJyMocrD0bLO6GxnGVKwzHo/MjYOoYZIsgMgya2KQucyag2NTTxAvtdo/IRKwrPIpAYxSoOTgqAbKAqIWEFpAKBNYpmeSYbgtbSCUzQQWjkma0RhKWSCElBBaRyapdQTQ0TCVXUmCtAVNmBinhHAFJlp0Dclti1zjC2TNPVi3cQtvzNk3B8+SXICsTdPvEhCXttf51Pm0ED7VWqHjeKt1+HoixsCE62ogki4IMiuVlu1TqjDO4jRW18mfg6/v6xhYpv9tUvbojQOknfbt+O/yZ+i2ab8JBsDI/eYfv81xqAYUY6U+dpowYda9xRdQ0ENeSEHHEVJczVozHLkSgYaN32kBEkaDxkNXWH5sAdDY73waZgyhx4Cb56+rreoanydb1kwSSGUB/t6XLy+1L83nv/lJnyRLdD51Pi2UTxUWmSXvhK4gpf25Ot48yzV0Sidj1/Vskkmufp6QCiR1yjClrmWUdWYZlBu82EjoUpcSoBKrBKrMksus/NsDpG3TjkmyPbtvdnaEcJP2aGo2LRnQCy0gaoDf9qv0HwNSJsYiR2MIpcJvzzQ9GJbYpPAM32grtXr2KKSNJwvGLl2ZQiIDPi7lkrzGF9CWPUhyqzuZc91ebqU3rUkXROdT59M0PtVugyfv1HUFEalgGARIziLdg9NO6yi18m//QJYKQhpQHpeUGkIpCG1svM3I+K2l6z7hZNhpM3Lz/63LgNcWICd3BSlxLUqAcmiAgbRnyw5DaUJxAdIEA2OLEGgKsqseurqvjk0KJUEyrUhEbgDnIMMOR5Du2NN4ZLNhPZtkciy0PU+CjItRisAi7V8S9nw52bWkPizFa3y+rQNJZ/wk8Mt9vraX3TrJ/MI7aOdT59OcfCo+RJKuGw1sMgdNKSObdLHJwCYBkDDuQew7tGdZrp5lSgUh7YN5rqA3H1ZiiKVEnqb2gO/ykZ4F2zUE4EAZ27llhiA1wUgDoe3R99V5hBYQ0icgmQqbDEOD8dikB05lgsxKxrLJUFC+jk2SCdNCGJe8oxO2OKn/JLD4991iWAeSzqhmehrjJ7m0vUkXVNPvzqfOp2l9sgurSTmNbLKQ9l+RXXOm6ZJ74MY4JGkAGeVVIY0DT8YmveQqDYTSrhKNk1O1q3NqGMvUKctEIRPUJv9QaVHFJjHDtJ9keV2f2eqXcxD0QFldzy6z61jZ1bNJKGFBj7FJuOQe33cyAUfJCsBrYxmmq0Qk3TifwrgXEqMhjIwxSgegCZv08Uj2qciu9kADWELX+ALbsk7cmY3lQWqg3QnMNfv5PNmdT51PE30KHcbdA07I2PncjznoH+o+QSfMd9NZ+2SZsHFI3ydP9AYhNhk6tAc26X+r0MZntyYfKd1wUzJ0nA9/RwnWRhSTf0oVbaaxcnIPVX6XpNk85mlQlnENL2xQoKohmYf1/wSQFHn3BeDDyCm+b6kxCSiGhB6tQeG3zkCRAMOGTONDp/k2Ux7HpXjfTWMdSLY0f6JLJ6tW3mLrLsQJ7nzqfJpupylQApgeKFXPtsmW+3Ut4HFgdKNQBIBUoc9e0sZluXqwlAE0Y1Zsslx5cIxHyo/daNulRzAHzJzl1Vm7pJ36JJ+8LyZvw+f5Ppx1ma6AA0Yda9X6eXb9wm9eTN4BIyWAaX8LIgeQVSYZgDNb3uboLcX7bja2KCB58cUX4+EPfzhmZmZwxBFH4Etf+lJt2xe96EUQQlQ+hxxySGhz2WWXFdts2lQYOmYO1vZNpu0JLb1RdT51Pi24T6XuHg746hhlCQjrgJJkD77mJwkB0R9E8Ov1QxKPrfbSh+gNIPr22/7uu3UmsEmZzuc1UEusMQJpBNnZksu2xc55+xwwPZvk29NU7dLCqwR5S4b1ylkll1wTAI2MMQ5TlgJkGK6sJZtM5hVsKd53c7UFB8krrrgCr371q3HuuefipptuwhOe8AQ89alPxW233VZs/+53vxvr168Pnx//+MfYZZdd8Hu/93tJu5UrVybt1q9fj5mZman9azoB+Umsa1s62SV5YZJkILLvzqfOp7n4lK6QSaVsXgBKKZPlcwHKFCClZZO9fqPsKgd9qH6vyCZlv1dlmwmQCrYsBU2hRMIsPYuM5ePqLZabm/yonhZIcytJrj7GGNtEVsm/83lhnQQcdfhNWifLhPd9ApsMsivK1+8WvcYXyBYcJP/6r/8ap59+Ol7ykpfgoIMOwrve9S7svffeuOSSS4rtV61ahTVr1oTPN77xDdx111148YtfnLQTQiTt1qxZMyv/pjkBeRA58adhu21PdCmA3fnU+TRbn6obLRQC4EAJRKB0oDcRKN0QTDlQotcLQFmJT/YGFkD77juTXdWgF0CRs0k5iACagqMIwJhLrmGIKldY3I/9yBmlEuUHYVtJdtr2JWl24gDPbLnJAJIDpR+LM5nv+6hmg2H7ZeE3k1Rr2eSUsuuiX+MLYAsKksPhEN/85jdx0kknJfNPOukkfOUrX2m1jUsvvRS//uu/jn333TeZf99992HffffFwx72MDzjGc/ATTfdVLuNzZs3Y+PGjcmnzibp5ED5xLdhGU3WZr+dT51PbX2qXzljkhn4lVhlAErZY+AZk3lIqgCWJaAMiTxOVs3jk3Wyqxz0oPo9C44uNunn+TZqoKAGqpZNesnV/l0RJFclhPvEQ+N/V+fH5UvVSsONuQX2dz7YtWeWob2ulVDdipFtmgw0G/zaUvfdfNqCguQdd9wBrTVWr16dzF+9ejU2bNgwcf3169fj2muvxUte8pJk/oEHHojLLrsMV111FS6//HLMzMzguOOOww9+8IPidi644AKsWrUqfPbee+/afTaduDzY3PZNZxomMptlnU/tli03n/inYoXEmyJYeglVqgpYkvv4dnVAGZgkA0rR61fjk5nsGiRWKSH7PahBP7BINeglsUk1UJB9Vcsm1UAmbJKP1uFBUaIKlFyaBWL73PJ5TYA6W7At9S0tzps0WDYHRybBuhnlT7ZM8PlNPmPL3HfzaYvST1JkFwURVeaV7LLLLsNDHvIQ/NZv/VYy/+ijj8bRRx8dfh933HE4/PDD8Z73vAcXXnhhZTvnnHMOzj777PB748aN2HvvvVu/ifC3IX/SS9p73bI22+cXU9uAdudT51NbnxpjRXlij+tbSQCgXJ9K/5z0BQWYkexBCAPoMUjC9q0DbC1Q2bNDMwF2CKfeoOKbAKwU2OuHeRIWAKgfH1GkDZT7TdpA+mljQIpADgxLpqEtgIaxHY0bINkXKLdHzWQHyi/jY0ba+eWnR85Aq+BZnm7TXaVS+3aCxYGrNQT6tsCDX5iDq9EQpMqxQl6ajggk3PpKBqDkfWeBxbnGF8sWFCR32203KKUqrPHnP/95hV3mRkT44Ac/iNNOOw2DwaCxrZQSj3vc42qZ5IoVK7BixYrqPrLf054s3n42MSnuR92+O586nxbCJ8rm2Yk2YOk7nQsIkoFZkJfdyNgR7/0QS36+A8og/7H9ktE2Psn/g4kgCDhQHNjfxk3brE4Z2hltO9xLRSAlQZogFFn2aKQDUgkyBAkJZTQAL61ajzQRwMaCjKN8lF+D/LBY3EpyrRLpq0XOUAFMXeh9rkZaW0afzIyFAwS5coDeL1+aLgCmiUejlEFdsPm+xhfDFvSsDAYDHHHEEVi7dm0yf+3atTj22GMb173xxhvxwx/+EKeffvrE/RARbr75Zuyxxx5z8rfuZPG3Id5utidKZN+T9t351Pm0kD4R+4TfXIJlcUhSPUD1ogQrVVzu5Vef0MPmB+nVSa2J9DqYSRJ5BItPWpm1F2ORSkIN+pBOjg1JPlJCDWSQXdVAFmVXoQSUk2WrsqutrVqVXSPo5XJrNaaZt02Pdb4cSMEx+OsTkaRM4qp5+xK79IUXpmWejcYlV/+dy7QoM0j/G1ica3y+bcHl1rPPPhunnXYajjzySBxzzDH4wAc+gNtuuw1nnnkmACuF3n777fjwhz+crHfppZfiqKOOwqGHHlrZ5pvf/GYcffTROOCAA7Bx40ZceOGFuPnmm/He97531n62eeuve8DwdafZzqR2nU+dT1vSJwIsYwgbqGeWnkX65UK4dkKkNUDJ2OQdtg/LME3y20qE1iQQRs1QvMsD6y/oWSYwdn0FbZyyZHpoa6OqgQKGGgPYYa38ERpIYX87QPPl5Ko1WlMrJQH5aVlZ7v6by7blmbh1Vi2ewMG1HhD9MGaztgqDdJIrENlkDZNc7Gt8IWzBQfLUU0/FnXfeibe85S1Yv349Dj30UFxzzTUhW3X9+vWVPpP33HMPrrzySrz73e8ubvPuu+/GS1/6UmzYsAGrVq3CYYcdhi9+8Yt4/OMfPydfZ6ONA4UHyxTbnrTPzqfOpy3tE38IChHjUDZOZeKD0kuwblmQX/1+hYwj3peAUsa4lo0aRihShWQU5bo05MBZB4656aFuBMpQEEDkj/S8qLnzJ2OYgSkiZas54/RZuH7aZ+HmXVu8+cxe2z4t2SdlnJ9bziyFanGcyKAoOOajgrC6rrN6GSvYfIUx5mqCaI49YLdC27hxI1atWmVBduXKOR/w+T5p87G9zqfF28Z8b29r8YmzR5Cxg/T6aV8T1IxtAo9x8wwb7NeMgfEYNNxkh28aj0Cjofs9AkZDmOEmO388gtm0CXo0ht40hBmOMd40hBmN7PdwDD0aw7jleqjtZ6QxfjBO66GGGZkw4LEeapAhOz8bPJnXXwXS4bS88eLm3HgMsgqQTtb1YNh3MnHI0o2/rXSs0Jvpue4uEqrfg5oZBKlZDnrozayw8nO/B7Wdlal7M4Mob3NJ202HAg+u36roD4JM7iVyEsLJ5yxjmXcLUr1UmmfAuRAvkNw2btyINWvW4J577sHKlSvnuLV6W/ajgLQ5UZNOaOnh0eYNiOv1fFnnU+fT1uKT8A9GP3yWA0Q7reFjmUKMQVICOpVfbULPTOg7GUyqwCjJzZczABBLT/YAjNl38LXSZ7Dmnw3S5VITMNKORSL7EECAFAJ86yWFVGbLSt1KPEDyvpycRQKoxCNjvDIu991ggJRVJvIrO65TS6+5jJozyDyxp7ROwebrGl8MW/Yg2cbavvH4E8ofUvyk5ttpIzl0PnU+bRU+JdV4xlaCFTKOes+ndZznQTbZVgaW3NoCZdWqS32pOj00UFDQ0OhBQWoDZaL86rt+eLD0HpWwN0/KyftaKiHQZ8k5KunbKSvJRbzfp0/kyevbyhwow7SKdXl9YXl+XGUsRg/eD7bJCsvr4pJt2OJiXuOztQ4knU0byym1L51A/z2bWFHnU+fT1uaTleAGLl45hpAWFCGEBUYztm3MGNAiACT6gFQqsEYAgU3mjGG2QClU7EQvlYAe8hJu9l8Yacd39HHKOIJHBEug3PXDWx1QKoGEQfpkHc8QZV8mrDLKq8rJr3VF31VW69YBpeQjssh05JUGo0w2ndpytulsIa7xxbAOJJ0t1Jt32/al5Z1P7ZZ3PrVbvpg+CQ+WDhSFHkfmaOI0jYcABo6JOjAFwgMdfhqITEgqJ2mWgVLzLhJKAhgmfgoloIfpyMxkKwtAaJHIr55VcnDMATIfhNlOI5mXA2TohuLAMJTMG7BatQlzzFikTFlkadSUpPwfgHwMT75cKFUBx2TYNP49S1uMa3whrANJtJMF6pbPJgA9jQzR+dT5tDX65LcnpKuK47NiPaskskAJVOXXQRY7C+CYPqQlAKEiAOYAmdqwZn4ETSEF9EhXWKUHS2MISohEZrXFBjg4VoEyZ48xFhkBUg1UAMIwHVimSJhjqGebsUiZlOpLpVR/DCNQZsuTA8LAUjYApC9d2GCzUTTabmexrANJzO0BM5t1S+vk7TqfOp+2BZ+CdJaAZQ/Q47heSX713/whzh/I7MHuH2LFbg9KBglWyKoYK5UMrDIMbpyxSg6WQOyz6UGzsk0X68y7dfh5sdCBTADSy6q+1qz/bTNeY/GEPBbJQTOyyAiEQWr1I66oKjj6eGTCJn2pOQ6QPLM1rDtlubwJy6e5xhfDOpBsYXN5g2m77kJLYbNZt/NpYfaxHH0iuIcaB0sgxiq9/KodkDmQrMQpvSWxS1mMRwqlKrHKHhxoKQkhNcxIu7YiTBttElYZJNi+W+azTWuyZtM+jWkfSKliko6PQXqJNQfIJplVSAnZ70f2yJezIcg8ixSBOaYssiK1BmAUscC9Ox+NcmvDsmlZ4EJd47O1DiQL1iaBoaktEB8KbU7kbOSyzqfOp63VJw+W1INlleNhzIBlRQtISEAPY5wSqEqDzHoADOtkzwHSL4tAGqes3Gr3IKSM4KgEzMhAhHEbKYlZetAsWQ6McZqPTKJC3LEEkL5PpHT9IZNpNyKKlLkMG8HRs0hfArAUi+RZraX+jjmzTMYXzaXWWdRv9b+B6a+nxbIOJAuWn6ymk1bXdpq3pzYXR+dT59O24lNRgjVjYCxScNQOXHicchiTdXI2CQASm4pJPNot77lpK1eOXZardpuzGa+eVfoRQ4w2IE0gRQlgAlaSzS0tHcf7PaZdPXyxAC7BlgAyyWZltWtT0OwFmVWEwa5t8QA+qHUlFtnrpcDogVDKyvzieS0ty36XpNP5up4WwzqQZNb2oZEbP+n5gwCFZaV9tnmL73zqfNqWfOJgGR62nlWCs8ksTgnYh/jmCJhCytDJX6kRgAiMiS/FuKWVX/VQB1bpY5WkTIxNOhkWQIhbKlTZZFqAPJaU4+CYjIMZwJLHJyNA8so6fMBpoWRa5J2N08ll1pDRmg14HWRWdvw5UyTGIEssMo9VJt/ZOc5tIa/x+bZlD5JNJ2FaLR017ZseSqV5nU+dT8vNJxLSgmXfAiWEAHQWE9NDCNg4pdmcgZ3rFmLctIIFTiACo5AyyrFSQnt2NhxDKhNYpZDSMkkVwZE0gYyB0RSzXx04yn6ZZRUlVxmTdjx79HJrzHaVgSFKB4QeIH0cMoAoy2aFlNWBrNmIKn7g61CCjsuskjFKWZVeawGykOhTd87rbD6up4W0ZQ2SOV3PT8w0D5G2b0F5m86nzqfOJ/ftH7h9CaGHFjh1Gpv0YClXuALoUoGUAjlWKfm0VInkaqRMZFihLGhqKWFG4wBgemgB02gKsqsFSwEhCejDFlKHhKlJ3uGgCKAis8ZhsESQVz0gBobIgLAEkLFNP4JjFocs1WgNcUjJarIK6eq2ymReqN9aAlD7B5Pv2YLjXK6nhbZlDZJt37rrlte1bXoLKu07l8Dyh0jnU+fTcvKJXCECz248UAoxjNsUEkIIYLg5bkRKYOj799n4pQRCX0rPKC1AqhCb9KzSjMYhVukLoHuw9AM8Ryap7BBdbMxin+zDzQOjna6CY84evbzK2aQa9MPvRoAsxCEDQOZxSJkWLfdxyKkBsgCOpnBRyPyEZzab62mxbFmDJDD5zSRfTg3L5suHzqfp9zFt+86ndu23mE++S0jfZVGO2cOaxykH7oHpY29h2sUrpQxdRHjmq3bgaJRMWKXt4hElWA+WpIXLZvWASfB1f0psMk/e8cDo98/BUTAG6QeWjoBZTtLJY5A+WQfZoNYhUSfMqwFI1WsPkDzb1f3HEjByMzQZKKexxWSUyxokBftu8ybTFNupW97Wj3wbnU+dT8vdJwIsUCpXtm5sY5Lkux+4B7YQrB5pTUKPTVTZBCElxnJoQTHEJRmrHI5t0o6UIGMSsLRdQCyL9CONGE0Jm+TGQdH/jt1A0uSbXGq1v628KhNWWQDIuhikB8YgvxYAMpdYm4bCsge0Fhzrrgv/nC0B5Vyup8WyZQ2SbR4apfZ18/Ibf1o/2j7IOp86n5aLTx4ooQb2QT7aZOXXbHtCyEpCj5C2EIEE4nBbLE7pQSpnlaQNhANJD5ZSG5A2IOPB0bPJaJ5R5izSzqvWWOVVc3jsUSiVMEsurwolpwLIJEmHjRMZYpAeBPPYZF0Cj/+vVD2HdTIrP1c5UM71eloMW9YgmVtTokHpZJbejudy8pr23fnU+bRcffLrWfnVjT3JpUCfCQtArrCASFKBhkxyDdMqxCl90k7OKknrClgaBpLkYpGeTXrg5IDpE3YABGD080vg6KXVEItk7DGCZTn+GOXUCQMpc/bIWSIHTQ+GKus/6c6BoXhOclCkbEBqIURo48GSA+V8XE+LYR1IMqs7WXVvvvkbdslmKyd0PnU+dT5Vv738WpSAGWgmclyp5quUUGqUdgXhTFIp6OEIwv3mTNIDJpzM6kEyt7wLSoVNZuCYxyQTGbYfM1MTgGTxx0obDpCOQfr4owXFPHGnV8seS+DIQTE/ApIt92DJgZKf18pxa1i2JWxZg2RbXXsuJ22aN+dp9tX51Pm0HH3iQInsYY7xMKzXlNAjpIQZ2kxPKVWVVQ7HAcAsc9QWGD2L9CCJeoAM/4EBZXU4K1UExzTDNSbm1MmrcFmsXIJFL8YeA0Dy+GNBXs3ZIwfHHBj5v6bCyTTs4SrDOiIAZVMiz7TX00LbsgZJLi/xb78MqJ6cNrJUUzvUtOt86nzqfGrvU4hT+uSd3Ic8oQdIwDLEKR1w5KxSagMjJYwDRjEaW7CUJvSTBBDAkk/zqj5cZo3FBVjBgCyBhwNmpQBAC3m10sUjl1cnsUfZq4BjDoweFE0JHf2hZhTEA6YkCkBZstleTwttyxokgXiwSzcsX15qX5rPf/vtNJ3U0vzOp86nzqdmnwKY+kLpQCxjJyXEWIZthu162ZUP4sz6D3JW6buCSG0Cs/QsEkBgmF5yNUx+tbvgQKkqjLIRHJWqZKaKPpdaM3nVdwHJ5VWenJNnrxbYIwlZAcc6YJwEUhxAJQSEsCDLgbIuiQeY/npaSFv2IMmt7uEw1+3lNukNvfOp86nzaYr9y154kvH9cPC10qsDLj6Is6tQU2GVw5Gr3zoOYEnuYzIW6RN5cgss0sckC/HIIjjK+D2JPfLuHVTq3sGTc3L2yCVXAJpScOTA6I9p0uWjcML48JoeAA1RYJZGTAbKkpWup8WyDiSd5TcXMLcHSd3NisL8/HfnU+dT59N0RpOA0ncRAZLknRCzLLBKGF3MbpW6CpIly0Gy1PWjERyVyoBwQnJOBo6VeGQpoxUWqHQGjjkwckBskllBgHRI6Y+KBUOCFMJuW6SZwOF4lc5b3GwyfzHZZAeSzqhmehrjJ7m0vUkPg6bfnU+dT51PzT7VAWWpi4j9odinwCqNDmAptS5mtzYl7jRnt7LROSaBox/BoxB7bMUec2mVxR3rwJEDIwdMoL66jmeEmsiefweYBilQAn6fKZuczfW0GNaB5JRWOllt3m7qHi6dT51PnU/z6BOPUQLVmq8AQhcRD44qA00VQTJ8Gw1hTAKYwHQgWQFGNt0Ijn65B0mlart2VIoFZNKqjztOAkf+G0BFWjXsiHop1Vfn85JrAEYIlg3rfjPZNSt3G48fFu56msY6kGxpTW8yXhaoO5FNyzqfOp86n+bPJwIQhtzyNV+zdskgzl5yBQCtE1aZgyQcSAbABOzvOuOyLlABRs9cJ4JjJq1SLqNm0mqpmk4AR5OCoyZqBEYPhhWQJMYc2RkQ7kB7YJTCMUvHKrU7Sx4olTsveWxyoa6n2VgHkg3W9k2m7Qmd7zhQ51PnU+dT1QiYWHRAuG8fpxQAMB45FulAcjwKICm0tqyRAyYwK5D0wJgUH/fgWQeOQkRptSFzNZFW3XztQFAbC47a1LNGD4xRanXHtBCHzOu6CyGcxAoYQQABRDazlbNK4tOYzCb9Od1StuxBsunmz+c33ZSTttvmIcOD1Z1PnU+dT7P3qREo9dj9kIAYxzilVKDxkDG+yCJpPIIwGkA/AibQCiRDiToOjCEG6kDSL2PgyOOOjUUBWNYqjzs2gWMFKB0wNvWLbDLLIAkSFjyFEAEsJaVxSRgBJe20EAKSyPpfcy63tC17kJzmJFTeSJmVZJ9p99Hm7bnzqfOp86m9TyWg9LVIBSvYDSEieI1HMVapdcIoYYx9anpGiULfD28BJPMuJwwkeWZrBo6RHRaYY13c0SXl6AI4apOyRk1lYPTz7DFMjzhP2knkUbI/SETAJAeWJFwiD0QASkGu+o57YzJkz6Xf5lIAR2/LHiRzaxN3Kd20TSd1mjfszqfOp86n+fUpB8oAjuMhBAZh7EovvxKXWr0Eq6PMSkZD2MEl4854Ak9WK7YCknWZrX60jhpwrO3SwZJyfF9HTVQER22qrJEDI4GKyTql48yXC0Eu/ogAgEmfSPjYZQRHK3OX2WTb62kxrAPJzJpOjHvpmfptuE27SfvtfOp86nyanU8VoPTgCABmDGjPc9w6gxUQXHrNE3d0xiJLGa5ZdZ/GzFYWc+SFx2vLyTUk5Xh26BNytKEguxpQJXGHA6MHPQum8SjX9YuUDNSUFGF9ISwgC7LxR+HBEREoAYJy8Unfd1JQZJNzvZ7m05Y1SLZ9E+HB4/yG5W3qlrXZvl/X76fzqfOp82n+fGoCyrCurwNrxkAPllWOhiAjIYwFSzLSSqKTYpJtMluVmgyOhWo5eVKOBz6dgaMFuyo4apMCoz9u2hAMETQf3aOhfruUtp0Swg4+LQSUQzgbgyQYylikO9aBRZKAQEziKcUmS7ZYLBJY5iBZd8O1tdLb7Wzebppu8s6nzqfOp/nxqQ1QCiDIr2TGwGCFlQKD3Jpntlo2SQ4sywXVq8Do5dGJ4FgTd+RJOVZipRCHLIFjKDmXgSMHRv+3LNC2OKLGsslQwFw6UHRgaWOS1h8FUcsifbarECJhkxPP5WQP58WWNUjmVndZ+Pl5bGQ+3qon3eSdT51PnU/z7JMDJiGN21aMS5IeQxgdmKUwYxAZQAgIcrFJIABkAEeWwJMDZQBGoAKMCTjyeqoT4o48KScAJlEtOHoZtgSMHBQ1AYZJrboAloqxPSlddw/AZrGKKlj6s8aBUojIIn22KzkQR0Om62xk97laB5LO2tx0peX5iZtmO5PadT51PnU+LYxPwvUlzB++iSxMxoKnGdtpMpYdkrGA6duV9uUf9D5JiI20MQkcJxUDyJNygsRKzeA40qYCjBwUc7CssxEo9Gu0wGh/eMD0YNlXQOj74Y688rIqpczSA6YQIuy7VPh8sYCRm5zcZO528cUX4+EPfzhmZmZwxBFH4Etf+lJt2y984QuWdmef//qv/0raXXnllTj44IOxYsUKHHzwwfjkJz85Zz9nS9+pZrrNtifts/Op3T47n9rts/PJL5BJfC8p86Z6oF4/zlOD8AnxQWWXFz+qb9u59sn6amDXVX2gNwD14ny+jM/XkBgZYGgI4/ABhpowMvYz1ISxtstGBhi5diNNGGqDTWONTWODzWODTdp9jw02jzU26ThvpAmbxgYjbT+bx/Hj59mP3fbIEDZpg5Fh841lqXbaOObKsm4dEyZCAHD+PencLWY8ElgEJnnFFVfg1a9+NS6++GIcd9xxeP/734+nPvWp+O53v4t99tmndr3vf//7WLlyZfj90Ic+NEyvW7cOp556Kt761rfit3/7t/HJT34Sp5xyCr785S/jqKOOmsq/XMqZjc32bbhufudT51Pn0yL4JKQtYce2FbZJxk4bA5CAIBnZpFse/HDTJBjn8NOBQYrAGhNGWTe+YyHumGeshkxWU2WOYyepjjQFhsinPYP0cqpfF0jl1pJJKRybFIAh191DJEwSkGzawJBA39ewhVVUBSGRXf23jVOKqa6nhTRBpXpD82hHHXUUDj/8cFxyySVh3kEHHYTf+q3fwgUXXFBp/4UvfAFPfOITcdddd+EhD3lIcZunnnoqNm7ciGuvvTbMe8pTnoKdd94Zl19++USfNm7ciFWrVmHDhg0JENfZXBILmuZHEWL+9tH51PnU+TSdTyADmDGEHttvo+M8Mm7aOJnVbYmBZHWHFgwSYHTzeSyyDhwJ1WIA/ncaf5wMjiNDAQz5dA6KHhcjaFaPZNLlw1XUASxo+t9KCEgp0Hfz+srGJvtKoC8llIztlERop2Sc1/PzBKBE/bm7d+NGrF6zBvfcc0+r5/hsbUHl1uFwiG9+85s46aSTkvknnXQSvvKVrzSue9hhh2GPPfbAk5/8ZNxwww3JsnXr1lW2efLJJ9duc/Pmzdi4cWPymcba3qiVm8998/n5dqlmWedT51Pn0yL55AErk169/OolWJtAUyOxMqmVpAL1rJzqk26Kcq2XVXtOapU9jAlBLvWS6dgg+R6FT1VW3Tw2eGBkJdQHRjrIqXY6yqrJJ8ixmkmrVPkksqux642MlXlHbnpk+HSUX7n06hN0Igv2cizLvHUgPZ/X02xtQeXWO+64A1prrF69Opm/evVqbNiwobjOHnvsgQ984AM44ogjsHnzZnzkIx/Bk5/8ZHzhC1/A8ccfDwDYsGHDVNu84IIL8OY3v7nR10lvraW30dIJzKf997Tb73zqfOp8WhyfAFjwMmPH+nogM4aQPcsYvcxKBkIwBpmzycAgU6m1Irly5liolMMzVfOknJCcA/vNmePIGGiyCTqpvOrnsYSdjD1y5lgzhjSUr48gBEaGHHskGOkyWcnJrdJJrMJ+9yExClsxsNxM2L/vZFdNbFBm1x1kEgiKCcvnyxYlu1VkKb3kDkLJHvWoR+FRj3pU+H3MMcfgxz/+Md7xjncEkJx2m+eccw7OPvvs8Hvjxo3Ye++90/Xb/ZUFa19a3vnUbnnnU7vlnU/1ywUQpE6BMYAeiAw4JkLINCZZikH6aQaUHByLYzvWFAMoSasRJBESZbyUmoOjl1cNIUmgSbJYTZRWdQKUcdp34xgZ3/3DAppxxQSksfIqB0sAof+kB0ojAGMEjCAQhN2fEZDSZrva+q0ETQKSqvVc687dQtuCguRuu+0GpVSF4f385z+vMMEmO/roo/HRj340/F6zZs1U21yxYgVWrFhRu/02sY+65dPGTdqu0/nU+dT5tHg+EQpAaQCSAE/cCeBXwyL9dAKMQMIc64avyvs7llikZ4Uxe9QCoZc2OTiOTGSNcdoXHvAgSQEQOTCWzIMl//axSEOEPsnALAFpB4sMh8kzyPg9UBIkLCiW2CQR4PtMzuZ8z5ctaExyMBjgiCOOwNq1a5P5a9euxbHHHtt6OzfddBP22GOP8PuYY46pbPMzn/nMVNvkNhdaP5t1S+vk7TqfOp/artv51G7dST6F5aGQeJpgE/o1slJx4cPahJimsl1MqMdikUJiTDYxZ+SA0ccbPZj5j066fJDrnqGT+GDowpHHG3k3Dx27dmwaazw40hiODR4cajw4tNMPDG088oGhLn78Mr/ecGzsJ3T/cEDN4o9JrFKnQK6JnFQcC62Tmw4jlSD212xzPS2ULbjcevbZZ+O0007DkUceiWOOOQYf+MAHcNttt+HMM88EYKXQ22+/HR/+8IcBAO9617uw33774ZBDDsFwOMRHP/pRXHnllbjyyivDNs866ywcf/zx+Mu//Es861nPwqc//Wl89rOfxZe//OUF+Q9zeYNpu+5Cy06zWbfzaWH20fm0MO1ns26xnWd/sgcIYzNcje/m4Vc0SdtkWqZFA3xBAePAMXb2r5aSa2KPubQaJdYYc+RAxKVXzxg1A98mFqmNgZIph1JSYOi+lRQ2C5V9AGmlUQVAA4BBX0qMtGWPUtrRPkZuX8rXdi2wyZDAA9+m5blbAFtwkDz11FNx55134i1veQvWr1+PQw89FNdccw323XdfAMD69etx2223hfbD4RB//Md/jNtvvx3bbbcdDjnkEPzrv/4rnva0p4U2xx57LD7xiU/gvPPOwxve8AY84hGPwBVXXDF1H8k6a5Ms0NQWiPJNmxM5G2mq86nzqfNp/n0KsisDPwo/ZazbKjIRTrKknQI4RpAsj9KR93n0IJkn5qTfjpGxzNGRScFxODZFYLQf+1/q5Va7XDGEsoBou3LoDCxjW+nilVZW7Uvp5OEotSohMdIEKQjCJfFYNhkB0hAlJfDyc7dYtuD9JJeiteknOY0GPpusvdnsr/Op86nzaXF8EkBki76vJBAKB3irFBCoAcc4Akcza+TDXY0r3ShM8u3jjiUWycFxM5vWxhQZJAdIP52DY/6tpMCgp8L0ip5082ToI9mXMnz3lMCMir9X9Oz0TE+h5/pJ9lwfy54E+kqEPpP9QmBwsfpJdrVbmfEbZpobjb+9+u/SG3HTTd3mjbnzqfOp82lxfLKNsmSdvH1NhZ069lgnr8bknaq8ytmj794R+ibyZSZmsHqA5OA4HOsKOHp26a0ucccDYy8DSCUFtKEAlHmbPFFHComRL4YuKHQj0SZlkwYAQUAbQIBsJR8mubY6d/Noyx4km26gad9KUdO+6QFQ9xbb+dT51Pm0ZX0iAIIDZV23Dx/DRDN7nLZrR0lezdnkSFt5dahNBRw5MLaNR5a6fvjpunikX24B0x6LQU9iWARIN20IShC0tP9PSQUCwThwlACEtF1F2py7hbRlDZL54c9vqmlu2LZvsHmbzqfOp86npeuTXVgASD+ftc0B0ifnEGJ/xEnxxyZArGOPPtN0zFikB0j/uxqPTAGyqftHLrHm8UgPjkqm2xj0JLQkSCMCQCqhAkCOhIE0IrBJKRxAysgmfbKToMljTC6ULWuQbPuGW7e8rm3TG2xp37nclF8LnU+dT51PW84nAVQBkq3rwdFP5/JqIrXOE0D6MnRD1+UjAmIETQ+OwyQmWZVcveVAWU3YScHSgmCetFOwHgDYOOXIRFYppbC1ZBmblMKySd8dxB+7/OwsJl4ua5AEJr+t5supYdl8+dD5NP0+pm3f+dSufedT87oleXW+ATLWS41Zrjl7HI41Y5GmFhyTj8vZrBv1Y6ThSswBytTFI2UlHlm0HqAMYLuJkGWLpswmSwBJlHYFma9roI0ta5AU7LvNW2hTHKVueVs/8m10PnU+dT4tDZ84j+H74QwSQAKQxKZnA5ApMJYBcrPv0M+k1ZRVFoCSKIAiGQIxgORg6cHRABBSQPtvElCmGo8EAN0AkkqK0OVjpI1llRmbNEkXEJbAQ7brJT/WHZNcJGtzg5ba183Lb7Jp/Wj70Oh86nzqfFp8n3KA5NO+J10pBknuM18A+UCoeBPBcSJAEkGPXUEEY4EyjLRRYJJGu2MjBaAB4YbAIlej1YMlUO0ekpuSAsOxCUCphAhVdyxg2vqvyvebFIDKJFc/rTomuWWtKahfuhFLb6JzOXlN++586nzqfNpyPtUBdS6z+nmcTYahoMIy347KEmsNQD7oysNxeTUHxwpAOnDkwOhB0WRMsmTCAZ+UAkQCwuRgSRi44UFKIGkBkkm1fReX1G78SCHiANCMTWrjxpKkdAitxeWQ1jqQZFZ3udS9ZU66iYDZS0GdT51PnU9Lz6cm86Np+PIsFhhjwYBYZi128zCUFgWwFXNQZJB1AJmD43BsgqxqxiYBRw+MgfkG6TX9LyFPycUlyYgAmKonA1gidPVw2awmdjNRzh8gZZNSKBiJwCY5QGr/cgGX/ASAYIfN8rVc1SLj5LIGybbHei433DRvztPsq/Op86nzafF9qt0fA0a/fy8T+uLdoaKOZ3is3JwHSp/FaoEyjUE2ASQHyZG2zFGPTQBHP81BMYlH5oXXtB03EgBIAkISJMUnpmeWdrntQ1lnHCC1k5iVQWCTI0Ho+y4z7vhIIViMlyfydCC5qMalHP7tlwHVm6eNBNTUDjXtOp86nzqfti6fvJmsnZcHPYssyazG+FFAKIwIwoe8skBJGSDWA6QfkYOzR6PTbw6MhsmudZIrOeYoSEAa4cDS/mPOLIWLTZaAsscAcjiORQi0QcImbVKPseNSOsm1GpPkZ2XxbFmDJBAv7NLNwZeX2pfm899+O01vqaX5nU+dT51PS9+n4nYbGsXkncgejUte8aN7hOWuH6SvoMOZYh1A+tijzpikHjup1QEjj0lav8pOe/DzMcgULCOzVD0Z9uer8vC6sZFJylDUwEurXm72cuvIWFZpXya8byLpCrLYQLnsQZJb3Y041+3lNultuPOp86nzaWn7JEUc67C0bi61ktuSZ5E+y9XGJYGxjiDBi5TzEnN53DEHyAiKHCwRQLMuq7XUT1JKEXzOE3Y8WFr0iMFMBQnD4pCABUwPlLbQQWSTfWXB1Mg4jJgxFCTXngQMBAxsebr5uj6mtQ4knfEbJpdZ5mN7/P0nn5//7nzqfOp8Wvo++WUSbvjEGuNSK09W8WwqfNw8L7NGQCz3g6wDyCCzjt32Csk7AJjcWvWZXIk5IQVgqJLdip4ExqgAJQCMENnkMGGSImGTvt9kP0vgCQzTSa48Lrklknc6kHRGNdPTGL+5StubdOM1/e586nzqfFp6PjUxSv9QBxCkVjs/xiINIcquxib2cJmVA+LYZN08GEDy+KOXV4Psqk2S2QpYYOTJOnlcUjgpVfrRwiRBSAeQkMDYuJilBHqAEA6ABUE434Bq0o4dqkvGwgZObu5LESTXkOXKwJHYZ7GTdzqQnNJKN1r+Zlq3XulG7nzqfOp82jp9agRItreS1Aq4voEUB18OAGGqI3nkccmhZ4eOIZYAspLdyoBxUrWdAKbSJuhIY4+k8f+OBBQkNBvpg5uQAlpQBpClD4Lc6iVXn+VK7tj5riAcMBczLtmBZEtrkl0IzfGNpmWdT51PnU9br08CgBDCRswKO/NkzS8K9VK5xBiAMrLI0oezyJE2MGMTwNADZDVpx8cjY0ZrKrlWtVZHAiHsQI5ZLNKyStWzAKkgYSRBGAFy9ViFtBKvZuAY5VYBJXXoU5lLzsYw2dXEriD+GPrjWJOQuyDWgWSDtX0LbXszznfMpfOp86nzacv6xNlkW25jgTE+6HmmZwqKOmGVYT6TT7nU6gGwmsCTgqMHRnK15/x38n+lAhkNIRW0sYDpwVJBQo9NAEp2NAAYW49V2P1rkcutETRX9CSLP5ZikrErSB6XXESM7ECy6UbL59e1Lc1rSgaY5EvnU+dT59PW45MU9iGuAYiGjfiHPzcutfrkndLYj1xq5eDogc+MU4lVj01I3Ilyq0mAkYMjn+YA6b8BwEC6JCWTAKWPQ5JwcvLYQDjJVlP1v5QkV57lyovC+2PkXyg4YC6WLXuQnOZY+7al+yCfVzfdZvudT51PnU9bh0/cpCvcDQASArpmi1xm5VJrOs5jjexKaRzSxhyZlMoYZJLZ6gCSfwDAFFgkjIYsAKWQCuj1E6C0sq1lk0KKILvqsYEQIrBJXq7O/7/NY4NBT4biC1F2jV1BCICPS/oKP4tdVGDZg2RubWIcpZu26Qab5m2286nzqfNp6/EJsJmWRlg6KcXcHt85KOas0rPIKK1aBunjk2G+TuVVMhpmbGvikNEwGZP08z1r1H7aAaY3M0YASiMpdAPxcUgpBIyBzXb1LLaGTYb/y+RmwCURKYT1etLGJX0FI8AXFVgc60Ays6ZD799fpn3zbNNu0n47nzqfOp+Wrk9SlKXWOvk17yvp45HjEoiwT5VFpoXLfRZrLrGa8bACjvE7xhXJGJuwgwiaPn/VmwdKjA3QkxBuf0ZYwBZSgWTsEmImyq3x//O4JOBL/MXXDv+y5LNdF8OWNUi2fePjgf/85uBt6pa12T4XENqs3/nU+dT5tHR8ErBAImBlVyGototIpZi4M5099WulVgaMJpdfkyzWMkDm4Eg6Y5RaQyiVzMuBkoyCgXSxSBGyWqNvSObVseNxeBkAoNJkJj6qiv/YZfEcLIYta5Csu+HaWuntdjYnrukm73zqfOp8Wvo+AbADE4vpvfFsEkjjkR5MQjvDum5QLFjOM1s9QNp5ERRNEo80ARhLma21fiICZQRa4bqARDZpyHUJYX7lkqv9r7GwAI9L+r/Mk3fscUoTeDomuQWs7pj7+XlsZD7eYCfd5J1PnU+dT0vfp6QriGDy6wTL2WNdGy+1AhEsiQEmH+WDs8g6gGzq/tFkHihj4k/KJqVyPoh0zEpTAch0GoiA6JN3vBFSQFzEcCSADiSDtbnpSsvzm26a7Uxq1/nU+dT5tPX4pASgHUB6sxJsO0hvjNsF6ZGBJZvmlrPISQA5G6AUYV2Vsknvk4rg6IEz/59+GkiLLPj/4DNcvZHrN7nY1oEks9m8nSJbp2792co6nU+dT51PW49PXo60Mcq4lUmP9jaMkpeS80XJS1Ir7w9pWPzRA+QkkPTdPuqs0n/SEJNhC5JrIiUXAJKBvt8eWEjUZrgC/CjWxXUXwpY9SOayyVy20WTTyDqdT51PnU9bp09+O9KltQqW3qqc/irb6LCogoo3ntUKIJFaPYsEUOkTmWyjppgAB8g6sCSjA5u0YCmdxJpKrlCprz4uCaCSvJMApu/+wWK1W9Lk5CbbtrU5BZMu6Xwbde3z+YLN48s6nzqfOp+2Pp9sHFIEEPRYKCf9kcxKwBjlxzifs7TcfCzSTqcsMmeTOVhOkmGrIByLFwCojFdZ+n9x2rBp918bToTtK7m4wLnsmWQba3tK+JsoTxIAm1+33WlPe+dT51Pn09LzySfs+OQdD5ARMOceU8sHSa6TWu2yMgDyZXnVnbzaTm6WOWpAqsqyKAdTEpfkyTtAubsLUAXIUNeVRDbOyOLZsmeS3iZduqW30dxKNx+/eafdf+dT51Pn09blk4B9qHJwLAGkmiNYmglsLWGEup4tlsrSmYlM0oR2MYOWUoBEfdxwUkzSTi9u3LHJOibpbKHectu2Ly3vfGq3fCn5lDwwS0O+8+UifUdtE2ObjU9t11no9svBJy+5ClC4FjhoKiESgFRS2MroW8BMgVXGZJxYvzU3odLEHW48oYgn81CWiVsHlACWRBySWweSmFsCwDQPtmnW6XzaOnwSQHwyhB22FIZ4OweYIvsdmk7h02zbLLdzt1A+WZnVFhZwBd4gIKAy3U4ygFTTBi4LxpN2gq9Jybn6JB4+nQPlXIxcJR1vk7J4lxpAAh1IApjbjTObdUvr5O06n5amT0DGEG1aYf3yCUYeDP06/DcDSs46t4bjtNx98jKrcMySL5VSJACZxylnA5icpU3q99hmeYklhuVaJ/Vd7UfBvxLkGa65NbHIpWgdSLawuZzC+ZLP5tp+Nut2PllL2CIDxQQMTQackywwR9dWRnCkGqAMqwrPTyb73ta21XM33/to0z6HOJ/AI+BOs+bLMum1MN3GxDww0WmtLnlntrYUWSSwSIk7F198MR7+8IdjZmYGRxxxBL70pS/Vtv3nf/5n/MZv/AYe+tCHYuXKlTjmmGNw/fXXJ20uu+wyq/tnn02bNs2Lv22SBZraipplbbfR+bRlfQofMhBmbIc9MGMIPYQwYwhtP+Af1g5kIIyufALAkknagozbhgGMsdsnY0GYt+e/yVT9XeTj1HZfy80nKWzskWe3erMxSbhPcyLPtEAppYjjPm4DZmu3bnnwXHCQvOKKK/DqV78a5557Lm666SY84QlPwFOf+lTcdtttxfZf/OIX8Ru/8Ru45ppr8M1vfhNPfOIT8Zu/+Zu46aabknYrV67E+vXrk8/MzMy8+ExIb4ZJb+x5Wz9vmrfZSbdD59PC+hTW4QBmxhYUTQaKYZkDQD0qA2IGhBXgJKq2D6DYAJj5h1lboNiWzt1S9Sm8vDDptWSVRB6+rAYo23Yl8bKonVatQLQtyC4kGOfAuCVxcsHl1r/+67/G6aefjpe85CUAgHe96124/vrrcckll+CCCy6otH/Xu96V/P6Lv/gLfPrTn8a//Mu/4LDDDgvzhRBYs2bNvPrKb7Bpzgm/Of13Ep9A/Q1cat/5tHg++XUThhZT9DJ5lVLZNfyxCfJqvrwQhxTk5pMGCZFKrXm4svaPTH7n3ZbO3VL2qWQxoUeExJ4SQJaAUmYf47yai8wqpYJh8cc8FlmXtMOH0fLtORhva7ag/2w4HOKb3/wmTjrppGT+SSedhK985SuttmGMwb333otddtklmX/fffdh3333xcMe9jA84xnPqDBNbps3b8bGjRuTj7fSJTatbMOtdEM13WyleZ1PC+9TkOcY40sY43iYMkQ9SiXVXIKd4pNLs/k3Z5mpROvYZQ7UJeCecCy25nO3NfiUACJE44PWtwVSoJwkt3qAFFJUmCVnjPnYkH75bOa1aSOZX7O1ufYjnU9bUJC84447oLXG6tWrk/mrV6/Ghg0bWm3jne98J+6//36ccsopYd6BBx6Iyy67DFdddRUuv/xyzMzM4LjjjsMPfvCD4jYuuOACrFq1Knz23ntvANULP7+p2sgx+bp8u23iF5Pmdz7Nr08TwZHJqDBjQA8LMckIjMhjk5M+Ls4pzDjGPAtAGVktpUBJESgFY7mTgHLa41SyLX3utjaf8gxX2w1EhL6SPm7pLQKkTOb5dQALPEKICJAMTIQUEFImoBWZnkJJbpVSVRhjPq+03lyk1tlk725JzFyU7FaR/UMiqswr2eWXX47zzz8fn/70p7H77ruH+UcffTSOPvro8Pu4447D4Ycfjve85z248MILK9s555xzcPbZZ4ffGzduxN577137Ntkkr/DldW3byDQlWcjPz49M59P8+QQgMjafMFMHRkAKRIZNw8mvibM1sqpfLEQsUCkkAANIafchJOoyW70US7wwl0FYl/z22HbAMmC3lXO3Nfkk0I6BSA+CrnGPMcleBiYiKzzggVJKAZIEQcJNW0CTUkGbtLtGXFcl80rSal380m9PVoBThEs+ssmUUZYyeMN33hVGVBOctoQtKEjutttuUEpVWOPPf/7zCrvM7YorrsDpp5+Of/zHf8Sv//qvN7aVUuJxj3tcLZNcsWIFVqxYUVw2Kd6QL6eGZbO1pn1M277zqbo83GKOqU0CR8EYWxKP9Nvg3/k0t7yiDv8t7PYoAJoDTLe9IliGruketFEFyobjUGdL+dyVfm8NPsVi5xSyXHk3kFJfyZLUGpikFAmLFK4riZSidoxFDnJkTAJopb6Q+bwiC1UqWeanJQO/AN6c5TL2u7XZgsqtg8EARxxxBNauXZvMX7t2LY499tja9S6//HK86EUvwsc//nE8/elPn7gfIsLNN9+MPfbYYyr/SvJMKyZSM2+2l0BpG51P8+MTl1aFHlpZdTyMkqoeAnrolg0hxkO7fFyIRzrpNYlDNsUks2WlOGSS3colWS7FVtgtA/a8f2aLuOTWcu62BZ+8vM+l17wbSIhHClELkJyBhQQeLruy31xylTIm1ghVlVzz6eB/DUDybcdlMtm/98f7mlv+H5PvJRSL9LbgcuvZZ5+N0047DUceeSSOOeYYfOADH8Btt92GM888E4CVQm+//XZ8+MMfBmAB8gUveAHe/e534+ijjw4sdLvttsOqVasAAG9+85tx9NFH44ADDsDGjRtx4YUX4uabb8Z73/veqXxrI8+U2tfN85LNtG+6Jcmm82nuPqUAGUGJ9z3MWWPOLNsmydQ7Uaia46VQq0XZ/bhpgnHZrJFZVv6jkBBECaMUEpF9Mttaz9224FNb4/VcSwDpLWS26sjMBFl2WSe5Ain4Ff9LgVU2reul3NIy6diubReB0n/aFExYakC54CB56qmn4s4778Rb3vIWrF+/HoceeiiuueYa7LvvvgCA9evXJ30m3//+92M8HuMVr3gFXvGKV4T5L3zhC3HZZZcBAO6++2689KUvxYYNG7Bq1Socdthh+OIXv4jHP/7xc/K17kbz80txh/xGm4sU1LTvzqfpfPLgZxmcCQk5FXDU4zIwcjDMJFfS7StS88xCEiweKWIskkurFiztALZWTq053i26exT9KW0LS+vcbSs+AWkNVwkqdgOx7dIMVyUllDTstwVS7WXXguQqpIA0ABXYZMtXuvh/MpDkLFJmACy5P2F9B5Q1gFcCy/kYRmwhTFDdqJ3bsG3cuBGrVq3Chg0bsHLlygXd12zecBfatnWfRIk9mphZGjJEsy4WeYd9QRQBsTR8kKl59GQduO28NB2fhIhA51mkZ5bht2sjy8uTNq5daCPt++9inOdt/XqarWkChprCZ2Ti9wNDjQdG6WezNrh/qPHgUOOBocZ9m0Zh+kH32TTSGA81xiMNow3GQwOtDfTYwLhvrQlmbKDHbhir8RB+EOZkoGRdPyRW3n3EA6QHSdkb2OleH6onoZSE7Ikw3esr+1tJ9AYKvb7CoK+w3SB+th8o7DjTx3YDhZ1mepjpKWzfl5jpKWzXl9i+rzDTs98rehIDJexH2u9N99+Hvfdcg3vuuWdBn+PLunZr2/eWudxw07ylTrOvzqfqMgFEMGTdOQJ7dKySg2Me9wvAaLRlKEZHMKwZzLbiG0+QcGwA0oOtSgCTeHJD9p8EmPxayyhrpDTHUreWc7ct+pTHIkvGZUhpmmOSvKiA6kmQoSC51rFJIF6PLj0s+ielTehRqqKOcHD02+AsMv6OLNJLrVxmzbus+P/VY/8zz+JNjs8SYJfLGiS5bMK//TKg9OCaLLc0tUNNu86nufkEIAKhLoCjl1ZrAFIQgUbDFBj50EIFoKwzwigWfpbpOH0kDSDZqO8uIYKEAzXOKmWvHihD9xAXm2zIbF3q525b9SnIrAK1Ga75SCA8eaf48ZKrscCjegJkhAVFk8YmVU9CjwHZG8CMh3Y/QFF69YDpp+P8KK16gPQsMk/YEQ7ABQPHkMWLaoGE6guBPxapb1yW3hK2rEESiBd38aGL+hut6Qbk2wPKN2zdep1P0/lUC5CsUEBgj7nkSgYYjwEnRSXAyEAxl1wTMyaRV4Pl8qp07VyShP8djqVS4P0gBQAy4yJQ+mQf25B1FTFAZdBCLN1ztxx8yofJ8pZnuMbiAhw0bFyylwGlByMpLUCW2KSCxV9bwk5WgBKsJF0+4HLwPQNHP88DZB2LtKDptxFZZV22brHvZIFBbqnCd8seJLnVXfRz3V5uk96GO5/a+ZQA5HgY5dUa9hi6YTBw9IBI42EASQBBcvVgmcYia9hkkkKfref7mEll39glB0sdZdhevCUFYPtRAhEoUS0gICBR01WuYkvl3C0nn4T/iKr0mifvKJnKkaVPX0kMvdTq2GQOIXpsIA2AngTGJgBljEnquIYDzNxkBRhTgJQ9Wcsic6m1iSEDaVcY2QiUi08pO5B0xm+YXGaZj+01yTeT5JzOp6pPweoAkjNKBpBBVjUaGI9SaZUBY5RZGatEBpYVGzFZlYGjVHGbrEN2/l8FAIyRAGVS4QdOEuNsMis6IHghgsyWyrlbitfTQvqUm89k5RKrBcg0Ltn0EdImxZAhxyYJMpNd0YO7niJQhv/oGKS/nlVdMfMGBukZY4lFcqlVFNij3aesdnMpAGW+3mLHKTuQdEY109MYv7lK25t04zX97nwqmC8O4AHSdd7nABkyXR0IGscYPXOk0TAFxpw9elBs2e2DVJbNKk0GmClYhhhlb1AEysAa7cYcaDIw5EA5ybea6WlsW7yeFtonb9LpAd6CxOrlU1OKS0bJddCT0IagDQU2KZ28TkQgCaiEUZoEKIUDVGNkqMDjQTJ/+csLC6TyagRD1ZP1LJL95gDfy4BRue0p9tIApIUIxBZgkN46kJzSSjda/mZat958y0rL0adwq3CAdBVxKgDp5dXx2L41j0f14OhZJWDnax0SGdpktYaHynjkwNA9fJzEGtik1BEs+XEaD+1Dq+ekOXIxSjLxmHhp1bPJpFarCgA6DXAW/4v3KZu3LV5Pi+WTZLFJW+jczZcC0BEw+1JgJFIw8eA4NpQySpfhSiQcWBroMULSjjULlMIAJASMJAaWFDNcG2u0Cve7DJC2+4essEil5ESpNdaqRTJ0mPISNO97uYUyXTuQbGlNrMY/7NrGQjqf5uhTDUCK8SgBR2F0Kq2OR1ZWHWVs0jNGD4yzyGrNM1oJCMAopI5gyY/FGJFV9h2TNMoeA60t0+QJOhwUPZsMMiu1jkvW2bK9nhbYJw+QfjQQgCBgAUAZCwhSIEiufSVgSEL3LDBqQ0U2qYyA6eUvQ/ba0DABKIUkkCEXpxSAimAJAGTqL5xq2TskbNEDoRQi9ItUPQmpIsMc9GQtSFbl1pjd6oGy5N1iSq4dSDZY27fQtjfjfMdclptPvEgAH99RuFqsCXt04BjY43hkY46cTRrt2mVZrbkE1QSU/A28prsHSmDpZFjRG9i2o6EFyvHQSq/jIYABfJZHkF09azQmZrLOgTku5+tpS/kUQSBW3gmyq4lZrnkCz6AnMTYUgBIANFEahwydPCTIF9E3FEDTGAuYCsIyS6KkD2PVVw+SETCltMyVA6XslSXXnEXG/8OAk/3ffL9BevWAuQXI5LIHyaaLuvKQrmlbJwuWZJg2vnQ+Fdq1AUg/9uN4HIFxPLLM0cup/puDo2eYdV0/AJAf4qpiIwjW7SLEGYFqBisHy/7A/lcHin6f+TeXXUM2K7lsVmLzvXHwnHBMUZi/XK6nxfQJiA93/rBPEnekgAoAGbNco9yqoA1hhQNID5QDJTFM9uT7CVnpVUHCSOuVERRYJQArt2aXdel9y4Oenw5JOU5i9QApHYv08mtfyQqL5L89YIaXBH8cAjBuuTgkt2UPktO8Xfq2pRskn1c33Wb7nU/ZOpMA0ifsmDEw3Jyyx9EwguB4FMCRd/nIM1xJmxCPNAwcc6AM4DhCSKAQ2kAoxyh5Yo4DS9FzD+TRsAKUgU0a13/SyER2TZJ1yLMGfgDLjLK7nracT5ykpQBppyNAppKrZ5QeDHlskgOlNw6UQvq9GxgDCCenCscijWOYvp0HTcACZz5yB6/DmifvcIBMslwzOXXQkw3dWmI8UmVA6Y9XfvwW05Y9SObWJsZRukHmKsHMNrayLHxiZebqAFLoCIgVgHTzaDRKmaP/ZsBotAlg6IGylkWOIlCSdiCpJKRJAVOomJBDY1hW2RukQGm0/dYOUGHjkzAaUCqyxgwIQ1zSy7AtbNlfT1vSJxFfbWyZOTiATCXXvhQwSkBTlFktMFIFIL15oPSgJ6WAHhtbgUdKmDHBSHI5X4xRiuhxqSdIOXHHJe+w2GNgkj2JgWOR/pMCpmqUWv0+ed/JLUkqO5DMrOkCzyWZad9U57Lf5epTGFeRJ+k0AeRwU5RXx8PIHnO51cUoSRvo0Thhj8SBslZmdf4lUquEMBKkpQVL3g4ITBKw7DEByjEskBqZyK2eTSZdQrzkWpBWZ3uc+bJt+XraEj5x5hjmQUCAIkgwybUvBQx5sJTQMrJHAOG7ZENYNghE8DOGIARBSnIxSYAEBRlWNGwPYLFIBo6cNaqehBAiAGQpm9UnHdVJrXb7nlHGfds28XdD+HTBbFmDZNvj7dv5N8cmiaXN22tp+35dv5/l7pMA4GuvJt066gByuCnEH2m4qcgeefePHBw9MJI2MAUG2SS1+mnpwLEClkZCaAM5sEyyApSumLoFSBXZpNGBTQpSIZN1Gmt77rf162lL+ZTPlxAONCnEJSuSK2eTZOOOdTJrybQgjBDBz8chPViSJFtNEcImSiskkmvic2CR9ncuqfIMVw+QnEEOetKO4OEA0rPICJisuAJnlqJa7XFLscllDZJ1F3dbK71JTnuj+nXq9r0cfeIAKcbDtJsHy2KtAOTmByvyKk/ggdEww1ECjmY4DsDI2WNklTVdP0aIIyU4qZUcOOZgCfRsKsVwVAFK2/XEPQ2MB0bHJtlTgrS2T4lkOC/2u8a6a3xp+5RLrn0lYcgENtknCW1MTNSZAJBAZJpa2sxVMzZJ0o4HSwAgn9RTcwkFqTVkuaYl5wJQZgDZ1N0jxCaZ1JrHI/3Lg4Bl3VuqbiuwzEEyt7qLOo878Jtgrm+wk26oZeuTT9Thmauhb6TNYq0FSDedd/8wozH0cFwEx8godUjWobonh/+frp1U0sYdjYHQMgFLOejBYAzSEmrQqwAlGQmMvRyrK2zSS66TRpcPWa8NgAks4+tpCfgkhbCyp4gSrCEkoGDccik9QGrXb1K0AkglBYZjE761IGgfm3RJO1LBVuhhWa7+8uKMkncNKWW38u4eAyUThpizSPtJWWSS1VqQWuuPY1nCXijrQNJZm5uutDy/OabZzqR2y9EnzyJ9RmtSSUePClmsDBSHm2L8kQGkZ4/GMUgzHMN4oGTAWIpJBv/d7zwGad2VKWAaBYmeHdNjOLaS66AHPRxDDXoWAP16vniAUe6FIGWTvk0iuU6wpJRddmyX2/W0pX1CaVq48rsuLunBou8SdTybNIIis1RWrG2ynhTYPLbXB49fakPQQkAThX6SZAhQESCJ6v+xZ5GVBB7PADNwLGez2vkrPMt0/9dntSZdPxib9GAohLBSdeMRWBjrQJLZbN5Oka1Tt/5sZZ3l5FNdHNJPW7AcRoAcbioDJItPevboAdJLrfZ3BEcek+QM0uSJO0l3j5jR6j+xlxoCq1TowQzHllVqA2DsapSrtG+klpFNol97HJPkndqDXY5fLqfraSn6JAWgyT30XVzSS64yAKRGX1pQTAHSX11l88DI2aQ2ZBllAEuCDhJrzHQF+06OA6NrvL9knpzDJVbPICOjVMk8X1XIb4MDZV08ckvasgfJXDaZyzaabBpZZzn7lPSH1MMQk0wLBcQsVg6QJiTsjGA2baqwx/jbgqNfxrt/AJE11smtZgQIKWPCjpEQLA7pmaVUEhJ9aIyh0LN+2GrTENJ2D+F9IgUHRsdwE8m16IyZRDCW9fW0FHySsGM7+vKtEgIaFFgSEdCX0qobgtCXrhgAEXoVgCwDpZISw7EOAOlZpe9jGUCSfaAQvxuYJMBqqsrYXaMEkJwtcoDkbftSBom174fdEnFsTc+sPYAuprRasmUPkm1uiEk3Y76s7durP+9t4yTbsk91MisfQBkhBjmM8cgcIIebEnk1gONwDDMaVcDRM0u7+3LXD1sAOqtio2TIbE2zWGWQV+0WRpDowygDODZJ0oAUA0Ffxi4MDu0k14xNhuSdKW05Xk9LxafS+kAERwEbp/TsSlPKKhEG4q4HSg+IFiB1hUmOCwAZgBLVLiWckXLLwXFSNw8OkCHDVdiMVuWSlDyLtNOp7CqARGDlVYoW05Y9SLaxtm+W/E1UsG+w+XXbnfbtdVvzCUCUVn3sUadgacZDC5CbN4VuHiWAHG8apgDp2KMHy9ruH1mVHdL8H/kqOi5uYqLkmnf58PKqZZo9CGWZLAY9CG0B0miTsklfOEDLeFe6wusVlpnFJetikNPYtnY9LQWfdE1jIRwAOMmVYAFTujidtRwUq/OkUAkgbmYJO1xqVQ4Qxxkw5iBZ1/+Sg2WJSeb1ZX0MMgfIgZLoK9v308utOYv0UquPR/p/zbFxsWGyA0ln08YoSu1LNx9nStNsfzn5FFhkXRzSjGE2PxiBkWWxtgFIPRyFeWRMyHD1sUkOisY92eqKCIRkHUUWMLVJGSR60BhDGjtNykAPR1CDvgViaeK3Kkmq/Zi4k8mv6UGcnMBT8b1wLpqWb63X01LyyeOOFAIEAvlvEiBBUAIwFNmkIQHjFdYGoJRCYiQIgITqCwx1DpAyAcsSgxy3BEmgCpS9AlhaUIxMMpFdPVMMmaxebk1ZJJda7XFjiUNbSHLtQNLZQr1Rtm1fWr4cfIoAOSzLrC5RJwLjpii5+nkZQI43DYO8GqXWcSK1+t8eGEmbCJANXT+Eb6OEBUUloLWG8jXKMQ59I4U0IWGHtAZJCaNMPZtE30qufme5H0ZjLrfscriepm2/0D75RJ3cOJtUkmCRkaLEqlELlBEgDZQQGBnLKkcmY5AOLCM4mgqDbAOQ3jgo+u88ezUHSCVFAEjLIi0o+m/PHvm3dP0jfTzSHgURjps/KotlHUhibgkAbdadzTrLyqdCNmvo+uETdUIt1lRyJdfFowSQ403DAIjVDNcUHC2zjEyyzqTyQCogNAWwxFBDKBMZpDRpwo40EMoU2WQ8DnxILssiSWuIXn2ma1tbVtfTEvXJgiLgS6VKWDZJBFsXwrVrAkoliAGkcgApYVxBAm0AQ9VkHSu1poAJ1LPINnFJ+52CIx8oOu3qIRJg9DKrZ4/x227bvkSkDHILEckOJIG53TizWbe0Tt5u2fiUyayeRfqKOiEOyfs/jkZhmmexeoAcb9pckVyj1KphNEEPdQKMPv6Yjvph5wnWw5l89w8lIBUlYKkGCgaWHRqMg9xKOkqrOZu0+9GxWIAHyAmFDKa1ZXM9LVGfQmarQJBcDRibDIEHuxUPlGFAjwCQjE0aCgDJwdIzS0METVWp1QMmUAZJXbj2FEtcy5kkgGpcMlTTcRmsAgEgexmjTNlkBEYpImPkMcnFTt7pQLKFTfvGOpt1F1p2ms26i+KTGSOUoGMs0lfUSWKQw02WQTLg1KMxtGePDQCpR2Pooc9o1Qk4etkVAEveif9GspHbSftYpAVMoQTUADCwbFINVGSQTFLN2aQPNxptIOdOFOds28z1NOW6i+GTEAIgWzRAEwU2aTNcBSAJ2riC5xlQSsNkVWHZpBSEkaHAKjWVwVITWaB07DIHTCCC4zgBybKYyVllry7TlYFjrKhTBUgOjD6ZJyTshONmj10KkLM4AXO0DiQL1iYw39QWbl5bSWg2MtA24RMvPUcmSdax2axMZg3FAoYBLA0DQSu3jlJQ9Ek82kAPTWCPFiwjONo+kpFNAhmjZOwRWkMaYYcegoGEhB4aJ8OqAJSk8gSdyCbR78WqPn2AtIHoI7JIrSffmaxQAE1Z9LzufGz119MS84lb6CuJyCaNA0zpkngAyzCj0EiuM790I3rkAGkgpYAxtkAAZ5YRIL08KyqACVSZ5KTYZG2maw04+vJzfWklVQ+QERijzNp30i2XWu2xi8k+W8I6kCxYfqM1XTZ1baeJmbS5sbc1n+xMk7BI3icyxB/ZGJHEWKWXV/WDQ8cYR0xuHQYA1UMdJFYz0tBDUwRHziata05qlTYxB4iyq2WQBGkESJOTWWG7ekBCaLJjSUpTYZMeFI0yttqJZ5UsDllrk+q3cpsAnNva9bQUfcrNlqNj4OhaawAKNsNVGyu9CgHAcPAUDiAjq5RSwRgHliSgXDUdQxYkx5ogBUFJzxxFAqCAjWECiL8nFBUAYmEBAAEYw3QGjpxJxj6RMQ4ZWWUsHsCl1ibmuFiQ2YEks7Y3Q2785vDfpbfP0g1Uar8cfMoLmJeSdRKplcchhyObiMO7eeQSKwNI7cCRWCwyxCWDzErVEnSA7x4JwFXWkSIwSCt+GeghrMw6NFADgLSwH1VN0DHaSq4AEtl1KuMAWBlPSDYyy231elqKPnmTAjAQkEQwDhx9TNIDJTlQhLTdQyxxdNMO2IQUUFJhpA2klDAGCVhagCRoggNPCvVavYLKGSaAZD4QwXKSeVbHY4ix20YEx1iH1UuucbQTLrcmGa0QidQaM4HZ9yKyymUPkk030DRvpd5K7ZtuttK8bd0nAaQskkyUXM04iTmG6SwOGYBx5OKQmcSaA6QHRB+PtGCZMsimzFbf1UMoAWlkjE0OVAKUpO1gtjmbBOpBsdLlREXG6IfjCmCYyKzsQSFk+js73tvy9bRUfSptU8JioYKNQdoEVuEyUgFBwu5PkGWSiJKsBThgoGzNXg6WOUBqSZBuWCxfds4zzBw0AcYkC3KroTKj46AIIIAhkIKjylhjOu3ZaJRZOYusKca4qLasQTI//PlNNc3N0fYNNm+zHH0ShcIBnEXCmFCDlVzfSC6z+rijGbpCATUS63jTOMirXGo1oyi51mW2Vvx2STo259AySQDQQx2A0mgBoYVLzols0m9b9iMgTmSRjCH6zFehbA4kCRnBkk8XbDlcT0vVJykswHiGZCBARAEoOYsUJFyZuvhbSlcMneDA0rbxYOfBUhsKcUYOmH0PmFQFUCBuB7DzgcgsuXEJVmUvYhwU/XIPjH6+Z4+cNXqA9HFILrPmCTu8+MCWsGUNkm3fJuuW17VtI9OUbm4/P78WtjmfWrJIX3auXmZloOnl1gwgPZvk7NHHKEMs0o+CUMMkhRLQRkNoEcDSV9xRUAEohbTbzNmkZH0j7X5s8s5EkzLEIUMXkZbgGA41lsH1tIR9KgElgER6tevXgyWR7SVJZAHRM0vjwFMKYSv4oB4wqwBJocgBZ5t2Wfof8jhlHVCWgNHP5/NCSbosDullVh6L9BJr3NfiD8C8rEESmPxmmC+nhmXz5cO27JMAYpKOy2hNWKSPQbJknTqZNcQhQ/ePUREgq1KrCeDogRKIb9PcpBSARhgeSxsNBRVqoJAvLqDJJemkbBKQCWssMUjhwTD/BCfsbxIiBUcpI6v0n8IYQ9vy9TQXW8hrnP/mQKmEXWYgoGBBzsACSQkck98AhEJgk0Tk2ClaAyZQBUg+HyhXCMrvDZnROt+VuASMfr5njx4ge5KNFwmXGYvIIn1WK1AFy8W0ZQ2Sgn23eQstvS22eZts40e+jW3WJ+PkVDIpWHoWaXRkkVqHBJ6ELW4aYrxpM8ts9f0g0xikB0gvr4bkndBP0oSb3z8YcmlJa1df02hILSCVhIZllRjELh9GGwuOjE3aTFaKADltgQCpHJuM7NGDYgKYeTySMcxt/npawj5x45hiKIIlhE3SIYuIQVIVsL8JjjGSBbHkN9oDJpCCJoAKcAJI2SUzLatHo8Iog+Tq/zMfSBkJexT2rxcB0sciPTByqZVLsItlyxok29wMpfZ18/KbbFo/2t6gW6tPAgiAGGKRDiyrsUjGIrVOZFbSupDJamoBMq2y4+RWY9+mdcPbs1/ms/DgOnb7eCRpVzVFGwgpEjapIGE0WbZgTGuAFFJCSGU/SiXTOWtMftuVa8/Ftng9LWWfcuPP9ACQYIDpnv4+/qiECCDo2aSaEjDB5zHQ9L6GDNcMOK2T6QtjXdZr3neRg6L/HdhlARx9DJIDpM9orQLjluGSyxokc6u70UpvmXl7Pz2bN1pvTfveJnziCTssLmk/Oo1FFlgkZ42+Mz6PQ9YBZJ6wM9Ku+ghjj3WJrfat2GYWKgEoAvq+C4i03xYcKbBJ2beZsv67Ve9Gzhj9NJNeSaqUNape+ttJrZMKC2xT19MS9Cl5jDeM1OLbKXe+EgYqnLTqNshBcBLDBAAiAQMqskwggmZP+m2IxAcOntya+lDmfSfDfJlW0PHgaNuVAdLLrIJtix/Xxez+AWBxYqAXX3wxHv7wh2NmZgZHHHEEvvSlLzW2v/HGG3HEEUdgZmYG+++/P973vvdV2lx55ZU4+OCDsWLFChx88MH45Cc/OWc/6y6BurfM/G22ZHM9nduUTx4YmdQqyEAQxRE9xiMruToWyZN1eDZrLrOaAIxVgNQj+3s80glAaiIMjf3waf87X+7XGbGEH+MKpIcCBfzTgj0KJcPwW0Iq2/0jgKMFPqEsQJJ0wKh61VhkzixrwHKbup4a1t2SPtkZJn43ffzIN27Acata2E9f2u+e6zLhv/l0TwJ95QY8Vmweb6PssoHy84ABW+7n9yTC9vrKjt7BPzM9VfvpK4m+a9fz21a+sADCQMux2AAbQ1JaudUDpJIRIDmjBBYJsDJb8H1eccUVePWrX41zzz0XN910E57whCfgqU99Km677bZi+1tvvRVPe9rT8IQnPAE33XQTXv/61+NVr3oVrrzyytBm3bp1OPXUU3HaaafhlltuwWmnnYZTTjkFX/va16byre2NNJcbru5tdK772tp8EpUYZHxIhP6Q2g4y7DNaMR7Zjv+jMYwx1WzWTGb1STk+k9UvI00YjzQ0IQHCCIDAyL2t+8+I4EARCUD6b2M8ELIYpD++baXVUO7OSqoeHBOptTdIWaSflj1A9tjvMjBuq9fTJNuiPtUAogiVpaqfGIIYxgpUZKBggbPnQNMXEk+BMgNIlQLgIGs/UDLUUC0B50Dl4GmBq9fi4wGxxyvphIo6Fgg9OObsMbTxxzowzwiYW8IEUcsSC7O0o446CocffjguueSSMO+ggw7Cb/3Wb+GCCy6otH/d616Hq666Ct/73vfCvDPPPBO33HIL1q1bBwA49dRTsXHjRlx77bWhzVOe8hTsvPPOuPzyyyvb3Lx5MzZv3hx+b9y4EXvvvTc2bNiAVStXJvKJPw+leAWydnUSUFO73ErL83W3BZ8EGYjRJojxZojxJoiR/YYegjY9YD8P3g+z6X7Qg/fbMSIfvB+j+zdBbxpidP8mjDdtxvj+TbYc3aYhxptGGD04dtmsNqt1/OA4iU16Bjk0KXvUDhSBalySDfph33yRjpyuhHvwuJE/VF9BDSTUQEH2Jfrb9dCb6UMNJHozPfS266G/wwx6MwOomQF6MwP0dtgOvZkB+jvMQM2sgJjZAWIwA7ndDhAz20Os2A5iZnvIFduBVB+kBiDVB3oDyyhlz/4WEsSkV3vwWcGBeTh3dddFd40X2ntQdNPCT08aNDt/wXHSO+XnlJ1ngpdO3S6CtAomrVJsV5gHeDmXwjSSZU56Tb1DE2rkYCbD/Ciz+nZ8nEgPiLaNKIIkl2bvv3cj1qxZg3vuuQcrV66sd2iOtqBMcjgc4pvf/CZOOumkZP5JJ52Er3zlK8V11q1bV2l/8skn4xvf+AZGo1Fjm7ptXnDBBVi1alX47L333mEZl09KN07d7zbtwhtR0avyetuiT8nDI//4bh9Gg4wO3+RikWRM0ifSJ8GEYa98pqrv6mGoFiA5czRIATOXWDmLHBE5ZskZZWSTXHIFkEyXzFfR8UzSS6uCxSJFrw/hYpEeFKF6KUCqXgqQmcyaXxfbyvW01H2yMx1AGqaa8Bh8YJc6qVkcPuOhLfg/Hto4/njoho8bJmxTwaCXMc2UIeayalme5WwzkXUVG9qKVcrpyfpPlUHG/pCRTYqQwWqLokcwbAOQi0kqFzRx54477oDWGqtXr07mr169Ghs2bCius2HDhmL78XiMO+64A3vssUdtm7ptnnPOOTj77LPDb88kc2u86GdhdduZ9Da8Lfok2IMhfWjopNsHjUYBNI1LzDHDcZgOWa6+aDmTVkPBAE0BID3YeRDMwQ6oz2xVwi6zSQkUKqQoIcJ2pTa2uICvATth0GYPjFL6OKSLO0oF9AcWIF1cUvQHlkk4WbUCkB48sfyup6XmU3hoe/DLr3MAwtOvnEWSiesnjFK739o186wr7SsLWMYphAyJQDZGDRjWBYRnwgJIkn74cjvtrme2zK/DlRbT4gjlpeXybhw5e/TLtrTM6m1RslvzbCQiasxQKrXP50+zzRUrVmDFihXNPiKVVYC53bT59vgbbj4//73N+eQeGHwYLD4cln/b5kzSDB1z1CbEJQODzJJ19MgCapBZ/e+EPZbYYJqxp7MHQPoPXcdo8qBq11cGIXuV94lsMsEAUigZ4pHCMUj0+hC9fgBGkspms7JpUoNEduPnZpu/npaqTwEMU4AURBEY676Lf0Ym0wmQ+nNfA5wBNFl7D5r+/ySgCGRybBUc/bLwdwE3/iWStrmV+jRyYLT+p20FWwZEFrklbEFBcrfddoNSqsLwfv7zn1eYoLc1a9YU2/d6Pey6666Nbeq22caoZnoa4zdXaXuTbrym31urT01Sq0/U8Yk7IWHHS6raA+LITjsW6Wuu+tJynjnyYbBGmmoB0s8DqkUEInPMj47rJiJ8d5B4w9oydAaK9Z8sMUrBquH4rNbAGrnU6lmk7AFqEEAxxCTVIOnqsZyupyXtU0EpCQBJOatsAZLcSuOHOiBMlgsJMq6TBavCRA5kVSLNW6ZYjWu6aUxmlmBtEobJwLSufyOfXWKVvg3n1osttQILHJMcDAY44ogjsHbt2mT+2rVrceyxxxbXOeaYYyrtP/OZz+DII49Ev99vbFO3zfk0gepJavO2ydfhb7HLwqck5b0qtcLoAIweNCMgFphkxiKt9GoymTXGGD1A5t05eNePGINE1uUjBdB0flWqpcLrtC9pB0T2yBa6ciRRYkXGIkkNrKzKAHJZX09LzCf+IiiSbNY01ugzVoUvpJF9xHhU+8F4GD7Cf/TQJsG5b7h4pRhvhtCj+Bltdklz6XrQwxjXdLFNH9fs1cUos9+2i0qa2apYN5IwuodIl/s4pBQWXP1x5DFJDpA+Fultm6q4c/bZZ+O0007DkUceiWOOOQYf+MAHcNttt+HMM88EYOOFt99+Oz784Q8DsJmsF110Ec4++2ycccYZWLduHS699NIka/Wss87C8ccfj7/8y7/Es571LHz605/GZz/7WXz5y19esP/RdEN6SafuBmxatq37JIDQF7LCJB045lJrAEbX7YO0Z4gmiUXG/oixHquXWdMPJdmt/Buo6ySdim5eYvWVUOL6wo3wESvstDpOSgbwDHJrr2/jk71B7OLRGwCORXKAXK7X01L0yYMkl1mTghkcPE3GMN26iRUyX0X2GwD8kB2hWg+PU3o51rHGRI51BSgSFtog0QJVmRYCIIr3Q3A9O+BKtK/WkzDLZH5csCUE1wUHyVNPPRV33nkn3vKWt2D9+vU49NBDcc0112DfffcFAKxfvz7pM/nwhz8c11xzDV7zmtfgve99L/bcc09ceOGFePaznx3aHHvssfjEJz6B8847D294wxvwiEc8AldccQWOOuqoefW9TsZpajdpe5O2tc35lDwY7MOBFzNvklo9OHpGaUZjC44m1mA12iQs0mR9IEcZI6wDyqrZJ4GXkCyQikrcUhOhD1FkkMkxcgxSBpm1ms0K1y8SPZuUQ71+SNSh/kwao8IyvZ6Wsk85AHrWWALHeZReBZ8nZAKeghe9ZwUnEoD0Em0NaAJMpgUS4CTEmDwHz8TdlrHEXNbMu4xsKVvwfpJL0TZu3IhVq1Yl/STb2DRvpikPsTZpXb/ObPezFH0SZCCGD6T9I0cPAJsfjH0iNz0A8+D9oE33h76R4/s3YfRA7Bs5cv0jxw+OMbx/hLHrHzneNMbowdhPctPYMICsSqp5PLLEIn28sdQ3UgmXLi8EtnMdtQdSoD/TQ2+m5/pI2s9gx777HqC3/Qz6O9hPb4ftMNhpe/R3sP0i5fY7QeywEnKHlZDb7wTM7ADqbw8z2A7U3w60Ykf7IFvkczdN2+XqU2CR2nXZ8BIrB0g9roCjyICykgE7wUJB+1I/SkQGGebx8oVAYJvF+r9527zkYc5KnU9JnJL5Wnp/bAukHCBFNm/jxsXpJ7nsa7dO84bAb758vXxe3XSb7W9LPtXFI9tIrb6QuZda+QgeZEyRReYya1VqbVOzNT+qwnUHSRN28pgkH3arZD5RJ3T/8CXoQsUdCdEfwIQs1gHQGyQPomnOxbZ4PS01n+yPLNbO446Z9JqAo2OWpG0XDxht46ZGT9x/GF8UQBhz1PW/rUipQqaM07HNpF0GmiIBTx2ZZpZBCyDMDzItOz6+gHvluE2RqcpbbglWuexBMrc2MY7STTtXWWi2sZWl7BMAl6yQv0VTTNJhAFmSWv20BcW08z4lv00ChDZuWCotV03EKf0DD4o5QPptqOxmrev+4WVVnqwT6rWG+qzKdfsY2Dd4F4sMSTtTHPs2bbbW62mp+WQdiIxREIUEnQQgXcIOT+jxmd3GA6K7H+Jmm4GSwIDSfVPoWhTn29FjsmzXSaCZs0wgAU0SAjBsHq8OxNsjFnD3PnubEJ0o2paSXTuQzKzp3OWSzLRvqnPZ79boE7cQjwxluuKDAlqHh0QOjP5jAnCmCTvGfxcyUtNPtU9kqZhADo52uf1dikf6+W1vJN8NRCoZigiIXt+xShn7Qrps1pxF+uM7ybbF62kp+uTHR+Uya57dKnylHVdhithLYXhBBKpAqScwSlVlk5AyAqhUKXBOAs0GwARQYJkEEsb2FeFxzlyadd88dsqHC8stB9AtHZNc1iDZ9tjz2EZ+w/I2dcvabJ8DS5v1txafggwFhIcH6ZquH1qnAJmwSZbRmkmtpFNwzFkk0D5pxwOhB0AglVjnYrGged4FxGe3DuKDS/aKLLLVfrDtXk9LxSe7gkkBkLHIAJAmMkrSdji4BBzZtQ8OlmEXDUCZSK4yneelfL9sEmhOAEwIl2gmUgCsACYAUAEwydh2/tsfyywZjbDlQTG3ZQ2SdTdcWyu93c5CRWi8ybdWn0I80n8nsclMVqqJR5Lm0isHx5LUShkA5iyyXfcPL6mmjDECZwTe6e5kmQFkHFw5PkyEUjC+RqsD5u56WsI+eUD0MqtP0uEA6cINNBraa90NBYfxKAKjj8sDFaCcNUjmABmGYGPtHGhOC5hFSTbJmHWAKSSgTWxPJgXMykHPC9g1n4PFwtJlDZK51Z0QPz+PjczHG+ykm3xr9cnOyJJ23DyetFPZRhaPtKtENmnbVKVWgLPGKouM85v7R/LYoz8i5aQdQt9V3yndroKhLAdG/zvEJP2QWFKFN/ZKxuEEWw7X01Lyycusse9jlsXKh7/y8qobHxXG2DrFHBzzacCGIPw+64ZeYxWcgvRaB5I5QHLQrANMqQJAplIrgRzQiUL8MmknhHsGuPVhgiTcaJxtZse/NL2Q1oGkszY3XWl5ftNNs502bGxr9SkwyZxNApnclCbtVLbl2COAwCDtdJRagVRq5ZYn68T5KbB6qwPE2UiuQgnILMMnkVqB9EHFwVHZW7O7npaWT8kLYMYacwaJ8dgCY84e/W8HniEuD4TQg51mLLJ0b8j0WkoSefyyfBDvsJxddzlg9vqAaccuiVQVLD1T5O1g4nyDKlj69UrTheO/WAAJdCCZ2GzeTpGt03RzzUbW2Zp9SirtsN8EtE/aqYlHckuTcHKptcoim0f/qGauzocldVuljIk6QHxA+cxB6YoJNG0Py+96WjI+mbEdvoon5uhxPUC6ohkcFDk4UiFGCUwGSQApm2QgSW6ZyAEyB818uj+w+8/YpR2RxqTAJ6T97yWw9D5Rtg5/jWWqawUsw4IaaXYRbdmDZC7lzGUbTTaNrLOt+RTAEkgTFPg+a5J2wnKTssk8HglU5VZvZVnVfvNHj0yWW66SxybrK/S4beRMccKypL+bndFKal3O19MW98lLrFxmdSPb1AIkl1vHQwuOgVFmIAlEoPQMs6b/baJMVCRXJqW63wloZoApegPrA2OXdjQaKwWHdXu9KlgC9TJscowlQDoWQ+DksSbBZ0sD5bIHyVaMaEK7fFnbt1cuHbSJk2yVPvFSW3w6y2ytM5+0Y1ep76jPAZLPq/6mIkD63xIpm5yt1MqNP8ikjPFID5DCFxOoeRB019PS8SmwSKeQcJkVYfi3MkDSeGTLL3qg9ODo2SUDxPhSyF4UC9d/cm0VYt9NWa4B9Pq2JCKMSSVXqQKr9GAJaQeJzpkl2R1Pjll6GRaMVQppu9E0AWXBusSdJWRt33b5myhPEgCbX7fdad+otwqfWLJOjEfqTEaakNnqs/waknbqQI9buWhAe5utDCumXYnLsuiup6XkUxjBwwOiK0XHY5Jm84MRIDc/aAHQs0jPHjPJNVzvrD9wvO7bg6QpgKT0NYJ922L8USfsMmGUNWBJRkP0Bi5m6QaN5gk+smdB0L15ll5gWgFlwaZ6qZkH60DS2bQxilL70s3nv2cTA9kWfKpnkgaTqoqE1XQKlCWri0naedX2TYA6VysBYyVhx5usf1Pe0uduKV5PW8qn0B9Sj90QVMN02owZa6wCJI1GxSQeW7Q/DTPE692+NIb/NolJcjB034ZXfBohgKYcOGaYxx97A5snUAeWgGWTXsI1XoJFZJWyZ18cPKsE2gOlO9aUS60F0OyY5CLbQr3ltm1fWr61+iSAGK8BkoICSdyFb7dUjo61Mwzp8szW+TQvuebmcS/HPy7FcnDkb/ALYcvpelrI9q19ImNlVj2KYMnjkMPNgSU2AqQf+cYNKO5HtwnXPmOQvAtUcCOrwiNY1R1TAEkv7/sPafdtTARP5coiSmX31evbe1RroD+AkMayc88g+wOQtOyRpIHoARjDdRsBhBlboPQ+GrQHSoP44jhBbu2Y5CLaXBIAZpOZ12adrdknAUSJtYZJ5t0/6iyPQ5YyW+N01btpZdb8luQgWKecKtFOVuUPtPm0bf162tI+eZnVA2Qeh7SJOiPQcJMb+s0BpAPL0EeSsUc9tIOIh2Hg2Esi+eL+BZAEIqO07HAc/WQlD4VSwMgCpwdIDpicYap+D8KxxyC/9licsp/Nsztx35p9DxxwWqCEZ5WoAcqmeCNnkxPaLrR1IIm53cyzWbe0Tt5uW/OpkrQzhXkWWdepeq7xxtnYNMk8UzHKhhcGoLueFtsn4YfBGg9jF488DjkeOsY4BA031QKkGY6gR+PAHM1wbAcWd4DpgdGrKgAq37X/l0usI8TxShFBMwdMOehBGAnSBmrQg9DGgqXvBtIbBBAUUkc2yb/7A9B4aKXZ8RAcKK3j/CVZRKmG94VEA5vMLJfeF8M6kGxhc3kEt113oWWn2aw7F5+SgWSzWORSNz6O5LQmJhSerMQmS8fDH7PC2/NyvZ6mtXnzKSsawOOQQo9Cog7/+ExWD5C0eVOIPZrRGGY4zqRWHZZxUMwzXBu7gYzsNM9wDRKrkRDaWLA0CkJLkJIwxgSwJGMg+z1IIy2GKeXA0HcfURb8lPvuAWKMWqD0Q2EJMjE+TB4IZZw/B4bYya1b0NokCzS1BaLs2DaGN+2b8dbgUz6ArC8ksJimQum41CSqyTt1t2vOGuOgzOl8X11HZrHJNkZGZ8MpjQEW1+mup8X1yYcMkko6YwuMPg4ZEnWGm0CbNzlwHLrpFCD1cBwA0rNHMxol4JhnuFoXTAUcE7kVCAAZWGQhUSdIrO63GvQDWPp1SRtQvwejDVS/Bwkkscd4zIZFoIx1ZzUwhu1PacY20zUk3/iuJkjZ5JRguVgsEuhAsmj5jdZ0w9W1nSZm0ubG3tp9arRCtZ1pzILV9HvnQFkPkHEf/pMvl1JUGGSpJF2dkdbxoUyuj5keA72lce6W4vW0kD6Fc8FlVj0sxyF9Is546GKSVQbJAdLLrXo4SmKSefeP0r1Q6Sc8ipPSgWJeH9gn6kgjITRnlxYIhVEgbSAHPUjt1jWsG5JycmsPoDE/xgwojXRdWlw7Y4sLCFIggURNqrDJJIu1OWafy+Kd3LoFbLYPfH6z+e/SG3HdDZm331Z9Kto8yq85WHoWaeuxpm3872qiTpRam+KOEuVEnroEHv/WXxtbyka2t41N6Ki9pc/dUryeFtKnJIO11B+SxyEDWDpW2QIgDZNb69gkAFarOHpaYZIANIx7KdP2Bc1E0OSJOjb2KANzlP1eUDs4q/Sm0AMwtPNzoJTaxjT9vP7AAqRxEq3Wqeyas0mVdu0QRBZUcyt0/Wg8d/Nsyx4km26g2fCTUvumB0Bp3nLwKZjr1CxZmnpdoktpfqlLhgW4NKEnB0cOnHXb4vPzT7pd59+UQUw/+K7goz+EMQp17THd0uduKV5P8+WTXci6e/j+kA4sfRwySKwuUQeeTfokHQeQetPQgqOTVzVL2ql0AQls0tcq9jFJcm7lTNIn1dj7QsNK/ULJAJpCmYRF8tijcMyRjGeQlskp9GCGMWu2ApRG2i4f7jiKHgCjrCLiCw9Yx6tsUsh6MCyZA8icRS6mLWuQzM9TflNNc8O2fYPN2yw3n2ZjeYzPAqqxoOQkJyUERoXYo11VVADTM8xqe1FhkyVGydf1PnkTUk6WWgsZvqnUauU+6s0smXO3FK+neffJyaxJd49CwYAkUWfzgzAeLMcj6E2bawHSDMfVLiAOHPUwjp1qXTFFJlk1E643MgIYaQgpQQ4wSVEClj72mA8CLpjKwSVXIANKAOSA0b7gKfey52RXJ7eSkZFNumLoxBPSJpWfq2GQi23LGiTbvuHWLa9r20Y6Kt3cfn7+ENkafZov8+DTBDp+kZdA+YczR++1LTFXBU6+rXzbPCbJE3cawZJXO6kzNpYgaQ3Rcw8S39VAxQfIcr6eFtonu7AQhxyPmuOQY9YvcrjJdvPwQNgAkMZJrzk4emDMh4UDUFs8QyjhWKQMv6UikBEQmopgCUQgDL959R70QNJUGKVQOkiqdhQTGWTXhE36fpSeTeZASHVlO9ziCZnd02k2c7NlDZLA5Ad9vnwhaH/TPqZtv1R8KraZslB4Lq+mFW1ssoyUAjDNrDDlFylQpu3T9Thw8oo7EilACiWyQZZb/k8un/lC7yx5RxgNMmNADdptz9m2eD0tpE/2EokAycvOhRqtrg+klVkfjNMhUcf2gxxvGsKMxvbbAaSfTvpIjsbQQw2jCXqoK+AYqkrVVJ3iJo293oxjkEIJFl+0LFP2VQKWAKLc6r4lejAYJ9tW6FnmKQ1ImURSJQeMtWzSMLB0xzjKri0La/BhtwrnbjFsWYOkYN9t3kKb4ih1y9v6kW9ja/ap0SZ0rA9FmTNGFqermaQ+3qgEYJDGJMuxx/qj0iS3prFI/3ccWDu/PEC2Bkrt4pJA0g1EmLEFSj0GTQmS29r1tJA+2Z2bWIvVZ7AysJyYqOMq7XgQNMNxLUDGWKQFRz3SARz1UCfAWGKTJUtZJEEaUQRMzixtW7tNOehBO8Yo0QtgWLdHfzeG+GMdm/RAyiTXJgsv0f4ZsQRGAAGWOUhO+8Cf9EYzTSyltI3ZgNBS9GmiuWGiKHyXZUmexGMlJOmSEQT7LaGMDqDmgTGyvxKb9P+salWARAKWOXiW+kFyibj0nyrmE3d8hqsZA6bv6t/2Y1+zlod3W7ueFtInwQHSJeqI8TCpy1qKQ/JEHRoNA4M0Q8ciGwBSD01gj1ZqjWySM0kgSqxkmv+db5eySAosE8MowwIKGGqogYJ2zJEDpTcFgKSEUQZCWyZptIGQxnYNqWOT6E95Jgo2y/FUF8KWNUjmVnejld588/Z+ei4nr2nfW5NPANyQOSIMzDpNZ2GhVDZOnnBgmRd3FiF5p05ujQk68YjVJe34dUrdQDxYeqnVz7P+SQbc7i1dcv+bs3YBhL6SfpxCCozSMhvi4/a1tG3leloon4oAmddlHW5mMiuTWxlgmlHezSPGIOsA0ox0wh4jo/Qya2SQbQr5e+VCGgnSZK9FSMcGdZiHgbK/HXjmQOlBkLSBkQZCmSi3ZrIrjE5ikwFNjE4lV6PRCDUNNVoXEwzrrANJZnUnpO7Nt02cZLZS0NbsU60JGctceXNs0oOIlDJAYewWEiVMmzlqPxomxCUVAUqkkquXYKuP23qxpswkcxbJighkrNZLXMHflhV3ACAMvKsYOJoxoN2AzGqwLK+nhfCpApA+k3XswNLHIWsSdXgcUg85gxy3Akg9NK5/pM6kVkqAMWS6TgBKf83Z5ByRgCUpCaEICsruR0mogYR2d5oaKAd8HAQjGJbYpOwjxtEdcwwxyQKTnFhti4FjSNrZgkXNuS1rkGyra8/lITDNm/M0+9pqfCpd6FICsgCYiBJrnp4uHUvzoOTjgCEeo6uSa1lqbf43ZYDME3ai1MrjkeHvqbTaTi2DNFZiE36Eet9n0ic3GMYmtWWTfAiisP2Gf7TNXU/z4FMyNqQvOTepcDmPQ4YhsGIc0vd51MNRyGJtAkgut3pQ5PFJAKns2iC3CikAbe8DHYAxBUvLGDUUFAwMhBa24pQkCE3AsNAlSckim0QfIO0kV/TdSD4qPk9nWyBEyNp45FxfxOZiyxokS49OwZYB1ZPTRgJqaoeadtuaT4nEKpnkKtOsNiGljU1mEqvwcUopK4wyj0uSSeOQnk3WMUkrw6JozUwy3Yfff8oc/XQ2KvykriC58UxAXtM1H0IIy+N6mg+fgAiQPu4YAHLKOGQus4ZarKGqzjiMGdkEkHY6sscku9WkY6aWknekioxRG21f2pzMassuGkhI6BCD1IFRYqAglIEewk57qdWzxQKblEBgmYBnj7G7R2CVWkP0ZhmbdM+KOsVgsQFzWYMkkEo6JTGu7uZveijw7QHNJ7U0f1vwCbIXgTF/K3RJO0mma1Z1B4gsknfOl0rCjHRaVEBzyZVV26ntAlL+l2n8MQLkQIoqi5Qxm9UDpcxBMxsEN5/OXxgAxAxXWIkKfgBbn+k6ITa5rV5Pc/XJXgYOIDmDzLNaW/SHhDGJzKpHtiBA6Avpy82xLFYuseYA6buC5ODoQdE0sEhjtO0GpSNgkiEI7WVWAQxQBErrm4EaAKSF/aiULfLYJJABZAkI825NdcafDULazFYhXS7D0knaATqQTKzuRpzr9nKb9Da8tfsUHlQcBN3Fb0cvV+EbKgXLMN4dH7UgGf7Hj6hOQeqkJMuVZbYSMJACQxO9CgBaENu9QpozyVKRAg/Sob8mi0d6UOe+8yzY2pFB2EMlVCcB4CXXUPuS1XQFtv3raa4+5QAZwLAguU6UWY1ulFnJxDJzeqiTrFUfgywBpP+dg6MnknVjpiohoLWLxTvAlK6TRmSRJgCl0XaeZYu2LWkKsqtw8cYYkzQhxOglVwBpXNLOQCkWGc4J75PcItZYOof59bRY1oGks8pbJ+Z20+bba5KU2jzstlqf3Nth7UWddwORfgR1lYGlZ2qOvRkWn1QCsi8htQlsciCBoaEEKDlAxmlrecaqB8i++x7IlEXKvkz2z7NbvY/273mgVwloNh4ynuRgDCCZ3KrHdpns2cxhLLPraUqf7AZTgExkVr+shcxqh4BKZVZbGCCVWUPSjoszluXWeoD04Oivz6acHd4XWAkBGAIcOAIRKEmTjUVKEWKSQlKcVgakBQAZANIDoR8QGn0LF0lcsklRLcXi8wQd/mFhmbbX02JYB5LOqGZ6GuM3aGl7kx4GTb+3dp+8nAIhQlHzZEBXGWOSIXmnJi6pBlYqkkpC9e20zdhTIQHBgyIQgTIHyPpxIu20BJderezad/v3LDL01eyrILXyggg8FilZfNJLrbVJPXkcEoiVeLIamMvxeprkUyuA9IXLPVjmMqtLpiJjk6h4NitpY8eFZGwyjObB5VQno/p4o5dTc4DUQ10ER/4iV1eQP1aPste31gRlNHqw1xhP1PHVduw9YyBUKvn7+fF3Nl0CxQksMoQVOIOUHCxTqbV0TczHC9RsrQPJKa10stq83dQ9XLZVn7xR3lfSdwPJM1xZ8g6XXMN0vwc51AEUSyxOaJHIrhYYI6P0MUoPkPyhwxkkECXWyCCjzCpkymATH7zUKrOkHQ6Q3vz0hCpEafKOsOxSxFEVgPk9f0vxemrrU/La48CvCJDGJHFILrOGwg6FogE+/uiTdfRwFIe8YjIrZdKqZZQaZmQmAmSJRZbk1rS0ogNIltktdWSUlkkCQhsoqWx/SMcmA4g7yVWBSav9FByNMQ0VV9tZkF7z+GP2ezGeT22sA8mW1vQm42WBuhPZtGxb9QlAo8zKk3dshqsMyTsmkyj9PDVQML6jNGORqm/fVH3SQg8KGGkLjhAYSCQPICkEDKoFCPztWcpwHUiBXl9B9q0fahDZY/ge8IpADtwHvXQYMC+5emBULWtY5sePxyyZPDUXW8rX01Q+USpP+3q4Yb6PQ7ryfyBjZVbPGGuSdUIiC0vW8YDJs1m9zBqZo2Fs0rQCyLZya1nIttOWEFqgNDLKrr57iGeNRrsXTA+EPt4IsBJ5cR6QsUqegBaS1VTyO4Bf6Zt3/Sj8my1tC9pb86677sJpp52GVatWYdWqVTjttNNw991317YfjUZ43eteh0c/+tHYYYcdsOeee+IFL3gBfvrTnybtTjzxRAghks9znvOcefc/eeBj7g8IkW1zWfhUiDcEqVG5AsjKyq3g8iorVZfKrpalqYGXXmUETQdcQtm44cB98kxVG2u0H4k47cHQt/HtPUDy0nheWvX7F8EvZUd8VzJ85/FI4f6vSB4uqplRkqlO83mY3Xnc6q6nGp/CfksAmTDGcVzOZVajA1v0YOnr6ubJOh4sPYsMYMmyWQMoZmwyyK8+BukAcmgofFKgBAzqP76Nb89NU8yMjRV80mIF3Hgx9drBwf3xboqtB9WE3edAEoNMslgbslrn43qaqy0oSD7vec/DzTffjOuuuw7XXXcdbr75Zpx22mm17R944AF861vfwhve8AZ861vfwj//8z/jv//7v/HMZz6z0vaMM87A+vXrw+f973//rHxsOgH5ZVTXtnQT523bylXblE95NxCW4Qo3nE4YVsdNy0E/YVwRaNKYZOh64YCJS6Cqr2zcUIoE+AaymoTjpwcZqPL2HiDtdu3+PKP08dKcRUrvd5KM5IbSYv85fNqYZ0TZvBws5+XcTWhXarulrvEk/sjiuKU+pjAmdK2JAKoDW4QHS88iPbvU8ZOzSOMZJhvuyrNFHof0XS48SI1HmgFcBEcPlBEIqfaTgmWZiYZsWR5fNJHVcsCcBI61ll/HIebO4pG837SbRz5HodRVDJOvp8WwBZNbv/e97+G6667DV7/6VRx11FEAgL/927/FMcccg+9///t41KMeVVln1apVWLt2bTLvPe95Dx7/+Mfjtttuwz777BPmb7/99lizZs2c/ZzmBJSEDdTMq5tus/1txifGIH0t1zR5J8Yl4YoKeMlVDnoQozGEUpCDHpR7ENnvkQNH/5ZsbNKOMz00UC5pQWqyWa8mvnUDZQkrz2yVkjFGB5Cx2o8FRS+95izSS6yJ1Opjk+F/y8AoObsMSU7ceH+yfH7NOdrmrqdsveRIFMAwgGAOmGYcQJQytlhhkb4riPGyaZVFRnaZssiSzOoB02hTYYycDXpwBOrlVh5fD72cmAjt4+62AIDtMuX9QfZe1qY+bG5J2MAbB0vpGWS8nmMCX5lVLoUYZG4LxiTXrVuHVatWBYAEgKOPPhqrVq3CV77yldbbueeeeyCEwEMe8pBk/sc+9jHstttuOOSQQ/DHf/zHuPfee2u3sXnzZmzcuDH51FnTG24eH8llodlsc5r9bm0+VRekyTuRRcrYX7IkuUqZssuBCmzSJs9EAFPZtOy7/owuM7XEHPNPX1l5NTDGyvbtb+kl2D73xyUZFaRWNehZpuz/O/vPCausi9/w45h9T/NQ2Vqvp4q06q0OID3rzllkUjxeR2A0DDDDPA+KMaOVA6ZnkWEED94nMmORVZm1HHuM7DFN3OEf3r6uD2XYXia5zsVkKSTAEtP4vHBdcyDkWaw5YDKb6/U0n7ZgTHLDhg3YfffdK/N33313bNiwodU2Nm3ahP/3//4fnve852HlypVh/vOf/3w8/OEPx5o1a/Dtb38b55xzDm655ZYKC/V2wQUX4M1vfnOrfTZdRvEdbXLbtttsu9+t0ScA6WggeVzSMSj0BqDxKICmHPQhRuPAJn3ijlQS1LeDwEoHWADCA0gNbLktaSQwsIzSZ/f5RAWpANkgKaUVc3x3D1EEyDDtYpPKgaNnj/63/xY5GCaf9K2cSg+PUhFoZqVnoCw8SbbW64my3/ZH4VzWlPSrSLEAKAClDkCZf3IWSVon8msClqzLR4lFAggsEihIo0gZZT0ARqbIK0x5NumzXgPT1AZqlkliQFoAIyokeYnJVBWxbVVasJw/A/hvTK9MLBbbnBokzz///ImA8/Wvfx0AIAoj0RNRcX5uo9EIz3nOc2CMwcUXX5wsO+OMM8L0oYceigMOOABHHnkkvvWtb+Hwww+vbOucc87B2WefHX5v3LgRe++9d+s3Ef4mm9+wvE3dsjbbT4BlG/Kp8qaYVN6RASCEVECvb+NALMtVeVBkDyM56EGxgWm97Jr44tCBtCvRpQnGVQsJIya4JxEfINmvx0vN+Zgnl1Z5olDoNznoZUwy7dIS5KkGqTU8VFj8Jk9ySDIGHYv0vVxy02TPQwksJ527LX09cStJycW/lJdCK7FIN98O92Qsc3TyaiVhR2s2tmO8Bu0mOKuMhcl9Rqttk8f8KDC7HCjrALIuNJADJbfSvNkYZ4ilYhi1qohbxtniJKl1Kr/m9remsqlB8pWvfOXETNL99tsP//Ef/4Gf/exnlWW/+MUvsHr16sb1R6MRTjnlFNx66634/Oc/n7DIkh1++OHo9/v4wQ9+UATJFStWYMWKFZX5k2Iuk6z0xj2bt5umB89W71Plpohxydhfsiq5yn4PYjhO+kwmoNm3Y9/5WKTvGuJjkXro6lMqW2qLg6WPx3jQBOKbcl5EXSoZJNsk9jiIMrCVZS1T5DFJziJVvwfRH0yUWpseKpX6lhlAciaZv4z68zkJLJvO9Za6nnKGXPcfBGOVlQSn4EiUYsm4kS/CkE8oSq0AGqVWAAwg43eSKKPjMFhAmqxTsknxSM4g86IYszFemN9/p9ORNcbYekMCWil0kEutNSyyjdW+JC2ATQ2Su+22G3bbbbeJ7Y455hjcc889+Pd//3c8/vGPBwB87Wtfwz333INjjz22dj0PkD/4wQ9www03YNddd524r+985zsYjUbYY4892v+RgtWdKD8/z7aaj7fqSQ+erd0nASTJO0lhAQ4YXnLtDWymoVJQg55NynEPI88mw/x+D6RHICd3AhEcAQSpS0iRgCXgGCi78cNgybycnMuY9ZKr5P0hmdwqHKjbmKOTXPv9SmYupAR6fYhe3/7PTGq17LpXTpUvdKXJAZKYZGcPAGMwblIIASmqgLnUricPjHyZYMuC70KWJVegLLf6+cikViCVWflmmKyaz7OrxbhkSIxBvP5ywOSxRv87Z5F+/mKYyChnLq3y6YmlFfPrmV/DmdRKQgKy11qlans9zbctWEzyoIMOwlOe8hScccYZoXvGS1/6UjzjGc9IMlsPPPBAXHDBBfjt3/5tjMdj/O7v/i6+9a1v4eqrr4bWOsQvd9llFwwGA/zP//wPPvaxj+FpT3sadtttN3z3u9/Fa1/7Whx22GE47rjjZu1vmwdBaXl+4qbZzqR224RPLKstj0sKpUC9vgVFnuXq5uVJO1JJ0CAySdJpVmvYv39IuRFC9FCHrFRflktkccnAJGUES57ZmoNlLChggVENYrKOGvQT6TWwyN4gYZGi10/YZYVFql76OwPNHCANIhiajEn5rFgBChmPHjBVASzz87lQ1xM3Lhk3xVcFIlBOyyY82yQdmaPdYQa0WTzSm49Hxt8pW7TbrOmHyKRWb+VKOvXzZssa/UtfPi8f91QyRhnviZhIF9q2CB2E61n26q9tLNz1NF+2oBV3Pvaxj+FVr3oVTjrpJADAM5/5TFx00UVJm+9///u45557AAA/+clPcNVVVwEAfvVXfzVpd8MNN+DEE0/EYDDA5z73Obz73e/Gfffdh7333htPf/rT8aY3vWlOgWlgdm/MyNapW3+2UtO24BPJHoQYp2+RsmdT8bnk2uvbcf3ctBxoKPeQ8mzSxyTJGFC/fPna4X8UjBYA7Lh5QHyzB1B5YHAG6X/HwgUeJFO51QOkl1rlIMqr0v92Ga3hgeJYZGSSjl32B/Gt2/UvbWKR2gGKNhEcTTb6O38eayILMmTPn4YDGQF43lQCzXAOa6aTY9iwrGQh+9KzxjqJ1JlxkOjB0VAG8EJCoIZVAvWMM+zAxiOLq9bEI+2y6Hc+5iNnlt7aVdKptp/G8jKL3vig5d5KYBnbx25M6W9WEKMhSztcw6qgkExgkfMVgpqrLShI7rLLLvjoRz/a2IbfGPvtt9/EG2XvvffGjTfeOC/+AVV5aS7baLJppKZtyScCEok1yXb1kquXWKWVXaF1SODhbJIn7Ezq9OxjkFLJ0HnbM0veBkjlJg+Mfn6e3SpCwk4EyMAmmcwaZdde+I+iNwD6A/syIGVkl72Bi9H04lu3f9OWPTekWM++WMheESA1EQMb+52zSf/4l55VCkrYGUCQQthurK4tl2dna57tht+5LMx8rjNbv5vcQMLRp3B9TQLAxCHX1qSsMi6uJu0ky5NO+WlM0pvv+hHbLcxjvQ2zlDVBXJFd63z0mlTF8ZmqvK9vc5Y2T0BLGKWPU7ZI1pnm+bSQtuxrt06jh7fdRts3IH/pzkZr3+p8ylO/3U0jlB31HL0+MBqGBB7R6wNGJ2yStHFdQDRo0HzpGkmww/+w7FZXnzK82WcDF6TDW8WHhpehQv9MxxI5QPZmBpB9K7PyZRYIXRyy776lCvOTWKSvUOTfuplM5Zf5FxUPkNoQk1wjm0xBif1HEZlJCpAePMmCZFhGAVT9+tNarQTccn3hGkshYAQgiQJQBtmVZQNjFlVjyJQZJICQtDPJcqCsLp9dNZsSEHIGnU/nw74BMXyQDwzul9nvrPgFLwk5KUvbhw78S59U8XrOk81Ur8IiZ/t8Wgxb9iDZxqa5mf1DjAeawebXbXc2DG2r8SlnkFICxksurKhAf8CKTI/C26ns90LSDlBlkXYg2fRSFppAWlTA0q5f9jTPbOWDJ9v+kGmhgBJAhmxWXzig10+SdUTPMckwP32ghGn/1i179qHijqEmC4zaAaIugCMRYNzZqDC07Ld//vIS6WFeYJApUObrTrISS8wBk1sJlC0gEiSqQGkbMjYpJEiYqFaAteHfUxqPTXLAq7LIxeE6HDz90G75stLINbxiFA8rhNFrChWjZDKfSa1BGalhkU4FqZSodLaYz6fZWgeSzqaNw5Xal06g/55NnG9b8clOuFib0Q4QxuEhJvqDIK+GG63fT7INk0ICjEWSdlmubAw8IaUb409UwDKul/4LLjMBCOAY+0nKmIjjpVQmsYZplsTDgTA8TPgbt1RArxdlVv9A4XFJ/9adAaSXVzmT1ESMtZVlzZLxJHzebSSwSRGXy5r390mA2UpOdRbipwCEY5Ca4PrKEwRZ5zxQCkQ2WYxLzhIUZ2tSCZR4qVQSpoGxerN9H+Ngyumy6u/q2KdsvhTIs1fTYd0y1aTCHlUIdSQFMXpMFalL2Mm7fUgVX/icL3N9Pi2GdSDpbKGYXNv2peXbkk+VijvKAqaPWXh5NSkTFjp4a8i+z0bMslIL7NIDpo1BmgCWgIrt+vGNP0laSN6ws+xaV02nCSAtq+xBrJgJzDHIrAEg43RFZs0BswYgtUmZpAfNaparPw+Tz5zIHkspSMYz2gQ5bQqF5CbZbv3qRCL8JpAFQgd/Uthj4YGyMj6hlABJi7AJe9Tp8G08QUUqEEaNftYNkF0HipOsDgRtH0g+NmTepiqn8vVzFml9jFKr95mDZZPUylmkV0cqCTvsBdBf08k1zGORLV9aZvN8WgjrQBKT31jQsLzNurNZZ1vzCUAlaYekAozrO1kq0ebLW/WsDCtc14+wPW2gBjawyJkkr5AipAEpAwXfn41JVPn/S/pIpg8LNYgZrP+/vbMPtqQo7/+3e845dxdcruKyLyguasiCghYvgV38lby6QBXiW/EiuEGLrC8pFAKWQqUUsEpeNNFKfImR4i2AgTK4sSwUgwaMye4KwqoguBKDApEFJfuCCdx7znT//uh+ep7u6Zkz59x77t69t5+q3TMvPXOeMzN3Pv19+unuYsi5CkC6thnbDtmxwKR2SPcy8UOrISB1DSCdkrTq0c9yNWDhiTzhfclZo2XmYpbFtvD9G7KvskN/fHPtcUXIl9YFcugiOUeLsopkoBQaZTVpoQigACMP82UZdI8v1wNSSunpU5lJqOAQDkuzvxjhyQ1kgQKAtAzYGxQoSF6uKEvLxTauIoGyigxDrXz2GmlVJJ8o3CWeRYAZJuq457qPinRRkSFV/TDvtOmyBElMDQ7DHBs7Jiw313ziyTpQefEiky3TltRSEKpaTQrbJcT5YsOsxXrOvkpBZtIMSp35wES7rEbNMUWKO326EXXYoAAm3NouEnMyiWxBp+gnyZUiU5PRdsisU1aN1A7JMlljgMyVaXekdYIjLdN9yJV27X/8hVuXhxITTLHkkVg7ZayfeQycvK0R2qjY3K2b5CEzHKmAFtrBMpNMRQqqAGjkIEAUSsX1zaUfZSMXYACtUpCklGikJ29fJkGHmOemePYMHOncNtTJ5KKUAnlOCtGHoPG/DEp/f1EOQCTMWsyfSm2RYcIOV5HSZWxnJRXJM7V5GztPQuPdPmpVJGuXnM7300xYgmQDm0oNpumxow6tDnPsdPpkKspByJUl8FSqyXYHgvqktdpm2p9IH0nN3uzUp01IaWdlUNBWUfIyZN6oIjz0FGT1ZXY8Vp7VytsoHSA7C4pRdQiMHjDL7ZAETJeo0weQ5pMyXC0olLnOBMZca1PPoLbJpv3zIrHDWGgvhGQUpDK+n44lFSugbeatVYRaQAuznWAJqQFlVCWltQqb6pHBhF2954yHXCmsb79f07CIRLsgelEVeuUKkodfZSaC7eXBKrTSQO6HWQmWpCYV6kOt/DrGAQk3zRufjNwAUdaqSD44fxMVSWAkcHoqkjUdgDUpNHmnjOr9NKwlSEYslnzSNLTJA1dNQwTDhDp3R58AFBmtir246A+r1YqrSUrigQGkbJcfW8XDrRaIBSwLQCrWJhmaN8JIFoZb2y7cSgMF1AGSEnX81Pi2AWTW8WrbXsiVA9L9iwOSJ/BQEo/SGt3cApLPT6h0CZZkddCselFHVSSHIMVVc/8cDo70opdsWQhkUlgomlZUDksooyozmG2kKAEzTi2FXbMw5MrbJXmbWGzM0Yjx5wERQBZdKIS3TWQCUknoTCPPtVN1SuVFmBXBJ92LmrZd+uY4IEUxD2owETnPaK1SkZS93URFCpfVGlGRvI8kDUtJPw3T836aKUuQjFh4s/oqpEjZQWLoTR6OOeFT0EdSa2UyTrU2y1r5Ly6WzCNalmoWlmFUT3jK0MzwEMISMKHYmPEwK326Gne77alJN1CAfanEAOnU5NjC4oXSGfNCqVWJOjlkAcc+gMwV0KuAI4GRrwNB2HWI6nisXbEEyJy20zEhHO26snAUAlJqdBXQlrIEywymndI9ccqEXrUGNAu7hmpSK8GyXuHayVwY1jgTVUk0mAU3yvZ0z4gFp/nMGRwFdCZN1yPqpJ8beMpc2Asfa3Mshg2sMh5yDQHZpv6Qba4WpZekE07x5sYeDiYMH0pFBs81V5Fk0/l+mglLkGTW9IUfWqQ+GFVYsYcgVn5O+xS8vPqqSQtKDRhV2Wq7Pw7+IiGlKKn7h5QeLHlbZNjPMgy3Fn3BWGYrS9opwq1FG6MDYZC96uDJM1l5ok7W8UKuWkgHw57yAdlVPjS1NoDsKoVuXsCwm6sIKM3vMyFYUpTFNWg69Fm8bZIte4AU3n4OSBL+BSCFA6ZSykTaGSwhNYS2IVcGSheClTVqkkKuQbukm67N3fsi1K9dn7+gE323UJYER5kZtWieHV3R/cNAU0HZiIXy2iYHQQVBkS9zQIZhVlKwxbRuBSz5FG+FkhxARYYZrUKUIyORMOso30/TbfMeknU3YZCaDVmsfB1QYtvmuk98NhCewOOpSVKReW7a8Sjsyr4TKEDJM1oBE37VuYKW0oyyo1SR3BMJtQJGJQAowZH6iVGWK80VGQUkKUi7XMpktVDULZa0I4NMVlKLFoZdVVaTysKQ1GNXaQ+OZrmAogdJapuMwJIsllASMw7IjAGypBwFV4/CAycHZDuTUEJDagPLdibsuQSEYGC060KbdslcG3UmpWlvdM9VZp+rSIWM2iVhk3TqMlzpWVAswYvaJyl5R2YCWhkgGQWpXchVQflqEhKZyuH/FQFAMUdkzKpUpAuxZsWA/OFE4TzMSuMR8yneDBT9UaP8/r7FgBiuAigzLzObD8rPuzDV2XS8n0Zp8xqS4Z99eGMGAUDTWlBYZt75xABZhGdU8SKTLZvpmruuH0ZF5p4fISgpjKqlMoCb7EFbBaloXkA7GEH0t7MQmuQvQgtHL8uVd+Vw/SCDNkgLSDm2sDqTNWubTwvMXFu1qDR6DQFJKrKrVAmOPR5+ZUD0QVlcg7pRcGLG2yUzluQZAyQB1ClH+2LvQiNTAm0pjNDTuQfLXBuFBEib5OMrSAKmtGHXXKNCTfrKsjZZLMs8eDoYsqQWrcJO96I25Cph1CapSQBe2NUk8/iwDC3sH1kHSD4heDi1m3T7adaaot9v2C8yOpA5z9S2A/PHujG5AfsrbLreT6O2eQ3Jpoqpan9V2SahyNgDQttDKM05nyjkqjMIrcpqUthReKgt0oZdQz/4ushsYk+m7ByS0o33KnIbbs0LaHLjUKRP3gXEtT2SepTZcIDM2uVMVgvInraZrDWA7CnthVdJPXaVUYsUjuVw9NopaVxvXSTxEDx5v8k8Ji2ZZUGjJF+nZT8ZByVAZtJAJBPCwZAUZjuTUDpHW0qXHUuqsp1JcFBKbdogc12EXU2GrChXyCLK0oVc+7RL8i5CIsuAbjEhuFDlkGvRHqm9xJ6sI4FJQMHMVCNzDZkrGwIvYFml3L2BAhgcBQelBWQ4sg4HJ4VZi0Qdm7ndREVmxYD9BMbKLh8Y3ftppmxeQxLoXzOJxdKbHjusD3Pep6CG76lJ229Sa2X+CIN2yCgoZQbdm4SUGXR30mWzhl0/SEXG6rYOkNTeBPhwtIM406cLr/IhumySDu8LWXTr8AGps3apq0c37O4RtE1WAZI+CY5eqJWBkgOR/gHmvLR9UOOAbBEg2ae3LISDJgEyBGYrE1BaoS0Fcq3Q1kZFKjOKAADlQCm1sBmuYIA0qjJXJps08ypkPiBjIVeuKmPtkjI3IVdegdI5rRvwaaU8NYlOhnwy98KuEkxR2t9Fce+qcKtLgrLXlAOyPFuNHZA/mBycBuknCHph1jYbe9gbFMMfVpGed96VqS5ZZybeT6O0eQ1JwT6b1GTq2uWq9jf1IzzHXPYJAOBgyNRk1gK0NvNPagW0YJJ46Ng8NwBsBTVJPrM8jKrUVJZ3/WgjGm7lUAR4m2TxwjTzP0o75qpkCTodNh5r21OQBoZ+Yo4HyKyDXBtIUXcPAqJThQEgJ3phmJWpSQbEIpHHwHCypzwockgWn8W1GVxNSm87B2TLLnv/IsBsZ8KEV6X9JEBaVWl6ERagdOFJpSEyFIDUJolHAy4UKJRiIX7Zv39uJORKYwfTxNpaKb/92nb3yNqZnZqNqmM5WwbQAfJJ5YEyy4yqVDUVOe8ZDdRjMcawKOY/jYZbI4AsAbM6WYciJWGXj1g3JmC076eZsnkNySYv/Fj5qm39Yur9ztsUQnPCJ2Gmf3IvL4KmtNC0oBTtjjlI5UC7Y47twQdlbmusSjpVaQZdtiFYC0wANUk79PJh/eY4HElJ2lCTq02zVPhKQLY65ZdIAMiuA1cckBM95bU/VqlJDkcCY27DtByUuVIVoIzf5VzpEhgBDsu8QkFKD45VwOSAVFqgrc39IFXJAQlISKEhYEKuQgjkyrAt1yaZJ1fatlUzNVmRUU1hdKgcujsZDbnKdsuE8UlVWvXIJwA3AFU2S9Q+Q5OAzjWyjll21kEwjVsBS/PM+vehGIDfV5H+OMP9AFn0g8y8sGpkDtSqZB07xGIpWScSZq16X0zn+2kmbF5DMrS6xJXYzYzViKZy8+q+ey76JLxQWAFGWndzzlFIk/kklCy+S9qkHpUZmEppByKwQ9rJDKKNQnHGjIORqQpaFu0i1OpCrm7AgI5brwRkkNXKBwsIk3XqAPlirrzwqpe4o4CuUg6GEwyS5l+4Xh9yrVOTsXbIeLhVMSDGgdlpSQtICaW1BaRy0Cx0VQFKU+eRDJDaJu1YQGZmMPRc2zZn2TIVJeqTy/rngvXPFe2ON/tMOBONsglcOld+Ak/GgJlpaJvpSmHPfBIQmbahVfo1ymE/yzIHRtOmXq6QcBUZwtHr9sH7QjJAetO4ueUimzVb0CmFWcXYQgPGsQVFP+BgxKi6PpGjfj/NhCVIMutX8xmmLXCqGVlz2iemJj0FqZSXxINWq5wo352EaAXAVLlRlRaWWkkIAicAoB2dXFc4QNpwG22jzuTU9kjKkgBJ4ddBAWkHC+ipIhxaStYZEJDdXGMyLwNyspdHwRgLuQ6SvANUJOwE7ZC+ciwDs9OSyJU2n1Kjk8UASXAEuJIEFDKZgdonoWjCaANOAW0zZpupyaYJPEWfwraZy5TgmEtfcVoFmU+adsgMGXLkDpRCCpPsk5v5TpEJqFw7NRkazVYTgyOBU9qRdaKA7ATTvEXaIeUCC0MLRt4OWTnLBz3fERW5K95P023zGpJN49pTuWmDKLFBvmsu+MTVJHQRcnUZiFZJCsC0T8IHZdEWmblPLfMSLDkchUlvNeXDjuRAAUZK1nHtVFk0vEpjsYYDBdROe8UUo2lD9PtGUhYrAfLFXjlB58Ve7sKrpB4ne8oLqxIgab0XgeWoIVkdalUeIHtKY8yu51raNkggDLMCgBSmMgEAmVDo2PZJpyoBCGkm2FL2mQmTxcLM16YJPJkFIqlJapt0cFTSDrxvphjJJ2FCrQDyyRwZMjuFWxFmJViqXCGrGgcQvM28DEcDbxFJ0gknB6flMci23dakHTLIZnXJOqzNnQNyJt9Po7Z5DUl+M0tKxX5WhQvqwgh15VBRbr765KlJO5s8JfFowIRdeduRylx7pO7B1Gy7kzYTNjdjwoawBAqQVpgbfiwGRwr3RrqAUOipBMhItw8tJLql0XQKQPJ9XaWibY8mcUdFATnRIyWpGCiVg+NkKfwaaZOk8V0bQFJySLIBy6sgyf+NOUCaMHCnlSG3oARg30xxUEplVaSQ6Obaqko7+bK0g75rAUlqErZtkmdR62IZmtq/tZu/FN1JP4EnmK5NO7VYqEualUbnyiXxwIZaCZQ618gn4VJ2KHmHEnHINLv+fHsVHMvdP6QHSNfVI5KoQ/CsHTQgFmblXZnYAOYz/X4atc1rSAJ+WKCkVFB9s+puIj8fUH9TY9vnk0/GGTPXHLVDmoJFQo/3ne0O0J0sQKnMmJw6Z4AMYAnYUGyVSRppp2iX5KA0odUi3FoMydUHkExRVo2mU/RrZAMFsCxWHmJtAsjJXh4JucbhmCuaKUS7lzJ/OfcDJYdkLovEEmmTcQAflJ1W0SZJQHShVqXRaQUVmQpQmq+SyCwgu8qEXTVMFxBhk3iUnoKabHdQmvxbmkmHtVJe26Sb05TgyAfgn8w9UOaTppuIyk2XFVKV5nhbQcmVS9QxjyeLeFTAsQi1kprMXGIRV5BZu4VswZj5XNgp+kjyWWqC7h6xMCsfMYqHWYFd834apc17SHKruplTPV9ofdXVPPLJhVzdi0oVma+6GIlHC1mEX9sd8+ICIFRmPqVth4zBEqhXkqQiCYy0TWZl9Sizov3R+lkJSJbVWj+aTgHIF3u5AaBra2RtkAEgX5jMo3AkaIaAdMsMjFoVY7lq7YOyKSSFHU1HsLFZc2mUEQ0SQGDkwPQBWdHpIQBlJjJ0lUYmNLpCmX6IMGFXAQlhM1ylNkk8UTUpeu55G6g7iO23SwOC05ymLomnU/E6DUDpZ7VaWCrlOkKKXHiHu7ZIN6BBZG5INxar8Lt5dFpRQLpZbHiiDk/QYctybKHtttQxkZGWXwl0CXbTYIO8n2bKEiSthVlXwNQgEMviqgpR9gtZznWfzAJTk3ZAai39hB2tehagdFzHdPdodYpEnQgsyWqTdgAfjEF2q1ORWeaNt1rZBsn289F0YoMFuAHMcxZeZaHWWBtkDJB+yFWXPt04rj0zwovW2gOiDmBJ22MmpXBNwgRHUpFmDHEBYcdlJWBKKdDJpANmFSBNFm7mMm45KDNlFGVXmH1SmLArhanNtJMCSsNORB1Rk5lp+6bBBSBt+LXB5N9cTVK3D2nhqHgIlkbisa9YmqVG5wJKapjB931YFs+kf81JVcayW81oOrzrBxuEvwaQlMkqFywYvB2SZ7PaZoRd9X6aCUuQtKYrlgcxfpNj5+sHl7r1ue6TU5ORtkgwMNI+88Kzk+gSIHv2fNKHpfteFVErFGqljMIYHEk90gwHMQUZAjI6cTLBMpgGSwGTDJATVk2+mKsii3UAQHI4TvZUJRydmmQzg2ib06Qr4Ehm74BtL9Mm6z838BSigKLWAkLZZSnwotJoZ9JrtySjtlMOTepWQqDMbFarzAEppFGVNuyaCQ2lhe0riWo1GQ5V11RN0ljCLFGHAMnDrv516llQ9mzfSAGR6ygsyXgfST/sKlh/SZob0mayZkW/TT6NG0/SqQQkqcYm7ZBhf9/IqDqD2FTfTzNhCZIDWuxmNandVD0MySdeoHhRaZn5tcm8ZxSmbBlFKVuA6pnuITor2ildX8msUJZkoZIMVSQQ7yNJ6pHBEdbHSkDawQL8iZOrM1m98CpTkC67tQaQtI2DkUDZzRW00sh7ysGRlg0k7X1SxaDnsfbJ+O0SblBzIc0IOgpmODjDHh+YMpOQUmBSaWSBiqwKuXoDGJhcGwNHoSGDsCvBUrosV6MsMw1fTcqWGYlpCDXpZqcBkLGZZ7J29atU24EsaAQo0+XDhyXNVFN9rW1mrwWj30+ymOYqnPPU6+ZRBUhK1AnCreiMme4dNsyqWx273i7aJGufEOs7XYdg2658Pw1iCZINra4m48KBNceO4ibPJZ80mJqkLiEUduXZrgo+KLUyy7adklQlgKCPJNx256sHyUgfySzz1SOb7cCp3joFqYu+kNTVg9RSbSary2ZVXvtkLEHHhyZTkbkyMFQauQWlUqabAcGRwEhtkwBK7ZPmugXhPwIXC7dKaSAkpLDqTZhbSIOQKwFl4SiUMN/dB5AAkLFJsjMpWDarQiaEgaUU6ObKDPqtgExmkEJDwcxFmWtMXU26CcCVW+Zh1zpzYwfb6dtisASMyqwyAqNZjsORq0fTRtn2unl4fSE5IO2AAX37Q0a6M9XZbHw/DWMJkjXWtCbT9IZOd9x+TvrE1aSwA57DtkdK6YNSKwjVc8sQwqhKCrEyYAIWmtzCfpIs9EpzEjr1SIAUooAjhyYHJFgmq/aTc7iapEzWUqJOkKDDs1jrQqw8vJr3lFOMPizLcIy1T5pr3kBJAn47pCq2CWqLFAKyJSwsDSi1NuW6MN01YpZJgcle7q0DcLOJdBWFXWHbJYFuroskHkyzmmyx9ZYZIlG2WSXM9pMUufRCr26OUzbgfghL+0BWDkcHwAMjAA+OFGp1SrLdLrp7WEC2FrBQKgOkA2NNok7Y3aMKkLPx/TRVm/eQHCTVuE4F9Ttvk4fCS1KZpz65Nsis5SXrFF1Beqa8TfXXkpIwzAuvgKU2fR5Zm2RVuJXaI7UQoL5eCAFJ4VUZCbkyQHqDBcTaHzkgKxJ1QiXpA7EekDy8SqrRffZ8OJLCBILEHfvO7ju/ZK5ZiJVuX7wtEpBOWVI591xI4Q1rChAgfRU50TMj9nSVcmFXJcHaJYskHhPKq1aTWSZQmkYrpibZ5N9QdgJwVglDu2M6prD2SaAAI1AoydjsNDpXJtRK5W3YVUgfQt40bny+RwZHrh79kKvt5sEnBWeA9Iedq07U4WHWKpvp99NM2LyH5CA3gTci93sYqpabnH8++yQA80eoei7sqqVVj5TxKhSQ92xEVhYhV5gyDpYAQJmXBE3+fXYfhyLssnYvzpaDJ7KWC7m67SEgI4oxN8OEOjiaZJ1iMPKwHVJp7ZTkZF70eQy7eIQJOt1cueQclXMl6UPRD7sWYFSar/t3jtQl7xsJwAIQEFYNSgVoqUuw1EpDtqTtsqHMMHL0TFj1SaAMAWm2GTDRqD0Uds2UghRmSDs/iadeTeYaaDVSk6Z9G23KoDZgNBW4YiLwLPf9zV3CDlzymM59BclnpiGQxozPZcnVJJ/3VNph8mSnBckSeBwgXWJO2y0jkrSDtlWNWQe61S6W2dRus+n9NBM27yEZWpM4eezGTzW0MGx8fi76RLBz02expB0ooyRpu9EKsgi52qxYwZYBFND0vlB6y5pB0qlHG14thV0pkScEpNJOueRKu3kduaqMtUPSPJA8/EozeYTtkLE2yJxlrBIgKbyaM3XJM1tJWQIo95kMkkio+4ypq2TsstnQn4Wldm2SPiwBCfSUpypB00S1pPvuXOgIIA00MymdmsykcFODSZbEk8tiFpTGapKGQewzCo+gAQbs9RA25Ertk6FRwo6WZrSofLLr1CPBEiiUpsrLzyifvg1AJRwpzEoDrRdqshg+kQOS2iC99XYRVo1msmadZtGgyL5RvZ9mwhIkA6u7MWHYcVA1NpXvnU8+aaAYFcUuOzUZglKblHxo4VQlXBcR+2JhsCx9JwcjfRIcbQiOh1z7AZLUowNlpB2ymPfRtEkqVYRZcwtQpcN+jgEUeSYrQdGGWOsASe2TXDkW3UEKAPDP0jVj2wmY2o1aJF2IlcMSgFOVAJBBIu8BBEqyLlum/pQExsle7rZN9pSdk9JAUSldqyYzgVK/Sacm2UTM0VF4WNcPCr+KFpvCjdonw+tEbZEWjGZbDhVMBO4mA+87jVsBRpFlnqIM+0cK25/TqcVWx/aDrAAk7+oRy2SlcfViz0Plnl33fppOm9eQbFoT4Y3H4U3nZar2NTm/U1ANj58XPvGwq4JJ5LGq0YESAA3r6VSlDbkaZ1QBQheCDV5nLNTK4RiGXV0bZB9AkmLUNrRqXshmnUKrFGalkXh4mJX6TcaGlusxOLoBCgJAGrVoAMnDrxRezfMyHDkY+0GyuGyZKyPYaEW5KmAJG2LNe2Yg76wlkVulGAOlkAK5LCoBAFeSBSgzKWylo5mazHXRbzLTBExAC/RXk5n2un5A5U5BihZL0IEPStf1w7ZBmm3STNOFApio6f5RdP0gUPpwlKxNkvePDAfhF+0CllFAsq4epUxW9vcyTMLNqN5PM2XzGpL9YuT9LFZDGqZ2U/egzFefvLCrbEGgB8B2/SBQ8rZIaf4zqlIBIjPtkByYMTgCrm2SwxGAryArAKnsy1bBqBRSigUozbLSrDuICkFZdBNRmuaGLE93NRFRkpSo4/o92jbIWPtjKXGnl5fg6MKqXteZipGK7HZpYUmgJFgqFmLNIAEYoIegVAoQoujDCQC5EN7v5KD0tkfUpAGk7dqoTHKRg6KmbTaCr0WtmqTEMJ7E48KurbZXkaTnlp6yUtePTELnCkrZkCsDJgBv4AsAxQAXgAdGAE45Fgk7gXq0k4VLG0Z1fSHt9FdRQLKhFXXWdpmsdZMo7+r300zYvIZkaFU3K4yne2HBmuOqLFaD6vfd89EnczICmRmXE1oWihHw2iLNAOkAIE14zGRXAKJm3FYCJ2UTcvUYwJEDEhaQpZCq/VQotmmUw6wFFOFUpOtPqaqnu/LGYQ1HzgmW/UEDCkCakKvywMjh2ERJEhQBILfLMthH491KADlUCZRaaTPqjBLQ0vhpxjE1lQcAHhT5PwrBkprMlY5kuhb9JnOtkdnKjAYftq5eTbpQfatlknjs+K2lScD5tTFPoINeqeuHXVcs5AoAqOhv6bp8RBJ2CI4ik+U5TlvtZoDkYw3zrh4NBgyYje+n6bYESWtNblxsf3jjBjlPv3LJJ1uWt0+GCTtheUracbtkMX9kaAyMAEpw9NomeWary2KFCW1q+yJgnxRmVbqczUptkDlTkl0GynBeyHAuSNru4MfaIRVTkX4fyXpAxuDIQ4De8H7UZSboquBgyRJ7VA9RUGqloYQGXJKOiZlLKaCEhrCqMFSTVHHw4Ql0g0zXmJrMNcwMIYBJ3umnJrMWoLWDpWizdkgwOCoFnWVmKi2axAZwFYeqrh9uPFdZ8XwCfntkpPuHsO2T4RRu1P7opr5qd7z2SQ+Q1Bcy0tWj7m90Nr6fRmHxbIZpsm3btmHt2rUYHx/H+Pg41q5di+3bt9ce8973vtcMZcX+rVq1yiszMTGBD3/4w1i8eDH23HNPnHbaaXjqqaem7O+w8l1XLDc5d7/vTD4V8AtVngNY2G4ogmSbrBX/Z8u58mF4NQSk/Zc7GJbbIXmYlbp9aMABkCfruFBtoCKLf/UzeVC3jmIwgCIZhytKGkBAs/bHGCC1yqF6XWiloLpd6NyMfau6k3757iTbZ8v3utHz0TmL9lCTUBS2k7rs1iADN6qgg4oDJTpRNjEpfGWvk7L3QtlKjQLdE6Ym6RnLisEh3DPgjaqU+eCxo/EUYOLzMZoykvVddIOOt80QcbJjpqzKFtpRcew/vi1bUExplbH5IGWn7c/a0VkA2VlQBqQdUccBst2JAzIy5NxsexdM5TuHtZEqybPPPhtPPfUU7rrrLgDA+9//fqxduxbf+ta3ao87+eSTccMNN7j1TsfPrLrwwgvxrW99C7fddhte/vKX4+KLL8app56KBx54AFlWE1qLWBgOGMaGrVFVbU8+xQ4u6nM6a0GYjI9CUYZtj5SwE+v6EZ6zKrOVslt5Zqv1MVe61A6pbJiV2iiL5B1fRRbh1rKKDFVjbJ2ryFiYlaBJw8/54PQBlvdM70Szroo+fQ0yXL1h/QJTCJJYVAYFafSi1BCKupPoUtg17ylTQQ7UpH8tFHIlmcIElCwGbvDbJ8vdQQpAUmUmoiZly7QZau2mbkOLBrlQgMydunTqSBZ9J91cp3YMYZHZ2WmCZB3X9SOS3cq7gDjVGI4tbOc3Fe22W3eQZAk8cmwhG/yi40/nVtEXcja+C2ZaTY4Mko8++ijuuusubNq0CUcddRQA4Nprr8Xq1auxZcsWrFy5svLYsbExLFu2LLpvx44duO6663DzzTfjxBNPBADccsst2G+//fC9730PJ5100kB+Nrng/W5ouK9pwkvYpjFISGE++uQl3tiMVwhZtEnGAiNVoOTnimW3VgAyJ/WHov3RC7datULJOk1VJIVkG/3jfR0jKpKUGG+H5FmsXPEBPiDLIdf6DNc646As+llKCKVtslQRdjXbNJTNkeFqsu5aEDTpOlZ1B2nLSAKP1qabijZh13LbpHJt0kIrN3Wby3YFC7nScg/QdrABKAu0XtcNkWhmlAH4DDXeiDv0SHoTLRdDJkbhKKVpewxVbqBoTX/HyHynHJCsL+Rsfhc0UbnTZSOD5MaNGzE+Pu4ACQCrVq3C+Pg4NmzYUAvJe++9F0uWLMFLX/pSHHPMMfj0pz+NJUuWAAAeeOABdLtdrFmzxpXfd999cfDBB2PDhg1RSE5MTGBiYsKt79y5c6Df0rTmwmtYsS4U4XmahBySTxV/JEICmW1/pN4eaJjV6jkTwJG21QCSFCKB0fV/hHahPo16FVkMVWf36RAAKgoFoBhCjgYhj02gzAcxj4VZ/ZBoGZAcjlXZrU0ASqD0z2dnvrCDnpfUpPLh2bTiUErgYd1Bukq5BB4+jVatmpQFLLU2s9JAKwPNdhHdKoFS0RjDOZBLQGZm3lO0TSMpAbPVdu3loqKPZO3sNCEc6TNI4EFnzA1W3hSQ9Ftiy01sNr6fhrWRQXLr1q0ObNyWLFmCrVu3Vh53yimn4PTTT8eKFSvw+OOP4xOf+ASOP/54PPDAAxgbG8PWrVvR6XTwspe9zDtu6dKllee96qqrcMUVV9T626/mE6vRNLmBvFY2yPmTT1VfUE7WESbng22zL54+Te5e1w/6lJHsVsApP2prDMOsDpy6UImhinTzOmrbJkfHuvZMP7QKwE08XAlKVb5aXEVSWbPdB18/QPbLbjWXrOj+UVk+6E+plIEf7ODdBESnOnWR6QrwEYuKa0IVCUB6CTwUcpUKjbqD0OACeZWadF2QABd2hX3uKkDpJvpWmQm/qhxC2u5JBEgUgCyNKWyvWbEcgDGj5WIycEjKbs28/pE0SIADIp/eLSN1WT2aDtlsfBfMWiV5+eWX9wXO/fffDwBuxnJuWuvodrIzzzzTLR988ME44ogjsGLFCtx555145zvfWXlc3XkvvfRSXHTRRW59586d2G+//fzjK89c8X3TXD62P/lUYXxwAMp6DUBpzlXTHsnPw7qBVAHSqMaiHTIWZqUwLFeROQMVQYuUJy0DcADII1DMGQgp1Op+YyTUqvj+AJA8zBpaDJB1oAwBWdVGqVRuszypHO/+AUAWsKSQqxDabVNKAxm8axFemzDkCtvNwyXwSErgEa6yQ91BzOAHVPkRyAI1CR52BQp4ChsblsUQdQIw7Y722gklPVgilwyidG3b7lqXriGBEaiEI0jZ8u4fNryKUEHafpClaa8q77J9NhpuG/QcUyk/a5Xk+eefj7POOqu2zP7774+f/exneOaZZ0r7fve732Hp0qWNv2/58uVYsWIFHnvsMQDAsmXLMDk5iW3btnlq8tlnn8XRRx8dPcfY2BjGxsYqv2MqjchT6fMz1TLz0SdXY69SlEAJltVf4PeRrAOkA6AufOLJOkChMsH3W4ABRZ9Ks8xUYQmUylun5TyAI4dhaLwZNhxujpa5ioyFV/uFU0NAVpV3Q9e5csopJcp0pZArGCO4wgzhyJd7SqMDlEKuZG57RQKPgD9UnQzVJGV62oHzBc/8bNnntDdZgFJmLuwKlZVhCVhAtr1ZakSYuUNJiAyMpWWCI+/+QZOEc0C22kUGNwcmZXTz+4Xd410wUzYwJBcvXozFixf3Lbd69Wrs2LED9913H4488kgAwI9+9CPs2LGjEmYxe+655/Dkk09i+fLlAIDDDz8c7XYbd999N8444wwAwNNPP42HH34Yn/nMZwb9OQCm9kAMc2zsmLBc8qneJwdKPog5lWkKSw5HOrACkGGYlatIgI+6w7oUAF6o1ZVTbLlGSZLlAQz7zfPYr1yTMVlD4+qT94Psl+XqzhuA0vnH5ksEzPWgLFfvd2RxUMbWKfxN4W1SqrGQa67tdF/a7pOBmpSmryRY2NUpRvig5MPW0afO8zIsAacmtawYzai42O7aeXDkfSMpo7XdcZOEl9Qj6wNpQFl0e9qd3wUzYSPrJ3nQQQfh5JNPxrp167Bp0yZs2rQJ69atw6mnnuol7Rx44IFYv349AOAPf/gDPvrRj2Ljxo349a9/jXvvvRdvfetbsXjxYrzjHe8AAIyPj+O8887DxRdfjO9///vYvHkz3vOe9+CQQw5x2a7TbVOpwTQ9dtShi2GOnc0+ufIh4MCgJ2XtPx0ZXYcAScZDc/x7CZYAhVspmaccanXllb9ORuV6DQAZU49hN5BRWyxc2091hsfUqeBYmTAsTcukuot1e6xLlCraJZ2vurivpmxR6TEhWHufqY2ajbgU/Sdbtu2PZZxSu2C7wzJNKdu0U0x0zOd3tOv+PjZJ8tgC0+eRzf3o+j9SeDXrxMOrfKg5HnLtexfsNWtYbtjywxw7U8pypP0kb731VnzkIx9xmainnXYavvjFL3pltmzZgh07dgAAsizDQw89hH/4h3/A9u3bsXz5chx33HG4/fbbsWjRInfM5z//ebRaLZxxxhl44YUXcMIJJ+DGG28cuI9klTVpcK4rC/i1zUG/L/nU7BxVihIon0/wgc69HWXIAr4apDBrqCLNvqJfZMxCOPL2SADIa9RuLwBJCMyYCSmAEYNS9lGO02lax38LhVgBX0lSWJUGjYu1S1KAlUKu2h5H2a65MlN88bZJ1w1EmJFuPDWpeubZabWAHiBaMMk5KvO6fvBuH4LHg2MdJIFCMdplnsDj2h+zzKlHUrtRBUnh1z6TJsdstr4LZspGCsm9994bt9xyS20Z/kewcOFCfPe73+173gULFuALX/gCvvCFL0zZx6hP8G9W3U2rKjtIDL3Jw5F86uMTByUHpm2c8wAZW2Yh2zDMyr8fKFQgJezAbfezWsPR8PLghc/XmwCwygRNSyUF8rz/earaD+vaFavAKHgosMamA6z9QtE5a9Ps1y4JFIpSCNMmSRUhIYRTk8KqSWjp4GKew14k+1WZ0KvOgDyHtgM1CMBm+MriOvXrPhP2i6Rtkvpa2tAqdVXhI07FAMmHncPceRfMhKWxW5k1vcmhebVKsHBNcN66NOomta7kU3k7/wOLArJBH8kYIMm4igTgtUE6HyrUDrcG7CpZSwpMsvVMCnQH6NsvpOlzaLJJ/eSaGNQG6tYROUcVKGPbaZLm6TKuLEktAqhtlzSZqqYsT+ApEnqATBSzgmihvLkmkVngKBhQqp6BkOpZBdhxShKAU5YA3LaY+W2SQd9IUo5sVCA4UAo/GYfaIBkwyebiu2BUNu8hWXcThsmoipWve4hi25JPw/vkQEnLQLHOtwXrBEiyUEWC7XeKkn17HSdDBTkVowmNUQNLU0YDeRF+5eAz2aLVCSNV3TqqAMvX3XRZNO9hQ5AOYzH1zUOtudZoubCraZekwCZx1MtYFizbVcPByFOTQjs4UZiVJgT3QKkVIIRTlbDJSx4wq4wPIABE4egBkqtHUpSxkGvF182Fd8EobV5DMqzLhjdmkJvetBYUlkk+Ta9PTlECZVh6J4i3X4awBKjDedw8RQldC8s6y5iyCpeziOoSwoRXtRIQdvQaLYXJDLXeSiGQQ5swrPLDqVVKMgQlLceOicGxyvh+4SAgaoW+lKK2T3Wdee2+ATh5u6RTkSzkSvAUMTUp7TOmesVMIXnPAyVoSDvbZcTBEii6fNQMvEBGYAQQDOzPQqtWPZZUZQ0g59q7YNQ2ryHZWJ1U7K8q2yT8EHtAaHv4ICafBvPJbW+gJJ0qDJxwnc0jwERk+zCWCYEu+4U8vBqCkWCZKQElDSCjA7VIAa2FUZAwySgAB5N5CUfGXgCAqHrsB7/wk6tIPnWWD8ri9xEMhRQmDCoRhSNdk/CzzvxQa7HsniMNH5YoYKmhvbF8aWB9F3Z1oVUflHR+/hzS+MJomVeug2ZgfBQobT9dtCOEI4V8w/ZI2t6ni8fu/i6YKZvXkAT610yqHrAmxw7rQ/Jp8O8It3t/RBVyJQRk3984rEoUZo7Ebmyf7ZdXrAtk0iDMgbFKTUoLFi1sJNC2QVqVSW1vpCYV/PBnFSgHsRIkI4AMVaSUHIjCA2b8OwSyIRVlzIyyNPedumnGQq5CCGSwzxPvVkRhV+Oc2c9BqWWhIvnEzVRZ03ZC8PiP9T5LA1wQHKUfbnVtkraLh9s2Dddrd3gXjNLmNSQF+2xSk6mLxVftb+pHeI7k09R8itV4EeyP2VR7TwhRDVMDS5hRZIR/FUIQ0nqoLjMpkOsitBoLuUoAWgtkLYm8ZyY6zqHM9kAVhqB0Y4y69f4j6QBwXRWqAFlsK6Bo3vVmmbYLq5L5cuwatQI12eoDWmqPpFBrrjRkRqHWYqAfDQtMezqewAPAD7sqGAWnej4og+nbNIMjAAPNCtMBJGNwLIVcuXrk2zG33wUzZfMakk1ucqx81bbw4RnUj6YPXvKpeXgm9sfU178hJaMY8FdJYdoNpfBDiKF6DLfxkCuFVklNEhCFEjDvaT/smrUy2Kk4Cz9g2+C8NssCliLLXP8+91sz3h7ph3KrAGkAWlaRsVCrF4KNVCD4J7dBFCdLgnXtkhl7YnjI1alJApWCCbsSDIEClFqZa6eDuU4JmoNkXMfgGIZdgxF0yBf+6fzD3HoXzITNa0iGVtdYHbuZsRrRVG5e3Xcnn4bzqd+xU1WOUhiVEghDAz+pIbUwA/y4TxP6zDSgpFEySmp0FZxyzG3INZO6DMgaNWmFDARXkU5NFgmxWSuDUhKKwTKzgOSwDKFZZSEcaTkEZNaSDoayVYCwTkVSqDVWcSh8L29r2sNEuyfWmAu1auFCrkUCDxyohJHlRjVaNQmwipk0/xEsvSnc6vwJZ6YJ4cizWVlbaSy8Oh/eBTNhCZLMqm5WVe0prBHFbNhwQvJp+nwSfco0NQ7CEIpksjbcCqgg5Cpt21YIAv6vAGdZTWat4qWb9xSE1EV4VQozibE0g3dzUEoAaLWh7ZiiBEOCJWQGFclw9a4Hb9+sgaMHPqsWJQOhbMm+KrJaYUu3XNwDttyAljx5J76/rCbdMlAGpVWMQisHSyjWDhmGWzk4ZagkfTiW1GMQXvX8rlj2vrpmXxObje+C6bZ5DcmmgZmp3LRBVU/T70o+Ta9PXg1XiMqQqxTC9XuUMEkxwjZEkqoEzEtb6QKISghvvNbwnBRyDdVkp1XvfdfCkMKuDpBKAC0J9Myci0Jqpyi1EHaaKg2tBJSSHixJQWYckA0GCvATdOKAdApSCmRZRFn2UZF0fcJQNC1zQGbecu1lNL9TW2VjKzr0WSTzFGrS3DjpGnQdKCmLFfZ5EnZi8Iwl7sSGzOZdklhGawmOoXrkZYewXf13Nx0+jdrmNSR5OIB/0j6gfHOahBHqyqGiXPJp9D7FTAo/5Bqux0ygHGaVMCpNQJg+d3rwkKuZfWKwf7m2MLRGiTqgdkkAQmkXenXzM/bghm0zYidzsAQK5dhklo9yN5C4evTgZwHpQCkFZCYbqcg6aAKFKufrxf1tWjU2RsPUUZarU5BuHFf4oIwA0D1OFmY8cSc6XGJV0g5ltTL1GH7HbPy7G7VPo7Z5DUnADwuEN53vj5WPbefrdJ66mxrbnnwajU+DmgRg8l+MCpTCvg/tiR0gBaBg2rBonUQjz2hVtisIhVxNSiW9Zc1nrstqktomx1pxxTAJBW1VJAAvozWDhOYTGAttvq8F0/ndqkoATlkCgLIE1XUjwzCjNksORwAlQDoQclC2irZJb3+NigxDrZkrz+6fCADZIPTKze8iYmpEbhtP1qkCZZCwQ9Z3oH376bVPxrp9YPf4u5sJn0Zp8x6S3Kpu5lTPF1q/GlXyaWZ9IvU4SMhVsZCrEtqpSS1Mv0chDNigEFWTbQBQftukFAJtKSv/Kid7ymuf7DBoToKrSLgps7TUyHsm65VCrABAkxwrpYsO8AEwzXmagaXo1lGEPEP16EDo2iALQLqkHru/ncmBVbW5jsJlDbv7FYRhm5jS2gGWh1wzwdSkuUD8IphNMUUZgDI8xjuelCNtk5HEnYF+Tdx29d/dVH2aKUuQtOa9IO3nVG58eL66sES/MEXyafQ+cVC6ZSEgta5Uk+VloyYl+avjbZOQQBfNw66dKgXZUyVQugmdrXo06wpKwQxZF6hKgiWV5cAE4KBZf+2KVxaBEUAJjtG2SQtIUpCyJV2YtdOS6LRkpYr0tlkV6dQnATl4m2aiUKhV3PQUJG0DXMjVmyuakngkzOjpDJQAfFhyUAZqspTVWgNHgamHHGfL391UfZoJS5C0piuWBzF+k2Pn6/dA1a0nn0brE+C3R/LleNkCmlobNSlhwKgETBcCUpi2bbJNodXcB6Y9I3jYlSd3TPSUhUY59MkH+c6kwGRPoQt4ilFKgbynoKW27/HMQFJrb8JmIQuAAgaaEqJ2IudweDnaRsPKldsmTfg11hbJFSQHZKclMWbXzb/M2xZTkRRqNf/gPkv+D6lJPDVJ6wEozfYwkzUSvg5DrQRH2haox7n0dzdVn2bCEiQHtNjNalK7qXoYkk+zwycygqNGoQ6r1CStC2HCqEpopz5Nur/JfjVJJNJkorpwKwemgWZbVoMSKM96kUmBiZ4q7c+kwGSuIKSA6imrGA3sPFhaZcnDsNrOyaiUhsxQCjlrB18fLhyKtN8PvRZdP3i7Iw+11gGyNtRaoyIp1Fp8lpN3hCj8rzMznm8EtmH7JNB8vL+g+0cdHBudjnwNts3Wv7td5dMgliDZ0OpqMhQWqLqRUw2NJJ9m1qdBQamtXpDaQicIu9JJlRZu/LMuGChNAXRzZdolSwk9xkJIxlRk+JlLAaV0CZbKKkitaZkBUlvf2fndciCEOCx5sg6tuz6RLGO11D5pwcbBSMtjwTauIqvaIpuoSAqrh+FYuv/cePskUIRcpYDLdLU/2DxPWhX9HetgyQZoiMGRvquJzYW/u5nwaRhLkKyxpjWZpjd0uuP2yafR+VQKvdaAMrNn4ctORbJvaGcSyFUtKAFlBzz3FSVBDyiyOSd7uVuPAdKBUugILIswq8zggAnAQZP8JHjWXm+nIO0vYSHXGBxN0o506o8Dkj5bMgRn5rbTtraUaGcCbVmvIoHq9khC1YC5PfzH04XylJ8Hy4iVun8EYdd+z/9c/LsbhU9TtXkPybqbFW6vKhvbFpZt8lAUr9fk02zwiUBJqmOmQGkGKygAKYVGN9dACxFYKkz2cre9ZUOwHJS50siV9pQlb4skOIbQBCjc2p8ePFzJByaPJu7IAlYcjHx5rATNzAMnAZKHWdtSopWJqIrkoVby1PRptVdd0O+g9f6/2anJ4oc7UPYdo5XKxz55Ecy/v7tBfJoJm/eQHOQmuBpi5LhwW9Vyk/Mnn2aPT/TypBfidIFS2qxTwLRJgoGySCglQBIUpYElyrDkoMwYKDkg+XqutJmAWBXZrW6gAcADZ1NzajKStEPrYd/HEJAtGSrLrNQ2yQFZKEnpwqxtKdDO/LbIUEXyUKvzt6IyEANmqeoQ9olsMgpOBI7h1Z6vf3ezAY5k8x6SoTWJk8du/FRDC8PG55NPo/WJjFRlE1AKaOTwQVmMDaqLE1J4VRXhVSk0uhagmRAWkGZAAQNIBSkydFUx32RMOXIg9oL12D8ADpoAPHA2Nd5XEiigCERmMgn+jUXUJAGS9tN2AmMmhAfIdibRlgUY25l0apKgSVEBUpFhqNVThohraDZ3s7lGVC4EZMN+kfw89J3z/e+uqU8zYQmSgdXdmDDUMGgNbCrfm3zaNT5xI1BmAtDCzA6hoe3AA3BwlPabCJRCaORKILNeCOuBsKA0fRpDQJJqlJBSo5drM+BADnSFdqqSIFKAUUbDrC0p0OsHyWCZLNfNrhYHYvhZ9a8lY8qyAKLXLplJC796QLZJsQqjNCnMSipSQHgqUtrKDheMpDarnoNKq+kL6ZVhNoh6nC9/d1P1aTptXkOyaU2EylGNqC50MEwcnR9L35N8mp0+9Qu/Arb7hwqWpYY2w/GYl7Hr2C+gYZQkhVkLQJrBy7t5oSozkSFTCl0LzW6ukbVNl48QlgS9TOYlKIbABBCFJd/ez2JwpE/6R+utEhiLAQJiYVeuBilJh7dBhoAswq2woVnhQqxSwKlIWqZ7a5Rmc41CzwF/LqNKMgLM2FWdDc/47uLTTNm8hmTVTWtqsRrSMLWbugcl+TQ7ffLUBFOVsOHXTAJCG4UJaeYn1AAgAWG3mZk7jFLrZBI9NzqOhabMLBilhaJEV5lPKbTtmmDaFmlwg1zXhVpVpYrsVcCSrB8oM3ZBYpCMzdxR/CvD0QFSCE89kmrMhPAASVD0YEpJPDIeZhWCluMqkoDpjfkwiFUoyUGUl3e6PsfWlZ8rf3ehTzNh8xqSoVXdLNoexteno2bW70FJPs1unzLhq8oM5fArtVOSqhTCjOWaR1RlZsEoKZzqAGlCsZnQ6ArthWA5LElZ5rqA4FhLYqKnPHVJwATKYVYOTm51oOSQbFUoSb5MYIyFXTkcKTlHCjj1SKCUAgEUpRdizew2ATNTlYA5HwGSh1mbqMh+Aw70e3H3U46z9Rnf3XyabkuQtNbkxsX2hzdukPP0K5d82j18cu1bQKmtEsrAsU5VSqmRR1RlZsOpDoS5Ri41pM1C7YoiQ5XKtKWBqdIauYJTl52W9NRjPNyqGqtICuuGFirKAo6yBMqwPdL1c4zAkcKslAwUhlf95SLEWgfITJQB2U9F8nvN1+usn3LsV4a+L/3dzRwYuSVIMhumhoPgmKrjhw1XJJ92H5+k8BN7SGKSqnRKEgU4c23DrtoAUtptRo0KB786WPJlJYG2Nt1GlIVuCMzqcKvBQRyU/cdZy1jH+aqQKy1XgZFCplVwLMKt8NSjH5I131UAb3hAunvN+4HWXAOuJufiM747+DTdNu8hGYYDpnKOOhskXJF82n19oqmUlDZhx5ypSq0BYVUjgVMKgVwhCMGa/TFYmvZHH5ZKa7Q1DBjtcW0p3HIITAAlaJpt8exWE3ZtNq8kEA+30qdb7gNGWq+CIw+zestWPQoBdxypQddHMhJirQIkgRUoq8YqFTnXn/HZ6NMobd5DsskF73dDw31Na0C8xjlorD35NLt94i/QMAQrNQGqAKeGhWUGA0gGS6XNi17bMG0mlAUh0FUKuTZDybWlMKFWRfAsA1NZKBI0ATilSctAsa9uvFhuYeiVw9BcDwIlW24ARgqlVsExDK3WqcepApL/wiZhVmBuP+OzwaeZsHkPySbWtObCa1gC/o2M1byahByST7u3T3XtlQRLB0gLywKKcHCTWthB1zUEzPigudJoa4FuoCiV0gUQvfViwAAOTdhzEf84PLnl/SOuyPikFgyG/FpwKNL2fmAsr1fDkYCYDQBH8G12neBK94//hn42n57x3cWnYS1B0lq/mk+sRtPkBtLnoOdPPs0tnxwgBEySjn0b5BqemlTaAMt06TD7MhhA8amaqNuH1mbWkFxpdJWZXJmA6QAZWQfgQdPM/mF8jEEyt2WaGFeVMVDyAceL69IMjEWYthqOpACNkqxRitOkHtMzvut8mglLkLQ2qppS0/Kx/cmnZvt3N5/MUGlm2SlEbQam07pIANJMadLIrqQuM20AS+rSJKtkTmFSe6NSqFCVVkHabWa5gKe3PgAgySQjSklJCj4zRwFBOm4qYKxSjub7B2t7FIiDMXx57+rnaZjvGLT87uLTKCxBEv1rLKjZ3+TYYY5JPs1tn8gImKQueZIPAZIyZh0ULVAzTWqwgCcBk9ovCZgAotAECnAC8OBJRhDlFhuqjs+5CMADodsWAJH2+9vLYASGg6Ob27IhHJsox9n4PCWfRmcJkpjaAzHMsbFjBq2dJp/mlk8ES2XhFqpLpc1MIpSVSvCkcKyDpPYVZ0vac2o4aALwlCaycoi1DpJ1Y7kODsriOIIiXSMCm1mvByMQB6GvCqfe5ri7PE/zxaeZsATJBjaVGkzTY0cduhjm2OTTaL6jrjxvu4wBs6QoA2ByQNJckGVoAkABTsCHJ8BDrfBCrYMOdg74ICx+pw9EoBqKQHMw1m5DXDU2TcYBdr/nabqOnQs+DWtDDUnY1LZt24a1a9difHwc4+PjWLt2LbZv3157jBlPsfzvs5/9rCtz7LHHlvafddZZ0+Z3+DdT9zcUKysq9jU9R/Ip+QTAZnoCbWn6HrZth/yOFOhkAi0JtDPB9sHtM//MAODuuKw4ts0+WxIYa5muFWMtiU4msbCVYUErwx6d4t9YS2KPdtbo31hLuuMWtDIsbGXoZObcYy1p/Yb9x30xPvLf3JbC+x2ZTcppSRTbZLHNTbZs2zf5Ol1TYa9vE+U4zL2j9dn0PM03n6bLRqokzz77bDz11FO46667AADvf//7sXbtWnzrW9+qPObpp5/21r/zne/gvPPOw7ve9S5v+7p16/CpT33KrS9cuHDa/Db176KmUldjqSpbF27od47kU/IpLBNTmJkQNuOVqUf4KhMoq1Gw8rQM+PuAYr/xS7tBAsiqhnLlxQR7nXnbmUI060zhuX3lTFSzHA+l0nkHCafOt+dprvk0EzYySD766KO46667sGnTJhx11FEAgGuvvRarV6/Gli1bsHLlyuhxy5Yt89a/+c1v4rjjjsNrXvMab/see+xRKjtVa3qTQ+M3nT758eG+2HdWfV/yKfkUHkuj+tS1YQI+NAEfpGDHAALKbo0Bkm8n69dlkoeo+JBucVAKf70CfrSvBMvge8JQ6q6+d7PxeZrLPk23jQySGzduxPj4uAMkAKxatQrj4+PYsGFDJSS5PfPMM7jzzjtx0003lfbdeuutuOWWW7B06VKccsopuOyyy7Bo0aLoeSYmJjAxMeHWd+7c6ZbrbsIgNRuyWPm6hyi2LfmUfGriExBXmGQmYUf3BSf4Ovz1okygIhv8EsmO4fk8vtLk25kaLCnAZkoxPD8wO+9d8ml6fRqljQySW7duxZIlS0rblyxZgq1btzY6x0033YRFixbhne98p7f9nHPOwatf/WosW7YMDz/8MC699FL89Kc/xd133x09z1VXXYUrrriitD2U6+GNGeSmN60FhWWST8mn6fIphEM/cAKDQNK3ktIMfCELlSC8feVjSsqR9jfoprE737vk0/A+jdoGhuTll18eBQ63+++/H4AfZiHTdtDmJnb99dfjnHPOwYIFC7zt69atc8sHH3wwDjjgABxxxBF48MEHcdhhh5XOc+mll+Kiiy5y6zt37sR+++3XuJZUtb+qbF0tKCwTnocelORT8mk6fArDjQTO8vlEkeEaO3/py4XLhK17mfL5Gav+7MPQbEwdmnMV2+fDvUs+1fs0UzYwJM8///y+maT7778/fvazn+GZZ54p7fvd736HpUuX9v2eH/7wh9iyZQtuv/32vmUP51eqnQAAFixJREFUO+wwtNttPPbYY1FIjo2NYWxsLHpsv5pJuF/X7BvW6r5j0PLJp2bl57NP1KYZmuiT6hkeQ6q0yuqAV2f9Mk7n870bpPx88mmUNjAkFy9ejMWLF/ctt3r1auzYsQP33XcfjjzySADAj370I+zYsQNHH3103+Ovu+46HH744XjjG9/Yt+zPf/5zdLtdLF++vP8PYCbYZ5OaTF0svmp/Uz/CcySfkk8z7VO/JJdwmavSqvM19anOZtt1Sj7NDp9mykbWT/Kggw7CySefjHXr1mHTpk3YtGkT1q1bh1NPPdVL2jnwwAOxfv1679idO3fi61//Ov7sz/6sdN5f/epX+NSnPoUf//jH+PWvf41vf/vbOP3003HooYfiTW9600A+NrnJsfJV22KhiEHO2/TBSz4ln2aLT9TXMPZvV/nU1JJPu79PM2EjHUzg1ltvxSGHHII1a9ZgzZo1eMMb3oCbb77ZK7Nlyxbs2LHD23bbbbdBa413v/vdpXN2Oh18//vfx0knnYSVK1fiIx/5CNasWYPvfe97yLIBR2EOrOpmiYr9IrI8lZsXOzb5lHxKPiWfkk+7zoSua1SYo7Zz506Mj49j69at2GuvvUb6XcOGE0ZpyadmlnxqZsmnZpZ8amZNfdq5cyeWLVuGHTt2jPQ9PlIlOdutqcyfSvx7kNrXIN+VfGpmyadmlnxqZsmnZjaTPo3a5jUkeTycf4YhAR2sA+WbVrUeu7mx8yWfkk/Jp+RT8mlwn0Zt8xqSgN8QHd5c1Kw3KVd306uOSz4ln5JPyafk02A+jdLSVFnMqm7mVM8XWqymVVU2+ZR8Sj4ln5JPZZ9myua9kiQLwwVTvQnh+fh5dbA9XE8+JZ+ST8mn5FN/n2bCkpK0piuWBzF+M2Pn63ej69aTT8mn5FPyKfk085aU5IAWqzE1uYH8GN2nbPIp+ZR8Sj4ln0bn0yCWlGRDq7upGn6NKHbsKG5w8in5lHxKPiWfRmtJSdZY05pM0xs63XH75FPyKfmUfEo+jdbmPSTrbkB4E6vKxm52LLzQL2Qggs/kU/Ip+ZR8Sj7tWpv3kBzkBlDZ2I0Pt+lgucn36OAz+ZR8Sj4ln5JPu9bmPSRDq6slhTH2MLQwzDkH+d7kU/Ip+ZR8Sj41LzMdliAZWN2N02h+k5ues+n31u1LPjXbl3xqti/51Gxf8qnZvl3h03TavIZk05qIgF8jqgsdDFO74ccmn5JPyafkU/KpmU8zYfMakmFNZNALH6shDVO7oYcoFodPPiWfkk/Jp+RT3KeZsHkNydCqbhY9HGF8fdgbFatB1X138in5lHxKPiWfmvk03ZYgaa3JjYvdlPCmD3Kefjc5+ZR8Sj4ln5JPU1OdU7UESWbDynddsdzk3P2+M/nU7DuTT82+M/nU7DuTT82+czb6NN027yHJwwHD1lKGrVFVbU8+NduefGq2PfnUbHvyqdn22ejTKG3eQ7LJBe93Q8NzNK0BCbZt0Fh78in5lHxKPiWfRm/zHpJNrGnNhdew+I3k28PzDhtrTz4ln5JPyafk0+gtQdLaoLH3WPlYnJ1u6jCx/eRT8in5lHxKPjX3aRSWIGltVDWlpuVj+5NPzfYnn5rtTz412598arZ/Nvo0CkuQRLMaSdUNGaY20+SY5FPyqakln5pZ8qmZ7a4+jcoSJNG/RlJ3g4Y5NnZMWC75lHxqemzyqdmxyadmx+6uPo3KEiQb2FRkfdNjRx26GObY5NNoviP5NJrywxybfBrNd8xGn4a1BMmINWlwrisrKvY1PUfyKfmUfEo+JZ+m5tN0WYJkxMLMqroaS6wsbRukRtTvpiefkk/Jp+RT8qm5T9NlCZLMmt7k0PgNE2xbeN7YTY2VTz4ln5JPyafk03A+TbfNe0jW3YRhaiqxG6cb7Es+JZ+ST8mn5NNwPo3S5jUkwxsa3phBJH3TWlDVdyefkk/Jp+RT8mlwn0Zt8xqSTWtJVfurytbVgmLf3S9kkXxKPiWfkk/Jp+bfOZ02ryEJ9Jfu4X5ds2+6fEg+Df4dg5ZPPjUrn3xqVj751Kz8qHwapc1rSMYkft3Fr4vFV+0fxI/kU/Ip+ZR8Sj4N5tOobV5DsonEj5Wv2jZIPD52DpF8Sj4ln5JPyaehzjsqGykkP/3pT+Poo4/GHnvsgZe+9KWNjtFa4/LLL8e+++6LhQsX4thjj8XPf/5zr8zExAQ+/OEPY/Hixdhzzz1x2mmn4amnnpqyv/0aq8P9sRrRVG7eIPH+5FPyKfmUfJrvPs2EjRSSk5OTOP300/GhD32o8TGf+cxn8LnPfQ5f/OIXcf/992PZsmV4y1vegueff96VufDCC7F+/Xrcdttt+Pd//3f84Q9/wKmnnoo8z6fkb9XNqqo9NYm1TzUskHxqZsmnZpZ8ambJp2Y2G32abhNa65GD/MYbb8SFF16I7du315bTWmPffffFhRdeiI9//OMAjGpcunQprrnmGnzgAx/Ajh07sM8+++Dmm2/GmWeeCQD47W9/i/322w/f/va3cdJJJ/X1Z+fOnRgfH8czW7di0V579S3PwwzTYXXna/pdyafkU5PzJZ+anS/51Ox8s8mnnTt3YtmyZdixYwf2avAeH9ZaIzvzEPb4449j69atWLNmjds2NjaGY445Bhs2bMAHPvABPPDAA+h2u16ZfffdFwcffDA2bNgQheTExAQmJibc+o4dOwAAO606pbg4j4/H4vAIysW29ysXWmx/eGzyKfmUfEo+JZ/8chRdHLXOm1WQ3Lp1KwBg6dKl3valS5fiN7/5jSvT6XTwspe9rFSGjg/tqquuwhVXXFHafsABB0yH28mSJUuWbBfZc889h/Hx8ZGdf2BIXn755VHgcLv//vtxxBFHDO2UEMJb11qXtoVWV+bSSy/FRRdd5Na3b9+OFStW4IknnhjpxR2F7dy5E/vttx+efPLJkYYYptuS3zNrye+Zt93V993V7x07duBVr3oV9t5775F+z8CQPP/883HWWWfVltl///2HcmbZsmUAjFpcvny52/7ss886dbls2TJMTk5i27Ztnpp89tlncfTRR0fPOzY2hrGxsdL28fHx3eqh4LbXXnvtlr4nv2fWkt8zb7ur77ur31KOtifjwJBcvHgxFi9ePApf8OpXvxrLli3D3XffjUMPPRSAyZD9wQ9+gGuuuQYAcPjhh6PdbuPuu+/GGWecAQB4+umn8fDDD+Mzn/nMSPxKlixZsmTz00baJvnEE0/gf/7nf/DEE08gz3P85Cc/AQD80R/9EV7ykpcAAA488EBcddVVeMc73gEhBC688EJceeWVOOCAA3DAAQfgyiuvxB577IGzzz4bgFF/5513Hi6++GK8/OUvx957742PfvSjOOSQQ3DiiSeO8uckS5YsWbJ5ZiOF5Cc/+UncdNNNbp3U4T333INjjz0WALBlyxaXbQoAH/vYx/DCCy/gz//8z7Ft2zYcddRR+Jd/+RcsWrTIlfn85z+PVquFM844Ay+88AJOOOEE3HjjjciyrJFfY2NjuOyyy6Ih2Nluu6vvye+ZteT3zNvu6nvyu95mpJ9ksmTJkiVLtjvavB67NVmyZMmSJauzBMlkyZIlS5aswhIkkyVLlixZsgpLkEyWLFmyZMkqLEEyWbJkyZIlq7A5C8ndbS5Lsm3btmHt2rUYHx/H+Pg41q5d23f2FCFE9N9nP/tZV+bYY48t7e83ctKo/X7ve99b8mnVqlVemdl2vbvdLj7+8Y/jkEMOwZ577ol9990Xf/qnf4rf/va3XrlRXO8vf/nLePWrX40FCxbg8MMPxw9/+MPa8j/4wQ9w+OGHY8GCBXjNa16Dr3zlK6Uyd9xxB173utdhbGwMr3vd67B+/fop+ThVv7/xjW/gLW95C/bZZx/stddeWL16Nb773e96ZW688cbo8/7iiy/uMr/vvffeqE+/+MUvvHKz7XrH/gaFEHj961/vyszE9f63f/s3vPWtb8W+++4LIQT++Z//ue8xM/Z86zlqn/zkJ/XnPvc5fdFFF+nx8fFGx1x99dV60aJF+o477tAPPfSQPvPMM/Xy5cv1zp07XZkPfvCD+hWveIW+++679YMPPqiPO+44/cY3vlH3er1p8fvkk0/WBx98sN6wYYPesGGDPvjgg/Wpp55ae8zTTz/t/bv++uu1EEL/6le/cmWOOeYYvW7dOq/c9u3bp8XnYf0+99xz9cknn+z59Nxzz3llZtv13r59uz7xxBP17bffrn/xi1/ojRs36qOOOkoffvjhXrnpvt633Xabbrfb+tprr9WPPPKIvuCCC/See+6pf/Ob30TL/9d//ZfeY4899AUXXKAfeeQRfe211+p2u63/6Z/+yZXZsGGDzrJMX3nllfrRRx/VV155pW61WnrTpk1D+zlVvy+44AJ9zTXX6Pvuu0//8pe/1Jdeeqlut9v6wQcfdGVuuOEGvddee5We++m0Qf2+5557NAC9ZcsWzyf+nM7G6719+3bP3yeffFLvvffe+rLLLnNlZuJ6f/vb39Z/+Zd/qe+44w4NQK9fv762/Ew+33MWkmQ33HBDI0gqpfSyZcv01Vdf7ba9+OKLenx8XH/lK1/RWpsHqt1u69tuu82V+e///m8tpdR33XXXlH195JFHNADvJm7cuFED0L/4xS8an+dtb3ubPv74471txxxzjL7gggum7GPMhvX73HPP1W9729sq9+8u1/u+++7TALwX0XRf7yOPPFJ/8IMf9LYdeOCB+pJLLomW/9jHPqYPPPBAb9sHPvABvWrVKrd+xhln6JNPPtkrc9JJJ+mzzjprmrwe3O+Yve51r9NXXHGFW2/6Nz0VG9RvguS2bdsqz7k7XO/169drIYT+9a9/7bbNxPXm1gSSM/l8z9lw66DWby5LAH3nspyqbdy4EePj4zjqqKPctlWrVmF8fLzx+Z955hnceeedOO+880r7br31VixevBivf/3r8dGPftTNx7Yr/b733nuxZMkS/PEf/zHWrVuHZ5991u3bHa43YGYjEEKUwvrTdb0nJyfxwAMPeNcBANasWVPp58aNG0vlTzrpJPz4xz9Gt9utLTMd13ZYv0NTSuH5558vzfTwhz/8AStWrMArX/lKnHrqqdi8efO0+DxVvw899FAsX74cJ5xwAu655x5v3+5wva+77jqceOKJWLFihbd9lNd7GJvJ53tWzSe5K21Uc1kO6sOSJUtK25csWdL4/DfddBMWLVqEd77znd72c845xw0g//DDD+PSSy/FT3/6U9x99927zO9TTjkFp59+OlasWIHHH38cn/jEJ3D88cfjgQcewNjY2G5xvV988UVccsklOPvss70ZFKbzev/+979HnufRZ7PKz61bt0bL93o9/P73v8fy5csry0zHtR3W79D++q//Gv/7v//rJjMAzHjPN954Iw455BDs3LkTf/M3f4M3velN+OlPfzotc8QO4/fy5cvx1a9+FYcffjgmJiZw880344QTTsC9996LN7/5zQCq78lsud5PP/00vvOd7+BrX/uat33U13sYm8nne7eC5O44lyXQ3O/Y9zf1gez666/HOeecgwULFnjb161b55YPPvhgHHDAATjiiCPw4IMP4rDDDtslfp955pmeT0cccQRWrFiBO++8swT5Qc47U9e72+3irLPOglIKX/7yl719w1zvfjbosxkrH24f5nkf1Ib9jn/8x3/E5Zdfjm9+85teZWbVqlVegteb3vQmHHbYYfjCF76Av/3bv90lfq9cuRIrV65066tXr8aTTz6Jv/qrv3KQHPScw9qw33HjjTfipS99Kd7+9rd722fqeg9qM/V871aQ3B3nshzE75/97Gd45plnSvt+97vflWpEMfvhD3+ILVu24Pbbb+9b9rDDDkO73cZjjz1W+dKeKb/Jli9fjhUrVuCxxx4DMLuvd7fbxRlnnIHHH38c//qv/9p3Hr4m17vKFi9ejCzLSjVg/myGtmzZsmj5VquFl7/85bVlBrln0+032e23347zzjsPX//61/vO7iOlxJ/8yZ+452aqNhW/ua1atQq33HKLW5/N11trjeuvvx5r165Fp9OpLTvd13sYm9Hne6AWzN3QBk3cueaaa9y2iYmJaOLO7bff7sr89re/nfZEkh/96Edu26ZNmxonkpx77rmlLMsqe+ihhzQA/YMf/GBof8mm6jfZ73//ez02NqZvuukmrfXsvd6Tk5P67W9/u37961+vn3322UbfNdXrfeSRR+oPfehD3raDDjqoNnHnoIMO8rZ98IMfLCU2nHLKKV6Zk08+edoTSQbxW2utv/a1r+kFCxb0Td4gU0rpI444Qr/vfe+biqueDeN3aO9617v0cccd59Zn6/XWukg8euihh/p+xyiuNzc0TNyZqed7zkLyN7/5jd68ebO+4oor9Ete8hK9efNmvXnzZv3888+7MitXrtTf+MY33PrVV1+tx8fH9Te+8Q390EMP6Xe/+93RLiCvfOUr9fe+9z394IMP6uOPP37auyS84Q1v0Bs3btQbN27UhxxySKlLQui31lrv2LFD77HHHvrv/u7vSuf8z//8T33FFVfo+++/Xz/++OP6zjvv1AceeKA+9NBDd5nfzz//vL744ov1hg0b9OOPP67vuecevXr1av2KV7xiVl/vbrerTzvtNP3KV75S/+QnP/FS4icmJrTWo7nelNp/3XXX6UceeURfeOGFes8993RZiJdccoleu3atK08p8n/xF3+hH3nkEX3dddeVUuT/4z/+Q2dZpq+++mr96KOP6quvvnpkXRKa+v21r31Nt1ot/aUvfamy+8zll1+u77rrLv2rX/1Kb968Wb/vfe/TrVbLq+zMtN+f//zn9fr16/Uvf/lL/fDDD+tLLrlEA9B33HGHKzMbrzfZe97zHn3UUUdFzzkT1/v5559372gA+nOf+5zevHmzyxjflc/3nIXkueeeqwGU/t1zzz2uDAB9ww03uHWllL7sssv0smXL9NjYmH7zm99cqlm98MIL+vzzz9d77723XrhwoT711FP1E088MW1+P/fcc/qcc87RixYt0osWLdLnnHNOKa089Ftrrf/+7/9eL1y4MNoX74knntBvfvOb9d577607nY5+7Wtfqz/ykY+U+iTOpN//93//p9esWaP32Wcf3W639ate9Sp97rnnlq7lbLvejz/+ePS54s/WqK73l770Jb1ixQrd6XT0YYcd5qnSc889Vx9zzDFe+XvvvVcfeuihutPp6P333z9agfr617+uV65cqdvttj7wwAO9l/p02SB+H3PMMdFre+6557oyF154oX7Vq16lO52O3mefffSaNWv0hg0bdqnf11xzjX7ta1+rFyxYoF/2spfp//f//p++8847S+ecbddbaxOxWbhwof7qV78aPd9MXG9SslX3fVc+32k+yWTJkiVLlqzCUj/JZMmSJUuWrMISJJMlS5YsWbIKS5BMlixZsmTJKixBMlmyZMmSJauwBMlkyZIlS5aswhIkkyVLlixZsgpLkEyWLFmyZMkqLEEyWbJkyZIlq7AEyWTJkiVLlqzCEiSTJUuWLFmyCkuQTJYsWbJkySrs/wMCaucoHCTStAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5gdRZk//qmqPmcmXBLuhCAJFxEJdwKEwCKsYhRRAVmJt4CCKKsuILqrsLIqPCvr6voVVEAUiYgKP4xcVG5BELxEFy/gisrqs2oUExEUBiSTc07V+/ujLl1VXd2nz2RmMsn0+zw93V1d3f1Od/X51Od933qLERGhkUYaaaSRRhopCN/QCjTSSCONNNLIVJUGJBtppJFGGmmkRBqQbKSRRhpppJESaUCykUYaaaSRRkqkAclGGmmkkUYaKZEGJBtppJFGGmmkRBqQbKSRRhpppJESaUCykUYaaaSRRkqkAclGGmmkkUYaKZEGJNdTPvCBD4AxFpTtuuuuePnLXz4p93/22WfxgQ98AN/61rcKx5YtWwbGGH77299Oii5TSX7729+CMYZly5aN63Uff/xxnHPOOdh1110xNDSEHXfcEccddxz+8pe/jOt9Jko6nQ7+7d/+Dbvtthva7TbmzZuH888/H2vXrq19jeuvvx4HHngghoeHMWfOHJx77rl45plnCvV+8pOf4MQTT8ScOXOw2Wab4fnPfz4uuugiPPvss0G973znO3jzm9+MBQsWYGhoqLLNrlmzBu94xzuw++67Y8aMGZg3bx7OOOMMrFq1qlD33nvvxYtf/GLssMMO2GKLLbD//vvjsssug5RyzM/kf//3f3HyySdj6623xmabbYaFCxfi1ltvTepKRLjmmmtw2GGHYfPNN8fMmTNx8MEH45ZbbgnqXXvttXjNa16DvfbaC5xz7LrrrsnrPfjggzj++OMxd+5czJgxA9tssw0WLVqE6667Lnnvz3zmM1iwYAFmzpyJbbfdFkcffTS+8Y1vJK/9u9/9DqeffjrmzJmDoaEh7LzzzjjppJMK9R577DG88Y1vxHbbbYfNNtsMixYtwje/+c3kNe+++24sWrQIm222Gbbbbju88Y1vxGOPPZas65/DGANjDI8//nhl3UkTamS95Pe//z2tXLkyKJs3bx4df/zxk3L/P//5zwSA3v/+9xeOPfbYY7Ry5UoaHR2dFF2mkvzmN78hAHTNNdeM2zUfffRR2n333el5z3seffazn6X77ruPli9fTu94xzto9erV43afiZRXvepVNDw8TB/60IdoxYoVdNFFF1G73aZXvOIVtc6/7rrrCAC9+c1vpnvuuYeuvPJKmjVrFr34xS8O6j388MM0PDxMBxxwAN1www30zW9+k97//veTEIJe+cpXBnU/8IEP0Lx58+jEE0+kY445hgDQb37zm8K9R0dHac8996TtttuOPvWpT9G9995LV155Je244460884708jIiKu7YsUK4pzTMcccQzfffDOtWLGC/umf/okA0Nlnnz2mZ/Kb3/yGttlmG9pnn33o+uuvp69//et0/PHHE2OMvvKVrxT0fetb30pDQ0P03ve+l+6++26644476CMf+Qh96UtfCuode+yxtO+++9Ib3vAGeu5zn0vz5s1LPvt7772X3vrWt9IXvvAFuueee+hrX/saveY1ryEAdPHFFwd1L7zwQgJAZ511Ft11111066230otf/GICQMuXLw/q/s///A9tu+22dOihh9IXv/hFuu++++j666+nN73pTYXnv++++9JznvMcuu666+iuu+6iE044gbIso29961tB3W9961uUZRmdcMIJdNddd9F1111HO++8M+27776lv0dPP/007brrrjRnzhwCQH/+85+T9SZbGpCcAFkfkOx0OtTtdmvXrwLJ6SwTAZInnHAC7bzzzvSXv/xl3K45mbJy5UoCQP/1X/8VlH/oQx8iAHTXXXdVnt/r9WinnXaixYsXB+Vf/OIXCQDddtttruxf//VfCQD9+te/Duq+5S1vIQDBM5RSuu2PfOQjpSC5YsUKAkCf/exng/IvfelLBIC++tWvurLXv/71NDQ0RM8880xQd/HixTRz5ky3P8gzeetb30rDw8P0hz/8IXgme++9N+2yyy7B/3HTTTcRALrhhhsK/0cs/nnHH398KUiWycKFC2mXXXYJynbeeWf6u7/7u6Bs7dq1NGvWrKCTopSiAw88kA488MC+nelPfepTBIC+973vubJut0vz58+nww47LKh76KGH0vz584Pfsu9+97sEgC6//PLk9d/+9rfTQQcdRO973/umFEg25taE3HzzzWCMJc0IV1xxBRhj+OlPfwogbW61ctNNN2H//ffH8PAwdt99d1x22WXB8W9961tgjOELX/gC3vWud2HnnXfG0NAQfv3rX+PPf/4z3va2t2H+/PnYYostsMMOO+CFL3whvv3tb7vzf/vb32L77bcHAHzwgx90Zoo3vvGNANLm1mOOOQb77rsvHnjgARx11FHYbLPNsPvuu+M//uM/oJQK9Hv44YexePFibLbZZth+++3x9re/Hd/4xjfAGEuad32xz+WnP/0pXv3qV2PWrFnYZpttcN5556HX6+GRRx7BS1/6Umy55ZbYdddd8Z//+Z+Fa6xatQpveMMbsMMOO2BoaAh77703/uu//qug5x//+Eeccsop2HLLLTFr1iwsWbIEa9asSer1wx/+EK985SuxzTbbYHh4GAcddBD+v//v/6v8XwD9rG+99VaceeaZ2HrrrfvWrysPPvggGGOFtmHlBz/4ARhjuPTSS9f7Xt/97ncBAC972cuCcusaWL58eeX53//+97F69Wq86U1vCspf/epXY4sttsBNN93kylqtFgBg1qxZQd2tttoKnHO0221Xxnm9n6GqawLA8PBwULfdbmPGjBmFun69QZ7Jd7/7XRxwwAHYeeedXZkQAscddxx+//vf47//+79d+aWXXopdd90Vp5xySt//q+7/XybbbbcdsiwLylqtVuE5DQ8Pu8XK/fffjwcffBDnnnsuhoaGKu9z0003Ya+99sKiRYtcWZZleMMb3oD//u//xqOPPgoAePTRR/HAAw9g6dKlgV5HHHEEnve85wXtxMq3v/1tXHXVVfjsZz8LIUT9f34SpAHJhLz85S/HDjvsgGuuuaZwbNmyZTj44IOx//77V17DNrx3vvOduOmmm3DEEUfgnHPOwUc/+tFC3fPPPx+rVq3ClVdeia997WvYYYcdnI/r/e9/P77xjW/gmmuuwe67745jjjnGAdROO+2EO+64AwBwxhlnYOXKlVi5ciUuvPDCSt3WrFmD17/+9XjDG96AW2+9FccddxzOP//8wLexevVqHH300XjkkUdwxRVX4Nprr8XTTz+Nd7zjHZXXjuWUU07BAQccgOXLl+PMM8/E//t//w/vfOc7ceKJJ+L444/HTTfdhBe+8IV4z3veg69+9avuvD//+c844ogjcNddd+Hiiy/GrbfeimOPPRbvfve7Ax3Wrl2LY489FnfddRcuueQS3HjjjZg9ezaWLFlS0OXee+/FkUceiSeffBJXXnklbrnlFhx44IFYsmRJX9/lt7/9bRAR5syZg9e+9rXYYostMDw8jGOOOQYrV64c6Jn4cumll7ofmpQsXLgQ++23XwFElVLo9Xp9F9//1ul0AKDwY2j3bcevTH72s58BQKHtt1otPP/5z3fHAeC0007DVltthX/8x3/E//3f/+Hpp5/G17/+dXz605/G29/+dmy++eaV90rJkUceiQULFuADH/gAHnjgATzzzDP48Y9/jAsuuAAHH3wwjj32WFf3rLPOQqfTwdlnn40//vGPePLJJ/GFL3wBN910E/7lX/5lTM+k0+kkgSSu2+v1sHLlShx00EH42Mc+hnnz5kEIgd133x0f/ehHQes58ZJ993/+859x+eWX484778R73vOeoM4555yDO+64A1dffTX++te/YvXq1TjvvPPw1FNP4eyzz3b17r//fgDAlltuiZe97GUYHh7GFltsgZe//OX45S9/GVzzZz/7WfJ3z5Y9/PDDrp5fHtf12wmgv+EzzjgD5557Lg4++OBBH8fEy4amslNVzjvvPJoxYwY9+eSTruznP/85AaBPfOITruz9738/xY9x3rx5xBijBx98MCh/8YtfTDNnzqS//e1vRKR9DADoBS94QV99er0edbtdetGLXkQnnXSSK68yt15zzTUF09XRRx9NAOgHP/hBUHf+/Pn0kpe8xO3/8z//MzHG6OGHHw7qveQlLyEAdO+991bqa59LbMY68MADC6axbrdL22+/Pb3qVa9yZe9973uTev7jP/4jMcbokUceISKiK664ggDQLbfcEtQ788wzC+bW5z//+XTQQQcVzNkvf/nLaaeddgrMXrFccsklBIBmzpxJJ5xwAt1xxx20fPly2n///Wl4eJgeeuihyueRkl6vRzNnzqSjjjqqst4FF1xAAOiBBx5wZaeddhoB6LscffTR7pybb76ZANAXvvCF4PpXX301AaDnPe95lXr8+7//OwFI+l8XL15cOP8Xv/gFPf/5zw/0Ofvss0kpVXqPKnMrEdHIyAi94hWvCK55zDHH0BNPPFGo+93vftf5twCQEIL+8z//M6gzyDM58cQTaauttqKnn346qHvUUUcRAPrQhz5ERESrV692beU5z3kOff7zn6dvfvObdNZZZxEAuuCCC0r//zrm1re+9a3uf2q326XmyyuvvJKGhoZc3W222YZWrFiRvNbMmTPpjDPOoLvvvpu+8IUv0Lx582i77bajP/7xj65uq9Wit771rYX7fO973yMAztdqze9xrAaRNre32+2g7F3vehftvvvu9OyzzxJR/tvRmFunuJx++ulYu3YtbrjhBld2zTXXYGhoCK973ev6nr/PPvvggAMOCMpe97rXYWRkBD/+8Y+D8pNPPjl5jSuvvBIHH3wwhoeHkWUZWq0WvvnNb+IXv/jFGP6jXGbPno3DDjssKNt///3xu9/9zu3fd9992HfffTF//vyg3mtf+9qB7hVH+e69995gjOG4445zZVmW4bnPfW5w/3vuuQfz588v6PnGN74RRIR77rkHgGaHW265JV75ylcG9eJ39Otf/xq//OUv8frXvx4AArb1spe9DKtXr8YjjzxS+n9YE+9znvMcLF++HC95yUvwqle9CnfccQc450lzcT/55S9/iZGRERx44IGubGRkBB//+Mfxhz/8wZUddNBBABCY8yyb6rd8+tOfduccd9xxeO5zn4v3vOc9WLFiBZ588knccccduOCCCyCEqG32K3Mv+OW//e1v8YpXvALbbrstvvKVr+C+++7Df/7nf2LZsmV485vfXOs+sXS7XSxZsgQPPvggPvOZz+D+++/H5z//eTz66KN48YtfjKeeesrV/dGPfoSTTjoJCxYswNe+9jXcc889OP/88/G+970PF1988ZieyTve8Q489dRTOPXUU/F///d/+NOf/oQLL7wQ3/ve9wDkZlPbVkZGRnDjjTfi1FNPxQtf+EJcccUVOPHEE/Gxj30sGQ1cVy644AI88MAD+MY3voHTTz8d73jHOwoWqmuuuQbnnHMO3vGOd+Duu+/GbbfdhsWLF+OEE07AnXfe6epZXRctWoTPfvazeNGLXoQ3vOENuPnmm/H444/jU5/6VHDdsnefOlannfz3f/83Pv7xj+PTn/50wTQ+VSTrX2V6yj777INDDz0U11xzDd7ylrdASonrrrsOJ5xwArbZZpu+58+ePbu07IknngjKd9ppp0Ldj33sY3jXu96Fs846CxdffDG22247CCFw4YUXrjdIbrvttoWyoaGhIOT9iSeewG677Vaot+OOOw50r/hZtdttbLbZZoFfxJaPjIwE90+Fws+ZM8cdt+uUTvHz/9Of/gQAePe73413v/vdSV2rQs7tMzv22GMDn8lOO+2EAw44oNDxqSN//etfAQAzZ850ZX/84x/xzne+E3vvvTee85znAMh9cLY+AMydO9cdrxL/B6ndbuP222/H0qVLsXjxYgDA5ptvjg996EO4+OKLA19bSuwzSD3zv/zlL8G7fu9734uRkRE8+OCDzrT6ghe8ANtttx1OP/10nHrqqTj66KP76u/L1Vdfjdtvvx0PPPAADjnkEADAUUcdhb/7u7/DHnvsgY9//ON4//vfDwB4+9vfjh133BE33XSTe19///d/D845PvCBD+D1r389dt9994GeyYte9CJcc801eNe73oU99tgDADB//nxcfPHFuOCCC1zdrbfeGowxbLnlljj88MOD/+G4447DzTffjJ///OeFDmBdmTt3LubOnQsg96Wef/75OO2007D99tvjr3/9K97+9rfjzW9+cwCexx13HI455hicddZZ+M1vfgMgf6cveclLgnsceOCB2GmnnYJ2ve222xZ+uwA415B9/347SdX128npp5+OV73qVTjkkEPw5JNPAgBGR0cB6E7G0NAQttxyy7qPZkKkYZIV8qY3vQnf//738Ytf/AJ33HFHMmihTFKBI7YsBqlUj+u6667DMcccgyuuuALHH388Fi5ciEMOOQRPP/30GP6TwWXbbbd1wOJLWUDMRNx/9erVhfI//vGPAHSwgq1XR09b//zzzy9lXT6ji6XKB01EYwq+SIGf1dv/3+2PkB+Icfrpp6PVavVdXvSiFwX3fO5zn4uVK1fiD3/4A37605/isccew6tf/Wo8/vjjeMELXlCp73777QcA+J//+Z+gvNfr4Ze//CX23XdfV/bggw9i/vz5Bd/joYceCgAFv1QdefDBByGEKPitdt99d2y77bbBNR988EEsWLCgEARy6KGHQikVdDQHeSannXYa1qxZg5///Of41a9+5fxwjDEcddRRAIAZM2Zgzz33TP4PZPyR6xus48thhx2GXq+H//u//wMAPPLII1i7dq171r4ccsgh+O1vf+uY7CDter/99iu8eyBvD/b923VZXb+dPPzww7jxxhux9dZbu+XDH/4wAGCPPfZwz3RDSgOSFfLa174Ww8PDWLZsGZYtW4add97Z9Tb7ycMPP4yHHnooKPvSl76ELbfcspZzmjFWCBL46U9/WggSsXUGGQxeR44++mj87Gc/w89//vOg/Prrrx/X+5TJi170Ivz85z8vMLRrr70WjDH8/d//PQDNDp5++unCgO4vfelLwf5ee+2FPffcEw899BAOOeSQ5FLVY124cCGe85zn4K677gqCYf74xz/ioYceKjCGOrLnnntixowZzlwH6AjS4eFhfOc733FldtuaXYGxmVt92XnnnbHffvths802w0c+8hFsvvnmOOOMMyr1XbhwIXbaaadCkNNXvvIVPPPMM3jVq17lyubMmYOHH364YFa07bcOC45lzpw5kFLigQceCMr/93//F0888URwzTlz5uCHP/xhIXFA1f3rPpMsy7D33nvjuc99Lp566ilcddVVOOGEEzBv3jxX5+STT8bIyEjwbgHgtttuwxZbbIF99tln4P+/TO69915wzrH77rsDyK0t3//+94N6RITvf//72HrrrV3n5bjjjsNmm22G22+/Paj74x//GGvWrAna9UknnYRf/vKX+MEPfuDKer0errvuOixcuNDdd+edd8Zhhx2G6667Lnj+3//+9/HII48E7eTee+8tLKeddhoAPcrgs5/97Ho/n/WWDeoR3Qjkta99Le2www7UbreTDveywJ2dd96Z5s6dS5/73Ofo9ttvp9e//vUEgD784Q+7ejZw58Ybbyxc99/+7d+IMUb/9m//Rt/85jfp8ssvp9mzZ9Mee+xRcOzPmzeP9tprL7rzzjvpgQcecEEPZYE7++yzT+F+p512WnDdRx99lLbddluaO3cuLVu2jG6//XZaunQpzZs3jwDQfffdV/ncypzvp512Gm2++eaF+rFejz32GO288840e/Zsuuqqq+jOO++ks88+mxhj9La3vc3V+9vf/kbPe97zaNasWfTJT36S7rzzTjrnnHNo7ty5hcCde+65h4aGhmjx4sX0pS99ie677z666aab6EMf+hD9wz/8Q+X/Q0R04403EmOMjj/+ePr6179ON9xwA+277740a9aswnhAREEzZWKDOd71rnfRV7/6Vdphhx3owgsvpOHhYVq2bBl98pOfpHa7Tfvvv39lYFFd+fCHP0yf//zn6d5776Xrr7+eXvWqVxHnnL74xS8G9X7729+SEIJOP/30oPwLX/gCAaC3vOUtdO+999JVV11FW221VSGZwC233EKMMTr88MNdMoF///d/py222ILmz59P69atc3Ufe+wxuvHGG+nGG2+kU0891Y2lu/HGG4NB6qtWraKtttqKdt55Z7riiivonnvuoc9+9rO0++670+abb06//OUvXd3LLruMANBxxx1HN998M9111130nve8h7Iso2OPPXZMz+RPf/oT/cu//AvdcsstdM8999Dll19Ou+66K+2+++706KOPBnWfeOIJmjt3Ls2ZM4euvvpquvPOO10w2Uc/+tGg7sMPP+z+/wULFtD222/v9v3AuTPPPJPe9a530Q033EDf+ta36Ctf+QotWbKEANA///M/B9e0/8M555xDd955J91666108sknJxMPfPSjHyUAdNppp9Edd9xBy5Yto1122YXmzp0bBESNjo7SPvvsQ7vssgt98YtfpBUrVtBJJ52UTCZw7733UpZldNJJJ9GKFSvoi1/8Iu2yyy6VyQSsTLXAnQYk+8hdd93losP+93//t3C8DCSPP/54+spXvkL77LMPtdtt2nXXXeljH/tYUK8KJNetW0fvfve7aeedd6bh4WE6+OCD6eabby6AGRHR3XffTQcddJCLZDvttNOIaP1AkojoZz/7GR177LE0PDxM22yzDZ1xxhn0+c9/ngD0jeZcX5AkIvrd735Hr3vd62jbbbelVqtFe+21F33kIx8pgMUf/vAHOvnkk2mLLbagLbfckk4++WQXcRcnE3jooYfolFNOoR122IFarRbNnj2bXvjCF9KVV15Z+f9Yufnmm+nQQw+l4eFhNzA7jgB++umnCQC95jWv6Xu9Z599ls4880zaaqutaNasWXTOOecQEdF//Md/0Pbbb0+bbbYZvexlL6Pf/e53tfTrJx/84Adpjz32oKGhIdpqq63opS99Kd1///2FejYZg21LvnzpS1+i/fffn9rtNs2ePZvOPvvsQsQnke6ULF68mGbPnk0zZsyg5z3vefSud72LHn/88aCe/Q5SS9zR+NWvfkVLly6lXXfdlYaGhmju3Lm0ZMmSwjsgIlq+fDn93d/9HW233Xa0+eab0z777EMXX3xxIcFA3WfyxBNP0OLFi2n77benVqtFc+fOpX/6p38q/TFftWoVveY1r6Gtt97adXQ+97nPFerZbyW1+FHrn/vc5+ioo46i7bbbjrIso6222oqOPvroQmQukU4c8JGPfIT2339/2nLLLWmbbbahww8/nK677rpkdPFnPvMZ2nfffandbtO2225Lr3/96+n3v/99od6aNWvo1FNPpW222YaGh4fp8MMPL0TMWrnrrrvo8MMPd78fp556Kv3pT39K1k09j6kCkoxoPQftNDKt5C1veQu+/OUv44knnggGhDeSy2233YaXv/zleOihh5wfr5FGGtk4pYlubaRULrroIsyZMwe77747nnnmGXz961/HZz/7Wbzvfe9rALJC7r33XrzmNa9pALKRRjYBaZhkI6VyySWXYNmyZfjDH/6AXq+HPffcE29+85txzjnnVI6XaqSRRhrZVKQByUYaaaSRRhopkQkdAnL//ffjFa94BebMmQPGGG6++ea+59x3331YsGCBSwp+5ZVXFuosX74c8+fPx9DQEObPn59MmNtII4000kgj6ysTCpJ/+9vfcMABB+CTn/xkrfq/+c1v8LKXvQxHHXUUfvKTn+CCCy7A2WefHWTiX7lyJZYsWYKlS5fioYcewtKlS3HKKacEY3caaaSRRhppZDxk0sytjDHcdNNNOPHEE0vrvOc978Gtt94aZMM466yz8NBDD7lBwEuWLMHIyEgw+PWlL30ptt56a3z5y1+eMP0baaSRRhqZfjKloltXrlxZyGjzkpe8BFdffTW63S5arRZWrlyJd77znYU6H//4x0uvu27dOqxbt87tK6Xwl7/8Bdtuu20TgNJII400shEKEeHpp5/GnDlzxjXNXyxTCiTXrFlTSJy84447otfr4fHHH8dOO+1UWqcqp+gll1yCD37wgxOicyONNNJIIxtOfv/7348pzWFdmVIgCRSTfVtrsF+eqlPFCM8//3ycd955bv+pp57C3Llz8atf/QpbbrklGHR6i0CPRFm/47bMP5Yqq3O9RqdGp/XRqUxU4qTUdeJ6Ka+MSpwXV0udF5ckdUqUqRLPUJ3nkLrHoML7GJ3iw7wwdVT6WswdZ64OByA4Ayu5b9PGgWeefhrP3XPPCZ8lZEqB5OzZswuM8LHHHkOWZW7mjLI6VVM4DQ0NJWcUn7nlltjSm6bISt0foLE0in51ys5pdGp0GotOVgqg1++4B0gxGPpYFQOXv+dfM8Y3/7yyc5LnJf67sqiK8QDGMkkCV1TGPdh04BeBowVSxvJjtlwwDZyCFc9r2ri3P8EusykFkosWLcLXvva1oOyuu+7CIYccglar5eqsWLEi8EveddddOOKIIwa+X9nLqPsSy+oN0suPe0+NTo1O46FT3TohkBWBsQwQU9foV7cMNH3gC69RrVvqnPi8oN6YuLcWVuCJWgLw8pmiuaMuZ0HdnC0yMEbumAVHxrSuigDB9f/ns8qmjefnTIZMKEg+88wz+PWvf+32f/Ob3+DBBx/ENttsg7lz5+L888/Ho48+imuvvRaAjmT95Cc/ifPOOw9nnnkmVq5ciauvvjqIWj3nnHPwghe8AB/+8Idxwgkn4JZbbsHdd98dTC00kVKnF2VNBXUkZWZodGp0Gg+drARgkyozKOODjwUeC3ZVoFirjjmaAsH4/qVAaa5RxVDj/13WoJM+oMcm0tSVRUQj/b2YMTLzRooAmbNHxgBJGjQFJzACyJpeFYEYAxQVwLZay1C/Tb2NT6RMKEj+8Ic/dPP+AXB+wdNOOw3Lli3D6tWrsWrVKnd8t912w2233YZ3vvOd+NSnPoU5c+bgsssuw8knn+zqHHHEEbj++uvxvve9DxdeeCH22GMP3HDDDVi4cOGE/R/9XkqqEQ3y0v1rNDo1Oo2HTlXXrQdOVHJO+fEyQOx3P3c8AkFy5Vp8wLP3lz7DjCimjBEUISDWlRRwCq/MD6wUDsj0WvD8vfkAysDAGWmghGabxAhK5QxTMA2Wgues0l5tEPPrptrGJwsop2VaupGREcyaNQtr1qzBzIRPEpiY3sr6XrPRaXLOn4hrbkidFNUHSB/8qoCxiin696gCxBQYWiCMQdACoNv3frakvbbyy8InMxZwjCUGSweIHmJp/yGLjofgaU2njkmCOUbpAnaYZZb6XMb0tQVnEAk/5XjIxtbGR0ZGMHv2bDz11FOlv+PjIVPKJ7khJPUSBnnZZXVT5XXv0+jU6DReOqUjR4sAWckMiYJyd04NYCwDRZ8d+oDog2Febu6tIuAsOe7XKXsGKZaZEhEBow9MMUgKxxRzkOScATIHT11mjjnAJAeYgjEoRRCGWUIxKMMqwbXZFSWMMiXToY1PtEx7kEzJIC+hrG6da1jzQsr00OjU6LS+OsXig0UZQAYgWFYOCpihD7opYIyZYgyKPuj5gFdW7s41ZTnbTAPj+rLKUgZpQZGzQrkPoCFAMgiVBsyMW0DUACkYoJhnZlUEcAYaACinWxufCJnWIDnWhz2eL4mi7UantDQ61ZPUdQI9/ajTPgBpa1qgi5ljijWmGKMFRt90apliDIo+OwyBMgTDAkDa81Re30rIKgd/0v1A0gbyWOCzxzQgsryeAckWLwJmSzAoYmgJDiKC4IAi7Y+E0qBJjIFA5h4EYgAxIONsIB/lILKxtPGJlGkNkvHDrjIDlNX3y+35qfr9Gok93ujU6DQeOlWJZXxWygAyxR7LmGMVa/QZYwoELVjGLFGfF4KkD4blQIlwPwLGOhGvvojA55hv+8E5gYmV6XO4CsssaCoeAySHIkKLc0iSaHEOMoE9FiC1uRWaWhrgBDetQ5HxVYZ6b+ptvI+ledxkWoNkLKkXR9ExJI7FDch/6fG1rfQ73ujU6DSeOqVwwWeLQH2ArDKrVoHjIMBYBophWREIpaIABO22X9YbECQzHyStaTWxtmZTve+ZVD3QFIxBipxhaoCU4IxBCqBFDEoptIS+FvHY3IpSoIQ3lnI6tvGJkgYkjaRebuplp6ROD6zfOal6jU6NTmPVKXldzzzqizOnpkCzAiDXFxyrgDFmiroM8M22FhB9IOxFoJgCTL2dehJFEd74jjKAzDgLwdIuLjgHDiA5A1rE3bbBNgeWinO0BIMkbYI1A0QiMEQpUKbGUm6qbbxhkhtI/Acf93oQHasyNdRtLHWv1+jU6DSITlWSYoy++D7IsQJkV6n1AscUMPqgaAGvlwBKC4D9gDK1byU3scpoP2KPBkR9cMx8oEwAZgiMCplgUKTQ4gyAMgBpwVlhEKBkHicrC+jZVNr4eHwLdaQBSSP+C6rqNZW9zFR5v95XmQ6NTo1O46FTXYlBc1CA7EpVyh6LYBmCY1epgYCxlwBKaa4RAmUIkL0KoOwnPkBmCTbpL7qMQ3CGdsYLgNkWHFKpECyJo8U1e8wBUkEpHcyjOKAEQwscihGUCdxJASUjJCNfp3sbXx9pQDKSsh5QaruszqBljU6NTpOpUx2pA5C9EvNqVxbZY9eCpAeIXamS4NiRqhIYfVCMgbFXAZRVjLJMyhikXccmV70oCM7Q6TG0MxEwTJlRAJYtwyKVYGiRZo+KFBT3za3KrTWAGlBMAKVNZRcDZdPGxy4NSGIwqj9Ir2Z9ekCNTo1O46kT4EejRqwxwSJ9KWOQ/QAy39bHez54GuCsC46dniywyhQoVoFjCixT+0AxP2sVQMZs0gfMTk+hnXHHLnuKArBUxB0YSiUdq7Qp0n2ArAOUAkwPDTHvS1aYXjfFNj4R0oAk0i/Ff1lj9QnVqVvWKBqdGp3GQ6cc/OrdKWVm1dcp+iDrAqTPGMPtnIlqIFQO+Ox2zBrL2WUaJN22+f/9hANUg00yD138pAFlABkvQxmHVATBNVhKRWhnHD1FGMq40Y1BchiwjEERibIcKDlV+ygFTIL0hGwqbXyipQFJT8pe7Hj0tvo1NhbtNzo1Oq2PTkA6KCclPov0pTDUwwNINSBA+r5HvV1kj+t6+XbMHDs91RcY3eIBogVCu7YgOUjKahcxaoBRmjWz4x1ZOUhqgDSmVgOWUnG0M+H0bWfc/BLr8ZKKtA9SESBNpKs9HgOl/l+rgRKKtK4RVm7sbTwN/eMvDUh60u/lTMa9y8obncJ7l5U3OtUXa2qNJWaefhYdP4rV9zsWt6sBsqtUAQAte4wB0gdPn3HGwBiDolLk/o8CSCZ6ELZuPImvZZPcA0dbj3MGyVkSMNuORbKAPebgKNw9pCLIjNAWIRBaNikkFco5IzCEYFjwUXI9LMRmNiqLeO0nU7GNT9b9GpCMZDxfdp2eVZ37NTo1OsV6rI9OQMnQD1DAJlMsEogTkfsJARAN6YAzpaYA0oLdugQ4pk2vCYD0wNEHRrsNaEAkj13qsuL/T4ZxxU+QGasn98BRl2tgZJwVALMlQoC0jFF6ZlbARuYKzSadFIGyy6xOOUB2VXp4CBMAIz0cRPrm2Mg/uam38fGSBiRR334+6MupU79OQ2h0anRaX5361UmZWt02+dsWEKmwbYd5SG9bBWAJF7RTBpBxeQyMbttGyvZUARgdm3QAav5HRQFzTvokZbHIMUkPHBkHODEoqUHTAiYXHJwzdBRBZBxCsQAgLRha03EIjr6EjLErc1apATIETcby6bd01Rw0uWAgAiRMGYpZecpkY23j4ykNSKJ+T2nQlzNITygVcNHo1Og0Vp0GkRgrYlOrFRsEU8Yi7bUsm7SA6Afp+D7IngO+NEB2orVU+nwLhLKnCuDoA6MzsVLRDJv6X2Pxza6cMygYwJSGRRpwZFwH0JDS01xZsCRFUBnXbA7p4STVEgOkAmfcAKSCYFyPpWQERaYVKAbOCUQ6rQB5oCmgE6QTY26MZvL/xsbRxhuf5CRKmVMafcqrrkfRtv9Ckz35RqdGp3HUqUxiH2R8bsgai/VSkx7HLNLWkx5Y+mVV0allANnpqSR7lD2VBEcLjL4vssw/2U84N4zRAqQxrRJnYKTLhOABWAIAkZkbMuMYVeRl0akGSRvkI7nuXJinDMFEAJBdz0/JmTYVEwtNrNbsateWXerhJ2Gygfhdo6JsKrTxyWKU0x4k60RTpepWXaOsftW5ZXo0OjU6jUWn8ZSqQNDU5MZFYPRYpbdoAEywxRKAtICoFEH5jFKqJDj6ZlggjnYN/4+48+BPj6VAzi9pzapEEWAqghAcxAHG9X2t6RXQQNv1rt/2AnhSHQUnmc7go4ihqzSTVIyhKwmcaVDmlPsnfbMrI/t+LGjq1sFYGig3tjbeMMlJkrgBpCQ2HVS9yKqeVXxemV2/0anRaX11mgiJZ9yITa1+ma5fZJFA7o8DwiQApUM8PIDUgBgDJVx5KnjHB0YVscl42+kOBGMkmTGZcgUQ1/V9wGSGPTIyU2Rl+iqWVQIc6KkAKKtEcAZh/n8HiAroMgLnBE5AVxEEIyiGwOzKmTW3hmZXIhjzq0ZGZgDSAuXG1sYnsq37Mu1BEhj8YdftOfX7Aau6TqNTo9N46jTR4jNKHxCBnEUCcbq4on+ywDY9xuivLUCqXsgefRCNwTE2v1qhkhlBmDcDiGWEzsSKHDAtWNp6ZDLmEAdEBkjHDKuB0o6rlEqh02N5mTG7CsagTOYiwbQpt8sUOBfgpIGTKz0shPGcTTJGgdmVG8C0gTxlTLJp41oakPQk9QLKejJlPamx9nrKbPyNTo1OY9FpskRF4OhL1WTHPhCmyuwSACSVA2QyiCcCx3z4hzLrPJTV37bCeD6Okcw247wAmFwhZ44RqwR4ASiZ8TeWmVlzsNSmZj2LCDlzqw3m4YyDE0NXhkE8BAZJxj8asUnHIkHg0McV8nkoy2QqtvHG3LoBpepFDfIjVccsEV+30anRaTx0mioiI5LWi4BR1ylJKecBHMW+Rg8AY4CM2aUPjqRkJTiSkg4c7THGhSsnJUFcaLA05ygOoJezSpFxyJ7SaxNYEwKllo63HQOjLet5QMmVmRGEtFlVkYkkZtrkHbBJ42+M2aRlkTq2R/snOfWPeJ2KbXyyvoNpDZIM1ZR+0B5R6vqDvsh+PbZGp0an9RHOWMDw4t9EzkIf43hIzCiB4vRW4bGcRQIosEkbpBMDaBlAxuAYA6WKWaS3zw0wAhosA8C0YGlMrAI6n6oDSLMmRpA9bXpVinRgj9FNspAx9hQ5X2S8CKY7DlzpsZLSgqKJovV9kwSfReZsEhYciUEYwITnl+wnG0MbH2+Z1iBJqH4h8YsfxAxg69d1cMf3bHRqdBoPncrq+FIGjLacmR/TGGB1nbxMMFaYQaSOpOaItOJny/FZoYpMq25dAZA+OCoPMKtEesySI2SaVhQ0q5RQDihJEcC1zrZcKc3oSBEUo1Kza74oSMXy58PJsUj9P9i5JeHMq5ZNtqCBj6E+m0yZXTfWNj6eMq1BskrWx/9T1quqqtvo1Og02Tr5wryLM4uKgPnZpABYbQAJ5wxSUlCWEsGYCRKpJ9bU6ks8ztHPqpOXwW2XAWQMjqHpNTSH2sAdC4wWMLmrb/azdgEoLYtUjHQaAE5gioE4lbJJP4ipjTjIyR7XLLIIliYYySZhV/m4ySo2aQFTMUBANwGfVW5KbXys0oDkBMkgZoZBTRKNTo1OdepWCWcm9ZxXkSMHM/2DXxTLFkMGGaaxA+DG4ClO6EPWSiWZhNy7kW+OBeLMOmmAjMHRB0aS9RRVAKAkeOS7tECpOGn/oQFDpQCmCMSolE0CaVCMt5Wxj0pFaHE4k2vLdGN0Ygdtck2FtiikTK06WpYMm/SHhQBTt41PlpQlDpxWknrg6SZWfa6/XdWjYjXqNjo1Oq2vTnbsW5VwM/jcXYt5P44svw6QZ4mxIyME06CZXwtuJowq0bNk8Jqp2YqSyr8as0hffAZp9zWIKpCUbsmPmcU75uqXmGztNUOdonR41p9KFDBjoAogVVDu///hsJui79eyQkUa2P3HYjdtGVGxoxPXnYptfDKkAUmUP/A6L4JKtqsaCyHdoOo0gkanRqe6OlnhTJtQOXLgS9fx7mfnUGTa5MoM4NpMNBYIuclhyj3A40zXy9f59FFZBIy2rDAXo8mLWkfiOSP1duiDDMsMmCWAMbyuxzxlzjxTQUA5W819owAKYJjS3Qf1eEiMlZ4FSpcWEO76PvilwLJwT3uuNVUHx8zk2ghBFZjabXwipQHJEinr7VS9JL+3E7/Qqp6XXQYxMTQ6NTpV6VQllj3GwAhok6tjkEizScEYOA8B07LKMhaZmph4Q4oPkK4sAryCaVYW66oCEOdssugjjcdx9gfHVPRvHUkBJVE4FZovZf7kFPsskw3x3U2GNCDpSVlPqW4ztb2d+LyyH1FbXnX9RqdGp/HUKSUp0LTs022XsEnB8mtoVolw8mHGIEp+ZQrssQI8OWdmSqowryqA2oyzSsqiXFNAmcrQU35+9dsoY5G9GuAYJJlP1JcqB8UYA1Wi3De5WjbZTzaWNr4+0oAkwp5MP6nbcMoaT5mZLr5uo1Oj0/roVHk9Vo9NclaPTTpQ9NhkP5Or75eMzbC2zJ/QuPR/8fOrDgiW/YZ/DCq5r3Iyf8LHX6rMw1amQhufrKfcgGSJ9PvcUsdTL5lF67jXFNdrdGp0Gg+dkvcwfsmUxKDJzR3sOSk2aQGxxVngmyxjkymTq88ey/ySDiwT2+5/82bp0OtwLGPyedSoM5XFZ9Q80UEQPDed94mlqpS6mD8Vv7vxkGk9BKSKCfRrF5SoR9GaJcpSOsQvPvVj1+jU6DSITrHYsH5XzwChInLDQeJ9BjvVr831qe8gQcg4Q08BnBNgZ6BgZuiB0GeZO8Ne3a6l0udLxyYJ7YzrbDMRUEoy8zYqOyWVmeRYheVSmWEpMOM3VQ6CybysQtQe8lFXxgK6Prj5pmbLrG2Z2/dM4O4aCbRI+YaDSaTXE2GmQhufLCY5rUGy7CFX9sYx9h+qqnv1e/GNTo1Og+hUdn6eXUULZ+VAaQHRB0durqVgf8A5ulDgxNASAMABpQxgQg+mZ3r6Jmt+bWc5n5UeMA6ZORYDoFQMintTUnGmE3ebCYX9crID6BUVEgH4sK3L9Z6fZs7WD55dBHxM9AfCkOGm0ciyYSsisV0nuClmkPGwnMJ9WfX+WGVDfXeTIdMaJMci/X6EbJ26LzD4ASu5fqNTo9NYdAJCBmm3HVAyuHRzgwCl8O/Cc77ZlXoMZQ6YcMdcQm6uM8VYELSAacFxKNofhE2SV8aBgE0CCHKyOhCVeeJyXZ4GQb+ccZ6nqjP5XJk3S4heh0BZbibO92PTs17zoNNg/btADoa+Pzh/77n53PqW3T1ZXgdRufZB929t49lxs3XG2sYnWibFJ3n55Zdjt912w/DwMBYsWIBvf/vbpXXf+MY36ii2aNlnn31cnWXLliXrjI6OToj+/V5eqmcz6Esc1HzQ6FRPpqtOZfe0v8/xuMmCT9LbFywP5LHbeXCO/kFvcY6W0P7JluAF/2R+XK/bgqOdcRfE084E2hkPwNMudXyTdvYNxnOWZsGsCtCYEHqJjunjXrmrx4PjcV29zcw6j8qNxS+3vlqgDCijNbOAGQGjBdGSX3UNlixoD3Y7Bswqc24dMJus724yZMKZ5A033IBzzz0Xl19+OY488kh8+tOfxnHHHYef//znmDt3bqH+pZdeiv/4j/9w+71eDwcccABe/epXB/VmzpyJRx55JCgbHh4eN73rmAhiievVsdsP+uPa6NToNKhOjkGa4ylGCVT7KAGT99P0+cmsmS3zGKW9WuiLLJZJYpHpVSVNsbbMTlasxxiGbFJAT0vFOIOATqmnZ+Iwd87aUL1Owewai2WW7hmLkEHqtQbEFOhawOYsB3F9zJblTI17x31wjJMruH0TAMVZDmq2ExIOy2EuaMcFWzFv/KvrKFX7JlOHYnClkv2p8t2Nh0w4SH7sYx/DGWecgTe/+c0AgI9//OO48847ccUVV+CSSy4p1J81axZmzZrl9m+++Wb89a9/xZve9KagHmMMs2fPXm/9Ui9hEDpfVrfOyx3k3EanRqex6gSEQGn3AR2UIwCdaSVgGgRiACNmxtJpP6YAA2MEqRhEbGweECglR/ALJJXwtikATEAPkCfOwIOBl+ZaUGAqn8uRKz3PI+cMyhjMfKAEF8UpsqCBzh8HmWKOMUDmoMkCMLRssYwB2/2yiN8yU2s+BCceegM3LCc2tfrA6DNHu+2bWjlLWB4KTyovJ0yNNj5RMqEg2el08KMf/Qjvfe97g/LFixfje9/7Xq1rXH311Tj22GMxb968oPyZZ57BvHnzIKXEgQceiIsvvhgHHXRQ8hrr1q3DunXr3P7IyEjlPQd5CWV161wjblxVDaDRqdFpUJ1iccBYApac9IFUpKsAc8Cp0VTPKgFFmqEofWc2AFBKMnXNr1CvZGC93W8LHkxUnIu9PtzsG4ACegAyDvRUAJQ2W04Zq4yDefxyAEmA1KZdC34ogKLPIjlnEELXj4fFDGW8AjStmTs3tYZDb6pZJAdLssixAqR7Lpg6bXwiZEJB8vHHH4eUEjvuuGNQvuOOO2LNmjV9z1+9ejVuv/12fOlLXwrKn//852PZsmXYb7/9MDIygksvvRRHHnkkHnroIey5556F61xyySX44Ac/WCgf68Mez5dE0XajU1oanepJnZ63b2Lzg3rAzOz0BiwZ0yyywCq5nkmCAIADzJRxsjOD1ATKDHl5Vp2Ozd+3QElEQbSrqABKpsiZXt2z4QLMppWLmGUMkNxjke5cDyBjM2ueISgHRFfH27fm5BgQ25komFpjcGzxkEW2BCtlkTZBhGWO3N9GDpB+GwnAkRLdCcaLZSUykW18omVSoltjxzWZiT77ybJly7DVVlvhxBNPDMoPP/xwHH744W7/yCOPxMEHH4xPfOITuOyyywrXOf/883Heeee5/ZGREeyyyy4DmdCQOBaX+6aHuH6/RmKPNzo1Ok2mTj67BPQQAjJgqecXpAAsJYqskjECVO6nBB8jULZ9TTNohEtLB4hSvinIXhoomcp9lKQYlOIgFUa0kpIQXpRr8MxKgnn0PjcBQwbEMsPqBA9MqyLTZSLLywULATLFIu3xljCJGwQHZygkcGhxXskiLXO0plULkAU/JSKATIFjfIzxZNv191FSvr5tfDJkQkFyu+22gxCiwBofe+yxAruMhYjwuc99DkuXLkW73a6syznHoYceil/96lfJ40NDQxgaGuqrb+rFUXQMiWPxD5L/0uNrW+l3vNGp0WkydYrZpWC63Jphc39lmlVyrmeg0GhrTYuA4AKCKQhJmvWYNXqDA2XMLlUW/5cK2p1ox0iSt1Ya/LmewzEGyzITqy9lQTplAMkzblgkct+kYZctE90bg6GO6BUBaLa4jhb2gTJnj9wAZrkv0ppZ88jk0A8peD5dmgPIPDt76fMwD0LXYXaQ0IZv4+MtEwqS7XYbCxYswIoVK3DSSSe58hUrVuCEE06oPPe+++7Dr3/9a5xxxhl970NEePDBB7HffvuNWdfUy0297OT9a1636pxUvUanRqfJ0skXHzAZAGIMjFBglRYspfJYpYBmbna6exBaImaRGhiFJIx6+2NhlPGgL8bIXUfZyYyhWaVSBPR0QA+MNtrMakG1mFAgHh8JhFGp2pyam1h9gLR+SGEZpFmLxFCXjKdZZVtwCG6YI2PIRDisxppbW9wOp/HGTTqfp36PMZv0AbLAHn1wLANKHyA9oAQmr41Phky4ufW8887D0qVLccghh2DRokW46qqrsGrVKpx11lkAtCn00UcfxbXXXhucd/XVV2PhwoXYd999C9f84Ac/iMMPPxx77rknRkZGcNlll+HBBx/Epz71qfXW13/wca8H0bEqc1rdH8S612t0anSabJ2AnFEyAGDaD6kIINLMkYHAhU0DRzoYx/gnOXI/JQPXWXcUzJpBG0E5uoyM7xAQdjsCSsFz4Ioz0XQ4A+tplqakm8cCTOVAJnsKjBturOBYJQDDLAkwgGhB00o8+N8CpAvG4WaMpg2gMQDJMxYAJDf17BhRC4pD3rYdL2oXbgBQOB8k89hjPu60yszKzDML2aTvl/TYY4JBsgRIUgVAApPXxidDJhwklyxZgieeeAIXXXQRVq9ejX333Re33Xabi1ZdvXo1Vq1aFZzz1FNPYfny5bj00kuT13zyySfxlre8BWvWrMGsWbNw0EEH4f7778dhhx02Zj1j2l/WCy97manyfr35Mh0anRqdpppO9ofUHbfs0oKlAUhO2iUpDSlkZBYgML+ip4BMgDMFbsyiGgf1icL8LsczhPjig2Uc9cq4BUwOYvr6pMgBqVIEDp3CzgdMQINmLD4w6n2EQzoYc75Ja2KNAZJnud/QB8J80QDpm1lbgnlJGDQ42oQNLeOrtH7KMJF8yChrA6QBRAeMiWnBwLk7XnhSnn9yMtr4ZAijOvOibGIyMjKCWbNmYc2aNZg5c2ZwbEO/kJQ0OtWTRqd6Ml46+TPYExEkaTOrIu0/tPsU7UsFdKRCVxK6Sq9HpUJXKqzrKXQVmbU+trYr0enpY2s7PXR6Cms7Eut6Cp1o6UoF1VOQUkH2FEgRpFQgBbP2Jj6mfBuA58OMnhf3t/M0chYcXSCOHdaR5aBpTay+H7Kdccxo54Cot/X+Zqa8LfSxFmcYzgQywTAs8qxFQ1mYwagOQArDMPV+BTiqIpssiH0onGtWacvsgolv9yMjI5g9ezaeeuqpwu/4eEqTuxWDUf1BfmDW58eo0anRaarr5EdEWmZp2SVn0KZVstl9AKZ8VhmaXwHkEzh7zNId4366NhWUxeZXGZlfLatknEP1yAveIZ2AXcABpi9KUTJZeZwxx2ePgV/S80Fq3yJz4GgBMmaQMUC2BEfm0v0V2WXGBwNIHbRTBEgHjnUDdtxDMhZXa3bNH1a+iclp4xMlDUgi/VL8lzUWe3ndumWNotGp0Wlj0AmIhw/o4SMaDHUydGnAksOuta8S8MyvALjSwSnregqCMaxjDMKwGptpRp9j17Iwe4bgTLNKGJNrj0FKpafP6ilwblik0sxRGXAkM+bFnzA5DnQNGCT3U8/BRa6GJteiDzIGyBntLGSUIsyB64OlBUhdpgEyCNYpBO2Y58byAB3BUA6Ojk16LaAE+MhPw+ADpSe2TU1WG58oaUDSk7IfivHovff78WLRfqNTo9PGppMN8hEMJnDHzkuph4m4tWWVzMzUAe6Bo75WyCYZ1jEV+Cnt2gb0xPlORU+DpWWVOnBH+yBlT4E4QSno4B6RA6b9mfdZpT+jR+6TDMHRD96JzauxD7IfQA6Jov/RmloHAUjBmYtgdeZV1UuCowPGKibpj4skvXZgaYEyaBz1kw24UzB4G59oaUDSk34vZzLuXVbe6BTeu6y80Sm8d1n5ROskGCAEg/QYpGA6yEcqQDIdu8NBbkiC4AKjPQSAOcoQBfbkM19YYARC06u/SEXoMIauB5AWLJVhkGSyBCnfJ5kYLpm74fIZPOLIVp89loFjbGJNAaTPIMcKkMI3r1owVL0iOJZEtZY6Z/1xkaT/EFMAcTCR5e1qDCA5iEzWN9WAZCTj+eNRp6de536NTo1OsR4bi04+WDqzq/VXMqDrscqeIszITPIBxjAqE+ZXzjDKlDG/SgeGazvS7fusstNTjllKRQ4sU8E73DBKC5CpzGAuytWLavXB0c+ikxrm4QNkKkhnUIBsJcDSRrDqMZTQoKZ6GiilZZIeOHoAmRrukb9gE9GaAksYVqlUzihJgTE+ZnPr+rTx8ZQGJFHfHzPoy6lTv05DaHRqdNqYdQKKYCkZ0FX6/JxV6umwXFAPB9aZH/xRqTS49uz19F3j+Rd94PTZpA+YOtKWXPSr9UX6gf5xEE8wibIHjC4Hqze0I16XMch2xjGcCeeDtFGservaB9ly9yxnk9a86tij6hXB0QdGP7K1TOzwD8YTPkgOUnrAK+MAeebZurI+bXyipAFJ1O95D/pyBukJxWWNTo1Om5pOQA6WXcseY1ZpAZMBQgkNkEwH3qyz/krO9PhKBqyT+STEmk0yCK4CVtkzIOkAUpH2VzKd6ECPmcyB0WeTwf/kBe5YPWJw9Ld9cPQTBVgTqwVBC4h1h3nEAJnxhP8xYo9MyTQ4JoZ8sJJRgeScyNyMgfXAkmfmvXMNjgpg6IF4NhCbHLSNT4Y0IInyIAf0Ka+6Xuz78V9o6nplDaDRqdFpU9HJlxbPg3t8VtmDAUyz7wf1ACiYX3UZ5fMsdnwmKR0wZh5IBozSLAAcw6wS6w9N+T/jtHIpcLSg2eJcg6MPiJwZ5ijc9nAm3DCOFs99jRlP+x8FQ5o9moCdwC8JIDC9upeXYJNesA5IaiC0YAloBmmBUrsnTdSWuWcfoByPNj5RMu1BMvVy6tStukZZ/apzy/RodGp02lR1SrJKC5AM6CEP6gF4wfwKwLBJBcEIQllWKR0otjNCpycDJhkDZAyUVux2PMzErlPLUMHcWhwD6bNDP5JVM0eem1u9GT8sGGYBMJpjAXs0IOizRxvR6gXtBMCYyrTjv1N/DKRJFuACdkgBIisAJcwQH0YqaXYdr/Y0GTLtQTL+eFMSm6KqXmRVTz0+z9+Pr9Ho1Og0XXRqc+iUdtCs0plcwdA1kzrH5lcAefSrNb/KnFW2M4W2ycLjm2B9kOxVgGQ840hqPKZd/EAhHxxjk6tLBMD9tHLpQJ2W4JotGoaYiZwttrztgnlV9gyTzAGyKmAn8Ef6a/8d+hl1SGnQ9AN2ZE8Dp8gcUOZsUmk2yXhlW1jf9jSRMu1BEhj8YdftiZe93DrXaXRqdJpOOnGmh3QwggPFEDARmF9Lo19VzCqLQTztTIOnD5C9AUHS5pMtmlrz4R4uwtUAH2eh/7EAjMbsaoNz/Gw6vh/SlbPIvGrZo88crU/SM7kyjzmWJhHw3xMLmSAzIGnBkjGuAVH2QqAk7Z9ksqffNc+QCuIZr/Y0UdKApCepF1DWkynrmY+112M/wTqNotGp0WlT1IlbxmhYZRfkco3aoB5u1inzK2dApoqs0jeFruspSMUhuIJUar2YpL9tmWPsj/TZo+BRooABAnR8M6s1v7qgHJ89+gBZBo7eGEmSZvCpktXvjwswYaYSs8zQgqXPHC1QWhYLXc5Ilbap9W1PEy0NSCak6kUNQvWrfmhSdRudGp0anXJWKbg2t3Kmj9mgnpT51Ua/6kmddfIA66tskQagrsoDdnLA9AFSDQCS3G23HfvLWaWe3goeSIbs0V/X8T8G5WXsMRXNastUbm4lKQEloey8mf6wD28uzSAvH5egHvT8mgYwyTej2tk/GOVtgmcGkJkxu/ZK2aTfRsarPY2XTGuQZKju2Qzaw05df9AX2a+33ejU6DQddLKYxDhzplY/qCc2v+YZevTUW5zZiYn1TCPWBGvBUptdOTo95ZlaeTJwB0gzyUIqPM4CcOQMBUAMkpRXmFfjRAEOMBkA2SmwRwuYmkXKNDh2OxoYLSgqCUoBpZMuYDoDdvJp4kqnPlIaLJFl+l42epVnGhRlL2xLjLsgnqpI17G0p4mWaQ2ShOoXEv+QDGIGsPX7vfT4eL9rNzo1Ok0nnSyrBHIW2bMuMs/86qe06ypyrLLLKDe9SkBxQCg93E+RBspUlKuVnhk+YiUZ3cqYMeuG4CgYK2WPg5hX7fAPxxJ7nZA9RtGszJSDFNDr5axRqRwYzTaA3OQK5EzSY5FMCBC6uoxLMC4cWDJ7nANM9TwWCQSmXSWND9OUVSRDH7Q9TbRMa5CskkFs47GU9dKr6jY6NTo1OqV14gxom2w9DhgRml+DlHaSIBjQNSxylAEtArrGfNsihq4kM/clOcC0YyRjoPTFgaQHjDaQKAWOghXZY7/o1UrzqgeQsbnVBeqongNH6nULwGjNrZY9km9iddLV74MLfQ3OczOrBUgu9DtSAqzVBjFVsES498m41pHzJJucqPY0HtKA5ATJIGarQU1cjU6NTtNRJ8HS5lcgkdJOGfZopt+yvk1u87QyC5AExeEAE9Ass1QHm+TcA0bBmdu3YOezRc7D/YGjV33zquyWA6RJHEDdTg6Odu0BowbMopnVB8vcvJozS8bNuR5YatZoomNbbZBKmFmZ0uUsHy6SkkHb02RJA5JIv5RBP/54u6qHzkrqUFSn0anRqdEpFN/8ChSjX8OUdjmr9NeSkwNLHyAtg1QVqUbtrX1gzP2fOXPkLDetOjZpgnP6Zc/xo1dZr5ODoeyUg6OSuc+x1w3BsdfNgdGCJJADpSwySQIAE83qABI5o0TWyk2y3APXVlszRet/tFGzhkmCMT0khHEwk3hgfdrTZEgDkih/4HVeRMpkAFR/6GWmhTrmr0anRqfprpMFSsaYC7qx5lcAZsJnQAf1xKxSQRE5sFQEl7/VgmNVajqbls4Co2OTETjqbDi5aZUBYRCOZ2r1kwNYX2TSvCo7SYBErwfV6+Rg2OuCup0cEH2QlBLkBe64Zx6ZXBkXQM/4IS04CuEBJvK1EOE7brXDzg5j2l/JeO6btDOK+OdVvPuy9jQZ0oBkiZT1nqtekt/biXvEVb1mf7/RqdGp0am/TnZMpU1b12P66ho49TyVQD5Ppc8qJcGBpSQ9A4gFTKA+SApmZwBBARy5CeKxgMiQjlotmFeRj320plULiKzXTbJH6nVBFiR95uiBI3U93yQQRLimxAXq+OxRKTAuQULo87KWWxc6QwYoYYER2hRugRIJNjloe2KYHGlA0pOyXm7dnkvqhcbXLbtf2QtvdGp0anQqF8GQ20ChZxQBYBIOEDjpmT58VqlUPgF0DpA5YLaMpj5YOnB0gTueXzIASjsMJGeYQucBr2delRXmVbsfs0fLHGNw7HY0a4wDd/xhIEAaKD2A9KNZA7BEzibj9wgAaA/lEa++P9IyyVSe2LJr9SmfSGlAEvmDr/Pw69Txe9vxOWXmp/i6jU6NTo1O9XTygZIZrsHNCUx55lfDKqXKwTIGSGlOVJSDJaABML9fCIx635pcQ9OqBULGEiySRdGrvU449tEDTCY75ezRBupE4Ei9TnLYhx3yQVURSuiCCR4N/wj9kQwACVHO/rkAMgOQ1h9JeRCPZZPg2bi0p4mSBiRLpF+PJXU81SO2ZakXW9UQGp0anRqd6utkgZKbuzIzCwUHwEmbX3NWyRxYdpWCUgycCOAsj3BNKCHML7kFRgDODyk4c+Dom1bt2rLKzAvYGci8Kjvl7LFnQDICxwAkpQRJBVIKyoBjFUgywTWRFByMczAh8+EfSgJZW1c0jLRgMeAC1OvobZeNx2OTfoo8I2NpT5Mh0xok496LX97vY6ZEvbIfj9Q94nvF5zQ6NTo1Og2mkx0iAiBnkgYwGQtZJSEEy3ycJINSQCtxb5N8xvNLMmdW1WM3i6ZVC5KaSRantio1r8rQ/4jOunL22OuAut0COFK3EwCj3QZygEwBpQVIJjhIcjDBwRUHkyoHSyD3S6ben2Ga4CIP1rEM0gbxRGwyvkbd9jTRMq1Bsuwh1+3J9nuJg+jQ78U3OjU6NTr118kNEVGkmSWDoYVMI6di4JwgiWlCA50EnUgbaqUiGDrqWGVganVmXXiJDUJwtKZVa07l3n7d6FXfvKrWrS2yx86oBkMpDXh2C+Aouz0HjCTzBQBUMg2dkS7AbTo6oUFSGUYp2pkGSymBVrvUFJoPDzFrxrTZ1cx5CR4mW7fn1hG/PU2GTGuQHIukPtBUz7buC4zNFGPpHTU6NTo1OuU6uSEiBEABEPo3mRv8k6QZJZEBSwDEQkDU+Jj/hxYnXU5ZsDzZOkJw9AN2chZZNK/GyQHKzKvUGQ3YI3VGtWnVHw9pj3vgqCxISgWlVMAeqQIkGedQMACpOLhhk0xwkFLgrQxccduXSAIlbDYeP/erN7VWFZvsJ2NtQ2OVBiRrSL+XUmZ6GqSnM+hLb3RqdGp0KtfJBbxasIRmkYxr86skAhFzYKnAQKRNoqrkH3MAaYDRJjLQ+3aoRxi5yr39gnnVZ48+WMpuEJxD60YD3yOtG83NrgYkVaebBMeQTeqAHeeTTAAlM6DGnclVQPEcJEUr09draejg+oLFd8WNH9KMraReB1wIgBlAlMwkQy/6JuvKZAFlA5IlUse8E0tcL95PffSDvOhGp0anRqf6OuUjQzSqMWjmCKVNrFIBjOVgCaYBUzBNQH1xrMkbJxmDI2dh5CrzU8v5qeR8f2Nkbk2ZVx2TtL7HTg6SqtMFKQXZ6TlwlD6D7Ha1P9LzRfp+SH+bidzEqoxPkkmlg3eUAJMcJBWEAUhSCtzscx5GuebmVpPzlQsN0lzAzkoSsEmToacs8XnV+55omfYgmXoJg9D5srp1Xu4g5zY6NTo1Og1+3RgooQhcGIDkOnxHEUAEKGjABAAB59bMr21NrmBBonULjpZFxuwxNTGyzyBdcE63k0evdkZLzav2mOr2oAxzVJ1exCSlA0ffH2nBUskEc+t6DNLzSSrBtYnVgCWgfZoWLLWMgg/nplZ0O4ZB+sNHeDmbtFGvoh2otD5tZLxk2oNkSgZ5CWV161zDWnVSZqNGp0anRqfx0SkGSiIAxuxKpBkmMeh97zzBwuv4fkkLjjZqlfdjj9HUVin/o88QrUnVDu1Qjk12HUBa9hgCZNcBpw+MymOQcYSr+/8sg/QAUke1agZJJmgHAJgsJrhlomMekGGRIo9wdWZXLgwFzwI2CS5cvtfxmpR5vGRag+RYH/Z4viSKthud0tLoVE8andLiAyUZLQJw9MCy6v42sMcySRuYE7BHoBwg42hWkz3HAmTgf+yMuqEd1uRqfY8+OKpOz5hcuxX+yBpBOxFAMhUOASGpwNsZqMAitShhgnnsWBluJmbudYJEBNwHR6WjqpgyOWV5NUgCDZOcVBnENFRW3y+356fq9/vA7fFGp0anRqeJ0ckCJTEGKJ3nVZoptOCBZan+nokVyE2rlj1ya15VxrxqZsFIzt5hAdIb/+gA0gJmwv/YG+2EAGlMqw4sy4Z+ODaZ/4PK2+aONkswwcBVbnbl7cyBJQC3jkUacBSiq58518NGbCo72JR5Pps0E0WTnQeTsuB99mtPkyHTGiRjSX10FB1D4lj88fsfbHxtK/2ONzo1OjU6jb9Odgil8MZSEukxkRYsAbhk54FPEiGTtMM9GIx51QdI3/84DgApR9cVzKva5Np1ZTaAx4Kj9VmSJAeIbpxklFJIIgdKJjgkFLhgYEK5YR/MTJPCE3OJcc6hunoeFsY5uJlFhJyplafZJM+cP5KZbeIZEE3KbJ9/1budKGlA0kjqw0x9qCmp03vud06qXqNTo1Oj0/jqBBSBUhnAs2AJhP5IHxiBcPiHb14FqfoA2euVA+S60eCY73/sjXagOj2obrfAHpUXuOODI0ml184XmX4yOqKVAV0JxjlIMD02Uuj61g9JCX+k9Fim7Pa0f5LzfLots7BWOwdPLvSzsP5Isw3VAxPtwvvrB5oTJQ1IRuI/+LjHiuhYlZmo7ode93qNTo1OjU7jp5MPlG6sJMtTzhXq23t47NGZV0mZCFVVHyBjH2QfgJSjHQeKPkD6AJqbWnNwlF3pQFGX5U/GRrhyz3zKTO+ACwIpBiYJ5BimCdpJmFuZmaDZHlOCQwgDkG7CZ52c3bFJJbUPUkltbrXm6RoBPMDkMclqLcZJLr/8cuy2224YHh7GggUL8O1vf7u07re+9S0wxgrLL3/5y6De8uXLMX/+fAwNDWH+/Pm46aab1kvHfr1YFq3jOmUfeSxVvZ+ynlOjU6NTo9P46xSAnZ3NAygswvwGuSQBlkEOApDeFFc6alWbUfMkATb/ajVA9kbXoTfagVzbQW+0k/sou9oEKzsKsiPRG+2iN2r3Fbpre5Ad6ZbeaBeqK6G6ets/phd9nupKyK5XZoOGYnA2Zl/p9nt6DKeLyLWJDzzfpJSOgcP4cIPtinc3mTLhIHnDDTfg3HPPxb/+67/iJz/5CY466igcd9xxWLVqVeV5jzzyCFavXu2WPffc0x1buXIllixZgqVLl+Khhx7C0qVLccopp+AHP/jBeutb1nvt10OtY26qOr/RqdGp0WnydfKB0oJlvPhmVRe4Y/2PBgwHAkg7nMMO87BRrB6bLAPI2Cepyzsa+AwQ+uBoQU+DYQ+yGx/Xi39MdYtgGQBlR4ZA2ckDiFTH8492e2asp+kUKGk6Ax2Q2badDEakn5OXgYf1eXeTJYyoKp5r/WXhwoU4+OCDccUVV7iyvffeGyeeeCIuueSSQv1vfetb+Pu//3v89a9/xVZbbZW85pIlSzAyMoLbb7/dlb30pS/F1ltvjS9/+ct9dRoZGcGsWbOwZs0azJw5s9J/EctE1Z2s+zQ6jX/dybpPo9P417ViA3XKmGwAjvZH3GM9/QAyyKRjEwV0RoM0cxY8bZBOHYC07NGaVvU2OZ+kjmolVwag1CeZm1q5jnAVzEyTxSDaAlww8JZw26ItIIbb4K0MopVBzGgjGx4Cb2XIhtsQw21kw23w4WGwtlmGhsGHNwcbGgYb3hysPQy0h0GiDcqGQFkbyIZBogVqDethIiUyMjKC2bNn46mnnsLMmTMHfOP1ZUKZZKfTwY9+9CMsXrw4KF+8eDG+973vVZ570EEHYaeddsKLXvQi3HvvvcGxlStXFq75kpe8pPSa69atw8jISLD4UubfSG0P8vHVqVtmSmh0Kr9Pv3Mbneqd2+iUS564PFzyabBQBEgV+tGSizdRsksG4M3cgW5oelWdrjNj+j7IKoAM2WPOHGVXBmZW1VVQXQOmicUd91mkMcnafbutDOg6Fqn0tux0g0Ain006v2SvY56BLcs7GnYITVU+18k2v04oSD7++OOQUmLHHXcMynfccUesWbMmec5OO+2Eq666CsuXL8dXv/pV7LXXXnjRi16E+++/39VZs2bNQNe85JJLMGvWLLfssssuyXplH+X69JRT2774fpR+vpRGp0anRqfx18mKBUR/cXVSAGnMhLHpNWCRpPL0ch5Ywpu9w4JnnCggDtIJTaxdz/Qpw+1g3wPG2IRaWHQqOwuYDlwlaf+lVAFQWh+l9UG6yNpuN0yFJ5WZ51L7JqGU+f91GSNy/t14Sb2/Kt/zRMikRLeyKGKMiAplVvbaay/stddebn/RokX4/e9/j49+9KN4wQteMKZrnn/++TjvvPPc/sjISBIo/Yc/2Xbwfj6XRqfw3mXljU7hvcvKG53Ce6fE/ZqUMUgLkF65LXOMqNfL/W8OGKNAHQOehUw6JQApuz0oSQWA1OMklWdqpWgoiP5vU3lbueCQkpyZVUqdVEBA6Gv7Ea0d/zzmxkdKM1OIHgIi8n3BwUQHLGu5/x9ZC+jqMp34vKfzuMpenrLOGzM56LsbT5lQkNxuu+0ghCgwvMcee6zABKvk8MMPx3XXXef2Z8+ePdA1h4aGMDQ0VOte4/mh1ukV17lfo1OjU6xHo1O5jIdOAUAWblBiWo3NrEQgE8kJM1WVM7P65sZenk5OdXpQKh/rqLwI0tjEWgaQqqsK4JhPj6X/a98vyQSDVHoaLSYZyPokAUjIPHmAB45M6kQDsqPBlPE8gQETXP+vEZukXhfIWnrCZmt6VVLPhJJlmnmbhOduzGTNmUEmUibU3Nput7FgwQKsWLEiKF+xYgWOOOKI2tf5yU9+gp122sntL1q0qHDNu+66a6Br+lLX9zEova9Tv+oj7len7j0Grd/o1OhUVzZFnQrnxywS0EzHHEuySDKgaIHAgaXMzazG3Kg6eVLyPEGA9IZX5H6/FEAWzKsyNKGm/I1KKrfYMss+/UhWC7D+dQMfpSRdT/lJDEKfpNXdDf0w/7dvdvVZeTAcJGFynWxrw4SbW8877zwsXboUhxxyCBYtWoSrrroKq1atwllnnQVAm0IfffRRXHvttQCAj3/849h1112xzz77oNPp4LrrrsPy5cuxfPlyd81zzjkHL3jBC/DhD38YJ5xwAm655Rbcfffd+M53vjMmHev2cgd9OYP0YuOyRqdGp0anydep3g1Uvi7zpaVYpAVHt22GRajirB3O12eDYro9A2Q2Dyt5U2GRYZPkfIguwlXl20rl/6kf4GqzCyklwSVzyQUUFNDRTBPeDFZM6smryfgquWCaUXJeyiZlpwfeygxQdsBaLf18pMwDmyxz9J6hNbmyGmnqJkomHCSXLFmCJ554AhdddBFWr16NfffdF7fddhvmzZsHAFi9enUwZrLT6eDd7343Hn30UcyYMQP77LMPvvGNb+BlL3uZq3PEEUfg+uuvx/ve9z5ceOGF2GOPPXDDDTdg4cKFY9LRPux+PpNBrhf7Wfr1mssaQKNTo1Oj0+Tp1FdigIyOxSwSQJBxxoIizGJZpJ+Y3EaIBiZYk1pOxkE61gcZAaTNtOODowVGGY36k+RlGlIEQMHM5wFltkkSFBQYZ5pxCgUlGZhkUJJ0Zh6VAyQ3LJX7Cda7PYiW+d+l6UBkLce0mU3MUMPkOqZ3N0aZ8HGSU1H8cZKzZs4sfFhlUnY8/jiB/APtd23Wp26jU6NTo9OG0Ulf0GM2nhmwclxkND9kkHpu3dp84uTOaDAm0mbP6Y2ug1ybB/JIkyygu7aXMLOGJtYUQErKgbFkiCQAm0mIuW3O9VhIxjW7FG2ux0i29FqYMZOizZENZ8hmmPGSZnykHTfp9ofbaG0+Q4+XNGMl+fDmYDP0eEk+Y3M9PjIbBrWG8rGTrWHAy+Vq39PTIyPYcRLGSU773K3xh5KS2OxTZTaq6hXH5/n78TUanRqdGp2mmE6cA1Ll/sjCzTx26VikcgEqZFik25bSM5mqgEW6mTw8Fpkys1ow7AeQZSwyFAZJZMyvDFAEbiNiobSZ1YuM5YIFbFJ2FLiZNST/n+IAHsMa/cCdIMrVMEc/ytXL5Vr27iZSpj1IAoM/7Lq93rIPs851Gp0anRqdNqxOBIBZM59nWiWmk6KHJ3q5RklP6+xMrIVtM27QAw+lQnBxQOj7HA0o2qhV3+foZ9lJAaQPlFY0IKYM0jnP5jI3vbr7GLOrkuR8k1pP5kys8doHfmY6CnGUq5+UIQBHpQDRv1M1UTIpCc43Fkm9gFQv1F9XXSPV/MqElVyz0anRqdFpCujUZ0aK/EQ71ML3SXq+y9g3CYQsK9hXtVikD5hVAKnX+QLEZSjUVyoCXw9p87R3+WTOZGYf8YOQSJlOgNnX/7/dzpfSxAI2923i3U2GNCCZkKqPbBCqb803dcQ3KzU6NTo1Ok0NnQA4gCTGa4GlBbtg2wSrOOC0x1UIiA5IoMEyXJezSBfFWgGQADwgTC1+nXzbBv7E9/NBUzm9KGfACZOr8kyuvhnasmySXoo/L2kDSwRKTRarnNYg2a8XGR/r15tNXX/QF9no1OjU6DT1dCqAY11mCSSA0fNHGlOrO+YG/eeM0c+WU8YigTyTThVAKqQXe9z3WfrXiNmky+rjLyrXwwd9u7b/n+4IJMDR7ieTM6TzuE6GTGuQ7NeLjD/aur1Zv36/Dzs+3ujU6NToNLV0CoCSe2xyPYCyeFwVQEZv+0zNO+6xOgBu7fsdUwCZH6MAEGOgjAHTH2Pp39fqnpfHJuSIVVqws+sUqzRDaRyD1DeBTSwwWWZWK9MaJKtkEL9GLP5H3u/cQa7d6FRPGp3qSaNTPWGABkTGncmVTMALJQCTCZG+Zw02ZEEGyJmhf57vE8yva4DUGw8ZM8IcBCk6lu+ntPOvZcHZv2/MYlUEoL7U8Uu67Dv6BsUFk2dmtdKA5ASJ/VDr9HoGNSeNVRqd6kmjUz2ZTjoR4IAS3ANGf9+WVUkistUHRgCF/by8HB58U+tYpMzM6peV35uCNeCZiz2/ZKyrM7X6EcBAtV/SyGSyyQYkUe6LGORDi7erTESxySBVt9Gp0anRaWrpZIHSBfB4LJIYG8j8WriHjPyWiaCd/FjRH1lH6gBov6uV3dvXL8V2dR3fNxkBo/HTBn5JfSAETNUbk895faQBSdTwRdQ8t9/H5tdL/RjUMTU1OjU6NTptQJ08gEwCoylnXOhFiHybG9bJJ+dnNzU2Mj9WzQ79a1RJzG4pCkLyg3f8cl23OIbUlVGCQVZMxDyR0oBkiZT1VKs+Qr+nGn+MVT1Uu/Rrs41OjU6NThtWJ13gBfCkmGUNYWauxXwRhePrK4Ixl7y8eAylxyZKqAoogQJQFsAxMrdOlvoNSHpS1qOsS+1tTzU+r+xDtOVV1290anRqdJpiOjGeTwbs+yV9wOTp4J1BxYIl8xDNbnORz9hRR0TJpPS+xFerc05KyszAgb81iHANo16D4B1vzTZA8E4Dkgh7of2kTp24l1NlDiq7d6NTo1Oj0xTWyQCjM7l6Ea9OuDCLAVFjeu176RrAF4Oj3S8DNVu77LhfbhOd+0zTbrOIfsb7dSSI8k1tqxAYC8CJehaA8ZIGJEuk36tPHU99oCxax73SuF6jU6NTo9PU1smxSRaZXE05mDGflvgfra+SG1OrLuN68cCPe8cADUg8AUqMG2Zp1j7IpUyuuixcgHIwiIGVC96XxQ7CcAPxI1wBFAJ4TPAOUO/djYdMa5Cs6k3266XEvg//OilzT9n1Yh0anRqdGp02Ep18c2u0BKzSMUpv8YTzIiu0YMk902pwnDMwwRyTs+sqHyRH+gffL68C2Crgc3rUDEoKAnzi8aOqCJCp4J2GSU6ClD3ksfgqyurU1aGfmafRqdGp0Wlq6VQwuUZ+yVSEqxMT7WrZIxM8ySx1VQuUtr4PmDmj802uMdjpcnNOtNhjfl24cubmlmSCBeBs55lMsVsAAwUfFTISxUAZb2PymGQzVdaAkvpo4t5mqrdbJv65dXrSjU6NTo1OG14nAsAMILKIQbrptQL2mIMfGTNsCkSY4J55lRtA4jkwCQZ0jelVcUgpdbk0QCoZoOyTiNdW86LEQOqzSM6LQByLD5Yx601JinGSkuH7o9wXSRGrnCwWCTQgWUv6fURlZp6x9GwbnRqdGp02Ip14BrAebMQrM9vWL0m+X9IP3uFC6xoPA+n28n2l2aWEAuMcXBAkNAiR4CBJGiwBkOBQUAaUVAlQ2v+gKD442n0fKH0WadlrziiLPlMfBH2W7HcCaj1vHxDNuEny/JKTIQ1Ilkgdv0Yscb06/o1BPtJGp0anRqepo5Nlk+AcpJjbhvJYpQXEhF/SBu8owcE5h/LMr1xwqC4MODKQYCClwUmDowZIAQEJacCSgxSZSZJDoBSMQZIGv1SCgDImaVmkb1qNTa2hb9Rjv3wwQAQAkrII4xsggYAv0x4kUx/QIOaXsrp1PsxBzm10anRqdJqaOsUMkhgDeAamegEg+qZXzTDTfklSuoy3MpBUEG0BJQlMEkRbp4PjigFtAdmR4IoDbUB2lANNHygtQNr/JN+H2fe3c3AEANEWDhAtGMYs0oElD6NemfDNxvXGjZbWUwrg5f7JiZRpD5IpGaSXWVa3zjVShpD1uV6jU6NTo9MG0IlxQGR6uqdSk2txvCRx39RqQLLVgpJKbyvNMpkM2aRoWyCRzuzKwUGCoAAICCiuNKDZHKsBWKajYGMfpM8YAzNrgkXGptbAxBr4WPPFPg/dUag3hnRDpKab1iA51iCCsZ6XkoL5ZozXbnSqJ41O9aTRaQBxEa0VJtesBep2QnMrF0BkciVrajXgaAHHZ5NckOeTJAjDKEVbgEkF2VHg0D5KAODg4EJnwbHGT39+SMsaAThA1P9WDpCizR1AirZIssjY1Ap4bJLr/2880u05mSSwnNYgOYgZpqy+X+67yeP6/T5Ce7zRqdGp0Wnj0wk804uSucnVRr6WmVyzFtDrBqZVpZT2VTpTawZSCkxyiLYGGFLKAJdmXhLSASWHNr2SJDDJ9KwdXM8DKYRwCclTpC0Fjtw3sXoAKVqiwCK5YBCtLAjQiYe26Hvz9LCYumLHTTYgOfmS+ugoOobEsfhD8z/Y+NpW+h1vdGp0anTaeHQCkI+TtCZXnumpnazJNWsB3U4Y5Zq1wNsSpFTOJlsZSEpQWwOlBUyutElVtAw4dlQQvKPZpgLjzPglAZjhIRYcFS8HltyXyMx+DpC8xXNWaQBStAVEm0O0hNkWDhx5AJQiBM44mKciO1HxxWiD8mRKA5JGUh9B6qNISZ2ear9zUvUanRqdGp02Ep3qmFxLolz9AB7ezhybZFKBGyZJrfKfaguAJBSYZNr0CqF9lFJBCMMopWaTVWKBUW/nmX1SAFkws/o+VvO/2AQI3DtmLp7MPpSkuBtYGpCMxO9pxr1JRMeqTDJ1P/S612t0anRqdJraOiGaGSRpcm21gV43inK1fkcNiJZNAtD73jaTHEzowB4XvtOxEbAMgATawk2ObPO6kiCwGhM05/liQ3DMATEHSO4YZMgcudAAWWCRvuk1GD8agWUKPDegNCBpxP+4qnqXZR9iqrxfL7VMh0anRqdGp41PJwZ4AGnBMTK5WrOrmWiYKZu0W4FJ5RgYAO2TbOXbPGCTPZDMYdz6ILUK5FilM7NKBd7ihUmSY7HAmG/n4OgH8TDOc7AU2qfKWxlEW68dIHKe+yndcJdwImrnl/QyE8E+yykgDUhGUtZTTG2X1Rm0rNGp0anRaRPRKZFYgCxQWoaUHDPJwdstCJPsm4ypFTAA1y7+VJPImaHiBCYUuGCQHQUlGRgnoAXDQA2jrABJ3xcJoACO1hSrTa7cMcgYIHk7g2hl4K2WZpQiZ8qaRXpM0fgjbY5b+wzd/zjgZNYTIQ1IYjAzTVWPdH3qNjo1OjU6beQ6JRiky+XKM7AWgTxTKzgHWm3HJq1p1QdFHeHaSt7fTmDMDDCSZAYsGUhyKEnG7MrAWwYgzaXimTfCNHIJNuklC8gjXA1jNADpfJKemdX6InnLM79mLfP/e2DpctsKc1+RTz8WPePJlgYkkf4Y/A9gLL6OunXLPuhGp0anRqeNSycCwPxcrqnk556p1ZpZYxOsb2IVVQE7JlKVcQUuFGRHgknywFKBJEFAA6a+ptW66PMrMEkPGJmXPMAF4xhgDEysrQyi3dJrwyp5K/N8kfkYUdZq5ew6Gj/qphpzyeI3HJtsQNKTsg9gPHql/T5KFu03OjU6NTptpDqlTK5RAI9jkw4cldu2cEAVgTZMcCiTDF11eyDjzySloKRy0awkFZQkzSQj9mgB0596K56eKwWOjhkKz9zqADMEyDyTUAbWahdZpG9q9QN5tDJazxgwJ1kakPSk34c1GfcuK290Cu9dVr6hdWIA/EHOLK5cJvYHYQJ0SpVv6OeUKt8kdKoyuZo0dYjZJBdAy5RlbRAADjj/ZCxccEg7W0inp/c7PZBQBiyVCdxRALgDTMseHfh6VtxwsH/OJC0w2jpxUI4FQm16FQWAtPsOBLkAy9oRi+SOQcKYZJ2pdQqYXBuQjGQ8P9Q6PdA692t0mro6JSeFHUsmEPPhs/gHwAPPjfk5TRedCIhMrDlgks0S47NJA5gMAGQ+8bA/9MPpIzik4FAdPU2Uzs+q90MWafybZhsei1QGOFPiz/1oGaO9b5A9x24b9shNzlnezsDt+MhWDp683QKylgbHrKVB12eRrXYIlFqBECirQHOCpQFJ1Pd9DPrR1Klf5yNudJo6OjlgjCaBdaISoFm4SPShc+7qFnrQpDQDMWUby3Oa1jr502fxDBAKRKqcTWYtkJI6iMdeQ2nA5NCAJY1Z1d1CcLBuT08tZQCSZA6MPmACOUjyPmMl/Vyrdt8HxiBZgEkv5wNiHMjjA6Qzs5rgHZa19XPwWCRif6T/rTTm1g0ndXuUY+lVVl2vqqzRaeroFACjD4oqBEtXPzFfXygy/yEAAPJ68FGgAjHugBL2hxYIAHOqPKeq+083nch2bOy2zy5jJimlBgx7XeOfZIBmW71uqINlj4Jr86oBS2XMrBYYfcC0ovqAJE+AZMwoY3Dkntk1DOQRAUA6M2vWzpmkCM2tztTqAyLn6UjXSZJJufPll1+O3XbbDcPDw1iwYAG+/e1vl9b96le/ihe/+MXYfvvtMXPmTCxatAh33nlnUGfZsmVgjBWW0dHRMenHUO07GvQjZYlt5i2p66U+3kanDaOTW0jpOQFlB0x2wHp6gVmY7IIpGa5lV8+a3mdhShYWkJlxnRQge2aAeS/XwwNqC9bxc5vM5xRvT4V3NyV08gDRLV5eV8smtenRmBs9RmWBhLWHHdvi7RZEK0M23NZMbUYb2XAbopVBDLchhoeQucXUGW5DzGib47osG25XLraumJGfm5+nry+Gh3Qd428UM9purKS9t/2fkgCZhVGtBRbpUvzxsDPpPd/JHD854UzyhhtuwLnnnovLL78cRx55JD796U/juOOOw89//nPMnTu3UP/+++/Hi1/8YnzoQx/CVltthWuuuQaveMUr8IMf/AAHHXSQqzdz5kw88sgjwbnDw8MD61cnEi5Vt+oaZfWrzi3To9FpcnRy+sSMUfn7FDLHEh8kKzOzAmGPODKt5iyRTF3DIKUxuXJ9r6rxYymg3NTf3VTUiQEFoPQDeMhjkgzIza7+/yK9QfUAOBegbkebX7s9kPFJOsZoZhGxZlcAxgyb+zrrMkkAJjNOyCh5wuzqR7namU6YBX27bnmAaf9vG+1qOws+iyxZkqA5wcKI+tqG1ksWLlyIgw8+GFdccYUr23vvvXHiiSfikksuqXWNffbZB0uWLMG//du/AdBM8txzz8WTTz45Jp1GRkYwa9YsrFmzBjNnzkx+ML7E5f0+oLrnVV2n0WlydArAUfXKgbHMD+mbXusKD8Gx4IeMAhVs79od802xqXPsv5T4vzeldzeVdWKqp9m/sThA9bQlQkm9LTvaatBZB+p1Qb0O0OuCuh2dcEBJvTb7pKQ+btdSFnyP1i9Jni/SgqaVqmElAALTKgDwCCR9n2UKHC1rdEE5Wcv4ID0GaQDSMUyzT4zpACcz7Rhxodu0iMp4BhIZRp55FjvuNAdPPfUUZs6cWfl/rY9MKJPsdDr40Y9+hPe+971B+eLFi/G9732v1jWUUnj66aexzTbbBOXPPPMM5s2bByklDjzwQFx88cUB0/Rl3bp1WLdundsfGRkJjo+XzwMIP5p+H1PVdRqdJlanJDjKXhoY4/nrPF9k4H/sF9VqQUzJIDiBAc4cByDsTcMQS0b5OR6zTP7/HqtMPeM6MpXf3UahU9x5scE8xq9MPNPm8lY7uJZrl0rkZUIAXZOpx2bsMXlfNbPMI1hV5Id0jLIGULKARYZg6Ue7hoE8aXC07DHNKkOAdGbWKEG8vhkvfA+TLRMKko8//jiklNhxxx2D8h133BFr1qypdY3/+q//wt/+9jeccsopruz5z38+li1bhv322w8jIyO49NJLceSRR+Khhx7CnnvuWbjGJZdcgg9+8IN97zVIz7GOj2OQHyn7cdT5oBudxq5TfkICHK1fMAZG5bFKe24yYCf945MysRZMqzY4h3N9HVb8cSiApY3nscE99vr2Wildaj6nqfjuNjqdvKhk649kSukXaYeFAEmgJGmGhfjA2O04gIRhlOBcXxPQiQgMwwRy0HTXrjELCBCCZTxOMs+vKgJAjJljMO7RgmernQRNZDk4Br7IFDh6lpTJkkmJbmWRHZmICmUp+fKXv4wPfOADuOWWW7DDDju48sMPPxyHH3642z/yyCNx8MEH4xOf+AQuu+yywnXOP/98nHfeeW5/ZGQEu+yyS7m+KP/IBumZV31AqbpV0ui0/jrpwgpwtOUxMKYiW6vGREYg5Vp6ZFb1zaXaV0U5WEJnUEmCJTgI9ofRA8rEvcfynKbiu9vodAr8aPnwj4BNmqhXYiGjdMAoPGDsRQDZzRklAJPizptZBNAp7oDAJ1nX3Kq3PUAEclC0ZT5r5LwUHGEz6ngBOwWA5Jluwz6b5OFYyQ3hjwQmGCS32247CCEKrPGxxx4rsMtYbrjhBpxxxhm48cYbceyxx1bW5Zzj0EMPxa9+9avk8aGhIQwNDRXKGarNMYP2HFPXH9R8069n2+g0uE6+aZXJTgiOym73isCo9Lg05oFkbGb1f4BKdXUT3UZm1uAHgOdlli2acd+p55MESnOtsT4nf3+qvLuNVSd7TI+B5Y49Es8K5zIApHoOKElxU6ZByAbrOCD0Ta6m/ZEHkgByH7lJVECmvA7MOCAEAoB0x2wS8gQwFrajQB4/gYBjixFAatNrInBH3zRcT4JMKEi2220sWLAAK1aswEknneTKV6xYgRNOOKH0vC9/+cs4/fTT8eUvfxnHH3983/sQER588EHst99+A+lHqP6Y4g9kEBOOrd/vg42P97t2o9PgOjmWKPPhF67MgKNvao2HWwSAaH5sVPxjVCacg8wYcL8XroFThhPzpsDSJhPwWSXPzP/WHyg39ne3UesUs8VCtCblJldAM8xWW2fesWxSSQ0Y1v+oeMgogZBFAi5zD0VA6f4Xle7YBeAIhGAIaEA05cwHzxJgTJlj7XEXlOO3aQuQIgu+hQ0BjL5MuLn1vPPOw9KlS3HIIYdg0aJFuOqqq7Bq1SqcddZZALQp9NFHH8W1114LQAPkqaeeiksvvRSHH364Y6EzZszArFmzAAAf/OAHcfjhh2PPPffEyMgILrvsMjz44IP41Kc+NW56D+LXiKWs91lVt9Fp/HViPujJXs4cY3C0bNIbp8iIHCgqm2MT0EE3/o9MDZAE9A8QwU6TJEE9hD8aZrhHASx5poHQZ5WqVwRK/wfE90/WeE7A1Ht3m4pO4YXyd8u4TgbBFHKgJGU6OQyMRA6GEVhCyTyFnZtNxNsHdNtGBIh12aQHlgEYesccKJoyHxjz4wlwZMyBYjzcIwmQ5rk5C8wGSCww4SC5ZMkSPPHEE7jooouwevVq7Lvvvrjtttswb948AMDq1auxatUqV//Tn/40er0e3v72t+Ptb3+7Kz/ttNOwbNkyAMCTTz6Jt7zlLVizZg1mzZqFgw46CPfffz8OO+ywif53assgJqJBzUmNTjXqptijBUcfMD3myJQsAqMFRe+HiGT0g1Qm9gdFhAAJGNDkSu+rBFiaH06oXs4qgRwofV8oE4YZAxCT9wMyndrTeokxuRKUN04yA0MvBEqbHIKUsSBEYOm3w4hFMiTapcqTTZSxxzIJTa4RQJb5KhP7FhjDoJwEONqAnKrjG4hJTvg4yakoZeMkYxnkQ6tb39ZDn7qNTmPXiXm+xwJ7lBFgWnDsdgIwtOPRAM/MameNj3vtKfF73EBprzvV4w6i/bi/LdyPiSu3ZqrUMVaduq6qvKzOdGxPY9UpMN8rGxhG8DMrlfnCgyFHntnftkWKQFJXS1g4Em20zI+e+86NpIASfptOMEdzncLY3gT4AegLkAWQ5Ll5duTpZ7Dj7Nkb9zjJjUXKGn+dD6/Mr1H1UZV93HXMOo1O5ToF5lV/4HYKHA27pG5Hs0Y7UNv4fiwoBoBYFyS5ANDNt32A5Oaazjej2aRlliwD0DM/NBxaV8s8FHSaVwUwZkxz7ofU+1GqeJZ1y8vqTKf2tL46McZhMyQxjpxNwgMJnoEx3W5JKYB0Vh43Y4g3FElbErTVgMeBY1GAji6LXAFjMLfq/RKARA6sPihSAIKRT9EHPXvtMv9jGUBuaubWjVXKeqpVH6HfU43NOKnzCGGDHWvvebrr5Hrtxrzq509lqqcTRMfgKCWUzXLiZTHJwdIDSfvDIyWCiWtTIOkBpPU75RGACsRlJVjqa0gAekYIl/vcRdUaH6Qd6uEP+SDjuBzDMJCmPU2MTsG7scABBcYz12adPoKHYEk8B8cgslrl5nYLWvYYUEiwXycCu6B/xCqD4Re+r9ArS2aOcsdYXpZKnGGPpVimD5AbQBqQ9KSsR1mnF5mqN4ipq6x31+hUrZPb99N+yU7IHu2+6gG9XhEcux0NiL1OCIwWFH1zVknvPO99WwZpAjO40L4hLgPAdHk7fbBstUG9Dlim1z5QMtXTZlTSTISU0mzSACUjDmLQ+lX4JafSu5sOOjkAt2zSEn/LKM07dcyR8ZxZAs4UCwhnjg0sCN62HcNLUTmEN7tyfC6Q7FBRybGq3MP+dgEUg2OJiNUUOMbnl+g60dKAJPIPYlCTStX1/LpV5qCyezc69dfJ/cDZGTpsjkzPH2lzZDq/Y5QnMwDHXicAxoKPEqiIZvWmM/IjWrkC0AVZn6MFTCEMABqAzKBD/BNACfODEzAIYjm7SLCV1LOeSu9uuujkvw+yuzFQWouABTmfNbLcL+lA0+y7W1jTq7tRSYKLAfWtKk8yywSYVbHLsB5LH+cVDHWSpAHJEunnqE8dT/U+bVnq46v6iBudqnVKAqRhjM68apNI++zRgqMBS5dMuttNA6PdtmPPaieI9iNaOYJoVgOWkGaiXa7MD6hZe0CphwBAB/MEJjePTTqwFKV6JXVF054mQydfAkbp+x6Z0OZVIAe0FGvkPjh6zLEMBAdJvO9LWeq3OsyyxnaZ+Ta+d1+QnQSZ1iAZ9zz98n4fDiXqlX2oqXvE94rPaXQq16kUICNzK5PdIntcNxowR+p23b6becGAop8oWiUSRSf1LCSBNgzUS8vlgyUDclaZAawHB5RaH4BlACOhhwhQyVRZNZ5bqrxKpkt7mkid8guFjBLC5OgFzwPCfCsBAGdidSeGbY/KgNEvH6zfVKpzrWN12GZqPwWKcZ2y7UmQaQ2SZY2/bq+x3wc4iA79zDyNTvk5ANIA6Ztbu52cPXZG8ymILIP0wNGtu53k9EMAgumHSv9nwYGuXqsu4E8nxKTSKcRa7SCaNX8OnQJQAhogSXHNOplnYiUd3BFmBuI5kPZ59k17mhyddEUvmCoI4DHiA6YVpcI6QAEk+5aPl/QDpbLjJWy0aj7UMZVNsExrkByLpD6GVC+yLCCg6txBPvJpq5ONYk0ApPZFdoBeTwNjrwNaNxqaVh2z9NillFDdXum8fEoNyCL9iWkVB0kDlkqDJW+33HAPm7LO/ig6oFTcmHw5mDJ5On02aUFRqeC3NX+49SJcUzKt2tME65QfqPjBT1kH/N2JBsFBZCxtapBzNlAEa5U0IFlD+n1EZWaeuh+sf41Gp4rr+0kCygDSTmLbGQWtW1tkj53RgDmqbg+y03PAqDq9YKLakE2Wh9LrOf80e1RAYSZ33s4cWOr6/nAPzRghOYhLA5BCT5dksq0k2aT3XEpNb3WfLaZfe5osncILTA47Ggvob2wyWf9jA5IlUtuU4klcr45/Y5AXPZ11ggVI3++YAsjOaG5e7Yw69qg6o0Hgjg+OqtMDSQXZ7XlMUuZ+yBpM0p+clgvN/pjkIMcmFXg70wAIgCsODpgAn/T/7rZ5kU3aZ5L7r8z+AE6o6dyeJkunqvqqz8X63avf+cG1JimxWp0pEHlFlaqzq86bSJn2IDlIZFrd88vK696n0SmqY9N4+eMeqwDSBOdosPTYY68L1elCdnvavNrpOWBU3Z4DRt/cCoRsMvm/BZPSGn+kCdwR7ZYDS1tHX9OAJRCyRSVMZiABUpZVqpBNcuGxRxGa4xKMsmlPG1YnKz6oxfWCYwlAi99qCvNUHyAcL5isxioCTwClXySp6CGIwTUGRIb8GU02WE57kEzJII2prG6da1jTUB3fyHTWCaSqfZAxQHqmVssmffboA6QFR8ciPb+kioJ1UkDpA6Qe8cFdwA4T2mcoWplmgkDOJNsZZEc7JO0Phn3WjIdm19g3GQ4FMYnPBzS3Tuf2NNk6AfkPPMX7Btj8t+djnQ98/vVDUE3dL63NWIGyDJfSgEhRnfzGtraMzmWmgv0WJOXAyVn4rhRNLlBOa5Acq8N+rOelhKLtRqfoGhYg6zJIA5DOvNoZdexRjnZKwVFZ02sieMc9iwgkY4BkIg7S8XyQ5jpM5n1o3s6gpALjCkzkQEi9rvZxGjYJzzcJtIrAWBa8sx7vYFNtT74e/vZE6uQDpA+OtjVZPFNRUoC8bng8VceVR/uqRLs61tcqyyl3cEeFuj6AMSQAkdkzydUB6TrSO85dByIES59VToZMa5AcxAxTVt8vd0wgUb/fx2SPNzp5x4wfMkgUUBMgyYCkHF3n2GPPgKTqdgNwDH2RIZMEAJJlT0mCCZYzSJmDJrUyB5a2DABEuwXV6SWvxj2zK5PSY5PSASTZCXR9vyREuO2BZtOeNqxO8MoVhcyRKARGHxT7AqY5kgOod68IAccrNjYaBRmYSANgtCBnngpjgCRydSzRtOMoGdPnS6IAMJUHloyxSWeQVqY1SMaS+ugoOobEsfhD8z/Y+NpW+h2fzjr5AIlex419tJl06gAkrRsNgNEySdnpOnMrKeUANDSxEpQkxyJVCUhyYT5ywSGhwAUDEywHRjP8AwA4MihocBTtlr4fV/lamNlHTJAO2Qmh0QpmH2Fo6Shb65e0z5bKOEPx+frvYjq0pw2pU0p8gMzBswIwQQUwjM20SbCMtBgr+yr6B/MugQM+n0kiL7OmVg2UGjh9JmlBkVhezpl+FhZkFSsC5WRiZQOSRlIfQeqjSEmdnmq/c1L1prVONlDHMEfWM2zSHwdZAZC9UeODXNtx5tXe6DrDJKPIVqUgO9IBo5LkRbSaHyMPKC046gAdBnSl9iMKplmk0HV9cysQAmXwvwuem139SXUlzxOuO5NrMXdnXX/ktG5PG0gnRTnoWRNrDJBSheDoA2Nsni2AJajAMmM9ZISO/QJ8rMT+RsFzcLRbPrABGkCl3SfSQOnqMhAjB5pELGSRZBgkcqAENLD6QDnZ0oBkJP4riHuHiI5VmWTqflR1rzdddMpZpDfllccm4Q3tqAJI63/UYGl8kh5gxuAoO9KYWy2LtOBYBCA7WpK7iFUGLgikGJgkkGOYCiICRo5Ms0YpQZxDCQXW6RmQ9aJYTYQrDHvMZ5u3plfz6Q447MM948Rz3xTb04bWyRcfICUhzSY9cAxBNWeGtq69nwVBCyrSskyv6coEMKbAMhWII+LIUx6W23MEZ7ABOAGLBDPsj1xkqwVMjaU5WFoGaVW3ZbEOkykNSBrxP66q3mXZh1j2g1+n5xrrMF118s2sLsWcCdphUq9zMFxbCZA9B5LrHChadqmZZAiOsmMBUjmAzPO2hv+lZZK2HhNMj4f0wFKXcwA9CAOM0vNF6ghYz9xqTL08ZoyeP9Kt3ctIRNtSbGTzqnvr6dCepoJOQA54Pij621KlwVGqNDBKRQZoczB02w4ozb09FpkCyn7igxM3dFGYZufA0YIlD4FTgybAmAFHpgGTDGASpcGSkLNK21Mhys2uyoDuZAXvNCAZSVlPMbVdVmfQskYnTyLm6MytsgvlAaMd+1gGkNb/KEfzoR9yVDNJDYgKsisDcFRd6QDRlqVEwrJIZXyQDCQpAEsAYA5czVAPL5pVdXvggjs2yT0fJWshBEcgoAWkJHgFGPaTadWepohOyjumKGKTIA2IETiWAaMFRXsNQIPheANlASAlIJx5NQdIHzw5Y+Y8cqBpAVODom63jHKwBBg4AMUInEJzKyMW+ig3AKFsQBKDmWnqmFXGUne666Qvasysdh5I2XOBOi6Djl0H/sgiQFr/o2OPnR56o13IjoTsSpAkyI5yTNKaWC2TJGvCSgAlFxyqq8A484CRHFiKtoDsKIg2QJJBdgCgp/2VNkjHZPhhQuRDTVpwc1k6cJSyAJAMrYJO9vnVeR/ToT1NFZ00a8zBy/ogLZuUtoxyJmm3LTh2lSoAowXFcqDUZTnbDDWtYmFxoE4OkCw47gDSgKcFSM6Z3ifjS+QERWmwFGCQHqsED4FSdyLyew7uXFh/aUAS6YbufwBj8XXUrVv2oU03nRiQz/8YBe24QB0Lip4/Er1uEiCt/zFnktIBpAVHyxxlRzpg9M2tZVGtLjDHRLKGLDI/ZkVAg6Xq9swxrueOlLlvspAj1jBJC4gueCcbHCDtM45lU25PU0GneMA/eWtrYvVB0QKmBdIYHLuSSoAyBMMCQFpmmUDGqiw2LlBHJkyrTIOnUPm+A0gVAaa33xI5WNqnaFmlAEGqECgZcgZpfZOkEbXP0x8/aUDSk7IPYDx6pf0+ShbtTzedCtGssqvHRXp+SDft1bpRl01HGp9jGUD2RjsBKNptDZY5OObRrSGDJO+HhZkP25pbNTBSAJaiLSAhISD0tSVBcQKTpKfLsuBo2KSSCrwFKKVNrnY/eB9V7HEMz3o6tKepopMyTEg5ADRrY2L1AVKbWYGuVJAGFGNwzLcNeCpv2wPDcqCsp7fgcBFqKYAUXLsZbLkPmj5gtohBMQbOtTkV4I5ZtgQHESDMPlAESpuaWJFmq2R61E0ygQ0k/T6sybh3WfmmqhMDAD+rjgFLa2Z1fkhjZoVnbpWj6zQIrs2DdFIAqc2sRaCMwVHnba2ObLURraQITOY+SAuWABxQhucxkGQaHFUOhqSKeWFJ2qEg+th49pk39fY0qEyGTjGLJLJLCJA9lQNhVylI0oAZg6Mu88yvSaAsRrvGTDLFLIVHKYNt41vU5QBXLAmaLa7B0QXZqBAsJSmzDQDKXJOZVHYmypUIRAyKaZZp2SSN54cwgDQgGcl4fqh1eqB17rep65SbWDt5NKvqAb2eZo9u2IcJ1Ol1oEZHdTDOWg2G1gfpA2Rvbc+ZV/NtCdXVIGWDdqyP0oKiNmOlVRVmKAaXTAfeGLBEW0B3vvVx0RYgoaAkA5MMSuZs0g/SAbR51c8bOybSOMB0S5t6e5pKOuX+yJBFalALAdKaV7tKOVDsKnKg6INjEShtMBA58JMq3LbSq0HDMhuMk1gLzgLQbAk7yN/4HhVz7LIluEkvx11gDsBhPha0BNBT+n7ELIuEjm41z98HR2XGSk6mX7IBSdT3Mwz60dR17E9rnVQvD9ZRedAOk93QzGr8kDBrl0Gna9LMBT7JHCB7a2VgXlVdY27tKBPRatYGGF2vuwwkjSlJSoJQElwyE6gjQYJDtHUyASUVmGRgnIxJV4Gk/oHwg3TGDIoDyrRpT1NIJ3vcz6RjWaTvfyRTxwfIGCh7djsASgqA0V96ETimwFLv646a4GEnK2aUdj+zIOkteVAOHJtUXJcpUsiEXrc4Q0tosI+BksAglTa9EjEQCGAMCjmbZMTgufonTRqQRP0e5aC9ykF6sXHZtNHJToPlm1lVT7PHnhfV6vkhlQeQ1uRqxz8qM8QjBkifVVr2KDsyAMd+ICmYLtdAaf5jRUBHQrQFFAwwSh35SpIcmyTJoSxgiuqpt8YsFWxy2rSnKaaTsvUJjkVKZaNXc/OpD4z52mORPmh64NjpqQAYfaAENAimALJoajUWkIS5VYMh97b1kgLMFud6uIYHlpZF2tw7+lI5UHICIBVagkORCeJjmk1uCFCMpQFJlDvv0ae86noUbfvvOnW91Me7yeuUYpE2WKfXzRlkr+Pmh1Sdbp6P1TLJTh64013bC3yQMUD65lb7ozMISNq1v7QBB5Q2WMdnk7ylI2Xt2jcVueCduhEVfYRKov6mRXuagjpZUXZYB9lAHu03lIoqAbIMKH1wXOdtW1Acq8k1KwVJ5W1r0PTBcSjT+5IT2oLnQzYIyH2PGhhb0IkBHKMEAAFwRbpzyXI2qdfa5ErkrSfRez3tQTL1YdWpW3WNsvpV55bpsUnrVINFap9k1/kmLSjqpADdfCxkxxvm4fkgUwDZ60p0EgxSUj7oOx50LWxyZffU8qckCYAicElQPMEmZW5ytaO8/MjWKmGcg3GhFyHcNjFW2w85bdrTFNLJmVLJM6kiTxAgTTIIHaCj214ZQHZVzh47UjmATIGjPQYgYJd230oqaAcoZ5KWNdp9wRXaGXdgKRU5oMzP1dYTgGszqwIcg4Q2sypFUAxQSgfqEFiBTTJGEInwtcmCyWkPkvGHkpLYxFL1EVb1QOPzyvwf00GnpC+yikX2ugUzq5vlo2tB00av5j7IMoCMQVIh37YiKc8Zqbe1UUqBQRKhbZJTdhTQ5gxc6gw8PpsEMCZwBOd5kswqYRxgHOQDZnTedGhPU1InE1TjgJJsmd7uShuoQ2bYB0oBsqtCcLTbnZ5M+iPjMmBsIFkI2PEAUyqC4AqCM7QzAakI7Yzna8MqHYNMACU3wTycCJyKbNJiowbONFhOtEx7kAQG75HU7WGWfZh1rrMp61SLRa6Lsup0O3paq07OJO2MHr4fUnaUA8reaK8UIC1I+uAYgySQM8rcH2meGmPoqBwoJZm0XB6bFNDDSITln5JKg3T82UL8bQA5YHKRLzEwAuvlkxyk/lRrT1NRJ80cLav0s+kABJOzlWxEq8ceKwCy01OOPXZ6ssLkmgbIQUCyNKo1WpyZ1QAjAMjoXA2IOVAq0p1MbjoFgIJgvMAm9bjIIlhOtp+yAUlPUs2mrBda1uOs02NNSZkvZJPUqRaLNDN+mH2fMfrDPXwza2+tRG+0i+7anoliLQfILhXBscwfWQBI5EApzehmaX4ALZsEYBgjhzLDSyxYxsITAGnNqhB9gt1ZTcZpZJNsT1NVJwpNrZZFSpWzSGtmtUDpAnlKAFJvy6TJtVMClEAxPR0lQJJxhq5NIGCBjrECo2xnuT8yNrNqsBSubi45UNq1YMyZW7uSDKvUbJKbYSWMmYxV9kEjz7wzWdKAZEKqPrK6H5+t0898E193WuhUJ6LVM7cqb6LkIIrVJSy3rNEySeWAswogY5MrkE4AnQRIs+bImaRlkzoNnfkxKhtLYp9hCiAtMPrMkQvHKJkQmkUyngfqWBY5Bj/lRt+epqBOFoN8U6tmliGL9M2sPQOKGiirATJklUVw7Hhjfkl5uYgjcLTjOP15Gjk3KeG4nhuScZuP1Tez5mDps0gfGNsZx7qeH5DGNRAqbWbtSgXOuDO3KpN8QNnAHZNgwLHKPu9qomRagyRDtTlm0J5j6vqDvth+PduNXScGgJHq64v0WWQqWEd2YjOr54f0wDIFkBocNbDZbQBJoMx7rOSGf1gTK6DHbcVcz5pVq8yrQJpBcpGbVfsG7aQWd0Hunrf/rhDtb+ztaSrqpEExTyUXACWZtHGGRSrKzax2eEdXqQJAru303L7vl+zETNKkqrPAqBQ5ICwDylgsi2ScgZn0cgrajMq4Tifng6PPIoeysJNmfZRSESTX/x+Qp6JTlAfvSNLZdlpg7pm6NHTYMP5IYJqDJKH6Y4o/kLq9Wb9+3UCA+J6brE6WPZIKGGUholWpgEVKn0F6c0LmgJgDpTLjIKsAMhXdChRNrTZgx/8Z1XWYMcNqNmmZpCT9UfUzr+asUTNDzrlJfM5zH6TI2SOyFpC1wFptEM8ckwTnIauMfJWbfHuagjoR8mEeejs3tSqCA8F8fKRvZjXDPAzo+WDo79vjbtskxCBFkD2lfXkGJAENkOR1/sqAknMGJTWztLmKuQFHZlLMdRRBZBxClbPIMhEt5phyzCZzsCRtcmXM+SXt95eD5uTJtAbJKhnErxFLWe+zqu500IkBjjXGYElKFiJaoZRjkSSVY5Ek9XyMSpIDR5t/VU+BZQDTgGIZQPqMEkibWv3/Mo901f9tboYNxfoik1fy2SPnhbUGSuOPtIyy1S6ySJ6lGeUAsrG3p6mskxsTadewKehCFmmZnwZOnV7ODvOITawxYFqg7Nqcw4ogzbZjk45ZGr36sEgFMuBIpg/GQIo5kyuRBktSBJVxSC9nXDvj6PTS8CU4gzBgzpkwKexCNim5ZpHKuC7t87OBOhsiaAdoQHLCZBAT0aDmpI1WJ9JJu0EqMLW6HK1SFsZF2nymdVmkNbN2pc8WLWNMA2S/VHThk8gB0/khme/XLP+K/emzCsDoFgOMWUsDY9YKwJJ4BuKZBkRhGKUPmHxwsByrbPD2NEV1UmTztHpRrcr+6HvAaMdEKpuk3CQ29wJy/CCdTgSSlj2qnll7bNIHR1J54nMLkmWBOwDADPBxxUAcsIApBA/AEgCIM3S8a1jzak8RhPORKnR6euiI/T+t2Zkz/TxaYG4KMOuf9L+laHdSZVK+pssvvxy77bYbhoeHsWDBAnz729+urH/fffdhwYIFGB4exu67744rr7yyUGf58uWYP38+hoaGMH/+fNx0001j1i/17Ou+E1ayXdXzZDXqbpI6+QE7Kje32nGQ2syq51G04yLzMZBpFqmkMtvK+SeVVAEodikc9hEDZFgWLgCCev0BNS3c+RxZAIzW9MrbmeePNKZWA5Asa4FlrYA5EhcaLC1g+qbXsue/Pu8usb3B29MU1ElRnijAmlr1vh+wY2f5sFNdkYtmDcEwHaRjAVL2FFRPQZqxt7Jn1lKh11HoGZ+8lLperyMhe3lZvPS65nhHuuvm5xN63fw+0hy35l3LfstMw0EkLtmE7DZnbf6tFQKLQJNqWk3JhIPkDTfcgHPPPRf/+q//ip/85Cc46qijcNxxx2HVqlXJ+r/5zW/wspe9DEcddRR+8pOf4IILLsDZZ5+N5cuXuzorV67EkiVLsHTpUjz00ENYunQpTjnlFPzgBz8Yk45lv3d1fgepZLvqo7IfUFwn9QFvKjo59khktmW+r5QBRm/YhzIAaAJ07JRSGiCVM7Hm5lblzK06dZcGPm3m8pd0KrqwTnl9YCwAaQMhcj+kXTt/JOfgrcwAYlsvhj1aXyR4BhJtEBeAMADJM73Pct9kyvS6qbWnqaoTITcTWlNrHLBj8wUrv9x26hJRq6kgHed/jEBL9giqRw4Y/WNKRiCXWFwdr54KAJECcPTNu342oCDStqeCdHn+/wt4z8E8ZHtsvX5vxlEY+d7cCZCFCxfi4IMPxhVXXOHK9t57b5x44om45JJLCvXf85734NZbb8UvfvELV3bWWWfhoYcewsqVKwEAS5YswcjICG6//XZX56UvfSm23nprfPnLXy5cc926dVi3bp3bHxkZwS677II1a9Zg5syZSb19E0zZduocDHhenQ90U9CJkQLrjoJ114L1RsG668B6o0BnFOrZEdDav4FGn4Va+zeoZ0egnn0W3WdH0f3bKHp/W4vu3/S2HO2g87cOeqNddJ7pojfaQ29tD52/dd0wkNGewlpZZJGpTDtVPknrb7Qzf9h1m+vFRrq2OcOwWc8QHENtAd7iaG/RQjacoTUjQ2vzNrLhDO0tWmhtPoxsuI1s82G0Npuh9zcfRmvzGWDDm4MPbwY2Y3O9bdZotUHZMEi0gKwNEu0cIEVWCpBV729jbk9TUSf7Q9+RCj0FdIw5tSO1+bEjFZ7t6va5rqcwKhXWevtru5o5PtuRLpr12U7OJtea7a7MgcsBm9LgqIgK/kkgHwoCwPknk/+rG0nE8oAd5m2b2T14xpz5VWQcQnDwjKMlONqZXma0BdoZx5DbFpjRFtjMlA9nHEOCYzgTGMo4WiY5wbA5ZzgTyLjOJ9symX5aXM82knGGtc88jZ13mo2nnnqq9Hd8PGRCmWSn08GPfvQjLF68OChfvHgxvve97yXPWblyZaH+S17yEvzwhz9Et9utrFN2zUsuuQSzZs1yyy677JKsV/bh1O1F2J5kfF7VhxqfsynqFJhaPb+kNbXCTTAs3b6dRsqmcSOpy2TXBvHkzNHOB+mzSEkpFlk0nRbZYnooSCxVx4BoeAfPTa3cJQvgBbMrjFkVLcMkDYtEljlQhMicmZVEC5S1c7OrNb1WvI9NoT1NZZ2IcrNqytTqB+z0ZMiqypID+CyyH0A69ugxPM0GCVLapWhqlVJP7iwlmU+TAnbp7tdT5j45CPuBQv60XUVWGSdfz83T/b6nDSkTCpKPP/44pJTYcccdg/Idd9wRa9asSZ6zZs2aZP1er4fHH3+8sk7ZNc8//3w89dRTbvn9738fHI97olVSp06Z7wNRedW9NzWd6ppa7b5varV+STImVRfJqrTZ1U6Y7PsiQ/Ab3MfoA2XMOGOpyv4R+CLNEA8Ljs4f2cq0qdXzP1rAZFk7N6tmLQ2Wou0AEiaQJx72sam3p6mokwbCclNrV5IztXaVHUepwSI0T8pkDtZOHLlqtn2AtAE8uak0B0YyQT7OVOot9pjzcRrA9MHSBgNZoCSFAKyluX+dXLKptHhuAmnzs6A7EMXnPtnxO5MS3cqiHxEiKpT1qx+XD3LNoaEhDA0NDaYz6puqUmVxbzbVe40/4kHMPhuTTnFUqxv2IU2QTjdnj1ASJKUGR6XrBBGuUcAOKcrXzpSKPiwyDZBhbpA8crVKfIC0JlkmGJhhjXZb77MgkpW3WhCtLI9qzVqAEI5FsvawNrNaUORZDpCt4UKQznRpT1NVJxuI4oOjcts5Y1QW3Ow+FcHEZ5F2bcHRgaAJqHEM0gPR2PQKWJNr2tZqEvRoq4ciZ15VZiJlQIMlN7N7MEWQ0GOBiet7Mm70MFGsZTlk7f/p//9KEdz8WlNMJhQkt9tuOwghCgzvscceKzBBK7Nnz07Wz7IM2267bWWdsmuWSVVvsq9ZJVGv7ENN3SO+V3zOpqKTvpHKF5Vvu6hWY2qFkiClATJlalWuLB8P6QfslLHHmEX6YgF1UNGAGAJkLG4wtmWQBiSFZY4GLEUrM8xRm1mRtcDaw2CtNpTPGo1PMgWQ7p7YtNvTVNVJgyGZbXIJBMpMrXHATmySLAAm5X5Gm0WHFAIGWQaQFhxJ6cSsdl14JlyAlATjAlJpwOScgTgDI5OwHwDjGjBFxkFMByMxZu7FTGeVFcGxLKn6WGRyBjlNwr3a7TYWLFiAFStWBOUrVqzAEUcckTxn0aJFhfp33XUXDjnkELRarco6Zdcsk7JX1pcZ9ak3SH/I/0g3VZ2C7DoxYBpgdOteNwdGA465fzI0tQJImFrTDBIImWOV+RQYK3Dm2Ul4wB6Z80emTK1McMMec3BkWUsH6Yg2kLUrGWTwqKPnvym2p6mqk5tM2bJHpE2t1g+XMrUWo0LzaFZrFk2aXBPBO9pMqtM9ku2A9jpuO17ssbyOCu5jx1wGGX0MWLtxmfbe9lsrAKXnp6R8/OZYZLJ454SbW8877zwsXboUhxxyCBYtWoSrrroKq1atwllnnQVA+wsfffRRXHvttQB0JOsnP/lJnHfeeTjzzDOxcuVKXH311UHU6jnnnIMXvOAF+PCHP4wTTjgBt9xyC+6++2585zvfmeh/J/nRpHq2dV+gf25tZrYx6URKR7YSBWv0es60CiUBKTWj9MyrFhwDBqlUbmq1oOmZWoE0wJUF4wwChinTq2C6pxkfY96wj8Af6SUNcKZWA4o+i0R7SJtZjR+SsqG+AAlMg/Y0RXWyYBj6IdOmVklUaWotLJYVekBkA2dCX2EIkJY92gXIWaSK2CTnwh1nPMxGrMC1+wE21WLOGpmigE3qa1DBN9lThHbJc5SKoHieFD7QK/6uGMCZibidJJSccJBcsmQJnnjiCVx00UVYvXo19t13X9x2222YN28eAGD16tXBmMnddtsNt912G975znfiU5/6FObMmYPLLrsMJ598sqtzxBFH4Prrr8f73vc+XHjhhdhjjz1www03YOHChRPyP/T7iMrMPGPp2W6SOnkm1pxF5gwy9Eca02oJYLoJjWXua/ElZ4v9Ta1jET0MJF9smV5rtugvsT+S+4E6xtQaBOsYwHTM0QPIQTLpbNLtaYrpVMfUCoTZduqaWv0xkW5oh29O9c2qFQBJSgbAGJtcpQeOqVZmgVJxAlfM+SBJERQnMMUAAQeeHAjMq/2CdurIhnJZTkrgztve9ja87W1vSx5btmxZoezoo4/Gj3/848pr/sM//AP+4R/+YTzUS0odv0Yscb06/o1BmstGq1PKH2nAMfZHlg39UCayQBmkU+546I8E0sMz/LI64eb+D4UdH5mSfCxlGLTDuBe84/kjeSsLo1rbGhzh2GRLs0ie6fGQ2RCovRnAeNOepqhOvqmVUDS12lytfuQrUG1q9U2UzqSqwhk9fD+kNYWS53+MAbKfT9KKnfWxWK4DdiBYDsyGTULkJlduwBKi3BdZByj9hOn+56fZZN/Tx02mfe7WftFyYzm/rLzufTYVnRgQskd/Hyj6I52fseiP1NXtD0S5kTQ3q4b+yLFIDI42WMdfOHKA7OeP5F4kqzW1wk6FZbPqZK18DKQdG1nCIKdbe5qqOvmmVguCudk1Z49AbuHIgTJtarXHbIfOn9XDJQXwATM4ngZICphk+A0xzoPjKaDUdTRzjKetItMZ4CLXa9Cxj2XAZ/VgFXUmUiYzSGijkUFebVndOteITUNV739j1ckfH+n7Jy0g+v5IOz4yeS/jj/QnM46DdupKv1nN448iz7bjl4XmVt/U6jNIXsIgC6ZWroeA8KEZZixk5gJ1gKY91a072TpZCwbBS6fmg2Dkj4RXzwatxKbWvCwHQT9bjgVEAAGL1MdNR7MEIG3HE4BxZyTKK87N9UEQqOOel6fz+gi3mX/M2+FmzZCOAZhImdYgOVaH/Xi+H4q2NyWdfHHgCOTjI2Vo9qkK2vFFldBDn0XWFY78I/C3/VR0ep955XmZXy8eHynaArwlINr5XJGWQaZNrSYvK88CFjlW8NjU2tNU1MmyRmtqBTQLs/5IwJpZQ6DU5eWmSOmBoIqYoy33fZG2DCg3p6bAMd4vs9LkAT/pp9QvSrWfeZVHHVAgf992/Ds366ox9hMh0xokU6aVlLCSY3E5KymvunZ8fJPTSaVNramgnSrxfZGDSFWP0z+W8kGmgLKWqZWXD/1ImlrtnJHW1GqB0rDIpj1NTZ1swI4/JVYY3UqIMceVR6CS8t35+8HkyQnAoQggYyboA6Q9Xoh8DVhluS/TN++GLDLUJfV/pMT3PXLPx6/3dbnFRe4B5GRB5bQGyVjsq2TR2j9mt23P0zfdUKJu6nx7bX/pZz7a2HQKGnDsk4wB0X6sJZGt7jI1KWJ6qAZL7sfRqqkgHd/cWlbfN7WKtkgO/eDtzG2LVgZw7qJa7ZyRZKe8siH5aNrTVNXJJqKwplYLjlbCYR/FIQ6paM94v8ps6U+mrOt6HdDU/yTLA3dioCw7XqZHlQjOAiC0ZYV60XeXA2O473SqvOv4SQOSRlIfQdXH50vV8bLeDkVLWY95o9bJTx6gYhbpRbb2kapAnTKJzaJ5WdGEmp/DIkCMt8uWoqk1HvohWhogeTvPtMOytk5DZydXzuzUV94ckZFM6/Y0hXSyLNI3tdqhH5ZRlolmkxXKI2RfFJlT/TKgGkjj76vO91YlY/kWY0kxR85zBsnNAoRAyRmCyNaGSW4g8XuZflksZR+YrV/3Q697vY1SJ59BpvbHWaoYpM8Qy0yo/jVCc2uRSbbMuu1NKcQFA29pBmnZpPZLZvkYSTtvpDCTK/N8cuV88mQ924eVpj1NHZ388/Qwj9DU6vsj46CdyZjtIoxgrfYzVp07iPCIFbKKEFQfIHOTahEodbm5HsvfgR+00zDJSZZ+vdh+pqBUeb9eapkOm4JOAPJgnRgcU+noEtNjDSJFtlgEPn+73ISazxXpb+u1XloRixRt4RY/qtUCpZ/QPJgWyw79EIZJMp5PoMyzwjOezu1pKukUDPNA/6CV6SK+4SMFlAFARoAoYqC0eY8RRrZOdtAO0IyTLIjfG7VCJdtldQYt2xR1Sp5jQLN2L78mUHLBASnNhxZeXTA7m4c95tdhhbp6HQbtWED0J1tOsUibQEC0RTLLTuCXtCZW44t0TJIXJ052zyP1jGo9oVA2xvY0VXSy17IBO9bS6bPJ8ZBwIH0OIMpoFMyIxJkzudok5Xbb6WzYpH88ljgdXeqYnRvVv3fZvmDM+SNTABkH6djvzx/+wRhzqej4BgBIoGGSAMp7qf3qDnLdQWVj16lw7hh+PZiIPsiEPZVHdfKo05hV9jehltX1gdFGtLoywyAtOIqW2W4JZ2r1x0haZgkunD8SXEe91snLOlbZ2NvTVNHJskjbfXNs0qttI1jHKgFAVpgudQcNXl07oXc52JWJA0FRPDe+HuMasHzdgqjTsuxUnEEYHXOg9Jf8m2PeMX1NvUzm+EgrDZNE+mOI+cagvo66dat6qxuzTvlJOoFAobgkii6pj9d71VGkeWAMoMEzBjwF63cksy4yScFYYc7I2Gzrm1tbAZtkyFrCsUgLjhosQ0BMJTR3/kjDKs0/qk2tJT8y07k9TRWdLIu04BicOw40MmZcXfOZcM6gpAYoRsX2wTgLwmcZF0EUuf2GSOY5WlOM09a1Q5O4d0zvR8zRA0tuLCtWH59FZp4ZNXPlRbOrH7BjFweiMME7mDx/JNCAZCBlH+VYX0hfAImOp+61UeuUCBhws34AlWMjueDoB6OanSmgqz9QQbkWuYM/B0uruQVHIAZIuw7ZZO6PzM2sLZGbVt1i2KMO2NGmVTt3pB+8A+9HKB/6wZImVl+mfXvawDr5eVfhyqhQViZufC2DA4h4cXUj4FHSMjRy5UTG1K8ACTJzP+YAyLnIGa8FRCFcB7UAjkIUzKm2HgvAkhnPAPP2WWAW5on/zQGiZ27ljOX13fNhDhQBFIKn0s6SiZMGJD3p92FNxr3LyjcmnTQmJaJaa0a2+mZWu619fhoUdWAMh+oqb/B+7pe0oKgcKOba+uzRjzRMDROx65YHloGZ1WTT4S0esEh9LB8T6Uyt1jfp/JE8j3I1ANnP5FpXNqX2NJEyiE4OLDEYOAIGUGqMJ8xiMJEeCFlwUmYiZMUMMBIYab+kzcHqz+hRNwTON9daFpn7Ik0QmmdqZQFztNfQ5YXhVTFgBoF1eUIObjoP1h/JkQ8Jic24k9VWGpCMZDw/1Dq94jr32yh18sdIDiApgEz5JuOZNkhRwPQ6yoAgY2jzMOG5BcjqBANpgGxzbWa1AClaOqI1ZpFMcIh2Bt7OwFstxyg1KGp/pAvYcf9YNUBO6/Y0gEyETnmATj0tBWfomqYvGEPXMkCmj3HFosAWDWcpMJFAwNJIT+4YCGcaODng2CRQNKlqAC1vZzFA+izSBqmF9XM2aNmkrVNkkNztW7ZomXWZP9I3u1pLT2Nu3QBS1/cx6MupU7/OR7yx6TRW8T9eG0Bgza55ijf9o2H9kuga0JQavNCV6BjA1GCpgdKaW8sAEiiCJAcCn6QFSMsc84Adwx7NOpgz0h8CYgN2eJ6STv/foi9AAtO3PW1onVyyAAeU1de2pNGaDq01I47B4YwF7FFE4GK3LWPjnIEUA+PkyqzJFSDnq3T+R8MobcuKu6spn2QKIIss0gCmxyiB0CcZ+yOL26az4DqkPmMMgdE3vfrvZbKkAUnU71EO+nIG6cXGZRuzTvkJfVikz6L84BxugTFnkrnJ0jBHSS4VHAkCGTbJpfZNWpNrmzNIIvAIIOMMd74/Mo+ODQN3LEBaQLTb3GOVujyDMJl1RLsV+iVNInPmwJKHz6FCpmt7mko6VQljzCGoxUNhWBZUvm1ZZBeU9Ntl0b5mj56Jk5hjjtbkqgBwBShuh4pw8KwN1es4/cpMrz5IlgGkY4o8N6lyDzR9wCzzR/rsOPZHOp8kz/2R1tTKzLONOxmNT3ISxT7sfv6JQa4X+zT8F5q6Xurj3SR0KgFKJkSuD/e3eWFtl8AvadO+tTiUVI5NcsEhlHQm1/w/1XSAM/2DEoeSp2b/8AN3YoC05tV8qIdwvkjLIGMmaU2tzAPHILLVF9UDE21fe/cOpnV72sA6pYSzfOYZxmAYHUUs0m6HwTuKQpOr4LnJtZ1xSKXPUYa5WTbJM6bPzXKeSJycv1IDogZKP4l50MoSnbMqgLS+yJhFcq71sGVtwStBkruhVmFAHOc2SCcfH8mMeTo19GOyGOW0B8nUh1WnbtU1yupXnVumx8ao00Dim3oiH6QPMLo8N7mSGQpCCTaZQZtdNYssTsCcSg1WFrjTEnbC5HKAzM2tQke0Gl+kaLe0T7KdhaZWC5be2tfIZimKf+Sna3vaEDpVibXecwYQyy0VxPTQEIn8x51zgBPLWSRR4Je021kMjB6otDOuLSAZBxE5NikEh4RyZleRcciegoApB8xfT/cayQRSACkEd2ZWLjhExl0ZY6FJOMWK25kITK3cmFFbPGeVwgCjfzw2tcbvbjJk2oNk/KGkJDb7VH2EVb3i+Dx/P77GxqxTXynpwRKKJlbl76vc5MocqyTwVvgZSUhkEOBSmQCH3MRa1x9po+10MA4rAmQ7Bs3cD+n7I4XPKk0qOscgo+eQGh/ZtKfJ16nqela4AUd7PcbycznT51u/pLJtSQHKM7m2OIMiKjJHrjBktm1ZW3CMKoIwHUHrm7TM0QKj9U+mgNICZAooA/84kARInzkWtlke1Wr/F39x/6Pg4IyhJXhh6EdLcAeKNoBHP9vc1Fr27iZSpj1IAoM/7LpAUfZh1rnOpqCTvkkcmZows3rZPvzhEn7wjhIcTOYmVy4Ioi10vlfjo7RBNACguDbztqAgjMXXZ5Ox+EnPbW9ZJyu30aosAMhsuGXWWWBmFa0iixTtzCQQEB5QcrcQY+HQD2/WFOZNujzd29Nk6JQ6jzMNeJzpJBWcSLNF5KzSnccYGHQQDQMZvxtBKKDFOSQpCAeQuX/SZ5B2OwbKluDoKIqyTCnAAqTK2aQFSsUJzICqckNEVOCHDP7vwP/o+Rwjk6rvixQZdybXtG+VV5paW4IlTa3Ob+n1HScLGH1pQNKTfiYdf7+sF1ynx5qSsh7sxqpT+oLex+31XB1QOrDUs2Uoa241TIyM79GCo/ZJhh+7hNRAaeIVmGDgkqCk7k+LhIvURuS5aa54PuWVTVTuzK0eUDo/ZGxm9QDT6u7mjhT5rB8uvL4sspVUcGw6t6fJ0Cnm8VWskjEdWEIg3ckBgSg3uZIxGxI0GOYAqU2Mkjw2KfS+D5DtjEImaUHU+CB9s6v+FbcRreTWShHQ08E8gDbrkiKAi8IckH5iALtOAaQ1s/JMM0xbzjPuwL6dFX2SmfnfBDegGJlaW5wXTK2Chwy97N1NtDQgmZCqj2wQql/HpBRfd1PRqVjZB0gerBnnoDhQx8t1ytuZnozZzMtIsgthwJEkGRapmSUAkDBmMMlAkqC4Am+ZsZTmHKeWCH8cfHC07NHPy5ozySzPtDPcjkytLY9RahbJMsskdWQri8dJxkDpjTH1zY7TtT1NtE7BD64fbMb0HBQpNqkYwMj4H8EAToDS5lXLJjnL2WSLGJQBS71tAJQ4JAdkprXREy+rAkC2DUBas2suygGlhPZJKkaunCk4U77ipL8DXoQY9w144OibU0XGkyZXyyR9cBxyplaRA6cBQ9/c2hK8ENXqm1pFxCRT726iZVqDpH0RZR/koL3Z1PUHfZH9etsbg05V4vxuPlCaRN8URILaAfktYx7KwVO0BZQkMEkQ7fzOZGiinWaLSaUBVOp7OnBsJf5HDxj1dFf5dsgafb9kDpDZcBtiuB0G6wTDPlpgLZ1lB1nLsEkvsXli5g9GCuSxyenaniZaJ/cbnIrEth0VxpNAScbeKuEBJgegDKsETN5SDqUUWoY1KqUBQidDl2gJBkW+mVV3nmyidD9hulSEbvw/WFA0Jlb09DYzoKiUAUew0tzAABw4Ap7bIfBNMogsDt7JI1pTTNKaXS2DtMDX4rm51QKiNbX6CQc2tExrkLS986rjQNiT98vLZJCef3y837U3Bp3yC/FgTaZXXjCx+kEDxi+pfJOrA0fNKJnkzvfoi+wAog0HiowzkNDs0QInRU5JyyStnycGRztxsksaYAAyG245IMyG284PKYbbet+aW4eG9dyRdnxk1jY5Mk3HgLG0udX+YHsgOV3b00TqFABkn3G9jHEIll9XgcGEmyXNri4dIicQmANIDY4G/IRmkoAyZlf9rnsROPYikAQQACUpTytl2r8BRsXIgSWAgqnVlyAfqw0yyrgb/hEDJM+4ZoMeQGZuO2eRfsBOJrxgHcMsrWk1MLeWmFrH0jFbH5nWIFklA5kSIxmEYQ3a491YdSJjQnGsyEvNFgNmbHLlgoPa2ifJW36T7RXuo6SO+gNyQFRSud5xGYvUKnimVp5n1fHBUgOlZooWDPX2kGaSLQ84h4cdMKLVzhmkWVirDWI8Z5K8yCb959zvGdc5Hl9zY21P46pTIrewnbmmEFDFuANLBkB6QGnNrfkagCIdoMN04I2NiI3NroBhlRxA5jPIkFHG2xYotXnVqMl1gI7qkRe4Q66O/T5S4qe/84N3eMZCZukN+4ijWP1tn0W2gkhWO2REM20GM0zGrJnRJcUkJxMggQYkJ0wGMRENak7aqHQKJ7zT6xSDtH7JhMmVt1o68Katm6sO4NFDQkgQ0PbGWho/JBN6rZlnZG711XMAmQOjD5a8JVzwjj8/pDAs0ppYLUDq/Qy83QrMrPl2O2SRPAPs9Fg+87bb9sd7AJPrJt2exlknKNPR8qd082avYVC680IqAExrfgU0UDJQ4Jf0/ZPCloHQMjlaFWlgBGy6O+UCeADu/JN1RHJmIlo1A5Q95cyvzJh9FSed11WRxzoTz6QQuKP9k7mp1QvgMQzRB8Uht80LLFJwhsyAZYtzt/YZpJ9AoMrUOplW2AYkkf6gBv344+2q3nDMClJ1NyWdyPS+9UV4OHjeDoUQ3thBY3KlVgYhFUiq3DdpzK6B7saUygWD7ErnhyRJUJKBtwxA1mWRbpgJy02trdzPGGwnAFIMD4G1E2bWVltHuFoWyTP9w+uAspxJ+s+78D9Exzb19jQeOjGPPTI75AZIm1ylYZAGMO170kDJ3dUpwSgVEICmtqZyE3GqtH/SY5L6F1kBEN7t00/D+vw6PWWDuYPoVsYZlFRQykTiKoAYAQLO3BuLm8+RhzlabdCOD5YWIC17HMrS+y0PGH0W2RJemjqgkKvVB8Ky9jQZ0oAkyh94nRdBJdtVH3qZWaiOqWmj0SkVjOLv+3lLEwtvZSbdnI1oVRCtdHNlXAHogQxjVJzAhA7aEeBQMjS/Ajk4AsiTpQMFcPSTlVv2mA/zaAVmVwuQ1pzK28NgQzOKZtasrWdqMACpGWX+vAqsso9Mi/Y0njr5ACl78P2/rAQ8iBk2L/XYVQuWjGcQ5h2lTK+KIQBNY/CEEoYxWizsKUhb5syh9XL6WpGMoWtcC7KnwLieY9IG7RAn1xewfktf8k/TfAt+Jh0/gCdikD4gWl+kA0ybTcdjkXrIR56eTzPIPKerDeDxmWRZe5oMaUCyRMp6qlUvye/txD3iql6zv7+p6BRWMoBoknwQYwFrzMFRm1xZ1gKUdGySPFNrSmxUK5mcrrKje+IkFZQkzSQTE0Db/LDcAqRJdWeZoz8HpGWPTHBkw0MFRqmDd1qOQfL2sPNDsvawGwbCsjaQGeZoGCRElm97HYmquSWnW3saD50YkIOj6rmEDQ4cqYRNMg6m6afuwJACiIOJDKR6AOMQ3LgCGDP2UwOUYCbolHI/JQhtl27cmlwJAMcoFIYhgJ405f07ST6jFJyhY4BS9VQQtKMUgQvDNgUK034xj0UCnl/SY5LcRLKmMurEZlbfF2lZpD/sw2bY8c2tLoCH9W9Pk2VybUDSk7Jebt2eS+qFxtctu1/ZC99odeIZwHs6fZbHipzplYfg6EyuWVsDmscmuQnaIcHBlACLQDOPXFVgXIELBSUVSDIT2Uoo65XnAGmHfoQTJDsm2TZp5tqtIKI1B8siQLL2cO6HNNvIMs0euV2LABwdi/SYpR/dmnzW4/3uKmRjbeMOIFVPM0nDIB04xtGtdpvxYDtvy8a4alklAMEzfT87VqQEKMmwy5YBSkkMyAR0LzICyqwcJG1gzDrjj7RACQCSkfNV2qAdboCxyiep/01WCOARXrKAOO1cPCZyyAIk53oxEa0aLIvDPuKAHcsw+7WnyZIGJJE/+EHNPFXX8+tWmYPK7r0x6+R682bIhz5ZAwCz/hwhXKCOi2rN2oCUAZsUJUxSdrqujJkUdMQVSCgHljAM0h8CYiUf8mHWXvICG1HLDZu0vke7HwTotDLna3RA6APk0Iy8vD1UBEiRAEzP75UCyNQ7Ga93V3Wv+Hp+3ancxgOAtOCoZAiOfuCOrQ/kNkgg9Bmbtk3MsEoARCo3vyaAUltRI9C06bt7qhIora8QQCERgM8k7X6np3RSApNj1plcDYssGwYSDAHh4RRWOVtkJWZWb18YX6Q/3ENo9hgP+wgYZCJgp257mihpQLJE+vVYUsdTPWJblnqxVT8sm4pOOUPyABMomlyzlk667LPJrAUmZSFQx11DSrPWvkvV7WkwbOkya2LVQ0citRIg6TNJyxy5ia51fsiIPcIF5rTAhoaNOdUzsaYAUrTLATIyvRLyyX59sT8k0609DaJTroQHkKpXAEjnoywL3mFhW3FBVgYUwcgBJAEOKFkMlJ65dRCgFErBBvP4AKmBSzpwtMMtbA5YqcgDSw2OFjBtpGv4b+bXjsExBZJlfkgHkMb/6PsiLYv0h33kDDIM2KnTniZDpjVIxj1Pv7w2W4rK/HWZGSl1r/icTUWn8IQomCcRsGPZJAyTRKtdmCrH/W8mY43sdI0/koObaNgg+04iqrWUSRqmqAf8a7Dkdu0F7wSRqllbD/NoeyA5NOzA0wGkaJczSJ4Zn2wRIFPP2GZ+KTxibNrtqa5OTlRP+x+lB47KsknPLwnkQTuFCFep34mSzhzOjDncZkRyAElKJwjmmfZTcqYz8RDAkAOli4l17DIESs60Dl1GejhwBgi73Q6n19JzUErnk1xnfZNmrdPc5QsE3DolFhD9bR8ghwomVxGwSZuLVbNGY2ZNsEjfD+mSn3tMsm57mmiZ1iBZ9pDr9mT7vcRBdOj34jc2nfIbe8DIOaByv6RvcrW5TIlrNgnLJAFASTCpAkbJBIfs9kDOHymheA6OtpzL+AcvP9+u8wAezRqdT9IDRwueBfYYm1f9YB0bpCPa1SZWnoGEAUfzY2vB0Xb2/SAL6y+ygFEVBbiptKe6OuUXK2GPFjTtLCu+T9KeV6qE9UlK044ZmHlvRAqMMvf+mNJtUXDdyfJZpJ2UOWeTptwApfCisLlpAFwCtrJQSLI8waVjkWUA6YDSiL9dZKnFJeOxyVUErFKDoxewI7gDRwuWKRbJWXmGnViSnaEJlGkNkmOR1Aea6tnWfYH+uQMzsymskz65OPzD90sSM1P2eOZVKKnBBdA9d67LOQDV6TqgdGDINYMkqTSLVEqbYVvlLBLwmKRhjD4w+oE7BXDkIgfJoWE3DtKOfbTskg/N8ACwaF4NANMbKyk9cCQy4+xiITIhHyzIJzpe724qtqfaOkXBOUxJzRzjgB3P5MpigEwBZRR85gDT5G9lIgNMrl1G+t06KOSZZlBkYNC8MGaeoh3xoZ8nBzeZcQSDYZZ54gLOCFzC1QFCVmnB0QfIdcbkCiAAyarxl3ZdnDzZAqQIzK4z2sIB5LABS85ZxCRNZKvHIq0fMjXso0zW6zdpDNI/vng95K9//SuWLl2KWbNmYdasWVi6dCmefPLJ0vrdbhfvec97sN9++2HzzTfHnDlzcOqpp+KPf/xjUO+YY44xiXDz5TWvec2E/R/93luqZzPoSxzUfLDR6GTmS8wrRVGbXnQrE3q+RRvM47LUGBDiJnjGz3ZjfYVu1o3hNsTwEHirhWx4qHQRbtG5Vu0iZuhE5a3Nh5ENt9HafIZOL9c2y/Dm4DP04sqGzOLqbAYSLQ2Oog0SLd0REG3NKkVLL1k791Eyjh6ZOS8VQRLl26mFtH/Jbse/d5tse0rcn9mFFJjsgPU6QK8DJruA7BTKmOw6RskMgOp6+hhTEuh2gG4HTEm9mHPc9cwCaer0uhqUbZm9Vs/UVT1kTPsNXZQnZ8i4X2a2hTZpDmUcwxnHsNDrvEygZcyew4bJzWgLbNYWmNEWmNHOzKKPbWaODZltWz7D1Q8X/3pDHku0xyx73My7p2OQJqrVRbN6ZlY/etWfT9KCZR2ATL3/iZYJZZKve93r8Ic//AF33HEHAOAtb3kLli5diq997WvJ+s8++yx+/OMf48ILL8QBBxyAv/71rzj33HPxyle+Ej/84Q+DumeeeSYuuugitz9jxoxx1b2OeSeWuF4dn8ugPxoblU5RmjWyvpzI5ArlsUnrl0SRreheudDOfWNatSySlHL+SBu4U6m3YYtum/v+SKNXzBw516bVOuzRssWslWaPXpYdZcDRMkfbw/fNrbEQCIxgcuLqJ5Uyv1Y+A2xk7alUqYRp1fc7ev5IZsr98ZEkpbZaADp4zL+0yVrnJin2JgjXwWeGQTKuGSQJMKX9ko5VknLtVRjfsyWCnEG/fPfSSM8RCUCYe3FG4Gbwv5Ck/ZQAhFIQTE/oLBUCBqnXHIIrSKWCDlYb6dlF9D1ZYZ0vuZk1T2LOQ4D0h3t4ZlbO4VgkY0UW6U96XtYe3Dvp3yLGVSYMJH/xi1/gjjvuwPe//30sXLgQAPCZz3wGixYtwiOPPIK99tqrcM6sWbOwYsWKoOwTn/gEDjvsMKxatQpz58515Zttthlmz5693nqmXsIgdL6sbp2XO8i5G5tOBID5Ua3BIHnP5OqCdqQGG3tNJfUPS6sdBWJI/SPT64KkdD8+Siptmi1JHBDoXRLRms/xyM38j7wWOFrfI8XDO7J22vfomVal0uCo2SB5ptYwdVjM5Cw7Z2a2Cfr/2/v+aNuK+r7PzOxz7gMCV/H5eI+IYFICKCTlR+GBXYI/AtggiUlFAnklWfRV00WUqiuB1dUAWasCptGVamwSF4pVLCyrNG1RUlSwpu8hKKggitSiYOWBWrgPWt675+yZ/jHznfnO7Nn77HPfPZf77p3vWmftvWfP3ud79uwzn/l8v9/5DnU6NL+Nk/cp267xvFrqvtDveJQYIDWtOr8jlXlw1OMIGLWurX/SgWMKkl44SEppB3ZSQSgT3mejAcN8lAwoQb5PpaHU0PopIQJY0owTAbiYHdTGYEOloIT2fkopdOSnJPOrlvC+ytqYBlgGkNRTmVvtNl4nkptdU4AM5tXggwyrfUzPIvflHVkumRlI7ty5E/Pz8x4gAWDr1q2Yn5/Hjh07siCZk4WFBQgh8KIXvSgqv+mmm/DJT34Shx12GN74xjfiqquuwsEHH5y9x969e7F3715/vHv37s7vnKYRukCiz7V9/TX7tU4U7JCYWn1igaqCIP+jrD2LMwDEGBFQGm0TCkAqYDyCULZTk3UdTfsA4rmR5IO06vCIVgaMPsJ2AFqNhMDRm38pMIcCdwbD6dijrBxrtJ0UMUcCR9oHAlg2HqewHagUCGySgaVxI/QuVrk/v08CiANwGHtsAKaPYg3gqMeLHhgNgSQQgLKOgdLmGnbrbXj3AAWa2fdGDIYOEDWMrNy0EmPRj7NK0l9WGMjKs0YBAyEExroZ+SoSP2UATBvYQ8BIoDmqDdTAZt7hvsmxNh4wgXaQBJpMMkTSOt+kX/oqBUUZ7zsQrWQARvJJTmKROUnfp5WQmYHkrl27sGnTpkb5pk2bsGvXrl732LNnD6644gpcdNFFOOSQQ3z5xRdfjFe84hXYvHkzHnzwQVx55ZX45je/2WChJNdeey2uueaaRvlSH/ZyNpJJ9teSTgDgJ8e7zDvc5MoBUwyGje/0+xwotXKdmwM119HZjgpRR8fnRgrF4t09KwjASPuiGvhUeX3AscEe2yJXXTJz8jNycKx1hkXCRABJ/Zl0jWGBEpCwAClFAEstQtCk7YiW0GxYfe8TgaPPuZoBRx+Uw9ij0DXMaNGzRsNB0jFKAOCrf0SMkr0v/pgNriAVewcdY2QRrxGrBLz5FRVQuWkiEmABPPYp8YAeayCQkBoNwBwJg1GtoYTyJlg7iBLQxgTfNfvk1qckIYCssiZXl2JOwrPDGBSbTJIH6wiXXYcGcKvZF0kyNUheffXVWcDhcu+99wKAD1XnYozJlqcyGo1w4YUXQmuND3/4w9G57du3+/3jjz8eRx99NE455RTcd999OOmkkxr3uvLKK/Gud73LH+/evRtHHHHEVKYhZM6l5XR9rv6kjoHOrzmdokTdgU2SiYrYpBE6mF2lcqxSQVROfy3dtraL7nGwdGvu2c7OJiUg022sSmIyozLOGlNzK4Ej801mTattkauMPdY6BNtwcCRmScBIka0AGtGtNDtAwv6/ahgoCRgjbOoxB5a1scxSA9DMtNUmq/l9AtAER2Ni0ypjjz7C1YGgHi8C45FnjWa0aN8VrQMYckaZSGCR6fxexygHQ+cGcGDp3pGQSL3yrNIAwfwKwCiNSg1thhs+EAJNFQFk4qdUzh4rtfDmVx/l7NikNsaDpTaWXVLi9KVEuAIIK3jwDDoNoIwBUrqIVVrpo4tFpu9Bn/dpJWRqkLzssssmRpIeddRR+Na3voUnn3yyce4nP/kJDjvssM7rR6MRLrjgAjz66KP40pe+FLHInJx00kkYDAZ45JFHsiA5NzeHubm5znsA+Y7AJOeQOZf++Xknkt6bZNL5taCTrcTMqqmZVZiYTbogHlOxTni0CFHBgiLs1sg6BksgBsiWeR8cJIXLFQupPDD6/WqQDdyhvKvWl9rBHpkvMvU7WpCMwdF2ZPCBO8Qg/RzJ5KkKCJuTRRgIAZgaUTCEdvtG2OWbLJDGfiDe5qvxfbInWIBNwhJz0zx8pKrRwHjszaqGQJICdMajPEgCNpFFmxB7xCgGSQeQHiy1htDWCoHKmWDJNwkE86v7jQY27ytcOrtJfko+n5LYpCLLgjPBam08WI7qsF9rl5TAZd8hyc2XDP5t4aZshJU7KEl55X2OATQpq85ASm9mjaZ6oB+LXOr7tNwyNUhu3LgRGzdunFjv9NNPx8LCAu655x6ceuqpAICvfvWrWFhYwBlnnNF6HQHkI488gjvvvBMveclLJn7Xt7/9bYxGI2zZsqX/D0kk11m0dvyJ9Bk9T7omV29/18l3eGnADmBNsEbHbFLCMrfRop3/SG+nM5fZdHU1hJYBLN15u6Q7PECSb9KnEgNsJwfkgZH2B8NghiXzqlJNv+MUplUCR82OU3CkaRwGhiUQaD5XwUo8MEJ4wJSAfY4OLGtjO7sULO3ofvW8T4Id51bqaCQDqHMJAsbAeOyBkMyqZsSZJANJSmvYI3BHOB84DbAMEECTQNJv3f2qgZ0eQiZYN//Sm1+BCDgpoIf7Kcnsyv2UxC9t1Ct89Ks1uUpvgpXSYBwBpIGWARwpMKzWwCCZDEgufMoZ698ZGZa6onmQnFX6LQEkZdVhALuUiFa0vDsrITPzSR533HE499xzsX37dvzVX/0VADsF5LzzzouCdo499lhce+21ePOb34zxeIx//I//Me677z781//6X1HXtfdfHnrooRgOh/j+97+Pm266Cf/oH/0jbNy4EQ899BDe/e5348QTT8SrX/3qfdabP/h0hIvkXJeZqG/n0/d++6tOXqR0vXfMHiEMQpaSsU0w4PyTZgxrbtUugXTNAJIYo67dFBKni+vkuH6BQQZzWQSMiQ/SR7U6cIxMq0JMbVrlYEngSH7JGCzhzLBxJwaEjo1G9wCN8IUL+giASabWWtjOrgagDIt8FMbn0RRCNDrIvu2/L+9T1D5AzBopjyqZVTkQ5tgj8zu2giMHydEoBO0AU0e3GmaqF5RzOAVL+kQmWGKPzNzK/ZRaA9Uw8lPCmV1jwLT7lp2F6NfAJrVnkyMyuTKAJMAEBLRpAmT0s0VglsQkiT1yM2sKlMoBJA/WoehrlWGRS32fVkJmOk/ypptuwjve8Q6cffbZAIDzzz8fH/rQh6I6Dz/8MBYWFgAAP/rRj/Cf//N/BgD8/b//96N6d955J8466ywMh0N88YtfxJ//+Z/jueeewxFHHIFf+7Vfw1VXXQXFgzOmlNSM1DXizTVmrnwSE2vTYa3p5E2s6bEkPyMCaEq3Rh/5I7W0gTsVQqBOnQAkODh2+SIZSKZRrWRalSpa79HPZ1yC37ELHGttWaPdumAeQx2aVTMd8QNhZA+40b0M+wMlPWDWjilaJhm2wpUrGdchHycxzFz7L/V9Skf8DXOq228Dx2iah/NF+ohVHpQzHlmQdD5HMx4FcBwtesZITDILkm3mVmaF4O8RBew0QVLbhASpCXaIYH4FrE3VaEANkfVTCoGx8zl6wHT70ghvfiVWqXUI6Kml8WBZS2fJSAATiN8vksZ7JuCTnnsfIwvSUQIsJZ30AzZF7BMcHJsscqn900qIMOnKm+tAdu/ejfn5eezatavh73yhGyQn+7tOAnBZSDIRiZwZ8MneFLI/Wgxh+n1C9qnjk2HAJHgHB6AR1UqsUYjY59gGjq5el2k1gGUzM05tbIDOOAFGP8o3iJYyqpO/qPcVed8R8xe5qEOaAqKk66wkfLQrjeipswsslDo099xcHYFu31Fnu3NJl6LyicUngCOb78indGA8Dv5GAj7HJj0YOnCMIlrpPFtFhszz6ZJqJDwhfkhCEQ+ufDT0YBDNs+Xzaml1mEbKQp59SSqYaujfrZF7N+wUDrs/0s13jMz5I60xqlnAjquvtfH1AAaSHVNBwjsWgyOBYsPkqth8SMckB4xVVhI+29BSoq657N69G5s3b8bCwsLEuJV9kZK7FdNR/WnBYangtuZ0ogTnzOTKEw0YaRmlL3OMUgzcqiCZSFajXWdVDfKRicwf6UHRlTdYIwPGhlmVytr8jnU3OBJzTDuyHDDyY6C9A5NSAHUKkAJK25UjfCSith0T+SZzplhil5Lm2zFgJD8nj0hPzWSRXm0dH8+LmoJjur5jLs9qGrXKTauePVowzIEjB0m9OILRtDC38xOyZdVyojMgaRNRjGxe35RJ1ixRPzO/Gkpzl5hfDRD7KY01vWbnU/qoV3jza2CVwptgecAOMUv+rg2caR5SNDI78Xakd8vuh/eNold9woAMQEZmVhf8IzrmRa5GQlBAEpN9Lkuxl/et2/ZSrEWd+HQPn3EHcPMmEfyTehyA0mhACAijPFgCzgyLFnDkkk71cKzSr99ICat9mrilgyN1QDmwzI3yawOMat0ASSAwzjZRmvxEMbOkUb2UAiNtR/sjGtErydil9VNKF8xTC/gQfQuQYf4lZ5JCeKtgWL2ezjm9G0DZZlZlqeF8VGqbaZXYJUWtctMq90OOF2FGowY4mtEiTK39yjE2ET4DSbfVLe+TTJZUAyxwCimhtHbguWgHdY6timoQ3lmygNTBxMvNr1YJZ27liQcmzKck86vQ8EE9BsEE24hupffMAaYFytbXzIMZAWPzPQuWixxAch+kAIFs+/ftS/80KykgyaStk18O5jUJeERyvOZ0orRdaQAPnZMI/kkCR+pQnQ/HgyXAOpvuQAsPikIEQGRbD5TO9JoDR18+we/YBo6jWluTVx2bvVITmPcXJeYwIPiNUl+RLXP+Ii0wSvxFNsrR7demk10KYcsCs8wApkFIiQe7Gom9JqzgkAVKIA+QjEFmEwJMYI/e7zheBGqKah21gqMmkKw1tG6CZFtKQ81Akra0YozxICmhag05DIzSMkcdQJIAc87uC8BGv4LAUbv8cglwKo1K2oXA+XxKqeGjX4lValhTux3QCAaQzqwv89aKac361gTrlr5KAFIKQMJtRfBNdrFI+05N3z/NWgpIMpnUOCvx3W3l+7NOBgjzJCkbCbFJwKbx0uMYKPm1dOCymNh9Ku14hR1TRRswOuBMl6vyLLNnUE4KjhSQM2bMkQBxpDVjkM7XVAczK0BBPPYn5NhkHOHq/Ig6BFWkgDlQAiPHJDm7HEgJ7UL0KYgnnUbCM/qQ/7KZEg+Qxvilu+LGz0StpgCZznnMTOtozHncuydvWmUMMweONQNJv6wagi+yDST5mqOAHXxpBozEME2tPbOUwzoGR84q7Ze676wh59izAuKoV3qOmbyvnk0yVllrQEpmghUCxtgAIC2MY6LCm/utudWyypxE00AYOOb83tx3yRmlFC6ZwDIi20r1hwUkE1lOMOrDsvp835rRyfshNfz0D9LF+yLdfY2AMDKwSO7HAoL5ruV7+H09MJIOFKGYmlpTcHTn+wblUFkbOKZBFCMK3NGMSbK5a7moQxLfcUkANRvhE2iKMJdtpB2T1MazSwucJkwAlyF7j4CAdizRTjNAlNFHCWHT3gmro4SwCQwYUBKbbPSJkwByQnAON696gOTscTzyPsd6cZwFRz0aWX8k80OmjLLxSnETq5LAaGyB0AEjgaRy9yUzrBzEQWeeVQJRAJoGJvop/YCR+Sk9g0xYZW2cscbAR1YTWBq4gZhgfkkHmo33jE0PScGRAr58soAWgAzTQCavF7lc/dNySgFJ9PfvTds4fer3eRHWlE4UwKNh2SQYeAEeKKHhDEeMgRq7JJFVoAUkGUBycPSskcCRzKqTwLEOeVYJLMct4GhgGaIFx3RrItbImSRlQuF5NoE4C0pOotRhvgODZ5UjETKj0D5ta2PraBPAUgmBAew0EtsWAkoamDr4Ko0RgDQRiwRioAwsnzUFsUggRLASu+QMsg9ALu6JfY/svB6NoR1z1IsBIC1Y1h4cPZt0xzyqNQVKC4p2P141RsJoCV1rSCUhBwPLJGsNOaxAy7d5E2ya+s7P9WF+SmwIzwtAdj6l67Wt+VV4MExZZW0cm9QEkMEFIFUATFpVBLI5MAuDMTKxB3AUbkCUA0iq57dC9DKP7kv/NCspIIn+rGnaxplmJJSWrTWdvMnVAR2xyQgIqR5ggRLW32NNtMoyS8CbbPNKJKAIxKwx9UMm5la/vuMS/I45cCTmOHZldcQgY2BcrgTUHDCJPSoXwUgsLweWFN06kNKGfghjrXxCQGsbMWuEAXQMjs5oCAnbK2rTYlZjptfsJzGxNsyni3sCi2wBSGKPenEMrbXdOuaoE1OrZvtADI60zwFSKAk9ggdJDphaSUgHlqbWkFpDDSr/fZ5VkujMPg0iKKCH/g9jAJTDmAX0GGd+ddq5waVtZGksq6ztX8e7AQgstQGM4IDp/0BZnx+Ne1JwpMhnzigFvZMiNrP2mUY0bf+0ElJAEuFhT/LBTXO/1G/HG7QNRNaFTjyAh/okU8cmUldPGO3BElrDCHjAbL03EGxEHBiBOII144tsy7M6jWl1VOtoy5kjgSOBZ60NFseaLWMUGGTYbzJmxWxgHBwB+MVwOWBqF6xTS9MAS+1MsrWxPktt7ERzCu+vJDFHuzXGNodKwNE406sQAip9Fxjr9ywSgV1S2bQASWV6ceTZol4cR37ImqZ7LCZm1zS6tW2e5CjsEigC8MDIF+s2tYYZVtAOFE1tgZKLxJ7gowSAum4FgCigBwCk9nmN6f9rAChZ+XR2ZH6tjRvMSIPaWF8imWAtWFqrgBIBMCcJgSMQA6Sdg0sm12BW5QE7k++97/3TrGTdg2SucfrU7bpHW/2ua9v0WEs6hQo09QNAra3ZDjI6D6NjsFQOXHm9zH0BBJPspEAdYo9AxBb9VI4lssccWHJwJGDcO9YJg2wuiJs3udb5VRqcb3HvWPvFcZUUWKzt+n8jF8TDwbJWNshHU/CGlKiNdqApYOMlLau09lQ4thIDpXAdrnGdcMPkmoJ9jkG66SA+jRwzsU4DkMQePVgujr2PMjK1ejZpoNk8iJxfUiiJGhpSCQglXI5zCTmo7Ao1zi/JTa3KrXEqtfa+Sm9+3ZDcH8l/JkmvaP+PQ2C8GBYAIFMsACErKCH96MeaNx1AundYGDK5WrCEgFuVyX4Tt7TmIpQ9m0RgjxTcxacORaxS5Nc1Xa7+aSVk3YNkCgY5Sc2IXQ3ZxbLS6/hxeo+1qpNPcO6jVMnMmvgfc/q7uuSvMSIBzBw4AhPBkXyDfAmrfWWPObPr4lhjcaw9a7RgmQJlDI7jLEjGplbaKqkDMI6lZ5SVFKgrAkYZMcuBsbk3a+M+ChgYC46cVQ6UtC3hgJIWBFaORRoDmEm9VibSlfsnYXSY5uGmfHhwdDlXiWGmAFk/vxj5HgNYjiNTKx0TMPr5kbVpjWwFAIxqCCnt6itKWH+kMt4faaNZK2Zardx9GauMwHePB0qjazv0S1ckcdIGlP4cTRuRlfdT1o7xR6wSBkbAg6Vdmi2sOsJXm+GAGMpsIQfH4J+EN/ELBKYp2flZ9k+zlHUPksD0D7svi2pr3D73Wes6RWySYhTcDg/m8f5HBpwROOb2OWt0wTomYpTO72gQmVZpwn9f9rhnnAdH8jtSPQ6OxCIXx3XWD9lnrT8gBkfaxqvHa9RaenY51saDZW2kN8NqA2glMDDSz9HkrBJ++WadAKXtwoRIpiA4vxdNbG/NppwCptHWzEpTJHxqOR7FGgJ32gCyXhyFoJ1shGsARwJGziRNy8x6oQTgmKTRwoOmVAJqqGwUagqOjlU2froHyz2QQ2tupafc1uI5oARFviIGFCXtd0ohfCJzMrsagxgsAQiHksaNcrSJ242zwACe7QBJqQ0pCpb0bpPl6p9mJQUkmXRR+/S4jVUtddTT9jKtNZ0iNknHDChtGYt69TfsY2YV4TgDjuR3NA4MedQqRf5Nwx73JiAZtgEsF8e2XgqOqS+yi022SWxqjYN3KimwONaeTdZaebCstcGwskE7tYTbGgeC3KQdADIFSmlsDCxFSE7NJoEGi/RrPLq1H22OVe2neXgTLDHFDoAMrJJ8k7UHx3pUM7C0z5jYZZcI5dbxVBJCCUhlYLSAro0HyxQcvXnXmV9zIoElAaX/fxkdHwNQfnpTML9Cx0ySgyXdFwigGesYGjYFx/SYzLFkZp11/zRrKSCZka6Gmobqd70YubrrVScAIZCHkg0QagplO9OcfhwU+TYDjgaxaZWD4qR0cm2+xz21zppWF2vtwZEAcXFce2DM+yOXBpK0bfvU2iRb5b9jWEmXfUVGrJJ8lSlAwqU6s+Y89yZpA6HgWaRyvi3vl2SDG2rHNKkA+SK1Y44NJknASSt+pD7IFoAMQTzGg6Qe1R4cCRhD0E47mwx+SOHPW6CUUMMAlmqoADDf5yDPJNNSKdW+ASVgI1+NdpGvlfdTkvnVB++gCZZAGOCIlpGOD9rxxxk2KeD9lVT/heqflkvWNUgKdFP6aRlb7v7TNuQk9ramdGLTPvxhxi3UyU5SYKQyBo6paZVAMcceLbuMATI1q9J271g32COZVgN7jMs4i8x+jPFpwswEkBSuF6IljFKAHFYyAkk6rrVErRXG2mCuIhBrAuKeDECOtN0npiCIQbp20qZnVhUe4Wpc5hutQyo5Wq2jJpOrSxRA0zx6AmS9qFEv1s70qj04ElgC8GW03/q8lYBxbFs4vy5dq4YKUtH9tAPLdnGzOphYH6UAYBxgQir732BrWVpFBPuPJUCZbimgB25QqcM0kBQsAfvfmNR+BI52P2aUfOUYZPSZJEvpn2Yt6xokDbobJAWBacwAVH9So+fMkV2yFnQygJ8zaS900axCBuLREUPhRbJo1gQgCRwNgmmVT6bOrfO4VPPq3rGO2CMxx8AiY5NrAygdMBr38SDZkXEHQAikkAK1FBBSRIBJAEn7BIoBlAOrJF+l7RECMI686U1DuqTqShg3r9KaW7WxJjpikbajFfn250FZzPQaLVTMcpx6k6vW0IthviMF5pi6ngiQBIj1ojWzBnNrMLEaHYCy9XXTEnqk7QR+B5hCGQ+W1txqoIaBPZP5lSJbeYdbq9SFsKc76pUn66epIEK2AyRdKySUC1SDSz7A50wSWALM9JppPB6wzIGQAFIxgJyWRe5L/zRrWdcg2SXT2MZTaWNYXXXXo04e2FhwDrHBLhckgJg10jYBR52wRwuYDChbzKtkDs1N7ciV5wAyBcfFhEUu1roBjMYkINmDSUopoGu7L4TwgKkYixxGwMjZY15qCRBQytruSykwqjWUkH5VCQEBIeEzuxCLNLAQ2xW0w03o3tTq1niMWCSZXF1+Vp5Jh6Z5TALIelFH7JHAkgNjcxoI089RK+OYomWREqY2EVjyugAi8ytJk0HSd9D8y0VbQKxRJayS6mODBUqWqap1qyo7zUZW1hyKwCq1A7cwuCFgbWu8jLnVH8cAOY3Mqn9aDikgOSOZxswwrUliLehE97ZfxqJYgQgs88o1ATIHjsQec+ZVjX3zP+5xYNkEw26A5OBYj3UEjMYBJQAGlB2PoLYskhglgaZU0t6fgWUKlHHAkETUFVS0CIU1sQLazX0LAGkHHSF4R5vwrFXfkIqMqTVae5GxSFO7eY61Xb3DT+1wUaxdAMnNrRYsm/MjucnVqsZAsiaQJCATMMo0wBKAZ9sAvPnVSgBKzRgkrVLDc8PaMQq5EfgaqNL6aqWCGS/ap9yDSQp3PVlwpIvuVsQqTQyWQDM9HRdKVccTCiyHTNs/rZQUkES+UaYFk3S/i12lPr5c3fWiUw4gJ9LIBByBPEDSvEdih11Msi9A7hnrhv/x/y3WreDIAXJU6wY40r4FSXoEJuqkUkYppPBJzTVsII2QsBGn2qaQ42CpK4naGAwb5j0uMcexK41YJqmEwkjbhXvTNQopWMMPSsABE9bnNak9G6ZWHbFImxxc+8w53MzKwXMSQNp9C4bcP0nPOPVH0hxIbpIFLGgaF+HKwRIIQJruh2cM1CxrT71oU/qQ6ZXOKTVy5lELjsaBIwCA+SyFrsN/UEj7wHlAlKb/WgWBsV1xBy761V8XgyW1/0STK5jJfwoWuZz900pIAUm0P/A+DWFa9ruAo8200Md0uZZ08qPc1D8JxBSqJWkAZ49AHLnKzauTTK3TMEgOkBYc29mj/9TagqE2qBOgJHAkYCTzKxDYZE6ktCtxEGAKadPICSmgqgCWqpJ+uzihjZTUbF9ACoWRMHZyvLCRsClYGmZmnUr4/Mio2IGjZ5Y6JCZ3LNLokF6uHgUmadwUD5tJx/hk5hwgw1QQOm8isEyfuWYT+6VjlDT44GCJIbuIPWjLQmt3nYBRVlcA4Mtv6cUxpJTQo7FNnr44gpTKTnthoAipbJIFYpUAMJyDz1yEZOAqKwgjYbQdBBFQAsQqQ3YdDZdSkKwZmTZNkwvwiNe+Ztbl7J9WQgpItkjbaKerkfhoJ2VYXSyMH683nUJhnDCgDRj5dV3m1VkAJDexTguQ9diZ+hyT4eBIwAkg8k2S8I6bFsAlPyRqeF+kkcJGKmoBWQnHLC1AAg6Iq3iaCRdlHZAuYw9l7wkmVqkNlDBs0V7j3is7s9WzR0PmukyvyVYDCUXBHxl+NDO7Uho5/6mjNSL14tixwxo1Y5AxmwwAScc+0tU9CyKSbWt41jVFfmrL5B1YKijLTLl5lY9IXLKBejH8PqEkageIdqv8sR6N7b05GEplEwgws6tnmuNxHMhj3ELQQjtwBAQtZK7RCpTBn+wGAy0mV84egTxArkT/tFIm1wKSTNpYU9+RS65B0/u2fV9bg68HncKNu81yHBzpuC9AakwHkOk6kCMd+yDbAPL5xVA2qjX0OAAjscd6bDxzpPNtQTupT9KaV/kjcwBpBIQOYKmNgFISQoanTRlVKGc3TzxNyQeonI5txKLTVZtoVXutrRlbihggw/e1ACVvcsOSoXGzK293HSck13zrz4XkAMYzxcAWuwCSopqBAJSp1C6opTaA8sxZQ0KiRm0Z41ABHAgZi/RlSkLUGmLRrkdJzLFeHNm0d/7YnhfcBymlT7YAqWyUK+0bZedI6nEENkJVfj1WoQHjApdzQAkEVml/Xb7togw8yDPIleifVkoKSCI8+D4Pv0+dLvt5mzkzve960mmae6Xm1RxA6hQsEYCRJrobQ9NA6IOWfKwsijUCxG4GSQDJzat2Hw2TaxS4QzMiTAyWkRCLBCA1YKTJgqU9b32LxhhI5iOrGSgCcWKCxXEdpo4YtjC0DHNOOWCGwB3bPXMWqc2E1HS+YXXYkj/SscvU1BoBJmOR3MxqGWWY6pEC5HhUhyk/CYNMgZJMybUhX63xYDlwQAnAMsWhguBTSYYKQgbgrhfryOxqTavEIEd2uziOmCZ0DaGVNUETWI5HgFIwmjFNEfsjU/+kfeYeAQER9CS/MbFK2m8TOtXHxLpS/dOspIBki0waseTO5xhW6iNoY159RkhrVae2/1kKjrysCyB5wA4BpDFxlp3cPMjQafIy46d50NQQHowzCSC5L1KPY/YYzK4WHMknCQRwbPNLEgiSiTUHlnQeoPmPbgK/EKjH2lsEuXmVtvRbw/qUzjdZwyZEz5hcARtIBLTMkWwTDpC8TKdm1mBqNbqdRWo3D5LmRFKQThtApuCYmlsDOAIeIB1YogaUrlG5oYAFQm3Xg5R2/qRRGroWELXwZlehhM2MU9t1IU2toaWdS6mV3Rp3ntgkdG3n52gNo2ugri2bdOzbs0mj3ZaZXX3yhpDNStBKOyQuUpazyi7pMrHmZBb900rIugbJrG8M/cDBZOq1NXbuO9LvSq9ZTzq1XUfSBZD2OICicUyTB/FQXcsw6byx/bAzI9qIzZCoXHugDCt4hIw5dQSUUSQrRa1mANIzSM4kGTjG5laKuszn+zQu0lFIGfkjOVgCgPDRF9LNq4unOtSixcwqaw+WKZv0xyaYXCsXSBS1E31JzoxOK7mQH9L9Th+046t1mFrdlhKVa8YaeVAOTxyQA8hpzK1xrxG6c1lbRqml3VpwtN8rahGxSU37GTYZLeWl6LezpO8OFIWWwWdL+3XdzSbdcxeQllBqbUMB+A9lU0o4q0xlWoBMnxgv49ul9E+zlnUNkm0Pue9oaFIjTqPDpIZfLzqlx+mfND2OfWDMTGlCfWKbk8ys2jgzomOP2oFBDIh1xCIjoGRBOgR6HCCDT5LOB9OrZZTag2K6bTw7D5LKRj9mwBLQnnFaifP+UYIAIA3WEZmUeWAAGZtcebvw555rz97SwzfpF0x2AJh+UsDUkbWguUX0dDJiUrAM3b5yz1soAQ0HjLVuZZO6Nu68+x0D+h01jJTRoEBIDeHZNvltlY/8tWxST2aT9iG63xLMrpOAso+8UP3TSsi6BsmlSK4hc6Ojvg2YBsospVNZCzr1GYX6/RYzK9UjMyuxSAoqybHILjNrrRGZWXlKuTEDRw8kLIqVfJBtAFnXMXvULpw/TIEIAKETsJBSwWjbOdI2BUtUkk195F2/yz0qBWoHMnWbmVUG3+RQScYg4yAe8kvy5wzEAxibXbulcdMBAR0n/sjse8ESAlAgj70XA0wK1GFRrClA0t1zka2ANa9q9/Ts18VMsnYvnqQ5lfTdLWzSgqCw4MjAX9fagqjWEIxRctYo6hpG1oFRumdmtOxmk2xOsg2YysxJZlOxlitIZpb900pIAckeMqlR2kwF04x0pm309ahTl48kZZG+wwaBY55FBnMrvNmVAn9ouavwaaaXSxMF+LmPJvYz5gDSHusIGI2uPSi2sciaVq2XKgJM+qAaAGMd+SOFdIAsDYQW3uRK/snarT3IwbKReJ1MrgwggQAsvH1asCZveo0aOf/b2/yR3NTKI1qbt40HQ10AmTe5ukK3FBQHShv1avdlraGUCsCYYZMK0jFJE4GjdIBJvxfRsQNFDCwz9M9qEMBTdyRVJzaZS97B2WSS1KPvIDaV1dg/LVUKSLZIHxNBKpNMh33Mi0Wn7vrcF0nnciyS6pK0+SJ5x0lBP36aiAOIdPUOntKN+yEpCMcySTK1hgjXLoDU48UIHIO5tdnh0yR0o2vHHlU0ydvOGx9YziiNS/SiG/cQIkw9Ib9rDiDD74WPcKVnTn5J/w44Vpl8WXvj0nUtay1ys2paHh/HDC4ytSYskiQFyPicPaCAHRus48pFvNopAaQSdqAl6+ATBuDfCWolXRsIpQGoAI5JcBIGlf+NVMdnI7KFsADpTK7VwJdnTa4e7QKj9L7JxsONWScwfRDfaumflkPWPUhOirhayvVt5X2/Z73r1Ec4c8wJN/m1sUjOgMgXSSySWBNnkdkVPBg4EltsJC73oIgGQOrxomePOXDMgYepa5/zk6R2bFJVNvULASXGGqiknSOnDbQwENpAjw2ktLoIYbPz1CIHjBp2aa2YOXoWpg2gKHiHWpTawEAb4YuMEL2Ygn8GCRDyYB1+HNLGNYGTT6HhTJGbVXPTQNJrlBANoHROPgakYZ+be2kOjK5NPG+1tgZcYo2x7sFPSVtBdRhAhoejQ3mbZMAv2s8dM0mjTnPn+sgs+qdZyroHyZxM0whtdfvcI33hul6A9axTnz9GGrADTAjCQGCTdj/co9ahcxwTA9HNYwLdNEF5amal7DohijU2sXKA9NGMaJocuZCJ1e5rzy7r8WIDKIU2MA4IudlVa+PZpB5r1NmAndjkSmZXgAEkZ+yAT9zQaTzrwS6j35thk1zS5OQ8DyuZWoF2n+MkIQAkoIzPxWXamVzbpG3NyrD4s2WOWms0nlIChMaZYOPj7M2B5t3COcLPKdvF32IZ6i6lf1oJWdcgudSHvZyNZJL9otO+SwSUzDQIIDK1kniG4YDA7/f4AIjA0B9z4NQhL6st6wbISZGt0W9lYMnLwr6C0cL5ImM2adx0EePATnf8Rtq2AaRnjTkdgci/NUvpWhMyZ2pNGWVad+qctDOQHNNEXbf23qauQzL0ZZbV0BcUJrmCMo2psa0+L+fmiLT+pJekbbrFetepa67WNGKQN88GExxjHgwo7VYnx2GbA0Yu/JhYpN2PwbANICcBJUW4xt9Z2xUa3DmtZZZNWn1dwJK2wJn6Iul3cr8kny/Jn5f/nSa8N9nUdF2Rrhlp+h+DmVW3sLIuySULaK+7OoBy5iLlRBbZ10RK5blrlrt/WglZ1yCZSq7hTHIOmXMpmGS6hdaXpe180akptFKBNGaaPrZVcp1jl58TaAIlkAJhbGqlsjhRQO2uq7MgmAJoTjg45pikBiD8PZpsEsrqKSEiXWtjot9GfklAMTYJv+V+Sooq7pQlmvNeKFkNAClyS5x1mHOFUs3/UZ/1Wbv2W2Q19k/LLfvXGztD4Q2QNvKkxljKaMckn1y9opMVWqsuqi/C4q/7KrnUbznWmBMeGGImIkSTIaYssg0g07mT8fUhz2lbQoJGbtjkmC/RRb+3y9yaM01OlI5ONw1EmqWo5L3JAaES7eWTymTnup3wCzQT+PktWzoLAKSU7JpkEWYq58c0Baj1i5PFytP9lrK25l2N/dMspIBkIoJ9eFkqXY3UNprqkkn3Kzq13wOIAXOZsLNVPHBwE23GzJr6I0n6mFJTEOTleaBtB9FUdMRyTTxVJgHH6PdmfjcHSIPgA/YfV9YaManURP9ZyqSEku4jIKegeryqErbz44CZgmd8bVxPgoA0f72QwuZnVXaNT6kkpDu252NAbABmsrWVE6CUmXOThC9Y3vVHYWu20na19QVrgkk+/fTT2LZtG+bn5zE/P49t27bhmWee6bzmd3/3dyGEiD5bt26N6uzduxd/8Ad/gI0bN+Kggw7C+eefjx/96Ef7pOukkZBItmmdXPkkJtamQ9GpWcZXPhfJPLXouszNckw0Ot8399Y+Sm7O49Lv1TbpPuQ+1Slb1SYyJ6drVqZAn2OSuUAX7XybU4mQ7cBJKfdUhklNkDYWRwDZBoT8fAp8dJyCYlzHfb8DxzY9CCztfgujVPHvlxOAMmLhUlnwE87HSGDIQTRlkjLU5e3S9t9Pj1/I/mklZKYgedFFF+Eb3/gGbr/9dtx+++34xje+gW3btk287txzz8UTTzzhP5/73Oei85dffjluvfVW3Hzzzfi7v/s7PPfcczjvvPNQt0xInkb4iIYktZ3nJFfet6zotDSdqL/ii7+SSMcUOP5JIaK+oouE8KWjWs9NSVlF39H+MkgXk0yX38qBY+448sPyKNdppAMcAXSyyi4zJj+XY3FcCOxSNhkzzRQcQz2Z3CPUt3r4ZcwcWAZdCAQDA24wSpkApltkWahgShUNoHTnUiBMQS/aF02w7ADILlkNfcEsZWaBO9/5zndw++234+6778Zpp50GAPjIRz6C008/HQ8//DCOOeaY1mvn5uawefPm7LmFhQXccMMN+MQnPoE3vOENAIBPfvKTOOKII/CFL3wB55xzztS6TkP1cy/EctQtOk0WinSlAB4Yu+CvNga0cpEUgDECdccdPVhq27mNYNyWzLbNa3NgGd1TiigfN1+uCrAd97KE6S6TpME7AHz2HUoO0CaTgpuy0gMchQwBJ7SfM7VKJX3gFpld7TUSQuV1k1LAnjINH6rNgUBtlb++DSDDNrBIq1fe1EpgKTx4SgaE0oGshPR1GCASGCqWgjABSqFUPkqVP3++zUS19hqgYvX1T7OSmQ1td+7cifn5eQ+QALB161bMz89jx44dndfedddd2LRpE37pl34J27dvx1NPPeXPff3rX8doNMLZZ5/tyw4//HAcf/zxrffdu3cvdu/eHX245Bqlzb4+TQP2fdn6Xlt0ik2nEjGbJL+kEPQRdgu7pbUR4e8VM0ICQpkcKzdCp2Tf/BxPPyaEaOCAkKIRYMRX8FjNkvNLcknnmtp1PI1PKu8/Lfc3OVMg4Dt+bnZsA8twLKJ9AibJQDRlfZGZFPxc8yPRBZB2DU9ikel3EzCGcsHOpx8VHVMdSPo4YHTH1qcbzrWZWrk51bPIjJm1zWTaaLtM2QvdP81KZgaSu3btwqZNmxrlmzZtwq5du1qve+Mb34ibbroJX/rSl/Bnf/ZnuPfee/G6170Oe/fu9fcdDod48YtfHF132GGHtd732muv9X7R+fl5HHHEEdl6bQ27L8wrt8+F2+In2eOLTkG4b1K6dGciAlARmVw5uKY+JCCArBICSgZATEExVyaliMBSCnssEnC09WKAFG7ljuh5SDURSF8ogM2B5bRZbDw4ZiT9XTEQqph5ScfQZGBqHnxygTNSZAHOM0G0f5QAhh3XEyBKJaGGEmqosixSDggEBeSggpASalBBKLdlx3ReDIYICexlYJCMXRKLbJhZuz72gbcCJLC6+4KVAsupQfLqq69uBNakn6997WsA0OgkAGvSyZWTvPWtb8Wv/dqv4fjjj8eb3vQmfP7zn8f3vvc93HbbbZ16dd33yiuvxMLCgv88/vjj+Xu47UqPVOi7J72kKy2rUSegGcSTskluGeVs0taxplYPiA5AOVgCgV1WDCxToFRSeIAUDhgbgCmF64OYSdABgeRgyE1opHsEpPGH18kB5mSQ7dd64xaza5c5tlVkh8mV2JA/DqZEoWQ0HaJxqQ+EkY0BB2d0UskswBH42S0aHw6OOaCsBgpCCSi3JWBWQwU1lJADFfYdkBMQ9meR7nkMhpZBVoPAIqvBvrPICbIa+4KVMstO7ZO87LLLcOGFF3bWOeqoo/Ctb30LTz75ZOPcT37yExx22GG9v2/Lli048sgj8cgjjwAANm/ejMXFRTz99NMRm3zqqadwxhlnZO8xNzeHubm5Xt8nsHwPv8/Iqs/3FZ2a38f9k8bYQATyTQrDWKWxI8Ea8CZXbQS0A0ZpbKenXaenpYDUFmhVBJASSmpUUqDm5e4awPkhtV03kADTGAeeGnbpKm1iYMuklfPPIsrPGgfgpNdwNuGDQVqAMmW9XVItQ+SvNmiaVK0igJCRLxKOIQbfZAA+7rvj00DC1g1EiLVpaRdAVnaxYwCQtaA5KbBvFP2+fHefRsVG7FEGACaAVEOZgGUws5LuahgYcW8WWQ3yLLIaxr5IIQFZwUgFqApGVt0Amfz6RhN1nJumTl9Zrv5pOWVqkNy4cSM2btw4sd7pp5+OhYUF3HPPPTj11FMBAF/96lexsLDQCmY5+dnPfobHH38cW7ZsAQCcfPLJGAwGuOOOO3DBBRcAAJ544gk8+OCDeN/73jftzwEQP/Suhz9t4/Sp3+dFKDrlzxNQCiEg4LLHwKZfs74xAUiDWgso6XKVGmKTdjV5Tf4kYyKTq5YmAcn2T20SQDTWD2mkgNDunDQQrp5GzCYnzZ7I5WcFutli06wrG/7RlE12WXjaJGdq5UnOLeFM7pthL7RoNACbTSZhlpxd6WRrlHFgZBw4ChglYWoDCXveKAuYaqiAxdoDJa3q0Za8HMgDZRtA+rKhguIMku0LaUFQDRkgKgXJjqWSkMNBxBRTFimqQeyLlDEoIgVNIS1wTvBDctlf+oJZysx8kscddxzOPfdcbN++HXfffTfuvvtubN++Heedd14U2Xrsscfi1ltvBQA899xzeM973oOdO3fiBz/4Ae666y686U1vwsaNG/HmN78ZADA/P49LL70U7373u/HFL34R999/P37nd34HJ5xwgo92nVb6jJT61Ot730m2/T7fVXSyQv5GCuIRbKtk7JtUIg7gkQ4gefCFEgIDZc8NpISSomFyTY+VEJCVtD5SZnrl5lcCqFAWTKdSclNqCPef9AESU6xiPitMAFEewMSDjzLmZWBydC/JJCtswxcpZIjQBIKJlZlasyZJ5pe0lwkPTvYZCu8XjADMmUGrgcJAcbNp3tyammIHSqBygCcHsgGQciAjgPSslplZIzAcVlDDgQXN5FzEFAcDxyiH9hk54BTVEKgqC4QdZtYIIDm7zLTR/toXzEpmmrv1pptuwjve8Q4fiXr++efjQx/6UFTn4YcfxsLCAgBAKYUHHngA//7f/3s888wz2LJlC1772tfilltuwcEHH+yv+cAHPoCqqnDBBRfg+eefx+tf/3rceOONncvTdMmkBp22ofloKDXqtN2vLaqs6DT5OywgWlpJLBLSLvsUgNOyTSUEjJs6MlDWRDuQErXRGBibADxlk8NKYqwNlJQYVjaKc1jJaFsbAVVJ6xuXAqoSACSMNhGbVJCoEZa2ktUQerwINyNlaol9mjICXn4+gHUARQJvOt9HGoFMU7BPw1cCSf2TZDJ0+153pTxrjH53zuRaG0hlLFsEUKNumF0l7D4ASEhrtaT1KbXJ/h7vr6bvYizSg7MHSxWZW8n8almk8gDYZWZVg8qaWasB+wwtMFaD2ATbZWZ1H2KREUAi/N/WUl8wC5kpSB566KH45Cc/2VmHp8Q64IAD8Ld/+7cT77thwwZ88IMfxAc/+MF91jHXOH3qdt2jrX7XtW16FJ0m65SaXZU7w82uRrhpCcIyTAPrm6RAHguQAgMloY3GQFkz6kBK1NKgcmBZa+2BkdgWHWspoJR06eisb1IlnXs91hAOUOuxLWsDSiGlXStSqeziyzzTSgqQMesMplbOcO11gVVKVk6SMsqlStTpJZPYeUJu75/kvjcnUkroZE6hdkBj6hGMcj5h75O0ZlcvQ8DUBqIWdgURabMQKaWsabZljB3mYTbBkbNTAku/nwCkHFQRY7THA7s/5Od6mFkpWEeqdjMr80MaVbUCJG+jxm/P1F1NfcFKyLpfBST3sqRC59tejD7O5tz3tNn1i07T6xT6cZtIgIJ3FAQgDaBtcI6A8w2KmE1qt18bg8oDpD03VBJ1ZZeLGlbKM0i+lNSwsp3PojbRtAWjtfdFGgeOgEYNNIDS6BoiWWfS/yoHmNHz9gEtgXnlADJlkT4SV8SMUjCWmAPHdB5pX4mWy2pLru0jOCk4RcK0BOxIJWG0TMpjNhmB42LY1dB+MELgqGvtfztlI4qCmyj7TQYc+bQPIWXwOzLAjACSA+LQAqSKzjm2WA3tZxCYpBgwNsnNrJwxquRYVhFArtW+YJay7kESWD67OdDeiLmXqus+RafpdBJwka50JAFou6SWB0wJ2LBWG8RjIzcltAQAbYGRmKSLgh2YmD3WDCjnmMkVsGCp3H5qdiWpoT1Qkn/OaOHBkkQCgFRR/tWuAB1uXvWMshp4gExZZINR+qCU9ukudN7r2INhRm2XAUhrKhR0w7AlltyIZnV+yVq7SNEKRmuoQQUgeYiLljmqITxQCilsoI9bjxIs8hWw9YHAHoEwxSQHjt7fOFAeLOMpH9IDZLVhGAGk2jD0rFK5cg+Qww0OIIexqdUfMz/kFAC5lvuCWUkBSSaTzAL8uG0ktdRRT5uNv+g0nU7Utxmilz6PndWGzK5KOLCECKZVJaFNjQGBpwEIPLUJZlUAqHUARtp6Ngkk+VE1OFBq4a4ZayhIaGmPtZZu7cewqoeSbt1IB4KascvU79jGIJWSWRZJplbJgLMrWIcfczY5bQ7bAJDCt2fDzEq/K/FLSilhBhVMXUMrCVEz86umSFZrdlVD+z3agaA3szrmaFwKO1F3e4NDXtUmOBJ7JPMqZ5PcrBrtJwBZbRjaCNe5DQ4EBwEghxuCH9Kdm4pBJgE6a7EvmLUUkMxIV0NNQ/X7mCXS+xad9l0nRbSSBfLQ1oIjAG2cT9JgoGRY0YKSugKo7Y1QSwNN+xWBogsOaQnn1FVaHoBSJKtvCA0AEsL5MjlYAoi2KjM/Mt3mALKNRYrkOB/FK2Pw7Mkmo2GCAZRV0J6jIB4fdBLykkZgSfMBKcPOsIJ2flo5qGBqDTXMd2M1aguUnkUaGKUjsLTl7b+BGCVPb5eCY2CSIjKv8kAcAshqw1wwsbYBpNuPAnWGGxx4DmE4QKpBFiB9YJSspjJntsn+2Bcsl6xrkBTopvTTjohy95+2ISeN2IpO/XTiQAnmlwxbO5cP2n77wIGjNmQetQwSAAaGWKBG7fa5P5IkBcw9Da0tUBrHJKUUqGvtWKc1v2ppIrAEAKPzCQWAAI52X6I55QTO7CtbWSSVc1Nr+iHAbGOQPgF4n+F9LtE2wAAx5Cc1PkdpMK1yNmmGFiiFkhDaMks1ZE9cElskYBQRWJKYzMrRHBTp+TaYpI9slZ49enCk4Bzvdww+SLVh6M97gOQmVs4gOUCqwUSA9AyyAyCBtdMXzFrWNUga9Pd38bp9R1V9Xo4uh3bRaek6AZOBUgv4fYt90v0jLJjVyu5rbn5t/GMyvjAmi1J4JmMBSaOu7f29mVVY/2U91hAaEVgCgNG2ayLQTCWd0kFAJqs4bZ6qpGOWoVwqCVXJBotsi2pV0j7SaXyT3piZC9oRFBSjfKCOTySgGGAOhtYPydikHAygaw2ZMEm9OPZAKbyPUceRrbWAHDBwHMA96zA9x14XM0mfh9Xni5WR7zHHHtN5kASgasNc3geZAUgM5wKDVMN9CtJZa33BrGVdg2SXTGMbT6VtVNVVt+g0G526gFIDIZDHXxkCebgfEWMdTK4SQMWZYwyUDXAZAmJsQZBESoN6bCNsiU0KN4fTuAWQ7VSSwIYk0FgLsplYPZTHJle2rWJwzLHIRsKEDGhasAzHvaaKSAm/zhXt84Tn0UoX7lMNbPq+JFDHmloH2a8xZEp1W1O7gYcDSwUJ7QAyZpGMmXPzKmOTKTgScFsTbMweySzsA3S8L9KZUocbQhTrMJhZufkVw7ngg0wBMgOYwHSD/y7Z3/uC5ZACkjOSacwM05okik7T6dQOlLB34vsQQCUd5pHJVbJMMg48xwCGHBgqKBmbQzloLMIClx6LwBqFQV1rCKns1gGjZZYBLCVEAEfXWRuHtzE5EzGrFBmgrMKKGDwp+7CSGFYyA4yszGUpsmbX+BlHuckzbRCxESEgGJMk/yQP1ImXhGqySZqIb2odpoQoCeW6NCPJ36gBjGFqAVEbmFoAA0DXFjAnCYEiADf9hE8BicGRjok90nEjgGfDBj/XUQ432N9FgOmmeQRGSabVoWeMphoCbUE7E3+R+13Y//uClZICkmj3S07zAqX7XSOq1K6fq1t0Wl6dlgyUFYCxtsdeGFBm/kG5qFA1Flgca4wQAIyiLLXr+I22TFEbYpGOURoyu7Y/Zb/KCEsMwM2vZHolgCQmqSqJoYrBcS4BS+6PjNP5UVmrWqmSjWMf4SpSBulMroMhoLUrC2wSsGwxNbUSgzQqbIWSMLWG0Rq6JrOrAbFGk4lupfUrm9M/2FSUBBwJuH2CgAg0nf+R+xirgQVI5nP0plaa5qGGAQCr4I/sC5Av9P8uJ8up00pIAUm0P/A+DdFmr+96WdpMC33MFUWnpes0C6DkZITAhEyv2SCYscAigePYpsHT0m1rDa0Boe1UFS2NN7EaHx4aL3YMxD7BKNWcnxuJyBfJAZKbWZtsMj1u+iNTCZM6WtpFyMAig9IAZd4hcPRBPBo++4yuA5tUsgGQAKAlmVddqrlaw0gNo7QN8HH7yp1zT7BxnzDtg3ymARj9MlYJOKam1dg/Ocj6H8EYJGeTPJNOI0BHDRr+x9bn3bK/VvqClZACki3SNtrpaiQ+2klHVV0jL35cdJqdTkAASmEAG2SaB0r/fQwolfNdESZJYcI5wX12FZTUULLO+/ccq6yd2ZWiXKUDS+PYo3Y+SSMsQGrHKNu6xDiDjitjQTtRAI8DSAJGAsOKAWakOzO12ueYsskmPHbCJZlZkxRqkcm1GtiIXqUsm3RAKVv8kAC8CZWYJIEigSUGgNEWMCW7DUXIxvdiGX8YMPLEBhwcPZMkvyQF8wyG3rwqqqHzNw6y/sdGBCuxRWZutaxy6P2PwOr+381Kp5UyuRaQZNI2Uuo7csk1aHrftu9ra/Ci0/LpRHVohYccOIaYHfZ3rCQsQWkG86CSkLUDTMD7KUOgSxz5Gi2xpQ0WhU2FJ8YiMq9GwTs0h9NHu2Z+f5ThLfgb6dj7IaXIAuSwkpiLADM2uRIQAvArr3SZWeVSu7A0aIdWuqhdQoVq6PLZ1jZ5QJ34In2gTg0hJfRo7AGRm1x9NCuxSQaYwdQagyRnk9Jl/uHgmE79ED7n6rDVvMqDd1ARcxwia05NGCUwHataa33BSkkBSYQHP62poOt+vG6XSaHtu4tOs9fJdvLEHAkoLThKYpkQLmtaPD2EAEK6lSOUy6sqmfmSFiwmRknAmO5zsAxRrU3AlAqR2TUnHBjT4B0fpON8kO3BOrFv0tYncAwMkr6H2KRw4Nm5LmVjrUMJ6MAquclVuAAeI2vmm6wt2CBm1N4HSeZWKSGUDerRDhwJEGXNTLIZUuoZJNtyYOSgGS2S7JkkTyHnlrTKZtBxwTtzB8SJypfofwT2j//drHSalRSQbJFJI5bc+dyoispyDdv1IhSdZq9TcOUFRimMYIAJSBhIQ2Dn8qQKA+nmLqraYCQMKLBVCbuYMze/WtDRGFYai2OdBUna+k8GMAFEq+a0/j6RRLnKAGzclMq3cxGrVBF4SmZqpbUXpQxBO7LdJRYJN5UFZWWIdhUSRmhvcjUymFiF1MBg0LiPT/NQJ75I54MksDR17aJag8m19fnJhEkmwCjJ/NqIbKU1HhlIct8jZ49d5tVqiLb5j4bmlWL//d8tp04rIesaJNPRCy+f9EKYTL22xs59R/pd6TVFp5XRiQOllI5IulrCOBZZG0BaprehUlBCM/+khtQm8lOS+ZWAZTi24Lh3rL2vclhJD5iU93VxrGOgTAATQBThyvf5fEnOJonxcVDkgTrEGFMzKy0NRixy4ECxUsKbWolB0v0ti5zw8El3Pg3EKh1sxtHcSOebBBxY1h5Aheu9JOCmelgmKZSErB1I1hpah305ASCtKnGwjn2WscmVfI6t4OgicyPfY+KbRJpirmt6B60HibXxv1tOnWYt6xok2x5y39HQpEacRodJDV90mp1O5GOrjfAJ0aUApA6gKTR8oI+A9D5IJSybJNAYaYO9zvyaskoOThYg6wgcG2ySfQBE+wB8vlmSKE1cxGKbn2ElPRAGwIx9k8QiB+SfFIxJMraaBu3IDFBqw3yYUvo0PCF4x0QmV2jGJinK1YGlH9zq4PkUyuW3ZUE6PqKV2KNfXHlCQvM0ojUT1UqrkaAaWObbBY5KxeZXnhygKzgnYY8ka+V/txw6rYSsa5BciuQaMjc66tuA/NppXpSi0/LrpIQzTxoLiLT2JGDZijR2OwLc0lsKe8bB/MpZZUXHjFUOlYxMrgSQVEarjOxNGCWAxj4J34+SkCcgSfsEjimbHFaqwSoHUmLgmCNnkd50m7BJDpWtjDKXmk5KO72DmVyJTXJrT2N/DJjKtaGWdlUUXUMsjryPUhOj1MEc22Ud5hGtdNwARmKNtP5lDhylzJtWU99jG3t0efVSgJwk++P/bl90WgkpINlDJjVKm6lgmpHOtI1edJqNTj5y0wiM4YBRACNufoX1U9bG4IBKYSANRlpjL2eVtQ3oGUnLLkdSY6SbYDlXSewdawwrg8Vx7U2vHCTHHWySynIJDNJtOhWFm1c5s+QAOZB2CbFBxCThfZJS2nv7rHIIANm5OLOQADgwimg6CLFJyySt2ZWWDBMVe28c48R4BOg6Aksb4Rr7IMPcyLw0I1ppXcsAiGFhaBuQQ6DZBo4W8Kteq3f0yb3aeJTY//93K6HTUqWAZIv0MRGkktbrY7efpqGLTiunkxQ2OUCYTxnMrxIW+CzbDKzSgqLBSNvtnlo7s60FzIFpguVirRmjtOBoza/dbHKsJ/+yigFkV7q5uSoO5LHmVWYm9oE6FhwHUnoWmU4L6YxspWedLpPl94PJ1bNJWUNUw7gDpVVRAAhdwybTdeZXrTxYimoAobVlqQBMXUdzI1OJABGIwDACRmKNKXAycPTlE9Z+bLBHWkpswjNcq/+75dZpOWTdg2SuEaah8211+zTuNNcWnVZeJ+r4oS1j8mwSNhl5bYBa2OmStQm+SqmdiVU2mWQKlgMlMKpNBJBzlfTsMXx0w9zatpYlSd7k2p6Cbqik9UEqC36WSUpUCaPkLFI6f6SAiEysRGxbIZOYJBxoSgljdMQmUVW2LcaLEFIF0+po0QIQ4NimZZqiri1j1LX7ONZIS4xllhoL6rB5NRwU3bGgVUkcAPolvRKfYxs4QshmYnIhJrLH9fi/W4pOs5R1D5I5maYR2ur2uQeNjvvY/ItOL5xOAwm3zmQwvwZW6YJ+tAVMJYFKBxNsAMkYLAfuWBuDkbQRrKPaYOgWgOaRrpY1qqxfsu4IQlHOr5aCZXaFDweKNlBHeEZZqdjMGm9FZGqFexYUTpOSynSKZ2pitRdJGFk5U+o4mF0rQHAfZF07X2QNoWUAS2KWmnL41QBs5h6RmxQJ+tqYRRIohvUtZbRvEwUwnyQzq3pwpDUdeyxr1dAH5X/XR6eVkHUNkkt92MvZSCbZLzrl5YXWKTW/UlCP3wr4CNjYBKsjPyWB46jWGBjYrQRGWjtgtcA5kBLaWPDMmV0BROCZEwLH1OzK9ynwhtijFMBA2Yw8BJCWRVrQzLFIYty8q+9kkD6JQO6c/S3c7CoGQ2C0GAOlVM7c6gCSgSUqBDbpgFHU7SwSKmaRgplbGyA5YD5JF9kqBowVtoEjlalBAxxzrVf+d+1SmOQKyjTmhbb6vJyuz9Wf9JLQ+aLT6tWJB/XULkNOLew0SmKSZIKlMikkBgoY1eSvdODowJJAszIC49pgYCxI1joAJsWacNAE2qNcgZaVSNiUDTuHE2xlD5rrKLxJlQMkTfmgY84iydQqBG0zDZETAkXK40omV/CMPBWMHsdAqZU18eY9hgAAIONJREFUwQ6GIUBHB/boAZOYo9bdPZ1f7JlYJANFv2xX4p+shjaYSIgQkJOCozvO+iLR/p6X/11/nVZC1jVIppJrOJOcQ+Zc+gLxRk/vTTLpfNFp9erkmZMRYWpIaoI18Nl6yF/pwbLBKK2ptZYG2rFLLREBpjZhXmQKnFyoTrpSR5j0z/YTcORMUjqTqjfBJhGuAyUbLJJMrbl5km3SMLkKCQPrmzSygtDjGCjr2gJkNQwBOi6aFUAATAyCT3KSpCDZBox+Eegwub8BjlI2g3KEnOh3jJ5J27Ni9dfj/66vTsstBSSd5Bo319g56TMCm3RNrl7RaXXqRJKbV6kgGKN0bNOzTMOYpQNHKWK/pGOXtQnAqBlIEmjaVUGsHmlSgbyutoshAMsmLXdMMazwAW9ipXICTQE0WCQXKcL8ytxMP59EgK0eTWwSGrHZFbCAY7TrKBlAahX7HclUyoJ0TMbUKhITq93GwTpRRKtSHvB89hsekJOCIw/KobrYf97x/UWnlZACkonwB5+OepCc6zI19H1Z+t6v6LQ6deKsUglijcFfaUGTgaWhpD4S2sAH+Hi/pLGrfRBgah0YpmeSDjSBmF126xmeDjFGACxBOSJw9MwyA5CVM7PSdcQiydQ6sfNKwBHC2GNvYkUwuxKLpDZxEzGFUXZlEAeWgDXD2ocRfJFGh4TosQodIEmgKEQEioabgOlcalbNgOO0jGe1veOrWaeVkAKSTlLa3zZqamvMXPmk0VebDkWn/U8nWn6LgyUxSgJNX64deLp1nCttg1BGNa0E0gRM6490y2UpeKYJxODZJnxhZs4e49U8YnCk4xDUEwAyzIsMLJKbWnuBpZRAraM8rp45qgqmHgegNBowGsJtjdEeLAUcW/Ts0a1DCaAtorURzeqYJYGf4YyR9olJSjpmQDgBHNfCO74adVoJKSCZSNsIKLffVmfasqLT2tGJwDIf3BOYpUYoVyKYYo2xUasDEwAzBUk6Buz1QABPW9bUlPsoQ85Vd8zNrg2wJN+k9CZWAlfOJnnADmetoSxRiNhkZksdawSUvA2EjMHSf1EF4X77JIA2pBgD58Y+B0fJQJPAkQHnJOa4lt7x/UGn5ZQCkpiO6k8zqtmXEVDRaf/WqS0S1gAJOALG2EhYDbuv3LxMY1x9inLNgCYQs0suBKS59HAcFO1xCpY8Ctb6IJUEBAIocjMrsUgOpDnxAAhijQSMOloVJAJKrQEjIIwDUqMtWBGzBEDmW/8E0pWp07mIHBDpmKXIixgjM7P687Kyfkhenv/J9vZYe+/4atNpVlJAEvlG4Y01zQsx6b5d31N0Wns65cCSwFE7cLTA6dilBpQJgGkZpoAxwgMmgAg0OUBO8k0GvQgcAyjSMV/+ioMeB0jOICWEN6+GZOdsv2tOiDO52ooxkHmglAAsTgawBCxYui34tk34/XnyAs4qU2BMfZA8UpWu7/5W/1smyf76jq8WnWYlBSSZtDXscoy2Jr1sIjkuOq0tnSKwNAEIObvUxh0bC5gpw9TG+jAtTsZME4gBcrqI1wCKpDc3k6bsUWQAkiJZUxaZi2yNAnfoGLBsEk2ghJAQQrtrpGOWGhDOn2gy30Im3LQ4MbNGoEjlqQ/SgWdf1pj9yVj77/gLpdOspYAkk0mNsxLf3VZedIq/u618teskPYgIB4qBXdoI1gCI1iQbAFPTOYQ6QBM4J+lFwjuZ1HdIy17lwJHqc4CM7oUAmO1fHrLNCMcU7XEClA5QPVgabe2+DGTziyjz6NUmg8yBYmRqzQCj/76On7Ucsr+/4yslK/V9BSQTWc7G7jOy6vN9Rae1qVPKLo2xXbshgGSAaUAgmYKmhRW464AAnlb3bg35GpCcARIw2v3J4JhjkUsS8k9S1h0+VYT5IjloCZE3s0ZrMab7qbk1BUb+wb6/V+v1HZ9Wlkun5ZQCkuhvP5+2cfrU7/MiFJ3Wtk4Ndmliv2TMMA2Mq2cceyTQBAJAGvJR9jRKccOkn9LBgNHWEYkZNmaMaVnKPvMPQTbYJGAZpf11DCwzAGl/a78gncAiRVzWAoxWjxa1O84ttf5afsdXQqdZSQFJ9B8pTds40/zB0rKi0/rUKQeYnGHGrDKAJlgZEOcO7xnLY3WL/IkiKgumWB6U0yzPmVmzOMmYos22A5tKLgIpYpLKTu/gAGgyAT8pgKY+SArOcd85DTDS79if3qe1rtNKSNavvlzy9NNPY9u2bZifn8f8/Dy2bduGZ555pvMamyS5+fnTP/1TX+ess85qnL/wwguXrKdA9wOftqFT/wz/jraRUu4FKDqtb52ksMt0Dd16jpW0az5Wko6BgRIYKhGVVRI2EbkM1/FPWPoq/jTOScr16lLwIUS/ChHO0e+NWCUCI+W/JzykFj+hDBGmDX+hdAnF6SNV/FGDxjFkBVRDO5WkGsK4JONGDQE1jAJxqF3W6vu01nWalcyUSV500UX40Y9+hNtvvx0A8M/+2T/Dtm3b8F/+y39pveaJJ56Ijj//+c/j0ksvxW/91m9F5du3b8ef/Mmf+OMDDjhgSTryBphE9dvOp/doq991bZseRaeiExCSFAA2qw9AcykNM8tabejaYHoN99bG9B6C55IC2PJYN84qgRggJ/ooE1Mq+REDhso4UXkmYjUoxthgy3SPlDGu1/dprei0EjIzkPzOd76D22+/HXfffTdOO+00AMBHPvIRnH766Xj44YdxzDHHZK/bvHlzdPw3f/M3eO1rX4tf+IVfiMoPPPDARt2lSPoC5ITOt70YfcwQue/hx+k9ik5Fp3Sf6hFY2ohYC4ohutUbKJmf0vh7Kda1dGSxA9AEOBGdawIoD/Th10/szFJfIwNLAICSIWmAE9MGlon/MRd4U96ntafTLGVm5tadO3difn7eAyQAbN26FfPz89ixY0evezz55JO47bbbcOmllzbO3XTTTdi4cSNe9apX4T3veQ+effbZ1vvs3bsXu3fvjj5cpn3Yk16OXL3cS9V1n6JT0WmSTkAwhQ6k3VbMzMrNsKnZ1a8VmXyUv1/THEvZd/w6kq6uRGCPbQCZZZQdEadNU2sVffhE/9zHJyTPPN/V0HZFp+XXaVYyMya5a9cubNq0qVG+adMm7Nq1q9c9Pv7xj+Pggw/Gb/7mb0blF198MV7xildg8+bNePDBB3HllVfim9/8Ju64447sfa699lpcc801E78v1wBtI5m2kdRSRz30ovR5KYpORadc3WgKB7svUT26RvsT8FGwJOk6lG2Sy6LTxTzbbxTYY3Tc9zo0n0Vbp5u9TUu98j7tPzrNWqYGyauvvnoi4Nx7770A8n8kY0x3miomH/3oR3HxxRdjw4YNUfn27dv9/vHHH4+jjz4ap5xyCu677z6cdNJJjftceeWVeNe73uWPd+/ejSOOOKL1e7saahqq38cskd636FR0Wk6dcgwuKmL/xeUYpadf13veZE9wXE9tV3TaN52WS6YGycsuu2xiJOlRRx2Fb33rW3jyyScb537yk5/gsMMOm/g9X/nKV/Dwww/jlltumVj3pJNOwmAwwCOPPJIFybm5OczNzTXKBbop/bQjotz9p23ISSO2olPRaV91yjHOpUibT3OfEwqg/Tn1kbXcdkWnlZepQXLjxo3YuHHjxHqnn346FhYWcM899+DUU08FAHz1q1/FwsICzjjjjInX33DDDTj55JPxK7/yKxPrfvvb38ZoNMKWLVsm/wAmBt0Nkjb8NGYAqj+p0dPzk+5ddCo6zVKnviLQHwyn1Sm9bjU+p6LT6tFp1jKzwJ3jjjsO5557LrZv3467774bd999N7Zv347zzjsvimw99thjceutt0bX7t69G5/+9KfxT//pP23c9/vf/z7+5E/+BF/72tfwgx/8AJ/73Ofwlre8BSeeeCJe/epXL5v+/P8/bYNM0/FM2zEt5Tpev+jU73uKTv2+pw9OludUdJoks9JpOWSmyQRuuukmnHDCCTj77LNx9tln45d/+ZfxiU98Iqrz8MMPY2FhISq7+eabYYzBb//2bzfuORwO8cUvfhHnnHMOjjnmGLzjHe/A2WefjS984QtQSjXqv1AyjYlIJNtZSdGpnxSd+knRqZ8UnfrJUnRaCREmDW9bB7J7927Mz89j165dOOSQQ1pHL31GNbzONHZ3TKhbdCo6FZ2KTkWndp12796NzZs3Y2FhAYccckiPuyxNZsok9xdpa6Q+jddmr+8a6XDbO5c+5oqiU9Gp6FR0KjqtnBSQbBHRYz93DR/xTLqO6tCnzwis6FR0KjoVnYpOKweYZRUQJvxFaBvtdElab5JJQSR1ik5Fp6JT0ano1E+nlZLCJBGPZCZJnzrpKKfLpND23UWnolPRqehUdOqv06ykgGSLTKLyufO5RhbJNh1tTRqpFZ2KTkWnolPRaWk6LYesa5DsGiVNGqUYNBspNTu0mSK6dCg6FZ2KTkWnolN/nWYt6xok2x5y18NvMwm01emrw6SGLzoVnYpORaeiU2GSq15yjZwbHfVtQNGyP40UnfpJ0amfFJ36SdGpn8xSp5WQApI9ZFKj5EY205oCzJTXFJ36SdGpnxSd+knRqZ+slE4rIQUkW2QpjZfWy9ntJ13TJUWnflJ06idFp35SdOonq1Gn5ZB1D5K5RujjhO66vq28zwtQdCo6FZ2KTkWn6XSapax7kMzJNCOVpTiyeZ2+Nv+iU5CiU3udolO/a4tO/a5d7TqthKxrkJxm9JNet1xikv2iU16KTv2k6NRPik79ZLXrtBKyrkFyGvNCm4khN9LK1Z/0ktD5olPRqehUdCo69ddp1rKuQTIVegFEsuXnaJ9GVJz+m0zd3PV0b/6ZZIIoOhWdik5Fp6LTZJ2WW0qCcyf8obdt26TrfFtj5l6ArrKiU9Gp6FR0KjrF9VZCCpNMhI9UeFkqpqWc6vd9Wfrer+hUdCo6FZ2KTvH9VkIKSDqZNBKaZE7IledeiK7RT/qdRaeiU9Gp6FR0emGlmFsTyVF907LfVmfasqJT0anoVHQqOi2fTssphUmifaQzqe40951Wik7TX1t06ndt0anftUWnfteuFp1mJQUkkW/kNvv6NKOaPnXbXoqiU/v3TLq26NTv2qJTv2uLTv2ufaF1mpUUkGTS1rBLpfuTHNn83qnju+hUdCo6FZ2KTt06rYQUkGSy0g8//e4ue3zRKXx30WmyFJ36SdGpn6xWnVZCCkgmknNCL1X6jKz6vFxFp6JTqkfRqV2KTv1kLeu0nFJAEv3t59M2Tp/6fV6EolPRqW/9olPRqa+sNZ1mJQUkMfmhU8NN2zjTjITSsqJT0SmVolM/KTr1k7Wm06ykgCTandIk0zZ0zvks2KfLtl90KjoVnYpORafpdZqVrHuQpAYwmDwyaTufa2B+b5Kc81sk26JT0anoVHQqOk2n0yxl3YPkNA1tkmMk5bTfNupJr+MvRHqPolPRqehUdCo69dNplrLuQRKY/mF31eeNapLy9Lqu+xSdik5Fp6JT0Wnfvnc5pIAkk1wDpA01iern6rbdO/2e3D2LTkWnolPRqeiU/56VkAKSGelqqGmofh+zBK+7lNFW0anoVHQqOq1XnVZC1jVIThod5ezhufKu+0/bkEWnolPRqehUdFo9sq5BctLoKG34viMiXn/Sy5GeLzoVnYpORaeiU3+dZi3rGiS7ZBrbeCr8RZl07TT3Ljr1k6JTPyk69ZOiUz9ZjToth8wUJP/1v/7XOOOMM3DggQfiRS96Ua9rjDG4+uqrcfjhh+OAAw7AWWedhW9/+9tRnb179+IP/uAPsHHjRhx00EE4//zz8aMf/WgGv2DpQo3dZ9QzrUliqVJ06idFp35SdOonRad+shSdVkJmCpKLi4t4y1vegt///d/vfc373vc+vP/978eHPvQh3Hvvvdi8eTN+9Vd/Fc8++6yvc/nll+PWW2/FzTffjL/7u7/Dc889h/POOw91XS9JzzYb+7SNlRtJ5UY9qV0/V7foVHQqOhWdik7dOq2ECGPMzL/vxhtvxOWXX45nnnmms54xBocffjguv/xy/NEf/REAyxoPO+wwXH/99Xjb296GhYUFvPSlL8UnPvEJvPWtbwUA/PjHP8YRRxyBz33uczjnnHMm6rN7927Mz89j165dOOSQQ/b59+Wkj9kgrdPnmn2RolM/KTr1k6JTPyk69ZNpddq9ezc2b96MhYWFmfXjAFDN7M5LkEcffRS7du3C2Wef7cvm5uZw5plnYseOHXjb296Gr3/96xiNRlGdww8/HMcffzx27NiRBcm9e/di7969/nhhYQEAInaaCm+Mtv3cNZjyumlGR0WnolPRqehUdLLynOu/Z83zVhVI7tq1CwBw2GGHReWHHXYYfvjDH/o6w+EQL37xixt16PpUrr32WlxzzTWN8qOPPno51C5SpEiRIi+Q/OxnP8P8/PzM7j81SF599dVZwOFy77334pRTTlmyUkLElm1jTKMsla46V155Jd71rnf542eeeQZHHnkkHnvssZk+3FnI7t27ccQRR+Dxxx+fqYlhuaXovbJS9F552V9131/1XlhYwMtf/nIceuihM/2eqUHysssuw4UXXthZ56ijjlqSMps3bwZg2eKWLVt8+VNPPeXZ5ebNm7G4uIinn346YpNPPfUUzjjjjOx95+bmMDc31yifn5/fr14KLocccsh+qXvRe2Wl6L3ysr/qvr/qLeVsZzJODZIbN27Exo0bZ6ELXvGKV2Dz5s244447cOKJJwKwEbJf/vKXcf311wMATj75ZAwGA9xxxx244IILAABPPPEEHnzwQbzvfe+biV5FihQpUmR9ykx9ko899hj+z//5P3jsscdQ1zW+8Y1vAAD+3t/7e/i5n/s5AMCxxx6La6+9Fm9+85shhMDll1+O9773vTj66KNx9NFH473vfS8OPPBAXHTRRQAs+7v00kvx7ne/Gy95yUtw6KGH4j3veQ9OOOEEvOENb5jlzylSpEiRIutMZgqSf/zHf4yPf/zj/pjY4Z133omzzjoLAPDwww/7aFMA+MM//EM8//zz+Of//J/j6aefxmmnnYb/9t/+Gw4++GBf5wMf+ACqqsIFF1yA559/Hq9//etx4403QinVS6+5uTlcddVVWRPsapf9Vfei98pK0XvlZX/VvejdLSsyT7JIkSJFihTZH6Xkbi1SpEiRIkVapIBkkSJFihQp0iIFJIsUKVKkSJEWKSBZpEiRIkWKtEgBySJFihQpUqRF1ixI7q9rWT799NPYtm0b5ufnMT8/j23btk1cPUUIkf386Z/+qa9z1llnNc5Pypw0a71/93d/t6HT1q1bozqr7XmPRiP80R/9EU444QQcdNBBOPzww/FP/sk/wY9//OOo3iye94c//GG84hWvwIYNG3DyySfjK1/5Smf9L3/5yzj55JOxYcMG/MIv/AL+8i//slHnM5/5DF75yldibm4Or3zlK3Hrrbfuk477qvdnP/tZ/Oqv/ipe+tKX4pBDDsHpp5+Ov/3bv43q3Hjjjdn3fc+ePS+Y3nfddVdWp+9+97tRvdX2vHP/QSEEXvWqV/k6K/G8//t//+9405vehMMPPxxCCPyn//SfJl6zYu+3WaPyx3/8x+b973+/ede73mXm5+d7XXPdddeZgw8+2HzmM58xDzzwgHnrW99qtmzZYnbv3u3rvP3tbzc///M/b+644w5z3333mde+9rXmV37lV8x4PF4Wvc8991xz/PHHmx07dpgdO3aY448/3px33nmd1zzxxBPR56Mf/agRQpjvf//7vs6ZZ55ptm/fHtV75plnlkXnpep9ySWXmHPPPTfS6Wc/+1lUZ7U972eeeca84Q1vMLfccov57ne/a3bu3GlOO+00c/LJJ0f1lvt533zzzWYwGJiPfOQj5qGHHjLvfOc7zUEHHWR++MMfZuv/r//1v8yBBx5o3vnOd5qHHnrIfOQjHzGDwcD8x//4H32dHTt2GKWUee9732u+853vmPe+972mqipz9913L1nPfdX7ne98p7n++uvNPffcY773ve+ZK6+80gwGA3Pffff5Oh/72MfMIYcc0njvl1Om1fvOO+80AMzDDz8c6cTf09X4vJ955plI38cff9wceuih5qqrrvJ1VuJ5f+5znzP/8l/+S/OZz3zGADC33nprZ/2VfL/XLEiSfOxjH+sFklprs3nzZnPdddf5sj179pj5+Xnzl3/5l8YY+0INBgNz8803+zr/+3//byOlNLfffvs+6/rQQw8ZAFEj7ty50wAw3/3ud3vf59d//dfN6173uqjszDPPNO985zv3WcecLFXvSy65xPz6r/966/n95Xnfc889BkDUES338z711FPN29/+9qjs2GOPNVdccUW2/h/+4R+aY489Nip729veZrZu3eqPL7jgAnPuuedGdc455xxz4YUXLpPW0+udk1e+8pXmmmuu8cd9/9P7ItPqTSD59NNPt95zf3jet956qxFCmB/84Ae+bCWeN5c+ILmS7/eaNbdOK5PWsgQwcS3LfZWdO3difn4ep512mi/bunUr5ufne9//ySefxG233YZLL720ce6mm27Cxo0b8apXvQrvec97OtfTXCm977rrLmzatAm/9Eu/hO3bt+Opp57y5/aH5w3Y1QiEEA2z/nI978XFRXz961+PngMAnH322a167ty5s1H/nHPOwde+9jWMRqPOOsvxbJeqdypaazz77LONlR6ee+45HHnkkXjZy16G8847D/fff/+y6Lyvep944onYsmULXv/61+POO++Mzu0Pz/uGG27AG97wBhx55JFR+Syf91JkJd/vVbWe5Asps1rLclodNm3a1CjftGlT7/t//OMfx8EHH4zf/M3fjMovvvhin0D+wQcfxJVXXolvfvObuOOOO14wvd/4xjfiLW95C4488kg8+uij+Ff/6l/hda97Hb7+9a9jbm5uv3jee/bswRVXXIGLLrooWkFhOZ/3T3/6U9R1nX032/TctWtXtv54PMZPf/pTbNmypbXOcjzbpeqdyp/92Z/h//7f/+sXMwBsvucbb7wRJ5xwAnbv3o0///M/x6tf/Wp885vfXJY1Ypei95YtW/DXf/3XOPnkk7F371584hOfwOtf/3rcddddeM1rXgOgvU1Wy/N+4okn8PnPfx6f+tSnovJZP++lyEq+3/sVSO6Pa1kC/fXOfX9fHUg++tGP4uKLL8aGDRui8u3bt/v9448/HkcffTROOeUU3HfffTjppJNeEL3f+ta3RjqdcsopOPLII3Hbbbc1QH6a+67U8x6NRrjwwguhtcaHP/zh6NxSnvckmfbdzNVPy5fyvk8rS/2O//Af/gOuvvpq/M3f/E00mNm6dWsU4PXqV78aJ510Ej74wQ/i3/7bf/uC6H3MMcfgmGOO8cenn346Hn/8cfybf/NvPEhOe8+lylK/48Ybb8SLXvQi/MZv/EZUvlLPe1pZqfd7vwLJ/XEty2n0/ta3voUnn3yyce4nP/lJY0SUk6985St4+OGHccstt0yse9JJJ2EwGOCRRx5p7bRXSm+SLVu24Mgjj8QjjzwCYHU/79FohAsuuACPPvoovvSlL01ch6/P826TjRs3QinVGAHzdzOVzZs3Z+tXVYWXvOQlnXWmabPl1pvklltuwaWXXopPf/rTE1f3kVLiH/yDf+Dfm32VfdGby9atW/HJT37SH6/m522MwUc/+lFs27YNw+Gws+5yP++lyIq+31N5MPdDmTZw5/rrr/dle/fuzQbu3HLLLb7Oj3/842UPJPnqV7/qy+6+++7egSSXXHJJI8qyTR544AEDwHz5y19esr4k+6o3yU9/+lMzNzdnPv7xjxtjVu/zXlxcNL/xG79hXvWqV5mnnnqq13ft6/M+9dRTze///u9HZccdd1xn4M5xxx0Xlb397W9vBDa88Y1vjOqce+65yx5IMo3exhjzqU99ymzYsGFi8AaJ1tqccsop5vd+7/f2RdVIlqJ3Kr/1W79lXvva1/rj1fq8jQmBRw888MDE75jF8+aCnoE7K/V+r1mQ/OEPf2juv/9+c80115if+7mfM/fff7+5//77zbPPPuvrHHPMMeazn/2sP77uuuvM/Py8+exnP2seeOAB89u//dvZKSAve9nLzBe+8AVz3333mde97nXLPiXhl3/5l83OnTvNzp07zQknnNCYkpDqbYwxCwsL5sADDzT/7t/9u8Y9/+f//J/mmmuuMffee6959NFHzW233WaOPfZYc+KJJ75gej/77LPm3e9+t9mxY4d59NFHzZ133mlOP/108/M///Or+nmPRiNz/vnnm5e97GXmG9/4RhQSv3fvXmPMbJ43hfbfcMMN5qGHHjKXX365Oeigg3wU4hVXXGG2bdvm61OI/L/4F//CPPTQQ+aGG25ohMj/j//xP4xSylx33XXmO9/5jrnuuutmNiWhr96f+tSnTFVV5i/+4i9ap89cffXV5vbbbzff//73zf33329+7/d+z1RVFQ12VlrvD3zgA+bWW2813/ve98yDDz5orrjiCgPAfOYzn/F1VuPzJvmd3/kdc9ppp2XvuRLP+9lnn/V9NADz/ve/39x///0+YvyFfL/XLEhecsklBkDjc+edd/o6AMzHPvYxf6y1NldddZXZvHmzmZubM695zWsaI6vnn3/eXHbZZebQQw81BxxwgDnvvPPMY489tmx6/+xnPzMXX3yxOfjgg83BBx9sLr744kZYeaq3Mcb81V/9lTnggAOyc/Eee+wx85rXvMYceuihZjgcml/8xV8073jHOxpzEldS7//3//6fOfvss81LX/pSMxgMzMtf/nJzySWXNJ7lanvejz76aPa94u/WrJ73X/zFX5gjjzzSDIdDc9JJJ0Ws9JJLLjFnnnlmVP+uu+4yJ554ohkOh+aoo47KDqA+/elPm2OOOcYMBgNz7LHHRp36csk0ep955pnZZ3vJJZf4Opdffrl5+ctfbobDoXnpS19qzj77bLNjx44XVO/rr7/e/OIv/qLZsGGDefGLX2z+4T/8h+a2225r3HO1PW9jrMXmgAMOMH/913+dvd9KPG9ism3t/kK+32U9ySJFihQpUqRFyjzJIkWKFClSpEUKSBYpUqRIkSItUkCySJEiRYoUaZECkkWKFClSpEiLFJAsUqRIkSJFWqSAZJEiRYoUKdIiBSSLFClSpEiRFikgWaRIkSJFirRIAckiRYoUKVKkRQpIFilSpEiRIi1SQLJIkSJFihRpkf8Pq0YXN7HzeT0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZglRZU+/EZE5q1qoLvZuwGlBUWURWURWT5ARcF9nQG3dgMdXGZERn+KOio6io6OAy6AC9rigsyIuA0grSIgtIoLjNswOOKgSKsg0EBTfW9mnO+PWPJEZOS9eaurqqu78jzPrcyMjMw8lRmZb7znnDghiIjQSSeddNJJJ53URG5qBTrppJNOOulkvkoHkp100kknnXTSIB1IdtJJJ5100kmDdCDZSSeddNJJJw3SgWQnnXTSSSedNEgHkp100kknnXTSIB1IdtJJJ5100kmDdCDZSSeddNJJJw3SgWQnnXTSSSedNEgHkhsp73znOyGECMoe9KAH4WlPe9qcXH/9+vV45zvfie9973u1fatWrYIQAr/73e/mRJf5JL/73e8ghMCqVatm5Hzf+973IIRo/J188skzcp3Zln6/j7e//e3YY4890Ov1sGLFCpx22mm4//77Rx477j340Y9+hOOOOw6LFy/GNttsg8c97nG45pprgjplWeJDH/oQnvSkJ+EBD3gAttpqKzz84Q/Hm9/8Ztx1111B3fvuuw/Pe97zsPfee2Px4sXYeuutse++++Kf//mfcd999wV1XdtP/dauXRvUfexjH5us96QnPSmo95Of/ASvec1rsP/++2Px4sVYtmwZnvCEJ+C73/1u8n799re/xXOe8xxsu+222GabbfDEJz4RP/3pT4fe4z/96U/YYYcdIITAl7/85WSd73//+3jKU56C7bbbDosWLcJee+2Fd7/73dO6pwCwdu1avPa1r8Wee+6JRYsWYcWKFTjxxBNxyy23TPueAuZ5vf3tb8dDH/pQTExMYIcddsDjHvc43HTTTb6Oe09Tvy996UtD79VcSbapFdjc5aSTTqq9THMp69evx+mnnw7AvOxcnvrUp2LNmjXYZZddNoFmW5YceOCBWLNmTa38nHPOwfnnn49nP/vZm0Cr8eX5z38+LrnkErz97W/Hox/9aKxZswb//M//jF/+8pf4+te/PvTYce7Bddddh6OOOgqHHHIIPve5z4GI8C//8i845phjcMUVV+Cwww4DANx///145zvfiec///k46aSTsOOOO+KnP/0p/vmf/xnf+MY38OMf/xiLFi0CAAwGAxARTj31VOyxxx6QUuKqq67Cu971Lnzve9/Dt7/97Zpun/nMZ/Cwhz0sKNthhx1q9fbcc0984QtfCMq23XbbYPuCCy7Aj370I7z85S/HIx/5SNx3330499xzccwxx+Czn/0sXvziF/u6f/nLX3DkkUdiu+22w6c//WlMTk7ijDPOwGMf+1hcd9112HvvvZP3+DWveQ0mJyeT+wDgi1/8IlauXInjjz8e559/PrbZZhv87//+L/74xz/6OuPc0w0bNuCoo47CnXfeidNPPx377LMPbrzxRrzjHe/At771Lfz617/G4sWLx76n9957Lx73uMfhj3/8I9785jfjEY94BO6++25ce+21WL9+fe3/+vu//3u84AUvCMr22muvxvswp0KdzLisWLGCnvrUp07r2H6/T4PBoHX9v/zlLwSA3vGOd0zreluq3HzzzQSAPvOZz8zaNbTWtOeee9KKFSuoLMtZu85MyZo1awgA/eu//mtQ/t73vpcA0OWXXz72OZvuwXHHHUfLli2j++67z5etW7eOdtxxRzr88MN9WVEUdPvtt9fO+x//8R8EgD73uc+N1OH//b//RwDof//3f33ZZz7zGQJA11133cjjjz76aNp3331H1vvTn/5UKyuKgh7xiEfQgx/84KD8jW98I+V5Tr/73e982d1330077rgjHX/88cnzf/nLX6ZtttmGPvvZzxIA+o//+I9g/x/+8Afaeuut6VWvetVQPce5p6tXryYA9KlPfSqo+8UvfpEA0Fe+8hVfNs49fd3rXkdbb7118ExS4t7TD3zgAyPPuamkM7cm5Ktf/SqEEPjOd75T23fOOedACIH/+q//ApA2tzq5+OKL8YhHPAKTk5PYc8898eEPfzjY78xXn/vc5/CP//iP2G233TAxMYHf/OY3+Mtf/oJXv/rV2GeffbDNNttg5513xuMf/3hcffXV/vjf/e532GmnnQAAp59+ujdTvPSlLwWQNrc+9rGPxX777YfrrrsORx55JLbaaivsueeeeN/73getdaDfL3/5Sxx77LHYaqutsNNOO+E1r3kN/vM//xNCiKR5l4u7L//1X/+Fv/3bv8XSpUux/fbb49RTT0VRFLjxxhvxpCc9CYsXL8aDHvQg/Mu//EvtHLfccgte9KIXYeedd8bExAQe/vCH41//9V9rev7xj3/E8ccfj8WLF2Pp0qU44YQTkuYfAPjxj3+MZzzjGdh+++0xOTmJAw44AP/+7/8+9H9pkiuuuAK//e1v8bKXvQxSTu9Vuv766yGEqLUNJz/84Q8hhMBZZ501rfNzcabOpzzlKUG5cw1cdNFFY5+z6R5cc801eOxjH4utttrKly1evBhHHXUUrr32Wtx2220AAKVUktkdcsghAIDf//73I3Vw70CWza5hbOedd66VKaVw0EEH1fS8+OKL8fjHPx4rVqzwZUuWLMFznvMcfOMb30BRFEH9v/71r3jNa16D97znPdh9992T1//Upz6F++67D29605uG6jnOPc3zHACwdOnSoK5j0cNYbZOsX78en/rUp/C3f/u32HPPPcc+ft7Jpkbp+SiDwYB23nlneuELX1jbd8ghh9CBBx7ot9/xjndQfBtXrFhBu+22G+2+++706U9/mi655BJ64QtfWOsxXXHFFQSAdtttN/qbv/kb+vrXv07f/OY36Y477qD//u//ple96lX0pS99ib73ve/RN7/5TTrxxBNJSklXXHEFERFNTU3RZZddRgDoxBNPpDVr1tCaNWvoN7/5DRFVPb+bb77ZX/Poo4+mHXbYgfbaay8699xzafXq1fTqV7+aANBnP/tZX++Pf/wj7bDDDrT77rvTqlWr6JJLLqGVK1fSgx70IALgdWgSd1/23ntveve7302rV6/2Pf7Xvva19LCHPYw+/OEP0+rVq+llL3sZAaCLLrrIH//nP/+ZdtttN9ppp53o3HPPpcsuu4xe+9rXEoCgJ71+/Xp6+MMfTkuXLqWPfOQj9K1vfYv+4R/+gXbfffcak/zud79LvV6PjjzySLrwwgvpsssuo5e+9KXTZpwveMELSEpJ//d//zf2sU5e+tKXUpZldMcddzTW2X///WnPPfcMysqypMFgMPJXFIU/xjHG3/72t8G5brzxRgJAhx122Nj6N92DXq9HL37xi2v1n//85xMA+ta3vjX0vK7tfu1rX6vt01rTYDCgu+++my699FJavnw5Pf/5z08ev2zZMpJS0nbbbUfPfvaz6ec//3ntfEcffTRNTk7SdtttR0op2nPPPektb3kLrV+/fuT/PxgM6CEPeQgdcMABvmz9+vUkhKA3vvGNtfof/ehHCQDdeOONQfkLX/hCOvTQQ6ksS/9diJnk4x//eNp+++3psssuo0c+8pGklKKddtqJ/u7v/o7uvvvukbqm7ulgMKCDDjqI9t13X/rRj35E99xzD/3kJz+hRz3qUXTggQdSv9+vHT/qnl511VUEgN7znvfQySefTNtuuy3leU4HHXQQffOb3wzqOia5ww47UJ7ntGjRIjriiCOSz31TSQeSDXLqqafSokWL6K677vJlv/rVrwgAfeQjH/FlTSAphKDrr78+KH/iE59IS5Ys8SYo9zIcddRRI/UpioIGgwEdc8wx9OxnP9uXDzO3NoEkAPrhD38Y1N1nn33ouOOO89tvfOMbSQhBv/zlL4N6xx133FggGZv2HvWoR9XMOIPBgHbaaSd6znOe48ve/OY3J/V81ateRUII/5E555xzkh/TV7ziFTXwe9jDHkYHHHBAzZz9tKc9jXbZZZexTKZ33nknTU5OBvdsXCmKgpYsWUJHHnnk0Hpvectbamaul7zkJQRg5O/oo4/2x3z1q19NmjDPO+88AkAPfehDx9J/2D141KMeRQ996EODezoYDGjPPfckAPTFL36x8bx/+MMfaNmyZXTwwQcnn8kFF1wQ/I8ve9nLas/00ksvpbe+9a30jW98g6688kr66Ec/Sg94wANo6623rr2Xb33rW+nss8+m7373u/Sf//mf9NrXvpayLKOjjjpqZJt461vfSgDoq1/9qi+79dZbCQCdccYZtfrOjHnttdf6sm9+85uU57kHmyaQ3HvvvWlycpIWL15M733ve+mKK66gf/mXf/HAorVu1HPYPV23bh09/elPD+7pYx/72FrHre09dc9nyZIldMQRR/jO/+Me9zgSQtBll13m6/7xj3+kV7ziFfTv//7vdPXVV9MXvvAFOvTQQwkAffKTnxx26+dMOpBskF/84hcEgD7+8Y/7sje+8Y00MTERNJ4mkNxvv/1q53SgdfXVVxNR9TKcddZZSR3OOeccOuCAA2hiYiJowA972MN8nemA5PLly2t1n/e85wXnPeSQQ2j//fev1Vu1atVYIBn3mJ///OeTEILuv//+oPywww6jgw46KLj+PvvsUzvvD3/4QwJA55xzDhERHX/88bR48eJaPXdvHUjedNNNBIA++MEP1tjW2WefTQDoV7/61dD/iYtjBPGHbBxxbezv//7vfdndd99N//Zv/0a///3vfZnzJX3sYx/zZTfffDNdd911I3///d//7Y/ZsGEDPeQhD6Fdd92VLr/8crrzzjvp0ksvpWXLlpFSKnj+G3sPHPC+6lWvoj/84Q90yy230IknnkhKKQJAX/rSl5LnvOOOO+gRj3gE7bzzzo3+rL/+9a903XXX0Xe/+116z3veQ0uWLKFnPOMZIwHt5ptvpm222Yae8YxnjPzfPvjBD9Y6c7F88pOfJAD0j//4j0G5A8n3ve99tWMcSK5Zs4aIiO666y7abbfd6G1ve5uv0wSSe+21VxJ8zzzzTAJAq1evTuo57J72+3168pOfTA984APpk5/8JF111VX02c9+lvbaay868MADA5KQktQ9/cIXvkAAaMcdd6R169b58vvuu4923XVXOuKII4aes9/v0wEHHEA77LDDWPEZsyWdT7JB9t13Xzz60Y/GZz7zGQAmrPrzn/88nvnMZ2L77bcfefzy5csby+64446gPBV9+qEPfQivetWr8JjHPAYXXXQRfvCDH+C6667Dk570pFbh+sMk5a+YmJgIznvHHXdg2bJltXqpsmES36ter4etttqq5uvo9XqYmpoKrp+6L7vuuqvfP0zP+P7/6U9/AgC84Q1vQJ7nwe/Vr341AOD2229v/X+dd9552GmnnfDMZz6z9TGx3HnnnQCMr8rJH//4R7z+9a/HL3/5S1/m/EWuPgDsvvvueNSjHjXy95CHPMQf0+v1cOmll2L33XfHsccei+222w5/8zd/g7e85S3YbrvtsNtuu42l/7B78PKXvxzve9/78LnPfQ4PeMADsPvuu+NXv/oV3vCGNwBA8lp33nknnvjEJ+LWW2/F6tWrG/1Z2223HQ4++GA87nGPw1ve8hZ84hOfwNe//nV87WtfG6rvgx70IPx//9//hx/84Acj/7cXvehFANBY9zOf+Qz+7u/+Dq985SvxgQ98oKafEKL2ngPG9whU78Vb3/pW5HmO1772tbjrrrtw11134d577wVgfHt33XUXiAhA9d4ed9xxwTmf/OQnA0ByeMmoe3reeefh0ksvxVe+8hWcdNJJOPLII/HiF78Yl112GX7605/izDPPbL5JSN9Tp+fhhx8eRMZutdVWOProo0cOg8nzHCeccALuuOOOYLjIppJuCMgQednLXoZXv/rV+PWvf43f/va3uO222/Cyl72s1bGpwBFXFoNUKvDn85//PB772MfinHPOCcrvueeetupvlOywww4eWLg0BcTMxvVdcAcXF+q+4447+no/+tGPavViPV390047Dc95znOS12wKy4/lZz/7GX72s5/hH//xH33gw3QkBX5Ob/6/uw8rD654+ctfjs9+9rMjr3H00UcHQVYPechDsGbNGtx6663461//igc/+MG4++678brXvQ5HHXVUa93b3IM3velNOOWUU3DTTTdh8eLFWLFiBf7u7/4OW2+9NQ466KCg7p133oknPOEJuPnmm/Gd73wHj3jEI1rr4gJS/ud//mdkXSIaK8gqVfczn/kMTjrpJLzkJS/BueeeW3t/Fy1ahIc85CH4+c9/Xjv25z//ORYtWuTB6he/+AV+97vfJTvVL3nJSwCYe7PtttviEY94RBK0HYjGura5p9dffz2UUjjwwAOD8j333BM77LADfvGLX9SOSV2fX3vYs2t7/5v+p00hm16DeSzPf/7zMTk5iVWrVmHVqlXYbbfdcOyxx7Y69pe//CVuuOGGoOyLX/wiFi9eXGuQKRFCYGJiIij7r//6r9o4NVdnY9llLEcffTR+8Ytf4Fe/+lVQPlcDfI855hj86le/qvU6zz//fAgh8LjHPQ4A8LjHPQ733HNPbYzfF7/4xWB77733xl577YUbbrgBBx98cPIXjwdrkvPOOw8AcOKJJ0733wNgxoEtWrQI1157rS/7wQ9+gMnJSXz/+9/3ZW79gAMO8GXvfOc7cd111438ffzjH09ee7fddsP++++PrbbaCh/4wAew9dZbj/X/tL0HExMT2G+//bBixQrccsstuPDCC/GKV7zCj9MDqo/5b3/7W1x++eXB/9lGrrjiCgAIWHNKbr75ZlxzzTU49NBDR57TdUDiuqtWrcJJJ52EF73oRfjUpz7VGNn+7Gc/G9/97neDSNJ77rkHX/nKV/CMZzzDR+KeeeaZuOKKK4Lfv/3bvwEwz/iKK67ANttsAwB47nOfCwC49NJLg2tdcsklNV3b3tNdd90VZVniuuuuC8r/53/+B3fccQce8IAHDLlL6Xu6yy674LDDDsM111yDdevW+fL169fjyiuvHHn/B4MBLrzwQuy4444jn+mcyKa09W4O8vznP5923nln6vV69Ja3vKW2v01066WXXuqjW9///vf7ek2+ByKit7/97SSEoLe//e30ne98h84++2xavnw5PfjBD6YVK1bUrrf33nvTt771Lbruuuu8D7LJJ5kaE/aSl7wkOO+tt94aRLdeeumltHLlSlqxYgUBoCuvvHLofXP35S9/+UvtOltvvXWtfqyXi25dvnw5feITn/BRq0IIevWrX+3r3XffffTQhz6Uli5dSh/96EfpW9/6Fr3uda9rjG6dmJigY489lr74xS/SlVdeSRdffDG9973vpb/5m78Z+v84uf/++2m77bYLxvqlBFHQTJOcfPLJ3q/1la98hXbeeWf6p3/6J5qcnKRVq1bRRz/6Uer1evSIRzxiRsZivv/976fPfvazdMUVV9CXvvQles5znkNSSvrCF74Q1Pvd735HSil6+ctfXjtHm3vw85//nN75znfSN7/5TVq9ejV98IMfpB133JEOPvhguueee3y99evX06Mf/WgSQtBZZ53lI7TjSG0ionPPPZde+MIX0mc/+1n67ne/S9/4xjfo//2//0eLFi2iww8/PPBfHXPMMXT66afTxRdfTN/5znfozDPPpF133ZUWL14cRGNeddVVdNxxx9G5555Ll19+OX3961+nV73qVaSUosc//vHBPf/3f/93klLSgQceSNdcc01N16mpKV/3z3/+M+2yyy60//7708UXX0yXXHIJHXXUUbR48WL69a9/PfQZDfsuPP3pT6eJiQkfMX7GGWfQ5OQkPe1pT5vWPb3lllto2223pd12243OOecc+u53v0uf+tSnaM8996Stt9468Gm3vadERNdccw31ej069NBD6eKLL6avfvWrdOSRR1Ke50HQ0utf/3p67WtfSxdccAFdccUVdP7559OjH/3oaUecz4Z0IDlCLr/8ch8w8z//8z+1/U0g+dSnPpW+/OUv07777ku9Xo8e9KAH0Yc+9KGg3rCXYcOGDfSGN7yBdtttN5qcnKQDDzyQvvrVr9bAjIjo29/+dhDg85KXvISINg4kiUxgyROe8ASanJyk7bffnk488UQ/0PmGG24Yctc2HiSJiP7v//6PXvCCF/jw8L333ps+8IEP1MDiD3/4Az33uc+lbbbZhhYvXkzPfe5z6dprr02+aDfccAMdf/zxtPPOO1Oe57R8+XJ6/OMfT+eee+7Q/8eJC0r49Kc/3VjnnnvuIQD0vOc9b+T51q9fT694xSto2223paVLl9LrXvc6IiJ63/veRzvttBNttdVW9JSnPGWjhplwOf300+nBD34wTUxM0LbbbktPetKT6KqrrqrVc6H5ri1xaXMPbrzxRjrqqKNo++23p16vRw95yEPobW97G917773J6zT9+PWvueYaetrTnka77ror9Xo92mqrreiRj3wkvfvd7w6SFhARnXLKKbTPPvvQ4sWLKcsy2nXXXelFL3pRLZDspptuoqc85Sm022670cTEBE1OTtL+++9P73nPewLQIxodUczfMyKi3/zmN/SsZz2LlixZQltttRUdc8wx9JOf/KTxnjkZ9l1Yv349velNb6IHPvCBlGUZ7b777nTaaacFuo5zT909cMO7JiYmaPfdd6cTTjihFtne9p46ufrqq+noo4+mrbbairbaait6/OMfT9dcc01Q57zzzqNDDjmEtt9+e8qyjLbbbjs67rjjRg4RmksRRNb420knLeSVr3wlLrjgAtxxxx3o9XqbWp15KZdccgme9rSn4YYbbsD++++/qdXppJNONkK6wJ1OGuVd73oXdt11V+y5556499578c1vfhOf+tSn8La3va0DyCFyxRVX4HnPe14HkJ10sgVIxyQ7aZQzzjgDq1atwh/+8AcURYG99toLJ510El73utc1Bix00kknnWxJ0oFkJ5100kknnTTIrA4Bueqqq/D0pz8du+66K4QQ+OpXvzrymCuvvBIHHXSQTwp+7rnn1upcdNFF2GeffTAxMYF99tkHF1988Sxo30knnXTSyUKXWQXJ++67D4985CPx0Y9+tFX9m2++GU95ylNw5JFH4mc/+xne8pa34B/+4R+C2QnWrFmDE044AStXrsQNN9zg51b74Q9/OFv/RieddNJJJwtU5szcKoTAxRdfjGc961mNdd70pjfh61//On7961/7spNPPhk33HCDH0R/wgknYN26dcGA2ic96UnYbrvtcMEFF8ya/p100kknnSw8mVfRrWvWrKlltDnuuONw3nnnYTAYIM9zrFmzBq9//etrdYblGNywYQM2bNjgt7XW+Otf/4oddtihC0DppJNOOtkMhYhwzz33YNddd53V9HXzCiTXrl1bS1a9bNkyFEWB22+/HbvssktjnWE5Rc844wycfvrps6JzJ5100kknm05+//vfj0yftzEyr0ASqCf7dtZgXp6qM4wRnnbaaTj11FP99t13343dd98dN910E5YsXoxh9mYBk6bCLRGtj5Jx6rY9ptOp06lNvUBIN29H+0RcV1NjXb4tap6bIddss53SZUjdGRdRZyeUKKvV49vBvmqd3PcqritFdR32a3rmC7mN33PPPdhrr71a51yerswrkFy+fHmNEf75z39GlmV+5oymOsOmcJqYmKglCweAxYsXYzGbpmg2ZDqNcLal06mdbM46BSDZBIh2PQAinajbBISJ/U3roqlO6nrxdeJj2pRvjLQAQuKdcr5P1gHSA2sMiFE5CRGWSwmSWVA20+1xc27jvv4su8zmFUgedthh+MY3vhGUXX755Tj44IP9dDyHHXYYVq9eHfglL7/8chx++OEzokPTAxr24Ibtm4kG2OnU6TQjOkWg5oFrCDB6sIoBMQmgUZluOFfD8UnQbqjTuH9jZRRA2nWBIeDHliSE6bAw4AvAk9UXQgKCQEKbcg0IFAGrFA2ssmvjsyezCpL33nsvfvOb3/jtm2++Gddffz2233577L777jjttNNw66234vzzzwdgIlk/+tGP4tRTT8UrXvEKrFmzBuedd14QtermvXv/+9+PZz7zmfja176Gb3/728HUQhsjox5c6uEOawjD9jedr9Op02nGdGoAtQAg2wBj0/Gkm8EwcXwNSJMgaY6nsqz26ZJVY+Xuf5gpiQJAhFRsn1kXypbFJtMaQFrg4/u09IxRuOsJWQNCD5ZkgVFVn+oUUC7oNj7LMqtDQL73ve/5ef+4vOQlL8GqVavw0pe+FL/73e+CSWGvvPJKPzP7rrvuije96U04+eSTg+O//OUv421vext++9vf4sEPfjDe8573NE6km5J169Zh6dKlWLt2rZ8Vfrb8QpRYtj1np1On08boBKAZqHSqnGplteMS4CqIRtdnyxoIWtDz4Od0aypn+/y/WUbAOQ3x4OfEASQDTg+abF9cJpQKfY4iwR6dr9GZWBNg6etI5etw8+t0WFqq3ubaxu9Ztw7Lli/H3Xff7b/jsyELMi2dA8k/rV071CfZ5sHOdK+mrVN8Y84xrnQ6tZP5pFMAkgFA1QFyGDjWGOOQ+jVQjAGRgx4DwgAEXZ0IQDlAVvVnkFHGQwgc4MVAGbNJqfw+IVVyuwk0a4DpjuX7LCiSEGa9JVA62ZLb+Lp167B8DkByXvkk51qma0ZokjiaC9F2vD5Or6nTqdNpHJ3qF9f14JkU4I0CxyZgjJiiA0UdAWAMiAEYWpAzIBqCYw0YS25+bWaYrYSZVAUHS6XMPU4AJvEyKQFp6grFgNKCJDG2KfKe9zmKCCwFaRAZ1igcGOrCbmcgXQDIjJ9Smk93k48yJVt8G58lWdAg2STj9HSoxXp8PmpRp9Op02ljdGoUzYFwCEA2gWNsSmXnCoBxGCimAFHrEAhLxzobGKer5/736bDKhP/R38OIQQqpGDBKwDJJkioAygAgU4Cpy5BhShWApTA3F0TarldgOR2g3JLb+FwB5YIGSYH6w2h62BtjIhin9xX3pjqdOp2mo1PrD8iYANkEjuRAjINjAhhroBgDYgpYm3yV7riSm2LHN7ly9iiUBUVuTgUCNujMonzbAScHTZIKIsvTgJnlgLZlWeaZJRmFwnXAR9LOBKOMZXNt49M997iyoEEydaPb9MhmU1LX6XRqd51Op9SFGLjFLLINQOqiNThS0R8LGCkFqA3mWCq1B0BtQdGBoyvnYOn//UQZUIFhatuBplAS0oGmlBBKBuDpgTNah2OaUpn/lZWLvAeS1vea9QBZQujSm2E5e7TBrUBZQCgHjsOBEpjdtjUv2/gsy4IGyRSTTNWZzsMeN5qLb6PTqdNpJnQaNX5wGEDqMskehQWuGnMsBmlwLAbtgJGBogNEDoYcCCkCSd0Akk0A6e+VqjNIAJAWEF25iIBSKunXkyZVC5giy83/5kAyy83/6cBSa1NHWj2lMl9kxx5TQEl6qOnVHzv8yW85bXwOZEGDJDCeqWGU8Ic3rn1+nGM7nTqdpn1+ziLddYaYWKt9ReB39KDoAHHQHwmOAdMcAoxu3QEiB8MAJD04GrapxzS7cjOrDABTBWxSKOkTaLttwYDSgabs5QFgcv8j8tyyx5z5O93S6C8yAAWM+VUXdaAkDaGLZh8li4ZNAcmW1sY7n+QcyLBGlJJUtNWw8w07pm3wRadTp9N0dEpKIrrVl7UEyADoIvbotr3ptQkci0ErYOSgaPaVFbvUdUY5rm8y7YtkYGj3S2tmrUyu0rNNoSS0rau0rhhm3qtMrZkBSMcsRdarljCg7J+dLM3HPwWUAKCyCihJQ0BadgkICQOaDUC5pbXxuWKTCxokY2nbQxJsOU6vitgxfL3TqdNp1nVqzJHKI1YTAMn9jymAHPTr7HHQr8yqnHFG4Fj2ixowloOiBoqxqbWNf5KXNUmTHxJAYFLVEXA60JR5FgAmMZBUpQ7BkgGjvYA5J2DK3TPMeqCiXwElY4+CJKgsAJX5zgs402wBlLFsUW18lqQDyWlK2wfV1PsZZQ7pdOp02lidksen8qfGqekSPkjohP/RAWTRD9mjN7WyfYN+Ehx1vwgYox4MPDDGoOgYp1EzbXrVETBSmb4rQlXGOh6cY/YxYEz4IbUzt/YHUL0cOgJG2ctApYbqZRClhuzllf/RKFmtwwLjoB8AJXRpTa8wgBf4IjWE0OZ4/9zs/+OA0pWPAMotsY3PtHQgaWWcBzDOg2qq26YBdjp1Ok1Xp0AXDoD+gLCsiUXWfJBtAZItdX/gQU5bpsjB0ZSVwf6hptggqIegLRB632UDMKZEMrA0YCjsuqgDYwIwHXuUSoIsSKpSG6DUGjK3kafK+h0BH6gTmBKzHqgsozJAkDJjJpmJFSTCQB7AsEw/NZkMn/UQoNyc23jnk5wD4Td5pntN40qqt9TpVJdOpxkQnhCAbaeAkwAfgOOXZdkMkBGY6v7Am1A5AFZlgxo4hibXGDANKFKpK3DU2jNGDpBNLNKJY5McGAFY0BPM9CqgeioJmI49Ui+DLjVUz8xWpLWGsgDpWKU37soq8UHK5ybs0BHSEhj07bAR2Iw8ugLEONMRbLnWhk0G/2xidpMxZD628bm61oIGSX6T59IpPKwxdTo1X4tLp1PztYZKDIi1GTyq7fpYR1vGzakuepVFs1Ix8OZVDpCOPWprbi0dw+wXNXB0dVLA6EDRlDlwrJilUX904A7ATawOMCWE0gFwCilR9ksDlIxhcrMqMfaoyhLSTu3nyp1IAML6KUlLQCsz3EbbaFgtDUt3zzWDSbYgRAWKDhBTZlehzLozu5p/sjpfm3sypN5m0cZnWBY0SHLZmAcQP8C2zvLpRH51OnU6tdGpXikBGtzUyuu4YB1ULNInH+eMkgXpeBOrj3g1oBebV3W/qLFHPSiS2w4Iy35ZA0a3v/JFOpNrCJr+X7Xl3BcJMH8kY5WGJVagqXoE0gK6JM8wVU96c2q8DK6r6gzOlTQ9Z5HBg6jQhlV6s6tlkzZCx/yEZM8yMrvy5+rS3mHLaOOduXUTy8bY29s+/HF7YZ1OnU5tdaoKm8ExWI8Dd4CQRQLezBoE8bBtB57OB+mDcfpF0rxaMcoKTE29ZnB0ZRwUHWAa9acJkjLyRSoBqYQ/P2eYMleWQSpjYs0Nk6S8/jkVWtXKAAtfsgJBlBIkDZOEVsY/yc2uCTYJoYxp1bFJB5bCXrOF2XVzbuOduXUTy7gPYFzH+LBjmqTTqZ10Ok1P+CwhLquOF84eAW9m5czSmWNj4KsCdEYDZNnX3qyqB2USHEMmSckgHrc99P9VAqVlXYYhCmDghn+IADBVbkytpCR0SVA9t1QACkid9vkpACQltNIQpQYpY0IWUkMUA/O8ZNrsOopNCpImqJWzSSGtFUCn/ZCuDkxbWWhtfDrSgeQMyTimg9QxsyGdTu1koejEh3/Ups1KrQMVawzKGIu021VQjw6GcAR+xgaAdOZVB5DloLTAWPkkXVkMjo2+ST0cLB0gAoZFEjO7kiIDkFqCSrNOFhjdNgBIxc7bA8yYjdEipAQpzdiiTrLJkeIiXWGn2WJA6fdz36S5eKUH2pk4Z0vm43uXkg4kx5SZcH7H9dCy7kxcq9NpZuuhZd2ZuNY4Oo0tQYIBClkkQlMr35dikcH4RjbEw++Lx0pGAGnWQ/ZY9stGcDSgXAdKrYfcsQEgZeV31ANtgnRKA5gpsAQAoQhS27vcUwDYfeoBQoZskUoNLTWEsv+7rDoMQmozNCQO4oEL+hlhcm2KWOUm18b97YJ5tqg2Pk3pQLJBmpzWTQ+xTZ2UjNOb6nTqdGqrU6sPyagI0GH7E7N8xCzSmVkBVOMdWR3tgZICBskBMs0m6+CoS+1B0RHHkobfOUcElQV9WRrzKmlKgiVgGSgHxxgoIzYpVMUandlVOrBUjvWWoe/S3lPRYMKtidaAiljkGDLdaNZh55mr924uZEGDpACLKLNlqYc20ozFztG2bkpiPTqdOp02RqexJRHk45nixpw2YpF87GPZN37HyvdYgWgTQBoADcGRAyO3rg4DShfD45dkADMFlqonUaKEgkLZL2tAaZiiMD/OGssEmywZQDq2CHiTa/BVdn5Jyy5jEUQ+2U67h5EG0jZtboto49OQBQ2ShPYPqu352kibnlunU6fTTOg0Y8Jn7hghTenkakzTB9y4ehb0BqVf5wBZAWgFkIPSsUcDjg4UR7FJJYTfx8FSiTpYAgD6SAKlkOTZr5YEURKEM7Uq1imwbBIuErZkJtcctiNizay6rINiy3GfMyELto03yIIGyVSvyG0PqxtLU8NJPdi2vaZOp06nmdBpLGHj7YYKD9pxejC2OI5wFunBhm/rqowDZDEoPSjyJVAHSn8tVGMUOUCWZEDTPbmSCD0pAE32KCsRUFJJ1v9ofJkpNsl9k8hNh0ArDQn4MgeQATgy0BwmJMb00CVY5HQY4GbbxqchCxokU42jqcm16UGNerjDjk01qE6nTqfp6tRKpATagJqdE1FIDZKlXY+GiAyRJlOr80VyFskTlbsgHR0BZhNAcqDk/xVnk05jZcFFkwNOsmBpfn1tlr3obKIUBuCU0U2UIskmnYeRm1Z1qSFH49744qb8EtGyhYzD5OL6m7qNj9k9mLYsaJBMybAHwntQbRrXMJt92+t2OnU6TUenpC5CQJBbl+EwkJhFSmXmNpSqxhqTuikFDNoNgRipJxvSUbFL7ZdAM0A6TZvYJNh+n1dAiAAsucesJHhG6YaCaMCaVEWSTQLKM0hHBj2TZNN+tSCKlcjhwEcpgBQSkNLscz9WZ5z2Mx/b+FwxzA4kW8owk0STE7pNT6rTqdNpk+vEAVJIkJie/0uM+JCPKzxrjs+kkwjSSQFkuwjX6JMshF2t7r45j2WPJUFLDaWcqTVkk17XsjLsts0hWxNZRbsKtg4OeBz43D6YzlAjm5wGQE5X5lUb3wiZ2Va9hYtA9Vql7PHDTAqp4xCVTcd80OnU6dSkk9lIvOKJDyvA2IjfpSyjNJMMQ0pralWAqvYFx9i5FsPz1MvaCs+gE7PIlDT5JuNfVTesrxGyT2++tSDNx2PGwstHZftJiQPDABRZmVANYx8TLDHJIiOA1JT+1U4fLcf6nxqOn9E2PsvSgWSDpB6CMx0A4/dyUj0pvq9Nz6nTqdOprU51BRrMcan9QjZ/kJOntj5LBoTDwHK6gJkSziID3+NIc2sMlunz8nPF+WDj7XEkuAccFBUDSldul44hOuAjISogNAcFLDIGSNfeOBhS9APqQDlf2/hcAWUHkkyGfWhm6oE0NZimBtTplC6PpdNpTHEfVimrCMmAVYqKRXpGaVmkZ5R8n5t7sZpr0ZzSTlKcBMyZ/8ylWKBZJ/8b73xpsI1nHYmFz01ptmWw7cr8fQlA0R3j7rWs9qXMramfrAMkYAAwBkUuw4Ay+X8OqbOp3ruZlg4kmYzdO58D6XRqJ51OLSQO3IjYoy8T1Ue6rcnVmQM5W5R+3bIjJesg6uZmVGxMohWppJ/X0W3PhISMs3lfGxkH6J3+7r74/8cBoalUdTrsffam1iYWycsSZlbOHkeZWjmIDsvq52TetfFZkA4kh0hM6ZvWh8lM1+t0aicLXafgujFDBBKAKepsBBiTTaoaEDoQ9NsMIB0IciB0DJODj5n4uNpWIr1uttPrTRLXic/XVC8F6lXqujp7DDoFgVmaAaHrbERACanSz6eBQaYAkgNfqQlEzT8Olm2Akst8fO82VjqQbBD3AHgbaVofdg6Ktpuk7fk6nTqd2uhUEx5gE/snZQiMnK2MxSazvJFNOpNrsO4BsQJGN48jn67Kq62ET0puxjNW6xLNAAe7j//aCq/bxGQlA3VnTuX/bwWQqtZxAOtggJlXq/suPYsMGGMMhjJkmpBZAJAcHDUw9EfOBzsmUM7H924mpANJK/HDoKhcJOqkjuPl8cMe96F2OnU6zaROtShI/lFFgk3KbHzfZJZ7IJR5VgFjngds0u1zbJKbXDmbrNimAU2pZA0gDfDBbovE/vTtiI8J94XnrG5hBeZOHyBkxe7/ceUcFKWMwNOBYgyY7D77gB2ZMVDMAPvz+1XWCJAcHImqX6nJgmdV5oDSscomoJyXbXwWZMGPk3QPos3D4I2gyZncVHech93p1Ok0IzrFCQLcuYSAgN1nTXJCSkADJAGhDZsU9hxCKTMZcBayhXidtE3WnfcgYTPM9MwnhkoN1cv9utQSZPOYCqXt5MUmIMZMT2USi7v5G4USkDBJx2UpAO2SAZg7UpLp8WuEKeaAKHFAJLHp1jDSatuBrJQJ0PZg6Zii8MvYzBwwSymh8iwwtUIpw8SdbzfLDXjmPRADSJIKUAwshTCgmADIkoGjc7VquxK3n5LIP08JgRKAEIAkgoaAy9InxTxr43MgCx4kRz2I1IOd7YfX6dROOp1aCBsbJxyKAACVFat09dx+QeZjqwsIIQ1w5j1g0AdJbTLxKGXS0rl0dUpBZL0KmnQJlTOA9OslyAJnCKIDkBJQvWbjVtk3A/dVTwH90k51Za5o8InYl5Z/loeZYd2yAsgUi+TmX84inalV9Sz49VTN1GqYcx6WKQlkuWHeWV6xR1sGae+nBUEPkM7MKjO7nVXmcguQJYXskciAo7sbw8ynUlSAKSGgG4BymGyK9242ZcGDZCxNFH8Y9R+2byYaR6dTp9NM6gQwNum2ZQahC0Ba2NHwH12hiwoomR4pVgnAZJnJcpOlRmtQXn1meAJ0xWYBcUzSbBNjkWziY0VAz8zAIZVEDm2TsZqE5FWyAAuWgmuYFg+CCAGSs8gsV0NZpNuWrMyxRdnLPGiqPIPM3XaCRWY5RN4z5da/SzKrTKvczMoDdZzZFRVAlkQBOPpxkRGjdCKFY92WQQpTJwbKFCOfr218pqQDyUjamgLaHDP6FW1nd+906nTaaJ28WRWeTVp+UF13BoHSlanJsEyyNG3EQNKJLgkyH5LIwM/laIQDZfXfm6WC+ehLIVA3OlcBGSl/phJATwpvZh2HRcpeBtXLAhapAv9sFrBIkfXML+8ZVmjBkqSqm1kdINptB5Cl7ReU2mYN0hU4OrB0dyklbuiLY5AOLAlk8v1KAUmE0j5lzibnTRufJZmTwJ2zzz4be+yxByYnJ3HQQQfh6quvbqz70pe+FEKI2m/ffff1dVatWpWsMzU1NW0dR1gQvKQ+Bm3rp44bZhDqdOp0mq5OoTJVsA5FA83jYJ2KuVQRk2BshqQybMd+3N0HXfiPfg8iz4P9MjegIfOsYle5KZe9DNlkz6znGVTPgk2u/LrKlS1zQCSC7VwJ9GT9p4RbAnni54DQ1Yt/UprrCLtUPQllWaVQwuqoLFBatmn/DyEdWOYBOKo8s/fL/JD3aiZWkfWYKbUOiCmALMkG4QRLt06eZZqy9M/5MUsiw0CpCv5x5yTGTDd1Gx/nnBsjs84kL7zwQpxyyik4++yzccQRR+DjH/84nvzkJ+NXv/oVdt9991r9s846C+973/v8dlEUeOQjH4m//du/DeotWbIEN954Y1A2ORl1W0dIYCJq2J8qpxZ1eL14OazuKAd3p1OnUxudqhNWATphoA6s/1GCSAMkIMjW0YVhlUKba5AwepGuuFreq43lg1ThB5GlW1NqUKmkJAqYj4+bN0RZhmk+SP3R/5ZnoeYuyJIgSw2l4zyt5E2qceKA2O/IWWQMkNzM6oBbKumBUyoRmFNlL/PbrmOgehlkL2em1Tw0szr/ZJb5jklrgLSgVtqI1JhJAoAGgYY0Gs/iSAQskoSAkoaNCmEck0qKTd7G54pNzjpIfuhDH8KJJ56Ik046CQBw5pln4lvf+hbOOeccnHHGGbX6S5cuxdKlS/32V7/6Vdx555142cteFtQTQmD58uUbpduomzzuQ+APPzYbxPvqxqGNM991OnU68WV4IgaU/DzKTpcVm19lBpD2oAgyYCnIpjcTEhAFIET6mrJuLiWEplcHkBwohazAU6rmabekkij7ZmZIB5JamqmsUmAJuImV6+eKTa1SMp8jY5BmSEvIbLmZVfUUpDWxOjbpgnVkL/NlTWZWkeUQvUlrZmV+SJWBVM9GsOYBQBZU+R8rpmfAzK8zYHTBPCkRdgYUKYASZDtFwrp1CdB23UXu2GV8TzdZG59FmVWQ7Pf7+MlPfoI3v/nNQfmxxx6La6+9ttU5zjvvPDzhCU/AihUrgvJ7770XK1asQFmWeNSjHoV3v/vdOOCAA5Ln2LBhAzZs2OC3161bN/Sa49i8qcV6fL5UL2nUNTudOp3G0amuhAVIB5YWOEOw1DVWSfYYISSotMCoy+pDlUtIpax50EZfun08gYEtV5MhGLqlTrDLHGagfqkEhCq9mVMPqsmeyYS4QpTCT2UVgyXQnOjcfeRjcKxYYzNASr+uKnOxZ415YEoeamZ1wJn3QCqvWGOWJxkkOQapiZlHK/ZY6goceZQrgEYm6XghUQWYkARJZjgIgaBg1h1ACjLPmQ8LaSMz+d7NhcwqSN5+++0oyxLLli0LypctW4a1a9eOPP62227DpZdeii9+8YtB+cMe9jCsWrUK+++/P9atW4ezzjoLRxxxBG644QbstddetfOcccYZOP3002vlAvWH0fSwx2kEsYzDMOLeVKdTp9NM6FQVyPr2MLAU0phfLbgKXRgQtP5Nv80CegBU2WMAn3BA23UpFTIApR2IrxOgWfpMNWnTq0s4UPZLCClQDkoTDRuBpYJhmxnSs3a4ZAAxOPqgnFwFJtY6QMoAINWiXmhmzduYWSs/JMkMUPV1ZL1GgCw1A0qqg6PbNm2jgUmSaSkkDGBKAKUWIOHGT5oWGwKlK08PC5ntNj7dc48rcxLdKqI0UORs2yNk1apV2HbbbfGsZz0rKD/00ENx6KGH+u0jjjgCBx54ID7ykY/gwx/+cO08p512Gk499VS/vW7dOjzwgQ9M3uimGz9XDyR1nU6ndtfpdGp/HQFUgMmSDhgw1CFYWvYI0gYYGausgn4sy+R+SieWZUrAM04JQCgDgC5tW8mWzm9p1CvYAP3SsMu+tqc264ZhaohSB2AJGFOsuU74zeH5YGNwdOMi62bVECBDIHTAmAd+SDU5AdGbTJtZe5N2Xxi5SlmvYpAtANKxx1JX4FjqChS5bzLZHgT59iJIeLD0zFISiMxSwew3I22oygccyVy18dmWWQXJHXfcEUqpGmv885//XGOXsRARPv3pT2PlypXo9XpD60op8ehHPxo33XRTcv/ExAQmJiZq5SkmmaoznYfd9rgUk0WnU6fTLOtUqxMBJpEGJMyQEG3BkQElhGGdVBYVq7Tl3vwKhGnWgCrXKwBI6U2tQAWWQqnADFv6rDVFzfxqmKREOTBjJ7UFSdLk1xVkMHlzLC7BOgdHxx6ljWJ1QToxQKrJngXCnvdDZpM9qEW9mh9S9iYhJhYZYJww4OgDdVQPpHre7+h9kLJuYh3EUawuaEeH4OiA0f3nJcsi4IaESAZwSgoLihSApQKhNIMlgXiJun9yrtv4bMusgmSv18NBBx2E1atX49nPfrYvX716NZ75zGcOPfbKK6/Eb37zG5x44okjr0NEuP7667H//vuPreM4pqtRwh/euPb5cY7tdOp0mlWdHAgCdsiINmZVC6BCm2w9zgQLXQBlA6vsTxlmqSpg5CAJVJGvpYwYJcv1ys2vKVYplGGOzuyqS22YYg6QNmMmh5pbWTJ1B4iOPTrfpGJDPryvkQFkNjlhgnRsoE422TNgOMoPGUeyOrCUGciyyJJgwDEBkI5N8uhWB46lJhvIYxll7RaQt4prEpBC1MASEMZnac2vMVAKYfyTDiTnso3Phcy6ufXUU0/FypUrcfDBB+Owww7DJz7xCdxyyy04+eSTARhT6K233orzzz8/OO68887DYx7zGOy33361c55++uk49NBDsddee2HdunX48Ic/jOuvvx4f+9jHxtItfijjsMpU3dSxTce0Db7odOp02lQ6AajMqxYsQRooC7N0AT3MBJtilXoDGyaywSVFV6ANZiwm9aegpIKQUwb8pvomEbiUhklagNQWMPWgqLFKKmUAlqQ1dEmVybXUkHl6WDj3S7rk5HUmKepBOgmAzCZ7UJM9A5DO38iZI1uXE4tMoI4Dxaw3EiALHZtZqZZlp2DAqHWVKCDOsuNF24QLApCSMNBALqUHS0gyPkvHHC1gClteagO0JdWjXeeijc+2zDpInnDCCbjjjjvwrne9C7fddhv2228/XHLJJT5a9bbbbsMtt9wSHHP33XfjoosuwllnnZU851133YVXvvKVWLt2LZYuXYoDDjgAV111FQ455JCN0rVtj1uw5Ti9dNbEgvVOp06nea8TN7Fa06zQhfFNSgXoDJCFZZV2u+wDooCYFEBReFYpigFog2WY/SlzfH+q5qcUSqKYMincUqyS+ypNonQDlg4cnbkVgEmVBwRm19Q8lunAHVn5H2tJEeoA6SNZI1CcKYA02xVYEswyBY5uOIi2ptZ4Ummflk8CAxCUA0ytkSthzbHC+CyZiVUIQkmVqVUSAjY5sj21aINufdw2PtMiqGngzBYs69atw9KlS7F27VosWbJk7OPHeVBNdVPlG9MAOp06neZaJ+HYpC6AsjBmWG2AMi4TZd8MHRn0Qf0pUDEAbbjfLPtTwKAP3Z8C7LbuD1BM9aEHBXS/sOsDlHZbDwqUdkmlRjkojLm1XxqQ1NoCpQVJxii5cBZptkNwrLL7VGMgHUAak2teA0g5WQdFkeWVP7I3CeQ9UDY5FCAHFugKC4oDmz3HAaIzrWoCBqU2AFqGwOiAEmgxDMbOtSmtf1EKgVyZslxJSGHHk8pwmUuzntnsRSnCPhttfN26dVi+fDnuvvvuaX3H20qXu9XKOA9xnA9PU902H7ROp06n+axTaIrNPIsU2swg4pilKGwdzXyVRb9ildIE+kilLMNUkHIKuTKm1UL1IZREOcgg+wUKucGzSuplKPsFY5PCgyOVugJJ7TL0hF/w+mTJIgBHl17OZ9LJwyjWbLJntrmJtQ1A2gQBbQByUBrQK7hPkoHlQGsPjqZuHSidxDOASAEMYGdBkYAWZmykttuAIZCARq6kT0tnZowRdiylWRdoNrvOVhufC1nQIMlv8kz2wqcj3CxBURkS++ZCOp3ayULWyZliG8Gy7BtTrTPBCmsmzTLjlywGVXq7wuYvHfShpbQzYUwZE2teQEzZcgueZT6AHhQBWMqemaNSDwrPGkNGGTJJF1Fbj3A14GiCd7IALFUvD8ZF+iCdJhMrH+rhAFL1TLIAbm61ATwDxhQHZdrM6tjjoKxA0oFjtc78kUPmx5JSWFOr8GxRSoGcBLQ2bBKQKKlELiUAk2nJBe9Iuy6oMrsKpMdOzqTM1fu0oEGS3+S5dAoP+zh1OjVfi0unU/O1uMyVTo1gKUTor5QKKAeGYQoJmfegpUyzyoEBUJn1ITZMmXR0eQFpTa4yzwKwdNsmSCezJlf7Y2GdDjydqdWoXg1D8RMjM3CsprrKKybJMur4KNaUD9KW1wAyMreWkIwd1s2sbpuzx4EmA5aaPGt06w4Xuck1JVIbM6kWBCnZ1FgBQGrkJGByGLr7lmCSwoCkbDEOfhzZFL5IJwsaJLlszAOIH+CoB5rq5beN/Op06nSazzrVwFJIEw2rWXCPtMzSmmCFNcHWWaVhkVTkdvaRAWTeRzHV92BWerNrjrI/gOxl0P3CA6O2IAlUJtfURFxCSsYqpfdBcnD062yIh+zZoRy9SUgLhMkgHamaGaQFyMKaUh1ADnTofyx0nT1yFsnBcWD/1zICy1iUnZxaCjNO0gFmpoQ1s4IBpANHA5Qml6uABJkxtSQgNeAy9ggpGtnkTLXxuZAOJBtkY/w3bR/+uL36TqdOp81FJw+WdpA8yn4FljIDpDXDOhMsY5Uiy01wj1SgLAcceFo/Zq4UdH9Qscq8QMmYJOWZAUfOJCOgDO5DzCKdudVOjuxzr7Jk5T5AJ0oU4AAzFcXq87GqHiibqAHkIIpgLcoKNDUBU0VZY4+cRQ5cdKuuTK3a+i6dxEkEBiAoabYHmpBLAS0FSjIBOSUJBpCcRWooqQAYHyY0wSbmCcyu5lob355S9Tpz6yaWcR/A0J71mMc0SadTO+l0aidzoZPbH4OlsHNXmmEiwgBn2Tcp0IqiGlc5yIH+lGWahlFSMYDM+pDFAOXUBug88yZYyjMDmB4kSw+YAGo+SaDyS3JgdMwyBkfPMh1jdKnmbGAOsrzdMI8GgPSm1ZJ88I5jjBuKmEUykIyDdjSCJAI82w4XJQUG2vohhYAmgtQGIDUJ5GTz65KGlmY/MsfFS0xmyl5DQJgkTa3NrnPRxmdCOpCcIRnHdJA6Zjak06mddDq1k43RiewxPv1a2YcoLJv0ka/SB/ZIpSpWqRRo0Af6sgrssetKKshBH1pJaMskXfBOaYeHyIhFUlnNIiJUZXx1wCiUNMkMVBi8Y0ywqmKLboJptz4x6YFyugDpIlhd8E6hyYCj1pgqQvZYxObWshonWerqB6RBUlmKx5c9O9RDEyEniVKXyEkil9zcWnqgVMJNr2bmnvRMsoXZdT628ZR0IDmmtH2Y49RDy7ozca1Op5mth5Z1Z+JaW4pOHiwBA4wumEfIKtBHyJBVZjby1Qb3+MCeom9n0xhADvqeSVKpPVi6n06YWp3IBpNrFbzj5oFkkyNH80DyaNbpAiT3Q/at/3Gq1BiUlkkmTK0cHPuF9uBYRADJgVIx1FJSmDGO0mTPcWBZ2oQClZm1MrdKYdZVSZDCMkkAEnWza8oH3NROxmlPcyUdSDZIUxBE00NsUycl4/SmOp06nbYknQITrGOU3gQbskoaVKZWF9gjsoFPbedm2KBiANkrofuDIHCHtLbTZqWBkptczThJWYGjVN736Nlj1qtm9ZhY5MESvQkzlGOaAOkiWPtlxRw3WF/kVKkD9shZpAPHDQwkAZvjdUjnQNn0c30AvUwGYNnLJOJgHbeUmgBok3TAzIFmwTE0uyphEq6n2ORMtKe5kAUNkgLVg4p7u/xBjHoo/Bxt66Yk1qPTqdNpQeikepV/kptgOcO0+V6Tqe2KAcSg78ESxQAyywGtDbtk5tZUknOAJzp3TNICr/WN1tijA0nmm0RvojInuymuxgRIF8E6VeiamdX4JCv2ONA6CY4OGNuZWzVUzCItWAJAKQmaJLQSJko2c0Bp1ismaQJ5SiIoMjUIAiUhySZnqj3NhSxokCS0f1Btz9dG2kRvdTp1Oi0onYQEVK8CSCGr4SJ+qIisWKXL+TrIDWBacBSDvpmLsegDWht2qUsz/YUuLZssA328X5LNTiJkBZIiywGlQvaY9ypm6eaDjKa7mg5AThWlD9CJzawONAelMcX2LZCW2jHJGCgpAMeCrWfMD+lMr72MAhZZaMJE5pikBccCHihN4gGYMkjvnywFakE8TWxyJtrTbMuCBslUL9ttD6sbS9OHKPVg2/aaOp06nRacTjFQalWtl2zdsUrrjyTHLrNeBZZ5DpSlMc86kAQAXTb7tOwYTc8e7RRfIuv583v26IZ+8DGQdg5Iyux4SMYmxwHImDlucL5JC5L9ogJIB479iEkWI1hkH2HAThYwScNEe1nM/0KglJqAQgOZTUhgWaWSqAXxlMKWibCNzER7mm1Z0CCZMjc1vUBteuSjHu6wY1MfqE6nTqeFqBPJDMjN3JUYTFXjKiNWKbIM6G+oAnuKgQGxYgCyTBJ5zyRZL8tqjKQOmSQAzyIdMHog5uDoTLAueMcF6MjMg6IHSAeWMhsbIGPmOOWYZVEG4NgvSsYiUybXZpBMRrZaM2vlj0R4rh7ggFKW1QwiBhwr/2SmFQSqIB5FJrm6IjdnZXP7mU57mm1Z0CCZkmEPhPd+2/RuhvmA2l6306nTaSHq5JOn97YyQClEjVWKsg9MmCQENDBBOyj6BuSy3IAhZ5IOHIeCpM3440AyAscKNK05VWZBkoCYTRYEO6SjPUC6AJ2povRg2S817u+XAUDG4BizSaBdZGvKJ+nO0cuiJ2OBUgoCihKTUBgIgtTkmWQuKQjiKS14xmwyJTPVnmZSOpBsKaner5MmJ3SbnnmnU6dTp1OzPkJIUD4JUfarNHciZJV8dhEX4ep9knnP+CB1CaG18U8CIVBygAQqkOTBO45BKpNbFi6CVSrvf4zZZEEIIlbbAmRsZr1/UDHI+/tFYG5NgWPwS+Vstf+6me4qZJIqYpJJ6dllJqG0YZXOPym1wEBXQTzCskhpl4IAZWcJ2RRtfDrSgeQYEvsw497OMBNV00cGI/Z1OnU6LWSdPFBmkyaQxzFMN0ykqBimcFNzcbDUZcgkedCOLqtgHSAM4ImDd3ILgDLzvlMPkM7cqnKQymoAyae6agOQ3MzaLzTW90vPHu/vl0mADICSTJo6suyRdHjHhYtctetSCihdgaMaRvVQMVEz/6RhjxWT1BhI4YN43BAQCcMklbCgKarn2/jcMbw9zZV0INkgqQczrKc9Spo+Gm5fm49Hp1On00LWScgMlEvLIgVQMh+lnbNSsBlIjBm2H4JkytTqz18HSZH3QEL4aazcWE7PGJ25lfkgZwoguXk1ZpB99nPgOCg1yIKjmxqLGpiksP5EKQWI5WtN+SOLCGQ5+1Qa3j85EITc5p2Ng3gUYOfBrNjkqKm02rSnuZAOJJmkes6pfRsjTedvOnenU6dTp1O1TwgJUj1TLiREyWcbsTON2MAeIg0IAUnkTa4BSLpAHpdth4GkUMqDI1yeWZmBhAjZozO9zhBAughWB5CGOZYRowwBMgZHohAogZBNOiYppQCRAEpAKenBEsBQk2sAkkIYMLRm14EUySCeUjSzyVEybnuaaelAksmoF3RTSKdTO+l0aiebu04cKL2ZlQOlLmyEiImO9WApFUAa0jKrprGSZAOE3PmIMUczljOrANMN8bAss9xIgBzoNECGATvsV2qUhfaAqEsdmlkbJlyWZNCJ7FxYQgqQJpO8XQoMAJRUR7BqbGXpt5UU3uyaS/P/O9NrLs3/LywocjaZinSdr9KB5BCJTURN68Nkput1OnU6dToZoITqWRAzvkk3h6XxWRYQujT7SRvAJG0A04FmdE0fPQtUplVh097Jik16gLSAGQNkqZEESD8XpJvBQ9sk5WXdxBoD5P0Ri3TssSw0iMiDJXl/pP2/EsM/NAhCCghp9kkSHjDJAahNVedESYENhfbrSkpsKKpsPTmZgB0XxJNLu62BTCpzTxyLHBHpOk57mgvpQLJB3IPiD6tpfdQ5mra5jHO+TqdOp4WukwdNmRnQzGCAEQhZpdZmnKQDSAAOQYRdkmBmRZbxx5lWvbmVs8oEQJaJKNZSG1DgqeZC82qJDWUVpNMWIHWhUUZA6cCRNPl5I1Mgaf53M8EyAJCEB0xnilWQKAvtkw70GUD2Cw0lSx8JW1rm7IJ4cns/OJtUsmKRLtJVkXvi9efftM1lriwfHUhaiR9GrecalTcd11Q+HX9Pp1OnU6fTcJ0IMOxOyOoY63c0rLIASWn8j6QhXCAL6bquDhjtOlRWAa4DR5mZCFYb5coB0o2DrKaqCmfzMOzR5l8tnXnVAIzzOY4ysXKAdOzRgGUFjs4/CdRNrYD1RWoCSWGiW7W5oyW0N8UCBii1jZz1ZUE6uzIYZ6k0DKMsdZ1NauVZJGeTJdnUdom2MJ32NBuy4EEy1XNtkvgF5mWj6o7zsDudOp06ncbTKUhpV9pxk87cqgsIYUDSZ92JfW6OTUrmi+QAaSeGHgaQJdUnTHb+ScMeS88mNzBm6fKw8iQBVVRrGQBk0S+971GXGmVBNXB0wTtAmkk6k6rQwke3emaZAT6BuZWBXVYssloqqVkCAmBQDmeTPPtOSRY0LUpuTHuaTVnwIDnqQaReytl+eJ1O7aTTqZ0sFJ1IyMr8ausLsqCnCxhfZGVmTR0PIDS5xgE7FkADEysZQPTmVbdd8qTkOvBFOt+ky6SzfkQUKwfIyg9J3uTaFNmaAsk4upWDJSCTQFlGJtfK1KpRalmBZgObzEmg1ML4JWOgZGxyPsqCB8lY2pqW2u6biY9Np1OnU6dTy32O+QEQ0gTwgExQjwvgoQaQRASSjj3yoJ2SAIoA0gfrMDapCT5a1SUsjwN1XLLyDYxB8p9jkc7E6gDSmVdjn6QHSg+Q5t9x/klpTcmkyRBuTT6ZACDNEA03b2QGCGHPKcw1SlH5IPuF9tGtKTaZS9h7YFllSciVvT/ajKssdTXfpGIoOV8YpJMOJCNpa1pqc0yTPyWu07ZX3enU6dTpNPwYAnxCASJt9NMuqlUYZjkCJInliSVVBew41uN9jgTve/SmVhe8E0eyNvghY79jvM19kJr5H0sHnNHQDw6MMYss7R0TUgClA02ynFGDSBg/pCQ7/VV1n6Q07JCbWt1MIzGb5JGuuT3OLaVl4SURFEQwNESJmWtPMykdSFppe+O5KaeNBKafxHHDPgKdTp1OnU7T08mDHAAIDVEW5jzC/Wk4xi1lNUYS/sOeAEheZtmk80MGgToJM2uTH9InCiAKgnR0C4AcFbjjgnaEFChBfiorZHZ+D0F2+isJoQVIkgdnIQX6FihjNmmm16oiXXNJ0NIxSfJLTfC/KoiHTB5ZUX/Wo9rTXMiCBkl+k1MvX9NLSS3q8HrxcljdUQETnU6dTp1O7XQSgE9RRyozvkit4RINhBetAnd40A4JaT7oBGPSJHN+YqCp2TqhMrM6NqkJI82sDnT8ugNGa051QTopgNRFPXAHQBWkxMRMfmxsodL6JrWEnSMSgDW3Ck0gQeZ2WbNrWRigdLpyNtkvSj97iGag6HyzuayWmQyTCxhGSUGqunHa02zLggbJUTd53IfAX9zYbBDvS/WWNsYs1enU6dTpFOrkrgeZwfsihbaBO/WUa3HgTgyQFWu0gEihH5KobmY1INFsZnXsi2/3I3DkvsY4u04KIB040pA8tQCgrR8SMEAptIFIIe25JAVs0pVzNsl//UJjIpO240DezFpK8mWaCKUWwXAQTVWngycXGNWe5koWNEg2ybimplHr8flSvaRR1+x06nTqdJqeTgKomCJQZeEJLh4BJJAESF0DSrOuKTSzupk4uJlVEx9DaXx5MWByM6tLEGDYI1VjI215E0CSLkcCpBMOlGR9lC5YJ8Um3XWapubaUGgfwKNlZVqNA3g0OWZeBfAQVanq2ranuZAFDZIC9YfR9KKO5Q+JZJyec9w773TqdOp02jidUkBZv1AFkg4gCeZDrgHLgmDNiSa1mwdROF9bHRy1rsCxiUVyJlY6BukAyfohPRiyFHTDALItSAIVUGpJkFoErDFmk1ob8OR6xwE8Jf+ftUZGwh9bSlNXCmNm1SAQqgCeFBg2PdvptotxZUGDZOpGN934uXogqet0OrW7TqdTu+ssRJ0CoCRdB0wX2YoKIA0YIvBD+qVlQlUQSsgWtTO1WgAZxiLjSZJ5DtbYzEr+h5EAmQJKIRVIl37pRSoT7KNEdd6ITUoFn6Qg/F+qHwD/f7ihJx4cmcmVSHhztWORZO/lfBszOaRrteWLY5Kj6kz33NOp1+nUrl6nU7t6nU6VeMDl2XR4UnOEAOkCdTRVTDHFIl0dxxY5UGoPlEiCSvyLgTFmkS4ohwPQMIDUuvQ/V55imvF5Afixl37brvMyDo58u2T/s+tIaGa2Tt1jZ75mpxv7Gc+GLGiQBMYzE40S/vDaHufqjXNsp1O7Yzud2h27kHRqMtO5j7bfZmbWJhYJVKDKmVPpQQGeRWqKTZMR80qwSD5hcpwkgILtOkByYKzOEZbVj6vOz4eOGJBGUEcPAcciONbcG39ftGGlpSZjpgasyZX5gBPPJ35WwNyB5YIGyfhhjNO7TdVNPdymY+LjKVp2OnU6dTrNjU4UbbtvvMOoFIvUYFGZ7sNvAcGZWkvGimJTaw0gI5YWm1e9fppqLDL4fxIm1jZlVURsM0Sl5qdMAaMr94yaMWt3L8DunzOzekapq/vWpj3NtswJSJ599tnYY489MDk5iYMOOghXX311Y93vfe97EELUfv/93/8d1Lvooouwzz77YGJiAvvssw8uvvjijdZz3B5Mm55M/AKKxHqnU6dTp9Pc6hSDY4wNmtVvvob72BP78IemVgA1U6uTIipryrcam1pTdQLdI7bIlxsrMUBy4R0Ax4z5cSUDTe3NrCFAEqwf2OmP8dvTTMusg+SFF16IU045BW9961vxs5/9DEceeSSe/OQn45Zbbhl63I033ojbbrvN//baay+/b82aNTjhhBOwcuVK3HDDDVi5ciWOP/54/PCHP5ztf8dL/JI1SVPvR6B+/MY2gE6nTqdOp/F1GnlNQs3U6r7/AdBq43Pj4plUg2mSl7lzmGtW/shAl0RGvaZo1o0FRp6YILWvjcT/e2WSJn/vjGmb+ykj07ddTufZzYTMOkh+6EMfwoknnoiTTjoJD3/4w3HmmWfigQ98IM4555yhx+28885Yvny5/ylVzSR+5pln4olPfCJOO+00POxhD8Npp52GY445Bmeeeea09Rzn5R3nQTXVTX08NuaD0um0cdcZp26nU7u6m4NOTuQ00JubUuNy54/kUkTACCBpam0CpnFFSJVcb3+88Fl5NlbcPQGcb9KsO79kbHJNBfDMdIerrcwqSPb7ffzkJz/BscceG5Qfe+yxuPbaa4cee8ABB2CXXXbBMcccgyuuuCLYt2bNmto5jzvuuMZzbtiwAevWrQt+wHCH/1zT+tikxMuQ2DcX0unUTjqd2sl81GmmhJtc4/JYYha5sSKkCkBQRuCYAkhebtalXZ/+E0hH7EZ1qOoEON9jDSARmlybZK5Y5ayC5O23346yLLFs2bKgfNmyZVi7dm3ymF122QWf+MQncNFFF+ErX/kK9t57bxxzzDG46qqrfJ21a9eOdc4zzjgDS5cu9b8HPvCBAMKbPJdO4WHNsNOp+VpN1+10apZOp+ZrDZNRH0bPilqAXQo8pyvD8iGY/Qb4ZAIYpVSQEWiG62LkNaSvU7+bqgFgeYSrEx4N3CT81m7KztOcJBMQIvwXiahW5mTvvffG3nvv7bcPO+ww/P73v8cHP/hBHHXUUdM652mnnYZTTz3Vb69bt84DpT++3b+SlNiMNMp2nrKxp47pdOp06nSaO52kMB9mKeB9iwKAEICITuzqKCkwaJh5a7oipUDKnShtvlTAmkIBz9Qc2PFEASmgDNmj8izSgZ+bc1JKGzQpBaQQZjgp2wekQbEJKIF0Z6FikdbsCuFZJdjzaHp2cyGzyiR33HFHKKVqDO/Pf/5zjQkOk0MPPRQ33XST316+fPlY55yYmMCSJUuC3yjZGF/JsJ5yU702H4tOp06nTqfm882ETu4bb6LqI90EamXTFQ4mKsHOhAUmaYGKEwDJ1oWUSWYYgqBKmFdDABVSMCYpkv5IXmcUUDaySp02SwNpv2StTsP6bMqsgmSv18NBBx2E1atXB+WrV6/G4Ycf3vo8P/vZz7DLLrv47cMOO6x2zssvv3ysc46ScR9A07sz7Dzjvm+dTu2k06mddDoN3y9hAEmKCJgco2InkkJAJRA0VZ4CSF9/CBNzIGWSBFVA5oCyCRTNsen9jkVyxigZKKcAU0QAqaRANiar9Bl2AB+8w/cR0n7JTWF2nXVz66mnnoqVK1fi4IMPxmGHHYZPfOITuOWWW3DyyScDMKbQW2+9Feeffz4AE7n6oAc9CPvuuy/6/T4+//nP46KLLsJFF13kz/m6170ORx11FN7//vfjmc98Jr72ta/h29/+Nr7//e/P9r/TKOOYfVLHzIZ0OrWTTqd2slB0cuY9DQEB8gdIATNrBQh2wgwIAEoIDKKzSuFMsVV5FjGseL0kYaeqssBEAiRhJkaWwuRPtSZXKYSZBxJ2suQGvlNnjI5NysC/6E2qAfiGplZugnXAz1mjWQ/1UHK8yGFnZnXr2t7jeJ7JuZRZB8kTTjgBd9xxB971rnfhtttuw3777YdLLrkEK1asAADcdtttwZjJfr+PN7zhDbj11luxaNEi7LvvvvjP//xPPOUpT/F1Dj/8cHzpS1/C2972NvzTP/0THvzgB+PCCy/EYx7zmNn+d1q/iOPUQ8u6M3GtTqeZrYeWdWfiWp1OM1sPQ+q6eQ5dXe6XdP5Iwa6mLIgoXQcFKergGAKL3S4tSGlzLtICws7MQdZhWpk87YwdLYAy+L8tiDkQjAFSZbICQiUDwHTrkukc/x/xenU/00ybiyab7JyvE9Vs3HPNJgWlDL9buKxbtw5Lly7F2rVrG/2TsYN41E1q+3JuzDk6nTqdOp3mTqeS3IwW8MnL3XpREga6Kt9QaEyVGhuKElOFmWB5g53lY6rQmCpK9AuN9f0S9/cL9AuN+/sl1vdLv94vNAalhi60nztSlxqlnUuSNPn5JN10WTwBOoChYy3jyNQmgJRSQGYSSkmozLBHlUlIJaEyiV6u0MskepnEop5Z38ouF/Wyaj1XmMgkcikwmZn1iUxiUknkSpj1TCGTBkQzKZBLASUt6xaw2yI5M8i6deuwfPly3H333a3iTKYrC3qqLIHqBYl7luM4iPk5NualjvXodOp06nTadDopa+fTmiDIMEKCAUohBKQwvjMlBaSEZZEiML8as2vIGI1JUkdlwptcqYFNausv1BpQmURZGK+dggAJAU2GaZKmRn+gD7xh4OiZYgSQzszKAVJlsqZzJtPMUgq+HuohG1ildv+PfRAahsFvyumzFjRIEtq/ZG3P10ZGvbCj6owjnU7tpNOpnSw0nQSMKZOEgBAWLCFAou6XdABpzK5mXUsBqStTYwwotZ+2x0gBoso3iQxAASCTQKE9UFap4yy4aHhE4eMQw4hYBpYMIFUmmZkVlkmGJlclKl17NcCUdbAUFVhKEYLdKPMrfw5uKMimkAUNkqneo9seVjeWYS9YXL9tj7fTqdOp02nT6+QCcLQm4yNzYAkDngJmOwRI2IhYcw4PoAlQzKRAaQGntAyQs0mVOT+jDoBSaDYxsqwmX3aJAEgb0PT/H0MYB3gAqoAc5oOMAVIpCZlJ5Ep6M6sDyIyBZS+TVSdAiCBoR0bXHybOHwnA5s0l0EyNvZmGLGiQTJl2mh5Fm97vqBdz2LGpj0GnU6dTp9Om1ylmkyagxIyjHGZylVIgJ4lSl1AS6KkKCHuZQqkJvUyi8GVV4E3fLstCW1AxJlpkgNACpR00YZPJebD0/0Pkk4zHYHL/pPNNyqyKYE0BZAzwEwwse5kKGKbkHQNR/bwJ1g0x8To1PKAhMlewuaBBMiXDXibe02xj4olfwGHHTGdfp1OnU6fT7OvUxCad+VCTGSqSMrlqYQBQauHPM8FYY2rbmV3BQNMBoBAEkgRAggRBu/J4mi1VBe+kxjhWQTvh2EgewOOA0jFIB4C9LN5WIau0LDJ34GtZtfSA6e5rM8xpCpnwuM9uJqUDyZaS6mk6cS9v/BK36QV3OnU6dTrNf52SbFIIaMsmDasMTa65NZ1KbaI2NYVA2MvMmMVSEyay+vCNfqE9UMaTMduQFjvxMkB2fIpmbDI+owMlnqM1SD8XmV2VBbw6KMqARcasUgqB3Pkn3f2IwNENpxTCmKxTYsZImnSjguwz2ARW1w4kxxDeQ+Uv4KgeK6+fenGH7et06nTqdNr0Og1jk0JU+6UEchLQUqIkDeUB0oGlRCmJsUeJXtZ89VIT+qhYoTOrSqtLxSzNtrR3K5530vkqvZlVhCnmQp+k8ObVGBw5IDoWyevk0gzvkKLKVpRbAJYBYIZjKaW9xxL1SNiUzCVWdiDZIKkXZ1ivdpQ0vaBuX5sXtdOp06nTadPppASghQAJ1NgkCQNguZTQWg9lk843ydkjN7f2onIAKAVhACQDdgADolIhMLfW/g8Gim6bB+44NtlLAGTdB1kBpC8XArky/2eupF86FumW0uWkRRjgxCVlio3bwVwBZQeSTFK91NS+jZGm8zedu9Op06nTaf7o5P2QI9ikAUjDJg2zNGwyJxOAU1IIhClg5OsORPulNgwyMr9KhWRC8OB/EgmQlIzdBabgOkDG4BiwSpsgwJ/HjbkU8CzSAKj0dZypVYhKNy6jGOVMtIs20oEkk1G9zk0hnU7tpNOpnXQ6tZMmnRyblJZNeoCE+eBLxyYlKoDUVaSrAUgDFsjqAAnUQVJJgX6hqyEibkJjsgAJBNGsQyNbGZuMgTH+uSEdIWCGPsmQQUq/zBKM0vkim1iksPdymGyK8ZIdSA6R2BzTtD5MZrpep1OnU6fTptVJefMqM7dKky2GdOSb1AZASjJfdgOQZl2TqAEkUIGkkgIbGDg6oOTskq+b89f/Gz5oP5kz1m7zQJws2nYRrA4gYx+kSx+XAsjQ3Fpnkdwf6Z6JE2d23ZQ5XDuQbBD3QvAm17Q+6hxN21zGOV+nU6dTp9Om00la8+BINqm1B8hcSWjSFiDtusl7F1zLgSEQssgiZpEJgIzX+Tnj9RRITmT1sZAcHANWqVyATgiIUtYBMmCZSgYsUgLB3J1O1ZhRpsyxc2Vl6EDSSvwixT1XEZU3HddU3rbH2unU6dTpNL91AgybLO2HXsCwpJhNhgBZNgCkBgdKziL7RVk3sWpCsZEgyYGxOU1ePYuOA0gzvAMskrUZKE2S8qqegMlly32RjkUKey/9UJUxn9tsyYIHyVTPtUlSL8uoHuo45+906nTqdJr/OjkmpGykq5YAaaqxSResoskwS+OPJGQ1gDRLxxqdmdWBowNL9+shNLUWETByoOWSMXBMMco492rMLDk4SgEfuerMq441mv9b1soM2Jr7o2RlZnW+SM4iueqjJwCbXVnwIDnqhUi9lLNN8zud2kmnUzvpdGon4+ok2cfdwJ75+Ds2mUkb0SorICwV7DrAAVIKM+WWyk0Ea7OZtTLFpphkk3BQdEs3QTIHwpg1uixCLnI1BkdlWaRjjyFQum0ZMEgHkM436cZGxixSMjPsppQFD5KxtDXjtN03Ey92p1OnU6fT/NPJ8UEDAGYaLa0tAAiTki5XDCBttGsFjkAFkGbbRG8qDLSOwNGZWQ2wcZA021H2ACsOCIG6PxJomJXE512FN6W6TDopcHQm1RRQmuMq5u3YNgdIA54VKEYEeJNLB5KRtDXjtDmmyZ8S12nbg+106nTqdJo/Oklhs/DAmlvBfJOabFSpAcqSyggg7ZySQliAlFDSAN9AmEw8pZ1QuaTmYJ3K1JrIHmCFm1njJQdFU1aZUzkwSoEABJvWOThy9mhAEizgCf68MUAG26iO2VTSgaSVNi8NUPUg2/ZUef1hL3pqX6dTp1On0/zVydUN2KT1TSohAGnzqhKYyRWoAFJiUBIACSkJRUmQgjxYmrGWZIBSV/NDumEewwJ2Yn+kB0aXUIAxRVfeBhiVgPc5uvUm5ujAMQBEUQXptAHI+F5vClnQIMlv+jimHmpRh9eLl8Pq8vN1OnU6dTrNb52kZUfKBe/ABfQQiCqwrODUAGUFkCaF3aA0rNIlCAgBstoGwsmUy7SV1VyDoUw8RZUDRLePg6IHzAgYAzC0iQEcC80kB7rpgSNQB8hNzSKBBQ6So3qLbXuTTviL5J5r6iWMe7jDerydTp1OnU7zWycpDFvkbFK5L722V4iAUmsBA5DKAqREScCg1NAWLDOIADABxiaH5GjlwoEQCEHSpacbBor17XASafM/h8DITaTjgiNQHe/0BHi94f/vbMiCBskmafPSOKEW6/H5Uj3WUdfsdOp06nSanzrxVHUE8kE7AuZjL2DnRmRAqQUBkJBEnlW69ZKMT7MkAqSAJgaSETjGga0xiHAg5PsdADr9xwHFFGMcBYzm2tMHx9T/NleyoEFSoP4SNL0U47zAsYzTS417wp1OnU6dTvNfJxeYosmZGW1NSYAWKCOgNBCqzW5txlWaIB0LkJKYD9JcQ2sCVDr1HBeeho4DodGTscckSFagCGBOgBGYn+DoZEGDJKHe2Jua33Rf1HEldZ1Op3bX6XRqd51Op3bXGUcnxxodmyRhhoQQpYFSE9BTEoWd9sqDpWePFIIjgFK2vxtNQBmCZFWXM0WgHSgCzaZUYDzG6O6h17kBGEXD+mzKggbJFJNM1ZnOi9r2uBSTRadTp1On02alkwFHAx6CqqUZJmkCeQyDNEsBgARBCAEiAYLxM7ohH4CAG/rIwVEPYZF8DsYQJKuymCECdUD0ZWgHiuE5Kl2ma0bdxMSxJgsaJIHxTDKjhL9EbY9z9cY5ttOp06nTaX7qJAHPIiFNMgAhAAUz92SpBRRMGVEFlppgp7GqANPZIocBY+36HCgt+sRgaMqaAbEqE9ExofmUl/HzID5XoF+9zAsNCdUFALFpEtQtaJCMm944rDJVt8kMkzomPr7pRe106nTqdNo8dBKAD9QRZNmlMHtJwMytJY0JVhBAEVhCwDLNEOyIhnMrVjUyX1bsrYnVpRii+582BhBrYOgAkKLtNuLA0R0zx2C5oEEylrY9ScGW4/Q+3YtE0XqnU6dTp9Pmr5MzuRLBs0hnbtVk1oU1rQpRgSUEQER2BKU5Y0weeRRryl8XAKUvC5mh2Vf3GY5jMk2BYR0I9VAwFEMAkkYBoJDmnHMIlB1ITlNGvUROmnquqRe1zcvb6dTp1Ok0v3UShh5CiggcCRCWVXKwBAxbdEMe3dDKURKwRgaCwXYTC0wwRnN8xDTRwAod0FnHaQB8cR7ZNqzRgp5wWYlYzlnidRxAjsNEN1I6kLQyzosyzgvVVLfNi9rp1OnU6bR56eQZJVnrKgxQSuEytlqgsmCpIAJQNFl6hl8zZV7l7I/XaRtMUwNDzgpjINRsH18CEGP4T52QEKiZUksLhlJCkDYMc44ZpJMFDZK8Lc5073JcSfV0O53q0unUTjqd2slM6ySFGdcohBnOwYFSCZj5J8mmrrMnNeMrqbpY47mrnSmmyOsM8xnWwJCBXwCEEQh6AEyA49jMjoGdcOtCAlRaP64Vhp3EGWRnbp0b4Q2/yTwzGzLspet0ar4Wl06n5mtx6XRqvhaXmdTJAZFGBZQcFIU9I4/HUSPsq3xvjS26OuOCIWeEHAhjEKyB5cyAI3FwdEshrZ9WgqAr9qgZUM6xLGiQ5LIxL2f8Uo3qeaZ6r6ljOp02P524qWqE1SyhjISzvG3p92lL1QmwAEkhUALG/AqEgNkkqUAcUx6aSN06kDaT1phhDIaUAsq6qRXs3EmTagyWCTDzDNH5H2UFjoE51fsnzdKFNHmgrF99VqUDyQbZGL9E2xd33N5qp9P800nYj4v/pqV626N0YD1pwZd2ncvmep8Wik7xcQ4oAZNulYaYVYUIC4cOq2jyGUbssMYMYzCMj0EDm4zW27TvgPWxtg2UBhiZ6VRI6TuJAVgKCYiGLO5zFLzTgWSDTMfEkjpm2HnGffk6ndrJbOokAEAXtkLCbMWXrS7OPx7wUX0Um6Ds+uZyn0Yd0yRbgk5AxSa52dNcPG1fCM2pUVnCT+jbHWtzTYAoGDC6YwL/YnCOIW05OZzDmY7r/5eIQNK1cYraNAQZwIzB0l9DBmwymANsDqQDyRmSccw+qWNmQzqd2skonTwwclCMP052PViOEtarBmzAgjblgoFmwDTZ+kybCUfJ5vjsRh0zm8KBsmm/kwAQCWngGmYybWKIHDzjcyZNrRb0ytJes/Q6Elv3ZdG2kIz12XWhFHz7jtuwA0wHlgAgo2dJGgLS+3B9tOscyZxc6eyzz8Yee+yByclJHHTQQbj66qsb637lK1/BE5/4ROy0005YsmQJDjvsMHzrW98K6qxatcpktoh+U1NTs/2vtPYzjVNvbN/VRlyrbb2FrpMAIHQBUfYhiimIog9R9IGiD1EOzK/YAFFsAMo+UEwBrm7ZH/mDLsxxbCnKAYQuza8c2H0FhPvpwoM1dAFhP3aC6zzH96ltvYWqkxT1n7I/AfhnCPdsXZvTRdXmyiJsd7btoZgK21vRhxhMQQw2mF/hflOJ3wagP2V+G+4HTa0HTa2Hvv8+6PvvA02Zn2Y/6k/5esGvP+V/vh4v23A/aNAHigIY9Ku2rW2b5qxXl+b/5UCe6AjMpcw6k7zwwgtxyimn4Oyzz8YRRxyBj3/843jyk5+MX/3qV9h9991r9a+66io88YlPxHvf+15su+22+MxnPoOnP/3p+OEPf4gDDjjA11uyZAluvPHG4NjJyckZ07vJud/UC21TJyXj9IQ7nWZPJy8Jxih0WXtRk8ENYzBIf01ZN0P5Oq53Ldz5bZmU9XFjiZ71Qnl281mnGpDG5svYh615G4tMorH5NMUUE+AiiAwztEyQdAnSOtj2bdiVlYw1JhhkTTiDVKoqc8E5UlXb2qwLpUBCV64EIQGZGdZYFoDKzL10pliiKiJ4DsFSEE1j9OcY8pjHPAYHHnggzjnnHF/28Ic/HM961rNwxhlntDrHvvvuixNOOAFvf/vbARgmecopp+Cuu+6alk7r1q3D0qVL8ae1a7FkyRIQqsY8XQc9YfTLhhZ1uB6dTnOjE4AKHF0vtgkYUx8noP7Sxtuxf4YtnRkKgAdND5j8x+tysIzA1asww/dpPj67+axTIAlf3zhm1JHAyBgZB0UPgDEg6jI0qVqQ9CZVDoxxBh0uLDOON686wJTSg6EDSCHDdZH3qjYtMw+UEBIkFaBYmcxMmZAglWHdveuxbJddcffdd2PJkiXtHtA0ZFaZZL/fx09+8hO8+c1vDsqPPfZYXHvtta3OobXGPffcg+233z4ov/fee7FixQqUZYlHPepRePe73x0wTS4bNmzAhg0b/Pa6desAmMbc9iVrI23PMex6qR7rxkinU/O5AYTgqIsAHP2HZ1iPHaizg+QF6yBZD2CQ9QCGCCgFwiAGHxKfYJVNDGhjZD48u6bzjZK51Ck8eeT/A0LfdqJtjQLGmpmSAaPmQFgMkoBowNKV6To4liF7pAgoBQdHFfkhI5D0DFIqUzfLIaQCSV0dk2Xm/ZMZSBcGFEmY/w2WTZI2ZVtSgvPbb78dZVli2bJlQfmyZcuwdu3aVuf413/9V9x33304/vjjfdnDHvYwrFq1Cvvvvz/WrVuHs846C0cccQRuuOEG7LXXXrVznHHGGTj99NNr5aneo9seVjeWphcs9cK17fF2Os2OTr4uaesb1BU4OsDURdLUWvORAPVAh2E6248J+cHgFfi5QARfpk1POgWWgRnWmmBJZSFAR0C5JTy7zUmnqiARMDMuOMZt0LsEGDA6MIyZYgyKfL107DJimsBw9sj/T+nGPCZMrJ5BWuaY9cz5yxLIe4C015Kl8c8qZe6/zECkTVSr1iZyxt/HhuEgsyhzEt0aj/8holpZSi644AK8853vxNe+9jXsvPPOvvzQQw/FoYce6rePOOIIHHjggfjIRz6CD3/4w7XznHbaaTj11FP99rp16/DABz4waNCNPoTE/lG90abtYcemXrxOp5nXCfYjEzBHF0CQMLU2mbHMqcqwh53y3TBfDfEPCov8IyHqgClszkpSdWYpM/v/VKyyKeJvS3p2m5NO9YNGAKQNxGoER84ci6JijMUgBMZBfygoOkCM/ZBJcBzli2SM0YCbadfkzKrFACLLQQ4stbYsUpv6HhSVvY89wOZxFbowZUKAx5cKIgugrPMxyzKrILnjjjtCKVVjjX/+859r7DKWCy+8ECeeeCL+4z/+A094whOG1pVS4tGPfjRuuumm5P6JiQlMTEy00nnYy8R7mm1ejvgFHHbMdPZ1OrXXKfjYFP0aOPoPkvtY8d76oI82wQ6Nws1PbtuWEfPTCKUMe2RgaUyxbByZsuYoHuQA82GtZSNpMEttbs9uc9QpZqQA0gDJA8XKqs0FVo0IHL0JlZtSPVhaYCz6aVBM+SnLElQ6n2QFPLpMg5Bk4xSd2VUoyZhjZWYlXVadwjw318yqpQBAGSAKds8yWHOrff+0hhC6Sj4wxzKrINnr9XDQQQdh9erVePazn+3LV69ejWc+85mNx11wwQV4+ctfjgsuuABPfepTR16HiHD99ddj//33nxG9k9doWAeqFyV+YabV4+x0mlFxACnKfgWGNsTeb/NQdF3UgJGKPgITFhAEO5hL1IEyHDPGADIKZCCpjelJ18HS9KatSVXC6KwyU259NwLWl6mxUQOt59uz29x1MhXq/usaQFrzflNHrREcHWssGHsc9ENgjJmmBUQHhrrUNYCkBnB0UsKCIkKQlMpYPJKAaYFRZLlljzp8ThkgtDJ1SHm2SM4PyX26IyahnmmZdXPrqaeeipUrV+Lggw/GYYcdhk984hO45ZZbcPLJJwMwptBbb70V559/PgADkC9+8Ytx1lln4dBDD/UsdNGiRVi6dCkA4PTTT8ehhx6KvfbaC+vWrcOHP/xhXH/99fjYxz42q/9L7NuKe6rDzEFNLzRG7Ot0mr5OPmVcUY1DdIAoimrdmV2pLEFFvw6M3IQFpKMBm/6fJhbJAxlqHxMX9ReGxwugDpT+4yEqE+1GBDbMl2e3JehUm2Mx+NAzy4YDyIg9Ctv2ArArBnVwdKyRAWLcsdODwgMiB0NiIKlbgqQDSMkAUigJzUAyAMy8Z5ljr7oXeR7ct+AZSOXNrnC+SXffNoHMOkiecMIJuOOOO/Cud70Lt912G/bbbz9ccsklWLFiBQDgtttuwy233OLrf/zjH0dRFHjNa16D17zmNb78JS95CVatWgUAuOuuu/DKV74Sa9euxdKlS3HAAQfgqquuwiGHHDJjeo9y/o/7UjW9oG5fmxe106m9TgF7ZOAYmFrLvv8Qef9O3Eu3JiwqBubk3LfjpAkopfO5yGjsWGiSgpQGFKX2HxPSJUTWM2+okD7qrwaUzgxrfTVANH5yxH2aj89ui9UpYpHOR1kPGmPWjGJQgeGgb9toAzjypWWM5aDwwMhBUesQICvgDNuyM7nKyEIhlDKM0gKhUBKSrWslIfMMUkuIUkP2cmv9sObW+N5KZTqU2nRUpVIsotX6aV0AD9TIwKKZlFkfJzkfxY2TXGvHSToZ5eDfFDeq06mdBL1Sm60kYI8OHJ2pVRdAUZisIPFHKDBTDQ94cOIYZSotF6KAHQ+aUkFkefWByHITAWtD5JHlEFnPm1/NOLFoDJkdP2bGmAmzVFk11mzIfRp2D+dStlSdRMQWa4Fi1g8ZlNl26TpmVPQ9ewzMrQ5AE+DoWKN2AMnB0gOmaa86YpZ8mfyflAyX0rJGpQLAVHlWgWeeVdt5z7R517YnJiHsOrLcbvcgepNmWIjqgVTPtPfMrJs2nuPu9VNYtusDNu9xkpubjOp1bgrpdGon3rylXRq3gQFExib9R2jQrz4+znxlP0gVk0yE1EcBD0C95+2BekjWEResI7LcnJP5bHwwg9TsvvZC06DMfHi8D2ggjcbZEhL6OZkvz47LFqOTy4oEhCzSbo8NkK6NDiI2ycCx7BeeNep+Aa3N0gGjjlglgJqPcpjIhC9SWzB0gCnzHFRqD4zuGqqXVXNfmpOZd9GuCy2BYmAjYSvfpGePcxjRyqUDySESm2MabehDZKbrdTqlP2A186rLZcnYoyjtB6c/lQbHQeiPjP060/2YCNvTJgyCgdTOpCpkac2yVTCDHyLi/98qPL76hduC5NgRgJv62S0knaqTuWE7BB/U4yM5WwIk6+DFzDEGx7I/qJlbSetpBe3oqF1jAO9/lL0MpCV0qaF6Bihlzw5XYuZaCZiOo3VhCKU8OFZjO+14SqmqezPOPZ5B6UCyQVzDb/I9TOcFHPYyjXO+TqewrgdInwSasUeXRHzQhy4MQKIYgDZMheDI/ZEstJ4HPJhL6aFmKfcxcBGAtUCGsgxMrWTHjsXBDCKD1SUMMEEufdRfwCa5Di4qcIRfclM/uy1dJ//MgsL6eEn3C3yQKYDcMBXs1xb8yn5h2mkDOOp+UQPGGpucdudPgkq71JqBpWGSADyr9PdTSohiYBmkBAaWPRZ9w1C1riw2PMpV602RS6ADSSfxixT3EkVU3nRcU/l0I+g6nYbrAqAOkHxdF0B/Q8UeN9xffXjsehwcEUcCxgEPwPAeN4/+a4r8k3lWGzOWugci74G0rMLjdVklN+fh8NwsNeR+zZdnt5B0qk4URbei8luiKBCMc0wyyBAgy0EFjs7vaEyuITgmg3c8YBqNtV2OatclNKQSAEoIJYIoVmLmVbd0rDI4x8DMxyqlCsyr0KoCR10CyGMVah2LuZAFD5KpXmKTpMwro3qo45y/02kaAFlMVaBYTJmhHW7qIF2aaXpi9tif8mYrvy/y6bgPjI4+LACCoAcuvpdt/ZG6IfKP8sx8PPLMMMu8N/Tj7vw3pKUxQdkMPcR9Nf6GJtjtGPd2oban2dTJ7NTBspaOzg/dqIZ4xCbWJoAsHYscDLzZtWKTrD0zYNQlmfbtwNG37eb/Qijz1hnfozBtWRGE0pBaevOq8z+aY1jiASUh+hYglTT/p5Tmfx8wsGQmV+mitjeRPxLoQHLkC5F6AcbtmY4rnU7DpWZiLTbY+fRYsM6gD+3mtHOMsT/ly2OfTpPJigc7AAhMVLEEg6xZIINQygOmyrPax4QHM8RA6f00xcBv84AGl5EEsvkDMp+eXdvzb5E6uY98bGq1LNJYM8oKHG0AmQPHGCDL+/t+ncqSgWVRA0tdapR97YHRtO2KRVbr6XZUdQAFYNmkUMIDpuopCGXeE8lNq6X0x2sLkEJJlP3Cm139UCjN/JHW5ErOL+nOR3rW20EsCx4kY2lrxmm7byYeaKdTeI4mgBR24mNvXu1PhezR+XT6U0lw5B8cB4yOUZrL6uAj4sqDoITIZ8Mj/3gwAw9qAJAGSuenAQBlmSQLaPC+GoTrfkzZkHvYtac51ImN6RMpU2sECj6KesBBsxkgy/6gxh71oALLGBzLfsUauck1TElnyqRlj3pQsohWAVLSmlsJpAV0SVA9BVLhf++sJ87EClQWlnJQmHfHAqMoq/sQAKZRrjrpHDPKDiQjaWvGaXNMk+8irtO2B9vphFYAqafuM4Dozaz3V+yxPwXdH6CY6tfAsU2gA4Akk/Q+mAgkw8g/Y2IlrUF5/dVLhce7/JcobQ5MFtAAez/4R6NNFGDXnjaBTvFwdGYJ0BwQfPCYi7QeWEZptlNtNi6rwLJE2S+hS4IelJ4xOmA07dsCZAOTdAOcTOdPGyY5MOBp2rhhkdKCI6kwVEkig2YAKZTy4CikMdEK10Hg4GhNrq5T7O7hXLNIoANJL20d/DRG3bj+sJcqta/TKdqfAsjBBhvN2gdNra8YI2eSbn3Q9+A4rCceD8TmDLKNz4YHM7jMI84MRWVljqJSQ2oNxT5MQXg8j/grBoZNFsaP4301/gaN9tl07WnT6sSB0Ue0ltVMHY5FUjGwmXQqJumtHhYMqdSNAFkOCs8ey0EJKgllv/JHujIAEZOs/pM4044eaAhpfZKeSRKkNmXkxkPqECSD+6okyv7AgyPFwBj/AJAFSm9m7cZJzq3wxzmOWYVa1OH1Ur6MprqjAgEWqk6tAfL++5IAydljMdWH7hcopjYEHxbi4Gh74jzqTzOAdKYpPvmsC2Yomc/G+SB5sI47PgiL5wzUjRmzAEkOMBmbpJZjyObDs4vrLkSdRkoEFmYYkvZm1to4yMFwgCz7pTetlv3SM0cOlg4UU1GuTqpoVtYJ1BJUkgdLoOo8CpUGSRe044aKaK0h+gVKaS0tLgF6YHI1P9++N5HJdUGD5HTNLU1Si0hE+iWMe7jDerydTtMDSG3XUQxQTm1AMdX37LGc2hAEOYzy4bhoQP//Bh+SkjHIKpiBXPRfOTC+GuaDrAU3sKCG0vpwUAxM0gGf25P5Z9w6H0M2zWezINvTHOtUnaQaHxn6I8NgFXi/pAVMXQFkObCm1EE47CMGSGdejdcdOPIoVwAYFrjjgNC1cxPRKjxYmn1mado6obSGWvM+GP2lkp4BC2kivis2GZpchVEmvHebSBY0SDbJuGadUevx+VI91lHXXMg6wSUmt2MfRTFoBsj772NRrVMGHD1z7Hv2WE71A3B0rNH1wKsw+ebgBq83C2gw0aycSSob1FCl56J4YPWgivrTgwJaSShVJXuuDbBOjR9zEa4tPyYLuT3NtU5JUzjzRwamVl160CA3NCnKv1r2B6HVw+5rAsiUqZW3baNOCJahqhYIy8q0alikCdYp+6VZogI11ZPQ0ph5pXKdTl1jk9KWqwYzq0vqAZVzhVo+kZmRBQ2SAvWXoOml2BhTyji91FTQwULWySUr5wCJlgA5uG/Km1dLB5AWLEf1vtsGNjQFNJiQeAEqCTK3EyxbVun/Nyl9UIOQVbSfLjWkG/Zh2WQc0BCMIavdSBZBmbi3C7k9bWqdzEXYM0tFc3IWyVPJlRp6UAWX+WEeg8K0V+8/rwOkHjCgdKDJgJG3a818k1IKH70jLThqaEhIaADoV5YUE92qoUsBUQozJKQUKPulb+uOTfo0j97XX9YYJJVl4BLzTHyOs+4saJAk1Bt7U+PfqJdiDEldZyHqJADT27YA6dikHwfphnkEfke7XL+eAWPfm1fL+6vAHT0oMLi/SIJj1duuBzXwj4lUEnrgfJMiCGgwJlXlTVUAgsg/HhZvGOTAmme1ZwmOTdZ/OhhWMKxn3bWndjJrOiUYpFsGyfEjU2vFLsNMOTza2vsorWugtKDI2zQHSONGIA+Qbt2BYiomrbSFSgBal5ClsZaQJsMse8rMYKXM+xOLScVI/n8wHcBqCcD/b8IGMIkyYpQ8mnsTyIIGyRSTTNWZzova9rgUk8UC18kDZNkPk5W7VHODfh0gHZtkJlYHkG677Fsz66BAcX+R/Kik/DZAGNDgghZKuAhAwZikhMwlSEljZs15t1dBlARhzU7mWOOPFFJCWrOZz9LDWKMPaGASmKEaPiJde9r0Ovnjo6w7AEJfMxD458zuKh0iB8xwaBJrt96M6thkHSBdGQfHktJA6fp1JQFKCEATYJkkAAOMPQVYk6sutWGRkrw1hkphymUqexWLcgWqNu5dC5teFjRIAuOZZEbJqAi5Yecf59gFoRNnjimA7CeGeVgTawogq4jWAcp+iWKqMrMasIxZZNpn48XOwSykQInKFEWKbBSraoz0M1IEmUcMMwjZJJUatTMEuS0RfHCbspF07WnT6mQOrsb6eWFmRcceg0MiUys3UXJm6QLMtGeJmoFluM4BMgWOZTSe04OjvwMCZUnIGVBSSdCA6fxJ42JwZlcqjW+SSgJyBIDI/ZLB/dCJdr8JZUGDZIrBtO1JpuqO8l8MO77pRV1oOsVmVpeD1bFKnQDGUQzSLbl5dXB/4X02Dihjf03sh6z5atw6Mz+5oAbAhMqnRCphetcDFsTA2CTvacdRf95vYxSzN7S9uXWhtaf5pFNYwQEFN7lG/siEqdUcw1ml9UVGLDI0qTYD5DAWWf9vBEoi2PzmHii1NEsDjhSwSV2a3K4OyP0Zy9DcrEttXI26boImXVYsfBPIggbJWNr2JAVbjtP7dCBA0XqnUwSQFhihC6AsfKCOS1ZOflmxyRRAusAdB5CGRWpmajXmKJOZpALHsl8mTVGBaPI9bJXy1QBALzxEKBPQUA5KY1Jl/hkhI7MTEABjYJKLAxrGkIXUnuaNTrXk5g0A2UK4qdUcVg3jSLFIZxHxPvUEQDaxyEpiY7SwPkqCC1rTsMDI2CRyVD79Ef5Is161a9KJNr6Jkpx3IDlNaWt6aeq5NvnixjHpbGk6AWg2s/pAnQgo+1MmMCflg7RBOg4gi/tLZmotA58kB8c2vWxDFg1QKgEoqsDShcUDMHMl24+GHpQ2us9cyzBKyxQUjy5kofH8ooHvqiFl1wx+RDb39jTfdAquyRNAuOcaBe00+SMrgGRmS+Y7T1lCHGgOA8g2TLLyUdruhibIkiozqwXHSi9jcnWAyVM68vYdpHoc1WHohoBsGhnnRRnnpWiq2+ZFXUg6mQMiM2sqUMfnX7UBO1NTdvxjaFr1ZX3tAdIxycAn6RilJvTHMEO5j4US0Y8A9EufzsvfN8cibcg8N0GFM4wMCY0HNiqYYSG1p/mgk0AiWCf+wMcBK22vy5iYWVagGNYLWSSAoQAZayHB2z/n4WaphA3KUcIPzXBBb6IUkHnFdjkgNuVBTjLIhNRy4c6iLGiQ5A9jpnuX40qqp7vQdKqZWbX5mbn0Bj5BuTez2lys5f3VOEgOlCmA9CySAeSgdAAZgqRGswnKhRY4H4379SS8v8aNkzQsUhsWqbj/qG6Caupdt/141O4pFm57aiOzqlMcrKMjoBwCjE1BO2EdCpa83JladcQ664E5zQDJyySrHzLKap/3RZYaMg/T1SX/Rx0D/fwK2HGyoEGSP74m88xsyLCXbiHqJIAAGIebWavZPQL22B8YsOyHPsgUQJqgHY1iUKLPGGRfkwfGUX4aziS1DWjoSYG+JvQkoDTMQGsp/IfDfUQMEMrKX8R61gBq6xvz4ViI7alJ5lwnN/jdrTdJDJbDwDPyW9f2NbBJYFhgTgiQvM1Xka0u0pXXqXyTzuQaX5PrFgfvDBVrdhbzYBjIggZJLhvzcsYv1aieZ6r3Oq0IuS1AJ3PSRDSrLiB0acyqPoLVAqXNx+qHdgwGEYMskwBZRbdqbOiXnj32NWEwxFeTEscc/X8lHECaJWDidpxvKP7pkiCj7HJNQDlTshDa03zTyZywnvghSCTAZUyza5yQvK00BaSlmKYSAhpDpyhNCvdPBuUj/sf2Jte58U12INkgG+OXaPvijttb3RJ18izS/ZyZ1UWzOjOr//W9H9IlKC+mqkw6xdTAgmEVtVqZWEOAdD8NJM2tQPpDooSomVmNqbUCSnMeICsJWhoG6dOAuQjERO+6dU97BmRLbE/zTafZCDKJZ57Rgxm/xIxKG5PrUJnDdyIlHUg2yLj9s6YXadh5xvV1bJE6OfOqY4/OzFoUBhwHfeOTZGZWN4OHT1jOwNKNgyzuLwJwdCbWGCAHVJla24AkB8g4iKEkAHa/A0kf1ABYP5Extba+X2pEXWF9P84sJtqfe4tsTy3Os6l0agWYcvjzE0P2mzlM61cWSgARcXXtt6l98+2NlWFJNVL/j5BRctYR92S2pQPJGZJxzD6pY2ZDNgednFkVdiqsOFjHZ9Wx287MaqYIGlQJy/tVtOqAjYN0UayxD9IBJPdHtolqbQJI88ExHx9+nNYmqm9YbzolMTj6D4dd1j4kcyCbQ3uabzo5Gcs0aCfsDn+q3iaieR55udQSpAikJErr14vbZnBJVH7JFDCmYMpdlifWSOlXK58h0KMxOoQbIx1IjiltX8Rx6qFl3Zm41rzSiQfrWLAUuqhY5Ib7LZsceFbpZmcPJpsduNk8bFIAC5B+HOSgbAWQzpfYBJTVO18HSMckSwKkqMytQLNvJnnf2Aekmog5AkgVbldscmY+GpttexqzHlrWnc61BNDe1DomaDjgxMC2kYEbViR8usSgvjSJLrQuLQCm2y4HykA9uzRuBeGXoU4jtqX0M+S0EqlMu98EncFYOpBskCbn/rCXYlSdlIzTE96SdApYZMOQD+eDdNscEJ2ZtfQTJzNwtMzRZdEp+zyKtQ6Q7f2R/NMafmQUA0bTY6/Y5bgvGWcMMSDGgOnNq9MAyC2pPc03ncAnVm5rZlVsGjWlDLApMzmxltKaUytwlEqihLYARDaHsEmN6JLwO1OrUAKyFICuJw1wwMmHc8TSZDHl5VIZIJRB+x1tavWdwVGuBSY0A2bgtrKgQVIg/NQB6Rdg1MsX983a1E1JrMeWrJMHRvsxEUQhixz0m1mknZ2dT5jMWaQDRjc+cVBWgDggeDBrAshmc2v8qQwBcmg+82H3hX0spKqvNwGkUMpoFAOkkL5sobSn+ajT0Hru2cXllj1RghJ60FQSelCxM7LBO9KDIyVNrm7uU+O2DFlkxTCNpNozZ5GcTUolg+Efrky6HMZK+HXzv8tGYNwUboRRsqBBktD+JWt7vjYy6oUdVWccmY86mZPaHjZnkaTDxAG6TLLIsj8IWKS2Kd84i3Tz6xWD0ptSOTBW4BiaXIEh+VoTTHJjAdJ9POIPh1CGOUAq46OS0rAN9iMhQoBk4OhvM9N8S21P81Gn1uzRP+P6TzD2yBlkWC7YUlhwrLNJBYUSJSQklC6R7mLwRmzKuFk1BkgljD+S+0aFEh4wDYiHrJKDYriPtdtRQDlHvkgnCxokU71Htz2sbixNL1jqhWvbE92SdYIuIMoiGA/plsQiWjHom1kAWrJI0ppt2x8DwAFxYIzT0NXNrLE/0o0Z4xIPsDbHjEZMwfwzIYNUkNy0JqXpXSv+8bT+GiGNH1LIRr/WQmhP81EnAIDW00+f1hS8U+pqW0ubxcnMW2pm4UizSTOVldE8gwIGFVC6jh7XPhW8kwJIxyK5qdWbecGA07ZxvjT7+TozN9vOoW//rp3PMUACCxwkU2aUps9bm57mqBdz2LGpF29L1ckzyNgXOeibmRGicZF+JnZt0nM5Fkku9ZY3sWqbN9JOmsyy6XAza/ijYB1oimoNfY3u41LtrwMoUAGoUO5DIj04SvYB8cxARh9FB4xZz4AjA0v30fCM0q0nnsdMPbv52J7mm05tjAokRBWYwp+plCDWMeJ+Scoz0/6VhMozUKkh88wOM5KQdoJvXWrPJr3YyZFd4v0MCrLUUBoeICuwrEuVYSoCyAgYOWAKa2Z1ZuHgHtn27dZj18J8kgUNkikZ9jLxnmab/uEw30bb625pOgnA+yCdydVn12FmVlhWycdF8ohW0tpHtHKgdP5IxyLLiD3Wf6FpdVSi5+YABuF/tXsS+GPYx4OBprAfPsF625AKyPLQ1JrldpkFvWvivewREYRbUnualzoNC9ZpYkPu+dqOEUkdmFxlL4PW2lgaLEA6NmkAcwBSAqTNLDRe+gCVZMoioJQunlWHboPU2EmzdKoyYLTmVtWTEVhKBqJVmfuZW2HA361Xvvdmy8imkA4kW0qqp+kkZd3n9WbUl7eZ65Qa9gHSfraLIGDHTRk0KPy4SD8be7/wWWscULpJkx2LdCDYxCKBdCq6mcjvEfhspOtRs0AH1svmzFHlGaT9iSw3jCLvGSaZWzaZ9eqm1o2IcnWyOban+ahTtTNqScJmv3frDb5I8yu9yVX1MpDWAZukXgbFEoMHwJiQsl8GQEkuE5QSkDYRuoQd15saJxm1XQBQufLtWCoJmcuARQrWvqXi7ZwBJVvnHQV7sXkxDKQDyTGkHrZRbfNlLLx+E7sap6e8ueoEYOSwDzcTOQ/Y4TOza2tmdeDI86GWg2q7bkINGaQpq+veFiDj3nVVblhnXB4ySPfxEJC9rPqARIBpzKw5hGePuf1lgDQ/iv01MascUzan9jRfdRplbiUhjUVFKZDzu3GTa56bKdFcB8maVd3ckjLPDahZ8KS83WfczQQi7PySohQBWAKAHJL0wvsZA1OrYa6uTPWM2Vf1lGWXYWcw9kvynzl3NMTJX3y47302pQPJBhnl/B/3pWp6Qd2+Ni/qZq+TmxWBD/uwS9LaZ/53ATvQ1cSzDhh90I6fCsjlQK2mBDKTy6bNqU7iSNZxEuKkgNH9+H4lKj+k/+XKf1icqVXmmWGQPfNTeWbMrFkessjM/Aw4WoCUEiSzpD9ylGz27Wke6iQA376D+hYYQ8ZfVkM+pK46Qg4g7brs5R4MHXtU0TRTbcQF7ggpQIpqYAkAWvI8wuHMHkBkBVFV4I7qqcDMyoHR7DPtvOoIVhmEJPe/mwKjp2pgkXMcvDMnVzv77LOxxx57YHJyEgcddBCuvvrqofWvvPJKHHTQQZicnMSee+6Jc889t1bnoosuwj777IOJiQnss88+uPjiizdaT94chppRNkKaer9NL+oWpRMfXM1+NVOrA0w2AbGblb0CTfKJwjVjk1wqk2rdzGrKx/vkxplGYh8k90s6c6vz1zjfDf/ISOaDDEytvdwCogVK+xOWRZJlkVDVugHMLDS9JmSLak9jyLzQSSaCrFjADo9cFnnOOkXKtxXZyyBdx6qXm+08g+pVZnrD4hRUbtic6ilkkzlUrpAvMvtlLu1+V0f6uuHx8Y/Vy+15LEDy81UsUwYsUvayys/KgtXCoS+hmVUoNefAGDy22b7AhRdeiFNOOQVvfetb8bOf/QxHHnkknvzkJ+OWW25J1r/55pvxlKc8BUceeSR+9rOf4S1veQv+4R/+ARdddJGvs2bNGpxwwglYuXIlbrjhBqxcuRLHH388fvjDH26UrsNehtnwbbSRLUUnwQJ0RplaHaOMo1r5vIsOGB2DjKNah/kXx0yjWntJqlB4vi0CUyv3R/qxarkKli5Yx/sg7XaSRfYmIfIeoHoeFElmgOoFAOlYZdNHZUtpT7Mt09apzfhIZhIXSnnfs8h7nk2aaGbpO0oi77FOVObXvQViJFBKC44K2WS134FlVVYBZrYoBtAKHHmnT/UqwOVt3VtLIhbpwN2XqyowLfBP2mUyef8cgqYgmu5AnnbymMc8BgceeCDOOeccX/bwhz8cz3rWs3DGGWfU6r/pTW/C17/+dfz617/2ZSeffDJuuOEGrFmzBgBwwgknYN26dbj00kt9nSc96UnYbrvtcMEFF9TOuWHDBmzYsMFvr1u3Dg984AOxdu1aLFmyZKj+3NTStN72+Jmot7nqJEhDDKYgig0QxRTEwC6LDdD33weaui9arke5fj0G903Z3/0o7pvCYP0Uyqk++vf2UUwV6N87QDFV+Pkii6kCg6kC95eE+0uNAYUJBOIsO3ESAaA+GztQH0jdk+anBPz6IiWRC2CRklikBPLJDNlkhnyRXW6do7dNjmwyR2/rHrKtJ5FvPYl860XIt5pEtvUkeku2hpjcGnJyK4hFW0NuvQRicmuI3iTQmwSpHiibAGW9ACBJhdGuTsZ9zptLe5qPOjlTq4vY9hmlbMfQlYXbZsYbKvp+lhsa9P28qRj0oV15fwq6P/DTwrlo73JqQxUBPmBJNqxbwk0bZ/z42ncug+naeIdzhF+yGtPrLCLKW0g4YBoQrgBcTfYg8wzZ5ASyyR7Uop5ZTk6YTmBvEmLCLie3hpiYhJzcGuhNgLJJ097zCf8O3L1+Cst22x133333yO/4xsiswnG/38dPfvITHHvssUH5sccei2uvvTZ5zJo1a2r1jzvuOPz4xz/GYDAYWqfpnGeccQaWLl3qfw984ANH6s4d8xixPuwcNX9Fg7Q93+aoE/94NJpa7RJlOdQfCYD5H6sr+Ze+HN+/GEfzSSBK6pxKycXLzc+wyHRUq+uFC2mDGxgb8OygV7FIMbHIACNjlaR6IJVXAKlyIOuZbWeCHQMgN9f2tNnoFDEfEmGmJLOdeX+cyHp2iI/y5nZnTXAmd9nLkVmwcW1ITU4gm5yAmuxBTTrgsb88g+pJY2b1jFEyEKvYpjPFZosYE2W/qrxijzI22XJGyQLRvKWklwcRrrGpFdzMWkvgn2CUcyCzGrhz++23oyxLLFu2LChftmwZ1q5dmzxm7dq1yfpFUeD222/HLrvs0lin6ZynnXYaTj31VL/tmCSX+MVK9hJRfyGaeqKpF3Vcyr4l6RSAo+brpTexwgFhgz8SQGBudaLHCF4A0lMGxbkr4311oBQBo+Sskgfs8I+RC9gJzGa9vDKdTU6Yj+OEBUcHlL2JCiDzSQ+QDhzbzv6xJbWn+abTUD+lkKatB1HIVPkmnakVMO9B3guuA11NBkkwHbgMQKlGP3cHVHpQQCiBsq8hlfABb1TKgEnKHMGsNa5jGs5OE7JJ53f0ka5KhGZg5koQMhwPHJtavU9WhYBZAeXcm1znJLpVxFlAiGplo+rH5eOcc2JiAhMTE+lrwTS8Ni9SytTSdFxcd5wXdYvTiUWz1pikdswx7Y/kkjIHtZrZnIkDyHjKoKosfUxsag3ZpPlwufJcCRvQID2LdJGtI1lkb9IAZW8SIsshJxaBlPVFOgZpza0k272+W1x7mqc6BfuFhIABRoKGYB95ISWITBnJzJyDdJU8gl0j2SJlOG23A5vSsjPt1j04WjZXakhVeKtL2S+hJUEo915J3/ms3rEwutQPFQmSBrjEGG44iAwA0q0LpQJfpMoZi/aZhxxoKj80hmI3whynp5tVkNxxxx2hlKoxvD//+c81Juhk+fLlyfpZlmGHHXYYWqfpnMNk1AuReinH7ZmOK1uSTlVveMjQjyHignb8ORlrbPKd8IAaN0my+6UAchjf4OMhOUA6xsgZpV9GZirJogxHssg8D3wzpHLDInPjlxkXINH4n9X3bw7taTZlxnWSsnJwC1uTAyMAoR1wZkCWZqv+HbKsypVJqSBU34CiY4zSAaTyZbLU0EpW6eushUYo4aPDAfg0j8DwzmeYVrFKHhBkjKoFFeWm3VsA9SzSRW/XTK7MxMozSW2CKNdZvWKv18NBBx2E1atXB+WrV6/G4YcfnjzmsMMOq9W//PLLcfDBByPP86F1ms45jjTx22HmlI31eYySzV4nO8NH0h8JBCZXYmbXEBDbMUafDSShCI9CrcCvbkKNh3E0mVRdWW4BuCcFstwNrK7Y5CgWmU32KhbJABKWRfpgBWtiHQcgk/dozPJR+xZ6G0/WYz5IgH3sefSxqobu+GE9eQ/Smtl9W5iYrIYETUxCun12v3KBMEEwTK8KkGG+yvp2jnyRDS6zSxNolvuf8WWy7Z4K6pshJj0PiJn1hbptGYGmN7m6DFJuyAsztSaT+Pv7KuYUMGfd3Hrqqadi5cqVOPjgg3HYYYfhE5/4BG655RacfPLJAIy/8NZbb8X5558PwESyfvSjH8Wpp56KV7ziFVizZg3OO++8IGr1da97HY466ii8//3vxzOf+Ux87Wtfw7e//W18//vf32h925px2hzT6J+L6rTtwW6uOomUP9IJD9pJnW8IOIaDl6UxGw1sCi1dMUgNYUGT7NJo15PCJyw3LLP6r+KMOhwwY4D0665HHbFIE0qfZpFqsmfGRfLIvt4k5MQiaG9atQwynzQf0iGyENrTfNbJf7htGychIVRmO34FBAxQejcEmC1DSAhdmG3no2T7g2m1FGNcUiVZJeUZykFmol4TTJJ6WRUcp7UvN6pV751zcwRTW/G0cixblANEzyZ7ebWPD1XpsSxS7n9Ksco4ib+9xxuTVWpcmXWQPOGEE3DHHXfgXe96F2677Tbst99+uOSSS7BixQoAwG233RaMmdxjjz1wySWX4PWvfz0+9rGPYdddd8WHP/xhPPe5z/V1Dj/8cHzpS1/C2972NvzTP/0THvzgB+PCCy/EYx7zmGnr2dbBP9w4N7z+sBc9tW9L0Ml9LAJ/pCt3zNGJi2zdCHEZQngUqjO5goFl6g7EPsnY1BqDJAdIb2Z1jJEP1h7mi/TjInt+PJwzs5qQdwuQva2sf2tht6f5rJNvPYk5PU1RZnyRGqazo4vK9CqkmSrOnVNIwM8UkooAdckHpGWjpkypgSnrZSj7hTfB6p4BS+rlKPsDb6mRDCR1A0hK1lEVEVDGSfrdz/kbeeAOH8vpI3hTLJIlzuDBTnMJjFxmfZzkfJR169Zh6dKl+NPatVg8ZHxNm5dlnBe3jYw63+amEx8fibIfjJVEfwP01H2g++8z48Luvw96aj1o6j6UUxv8GEm3Xkz1UU71Mbhvgx8TWdhl2S/9WEk90CgGZTAu0iQ5j+eQNDrG4yS5qTaObHUgGQNkZsPrs0WKjY3MkS1S6G3dQ761CdF34yJ7i7ey4yQXQWy1GHLrJZBuufUS6N7WoN4iUG8b6MnFHiDn8tmNU2cc2VJ14nW9MCuKiCK7BZF3RSTHVdop5YTNRuWmjvNjKd2sOUW/mhCA1dEWDN24SSrNzDk+F/JgYIBRV0OtAAwNmhvKJi1YcvYYBu5IZJMuxaIb0jJphrk48zFbd8OeTLBaXq1bt8O6e9dj2fLlsz5OckHnbp2uuaVJUr3KpPkR6Z7uxpiA5qNOnkl6NhlOQhuwyDEYZDXzQJXNpiqXIE2QpYAinlPV/Dc9WZ9Pkk8T5CQ2s7plnvBTZnz8WR4G6zgfjvPVOJ+QY5E+mjVikeZDYBml7T2nnhdf39Lb03zXSdtKPN2pcOyHtIlgFRVYkjW3grQ5vzO3CmkiX3VhWVTRzCqzHChyiMyCo6uT9SAzA5acWUrHKEsN3cuiYValB00AgasjNQ9HlZTcuTtUwChTDJIDpMh6dhxozoZ9VAnfKTa1cn/kHMqCBskmGdesM2o9Ph+1qLPF6MTNqxFYEjASHPkM5lJJN9GQfRGjCV618UuK0qbL0qUHtL52/131aeTjJXmgbBOTzEU9wjVLDNCOgbLyw2SQec58k/ZjwXyRIu9B2+EeflwkuvY0n3XSNHxbChgATIAlCWnYotsnJCDtpOSlMO+JO1ZISKXM+NiiD5Hlhk0ywDRgmRtmGYGlzDOThcfNKMJZJTO/AmBAmY4VAAA/abKUwXsaR7l6P2Wcds+aWT3YMxMsB0ZvarXikjDMlSxokBSovwRNL8XGmHfG6aXGPeEtQiceqNMmt2V8TqXYugNLC7gseMdMLittui3DJnswqec4UErvmxwOks4nycdAen+kCn2QJsIvsybXKh2dC85RPOKvgUUiMwwyiHZMmFkXfHuaRzo5QOT1YkZZUnV+mQJLKW0SDQuWnE2SBkoLGNaPCVkYsHQJwR1YDvpJsPT7iz5UrqF0aUyxUeCOZ5UuYceImUb8LB4NZtcAMB2D9AnMpc8kJLLc+yIhTV2K50sFKtBMPKvZlAUNkoT6jW668XP1QFLX2Zx1EpxJ+kp2vYlF+uz/PMtHlcbKD2CWElKRz/qhSw2pJVSPadEvA6CM55m0Exh5YByWr9WxRynTAFmxScYqJ3vBWEhncpWTNquOne3B9a5JZqCsCtrZWNnS2tNsycboRGBgydwJruPFk5w4W8ZQsBQVg4RLOmD9lRW7KkxUa94zs+cMBUvHOnPj4igGkFkOaAaYicAdWQ4HSSC09KQDeSoghzOr2nR7cBl2cpaOL2KRQSq6RG7iuZAFDZIpJpmqM50Xte1xKSaLLUAnHrzg/ZDj+B1l1UvVkr90kplaBUgLxiLNjOt+JgLrSZElAYMyOWVWU57XlE8yd+bdnIEhy13pAnU8eE72TGLnRb0gcYDMMxvB12P5WXvVZMrs4+DUW+jtaT7qpKkCSAeOyRbO/fBkQLMkwzQF7JRRgAXLIg2WMjP+ytKAI7RllTFYWmbmwdL6LFEMjP9v0AdlPRMMVJhgHw6YPh1klCd5JJtk/kkOjnCM0S6FlJUfMgvB0VlUSESz2cSAOceyoEESGM8kM0r4SzSub2WcYzcbnXRRAWNbMyvPEcl8HX63Mmm3XF5UXRJUz+ad1IbhOSn7GgoKJUpkUJClhtKjQTIGSMlmYncAyKcDCqYZypU1t/Yse+yx8ZDGN+l6zn7OQG+KYlNgjZmsPK63RbaneaRTDJAaFRbqIQMGSAiACHZhdBACUgBKSAjVsynqNECZiXiVyoDaMLCUJq2d1GXNZyksgAqtQVlulm6/NtG0jmFCl6bDYHMoK8D7JVNAWTFJNmGyZYjxushzzyq99YQF8iDhizQJ4cNtHsg2F7KgQbJmGkyUNe1P1R3lvxh2fNOLurnqFCrRwifJI9YicHQmHK0kRMnMrkp7NsnBMbg0m3FdKAFZEmSpkUNAxxEWgToVMAoOkj6DjgQP0nEM0gGky2himCNLHMBZJPfJ5D1oB4xu8uSGe7sQ29N80wmoA6R2wWioB+84KYmMr5Kc2VVAgMzxFiwDdumSo3OwlBkgzVRbxmepTDIO5rMUWQYUBVD0DeBllk1mualbmKUHzLKsGKZm45V1lejDv9fcIhR0allCcg6Ojj1yZun88HyyaWU6iMStKZGJ1Ue8tng+MyULGiRjaduTFGw5Tu+T2DF8fUvUSQAIkgekJAYCm47K/0+BedUMoyCXNaSXgbT24EglgbzZlelifZbxbAekyYe1OyAVLKyVA6OPnrXg6CaalZGp1Sx7QQquIDVYnlWRrHlefSiyvJo42c4LSaqXvM8LtT3NJ50ci3QAWWryrBKoALNJShhwBAAhyAKjuaq01gvHLoXIoCQMcJCLemUskjQgi8pq45glaQgLloIINLCs0ppZRd4zDJEBp7CTDAg7ZZ2fAcSCZDBkKyF+aisHjM4fyZMfOPNqzkywzszKMuzECQQCwJxj6UBymtK2F9PUc029qBsTyTdfdRopbtwXv6ZNu+VNq9Yv6baVBUuZm+arS4LMq3Po0n6AlEDZLyGkMGBpZz9QiGY7yNm1o1kOTBBCOAu7GTCtAqDMF2WheXWRyZ0pvU8yg5xk0ax2lg9vemIfhWG+l4XenuaDTgQDjDFAcjbJmWSMl0KwwDEPkJZVCjLBrAwwSyEghYSSzspQVOxSFxAyM2MqPYgqu14BpvdblqVnlx4wWWpIB5TBOlCZYYcMCQE3uQIhODoWmfdCsIwAMgDFeCLxOR4f6aQDSSvjvCjjvlBtyjf25Z2POo0liYlXK7NqxRwdm1Q903TNOjfNCpR9C5KS4OfOC2ZjNywynocyzCbCQNKxSQaO3CfpolhdwgDHILnJ1czykftMIs4XaaIQjYmpTW95Iben+aCTJvtDBZClDsGRCLDpAWoAyZUwYFlFWHNWGQOmkgIlDMNUIjN4IRkIcmCUMWCSGVZCGkIVxg/ogJEDpjWzJkETqPIrN0alc5cJY5Bum0W0+kjXvFdNQm198SSVSf7eYGrlz2kuZEGDJL/Jc86gIkn1dBeKTsEEq1KCfNYNBpClBuWZib7rOQapIXuuCReQljkCsOsauhQQkkA2yQBQmVebQDJgk1KGLDICRxet6jKKmIjWPJghPpjlI8+rQAWXo5LNCjFTJqWF3J7GkXF18ikNI4AsGTgS1YeEpGCFh2VV5tVqnxCwAT3C+zINszT7lZRQzrfA2SXlFvQKQCXYpQNQpQPA5BGvYH5JD5pAe6D0w7jqATx86IfJoJMlo1mRMrWyccNz1U4WNEjym9xknpkNGfYh2OJ1Yg3fvTSEgdln/Rj+ZVKqMq32MmitIe10aVRqkxzcndZOMOvWy36Z9EWaY5u1rgAy9EeOmnm9miZowk9/5QDS+yHZsA/B2GQQzToNgFzQ7WkM2VidDBAaEHQAWRJBW+B04FiPdnXnCa8uWDdd2vkmhQgBUghYBgkPkn6dzLoSAtL6LhH4LhkwOrDkvks/M48FU9LeJBsH8PhtIAzqiYW7TlySgVSkq0uGwId7OGtKHNG6CU2twAIHSS4b83LGL9Wo3nCq95o6ZnPVyQXtiDbDPvisBsG2NcmUpWGUWnpQdGbX6hQSZd8CpJQoBwUzs5qJZE1GEXMNPQQkHSi6c42add0x3WxywpepRZXp1QGk7E1CuHkC/TgxE7Dj/JDUAJALvT3NB500GfNqxSSrpYZZhpGuBhSd+TV9bgqsWQ78nF4OJCVjmgFICgeSPOBHQgkJlTFg9InTzSwk3vQ6AjB9+khnegWmBZRBQI9SVVuXzKTqADLyQ3pTbKID2ZlbN7FsjK+k7Ys7bg96s9IplWknONAF7Ayq4B2pIKT2JlfB2CQAm1vSzJPnT6MkdL9ikHpgpgcKp/8hD5hOYqCUPLKV54ONpgGKwVHZIR5+vVeNkawYpEnkDGZmdZGtPg/lkF5z1542rU6GKSIJkDGTdNsV27Tm1iATT7XOp2dzEa9KmmEhAGOUAJQESguYZt2BpAVNWfkvlQv2Ub2QXWoNaGXAjwf7uBlKOGC6n6rWpdU9yOk6AigdMAIIGGITQNZMr5Ktj/nsZkI6kGyQcR9A00s57Dzj+l+2BJ3cyyFgXx6f99GaXmVpTK5Zz4SgZzkkDHvk4GhOJaEHA3u8hOgXJgKWJW+WOZIZRFLCs4b4c/rpfzLPIv0UQHlemw4os5Moex9k1qslMHdjJH3iAAaMQRquMe/3QmxPc6FT6cGvDpBVlKthjmZpo1+JzHHanacOmEAFjgDLFyydGVV40Kyy9BhTq2SAKW2Z3yfIJ8MI2CUHxZSfkk2OLnRpmGc8DyxpQOWjO8JA5UN07VnUTakBQKZ8kZtYOpCcIRnH7JM6ZjZkPurkRUgAZeWXtAyyYpSlH79FMjSvAtbv6H2QCmV/4BkkB0sgBEnZAJIiAZApFmnGStbBMZ4KyPkgk3PluQllXTTfiKjW+fLs5mN7mm2dnI8xbWo1ZZoYo7TgOCjJAytggJYnrygjoAwYpRRQtpkaM6qIQBNJwFQkDLOkyhzbyC6BKNgnNMeajD8VYLr5LykGTKCVW4UYSNZAUMokeKaiWufs+8SkA8kxpe2LOE49tKw7E9eaK52SIqUxzfjGL5gPsqzMrVleBQ1keTWOjJ2K7FdEWh+kY5Ums44Mp/1pmESWD/kAEgxSuWTq1Vx5spdBcr+kZ5jVHHnCTX+V8ahWBpC9iTCiLxHu7hNbO92wsNvTptApNLM6AAwB0oEmARiUGqUFSBfxqnUdLAEksz1JP22IM6Fa86uwSfVtWa5EEjCrQB4Gkoxdct+lkiJMVKAZYMrIHCvttF4OMAEPmgBMuS1L32wZrAfWkhgg42w7CVPrXPkinXQg2SBNzv2ml6pNnZSM0xPenHSqV6yAUbht1/Cd/zHvGXC088pxfThQuuAcAD4DT2l9kTKaQBbAyElkYxaZmkBWsvGaofk1AkfHHnl+yokqiUAAkG5MGPdL+n9aT6v3vKW2p7nWyQFkYUHOgWKh6wBZaMJAa2gNDLSGyaeva0DpzgvUmaQpZOZW2+A9QOqKVQ50GjAzGYNkyC657zKMjG1gl1JVDNIBpgJcUE8FmtZsa98qEf1vQXIM9s7XAnJigASCYLbpPOeZkAUNkgLVCxL3LPmDGPVQ+Dna1k1JrMcWoZM1q1br8C+H80tCO3NraQYcAxVYytJMQMyuLZQbC1n5H32wDptA1iRnDoGy8R5ELJLPkeeAMZ4fj6fVcgmc43ys3DfpTKy1QdPRxyEVydeod9N9xxbanuZAJ7csiZh5Nc0gHUAOSsJAE7TdDlmkNcdaJgo0gKSVGCilN5UmWKWWNcDMlfSBPpxdKgk/0TiPjHWJClLsUpC1wjDA9NN7uUTsQDAl3tBnEYPfsDGRDQE7cy0LGiQJ7V+ytudrI6Ne2FF1xpF5oVNkboEdE2ZeCu3NrcL7JismSQDEoF8BpVSgog8plZnZQGoPls6sKvm8eDyiNQJKB4QAY5PRpLG1ufFsppBgbjwbaFQDxzgvZQogR4wHmwkAaHueNjIv2lPD+UZJG50ANtxDM/9jDSzrADkoNQNKCoCxCvwJGWWTeCYpBVAy36SoQDOXAgNNNcDMS4KUQC4lMgkfCRuwSRGWO3OtS4OnhIR07NLlgnWASToATA+MbQJ5gKCz7JcJgKS43iaSBQ2SqR6t2x5WN5amlz71Urb94G3uOtV3WPbI/ZL2l2KTNcbBU2NJaRIzSwlhp/SRbB68eA48xyJT84RwBgkgOWFsMAiascZUDkpfxuaIJAaOJsQ9ZJDc7DqMRS7k9jRXOmlyJtYKEAe6AkUOkBsKzUCyMrNyoHTAyIESMNGwQDoRehDtKiPfpPUnSguSKcDMJSFXAgNhlrmU3nc5zBRbcrYpqut5dumn8GoATGDaQJkEyE0csONkQYNkyrTT9JFv0/sd9WIOOzb1MdhcdWoESldHCBOUIqRdam9mBWCm7lGqOpdUFhSVmUhWW/BywT0sIXObOfCC/5HPh5eY5ic5H56MGKVjmGxyWWQcAFkUawSOHjSFBMUJnRP3NtA9Ucb3xcdsru1prnTigToDziQjNpkCSM4mNVnfZACU8ENCgGr8ZDmEUipLJ6vIVLPtzKqDRsAk5Fp4dplL8pOGx6bYGjgSZ5nGFCvB2CWfIDoFmMw/Gfsma88tHu6UsKQMk1HfmZmSBQ2SKRn2MvHeb5uezTB/S9vrbo46mZUIBGvh3cR6jnYWA6kgsur8btosoaVfVuBYmjnwGEjyLCACMNP+DLsXLBOIWUbZQfh0P1kEkHG5XfqhHUKOBkebtzKZhitxjxdqe5oLnVKBOgUDx0K3A8jA7GrB0QGm+wGw5w81KzV5YHSScaC0PxO4U0W3OpBU0rDGgQByLSEFkGsy+4RArgXy0rBLqYU3xcbgqP22yRnr2CcJVDlm3ZyXzj8p4QHTvYcUs0m+HbtgAA+QtXGUI57dbEsHki0l1ft14l7e+CVu0wveEnUaBkzO5EpuiIOdaR1CGoAp4IESgYnVsEkz35205lk79x3yCjDZcYEpT5cVADrxU/rYlzQ1/x1f5z7JGBjdCx2bUKXcaHDk99b9XwupPc22ThWDJD+EIza1NgHkVGEAsWCA6c4Rg+OGwrTPGDBNWd3ioWy7VBFQZgwwlRToKYmBBcxckgdHEwlrQDJXEgMNzzJzKTGI/JZUY5Ku3MxIoi1YuqhYc+8rdokUYPqbXEVr14SDI9BoSdlU0oHkGBL7MOOe6rCPW9MLjRH7Nked6koy5uiGNrAAHgOcdqwWA0pyS12lqENZ1sysAEyGECCcGJate7NtoFbFIJNz4MU+SQaQSWBkplMflJPalwBHzmhiicjFgmtPs6kT9z06thhEsupq30CPBki37JcGIPuFroaN+J+uscq0lDWANOvSb09kEn2pGWCSNbNaBqkFCik9WA6EA0nDKLVEEiyJDBhqwIOjA8uKVdohWcJF29oYA6ACTLsO59ZI+CqDnMWJ9aZnN1fSgWSDpB7MsF7tKGn6aLh9bT4em4tOgUhZRSk4UCCTXYdIQ6ACCQ6UggxokZYQ2phYPVg68CtDkPT6DJlBPQBGoALHGBDtPm9OdfknHUvkpmJXrsLyUayRYEGRQrOfv3WiKksBZfB/YcttT7OlU5iPNYxkLRibdD7GDUUzQE6xfQ4cNxTVehmxSg6Ssdk1lrrJtQLFflEHzF4mMbBs0QfwWLDMlEBJAqVCxSwtWGolkENC23kslQVLkhYwBfwwFC2MGdaMeyYLqs4UawBTOMDjw0PiMqDOGtk2t0yl2tNcSAeSTFK91NS+jZGm8zede3PUqdqomCMJbYij81Xa/QTtwdEDpe2FirzngZC0hEDuGSTp0gBYYjaCoS9PBJKeGdqyYCofFnFHLvKUg1+cbzIeDJ0Y4uGAMTXnIGB67u4TUbIPTwoo+f3fktvTbOgUmFi5/9EH6jCALC0ARj7IFED2Cx0BZMmA0l2r7p904tZj32TIJEOTay+THjB7mcSGQgeAmUtpgFFSjVmWCh40S3I+SGOe1YKghYAGGQuqTABkA1g6EJMCFbt034N43W1ziYCSL+Py2ZYOJJmM6glvCtkcdUqCFDOveuaoMqAsKqB04KhtNh1jywGQQbIpe4A8PflrE4NsmuPO7uOzFNRAMWEqRQSYoxhj6ZgiVblAndY8ANANB3C6CAFIImgMB8pxZHNsTzMtMUCa/KshkzRjJRlA6jRAcvDkAGnWQ4AsIrAEgLpvslrnQBmbXfmvX2gLlBr9QqCXKV9WakKZUcAsS0nISUJLAU2wS4KWEppMQFBJhFxKkDTPQAlhxnxafyWRgJJkXmkpQDDrQ8ESqNhlk8wjX6STDiSHSGwialofJjNdb3PQyRwsvXlFWEggITyb9MdJCWjAQoEpt4ApWDJlIu0BU5CZhy+YrmfU/6KU18HrZ5cxIAZsMJV8OU5KLiOWCTefoM0NHcwzSP5/B9I+SDc5b/zRUfaj1gYot6T2NJM6pQAyzKIT+SE9GGo/NMRErzIfZANAurIYHFMm1wAobRvhSc+HgaSSwrNHJYWPki218gFDE5lEmRE0SWhlwdEuS2aCLcmwSHu3ADPXiGWPApAEKq2LUZtxltBkWaV5ehLCmGZZB6+kECyB0YA56jl35tZNLO4l4w+qaX3UOZq2uYxzvvmuU7Wz8j8alKhHuJHMIITN2qE1QAKCJGLHfzLtVRyt2qSD08+tR9GkI0FxDLaYAkUOiI45pgaR+3vCmKTroTsqydnFQmlPM6kTwTwfN98jUWhaNc+x8kNWkaoWHP0wDxakMwQgQ78khesun6smUKK3xLuAwj53NxZyGKP0oKjJM0sPyhmhJIlSwptgh7FKLeHHVwJkYnCEaYuOVcJ046Bg0ts1sUpnDQFsIBB7Pm2fJZe5snx0IGklfhhxz1VE5U3HNZVPx7eyOetUHRD6IThj5OcQgHHGGZyswBKogLFtNg933XjdgyQDRKdXEyi69XjGdFSshHQdFGNAjJljE0YKYT7YUjAmyXrr0AQhRfCRaSubc3uaCZ3qrNEsiaqEAdzMahKWu+TlLjFAONtHv6wD5P39MgDHfgyUNl0d2Z+bEYSGdJyEy+cqBUopTBtIAGbFIilalyi1qvyhLVilfyEhUVJpI2ANmwQEFAiltuySzNJ16AwgplklMBos3bOfKyAcJgseJIcyoUjiF5iXjao7zsPeEnQKGryQBp8cxjUAJYT0rBKQ1bhHcmcbncXDVI9MqoBniE6fYYA4LBLVsUX3cY1BkW8Dtgzk18H2xSLtTRYCIJsyjDNJcndWEzIpWvsnt4T2tLE6uXkfNcwz0lQtzbO0YOmGglDdzOr9kLoZIPl2DSRL7cGxLLQHxQAoE41DsActLUAKm+g8BsxmkHS/ZlZp0ICbWqugnpwEqrCyCigFyIa9mqWS1nQ8AijdN4K7D2KwnA8ACXQgOfJBpF7K2X54W4pOjRIzSsc2XYi4m8xV1JnjyPNzIGTbjebVGQRFB4hx5GoqSCepuv06uHilYOC2rnxC4wLlltKextHJ1fXPkJr9kA48+TN2CQXMukY8V6Qb6sGjWFOs0ZUNSu2ZY2nXPZtkZlevPwsCdXZXKYVJeywqYOSAqTOJkgg9JT0QuuCdcKxmyCrRAxxrdOZXZBWLDGOuQ6A0JtaZA8r5KAseJGNpa8Zpu28mPjabrU5RGLdnk25YSMwoHUCyoJ/qBAkTa1PYeJN51ZXPEiiGvkj3f9sPILtZHCz5VHtmjJkwA7XBIgRZ0IT/GE2DUfprYjNtT2PsA0KAjP2Qfmn3mdyqVVq6Chwd6wzNrBwAeRRrikUOSg1dGBapGZskb3atGGTNV+0A0g7FENbcYPp2IgBMqcmCpVlyoBwlZUaopgCw79oYQEnM9CrIgqDtfIwyvcYyXxikkw4kI2lrxmlzTBuzQRu7++aoU3JfZHY1ZbDAaE2pDsja+B2BEAjZdiMg2n0cFMuy2afotks9HBA5GLqPMFBFLQ4L1PGzPEhjvvIsEgLSjkPTAj77iQmwMOvuOOX+fWyZ7WkcnYA6QKbMrBoViySkWWRpwbIaM2nK4qCc0OyqawDp2KMzs3Jw1FT5J73+bF1K4V8Z4cyrugJNlQmQNkM0VCb9cipgj02/OPhtPKA0vlLTaVMwvkmyewUsMAK+faaeb7xrVHuZa1/l6C7GRsidd96JlStXYunSpVi6dClWrlyJu+66q7H+YDDAm970Juy///7Yeuutseuuu+LFL34x/vjHPwb1HvvYx5oeFPs973nP2yhd23bGUw+1bf3UcTRk3+asU3hQ5A+UVRRpwOakGa9IQpj1pp/Kaz9kPTPnZNYD5ZNsOQlSPZQiQwGJAhJ9DUyVhA0lYarQ6GtCv6z/pkpt61j/E9/PjhlowoaCcP/AfCjvL0qs79vfwPymCu3XedmU/bhuKDSmihJ9y14KDeYbg88CU2g78N2aC/1sFZ65bvyzm4/taRydYree68w0sciqo1NNZ6U1VX5MxiI1xZGqZWR2HQ6QZalRFgRdGLNrMShNHbfPlZXa/4pB6feVhUbRL4Oyoq9RDGzdfumP0VaHGLhDMK8Cjfq2DfJo3iIxV6a5P7zTwf29VWfSdFLIPz/t7nXDc0o963Hb02zIrDLJF7zgBfjDH/6Ayy67DADwyle+EitXrsQ3vvGNZP3169fjpz/9Kf7pn/4Jj3zkI3HnnXfilFNOwTOe8Qz8+Mc/Duq+4hWvwLve9S6/vWjRorH1i6OpUvtT5dSiDq8XL4fVHRWcsDnpZHaG0a1+7KQbGgIAkPBJAYaNnWLT6AzzOXKW6GN/KGSLZcQUHQN0jCHFFEttP6T2Q1HajwXAJtW1N8IxgWEz0ANsFnopoDSqyXWl2ZdDwoXsuNB706k3pWR78hoApIBAPWJwS2lPTTo1sUz3HIE0k+cfdhPhStbUDh+BypMLOBbJQTH2P7qyJoAkDV/m/JMARgbvAAiGgRAJCG3MrCQFBBk2KTMBIoK0Yx21JlBW6d2UJ7aeuEDaBOnar2tNGAizLQVBEiC1YbMkHIs0Sy3qZlfOJonIR+ymZJz2NNsyayD561//Gpdddhl+8IMf4DGPeQwA4JOf/CQOO+ww3Hjjjdh7771rxyxduhSrV68Oyj7ykY/gkEMOwS233ILdd9/dl2+11VZYvnz5Ruk46iaP+xDiFxdIv8iVgSK93BJ0qvX8ub8xdYwaYdQYNqQD1YcOQALk6iZUD5LMhFr5IQ0ouh5yDIocEN2H1Fx3PJBsBshq22c+gQjShDnzawCYZD5Ezk+5JbWnJl1SetXOx9oFN7W6fZWpPH6WFXPyzzwwVVaZdHh5PwrMcQCpC8vCrH+SiMIAHpdhsanNlCZ5OUmznwfvKCVBUkCTWQeMDor5I/tD7qWSxvmZ2fGWKq8AUgoD+oA0vk8y7BIwkzcTzPARAeNjF1TlfeUPqc1zber8pNrRXMmsgeSaNWuwdOlSD5AAcOihh2Lp0qW49tprkyCZkrvvvhtCCGy77bZB+Re+8AV8/vOfx7Jly/DkJz8Z73jHO7B48eLkOTZs2IANGzb47XXr1g295jg2b2qxHp8v1UuaSTv8vNMpAshUUoHG46J1dz1NZoMzhlF+Rb/tWCE7pmKQFVs04+PSoFjfNnrxAeLgujLhAQsGEKsghlxJD5C5kuajaq3TPE2Ym6kBCP2UPOmAiK4V3Fpsvu2p6QM5rq+Kj0skhM+Om1pdJwlAEhRjNulAT1vzqAFDBAAZBPDYfY5BDmOSJQxDA2DmPJbkGaZjlkYkhKyfpw/4xANO+DbP7MMBUgnl/bNKSJ+iriRqZJPuQWmiIHtQ8D/Fz4SVt2lPcyGzBpJr167FzjvvXCvfeeedsXbt2lbnmJqawpvf/Ga84AUvwJIlS3z5C1/4Quyxxx5Yvnw5fvGLX+C0007DDTfcUGOhTs444wycfvrptXKB+sNoetE2xlk8Ts857p1vMTrFZtdhEkXFAjxalK3PIDAWEVs02VbqoOhmnucf1GCbfUyHifsYSRt9o2xGEpd4WgmT+USKapya1jqYqcHl+yIJb3YFqiAf92FSYstoT/6j2BTUZduNS4M2VB+2XwfrFYOMhZssm2b1KKkyozq2WBbhsA8OkGX5/7f3/dGWVfV9n733ufe9gcDTYYQZIg4mpYBCUn6UX3YJ/siACSVRKxLplGTRiaaLKAVXIu1KgKwVAdPqSjU2xoVCBQvLKk0thhQTsLYDQoAoiE6oRZHKgFqYwYaZe+/Zu3/s/d37u/fZ595z33v3zZt5+7vWfffcc/Y593vPOe989uf7Mw7aCSbX5m+kvqfEHgkwFYB6pL0ZlsTeWzo5RhMg9zKAHIx0yK2Ujvm6wudSA1oI1MZGqPYgrG/SsclUNOnXgmaE57mJXJf7abH36rQyNUhec801WcDh8uCDDwJA1uY8yRZNMhwOcdFFF0FrjY9//OPRtm3btvnlE044AccccwxOPfVUPPzwwzj55JMbx7rqqqtwxRVX+M+7d+/GUUcdlT3RbSd+pS5I7nsOGJ06sMccKEafE2CkMTTjT4HR+5r8PsGsasACMhJgbIJkDJAcDPMg2f4blct981GtDiAVRS06M1ptAlhqV5yaogxtE11rfgVMw09p3x3jTFjl/nI/Cf4+qdqSm4QJF7lMvzcHljmAzE1q0mLnuXqro+Qzr6Rjks9xZGsMkHYd+SdDQTpaFlL5xuG1toBJrLFGYJWqkqhZZKrQ1jyrtYGQlskO3bE5g6x8yohGraUHy2FtGmwysMgAlnQuU5NrdM7Z5y4YsFpkapC87LLLJkaSHn300fjGN76BZ599trHthz/8IY444oix+w+HQ1x44YV48skn8Vd/9VcRi8zJySefjF6vhyeeeCILknNzc5ibm2uszzHJ3JjFPDymMR1NmmUfyDrxffhzKscY7fJ41hj5FU0wm6U+Rm5Kpai9GCS5TyoAIwVvcDDkvqy2jg5AS1cHYbsuKGln/koIaBXAsqdsgniupVFPShuxr4OfEhBRPqU2gVUa5EPxV9v91GCMyTtv3GsyE6+0cLZIFEg/k2TIW6vkANOn+xAbZGZWyosMATtNgDSuBZz9qXHxfgJI/m6k8mBppICCRD3SMVACCOkbFpyEY4mcNVIRdv6Zs0nA3nOVe7cs0lozyOQq2ygjnfOMcBa52Ptp1jI1SG7YsAEbNmyYOO7MM8/Erl278MADD+C0004DAHzta1/Drl27cNZZZ7XuRwD5xBNP4J577sFhhx028bu++c1vYjgcYtOmTd1/iJNpzESThF+8rvtxU1LXffcXnZLJY3ZMCox8HWeNdn23HEYOlDnW6Kum1CYCSb6sDXxVFQ6SHBTbOjmMa6LLG+jSu38JYVsZmQCW2gCVEtBGR8Wned6aLXFL4Igon1I5H6URcPmWvDFu+3Vpk1ndT9EzlLq/pKCYNUGy4zFwdD/bMpa2QJgOkgbt5K5tamoltpjWZw3vaAVIDpSppEDpdYSENU7oCCi1MBDawAhrKRHCmnqltABXi8l5lPb3WX83pcaQybUHeAAFmmyxTegqtfkjJwm/n1ZCZuaTPP7443Heeedh27Zt+MQnPgHApoCcf/75UdDOcccdh+uuuw5vfetbMRqN8E/+yT/Bww8/jP/6X/8r6rr2/sv169ej3+/jO9/5Dm699Vb84i/+IjZs2IDHH38cV155JU466SS87nWvm0rH3D9qV7aUG9tmMsrt08UxfSDo1DZupcCRfI0pIBJrJBOqf0+AkQA1BcU0gANIWWTzga6cTykFSN5AtzYyAksqE9aTZGoFAA2MAOrSgIoFNTmzK6/KY4Tt/Qc0224B0wX3LNf91PhKBozC6ACI48ysQsLZHi0+Gm3brCGwSUpBCCZoy3x8CUBmkpVJoYucXxJAFkjCzzDROy1HdVrNeIDUbX1RAUDXkJnuNwSUWhprhXDmVaMNtDSR2bWutfVpyrb7WaPWoWJPTyKwR/ZzA6NEp4x7MsUC48vQTXs/zVpmmid566234r3vfS+2bNkCALjgggvwsY99LBqzY8cO7Nq1CwDw9NNP47/8l/8CAPgH/+AfROPuuecenHPOOej3+/jLv/xL/NEf/RF+8pOf4KijjsIv/dIv4eqrr4ZSHVonjZGubIn7SqZhWPRwMMnygazTOPbYBo52eXFm1WnAMaxLxjJgbOsoz4M3AGSBsil1hkHKfBcHB5adujSM4IDSnnGKfKWAHsXMr7ztVq59EYlI3sf9qkn3U36nDFvU6ToTxqYiJGBqG7BktP2xQkJg5IFSCunZpIDxihIwcpappMAw+RopRdyvqkVSsAxAGXzUABol6NoAso1J+uPAXnlilLLqu/USGGnni3SAnGGTnMWOMxvTZ29udYBJv2WxBVd9R5OW3Zf6fFpumSlIrl+/HrfccsvYMTwM++ijj44+5+Soo47CV77ylWXRbynS9UK1zX5yF3upN8Bq1CmVSQCZY4+5gBweqWqT/N06hG7yKTg215mEQQYmme8mn49oBIKJdRxIEkASc6R1/Up6wPQgqV1xaiMavf9CqTDWvYEDJWOREbNMi08b42toCnd+x7HKaSTyK44znaag2OKHbH6BfVoLX3uXjgsPlEJIX1iBmv6GOCcXHSoQTRRSkVMEmEQFyhvgaDyL5GPbALITUDpGGY2Vyn6XaGeT9P2i5V7mk8I+fR+zpRKDnCTS3VtSsHe3bdze0zyfVkJK7VYn01yAaS5U29guYHSg65QDyK7s0fcBNM2AHO5zbGOOHBx5PU5eTcV+blZWSSMa8+bWsJwG7KRskprlKmkjCwksCShzLYw0y4ez7AHLApTNi6in+4w4sKYVDPm+bFsuOCerVlJpyYKlTYexhUM1oEcQsgIZqsnkSmDJTa0CIYgqlbYcv5ykJtpczmNgkgEQU4DMpYDYnyv9uJyVU+tgds2xSSCAJxAXu8iZj2lMF1BMi/W3iRTjt0/zfFoJWdMgyU/yrBnUJMnNlg5UnaJZYsIgcwDJfY+UzjGJPeZAkZtVU3AcjHTEGnlnh7YE8hxAtjHJOEk7CdiRAiNtfBg+geW4JrmoHDgCACRUbdAwvZIf0lgzmzCh/5+S7hwLG8afDT+cFF3KH+SmuTwVGHI/ZHo8LsQgcw2zZWWBQQKiHtlG2UZDCsvUtbbmZklgKaiXRXwXh6pH4ZxIIaLJThdpKwpgtzXTPegzB0hTh+1CKRitW4HSBvXoLJsk0dpACALp/KSOy3j3gRWZILXXRwT27t+FWDZwW6ln4ZoGSX6SV9IpPA5YDmSd+P9b7n/P5z0mDHIcQI4ywJeyR2qWW3vAtJ9TcEyBMVefMwuQiQmtTagxLtAESTKzjrTBXCXZd4QmubzvnwfDEQcTu01qu0wPpDqgIegKEmBKiEA43dNLAA1gi4CxAXQZMEzes2A4zvfY2hqttu+69i3QhCSTK5xfkgGlY5nEFI2gCYM1B1pGSWbXUBaQfJGUw0rCg6yWKpNMqhwg6TMHytzxhFS2C0iiH5lcZQaipgXIHLP2xTEICN2Q1NQ6iUW2yb4ytQJrHCS5LOUCpBdw0gXNMbTcPgeaTqnvp83MSt8TmVVbAJLyHTlA8i4GOfaYdpQn5sjBcTAOIE0c3g8wH1PGp+4DFaTACAjtjhxoUmNc3kV+rqUHYOj7p2HLbUpIbVmkEtZPNXSsUkllz6QWkJJKhiEE9riHlUZokBRJGm3qP5toe7rcBojjmGXDvMo/8wpMzMzqTaxGA6qC0CO/3QOlHsEAkLKygR/CVSASAkIY39jaF3OQgNJ2DH+gK4kG8KQTHelehH2iY+CP/blxwE4KkHy9ULEvUgPuWhNQdijaoU3LRQ8ybjJA9y43T9O5BII/EsizyOV6Pq2EFJBskaX43rpe/GkZ2f6uUxchwCSTK/kgCUxTBjkJIMN7zB5Du6D2hrkRQDJgrB174wWqvf6Z2Tfv3kAPTuomX7tkbAJLIA6cCIw1/KvyupoWHO0Dy1ZHsQY4+1mjr6SNbMyYXek963MbB5A8GIfGJEyzDUgjAM290zkjqwLXzTFC31qN+yONscn1qoLRIzscCOzS2AbfnE16gIQ1udK5kFTggbF+Xz6wI5MMfRbHjHE5j4uRlE2muZPLKaHgRf43Kwd+BIF0XoPvt8kiV+r5tBxSQLJFpr0AbRd23HGmBZgDQadxx+EsEoBviks9/3ytVSBrYl0MQKbrCBhpecjaGqV1NwH4xHH/O9qshEDUSR4AFJUN0wa6kj4XM99JfgT6dw2mLXccbVmlFLZUnRK2pZGUEiNtUz1qDc8mJ07BM2kZQtft4KhbAJSO0QBKd+6ILeX8ckDzoS+VY1G1Y4LWD+nBEnD7yXBfCuHNrsqtJ+boTbAuD5CbXMnsKjlAihggUyaphJ30CAYmZDGYhIUiF6k6hUwLkFzHaUzHBHTWahHYJJ1TCTRMrW2+yJV4Pi2HFJBcJpnGdJDbZxayGnXKSZRLxvySPh0E8BGs2pleqa4m9f7rApB/N6hbwbEBkMbV2tQmKk7NK6pQzhvXP2WSxBylCJ3kbd9pC462s3zoJt+lnVH8kJa+vqaMAFKF4tNGeDap6NxmnosCDD9zAKlHeXBkABoxRcY+OSD6ZHkyxbaVYPNVRgFIBWAII6UFBAeYxmgIWXmfpADsOljTrCDA1ZZ5KiGhHZvU0l4vMsHWzORK7coUB03BAdJGI/N0nvS6kws1fBauxqrwwTdtbFIolTW5kqlV0HkAouIC48AyjdxNgTJ90W+T7PdzYLRA6c4ZmVaFgITdRmyyzRe5vzyfCkhOKV0v5jTj0HHscnzXatOJu/BCjiRYvz/jzazkm8yxRgLNxQKkfzmmyBvmxgwyAGPOJ9kmkanVPXhkJSCNBUvq+2dZZT4UPxshKwSksPqMaoOhMKHsmLSNcelIZLoWwkBBtJcRy4EdAaQexcwxBc4UGAkUtfZgaCaBZF0DaWEQqUIYpQNJVD0Hls7UCnjQtIyRAWc9smxT9SM/pH2IiwCUzuTakwJDH3RCPks0KiSlrFI4awFdc9v/Me+bjErMsXNgAVQ3gFJkiqXkQFGmaAQ02C3JpPQW+7uIPbJ+p8wkTaZWf05FYJGKrCdjv8XphemeTyslBSRbJHUQ+wdNh/GLNVdOukkOBJ2kGN/GiG8iXyQxSDKzak3vhr0Do9p4f2ZqYuXBOeMAsh6FHoD1SEfgWCemV15qDMgDJT2wjIl9kbxBrmAJ3gSWQwBqFD8OQt3X2gf5DGrtHlaWTZLvtJbGmV7tOJr5m1Zk5Bchb0IlgOTMkoOj0HUWGE0Kkm6M+9HJVzt2NeIsMoCjUApGakC6Y1Q9QCuIXj8GSFhg5IwS3uxaxWwSLijMICo0b8sDWhM2vXOTa+4l2UvXwZIQrrv1BUtpTeAElFKqUG3KBd8QUKbCWWRYp6J13GJBoE2mXwCx2X/M72mTnKlViRgox7FIYHmeTyshaxokybzEHxu5izbpovBjdB2bk1SPA1knvy7z5ROKLgGAN7MGc6v2Pr2h1r4gdQ4Q+eeXHMMc1jpqiBuAMvQH5ODIza8Asr5IAM7E6n6re0gZI3yDXKON7yQvExvoIDGH7XVdGmy3Bu0fZLwINwGk71Li1htj8yupUQNfBtiDLE3DSAJ4hK5jVsnA0ejaglsCjB4UeW7gGJBEwxeZMEgp7Xuv74Cyb4Gl6gMVu89YWoi9AAJCW/+lEtKCpCN5ZCKsYTNrhhLoKVuqLjW59ivproWMrkPql7RAZOLr3mJyBXxyjz8PFJiTBunQeCEVJANH4bqCiASRvBUDAawJLHPm1ahUIjMz0z1i+53GptYIKIGJLHK5nk8rIWsaJA26X6iux+sik0Bp0phpZDXqBHRglCZvavU9/hIWaV+uxZWGT/NIcyBzDJIAsiZwdKCoR+47RryBLrFJq+ekjvKRiVXDd5LnYGmPIzxYAvZhVo901EmeAyX1/fORt25SYLs1wLf8yk3hx5JJZjolQBR6BNSj+LNnkgZmOLDgNhp6cDTDgQdGD4q0DASQZOZEn2APxGkMSnmfJIGkcMAIqSx4V70wAeNAiT7g0kCEkN7sqlQfRgrPHg2MX64N0JMSQ2HbkfWkwVAw0JQCc1XouciXuclVSGtOJ5OrnxgxNmmSCUFSYz0CS5H4HgkgOYskQJTu+0X0GfG6MQwy9Uf2pERP2VfO1EoBOwSOykW0UipNmyzH82nWsqZBMseQ6PO4sam0gUjuwnadNR3IOi1WuKkV4GwydOnQDDDS0nJpcA4F6HCA1N4nGdijfx9piw0t/shJ3eTJNyWkgFLhQQWA9QCUvqURyYClInDA5CymJyW0RDSJIEZZuxxUa1YUjfS4Rj1NXmicvxKAxGgEPRpY8KN3B47EKCOQrFk1mbSQd8ooU+ZEACGlY5A6gKU7Hn2f0D2gj2BqdYHBVFgAvshA5dqHwRaCd8vKmWEtKNpr5M2uDjyp5u5gJNiyjkyuqpIw2kBW1rTexiZTSYEyvp9CsI5ovGQEiDyaWjC9aN0k07GSthtNTwUWmYtqJV8tZ5HCg+Xsn0+zljUNkjlTYesEm22fxLjaPo/bNwcuB6pOxCKpC4MUIqohOe64QABHwDFIHXyRxCLTGqzNsnPBB+l7/SUAyX2T4xrlAmgN3feh/d4kRh3lpWeWJKqyOY01A0gpbb6j90GOwjJnk20m13FsPdLT/ghmXjWBVRKL5EE8o5EFxtEwmFiHgxgcR4MAjNwEC8Qg2dbtuM3M6gDSg6XzTfJ7TgABKAGgtikjNl3Eml1VVVnfMOwEQhk02GRPGvSka4AthWeUtZGu5q7CYGSjXPusUpKujCsJZ9mkUhYwUzapKol6lPnpfkH5aOA0ijUFSGKRnDFS8JD92TFYhsL6TVNrv5LoycAa06jWnnL7iDyLJMCcZKlbjufTrGVNg2ROxl2Qac2z4/x3Xb/3QNWJ9GBR8q3CrZgcTInB8bQQziLTzh1pgQCtQ3AOgSUHSA6akdk100V+Ekhykxi1NOLd5GORkGnvvwZAJq/E5BqdvwwGBT+S8C2zYNCIUkU98lGsNnCnCZBmSMuDGByZ+bU1gAeAqfMgKZT7ISoBSalsKgiBJWORqAMQe6Ck4gMU4eqXB1Cqb5sIwwXlZNhkT4fgnZ4z7w+F8b5JAse9zOSaskkhjQdKYpM24xNZoOSpIUo2g3T4PUUAKSvpzayqklBKQlYymFYrW6pQVtKzyH4lG685D57BB9nzrNKCZ45F0vnzOZPun3xfPJ+WUwpIdpQcmyJpmzHNwpd3oOgExH5JAfvPJToqxQNTAqsMy2lB8kaBcgd6lPNIPkjOIHMAqd2DnwOjHsMm28xjRiqoSvlu8hbwXdd4aQOGeO8/zibb2xvBlxojvyRJrY2Pjm0VCs4hUORm1oRBmsEeC4zDAIxmNASGAzuJSMywFMBjau1NrmRSngSSUtn6rEJJD5ii6tnjZBhkZL4jQKEVUkZmV8gKStim1sQmNRBYpUsH8SwyYZO2zq5lk3HN3cAmVSWtf10CkhWKqEe2zq6WzoqgBbSWMDqkhqT3VBqkE9gjSyviPlEyvSrpwXMSiyTzPfkhOYsksMyxSJp0EVhGt1Z6bbFvnk+LkQKSU0jqw0xnO+NMCuNMD13MEgeaTlIg2xAXgA8fTyU1yUas0plagWb7qtxLs+hUXSe+Rkr/mACQOgFLEh6NSA+72r0TWMqqj3oED5SABCp4U6sUwrPIXO8/3kWet+7SJsO2EyckT43j+YINHySxSBakox2DJIA0tDwawAyH3h/JfZQEjLrWEUga97lNCCQ1A0kCTNmnoB17/gUxVMZU/XEwD1BVnhEvaScg6gFUNW9ZvUHEJK1Z0VZC6unAIsexyXQyZip7Lai+LjOk0hWC0MGa4uKcQwpIJg+S+7lzACmVZEzSmnqlpHQjgb6SY1mkBVDHohMWGaJd8yySXuHcW5nF82mlpIBki0xyIE8LHONs7V3B6EDUSVq3pO/1Z5h/MvgsKWVBYIi4DFyamxgDpM6DJQNDDpYmXc4ApB4NGuAYHvrNAtVp1wZ6TOrRIALKtP+fNsaXrKOUEwpOyrFIILBroDmhSIUCLGiZR7VGy87MKpzPkZtYU4BMfZR6MITRGvVgZNllrSNg1LobSEoHkEJJD5hKa8heFZtaXXBQdE/a8jmQSgHCFUAfidjsKkdQ0gbxVC46WMnAJnO+Sa0Eejpmk9wk7l/O3Er5r1rXkDpEu1pTq7aVkIRw94ELCnMdPbj4PEcZM0Xva3QAGUWwVtIzyZ5qM60GgCQWKV2eKJlYUxYZgSMBpoy7psz6+bQSUkCSSW6mk9u2FGk7ftuxD2SduLm1y3q/XYr28D8nHETSJskcCCmdQyfA6SvrJD5IDpD2wd+tkzwXAspgrpWuKW7cTd4IlpMpnFmY/Rb6PdH7BHDkPEbwz9zUmilmbsjH2AEgzXAAPRxF4KgHIw+KBIy5yQUXSqTXDCSllJD9CkZryFpD9SqIXPk2xPehBiDn4BklRoNgdtUuLURKb2olVqkEYJhvUjtWqQ3Qkwa1BPqVdEFhwi/z66Qdm+Q5sXTmefqQtRgEsAQAkYCkL5bvwBFAAEUh/LJSEqqyoOmZpWeJIgLIPl+vpI9o7TnAC0zSsUlLwlvZZNs1WKxM+3xabikgyWTSzGVfyIGuk/VFUlcK+OICEjaYgj4vdtaYAxSApW2Y+CHFWaRJANJkAHJSdGtbdwYN2IhRwPmgRMQmqf8fMd30EDkmOQ4gefUU28bIMRIK2knTPnTMIvVo4EyodTC3EkAO9niQ1IMh6uEIejhqgKNd5yYGidk1FaEkMBwF06KSlpX3Kmhti7cT4Kp+BYk9DVOrsDt6P6aRytnyySc5iJhl5YJ4lDCeHfWcJ4DYpHbvtWeSIap1UKkG06+1q9YDMrnyO0AGn7Tr6KLhcNxdhoZzj7YTWDrGSKZU/14FVklssq+a5lX7Up5Fer8jy4sMTFJG5enGmVmBffd8Wm4pIDlGUpPjuACBNlnucQeaTlLY7WRyrY3xQTzEKHnneDK50rIkW+wYSYGymd8YADNlkXZ7yiIDQHZJARkHoPTO2STpJv04ZnJtYZJdxNbXZGBJQBkU8qZWnvJhKGKUfIwOMIlB5gBSD0aoCSgdOBIwpmbXcfml3sw6BGSvCo2HHVgqd0xZ6+bDLFP/VUgFIRw41gKQoyh3UonKMiPHJo0zu1aOTWoTwHEkJWppcyfryjiwbAIlYCcwZHINYoFSS+OaZ4cShWkLtuhncJMrVdCJIltTv2QTIOcYQPr1nkVKVNwf2TCzOgbZYmZdyefTSkgByRahC9VmU1/MxR538ac53oGoE7FJKRhYipAiQpFzgHFVPJZmzCEGmQJlY1wLEObWT2NyFS7/TTkQJTYJBc8cfWWfTGOHruCYLXYtQvCOTf1wwEjm1ToULecsksysZjR0KR4hiCcHkHowgh4ObSqNA0wexAPELJLAMirBxoJ1TK2hlfRgKXu96HeNAKhaQ843TgJLH3H+yXoQm11rO0ZVlQMC64M0BpZZSviCDZZJwqaFGArokSy6NQ7ioeuV7/CifdUlwSdwwnjAbF4/0fBNWgYJxiQDQOb8kBwgvS9SCcxXspnywcysBIo98rlmzKyr6fm0HFJA0kl6MdLZj0jWt+3Xtn4xj/S1ohNnk5xFGkMFk6lkmG1jNMkfOa2kra64qdWPYUE6UYDOGKCMujywbTaYJ4zn5lhtDCSEB3EAnkVS8M60ImU4zxwzfRQxK2gem1xHgUU6MASleXiTawDIes8gAORwhNoF7ujBKBvhajJAycWaXOPoVtWr7P79CrrWUO44KjrGHguUvggBf8lgdtUj75O0zFIBcoSerGx7MRjHKC2z7ClETDIN5FnXJxapGowfADBAFihtqUJpo6mZL7Jt4kbACKCR9sF9kgSQ6/oqA5D2dZDb1pMSc0rGZlYpMa+mN7Puy+fTLGTNg2SOCbVJzmwwaZYzzfHXuk7kHzMw/h8s5F+FCFff304KKE05XGGWm8o0TWUb+ukmILaNaaaCxLluHizrOmJLgZUSmMagvRjDUi5XjYTAUrplDpDCpXpQ+TlvWvUFzCkP0gHknj1NBukAktZlI1wjNtm8O4QSrlSrZXlCSdsTstYWLGsN2W8+vgLg7mkkWwjnnzSDPbHZlaJddQWMBkDPBvHw4B0lDLSL9pxzlYzSlBAexENACTSDqwaRTrZGrxDGF5AwGjDCWKtCMinyJnLZLD2XRremAEmAaNcFP+R8pSyDTMysc45dcjNrTwpUjFFWSTRr43rQ78Rsn0+zlDUPkpMuRO7CzvrirUWdiE1SQQFb0cP4CEwBl08JMIBssiOg2fonJ9w3N0ly4JfmR04buEM5cGRyBWI/pB1jsqbWNsn1BlQitDDyL3ATN+IqO5xRjkZNFunMrGR+9aD40iALkDyIx9Ta+SmdSbE2EYvUbr1k6G7NrQJCCZYjadkksUijNVS2QfHAm1oFMUgyu44G1uzqIlstax54hqlU3/vcKgNo2KbZPCVkXtkiEHOVdIUsBNb10gs2yprGB7BAp0fkl3XRrcK4UoXC3Q/Na5q2u2oE72R8kClA0uc0mpXAcb6Kzaw9CVRKNKJZc/9e++L5NEtZ8yCZSldTQNdty3FzrAWdaLsSts+fcBGG3ORKfkkpjQPI8B+qpAh9ADPgyEGz0UpIiEVbcKfxQ66EjHt4ASGylZriEjA2arMaVyWHWCQBIwNM3cIg6z1xCkgI4jEeGHUdzNkpk9SulaRQAqI2tpWVEpZB9m2SvezlH13GBfAIJeHqmtv1FOU6kE2zKysyAF35SjyVSwnRJqSE9KR1C8xXlA5iTa9auRq6rhJPCNxpFjBXUkCNbKH6IRiblHFQmciUn0qjWsk/SSbYXqZQwEGMTXKAXNdTHhDnlGTgGKJZK4lQkcfdWz1J7NLphNX3fFpOKSCZSFdTQJd92mzy6ZiuLO1A14mzSQrgEcJEJtdKuo4KzDciGUDGwGn7/VVSZH1BvjkubCHquKUVmbVczdWMrzFdXglJ2eI4thzAUHjzKhAzSu6D9KZWCtjRzB+ptYtmZX7IwXiA9CBaa9QD7cFRDykNxDBWGU9TpKLoVg2pBIy2gGlTPpT1R7LIVu6T5GVQtZJQyqapuAMDgz3WL5yaXZ1PMgTxzPsgHjI1GuOCeCDRqw3mKteWzADz7r2WQF2RT7JKNEqupxQYuMpKvKBFW9COvX4JULr7OFdJh0yqKYNc11OMPTb9kGRq5T5Ib2oVcQus1fh8Wk4pIOmk64knD1HXi8THj7tZctvWmk50fAkLBpoBJDFMuy6AI7UzSv2SoR5l8xV1jncmK+oeH/1W1xQ3fFYsAjMJxmkBy5yptU3SSFQeoEGfSXJM2YOhSIIspPDpHz6qFU1/JOVG+rQPKhzgGKVnlszMSrmQ3sSaAGQ9qFEPag+OBIw2gMe4c9jk8XpYu2Ad4ZikhFAaqi+hawPVVxgHPrVLHamdqVW6wB0xHNicyb17PGB6s6sDRw6YlBLSA1wgj0AF6yucq2zJOjK71kpgzjSZIwfK9F6kCj2DkbadW5zJva1HqW+eLENnDn68fBRrk0H2lMCcsv7IOTeWg2MlA2NM/ZC+0TL2/fNpJWRNgyQ/ydOYC0yHMXzcJIc13zbJwX0g6wTAt9vR2plbhXD9/oxnkxTlSiZXKjpNJte+khikHeP5S4Tu8QAaydlpU1yquWrrr8pGhRgexZqCapuE+ptx01y7LQFLIbIAOcnvyoXAk17cH8kr63hzq+/aUTNfpGOULKXDgiXzQWYAsh7WMLVBPdAeHG3gjolMrcQmiUUC2vkiBUxtINy76jsAccdSba22mPSUBUA9cCkgUgLDngXFYc+bXT2bdEE8qmfZlXHmVipbl5pd54wFTC2FM7kKaCOBPmmQZ5QcKKPcStVeHIKAkfbnxcppmQPkun4VGKUzsfak8ADJUz7mnZ+SzKmU9pEG8ACr5/k0a1nTILlYk2Kb8Iufmg3SbbnZ0lLMnAeKTrSO+ya9uRXwATxplCs1xaX1VHiam1xTv2TaPZ43xeV18dLu70LFD2UOkPmC1EnvPxU6OaTCK+E0wFLGD0cu1NqIM2XpJhMCaATtSIHAHlmeJL1r8j1SxSHWM7KOADLkRPoo1wQg64FGPagb4BizSQaWQx0mMErAKAmhjK15yoJ+VJ+ztmBQF95UqzyjHO0ZoEeVdxiLFErBjIbu2oysT9LlTqZBPASQygEkN7vWCphvS89hQGkbZdfe2rF3TPszElpOr33KIOmYnD0So1zXV+gTU0wA0vslnT+SB+oE/yOZXPM/kWQln08rJWsaJNtkMWbCccvp8XKzpEnfuZZ08r4OAd81XgvASEDDwMA+nGwPRYGhi3INjBJ+Nl27mpptJlcpnb+LgFOHRrXUOZ7Aj7PJxu9L8iFjZpgHTnrnXeWB2OzqG+gmQUr0rqT0EwDJJg4hdYGbWMMYYRXNvmxuZO0DduBNrkPPIjX5IwdDn+YxDiBzplbqwAKgEbwjHF2RWnrQVH0FoYwL3MmxdAuUFLBDplaq/Vrv2WsjibnZ1b1DSoiqgqAiA3qUDeJRBtb0atAwu2opUSsLpNY3aSyyAgwog9C9yBuEt6WN5K99eBE4BpNrXChgvgo+yDaAnK9UI1AnNrtmTjldL+yb59NKyJoGSZpVdwGGaW6CVKZhYm3Maq3pRCZBJQEDm4cWTK/WNxl63MlQAUVJ38YozLLzNTV1ZSB9oASipriycgFCzuQKBEDrKilQEotMTa1hTChaTUAds8J2Pyv3QVqTajNoh6eBSO6P1CMLBq6pss2FDN01jA/eqUOpOa2hh0Of+0hBPDZIpwmQsak1ACWlfbSBpFEm+kzMsv2cW5OmZl1DuH9S9mxaiBn1bLTrqAfqT4lRSAchsyu08u20iEkZkze7AvAm11oJzEMBozoCytgfWTfMrWmVnlQ4SOb87ik4+q4evpqOnAiQ3BfpW4a5n7Cank/F3LoCkjvRXfxms5RJ9vwu65db9pVONgWEzIPNSFfq9TfUNmeyJwVGDhSoKW6jdVELm7RgiIhNKiVAMaG2qb2CqvqoR/kCY6k0QFIRY0zMt1I1yoz5F2eQzBdFD8j8ecsH7UjySQKRPzJ9J1AMfSFd7drBMBQtd4AY5UJq7cDQZAFSD3UEjsQqgdjcCgCiJpC0wTtk/pZaZosP+P0cmBKLrF1hdAJKPRzZaNfR0IGjfTejYRzEoyv/7ttpiQrGWSpyZtfaGMyzwJ090OgZVyKqagJ7CpCDkUYfaJhbc/s1fZL57h49yXIeMwDZXrg8DtQhWY3Pp1nLmgbJHJPMjVnMxe66X47JougEgAXxYDybtOXBJIbCWD+KCf7JtAIKvQYjbSNoKwmpiVHWrpURYIyJ0kEI3ADLANNQEaFUNqCHb+cAyQN2yNRKzJH8kcQqfX3OMS8e2erPX1KOju5326czX4qOm1qpP6MvQUcmVccu02LlPpLVBeoQGHKAtKkg1Og6H7gDhOAdow1EbQsJ1AMNo2xkaz3IRRLbMcDIMsckwlVLibpnO4vIijHKNIhHqsAmxcCXrlNV5ZszaxkKoJPZlWq71q5STm0EA0cLlFJwJkmRrRYkCSyBvLk175MMgBiZXFUARopk7UU+ScYqVTOSlUe4tjVRbpOVfj7NWtY0SALLG5TCL9609vlp9l1LOgmw9A8yvcLO4KlMGPkmfWK3DPU0eWI3901Se6PaGN9KiOq1CiM8WCLqJt+DHgGy6gOjgQfKRlRr0n3Cd7TIAKSseizfDT603wMmA02gGdEaPjeDdtJKO40iAj6SlUe21k1TqwNNHQHiMM6RHI58gQDLJMnkWkMPtU8DMbXx0a6ABcZctwuta8uuawuYBJZkak2BUirp8y+lEtDDUWjS7N51v7K6KgnpmKQZOkY5GgK9PsxoCNnrR2zSMPMrNWfWgvImadndkxTZKh16jiw4KiGs6dVqCFSBSVZSuImcTPySzahd5e6l1B/Jg3cIGG3EamCOtOyDdOR4gOSRrKvhWZAev/gkV0DSizINq8yNnWSXH7d/242y1nXy4eaiGcRTG+MCdjLdGZxvkhK79470WN+k1raVkS0sbh9EWpsoJcS2OgpAKVgLLaAJlrSOv0sPjn1vZqU2R6qSjEWGgtUEejzUn/xP44J2uD9SIgCm4v7IlElSAQGtPVgaXUdpH2Ra5SzSOGD071ozNhmAk9gjgSMRyTTdQQmBurZpQFrXkI5NAvCBrFRUQNTCA6ZQdlkoATEYBRbZq6yJWNouInowhKx6wGhgg7OqXgubFFFKCHrSB/FQAXSatFUymOcBhAgiV3puHgpKa1ucQAPDOrDHgQvcAXiT8LyJFkDWH9mTFJkaWGTFwHLescscQPIOH7lI1tXwLGh7Ps1aJgT0Lk2ef/55bN26FQsLC1hYWMDWrVvxwgsvjN3n137t11zSc3idccYZ0Zi9e/fit37rt7BhwwYcfPDBuOCCC/D0008vWd+uMySRvHc9pmH78OWi03idlEgYk/efIETgsfqT827GTOso9D3fcNaFvVeSdXEXHrRCXz7q1Sct+6v6/qXci8CPvzh7VMl6ValgZq1C5RRqe+TLjrnctZQ5tAXtkJ+J+yPJjzvJH0mNi42ufVQrmGm1dr0hfZFyB5jEIsmcSj5JCuChgB0CyGFtAbI2BgNNy+E1cCyftmndNNtylloP67CevpOZhTXlc7rlejgKzaNdwXaf8jIaQujaN5wWOgQ1QY/Y/ccYFwOaXgJG1H6qSsyf5Bfsu0LkVIz8oL5qfc257TR+XU/5AuW8vJw/vrLrqVAABemkABmzSQuQq/FZsFLskctMmeS73vUuPP3007jrrrsAAL/xG7+BrVu34otf/OLY/c477zx8+tOf9p/7/Th++vLLL8cXv/hF3HbbbTjssMNw5ZVX4vzzz8dDDz0ElTZanZF0ncW0zX5ys6ql2toPZJ1yZtcKIkoJoXw1W1NT+jD8tjZG0csxGWpRJavcTF77pshGC9QuN9znSGYKnqdMkkCTAJIAUTJA9K2OuOk0YpBx8jhNBipXkJrnR5I/UpFPkvsjqUZr6o8cDjx4UNUdbmr1ATuuBRb5IgkACbAIFLmJdTSsPTjSOwmPx6FYHSVsb1ElKIsimCBFLSCopBsrd2eLD1i9hFwim5SUBtJszkzWDW52JV/5fKUA1NDGscsKULXBUBjImqKvDYa1gRS2PVutyZfJzkmSIwn3fyBd5LdkkyNik5w98nff6UOGyeU4gFytz4KVlpmB5Le+9S3cdddduP/++3H66acDAD75yU/izDPPxI4dO3Dssce27js3N4eNGzdmt+3atQs33ngjPvOZz+DNb34zAOCWW27BUUcdhS9/+cs499xzF6XvNBdgmgvVNrbLDVh0CuvpGZGaXb0vSMT5arampm2KS2bXdX0LVG2J2y8BUZTlyBZEi/TRzgxGff+0tgW3uamV50k200Bk0rUBEWO1DNaxSurqwII95jxAdsuPHOuPTIJ3fAHzMaZWzs48S0uKBKRm1hDRqhsA2WZuTQESEBho44GSzKpchBIQ0gYL1cMaQskmm2S+SdOvLHuUCqbqA6Nh3jfJe05qBaGlD+Ihs2vFzK6Qwpr8nV9SCuOK7RDAS0hpMGIASWAJCN8eq9aITJ5kbaZrDVj/IQfKHreiyDh4JwXIngPJXC7kan4W8O9fCZkZSN53331YWFjwAAkAZ5xxBhYWFrB9+/axIHnvvffi8MMPx8te9jKcffbZ+IM/+AMcfvjhAICHHnoIw+EQW7Zs8eOPPPJInHDCCdi+fXsWJPfu3Yu9e/f6z7t37wYQn+TlnjVNK7nZUtEpFpotp9GulLNmZCgTVhtrdgVCpKE2EnVlPFimUmtj6QrL8OBAKaVAXWsAGkIDUijXoFm6wtQUkZkP3IkKUgvRAEjbKDf2RarENNxgkx3yI7v6IyNTq38PplbtGk4Tm+Tv3BeZskjKi7QmVpNlkvmsjqY9wQPloIbqq/Adyn6/dOCZskndqyAZCza9CvWAIl0dm+z1XPGEHkTVY4UGQlEBoeuQEiIraGbd6PkbyfaetG3OXAoIJKQWkEJDaoNhbaOrh7V2BfuJTRJQxgBJ9z8QWCWBY6WaIKmEiEy+FQNEighvA8guV4KvQ2bbSshKfdfMQHLnzp0e2Lgcfvjh2LlzZ+t+b3nLW/COd7wDmzdvxpNPPonf/d3fxRvf+EY89NBDmJubw86dO9Hv9/Hyl7882u+II45oPe51112Ha6+9trGen+SVdAqPu5mKTu3fBcBFFtoHE5QDSwA9A292paa4HhxZ8nltOIOUjQRuDNAASi01xIgA0posKfBEaMdqpYHwLFR6RpoWKCdw5E1y024OFMCT+iJ5wA43tQaTaj4/0prlxvsjbe/IOPWDQDM1taYBO5oVBdBtLFIHMMwxyWz1VcMXAlDWBoA2kLWx14aZXXVtsmySWKTsV9Z3Ohz5ZYyGQNWHGQ4hHKM0oyFQ9SB13WCTlBICIaGEbK0MBW1zbwNQhmUlpGOPztJh7Dmizlrj6rbSLSUZ4NnlELQjRcwmlQimVVpuA8j95VmwUjI1SF5zzTVZwOHy4IMPAkC2sa0xZmzD23e+851++YQTTsCpp56KzZs3484778Tb3va21v3GHfeqq67CFVdc4T/v3r0bRx11VLx/65EnS3oBJ13Q3Kwst0/RKT/O/kOLKEebyoQBxrX7CeN5mTCqjDJWHFCKEb+fHBsQFiyJVfrWRhqAEjD0LEzIKs955KkdivkgVSVY8BDV0Qy1OOcYmySzq3RpMBQsQi/Luu1LYLI/clzqBzVG9ubWumlq5WbWHIsMoBgDJJ2uLCjQ/7OhP/ZOsMAqIGvti54Tm7TvXB8L7CmL9EURehVkXVsmWTkmWfWAoftc9W3lHccmhZAwxCyFhFL9yOxK1g1rfLA6258hbVSri9gl8+rQ3T/S2MkfnYuqxZhIZlaaFHFwlGRCJYBU0pdr9MFvgjp6cNN8/B37y7Ng1ZpbL7vsMlx00UVjxxx99NH4xje+gWeffbax7Yc//CGOOOKIzt+3adMmbN68GU888QQAYOPGjRgMBnj++ecjNvncc8/hrLPOyh5jbm4Oc3Nznb8TWJq9vevFn3YWVnQK4oES8GXCaLnnzFzcP5lKYJMqX91kEMikEDb3UgiNurb+x5r1ANTawJi4YW4qUUUdlgMZusmL4Jd0bDIHkFR2zIf8dzC1Bp8lWv2RTvGsPxJoAmT2OjlTK4BWFmnf8wDZDNyxBSE04IHS+imdRSHDJiklJLwHsORsWNLy0IKmoKjWqueYZc+eh9HA1nR1zNG43NIoiCcxuxrHIrUAHPoBCi6IhyZbxhW8MDa4jM6JNuhBZFNi+L1EKT6+wD8DR8mCcshPTSZZAksOnLIFbVb7s2DVmls3bNiADRs2TBx35plnYteuXXjggQdw2mmnAQC+9rWvYdeuXa1glpMf//jH+P73v49NmzYBAE455RT0ej3cfffduPDCCwEAzzzzDB577DF86EMfmvbntMq0F6Dtwo47zrQmhKJTLLyOJiAaYJljjbbwADDfuPNDGyOfqD8SGAiBoRQYDRzAjdwDWErokfFmVqONfRBqA6ngo2SBYFFJS89R6geZXYNf0ppZUz9ks5g1fFTruP6RIXgH4/MjW8To4I8EkPVHknmVtufOOzev8vX2PV0fA+Wk9V5Xxmi97sR204Aj17CZWLOdGNhlwcywGDkmaXRgk0Jaf6XRPoqYigxYJmndANAiACWMY3cGQ+18kkJDGuHYpAGkDdzpZXgSdYjhDDIAJXzajze9y/i9lwAnsck22Z+eBbOUmfkkjz/+eJx33nnYtm0bPvGJTwCwKSDnn39+FLRz3HHH4brrrsNb3/pW/OQnP8E111yDt7/97di0aRO++93v4l/9q3+FDRs24K1vfSsAYGFhAZdeeimuvPJKHHbYYVi/fj3e//7348QTT/TRrvtCpjEd5PaZhawFnaqWCEOe2O19k85M2S5xv7+oNmof0C4pXEqBeqQhXZNcizOWDUgAaR1SEgJGWlZVqKbDAbKn4mCdlEX2XQUXW3OTm9fsix7a0Qvt/khfr3VM0A5nlPSe+iPteuPfuak1FQ6jfDsHPwJEPz4ByNoga3IF4E3AObG61wmzrB04st9fh8+ugoQ9V25iIXTdYJO+IH/t2B8BJANK4e5NLQyklNAaEZv054jdRzTBovORA0cBZEAwBkteSaeNQfrzNH7zkmU1Pp9yMtM8yVtvvRXvfe97fSTqBRdcgI997GPRmB07dmDXrl0AAKUUHn30UfyH//Af8MILL2DTpk14wxvegNtvvx2HHHKI3+cjH/kIqqrChRdeiJdeeglvetObcNNNN61IjmTXiznNOHQcuxzfdaDpRLPmRoQhQv7kXFufv4woadlSxZ4gSgrLKh2TNNp4U2s90jDSQGtr2jQaNqAoLdjtWWTIiUyDdzhA8gjWHGCS35Ea5nJTKxVcECL4I5Vk/kgyr46p18qDdkh0ApRcTAYouaSmVlqOxxj/HrNHDpyxyTUnutZQkI7pyoZfkr/T7zG1tiZXXUPQeaA+mlXPsjxKA6lFYJZ6BKFlCOIx9n7UEtYRjiZQGpfqYSBszWDhfJJaoMfPS4Ji3h8pea5kAEcBF6SFJkCSHzKtxTpJVvOzYKVkpiC5fv163HLLLWPHcLPUunXr8Bd/8RcTjzs/P4+PfvSj+OhHP7pkHdukzWnddhG7jMnJNLOpolNeJ+6f9ONNCOSxid3dJF9EWgSgdGH7wrHJyC/pTK72nm7+KwvGInPBOymDjIN1mNlVUNRiKDjQU7IZ1cqAUwBNMyutS4J2Guc+wyRzMq47R5tM2mUcGPLv1dIC47gxeXAP5lcAnj0LHVJiQKZmMq8ywBTCRs9C2gbfRlrTqSI6nwFKY5w51th7gYMlYIemEgJ2wn0pAJfWI3x3nIg5MpPqYgASWP3PgpWQNV27lWbZ/JGWu2iTLgo/RtexOUn1KDp118k/lIDIN0mjugJlAEftPzdermvD0AEkD94BAovMmcs8o3R+JekCdSjVY5yZNWWR3s8k7O/PmVqJVTb8kZxRpuc3E9nq17Nl8vUtRVgXrNbtXUXXxgcV69pA9prrfQAP80uqcADmmwys2ptcjYYw2gXvWGCEN7060IQrZi7tfWCEcDYNxiTdZwHAiACWll0Ga0iu2g4BoxT2CBwc6Z4QAosGyP3tWbASsqZB0qD7hep6vC4y6UacNGYaWSs60XMkdCdKnwjdgLLJJOtsvdRaGw+WlONmdDOAh0sjcMebxEQUpEP1O7NmVik9i6SAndATMG9qFY5J+vqsHYqaR2cuYWBLAUaqojNuWy4gp4vIDApwsGwT7pf0R2Dngc6JZP5IDphC1y6Qx7FJwJtduS+SgNIYyzCFAIwJYAk44tnyewgY/bIIplW73AzW6RKgk8r+9iyYtaxpkMzNiujzuLGptN04uQvbddZUdJpeJ84mm9radZOAUrnnPwHj3w2EB8oGSLr3XA3YXBoIEBLA6TvSKjppV/l+pcJnngspqT6nC/t3QRm+wTLidBDOHtuCdqIz1fi8fIxRecwIZefCNhHtQ+skQrk9vg0AhGIdQpYoBIiCeoPyCURicqV0EAgZsUklZN7U6u7JGvbeEQYwCGAJtPvb6LYmYKQm2gSOxB7lGIA8UJ8Fs5Y1DZI580DbTdplBjXp4o7bN3dDFZ2m10kKHnQzHVAqIbBnFCIHCbwsUGoPlnOVdK23pG9xlNaBbessn/V1MrBMATLuVsL8jMw3SfoKAV9dR0mE9A+gwR5zptaURY7zP44TkdCWtFh5es5ToKR9aHvjHGaAMhViYTl22Vkiv2Te5CqEDuxSa0CMIFSfMXgDYez1gBbOoOr+CssqCSwBIPNzI09rDhxTM6vMACRw4D4LZi1rGiRzMu6CTGueTW+scfssZlvRKb9tWqCkvLO9wvkhXQ5b2kV+78iC4mBUexZJgJkC5LQgGXWVz/khvZk1ZpFSxtVVLMsIEwYJ5o9snLAkstWv5svtQCmVcHVpXbk+9kQWSkC4HpBa1xEY+jvD2D3jbexcUbAKAotMwZOKwAvlXrLJKicBJS80ILow5syEg0yuBKBSBLMrvOUBnlEaAQgTgyUAiMxtw1mkPR+C+SVDQYAAlPR5/M84kJ8FyykFJDtKbgZFEgwp7TOtWVzQolO7EFDambcJDxUCEgCiUpY9Ch3tJ0eAFLah894aEasMzM9gMKpRa4N+FTrKjxJGmRM6BoAIHKkua2pyDV0cQlSrLWQdilkL0EMysE367J+VbZV2SMYUFOAiXOspIIwXSgBDZ/rUEjUDTlmHBsqNu8Bf/OYTnaCOAyQHSunAsU1HDpZt4+y2xFRLEa5sVeSXtCusydUtg96JTcoqNrsmQKldw3CbMSTYaWjeN9JpQvcwQJMgASo7SOxRZHIg1/qzYKlSQHIKSblJOtsZZ1JouykwYVvRafE6Sf+wyD0g6Uj2ARnYpDO7ui4NSgoMpfGskkyssbl1uUyuqmFyjdkj6xUoeQEB6c2rZG4lUyv5IxtBOyQUydki1MGE3hvnWAnbecMtGyWhh9ov17q21YR0jeYVZFcyc6o4a8wBJbFIW+/WtRZTATg9u3QgKJT0r8bvzKyLIlyrHt8Q3pnJVRjp3t1nIb3ZVRob6aqNBUphbIUoinWFw1KVuVdTYAQQmVZz7HEtPAtWSgpItkjuwoybGU2SthuPtnW5AYtOi9Mpl0fJjyiELRUG2IfMHmELmA+ljljlUAsMa5MJ3pEMIPWUIBmXnZtjJtcIIBVvppuwRfsrXIALSwOhX51L+WjxS449r1JGQMPBSCrp8iR1bP6s7RhZixDI0ngE0rVg5ygJ4EkBsuop/72pqVW6z8Ec7ACVM0vPhtnvU9Jm6rdMCAD44B1hdJNFGg1b1ULDtoexZlcAqCGg3O+NWKRwDZsz5mYSDowcMJUUPognZY+r4f8uPe4sdFoJKSDJJDfTyW1birQdv+3YRael6wQ0gdJySAEhDEY+olX5wJ29I+0fyp5Vag0lDHrGsrqh1t7UOhhpZ2p1D8UpTK4Nn6SSrNUR6zAvyffYZJGcQVLxAArygIF/mHtGSedKsyjOtnPbEjnqgWdYM9YmvMnVKGOZJbQzfeoGUNqAnfa0Dx6k4xmkDKAolIDqywQsw2c5ASylbGGWUkYNs7MSyivlJxyOTUphf612QClEzCIJLAGAxzXxU0L+R7ssvNuAigrIZUKMA+FZsNxSQJLJpJnLvpCiUzfp8g9KQCkEYLtghfmoEMBIG6yrFJTQDhxdk1zHKist0JNUnNqC5bC2NTe5X5ID5KgFKKuITYaXrcPpWh8J3mme6rUK74/kLJICdjhQ+gdrJqpVdGCREfNyLbw0e8cwBO9IB4hkZjW18QDGe3NyoCSAbOMEqbmVSvgRQKq+8mZW2ZMRiySwFB48pWeP9Fu46dV+boJiFijZufN+Sbc+Mrm61BA4s6tlj9b0qoWdpBGD9MdITgUHRgDNFBAsH0AuRlbjs2C5pYDkGEnNDG3L42S5xxWdlqZTTwKS5aQRqBCbdMZBa2KVsD5KF3SiaoOhMJC1NcHaB5wrJmAMak3F1Kf0S/pI2pB+QkE6MVAGViklPIu0vyE2tfLUD8FNguw9esDzcyxVOG8ZH54HGykhlPM/ascge8o2PlYCCgo1LMuUIL+ggKyNrZ+qQx3WNuFBOjmAVH3lzayqLyF7CqqvHLu0LFL1qthMLC0gel8lM70KqRrAmAPPSGzh3iA+gMedZ8cmXfxOAyj9YZL0GMmoZBdwXM3/d7PSaSWkgGSLeCsVWzetfT292OMu/jTHKzotTSclACGF6/mRsEmYEAwhbfTrUJrAKrVBTwoMtcGw1uhJYOj8kFoiAkyg+eDjEupwBnAkUFRCsIo6ATSVgF8mFmlz4sJxrCmZiWYm1o5FAThQAgSWDFgc4EjtgKc2nk0q29AT9aCG1BLow/orB4B2Ua8SElLZYuQSzeILVJ1IqgCuggElB0gCRTKzSsYiVV95YCSwlO6zlDGbhFTwZZKUavdNiuZ6nztpNCBUWEeFBlqAEiJ0RGkzORM4AhjLHlf7/92+0Gk5pICkk/RipLMfkaxv269t/WLs80Wn2elEKSK0RQgR2KQO5lfBWOWQgaPUxj/0KiMwqjmjtIAJNDtdpOKjEqWIgJIa6VrABAvicQAqhQdGziI9UJI/koPiOBNrxqwolAomVimhublS2/WitgzO1kPlPkkB9B1YSIEatQWyWviC5PY73MM/oZNRzmUCjhSwQyZWAkjPIBmbDGDJ2aSKmKX3U1LQDgdLxjDpnHS6P40GEMytjdPtgNK49mptkoIjLfvt2L/+72at0yxkzYNkbvbTJjmzwaRZzjTHLzqtrE4cKKnzgoDtKimNncHXznRpWaWOTK/EKLWm7vLAsNYRQHImmStYHTXSdeBI7DHtOB/yJaUzpwpfLCAO2GEP1bYKOznAJHBgL+7HI0Ax/Qqm1pA9964tQDWlBvoK9aCGgoJRBsL1oaSoV+ocQqAZVIlzHDk4hoAd55PsqYa5lcyssl9B9irLHPuVZZOcVbrPotf3plYftMNfQMMM21lM0+xqEIBynMTpHxO+hs4XVvf/3Sx0mqWseZCcdCFyF3bWF6/o1E2WQycCSmHgA3qksCXShiKwyloDUkj0FDCsrQl2qDV6BIyuT2JPCgeO8IXPSbSMv9cvy1DPNZhb4aJYEyappK+uQiySt0qSQsSpH9kTM2XqR5T2oSBq7dmk6dlHiHbryOwaWKT9/bZBs2st5sCS1gNw/R/tMq+Q45kmA0dilcqlgXCwDP5I6UGQwFJICdnr2WW3LWaRDhCdqVVwNumWjRCAkNaMKqT9nKaSGFtRB1q7enSxEFDScut5x+Qx++v/3f4kax4kU+lqCui6bTlujqLTbHWihxABzBAGwnVnqIUN6pEwkMYCIJlgKbq1ySgtYGrXEcQXPU+UoO8NzXSFB0cqbsCZpPc3ipAHqahGK1jADkv9EEnXijaAFIozJwnjTI/ctCqlBUVT155NCiUhtGVmcF5ee7wYBI3SwdRaa8iejYA1KpyUlKf5tmIcKCmtw7FHiqDl5lbOEqWSnk2qfs+aXgk0iUkSi6x6NoCHnQehXCAPA8qcmIxJFUDIp6TPrlwdAWVqkkzxcFxwTpf1k7YdqM+C5ZQCkol0NQV02afNJp+O6TozKzrNTidv1pLWn1cbY1mldsxSWCAUBj5QptbCR7n2jPHpIASQtSRwtO+5KE4fvcnNrg4se1L6LvQ9Jb3PkXd4sN0+Qr4c/y0+yrLtvAjhzYoGQ6aUCuZGYo5kctWWjelaQ/Zzjw8XDsXMqUIJ1IMaQhoYpT1r5E2adZ03twaApGAckQFLF8STmFij5X6vua5XucmBBKpe+L1VL/x+t15IZf2RjkFGLxK3bFoCcPwwMHMrM/P7396BObat39/+72al03JKAUknXU+8mWJsOn7czZLbVnRaeZ04u4tZpXHgaU2vwrEAAksDoOdY5LAODJJAExjfPst+J2eR5KcUvoA1mVmJLQpijiB2GUyt3NwqcsFDKfPxbIkzKQsSoq4t63Ls0SgJ1R/XpHHkQVJL49NECBit2dX47sJGW+BsqsjSRpLAHRvJKlxQjotq7Tn/I2OL4wBS9nv291WOSfbssmeRjmHSOUlNrdG5pM8tjLJNuuY4Huj/d4vVaSVkTYMkP8nTmAtMhzF8XPo+biw/XtFp3+hEDy4qkD5ykaxSh4AeaXgLKAuIUggYI9BTNkiHciaJzBGzzEkwucbgKAAfiMO7PKSMksZRNORYv2MOIG1lAMeatDe5CseuFAXpZNljcngloYcjxyA1TC08WJraRP5HyybzZsyIRVIJPAeOxBwJHCPzKvNBpgCp5vtNgKx6tjYrTQqqHkSv78GxjUWSP9K0ASTfRsKKC0wCjbX2f7dYnWYtaxokF2tGaBN+8XO+hnS57b3otDp0kmxBmcAqCRxrB5raAMrYdTZyMQCmQYhqjSJd3TLPjQt5k2mUagjM8VGwEIE9MhZJjDM8ZZJCAtGPlgwgQ6qDkbUzO/ZtqyzHJhUDSK01ZObxIZVEPRhZ0+xgBKk0tItoxtCC1gAAI2tJREFUtUzS6qFrM7GRcygl5wCSVdTh4GjBMESwBrDs+YjWVgZJANnrN8ysfnuvDyNVxCKJVaYMsrGebWss534zyv9dV51WStY0SLbJtKaBScvp8XKzpEnfWXTaNzoR6GgTfJW1DiZYBWEr7QC2prUxLv8tBkwAvmeggbc0Rnr75Qw48mor3uQKxO++TB0QVdqJvkgCcL0PAcuQGGM0umaMsg7ben2b9F9rH6hjkrQNoST0YAQhJeqhfTdaQ1K/Rh0AUwGeTbZJAMfQIzJKR6HoVAeOZGYVSjGfo+wOkFXfbmszs8oKkFUAQSmbPso2yRUgwHRsrOt2Lvvr/11XnVZC1jRI0gOly80wzU2QyjSzr3Q2VXTatzqRpBGw0vAIRQMb82rB0gNkApgQFjTHCYXfEDgCASCVhG+4S/5LYpGLEgeYlj3q2Nxa9WB0bdkk3PnWtYtitWJYsI2QEno49OvJ5KprDSM1jIt2JcAE0JlJ8qo4vPaqZ5IJOIbPLgWEciUdGHqQ7LmgnBQg2RhUFhgNA0ef9pEzv+YAdNxvxHigyK1bC/93XXRa6v90V1nTIJk70W0nfqUuSO57ik7dvmfWOkURsAYQxgJiCpbarW8CJgAHmm3CgdF+5mwydKSXjE3S+GBqnZAHyR7e9oGvYAvS2pQHYpOi6gOuNZRxwMkf+ZxJakUVdBRMXVsmqWSDRaKHTiDJ21jxUnL+M5lXXe5mDhxDAI8DPW5G7TFgpAjWFoAMwFfZ86WqwCy7AGSLz3Ixpsu1+H+3r2VNg2SOSebGLOZid90vx2RRdFrVOvlIU2OjXVOwNMb6HIXzSdpu8zGjBCxwNr6bFRWwnxF1picG2QBLEVJA7MGT9A/nT4vGuAe5UArQKoChY5NG1tYUyQ8Lx2wdU4RbFoORLV2ntTW5OrDUDiBNbc2uwHQg2WiYzICRm15z4CiUDMDnGWMwr/p1vX4ARinzDHIMQEavDgDZdm+tpnt8f9Jp1rKmQRJY3GyuTfjFm9Y+P82+RafVoRM3wdY69An0AGlssI5nl7Agp9mvSXGSW045OIbC1iL6TP5K/jvGK+1aORFoCgkjdAhWYecgt+w/S5u0wf2PejiCqLUHSwJGC5K1z4Xk4Gjqpl/TL7MekHZbDIxUoJxYZQqOHvDce0jxkJF51W+nIB0hmgBJPsqUQbqAnlaA7ACO6fbVdI+vdp1WQtY0SKYXZRpWmRs7yS4/bv+2G6XotLp14iZYA0RgGQGk/wwot44ONq7RLn2f/SwagGn3CXmU9sd0LDvHGBCxScsk68TsmgCllMDIRsSK0ZClfEhvWvVm1lp7wFToxiKtak0myRskc2AMwTu9kOPIwVHKODjH5UA2TLBKOTCsLNhJYo1UhSiA5lgTaxrxSr+pwzIfv1ru8dWu06xlTYNkKtPM9Oh9mlkVPWhMslx02v91SsHS1m5F6EAvAEHRrcYxSkJHER9LRMcNbJK+J2KUmX1aJTINGsC1corYpEyCdQBriqXfrRQwdDmVo/CulIKs6ySKNQAmAA+aXHQCljLxRdJ7LnDHs0pigxR45H2MvfizZ47NdUYID4IUxTrOvOoBUlVxniT39yanf3+/x/cXnZZbCkguUrpeqLbZT+5iL/UGKDrte53irg25IB5X/BoBNAFkg3k4MNIxgRggfZ1Wf6AWhiZkAEVmcvXbhASqyv6O0SACSlPXDcBE7dIjRgMLTroGdA2hNaDrCDABeNAMatrlXBmBXNAOraci654x8jqrxBpdjqcvBpAG5rB1qAJr9O9kQp2WPbaAo/8tODDu8dWk00pIAUkn01yAaS5U29guN2DRaf/VSQk28xU2GtbA+MAcYpj+mC1UsI1VpgDJ+w029HXfT0AZsUnAAWcF6FEeKF0DZiElzGhogUhrYDQA5UISSIItC2KJDjS9PvVkc7Bgfkj7AzOgyNp5QdGyCmZUMqsmzJHAEQk4Zk2rPGhnkeDof3fH9fvLPb4adFoJWdMgGU3AM9tWctaSmy0VnZqyv+nEWaARwibRO8BUQviu9BN6M9tjECACofwcxjwspLRlgYAIID3gARAaFgT0qAGU0A7YdM38kJY1RmBJoFjXMWACfjvpaNjy2N8qGTi63+IB0unfYIysAEBkgnWgyYNyKNo3BcfOgTlTgOO0sr/d48hsWwlZqe9a0yDJT/JKOoXH3UxFp/bv4rK/6dToJk+s0MCmgrjtbRwrimBlaSITAYdMqqZmy45NSlizK2QMlEYDFSCMCiZVlyKC0dCBpmowR78MQOja5lgimFaRAKTRgV02GhpzMARipgjEwFj1siZYzx5dQI4vKceBMTWrZpijUVU4l9IuL9c9diDd4/tKp1nLmgZJLku5AOkFnHRBc7Oy3D5FpwNTpzbAdO0nwzEcveSsMd0/9zknRggLhkBgk4ANPKlHASip9yQsgEIISKVghgMYLSP/owfFOnwWcODHmKRfR0JAGv2IGCQjMHTbPVOkzxwYqyR4R6mQyiEYA0wDctj61OdoVJILSedyzHku9/jK6rQSUkCyRZZib+968aedhRWdDjydCOC0CX7MsFP7YyDdkhtpfY3w9NQWyXOAoEcxUGoNGAFhpN0mK9+k2RgN9OcgjYHxgJhhkUAATVoGPFACCVimv4EDJQNDABEg+rEpc6QUDgd+3DTayhpz25dgUt3X91PRafmlgGSLTHsB2i7sNLPOSVJ06ib7o06cDba0nZy4XyTkg0zWRUDpAFDoEajwrIH2JlfPKjlYCgFhlP39KWAC3qRquE/S/7AJ/sgMSEa+ydQvqVTM/HKM0QFf6oPMpnFMyRrbZDXcT12Pf6DrtBxSQHKZZBrTQW6fWUjRqZusNp1ywJcC51gTKwPIiE36wB0dTK+AZVZGQwgHhpxVAh4sCTD9Z6kAoyGdWdiDJhDe/Q/oUOCAp34wcKQIVw9q7jembDECvknAuEhzahdZbfdTevyi03QiJw9ZvDz//PPYunUrFhYWsLCwgK1bt+KFF14Yu4/tuN58/eEf/qEfc8455zS2X3TRRbP8KUG/GYxbqm296LT839V13ErpRBV1oso6k45BpkIGGjmwACXPUyk2ZV+m6tmAF1eFBrKCUX3/gqwA1YdRPRhla6Jibh3Qn4OYPwhi/iDIuXX2te7giS/aR8wfZI8ztw7oz9vjV3Mw1XzmNWdfPXrN25fbjmre62dUD6j6MO4F+g3OR0uv5b52q/F+Wus6TSMzZZLvete78PTTT+Ouu+4CAPzGb/wGtm7dii9+8Yut+zzzzDPR5z//8z/HpZdeire//e3R+m3btuH3f//3/ed169Yto+ZNBzEtt/0TdRmTk2lmU0WntanTVMJzIZkYsFXkoxRwjNGE/YgpAjG7BCwbNBqAgjAmGhe9A76X5VTnk+vMGCO9R0ySM8U2Nsl9jHQsyVp90VdN0OtAu58OJJ1WQmYGkt/61rdw11134f7778fpp58OAPjkJz+JM888Ezt27MCxxx6b3W/jxo3R5z/7sz/DG97wBvzMz/xMtP6ggw5qjJ1WaEZiEP5Rchdt0kXhx+g6NiepHkWnotOSgJIvO7ZEqwDpTaAWLDUglDWxMtCLgFAy8ONdRtw6wZI9I73HVQHiw3igEgdD9zlbPDwFzzRlQ4TuJ6vt2hWdlq7TSsjMQPK+++7DwsKCB0gAOOOMM7CwsIDt27e3giSXZ599FnfeeSduvvnmxrZbb70Vt9xyC4444gi85S1vwdVXX41DDjkke5y9e/di7969/vPu3bsBwJtXlusidD3GpBtx0phppOjUTfZXnXIPLbshyYnkxyXgVNKDngdMo0Hlf8gnGYEm/ywJHBlr7FpcnevI9eLrJ7HJNBqV1rEJQfR1WF3XbtL3FZ2C7EugnBlI7ty5E4cffnhj/eGHH46dO3d2OsbNN9+MQw45BG9729ui9RdffDFe/epXY+PGjXjsscdw1VVX4etf/zruvvvu7HGuu+46XHvttY31bQ+Ytn+wtm1tN07uwnadNRWdik7T6pRuE0AMRJmI1yZgMoYJgMyr8MuMMS4WHLk+mXWeUaa6j2lFlZ6nVFb7tSs6LV6nWcvUIHnNNddkAYfLgw8+CACNJGgAMMZk1+fkU5/6FC6++GLMz89H67dt2+aXTzjhBBxzzDE49dRT8fDDD+Pkk09uHOeqq67CFVdc4T/v3r0bRx11VPYB06ZZlxnUpIs7bt/cDVV0Kjotp04A4qLmADjT9KZViQboCfbZAA1Ta1eT6sRtKRAmY82443H9+K6ZdXxbus9qvHZFp3adZi1Tg+Rll102MZL06KOPxje+8Q08++yzjW0//OEPccQRR0z8nq9+9avYsWMHbr/99oljTz75ZPR6PTzxxBNZkJybm8Pc3NzE4wDjLwifQXWZ3Yyz2Xf93qJT0Wk5dWqsd6DTYJ0p40z3U26MiU2u0T4p2HUAOBqXe8B2fSgeqNeu6NRdp+WUqUFyw4YN2LBhw8RxZ555Jnbt2oUHHngAp512GgDga1/7Gnbt2oWzzjpr4v433ngjTjnlFPz8z//8xLHf/OY3MRwOsWnTpsk/YJGSm0GR0A2Q3ghdZlJFp6LTatCpDTzH6SQYG83qM2W1mkl6rYbzVHTav3VajMwsT/L444/Heeedh23btuH+++/H/fffj23btuH888+PgnaOO+443HHHHdG+u3fvxuc+9zn883/+zxvH/c53voPf//3fx1//9V/ju9/9Lr70pS/hHe94B0466SS87nWvm9XPAWAvnGDLJJNmPXQzpPshWbcY80HRqei0r3QilsCT+vm7QfzQWwmdkGxfDeep6DQ7nVZCZlpM4NZbb8WJJ56ILVu2YMuWLfi5n/s5fOYzn4nG7NixA7t27YrW3XbbbTDG4Fd/9Vcbx+z3+/jLv/xLnHvuuTj22GPx3ve+F1u2bMGXv/xlKKUa4xcruYvA/+mnneXkZlJ8W5eZU9Gp6FR0KjoVnWIQnbUIY7p0sjuwZPfu3VhYWMDOnTtx6KGH+vXjboR9Rf+LTt2k6NRNik7dpOjUTfalTrt378bGjRuxa9eu6Dm+3DJTJrm/yaSZy76QolM3KTp1k6JTNyk6dZPVqNNySwHJMZJS+rblcbLc44pO3aTo1E2KTt2k6NRNVqNOS5UCki1CFyANVMgtjzuGST63SdfjFZ2KTkWnolPRaeWYagFJJ+nFMMl6kRmT24+vTy/2tBe16FR0KjoVnYpO+1bWPEjmZj9tkt4E4/ZLx05zsYtORaeiU9Gp6LQ6ZM2D5KQLYZL3LvssVYpO3aTo1E2KTt2k6NRNVqNOs5Q1D5KpjDMFTLsPsDw3R9GpmxSduknRqZsUnbrJatRpOaWAZCJdTQFd9mmzyadjik5Fp6JT0anotHw6LacUkHTS9cSbKcam48fdLNM4uItORaeiU9Gp6LQysqZBcpIzue0imA5j+Licjb5tbNGp6FR0KjoVnbrrNGtZ0yA56SRPexFEspx+Tpdz70WnolPRqehUdOqm00rImgbJNpnWNNC2zGdfuXHp7GrcDVZ0KjoVnYpORafFfedSZE2DZDpzoXXTmBG6SJfZF785ik5Fp6JT0ano1E2nWcvUTZcPJMmd6LYTv1IXJPc9Radu31N06vY9Radu31N06vY9+1qnWUthkh3GLPbYixlXdOo2rujUbVzRqdu4olO3catRp1nLmgZJoBut7yr84nXdj5sxuu5bdOq2b9Gp275Fp277Fp267bsvdJqlrGmQTC/KNDOk3NhJdvlx++cc00WnolPRqehUdBqv06xlTYNkKl1nSCJ573pMw/bhy0WnolPRqehUdFoenZZbCkguUgy6zWTaZj8is/9Sb4CiU9Gp6FR0Wks6rYQUkHQyzQ0wzYVqG5u7AZdyUxadlvY904wtOnUbW3TqNrbo1G3scoN2V1nTIMlP8r66AOn3F53GS9GpmxSduknRqZusZp1mLWsaJPlJXkmn8LibqejU/l1t31t0apeiU/t3tX1v0aldVqNOs5Y1DZJclnKB0ws46YLmZmW5fYpOzXFFp/bvKjqNl6JT+/Fz37U/6jQLKSDZIkuxt4+bbbWNW4xDe5wUnbpJ0ambFJ26SdGpm6yUTsshBSRbZNoL0HZhxx1n2plQ0ambFJ26SdGpmxSduslq1Gk5pIDkMknXmVDbPrOQotP0xy86dTt+0anb8YtO3Y6/WnTKSQHJKaXrxZxm3FJnR0Wn5f+uruOKTt3GFZ26jSs6dRu3koyygGSLtDmI22Yy6ZiuMx4+dtKFLzoVnYpORaei08oyyjUNknxGks5OpnEQCzemy+xmklO66FR0KjoVnYpO3XRaCSn9JBEu2HIcr4uM+z7TYcw0UnTqJkWnblJ06iZFp26yHDrNWtY8kwTiGVLbrGXctjZzRG78JFNB0anoVHQqOhWduus0a1nTIJmaB8ZdCM46uxwv93ncvnRDFZ2KTkWnolPRqZtOKyFrGiRz0nbR0xlUF0lnUl1uqKJT0anoVHQqOnXTaSWkgGRHSWdQXETyzsdNc4MUnYpORaeiU9Fp5VhiFykgOYXwWU5utjNuptV2U2DCtqJT0anoVHQqOuV1WgmZKUj+wR/8Ac466ywcdNBBeNnLXtZpH2MMrrnmGhx55JFYt24dzjnnHHzzm9+Mxuzduxe/9Vu/hQ0bNuDggw/GBRdcgKeffnpZdc9dBG5ymJbqj7O10w0x6ZhFp6JT0anoVHRaWbY5U5AcDAZ4xzvegd/8zd/svM+HPvQhfPjDH8bHPvYxPPjgg9i4cSN+4Rd+AS+++KIfc/nll+OOO+7Abbfdhv/xP/4HfvKTn+D8889HXddL0jc308ltW4q03TBtN1DRKb8+laJTfn0qRaf8+lSKTvn1qaxGnZZbhDFm5t9100034fLLL8cLL7wwdpwxBkceeSQuv/xy/M7v/A4AyxqPOOII3HDDDXj3u9+NXbt24RWveAU+85nP4J3vfCcA4Ac/+AGOOuoofOlLX8K55547UZ/du3djYWEBO3fuxKGHHto6rsvsaaWl6NRNik7dpOjUTYpO3WQlddq9ezc2btyIXbt2jX2OL1VWVTGBJ598Ejt37sSWLVv8urm5OZx99tnYvn073v3ud+Ohhx7CcDiMxhx55JE44YQTsH379ixI7t27F3v37vWfd+3aBQARO20TftHblrvuvxzjik5Fp6JT0anoBPzEPb9nzfNWFUju3LkTAHDEEUdE64844gh873vf82P6/T5e/vKXN8bQ/qlcd911uPbaaxvrjznmmOVQu0iRIkWK7CP58Y9/jIWFhZkdf2qQvOaaa7KAw+XBBx/EqaeeumilhIit2caYxrpUxo256qqrcMUVV/jPL7zwAjZv3oynnnpqpid3FrJ7924cddRR+P73vz9TE8NyS9F7ZaXovfKyv+q+v+q9a9cuvOpVr8L69etn+j1Tg+Rll12Giy66aOyYo48+elHKbNy4EYBli5s2bfLrn3vuOc8uN27ciMFggOeffz5ik8899xzOOuus7HHn5uYwNzfXWL+wsLBf3RRcDj300P1S96L3ykrRe+Vlf9V9f9VbytlmMk4Nkhs2bMCGDRtmoQte/epXY+PGjbj77rtx0kknAbARsl/5yldwww03AABOOeUU9Ho93H333bjwwgsBAM888wwee+wxfOhDH5qJXkWKFClSZG3KTH2STz31FP7v//2/eOqpp1DXNf7mb/4GAPD3/t7fw0/91E8BAI477jhcd911eOtb3wohBC6//HJ88IMfxDHHHINjjjkGH/zgB3HQQQfhXe96FwDL/i699FJceeWVOOyww7B+/Xq8//3vx4knnog3v/nNs/w5RYoUKVJkjclMQfL3fu/3cPPNN/vPxA7vuecenHPOOQCAHTt2+GhTAPjt3/5tvPTSS/gX/+Jf4Pnnn8fpp5+O//bf/hsOOeQQP+YjH/kIqqrChRdeiJdeeglvetObcNNNN0Ep1Umvubk5XH311VkT7GqX/VX3ovfKStF75WV/1b3oPV5WJE+ySJEiRYoU2R+l1G4tUqRIkSJFWqSAZJEiRYoUKdIiBSSLFClSpEiRFikgWaRIkSJFirRIAckiRYoUKVKkRQ5YkNxfe1k+//zz2Lp1KxYWFrCwsICtW7dO7J4ihMi+/vAP/9CPOeeccxrbJ1VOmrXev/Zrv9bQ6YwzzojGrLbzPRwO8Tu/8zs48cQTcfDBB+PII4/EP/tn/ww/+MEPonGzON8f//jH8epXvxrz8/M45ZRT8NWvfnXs+K985Ss45ZRTMD8/j5/5mZ/Bn/zJnzTGfP7zn8drXvMazM3N4TWveQ3uuOOOJem4VL2/8IUv4Bd+4Rfwile8AoceeijOPPNM/MVf/EU05qabbsre73v27Nlnet97771Znb797W9H41bb+c79Dwoh8NrXvtaPWYnz/d//+3/HP/7H/xhHHnkkhBD4z//5P0/cZ8Xub3OAyu/93u+ZD3/4w+aKK64wCwsLnfa5/vrrzSGHHGI+//nPm0cffdS8853vNJs2bTK7d+/2Y97znveYn/7pnzZ33323efjhh80b3vAG8/M///NmNBoti97nnXeeOeGEE8z27dvN9u3bzQknnGDOP//8sfs888wz0etTn/qUEUKY73znO37M2WefbbZt2xaNe+GFF5ZF58Xqfckll5jzzjsv0unHP/5xNGa1ne8XXnjBvPnNbza33367+fa3v23uu+8+c/rpp5tTTjklGrfc5/u2224zvV7PfPKTnzSPP/64ed/73mcOPvhg873vfS87/n//7/9tDjroIPO+973PPP744+aTn/yk6fV65j/9p//kx2zfvt0opcwHP/hB861vfct88IMfNFVVmfvvv3/Rei5V7/e9733mhhtuMA888ID527/9W3PVVVeZXq9nHn74YT/m05/+tDn00EMb9/1yyrR633PPPQaA2bFjR6QTv09X4/l+4YUXIn2///3vm/Xr15urr77aj1mJ8/2lL33J/Ot//a/N5z//eQPA3HHHHWPHr+T9fcCCJMmnP/3pTiCptTYbN240119/vV+3Z88es7CwYP7kT/7EGGNvqF6vZ2677TY/5v/8n/9jpJTmrrvuWrKujz/+uAEQXcT77rvPADDf/va3Ox/nl3/5l80b3/jGaN3ZZ59t3ve+9y1Zx5wsVu9LLrnE/PIv/3Lr9v3lfD/wwAMGQPQgWu7zfdppp5n3vOc90brjjjvOfOADH8iO/+3f/m1z3HHHReve/e53mzPOOMN/vvDCC815550XjTn33HPNRRddtExaT693Tl7zmteYa6+91n/u+j+9FJlWbwLJ559/vvWY+8P5vuOOO4wQwnz3u9/161bifHPpApIreX8fsObWaWVSL0sAE3tZLlXuu+8+LCws4PTTT/frzjjjDCwsLHQ+/rPPPos777wTl156aWPbrbfeig0bNuC1r30t3v/+93fqpzlrve+9914cfvjh+Pt//+9j27ZteO655/y2/eF8A7YbgRCiYdZfrvM9GAzw0EMPRecBALZs2dKq53333dcYf+655+Kv//qvMRwOx45ZjnO7WL1T0VrjxRdfbHR6+MlPfoLNmzfjla98Jc4//3w88sgjy6LzUvU+6aSTsGnTJrzpTW/CPffcE23bH873jTfeiDe/+c3YvHlztH6W53sxspL396rqJ7kvZVa9LKfV4fDDD2+sP/zwwzsf/+abb8YhhxyCt73tbdH6iy++2BeQf+yxx3DVVVfh61//Ou6+++59pvdb3vIWvOMd78DmzZvx5JNP4nd/93fxxje+EQ899BDm5ub2i/O9Z88efOADH8C73vWuqIPCcp7vH/3oR6jrOntvtum5c+fO7PjRaIQf/ehH2LRpU+uY5Ti3i9U7lX/7b/8t/t//+3++mQFg6z3fdNNNOPHEE7F792780R/9EV73utfh61//+rL0iF2M3ps2bcKf/umf4pRTTsHevXvxmc98Bm9605tw77334vWvfz2A9muyWs73M888gz//8z/HZz/72Wj9rM/3YmQl7+/9CiT3x16WQHe9c9/fVQeST33qU7j44osxPz8frd+2bZtfPuGEE3DMMcfg1FNPxcMPP4yTTz55n+j9zne+M9Lp1FNPxebNm3HnnXc2QH6a467U+R4Oh7jooougtcbHP/7xaNtizvckmfbezI1P1y/mfp9WFvsd//E//kdcc801+LM/+7NoMnPGGWdEAV6ve93rcPLJJ+OjH/0o/t2/+3f7RO9jjz0Wxx57rP985pln4vvf/z7+zb/5Nx4kpz3mYmWx33HTTTfhZS97GX7lV34lWr9S53taWan7e78Cyf2xl+U0en/jG9/As88+29j2wx/+sDEjyslXv/pV7NixA7fffvvEsSeffDJ6vR6eeOKJ1of2SulNsmnTJmzevBlPPPEEgNV9vofDIS688EI8+eST+Ku/+quJffi6nO822bBhA5RSjRkwvzdT2bhxY3Z8VVU47LDDxo6Z5pott94kt99+Oy699FJ87nOfm9jdR0qJf/gP/6G/b5YqS9GbyxlnnIFbbrnFf17N59sYg0996lPYunUr+v3+2LHLfb4XIyt6f0/lwdwPZdrAnRtuuMGv27t3bzZw5/bbb/djfvCDHyx7IMnXvvY1v+7+++/vHEhyySWXNKIs2+TRRx81AMxXvvKVRetLslS9SX70ox+Zubk5c/PNNxtjVu/5HgwG5ld+5VfMa1/7WvPcc891+q6lnu/TTjvN/OZv/ma07vjjjx8buHP88cdH697znvc0Ahve8pa3RGPOO++8ZQ8kmUZvY4z57Gc/a+bn5ycGb5Borc2pp55qfv3Xf30pqkayGL1Tefvb327e8IY3+M+r9XwbEwKPHn300YnfMYvzzQUdA3dW6v4+YEHye9/7nnnkkUfMtddea37qp37KPPLII+aRRx4xL774oh9z7LHHmi984Qv+8/XXX28WFhbMF77wBfPoo4+aX/3VX82mgLzyla80X/7yl83DDz9s3vjGNy57SsLP/dzPmfvuu8/cd9995sQTT2ykJKR6G2PMrl27zEEHHWT+/b//941j/q//9b/Mtddeax588EHz5JNPmjvvvNMcd9xx5qSTTtpner/44ovmyiuvNNu3bzdPPvmkueeee8yZZ55pfvqnf3pVn+/hcGguuOAC88pXvtL8zd/8TRQSv3fvXmPMbM43hfbfeOON5vHHHzeXX365Ofjgg30U4gc+8AGzdetWP55C5P/lv/yX5vHHHzc33nhjI0T+f/7P/2mUUub666833/rWt8z1118/s5SErnp/9rOfNVVVmT/+4z9uTZ+55pprzF133WW+853vmEceecT8+q//uqmqKprsrLTeH/nIR8wdd9xh/vZv/9Y89thj5gMf+IABYD7/+c/7MavxfJP803/6T83pp5+ePeZKnO8XX3zRP6MBmA9/+MPmkUce8RHj+/L+PmBB8pJLLjEAGq977rnHjwFgPv3pT/vPWmtz9dVXm40bN5q5uTnz+te/vjGzeumll8xll11m1q9fb9atW2fOP/9889RTTy2b3j/+8Y/NxRdfbA455BBzyCGHmIsvvrgRVp7qbYwxn/jEJ8y6deuyuXhPPfWUef3rX2/Wr19v+v2++dmf/Vnz3ve+t5GTuJJ6/93f/Z3ZsmWLecUrXmF6vZ551ateZS655JLGuVxt5/vJJ5/M3lf83prV+f7jP/5js3nzZtPv983JJ58csdJLLrnEnH322dH4e++915x00kmm3++bo48+OjuB+tznPmeOPfZY0+v1zHHHHRc91JdLptH77LPPzp7bSy65xI+5/PLLzate9SrT7/fNK17xCrNlyxazffv2far3DTfcYH72Z3/WzM/Pm5e//OXmH/2jf2TuvPPOxjFX2/k2xlps1q1bZ/70T/80e7yVON/EZNuu+768v0s/ySJFihQpUqRFSp5kkSJFihQp0iIFJIsUKVKkSJEWKSBZpEiRIkWKtEgBySJFihQpUqRFCkgWKVKkSJEiLVJAskiRIkWKFGmRApJFihQpUqRIixSQLFKkSJEiRVqkgGSRIkWKFCnSIgUkixQpUqRIkRYpIFmkSJEiRYq0yP8HUrifL5e9oAEAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwlRXn//6mq7nPvDDDDzgCRTVlkURCU7QduOKhokKigMbiAGBQjOhoFWQSMomIMoAIhQUc0IiICSgAZFFziyFcUMK7RCCHCTBBQBpi595yuen5/VD3VVb2c0+fOvXfuzOnnvs6rl1Pd57m9vftZ6ilBRIRWWmmllVZaaaUkcl0r0EorrbTSSitzVVpIttJKK6200kqNtJBspZVWWmmllRppIdlKK6200korNdJCspVWWmmllVZqpIVkK6200korrdRIC8lWWmmllVZaqZEWkq200korrbRSIy0kW2mllVZaaaVGWkg2lHPOOQdCiGjdTjvthFe84hWz8vurV6/GOeecgzvuuKP03dKlSyGEwP333z8ruswluf/++yGEwNKlS6dtn6tWrcIZZ5yB3XbbDfPnz8f222+P1772tfjFL34xbb8x03LjjTfijW98I/bZZx+kaVq6dkPp9Xo499xzsdNOO2FsbAx77LEHPv3pTzf6nTvuuANCiMrPj370o1L7n/70pzjiiCOw8cYbY9NNN8Vf/dVf4fe//33f3/jlL3+JsbExCCFw1113lb6//fbb8ZKXvARbb701Nt54YzzrWc/CxRdfDK111G5ychIXXHAB9t57b2y00UbYZptt8LKXvQw//OEPK3/35z//OV772tdiq622wtjYGHbaaSe84x3viNrstNNOtf//+Ph4aZ+PPPIITj31VH+sWYfHHnssanf33XfjVa96FbbbbjvMnz8fe+yxB8477zysXr06avfmN7+58rf32GOPyv/p05/+NPbYYw+MjY1h5513xrnnnoter1fZluXMM8+EEAJ7771333Zr1qzBbrvtBiEEPvnJT/Zte9ttt3ldH3nkkdL31157LQ499FBsvvnm2HTTTfG85z0PX/ziF/vuc6YkWSe/uh7KW9/6Vrz0pS9dZ7+/evVqnHvuuQCAF7zgBdF3Rx11FJYvX45tt912HWi24ckrX/lK3HXXXTjnnHNwwAEH4A9/+APOO+88HHzwwfjP//xP7LjjjutaxYFy3XXX4Uc/+hH2228/jI2N4Sc/+Ult23e84x344he/iA9/+MN47nOfi29961s49dRT8cQTT+CDH/xgo9/76Ec/ihe+8IXRuuJD9de//jVe8IIXYN9998VXv/pVTExM4Oyzz8Zhhx2Ge+65B1tttVVpv1prnHDCCdhyyy3x0EMPlb6/7bbbcOSRR+Lwww/Hv/zLv2CjjTbCN77xDZx66qn47//+b1x00UW+7UknnYR/+7d/w+mnn44XvehFeOyxx/Cxj30Mz3/+8/Ef//EfeN7znufb3n777TjqqKNw2GGH4bLLLsOWW26JBx54AHfffXf0+9dddx0mJyejdQ888ACOO+44HHPMMdH6hx56CIcddhiSJMFZZ52FXXfdFY888ghuv/12dLtd3+6Xv/wlDjnkEOy+++648MILseWWW+J73/sezjvvPPzkJz/BDTfcEO133rx5+M53vlNaV5SPfOQjOOuss3Daaadh8eLF+PGPf4wzzzwTDz74IC6//PJSewC455578MlPfhLbbLNN5fehnHXWWXjqqacGtnvyySdx0kknYbvttqs8p5/73Odw4okn4tWvfrUH9Be+8AW88Y1vxCOPPIL3vOc9A39jWoVambLsuOOOdNRRR01p2263S71er3H7P/7xjwSAPvShD03p9zZUue+++wgAff7zn5+W/f32t78lAHTmmWdG63/4wx8SAPrUpz41Lb8z06K19vOnnHIK1d3qP//5z0kIQR/96Eej9SeddBLNmzePHn300b6/c/vttxMAuuaaawbq9NrXvpa23HJLevzxx/26+++/n9I0pfe///2V21xwwQW0/fbb00UXXUQA6Mc//nH0/Rve8AYaGxujJ598Mlq/ePFiWrBggV+emJggpRT9zd/8TdTuoYceIgD0rne9y6976qmnaNttt6WjjjqKjDED/6+inHPOOQSAbrvttmj90UcfTdtvvz099thjfbc/44wzCAD97ne/i9a/7W1vIwDR9m9605too402GqjTI488QuPj4/S2t70tWv+Rj3yEhBD0i1/8orRNr9ejfffdl971rnfR85//fNprr71q93/nnXdSp9Oha665hgDQBRdcUNv2lFNOof3224/OPPNMAkB//OMfo+8PPfRQ2nHHHaNr2BhDe+yxBz3rWc8a+L9Ot4y0u/X666+HEALf/va3S99deumlEELgZz/7GYBqdyvLddddh2c961kYHx/HLrvsgosvvjj6nl1SX/ziF/He974X22+/PcbGxvC73/0Of/zjH/GOd7wDe+65JzbeeGNsvfXWeNGLXoTvf//7fvv777/fv2Wfe+653k3x5je/GUC1u/UFL3gB9t57b/z4xz/GYYcdhvnz52OXXXbBxz72MRhjIv1+8YtfYPHixZg/fz622mornHLKKfj3f/93CCEq3buh8HH52c9+hte+9rVYuHAhNt98cyxZsgRZluE3v/kNXvrSl2KTTTbBTjvthE984hOlfTzwwAP4m7/5G2y99dYYGxvDM5/5TPzjP/5jSc+HHnoIxx57LDbZZBMsXLgQxx13HFauXFmp11133YW//Mu/xOabb47x8XHst99++OpXv9r3fwGANE0BAAsXLozWb7rppgBQ6UJrIvfccw+EEKVrg+XOO++EECKyfNZGpGx2a19//fUgIrzlLW+J1r/lLW/BmjVrcMstt0yLPlmW4cYbb8SrX/1qLFiwwK/fcccd8cIXvhDXXXddaZvf/va3OPvss3HJJZdE24SSpik6nU7Jctp0002jcyWlhJSydF4XLFgAKWXU9pprrsGKFSvw93//933d1FVCRPj85z+PXXbZBS960Yv8+vvvvx/f+MY3cNJJJ2GzzTbru49+16CUEp1OZyidAOCWW27BxMRE5XkmIlx//fWlbT72sY/hsccew0c+8pG+++52uzjhhBNwyimn4IADDujb9vvf/z4uv/xy/Ou//iuUUpVt0jTFxhtvHF3DQggsWLBgyvffWsmsY3kOSa/Xo6233pre8IY3lL573vOeR895znP88oc+9KHS2/iOO+5I22+/Pe2www70uc99jm666SZ6wxveUHqT4rft7bffnl7zmtfQN77xDbrxxhvp0UcfpV//+tf09re/nb7yla/QHXfcQTfeeCOdeOKJJKWk22+/nYjsW/Att9xCAOjEE0+k5cuX0/Lly/2b5uc//3kCQPfdd5//zec///m0xRZb0K677kqXXXYZLVu2jN7xjncQAPrCF77g2z300EO0xRZb0A477EBLly6lm266iY4//njaaaedCIDXoU74uOy+++704Q9/mJYtW0bvf//7CQC9853vpD322IMuvvhiWrZsGb3lLW8hAHTttdf67R9++GHafvvtaauttqLLLruMbrnlFnrnO99JAOjtb3+7b7d69Wp65jOfSQsXLqRPf/rT9K1vfYve9a530Q477FCyJL/zne9Qp9Ohww47jK6++mq65ZZb6M1vfnNji/Poo4+m7bbbjr7zne/QE088Qb/61a/oiCOOoB122GGgFVAnb37zmylJkr6W2T777EO77LJLtE5rTb1eb+Any7La/fazJF/3utfRVlttVVr/5JNPEgA6/fTT+/5ffG1vvfXWpJSiTTbZhBYvXkzf//73o3a//vWvCQB99rOfLe3jfe97HwkhaM2aNX6dMYYOP/xweu1rX0tE+TVetCR/9KMf0djYGJ1yyin04IMP0p/+9Ce68sorKU1T+uQnPxm1PfXUU2njjTem6667jh5//HG677776PWvfz1tttlm9Nvf/ta3O+GEEwgAffvb36ZDDz2U0jSlTTfdlF73utfRgw8+2Pd43HrrrQSA/uEf/iFaf+WVVxIAuvzyy+l1r3sdbbTRRjQ2NkbPf/7z6Yc//GHU9r777qNNN92UXvOa19B///d/06pVq+ib3/wmLVy4kP7u7/4uavumN72JpJS0zTbbkJSStt9+ezrllFNK19lpp51GAEoWNxHRlltuSa9//eujdb/4xS9obGyM/v3f/52IqK8lecYZZ9BOO+1ETz75pPfsVFmSq1evpl133ZX+/u//nojyZ0fRkrz22mtJSkn/8A//QA8//DD98Y9/pAsuuICUUvTVr361UoeZlJGGJBHRkiVLaN68efTnP//Zr/vlL39JAOjTn/60X1cHSSEE3XPPPdH6l7zkJbRgwQJ66qmniCh/kBx++OED9cmyjHq9Hr34xS+mY445xq/v526tgyQAuvPOO6O2e+65Jx155JF++e///u8r3S1HHnnkUJD8x3/8x2j9vvvuSwDo61//ul/X6/Voq622or/6q7/y6/jmLer59re/nYQQ9Jvf/IaIiC699FICQDfccEPU7qSTTirBb4899qD99tuv5M5+xSteQdtuu23kxqmSbrfr98ufZz3rWdHxHUayLKMFCxbQYYcd1rfdBz/4wRII3vSmN0V61H2e//zn1+63HyRf8pKX0O677175XafTKbnnivLTn/6UTj31VLruuuvoe9/7Hn3uc5+jZz7zmaSUoltuucW3+4//+A8CQFdddVVpHx/96EcJAD300EN+3ac//WnabLPNaOXKlURUD0ne93bbbeePhVKKPvGJT5TaGWPo7LPPJimlb7vDDjvQ3XffHbXja3/TTTel97///fSd73yHLrvsMtpiiy3oGc94hr+vq+S4444jpRT94Q9/iNaff/75BIAWLFhARx99NN1yyy107bXX0rOe9SwaHx+ne++9N2r/q1/9ivbYY4/oHL/rXe8quX8/9alP0ac+9Sm69dZb6dZbb6UzzjiD5s+fT3vssQc98cQTvt1JJ51EY2NjlTrvtttutHjxYr+staYDDzwwAmcdJO+++25K09Sf636QfO9730u77LILrV69mojqIUlEdP3119PChQv9/z5v3jz60pe+VKn/TMvIQ/LnP/85AaB//ud/9uv+/u//nsbGxqK3sTpI7r333qV98g3Nb9MMyYsuuqhSh0svvZT2228/Ghsbi26KPfbYw7eZCiQXLVpUavu6170u2u/znvc82meffUrtli5dOhQkGWYsr3/960vWARHRwQcfTPvvv3/0+3vuuWdpv3feeScBoEsvvZSIiI499ljaZJNNSu342DIkOab4yU9+smRtXXLJJQSAfvnLX/b9n0488UTafPPN6Z/+6Z/ou9/9Ll199dV0wAEH0M4770z3339/322rhK+x0Ap4/PHH6Z/+6Z/of//3f/06jueE1tZ9991HP/7xjwd+fv3rX9f+/iBIhtdDKJ1Oh/72b/922H+X/vSnP9Ff/MVfRPEjhuRXvvKVUnuG5IoVK4jIxik33nhj+td//Vffpg6Sd911F2299db0yle+kr75zW/Sd77zHTrzzDOp0+nQeeedF7X98Ic/TPPnz6fzzjuPbr/9drrhhhvoJS95CW255Zb005/+NDomAEr/+/XXX08A6F/+5V8q/+9HH32UxsbGKvMUPvKRjxAA2nPPPSOr/6GHHqL58+dH3qz77ruPnvGMZ9Chhx5KX/va1+i73/0ufeITn6AFCxbQCSecUPnboXzta18rxc9POukkGh8fr2y/2267RS/OF1xwAW2++eb0f//3f35dFSR7vR7tt99+UZy3DpJ33nknKaVo2bJlfl0dJG+++WbaeOON6S1veQvdfPPNtGzZMvq7v/s7SpKEPve5zw38/6dbRj67da+99sJzn/tcfP7zn8fb3vY2aK3xpS99CUcffTQ233zzgdsvWrSodt2jjz4ara/KPv3Upz6F9773vTj55JPx4Q9/GFtuuSWUUjjrrLPwq1/9aor/lZUtttiitG5sbAxr1qzxy48++ih23nnnUrsm2WyhFI9Vp9PB/PnzSzGETqeDVatWRb+/0047lfa33Xbb+e95WqVT8fj/3//9HwDgfe97H973vvdV6lqVcs5yyy234IorrsA111yD17zmNX794sWLsdNOO+Gcc87B5z//+drtq+RPf/oTAERxtYceegjvec978MxnPhN/8Rd/ASCPQXF7ANhhhx389/1k2NgZyxZbbIF77rmntP6pp55Ct9ttdA8UZdNNN8UrXvEKXHbZZVizZg3mzZvnr8XiPQEAjz32GIQQPu57yimnYO+998arX/1q/PnPfwYA3/XhySefxOOPP+6P1SmnnIJtttkG1113nY9xvfCFL4SUEueccw7e8IY3YJdddsGvfvUrnH322fjEJz4RXRcve9nLsOeee2LJkiW4/fbb/TEBgCOPPDLS88gjj4QQAj/96U8r/+8vfelLmJycxFvf+tbSd7zPI444IorFbbvttnj2s58d7fO0007DqlWrcM8992CjjTYCABx++OHYcsstccIJJ+CNb3wjnv/851fqAADHHHMMNtpoo6gLzhZbbIGJiQmsXr0a8+fPj9o/9thj2H///QHY/ICzzz4bH/vYx9DpdPzxz7IMxhj8+c9/xtjYGObNm4cLL7wQv//97/HVr37Vt+N7e2JiAn/+85+xySabQCmFE044AX/1V3+FAw44wLedmJjw24yNjWGTTTYBEeGEE07A4Ycfjs997nNexyOOOAKPP/44/u7v/g7HHnusPy6zISOduMPylre8BT/60Y/wq1/9CrfccgtWrFhRCnDXSVXiCK8rQqrqQfalL30JL3jBC3DppZfiqKOOwoEHHogDDjgATzzxxBT+k+Fliy228GAJpS4hZiZ+f8WKFaX1nBq+5ZZb+nZN9OT2p59+On784x9Xfvbdd99afRgYz33uc6P1m266KZ7xjGfg5z//eeP/jaUKfqx3+L9zX7kwYeOEE05AmqYDPy9+8YuH1gsA9tlnH/zxj38sHcf//M//BFDuxtFUiAhAfs0//elPx7x58/x+i7/1jGc8w79Q/fznP8ePfvQjbLbZZv5zyimnALAADLvg3HPPPdh///1LSSDPfe5zYYzxL5r33nsviKh0XtM0xbOf/ezovD7rWc/q+7/VJUVdccUV2GabbSr7TvfbJxFF+7znnnuw5557lkDAuje5Bov73GeffQCgdPxXrlyJRx55xJ/n3//+91izZg1OPfXU6Pj/x3/8B371q19hs802w+mnn+71ePzxx7Hrrrv6ds9+9rMB2O4gm222mf+9X/ziF7jmmmuifX784x8HYK+Nww47DIB9yV2xYkXUHSf8/5966qlZ7w8+8pYkALz+9a/HkiVLsHTpUvz+97/H9ttvj8WLFzfa9he/+AXuvfdef3EAwJe//GVssskmeM5znjNweyEExsbGonU/+9nPsHz5cjztaU/z67hNaAVOhzz/+c/HJz/5Sfzyl7/Ennvu6dd/5StfmdbfqZMXv/jFOP/88/HTn/40Ol5XXnklhBC+790LX/hCfPWrX8U3vvEN/OVf/qVv9+Uvfzna3+67745dd90V9957Lz760Y8OrQ9bsD/60Y+ih/Gjjz6K//qv/5oSjHbddVfMmzcv6rT+ox/9COPj4/jBD37gs5R/8IMfAAD2228/3+6cc87BO9/5zoG/sckmmwytFwAcffTROPPMM/GFL3wBH/jAB/z6pUuXYt68eVPqG/ynP/0JN954I/bdd18PviRJ8MpXvhJf//rX8YlPfMLr+8ADD+D222+P+r595Stf8VYGyy233IKPf/zjuOyyy7DXXnv59dtttx3uuusuaK0jUC5fvhwAvBUentfQCpucnMRPf/rTyFo/5phjcMYZZ+Dmm2+O+jrefPPNICIcdNBBpf/5rrvuws9+9jO8//3vR5KUH6sHHngg/uIv/gK33nprpOtDDz2Ee++9F3/9138d/U8///nP8eSTT2LjjTeu/Z/q5Gtf+xpWr14d6fnSl74U4+PjWLp0KQ488EC/njPjX/WqVwEA9t13X29Rh/Lud78bjz/+OD7/+c/73z/ttNP8tcuycuVKvP71r8fJJ5+M4447Ds94xjMAoHKfS5cuxRe+8AVcf/312H777QEAm222GcbHxysLUSxfvhxSytnvDz7rDt45Kq9//etp6623pk6nQx/84AdL3zfJbr355pt9duvHP/5x365fX7Kzzz6bhBB09tln07e//W265JJLaNGiRfT0pz+ddtxxx9Lv7b777vStb32LfvzjH/sYZF1MsirQ/qY3vSna74MPPhhlt9588810/PHH04477kgA6Lvf/W7f41YXV6jrv1XUi7NbFy1aRJdffrnPWhVC0Dve8Q7f7qmnnqLddtuNFi5cSJ/5zGfoW9/6Fp166qm12a1jY2O0ePFi+vKXv0zf/e536brrrqOPfvSj9JrXvKbv//PEE0/QjjvuSJttthl98pOfpO985zv0b//2b7TvvvuSUqoUo8WApBmWk08+mQDQe9/7Xvr6179OW2+9NZ111lk0Pj5OS5cupc985jPU6XToWc961sDEoiZy//330zXXXEPXXHMNvfSlL/XX3zXXXFOK6731rW+lsbExuuCCC+iOO+6gD37wgySEoI985CNRu3PPPZeUUnTHHXf4da9//evpAx/4AF1zzTV0++230+WXX0677747JUkSxZ+IbDLKxhtvTIcffjjddNNN9PWvf5323ntv2m677ejhhx/u+//UxSQvvvhiAkAve9nL6Prrr6dbb72VPvCBD1CSJHTEEUf4dlpreu5zn0vj4+N09tln02233UbXXnstveAFLyAA9MUvfjHa7zvf+U6SUtKSJUto2bJl9NnPfpY222wz2m+//WhycrKkH5/fYmw+lGuuuYaEEHTUUUfRjTfeSFdffTXtvffetHDhwqhP5A033EBCCDrooIPo6quvpm9/+9v0kY98hDbeeGPac889/e/ff//9dMghh9DFF19MN910E91888102mmn0fj4OO21116lTNZ/+Id/ICEEffCDH6Q77riDLrjgAhobG6OTTjqp77En6p/dGkq/xJ2i1D07lixZQgDo+OOPpxtvvJFuvvlm+tu//Vuf3T/b0kLSCaduA6D/+q//Kn1fB8mjjjqKvva1r9Fee+1FnU6Hdtppp1KH836QnJycpPe97320/fbb0/j4OD3nOc+h66+/vgQzIqLbbrstSvB505veRERrB0kim1hyxBFH0Pj4OG2++eZ04okn0he+8AUCUMq6qzsuU4UkEdH//M//0F//9V/TFltsQWma0u67704XXHBBCRZ/+MMf6NWvfjVtvPHGtMkmm9CrX/1q38m/2LXj3nvvpWOPPZa23nprStOUFi1aRC960Yvosssu6/v/EBGtWLGC3vnOd9IznvEMGh8fp+22246OOuooWr58edTuiSeeIAD0ute9buA+V69eTSeddBJtuummtHDhQjr11FOJiOhjH/sYbbXVVjR//nx6+ctfTv/zP/8zcF9NhK+Jqg9fNyzdbpc+9KEP0Q477ECdTod22203uvjii0v75HMdviicf/75tO+++9LChQtJKUVbbbUVHXPMMfT//t//q9Trrrvuohe/+MU0f/58WrBgAb3qVa8qdZrv9/9UZbdee+219P/9f/8fbbnllrTRRhvRXnvtRR/+8IdLkPjzn/9MZ5xxBj3zmc+k+fPn09Zbb00veMEL6KabbirtM8sy+tjHPkbPeMYzKE1T2nbbbentb387/elPfyq1Xb16NS1cuLBR9vr111/vYb1w4UL6y7/8y8qO/N/5zndo8eLFtGjRIpo3bx7ttttu9N73vpceeeQR3+axxx6jY445hnbaaSeaN28edTod2nXXXen9739/lK0fykUXXUS77bYbdTod2mGHHehDH/oQdbvdgXrPJiS11vQv//IvdMABB9Cmm25KCxYsoP32248+85nPNNJ1ukUQueBBK60E8ra3vQ1XXXUVHn300Sl1Xh4Fuemmm/CKV7wC9957r4/5tNJKKxuWtDHJVnDeeedhu+22wy677IInn3wSN954I/71X/8VZ555ZgvIPnL77bfjda97XQvIVlrZgKW1JFvB+eefj6VLl+IPf/gDsizDrrvuire+9a049dRTp9y1oJVWWmllQ5AWkq200korrbRSIzPaT/J73/seXvnKV2K77baDEKKyiG5Rvvvd72L//ff3xcIvu+yyUptrr70We+65J8bGxrDnnntWFkdupZVWWmmllbWVGYXkU089hWc/+9n4zGc+06j9fffdh5e//OU47LDDcPfdd+ODH/wg3vWud+Haa6/1bZYvX47jjjsOxx9/PO69914cf/zxOPbYY3HnnXfO1L/RSiuttNLKiMqsuVuFELjuuut8p9Uq+cAHPoBvfOMbUTm2k08+Gffee6/vSHvcccdh1apVuPnmm32bl770pdhss81w1VVXzZj+rbTSSiutjJ7MqezW5cuXlyrdHHnkkbjiiivQ6/WQpimWL19eGpn6yCOPxIUXXli738nJyWj0cGMMHnvsMWyxxRZtYkorrbTSynooRIQnnngC2223XePxU6cicwqSK1euLBWx3mabbZBlGR555BFsu+22tW361Ro9//zzce65586Izq200korraw7+d///d9GgwBMVeYUJIFyEXAqFEqua9PPIjz99NOxZMkSv/z4449jhx12wG9/+1ss2GQTNPU3C6DUtmrdMNuvTbtWp1anurbR3UCmPO+mIvzOUG17EUVlKvZXse/S/ovtDdV/F4iYhogQ1T0fRMECkaLyOwrbDZwPt6vYX7iN+73K/Qvp56d67W3I1/gTTzyBXXfddcp1i5vKnILkokWLShbhww8/jCRJ/IgadW36De00NjZWKiIO2KLQmwTDF61rGebimS1pdWomc00n/2gugqsIRxOsLwKxZtvSPqr2hQLcKgBahqkqt+H/pgagjaQIwsK6gQBkUFUBTxbbyDIM6/ZT/F7W7CPUte5/nAWZa9c4y0yHzOYUJA8++GB885vfjNbdeuutOOCAA5CmqW+zbNmyKC5566234pBDDlmr316bC6C47VT2tbZvXK1OrU4DhUwMxwBcERipCpzBelMD1EEQLX1vtyWtcx1NPk/BvP/dYaUiViVkMKyWVBAAhBuVowTCAFYCAVD5O23neTsh5EBwCj9Pdjsy9nuTb1Z5vlmHYf5/bLjX+Gxlk8woJJ988kn87ne/88v33Xcf7rnnHmy++ebYYYcdcPrpp+PBBx/ElVdeCcBmsn7mM5/BkiVLcNJJJ2H58uW44ooroqzVU089FYcffjg+/vGP4+ijj8YNN9yA2267zQ8zNBVZ24dQcdt+LrC676bzAmx1anWKd2CqAVkFxyowFqFIRcCWwRoB0MHOQ8/BjmrWR6DURVAWlgeJjMeZFErZYxaB0kLLw1OqeJ1bL5QCQiuwyuITEjCBxSgkRABNCtuRscAUEgQTwZJ368+vaz8VUG6o1/hsWbUzCsm77rrLjwcIwMcF3/SmN2Hp0qVYsWIFHnjgAf/9zjvvjJtuugnvec978NnPfhbbbbcdLr74Yrz61a/2bQ455BB85StfwZlnnomzzjoLT3/603H11VdHY6QNI4PiOlN526lr13RfrU6tTtOpUyRFQBbgGIERqGwnKoFKHohkNCgAHhkdAdCDL1ifg7IAzPA7/z80BGUAQgagBaSMvvffBeuFsnDk9kIqUAU8hVIgITzsQhAK2xAwMgZmCEs+xiEsgWqrsgBK///w12iv8ZmQkSxLt2rVKixcuBD/t3Jlo5gkn5y1dVM02X7Yi6rVqdWprl0JbE0BqbOBYCxCEcaU5wswtN/lEIyWNVuVptrlWuVqrYNlwXoMXa6RtQhYaKl8Xf69zJd53oGzZGVKCZF0PDBRAcx82X1fhGVVmyBWGbWzP26PD0b3Gl+1ahUWLVqExx9/HAtmMLdkTsUkZ1v6nbzw5IRTUZgfdAFQzXyrU6vTbOhU3kEBkCYruVUFEWCyEhwFg89omH5gzHo5ABmGgF3W2oMwAmBxmdsDkcuV9HBxSaECQIau1gp3KluMFo4WnhSAkgrQRAjNrAdK0moLUya5dSkkIAjEFqFKKlyZgUXpYCjI1FqU7TU+szLSkKwSPol1Zv7anMAqF0mrU6vTrOhUSNSpcq8KowMgZrGlmWXOjRpCcAAYe90YiHVw1BqkjXfRGgdCBiKvLwKyDpghGMNljg0KJSGDdf57lbtUIytRKogkrYZmkubANNptowC3XigFIgMhk9gVKxMLQp1BSAmS8aM4AqVBbg1TDE/btr3GZ1JaSBak6mQ0dUEMekua6oludWp1WhudwizTKjdrBMjIsrRuV+p1S3CkXjcHYtaN3KfU60Vg5O+LQDTaRHAkXnbwM8ZEICxCs+//HLpYlYymMgKjnWdYymDeu1eTFJT1cng6YEIWwKi1XZ+kdn2SAob3AW9JkkzssWVQGkAgGwhKIZFn1xZg2SROuCFf4zMpLSQrZFi/e9G1UPdGVbffJhdMq1Or0zA6laSiG4aoAyRbkWw9Zg56PO11YzhmXe9GjYDI7bWG6WURFEMgmnDZA1PnFmXBkmzico3drLElKR0Acxja9SpNKqEp06QETG9BMiRDMGoNpB233AGkhgBbqoAwWTUohYnPZ1X/Tj6HISwDUALl62NkrvEZkhaSFdL07aXqBBe3HXSyEXzf6tTqNF065RvkQAm7e5QyVD00c0Ay6DwMe93cmuSpc6lGwHRtSRvoXpZbjt2sEooMxCI8raqm5H7l9f2kaElWu1dzIEoloZVyQJTe2pSdBKKbQXUS266jYzgGU5F0QDwFfAxUJB17XNCx500ijzGSsRaj4PnYWuxrTdb978hBtCFf47MFypGG5LAHueqkNXmzGsal0Pjh1+rU6tRHp+jaDoFSdLM692sUgywCMuvlccesG1iUvUqQMhwNAzKEpTYwvV4lFIsu2CIsgTxe6f8dHR8JoeK7uhaOle5VazWypSnTBKKXQaUJTC+LliNYshXJFiSfI6NzKywAJYTIrUhv2Qsbe1Qyf7EZAMPIoqxrUrN+Q7jGh9FjbWSkITnoLaXpyR2070Hb1QW5W51anaaqU3kHARyr1oVdOwYBsmen3qJ00DTdnoeh6WUw3QyGLUhjoLs9Dz9eZzw4swiUgAWg0ZTHKB0Qm8QkgdC9KvJ4pBIQSpTgyPPscrUWZA+qk8J0M8hOAqUNhJIgbaCMyS1Ldqui8KBPOqBeNwIljAYyAEkSnQ9BFdakh2WhS0vVuR2ydN0GeY3PkIw0JGdamrgLZvONKPzNQd+3Oq3fOvV7iIiiFRl28eAkHU66qQNkwXo0vQy6m1uP2kGS4WhCeNaAUXfdek1BHJJyOGqKLMmiFen/v8CatFahcPMWkNa9KpwlmUNTBhajdFNeVg7uQkkop7NM7eNTFs5LCZRa22IEWdetAwS5rFcyORBJwBdHD2ONRPar2hM6tdqu6/s1PlvSQtLJID/5VKToOhj0G/0C2K1OrU7D6lS9k7L1yB/SOrIOfQyyDpBZr9J6ZFcrW47GwdMEYOTlIhjtMkXWpIVoDkqg7HYtinezhoCUMrcilYigqToKsqshlHDu1DwWySBXWts4ozYWlO6jjIEa7wNKPl8umYeMtK5ZrtsaWoLGWJdrEym4Woe9xjbYa3yapYWkk0EXRFPhF75BJ7uJDq1OrU5roxOA3Erkrh99vvddNrwlGfRv7APICI7dDKYXgDOAJsNRdzWMJuiuy4jVBN1l12sORYalXRfDsc6K9P+XhyPHJEUZkA6aqqNgegxIBdLkY49kDGQARbYeq6QESqUAo2xs0kgPSGFcog+5xB4yzqqU/S3Gyn80r7zTqLmbbkjX+EzLyEOyeIJQs9z0hNXtZ9BJL755tjq1Oq2NTrZRjbVlytD0VmToZjUmtyRDeDYAJFuP7IINLUeGI1uN4XIIRZ6vcrdScSzKgghZgGRgOdp4pIWjUAKmpyFTBamk1aenPSzZzcoWY2hVRr+nJES3Z52lUllrsdezBQWMtLB0btfSOSom3xRjjAOGggqPRPGwyMKmG9I1PltxyZGH5KCTOJ0+8H77GMal0Oo0uB0w2jpVbxCMBOKWo2SeohWZufikzuFILpGHjBkKkLqr7aena+FoeiYCo7ckDUWANI4EdcYkhyRlAErrVmVL0kAqAd3TLhYpIbsGqiNhtILqKK+D0QSlTeWDkofXsvNBwYKsZ2HoushYaDprEohdrkVo9pNiDdcApHXvDLy+CMsqWd+u8dmyMkcekoNkqieisTtsCr/R6tRMWp36KRJX4QlLxXkr0peRM3k2q9EegL5LRwUgs4muByhbj6aXu1mNg2UIxzAeyeuMIQ9DTfF8P1FCAJosMDMDJQSUsOD0YHTAVNrOGy2hHJxVpwivLlQhDqqDMneia8vLmV4GpVySjrQWJDwg09zlijQ+D9FJlOX5mq4ehByE/SwuQzEoR+IanyZpITlApnripurnb3VqdZoRnYoWJBBZlfEIHUF9VZ1bljAGppv3cWQIcnZqaEFyhmsIyKKrlS3LMCYZwrHrAMlALM6z8H9RTGNRwsESgBJkQWkIShNSbTwsLRSD+KePiypGmZMsqt5jepmFazeDdMtCSUh2q0aF2tO4v+ogqQBlaUQRWPj1c7cCORxDUG6Q1/gMyUhDsolPu+kJqWpX5cMfdBFM50XS6tTqVN5JoTwd4EfZqAIlxyJ9XdYgRpdXztF5Yg5nrvYy71INAWndrdrH/nJwurYFOIZTg2pIVokSQI/sVPp1hI60FqUmQseQTcrpKBg3LYoOMk2lEh6EOpoqGGMggoxXkSJ/uQgASVrbknZNgMnDZgF5gfMaQHprssLCNu6KkaIMSmADvManWUYaklUHfqZOCBWmg9qF0upU3y6UVqe6xn0eyEE80kthqKrwAW83iavkRKXnuJ+ki0FypqrRphaQpmeQ9TQ0wQGS/DyDcViXa8mCFBYWWpOHpSagQ4CZyJCk1bFBIe3/LJSAdl1EQteqLS7girZLVynIj4np7FCt65+0xQSdmrEjqcaCLMKx6kxL/50ogdL/dmFaJ3P2Gp9BGWlIAuVMrZlwL/S7sIpZY7yu1anVaW11morkAyWXQcmWYlRKjsEZfufBSJE1ya7MfoAMIdmjskUJxG7XOuHkHetyjT8GlhRhG/R06WEoXHKPBaTtMqK7BlLlBRCkzqcF36y3vjn+SMF8OBC0/bGavpHBAM1VgCTylV1Rd0gMG6NE3qrka0WK0bvGh5WRh2TxAmgiVRfOsPuoOtnFi67VqdVpbXQqN+JYJEXLHoRF0br0fTiMlf2qXGs1XJcn48SZqmE3jyIgew6CVW5XoAzJ0PWaF9vJLciqD6Tw+/DbOFByVxDTs3FL47Jg7f8oPBRJBv+7se7nHJrOrRpIsfsHF0AnEbtSPRCFKFmRVYDkQ2HqKEmAFAIagABBor9V6TZZP6/xGZCRhyRLeOCbvOUU36aK8/2katuq3211anVaG52GFnarVkGzApSlIawKpeS4wz8XDODMVd3NXa89HVqP/QEZToFqa5K/U8JCsBaScFMD73rVBEjnFhZKQDjgCQdG0hJGMuTLlmMTsUN0BbAMwVjVxaNgRVYB0hD5c1/XT1ITWcsRAkbkVmUVKDfoa3wKMvKQXJsTV9WuyZtO3VtUuL7VqdVpbXWaDSmOzhGWkGPrsWhF+r6QARxDKPJ86Hod1uXKMNQUw7Ej7VHqOjhyEk/XuDYGkM5FLJXIrV4HfqHyEnr+E7idm4qQyluKAPL5GiuS3P9s3P8dwjGPS5Z/h18ahLAg1EQQZH9POHTVxSfba9zKSEOy6QGvaldl+g97Aqd6wbQ6tTo11Sn+4fyBLIJl26G95+NkQioQekP8svv9inqqYfk4BiYLW2/8MdG6akDWdQOxVmP4tCcHSD6KMRz5e7uP/DslBKQ2kKl0MGTAm4Gl8IoipLMalbLHVkp7rPlTTMiJLMgEpBI7dW7WIiBZHV4G6q9LMBgFZ7kSJAS0OzbOAx2fu5p9zelrfAZkpCFZd8Dj26q+XfGkT8cJbHVqdZpOnawCEsBwlg4A+3DPhoclkFuYfjkADIOnKDkYqQDL/u7WcJldqVWA5CmDMYekBYbfh0Fk9cq0YcHxQMJqPF5kDkuhVG4l8vqaZRMcC3JT63JtZk3yuwMhsCKFXVYBKIHBlXnm7DU+gzLSkKyTtXmzmYo7YBh3QxNpdWomG7JOzRuzNcnVY5Qd8SPMvmTLx1mXQkme9WM2Vq9v1nleBxma4bpwfpAlaWD7Q8bGXhmQDMfQkmQLNIemg3pFzLF+eK4cilwvNrIaXRySrcuSe1UmOSB5WSbRywIDUpsYjkSACa6SEJT8niDd/81wZFhC2nnbmbQalOv9Nb6W0kKyj8zEA7Oq7Uy6G1qdhv+dYdrOVZ1qHyIVZc4sGAM3qyw85AM4MgillDBBWTabBcqbCW+3CiXQ1HMbQipcV9cWiDEczufAjAHJMcgiGIMhKKGpT7dGVT6yfkBnmQ/gnENRejAKVeNqlbmLFUJaN2sQh7RgtFBkQOoAjtaizPUJCwoI93+SsOsEACLhrEsCjJs3VAvKuXqNz5a0kJyi1Pncm8pMnORWp2YykjqVypxpkJAepjkgnUXk4CikBHE8DdZKMqoMRwsDBwjYpJc6WIqCqaKEQC/ojtE09NfPTmXLsihFQMZw7Pt6USnCx3HjqY9BhvHIJM1drc5SJBnMCwEEcUgLwhiQ3pIM4Ni3ryQRXBlbSFhokiAPS+UtSdEXlNMhc/G+ayIjDcmpXgPDugf6tV/bQHarU6tT433VFM4m4R6xUgHSjkwhpLGjV8ACFC4BRWjjxmGUEMY+8MMRMIQbccMuu2LiSoAcUEkRNCxsVdCtRGI4QM6E5FV6+rfzY1EGlmP+v/M6lR83qSDSTu5qlapsRXKyjrMmNQHaBLHZAijL3UCsblRx9gWxNQkIB1eGZWxJxqCUYj28xmdARhqSUz3Qw2436GRPhxuh1anVKdTJrijbUiSctWd0FBNjQHI2JhltH+Bpx/aflApIUgitPQikti5XISVkxw5QbBSPriEhXJcJCxFCOPAxGQJ65Uo44TIn4tSBs1/Usy7VJsyADWFYbC+CsSelB6HILUZ2PQP5/8tt044FY5JaMCZpfvzSjgVk0YqUymezxoCkaJ7cdwxHjs9ybLJayMUiLTBDWELy9SIiUEoJaLLnY05f47MgIw3JKpnpt5SqC27Q77U6xdMm28yErE868UOEhIRw1qIo1AkVLi4mYOOSMArkLEhvAUljO7m72BqUG5w4TWwhbyWhOinIGG9dyTSBclV3/EDHhqd2eCqhBaQUUJRDMXS55p3+hZuGryR2yi7EIijzgubx+ryIQAzKsB0Pp1U6zs59zP+PCF8GlCrEI6UFo1LOxZoD04NRyNy1KpWfj7vFEHo6hGV1hiufd20YmPkVJ9k6lgKGLByFsMeAhB2bU7kEniIo3Q4GWtZz8b6bThlpSFad+7Ux8cM2de2n8lBtdWp1mqpO5Z2GFV3Iz5MwyN2t9sGPJLUWZdqB4MLdSQqZats1opPDkK1J5doxQGSqojEa7VT6ZTOReVClAoAUecd+B0eGJYOxuFxlNYZAjIfMCteHH0Tt7ADNwlu/AGI4Bi8E7G6VaQLZSb2bVSTOxcqWZY0VyW5WEhLaABmX56sApDbWpWqnzqp03WaAqsFFrFXY4z6gQkBJASKCks4VK63btQhKSQCM9QDwe8N6cY1Ps4w0JJue3KamPdXMV7nm6n6v1anVaTp0qlYk77QupASRsy7dh61JJB0LRPegt+5Wl3jioOktxU4CaUwOxzSxdU218W0sFBXI2OGoyOTjNyapgu7qkou1zpLsyKqs1bKEUKwCZWhBSiCCpXexepergOooC0UlLBgD96rsJPajZOBWTf0xE+7DYAwtx5KblfuJGlQCki1IbQg9Y2BM6HLNj0WUlGSsRWkEICXBkIUlQUC6uCQJ535V7goy5MAoIChP4pnz1/gMyEhDsk6KJ6fuTWdYN0NxvzzfZB+tTq1Ow+gUPUSkBEgCFBQUCKxJkkm+H45NJvnIFQxHwctGQ3ZSKGe2eBi60mwqgqQt52ahaDNnjZZuajVPC4UFjAE6zjzsGjusVdcU/2M7tTVay8emypLksnShBcml6fgjpYBMpY9Hqo6CTJV3taqOiuGYptbVylZlktoXC7Yk004ei2TLUSUlWGYE9IyLPxo3T4SsYE1mznK0Vib57iDGuUfD/qU95MfAWpTClt0TAqkSMCSQKumtSkA4utp5aeD7UUrq73adi/fddMnIQ3JtTPz+77LlfRXbNn0ra3VqdZqyTkKCR/vgOCT3wQutSY5dIgmAabR9yLt5AiC4iDkAmebjS6oAdKRzy5JB2gOgHM3yqSuTZwjo2n1pIut2dVYjkIOSY3Xsjg37OIZwqHatxtaihyIQAZOtSNWRkKmzHJ1V6a3JNLFxV2dRyk4C1UkCIFrLMbciO5EVSTIBVMe7WTWkgyMhGwDInjHo6TIo7bFzpyroNCmlQA/WOpckYISAlK4snSsCn0ppryZ2tzIojT0Pgq8sWU7kCWVd3nczKSMPyWHfaqZ7+1Cm8pbU6jT1fW7oOkXiu3xQMB/EJmWSW6CJmxqTr6sZiFliwo6lyDrxMFLaBA+XblSz1Y8O4qeub2ZXw6fiGFcqzqmaA5KBmVuR5bqt9e5WtiY7UiAtLLMVqToysiJVR0Klyi47t6rsJBBKQTlghlak/zhoIsljj0g6kZuVZOJdq5nJ3a0MyJ6x7tWetnBkSBatSHbDlsStlO7/j61JCUMEIwGjBFJIGPatOlDauKSzRN2OBiXyhDKr1/gMychDkmVYN0C/baeyr6ptWp1andZ2XwBcDBKANrk1yeuVg6NBBSjHbTteVyMJgKzmO1lwpQ4UB0ol7GggMIBSwo8MAsSVeaqq9LAU4Vh2ueYjgaTOUrTuVOGtyByUZStSjXcqrUgkKcTYOERn3LleE5AKrEmVWjer6jg4krcee6YMyIlMO0ASetoUrEgXpzQ1kEQeT7SAtEk4FpDaWZFcesEgVRI9znDlA+sSfCTZ9ymG5Lq+xmcrLtlCEtPwEBqw3OR3pvMh2+rU6mQbODOMB1dmOMoAiiYbDEopy6D0lXnsPhPAV+IpSrheBmZImDXKUyEFMGGRyy7RrrHxtB7l40Rq4qk9EsVhs/pZkkULsiMdIItWIy87eKrxjrUcXSyy3orMXa1IOzkgk07uZlWdPA5J5EGZaULP5N0/esZgMitbkT2TgzFyuVaQUkmbqAPX3SNRAoaM5aCy/SH9lAjjifKgFD4WHF1YSOW6v8Zny8ocvrz9FOSSSy7BzjvvjPHxcey///74/ve/X9v2zW9+M4QQpc9ee+3l2yxdurSyzcTExNC69TsJxTeVpm8ude2Kb06tTq1Os6GTrxNaHGkirPKiEpDLwPTrZGJjlEnHWkWd8dxCcvMymFfjY0jGO1DzOkjGO0jGx5BuNA41bpftNEU6L0EynlROVUchGU8w1lHoSIF5SmKekuhIgfEAavyZp4Rvl6+TpXahi7XYJkljQCahPm69TK3FKDsJkvExn9GajHfyY+Kn8yA640BnLHazBrDkOGRmnFVoUALkZJYDckIbTGQGPZOvn9QGE5nGZGa/m3Drwk/PkF2fGeuyddCdLO7L7aenCROZti5ep582rtJPMP5nnfW+zq7xGZQZtySvvvpqvPvd78Yll1yCQw89FP/8z/+Ml73sZfjlL3+JHXbYodT+oosuwsc+9jG/nGUZnv3sZ+O1r31t1G7BggX4zW9+E60bHx8fSrdBb+LUsF3ddsVtw/mpWgetTq1Ow+hkG0rfRgS970kCgmxiDwEAGbtPX4BA+kQfqWxHeAB5sQE3LwH78O9OQPmftF0ksomgkLqUyGTXziuBbI197GlnaWplIKRApoSdVwIy6h4ioIJSbSawINmiDCVM3OGyd+xq7UiRu1gdCJPxJFjO3azetZpaKIZT2Um99VhM1vFu1iSNrEmOQ/YcIPNknRiQE5rBZt2sk5lx8CrEJQ2C5J1qi9r2jwSkEa6/JJCSRCqFsyBF4De39XfHE2X35z3m9ooTrkXYf5JlnV3jMygzDslPfepTOPHEE/HWt74VAHDhhRfiW9/6Fi699FKcf/75pfYLFy7EwoUL/fL111+PP/3pT3jLW94StRNCYNGiRWulW7+DXnVyQpcTodmFQDXzrU6tTrOhk89uDeKQEAaCjE3MIQOQG4SZjANjZouaa4E8uScDhLAd5bsTvuAATdp5dJ0XRyooqSBk7tXhqjSZmsyXJ7rBdz3nas1830Sh7LxKFXRPQ3a1qw6DyNXKn7TGzKiLSUpZDUgPSudmTcZT72a1oEwjUOZW9bzImvRuVmUBGVqTPZepmrmEHbbYGJohINni6znLUAftuIgAZ8YCZXerchRT0hYR4IICqXO5GiWQknuRyQw4h8q4eq/jiQq6gdjYZOZcsMID2J1nrKNrfIZlRiHZ7Xbxk5/8BKeddlq0fvHixfjhD3/YaB9XXHEFjjjiCOy4447R+ieffBI77rgjtNbYd9998eEPfxj77bdf5T4mJycxOTnpl1etWlX7e3wS695s1uYEhhfLsNu1OrU6TVmnmhquESwdTIWxo4PAZNaa1FmlVWkmZW5RRvMWmlJKpFy2baLr+xIK6ZZ9Z/wupBLoycxO1wjf7UKnGrqnfaySDHlY5qAsxyNDYTACORylki6LNY5BelDOU94tzIk5al4HquMAWXSzcrJO2vFuVgakLxrgYJmxtcgxyBpATrpknQltnBs2jkt2HTDzriP9IZkwJN3HkHRdQAS0JKQkYSKzUNpCA86iDK8yKRiWZCvziPJ1uK7vu+mUGYXkI488Aq01ttlmm2j9Nttsg5UrVw7cfsWKFbj55pvx5S9/OVq/xx57YOnSpdhnn32watUqXHTRRTj00ENx7733Ytdddy3t5/zzz8e5557bSOeqkzHoBPEF0dTdNqy0OrU6DatT8TsBIOr6AVjLkUw1LIV031lgFq1KMS6ALPNWJSYn8tqkk9JlciqkrtZrprpRlRrdy4Lhtbre/SqUgO6qyKpUKUF3JHTXeMsy0bZij+0TWF1QAAiq6gRw5H6Q1qUqIxdrCMg4ljrms1mT8Q7k+HjuZu0EcVrnZvVFA9iadHHIEIwejhWADOOPucvVQrKbWUBOZjEoWTQXeXBJVUoKdJFbk2OJjYd2EglDAkbZuq5IJJyZGIiEEgbCdsiBBKHHx1TAZrtSvdu1Tmb6vptOmZXsVjbLWYiotK5Kli5dik033RSvetWrovUHHXQQDjroIL986KGH4jnPeQ4+/elP4+KLLy7t5/TTT8eSJUv88qpVq/C0pz2tXl80OzlFK6HqpNf516v2Myjpo9Wp1WmqOtVC00GRyNhAE1lgks5yWMoEkJmDpQJM4izNro1V9lzJtcwN2CwlkPW8dWndrxI6zfKhpCa60RBTspdBqi50V3urUndVZE2qlKB7GqojYTRBd7mYASGpoaTPnJXCw5HduCKISSbzEud2TX2ijkxzULJ7VY13oMbHcjgOcLMyIEkmtmuHh11uSVYBMkysCa3HrvtOG3KwNLWuVg4mMhwBoJMoaENQUnhQ+r6pme0vWS+26IAQdq4HG5/MAHQadp6czmt8tmRGIbnllltCKVWyGh9++OGSdVkUIsLnPvc5HH/88eh0On3bSinx3Oc+F7/97W8rvx8bG8PY2FhjvZu+vVSd4OK2g042gu9bnVqd1oVOvn4rf+csSEGuqLmJXa5EBiKT3i0LHjsx6zpIKois56xJO5yWlBIy6+VuVu5z6JZNN4usSt1VkKkFYghL1bG1Xm39V+nL3gHwxQmi4+Ae3tJbpTkcbR1WVYpF5tZjx4FyLFpXyvQNsllDMEJ1ojgkFwzIXCardvM9UwbkpOZMU+OtRwYkw7EbWJJAdfcPAJGblQHJsNSGoBOCJglbACkeV0UJl+yjCVLYEUQyk7tcNdlYZc8AaYO+ErN5jU+XzCgkO50O9t9/fyxbtgzHHHOMX79s2TIcffTRfbf97ne/i9/97nc48cQTB/4OEeGee+7BPvvsM5R+wx7kqpPWxHoYxqXQ1OpodWp1mi6dSu2FtA94wALSSAfL3IqEkAWrUkIkiXW5Jh0Qu2Gly4x169iqlGkCOcEuWAWd9tywWwmyiS5UmkF3sjIsu7El6av2GOt+LYodscNZkwU45uXnLCjTebH1yG5Wb0GmCcTYeFwswE3l2DyboBOAMYxDRq5VQz55h7tw1AFyItMRHLtumQE36dyjRZcrS5i4kxRgyaDMeNsOfHarFFRyvUoJKKlcTBUFYFa7XWfyGh/mXlsbmXF365IlS3D88cfjgAMOwMEHH4zLL78cDzzwAE4++WQA1hX64IMP4sorr4y2u+KKK3DggQdi7733Lu3z3HPPxUEHHYRdd90Vq1atwsUXX4x77rkHn/3sZ4fSbdBbStOTO2jfg7br5xZrdWp1Wlc6EZDH10wGUALozMKSOoDKbDGCrGvb6C6ETCB1D4bHVUw7HpAkJch1kZDdCW9FqtSCMYxV6jSD7GWVsGRAqtSOLNLPkgTgR/LggZNDOHJVnWQ8zeONHpSxBSnHHRDDGKT7ePdqklbGIYuxyMxY92nUx9H3fcz7K3Yzg9VdHQGymxkPtmJMcmB2axCTzN2tgXhQAkgkpCFnRRpMOgDOS5Rzs9rSgVoAAgQtho9N9r32+sgG424FgOOOOw6PPvoozjvvPKxYsQJ77703brrpJp+tumLFCjzwwAPRNo8//jiuvfZaXHTRRZX7/POf/4y3ve1tWLlyJRYuXIj99tsP3/ve9/C85z1vpv+doaSJu2A234jC3xz0fatTqxOLhyVPXQxTZF0I4woP6K6NQeqeHVXEjYJB3QlXv9R9uhN+OCmVpJDpBDJnUTIseWq6WSUsSRvowNVKOrcii6DM3a3SwzKEo03eSXyxgLw/ZFwYQY6PQ4zPt4Cct9FQcchSko4DZATHAJCTmUFXG6zpWitzTTeL3K15PLI/JKsAGcYi4+1VftA6gDIo1Rq03UfIJvIICekyi61V6erpVliTw8icvO+I+uRPb6CyatUqLFy4ECtXrsSCBQsADO8qG0aaJHdU6dDq1Oo0l3USxiX3ZF0Io63bVXcBtyx018KzOwnKetaanFxjp90JUK/n582EhaXpZR6Q2cQkTC+zsOxlfp6Mge5qB0hrSZKphiQA14VEurhkXpOVB4rmWqxsSRZjkN6CHJ9v44/hdHw+KBkHJWOgdBxIxkHpGCgZR9fAJttoW4c2c9PJjLC6ZwG4uqcxoQ3W9HJ365peaEFqrOnqQjyyApLBY9wYW8aPRQlRAmUnkegkEkoKzO8ot6wwr6MwlkjM6yiMJxJjSmI8sevGEolxJTE/5WXrwu24qkcdJZC66VpfWxh8ja9atQqLFi3C448/7p/jMyFt7VYnxRMx1QcKXx5F3/qwsaFWp1anOa8Tj0PJNWDZ7ercs5QpCJnYj8nswMNJCgpdsGmau2A7E9ATk5BpAj3RhewkMN0MptezkOxaUOpuBjVuPDCNG7cSQDTaCAvXi2VXKw+aHA53pcZtP8gwi7USkJyoMz6/URwyTNTpuXm2HCc0J+yYCJDsXmULMne3FiDpCpuTsx4psCI5miikgHZTydWGKtytdW5anpeaRxIBJrQdbksZ63bVwn44Ptk0iad0PQXLTa/x2ZCRh2TxBKFmuekJq9vPoJNeDFq3OrU6rQ86EQAICaE6ASyVHVKL3bCZS+6RCWTagQncryLrWWAmKYxzwaqsB91JoLsZ9EQXupdAdjOY1MJSppl1ubopGTs0FwA/LR0P7noi8zioHwsydYMndwpl56oA6VytFpCD45Bhok7PJeqEcAw/DMg1gQVp3a06BqTrH2oyO2VnIJny2RPS1rWWUoCkgHHDjHWULLlqq0QJgQlhomUpDHpSQAkDKaTP2uWBQ+qSeJpcT+Fyk2t8NmTkITnooTCdPvB++yg9ePpIq9PgdkCrU5N2wPToVAtLmYAUu2ETkOxCqBRybB5MZ00Us5SBhamSFHJyAsrBsuh21d0elHHWpAMlgMoMV4CzXPN+mQxKhmM+ukdcTUeGfSE5FsmJOsn4wDhk+AkzWUM4ThQAWWdBdl1hgRCOZArWZOB25b7obEUyMFUiMWEIac2oLUCcDSuFgBK2C8iENpBSYDIzUEIgVdZilgC0EL7vZFUSz5Svqyl8N50y8pAcJFM9EU3fyqfiUmh1aiatTs1kOnWqhmXXjSzShTApkPXsPCf3JB3ngmV3bGrjlUkHIutay3Ji0ifxmG4GNd6xgBw3IK2tyzWwKEu6OkgCgOqkeTwyjEt2bJ9IuEIBdYBEZzwHY2rjkexu7WpOzCkn6hQzWSdct4+JrB6Q3orUBjqzH640RA6Uxrtby2dWSECSABnhYUlEUEqiV3Neras1i5aVAaS2lmRPGigB9IzARGazXbWw5fa47+RUknhm8hpfG2khOUCmeuKmGjdqdWp12hB0KsISugvo1GW/dr2VKWRi+1cW45VZN4elsyxV1oPp9vIkHuduNQ6OoUVZ0t0BMrQifVzSQVKkQZm5JK0GZJjJGhQM4ESdEJBsUeZ9HkPrUfuhrtYUunjkLlcLSbYetQMlw1FnuQVpCi5X7hsKbUcAEVJASEAF/UaNIVASJ/3EsUhtAekqG0khoIyBzBiW1rpMJUFJ+L6T2gCZsGUJkoqRQqZyPZWurVmUkYZkk5ecpiek9kER/E6Ti2A6L5JWp1anda0TwxLJuBuKacLC0oEzTO6J4pWTE74LSQhLmXQhHSxp3EC75B0PycCSNA6YsgBItipVJ3EWJQ9x1fEFy0ujezAg2cWajvdN1LFDYcWJOj1j3ZXhOI85FDOs6eqBgDTaeDga5271oCzEFjnDlaSAIAFpBMgYqMQWi1dBH8kuD1JdKohufEZsKqV3u1oL2UAagZ4xSApJPNK4cr+EWkhO1zU+0zLSkKw68DN1QqgwHdQulFan+nahtDrVtwtlXejkH3YMS5UAvSRK7im5YLNuntwTwjLrQnV6oKwHmXa9BWkCSJIx0diWgIUkAG9FCqU8HCElpANhqS5rwYKMMlkLiTo8KHEYh5woDnbsarUyFDlJpwqQWVc7MFpQkoGbBvFIosqkHXLDXQmTJ+4IEgAkhIzb92QMyby7iPbxyU5ivNu1JwV6Mk/iSaUtWcdDl0maWhJP0+tpNmWkIQmUM/9mwl3V70FVzELkda1OrU4bmk6RLsm4rQXLyT1VLtjuZF7izhUiEEkPlFlYIuvaJJqsCxgDZTRIu6LnhdgkA1IoN6SXlB6OIulY6zHp+HgkD3sVAdLFHusKl2tTHYfsBUUCeH5NLy8UwFmsnJxTB0iTkQdkXeJO9D87Mtk4pPCwBGw91rBGq8kEegBUVoSkQCdxFYI4WUfC/4/S5FZlIhW0syCVc7sqB84m5eqGvZ5mS0YeksUHShOpehANu4+qk118iLU6tTptqDoBiOOVDpAlF6zu2Vhld8LGKyfXAFnqYQmtLTSNBowbD9PoylCK4DEvAYgktYXYUzdNAkiOjXvXKwPSxx4L8ciqwuVhHJKtRh7Ng+OQUVJOXQZrBSB1ZjwcdcZWcx6TDEU6BpIkn7QDuOGwEglhBDSM7UvpXiq6QVUe/nQzHWW7pkp4azKVwg7l5axJJQdbk9N5Pc2GjDwkWaKbF/1PRNXbeXG+n1RtW/W7rU6tThuyTgQAQoKScQjVAXoTeTGCggtWph2YyTU2wac7Aep1IYyzIrOerfijNciBEoAFJ/+ugyNcgXU4i9LDMhw0ObFdVEgqD0hKUputy+5WmfQpXG5H9uAY5EQQg+xpiqrphIk6a7ra9oHMDLKergRklNnq4FhVTACAda9KYZN3DNzT3ng3LAAoSN9tRggBnRl0Kyr0sNu1k0j0NEXWZEqBNRnEJqusyX7X5FSup9mQkYfk2jwI+rkEmmxXd8G0OrU6jZpOJCSQjoNUAtET8GNdytzCFFIBvSBOmfWAnps3GjAawhgPRxFAEkBuRRbdrWknT9xxsCRloYigWEBoTXIcMow/Zm655wsFWDdqpsnHItnN2i0VL7fdPLKu9kCsAqTNbkWUtJN3Acndp0JKwJWnE1LASACZtSpVIqERuqMlhLD1b6UrNtDN8oSdsCB6NzMWlMYgpdiKtPBsZk1O1/U0GzLSkGx6wKvaVZn+w57AqT6AWp1anTZEnfwQXUK6sSkTQNoxKkkqCN3zQ3Ihy2xMMklBzpIkXQZl6bcdICGVj0+KJM9uRZI4i9FaiyEgOZNVQ+ZFy113D+0BmXf36GlyMUhtx4wsuFlL5eaCLNZ+gIziklyztvD/ktEQLkYopPSJOwoSOjNQiYQRBGEIJOzvsNtVZAJa5C7XSQ9MjU4i0c0MUlm0KC00DRG0EbEVuRaxySbX00zLSEOy7oAXA8R17YoPkek4ga1OrU6jrhNkAkqltSo5Vim7zrJkqzKLYOnjkZntIi+CJB6/f5W7XCGlBWaS2ozatAOSnETk3KoqiQGZdEBCujqs+aDJxe4e7IZkN2vPwTQvUl5dSScqFlABSK1z61Fn2oOxOAXsywCDEgAMpK2KA2NdrIbAiTtC2qQetiSJs3RN+dPNDMZCS9IYJK6AQE8TepKQKi4mYMEYTg1ZgE7n9TTTMtKQrJO1ebOZijtgGHdDE2l1aiatTs1kXehEXIjAuV2FkHmSjxD5YM8OloII5FyxMMZalFU/4mOTMoejEBaMLh5KUlm3Krtbg0xWTtTRhJK7tee7erjs1Ao3K1fUCbNZOQ5pnIWoM9sHsmhBcrIOOUuZP0C9JRkKg9JIsgV1EkBIWwNWCmEPm7NQw9hkcVitSXa5Oveqcf976ly1PZ3XdC2BsuI6mOr1NFvSQrKPzMSDoKrtTLobWp2G/51h2rY6NWs7FZ0IgHBWJaQEtMpjlSazyw6WMJl1nZKxwHSu15JwXFIpm5jj9hcBUgXu1gIgOVHHxx8DUOYuVvLZrPypymKtc7NqB00uOccu1ipAktEwNa7lqsqsBhLCEIwEhAOvERbKwghfzSe0JjkOaSFpoI2dN0Qw7mUhJRsn5UQeQ4AhO7qIcq5b6VyvQlZnug6S6fZoNJUWklOUuhhOU5mJk9zq1ExanZrJXNCJAGtFJuOAzHKr0mQQogvSWW5lmgzCDQjtLcZiQVOGopsnmbipgyNn1zIglZ3neqS5GxKuf2Q5mzV0sVa5WcNxIXWQgENEMFmejKMz63bNk3QsIE3W9ZajCazJohhUg5LruJKzHKWysCQRFCZQ9rtwMOfSxx0PQ3k81lqW8FBUcIMxQ1hoOmsyPL/DXAvrQkYaklM12Yd1D/Rrv7aJEa1OrU4buk7cNrIqM5cBK50Vqa0lCaPhfJN2mwIkSUjeWQ5MF6OsBKQrOeetRw9F8uDs6TxJJ/oY60otjgXJ1lnJigyAyK5XQ8GQWBXWI9VAkmOSRVAKqWCMTdiBG2ezCEb+8HaVgHQf414ajCFoyda1jVcSCZC3KO3P2faxNVklw1xPMy0jDcmpHuhhtxt0sqfDjdDq1Oo0CjoJIUGqY/fHViTHLcmAdAY4lysAa1WWlJIgwZCtcLfKxANSUwiJPA6ZW1HwGa6lT2BFWjcl9bUifVKO7wuJKIu1CMQ4Jhl3/+CYJINSOcvarpd2v5K8yxXKAkyi4HINPllgWWbBMTG2t4n75C8PhDyBx4CtSAHT4Bpocj3Nlow0JKtkpt9Sqh4Wg36v1SmeNtlmJqTVqZnMpE4hKCGktSCFsOvI5LC0vkR45577DoAFI+Bg6TJmvUWZFFys4Sd2t2oDbzGy9chJLIZsWbqS5Rgs+64ebL2F0AyWrfqxFVkHSF4OQcnb239Z2fbFpB5nOVJwyOqE45JAXulH+ynvj12uDoqBRSlg45SqIemmcj1Np4w0JKvO0dqY+GGbuvZTeVi0OrU6tTrFbYXrU0kygdAuNmm0hR27W6UpuVsBeMszcrkKEQGShLQgrAAjA5P7SXKmqwmnOre+upmOLLFuZmIrsmA1lvTt0++zbmgwBuXaSrErSPQdxysDUPrsWOkgH7hcyVma5OKUkmJQTvV6mmkZaUg2vTGbmvZUM1/lcqr7vVanVqdWp8E6eVAXrUqTQZAExyUJQF3yTuR2FTIGJCGGIwEGLrkmeOCzFRlakD1joszQylheAMRwFI8wozV3teaALFqR/ni4PqG+L+g0SFXR9CIsGZBh7VhO5vE6k/u/AJBL4GFwhpAc9nqaLRlpSNZJ8eTUvTlPJQGh6k28yT5anVqdWp3KywRYF6tM7PZSuriksLAEKiEZwhEyd7t6QBoCUW41EtVbkdz1Ibcg4eOPVYAMpehq7Xt8aqxJoAzHKiuSXa9NLUzRL7MmEAYiW5AsHJckEAwqLEoCNPV3u67N9TRdMvKQXBsTv9+bTtW+im2bvlG3OrU6tTr114kYlGSslWFMnrRDhadwmOEqg24gASBDS9JQ7nYNH/LsXrSwLHSJ8FA0kauVP2FyTPS/VcQjpyphMYFiYYEQgPkIIfmhYVFieJuNk3fCuGSVy9UAtqZrxU8Mez3NpIw8JId9S57u7UOZyltSq9PU99nq1Gyf64tOJKTdv0wA4eKRxpSf/EBuPXq3q8wzNJF3VSAggiNbkQxDdq2yNcjwHNS/MAQgs7wqHlknedk5WYpLhpaikAqyAEs/pqQQESylYFDG1CqPCLJ2zk5CDkwCwfQZlHldQLEoIw9JlmHdSv22ncq+qrZpdWp1anUaTqewIo+FYDl5p9hXkgGpCda6c/MmgGMpFqlDd2teXYZdrVWu1aIMshSFFHbHflnZsnJAoU5rtWuVASmij/T7toa0gAhg6S1Kt25tgcgSxiWVd70ShBBrdf5nQ1pIYu1uVFRsO6yLqWqbVqdWp1anqekkANutw8GRhMzNtSIg4R7gsA/xMAZp1+XWJSHv+xfF4QJXLEvRvdoEmqFIIaDdf8RWYyhF92lRqgGp/NBZbEWyq5XnhbDLMnDBsvWYFKCppIASwlugdUKEiGicsEPBskB5hBBguOtppmTkIdnvJEz17blJvGWY3211anVqdWquk38mh27Wosu1AMjQzWoCK5IzWvN+frkmnNkZLhvqD8N+30lpq9QINxIHr7MVanIo8n9S3fmD91UGpJAyh2HBirTQRPC9BWCVi1VJ2djCNAVC8qJxperY5Uo1oJ3KdTDdMtKQHHTQqWG7uu2K24bzU3l4tDq1OrU6NdMp/7FChqtbDnVkV2CBec7NyvCE/96Y3B0bxiOnKsKOYVVaJ4hjhNXZqHU5qnkWawxIlVhIKlVtRSplx51USnpXa92HrUopcmtSOrBGOgbLxToFxS4gXn8Mdz3NtIw0JPsd9KqTE74TEZrdxFQz3+rU6tTqNPM6+WdwYEnyd6FRZ4Lv2NUatiG3hsE4VVFSeCAWk2bIjetorUdXrcZZfKYWibGUASkLIHTTRFoouqlKRGRFSpkPk8VQ5Pn4U3aTygHVdELjkuOSgnKX67DX00zLSEOySkKXTXEdsHYnMLzRW51anVqdZl6nELDhtqGblSo6xAPW1Vrcl/9uCt0zQhelcLAUUkCSADnLMXS5AgRpLDxtwg4n3cQDKhclTNCRMrcShURgTcrIzSqV9OAUUqCjpIdiCMdOonJABvFIxRZlYE366n/u3x6E+aojOtXraTqlhWRBqk7GoBPEN3NTN1KrU6tTq9Ps6tTUdRvGI/32NRvqIf5ZBiTDxQRJMnboqhyIwlhLT2c2XUhBumLkBDLCjuLhCFQsbA4EGapBko5MRARMmUi/PnSzykQiLQCyaEWOuXl2taZKQgprBbIF6eHZIHbJcUkIW40n3KS1JOeoTCVRAKi+Gev861X76fe7rU6tTq1O06vT2ooSQG9QmyDpJZz2dJyoU7QmjUEESmms61VIYYe5AmxyT9QHUkTTMBlHJTLPXPUWI5yrVUI6C7IIyHiaW5EdJb2rNbQgw9iktyhFDL4wbBlZ51SOUfa7nmZLWkhWSNMbqurmLG7b9EYddNJbnVqdWp2mX6eZkGJ3iarEFynjGGRoTSKRQGY8KLmGq+BhMpWwsbyClZYXAwhAKQWkkgW3q4BK8vXsau2kCp1ERp8xP6+iZSkEUskWJZDKEI7W1SqF8OdcCNjY4xB0W9vrabpkpCE57EGuOmlN3oqHcVENe1O3OrU6tToNr5MU8K690G0qBUBCgEB+vXA7Cp8XUoqoD0aY5ckSWpGJFNAhKJ3LtWhNIgGQAUikc68SjCAISdEoITzuo/+/wyQgTsAR5exVth6LyTtsQfJnXkfVAtK6WBmOdlslhAclHwslLRRFnydt8RtCfl4GXU+z9fIz0pAc9JbS9MYctO9B24W/1erU6tTqNDs6+d8UAiCbTRpmrkrkHfpDUUKgB8rByMQFoGTRxSqhpClZkp3Exg+7xsYcczFAAggjQIKCWGQOy0H/S7+YZGg9suu1HyDndZLYolQSqbJATJVEwrBUuRVpAWrRyK5WyfMQbt3a2YGz6W5d+wHHGsgll1yCnXfeGePj49h///3x/e9/v7btHXfc4czy+PPrX/86anfttddizz33xNjYGPbcc09cd911M/1vDC2DTiR/P5vuoFanZtLq1EzWZ52kQP4gD74Ln99soAlYqyjP5szb+MxOESwXgFjbjcJlmwohfGyQu2RwUo3vqpFIJKny68JPkir76SjIJFhOJZJOvsz7SDr2M54qzOvEnypAzuuoAJAWrKnMYSmddZlKWbIiQ1dr5bEd0gULzO71NOOQvPrqq/Hud78bZ5xxBu6++24cdthheNnLXoYHHnig73a/+c1vsGLFCv/Zdddd/XfLly/Hcccdh+OPPx733nsvjj/+eBx77LG48847p6xnldm/thK6fZr8RvH7VqdWp1anmdUpf1DH8TKGpQisIAAunojIivSZnWy1iTgLlCvUhNDsBJaZSvLuFzxfBUsGZA7A/BN/z2CsgKMDZKok5hUAOd997LIFJC8zIMeUhSbD0cMyBKXLduUXh6IVGb6IDLIoZ+L6GFYE0Vr0jG0gBx54IJ7znOfg0ksv9eue+cxn4lWvehXOP//8Uvs77rgDL3zhC/GnP/0Jm266aeU+jzvuOKxatQo333yzX/fSl74Um222Ga666qqBOq1atQoLFy7EypUrsWDBgso2w8ZNwu2A+Ealtdhfq1OrU6vTzOtUHiLLTnsmn8/cfFcbTGQGPUOYzDR6mjChDSYzOwDzpPu+mxms7mp0M4NuxtN8HQ/K3M0Mum7gZjIEnRk/jJYJMlkHPapFMIpHMS4pE+kTaxjQIbDHQnAXYpDjiYpcrDyNYClzS9ImLcG7X9mq9Ek9wn5vrXjhX0SEEJF1P0hWrVqFRYsW4fHHH699jk+HzKgl2e128ZOf/ASLFy+O1i9evBg//OEP+2673377Ydttt8WLX/xi3H777dF3y5cvL+3zyCOPrN3n5OQkVq1aFX1YBKrdM4PegOukGFAO4zD99iEK861OrU6tTrOnk7Vu2EUIP2Xrx7bJXa7hAz/s8sDWJGd+hskvYT/DIqTmpda6U4m0rtDQSqxYV/ykY4m1EMeS+LuOwthYYt2qqcLG44m3HDceT0rW47xOvI4BOe5gOebg2RSQfEy9VRlY7FWArDs//c7dTMuMJu488sgj0Fpjm222idZvs802WLlyZeU22267LS6//HLsv//+mJycxBe/+EW8+MUvxh133IHDDz8cALBy5cqh9nn++efj3HPPrfyuacLBdLqBBn3X6tTsu1anZt+1Og3+jrMpieCzW0kICEEQsA95ErY4nXJQ0OSyVAVBCiBx61Jpu2h0lLVBtCFoafsZhqKkQDczvg0va0HQ0lqREvBZrP2G1gr7SHpoVyQLFQsEhACvTtCpB2I0jQoKlC1IXi8EIpcrA9L/H1M4dzMts5LdGh4EACBXr69Kdt99d+y+++5++eCDD8b//u//4pOf/KSH5LD7PP3007FkyRK/vGrVKjztaU9rpPtUT0RTN89U3EutTs2k1amZtDpZUeznM7bijn3AA0QWkEIAggQE8sxWhmWqJAwZB0iBlCS0MVEma1GUz4gV3v2qpCgNreWnNe5W7rRfLFxQhGMYJ20CR28dFlyt/H8XAamcG1Xy7wdQrJwP/gcGJ88Pe+5mUmYUkltuuSWUUiUL7+GHHy5Zgv3koIMOwpe+9CW/vGjRoqH2OTY2hrGxsSE0z2WqN13TeMhU4y+tTq1OrU7Tr5MSgHEPezKxNSkBkLDdPAhFQGqk0i2ThDYaqXJbVTxlq6zIqvEno6G5CpZkcWxHnlaN2BFXz8ndvaHrNwdjHHssWo9hJmvoXvVxR2nd1MW4I7unixbkMIDsd+5mSmYUkp1OB/vvvz+WLVuGY445xq9ftmwZjj766Mb7ufvuu7Htttv65YMPPhjLli3De97zHr/u1ltvxSGHHDKUfk182k1PSFU7XieC5UE38HQ+dFqdWp1anYbXSQrrdmVXKluTStrC5kVr0ghCKiU0GaRka6umypYkd3uMnrQWkDnUOIFHG/KDNQMoTeukCMikApTFmKi3JqPuG2U4SllcH1faKVqP/dyrdUk6fMyL5yOU2QZjKDPubl2yZAmOP/54HHDAATj44INx+eWX44EHHsDJJ58MwLpCH3zwQVx55ZUAgAsvvBA77bQT9tprL3S7XXzpS1/Ctddei2uvvdbv89RTT8Xhhx+Oj3/84zj66KNxww034LbbbsMPfvCDoXSrOvAzZcpTYTqoXSitTvXtQml1qm8XSqtTfTsgd7sa4wApBJQkWybOxSaL1qSUcIAUASCrQVl2s5q+btasBpJJwZIsf+KuJyEc86o5ZThKgRIsvYu1IvYoKqxHhugwcGxitKwLmXFIHnfccXj00Udx3nnnYcWKFdh7771x0003YccddwQArFixIuoz2e128b73vQ8PPvgg5s2bh7322gv//u//jpe//OW+zSGHHIKvfOUrOPPMM3HWWWfh6U9/Oq6++moceOCBQ+sXvm2G02H30W+7fg+FcNtwXatTq1Or07rTSYCBCAtIHQBSAIYEpCBvhQFwgPSPf1SBUqUCXW08IC0cZQBIU2lBhvP1blYZzIf9NPOi5KxvFSSHgWOda3VYOEZgJINIgjFAh/EKTLfMeD/JuShV/SSHOfBVN9iw+2jSvtWp1anVad3pxH0ne4aQmbz/ZM9Q1G8yM2T7SBqDnib0jO0naQjoadufsqfdsjFuH6YUe8xqLMk6KbpZAZRcrQxGJW2dVQahEgIJw1IGwAzcquVhsNbOciyBMYRiOB/AMVwuAnK2+kmOdO3WUMLLsckbavFNuDjfT6q2rfrdVqdWp1andadTlMQDa00K4RJ3nGUJSWC3K1uNnMzT0yZyvdpBnSWkICgp0dO2qweDsQOUknWqXK1JAEeeRvNCRBZjCEaez9ehMiEnjDnaaTnmGMJRNQEjg7AOjoAFIq8rwHK2LUiWkYfk2tx0/dw5TbaruzlbnVqdWp3mhk42aScHgq18EyfxSGETdTRpSMpjkkpYEAISUhIyTZCCYIjQC+a1gQNo3s2jnxXpgeizQ51lJ3IoclGDfmDkpJzQpWr/T0Agz1qNXazV2aqqAMbIWizAURTBWHEuvDA0HTDXBShHGpJND3hVu6LpP8z+wn20OrU6tTrNXZ2kyN2LZMhbj5zEA0mAESCyGa5h/NGWlLPLktzoIdr4eKYFJMHIHI6mEP3SbncqMKryIusMyTIUuaBAPs5jNRilsNmwcVZq/0zV0GpUUsRgJAOYHIoeiGaA9ejPgwGkBNVYlK0lOctSd8D5huFpXbviDTsdJ7DVqdWp1Wlu6cTWpAekLgDSZbs6OwrWihToCetmlcLGNY0hSCFhyELR1AAysiKDIj1sQYaQZHcmQ9G7SAMYNgVjv1hjIzAyFE3BrVqAonD/J7n/owTD3HCMz0sxVjlLMtKQrJO1eSudijtgGFdRE2l1aiatTs1k1HViS826Vx2snNuVs10BB00HSiMIISAVl5ojW0TdGF4OIMlwVJWq+HEiIwtS5JZiODIJL+dxyWkGo8kAUwFFMh6CfWOPAEQIPWEDvR6cBoCsh6Ko/Wb6pYVkH5mJm66q7dq6ipr+zjBtW52atW11atZ2fdfJWpSWGFyJRzlL0hqPDpAOlLZGj8ndrMJAukIDkghGACkEtFPCGPJwDMvPMRCBEJIFa7IESfjkGws9G2McBoxRco6AB2AExhCKFbHHKjDGB1XmUxd3FJAgdlk7i5KC9oO8DDMhLSSnKFU35kw+CJpIq1MzaXVqJq1OuUjhHs4Uu1pRA0pDLlnGkC2ALiWMQWRNArn1qGW9Zt5yLECSgciWIkOxNnYYWZHlGGNkYQIOill/KAZwFFVwNAVQyoL1CNj4o/evGmthCgK5EK+QyGOU68DlOtKQnKrJPqxrp1/74ndTcRu1OrU6tTrNvE5hJR5BcAXP4YfVYjestdsAKQjCWZUelmR/jdkRwpFjksWBiHNIFjNaYygWrcV6GDJkw3YVblSd1UJRBJYlgACUA46iCVyqQgJS2n0JGcMSAChwvYo8bjnV62eqMtKQnOqBHna7QTfqVF1ArU6tTq1Os6tT6HaFIT9qCCCgQR6UQgBEwrkLbWUeIgGCS8yRFoppn1d171J1FiQD0X6XQzFyjwrrRo1gGLpU4dytDNbQjcpQNLo/FENwAs3dq4CHHNha9NahgVBJ/OJCzvUqLEgpcsvOnow0JKtkpt9Sqm7MQb/X6hRPm2wzE9Lq1Ew2ZJ1Ct2s47iRjl0EpyMLRwxIAidhSJKp/1IcwtLqEEMwtwBCKxQ7+IRh9fFIgB5+2VqN1qTroGbYeA3gyNBFsO0VAFl2s3rUqBKAzCClB0mHJZBAysSBlazKovjNbMtKQrLpEm7pnBrWpaz+VG7PVqdWp1Wlu6SSEc6SS68NoclASACFs9msIS0C4mGYeviyKDNZ5UKI/FH0ZOFGOL0Zg5Phi6EZ1ULQWZJZbioE16YEJBOvs0SGt43/AuGUZp+gKpQA4V6uHoyzDEoBAloOSDEACYcxytuOSIw3JpjdmU9Oeauar3Dt1v9fq1OrU6jS3dQqtSUg7egfDCyAbSjOWUCEseQdE3G2k4veC7h12uT8UebkyvlgFRoYfr3ffhXFHEYCTgehhaDTIaHtMwqQcU4BlCEkpQRkgpAKkglAK5KzCCJYygTDunAljf4OMdbs6WFNQeWe2ZKQhWSfFG6vuLbXJW26//fJ8k320OrU6tTrNLZ2EEJCUu1s1LNAM2eICtleHtSyVAEy0dVk40hbHHXm+fuBiH18EqhNvimCssCRF5Gp1UGQgGuMhSEb3h2P0DzlQSgkhFQg9QCqQWxZpJ4elTEAmi0GpnKuVrUlj4BN4ZlFGHpJ1N9xUbqB+7ap+q+nba6tTq1Or09zSia1JAzcAc2BFChKu3qvdkkOPoiIGGblX/TpRAmUIxqhjf0XiTV8wuvXCxG2roOiByN8DFoqFbh3kQCkKLlbf3UMqQFkrElJbYErjvxNK2XMagBIkEFuz1pp0PzirLteRh+Swb6TTvX0ow7zh9ttnq1OzfbY6Ndtnq1P9dlIARNxV0lqRUtgvGYrcK6LexWqnVZZj1agaAzNSAzCWYBlai71uDMWslwPRwZABWIQjVViQ/qUksCCtNdlzgHTLaQeQ7jeSFEAnd427RB1BEmSMdbv6mKiyLtcWkutGhnXh9Nt2Kvuq2qbVqdWp1Wnu6sS9P9jtyqAEbPcO5azNugBaCEQAJSgChfhiQzCWLEa2GrMstxaznrcUqdeNoVicBwDtYMpS5WYN4Qh469FajtrN2/2KtAOSJj/Wxrlfg+MvAJCUkUUJY+xBqj+s0y4tJLF2Nyoqth3WnVO1TatTq1Or0/qhkxTW7SrdmFoGNru0X7/6YuYq70cE06hf4lRcqSbLwchWYmgtelA6KGbdGIahy9UtR8fO6AoXq3WdchzSW5De3aqc9QgPVQGAEgDaDdgZQlFnEIITdyiwKmdPRh6S/W6Kqb6pNoltDPO7rU6tTq1Oc1MntiYZlAAsLLlR1b4KUIzmow77NUk2DEHOSg3Xuz6P7EpF1svB2OvmMAwsRer1yjHICjiWunsUjwmDEMhdq2GiTpKClLLHzmiIpJO7aJFbj0jcspB5LLLK5TpLMtKQHHTzFU9gU6m7KcP5qdyorU6tTq1Oc1MntgDtgkBxzORigk5eJABlMBY7+DeIM3LyDWXd3JWa9XKLMeuWrEVeV5WkQ9p4i9K4QS1JV4NJuMEupZsKKe06FViSSceDEVrbuCSqz5NUKgZjMTZpDCBbSM6K9Lspqm4s/6YTzA+6ialmvtWp1anVaf3XKbQmQ8OxKkmnBEYqgDHsqF/RyV8YXWs1msCdyjFGynq5S7XXjcAYATKAotHGz1MFHMN5EYwELZSEdlOGpHTzspPaJJzETpGk1S8xUkIYZfXvjEGYLC9FF/bZ7HOuZkJGGpJVwies7q102JuvuO+pbtfq1OrU6jR3dWIAsgUpC5D0YORpFRzDKjcVLtWqWKNhK7HGavSu1GA9jIbp9iIoml4WQdHUQLLyOCmZW5MOkEJJGCUh08QCUkrIjs7jkYVjKaS0utudQGQZkMoYjKF12bpb151U3UiDbq7Qn97EZdPq1OrU6rRh6hRZi36jtYNjlKUaJOJ4OAaxRsp6sdUYuF4ZjLqbeUuRPyZcNsbHH72rtTjkFRzYELhZlYIJIKnSxO7bwRKwiUrFlw5IZfUGbLJP5rqMuGNFhaxWfwxnCZQtJCukaSyk+KZZdcPWxUaq9tPvd1udWp1aneauTmF7L4PgWCwqHrpVfawxz1ylXncwHMN4pGtD2kA7S5EtRl4OoWgCN2sTK5KtR+Mh6dyrSkKmKUgbD8tQiqCES+aBVC4+KgGjbTWjgluaXPJOdHxnWFpIVkjTm6LqBituO+hGRfB9q1OrU6vT+qlTaT+hpTOM9Vjo38gJOYbByHB0sKy0HF0b08tgHBhNtwBHY6CdZRlalGGyThM3KwAfe2QLkoyE0Qaqk0LoPG7Jv5EgAKWUQM9Zjlk37zrC1qy3KHNgCqJKy3amZKQhOegGqWpfdzP2azuMO2gqb66tTq1OrU7rXqd8x/WAbFQZp9iVo2A9+oQcF3MswpFhyHCMrUgdW5ENEnaKQGI3a2hJlpN1bCxSuZgkaeMtSu3jl4Frtdd1lqRx/Tbdp+hyLXTLnA0ZaUgOesNsemMO2veg7eqSAVqdWp1andYPndi6jVyAgwBZyFotJuYMtB75O9fOdHu1cGSrkS3KytikgyUAkLb/odHlIyNd6q5w09CSDJN1pItJysDdKpSE6WVu3lqOHpQMRp1DUhYLCKyD5J2RhuRMSxNXDw1oM93S6tRMWp2aSatThdTEIEsWZBGQhf6OHpCTawZajxaEMSCLcAzdr2UrkmA0WagGYOyfsCNc1w8DqQRUR0FoafebJtblWohHshUppIWlUgEg2ZrkguhJJ3e58nFdB9JC0smgGMdUpOj2GfQb/ZIPWp1anVqd1lOdwiQdhie7WIuAHORenZwYaD1aIPaC+RiOvEyaoLvaQ9FalZQvV1iRACCUhZWFpICQEqQEjCaojoQ0DoSmXIQ8dNUKJSG6Pet25U9gTYqwdqwD5GxX2wFaSHoZdOM0FY5zDrpRm+jQ6tTq1Oq0nunEnd/9zmrchBWfOkBSdyJ2r3YnBlqPxXXGuVYZijZuqQMLkt2rxs/3syKFEnb8TCUhlIHqSAi3X9VRlVakdbX27LSb+RhmFIMMwMhl84Tv8jH7hQSAFpKlmws1y01vlLr9DLphiwkHrU6tTq1O65dO/FteDFs/BSvSmLhAgItB2tE5yhZkHSCziW5f69EDtJd5OOqu9haj7uau1jyrlSILkmOU3BcSMDYW2bOWJGmCcFPVIZDheKUEkMXHLehPKZSE1Pb3ZRCDFDovjxceP69R+NIxSzLykBx0A05n/KLfPoZx77Q6DW4HtDo1aQe0OjVpBwyhU2hNFh/mxbikc8Vykg4PXeVdrC4eGQIym+h665Dn66xH3cuguyayHItwZDDGVmT8X5qeA5bMk3ZISQhFkEb47VXHjezhQeuSdFwMUihpu7R0M194wCgJlRpXdN0CUhRAOdtVdkIZeUgOkqnepE3fgKfiXmp1aibrSid+vjTdB0uxlNl06tRP2nPXTKYM7CorsuBmtUUB8gIBYSYr+YSdrrcM6wDpAVqwHk1Peziani6BkQyVMluBPLtVBsVohRKQRsL0DGQqI1iyqA5AWtiPMh6QoptBK2mr8xiTW5O9LkSSeouSjLb3Bg/rpfJydrMNyxaSA2SqN90gN0/YrtVp/dXJUN7Ow5EIw9zG7MgKB9stwnN9P06jolPJ5VpqUOxDSTCFeBxldpgr6vUiF6x3oVbEH/VEt+Re1V0N7eDISTp5HDKGY1VsMhSOPwJsReZHgl2u6CjXsuLYOUtSKpf9ykXVo/6azuVqFQDpfD63wGe/r+RIQ7Lvxeyk6c1UF6MIf6fJDTydN3ir0/TrpCmHIwBoIj+4rnEzRWhWSXHoJF4XDsYLWHBSsU1Bp7l4nEZZp+qNKwoMkKsqw1ak5kGRje0O4crLwRibxcqxRnalhi7WPoBkS9LHJB0c8ySeHIzsZq3KbOXvhGZXqwC62luWAICOgpB234CFo9AE7SxJG4M0fhpW+bGxSGP7SVqFcotyHcpIQ7Lqop9qdl3T35rKjdjqVN8ulJnUSZOFHkPRuGSC3HosQ5KFB+Wt0hcApCOjEOQhqN16gRzCITB5f3PtONX9ZlW7UDYonYS0n6qv+GT68mrlzE5rSRpfh5V6XVsYgPs7uiSdUgyyDyBzV2sej/SxyQCMbEGawhuelALQcJaghWwEy46NVzIcFZTdX0+7BB9RqvJDxniXK8ci7aExNiY5R6T6TE6zXHLJJdh5550xPj6O/fffH9///vdr237961/HS17yEmy11VZYsGABDj74YHzrW9+K2ixduhRCiNJnYmJiaN0EYotyqm6YflJ3Axa3Dde1Oq17nTQBXQNMaEJXE7rauGnNx9hPz8Trs8Jyz7XJDJAZBMuEnrbrNSFfZwjaAVr7eQvforXanrs5pJMsPF4rklDIWUvkszpNVHHGDoHlRuroZna0DpPXYGVAkrPOBgHSQtREgGRXbNbTMO4a5GuMPz3trs2ernTVkibvys0TgmxSEH8YjHmVH+1L33n3btT9g5N5AnfrOkjemXFIXn311Xj3u9+NM844A3fffTcOO+wwvOxlL8MDDzxQ2f573/seXvKSl+Cmm27CT37yE7zwhS/EK1/5Stx9991RuwULFmDFihXRZ3x8fGj9CA3iCAUp3mBF907T362Kp7Q6rRudWCycEEAtB+NkEYgRJA2yfgAN4NjV5NoaD8IsACev04agDSoAmc+zNVuVLDQq526u6VSCa82DPQIjAmA6MDA82YpkUDJcwso5nMXK7lP+GGcdMiDZ5ap72q/LetqDsWsImvIXPv5o4g88LG13EnJwjsEZ6cG66/LUHoccmgDyAgJ1sqEl7nzqU5/CiSeeiLe+9a0AgAsvvBDf+ta3cOmll+L8888vtb/wwguj5Y9+9KO44YYb8M1vfhP77befXy+EwKJFi6ZNz/DCHuRmCW+kqpttkFRtW/W7rU6zp5MmePAY9zAgByRTmreJORTByc70i0MC4XiDwi1TFIcUIo9NSggIQVACICEghP0dQW7ZuWI54afo1h2VczcXdYrcreE8xyOLUnK7OiuqOOZjYEXy0FYWlq6kXGBFagcydrHm/STzzFYTvni5f0BT+T/WBCghoMlej4C74LraFg+AgdACQhsIabuEkDIwWoC0hJHkdSwOxRXNN4xBigodZ0pmFJLdbhc/+clPcNppp0XrFy9ejB/+8IeN9mGMwRNPPIHNN988Wv/kk09ixx13hNYa++67Lz784Q9HEA1lcnISk5OTfnnVqlV+fm1uujp3zqDtwzfgqt9tdZo9nUI4Wgsth2Eef4znCTk4CXZ7II9J1gnHHpW0/5EAckAKC07poCiEAAnbhqgelpACkggGZVBu6OduruvUfwNTCcUwaQXeqjSRtVXMCi26NfNxIXMYhpYer7PWo9Wcr3+e7/9f8hEUdsgr7lvJlqOy+xdaQKa2G4lMK/ZWE3ckY0vS8RQ17SpfNmZAZhSSjzzyCLTW2GabbaL122yzDVauXNloH//4j/+Ip556Cscee6xft8cee2Dp0qXYZ599sGrVKlx00UU49NBDce+992LXXXct7eP888/HueeeW1rf5Maqa0cV65vuL9xHq9O60akOjlWQDK3JzJCzNB0YTf5waQxJIXy4SgkBKQSUtJahkoAh4S1MVYClkrklqaT9H0gIKFSDckM8d+uDTvkGEnXdIuokdLUWXZLRkFYenrkVWXSzMhTDbh+5BRlbj/0sSf7vleDv7X9sy7gaKGX7ZRhN3pq0ejuActGCIC7J68NpPRDXTUk6YJayWwW/LjshotK6Krnqqqtwzjnn4IYbbsDWW2/t1x900EE46KCD/PKhhx6K5zznOfj0pz+Niy++uLSf008/HUuWLPHLq1atwtOe9rTag56/J9lpXbvizTEdJ7HVaWZ1Mg50IRx7/MAwZTAaB9OeMR6I7I7lB43db3NAAjZbUAm7nqGphEAKCYECIIN5GOGsTztvoWrvpyqLckM6d+uTThASJGQj1yFpjTAeWQRF6GotDorM8OFO/1VWZAjM0MXKwoDsZ0mGcAzqCkATvDVpZA5LuHVIc1CW/2/OpDVQqLcs17XMKCS33HJLKKVKVuPDDz9csi6LcvXVV+PEE0/ENddcgyOOOKJvWyklnvvc5+K3v/1t5fdjY2MYGxtrrPfavJUO+1bbdJtWp7XTiTv950kx9qbvmRorMgBjzxgPRZ4HipDsr5cUBUCaEJD5so35CKRKgshaloIEIF1XEMluQXc0TG5RsusVDV5A16dz16TtXNOJAIiabiDRNnVJKoV4ZLRNsM5bmiYe4iq0IvPtcgiGYGziarUxydiKZGAaQ/loVoUdWPApr7fRZsq1AASZdWJNzigkO50O9t9/fyxbtgzHHHOMX79s2TIcffTRtdtdddVVOOGEE3DVVVfhqKOOGvg7RIR77rkH++yzz7To7fc7ZPthbtSpvgm3OjWTsC1bj9yVgiFZtCANAT0Xq2EY9rSBIfLxG3bDGkNRQYF+4uEo8v5myiXbpEpGwLSuVgvLVEqQi1PCCJCw/4ySAjqwXQTZffHzy7gH2rDHqYm011Pz37Ez9aCsBWRV20KXCV4XTu08RbDkddwXstj/MZRwsxDLTbtAkCFAwcclizogjfVeX2TG3a1LlizB8ccfjwMOOAAHH3wwLr/8cjzwwAM4+eSTAVhX6IMPPogrr7wSgAXkG9/4Rlx00UU46KCDvBU6b948LFy4EABw7rnn4qCDDsKuu+6KVatW4eKLL8Y999yDz372szP973ipi000lZl4I2p1isUCzUIs7oOYW5B59wuGI5XA2DM5FL27NViOf9Muy8CaCyGppMgtSGFBnUrhrEcBTdaKNEQwEkhVbFUyBZW0hQUogqN1u05X1a72emom/eKUtkF9cYGpSOiWrLIUm0oYhwylDmFsTY6azDgkjzvuODz66KM477zzsGLFCuy999646aabsOOOOwIAVqxYEfWZ/Od//mdkWYZTTjkFp5xyil//pje9CUuXLgUA/PnPf8bb3vY2rFy5EgsXLsR+++2H733ve3je8543lG5TPd/Dunb6tV/bJIRWp2oJrccQjJnrD9ZzkJvIdATHcGrc9rElaeFqvHsq10IHb+lKFmKQLtFGmhyQSgpII2CkdblqYmvSWpH2cSWhSbtl63b15qKEjVFKa01WPcDWx3O3weokZZTDI6RaJ+5DFnttlkHJV165ff/9hSOE8Lz/LiqQPis1bKZNBNEsdjiZI7Jq1SosXLgQK1euxIIFC9aZHsWkgLkgG4JODMEq6zHjDvvaYCLLoTgZzBuCtyy1AyRntGqTf4AcjFkAyCR4QHhYSpF/XEZrqnILUgqBVFqrMXXQDJdTJZBK6bdRLtFHSXhL1K9zAJ4Lb/0bwvU05d8xGUTWhdA9QHchdBci60FkE4DuAt1JmImnQJMTdhis7kQ0byYmkE10oSe6bjrpl3XXFTXvZcjWZNA9jWyNLvWP9BV2XOZr1tNTikkCFpL++ipMk1RBphKqo6A6EipVUB2FZDyx03kKyXiKdF4CNd5BMt6BGu8g3Wiem47bdfPnQ4zPh5y3EcT4RtHUpPNAyRgoHQeScTy+ZhJb/8VOePzxx2f0OT7StVurZMZvnGD/TWMjrU7xtE7YvZpbkLn12GNQanJAzCE5mZmyFenadrWJwJiZMihZtDFQQSmyIiCTEJRSwJB08UdnQSph/wclkJJA/k4v7feCYChP2JGSQGS3Eai3Jvsd25mQDeV6WmudhASkBBkRJfGEWa/DWpNCSYhiuTv/nfADIpfWa9vBX7rU5yIMw0IB5e/yNkVRLs4uKi48Xlf1Hf8vgE28BFD7f61rGWlIVp26pu6ZQW3q2k/lxmx1Gvw7RfdqBMmC9TiZGUxoU7Ige87y7BmDbmbhOJnlkOxm1ldWB0kruT8tBCIAdBIVAVMn5GGZqhiK7r/y6+xzxs53lAQJ291DkI1JkuDjQNHDbH04dxuqTqVuIDVVeIRSQA0shZLBRwG9LPoOPddGE9hJKt2AyH4IK022MLkhf3myq5X/m3JFnVj4mipakfb3pJ9KJSC56DkCUEr7nZDSf3h9OC3Vu3VCDTK2Z0pGGpLDxCuG3V9VvKPu5qp6y211aq5TCMiuLkOyaD0yJDNNNiZZgGPXtWEw5pA0JfdqNSjhQcjzSgp0M4NOIqGkhJICmSGMJdIVNZDQEtAkoCVh3KffGCgh0XMPQSklMmMTdGzFH1siT0HkCTzIh9yb6+duQ9eJYenXC5HvQ8YpVkIqa3lKa4EyBOM2OTTRc6NyKHLjPYZwJD+EFSmC1gQhhQOacX2Wqo5Q9X8YWpMhKNmKFDx18wxMIB6w2f8fgUXMFqWfSvvSwNN6cM6O5TnSkKyT4mVT95Y6rDum6nKkhvtodareBwOyG8Qfc1hadymDMYTkpOvqMeHWdzOD1V3tYdjNtIdi0aIEUJqGUhmHZOvREJQ0thuHUdAOlADc3WjnlcktSuUBqdDTBCWsm1VTDkvu9tH0OM+FczdSOtXVcmUQVG2iFKSSMEpCSgkTQIXXC20r+kglrFvXgUqa2JoUSkDCWpMSdaAM/8NYqixJ6WAYQpGtSOGsRl6WvI4B7//HCkA2kNm0LEceklN1z3CbJjds3Y01rDun1SmWIiC7QfwxM4Q1mbZWY5a7Ve2y9pBc09MekCEYQ2uyaEUWXa08z3Dk+apPZgiJFOiwBWkktFE+1okO4N2uCSCFRE/YWFJPW6uSu7SEgOTxLFWFJTAXz90o6lTregWstSQloHILipwZGVqPUkmYHnK3pYeSdblKRZXWJDqA7hooKGjoEii5UIB1ucaqFWOSESBLYMyBGcKSda+a5qB0gGQrskqmuTtNExl5SA77Rjrd24cyzBtuv31u6DoB9YDsuvjjRKaxumcwmekKSFpQrulaiHYzgzXdrOBmNZEl2c1MUK8175xdJcJlpwKcgSqcm5UtydzVWikOlEqQLSQA4yr2SD9UEVuTFpChJTC149mv7YZ+Pc2oTsUHeiEWya5Vb1EWPqFLkuOSMk1A2thlI6HSBKR7oBpr0ksASiONbaMJ0pWqY0BWxyTtlK9rqSRkmluKqiMrrUjprMhiPNLHWJFbxm7H+Y+y21mqdQJHlpGHJMuwLpx+205lX1XbtDpVyyBAru5qTGgLSAtK42OPk5nBmp7G6q6FJFuP1pI0ERwZjAxFMm7ewbIKlL6vmCs3p6V9u2Y4htPih29HJQVUKtAzBlIDSij0DEFpghS5NRn+ugGBIAKrsvywW9fnbi5eTzOtk11ZAUoha12GohCXVJ0EZIx3ubKrVQWwVJ0+bspuMN+BLTrQhR3eysUSpTMfZZ9qONJbfLnFGALSdwFJVb4+VV6/KAnJwVKGiTwu/ij4xWGOSAtJrN1NgYpth3XnVG3T6lQt/QA5mVkIru4xJE2+7GKPa7oMyMxBsgzIrnuzNpnxUPSADCAJ5GW+ZOBqFUJ4a1JIYd2iCXlY5q7W+L9U0qYeclcRQNqhs4yBFBJahsXVrZs3kYDhpJ0+MhfO3Vy8nmZap3zH1ZaQT05RufVIgcsVSrlRNZyLkoHpAKk6+SPcsHXp3K4IwCm0e3mTwpeM43VcnJwMRQXKy7rmVmQYZ8yhqPJ1HeXbqI4DYppUulq9y9UPjVNwuzaMU86UjDwk+90UU31TbRLbGOZ3W52sDAPI1T3tIRm6V0NAhnBc09W2T2RmHxY6mCdvTebWY9WoH1yKTkjhusgJD0we+YYSW5SgU1F1pCrhx5fAk3k/UGMIWrIe8ICs8wDPhXM3qjqVRErAuK4houhmrXC9JimE1jkgtQGlia3j6gBptPFuVyDsIpJbhcJdLzwyiJDCjwpCmiJg1gl352AQctJOCEjpigiEBQWk010oB8o0gVDK/0/SuV5FlNGq8hil/QfA/U5nW0YakgMD7Q3b1W1X3LYqS67VqZlOTQHJkFzTy2ORoXu1CEi2JnvaIOtqEBF0ZvyQQiaz1hu7W4H+RaK99ehqtAopoBL7QFJBDLJbsW0OSVOozuOsSW2r67BFacjGJfn4AChZlHPh3BVllHSq3JdwxQWELMUlRdKxbgIpgSS1gy+nHSg38ofsJDDGQKb5KMaq5CLNIJWA7uZ9dv24jsr4wgIeloqgEIwoUgHKHJCchZqDki1FhmUISNWxMVQhLcTZipRpYpcjV2ve9cMn7jhYRhq1iTuzJ/0u9qobi5CnRxCa3TBUM9/q1FwnBiT3Z8wMohhkaEEWAfnkZFayHtcEgJzoaZjMeMvRaAOdkbcmwzgkzwOI4pFhncrQxcrzZCRkYq1JGezLJuhYCa1HbYzLeg3rxVprMhzPsjhMV5XLdV2fu0HtR0mnKpcrCRG5VsloC8jUwdKBUnZS1y2oDMVwVA12y5qw6ICUMD0NoSwcdVd7WNrtLTBlKqPROkrqB6DkeXa1elg692sISJkmUJElmVa7WoMiAwhilHXHbrZkpCFZJVWZbnVvosO+UYY3VatTc53yWqxAZoCuNq6bR56kwy5WBuTqXrV7dU3w6fa0B2PW09BZDkadGQ8z63a1upiKpB0fqxECBuTuZwGVSAjDlp6A4o7cvF0m0AV8oYG4dJ3xWbHaIABkXjbMmOB4BxmuZkC266hfT+tCp6iIAD/wvQsxd61C69yaTJ0lmXR8HBJAaXDiBIBW1XAUSkB3DaQSdvDlAJbsakWK0niURWsydLWG+w7jkzJVLgZZBqRME8hOAtWxgFTuu5KrVakSIKMEJyHj6SxIC8mCVF3sg24AvnGaumxanZrrxLVYuUiA/dh1E1kef+QYZBGQT070yoB0cMx6GllXQ2sDk1FkTXKSjtbVrtbwQcVvv96KJAFpADIaKnHDXPkYZA5K4W7+rhA+4zWvDWutyW5my9DlFqQbtssQoPLknX5Q7Hd8+60LZUO5ntaJTlLaUx6WqRN5XJJdrkIqIO1Ya9JZkCJxZp0be1Kifwaq3bWEdsC07s3MekgCWJIxIC3tvCYAKna3VliTRUvS94XkknPOmpRB7DECZOB2DWOUSFIbe01S73KOwOmO1bqSFpIVMmyiQNEFU/fmWbffJjf7KOpkKAQj12ClqFDAZJYn6PBnECCzrnaWo0HWMw6SgcvVxSF9dqsxfoDcuoFyhVTuOahcaruATKS1AJIiwCSEcC4uLhKQxZV5wgxYBiSAHI4OmEUZZEVWHe8m7TaE62ld6FRu6Iqek/FxSRICwlmLkBoicLV6/Yz2+4vTc9xunUWmZQ5HoyR014FSGw9LHpiZtPHABADSFkTFQZtZvBVZrMfq+kOqjrv2Ow6GBUDKNLWJOp0gRpl2IivSgrKQvOSOm7co25jkupemb55VN1hx20E3KoLvW51iQIZQ5KGubMm5vKTcRADHiShJp8LFGgCS3atZ4HLVmYHWMRxN1o0AaSogKd2NLIKkA3LryHXlCN2sUgho99bOST51I43k84jikqEYsns39Y/mynPStN2GcD2tK51iFyvl824aWpNsPZK0gPRuYmNdsOH+EsBCkGOQ3czt0sHRgVJI+6IWwpK0ce7VHJgAfGxzMCSlX86zXKW3DNmdytmrISBVaGF20jxBqVRIgfuJqsiKXBcW5UhDsrmDKm9fdzP2azuMO6jpm+uGrhPHIXvaAiLT+fiQEwXLccJV1ZnImgMy61rL0UMyC7t95HBkMPJ8leQWpIKMsvM6UImCDkbzEB6Q0g51xW7dwliV7HIFlO9PGSbVcnZr0/hjU9lQr6d1plNFIQHf/UOQsywTEJm8y0ewv+KZDddJ5K5VToAhbdyyAmkN7dbJNIHpsSVpr3EGJgBvTQ6X4VooDhBkrvokHSVjQHZyF6x3rUoFkab5S2bgaiUhEMVv14GMNCQHvWE2vTEH7XvQdnXJAKOqE1uRNoMTQRwSvrwcJ+tMug/3g+TPMIDMes7dmukIjtrP84Oj7HLlVHWhDITUoACWViwojSQIA+9iNTKPLWptII2sgCQFgLRTTt6ZyvEtyqhcT+tcJwdFEiaHXuByJSEhZAIksQsYhXkuU0eBtSWyXu5adVajUBKUJtC9DDJNYXo9e91xP8uSNZmDclC8E8gtyagmawhMb0mqvKsH94nkfpJpB8LFITkWybHJyKLkeCT3kSwmPc2CjDQkZ1qauHpoQJvplrmuUw7IOAbJiTo9E8chJzLreuXKOVyD1XfzqABk1rPJOjZphyJAmqwbwZF0bEUWrUkPScNvwRaWSDpAxr0hbV8PKZSHou0aAm9JUgGKVcXUq2KQ61rm+vXU7/t1cjSLD3m2JvmTJH1BSQCECl2SCjAaSvVy12oIS21gOglMN/PXs3GAJG2gAA9NoGxRhuLrqwI+Wa1Yao6zVUtu1yCJhwHpgcjA5AICNa7WdSUtJJ0MinFMRYpun0G/0S/5YBR0AmI3ay9IXAldrb5geTCSR52bVWeh1ehcqgEgs66GyXoRHE3Wi+A4CJJC2v5tQioIoyDTDkzWBZIOhHfZSgdHGYExrAPLEKwahms6ADlq19Nc0snuOIeitR5lpJ8AAJOVQelGB/FQzHqxVWk0IBVkkgJZL3etutJ1ppe5Kj0GxsSWJHtHGJz+f+5jUYaWJADk3TiKlmQep/TLASBF0rFuVjePMLu14GqN3K6zLC0knQy6cZpK+MYX7qfJ/ga5dDZknQAuu5a7WbVB5Gblj3W/5m7W0IKcDKzIrrce8ySdvNtHGZAm68L0enksMkjaMRWQFO4BxXFI/3/0upAulT//KJCx1iO7WU3QncMUwJiFgCz4V8NjNIyM0vU0l3QCYAGnTVRth2QCgcy6XWWSQ5GMd70yFAnIiw4EYETageh1Qey5cFOVGiijYbo9UCeJYpGhy9X4UELZmuz7vxUsSRmOdemyV+MYpfJghJQBIDt5LJYBKi1MKXS1Fgaunk0ZeUhWPayrlpveKHX7GXTDFhMORk0nAFFWJ3dx0ETWYjT8CYe7MlFh8rCazoSLN7IlyUk5UQZrBSCLMUnAgpHfuKP/QWubdu+sSCkVZNLx35GUMEZH1qQhgoTwhQqierBVFmQBkMWasU0szFG8nuaCTvkG0oIvnMoEMJkDJUA686AEudhlKiEYhlLm5eqUArTOYeksSJGmoF4PIknty5wxkEkXMBaYpHUpFkkVkOTlvv+SkqVpdYzSAZBLznEM0gPRrWNL2YG0lLAjA2ACs1rDdeQhOehin874Rb99DOPe2RB1YsuIq+oUs1knfPwxd7MW45DhxwSVdLKeda8aVzTAZAZZt1sJSIakz2jV/V2t7GYFXJZr0NZaj6G7No0KE4RCBVdrncjCW7Rq8FY9itdT3e/2+24mdbLuVQAkQTAQyB/4HpTGAELYlyohIUxmwSAVpMtWtSBxVmPaAXpdV3Sg47qKWE+IMLoETH5ZC6EJIIJlnt3aPIGHocjrwphpCEe4LNYcltbFGlqZHJckZ2lX9o9s+0nOLZnqTdr0bXMqrpwNSSfAuVkL1mPubjVRQYFJnbtbi1akX3aJOb4wQNQP0ibpsKVYBUiddQcm7NQehxCSgTUpwW6swG00TJpqIErYkeSrBsedimxI19Nc1Cn+YQdGWBer9b87i1IYgFxvV3KWE5lKWIokBWUxBNHrWti44hchMKFtIloIShsDDbo2GZvIw9V9qrwn0b8SDGllpzIPOxQhyXCUgWXpXKze/eqWbfZuEluS67AbSAvJATLVm26q8ZBR0wnIk3Vsh3mUknXYesw0L5OPP/KgyeFYkKGbNYz7ae1G+AgtxgGA7Nc/svS/KQVjNJRUCK1HIIasd7FWDJOnpCgtF9dNt2xI19Nc1CkHo5s1rIOzKB0syV4YtluIDV57q9JdNIA0gMwAMjburbW1Ko0pW41aQ2Q9t05DsGvVLXtwAiVY8v+Bftd+OM4jW5J+JA8ZjwuZBJB0MUe/njNbGZBBLJKEyF2t60hGGpJNHj1Nb6aqdlWxjqbp6aOiE49mQcBAKzKPS8ZW5GRmoI0FJxcmD12r4TyXmLNWZC8CoQncq4OyWv2xCR4UpHXJBdskCQKAr+MKlEEJsPU4PCxH7Xqaczox4Ny8ByVsjNGCUUBQDsIclsYOo2XcMpErOpBY69IVIBBJYr/TOrYU3bwwxkJQ57D04ASsHn7eXecFK7LqOhZhXLBgVTIMQzD6MSIZlGESj1I5IGVSa0lyrJJm0aocaUhWXfRTzWRr+ltTuRE3ZJ28q7WBFcntQiuSE33YiuRRO0rZozwfJOaEQDSmDMc6SEZgLKwnTrToIzxKiCjAUAbLSTB0Vih2fEkbm8w/rvB1xWvfqF1Pdb+1TnUqDY/l3KgVsAQUBFEES0gDwcuG1yW5dckfxTA1faEZuVp1DEsguKbDazv43ksxeSYEJH/PYHTf+8IBgSsWSZJbjgEcybWrynCdTRlpSALljLaZcMP0uwGL2XW8bhR0qrMiDcVl17hrSBiLZDhOZvkyd9TnrNHQiiSTFyq3QDRlIDa0ItlSDC3GtZEQlqoCjkoGMBxgTBYTe4DRuZ7mtE4VD3jvRlUSwo/FNgQwXXsLSWoGTSB3rda4WkOLsjIuyW0rrv2h4pSB9eitwzBZp1hhh4/jLGa2Ai0kSzdKE6m6wYbdR5ULqHhzbug6Fa1IQ/mnF8Qfw4xWLvrNscjQkgw76Gs33BVbkfa7aiBW9YH0/3/DeGTtMQhiNXYU9nxQZjtvLUgprTu1CMf8k7th2fXK7YORCgGUQTkq19Nc0gmo3ocoZmg62HnoCRcPdFYjcRsHOt+2CE1uVwVNt41I8u2Ea1+Ep11dDczGElqSQARJm7kau0wjSzGwIEuWJXcLCY/fLMjIQ5IlvKCbvKEW3zqL8/2katuq392QdSpakQZxv8gw0zWHJ0Vg9HFI56KloGM+w5LBaRwkgRoYBnVZq5J1eLnOchSBqyn8AAjquMYihfAuVhEBkT/Su129a1WGn/z4CiEwKGS5IV9Pc02nohQTmf27kHvYi/Chz9CTxi97EJocfFGc0i1HH14XgrPQjoAcnrxPbgN4MAM1VmWNeIsSiLpwUAC5EhwZghWADI/VbMvIQ3Jtbrp+7pwm29XdnKOgkyF7z7IFqfnll0LXau5i9dAMwBgWH4jgWJErE7pa7XLz5BygGo5FGIYPhqo2Usagiy3KHI5jiYxhKYofuI89K6EbtgqUo3A9zUWdgByOxe+rqiXlp871P2RLjLcnYzOiqyCIfL1wL59FYJKDrd/WhF1OKN6nm9rv3HISfDdA/L/Hmb1F0AXwK8GxLmHHHpRZz3QdaUg2datUtaty2wzjpuF9jKJOFpD5YMKayC8T7L0blmvThiJXqza5NQlYl623HAPrsVjRxuvUMOO09v+sASaAaKgsHvKHv2f3qne5unml7CDNIRg7ifSfMB6Zhlalsx7986MGkBv69TQXdQLcdR7M+/ZNqiQJ4UGan1eXmiVkHJYrwM3DsABP92XcvrgNrzcxKIHYqmwKy/wfqigrF8YXixmrVRZma0nOvtRdqsXgfl274s0xzI066jpxgg7B3rcGHIusd7UWwVgcTqpf5/xBViJ33yhuk3fliL8vulXDMfDyj/Sl6sJ4pFLSg5Etyo7KoVh0taZKIFUSqdsmVdLHI5UQdlxBYY+xdNDkB+uoXE9zTafwUuSXQiAcehvoy8rCl6GHQEbrBQDpzjtboLk+RSB6y7AJQAvTyKoMv/P/aA04i4k2/axLnhYr7RRL07VdQNatrM1b6bBvtU232ZB0YuhVuVvZ1RpmtYajYxTBWAXIsOvHwP+T61/WfFeMRdbFHosDLgvFcLTLKpFQSkAlOSylq3OpAvdqUrAiUymRSuEsSGtJKgGkKrcuhRCV3T+ano9h286166np/osy0zoRckAyPojy+rvFe6KJhN4CEeyFk7W8V4HbCAtQCOlfnjxAgXprshD7BBC7ccPtq+b7SRFuBUiW4Ais04ICLST7yEzcdFVt19ZV1PR3hmk7Uzox+OwDxCbsEBHsX+5q5cSecLDhqrEW+Tu//5qnTWwFSg8vD8GKeGK//URwTDuBxeiWk7TSihTCWZKJy2hNrFUYgrGTKIwxJJ0VyRZkqhw4lfRWo818tQ9Ka1c0l/X9eir+zjBtZ1KnIiAZjqGlyZdtFTSbSPxaRGVQWlPSt2P3PADnfWArlN247qXL77LGCgViS7TYnvUb4FYujeYRQjCAo21bjmXOlrSQnKLUxSaaynS4iIqyPuikiR8YZVcrZ6kCiCxBUwHIrMGrt5QCJvj1uliilAp178B11mToYo0A6aGYrwutSLYkQyuS4TgWgTK2IsdVPs9WJCfySNcJxFoKw1mU/WR9uJ6G/Z3Z0Mkn61QA0tAAYBY0HBS+rHfDunVslNm9RSCVgvx30Xq/jwZWaNUUyLNxWZrkARTcslQFzbYLyOzKVB8nw7p2+rVf2ySE9Ukn/2btXK0cbyy+URddrCxNwcgZpOxFtVYcx2tsB2ahDITJoScRx4uq4BjO1wFSpilk0oFKOm6qnOUofSxSJTkww1hknRVpPwLjbl2HY5IFK1I5y1KIvOfkhnw9zWWdjHv5YyDmL4cFWLqt+X6w84FnpGLf/HX5fYgq4pXFzGfyrvkwdi1KALVt6wEqIAvdV3wODh+T0LKUFf9JnXu2CoDrsHbrrPzyJZdcgp133hnj4+PYf//98f3vf79v++9+97vYf//9MT4+jl122QWXXXZZqc21116LPffcE2NjY9hzzz1x3XXXDa3XVN8qp+J6qZIwKWCq+57qdutKJwN2RZHr8kF5d5Cgyg6QPzQGjdpTV9M0zCC1y4WkmrQTWXwycJ8Kpfz3omK9CkDYD5AykZCJsxyDeRVYkfM6CvM7CvOCz3giMe6syzFvVUqMJ8qDMeoe4kApEcetNvTraSrtZ1on6yGhWkBqE1SYMnZYuJ4JyjEaO9h412VzZ4bQ1fmHu0aF6/gz4T5dY0fM6WrCRGY/k+4zoW0JRzsuq/tO2/UT2tg2md3fpBuqLtx/1xC62uTrDa8jpzeQEZBBQrsPycR/wB/VsZ9wXd3oH0B5eZZkxn/t6quvxrvf/W6cccYZuPvuu3HYYYfhZS97GR544IHK9vfddx9e/vKX47DDDsPdd9+ND37wg3jXu96Fa6+91rdZvnw5jjvuOBx//PG49957cfzxx+PYY4/FnXfeudb6Tp+zavD+m8ZGNhSdiq7W0CEz7EMqKfR3KFeyyefZsiwn2OSxSenBZuOLKowvug+DkSEYfQqAlEkKWXCzsiWZpBae81JVbUWqHIrsYmVYSmH/99Ql+aRcjcdbkrH1UCUbyvU0jMyWTj4bGzkUQ1hqY6/7sE4xr89MDEseW3Uyy6tPTbq6xYM+a3oMOxMMM+fAl1WDdDJj2OYAZQgyPBmWkwU4ZyaHZ2ZymDPoGfyaHEApH0NWwyblhJ9aUK4DEdSk085ayIEHHojnPOc5uPTSS/26Zz7zmXjVq16F888/v9T+Ax/4AL7xjW/gV7/6lV938skn495778Xy5csBAMcddxxWrVqFm2++2bd56Utfis022wxXXXVVaZ+Tk5OYnJz0y6tWrcLTnvY0/N/KldhkwYJG/0cTd0zYZjZcSuuTTobyh0Bm4Kbkp5kBVne1uxk1Vvfsjbq6p92AyxpPTGRY4wZZXtPVbsBljScnMnR7GllPQ2flgZbtsFl2FBCdaT80lg6GyyoWFajqMlKZ2aoUpBvqJwSkSiSSVCLpKA/GpCORjiVIUoVOqrDxeIKNxxPM7/B8ik3np5ifquAj/by1KAU6KgZkIq0FaUvUWQljURvi9TRXdbLACxPP8mUK1wUhB0LuTbGWZpywxuG8KEGt4WObXaWht4Xdosr1tQXia4fdrQIictVysk+8TgTt89+MXbnV2bdVL3TFF5N+L3urVq3CokWL8Pjjj2NBw+f4VGRGY5Ldbhc/+clPcNppp0XrFy9ejB/+8IeV2yxfvhyLFy+O1h155JG44oor0Ov1kKYpli9fjve85z2lNhdeeGHlPs8//3yce+65pfXDxCuaCNXMh+6dqt8M14+CTlUSxh5DCW8S7jdYFBVYjkAel1SJBBFZa9IA5GKTebeMTlCBR/l6rmE8MpQIkiq3RFXocg0AydYjAzJJ8/jkvI7yyTrWxWphydbjmHe1htalhWNuSdouIcJZkVUPlFG4nuaSTqEVOQiQYT9gBiND0SewOUsT4Kzv4UAZJnLFoBR+0O4QpFKG8CQPzxCEMSTJgzOHJpUA6deRO6ZCAERwE7e/MjTDx0I/YM6kzCgkH3nkEWitsc0220Trt9lmG6xcubJym5UrV1a2z7IMjzzyCLbddtvaNnX7PP3007FkyRK/zJZknRRvrLq31GHfWov75fkm+1ifdeLvivHIPNNvCIVRLPztapvKvEsFGQtGQba7hRWDPLoQDIScdYGkY61HKQGkviJPWKuSu4gwGAF4ODIgOQbJLlZ2q/qYpLKWJbtZ8xikBeS8lGORCuNK5p9EeTh2lP0wMEM4DnPu1+fraS7qBISJN/BuVp6GgNTGWo92mhfQYDgyGBmKRVACIUQH/w8hXFTwImmXuY3LlA7W5+tycKqoXnAMzkHQzIFp9ZcCEATfFUTAJh5pKgNTBP/rbMNyVrJbwwFlAdi3+z6p6lXti+uH2efY2BjGxsaqfwvVN8tUbqB+7ap+q+nb6/quEzB1IAJBkkq/jxAwiYRxgFSJAOCAaezNT5KgAlCScS5T53YF4MeVBAAkaXwMKkrPcZcP7tpRBGSSOksyVUg6Ch2Vw3F+J45JjtV80gCODMiOEkjEaF5Pc1EnbsfZ21www1qWMSDZkrThBuPh2HPdnqpBGYDRd42yvxtal3USWZEMRg/E3IXKoIwhGVudqRIBNAUEqOCipcA9i1pgkgMmwfXlpHyd5P8VOSz5PzA0u6CcUUhuueWWUEqVLLyHH364ZAmyLFq0qLJ9kiTYYost+rap22c/GfaNdLq3D2WYN9x++5xrOoVlufj7Yn+wokh3cykpgMDzySXblDTRwMSdRNq3U2dNAhZ4uSXpdDEEwALNZALGSO9etaO4V48dyVIuOyestSgEJHft8Mk5IgLkeKq8m5UByVbkeKKibNY8u1UgdW5V/nSUfWiN6vXU5HeGaTtdOlmQhdZjDMYqQPa0BWJPUwUoOSYZzAddo8IXzqmCkkeY4e+lYFdsDqciOFMjay3NRBZjmjkw2QolCuAYglHYFwsJAQ14WAohPBjXhcd1RiHZ6XSw//77Y9myZTjmmGP8+mXLluHoo4+u3Obggw/GN7/5zWjdrbfeigMOOABpmvo2y5Yti+KSt956Kw455JAp6zqsC6fftlPZV9U2G4pO3L4YQ2maM8Y3I5dtKxYC5zJ1HSVhErtPMuQAmbtZpRTQ2gAwEAaQQrlBmgUA5UYRca7WcFT2QrUeP4IHZ8666jm+xJySSDrOvVoAZNzdI3azjjn3KifpjCXSuVhlZEmqBk+KDfl6mos6hX2Aw7gjd3OyrtcyIHvGDg0XgtIQ3LrA/VoAJXeLChN8mkgMSus+9fMhGDmuXwCnFEBqKIKkLW5h53sSSKWMLEwlBEjYF9QmsGTLUkLABKAEci/CbMqMu1uXLFmC448/HgcccAAOPvhgXH755XjggQdw8sknA7DxwgcffBBXXnklAJvJ+pnPfAZLlizBSSedhOXLl+OKK66IslZPPfVUHH744fj4xz+Oo48+GjfccANuu+02/OAHP5iSjmtzo6Ji22HdOVXbbGg6hbUr+0nRzSNN7NqpAmQ4nyqJHuILW0qCyCwgOcGHiKAzAyGlHfSA7A1Mhi3PxNeDzftZ8kMkGMEjkTZxxrtbbbGAJFU+BtkXkB1Vcq9yHLLoZi0CcpSvp7mmk/WO5FYku1nDTNe8m0cMyByUMRzLoOREnur6xXXJb0Xxg3cH03BAb4ZnCEmGZioFeoZyYCqJnmE3rIQyQE9Q5JIlZ12GsLTz5GGpZG5FGsRWJYPSIHcLz6bMOCSPO+44PProozjvvPOwYsUK7L333rjpppuw4447AgBWrFgR9ZnceeedcdNNN+E973kPPvvZz2K77bbDxRdfjFe/+tW+zSGHHIKvfOUrOPPMM3HWWWfh6U9/Oq6++moceOCBQ+vX76aY6ptqk9jGML+7vutUvHfr7mVZKHujopsU6KgQispaj4n0lXjChwSDUkgBnTnrUUqYjJyr1XhY8qDMAPqOJCJkYZBkVRjZI4mtSZnIgYAMiwaE8x6Qbjqmyg+IUb2e5qJOYczdZ6+asORif0D2DCFjlysD05gSGLuZvUHC8VR5OZz2kypIAih5afwoMwE0U06UKwCT51PODyDh45eGLECJyFqRJABpj5GwPlXAcF3ZGJRzQWa8n+RclFWrVmHhwoWN+0nyDbG27pwm2w/7QFgfdOq5WIy9qZF3mNb2LbvnXEkTmfYdpidch+aeNph01T16mjCRaXQzg9VdO+1mtq/kZGbQzQzW+PV2W5MZG9PRhWnmyuMZ8mD0oKy4JcLuJaGrlZOE2Jr0kAyKBRQBOa+jsMl4gvEk7ge58Vjil8eV7QYyLxGY54oIrItz10RGXSe+hnXQB7jq+u7xdVwDSAaodq5XQ7ZzfjjyzWRWHEvVDA3KsBtVZEXKeLDvUmhDSQ/MVEpvSSohkDjLMXUvkgzLVAnbNnDD+jingC+AoWTe59J7k5xbljNieRu7bgPpJznXpd+lFN4E4VQU5gfdWFQzPwo6EfpnswrXScq6VuxN0INLvjE2WUWTdbmmUsCQjTsC8YOg+FDwN3Ym0HWWJMcjpRQ29qjs6CM2DplbkP36njEU7dB2QUWfIB4ppH1rntfJARn2hWRgcqLOeKIq3ayJyhN1wjfqUb6e5qJOfI1zoo4pWJFsVfZ0mKRTD8gQlF0HxBCM3Uz3HTKuyqtSlNByDJfLWePShzISKdCVxi+zS5Wtx5QsLLUSUEbASAtITQJaASkJAMZblQAXeBdQIGjrU4Uk55IlgqDCtW9NzwZnc3plpCFZJXzh17lWhr35ivue6nbrq04E+MQFFing+30JtxG/MSohYAS5UnKA8oC0NyJgoMneqCza5POheFAKYTNfjfSWZehmZUD6gXELDxjvYuX+XDIfLDl0uaalYuXSW5CdJHe5btRJKjNZU2WzA8NiAcXye8VzEB7rprI+X09zTacwYceDEvb64rFSM8OZq2VQVgGyq00JkCEc+buiu7XKkgzni4U4quAIwI9pqhwUu5kFJg8I3s2Myya3YDQqzz5NSfqXW+2BaJPnDBFSF1NJ3csua6RAILL3viCXve3eRAyRTyqyL9NDnsi1lBaSBam6kZq6aga94Q57k25oOoVi07z5XdL2nwJsXFJSDku+4UJAplIWrtzE3dA6chNx/JLntSFoJdHTpuRmZUBWxSRF8HARQsQuV+eG4jfsqmGvOAbZcS7YEJDFqjpW9xyU/eIyo349zQWduP6oBWZsRXK5uTxzFYErFX0ByeGDEJAhHLuZqbQm+3lYQqlL3uHPZGaiQcCVNOhmNhdASeF1YFhqCRd/NDCK71cgB6T2gARCUNozKAQgyH5DQGRNhsBcF9JCskKGjU9UuWCq9lW33yY3+/qsU51Id/GTsyyVsxiNcKXlyFqT1lUDB0i+U4qgzKV4o3cSGT1UOibvNsL90IBqQPr/VeYxSe6OUsy05WkRkOxuZRdr6uKN0RiRUvpC5TaeU21FttfT3NEptCK5ek7RivTXmLvOOF7JVXb6ATKEYzczlXAsfWq8IVUSFhPoV6hjMjMYc9c3v3hqo3zSnDYEnRAM2WubIZhXuDKAkpBk3al2Ckhjk+hIWCuSYDNYRWBNzgVpIVkhTR/8VTdYcdtBNyqC7zdUnZoIA9O6WcmB0b6BGmHBaQEZpsBKqLR8U9sbWUdwLIJykJuqKPVxG/sZS4rWpIqAGRYLCEf2YFcrl51jUEpRbUW219Pc0cm6VnMrUhv4QcS5T2RoRdrqOhQl8nDXkCpAdrPY7dqNYpOm9KLnwwaGhoKkdl4RXqdE/tIX31PxVBt7nQPwoGSrUpOAloRxcB/j3IJkeCphe0QasudBCKA4LDq/RHudg/nZYuhIQ3LYg1x1wzV5Ax3GHTSsdTaXdaq6T9mtIgTfGK7TMdk3yNCatO7WGIp8kylJUMK+hdvlPCMvi27oPJYz5vpSZhWgDKdVUgXJqsIG7I4KrcnxxA57FZaZsxalW2Y3q4vJcoZf1TFtcj421OtpLunEViR3+2ArkpN4wlgkW5E+09W4cnQEb0mGIAwBmcckQ/er8XDUmYm7MFE5W7tOwu5MYfa2ljaGH1qYIRzDAh72o6IcAUsVB0JTsCghoQTBCPu/S1G2Ju00hmOVTOdLej8ZaUgOesNsemMO2veg7cLf2pB1Kl7zEnxz2BuCYB8wYbA/ngJSSEiX8AAYuyzs2zpbldqQh2V8Q5ddVUA5M7Aow2YBMhxTKV0KvLBFypWwLlYlMOaKmHMqvR9IWeRp8XXHtL2e5oZOYfYqwzEcRNzCEZEVGQ6fZUEZAzAEYhGQvh2XqptCElooYUIax9eNBqSyNY/Zwkxd/+SoulUIxSpJbJeSnuYj5ZJ8DKEnDKRUtkAADbYmS3qL2Q1PjjQkZ1qauHpoQJvplnWlkwh+WAr7xqjZonTWpIIApHU/ebdrAEoprKsKMNYlqQEj7duqEvYBlCqBno5vaI7nAKoAybxjdii8XJUNqNxgfEWLMnRPhXBMOe6o8iGwUld+Lg3HhRQCEuxmrY7HtNdTM5lpnRhyvrJOAEqbxGO7N2jKXaF+fMnAisxruubJOMUuHkVActKZzkwJjlVdmqy+5f9UCuHrJxe7NRlDUfZ21xBUIiM4sn5hhm1RbEZqcO9q91JL9jeMcKOBuNgkk88QrFepDwpn83pqIelkUIxjKlJ0+wz6jX7JBxuKTlK4oXAAV8DYWpNw2a6CBJRkzSSMILAlKV1fKyWkc9VI9IydphLebZXKMIswByaAkhU5TL8yIK5Kwt+Fnay5EknYyTqE5HhgYfps1tCSdCW8qmRdn7tWp3yZx4wkyl2t3npzEDVBtRwuUs7fsRs2dqHm85MFOBYByUUxyJCrP2zByEAMs7eB2KKUUvgAhpAC0IiKYzAw2aIUUth9u0EEqizJqhfKro4BqYRyFXoI2vWJNAbuHhfu1aIejPZlevalhaSTQTdOU+GTOOhGbaLDhqaTdP0VhXCuVhAMGIfWRQUJaJOD0lZ3NJDOdaOEhCZACuuqSimvd5mQ8KW9bJ+sqtETykWhB1UoAQJXqy8CXV3fkt2nXHWkaElyBZIoUSeMR7pjwc+cuXLuituNqk4MOg/H0L0KRK5Wa0mG87m7NSw1F8bI2etRtCaLgGRLsqp6VLFyVDFrm2v3e0AKHkrOjsEqja23yqPocFKPcRZlt+IYhpnYYWa5llz0nfsqI19nLCxTiNztXcPJdVBDwMvIQ7J4c6FmuenNW7efQTdsMeFgQ9KJK+vw96E1abNabZ9IJYUbLM6ug4NcR9lUc3aphrC0xZKRj70XgtEUxuGj3ILk58agkd6rRnZnIFYNMeRdpzK0KJG7YJX0Zbk4k9WX2xJcgiv/zXV97qpklHUi5C9dxoGSXa32+9zVCsC7Wnk+h2Ps1aiKl4cxyCpA6iy0JCmKT/LvNe3WZHSewOOHfzMCZAxUYi1JFViPRVCGnpVupn3RASWFT9BhWLJbOkX+smDnqwsFhKva7NZ1IINuwOmMqfTbR/FG7Cfro04SsP0fEVuThvKixxoWlILgXS8CsKMFcNHkAJbGvZWmJCpHcudlADEsC6AE6ocaajJYbd1AtWH9SjvWXgjGwIKUiEDZVEb5ehpGpksnXbAi+ZLh2F4ISyAHgJ2v+K5gRYbLYSJPKeZYA0h2wQLsbs1/q+4f4tgkj2ojpbAvrQ6KwnXFErK8DwZlCMS6Kf+/0t+7uRUJ2BcG6QhJNeZkwaM7LddGExl5SA6SqZ6Ipm/AU3Evre86sQVpIxb2BrI3gHW7CJcODmNhSuTckK5cHaeI6+DNnIEJIIIkUHC3Bm/1LIPG4otA6QFZGIOvBMlwXD0eQy8GYmRN8npUj34wV87dVH5rQ9Apd7PGngdvQQbzHI/07YKXtfCaZRlUHIAhWB2LLFiSDo7sfgXK7tZQyCXoQAPSACTJDwHHNY8BQEFCh0P0wEJVC4qAmARg1GHRDmOT7CqPbdhLBIg8KTwbbjpVl/xUpYXkAJnqTTfIzRO229B1skC0lTbYmmQwhqBUAiBhrUoCIFT+dk5kq3H4ZZBzdwr/Zs8PIAAenDwPoARKYLjKJEDuDopcrbIYq4zByBZiaC2GoMz7jKLU9YOlvZ7WrU7cnhN2cjjmFiUvs3A8Ml+Of7UuyzqchlaktxiDGGRkSQbrARSGgIsBBwBCSsDkmaw+cQ4IACkBNzyXggRJu08hbReUHmJLMjMEVWEZ+5fZwIrkl9m04njLwJLkEESdO3ymZaQh2cSz1fSEVLXjdeHJHXQDT+cNPhd0Km4bul1LYCRUw9JZlgoxMAFE0Eykdcnyev7dMDGn30OrnxRHdAfgYQhwPJEdxMhjjNxO5EMBcbY7Dxvk54NjViXt9bRudAqtxdDVGrY3Ufv6XzJkk8eKUlfYotj/kSVc76eF5B0GI3GmTkHIaAipoI0Fpq/AA2tVWjq411hDzpJ0mebSFSPvZwU3eAHtJ+xxYqnysMyGjDQkq07hTJnyVJgOahfKhqATW5NEFIESqAAj8W8QSAAKwseClLM+fTwoeKPnZ0/xu1Ryernd61Tu3ThhQETrQpeQCMrJVYGRx8YrLRe2HSSjfj01lenQieDcrTXbDrqeql7GqgBS7I4UJZV5azJ3pYbZq9wFJAQkwzGEJM8LqfwyzxvIvDaOBJABSAAhratXJRIkXGgjM75rCGfpFgt02GQkGXV50YYGVwsoCN8v60pGGpJAOaNtJlxD/W7AcNtw3YagEyer8j4YlAAgyX5hYK20ohUJwCUNBHDkh4KHK/z3gIgSKFjyZ5GoHEwZqH74VYVPRGRN8jpuL/xy2H2Drc4qMPLvRGDF4AfCqF5P60KnIsv6WYl1wuOkFqWfpRV+F163xW4eXDyA9QoBWYRknUWZ71uDpIJy9ViNBAQXJpDOepUEYQSg3LJwuqi4wECnz+/U/dt5hjdP8y5R4S0xUy9UdTLykCzeKE2k6gYbdh9VLqDiA2N916lKPwZABEvXgCEUWpL8HSG3KL1uEQzzx1yoX3xD5rdak2ddVXiwKgU97CZShCR/X0xAKIKxbt/t9TT7OlVuNwU49pOwIEU/qSsIwN+F8ceqBJ0QlsX1RfEWpSF/nRJX4AG8e9WWkrRwlA6WVVWrmrpdpSwXI/DfFbpEzTYggRaSXsID3+QNteohNszNXtW+7uZdX3UCAihS/Dbo7wmRg4+9MOwaVUKUrLzisyp/sy8DMm43QNEaqcs0zb+PAQkUMvGCvpXhttPZ32tUrqfZ0onFxroHXzvc7zdfzvcYzudFJ4Bene92CmIiSzO3IkNAmhorUkpVCUzjBg0wRBAGpRvBA7ImS7co9aXrCvogtibhfpq9MLMNSKCF5FrddP3cOU22q3tgbGg6AfE9VgRm8UahsAN/sN6ET0kvoXU4/bdQVbZpEZzFFrUApODJSIVlv4GM5tf1uZuL19NM6jTVK0jCJrz4B7sElAF6cN2DjEDWZ+9cAzjse8jl4tDfS+qlLlPbVMQkAWs5GqMrQSlkWJIOPqOVXa4SIrJih0mC8/2NCxZiWHROIAdleK20luQsS9MDXtWu6oQNewKnerOvTzpVyVSD8IMHYa1uMGVLjXi0wLrvGqwDIGrWlzYX0u7D9uzO5xvKKFxPM6lT1b74YW0gAKKotGI45BuQW5RKCvRM3meW45HWirRl3+KBjvNRbqK6wEJEfLQ1V6eOiCIIOWmHQRl/ZwCpLAgrbjwyGCoBp59rOaxkJURe6F+gnBvQWpKzLHUHnG8Unta1K96w03ECNwSdGkGpHzgGQWXA942gVNFvbLr1aCQBBIWtLA2QscCU9vZcm7fnDeF6mg2dqvTgxDMWby1WbSPsSDbSstTD0VqR8GULGZDcn7Y4JikLz4djPfJy0bKUwvZxlFJUdi+ZSaEG2apV/1dejlHEMXu2HkUej1yXma3AiEOyTtbmrXQqD7RhXEVNZC7qVAJK5HosVPIotjX1batAJYqunzqYrQ2opyoFd6rzqdmfFAYga0UKCRDrMIQ1CYzG9TSdOlVCDzEo2Urkbj0E+v/b+/5oW6r6vs/ee+bc+yBwFZ6P94j4MCkFFGL5UX7ZJaiEHy0lUSsQ6CvJok9NF0EKrgTaGsC1ImBaXSnGxrBQqGBhWaWpxZBiAtb2gSAQBcEXalCk8kAtvIcV7jln9u4fe3/3/u49e86Zc+8999377nzXuvecmbNn5ntm5uzPfL4/YQRrEuz6ogrY5uHEInX0PvZL1vuS1v8GlQNXKWC01YqXj6M0jN0lYgyCcYAk8yp9HyBlkYgD30Sz1Wk5cbMDyREyjYkgN3axpqK2x5lk7JLp1ASG7n0EiASGRtfGe+Abs7/6diMAtolNLjFDBGAZYvKZIbOqWyeEBISxYIkCAkMYWbQCyTVzP405ziRjawDJr3vGHyxEqBrlTa3M5GpZjw07U9LW7K1MqN9buSpTTSZXJXWNWfruHP4PrktHYJTC1T62PkR3bzHTqnQmVdEQpLMQiZ/1YsjKMmNekSoCSyrK4UoyOs+kEqNTP5bzsaADyQVKk7+krUzjIq9EncLOY+Dz4KV15jNT36Zpe76f5FhjgTW3zPc9gZgUyFLGWIV1Rgg/CUNaoPSAKSSELGA0ZXLb7y6EHHl91sr9NBWdMg9l/nhCRmySyit6FpmwSZvPK3yd4QCQofD9OJMr9T+lAvhasu4c0rax4i2uNKjuqgUaW0FHsa9XRUCZSuqPBODBNscUecANCQf8aD2BvQjt4Oz44Ookv6/whTZE1tS6u/jymgbJhVL2SU07o8YvNghhJetUm3yMbgTHCNAScIwAUWcANXMc+1kzM82yVK56Nf6JW6gwuQggisrlDJG/Gs8Y3Z9L4BYcLAEPlP7cy8ID5Vq9n5ZaJwDZB7DcWMUeUjSs/1FBANK48lG2Eo0Qtheq0U1s0oKepvdGoiqoxqnyKRQRYBoTzKtCQEgD5RoiG2OB0Ujji28IWbc8GBacQ9GuHByFVNGfXUf7s6zPHjv2j/J1pHMAfenXAyGVQzIg9LWL2Wep2TV3PTomuUyy1MEQk47nPpHFmhFWok7xATMAmQPHJmBsGgsHhslkR2M92OWqjlBtS/Z5rHJzwrXfDgD4k7h/Alf+MwJTI0QEkMQehdGAlh4sab9CFjDuXBgW6bpW76el1MkOyNxH7LMo2hiWVYZATyoIHsyuSliwNBUif2SphGs6PDmbrLSx+yqkb19ljIGRgHT9HSvYEnHS3kaOXeZN9CaJZA2AyNeFOq4yAUb7uYj8ikA9OKcOmPDmY8VYJfVXpfxIYpWpqZVfuyY/8rRkTYNkTqb9lJKbLMYdb1XrlPMDcoDMgeMYYBS1bRggUhI1HSsFR2KitJ4zxhb+mug784lFqWidkTLUx5QKoGUHmhwwye8oAAuK7DgRyHAfZvI5Mq9NsqrvpwVKbf96WH9wq22jARmbuVOgtKVoyBbrCvFLuGbgzjQKCS2BSlEbt3ZskgNlZQJASiVt2obzTQrtAKuAq7dqO3c0AWX0HROQ5CySfKC0LNk6YpAElqkfMgpAYlGs/iHB+SMF4IKd2ENDYmpdyP20lLKmQTL3NNLWZDRuTNP4hUwWq02n+gHcZDQBQApdjQVGAkWtKw+IERjqKmaSaVeEFDi9us1gWfPpUKBE+kQuHTNUFhghpXtVAUClAorCfjdijbKoMa8AkEP7OQPKtXA/LZVO/t7kAJnxiYcdS6DSPjXHM38hofw1CEBpnKkV2kayQtogHgNuapUOLF1HEGkcWPLeizLUQGVA+aoOZlalKLeSA6GGkQZSixpQUtBOGrxTB0fpwVAyIPSgKMgEG17jACQeiFT3R0oR/JFkalUymFqVhGslF1+73SlrGiQn8aFMur+cD6bpB9zGFLUn6ZQFSD2M2aPRgB5G4CgI9HLAyEHRLdv1AQgjcKyIYbKJcRImySYVAIAKrFEQKKbLZS8GzKKE0BVE2csCpD+/QtpzAXifZnc/TaaTFwLIahjuPyDrl4aprJ/ZaMDIAJay8H5KQUeSgIEJ/kkA0AJG2JqnpZKuE0bwS1ZKoDTSgSVQFQSSKirxxoFyAEBSpRtndhWGTJ/O/DrUHiiFNjBaRNV4csE7kYm1kA4gEQCTRdgqZccqJe1yYl7tFbJmavUgKARKKT2zJNOqcsUDBEKaDL+GNX0z66Ylaxokm6TJh5L7EU/ylJNlCC33sdp0qgljkXZwA0AyBik0m8iGQxgGiGbYrwGjGQ7yAFlVFgxTpgnkfZX8cy4sICIypbLPhFQhEMezSAeMWgeALHv22EXPPuEXPRvMmpxXD4y0rB1ANjFO7Jn302J08qKH0b1Ws2hkRHh7o/F5rP6ayCJilMaxx4hJGgBSYKANSrkwsyuA6L0p7KsFS8Ymh+G91gYYWh8lYM2fKViSEDgSCBJAclCk9arg6Sh1UysBpF9W0vllJTOzWmZdSOFNrZZRBuDk981C76elkjUPkgs1GdGYNj/Yph/7pCam1aoTD4hIWSQ3eRFAenDUQ2tWHfTz4DjoB0AcDgIwpqCYvgciU6xhZUpyHdyj78KBUjlgZCZVC2Aq+CGLnivkqWCGA4iitGN15V41RFEGxpMCpZAQYhiWqzqjHHct9rT7qa1OdJzIKlGRqTWxZtC42g4yeaxAOPdCQrnKSC5HxAIl3HsFoDLQ5J8sYj/hKLMrn54jwCQfvGe/ARyFGyOkBVChYTt5GFuEQGRA0o53LNIBpCpkFL2qlIQsQioKAWdPSfQK+zfjAVJ6wOSm1lKKrKk1ZpqjzefLCY4kax4kJ31KXurtuSzkKWml6pRlk7kUjeSJngOkZ4+OIfpXAsche+XASOMSM6yptAdBXWkPjr6De8uaXh4ciT0qCakkhJT2M+6HHA4ss6yBo2WPxirjGbDAbAyUiWmVT848LSSrJ/ac+2khxwEQm1fdQ5e/v4DwoNbAJHnqjs9jNdpeU6MBZRk9B0phSEMLlDZ4J/wqNPNPzoyZgbl/MqwzvhB6EAuURjgAZcXHtXadPACfpkSdQ6Ii4449etOqEFCFDEyS2KNbLpXM+CJFApiwrFEJb2otpYyiWiUCkK6U3Eguax4kSRZswslsu5B95bbZo3RKn9Z5kI4xfjLjAEmAZ4Z9CzYVY4z0OujbMRmmqfsDGK09IBrNgNGt0w0AmS4TMPL3kkDRrRMMKAk0ZS8HjmUE4CjK5OmZASWv/MJ8k6hcT4kGoNzj76cGnbzk2COZ8rmvO63ylD2QjPNYKW3HB1tpGKUtUAqXvJAAozuIW07YpDZZ/2ROfMupPjxQCl9wQKOqLFhqacdpEbp30LEAeNC0X8+xSAaO9N77HQsLjqpw/sgisEUCRfteebAkQORFFXhUawj4gc+NHN/EgOndfuiipANJLO6Hisy2k5qYctvsiTqFHSd5kJFv0plYU4Bk7NEMBxYcUzbpgFQPhjVg1P1hBIjhM9dvb4zJlZtZJTOzcjYplISUErJXQDuQVFo7sAwg6X2QPsioqp1fD5SMSUKzZksu0KEJKNfC/ZTTic5TjT3SOm+pSHySficRerhXY68bpe244B1kgq2ULCCldAE8kVaJls53aAxmTHOqBgXy5EQNBV7JrJfSoBraHE1tDPRQAwq+3VX4qiYuDiDiAB0pBGThgM0BpDW7SigRADLHIu16yyJLaf+koPf2M+WA0QJmHLDjdUL7+2laMlWQfPHFF3HJJZfgv/7X/woAOPvss3HDDTfgNa95TXb8YDDAv/k3/wZf+cpX8Ld/+7eYm5vDqaeeiuuuuw4HHnigH3fKKafga1/7WrTtueeei9tvv31iHUddhIU+Pbfxt0xy3NWoU3ZcOiFpZmblqR3EDhlAmuGgzh5pjNYwg74HRz0YRsCYgqJm4MmZpT8nY0Ayxx6lkhBKQUsJMRhCKAlVFtCDIWRZxGBJLDJhkNG5lC5ykjPJKgBjLcJ1hOl1T7ifWplXiSVmmGM2QIy24Q9tue/EUj8gjGWPLgjLFnsoALq3lWWYpSwgqQJOA1AaSMwssAcqT97vC4GBFNBDC27VUEMIg6rSNoeSfJI6MEq7k+QcJqkfQoIxyQCQJfNDKilqLLJXyIhFUtBOqWQtYIfYpMwAJJ0prx/a3ZtLLVMFyfPPPx/PPvss7r77bgDA+973PmzZsgVf/vKXs+N//vOf45FHHsGHP/xhvOUtb8GLL76ISy+9FGeffTa++c1vRmO3bt2Kj3zkI3553bp1E+s37qSbluOatku35e8XMnmsOp2oYkltA934ZyryJVYe/DxADvswg0GNPer+ANVgWANH3R96YKzcZxwwNTe9MmDM+SYjcyszs3JfJP2psrAFAyptl93+ZelaX1XM1MrPG6WVuPcGgFTKm1qFK5IghAQvWZcC5chr0vbajZGVdI+LyBLhgDI1rabAmfoiR+RK0sMKmVt9EQijLFgq7cGSzK8ogEIWgBQIV8QCwcAiOgyA2aJ9U8ZcT0afwN+3DZ7JXKorW4XH6ACWUJY96gww8/xHXoaOAnhyAJn7I19kqUTEIsOfjAJ2lAgBO7yW6yT307RlaiD55JNP4u6778YDDzyA448/HgBw44034sQTT8T27dtx6KGH1raZm5vDPffcE6274YYbcNxxx+GZZ57BG97wBr9+r732wsaNGxel46iTnrs4/HnQoN2PeJQJbC3o1EYiFul9i8HEan2TDCCJRTr2WPUDQFaDoQfHinyS/WEEjCZhkjyYZ5x4U6sDRq3qfsgAjpUHS8UAWvWKWi2U6LpJBQwHNkp20Ad6MxDO1CqEjCNcjQyl6/QQPqDH7W9Pu5+4To3sMTWtVonJlbFLAKEwRZNOSgGoamUFYQoHlhqCASUo+lRpFKrHTJqhvir/vmgJlClIUh6i/3wo0HfgqIc23YODpTG2vixld9LzAFmVfSoIr6ZDqRsNAMlZJL0vpQxBOgmLpAo8vJ8ksUmSSe+nacvUQPL+++/H3NycB0gAOOGEEzA3N4dt27ZlQTInO3fuhBCiZqK97bbbcOutt+KAAw7AmWeeiauuugr77LNPdh/z8/OYn5/3y7t27Wo8Xm5yaXqamfQC8h/6pNutRp1GAqVO/EGMRVqmWAVwHA6C/64BIHV/6NlkCo6eRTJ2acHSaqsr49mjrprPhHSPuhYQBYRblkpClnU/pKkse6TIWqktWPr9hR27/VpwJBYZ1YEl/6QeWkcOi9D0oOEiLeHAcpz5dbXdT9F4zh5zgTmOVUagyU2vacUmIJ8bC8Dw68DLChodwNIYQDJWCXjGqpRNAxJCRFGq4ZsJiDFASbVP43WZMnBDYaNfndlVSguWxhgf6WpVM1lzqy8ooELlHZX4IHMA6dc7MKSI1pRFSsYi/XvRHLCz0PtpKWVqILljxw5s2LChtn7Dhg3YsWNHq328+uqruOKKK3D++edj33339esvuOACvPGNb8TGjRvx+OOP48orr8S3vvWtGgslufbaa3HNNde0OmbuYoy7QDWz1wT7Xks6kdR6PNKyj/h0gDkcMCY58FGs4wCSrzPMR2nZZeVBUVeGpX+YkQAJcJAk0xSBpTWpeibpQFIRW+3Vf2ZGaxRwQEn+TlaYQLj0ER8Ra5Qtcu7AwJr9tF9nS7toO2db5ezYDFCu1vuJA48PzMmxxwQ0KSCM+7x5xSa72wag5EUiMIjKCorSeLCMzK0ElKrnAdMG9BTIPzraM7uuUBG74sXAXx3GWygp8Eq/gpKVX6a//lDbV2F7WGodB++YEX7QWvAOy4Xk0ax79SwwrusVEWAGE6u0r6qZRaoMixx3D+wOmRgkr7766rGA89BDDwGwJzwVY0x2fSqDwQDnnXcetNb41Kc+FX22detW//6II47AIYccgmOPPRaPPPIIjj766Nq+rrzySlx22WV+edeuXTjooIMajz1p8ELKntr4a3L7WWigw4rWifw4uc8YWApjHAuqoj8LioPAMIcDyw4TgKxenfemVgJQzhwJHKt+5UytxoGlYb5Jw1RjukVBO4JFt2rPKE2lPMNUzP+oq5g9cqmolZAaeOYopLQPB1Spx7FnSAU4c59hQBH8a269hn08J5aD/NP4arifonsm+q4NaR059sgjpqsKmhejSMsZkvDqS/TgwgvYu6pJVAtVlIbpF1ilASxwAt5PWY4ByjQ9pEk4g6RX3kmE2m1V2qA/1Kgco5QAeA6lP9dkamXpIMQeOTjGgToxo+Q5kAWBI4HlBCyy7f20XDIxSF588cU477zzRo45+OCD8e1vfxvPP/987bMf//jHOOCAA0ZuPxgMcM455+Dpp5/GX/3VX0UsMidHH300yrLEU089lQXJmZkZzMzMjNwHl7ZPL7kffdNT+7hJadxFX7U6Rf0UG/w+Dix92TnAM0oPmI5VUpAOAaBnkAlAardeVxpVX0fgWPWDuTX4I00Ektw/SaAIEEgK54cUMMq9VgZCCahS+e1VpSEzLBKwOZZ64MylUtr2RVR4QKn4e+fYpLG619gkJbvnrgE/5U3XKzNuue+nkeCYli8kcCTfY4Y9NhalYHV+7aFy9+fAvrB6vJDKgqbLfQ1lBXXEKmE0UPTsq3LfTmn0VM81FUYS0dkOKIlpAsEv+Up/GLFJDpL06qv2qFC1h4tviMz2w0vNxSbW4Idc11ORmZXMq0ogmF4Zi+TFA3Iscqnup6WSiUFy/fr1WL9+/dhxJ554Inbu3IkHH3wQxx13HADgG9/4Bnbu3ImTTjqpcTsCyKeeegr33nsv9t9//7HH+s53voPBYIBNmza1/yKY/CTnLlqbp+JJTFRtn/BXg070kx85lgCyYpMV+SZ9ibkQ8ZrmPXoTawYgq37lGaQeMCbpwJEzSQJIU/MZAXrgAjzoaduxyRQwVU95hqp6CrZvEfuuDGwrlkZiXBSvre9a+ehXwwDSF2V3lV4MgWIqRiM3ybY2hWfGLsf9VPsmPNqUA2Qu7zExuwodln1JQ16EIlcEfyRQog6SUtnroRjbL0qIogdR9jyrNLAWB8sqXQQ3gEL1IoS00CgghHGNh2Vidg2l2+bdA5ztRVl5MCPza6+Q3uSaBUmwogSJpD5Ozh45o+wVyptcPUDKEKwTWKSsR7TKPIuc9H5aLlPs1HyShx9+OM444wxs3boVn/70pwHYFJCzzjorCto57LDDcO211+Jd73oXhsMh/sk/+Sd45JFH8N/+239DVVXef7nffvuh1+vhe9/7Hm677Tb8w3/4D7F+/Xo88cQTuPzyy3HUUUfhrW9960Q6jntKaTtZjNt3W3/PHquTL+0lxj+YcPYIZ/Z0f7o/qOVBUvGAyATLALIaVKj6xCArZ3rlTDIGySa/ZOSPHFDqh/DgKLX93KgUoAJQah4Z63IpRX+IyplZBfljtQaGfWvmZX5aEHuyJwYupp8Biczipj9+w4XkD/O7437KAmSGPRKDhjehMvaYmFc5e+S5tI2F8HNdYbhQwXogNoVLBQz6oWC9M/eKsmdzJo225letYYpe5FctXEBPfBbTs5FnlVIIzLuyObwDx/yQALJqBZL02tQ0uQ6QNhfSA6TzQ84oidlCRcE6M4WssUj+l7rdJr2flkummid522234ZJLLsFpp50GwBYT+OQnPxmN2b59O3bu3AkAePbZZ33hgb/39/5eNO7ee+/FKaecgl6vh7/8y7/EH/3RH+FnP/sZDjroIPyjf/SPcNVVV0Gp0RFiyy1tzAXL+UTEjznu8yXXSUrrLwPqPso0N42k5p8MaRRkcq14kI5nljFAVv0qwyQDOKa+SatS7K+pwCvtCBhlzatSSxjHHHVlvLk1FguIVd+ZV126iO4PIV2gT8QmKXAnNTmjtGZWnrow6pxTPh8CQObG8+cCgdQEOFqW/H4aBZCZ3MeIPXLzKvmviT2OqfdrD90c5ZpGuNq6vH1rTqVrxfJfrQm2CqxS9cJ3Uz0PhzZFRMIVs3MsMn5VUkEOKafQBfJ4NgnMV7zEG/+rfKut/lBHNWBzjLLJvxkYZRrVKjFbxH7IWWU/n6UgHiUj9jguonUlzplTBcn99tsPt95668gxPNLq4IMPHhl5BQAHHXRQrdrOUsg4v8tCJDUdjDvGqICI1aqTAVi7IZn1jwFIAFH7SYdMrblKOVV/EFI7CCwbAJLYox5o76f0plYKZEiAkotUEnqgIZSAqJgv0oElAP+a3z4ApOgPUVGFHq3rbDI9h6x8nT+CjwjWebLR4If0YNnwOxNCeNAksBwFnG2uf47BZvfHIp0XApA18yqBY67eby54Z1QqSGJqpQhXMxhAlKXdhoC5KCFmZkMQUW/GFUPvwVfmYQxTFT2ACqRn2aSpFR2gwJp5B44DaZz5NbA/YpWWTVYjmSRQN7UC8OCYFi5fVypnYrXrfJpHFLAjfQ/JXERr7h6YdH5aDulqtzoZBw5tha77uIvdRoc9RqdREa4thZeP08S8XPCOZuxSO2bYBJBxlGtgkJQ/1pgFUlX2Sb6y38LmRkoPlgAgdYNpTAlU/QrCBetIJR3QVzU2CSCYXD0wluw8VCHicpwwFulfjSFCjyxOupVChHNRK3zQIjodGM1IaW6WIgMLSYoQb2s1FiBT8ypVavIdZJLgnUyE68iKS7zDCwHmsA9RMLCkh71yAPRm7TUsehClhlG96PdI71UBSFW4LhgmZpNunGApIvPDwCTlEJDOlznQFrgGWjOw1FHj5krrCBxTk2t4DeDImykHH2QAyJlCxtGskZmVsUeq2crPLTsftNx2floOWfMgmV4gNCy3vWBN+xl30VOn9R6pE69WIiWgWZmvzMTP/ZEA4rJyrPVVWOfyHwfOpOoAkwOk90dqC5RaG1QmRPuNSpVUIgQplqBADwNRkT8y3phYZzWoQoBOZY8vHagTm5Q0MScmZnB20+Qvo/MlhH8gISbJATL0IYQvTdb4dRMTbPqhbABKvroyzQAr3USpTQOYUhQrB0jeKYabZVOA5PV+CRBZvV8Pji6Ip6mFWu27OTM5gFCKsAzm1ggsix4o31eUPaDnfJU9prumSFi3XPRqka/h1NCvNQ7omXdMbaANBlJgvtJQwkBpRGBJAGkbOsuWIBnMrgSQ1rRKrFGGVyUxyyNcIzNrYI85FrmY+Wk5ZM2D5DiQWUob+Kh9TGJSWJU6NZlZW4r321UBaPwrscrKoGK+R2tyrWoASSZXrQ36DiQBCyJNIKkcs/K+lApQuoKsbOBO1a+AnoKgMmAuotayRuPMw5WvxJObiC14VvUff1PEJRDMgPz8svqtHCAJHGOzqzvECDdHDhCFqI+XbEbzD1W8X6EApDuOhkhAgO07Ck5CDIoZFhlVakoL4rtyhqEgRb8GjuQrTlup1fRSEpV79aUIXQF7im71TLIiv2QZHnYcq5QzBjmwb4p8BdLIV7tGOlY2kAavVtqySilQSoOBFhhUMVi2jXAF6sE7vtWViAEyMEj7ufVHqoyZNfx2JgG3tvPTNGXNg+Q4WeiFaMvyFmJSWG06GSC0GNKh/mUt2rXJjDgKJIAINIlBUk6kN6cyRqkrjUFlPCjyVyDPJsndyH/sSgA9AOhXASideBbZryCUgK4MBOkVAX4VMWQAPuKy9WTCfb4MNH3XewaQlckzST5fpnjZCIh8DGwWrExAkUKLhDuYIZZkjAdKbTJBHA0pIGnXGB6kE1VqSgviMxZJfUap4AQ//039RYFgcqU+or52b39o6/GWVfBJFj0XrRxXkRIzs7Y98kz4jjlzc6uAHm3Nr68KW35uIK0ZdiAMZGVNsKWxYFka2wlkUNE9bsaDJFX/kfDgSGyySNikD+BxfkjKk4zYpGz2RdI9Mq35aTHSgeQYWeiFa2tTX8jFXpU6JR0U+PpoeYy/TddAJoAjpW9wUCS/I49otSZWCxh99x6w4Nhk0NTedMjPokBfmwgo/bHoT/GiBcqbWvlr65hsKV3d0PCQgSQoyn/mNDQOICtjnE8ygCXglhHMsFnJrOfkkrzN1o9pQsCPCUySJnZtDCSEbbfogFLl/JKABcRIj4yZlVI5WJAO9OiC+KPaqdnD6GzBc+Gi5zUDSQJM4wKwPFiSn3NYQvYcq3RMEtqCsejNspQQzi6ND+jhfkp+7r2f0plf54fa92QcaI2BdCbYSqOU8EyylHQvGIyq50/ASD0eqZ1VKYVjq3WAnHG+S2KOhYqZJOnsvweWb35ajKxpkGzzpN72guTG0Truzxt3EyzlTbLidGKAmAKmoJZQixReOSdlkaYykYnVAqWJwDHHJj3LEW42T4CycvZLWRloqW30qwNkBemOLd0knIk65aknlc7fl7K+nRcCTBmAsjKuYa8DRe2WU/MrEAJ6gOaHhJo6/PBOYWI51hcpYibJWCQQA6U3yeZaq3FgdMs+KT8tiM+DdKoqC5Bpx5imXqN0LaLTzPyRAAVvlRYwB0OosoBx/mVbbYkKqOvAKnuzUXBPzU+J5IEhKWUnBDD0ahnvv1RSYVA5VqkFpNCQ2nimLitARwBpbC3Xhh8dPegQOCohPOj5KFYpo1frv0z8kI5Nls6/OcoXyddNMj9NW9Y0SOZO/LQuiElex43jsifoxE2uUfBOhcCGZPwqZL6LRbRf5o8kEyuA6JWzyNT/SACZgmNctov9ZDNAaX2VroefQ1RqUaQrA+mCU7VnmHWfZFOwiD0fgWt69pgwR/6ezKwagTUSQFbaMsdKoxbpGnIpR591AeELDFo/pGHgaINzjDDWBGtCx3likS6G1DJQN4kLNHeCsCdPB2bpA19CuUKf+qG1D9LhDDMtiM/7jVLXmFwT7lwNXwJLzcDR9w91y7pXQA6GKGZZIXU9a3MpZxLwBYAeA8aWAT0Sli1a4DSeVQ60xrwASgPPKEv36gueu58av8+1iQOy6LpRuokUsAE5AjWA7LlAnbhwABqDddpI2/lp2rKmQRKIn1j466T7GLXdKJDh2/J1e6JOANxELqLcSb/O5Z8BiJlT25QHOoYvMRa0JBYJwINjAEa+vv7Nwjp3NhhQKpdXyCM5CZgpc4NMwbKM98uB0bMUz1ZYdRe3TOsMf8gQ8Z8R0lruHFvgjJKbXYOf0oJiGsgz2rIQm/4AmriFrfjjQJMAE9LAmMAsFQNKIQSUO17EoPjxMgE8whhoVq4w6jtK4OgYZlPHmFHNuEc9tPgo1wFa9g8dQs3OeJOrBOx7V4JQ0PvZ+Punv7t6QI9x7bfsuR6466Gk9VUOKmOBqjKopIF0rbIqGa433dv2t2H3Te2yCBiBAI5SiDpQUiSrz4Hk5tp8sM5SzU/LIWseJFMwaCM5EJl0H7mLnQLQnqZTOqFHwTsigIPhnRcYqwRs0MToMB4rVBSATK0kZGK177mZdXzgjv08AKVCiHitjI0klAwcAURg2VZqAMnLobESf/wcEmCSWbUyDnjYa8WAk4MjjaFADp08PMTnIUx3xDqUFA5cWX6fsYApYAAdmCWdP+UA1Tg9PNqOyamt1frV3OzKzKyOZfJShqN6jvJAHrv/PFAKB468xCDvH0pgyfuH0j5lae9cb37NSGPkK+pAKRBMr0IEU2xliFUaSG0DeLQxHizJuqC1QQnbTiuleXSdQ93YJMLVsUhvYo3yITlY1lnkUs5PyyFrHiRJUuPauKeclFml70dJbtvccfdEnUTCeqJO7wwUDGePCVBGratG+epGCAcADoo5cyuxxdQcGAEkAw/yReaKpXOpsUde95UxSEpa50E7kalVFjCy8CySzMeVTl+DL9ZHvmqaNIlR1E1wXiUhMEB8XgC4VASKhLSAKYQ12gpDTNJOmJW7KwQMhHGvQkAYZ3L1J0ci6hqTFBiIc0jj0oXezOqYIvdB8p6j1GuUB/KkOZMAvOneXiP3nVkaCO8f6pttV9r3EyVWqWZ71lc528xSfeQrfVUwFsZqvgopXVXgmE0C8OcysErtAqpigKxk/FCUSr3AOi2jASDT4gGuRivpxb4TMu9HSdP8tByy5kFyMRdulEmgzXZNALTH68RTQZjJ0IOjMy0aekXOHLl4oARik2veHxmDILHJkf6zFhIBIvj3o+8vHUBK/+fZoyxCkA6N4SxSB5NqDiArbX1YBI4EjDzqVTOAp/MRsUhpAVMJADqeQJUzyRFYWiYJgIpt09SvDaQSMZsclU+bq/GbljEkFqmrKIKVzKq8KTdnj7TM6/kCaDS7Uu9Q3xFGZpptax2xStqfb7adKxzBI1977msj/v0JAMoVR7cAaXUVEWAaSCMcOEqXZqPD9XaM0l7f/Ommezx3bQUwAiCF9zFT9xJ/CXPnsmE9l4Uwz6WSNQ2SbU94blyO+k96ARd6w6xmnYyb5IUY2sleD+1Er61fkoPCWKBkQEMtq4h9UK3VaUvKIrmITKSCUCLRW4b8O+XYNPfLuu8vnKnViAQshfQs0gIigh+SAeRABwZpl22uaMQsTH7i1Np4UCRR7tTyCVQLOzFrAVSmQunKmjkIBAGjktaraYQNJBLSTu4G7n4Z1TUm8UfytmqeRWZq/dpWaixAR8ddY+Ji9yEQDIiZJF1DDGxhCOmuJzXbJrCUjEFyVlnM9tz501Czo3vcCgCiZGkhdArcZ0oWkC7yVQhgKODMq8BAAEJbVkmmdskepPgDEnkDUusJ3YK0LIWNUPV5mrXgHOaHzJhZpzU/TVvWNEg2nXC6cPTaNK4GAJ1OrXSyG+dNrqLo+ebD1A2DGhEToPguGmzZ79aDpfMDKTHSh2lNqcSURpelC9vE26eSNmmmvpOSbRi+C5mYXecPYpAqmFh9a6YEGCGkLfpJKR+U0hKxxhggB66QwkDbSN9BpWtACWRSA5IVPkWAzHERmxQ2eV1rH9hhDAAZGCQkvLnVQPggIiWAULZw/LXIsrHhIBQHYB1imhpzUz1fa5KtPCimjbi5CEehiU0KKW1wlgNLH7STsErA+Tu1A8sxX08g/p1FuZRK+xQRachPSWZs26RNuvMqjH0gsTVeBYwRNT90mTyScJ8zmW8pQEtJy4Y5QEZ+yNwDDqYzP01b1jRINslinmwWYg6YxNzQRla8TrKAURrQQwhZAHLoAUCoyoOi8WBBjErGZklYsLGlwgIQCT9xBf+R0cYWJ9fGPwFzcAREZFbMPVWn7/k6AodRHUEI3HlZMyFdQrpfduBY9BC1ZSoK/yBBwGik8ixSa84emwHy1aH2lVdioIwjHce4U31qwAAGSgvPLEolLJvU9r2dSrWbcK1/knyQlUs5IDZpgVK0K66Q1rJNOsbUC06EykY5gOS9Rnk3mNCMO5cKErrBSGW8uVVXBqoKQTucVdp9xug/MVAm76HITyk8MNpb3wKmMW4dbPEGHtVsARN+b9F+gVr0MuXC+iIDKUAKAenGN6V8LNX8tFzSgeQImQaw5MZO09ywEnWyB3OsSFeWFclhYnKN/ZIoSghlGxGrsoDuD+MamgmjBAKLo0bJQJ05pmAQarSK2nouEqyOa/rVGFBK8lnROuoVSe8V/wv+SAuMJURRBlOrLCww0rmrscjAJodVHKTz6rBywGirsNArgSMBY5RsPkKUFL7RNM+hI/MzB8jKhGXhQBHS+cwIICGg4e6lxMIwsoNMQ+F3X9vXgWXFgncIPDlA1vuNauaXrNFq1nxbuOtor7PqUb6urb6UskoAoZg9P58jz/YYoHQ1X5WLfBWOOQLW/FoZxy6FM7263EpjhP8NNOXGEjACiNJ6LJOsA2Qwv475Qux7TXt+Wqx0ILlAafK/tZVpXOTVpBMxSCMVhA5RmpCFNbkWVAOzBIoSZjiAUCoCFQ+WDnh4IIV0T/lSSdvzUbpJTFcM3BxgijD92Ene6plGtIZCzQEc7KsLUFDSHYd0kH4C5f4roSRkr6iZjz1rTEytouy5BwkXsENgSb7IKhSurjQ8mxzoOkDOs/cBTAMwcqAcJVKHBHPtqrJooz1Y2vNHACndeTLQNpHSAaSBULAAaRAYjgh+yXAjhWVfMo7V9OUdY+JyhYFFpoE8TQBJJtdcdGukkrvHAA3Vk34bKk9IbduIVXIZZva3cKDsAcO+BUpZQFoHsTVpOzZZacbaFTvX7n6nOk/8snsW6ZfzTFIIeHOsEM0AuRLnpzaypkFyoZR9UvPAqPHpZwsxPaxGnQxgAVFqQFaWFekKPMo1Z3JVZQE9GHrmJZSE6tE6AVUqVH3twMmCIwEnmVyV4akboGgR8OmHg2UMhsKzSPqMm1qJNdJx62ZgZnJVClJKyLKALAvLGoue+ys9kwyAKAJYKvsaCiMgYpIpg5wfah+s08gmXeTrqDzJcD6oyW8MmKWS0EajUtYvSWwSkFC2fp9nnEIw05+xx41Mrjw9iJaBWglDw8CS0kDGdYzxlY8cY+Rg6Ztxs0pNOZHaNeKWttqSZZIWLFUvhbzQaSRek5zb7JGCNAKlcVO50oDq2ULjxpk+nfmVs/ZKwxWudyk7hh0g/Z4Rk3Rl8ARCSTzPHicDyHHfs+38NG1Z0yC50BM96XbjLvZSmBFWpU6MTdJ7ehVFyZhkD6IYAMUAQvUhy8KzSMlepQNPO1Ep6yNSAlJLCGVrqnI22ZMCfe00jYCSzoQVDojBzBq3/yEWyYGSm1qJ+RLrFQ4cG02tZGamgB3yRTIWGarpuD6BJmaTFKRDAPnq0ALjsArRrZXzT1K0Y5tWSmkHe4p8LJVlk8HUChBAAtqdR5vkLmADOyRcAQIDqMTk6ssWAvH7JuHMkplaI8B0TbpDKzXdYG5l9X4bmCT1D6V7jBincOt1paGqYH4l4eColUSVuAmyQMnSgaRSgBhaM7TbGf/N2tNcQMkCVLxVCBskVTkfpTdxu1vfssn89+QF7H1JPPeAJOBM75jMDzlO2sxPyyVrGiRzMu2nlBz4jDvenqqTZ5OUDkJsUhYQZQ+i/2oc5VqUEGXPg6HsFZCDAWSvgHB9/aTr2SiUy1lzpi96wudsEiC26L6NB0peYYeFwyMGyJ6ss0jpWGRqalU9ZlplplbZs4BPrBGlY5Jlz/YnLIrgi0xZJAXp6PA3cDmQ/SqAYgqQrw4rZ4o1Hij7w9BvcNgCJAsGlNSQVzPfY6UrzPrpPmaSUtskd5MEknCTq80LtT7qyPTalEepKXK0iphf1JybpXSEOrqhOTcHyBDxGgCvdv/6IDJhTfrKFraXpfT3XJNUmdxeoSQqeoBiRSQgFdB/NXxVwBccMABQidrDLYFIIQsI6YrwS/swQj5KY6w51hBTNHno8UwSgT0SWBJATuKHnFQWMj8tpaxpkMxd08VQ/JSH5MYvBHz2ZJ04ONKkCHp1oIjhAKYcQAwHMMw8KftD24WBikoPhlA9xYqdx2xS9Zhm/QqogJ607bJIKyo1B4QQeCA1rwYza+mTyS1Qqp5yrxag6ZVAUTn2KMsyMEse1UpBSs70igQYIxbJTKv8b6hN5IMkgJwfamZmteBJ4DjPQBIAe00iMd3kzvsDVi73sVdIVEagkrBgOYyBkjNJJTSE4yhKhIASem8QlyuMzK4tpKmsHC+GH9qp8T6kMUBSuzW7T5PsyzHHKkS5Erts8mOS8KIYlbMkVO4esa99zxyFlAEsncXBSBU9QNjnO1kDSgPrp3RHdQE6woMjgSV9SvsC4vmRfgs5gBQN6R7LNT9NW9Y0SLad6Ns+IJmG9zkTZtPx1ppOAHx0q0jZZCaAh/IorR+yCADJTa8+4lBDlsoxGPguHWR2LaE9UHK/HmeRJNzf0mP+F9suKQCikA4ok4Ad73d0QCl7hfenEmsUpfuOSrVjkQ7s6P3QBd4MNPkfNQNLuzzv1vWrPEBWOg+WAJlZdWJulQEgtUGvkG5WcYDGgFJVtjTaQNs6oqUCDFwXFVhgtFyTciZlMzgScPD7SIc8RJLIH1nFxcs5iyQwpNZqHCB5EE8klb3+BK6iEkBPZZtwc7EA2UcBBGB0YKgZw6TJWQPWxMpM8f6BiiJ/hYQZ9iGKPGASUBoRzK+cSdrzLZBzQ8dpIIxNAj5QJzWzLsf8tFyypkGySdKL0/SkM6nJMd0vvW+zjz1VJwNE4GiYb1IURZ5NFiVkWXnfpKk0ZG8IVWnoXgGVtM5SpfKvqRBQ0rcJAT31n2HMIoGiVJGZ1QZuKJtQzlikZZcBHGVZjg/Y8X7aUSwyRLGS2XVQacwPrXl1fqjxqltOAfKVfmXNskON/rBiIBn7JXPCWaSSxrPJXsHAjAGlTX2QGAjbiUIJWzd0UFk2qYTV3acjGOaXdK81K0MLSft0UnNuu1xnkdZXGfIk9UCHQvn00MBOixKA1hWkFJDuu1b9ypthc0AplUDVryCV8AFoVBSD+ydpWamBZY6DQWx+JZYJ2JI5DixNNbSvtIwYKA3g00QMYrAEgAaLqwelUQC50uanpZI1D5KLofijnnRy+0rHTmqy3JN1Wko2GYpKq2wyeColNBRLwqeC5iSpqVU6n6MspY9oVD0FWbqAndIBpHtNWaT3ReZYJPNJ6jEskoJ2KmPZ2VAba1qlCFYK0mEA+cqgQt8BKAdIYpXDMYE7nEUWDCx7BbFQFfbRAwAJJSw/lBVc2oCLiHVssjIGygDGpSpYsBQeCHyd3zEmVypfWLu3EhZIqRnhfWCMdh1jlXpUTV+Xd1sZKF1BOgsFAKDvzldPWaDtO9OqjRRD5fNmh55FktlVKAnRD+tlUQLDftbsCqkgdAWIYcQgfSQw4t+fkAWUY4QVBKRFSA+WQL3gOTe12isKnw4yri5r7VpgOvPTNGXNg+SkTzVLvT2XhTwl7Qk6LYRNojcLWVk2Wcz2IjYZQJJPhqxxsZ/A3XdUArIyrsamXZcDSQJHSvFIAVL1lANGBVkqn+5BjJdYpCKf6qi0D1W2YpEUsKMNXBSr8ezRMsqqBpA/71foDysHkgEc6T2ARjZJoMjfz3BTayo9uHNKrZuMM7tq2wi40pCsIIJynMYYG33pzYlcBNX1deZHoGZ6bRIeqZrzG5LplPqPkl5AU8lCNp1r+zDgpR+PrAaWVQolUA0qa2Z1bDI1u0pXA9ZobRtLyzQdigEm4P2TRg/tez0MYGkEQAwTFkglq4+rDTxYauSrSgEBHIFgeh0n056flkPWPEiSTGoGGLXtQvaV22at6TQJmzS6gih7UD1bQUUOChR6JtTL1NqbXQF4v6SVIjKDmcpAS+3BEkBUFUV6ExiLXHUpHjmA5EE7srSMkaJYZa+AWtdbEIs0ssCwsoCW/tmIVe2KBVCATgjSeWVQOXC07PGVfuX9kf3IJ9mcBlJL/WCBOwSQKbDSNihg02GF8GZX7puk6Fb/h4xfUubZZBODTCU0447Nrt68WvG0j5h9crBM11PeKAdKoQQ0bNqRqGwupakMjNLe3EqvPj2FmV/roJlEu6Zm1+HQnxuhq8AqtQNHCUBrCAxhZOECpuzDiRQAOFg2CLFHgHyTLU56076wNPPTckgHkljcxI/MtpOaLHPbrDWdWrNJ105IaA0UA6jZGZuP5sysnlW6iYc6HDSZW6WSqPqVjVB0YAnAhvFrA97Jg4MjFS6giNYIIJ2ZtZjtQc32PGtUszOTs0jVg1EljOrV2CPPkRxUwdQ6P7TmVfJLcoB8pT/0DDKYXDMgmZssK1ZYITK1Sr/dTMImfaqIEDaqVVuzK7HIUlI1GMTfTwBGigCKqbmVdYdJJS1P2CTpPcGZJWeRo9hkCPJKgNIF75jKeBOr1U1ASLtOKGFTT3xxDAnpgovo/vVsMttWy7UJc0wTRlsGKSSEkbF/0jiWiQIQmulvzbM6AcucLBVAAtOZn6Ylax4kR12EhT7ttPHfTXLctaRTE5uUM+ug3WRhhgPLvvQsjK6gygGMA0fb3DZJW6g0gBJCxkEUwj3NCym8KcxUsjF5PO4fyNI9GEAWs4UDzSIys6peGd6XBcTMbJZFojcTIlpVz72y8nPMB2lzIoOZlUytxB4JIAkICSADowwA2R9Sr0ETUh6S2VJI21HF5t0JKF1nkqlw9mm7hBiU0gYblf57aBRS2YAdE8z7lTZQLt+UB+8IqspkL4pPk6AqTZMK90emFXZyABk/QBBa1IFSuocuCRcBq0wI2qkETCVrbNJXARoM8myyKCEqC46GwFFKQFeWTZbSAyWMgG1QPXTXr4AxGqIawqgw9Vvza6hj3ASAIXin+VzurvlpmrKmQXJsMEnLcU3bpdvmor86neJtCRwNtQTS1BpIhyo8vVkLnlUF0ZuF1GRi7UFrZm51k469yYODSCqByjFIwDIIoYSfyBTqyeMEjAA8e5Q+SMe+9wDZUz4wh0BRzfYge9Z/KnuWQcrerGeRtsnubIho5TmSzhcZ8hsZWDqz6vywwvxQY+jA8dWh9mkeP+9XjQDZd+MIHI12QMn7FxKjrphPSgpUUkAVEsoVOs+bWi178cxTAwMtICtgIAVKab9TKQ0KKbImV5EUFfCRrlS6MHNvpS3UFiIcDJvNrTzQKwClEsKnHEFZX6ioNGRpH8KEtP5yoVgktvujesRZNklt5JSrzsSbTuvK/1Zs303XCFro8Huillomrq9DQAnUi/5zGccgd8f8NG1Z0yA56qTnLg79BPj7cRcuNSl2OrXQSfWsOZXXdJUF0JuxkXxkYpqpm12pqS0XZ2SCVHG1TKqtSkWtAXh/lCzrE2xkbnXVfHzhAM8mFdRsz4KhCyqqmVl7s6G6Tm8WYmZdnBepysAmix4qyJDmwcyt2iBEs7ooVvJNDrRN8+BBOsHkGoBy4CI5q6G2wTIOJIE8kwQsQBojILStMKMLW4u1l5ZX8yxSe5AspcSA5UsOtLa9J30xBPsdjUtyt2yRtQmLTK4saIfV96X2aeE6h8T9tjKqFkAa1JVLGaqMDXQhE75yDJd8oCiDedcwE6u99xAAU7P1VTCzEpsEM8UaLSGNYYCoA5vkwAm7nZCoAaUBsmDZxry6u+anacuaBsmc5KI5m55mJr2A/GbpdMqLgfuxFr3ox21/4NqZJJ3ZVVfWbOneF7OsqW0VmtwC8PlnJYhJWhOrDaDQjElqKNRNrgSMQJ1JhrxIlfggeyGa1bFIH6wzMxv5IX11HdXzEa3EJtOUjzhYx5pYvZnVpYG80q+cz7FiYFkHSD3UqCjlgdikCUAZSeUAklpkFRLGCGhtoArpuTo3sdrXykfBDrSNIC6N8HVjB9L+9Vx3CmNCiy+fCpIJ3uGt1EwmupWiizlg8sbXvDn3QiUuPhHMrTaH0jhXISuBRxV5tPYmVwJMbnJtK8ZZVKArCK1shxQhLFNsYpNCOSsNAP5gY3RIIUF7v+NKnJ+WUjqQTGScXTwnzBPRyizZ6TReJ0EFvXkQj+pBlNqyyd6se5qugJlZuw7W/2gybNLroCSEHPqi41W/cgApo0orsqxvmw/ccWkgPsWDTKrWD0nRrN7M6k2sxCKdmbXsBR8kY5Nk5hs6/yO1tvKl51wkK5lZB5WpBeUEn6QDykGFaqhRDbXPBTTaOLB018CBJOXMUa6ckfYKCQkYY2yKC5tN+wDUMIBk4XyWFEnL2WQpbVEBXk6Pm1wto7SpIEImTFJQCkRIA6G0EN6c219zvuyqMYXlOhooMZpNjhNil7oKLJJEV/ZBLCybqKh5KMhexb7KyllOmPlVoAwmV7szAEV4uEyFgJOCcLjZleVWAu3nhpU4Py2ldCCZkUmdzalpoY19PbefhQbO7Ik6QUgY1bNmIc8mjTe7wqWA0AQhe5U1Tc3qxptaKBl1YJBKuyAK48CSypXlzXJpX0hikELKGkAWszOR2ZWbWUPQTkj5iAoGMDZZuYLlFTdHaoT0Dh3MlraQeRyoExilzgIkmVmroTO1mnzgjgaCX1LahssWMLVnliT9TAQssclCCvQKa2IdaI1CC19snUyuhplbvV9SFoDoA0nwTsomhXTJ+C7XkAfy5HyUvEF2aKQsoXn7rSmIrgxkGV5JRhW9aNgRQDHc7r0wrIVyanIlU7UH0OScsDGTBOHsjvlpuaQDyYxM8gSVXsR023EXG+zzTqfkB0JmV+26hBTB7MqjXe2TdWWfsgFIXfngHV/aWSnvm9QuYlAPbIBENRh6sDSVBkpkza12P5IxSSpW7oJ0vFl1JkS2lkk0qzOzit5svV8kj2iVBYbGAWQm5cMWC6hY0YCYRVKgznxiYk0BktgjmVwjn2QSqCI080lK4bpGSAgZjxs05FMqWaFXSPSHGqWUKKU9lnasuCqMM7UCGq4BtEY2FYTKrvlk+iTC1bcgk6GptY5amAVQpFcAPp8RcNV02DmgZc4yeTUmLk0J+aMkB5A84jWbCpIAJNvZqANZkytgGahiwJnmoKLd73wlzk9LJWsaJCc9ybmL1ubJahKTwqRRYXuyTt7sWvQACkhQzEdJUa6AN7fCmWKJP1BLIgLISobJs1LSmrDcq/UTheLXkZ5uNpRs4vUAyUytqleygB3HJGdn42jW3qxlkb1Zm/JBuZDeL+lYZMUZZGCRZFbl5laqycpZY8Qg+7bIQAqQemhinyRjkqlfksyqFLSjCokK1nRYOd+ekML6OaVAfxgCdqgqT3+oMVNI26ZLp5G6BrMFGDjae0AbZP2SRlh/Za05d3qPUScNun4qvJfKprVIJWGUgVGhOXdVxa3UclWYuPC6vv6cLTLCdlIxupp8XiOT65guK23Mo7V9Z8Yv1fy0XKbYNQ2S455S2l7ccftua5/vdMp8LqQDjmB2pQAE4YDS6CoA5sys3zYN5agcwPGKJlTlhECSwu6R8Unm2ImM2GQJNdvzKR82BaQMzNFX2Ol532S2iLnqYWjqhQMG2gKh7/KRmFvTfEj+R0E6OYBMI1uDuTW5FtKlgrhAnWqoPXAqSBhpo2QBQAwFKlH3R/YK+75XaNekOXwH7VJaCildX0nXFJj7JXmkqyzywTsytCbzka103VjwFQBnPpe1hyJqzg0ENhkAs95rNCd0blKfJ4GzfZ8GEo2459JSdEskZkRN3BQYV9L8tFwy1cecF198EVu2bMHc3Bzm5uawZcsWvPTSSyO3+c3f/E3bn4z9nXDCCdGY+fl5/M7v/A7Wr1+PvffeG2effTaeffbZKX6Thcm4C7k7IrdWo06QhU2odwAS/HY2+Z4HwKTv1exMxOooJYN8hnw9jRv1l46lqFW/PwaQanYm6FSyXEjWYDlthWWKni0cwBmWKxygDRiDTFhkUpM1CtxhUaxNAOnNsENjGWzlPnd/2th12vkuPSON9h2KhVcOmNOKPnHHEQv+ZHL1FW5c4CX5JyvjuoM49mgagncEtY+SCdtngOnN5a6VGVD3S/JUFyAwRHpvX0W0jrNIziab9g0ElpkCZatUlRQs3Xvha7mO2Af/jB9rBFAul6zE+WmqTPL888/Hs88+i7vvvhsA8L73vQ9btmzBl7/85ZHbnXHGGfjsZz/rl3u9OFrx0ksvxZe//GXcfvvt2H///XH55ZfjrLPOwsMPP1yLJGsr4+zkC5HUdDDuGOMc5WtZJ0EpEcb4gB6oXvBPAiHCLxEpVdS7zxeUlhKmV6LqD3xEoWeSGeGsRJaFm3xVxuSaACSBNvkknbnVUMpH0fPl5+AjWtFYOGAUi8xFtlZD180iA5AU3aqHzUE7fJl8kVJbZkkmV3+OpGWYQtocygCO2pewI716hcbABe7Q99PKpiBQKoh2qSAGImKRxrXNkkpBFD0Y+aoFR9dmjAfvUGPuJr+k1PSamFwR2GS4M/kdGyQFSF8MnzrGKFYcP0knEn59wnyZb7VRMkBpOLvN5Zfyz2o3uWz4hitnLlhumRpIPvnkk7j77rvxwAMP4PjjjwcA3HjjjTjxxBOxfft2HHrooY3bzszMYOPGjdnPdu7ciZtuugmf+9zncOqppwIAbr31Vhx00EH46le/itNPP31B+o4Dh7aS/oyaLnYbHTqd2HGFtICitR0TchUAAHIGNpAnJ9IG3AvV90E7QtkGt1prC5bahtx7n2RmX7FfS9WaKAewjANzfMrHzDr/nuqxxkE7ofwc7xFZtWCRtnFyXGaOzKweDFmQThNABpNr/vtLOMAsJKQWqIYaqpDQwkC4fUlndhVCYCAF1DDUdyVwpHZaFNXqza1ao9ISlbTm1srY+6HSBoVik70qgGqQ90s6k7bqDX0rNWJoZF4lYKL6qvTqQaxybLISzimaesyCNLVSEzVgDICZgqVMATJhlB4sPWuWgTVK5ovlTHIECHowzIBo0+95pcwFyy1TA8n7778fc3NzHiAB4IQTTsDc3By2bds2EiTvu+8+bNiwAa95zWtw8skn4w/+4A+wYcMGAMDDDz+MwWCA0047zY8/8MADccQRR2Dbtm1ZkJyfn8f8/Lxf3rVrl3/f9Gy40BugaT/jLnruJ9jplIyhydFoCNWzY5jjTPRm6xtJBcy/6icXpQY+aMcXlHZgSUzS7rYZJGnC4tGtHixnQ5EA6arpeDbJfJO8ok6u/Bw3ty6ERRKDo+IA1pwagnSoYEAtcMdFCvtzris/GRtdOf+fBIYaRgpbeEEbgAXuVEMDIUIQUABHyUytdZMrMWgLnMJu7/ySmu6NFn7JNF8yNbnKsoj6jRKbVD1lz40ygGuYrHoK6FfWD+vKz4XiAVa42TVtpxZYa8wiA7sMFZw4gHtTrOT6q2BSVsG86tNcZAyAPLiJ+x0908yYdVfLXMD1mLZMDSR37NjhgY3Lhg0bsGPHjsbtzjzzTLz3ve/F5s2b8fTTT+PDH/4w3vGOd+Dhhx/GzMwMduzYgV6vh9e+9rXRdgcccEDjfq+99lpcc8012c/aOIhNi3FtZNQ+JnVar1WdQODojgmWDC1KXf/heF+NtNO4VJBSQag+TFnY9I+ygB4Mo2onOVYqE5BMGynbvMeSmVbX1XykKChQJ+RCUmTrqPJzbVlkGqxDvkYPhMw32QSQ9OevB0UQM9OeLdsNaGl86LCQDpQZQBoC+wQouclVG+m+ozW3DipbfYdSQSgNJM2X9I2YpXKpNHEVnjRfUvYKyMEQWuXZpFAmlCPsVzBKQkPb6kquyATVaksDdsh/yQGSqjLZXNo6i5S+GEU9ZYX0zQbtJG2yqCMKAaahYvD2ojX+pSxytc0Fy8UyJwbJq6++uhFwSB566CEA8MWQuRhjsutJzj33XP/+iCOOwLHHHovNmzfjrrvuwrvf/e7G7Ubt98orr8Rll13ml3ft2oWDDjpo5Hfw+201qi5tn6IWYlJY8zpxFql64TNjQTK6C6KIRwUz/6qfYITWFiwr7dNB7G501E/S60DmMBkzSUEmPipW7gASjlHSn6CqOr67R5LykZSfa8siCXTmeYAMi2a1YGXNrFEhcxbRqoeDCBxNQzI9MUtZ9KBhGSUKCaHhA3aEFN4HahPzY/aYmlzpe2oD/97ABes4c6stNCCi/pJGKu+XNFLZ8zu0lgKeL2nBsYDoD+yDDRUQd1WTvLlVa+uPdMsAICrhC+ErpXy/UV4Af1S/UQ6YxCJ9r1HGIsnHLXtFYJWuSEWTqdVGR4eatZDK+2oD047B0H8uYxBtwyDbykqcnxYjE4PkxRdfjPPOO2/kmIMPPhjf/va38fzzz9c++/GPf4wDDjig9fE2bdqEzZs346mnngIAbNy4Ef1+Hy+++GLEJl944QWcdNJJ2X3MzMxgZmam9TG5LPTCLdTn1+k0WicazxklAJceYvznHii5r4Ymk/lXLfMYDjxYyl4VyoA5FpnrBAIEkPTgKBlIlq4OKzFKxyLlzLpa4XLPIln5ubYsUjt2NnQRo6kvkiJGtTZRoQBveq3yAEngmKs4w41zetj3QCm0sR3utQls0gX2WJDOmVnD36Ay0AUBpfHfrZAsDQT2QdjnS8oi5Euyayukgil7EEPbpFuVA5/mo3ol9GAI1SvAm3LLUvlXksjU6pimrkJAUhogKBImyRlk2lJNRmAZGKO3TLhyhsQiVVmE6kxRMXdnvXBM2vplCw+K9BCRA8hRaR+5390kshLnp8XIxCC5fv16rF+/fuy4E088ETt37sSDDz6I4447DgDwjW98Azt37mwEs5z89Kc/xQ9/+ENs2rQJAHDMMcegLEvcc889OOeccwAAzz33HB5//HF87GMfm+i7tLFpt70gWR9acpw2N8FS3iR7qk4cKL251fkmudNfAAEkVTKRDvsBOFklE0HvAdt1gUnw/VCaQQBJUZS2fZErFhCq67hAHZbmEedEtmeRoeg3vKk1Tq+o+yLzLDKwvtTEqkcwSQ0bKUxsMrBOAS2NZ5P0R1eUm1wJ2DlIEijm/JJVk1+S+SQhZBzhmjG5qrKA7jvTej8E8qietSCoXh0wCChFpa051jXmriXgAj7Vg/cclaX0oMl7jlJ7NWtyLQIQkl+7LDyLVA4sPSiyQDB//xalZZEMFOnBoRaYo4pssE7bYJmVNhcsh0zNJ3n44YfjjDPOwNatW/HpT38agE0BOeuss6KgncMOOwzXXnst3vWud+FnP/sZrr76arznPe/Bpk2b8P3vfx//6l/9K6xfvx7vete7AABzc3O46KKLcPnll2P//ffHfvvthw996EM48sgjfbRrW8md+GldEJO8jhvHpdMpP04Aoa2WMtEPjD6XSnlfZN2fY4NQ4nJfASSRAEUaTSjcvkRZer+YZ5FljwFmCMyJzKwsWKeJRfL1vEYrB53+UMfAw/yBJnmvmZkVALh5Vbcwt3KgpHOitfFsEoA/Bmez3OQKIAJJgPWQ9GBpQhrICL9kVMe16AHlwDflNkMe5Tp0ZteBBR/Wv5FMq7ZLB5lb6RZw7FEZD5Y5iSsyBaBUPQLjGCB9Ufwy9B21NX7LYCJ2AOrvpaJnC1JwFknssiiCnzEJbKL7rskPyX/Lq3EumLZMNU/ytttuwyWXXOIjUc8++2x88pOfjMZs374dO3fuBGBt/o899hj+43/8j3jppZewadMmvP3tb8cdd9yBffbZx2/ziU98AkVR4JxzzsErr7yCd77znbj55psXlCOZRmpNw7ww6sZKo8bC83en0zid7IK0bMxoCFPUx4gh5Azck7UDR8YqIVXUo48A01CHhVQfAka/H8XMrQ4sPYO0PSJBfkhWei5K+WAs0gKDgUEwRXoTK4sIDcCokZovU3CiTh6B4bnzzVhkdB08UMb5j94UC2t6JTbJUxWi9lDELBkox0Cpk+LtzD+pyRcZ+yUNRAwAQlqGLvqxpSCJcpVlAdkfQpalz4XlObGpuVW7FBBijxwsc8IbcnOTq22lJvMA2WM1f0vWNYbYpJKhYlNRWlO+80VSkBiBpaHzIAv7sKIKd16CmZWsFj7Kla537vtgdcwFyyFTBcn99tsPt95668gxvIjyunXr8Bd/8Rdj9zs7O4sbbrgBN9xww6J1zE68Y6Rpwp5kH7mLnd50nU7jdUr9kwKwOZSFe++j/IRngtZkp2ogGZldqzyTAjO5cnMrTVY8gAe9GQeI7kmemVl9sA5jiwaMObpOH+Sj045JameKTM2r/C81tRoGmHw5xyJzAEnLaSWYYHbV3uQqIWqF0UlSFsnXE5D779fgl6zlSzIfJYFiZAovepC9gS0m0CsgtYYcDKCdaZNAUqWBWq45ppC2xygHy5zw4J1cU27OJnlerfRgWUZFKQg8fdCXewCLgsEcYNo0D3pgUJFJ1T4cFhFAtvntrZa5YDlkTddu5cJPfJunnPRpKn0/SnLb5o7b6TReJ/9jkwVMkXxeAGLo9PC+l1k7sbqgHShlm9a64BWhJWwbkDAZ8lxBABFj8e/9k72qAST5IY3kZlc7kWnHIo0JNVoJELS2vkcCUs3ZFgPFcaZWIH4Yjdlk/WGAA6SpKvB2U5xNKuafTPedM/cCdaDk+ZLh+8E/HAAj8iUdexJiAAhnfhwOvMkVw7732alyYNljwiZ9EE9ZAKyRmlACVZ+AUXiwzDXkBhCVupu472hZIK3aJF3nGG5m9alF3vxaelO+v7cYo/SsUcbm1XGymuaC5ZA1D5KLuXCjTAJttmu66TqdJtfJCFkHSmKRlTU3CQBgKQPQVWCSBJbeH0npIMHsGnySDhhVMOFy5hJNXCoO2omCdRz4BQZpfM3SQaWj4B0ytQ6qAIxAxrfHWKM/Xwy4gum1XjSgZnZ1bJqAMmWTtYcHfryM54MS8DmLjD5neocHA9dTEib0mDTwfknBozZd4nxg+T2IYgAMB9Zsydgk+SQBJOk+Q/edXdARC9ghE6ws4X2T5IsEUANHYo8U6Sq5D5IYY2lLGKrSNucm8OQ+bRsxXTKADO8NA0huoeDL/nPseXPBcsiaBsm2Jzw3LnfDTXoBF3rDdDo1HCsFSgpMENJGs6LnJtMhIASkMXWwZB3eTVX3S2YjXIk9UgBFw8Tl3zu9tAFjUaxFlAOI0Iw4fA5wYNSNJkyg3uqqSZaiwTAF76Q9pFIdSMdchCsN5SBPwTu1Oq5JxKa9hoV7SLHpHxj2fQAPhgNvXlXEIt1D3PRPjgAAMLlJREFUQMwhAam0a8Ita824cyzSbsOr6YSm3NR3lPIfm/qO1gDSs8bSd4zx7dV8zm0ZPYhBFT4obKEAyWW1zAXTljUNkk0nPHUQN41LL/pSXMBOp8XpRP4pU8BOkuj5Br2mGjrmYau1GD20XUSGwxgkqYFtA3gEfyYDSRVC8FOAjMysTr8ci6SAHQOnhjbMZxnyCDkw8lcgNqUCiIJ2mkRKhWoEUIqGgLiURaYtobSxPsqU2TYxSbtNYJw8eAcI95g2cKZyW7+VA6ZghQUwdJGuDjhlLzTjVixoB6g34wYAUWnwZtxaGshMCzXAgqQ9V5LlSNYrM+X6jnLzawSQvjB+z79HUUY5t20Bks7fYmUlzgXTljUNkk2ymCebhZgDJjE3tJE1rxNnlNWQRbpKQA+9+RVC2iIEQgJGW2bpTK5RdCuxSypLx1JBbBkw4cHPRxSmE5X3XzqAjHxxxB4pBzKYWnmEKvnsgDxAVp59TT718Pqsfl0tYT4U1ZYJQMoEIAFAjqisRZLmhvr1DcE79lyFKFd66IFPlHcl6ob9EPAy6FtmqSvIsvL+yJRBRt+V6voOhhCVjeclEytnkwEcnSmWlZZLyxYG/2PJTK09zy69D5K3VlsigPTfC3vOXLBc0oHkCJnGzZQbO01zw5rVSchQBB0A5dN5FkmsUg89WBqj4fIXIImBZaJcCRjpOCENQdZD8HmOmmOSNvePWJHxfrYAlsF3mPPjjQLIxvOYATFeECBeL2vRrVFHCgaQOZ9k1DNRCv+XSk7nUDAh/oyCd+jcWcuuKz9HBRp0ZR+CXNQnhgOg6MGUA1ckwv5xFikbCtlXgyGM1B4sqRG30brmbiVQBBDVX+XgaE2tZS1AxzLJMlRoIlCkZWZizQEkL5BvO8uw+zDVE2tzLlisdCC5QGmyubeVaVzkTqf6tkI5cytFuYK9SglUAsIYC5ZGu/J2rIpPLjAF8Ey0lpxNlU6i6MIQgh/8kCyKFbGpFeBVZ7gvMg+Qo0QK4bs9Ckl9IIXPe/TMEPDj0txH+O1tQIykajYyFI8XUkAKkQXjhUpIfxE+eMc+SIjoGtT+igIYuko0g75lkz7Np/JmV8CZWX1XGOXNrcLV8jXa1b8d0x2GQDJikgwchWRMkrdVS7rGRFGsM+sisGwCSOpDaqgZeYOs5blgMbKmQXKhP+dJzQOjxi/Wkd3p1EKc6VVoGfkloYeeVUI4sHQg6cvcmfqkmOuw4CMsVfA7pmZWA+ps4fw2jD0SO7IRnnb3PEZkHCYqKaCka8/kWK6UAhrGrtPx3S6lsLohmFilVKh/2yB1H6SqrQMA4cCyCTDVBEDKK++QEHD6Lhjc5CoLCD20TFJroBx4BonKRfDqCirTVY1EKml7bbrOMDaaVWcB0p6HtFkysUgVgaNv00XmVQ6IrCg+Z5CUTmQkM6kWiblVFgEwsYJ+d4vYbhKdpi1rGiQXeqIn3W7cxV4KM0KnU/M+BVCbQCgdxJtb9dBOgkZAGAeCSV3YoFAAyairAi8LlvqHhAz+NBMCVDhQkpAvki9PKlIK6MqZPquwzkgDYZwfLfGxGl2NBErpmWPMIiWBswy+SV+BhgGmEiICyBxY8lzJNJCUKu/YBwxefcea0qMoV1VZS0FRhtQeX5vXXldZprV5pe8GIwZDD5YEjqbKsEhW9D70fJQJWAZwtKDJm3L3Iv9jVPOXShoql+qhytj/SMuLDNBZrXPBcsmaBsmcTPspJXfDjTtep1P82mYbLlmgZEwSeujATVuwBFxopZvoCTRpfxSQQuAIBJ8k90sycyxN7pYxGg+KZGr1jDIBxCaAbGJj5P/TFQGUZZJSChgjvMlVS2KakgGe9VHWDa3wn9NrML2KyNRKx6LT08QmiwnNsjwNxudOGoTWWbKw11Eq9+VUYJPDAXy1Gs1yYQFIvApqwk1mVt0P5lYZgWTeP22/K2vqzN9Hka0leEUmUZT1IgEMPG2d1sK3VkPRqwfskFl/iWRPmQuWUtY0SOZ+pouh+HzMqAm77T46nZZWJw+ULldSADCuByWZWI2LdBUimFw9aJLwXnxA7JckgJShlROxSF+bFSznzyDL3FI2mRMysfI/OPbozZ2V9UsaZ3IlNim1XScBoChhdFy0PA3oqQMkZ5CBRRJzlIKBpVsX6cm+wyihNJBU6DzGJm/XiNkBpk0HidmkKHr2Pf9uwwEAa2atHEBSsI6ptG/APYpJcmD0nUcYc/S5tE0t1XjDbu5/bGCQ4/yPOdlT54Jpy5oGyUns8JPuL2fHb7oJ2pgzOp0WrxM3s4ICeog5kpmVwDL1S6qUTdb9kqn51aeDMJ140jwniRS0wyNb20oElEJAO7CSUkApG6kqTGCTqpCohrbEWmVbJ7v/ASC5CTaNZk0BUqmYRXrgFCGyVWbAkZb5+lFpIzzC1Z5LeL+k0c7kKiWg3bk3OrBJKlwPWLDk+4U1JZtBHzyy1ShXCB3w0a2p5KJapWeQKgZHep8AogdOZ17N+h8bAnQmMT3uaXPBcsmaBskmabLDL9aJne6X3rfZR6fT0ujEl7n5FZqAMQZLwLLNrBA4uve14B3GIslEaPfHQbP5u0gpoLQFPiksTmfZI+L1lYnNq6oQADOiVtDODGpsLVLpWl1papwcUkC475F0sssxQKpCRixSFZxl2u/A9STx+o/JqQzttPmDRohy5QzSkI9ShMbYkZnVgaU/IqvlK4aDWmQrMIZFps24XTurWr9RX1KOt1MrQ3qHL0aeyX9M/I/2nCB6Xcm/u92h01LJmgfJxVD8UU86uX2lYyc1U3Q6Lb1OPuBBuPSPFCwB1AJ3IiVk7KNM0kLoB00BO1w3FxaEHHFUQmCQ+SYU/GL/JJTUKKRAxYFTC+hC2rZVUliWxUysygEmNV6WWkA7/6GgYuQj8h+DDxIRQKpCQikJWcRMNjW15gCevht/zYl2V47OqTYi+CVdLqpQtraftwYwfyQ9EMFdF6EUMLBnWujQFYaab0tfv3ZE0E5aw5feFz37cJEUv29kjyMKBPjoVSFrejTJSv7dLbVO05Q1D5KTPtUs9fZcFvKU1Om08H36H6IzzRk9tMRQw064NMkKBZFBshQc007wBmmgSUiUH8kgRTw1WBYpILVjf1KgYEDTKySG2vj3toKNBa1YbOWYCq6bhbDHsHVXw3fSMq8cmUIJHL1plQEkX08NiEslvW6x7tIDpBwBkLbqTsj39CycBtC514FBejYpC6DQELqygS/gDFJZBgl49myGfQuWSWlCkaZ/ZKovEUiKogy9RpvA0RcoH8EeebAOPXyNkNX2u1vo9sstax4kSSY1A4zadiH7ym3T6bR8OtGEaowOrBLSRY5oCnTN7MBNXAlA+qCeCfXhDFIJC5CABRFrdo2ZWK9QHkQIIHsOHPvZI9jvRSZW+xVCKyutXU/IDIoTk+TgSO89YywsOKrC+i2VA0YO6HyZANN+R34eRp8nXs81CtpJAniM0RCygCjD9/FAOejb91LaGq+uiAI13rYHirvCuBPAzklDE27HJKM+o0mnGONSO1K2mGOPi/HBreTf3WJ1Wg7pQBKLu9jIbDupmSK3TafT8upEk61w0a2eRSrpzbBZoRSQ1D8JNpGzlI+cEHGkH72igBcj/HtlLIiUSlgToxSYYaDYVIknB5RSGlRDAyNsegj1e7T+SAYmbF8879HugwXrCAFZOJ0dQFqzq4QSFhg5i0yB0v453UQMlkAc2BMFOzmWbgQ8QPo/FQASRoei57QtyNyuQopI0ngbQHPzbaDegJvadBF7JN9kwV5zXWKKXn6ZAB977u9uKXWalqx5kBx1ERb6tNPGZj/JcTudlk8nO9hNtLxEHYFlqiuPcuWv7ngcs0YdXzgNydSqBDBACN7RwppTtbGsspcAZK8wEYvkwoFSSIFqqCGEQVVpCC1ghLEdLoCoQXKuJySvpEO5kaoIJldilbKQKFUARw6UxIB5RC4xZABhWUSkzUtafMGfdzK5EoNUBWCM9VO6818DSqks2A36gEuDEWRm1bp5hiTFUoDMmFlHtVCLOsRQageLil4rv7vF6jRNWdMgOe6km5bjmrZLt+XvF3IDdjotn04CiAAPgM+hjBWpg2QKjqNKvUW7It+jhGeRWhiULmK1NBKVrjybTM2ro+q59mEBTg81hBDQlQ4s0uVkGg1ABQbJU1GCPzL4JaO8SMcipRQRQHJwnPHLKlrmpuRcIfQmCcXhBRTATK7GP+gYqWzxekEdQ3QAShfVarQLuNEVa7xdNlsPaFuK/FVxsI73TZY9nzPLa/k2du5QvchMvxZ/dwvRadqypkFy9JN9/eJ4Ew3a3cTpMdpc5E6nlaGTH89ZZeMB6yxynEgBm/MnXNSrCMzTgqM1rdp0DqA0Nj2jVDaySCsBQKIqwreodP74SgqooUB/qFE5Jiml6/NYaeuHdOBo22wJ75uMdGYmV+6fJHCkSFduYqW/mQxgEosslUtxEcy87NnkeNA0dO69T1IHNikljFGBSQJ2fWmLChjAB+oYLV0x9NB4O3/xyMyaRLOSf9L1tDRC5sExqutb1Nhj9L0aZE/93S1Ep2nLmgbJnNBFbHqyWcwF5DdLp9PK14n/wMcCIGMATYSO9iWF8OXmhHCgA1tTVcA4RmUgjY0M1aaCFiIApGOVgEYVlcwroKSGklUUFNMf2kmf3lfu+BwsAVjfKQvgSSVXl5X7JtMo1hQgyczKPycgLJX0/khrZg3gKEDm6FgMLEtXYNdKSsDEbNICVLgXBJnQhYBUyvcQ9SZWILDJnGRA0rdPo3ZoFDjk2qSNA0f6PuNkLfzulkKnpZQOJBPJXYxxFyh6Sp1w351OK1snbvaxb9qzxZxIYQt3C8AH7AA21d8IWzDAwJpTtYAzt1JeCrzZlaJUx/2CoyIDLk2k0iYCSw+SekKQlIH1pdGrBJCF5KxSxaCZsMhSycgfSe/98Ru+o2XfAI9s9WwS7tpVQwucsnCpPi6gx2jYDjAqlKtrAZBUs5XX6OX1e3PgCCFrfkdgsvt9rfzuFqvTUkoHkhmZ1Nmcmhaanqia9tvmhul02r06tZGmsRKAZjsjcOQmV43AJqUIZlUgvFZGo/S5KDFQcrNkAMYK/aH2rHLIQJJe6Q9wfS6ZHzIFSs7u4qIGaVpK6oOs+yF7SqJUdRbJTa2+RK4IEa9N1te42HnMJo2wJeMMYPNBKdWH9w9lDbdpWqTcWMMPSsDG03w4OLqG2+CgmQvUabhfut9de52WSzqQzEjbiTF3gdNtx11ssM87nVaHTjkd2hxXCuGDYei9EHZ/Eoh8k8YgMruSXxJRe+QUSJU3qYaEfY1Kaw+KBJa9Qlo2yQEySSNJA4FqFXIaQJKzR25iTQGylDFQKiFQcnbqgHhULI/xVDERYpO8Eg/qdXojsPQ7ZYXt2f78x0m6Sa5eb+SHFHIi9rgS7vE9QaelkjUNkpOe5NxFa/NkNYlJYVL20um0/DqNA8za/oSANMazSSkI2gSoJmkFY9MoaBqRNJ3UQVEJCVUZDISBrADJX0XwQwYzq6yBZaUNZlylnhyjHCU5kCxkjk1mIlsTgCylROFMrgSYlPohRfBEku8WqOdRGmNghC1VRw21BbQDMYPQRquw3V2qIQyokpIDSwAjg7OAAJQJMPpqOE3gSGwSq+ceXw06TaLHYmRNg+S4p5S2F3fcvsdtx4/V6bS6dMqNkcKa/wR7Hz6zDJKAUphgdoU0qLQ1u6oMUBKADCqDHJtU0kAJA6WtObQyqXlVolcY9IdVBIwcIIdjgJIAssgAZVxTVtR8kuSDTAGylGRytSyylNKzSMu0Azi2qj1D4KVh2STiCkg2f9LV6RVAU99Qf315+UGgDow5PyQHTL6vcapj5d3jK1Wn5ZI1DZLTljbmguV8IuLHHPd5p9PidKoBJQKblAhACQ9isI5LaQAdGCYBpZIKgyqYVqVUkEJDarsfqQ2GlfGsspTAQGuUUmKgdWRe9fVd/Z+eiEkC9VZXBIypyVVJgZ4DwGBarQMkf+Us0vsq21w0AJSuw9mkQai8E5lYfcHaMX1Dab+om1ojVjkCHPfEe3washJ16kDSyTg7+UIkNR2MO0bO99XptDp1AhYGlMIxSmOIgtpuG5Uxjm0ZSE1sUlrmKABVGVTSYKCNZ5GyArTzZQ4qg56SqIzxYFlp45ijagTJioGGYqCR80/WTK4OHJUESimdSVV6v2MOIAlAOYv0aTIC3odLr1x4lKu9ANITbhsa1VAcgkcsp2icq6jEgZF8kQ3g6I9Fu8Oec4+vBJ2WQzqQdNJm0msj9MMdd7Hb6NDptHp1IiH/mTYBKG1en/VB2jge+6ExgPOs2f05l1plbPBOZQyEY5VKaA+MUgtIoaGNicCylAIDbZs4l9J2HiF2qY2NZB0VsEMAmkqRAcjovU/toEhV+MCcgthkFijjYB3lAFYimFpHBfHQdfDXUUiLbSlQ8uIQExSJyAIjZ5Tp5kwnWt6T7vGVoNNyyJoHyfQCoWG57QVr2s+4i84/63Ta83QiVqmE/YyzSgXrhzTCMUlt30MLCOEAUhtXdMABLCyrJGAkQCylsUBogEFlXytjTbGVMSjdvrRbr40BtUqkyFtKAxnnlwRC6gkxRg6MFuxEBI4BMB279EAZp4PQWImYRdKxRqaE8EhUWvStwICo/VlD3mvND5kDRre+6b5Ya/f47tBpOWTNg+S4i0gXaSlNCeM+63Rq99lq04mzSiXsRCxMzCoFZ5XSwmFl53RUGraDh3ENjwVgXF4lZ5FkXi2lcIwRGEgdgLEGksbrBQSQ5LVb4++RA8kAnhwoKZ0jpHYEcAzv4U2sHCCVM7NaNmnXkak11WOUpIwyrB+xETPZmsTUOgoY28qeeo8Du0enacqaB8lxstAL0fYpaiEmhU6ndrISdQLiFAaBOlhKAwduMVjSPC80YIyNgK1sNy9UWqBUlv1Zk2oAwRQwtSsaQEAJwAMngLigwIRAGYoBhJZfti+miJYJHIk9Evg1AaTPJxUBLP05zIElZ4gUyONXyXzxcuZzTVufpex0Ellr9/hK1Gkx0oHkGFnohRtnKuDjOp3Wrk7ebIhmsPRs0oGlEra0nTGAi91062yeZCFttuWg0tbEygAzBkm7DIR1QL32bJUBSl7hh76DB8sGYAzLoeRc4QJ0CFSFM7FS4A4BJG3PWSSNTYWunz2xDeCm8mbWUcC4Gu6nTqellzUNkm2MNW0vSG4creM2/HE3wVLeJJ1Oq0enADS2PqsCHNNDxCapl6IF0JAPqQ2gjGWaxhBgSlvFB3B+SAeOGlmQBPKm1iqjtEp+PMQsCRRpTA4YlRSeOVpWGAJ0BDFFB5BKBgYZxrcUHr2aRrHmxvJXJ5OYGUeN6+7x6ek0bVnTIJk78dO6ICZ5HTeOS6dT8zgue4pOBEAEDgSMBIDa2Bqv9F458CRATQFTG6CQtu9iCpoAPHDSe6BuZk2BchRIAvCgSJ/lgDGAYR0cOSCmAMlZJG3XKJMApJN0ol5q6e7xdtJWp2lL6xzdhciLL76ILVu2YG5uDnNzc9iyZQteeumlkdvYSLb63x/+4R/6Maecckrt8/POO29BOgrEP4aFmhdGSdONlW7L13U6dTqRb66UNu2idLmIpRToKYFC2lJufp1bb/8kex9/VkqBmcKWipspJNYVCnv13F+Z/9unp7BXKf3fTCGjz2fd8kwhsVdPYbZQ6Ck7rnS68u+gJHynD+WXKQUk91keINNzlj+h9QIA0V/DddrT7qc9UaflkKkyyfPPPx/PPvss7r77bgDA+973PmzZsgVf/vKXG7d57rnnouU///M/x0UXXYT3vOc90fqtW7fiIx/5iF9et27dgnTkT41tLzYf2/S+zXFzNvlOp06n3HtujtXG5lGSqZUYJTfHApZBGno1AhrGM0tipkA8vvCPzSLbF5MTzFy8TPCxCr/s/YgIwJayRr8OMXOk8xD5IxEzSP5Q4fVk65sk/Xpr6X7aU3RaDpkaSD755JO4++678cADD+D4448HANx444048cQTsX37dhx66KHZ7TZu3Bgt/9mf/Rne/va345d+6Zei9XvttVdt7GKEn/hxF4L/AHM30TjJbZs7bqdTp1NOOGBKl8dgTakmMskCgoFkHTQBeOAEKGDH7sd+NkLnEWAp/focUAq/TSMICg58dXDk5yAHkDVdSZ9kGWz9Wr6fVrNOyyFTA8n7778fc3NzHiAB4IQTTsDc3By2bdvWCJJcnn/+edx111245ZZbap/ddtttuPXWW3HAAQfgzDPPxFVXXYV99tknu5/5+XnMz8/75V27dvn3i7lwuXFtnnSanqJG/Zg7nTqdckK+Qc4wAfsegGeadh0HybCOju3fswRCPUb7JrDkYAjUA25SUASagdHuZ+HgmC6vlGvX6bR4nZZDpgaSO3bswIYNG2rrN2zYgB07drTaxy233IJ99tkH7373u6P1F1xwAd74xjdi48aNePzxx3HllVfiW9/6Fu65557sfq699lpcc801tfVtT3hunMmsn/QCLvSG6XTqdMoJBwwPnmOA05pVjdchACXXojlfMsc2gj51oBw7hvaTgCLfLgXGPeHadTotXKdpy8QgefXVV2cBh8tDDz0EAMgl+Rpj8sm/GfnMZz6DCy64ALOzs9H6rVu3+vdHHHEEDjnkEBx77LF45JFHcPTRR9f2c+WVV+Kyyy7zy7t27cJBBx3UeMLpwtFr07j0oi/FBex06nRaSp3GASdpaNmlqfkp+RguHFhzkmOFQD5SkM8HuRSPHFtcC9eu02llyMQgefHFF4+NJD344IPx7W9/G88//3ztsx//+Mc44IADxh7n61//OrZv34477rhj7Nijjz4aZVniqaeeyoLkzMwMZmZmxu6HZDFPNgsxB0xibmgjnU7tZK3qVKv4g2CuHaVLehQC1sYRmeo4o2Rc8fJRuq2Va5c7ziRj9ySdlksmBsn169dj/fr1Y8edeOKJ2LlzJx588EEcd9xxAIBvfOMb2LlzJ0466aSx299000045phj8Ja3vGXs2O985zsYDAbYtGnT+C8wgUzjZsqNnaa5odNp8uNMMnZP0qkNSPHj5ICVyySgtxjprt3kx5lk7GrXabEytTzJww8/HGeccQa2bt2KBx54AA888AC2bt2Ks846KwraOeyww3DnnXdG2+7atQtf+MIX8M//+T+v7fd73/sePvKRj+Cb3/wmvv/97+MrX/kK3vve9+Koo47CW9/61ml9nZrkfv/TvJnaSKdTO+l0aidtdJKi+W8aslrP0yjpdGonu8s0O9ViArfddhuOPPJInHbaaTjttNPwK7/yK/jc5z4Xjdm+fTt27twZrbv99tthjMFv/MZv1PbZ6/Xwl3/5lzj99NNx6KGH4pJLLsFpp52Gr371q1Cq3vtulCz0dzypeWDUcdLPOp3afdbp1O6zTqd2n3U6tftsJeo0bRFmlFNhD5Vdu3Zhbm4OO3bswL777rvb9Eid3StBOp3aSadTO+l0aiedTu2E67Rz1y5s3LgRO3funOo8PlUmuRpl2k8pfP9t7eudTvFrm22mIZ1O7aTTqZ10OrWThei0lLKmQXISG3mbG0E0vG+z/1HbdTq1O06nU7vjdDq1O06nU7vj7G6dpi1rGiTbXty2T0qm4b1IXkcdr9Op06nTqdOp06m9TtOWNQ2STUI2b76crkNmedL9Cra+06nTqdOp06nTael0WipZ8yC5GIqfuwlG7Usk+53UTNHp1OnU6dTp1Om0vLLmQXKSk54bu9jtuSzkKanTaeH77HRqt89Op3b77HRqt8+l1Gk5ZM2DJMlibNyLNSnQNukN0emU30enU7t9dDq120enU7t9rESdlkM6kET+BphE0m0nNVPktul0arePTqd2++h0arePTqd2+1iJOk1L1jxIjrrYC33aaWOzH7WvTqdOp06nTqdOp/Y6TVPWNEiOexrizuNJpOnCioYxnU6dTp1OnU6dTgvTadqypkFy1EnPXRzj1ovMmDbHaHORO506nTqdOp06ndrrNG1Z0yCZE7qITU82BvENMOm+F2Iy6HTqdOp06nTqdNo90oFkIrmLOO7Ctn1K4jfLJNLp1E46ndpJp1M76XRqJytRp6WUDiQz0vbJJX2CMqhv22Rfz40ZddxOp06nTqdOp06nyY63FNKBZEbaPrnkLnC6LS2LMftt80TV6dTp1OnU6dTp1E6npZI1DZKTnuTc+KaLmD4NjbrYhv11OnU6dTp1OnU6tdNpOWRNg+SkTymTXBTT8H7csTqd2h2r06ndsTqd2h2r06ndsVaiTtOWNQ2S05ZxFzK1zy+HdDq1k06ndtLp1E46ndrJStSpA0kn4+zkCxFuW29zjFEO7E6nTqdOp06nTqfllw4knYy7IdqKSLYl2/o4G3tOh06nTqdOp06nTqfdK2seJNMLRLLQGyB1KBv2Omof6U3S6dTp1OnU6dTp1E6nacqaB8n0AqUi2LilOFabzzqd2n3W6dTus06ndp91OrX7bCXqNE1Z8yA5ThZ6Ido+5SzkaajTqZ10OrWTTqd20unUTlaiTouRDiTHyEIv3DhTAR83qXQ6LexYbcd1OrUb1+nUblynU7tx09RpMbKmQXIpL0huHK3jNvxxx+x06nTqdOp06nRqr9O0ZU2DZO4iTeuCmOR13DgunU7N47h0OjWP49Lp1DyOS6dT8zguu1unacuaBkmgHqk1DfPCqBsrjRrrdOp06nTqdOp0aqfTcsiaB0mK1JrkxKc3jsmsb3Ncvi0QPzl1OnU6dTp1OnU6jdZpOaRY5uOtWOEnftyF4DdI7iYaJ7ltc8ftdOp06nTqdOp0atZpOWTNM8nUdAC0vxC5cW2ejJqexPjTVadTp1OnU6dTp9NonZZD1jRI0tPPuAucuzC5CzapKaDphul06nTqdOp06nRqp9O0ZU2DZNMJF8lr07j0oi/FBex06nTqdOp06nRaObKmQbJJFvNksxBzQFtzQ1vpdGonnU7tpNOpnXQ6tZPl0mmppAPJETLpU84kpoOFPk11OrWTTqd20unUTjqd2slK1Gmx0oHkAqXJ5t5WpnGRO53aSadTO+l0aiedTu1kJerURqYKkn/wB3+Ak046CXvttRde85rXtNrGGIOrr74aBx54INatW4dTTjkF3/nOd6Ix8/Pz+J3f+R2sX78ee++9N84++2w8++yzE+u3UMo+qbN51HFyjuyFSKdT+2N0OrU7RqdTu2N0OrU7xrR0mrZMFST7/T7e+9734rd/+7dbb/Oxj30MH//4x/HJT34SDz30EDZu3Ihf/dVfxcsvv+zHXHrppbjzzjtx++2343/+z/+Jn/3sZzjrrLNQVdVE+i30yWTS7UY5u5fKkd3ptLhjTDq+06nd+E6nduM7ndqNz+k0bRHGmKmz2JtvvhmXXnopXnrppZHjjDE48MADcemll+L3fu/3AFjWeMABB+D666/H+9//fuzcuROve93r8LnPfQ7nnnsuAOBHP/oRDjroIHzlK1/B6aefPlafXbt2YW5uDjt27MC+++4bfTbpE8+kspD9dzpNb5tp77/TaXrbTHv/nU7T22Yp9r9r1y5s3LgRO3furM3jSykrquLO008/jR07duC0007z62ZmZnDyySdj27ZteP/734+HH34Yg8EgGnPggQfiiCOOwLZt27IgOT8/j/n5eb+8c+dOAMDPGDsdJ21uBD5moTfOpI7sTqdOp06nTqe1qBNZF6fN81YUSO7YsQMAcMABB0TrDzjgAPzgBz/wY3q9Hl772tfWxtD2qVx77bW45pprauv/ziGHLIXanXTSSSed7Cb56U9/irm5uantf2KQvPrqq7OAw+Whhx7Cscceu2ClhIgtzsaY2rpURo258sorcdlll/nll156CZs3b8Yzzzwz1ZM7Ddm1axcOOugg/PCHP5yqiWGppdN7eaXTe/llteq+WvXeuXMn3vCGN2C//fab6nEmBsmLL74Y55133sgxBx988IKU2bhxIwDLFjdt2uTXv/DCC55dbty4Ef1+Hy+++GLEJl944QWcdNJJ2f3OzMxgZmamtn5ubm5V3RRc9t1331Wpe6f38kqn9/LLatV9teot5XQzGScGyfXr12P9+vXT0AVvfOMbsXHjRtxzzz046qijANgI2a997Wu4/vrrAQDHHHMMyrLEPffcg3POOQcA8Nxzz+Hxxx/Hxz72sano1UknnXTSydqUqfokn3nmGfzf//t/8cwzz6CqKvz1X/81AODv/J2/g1/4hV8AABx22GG49tpr8a53vQtCCFx66aX46Ec/ikMOOQSHHHIIPvrRj2KvvfbC+eefD8Cyv4suugiXX3459t9/f+y333740Ic+hCOPPBKnnnrqNL9OJ5100kkna0ymCpK///u/j1tuucUvEzu89957ccoppwAAtm/f7qNNAeB3f/d38corr+Bf/It/gRdffBHHH388/vt//+/YZ599/JhPfOITKIoC55xzDl555RW8853vxM033wylVCu9ZmZmcNVVV2VNsCtdVqvund7LK53eyy+rVfdO79GyLHmSnXTSSSeddLIapavd2kknnXTSSScN0oFkJ5100kknnTRIB5KddNJJJ5100iAdSHbSSSeddNJJg3Qg2UknnXTSSScNsseC5ErvZdkkL774IrZs2YK5uTnMzc1hy5YtY7unCCGyf3/4h3/ox5xyyim1z8dVTpq23r/5m79Z0+mEE06Ixqy08z0YDPB7v/d7OPLII7H33nvjwAMPxD/7Z/8MP/rRj6Jx0zjfn/rUp/DGN74Rs7OzOOaYY/D1r3995Pivfe1rOOaYYzA7O4tf+qVfwp/8yZ/Uxnzxi1/Em970JszMzOBNb3oT7rzzzkXpuFi9v/SlL+FXf/VX8brXvQ777rsvTjzxRPzFX/xFNObmm2/O3u+vvvrqbtP7vvvuy+r03e9+Nxq30s537jcohMCb3/xmP2Y5zvf/+B//A//4H/9jHHjggRBC4L/8l/8ydptlu7/NHiq///u/bz7+8Y+byy67zMzNzbXa5rrrrjP77LOP+eIXv2gee+wxc+6555pNmzaZXbt2+TEf+MAHzC/+4i+ae+65xzzyyCPm7W9/u3nLW95ihsPhkuh9xhlnmCOOOMJs27bNbNu2zRxxxBHmrLPOGrnNc889F/195jOfMUII873vfc+POfnkk83WrVujcS+99NKS6LxQvS+88EJzxhlnRDr99Kc/jcastPP90ksvmVNPPdXccccd5rvf/a65//77zfHHH2+OOeaYaNxSn+/bb7/dlGVpbrzxRvPEE0+YD37wg2bvvfc2P/jBD7Lj//Zv/9bstdde5oMf/KB54oknzI033mjKsjT/+T//Zz9m27ZtRillPvrRj5onn3zSfPSjHzVFUZgHHnhgwXouVu8PfvCD5vrrrzcPPvig+Zu/+Rtz5ZVXmrIszSOPPOLHfPaznzX77rtv7b5fSplU73vvvdcAMNu3b4904vfpSjzfL730UqTvD3/4Q7PffvuZq666yo9ZjvP9la98xfzrf/2vzRe/+EUDwNx5550jxy/n/b3HgiTJZz/72VYgqbU2GzduNNddd51f9+qrr5q5uTnzJ3/yJ8YYe0OVZWluv/12P+b//J//Y6SU5u677160rk888YQBEF3E+++/3wAw3/3ud1vv59d+7dfMO97xjmjdySefbD74wQ8uWsecLFTvCy+80Pzar/1a4+er5Xw/+OCDBkA0ES31+T7uuOPMBz7wgWjdYYcdZq644ors+N/93d81hx12WLTu/e9/vznhhBP88jnnnGPOOOOMaMzpp59uzjvvvCXSenK9c/KmN73JXHPNNX657W96MTKp3gSSL774YuM+V8P5vvPOO40Qwnz/+9/365bjfHNpA5LLeX/vsebWSWVcL0sAY3tZLlbuv/9+zM3N4fjjj/frTjjhBMzNzbXe//PPP4+77roLF110Ue2z2267DevXr8eb3/xmfOhDH/L92Han3vfddx82bNiAv/t3/y62bt2KF154wX+2Gs43YLsRCCFqZv2lOt/9fh8PP/xwdB4A4LTTTmvU8/7776+NP/300/HNb34Tg8Fg5JilOLcL1TsVrTVefvnlWqeHn/3sZ9i8eTNe//rX46yzzsKjjz66JDovVu+jjjoKmzZtwjvf+U7ce++90Wer4XzfdNNNOPXUU7F58+Zo/TTP90JkOe/vFdVPcnfKtHpZTqrDhg0baus3bNjQev+33HIL9tlnH7z73e+O1l9wwQW+gPzjjz+OK6+8Et/61rdwzz337Da9zzzzTLz3ve/F5s2b8fTTT+PDH/4w3vGOd+Dhhx/GzMzMqjjfr776Kq644gqcf/75UQeFpTzfP/nJT1BVVfbebNJzx44d2fHD4RA/+clPsGnTpsYxS3FuF6p3Kv/u3/07/L//9/98MwPA1nu++eabceSRR2LXrl34oz/6I7z1rW/Ft771LRyyBD1iF6L3pk2b8Kd/+qc45phjMD8/j8997nN45zvfifvuuw9ve9vbADRfk5Vyvp977jn8+Z//OT7/+c9H66d9vhciy3l/ryqQXI29LIH2eueO31YHks985jO44IILMDs7G63funWrf3/EEUfgkEMOwbHHHotHHnkERx999G7R+9xzz410OvbYY7F582bcddddNZCfZL/Ldb4HgwHOO+88aK3xqU99KvpsIed7nEx6b+bGp+sXcr9PKgs9xn/6T/8JV199Nf7sz/4sepg54YQTogCvt771rTj66KNxww034N//+3+/W/Q+9NBDceihh/rlE088ET/84Q/xb//tv/UgOek+FyoLPcbNN9+M17zmNfj1X//1aP1yne9JZbnu71UFkquxl+Uken/729/G888/X/vsxz/+ce2JKCdf//rXsX37dtxxxx1jxx599NEoyxJPPfVU46S9XHqTbNq0CZs3b8ZTTz0FYGWf78FggHPOOQdPP/00/uqv/mpsH74257tJ1q9fD6VU7QmY35upbNy4MTu+KArsv//+I8dMcs2WWm+SO+64AxdddBG+8IUvjO3uI6XE3//7f9/fN4uVxejN5YQTTsCtt97ql1fy+TbG4DOf+Qy2bNmCXq83cuxSn++FyLLe3xN5MFehTBq4c/311/t18/Pz2cCdO+64w4/50Y9+tOSBJN/4xjf8ugceeKB1IMmFF15Yi7Jskscee8wAMF/72tcWrC/JYvUm+clPfmJmZmbMLbfcYoxZuee73++bX//1XzdvfvObzQsvvNDqWIs938cdd5z57d/+7Wjd4YcfPjJw5/DDD4/WfeADH6gFNpx55pnRmDPOOGPJA0km0dsYYz7/+c+b2dnZscEbJFprc+yxx5rf+q3fWoyqkSxE71Te8573mLe//e1+eaWeb2NC4NFjjz029hjTON9c0DJwZ7nu7z0WJH/wgx+YRx991FxzzTXmF37hF8yjjz5qHn30UfPyyy/7MYceeqj50pe+5Jevu+46Mzc3Z770pS+Zxx57zPzGb/xGNgXk9a9/vfnqV79qHnnkEfOOd7xjyVMSfuVXfsXcf//95v777zdHHnlkLSUh1dsYY3bu3Gn22msv8x/+w3+o7fN//+//ba655hrz0EMPmaefftrcdddd5rDDDjNHHXXUbtP75ZdfNpdffrnZtm2befrpp829995rTjzxRPOLv/iLK/p8DwYDc/bZZ5vXv/715q//+q+jkPj5+XljzHTON4X233TTTeaJJ54wl156qdl77719FOIVV1xhtmzZ4sdTiPy//Jf/0jzxxBPmpptuqoXI/6//9b+MUspcd9115sknnzTXXXfd1FIS2ur9+c9/3hRFYf74j/+4MX3m6quvNnfffbf53ve+Zx599FHzW7/1W6YoiuhhZ7n1/sQnPmHuvPNO8zd/8zfm8ccfN1dccYUBYL74xS/6MSvxfJP803/6T83xxx+f3edynO+XX37Zz9EAzMc//nHz6KOP+ojx3Xl/77EgeeGFFxoAtb97773XjwFgPvvZz/plrbW56qqrzMaNG83MzIx529veVnuyeuWVV8zFF19s9ttvP7Nu3Tpz1llnmWeeeWbJ9P7pT39qLrjgArPPPvuYffbZx1xwwQW1sPJUb2OM+fSnP23WrVuXzcV75plnzNve9jaz3377mV6vZ375l3/ZXHLJJbWcxOXU++c//7k57bTTzOte9zpTlqV5wxveYC688MLauVxp5/vpp5/O3lf83prW+f7jP/5js3nzZtPr9czRRx8dsdILL7zQnHzyydH4++67zxx11FGm1+uZgw8+OPsA9YUvfMEceuihpixLc9hhh0WT+lLJJHqffPLJ2XN74YUX+jGXXnqpecMb3mB6vZ553eteZ0477TSzbdu23ar39ddfb375l3/ZzM7Omte+9rXmH/yDf2Duuuuu2j5X2vk2xlps1q1bZ/70T/80u7/lON/EZJuu++68v7t+kp100kknnXTSIF2eZCeddNJJJ500SAeSnXTSSSeddNIgHUh20kknnXTSSYN0INlJJ5100kknDdKBZCeddNJJJ500SAeSnXTSSSeddNIgHUh20kknnXTSSYN0INlJJ5100kknDdKBZCeddNJJJ500SAeSnXTSSSeddNIgHUh20kknnXTSSYP8f8mH5XudA1pGAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwmVXX//7n3VlV3z8AMsg4QhsUgOIARBmULi4qIWxCNjP4iwSUYEo0smggKChpDjBuggvp1meCCRBGXCMKo4BJHgwu44JqgY8hMEBSGZbqfqnvP7497z617a3mWnu6enuk6r9fTtT71nH6q6nnX59xzzxVEROiss84666yzzmomt7QDnXXWWWeddTZfrYNkZ5111llnnbVYB8nOOuuss846a7EOkp111llnnXXWYh0kO+uss84666zFOkh21llnnXXWWYt1kOyss84666yzFusg2VlnnXXWWWct1kGys84666yzzlqsg+Qs2MUXXwwhRLRun332wbOe9aw5+fxHHnkEF198MW699dbattWrV0MIgV//+tdz4st8sl//+tcQQmD16tUzdswHH3wQr3rVq7DnnntibGwMj3nMY/Av//Iv0FrP2GfMtv37v/87/vIv/xKHHHII0jStXbuhXXjhhXjWs56FPffcE0IIvPjFLx76c7761a/ipS99KQ488EAsXrwYe+65J0455RR873vfa9z/+9//Pk488URst9122GGHHfDc5z4X//3f/13bb8OGDXjlK1+J/fbbDxMTE9h7773xspe9DOvWrYv242u/6bVhwwa/38aNG/GWt7wFJ5xwApYtW4btttsOhxxyCN761rdicnIyOuZvf/tbnHrqqdhvv/2wePFiLF26FIceeije8573oCiKvt/Hi170IgghGn8Xrr76arzgBS/AAQccACkl9tlnn8Zj3H777XjmM5+J5cuXY2JiAjvuuCOOOuoofOxjH6vt++IXv7jxfz/wwAMbj/3ud78bBx54IMbGxrDvvvvikksuQZ7ntf3uuecevPjFL8bOO++MRYsW4aijjsJXvvKV2n4nnHBC4+effPLJfb+nLW3JlnZgW7S/+qu/2qIn/pFHHsEll1wCwF6YoT3zmc/E2rVrsfvuu28Bz7YtK4oCT33qU/GLX/wCb37zm/GYxzwGX/rSl3D++efjf/7nf3DFFVdsaReHsuuvvx7f/va3ceihh2JsbKwVWgDwrne9C4973OPwZ3/2Z/jwhz880udcddVVuO+++3D22WdjxYoV+N3vfod3vOMdOPLII3HTTTfhyU9+st/3Zz/7GU444QQ8/vGPx7/9279hcnISb3jDG3Dsscfi9ttvxy677AIAmJqawnHHHYc//OEPuOSSS7BixQr8/Oc/xxvf+EbcdNNN+OlPf4rtt98+8uMjH/lIDQw77bSTn1+3bh0uu+wynH766TjvvPOw3Xbb4Rvf+AYuvvhirFmzBmvWrPEPEg8//DCWLFmCiy66CMuXL0ev18MNN9yAv/u7v8Ptt9+OD37wg43fxRe/+EV89rOfxZIlSxq3f/SjH8WGDRvwxCc+EcaYRjgBwP3334+99toLL3zhC7Hnnnvi4Ycfxsc//nGcfvrp+PWvf40LL7ww2n9iYgJf/epXa+uq9pa3vAUXXXQRzj//fJx00km47bbbcOGFF+Luu+/GBz7wAb/f1NQUnvKUp+D+++/H5Zdfjl133RXvfe97cfLJJ+PLX/4yjj/++Oi4++23Hz7+8Y9H63bYYYfG/23eGHU2J7b33nvTM5/5zGm9t9frUZ7nQ+//u9/9jgDQG9/4xml93rZqd911FwGgj3zkIzNyvGuuuYYA0HXXXRetf/nLX05SSvrZz342I58z26a19vOveMUrqN/PQrjv4sWL6Ywzzhj6c/7v//6vtu7BBx+k3XbbjZ7ylKdE65///OfTzjvvTA888IBf9+tf/5rSNKV/+Id/8OvWrFlDAOiDH/xg9P5PfOITBIA+85nP+HUf+chHCADddtttff186KGH6KGHHqqtf9vb3kYA6Bvf+Eb/f5SITjvtNEqShCYnJ2vb7r//ftpzzz3pne98Z+vvQvg9P/OZz6S999574GeGdsQRR9Bee+0VrTvjjDNo8eLFA99777330vj4OL385S+P1r/lLW8hIQT95Cc/8eve+973EgD61re+5dfleU4rVqygJz7xidH7jz/+eDrooING+j/mg3Xh1iHts5/9LIQQjWGEq666CkII/PCHPwTQHG5lu/766/G4xz0O4+Pj2G+//Wpq49Zbb4UQAh/96Efx6le/2ofxfvWrX+F3v/sd/vZv/xYrVqzAdttth1133RVPfvKT8Y1vfMO//9e//rV/yr7kkkt8SIPDYk3h1hNOOAEHH3wwbrvtNhx77LFYtGgR9ttvP/zzP/8zjDGRfz/5yU9w0kknYdGiRdhll13wile8Al/84hchhGgM74bG38sPf/hDPP/5z8fSpUux44474rzzzkNRFPj5z3+Ok08+Gdtvvz322Wcf/Mu//EvtGOvWrcOLXvQi7LrrrhgbG8NjH/tYvOMd76j5+b//+7847bTTsP3222Pp0qVYtWpVFFIL7bvf/S7+7M/+DDvuuCPGx8dx6KGH4t/+7d/6/i8A8B//8R8QQuDpT396tP5Zz3oWjDG4/vrrBx6jyW6//XYIIVqV6He+8x0IIXD55ZdP6/hVk3L4n4FR9q3arrvuWlu33XbbYcWKFfjtb3/r1xVFgX//93/H8573vEhp7b333njSk54Ufa9pmgIAli5dGh2X1cn4+PjIfi5evBiLFy+urX/iE58IAJGvbbbLLrtASgmlVG3bq1/9auy+++541ate1fr+zfmeAWDnnXdGkkwvUPilL30Jk5OTeMlLXhKtf8lLXgIiwmc/+1m/7vrrr8cBBxyAo446yq9LkgQvetGL8J//+Z+4++67p+XDfLIOkkPas571LOy66674yEc+Utu2evVqHHbYYXjc4x7X9xi33347zjnnHJx77rm4/vrrcfTRR+Pss8/G29/+9tq+F1xwAdatW4f3ve99+MIXvoBdd90Vv//97wEAb3zjG/HFL34RH/nIR7DffvvhhBNO8IDafffd8aUvfQkA8LKXvQxr167F2rVrcdFFF/X1bcOGDfiLv/gLvOhFL8LnP/95PP3pT8cFF1wQtW2sX78exx9/PH7+85/jqquuwtVXX40HH3wQr3zlK/seu2qnnXYa/uRP/gTXXXcdzjzzTLzrXe/Cueeei+c85zl45jOfieuvvx5PfvKT8drXvhaf+cxn/Pt+97vf4eijj8bNN9+MN7/5zfj85z+PE088Ea95zWsiHzZt2oQTTzwRN998My699FJ86lOfwrJly7Bq1aqaL7fccguOOeYY3H///Xjf+96Hz33uc3j84x+PVatWDWy77PV6kFL6H2q2sbExAPAPTaPa5Zdf7n9omuyII47AIYccUoOoMQZFUQx8zaf20gceeADf//73cdBBB/l1//Vf/4VNmzY13k+Pe9zj8Ktf/cq3DR5zzDFYuXIlLr74Ytx222146KGH8P3vfx+ve93rcNhhh+HEE0+sHeNZz3oWlFLYcccd8dznPhc//vGPh/KVw5Shr2xEhKIo8Ic//AHXXnstVq9ejVe/+tU1UH35y1/G1VdfjQ9+8IONAJ2u8bn/3e9+hyuvvBI33XQTXvva19b227RpE5YtWwalFP7oj/4Ir3zlK/3vCht/H4cccki0fvfdd8fOO+8cfV8//vGPW88TYB+qQ/uv//ov7LjjjkiSBI9+9KPx+te/Hps2bZrePz1XtqWl7NZk5513Hk1MTND999/v1915550EgN797nf7dW984xtrIau9996bhBB0++23R+uf+tSn0pIlS+jhhx8mIqJbbrmFANBxxx030J+iKCjPc3rKU55Cp556ql/fL9zKIae77rrLrzv++OMJAH3nO9+J9l2xYgU97WlP88t///d/Xwu3EBE97WlPIwB0yy239PWXv5d3vOMd0frHP/7xtdBYnue0yy670HOf+1y/7vzzz2/082/+5m9ICEE///nPiYjoqquuIgD0uc99LtrvzDPPrIVbDzzwQDr00ENr4exnPetZtPvuu0dhr6pddtlljeG3iy66iADQSSed1OfbaLaiKGjJkiV07LHH9t3vda97XS10eMYZZxCAga/jjz++9biDwq2hjRpubbK/+Iu/oCRJ6Lvf/a5f9x//8R8EgK655pra/v/0T/9EAOh///d//bqNGzfSs5/97Oh/POGEE+i+++6L3nvjjTfS61//evrCF75AX/va1+g973kP/dEf/REtXry4dl9W7Y477qCJiYnoPgvt0ksv9Z8thKDXv/71tX0efPBB2meffeiCCy7w64Zphhkm3PrXf/3X/vOzLKMrr7yyts873/lOeuc730k333wz3XzzzfT617+eFi1aRAceeCA9+OCDfr8zzzyTxsbGGj/nMY95THRdp2lKf/3Xf13b71vf+hYBoE984hN+3etf/3q68sor6atf/Sp98YtfpFe+8pWUJAkdd9xxfe+zLW0dJEewH//4xwSA3v/+9/t1f//3f09jY2PRDdkGyYMPPrh2TIYW/9AyJC+//PJGH6666io69NBDaWxsLPpROPDAA/0+04HksmXLavu+4AUviI77xCc+kQ455JDafqtXrx4Jkgwzthe+8IUkhKBNmzZF64866ihauXJl9PkrVqyoHfc73/kOAaCrrrqKiGx70Pbbb1/bj79bhuQvf/lLAkBvf/vbKc/z6HXllVcSALrzzjtb/5/f/e53tOOOO9JjH/tY+va3v01/+MMf6BOf+AQtXbqUANDJJ5/c9/toMr7G/u7v/s6ve+CBB+hd73oX/fa3v/XrPvWpTxEAeu973+vX3XXXXXTbbbcNfPVrK51LSF544YW1B0yiEpKf/OQna+9hSK5fv56IbHv905/+dNprr73o//2//0df//rX6V//9V9p//33p8MOOyx6oG2yu+66i7bbbjv6sz/7s7777LXXXvSYxzymBl629evX02233UY33XQTvfa1r6Usy+iVr3xltM8rXvEK2n///aPrfKYg+Zvf/IZuu+02+uIXv0hnnXUWSSnpbW97W9/3EBF9+tOfJgD0zne+068788wzaXx8vHH/xzzmMdGDc5qmdNZZZ9X2Y0g2PeiE9va3v732gDzfrMtuHcEOOuggPOEJT8BHPvIRvPzlL4fWGh/72MdwyimnYMcddxz4/mXLlrWuu++++6L1Tdmn73znO/HqV78aZ511Ft785jdj5513hlIKF110EX76059O87+yFmb3sY2NjUWhkPvuuw/77rtvbb/ddtttpM+qfldZlmHRokW19qMsy7Bx48bo85tS4ffYYw+/nadNPlW////7v/8DALzmNa/Ba17zmkZf77333tb/Y+edd8aXvvQlnHHGGTjyyCMB2O/xne98J172spdhzz33bH1vm/3hD38AgKgt7n//939x7rnn4rGPfSz+6I/+CEDZBsf7A8Dy5cv99n7Wr4vHXNkll1yCf/zHf8Rb3vKWWrier8XqPQEAv//97yGE8G2OH/rQh3DjjTfitttuw+GHHw4AOPbYY/Gnf/qnePSjH43LLrsMb3zjG1v92GefffCnf/qn+Pa3v924/Te/+Q2e9KQnIUkSfOUrX2m9z5ctW+avr5NOOgmPetSjcP755+OlL30pDj30UPznf/4nrrzySnzmM5/B5OSkDxdzmPT+++/HxMSED9WPasuXL8fy5csBAM94xjMA2CabM844w+coNNmpp56KxYsXR///TjvthMnJSTzyyCNYtGhRtP/vf/97rFy5Mtq37TwB9Xu9ai960Yvwmte8Bt/+9rdx6qmnDvgvt4x1kBzRXvKSl+Bv//Zv8dOf/hT//d//jfXr19cauNusKXGE11Uh1fRD9rGPfQwnnHACrrrqqmj9gw8+OKz7m2U77bSTB0tobQkxs/H569evr63/3//9XwAWWrzff/7nf9b2q/rJ+19wwQV47nOf2/iZBxxwQF+fnvCEJ+DOO+/Er3/9azz88MPYf//9fReK4447bsB/VLcm+LHf4f/OP0JhwspLX/pS/Ou//uvAzzj++OMHJlnNpl1yySW4+OKLcfHFF+N1r3tdbfujH/1oTExM4Ec/+lFt249+9CP88R//sX+guv3226GUwmGHHRbtt99++2GnnXYaqr2RiBoTZX7zm9/ghBNOABHh1ltvHeoBhI2TfH7xi1/g0EMPxZ133gkiagTBb3/7WzzqUY/Cu971LpxzzjlDf8agz3/f+96H//7v/+4LSaD+/3Nb5I9+9CMcccQRfv2GDRtw77334uCDD472bTtPAKJ9+9nmJirNps1fz+apvfCFL8T4+DhWr16N1atXY88998RJJ5001Ht/8pOf4I477ojWfeITn8D2229fu8mbTAhRe9L84Q9/iLVr10breJ+ZbhA//vjj8eMf/xh33nlntP6Tn/zkjH5Omz3lKU/BnXfeie9///vR+quvvhpCCDzpSU8CADzpSU/Cgw8+iM9//vPRfp/4xCei5QMOOAD7778/7rjjDhx++OGNr2ofuzbbZ599cNBBByFNU7zjHe/AHnvsgec///kj/4/7778/JiYm8K1vfcuv+/a3v43x8XF885vf9Ot4/tBDD/XrOHll0Ov973//yH7NlL35zW/GxRdfjAsvvLBV4SVJgmc/+9n4zGc+Ez0Arlu3Drfcckv0QLPHHntAa43bbrstOsYvfvEL3HfffQPBdtddd+E//uM/fCQg/KwTTjgBWmt89atfxd577z3S/3nLLbcAAP74j/8YAHDyySfjlltuqb122203HHnkkbjlllvw53/+5yN9xqDPl1Jiv/3267vfpz/9aTzyyCPR/3/yySf737jQODP+Oc95jl936qmn4mc/+xm+853v+HVFUeBjH/sYjjjiCB/laTN+qKt+//PKtmy0d+u0F77whbTrrrtSlmX0ute9rra9rU1yzz33pOXLl9OHP/xhuvHGG+kv/uIvCAC99a1v9ftxu9mnPvWp2nHf8IY3kBCC3vCGN9BXvvIVuvLKK2nZsmX06Ec/utZmsffee9MBBxxAN910E912222+DbKtTbKp/9IZZ5wRHffuu++mnXbaiZYvX06rV6+mG2+8kU4//XTae++9CQB97Wtf6/u98ffyu9/9rvY5Tf23qn7dc889tOeee9KyZcvoAx/4AN100030qle9ioQQ9Ld/+7d+v4cffpge85jH0NKlS+k973kP3XTTTXT22WfT8uXLa4k7X/3qV2lsbIxOOukk+sQnPkFf+9rX6Prrr6d/+qd/oj//8z/v+/8Q2QSaa665hm699Va6+uqr6YQTTqCJiQn66le/WtsXA5Jm2M466ywCQK9+9avpM5/5DO2666500UUX0fj4OK1evZre8573UJZl9LjHPW5GEh5+/etf06c+9Sn61Kc+RSeffLK//j71qU/V+hTeeuutftv4+DidcMIJfvmee+7x+11yySWklKJbb73Vr+P2p5NPPpnWrl1be4X205/+lLbbbjs67rjj6IYbbqDPfOYzdPDBB9Mee+wRfc66detohx12oD333JOuuuoq+upXv0of/OAHab/99qPFixdH7a9PecpT6JJLLqHrr7+evvKVr9Bll11Ge+yxB22//fb0ox/9yO/3f//3f7TffvvR2NgYfexjH6v5GbYNv+ENb6C//uu/po9//ON066230mc/+1k666yzSClFz3/+8wd+921tkj/5yU/897py5UraZZdd/HKYOHfmmWfSq1/9arr22mvp1ltvpU9/+tO0atUqAkB///d/H53jo48+mq644gq64YYb6MYbb6Tzzz+fxsfH6aCDDqr1C/3Hf/xHEkLQ6173Orr11lvpbW97G42NjdGZZ54Z7Tc5OUkHHXQQ7bXXXvTxj3+c1qxZQ6eeeiolSRKd+69//ev0tKc9jd73vvfRzTffTJ///Ofpb/7mb0gpRU9+8pO7xJ1tzW6++WafMPOLX/yitr0Nks985jPp05/+NB100EGUZRnts88+UYM5UX9ITk1N0Wte8xrac889aXx8nA477DD67Gc/W4MZEdGXv/zlKMGHEyw2B5JENrHkxBNPpPHxcdpxxx3pZS97Gf3rv/4rAaA77rijz7e2+ZAksgkK/9//9//RTjvtRGma0gEHHEBve9vbajfZ//zP/9Dznvc82m677Wj77ben5z3veT6ZoFpM4I477qDTTjuNdt11V0rTlJYtW0ZPfvKT6X3ve1/f/4fIZtYuX76csiyjnXfemZ73vOfRD3/4w9p+Dz74IAGgF7zgBQOP+cgjj9CZZ55JO+ywAy1dupTOPvtsIiL653/+Z9pll11o0aJF9IxnPIN+85vfDDzWMMbXRNOrmpjDmdBNrzBxi891uK7fe5ue17/73e/SU57yFFq0aBEtWbKEnvOc59CvfvWr2n6//OUv6fTTT6d99tmHxsbGaPny5bRq1apaFvY555xDK1asoO23356SJKE99tiDXvSiF9USyfgebHuFCXGf//zn6cQTT6TddtuNkiSh7bbbjp74xCfSFVdcMVQBkDZI8vc36PM//OEP07HHHks777wzJUlCO+ywAx1//PH00Y9+NDre73//ezr11FNpn332oYmJCcqyjPbff3/6h3/4h9bkpssvv5we85jHUJZltHz5cnrjG99IvV6vtt+GDRvoL//yL2nHHXek8fFxOvLII2nNmjXRPr/85S/pGc94Bu255540NjZG4+PjdMghh9Bb3vKWxoIL88kEEdEMCtPOFqC9/OUvxzXXXIP77rsPWZZtaXfmpd1www141rOehTvuuKPW/6yzzjqbv9Yl7nQ2kr3pTW/CHnvsgf322w8PPfQQ/v3f/x0f/OAHceGFF3aA7GO33HILXvCCF3SA7Kyzrcw6JdnZSHbppZdi9erV+J//+R8URYH9998ff/VXf4Wzzz57XnQt6KyzzjqbSesg2VlnnXXWWWctNqtdQL7+9a/j2c9+NvbYYw8IIaLCuG32ta99DStXrvQFwN/3vvfV9rnuuuuwYsUKjI2NYcWKFdMuJN1ZZ5111lln/WxWIfnwww/jT/7kT/Ce97xnqP3vuusuPOMZz8Cxxx6LH/zgB3jd616HV73qVbjuuuv8PmvXrsWqVatw+umn44477sDpp5+O0047Leqn01lnnXXWWWczYXMWbhVC4Prrr486olbtta99LT7/+c9HJdbOOuss3HHHHb7D/KpVq7Bx40bceOONfp+TTz4Zj3rUo3DNNdfMmv+dddZZZ50tPJtX2a1r166tVa952tOehg996EPI8xxpmmLt2rU499xza/tcdtllrcedmprC1NSUXzbG4Pe//z122mmnLtmks84662wrNCLCgw8+iD322GNWy9rNK0hu2LChVph6t912Q1EUuPfee7H77ru37tOvfuill16KSy65ZFZ87qyzzjrrbMvZb3/725Hq6o5q8wqSQL2wN0eDw/VN+/RThBdccAHOO+88v/zAAw9g+fLl+OUvf9lam1PAlrcY1cL3DXuMmd6v86nzyRuZxqngZUMt2/mTKu/vd6zqfoaa10fHb/B1VBN1FUHh70G4XTavJ55vm7r0DX/c8Jg8745dO1a/eWz+dTHd923t1/jGBx/E/vvvP3R95enavILksmXLaorwnnvuQZIkfpSMtn36Ddc0NjbWOATN9ttvHw1JtDk2ExfITFvn0+weez775FFAJoJaCcfqemrcPwJh+F7eDjS/N9puAKjKtsp/N11AApWnAjQCiZogJWSwvQI/KeP3Nrwnem8VjFK2g7cyPxdJIdviNe7BOstNZvMKkkcddRS+8IUvROtuvvlmHH744UjT1O+zZs2aqF3y5ptvxtFHHz2nvobWdLKr69qelubyAux8WsA+MSCb4Mhwq8KU92/aN9zPzTdBl7S264x2m3TpkwnAGK6vuW63Camad6iud+1Tfn+pIAAIZZdrUBPSfocMQCEBbbeREBBC+mPadcF+gN0uKFavpvwI4s+hYGUfM5WTKDeTAQvmGp8lm1VIPvTQQ/jVr37ll++66y7cfvvt2HHHHbF8+XJccMEFuPvuu3H11VcDsJms73nPe3DeeefhzDPPxNq1a/GhD30oylo9++yzcdxxx+Gtb30rTjnlFHzuc5/Dl7/85WgYoZmy8Kk8PFlAfKKaTlr1ZHc+dT5tEZ8cvCJANsGxCsaGfUQFhLwPaR1D0BgPNl4GUO5TAaedj5Uk9YEm0ABMhphbL5Sy35kHpYygWV0WSgEMT/ciIR0AJWCkh6toUpl+3wCWxn0umVZQhue1Csfq+iosu2t8bmxWIfnd737Xj/EHwLcLnnHGGVi9ejXWr1+PdevW+e377rsvbrjhBpx77rl473vfiz322ANXXHEFnve85/l9jj76aHzyk5/EhRdeiIsuugiPfvSjce2110aDg26uVeV8df0w7w1t0HLnU+fTrPjUFMKsws8U7XAMtzVAkYwGGePnwfMhBANgIgBmtA4AtK642T/8KsJsRhUAkyHpQMjrhFSgcFkpUADLcD6Cpkz6A1MlDedVgrgt14HSnw/RMI86IJuulSosu2t8bmxBlqXbuHEjli5dig0bNmDpkiWtEh9DrB/FptsA3vnU+TSqTwIowWaKEoBG1wGpi3Y4miIGY5E3QzEEYnVe6xJ6/F7Av5+tNRTbZAEkI4UYbPPAk9KC1MESUtbn3XZICZFkETCRJKW6lOW8XVa+/ZKE9FDlUK3fV1bCtKxE+d91M8MABWhXlZtjW9s1vnHjRixbtgwPPPDAjOWWNNm8apPcEjbsE8tcXYBNn9X5NNxndT71sYoirAHSwVOYogZHU/Qs9NwURoPyXgRChqcHYhWklbAraQ3SrCqNW10JuepmUApVAlIqBqKMtlWVIqpKUUoQgzNJQQzNJAWK3MExtdtN6mEpyAAy8cATAIgMoBI7bwoLSjhFOUTcsArItrArUMLRUAzK7hqfPVvwkJyuDTqB1e1zcbI7n4azBeVTEHINw6w1QDI0GZJFUYOjBWOgJkMwFnkMRd7HwZCMgdEmAqOfD9abBgXJ20I4AvAdyEswllMhJYSSkMF8BM5QLSapVZpJBhQ9O5XS/m9S2WmSQhgNkWYgMhAysarSFHZeFyUo+TvnNkjAhl0r/hNiQEY9ZhoCfEKIKORaBWW0LxbQNT7L1kFymjboBI5ygpsau6djnU/D2ULwKbIgYcceLGhjrABSOJVIRgNFbuEXwpFhmPcs6EJ16cBoenkERTIGpldEIKRgGwDfjmkq6rL1f3SAlIFy5PUWiBIymGdwqiyBkBIys2qRQmAmOUSagoocIknt/5WkLnysLTzthwKJO+chKI2x3Sm5vZEMIFoycgOLYBnAsfYNEPli2wbCgxKow3LBXeOzaB0kG2zYmHu/bdO5sEZ5yup86nyalgWZrqwsa4AMlCLlPQdLt74CRyrcdq1h8gJGG5i88BDUwbxVj9rCMwAlgAiYQD30WrWmMGtVSUqnHmWaeGia3M3nBaSSkGliw6sMxVA98nKSxtmaCYACMSjJwMZWXTarA6UgGirkCpSANH65vo9xx5JE0GTVZT9VuSCv8Rm2DpJDWL8TNigeP8zJns6F0fnU+TTIp7DbRlOXjzKpJwakBx8Dk9dxWDXcx8FR94pIMTIcTZ5HUDS8XwWOISyt68MpycEhVvtSaWKB6SCpGJxpApUlkKn20BdJ5sPIERzD+QQQpGzo1UFRkLR+c1i1T79IVo9+SlSDo2msSgRIIWw3TmFhGarKYRXlNnONz4F1kGywfk9Ag7Y33VBt+4X7TDcU0fnU+TT0E3hVRXL7I1mFF2WmVgBJeQBGB9AqHHVeeAhqDrk6aNp1RaQgy5CsU1CaomQdo5v/G6nKn0cLReHmRQ2QMk0glYQJoGiXU8gsgXJ+SG0g8wJqfKz+HQZZt7XvOBurPHiIcr6tcECl6wcDsgrHtnPJ2yUcLEEgpyr5OhikKreFa3yu1GYHyQE2SmNy235tF8J0T3LnU+fTyD41tUcGKtNUAAhjaoCk3iRQ5DC93AKRoeiUo4Vm7sOtIUR5maHIQDSa3HbyUKQAjtWwqwySX4SDo1QCQgkXYhUenEKJSDGygpRZAqkNlIO4zBOoNIEat22OrCrD7xtSld+5C8eSkRBFAaRBiBUD2iAdIFlFAvCADOEYJ/EEb+dwqwA0EVyAF2ZEVblNXuOzZB0kA+sXVx/0lF7dl41QvxBGCV10PnU+bbZPISCBWug17M4Rt0H2B6Te1IvCqqwkGY4MS7sPQfd0BEXdC8Ou5JRlHZSN308ISCmDZQmVSQ9NlRlIJaCyAjJNYPISiia361QY7nWqsvbDqFQJy7xnE32Ma7sMkqIEUZnAE1rQr9PD0alIBmQIx9aQK293tBQCIBAE2XWsKpUUESi3+Wt8Fq2DZGDDPvEM2t62L5/oUU5251Pn04z45LsixIpSEMFwmNUn7LhQq9Y+xMqALCZ7XkFW1WO4jud1jxN4dARG0uTXxaC0/024Lvqfg1CrDa1WQq1KQPWUXza59utUpqEy5cO9DEcyFooFAMUZuEpazoXl7qQCip5tD3V9KclISAe4uLuNqZ+XShEBDrOGgKwqSqDebzJUkWA4BrBkKRmCckFc47NkHSTR/pTS9oQ0XRvl/Z1Pw1nn0wAz8Q+3fWMZarXVcpyK1JzRaWwWq2+TrIdYdV5AT041qkc7r+0r19A9A93TXi2GoCRjFSbAbZIUhVipQgghK5CshFylktCp9opS96QDow3nGk1Q2kRtkSUgXSF1JTl5FUo5GDIcpbLfl6syJJDaea72M0TI1ZB7wUKxCsgmRRkaPzcIEQAzgCWMqx9bAeUg22qv8Vm2DpJD2kyd/JkMG3Q+DWcL3ado7MYwyQQo+wD6vo62j6Tt5pH7EGw/QFbVJUPRBIAslaT2YAyhSCYGpHGUqEZdAyEJKUv1KPy8gewJqExBu6kFsw292lCvhaZyDxAMRAAQSkG7dk8tXVcSrv3KXUIYmPxA4b/nUj1Wh+biCj2sisIwKwNSB/MAYFzotPW8AiCKw67KJfMQBykdKIe1rfUan03rIIk45j3bJ6TfsasN1J1PnU+b41O8YwBGZxxqpQiUVkUiCMH6RJwwxNoCyGJTEanHEJQMR68kHRiLXEM7SACI5ttMCQFogioMlBBQooSmTCV0z1glmWsXalVB4YIySQjoAShBWYLRdufwYAxfsMP2ReuaiskD8TiVQkYq0ri+jlVAMhybCgxE508IaBCkKIFpBEEJ97myBCWkiB4w2myrvsZnyTpIYvTsqX7x80HH6HdBtT15dT51Pk3Hp8b9g6SdMLzKXUBqKtJ1/mcwkrbdO0yQmNMEyHJew+TGK8dISRpCz5CHYhWUQL3qTJj+ogQcIMlODUFpQqqNbY/UZai1tBxGK6QAcr/OgtK4biNGSWg376HpKu+IMCQ98MsOBnB25ylUkXa+BKSmEo5N/SZrh3dn3nf/EK6d0qbvwKW8gkEppBgYdt0WrvGZtg6SmNnwwvCBjcHHmqnjdD4Nd5xt2aeBVlVL3F9Sxy+T575LB7dB+hBrJbwaApK3s3IM4cjzBnVINilK5dSZhaQFpwelIGgSHpZkCCpVAArXvml/8nxIlbuP9AoPRK0kZJqWhQ4YihVl2XhueIDmYFBnalCRmgja1AGpDQVdQuwhqO2KIkBAgAQQ9ZV03wVkHZRqSEU5yLbKa3yatqAh2XRyNvepZdB7B4UnmrZ1PnU+TdenJiuHwYqBWFNHrCoDWJqgag4ZLkFHPjGnDLHWAal7GrmmCIw9B4VQSVbDraEQVC6lswQl+XCrEkBqo7DIHKPMZNHwDSQQkpN0tOtXaaL/1eQ5jOtPabSBisKt7rvXMSipWjygMjQWOYWoDTlgloDUplSP2lgwVpN3+GsIP1MIzqy1Dw8MS3CTqYu2GomoKnobKLeVa3wmbUFDsulLH+ZEVE/YsCeQ9+u3b+dT59NM+lQ64iDY0nbmLQy7cp1VbWxR8gAi2hURMJrbG43r7kHBtA5IC0c7zQMo8vqqgmzqLhmCkuHIL+1AycfIpAACUAoloHu2W4idFxBSu/6WBUxagjGuLduiHP2B40QdP56kLBN2LBDDMGsMSE2IVCX/65q7xQQPDlKU3igpIAAYYdsnlRAwJlCT3C5p39gKyq3+Gp8lW9CQbLO2E9gWPx/25FOffQZdNJ1PnU+j+LTZ1hBqDYe9AuDWcfUcm5mqcx1MyUO0DZBNYVcAETCbrArH8AUJwJSZsEoIyB4rR9dNpGfBKJX0RQyaiq5HUw6xhoNDA2X3Dwajmw9DrdqpSFMJr3p1SWXo1ZALu/oHBWpoAiXfhdOQgBQCSgobpu0TbrX+NoNya7vG5ypMu+Ah2fTlDzph/WzQyR9mXedT59Pm+hQfpF09smIMk3aGSUrx4dao7mr9ZXID41ViMyBDFdmWwBOaciHVJkBmUqBnyGX4CH98AJDOJ93TEFJ4iJOWXhWTqbz6jEbCw3PZhXobJESziuRwq3ah10hRAsi18WDk76Gx2LmxijJ3qlpKIJXSwdKGYUk4EEs4gLvj8UVSAeXWdI3Plbpc8JAc5osedJI29yQOe8F1PnU+DevTTD9lUxCCDAdPBuDLzHmFacgDCOCwYviqA7Ka5WrfVwclA5LnY0ACPVMBpSnfwwpXKOG7n4RFBvj/DKfh/++/UxnAUSo7mDOAMGknDLX6bNUAhE2ALJx65HZb7iJS9hmNrwDloCel7fohScAY42EJ2PWG4Sjh6EioDkbZL5lnvl7jc2ULGpLV66LtJDU96VDL9nDdKE9coT+Dnqw6nzqfhvFppqxNTVVhyev8+0wISvfDjzhztVSO9eQd3ic0qyDDb1v4ac9QBEpWm3x8Y8irSRMqx0q9WKNNrWaOUHFSjuAydeWK2suHWk3gA2e1mjjLtTCE3BjbTdUY728Iy6pZBQmvKK2aFEgdLI0SSJW0348RMAEoqQJK7h6yUK/xfragITnMya5ubzuRbft2PnU+bUmf7AFahmyC/bEfdNwqIKpWra8agpJ/6KtWVZajhFs1OTgEgOSp3Z8qx+eXaP3BC9tZ26wGRgCQVjWSKKcelDKJ2iKp+v86WDIgc03IDcG45RCUQL2GKwCfqMOK0gLSwlKTgCZCKqUNt/I5Cb87KSAJEDR66bp5dY3Poi1oSIY26ORXn4JmIiZePUa/z+x86nwa1ad4owsF6oZNSpUFvKUEyToUeTDj6ttFUD91kMVApGh92/5Ac0EBhmEVlKw0GYzhcTQFClLLSuWd4U247wlS2vmqguTtrttH7WHAlH0kq4DMtfGgDPtQcsg1BCVDTUqnIok8IBmWhgSMBIwSyGBVJfnTFV8xUvRvn5z31/gsWQfJBhvmJPA+TXH2YZ6Yhv2czqfOpxn1yYUBB2ItGLg4eruDpfHQrCuvcL0M274GWFO4tUnXGdRByT/uDKRwmftODmNN/6992YcI4eAIV88VISRlCEqrIjlL1YPRlMC0YLSAnCqMV4+5NjDBtG/yDgBpHCSFA6YRMFIgVU5NKoAbaFNIl/Xq/0MI2K4juUHUPrnVXuMzbB0kAxs2JNB20oZ5Whr09NX51Pk0mz6VO8tAPZbKCCr48XfZmyEohLJVafhVjudo3LKEyd3Yik7qcDhQCcCg7Ns4qD5rP2NQstkQ7HCKNjTZoIIl/7+houbviGEZTMmpR5IJIBNA2WmsImMVbQg1QIZq0ivIoPhAe/Uh1z9SCg9M7QBp2yS5XdiGX8cTBSP6XDkOlFv9NT5D1kEysEFffvUkb24j8yhPX51PnU8z4ZM3YaFHgTJqennVKCUMw1GFL+H6GwrfQd+OyGFHo5BKAlr7jv954w99mJBT/mz2U3/9W0mH/AoCQPLAzawkw/9T+nWsJsPQtINjUECAXLcPbYLwakVN5roOyEltXHtkEyitn1U1yUUFlCwVJStI44bJslOCkdJ9cxrjiUIeKfxmUA6yeX2Nz5B1kBzBqk9F033Cmcmnoc6nzqeh9g1+xEVDIk9ju6SUkGkC0SsiYJjKtISljGBpR94grxwBrrNa6fzvw6V1MJY6qG7hj3hYz7Vpn2iIrUo7KoO+/KocFENFGYVYXXtkkpWhVqce+eXVo6lMuR2SVWMAyCIIv3I41gTtmEBZfQeAHwJLSYHcuKIJwgJSCQGjLCRZVWqXc2Rco2QTKO2IImTP0wwUeZ2P992o1kESw5+ApnDBdGyY93c+dT4NawOf5oUo2yCjLgrCqyKSpjXkqrIEZOxAxSYv+oZcZaqggmICQgokqYLuaWTSKSOICiSpVU22/YNhNZ1wnreFYI4q7zhVKBnwzn9exwpSOvXsFWWSeViKNLPLYaiVv1OVgISE1hSFV8Mw61RhMKkNpgrdCMgQlFZ9lq8mC2GZJdJX4NEkoCUhJQkTpK7qMnPHg5IL9NhIufBtlGmLZJ9v1/hsWgdJDI6pD9qnbfuoTz/DNlB3PnU+DW1SeinmE3Y4eYfbJd0wUG0hVxHAQqYJlCtPp1xVGhWVdSOvJlWm3HpyIUBXS9WVRGPrmbAYQAjI/t9WWbtVVKAZv8J9WeUC5TyHWaMQa5qWSjLNyoeHJGsOtcrEZbVWVGTlNVloB8FYQdr1ZTKPNoReYaeFaVaS/nuQtiRdIgW0G+mDYclq0rj/2Q6EIoGi1OfjiUIRHNcn8SDOeJ231/gsWwdJ9D8xgy6GfttHVR3DhiI6nzqfRj5GOLah0V5NCqUAEyTqMDCDl8x0CURXQEBWpna9ct0qSjWpMunXZ75yTNnXMS4nB6c242QX7tIRWlVJKiGQyXrBcxnsI2XZXspTVo8qCxRkmnhAqjTxXT0sICVEkpah1iBRB8oCs01F+jCrD7VSIyB7hX0VASgBQBtTg2SpIqWHpXKwzBJpVWMCcODav70BlHBh1pxD4yLOeJ331/gsWQfJwJq+/Ibgj7eZiKcPOkbnU+fTZvskJCCo3i7p+/QFcNTaAsAY8IggMBoy1SUYjalBUwXFzhmQ3idN8D81uS6BF6Sohn0aQzXJgAyzYavtj/FoIFUlCQdPUYZYncplODIsZZrYlypVsw+1JqkPtdrvKwE59UgysQk7jSrSJt1wmLVsh3QvY9dNFQY9beE4VYRK0gwZbjUekFmi/P5Z4sbNlCiByYOiBKC0w2xJNxA1QcLWhBXuFLW1T86ba3wWrYMk2r90EUw39+SO+vTT+dT5NJM+2TcFYVZBIJnYsSWTBMJowMGRjPbQFMGAwzEQDZRuqExQMXLhVgAwWiIBMBGWJHCgrHf8j/s8Vrt4xO2PzWpSAn45VQIytVBUqSpBGQAzDLUqBiSHWl07JJLUApNVpOSpS9gxqChIV1GHgagNJh0Ip9x8rikCpFWSOgq5MiCLBlAmgYIsVaSKQrU6IQDKfuEVUCpNmBSu246QkCRcO6VAYdDYPjlvr/FZsA6SgQ0bThjW+BjTURydT51Pm+OTnSmhSMJ49QgpQWSXGZQizex7wmGgKoMMSzT/YLS1TzbtrZX9MZ6ALtWfAfIAjkqIyrBZ9r8K+wkOgmTq5900U5GK9KB0U5klUE5JCiX9MmexCqe2hVQQaRarSKlAKvHh4UhFVsKspZos100WGr3C4JGebgRkUVGS1QzXHuJ2ySjcWoGqIUe6EJTBdypd/0khEAESqFfkAebBNT4H1kGyxUY92U0nd6bj651PnU/Dvq/2IxKEXEkm5X5kbNIJYH/828ZMdMttoGz0RerKsoD9ZU4smHoaShOUICjj2sMi9Sii6jshKPtBkhUkv5JUQUhRU5Eqkw6YLsyaJVCZU5FSQma27VGkqQVkapWkT9gJu32ozNdhjWrRuoLlk0FotXCwnCxMIyCb2iSHzW7lpJ0y3FqCVRsCsuCNCSA1XP1XYFLzcWwiT7/2ySabj/fdTFgHyRmwfnH5puVwfrZOdudT55PdyDVbTdQWGRbhpuAYcmwCBv2f1JtAWa/G00Oh8mB7mElalEUHcgP0YlWpyVbmsaCpg5KtKXknDWCZudJsNsyqyleqPDBVpiIVWcIy8aFVbpMUSQo5NuEr65BMQCptVZG5sWFUqxg5tGrKDFeXpMOA3NQrGtok+3cDqQIyVJFF9L7grGVoNSWAyQKYSBRyWEUpgaHaJ0ex+XjftVkHyT7W1ADNl8egp5/qye586nzaUj75dkjAqskKGKtTCwLX87wydiKmJu0sgDSovFNM9lo/XyqBwvdFtEkyhSpsVR5lIJSADlRlPHxWCcwmU0IEBQrKRJ1M2kLfyXgClSmkEwmScfeaSGx/zkxVwJh6WKrxMQvHsXELy7GJSEVSktaKB4QqMnfJOtUQ65QrYJ5ritogQ0CykqyBMvgOjLGjfnDzrhKipiQ5aac0q+IBABmHTwlSEKQh3zZp19twPCfA9mufDG0+3nebazNR3WmgXXnlldh3330xPj6OlStX4hvf+Ebrvi9+8YshhKi9DjroIL/P6tWrG/eZnJycEX+bTiqvHxQvbzq50wkpdD51Pm22T6wWAfhRKbggt1NCUPYH3yqizL1SIBuDyMbta2wCYnyxmx+HHF8EMb4IYmwcyXiGdPG4fS0aR7poAolbttMxJBMJ0sUZsu1SpIszJOMJ0sUp0sUpkgnl4TWWKSxOJSaUxIQSfjou+7/C0OqEkj7EGgLSJ+0EYdZkPIVMEyTjWQTLZDxrVJG2C0ipIiETqyIhIxWZG66YY7xinCpcwQD32pRrPNLT2NTTHpDlMitLF3p1mbC6MCh6GkVPwwTz2ilUTv4J37+pV34Ow3jKbZssdJlEFIK8MN7PsPuKhT9VlP0WvsbnwGZdSV577bU455xzcOWVV+KYY47B+9//fjz96U/HnXfeieXLl9f2v/zyy/HP//zPfrkoCvzJn/wJnv/850f7LVmyBD//+c+jdePj4yP710/is1WfjPrZoIthOjH3zqfOp83xCa6WqHA13kgCIFuFh4QETOHnRZgBOybjMmxKOSWlIIN5keZRwQGhynJ10vc3dMox1XbaUyhUbkcMSTV0JqF7xipKQ9A97YaLYhVZ7ysJ1EOuSZCQwzCUqXRKMoXKJJLx1ILTAdFOx5CMZ1DjWdkWWVGR4IQdpyJJpTUVmQddPiaLMns1DLNOBu2OvVqbZKAkiaALYwevdmFWalDUwjiVLgW0FFCtSpLNKkofojW2bXIqaOed1MLWTzDKhVkJubDXXOFCsDxQ87y4xmfRZh2S73znO/Gyl70Mf/VXfwUAuOyyy3DTTTfhqquuwqWXXlrbf+nSpVi6dKlf/uxnP4s//OEPeMlLXhLtJ4TAsmXLNtu/ppM7zH6j2ignu/NpOOt8GmZH6adEBhDGJusYY2HoCguQkIA0gCkALbwKFUKWQCxyX20GRVpW5Sl6kFJG4ddw1BCZJigmexaWWeHWaZu8k2qoTEL3VARLlSo77qMh1//Sxv1MpU1OSg7jyihbNWxzVJl04VXp1KUsFaQDpMySMqM1Sa1qTjI3LdsiSaVxW2SgIvMg3OoLBBhySTtuvii7emzqFdjU01GIlV+5NjCFLXhORDEog++AR1qRUoBIQBhh920BZNmGafw84EKvxkBqIJcCUhjk0oVdISGFgDD20pDGtVE6qLYN1jyX991s2qxCstfr4Xvf+x7OP//8aP1JJ52Eb33rW0Md40Mf+hBOPPFE7L333tH6hx56CHvvvTe01nj84x+PN7/5zTj00EMbjzE1NYWpqSm/vHHjxhH/k7oNOoHV7XNxsjufhrMF51NY0LwCS68khQTcsuB9tAIMl11TkGlmRwJJUlBv0oIznJcKqVK+Y752IUw9OeWr1xSTPQjZg84KqEyhmMyhe6oGSzIWjLpn4RiCkiEhAkAC8HC0ny+DJJ0SkMlEUirGINSajGd2ftyFmFMHytSC0nbzyBoLmfu2SD/CB3n1mLuycxzCDAFZzpcqclNuFbQpDLQuVSQ5WALxg4J0dVjJuEQoB0sArhtNc1asCjKPlSyLL0hhoS6lwFRh/DrlkqO5XVKQsH02nZoc6jLE/LvvhrFZheS9994LrTV22223aP1uu+2GDRs2DHz/+vXrceONN+ITn/hEtP7AAw/E6tWrccghh2Djxo24/PLLccwxx+COO+7A/vvvXzvOpZdeiksuuWTz/pmKDTqBo5zgpsbu6Vjn03C2EH0SQKQqQaaEpZS2XyMZqwxN4sFJurD7m8KtE0BRlFV6piZtfdckAyUpTJJCJSnk1GSkKmWaomBYZhaWYQhWO0AyLI2r2hMCE1BRJR////rycsLPl+qxzGQNAVmCMo2g6dshs/FSUVb7RfZRkQVX1DEUvExDmLX+2pTb9kVdGFAQaiViULprIYAe+VNKkCQ8LIEyDNsDoIqSZBxm5XnuW5kqAalt6DqXBkoAuRGQBkiCsKsW5UDNiuAKqg++Lmf6Gp8rm5PsVpblbERUW9dkq1evxg477IDnPOc50fojjzwSRx55pF8+5phjcNhhh+Hd7343rrjiitpxLrjgApx33nl+eePGjdhrr73a/cXgdqVB26bz4znKU1bnU+fTKD5V3yOCpB4iY2No5NSlMbaeq0kAWbgQbKkqhSwgkgSiNwVKMlCagaY2wQ6tldl1SYY0nYRKJ52a7EFmCXRmYckhWJnZbbqnPSxJJ9A9A6NNBEwAXk1WjcOtPCJJHGZlJRkDMmyHVGkCMTbuk5O4TVJwRiurSJU194t0KrIsHBAkxGhqVZFRG6R7GTeuJE/JWDDyWJJRuNWpRmkESJawBACVSK9Ee1x+Tgr0CuPB2Cu0z4jNtc10TV3bqtKEXLp1kkcKsW3Egiw8tbAKswrJubrG58JmFZI777wzlFI11XjPPffU1GXViAgf/vCHcfrppyPL+nTsASClxBOe8AT88pe/bNw+NjaGsbGx0ZwPfZnGNhqwvbrvqBdG51Pn0+b65FVmCEzAQpESQBd1WErlarz2IGQCqXMbck1SB0sOvdpBmlWSQmaT0F49liFYmSXQm3q2y0VewPQK6LyA7hnIVIOMge4pH2plUNpqPqXxgMkAvIosk3fKrh4MSO7ukYxnUBMZVJaUYdYqKNMMRmUelDbEnEX9IptU5FQR12ft6RiKVUDmHFoNAKkL8nAkQxEc/Tk0djgyDQaXcL/q8XfEPVbb+lX2CttGKb2KtMNs5cZAGoHcGCip/P/MQ2tpcpCkuMjAXF3jc2GzCsksy7By5UqsWbMGp556ql+/Zs0anHLKKX3f+7WvfQ2/+tWv8LKXvWzg5xARbr/9dhxyyCGb7TPQ/wlo0HZqmG/bL9xnuqGIzqfOp831qapyuR8lVAboXglLygDZi2BJsgehUttemdjKNPySDprgEGw6WarHtISmzgvoTT3otIDMC6i0gM4KC8dxm+nKw3ABgKmEXHk8SOFUpHRDX9kwq03I4XZHNZ7Z/pAOkHbdWJmow8XMXaiVM1jB3T/cdJCKjMKtTkVWS86FWazcBlkFZNguCaA1u5UTmIxE0B0yBqV2KlIFU/vSZR9LJa2KNAaJEVDaqshcE5QwkEJaMLrhzbQB+g3SvCWv8ZmyWQ+3nnfeeTj99NNx+OGH46ijjsIHPvABrFu3DmeddRYAGwq9++67cfXVV0fv+9CHPoQjjjgCBx98cO2Yl1xyCY488kjsv//+2LhxI6644grcfvvteO973zvj/o/SmNzvh6fpQpjuSe586nyaC588KGUCkImVpCpApoAoAlj6tkkXgk1SUDZuE3uCECzlPRQOXqZXRLA0vQImL6DdlLQBTRivJG3otR5ytd1NnEpyBctllrjQaxIk6oyVXT+4aIDLYC1V5IRrk0x8v9Ews9Un63B1HV9AoEFFuuLlU0F3j2rBAO0AyaFWXZRw9Ik7FBSKd1MGI4F8ZquUwo3uASABhHDHEO5zRAnIpmo+PW2LCaTSls8L1WTqBo3WRFBORUqyIV+FspzgfLzGN8dmHZKrVq3Cfffdhze96U1Yv349Dj74YNxwww0+W3X9+vVYt25d9J4HHngA1113HS6//PLGY95///14+ctfjg0bNmDp0qU49NBD8fWvfx1PfOITN8vXfm1Hg8JXtSQJZ4T6hTBKeK7zqfNpS/tEQQk7KGPhSAYoeoDKQLpnYena6nxGqAckh2NLaHJ7pc4LD0udF9CTU9B5ATVu/DrSxilJ4wHZFHIFECQKJeXwV77sXBlilWmCdPFEUDAhnsqxCdsOyTVag8zWIuhkz/0io4zWStJOtYJOWEWHiwRQRUGSg2e/7h/ahVoBVxVG2gFbUBggkRBGQDs1KaTtGpJrUwuxhmrSDtZsfQ/bJtvUJFc70oaivpP9rqe2a89fb9i8a3ymTVCTft/GbePGjVi6dCk2bNiAJUuWtO430ydmJo7X+TR3x5jp421rPglTQJgCKHq2v6XuQRQ9CJ1D6J4N1famLCh7VkH6+alJUJGDepMwkxaWhsOuOatI7SFpeoUHowlg6X1x3UB4EGUeycMqybTSLzIIsYaAHF8MOWErC2FsApQuAqVjoGQclIyBskUoINHThJ62XSV4/pFc45Hc4JFc46Gpwi8/3CvwSE/jockcm3oaD04WvhLOptxVzNHGT41TkVVAUpDdWjsPEr77h5C2+phKbLavUhIqsRm/SaqgEoksVcgSiYlMYSJTWOSmE1mCRZnCduMJxhOJMSWxKFUYSyTGk3BeIZG2/F+iBFKXIVtOp3lBNf1vaL8+N27ciGXLluGBBx7o+zu+udbVbkWfJ+gh9hnFRnl/59Nw1vk0nM2GTxT0FyQyELkKlGUKoTMIlUFkYxA9pyrTzKrJbNKrTJGNQ/bKMGyYxKO0scAc1664QKAmA1AKFShJyZV+XMJO0C5pQ68NgHTzSGxJPp+kw2HWJAMJCa1jBdnULzJUkbX2x1BNumIBDEQThlkbAGla9Iw09sz5MaxlqThJEIxxYVd3TO472fQqi6Lb9k1DcCFWlNmvkiDdYNjcNklk/SOyo7c0hV2nY/NBwXWQHNJm6gduJtVE59Nw1vk0nE3HJwIAHnqL+1O60KttsxwellTkSMd6oKlJ3y5JxqlIbWDcPFCGW8kN/CyULcQelcYLFKWH5bhrf6wBciIOs6rMJumosl6rJvhEnHBg5Vq/SNcWqV37JCfrTIWhVoagg6IuyixWBqMtKtDc9SM0I+ugNMKGP40k219SwbdNGkPQogmMBtrYknYm+N8SEvY9klwo1iCRCoZg+3NS2TZppw6c07iemmxLhlqBDpIA4pj3bJ+QYWP0nU+dT1uTTwxLbpeE7tk2S5kAugfSfWCZZGX7ZZ6Dkgyi6EEVOUjrCJg0HrdN1v7nQFHyAMpWSbqMVS41xxV1AkCKJCsLvSdpmbSTZNCQrqsH/DiRXKO1Wl3HOFXVOpoHA9C9qkk6Zf/IGJBtkATqoBSSz7Q7P64ggXSwhEKrmmSIGyp9ZUBqsu2ett2QYCCciizVpIVm+7iTo9qWVpMdJDF69lTbPmLA9upn9Ttu51Pn09boEwG2Uk8y7mFJRQqh83ZYejWZgYoeaGzctVn2IIocYkx7YHIST1O7JFBvm5RZ6ioCBZAcC9VkmbyDNIvCrD5px3X5CAHiVWRDok7YL5IByWqNR/UwQZsjh1LD0nNhG2QIyLbatWQIRgIqAKMxBGHIh1ylgj9+deixsHRdCUsAKg65MjC1sSHXOiCtmjRkrxVO4pmta3wurIMkZjZcNUMPT51PIxxrpo7T+TTccYbxiQCbUdIGy0JByMQWJHB9LIVXkz0ffkXeswrSAZOMBoyBMtqHWqsmlPKF2IUrnyeSzIZi3Ygewo3uUQWk7wsZdP3whQNaVKRxIdZwKCzfpcKFWkM16RVkBMo4zBqBM8hubfyugyxXMnBVB8kXWAj3C6fVgZzD8CubobKLi3EK1K633U445GoAkFeVTk0Ku71fybqZvMZnyxY0JJtOzuY+tQx676BwV9O2zqfOp63VpwiWyThQTFpYVsAplJ2aJLUwTDMLyyK3y0UKaO2BCWPs/WsaQOkHjJYejkizckzIJPXdVCJAhmFWqUDKjhtZ6KDdrqYi7SuEiaZ6V49wvq1Yuf/++gIxSFaSshx8eYaN2yVr66lsr2wKuQqQh6U2hGQI3zb3Gp9tW9CQbPrShzkR1RM27AmMfjg6nzqfFpBP/oeOYdl7pGzD1D2gSMqCBEaXsCxyUO5UZNGDMAZkxl1pPF3rL+n9kBJwirJUkxaOYdsk0nAgZRWrSa8iuWhAU1tkJbNVh8kwppIYUybsAGgMtTI0m0rRtf2vs2kMxWq7JIDGkCuJEpZCCBDs8nQTeYa5xmfbFjQk26ztBLbFz4c9+dRnn0EXTedT59PW7hNvFwAoWxQVISAZFCTQASynNtki40UOYcYtMI1xYVddzof+BUrSt0dKZdVj0DbJgAwTdDwsZRJ1+ai+WEX6UCRx2109SaeasAMgUpODjN/jR2tx86OamEHFaXx/k2AdCMqpSFdjvRGQwMxd43NhCx6STV/+oBPWzwad/GHWdT51Pm3LPjEooewQVFZJloCkQpXFCRwsOfSKJLWhVm6TdKCsGQMybJ90dVnt0FeqBKRUPkGHC5hDJsgD9WgqKpLbKDlhJ4JoAxxDMyZuYxzU5iiliEBZ3ear7ggRjIZW1nMN53kZQDTo8uYYt0sCwkMRcMoSBBow4tNMXOOzaQsekqNI/rZ1m3sSh/0B63zqfNrmfHKZsEJlQD4ZhWBJKpvo42rGyjQD5alVjkVetkcaE7dNhm2SMoYkksSNDVlCEUnWEmatK0gCl5OLu3Hk2vguE2F4tajAstre2K/90X49onWfJvANWs9DFCqeBqOB8IuH0ZJ+IOZ2yJF/4innjRtKi0OuguwuIZNn+nqaTVvQkKye+n4houo+1LI9XDfKE3zozzChiM6nzqdtyichgXQcpJIy7Cp7VuEVuR/0GVK5urGFVZMu27XRAkgKpSwQhawDkpe5kLmQ0AYu+SRWkXZoLOM71Yeh1qibSJ/2w2HCrFIImKByTltyjnBKklUkLwtRWe9Ax8ozhOIwJqXwYO1nITTLdXU1OVPX01zYgobkMD8e1e1tJ7Jt386nzqfOp+F8IiFtdxFfUF0BOgfJBKLo2XEtTQGQgZBuSgaCqLE7iFDK/jgL6Yu0R4B02asIslkHqcjC2D6HnNAThlpZSQLNHfX7mZQCWttM1XDfUAlSw/oqIFkt+jquMp7n5SYFWX/Vu29UVWUTNwnw7ZIhNPt1B9mc62m2bUFDMrRBPybVp+qZiIlXj9HvMzufOp8Wik8kEyCVgBtpROi8LHmnXRultMAUZEBkAJWiWgHcg5GhK6RXkx6QATA9ID3YSoXIGZy+XBuP/ei6SvB6AK1ArHbgB5zyI9EAQII0woYuXcg1BCNbDZBuKhMZqUjpip0LpwibwqtKynJ9EGZVHHbltkxhm3xHsbCtcnNsJq7JUa2DZIMNcxJ4n6Z2m2GewIf9nM6nzqeF6BMJaSv3pNL+IgthlaR0YVddcAkZC8eyPE3giCynDEhZqsmqouQwq+/2wQoyDKlSOxQHKUYlBDTK0Gf0nUk7HiSkq73qvhFbag6AssAMlVw1SUcqWYJSCMiERwFxBd/dflki/bBY4bSpPVK5oa+kdyOAp08Y6n9eXeEeEOpqcjavp5myDpKBDRtiajtpwzx9D3qa73zqfOp8Cj5LSJtUI6QFo1EelsIUVkWaEpKiotY43GpB61RlU8jVqUhyAAz7/nlgVkKtJniFFfKGCbFKKUBGQEgLQg1yWayIQCmCdsmw5JzPaA3aIH17o5KQST3kqhKJTMVgHPOgVBEsOdQqWYUK4RRkqS6BCvCEew0437VzjJm9nmbaOkgGNujLr/5oDApZbe7ndT51Pi10nxiU3F1E6B5IFxaewoVkpW2bBJnmY4UhV5mUqrICSEN1FWkrzyAot1Z219CBmmQrWsDIqouBxcm4UgqQBITrWCiBCJR2pYi6iIRdO2rtj05BsrJUiXTQtIDMEtkASLsucfOptKFaJe0YkRxqlQ6UrCYFAAHh4Ni/rZKImhswMfPX00xbB8kRrPqUPd0nnJl8Gup86nza1n0C+1RVlUJY5cjtkmHY1TvSEHLlNklehxKMVRVpa5KS24dqoGQLk3bYqpmjSgrkmt1x/RsNICRBQUK7ICuDUijhM2HDY1UzVcvkHdsG6dseA0CmKgZi/FLlNiWhJJBKYWHpQQmkysIzVRagwoVhJXgqaqHUqs/RqcGWu55GsQ6SGP4ENIWfpmPDvL/zqfNpWFtIPgmnBgmwFWh0AZCAIIlB7ZI+9MqA5HZIskqHQ6s1UBKiUGsIStOgJoEYamFXC6scbfujlMKO/0jCVauRdsQO6UbvMPy4UvneapmtwkWUrbLkNkhO4EmdgpzIlAfjWADIcDlVFo4WiBaW0gHTgrJUkZLDq0L4UCvgQrSB29UcH26XnO8Kkq2DJPqfADHEPm3bR336GbaBuvOp82mh+uRBqTKQKQAhIbRrm3QhS0Hlz7Lvn+fDrUG7pJBluyJKOBJsiTVO2BnFkgCIQAxIJQWUETCSM0W55dFOjdPw0sAm6sjmD+fEmSocWT0yKFUlxBoC0gKzAkjpXsqqx1RZWNp5BmXZZqmEqKlIgRiWQ3StjGxLKsY26yCJ/idm0I3cb/uoT9PDhrY6nzqfFrJP3mRiQ61CQpjCFxWgtpBrBZDaAbGqIllBel8C9djPmuCYSIFesKykgCYBJBIoDIiEU1oSQhBIkq+NIEwzYRiMAMqiAUF2q0zstAmQi7yaVNHyeKIsCAMlmcoSlhxmZYUZtkWGCTusIvuxsV827ExGIGbKOkgG1vTlV9toQhv2RG3Oj0HnU+dT51P78YQDIMkEEC6BpxbgQ9RXktshCS6MCvhhoSw0S3VJlU9vqrFaLd0WKkeehq8MEj0YkBRQkDDCaldO0BHC+dKgJEWgIhszWxOr9prUY9gGOZEpv44BOe7U5FgSqMdASTIArZosp6wiWTkyLIVrrxQDwNnv/DfZXCvNDpJo/9JFMN3cH4tRn346nzqfOp8GH48AG3J1ma7UlLzj9gkByWFWAD7EykKRc2R5uZ8PFo52jzi0KqEkxXBMLLx7hYEyVk0aQ0BhwU5k9+cuH1UgV7NaeR0rR4ZjNUGnCsgw5Mrh1SZAjiUqCrUm3BWEQ60uzMrLQrhCA30A2ZbY02TzJfTaQTKwYUNBwxofYzpP0p1PnU+dT6M606cMTAWQFoqliuRqOm1tkE2hVimFJ62SQG4aVGNS+tQrTLROG0IPBkgkRDCElnFKkuu0Vz8zStxpgCNP2+CYeQUZtkGWgBxL4rbI8UTVFGR1eRRANsGxGjkY5nqaK+sg2WKj3qhNJ3eYY4zyo9D51PnU+dTfJ9EGygogQxXZ6IfbMEziDv/4c1JLIgW0FJGa5HVZItErDLJElpV6BAEKPmOW/wNWlNWRPKojeIRFAMI+kK2AVBaMY1FiTqgiJcbdPtwGWQ2xVkHJIVYlSjjy+ekHx9r3PsQ+c60wO0jOgA0TUw+Xw/nZOtmdT51PC9Enu6GhTbJhNxNsC0OuTeBUQiAHOfVol42DhJEC0jhoVJRkVVFysQGuyKOkiCv0qKD2a6Ak29o3w9dYTU3W1WMqnYLkEKrLZG1SlUmQxarc/yZEuSwrSrKqHmtwbAqDB+drS19PbdZBso9VQwC8DohPVNNJq57szqfOp86nufGpzZdQRZZKsf9PbhBRLUEphC3wbcgnrFhYEgzFIVY2Bp8aYpSQfkUJ2sZ/jMOt9bbIWteOYFoNr/K+w4ZXQ/XIcKyBsa2dmLdVHmzmMpw6yDpINlhbXHwYmd+0z6DlzqfOp86nmfOpCsrNVR7hsZQAjIelC39SUOc0UJOJFLarB4BeoeMQazAgMy+H09CqKhIo+2PGoVZVC7UqIWptjk1A5ClX3AnVYwhFLnhermuAYxWMbQrSf8GDlf9cq8fQFjwk+0l8tupTbT/rt8+wx+h86nzqfNo8n6b7o8pdGIQQCOOuVj2Sj9EyLI0AjCCkSsKQcQUAZPnLWhgPSh6MuRpiZTA21X1NAkDyNH6VtVhZUVbhWA2tMiSjEGuftsem0GorHIPsYjEAjgQAXH/XzQ9zXcy1LXhIDntzzcTT6LDH6HwazjqfhrOF7NMgk0L4zNVqiE8IQJDw/RZ5fyltKTk7Ja8mUyXgq+cEYdc4xCo8LAepyOYwq0Q11BoqyjBU2gbHqpLktsewi0fYtaMNjkrAAs6NwuKhaAYoSG6DlM2g9LthywMS6CA5bRt0Aqvb5+Jkdz4NZ51Pw9m24FNo3L5oc29ipSgqb5TCVuBhU1LAUKkcrYqkSE3aqjQAg1IaASSIEnSmCgsDbWRDW6QJPk9Gnx0qyVqoVZSd/RmCSoih4VgNrfaDowpVYwjHYLiyvsOWhWYqoKzYfAAk0EFy2jboBI5ygvn+3Nwnp86n4azzaTjb1n2SgB0EmZeFAIFA5MZ3BEDCHpOoDLmWKtJOU380g9zAg1IKG3pVgqBlPZsVqIZY6x0jw3Br9HJVfkLVGEJSCswOHE1RByOZEoiheqyoQ0FunnQJzBCUbP36u/IuA/eYOesg2WCjxMXbtk3nR2GUJ+TOp86nzqfRfQrVpCa4rgsWjpq4PbJslxQgH3KtqkkoB0bYsGuqYlBKjj4SII3wsAT6J+qwRe2QDop2MGTh4RWqRuUhyQDdPDjatkh4IPr6uCEYqa4go/lqKNVlsgpIEDfwVhTlfAmzsnWQHML6nbBBbSnDnOzpPGF3PnU+dT5Nz6cSkAKSyKtJDrlKARAJkHCjglTUpA+pGuPDrlASuTYelIaEU5J2PpXBeJQGSKXrftJQVcf6yIAM5gPFGEKyhCWiRB0pMW04+vZGXVhIalaQARibknT6dPXw9XMZlEICgkBuMBQhYcsKDqEk+XqaC+sg2WD9nl4HbaeG+bb9wn2mG0bqfOp86nwa3SeBsm1SgLyaJJfI06YmEylQGPiwawhMKFeLFRKaCNIASigPR6ssBYxjQNuoIlxRh/N2bLeLOhijMGsVkpVsVYl2OHI/Rw9HpxgFg9HoGhgFzw9K0gHKcKt0pQGrECQ+w7I8vquQ1HTuRnk4mwnrIDnAqjfdsE+3bWGjmTjJnU+dT51Pm+dTWCQgbJu0Ga3NahKwbZUcdoUCch20QRIhh22jlGS7iDAsQzUJWBWZNmihUDXC+SllCciqmiwh6cZ7lPWO/1UV6bd7VQkPPaGLUjVW4BgORxapSv/lNwx2DdgvFKVK9LCUFj/CwKlJ06gmtwQYQxusa2fArrzySuy7774YHx/HypUr8Y1vfKN131tvvdWNURa/fvazn0X7XXfddVixYgXGxsawYsUKXH/99ZvtZ/WSHfYJtfpeEbyA+k08Spig86nzqfNpdnyyBQBKFcXFAKQQJTCj7eWL2wIjSIVtgMF4jGOu+k2iyvkxFb8mUoWJ1A5ftchNJ1I7b1/hvH1tN2an248lmEgUxhKBMSUwrgSy8CXjZfuZdj6BgdA9iHzSvaYgCvuC7kEUk+W2IofQud2uc7s9fJmifLl1VpXalzDagtdDuAiUKXkFG7Vztpy7ubRZV5LXXnstzjnnHFx55ZU45phj8P73vx9Pf/rTceedd2L58uWt7/v5z3+OJUuW+OVddtnFz69duxarVq3Cm9/8Zpx66qm4/vrrcdppp+Gb3/wmjjjiiGn7OuzT6qDtg8I9ozwNdT51PnU+zZ5Pyv36cti1zMcpM10hbf9GAYIKsJ0qCWkIgIExtn1TCYlcE6RtwHSDNbvPCLt7BGNFsmoEyuGwypJvPNIHEGazSiF8W6PA9EKqQjsoOYDZ8GkRJeiEajJqdxxUTYdDrKwIOcwqJIRMQLqAT9KRif1cmYDc55ALufJ53RIKkk0QDSheuJl2xBFH4LDDDsNVV13l1z32sY/Fc57zHFx66aW1/W+99VY86UlPwh/+8AfssMMOjcdctWoVNm7ciBtvvNGvO/nkk/GoRz0K11xzzUCfNm7ciKVLl2LDhg1YsmTJwKdVYPAT7Uxb59Nw1vk0nHU+9TdNrrM/wYNNGzvksjacdGOnROWycfvZ9xCMCRJ0qARjW/tjaAxEOx9CEhEYq10zqoXH+4ZUGY4MQBOouoYwK78HgFd8pLVdNrr5H3FjfAllpyQEovE8ZeKmClBJuU4mdp1MQMot90ni2bhxI5YtW4YHHnggElQzbbOqJHu9Hr73ve/h/PPPj9afdNJJ+Na3vtX3vYceeigmJyexYsUKXHjhhXjSk57kt61duxbnnntutP/TnvY0XHbZZY3HmpqawtTUlF/euHHjiP9Je1vHqDaTN33n03DW+TScLWSfbHhVQLngHsEqQW1sEk+pIF27ZHBEIQUIAtKNBSkJXlmymmxqfwyNgQgggqKSZeg36rPoE3LqRce9muynGitw9OHOhjAoaQ0YDTIaxG2SbYAEPCRJSgipAKkglAIJ7v4BUNjVQyXB58lSTQ557mbbZhWS9957L7TW2G233aL1u+22GzZs2ND4nt133x0f+MAHsHLlSkxNTeGjH/0onvKUp+DWW2/FcccdBwDYsGHDSMe89NJLcckll7T6yTHvcDpbNuhGpWC/zqfOp86n2fcJKDNJNeKwKrl+IZzYw4M6MSjtD75VlVVYpuCSd/0BWSbpxFC05d9cGbgIks0FxyPVCJRw1AEYg3BqDZZORdag6OYxDCABC0muGOQgiSQtYQnY0Kop6udfSICE/SxZz3LdEjYn2a2iUo6IiGrr2A444AAccMABfvmoo47Cb3/7W7z97W/3kBz1mBdccAHOO+88v7xx40bstdde5bEQ37iDrF/bx6Bj9PsxaHtq7nzqfOp8mj2f2KTw2hAatn0yLDZgFSZ/kl0nBEBUhyXvmwbH54o7Tb43QTEan7ECSR7oOFSNvuO/ZuVYwtGrwwCYPpRKBigKwGiYIo+hGEATQAlKwO7D/jv1GMJRKAWSBpDu/UkKGAWRZiUoWT0aAyGMBaewarKtO8hc26xCcuedd4ZSqqbw7rnnnpoS7GdHHnkkPvaxj/nlZcuWjXTMsbExjI2NtR5/JkND/Z8ZRzvWTB2n82m443Q+DXecbdknTuSx3T5KFcnK0rh5IVxSjyHAQYxhCQEH1bKbCQBIxYqxXMdQBAaDkdWjDFSjQCWkqhuScHQDLE3hwUghGIu8hKIxDpYxIKlJSTZAkhWlSDOQNC5JxxUfYFAiUJJSlr4JEYVct6TNKiSzLMPKlSuxZs0anHrqqX79mjVrcMoppwx9nB/84AfYfffd/fJRRx2FNWvWRO2SN998M44++uiR/Gu6sTY37DPovYNCS03bOp86nzqf5s4nG+4s2yebQCnJVtqxfSZt4RxWloAFJlBCN/ost0765VA9ikBVto/f2DcRpwmOVLZHUt4rgRiCkZebAKmD9sgmYzgq1wYpDUhqC0pjnIp0apL/bwdKX4VHlypSENnPEwWgsi3aLjnr4dbzzjsPp59+Og4//HAcddRR+MAHPoB169bhrLPOAmBDoXfffTeuvvpqAMBll12GffbZBwcddBB6vR4+9rGP4brrrsN1113nj3n22WfjuOOOw1vf+laccsop+NznPocvf/nL+OY3vzmSb01f+jAnonrChj2BvF+/fTufOp86n7asTxx2rVbj8SoSBBKAIBtSFa7ggFU/5YdWOw6EzUEMRaAORhmEU1k1Rt03WkKqUSJOqBwD1WiKHFT0LATzXqQkYYzdpsu2SABxe2Tb9ye5qk6pIKEURJKBpLbnwOj6OcvGIEzhvkfpu4Z4JSwtNPtluc62zTokV61ahfvuuw9vetObsH79ehx88MG44YYbsPfeewMA1q9fj3Xr1vn9e70eXvOa1+Duu+/GxMQEDjroIHzxi1/EM57xDL/P0UcfjU9+8pO48MILcdFFF+HRj340rr322s3qIxla283X1vYx7I1LffYZdMN3PnU+dT7NnU9h2NWIioqEzVi1Ze3sNv8ZoupVbNKtYyjyXlUw1lQj0JqlGoEx6uto4UhFz6pEDqvmvRKIFTDyOgD1hB23rvxngsKzLpPVt0GygtQaSLNSTYbfuZQQRQEkDpBhmJXbJo0BVPu5mwub9X6S89HCfpJLlyyZNRk/7E053SfkzqfOp86n2fPJ9ou0itAAUf9IuGVD5N/TZ0APAHUoeiUZhFO5TTJKxGnqxzhEe2MIR8p7cXjVaCDvxWBsSNghHSbqxGpSBGNeCiVtv0huh+SuH5zVmqYQSQYkKUSSQqQZRDYOJCnk2ARIKpDKAJXZ+cTNq7Scr5yrB7aFfpJbg00nzFNdN52n5n4+dD51PnU+bXmfwm4hksgrSs51NbBwY5kh+nwy12QNw6q8nsOpvh0yDKmGGan9knGa2htDOBa9QEnmccIOTx0UyRgYB0eGZFt7pJASQkkgB6SS5XKaWUUJlFOEKlIBRW7VZ94rw65ClmoyKGhQrec6l8puQUOyKtfbbrCmp01q2R6uazreoHBT2+d1PnU+dT7NvU9h+ySDksOtym2DsCoyLC8XWlVBAmhWjYCvX9qvKk4bHGvtjSEcczttStghbaDzwgOSqoDU7e2RVkHaF2k7lUZCaAOZpbZrR5LWvltI5WApy7BrKuELGITFDPqEXOfCFjQkh7lRq9vbbsK2fTufOp86n7Zunyzc6qAEbLgVaM5iBWIoApUuHghCqlwrdXPgGGapVuFYAWgTGPllGkAJwAKvEmJFbqdSlrA0SkKmCcgYyDRp/E5tSFYCRV52F3H/KwkJaAHIshIPjM1y3RK2oCEZ2qAbt/oEOxNPNdVj9PvMzqfOp86nLeMTD6sVghKiHm717wmAWevmgUA1Ojj6guKmoTycbsheNQXQmxpOOVYAavICuld4MJpe4aFYAtOGR01LeySDUiqX0aoUjIOkShOnKg3IAdJ/B+67FVJaHxmObl5IFalJmMLWdA3K1G0JNdlBssGGOQm8j2iYH+Zpd9jP6XzqfOp8mh8+hYoSgIUlb6h+ni81F7/XwzEcn3FQsfE+2arDwNH0cpAx0L0CxqlHryIDMJqKqvTfQSXcKhwcDYdatbHtkUaBtIHMEkgdd9mIQCmVD7lCKtu3kvtkhm2QJgi5uu9tS3QF6SAZ2LDhnLYbbpgnnVFCTZ1PnU+dT/PDJ1aTDDughCUq+4XHCCHZCscwIaeldJxPyilyUG9yWnBk1Wi8ktQxLB0kAdQSd/z/5EKsQJyow8BULszKKpKPmaAEZakge75NktcJqQAhfahVsJrcgrVcO0gGNujLr96gg8JDm/t5nU+dT51P88enEJSEGIjsV7ivByNPgzbHRkCaunJsbHd0QPSQzPOauuSwKsORYWjyHEYbryjDbNYQkk1tkiEgOVGH58MwqwwAKTO7XvfscFtKKesrt0ka47ucRGrSFICr7erbJGnL4KqD5AhWfaId9el0Ovt2PnU+dT7NH59CUDZt48+pwZHDh03tjlX1yIAkskDsTbaGVk1vshWOHFY1vaIGR5MXERjblGRkgYJEDq8ihbFwVFkCEYRZVZb6dk9/DqSEdO2QxKHWUE0mKWSQ3RqGXLGFarl2kMTwN09TqGc6Nsz7O586n4a1zqfhbKZ8qirI8L32g4IRLIIf+pp6bIJjUAzAhOpwalOjeiQHSdPLLRAD5chhVd3L/XpWjc1KkmC0/e/bun0IJaFhIJWAUMZ195C+nZKnre/NCwjlwqxGQ2gdq8kit8UDXLZr9OKHDJnMKSw7SKL/TSGG2Kdt+6hPrsMmF3Q+dT51Pm0Zn9o+z77ZRAoy6toRwDFsl2wtCNAQXqXeZK3tkaYmG0Ordp1tkzS8rVFJWjAyFI2mvoXMBUNUCRteVeRhCQDCNENSKAnRc7VYtYFwYKQw1OpGH/HfVaggQ1jOsXWQRP+bajo3zTDvbTrGsGGkzqfOp86nLe9TJCjbAMnh1SogdRl2HQhIF25FmLjTp+2RAVld1wZHBmOoJAGAgnnhO4JaFUlGQGjysEQGAAUkEpA00Cjc+6TNnO0VkFJa35Qs1aSUEGkatEna0UdkExy3ACCBDpKRNd0gTZl1bDPRFjLoGJ1PnU+dT/PPp/hgIwLSmOEAOTVZz14NAFlM9mrhVZPnwXzZJ7JM3rEg1D1dA6OdN34++t95LEwloTVBKAGpyMMSAEiV75FIQKpsjxRKuVCr9GFerybz3NZ19arS9dVUQZhVYYu1S3aQRPsNI4Lp5t6Yo4aAOp86nzqf5qdP8RtMNB+FWBmQlfbJ4UOsmw9Ik5ehVt0zLplHB0qSvLK0/0IZdmWzytH9i269UAKkJFQmARjoHoBMQWhjx5JUtp1TSE4K0iAXaqVqmNUXVrchVxFkudZUpPOvpVl4VqyDZGDDhl2GtaZsvH77dT51PnU+bR0+1UKtbKbyox4CMixUHrxa2yBHAGQxOdXQ3YNhqSP1aGFZwtEm7pRqsmo6ACO0hlQCgISBAXp2vcoA0sLCEmU2q3TK0apIBWMMpLYAlbqEpGgApuDvrRp6dd1D5so6SLbYqDdq0405zDFG+VHofOp86nyapz7xDzofv6Ii4yzNSgUdBkSlD2ScpFO2QQ4CZJjJqnvaQ9LkASwDODIY20KtAAMyDLcSFBQMDCQkSBM0NBQsLEm5sndVNRkWLuCQK+CSdkz0CivtNKrKObIOkjNg/dovmpbbkgY6nzqfOp+2bp/swZv7SDI4/RiRRIiGtWJQcOaqMUFh8qDuaqX/o+/nWOnvyIDk8KrulV09eB2AQFHG34px5ebsv0IQUkBrbdsjIR0ULSiFFpAAjCQITWXYVdvQqz9e2DfTD+5chl+F3dF+JrdLun34e+U6rnNlHST7WFPyAIdZBj25Vm/UzqfOp86nbccnnq87EAMymq+GWbUuh6/ysHTjQWrt4cj9ILkLh+mV1XPa2iDbAMlqMg63titJhiIAyLKwXKkglQGckjQAhDJWSbKaNMbDESnssgu5ug8tX4D/32vtku57DNXlXLVLdpBssLY2jWFCNE37DFrufOp86nza+nyyMw4cLSHAgSoyyOYkwyFHHgjZeIVJpuzjqINkHG57rALSBIk5gwAZJu4AcdIOUNZcNTBu2a1Rdl8JA6MFlFK1/58YjkE1n/JzynZJryADWPrvuPrA4eq4zpXNfUn1eWbVp5G2m23YNox++wz75NP51PnU+TT/fWr7TFEdO6tqVEKRQiXllinPo/WkTRRm5fY9X7Q8CLUa1+9R97SHYtwvsh2QIVj5VV0fWpQVG7zH+Bcr03JabZcsvxIdHrhc50Os5B8w5rpdcsEryWGfNjc3Br45iQKdT8N9VufTcJ/V+TTcZ43kk5DxD3d1vtaVQfvuDFQtzRZ0qmcVWW1vbKu7Sq5AQFmonHySThsg+2W2hl0+eJlDrQC8mmyrRueVZEsVH9JB2FSX34nv6hH2jQzV5BzagleS07VBT6fV7Zt7sw9jnU/DWefTcNb5NKS1jXHYoni80gzDq6wq3YDHZRg2AKIuoRoWIq+qSBMpQIZqoPgaQqxxuNX4V2jVMOyMWVsZPNPw0LEFqu50kJymDbpcRrmcRGU6Xet8Gs46n4azzqfB5j9PSDsgsJAgIfqDE0F4sTIlpyCjdVxXtQWajR/TEh6tWhV8jaN/zIWFQKxCs1pIIAy9zoF1kGywpraJYfetrh/lBhylXaXzabjP6Xwa7nM6n4b7nNbjNkGxsk4M+lEP2uUogCYQtOsFABkUarXvaw+lbtVm5g6SC75Nchjrd3kNarcYNulglLaTzqfOp86n+eMTHwfCjYs44LebdJCYAtSVU9hWiTooq/MzabLPUFd2eCz7mCCkCOq5tj+S+CG05Ih6LOormXbh1vlmrVlrGP7pdpj9wn2mG0bqfOp86nyaZz6FCrIt7NpmYZbnDJpoARkDrm27cGAMQRiCVATvD/e1r4qS7gNgVCEq691JvHWJO/PLRkkEoJb56k08ytNu51PnU+fT/PeJAPh2STdfNd4mGvoTzpQJJSPVJipwE0pASOHn7fo66ISqK0XhwMcqUipp1aWUrQpUKOlfdllF64SSdUAOY10XkC1j1dBLuDwoLFPdl41Qv5lGCfF0PnU+dT5tXT5ZQOoSlLw8jEkFIG8+rJJ+k1ASQjvQGJ43QNBlg+utCim5HLl3Q0hbWq4sENDn3wmGyQoBKRwgQwVpl4NtAUB5efB3MCQ0uzbJubfptIE0be8XoqnevJ1PnU+dT9uIT4F6JCHs5wpZtlf6qXazCoS8FQpCKSAvYmXooGOaOWqHtVIC2vA8g1C6ETxKMAJl9RzT0pBaAq6iJhmKgaKUqYpCrV4tOnDysWSwLJSCkPYFpWrfhVBq2sp/pqyDJNqfDNueJKdro7y/82k463wazjqfhrPN9ilM3mEwSmnbGkUIOwZkEHplFSml386AFEpCaulRxgCSRoJ0OW9gnMokAMYXIzcwUFAgZYuRc1EAoey8kqpW4JzBaD8vDtGqVPl1KiuhqTIFlSkL8zSJYRmGWllVStXc/igrYdhR23Zn0DpIDmkzdePOxE3P1vk0nHU+DWedT8NZm08EQFQVo1tmZcnzAOLQqptncJQAzX1IFXBwNG5w44aQqwRAioBMQfcAlQG6Z4LQajmnlLJdQ5TtH9mUvOOVZNA+ySHWEJAWmmWYVWZJpCJVmkBIN21qj2RYNkGzDZBzBM4OkojbK2byZmr7rDar3XCdT51PnU9bnU/NIVY3FQEUONQqFYQ0Fo5K2bEkpQKkrqlFD0MlQSZWkzJLYHoFVAagpyNQkqZSQWoBIe1/xsNYCV0HpHXThVllCcsw3MohVuGAqdLEAtKFhWWWQKZJLWEnDLVCsrJ0odcgBOsfKKITJucMkEAHSQD1m2SQ9Wv7GHSMfjdevyfUzqetwycBwI8jWDl2+4HLH9Xq/zYTPlX3mw/f0zbrE/+ACwkSpqYsSchynQePsqN+RKpK+3Y6Vo0yS9z4jLGalO5nXPeKRlCSFnacR2UqsDQ+05ahWft3gqQdXua2SAtCG2K1arIEpPJwdEAMVKR0qpJVY9Qe2S9pR84tHNk6SGJmwzADfxBHONZMHafzabjjTMcn0TAqgdCFO+iA7Lvwhpcy/gENtosKPKdjW/p7ajvWTB1nvvjkQ65Bu2STshRKAcZCgqTxitJCQwfrFYTSkVqsmkFRAyUXGxDaju8oNNVgqSD7FjePu4+EhQRkpB4ZgqwapQOhzBILzjT14Ve/PUs9FEWS1sOt/ArK/W0pW9CQbLqxNjfsM+i9g8I4Tds6n+aRTwEUeazAEJI8aoF9QwskG0BIRpQ/pIHS4B8IhidVfizm7ffU+RS3S0oJIqcsub4r4FVjLeRqjFWTSWoPxW2QJg67qsxuD0FptLGABSCkcck6MSyRurEg+4zQUf4bLivVgTHMavWZq04lerVYAaRXmW5fSAWRZKVaDkKtHp5KbXFAAgsckk03wDA3RfXmGfZmGiYVvfNp/vkkAMAUEKaIoOiBSFVQ9oFk1E0gUBa8LfhRICP8j2qkNMN9Bvi/0M/dlvAJQP92SZ5WwqpkNJCkdhDiSE1qq7yafAxL1akYjLyOtIlgCUinJLnAuWoscxdWyAmVZAjHSB2mFbVYAaRMEwdR5dRjoCITVpbN7ZG+aPwWAOacfOKVV16JfffdF+Pj41i5ciW+8Y1vtO77mc98Bk996lOxyy67YMmSJTjqqKNw0003RfusXr0aQojaa3Jyckb8bQvdCDTfmE03SZNRn30GhYs6n+bGp+hlCshiEqL3iH3lUxDFFES+yb0esa9iEiIPX1Nu37ycryyj6Nl9eap7ELoH8MsUEDr3LxQ9CG1BLcJ9XNsnv+bqe2qz7npC9LDDP+4UrZM+5Coq4UUhHUDSDCJJ7cttk1nq1FkZyuRl5bap8cwDKRnPkIxnUMErGc+g0gTJeAqVKaQTCVQmkUwktZfKJNKJBOmE298ds+l44eeqLIUaH2sEpMxSC8QkhUgyqyKD/zEMO6PyXfrvuCmZZxZt1pXktddei3POOQdXXnkljjnmGLz//e/H05/+dNx5551Yvnx5bf+vf/3reOpTn4p/+qd/wg477ICPfOQjePazn43vfOc7OPTQQ/1+S5Yswc9//vPovePj4yP7N+jmG2Z92z7DhnCGeULufJpdn/xtZwqrErWb8ujovD5Qk5GSBMoQrP/QYL6iIGsqw9gfVN+eVflhFUICRCAjymUZ7+MV6Sx+T8Mce6FfTxza7dtfkgHqw60uvGjK0KsPuyap9a0AhNJQwc+2b3tUEqZXQChjCwZoA5MXkYo0PAByZUQR2adYerVAeZiIE5WXkzb069smg24gVUBymFWkDpSc4ZpmZbarC7WG4daoqWE6peymaYKIhrkGp21HHHEEDjvsMFx11VV+3WMf+1g85znPwaWXXjrUMQ466CCsWrUKb3jDGwBYJXnOOefg/vvvn5ZPGzduxNKlS7FhwwYsWbJk4P6DbrBR2jM2u52j82nGfQJQhlN10QpGvz5sk6yFWstP41EcACCs1+mfhKuhUx9aTcrwUghMmVR+YJNGUPrPmeHvaT6eu/nqkyDjFL+NCPjrq+jZ68hFBITRoLwHKnJQ0QOK3C/DraM82FbkgNEwvRzaQZCMgenZecPzxoC0jgZlLgdtjiHZNoZkVMg8gGQIxrIrh6y1ScZZrqoEpFPISDOIbNwup1m5PRsHksTeByqz0yQFyQRQGUgqIMnwwEOPYLc9/ggPPPDAUL/j07VZVZK9Xg/f+973cP7550frTzrpJHzrW98a6hjGGDz44IPYcccdo/UPPfQQ9t57b2it8fjHPx5vfvObI6UZ2tTUFKampvzyxo0bAdRDKW03UtPTJrVsD9eN8mQa+jNMu0vn0+b51ApHU0Ttj36dT9ThebIQ5BHlATuSvD9uXKuTosoqtk+YnVfuqTlofzRFCUQjQdL+CIGM/aFwSpLsgUtVKd3tzFmxM/A9NW0P13XXU7tPUcQg6itJ5cMQmaht0me0SgOS2iqt8H+TClT0IOHUY17YrhxSgoyB6BWQUvoBmqWHpL0eGZpACUu+MsN2ybA9sqomq2AUSpal5hwcQ2AKFzqGC6tG4WQOrYYADRN2wiSnarvuHNmsQvLee++F1hq77bZbtH633XbDhg0bhjrGO97xDjz88MM47bTT/LoDDzwQq1evxiGHHIKNGzfi8ssvxzHHHIM77rgD+++/f+0Yl156KS655JLa+mFuiur2tpuwbd9RrfNp9n0CEMMxfNKvKElhyrCrh2KRgypwjMa/a/JBlVAEAGJQShXNe2CSsT8QMnFwdrAMQQkAgkASgAEEihoot7Vzt7X5BO4vCQfNIMvVLidAEijQwB8BgIz264SUVkkC9joqciilILUGaQPt6ryScXB0LxNAUVZUpF3fXny97EdZKkmeysaQawlJkWYuOaecliFWt96pSBG0R/p23CBysqUACcxRdquoNLQSUW1dk11zzTW4+OKL8bnPfQ677rqrX3/kkUfiyCOP9MvHHHMMDjvsMLz73e/GFVdcUTvOBRdcgPPOO88vb9y4EXvttVfsU+gv6hd+9WlxJsI31WP0+8zOp833SQAWeBwGMxrQvZqSFF5NWjBS0bNP40XPA5GBCWMCWLb/2LCSLBWkg54KQJlkHpgipTosAfsDaw9k/y+ZQBh4UEI0t4OO8j3x/Hw6d1udT0FWsm+XjF4ULXO/SZIGIgmObaRTkBaQtq1T2WuNp0ZDGAOhemX4NQyvtoRbAXiA9jPZAMhq4fJSVZYJOB6GoXr0qtGFWHkbJ/JwmNUB0jYrbNm+krMKyZ133hlKqZpqvOeee2rqsmrXXnstXvayl+FTn/oUTjzxxL77SinxhCc8Ab/85S8bt4+NjWFsbGxov4e5CcMf3ur8ME+hw35O59Pm+8RwBBmbTcrKsQmWpgCKIgZjkUcqMoIjgzF4Gg+f0qOhgZRyodMKKDkNvshdKrxN4PCwlKoEpEzs/6gSCFN4UILsQ6cgU+tLOez31LZPdz2N7lP84SUUG9WkkCAJCw3Alpvj9/oHsCASYTSQ9yJIwhiIJHXXpIHiB7wgvGoa2iSHGdmyqiIZirwuAiNHRNx1LKR0GawVVcltkEGoFUlFOTa8atnCc2CzCsksy7By5UqsWbMGp556ql+/Zs0anHLKKa3vu+aaa/DSl74U11xzDZ75zGcO/Bwiwu23345DDjlks/wdNszSdsMN86Q7Slin82nzfYrUIydN6J6FZQscOUGCcjdvdDk1GtDa/vBwyJWh2KAkm9oiKfjxqMIRWtv1RgPcHiUVkJSA9P+rSkr4kwTBFTcQpvUHZGs6d1u9TyEEuURd+IMvg+OYogSl1k492vZHIRUo79lrxhigiAEpguuRgem3AX5ZAVFotalvZOP/GgyYDKDsnhFAMQJkcG37bNUQjiFEfT9JB0hWkZy8Vk1M2wI26+HW8847D6effjoOP/xwHHXUUfjABz6AdevW4ayzzgJgQ6F33303rr76agAWkH/5l3+Jyy+/HEceeaRXoRMTE1i6dCkA4JJLLsGRRx6J/fffHxs3bsQVV1yB22+/He9973s3y9dBN071Zhg1QWDUz+t82jyfONFGcLuj74vIfRB7JRx7k83Zhe6pvRZuDX+MgKHadcL2Rwp/WJLU/vAlWRlG08HxXReAattV9CMtJCAG64Kt5dxtCz5FVlWTKgF0Ydfxww+5xC8eMcTYriHguq58PYTzVSi665A46QyIHuRE8CBHDQ91dberQ3nBd7+IoAjUwOjnXTJOLQybZL4NnhPVojCrammTnMPuH8AcQHLVqlW477778KY3vQnr16/HwQcfjBtuuAF77703AGD9+vVYt26d3//9738/iqLAK17xCrziFa/w68844wysXr0aAHD//ffj5S9/OTZs2IClS5fi0EMPxde//nU88YlPnNX/pfrDNOrT6XT27Xyapg+heuTwqpv3cMx7Nqzam+yfel8BpOnlUQhr0BN5OOBs1HZTCa2C2zld1ZVQDfD3GYFSuIxGYWz4jlwYj+zydJ6858O526Z84h91baIMZqsU3dTAgtIUNpGHjD3P5K4JVo1FbkOxvBy0i3OST9OyAHxzQNQUAPRtR68OWRXB0G0Pmw5qgGwIw/o2yjQDCeG7NtW6PymGZdhFSsSwnCOb9X6S89Gq/SRnIxlgc63zafrHEwEQm9Sj0DnM1Cb7o9ObtHDsTVpA+j5rASDzns8epD79zoAyEUIGT7vVDMAw2cEWeo6TF3wGYJjgkKSuT5lru1EZSCYglQIq6E/m+pD5kNUMfu8L9Xqa7jG4H60vQGEK24/WZUzXilME/XB9H1z3nqi7URjNAOJkMqBUlwjUYgjDIZJ1ahaOUALEcHTrPRTd+sZQrCqzVyM4+hC0au8bLF3BcwfQjQ8+hN1232Pr7ie5tdigtodB+7RtH/WGGza5oPOp2ScfXg0BWU3UyXswvckIjihy0NSmGI5FHnXY5uolnFLP822p9E2p8039yZQxDpaV0JnW0f/JWY0EQCoFMgUgpM3AFRKQXNCgOeQ638/dNumTcH1bhbTCx7UbC5lYUAIua7kAXIayIPcehqWQZV9KMpABMEu1WIZSI3CiDK/WmgOGCLUCqKvJhnZJ+6+2ANK9p5pwU4NjtXhGpftHtH2OrYMk+t9Ug26aftuHuVFbf/A7n4b2ya6Mw6u1eVMAvSkLx94kaGrSh1rtfB2OJi98JZNYRcaVTLwLbqSGyO9KZRLD4da8gEoTGy51sJSprj3lR98dZ7lKBWRjZViVQ6yAVR3GoFqVeb6eu23eJw4LBuFvgomGRCOZQAh7HskYgEQMS/d+f74ZRg6aQAnBqB0SKGEJ1Atc9AGlkA0PW5UktGi/KhD5f+euSm1g5P0aSjHWAFl3stX/mbQOkoE1hu4Qtz2ENhNtIYOO0fk0xDEGAJLDqx6IDpShqmQ4FpM9rxo1Q9IYaNcO6RVk0B+tzertkOUICULZkReUNtEYgU23vVeReQ9c/1MUhf8REUQeloNs3p27bdgn3hdAqSaZeYFqjJVjAEsohDWCCfD7AygTfcgAKi3Pfzjgd0uZRP5/hrGwpKL9X4J3VtoIKZxW2w+rwAvByPu1QdSBdEtkunaQRPsNI4Lp5t6Yo4aAOp+GOwaAGIrFJEQRtEWG4VUGZagee5Mwk5NeOepNvSDEmpegrHTSDlVk2zBDGqi1Qxo3KK5QEsr1Y5PGwpIrpdRuSsXtOpzpqHz4zasLY2zItcXm27lbKD6FP+bEi8wyGAgEgAhgCQlfLN+fXyAAJJWADKf95pOGda3Ox377+RBOTfNhkk24XjbAtApHN1+Do3v/lioo0EEysGHDLsNaU+Zbv/06n4b3yf9oFZMWkMWUVY0MyGKyHl51oAzVo56csuqxV0DnBfRkz6tG03Pg9AWjTQWW1htTGdVd8gjulYFpDZfuciFWLhOm3LH5ZjRK2p9O6cJQeQDGoH+cbFKQlYLrVZsP524h+uSPW1WUwv4RRB6UdoOJIShL9QigDMMC9UScYBuH4DfP5wbNGcJKNoOTKuCM5gdBNWh/rB1njkHZQbLFRr2smm7MUdtGOp+G86kfIEUxacdadIA0mx6ug9Il7RSTPejJnoekyXM/b0OsRRR6JU0wmqzK1BQl7dT89cWg7WjuKiszWskYSNceGarQAvaG5KlSuU/WES6tHtIO0Isks+GzoH3Kh9+GtO56mn2fPF6CtkkPSkhX/EEGbY/8DhXDrQmOvL7afFjZZ0YA3wam6vo2pYn+YVoAEWwbFWufY8+mdZCcAevXftG0PGw2XedT3ScBoKkNMgQkTT5Sh2IwbyYnY0DmBYrJqUg5Gg6/9jSMJuiedlBjULKKrIPStkVqpyTtiO6klQu5Cq8cKQ3GBTQmAqR24VXp+p5FFVW0dnVmwy4DlfDbDNu2ej3NhU9eIVZVFhmA260blKE/TlPW8oDzPB31OPRgxsMCE2jMRm0sm7g562bZOkj2saaGet8QH+zXdDlWb9TOpxnyqQpI1wbZCMjJh2uA5PCq3mQBWUxOWRhO9mpwZECaPAClg6MNuTb/EPlwq5Q+5EqaIJSAShWMJihdtkPyTajdD4p2ST522vNhVyGlLzRArpSdAOIEjhFtwV9Pc+CT3bnlB58VYqSo+GDTf+CZ9kPAKBAaFVhbAHAzYR0kG6ytTWOYEM0wmW/TuYA7n1CrohMm6YQh1iZAmk0PR+qR2x5DNWnXWTjq3AJR94xXkawgw/ZIACBj54Us2yIBuCxWqyaNVh6WMmVVUPi/CRCN22eCdkyVGldQ3QBFbgsKcGWVtnbJIb//hXw9zYVP9ZV9wpMj2qj/jxnyDbOlstsOPOhhRrbsMGt+VmzBQ7JfeIat+gTZz/rtM+wxOp+GAGRDko6ZfLgGSF5XBWQxOeXVpA239jwQTa4jOOpemahDhlqTdsKEHbssIaSAypx6dHAs2zNTMCg5vCqUbbM0LtPVaAOZ92xFHlNWXRH2QLZdUqXBF9uQaYvueppvPrG1gavtvU37txVNa3tUGiYSa0YM18oBodqmzdXHg+rwiQxHTTFI26A5W7bgITns0+bmPrVsTqLAQveJK+lU+0H6bh6hggzaIIcBpF3OvXpsBqUFo+5xlw8qhx0KVCT3QmMFScqGWMkQZCodZE2gJHMwKMvwqvTANNL2qyRtyvAqlyfTJSh9NqtpSOJo+D4X+vXUZrPtUwg4alkPxNAz0frq8YJoRp/Panpv9f2bb/ZYTbAMV4WAE36dmyPy+0o4OLoV/D4B+7/NJSgXPCSna4Nuvur2uQgNbLM+8TiQblDkCJZcd7XXkKTTAMj84U2+/ZEBmW8qPBQtMK2CM7nx7ZI+zGoogmTVpJIwuYFQwqtIUva/ooauIrqnbTg2L8puIkqCshTGuHJ4WeLDq3Z0BxMrylmybfZ6mmEbBsQMLaouO1Dx1RRyiyFWfU+4XxMom/bzx2zwdHNYWWciIRgNs4ReCxyFADRRCUH+Xtw2EMH2mClhyaCcK+sgOU0bdI5GOYdNSQHTsW3RJxECMhgHUmg7Na4weQhGhmWTgjS9ogbIYrKoqUdWlaTJt08abWAMgVmnK78uSghAaygBSO0SdkwZZuUwLGDbHVmZapcB68Or2lb4YRVp1+mo5JgFpR34WVTbJGfItsXrKbS58ikEZAjHKhgNZyhH+7XD0r/PbSmPE/hWgXC5vt3PQdak4iK16PypqUCvEmM4CgAaJTSl2ybIrjMCvvyegfDvmSvrINlgw7RNDNo2nRtwlCfkbd0nAcBnsprCD44c1mI1U5ts/VVXSQfBaB7aZa32C7GGgCxB6SAZqEmjDXJNHoqa6oAEAGagEoAiQBmNBAraBWJVJkHKhW5zV2tTCa9UqyXvwmX7dehoPMCajQDLhXY9bUmf+DMMxdCqAtBut/szMCNYBjAcpERLMFO8XHFwcx4OQlBVFaNw30YISBnsKwUcKEtoEiwYKYClIatMjai3Yc6VdZAcwvpdSP1uikHvDfcd9Wl2W/aJARmFVk1hE3VM4YuVI1SQhSs/V/RsmbmeLTFnlWMO0ytqgLTKsRmQ2m0zhtBz6lFTu4oEKpB0L+QaUtefe6WSIOX6Xea6VJNZWWSAixXwskAJSg/MhoIGIlAkw9q2fD1taZ+qFgIyhGMbGKtQ5PeD3xuAkNezL9rwNn7Ac8uVy6bpem4yFUjGsAuk8qrRTpUsIeqh6EOm5KEphAAJsueBmmFJICiUipLV5FyFXDtINli/J8VB26lhvm2/cJ9B53vB+cRDXgXtkDCFHX+Px3zkYa4cLBmavrxcbqvoRN088jK0GoLS5Ab5phKWoXpsgmSTXtNEUO7pOJP2v+sZQgZAaoKRBkILCG1hLFybZFVNGm2gADvaiHHzxjQCEWiG4qDqOwvuetpCPlmIlSoyBKRugOMgMDIUed8QhiEI+VLRFK4v/TMBYYYFJFsMSgdFryRFCUxp95VCQEn7jQjE0FTS/q9NsAScigQgUCrK5sHgZs86SA6w6k037A9PVRk13cTTfRDaln2yKw2ELjwghbHzHG41Rc+GWXk8yGCgZBMBsvBwLIsEGN/eWIKSFaQFZJFraIKDYwlJA0Qh19CUsO0qXLK6ZywwMynsvrlGAvi+kqRc1Z4UPusVQD3EGswDsKCsjg24mbYtX0/zwSe2QYDUVMJxEBgZigxErxDdsRmCTZDsB8g2dVZthyxBWELSq0ghIKWA4rKzDpwMzVRJB0ayhYgqsIQkSOJscQtHcqFXJYQNMQ9bHWgGrINkYP3aHwaFZar7shHqN9YoIZ6F5JOdMWVIlQEZhFkp75VhVjcGJE85zGrci8Os2i/rMpzK7Y55PB8CkiGpCcgHtEdq4h8OdwOT/a/ssSwsOTGH1aTxIdVq/0m4ZeOfmo02UNHo8pVhj4as27qQrqf54JP//ABihBiQ2pTqUZs6HLVpB2MIxXAZCNfZ5TLUyr6U/g2jJiMFycrRQ9KGQEN4MjhDaKZSQpP2CjORAkIQYCwIBXjehlgZjoLs8cmdyC67dQvZqE+Gbdvb9uWbZ5Tzu+B8qqhI6ACWRsM4xQj3orxcJtdlgsOs5XwcZi2zV7Xv/6hzN18BZE5lmDUMtwLlD0v54xH8FDtQWnjafVMI34UEgK8Da4sTVIpBVwZzbvyq9OhdQBbc9bSFfQLsDzqDj3i5AkhtLEh1AEfj5hmOHP5vA2MIRQvSct76QUEbZenfKOHWsu3RLUteFh6UFoglNBmQUghoBT+fKgFDrCwJSgIKAtrdRwxPJUM4EoQQcxpy7SCJ9ifDtifJ6doo719oPtkmCGPbHE3h5wV3lncq0odZjQYVPdtfsOjB9HKvGKMBk7VpDLNy9RzOYtU9jVzTQEA2h1urGqMEJb9PCQFjCDIIsSJFZGUW62BATuf7XUjXU9vxBtlM+xTuZ6gaMm0GJIddiwY4VkGZa9MIRQZiqCLtutIXXh+abpBoKoi1NiXoRGFWYfdnaCYqBqYhcoCUMERIpe0FaY9hQ60elDZTB4IEBOw06EU1Z9ZBckibqRt3Jm56tm3OJ6ccvYo0pkzWKQqrGF390jYVaTvg5yUo86IcKJn7Orpi5Vyw3OTGP4WXr2ZAVpWkEiJYFwAS5Q2tqZI0oQ2US2ivFhjYkrbNXU8z9N6qDetTmHgTJtkwLKuAZBXI6jE3BsYAuTEBEENQViAZgDGEIodoGYDaxPOhFQ2QTEJIcng1mCopggQdQJpSVSojkEoJKYBUSRtRURKGtAckICElweW7elASCETCRgFcqNVPMXoG93StgySqP20zdzO1fVabVZMLFopPXkX68mpFTUWyYmxSkaS1HRhZu4GS3ZQiOFKQQco1WBmaxoOMXzZJpxmQ4dN3PeQaG4dbeX7UG46LnjdvK4NOjcMPBbaQrqf55BOHWn1/SAdLYkXZAMhcGxvJ0ITcWIUYgzKYGhOBMdcUQTF8ARaCVUCGoNQNGdQq6OtRhSNgIaoqr1RKD0wtCUoKX07OEJBKAQYkYCApXHYKUggIsgk+rCbVyA0Mm28dJDF65lvbPmLA9upn9TvuQvGJARmpSK5DyrAkgmEVabRVklp7ZWlyN0iym/IyvzghhrNIGYwMS4AhGBYM4GkzIEP4sdl9yANTu9BSPxMN8SNRGYPPjkPJgy5LO+iy7N8qU4XmQrme5ptPoXFbJKvIEqBoBWSoHnMX7Sg0RXC08/bYPW0iMBamCkvTF5LVZQtCHcxXQSkjODIwdUJeYRolPCxTVapH960AkEgVYIyAEQSCcGoakLJUk5ywM9ch1w6SmNkwzEydvwXlU0uXD64gQ7lVjTyOIhkdDUJchlONHRUD8OuaQq2sJgEb7jSVHwl+lq6119SW+9+wVXXp+5K1qMNQNXowDjIpa4PlNg2eu6Cup8081kwfJ1KPPKUwDFtmtlYBWSrJYNnvY+HIwNSG0CtMDYy9QtdCraGy5PX9LGyXDJUjoKGkQJbICJjaUDlP0oVWAUMGRjkIKgFWktVppiRI2MIBwt1n7CF3BZkrW9CQbPqaNzfEMui9g8I4Tdu2aZ84xBq+jInCr+QqzJAbASMcMoq0jvoSxsBsDrWytRUpH9aqgFSiGYy++g5K5Si4wo4blNmvd8NlsQlX8Fz4gZetiuRpzfooyH7rRrF5fT3NI58AxCN6NKhI7doNCxdSHQTIKihZOYZw7BXGK0Y7X6pKoA7KONwa/8dR0k5Le2QiBXqFcaBkSCooKTCWuIHEJcGQRFoBY84VzbltUhCke5gok5xstxgFUWa5buZ5GcUWNCSbboBhborqzTPszcT79dt3wfnkVCQDUlSBWXACDytH25meuNh3Q6f7QRmh1PDUPEz+jHLZqnY+Xl/ft/5+7lPWFmKVSngFaeGoIINxJptMSGXByK+KLbjraR75FCqfMoknVpHGA8H2fTQ+S7UdkHkQbu0VBlOF6QvHqcI0gnFQ2JWtCspa0o5TkqweeT5LlIczwzIEpBT2f7KJOwKS7P+rhECurZo05HpTURlqnSm1P6wtaEi2WdvN19b2MeyNS332GXTDb4s+hTAURI3zAAL1WKk8E9Q25Sk1JB4MY1xOLl4Xp3BwV44w7Kp8+rudL6e28g7PKyH8IMysHqViAAoHSOFVYzR1gIxVpIyLZ45o2+L1NN98AkrFE2e3lm2RYZhVB2HUqqKsApIhOFWU8xxWDbdVk3eaknmqRQaqJkNIClEDZTMgy2nDEQEYSG3npbT/nxLSZpnLUk1SEEy3oJz75J0FD8mmm2DQzdbPBt24w6xbCD7ZHRuUYyXUCq8YdRl2DfsRTgOKgjtAu7Efq2bLropaGySDNFSOZVFzEYFSIg61KgEHQ+nHmuSQq8pkqSAbACmdqrSAdHAMQ66sIluguRCup/nmEyfihPtyqBVA1I2BVWTuYVkmkoXJPm2A7BU6AKUNu4ZKsleFJZXt8GQoiqw0gdJHQNzA4kK6AgEibn8MwRirx7pJoZALgpI2EcmqR4IUrKLtcaUQkYrcErbgITmdkEp13ea2Zwx7Y25TPgVQZOVYBaYggjFlaDUyVpe8OCQswzZBnkot7NBWvu2QgpsyVJOo/YftSjJWkUmqPBilklCZgkoVVKZ8qFWmiQejytK4PTJJo8xWEUyjTNYhQ66176Vhv63qepqnPvFzVtQFJOjuAQRADMKshuC7fjAcuR9kEyCr6rFX1MOu/BkMRmPIt5k2NUGw8W0mpCjHiJQCWgoPzEwNoyCtKSmQGwMlpQdjrg2kkL6tlWFJJKJatjOXojW8LWhIVr/uthus6WmTWraH60Z5Mg39GSaMtDX7xKHWmorkUOsga4CmlBL9yn5zOBM5oqlwgyMrowNIOhUZhFu5tFxYPCBUkbyshEDqppm0r1SFcJSRipTupTJl4ciglHbeg1MqiCSzL1aQYWZr2CYZgHIYtYSWfbaW62m++lTWa+VlOw1DsNqUbZFVFZkHcNMG6Gnj2yDbAFmFY6+wXUp0YSIwMhQZmqG/te8niJwwFIkEhHHzUmDScPeOuA2zybg4gS04wKFW5fp62kJU/H00ff8cpu7D9Rm1BQ3JYW6K6va2m7Bt386npgPGoVW/rrLdZrOGSTu6EZD+s2UcphSqbO8zOVw7oAC5ECYpAikJMhSpSYDc6B12BAIGJP+cxkk7PBVBiNXCkaErlXSqUXr1yFMZqkkHRJUmkJl7KQmRZkCSlqFWpyo5aYdEBZazee4a9h3VFoJPvC4cVNku8/Yy1BoNwRaoSJ8NSxR182h6leCMIZlrC0ddGA9HryYrbZHt43WTv6wkCZApw68qkR6WOex9kvXpuqSkxFRhXNcQqxq5nZ+Vrpa2zjF/bza7dQvFWrHAIRnaoJuk+rQ4SlinzWqhmQXok0/SAWJotplXUWUbXbXzvT92lCnq1JuUEIogU2lH5AjUZOqe8bnIufeeuIBzi0uoh1sZkkmqIFOrIK1aFH6+nCrILCnhmKZWUTI4k9QCMXVKUjlVmWY21CoTD0v7jw/OdN1Wr6f55FOoGO0y+eUw1AqUUAzbIkMVWS0OEKrIUEEyIHvallo0hZu6ZYajnXf+mXI4Lf9/GfJt99ZRew+QtP+1kHBVcuCVJQCQFOg1fBeAVZi9Qvt2zF5hoFLhS+gxIMuC7fb/ZuU5TJBpNqyDZIMNcy54n6b2iGGeQof9nG3Np1qoNVzuZ75fYN64OUxyMawUtfTtfSpVIE1QmbJZsE7dVS2FAbQdNDksUwe0j5bQ1BaZcgZrGoAwlUgnEqceS3UpXVg1AmWWIBnPShXpXnAvkaQgIUAOkJDt3UCabFu5nuajT21JOwB8eyRQdrloGu8xHLkjbIsMs1irFXVCJdkGSK2NC9SUYPTh1koCj6yETUkKCAajYWAakBEeqAo2Q7UX9GSMoOjmQzXpa85K+JArAzP87qrzc2UdJAMbNszSdsMN86Q76Cl1m/epGmqthlmBOjCrZdqkBHHnelV92bY9mSZOKVpIGU2QaTlt9V0JoKehTBMk6/s3Je5IKYKQqvSADMOr0oddLSCT8QwyTaDGx/w6mTEcM4ixCa8evYr0ClJ4QJIQfbuGbHPX03z1KegHGSbtlNvtlPPNSii69V5NltuqdVfbXhxiDQFZgrIEZJjAwz6HpoMLXggBOHAKKWAkII0dyU5IgoKELoL7NpHQgiI4hiqYYWlfgJFxAhOPhWVcM8eWUpFAB8nIBp2H6s0waoLAqJ+3rfk0rVaF4AefE1YomIdSpXqUEpQmUK4Kj1R2mbSBytyoGwOyYEnbMJPJDaQ2fnR1+3vR3kfSuuoScGSZpBMCMhlP/DSdsPNqPLOAzBIkDpBqPINKE6sYs3GINFaQIklBUllIygRQSakohyh0Psz2reF6mu8+hSHMatJOuD1UkHY93PoYiNX5el1WCxmGXxlWpQiQOoCo9a1/NxAp7YgcQgpoTVHCjiBhAQk7sg0ZghEE4ZRgqHJjMJYq2A8kHXxf4XKZIRx/l3NlHSRHsOrT46hPp9PZd1vzaZjQKgkJAdjuDYUDolK2oDl3gyjyqF1SOhgaY2ylGrdsP5Ir8eSNIVY2qSR0T/s2SuN+TEgTEtgydmkF9Vxflfs++gxWF+LltkdWjgxKBqTyodUxG26dcOvGxy0gGZRJCjE2bmGZjVk4yqSEpZCgIJFn2LBr1ba262k++kSIYcjbyhBs3Yvq+I5N1W+aQBku6wB8YVcPC8E6IKtZrkAccg2PL2SpJCGtAuYrjIRTe5I/v/zvtRA1kNtjGmhTv0bDMOt8semX7BjBrrzySuy7774YHx/HypUr8Y1vfKPv/l/72tewcuVKjI+PY7/99sP73ve+2j7XXXcdVqxYgbGxMaxYsQLXX3/9tP0bVuE0hVWmY8O8f5v0qRJarXX3aOjvJ7g+qa8y48DI/QalhMxSn6DjQ5VKuiSYsr0vGU8bwqB2PplIIFPpVV4yoex03L54W78Xv49hmEwkHpB8rHTCqUinIL2SrIRcLRhdmDUb91M5NuHgaAEJlXhgRm2TM33uRrSFeo2H7ZHAYNXT1s5dHi+GZjiUVRWW/jMDFQmUwORjtXUDIa82m171zNjwuOG2sP9ldRzLwjQAPmiXrP3fWzLO6mzWIXnttdfinHPOwetf/3r84Ac/wLHHHounP/3pWLduXeP+d911F57xjGfg2GOPxQ9+8AO87nWvw6te9Spcd911fp+1a9di1apVOP3003HHHXfg9NNPx2mnnYbvfOc70/Kx32kQGO7GaTrGqOHFcP9tzSe/bVCCTvADb9vXVARIwZVmlPJ9ByGVh2EJytQnwagKKJMJN2WwhfMOlqwCQ2A2vZIJVQOqD6emCsl4GgEyCrE6v9T4WATKUDnacGvmoUkqBSk7RZKBVOYVJVQSZ7jO0Lnrd4zuGm82W1GnNLPZiI+trc5q3Y84i7WqFE0FjpwoVH2FsGwHZdyuyfs2hYurytL70/JvDfnvzooJautBOkN2xBFH4LDDDsNVV13l1z32sY/Fc57zHFx66aW1/V/72tfi85//PH7605/6dWeddRbuuOMOrF27FgCwatUqbNy4ETfeeKPf5+STT8ajHvUoXHPNNbVjTk1NYWpqyi9v3LgRe+21FzZs2IAlS5ZMOwwzG+nom3vs+eoTAHcXFjbcquNBlUU4niQvmwLIe3aA5SIH9SbtoMtuHnkPpjfpt5lejmKyB5MXML3CzefQ0bKd13kB3bNF0XWu3bxLcMi1HzUEgB97svF/cw2SXG5Oum4mUXcPH2pNfdaqTFlNWkAmi8ft+kWLIMcXW0COL4acWGwBOb4YSDNQMl4HpLKq2rdLAn7ar81s2HM3H6+n+eqTJlZH5QgfvtycG+0jLA6Qa8KkNpgqtJ8vNGGy0MiN6/+oDTb1NKYKg029Ar2iXO4Fr025hi4MdGGihB1dhJmtlZCrD7NW2lDd+rAbCI+NaqP5tl1SKlecPJGQQkAmAkpJqMRmmKtEIksVskRiIlOYyBQWuelElvj5xZnCmJIYTxQmUonxRGJRqjCWSEwkCpmyo41kSiB100ceehB77bEMDzzwAJYsWTKNszaczaqS7PV6+N73voeTTjopWn/SSSfhW9/6VuN71q5dW9v/aU97Gr773e8iz/O++7Qd89JLL8XSpUv9a6+99mrcr+kpUfTZNkpbSJsNOsa24FN54FhFhuMekgsVcqYmt6sJFdQoTdJSTSap7zfISS0yS0uF5mFUKsqkEuJk5chK0ivGxRmyxRnSxaXCzLZzCrTy8orSq0jeTyFbnEbKNQyxhoBUE05ZVtshgxfSrKYgSaWgdAykEg/MMHlnWJW1tV1PW7VPLU5JnwTmplxfuLKsZHtVm35jLFb7QYZWDe6EajNUn03HGKas3TAh03Dgni2pGptsVhN37r33Xmitsdtuu0Xrd9ttN2zYsKHxPRs2bGjcvygK3Hvvvdh9991b92k75gUXXIDzzjvPL7OSZGs7J+FNsbnJAaM+oW5zPvULswoZbw+GfiIfbtW+Qz0nTMAYIE0j/yTsRV24dQkA7bqG6KB4uOZ+ldpAqgIqk15ZGk22L6WWMMHgzGzGZc56d52C5HmVuhJzWVlmjjNWQ3g3AVIG7Y8cbsXYhIViMmYB6dQkJU5JDpGks81dT/PQp2p7pF1u/3Tpyh66Kok2KcYQmH9KCOSgxnEcw2nkZ1A2LnRGCgHd55uo9pnsZ/ZWJbCjxpQ+koFP4Gka7rQtzDqKzeF4ywDmKLtVVP4rIqqtG7R/df0oxxwbG8PY2NhAP8PTNpMhnWGeWtv22eZ9YkCGYISBcGpSCAkkSa0bCQGA0bWn+hCUOug/qR0cjZuXWeLDrjJNYPICKrVDbXF41YZcTQlKnzRR3v1c7accC9KN7OHgKNPEZqsG7aO+DdIB0yfqMCDHF3lQIhurAzIZAyWun2TTV9rnnGzz19M88MkOg9X+DhEcUbrhFRmIzD0PUAnkph2Q4ZiOrZ9XfQYVopZhK4WAIZvF2gTKWgUexHAE6sNY1fpdDgnG8GNCdVz9FweUiJ0xm1VI7rzzzlBK1RTePffcU1OCbMuWLWvcP0kS7LTTTn33aTvmdGzUG7XpxhzmGKPcgFujT63XcXjnunkSrsScASAoAqdQCkAWgRJAmdRTWSelglA9C0WnII2UMFkC2StsW2UAS8oS1x5ZQIYDODtoAmhsl4zaJMPiBlJCZa60nIOkylKvKH3yzngQVh2rgHJ8EaAy+5oBQFZta7ye5rNPTftJByQiARJljVYheDSMZkWpnFCTohySKnEl3xhMiRuJg81WsHH9F7kvoyn/0xCAQgo//DFAfQM9vH85XyrW6v/az6qDN8fb+nx2sCu/bS7V5KxCMssyrFy5EmvWrMGpp57q169ZswannHJK43uOOuoofOELX4jW3XzzzTj88MORutDaUUcdhTVr1uDcc8+N9jn66KNn4b8YbE03XHVduBzOz1b4fT76VDNWjaiMYCEBIgMhEw/FEo4xKCNouj6TFGTEKpXbdVkCnRY2cSeAJRkDneYWhr3CFh/warLaz7L+S1IOiCz9sh/JwyvJ1E5ZTXLotQJIn7DjunpYBTlu2x0rgOyup/npU2hS1Ks0SQAk7OcbskrJCAtGScIvFy7MasiBUoYviSwhP45j9DICJhypwx2XXIUcYjgaRGpSSFtqjtVk8//Tsr4KUGE/vymy16R6w+VYSZcmRAlG11Vz5Czm6dqsh1vPO+88nH766Tj88MNx1FFH4QMf+ADWrVuHs846C4BtL7z77rtx9dVXA7CZrO95z3tw3nnn4cwzz8TatWvxoQ99KMpaPfvss3HcccfhrW99K0455RR87nOfw5e//GV885vfnFHfwx/n8EYD4pus6Yar3qgL1acms4oR9jE2VJOABYApbHcGXcSgtHdg+XmsIlXch9KPuZikoCKHTGx2LIdVdWrhaNLCVuZxhQdo3ED38giKFMASCEOu7HYJRw9MD0rl4SicauXEIjHm+kFGCrKEpu/qEQIyHfeFFmbKtrbrab76VI0kysqg3ULY/YUQECCA7HKoIo2DiyRCoqwqlMKGXA1ZuIy58RoZNoksBzvmdU1qUkjrva+9CoCoVJM2nGpBCdTDxWFma/S9+PXt33a/hKImdcn7SyHqsET5vW8T4VbAdte477778KY3vQnr16/HwQcfjBtuuAF77703AGD9+vVRn8l9990XN9xwA84991y8973vxR577IErrrgCz3ve8/w+Rx99ND75yU/iwgsvxEUXXYRHP/rRuPbaa3HEEUfMiM9tbRrDhGia9hm0vC37FF3HfIdVknS8mmRfWkAJcgPmpBJSKVDei+EYZMGKJLddRwJYouhBpQYy7dmuHwzJvPAwVONZCUfjhusCfMjVuuFqzAZhXqk4JIwyxOqmXlG6eqy+3FySlcqxqatHWrZHUjpePkhUvu+FdD1tTT4BDo4NOwoICGHBljIQJZCSgDFWTaZSwJBAShLamGhAYzst1WQ4yLEtFh6rSS4dJ42tuwoAwlhJJgFACld8wDrLsPT++kCPA5gsi5qHU14fzgOoK96KomQYygoonWuQAMLHw345LTNts95Pcj7axo0bsXTpUmzYsAFLlyxpDc9giPWj2NA3VmW/rdknfylXx43k8nRBoXM/bFY4CLMpAGPKPpW8zvWvRFEARtu+k0UPMMbCs8hBRttp0QO024fX8dTVedUMShOrRy51x/ON341TkLJacF0GVYAYjknm66/65Jwk9ZDE2ESsHNMJULbIPUzM7bmbji1UnwyVipJ4qCc3JSr7THIFmrAfZWHseJFThe03mRuDycIgNzRUn8leYfBIT0d9JnuFQa4NTGGgdaXvZFEvcB6ONckWJvCEcORlDquGfSS576RKJJSSSDKFTNk+ktxXkvtGbjee2nnXH3JRMB1XdrooU0ilQCqBTElkSvg+k5se2ohly2a/n+SCr9067NPmXN2oTZ+1tfpUU5Gcxeqm5FbbRB0JIgOQgCDpIUgygRDGjvqhCwhyfShNYTNf3fFEoBi9csx7tg9lkdrBmoscwmhQ7qZGQzhgSjewM0OzrV0SiGEpgowDhmKcxOOUrVe4GURaV5JhJisXLbdJO8lmAbLpXG2t19N0bEv55KKovl1SoAy5KtfVAxAwgtseBVKX6qpJIFV23hhCqiQMGaRKAJDQifVAmzLLui1ztDqwnBAEwEAYAe3SdriN0tYfDqrytHQxsccplaIUgXIM2iOFLJOOwvAwt6vCfRc+Ocm9ANdGK8vfECGEb5cUYu5CrUAHyWnboJuvun0u5Pp89Cl2oBmUUNKpSvbLhV9lApBx8HTdQpz69PMcmpUJYArINLNKkkfLYBBqbcFY5BCZmxptFaYxXoUyPGGM7ejhwAm0K0kAQXtkmTTERRAEF0FIU1/8QCRpWW7OARJcQScpS8+Ryuxx0V1PTZ85aPuWDJP5bhXChgrJtWpqkG+bVI6mqZLQpCEDQALStXUaGAakC7sCVoGy9eteEYJSF260DkkAJEgQjLSjdlAAbgC1LhwiAJgPoyrpwqt2u0pkFGoNw6rVUGvi14cJOzzsXNg2WXmhHHlnLqyD5DRt0M03ys3ZlBQwHZuPPtUP3JzrHcPSgREqCsMSl7BjZcmhWoauAyWksscpihKMoXJ0wISDozAGZMat2nTQBMMSgGAV6ZYB+G32XwqKsAMxIF1ika0xK0tIpllZWceNDUmuxFxZbq5ZRQ78irHtXk/z0afweFLAPuIR2axVB0d7NdtP4u4ggAAkAUaAiLyStOaUpLRwZFgC0lbKSGIwDuqDGIKyDKsaqyCN8LAk18bJwKz9j2H7oxAekCUsbVk6mUikSnogZolsbZfk7F3pwBgm7ITqcQ65GFkHyQYbtm2i37bp3ICjPCFvDT61+WBnqmlyZV9JiGA4LQYmh2F9WNYA0u5HXAuWyPYf5HZLns/GSmAGIVarHMdjaJp43oOR1SQn7TT9b5zIw9m1lcLsSNIy/OraJpGNOTi6knNuVA9bj7W8PbvraX75xOeft3EEtQmUDEfu/muFIgMTIMH9BC0QQ1D6LNPEwdGFYwEJZKGnCZTU6Gc5LNx0YVy2qw2/2go5JSwBwPQZrorhCAAqCUKrifTzsgGGYajVr3chVsntm9V1TjmG3/9cJu0AHSSHsn430aB2i2Fu1Ok8zW5tPrXuE3ZpCMOwvmtICUxqSPIpgZn4bdBFvEwGQpXF1QWRDaFWVKYPt2pWkAEsgbjCT3Xw5rCgQQhIACLNyhBspCgZiGU7pC9SLrn6UPy9ddfTlvcp/IkOYTkMKCGFy0gFnNT07ZOQfPQAlIkC4K6/pFSRXlVGoLTW1hdRFQI938ZuQ76czBPCErDAbDN+vo3aHh0gOdwatkWyigzVJAOTQVhtj2SfbRawgESsMMPvfratg2SD9Xt6HbSdGubb9gv3mW4Yab76VN02TEUqKeDvQBF0FyE3tZ27nHpkYILXkQ/HRoD0YKVgXQEo41VmBE2jbXjVsHLUtXArQ7Txf1d9Qq/cNqmUK3jgoBgOnszzFaW90K+n+eZTm4/MJlsEoA5KMYOgVILsfIaojS80hlKvMH655/pw6sJAuq4fYXYrGXJtli3/a9A30nf5CACZKoksKV8hFLNERbBMVRlqlcJ2e1ECPmmH/6WmpJ1RHm42xzpIDrBhQohN29rCRqPcoFuzT6GFgOx3/Gp1Evdc6eHpfyxdqNUuVKApVQnMppcxIEqj7iZEBiIx/lgI1KYAovZJGBOoyQosw4rOrCIZkEpFI5wwEMFF3FW57F+BLfTrab74FH9wQwUmd978jzsAEgKCAE7cYUVJBN8mKRQgjA3H2pAioKSCEgYoDJAoSD8vYSOrVk0qA6/cAAajgZK6Eua0sOSpDmBJhmAE+TBstTtIaE3dQFhNKiEiOHIBhCows0QilTIKtYZh1lTKCIpbKmkH6CAZWb82kUFhmeq+bIT6TTxKiGdr94nvM6os+88e0E1XCOHhWf7wWIhIEXxeFYZA1AczUpIMxgicphmc7ti+jdRNxQC//TBgIgib8hBgDEchKiFWpyK5XTL4Tv1xMXfnrt97F6pP/jOq/X7D9fxA565RW34O0BBQsGFOSW4IKVcNR5PwwPRTkMt0BZQmDwdpwkLoBKndNBhWq3zpWtsgFyDQhiJYlgMwE6DgIdk0wEQESqcoMxWHVUMw2qmsJPAgCrWmKoClLNsjfbWiIc/dTFsHycCGfVodtH1QuGeUJ9ltwacqIPmmC39eWplTKe3FJv06pzfdiCFSBj9mmwtOdwwPTz4mULaZsh/BchQqDWvSinK8TN/mWIVmQ/Zvdz3NL59qgGwBJXdbUmHbckVVMiAlWTZK8JQgycJLQFoIuo9hYCohMKmNhYoxUK6EXT1RJlaVRQBJnkYvB0zbulH/JqqFBVg9NrVBjlVAGarIVNoM2MQNpGz7S5ah1qb2yLlO2gE6SAJof8Jse7qdro3y/m3NJ65EArhakcTry73b3gc4FVnZQbh3heniAD99CkgeQcSFajw43dRDsQ2c1f3C95sKNBt8Lx31mQ4lGHl9CEiZ+H2GsYV8PY1iM+2TXRGE5xs/1GVqs7IU0va7FRIaJSy1g6MmgiDbZinIdZxvDL8KTApbXk4K26aYSwNZhKrShiuzxED1dAAvQq+wlXnGEompwva57BWmDkp347V1LWnr+xjCMVSTWaLKsKuSNRXJCjIMtXKIVUn40Otch1qBDpJD20zduDNx07PNd5+qpbqAEpB+kFeECjN8b+xRv+T2sHG/XCbX8F8C1MIzaOOswrMKxACeBDQqylY1EdowytKpS2poj+xnC+l62tI+VaMT/gGL11f3Dx+OAH9ulT/3gCQ70ocge/1LYZvbJYdoCdDCNkWWqlLYMnYiVpW5IeRSYEo7VWlY5dkydVOuPZJhySqSgdkEyH79L6uFAqptjiUkVZTIkypRU5GpS+IJE3mUKEOtHHptyE2adesgiTI8F05n87PaLPzsbdGnEJAlPN02KgfuaYKmfX+8Ikjlsb6G4VjffhkrTSkoyEQUFXjKCLTRjyLQDFDex1m/tkoKHYzUZPwjOoot5OtpLn1qBWQYdUB8/knw9RFkbAcPQkJIJA2wFLCDF2sThGAFbO1XVlROVeaSkBs7ndTGwkQKpMH6VNn2whCWpYK067houjaEYppqssxgZUCqWtg1lRbyqYNjVUUqYUf5USIOtVo1vWVaJTtIon6TDLJ+bR+DjtHvx6DtqXlr9QkoVWQbIBuBCQrgGfhSA1Ddi7KNMlxHHqhhCjkDdBh4hu/1h25Qk1Zx9lGVofchKBum3fU0j3xiOLqC+yEcowhDeCx/AO3OqQYZUdYcdsAUQiKRiYelEtwW2RKCdcCUQiJVQK5dCFYK5JIVpUFiLCwnXSi2Cssy5GqVZVvItWiBZFKBZPyStbCrVY+sHKWDeawiUxeK5XutnN8ygAQ6SAKY2dDQTJ3Krd0nDrX691aAqE0Flm5vu18JVl7Hxyx9afYm/F/roOR5EYRoLUBjBTkMPAW4e4pP+28SgUMCsy1hp7uehjvObPoUqci2UWt4H38gN18JtQteJ2QETFKmFZaaw65OSXIIVpMFWBiCLSFpp1PCqsvcEHJtkEp4WPZ0qShDJWlfZmg1GSvKelePGiDDMKsDY6gihc1fj0KtW6o9EljgkGz6zjc37DPovYNCS03btmafItihhGIVkFU4+mVQLfxa/dzwBlYNoOLzXIKQIFAqTgZoqEJDeA6rPAHUjsN5uG3wHmTd9bRlfQJgi0+QgdBFoCjLodvsB1SSeML5AJRh9MAryrDwv7TFMBIhQVL2hWVh7NWlneJKjHJh1hKWSqAGzpTKMKw2QJaYsjuID7fKGiB1tcoUgHA0j7awaxWQpXrkvpKIVKTP0BVlqHVLtUcCCxySTTfMMDdq9YYa9gbn/frtuy35FMLNEHko6sb5Eo7hdv4sbcgn8/CI7w33LDTxyAqx+bKqHmDlE7Bt77Dgs8uiBk9+mi3VaBl65W1AqUT5M0J4wh2r2u+TffC+DvljsNCupy3hky8u4QAZwTFsnxyQxGMdcUpSlqD07ZPG9ZM1AkIUfoi0RCYelr57iHDJPQJlQQDTDEsLyRicmsi3WWpjp4YImZLleJfBqwy3qpqi5HsoLFgQ1mVNFWesBoBUtohAKoULuVpYVlWkv+e2UNcPtgUNyTZru/na2j6GvXGpzz6Dbvityad+n9MMSx6k1ipHbWIw2n5bARzd/mxtlUGqVvbrcssirBdZjkDAajSE5yBwVhN+7I1N0Tqeh9tfU5PyLEuasQ8L/XraEj75n+QAghEgXR3gMATrk3ZaQ+xctUn6JC5O5rHh1wKCC0sYDUgFOGAmMoFSsjXs2gbLanJPbgw0wbdZFpqQUhmK1UTIdXnfAfUs1zhyI2pT35VD8TwiQIZhVp4Piwtwwk74ANoUap0rbC54SDbdJINutn426MYdZt3W7lNoBkF3D3JP9GRDrFVAarJh16ICR76xGYYWrjzvPqcCynZF2Q+UrjOz77sVg7OEZqwgJajSzon4aRhhVxRbLYWTOkjYxAzp/hc+DoOyu57m3id/1ZjCJuoEYVYfeiXj17e1TTYlcHG4VQRhV4am4HCrK1vI6tLXI54WLMvkHoalhWSZ4GPcsiF7r6WS/P1o3LGAeres0MpqP8H9I+DDrTEoRRRm5SLnAvb+C5N1BMoozKDzOVu24CE5nTBPdd10npr7+bAt+cRmqFSR3AbJgGRFyQk9uTE1OPobNlq2xy7DrxR9Hls1fBlWCuHtnIpu14eg7AfOsjBzDM1KuAgigmOpIqxy5nVCwBbDdj8Ww363VduWr6c584kBaQIVyYCsrq8WFqh0C6n6Z2fikKtvn/TAtArSq0v+/GnA0l6/FpbayFqCjyE71URIjC14HkOyfq81WQhGAB6OnMXK4deyjdKGWRPJ7ytVJMOyHHOy/7mbTVvQkKzqjLYbrOlpk1q2h+tGVV9NYaWt1SerGClSj37qYGhVZvnKtYnCPbm2MMwNRWDkslnhjQzEYaCmCGx4o/GN7J+A3Q3OfbZ4fwZl3KcrhmYqZavS5A7R/YBpP84mCtnRIprP0UK+nubKJ3sqgjCqKeqAdGOX1sKulW4hw4wWQ04tRYXtuRKT0S7WWNb2hazDMmFYkkAhqBGWvjBBpc3SKIZm/V7jeagy0gO0K8ooKhPcS2XbYx2UHGZVwrZFNqnI6u/0XNuChuQwN2p1e9tN2LbvQvWpzTjMauCegBl8fGNq8unqTaBsesKNQek+Z8jQEC9HYJRlx+bwZmdocoioBChFKjNVdjx6IVzIq6IwlQTI9XsjuI7jCOftGfXqFN31NBc++R9jTtTpB8hwXdAlxA+5BiAcOabp89pGihFC2uN7den6WcoiGC0mh9CJH0FGSfcSApoEtCRbpadBWYZtloQyFNsGyRKOzVEb+6+UKAvvlfCh0ibsoFSSigcpEO6+KFXkfEjYYVvQkAxt0I1bfYIdJazTZtVj9PvMrdEntjDUCoQKk7yqzI2JAFmCEuXU9d0q5zmJp1SSg/p1sfVLOLDLJTwjKApA6lhZVudzTeV7pIBxylG59kfS8MqT3OgPggBIbp8U9rtxvgx7Trf162k2ffI/xRxmrbQ1ekC68KqHoyk8HCkYvLs6vFqjcZarG2KNeGDuAJqWFoGSNBoQPT96jA/FOoAyLDV3HZEOjNKVthMCBgRtym1SSGTK5gJwU0c9glMmy7G6BEpohu3/DEagfg9xMg8DUolSSfIDpG+jdBGYahb45p7/Ua2DZIMNcxJ4H9EwP6zSGuVkb60+RQXMCVFhAC44YCoKMpwWrCTdMicS5KZelLmoAHIUULZWDxECsrA3MrexKClQBMkIeaAwc/cDkBu3vw/HxrA0xiUWuWGRrLrk/EebCMTFravtMaEttOtpNnyqAVIHCrK6zrdJOkgWRQnHIi8hCVhQcsi1OvYom7RqLhysmxwoPTSTzG53ST2ogNGv04kFrkygVAKlMqsqw5CrrLdh2kzzWF3qCjDDfACowW2TQHMiHN8LVUB6UMJFW1z4VQw4d3NhHSQDGzac03bShnnSHSXUtLX61O8zONQaqUjXBmkM1QBZKkwTwTHu+FyvFAJMR03KCJDVvl+ZIp/pmkoLvNTBLlECuXFK0hBSKaAVoAxgZJnFl0hWjiUgSdgppA23kvvhCtXkoO912POyNV5Ps+nTdAEpHACp6JXKschLMAawLBXlAFA6KAJWVVowKiDJ7XKSWoWZ2JCrEBKkXfg1DMVyu6UuLCxlAi1kGXJlQBqAJKyqdA+fxkE0qQCzrStWm7V1r0qk8BBUEr5IgK3RGqtIDrWOej3NtHWQDGzQl1+9QYcNN0738/7/9r4+2payvO/3vu/MPudC4Che4V4igkkpqBDLR/nQLsGPIDZIYlKRQG5IFr1quoxSdUVZXUZwrQiaVleqsUlcKlaxsqzS1KKkaMDaXvADiIooUosi1YsfhXtROWfPzPv0j+d93o/52Hv2Ofuce+6986y1z549M3vm2TNz5je/3/Px7q8+iTXayoG81CoskjNY+SmVn1ypFSCLijCuAkCWEVBKk+a20Qu6+k4Cae9Jea/3n4w/x30oC9cLUwDRWE5GqAxPW5c1mGuNiiwqYqYpqQgqAkb5nPTpnIFNznJe9sfrad19aiv1iJqYi+zaCpDCHssiAUdmlNE00A2SQDdQZjmoGHO8Mst5uXtX+QjSoYeZZMGgajLAjJIkHwFL0hqVdmNI6hpoihQr7FLx/2nmgFSOW1tjj7rVm3YIQ/SlHg4gRa2pM0oPnrXrfmCSm9zqT7SrfcKZ59PQZvSpzWKs8s0ELD+ZWienMlAKo2wCpIxgIIAYN2UW4GyLS/YZxUDe2xikjGgwdkMNyYgG44p7YBZOaq00ISfuJlIZl0BhgJwEHAHAwpJyI85HQBkBpi+StMSDSCuVNBio24F+Pa2XTwroLPWos8oEIItxAEZhjwUzSmGWHiSd3EqObU40D5QaEBZZFoDWDJjaAWU+Ykm2LBrs0kuxVcQszahX+YitSbGGJFmHk8+sUzc4bq98xvqk4w2k4CgsMU7uUQoeRP27ZP2u4jzP2waQRP8T0Cb1rMb6fH9/9qlzHxSkViAk3XAzAQolIA7ougBSBo5tZ5Xdw/y0dQqJp9tHM2BQHPux+DTGZRjhYKy5ObQlDWsYzHIHkMwm4VklMo47Wb47e6DU5BJ1iJ/WvdzqblawlPjbOK49jv3+fD2th08CkI1Sj3o5Rx0gqyoBSAbHSGp176gqD4z1OKX3x00rl7gDwAMlorikgKZnluNlBsc8kmGznGOXdbDUZQSQk8HSAqkUC343QNRbGUlvZT6u3Wcm7ZGMpFuVT9aJZFbdwSL3FUACA0gC6Pc01FcSqn93lpPbN0C9v/ikgc7BkgkhIYAz6PifrpQaScsxkhggHx9Xnj3WWWXVApRAd8q691EAUtVHMwgNmmMGWVmC0dY1gObx8ipLqDJCRZoTI4hjk3wELAKLrBgoNZNGbQnKSV7CIJXBmmXX+JwcSNfTvHyKAVLVu+a0xCHllUisdYAU2bUYgyJG2chyjUFSWCaixB0gynZtJvCgGDPLzEagskjYJbJiTWBpCY24pTDIqgUgw0DqLnZYO+hxOL3ZyjEFyLjOuM4i97UNIInJ/1TT/tkmLZ/1abqvjLQ/+NR1kcs/mEitQGgOUFGolWSgbGeQMk+AMQHKiuOa5ECRnHw7ybRWqBz6KB0GgY3Zo4DhihuHT/Y3ykyaQJQRLGkO5HiA5HetFYoqBk2elpuCUvzkzhJrYJNxEs8k2VWO+4F4Pc3DJ3/Yao3JG11z4jikgGRZJgAJJ6d6gCzHzB7jGGVcDlJVoEoSefjdSlGvMx0NYaO0hjKR7Ko1b9PHKQuoPA9MsiwYLCV2OVqcDJa1mKWUj2itYaKMWJ/56v5nCSphlEDEKjuuS7leBRyBUAKlI7k1ZpGTbKOl1wEkI2s7+PV4SGx9T9Rqbwb7s09tF3obVonUGrroBKAcJ0DYZJDJ8ggcBRiJqDdIAgyQytU7Vlp5wKyc3MmgqBtZtaOsrbskGkDJu+FpozSs5bIQSwpaidzKnYi62OS0MfUO1OtprT61AmQ8eHLXS2TWWkIOFeN2gKzJrgKOZC1sZf20dycCygpgYISLS7rP2mgPmnECD5UhkYdyjk/GoInRYjuzJOLfXs+GbQNLAneGcteeZ5QUABMKSXJe3eIBzwGJTwaAFDYZs8hJQLnR0usAkpj+5DnLk0vXurM+/RwIPnEKd/u3YmAUqdUzTIlVOuYWM8YYID1QEqEqLcgSqsoGkHRACXTLrUAEkioAYwyYNiMPljFQNl8m3a7XmyyMMigsQQCy4GAjtNbQlnwbLuWZ4+rZZJsdCNfTan0KO4zBL3TJmZjNKjJrnK1a1RoGRADpE3eKMaiyqIrSA6NnklWYtrVGAzoauZtBUXvw1HnmALPgZfmIAbIsoEqWWpGPGCCdn60yLNlmrWUPsCTi+GSDURIxUAIwApzxb4pOQgyOQAqQMYvsK7dvhA0gGVlfKaivyTZW8yR9oPkUxyvqsYtYamWgRAI+wiLrgDkuLXfjKZlF2ip9D/2mQ8p6m/kROrTiumwHkEormExz4X+msdyDPTYTgjjbtbAWWmlYxR15tOKEHWvRYJOWMLEkZC1y1IFyPc28r7bxH+sjd7S8FFFgkRKHdGBIZcExyBggXSmILUq+DgUk3cvWwJJ3XWOTEYuUd6017Lj0wKnzDLooofMssMts5MGSbJXKsA4s1WgRKqe0dMSBJWUjKHJMkyxkmC7u4qNRucQy0UcajBKBcdb/38IoOPI5BUyJWQqL7HM9bZQNINlhs/6jtt0s+mxjlpvC/uxTW0183FIu/ix9WcsEKJsSqwCksMfKTwdgFPkVaGeTWiuWN7UCKheT9ACpQC65hohgjEbhvtddVlJF0wrIuKGAVlxbqTVxxYewaPc5BzNpBbha0mamq7BJi25J6mC5nqb5NPEm6kApHv+xKxaZssgqzVa1lUvSiRikA8hqXLLEOi4TcAyssvIxSaqxSSAApXYSq4CnMhomzzxg6jyDGWVQuoAeFU2wdDKsB0tb+dIRqbMkI+Bo03Z3WuZZkNIwrj2e0nxtNrNdCSQMcQKjVP5zCpB91ZEhJrkf2qSYStvneHq9TvZm8UnXJFf5x4nBUWRXXh6k1riDTh0wKweAdYC0ZQqOcWyyzWwVAaSTV0krKFIgG8ASYODVlkAZM0uMm9uLM2Ql8aeyQKEIRnOTBG5CDR4WiwjWjRCv3OM1xySb8UdLzCZllJA22fVAv56m+dRqdRYp82rLGi8gSKy+k06QWakQcKy8xCoAKQxS5Fb+zMBYl17jd//bHIu0EZtUmuOTtih5epRBj0vYImPALEqYfAJYjhbZ19wtLx2zFPlVWKVxwEiWwVMGgK6BJZcosbpBTukAglKkWs6Ojp6W6wBZf/Db6OupywaQnGBtyQNtWnnbSavfPA42n7qsflMXWUbikUBdau0o8yhtiENGAJnEJKPEnZDtWvPdD+vHjkk80hjtwRLQsLaCManEOgZgylReFWAMAMlZukZzHFOrKElJIQFLvq0EHmSRSq4CmkTMJl2/gZnjk8nvx/5xPfX1KV7W6VMdKDvWUeQqAOtNy63lUoxaMk8bQFrHKKtx4cExZpS8+SZQquhaixN3rJNbldbQRQGd51BF6dmlHWVNsBwtQkn5iZSOjBZDSUqWQy9sSR8Qongl6QyKMgZNpT1YKp0hc2BpKWKX7sxMGsFDfl0Xg9xIOXWadaTlzcceeeQR7NixA0tLS1haWsKOHTvw6KOPdq5fFAXe+MY34uSTT8ahhx6Ko48+Gr//+7+PH/zgB8l65557LuvX0eviiy+em99dQeM+8Ze2k7saiWp/9wlIU7/7mtwnhDnKdAyUhQNConaArCrOJBQg5WXysrUXz7clv+Q7ZVG576bbr8qwbVsD8fQ9nccjlvBvS4Yfihiuf1KecDImLZvF9rfraZpPq7Y6UEZsMx3ZI7SWI5FZZX5ZwI6LhCUKQNqiQDUuOEY5lnklKgeo5fIYlXvZovSvKppfulfx82UUP19G+fNlP7/4xeOolldQ/GKZt/V4+E61vAJaWQYt/wK0/HPYx38OWnkcNF4GLf8c9PjPeXq8DPv4z4GVx4FqDFWN3XsBlOlnZSs3r+T5bjxNoxBe0ohDGpsDjZfct2MJtt48YK3X07xsXZnkJZdcgoceegg333wzAOAVr3gFduzYgU996lOt6//iF7/AXXfdhTe/+c141rOehUceeQRXXHEFLrzwQnzlK19J1t25cyfe+ta3+s9btmxZlY+TJCOxvixJ1u27rwPdJ4UUILsYjwcPkWI9o7RJ7E9AUthhVVrHFuElVgEysun8rrikZLaSZLiSgrYAacc8JciSaSirQJr3rTTBlhYFUga5EjHIWCaO461w8ZqKJBbJyyQuaRRcVu5sz9Px2pPO1f56PfWxmFn3PYJJPNLvXOTWAJjMvKKGAJEMG7PEmEHGyTuSzBNnu7YxyrrpqCzEs8lx6WKRnNCjRxmMi4fqImNmWWQuZlnCLC4w27WWJdiFRe9/zCoVwIk9nlW6RB4dSbCujITIQFkLciORKKVhlPaM0ih37txNIP7Xa2a8dpwb7FuABNYRJL/5zW/i5ptvxh133IEzzzwTAPC+970PZ599Nu677z6ccMIJje8sLS3hlltuSea9+93vxhlnnIEHH3wQT33qU/38Qw45BNu2bVuzn23/mH3Wm9XWkrywv/qkFVpbTE2yMHhyU3qVgZmFRcZSapzAIwAZS68A/M0obgcm9yWltQdMqwFtFarSwmQaFeKbl+T2uafhun+1V/23VZZgI/2GwXHt4lJ9C5NiOPvr9dRl9XCzfJYsSSWaOvmTPVlqbewgvW5QxYk8LmtVaiHHoeRDGKQApCTzxIAJAFQRrBussS02WcFCGwWggjLKy6/WZ7dqmMomYEmVhbYWJqrRzBZT2ViP0oQkAX/OjB0BmW1I34oYKKEznqdcvx2tQW6Q6Bgs6+cj+W1TDvtmAEhgHUHy9ttvx9LSkgdIADjrrLOwtLSEXbt2tYJkm+3ZswdKKTzhCU9I5l9//fX4yEc+gqOOOgovfvGL8Za3vAWHHXZY6zZWVlawsrLiP+/du3f2H1SzaSewvnwjTvZm9Knhg4JvcNxlbQ3K5WUjYBQWWUWNBJhFolYvGUZi8Dc6pGBJtvJ9MiV5x0B7oLSKoCyBFHcKUioAdZpoFCcZSfs6mhsYJscSLQ8fZH2gda03mc14Pck+5cY7aZ+NeG0bOCq+ubeemZaG5I3rSD7XSjxidtnIdvWNBRgcGWSpNcsVhVyj2gElXIMBBTMyoMpCGe3fjfNDVxbG7V/mAYCprAdHC4RYJeAfBgT8FRZ5fxSSeIhMOO+OVfI0gyOZACnKHd/4HHRlvLbZZgBIYB1Bcvfu3TjyyCMb84888kjs3r271zaWl5fxpje9CZdccgkOP/xwP//SSy/F0572NGzbtg333HMPrrzySnz1q19tsFCxa665BldfffXqfkiHTTuBs5zgWRJf1rLPfeET1z5RQ3rta12lFjFYAixPSm2kTVim9XElarnpAe7JOWoybaGZL2qCtsrLq2QJVpOXXckS1zhaQqWazHGa2ZasmxDHbT9YcZ2Zn8c/Iv5B0fp61edvM15PVQSOkw63sEg5xMoBJAOie5BQFI6V1q2g6C15uEqZJV9jqXzqZdU6y7QW1bhqgGPMJjscgDYKyiioikBGwVbk55kILAUcydqEVQLwy82iOw9t5SeIQyaLQNY8fwKAYZpAGtwLN2KVQGDyhLUlmdV93CibGSSvuuqqqYDz5S9/GUD7PzoRTcx6EiuKAhdffDGstXjve9+bLNu5c6efPumkk3D88cfj9NNPx1133YVTTz21sa0rr7wSr3vd6/znvXv34phjjuncd594ybRlq7kpzPLUvj/55Dv8t2xRd2S31QEnjkdSFDsSQEx87gDILpBsMwsN5aRRJXWXEZsEGDy14WUwqZ9dkmvy27VqZdQeCJEORCu9LeOi6wQg2yREyUhUQeNtuwY24/UUG2dNRtPxNRCtF7ri8kGMM4C97Kp1yBCLfas31tYG8JWx7ZbUO/r3KEZZA08ByGpcJeBIDiBjCdYfF8cgyZeDRICptWOUhWeWZB2TjFhlBqAEM0n/8/Lu/4c+QAnj6ihdlx5lAXLRCKWb5zIGy0n73Cwyq9jMIPnqV796aibpcccdh6997Wt4+OGHG8t+/OMf46ijjpr4/aIocNFFF+GBBx7A3//93ycsss1OPfVU5HmO+++/vxUkFxYWsLCwMHEbk2zSCZsWS+lzsldzYewvPhnFw++IhRilSmqmGt+b8sgpcUcAac/WCDTbANK2AKV2cmtzH+7mpFI2CYMAkBJDpdmZpN+/ywJUyTx+FwYeM/GkKLveNQYI2ZlxLE6AMpIWJ8UtY9tX11MsqcbAKLf5tkzfCu44EbnocSiVMXKTdnEzUtEDRKgFSt87nUtBtq3uMWaRMi0MMgbIaiySbSq5CrPU7jq0ReWSdxTIaBef5O+Y3MBWBDNq97sEYOKesZaBU2O58yf686XdNdPBKEln04FSpO7o+qufvtVcTxthM4Pk1q1bsXXr1qnrnX322dizZw++9KUv4YwzzgAAfPGLX8SePXvw7Gc/u/N7ApD3338/br31VjzpSU+auq9vfOMbKIoC27dv7/9DJtikJ51py6llumu9vjepA8EniUWGYXDqjDKA5zSA7GNt8R3bEpdU2sDaKgFKkV6tbR/H0RJBQzUYbJvN+lsUhC2moNjGIkMGYlQkH/1uJXCig9SYgEDLDWszXE/CGuvA6Jtou4kudgvi48XjWIeaUgICKGrNd3NFNWCsmjFKrXuxSunDGnfSSbvskMt+rUAVoRqH2CRLtO531WTXKmGVHAKgihKwpIqgczfEVlUEydXJq21WAilQSt9YCT0IOMpg0EAASqWhSIOshULJQOkf1tzRmwCUQPNam/f1NC9bt5jk05/+dJx//vnYuXMn/vqv/xoAl4BccMEFSdLOiSeeiGuuuQYvfelLUZYl/sW/+Be466678N/+239DVVU+fnnEEUdgNBrhO9/5Dq6//nr883/+z7F161bce++9eP3rX49TTjkFz3nOc+b+O+onru8Td5eUNY+TvD/5VM9wFcyI66gmJfFMsxiopB1d+BxYZBtAyucYKON1pDWYJfKSK9Ie5hOtDpDyACDHwaggufoWXSqEKQQcPZtU4buqDpA2YpRyMPhHeGlRCTgAATBrYAnsm+upTU6tA2O83PvgpuulRla6xGvlgdJL1JKsE7FJLo7X8KnHyo24oacwypqRrTHKGosUaZWnU4AkN4+/3zxyyiigggPGJljK/kze/yKt3O8zpghgqF0c24NlSNbRxnASjy1TRqlc1ivA4On5fktmcdexi38r1nY9zdPWtU7y+uuvx2te8xqcd955AIALL7wQ73nPe5J17rvvPuzZswcA8NBDD+G//tf/CgD4J//knyTr3XrrrTj33HMxGo3wuc99Dn/xF3+Bn/3sZzjmmGPwG7/xG3jLW94CY2a4g7XYpDjNNKmovq4YoXljmUV2OhB8ipN3gBBL066ZuLzqoGJ0OhByqy9tTK+D4dUzW1UEisno8Ml3qHUfdZNBm+NX8js88KkEGBko4cFTgFLkV6MDixRgjWVWGTQ4SK21307Rb1YWrlFtEp+rM0zVciOrXyPzuJ76AqOXXSmwyPq+ZEPatfyT41hZHjnFgFA5r00Xm1Sa45JellV8XWgTjevIYztOAs+uuse4vIMcKNYBkudR6/e1A/CURQawBODjl22mIp8bTdS1hhYw1IYHgS4dcBZjZpXWTY8WwjVHlpljTfZX4E48sJYJZHxNRWxyPe5P87Z1BckjjjgCH/nIRyauEwfgjzvuuORzmx1zzDH4/Oc/Pxf/Gr6scll9+TTJYJaTfSD4JMPhMAhQUgZS/582Gq0gE79vpMUAWQfLSeDJv0H736JVypxToHRsMZJateJtxCyS1wF3ObFlYI+1IZ86f4sHQgLLigqSug8gACb/uORd1mn7xW0Sbf06aCvZiIERCCBIfpms159F+pZo5EDOIygDJTkQNV1ssh6jnIOJ1CrTNmKMMUDaIoBrG5OsqsqzSW11AyyBySBZRX1gbcHSsXUNCqqihDIMhgKO0Ia760TzyGqosgRyHZWGONlVOUlfQDACw6nHqGP+au5P87ahdyu6n1K62NJqbZbvH2g+CTBqfsb0UiIg7ayUT+YxWiGLQAYIACnjPMqwVojUU87ql4GS4esfw/Jm3LHzt0bLZVSQ+HN9DMqYQWaRz5mfn0rOsdSaG+0eDgLrFGkwgKtreB4DpC1TcOzTk7TBGCvPoEBOdq3LsrXvNbbVYXVgDIywPzAmLDK6spJnaQpAKR2SlGLANFCoIOCpABdnlt6jBIQG32RdKUgEmDplkEz7TcowJ1i9OUCyzCfvBFCM6ydbzZV9WFgPlgCgoVGhgoHxiUBinAXL9Zr8WcDSOHAMzQlEdoWtuD+tNjwkmGZmqWRZoyF8xCbrrLHe/XRKlmtyjHqss942gGRPmxc4zVM22J98ErkwZkVeSnQsM2ZabdKl0QGcxASwfPu4+m9zYKfRntkq6+gIFP136szRg7Pyy2OpuPPlfmNudMIgc62Qm24WGYNjK0DWblaqziQlYUM3gS0BvwZg1mTZOPGnjR3UPreBYz0BJ06+EXBsBUtQBJxuuy1qkx+BQjlGBQeYmpg4a7kala8JyYQxmtC8m3QGaOuHjlKmYmlV1wEzeohyreK01szMagMnS76PsEaK4pIAvMSaNhgIv9FW1remk2OYgKXbhhkZD5R+H5oThAAGQ3JgqYxGNS44/liFeVq6CZUBLJXVSVceshqayLFI237vIAuotYW//DHEwCT3ucWa93qfkEnbjvd9IPnkpUNLTnoNccncKJhSgKOZ4ZqysSY4WbiYoYwFacGjdwgTioBRa4MJHAtKGw+QPmajw0DM8hlIAbMN1EeZce/aA6I8AOTGsUfPnFMWmYCji1V6gHQxSGXdKPIxOEbJO0lsUpKWhG5Joo7WKWgmgAlAEQMmSXIPM63kvHcAZ8oCKQHHFDyb4CjA2LfsQxYoFUuwigHTOsnVN27gq1cRixBGZ0k/0jqbhK6xRjdNgJ9WE+KT08zW4pRtNZP1ae2YmXA069pf2IrfyVhU0TBu2ihQpTwQ2spCufEoyVrPJiUbVkUAyS/jH7jIVlDIuZetPCiI5Op/yHSZdV7hnY2wASTRBIJpNkk/n7aNSeDSxcIOBJ9YPlReapTYpICGrmJGBg8w47LJyioHTh6oSEVjQVJDcvX+uAxWWwNOIACkvGTILB2BoZbYYpbuvy61jjKdgHtu3DLDYBmzyEwrKNTA0f1+5T4rl02IqkzB0b0LOE6LS3op1TFGWBeXlMxOpdsZpoCl0iGtX8DRb5MtTsYB2gGyDRwragdGmcfXEyX78edQsJ9YWuUHMMdAtfwPMIPkZBxynXvkQYxZI5HxQ0JBW2ZQSkPlI37YKgsvuSpJ3tFh6CrlhrHyzNJo2EIeuCpmfh1VJPUknVBG0vxPE/aooROgFFOVgoaFrRRUxZ15VEVQAo6agdS3z3NsMnQOCqxRVRWQuYfNquIBnEWhqF9ncVyyzVpivWu9P22EDSCJ+UqN80otORB9Ml5uRaOpgDCtrrhk/KrHJbUNkmsbm6xbPFe1gqT2wCgsUikFnWm/b5PpVqlVAHKUaYwyjVwzY/TvjkV6NulZZJNN5toBZDVOAdINT5SwyiTDteUmFt2cYiD0ICjfFXlVRVmvOnORZKnFjICyw+rZqjwCSjtYhmWUAKOAYiy/tl2DluQad2wSDJikONPZKJZdiRSMe4hiZsnXH8lvtDbcyDXPI9dRRmnDgxe7OB3yUWBcxniAjMeB5ENc+zwhsaZuvilGrfuOZFwLc/RRP4MgswJQOmTQUsVsEjmSMhVbWSjDPWe1+6zz2AfLYIkcflxNwKkTWRMo69YSy04eojC/+9N62UENkl2ZemsBg2nfnSZVti07EHzSLhZpFIWYGzlg8KCQZoC2xfdGmca4sonkymqggrJNNmlbhkyVBJ6YZcYAaRwYGhNJqk42jVmkzjRGRntAXPAAaSJGyZKysMhc6+iBoBaHrcUglbT8qgOkzCNqSq7TkndUlJwTMceQ1ekAU2ko45pX29IDKsnhFKCMthvbJICsarJqZZvgKOvL9mW4scnXGF8jRKxUCFhCE6jiaw3WXbmagVK7izPTGcgII6+xSZ0BumRpNR+FeF2W+6SWOC6pBDSjMosYHJVrKYeC45lV1b9dos9obSlN8qBZ2aQcTmKTygOmA0cdhuni9UIDAiXDgoWNgwd2m+JfS3ZwI/mr/p1p28S+ZZMHNUi2HfQ+J6J+wvqeQFlv0roHsk8+3hjJrVqJgsWglhmF3Cromsy6kGk/ZuPIaNiMoC2/rK28HBqzSWQaKK0Hyq7sVhXFlQQgRWY1mYYxbl4WWKTJNPIIINteDIjaAyOzR36NXEzSKDjQTMtfeGSkEqoctwOkmxfikS5zkYjlsknnxRiWTxGDYzrUEWm3f2GVmm8Vvu0YwHqoMKcoDlWva+wCyMoymFYd4BiPwwmEe3ZVA0tfg6oJhQ2Z0hzP5faFRgX2CMt1u9xogB1m2TwLYyaSAKOLWWYZlM1B5RjIcqAcuxhlkF9VLL1G8quAoTIaqiJIhFUblXTTabO2UpAYKH08EoCJgJgqApkguQo7FKZIlfWYR64Jeg8MlI2gdeW6chNlSfvYtyzC/O5P620HNUh2WdcJ7NLP+4LTpAtk2kVzIPikEORWHrGcWSWDCCWlILlRnp2NM4NxaV2M0vos1yS71Gh+unZs0nd0zrhROfnRPHTy9CzgKDFIAUidMRgKYzSSmRqBZlsscpQZLAhIOkDMRGKNQDORVyOZNdcKmYIbCT4Cw5rkGuKRZQDGqLNQ2+gO/oZlo04qAphRjaBvyyas0mTcYUWAUjqqKFcr1yKl2frnCCCFWcZxSJkWcCysTUDRjzPacsEVIJf9i9COThMs8bnMNLNJiUsKUHrvNCfyaCexKm0BopDpGrFJlTkmmY1AZeE/61EOJRmiowy6KEJc0mioioe3quASaYyGlWGwjIK27YxSWs71MarIS671zlB8zTezTXuBYx0U4/KpqPFCPE9i3X4dlSZ8zev+tBF20INk28GfdsIm2bST32fegeqT9iDYLrkGsGxKrgKQo4zHZxyXFpXmAWiFTZokHmQ9UEqnMaNdv9VajWQMjspJtwKQscyq3U1PadVgkVtGBqPM1FikwoJxLNKxYQFO+X1ZDI7CIG3JAFkV3QDpSkB4xImKZT8AMqBulyltQJBicZe5WAdLnYFEYtUZqCrDiA8AfHq/1MB1ZDPGLJIQGGQMigKYlgJzLCrywCj4YG3EKGtMUiuFAsIoiR9mLD98aU0ANAgKVgWZFRo+NqkVGCSpJrs6ZglbpWwyy0MSSzHmz2UBk2c8ELLW0LkDzYRVKgZI17Cc55Ov9VWGy4CEXSrdrz/wrDYTawQa/y+NeTUwTPbVozHDPO5P62kHPUiuRjasz1vrSewLPgeCTwKUCqHzjlZIMlxFcs1tSIAZlzy9IpJrpvlGawkm0+5mUi9cZqBUlp90LbW3mJOmBlwyJ/HI8K4dQIrMamqy6kJ9OkrMyY3GopNm49KPWGbNdBSHtE5ijQEyklwFIFGWARwFGKMBdNskV2VqAAn42FoClkCoGbSlA820kbWi0HYMpnZjjFghEMAylljrAFlUlj9boLCWJVjbDpZNY2AURqlJwSqFiixyUrDW+mNfWIJVKYvUFv5zLLsKOEKXTn5tYZN5wQk8WQ5lxtB5BuvKK0yehfEdrU0kV2WsY5DMKqkibgjguupIbJHPm0tLqrWe69MucW5Wqw11DrQ3m4iTnyIWuZ73p/W0gxok65dY10lqe9Lpkg7iebOwr9ifPlLE/uqTSK6eRarQtk4YV64VSscqR4a85FpZno7HarQZjx1pMs03X8cQTCZxyDAAs4oUyJj8JM0BnKyqHYPUGQOlyKwm09iSG2wZ8esQ9y4y65aRQW4UFh1gSrLOopNbMw3kGsiM4mkT5FoDG0CwBpCqGgf2WIx9SYJ/l7R9IKlp8+fDd05xP1oAUTtgzUaeWap8xK3agACK1p0/aWQtXVamsYSIRfKLAa8OkMIeC3euYnAMn3mbrTFJxwiFUWqtHEAyc69IoSLCYmb4SrT1q5gf3Epw/NADImW+2QB01s4ms5wTwfIRdFFCjzInvZo0Rqk1zMgNjDzSPhNVGQrA59gkP+7p0CzAhnVi0xFDjbdRt0aDg5bpXubLXkwKkFEPYJFa6yxyPe5PG2EHNUj21cXj5V0nsmvdwafUQkantKbjVyaJLVYjt4SV0vpEnzqbLG06qDFlvBcdsUnpvOIHS5axINt8lmzVKC7JgBgxSKORjUwjm1XikCK55lo7iVV7iTWWWX3tZBTLFEapSgeKVREAsioCcBZj2HIMWMsJJAKOApYT4pHMICOA1DwgtQdLa6GynEETcLWBZTiHOkPSekzYZEcWrWePEYvkd3hwbAPIorIeHHkaUeJOAMrYSneVcRJYNESWi09XxCySrUKuNYfnHFC6ChHOiCagsMBIZ6BsxL/VjFymccXTOTF7tJaPfcQmdZ7xgMfCIl1SjLBJsraTTVpYaOveEQFlZdsVkBaA880u3IDMHCJQje+kQJmWsCijkSYkucxvE8qkoh2G+GMLi/TZ01i/+9N620ENkrFNA4I2RrTWE1rfxqR9Hkg+xVmu/CIulYgSeHLDYJlbgiWdsMnGK2IWJQClCFXFtxirySXukB8suW5tSTvCKgUgpdyjziC3jDL/eeSk1UXHKhczkVo5m1VYchaBY5yo0wmQ1Zjl1XIMGi8zSBbjFBytDdNd2a3SMcZLrhoqG3mw5IMRsc98FFqP1RtZx9dBrTVZDJsNFmkDixSAFHm1qKxnkoWwRxtimD55p+Uc+m5MNureFLFJSwSrNSwpd9dLgTI2pYDSxSeRjeCTeFysErqEGi2yHJvlzCYXFhts0kTt3oRJ6pznC5tMbAwvu9aBsstiFikA2Aae2q3H34lKU1pqiRMwjDJ4Y8m1DoytLFIHeFmv+9NG2ACSLdbnJLRp632ehuL1ZznZB5JPoeUaWHIlll5FfhSwFBCxLtP1kFE7SALA49E+JZajNaEqCaS4TgwAVO0GK8Ao0yYq84jjkAKQbaUeh4wMtuTGs8bMCIMUsDQeGE0kK2dxJmsbQDqJFeMVUFkE9liMWTqNQbKqfOE3kEqt/NvC0EfcccXd8KzleJpmoJOYpP9ePgo3OO4gkLBJP8BuW2s6t6GQrAMQQm1kRfIKACnsMWaRlpy0HrPK6MFIK4XCnVdff6qZoVmXZFURoTIApD+NdtMRUGqRXBWvpbTm+KQuoYxjlbYCCbPM8lA3aS1UVgBZAbO44PqwWugia7BJZpncgk4b8jFJZVz/1XGVACWM6mx4HgOk0srXYMp8VZNhPVhHjQ94mKzQLSjaeO3l2GU+AuksajbRwiJ1E1o2+v40LxtAMrK+kkDXSevztDSLdHmg+gQ0Y5IJmzTWJe5oLDpZbmQIVUYuu5XjkmUEeJUljGv7sJa4qNwxEmrPgkfcVaee2VoHyDqLPMTNF+a4kHH8UV5xHJKBEe7FHXUmAaSqCtiVxxkMHTjCgSWVBWdWOmCsJ+4AASiTjFYUIJHQspzB0lZ8w3ffSc6vNkytYomVN47OA+q+n2S3RjFIAifnMIukBCALSyij7NYk01WavTSaCojc6pJ3NDPKXCtYUrDEMWDhuJWwyRIQoNQkQOskWMBJ8MImOSaJzPpRQ1Q2Akbh+Ks8B5XcmcbkBQOjk121gKZnkaYV+CpUbpn7sUaaBLRctw78YoAUeTWWWlUEgF5S7ZonjDHLO6VWzyJ1BtImsEk3TTrzD0z74v40bxtAMrJpB79+ktcaZJ6FiR1oPk1ikwuZdskdzBwk07UiZm11EzZpSoXHwYzQlgpVZUPSjmK5NR5BQkUM0kuuDhzrZR4CknWA3DIyXlZdcMAojJJfjjG6RJ2R77yDJJNVlcutAEnj5cAex8shm7VwzHICSIbz4cpDRGLVnLBDtoLKRlC6SkERjnnaClSOOXkr11wrqTRQl1yt9UnFdSU0sMnAIouKayAZBJsAWVjraiUDOEpTATnXdck1bojP9ZH8HW0VKk3IScNqBkzr1q38pZRCkFIKpYUrVVLIhEUS+WxXjk1yS0AvuWYj6FHFLd5GBYy1sEUGbSMW6UASAIzvz8qxSeOu7QqVl1hFfhWwDKdJWGCU8GM4MYgThEzCKmV+AoxSqhIBpR7xb+mUWgUII9bI9aQMjGQyzyLrYAhszP1p3jaA5AxWfypa7RPOPJ+G9mefJrLJSG4ttcaCcfGsTGRWk8itsY1LiwLwdWbWkgfHevKOACMQddvRKknQEXAUsKwD5IJxr4hRSiwyjj3mJsisSalHB4Ok8TJoZTmwx/EyqHAgWdZA0kl61JK0w79TQxkHoEaYAifseBYJQGUAZAR6BLBMJdZQL6mImje9iDECiDru8DyRWYuKEqAUgPSJPFXouDMuHQuMzrkoCTJ+p7+moleudUgeMgyS0okpNQc6Cg4gOYGHSVMoCwnt/4jZZD5y5TnWx4VVWQCjReiqglkc+VZvsewKCEiWIIfW1dh6oCRjoSqVjDdpWuoVvdQqEqvWHhzNSMPkBmZkPDDqPGNwHGV+nskzjpXmWYvE6kqD/IOAlMLUWKRSXEvb0VlnM92fZrUBJNH/BMxLF+/z/YPBp6mxSZfpWlhmAiy9suxaOqBMthexCVMqZiNOqqIoeSf5TfIkHoFj3KBcpNQgtzYBsp6o42slHTiOTEjW8aUeEUCqCQDpmeTK4w4YI5Asxh4YbcRQ6kAZ9xDVRvNoEFUF5KM0UQfpzQ3GMBDrMH6gB8Zpja2dcX/WILtWVmohYyCES9aJEnmkXtK6xhGWfFYzkDJJkdnbhlerMh5kudIss1YuNl21lEkYbTzwKsXHQOKT2kjtJLPIJMs3q4CsaE3iMZUFRUCp46GxfKPx8FvCMFk8WkkMlm0WJNcAkAyKQWb1ma45A6MeZa0sMslqzXMPjCofTWeROgvTkW3k/Wm9bABJTI+vTVuna/msTz99A9QHkk992OSi0ZzlaBQWSLduNzZpXSfvlSV/cwT4hhwPqFzv7BODZNwooAsgt+QCjs1EnXomq4GFKpYZIMvldoBc/kWQV8fLXPohYOlA0o4LVEUZhjiKQBIAN6mu1cMpq0GVYxSWBb1Goo6cI22AYuyYpMumHS34TFeWWFvYZf18UyS1IsimcQarMMnKpkxyXFqMS9so+alsYJXxdcTv2n+W7kyjTIeMVgAoKyzCYDnKwzUKWC6BxcwwOLpEHq69JCilMIplV2l6HsmuKso0VlkBjCy0rZzUOvL7Kt35EcA00UONTzDzLDKAJYAkjumzVbVOGGUsuTKbzBgYhUkaDTPKGyxS5SOW37MAijyvnUVSzChryTp97jPzuD9thA0gicknZhowTFo+KzvrK0UcSD5NY5OLxHJZbjVnN2oGy4p0a1xKGEQCkHUGYsL68l4HyRgcRxkDozDKNga5kBlO1smMjznGzRFGhjNZWxlkuVxjkI/7+COtLIfSj7KAHRcga1GNS2aQYwZKGw1/5M2FIn2T7ajpNuUZjxaRZ8y04/NlQiYsDw2lG2xymom8WrfQJCAApS8HsaFERAByxbFIAcf6+ayff8D6c1lZZpEeZDMuJ7IOXPKOBy6VGQDKN+FXihsRlOTik7ZDdi0LIOcHGbXAJSIiu/rEnVp8MpiTt31XHZZYY7AEABU97CWJO3FGawSQwhw9EDpgVDqAp3EAyiVBecIi22KRpA1Lq5HkSi1xyNZjO2WdeSpa87IBJCNrO/ht2Vli89DTV3NRHWg+dbHJxczAWiDXhAV3pfrOKxOu3Pgm2QqS0Xrx+gKOqdxqkphkHSAXIoBcyJoddSSTNa6F5OblHRLr4z/3DJKKwoHlGLSyDFuUDXAUNgkAfsDc+LwYA7iBf8mxSV05+dUGkPBAqTVQuEzYcsxSrcTbqgowMnREqJ+cZHE8UqTWiuqMUso+eDoGSJZag+wq57ArLpme09Drt4qA0tV9tPrL9bsWSmkfm/QvgPsDSx/b2ktqJ5V0PxLZdWERGeDikiE+WTelS1QFj+ZCleIa3wgseX4bSAZw5GkdALIGiDrPoPOcp53sqlxZhzBIYZNdLDKRXGvJOsC+vz/N2waQRPdBV9H7Wk/urE8/B5NPXWzSKkLuJNaKCNaBGACgBCoNIKhY7sZYJXJrGYHjpIzITNflVpPIrVtybjdXB8hDchNltIZM1lGUqONLPZzMqqoxVOlKPqpxIwbpp0sHksUY5fIY1gGiHZc1qbXimGRb0o5rsq2NhrIGqmKwBNBoSaZdLSUBoRRAMmblFccl5YsyYLP7KCUaPrPVA2UARhkeS8CTgZIaADkuK3/uYulVzqnYuON8stzavCqriEUapVAoHnZtxQGxdvWWlQUKF59UQCq72irIrq5lHbI8sEhrfbYrrEW22C+Oq41FNa54/McILIF2kIzBUQBTWKPOA1PkaQZIL7OOspDR6lgktOZ+vu7l6yKFOUYskrIRT4tP0ftG35/WywaQjKyvtNjX2jK6Jq13sPoENNlkpvkGKoXgIrtWxAXiiMASo/TGaDSzj5hNApPLBoLcajxYesnVhKzVXOtWgGzLZB21ZLKqcpkBslwGqjHHHwUUl3+egmVZwC4voypKZpGPj2Edi7RF4YExjkcmcisCENook1G5hKeESRqdZLRSDI5VAEklDBLoKbs6wEQqtXK3HetZZGWBccWMsQ6QkrgTS69t57PtnKa9fjUqa5L62jbTWrlG+sYBI19mzCijspC67EoWeoEYFPMiZLu6h5cQn6xLrdH50pq79GjtHoSUk2BN5+gdMThqKe0Q1ijguDhigHSyq8isOs8CGGZ5jUXyK44/wmRJsg6kqQA2/v60UTaAZIfNerLbTu689fUD1ScgZZMZsRhmiNfLtYbV8JIrAM7Td0BpovuN3BzHpYLR2kt1wDSQDDJrGBuSQVHKORYisIwlVm4715HJSmWDQcIxSIxX2hmkm7bjwjNIYY8suRaJ5CrZrf6cxEk7MuCvS9ihykLnGaiqoPNwx60k4SXKaI0Ly0Vy9QwyHjarxSwRpJJSOGcstdZZpGSyChCOyyoBx3GZxiP7yueSuJN+b/JtTxJfdcnxSZFbK4rLQjRMlma51mVXAJzMA/j4ZHvrBTZltG9jJ+/p+dWNLNe0oUBU5mFSibUOkNoxSbWwCDVaZKk1H/H0wuLkZB0zApmcZdaOBuZ9bCPuT/OwASTnYJNidG2f+2aMHmw+CZu0TnbNNT+g5wawpByL1OGqFaAsAWQsm40r61ll6dlDPyYZxyONUr5FnozmMQ0gBRjlc1zqIc0COGFnuQmQyz9PALJaXkE1LlEtjxkcHXuU6TgeGUoJ2pN24oxW5eKRFLNIx14AJ91JRqtjk6o+BJf0MLXWJ0HV+7eKiUfShk6kVqmVFBYpjLEuscYA2QWUk85pDJTBSl8+VN+GVsCyYrl1RfE1pZT2w7op1MpCYqC0DiSlyYCtAmAuLAYfW46TMgaVJFaNS2ijOf5sXMJPjolMst5FR+c1idUBpNkygs4zZIspWxSwbJVZBRSzEQOkNj4Oudp7xWa8P3XZAJITrC0ALTR/2tNP/WQPPk33Sdikde/kRguxiusXvTlQBOBG/uByP5HCLFFrZmsss2UtN1OjVQKO8p4ZLkPJjZoIkKGbjkIG65NyfLOAcoXjkA4gbZykUwPIcnkMOy49k6zGRcIo66UfApS+b63EHasQfyR345TP/G58sogy3MBcMlpVlvuuO8jyUOIQs8eOhgKxWQpxSt+03EZZrq6TjsQbm3HJFpB026lbUcENupyCpLzKFnD1zdGVwoqUZbhBsZeV9fFJDfiykEq50ULMCKhKvgBNFnq7jmzKIiMjW8EEzIQymjvkufNWGc1jUmqd1sDmmF4D66TWUN4RxSAdg/QAOVpsZLMmMqvJGSDr2awmlVkTf7D57k9rtQEkW6xLEuxD8/tkdK3mSehg8Alg8ApSKyFzaxKAHC1A6dikUQrGWhjFN1ABy7iVGRC1sItBUnGTc6nP1MqNQqKVf2/GJEMMMgbIpNSjWGn2Zo3qHycBZPU4M8hqeSVikrXsVn8DdXJmJMVVsK6Ozg3ia53UOuJ/eQPuKVqNmXIKg6kk29FaLmXwUmvl+7pOq40UC6N/8Gcbl384qdUSYVzZBouMATIBSd+HNwx9JmApta8WQKVV0iBCzn3btSBmVADL5crySDCN+GQYLFwpblBQl12VG17LxycX3HGylsegHC2CAA+UInV7cHSsUh6CdO1BKLYYJGNGaUa5B8yJACly62gRamGLn4ZjkW1xSGoByM14f5qXHfQgOYnii9WfjCbZpHX6buNg9kk7iUukVqsA8gorAdBuJIhIZq2IsxMdm7REHizD8Ert+zNa0v6VB0ejOENVQDKwSGkUgAQg20b18NJqFI9MAHJlMkAygyw8o5R4ZAyO1Tgk7LQ3y4bPeiQTMiQbx9zdnLXcmKOknVRytQEoZzy/MtoHgGh0Dy77iBlel6w6LjnRR8CxrdWgrRA6KLmxJEkrLLttxJJreFhKWR7LrDGbZFWjqBQUdFoSMkV2hXHxSTFJ4IE0WECDUVqXsKM8SFZJglab+T6sRrtG5LolJulikG0A2VXuYUagjNkkYsm11lVnM9yf1tMOepDs+8Sy1hO1lmSYg8knQKTWkOFKigfSJQVAy+jyFQANbZWbBrTS0JZ7gApYyhBLeUejHq2YTQpQCjg2YpJGdQKkJOu0lnrEtZCrBMi4/KMqSg+OtiJ382wySenGQpazI8m1K6u8sMemjLspO9lVGY3KtTCDdJEBXJZm5ZN34ozOeq3kpGtA4pE8HZh+3CygLrvGAFmVFkQBKNm3dI/CIImUB8tC9t+R2Rqyo+VaAlZEZnVKg1YqYZEKLWUhtYYLKrf8UFGLSwpQQhsYMCOsIjYoDSKYWUrMuXLnuSapG2lKH2Uw15oI6JFksDqQzPMAkBGbxGjBAeKo0VWnKw65Ge5P62kHPUiu1qadwPryjTjZB4JPQAAuC8lTkOdSAJbrJxczA6Osk1sNtOKOLUYxq/SxLx1uynUL8hpLdTE4apWySO7p2gTIeNirpNSjsxay9j5e5jKPcdkAyGp5jMrJrCy1VqjGlQfHahxq52yNZYRaSMVjFlrHsIyGGyMqlBsYjWpcMHuJWIvyJQwdgzj3MEt89piIpvHIeBDlNuYYxx9jgKxKxyhlbMl68g0p/3tNpkGkmHlmBJNpxGOqieyeXBdaYaVywGmd3Ooeoow2nGik+pWFyNiTCaMUP8FAqcA1qsqMYd1DClnLCTxawwqLlGG3XPJOve1g3FHJ10dqHQDSs8YmQDbqIeNEnXh6tRcCNuf9qY8NILlKm3YCZznBbcHu1diB5JMCgxgpznYlEEtUBEDz2H+5u0mYilgWqwiF4liStdyvVaS9NotBsg6OYdQOHco5NBoA2TrsVSS3pqUeASCt66Rjl5cDIBZlAyBlvrDHqqhAFaEap/HIerxK5iujQK4DS4UKBgBVCmSsB0g1Ln3SjrUuBuYlV+vrJKliwPQZrrG1xMsmlSMyAKLBHONayHFpuXay5JetbIhHxmOEIrBJ5RJ1kvZtjlmKjf2f6FpwLNJoBTOukqQdoxQKa7FcqdaykIpYzm/rxuNjuKP2ZBQNuN6n3P/UmMJLrQKWEpPk89peB1vPcBU2KTKqZ5G+vCMFSL2wJSTqmLyZqGNGdddntnnfnzbKBpBssT7xt2nLVgMyszxlHeg+yT2NlItLOskVBnxXSoCSa8i04vEDrXVgSS6RQ0pAIrD0AKk57iTgaJRL3pEm60YYRDtAtg57VZURWJbNDjryvhIaBTAwhqzWOkBW4wq2YBZZjRkoOTbpQLJRP0fQRoXcmjF8TZ1fxzFJLfV4MtxWxYCkBRSt9WUgSUyyZx9XYYNx2YcAaFtf1phFNkGR3DihDIyNAZjdcdCWE3cq2IRZio0BmDIkb8WNKLgMiAGy0BaFVr4spNAKuabpsqvLcuUymREvzwkUNWjwHplQFEJgVknFuJndiubDUFt2q3KxSQ+MEmuUuONo0ccmWwEyG4VpGd0Dm/P+tBE2gGQPm3TCpunxfQPXs14YB4NPsexKcD1boUAafJfV3HhaOYAsrHUtxiy0Nq4mj9ezRMij508tY0gqVQNKZo8cpwxJRKYDIA0sg6Q0LbcBIJWtfBwSvsVcEZqVFwyEvszDJebEn2OAFPYoYBnLrI12ZRVLrspluFJFMCPD39EEVZGPQVqXQSnvFL9sFWr+ZAc95FcBwUnFIZZSiRWoSa9R7JE6ADLOco2NtIIiBW35eomZpdhYBZCs11c+PmZWWVguC9HuocxLr5HsWqkQa603QafMMTCXyKMXQu1oFERgk9E0rOUSHPdgonuNFeqAMRpY24Nkzu+IyzzqANmVydqSqNPHNur+tBE2gGSLTXoCmracWqa71ovXWYsseSD7FMuuMYsE4O7ECtD8brTh8SO1ZpVQS8lB+/YFGBkoRXLVvE8dshszxyZbAVKkVVumcUhbhjiky2r12a1lkbBGZo5FmsXaApDVuPKxyFRqTX8gWWIWVVWR3AoeScIxSqrkldZaiuTaekN2Ga5uJ/EOO85g9FWSOCQSVtkKjjUWaZ3kygk7cEBZS96JGKVSCrDks1sVKRhoVLWm5kUEjGKj0nrZdRTFInNNWFGWM12tQlEp6B5N0JUDxzi5qRUoXXcjpTUPh+bAkkoerkzl6H44kcGYY3B0AyXDmBQgF7Z4+TUByAmZrH1Bq8325f1pXjaA5BSbJZjctV7XhbDak3ww+RTLroCCdSySlLsjOaBULkFnZDRKS7CKGDuh/H1d5NYgtcJ/FnBUjj16kBTwdDHJ0HQAXEQeS6tVyXKrLYHxCrNHD4zjJA5ZjeNWc4UHRnkVj5cNgJR4JLPJ0DygtVVZFbIfLawbRYJvstXYDcgr2bHyqkmuFJd9RDfopF6yhzUk0ZrFhf7xPAFBKfeoysAc4zKQxkMC+CHBWgCWk3Uq2AQolVawpUUBll2lIb40xzc6TOeGGaWuGFgLTUmTAWaUyrNK32QgyvxVtcxXlcWd+Y0HSWjDwFZVCVi6k+2PP/8GAccaSGrjGpUbH39ExCCFTU4EyDV01NmM96e1WEdi/HzskUcewY4dO7C0tISlpSXs2LEDjz766MTv/MEf/AGUUsnrrLPOStZZWVnBH//xH2Pr1q049NBDceGFF+Khhx5as791+t73Kaf+XRW9gOaFMItMMPgUZNfQ3zVklWYmJNX42KHLRuWxHeMSjqgPq+/LajAyXP8Wah7hQdEPlhxntiokTQJgI7C0JTPGMsiqMi4kygIoi9CDNYlHjgNwjhmo2gCSgVPqJEWCpeTFST7k6usofM9JtBLPlNhj/R1AmJbkHYSbs/vA77abUVINHEWS9E0FfNIOf69NaqWa5GqpCZC25SWJPpINa0sbpFo3r6p4vjQzqDdXX/HlJ4TlkrOnC0tYrmTaMkAS/DIZSLoiMOiIbOmASMorIJ1tpJA/jhe6Yn61sAgty90yROuo2jItfVcXasvjeVkOjBZ8DLIBkFLq0TOTdTPen+Zt68okL7nkEjz00EO4+eabAQCveMUrsGPHDnzqU5+a+L3zzz8fH/zgB/3n0SjNrLriiivwqU99Ch/72MfwpCc9Ca9//etxwQUX4M4774Qxk1oIT7bV6Ohty6dJBusd5zsQfZLECBPFIxO51SpozaOEKACkWNrTRrmOL81/M+UkMgVmBMIiJRYpwJs5BpkLg7QlVFUyu4o76rh4pC3HPAZkLLM6sKyWV3xTAJFZBZBCHJJBsQ0gyaaAB4S6OTFtNKqKnNTKsUiA45ZkLGylQJWG1QKaNcm1rWhdxj9cQznIJKvLrjYCRoDxtwsg43UA+J7bnM7Ff6wFlCXHJH2VIg+oXFqMVa09oQ4Dd9eTeLQSRpkm8UiWqy8PMZqbDMBd02QBbaEw8jd+bYwvA0GUsMPDlFW+25FvmF4fh9IENql0YKQyYHI9u1UaBQiAe4CMh76aodRjM96f5m3rBpLf/OY3cfPNN+OOO+7AmWeeCQB43/veh7PPPhv33XcfTjjhhM7vLiwsYNu2ba3L9uzZg/e///348Ic/jBe+8IUAgI985CM45phj8NnPfhYvetGLZva164mni/6v1mb5/uBTaiFsFMmsNaAkUlCOrRAxoFliwKybcqAp4KjBQOjl1pi9RgBZz2RV1oGlLQFbct9TxxwZGMfhvRhPlVmrsfUAGTqtUE1upYQp1s1COrtovgFXlqcrll2V5m0oEzUkiOKQSU/Yqmr2IG2LS3aYz2KN3IzLP9pG9Kgi4Is76/AumwDpSa2sV3GsmSyBNEuvJtOoSst1k4oHf1aKj6HWCkVlvewqze7HZeXBcmS0Z4o6Yo3Ssi5O4pE4ZWGBkc5AriG8EvApx1AkUuaYY4NRGQjKohMkG6U2EjOog2Q+YvlVsltz14M1qoOEicByxlrIzXh/Wi9bN5C8/fbbsbS05AESAM466ywsLS1h165dE0Hytttuw5FHHoknPOEJOOecc/Bnf/ZnOPLIIwEAd955J4qiwHnnnefXP/roo3HSSSdh165drSC5srKClZUV/3nv3r0z/555nfx5XDhiB5tPk4BSK4XK3fg0KTfQLz/lC4skgvvstgdmEgEomT0qpAApoKmIM1kFEJWTWf10xBhFWqUifLY1mVWyWWOZVco7mgk71AqQ9XhkbBYMjlQRxyW18mzSJ/04Fiv6S1frs6nWNz7ZAuoAGkAJIGkWkMQhawDpB3mOviuDnHBHJge6mtcRNqm1k2Yr6+sr49FHmEXydMwmTcQqpWWdVhoVBYCsCFAEznbVmU/eUZSB3F03XONjBjUgxCYdQFIxhkKeyN6JxSDZkd2KLPNNAuLaxzaAnKdtxvvTamzdQHL37t0e2GI78sgjsXv37s7vvfjFL8bLXvYyHHvssXjggQfw5je/Gc9//vNx5513YmFhAbt378ZoNMITn/jE5HtHHXVU53avueYaXH311Z37FOkjfl8vm6bRxwHqwaemaeXkF0JgktpJqpqgSLF/KjBLbyrdDhDAUaRXkVkDULpmAWR9co5njm5agJNimbVMX3ZccHNyx9Dq2axS8+jffYzRNiRWYZRAU2oFmEF6M9yuzhiVgkhlQZX2Qy/FYElV5TNc4/o85ZY1hOueADnNPFBSLKG63xnFKGV+LMEGV5g5+u9pBkphkVYRP19pTgRSKgBwF5scZTphkzkFJpkT95/NDUutGoRKKRQgllMBbjjuaiV9fM3Y9P9IlYBSUGXJQFcWDIwtiTsNi4ExmvbsUekAkMIgo899GeRmuxdslM2cuHPVVVc1Emvqr6985SsA+Cm9bvx03x2GffnLX47f+I3fwEknnYSXvOQl+MxnPoNvf/vbuOmmmyb6NWm7V155Jfbs2eNf3//+95Pl9ZM/zSbp59MCzJOWdz15DT6lJgxPJFIZrDnIpIhS9yUrtfaSNmM+9ohaAlDKIGNQFOYYy6woS76ZCYu0FlQUfp7ImTEoxrHAOosUmdVns8YMMgLItqSVGDhl/eQ7VQyWKRttY5LUIvWpKRmrbVZnkW3jQlY1wOP3yduRdWNgjadtzEhro4jIZykrqbPJuLnBuLKwxGBqHagWFQ8YXVTWJ+yE9/CiCKh8TNBkacG+JPTko87knHjMx3R5KPPQC1t8ck7Y1ygFyHpnHTmvE87fZrwXbITNzCRf/epX4+KLL564znHHHYevfe1rePjhhxvLfvzjH+Ooo47qvb/t27fj2GOPxf333w8A2LZtG8bjMR555JGETf7oRz/Cs5/97NZtLCwsYGFhoXMf85Qa53VCB58mm1EAtGOKmm+uRoOZJAEK5MpGeF7dPJMEfOPqUDfpkoTcPM5cTQEyllmVrUKyTlV59ihjMVJVeUk1KbOIYoGTWGQMlmHECxt1EkqPC8+3gVE6LdVWFtp1epd96IhJrpe1tQWsl4WULcAHoJEh6+dHLLI+ZBYArpF0rFLWF9lVOVZtndwas8m04XroBsSSq2bWqBFYZI1NWnLXomL5ViuWXbWTXX18EpzI49mY0iBbuqQzzaySTJIw5Us/opGX4zIQZQxIKf6+DGcVy6vJcFfRvJZxIafZZroXrLfNDJJbt27F1q1bp6539tlnY8+ePfjSl76EM844AwDwxS9+EXv27OkEszb76U9/iu9///vYvn07AOC0005Dnue45ZZbcNFFFwEAfvjDH+Kee+7BO97xjpl+S9vJWat0MO270+SJtmWDT+0WuqxxjJLvp9zj1SgGSx42q/ld6bgTMlwDQBrNaT0+k1WYZJ1Rupo3qqoGi4TUuQljjJhjW9kFRYyvjUUCiOKS7QApn9t+r5dcJ8QwewNlWynIOls9k7XhUm2+teSBEmDZ1YBbFiodbs1kAdIBZG0NIMcOHOPSlMJa5MTJPrlO37XS0OQ6QZGCtvzAxrKrgtEuJhkl7ySypdJ8zSntsmENgyqZTjAhpVhSVTp5T8BQPjt2CR1JsPG2sH/eC9bT1q1O8ulPfzrOP/987Ny5E3fccQfuuOMO7Ny5ExdccEGStHPiiSfixhtvBAD87Gc/wxve8Abcfvvt+O53v4vbbrsNL3nJS7B161a89KUvBQAsLS3h8ssvx+tf/3p87nOfw913343f+73fw8knn+yzXfta20HvcyLqF2vfJyFZb9I+Bp/6+SRmHMhxEk6QXLXIri6+JEMdyWflZdlYXm0BSAFFogCYUhDuWCTFLNI98ZPElGyFyg1zZSPmmJRdOFYHpDHGegyxbhPwLrG2704z8W0eZiaEV9bT6sAZN0PvGri5LrkCaMivkplrHZO0FOojLQU2KTWhhFR2hdKOxZlIanUlGHEGaiLP5n558vKgV0vOces35FWdgeKknej47O/3gvWyda2TvP766/Ga17zGZ6JeeOGFeM973pOsc99992HPnj0AAGMMvv71r+M//sf/iEcffRTbt2/H8573PNxwww047LDD/Hfe9a53IcsyXHTRRXj88cfxghe8ANddd92aaiRj63pq6TphXVp93WjCOtOelAafJs8zTnqtQNDOA2GRFDtV81GkVl8CAgeQ9QF0hUl2scg4Vd9GYOnksrikoi61igWgbO/JystsM7ZX6yQ0zagiRIrdPjG9j4CTXKJXbF5ybZF2w2DQFoBx4Eg+gUfij8xC4SVWA1YyKgKzSU3us5NdASidJu8odpCnSfN0QHYALj4uv0VkUgFepT2rjJkiS6+KG5fLPHT/f+5P94KNsHUFySOOOAIf+chHJq4TX5hbtmzB3/3d303d7uLiIt797nfj3e9+95p9bDv4007YJJt28vvMG3yazacoyRUuGumS/MO/kcTA4puzgKMvA0EEkK5hAGwAxYRFehCtopf1Uivv1DYYmW1haBKPBJqg2DVvLVYfDaR9HZ2MVzgP07p7v9mEZQB8bFH52tj1sa64JIBEcgX4mvISrY6YI3E5klFwwOikV4J7kAOM0iCTNTNEJU5pLUCKwdLNBzr+t2rg6LNZO2KSq3kI3ez3gvW0g753a1+pYNJJWutJ7HvBDT51f46B0kJBc/aObyRdZ1ly+48BUkcMUvl3CqxSZNdomY0Yo2ePcSNwIJFXxdrAsq/JeJli0xik7gl2vUFR91dsJmFf3N0mnpf4pMIVorVCJeNkakgrWr+sqwazr5Eln+RUtzpgSls9GdTbt9pz8iqBGSYDY4iPc39+Tq5RuhmT9ExSOaXCN27oOJDCJnUzHslg2R8gO4/LlM+tbrWst573gvW0gxok23TytoPf9qRDHcvjebM8ccX+9JEiBp+a+6sDJQAGy7ZtRAMuq+i9IbPGoOmWC4AmUmvdvOy69rieNCwHGPAmxRjrJFEYmDaKxxt0KyijoKPpebPGLpvEJv1wVUqh0ipij2gAIsuaChXSushp+1JTGGts9fKUdD5C1jCFmGOQXAUYEQEks8nKZd0aD2gaIM1DelkwmMl1p6Z0N3IgSZHk6uXVVSTo7G/3go2wgxok+5zs+vKuE9m17uDTxvokQCmxSIv2m2JaApICZCuLjF+ybpzlmciuq+9vqowCitrnirgfa7RdHcmO9YxWrZuAmPz26LOuLWsDy1Bm0AKkE8oHYhYY78a4etTY4vEc082r0GZOKyjLcroAYwyQXaCYgO0E6wLQLrBkcAzzRXYVyZUBktx4qIFNKqV80pWJ2CSqkoHSxSN9TJJst/MCjNG0byBgIsk1/goOrHvBettBDZKxTTv5fZ7CZrX6Nibtc/Cpv0+CH15C7dgm0AGQNgLD+DtyQ4yXrQkQtQdEHmGet6vdGJBUkRvyimVGzwpdH1aRGAWAtGeNDJDKgSXvK/3s15ER7d07r2ugdRjlvs1omsTbsrjOcutya/yutApsX7uBk4kHyCbiE6xcNx0buSiAWQc8HW1LadUA1DaArAN2G1ACTm51AFk3C3hGqRDYJIGHeyOAyz2UhjIZx7FtCQUHflS7FuuAGQGkj0tGJR9QetX/f/vDvWAjbADJFutzEmSdiCYGYgAAMDpJREFUNp29zxNT3/0MPq3OJ7m/dYWpYibZyhKj+R44o2XKxZ54J7MDpTYatpBphQoBHG3hisaNgrbaD57MDcsdkPqoqm1sN2aOIqsGUHRjSbYk7/gR7uuM0Q0GzNubHo+sbzlOljKuFCc2o3UCkMaBmLzIprdGpXi+pLLUgTL8HpHUlSNZyn9fltcBsw6W9ZFBplk9LgkoL7mSQsImlXuQM8L2bOkwL5JbY7BkB5N3/7ASSbcxQCbHAwfXvWBeNoBkZH0lga6T1udpaRa5YvBp7T61gWUCkHWzAQTnbcLWrGOQyrM1ywBpYxAj35ycARLSltsDJRCDZZBV5UZvRgbaAyMDpXzWbj/y7kHQg6EDzBgUZ0jY8T65M1MHRqlZjbNa60AkIMYvZo2k+VgQhWMiQAkgAUvfMMIBZMwilaud5eY2bp5bX+pm12oCjpxAxhmuEgagFjYprE+FH8b5OmQB1XLsY8DUOo1LtjDIg+VeMG8bQDKyaQe/fpKnSQxr3d/g0/x8qt/z/Me25Jx42aTPfuM1IIleKpYtRVo1YZ4yGtq66YqgjQNFy0xJ2CSP6NEEyjg2F1zQAQhbWGR9eQDEFCDDBnUYt1A+887T95bjnBymeKxO3zc3vAQwpW+udcCltYIxGmQtDDQqWCirAI0EKAGuT6xbDIxKqQR8dct0ndWuBjArSz7eSy5GCeVYJCkopGxSK0DpDLBlAEo/EKZuXntRVmsdHOVobIb/u31xL5i3DSA5g9Wfilb7hDPPp6HBp9lt6i1vSiYhEMlc2sCjXzwNABEQxsxMVdaDozUaqtJOamU2KYMkAxVIgEsrVKiYNxoFVUUt5iL8EjYZA6TOdcIiA1tN45HxO29DJw8AfpSJ2rHoMsGWSSBTlzPjVxXFIHlMSIWqBDMyNz6kACV0ewmIAB/AjNFkmrdldINFClB2AvcqQFOSyIDAKsViNunXi7NVyUaHuXm8W5sJRLvYDP93m/1e0McGkET/EzAvXbzP9wef5utTvH7YwSrKM2JwEFCUgW6167WpNSiK4YnEqrUG5RkPReXAUcDKjAwPhOzYpCTumBGAMWBhYWBAxg0UDPi7r3TqiUs6tGEwkGkz0p5FmhEDpsyL2a5P2pHYZDwEkz8E/eOSHigj9qgV3KsJQH5YKumXqjmjVWKTSpNnkybT3GLOdcsR8Kozaw+ENZnVyDGKWaTqAm2dgKPR8Kx4FvNSa/S1OBtbyfXlEnQmXtu1zNbN+H+3kT6tlw0giema+rR1upav5gbe56IafFqdT71vZ0oDVLXLXLI8LuIGgyGVhZcmBVhI2xSErAOiPANVFmaUgayFqhi86laNeQQlYY7WDRBMhn+VrSxMUtIRmGcdIM3IBGB0rFGPssByYz/9u8jGMup9PalnOqOsH/fA1uDZGoOQReaAkkd1YeYHsGSptAoA6d4B3ob0Y+VzoZJ9xd16hEF6UMy0B8vcaIwy7cG6DpSZTNeSj4xIwvG8nmxTyi0JocZX9WDpbVL3JDtQ7wUbYQNIYvKJ6ROU7rJZn8j6ShGDT2v3ib/cAYJgOVW54BB3R+FRGXy6PhgYYQMY+lHl5ZXxiPI+9jhiYBQ2Se6zzsO/IVUFyCjEGqqtmEFVqGCMScaVNDVWF+TWKO4YA6RRKVhqDZNnidTamrQTm6vDm3aDjkmWdsCktfJ1j7qTtQVWyV1tGNwA8ODJEVCS4rpEpRVUi9yaZrimDNJk2susJgJFAcjMfzaJXzqKpwor9mU4jQSl7uPDvYUVt+aMvucZ5bT6yMhWAzgHwr1gI2wAycjaDn5bdpbYPPT0adsYfJqfT7WQULRilOygwUPMy/w49V5pMHLCgaeNQLFKJdecAZKnRzCuDZ0eZbDWQufcYTxuTcfMkoFJRf1ak/gjADK2Mc+vG8cktU7ZpFEwufElITGL1HkGnecJYMbJR0FS7gDOJHknnA2lkIzOIqOuAGhN3qkD5MgxySjS64GSNDcVV9Y1FGgtaxEWCR97lLikTJtMY+RY5KgFLBO/jPZSq64xSJk2SvlknL7mO0VR9L1JSkZkm/3/bqN9mrcNIInug66i97We3Fmffgaf1sen+tPwxMxBkVxlnYhNynxlAmNEPgLZKjDILOfPtoIe5TCuvMTICB+2ziKDHyqeNtaXgjCLZGaJHI22d6GEQ6GexWpy41gky72dLFJKQuRlHFhG79RT5qtbnOEqQGO0wkKmUVmT9EiNZdeKuPzDuAQWkVeVIg+WrfuLknYk9qiNTuTWGCDlteCnjfevPuRaLtKrZ5fhN/rzody+Vcqsp5l/oOs4zvED3/7wf7cRPq2XDSAZWV85oa/FDKbPeoNPG+tT243Is0kLkArF3CKxImrzpcgGNinAmI84bd8BpMr4MwHQuRs2y4/4kd7ZMwCVANW4BFByo4FxBaspgGWl3PcJgPG9XONG5kmJh5ZEnQCQOs9gRhn0KPMsMpZa9SiH0iG22soga2UHsWnFdYwaFFhXLXnHaIXcKBS2ySQXakwSAMYI4z5axYMnC1jy2MTtcqsHyhqTzE2IP7YBpCzzgGk0csPgqD04BnbM8+DHK1Vt5SgIYDltuLA25UN+4f78fzcvnzbKBpDssFlPdtvJnbe+Pvg0f5+SG1FddiUNgmOOviNKFJvUmYtNEscmsxHvu6p4m0JvbBg6SwPQDtQEFLtMGQ1blBGDJB68uTa0lqmVB4SmAlL2IRmtOgVIxyLNiAHSyLI8q9V6StKOy9x1o1jMYpLwAoTYpLY8L9caY219/C9mknWrFKEAoNyAyQKWYm1t6RrZrc6XGAibDJJZZAyYuXH+Gu1ZZG40tIqWae2lVq24cIPfVSK/ruYmP+v/TGyb7f9uo3yahw0gOQebpMu3fe4Khg8+7Tuf6hmF8Tw/OkNStE1+mrRhBgkE2dVNKyAaX5LfMwBl3Q/NZSLCJK3RqMYls7rKMlhWFlQpF680zEQ7Bk9WSXedKKM1Akg9yhJgjGOUIrWqPE8AMmaU0/q3Ak5qdEdUkneMBXKtUHpGiVDyYckDZd2MVhiXDKZjN/i0BgOjZ5E1whs3OK+DYwyQwl5jgDxkZPznxUwj17oBlLmuAWXEIutSK4NnCpbaHaOu+OU8rvvN/H+3mXzqsgEkJ1hbAFqu5WlPP43Y1+DTpvbJrxNLrybjgZcBBsWW8f+SdwFKMVs1JTMHMhnAQOjAy2qNEoAyxs9TmrvMWGk+4JJ/hEWKzBon8MTZrQCQdPbJs8AmPUDmPvPWxyjzEVTGL88mo7KWWGLtYpRxDE47gJDkHZFdM6NgbGCUApQAULU0Y40HPzZahdE5TDoaR2w+SaglMUjes4RNmgajzHUAyFzzsjxmlm5auwcCTkaK4q4I8dcYLOvPGLNe/wfC/91G+LRWG0Cyxbp08T40v22daZ8HnzaXTz4xx5YeKJOx/tC8GcRAScIgo9/R+KfXGsYUUA4cAQec1iaskirLTNJoP1CzgKSu2mObSXu5uLOODhmtApAJmxxl0KM8sEjHHFUkvfKGdfu77D9mSirMi+OSzCgZdCpNsIaTc0aZRunYZGyZVlhxLLKyhHHJv7k+jJVMt40s0hb3TNlkU3KNGWSuNTITQNHPl2VahcxXhGYDAoxKJFg3L2aRcsj6ZMQeqP938/ZpXnbQg+Qkii9WfzKaZJPW6buNwad965MHNemlaTJO0kE/oNQLW3hMPzFtwjaNAA5LmBppwo6uLKxmgNR5DlsU3GFnlMGOSw+IwjCBbpAUYAQQpFTNMUgfj8wzmMWRl2ChTWCR+YgTkrIIOCWztUcxewqQPB0AMsTtcqN5bEZ3MOpSayyzrpQ2YZIAGu/ynfp7vSlAYJNmQpIOvy8YHSTWGCAdyxSA9KUuTtrl8pcgs3qwRD+APJj+79bi03raQQ+SfZ9Y1nqiZjnZg0/9bD19SoCS3Bh/xg1eS6oBjEwXBDzGQXoVQIynXe0hOXamszF0WcCOC1RF6eVRqiyDpWOPlGfMJq31DNP766bjxuR1Rqkd8HomOaol8eQjqCznV8QiRWpV2qRDM8XddqT0RD7GAAlAwbEsDReT1KgM1wVassgdkwQ04A6dgJmPQ0ZMsrKEsoNFAk2QzHSb3NouuQYAjGKPHQC5kLUDZKgPlTIXJzlr1QDISezxYPu/i20zACQwgOSqbdoJrC/fiJM9+NTP+vrkgVJpwIzcYLjwJR0K8KxKyegNsm1VAkqlpRMmzhI1TVapDZQZs7SaZ7BF6RmkjYCRQZKTgGzVUSCIKC5pTBKb9LWRLQAJB5KeRda7CLlymNi6EngY8sLRVmBwtBqoyHo2mTmAzD1aMFCKpMoAya3rKmuTWspJUms8Xe/DGnfV8XKraoJgNgUspzFI6cqzGoBci+3P/3dimwEggQEkV23TTuAsJ7jBSlZpg0/9bBafZFpYJQOg9QCpXMYqgWOZVJWhdZ0SdrXYBJsOVgmtYXILXYxBeYaqKLnPq7WJ3CqgadCUW8ViJqkjkPQA6cAyBcgR957NXJ2kLKtJrZQw59TqcxgUiIFDqwabBCysdizSj5WpgSxIrRKTrGwss9rWLNjY6s3JR575RYxShcSbPuxR1u0CyIQ1qhCX1G7eJHAc/u/62To9W7TaAJIt1kdzn7ZsNRfWLE9Zg08b61NDfo3YI5RiYHRMsx6nhNLQxiRA2MYqVZaDyhxUFm66gB5VsOOCQdI1RSdrG0k7bUBZHx+ymcTjgNE1Q1DZCCrPQ1Zrlofs1myUAmMLo6wfQ05QIde0m4GBCL6esCKLnBSsZUCS0TJjoDSKGlJrkFn1RJCMWWRdbuWOOdJiLoCjZN22gaVnmkaHcTGjLNb4cyK1qtnZ4/B/t3lsAMkeNumETdPj+5zs1VwYg08b75NnlTFIKM3Zr445+qQWWwJVDCqR/CrgmOVQZQEqxkCZA2URgWXBIFUW0FkOWAtjGTAB+MSdpPdr1JtNEnYAJMDoG5dL3WMmTNEEgJS4pPMlZpFUZ489G51LXJJBU0FrigAyklkjoDRKobCWS0RyhYqaMmsXSHYm7rgMWynfkMQhX5ISlXTE7FFrtMqrSqWfu+KPoWXdxEO1z6/x/c2njbABJFts0hPQtOXUMt21Xp2pDD7tZz4pDaWzwCp5FN9Ebo3lV+gMSpdQWQaUJVCOU/k1ywNY5iOoYgzKRryetdwD1gEmbOWk1qpTbgViNhlKOJRniC45x8UgA6PMOfFIwFNYpM6C1KpTcGxjlcIeKwqSK4GTaCwpWAUHkDWZFRZGGQZIJTFMHu2jsjx6RlwX2ZYN66el7ESH+kztY4WuxZxWCVPUqj32qCawRwHFWdnjpr/G92Of5mUDSE6x+onr+4TUJT3M4yQPPm0enxIGqS2UjYBRZ4AuHas0ULYKsUqRYB0ICntU+cgxS2aSylpQmQNVxeNO2so1Tbe+ow9Fbe8aJlmncZ1jDI7StNwDYgBIYZkNFtmjBEQrZn4MgQqkCEYBlphNNuXVAJRaaRSWPEAym+QzEAPmNBNQ5OkAjDFrDEwSjjEGJhnazsWgGLJX6+wxyKzd4Lg/XuMHgk9rsQEkI5ukq0+TG+rrihGaF8Is0sXg0+b3iQCWXWMgIQvELDKWYF39JWwJ1JmlgGNZcAaryK62YsC0FScLOdBsAGXXb4xAUsUjewg4Cos0JgXIfORiqVkCjpNqJZVSAHEssgKiYnoFowlkASIE2TUCSq0IhSUYRSgUM8aYTQLwADlNapUG4r7zjVYJAxTWmDLIfuDYxiLbEnMOlGt8f/Jp3jaAZGR9n3imLZ8mGcxysgef9h+fPFiaEUgGzK1KBiHLDdI9s7QGsAyWypYsxTqwVLZiVhm/V1UClMk04LNsfZ/Y2GTwZA+ScWatk11zaUGXxiklWSfJatWBTXaWf7gDppUCgUDEbFISd6Dl1qdhFUGYpCYFwMI6ULOWuCOPO/AVkR8JBK7OUixmbTLyRwxoOpFDU5lVYo5xRuo05jgJHJNrou34YP+8xvcHn+ZtA0ii+yml6wlptTbL9wef+tlm9AlgpqXMiCVXWzJYKsUxTGGRZMEV9ZwxC1tCaZ6v85FjkhyPjGXWVtAEwmgjXRYPeSUgGSfxCJt0pR8Sh2TZOGKSXYk6SicHitkjuBd8xCYVCAYBKFmUtdBao6gIRmlUhAggCdKe1vbs1co/sQmK6ecAjAx4gG96gPauOV1JObPWO+7v1/hm9Gm9bADJnjavkz9P2WDwqZ/tK58SZhmDpTBLsoFZtgAmjOU6RQeKDaCMpgH4BgMAUsCMGhqomFUKMNamlZSrSFw1Gu0EJmvGJnU3cGoFHlorYpOAQhUBpSWOC2qRWSuCJuLEHigPmABQ6fQMWKLGuIzxkFwCbjLfS6wOGFP5FD5bVaO73lEYpfy+1dqBcI1Pss3o02psAEmkmvd6n5C+Gv3g0wHmUx0sybrkmwgYvRRrw7wIMEEWiiwUUQM0gSC5TopPBiYZ2uUl4KiUz8T1YKgzL7PGANkltUo9JEnyTsQmTXRkBCiVO2pKM6vUipIMVmtTcOxK2onBEHDlqD5xR3mw46Qa5es3faKNSuVZYZCTWONarrkD7hrfBz5thA0giebJn2aT9PNp25h0QXU9eQ0+HRg+JWAJBACsGDQ9u7QlD+zsAJMoZwAU0CTbAE0AQYKd8Bu8SXzS1OKOQMIePRiamtwaJe3E5R9S8gEEqZXnM5u0SIGSwCAKyyzTEtz4jwoEl5yju4Gx8bMEKCOmKH4JMCblGTFIops1djHG4Rrftz5thA0gifnKC2tQXxrbmtd2Bp/6bWejfJLlSnrCtrBLRcSxy5hNWgFJSgHTA2fO70B477I4S9V9rsuovsOOFrk1ay7r2rzPcG2Co0wrxRKsIkBrgoUCESfjkDtKAnpEk89ODIZAAERZJkwwaRNXA0Y/jXbWOIsd7Nf4LNuZl0/rZQc1SLadnLU+tfS5QU7aR9uywacD06cGWAIBECVGKfJqDJgeOGugKd+PAFK1gGVS+F8v42gDxzqDrMcj4+9HpuFKQMBg48ERhAqAJgXr6icFLD2zdIApsb+u7nOJ9ClACQfSbjmDZDcw1ov/TduNYRU2XOMb49N620ENkm0Hvc+JqJ+wvidQ1pu07uDTwedTvF4CmDoCxhgw21ikgCbgQVIRpfsXwKwBWjL8FZAk4rQBZByLbLSpQ/rwKQBlXd0kV0Py0SQFKGIwhIJnlgYOFKMNUU1uVZEPdaDU7osxKOo29oi1A+NmvJ4ONp/W27r1kjnYI488gh07dmBpaQlLS0vYsWMHHn300YnfUUq1vv78z//cr3Puuec2ll988cVz87vr/0Wh/eTWT36X0YR1pv2PDj4dHD5R9ILOGDCzRVAurwVQtgAyOWBGvDxeJxuB8kUgG7l18/DK+XukOXtV5sNkyYtc0o4v/YhKQJIm57r79qGFmUHAKtQRKhWNmKG49EI61mTSHk6Hl9E8nJa8RtIyTiuMDH8nc9MjrZBp8HTbS4fvj4xCricD5P5+PR3MPs3L1pVJXnLJJXjooYdw8803AwBe8YpXYMeOHfjUpz7V+Z0f/vCHyefPfOYzuPzyy/E7v/M7yfydO3firW99q/+8ZcuWVfk47QT2md+1Tl9pos9T1uDTwedTsl2dhXm2BEhKRQKTlAQekA3SbfwOwPV3q/2IFvlVpj2jVEikWd3S7LzFlFK+nEMYpVH8OywYGMVtBT+R/H4T3Q7rN0aJWQpLlHU8cwQS6TUGxIPtejqQfVpPWzeQ/OY3v4mbb74Zd9xxB84880wAwPve9z6cffbZuO+++3DCCSe0fm/btm3J57/927/F8573PPzKr/xKMv+QQw5prLsaW41UUJ+31pPY94IbfDp4fUq2raN/W1u6he2SawKe8fxO5wLoNWTYSI5tjWvWfo9WLJvGQNkGipKTY6A6Y49i9fILnhcBJVJQVNH7tHN1MF1PB5pP62nrJrfefvvtWFpa8gAJAGeddRaWlpawa9euXtt4+OGHcdNNN+Hyyy9vLLv++uuxdetWPPOZz8Qb3vAGPPbYY53bWVlZwd69e5MX0Hwq7aLvbdIAdSyP57Vtb9LJFWli8GnwqY9PBLA0qjOWXM2I5VYnuVI2CrKryfmVRdNtL5FiXTMB32nHZAyObc0EgAQok/ZwgrNOetWQEoy04bi8Ypm17eWlVS+3ai+lyvJcw8uosv/Ndu4Gn+bj00bYujHJ3bt348gjj2zMP/LII7F79+5e2/jQhz6Eww47DL/927+dzL/00kvxtKc9Ddu2bcM999yDK6+8El/96ldxyy23tG7nmmuuwdVXX92YP43mo2U5zbjurDb4NPi0Wp/q8qcCOMkHSGVWn9gzhVXG2/UbncwgYwtMT2YEpmgATsbpusvWtxWxw9ZtY20S3L4+d4NPq/dpvW1mkLzqqqtaASe2L3/5ywCQZKCJEVHr/Db7wAc+gEsvvRSLi4vJ/J07d/rpk046CccffzxOP/103HXXXTj11FMb27nyyivxute9zn/eu3cvjjnmmNSvaHqaNNPnpPex+jYm7XPwafBpVT7VmJ4CPEg29jeDFDtxHgJ42RoOSjySv9t+H+i6O3TJprPafnPuBp+m+rQRNjNIvvrVr56aSXrcccfha1/7Gh5++OHGsh//+Mc46qijpu7nC1/4Au677z7ccMMNU9c99dRTkec57r///laQXFhYwMLCwtTtiPU5CbJOm87e54mp734Gnwaf5ulTApy17UxjhquxtfQ2bbOD+dwNPu0bpjkzSG7duhVbt26dut7ZZ5+NPXv24Etf+hLOOOMMAMAXv/hF7NmzB89+9rOnfv/9738/TjvtNDzrWc+auu43vvENFEWB7du3T/8BE6yvJNB10vo8LU17+hp8GnzaFz7Vb1qTthWvMw/bn47T4NPm92netm6JO09/+tNx/vnnY+fOnbjjjjtwxx13YOfOnbjggguSzNYTTzwRN954Y/LdvXv34uMf/zj+5b/8l43tfuc738Fb3/pWfOUrX8F3v/tdfPrTn8bLXvYynHLKKXjOc56zJp+nHfz6SW67SazX09e05YNP/ZYPPvVb3scnanmtxg7049THBp/62UYDJLDOzQSuv/56nHzyyTjvvPNw3nnn4dd+7dfw4Q9/OFnnvvvuw549e5J5H/vYx0BE+N3f/d3GNkejET73uc/hRS96EU444QS85jWvwXnnnYfPfvazMMY01p+nqdp7/Qln1u3MwwafZtvW4FO/bQ0+9dvW4FO/bW0mn2Y1RfV+TweB7d27F0tLS9i9ezcOP/zwuVD4ecsAg08bt73Bp43bxry3N/i0cduY9/bWuo29e/di27Zt2LNnDw4//PA1etNt68ok9xebpqn3eYpp28asTz/x+oNPk/c1aXvxeoNP3duL1xt86t5evN7gU/f24vU2yqeNsAEkMfnETIq1TDuhfZ6Sui68wafBp8GnwafBp9m3MW8bQDKytoNf19Rj6ysVTLugZv3u4FO/7w4+9fvu4FO/7w4+9fvuvvZp3jaAJKY/9cyinXed3Fmffgaf+tngUz8bfOpng0/9bDP6tF52UI8nWbe6nDCvwHSfp7GudQafBp8GnwafBp+a622UDUyyw2Y92XLS4u/11df77mvwqZ8NPvWzwad+NvjUzzajT/OwASTnYG0nrf6kozqm1+tkDz71s8Gnfjb41M8Gn/rZZvSpywaQnGCq9i7T9ZPZdtLqMsTg0+DT4NPg0+DTxvu0VhtAssXaZACZP00vbzu59e+s5klo8GnwafBp8GnwaePtoAfJNopfPyHUMb/NZr0YBp8GnwafBp8Gn9bm03raQQ+SbSe3z3qzWt8Lpm1fg0/99jX41G9fg0/99jX41G9fm8Gn9bSDHiRXa9OecPpo8PO2wad+NvjUzwaf+tngUz/bjD71sQEkV2nTTuAsJ7gt2L0aG3zqZ4NP/WzwqZ8NPvWz9fBpI2wAyRZr09z7rlufP8vJnEWbH3zqt5/Bp377GXzqt5/Bp3772SifNsIGkOxhky6OaXp838D1rBfG4FM/G3zqZ4NP/WzwqZ9tRp9WawNItljXSVLo/4TUZ714ndVKEYNPg0+DT4NPg0/rZwNITrH6iev7hBRP1y+EWZ6YBp8GnwafBp8Gn9bm01psAMnI2nR1apme9l0VvYDmhTCLTDD4NPg0+DT4NPi072wYBSSy1ejobcsnSQ/UY1uDT4NPg0+DT4NPq/Np3jYwSXQ/pXTR/9XaLCd68KmfDT71s8Gnfjb41M82o0/rZQNI9rR5nfx5ygaDT/1s8KmfDT71s8GnfrYZfVqNDSCJVPNe7xPSV6MffOq2wad0X102+JTuq8sGn9J9ddlm9GkjbABJpAHmPidkkn4+7YKZtLz+5DX4NPg0+DT4NPi0b20ASczvSWWeTzyDTxu7rcGnjd3OPLc1+LSx25nntvY1S+xjBzVItj2hrPWppU9G16R9DD6F5YNPg099bfCpnx2IPq23HdQg2XZy+jzZ1E9Y3xMo603ax+DT4NPg0+Rtd32e9r3Bp37f2998Wm87qEGyy7pOoOjn9RNW1+q7jCass1pdfvBp8GnwafBp8Gn97KAHybYD3fXUQhOWtX2368TWt1GfN/g0+DT4NPg0+NTfp/W0gx4kVyMV1Of1PbF9fRh8GnwafBp8Gnzq79N62kENkvUT1UXf2550qGN5PG+WJy7Z9uDT4NPg0+DT4FM/nzbCDmqQrJ/IaReIfKfrwmhbd/Bp8GnwafBp8Gn9fFpvO6hBMrZZNPc+J72P1bcxSdYYfBp8GnwafBp82ngbQLLF+jzNyDptOnufp6u++xl8GnwafBp8Gnya3ad52QCSkfWVBLpOWp+npWlPX4NPg0+DT4NPg0+r92neNoBkZNOeUqj2Pk1iWOv++qwz+NRvncGnfusMPvVbZ/Cp3zr7wqd527qC5J/92Z/h2c9+Ng455BA84QlP6PUdIsJVV12Fo48+Glu2bMG5556Lb3zjG8k6Kysr+OM//mNs3boVhx56KC688EI89NBD6/ALUqs/Fa32CWeeT0ODT7Nta/Cp37YGn/pta/Cp37Y2k0+z2rqC5Hg8xste9jL80R/9Ue/vvOMd78A73/lOvOc978GXv/xlbNu2Db/+67+Oxx57zK9zxRVX4MYbb8THPvYx/M//+T/xs5/9DBdccAGqqlqVn31PQP2paLXW5/uDT4NPfW3wabbtTLLBp/3Xp/UyRUTrvv/rrrsOV1xxBR599NGJ6xERjj76aFxxxRV44xvfCIBZ41FHHYW3v/3teOUrX4k9e/bgyU9+Mj784Q/j5S9/OQDgBz/4AY455hh8+tOfxote9KKp/uzduxdLS0vYvXs3Dj/88Inr9gksT/ruLN/ru/7g0+DTPNcffBp8muf6G+XT3r17sW3bNuzZs2fqfXwtlq3blldhDzzwAHbv3o3zzjvPz1tYWMA555yDXbt24ZWvfCXuvPNOFEWRrHP00UfjpJNOwq5du1pBcmVlBSsrK/7znj17AMCz01kvFrHVfq/PNgaf+m1j8KnfNgaf+m1j8KnfNjaDT3L/Xm+et6lAcvfu3QCAo446Kpl/1FFH4Xvf+55fZzQa4YlPfGJjHfl+3a655hpcffXVjfnHH3/8PNwebLDBBhtsH9lPf/pTLC0trdv2ZwbJq666qhVwYvvyl7+M008/fdVOKZUq3kTUmFe3SetceeWVeN3rXuc/P/roozj22GPx4IMPruvBXQ/bu3cvjjnmGHz/+99fV4lh3jb4vbE2+L3xtr/6vr/6vWfPHjz1qU/FEUccsa77mRkkX/3qV+Piiy+euM5xxx23Kme2bdsGgNni9u3b/fwf/ehHnl1u27YN4/EYjzzySMImf/SjH+HZz35263YXFhawsLDQmL+0tLRfXRSxHX744ful74PfG2uD3xtv+6vv+6vfWq9vJePMILl161Zs3bp1PXzB0572NGzbtg233HILTjnlFACcIfv5z38eb3/72wEAp512GvI8xy233IKLLroIAPDDH/4Q99xzD97xjnesi1+DDTbYYIMdnLauMckHH3wQ/+///T88+OCDqKoK//AP/wAA+Ef/6B/hl37plwAAJ554Iq655hq89KUvhVIKV1xxBd72trfh+OOPx/HHH4+3ve1tOOSQQ3DJJZcAYPZ3+eWX4/Wvfz2e9KQn4YgjjsAb3vAGnHzyyXjhC1+4nj9nsMEGG2ywg8zWFST/9E//FB/60If8Z2GHt956K84991wAwH333eezTQHgT/7kT/D444/jX/2rf4VHHnkEZ555Jv77f//vOOyww/w673rXu5BlGS666CI8/vjjeMELXoDrrrsOxphefi0sLOAtb3lLqwS72W1/9X3we2Nt8HvjbX/1ffB7sm1IneRggw022GCD7Y829G4dbLDBBhtssA4bQHKwwQYbbLDBOmwAycEGG2ywwQbrsAEkBxtssMEGG6zDBpAcbLDBBhtssA47YEFyfx3L8pFHHsGOHTuwtLSEpaUl7NixY+roKUqp1tef//mf+3XOPffcxvJpnZPW2+8/+IM/aPh01llnJetstuNdFAXe+MY34uSTT8ahhx6Ko48+Gr//+7+PH/zgB8l663G83/ve9+JpT3saFhcXcdppp+ELX/jCxPU///nP47TTTsPi4iJ+5Vd+BX/1V3/VWOcTn/gEnvGMZ2BhYQHPeMYzcOONN67Jx7X6/clPfhK//uu/jic/+ck4/PDDcfbZZ+Pv/u7vknWuu+661ut9eXl5n/l92223tfr0rW99K1lvsx3vtv9BpRSe+cxn+nU24nj/j//xP/CSl7wERx99NJRS+C//5b9M/c6GXd90gNqf/umf0jvf+U563eteR0tLS72+c+2119Jhhx1Gn/jEJ+jrX/86vfzlL6ft27fT3r17/TqvetWr6Jd/+Zfplltuobvuuoue97zn0bOe9Swqy3Iufp9//vl00kkn0a5du2jXrl100kkn0QUXXDDxOz/84Q+T1wc+8AFSStF3vvMdv84555xDO3fuTNZ79NFH5+Lzav2+7LLL6Pzzz098+ulPf5qss9mO96OPPkovfOEL6YYbbqBvfetbdPvtt9OZZ55Jp512WrLevI/3xz72McrznN73vvfRvffeS6997Wvp0EMPpe9973ut6/+f//N/6JBDDqHXvva1dO+999L73vc+yvOc/vN//s9+nV27dpExht72trfRN7/5TXrb295GWZbRHXfcsWo/1+r3a1/7Wnr7299OX/rSl+jb3/42XXnllZTnOd11111+nQ9+8IN0+OGHN677edqsft96660EgO67777Ep/g63YzH+9FHH038/f73v09HHHEEveUtb/HrbMTx/vSnP03/5t/8G/rEJz5BAOjGG2+cuP5GXt8HLEiKffCDH+wFktZa2rZtG1177bV+3vLyMi0tLdFf/dVfERFfUHme08c+9jG/zv/9v/+XtNZ08803r9nXe++9lwAkJ/H2228nAPStb32r93Z+8zd/k57//Ocn88455xx67Wtfu2Yf22y1fl922WX0m7/5m53L95fj/aUvfYkAJDeieR/vM844g171qlcl80488UR605ve1Lr+n/zJn9CJJ56YzHvlK19JZ511lv980UUX0fnnn5+s86IXvYguvvjiOXk9u99t9oxnPIOuvvpq/7nv//RabFa/BSQfeeSRzm3uD8f7xhtvJKUUffe73/XzNuJ4x9YHJDfy+j5g5dZZbdpYlgCmjmW5Vrv99tuxtLSEM888088766yzsLS01Hv7Dz/8MG666SZcfvnljWXXX389tm7dimc+85l4wxve4Mdj25d+33bbbTjyyCPxj//xP8bOnTvxox/9yC/bH443wKMRKKUasv68jvd4PMadd96ZHAcAOO+88zr9vP322xvrv+hFL8JXvvIVFEUxcZ15HNvV+l03ay0ee+yxxkgPP/vZz3DsscfiKU95Ci644ALcfffdc/F5rX6fcsop2L59O17wghfg1ltvTZbtD8f7/e9/P174whfi2GOPTeav5/FejW3k9b2pxpPcl7ZeY1nO6sORRx7ZmH/kkUf23v6HPvQhHHbYYfjt3/7tZP6ll17qG8jfc889uPLKK/HVr34Vt9xyyz7z+8UvfjFe9rKX4dhjj8UDDzyAN7/5zXj+85+PO++8EwsLC/vF8V5eXsab3vQmXHLJJckICvM83j/5yU9QVVXrtdnl5+7du1vXL8sSP/nJT7B9+/bOdeZxbFfrd93+3b/7d/j5z3/uBzMAuN/zddddh5NPPhl79+7FX/zFX+A5z3kOvvrVr85ljNjV+L19+3b8zd/8DU477TSsrKzgwx/+MF7wghfgtttuw3Of+1wA3edksxzvH/7wh/jMZz6Dj370o8n89T7eq7GNvL73K5DcH8eyBPr73bb/vj6IfeADH8Cll16KxcXFZP7OnTv99EknnYTjjz8ep59+Ou666y6ceuqp+8Tvl7/85YlPp59+Oo499ljcdNNNDZCfZbsbdbyLosDFF18May3e+973JstWc7yn2azXZtv69fmrud5ntdXu4z/9p/+Eq666Cn/7t3+bPMycddZZSYLXc57zHJx66ql497vfjX//7//9PvH7hBNOwAknnOA/n3322fj+97+Pf/tv/60HyVm3uVpb7T6uu+46POEJT8Bv/dZvJfM36njPaht1fe9XILk/jmU5i99f+9rX8PDDDzeW/fjHP248EbXZF77wBdx333244YYbpq576qmnIs9z3H///Z037Y3yW2z79u049thjcf/99wPY3Me7KApcdNFFeOCBB/D3f//3U8fh63O8u2zr1q0wxjSegONrs27btm1rXT/LMjzpSU+auM4s52zefovdcMMNuPzyy/Hxj3986ug+Wmv803/6T/11s1Zbi9+xnXXWWfjIRz7iP2/m401E+MAHPoAdO3ZgNBpNXHfex3s1tqHX90wRzP3QZk3cefvb3+7nraystCbu3HDDDX6dH/zgB3NPJPniF7/o591xxx29E0kuu+yyRpZll339618nAPT5z39+1f6KrdVvsZ/85Ce0sLBAH/rQh4ho8x7v8XhMv/Vbv0XPfOYz6Uc/+lGvfa31eJ9xxhn0R3/0R8m8pz/96RMTd57+9Kcn8171qlc1Ehte/OIXJ+ucf/75c08kmcVvIqKPfvSjtLi4ODV5Q8xaS6effjr94R/+4VpcTWw1ftftd37nd+h5z3ue/7xZjzdRSDz6+te/PnUf63G8Y0PPxJ2Nur4PWJD83ve+R3fffTddffXV9Eu/9Et099130913302PPfaYX+eEE06gT37yk/7ztddeS0tLS/TJT36Svv71r9Pv/u7vtpaAPOUpT6HPfvazdNddd9Hzn//8uZck/Nqv/RrdfvvtdPvtt9PJJ5/cKEmo+01EtGfPHjrkkEPoP/yH/9DY5v/+3/+brr76avryl79MDzzwAN1000104okn0imnnLLP/H7sscfo9a9/Pe3atYseeOABuvXWW+nss8+mX/7lX97Ux7soCrrwwgvpKU95Cv3DP/xDkhK/srJCROtzvCW1//3vfz/de++9dMUVV9Chhx7qsxDf9KY30Y4dO/z6kiL/r//1v6Z7772X3v/+9zdS5P/X//pfZIyha6+9lr75zW/Stddeu24lCX39/uhHP0pZltFf/uVfdpbPXHXVVXTzzTfTd77zHbr77rvpD//wDynLsuRhZ6P9fte73kU33ngjffvb36Z77rmH3vSmNxEA+sQnPuHX2YzHW+z3fu/36Mwzz2zd5kYc78cee8zfowHQO9/5Trr77rt9xvi+vL4PWJC87LLLCEDjdeutt/p1ANAHP/hB/9laS295y1to27ZttLCwQM997nMbT1aPP/44vfrVr6YjjjiCtmzZQhdccAE9+OCDc/P7pz/9KV166aV02GGH0WGHHUaXXnppI6287jcR0V//9V/Tli1bWmvxHnzwQXruc59LRxxxBI1GI/rVX/1Ves1rXtOoSdxIv3/xi1/QeeedR09+8pMpz3N66lOfSpdddlnjWG624/3AAw+0XlfxtbVex/sv//Iv6dhjj6XRaESnnnpqwkovu+wyOuecc5L1b7vtNjrllFNoNBrRcccd1/oA9fGPf5xOOOEEyvOcTjzxxOSmPi+bxe9zzjmn9dhedtllfp0rrriCnvrUp9JoNKInP/nJdN5559GuXbv2qd9vf/vb6Vd/9VdpcXGRnvjEJ9I/+2f/jG666abGNjfb8SZixWbLli30N3/zN63b24jjLUy267zvy+t7GE9ysMEGG2ywwTpsqJMcbLDBBhtssA4bQHKwwQYbbLDBOmwAycEGG2ywwQbrsAEkBxtssMEGG6zDBpAcbLDBBhtssA4bQHKwwQYbbLDBOmwAycEGG2ywwQbrsAEkBxtssMEGG6zDBpAcbLDBBhtssA4bQHKwwQYbbLDBOmwAycEGG2ywwQbrsP8P6I74rOx9QswAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgmRXU//qmq7vfeYWBGWYchMqCisohsCgMGFxBBUEQjExdc4hLURGHC71HixhIFY9xQQTQTRiQiIQTBCAoaRYyjXzQBF5ToEw0KMyIoDNud9+2q+v1RdWrr6n7fu86duX2e5729VXef213Vn/qcc+oU01prdNJJJ5100kknNeGbW4FOOumkk046ma/SgWQnnXTSSSedNEgHkp100kknnXTSIB1IdtJJJ5100kmDdCDZSSeddNJJJw3SgWQnnXTSSSedNEgHkp100kknnXTSIB1IdtJJJ5100kmDdCDZSSeddNJJJw3SgWRGzjrrLDDGon177LEHTjjhhDm5/yOPPIKzzjoL3/rWt2rH1q5dC8YYfv3rX8+JLvNJfv3rX4MxhrVr187YNS+99FL8+Z//OZ785CeDc4499tijsexDDz2E0047DcuXL8f4+DgOOOAAfPGLX5wxXeZC3v3ud+OEE07AbrvtBsYYXvva12bL/fSnP8Vb3vIWrFy5EosXLwZjLFsfm0RrjQsuuABPecpTMDY2hl133RVvfvOb8cc//rFW9mMf+xhe8pKXYM899wRjDM9+9rOz16S6n/tt2LAhKvuud70LBx54ILbffnuMj4/j8Y9/PN70pjfh//7v/+b8mfzud7/DDjvsAMYY/vVf/7W17D/+4z+CMYZtt922duw73/kO3vCGN+Dggw/G2NhY43eg7TkxxnD++ee7ss9+9rNby6bP9etf/zpWrlyJbbbZBjvuuCNe+9rX4p577onKUDvN/XLt5Z//+Z9x4IEHYnx8HDvuuCNe8YpX4De/+U2t3MaNG/Gud70LT3rSk7DNNttgt912w8te9jL89Kc/bX2m05ViVq++hcob3vAGHHvssZvt/o888gjOPvtsAKh9MI4//nisW7cOu+6662bQbOuTz3/+89iwYQOe8YxnQCmFwWDQWPYlL3kJbrnlFpx//vl40pOehC984Qt4+ctfDqUUXvGKV8yh1lOXj370o9h///3xohe9CP/0T//UWO4HP/gBvvSlL+HAAw/EUUcdhS9/+cuTus8ZZ5yBj33sYzjjjDNw9NFH4/bbb8d73/te3HLLLVi3bh3KsnRlP/3pT2Px4sV47nOfO9J9LrnkEjzlKU+J9u2www7R9v3334+Xv/zl2HvvvbHddtvh9ttvx9/93d/h2muvxU9/+tOo/Gw/k7e+9a0YHx8fWu6uu+7CGWecgeXLl+OBBx6oHf/GN76Br3/96zjwwAOxZMmSRoCmb0Qq733ve3HjjTfipJNOcvsuvPBCbNy4MSr3yCOP4Nhjj8XBBx+MZcuWuf033XQTjjvuOBx//PG45pprcM899+Ad73gHjjrqKPzgBz/A2NhYdJ2//uu/rrWLvfbaK9r+xCc+gbe97W14wxvegPPPPx+//e1v8Z73vAd/+qd/iv/+7//GYx/7WFf2hS98IX7wgx/grLPOwiGHHILf/va3OOecc7By5Ur8+Mc/xooVK7LPY9qiOxlJVqxYoY8//vgpndvv9/VgMBi5/O9//3sNQL/vfe+b0v22VvnVr36lAehLLrlkxq4ppXTrxx9/vF6xYkW23Fe+8hUNQH/hC1+I9j/vec/Ty5cv11VVzZhOsynh/7t48WL9mte8Zmi5K6+8UgPQ3/zmN0e6x29/+1sthNB//dd/He3/whe+oAHoz3zmM4332nffffWznvWs7HUvueQSDUDfcsstI+mRynXXXacB6DVr1jTef6afyb/+67/qbbfdVn/uc5/TAPSVV17ZWPaEE07QL3zhC/VrXvMavXjx4tb7f+hDH9IA9K9+9avW+5M89NBDetttt9XPfOYzh5Zdu3atBqD/8R//Mdr/9Kc/Xe+zzz7Rt+w///M/NQB94YUXun3UTj/0oQ+13mdiYkIvXbpUv/CFL4z2f/e739UA9N/+7d+6fb/4xS80AP3ud787W/YjH/nI0P9rqrJgzK1f+tKXwBjDN77xjdqxiy66CIwx/OhHPwKQN7eSXH311dh///2dCeeCCy6Ijn/rW98CYwyf//zn8Td/8zfYbbfdMDY2hl/+8pf4/e9/j7e85S3YZ599sO2222LnnXfGc5/7XNx8883u/F//+tfYaaedAABnn322M1OQCShnbn32s5+N/fbbD7fccgv+9E//FNtssw0e//jH4/zzz4dSKtLvpz/9KY455hhss8022GmnnfDWt74VX/nKV0YyHdFz+dGPfoSXvexlWLp0KbbffnusXr0aVVXhjjvuwLHHHovtttsOe+yxB/7+7/++do0777wTr3rVq7DzzjtjbGwMe++9Nz784Q/X9Lz77rtx8sknY7vttsPSpUuxatWqmumH5Ac/+AFe9KIXOdPagQceiH/5l39p/V9IOB+tCVx99dXYdttt8bKXvSza/7rXvQ533303vv/97490nVTe/va3Y2xsDL///e+zx9/85jdj0aJF+N3vfjel66cy6v87armcfO9734OUEi94wQui/eSuuOqqq2bsXpMRaldFERvQZuuZ/OEPf8Bb3/pWvP/978fuu+/eWvayyy7DTTfdhAsvvHDG7h/KFVdcgYceeghveMMbhpZds2YNtt12W6xatcrtu+uuu3DLLbfglFNOiZ7f4Ycfjic96Um4+uqrJ63TT37yEzzwwAO1erJy5Upsv/32UT0hy8PSpUujso95zGMAYCSmPlVZMCB5wgknYOedd8Yll1xSO7Z27VocdNBB2H///Vuvceutt+K0007D6aefjquvvhqHH3443v72t+Mf/uEfamXPPPNM3Hnnnfj0pz+NL3/5y9h5553xhz/8AQDwvve9D1/5yldwySWX4PGPfzye/exnO4Dadddd8dWvfhUA8PrXvx7r1q3DunXr8J73vKdVtw0bNuCVr3wlXvWqV+Haa6/FcccdhzPPPBOXXXaZK7N+/Xo861nPwh133IGLLroIl156KR588EH81V/9Veu1Uzn55JPxtKc9DVdddRXe+MY34qMf/ShOP/10vPjFL8bxxx+Pq6++Gs997nPxjne8A//2b//mzvv973+Pww8/HDfccAPOPfdcXHvttTj66KNxxhlnRDo8+uijOProo3HDDTfgvPPOw5VXXolly5ZFjZbkm9/8Jo444gjcf//9+PSnP41rrrkGBxxwAFatWjWjvsuf/OQn2HvvvWsfWKozP/nJTyZ9zYcffhhr1qzBCSec4D7gqbzxjW/ExMQELr744mh/VVUj/fRmmOSn3+8DQM38VpZl1BmdqpxwwgkQQmD77bfHS17yktZnX1UVHn30Ufz3f/83TjvtNDzpSU/CS17ykmndf1R529vehj333HNo+7rnnntw2mmn4fzzz8ef/MmfzIoua9aswZIlS2qdvFR+8Ytf4Oabb8af//mfR35Resa5b+T++++ffQfnn38+er0ettlmGzzzmc/EtddeGx1vqie07xe/+AUmJiYAACtWrMCJJ56Ij370o/jmN7+Jhx56CD//+c/xtre9Dbvvvjv+/M//fMgTmIbMGkedh7J69Wq9aNEiff/997t9t99+uwagP/GJT7h973vf+3T6aFasWKEZY/rWW2+N9j/vec/TS5Ys0Q8//LDWWutvfvObGoA+8sgjh+pTVZUeDAb6qKOO0ieddJLb32ZuJZNTaGZ51rOepQHo73//+1HZffbZRz//+c932//f//f/acaY/ulPfxqVe/7znz+S6Yiey4c//OFo/wEHHKAB6H/7t39z+waDgd5pp530S17yErfvne98Z1bPN7/5zZoxpu+44w6ttdYXXXSRBqCvueaaqNwb3/jGmrn1KU95ij7wwANr5uwTTjhB77rrrpGJapi0mVv32muv6FmS3H333RqA/sAHPjDyfUjIZJea/1LZbbfd9L777hvtAzDSr8003WZazOk5qrn11ltv1QD0ueeeG+3/xje+oQHoXq/XeG6bufX666/X73rXu/SXv/xlfdNNN+lPfvKT+k/+5E/04sWLa+1Sa63Xr18fPYtDDz1U33XXXa26z9Qz+fd//3ddlqX+8Y9/rLX234WcufWlL32pPvzww7VSSmutG82toUzG3Pqzn/1MA9B/+Zd/ObTsO97xDg1Ar1u3Ltr/z//8z9n9Wmv9pje9KXqnd999t37jG9+o/+Vf/kXffPPN+p//+Z/1YYcdpgHoz372s67cfffdpznn+vWvf310vV/+8pfund19991uf7/fd98A+u2///4jm5ynKguGSQLAX/zFX+DRRx/FFVdc4fZdcsklGBsbGynwYt9998XTnva0aN8rXvEKbNy4Ef/1X/8V7X/pS1+avcanP/1pHHTQQRgfH0dRFCjLEt/4xjfws5/9bAr/kZdly5bhGc94RrRv//33j6L5brrpJuy3337YZ599onIvf/nLJ3WvNMp37733BmMMxx13nNtXFAWe+MQnRvf/j//4D+yzzz41PV/72tdCa43/+I//AGDY4XbbbYcXvehFUbn0Hf3yl7/Ez3/+c7zyla8EELOrF7zgBVi/fj3uuOOOSf1vbdJkgh92rEnIRHvAAQe4fd/73vdqwSMHHHAAbr/9djz88MNu3y233DLS74UvfOGk9ZquPO1pT8ORRx6JD33oQ7jyyitx//3347vf/S5OPfVUCCGmbDY89thj8Xd/93c44YQTcOSRR+Ktb30rbr75ZjDG8N73vrdWfscdd8Qtt9yC73znO/jsZz+LP/zhD3jOc56D9evXT/dfbJUHHngAf/mXf4l3vOMd2G+//VrLXnXVVfjyl7+Mz372s1OqQ6PImjVrAGCoqbWqKnzuc5/Dvvvui8MOOyxbpknHcP+uu+6Kz3zmM3jZy16GZz7zmXjFK16Bb3/72zjwwAPxzne+E1VVAQC23357vPKVr8Sll16Kiy++GH/4wx/wox/9CK985SshhAAQm5jf/OY346qrrsJHP/pR3HTTTbjiiivQ6/Xw3Oc+Nxu1PFOyoKJb9913Xzz96U/HJZdcgje96U2QUuKyyy7DiSeeiO23337o+WGkV7rvvvvui/bnok8/8pGP4G/+5m9w6qmn4txzz8WOO+4IIQTe8573TBsk0+g+wJgsHn30Ubd93333Yc8996yV22WXXSZ1r/RZkUkl9Qv0er0ocu6+++7LDrFYvny5O07LnE7p8yc/3RlnnIEzzjgjq+u999475L8ZTXbYYYfaOwbgTOij1J9UaDjEkiVL3L4vfelL+NznPoe/+Iu/cPuWLl0KrTXuv/9+LF68GEAMrG1CH5u5liuvvBKvfe1rcfLJJwMwdeH000/H17/+ddx///0zdp899tgDz3zmM/G9732vdqwoChxyyCEAgCOOOALHHnss9txzT5x//vn4+Mc/PmM6pPKud70LZVnir/7qr9z/+tBDDwEwkaP3338/li5diocffhhvfetb8dd//ddYvny5K0tmyPvvvx9lWbp3PhUZDAa49NJL8bSnPc09iya57rrrsGHDBrzjHe+oHaPvS1MbGFb/y7LEqlWr8M53vhO/+MUvsPfeewMw8SBaa7zlLW/BqaeeCs45TjnlFOyyyy742te+5u771a9+FWvWrMGVV16JP/uzP3PXPeaYY7DHHnvgrLPOyrrSZkIWFEgCJtDiLW95C372s5/hf//3f7F+/Xq87nWvG+ncXOAI7UtBKtfjuuyyy/DsZz8bF110UbT/wQcfHFX9ackOO+yQDQBpCoiZjfvnevF33303ANPzp3L/7//9v1q5VE8qf+aZZzb6mZ785CdPS2eSpz71qbj88stRVVXkl/zxj38MAEMZQ04oCCEcO7hhwwbce++9GAwGLliBgDgMWgiHULTJJZdc0jjubzZl5513xnXXXYd77rkHGzZswIoVK7Bo0SJceOGF0UduJkRrPRI7/ZM/+RMsX74c//M//zOj90/lJz/5CX79619nO9Wvec1rAJh3fv/99+N3v/sdPvzhD+PDH/5wrexjH/tYnHjiifjSl740ZV3+/d//Hffcc8/QmAbAMM5er4dTTjmldozq949//ONaoM2Pf/zjkeq/tv7x8F0tXrwYn//853HBBRfgN7/5DZYvX44dd9wRT3nKU3D44Ye7tnbrrbcCAJ7+9KdH13zMYx6DJz7xiVOKCRhVFhxIvvzlL8fq1auxdu1a/O///i922203HHPMMSOd+9Of/hS33XZbZHL9whe+gO222w4HHXTQ0PMZYzUn9Y9+9COsW7cOj3vc49w+KhOywJmQZz3rWfiHf/gH3H777ZHJda4GxB911FE477zz8F//9V/R87r00kvBGMNznvMcAMBznvMc/Mu//AuuvfbayOT6hS98Ibrek5/8ZOy111647bbb8IEPfGBWdT/ppJPw2c9+FldddVUUQPS5z30Oy5cvx6GHHjrpa1I9+u53v+sa//e+9z0URYHvf//7eOYzn4nBYIDvf//7eOITnxgFUtxyyy0j3SNnOZhL2XnnnbHzzjsDAC644AI8/PDDkw4Ua5Nf/epX+M///E8cffTRQ8v+8pe/xG9/+9uaGX+m5WMf+1iNLd966604/fTTcdZZZ+FZz3oWtt12W4yPj+Ob3/xm7fzzzz8fN910E66//nrXEZyqrFmzBuPj484l0SQbNmzAddddh5e85CVZq9Ruu+2GZzzjGbjssstwxhlnOAvF9773Pdxxxx047bTTWq8/GAxwxRVXYMcdd8QTn/jE2vHHPvaxbkzktddeizvuuAMf/OAH3XGyNn3ve9+LxkPed999+J//+R8cddRRrfefjiw4kHzMYx6Dk046CWvXrsX999+PM844Y2QfyfLly/GiF70IZ511FnbddVdcdtlluPHGG/HBD34Q22yzzdDzTzjhBJx77rl43/ve56JMzznnHOy5557OTg8A2223HVasWIFrrrkGRx11FLbffnvsuOOOrdlgRpHTTjsN//RP/4TjjjsO55xzDnbZZRd84QtfwM9//nMAsx+Kf/rpp+PSSy/F8ccfj3POOQcrVqzAV77yFVx44YV485vfjCc96UkAgFe/+tX46Ec/ile/+tV4//vfj7322gvXXXcdvva1r9WuefHFF+O4447D85//fLz2ta/Fbrvthj/84Q/42c9+hv/6r//ClVde2arT7bffjttvvx2A+VA88sgjLivKPvvs4zoTxx13HJ73vOfhzW9+MzZu3IgnPvGJuPzyy/HVr34Vl112WWTWXLt2LV73utcNZXEvfvGLsfPOO+Pcc8/FzjvvjJ///Oe477778LrXvQ6rV6/GWWedhc9//vP44x//iHe9613RucNMZ01y0003ueEmUkr83//9n/t/n/WsZ7ko20ceeQTXXXcdADhT5k033YR7770XixcvjvzP9NH75S9/6fZ99rOfBQA84QlPwP3334/rr78ea9aswQc+8IFah/IHP/iBG9K0ceNGaK2dTk9/+tPdR/Hoo4/GkUceif333x9LlizBj3/8Y/z93/89GGM499xz3fV+9KMf4fTTT8ef/dmf4fGPfzw45/jxj3+Mj370o9hhhx1qpvmZfiZtpvB9993XJQgpiiKbXWjt2rUQQtSO/f73v8dNN90EwFswrr/+euy0007Yaaed8KxnPSsqf/fdd+OrX/0qVq1aFQ3Kz8nnPvc5VFXV6rf84Ac/iOc973l42ctehre85S2455578M53vhP77bdfZI1bvXo1BoMBjjjiCCxbtgy/+c1v8IlPfAK33norLrnkkqitXHXVVbj77rux9957Y2JiAt/61rfw8Y9/HKeeeipOPPFEV+4lL3kJ3vve9+LNb34zfvvb3+Kggw7C+vXr8aEPfQiPPPII3v72t7f+f9OSWQ0Lmqdyww03uOio//mf/6kdb4puPf744/W//uu/6n333Vf3ej29xx571AaxtkWxbdq0SZ9xxhl6t9120+Pj4/qggw7SX/rSl/RrXvOaWlTl17/+dX3ggQfqsbExDcBF3DVFt6bRj1rr7HV/8pOf6KOPPlqPj4/r7bffXr/+9a93A51vu+22lqfmn8vvf//72n1y0Xg5vf7v//5Pv+IVr9A77LCDLstSP/nJT9Yf+tCHalGov/3tb/VLX/pSve222+rttttOv/SlL3UDh9OIzdtuu02ffPLJeuedd9ZlWeply5bp5z73ufrTn/506/8T/k+5Xxpd/OCDD+q3ve1tetmyZbrX6+n9999fX3755bVrfuITn9AA9Fe/+tWh9//hD3+oV65cqcfGxvQTnvAE/bWvfU3fe++9+rjjjtPbbLONXrZsmX7Pe97jIh+nKxQJnfuFkZo0IDz3S+vUihUravsuvvhivffee+ttttlGb7vttvpP//RP9Ze+9KWsTq95zWtGis497bTT9D777KO32247XRSFXr58uX7Vq17loqJJNmzYoF/1qlfpJzzhCXqbbbbRvV5PP/7xj9ennnqqvvPOO+fkmaTS9l3IPY9ce6Jr5H65iOD3v//9GoD+j//4j6H3fNKTnqT32GOPofXshhtu0Icddpj7frz61a/Wv/vd76Iya9as0c94xjP09ttvr4ui0I997GP185//fP21r32tdr2rr75aH3DAAXrx4sV60aJF+pBDDtFr1qzJ6rF+/Xr9V3/1V/qJT3yiHh8f18uXL9fHH398NuJ2JoVpvRkGUnUyr+RNb3oTLr/8ctx3333o9XqbW50tXk4++WT86le/Gtkk2kknncxfWXDm1oUu55xzDpYvX47HP/7xeOihh/Dv//7v+Md//Ee8+93v7gByBkRrjW9961tREodOOulky5UOJBeYlGWJD33oQ/jtb3+Lqqqw11574SMf+cjs2vQXkDDGarMidNJJJ1uudObWTjrppJNOOmmQWQ1n/Pa3v40XvvCFWL58ORhjI433uemmm3DwwQe7BOKf/vSna2Wuuuoq7LPPPhgbG8M+++wzpeS6nXTSSSeddDJMZhUkH374YTztaU/DJz/5yZHK/+pXv8ILXvACN5fY3/7t3+Jtb3tblA1+3bp1WLVqFU455RTcdtttOOWUU3DyySdPeRaGTjrppJNOOmmSOTO3MsZw9dVX48UvfnFjmXe84x249tproxRtp556Km677TY3ieiqVauwceNGXH/99a7Msccei8c+9rG4/PLLZ03/TjrppJNOFp7Mq8CddevW1bLfPP/5z8eaNWtcmq5169bh9NNPr5X52Mc+1njdTZs2YdOmTW5bKYU//OEP2GGHHWYtqXAnnXTSSSezJ1prPPjgg1i+fPmsJkKZVyC5YcOGWmLrXXbZBVVV4d5778Wuu+7aWKYt/+h5552Hs88+e1Z07qSTTjrpZPPJb37zm1mbhxOYZyAJ1BODkzU43J8r08YIzzzzTKxevdptP/DAA9h9993xi1/8Aku22w6TtTczoHbOqPtGueZkzut06nRquiYAQCu/tOtMK0Dp2nHmPC+q/dzwGFC/FhBcC/Xybfuif6KBHQT7ddjuaT9n0bam/eHSXYPKsPi4vY7OnUPXtVdw/36yDaA26XXbfxz+t4wxcGbeI2/+tGVlodTxhx58EE/cay9st912k9RmcjKvQHLZsmU1RnjPPfegKAqXdLepTNt0T2NjY9nZr7fbbjtst2RJ64uh+plWkFErzVTKjVK206nTaZT7OIDTyoJjDHxM6wgEo7K0rUKQ1HFZuzTlRQB8rF6OjujwP2gT/9/FYEjLAFYYbwVDB4Kcx+VT8GPcl3VgmS+rEQOkW7f/H/3XaX9BNYSBcPs/0r/KYcBSsGag7Op4nTTNtMwrkFy5ciW+/OUvR/tuuOEGHHLIIW5qoJUrV+LGG2+M/JI33HADDj/88Cnft+3lpy8ofNm0HLVitb34tu1Op06nyepkCmQAMgeOYZmgXFqGJUAaAqeW0hxTElrRunL7vEp+PSqTSsbHxLhNjO2W3O/nAgwAE8IDaghsyU8zBkagmQAmYxxgGpops88utFckfsyIATIERwLE8P2ohhesbSmmDWBKAAIaEszVjxQsF3Idb7rGTMusguRDDz0UzQzwq1/9Crfeeiu233577L777jjzzDNx11134dJLLwVgIlk/+clPYvXq1XjjG9+IdevWYc2aNVHU6tvf/nYceeSR+OAHP4gTTzwR11xzDb7+9a/jO9/5zozoPMqDH/XlNL3gUStIp1On03R0iiQFSFXF4CerPDBG5SwYEhBagNPhtgVBKufujQQgU7BsEu5njGAJOIILA4pUjnMHmOE6E8LQsxAoeWEBMABMUcRgyQt4yBseGEIASeBI78UDaPDvZ9ikDpik1BqcmXMFN+cSYxpmfl2wdXyWZFZB8gc/+IGbIxCA8wu+5jWvwdq1a7F+/Xrceeed7viee+6J6667Dqeffjo+9alPYfny5bjgggvw0pe+1JU5/PDD8cUvfhHvfve78Z73vAdPeMITcMUVV0xpPj+WrE+ncoQmhpy5oOka4f6mczudOp2mopPbl/odLfA5AJSVB0dVWdbpQVNLCV31oS0IhoDowFApuz9YB8y2ZZk6wyzd/x7sYwEwAnBAyQgchWeUzAIirWtaFwKawLLoOdBkZc+AoqoAbkCR8cIwR63AhAFPzQvzLAgolfJsMvSJwgBZDiDNfvsvB6AJ5NlkyCQBWPAGtNIQjAV8MgbKro7PrizItHQbN27E0qVLsWHDBixdsmSkBz5q5RhVUrt90706nTqdpqITA2LQkxWYkjFAEnu0+0NwRFUZEKwG8VJKoBrUAdGCYRZI28yvMs8oWTDnYJN5NWKLnBvwDICTwBEWHGkfK0pzflE4Vqk5gaMAQqBM9uuAhUrtQVJqnQXIcBsIQLPhjXN4NukDdwxYCgYIziAyfsqFWMc3btyIZcuW4YEHHsCSJUumefVmmVc+yc0hkzUDTOYcYGomik6n0a7R6TTiNQJTayNAqsoCpYYe9CNw1IN+HjAHgzogBmCqJZlZFZRU0bbTW+Z9kkx4tkYMkgkOLrjbxwQ3YMqFBz5ijEUJLSY8UFYDoCgNwBelAUtVGmZpTc6aF/75isI/M8bhfLWibnbVCUBKlQFL+4ZMueZXJaEdOEoNCMagoQ275AxaaWgGaAYUnDmgXPB1fBZlwYPkbMlUTBGzLZ1Oo8nWpBML/Im1QJ0EIFFVUFXfAEkKjtUAuuobtkhMMlxaUJSDCloqaGVAUQfgqFQAlAE46iR4hwVBOwSWtOQOHO3PbouycKCpi9KwyaIEKwZgZQldDQyQFj1j/g1YLit6QFE38zHGoR1QJiZgK0oHUay0HQCkZ5i2TBDYY7aD/9sCntQ+slUzbVkkc2ZXcKul0pZZNrz8Ftma6vhsSweSGP4Csn4eNNvNUzt+KpM1VXQ6dTpNSad0HGIQ5ZoDSJ0CpAVGXQ0Ayy41gaVS0IM+1KCCkgqKwDEESgeWEipgkTmgzD6nBCAZN0ySCREwSQOQ0q7zsoAoB+ZY2QOKAXRlmCMCxku/8Lmj8MDINIeWlWORTFvADJ55+NyV1gYUVcAm4QEy9lnSNZI3ZzcZGDQzhR1AMgOQipn7KA4oAscMUC6YOj4H0oHkEGHBMnzBTS80anSBTLZCdTp1Ok1Hp7iwyv6cD9ICpO5PGGAkcyuB5KYJD46WNapBBdmvHDgSMJptWQNOMrkCqJldU7BsM7WyhEkagBTglkkSYPKygOhVZr8FS6hxyyJjP2j0jJnxCmrGAc2MGTZKkhB7E8nUqgG3JICUqg6OGjoK6MmL9j5J7dmkYhTpakywFP6qgBpQLrg6PouyoEGyyTmd69Uw1F96rvI07W+T3DU7nTqdpqsTgDh5gN1mSsIH9WhnYg0BUvcnPHvsTzh2GYKj6lcBOA78er+K/JAElkaNECzNf6Vk/b/j9ovP7LIGkJxD9ApIzsF7HiBVWYL3CvB+Ba164FJBSAXeowhbCZ4+TzvGElyAKWkBMkmOQNuJKHgW6ZYBQMoMOBogtf97Bi0pqYDgJqI1ZJNaW7eoMrVCW58lAKgkoGfB1PFZlgUNkm0vjST38pt6RJOVpmt3OnU6TVenaD+ldswkDjB+R+VAsAkg1cQE5CAGR9WvHDgqAs4AFGlbSw0ltdkndcAg8yDJA0rEBHNskgtmwLBnWKWcsAA5YQBTlQV4r4IYFOBlCaUURFlAj/cglDIQpyQUEANlmKSAfjT8BUDNbG0lzLYTsUkdA6QM2KZUGkprSK0b8ygAGpwDSjNwxiA4s6k3DRAqaChmAZoFejDzIz/l1l7Hp3utUWVBgyQwvBfTdHyyPZ/0nKncs9Op02kqOpkbJwE8xCKVHQNpwRKh/zEAyGqi7wDSrMfgKIk9OnapIfsSSmqogbQgqSMWmQbs1P4/Z2pl1hfJwAVDNcEskxQQgwpccKhBYUysAw+WhRqrmXbFOAAuHFA6UBTC+yop2pUiWoOAVkp9Fw7pCFmk1BpSGYCUjmF6cBxIA5DmGqZcKoIBUIZRCsbAuWGSpeDGvAsLiBrQHDYJgR7qpxwmW3wdnyVZ8CAJ1F9q+jLoOIL9bee0VZ6me3Y6dTrNpk4A4NPNBSzSmllBYFmFAToxQFYTfQuSm2JGGazLvoLsm/GSsq8cWBozax0oAUBnxkQwnjG3WpDkpbDAKCH7AlwwiJ6E6FVQgwJivAdhTb3FeA8AIAK/p6BnReDIuRtPiaIE19pHteZYpM0qoLWO0s45UAQcOCoNDKSCtABJwKhUDJahOHMrY+CcQVjAlNoE75TgJoAnYJWAMbsSYNoLOaBcMHV8FqQDSeRfcHgs3Nf0YtvOaZK2451OnU7T1ikN1gn2OxZJYxpdVOvAs8hB34FgCJByIvZNVhN9B47EGtN1wxx1ZH4FPFDmxAMk82ySM4ieAhMMoi8gegqixw1jldqBI5lY4+txSG78mTwwrZrIVxv1Wg2gi16cDi8J1qFnrezSR7Aa4JTKA+ZAKsceB0o7cAzBkoRAkN5kCJCCMQwUQ8kNWJacGxYJWFapUYA5wEyBcqut43MgHUiiuTcUvjg6NspLaiozakXodOp0mmmdTEEPltqNFYyHRIQ/FbDEFCAJNOWgQvVoBTmQEVDKvrL+SeXMrsQitdKBP5LGUPr/gnPPHgFYv6Q3uYqBND7JUkIMhANLNZDQsggYap0FMsHtcJG+zcBTmqhdzk2yASVNYBM9rwbxGXXisZAmC08MkAOlIO12aHKlf1kGTHIQvE2hTLKAkFEqzqE0M6ZVEbNKQEM707CvfSxIOgBs5XV8FqQDyUByvcW2XtF0r9/p1Ok0VzrVZvAIwLDGIqsBVH9gmKIzqQ4caHpWOYDsS1QT3sxqwFI6cCSw1Mqyy8BfByDrk6OdorJ+RIra5AyiJyD7ZikkNwzV+jeVNOyPWGoBOOYo7fjKaqIPJjiU4BCl8kkGwuTsSvrnVXuQPGZDAVAS8EllfJAEkHWgtExTeT9mToSdU9IApFmXAhgooOQapWIopcZY4Vll/EH3tas3goNyS6/jsyUdSA6RXCWYqsyUPb3TaTTpdKKbmA++m8eR2GSUoDwAzcDMGi37lQPOFCDNdgiUyoGlCkyO0gFKO1DSN90ApDFDCqUhpEYpmAVdY3otlYaSHILANXNBMrXysjDMuCzAB33DJC1AMmLW4XlhYvIgaIf8kUrryNwqtUalLDgGAGmW5hlUMjC5uqEg9WfAmYlU5Yo5wFQaDiylZnapMV5wlPXBLaBawhhDOWQiky26js+idCAZSO6F0L62lzVT9vS2+3c6dTpNVqe4MAGlB0hvalU2OblllUE6OQOMgyhIxwToxGBIS8cqLaMkcOyrGCAV/HqTCObBkkOjxw1gSs3QU9qZZQFAyBgBuGCQ1pfJBIcaVG6py8ItNZlXKUWdfR4UBVxTj4AS3pRoMut4Jkkm1RQgB1IZv6QFR1oHDPus/f8cgPQ+yVIwDJRGyZnNusMMUNsoYAOWAoBOkhUwcKbtdZqf9xZfx2dJOpAMJPdih71sDDnW6dTptFl1SgJ2AMuO3IwcwRAJl8/UZMiRg8qtO//kIATBEBjzANlXBJAag4RFEkC2mRsdi2R+NIY5H+hpABOVjY4tAFQACCA5mJA2U49hwLwsIPsD8LIA7xXuf9Y2PV3jI3RzUBow0kAw9IMYpB/q4UAxA5AxUNIwEM8oo//fdgIMi2SQ2oClEgYkpWAxm7QOyZJzlEneA8oL2xNTy/Xa+GwwD+r4LEsHkolszpfXdO9Op9Hu3ek0goSgGfjgnLkVcJlyzE/aJAAqWtLQDjkwKegkRbJmALKvNAYZU2ubydV8yHUClIZNKkXnMwAc6FOauQJcKEihwLi0AT/SRL9agOe9wrNkqSACJk2zl4QYQhMhO2Hc9CUoQYCmMZB2uIczs8YAuSmMciUfpdLuB6AGlA4kuUkooDR3YDlgxiepBHeskp7juABocGeqPjB1oNxi6vgMSweSiTRFa0UNp6HcVCvLsHM7nTqdJqtTm4RzOOoAHN1wkNDcGgGmH75B0apaaqhBMB7SmhlTgAzNrbQOtJtcydwa/mg/OeiEnaGY2/tzGwnLrKlV9DhkX0GUwf+i4k6Ai2Zte2aMQdugHRrQr7Q24xTp/1Ami45nkjFAErOUWqNfeZCsGoAyBMmCM8hC18BSKo1xyyqBdMxlYoIOKsZkgHJLrOMzKR1IJpK+NNrOmRTScixZb7PHt12r06nTabo6RR+RXKRmAzCkM3Q4QCGzq40k9RGl5if7JoK1GkgHhClAktk1xyhz0gqSgBkDaEFFDCRKwSD7CkxIiJ7wka8ZYFRJgI5Wqvbhpew65IcEECULkBo2R6v5EYs0bFG5sZEhQPalcgC5qQrZpNdH2imwAEBYE6/gDJXSNbBU9mGUmvyS6X/BfS7X5FATUG4pdXyupANJK5N5QU2Se+m59VFfcKdTp9NM6lS7fsoo0+OhvxKITK1KqphNkgmWwEMTw0IEkGkAT5u51Uw6XAfJHg+va/b3FcD7EowzaMkh+9KxSF7S+Ew/TRf9X8Om60IIlHbd52eFC9ipEhapNFBJ8kHGALmp8kDZr2SjuRUABLfDYDiDVKIGllL7iFulNVRmUmjBTTBP7V+zjFywrbeOz4R0IBlI+FJoO31Bw15+em56zU6nTqfNqdMoMiynKoBgfKLXRFn2FLNEnewbLXjHAGT4X5slAS7gx0/SdZWirD5+Sf9PmNmHwL71/2OsDpDW3EpDP8jU6iJaAxbpwNEySQLIR/rSAqSKTK5kdk2lsP5IA5K6BpYOYHmORRrhFVzUawihzvw6xYmbgS23jk9GOpC0knsho+5ru17YxJuk6XinU6fTVHWaaQlBJZ21QyVgGR4mADPrOtg3QlKBBCABAlWWXIN+DIX02Xx8nljh/oehSdVFEhbKeQSWSnkQMEE7lJ/V6OJ8kWRmzQBkv5JZkytQ90n24QN3igxYuvMKDaXzAyEJAMcLOyWYrT1hPUmz8kTPBAujjjdJB5IjyDCzAklTmdz+8JpT6TF1OnU6tekUfURY/uPJhPC9eB6u18uzjBlvmKRgaZYxUNJ6Cl3cnVNnkvTRDwEyFRWaVdsGY+aEe+aIYPiHRn1mDw2a9cMzyMjMqvIASWbXkEnmzK2AB8k6o9SQyvoilYYs8ufzwBnJCpfeHXZ6aTAAksUguSXU8bmSBQ2SLFimD32UFzIdm7xuKJcamDqdOp2mo1P2WkKYGTBIwmTeLl8q91NVufkcw3kdWZyAvImGBJLDqib8oqmsQqA0plWdgCMLfJ/aBRIBwvlJgTr7TYXRLCBcgHHhzauMu8hWGhNJmXXI1OrMqspn1XFm1sAHSQD5SF9af2RscgWa/JJ1kOwVYaelglT1CaHd+QFImnUTHTtQ5rlyBnBm1ikrz5Zex2dSFjRItr3Q6b6EyZoY0u1Op/ZynU5TLJewSscgLThotAMls0nG/fl1cAyjUENfF/kPRxU356MVP0vG5IUnTrfwfww7CTXJ+CMpoTmZWk1OAh2zyMDMmgJkPwrcCdikZda1ZO/S+l85Q6/gNfYZgmzOrxlmJiJWyWw94MzkgqXHmmbl2SLr+AzLggbJYTJqz2Y2rj3V8zqdRjtvwegUgmK4zj04REAphJ1tg9tsNX6dcW5Zo9kfMkpuywqpLThqKKsVgSUF4xiw81o3AWdq4J0sQNKsITGo8+w6hGWQ9Fwsg/Tm1gJS0vhIm2kHlF7OmFWVZZiUbcezSBmAZfyTFlzJp5vOralgOiKK+3GR3tRaH2eZftJNth5jeuacYZNNGu/B0j4ruwwjXqci87HdTVc6kGyRyb6QJtPEsHKdTp1Os64TDV9gHGDMAKObbNgAoLYAwbgFSG5mzuC9Atxmq2GDyk5yzCH73IEjE3aOR0YM0k8SHA/h8ABJzEkE/wB5Egm+6FphwnMgXo8iNq0+2UfgzMXmfzP7AmDkHMx2FFTGH6ngx0W6+SLd7B5BVGvNzJr6Je1PKsjKAKRSJv8rEAMls0yS2emyJGcQReCHzPoxCxfkE07gvCkBS8EFKmUiXgfM1KOKHu8UgXI+trvpSgeSGWl7USSzYW5ok06n0aTTKXcjAkhm7snIhGp9k1x4JlWUYKLvZsvgZQFm852yfgVRFnbAvpmuyiQU4HbaKuEy75hUckCPe+ZI4Ehg2eMMfRdfYxhlCG/pRzqeGYQl+2IAJRbJLQMmNsnslFm0TmZmFkzC7BikKJxfkvyRobmVTK1R4gDlU86FZtYUMAkgZaVMBh8CygzoMW4AUmsGpswMKKrQKIPOQFPQD2ASpU9U9rkwYJN9FxNVHPEaBvJwAGISKLnZ6/gsSgeSibQ5pCf7QmfqOp1OnU7T1Ukz7gGSBUEqwoJD0YMeDMy+shcxR9EroQYVRK+wSw+ISgqIKKkARymVG7MnpQFDkr4KwVE7EA0DcwBkQJDVWGkKkILBmVdDXymPwNIvueAxiyRWmQTthP5IMrdSGrowaIfGT9LQjhQgHXAGAKmkcuCotY78kU5/zaAVi8ASAAYN79oE+Mgo2IczBqEUeGWe1QRT1v+owIJAHsYYKuV9lcOm1wLmTx2fLelAMpFhL2MU2t9UZrbMdJ1Oo5234HQKssRE24zbCFcOFCUw6BuQKEs7CbNhklwqiNIkBOfBUgQ5XEOADAfy9yhak+yUgRoElD4xgAfI1O/ogTFc+l8ZgCfnFkicn9RPleUAMvGxMmteTiNbdRDhSv5In4YuNrUqywLduMgUFBsYpJKeSRqgrPskAcAMf9SG3AoedQD6SflwPKXgygMlozkpNSak8iZXu09wgGnzvrj2wTxcDze7zsd2N5Oy4EGSXk66bJJRXnZ67bb75sp1OnU6TVen+GAw1ZPikV8SXABlj0I0ASnBCrMtpILqFXZpJicuZA9aKYgoj2ve7IqB9EE5CVDGSQbiZSohQPZ4nU3SMe8fteulgOhRgBGP2CQvCx/ZmgTtaF74ZyYK54/U2swdKRNTazj0oy/9+Md+pVxQDW0rpWsAKSvbwcj4JAGAafItMkgo8CCzjgDHIBgTSqAYrhNoloKB20jZAVcQDBgoBq4AoYzZtbJmVwYNyewrS/yT87KOz6IseJDUDctcmTahlzbs45m7JlU0Wu906nSaKZ38CWRCZCb8nxdgpfazgEg/XRarBoCS4D2JwuY3FarnZggpVG+E/8DIIgQ5YS1QCsZcDlcK8ElBMx46ErPJHjdgSSyyRwBQcogehyhFzR9JwEhBO0xwsLJXC9pBUfgOBS9q/kjyRZKplXyUNNGyB0RZY5JSa6iQOQYAKV1CeV0bAqKVhubMgKVillnG6RfI9BqaWPuVisyuPcENa1QKhWIQUmPAtdnHFDjj4Nq8D6a92ZUl72Pe1vFZkgUNkqM+5PRl5qTt5Y7S42qqKJ1OnU5T0ckJ58afBRi/ZDjuj9hkQUzSAuXYuANPXkqI8Z5J6TY+FusolTW9xv7J6H+1ESKO8SlgoH1S8jitXP5fyIFkacGRfiGLZIJBBCxSlIVjjrwsI38kK3pgRWkAsyj9s+GF80dGKfCUB0WKaiVTK/kj6VfLqFNjkgYctdK1CFcSaR8KU9YfyRkEOGQFpEApHTCyrNm1Vxg/ZMm1Gc/JDNBzxVBaE7K0k0EbU6t5J0x7s+t8quOj6DETsqBBctQPTXo8d064L/1otvW40vM7nTqdZkKn+GLxcAYoAwJMK7DSXsVNvGzMrrwn3Se4ABoTghvA6bskA1xwVGIQHDefS96XdgylhqixSL8E4mTnYQAPgWQKkEUpIhYpeuZHEbgEig4oexY0i95I/kgttWeTMEsa8kFRraGpNczNSiySxkIqqaJIVvq1MUmzYl4NByChIGDyyDJmAZYZ8JUsBkoCR6k4+pVCT3AMlGWTmmEgNThTGHDm2KTUALOzq0gFMOjI7Dpf6njHJOdIhn3YmkwCqX08d/6o5TqdOp1mUydTOGCQ3PiftIkUASt7jjmGHx4Oz1XKUe8Tni84KmHGVQ44Ax8oiIG00a0eLE3uVm92TT9/zucYrDuTqzOzenAkFkmAyS2TFL0yYJXWB1laJmnZpCJ/JC8ifyQxSGkTnDsTq6qbWkMfJK0TECpaBixSBsAJIE4Wr7QJ1FHaRbYKcEjn5PWdF84ZBlLVkg0Y0FQYKzj6ss4mS/t/hGxSaB/EwzQD1wCsLnwIUG62Oj5LsuBBEmin/ekLCl9i2utJpelauRfftt3p1Ok0WZ3MAe5MrJops+SFA0jGC3teH3xskfncJinaUqCMI0RFECXKwXjfZuSpDKsspRuOweyEyLzPoRKwzPkkQwmHgVDgTswgBcpFhWeTPWGDdoQFx8IMZ+GGRYqyMONBrak1Gh9pwZGeHZlYLUZAQ7tgHYpslcqbWgkYw4AdqWPWqJX1bwaMUgXH6mIeiINFZpid4tqMm+TaRdiyBBx9GjvDcnsFd+AessmSG6BP2SSHZZIMYMxEJHM2P+r4XIFnB5KJjMoWJnOtYZUIDeU6nTqdpqOTE84BbWP8LTAyoeJeO6vAx5AkPjfmWW4TomsuUAZp6zgPADICTzP8QvZ8+jrZF5ClhKSJkC1YlsSudPP8kqnJtXTRqzFAlosKFOMlikWeVToWWRYoxnvO5MqKnhnyYseFGrD04GiSLBQWGI3ZUQZMi3K1mqEgBgg3NcwTqYJf6oOMxkla8Ky9PuW5mUlTZyZ4ZkpDM+3MrsoO7ZBaO5NrvzIMMgVOAvVKakhufJOlNXsrbTsENom7BvNmV26mJGvL75qTWa/jsyiTn/9mCnLhhRdizz33xPj4OA4++GDcfPPNjWVf+9rXgjFW++27776uzNq1a7NlJiYmJqUXa1hvKxdK2ptiwXq4X6P5GuH+tFynU6fTdHQyO2jIR+Br4wW06JkEAqIERA9a2PXeGNj4YvMbW+TXFy1262KbbVBuM45i8TjKxeMoFy+yS/8bWzKO3uIeysUlxpaMoVxcordtid7iHnp2vVxst7cpMdYTGC84FpcciwTDtgV3v0WCYXHJMV5wjC8qUIybX7moiACSR2ZWDjHecyySl6Vhkb3CgaIL2rGmVs0LB45kmiYTq4KPbDVzRwaAmQTs5EytlFUH8CwyTEMXAmTMOn2SAmKZ4fVoP12LwBjwWXhyeV4pObv/PygIKTAta9s5IOYL+OEveh7V8VmWWWeSV1xxBU477TRceOGFOOKII3DxxRfjuOOOw+23347dd9+9Vv7jH/84zj//fLddVRWe9rSn4WUve1lUbsmSJbjjjjuifePj45PSbRT6n5ZDsh6WaVtPy6d2+06nTqcZ1ylIJKBFASYrM3xAs4BBckBVgGQA42CyDzDDHhXnYEUJHTBJzTkU5xBFCd6bgLQgJEsDRJVlbtWECeYRPYHBoxV4KaAGEoNHK5v3VUCNK6iBjfTsh9Na+SAWo6L573jAUn0EqwHEYry0ywLFIs8axXgPxfiY2+ZlAdYbN8wxiGp14CgK24koIDWyQz/IXElzSEqFCBQbTa0EaDUzqwfO8P+m/12TX9IeU4AbC6mVpjmljbmVW/9nAJBeHzOFmDMP62CpDKOkfVqzPJvkNn0gY/Ojjs+BzDpIfuQjH8HrX/96vOENbwAAfOxjH8PXvvY1XHTRRTjvvPNq5ZcuXYqlS5e67S996Uv44x//iNe97nVROcYYli1bNm39JmsGmMw5wNTMcJ1Oo12j02mEa6RAqU30qhsOoirvt5SVB01VgTEGVJXz2cECCy970JsmAC4MWJYTBhwJMHulA85qog9eVqgm+pB94cBS9hVkX0IOpIketYAJIJoH0v0bIgBKznz0qgXKYpEJ2CkWGdOqAUcPjCmLpIAd8k1GptYRhn44E6oF0dy0VampNZebdZRtAkrFAZdpVZmIVkHHVOxOlrquD+kUTssFwAEkEOSmBaBhZnKhDgKDhrbbUumhSdDnst3NpswqSPb7ffzwhz/EO9/5zmj/Mcccg+9+97sjXWPNmjU4+uijsWLFimj/Qw89hBUrVkBKiQMOOADnnnsuDjzwwOw1Nm3ahE2bNrntjRs3TvI/mbw0BlMMOTab0uk0mmx1OlFkq1YmopUpMG2AElyAKWnXC8sqBaAMo2K8D1YUhlH2J6DLHnRRml9ZQm+agC56KMsJiHICvCRWaZc9nyhdDSqoQWXA0QIkgaW22XuUywFbj2CJmCTnwTCPkEn2nA+S94pGFkkmVlb0gKKI/JD0axr6oRxgEogSW1M1sAzNqiRteVpzEjPJqN9TKxcuQ8nNGELgrniwreFMrpx5gNQa0AyOTTLGwLSpeyPMtz2SzMd2B8wySN57772QUmKXXXaJ9u+yyy7YsGHD0PPXr1+P66+/Hl/4whei/U95ylOwdu1aPPWpT8XGjRvx8Y9/HEcccQRuu+027LXXXrXrnHfeeTj77LMb7zPsBeSOh3bzpmNouO4oL7vTqdNpOjplTVVBLletFcDNEBBIyxa1suBYebDkBSD7YLwAL3tQmx41gFn2oIsedG/cgKcFnpwJVg0GDizloAKf6EP0DFiqcTNriBrIGkC2sUnR44nJ1QfpFOM9iEWBmbVn9rGx8YBF9iyLLD0wJqbWkEFqbZ6p1Drrj0wl3Rf6I1MJTa2zLU3Ta5FfMidkcmU2YEfDgia0Yd0Z2RztbrZkTqJbWfIgtda1fTlZu3YtHvOYx+DFL35xtP+www7DYYcd5raPOOIIHHTQQfjEJz6BCy64oHadM888E6tXr3bbGzduxOMe97jRdA+W4QtueqFNTufJfjQ7nTqdZlqncB8LAdMySKYVtFKAEoDuAaICZN8AqByY4SOWeaqiBHMAaQGzKKGKMjLBikU9yEf7Diyrib6ZbmtQQQwqqH4FvciwSWWn2QJgc8LmQdJN/iwogUDhEgQIe89ifAwiAEjeSwJ1xsZthKsZG6ltztZhs364mT4cQKLGHp25NfBHmv+p5aW1vc+AqhGLZBn6Rvtyx0YVMr2GfknBDCiCmWfCtMnt2sQm56qOz5XMKkjuuOOOEELUWOM999xTY5epaK3xT//0TzjllFPQ67XniuSc4+lPfzp+8YtfZI+PjY1hbGystr/JEZzr1TDUX3qTM3qyH87cNTudOp1mU6dIF8ZNhCsdUAmTJLCUlSkn+xFYIvjxgGGWYxPQm7y/UvUriPExyIlNkBYgjfm1ghhXDjBDn6RKgNLP8BEnKxc973skgCzGewYoyczaGzcRu71xxyJdxK8IkgjYWT8IIGnWDzJHhuMjgXr0KO0bVThjUBytbJIFEyi78+ysJzSFVijpbCpAnNd1MmLCfeBMrgSYIZu0LkoAc1vH50JmFSR7vR4OPvhg3HjjjTjppJPc/htvvBEnnnhi67k33XQTfvnLX+L1r3/90PtorXHrrbfiqU996qT0a3tpJLkPXFOPaLLSdO1Op06nudSpVo4XhjUWMIAoKweWWlVglfBgKUqTiKD3qGGVmyagexMRwyzLCRTjfcMiBxWkZZIGIAeeUY7b+RUHZoZgLVUtHR6zEw1HCctdXlYDkI49lt7MaiJZfUQrsUhN/kfuTa0alGXHmlSByB/pA3by5tNRhdvMONH/18IQaZ1zlrXE0X4qH4LiZIFxmIRaE9t0OmJu6/hsy6ybW1evXo1TTjkFhxxyCFauXInPfOYzuPPOO3HqqacCMKbQu+66C5deeml03po1a3DooYdiv/32q13z7LPPxmGHHYa99toLGzduxAUXXIBbb70Vn/rUpyat37BeTNPxyfZ80nOmcs9Op06nudQJgBlPacGDaQVUfQOQqgKTJVANoEXVDpabzLIc60NvmoAa76Ga6DsfpWGUAweQBI5aeYAkPyUnkCQWaTPpiF4ZBeyI8R5EaaNZe+PgxCRdRGvpTaw2YIdYJfkiaehH6o8MI0PDKFK3bwQWyZiNFbXRqU1s0g1/YaxmaiV2aWY+s+UyAOkTnfNofknOaEJmwwJpTs6cpEDo9sOyTFuGsvHMdR2fTZl1kFy1ahXuu+8+nHPOOVi/fj32228/XHfddS5adf369bjzzjujcx544AFcddVV+PjHP5695v333483velN2LBhA5YuXYoDDzwQ3/72t/GMZzxjSjqmLzV9GSG1b+qhj9LDyV1z1A9Xp1On02bTyZpjARgw0cqwS9mDFn0wVUFXJZgcgAnj+9NFzwT39MZjsOyNg/UnIMYHUH3jo1QElMqaXJWCltImA29IrM5p1g/hmGTomyzGew4gWdEzZtZwGbBIZ2q1gTvK5WeN/ZEArE8SNbAEmsHRgxrsVFfM5UE1S0Arb3YNhUysxoXMIAoOxuwyMLUyztzwGJ4wyMmySQLQWI96OaXNJNlaayCNO8Hc1/HZEqbT+OQFIBs3bsTSpUuxYcMGLFmypPXBpy96lJeUnjMV6XTqdJr3OqkKTFVA1TcAKftmvdpk1gd9A45V37FJ3Z8ABn2o/oRhodUAetB3vsmQSSo7l2VuBhIWpsaLGKUd6kGBOb1xs94bB1+02GyPLwbKHnQxDl2MQZd+KXkPfaXRlxqbKjOzx4Q0KeceGUg8MpB4sC/xqF2fqBQemqjw4ESFhyYGeKQv8dBEhUdtmaovIe0Ey9VANiY2zwX3hMzR+R+ZWecFhxDcYLvgKHoCQnDwgmO8FOgVHIt6Aot6AtvY5aJegW165th4YTIcjdnfuLDLgqPkZr0UhnGWHI59CjsfqOCmDghuE89zk6AiB6azVcc3btyIZcuW4YEHHsCSJUsmcebkpMvdiuaPQ/ji6NgoL3HUj1GnU6fTFq1TMKYQxCYp3V3VBxObwMoeuJKRGRbVACwEz2oAVvUhKsMuzXhJb3LVbkiIWYZ+SWd2Jd9kkiSAANIF6/TGzbhIa0Ym9ujGRgJusLyC90emSdhJwmAdEmJsgjFIzkDzTpv5IAFmpwRjigE8TiLPrMk19EPmAJLMrEJwxy4ZZygFt9Nj8UZTa08YADQmVmt6DUywnPv/YVRXJplawwCeua7jsyUdSAaSvoicyWA6dH8q53U6dTrNZ51GAktrhiWfJapBZH7V1cCCZR9iXJmlUtCDvgfIjNnVJ1a3GYHCSZRpPKSLarXLKFjH+yS1MAkFpAwyzmg4f6SZZlNHuVHbJDRtErhpxcC4BlfGrMo5g7JTe1DmHAARMoXgSObVkEGKwnQQRGF/AUD2Ch79CDC5BcZScBQOLOGAUjDPChmDzY1t1+Etq6lJNls3MPd1fKalA8khkvuoTFVmyp7e6TSadDqNJjOhUwSWogfIvgdLWiefpRx4X2U1gN70KHRv3Jpf+9CDAaAkdGWXylKxFCg5BfHYSZMLmtWj9MkCLDAa8OxZQDTLiEUybqJVgSBy1fxykvM/pj4/EfgMtbbr2rBJrgAU3MzkYYGXZSJjomEejNbzANkTMSiOuXXhQdOySDKlEliWnFugBErBLSAaUypnAAfLjoXksJ0A5vdl68YUZXP4IFPpQDKQ3AuhfZPx6TTJKHb5pvt3OnU6bTE6MQ4U4+1gWYyB9cbA+pt81p5BH8wCJZRhlJDSJjigJAPS60TJSrkA4xwQwuZh5R4kAzaJsheZWX1kqxkfKVXAHjVMQnL4XKe5YB0AKAL08OZNy9q4CdRhyrNJUdgkRwpQNiCHtQT9hODIbYAOLVOAXGR9juR77BUiAsxSMJT2moVdL62eBig9ixS8ziI582A5Qj6YRpmpOj4X0oFkILkPxbCPB4Yc63TqdFqIOg0HS5PqjokemOz77D2VBcpBH0yNQysJVg3MNZUEC0ASgMvqzWwCdkZm17Ln/ZLWD4nEzOq3yRfpM+mQP5LGQg4bD9kUSSoYgwrYpCg4ZKUgCtg5Ia2Z1bJIpXVkxgzBkfyOwgXtsCxAjhV1RrmoJ1BywxgNc7QA6YJzmGWY3AXnpCySE2DCgiXqLDLHNnNPbj6A36jSgWQim/PlNd2702m0e3c6jXbvudQpAstiHKgmGsCyMonUq8oDZTUwydelBJQEUypikiTMsUHh/JPRDB+FMQE75ig8WILTvJHe1Br5I4OHlQPK3LAKFyBDkx1rBhTGNCyhIApuzKtMQ9sJlEl4YLSkMYsEjhGLLAzYpX7HsQAsw2jWktvIVcsexwruzKxkfuUO8EyO1jCilXyRIgTLBoCcBsGcl9KBZCJpj5olSyDf856O7XzYuZ1OnU5buk7uugSW/Ue8P1D2oWXlwbLsGXAc9D1QKgkoVWeSJMQgE/9kCJChmTVikYybsZEWFFN/ZM7EGkrKIEOTa8+CYx8KmjMIcCjm530ksEzFJRFIIltT9kj3WNQTEYNMh3sQEI4JC47EJoUFTG4DewgUEzOrTzrALFjWAbIJHJvM+dOt43MlHUgmkr402s6ZqNJyLFlv8++0XavTqdNpa9aJAdC9bUxauyrOD6tlBSYHJncsF2C9MaCqIqBEDihTkLQTRUcp5wIzq2bMsUifnzXMsqMjvdOhHyIY2kHbZpiFyppee+Dow06MTME6FiwB1CZaBhBl0eEFd9GnBIRhBKtnkLFPkgByvOAOIA0oMjcmkgDSgDvi8ZCOUeYBssYe0yzudrBnrq7MZh2fSelA0spkXlCT5F56bn3UF9zp1Om0NerkQJkYHiVP5wXA+4btSQOMUBUYrwBt5sBkWhvzK+DBkvySQvhZPOwsJyFAumhWm8icWKSbL9L+FAgg258IDaVw/scAFMeKOHVOv1LogUMyO8tGAJbm5PjaUeq5ABxDYKT7hOwx9UGSiXWMwFGYxAHG7Gr2jQqQgsUmVsceQ2BMsyG0TYCJma/jsyEdSAYSvhTaTl/QsI9Jem56zU6nTqdOJ1+eMW5MsEIBgwnQtFzRnJaqMCCpKjMPpij9xzj4CGsANGemm0SaJlMWCaMUftiHVNqZWQE40BwmYf7TgpvEAVkWSf7IcDotC5YAonGXLvcqqwNvCJJjRWpuLSLAjDLnBD5IAkgysbqhIBYYywQsnakVcVadCBzTJb2HZLupXs10HZ9p6UDSStvLG7av7XrDzAhoOd7p1Om0YHRiHCjHrZm1MGMpVRWApWWaWvlf9kY8AErDKiOAZMznag1YJJlZcyMxwsAayk7DlfmPhE0E0Cs4KqXRK0Tt/NyUWuG+kEWGrJSWIUCO1RIFJBGtkTlVoBAsAEbhzayCu4w7TWnnRMIeRQiOCTCy5H1E75WOtTDK8JxR69NcSQeSI8gwMxVJU5nc/vCaU+kxdTp1Om1tOrlE6rww/kIpwFThwVIrA5bW7GpOqic7deDIrbnVmVetj5IFEa0aPqtOAJS0lEqbNG2KMsyY+5JfLjS5ejbJIbiOGCQtc+uh5Ey3YTBQCI6puXU8YIep/zFkkb1gmEdkZg3Mqyl7FAxRB8WBYlMCeijz/NP9CVDOZR2fqixokGTBsvYyMfyFTMfHk5oY0vM6nTqdFqxOIViqCqiYMcta0yrTyqwDjVl4siZXC5x0jAJ0aGaP3P8iOMMgHKLBGYRiUExDcJpsODarkkirm1SmLOV5jVhk5n60TKNkzbIOjm4YR8Aew8AcSlaemlfLFvZYA0cVgKOqM8n4JdrnELgjdbB/puvTbMuCBsm2D8R0X8JkTVbpdqdTe7lOp9HKbak6acYNMJL5VFY2iMcyS2I1hIlambKA/zK74B1RM7u6YR50P3tj1fJfCcYwgDYM0ppcOdMoBQPAa19TqZhdehNrD2gEySYWScnJKf9qDhz9kI7psUfaxxkcIDJVeWB05tUMk6dnrqVh81rBZHQ3uWapY8NYnWGG736YzCVAAgscJIfJqD2b2bj2VM/rdBrtvE6n0c7bnDppWPOczYjDOIeWFcCY+UgHH+3oPixkk4FfkkCTrk/DPexpbXnLydQqGKAYg2I+m47SgOIaSseMsgoYpPmpxsmZY4DkwXrshxScNYKjH/co3Pp4IcAZsUYPhAWvg6PzOzaAY/rMzYPPR7MybZ8/dUMUADaab7JJ5ppBknQg2SKTfSFNZqVh5TqdOp06nfI6OaAUvdjcKitAMwDCs5rwPAJH8k0GAT0pi6TUc+5cu86ZOeYYJDcJyjkHuNYoiEFCRUvJDTj2K5WYWHnjxMzAEFMr81lxmsAxNa2mQzvSyNWUSTLr86VlDRgjJlk3s+qEwQMAgwdKpi1P18qxybmoT9OVDiQz0vaiSGbDfNUmnU6jSafTaLIl6eQLWLBUldHT+vx0zi9G5UOApBytQZFcqjnGmLO/0vMQzPghVbQEFDO5VksBEFByxSBYyiLzJlaSrKnVDjFx+VUt+HGGGjim4x4FR5RBpwaSw8BRSdQCdYYF66T+YPtjjENzmHuIwnV2gM0HfJORDiQTaQtwmOwLnanrdDp1OnU6+X0EdmS+c8EkoXCKdPUfayAcC6mRwcesmImIdcAiPZsshQHGgQJKAXDGMWAmEIjAEsKntmsN1nHjLn3ULAGiCGftEGZaKxfJGqaVC0CwEN7HWAbrTeDogFH55A1x0E6gey6qOBjqwYIAKfACzLonbVb3iE2GMlP1aSalA8lEhr2MUWh/U5nZMol1Oo12XqfTaOfNZ53IRBeOmdSAmdcpe2IwbtKeHwXsNN2PAUwzMBfF6pmjYswGDHEMpHJAqbQJ5BHcMEfF4WYVKUFBPP4eocohKIYTIxNIxuwxZpG5QJyCx4BYOnYagGPIGgkYKSgqBMbMuMjcc3bDO5i2SR8K895o7Kvmzgqgg45L+H5TmQ9Mc8GDJL2cdNkkozTm9Npt982V63TqdOp0atbJASV9aEdILkDgmL32kH+YIWaTpQAgDWBCcJsxh0NqbeaItGBJ4EjsUWmgtLjAg4dIoAigBoyRL3IEcGwKyil5Ao6qMgCoaD1vamUpODbkZvVjVAMTq93PhI1IBkx0MmVPstvpsx61Ps2VLHiQ1A3LXJk2oZc27KOQu6Zr9IhNC51OnU6dTnmJPpZt0ZLJMUpmbtbzd+DMAKdm5j5SI2KTgLHmluDgWmMAoATAtYl8JbAEWASMZHKllHN0L3O9MMLUA2Pki+RoBUfvh4yHcwgk4BiYVSmCNdqXDdRpeht2uId91izImcsUDKsEvC9SK/NgyewavM+p1qfZlgUNkqM+5PTjkJO2lztKb7npw9Pp1OnU6TRcJ2fqy6RA00BjsoBUOBikLRmaXKHhA3QkAA4DmME61wxKWfbIdeuQEsADJKW684nEMyBpmSWBaJNZNQJHBkD2Y3AkYEz8kCwcexomkrdJ5FXDFGXMJpd3M68wG4EMxP5IJHWEopTJFIup16fZlgUNksNeQlgulNw54b70Y9DWW07P73TqdOp0mrxOjlmMmPYsuoa9CGeGNdKEwtAmcYCG8WEKzgAK0NHAQNK6AUeuzUWUNmbZNhHEIMn32ACSBffTU7UN3xgZHGWGSRI4VhVgpyTTwZRkuYmuzaMW0BjYacokoIJpyrQyplX7Tty7s+ZxpqQ1zcbm28nWp7mQBQ2SwPAG22RiYpl9w649ag+606nTqdNp8jrp4Lzw3GGMDjDgJLWOAFNrwxCZ9TECAOMMFX3XBaAUA9caisEwSHsv1XJTP9NHCJLxrCIpa2RDwNH5HFXVDo4hMKoqAkYoBV316R8w+2XDJNcAIDyLNOG+AihKB5Yo7DtyQVbM+SLBuM2gxB2bDN/hZOvTbMqCB0kgfgm5hpeWTRtsW0PPXSv34tu2O506nTqdRtcpd35OOGORX5IAlsOMhWSMWXZoUsxxZobFF5xBg4HbiZPNjFcMShnfpLSMMifkjyRQJD2IMXIGMNhhIGifnSMbrRqCo52n02079iihB/0YGENQpMmtgUYWaRT34Ggmubbss+gBXJrnWdTfG2M2ypVRBiVKPFB/d5OpT7MlHUgmMmoveDLXGvYBQEO5TqdOp06nmS+TirWighikgjGhaqah4IFSa5P0W9txkCwAS8BGuwJuuEf+XsyNi2SAA0bBLEjCJhdnPtJ1FHBkcuAjVXPMMWCNqhrEwDgw6wY0MwAZAiVNcO1MrZZBWsBkZQ9aKbCidMAYAWUIjIpSDHrf5GTr01zIggZJlqxPp2GHvaCcuaDpGuH+pnM7nTqdOp0mp1MolF5umBCzDH2TZgSkN6lymCEegnmw5ILZYSSsUT/AXI/0YTAASPcgcypHPNlxOm1VweBNqgEQDgNHXfWBagBdDerAWA08QEryQ1J2nYRJukAd6/sVZFotzVIps464XjigtP5JqMoG7+iITabnDatPcyELGiTDF9H20Edp2E29Hp3ZR9fI7e906nTqdJq+TjlhIKYYgp4HRpN51WwzZgNymHZAKQBomGMEiu5/ZPm7+xKogaLfJuZITDMEySAYZwRwZLIfm1QD1qgHfQ+ICTDqamD+j4BJ1gAScCCpOTeRrUqBcePTZEUP2ppZcx0oFPAzu8gqmOWFuenPwiw8o9an2ZYFDZLA6A98Mo0xlFF6w5M51lSu02m0cp1Oo5Xb2nRqYpMsAUoKvCHQFGDmI8/shMwBWNL5/o55IVCk64bAGJpafSBPMp9jEzhW/RprJHB0JtVq4MASSgZMchAF7ETrQB4ggZhJWjOr5hys6BkWWvb8+fYa9C64EMasSskGwuEmSgE8GD6SufVcgyPJggfJ2ZKpmJFmWzqdRpNOp9FkS9OJjkdsMj0egKZg5lrko1TM7tNw6NhAIAH42B26pltnnimG67XpqrSaGXCkfZYxxkzSB+xoSb7IhuxFgEtizgR3plZWlOacwnhjHasEvA8TMPN69sZMhCvjgGQxm1S8lq4ufG8dSG5GGaVh5ah/ag7KlZ9qj6jTqdOp02lmdSI2OarZFYDbBwYwbX2PFvwUtBvvGN0nAES6r7kni0CSWCNjyUTHadLx1KwqB5MCR8ca04AdC4xaKSip3HqbMM7BBAdXHEwqMGEZo/VDEkDS+wAX/l1wYUy0JfcMMsMmdQYkNxdAAh1IDhUWLHO+lLZGHMpkPwadTp1OnU4zr1NqdqVhHjmgBPw+OtcBpDam2FQce3TbHhiBOIqVhf7GpqTjuYAc2R8ZHN0xYo9SQg2qCBS1XQfgljlhwrNIJcxMH6JXgEkFDkRRrf6B2C6DEEYXzsGFAFjCJoOE9fTshtWnuZIFDZJNLyPXI2WoN9hcw2/a3ya5a3Y6dTp1Os2OTgSUIWByoAaUgPVLMuaSoBNgZhlkkJM1ZIx0LBzWwTAFcAyiVVV/YlLgqPoDaKUg+1UEjFoqKDUcJJngwMAsuTRskgkOrRR4WbglvTMNwzopIAhBoI+W0phhQzZpx03CBvDk2GQouQ7RbMmCBsm2BkeSa7hNvdnJStO1O506nTqdZlenCCjBoLWuASWACCyBODl5Ko0sEvDRrEjAMWdWTfYZsOzXhnLoQR+6P1EHR0oQYMFRDioDhnZJwKj6ZmYOTcAFQDWAJBccTAhgAChrchVl4dillmZJ0MYAaG65NhcGLF3ygYRNKmGCdmgmEsbBRC/7nnP1YrZlQYMkMLwH2nR8sj3p9Jyp3LPTqdOp02lmdXKAmQFKIGaOTR9tEmKSOWB0rLJlouMm5hgN5+hP+KEclWWQbqjHoBEcVb9yjNGApTQmVxUzyByTZIJDWRbJODeAqQS0VOC9wpVxzwEwYEgsUggT8GNZLYpezCbt/0smVxoOkka6TuXdz4S0c9oZkgsvvBB77rknxsfHcfDBB+Pmm29uLPutb30LjLHa7+c//3lU7qqrrsI+++yDsbEx7LPPPrj66qunrF9K3dO+Ih1nmX25c9oaftP5nU6dTp1Oc6tTyPzM0AyzwwCcBTubT5VyrKY/yqDjBv4zypATbsOCYt/4E6s+UPVNlhzZB6smzPjGcJ/sG/Y46EM9+jDUxMPQEw9Db3oUuj9hth81PzXxiDuuHnkEg4cfRTXRh5zoo3p4AtVE322bY5vctnzU/uy2GlSuvBpUUIPK7O9boB1UkIMKsj+AGgyg+mbbHesbYHYgboebOBCX0oK78au6abkUTdOlQRM+t727uZRZZ5JXXHEFTjvtNFx44YU44ogjcPHFF+O4447D7bffjt13373xvDvuuANLlixx2zvttJNbX7duHVatWoVzzz0XJ510Eq6++mqcfPLJ+M53voNDDz100jqmPZS0pxnua6L7bec0SdvxTqdOp06n2dcpF/EKwKSiA9z8kTkJGUbIGum6DDAmVJq8mIBgBPaYM62CmGTqd7THCaRC5mjAa+BYo7IgRhGtABqjWtUA8ZCPgTG7cmtm1SqYjox8lEJBDowZl3NhmCMXnkVyYcZSOt+kTW5ODFJVnmFm3uXmYJJM0wyksySHHnooDjroIFx00UVu3957740Xv/jFOO+882rlv/Wtb+E5z3kO/vjHP+Ixj3lM9pqrVq3Cxo0bcf3117t9xx57LB772Mfi8ssvH6rTxo0bsXTpUmzYsCEC4pwpBhhuGhpVRm3E6TmdTp1OnU6zqxMF8OhgHQCaPo9hcgC6R2RSdUMbUpZEATojmFaTwBzdn2g1rRI4emZnwDH0RZIJNjSzhiZW2k/gCMAF6dB+0Sv8UJBeAVEW4GXp13sFivGeAdOxcbCiB9YbN+u9cbfOxxcDvTFA9KCLceiihBY9s12OmXUbwJN7Cxs3bsSyZcvwwAMPRN/xmZZZNbf2+3388Ic/xDHHHBPtP+aYY/Dd73639dwDDzwQu+66K4466ih885vfjI6tW7euds3nP//5jdfctGkTNm7cGP1y0tZrCXu0UxWducco5zRtdzrldUi3O53yOqTbC1mnFOzol3P9UBIAYUFRBOshQ3SJAOTAgCGljEtNqxSYM+hDWXOq7k9Ab7K//oQ1tU6YqFb7I9Pq4JEJVA9PQD7qzaqRSdWaT0MTqupXbr8cVKgmBqgmBpB9CdmXZt2aViOTq2Wrzt9JoByYXrVUkdnVZd+Jfgq6GpiOA03bpXzngtanUp9mWmbV3HrvvfdCSolddtkl2r/LLrtgw4YN2XN23XVXfOYzn8HBBx+MTZs24fOf/zyOOuoofOtb38KRRx4JANiwYcOkrnneeefh7LPPntL/MJN0fyZ6xTkdOp3y0uk0mnQ6GQlNr3TPdMYrlpR32yl7pCEdGfYYBqtkzas2OCca1rFposYeHeglplVikiFzVIPYzKpt/j0ldfuwDwBaaDDBHKNSqMCsqVWgMNfnCkwoB5xMcMiBWUamVi5MsgELlrUAHgraURWgixmrT9OROYluZUnYtNa6to/kyU9+Mp785Ce77ZUrV+I3v/kN/uEf/sGB5GSveeaZZ2L16tVue+PGjXjc4x5X1xP1F0L72l7WTPhnht2/06nTqdNp9nUKx07mvibpMI+saZW2Q99jbljHZM2rFjxT36Nje/2B2xeOiaRtAkcCRmWBsinLDqPjgll/owYTClxxcBRQqOrncA4lFFjfTqgsFVjol6QcsTRvZdUHKwof0Rpk4HGAOWTM5GzLrILkjjvuCCFEjeHdc889NSbYJocddhguu+wyt71s2bJJXXNsbAxjY2ND75NrlKP4RWazp9Pp1OnU6TS3OjXMlwwgAUdaJgAZgqNjkKrOHrMAuWmiPrSjPxEF51TW9Bn6Huvmz2D4RwYczdhIzyZrz0AwaCnBBIMCB4eyS0BBgXHr0+QK2jJILYIMPtyuU4COBUgmY5MrVJyeDpToPFzfzCA5q3fv9Xo4+OCDceONN0b7b7zxRhx++OEjX+e///u/seuuu7rtlStX1q55ww03TOqaTbI5qX3TvTudRrt3p9No9+50mtq9c+yxLXJ1MgE6zv84RYAkH2MYwGPYpYTsK+drlAMJNTD7lNSQfQOW6S88rgbmPNmXFmh1FADkUtxJ5fLBujGZFBhkAVErvx6ZXNPnGW7P0nsfVWbd3Lp69WqccsopOOSQQ7By5Up85jOfwZ133olTTz0VgDGF3nXXXbj00ksBAB/72Mewxx57YN9990W/38dll12Gq666CldddZW75tvf/nYceeSR+OAHP4gTTzwR11xzDb7+9a/jO9/5zrT1bYq0C19Urpc7Hdv5sHM7nTqdOp3mXqdUF6OEH8OXjV7NMUjrl2xjkNnkAJMASDdGUakggEZboJOOORLIAT67jk6YJLM597jlUCbhu1nTkjlG6RhkwCaVNL5Jc10LkGX8PMN5LJlRJABHnZhd8ybXuQTOWQfJVatW4b777sM555yD9evXY7/99sN1112HFStWAADWr1+PO++805Xv9/s444wzcNddd2HRokXYd9998ZWvfAUveMELXJnDDz8cX/ziF/Hud78b73nPe/CEJzwBV1xxxZTGSKaSNhrazpmD0nIsWW/zpbRdq9Op06nTafPrVPsQNwFk4ENL2aVLNxcc01LWfZA012M0xCMe/0iBOKMCpGN+CUCGgTt5fyRBorJb3AGl4tpsCWEA0QKkkgq89NcjcNSOPWYiXOEBk2s7Q2dgZnUzg4jJv7uZlFkfJzkfJTdOcjKNq03CsmnjBSb3cjudOp06nTaPTjVp8UFOOYq1GpgMOpOIYpWDCnJiUwSQNBayCSDJpJoDxyZ/JAA7FpLZvK0MXDAwwSBKYXK39rgbF8lLM0ZSLOq5cZPFeA9ikRkvWYz33DhJvmhxMF5ykdunhRknqUUJXY6b8ZKihC7s2MlEz61inOSWJgxxA8k1sGE0v60HPJXeSKdTp1On09zrlL9JQxRowiLTCE0WAakdI2hNrm5uR8qiQywrzL+qfCKAaJora94MI1qJMQ4DSCoDwPkhScKo1/Bc5cy0vmzKRNPhJNnhJdIH7fhygV8SiPySLNi/OaQDSSsa9QaVa1yjNjgdLIc18KbjnU6dTp1O80Mnf9B+rMOB78F+Z2bNAKeW0ppV+26QvTOzSh/x6XKcUvBLMEg/3B9NeWUDaCiCNY5erQMkUAfHcDvHMGuPwl1H5cFwFAlMryThs2OBoTPXkZoL6UByBGl7IQz1nnAquerGhhzvdOp06nSafzoBFgijG8Wm2JrfMmGRLm9pGOFJ7LLq24hPzxJTIAxZpANSSVGqBJRxkI5RJwbImZRwFhASlfN3NozJjIN3YpYZJjwnmVnt22VBgyRLlrljQPMLIdNOrtc5GfNQp1OnU6fT/NRp2MfYMZ0ccGZYZBi4ogk0AxZJABqyROXWm1kkEJtJSUIWOdPCBHM5XHPCeX5/U/KCTMF6xwNzyyKBBQ6SOlnmjk332pMt1+k0WrlOp9HKdTqNVq5NJwAA4/7XVCQxtTb5IgF4X2TAIl3EZ8ASnX4NLNIdz/kLW3yHjf8DDf+wABju58Gx5vOHQArn0XVr0jBeMmTvc8kigQUOksNk1F7pbFx7qud1Oo12XqfTaOd1OmUAdToZYMjUatcRgKZO/HM6AMVG3Ub0BabAxDJAxzIgSNGt6XW4i3oNJmKmmUKECNZ5dH7j/6Fk5H9sKDTnLBLoQLJVJtsYm0w4uXJTbeidTqNJp9No0uk0mRsFn8s2NpSRGgCGwSoRMHqT6nQlHL5BkgJg+AuPNw3/4DaPa2hqJaCkpbl2ui3adeXNx9OJmOda5iTB+ZYmTY1pmL9kNs0AnU6jSafTaNLpNJqE/k8GGKAMTX+MgbUpoAPmSBICZHhsVF9di3DBkMNXA4KWBaL5PgSO5loxQLo5JBtYJLFGxjk4j+egNEthwHAIYDpJh350IDk/JNdQw4YyGZmp63Q6dTp1Om1+nTQARn5JSpW2GcfvAYaxaaXcVFZSEigpm4w8TC9HuuZZcAqOZj1OIMAFg+iJRhZJptb0R9NkgRgj5zU2rhtmcTIHg4hhxufUL9mBZCLDHv4oJpumMrNlfup0Gu28TqfRzut0GnIe49CMg7UwsrDsyDIJEy4XHFpahia5BUhpgMzO2BECJeDBEsLnbaVrOXUTcDRMkdUAkveKRhYpyiJhmSIGxQgsg/Um0QqAaMzjOtuy4EGSGla6bJJRGmp67bb75sp1OnU6dTrNc52Y/ehrDjDtgZPz+uB4IaDDqRe5ADAw60KYxAJBWSaVARnF/VIawNEqDJAhFknbHhpDoBSCmUhXwVz0q8iYPJ0/MgOOzj8ZAKSw6eh4r3Cp6HiviBgkLwsz0bL7ce9/5CIGTnquI0gL55xxWfAgqRuWuTJtQi9tWAPMXZMaJK13OnU6dTrNX52YNbMaNpkpw1htP+MCGoP8NhcAT/yWGQkBVEsVsUkAECighQKTZrYOJrWZtUNqaxk2gNl4/SByNQeOIfBxWlqAJDMrtyBKuVwdiyxK83/abcaFD+YhoGwDyEwygbkCygUNkqM+5LQh5qStYY7SM21q5J1OnU6dTvNPp9AvqZnyvsrgeA1EUzDkPGKVjAtorsCEBFcGAJng4JJDCwIwwyZ5r4DqVxC9ArIf0lS4iZE5AAgB5rLstH/xmAhBsg6OtE7m1JBB0v7UDIuiBCt6nkUWPc8gQ4YphOmohM8xBU2lnDt11Pc1E7KgQXJYAwrLhZI7J9yXNry2nml6fqdTp1On0/zXyYEimVxhwc995P22ZioGQyGiISDMAobmCuAya3IVKCBRgSkBAUCiioBSJfM60hRWAMDcvJEtLDII2iGdUnAk9hizyTJgk2Y/mWFZacARnIMVJVD2PIu06+ST1IzVOhn5F6Bc56RjknMkwxpHkzmnzbfRdO1Rez+dTp1OnU7zX6eILVpwTLfTsZXEFs22sGAmLEuSWTZJYMgUB0cBE8bigTIExRAsAbhjANzkx2H2nTirTjDGMQDGCDAdkxQOMNPpspjgBiCL0jFJCMsYi54zvToAFcIzyCFZjTaHLHiQBOJGkTaStMGEDSntsabSdK1cQ2zb7nTqdOp0mn86+YKByRUAOIfWwTazEZ6KAHLgAZJLuy5rbJKgQvariE1yFNAW3FTAHlMGSYCZA8dYfQ+OALLAGEaqUvBO6H/0YBkAozWvsrIMwNFeIwBQYpHadTSYeYZDQHOUjs9MSAeSiYza45zMtUZtbG09406nTqdOp/mjkwbyJtfowy4NswxNrlx69qRkM5ssjF5MKoie+Uw7dsgVFJlShUlWoBL2qKUCL+Ey97Tlbk1BsgkYXeAORbgmQTxkQmWFYZFkYmVcWEAsTZmASWZZZA4Uw32duXXuhCXr02lEoSkmZ+ppukbqUxnVTNTp1OnU6TQPdCITa/CBz5pcAzaJomdAK2WTxPgAsArQhYlToYw9SgYmVKnAOXczhHA3M4gBTJQxMDaluUuz4jifZAYYw+jW2EcpsuwRXFiwNMAYliPA1FwAvIhZZPrsNrMsaJAcxXSTlgPyjaipx6oz++gauf2dTp1OnU5bhk4aiKJaNWMRuySTa45NsqKMrgcAuoIxuxY9s1+ZiE/GjemVcTPsQ/YrH6BjTaoqYJG8gT0S2KZ5VHNMMkorlwz9cOAZBOL4KFZeY4+wgTpuPQRIMrPywoNiaGq1zxVAnGxhDjMdLWiQBNobRFO5Uc8BRusNT+ZYU7lOp9HKdTqNVq7TaZLlksQC/hdvR75J63t0ZtfCgqabGSReMiGhpQTjPJ46SwXAmMwakp34OFI7b2oF0BC8IxzQwUWuZsCRliLZLnrmfyaA5IUDSG2vpwkwjRLxcjPIggfJ2ZKpmJFmWzqdRpNOp9Gk08kKLwLWaKZzouw7rWwy8D0ClkkWdlkCsIkCtLJsTUmgGgRg6c2qoSnWnGOWxBlpf26+x5BJ1oeACA+GvL7uzKpt4BiCalE45hgySALI1ERdGxqyGaQDSQxvPLnjbT6P1N+RyigNtdOp06nTaf7r5MylUZq69Jewy6Lw/4f1PRJQQgm31JZpYjCwEzQHYKkkGLFEJcGln7DZ6TZCsA4Qssg4AXkWFDm3WXOCIRyFH/MYmWATcHTAx8N14U2sock1TSowQrTrbEkHkkOEBcuc36KtEYcy2Y9Bp1OnU6fTlqGT2dkQwBOySW7AEaryZtciBkpnTq0GYIob0LTAyOxckwSSCECSAWbiYmC0KbdCkMzkUq2Boj2eBcacCZYAtoiBrwaQ3D+r+cgigQUOkk1O/FyPlKHeOJoCCSbb+HLX7HTqdOp02oJ0agrgcYAAMAVvduUwrEtKc34QpON9kcZfSWCpOYFgAJh2O1qOINEkx3a9CRD9cTESMJphHcybUnPgJ/LHauCYCeRx++dIFjRItjU4klwjaerNTlaart3p1OnU6bRl6eQkNzOIKABZ+X28AFOVKQYA6EFXfcPOUrOqDFgjMUiUgFKOPQJwbNJJOtFzOutHAJIsYJAOHOl/CQCR9mXNsGEwThMwkkm6ARwB+HJUFmjP5zoHsqBBEhjeA206Ptlea3rOVO7Z6dTp1Ok0f3VKA3SITRqGaM2uvABUFQElGAMXAnrQNwCpRAyWQAyYQGRqjSTHJpP5GmMWGYBjwCJTs2sEjoBni4FpeVLAaC6eZ45WL90U4dr5JOde0sqfNgQ6jmB/2zltjazpnp1OnU6dTlu2ThEDCoeD0DFRQMvKAKVW5jybsFtrBfTGwLU24xlVwiBRZgEyZI86ZY9AbUwkMgDZ6pO050cMj3GoNrALQTF8LsF2zqRq7pMBws1kZiXpQBL5hhAeC/c1Ncq2c5qk7XinU6dTp9OWpVNk7gzZJOCYowNKcDd0BFrFYMkYmBbm+hF7TECShMZRpv8MTwGyIVgHATO0ujvgA7IMMAJEty/PFAFsUaCYSgeSaO41ho2Cjg1rgOH1Uhm1EXc6dTp1Om2hOpHJlQPQPmAHSIBSKUAzMM09OBJYAm4bXICyyzAATMd3HYU9OvCz+uWWOWbozg1MoCMxxOQajYA4BAyn09mZSelAMpD0oedMK22mmslev9Op06nTaevRSQM+qtUm4TYFfSltTa2MWeaYgiXgQNGBY5CCLToOAKKMFbXsz5XPAVGyzAGhO7cBEEdmhhlADPVTOfNAi/AaXZ596UByiOQay1RlOg29TYdOp7x0Oo0mnU6jycg6hWxSwWbhiZmStuUisASxRhExxhowttw3ukfI6oDINGqO15njpIEwBVx7bxU8HB0cUJN4ESkgsuD8uQTLDiQDyTUm2tfW0GbCFzLs/p1OW45OSk/+o8zgG/5CeU5bo06+sI1qhbLrCmDCMUb6aWKdPGGMU0ngHbK1YYyuxTQ6KghGgKhJb7OS0143PLTQGkzCAUgNsOBg2D4mA7bTlQ4kA8k1gFEaxWy+r06n+a0TfSxU8JFQaP4g5IQx81GgD0IKljPZa+7e3ezrxAj4AMO+FJwJVsOyyrAM+SGD9ZFkSLBLjUmOwAabQFCrGPyofquU8QYyDMh40Mth0X4GCQueWjsOrsDAmX8PcyUdSCYyhx2Uke/d6TTavedCpxAUQ0BUWscflcxHBDAfgFDcLEAMYNDuOAEnAAj7NQnZ5ijSvbvRZFZ0CpgX8195s4/BgCGzkaV6chGcrYE4bb7BQCfXqQvXlY5AkOpuxBjRXLcn87wYAAo5Cuu8uY42IKjNMWXbgmlvbM79kh1IJtIU1Ra+l1yPcjp+j2Hndjptfp2kBqT9iEilA6BsAcjsVTVoTvUQIEkPzixAMtpmUEo7pklXbAPM7t1tXp38CbGJ0mxyM4QjNI22scc06nPEAJksEAYdO3PfGAhDEBwKkMl/PMxyEuI6D54gYwYUAbj4JpPWz9RvpU17IaDcHDIn973wwgux5557Ynx8HAcffDBuvvnmxrL/9m//huc973nYaaedsGTJEqxcuRJf+9rXojJr164FY6z2m5iYmLau6bvWwb50PS3HkG9IqaTHhjXyTqe51YlEaqAvNSakxkSl0FcamyqNvkx+yiwn3DFlf5myDccHSqNSsEuNgUy2g6VU2oC2zpu0FvK7mw86mZvVo0IpK40WBbQobNo3bvKY2p8uevEv3FeOQ4sedDEOiJ5Z5wUkKyDBUYGjr2B+tl5uCurcJqkwYbc3VbZOS1OG6u6mSmNCquhcf8zU24mk7mbbhK3T9OtLjcr+aJ/U5mfqtKnPBqxtHVdUx7UBbliQd+WGvMAZkllnkldccQVOO+00XHjhhTjiiCNw8cUX47jjjsPtt9+O3XffvVb+29/+Np73vOfhAx/4AB7zmMfgkksuwQtf+EJ8//vfx4EHHujKLVmyBHfccUd07vj4+JT1bOtVjtpbpQY7bH3Ud9vpNLc6AXnGKJVtuJYlSmqokbmVrmNW2hpwyhwBMq9qMMY8mwQguGeUjGlwBgjGwGA+HMQuRzHFbs3vbj7p5O6bDgVJy6X7G3yMOTaX+sD9fu3OCS0dtX32qu3Xovv7/zit1zkGmQbi+PrO7LYGY6atOQsJMyZWress0k4C5hhlkiJh1oVpPYwoT08OPfRQHHTQQbjooovcvr333hsvfvGLcd555410jX333RerVq3Ce9/7XgCGSZ522mm4//77p6TTxo0bsXTpUmzYsAFLliwBUDeh0L704YzacKncdM1BnU5zoxOBowxAkLZDYJTUqw3W6b6SghuCJiXtuoii9My64Oaz4c2rMUAyxiC4MU8xBghGYBmv8+Ba5vqz95xy5Tb3u5uPOtVeQWpSbRk8H5pJo+0MIIZlGvfB19kw+jQFwhCEXacxQMVcvU5FJAiZ1nWgvb77bRZ1EGldcObq+4MbN2L5rsvwwAMPuO/4bMisMsl+v48f/vCHeOc73xntP+aYY/Dd7353pGsopfDggw9i++23j/Y/9NBDWLFiBaSUOOCAA3DuuedGTDOUTZs2YdOmTW5748aNtTK5Vz7qvpzoYDmswTYd73SafZ1ScDQmHr9UwX4NWlq2ac1FSvmPBn1IZOZmwn4l3IeDMWNtYyz5ENAHhNii2Wd62RqCAZoxCK6NH8d0u91HRuk8UG5t725L0cncbMhg+mB/DszM/tgXnts3DBAJDNPOna+32mW9S+u02df+b4qg3qX13K0zZkFTO8BMrSPgGlCmTSitwbSNbLUvdqsZAnLvvfdCSolddtkl2r/LLrtgw4YNI13jwx/+MB5++GGcfPLJbt9TnvIUrF27Fk996lOxceNGfPzjH8cRRxyB2267DXvttVftGueddx7OPvvsKf8fo/YYm8rk9ofXnMr77nSank4hOMZ+Pg+QWocACQykMj4USQAJKOtbaQPHUIgBmnUGzpnbJxhDKRi4Yii4AUfF6mAJ8zkBlGGShIrcRv+JDEBO9TnRMZL58O62BJ2art8EikAzU0wDatpAsQkQm8AwrbtK+eNGt5kASAZIRPWcc6DkHIIzoy/TEIxBM0BAQ6oYKD04ms7gXJpc5yS6NRwQCpiXme7LyeWXX46zzjoL11xzDXbeeWe3/7DDDsNhhx3mto844ggcdNBB+MQnPoELLrigdp0zzzwTq1evdtsbN27E4x73uMjZn77/URrTsAbTVqd0Q7k2c1Gn0/R1UhqoAkAcyHYWOZDKljEBBkppDJRKANJc231YMt1czv1HA/C9ZwLJknNwzjBQZn1gPyI6AEthPxraflDANQT5bAKg1Iw5Nrk1vbstVSdg8ibUUdgi+c6HgWIKiGHdpevnARLR9jAJ6zZt5wCyFAxcMyilIrA0/4F5miFQMm1Zp55aB3C6MqsgueOOO0IIUWON99xzT41dpnLFFVfg9a9/Pa688kocffTRrWU553j605+OX/ziF9njY2NjGBsbq+1vq/hT6WVO5fy0XKfTaOUmqxNFxFGUqLSRowSKVbI+UAYcQ2AksCTwDD8irjfeYgcSnMU9bGbAs+QMA6bduhSAUICZkJ6hFBzafig1sz12DkB5oNSJKYo+JlvDu5uMzEedsmMSA9ZnyuSHFU0GGKsRQLG+HXfuah2+BCDD+i0Sm35atwHYTiBzncJSMEgdgyWgoLSp5/5JGaDUmrl6r3WwhJ72exlVZhUke70eDj74YNx444046aST3P4bb7wRJ554YuN5l19+Of7iL/4Cl19+OY4//vih99Fa49Zbb8VTn/rUGdGbZNRe6Wxce6rndTrVzwvZYw4kabtSJsw9BMSB0oZNOrDULkSdPjDKgivc/WKNffBC/UNSCo4qWFecYaC0A0upGaTWKDk3/xUPkNACJQt725M0Rc33d5eTLUmnFCDrfsJmcAyDxAhUyTfeBoxUV1NQpPpOjDGuv/E+s+7/q7B+k4gg9iis12bbdgoVizqEIUDKABgVM0+FthmMBYVpgDFfv0U9JGrWZdbNratXr8Ypp5yCQw45BCtXrsRnPvMZ3HnnnTj11FMBGFPoXXfdhUsvvRSAAchXv/rV+PjHP47DDjvMsdBFixZh6dKlAICzzz4bhx12GPbaay9s3LgRF1xwAW699VZ86lOfmlHdJ9uYmkw4w8p1Os2OTil7JNOqH29o1lNwDFmkA0hnmg19kjSeazQWST/A96oHSrt1pYFBAJZKayjOoTRzrLIH7oCSPiBSM/C0lz2CO4Oe02RkIdenqeoUMkjAA6QfStQOjjQeNg0cGyjVCIyh1UNqMz4xBMQUDGmYE+D3h/U5V7dDJiksYwR8NGoIkIIzlJpDKY1ScNPxEyYDvFKm/tten92vAcXAuWeTqZVkrmTWQXLVqlW47777cM4552D9+vXYb7/9cN1112HFihUAgPXr1+POO+905S+++GJUVYW3vvWteOtb3+r2v+Y1r8HatWsBAPfffz/e9KY3YcOGDVi6dCkOPPBAfPvb38YznvGMGdG5rZGR5I7PJv3vdBpNSKccewyBcWA/FBOVNABpwXGiMqBY2W2pCCz9dvirVAyUgP+g1D4inKEIwLIvzbLkHFIbkyuBpbQ9bSkA+ngAHJxZJkmRrcoEQUgd9LZHAMj5/O5y+9vuv6XoFJpYU4CkoUaKgDDDHJWOwZF848b0r4P1PDB6KwhcJw9AVJ9pGzDthCQFybBuF9TxC+q2cGZWD5iSawhu6nchrJk1AUiq44wb37uynUHBQsvQaHV8pmTWx0nOR8mNkyQZ5rifjsykqafTqfm8nFmVwGxgQbJvA3ImpMKmSrr1KmKSZtmXBhz7lTLnVgSWqvZhafLZ+I8Hjz4kY4XZ7hUcJecohfFLloJjrOBufVzQMbtfWLMVNx8cs26iYoX1bTb1uOfzu5uJa41y7ameN9lrkTUjZogBKAbrbWNxqxZwTAPLlIbr0Pl1D4zDOnp+OTzZurBjO8I6XaRgaTuCwgbpUD0mF0Np2wGtl4JhvBDmuK3HuTr+6EMPYrctfZzklijDGsAojaSpzGyZejqdjFCqNvIzhqndaF+lYvZoQFJhYNN2peDYr8xxAsZ+JbMfGadDBiRzPe1ewSE4h1Smdy2Vhiw0lOZQAbqpKDjC9LIHSkFwAW572hTNaEx2w3vY8/Hdba06uWsFpk2N4QBJ20rHQ49ygWSpv3wQMEhap05eCorDOntNLgTnNuDKbec6gYWt65Jr9Kx5VWrDKsncyhnHQGkQkxSMYSAVeoJDaeObpKC0Ud7LTMuCB0mq6OmySUZpOOm12+6bK9fpNDmdAOp1e1Nqzrw6sPknU/aYgmQKjv1KBiCpMh+ZOkjmWaT/cPQrhV7B0a8YeoXw1yo0TOIt6sVzcPsBEcz7eaQyM4YQ42jz08znd7c160RC1cNHsvrzycSaAmQ4NteZ+i1ghqBI5tXUNaC0t4BIZep9Dhhz9Zg6fW0+diDuBPr6rSLA7BUcldIYK7gdi8xtEBpg6rRwACmY8VlKro2PHcbUrDWLTNNzHbyz4EFSNyxzZdqEXtsoH/T0mkEnyVaMTqfJ6ATkAdKYTr15lfyNmyqJCQuCm2i/1JiwYJiCI+0Le+NNfpxURCOLZDGLVBxShXGpHijJ/yKkBmcEloDgAlJrCG2DQRB+TJqHgcynd7cQdErPp4+90rEPsg0gc9HW5HPMBZdRPY3rra+7IasEmv2SbeJ868j73HuFAWPqBI4VFhwLwDFGFbJHbS0lOuoIbo6xkaEsaJAc9dm3VXpkjg3robadP6oJp9PJrw/UaADpWaRdr6Rjj48ODCA+0pc1cKT1GkgG4fQ681FhFiBprBh9PEJwpGVejElV2A/JgGlwpVFqmKhG+xFJ83BGOrQ8y7Rc+HxzslDq00zqRKIQD6kgsDQ/n9BC6TxApkyySsEzCCyrd+pUrXMXMktg8iCZdv5onTqAha3XvYJ8lnGuWlF6gOTMAD2ZXQUzbNLM/kEdP53tCM6FLGiQHNaAwnKhDHPopw2vrWeant/pNLpOQB4g+7LufwxBsrKskVjko31pwdGwx0f7MgLHCCC1hqyUmaCWADL8+CntwBGAyafKGSRnYNyuB+BIHxEgH0FoetKmh02gPJCGTZaamfB4XTfphe9kPr67haJTKiphkWYJ539UOs7y5LJBNQBkLrjMA6SMOnZ1k2v+BwzPsuOsG4krgeo2gSUAW8/99UxkdwyQggnz/ysPkJL8tzC+980lCxokgeGNo8mc0+bbaLr2qL3VTqfRdJoKQHoWaZgkAeKj/QqP9lNzq/8NpIKqFJTSxjRmQZIYZC5InDHmAFMU3AGmKrQDy5xfE0g+Pgrg0nyYBkyjDD6eGjmfFz3R/POt6RmUC5//QqtPs6lT7V7as0g3tlVTPuG6aXUYQKbsMQTIEBxz7oImq0jOOgIYC4mkpWY27ZwHxpBZAj5wjfZtqnywz0Ba06r2bNInQPDWEnpmc8UeQ1nwIAnElbrNh0HbaeNoa1S5a+UaUtt2p1P9WJOJdbIA+UhfOoAkcHy0L7PgqGS8pNmP2j4mNPkDMUzOGbjSDixzZq1aAIRNcl7Sx1NqlFy7j0hBCaDBagCZPre25x1uL7T6NNs6UQQyLUlCFmk6POa9Kk3DOUYHyDACm+pvOGSpn4KlTjp6DdaRmkhvIVEw9VxxA3Q9wetWkoJDuPtKu8sEr4nSAySxSZc2j3sdNudAxQ4kExm1xzmZaw1rbGgo1+lUF2pETT5IOSJAPjhRWUCsInOrA0ipICvzU3Zdaw1ZWRap9Ug9bmZNplopMA4IYSL4hP2ADACg78/xDFJGgRClMGHxJTfh88Q2jOnOfKyU+1yP9rynWyYst6XWp7nQKQc4ZGo116izSDPWV9lIVZ9rtQ0gQ/ZYZ5YBQLpOXmAR0XWgpG33nAJGyDmDkraOKwOYmoJ4FLOR2/lxloJzbKpMJ5D+J2KTBNwEkOSXNOv0PEd46DMoCxokWbI+nUYUmmJy5pema6Q+lVFNNwtRJxoHOSxIZxSAfNQySArWedT+QvYoZQiS5oMipYo+LE0ACdgPiO1xE2BqBYjCmo+URgEDlKLK+XikGWOmiD2aMZ+lJr/W8K/FfHl387E+zYVOaVnyRwJwplYqG7JIMzYSQWfIj5f0s9XUf2nAWQ0kE5/6MNdBNKON9LPZaJNs1VlHtGYQ4Ka92DIpUFIwT7+SQVS3DdShDl8CkOmMJJuDUS5okAwbR9uzH6URNfVYdWYfXSO3v9Mpr1MIkP4DAfvBMB8NN8zDDrpuMrGGwztSgOwPZMQepVRQlQfHCCQdk6w/CzKzOhOr4NEHhhcaQnDXO+8n0YI0rqxfKbMeMEcf0OHH1rlfyzvp6tPc6xRKiDfhmEnaH7JIwM/KQckDVNA5qkdf14crpQA5sHU3V49dsoPAjeB0VT4YjdwDjBuXARSlAAAkFJhiEAXHwA5fok4eBQ6F4OjGG1OgjtJQnJ6Lfw655zlKB3GmZEGDJNDeIJrKTeb1TMWU0+kUX4NMrC6gIZgDMkwUkIJjJc2HockHGQLkoxYcqwgktQVJFX1UVOVZXM7kyrgJZmCcgStAcx2ZWDVnoFyVzDJIVjFIxmoflF5h1nsF9x+S6Jf/SOvAN9nVp9GuMds6uXMIBIN9BD6hLzJkkY4FBizSJ7VQNeBJTawEkOQ2SAGSwFEHekQSzLhsAmlMXWVcg2sGbcER3F9D8rYoWgUzNrj+BKm9AyZ4xz83X6fnUhY8SM6WTMVkM9uypeqkgZg96mAmDzJFKTOLh8mkoyw42nGQKux15xlkCpBV35tbdWCikjL25QCATnJcMjsmjPw0TBuwdMkBwKG4BlMMSioT6VopDDiDqHzCgfRjImmOSV0P0W+x+s6abKn1aXNIG/PRCSCkbDKcrUPpNuDJm1+l9nU2BMhcAFra+cv+LxyA1A4sFbRJsl8piIJDQpk6rjQki/WplHZBPPHPXJc6BvS/07xvGpsHIIEOJAEMbzy5420+j9TfkcooDbXTKWCRirKRBCapwNxK48pCU6v7SR2ZpeIxkSoyseYA0gXtKCQmKgWtTKQeLd3/xU3L1lyAcWtmLThQATF/MIAqK2X9le0fvNoEuMEHBWgHyq4+bR6dmnSgd0VTB/tpqnxZKhP6ManuA5QAoM4i02FFxBjzyzo4tgFkKIrDdv4MUArBjMWEmyVTOmKTpDNJqHNat0OANBHcHiCbIrhnSzqQHCIsWIYNoakxhuVCmWzD63QKzayoAWOayNyl5VLamVnDCMDUbxMO8SAwDE2sOYA06wYc6QfEIMm4gFbSLXnRgwIHKgUUHIw+Ssx8RFSlzZx59uMUBmRUycfF+6x0BIhSmUmapyoLpT5tDp0mI1GHJwNUMuhfVSMCGbFIAIFZVWcjbkOAzN2fhAOuUxcCpeYasPWbCeaAWLIYIHPjgknXXEcwlFEjuGdSFjRINjnxcz1ShnrjaHLaT7bx5a7Z6eTNrDQHng9UiefiMyHxlkVa8yqBZmpmDXvbfQpksOZUGQTohH6aFCBV1XfAqBIWCSXBA6BUVd8wy6I0PWtTCIANo+epj7He8w4/KErn18kclX57uvq0eXVqvb/Ol4vfsVmGYJGysVbrQ8Im3XUTFpkDyBRImR3Ur5R2QBnprTybZDwGsxyTbBJikcOy/syVLGiQHKVy5xpJU89xstJ07U4nC4iJmdWAYp1FSgeWPsghTNUVBjKEP6W0M7Pq4EPhmGTAKrVSDhy1klABk6zpbgEyzFaplXBh8zr42LDgYxUOKYmBUkWsMg6Nb3+6XX3aMnQaVVKAnIpMdQphrbUDSgAeVDlGmpmjDu7NwTs5GT675ezIggZJYHgPtOn4ZHut6TlTuedC0UklYCgJ/AJTI7FINwuCmyXBs0iKEqVB1qnPJgQmaSNWKUAn7mHHJlaVmFsB2GQBcRJnCo03xyWU8vksfW/bAyTJTHwIQ1no9Wk+6jRVSadgm2kZKeNOi2itwZAAqWg5wcp8YY054cOLbP0SGwbyfg2W7G87p62RNZ3f6RTv1zS4WJvtEBxzvkiXqSPYbsxTaf17acRfLhzerOcB0oCnctGt8bov77dVBL5mv38KadDETABk+EwXcn3aXDpNRXjA1ggHBctfNcyVmr1WmGzfrrOGa4Xl28qE16OMUm5fcl5qkt0SpQNJ1HuCqYkl9Fc0NcrcOcOk7RO4UHUic6kkcFQeHFNfpANGHc+iIBWyzDH11US/ECgTFgkgCtIhwAMALWX0M2Viw1CTWbYtinAmARJYuPVpc+vUJoQndJ0QCHkGXASnJYuiPWlf7pdeL1wyDgdyBHhhGcZY7dek2yhSn4jcJ0Rv6gSEsrnAqgNJxKaYUFhwnCVlh10vV27URryQdZLaz71HLJJ8kWY+OR0wyxAow8hPXTNZtplaaZxYU0RfU5AOgeKwfaG0RQ3OpizU+rS5dQJG86URGwsnGCZM4YxFjDKey9EDTZEDygAACeTidIn+HilQpmAY7gtZJCXyjwA4Ab10ZpDWZ0FlRwDOuZAF75MMJa30uQaR9jSnc/1Op1ikZYu6Bo7a7SemGZI1AsowiCXM7DEVqSd6bge/UWVYL5xN4mMyFVlI9Wlz60SWjZxwZuo7C67CTRImCMagmIayQCY0oDgDVwYsm1hj00/aBPg8yPREuS04B1AAWpmhHCqhTeFmNE9qYmYlYAyBllIypgDZZiLmKbgm23zaxuzJSweSQyTXWKYq02nobTpsbTq5SWlpgLOm/X4dgItqTc+dqSAAM+ejWWdcAGnSACFqzJGJepQCJReo72/33zR9TMxEzMytA/SxnZps7fVpPukUviWT79SYXQVnGCjLGjnAtdGaABOw4MnNrC/EHKVjkzrZ5389cPShoDmzoFcHShp/yBUAwVy7avIphgwSgANIAktK6k/MN8ckQ/Yb1mkg7kymbSAF0tmWDiQDyTUm2tfW0EY1vww73nb/rV0n51dMdHMACSDMTpIDwpn049Fg6VA4F5AWKBnnJqI1AEoCyDDKlXPaZ7LvhCYquk9qCkvBUXAefUzctTMfi2EEdKHUp/msEwsuwJlZVZoYJCIWybVJJF5qDqmkM71S2sIm9ujmcgTQr5QFSpM6joCScYrsVhCC2RzDhlUK1Ou/09/V3ZhBEjCGy1SvrEmYMwhunoUIO4Ahc90MDJKkA8lAcg1gWKPAkGOdTsN1oraYmlqBeN692nkzAIquN2ynAaK56/wx7tPM2fGPft0DpT+H26VwZcN1ktg8hQgoU7NUDTQDH1VYfhQL7UKoT1uCToxZ9gVT4RmIRZqE4ZwDQgEqAM5ScCitHJsMgTAVnyDflAmB0qWMqxTAAVGYPKsMDIxpkzkHcXLxVEK/YzrTDeMm2XnIIus/jpQhhkK+WT4PomY6kExkNhveVO+9tetEPWkK2CEJMTCXnYSm6iER1m8TBzdwCK5qPdgQlLhlaJqzaPYOCW2TlHuws26jRgmBkVtwZEEO1xAU6b4UEEG/XK8biHvZ6fYoAOme5ehFZ1wWah0n4YxBwycwB+DASXBmJtAmUOS+tkltfJOl8H7FUeIuc2NuJTM5VRlnUJUyKRKDMbvU+WSs+QmEAT7pvKkEkL2CR7+xgiPLKpk1t3LT+aO6TEBJVZsNsaLMlnQgmUjaU2TJEsj3KKfj9xh27tasU8giw31NmWQm0zRyPVVqoCEoaWUbumYQgpuIV67NJLJQETsE7KeJC6ggR2t0PATKomcBk4EXHEKYj0gY5BCu9wR3DCDtfZOpjcxS5l71Z8KA1nFuW3N9mq86peDIwaCZtZwwbz1J2SQtS2fhCAGyHSgFZ27SY1qnpVR2hg7OfD5XpWuA2fhsyOSaTCrOLejl6q83BYvILEz+SOow0jqAWidwcwS8diCZSFotaDtneknLsWS9zW/Rdq2FpBMQAmXz/VhyYcEYBnaHIDam4l5pyh4jPw4zAQ4OqDjAlWGT3A5Ik5UywFlwyArgRS9KLOA+T4kplUUMUkAUojYejXNmJ11GBJQ5s1ThQBM1gA+fD2OjdSK25vo0X3QKhQJ0Qj3oXZHJlWnPJhHZK1JQzO2rA6XgHP1K2nWGTRYsqf5HiTYssyQzLACXKSfn0kgTFITgGLY1WhKLpHXBmWeVrO6PTIFyc48E6UDSymQaV5PkGmxufWS/xVasEwA3DnJUoXB5bhFTMATrzPnqCEwaAZJ+BXc9aCFsxJ9mzjdpJklWkIADSqdLwCBremZMrEJw8MKaogQHL7jbLwrzKwMWWfCkN84YSu573YLB/tjIH5GtuT7NN52azqXOHmeA1jGbdFdPzK6KMTJfYBhQUudwU4ZBFpyhUtptt2WjAnwi8yYJxzPm2ltYl8NOX1ivua3XoalVMGSBcnOxyQ4kA0kZDjWIyZh30nPTa3Y6TU8oXJ5MUY5Fau3GkIV+ybGCQyoRAaSf0FhDFRyces+awNKIhHJASUnJtWJQdjCZVvWAHgAIJ13m1pzEiyA83gKlCEBTJD3ttCdOptbSfUxY8DOfSI44+jX7/Oxya6tP81Gn6HohODIzxILYpODMmVPoeqWIQdAMCWlmlJyZzuNAqQis+hVzrJIAk8CybfYQoDmHcDqMIw00C0FwLKrHIuoAGtcCfH0OgNEAJRx4kvD26j0r0oGklVxlH3Vf2/WGmYDQcnwh6NQk5MNJe9sacbi8CY9nUMqbXEvOoASD1J499grROAWVLszSgKXvlTPOTAQgKCE5h5Smd20YKLXY1NwaZiOBD2awDJIAkgtufvaDUTdNCfeRKYX3pZbCsk7bETCBH/7r0QSUC6E+zTedOPMTKXPGIC04cvj6rZiZXUMkWhNQcs4xkBopexSMgUuAM5PkXzAGoYCB9B1CAkRijr1C1XIaN03W3Da9VQiMtMwF5fjOnojqdsoiS86yplbAWJA4Np/ZtQPJEWSY+YWkqUxuf3jNqQDK1qgTSfhhyfpurMmVc+3C5B1YWlOVAUsOWYSNnmdBMprsljMwpsA4oCoLnpy5eSZpbJlmzPhsEkeqMw+FEaw2ND4FyNDMmkYC0kelV3CUnKPkzC3J1FoKY4AmMxX5JaciW2N9mi86MWYsHYoBzLJJBbNucJABXEMqD5TWboFS8KDzBgjGIaRxNQykBmfmuLAATKCptHYBNP1KYazg2FSZqal6hXYz46S/KtM+aDuUHJssAsAM2SQF6oR+yZJzlIKsI6Z9UN12/k2WHx1JdX2uWOWCBkkWLNOKP0pjmo7vIjXjpOdt7TrlAueoh029bYpATyMBjUXUgGHJOaRWjk2asWSApLFemgM9cx2pPONLZ3bvM4Z+og/nGqwyAOlmYg9yvhqfTb2lZsPihfVBBgBZlCIys6YBDmOWYZbC/F+FXRqwtP5J7sExZ5ZaKPVpPusUCremVm57N8bSATBtgFJrY3plDIBi4MyMXxRcQDBlgVHbFHXKgKE0gTcDC5alnT6u5MBAKZScY6CUA0zDKHkCkCrLJIcl6GhnlPVAnRAgS2sVcW4E2xEkUyu3/nYDigwcedCcbVnQINlW8adrLpyseSjdXig65YQaAplcFTJs0g6uBhSkZgC4Y3VSMIxDAJWEsuPKZFHXtEgaOAAMOIOqmANFYpW5WdybkhmESaAJHBmH8z2GLHJRKbCo501Ri3oCi3qFW3cfk/AnzK+wplYRfECol02y0OrTfNOJ3omCZ5McMVCaamsgWgMAt4yTa0ht6o7UGj3BPUu0bFJqZMGy5MwsNcNA+mVPcDdHK01GbsytNqI7AE3aDpep1EGyPhbSmVyF6diFAElLE5jmxw6TK2GuWWNOFjRIDpNRe6Wzce2pnrel6MSZZ5O5j4gDRx1HAgKmxw1l7lraRg8AioegCZTaBtBQ7suGlhb1giuGPmdglQVJziAUN5MxJ3NNAvnxnN7k6sEx9UuSiZUAcpsegaVw+4kxjhcCpeAYt+eZnjgNCQnNT5PvaW8t9Wmmrj3V86ZSxwkoFUwaOAYNzQyrlNqwSqYNQHLNoLR5z1obhukAkACRm0nHSw3DJGlpQXbAlZu8XGkzH2vKKIF41hySNkaZAmUu9ZzxPVrTKkMEkNTxo6htY4a1AAnmImynWsenKx1ItshkG1OTCWdYuYWmU9N9c76b0CRFwFgDSh4ENFQACkBYp6ZgDKgkQCm8rOmVzEGP9qsgElD5n1DoS+XAkgsOJZUfeB2EyaeSy2fJGHPsMQzSCQFyUa/Aop7ANj2BngXFscKYWccC3+RYwaNxZfRxoY/IZDJ5bQ31aT7qRJIDSgFAwwTraI0IHGnbmGVhEgxoSu5fB8tSECBqxxilthYRrTHgzE1YbvYF08yJYNJymi6OppxriHINt9NOZy3S1Y1Zhg3S8YAZAyULTLA8YpFkat2cbLIDyYy0NTKSuTI9hvfe0nVKy9MHhExSgO9tEziOBJQCEFzADNnm4Iq59QGxSKWiRAOiL12jJqCsJR9Q3IGlAUde80s2PpvEJ8lsrzmXqisFyEWliWotLTiOCw+O4zTujMZKOjbpgZKN0NveGupT276ZkqnU8XS/q9vaBFxpjA6W4bYCwJQBSwEzQ42GCd5RGii5Z4ilA0k/x2oImH56uQA0k23ATGAeTUGXsZxEs3cwAkmqk356LwJKH6RTB0jO4fyUJmrbBqbZJ0u3msuUrnNyrwsvvBB77rknxsfHcfDBB+Pmm29uLX/TTTfh4IMPxvj4OB7/+Mfj05/+dK3MVVddhX322QdjY2PYZ599cPXVV8+IrrlGQVVAB79RpO06C1UnFvyAIDIz2GaWDfneqF8XnMw5cNtUZrwQGLegMmaHT7if4A5kxguObccKbGNBadvx0v4KbGd/244b0Np2vMC2YwUWjxVYNFag6AkUPYFyrHC/ohTRz+2zZXulMOc7xig8IDYA5LjVeTzQ2wXwcIaSA4UImCT3LHJYj3trqk/zWSeW/MK6Luy6CDo8pe2omSWc39ltc4aeYCaAy673Al/1WGE6Utv0BLYp679txwq7zt2+RXZ9UaY8ld224Xr0oza2TWna3zalrbsF1V3h2l9p63QpeASQNEVYyXn0rGjoB4u+EXNLKWedSV5xxRU47bTTcOGFF+KII47AxRdfjOOOOw633347dt9991r5X/3qV3jBC16AN77xjbjsssvwn//5n3jLW96CnXbaCS996UsBAOvWrcOqVatw7rnn4qSTTsLVV1+Nk08+Gd/5zndw6KGHTkvfYQ1pFJNNU5nZMvVsCTrlqnX4wQl726n/JvTXQNmZEyyT5JqBwyyl1taDYUyvgsEFOEwwuFD5gWKYYAqcMfQKhV6l8IhjltKwPGt2pQwlFOTQU7zVFEVSTy/Hokg/YpKLeoU3uSYASWwy/NgUPMgo5ExYCEyu5kG2AeXWUJ8mU2az6aTjVPjMTr5Iibudm8EcNLVaG3YomJko2Uw0rqHhza9Cm3Olsv5MZ44121IZ74LSDD1hIrnJjKqsD39gLSKORWq4bQAR26Rtkrb5WtNcq37co08fSZmyTMAOPIO0KRhZwCLD+kx+yrkWpnXLfzwDcuihh+Kggw7CRRdd5PbtvffeePGLX4zzzjuvVv4d73gHrr32WvzsZz9z+0499VTcdtttWLduHQBg1apV2LhxI66//npX5thjj8VjH/tYXH755bVrbtq0CZs2bXLbGzduxOMe9zhs2LABS5csoU9utAxllAYalkXLtXLXzAHK1qZTrW6HHxDmDRp0vrIfAvLF0AeDzEW0LhUiExJtD6QJYjBLExI/UBqbKuXWB1JhkzRl+tKA4qZKBaAoo4HXm6p8mHxOcllIokg/OxZyGxu4kwNIA46mN08A6ZmFZxiCe+YdMvKZenepzIf6NB91co88rNsJUJqCPLud1n23HtR/A5gBKKbbMG0gPgc2EIjANQBNhSxQ0jYQgyfpNEyo/hEwmnVvgiX2GK4TQKYWonC7CDqIDz+4Ect3XYYHHngAS5YsGa7UFGVWmWS/38cPf/hDvPOd74z2H3PMMfjud7+bPWfdunU45phjon3Pf/7zsWbNGgwGA5RliXXr1uH000+vlfnYxz6WveZ5552Hs88+O3tMNyxzZdokNek0NcDcNalB0vrWplMEkLmPRrDP9Kp5PM6PMdfDZsz4J8lXQ0NCKMCBWCVnQKGEi/jbFLDKATfRgAMLYAOuUQpmA2o8SG6qaFyZHVsWgGSVgGQubVfWzxkkCnCMMgTFIQDZEx4kyUTHGHPmu/S5b431aV7rRHW5DSjTbQuSjmnafRoGWJRmERACiAAwBk1AMphMPtC+jK6zzDbQBBABJxDvDyWc9ksEdbA2k0fAIoU1rwrLKBkQASS5DSg3MR3fHDKrIHnvvfdCSolddtkl2r/LLrtgw4YN2XM2bNiQLV9VFe69917suuuujWWarnnmmWdi9erVbpuY5KjPPG2IOWlrmG090/T8UXvPW6ROuQ9IQzlvmuJeTwuWnFOD1+DCzP2oNI2fBJgyZivX8LgwZlauMVC0VBi4IAK/35g3hRl87cDSm1vDQdfAcJCkZTg9UJp5hPyNKUCOi2aADIGyyQQ17P2GskXWp3mkU7YjaJcsrO+5mYyTmYV1CpomfRPAAGd2xXDQNIE9VM6CpgPIgGlyO+TKXi8FTlI7B5Ky4aE1gSV3DJE5y4dLGAAPkILMriw2tc61PxKYo+jWdG47rXX7fHeZ8un+yVxzbGwMY2Njtf2jfkRyDaJtX9rw2nqm6flbrU4pQIbsMQFNTaP3AYBxMMZ97zroWZP30TRxA5Zcww2ylrRUAGfchsvHYFkKZk2y3JphaWl8gQOpsainI7NrmuuShAZgC+5nZKBlmnUkjOwzwztYDSC36eUBktZFy/diq69P81EnM4DWrbt6rTKdwwg46WLcXTPcJhDVSVsA59C2tAfHAABthGsElHZbqjzTdKCbACf971Tfh0W8kqSRr9QmUnDkBIjwAMlpvy1LVxolOG0mZVZBcscdd4QQosbw7rnnnhoTJFm2bFm2fFEU2GGHHVrLNF2zTYY1jiZzDsvsG3btUXurW5tO/iL+I1L7gETXCvYFH4gQMDUzA/Q14PJWOnBUJpjBgeQIYEnMcqA0ZMFRWZ8mjSUjwAzHkE3WL5kOqiaQLASzEX+sFSB7QbSjYAu3Ps1HneILWYBUMWgCAAsBpWZRCaZeY9xvSxgrCu0PwTNlmxY4s6CpAzDlMWgqN8wkBk4gZqmlBU/YewC+3DBxwzcsMLp1RlGsIVjalIuIZwLZHCbXWQXJXq+Hgw8+GDfeeCNOOukkt//GG2/EiSeemD1n5cqV+PKXvxztu+GGG3DIIYegLEtX5sYbb4z8kjfccAMOP/zwKekZvuO0kaTvP2xIaY81laZr5Rpi2/aWrJPZSKL86AMSHmsywSoYcAT8R8BuC8YBXph8rnYQdQiOwgIjbWtutzVQcG4j/7gN8OFRgI8Snl0qDQeY8bgy36NuGz8WDqgOAxUo4wgxyTSKNQeQveCDsRDr03zUye9QdYDUygNjizUlukYa2AM406vZ4H5JqBGAJ+OmM4kIOAkgKUqWgLOZbRJwAjF4Ah54gTpI5vqMUSAZgSUQRa8SOHqG6c2sbj05Zy5k1s2tq1evximnnIJDDjkEK1euxGc+8xnceeedOPXUUwEYf+Fdd92FSy+9FICJZP3kJz+J1atX441vfCPWrVuHNWvWRFGrb3/723HkkUfigx/8IE488URcc801+PrXv47vfOc709Z31B7nZK41rLGhodzWoFMElJkPCID6R6Qm0vWstUp61LwCGIfgBYTtRUttGrjU2gQxwJiXzDbzUbDMDKcolMB4YTKXGLBUjjUOFIdSZkkh8ZSlBCDfjdUy+VqE4fA0mJoi9nLZRkYFyIVcn+ajTgxAZCFJATIxw9asKcN89JGyQSR42HmMgLMOntMDTg98IZgCBjyBgHWO8NDygBln1SFQJDZJyc7p/LkklLMOkqtWrcJ9992Hc845B+vXr8d+++2H6667DitWrAAArF+/Hnfeeacrv+eee+K6667D6aefjk996lNYvnw5LrjgAjdGEgAOP/xwfPGLX8S73/1uvOc978ETnvAEXHHFFZMeI8mS9ek0otAUkzP1NF0j3N907pauk7lQQw878/EIzzEX9h8GlnwMtGK28VfO/FTwAuAcUjNobmdgZzaYgdgkJ7BkkFzbqL+YXSplGaSGZZTagWfbOLJUOKuPF3NsUngWaRIF+GEe5IPMAeRCrk/zUSdXf5sAMuwkhq6GyDefuXIDs3TmVwA58ytCQLTbjHEzxds0gJOelzfHekAF4nbQZoYNzaYhMJrtOpsMTbJzLbM+TnI+ysaNG7F06dJonOQwGbURjSph426715auEwBAVeYDIavWDwgwQu+axpTlPgb0EbAgqXlh99nps7QfLxaOqfRL7cLkqRwNxPbMMj8IG2gOYEjHisXz5zE3/ETweBxkT/isKsNMSwulPs1HnVydVhVg6zjT2tX7CBxVWNeTTmK4BGoBbaHoEDjDthAsHSAG4KmT9oIEOMmdER1HftwyQCyzDpJhU8hNAkASTa4cMEV6tilAeuA03/Fly7bwcZJbgoza6EYx2+RkKqacrUUns6MOfu7jQOA5yd51FMQAuI8ARf+BW/Ms6wO8MD1mXpjhJJx7c6xlkCG71BpuvwJQWDNtT5j/bSBV4yBsYIhvMhknRmnmGHyqvXCIh2B+QLV7Hg3vYiHUp/mok9kRA2DaAUwBMnucrpNbZiTqMzX6K3MdycAMy+uAOXnG6YODgCRC1rUFNvKzDdkkAAeQm1MWPEjOlkzZLDmLstl0yn0gUoBMj9N54ZJ0TT8Kij4GvueseWEb9sAwywQwwQtoMGN2VdqZX2l8WQ4wySRLpqYq9E1a4CQJwdKDZH2MmPG5eIAME5cbk6v919DVp1FkLnWKWGRqIQnrd8guc+CZ+Oe1tFGtyke76mC9pgf3k4nDrjMhzP+b+iZtZ7K+L2Gd1goTgWsAkmC8FlELxIwTiMHT/S9DXkIY2GO2bfthSedgjqQDSQxvPLnjbT6P1N+RymRNOluyTrWecvqRGPYBCa5Tv2HGzOQa/gCai7i3bMGRABOiQME4ClFYU6xp1G2ASQFBWhv2lxtLBtSHhbSNDzOgyGppt+jj0NWneaxTagFpq99pxzAAVi0loCQUgaFS7SBJPTLL6iIduTD7CDw590DKBbgQsYk1++s3s01eZEETLB3DaZ5YmmaPkG6Ypy/0P4bWlLkcIwl0IDlUWLAMG2dTYwzLhTJpcNkKdIpvFveyow+Iko29azK3ut51el9hGn9tHFlToxYElAMwWRggZRxCFBC8gObkv7RgmACmRjoQuz4ODfDTV8bPKOgRB34Wk2WEBYnLyXdpH13meS7E+jSfdDIXb2CRST2uAaTywKmlhFbmR8Do1gEHlDl22SQ6YJZMCMCBJo8BlMAzA5yMeZ9+xCTTTmcD03SuDwRjOAGbDISUm7wZdnPIggZJevCj9EgZ6g0218ia9rdJ7ppbuk7+QqrWy84BJAuDHJR0PWuNoBedSTzgdLJJB6jRMyGShmsbtByYD0QImLwAk4Z5MmHMtK2AyRtSfgUg2dRJbhoXRr5KGi4SZZfKPPs22Rrr03zTyexoZpGwdTwCyKCOo6oicNRVP2KPVP+pzvs20NwWnARp7ggwmQVFAkgHnmG7Kcqk/fQbANGCovCBcZHPsgE0wYLxzQSagdqTHj4yvPiMyIIGybYGR5JrJE292clK07W3Bp0Y4D8iQD4cPgRI+oAkHw/XswZqvWsngVlJwzR43dRTtr5KzQsPmLaxgxeALByIMlHkA34sYFLQTpjJBMiPI3Oq2qadjvmirCKCjTYnZE625vo033QayiKVygIkdQBDUNTVwCwDYDT139f7aDuxqugAMFmSBxZkaWkCS9q2wOjaTdGrtx/qXNJPUYBcDJhIQNMP0woA0ygTDemiCalHlenWg1FlQYMkMLwH2nR8sr3W9Jyp3HOL0ylrPg0+IAFADv14AMN70ZTCjnrCdj1t9KzswQXyMA4tA1+lM8dyD5hhwE8CmG0DsIFh4yfz48FYOAauRRZcfZonOpmNPIusBeOEQJrUcbcc9OvgGK5LaYCQWOYolhWSADRd5xEWTC3wRUDp1icMaFp2qbkAK8rYSsODziUBZhAHMDJgMm6eFQuSI7T9T3MsCx4kgXrjSBtK2Diaep653mnuPk333Np0ik/MBO6oKg+Q1cB8BKpBvmedmp8CYQmjRK7Rh43dLYsIMBkvfNAPD0CzATCb82SaJ9LWyAkcAbipgjiLmWRXn+aPTqZQM4tE2gkMfJBtAEkdQncsAMbURznUshJK4J8MTauufoPYpQDjHLrs1UBTF2XUdnwbqqzZtrJtoQBTps1oZsGQx75NA5AamilAc18mAEq3NMplvylzCZwdSCLfOMNj4b6mRtl2TpMM+3hu6ToByHww4kCd6ONRDaCrQf7Dkfaq3fWDCMAwYCHoKZvtsFfMwcpeDTBDhknA6AAzNMnmhpQEofBN48eaJAx1z4W5d/VpfunUyiKb/JNVFYMgAWTYKVQSGPTr4JiuSwktqbPoa5aS9VrGRcgkLSgK7iwt5Jd0wNmfACt6MdMkYAwBk9qSXbKyZzoDvPBLxs3wLK48u6R21QSW0ctIAHMzSQeSaO41ho2Ojo3Sg2kqM2oj3hp0MjuCYRxZs2tlfJApQFaDuMfd0qtu1DUJf9fUUxYCrOhB9ycicHSAaRs9t/tqvsoILMnEVDmQhA36MeYm83RqIfAZSVNz5Z57KgupPs0Xnag+Z1kklQ07hRTFmnb6UoCkek77kmAeAkatFJRUNZDUGYAEonlFwAQxR+7WueBu2wfzTMQ+yaKsA2ZRAmUPqAZAUUJXA9uWtJ33VXl2qRW0tn5+rWJmyQu4/D0KYFDZYS2bEyg7kAwkfTE5c89UfCJN19+adYoLBGYoYpHKRP6pBoDU1cD1qqOPRdCjBjB0aEitp8w5GLcAWZZZNqmLEqw/YQCz6BlzLDVo8l/yypmSWBj9xwXCPLImICEOgQeGg+UospDq07zRKajLKThmGSRZSqwlxAOlzAMk+eEDl4OWCnJQOZDUIUhKBRWwySawZAGj5AFIGnD0QEmgyXsD33YIMIseMOg7cCRg1IO+ZZJGb8MsPVgSUIIX0Fo5v6O2rDNilYwbsOT2HRA4BoxyLk2tQAeSQyXXWKYq02nobTrMR538gXpAA60bs6qqA2R/AnowcB+Vth41kP8whD1lAFFv2fWI+0HPOABMVvRis1LR8+ZYHpiSCCztcBLNAtOrA8x6CDxYMOh6lGfYIAupPm1unUKAzCW6qAWkJSwydBnoQT8GwxQg7VL1B9BKQfarCBwJGN22Y5PDx1AyISCRml65A04mOHhZgA0qcLtObBHVwLQH2rZA7tbpx4UBy6IHFPAACRi/P+DagqZ2BICBG1aZssbNbHLtQDKQtmi6toY2E76QYfffknQyF65n2omTCWgoRYEMsgaQoQk2/GCo4MOQ9qgjfUJfTGNvuawBJooSWkx4oCxKoAw+DrZHTcE+3vcibWBP5f0uFMSQRPQB8FF9gFuySYLmQqlP80KnEBgVmVwDU+sILBJK2WA05cHQAmbINPWgH7FHZZeOTbr6L31HUamoDbR1HEOzq+tECmHbRAHer0w76RVgdl2UA/Be6c2rSsZgSRYeKQ3TtNtMWesMPVMCRw4zjlQU0OTDNIrYb0SGTW4m6UAykFyjHNZQMeTYQtTJ9bqpZ+0KJSyyGjj/jDOxZoJ41KCKetOqXzkTUwiU5hYK4Vix8MMQ9paZ4GATfYhe4QGTBlMXJVgxACtLoOgZsxIFKZQ9oBjEptgwWIEXxtxK48a0qoXAu8CFNKrPKT17H4UtsT5tbp3aOn5TunYUkKMCs2sMkASOVN+VawMGHFN2aa5tlrkgHiC2rACI2wPn4IMBmBCOTYqyABMcWiq3zXsyBktyf7ildMBI4oCSG1B0QGnNr9r5ehvY5GaUDiQTmWt79yj33iJ1SnvVyTx7ypqavOlJuV51DiDVoHIfC9+7NuYlFZicUqGPAbemVhaalTiHGpiPAB9UEOXAHLNAqCsLlhQa3xuPzUqVB0sUhQ9G4gWgrU9G+ACGkaP6jOKjvqLmVzDJ/XMhW5pOkR/SHciYWgNpM7VGYx0zQ5xSxhgCpBoMInAk0AzdDmE7yLFJlQHJMHhHEWD2BxC9EqpfgfcKCKkcWAqljBk2GZYFxB2bWvBTCJRaGUBUyoR3R8M/PJuEmJx1ZTakA8lEmqLawniKXC93On6PYeduqTq5Y0mUqzc5+Z4nMUkdAGQ10XfgGJuemnvS5ha2Vxp8CCRisyuBJrcgKcoCyrJK0atMT5rAsih9b5mYJUX3RWalIFhBK+Of1NqYdNOoPsZNTxqYcdPS1lqfNodONQlNrcn+aAabjISmVrcvMcXqoBOYA0gVAGgazGPuEQNlyCi54MDA/m9B21AZVwQT3FllhL0+ExzCXp9LZVhl+Awt8I8ClA4QNTP1n5k2YyJgtQtwa5JJxLdNWzqQTKQpYKBt/BRtNw6FSGTYtbZ0neIDGf9N2KsmsKREz1XfMcgQIJs+FE0h8e7/Cj4GQBzybnwuQY95UBiwHBiQrIFlFZhhe+PeBxNE3rKiByb8/xqGwLuoPhuswBQ8q0ThgZJ0D6L5FnJ92hw6pUM+coxxZEnYFu1Lx/tqqWKmqGK2qIKOYq4dmMsoaKntevwfSoSAaf5DJlidSXIO0SugpQLvFdBKQUgJXpaGSQYdU6EUxHj9WaZAaYJ5uGkvjIGpyvgnNfeASN+HXEdxM2bh6UDSymQaV5PkGmxufdQXvKXqlPvAAHAfGcrNSkkEnD+STK3SRPSlAEnrrSHxGbNrY6/ZgiGBIh8MoMrSmZdcj1kq44cJ/S5SAmMp4NvjRRCsQEBJz43xWrACg/FdOkaZ+Ugs5Pq0OXSKbzBFcGySCBytqRWoWUaofksbtNYEkKYteGCkthCCZOqrlzBAaawsyq4zF9GqrUnVLaVtC70y+y9FQMkFUPX9++MCqAYOLJkWpr67H2sGR8Dt31wm+Q4kA0mj5eglT8a8k547agTe1qZTXYnQT2PZI/kig+mCtJT1oIUAIMMgnrCX3dR7JqGPgFmn6FYTvSd6hfO9cKk8WBKz7BXggwrFeMwaublhHNmXsEoURfzcmcnvWovqc93pOJCnq0+bR6fZkiidYmh2TYZv+CEeMgLPHKPUUjtwVFK7jmK9TZj9xCK1YsBA2iQbBjC10FDWlKqlgi4Lt90mjHPTHrgwgXd2nSlu2rmwTJI6mOSCIN/k1B7nnEgHklZyL2nUfW3XG2YCQsvxLVknf1BFPWefjzUAxgA0VQCQBiw9QFYTff9xGPKBqP0/LoCHWd8Lc9F6zrxqgZfAknwxZF4CELFKBUSRfTlfDAPMWDE6xgsDiEn4u4vqU8qwSfLPIAaMhVqf5lKnKQkPIplrxwTIGWjmcxzEx8P2kQzlcPszPniq/7IvXd2n9mDOIZCMr6ej4VEMXGhoxcCk9mApBxA94UyubcIEhxxU9jEIxxgx6Lsxk5AmyYCzxKTBUEoZv2TyTF1UeHrPVo1mVjqQHEGGmYRImsrk9ofXnEpD3dJ0ShtFNLMH+SIpICcIgQ8ZJPkojQnKfBhkXzZ+HCLdhO9FM8Fs8A6DlhpMMAgLvgSW9FESNnkBD4acRH6YjK8pfR4pUDKgHv6ulTe7EptsMEF19Wl2dQqZqDkp9A3besAYmDbHtE235s6nKOYwKVw6hVVGamAWjgtO/JVhnU8B0ixjNhlHvfr/nAkGLXgWLM3x4abm0N+vB33zv1YDb3blPHZJoDQWJaPY0Ou7+2B69WmqsqBBkgXLXE9l2AuZjj8lZRzpeVu6To1BDiocXC2dqRVpL7lvoliJOYY+Suo9y4GsfRhyH4V43KQNVBDGD6OkroFl6IskX0wBoIJhkiRNAQtuJvhgm/wwkYlJ2vGUISAS8xbe7DqK6XBrr0+zrVOunDGP8/hDzk3atOh9UTk7vMddg7GYRQphfO9UH4Njtfs3sUnnb1TOgpIDSB1YVWouCNtB5YKZqmfrfgqWACB6AhJV43Ni3LBIJjhkvzL+/iBqHZL74DzAtX0GjAaQQSdx1Hc307KgQbKtMU73JUzWPJRubw06uTD5MANJ5JNR3tTqBlbbQAS7VP0gUEGpCCBl32+bXncTk7SBQ4KBKwZl/TCiJxxIKqmteWngmaRljYAFyIwpNweU4N5M6nrVgAnmYZ4lMtgwewp/D8aIMa2iRANdfZravaZTLmKUKZtkxjzuEkWEH/wgeQQAn2QfDQAZjOVVGcysjX+07cC5GBoAkvaRpMNBpAVHSAmuWASWoschLRPOAaXxXyqowcCNn9TCAjaxSSXBUPpOsZRm6BRgLEk0CYFWAATiG/jJmZvqz1zJggbJYTJqr3Q2rj3V8+adTrneogVGPy+edKZWil6NcrSS6bUvI4CUfcMkPaNMTUxmyYKs4Z5JahfxR2CplYIok8aa/q/JkJI0YIFxbtgClbVmpyj8nXGXYcRF9rnAJhsSrxRACZ9HkAVTn6Z4zVGunSad58yC4jA2SSbXwC9JJlcmBKAIIH3SfcAmqXD1SQADD0QsGNPYJmGQTg4g0zZBIqW0AGnBGYD/q4A+IHocimugL00HUtjOIzdtkgkOxY2lhdikkgq8RNDGbULzdMhX9FKCVI2wDDw5Bsw9gyTpQLJFJvtCmsxKw8otNJ0iIfMrvInJByXES2UBMQeQhk02fxRcZKviiXlJR8ebhMCRMpYouy3JH2MDFjTN3K6EGyAOJcGUMMsw/D2XyJlC4mlaoRFMrgu9Pk1XpxAcdWY/Z4gCcjTsq9MJmwxNrg48rcmVCzO1GhdgXDmTPE14rC1oRq6BsEM2AmACaAVI3TD1jIICh2GWogcQUDLJYPyqAkxqMKnAuGGMyrohiD2a+3gLDCtR80OOJAH7ng8ACXQgmZW2RkYyG6aiNtmSdBoqgV8yBMgoKCEYF6aDKD5tPwDaAabdp3xPOmd2JRDUQluzqwdLAOCqHSQJDMMlE9wE+4QBC0oCgzRogczJ3PliIt8kmVxD0BwhgGc6siXVp9nUiXBDJ9vEImkfZ6h1VpgoAFkZUKRZLui9pmySEoELG+1pJzWGUh5EMfApE6XlddYEG4Jn7X9oCVijtuHLUgAbj/dDmXtJ7RillmamRyYUtGTmF7BJD4p2EugSru1OChiBGBSD5eYCxlA6kEykLZhgsi9spq6zpekEWNOJNS1GkhuioXxvVCnf6ELQVIEZyUf5ebDMRfZFYi27FJwQgiXtb/xfuQdDZYMTUhMT48oGLKi49xwBZGmYJWN5MzRQN7lSAI9RJPu8t/b6NFs60WTYEZO0fnSpAWbNfpzZbQCcIldV5UyxmsNmT+IucQS0ZZM2T6kDwqL04wSLnglc4yZ/LxMcXHGfX9UyyGjuR1VnlVwwyIbxwdH/G7SLHFgSo3RGV8kghDBtiuuITRIguucWBBVNSwLzNTD1OjCT0oFkIsNexijsqanMbJmf5qNOU7pm0NDIxApQqi0Vs8g+hcRnAheUzvaqmWCQSoJJH8mHXnDcmZfsNudgUtei94yfNAhYsGYnP/6Tg1FiAQCaAhbSDkKacWSSjHEh1aeZ1ikESALG2idea3B4wOTMs0pmZ37RogCTFTRLZnsh87vN4cuEjtgkzaABIZzJFWXPghB3gMiEMPsIQC2rZMLsY1K74VTMRqvmpGlWECWVmxnEMEcFYScsp7aGjCsiNLE6P+QkhAnhpovTjMXmacBvT+6ysyILHiTTcPTpBg2wZL2pfHhsWIj8lqhTFN03SVNhNKtBYEINWaQ5roNQeJ2AZp5N0gfB+WH6CugBjLP/v71vj7atKu/7zTnX3udcCBzFK9xLRDApARVieZSHdig+gtggiUlFArkhGfZG02GUqiPK6DCAY1TUtDpSjU3iULGClWGVpilKigasKeALfCCK1KJo5YJauBcr9+691/z6x5zfnN+ca66913nsc8+9Z31j7LHXe397zbXmb/6+10Q9qoGhgdL+GuPap4eoNHqvtiFgQdaP1ex/9GamGO4uANLWWM5rF6Jc3QXjpLX5cTi4n6e10glwQMdjKCIK4JjXLAfckEkpQBMFsCQ43EiAsvR/QpF7C5JMUlSdAc9nys8Km1t97VTri/Fbo6FqUVLR6qQWKwfhKK1DisdyhCyFALcSMLrn3r0Ly7GiNsSz5qi4YI780e0FBOTztF6y6UGSWr5Lx0yTPLBiVjBBvizPPyh0EjNeuB8TDnkpwX+RXSsxDVEGjCkglgDStgQpwIOjW3LLVBNq1DBwpiUXmKCgapcaokKydgxY4I7C2nSd/1OI6lsLycytpSCeg/55WiOdaors0SICoxUI2eiICa54gAdLblkFwLQBJVlXUQkAyJtgKwvlZ5JJZsCxdcImOT83gKW16byP3uSqjQIZ5XIaa/JpHW5gZ4G0loF3C6xEbE0wMwLbOomOkeOBPRYkTCuHbs/TvGVTg2TXm1zqlHKZ9mJ2GS23veQHqk7JvZ1WbYSjRlt8GqVKIRIYQ9BCASBzi6tR8PsiUMLEToCDf1StoDRf1+VwSZOSDC5KdK29XzKXwiAgkTyvrrS/tBmb53lajU4sJYC0XPkFzRQQFueTJCgGSxCIAKMVavJASTY+90QxkMevE5xVQA0Ylcuz4DCbNB4cmU1yLVVtNKh2RchtHU2u2nCQjQLg2KRL7eAkfpoKlDJNqvH/VwuQITAJUNqbl4HIHkX5ubx4QJfnad6yqUGyi5kHhf2lc+S2vDOYNlrOzz+YdHIX0eVlKbqcm1iqw1raJn2XOUDWniEY5Ts0AZTGePDzbDLPZ46g7CNNeblgbmrb3vh/crkEjPmUQC0m61ltcTA+TyvVCYgAWRMl4BiiWwuMEgC0f27YVUaIYAlLIrhHQ3lgZB2CTjorPzgYJgn2DJgx8MtC1WL2DT8g43VbWyirfdHxiX8+DYAa5IFRW+UDcJpA2SYxh1iF9bAvTFausnOa11Nai7QXI44VeaIyJzJJl0lNrbOep/WQTQ2SwOwXts2cM83f0nbtriPog0Gn5gHiZSqAovampJWKDNTJAZKXJVDyOfkIOg/4oZoC+E0DQjVL/5xNT/HThuCFlnOWO4I+GJ6n5erEwgE6tU3ZY/RJpmySz4nXcitcbY7NrgSCJR987FmlaQPKCi4diHjfyEW25tHQ4qOHMTUqzt9Yg/w0brxPW1cMA6MaZP10V37Qx/AogTL8r6zQRgP8Qo5mGYpkSoqWpuDsmVW+2pASoCmDdhJ/pK7ixOTiHq4XY2yTTQ+SwHQTTd5A8kUtjViltF2r1PDT1g9EnQDETl4+9CKJeiYbmlEUuhTBylIXojAYKJNr2MggbW1htEmAcdnC4fyic4gjaB06CMpGz0ngQu7LFetdO4yD7Xlajk4s0rxaZ+xxGpsEAJ6PgvwUZiUmqZQ7mVklpgAljDTHWu+fHBTNriwarhSiK7SfRn6TddNYFf/3yLpSciNMBUogBUFmkWxeZdbJ23RgmhEQ3bJJfaZGpwE6WiefwB51FZmjNsWAneU8T/OSHiQz6ToKXs61OgFK4bgDXSd3gayzB5L6lW1g2YVVuoi+1b0qkklyJ5GYmZLlrIPQGpqjDbmz4FGzMQkT5O1JwEIBGCWLzCdf5n9aKp9W/G84uJ6nrjpNY485OBJJQEyvAQAUKKQDSqLIJBksjXas0gKwygGlMcOor2/TnAVj2G4yZHOsHtQhipqL7Os69d+7IB/nn2QbDQOl9f51Ms7XHgaWeanUAIzKg58K4ChNrbzszun6HpjwritvaiWVgaVklOj+PK2HrNy+1UEeeeQR7NixA0tLS1haWsKOHTvw6KOPth4/Ho/xpje9CSeffDIOPfRQHH300fi93/s9/OhHP0qOO+ecc6CUSj4XXXTRsvVTLcvTjpOSj4SVWJbbCe3XkNvz4w50nfhFSPxqWrCqZDkCkPSblMw3xd/OzEI5Y2zbNk2ib0ZP9eVMldw/kwNiC4vMt3GnzgAgmZQEzYP5eZqlE+DGTDVFgKwtoRYAycu15WVyy9YfawnjcI5fDh9gbAkTf8zEX2NcU/jNcH0CYIagaujMiGYAMkPAyOUhMFyAGi66z8IiUA2gFrZAi23V4hBmcejmOR1WMMOBWx9UMMMKZnEIM6hghs70agbGL+s48PNTw5lhBED50QkgOsaos31aDBC1kaCYDhyT511aU4rvQNN6spznaT1krkzy4osvxg9/+EPcdNNNAIA//MM/xI4dO/C3f/u3xeN//vOf484778Rb3vIWPOtZz8IjjzyCyy67DBdccAG+/OUvJ8fu3LkTb33rW8P6li1blq1fV9ONPA7Zsjxm2nJ+fJsP72DSSaaBuKhAhFEmiWLP7iXKwFD4+OLLa/0+z/Z4EgWjUdvaA5kFLHnfYwkoAa2bAQquI0k7BwChc2GdunQOqhpAVUP3GQxdIYHc1CpTZLKkajJV2okggiMvh1us0m05qzyYnqdpOsniAHlwTm2zZfB+FPMkc6Zew99XIs8m4fIlFbmiSMpFRpNSIJCrDaEA0gqVrkAVoKwu/g8FQA0oRrYOF92+LJDHCDbZJlwmkcX6CG1mkNZ/t433ZOAOvwNmwKZUyShddO0sU6vSOjz7CN9VZI/a+yGVcs+8rpI27fo8zVvmBpLf+ta3cNNNN+GOO+7AmWeeCQB4//vfj7PPPhv33nsvTjjhhMY5S0tLuPnmm5Nt73nPe3DGGWfggQcewFOf+tSw/ZBDDsG2bdtWredyzUrLOQdYmXnpYNCJgEbhZy5Vh4xBhg4jmG3c/ghEYqTrp7uq/X4y5Kb8YXSoHQhyTxesS8GKGTsCCYrS1Moj5eQ3B1UAQ+4czIBH9hX0cODBcRBNrQlwDt3AQMWOAdqVMXMBCybx0fD9ykunUeZrzcunhTqjq2i75ZwD7N9nnO9LLQCvZF4Ny3CMMD2Wr0/JNaXUfF8JUFDQygGmBlxZOgVYf/+t9suA81OW8v5EgQgYC71QqPgjRAPFOU2nifIPv6u9Som5NU8Fyf2PEiAjI3XPv/EAafw7UTS1VkNgMCybWhkYtQBM4XNftYtnjWVuIHn77bdjaWkpACQAnHXWWVhaWsJtt91WBMmS7N69G0opPOEJT0i2X3fddbj22mtx1FFH4SUveQmuuOIKHHbYYcVr7Nu3D/v27Qvre/bsWf4fWqa0NfSsffOU/aqTLGDMrEr4LJIRqU6/U7DUvhJOLFDOEX2RTQKASweR4AigAZBtLNIBo0l+37C5a1DFkXSLiQnaBBapqkFkkdwhGBHJJ/LFSPhn8tJprV1jVj6NO5opqW9rIvv7GS/dHzapsr+xvEwxqAeUBO5InWu/w/gbackzP8V5jwqk4J8zxywjm1QRdIWfMpgSswAVAJ2BsiQNS4x2kyFr4ypJWU0BLAH4Eozi2tKqovk9iACp/TNvhlV8T40JJuDwHlQDZzKWgWseLMN8qv75TwJ29HQo2l99JjBHkNy1axeOPPLIxvYjjzwSu3bt6nSNvXv34s1vfjMuvvhiHH744WH7JZdcgqc97WnYtm0b7r77blx++eX42te+1mChLFdffTWuuuqq1t+Z1QCl/dJu3rYPLdft0tgHi06NRGGlg7k1mF09yJRCyUNggDC5um8xm4dPpDYwYaJYDQ1t4ohZjpQlQCZ+G8Ei3Xbvw9HiI0xMJRapBoJRCsAkbVLWGExOfp1B00dG5onvgDQHpndZK5WUT+OKMBIsD5rnCZL5pfeotmlADoMim1/TQJ64nX+jthTurYyOHvsGMIGxKxjtigoo5e4vKcEmEVklgGB+hXZACaVdSkjh/60GKAEPjsLsSsZCGeUnKFeu5n5N0FmBcn7fGByjPzICZPBHioEis8jwHsiAHQ+Y8GZXZo/J888DR6z+eZqXLBskr7zyyqmAAwBf+tKXAEQzkBQiKm7PZTwe46KLLoK1Fu973/uSfTt37gzLJ510Eo4//nicfvrpuPPOO3Hqqac2rnX55Zfj9a9/fVjfs2cPjjnmmJk6ANEOnncYbQ3a5nReSWdwoOsEIEwXxN8heCf4LRgsm8E7elhB+eLi0uRqhsaFwHs2yXliDJTSlMTFmgEEk2wOkHogAx5MAEYzNEGPnEWaQWH0XPBFqmrg/DAMgEqlgDgDINlcnOfySamJ3P0mhIowzjurWk2ws9puozxPubQBJIPdLICsbWSPfA6DY00USuyWUojG4BQicjNdKRUA0yrBJsmZYMkfy+ZXACCtUYnI19UCpZz82xodp3AzGrV2YKm0hTY8NysFMywJNpn4/9n9wJYcYV5l1qgHgzBQZBBtvAfBmsJm1yoBRn72mUUu93laL1k2SL7mNa+ZGUl63HHH4etf/zoeeuihxr4f//jHOOqoo6aePx6PceGFF+L+++/H3//93ycssiSnnnoqBoMB7rvvviJILiwsYGFhobG9zRFcGiUrNDuRtkCC5XYIpWseLDoxECgO3lHRbyFZJAfvSL8kg6XNTK5sCmWpR7U3uSLkhEGwSKDsc2GALJlZzdAEX2T6GRR8kcPog+HRM3cYg6HvEAqAmK3XstMGgj+NO38gssmkHdikrMrl02aZYDfa87QSgCyZVdsA0n03wdGdFwcmAJIawForD5QArGeUSmFgHFhG36SCBQVWOYAATADQqh0o/UCSn+U2YaDk+U2tZ5DJ/fTbeF5WnjDZgN+NZgSPBMfgg2RgHLLJdRBBc1A10z7ke8DBO1WVuBpyFsnt2lWmPSdrLcsGya1bt2Lr1q0zjzv77LOxe/dufPGLX8QZZ5wBAPjCF76A3bt349nPfnbreQyQ9913H2655RY86UlPmvlb3/zmNzEej7F9+/bufwTTOwGWEhBMMwssR9qufTDppIDE1OpelFHwQ5I2UIMBaDJIzJh6XEGNxm4Uy3M4+mACV4ScfZLO7Gpg3ByRYtYQySKBfJTsgxOGxjFUwSLDt2CNHHrPPphgghouNsysPHrmYB0GQRf+P2wFSA4+aUt8L7WvEhtDEe4OYAlMB8z1fp5U9t0mJYAM98YvB5Y4BSDHtS2Co/VpHEDTrM3AOIZnkRqwilCTA0srwJIAZ2b1elTa6R1qVEwDSt6mFJQ2rWCpASgzcsfKtCljIos08VvO0aoHKNZKzuMCtGCSDJDyneDtCYsUvsiERXofZA6WywG8WWb+ecjcfJJPf/rTcd5552Hnzp34q7/6KwAuBeT8889PgnZOPPFEXH311XjZy16GyWSCf/7P/znuvPNO/Lf/9t9Q13XwXx5xxBEYDof47ne/i+uuuw7/7J/9M2zduhX33HMP3vCGN+CUU07Bc57znGXrOWtU3LZ/uSPp/JyV/OaBqFP8IZ34J1U1SPySShtQNYAZjMNLbYYD2PEkFHs2ftJlySLD79eEelQHFqkKHQCDI4DAFF0EnwrAWC0OAkCaxWHRzKoHFarFYcxry82sPscNg2HIh6NqkDLIatgAyMB8REc/i0m2ssgZYCkCgANYrufzxPuXc72SyPvDy/IeTgPIcd0ER7nOIuv/sjZaKxjBJrVWCVgOoGEVBVYJCDbJbasVBuyjZLdEfn+GHEFbAEvvsqgAN5WW1lB7R87k6s2vXAQ9n9aNSyyyX1LmH4dgNQZKzyRzgAxuBzEonMoi/UAxActltP9Knse1kLnmSV533XV47Wtfi3PPPRcAcMEFF+C9731vcsy9996L3bt3AwB++MMf4r/+1/8KAPjH//gfJ8fdcsstOOecczAcDvHZz34Wf/7nf46f/exnOOaYY/Drv/7ruOKKKxrMoavkHXzeGHKk0zYa7jLCKV2zK+gcqDpx3p+qx27WdjUG+yVVNQD5kSdlJlczqGBHEzfbATPJgahbaW0ANwBu0mNEE2tpVoNGHpiOrDFhkgIgzeLQJ3MvhKTuanEYOgY9XIRa2BISv5lZJn5I7hDMEGQGgUESA6SN7FEmvXNnCpSrwnAbuO1uKa8Gw2BpiaChYFUa3FMCy7b2XOnz1CptMwSHPze9gIPMa5Q+SRuAiANzUoB0yf+uIEAJHPneA1kADwRYWoJWCABpLDBWCgOjUZNCTYSB1pFVMptEXvFQYaCr0BMrwOfReuAEQmUeDYAMB4EZ0D7tZv7QBsrsjWbSvaNgftW1DWBpx5OERZYmC8gr6rA5lX2QwariCxi0Ba0F4PTuhgQYJVhyW7a1cba8P4ByriB5xBFH4Nprr516jMz7Ou644xp5YLkcc8wx+NznPrcm+rGUOnu5T25r6yimndMms0bZB4NOBEBlfknoCppNrcYxyGByHQxhhhPY8cSbXcfupeQalmHmgzh7OgBYH4TAoe15XddS2a2iqbUAkNIPWS0OoRcXE7boqqSIbcMFD4gOFKkapgBpXCi8BEiu/JLn9CV5fIV3g4PguHyaAoql0xrrSIN7gHawlO27Ij8Qg+EsUEx+ULvj8/xCLyHil9eFyZU8QFqkVYqYQUqAHFvbAEdnhi0DJSCjXJlRqgCYlsiBpdUYaMLAKAy0xsB4cyu3bfgmELmiA2bA4JjdZc8yQ4UqIdoY0L69Ljpc74UyI1dcYzCBHk9gR5MGWMa5WVumzeLYAE7zyAJ3IpscuOd9StBaERilyZV/M2vPNjnomOSBIm3MqDSK7tJIbcd0fRAOSp1kflQ9dgBZMLmiGsScrNrCDgbBVKSTepUeHEVVEZ4vjwuU56aktooiDiBN+N3KlwBjgKwWhzBbPGD6jiFhjsNuAMklymroWBaNQdJ2rwiTtl/KMLkSTAksoVUrq9Qqtl9rNGwbyE0Dv2yfmnJsXqs2ntSdUTKLjBGvMXiHTawSIJlVMjhO6tQnybmSUnyhJxjtClsYb75OTK5EsFrDknLRreRYJsF1uhEkPQMGMNRpLmX05fsBoP/E1CINjHy0+L69wfxqzDgE7bCPkWoLO3RWGdcsblaR4u02Jo00F2ZXCZBsVtVisFgKWkusKQUWCaxN/zQv6UFSSN4Q0lzUBhCruf6m0knmS4ZKG8Lk6l8smowbbFLOhMBSASH/CwBkVRGAQVTOZSeYZFZNJB8hmy2+FubiQlhnk6taPLQBkHrLod0A0gxREzDJ2GNgkWwWTIJS+L62tBQBCi6p3d13EaSjCAZ+XkHlgVgpGD0bKNPfsLOX0QKApUmo5XEJm7DgovABJPyxqgCUMrCGEFlk3C8LDrggHUtNgGTQtATHLDMW2QjggQ/g8UUEtIqAOVEKlVEYW+WYpP9eIB1MsNYAg/B30jdloDWqalEApE5AUykNbQysrOg02usGmvs8SxvthdYGyowcexxU7l2q3cwhVFtYW57kHEBMB2n4JDnK1YPgcDH4IWMAWzNoTaZ6lFjkNNmf4MjSg+QMKQHCSmWt7OkHnE6hXikXN3YmV1VVYcSJyRg0GENNxqDJKGGTbk698qgXcFVFbE1+Qlpq9bUAMVm6VElEB5PqQmCUweQqTKwMkAyOXQFy4hnNWLDHJGCnkMsHxI4/v8fBBKoihHIVmBjHGlklgyPsdKDMr+9+PDWZJoBou4FoUfgY7jTFKsnt4ECkDpcUvki+r45B2vDN9z2ySgeGkVm6AQsQwViaXdPCAgBqB3BaAcY6E2ttHLOsjTt3YDUWjWOVZLSwFKjgT20E9LBkRcA5l1Jp4/yUzCRHzvSKyciD1hh6PIqmVm9uzWcSySWPcuVSdKEWMZtXFxajH5J98xys4yO5ow/eFFnkNNlfwTpSepAUUmoQ3jatsdbKnj7t9w9knQjOLxlYpDe5IlTf0cGvwS8frEW12JxLr6Efh7jXrqKIEgySfGQfS15FJIS1CyZZLS6EaNYVAeRgIUa0eoDkAB2eUWJicxZZTlMA0iowuWjfURuthLnVtYLrtyOrhE7BMQfKVmcj2QQgAzjaFDQjeFJ6bhdRGqDa+au9HxJWAKU4TqqplSom/ee+SM6FDOydfACPjebVcW0FkxTn+JFKyewK+MmW/chirJwPUluFWhOMVZhojbElDLTComexzCoXKxNMrSU/5dBUwGAxMEjKQFMpBYz2RfPrPrbOjAOrZLOsGVjo8SiJcAUw9b1KcyaNLzdnCgCZFc/w70PDzCrKMm5kH2QuPUgKKXXys8AIM/b1OgkR4MiRn2owhJqMgcnYpUV4Nsmzs2sfkcfFnVlCVZHRpBHiDsRk6XzaLTmLQWCSARQXkui9EMUqAFIvHpoG6SxsSdM8CgA5tmxiFdMqZaZWWSKtSwUYWfnFUmQ1lVYOHOFYJbRjibVtAqUiEbQDd1wjaCQ0sAdIm4MmheXkO19uExmg40ZTCF5YCZSiY9XKgYm0LUh/ZPh5ir5IAN6kGk2r1pYBkk2u8gO4NsylEiBptEJNGkYpH+nqwHJAGlYrF7ij3W8ukoa1wELlzK8pSMrrx4Ce8H7JVCoO6OEKVpNxZJWTMdR4BJp4N4Z3Z8DW0N4yMzV4h7MFGBzDDDcDZ2IVYDmteAZWyCI3ivQgmcn+bMC23z4odJImV10BehK+2S+Juo6+ST91ULUYu8ISUCqtk9wvBkkO8pFlu3idTUcx/3EQl0PAThVZYynNY/HQZh6kGYKqBQf2Zoga2jOVOA9hI2DHg+SkQ/UXKVz5RZMK5dK0JgA6MEujHTiSAgwcO7HKgaPxQAMfyMPmQ0txxhTX0LYJkDk45gBZMsm2SDLXqAdMV76QQL7sjNIA+WtpHxU887riCWVfZMomKeRWMkCyqXU0iSA5yYAScMDLwDgCUpD0+4xWsKRhjfNdLlbOvOpMsK5tF0Lvm/vnVPgHFt5PaYZ+l0oDeoSfkv2RklXC11ENAFkNAGuhbA3i6bhKEmonR3CEL/wRwVLkCnv/ZKN4Bi/ralm+yI0kPUhm0ha5mfQbLcetFMxmnXsw6ERAOnWWHA2X2GRhLj0gluJSxqAejR2jHMWSW4BnkT4ZTQuQTOa9a0mObkSwSl+LNLEOhqBq0aV1VNEXmQCkjZPzhol8Bass5e51qfzCZlYb2KQDvwE0xrCwpPwxKphflQ9bNdr5v0hFNikBM5Hc7ygBkmwDIFUOlm0dcPgj2p3jwVHOTA8AyiIAJVRMB1HwJmRxX6S/Mg3e8eZSYpUii0x8lH5gwgC5b5KzSfdfSmZXB4o67DfaM/qKMKoVhkbDEoUAHutBVbbzIulWPyXfqxDQw/cH4h30oKl8IE9gleMRMBm4d8sYqLp2A0k/CE3ayNYOVGX7hKmutGOPwdzqYwlE6oebGqsZzUraxMmnxX1bbf+0XtKDZCYlfxpQNi/mx5VSIUoy61oHrU6cAmJr/wJ5NmkLbDK8xM7smrNIdzkNOx4HNslAKlNFZGL0tNyvwB5lpJ5M8WCgHC4Cw8UGKFK1kATohBnsPZNkRjIOLLFbYnvb3WdgBBybdIBp/TIwMMDEOnMgKTa3Aoqc35LBsa2tQyeUgV8DIHm/BMaSf7L0L2TQjgDMpBILF0kg646XIKHc/2m9vv+OeY+UsMhaDFbG1iYAGdmkbZhdS2K09UzSwmjH5ieWAljWpFFreF+kDj5TFtZtsTIovalEAIwoZZfNrIOaza8jF/0qmSR/Kg+WPMEzA2ZQwlttPFAqreNUdt6k68rM6RQgh4uheMZyzKzz7J/WUnqQ9LKcBmqTUqOXlrs28EGnE5tcfaHz1DdJ3hdp/YtsgdqbhICkoDOzwXos/JEi76tc2Dzmfklza573xWajFCC92XVhi/M1ZqCYR7BKgJQsks2tk4TFtCe1A+XZKIxS0ESNGqKAdlYyjrY0AEGhts70SuTnOqTIJosMkiUDvgQg7SSCoy2AqDy/7XEIplaKAKgBZSfeNF8JNmk9tbTQvsNldqimPHjy/kk2mZpbIwhKgBxN6k6+yUqYW92HAdMEsKwtoa7ImWCJsGAEYPtgnnjBZkAPS4h85XsIhAo9auLfr3oEtSiDejzY1Z4pShbJwGhrJLWAAlCKSQiCyXUYADMHyOWaWde6f5qH9CApJI+4kqZCZNvaJD+3axTXZtCJgBQcJav0bBK2BhYWg0+SrW28HK6vY5J0nvdlgCSyVeZ9yaLMIcpVskdhXpWVdPTCFgeMEhS9uTUP0AkgGaIn4VMMgL2TemZCe1u1l+A3ZAapY/qGi8ZxTNJF68BHtlgMvBnPmSkjmzQFdMyLCKiMNRYBssUEO8snKf2RwQ9JFjCVe36sszQo0iDPWMn7LHngRCLCVcMFLeUizdXM4GL0qvARiw8DJAPmRIBkzihzvyQH87DptbYmXtuzStYlFzdQcgE9ee8c/0ZW87XWkV1OvJ+yHgELGnowBI29P3IycibR8agFJIWUQNII/yRHoWcAmdcopg7BOmvdP6219CDppdQgXbdNu94sMwKm7D8odSqYXBVFNsngqIaLUVdmKtrEJOlsZoNpeV/Lzvli86pfxtCDY7XYjGAdLIYAHel/ZJBk5jiqbSNXr5TMXgtmk0tS6UUpGHKAqbUztVqlMDDOjMtAqQnQlqA0z3WoQi/kgDM1vQIeKDOWKEEwAGQ9aYBjYnrtzCR18EeGIt9KQ5nKgaadJAn1zCbZL6njX/LXReMB5MFHWPfLJRaZA6T0T8pz+VsCJH+nIEmorcZoorFlGAFzsYrtHX2TUvEY+SolSRGpgFDKzptcMRl5E+wIUJPoq9RuIBW+vZWG6roJkkAERl4OE4nrJkCaYcMPGUyuyywc0LV/Wi/pQbKDzDIxsrQdU9our7mSEdMBq5OIclXWASaRdcySbMiRhAwugPc/Io5sjRlD13VzZoP8d5lFsk9yOGiMhl1h5mHKHnk9j2DNgnUm0EXzKgfnTGxkj/smNjGzyjJonMgOtFd5AVzQjiVAK4IVYAkgTOw7MD5ARQHWOt8lQYXIVaIULGeKBEE7SQHSrzcYJ1KfJJvClZiEgFT0SbKFgaSJtfbg6J8NkIKqJ2ECb60iIGrlgpRmFRzII1ubLNIWAZLXgSZIAk2AbIIkwWjrrj+sBEg3AST1R8f98efim1bpCsboYHYNrNJOAnDyvVVVBUwmSSqIu3AWwMOSRbiGSdIHDhCD/zifQFmYWUsAub/6p5XKpgZJJb7zm96lQVbjn8tNDPl5B7NO0uTqzGeTAJKoLJQdJADJ19aAe7m5HBeHsLfkfSnhj5QveQBHraEWtsRoPcEe1WAY/Y8MisK8yv7HUd00r3JwDgPj3tqG5HWZxM75eFzthZPYgSm+SOXTPzSgrcJAKx8tqYNf0olnk7DOzOzZpCXXdxpgpj9SBXaYmVJzgGTg9McyIJJNvwGAJr7TBaJJzxgHmEp09siA0j83JAHbTYy2YlbBj0qe6lHyT5Y+uZSAcljpcP3KA6b7TYOJJRziZ7FhRpsH9HDkK6oINrmfkkLkq59bUmlQPYoFCKx3Z9hJZOKDoYt8BdpBEkgjXI0BKRX8xW2Th0szay7z6J/mLZsaJKd17qtthOWaQPP1g1onXbl0DbIpm6QKimwwuyadn8j5wngsAhAyxpn9VD4KnprrJdmjrpol5nywjvQ/NkDSm1hHtcXeiQ3sce8kBcdgaq2pwWiApt8r74At5bN3WFcKjciZWMkF92hSGNcE49mkLzPQzIeU94wXbMoOOVeSATIBR1uDfKBVAEXp8xJC8O0HP+CxohMGgsk1AKXwhUJFNqm1DnNjMotUCh44FVSHp7PEIkugmYClKE4gZVwjzAoCIAAks8lhpUPQj7uWCctbhrOn+SMjQcdBBcF34jyJczC3CvOrnQC1ij7MECns9NRiYJNHuAJIwVFUzSkCpFIhmnW5OZEr7Z/mLZsaJGdJ15HNPK690vMOBJ24I0zYpLEAUWAKemFLCNhJIt4ki8xzvnK9BGPhcPYQwl4NQ4WQEnsMQQgz/I85SFpy5tV9EwmSjkHuq1NwLFV2mRRAkgGyEgwllkPTfiYUDnGKTNIoHcyuNREGQKjqwje1ZBlwO1JfpLITx+psnQKkdaySxiPvT3btkQBlSTSb0Q1IW7duvSlP2Yb1IjBMW7vOmtwxARi99VjD54T6f8bBTlJC0QYZ+ZqAVxkgR7WFtQTyx5JtPvUWQK0VlHYBRUZFNslAKX9H/nY3aQJl+G0V56ZUVscBB/t660nCxhXnpwLunSKLBiTIcngSIJUuMsgkyrUg+6N/Wq30IDlFltsgbWbKWcdtRp0SNknsl3TL/OKqyoe6y1yvSZlFqrwAugw4kBF6bG7NgnZy9hjmfZzhfxzVNrDKiY3m1X2TOrDHfRNpbqUkJ6/EWkpitApRlEYrLFQuFw8VfFk6B5BaEbR1Hea4JmhFGEC5jBpL0II+WqQRrjw3ZdHH2BLlisnEsUfv40qAUraJHMRIM6sHyACWvL8qAKSaRIAMvskqmFzZLwlE8ITf3ib5wKTN9CoBkqwLtGmb+1ZZNxEzeVN4TYSh0UUAdr/bZFyWov+0KU2gtMQzi3igZJM1A6MSrJIr7vh7OSsaOZzL4MhVf0oAaSJAdukX1qN/Wq30IFmQaQ3FMg9z6DQ5GHVSYkSqqAKMjWZXwPknETtKADHfazL2JtkBij4VH3TQAMkcHDlCT7JHjtbr6H/k6FVmjg4kbcIe93qzazkgpBkUIiU1teqEWQLOrKetglYUIlu1dmZXLkygPXMiUqGqS8mb5wJlRXSqiHJNzKweICEBkr85WpIn922w/LEDRWnaGwwDu4T21gMJlDLqlTt9sjAaqDOTawkgS4xSirzvJTBjgKwnNoAjg2XjHmrlAqNqN/AwlcZeSxgIoGxKViqjcrfDKIV9qgle6dRhbEaP60a5uSldlKs3UwdWOXGTCmTpO+T+VPZDMgLZg6MWZlfBLEMVLaT+Q5b17p/WSnqQzGRacMpyG3StrnPQ6uTZpKy0EsyuiC+YY56OSdJk5ECPwZKToCVICoAE0JzBQEToBXDUJjBGp1c5/3FUp/5Hjl6V5tW9tcWkJrfdg+SodgA5LVkdmO2LNDrWDa1lUqNzTMUJfy3BKhUjJYuzKE8Ra1NTa5YfqYgCg6TJCLDWBYJ4cORUnjZzK+kIkEq749VgCLLWRV9yu1ceINkfaWN0K7xvzSiNWphc2S/JfzlMa6UdcLUxy7wdpA+SGSSRYJJsds3YHllnbg2/6b9HlmBEAE4TLPOaUmVxAVxtb5/XQcFHgTs/pZqIwQazceXa1VXdYXOrCVHJJO+TBEeZ61wwu0pt9lf/tJbSg2QmsxqjC+1vO2Ze5swDVScA7qXyDFKR9S9axiC9L8odH3O8kk64YM6TwTp5+DrpLBqPg3MEWLblPzKjlNGrbF7dJ0yskj1KgCwlqgPT8+9yf6TbHjtcoxWMcqZcrTSsjrmBtY7BQUXjXebXa5pVRYSrdX5JGo8iQE7Gjj16dt8ASsANaIBoBvftpLR1gJlHvObt779dZGWMsoWuoLUbHNQgaOWmCVP+v3CsCwNkF8mBkgEx/yYqM0mAfFEHB5gAQKSg/PJoym8bXR5UAK59jAL21gxeuZlWvHVawecKwegKxH5KZpXS3KrT/NbieyvBUZpeCwCZ2yj2R/+0lrLpQbIYIDDl+C6NnV972u+WjttUOrEJSFcIWdPGln9ruADFJj6roXx0YFtJrUb4ujagPLfLs8WQDO3BkuuttgXojGvCz8d1kuKxb+LMq3snbGKtMZpY/HxULytJXQqDIvsjgy8SwLACauvKno0mrhSatioApLYIADmzHULDpf7IWFknskiq6xQgx55JMqO0tavqAsTAKhb2KQNQugaF2qCeTVbDxjOofdRryKcMZeuMY7m68mZW55NkwA/BPL76kFGRVS7H/CoZYw6QsW5CPF75aFYmX/XEQmkVWCWQAmVajGACoIoDIs8ajbXQgmga5cYKRhvntwzYKqJ6PVCSVqi4uLjSzp8LQFH0SZIAyaLIaFUGR/ZLin0rAbqV9k/rJZseJKnlu3TMNOFGmwUypWvKkZc0LWwWnThHksgENlkCZZB10QlkY9h6DpBAGhji/SgSHPkl55kJpHkVumqtv8ossuR/dMyxDizy8bEEyDqwyRwc28ytpSouw0pjnwfDXCqtHFAOlIjcjMdxuTN37/OxPhr5hmmFHcEiiWAn3qyaAWTwSY5FEA9QMLm61A8CItP3aTn8TCTPLNcL5cCdWsHVdeXo5gmUqmAUotlVfIxKKwoF8+sMoHT3jfxfoAJYRnBMBiK1Y7TkiyIoTbFcYESzBqOMbV032pjBUluCqQl7hZ9ysTKAJigCNAGuqkSZUSoOitOeVZJKwDIIL0vfZylwR5hdpaxn/zRv2dQg2fUm541ZkmmN24V9tT0om0EnFSqtWNchAs78yh0pnyeYTczzanmEhXlIvsjFsPUqThSbT5DMAMm+yGkAySxSssfHR5PE3NrIuctAUkruj+RlmVIgIzKNjakNtSVYzVGS5VvE0xgH450CQrUjYWpN7vvYs0c2sUqAHI9AglEyg2wG7nATyfSPOvgi5bPhFPOWAS6M72v9ukR5A1AVAngUyJteAQ0KDDN+xH8V97gkCZvMgnUYIK3YnpwLV7zBWU8VHDTZYH5lYQvBSAx+XHu7e8ZmdtbdTegcwVIrglGusII37MLN9uLA0V1SAKW32pBPoYFlFunB0v2ZJjgCERyBlEFyUJWQ9eyf5i2bGiS7mA1R2F86R27LX/Rp7Cs/fzPq5HZokKl8EA+B555TmCRMMuR4RTtX9gP8Qhd8J1qwyWyeuxoacYaO6RGs0swaQdL5Hx8f1Q2AjL7IAki2+rWA2vu1jFUNZinFJatL4EQwubJYS67MTovI9I+SqTWke3i/YwRLAZDskwy+SQGUIh2ES9MV0z+Cvzn6pZPyaDI53rNJ1BOQrqCVM0XXRJ5FquCXdGxShapFQPRXVlOA0t0SwSaTYunTcyYBD5bkzOCo2KXuANP9JweQTh8V9ClV7xlb5cyudfRPaqsCWLrZ0hQ0/DI8SGv/BkmgDNHCsUhEmLqMCvdDmFqh0+CdLlalefVP6yGbGiSB2QDQZhJomIQ6XLsrI9uUOvFLZ6pwXtzH4enRNMTMsqxMZhZicOSXWuZ0Zf7HxBeZAeTPx3ULi7SJ/5HB8fFRnQCkBMdxbRsdLIMl+67If3PZudHEYljppFM1Nia8c2WXJEl+ij8SiCxLtmEKlCTAsg5mVpfykQGkiHTlVBCurZvIeOKKO8BNmg0ffQxbu2/ZlADAPkmtoY1xIMm+Sc8qYScwZugYpEo/yp0K7f2CmkGobpq1u4oExdZUELFsNdjdCM5pVZpgJ9ZNeSbYJJvUZd3X2pv+jaLE7KqVTfyTgDPtKg+OwfzaAEr4OAC2ykSw5NJ1sRHEP9FZAE9B9kf/NE/Z9CAJTKf9eQPJRsxHPbm0XavU8NPWN4NObkFUB1E2mNbITqCMf6GtDSNdVSgOnZiEJDhKgBTm1gk5s5qMYOXC48sByMgg3XIasBMBksExT0iXna6tHcPgpHQAGMMGZsnm1tHEhnqgLtdSpBeIijI5i1SFMbhWCOwx+iA9iyQbWaT3Q/JyAyC9GZZqi3rsIk24ni5Z68HR62E0tNVQtXXFIAbD5nPILBIAtPEDHM8oawPoievsfaSr0RqGOEgHMJ5hsV+Sg3fk4KBk1p4mqetOgGU2IAmT1/C6AEql/DOgCMo/Y2WgrNMqS9463WZ2HRpXmtD5J91cos5f6UzRSkWgVACMADpyN8FbaUrvlmCTwsy6UfqneUkPkpl0ZVXLudashwgtx206nWRSMjyj9EAYS2lloeqhJ0p9KMlol2tKioogpHSY55HrrbZNcdUVIJlBSnBkwKzJJ6JbQu2BktlHyVTH0ZCcOqC1AiqNWjV9kY1E+CkAGa6vVBLcEqAh80FGc2uNJO2mBSDtaAyyFvVo4vyTDJDZDC3KaCirYcdwc3taV6y8rcRgKGqvDbQP4uHC3W7eSeOfD53+Lw+OuV9Sml+bqTVifUraSJsZlqyfmiy0QQqUyiqQds+D+2sKVlgDpFXALUdmOdAxvUem+IwFWCrlwFGDgn+y9sAI8e1M03DTjrmHLlppSpKBJB+3P/un9ZBNDZIqW14NUCTmQTQbu+0auV2+q6nhYNTJLfggHkwA0iDYYBYqhqo3UsUyX2ShhFZNbgYIN5VVEyDzIuUrAcjHBVCOaws7cWXNrCxv1lIoW2sFqikkpWtvboU3zQFomOJmlbXrJFl+pLJ1YJaWCweMR97MykE6KUDW4wnseBImw+YJsRsyhitQznOCDirY2sIMXJm5lE2KsoRag8YDh4B2EtmkB0xTVR78yIOj+1RaNfySHNTD95O/czapZoBlegvTgQ8XFbCWXASxVn6ABBgT9ykPdrId9wWwtMHnPLa2zCZVzId1xe8JFgqKfDqQUiByRhgiZ4FVCW5qqOI/Sm5E+J7Wf2DKvrXun9ZDNjVIdqH/+XFAuZHaRj1to63cbt/r5M8RgTfKODOae93FKLZDPlcARx8QxIyyJgS/I0ewJj5JiwQguThAV4CU4Pj4uEY9saGUGTPJUgpBco+Cu4dgoH2Ih/djFTrTtjSSekqwTuK3g4hszaJaYSehUACXnnNgOQ5gmQOkHU0CODJQAgi+STa5kmeTunZAqYexO5JAqQSLhDGgiStrp3TGJj1gGlX5nNHU5DowCrpO/ZJGy2INOiTzyzzFGoiBTVOk2JbWszl/PllK2KS1BKWj+b2tXdMPimyS5yTVyoFibQGtYylCnmDbPVeulJ2FSghmWu6uILl5tu1eYP36p3nLpgZJYPlmgOWcA6zMXLnpdZL+DlNlYeoUX9RCLpcER+mTZPNq7YNzcoDkzqctzWNS81yQTR9kyf8oAZLZY2SRaE0fcKyFoD2LrGEDULZ1phNxfqzeg6kAKe87R4Em/kjxcayxFmXnRABPASBrzyRt8EnWsJm5VRsNjOFyWQeVmzINCKBawRsJtIlzm2hviq8GcDO5VEU2qSvHRo0GDDlAYpPrQLuP9EsOjcZImDTz6kayxJxj9+SzJFRrVGsXsZYS36QGigOe3LQuZzFJKyohqdFLgk0mLBII/klNM4Cy9I51/H/r2T/NUzY9SM5LVmKKmLccCDrxCDTkwsG/nzI6Pby4Mhpleoh6DpDO3MrLaZDOmMvOWT97R93Mg9znK+ikKR91ESAjk6QAjhy8kwv7s6xGyLEj7Xo2GeiRm1U5eGdqngffW6R+SA7akf5Ijmp1NVq9D5LNq+NxZJR13QBI6/2RtfdPAmj4JO3Y+yVrV8FHDwYgb24FYiCo5mdEG2C017HJfXtdOshk0mSTdgBFNgTwKPAE1anJlcFyoBXGmV8yN7ky8ySRGsGDGcXogumg6awHSEyuSo5WfNtz8+Wmc2lybcuF5Rq9svwgETxjRAjeMcrV5GGzq3xiAlDGP5rqWPx3ayMbsX8CepAEMLsBSvun2c1zn14uXRp7M+sUgFKUunKLOoaoA2gkPefh6Z49EpoAKaNYeTtX2Mlrse4T01zleY+lTw6QLlAHIWAnCdrJIiKVUkmQh/bYxfl1SnuGQdRgHbOEY5vkDBmh6kxer5VNreyDrGuf3lFHn+R45MAxA0g7HjvWLHyTJVHG+yStdv7IYZr+UftERi18kqpyZe1oMgYmo5RNmpjTaczQRbUGs+tsk6ucZSUP3lHiW/tAGM31YrWbioyIWoGyi7kWaKbs5IFZbSIZJRD1U3AmZ/LvAbNJKJfnaZQLMGI2mfsJ22Qj9k/zkh4kZ4gS37KBp9nNSw/Ych+oXicUTTzpwFaaWUXeljev8gibKGeQBCIkbNISHHMM7JHZpJ8DUszkwXVYS4DJKR6zAJJnk2iILkdDygCl0nl5hGvjsp61BIBEXFfuogIcY+oHyWhWa33JOZ98Xrso1hwgg7nVM0ppaqXautxIwKd/6ACWufA2ZUbB1EoTZ2rFeOCmPMvYJKxPBzHDGMCjmybXPBWE6+JyZGmlVchJNcrNC6mUKppc+UksAaVki1qYbqfJtFq+Uiw/0+TmDA3bvX06gCGa9gVLETzzl5DZZHjn/HfX/mC9+qf1kk0Nkm2NXxrVKDQbvc0ZvVyAKV1zs+uUs0m5vSGF0PQSQIZOxYqgBw+WARhr4fPxplEGT2lmbU575dI8rAfGCIQRINnsmhcPkCIJM/9zUs5Ux/4rGAS/ZElKpkJA1Czl26Zi0I70R8qoVi5QTjZjkuNREskqAZIDdxgsZTEBqq3wP2qRK9keMGKNhjGeQY7dt+I8TWaTZH2u5ASwruCAUZUDQAUYTYnJdaA1BpqE2TX6JYcCLEMJQKKYkuPZJHmmX4unUnlmJsGwxCKngeWsUnnsPx8UbllNjUrG7h56UHTLlBR4n2WklwC20fqn9ZBNDZLTGo2l1PjTzALLkbZr9zqlv9tqXg0/noam5wBpAxi6bwvX0RClZlYGx5xFuojX9mjDUElnks5ezz7I0lyE7u8070wMUnFAyR0miZ6M0wmAdrbBJsSwHkys/lYpsewuijw/kgvIcwk61Dyxsg1m1gCG1go2OWk1t5K1ARA5V5LBsiTKaNRaQ2ntzK6TEZTWoGqQskkj2CQNRToIRDGBaHId2Gh2lSZXxyabJlejFGodc1aZTQLKR4wym6QiKDKLVDqauPUMVtlWgnC51YHWQvZ3XzDt2vOWTQ2SQHdGM23k1FXkOSv5zc2oU9w4JTRd+C4t+ZEuuWAF64MYgk/GM0eLaHYtgeOk7s4ik0o6PtUjFAzwwCgLCMRcuubfIEsBKJXxOXXah+zPKDHXJhEg2cQa/U9KqQCKTZ9kBEUKyw40rQc/ZpP1aBwiWiVAcoQrm1ypJjexNpy5Fb6YgLLl9q29KdZ9j1wRdG2AyTiwSWXr4It0vsnoozRaw1hX6Jsr1gyMhp7YwCInnlUODRXZZPhU2rdxZJMWFKYnA0p1arhtVbYet3MurPJgDKR1XIttqtMo5eVIPvtJrvOs627E/mmeMiMpZnXyyCOPYMeOHVhaWsLS0hJ27NiBRx99dOo5v//7v++rgcTPWWedlRyzb98+/PEf/zG2bt2KQw89FBdccAF++MMfrljPnLqXbOMq2z7tnGkPT9v5vU7tOsWTs8dVmFclQDq2GIGxtoJNkmd05I7jfElpYq0FaHZlkflkvOR/UzLHEkBaUR1nWvrnLGljF/m0UEoEaIRZMXJ/ZEj9EFNeBZOrAMMRm1bruC73ecCsRzXqkUU9srA1heV6VDeOl2y0Ho3DbwTmmpTDG4USecrWUH5CaIhvw+AYquu4/z4wCgOjk8ICA+PAcejn7OTlsE0p6EoH36Q22n1Xjh0q7fcL1ph/wnHCx6kEs8wr//C3nGA7b19pOpVTgkX/cxP4pEWhTTZiX7D+HHrOIHnxxRfjq1/9Km666SbcdNNN+OpXv4odO3bMPO+8887Dgw8+GD6f+tSnkv2XXXYZbrjhBnzsYx/DP/zDP+BnP/sZzj//fNR1x7IYmeQjlNx0IO3wbQ1bOmeWTBsV9Tq16JQVV+Z9EiBJMERLkU2yD9KG4xASsNksK32RMtR+MgUoa4rgmPsZpZk1bkvB0enfvPNdmGNiUtU6m1opBUi3nU2tDJrwZlaC9EeCJ7eued7IcSgoEAJzrA1mVskqOZAngmM95eP3twCl9HPWIxFtG3yS4wCWHGykPKtU9QQKiOCo4vJAaxgVwXJgdBLAM6wMhpVOciaHlQNFU+kAkAEwKwXjr9EGjnGfY/C8zz3WEhCbJfKSfSLYiEULFqqFqX0aK5SMMg6cxPM35bnbEH3BOsnczK3f+ta3cNNNN+GOO+7AmWeeCQB4//vfj7PPPhv33nsvTjjhhNZzFxYWsG3btuK+3bt34wMf+AA+8pGP4EUvehEA4Nprr8UxxxyDz3zmM3jxi1+8bF3b6LwS+2Wjd71eLmrG/l6ndp1Ko8g2gLRiP+MMYxQDKCECJ+ADYTy7jP5LylItbAMw+VwAafSqLbPI1bDFXGbNYJFMC8UFA1Qa2cpBO7k/MjDIMO2VW7dsVuWoVmFm5e0ONMkzRRf8Q4VJLckqqJpARnmf5CTZr4xGPZ5AGRPMrnY8gRk4lqvGI9BwMZhd9WAIWXknpIMoUapOu6nHKg+ULninGcDjzK0OGGV7D41uTJbMU1/56YydaVwMiiIQIgCrZJOm0jCVxtAUfKHiIwdA0UKAMG2WW0/3uXYWdXoRvwFv1u+YnpK0Hf83bJz+aV4yNyZ5++23Y2lpKQAkAJx11llYWlrCbbfdNvXcW2+9FUceeSR+5Vd+BTt37sTDDz8c9n3lK1/BeDzGueeeG7YdffTROOmkk1qvu2/fPuzZsyf5lCRviNKoZzV0v+sD06ZDvr7ZdKLC/lLcimSR4XhKAZOB0K03Ta0lKeUl5kBZ/D/ZvhJr7CLSLJcHfeRBJsG3xbVKNUI0q7tWTNRPytGxqdWnfkiAhGeOdjwJLJKsDSzPjicBEBkg7bgumFnjuh3XqMeCVY5T8yoDcYiY9WzS6WQ9y42mVza5KmbFbHJNzK6IATzho/3HAaNkkwsFsyuDXDC5Gg1jNEylfA0LFT6udLBqAGRgo6xXBooLFYNmDp6x7iwzyHzZMTMVBkIaKp6TmVpLLLKrbMT+aa1lbkxy165dOPLIIxvbjzzySOzatav1vJe85CV4+ctfjmOPPRb3338/3vKWt+AFL3gBvvKVr2BhYQG7du3CcDjEE5/4xOS8o446qvW6V199Na666qoV/Y9pD8FyJR91rVR6ndolJ2o5IDX2+1zJxnUIDX+kFLmeT5fE5tQ20Up1AkruUIE00IMlZxi8jTtCrSKgmqxzdGZXlYIjR7h6AApl6ILJNQbsOMAah1xInvGDzagMkLYmUE2NsnRcMJyMhjIKZgjUgaJNHIscuXkn7XgCazTqcRXYpBq49A+aDIDJwLFJD4ougMeng9STqQE8g5qmssnamoZ5fVi5xhgDUL7tZclApcptKwN0opnWgbMEQQZmXo4mYJ2YWkN5PQH+bGqN4Igii9S+aAWXJGSgPJj6grWSZTPJK6+8shFYk3++/OUvAyjTeKJyiDTLK17xCvz6r/86TjrpJLz0pS/Fpz/9aXznO9/BjTfeOFWvade9/PLLsXv37vD5wQ9+UDyudLaask8esxb29Gm/3+s0e1+bOD8kJawzxyg7hUG2SddKN10SyPOIwyQJnf2Hwn+VR0GWlmN+ZDmyVSs0GKQSqR88LRZ5AKIsajUCo/BJ1pQAJIMm8TbxYfAkzyr5eu7Y6J+k2te/HaW+SekrDWkqk0lkkzMCeHQnNlkO4hkyuHlTqTHOTxnWWz6RceoEIBOmKsDS6HTbwDhwZObIwK49uLNZ3QQTq2qwSC33qcggD7S+YL1k2UzyNa95DS666KKpxxx33HH4+te/joceeqix78c//jGOOuqozr+3fft2HHvssbjvvvsAANu2bcNoNMIjjzySsMmHH34Yz372s4vXWFhYwMLCwszfknb0adtK581Lep02rpR8gY79ubQAmWSutfIs1jHNHBQBjkeK4Jbk1mklrt/ut4rmOMEuPPPII1sVAA7aSSdbrhNzqzS1xtk96lAogE2wVFPYxgBJ3idpS3S9rqGtmxbMDA3qUco2JYtURsMaDTuswu8FNmkXoTyYYzKCGgx9EM8gBPCECjya3KTMvgLPNDZZV549DisAk1aLwggI011xfd2ShDbU3g+pVBGAc3Dm6j8DrRMWyeDItWi1dv9HskgOWJIskgOY+FlYjWyGvmDZILl161Zs3bp15nFnn302du/ejS9+8Ys444wzAABf+MIXsHv37lYwK8lPf/pT/OAHP8D27dsBAKeddhoGgwFuvvlmXHjhhQCABx98EHfffTfe+c53LvfvNGR/Nl7bb/c6tYtWqV9Sozn1n1YAUQpaJTFKYdzxn0mAZBArzxWsUGcAUZrtSwIkm+NiygCieY47xszEmke28v9msAwmNcEktEJzcuWCPxK+6g6bWjnVgxleYHo1ef+i9YAZAZIDd9jsqn3xAJcTalGPADM0jkVqgqrJB+24uq5assnBBHZQwbBu41EsLjBcDOyRQgWeNICHi54b8hVqfHEB99EYWMLAEiw5oHSBO6ZoOQgl5Hg+Rw+WJZGDHRmkUwLIofeJhnWjfVSurxbk01cGnl1yFSHJIo12LDKyaN62Mj/kRu8L5iVzC9x5+tOfjvPOOw87d+7EHXfcgTvuuAM7d+7E+eefn0S2nnjiibjhhhsAAD/72c/wxje+Ebfffju+973v4dZbb8VLX/pSbN26FS972csAAEtLS3jlK1+JN7zhDfjsZz+Lu+66C7/7u7+Lk08+OUS7rkbyZ0aaDlS2Pu281fxmr9PKdArHiQPzMHddOEaaI6Wkha/LM0TkYJkAXQ54yXZkn5Qt5nU+5fVKQR550E4ywTCzCeUCOIpBO/lckgyQXHWHmaNgj3Ji5cAihQ9SAiTnS/J+zpEkb57lGq8czCOvGXIkJZsdT1ykrU8HYZ1DOogsr+dNr1rlATwx0MVFuupkdpDc7JoD2ZahSVmgyUyw2Wdg3DFbBvE8eY0cIFPTbgTHyihhKnbscmDYN+2f28SsrNL/rdWyAPJA7gvWQuZacee6667Da1/72hCJesEFF+C9731vcsy9996L3bt3AwCMMfjGN76B//gf/yMeffRRbN++Hc9//vNx/fXX47DDDgvnvPvd70ZVVbjwwgvx+OOP44UvfCGuueYaGDN9mqAu0uZ0LpkU8uNUtjwtrHnatXqdlqcTs0mtYhCOVm5S2ZKVj48z3kTF0TxaK2+GU1M7kHy+Qa0VSDdLlrHJlWeJgI4gnQcQSVDkZa1E/p0A21JaQNBlStAOB3E4Rqka/kgAvl6rz48MEazRtFoytTIYxo8AP7EOFCJ9YaHFfJkWFqpWqMe1SAHRgUXSoEI9nkB7s2usBjRqBvBwPVfjvpUI4DF8j5Rrz7GWjFJ7JgnUGtHsamP/YrTCvokNy7L6EtD0VzdyHQWLlIE5EiB5WwBwIwFcgLoHy2BGRTSzSqBkBmlmIMyB3BfMQ+YKkkcccQSuvfbaqcfIhOktW7bg7/7u72Zed3FxEe95z3vwnve8Z9U6siyngdqk1Oil5a4N3Ou0fOGJZGsIPwxJf4wCiAKwhmhBYWrVbJayOWtzM9eX2JtlsMwKYBto1LBhlghGSWnCCQE5qslCc7+kbulkpT/SaK4mE1mySwdoD9phvyTVaYUdZP5IrsOam1obhcytTQAyFHUX5tawzQMlGXeDgqm2tqBaJYy1Hk/C3JO2ttHkKhivmoydf9XPCkLSP6mH7j6Rw07OnRxoDasRfJMLlfbBXCoxu5aktgSjVXHCZKCZzyrbrhJtmAPklqGJ4GgUFkJgkQRH5X2VzB7TVJfIKqPJNTx33FY4OPuCtZJNX7tVimwUXs8baFbj5+fm1+x1WnuduNNnNmnh/E7w6+RZJc/W7oDTHwPEMHorGFhglGXGln9qKrNJIC2ADSjntyoM5yUgGqMTX6RSLl2gZGodVibxR3KnKaeBYtbk7lUzaEcWEQAQzZd+3QqAlGkgJFliADcKgToMkHkKSABLsG/SMUgNC1srGGjY2vkmJWMNDFaYXHXlUkGUnLFkPALMALECTw2QFVNksV/SAWalASt8kzW5mq61JlijUFNLWTjPIvMCEyX/ZckCEAGymZPJALkYlqM5eFEwzDCZtM4BMl9O35mDsS+Yh/Qg6aXUIF23TbveLDMCpuzvdVqeThIoiRw4WqIGm9QASMEnlGvUVHuAdAzMkg0mSumXlHlzlY7TKHHe3F4bp1MyflsNCwPtprvyuXRGNyfmzWt7Ko2YKsDfGXNcqNLgDza/RVbhmAYz6pBozoBZKGqeBO0A0T/J9zpjjCwMijaAWBMY86o7yigXlAOXK0k1BVug9YXQqVZJ4I6uHdvtbHK1E8AOktxJHSrweB8ls0nESNfauIm5B+TmJZU9ZRwwuYL3OYtsY5xcrDy3AsgSeBIgF4UvcqFybbtQ6WBqXfDnsC+S8yYrHUGxBJDynTmQ+4L1kh4kO8gsswJL2zGl7fKaK2VPvU5NYaBUSsH4141ACZt0YEkBTEPwhtGwVAfW5dZTv5QR4DjxAMnbB0Zj7PWoYQNQkvbzQVrHZG0236DT25tcBUDmJleOiEyLcJuGqTWJgmVQhAzeKQTtAHFZBu0AjaAdd2jqjwQiUIb2FCxSAqStCdqDIjNqqqM/UunISDFghhqZq60tDNDN5MopLVwkgaw3QSJEuDKbtIqCX7ImhUU5fdfEPQd5j+mYZJ0WG0A3nyS3nSwcMDQySEeYWAVALppuADng31LT382DtS9YK9nUIKnEd37TuzTIamzyuYkhP6/XaeU6Mf7U3uwaWKT/Nhqg2oGj6xh1KGYewRKwZEMUYZoOQBhW7aa1HCi5tifPEalseRwsa3uaSgezaynpXObSLfjONZhXVQzw4EAe9kcahXLQDk+yDAeKAECCReYTJzfaSewv5kRm2yVQWlgYHYNiHPBGk6tBBGXen5p761AlaJrJlci6nEldOf8yIWGT1rf9oHZMMvgktYI1zgbh/JgR6Pb56bRkfd/SMxFBMvUhS4BMgnOC3zGySDaxLhcggenvbUkOpL5g3rKpQXJag662EZZrYsjXe52mHzfrZdSK93nqFByWjk0av80qN08jB27UBgAsrFaojfLmNouB90uV/E4l/9MYjhXWE+siXbUKJctIN49Xgkmm0zD51IFiRRYT1rUARu40Q2eeBOyoZqUdIK20AwR2yZGtbpMNACqDdpJ2yfIhuwp5P21uctUDBKB0xxUYbW29ebX239EEG6Jcrc8DtcaBptJhwMRs0sJFQy9UftCktQdL1pIjr9x38EcLM2ttdas/kr/zmUXYLB5B0qV5MEgumszsGvIixfW8WXUglqdFsR5MfcG8ZVOD5CzpOrKZx7VXel6vUzwvjKIJESCVgtEEWAWrAKM9e4LyQKhgrVgWLEKaXQGg9jPttpWnqz0YchUWru8JoFEQXVZjkUwyB8gii+SOMzO1ah0LCDg/pAp+2WKlHSBGtAKJL3KaxIjX5bUUs8l4HQKyLC4Hhib5Hbdcw1obWGYExTp8w9oQ5Uo0CP8ZdgJTOb9kDQr+SetZJWm2HrhnAFU0u2pF0LX7HtcEM1AY1S79w8wI2uFvGRUto1MlewzRqwIYGURLAMnbuwBkFzmY+oLVSg+SU2S5DdJmmph1XK/T/HRy+NYESGg/pZZVIAVAEwDt67dq54PKWASnA2DotuR5c/lnNLGolcK4tqFkGYwDSG0Q0p/k7B4AoH2QjlHNkmUxuCOySK7Z2UiG5yhXxCosodqKYJHhW7BIksE61mYANZslaqNnzu+qs568FPHLYmvrWaUL3mE9El1yvyTnexobq/CIwglGaR+Z7AJ3XO6se3YWK4HWE2dZkCwScMFdY2uhlUlq/04FyRBxjAQcjVIJe5TfixXPd4nAFKsAlu5aHOE6mFIeZrP2BauVHiQLMq2hWOZhbpgmvU7dpKSTBEpnfo1MEpp8sXPvn/TVBXIW4QJ4KKzXlfsV1/lNUBIGymCSo25ly2RNz5IfsskoHZOoApuI15D5keybVEBaYUcCZpLrWKfrLeCojAbGdQA5bZql+Hh7m79yNRKCd4CGX1L51I+GydVOoLmeq/IDKM8mSSE8C9EED2g/i4i2JADSHyMm0S7dJo4BYp9xDo6yxJw0uw6MCiXpZKpH0w/pAJLfvY3w3vH2ab+/v4BvOdKDZCbTHNLLbdC1uk6v0+p1KgIllCMGBkDt/JPOW+0FHAAALM9JREFUsqfjm8Esgk1ukzosMzsAKrgiA3Xic5IAyRVZYIQv03eq+YwezRSBvBSaaVZj0cK3ZWLqh/Z+NwWE9SIoUsoeu5paG21gVLi0W6a4nJlXebv2kby83kVkhGtRZ2mCLQQo8bLO2KSFM89b5YpBWG92L7FIXSMByNpX6SmxOa1i+7L/WBYnD2ZX3QTLHBgjYKZ+SGB578zB3BespfQgmcmsxuhC+9uOmZcJo9ep23kloLSeRbpccW+K9UBpZcj/xBaBEsMIauF3hMmVAVIGeADLK1uWpAjImp4c0MG1PIOJNZr0jIKfKilOxluKbA0iCgjkojwdUn5aKOu/a1goWd8PHuxqz47hysqFwBx5jBAueq60TpblvjahuvYM2TPI8H8kKLpv4nJ1Psq1hvdFKmddIA1YOF/1gGsjTSRAaoxrglYaY0vQFrDkmFzbdGuhNKAIpOJBDUdUy2LlzB6ln7GL/3Ejvnf7Q6e1lE0Pktw4+XebdGns/NrTfrd0XK/TfHQCIlAqQsIiY7HWFCgxQREojWdgXNEmXF+rkGDOwJgnmwPdgjsWMnNro6anib5HngdRc0crTK0cuMNFBJK8SL6XRMUiAV1EG4Xaf5NxZeVQ1w5IESvrMFDG8xgIVWKqldeVogRQzgRNNrXGDcWPAjyTBJSiOFMK0hQhAMAkAiRgocmZams/2KqJUEEVtEECjNoDG4OjS9ngAY8oMafT7y7+x4343s1Lp/WSTQ+S1PJdOmaa5L6AtgerdE1+0Hi512m+OnFuXG5u7QKUmsHNbzOK3PIwDe934Fg3QHIyBSSBlhQB3SxbFotex3QBNuMF1pJ//P0LEa1ALEs3QyKLjAEtSmvP9GoHkNaBnTKurJ/jXilQNq7rAVIbHYCSr+G2qww4dQKWUgKDzMzGLnjHRbeyL1YJVqmghT8ysklOEQIiUAaA1AbWEsbKYgAHsnnEshQJjBIonYkVsbxco9Zq07w6K0CnJBvhvZuXTvOWTQ2SXW9y3pglmda4XUZcbQ9Kr9P8dIrmVyRA6VyEBE18toZmHBFsklMBtAL21THJfFjpxMTKYDmLSQKlKNlmusdiZYKZVZafC3MMBjaCWNgdCFG0ESi6Mcdg8vSmSWV02KY8uCmjoWqCNhTYJMOjBMrkuoE96gCIbGrl5XB9HX8zvUbcpnSaPxJMsEBkzUmdWgtoC611LP6uKDG9hmjoAJTu+HFNLkjag6WmOMjiAB45/VrOIKWptfLPXIk9dsl/PNDeu7XWad6yqUGyq4ku3186R27LH6hpI678/F6n9dMpEEc2vwIODD1oKtGvc0UYrXyVFQXsVTHS0WiFsXZlzcY1TTG3liuyxN9R/rs5M32jKotuskgO2HEpH8wqY+UddATGIBkwMVgpz+iUdaBGhkAZm5TwqKFd+osItAnmVgGQOYvk4wKTDb9tWhllQ5hZysIJmcmVBxXMJo1IEUIGlK7NXZ7kAPDmVj/4yZqVAS0yyJgGkoOjRsoe8+hVo8QzK+RAe+/WUqf1kE0NksDsRm8zCajCtlnX7joK63VaP53iqFwBGlAgKKUwcVXk3B4FTCxhsTIwHjm1VQEwxyLBPLJLF3wxqm2o7xqrslAHkGzOFJGXLYt5dZFFcsAO+x/ZxyaLCJQ+VMhpVNpXvzUpMMqgHap5n03YJIYG9agGAyV8+kc+5ysDIQOkGZqERZphBsqsi9aOAXo9VMtcssEEK+fLFKySAdMoDct+Q02w3jIAkVcL62YP8cUOoX0dXlczws0ZOsh+n8cYckYZ5Z+p6KdsgmPOJBnIG23E/1OsHwjv3VrrNE/Z9CAJTKf9eQPJRsxHPbm0XavU8NPWe53mqxN3PmFiWuLruSPjOqCgEzbJ+XLMKgdaYWwJY23dLBKeWdZEKwreaavMwvU888l3Kx+wEwoIgCNcRdBOFzbpmXMClMIv2QBOG9mkt10DQ+NnA3FRrUYjCQ6KJluVmFz1wARfpBbAaAZVAMWpeusyYCqy8ZngWrXe5KpUNFFbcvefbJxezQ2i3DpHRSvtwHLAbVlQi9uTgVErQCFljoFNBrBsZ48H03u31jrNS3qQzKTrSGo515r1EKHluF6n9dOJOyLlTa9KARPfQY2tXweF0m5GG+ydeNboWeXYEsa1DSbYAbl1Tg0Y19IsVwbKUmWWEJCTmViTup7MJjX8R4VSdNqbXhMiImf/yO+vB8YAlMYE9mgGFai2ASC11aBB1o2MagDGT3VFULUSNV2jFg1za/BJOkZphkYwykqwSQPN6+yrbAHH3E8pfZHNSNfomyRQwiSVct/kLQ1EDkwJDjDzSNzwH/m5ggqsvgSOOmOPPK1Wzh4PtvdutTqth2xqkFTZ8moeDmliKJkL2q4hty/H1NDrNB+deORuyLGxMaT51QEhm1+3VAYDTRhbi3FgkBmT9OuW3DyFnCoAoFihpVSZRRYwj8nmaX3Pgdae6aowLZY0tYbOWkS2JvfJZMAogVKbhi9SGw0auu7D1hbKaqhaw/iSfaom1CMAsDA+PzI3twZTqwBHZSJIKq2hhxX0oIpg6Ze13xcYrnYfp6dxnxYTbPogRJOr1jo8A8wcE5+kZ5LKg6NScMXylSxfyO3n7wNbKQAxE0uc0zM3rSrBHjfTe7dSndZDNjVIdqH/+XFAuZHaRj1U2MbXKG3vddoYOmk5mifPKJH6K2vlWZt1vkpTu8jIASGApbWEsShJxyDJFVoAIC/qDURgzJPQm0AZi5tLFqmR+rEUMJU9JsJmUK1BDD4m/ejBwOc9OuAK988jvgr1VZ0CVrsZPUrmVgmObHrVbFodVDCDKoJlxiLZH8nAiC7AGJT1EVpu/jI/yIBn3XGKNeMBU5E3wKsULAHp247CoOiW3SDLscfIHBXaTaub8b1biU7zlk0NkkD3G97WoLNkJSaKXqdu15i3TgyUiuA+cBkgWsEVLrcUtmulMTDAuHY+yOCbrK03u6ZJ5wACaLb9Nhc8l+CYJJ4XEtCZRbKZViHzR4YbUQBLD4hh2YMPPPjkJlczzMNUAPK5MkpbaGPDhMsqhH02QUyCYzDjepCUAGmGA+hBlbBIPaiAahDNrdrE/yG3ZcL+SZ5Dk++JVo5NEgHkcyS98RgA+cDnCJaAQk7MI3tUYZ2ZYQ6OwfQKNEyrwOZ871ai0zxl04PkvGQlpoh5S69TN5HmHo4QNaQwgfBRelZZk2OUNTmzaQRLD44eLAeaIoMkB5A8lVYJKLnDXE6FFqVSFhmAUmW9bw6QKos4SQAnfvSggvYzb5jcD8mXNjZ8O9+lBRlXZ7U0x6QsPxdZahUAMwdIBs0YyMNAHk2tCVi2/cfsfrDJVSmdsEkN54dkcFTMHRWgfB6tbL4AkILBsx+bgbILOM5bNvJ7t9x985YeJDG7AUr7p9nNczt+Ll0au9dpY+mUsEqVAuME3iQLgoEKYOmKXTufpbXA2NoCQLpvmV8nTXd5hRaZiF4qYZazSNk5N+q0CiGlEtYogYa0hqoGgHWl5hqBOvI6PqinHk9AHiB5u24ST3fPJYOUywyGGUA60Kygh4PAIlU19Hrr1B+pdfC30jSgFOICd+ALnQtw9MDognYotlMB5BgY+XqrAcfN/N4tR6d5SQ+SM0S+ByV7/LQHQcpyH6hep42nk2SVtVKY8NRJDJjKzSaRgiVQaYOJJQxIed9kNrWS/wEua6ZF71lKRh/4QgP821pFk6pJwFGFUnSdpGSyNA6AyFqgGkAP2mcH0caDo/dVUm1B1plcMUBjqi1OKZnGJvVgUDC7um8GR1UN3LnV0OnOwMl+Snfx9DsX75cEWUCwSU2+sg6Uy4lUSFmkbztJ1oss0l+vrSBAuCfo37uuOq2XbGqQ5BvdZVSj0Gz00sPTtn2alK7Z67RxdYrg5IAwsMopYGk0UFvny6otm109m2TsMM3pswAkVVpmJaOzXjFgxC+0laFTGqQ0lBK+SOHPU9XQTWTsmSQGw1I6IJTRsKMJlDGoR+NgbgUQTLSNTHtEoJSFAjgYR/olQxAPB/AMPDj6DwZDxxqrgWORWgewJKUcOIr/mLBKD4xBJ9HOFk2gdO3jnxPRW8fzlL/3aVRrF/a4UZ7xA0Wn9ZBNDZLTGo2l1PjTzALLkbZr9zodGDoZhZhXSYCLiHRsQYIlr3OqQKXd1EpECKDJYkUUCHe2bQnpEiA51YOPkcfqth5I61iyTfmqNVaYXKuBmzZrMHRIXg0iEMh7YTTUaOJqu44nLirWuio+gUW25mRGNun8i4JNZgE6DJYMkBAA6cBymIA7m13JDwTcgKDQtRYAU/u2yoHSqGagTriMSu/NcsBxoz7jB4JO85ZNDZLA7FFM2/7ljnzyc1bym71OG0+nwCrJMTmurJOApfU1aCxARLBIk9ErrULwDlHamzYDQWYnpQc2mdyMKcE6fpmUiubWagDUtQMeIICpHMFrIPgfldaw40kws1rr2KPmVJAZICmBMS9BZ7xvkn2QwcSaA2Q1iADq2bD7T1VkkvLTJhmzlEDpGyEp154MGAQw8rnF/40D5xk/EHSap2x6kASajZo3huwY2kZUXUY4pWt2fdB6nTa2TsazuhwsDVQwwxrlQNCCQgEBItfhcv87LdK1lJguza7s/wpskv2TLf8JcMCoBHAoY1ygjjbAYOj+oxVgKf4/tIaajJ2pVQAkWRtMrGxytS0gqTOQLAXx6CEH53iQ5OU2gAzbKkBXKYvsGPHK7M8NZCJQsuRJJUk+KmYzxwPxGd/oOs1LepBEuYHlPrmtrWGnndMm0/b3Oh2YOjFYcnCPNLdacqZVgvKAGQEyMsnyldm3WEpOT1JABIucGT0ZGFUd/JKkrAvUARw4stlV3BtXZMAAk7FjnZMxjDHQdZ0E65BgkQwqodiAqL8q2aSMblXGRHCU3wMBjJ71FgGyxB6F6RVANL8WpuHi+81tM40Vtu0/GJ/xjarTvKQHSbSPhmTD8b4ujdR2TNcHodfpwNYJyCJhCTAU2WRNCGkEBGlqRWHWxey6XpM8QT36H1VgkaxH0dTKATtiXbJJWAN4sAx9P6eETMYBwGDr+G1rKGtdqoifVYSWZW41ye84H2PMfVSDCJZh3yADSwmQugJpZpMqBux0NL3yc8NA2TbmmDYYOVif8Y2o07ykB0kheUOUTAarofsrOa/X6cDVCYhgabmMGbF/sgCQHjRZpppekUVRqmhmDYEjyR9ogV+tXRK9rpKOTQ0y86o2oPHIm1kFi8xAEh4kHTZ70Jx5kzgFJKafBGAUaSjsZ4yMcpiwTDUYJj7IBCCNB8yEUc6i2kLF7od2koPlGd+IOq219CA5Q0oPwUplrezpvU7dZCPpJMGSwFGSJMytTdBsmVjC6cNWwpxNAmnN0MK5uR8SSoNgvblVR8BkoNTagSLgol7HoxQY/bJi9pgBJYByzVgJjkACimFd5DwG5pgzTc8eidmj/3ZAyQURBEAycIb1jGGugxyMz3ibDhtBp9VID5JCSg0SRtaFffIYTNmPjvun/X6v08GhE+fXGQGYls2viIAJ1e03gRQg5b6E/SiNELXJrJJB0VRAPQEUOQCxkxQo6zqwyYQ51nUI6qGMSQIIQInChM7uZojwF5n4z4wxFDUwDf8kg6MLNDKROTLo+20wMXAnAGcbQLbc4y7tmrfJZn7G11On9ZAeJIWUGnZWY2PGvl6nXqc2nWJ9VqAm5eqbCsAE0JqTx9KWmzf9JO0A0S87APTfFg4oycVyOgBR0MaZW8nqCJYSFOu4njLI9go9TvE4NZdbT0FRml6T5YoBrwUcNa8XTKxtANlSlUe24UZ+nnqd5iM9SGayPxuv7bd7nbr99oGsE5tWHTBFwIRCEvHK4JnzHhmo04aRLlDHB9IoP/MkR3nqCgoTpy8pKNJ+2Zth7QQYLkATgQIgCpDkZSCaWtsYpNRbBusAEQh5m/RPmjTvUTLEAH4MjoI5toIjkJpYC2xyfz1TB+MzfqBKD5KZtEVryY6nNFJaje181rm9TptHJ8kCg0nKA6Cl4tSTgDhPZevNA3VAWoIL2IGduHVdQfn6peQZIfzsGFA6zJQBbQCyCWAG9pgB5UyR01hlABlAUUTj5tGpYb80q85ijsBUcJSsUcqB+DwdzDqtl8zVS/3II49gx44dWFpawtLSEnbs2IFHH3106jnKT+2Tf/7sz/4sHHPOOec09l900UVronPeaCS25cv5cQrlBySXfN9y7fK9Tge/ToBII/HsMBQsKHykbq1BO4FhZSDio0A5ZYJ05aNBvb8v20dmCJghyPiaqcMFxzIXtkBvORRquAi1eGj8DBfjR273+/SWQ915i4e4ay1sAYaLoGrB/0788O+SGYCqgUtTqYYhkjXqKnQ3FUhGt/JxMl8ya4/VtN1GfJ42m05rKXNlkhdffDF++MMf4qabbgIA/OEf/iF27NiBv/3bv20958EHH0zWP/3pT+OVr3wlfvu3fzvZvnPnTrz1rW8N61u2bFmVrtNGNV1HPNzos5a7NnCv0+bWSR6bM8NpkzWXLyQCdoAmo5TjZaWb7NE6hqm86Zd42i1/TZ7EGGQB4yuZt6Wd5MwtJPaXWV7RlCqPWyFrXEn7HMjP02bQaR4yN5D81re+hZtuugl33HEHzjzzTADA+9//fpx99tm49957ccIJJxTP27ZtW7L+N3/zN3j+85+PX/qlX0q2H3LIIY1jVyuyUXg9b6BZjZ+fm1+z16nXabU6lUBzuiIislVeU8MBJYOi90XKKNgAhhoRMIEAmgCgiOJ2oB0cpT6F9ZC3yIDolzuBIlAOxPGBScuVzfQ8HWw6rbXMDSRvv/12LC0tBYAEgLPOOgtLS0u47bbbWkFSykMPPYQbb7wRH/7whxv7rrvuOlx77bU46qij8JKXvARXXHEFDjvssOJ19u3bh3379oX1PXv2NI4pNUjXbSWRJoZZD0nb/l6nXqeV6FSUDCjDNY1jizlYAnCACYAZY2CKAKDj1FsJQM4qHlAq/1ZikvxdYpS8b0p06oHadr1O3XVaL5kbSO7atQtHHnlkY/uRRx6JXbt2dbrGhz/8YRx22GH4rd/6rWT7JZdcgqc97WnYtm0b7r77blx++eX42te+hptvvrl4nauvvhpXXXXV8v+El1lmBZa2Y0rb5TVXOtLtdep16nLNeFA5BMEBTTSbAgCsBEWTsEb47Qlo8ndbZFHLbyf7JKOUx7flM85gigdi2/U6zU+nlcqyQfLKK6+cCThf+tKXACBO+CqEiIrbS/LBD34Ql1xyCRYXF5PtO3fuDMsnnXQSjj/+eJx++um48847ceqppzauc/nll+P1r399WN+zZw+OOeaYxGGc3/QuDbIam3xuYsjP63XqdVqtTlKXxJSVMy9pXg37IiOUkzUTENmi8Em641INE/PpNJH725L7BSBuhrbrdequ07xl2SD5mte8ZmYk6XHHHYevf/3reOihhxr7fvzjH+Ooo46a+Tuf//znce+99+L666+feeypp56KwWCA++67rwiSCwsLWFhYaGyf1qCrbYTlmhjy9V6n6cf1OnU7LtepeB2lU/AEEvBrnMNs0aeOBLNr/tslsCv8dmnbSu/Xwdx2K7lm19/qetxG1GnesmyQ3Lp1K7Zu3TrzuLPPPhu7d+/GF7/4RZxxxhkAgC984QvYvXs3nv3sZ888/wMf+ABOO+00POtZz5p57De/+U2Mx2Ns37599h9YhnQd2czj2is9r9ep23m9Tul5jXNngRsAZYYIZtfiAWmg0HJ0miZ923U7r9dpbWRueZJPf/rTcd5552Hnzp244447cMcdd2Dnzp04//zzk6CdE088ETfccENy7p49e/Dxj38c/+Jf/IvGdb/73e/irW99K7785S/je9/7Hj71qU/h5S9/OU455RQ85znPWdP/sNqXu+1lX01j9zp1k16nbrIanQiATPKXH2aDK9HrYLtPpXW5vdepfV1u3x8ACcy5mMB1112Hk08+Geeeey7OPfdc/Oqv/io+8pGPJMfce++92L17d7LtYx/7GIgIv/M7v9O45nA4xGc/+1m8+MUvxgknnIDXvva1OPfcc/GZz3wGxrRFDSxPpjWUmrJ/no3Y69RNep26Sa9TN+l16iYbUae1EkVtU6EfxLJnzx4sLS1h165dOPzww5N9sxzSq5G1NGH0OnU7r9ep23m9Tt3O63Xqdt566LRnzx5s27YNu3fvbvTjaylzZZIHosxq2Fn+kmnHzMuE0evU7bxep27n9Tp1O6/Xqdt5+0OntZRND5Kq5btNlvNATLvWtON6nXqdep16nXqdVnbcWsumnwWEWr5Lx0wTbjQS65Ttl+v5sjy/16nXqdep16nXqZtO85ZNzSS73mTV4Vj58LQ19rRrUIdjep16nXqdep16neL56yGbGiS7NrpsTLScI7dRtm3aiCs/v9ep16nXqdep16m7TvOWTQ2SwOxGz0dEpRFOPgpqu3bXRu116nXqdep16nVaPyCcJpseJIHpI558RMSNKBuzbbSTPwj5aKlNh16nXqdep16nXqfl6TQv6UEyky43vmvjtDXwtAdkpb/X69TrlEuvU7fze526nb8RdVoP2dQg2ZXWd3k4pIlhlqmh7dr5cb1OvU69Tr1OvU7drj0v2dQg2YX+58cB5UaSJoaSuSC/Pj8gJTNGr1OvU69Tr1OvUzed5i2bGiSB5ZsBlnMOMH1E1XadXqf0Gr1OUXqdukmvUzc5WHSap2x6kJyXrMQUMW/pdeomvU7dpNepm/Q6dZONqBPQgySA2Q1Q2l+ypct9bSaDtm29Tr1OvU69Tr1OK9dpXtKD5AzJGza3x5fs5myPl58uv9Hr1OvU69Tr1Ou09jqtRjY1SOaNl2/nfSS2S4d0qaFIHCc/06R0zV6nXqdep16nXqfZOs1bNjVItt1o2UB545e+Vypt1+516nXqdep16nXqptO8ZVODJDB7RCJHOVJWMopR2XJbI/c69Tr1OvU69Tp112mesulBEmg2et6YvD8fxbSdM+3haju/16nXqdep16nXaeU6zUs2/XySQHOEUjIdUOHYrue0ybT9vU69Tr1OvU69Tt11mpf0TBJpY0qRDde1EfmY0nH5yKrXqdep16nXqddpbXSal/QgKSRvpNKoZzUN1vYgzDqnbb3XqaxDvt7rVNYhX+91KuuQr/c6lXXI1/eXTmstPUjOkGkPwXJlrUZEvU7dpNepm/Q6dZNep26yEXVajfQgKaTUIGrKPnlMl8ac9bBM+/1ep16nXqdep16n9ZceJIVIO3q+bVpjzdMk0OvU69Tr1OvU67T/pAfJTPZnw7X9dq9Tt9/uder2271O3X6716nbbx8oYLdS6UEyk7ZoLYXURNB23Fr8Zq9Tr1OvU69Tr9PKdVpL6UEyk5LTmVqW8+OmPRBSSuaJXqdep16nXqdep7XRaS2lB0kvsxqoS6NQtpw/AKpwXK9Tr1OvU69Tr9Pa6DQP6UFSiGwUoNxAs2g+H5s/JISVNXSvU69Tr1OvU6/T/pO+LJ2XUmN03Tbtejw6mnZe2/5ep16nXqdep16nsk7rJT2T7CCzzAr5aCqXUmOrGft7nXqdep16nXqd1k6nlcqmBkmVfZf2Ae0NwqOdkllgOSaGXqdep16nXqdep5XpNG/Z1CBJ2Xdp32qvvdzjep26Hdfr1O24Xqdux/U6dTtuI+o0b9nUIDlLuo5s5nHtlZ7X69TtvF6nbuf1OnU7r9ep23n7Q6fVSg+SU2S5Ddpmmigdt9KHpdepm/Q6dZNep27S69RNNqJOq5W5guS/+Tf/Bs9+9rNxyCGH4AlPeEKnc4gIV155JY4++mhs2bIF55xzDr75zW8mx+zbtw9//Md/jK1bt+LQQw/FBRdcgB/+8Idrpve0hprmcJ5nI/Y6dZNep27S69RNep26yUbUaa1kriA5Go3w8pe/HH/0R3/U+Zx3vvOdeNe73oX3vve9+NKXvoRt27bh137t1/DYY4+FYy677DLccMMN+NjHPoZ/+Id/wM9+9jOcf/75qOt61TqXRizcwG0O5zaZdp1ep16nXqdep16n+ei0lqKIaO6/f8011+Cyyy7Do48+OvU4IsLRRx+Nyy67DG9605sAONZ41FFH4R3veAde9apXYffu3Xjyk5+Mj3zkI3jFK14BAPjRj36EY445Bp/61Kfw4he/eKY+e/bswdLSEnbt2oXDDz985vHyIehC+9fDNNDr1E16nbpJr1M36XXqJuuh0549e7Bt2zbs3r27Uz++UtlQxQTuv/9+7Nq1C+eee27YtrCwgOc973m47bbb8KpXvQpf+cpXMB6Pk2OOPvponHTSSbjtttuKILlv3z7s27cvrO/evRsA8Nhjj4XGyb+lLKcB5chn2nnTHqJep16nXqdep16n6TqxdXHePG9DgeSuXbsAAEcddVSy/aijjsL3v//9cMxwOMQTn/jExjF8fi5XX301rrrqqsb2448/fi3U7qWXXnrpZT/JT3/6UywtLc3t+ssGySuvvLIIOFK+9KUv4fTTT1+xUkqpZJ2IGttymXbM5Zdfjte//vVh/dFHH8Wxxx6LBx54YK43dx6yZ88eHHPMMfjBD34wVxPDWkuv9/pKr/f6y4Gq+4Gq9+7du/HUpz4VRxxxxFx/Z9kg+ZrXvAYXXXTR1GOOO+64FSmzbds2AI4tbt++PWx/+OGHA7vctm0bRqMRHnnkkYRNPvzww3j2s59dvO7CwgIWFhYa25eWlg6oh0LK4YcffkDq3uu9vtLrvf5yoOp+oOqt9XwzGZcNklu3bsXWrVvnoQue9rSnYdu2bbj55ptxyimnAHARsp/73Ofwjne8AwBw2mmnYTAY4Oabb8aFF14IAHjwwQdx9913453vfOdc9Oqll1566WVzylx9kg888AD+7//9v3jggQdQ1zW++tWvAgD+0T/6R/iFX/gFAMCJJ56Iq6++Gi972cuglMJll12Gt73tbTj++ONx/PHH421vexsOOeQQXHzxxQAc+3vlK1+JN7zhDXjSk56EI444Am984xtx8skn40UvetE8/04vvfTSSy+bTOYKkn/6p3+KD3/4w2Gd2eEtt9yCc845BwBw7733hmhTAPiTP/kTPP744/iX//Jf4pFHHsGZZ56J//7f/zsOO+ywcMy73/1uVFWFCy+8EI8//jhe+MIX4pprroExppNeCwsLuOKKK4om2I0uB6ruvd7rK73e6y8Hqu693tNlXfIke+mll1566eVAlL52ay+99NJLL720SA+SvfTSSy+99NIiPUj20ksvvfTSS4v0INlLL7300ksvLdKDZC+99NJLL720yEELkgfqXJaPPPIIduzYgaWlJSwtLWHHjh0zZ09RShU/f/ZnfxaOOeeccxr7Z1VOmrfev//7v9/Q6ayzzkqO2Wj3ezwe401vehNOPvlkHHrooTj66KPxe7/3e/jRj36UHDeP+/2+970PT3va07C4uIjTTjsNn//856ce/7nPfQ6nnXYaFhcX8Uu/9Ev4y7/8y8Yxn/jEJ/CMZzwDCwsLeMYznoEbbrhhVTquVu9PfvKT+LVf+zU8+clPxuGHH46zzz4bf/d3f5ccc8011xSf97179+43vW+99daiTt/+9reT4zba/S69g0opPPOZzwzHrMf9/h//43/gpS99KY4++mgopfBf/st/mXnOuj3fdJDKn/7pn9K73vUuev3rX09LS0udznn7299Ohx12GH3iE5+gb3zjG/SKV7yCtm/fTnv27AnHvPrVr6Zf/MVfpJtvvpnuvPNOev7zn0/PetazaDKZrIne5513Hp100kl022230W233UYnnXQSnX/++VPPefDBB5PPBz/4QVJK0Xe/+91wzPOe9zzauXNnctyjjz66JjqvVO9LL72UzjvvvESnn/70p8kxG+1+P/roo/SiF72Irr/+evr2t79Nt99+O5155pl02mmnJcet9f3+2Mc+RoPBgN7//vfTPffcQ6973evo0EMPpe9///vF4//3//7fdMghh9DrXvc6uueee+j9738/DQYD+s//+T+HY2677TYyxtDb3vY2+ta3vkVve9vbqKoquuOOO1as52r1ft3rXkfveMc76Itf/CJ95zvfocsvv5wGgwHdeeed4ZgPfehDdPjhhzee+7WU5ep9yy23EAC69957E53kc7oR7/ejjz6a6PuDH/yAjjjiCLriiivCMetxvz/1qU/Rv/7X/5o+8YlPEAC64YYbph6/ns/3QQuSLB/60Ic6gaS1lrZt20Zvf/vbw7a9e/fS0tIS/eVf/iURuQdqMBjQxz72sXDM//k//4e01nTTTTetWtd77rmHACSNePvttxMA+va3v935Or/xG79BL3jBC5Jtz3ve8+h1r3vdqnUsyUr1vvTSS+k3fuM3WvcfKPf7i1/8IgFIOqK1vt9nnHEGvfrVr062nXjiifTmN7+5ePyf/Mmf0Iknnphse9WrXkVnnXVWWL/wwgvpvPPOS4558YtfTBdddNEaab18vUvyjGc8g6666qqw3vWdXo0sV28GyUceeaT1mgfC/b7hhhtIKUXf+973wrb1uN9SuoDkej7fB625dbkyay5LADPnslyt3H777VhaWsKZZ54Ztp111llYWlrqfP2HHnoIN954I175ylc29l133XXYunUrnvnMZ+KNb3xjmI9tf+p966234sgjj8Sv/MqvYOfOnXj44YfDvgPhfgNuNgKlVMOsv1b3ezQa4Stf+UpyHwDg3HPPbdXz9ttvbxz/4he/GF/+8pcxHo+nHrMW93aleudircVjjz3WmOnhZz/7GY499lg85SlPwfnnn4+77rprTXRerd6nnHIKtm/fjhe+8IW45ZZbkn0Hwv3+wAc+gBe96EU49thjk+3zvN8rkfV8vjfUfJL7U+Y1l+VydTjyyCMb24888sjO1//whz+Mww47DL/1W7+VbL/kkktCAfm7774bl19+Ob72ta/h5ptv3m96v+QlL8HLX/5yHHvssbj//vvxlre8BS94wQvwla98BQsLCwfE/d67dy/e/OY34+KLL05mUFjL+/2Tn/wEdV0Xn802PXft2lU8fjKZ4Cc/+Qm2b9/eesxa3NuV6p3Lv/t3/w7/7//9vzCZAeDqPV9zzTU4+eSTsWfPHvz5n/85nvOc5+BrX/vamswRuxK9t2/fjr/+67/Gaaedhn379uEjH/kIXvjCF+LWW2/Fc5/7XADtbbJR7veDDz6IT3/60/joRz+abJ/3/V6JrOfzfUCB5IE4lyXQXe/S73fVgeWDH/wgLrnkEiwuLibbd+7cGZZPOukkHH/88Tj99NNx55134tRTT90ver/iFa9IdDr99NNx7LHH4sYbb2yA/HKuu173ezwe46KLLoK1Fu973/uSfSu537Nkuc9m6fh8+0qe9+XKSn/jP/2n/4Qrr7wSf/M3f5MMZs4666wkwOs5z3kOTj31VLznPe/Bv//3/36/6H3CCSfghBNOCOtnn302fvCDH+Df/tt/G0Byuddcqaz0N6655ho84QlPwG/+5m8m29frfi9X1uv5PqBA8kCcy3I5en/961/HQw891Nj34x//uDEiKsnnP/953Hvvvbj++utnHnvqqadiMBjgvvvua+2010tvlu3bt+PYY4/FfffdB2Bj3+/xeIwLL7wQ999/P/7+7/9+5jx8Xe53m2zduhXGmMYIWD6buWzbtq14fFVVeNKTnjT1mOW02VrrzXL99dfjla98JT7+8Y/PnN1Ha41/8k/+SXhuViur0VvKWWedhWuvvTasb+T7TUT44Ac/iB07dmA4HE49dq3v90pkXZ/vZXkwD0BZbuDOO97xjrBt3759xcCd66+/Phzzox/9aM0DSb7whS+EbXfccUfnQJJLL720EWXZJt/4xjcIAH3uc59bsb4sq9Wb5Sc/+QktLCzQhz/8YSLauPd7NBrRb/7mb9Izn/lMevjhhzv91mrv9xlnnEF/9Ed/lGx7+tOfPjVw5+lPf3qy7dWvfnUjsOElL3lJcsx555235oEky9GbiOijH/0oLS4uzgzeYLHW0umnn05/8Ad/sBpVE1mJ3rn89m//Nj3/+c8P6xv1fhPFwKNvfOMbM39jHvdbCjoG7qzX833QguT3v/99uuuuu+iqq66iX/iFX6C77rqL7rrrLnrsscfCMSeccAJ98pOfDOtvf/vbaWlpiT75yU/SN77xDfqd3/mdYgrIU57yFPrMZz5Dd955J73gBS9Y85SEX/3VX6Xbb7+dbr/9djr55JMbKQm53kREu3fvpkMOOYT+w3/4D41r/q//9b/oqquuoi996Ut0//3304033kgnnnginXLKKftN78cee4ze8IY30G233Ub3338/3XLLLXT22WfTL/7iL27o+z0ej+mCCy6gpzzlKfTVr341CYnft28fEc3nfnNo/wc+8AG655576LLLLqNDDz00RCG++c1vph07doTjOUT+X/2rf0X33HMPfeADH2iEyP/P//k/yRhDb3/72+lb3/oWvf3tb59bSkJXvT/60Y9SVVX0F3/xF63pM1deeSXddNNN9N3vfpfuuusu+oM/+AOqqioZ7Ky33u9+97vphhtuoO985zt0991305vf/GYCQJ/4xCfCMRvxfrP87u/+Lp155pnFa67H/X7sscdCHw2A3vWud9Fdd90VIsb35/N90ILkpZdeSgAan1tuuSUcA4A+9KEPhXVrLV1xxRW0bds2WlhYoOc+97mNkdXjjz9Or3nNa+iII46gLVu20Pnnn08PPPDAmun905/+lC655BI67LDD6LDDDqNLLrmkEVae601E9Fd/9Ve0ZcuWYi7eAw88QM997nPpiCOOoOFwSL/8y79Mr33taxs5ieup989//nM699xz6clPfjINBgN66lOfSpdeemnjXm60+33//fcXnyv5bM3rfv/FX/wFHXvssTQcDunUU09NWOmll15Kz3ve85Ljb731VjrllFNoOBzScccdVxxAffzjH6cTTjiBBoMBnXjiiUmnvlayHL2f97znFe/tpZdeGo657LLL6KlPfSoNh0N68pOfTOeeey7ddttt+1Xvd7zjHfTLv/zLtLi4SE984hPpn/7Tf0o33nhj45ob7X4TOYvNli1b6K//+q+L11uP+81Mtq3d9+fz3c8n2UsvvfTSSy8t0udJ9tJLL7300kuL9CDZSy+99NJLLy3Sg2QvvfTSSy+9tEgPkr300ksvvfTSIj1I9tJLL7300kuL9CDZSy+99NJLLy3Sg2QvvfTSSy+9tEgPkr300ksvvfTSIj1I9tJLL7300kuL9CDZSy+99NJLLy3Sg2QvvfTSSy+9tMj/B5gYPM+k+phLAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZglRZX//Y2IzKzqBrrZuwFlERFkUdlkU1xQFlEBF3p0ZNRRfHEZUcYFFBVkFB2VEVRQRhBxQUYRkBGkURBQW3+AgI46js7ooNg9LCrN0lU3M+K8f8SSEZGReW81VdVFV57nuU/mjYzMPDeX+4lz4sQJRkSEXnrppZdeeumlIXxdK9BLL7300ksvc1V6SPbSSy+99NJLi/SQ7KWXXnrppZcW6SHZSy+99NJLLy3SQ7KXXnrppZdeWqSHZC+99NJLL720SA/JXnrppZdeemmRHpK99NJLL7300iI9JHvppZdeeumlRXpIJuS0004DYywo23777fHCF75wVs7/yCOP4LTTTsP3v//9xraLLroIjDH8/ve/nxVd5pL8/ve/B2MMF1100bQd8+KLL8bf/M3fYOeddwbnHNtvv32y3oMPPoh3vetdOPTQQ7HFFluAMYbTTjtt2vSYLTn11FPxwhe+ENtssw0YY3jNa16TrPf5z38eRx99NLbffnssWLAAT3ziE/HGN74RK1euHPlcZVnirLPOwh577IEFCxZg4403xoEHHogf/ehHjbqf+tSnsMsuu2BsbAw77LADTj/9dJRl2ah3ww034PnPfz623HJLbLjhhnjKU56Cc845B1JKV8c+J22fww8/fKS6X/va1xrn/5//+R+85CUvwcYbb4wNN9wQz3/+8/HTn/60UW/77bdPHvOEE04I6l1//fX4+7//e+yyyy7YYIMNsM022+Coo47Cbbfd1jjma17zmuQxd9lll6Def/3Xf+Ed73gH9t57b2y88cbYdNNNcdBBB+Eb3/hG4i5pufLKK/GsZz0LixYtwgYbbIDddtsN559/flBnMBjg/e9/P3bYYQcURYHtttsOp5xyCtasWdM43m9/+1scd9xx2HbbbbFgwQLsuOOOOOmkk3D//fePdJ0YYxgfHw/qvv71r8fuu++OjTfeGAsWLMCTnvQkvPOd78R9993X+rumQ7IZPfpjVF7/+tcHL9JsyyOPPILTTz8dAPDsZz872HbkkUdixYoV2GqrrdaBZuuffOlLX8KqVavw9Kc/HUqp5B8zANx///04//zz8dSnPhVHH300Pv/5z8+yptMj//Iv/4KnPOUpePGLX4wLL7ywtd4HPvABPOc5z8GHP/xhbLPNNvj1r3+NM844A1deeSVuv/12LFmypPM8Ukocc8wx+MEPfoB3vetdOPDAA/Hwww/jtttuw8MPPxzU/dCHPoT3ve99OPnkk3HooYfilltuwamnnoq77747+KP+7ne/i8MOOwwHH3ww/vVf/xUbbLABvvWtb+HEE0/Ef//3f+Pss88GAGy11VZYsWJFQ6crrrgCH/3oR3HMMcc0tv3DP/wDXvnKVwZlO+20U/D93nvvxTOf+UxssskmuPDCCzE+Po4zzzwTz372s3HLLbdg5513DuofdNBB+PjHPx6UxdftvPPOw/33348TTzwRu+66K+6991584hOfwP77749rr70Wz33uc4P6CxYswPXXX98o82X58uX49re/jeOOOw777rsvqqrCpZdeipe//OU4/fTT8f73vz+o/5GPfATvfe97ccIJJ+CUU05Bnuf4z//8TwwGg6DeK17xClx99dV4//vfj3333RcrVqzAP/3TP+EXv/gFvvWtbwXXaf/998eiRYtwxhlnYNttt8Xtt9+OD3zgA7jhhhtw2223gXNtn11++eWYnJwMznPXXXdh2bJljfv08MMP4w1veAOe+MQnYnx8HLfeeis+9KEP4eqrr8btt9+OoigwI0K9jCTbbbcdHXnkkWu172AwoLIsR65/7733EgD6wAc+sFbnW1/ld7/7HQGgL3zhC9N2TCmlWz/yyCNpu+22S9ZTSpFSioge2/fH/70bbLABvfrVr07W+7//+79G2S233EIA6Iwzzhh6nn/5l38hzjmtWLGis959991H4+Pj9IY3vCEo/9CHPkSMMfrFL37hyv72b/+WxsbG6KGHHgrqHnroobRo0aKhOj372c+mhQsX0gMPPODK7DP1sY99bOj+73znOynPc/r973/vyh544AHafPPN6dhjjw3qjvp/kbrODz74IC1ZsoQOOeSQoPzVr341bbDBBkOPee+997pn1ZcjjzySFi5cSBMTE67s1ltvJc45ffSjH+085ooVKwgAfeITnwjKP/zhDxMAWr58uSv713/9VwJA3/3ud5N1f/rTn3ae67TTTkvun5Jzzz2XAND3vve9oXXXVuaNu/WKK64AYwzf+973GtvOO+88MMbws5/9DEDa3Wrl8ssvx1Oe8hSMj4/jCU94As4555xg+/e//30wxvClL30J//iP/4htttkGY2Nj+O1vf4t7770Xb3rTm7Drrrtiww03xJZbbonnPve5uPnmm93+v//977HFFlsAAE4//XTnerBusZS79dnPfjZ233133HLLLXjmM5+JhQsX4glPeAI+8pGPQCkV6PeLX/wChx56KBYuXIgtttgCb37zm/Htb38bjLGke9cXe11+9rOf4eUvfzkWL16MTTfdFCeddBKqqsKvf/1rHH744dhoo42w/fbb45//+Z8bx7jrrrvwqle9CltuuSXGxsbw5Cc/GZ/4xCcaev7pT3/Csccei4022giLFy/GsmXLsGrVqqRet956K1784hdj0003xfj4OPbcc0/827/9W+dvsWJbtMPE3ofplhNPPBFjY2O49957k9vf+MY3YsGCBfi///u/aTnfqL93yy23bJTtvffeEELgD3/4w9D9zz77bBx88MHYf//9O+t95zvfwcTEBF772tcG5a997WtBRLjiiitcWZ7nKIqiYTltvPHGDddcLP/93/+NG2+8EcceeywWLVo0VP+UXH755Xjuc5+L7bbbzpUtWrQIL3nJS3DVVVehqqopHzN1nTfccEPsuuuuI13nlGy++ebJZ/XpT386HnnkEfz5z392ZZ/+9KcxNjaGf/iHf+g85g9/+EMAwAte8IKg3HZBXXbZZa4sz3MAwOLFi4O6G2+8MQB03isiwhe+8AU84QlPaFjRKbH/lVk2c07ReQPJF77whdhyyy3xhS98obHtoosuwl577YWnPOUpnce444478La3vQ1vf/vbcfnll+PAAw/EiSee2HCpAMApp5yCu+66C5/97Gdx1VVXYcstt3QP5wc+8AF8+9vfdg/Ds5/9bAeorbbaCt/5zncAAK973euwYsUKrFixAu973/s6dVu1ahX+9m//Fq961avwrW99C0cccQROOeUUfPnLX3Z1Vq5ciWc961n49a9/jfPOOw8XX3wxHnzwQbzlLW/pPHYsxx57LJ761Kfisssuw/HHH49/+Zd/wdvf/nYcffTROPLII92fybvf/W5885vfdPvde++9OPDAA7F8+XKcccYZ+Na3voXnPe95eMc73hHosGbNGjzvec/D8uXLceaZZ+LrX/86li5dimXLljV0ueGGG3DQQQfhr3/9Kz772c/iyiuvxNOe9jQsW7ZsWvsuZ0IefvhhXHDBBXjhC1/oXvZYjj/+eExMTOBzn/tcUF5V1UgfmsZJfm688UZIKbHbbrt11vvDH/6A3//+99hjjz3wnve8B0uWLEGWZdhtt93wxS9+Maj7H//xHwCAPfbYIyjfaqutsPnmm7vtAHDCCSdgMBjgrW99K/70pz/hr3/9K770pS/h8ssvx7ve9a5OnS688EIQEV7/+tcnt3/kIx9BURRYuHAhnvGMZwTuQ0A/k//93/+d/I94ylOegjVr1uB//ud/gvKbbroJG220EfI8x6677opPfOITQd9pmzzwwAP46U9/mrzOa9aswdKlSyGEwOMe9zi85S1vCaDXJTfccAO22GKLAMw33XQTnvzkJ+Oyyy7Dzjvv7I578sknB+5Wuz42NhYc0363BgYAHH300dh2223xj//4j/jFL36Bhx56CDfddBM+8pGP4EUvehGe/OQnt+r43e9+F//7v/+Lv//7v29tlFZVhYcffhg//OEP8b73vQ/PeMYzcNBBB410DdZKZsxGnYNy0kkn0YIFC+ivf/2rK/vlL39JAOhTn/qUK/vABz5A8aXZbrvtiDFGd9xxR1D+/Oc/nxYtWkQPP/wwERHdcMMNBIAOPvjgofpUVUVlWdIhhxxCxxxzjCvvcud94QtfIAD0u9/9zpU961nPIgD0k5/8JKi766670mGHHea+v/Od72y4sIiIDjvsMAJAN9xwQ6e+9rrELpenPe1pBIC++c1vurKyLGmLLbagl7zkJa7s5JNPTur5xje+kRhj9Otf/5qIiM477zwCQFdeeWVQ7/jjj2+4W3fZZRfac889G+7sF77whbTVVlsF7sVh0uVu9WW63K1f//rXCQBdcMEFnfW22WYb2m233YIyACN9ulzTXe7WWFavXk1PfvKT6fGPfzw9+OCDnXWta27RokW066670r/927/RtddeSy972csIAJ1//vmu7vHHH09jY2PJ4zzpSU+iQw89NCj74Q9/SFtvvbX7fUII+ud//udOfaqqom222YZ22WWXxrY//elPdPzxx9O//du/0c0330xf+cpXaP/99ycA9K//+q+u3t13300A6Mwzz2wc46tf/SoBoB/96Eeu7E1vehNdeOGFdOONN9IVV1xBf/u3f0sA6FWvelWnrkTarZxlGd16661B+VlnnUVnnXUWLV++nJYvX07vfe97aeHChbTLLrsMvSfWBXr22WcH5WNjY7TRRhvRJptsQp/+9Kfp+uuvp/e+970khKBXvvKVrt4VV1xBAOhLX/pSsP8FF1xAAOhJT3pSUP6nP/2JDjjggOBZfPnLXx64elOybNkyEkLQH//4x+R2+2zZzwte8AJavXp15zEfrcwrSP7Hf/wHAaDPfe5zruyd73wnjY2N0f333+/K2iC5++67N45poXXzzTcTUQ3J+GG0ct5559Gee+5JY2Njwc32X+C1geTSpUsbdf/mb/4mOO7Tn/502mOPPRr1LrrooilB0sLMyite8QpijNGaNWuC8gMOOID23nvv4Py77rpr47g/+clPCACdd955RER07LHH0kYbbdSoZ6+t/eP/zW9+QwDo4x//OJVlGXxsX8Uvf/nLzt/ky2xD8h3veAcBoNtuu82VrVixogHNI488khhjQV/cLbfcMtLnvvvuaz3/qJBcs2YNPe95z6OFCxfSj3/846H1f/jDHxIAKooi6L9TStFee+1Fj3vc41zZ8ccfT+Pj48njPOlJTwoaebfeeittueWW9KIXvYiuuuoquv766+nUU0+loijogx/8YKs+//7v/z5yvyORjiHYc889abPNNnONLwvJj3zkI436FpLD+l/f8pa3DO2TO/XUUxuN9i75xje+QQDorLPOaq1z9dVXU1EU9LKXvazRV5nnOQGgSy65JCh/29veRgDoN7/5DRERTU5O0hOf+ETaeuutafny5fSXv/yFrrnmGlqyZAkJIYL/mT//+c+077770m677UZf+cpX6KabbqJzzz2XttpqKzr00ENb4zPuv/9+Ghsb6+zLfeihh+iWW26hG2+8kc4++2zaaqutaL/99nNGykzIvHG3AsBuu+2Gfffd17lcpZT48pe/jKOOOgqbbrrp0P2XLl3aWhaHNqeiT8866yy88Y1vxH777YfLLrsMP/7xj3HLLbfg8MMPT4ZRT0U222yzRtnY2Fhw3Pvvvz8ZlTgsUjGW+FpZN1Xc11AUBSYmJoLzp67L1ltv7bZ36Rlff9tP9453vAN5ngefN73pTQAw4+Hhj0b+8pe/AEDQR3bFFVfgve99b1Bv8eLFICL89a9/dWVPe9rTRvqM8lx3yeTkpItS/da3voX99ttv6D72Wdxll12C/jvGGA477DD88Y9/xD333OPqTkxM4JFHHmkc589//nOg/5vf/GYsWbIEl19+OV74whfiOc95Ds444wycfPLJOO200xruTisXXHAB8jzH3/3d3430m/M8x7Jly3D//ffjN7/5DQBgk002AWOs8Z5bPYHmexHLq171KgDAj3/84+T2008/Hf/0T/+ED33oQyN3gRxzzDHYYIMNWo957bXX4iUveQme//zn4ytf+UrDhWnv1WGHHRaUH3HEEQDghrcURYFrrrkG2267LQ499FBssskmeNnLXob3vOc92GSTTbDNNtu4fT/60Y/ijjvuwHXXXYdXvvKVeOYzn4k3vvGN+MpXvoLly5fjK1/5SlLXL3/5y5icnGx1iQPABhtsgH322QcHH3ww3vrWt+Lyyy/HT37yk0Z3xHTKvBsC8trXvhZvetOb8Ktf/Qr/8z//g5UrVzaCBtokFThiy2JIpfzpX/7yl/HsZz8b5513XlD+4IMPjqr+o5LNNtssGQDSFhAzE+dPjbP705/+BEAHHNh6/+///b9GvVhPW/+UU07BS17ykuQ547D8uSQ2sMHCEtC/8b777kNZli4Awv4J+4EQdtsw+cIXvtA6FnKYTE5O4uijj8YNN9yAK6+8EocccshI++24445YuHBhchuZPlIbQGT7In/+858HALbXYffdd3dld9xxB17xildACBEcc99994VSCr/61a/whCc8Idh2zz334N///d/x4he/OBkk0yaxnnas6M9//vNG3Z///OdYsGBB49zDjunL6aefjtNOOw2nnXYa3vOe94yspz1u6pjXXnstjj76aDzrWc/CZZddlhwi8ZSnPCX5/qd0feITn4gVK1bg7rvvxp///GfsuOOOeOCBB3DiiSfi4IMPdvXuuOMObLPNNo0G8b777gsAQT+zLxdccAGWLFkypfHo++yzDzjn+K//+q+R95mqzCtLEtBjfcbHx3HRRRfhoosuwjbbbINDDz10pH1/8Ytf4M477wzKvvrVr2KjjTbCXnvtNXR/xlij4/tnP/tZY0yXrfNorctYnvWsZ+E//uM/8Mtf/jIoTw2angk55JBD8Mtf/rIx+Priiy8GYwzPec5zAADPec5z8OCDDzaCJ7761a8G33feeWfstNNOuPPOO7HPPvskPxtttNHM/qhHIU996lMBIBhc/+Mf/xhZluEnP/kJAD0g/yc/+Qme+MQnYsMNN3T1brnllpE+L3rRi9ZKN2tBXn/99bjssssalkaXZFmGo446Cr/61a+CKGwiwne+8x3suOOOroFz+OGHu/fRFxvFffTRR7uyrbfeGrfeemsj+MW+P4973OMaulx88cUoyxKve93rRta/LEtceuml2HzzzfHEJz7Rldvr4UedPvjgg/jmN7+JF7/4xUMjLC+++GIAaET8nnHGGTjttNNw6qmn4gMf+MDIegLAN77xDTzyyCONYy5fvhxHH300nvGMZ+CKK65o/O9YeelLXwoAuOaaa4Lyq6++GpxzBzZfttlmG+yxxx5YuHAhPvaxj2GDDTYIru/WW2+NP/7xj7j77ruD/bru06233oqf/exnePWrXz2lSNUbb7wRSqngPk27zJgjdw7LK17xCtpyyy2pKAp6z3ve09je1ie5zTbb0LbbbksXXnghXXPNNa4z3h9jZPvNvv71rzeO+/73v58YY/T+97+fvve979G5555LS5cupR133LHRF7bddtvRzjvvTNdeey3dcsstrg+yrU8yDuwg0uOq/OPefffdtNlmm9G2225LF110EV1zzTV03HHH0XbbbUcA6MYbb+y8bva63HvvvY3zpMZvxXrdc889tM0229DSpUvp/PPPp2uvvZbe+ta3EmOM3vSmN7l6Dz/8MD3pSU+ixYsX06c//Wm69tpr6cQTT6Rtt922EYxy/fXX09jYGB166KH01a9+lW688Ua6/PLL6cMf/jC97GUv6/w9RES/+MUv6Otf/zp9/etfp7333pu22GIL9z0OcLr66qvp61//Ol144YUuEMHW9ftE7D0aNp7zgQceoC233JI222wz+upXv0rvf//7afPNN6c3vvGNtO+++9K3v/1t+pu/+RvX7zod8v3vf9/pPD4+Ts9+9rPd93vuucfVe+ELX0gA6L3vfS+tWLEi+MTXZccdd6Qdd9wxKPvtb39LG2+8Me288850ySWX0Le//W065phjiDHWeDf+6Z/+iRhj9J73vIe+//3v08c+9jEaGxuj448/Pqh3zjnnEAA64ogj6IorrqDly5fTu9/9bsqyjJ73vOclf+8uu+xCj3/841sDuN7+9rfTW97yFrrkkkvohhtuoIsvvpj23Xff5P275557aKuttqI99tiDLr/8crr66qvp4IMPpo022oh+9atfuXpf+cpX6KUvfSldeOGF9L3vfY8uu+wydx9f85rXBMf8+Mc/TgDo8MMPb1xnv4/z97//PR144IF0zjnn0NVXX03XXHMNnXzyyTQ+Pk677bZb0F99880304IFC2j77ben66+/vnFMf5zoYDCgvfbaixYvXkxnn302XXfddfTud7+bhBD0lre8JdD1ox/9KH3xi1+kG264gb72ta/RS17yEuKc01e+8pWg3q233kpFUdCTn/xk+uIXv0jXX389nXPOObTlllvSkiVLGv8fREQnnHBCMt7BylVXXUUvfvGL6fOf/zxdd911dPXVV9MHP/hB2nTTTemJT3xiEIw53TIvIbl8+XIXMPNf//Vfje1tkDzyyCPpG9/4Bu22225UFAVtv/32jQ7zLkhOTk7SO97xDtpmm21ofHyc9tprL7riiisaMCMi+u53vxsE+NgAi0cDSSIdvPS85z2PxsfHadNNN6XXve519MUvfpEA0J133tlx1R49JImI/vd//5de+cpX0mabbUZ5ntPOO+9MH/vYxxp/Yn/84x/ppS99KW244Ya00UYb0Utf+lL60Y9+lPzzuvPOO+nYY4+lLbfckvI8p6VLl9Jzn/tc+uxnP9v5e/zflPrEgTm2MZH6+PfjU5/6FAGg73znO0PPf9ttt9EBBxxAY2NjtOOOO9K1115L9913Hx1xxBG0cOFCWrp0Kb3vfe9LDg5fG7GR0KmPH7jVVgcAPetZz2pcl1TA089//nM68sgjaaONNqLx8XHaf//96aqrrkrqdfbZZ9OTnvQkKoqCtt12W/rABz5Ag8GgUe+yyy6jZzzjGbT55pvTBhtsQLvtthudccYZjQQDRHUA0fvf//7W63HBBRfQ05/+dNp0000pyzLaZJNN6LDDDqNrr702Wf+3v/0tHX300bRo0SJauHAhHXLIIUHgFZEOvjrkkENo6dKllOc5LVy4kPbdd18699xzG8951/3w/4P+/Oc/0zHHHEPbb789LViwgIqioJ122one9a53NQDR9UzH95lIB8z8f//f/0dLliyhPM/pSU96UvKdPP3002nHHXeksbEx2njjjenwww+nm266KXmdfvrTn9IxxxxDj3vc42hsbIye8IQn0Otf/3q66667GnUfeeQRWrx4ceeIgF/96lf0spe9jLbbbjsaHx+n8fFx2mWXXeid73xnEHQ5E8KIpnEgVS+PSXnDG96ASy65BPfff//MpXaaR3Lsscfid7/7HW655ZZ1rUovvfTyKGXeBe7Md/ngBz+IrbfeGk94whPw0EMP4d///d/x+c9/HqeeemoPyGkQIsL3v//9IIlDL7308tiVHpLzTPI8x8c+9jH88Y9/RFVV2GmnnXDWWWfhxBNPXNeqrRfCGHPDG3rppZfHvvTu1l566aWXXnppkRkdAnLTTTfhRS96EbbeemswxoJkxW1y4403Yu+993YJxD/72c826lx22WXYddddMTY2hl133RWXX375DGjfSy+99NLLfJcZheTDDz+Mpz71qfj0pz89Uv3f/e53eMELXoBnPvOZuP322/Ge97wHb33rW4MM8ytWrMCyZctw3HHH4c4778Rxxx2HY4891o0r66WXXnrppZfpkllztzLGcPnllweDg2N597vfjW9961v41a9+5cpOOOEE3HnnnW4g6rJly7B69epg8Ovhhx+OTTbZBJdccsmM6d9LL7300sv8kzkVuLNixYpG9pvDDjsMF1xwgUvTtWLFCrz97W9v1PnkJz/ZetzJyclg9mulFP785z9js802m5E5AnvppZdeeplZISI8+OCD2HrrrUeeJ3VtZE5BctWqVY3E1kuWLEFVVbjvvvuw1VZbtdbpyj965pln4vTTT58RnXvppZdeell38oc//CGZ6m66ZE5BEmgmBrfeYL88VafLIjzllFNw0kknue8PPPAAtt12W/z2N7/Bhoncngw6NUXb97Y6MGX+tmH7xutI1O916nVaG50AQFH9XZF+VxQA28lCRNF2ux6WW12Ud/S6LrwybzumLvFbbN9rzvwygJuatpgzf53B/h3YcuaXme/2mMzfn5RRXgGkwOx3ReE2AMz91rC8sT70R3NvyUGM6XUhQDwDeNb5/MzXZ/zBBx/ETjvtNOP5mecUJJcuXdqwCO+55x5kWeZm2Wir0zXd09jYWDLB74YbbeSmKZrKTY6XqW2p/dqOhcT2Xqdep+nQyUJSqhqOFoApKNoyBTJ1zfEiuOrjkluHty2+JlKlrlAowqeg9zt82OlyD24sBF4NQQ1ECz4LTc4AYdf9/RBB0gek8r9HoPTWWQRQqAiSPjRZ5Brk3JUR4wDPAMZBXGhAZoUuw2ggmS/PuCuf4S6zOQXJAw44AFdddVVQtnz5cuyzzz5uaqADDjgA1113XdAvuXz5chx44IFTPh9D84Lb8tTNj29a6sFJ3fSuByHe3na7e516naaiE1ADUhEagJSqCUZJ1LA2LQxtHQtcfXyCNGRUCvW6WcpIQZWAJY/gKBwUmfnOTD297so50+8vAzgjMDAIbuEHB03BGAgERtAWGtfr4AycCMqDbn2BQ0AyJQN4uu22jtuH3HrDkoy/+6BkGpLEGBjjAK9APAOjzFx0BYhMl0WwBObvMz6zaKxlRiH50EMP4be//a37/rvf/Q533HEHNt10U2y77bY45ZRTcPfdd7spZE444QR8+tOfxkknnYTjjz8eK1aswAUXXBBErdq5yz760Y/iqKOOwpVXXonvfve7+MEPfjBl/VI30QoboY5f17+po7SKUt9T9Xqdep3WRqdgG5EDpIyAKKm2GFPrFoqlUg6E9jgWen4ZoMulZ1aOYEgCqK3FGowsgKZgzJVxxpAL5sApuIaytQgtMImHsIQydRU5UMK3RHxL0AekqkI4yqq2LD0ossjCDJax+G7W+MOrAIxECowrUAaAZ/0zPsI5pktmFJK33nqrmyMQgOsXfPWrX42LLroIK1euxF133eW277DDDrj66qvx9re/HZ/5zGew9dZb45xzznFzngHAgQceiK997Ws49dRT8b73vQ877rgjLr300pFmTB9F2loq/k2LH5i43C9L1W80XBP79Dr1Oj1anYDairRWowWkVNqlKlUNRAtORSEYS6UcFP11H7RKkYOhhSYQulrbYOngaFZ8K5IzC0vm3KUWlDnn4JwhN9tzoYGZGWAKxqBAGrrcu2oGlORdYEW1FWtB5wOSGUjGcHTlnkuW7HyXSi9JhfNfWmHcTB7NBZgQGtbW3aq43p9XQFbo4wt9AS0og2Nh5p+nufqMz7TMy7R0q1evxuLFi7Fq1SosXrQouCFtboNhEu8f3+Bh20Y9Vq9Tr9OoOmmAWShqS69SNRhtP6VUNSBLqSCJUEpCqciBsZQairbMwdEeJ/juu1ybsEyJBWToUvUsSKbr5JyDMyAX9dICMxdmO9ffM65hKJiGamYsT2GOVS/NOgMgB2CyMmCUTUAacLoyVdVgVFIDUal6HWj2T/rCuYYlF26d5YVxDWtLEqIAcaH7JkUBEjkoH2/0U3bJ+viMr169GkuXLsUDDzzgYktmQuZUn+RsS+oGxDdi2M1P1bPHaWthdenj1+916nV6NDoR4FytBDiYKVAEUA1PC8NSEUqpPEh63w1ALRDtulThp7Ku2GjZJg6SnBm46e9Fxh3ItItVGatRIecck5VCLjhyTsgV00vBtCEmGApwZ0UyBYATOGP6mjTMkxpmDVeqjKBp4VgOoJQEqjIEpIEmgACSpGRtQQIA1wE6TGhQEudgVamBmRVgubEieYbYtWuh6XTG/HvGZ0PmNSSt+DfZfk+90m1lbS2qeJ0lylPH6nXqdZoOnawoG5ADaLeqtSQ9QE5WyoNkE5b1UsNxIBWkIgwqZaxTMt9lAMa1gWT94W59zMDSQlNbjgo5Z8gVIecMY8QhBSCJQQpA90oqB0pGACcGqQDGCQIscLnWFzcK0EkAElUFVQ1qOFalBqODpXRwrC1KWd8vA0pmLEjiwq0jL/X2rARTUoNSWJ3C60gAmCg6n7H58IzPpPSQ9CRuEfnS5VLwl103dZQHptep12m6dALcCL4oIMe4XBOAnJDKAXGyUgEcS6UwqJQDo16XHiCVsyJTgGwDZQqQWQBLC0eOIuMYy/SyyLiGpSKMZ1y7ixVhXHDn7gU4ONNXhQHgIDABEJjrhyQveKcReGP7IA0gmSxB5QBUlSALSQvHagAoVUNSSpCxLPXh6r5Ja02SgyUH5QUYF6Cq1Mss15CsSrBiXLth7TPh6eiD0h0f6/8zPlsyryHZdYNSN71LfBcCQ3gT244Tux1SrbNep16ntdXJr6+CyFUDS+ignBiQGpo1PCeqGo6Tbl06KE5WKoBk/AFCQNp+SuFFlQrPxepbjL4lacE4yEQAywW5gCLCmCDkZIdWcHCmdCSsAgQXIOghH25oC+nr4utRXzR/mEdtQTYAab47SEqpt6f6JoHaujRp1HxYsqrUyzzXyyzXgM1LQEkNzCJ0uTrXKzQo256P9f0Zn0mZ15AERmv9xPVYVJcltqWOPezcvU69TjOhkxsvCW1FWkCU0rhVI0BOmvKJSmHCwHCyUlgzkA6OPjB9QA4q5aJdyXyAerhIHCfoMupwBmYgyTjTATmeFTnw3K0LC+VguaAQkIqwoBDut8aig38UGHSQj59EIbyAetxjGL0q6yCdqnKApMkJB0aqSsDBUwPNLU2kK0nrejVDRSwkhV0ay5ELUKWXyHJtmVYlmDSQVBJ8jGpI2uMRgXIVjKWcT8/4TMq8huQo7oNRzP14n2EtqraHqG3fXqdep6nqBDRhoDPpAARjRdp+R9UOyDUDaQBZYWBAOelZlg6OUkFWCmSjX6VyoNTnDmFpxSYTYExD0sKyMkM9eMaxpmQoRG1JSkUYyzgWFASpFGTh/Y1lAJfaSi0ZgZvAIyEJudBWrB5JwYxLNm1FWlerD0tVDUJADib099KzLK11KRVIKSip3Hry3nmwFHkJJrh2q9rAHaXAcmNRGutUKaXdr1ZXQI+jJAVEka/+c7G+PeOp/++ZkHkNya6bMkqLpe1hiR+AeH1tz9vr1Os0VZ0AOPdi7WL0h3p4QTqm79EH5CPGeqzXlYPlwPRZqkoFYKwBCQ1NqmEJwK1by9GucwNKxjU8ueDgpV7KjGMgOYpKQ3KQcVSKsLAQjd9rhTP9Kc1YSql0ZKuCzUHL3LXj7h++DthxFqVxs8K4VWsLUgPTd7+qQQlZViCpoMzSWpEqAUruQVIVGRjnEEUFxjl4Ya3SHFxa961ywGQAWB5mAnLXOAKl/5ysj8/4TMq8hmTK5E+1nkY9TlfLa+gfWeKcvU69TmurU0NHs4NLFmDHPJplJW0Eq3IBOpOm79EC0oJxzUA6y1FW2lqSlYKUCqqqoSgr5SxIa2GmJHC1MgaRcTDOIASZPN8cSnLIikNF7tWU6OEi+nflhLoBoBQyLvTwD0pcwzhBuRkPyYigfCuxGmgr0gJyMKGHgpQV5KCCKiuoQQWllIMkKVUnGfCEiTpwh5cZOOdQZQYmOHhZIZM6ulUppa1K2zcppU7BZ/sp/Ztsrct83LlegfXvGZ8tcM5rSFLLOpD2nbfta793uSJSEj8U8f69Tr1Oj0YnwA7/MKAi7WiVioxRQl6SgDqKdVApA8UqAKT9lFKhGsgGHKV1uRI51yt5iQWc67XTkgSqUoOyMsBUQh87y4X+DblwYzNj0f2YEpwxlFw5K1KZ30wYkibPz8lq1qkcaIvO63fULlYNSDUxAVlqOMo1AyilNCTLUrtbVW1N2qX73cJzt5YZmBDgBpIiz0BSQRQVhHO31h+l6n5KNo4Q8vbnGItyfXzGZ0vmNSSZtxx2o9puaFudUVo5/s0e9kD2OvU6TUWnWBTIpKeDsR6VGytZSQ2cUuq+Rd+tGgNyUErISqEqLSQJlSlz7lZjTVo3rO2Po46hEIwLbU2ZfkhVEXjG9DkER0bCuW/1R2ANwtlDBGdYM5DIOEORKZSKOSuyHheqx1RaizqWRhIB0kM6yHO1ojSWpLEgZVlBTgygBhWqiYGDo/LcrgBc/2RwPsHBDShVbizIPAMXHCrPzf4ZlFTaqrTBO7Ieh2mXfCz6QXZmEWNRrm/P+GyBcl5DMnUTu0z+tptoy9seiKmU9zr1Ok2nTo1jk00kUCcZ8F2vdZSqDIJzbP+jBWRVSigLSFNurUntatVDH/yP8uDoZ57hASgFeFbovjnJIQQHz8hZkKSonmOWM6xh+piCMwwqBcElJiuOotIZeVRGwe9TZMOWmn+xdror2x/JTESrG+qhpItm1QE7A1QTA8gJvdSQnHTuVlIK0iz9vslUhCsTHGxQOQuSCQ5e6H15mbn9M6nAbfCOUuCAg6SCTp/Q/GEclHMwxterZ3wUqE6HzGtIpsS/ASn/e1v9eJ+Uzx2J7fGxUze+16nXaao6+eclwPXD+VKafkgLj4FUQeRqEMVqXKwpQFYDCSm15SgrEwWqJKRZ6o91N6b75ZjNW8oFeDUAzwqQKkCZACfedNUyBsZDQD4ykG59UCksyLV1PCbIJGTX59MBTPqqWWvSXT9//KGqvHysJmFAqV2sqEoNw7IKACknwr7JMMqVoOL5wwBwwcCEDlBiXAfw8DyDMGDkeRb0bWZKafcrmmD0v9vJmxnjIKFzwK5Pz3hvSc6SdLVGUjd7aEs9sZ5qNaXqtT0kvU69TmujU2ruAgJcf6QVPegfXuYc6cY8umEe1p1q+h9TgKwGgwCQymSjsaAEkJwRw8KRmRyminNwJSGUBKkCXOWgzPz1F9qCZKW+iowxDDKtY5FxYwmbjEBSYcxk4rFjN2XimjhRoZvVulrd0A4b0WqiWKuJge6DjABpoamjXAlyIB0ctVVZ68DM1COMc3DBIAoBVlYQeaZhWWbIxgu9n7EgydyHHNB9k2iCktm5KQEQ42ClieT1cr0+1p/xYcedLpn3kOxyUcXug7bWeurh6WoNxS2ueJ9ep16n6dDJF78PzvXPeVNj2dk87Mdm0dF9lQaSiiBtgI4L2gkBqeGo++VI1ValhaNKQJL7kDQfMundhNt3PPz9ZqiIMHoMRAhK6zb2J4ZOSWPCZa0kYKe9slGpSoJK0yeppA7UMSBUZcqqLB0cVamXFo4q6pfkgoMJBS4YZCkhcgE5UBBlpQEpFTJZGGsyvH65VRlNVytbYOamLCdcGQGNFHbA+vGMz5TMe0imboy/re0GxWXxA5Sqn1r2OvU6zbROvsTzO/rAjNPJWdCQHfsobcSqKatCF6sPSAtHVelZMsjLPgMg6JNUsC5XAZEV4SwZgYxrOFYKQigoxiCFAhfKWZPN1Hhh36syOcJ9TDHGEFuQjDSQdD5WL4OOklADDUXpgdH2S8qJAeRA6k8pIQfKWZPW5Ry7XLlg2t1sXK5yoCAKDpICJAnZuHWzelagB9pcH6QGJef1tFsAzMBT2AmdU6Bcn57x6ZZ5D0krXe4B5i1TN6rrxsYN1am0iHqdep2mQ6dUFKcdlmH7I+vE5DVkANSQNJ/QirTRrB4QDSCDfskOl6uLblXWgpQQWdGoZ+sqzkCCQUoFnnEzFZjRLfh4lqSqp/YaReokAtKlhXOgrEpnRapBBTkozdJ+14CsJirIgXJwtJak7ZsMzmdcrqIQDpgWkMp88kQiAjt8hAsO26wgA0g97ZaxzFkznMeCMlmOx94zPpPSQxLtNzvVwulqCY2yPqoLodep12k6ddLHr8EIoLt/Dqjh4qxHcxwvm451i+ogHRVEs1pAWmDqfUPw2e8uaAcFJAYAAJ4VUOXAbedKGlAThDJWrODgQiHL03NaWpfyUImz1tj+SOW5Wo01bK1IUiqwKGVZNQCprUkJkrVFDqDRL8kFB0mq15WCkgJC1kNoYnGJCAwsBTf9uXZuSrPkQjgr0n0AEOONMZSP9Wd8JmReQ9Le6NSFH+VGdNVJtYa66sQPQK9Tr9Oj0Wmqkpq9Q0ZZcoKE5Q6e3jAPGQ738AHZFbzju1dVNQhAaberagBl+yszDlkpA5Pa/RtP+OyL/R2phgH3LjzzYen6I+vZPPxUc9aKtP2RcqCci9XCUo+XNFmJBk1Aut9o+iSZYBC5gJJKA1IS9N90mdjHWJJuRhEObuamtJYkDDiZiXSFjXjVO4AyuDGUjeNH63PtGX80z/tUZF5DMnXTbXlcL7XPsGOOuj1uafU69TpNl07TIX6UrGqAsx7/GI+LTH1svS6xoFRcD5zX+wooJcGVrC1ZO+4xilxNTdUVi3VABn+6UVo3Z0Va3SuTJMAHo4Gm64eMLEhZStMnWffpAmhGuJbQqfgK7Wa1S3edZdhPq4fMDMxSj7Os+AC5iCHp9U+yqF/SWpQeKOfrM94l8xqSsdiL3mb+x/Xs9i6Zys3tOlevU6/TVHWaiohkmOfo4mfVUZ5VWW/3QZp2H4bHiwAbWKkGNJ5lSx4g1/IHBB9GpOGvvL5J42pVZt1alMq4WVUpG4B0gTsGljYrUSBlndCdFBlLkiAKAzEDSyb02FDdb2nc0F5aOyY4VFmBiQkNyTwHqlzPU1mV4HkByAFsIA/JgX7eONeuV2Nhrq/P+NrKvIdk6uZ13ezU/sPcEl3n88/V69TrNF06+WL5x0wNbuZwjCcb9ic5th/OmZvzEaintpqKDANkXBZHtzb7MVUQhGOhE4/9dOstfa/1dfHET3pg+lhhh4DIOnOO7YdUpXGpWmvRAFKVGo4WkHIgXUKDlD6CAKEkuGQgSeB5GGxjg3v87zUUuYuyZSYhAc/MlF6x23Wc6UmkK2NRMg5UTAMyinid68/4o2vWjS7zHpK+TKW149fvusFT2b/XqddpunQaVThjDprDxCYkj0HJzR+wrtM+O8dUxFqPiuvZLnx3bbp+GpBA2BgQjMH/ufa3My9oh9nIVsC4W5UDvA9K5fomlRkLWUexOterB8hBFySZ+RhYxn/MLumAYHo85UCACwNGzlGJSZ2tJ68g8wrcWI+sHICyHChzsCwHBpM6A48PR8aBaqCTDnj9k+vLM/5opYck2ls/U70Rse/eLx/leKNYBb1OvU6j6uSL5Zp1q2o41tsFZ8g4g+A8tCZZPRGy9sgxN2MH5wwqyrsKaGiSEGBKBOMhrYzibm2TYf2ZowpjzF1HzlAnC/cz7UTuVuXcq2U0BVYER5M8wALSzrRiARmDUjCmJ4NmNSxRhqDkwiQxF0xH9ObW7aqhyASHykvIMgMvK6hBqa3JKtcJEAYTdbSr73a1cLTrHYE8c/0ZnymZ95Ac1d897KZ1uQRSLbG2OoRep16n6dEpFgdKxpx1ZdcFa7pa7YcZt6uDJfOBGaaUizPnWECGYyNNX1uU6Fuvi2DJo+9tlqo/7ZbVO/jtPG0xB0X+RMtAOL7TuFuVB0ubk1V5blXrYrUfG1AkCcaSrHPIWrGA9O/uQJEDpU4wIME4M+MmjVvXpLFTZQXKM8iyAh9USWsSWa6n/MpyUJnrH64qDUdVmT5JBqZMUI8HysfSMz4TMq8hGd8M/6L7NyPeljpOqk6bHz+W1APY69Tr9Gh0Aqy1FNZksAGPxkpkMJ8QjGMZxyDjOs2bmfBYZ7rhUFxBZFwbXZkAqUIH1HBuEpPLwJoEzJjHauASBmgLM3TRNpaipZyH/XXW/ZvqL23CEsFvdtfVHyMJ1BakWdfADGfyIJMYwE9grsdCkrEmlbEaQ0Das2g4ah1sRiDBAB2vwyAJ4FK7bJlJWefcrYKD59py5bnuI+VFBlW2W5MsK1weWt2AMXCUehwlYxwkK/0cs3rWkLn6jDfv9szIvIaklVH+cGKJWzKjrLcdN3Wze516nR6NTvF3xuqPthyBXDBwqaGYC4Yi4waOwkw7pbcVgkNmHEpyl+mGKwLPCJy4TkBuhmcAaLhEbUIAC1AgbRGmrFAfmIFLl1kXsAGdtYwjK1jXDa1nX7hW2LuQdoxk3ScJIOiLJN/16lmNunqdUae2IvV3C0jf1Rr0TzIGGKgCGqhCATy2Tm3mHpPJR5UVeJ7poSnRjCGI+yazHKgGun9SVQDPwJR01qTrr2SVS4Y+V5/x2ZJ5D8m2ltEorgK77yg3te28qXq9Tr1O06mTFY7agrKfnDNUnKNk2qopjPVYA5PrPK7GmsxyM/mxneNRESjjIFW46ZuSEawyGtKRSCgQu27DxOfcfee2f9T8Bua7jj3LMeOsUSYYAwNzDYZaQRUE7wDQ1qSJbA1/S2hNKg+QdR1yVqTfB+kD0xc/eFWaabzsvtwECTHJ9PUOoKkcMN3HBRRpeDITdMQMNJEX9ZAQ62qVDOCZBiczqfFUleyfnCvPeFfd6ZR5DcnYlRBvQ8s2Wx6vd9VLtfSHuSx6nXqdHq1OgIGi2cLAIHjYF5kJhlzpj6TamiwyhQWFgFSEotLWpAOj/WTk3K7AAn2WRHCN4s3xjsHv8gOAhE50zu0nLyKI1v2k/rqFYRZYkbU1afslfQ+sTm4u60QCgBsjGQ9dcdYZalBaqcvrZPC+hG5Wu9QrOnDH3DljTUYjPoLoXXdNvfkpHbi9YKJ6WSdlgFm3KfbABVxfrLUmiUCyAhjX27zJmufqMz6TMq8hGUtby6jtprdtG8XSQMv2Xqdep+nUSUOCjOXEwBmBQffN5QaOpWLIOUfOCZLDWZIWkANvHdB/2Km5KrVoUEoeTqTMbBJ07sHHmxXE73/kXIBnRWBFCvedQwgeRNza9dDVaqN0TX+rcTG764K6P7a+uCayNZitJGUVp6NzU+nm2mRY3lxbRxKQe3hRnuUYn1dJBQF9XZVSLum5He/J/Otuv9sZT0waPnCbUIGByUpfGp4FoPRlLjzjMy3zHpJtN8dvucQtpNQS3jG6buKw1lavU6/TtOvE6mAV62bMjYvVwVFYS1K7XBcaKC4o6vRuCwoBSQRSw8ZCLgDjApU9v6hn+OC+uzWr55f0o1iZB0me5/V6VkBkXINR8MCaFJmGYpGFQ1gsIG1Qj+C1q9Vd59jNCtRDQuxXqRpw9CNbpyp22MdUJD5PmLauaeFSBFPnOvYsZE6kAelPEUYKjLhZGoB62Xjm4jM+kzLvIdnVOordA/ED0HUMfx//WPFDldq/16nXaTp0slB0mWWY7pcUjIGMJamIYYy4ni3DpDhzs4SocGnloRb9ALihIdJYkXaeSd3HpRD3TfJg33g4CTdgLMxSQAgOkWlLUgiup4kSvH0Ii3GvCmaCfVD3zdprxlyuVlWvA0F060xIKpBIl9fb/TqprDsjS/wblGqUsQiYIKbrMPPd5npNHH5dv3czKfMakl2PWKqF5JfHN96/eXZbvJ46XvxQxefudep1WludENWxcFQwbjzOocwIgHE3vyQwJgwcC23dpfKhrvGiSxmT9Tqv1xVnxu0qoLioJ192fXxRv6Soh3j4EzDzrEBWFDqqNtM5TnnGITJmLMs64CjjdZRuIXjQF2mz7TDXT+ldrRQchwh3eVObV50Lri03I8IRQ6+kAneE6ztu9km6bEemYRAPg/FzuHZKBEa/X7IuTDQKbDaiFrcrsO6f8ZmSeQ3JrpvadZPbWkhrW5Z6KHqdep0erU6AtpoYtJuRFAXWpO60Cv9UAx56c/IGEaLGSlvDGSZccgHprEghFDjXg915xqEqAVmZsZS2bzIxXMRPIOC7XEUmNBSFcatm3FmRjIWuVu1u5bWrldcBSnaMpL1Gzsr2s+24CxEOAWkT7tGMmamuuOBQpQoz6IAFgTrxE2MBaWEJ1PtaGOsMO8w7D3PTa+ntFpThPJPmoobLNlEKJg9g6HIFnCXpfi/W7TM+WzKvIcmQvtipFk/qjzDVohr1ptvjxtu7LIFep16nUXXyhTMGAgXWJECAMpalYPBh6QJaAKAIM9ikXJprvIw8Go6mv1AoCKkcLEllkFXu5UJNAygM2DFANFZjlmuXa5ZzB8xC8KAvsl6v0+/Z5AkMNmCHBdfMATJlRY0gjPPAsmR2DCpZSFJtTQJA5Gr1AakTCngpAU1mnRCO3CU552YGEH3u5hyTDoxiLfPqKgUIDt+abPx+rJv3bjZkXkMydROtsBHq+HX9m9plVfjnjr+n6vU69TqtjU62ns26w8hYg4pA1pw0Z2GMg7P6CH6wiyhlHR3qAFQGkCwyjjWCYyLTf9hVKSEyBlkRqlI6WCpFOmMPEUhlbliDP3uHDcQBACF0kI4wx7XAzIp6vchFMK7TX+qgJIZccNcn6Qcvub96l9i8+87E01LZeRxja44EmUYCh1DSWZIFr8dMCtRDQcI+yBqQuYGjyAW4mYyZu/MyA2YGO6ckzzP480vaJVBb6TAzgrh5JoUY+jy2SRfAZuu9mw0ZYntPj5x77rnYYYcdMD4+jr333hs333xza93XvOY1+sWOPrvttpurc9FFFyXrTExMPGpd21rjfqslbsVQVB63cOL6LPrEx+l16nWaDp0AYxXCgs8mMq/HEuYcBiQMCwuBhTnHwly4z4ZFho2KDBsWAhsUGTYaz7DxwgKLFxbYeGGOjRfm2HA8w+KFORYtyLFgQY6xBTmK8Rz5mMDYgkx/X5CjGMtQLMgwtiBDPiZQ2OVY5j75mECWc70sOLJCIMuFt9TWpC2zQ1XqJAjC/C7uWZD692cmstUO/9BjJJsWZGDhGqA4K5GHVhsXtYuVee5Q+51zZqBXQ9C6fwu3rV73AWkjeH1LUhQcohDO1SoKAV5kEEXmrEpu1nWZ0OnoLBwBF21cP0BmMmag1R3LOvos1/UzPtMy45bkpZdeire97W0499xzcdBBB+Fzn/scjjjiCPzyl7/Etttu26h/9tln4yMf+Yj7XlUVnvrUp+LlL395UG/RokX49a9/HZSNj49PWb+4RQM0b+AoboN4/8Cz0nGO1A3vdep1mg6dONPWCmMMAqShoEhvMEvGAKa0ZSUVwDKBnFNtSbLa/erS1wnuQUliQSGxZiBd2ZoBx6BSOltPpcf1yUpBSgVSgJQKWW7ynEaTJgNa3yBRAGPa3WqsySzXfZSFqAG5MAAl12NAhbEkuf5urUfr6dRjJBPDP1rE7+PjgkMCzqJjQkHkwuVvFYV3RwcSBRBk4InFhyjnBopmKQoOnhs45hqWPBemTm1F6k8O7lmVFvJuzGqWO2AyLrRXwUattkTb6m3dLtZ1/d7NpMw4JM866yy87nWvw+tf/3oAwCc/+Ulce+21OO+883DmmWc26i9evBiLFy9236+44gr85S9/wWtf+9qgHmMMS5cufVS6DbsR8Y1maL/RqQeCJdaH6ePX73XqdXo0OtnjCab/ABkB4AA3nBSkwSgNTCXTXU9CARkXyCUzkFHIhUJeKb3OJcYyjgW5wJpC4pGBRJFJFFmlywuBNQPpYFlKBWUgKSuFTOnMPUqZbD3W7UoURJzaZAHCWFS1u1UEgLTu1QVF5qJahUm5V8O+th4567h+LcB0yditG9O5WnkQQKMBxnUaOcEgzJB+LglcKgjVnpKO89oCFbmGIxMM2Xjm3K6iEPX3yIoURQ5eZM6S5IWeQ5JxAeSFztvqu1rzAuRytTY/DpodwT4psM32Mz7TMqOQHAwGuO2223DyyScH5Yceeih+9KMfjXSMCy64AM973vOw3XbbBeUPPfQQtttuO0gp8bSnPQ1nnHEG9txzz+QxJicnMTk56b6vXr062B63UFI3EB1lKdjG9eMHICWpOr1OvU5rqxPgBeCY+pwxKDKAbIGlYAwVIwjOtTUmJMYkx6RQmMgUxiqOyUrD0k+MXsMxhOWgUvpjIEmKjFXpWZKJYSZBsgAPlAvy2s26sBAGlqLuixSstiSFhiX3gnbsdWD6xGBEzbytTgdep8wTNRiZ4C6puCgElCQIL6eqyM3wmYGCgIDiygTzEDKEeV4tGAFAWEvRulKNBSlygWxB5tyt+YIMYrxANl64Jc8zCGNRijzTUMxqULIsB/NS/Om+6awGI4+AqS9A86Hyytqez2Fl0/mMz7TMKCTvu+8+SCmxZMmSoHzJkiVYtWrV0P1XrlyJa665Bl/96leD8l122QUXXXQR9thjD6xevRpnn302DjroINx5553YaaedGsc588wzcfrppw89X9wi8iUu63I1AGv/wPQ69TpNt062ngWmYIAibVlaWAoDSCIGyQmlAqRiEIyQcYFKAbmQyCsNnbGMO1iOCYnxjGOiUg1YLiwEHvFAKRU5YCovBywQBvAAQJybNXTzcgfIBUXmrMrxTJiAHd0nmXNtVWa8DtrhZrwkT900d/K6Dw9cOAuSm2AXH5b+cAxRiCDLjZsLUjKd15WbyZPzaLov7zhNV6tw69l4jnxB5rlXazeryDNnWfLxcbCs0P2RsRVpYEk8c1AkLppWZAqcLQkF1sUzPlsyK9GtLPJ1E1GjLCUXXXQRNt54Yxx99NFB+f7774/999/ffT/ooIOw11574VOf+hTOOeecxnFOOeUUnHTSSe776tWr8fjHP77zBqVuepf4LgSG8Ca2HSd2O6QskF6nXqeZ0Kke5qGTayti2gUKoFImbRonSMVQKnKwHM8ExippLMnRYLmgqCE5aa1KA0z/AyAaS9gccuJHsvoBO7EVmRlLUg9LgRfRyoLRFyxpPXoRn8ILdvGiWq0VyfMMwkyPVc8GUgfFKKl0BqLS5k01WY1MXTvO0gX7eIE6woOjBaUFZGhFjun1BbZsTFuNWQ6W52DFuP6M1eB0UOSZXk/BMOWKbXn+1sbSm45nfDZkRiG5+eabQwjRsBrvueeehnUZCxHhwgsvxHHHHYeiKDrrcs6x77774je/+U1y+9jYGMbGxtLnib6nWj9xPRbVZYltqWMPO3evU6/TutDJH/AOACVjIE6QZABprMpSETIewrKU1HDD+rAMLcnQopxsAaUv/vhMO/7R74P0LcrxzAvU4cz7cDenpMtj619bH5SeK9HB0gTAODdrkYGXpbbazPRUQtVTZgmzZJxDlhIkCUxoSxI5dGCPO0cESdMf6UBZcA+WAsK4VTsB6UOxGK/drFkBVowDWWbgaAAp9Dp4VkOTcZDwXLFepp34NsUW+bp4xmdSZhSSRVFg7733xnXXXYdjjjnGlV933XU46qijOve98cYb8dvf/have93rhp6HiHDHHXdgjz32mJJ+o7jIRjH3432GWQ1tD1Hbvr1OvU4zqVMs2hNo+i4ZILkBpAIqZd2xGpZSAYNMYaxSSViWOWFBLjCQCmsG0lmSUjWtySoBynj6KwvKItNgtBaldbHmQluVuj/Sy+lqkwowY7VYc7ItL6vLUGP67/wo0kGlo0ilctYkST0W1O0uGORAOTiSB1E/MXk9vtJGybJ6iIdnSQpjPYoi80A5AiCLcbCxBc6yRJYBoqihOAVA2lsTP2c2YDp+vuJnbiae8dmQGXe3nnTSSTjuuOOwzz774IADDsD555+Pu+66CyeccAIA7Qq9++67cfHFFwf7XXDBBdhvv/2w++67N455+umnY//998dOO+2E1atX45xzzsEdd9yBz3zmM1PSreumjNJiafvzSf0JscT2Xqdep7msk06JpmGZcZ1WTYOMoSANykpqWBaCt8JyPFOYqBTGM4FSqcD1agE5qLQ7Mk6q3sz0E7pXbdKAcVM2ltVWpGA6ibufQMD+sbrhHylxfZHcANImXa8tSVZWbkwiAJBU5s90YA7BwIQESe5mClFupg5jaXoJCGx/pB1S4tysgjsoijyDWFAYYGpA8iIbDZDFOFCMBYCkLG8CUph+ShPQk4Kj346xcIxB2SYz8YzPtMw4JJctW4b7778fH/zgB7Fy5UrsvvvuuPrqq1206sqVK3HXXXcF+zzwwAO47LLLcPbZZyeP+de//hVveMMbsGrVKixevBh77rknbrrpJjz96U+fkm4pkz/VGh/1OF0t+WHHaXtIep16nda1Ttxzx1acQSqCAsNAEiQnDBShkmiFZSkVxoRCqQilVChzQinJAVODMnOWZJvbVSdC8PomXfRqCMd6jKS2Jl1CBdhJl4f/m1s42jGGxAVYXujMQWUFYaxHbsAnjEWaAeCi0sE6goPsdFpKuf7I4Dy2T9Jkz3FJA/LMRdD61qMo8iCaNRsvdJCOdavGgDTrvgVJIk9bkLbM9EUqaoIxnkdUmafKG3o7kkznMz7Twqh99tT1VlavXo3Fixdj1apVWLRoUbJOynfuS9fNBUb784n3G8Xl0OvU6zRXdJKkLb6B0tCrFLR1qQgDqZeTlcKEVJg0/ZelKSuVQikJkvS+ivR6W/9kc/or5oZ32KQB1s06blyu4zavq2AohAasXS84g6AKrJwAqybB5ACsnASr9He15mHQxMNuSZMTUGZZTQwgJwaoJgZQgwrVxCRUWUENKsiycuvaxRoG9cQSB+5wD472u7YWxwJr0kKy7ncsQkDmRQ3IvNAgFEUDkLohkGn3qmc96mCuGopt6RYs9v3xpxaU8XM13c/4A6tXY+nSpXjggQda/8enQ+Z17lbmLdvcAP73YTdxKq0gv76vQ9cfXK9Tr9Nc0kkw6Jk5OENhLMpM6n7LjGtI5oKZMZbcgdFal9ZdWyptTSoCSmORycS/sk14w22iABOUk3mwHBfhOEnhR7baD6y7teOHmmAdxgWQFaCy1MMplDLRrNq9WkH/iSrBUQFggkMJDpVnUGXlLE03KbL5fX5yAru0YGTcBAcZy9GNfzQWpcjtEI88jFo16zDlfGwBSBiXqtARrZQVaeuRZw04KgDWhFIJW4ozprMOMYCT9i74FuVsPOOzIfMakqmb2GXyt93EYS2hqZT3OvU6PdZ06oSlIuScMJYxVEpo12vluV69pVKEUvHGpM/BuXg9NyRnqFPPiTr9nD9O0k2TBTsLCOqgnUSfpB7yYLbbGTQ4B8tzPW2WkuCFDABZmX1tkgAmOLhUoDxz1iRQgxKo4VgnLK8/2tUqAjg612ph+hezHNxYiQ3rMcuBYkxbjta9mhWt1qN1rcoIjorI3etURKskPbMMB4OKQBk/N43rbK9DS51RykeB6nTIvIZkSvwbELsCuurH+7DEdiS2x8dO3fhep16nua4TQxOW2vXKnAu2VITc9FtWgdtVW5mSoFPYUT1eMpVgAIBLO8d5nX7O75/MOAuGfNTWJGv9rWSz8DCTZcemc1NKf6SZ3ktJPbWV1w+pOIc0cFRCp6WzViN1QNKNuxTcgdGC0lmTeQZe5M5CdK5V+z0vanB2WI8k8jQclYaj9MCorUmta2xFcsZMTmB7//UsM2RyBCvo69iW/m+6nvHekpwl6WqNpP48hrVeUq3yVKspVa/tIel16nV6LOlkYZlxhsobOpIp3e9YSaBUGmqKBCYqiVJqC7KUHJJsH2UTkgCCmT1sblbfmtTBPQgsSZuofWimHZeiTXgfY1HmBZgFHwAxrt2m0ot6VYMKqtBBPeSBEgBI6gheNymyZ0Fyf90E62i3awTHPASlvw02i46Bo7Me7XfPtSoNHCWRsxolDbcg9W/XhYxMmkPYwB2NMgE9HZsdQjRTz/iw406XzHtItpn1/rbUH0mqBZ662XH9eInEPr1OvU7rg052CEkMS8kJmYmIlQSX9k4q3T+pFJxlCYwKSgSAbIKRtVseJprTn0yYCTM2MrNuVmNN5rmnhADnAkwMnPXoXK0J6zE4ZWJuygCMdsaOLG+Ho58cII5cFZ712AFH3SDR154QWZAtT42kOnNRYEVyDUo724zgLDjCTDzjsyHzHpKpG+Nva7tBcVn8h5Sqn1r2OvU6re86cQYXVTqQOpOPMMNHSjPuUjCC5EBOwvxpcxfxao2xOGUdNzDkJmEAAwJA+kkELChdph1SyZR0bvA81/MwklLamjSwTF07cA4hSnApg37INkACqHO/OgtShGC063lhEgF0wzEY92gtR545V6sPRwtEqSILEtaqNL8vEaxj+3OJ6f5IIpvmjwClQSntNGwE53b1r9dMPOMzKfMekla63E3MW6ZuVNeNjVuvU2kR9Tr1Oq1vOhV2tgsGlCZHbMnI/Lky8ycOZNzmk4X5Q28ezSYaYNAQtEAUDGYi9rAcQHfOaM4BVVuVTNRwjH+bjnw1icGVBLICqAbaHaskBODcq7FYINpz6kmRvfke7UTJLv9qMRoc435HUTTgaIftOEh6YIwjWpO6m7tKpK+lhaXeUoOSCJD11Wq4uGfqGZ8J6SGJ9j+PVAunqyU0yvqoLoRep16n9VmnQjA9GTT3csMyY9Vw+8du/rxByDhL9o/p4BDPWgTMcWuL0mbaCSdbji9QPfEw82fCMFZk8MfNBVAN9FIIMClBSoFluQnsMcM8VAKSUTYfC1uYKaysFWln6vBdrtMBR2s1WjdrGM2qrzWQ7ou0142BgZjBIunGivTvtA51hTDg9CdznslnfKZkXkPS3rrUhR/lRnTVSbWGuurED0CvU6/T+q5TzoEcDKWbv9KzJhnz/sjRaeH4cKxhaXO1ekt4Fk0qqXk0+wXjGZCFetvfyTgHVaUGnLEeoSSYsR79gJ36NOY81rXqgoJEAEZrXVor0rlO4z5G3606AhytlV5Hsmoo2mtsL2+b1a7INjY0ShlpWEKZfkiurxIDgZFZstDtOt3P02zIvIZk6k/Elsf1UvsMO+ao2+OWe69Tr9N80QkACmP1VWbiZ+2GhfvD9y0dAEFfmXWf+nB0wz7QtCKtLg1xYNQuVx+YOhq1qK8f50BVaqvQBfXI2i2rVPocBoj6dCblXV64CFrndrVWI8+g4oH/NiCnpc+xUuRg6C/tsBqpmmDUiRzIG3bTVNu6xu0QmowzB0sLRmtBAqzOKKAInCOwJmN5tM/TTMu8hmQs9qK3mf9xPbu9S6Zyc7vO1evU67Q+68SZ+eMlDTSptDUizP+tdRMC6RRp3GjpA1InHvDGRg6JcA2CdhD9Odt9uUgCkgG6DzLlYrX7AXV/pO9utRMiZ15quLasOJ4lSRaOMrQUw2W9TZmGhg9F5SCqL26cPU8wfcE5YyhBLpJYkc5oRASA63sFHoKSE0CmsWOtScGm93maDZn3kEz9GXT9eaT2j10Aceu963z+uXqdep3ms042bZwg5tytOsiEgat6/J5As3/SzxfKWdOaDFytvjAOYgrMHM9ak0QKzMCKAQAp7Xol4QGy7n8MLMnGKWw/ZARHIUy/ZwRGxpIJyF1SAMZN4oV2l6q/JNIWpjJ5cuNxqM6CbEk9B8CNR1WMwEln2JEkkXMdL8xYDUhOOrxHki5jXJ+LM5Z8FqbjeZpJmfeQ9GUqrWe/ftcNnsr+vU69Tr1OdsaRuh9RAdAhIMy5CbWFWe9ZW4v2ew1MXc5cuTsv42DWLrWWpLdOHGAKGlYWmmSGhJACJ6ojWKPhIbVitQXpXI5mKirlEhe0gNEANHCpWiAqnVC+zWrUblWdwcglkjep/1LJGmQCkIA/3IZBqHpcai4YOBkzE9xEGmtA6iEg8ACprUrbpxnndV3b52m2pIck2lvTU70R/nG6Wu9t0tZi6nXqdZpvOjnLkOsUaJyjkVM0tijj2SecRRnp2PxRHATlkgkQ42BCg5EAMOJ6nRT88ZUOmF3iTVpMkUtXA7K2IF15lDou5VItO/oeS6nc7Cp1TlwVWI5dqf984WasKRS5XLmKafDlJiGCUgq5YCgEN8fU9ZmAA6Qkchl6gsuDR/c8zYbMe0iO4m6y9dBRt8slkGpFt9Uh9Dr1OvU6WbEuWEm6v5KgIyYtLEV8UoRWpR/1mj6Bpa+qLUmegVSlf4/QyQFATMMScLB0Eicl8C1SsyTGHBRtkFAMRh+YsdXou1Qr1bQaqyhbkZ2vM86Hq1QNSN8ST01NBgBc1QkZOGdQpBwsAQVl0gsCHJyZO8v1PZJK/1wNSH3PpCIw01c8Hc/TbMi8hmR8M/yL7t+MeFvqOKk6/k3u2j/159Hr1OvU61R/twEfxEJYAgiGhviGigXkSGKtSXigtJYjU86q1H2QognG6Fj6GD4kvYhZz5Xqg5GAoYE4OkNRaDXGQKytR5sr13OxqsiKbHGzcsXMdTcJGjgDV3VS+RiQgAJX7qrr+8cJnABmXLA6Ajnsl3y0z9NsyLyGpJVhNyMl8Q0eZb3tuKmb3evU69TrFEpgDVpYErX+WwbDQxr7c3ceZjs+gRCUpl5gOXKk09lZvRNjLgNL0nexGnhaMCpgpEAcC8XYnWq/+2AMrEhzjDqStf0O2OEeius6OWlLURFDThxKkXO3AgqcC5SSACgILiCp7p+0KQFtZC0HnDXprhvS62gpny1AAj0kW1u1o7ie7L6j3NS286bq9Tr1OvU6tYsdFsIZAJbOxGMldrO2/rlatys0KMGE64sE44Hl2Hq6lHvVQjFKVGCHtVh3KgENGLa5VC0M0/Nx1mDUk1nb/KzkzgWgsQRqF6tddx/GIJWC4BqWgDIubR20o69zvS6YQm76J53bFQADgQsdKjUdz1NX3emUeQ1Je6FTZr//0qZuBkusd9WLW0GpP4hh5+116nXqddLlZpw6gJahHQn90ht1UA0jVYPSQJG0f1dXI57cPYhYtUteBwC5fkd44z2jsYtdVmPsUo2tSAdIb3hHKfX3gVR1n6bSc3oCaUACNSTtMjOQLDJuMu5oMErSblfnZmUcpSIACoJxlJLAGYEZtyvnJvUd6uhkRUj2J/v3a9TnaaZlXkMylrZWbdsL27ZtlBY0Wrb3OvU69Tp16+SDEgjzjMZ/rFbaxkhaS5G8In3QsIBSaezcwXnSzerAaFLBWXcqoWk1+hlxpgLHFCQHVQ3HSbMOWKtVuXVfQitSQ1EaSEpFDpQ6QMfWVBBMJAFZKu12JehIWOZbkww60tUki7D3arqep+mWeQ/Jtpvjt1zi1m1qCe8YXTdxWEu516nXqddpuE5+uQ/LIUald6LIler1UQIABI/6Hj3r0D+GXXr7x2D0E4o3ITk1l2rlwdLvn5SqhuNk5VuQ9TowmhUpOJllDUu/TiG4yd7DUCozTpIxD5BkXLTGmuTetWixJh/t8zSTMu8h2dZS9Zd2PX55u47h7+MfK9XSHeV4vU69Tr1O3cdIWZbDXLH6JAZ2/jAQRECM60ZQBMHAj4LxnG6uRqphaIdCrC0c7dK6UweVQqV8C1IF1iSMXpV3YWy5b0FmASgZBFfGguSNunBpHnRATylrt6ueGzS0JhWYA6OLdKXQmgTW/nmaSZnXkOx6f1KtW788fmn9m2e3xeup48V/CPG5e516nXqdRtPJShcYrb56Zw+O/vdYfHCapaJoPXKnxlajQjgDx6OFo2816vXQmrRQTFmRKRGcYYAakLY/Um9rAtVcaQdI63atAVlbk9wF74SRrqm+yak+T7Mh8xqSXS9k1wva1rpd27LUQ9Hr1OvU67T2Ok1JWuDoH8/yJQVGPwuQjSaN4egsyGmAYw1GwqCSARx9MMoRISkaFmTdH+lvLzIRHpdrd69g2u3KGfcAqbcr0sNGOAutSXfNSCeKaANlW9lsgnJeQ5IhfbFTrdXUC5565KbyEqda5m03v9ep16nXaWo6tcmoMO0CI4BWl2rQBzkDcIzB6PdBptysPhxTQz5SkLRRrZOVwljGMaiaY0P18BDdN8qVnmFMkUl9x+tgIs60NdkAJJibISSOdB31eZoNmdeQTL2AVtgIdfy6/k3tai37546/D3vJe516nXqdRtdpbSQFRgANqxFAAEfCcMvRQsOH4ES1dnBs9kOG6w6SHflZS2kTlzchWRgw+qCsA4FYbbF61qJNXsAZdw0GbpIYELHQ+oadxJnMNQyTC4z6PM2GzGtIpqStpTKKW8jfp6uVHbeA4uP0OvU69To9ep1GFZ8fbXDU6zUQ/T7HwGI0ATm2TNHUhnLY7RaEPiBjOMZQHFTK5WcFAFIE6uiHBADiDMrQSRJDYaJ4LSDtMuXCrT8w2Xj0ndC/3YCZa3jqRkzT5UoMyeQCoz5PsyHzHpJxaxRIv5TDWjFdL3PXOVIug16nXqdep0ev0ygyCiBjOM6Ea1VblGk4WgDWZc0gHQtHC0YHyo7Uc8zO7sEZGNeZcAZQDpRxZKxwUNTWpD238oa3KNO967tcgTqAJ3a52sTn2qoMZ3KZyvM0kzKvITnsRsQvaeoF7HqZ21rHXfr49Xudep16nR6dTl3SBkgLljZAWijWQLSRre3TVVkwTlYqaT1OGEsxZTn6UawxIEupAjBa3X1QpoRzM0MnZ1Cqnk7MB2Xcrxm7citFKKB/cw5rjZL7Xs9ZCfjpcH2Xq77mZKxKFtzb2YZhm8xrSFqJWyiplw8dZSnYxvVHeXlTdXqdep16ndZep1HEB6SVYYD03aspQA5zr04ay9Hve3xkIANAxnAMAEkEWakAjoEF2WFJMjvQn5tU7hwBKMFrK1F46xaKQDMpgTSBO1Z8cOprW/dL2iCd2OXKKLQmp9LgmUnpIelJ3Jr1JS7rchMBa/+y9zr1OvU6Ta9OU5EuF6tvQa4tICej7WvKdgsyZT0OpNJzQlaqAUfyLMluK9KsKC9FuQdKpQhChKC00hYp64vti7TrktfA9PslwcycoOY7gYBoarOu52m2ZF5DsuvlSr2wXeK7fxjCm9h2nNhllGpZ9zr1OvU6Ta9OUxULzBiWswVIB0mpAutRGWDGcOya6hLQEbiAgaUHSuaNw5AGXinpSkrQeR0T11WDcrT0dEC7m30mZV5DEhit5RrXY1FdltiWOvawc/c69Tr1Os28TilJ/e+TV243K5Drt7TWTx3Vaj9oCdjpHt7RBsjYvSqlaliPPhy7IloZZ3H2vfr3GmqRZwmmpJl5Z+piweiuK+lptWKXa0PHR33mqUtLHqb5IcNcP/Z7owWU+G5f2rjF3Hbe+NwsWvY69Tr1Os2sTv4fcfynbMdC+uvWzQpo60tRnZ5OEUEpOCja1HN+kI4N5LGArIdyrB0glVSQzppEHcBD6Q8QArTNJctGBGS47l3LKUK0IwC31gntz9NMy7yGZNe9GaXF0vYSxy98vJ76A+h16nXqdVp3OgXHo+a6dq9aWLZbkcpCSpGZwqp21dqZO9pyrsZ9kO64LYCs4YgAjkANzACKEY1imDGvP1Aw1sjAkyUAaSdlBsKGhivzCmOoKe9uEGwjhJL3cdR7NxMyK5A899xzscMOO2B8fBx77703br755ta63//+97XZHX3+8z//M6h32WWXYdddd8XY2Bh23XVXXH755VPWK36Z1ral0rYveeXDbnDbC97r1OvU6zRzOnGWOEaHArYvMmVFqsDdqmFmoVgqpberZpYca1U2EgN4LtV46YsFpP89/Vvbf5i1HhlnSUswBmacBJ1bqDIfmgakXRe0Rey17ZLZguaMQ/LSSy/F2972Nrz3ve/F7bffjmc+85k44ogjcNddd3Xu9+tf/xorV650n5122sltW7FiBZYtW4bjjjsOd955J4477jgce+yx+MlPfjIl3Sha97/7L1vqk2rNdrmRUhK7n+Lj9jr1OvU6zbxOw2TYn7HfF2mtSADOiixVnarOB6JNFND68SNXKd0HmQJml8SuVB+KNqkA0IRiFnznwTbOQmuSs9qCtAE53I2BrM/PE3fANkBa9Y+WsyGMulIyTIPst99+2GuvvXDeeee5sic/+ck4+uijceaZZzbqf//738dznvMc/OUvf8HGG2+cPOayZcuwevVqXHPNNa7s8MMPxyabbIJLLrlkqE6rV6/G4sWL8X+rVmGjRYuSL58Vv0XaVs8v7zpW1/Hjc/Q69Tr1Os28Tnaf2ipsZs7x54KsJ0vWg+ltVh2dJCDMx+onDpg0wzfi8ZBrBjLdD2n6Me1QjziSNYZkqs/RByJnzLMWDRAZg8g4mLcuMo5CcBRZ+Bnz1hcUmfu+IBfIBcOY4BjPBDLBMC44csGQc71fLhjGMwHOtFWZ89pNKziCJTN1dN3ue7d69WosWboUDzzwABYtWjSFuz81mVFLcjAY4LbbbsOhhx4alB966KH40Y9+1Lnvnnvuia222gqHHHIIbrjhhmDbihUrGsc87LDDWo85OTmJ1atXBx8g/QLGLRW/pdv2Eg57UdtaPbZ+fI5ep16nXqfZ0Skl/p9im6eQWvaWpji2JoE4c41KZrSpj1O7VadixzBjDTLPDToqIJkDV9qK1JAUQRJ0zjQMtUVpAGesS95wv444CXbX70PzeZppmVFI3nfffZBSYsmSJUH5kiVLsGrVquQ+W221Fc4//3xcdtll+OY3v4mdd94ZhxxyCG666SZXZ9WqVVM65plnnonFixe7z+Mf//hWneMX2Uqb+yfel0X1Y0m5C9qO1+vU69TrNPM6AXXfpMsdytp1jUWZoRduxg0LSgfHelvlgzACY1tZl8QwjD81NAGRMQjBwQVPAjIfYkFaN6sty7m2EjkDcs7BOUPO9dyQ2mJk4NxYsQAYtKXImF2ae9Byoe1lGHbvZlpmZZwki64CmTExKdl5552x8847u+8HHHAA/vCHP+DjH/84Dj744LU65imnnIKTTjrJfV+9erUDZdfj6LdU47Jh+/jrqRZvqh5LbOt16nXqdZp5nQgakIrMf4uBGmcAMeYgB7cPw3CtQhklWw2gXZFS1tsZYw3LlXMGBTJjHttxYS1HexzbB8m4Bibjxs3KWCcgi0yEZYJDcCA3cM2EhSJz8LRWpLZEjSUJu2xOjdUmbfduvbAkN998cwghGhbePffc07AEu2T//ffHb37zG/d96dKlUzrm2NgYFi1aFHysdN0c/4WOb8iwVk2qftzijSX159Dr1OvU6zQ7OgFe4AnCaNDUH/tMiw8/H27WGODGQmz7iIw516q1HkVmLEnBwUfsg/QBuaAQKEyf45jgyAXXoDSw1MsalLngxmJsWpGAtYDr35wCUte9mw2ZUUgWRYG9994b1113XVB+3XXX4cADDxz5OLfffju22mor9/2AAw5oHHP58uVTOqaV1EtlP/HLFbdkUi3dthsat4ZGaUn3OvU69TrNnk6BLvbPHGi4Xu2fpvujNwXDhjrEA/HjzDV+mT2Wg2NkBXLBtatUaDen/xEWgp5r1YejyDiyQmj3qrDBOKIVkAsKgYWFaAdktM4Zc4C0/ZSCN61Ie20B45JtuXxTuXczITPubj3ppJNw3HHHYZ999sEBBxyA888/H3fddRdOOOEEANoVevfdd+Piiy8GAHzyk5/E9ttvj9122w2DwQBf/vKXcdlll+Gyyy5zxzzxxBNx8MEH46Mf/SiOOuooXHnllfjud7+LH/zgB2utZ+rFi7fFL2yqfsrVE9dtO06vU69Tr9O614kzY8USQMbVKRHCkjMdpCM4Q6ms1Ulum17qMsGB0vRbZpxh4J3LD5CxycQtKCUxN+GzTjyuV/xprfRvDX+tc696blZnhRqQ+cE3ur+RjeRiHct4YDXq6NWwbNyUOaucaZ1tRKu9jjbYx11To2tKRr13MyEzDslly5bh/vvvxwc/+EGsXLkSu+++O66++mpst912AICVK1cGYyYHgwHe8Y534O6778aCBQuw22674dvf/jZe8IIXuDoHHnggvva1r+HUU0/F+973Puy444649NJLsd9++62Vjm0vqt+qpagMLWXD1tuWvU69Tr1Oc0Mngh5+oBgDA4GRBp7OsGP/5Mn1YQrGUEJPXiwUUMKASpEDpo0aBSwYOQQnFz0qI1ACgFCaLj4oAQbF9DCQthyqoTu2tkD9yFUfjH4wThKOXpCOhWEMy1zweuiHZ0HqZQhIwWo3K0PTivTBaWWUezdTMuPjJOeixOMkgeaFX5sXMC4Dmjcz3g60PwC9Tr1OvU7rTidJNuUcTEIAQmUiVW2CADtWcrJSmJAKk5XUkyhLhcpMpjzKxMqT3vjIIC2dl1jAz7bTljTAz5wDoBWOIwPSG/NolzZIZzyAZxOQ1sWaAqTgISCtFRlYlhEp43v34CyNk5zXs4D4L0fXC0Yt+ww75qjb/e+9Tr1OvU5zQyffmrRRroyR/nMHQAxBv6Qwble9ri0+wfVEwyVqV2ptOTatSQAoMo5BFc13paDneORa41Ry8jrLjVl6rtwUJC0Idflw6zEOzhnLRBCoY6NY/aQAGpQ1FH0Xq+DM69/tBqS9R6l7N9MyryEZy7AWbFzPbu+SrhdzWN1ep16nXqd1q5NgAJH+w1eMzPfQ5apBWKdnU4xcajauGDjT/ZKKmtDyP2MZdzODFBlvWJOAN3REpH9L6NJtAjLjsbu1hqPro4wz5vCWyNUpWo/x+jDrMXWPZwuMvsx7SKZevK4XNbW/fzOZV2ZbpV3n88/V69Tr1Os0t3RyEFShNSk4QBJgsJYmq7PNkIWlgStnyIlDKpW0JgvzLywVAZUChgAyHmPZFjXrw7dpTfJOOMau1ZQlGVuPtu8xTC03NThOpfEzrO50ybyHpC9Taan69btezqns3+vU69TrNDd14kBgJVpr0lqJBO1mzYlBKQtLQiYYJGlrMhfmSNG/7qACiqyGn3D9n8MBCYTWo12GCcmZsxp9i9JFtrKmhThVODJWfx8Vjg0wkop/mqlQj1SkaDkb0kMS7S3Xqd4I/zhdLeU2aWvt9jr1OvU6rTudYmvSh6Vg2o3KQMg5h1JKZ50xsFRMZ6UBOBQpKE5QpAHli1Sskcu1QJimrkoAMp7j0bck/VRyvkVpXa1+ZpzphGMclCPawGih2AZHQANSpxXquIMzK/MekqO4dmw9dNTtcuekWqxtdQi9Tr1OvU5zSSeGpjUpGEDGpdpmTeZCp7PjnEEQaksSCpBwoBScYdJEtNphIHECdH9ppd3N2gSjg6MHRM7QCkObh3UUt6ofsSo6rEYHxlHgmBLGp/z8TIfMa0jGL5J/0f0XKd6WOk6qjv+Cdu2felF7nXqdep3mjk6+NWkB6fomqWlN5sbNmgsDRQAOkGbJFQOyEIK1i5UHVqQV3a8ZWlVxP2QcnGPBqGfsYM6KzKwVuRYBOX60qoMkq8EofCgCOhMCKTD/e5eY30hAbUV6FmWqATRTMq8haWXYi5SSuCUzynrbcVM3u9ep16nXaW7pZIeEEAMEJz0HpembFFynICewBCDToORMw1Aw34KkIS7WOqw188Bol+7jgTFlPXZZkf60V/F8j7FL1Z7LWoqCQcPMh6KKLMdh7lXUl4tx7554LtfZAiTQQ7K1BTmKm8fuO8oL2XbeVL1ep16nXqe5qZO2InWmHe1iJCjARbpyRi53qZY0KDnTkyoLpl2ypSQIRoCwkzrrs3cF6tj1er5GO9tGbTHa9dp9yiEYAquRc7S6VLusRsFZCEYDROZBUoPS/IZh7lWmQ4aJMTirUTVBOez+T7fMa0jaCx23ToHwBUndDJZY76oXt2BTL+Ow8/Y69Tr1Oq1bnTiDC1YhEJSsB8vbqasyG6ijFBQjKNtJ54GSK0AwgVIps65hqYiQg0HGuQSIgllJhDGq3NATs0lDkLlxmjmPLEmvr1GX81arMe5rdIE6zFwHC0FZNaGY6ntMQdIPyDHTlzDS62QbFcr7wesgiGdeQzKWthZk2wvbtm2U1ipatvc69Tr1Os1dnYA6wYCGprEmDeiIAeAE63Z1/Y/EYC1KwQgl06nmOONQHA6Q1nJUHRywQLSWog9F3yXq+iGNO9XBUnBjGQ63GkVwzDQYmZI1FD04shQclaqnTXEX2/Qz+vN8AWCoQclI6XuxDqJc5z0k214sv9UZtzJTS3jH6HoBh7WUe516nXqd5q5OQNqa1IAkNyREj4v0+h+JYIGpDNBKqaCMBcmVPpOFYzzJM1Cnm7OQjKHIPXeo71aN3akM3X2NITjN71YaikxWTTCqysETQG1VArWr1Rcl9TW2lrGFIteAdLDkWQ1KpTTVe0ty9iX1wrBoadfjl7frGP4+/rHily+1f69Tr1Ov09zVCQitScEZSFGdZYcToLQWFpQm5SoE4yglgRNBMA5JOg+ry8naRXp4VmQERf+7D8Y4CCeOUPUH/bty870VjMp8JwXYbdbFCjSXKTF9i9py1D+aSAEiq++fqmpQmvORszJnT+Y1JLsudKol6ZfHL63/4tlt8XrqePEfQnzuXqdep16nuaeTtSY5A7RzFSbKFRqQESi5IgBKZ+NhehYRpQg5AMm1qxXQM4+kxMYB2X7JFCRdNKsHRusmjcc1+u7UGpwwQTdVCEYLRbOEarpYA9eqD0d/PdH/aKEHxsF4BpKVWecgnnnAZdqaZOb4s2hNzmtIdr2QXS9oW+t2bctSL3SvU69Tr9Pc1QmAl3HHRJwqPd8kMTITNtdHYzaYhxE4mUAd7gXqeAf2Z/iwM3sACICot9XWooO03384JAgndqcyWQGyaoLRtxZ9KzKAJIGkND9AIilcD19hQgCQZqxp3Q9JgPlOZl2BrDVJnjXZQ3L2hCFsUfrlKYDGL1Oq0TfqC2uPG29P6dPr1OvU6zS3dLLrrm9SEcgE8cBMlgxFeiotpcHJGAMR02MfuY5YtX2Pwdj6aIYPG+eiAcgCKOrxiU0w2ojbpls1dKdaMPpWYwBGYzE6K9KUkZSAkiDbv6hUAEfy1hn3fhAXIM51GRdgQoCYhh4DtGXJM20wAmAi01AkZVsdjfs40zKvIZl6Aa2wEer4df0Xrqtl6p87/p6q1+vU69TrNDd10q5WBFNpMfJdrtDdbVxbmBoCFpb6yPZ4XeMh7fljKNqRJV0zbzT6GX13qqpCMJo+Rlfm9T+iqhwULRBJSU13C0qZtiA17AwoudDUN5AkzsGyQsMS2pIkAOCZhmJgrXJ9bjbFdHaPUuY1JFMStzL9coq2+d/jfbpatHELKD5Or1OvU6/TY0Mna00y6MhWmMw5jAECOnUdFANBl1lYggFkjqII4KI+g+dhhakdQJFFMIzByGN3als/o2c1BhajgSdJCaoGDoRUlXpprEhr/jqrscvNaq1JC0hhLMks1+DLcrC8ADHVaPwwpl2t5mS1y3WWZN5DMr4hQPqlHNYi7XqZu84Rv7i9Tr1OvU6PHZ18a5KYhiFs/ySDC+IhYmaQPEDkRv/pY3sH9PIFgLsy33Jsn8i4kQUn1c9oLUQZWZGexUjVAFSVGn5VGUBRW4/RupXYkvSsRwKMi9VAMsv1Ukm97n60ALIajLYvErHLtYfk7Miwlyh+IRjaX9LUy9zWEu3Sx6/f69Tr1Os093Vi8KxJu8VYlIIDjLRblbmhDsx1OypPycCCtGVgnps1DcZGFpw2d2qq71FVDoxQSi8tGH1QWiBKGfQ/+n2PQccqt2MfIzerEGBZofczsAyuZQYwEiBV6XLGNdB9aCpVtyBmQeY1JK3ErcvUy4eOshRs4/rxy9umR1yn16nXqddpbuvkW5OKAYwM8DgzYym1VSnAHBSt9eh5WWswsloHzpqQbMy24WfB8VynDXeqB0amJKg0FqMFZGkA6QNTpvsgaxdrh0XHTcSq3//IhbY4LSy96x00QvJCAzJpTUbDTGZYekh60nbDUmWpFuewF3KUl73Xqdep1+mxpZMtY4zpzDrGiuTMpB11gToamG6HSOwYSB+WofUYzbbhD/ZXVT1EowOOgTu1KjUYbX+jBaSUtbvVwjIK0CFp+yPTsGKcg9l8q6b/EZwDxopkWdG4lsF1tdGvqtKwVAomLZGuO4ugnNeQ7Hq5Ui9Cl/guGYbwHWg7jr+PX6/Xqdep1+mxpZO1JhVqUDor0hxEUZ1aLrW/PZezHlFbjMYwbViNDfdpW39jVYEGE0mrkaoSKAcg391qAVkOQFKBlIKSqgFHijKxWzAy624VHFzo5AC80EE6LMv1NTHu2xiUtq+SKemsySBgZ5SMPtMo8xqSwGgt17gei+qyxLbUsYedu9ep16nX6bGpk9VHW48alHoUiK6hiALXqpWG9YgEGIEafj4Ep+pSNZZj0mqM3K4kFWRZOUCSD0ipoDrcrNyzIpngUIKD5xlIKfA8M4E/EjDWJISorzUXQFXWEbFcwCUr8BMXDJu0eRplXkNyFDdLl6umbZ9hLc+2l61t316nXqdep8eGTu641vXKapdrShoRrIjAqDzLMZUmrgOOqgOOVJah1ViVUIMSpBTkoNKW46ByQKSkFRlGs9qxkMpAkgkOLvWSpALlGZRUEHkGbq8n50BZ6v0514AUogapb0FGLtfZknkNya4XalhrNFWHomXsRoi39zr1OvU6rR86AW7kh3OdKoNP0VHf6ujACISp35SdZYOmH45muyorKKmgjOWoBpWeC9PAkqSEGuJmBRC4WrngYEI4YIo8A0kFXtTI0VNs2uEhXOtpA3sMJLlnQdY3ZHaDd+Y1JFPumlQrc9TjdLVQhx2n7QXvdep16nV67OhkQWnXU8IQbndWo58sPJUvNYKjP/gfVQVl4TeYGBmOclA5OFr3qv6uwei7WkcJ1gFqFyszfZGiyBuAdNeLG1erSVHnXK1C6CAfKZ3L1VmVI9yH6ZR5DUlqWQfCl23YvvZ7l8smJfELHe/f69Tr1Ov02NPJgjKuH2bSAXxriKl6EuM2OHaOcfSjVS0YBxND4ehbjaosA4uyK2AHAEiqOoIVaAnW0X2RIk8AUnCtr3Wz2j5IE9CDagCW5fU1IhMENYvDP4B5DknmLYe9ZG0vY1udUVo7/os37MXtdep16nV67OgUW5HB19hq7IJjFKjTFpRDkxPNaFVrVbbAsbYcy3rd9kd6kPSBacW6X3kESSY4mOIg2xdpg3USIg1UhShrOAYfndWHm7kq1wUggXkOydTD3uWuaXspbHnbizOV8l6nXqdep8euTvF56h3C+Rbd/IvxpMWBGzURqOO5Vmkw0d7vaId7mIAcWYZwtJajXY+jWX1YAgBJgkpMdilhYckASDDBQitSplPjcM6hysoE99RgZNImLDDXR4XXrXE9Z0HmNSRTQt7Sf2lGcbXELdJ4OxLb42OnXr5ep16nXqfHhk6NbfGYvpT16E1gPBPWYzUxSMLRWo5hX6SFpYaidbMq2T7sgnEOCQ1KJjhIEJgwLlLRhCQTAtIA0p7XWpOUFTUwzZKkBISX37V3t86udLUIUy/FsBZkqrWZavGm6rW94L1Ojy2dFIV14lmQ2gI6UuPo1ufrtL7rFFuPAJoRq3ZbnHjcHwMZB+b4fY/GYgz6HgcTgfUo1wzq9UHpLEo73CMFRzmQXiRraEWSWWfugVXggoEUA5MEMrAEKnAVQpIJDjkoNVgNKH1rknnuVjKJBoJrqFR7uPAMybyHZFffQuxmiVuhXS9ZV0s2bpnG+/Q6PXZ0UoRgVnkict8VtWlXiz+YXAJgdtZ5Vp/bZnMZVaf4d8yF6zRfdGrIMECO6F4Ngm8m1wx1r1YTg9C9WlaoJiaNJVkP+ahhKQM41pYkOZcrUAPS/XYDShLcuFoJpHQCdzkAUACMK5DQrls20GBUZVmPnzQfZvogmR1/aXLEsrYpuGZJ5j0kUy+Vv63t5YrL4hctVT+17HV6bOnkQ9ECUZmoO+XKa0B2/ekCHgyZHStHprw9NVmsU9d5Utvm672bLZ10YZSuzU8MMJ2AnJwIMurIickgOEfDsvRcrV7wjoGlHChjScoGHMlzs8Z9ktp6hLYKpe6PJMEhCg4JWYMSlb4GnIOEPpfiCjwRENToi5wDMu8haaXLjcK8Zeol63opYw9aW2u212nu6kQAStWEolQhIK3hqEDBHIG+u7U5HRIlp0MCyJsSCUlgCja3rpO/fT7r5PZviWBNRbc2+iVbhndMJyBj61HDMoSjBWZKpHO7kgnc4VBQwAABKEkyDUcTCMSlAnLo70rpOjaButK6MMAF8JCSdULzdRDdOiuzcp177rnYYYcdMD4+jr333hs333xza91vfvObeP7zn48tttgCixYtwgEHHIBrr702qHPRRRfp+duiz8TExFrp1/ZSxC1Waqkbu17i/f1j+K3RuH6v09zRCQAqAiYlYUISBlKZJemyijAhlVufrJSpozBZ6XoTlf4MZP3xyybdNlXXUXpZKkKl6v0qVZeVSsO6omb/Z3/v5ohOLPHXaq1Itx5Bc4Txj3rGDuNiNesugjUa3jEMkPajSgk5UOF3r0xbm7LxUVI5oNrAHgvZ2hq1nzApQTze0nfp6svT4WKdZVDOOCQvvfRSvO1tb8N73/te3H777XjmM5+JI444AnfddVey/k033YTnP//5uPrqq3HbbbfhOc95Dl70ohfh9ttvD+otWrQIK1euDD7j4+NT0s23FPyl3Tas1dn2oqW2pY6Vesl7ndadTgTtSh0YME5UGoyTlQbjpAFjDUUDSAPQoK7dP/qUBnI+OAfxdwNNDUXofWS9LiNYSvJcvbNwndq29c9T+zkbQTxeIIp1v7oZPoiCcYLOwrJRrLKGI5RyQTp26Ib0XKldFqSSBFV61mRkPTqLUhJIJT5RPT8CNmV9+gkJNCzrKbf09rovcpiwEfr7p0tm3N161lln4XWvex1e//rXAwA++clP4tprr8V5552HM888s1H/k5/8ZPD9wx/+MK688kpcddVV2HPPPV05YwxLly59VLr5LUy/ZRhf/tit0/XSrM32uJXa6zR7Otl1SYB00CFIVS8V6u9ktlv3aqUIigjSvLTK1LPiB+/YIB2b7JpzO0cg0zPYA87tKpjWiYMgOINkteuVGANjelYJMuWMMff7/ECf9fnezXWdnKg6Y4ze0RsnmXDBkpQeHFXtZlXKDfPQ8zwaF6yBjs2eQ1K5KFZrpbk6xsqzFmMKkHJg543UMATQsPQAgHs2loICB4cCwDhBQYFJBiaUdrdK5lyssQSgVF5E6xBhs2RRzigkB4MBbrvtNpx88slB+aGHHoof/ehHIx1DKYUHH3wQm266aVD+0EMPYbvttoOUEk972tNwxhlnBBD1ZXJyEpOTk+776tWrk/X8VnhqPa5nt3dJ14s5rG6v08zpFMPRWWURKG0/pPsOoJRKg1IBpVLakjN/Jhqg3X+benZ5C0pm4MeQC+agmXG4iXYVSM+aYKCqDCDB7WyFDBaRcZLtWNaHe/dY1UnvEAappKxIaliRykV6kinX01rJGnxeKjlVlrW15gHUDvGo082RZymG/Y8WkG2RrUww3b+YGAdJSrkZQeLy1suSgPBciGwFZhiS9913H6SUWLJkSVC+ZMkSrFq1aqRjfOITn8DDDz+MY4891pXtsssuuOiii7DHHntg9erVOPvss3HQQQfhzjvvxE477dQ4xplnnonTTz89efzUQ971UqT2j903cau063z+uXqdZk8nH4jWhZmyIq3VWEqFUmqLsVQEpSgApLMkKbQkYxHeEA/BWAhJxSEYkHOOkuslca2rhaVigOAAkQakYAzgBAEG6YGy61pO5TrZunPp3j1WdAo3RtliWj4NK9J9rwNbXECL1NB0FqNnLTpgNtLJUQBDC8FmRGsNyLTrlOrhH9bXP8vjF2dLZiW61Y79skJEjbKUXHLJJTjttNNw5ZVXYsstt3Tl+++/P/bff3/3/aCDDsJee+2FT33qUzjnnHMaxznllFNw0kknue+rV6/G4x//+Ea9qbYKfauk7eWcyv5ddXqdpkcnRdpFaoGowWfKIlBWBoSl6R8spYJy+9Sw9MGoSB8nJYJbQFqL0VqSej1XZCBJyAVDyfTSwpIAEAOINCj1rL7klgLGsmSs1Zp8LN+7x5JOekcewnEUSfRFWisSPkCBIOAlDohJ5V31rUhdx1iNc2C4RTIzj014vo5lRiG5+eabQwjRsBrvueeehnUZy6WXXorXve51+PrXv47nPe95nXU559h3333xm9/8Jrl9bGwMY2Njrfu3tRKn8uLFx+lqlbZJW2u31+nR62SjQG2EqLRBMESoZA3HStVWYw3IGpR1fQvN0MVqvUaxy9X1R/L6u4Oj4BCMoVTaMsw5IVcajooYFAeUYMjBoRh5ExfCAZKRdrkyxsComb3nsXzvHos6pU+UgFHsavU32TymrqoNfAlBGQe/jAI95blV10aY94AxzqLv6XjQ1vIgSfroUKRUBPEMyIxCsigK7L333rjuuutwzDHHuPLrrrsORx11VOt+l1xyCf7+7/8el1xyCY488sih5yEi3HHHHdhjjz2mrOMobhRbDx11u9w5qRZrWx1Cr9N06+RbjzEkKws+D44TUul1Yz2WSoOxVMr1X/oWpVS19RgvgdqCtOvuY/ofcwtHA0YpGCQxSIFwSYTxTOjzm7GU4AAjBqn0WDUigEAgz1PzWL53j2WdkhaoPzayzS2vQjg6V6tdd4eKhk0k+vXahAsGaVymbcYuF1xnyRGs0R9pt6eOa7dxweqZQUw549wrEyEgbT/mCKCkETyR0yUz7m496aSTcNxxx2GfffbBAQccgPPPPx933XUXTjjhBADaFXr33Xfj4osvBqAB+Xd/93c4++yzsf/++zsrdMGCBVi8eDEA4PTTT8f++++PnXbaCatXr8Y555yDO+64A5/5zGempFv8IgWtOK9OvC11nFSdtv6OWFIvaq/To9epzXq0rtXSuFQrpYd0lMobpiGVKatBacE4kBqWg0q5YwEIYJkSH5CZt15k3IOktiIrzlEqwrjgUERQnEObjhLjmQBA4KStRkkEblysDOT6Pe21fSzeu/VNp1Glc3zgNAnjvB5uYb5zKC85ADO6UABKK+H0WKye+cNBkbmPv4/N09rQx8w/aSqa43aAcpYsSCszDslly5bh/vvvxwc/+EGsXLkSu+++O66++mpst912AICVK1cGYyY/97nPoaoqvPnNb8ab3/xmV/7qV78aF110EQDgr3/9K97whjdg1apVWLx4Mfbcc0/cdNNNePrTn75WOg57kVIStzpHWW87bqpN1Ov06HSKrUfpjTn0rceJSmoYehZkDEfrch1UyoFxUCkDReXgmLIigdqStFAEgCIT7vtYxlFkHJI4JDdWIyfkpP8MJDH9plYAwCGYQi44JBEYAZyYG5JCDFBoxlA8lu7d+qTTVMQH19qInstRAGXVst0kHjcp5JhgZtiG0unl7PcYitFwemaeYd+i1KCsgWmtSC4YRFFbjw6WxqLkdqJmzj1AWmBygHMNTMbrzywLI5rFUZlzRFavXo3Fixfj/1atwqJFi5ItyFFbjWt78dr29c/b67R2OllA2sH4NshGu0zrgJ3JymbIkQ6SlSRMVNLBcaKSGFQanBaMg0o6S9IO7G8DpBUfkJm1Ht1SQ9LCssg4xjOOnOuy3IB0POMYywRyzjCecRSC62MJhpzrYSO50FZqbqJmH2v3bn3SiaVm91AVmByE372psNTkmqEzfdh5JG0SAelPhRXN9BHPI0l2jKSXSMBlySk1pFOJzVMSwJFzB0hR6HWRC4hCf3iegecZsvECvNBLMT5mloUuX7gQrBgHL8bBFmwANr4B2Ng4+PgGwNgCUDYOysZAuV4+sGaAJdtsiwceeACLFi3q1PXRyLzO3UoIXS3xNrRss+Xx+rCXzy8bxbXT6zQ1nUZ1rw6kdqvWkDQWpO2TNK7XNQPp4DgwsLRgnKxCCzJ2tUpF7X2RnGGyUqEVqTikEiFwbaM54+Ca/Oa7QG6CPAjaWtYO2NqiVFTndm27P3Pp3q2XOlnLJ+r0I6atqFRmGcYFiCsAZV3orKwyWce6MZniYFJba6SM5aY4SOp1gQwSZqJj52/Q0yZba5Ek6W2CgUnmygIdnQVpLMoWQLLABcshikyfO89cf2Tw4UJbjUKEbtd1HOE6ryEZS1sLsqvlmmxBemVd21Lbe53WTicdZWojVMOhHRaUvnvVQrI0wJuopIPkmlID8ZGBDOAYWpMJSPqZdhSB+5BkrAFKDUd9/rGMY0FBkErUsC0AoWAnUQAyDiEJOde/TzAFzrh2s1KYZL1N5uK9W5916hKdOanFfch1YIvfR2ldkhaQMQS55HrKKiXApNLgsduQQdn5HQs9O4cFpc6KQ2CSGQtSLwWHDg5KTHRqXaJ+f6R1t1pAioJD5Bl4oa1IxrleN6AUeea5YA0MPSgyD5auwdESITuTMu8h2fZi+a3OuCWZWsI7RteLMqxV2uu0djq5sY4U5TmldkBaK9KWWetRw1Fbj6E1GUGS9DhJm8tSqbSmnDNUgA5y4EwP+eDMHcfCErDu2ui1zAAuNWhLpvtHuWLITaID+2kD5Fy/d+uzTk28JHRjHIxxEFOBxeiECzMno9DRrVw6iDoYqqY16T9HEhW4+c64bnmRNJMkSwbFqQFLAFCy+QuCwB0PjnUfpDCwrAFp1xnn4HleT7Zs3LDIctP/6FmUHiyD4R7rW+DOXJcu90nsRolflK5j+Pv4x4pfvtT+vU5T08m6UR8NICcMEK31uGZQ90WuGYSu1lIqqEppQFIISIpAaYMcuAEkY0zPpZdxDKRCIXhL0E8WDRUhCKWQEUPpWZM5J2TcApLpSFgK78pcvnfrvU6MBxBstRx9MaAgrmpAcmnW9RJZAcKwGSpKkNLWG1CDkoQZbykUmFRJWALQ1qQ5gx1XyT2r0h/WwU1QkCiMZWitRg+QPM8gCg1IYeBorcjQ1cqDjxvusY5AOa8h2dXKS7Uk/fL4BfFfPLstXk8dL3754nP3OqV18gEpKQSk/T4MkI+UunxNWVuPawZVYD36gLRwlFI5MCqpPECmr5H2Epkp3bhORceNO1ZlzWEjui+zCoaK6OQDGoqSa2syJwtFBgWdiD1+qrssp/55mnmdkuJHajIKvjMhAGUBKWuXa8KatCBlQjq3qwWiL4qbBOuCu9lBGNfr+pg1LAVs4I4Ccg+OeX28EJQcflSri2I1rtQYkIFVaeohy40lGbpcHTiB2pJcB9Gt8xqSXQ9/18vQ1pJc27LUC93rNFwnC0i/D9JFso5gQfqAXDOQWDOovL5ID5BSoRpIB0fpQAkNS6pnS2izJJkBHc9CSHJFQAFg0IyMXTOogj7MnBhKpZAphpzqPljbJ6kTCYTSP+PrVqdhYvslGy5XD4INazJvnsOiI45IZYKDlRW44JClDtphg0qDUXCXpo576euEd5y2jDzB8A/uB9/UQz0sKFOAdH2SeeFgyPIcLDOfvKiBaRoQSYtyFmReQ5Ih/SCnWoaplyn1+Iz6wtrjxtvbXqxep7C8zrFqE5EPD9KJXawxIK0FuWZQu1tLA0glVQBHC0xrUZIHykB3C0mTzJwTN7AkCNO3Uw0AyvS+cXDPwETBCq6z8eTcWLDuo6+Lf2oCoEd2sTl17+bi8zQbOtU715aji3C1UEtZk1lTVwCgCtrtalyutlwIATawEbAaVmpQeUsBkhLSwNEHo02KDsBB0/2OBHj99WAMpAdM607leQ5eNAHJCw1EWDBmHhjtGEm/P9Jct9mWeQ3J1MNuhY1Qx6/rv3BdLVP/3PH3LtdYr1MtcYIA6151wPTzr9rk5GacpN8HOXAu1TQgB6WErBSq0kKSAmvS74/UwEz8Zg7nYiViUIogMp2TlcxUXPYlLDmDqMKsPINKuqEiiurfYvtc7e/OOUOC0XPq3s3F52mmdXLiAxEIoAimawZ9l3mh5460btc8BCIBbhopArTVWQ3AAedWdbCSCopzN0uIhaU/zyR3lmOdAH2UcZL6p8RDObiDo3W5MhH3UeZgxbgBZAHkhYaisSKtdUmM1dcpuNCzl1hgXkMyJamWmy2naJv/Pd6nq0Ubt1rj4/Q6tevkprhS0dRWqjkERMOkzqKjkwSEUazWxeoDco0HR1npVnY10FakhaOslANjm7uVcQZIOFcr44DIOIhqK9KmmssAqIph4IGyyLiJftVwLzKFXDA3ybPyEqvbeSVbAmznxL2L95kvOgXntMM+SDlrkkiBwYMmz0Cq0q5V8w9N1SAEJRdAVVuNVJX1eEolIUQJLiWUSyvHa8sxzxww6xlCZO1iNdv80YnWmozTylkoapVsEI4BorUwTVSrsENB8sKzIAuwsXFnSTIDSxhYkrUe7fCPdZB1Z95DMtXyS70Aw1qkXS9O1zm63L29TuH+4aTI8FyttVWlCA6E1pq0eVltFp16zGOYTcdFsHqArEoJZSxIC0wNSAQBPACSsy/o1FsMxBkYMe3KyuIrzMGY0tGvFcOA1a7WsYxjUEk3TEQ3CMjMYamvgzKuVetinWv3bi4+T7Olky4wCQX8pR+IwjgIOvKVeKYz8PAMyABGHqrsmEkhtJWJGpB6OIgEGUjGsKQ8AykFOajCPkg7n6QKvzeTp3vjNb0JlevxkgaICatS2KEfhQdG42JFXtSuVh+c1orkGVx/5DpKSzevITnsJYpfiJRbpuvFaWuJdunj1+91qiUEpA5WkaQjOoe5WRXBlQ1kCMTa5aqtyNL2PRogpgApzaS0GpbKDfhOJafWwRcigKWZ48rV4YxBSgVW6QhYmdXDQia9cZRSkTfEAw7O0isDwv7J/hlf9zoB0FYjLCilAyYxDiYyQFYgDjCFAJSkKhfEQtXAuVXdOEIPiFAKiGGZFWBKaktTSfA8a+2HdOvRsvPaiRCS6f5JoeHH62UKkM7NmrIivf7I2ZwBBJjnkLQSty5bH/SWstQfUVw/fnnb9Ijr9DrVg+UV4CDhQKl0OUE7HK0bsrYktRVpy63lKFUzi44k0uMfpQr6IGNA2jGSqipBdkJctEPS9a9wAZEJlwgMUBqKUuntJgBIVgpSWFdrDUiro0yA0l2/lhvZP0/rRqfg79z0SxJjtXvV1uMcUAhACVL6OKQAZoKwlE4kAOtercoQkpzrZW7gWJYGlrmenss+r0pBKOksxFRf5FQgyT23qwOjCcDRATm8hqMQNRi9SFbngs0LDXlrRdpAHqC2JGcx804PSU/ilqMvcdmwfoi1fbF6ndLWAdmhDjDuRtJWJFHaipRUw1Wq2oq0WW78zDm+m9VBUdVBOjEgZSUdHO1HebB0v938eXEDSZ4VkBUgMqEHbSv9h8Q5c4C0EbPNvLDRtFwUpsEj8m3Tdumfp1nWKc7d6sAYJhYgnoExVVuU5FmaqtLHyLkO1pEybUU6GEoNTyXBsgKkpNuPIlBa8Lpn1wwB8fPKts1O0pj/0c3o4QHSjXnkGtw+OLO8tjKNCxZesA7xzIGy8ZlFmdeQ7Hq5Ui9Hl/iuFobwxWs7TuyeSbVi57tODnbQVqRUFprtVqRNF+eSDBg3ZT1jRzh7h7XQLKA0rKBhZZIFuDGRimowVoMAjjEkSemxbs5urAbgWQGlOJjSEyO7oRwUDu2wAEwlT1ceHPVvbb/e/TO+7nUKLUbUrRkWHpUA7XolY9URAyPjZjSziRAzwTmkwIlqt6qFpIVfXmi4KQlmuwS8dRsZ68AJODD6wPSvS6v4cARqKIo6KYANKnIuV7vNWo9c1BakBaTti+Se23UdyLyGJDBaKzGux6K6LLEtdexh5+51CsVZgp4V6crNN5vYW5oxgzaQxYLSAqUeIpL+qOhD0Uc5iKqG9VhDsp1WFpS6vgAp5qzJ2oKEi45VERiBcFJnv29ymPTP07rXqSGMgzgcCM3N165VUtqq9GHJuNsGUhqYZBINkAIjAkkZWonxugdNADU4AQdEct+9Bl/bPJdeAE9jsuRgfkgPkn7/pIUkF0CWmQaAt+QCEKEl6azMfgjI7MgobpYuV03bPsNanm0vW9u+81EnRdZiDKHghjyQ3tYGCt/VqiKrLLXuuzvd+VzUatOKjK1HG0bvi04p5oGTCw+w2pqEYAGM4f1mq1s1Kg0T0j9P616n+mTcsyaVZ2GaISCmThcsAaGB2AJMa2ECSEITABquVvvcRsB0dYeIAyNQ9xVaIJp13/UauGGFcNZjYEEmyvro1nUgXS/UKH9LbS9V/KLE62t73vmgky+WDdaK9JdA7bWiyHpMZdKK53pMrTv9IosuJSqyIFP9NiRlEC6vlISI5saLExBYQJKiDp2TKiVlvj9P61onJ97wDwIAwc2kzHqbhh4DI6rrkvGXkAK4hqErUxaQBpi2nv0Aep41A1EWgVNX10trWTbcrf62USThdrXlgStWiMAijCFIjDkL0t/mhoHw2YXlvIZkyjWSamWOepyuFuqw47S94PNNJ6C2IoG6LzIWB9ARzjwVqHSJP9yjvY754+mYKNa6XIfN4TAdMt+fp7mgUzA+Mj63hSV0VGoNvNpqtNAjH4AGmg6iygcleev1voyU/sc3ZcyHKxCA1MkIlmQg3nNvG4gObuZauKEd9tokINgAp7UsgVlPTTevIUkt60CLu6Sj/jCXTUriFzrefz7rpAiB29F3taqR/q6mX+xcd6O4oLqPI1y4fHud9h4tMYX/iP55miM62T/2FCwtRB0wjSgPgt7SgjO1LbAk7VJ5kLX7J/Z1gM4R6tE2vU2beIFKjdk7Aliyuox7YyGjT5BIoJ90eXaFecthL1nby9hWZ1QXTazDKH0k67NOvhUJ1I3iRyOC2+mn7PdwXURAsvlWAT3FVQrKnAtI3y1l8mF2WZA8sa2RkpI1dcsSOo4q8/15Wpc6xefSJ+ThugWQBYsPJB3ppTd75aQiCMKvR+3wNEtnMcfbgBqoUTlbixcxGPTv/27ugzIBUa/vMQZkA6KzIPMakqmHvctd0/aYuIeupc5UyuezTsOEMwZJBA4GYrrvkZmj6fkWdSJxoQDO9EdwBq70yxrPsOED0k6IbPOtclYnJWccYGS+28QAKgQiKVW7l7y+yGCmdSBa985tPkAIylisvpwxjMLN+fw8zRWdOp/1RiuJJy3WAJ4CSUA21lWiPKhLze0t65TaNhWJGwfxepxNxy/nnpu1D9xZ9xK3AP2Hvqt+vE+ybyKxPT526oVa33Xq+hNhpgJnaATkcADS1jEiGAJgOkAyH4y8AUrufYTgGnqcgSkzUbKCzr/qQc8f8tbQ2wtiYFy4hAIWkNwlPa/hHFuwbUDnvrXJ2JQ9UOv78zRXdPKlLUB5lMaiuetRocl0EynTsFyBVgBSBLzY1dt6jNT3tZFEA8GJD0Z/W7ycBZn3kBzFZTLsZWo7XtySbGtdxueZTzqN8idhLUh7DsbskoEz7V7SoAM4+RalXs85gxIMA1m7Lu0MG3ZdKoLKCNwM9WAcBpZ6aitSMrAmeVbo5ACwAYp1X6VvYcaAtP2RFooOziwCNYsByQO3qzANAXce1h4GNJ+ep7mkk5U6yKxZFpxjOvoWPKk9EvWTwQMrrglUH7qdsE19byubiqTg1wXTWZB5D8kuSyZ2s8St0K6XrKsl22ZBDXMfrY86tQlngAIDIjhaq5JIu1wZAxgxMBByM2dem8u1EBzSTDtl4ViZ1HS+NamhqBMH8Iy7OSDrlACArADupfwikyJMef2UPHKx8qwA4xwi4xDCgtL7GIuSZ01L132slczsOZqwbLs/KVnfnqe5plMMyHpYk17xkRIzMhXVPTWMhrXbLGAePTTxM1QjiZntNXxjS7axb8vz+FiSeQ/J1Evlb2t7ueKy+EVL1U8te53a/9gAk87NhyPT8ylaa9IkLYHgAEFbk0IBOeeQwksqwMlZk2MZh1TC5W4NZtnIyEFR/5FxUBbYALB/G0pxkz2nTjAQj4OMLUiRhVZkDUs4UPqu1iyCJG8A0qx7NyTlgpuNezcXn6d1qVN8XD9iW6GGYj0naC2+pemzMgbn1KDZJpSwKNvByb10en4t3tJY8+0+v799VIC29b1Pz28fLvMekla63CjMW6ZuTNdLGd/fNjDMV538/QjGgiQDQGNNcqIAjhwMBAIR08MhFEGRdr3mnENxQJIysGSQgiEnDkVAIQgys3lbBRYUUQ5XRUABVAOAKwKgQCp272hQMkU6vZwHy8b18qbJYg6KevJlLri2GoX5ZObDtJVbJC1KOKu3BmTcwk/LfHie5pJOvlhAxgkwfID65fGx/O2uzKuR8tROJVFTE0SUsCibELT7MU/j+nmcQh3vPDFIJcUwHv57plN6SKL9pUi1HLtasaOsty3no05tx7cvgaIalMI7gwTASFuPSumXSnCd+zQz/Y+SGBTXLlK9rsvHiEd5XDkWFtHQjAGc9VgByApdFujKCaoik39VwxIQQYYeHkWvcsbAM+PWNVDkjEFkzLlghYGjBaReF86i1Jak7me164IzmImUWv9A5sPzNNd0ssOZfED61mO9LQRjDEQ92019TL2NzDZPXx+gLYBsS77BkH5wgj5Kz4Lkrix87vRXHYGehqQGpD2Wv82B04IUBpDROez/wmzJvIakb8HEL80orc6uOqmWbFed+CWcLzrVytTjxWx9a1WmQAnOIBXp/jhOgGI6SQkn5OAm0IcDFRpu1/Gsbremkp1bsVy0oGSVhp2q9ByQnPvJ0PUfXSqkQEexaliKjGuoGyjyTAPTWpWFqAE55lmSRcaRc46ca0Davknh/YGEf2j2D2d+PU9zUSdffDgCoUXpgGmOZJP3p1209veF+YtdngDvnKnUi01J1/HH59q1EH7UaKBpbw+ZdRaVh4AM4MhIl9nfwDRoufv9+lj+9ZsNmdeQTL0ctjyul9pn2DFH3R63SOeDTnXFdMQcAwDGh4JSvy0GlGCAAhQjjGcCgITS5GycVipAZtS0IhH+MZRmXXEGxhQYB5QJsLFTafl5Xil6e5lxjfr9jc7FmtUWpcg4clFbkfVHYMxZlggCjPRHXw3GUEf9ttyH9fl5mqs6pa3Idji2gVFbpRTA1Z43SOJv9/NeK3/e0VQwUJfEw42AOhdA3UDzxhsjhCizS2bfQnLg9KFp4WjBqGtSUMaJHChnU+Y1JGOxjw9rWY/r2e1dMpVWade51ied3HpqgHPi/MLOngD9wkDpF62mZwRKAKWyoAT8YJtRJMjIUzFMAFDGimQVg+IKrNKQ5BmHqrT+yswkEujv/lg0HO3YSB+QWS4CN2uRaRew/11bkaE1qT98rdLUrU/P01zUyW8r1aDTUEwBUpoZbXyg+mBMQdGfS9TOparX68T8DprRc5maBCAWEV1kC0zhPdN+v7g/Zle4roAanBqaOnbAQtOVe8C0Y50V7Out3bcqAuVsWZPzHpKph7zrpUjtHwMgbpV2nc8/13zSKZljsrGTyXNJehZ3B0vOIAlmXKRxNSrDSO9MkmpQcpbW0FpnwWcgzTaGNQMJwRkGQmFQSjCm+ze5ICg7IbMZT+n6lby31yUH8OBo3a2+FbkgF1hQ6E8NyHo9Fwy5YMgEQy547W41/ZGCMXDU/ZTxtXf6RGXry/M0F3UCPIvQg6K/budKtYC0k4zHcIzBWE8wjmCSbr8M8CGJ4LuVtllugLpPHUAwzIizJih9gPplFpwWmhlvAlMw3ZgkZqNsWWBFCl6DcmjraAZk3kPSl6m0VP36XS/nVPafLzqFG1Wd6SM1LU+UksrCUke91VYlA+mxItwLKjDQXJAJCDbaIGc/I48dPzmoVA3LTEFW+kMZ10vPgkz96XDujYH0oly552JdYGA45rlZHSCd9ehZkQaa1p1lW+NDAlzXy+dprulkpRGA40EvBmRq3YdjKSkJxuZ33+VKARx9azLup4wf29ilGWd7So3VtfBsQrLuRy8NMHOhY9Q1AENYguvIdRsEBFWDkjEd7T70QZ9G6SGJ9lbiVF68+DhdrdI2aWvtrm86+fPesXian1jMPFcsSnDMGEfGeGhVMqBUuh3KGEOlNDBLs3+Q35VFyQacZSZdJOmaQdWA5aBS2qrMtBUphHJu1tQclEGEK/Mg6QXpWEiOmeWCInPQHM8Exg1Mx8wyFwacwvRTWneVuan++nTfu7n4PM1FnWx9O9UbAc7N6mAZQVF62yrPcixlDcNSqlYwWig6eLZA0p86bpQ+SgdGHn23YPTeH86a0MwFQ2m254K5DFqCMeSoYaltSzJBeAQBHYyniMBIv7NkWjZ94M4syihuFFsPHXXbXjTfDdR23thVtD7rpDdGgPRcr22zDRBTgDKw9IApeAbOORQxMNPArKz7lQGlAUilLBAFeJXI8eq9xBNeRp41A4lBpa3ISQtJ85GKMBDK/UFZSKaCd+ySc535px7eEfZBWkAuLAQW5AK50FGuY5m2IscFd5ak/RNixtVqrcrUPVlfn6e5qJM/TKMZjQoXpGNdrD4gFWkrr1TKuVVLpZ+vUikHx9ICMgKjb3ECGogWttZ6jJdW4u+pmXP8pd/v6EPSh2YmGEplhixxPTRLMAZF2jMiSSLnHACDYl60ur0bxookgo5eh254tM+1M/0yryEZv0j+I+K/SPG21HFSdfwXtGv/1Iu63urUAkg3uWxL/yQDNBwhAcZBimlgCt1vaWHJienxVawehCyNZSWV/s4yUb/gzrLUL/KkrMuLTCHjDJOVdn+uGVQYVMrB0mbsiYePpELu435Pfyyk3wfpA3Is4xg3gBx3lqQGZOH6JW2/Kkz/ZDQwezrvXaLOOn+e5qhOiuoxjLEVaaNY/T7IFCAtFK31aAFYQzO0GEulGlCMn82q5TltGybSBsogj7B5nmNo5lznT845R8mAXHDdn29gKQWQE4MNrNPHI9Ntou8GY+TSTtql3z86GzKvIWll2IuUkrjVOcp623FTt3x91SkGJFMSvvvV1gEQzqEXZf+3FiWZoB4Ly4xnEILrPxcDRUkGkswLNzfu11ww5JUBZGX7TzhyLjEpNYzWlNKlr1szqFB4gKwiUAKjQdKOgywSfZABII3lGAAzEwEY/Xyu3FiW8f1bX5+nuaZTXMeC0W7zLUuFOkiHOgDpQ1ESoZLGqkzAcSDDRlucTUqaro1hVqUvSSsymknHdkn4wCzN+yU5QXCmGwGCGTCGuZDtOuPa1UpUZ9UiaCvStyZnU2Ylnfq5556LHXbYAePj49h7771x8803d9a/8cYbsffee2N8fBxPeMIT8NnPfrZR57LLLsOuu+6KsbEx7Lrrrrj88svXSjfmLVlU3nU/2lqdcZ1h57X1Ui/v+qZTDMIGIEmBqcp9IOsPqwb6I+sP5ACsmgSTJVg5WW9XFTIGFMa1WQjW+IwLhvGMY0EmsDCvPxsVAgtyjoW5wIZFhoW5wKLxDBuOZ9hoPMPGCwssXlhgw/HcK8vdckNTN/WxVuJGZj9dpj8bme0bFFkAyLFM6+IDMuM6s1BuW/TWmmR1SH7qvq5vz9Nc1Mkd13O1AhEsqd7uolhtHeNiTQGylMoBspS6bKLS6xOVdI25RwbSfdYMJNYMKu8j8dBEvXzQfB4ZSLf+YEv5Q8GnDD5+/YcmKqwpJSYqiclK4ZFSYaJS7nv40WWl+V0a6sZ9DDjL22e4u34d92Q6ZcYtyUsvvRRve9vbcO655+Kggw7C5z73ORxxxBH45S9/iW233bZR/3e/+x1e8IIX4Pjjj8eXv/xl/PCHP8Sb3vQmbLHFFnjpS18KAFixYgWWLVuGM844A8cccwwuv/xyHHvssfjBD36A/fbbb2Td7EuS6ovwXSypmxG/RBhSL34ZR3HtrE86WVcrI6XB58NRVbrctzDtP0zsflX15Kw2mAeqAvEMTHFASehOxwyC64/tB6nM+CzBgMqzKgW3ATESk5WxJIV+ia0LNuccZaZfdmtJTlbCsyKbbldfwlY4Q5GJhjWZ89pa9F2swwCZC+YA6Wc4ma5756/Pledprupk3ab+vgEsQYEVCbNdGivRd6cqCgFprcbSWZJwFuXAPZP2u0xmk6pUumtgWFae+Pm165m1HLm2JKXSz3WlCBlnkBmhyDgA7gUJhVYkZ/o32iskuDCuZ4CbSFcw3YgQnc2VmRFG0z2JWST77bcf9tprL5x33nmu7MlPfjKOPvponHnmmY367373u/Gtb30Lv/rVr1zZCSecgDvvvBMrVqwAACxbtgyrV6/GNddc4+ocfvjh2GSTTXDJJZc0jjk5OYnJyUn3ffXq1Xj84x+PVatWYdGiRa0vT1ffxrBto7hmRqm3PukEOQCTlYaitSItIA04g77JrrnpbAAP4zrBgA3m4RlgPsQFIDJXVjmXlm6pV2Zdt87hIgknK4VSaSDqdf0nNSnrP6hS1q4t63adisu1/nPR1m4umHatitEBmXMWWJC2TxJoj25dn56nuaaTtga1e9/2CRLgLCNnIVHzexk9W7G7tYq3GUD6cBwkABk/m6n+866+ybhPMoal33UQ9rcLt+4aguY5z3kdiOaitrn27OgGqg1uq593YcZYCvcdePihB7HNVkvxwAMPYNGiRS139NHLjFqSg8EAt912G04++eSg/NBDD8WPfvSj5D4rVqzAoYceGpQddthhuOCCC1CWJfI8x4oVK/D2t7+9UeeTn/xk8phnnnkmTj/99OQ2/4Vpa3XGL1dqCe8YXa2Oqbyo65NOgZvVgtADZOx6ZcNA6fdRuojXDGCVAyPjWWBZ6v7KDIIzlIpcdGjJCEJpUOqXUU+pZS3KUiptYQpu/rT8JWFBri2AQVX394zUL2n7RHnzz6MLkIXwrEhukhOw7uTm69vzNBd1cnp4doe2LMMz+q7W2Iq0gAXqcY52qIer5wHS7xe3cIytyq4AM7feMs43lVAg1b8uFTlY2uMWWao3T1uRXOp1znUDVDD9LnFG4OTdB9LXULC6TNHsBu/MKCTvu+8+SCmxZMmSoHzJkiVYtWpVcp9Vq1Yl61dVhfvuuw9bbbVVa522Y55yyik46aST3HdrSQLd7pPYtRO/KFZGbb3GddvcReulTjH4PNdrw6pUnlUJgGRzCioAYMIEgjtLMtNLC0Y9J5UuVwXAKzCRgYkCQnCUxgUrOFBKD5hcu2ALAeSSYcID5GSlAVsa0Kqsjjocz7gLoACa2U38XJfWRcoZzLhHFliRduiHBWTBTbYdz4q0oOSs29JZL5+nOaZT41hRge1bG1WcNeqGhvjL0H0aAzIVUBZD0g4fAWAS9Htg99Z9SEqux/iWsh4Laa1FC0kLx9BqFVGjkZsMWMoFnVlAahezPg5ndmwkmWEfswdGX2YlujWe545M5oSp1I/Lp3LMsbExjI2NNc/ToXOqJemXxy+t/+LZbfF66njxyxefe33QSRfo/kZrRdrAHKZkDUVlXLFEIFlPZBxk4lESMBMbEwBwDsYFwAWYkBqYPANjxvVqgamqGpayArIChYmErYwFWSqCUIBUGpYaoNwBciJpTRLGhB9laFrk1AVJ6zbiESRra3LcuKc0EBEAshC1y2mm791cfJ7mqk6p/shY/P7IOGDH9kHWy7QVmRre0QbIxlAlb0wvmb5P+/8aj+8F9OsDQI/1lXAJMRQAlXE9lMMA0lqObVak76otpbYGdReHAmfcDXOxsCRizopclzKjkNx8880hhGhYePfcc0/DErSydOnSZP0sy7DZZpt11mk7Zpt0PfxdL0Nb63Zty1Iv9Pqik96gAgvRLb2IVldeVRqOVQnEkIwnNbawNKAkLhw0WV7U1iTPAJnp+pmGJVMSxAVEVkCIAtK8jCUDpBlRUhpgCkbIPFiWkpv+IR70Hdm5KuN0YFaCaa2su5XXabtyUVuRKUBaN6sPyJm8d3PxeZqrOvnb/A6CRxvxMcyKjIPGYkC6dZtnOIKjXQdqSPru4sAwMZCzWaOUIg1MA0ugHZBAFPyTM5RKu10FE64vl9vfaKJXCTqheXA9vcbhbMiMQrIoCuy999647rrrcMwxx7jy6667DkcddVRynwMOOABXXXVVULZ8+XLss88+yPPc1bnuuuuCfsnly5fjwAMPnJJ+DOkLnWqtpl6m1PM/6gtrjxtvb7vxj2WdGlak72aNAVkNgKrUcKxK7Wq1cEzldgVMwI7Q7lcuNDQHE0CWg2UFWFYH8zhL1IelqHRfpSicy6hkug+wMn2VPiwLAVTKByVBCR5EJgLN5NLWcxXnt4wtSeuKtYAszLaM63XrXp2vz9Nc1CmWqU5JFYt1tQZlHVZkyqp06waQqlINOKbyDodhAOS6/2HcrKTqPMREGpYi4xgAECp9JfVYShmMqeRMQHHPrayotWPdXgrG6rHAsyUz7m496aSTcNxxx2GfffbBAQccgPPPPx933XUXTjjhBAC6v/Duu+/GxRdfDEBHsn7605/GSSedhOOPPx4rVqzABRdcEEStnnjiiTj44IPx0Y9+FEcddRSuvPJKfPe738UPfvCDKenW9bCzEer4df0Xrqtl6p87/p6qt17oFA33gNQuVdjxkKoCBpOgqtSQVApUDrQlaSxKC0iKrUlAu1uhLUpwAZblGpp5AeITBpQ5eF7ocp7p41hYqgJMZiBRIcsKZCa4J4alVNolKzkhU3pQtMq0FRnn2PRnZogllQQ6N7N7cIao3xEjAXJePU9zUCfbEJqOwQKpaaziZ6nNikyBMgakn5TfB6PLPRydi3vgIw4wTuAUwtJdhwTk4vzH9t1ys5oYPST33x9tlWZt0WhoD1SbbplxSC5btgz3338/PvjBD2LlypXYfffdcfXVV2O77bYDAKxcuRJ33XWXq7/DDjvg6quvxtvf/nZ85jOfwdZbb41zzjnHjZEEgAMPPBBf+9rXcOqpp+J973sfdtxxR1x66aVTGiPZJnEr0y+naJv/Pd6nq0Ub39v4OOubTiwO1omDdKqqBmRVgspB7W61kJQS1OJ2JQNJxjkgtNuVZTloMGGAOQGWa1A66zKvPFgOgKwwsCxBIk/C0rphpdJZRHTLHsi4DtgZz9JTGqXEn0JIz4hQJwSIAVkYaNo/hfn+PM01naZbBNNJ+dskFTmdGt4BmOTpkXvVB6SFY2qaN3cM8yt1vySBKxbAsh73CIiMm3cjhHUWAJLX/aM2rR6vh8/MNZnxcZJzUVavXo3Fixdj1apVWLxoUcPt4l+QYa3MuF7qOKNsG/VYjzWdGCmdBaecNOMkB2BV6dZRDkDVADSYCAFpoEll1DfpAZKUdFYkAG0Z+oE8nAMWjgacLC/AinEHS+SFHlMpCpDI9fARYctyUFYkx1jqlruOWLRuMKJwJgdCd05MBrgZOxjqMY9tFuRU7ut03LvGvRzhvPNVJ/sHbyMx/TGS1jqyz4e0z5AJxKlUPTbXHys5EWXYmTB11gykl2xfmiT8qpGAf1Dp4UvWirTzn7p5UD1Axsn524aCMNMfaedH1cOT6wnE7VypdpabBS5xfzjLzUIzd6qd5WahScVoo7vr76wx9MkGrj384GosXfoYHyc51yX1MsQv0bCXpM3VE7duR/EMxPUf6zoxAH4WHdikAS71nIQy1qMD5GBCQ9LAshHAo2QwJCQ4r98naQN5BsbdmudAVoCqEqwcaFdsloMV4+BjC7RFqwod4CP0uEqowkXFpixLwU0/EQOImAEkC+YGtDEM/n+OBZ6edBZulnY7dtIOmvZzsqbuxUzeu/g4c+F5mus6+WKng2KmojHC2utz6OT8tVGmZ8vwJgsXXAeTibXwM8YRrDEgYzjGtpN14nBzDOJMT18FDgUCY9qNKzLuLFfJ2vtM/UTrQLoP1hfbBTlbLlZf5jUkrfgvg/2eul1tZW0tz3g95RJKHWu90skf92iGd9gyKo17NQFIZS1LL4CHpAIpBSUVyJ8Uz+plJrzjgoNxDl7kBpp1vyTLcpCxLlkxDlQlVFUCWQ4+tkCDVRXBUBEd8KPX/YQEUhEkZ15ovgnrd8BEndA6cZ044NLI6XR5deYcwWCSBazDexcdZ048T3NQJ0X6ewxCewwfmNp74M1qwWzybwbFgBJ6fKCGJrn9uYGljZDOOMPAHN/PhNMlqsVK9Lf7cLTgZJx5wT02eId0udJXjziBQX9XjMAUAQJJF3Bwzik4Mt31xOwOC+kh6UnccvSly/XiL7teyFFe9vVOJ39mDzfzh4alMhYi+VajD0gDT1VW2kVUVg6OlAClhSQTXH8mBhBFZoBZur5KZDl4Ma6tyix3lqWqSm1Z5hKkvOjXLDeWpgRErhMSGFhq16u2JmuXWwhMO4g8/j/QFiTzXK4eIL0/vjarZV4+T3NQJ7+MMQZOBOvrsOCs/+DtLBfQM1tAPxfcmJyCAcpYkMoGeJHuo3R1/KEUnuk5DJbcNOwav3VIWQxLH5SK60H+Smlr0jf14jksw2AjHtTrknjqt9mWeQ3JrpdrmDslFt8lwxDezLbjxG6cVCt2fdApyMdqrEprRQYfH5CDCahBCVlWDo5qUEEpFYCycS4PlJxzyAkOXmQOmDzPHBADWBbjGpZ2PcvBirFaZ5HX64nsPRqQzP0xCDBnSVpLA2hzu9qwdniWZDgWsn+eHjs6AXUDyFqQHHrqJ0l6W8qazIWeZ9F3vQplJiPm+nnirJkSzs8HPECYNk4S065Rpc8PNGFZW4Tm97dYfdZ6BLTVaYHsrEoTDMQ4tR5jKuIDn4OZRgJmdfgHMM8hCYzWco3rsaguS2xLHXvYudcnndw53aweepwkM1NkKRO5SjZwp/ICdjxAyokBSCoNy0EFUgokJZQFZTR2knHP5Sp08A4v9YTMqtSQFEUVwJIV40A5AMYWuOEnbGy8BmZeGEBqS1JDszBRt9oNK8zEz5IYJGPehLoEMsAE0tYkUFuSnOlJo+N+yK57M2z7+vA8zSWdYuEsHAurUFuTzJUBzACSU7s1mQumh0QYazI3oMuJQyppttep4GQLMJ1V6QWC26AbknrsY3taZDYS5HxopkR5Lte1FYZwTCSfZUAC8xySo7hZulw1bfsMa3m2/QG07ftY1SnOrGM/JHU/ox3ioWFZunUfkGpQedakhDRWZcrd6vQWXP9BGberKDMwIcDLDCLPmrBUUvdZKqXnpDR9lRgbB5QEU1K7YJ01qXPNuiTqpEw0rApgKQAXyANYqzJ9F6wlafsp/fvRP09zSyeWqG9BGRzbWJCKdDJ9Mu5SC8+2vsncuFCtVZmbAfu54FCkGtZkkQmXGi6VRF+ZsYxSkksGAGjAcVUP8YDRiYiSoIyB2AVIIMz72iUucbrNSMVNAFN0Le0n1YCcSZnXkOx6oUZp+7S9VPHLFa+v7XkfczoFSQT89bovEkrWw0CqAagcBICsJgZQZengaK1JP3gnZU0ywV0AjxpU+nueQQoOnufgRYZsvNCwLCuI8TGQASSXEpSXGp5S1hZlMQ6WayBqMJrAHlIAly4S1sISPAMxQJjZ1Z37NXGp7H9CPB+kf43n/fM0B3RKWa92uwWlb00qD5S+2xVgACfoCmYJDUILSLuuFHOAtC5ZgENm+sw6FZwG5ZiXP9XPp2rHXUooDUfXV66jVAEz2lFRAMo2SQEwlcIOSEfj2jIeATLuYuAs+mB2g3aAeQ7Jrgfelo3y0o7SQh3VBRS/4I9lnayL1c/Rqod9mD5IpbT1qJTrl1TGaowBqQa6XDqXq3LRrsnfb0DJDCiZ4BB5pvsnywqizEBSOctSSQWRl+BK1S5YE1kLu26sSud+5ZmmnpmKS6e+C2HJGIdgHMR0wgAw5q5V7IUK+yij34P+eZqrOvn1u0BprUhh1onSoLRuVy3/f3vfHm1ZUeb3q6q9970NA1exhW5GBGfCgApjeISHZik+BjEhzKgRGUgPM8u0OlmOEnWNkiwHcK2IOomuiY4Zx6ViBCPLKJkYHCY4g8YEUARGRZQhBkWiDWqg2wfdZ++qyh9VX9VXtWufc25339uPs7+1zj3n7Nf57q7a9avf96q4WLFWHhx9ZZpGyQCMvGZq/jn3TTqA8wAMCwUJ7aduNFmjx6pUx5VqtwII+ZIkUqbm0XyB5hhsxIESybuL7BYJeyzJPH1kb8hCg6Qd+AyU/R5D59L3aSabkuQPdH7+waAT90cGU6vPdbQdKyZAZtZJx0ysrQPKxORqQrSr1RbGx9xz02tMBREQyiU6y7qCaTvnn1QSpnbAaJoa0gOmaSpUxkQTrNEQVRs/a/+e+yplBWsNhDLu3XrwDGBZBbCEkL3BOBcOlmN/2k91Kjj0hC9ymrSfEBAWkT3CwgoEYBQFoLQS4FVsDDO/AkBtA5RB28wuidQHyD9PkqMMcqC0wsL4oJt41VjIPGyhqOvwHoGTytQJb+oF+lG3BJjuM5J75tJdRM/3KOhFwTu9/3rtZKFBUrD3WQ/Z0MM4dMw8sxz+4M16cA80nQCw6Wjf1Er1WAOLNDoAYfLOAJI+64ljkUbbwCRtlqktlHBBO0o4U+tEQygR2KT0TNS0zi9ptQlgqZYbKG0gjQEaE1hkeC2ZwCrRLLGyexaQBiCwJKZpDY0kzo8JAASaU9pl7E/7p04JQJbAEgCE7LFKBWfKdOwOgHE+yZ7pFcKzJwJKCXRwo3VnQoUKY5GM4N1AuTouHCiFdPuEsLDSQneu+0KJAJZA31xKFXcAQFYisEd6J6BMAoiA4mfyr4b1KUUEVzKvUmSrzFwR6wWUCw2SpYcif1imzTDz7UMP82q2Hyw6hQ6c+SOpcg7VarXdBNZomEkbgNBMOuhJG0Fx58SbWjX0RMNoC9O6dwJHkwXxSCUBaM8khQdIBT0xzgdZVzBNBdk636Q1BpVZimbc5QbKGCijnbmVxPj/Z8lvM9pV7CGgVE3CKiErCGtckQIrIVySGaxnlQhm2PLyQmN/2n90cgea8jt9FjI5X3nLAWeVUvqiA8QkTQEojQAUoKSCC1EtA2XYtgohoOSl6Fy1nPioKrgIXCAGm8nM5xgYpCizyGlRt2lFKRGK/lPQjivb6K8tEF5khZ53QrQ3ZKFBsiSWvfOHYx7zTz4jzfejsD+/dqnhD1idCDj8Z2Ed8wsBO9qXmutiYA6ZWYNvklilB0jdas8kbTC5ukCeVEupyBQkg8nVaguhBKxWsNpCMd9mpRv3vtwwf2cDAFCAqxNrNGSTrUJinDfH1YH1/z+ZW4lVBvZoYYUBULmx1JoIluHGx89jf9q/dEqA0X8WOZOkNiXAtMwvTXoIB4zEKiEFpHXYKEHvNvgolysFJfzvFIBS+i7Jq/HkkoBTJzARAq12QTy6Y++eVQLRECTYKiDUPUMtV1+rVUxhkUoKLFUy+CM5i5QCofSiEswfiXLQDm+7kUmuk0ybjZQe1Fmzl9IMuDTjLR039IAfiDqF9A8A5JcMa0NyUyv5JylyleVEBv9kBpB6ohMmGXImGVAKD5IuX9KxST2RUI0KvkyjLZQ2UP585UcFmbFSow2qZTcSkScnCNWRNX5p2MqUTXjEKsknaT2LlIV7mwFl/nkR+9O+1imeFPN+AUQkYSIoftkHqNBEKAFLKdwiw9KBorYZi5ROIxlSiGKfoKWrlO/v0TzpvzOTJr3nJtMAlh4oTWdCVCvVXhX+egSa4f8jvyBnjsoBpapkYJFNJdFUERTpewRMeLBEYJT0UjKyRwJEHhA0Msl1lCGTDN9XemhLs93SA5gfXzThZOccFDqxYJ0Q4QpEc6sHS2tYTVZjYNqWMUryQfYBUk8MY5K2Z25F6wDStG4QEEo4gDQGRisoz0CJVTrdhiv5cKsWB8q+ic6ZYYU16b1VFSt1B7DYiwiUBI6Z2Y63Q37PF6Y/7UOdAovkAGkimwTtT07y1e8BF9DDTOwEllK4Kk3Cwr3gcybpXQDC0D5AQEIKgV2dgRLATs8uWwJHmuSxgBn3bqA83STAomWrVOc+ayniupPCBn8lz5UsBfAEXyQDyBwcSyzSrXYjw6LjUrp3AlgB5qMM5xQaZx1k4UGy9FDxfUMPV74tf9BKx5feD0adgGiGEtzkWgBIMrUSizSMUVptPBjaHkDqiQ7gmEa52sAiNUyMcDXO3KoaFRgoB0jAW7Ew/FAYJaFUC9AKI0rFe6GUu0fS+xhrCWG61QMlkADk2J/2A52GADL0cXYm9XW2eof1jS0AgAGmkBUq4QpfhEpL1psWTcH8ihjQI/3PKCGwUxt3Tueus0uYwNKUFPjFREegmeiQisELEIRFmj1YhpVBVCyInqxKxyJciVE2SiaMkbNG/r2pJGpVNrXWarapdb1l4UGSZJppR7D30kM27aHMJz9Ds9mDSad4QDrTDlGtQPRHAgEQTetzII0JLNJt1w4IM4CkIJ7E5Gos0CKEp1tvbrXK+yONhazzR64LnzhQCiVhlIT2+ZZa+tVF/HqVYdSQMoKjdGApPWj2mIxy6SIAIKyEJdOcQYyHL9zjRe5P+1KnBCA1qyAFJBaSHpNk311qiAaEjIDp/ZXWV2hypvfIKpVwwT0tZ5XCuSKlAJRRDiCFgZQCu0QETCUEdnrAJCb2eABKiUmn0fj1JlUGmMmSVr4Wqwz/krt7IUeSmCozr5YA0b1UwiKJQVYqZZVUeapkai24WtdFRpDE8INamp1Om8XO83ke88+BrtPQIBPE6NQf6U2twTcZys5F32GIatUmAUgCzDwFJJpQLYQWCViWRCjt3z0L9YCofQ3YAJRKQqhJAEYAETClArrWrWXZTgAqkB5eIr0X1kDAA6WQwUTrFJE9c+Ki9qd9pZP7sT5AJgX76Rj+XpI8kllIWCNCWUMCSykllHX+SjKzauvBEQ4gW0Pg0Te/OsB0zHKXB8xQxo4zShk/L1XSXSMHSZOu4gGV/ktDUatDAMlZZM2iW2slvLk1i3oF81Gyhpl3srO3ZKFBkg9C+Y2fpyGmHVOayU47Jn94DyadghgK3on+ydz/xyvpmOA3jO+mNUWApNXWc5HaR7Z6sESjgInuHUfg6AoRdAwQI4M0vnIPN7tCqliZx5tgbedAVHSdM7taKjIgYY2BEB4Mg2lO+c988ch+OkFynwq3d1H603ro5E5mJtYSQOZBPLNAEkiimSmP1hrhmKVybU5gKW1qgtUEkALoYOPKMVIF5hgB0zE9GQAT3l/oGOSuTmLSGUw6HRglgeUgSGaSBwYRQFaJyVWlZlbpX55F1j7KtQ4MM5pYnckYoeJO3rbrRSwXGiSHHo68O+RmnWkP6e7sz2fJB4NOpai/RLzZlZeYMwlAcjZpGJs0PYDsWnet4srvxq1bKbUL3NETnQClVBJWOeB1EbDuPVT2UTIxu8rGVeqRPFK3bSNYag0hlc+n1L0BNbBJliYgLFVhMW7zQBpISRalP62nTm6DAUznANCzSEFVlErgaOYDSgE4C4SQzuzuA3noewBL769USoY1S1tQ2giSZbi0AUSlUEsLJQRa44CnNf67B7BW2sjWZCwT11Q2gGVTOfDs5gBJIAXISuZm1xQgG5X6IolFUsBOrWTwT3JTK4Hnbk/O91AWGiRzmWW6yY+j/dNkNTPlab91IOoUBo+QI8l8kkACpASOBJoAgqnVsqIB9JkzSAJH7ZenIiG/jvJ5aZjoBCiFduAIwJlWJwZCCQfCrWOTDhBNfPfF0o2SULWJDDKvymM0rJGQ1gYfJP+/hejn05WiW0uz50XtT+uhE2eRIuu/PYDM9/vzkvfwI94vCQBGusICPogHVNvXuKL4MBq8HnAlqxBJqq2F9kyL1qak7455KbSagyTQ+sCaWtoAoLWUaCoTfJMEjpNOx2W4MqAsVfSpMjbJAZKbWLmZtcQiKWDH1WyNfsu8ys6+kIUHydKDN3XgL5w/y3wz7fd6D+dBqlPyeyY1d5ZSLhJQJGaZPaTcxMoBUls3g46A6f97YyFzsFXk5zQwWsBq6RmsSJbkCgFFxsQ8SqMB1LC+rmuoxuP/R4HamZelSk2u8zz0DCj3ddvtj/1pLXQKYjoI0/n27PoASfum+Cd7RQZID5r80ISIzK9SOcA0nSs+YWQClkq6F61XKoUNE8BWuDJ3nXYTQymcOXNnpz1IutSNVhpUxDKlQWsiWFJ0664uAuSk0wmTnM/kGtM/cgZJZtZaRmDkLJJMq0pG0CdGOXfbrYEsPEhyWc1MlR8/7eFczfkHq07Fa3ig5PmNZHKNx6QDDZlaKe0DcLNpAkjNQvHpcwRL9x9JbSAhYaSB0AJCG8hawmgLWUf2KsgPmrFbrguZXAXq9P/SGqKqZ5vg8nzIAb/kvPd4UfrTWugUfpfAsMAgRb6PmdMT0+uU/MkEHP17YJFCwkoFIbpY5zdjlgSWSgh0xrFIMrm6bZ49BhOs8zPWSmBn59hlLQVaI9Fpi52dhrESrTFoVAqYnFECYO/uf6LVPNzn1OwaGGUCkJFJOrCUCYuk3Ejp37mptdR26yUjSGJ45rrahsh9HHz7PNebxzx0MOg0S4YWU86lFKjTN7faUJGEzpFZlB5nrQCBc3YQEKJvi8zX+yA5YO5N2V/abn/sT3uqUxACQ/JBlnzKpr9dZMeQ6dVqPfhTwufYBrMrvQwxywoQDhgHwVJV6Kzv5zKaVzshoKRFa5x7s5IKE+2Aaqc2aP2xrTSolECnnRmWfJbaIIBl2eSaPhu5yZVeBIzke1zy4LhUScYkI4vMGSRV49nXsvAgOa+pcNYDN82cU5pFDx1jcXDotDclr8uaS84i+fZ5q3RYbYE6AuXs4+cD8qmSFzUfKHKeHILF7E9rpVO8UBnwEhbJAZKCejJwdClNOroUBgLYLBBSiISPkhZKefsigSQzuQoZ1yzVFaBqQDl/pVJV6OutB5nORFNsJyyUlKgVUGuBVjvmSMySzLC1tNBWotXOFGushTauwLm2w0E8icmVlZVzuY+IJtbE1BojXXkgT1K3NWujUvuuhyw0SOYPEr/p+YM0rUGGjhnyweRSGjwOZJ3Cb1BgQkk/n3Q/j0glMDwnd6KE6AHl7pSxEnOeRGtWhu9SusGOi8xMa3sguVaL1J/WWqdiJCs3pU4DSO+zTMCRcoBnAGWeZ0vAKarG5e0KEev95gE9pgtgKZRjmkpVLoo1MEoHmK0BtBFQwqLyYNl6ZtkaE0Cz1daDpoCxQGscmzR+EhoWfy78O3FdyJjKQWySA+VSxfySykfE+lQWKSKDpACeISZZmgCtlSw0SJLMepBKks9k5vk8dN1SYx/wOnFwFC6ajwYDDpCSgY1Q0hckXx2oUBQrfZ4mcuCp4+AohoBdKYgZ+gliBOwcC4T8OHcfZEzzyN9nyML2p7XSiTPIQjBOrwwdAaSJaSG2nfTBkRXLCGIKUz3/LAhFBSkk0LWu7GEATOVrzlX96NcBsCTzK2eUPLiHg2Uro7m1Nc4cq61FZXw9VwaSVFQg93TQYxXWiKScx4Q5igQgycyaMskIlvmjOqs/rZUsPEgOzWrnMfPQufM8kEO/WzruYNJpqpC5aQB03DJXbtoqPYBaZWF9cQCpBWAsA8iUTYaV0cND6K/rl86S/p2vOUlLbEm/aHN4eR2l/yx9JR7hQR9KJVV4wnb3hf9T6WcCTn8/+DqTq5FF6U97SycOkL1AHc4gw2fNQNNv77rIHru2D468VjFJDpShtGEscWhpoiUVUDnAFFUNUTeAmESwZGbXHliqBkpJtEJASwtlgFbHZ4SDZaOAznBWadFqA2MtWu3L0xFQenQcSJsMwBhrsvqKOiIFyOVKOTCEey6jT9KbW4EeEOb9abfGnN2QhQZJutEl+zZ/aEuNkdvKMeO4fBY0j7npgNeJD/je9CqUgpUyDAqCASUHJA5Y7hgTakaSSCVhjPZgmA+zTjhASulBUTpAFMoXZ/a/nQMmsUauG+kj6H+Y8bLkY+LAN/S9dP/Qb6fStoXoT3tTpymBN71AnWKVHZf3a7vWgSK95+A4J1BawPsmfZt7YLTtxD0zVQ0x2QlUtWOXFbHKrg+WpnFm46pBIyto4VfXEA7wcrDUHqQqo3wupfEmV4tW2sgirQt8o4noIJv0K4M4VigyoBSpH9IXYpfw0aysMDt/3Kf1p7WWhQbJXIZmtUMP7NC+eWbQGNh/sOjkGJGYahYhpkVAJBkgkRk2Alb20p7xeTZZenw4kwwAWWCRyUu6NSdlppP01XZkU0WTKxU29/5IMrWKqmYTgqpsauXbsqWUOGgOgQhvi0XoT3tDp/CeA6Sh3EZ/VimlgzHL1MTKALKdpKvcdK27hk8LSlKaOFD658ABpfRWCeULVcgImFI5Nlm108HSdIBqIIyGVbXzVaompI0oX2iA0kaGwHIaSAb/JLvRZKkJS3UJEcytHCgrKUIUa1wOC36JrOkBO6W2XWtZeJAcerD4zCWf3Zbewa4xrRFnzZQPBp0AAKoBuonLAaPizrTElFQQ0i/+Q6CY+QFTRulAzWYmVwMD5UvMSbgHmBcRCA8tA0hVqx6LVLUDRdXIaHatq+xVp6bWuvGDVAPUDeCBMfhdqyZhkW5pLRfOT5GL0wCS30uasZfcqYvQn/aGTlMlLwZAnxmL5GyTgnSiiZUBZMeAsp2E1CB36Vi32F3fAyUL+LLMXG/9cwKlgKqJ/koyvQ6BpWeStmp80FEN6A6qapK0kVYglLyjHEvtcy8r75eslYtmbY2BMYCWZYDM15rkLFJKMrvKWJeVgaMQbMmsAoucpz+tpSw8SE4z1ZRmM9NMRKXr5LPjfEAonX+w6OQ2sBJcgGdeClbFsHfy99Fn1VQwbRf9gsr492yZqwkCULrUDe+/ZPoEtsiBsnHAqBoF1cRtxCIVAWOBRRJoFllk3TjfUVWnLJLC+TkISgUK6x8CyNyclYNl3u4He3/aE53iSWUWGfYVjuPAGcsrmgiUvtpSAMhuEpgjbVsNUIbJFsDMrq2bWNat+z7ZGfyUloCyWXZgyZlkFZkljDPBViwSVhsbwJLyLbVP/SAArTy7tICPdmUmV/pXCoHdZMkh9piAoaA0D5HUauXP7mr601rKQoPkNFNgaXbLt08boGhf/rl0vXxAyH/7QNXJbch8bcn6iyq8EwiJnRKyrkJ9VKqzqhrpFkg2xgXt+IWVVSMhtCtKTn7GXITsB+dwgJT+s6wV6g2V+9xUUE3KIgk4VV2VWSR/eRZArDFnkbMA0tjpAGAskoLPi9Cf9kSnac95uE7J1NpTjrFIAkqdBu0EgKRtpYAeIMmztcYkEdVCkZXF+7W7SWSWPvJV1DVQNbCdA03UrTsugCUDRsWBUveCeyhtRDNmGT4LwPp3Yx1gGitgfR+dVvic2iekd8AxR4mY5kHBOsQiBXPRzNOf1kMWGiSnPZDTHtCh2e3ubisNMge6TulJzpwoVUz/IPZlWbCObCrItnWfPViqRrkyccpA1ul01SrrVvNo/Ky7UAggjVyVkLWMplUPkNVy5UFTJSZWtdygWl5CtdxE4Gw8U2yWIZaW/YBU94GTA6IvMVYESDK9IgXHadGDtJ8+L0J/2h2d5pZSUfKCqbXHIkMhew+GHCALAT18hRtgNlACCEFlwkdT26p2z01XQ1TtMFh6oBRVBWEaWBbMw02yvUhY2wdLawWLcHWg6fqqReVzKksSLR4i5kCyqNfgk/Tv0p8jxXz9ab1koUFSoHyzS7PV0gNe6hvzPsR03Xz/UOMfaDqFc5KVDoQzsdZNNBdJlfglhVIeLDsHTGxdyVxosBFh0En/G2KWFNGqGjXIJOsNHBgJFOvEzKqWl9zg0yxD1HU0rS5tCGCJisCQMUjVMMCsImh69qg9ONJgY1kaC/3XNHy6lR/cQMOBcm+2HZf9pT/tjk75vr0hPRbJcyMHANJMWiTLv7FawAlQapOkQ9FqMwC8K6CCkG4SST5JO1GhH1oy9zfL0XfZLEMu2R6TTL5nkbA6A0trme8SDCSt65+FYlfxfxCx7ypvcpWeURLLDO8sTWve/rQestAgWXoAScQcx/BjeaNOmy3z386/Dz3kB6xOvOIMSwMJKRJKucCDuoFqOpi2gmwriEnr2JxfmorMrb3f9gsqh4LnNUArhVC6CDFIYpTBvKpEwiDVcgNZV6iWG6jlBqqpA2DSO3IG2SynANksAapxAOlD8nOAtMqDo6wS9ugGHRtAMR94NBAWn5XWwvg7b+H8OwvRn1apU+m3yxeSgJ1S04kF7PR3caDMIls9QOq2S8AxrJ+aFc6nzzlQUsCY8cu3OcDsIOsqssuqgehcII/t2tgnjYHx32Xtol17wT2ycv8j+SpVE1YboXJ0CiKYXAObROyn+QRPsHrJoTgAWGUdkMnVm1vRn/DN05/WQ1aXsbxKefTRR7FlyxasrKxgZWUFW7ZswWOPPTZ4fNu2eMtb3oKTTz4Zhx56KI4++mj8zu/8Dn7wgx8kx51zzjnOds1eF1100V7RmT+kpe20L//Ot+cPY368yF75dQ4anUKaQwRJygUL9SrDdzcQqJoxOG+CdduUZ4DSm0jr9Lv3J1bLlXttcK96QxW3Ldfp9w1uG4FgBMSlHkAGYJwXIKumDJCeZWqanVs4fxCtZOKLSYd6mT7cnqqd0OCkrXWg6q9Bg9RB3Z+m6ERibPkVjkvSb7Lhb96qR3zdUPpeyI/kAGnaDmbiXrp1LzPpYNoOeucu6J27YNoWpm3Dd/eaoP3FTrQ/jy+9c8K+Pw7zi1/A7vw5zM6fw+z8BezjP4f9+Q7Ynb+A+fkOmMd/DvOLn8I8/nNg588hup0Q7S8gul2Qk8f998chul0Q7U6IyS+gbIdGAo1fyaOSAo0vSN7Qy2+rqKqOFKiUe1FxAEr/iGZVMrH6ijyCAnfE1LYe6k/rIWvKJC+++GI89NBDuOmmmwAAr371q7FlyxZ89rOfLR7/i1/8AnfddRfe9ra34VnPehYeffRRXHbZZbjgggvw1a9+NTl269atePvb3x6+b9iwYbd0zGejQH9AmMfkk5/Pv0/7jVKDHzQ6eYAQLMJV1A3EZKef/dYhhF02LaQfOGRdQWkNU1eoAHQAFDO3CilhWg2hRFh4mZhkonOhok40tUb/o2qYmbWuHThuIJBkJtYSQDbLzsSqHCha6cL1rfTbsqAd7tNxQIcQUk+MckikcOcI6wYXIyKrLJlf96jtCt/3eX+aohO/b6Vjhu4NpAS0cf1zHmpiUr9lBErTM8USczQeKAOj1MYBIplcC0uxJfonxS5UDGyrXc6u8e4JVbeQTRuZpTHOZ9m1QLPsGG5VQxjt9teOPToW2QU2CWXd53wdS+t2ad9nLUQ0u1rrrBq+tYdcAZLVaaWareQ+GCoeME9/WktZM5D81re+hZtuugm33347zjzzTADAhz70IZx99tm47777cMIJJ/TOWVlZwc0335xse9/73oczzjgDDz74IJ761KeG7Ycccgg2bdq0RzrOaoj8IS2ZAKY9zKLweZY+/PgDXSeRR276AgMIKRKsnFtVQ9UtTFNB+YFELfuUDjJDyQ5CCeiJgVQi+Cqtlr2VQkK1Hp9GIhX3SUY/Y/A/ep8jfZ8bIGvGGFUNW7GgHVVH9uh9jzk40gAfzVblkVr6/E8aYAgsrRAQvnVyoDzY+tOQTrMCnvJgJ8EZI63pSUE7UyofDQorDBDMrZoWCjcJQDrA1AlgAgjm2JKQlUUDoZCFqn2aVF1BtJ37noNlCOBpHTD67zAGoG11E8HRWkB2bnHwgXUstRVQcP5JMrfmgAn0aygHV4FwbRfAkm0DVt+f1kPWDCRvu+02rKysBIAEgLPOOgsrKyu49dZbiyBZku3bt0MIgSc84QnJ9uuuuw7XXnstjjrqKLzkJS/BFVdcgcMOO6x4jV27dmHXrl3h+44dO5L9+QylNCBgyrYS2ObH5wNKSUrHHBQ6BV9kFUyukUk2EFULdC1kU0P6wUMaA+UXPCY2SSKVG4D0xMBqAfjFkpEcI1iEoAdIKWMQTgKUSwEYA3AuLw8A5LIPhtjgQJAYY1Wn7JHYJJlWDWCpaokHRyIP9N197t/PAIr+5lo2GzfWQkJAwwGvECK0GR98Dqr+hJjITiAZji1MMsh/yycRwgOjFdJhoJVwsw7aJh1YDPwf/R+J+Y+cRSY+yAwgzaQrRrvazGoSPlMhCymdxaVx/nvV1O57WyVgWS3rAIgw2qUnGZcbGhhl8F96RqmawCKtaiBs5UHTwCoDFZ5h4fuwdX3Owk3WxHDb99gkopmVR2qHtsTs/rQesmYguW3bNhx55JG97UceeSS2bds21zV27tyJt771rbj44otx+OGHh+2XXHIJnva0p2HTpk245557cPnll+NrX/taj4WSXH311bjqqqtm/l4+m+WSb5tmJgLmf9jzAehg04kiW2PgThV8kWGlg7qG7WrAaKi6dSyS2KQPlqgAGCWhpXTh8pMugCWAJLI1jWqN9VepQID0AFktLwXAVBsiQMbUjmY6QKom+h8ZQBKbJPaoTQTHaG4tsMiBocBaz4ozYDTIvovZ5tcDvT9x/2IeLDJksJRhv+gDJRDYpBUmWj+CAjJ9z1eIydmf/85ZpAmAWQbIPKinJEJJoHXPQEiZ8kySGKUyJnl2rDZQTQe1vARrtOvDfskvF9SjgSVnMnYR25YBpfVg6oASVL9WuUmE8v2bwHI10a5ABMihpbBIpvWn9ZJVg+SVV145E3DuuOMOAEginEistcXtubRti4suugjGGHzgAx9I9m3dujV8Pumkk3D88cfj9NNPx1133YVTTz21d63LL78cb3zjG8P3HTt24Jhjjpn6wJce2GnCzT8CaSNOm1nx2XNpZn2g6xRMrLICxMTNQqsqRLWia11OWuXeZdMGBqlCtJ9CBwTfjDUmgKUCigNLqOITQudjLqaiMnM5e2zqFBApMZsBJZolD45NYl61qnbv/nvIM/MBNzGU3rIBxd058lGWRApAw4JquFvrZuEWzNzqKeYQUNJ1htp6XtkX/Yk+5+CYAyMfmI21oX4oECOD8/uiqD5uziaT+rna7Yfrh7aDz/X1dVk5aJJ/kptQGQgSIBJAav+eHxP+dz/xE0oArZv0oY3mV6MkpDauVKNnqrKuYJoasnV9mq4ZWGXj/ahLy4FVYmnZgajRkEtwbNqzSAAOGK1hrJJFw3o3igCCX9eyFuRPJt0pGv+j6TW2fd7uuZTM8WstqwbJ173udTMjSY877jh8/etfx8MPP9zb96Mf/QhHHXXU1PPbtsWFF16IBx54AH/zN3+TsMiSnHrqqajrGvfff38RJJeWlrC0tFQ8d57ZdH6cyI4VhX2la8/67YNNJwDBxJq/hHTpH7aqgW7iAgx8YIGsda9jVgD0xOWImUkXwBJAMrAACMXRyyyyjkDJQLIIijwHkvsfybzKfJFknsrZYyzxFcGRPgNI0j6K990fF3IjhYW0fRap4QYnVQBKgT6r3N/7E8k0cMz9uPx8KpsWTHyF+6IJKGUFazofYGb8u1/pxaSAOQiQ+f+XpXYkJliT+itN28XgM0TXAb+G80ka72vXISjNatMDSzfBdH7RSjcBhKtl44CKfKg6RueKZjncV1E13rTvwd4aCAaUsBbWKg+MEoLAktrRg6BferIoQwC5u/1pLWXVILlx40Zs3Lhx5nFnn302tm/fjq985Ss444wzAABf/vKXsX37djz72c8ePI8A8v7778ctt9yCJz3pSTN/65vf/CbatsXmzZvn/0cwn+lnHrqfnzNrhj40KA2de8DrRIOMomAAV9rNdm3CJqHjwyqxMwbsKAldYJGAG0g4m4x1YNOIQOkjAbkvUtWV8z1S/iMHxaXlkBdZNK/S54w9droMjhSso02aC5lGZdLAHlvShkGE+RyF809a68LquflVDDDKElAOtXvSdgPtvVb9iSQPxslzSOeNCAamBzpZIJpYpeyxyVB3mIphADHPt/dDCiAAJd0zc2wI6NF9gDTa+v3+f+PnthpCuuAd8rdb5SK7c7Akcys9P5JZZZQxifk1Ac2otGu/yr+TubXK+oFnlRZwE18hA1g6pj6dEeayO/1pPWTNfJJPf/rTcd5552Hr1q344Ac/CMClgJx//vlJ0M6JJ56Iq6++Gi996UvRdR3+6T/9p7jrrrvw3/7bf4PWOvgvjzjiCDRNg+985zu47rrr8I/+0T/Cxo0bce+99+JNb3oTTjnlFDznOc9ZlY7TGmWeGcvQg54PKPnn3f3dA1KnpOKON736d1HVrpQX+UeMhiATkA/YIT+kUBJGShhjIOuK+XH6Cd5uMWTGIn3ADjFKB5S+MklVQ3qWOMQeTR69mplaNWRiWu0ycEyDdiIYRjbZv6s0Hrvh3I02VkSwVFLACAuYFCg9N5gLKOdhh+vZn5J8RgyDY7qfPpevmkcF80An+q9dnp4MK9YkbFI40AyfpQKkRlIUI4BmW9QBQADGcA+IRXqA1BOdVJbKWSUASEXgKQJoUlCa0QaKngttgn8SQPKZri9r11MM4J65RFk/4cSyf/f9sAMgTTS/eoAUAPhKNjlYDsmslT7m7U9rLWuaJ3ndddfh9a9/Pc4991wAwAUXXID3v//9yTH33Xcftm/fDgB46KGH8F//638FAPz9v//3k+NuueUWnHPOOWiaBn/913+NP/mTP8HPfvYzHHPMMfjH//gf44orroBSQ+S+LKVBojTznfc602bN85oR8k5yMOgU1pbssUnrqoRQvlmWpA0pIbHT/QYBXlaxpCSSAWSsUFKFCiWhck7VuPJyodRck3yexR6pKEBrot+xZGbNfZF0r6g4NB/guS9NSR81KKwf4F1lEuPRTjhHWw8oLQODElDOkiHwBHavP836zdWAI59Y5GbW0oAc2DmxSOG2CQvvJCOglHHQDykRPsrTxoAeoRRgWMUoWlw7/5+9/7CnT+aDJAYZ05mIUcYrhuC0pBKPgFQW1rhUKLcSTuuWjiv8JkWI83d6tqZJDygH3mElhKrS/iHkVDbZ/63dG5/WWtYUJI844ghce+21U4/hIdvHHXdcMYSbyzHHHIMvfvGLe0W/aTPmki9m6Fz6Po8Zaeg3SucfLDoJWkNRasB0jlX6te8EY5G9SEEvSrWQWsOEEnSmGLTDg3V4uLxs3MocvHhBAEcfwZqYVqVy7DFP7WBMkkyr7RRw1MYNyO59yjJD2R0jV5exbpFaDpZuEBeAdOBnrWOUwsZIwcHE+SEZWvUi3Fg2OOe7BrbPK0PRqmkOXh8c823heqyHSkQW6X4jmlyV9JOUHCip+DwxJQaQNgSscAYZ+5yl5dMGAHJIYqBPBMhS1LZmVhPh11eNYGmgarcYgCKTq3Em11CQw59PptccKGmN13gD/f82D1BKhILpvTGCAqQK//uejE/rJQtdu5U/4LMaaghwho6ZZ5bDG3sWOB3wOnGTq1QQRgY2SQnYoeMTerDltGB0AEsAxeRryimjFRMCMPL3Oq69h6pOAnZQU1m5Jg3GYUySTKudLyXXFnyQiS+SL1hL4OhNryVRAoBBrKgjbQ8slbTQxgEljHXbgcQnCcYmSyNK2FRaASOXVYDorP28b5SCcobY47S0mXxeTZMETSwyXDMySRgfFcyAUgAutQFweYGAC1QJQSsmsEkCxNBHFZVYdAxTUvSplMXALDK1chbJAdIy02spB9gahCXjCCwBQIRjY2axA8jsWVEyMEql2tB/pPuB8H9YwAG/b8fQfkIgWZvTDAAlFWrg5/L7gD0bn9ZDFhokSwP6NMo/1Ii0fQiwVrP9oNSJ+SMdq+ycyZIesKpxOVmAC94BwgDkZugOJFH5hWTJd5kLW9U9AUYpnc/Rs0hKP5ladzVjj9y0Siu4U83VPFjHAmi18QBqAygaYxOg7KkvBFogrOYeIlkZWNbKgbSSxCKdKVH4YynQhwInADf4FR0RbDFhDoSD6ynSaTko8uNL9VAL1WyGAHIecCylzuQrp/DbSykHPOAJkkyuIgFKwAOlMsHsStGdLqrT99mkSL8LQhsM6IGLuDZT2GX0QUaAjFGuaV/RHhyhNaQRASzd7/Bju+Q8vrg5AaT2z4xaBmgd1FAFi8DRm5MlgaaQ7jkEGxdkBWElLFw8gZBsHMiAEsBeGZ/mAdW9IQsNkiXhDVDyxQ0dn59T8t2hsD+/dqnhDwadkvJ0sgIkhZMbH0W33NMZQBiIhA+hT3yWvZ+Ig5SoCSC9D5LyMsncSuAo2UodlNbBiwKoBp11A1Prg3JCQXLGKOkzscbWGAeq2iQgCURGyUX5REgpBVpYKAPUUiZgSfXAaiU9OLiUDwsHmPDjvYCF8pV3ivcJ6AFkAMYBk3d6/vAEhSrWFBpn5nWB+QCSwHFo1RRjXW5kMDlbFwjFo4NTJinc6jEZUCYBKtYAoou+yboJ60hCStef2oljmFUNIdskeIzMr9zakZtkS+uhctNrItoDLwD6qyc68Vs6iUBJy24RMGrSzesl80AkenWtS31pJ0CzBGE6F8hkfWEPYeLkAa5SEQz6QFmQPRmfRia5TjJtNlIa+GfNXkqMqjRrKh031EkOBp2SoB2KeDUOMIU1QAUIwyqU02zWmPiem2XJR0MBW2xVkQQgKVgnB8dSSTlmZtWQgSUSg2zNMDi2Hkg5MLrPXl1rA1DmIv2IrgzlQwpoa1BbASMEagW0GoACJHM6CjjLF7FJKjBt81GFfiffRgBpImAm77OEBj8ayIVPRpHMDzXAJkssEigDZKx3m7NOuhZjkoylBjU9y6boYCPcKhWAA0iapBBQSl9GUVRwNVCN77+cTVZNKPlmu9ZZKzyjTALHvPmfpydRcQBdmHDkplegDKAGBtDw5lYLBeW2TfIjXUF0PenC70ufb2w8kFtjHAgSg8yWtLOd2yf9/09ACZuaXTlrnFd2d3wameQ6yTSfXm5KzGcy04Bk2mwoZ1/5OQerTsEf6St3QBpv/nLvoma/QFGD7cQndZvIIHMmSeyRAyQBo4wAyRdE7pWQ4xGsQqLN/I6cQXYMKHd1JgCkthwkIyiGz1PSFOAHaiMcm6SoVEC6VA/ICJSeOQjpWJG1kU1aIJhcS+3kGoL5kgggGbMUXM9pYCkkaB1GK7IfZZgYgHKKcFDkn7Xps8dSKg2pzO+wY9VeDxb0RGAJ4+6fYlHCBJTSCscmAQhpAGVjn/UWEKG0L4bRuskXX8+xbtyqNuSXZMvBoeVASWk7U+5NyJss9x8DAwkJDR2AUmjhCgBoAatFWIvSaFfSUXvg1n67Jv2otiu32mhXRAEEpM0S6z8+Z1mCAaXy/WY6e8zba3fGp/WQhQfJUsPwfUMNlG/LwaR0fOl9UXQqVd1JogjDhYUz7XSTCHr0wBZyIsNpIRyfrVXpfZIJOJYWRM79jjr1O3Y+xYOAMwfHHCSNZ5y0BiRnkiVRVE1H+gAd60ystZJonQPSMz0HlMY4MKWVF/IVF3LhQxUHyhwgAzhyUyw7Pr3hKTsUlrbpFDBzsxuQrsIBRJMp+r5KDpAJm0SaUlNKpwn/vyATqiskIIS75w4g/Q0yESiDoVoKVN4/6UDRFf92TNL51ntsspuE/F++cHhgb/TekulV+0Ac4f2MPfX97e//X9ZYN1HSNgClVa6fWGKi0kJoC+HBUUh3jNXGVbCSsUpPAoz81bXOWmM0gBqCclUzP3bRzD5F9ub4tJay8CBJMtVUyN5LDTXLXJAfO++M6GDSycIPjlK6ASEERFTJ7wvAmV4B91AykBSA8wPlvysLAElLcXFw5Gs7Zn5HntJBxQBaYxNzKwHiri4FR84eW2M8oBJIOh2nscgWFkoC0rjFaWsl/MBuvBnWAaW0zjfp3p3ZVSoHlGRyHQLMZL2+IYDkZjN/3KBw82lmZhPwARwkBmTbnCnEIgMAZgCZ55vOk1YjJQEojxK2PrdUwMDCCA/WIRHVuiLcUiT+SajG3TtrAVkBlQnFMGhVG2i3XiO6Ni4c7qvrUN5u9Ff61Wpalt4h5eCEkPsnpZIBKON+CwkDo0WPTVoVS+JJbeJ3nyritkdwFDpd2SRxdyR9ZI789AxA12p8WgsZQRLDA39phjONqc3zeV4TwsGoE0W5irB2nQdIY9wIzyt41G7QldaGB9QaDZGtrJwE6xAw+t8pgmPGJHlKBxUFINMqmVs743yLOzuTMUgHjn2QRBi4tb/mkCjpBm1jiU1aABKSTKxw/klj/EAe3gUgPViIcNdmSw6C1q0KMRjIM9Pc6gfRUN/Unx9KuflDrUnMrlQ7NdRitTZhkRSkQybWHCA7Bo55ek1PDEJKDWDDJMRCuPvMWCS8uTV8BgApoZRbxBjWOguEiYBJ0dmo25RN+jrEgpikX0w8VMQxvqScsr56joVVElo7dqmH8oTo36KSdMSiPZuEX4w8Z5OUV2wlX8dS95b0Kplcw3NHVa6kim06Z4pQacyY5/O+NrsuNEhyu3h+4+dpiFl+Oi6zQCfvAAetTj4h25pYExOUV2VF/E0/aLuoQgGgCkseBf3JrBcGZMrDdEXVe+DI1nnMUzoo3zEPzpn4VI6d2qDVBJIpOBLLNNYdT8BI4NgNgGTlARIAmkoGsAQMaulNrW7EBhlNpYhskha7nXrvBcKafcQAOItMAJL25ZGuQ4MggaKUIYcwAUvfpu5acGxyRlBHApYeIMkHmQNknmLjVI73WlsKyAEA5+tVAm7hYMbYrTcHO1UjUAorIK2fv0npWKL1q2FUcbFiUfvUJLZGKmeTqqlcFGjbhQCewCalhFAmMbkKnwcplIB0vNA3g3Wm2lK0K7+H2haJu9FuXUjUAFX+yeac02WOyOcg1MZZW+/t8Wk9ZKFBsgQAtD0/rnTOrGvOuz9nXQe7TkU2CQC6c/WlhYQ1XRicA2Dyi9DsNPNzWiFcFGLOJGUFq6pitRwCxiHT6k4PjM7Myj571tgag0kXwbFjIDnEIpUUmCAySW1sAEoCxlpKDxoC2ptYDUXISreNxrhSNCv/Kp2t2r2MAUzXM7EK0yXAmPgoc+H+R+2BTxb6kY2m1+C3miP6kVikQfRBDgEkfQYikyTQbGGDCVpal4daKxcMpa0DSmMFahetA3hLauEfRkPF7P3/QtGusMYBZdcCdetZmFvQmNikZLVVldbRT0kAqiSEtoFNWm825WxS+FQVOafpGnCAKdSwSTSYXkt+yfTA4R8ZSu/gz+YU2dPxaa1loUEyl1n0Pz+O9k+T1TTutN86aHSih0ZKt9yOQQA0YjrWOPZIg3jRpMNmqpaKpssIjIFJEjiyQuTTolY7A+zsNFodgTCaWR1z3OXZJbHGid8fgdH0AFIbG1gjEMFRSQeMmlJAwjGRQUphIQ18WggCi6S7Wgre4Yvb9nyRBIB+IiJoQmLYvjx4Z+D+hyAc4aM/hV+txUeGwnTO/yzgri/6AEn+xeTds0jrAZLajUCR8lCpQEOpYAMJpSO6Ig0CxmrnmxQeIGW810bYaAvO7mdnBaokeMcEsyuscVWbjIbVOpZAbNy6jUobGOabJD+l1QautjAF0EQ2CbjUDmKTVtsAlGlTpI0vC45pG6wSqxAOjIUiCb1AHQ6KbLH1fFzYm+PTesjCg2RpIJ828JfOn2WinPZ7/LcWQScL9Fdc8HVcqTamECaCZchnyB5SZuoLrNGbWq1f5JnAkVI6+CodvFoORa1y0+ouD5Q7tUGnrQNOzyAn2iTA6FhkyiYB9MytVQaEDiSNZ5Du/1mqpLuGtJDG+cyITQIILJJE++Cd5Nb4d4rq5KbWJN2DA6TuM0sAZd/kgC8yBOwYQKCLQGljOwoPMMJXXxGU5c8kZ5HGgydnjaVCDXzllXAtY0MOqivS4Hy/ZG7VVkArZ4LV1nrAdBMS3qvj3MUBpbufMWfS5VSyxcR9LWJhDFC1kI2GbDu3hFXb901aY3rFyfXEpXRo6MTsWhJaX1JkfUEqEVNPViOl6kFUii/5YWbRAcKE1Q4AJLA249NaysKDJJfVsDF+/LQGXs35i6KTO5EeOL/gLRWPDknKHiyB/gAN9MysgTkKmYCjtrFaDplWk9QOG9ljybS6ywfsEHt5fOKOm3QGk04zkOybWoEIlGRepc9KisQnqWS/lVTtIldbbSGFTUyuDhgwSA6kQPBHkqk1Z5E9gCRmWYpwLbQBABag497D0lJgQGl9Pt0cnYWTJGKR1lIB+TwXlZtd+3mp+UUpDxVwJlfyWRpr3TJsVsBIAJCuDikbkpNB3QfywLB75ScYcsm61Wl8SohbTHwZ1mhUy34h5OUmrPfI3wFvHvVmVzSqB5QAimDJTbAOFMs3OwdLma2WE4oITBGhVARBIRLWmLPIXPbm+LReMoIkhpnQahsi9+Px7fNcbx4Tw8GgEwc6IQF4v5WADIE9EL681dD5/CGlzwVw5DVVSzmPOXvkIMnNrRP/+sVEY9LpAIyTzrjrDLBIDpL0ngfr8P0kSgpMtIEUCrVMfZHFWyIiMEohGJv0be39jcLoAIYBIH3wjuDbmU9yaM1O14aGgWMMnBKGrAbMNGlFNLnaiPBE2nhkaox6jSzSmHgfotnVBnBsKcrTln3Brb+vUggYa1xajMzYpMcHExIonXK8PLfDUQlFwTvZi8yugtImaDFxY6CaDtYYVLqJDJKBZFqIXCdAaZXxKR598Im1W+ldBrOtDC9/v1VMQZkmwqdUCZ9SRZ/5M+cPzJ7J2X7I8BvYs/FpPWThQXJee/esRptmEiixsqFjLBZDJwEEc4xQlQt28AOpsDGVIL14atIJfkgW0eqWreovgJwUJDcpe4wgSYE6qWmVs8fHJ10ARNrGg3RmBevQew6OwcxqDLQR4TqU5lBDBNNjLkPLYtEQn7BDbmYlgDSdj3glJunSbigntZSbCsNKASoVwVI6y4Cb7IgMdGVYTcOi6Ppzv+e30f+asMgsPzUWmI9pOEC5wpEUAq2xoXiDkgLSCBjp760ULPAnTDP8XSRQj/HEUlUh4jXx6dZuMiLYEnDCGKAxUEaH5d6UaUIKhjIcJHlh8giU8EZXKFFcGQSILJLAMcnHZMDIi53nJfQSs2qy2ol/cSDkptWcVWL6uLE3xqf1kIUGybwx+E3P7d7TGmTomCGfXi4lMDrodWIzTUtfybLnzYMQA37IAXCMZjn0lrHKI1d3dabne8zZI4Hj44w9ki9yMgSQxPgK4lIQRBEkuSgp0RkLxYNSjEXt/30+PvLze2ySTK0+7y0AYsYqCSCFDzqxPic1RLoWQNJKv09qhEWIqyoG6pgu7T/kxyTw8daCIaA0iKZWziLJH0mg2VEQjxku4BBTQTwT9OtJSiNQ+7QbYwFNPkoLLCcsywGl8Pmo7pa7Ra8bRSDJ/JPWQDR0f/m910CzjIov97a8lN7XkGYRgdJFp8LXcnU5kCUSyP2SssAiiUHKzLxKi5RLqjFLdY/ZotKhpmtuavWR5DEewD+TWJ/xaT1koUGSZFZjlCSfyczzeei6pcY+2HVyprgCUEJ6k1xhFJCy54u0QMijC8n7NvoeyYdVynsk8+quLvU97uw0A8guM7WaxNSqvX+MIg6t6YMkBY5Y6ViLtgLKpCBJaSCRTbr/f1ohguQ32P0moFQCLtnddMMmVg6Q7SSCYw6UvR90A72QygGmdJVYhF9OKVRUCitFpCtHQJhyH8vYMn2kSQ+ZWyllhwMk7ad+ULp/CZsXAkY5NqmlRW1lYJXDd5jEBVVJ4SNeZ/gnCSSt0RBLy87E6n2T3C9JCyQ7cZ+s9v1HWwgPkgB61XcAJACpatVjkVTUQCgJ1dRlf2Qo69hMN7Uy83rCIlEeD9Z6fForWXiQHGJJ85gNZzmeZ82k7MBxi6aTu1CMhMvx0XIGycDRASNCwjlf8LhlIEnmVV41Z8i8+nirAxgSQHJwDC9tYIyFNRa6M8GHVqqx6RY+ERDGpSBYKYBKYtK5yFYCXCWFY4+94B/4gJJUyCIm4FkjRPBHSiBlkXmwTmCUDCC7NgVHzyzDPwEkQR2uwpEHSL/mIIxyy0hRuwvZM7sW8y4z4WAZUzyiNYCiWXOALBVzyCWZmFgZwNJYhHeSNJ1EBtN2Us9dSVT1cv9/LPgnpXbrfkhDka1NTz9a59Gxu86bWuEq5ygTQFLoqEQwt3pAlL7cnWpS5qg8QBIohu/M1OqWlaunmlotsUvOIin9aqhNsXfHp/mmj3suCw2SdKNL9m0OAkOzovzztOPyWdA85suDXaecTYZrkmmO78vAMYJkZI/c1MrzIfPcxxwgiUUSIJJ5NTW3RoBstYHpPEhaG9hjYJNsYKUFf4X0AGkdWAIAgh+y/Bqq1MMDF4k5ut+KplZXzBtxwM7MrCWAtN0kgmPrY3F9YnwUt7agu7SOPskKEB1gK7i6o7Ryvel8cQgDSO6f9KkgPgxliBloQ2XnSJ0YzcqrHRGjJHbfmelskqKLKX9VWwktffCOjzTW1mZmVyBnlHTPHeAwoJzin5QAjHH+SRJjzNTBWCgBPXF1WI3Xj8yw4RgPjgCgGhXMr7KuXEm8JgIiZ5GyrhxY1o2rEsTZZFisvA4LBcQ85Fisg4LmpslajU9rLQsNkrkMsaRpTuLSvnkYGQb2L5pO7sMAKLLPdC5njwYoAiT3Pxo7H0ByQMwZZABJbaA7E5ij7pyZ1TI/ZD/WyG2X1pcdkwKqkoGBUtWdIeYzyIYEWMk1hALmIfXDKyOYadUF7Pjo1hJAdq1jjl3r2SSxyPSfsjKySiF9dRkAlpY+o7atEKsnCRGB0doImqydpZjWg6JPkgOlYT5bHlDFTdfF++eLOPCKR7qyMFb6yFagtgX6jjix4/dcwgXyiKrBLP+kNdrXR9VQcGbTarlBB4QAHh55KpSEmHSQyvigH+vXm0ynFnRONLdWEQQbB5SycYBIwCgZcAa/Y11HYEwWYK58SUdX7jFUsypEs+7L8Wlvy8KD5FDj8Ic9Z0uld7BrTGvEWcxr0XTqASX/zo7l7DHW8ywzSPq8uwBZYpA7Wx3Yo9ERKB2DhGOTtn/3pAdGAwsq7GKNhYaBgnQDfsYe4+Dez1fL43wCk/HAKBCX3oLOTKu6C58TgJzsDOyRTK6BQQ6VIyOAlDqaYKnQvG8zqZQHSOkjZrvYzr6tHaiXe561OTAiRPi22gQ/5VBxh1JKDkDmVhMAsqlUbIPKQntwzOcnfFKCSvbuuxACTbU8n38SCPe2ylJshJTBLymkdGs+SulWEZFu9Q7hK+gE0ytL/aDzZFM5htsDyDqUxAsmV88iOZPsscgkJzmySs4i99X4tJay8CA5je7n5oG8A0y7Bj+HXysHmNL5i6RTDygLx68GIPOVO3h5uVZT7dVopqPBdQggH5/oYF7VHhxN8EdGcLTM3Br/HQEN6wplG1dIW1WA7gxU5UqgScwfnEMihWAvz2KQbhPepBlYpGeUZGblAGnbSWSPnEVqHaMtDQNDAEJqWB/9KKRL6aB3t1+FBXqFNT026Ro4Bu/kLDK/JZxBchbJV1qZp/oRSc4i3btKzbRTUv369x4xkGeGfzIEcnuQFEYnA3EHNzAbJf3iyDIumkxVe2oUC5QngTg+YjUHyIRNNhVkE5ljwiKptF4dFwUILNJHt+Zm1n01Pq2lLDRIDvlBgDJb4tvzhueNR/vyz6XrzWunP5h1GromjWtDAGk9eLrUj8geNQPI1tiQ0tGyIA9iIDEoRyeAOQ0gdWd74BjMrZ5NCiEAE0uiGemsi8bAL5FpIZVnlXJ2jiWZ9ZSvOaqC39EF7QjhFtlQzNRKTJIH68B0QNcFE2sAyI4F7rQsgAdg5lZfBZWCOYwJYOnMrX6tQeUWzYaUEF0X2IfIzZAsXzL0j+yhzPMdqZBAsBqYONEpVUHqptxTXvWoCf5hFUGyKlgGKOhHCADSj6CO1fX8k9QO5J9s2MRS6wQkgXQwNpIAUoUgHmdylSHPklbzCPdOxhxISeke3pzaA8gmmmADGFZ1YJOcWVqpInNkq+oEJilk8Tlfj/FpPWShQXJao05r5KEZ0u5uK3WKRdKpNISVANIAfnkohPUFCRwt+xwKmAf2yFIGvImV0jwoijUtN5cG6OQAqX3KRwjYsX0WaeGKUWttIYzzQxoJF7RDtRIK5+VSyqMEfGAhOHhGk58SiL5IVjSAzKymmzhQ3LUzBUhil3kaSCYukrX1uZF1BFHyXbUTN5DRdxaoA++LDH7JvPLOgPCFlanIAgXrcBP1kG+Szsvva59N2lWl3yip/H23EOSqBdJCA/ze5YE8QIh4BeKATIywgwM/YpU8XcQW/K0JUAZzax0AkwCyWm5cKsjScjSz1k0EzGa5F6zDwdKq2rFIlvKx3uPTeslCg6RA+WYPzYrmMRnM2+h03Xz/UOMvgk6lYzhAEnOMARsIxbC1dcBE+4gtpmXLTEg4j+xDZ0yEpXgMAGQpsjXobOJK8cFaJxEjX4WL1hTCA+Qci7or6avDsJfy7FEI8kEKv7IFAjASi+TBOsQc6WW7iTe5evZYSAMBEFJBXB6kB0jpB/qqdr42H+gR7gb5tnhwBy3WyxmlkFMBMkS2WpYW4llkNLOmxR7ymrrunLS35SbXhkUbu+PLjUO+SSkFZAeISiVBPBOB+QoNMGG1NFArBb1zV2CQZtIFVmm1r9hD60EWJC0aoJIgHR7EEwCyWXafm+XwuWRmtVUDqCYCpF/mDth349N6yEKDZKkRScQcx/Bjh8wEfH/+2/n3WaBxsOs0S8jsxs2slkDUD6DapEnllHiem1lLKRccILUHwnkAMhYS8PfCWAjpjXBkbjV2kBWWREkZTIERAIWPao0+MZWZWkNuJJlXWbBONLO23icZATJEt5Jfklasz9mKDyIRSoc8SWdq9cd50yvIJ+nz7mLhAh0Bw980KVlep5ehW0UmdQDFNkx9k/Gdju/f5z5Qht+axfITHVUWyOMYMg/kSUDEW2N55HAASqmg4Fgh+SRFziSNCRMXo01a4FyppHhAKco1Acia+yQzM6sHRVRNjGZlNZK57IvxaT1koUGyJEMzlXnMjPyc1ZgK8ussqk7ThNfzzFmkgWORPBoyZ5EBNGewSO2Bj8CRAyE3r4b0D4prYX4zKYTfbkPFT7favHUJ4UYMMkhesi5s8wApPTjWlL4QgNLdTyVdYIzIzKvCdBC6ZWbWxx045gBJ4OkH4eD7AmCNSUx5aOEHX8YmARbp6iu4GONWw/ApBNxHVyoqQGwsF166jvsp8wWueT1d/k7n9e63ydJATBplPCQ80pXScUJqCAqBPED0FfOI1/z/V8qZwQFIqSDUxJlaPehRhR7DmKTUadqIULHUXJ4LKRvyPzKAJAZJ0azNMlA3sKop+iFtBpD7cnxaD1l4kCzZyksNO2sWM61DTPuNaebeRdVptUJjn0VanYWWTeIMc4hFBgZC/kYbAdFwPyQL1ikBJH3nQAkpfEDPdCZZXJSZTHuCgaX3R3JTaygeQME5jEVyM6vdtZOxSR/d6kHSTFpYY6AnXTDn5SY9AkgasFVTQWjjS38DsTB2WvdTVLXThZbOMh1go89OCAExo/U5OKZRrX0fZFJb1+aMP5rENRAKPTQqLe4wTaipaOLCI4sniCbkEMhTWjEECIUF+j+ggMlOQEoo1QZWSRMYvryWLYAkgFB+jiJcCQQDSBJAUqCOB8vED1nVDiwzMyuwf41PaykLDZKzGiJv6CEb+VCHWK39PD9+EXWaJqX9fEmlYjI+SxkAkAV69F+cNeb+RlPaVgi+EX41CTnN0ZYJAWTFzH9kaq1V9EXWiiJbPUMNptY0YCdhkUbDeGAM/kgytzKA1G0XUgw4Y0mkRcJSrDEuQhLeByupdisrZ1Y3sF0LWXugIJOr6QDjTLGSrRoxSwJQTmlHelFd3V4EskaohkSlAncaizqrsDMcGeve+xHHPpDHU19eaABVvwQdrIHccGh/hUjGyCEVpFSQjQ4TmZzlg+45GEiGOq0qACOkhPRMkVhjApDNkgdED4p5VR3V7Ffj03rIQoMkST5DKTUgpmwrgW1+/DxgUDpm0XQikaKfK9czufj9/DgqYZaySdtLJdC9yMjIHgwzq1oTgZDXZ+Xbe/8rYyoliaVofQUeP1irDCDdC4k/0oGmhAAxTVY8YAqLDGZW/268uRVd64JEJhEgNQNK9/+kaQZWSQgjIXV/TUIpKR3EryJR1S7ataq9j9KbXU3GqoQMuZLEwKYJ9zMO+iQZ69fhf4ltHArP21hXd2LS3Msh4dGxPKAqD+SZsPicRnmQzErXAUiB0rNIIRXsLqqTqlyOJb17nzFJzxwORHCU8V1UtQNIH73KAbKYD0lg6YN2wu9Rf2Df98X4tB4ygiSTfEbEJd+2Gvt6fv18G+8wo06pSOFAb0bFsrll1uDHwTB8z9jk7ogQDhCJXXIQ7QNjDNqppQwgSJ8FGHuUIq74oTsIa4ssMvgcJzsTRskB0ky6CJA+MMRk5lYZzK0Ktq4gssrrQk18Iqgv6t21QFW736zq3rqWMcIVoe4sNfQsoOwYUHYFgCS/sc58yyTUD0p1dSfZb/VM4R79SkFV5J8sVuTJI175vd1wKEyylqMvIj7Z6SYZXRvAElTajoQXeyCwDKt5uKhjF6DTxJzIpQ0Jm3Tm1BioY1WTgGVJ9uX4tF6y0CA5rYFWOyZzEwI9FPx3Zp3Djxt1chIBUkTayK8l0uNmSSlwI2Eghf0kqwFHDoAlRkkMhoCzzCB5sA5QKxnNrTJGtYYIVyoeMMQiySfZtsEnaSZtAMhupwvYcWxSQ7e0TFM6kBvvjxTagais05IvRjkfGqRyA2zdAF0LUdNyUjaARBLE4m+TEC7whXqDKiAlVymvzcqtASWA5HV2Q3uwurqStVcOlIADyMcnXfjMTa0l/2SxIg9bWssCgU0CgFyKqSBuPUdvtu7auL4jK5Yeb3xaEckFTqkAjgSWASQzc2sJIHmgDrB/jk/rIQsNksB8s5/8OJEdKwr7Stee9dujTn0RcEBgLVwZLNjwPg1A97VIIRKzqvSmVSH9slY851HGVSk4SDpAdOZVJYBaRlMrRbUSgwHLh0xY5GSnC9bxATr0Mjt3ots5CQBpJh1M27qSewPmVm7Oc/7Ift02HRby9QN0O3FMMrz7otmcSRqXRkJXE4LlmA5Inv+YvzgwUr1dKiVYupaQNoAlFwLKfhu5ak3UTju71D9ZK4HKKGhBS7ehGMgj3A1OnoEAlEnwEwNMz9LtFJAUUgZQDUzSg2MI3KlqoFly5tVCJGsws2are+yP49NaykKD5DymxHnofn7OrBnVUCcaOneRdeJsUsBCMNOrhK+NSoxKushPVRgIgTIryZmbBkJAB+AATlgHZlo7PxY31xJTTIoIMJOq9KBIplaXUx8Bk0ym+aupZEj3mGZqJROf4PmQ/mV2PR5Mq9ZHtlKEKwXpmEkXAFL776UUkPD/KglpJETBH0n7XW7fJJoIu9YxGFoBo+CTo6ICUsR7S6RO9ZstyFCwFoDEh8xr7QLllB0rEVZt4TIBoLo0NYfa6XEPlFKImI9rDHZ1omd21QboiF3yQB5res+CXEL0RQbAiyDJCz249zQFRzBQDT7JLLqVolgJIHuRrJQbiT7IcdmX49N6yEKD5LRGmWfGMtRZ8g6Qf97d311UnWiQJDaprfU+nmFTK/mJpHTFxUlKeYhcAtBJ0VsAQ3gG646x4brGlgASgT1yFikz4GwqGUDRvRSWKgeItRTB1Fqr1NRKxQOUFL2AnbDKBysaEErOda0DRw+Ijk1GgDRtF8CxVNVFGAnrAVL2/JGuOoxQErauoh/SaK+DN+9Z60zBtk4YpfQ1QKWgiUqMEJ4GlEDKJrnvkQdg8Xq7ybm+TV09BAHdjzXFRGR9yIOjkgJNZ1BLiV3CzGV2bWET/yT5JvOCAxAiAbvwKoKklxJIZtGtASCVD9RRtWOQhVSPoWe3JPtqfFprmWXV2CN59NFHsWXLFqysrGBlZQVbtmzBY489NvWc3/3d3/UFm+PrrLPOSo7ZtWsX/uAP/gAbN27EoYceigsuuAAPPfTQqvXLKX/+HM47Uxk6l8+e5jUjjDpNOZf54cJqF34AcqW+Wd6giOXbwLd7MKP1BHMTJ5D7DMl0mrFDSawwHRDdIu2paTVhkeSHrKQzo3qA5Ho0lUxMrbWkVBDJADIyyTxQh6/yEVikL0Fndu50fkgfpEMAqR93plfyUepggs1ebFse8GPaLiS567Zzg7f3g4ZasN3EVYqx3D9pem0tBXyLxonHkJTYZK8ABAPI0iuUINQG1iArR+jq+PL8y7yM4c5O+7KHrJC+ofqyQGsQtoV1Ty0cMBFjU40Hq8joQBVwWMk4sbQhLSNXepWOq2rIpQ3OTzwLIH2qB8n+NBbkOq21rCmTvPjii/HQQw/hpptuAgC8+tWvxpYtW/DZz3526nnnnXcePvrRj4bvTZNGVl122WX47Gc/i09+8pN40pOehDe96U04//zzceedd0KpOYpheil1ApK8waadS9+nmSJKkpsa8vNHneJvSOFNOdYBhBHO9CpBwElmVwaQJvqJnDkWRWBM8hKly5kLzM+6Ja7I5Gp8CR1ea5O05yyU+x45i1SVTAJ2UibpWaR0Zlb3EoFJJn5ICt7JAnaEnkRfZMYi0cVcSP6uH58kOZKRTfZbRSgzaG4lf6QJNUdbSGKSYaFhA9tNnG+MStX5SM88upVM6CQxVWa4r+SASSwSQDH31Vob8yXpGn6tTyvdsUI6EJ2ECZZru0lnoKTGLya+LZVEKy1qadFKg12svYSQ0BboDE3y/OROSihZAYotWE2LjHtmjRpu8kPskFhkaVHsLLKVAnhE3ThfvqyS3EdUDixLALm/jgXTfmMtZM1A8lvf+hZuuukm3H777TjzzDMBAB/60Idw9tln47777sMJJ5wweO7S0hI2bdpU3Ld9+3Z8+MMfxsc//nG86EUvAgBce+21OOaYY/D5z38eL37xi+fWUbD3WQ01j92cHzOv6SHXYahDjjq5Acd436QSzvQqhIWSDjyNcIDWer8kAWalBJRxZlclHCDt6kwZKIWAYQDnoh69abWSQGcSoAQQnWd039j5spJQSkJVwi9fFFkkAeRSMLW6Vy0dKFZkYhXRJ8lzI3nAzlwsctJG5rdzgm7nrpQF+ko7eqLhVr7vmx2FkrDKBrCM/7Nb65BWq5BNBd12kP73RTuBrWoIs5zmSOoOUB2Ej3AloBTMN0lWAHerI1DlQgDJTa0keVWkJM2HClKYFCj5VEgIAd0ZaBHL18U+pLGrk2gq0wviaaVFK62PbHVX1EI4k6u/rpRVGInDs1bBTXDQOHOF6ACpXNk6WmarBJJAGtmqlANHZ+JIAZKCdAYY5P48FoC9r7Wsmbn1tttuw8rKSgBIADjrrLOwsrKCW2+9deq5X/jCF3DkkUfi137t17B161Y88sgjYd+dd96Jtm1x7rnnhm1HH300TjrppMHr7tq1Czt27EheQLkR8wbgjTfUiCUbOpehxuSdI++Yo059nQBfxBseAKmoNzwo+UGWWBg3uRIrI5OrY2x9k2tTycD4pJJQHuRk5U2qFdsW1u3zTNF/V/48Aki3+EU8T2WgyFkkmVoDi/T/i9NxOGAnFjIv+CJ9hKtmfkg9aVNzqgdLPdHx1RZeYb+JkbAmFiAgf2YIAPIDuiUW2U68GbaL61xmEa4itGnaJ3Jc5An980i+tFnvZcsVl6yPjrXGVfCZZKZWboaNa5hGcyu9tC90EU2uLtezNfDmVjJ/enZXNfE7BdcoVwwAzRLk0obUFOtfcmmDj2IlMKQKOlRFR81lYt2fx4J5QXVvyJoxyW3btuHII4/sbT/yyCOxbdu2wfNe8pKX4BWveAWOPfZYPPDAA3jb296GF7zgBbjzzjuxtLSEbdu2oWkaPPGJT0zOO+qoowave/XVV+Oqq66aS++hzjCPCSGfaeX7UdifhmLvQwAAPkVJREFUX7vU8KNOcVswwRlXak5JF0xj0GeTtRLQ1jHD1p9XKwFjJSbS+KWRZC8ZvVESE8APnN406lmFMDGwQ0nhWUvUMgBm8D1GVunAVqJRERyLLFISi5w/YIfYpPWgiJALuTMJ1iE/JH2n9A8HkORP1LDawhTMrVJZx65pXwMInzdofGqIURKmqcJviLoFugmsWYagCFcT/ZL5slnBdA4PmDKNTOY+yjzitNj3BnJce/mS/g8xSipGT2ZXrY1bI9SDYlNJdOGzY5bEJltt0ErhX45J1jJWE+KmV2GBzrr8SesUhkCTLmbsckfcPj+5sK5B+v+v64iAkI5BEosUolCsvFxu7kAYC9aLSa4aJK+88sqZgHPHHXcAQBJKT8J9ACV55StfGT6fdNJJOP3003HsscfixhtvxMte9rLB86Zd9/LLL8cb3/jG8H3Hjh045phj3HlT/o9SY8+aveQdIL9OaYaV/86o03SdlEdLAwDG5U0aAVjpVgbR1rFJIwGt3My9VtLVd5UWreivRJ+XptPGwvBlkzrnpwr+Km8ONFnKAIEjRbdKXwRAeoCs1RwsUhGLdEyyGQrYYXVaQ/GAjEXCf6dgnWBenbjAGwqy0RNnZnXm1uiP5BV3pJJuEWkloBpAh2x7F9GqJ24ZLVNXjknWFYw2UBSN2U5gm2UIvyQXpYLw9SXzCFcpbGIR4CX8SqJkDLJK+huZYgtrgJIYYwNQAm4ClK//SWwy+iSdVWLSaTSVdICpJGqJhE1KI9Aag0oqxyiD6RUQsN4/KaBkBVsB6CYMIKWbAAnpLAUeLMGiYsP/GZNzGVB6gCWADKZXtuwVDryxYL9lkq973etw0UUXTT3muOOOw9e//nU8/PDDvX0/+tGPcNRRR839e5s3b8axxx6L+++/HwCwadMmTCYTPProowmbfOSRR/DsZz+7eI2lpSUsLS0V902zmee28nwmM63zTJsNlUwW/JxRp+k6AdE/CQnQYstWuLxJ5dmk8Uyylo5NaiVQW4naWBgroStikKoIkgDQcl19LqRLTPf6ZsnnIfWDRbGqAYAcYpExWEcyFjkjYCesFzlJfZFG91gkAWOMUvV+yJZ8kTYE7vCEdesBUkJCTwxUA1gtYLVwjNEXPDdtB9vUSQUf4U2uwmj/PStLNxC8w0XKuIYmQMXg5cy0nmlC4JkDKwFmziaNsRDZpGqXZ5WTzmCpkr54gEFtI6OspVuFhtiktoC0PgfYCkjrGKWUEiIDSvi7IQRV6BEQVtI/0L9THigTcPTACEG1YJ15l4D0QB4L1lpWDZIbN27Exo0bZx539tlnY/v27fjKV76CM844AwDw5S9/Gdu3bx8Es5L85Cc/wfe//31s3rwZAHDaaaehrmvcfPPNuPDCCwEAP/zhD3HPPffg3e9+92r/nWLD8H1DDTQ085p2fOl91Gn3daolACNgBWA8WFYQMLCwAGq4AWvZSl/k3IHlckXf+dJIcrCmaws3iOrOuCAeKWIunkII/CBLBk8TyQFyQ6MSgNzQVH0WqVKwnDtghy+czIJ3uJ8wKRigPXsMxQOs/27D90S0hjQCVluoRkFPWOFzJSC9T1J6X6RuO0hvdhVLOvhLBdUeJVOriYyS/MqBTYJSeqIaBJS9dTez75TrSgUhhsyuAJsAeXAUA4mZ1NZ5EXRasovMr7V0/clIpKDJ2KSEhfaBaGR2lVZACQeUUCY8IxAS1nQO0Ih5GwPYgp7C13/l5lbOHoWMS15RJC39f9l78R7kP5ft2xdjwVrKmvkkn/70p+O8887D1q1b8cEPfhCASwE5//zzk8jWE088EVdffTVe+tKX4mc/+xmuvPJKvPzlL8fmzZvx3e9+F//qX/0rbNy4ES996UsBACsrK3jVq16FN73pTXjSk56EI444Am9+85tx8sknh2jX3ZFp5gHB3ksNNctckB8774xo1Gm2TnWIbEUwu8ZtNphdlypaHcS9lpR1Zq/KJmZXIBbOBny4fycwYatIGOHSAkqDbsinFD7dwwMdZ4yHeKAcYpFLHlSXK5mlfcwXsINCRGvwRU6y9A8K0CFzq7bQrYuaJEYJOFMrAB/zaaAngGqUO0Z69tnGQgK67SDrOgTzKDKxetOrJUZZRVMrBe8AMcKVfNAElJTDyqNcOZPkq3LkxSCoXUIKzzTQ9Ot/5iZX6gNcikuuWWdqrcM7PJN0/UtJwMAXxrCukAGZXSEFKiFhZRWfAeuzRplpWohYrYh1QLeJgyOxx9zkWlie7EAeC9ZK1jRP8rrrrsPrX//6EIl6wQUX4P3vf39yzH333Yft27cDAJRS+MY3voH/+B//Ix577DFs3rwZz3/+83H99dfjsMMOC+e8973vRVVVuPDCC/H444/jhS98Ia655ppV5UhyGWrs0gxn2kxons/zmhBGnebTCXADo4FjkmR2JXeitdHsuuwHem0taiuxXLygC0KpCixlIkRYXQJAz7cVihDImBfZsIIBGxg4bmhUYJEbajWTRVbzBOx0bchDtD6RP1TSmbBKOsEMaoN5lV4xaCfNk9RaB1MrAaXRAkILCOUAlthkWLCZLdwcTKya50yWg3dC7iscUAqkRSJoCTEOjlUGlqEdREzhsT7gi8u0Jc1KQtYDUwBGgC3hFdY5jWZaLeOSbdo40DfW91FrYSG8+dUtBq14STjd+Xzd6I8Mq4gUQLLnk5QVIGUM2qH/h07DwTEWrIWsKUgeccQRuPbaa6cew/OVNmzYgL/6q7+aed3l5WW8733vw/ve97490o8aunTj52mIaceUZkPTjsk7wKjTfDoB0T/Jza4U7erAzrMgb3IlsAwmWO+fjNKFT2niuHvXHiyBQoQkMRpRKjnHWWQarLPsTbDEIkPxAB6sMyNgJ1S0aX2OpF9zMJhTfboGFQvggTr0OfVH9lvDwASgFDKCqwmfU5OrMay8HfNLggoMFJfNqgYjXKXo50r23oWAlsItrOzfeftoWhDZm1fz9iNwXa3kBdeNN8lCIYAjrW1q4bYp69i5JjYprS+z6FOaOFAaA2s6CDAg9GtxBmEgGXySZF4lkysOnrFgPWTha7fmjU7b8+NK58y65rz785nWqNPqdAK8f7Lw2HD/5BKb3WsrYKaUblFSJ6Y8DpQJeygYL/JC5XmQzoamwiGNwoZGYblSaXUdFtUaV7tnlVsKATvCWme+DGxS99I+9MQH7AR/pPU+SJ/b6MGSA2RvLUmabHigtCplk8b7MgNbZcwVQGpuzYJ3eOUdKV1LTotwlUL02oe/8tVWqGqSNTaYXK2JCy8PyWqZJvdrawPHOq17UW6kMe44KUSYzFlENum+uz6qBFwFHllBoANQedbtrRa234c5OELKNGgHB99YsNay0CCZyyz6nx9H+6fJahp32m+NOs3eR6khAIKfsg5jiMVy5RBt2tqTnJUoaQJYkjlvmoktPTeCZMXAckNTRWbpGeNSJVleZJobWRMwyDRgh9c+tax4OQEkjE5AijNJCsoh5kiAmQNkXpaOwJE+Cy0CmwSQLK1lTWZu9cUE3H7dD95hYOmakQW0IPVJhsAdIXoRrry8YAjcyUyuzh+JUEqFM+a8nCBt4+UFZwn3aTtwZN+92ZXEegAVwptbPZsUQrgVb4CQFhOA0tF41/YldYhNFgCydygO7LFgPWThQbLUeNMau3T+LLPEtN/jvzXqtGc6hdVCBLxPsm/AWa5Ur4oXl1JACGeVeeEBYBgkK5myyaZSweS6oXbm1uXKMchlJbHs/ZHLlUpZJJlchTO1hoTyLDcSRvti4i4oJqwLaVJmF8HTBhYZgC4DSB7h6sopOKAUykW5Epu0WgI1gqk1F8qXLAXvoEYsVQeECNdpwTtkdiWTdq8mrze5SiVdxCqrwRv+F8P+MepHzMxKRSGK/WS1DDMri2esK1ThfJLuSTDW9WELBDZpBW33ATmyAoRn3qV+LAcCd+h/wsE5FqylLDxIclnNbIcfP62BV3P+qNOe6yQFD7opnWGxVJXNrFIIt9yR7AOdkq6aCpUh4yCZS85qCBxD2gcF6niz6lIV2WOIaE3AMbLIfEksdF2o45mbWikfMvFNMlOrKbBIw/bnYrSPvlRwIKrSfXQ9970fvON2cDbJloiaWp6uH7xTKwnlk/ppEjJh+Ypkcg3mVl+DlwpCABEb0/rgKVsMq70QuxRx/1B+Zh70Fe5RxiLDdiAxuQrr1071bFJ64BTM92idAuVCAk7xBCAPxrFgvWQESQzPflbbELntnm+f53rzmBhGnWbrxM2uxUe8ApRUcdl5uAF4J6U7aGSRlM4kusuXH5t0uscik98PABkDd5ZyE6uSWPbBO7WSWCLfpIq+yFqy+rSeRQprY26kNQwcKTBG90ytCWBlptbkvmb/S76fcgeNNlBSwehock3PM+Gdgnfcd88iNYuk2Y3ydGRuJb9kbnKN1ZQsJsaG9BUAScUk49N4cqDjZQX5uqBJ/ivL08wnRbOEB+/YrH8GFikim4Rnk45hpxM8Oyt4h/9fOPjGgvWQhQfJee3dsxptmkmgNBMbOsZi1Glv6DQPozykUZCdA6GdPudMCYFdQkAZ4xmLS+OY6Bi0wwfh6SApEn8kre5BJtWKPnsz69IQi5T9gB0HkGlUK7QuRrXSC0BiagWQ+CUBDLLIXKyxvYR7XoAgX0GEL+A8GOHqdmJWebpauQlL4q/193mSr+5SSeQ1eB2T9IssK5GsEBIXze6XFgxrg2agOPxC4j+lwCOagHEhU2suBghssgiUBJAFkOSteLCOBeshCw2SeWOUOtU8M5qhY4bs+LmUOuCo057rpAQglQiDbOmKFMzjjndsUgpAdnDLG2n/LiJY5gDJAzUImBNzq5J+0WThfZAuUGdZpabWSookwjVGtSIBRvJJhqhWTT4+8vN5xmgiozPc5Oklj15N7swcQDl0vJ3i9LVGxzbjEa5AcW3JPHjHASMCUNWKm1tFKDqeJPYXavC6MnPup1U2HOelBQkoqTgEFajngVnccqAYGE6TWZzTWF9i0To22VNyiEFiPlZ2MIwF6yELDZIksxqjJPlMZp7PQ9ctNfao097TiaeHCDJdkhkPgPCBMjuFgZTCL5YrXHFqSe/GF0p3EYhkMpvql/QDpVsTUoQlsJYqmVTWqaUzvSY1WjMWGXIjrQmmVttOgnmV3oEUpIhVxu/DTHEaaO6OlNJA/A+hFz2VRbiGNmLBOxW/p9Ixfm5ybSoVVujgZlegX4PXGOsiSgs+Ql5ekBbJJjNrrfqRtLnlIAYZ0WdilAhsMvyW75ezrLTENAObdAr273m47r5/7nJZa53WShYeJIdmRvOYCujceRp16HdLx4067X2dhvIo4xUc29vVGSgBtNJGVmncjL62bgUIqsdJZrocW8gFFoNM4sBeqxQgiU0Gs5xnkMKDhAASAAmM0hoPjCbzR3J/YGbynAGCbpUPB7QUvTqvDNU6TX4/B8aBGq6l4B1F/kkJB1Te3BpWSqniQtrEJoHUZ0xAycsKlkrTJZWThBgsL5im96iiqVX2zKz+N4QI5HA4Wze7f0j7dn7Hc6DZH567/Pf2pk6rs3Xsviw0SNKNLtm3h2ZkYNvzz9OOy2dB85gsRp32rk4cKGk2TtGTxFyUVH5leZdo3mOS/nsESFfEmguxAmIUtTfZcZAkgCQzK0Ww8mhWnvZBRcwTwOTgqHX4zhmhYUE084grPeeiVTlQ5iA4LV9Q+DQEUSrWwKNbZ+nizeRuwhD9kkq4tUKljoBEwVH5ii5NFsncAhDGA6QHy9LvAjFgR1UyVFAaWsWFgrsafywxXPKbcqCUMqYL0W1MJkVeZplrS0AZ/ofC54N1LFhrWWiQzGVoZjTU6EP75pmFYWD/qNPa6kRAGV2U8dETwvkXN1QKShgobR1Y+XdXpNqgtp5JMoDkeXBkTpMimtdyoCSAdOY7CtaJLDIUD8hWyRDWhvfoj+xX8p4GilIJmNYxR9My5sjr0CoRgJJvE0qEaFGpZNgGOHCUczDKRM9SofNC8A75JWslITsTJh+dlG4ZKmGZP1JNTdHRMi55NVSkPgToZIFB5WXOVAKWPL1HysyP6idB9H/RBCD5/QwshY/onXZn9/fnbj112tuy8CA51Dh85pLPkErvYNeY1oizZlujTmurE+CAUlkRfJI0WHXGmb5aAEJI1ApotVtZvjXCr+LgmaTPeeNjLAElB8nIIsCiWyNAVjLzQTIWKQViRGsGIDZJo6CKNoVlL+j/V9K/ckYoIZQNdU5dXVYX8ZoDHgGkkA4Y6VoElvnv0b4ioxwS/n8KGYJ3gi8ZjkWqToR7VCuB2oi5lz7TxkKLmLNYKlKf1MuVaR3eEkCGOrxUYlA5E3qcHEn/2ZmLBbUx/CQAsUACZ5f5nSsR+APhuVtrndZSFh4kp9H93DyQd4Bp1+Dn8Gvlnap0/qjT2utUyqWUAmgZYGprIeDy9aSBX23eBEYZTK4D/5gS0S8ZGYUIABn8kCKmfRCLlAKeMfryc6aLPjtresE64Z7oYaBM7pOKQCeNgFUOHAEEoMyFGCRnk9G0KgKrFKpvbhVKumMlG/a5j5LYMf/u20J6MCG/ZLiHRqA20pvBJbQsL32WtIkslBZU/WPoPQdIntJTBEgqKSiyVV1om3TsWHmfpAjvrn/Se0hFGWCRpe8HwnO3VjqtpSw0SBYmZUFKMyS+PW/4dLiNsyP+uXS9vFPlvz3qtHY6UcQk7RV+zb7O79MG0B7AKqPQGQeWxjiG4CJc+yuBkBCDjEDp2GQl3cBIZjiKhCXAdICAGJQTCoCz15wilYRRMnkXSkJoC6ksrJKw2kIom4CjLISTEIOUnpFKlTJKwa4fAXWO5esY0FMaCHyEKwXvEKDQ/aQXBe8YJdAaoFFuRRcXuFMhX9FlnopJdCx/LfVWdEkBcrlSSYoPRTBHP7T09XhZUA/SkoMxElYEFskBMjBMHNjP3d7UaT1koUFyWqNOa+ShGdLubit1ilGn9dGJgFII4UBQuG2t8QOzQSg0LQRQSQeWlAJi/EoPeW1OgJldJQKzEOgPjCmb9GkfAHheJIDgj3S7WGQrvxcelMi8mgv5Da3ypdoYm3Q1vx1QlqJbc4CUtQqmVlUrB5pSxheZXP33mZKtj+juufB5qtE3WZHfj1ikkjAWqKUFYILZ1UkFqr076QwqKQZr7wLT6+/yEoMEnBsaFQCQ58ASe+RMsm89ED0zq2IASf0gN7EeDM/d3tBpvWShQVKgfLOHZmp5JynNqOZtdLpuvn+o8Ued1k6nEJbvcyBbuLqZxCS1Ze/GgZnxxakBhLUDS0JRjgSysawaA0jJBkT637ipNWOQiVky+THl32RYQlEoFUydBFxkEuVsEoBbyxAaSqlQm9Vok5hZ6T4RQKpGQtYqvS69MrB02xizLAEnAWUoMiDDcxoZJUIwVC0FjBRohfNNAs7siqZ/6aKpFbOLQRA4cp8kfXY5rtHXHBikEr7UoAfPAkDGZdDiewkgcwZ3sDx3e0On9ZCFBslSI5KIOY7hx/JGnTbj4r+dfy8dN+q0Pjop4a/tWaW2Fp0ApAGk9aYv647TFmGJIwtXjccW1yxCCDgB+oMgHxyliAOzFEhMrSHCtSQ50MjIJKWUMAyoVFPBGgNVV7C6DWxSNRKYuBU+FJQLAvLRrUoR8Lp/wl1LBIAMrFIJqLrqmVwT0CTTq1QpWObCzMmcZUkAEjaw8lYTi7SoQx6OgbZ+utEgYYOu0EC/7m6+igt9zuvvcn9kqThEngObA2TPvF4ASOoLnEGW+vDB8tztqU7rIQsNkiUZmqnMY1rg50ybFeXDaX6dUad9pxOxSoo81MKbXmGh4NilJIC0FgYiAOaQSM9+nH+NrYeYDZKhAtA03+OAP1JICUtBNAlrdGBlmwpWGwaYEaSMj/IUWviKPASI8Z/ikazcH6lqBdW4l1ASsq7Yb6tEB3+B+U2vvtB5YI8+KtkFVDnmqK1A61kl4MyublRzLNQVs48gSe9AuTg9kK7uQawxmFwZONJ7NK8yYPT7G0rxmcEgleB9Y/i2HKzP3e7qtB6y8CCZz2iAcsPOmsVM6xDTfqP0PIw67VudiFVW0i98K6K5lYOlASKj9ObWHMIIDkKUovAVZCSiCREEApFFcqCcCpqAd3qq8FlkDE7WtTObNhVUiZFONAAFoVzqh/AgyX2S3NQqvO9RKhEAUtaVeykJ2VQBqMkf6SJbVWS+/ruQKrDfnljjDkM0O3LArBHZJACgM9De5IrKRcMqA7TaBp8kB8muAJJD5tZaOrCrpWeFKmWPHDiXyDfpg3SqHBgDWFJQ17D/cZGeuz3RaS1loUFyVkPkDS0w3NClDjE0w5qmDz9+1Gnf6hSCRXxOpbQIqzEIuJXkHUBGcCy5JilX3FX3QRKgwdmF4P+/8f7IaRKAx5tY6bNy/kJbV1C+PJ1qalhjIOv+Iy+UgJ4YWC1gpIWsEUrI2aygAIGjUBEkpTezqqZin2vIpnKASUFE0vsk1RRgBJIJgQNGKnROqSCAhmsDYpOORVoAEjuJRcIVJJDChmLhmlVKypkkD9oByPQZ0zc4OJYqKBX9j4wx1gwsBXh93z57XOTnbjU6rYcsNEiS5DOUUgNiyrYS2ObH5x1gSI/8mFGnfa+TEnC+SgsID4oElo5JRsCE6ANlAElB4BsBkgZ+AuRemkeBPVohAiCGnyKAlAqoashaR/boq++ogRxKIQ2komLktHiyV7pmx4UCAWRqraKJ1b/LpoIiVim5b5KxxuA3LQClMSFvUVgDG+6NX3yZJhnStVENGYDPSAeMgETrV3BphYWSFq22ASyBtN6usTYpAedSNBiAeSZJIDmNSRJ7nMe8mrPHErMCFve5m0en9ZARJJnkMyIu+bZppgZg9zvMqNP+qRMNZFI4c50Qzhep/UryQARMulCua8h/y8BScBZJ5tUhyVZ+EIoBT12HouFQygfoOKAEUCxVJ5SEaTvvrzSwykBoYmLoMUmpUn+nkJFBRoCs3TttryugqoGq9qbXFDCFUsV7Dn8/AMkYuDN9O/+tSw+pPTgaCtihXE8hIX11JAJIYo95vd3YRryuaiwnmJcW7PkmB9hjbl7lKT/TUjvG5262TuslCw2S0xqo1OjThJsQwoA3cO3SOfy4Uaf9U6cw45cCFkjA0lgLKwAFMRjEwxlDnjCeD5juxzNQYyvO58wxgCP7LoHEByl7OZUSYtK5QgNskWbJi6IXmKRgQBnYJANIMrHKuvL7VQRG5f2S3DfJ/zcKPmJpLgR9dN+UAKwEDCyscT4/Y0UAS/gqSa2xUMLVdZVyuNYuSanmLgFfWMlFybTE4Bzg2E/96Df1/tLHDzSd1kMWGiSB+WY/+XEiO1YU9pWuPeu3R50ODJ04WGoLWESwdNexg78by43FaNfwuzzdowiQGtYX/RZKwUoJQQCZg2XVwAKQdTSxVnAmSe3Nn3rSQijpWOSkg1XuN8MCzXWmQjC3ZtGzFLDjAZJYpPJgSSwyAXYfxCOkghUCRTEGkMaZbUPgU1yxxfknBSAtagwBpFsjdJ5au9S2vN7utLKCAgOFIQYiV0vsMTR9efP43M2p01rKQoPkPOaDeeh+fs6sGdVQJxo6d9Rp/9Qp5LEJv6qIAKy1YVWHQd9k+C4SdjlThAwvK4wDGGkSgBRV45bNYiKxs38pD3TWmAQsAUAW1qKkc8K5/nzyN4aAHQ+Q1XLjttUNRNU4JlnXEFXtPiuWKykkLP1vMySYquFACMbCWG92VQSQHuwFIKViAOkaZFatXfc5BUYqKZguopyCYxqINT0wJ9xT/76/9vH9Xaf1kIUGyWmNMs+MZaiz5B0g/7y7vzvqtP/plIMcAaZlvslcwnqFNOCHkxkwCQkXKeQAREgJ6/MGCShF3bh1GYlBVrXTr7BWo1ItRGCRElIbGClhjAlgScXRwxqUuXlWMiapVMompQw+yBDlWjcOFMOriYDOmeUMoXskhLslroqRKwko/GcY10rC50sq4coGttoCMtbZBcq1duPqH5w9puUEebJ/CLzpgWUZHA/kPr6/67TWstAgWaL8pdnTvNeZNvOadZ2hTjLqtP/rBKRmNAEEE2LJP5n6Jr0Os4qWB3C0sLJykZ/CQHizag8Y8/JvUkFKBaEmMN4HSWBpfYCPMY5BSsYiCSh5AQAOjGk+ZhV8lAEgm2UH4nXjzKtVHX2U/rMN7Fj02SRLBZH+vgphIWw0tTrK6N6tcEzeWAHpTa7OrCpC0SLNiiQkptZQ/SgtJZim7KTFIARmM8eDoY/vzzqttSw0SNqBz0DaYLPOpe/TTBElyTtFfv6o04GpE4GgsbEwQen8QZES0MYDggcQIGGTVlbuGpW/ljHJ/xw+KwW0rT/f+QGVaiG1DmBZCtgZWrS5ZHKlNA/pg3TgWSMxSARG2UDUTcIirVRxAhB+pGx2jfmSDiwtrCsHyIDSWkqriOUC6f5Pq7BDbRKjj3nxh5Q1DuW5DjFHkoOpj+8POq2XLDRICvY+q6GGGnTomHlmObyxZ3XIUacDTyfOLqcxyqIICVp4OIlqJTOsrKIOFSCwjKS4AAuOgfcH2rZ136sG6CZQtYEyGlbrAJSGR7YOqVYM4PHgKBlISpkAZEgDIQD1LNImvtYCQFpXFIDMpQRmCgUmCZdLSWAJAVi4gJ18YWjeBhQ+VQJGXiGJR6tyU2ue67gofXxf67QestAgWWrEaZR/qBFp+1CHWM32UaeDU6chQJz6oAsJC++HBJxvUnlwNH5/xijDIEKl6gg4fQQsgaWoarfcVtc6U623RRJohv+JgWW6iHIaoco/i6oGlArAKKo6MMgAkHWTsEgrRJIOUop4lQJuqUnh/lMNN19QEi5XlZikdcCoBGVMihmVkOh7uXSgzEyrAUBRznUEFrOPr7dO84Dq3pCFBsmS8AbgDTKPCSGfaeX7UdifX7vU8KNOB75OcwmBIX2kojvSg6KsYE0XgBJCQBgddaolpPImTEoLkcoBUjtx/suOvWsNWzXuGrTwsTEQbBFka9JI2RCRGt4jSAoPzC5AR8b3DCBBaR+ygpUVICvGkocjXB2D9CZXONYI6Yo7SE8bLRDA0VpXvMfkjQbG/AJQlgs98PqqPI2j1KcWvY+vt04jk1wnmTaIlRp71qBXmkWVZk2l44Y6yajTwaHTVOHmVcwASmvc7/mybYIiYE3nTZcC0loHllXt2GLp3TNIa7QDRs8geVSryECSBwQRKNL2YGolVlm7aFYCxsAgCSAzFmmnACXdX2KTRsBHurqNLpjYFXQAPLP0x/bqorLvHBQBJOyRm1PpWK7Lvu5P+2MfX0+ddvtZW6UsPEgO0Xq+r9TwpRlTqbHz4/N3FM4ZdTq4deLf0wPmAEorAzjCg6V1uRDhfCFcgE8Clr7AALqJ8xOSWZUBJYDE9Op+YoBJAtE8GsrMef+nN8WKEKDjWKUglksAKas0cCf3vw4sqSXo/xLC1111N1PYfkGHEt3gBR3c9xQYqchDydcY2oXrg7GP7yud1kMWHiRLDcP3DTVQvi3vQKXjS++jTqNOyTiesSjHrnw9V2Mc+Fkf9UrMUZrIIglkrXFmTNM5wLIG6Lroi/RmVf4ZQADOoE5paS0OXgSK/nPPR0ngKIQzrXo/qnv3AKkiq3T/cwHZgFBUPujmmR6VBVQCKZMsnM/vN4EiEFNB8qo4fDA/UPrTIuq0lrLwIEmSN3Rp39BMZlrD5o/qamZEo06LodMgWDLQc8wwA0vvk4Q1RbAU1uVUwnTuPFmBCqgLa2G1ToASQARLziBzoOQ5kzIFyLCNCpdLngfp/ydZxZxIFVnlIKPMRArAwLFJwJleCSzjPbbs+HhnebBOCNRBGRiBA7M/LbJOayGz60DtgTz66KPYsmULVlZWsLKygi1btuCxxx6beo4Qovj64z/+43DMOeec09t/0UUX7baeQ42dz3rswLG5SSE/n1+Dz5ry40edRp16s2YOGj7QxaoKUC7gxaoaVtWAagDVwKoGtmpc7dbK7bPVEmy1nL2WgGYZWNoAsXwI5IZDITccCrHsXpK9xPIhySvZ1yy7c5plSH8tLG0A6sbpJSunU9CvdgzS/w954E4ATzmQDoIIavTsSyCsMyn8Ky6W7BP9RVz8uJYClRSo5TBz3J22y8/fH/rTIum0VrKmTPLiiy/GQw89hJtuugkA8OpXvxpbtmzBZz/72cFzfvjDHybf//Iv/xKvetWr8PKXvzzZvnXrVrz97W8P3zds2LBq/ehml2Yq88xcph1Tmg1NO4Z3BItRp1GnbIDgzMp6JikBYTp3LBVFl8qxRL4uJX/RcdYm2y3g2Kbqr2Mpsu/FCFRf8KBXh7UAfskxSY6kKF+bCZlcCSgBxypJ8iJ3fRNrpjYWpz8djDqth6wZSH7rW9/CTTfdhNtvvx1nnnkmAOBDH/oQzj77bNx333044YQTiudt2rQp+f4Xf/EXeP7zn49f+ZVfSbYfcsghvWNXK6VGp+35caVzZl1z3v357GvUadRp6n6q3QpEP6QEyJQaANObVQOoWreqBi1m3FtxhIAz/PiMUnm5MGAMfsUSMLL/IQFHFqxTinSl+8CBEkirGuUDZ69cIMrfF7o/HeA6rbWsGUjedtttWFlZCQAJAGeddRZWVlZw6623DoIkl4cffhg33ngjPvaxj/X2XXfddbj22mtx1FFH4SUveQmuuOIKHHbYYcXr7Nq1C7t27Qrfd+zYUTyOP2ilz/lxtH+arKZxp/3WqNOoU36+BUL6B4AIfpKxwYQ9msgy+f7SZ5JS4M40SQoCZICYfU7A0Z87eE7+MzNu1P7edqNOe0en9ZA1A8lt27bhyCOP7G0/8sgjsW3btrmu8bGPfQyHHXYYXvaylyXbL7nkEjztaU/Dpk2bcM899+Dyyy/H1772Ndx8883F61x99dW46qqrivtKjTetsUvnzzJLTPu90gx41GnUaXd0CjVeGahYzx75d6E7/yUDRW6CTX5k9xllL2I1Bz7OHEv7Z5hfw0/iwG67Uac902ktZdUgeeWVVw4CDskdd9wBAGFJIC58vb1Z8pGPfASXXHIJlpeXk+1bt24Nn0866SQcf/zxOP3003HXXXfh1FNP7V3n8ssvxxvf+MbwfceOHTjmmGP6urHP82iYzOhRbuDVnD/tmFGnUafd0Slfp1EALlimBITEOun71B/z0bBZvbckfSNjifEYmR6Tf54TGIGDu+1Gnaafv16yapB83eteNzOS9LjjjsPXv/51PPzww719P/rRj3DUUUfN/J0vfelLuO+++3D99dfPPPbUU09FXde4//77iyC5tLSEpaWlwfOHZj+rbYjcFMa3z3O9oRnTqNOo097SyQIBvHomMmvSyJd5gHLgmKLZtCQD+1Zzrxal7Uad9o2sGiQ3btyIjRs3zjzu7LPPxvbt2/GVr3wFZ5xxBgDgy1/+MrZv345nP/vZM8//8Ic/jNNOOw3PetazZh77zW9+E23bYvPmzbP/gUzmtXfParRpJoHSTGzoGItRp1Gn9dfJArGQerjoMLgF/acBKa8cNKdO+fb97T6NOu1fOq2HrFme5NOf/nScd9552Lp1K26//Xbcfvvt2Lp1K84///wkaOfEE0/EDTfckJy7Y8cOfOpTn8I//+f/vHfd73znO3j729+Or371q/jud7+Lz33uc3jFK16BU045Bc95znNWpSNvjLxBeGPMMguUzke2bVqDDg0io06jTvuzThYAX+Iqf/HfWOT7NOq0djqth6xpMYHrrrsOJ598Ms4991yce+65+PVf/3V8/OMfT4657777sH379mTbJz/5SVhr8du//du9azZNg7/+67/Gi1/8Ypxwwgl4/etfj3PPPRef//znoVSeJTWfTGvMoX1DHWTa56HjS4096jTqNOo06jTqNL9OayXC2tJKawe37NixAysrK3h42zYcfvjhyayEz4b495LsCeUfOpf/7qjTqNOo06jTqFP53B07dmDTpk3Yvn07Dj/88N286mxZ6NqtNOMpNRxv+Fmzommdo7SPmyzyfdN+d9Rp1GnUadRp1Gn3gXZ3ZE3NrQeaCJQbchq1p8bLG5SktK/U6UadRp1GnUadRp32XKe9LQsPkrwBeOPk22lbaZ9A2lmmNeKs2dao06jTqNOo06jT6nRaS1locytQvuml2RA1UKmh5ulMpc4w1EFGnUadRp1GnUad5tdpLWWhQVJM2Zc3TGmGNNR4tC//XLpe3qny3x51GnUadRp1GnUq67QestDm1lKD0fb8Oz9GFI7h59nCttJx+W+XOsao06jTqNOo06hTWaf1kIUGScFe+fahGQ+X0oxqngYuXZd3plGnUadRp1GnUaf5dFprWWhzaz4z4jI0exo6ls+I8uPzDoSB76XjRp1GnUadRp1GneYD3LWQhWaSJRmaAfFZSz6Lsdn2WbMikb3y64w6jTqNOo06jTrN1mk9ZOFBUmTvQL8B+bb8mPw6+Xm0r9RJZnW6UadRp1GnUadRp9k6raUsNEjyhuCNTPv4d74tv0Z+HH2nWU/e2NP0GXUadRp1GnUadZpPp/WQhQZJEt7IQw04bRufWdlsX96Rhq4zdMyo06jTqNOo06jTvpMRJJlQA02b/ZS+80YVhWPz4/JtvMOMOo06jTqNOo06zafTeshCg+S0BlptI+SzKYHpjV86h3e4UadRp1GnUadRp+nnrIcsdAoI0L/ZIttWahSRHSsK+0rXnvXbo06jTqNOo06jTqvXaS1loZlkacZis30W/YYpfaeGtwPH5L+b/7bI3kedRp1GnUadRp1m67TWstAgOa1R5pmxDHWEvNPkn0udaNRp1GnUadRp1Gn1Oq21LDRI5g2yuzOVoXMt0tnVNBnqJKNOo06jTqNOo07DOq21LLRP0g58BvoNNu1c+i4Gtg8J/43S+aNOo06jTqNOo07z/8ZayMgkUb7h08wCQ424mllQfnze+KNOo06jTqNOo07TdVoPWWiQLM1k8gbgDTytoemc0jFDjUnH578x6jTqNOo06jTqNJ9Oay0LbW4tyVBnmMeEwM8Zmh2VzAX8c6nhR51GnUadRp1GndJtQ9ff27LwIDltNlJq7Fmzl7wD5NcpzbDy3xl1GnUadRp1GnWartOs6+4tWWhzKzB9NlIyH5TOK81qZs2GSr87awY26jTqNOo06jTqtL6y8CBZahh65Q2Uz2RKs6WhBs1nQ/PMxkadRp1GnUadRp1m67SWsvDmVpJS4+X78kYvHZ83aKnhh64z6jTqNOo06jTqtPs6rYUsPJMEhhubN4zF7JlQ6bNFeo3SbGvUadRp1GnUadRpz3RaK1lokKSbnc9kaN+smcu0xirNhqYdk3eAUadRp1GnUadRp9k6rbUstLmVz1L4TCVvHDtwzqxrzrs/n32NOo06jTqNOo06zafTWstCM8lceMNTA5RmK3ljTZN8/7TGHfqtUadRp1GnUadRp30jCw+SeePljT2rcfL9dM48M6wh08Go06jTqNOo06jT/DqtpSw8SHKhWREwXwNY9j7UwPOeP+o06jTqNOo06rTnOu1tGUESw4272oaYNduaJUMzplGnUadRp1GnUad9IwsPkvOYB+i4aY02NKMaun7pGJF9H3UadRp1GnUadZr/mLWQhY5uzRuf3/S88aY1yNAxQ7OkXEiH/H3UadRp1GnUadRpWKf1kDVlkv/m3/wbPPvZz8YhhxyCJzzhCXOdY63FlVdeiaOPPhobNmzAOeecg29+85vJMbt27cIf/MEfYOPGjTj00ENxwQUX4KGHHtptPfmMZt59eQOVOkv+eej4UmOPOo06jTqNOo06za/TWsmaguRkMsErXvEK/P7v//7c57z73e/Ge97zHrz//e/HHXfcgU2bNuE3fuM38NOf/jQcc9lll+GGG27AJz/5SfzP//k/8bOf/Qznn38+tNar1pGbEHI6P8tUMGvGNM9Mio4rdYBRp1GnUadRp1Gn2TqtpQhr7Zr/1jXXXIPLLrsMjz322NTjrLU4+uijcdlll+Etb3kLAMcajzrqKLzrXe/Ca17zGmzfvh1PfvKT8fGPfxyvfOUrAQA/+MEPcMwxx+Bzn/scXvziF8/UZ8eOHVhZWcG2bdtw+OGHBxNCSYb28cae1vClfdNMFrN+d9Rp1GnUadRp1MmN45s2bcL27dtx+OGHD2iz57Jf+SQfeOABbNu2Deeee27YtrS0hOc973m49dZb8ZrXvAZ33nkn2rZNjjn66KNx0kkn4dZbby2C5K5du7Br167wffv27QAQ2OlQp8hnLlxm7ZunA81z3KjTqNOo06jTqFP/M43fa83z9iuQ3LZtGwDgqKOOSrYfddRR+N73vheOaZoGT3ziE3vH0Pm5XH311bjqqqt6248//vi9ofYoo4wyyij7SH7yk59gZWVlza6/apC88sori4DD5Y477sDpp5++20oJIZLv1tretlymHXP55ZfjjW98Y/j+2GOP4dhjj8WDDz64pjd3LWTHjh045phj8P3vf39NTQx7W0a911dGvddfDlTdD1S9t2/fjqc+9ak44ogj1vR3Vg2Sr3vd63DRRRdNPea4447bLWU2bdoEwLHFzZs3h+2PPPJIYJebNm3CZDLBo48+mrDJRx55BM9+9rOL111aWsLS0lJv+8rKygHVKbgcfvjhB6Tuo97rK6Pe6y8Hqu4Hqt5Srm26/6pBcuPGjdi4ceNa6IKnPe1p2LRpE26++WaccsopAFyE7Be/+EW8613vAgCcdtppqOsaN998My688EIAwA9/+EPcc889ePe7370meo0yyiijjLKYsqY+yQcffBD/7//9Pzz44IPQWuNv//ZvAQB/7+/9PfzSL/0SAODEE0/E1VdfjZe+9KUQQuCyyy7DO97xDhx//PE4/vjj8Y53vAOHHHIILr74YgCO/b3qVa/Cm970JjzpSU/CEUccgTe/+c04+eST8aIXvWgt/51RRhlllFEWTNYUJP/oj/4IH/vYx8J3Yoe33HILzjnnHADAfffdF6JNAeAP//AP8fjjj+Nf/It/gUcffRRnnnkm/vt//+847LDDwjHvfe97UVUVLrzwQjz++ON44QtfiGuuuQZKqbn0WlpawhVXXFE0we7vcqDqPuq9vjLqvf5yoOo+6j1d1iVPcpRRRhlllFEORFn4AuejjDLKKKOMMiQjSI4yyiijjDLKgIwgOcooo4wyyigDMoLkKKOMMsooowzICJKjjDLKKKOMMiAHLUgeKGtZ5vLoo49iy5YtWFlZwcrKCrZs2TJz9RQhRPH1x3/8x+GYc845p7d/VuWktdb7d3/3d3s6nXXWWckx+9v9btsWb3nLW3DyySfj0EMPxdFHH43f+Z3fwQ9+8IPkuLW43x/4wAfwtKc9DcvLyzjttNPwpS99aerxX/ziF3HaaadheXkZv/Irv4I/+7M/6x3z6U9/Gs94xjOwtLSEZzzjGbjhhhv2SMc91fszn/kMfuM3fgNPfvKTcfjhh+Pss8/GX/3VXyXHXHPNNcX+vnPnzn2m9xe+8IWiTt/+9reT4/a3+116BoUQeOYznxmOWY/7/T/+x//AP/kn/wRHH300hBD4L//lv8w8Z936tz1I5Y/+6I/se97zHvvGN77RrqyszHXOO9/5TnvYYYfZT3/60/Yb3/iGfeUrX2k3b95sd+zYEY557Wtfa3/5l3/Z3nzzzfauu+6yz3/+8+2znvUs23XdXtH7vPPOsyeddJK99dZb7a233mpPOukke/75508954c//GHy+shHPmKFEPY73/lOOOZ5z3ue3bp1a3LcY489tld03l29L730UnveeeclOv3kJz9Jjtnf7vdjjz1mX/SiF9nrr7/efvvb37a33XabPfPMM+1pp52WHLe37/cnP/lJW9e1/dCHPmTvvfde+4Y3vMEeeuih9nvf+17x+P/zf/6PPeSQQ+wb3vAGe++999oPfehDtq5r+5//838Ox9x6661WKWXf8Y532G9961v2He94h62qyt5+++27reee6v2GN7zBvutd77Jf+cpX7N/93d/Zyy+/3NZ1be+6665wzEc/+lF7+OGH9/r93pTV6n3LLbdYAPa+++5LdOL9dH+834899lii7/e//317xBFH2CuuuCIcsx73+3Of+5z91//6X9tPf/rTFoC94YYbph6/nv37oAVJko9+9KNzgaQxxm7atMm+853vDNt27txpV1ZW7J/92Z9Za12HquvafvKTnwzH/N//+3+tlNLedNNNe6zrvffeawEkjXjbbbdZAPbb3/723Nf5zd/8TfuCF7wg2fa85z3PvuENb9hjHUuyu3pfeuml9jd/8zcH9x8o9/srX/mKBZAMRHv7fp9xxhn2ta99bbLtxBNPtG9961uLx//hH/6hPfHEE5Ntr3nNa+xZZ50Vvl944YX2vPPOS4558YtfbC+66KK9pPXq9S7JM57xDHvVVVeF7/M+03siq9WbQPLRRx8dvOaBcL9vuOEGK4Sw3/3ud8O29bjfXOYByfXs3wetuXW1MmstSwAz17LcU7ntttuwsrKCM888M2w766yzsLKyMvf1H374Ydx444141ate1dt33XXXYePGjXjmM5+JN7/5zWE9tn2p9xe+8AUceeSR+LVf+zVs3boVjzzySNh3INxvwK1GIITomfX31v2eTCa48847k/sAAOeee+6gnrfddlvv+Be/+MX46le/irZtpx6zN+7t7uqdizEGP/3pT3srPfzsZz/Dsccei6c85Sk4//zzcffdd+8VnfdU71NOOQWbN2/GC1/4Qtxyyy3JvgPhfn/4wx/Gi170Ihx77LHJ9rW837sj69m/96v1JPelrNValqvV4cgjj+xtP/LII+e+/sc+9jEcdthheNnLXpZsv+SSS0IB+XvuuQeXX345vva1r+Hmm2/eZ3q/5CUvwSte8Qoce+yxeOCBB/C2t70NL3jBC3DnnXdiaWnpgLjfO3fuxFvf+lZcfPHFyQoKe/N+//jHP4bWutg3h/Tctm1b8fiu6/DjH/8YmzdvHjxmb9zb3dU7l3/37/4dfv7zn4fFDABX7/maa67BySefjB07duBP/uRP8JznPAdf+9rX9soasbuj9+bNm/Hnf/7nOO2007Br1y58/OMfxwtf+EJ84QtfwHOf+1wAw22yv9zvH/7wh/jLv/xLfOITn0i2r/X93h1Zz/59QIHkgbiWJTC/3qXfn1cHko985CO45JJLsLy8nGzfunVr+HzSSSfh+OOPx+mnn4677roLp5566j7R+5WvfGWi0+mnn45jjz0WN954Yw/kV3Pd9brfbdvioosugjEGH/jAB5J9u3O/Z8lq+2bp+Hz77vT31cru/sZ/+k//CVdeeSX+4i/+IpnMnHXWWUmA13Oe8xyceuqpeN/73od//+///T7R+4QTTsAJJ5wQvp999tn4/ve/j3/7b/9tAMnVXnN3ZXd/45prrsETnvAE/NZv/Vayfb3u92plvfr3AQWSB+JalqvR++tf/zoefvjh3r4f/ehHvRlRSb70pS/hvvvuw/XXXz/z2FNPPRV1XeP+++8fHLTXS2+SzZs349hjj8X9998PYP++323b4sILL8QDDzyAv/mbv5m5Dt8893tINm7cCKVUbwbM+2YumzZtKh5fVRWe9KQnTT1mNW22t/Umuf766/GqV70Kn/rUp2au7iOlxD/4B/8g9Js9lT3Rm8tZZ52Fa6+9Nnzfn++3tRYf+chHsGXLFjRNM/XYvX2/d0fWtX+vyoN5AMpqA3fe9a53hW27du0qBu5cf/314Zgf/OAHez2Q5Mtf/nLYdvvtt88dSHLppZf2oiyH5Bvf+IYFYL/4xS/utr4ke6o3yY9//GO7tLRkP/axj1lr99/7PZlM7G/91m/ZZz7zmfaRRx6Z67f29H6fccYZ9vd///eTbU9/+tOnBu48/elPT7a99rWv7QU2vOQlL0mOOe+88/Z6IMlq9LbW2k984hN2eXl5ZvAGiTHGnn766fb3fu/39kTVRHZH71xe/vKX2+c///nh+/56v62NgUff+MY3Zv7GWtxvLpgzcGe9+vdBC5Lf+9737N13322vuuoq+0u/9Ev27rvvtnfffbf96U9/Go454YQT7Gc+85nw/Z3vfKddWVmxn/nMZ+w3vvEN+9u//dvFFJCnPOUp9vOf/7y966677Ate8IK9npLw67/+6/a2226zt912mz355JN7KQm53tZau337dnvIIYfY//Af/kPvmv/7f/9ve9VVV9k77rjDPvDAA/bGG2+0J554oj3llFP2md4//elP7Zve9CZ766232gceeMDecsst9uyzz7a//Mu/vF/f77Zt7QUXXGCf8pSn2L/9279NQuJ37dplrV2b+02h/R/+8Iftvffeay+77DJ76KGHhijEt771rXbLli3heAqR/5f/8l/ae++91374wx/uhcj/r//1v6xSyr7zne+03/rWt+w73/nONUtJmFfvT3ziE7aqKvunf/qng+kzV155pb3pppvsd77zHXv33Xfb3/u937NVVSWTnfXW+73vfa+94YYb7N/93d/Ze+65x771rW+1AOynP/3pcMz+eL9J/tk/+2f2zDPPLF5zPe73T3/60zBGA7Dvec977N133x0ixvdl/z5oQfLSSy+1AHqvW265JRwDwH70ox8N340x9oorrrCbNm2yS0tL9rnPfW5vZvX444/b173udfaII46wGzZssOeff7598MEH95reP/nJT+wll1xiDzvsMHvYYYfZSy65pBdWnuttrbUf/OAH7YYNG4q5eA8++KB97nOfa4844gjbNI391V/9Vfv617++l5O4nnr/4he/sOeee6598pOfbOu6tk996lPtpZde2ruX+9v9fuCBB4r9ivettbrff/qnf2qPPfZY2zSNPfXUUxNWeumll9rnPe95yfFf+MIX7CmnnGKbprHHHXdccQL1qU99yp5wwgm2rmt74oknJoP63pLV6P285z2veG8vvfTScMxll11mn/rUp9qmaeyTn/xke+6559pbb711n+r9rne9y/7qr/6qXV5etk984hPtP/yH/9DeeOONvWvub/fbWmex2bBhg/3zP//z4vXW434Tkx1q933Zv8f1JEcZZZRRRhllQMY8yVFGGWWUUUYZkBEkRxlllFFGGWVARpAcZZRRRhlllAEZQXKUUUYZZZRRBmQEyVFGGWWUUUYZkBEkRxlllFFGGWVARpAcZZRRRhlllAEZQXKUUUYZZZRRBmQEyVFGGWWUUUYZkBEkRxlllFFGGWVARpAcZZRRRhlllAH5/0zWqpQ7/HgWAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwdRZ02/lRVd59zAyQISAKIgIpAQAXZYRAUBBGGxYW4xQ3wRXAEM8xPIzBsr6LvuOAGgoNmEBdUZBlFWUZEfI2obL6KIqM4qCQKSBJCcu/p7qrfH7V0VXV1nz53y809/f18zr3n9Kmu/p7u6n7q+W5FhBACrbTSSiuttNJKSeiGVqCVVlpppZVWZqq0INlKK6200korFdKCZCuttNJKK61USAuSrbTSSiuttFIhLUi20korrbTSSoW0INlKK6200korFdKCZCuttNJKK61USAuSrbTSSiuttFIhLUi20korrbTSSoW0IBmQCy64AIQQZ9uOO+6IY489dlqOv27dOlxwwQX44Q9/WPpu2bJlIITgj3/847ToMpPkj3/8IwghWLZs2aT1efXVV+MNb3gDdtllF1BKseOOOwbb/eAHP8A73/lO7Lrrrthkk02w3Xbb4fjjj8c999wzabpMh5x77rk49thjsd1224EQgre//e3Bdv/+7/+OE044ATvuuCNGRkbwghe8AO9+97uxYsWKRscRQuDTn/40dt11V3Q6HWyzzTZ497vfjaeeespp97vf/Q5nn3029t57b2y++ebYYostcPDBB+Nb3/pWZd833ngjDj30UMydOxebbLIJdt99d1x55ZWV7devX48XvvCFIITgYx/7mPOdvterXl//+tdN2x133LGyXbfbrTz+X//6V2y55ZYghJR+1w9/+MPKPn/60586bev03HXXXcd1Tm+//Xa88pWvxLbbbotOp4Ott94ar3jFK3DzzTeX2h522GHBY7/qVa9y2un7tN/5BAYfZ0888QTOPPNM7Ljjjuh0Opg/fz6OPvpo/P3vf688/xOVaMp63ojllFNOKV346ZR169bhwgsvBCAHpi3HHHMMli9fjm222WYDaDb75Mtf/jJWrlyJ/fbbD5xzpGkabHf55ZfjySefxJlnnomFCxfi8ccfx8c//nEccMABuOWWW/CKV7ximjUfn3zyk5/Ei1/8Yhx33HH44he/WNnu/PPPx8tf/nJ8+MMfxnbbbYeHHnoIF198MW688Ubcd999mD9/fu1xzj77bFx66aU4++yzccQRR+DBBx/Ev/7rv+LnP/85li9fjjiOAQC33norvvvd72Lx4sXYd999kWUZrr32Wrz+9a/HhRdeiH/91391+v3IRz6Cc845B6eddhqWLl2KOI7x29/+Fr1er1KX8847D88880zwu6p7/dRTT8Xvf/9757vrr78eY2NjTrtHH30UixYtwoknnlh5/DPOOKMWRAHgwx/+MF7+8pc72/bYYw/n8/Lly0v73X333TjrrLOc4w9yTp988knsvvvuOOWUU7BgwQL8/e9/x+c//3kcc8wx+PKXv4y3vOUtzvGe97zn4Stf+YqzbfPNNw/+pn/6p3/Cm970Jmfbzjvv7HweZJw99thjOOSQQxBFEc477zzsvPPOeOKJJ3DHHXfUXv8Ji2ilkeywww7imGOOGde+vV5PpGnauP3jjz8uAIjzzz9/XMebrfLII48IAOJLX/rSpPWZ57l5f8wxx4gddtgh2O6vf/1radvTTz8t5s+fLw4//PBJ02eqxf69m2yyiXjb294WbBf6vT//+c8FAHHxxRfXHuPPf/6zYIyJf/qnf3K2f/WrXxUAxJVXXmm2Pf7444JzXurjmGOOEXPmzBGjo6Nm2y9+8QtBKRUf/ehHa49vy9133y2SJBHf/OY3BQDxb//2b333eeSRRwQhRLzlLW/p2/aCCy4QAMTtt98e/P5b3/qW2HTTTcV//Md/CADim9/8pvP9HXfcEdzeVN7+9rcLQoh4+OGHzbZBzmlIer2e2G677cQhhxzibD/00EPF7rvv3lcnfZ82OdeDjLPjjz9ebLfdduLvf/97334nU4bG3HrDDTeAEIL/+q//Kn13+eWXgxCCX/7ylwDC5lYt119/PV784hej2+3iec97Hj796U8732vzyZe//GX88z//M7bbbjt0Oh3893//Nx5//HGcfvrpWLhwITbddFNj2rjrrrvM/n/84x/x7Gc/GwBw4YUXGjOFNouFzK2HHXYY9thjD/z85z/HIYccgjlz5uB5z3sePvKRj4Bz7uj361//GkceeSTmzJmDZz/72TjjjDPw3e9+F4SQoHnXFn1efvnLX+L1r3895s2bhy222AJLlixBlmV46KGH8KpXvQqbbbYZdtxxR/yf//N/Sn08+uijeMtb3oKtt94anU4Hu+22Gz7+8Y+X9Hzsscdw0kknYbPNNsO8efOwaNEirFy5MqjXL37xCxx33HHYYost0O12sddee+Eb3/hG7W/RQmmzW2Drrbcubdt0002xcOFC/OlPf2rUR0jOPPNMdDodPP7448Hv3/3ud2NkZAR//etfx30MWybye/fee28wxvr+3p/+9KfI8xyvfvWrne3aXXHdddeZbVtttVXwXttvv/2wbt06x4z22c9+Fp1OB//0T//U6Df0ej28853vxBlnnIF99tmn0T4A8MUvfhFCCJxyyim17YQQ+NKXvoTnPe95QUvC3//+d5xxxhn40Ic+hOc+97mNj99Unn76aXzzm9/EoYceihe84AVm+yDnNCRxHGPzzTdHFE29obHpOPvjH/+Im266Caeeeiqe9axnTbletgwNSB577LHYeuut8aUvfan03bJly/DSl74UL37xi2v7uP/++3HWWWfhfe97H66//nocdNBBOPPMM0t+DgBYunQpHn30UXz+85/Hf/7nf2Lrrbc2g/P888/Hd7/7XXODHXbYYQagttlmG3z/+98HAJx88slYvnw5li9fjvPOO69Wt5UrV+LNb34z3vKWt+Cmm27C0UcfjaVLl+Kaa64xbVasWIFDDz0UDz30EC6//HJcffXVePrpp/Ge97yntm9fTjrpJLzkJS/Bddddh1NPPRWf/OQn8b73vQ8nnHACjjnmGFx//fV4xStegfe///349re/bfZ7/PHHcdBBB+HWW2/FxRdfjJtuuglHHHEEzj77bEeH9evX44gjjsCtt96KSy65BN/85jexYMECLFq0qKTLHXfcgYMPPhirVq3C5z//edx4443Yc889sWjRokn1XYZk9erVuPfee7H77ruPa/9nnnkGV111FY499lgzMfLl1FNPxejoKK644gpne5ZljV5iEhf5ufPOO5Hned/fq01fnU7H2R7HsTMZrZM77rgDz372s52H6I9+9CPstttuuO6667DLLruAMYbnPOc5+MAHPhA0t1100UV45plncPHFFzf5eQAAzjmWLVuGF7zgBTj00ENr295+++34n//5H7zzne8MgtJ73/te7LTTTo3urzPOOANRFGHu3Lk46qij8OMf/7jvPl//+tfxzDPP9AVzLaFzqoVzjizL8Nhjj+H888/H7373O/zzP/9zqd3vf/97bLHFFoiiCM9//vNxzjnnYP369cHjfeQjH0GSJJgzZw7+4R/+ATfddFMjPUPj7K677oIQAttuuy3e+MY3YtNNN0W328Vhhx0WNENPqkwrb93AsmTJEjEyMiJWrVpltj344IMCgPjMZz5jtp1//vnCPzU77LCDIISI+++/39n+yle+UsydO1c888wzQojCfPKyl72srz5Zlok0TcXhhx8uTjzxRLO9ztz6pS99SQAQjzzyiNl26KGHCgDi7rvvdtouXLhQHHXUUebzv/zLvwhCiPj1r3/ttDvqqKMEAHHHHXfU6qvPy8c//nFn+5577ikAiG9/+9tmW5qm4tnPfrZ4zWteY7Z94AMfCOr57ne/WxBCxEMPPSSEEOLyyy8XAMSNN97otDv11FNL5tZdd91V7LXXXiVz9rHHHiu22WYbx7zYT+rMrSF585vfLKIoEr/4xS8a72OLNgFeddVVte222267kpkLQKNXnWm6ztzqy5o1a8Ruu+0mtt9+e/H000/Xtr3//vuD5rL/+q//EgBEkiS1+3/hC18QAMSnPvUpZ3un0xGbbbaZeNazniU++9nPih/84AfinHPOEYwx8aY3vclpe99994k4jsX3v/99IURzE+D3vvc9AUBccsklte2EEGLRokWCMSb+/Oc/l777zne+I+I4Fv/v//0/IUS1WfXee+8VZ555prj++uvFj370I/HFL35R7LbbboIxZnSvkv33319svvnmYv369X11rTqnWvQzAICYO3eucy9rOeecc8Rll10mfvCDH4jvfve74j3veY+Ioki87GUvc+6zxx57TJx66qniG9/4hrjrrrvEV77yFXHAAQcIAOILX/hCrZ5V4+ySSy4xuh1//PHi+9//vrjuuuvEi1/8YtHtdsUDDzzQ9xyMV4YKJH/1q18JAOKKK64w2/7lX/5FdDod8eSTT5ptVSC5xx57lPrUoHXXXXcJIYqboWowXn755WKvvfYSnU7HeZjtuuuups14QHLBggWltm94wxucfvfbbz/xohe9qNRu2bJlA4GkBjMtb3zjGwUhpHSzHnjggWLvvfd2jr9w4cJSv3fffbcAIC6//HIhhBAnnXSS2GyzzUrt9LnVD/6HH35YABAf+9jHRJqmzuuyyy4TAMSDDz5Y+5tsGQQkzz333NLkalA5++yzBQBxzz33mG3Lly8vgeYxxxwjCCFi7dq1ZtvPf/7zRq8nnnii8vhNQXL9+vXiiCOOEHPmzBE//elPG/22l73sZWLu3LniG9/4hnjqqafE//2//1fsvPPOgjEmut1u5X4333yzSJJEvO51ryv51eI4FgDE1772NWf7WWedJQAYv1yapmKvvfZyfIpNQfJ1r3udiKJIrFixorbdk08+KTqdTjBOYdWqVWK77bYT5557rtk2iO/xqaeeEs95znPEi1/84so2+ll2xhln9O2v7pxq+d3vfid+9rOfiRtvvFG8/vWvF3Eci69+9at9+/7Yxz5WmiCHpNfrib322ktsueWWlfEZdePsQx/6kAAgFi5cKLIsM9sfe+wxMWfOHPHmN7+5r67jlaExtwLA7rvvjn333deYXPM8xzXXXIPjjz8eW2yxRd/9FyxYULntySefdLaHok8/8YlP4N3vfjf2339/XHfddfjpT3+Kn//853jVq15VabJoKltuuWVpW6fTcfp98skng1GJ/SIVffHPlTap+BF8SZJgdHTUOX7ovGy77bbm+zo9/fOv/XRnn3024jh2XqeffjoAGTI+2XLhhRfif//v/40PfehDA5uqbdHpEHPnzjXbbrjhBpxzzjlOu3nz5kEIgVWrVplte+65Z6NXk3FdJ2NjYzjxxBPx4x//GDfddBP233//Rvt985vfxMEHH4yTTjoJz3rWs/Dyl78cr3nNa7Dnnntiu+22C+5zyy234DWveQ1e+cpX4itf+UrJhKnH+FFHHeVsP/roowEA9957LwDg0ksvxR/+8Aecf/75WLVqFVatWoU1a9YAAEZHR7Fq1SrkeV46/hNPPIGbbroJxxxzTPBet+Waa67B2NhY0NR5zjnnII5jvOc97zHHX7t2LQAZub5q1apaM/jmm2+OY489Fr/85S8rnwtXXXUVAPQ1tfY7p1p23nln7LvvvjjuuOPwjW98A4cffjjOOOOMUqyALzr61U9X8SWOYyxatAhPPvkkHn744dL3/caZvvZHHHEEGGNm+zbbbIOXvOQl5tpPhQxdCsg73vEOnH766fjNb36DP/zhD1ixYgXe8Y53NNo3FDiit/kgFRqM11xzDQ477DBcfvnlzvann366qfoTki233DIYAFIVEDMVxw/lPz322GMAZMCBbvezn/2s1M7XU7dfunQpXvOa1wSPucsuu0xIZ18uvPBCXHDBBbjgggvwwQ9+cEJ9zZs3DwCc3MGVK1fiiSeeQJqmJk1C+7J1ewDmu37ypS99qTIXsp+MjY3hhBNOwB133IEbb7wRhx9+eON9t956a9x8883429/+hpUrV2KHHXbAyMgILrvsMrzuda8rtb/llltwwgkn4NBDD8V1112HJElKbV784hcHx6oGHB2U9Ktf/QqrV68upRsAMh3kvPPOw3333Yc999zT+e7LX/4yer1eIx/fVVddhfnz5wdzp3/1q1/hj3/8YxBo3/a2twGQ17wqdcL+TaHnSK/Xw5e//GXsvffepd9gS5NzWiX77bcfvv/97+Pxxx9vNIluEhDmXyctTcZZXbyIEKJxQNp4ZOhA8o1vfCOWLFmCZcuW4Q9/+AO22247HHnkkY32/fWvf40HHngAL3nJS8y2r371q9hss83w0pe+tO/+hJBSMMMvf/lLLF++HNtvv73ZpttMlF36cuihh+JjH/sYHnzwQSxcuNBs9xN8p0oOP/xwXHLJJbj33nud83X11VeDEGLyxF7+8pfjG9/4Bm666SYcd9xxpt1Xv/pVp79ddtkFO++8Mx544AF8+MMfnnL9L774YlxwwQU499xzcf7550+4Pz2OfvKTn2DfffcFIGfkURTh7rvvxj/8wz8gTVPcfffdeMELXoBNN93U7Pvzn/+80TF22mmncemmZ/Y/+MEP8O1vf7vE3prK1ltvbQJFPv3pT+OZZ54pse9bb70VJ5xwAv7hH/4BN9xwQ+ke0fLa174Wt956K773ve85+Xc333wzKKXmHH7gAx8oTQxWrlyJN77xjTjttNOwaNEiJxpUy1VXXYVtt93WMNMq+cUvfoFf/vKX+P/+v/8vGAF66aWXOqwfkEF/73vf+3DBBRfg0EMPda6lL0899RS+853vYM899wzmV95000144okncNFFF1X20fSchkQIgTvvvBObb7550EJly3/8x38AAA444IDadmma4tprr8VWW23lnPum42z//ffHc57zHNx6663I89ywycceewwPPPBAKR9zMmXoQHLzzTfHiSeeiGXLlmHVqlU4++yzG89Ctt12Wxx33HG44IILsM022+Caa67Bbbfdho9+9KOYM2dO3/2PPfZYXHzxxTj//PNNlOlFF12EnXbaCVmWmXabbbYZdthhBzOr2mKLLbDVVltVVoNpKmeddRa++MUv4uijj8ZFF12E+fPn46tf/Sp++9vfAmieHjBeed/73oerr74axxxzDC666CLssMMO+O53v4vLLrsM7373u/HCF74QAPDWt74Vn/zkJ/HWt74VH/rQh7Dzzjvj5ptvxi233FLq84orrsDRRx+No446Cm9/+9ux3Xbb4e9//zt+85vf4N5778U3v/nNWp0efPBBPPjggwDkg3TdunWmMsnChQvNZOLjH/84/vVf/xWvetWrcMwxx5TMS/ZDYtmyZXjHO97Rl8WdcMIJ2HrrrXHxxRdj6623xm9/+1s8+eSTeMc73oElS5bgggsuwJe//GU89dRTJRPsICkNttx5550m3STPc/zP//yP+b2HHnqoibJ93eteh+9973s455xzsOWWWzq/d+7cuc4kSz/0/vu//9ts+8IXvgAAeP7zn49Vq1bhe9/7Hq666ip8+MMfdiZIP/7xj3HCCSdgwYIF+OAHP4j777/f0XfhwoXGHP2Od7wDV1xxBU4//XQ88cQTWLhwIW6//XZ87nOfw+mnn44ddtgBALDrrrs6FWgAmJSp5z//+aUCHYBMyv/1r3+ND37wg445LyTa1HnyyScHv69jd7vvvrtz/De96U147nOfi3322QdbbbUVHn74YXz84x/HX//618ro7KuuugojIyOVwDDIOT3++OPxkpe8BHvuuSe23HJLPPbYY1i2bBnuvPNOfO5znzOTgLvuugsf+tCHcOKJJ+J5z3seRkdH8b3vfQ9XXnklXvGKV+Af//EfTf9LlixBmqY4+OCDsWDBAvzpT3/CZz7zGdx///340pe+5JzfpuOMUopPfvKTOOmkk3D88cfj3e9+t4lcTpIES5curTznE5Yp83bOYLn11ltNwMzvfve70vdVgTvHHHOM+Na3viV23313kSSJ2HHHHcUnPvEJp12dg35sbEycffbZYrvtthPdble89KUvFTfccIN429veVgoYuf32250AHx1gURW4E0ryDfX7q1/9ShxxxBGi2+2KLbbYQpx88skm0blfhJg+L48//njpOJtsskmpfUiv//mf/xFvetObxJZbbiniOBa77LKL+Ld/+7dSFOqf//xn8drXvlZsuummYrPNNhOvfe1rxU9+8pNgxOYDDzwgTjrpJLH11luLOI7FggULxCte8Qrx+c9/vvb32L8p9LIDp3QEcdXLls985jMCQN/oRCGEuOeee8SBBx4oOp2OeP7zny9uueUW8cQTT4ijjz5azJkzRyxYsECcd955lQEXg0rd77ADt+p+66GHHur0ucMOO5TG2RVXXCF22203MWfOHLHpppuKQw45RNxwww0lferOv6+TEDJg5n/9r/8l5s+fL+I4Fi984QuD48eXfoE7p556qiCEiN///ve1/axbt07MmzevUfS6LVXPhUsuuUTsueeeYt68eYIxJp797GeLE088UfzsZz8L9vPoo48KSql461vfWnmsQc7pRz/6UbHvvvuKZz3rWYIxJrbccktx1FFHie985ztOnw8//LB49atfLbbbbjvR6XREt9sVL3rRi8SHPvShUnGCq666Suy3335iiy22EFEUiWc961niqKOOErfccktJ10HGmRBC3HDDDWLfffcV3W5XzJs3Txx33HGlaP3JFqIUbWWI5V3vehe+9rWv4cknnxzIb9FKWE466SQ88sgjjU2irbTSysyVoTO3DrtcdNFF2HbbbfG85z0Pa9euxXe+8x38+7//O84999wWICdBhBD44Q9/6BRxaKWVVjZeaUFyyCSOY/zbv/0b/vznPyPLMuy88874xCc+gTPPPHNDqzYrhBCCv/3tbxtajVZaaWWSpDW3ttJKK6200kqFTGk4449+9CP84z/+I7bddlsQQnDDDTf03efOO+/E3nvvbQqIf/7zny+1ue6667Bw4UJ0Oh0sXLgQ119//RRo30orrbTSyrDLlILkM888g5e85CX47Gc/26j9I488gle/+tU45JBDcN999+GDH/wg3vve9zqrBixfvhyLFi3C4sWL8cADD2Dx4sU46aSTcPfdd0/Vz2illVZaaWVIZdrMrYQQXH/99TjhhBMq27z//e/HTTfdhN/85jdm22mnnYYHHnjAVHpftGgR1qxZg+9973umzate9So861nPwte+9rUp07+VVlpppZXhkxkVuLN8+fJS9ZujjjoKV111lSnTtXz5crzvfe8rtbn00ksr+x0bG3NWFOec4+9//zu23HLLylqGrbTSSiutzFwRQuDpp5/GtttuOzxl6VauXFmqEzh//nxkWYYnnngC22yzTWWbuvqjl1xyCS688MIp0bmVVlpppZUNJ3/605/wnOc8Z8r6n1EgCZQL+opAod9QmzpGuHTpUixZssR8Xr16NZ773Ofi4YcfxtzNNkOVvZkAld9VtdPvbW0G7b/uuK1OrU5N+t8g9hFRv2LEtPXbpz3p1x+vuUqD6GK3JX2Yjv6eyisnCJXb1GvQsVbVbjaN8aeffho777wzNttsswZHHL/MKJBcsGBBiRH+7W9/QxRFptBuVZu6SvWdTidY4HezzTbDZtYyRU0v8ETbVn0O9dnq1Oo0Hp2mTCYbCCcZAIEaEKxa9inUvqIPUhXCMejv8EBT6Em+3k4oQKkESxqZ7e0YLz6b91PsMptR60keeOCBuO2225xtt956K/bZZx+zNFBVm4MOOmhCx25yAZvMdOx2xOvXv5T9Lm2rU6vTZOo0sAhefk1GH03669OeCF75Ag+88qzcF8/kS30mPC9eQrif1cvsY7/yXnh73SvvOfs5x9C65Zn6PYWedde4HeNTI1PKJNeuXeusDPDII4/g/vvvxxZbbIHnPve5WLp0Kf7yl7/g6quvBiAjWT/72c9iyZIlOPXUU7F8+XJcddVVTtTqmWeeiZe97GX46Ec/iuOPPx433ngjbr/9dvz4xz8et56hmZJ/cQeZBfn76X2Ft93/3OrU6jRVOg12oHGyxfGCaB+pNY+G2GEfZlhig357+3Pdd3W6VW0vMUjqfkeovHaEAkTIa6lZJZWPa+L3gXaMT6VMaQrID3/4Q7NGoC1ve9vbsGzZMrz97W/HH//4R/zwhz80391555143/veh1//+tfYdttt8f73vx+nnXaas/+3vvUtnHvuufjDH/6A5z//+fjQhz5UuehuSNasWYN58+bhrytXOubWOvEHQ2iAhE5kPxNF6EKPxyTR6tTqVKVTY5kC0+d42k8YFEtAVgOKDd6TOtD09Wl6Tmygo4WJVdjmVu2PpEy+Z5Fjfq0yRw7LGF+zZg3mL1iA1atXm6W/pkKGsiydBsmVK1eO6+T2u4j92oc+o2b/VqdWp/Ho1FjGG4wySW0nmynKPkX4uz7vKwFR69H0OE3EAkpBSPGZ0gIwbVBUYClYFARK0y2GY4xPF0jOqMCd6ZYqE0Jd+/EMFH+fugHYb3C0OrU6NdGpeWcNH+yT2K5/dOk0AGOIKdaA4sCg6/etm/hRruqzNKHmEvgEBwgF0WApOEAjEMEhKCvGDY1ALKActjE+XexuqEFyEPHt4ZPVl93foA+4VqdWpyqdGunTBPgmqc24gDHU93hMqU0ZYxUwDtpP1Weo6xIAStvMSrQ/0gJLob9DcX1toASGb4xPlww1SI7Htj5I2yb29/Fe+FanVqd+OtXKZIDfVATdVPU72eA4KDBW7V91vJCORvIi5QOAG6xTmFltsCScS5+k1kEIeTzGZUAPbfYoH6oxPkky1CDpS+jkN7Wlh2ZMVbOxQcwVrU6tTpOpU2OZIEBuUHC0308COJb2LfVd6CTy3FKheB8UyuT+TP4XhJcBUzNFHekqeBHlCjisklhA2Y7xyZOhBsmQTxKonz1VXaCJ2N7rZk+tTq1O49FpQlIHcFMBjlX9TnYwTh1ANgVHDxhFnsvrxCvAse43U9WOM/W5AE0DmBoUtalV8OCYM9t0sI8n7Rgfvww1SIakH9Xvt1+TdoPa/FudWp0G1an2ITJeENxA7FH2PQBA1gXl8DLQ2eDnAGsfcNTAaEBR/0aPQVYxSqJAUVC1nw2alBmwJCpwRwgOQpXJlStTq+AgQn/HTeQr8SJfZ+MYny5pQdKSuhNvz5j82VOT2ZV/nNIMsNWp1WkadKqVcQLktLFH//tBALLOvFrFHp3tFeDoAWMJMLX4QEkZhGmTApS6oElzFywBA3wGNBEwuar/NlC2Y3xiMtQgGbpgoYtVZd7w+6n6bEvdjKjumK1OrU6D6jRpsoEAsvb7uqhSW6+g+bUhQFrtG4FjgEnaPkpHvO2EMYdREspKYIkocgFSKCZpMUod0CMiBBkl0I7xQWWoQTIkoQvgbwvNZEIzoxAI+/+bzIpanVqdJk2nKiDqB1ABmWqArI4Ordivnw/S7nOiAFkBjgYUm/olAVlyTrfXzFEBpA2WhOcgcVIAJI2C7IoAQNaT5liWlFJEEGg/q8b4JEsLkhjshFe1rZsZVV3cqkHR6tTqNFGdJk3GAZ4DA2RAGptZm/bbNNBHuICqAdIxo4Y+++CozoEbxFPBKnXADmUA53IftQ2MAVFcgKVuH0mAlDorBkmVnxLWWPBWETE/NfB+YxvjNjOdSmlBsqHUmQr67ePPhPx+xvtwa3VqdarSaaqlb3GAkEwii62SOhZZdczSb1E+yJKptA4grW3F9xX+SRTgqYERAAQt2CSQSmDkuTTNxokyveYSNHkOEgunAo/zX3AQJEDWk6ZXlpTPldbF+w/v80wd49PFJoceJJuebP8B1NQM0eSBZbfzTSetTq1OE9FpQjLZLHIDS6351mORRjQoWiZWub0GIKvYZIBJOkzTMEoLNCmTUava1EqVHpEEPRInyh9pRbrCBswEyDMIQk1krDk22jHeRIYeJENUvsrpLALt/T7sfezv6voGygOx1anVaSI6DSQDguG4WOQ0iVC5hePvoH5fGzAdphkAyBI4esxUR7cSvQqI+l4wFajDcwmQCizBuWSRKtpVAziJEiAqjwkCdT708SKYggOzYYy3THIDSOjk+4OkyQUKfRfqp8msrNWp1WkydZoVQmgZzPxt+jOlBaMjpFkw0CCiQDMIkB44ikD0q9zusUnOQagLmBosiWpPAAhaFBbQ5lfAHQdmPBACksFEvfrSjvFqGXqQ7HfCJzpzCfUfGlCDMIJWp1anfjptVBIAvRKghYCxbvs4jjmh/rQEANIHx9pydTwvfJEWYBp2CTis0vSrza/yACWghH6vgJJ4eZa2bCxjvDW3ToP4Fx6ovzj+PnX96n1Ds7qQGcEfzK1OrU4T0WlGSh0ADQqUoffqvzG59mvvHx+YGED64gFk03J1gmsGrABTtSdUlsArsUqVFmJ+SpwA6A0MlBvbGJ+usT7UIGmf9KYzptAsxh9AoX1CFzukj33cVqdWp4noNCNlQwAlhQQlQiFQVM/RwCiAyfGz2n5IZ7sXEau2Ob/TjnbV3+uqPLQAS5L2yqwSahxYwUUhoHSW2moAlL4M6xgfapDUUjU7qZud95s92X2H+moys2p1anWaLJ2mTSwfYKVMN1B6eglCQOAexw5wASDBlLF606gviv1Bp234Umd2NZGwikWqdkQF8JjqO7YJFopV6v21+VX1TTsjsIESUMAINX64KlsXML22Y7yQFiRRnqX4F72f1JkTQn2F2vvbWp1anSai01RK3wjSpkAJhMEy8J1ef9Fngagyq9pAqdtRCnCo7QoozQEq9LXyEAGLsVX+rAJYg+3qarza0bC6jqsCTaK2G7CMEsMqCVCYXy09OdAfKCM4QGl+o/+7MPPG+HQxy6EGySo63898ULd9PMcU3vFbnVqdJqrTpMhEgliaAKU+BlAPltb3QbDUoKjbjRMoyw9+XhQXhwV6iumZc+3/Tt8E6kmd6VWnlfgA4IAlAJH1igAe/5iqzUBAqRd6Rng8zcQxPl0Tw6EGydCJD82YgOpB4Levm/GE+vXbtjq1Ok2mTo1kHGDYKB/RmA0HAEtzgPrAGgcsfYAM6QsLeCgGB0qeB8BRV8ih1raG59E3vfo5lPbnPJcLM1tM0imADhjzq+mTF2BbAkpCTSUeQihEnkmAtKryzLoxPgEZapAEwoNAS9XMp27GVNXenxn6MzF7ZtTq1Oo0UZ2mQxon7lMPuCYCmh671GAJwAG7kNjn2QAlFBD2Acqg2dXKU4TFMiWDbO7L1IAo8v7nhQAuWEaJYZX6uCSyol1VTmWZUaqSddZvFbrOK9oxbstQg6R7I5QlNIvR+4mKbaHP/nHs7/zBE/qu1anVaTw6TYr0YZnjqnDjg6YtVQAaAs0KwHTYZUDMg5ap38b7AyWiCMi860ILtmYS/PVv8M2ffUDTBsiwiZaDUAqRcxDmml2d4ue6ig/K4ycIlFyVrLPZpeWfHIox3keGGiRDYs+cfMofMgHA2lZlhhhkptXq1Oo0GToNLANGnDq6KkCalDSKOgAFChCtBcFCD4ddWr9DqPc2qxQEgCAgQvkyeVYLlIbFAS4o2kE0eZHa4QNOuPB5sY17zNL+xRIsc7OsFokAkcEAt3Mc63Olj9J+7wGl/r5KZuJ9N5ky1CBZdZJDg6OO6tsXtm52FOov1EerU6vTRHWqlIlWlKkR4QHXlNR4rQJR+1A2GEIzqz5gSThKrJJGEKrwOeGZ3DeKQAQD0p4DlCROINIAYDJvlY6GPksfIO1t/hkgKADSBmPznfd5PEA5E8d4yySnQQiqL0jV+34zmtBsqp8O9uAL7dvq1Oo0qE7jkn5sEhgIYH3QnEopHYpbXwiuWCIHCCtHxkKdM0INWArOQayfKmgkQZ9nEkTjpBIoDasDvEjX6uAfwqgxudoAGfJT6i0UEnSJzSojyEIBum97lRJ9SmABJcmKMUaoinIlMofSWtR5Jo7xcY/zAWWoQRIon2h/9hOa6aDPtqqLZ+9T1W+rU6vTZOs0qTKFTNT0Pw4p/W5m+0qpqbhTACYpfJd6mSyr5imo6tM3v9KoeB8nsvRc1qsESgcwuR3oU6wdSYDy2pVAXz9lrvyT9hmT5l5u/ptt3r4FUKr+CQUyUoxTQgHSC65DOevHuCdDD5JaQiffvzj+Nl/qLl7INODPzlqdWp2mUqdi5/H7H00bYGJgOQgYNmkbrNRjbTOgWQCmNqVKdlmApTGxWqwSQgKI+U69l+c6aQSUJAZE6gGZVtYCScqoyyY9gPQ/cwDIOSinIDkHTcoAXQlQCqRN3+pckpyac0gCq4ZU9TmdY7w1t06DNJm91LUdxEQQeoDVDZ5Wp1anieg0oQdIU7Y42ebUpmDY7zt/ySy1zYCmD5gOu6wAyzyDoChYJSAXOgakeRIoch7rgFLnMzqRsTIXU0uV39I3vRJG3UAfqBikXgrCNFOtDuRxOyMywlVHuQJOxCu8QJ7S7oG+p3qMTxejHGqQ7PfQ8y+8/1k/jPx+mpoVSKC9b15odWp1Go9OfaUfEE61WdU+ziDb0eDhqKNt/W1W2ohhkbZZlmtgLIMlARBilXo7IsiAHi0aMG2gpBwiluXk4ETGlqvsmHoHNbmTVf7K4swpsNbHQWAsWT5TJOo/odL3mvfg+yeBjWiMT5IMNUj2u7gh8R+OTUwIxPuv2/Tbt9Wp1WmiOk1IpmL5KLvfBturfhMf8MdSUvRvgEAH7ZhCBVwF55TBUijgMCZYSFZptqt+5OobgOBWLqMGSkAG1XhA6USkhgqj++ekDjg5h8gpCKNgiNAIKAG1sDOT5yXvFecop45/ctaN8QYy1CAJVF+40GzFnxH5fdjvQyy16bFbnVqdJqrTpLDJQdvV7T/Ad/7vCwHioA/LXO3gsDUNmrZJVvBqsCQUgmeQJlhVzk2zSkJBuIoU1QE99vE0s4QHlNSNSLXNrlZRoNrUkSrQzJGBchnYo2vQaiGAPLb6b2/Xv8cE8thLiqlAnpkwxqdLhh4k62ZGdRciZFpDxbYqE0RokPgDoNWp1Wk8OjWW8fgfJ8NfOSA4NgJOUXeG1WGtMnb++aK68gwgwZEqn6TgBSDqCFmu6p3qijVc+RoJlYin/JQCkEwx6znmSrNMFQDotR0zmIAeIwOaW32RLTIJlCifR2cbpQCloIwBuWSemkVqsBREml6D+wf6rzrWtI7xCcrQg6SWoAmipk2TwUC8tlUXvtWp1Wk6dKo+wIBMcSIBO33A0Qe/qu9sQKzT3KREEm+D+xaEEOe8GsA07FL6LuXCxpn8zpR0yyAoBXJiwJIAQCwBRxcZcK6hDubR2zRAav8lJAhSRp3fN4iPUuQchFPIx3xDoISVGqLMrYAES5JTBaTl9SerZMaM8QlIC5IoswG9TUvTAeGL3s+fBfn92YOj1anVaSp06itT5X/0+7ekKXPU26uA0QY7XsUmA5tzAFTXe4VALqSJkxAi3xOAgILqouWCAySTNVQ5l2xRCMtfKU2wRDEux/xKmQIYVryy1KhWAs8MoImMVDVBPLouq1V4AAC4ZYqlqr6rrvEqz1UGocCO5FwWIfDOBQGkTkzqJigzbFj7KbUJVq8YstGN8XHKtJTEuOyyy7DTTjuh2+1i7733xl133VXZ9u1vfzsIIaXX7rvvbtosW7Ys2GZ0dHQgvfxZi31BBdyLFNqPBLb5/YQ++wMr1E+rU6vTZOg0sExFWkcD9miA0PpObxdCGIDk6iWEfOVcgAv5yoVwznMumrzkfhkXyLlAytV7IT9nXCDlsq0gVAavsAQiSmTgDYshWOxsF1GstqttLJbl7KIEiGKQKJbAGcUgUQISxUAs/5ModgCVMAqiq/RQaoCvSjjn5qXBUuSSAee9DIJz8F4KZClE1oPIUvXqQfRGIcZG5f/eKNAbA3gmA3myFCTvgeQpSNaT27GRjvEBZcqZ5LXXXouzzjoLl112GQ4++GBcccUVOProo/Hggw/iuc99bqn9pz71KXzkIx8xn7Msw0te8hK8/vWvd9rNnTsXDz30kLOt2+0OpNsgs5xQ2yb795tRObPIAfRpdWp16qfTuGVQ/2O/Pixpwh5DZlUTwCJ0G1Gzj91//Vm12SQAECKBU7JI+R2BgBCSYdrsEoQCVJo0pc+SFyzSZ5VqskAZA4c7bkLvAZh8S6AHyguza5XJ1d5OGAXnijXqyjxJhLyXGaANMUrtl9Rsl+iKQDaLzNVvj2lt6cEZPcYHkCkHyU984hM4+eSTccoppwAALr30Utxyyy24/PLLcckll5Taz5s3D/PmzTOfb7jhBjz11FN4xzve4bQjhGDBggUT0q3KTFbXftCHIQL72J8naoNvdWp1Cuk0aTKoGXaAh2YdQIZMq0JUg6MPnv7x6lJGcrUPVReEoABPQmzAlCCqTbKMWGCpfZYWMOp8Q+TEYtQ90M6INGeqqNK+QMmYMvllphSd+b4PYNp1XrkCSIoIOTKz3ZwaK8rVFjuQRwfvGP8kS2qBcjruu6mWKQXJXq+He+65Bx/4wAec7UceeSR+8pOfNOrjqquuwhFHHIEddtjB2b527VrssMMOyPMce+65Jy6++GLstddewT7GxsYwNjZmPq9Zs2bAX1K2h09E/IFjP2RbnVqdJkOnKQPLccp4ALKOPVaBYyV4NjjL0iepfJQhRukBpiAFWDKWmAAf5Cq61WeVWj8r+hUAQKlzzUpAqT6TAQHSFrvIAEemAnrU4eFdHw2WyuzLx6gbyKP0BVHM0suf1DId9910yJSC5BNPPIE8zzF//nxn+/z587Fy5cq++69YsQLf+9738NWvftXZvuuuu2LZsmV40YtehDVr1uBTn/oUDj74YDzwwAPYeeedS/1ccskluPDCC0vbm57oQWZDvu28imWEdBjkwrc6tTrV6eR/N53mKV+aAGTlvn0AshY4Ve9FH/11zSEKRkkK4HQBUn7mpADL3AZLQo0J1mGVQAGcQFHhxjoXDkvivFj+isqVPphigbKUXWE21cE7oQhX89tUtCvNpemVIzPfGaC0lyLrFTEepUAeDZg6JcSbRE3XfTcdMi3RrXZuEiBniv62kCxbtgybb745TjjhBGf7AQccgAMOOMB8Pvjgg/HSl74Un/nMZ/DpT3+61M/SpUuxZMkS83nNmjXYfvvtS+36zYbqtoUeTlWMwzcd1F30VqdWp8nQaUOBZtMHWhWLlN9VA6TNHG1w9IEx1G/IXamBESiYFyG2qbUATKHAMicAU2ApKAHToOGzSqAwv0ICJhLISjfW+TLXxi5AYFpI/6SOVq1kkzXFBzgA9LJqoARksJA2CTMG0RuVOnRkpKthkTySn1kiARMb/r6bbJlSkNxqq63AGCuxxr/97W8ldumLEAJf/OIXsXjxYiRJebkWWyil2HffffHwww8Hv+90Ouh0OqXt/oMiZOtucrHrtvcTf1CFBkSrU6vTVOo0VYAZ0n9QM2s/gHS2eeBo9xdikyKkodpEQJRfUu5c+CILwMwBMCrPH6cAVwDLCMAoRRRilXmvAExSlK4j6DoqEEAySb1Ns0rGHLOrzSa1vzIEnMGVQ6wgHi0UACjzasDqL1Ugj80iCTWACasajy1TNcanS6YUJJMkwd57743bbrsNJ554otl+22234fjjj6/d984778R///d/4+STT+57HCEE7r//frzoRS+asM5VD5em+zVpV2Vfr7rwrU6tTlOpU9VDbYOaaANgqrfbDNJsUwBpAy437XU/CjQtYK3RAABMEQJpaiWgxAVMCYoEAsKAJicqVYUQMBKBsYJVEsCYW0UuWVwtUGqxWKUGr1z5FjUohgAyuE4l5yA5hVD1XXkvc743RQdM3qQV8QoVyEMowCPJjHmkVkmJiglAA5mMMT4dMuXm1iVLlmDx4sXYZ599cOCBB+LKK6/Eo48+itNOOw2ANIX+5S9/wdVXX+3sd9VVV2H//ffHHnvsUerzwgsvxAEHHICdd94Za9aswac//Wncf//9+NznPjchXetOvD0D92fjTWbr/nEIwhe/1anVaabpNB6w7MciqyRkZtX7+qCmt9kAqcERKABSQDjAqLvJud1/WTmdGsIoARcAgSiYpAWYBYOUYCnMfygTrPRVypQRlUoBwPbjEfXZPtcCAHgut2mw47nxT2qzq2GD/rqTFkByVb3HB80cWRgoKyJddSAP0exRm13VbxNRAfQbaoxPtkw5SC5atAhPPvkkLrroIqxYsQJ77LEHbr75ZhOtumLFCjz66KPOPqtXr8Z1112HT33qU8E+V61ahXe9611YuXIl5s2bh7322gs/+tGPsN9++w2kW+iCVZmj/LalwVzz2Za6GVHdMVudWp02lE6hh1mdNHmAjfchZ5tZqwDSBkdYbQWK4gNAkfpR7b6T3+tYFkaIBZwSLCkpzK45BJgg0twqtNlVPmRLrFKlUTjnQYGkOcc6GAcwYCk0aPLcmF11pCrNaXB5Lb2As72Qs21Kzb1oVwAgTC/jxdzX2Kj0ofbGivUndfBOzgDGi/q3ui9M3RifDiGiSVXgWSZr1qzBvHnzsHLlSsydO3egmUnVjCc0M6qaNdXt1297q1Or00zSKSRVx2lSds73Rwqrje+LtEEy52WArANHzi2QNNvDejP1Qw1AEiJTBBVoRpSAEPmZUQlAjMrtEijl/5gSuZ1AVbGRFWzAM1nNJkvl9rwHpD1T+UaMrZdVceyKOFkPyFLko2PIexl4mkHkHLn6Lz/nBhh9n6Su4kMZlXmYcSSX14oj0CQCjSNE3QQkTkCSrnx1uqDdTUA6XZDuJqAjm0BEHYioCxGr/8kIhBXEA0zdGF+zZg0WLFiA1atXY+7cuRWtJy5t7VYMNjOpals3M6q68HWDotWp1Wlj0MkHykGAuGlb29QaAshyUfQwQNrgKD+r/nkBnsUx5XtKCFK1jSmQpJSAcfkdIwQpBWJKwWlhduVKB0Ylq4ypNMFqVhlr86vHKG3WVZqE8Lx4QQIfjYtHOEcGmlMZwKPpb01KiNynWJKL5C6b5IyqQB5pSiWUSj8lIIN7aNnsikz5K1kRbDmVY3w6pAXJhlJnKui3j/D++/2M18be6tTqtKF1GkQoaeaXrJKqEnPBIJ0KgEw5Ry5cYAwBptW7+xsUQMrfI0EyZgQpEYiZ/kyLKFf1Xwj5ngsgpgBAENPIPIGrzN2F6TWX5lfOHf+kb3bV/zUYUkYLNmkBpJM/yTlIzsGS2PFNZpDqUch8SRPxSikwpoGTFWZXFgF5asyvxPK5zpQxPh4ZepBserL92UuT/UIz7X7t9PtWp1anjUmnyXpgaVbTVKpYJOACZJoXYMhVAXP/s91fXgHIjCs2SbTZlSBVrDLmFDElSHMJmBosYyqBnAnimo0FQUQjsFgF9Ng1ZGEBJc+BpFyXWhiQdIN4qIpcDeVKBpfTUoE/eS8F9VJCNFAylharg/RGjX9S2GkhmcoPpTJ3UkRdZyxO1Rifahl6kAxR+apZnQi09/uw97G/q+sbKD/YWp1anWaDTr7YbFK368cwKVHAWdMmxCKBwv/oA2LKhQWWdhCPcHTxwdKYXIlmlcQAZsoFYirBMeVARwjElEoWqQN4BCy/qfxdscqp9M8bAQDBgaQjv+O5ZJEaHDWzVIXMuaqoY1hlXkSzVrFIX+Q3qbMtV6ZbJ95VgaNQgEmiqCgyQKPiv1p70vlNmLwxPh0y9CBpS+jk+w+dJhco9F2on34PlFanVqeNXaeQVIEiIcQUANDVbezgHUpIJcPT4rNI7YPsB5AaHDXD1H3Y/VJSwAdTYa3a5EoJJDgSIFZgKVmkYpWUgrOCVXIQ9/xUACXUuUSiGCXg+iatl0zxUCkhSlHCGKDYIu9lBiB9lqkZpWSVEXygBABCqUwNsVgkKJVLfuloV6rBkgJZD4ggI18Dv8s5fs22Qcf4ZMvQg2S/Ez7RmUuo/9ADqmq21OrU6rSx6xQSDZQhNllnciUV2+vEiWoVogSWNjjm3GOWFaBMldlVAySjBZM0jNL8p+gygAsCwSgi6p4xg8WUIoq65fMpOIjgoJ0RWaO1UzBI5Lkxu9I4N2yS0hqTK3dTQvzKOhwZRCklhFo+SqmrGCuKDBizqyrJJ2gkI3cpNSDZVAYZ49MhQw2S/oME6H+zN5nF2H3ZM5+q/7A+28dsdWp1mk06+RIESoTZpL9fVbqG/Xv0gsqANqMKs9AyF3AAMs25B5ayDz+nUkthdlVpH1xFuipGyS2w7Cpgjrlkwt2IQQBOuTzo94wYoIRm0ZwDQr5I0pUFBaK4MLtmqamxyuKoYIXK5EoZRe6XpbNMruZ9zkH1PkmxnBZQ+CZzRmUOpY50VeZWwZhaRFqCJMmYLFlHGQjN+gLleMf4dMhQg6R90pvOwEOzGP+BFNondLFD+tjHbXVqdZptOvlSBZTUypk07SzliNqhH2AC7vcucywDZBHgo8CRC8fsmnMhTa1K9HtGpUmVUTi+Sa6q9cRUoCOoMvsCnUiaX41e9u+iBJFKoSCAXIJLg6QCSmKbWqPYCeLRZlNdXECLX7aubkktHqjryq0VQmJm+yNTiLQH9EYLNpmnRbQrk75JW6ZqPE2FDDVIaqmandTNhKseLKG+Q331mwW1OrU6zWad7HY+UAIAIQooPTZJifUeBLnag1g7hx6mucUiATfCNQSQGhz1K6uILIoskOxRDkYJEkbBmWt27URUskjL3DtHhcIELbrKRwkugVGCpJBAGQvJHuMU4BwiTt0gnjSDcBilLIrepPA5UBRK98vV5VZR9Xx0DEwxSWHVdhVRAqrTQDImwTHryQCeAFCGZLxjfKqkBUmUZyn+Q6Sf1JmUQn2F2vvbWp1anWa7TnoboFbbQBEgw4ULlJo1ajapGSQhsh0MiDZhlsrcqsHQAshezkvgaLPJ3ANLm0nqKjt5JNDLC7DUx8ooBRdAx3rqdgUFovCC1oRSsCgxLNJ+GbNrnoMo06vIpBmUxpH0TSpG6RcJ0KIB0meXJiWkoq4rYRQ5pSB0FJRS8B4FZQwkSiB6o7LIAGXSJ5lLgATPnEjXyRpP0yFDDZJVdL6fOapu+3iOKbzjtzq1Og2bTvq9Bkg/AlYzSL2OIxfCMbkKAbn48YAKawDzGeRYxj02KYHEB0ktEiQpGCUYyzg6EUWPciQRRcKkP7LDhPGT2kwWAIRl2rSsuUho5AKl8k+SKJM+wDgxhQZIJJklMpnvyJkM4OGQRQWESg8RvGCV/n8tQgUAAQC1gngIY8ZTSRgFUbVcRZoq8yuVoJ32pNk1SyFoT1bioWWzaxOpG0/TIUMNkqETH5qBA9UPFb993Ywn1K/fttWp1WlYddLiACXKZlcd0CMgE/JzyEXcCQSIkAshy5U7CNLAo1QDVG7+IwiQvYwj5y5YAmGglCDJDaPsZRRJRGU/lGMkYci5TA+xI2xd8dZ2JHIL1f5JIYx/kvAEtCNktCvPIbIUJI5NUA+NcxDlV9QmV6QZQiJy7phdBS/K2nFkZoFnwAvgGZVF0GPGVISrWgkkTorcSRqBZGpRZsUm9RjQMtHxNNUy1CAJhG9gLVUz6boZeFV74m3zHw72zKjVqdVp2HXSbIoAEESipgZKARnUQwSkubVKKag6qkQEsv7K4vshNUD2LFYJwPgn9Wdtco0UQGrA7GUEvYgZsEwiipGYOakmgJ9mUjaNEkKQsASCZdI/yTMILtkliWKIKJbsLUqAPAeJEiBLwZIIPM1M3iSh9WZXf5UQve4kTSLktm9S1XHllKr8yxSUSjMrjROIMR3QE0s2SSOIvGCTTXyTTcbTdMlQg6R9suseFP77EN2vm237x7G/8x9Goe9anVqdhlUnzSoZLYCSqR7Muo2CAFQAnEAQmTYhhDTRUioAririBI5mTK2eD7KX5Q5AanYJlCNetdj+yU4kTa+yDxcsRxLm6eD2QwhVvlZ5rgg4KKGI4i6k2bWrgnQykKSjIl2lKVaolBARxSA0BY0j0F5mIlO1j9I3u/KcQ1i26jzPQRipjHR19KUUMZNmVqGLDEQxRG9UgibtgWhzq+WbnIzxNB0y1CAZEnvW61P+kAkA1rYqs9YgM/dWp1anVie3fQgoiZCl3iS9LACSEZm0r02uuq4qIL9LIcvJVdXBK7PJkH8ybHq1QbKXSX+k9k/KfWixf8KQR3Xl+GwfJUEvFzLiVPsno0SCo/FPphajjEGiBDRJQdIMNInkf0bB+1Bqbjt1cwHBBAjjjl8SkGDLGTVmV8Koa3aNYgjGwKNYrj+p67lmsVOubqrG02TKUINk1UkOza7rqL59YetmR6H+Qn20OrU6tTq5+5hgFsthmXPpn7TNroQQMCpMxoQ0t2pgLBgls5bA0uKzQxsQewGgDO0TAkr9vxNRjCQWY00EuHBZpStyqaoehFqvUvonpck1h4gyCZJxBqKLCmQpRJyaJH8WFyZXwliQEWoWyXMRWEqLqgpIHLCKCxBK3QCe0R4oo2CUyUIHvYJRkigBoRFEHpv1MzVITnQ8TYcMNUgSVF+Qqvf9ZjShmXA/HewHR2jfVqdWp2HXSQsjKIfAGmaozK2i8EXKlThys/4jpXIlj0z1TIn/BIATrJN5wOj7J+28S6rquepqPNrcqv/r10hSfdb0ZICqBZ0pgWTFHOgRGP8kWAbwBMgzgCUyUCfpQqQ96QuMEiBKQVhP1VxVPkTq1nYNicsmcwhGpHmWFdv9AB5KKfI4A417psiAiGJZ4zVKQKIIJE9KbFJf44mMp6mWoQZJoHyi/dl0aKaDPtuqLp69T1W/rU6tTq1O9ftWAaXgkiGCStBiqmA6U4CjgZMSOPVWqbVElS0hE6t5qQhVoV5AUW82pwSEEuQiDJIF8PISE9VCiSxmzmgEAqkzAcCIAFNmV8JzIMokq2TS1EpiGbRD4hgik59ZkoGnlsmV0ZLpVbNInotSgYGcAyQXQMKAXl5sV5GzuQW+jtk1jtX/RFYJYj2IjIGwRBYYSAqQnOh4mkoZepDUEjr5/sXxt/lSd/FCt6E/s251anVqdarXSYsGSiIAUFgAKVf+YESySkKg2KQAFxK49DqQpt5q4Ff5pejsV5pzA456kWZhR6jmkvFRSgrADJhqfbHBmilQZyTHJglDqk3FXPpWmYp2BdesMgNVYCTZZCLLxdFRB8AIK8y7oWhXGcwT0o8j7wGCFTrqoueAzMPMRlU5PEbBVBAPiRKIVLJLEkWqZF0PgsWA4LK+a4X0G0+tuXUapMnspa7tICaC0MOi7mHU6tTq1OpUrZOABEqitggCE8DD1XshAB5gk3odyGIFj6Jiji8lsBTCAUghXLDUQikBzwFCiVwCLHKLFZj+SoAZGaar+4lzWaggVWbXVLHgKFK5h4pVCp4ZNimjW6kESzbqmlwZNQBpm15tM6t+L3IBwgiQC1AmANhsUuZJckaRjfZAGAPvZdLsqqJchQokEnEidWMJRNaTbDIdBZI5lWOj33iaLkY51CDZ72b2b1r/s57p+v00NVORQHvfvNDq1OrU6hTWCfADeiCZpACEkKtzcMiUkBhULY9FlH+yMLlqRhkqXK5FAxq3AJLn3HwGXDbJFZskVIKyAdPI9k0y51hFjqXSixLEWS4DdlSxBEYtRsmiIg9RRZBSDUYKmNAbNSbXfLQASLN2pOebLAJ4hPodOnRHm5NzCG6xSZoZc2vGxlyza5yA6zQQnc+ZdEpskig2Oeh4mi4ZapDsd2OGxL/pQ7OZ0MX2+2yyb6tTq1OrU3+dNJ4JIlvKbAVhWKUgACeSTcaUgCtWZptcqRVsw6i7oqXN9mxAND5J8778SwmVbFCzScqFYZX9pFjQmSCmHBEl6OXKL8mV79Nnk3nPlKvTATza5GqnguT2cRhFHljBU0e96pxJ5IBgFCyhyFUPRAX1aP8kj1PkaQSaZuCjo8bsKqIYojMiF2e22WTeg4i6ExpPUy1DDZJA9YMgNFvxZ7N+H/b7EEtteuxWp1anVqfBdCoF8wDQlXm02dX2Tcq1HQkyz+Sqq+aExI5kFR5A8kx95699yQkEBQiVballol1vtSvYJDU6UJIbYI8ZN2bXjAukORBRxSajBMhTySZZAtoZQd6T/kASxyWTq04F0UE8YTYpAdIUQeeQVXbAgZ4ERwAqpUSaXalldqWKXdJkVJpbsxRibH3BJpkV6coSwyZD19mWuonbVMnQg2TdrLbuQoRMRqjYVmU+Cj10/AHQ6tTq1OrUTCdK1NJVquCAUDmSQpldcwHElIJTub5jSgQiRhALipQLJIya5a78ly/aB6kBkgvL7GozT5UWQigBYxSc5xJcI9lmvdevc1xCENNc6pjlZo3KVAUpZVwgJQQJjQAmy9IRBZYkUn7JKDF+SsJ6rrm1okwdAAOQfjoI5QQiF2AJQ97jIFQySsoyCZCW2ZUmkVxSK4ohlD4iTkB6XcUmWSWbbDKepkuGHiS1+BelX5smNzLx2lZd+FanVqdWp8nRyQClaS3fcwHEFJJVMskkbTYZU4KU9AdHAMb3KBkhDECGol2J8t9RnaLCXFMuUAClfzzJJgkY1YySI2Y5KGFgRCBSptc4stgki0HySKZc9EZNFR4SxWBxZMyiJnBHMz5GkEMG7PDSiiDFWZeLMstIV8IIqGKUlBEQmiGjPWN2zVQlHhrLXEkRxxBJV0a69mGT4x1PUyEtSKI8y9XbtPjfNRW9nz8L8vuzHzatTq1OrU4T08kHSgmQMngmogQCFHEu0Ink0lopF2CcIGbEVMiRy17xErPLK47pR7sCVoEBAEIQEC6BkgqqKgIVv2w9qgqlS71iyrGO5uo9RUwFMi4DeCKuCwz0QFgEwRKQqOcG8FBlYo0jY2o1wTvB38NNAI8DmsovSZgAg2STAJAzYvyTGhwJkxV/stEe4lj5JZNRl03qKjwWmxzveJoqGWqQ9GfB9s3YdBYdmvH4+/qfqx4K9netTq1OrU7j18kGSqH+ctVaALKeqhDShEmJrEPKBWIql7iSYFnvo7R9k346iAZKHfRTRLkS+X0kADDAgt31TvAQMYXSE0aN2bWTccUoCSIuA3gyLhBHMt1D5ClA5VqOmk0SvSKHMrnafkkA1UBp+SZtMYE8jlgl6xhVqSAFm2TxqATsnmKViWKTeQLBM1k5yEKjQcbTVMtQg+QgM9RQ2yb795sN2zOi8cziW51anVqdwqKBUvMgAUAI+dDjDOgKalYB4UKu9RhzuaSVBildpFx/1nmPQV0tgNRmWKMLBwQVBiyLfawFjUupIARJlCOJqGSQmWaTFJ1cssmUA5Fmk8o3qcGSxilgCp5bJtckArES/3MgAHpKv9xixopRUgWqec/l1YTlqs+e8XtSRuUx0ww0S2Wkqza5KjZJshiIujLPs2KFEEcnTC9QDjVIVs1w69oPepMjsI/92X94+MdodWp1anUan06ABMpEgY+dty99k9LsGlP9kqySEcngehFTptewj5JSAq55qvZTctdPqSWHXBBag6Xz+zICQoogmPUOSGaF2ZVSxJRgLMsxxiRwshzIqFBsUuZNCqr/MxO4Y5tcieWXNLVcIf2KVb5Jm1FycCBHYGUQAkJz2U+cgacZ8lQG9NAkctlk0pULRfPMpK6QLIawStXZUjeeplqGGiQHkTpT00T6svsbdHbU6tTq1OrUXyiRPkktXMhXLoQxu8pCA5JJdiKBXl6YXSVgSl8lVUxQV9SxhfPqQB5ABe9QAiIIBOegkXDL2SkZ9cyt+n83YogZwWjG0Ym4YpPaL6nYpIlwHZUmVydnUr2no6UgHlrpmxTOKiEAVPUdolYGKUQH8kj/ZBFJq/2SNI5Au5pNjqoAnq70peYxoE2vtAxLVeNpOmSoQbLpiR5kJlvlL6nqY7wXvtWp1anVqblOOo9SCJhXLogxu6YKHNOcI6YECZPguJ5S1/zJKHLKjdmVqBQP5/fafkpuFyWAylWUYAm1CJVtvpX95oZNaqAeyzhGMxm402HcYZMRJ6ZkHpiqvmNMrok0uSq/JCgFSyJVfcddOqveNym8RZlVubqkaEeZXH5MB/CwWJaokwAZg6sCA0SZW8XYeoikq4qyJxDMZZNNxtN0yFCDpC+hkx+6UKFtodlu1Ux6EFNTq1OrU6vT5OjECJAwbXoVSKBAk1F0mQS1NCoAs4pN1vkltWiAFB7dFDyHoAwsYqrKDUWmq9dQApJKxplnHD3Gsb6Xy+CdKDNsciznHpuUka4ZF8goQcyKUnWOyZWp91aepG16bSK2CZaCyuhWBZQ5k99l63WZulSBZYRsdAw0iRSbLMytIuuB6rqzPIMQ3Fzn8Y6nyZahBsmQTxKon/lWXaCJ+HLqZuOtTq1OrU6TpxMjMpgnYQQCQE6l6bUTUaSco6tAMs05EkYxJ2Fq0eTCN6nNrYQSEIq+oOkDJSCDOQtgouCUg2cEnBBkNAehxJhdNVAnUY6RpIpNCiSKUUYsAaFjklUyq5hAlACUgiaxBCsVwKPTQahK47CF524qiO1n5WpJZg2UOpCH0FyWrmMELCl8kryXWWxyVLHJUfBkPQiLIfKONBXnPYAlqBI9nqZLhhokQ1J1Izfdr0m7Qf01rU6tTq1Ok6eTLCpAoJdIFEIgZ0T5J4E0F8gihpS7bNK8Mmly1WBZeUyem5e/nVAGGiXIVeYEyRTYUgKSEVDGwVjBJpOIYiTJsb6Xo6t0S3OBlHNwwYxPNeJAwqgsHq4CeIg2uZparipnUvkifRap/ZNOEQG9PJi1TUe+ktwyFzOCPM2R9xgIy5H3ctA4Qz7aQ6aAmXUT0KwHMTYKdFMgSwGeGYAkeQdgiWMlaH2SM0TqTrw92/Vnvk1mxv5xCMIXv9Wp1anVaep1YpQgFpC+SUaQABCCgXMgjShGPd9kL2LoRDl6KpCGUCIBJuOgxArmqTh6iE3yrAcaJRCcIM+FWYLKNrsSSoyZV4KlZJPdjGI04uhkHJ0sR0SZXMxZEKQcSFgR4WqbXGUt19gqJmBHvBIFmHnBKtOS2iWTK1CwSKpNriyVgBnncgWSXgaWZjJ/crSHqFukgjjpILwjKwd5bHKQ8TTZ0swQPUG57LLLsNNOO6Hb7WLvvffGXXfdVdn2hz/8oXSIe6/f/va3TrvrrrsOCxcuRKfTwcKFC3H99dcPrFdodktQbQOvukChz1UX0Z93+rOjVqdWp1anqddJ+ycTRpCo1I/IRJFSdJn0/3UiipGEldhkzKhlcrVfnk6KSXLvZbZnPeRZDp5x5LlAnnFkvRw8k+/zjGN9Khnkul6OXibfj2YcY9Yr57JwQaYDeGgk2aTyTxIVvKNfuvKO7Z+sjHC11pbUy4PpV5ZKtqhZZt7L1X+OvJcjG82QrlfpIKM98DQ1ZlcTvDM2CqHZZCar7xBrSZW68TQdMuUgee211+Kss87COeecg/vuuw+HHHIIjj76aDz66KO1+z300ENYsWKFee28887mu+XLl2PRokVYvHgxHnjgASxevBgnnXQS7r777gnrG7rR/M+hG9a/kP4DwO8r9KBodWp1anWaPp0coFSvWJld58SsAMyIYU7CMJJEKohGvmhEwSIKFhFTCACA8975PRY45lkPedYDV688k0DDMwlEec6RpVyCUMbRU6/1vRxjGUfKOdKcG7NrL+dIuYygzbhADqqCd1TeZJy4qSDMAkrm5kqGCgvYpfZyAefFuQRHaWbl6n8Orj/3cmSjPeQ96Z/UL2SpCd4RvVEg7UmgVBV4fMvAIONpMmXKQfITn/gETj75ZJxyyinYbbfdcOmll2L77bfH5ZdfXrvf1ltvjQULFpgXY8x8d+mll+KVr3wlli5dil133RVLly7F4YcfjksvvXRcOg4yM6mardbd4FUXl9R81+rU6tTqNPU6MQJ0IyoBUgX0jCgGOSem6DAJlDaL1MxSrxNJ1JqPjFEDkFW+ShsohcUqJVBKcMwzBY45B8/le80mJVBmEixzySJHVbSr9kvmXIKX0FGuLFYm12JVEESxiTwllm+yKg0EcM2sOrdUvspAKXjBJjVYcmVu1WwyHx0z5lYxtl6uMZn3gKxn6rkOMp6mSqYUJHu9Hu655x4ceeSRzvYjjzwSP/nJT2r33WuvvbDNNtvg8MMPxx133OF8t3z58lKfRx11VGWfY2NjWLNmjfMaVIj1GnQfLVU39Hht7K1OrU6tThPTCXAjXhMmza6SSUqw7FSxSaaZJAVVbJLSYgFnQouJvR3AI1NDuMMqJVCmCiilqZVnHLlldu1lXJlc5f9RlTtpM0oNXBkXMvjFMrnq4B2oSFemmCRL4lLlnaqUEMkeXTbZ4wI9nReqTK7m5bHJbLRnqvDkvUwyyVQxyt6oYpK5/C/KHt6JjqfxyJSC5BNPPIE8zzF//nxn+/z587Fy5crgPttssw2uvPJKXHfddfj2t7+NXXbZBYcffjh+9KMfmTYrV64cqM9LLrkE8+bNM6/tt9/efNf05vNnsk1NSE37tm/sVqdWp1an6dMJkKXrtH9Sm127zDW7jiTM8U+OJAwsogYcbb+kZpQ2UAJwigv4QMmznlx9I+PSJ6nMrjab1CZXbX5NuVB+yRwp53KNSV4wPMfkGimTK2WAlyNJAmkgvo9SVw8qgNJlkz3lo+Qpd8yuPpvM1/cKH+XoqGGTyFKgN6YiXRWjFG5Vn9C1m2qZluhWP4dICFGZV7TLLrtgl112MZ8PPPBA/OlPf8LHPvYxvOxlLxtXn0uXLsWSJUvM5zVr1hig9G9AYf0PbQvdsP5Nae9f1U+oXai/VqdWp1anqdeJEqDDCLhKDckFwZyEIeUcYxnFWESRcqoCeSIDUgmjyBhFzigYE3I1EV2Rp4KNiTy84JY2uxLaBReSQTLGkTMKylQQTy/HSMKwvpdhXY9hJGYYizjSXILlSMRUEI8EM6aiXCWTjApTqwJMs3RWEimwVOBeUfA8t8rouYuDyDOZC4DmEiBlmTpuUkJonFv1XMfAuokqfN4DUpkSIropSN6TOZO6yICVDhK6xlMtUwqSW221FRhjJYb3t7/9rcQE6+SAAw7ANddcYz4vWLBgoD47nQ46nU7f44ROvn8zNblAoe9C/fh9tjq1OrU6bTidKJH+yVxw5IIg58CcmKl8RFlgYCRhGMs4ehnDOpW/OBpRsJwiS3PH5EopAadMLlVFmZMGEkwJ4TmIMrtyKgsL5BEHzTlYTozJdX0vN0UOerkEyNGcY44K4EmYrOeacYEkSkz1HaJMrjoVJMQmqRfpKv+7uhbm1vJUp6eJX0+dC0ZAY6pSQSjyXm5SQZx0kG4RwENHNimKnosR8AbXbiplSs2tSZJg7733xm233eZsv+2223DQQQc17ue+++7DNttsYz4feOCBpT5vvfXWgfrU0o+y29+P58KE+g89DPyZbqtTq1Or0/TrRADH7KrzJLVfshvJKjyJ8VEydGMGxqh5SaCBYpOuubWkE88h8lyZWXvGP5lnuQni0b5JnsuI1p5K++hluTK5cmQKKG2/pAYz7ZeUq4MwWVxA5U6yOAKLI1AHIF02WcUqATvKVThmWL1kmDSxcsc3qVNAstExNx2kNwqR9sDH1oPkPRnlqkyuVdduOmTKza1LlizB4sWLsc8+++DAAw/ElVdeiUcffRSnnXYaAGkK/ctf/oKrr74agIxc3XHHHbH77ruj1+vhmmuuwXXXXYfrrrvO9HnmmWfiZS97GT760Y/i+OOPx4033ojbb78dP/7xjwfSLXTT+jek/7nJLMbuy575VP2H9dk+ZqtTq1Or0/TqpJfWyhlBxiVgzoklexyLKDoZxUjMlMmziHgdVQE8Wco9/ySV1XVUUr/rk8yDDFOaXBkEZ9I3qdikBkzNJnXu5EjCMCfWKSEcOS+bXIVXfadIBSmKCrgpIUQF8FSbXbW5lZsLJs9mT/kuqWKTsuqOZJN5miMbTcG6srhAnqpCAyqAB1lRgQd5VjK5zjpzKwAsWrQITz75JC666CKsWLECe+yxB26++WbssMMOAIAVK1Y4OZO9Xg9nn302/vKXv2BkZAS77747vvvd7+LVr361aXPQQQfh61//Os4991ycd955eP7zn49rr70W+++//0C62Se9amZZdfP6M13/Bq06DvHaV/Xd6tTq1Oq0YXSiRJZ2yzhXFWwkUMrcRFkSbk7CsF75Jtf35ELIGZM5k3kuza88E8bkWiWlknWUSrNr1kNOmTRZZkT6JlUgTy8v8ib1azTjGIkFRpUJNmHEsDrQSEa66uo7ikVCsUoaRw5A6nUlmwi3/1tAqcv70ZQjZxwssdik8k2aWq5pBpH2jLlVZCmoMj0LK8p1upijL0SEFjSb5bJmzRrMmzcPK1euxLy5cwFUz0qazGDrxL6Jm/ZVNbtudWp1anWaHp24AMZygfUZxzMpxzM9jtVjGVaPplgzlmH1aIYnn+nh72vHsGpdir+v7WHt+hRj61P01mfojWVIxzJZEKCXIe+tL4oHpGmwpiuNEsnoohgsSsCSEURJgrjDEHciJJ0IyUiEzkiMTUdibLFpgi03TbDlph08a06CLUZizO1G2KIbY26XYU5MsWlMsUlMQcfWgo6uBh19GuKZVeBPrwJf8yT406vQe+opjK1ai7FVT2PsqbXoPb0OY2vGMLa6h94zPaTPpOg9kyIdzdDjAuuVSTcVrl+SEQIKVaSBSpN1N6KIuhHikQjxJjE6czvozO2gO6+DeLM56Gy+Kbqbb4bOszZFNHce6Gabg87dEnSzzUE22Ry8uxl4ZzOIzqYQXjmjNWvWYMGCBVi9ejXmquf4VMi0lKWb6aJvJP3yv+sndTMce4Ybmg1X9dHq1OrU6rThdPKr8XQigjmxTAXpKD+lnTep00F0zqR+b5tcg3o6+ZPaP2kVGeACeV5U4eE5dyrwaP9kyu2cSe6YW3MB45M0qSCsYJMsjkBpOXjH9kXqgCQtdmSr7ZfkzmfJJnlqrSSS6nSQ3LBIbXI1OZM6HcQyuSKQCjJdzHKoQdI3xdjbQ+/9fSd6TLsf+4HR6tTq1Oq04XWKLEYkWRFz8yaVb9LkTlrBO9onqaNctV+SUAbCyoDpVuLhxjfJs1QF7uiXG8Bjv1IuTFEBXcM14wI5FxA6DUSlgkAtwKz9kjSJwJLYVOABUATzNDS92kDZ40XwEM+5V1jACuDpFXVdtclVl6sjyuQKngFqnUn/2k2HDDVIhnwWgHvyQ7NQ4m2vutHtbVUz5SZ+lFanVqdWpw2jE6OysECkytaZuq4em9SRrqaeq450jYiJcu0X6Wp0CbBJwSGX9PICeMZUmbpeVuRKjuZ20XOYogI6FQSaTVp+Sb+oAEukrqHCAjZmlgsL+EAp2aSJdLUB07DI1FThga7lmsqXruVKsp5hk9MFjlqGGiSB8M2ipWr+VHWjhvqr2mbPivyZUatTq1Or08zQyfavxRQY0WkgMXPYpK7A040ZqArgoaq+K9MAZHImw+bXEJvU7zU4Cl5U4rGr76zr5UXRc21yrUsF0UUFVL6kX+xcV96RQTx2zmQheSCcxU0FsRilWh3ETQfhxuRqUkGsKFfJJi2Ta+DaTYcMNUjaJ7rfTRa6ietu7CrTUWj2LODevK1OrU6tTjNHp8jKmSzqukqALNhkUa4uShRQWjmTvskVQKm2q/5v+yaLcnWKjWVcskpV3KCcM1mYXNNcmlpl7iQgFEDCWRVEvqgqdk7jovKOyZekRak6VlHVzF0ZRBU9h/WeC1OmTij/pMi5ZXKVRc9NlKt62bVcbSZpX7uplqEGyZDYsxR/xqI/V93Y9n72Z2HtU7d/q1OrU6vTzNOJEpgVQhJrKa0us32Thck1ZhRRzMCsAB4aUcfkqv2SIaDU793arrkTwGObXPVrXS+X/shcSFbJuQNctslVrwqicyZNeTpGwZLI+CJtwLR9k77JVf4Xpc82aMr1KIVb/FyZXHnO5f80MyxS5kxmEiC12bXhtZtMGWqQrDrJoZls1U2mv9Nt/Xb+bEdUbA/NkludWp1anWaGTppNdiNiCgzMiVmJTeoXi6hhkzqAh0VsMJNrnnsmWLXYcVbkTOZceME7eq1JYcrp5UIF7xAqfZLWqiCmqECcyPqtTOtGwWKmANL1R2o2abPKAiCL/wWblGZXnnPJIA2r5MoEq0ytOTdRrkiLQB6i15i0/JKhazlVMtQg6c9YgWpTjwhsq2pnz3z7zXb8m7TVqdWp1Wnm6aQLoPuLMxs26S2j5aSDWAE8NEock2udaDbJDZuUq4NwtThznoXL1I1aZlcu9ELMRQCPvyoIGDN+SRpHCiytdBDFIquq7/jil6izS9X5Jlc/yrUoLGCxSc8v2W9iM9ky1CAJlE90yOQTGhp126puUt9U0NQE1OrU6tTqtOF1okQySm161WxSL8zssEmrnqsd8WozSMnaqtkkAI9NcnCVUsGFZGS+ydWOctVBPAaouIBQBc9NKoiqvqP9kgYc4wiUEbCEmuAdylQgEgn7Jk1OJlzTq73upDa52lGugnMT5WoH8IRSQUjeC1y5qZWhB0ktoZvPnsX6M80mN1nT/gnK/bc6tTq1Os08nboBNqmBMlHLaGk26YAjISaAh0aJY3KtSg8pBfM0MLmO2SZXHbRTlQpCaMkvyUzgjs0gqQne8SNcQ1IApfzvBPDk3ES5Cs4NmxQ5V6xZpomY4B0vFQR55ly76ZBpWU9ypkrVzRWaadbNUJvQfvvG9Lc12b/VqdWp1Wlm6GSzya6zQgg3qSBJRJ16riyi4LksgG4XPAfSsN4OQDJwnoMqkytjFDyWJlcd5ZqrxZdtNhlOBVE5myG/JGNOUQEJmKkBS2pFuDIiGjEsDY4xIcbkylXlIG5YpSjSQBSTBOduKojgEDKs11y7JtdvMmSomWTVjRO6sUKfq2akTUxCoqJ9q1OrU6vTzNZJs0kJlNQCSr2MFq0M4GlqcjW6lAJ4XJOrHeUqGWUu0z4sJin9kqJgk36JOu2XjGITtOMWOy/WlySMOJGt0vRa1tteb9I1w0Kms1hRriLn5sXTVL5Pe4A2O+sUkDwDEQJ29Z3pkKEGSXsm0sTkYm8P3XxVM1R7H/um7mc6anVqdWp1mpk6RV5KiH7pdJCqAJ6QyRVAZSqIva3K5Mq9CNcxxSRNKkjOnUCaUok6yy/JEjdwxzG7WsE7kk0GTownrslV6qD9kiZ4x/JLcpU7KXLu+CUhuAHI6ZahBkmg+sapupFCN2RoRmrfmP4N7c9Oq27uVqdWp1anmalTlxFEVL66kcyZdMDSq+eq15i0cyapV1TAZ5R+BR47ylUDpeAI1nLNhXBSQWTgjmSUdq4k7Oo7iknqogI0jqzAHTd4R0t9Ooj/2fVLygIJYb9knmYuk9T5knkPJB0NXJGpk6EHyboZZOjmCLUVgff2jVk1M/Vv2tBN2urU6tTqNDN1YkQWGYgoTDpITIkCSObUc/VzJp2gnYDJtVRYwDO55rlwarkKxSad6jsqT3I0V3VcTWoG1BqTqgKPAkhQBprEJvXDLnDuB++E8iXDZlfh/AdQ6ZcUvKjAY5iklS8p2WThl5wuGXqQ1KJnnv3aaGlyI9szWn//0OdWp1anVqeNQycAqkwdFJu0A3jcMnUxC5tcmxQ9D0e45laJOgWWyidpR7ratVz1aiA5D5SoU35JEktGKVlkbErUsZiBJfKlK+9oc+sgAOJU3+HCKk9XlKgzbNIwSQ6oV6iO63RIC5IobgrffEPg3nhNbhxbqsw7+lj+51anVqdWp41DJwCIKRBbfkk7gMcxuTqrghRl6orCAl7JOvXfBkj5vzC52rVc9fJZvbzslzS1XGtK1Omls0J+ycI/6fol64J3/BxKfVztlwQAod7YjFKW4eOSNefqv13HVbNIwWVKSNUAmGQZapAM3USw3guEb1D/ZvHf+/v4n/1ZbqifVqdWp1anma9TR5lY9TJanYgiZq7J1c6ZpET59jyTq9GjbnFmy+Sqa7kKXVRAAWZhcpWgaVYFya00kECJOkJZscYkpaB6ZRBKK/2SfvBOVfFzX7Tp1Q7eEZxbgKkjXTPDIiWTtIoKZNNXVGCoQXKQGWqobZP9Q7PVqj6qbsRWp1anVqeZqRMjKAfwsHI6SKzBJdKLMLsm10bVdypMrrkCljyzg3e8VUG4kKXpOBy/pE4FKfIlE9AkBlVFznWxcxpLxktjWvJL6pc+H3VSACQ3bFIH72izq11UwA7eEXnusslpkqEGyZCpZZD2TaVuhuvPYFudWp1anTYunfwAnk5EEVNqTK3G5Bq5Jle9GDO1UkEqf0uNydVEugrh+CWdVBC7RJ1qI1iRClLnlyxK1DHFJMt+yap8SS124E5uXQjBC1apf5+dN+kAJJcgOd3BO0MNkoOI78uYaF+2VN2oTfppdWrWT6tTs35anZr1o/elpBzAY3ySVs7kSMKKFBBCFECSki9ykJVBdApInvNSwfPSqiB2iTqLSTbxS1blSxZMstC1Ln+yLsIV0OZXGyCVqTXPS4swT6cMNUg2vensm6JJ237vq3QYxOzT6tTq1Oo0M3RiRAbw6Ao8MS18kx2LScY6BURFuTI2Dr+knzupfZJewfNMVd/RlXhCJeqa+iX9fEkWs1Kxc9vkqs9Jk2IDAFxTqwWQwphbC0apTa2E58A0FTsfapD0JXSjhG6K0LUPzXZD7/3++o2jVqdWp1anma2TXEaLIqIETJlcZTBPwORqFRYglJjE/Cq/JPciXOX7wuTKM16qvlNeY1KvKwmzdJYpUUdoX7+kecVM+iaZnS8p9bdNrv0CeDSj1GkgpXOvIlwBFGZWfQ6syjskn55UkKEGyZAfosokY7epuoHGI8Lbt9Wp1anVaePTiZIiiKerWGPBIpksY6dTPzSjtEyuvl/SBksbKG2TK896Zm1Ju/qOTgXJuUCmzKwlv6QI+yVBWa1fUgMmS6ip42qzxnKBAfe/Fhsb/TQQc749vySAojRd65PccDJeP0VTc41/czY5ZqtTq1Or08zWiUCaXBkhiFlRfcdnk1SBo1vwvL+p1ehUinRVJldVfUengpSKCtQtnaXNrlEkg3d0XVknT5KCJS6L1EBfVXmnacSrL3YaiNxQpIFYJ2LagLIFSUvqbjg9sxQozzKbzEL94xCrbatTq1Or08atEyVAovIlKVE+SmuFEAOUutQbham+U1VMwBZtXgVQgGOg+g7PwyXqfL8kR4VfUvkkEcnlsmy/JFGLMLNYBSGpaFdtYi1MruHgnTozrJ0r6Wy3gdFOA5lGGWqQDM0U7RvA3iZQ3BT+DRT6XHWT1Zlw7P1anVqdWp02Lp0IkT5JzSBjKhdm1iZXpk2ujqmVlPIl6yQU5eqnguS5vXRWA79kKV8yCfoliwWZi/Ul7VQQ3x85SPBO+XfKXEkARa6kfa5bc+uGk9CN5n8O3bChWW3ovfD+NxlDrU6tTq1OG4dOGjCcfEkmWWQnomCUVPolK/VQAOEH8djVd+xUEMElSxzIL0lo4ZeMYumXpMyt46pMrtQ2vXoRrjab9M9JSHgocMdikz6zNBGu0ygtSKJ69lnVNtS+7maqujFJzXetTq1OrU4bl04ycAdgqgJPzCgiRoKpINSsBlIO3gnlS5bruHpAqcyseiFmt/pOA7+k8k1qv6RcYzI2fkma2EUF3MWYo5iVgnds4PSlafk6R7SpdQNItEGOuhFKaFbadB9/Fuv3E5ohtzq1OrU6bVw6UaIr79hm13LwDqPElKgjxF06q04Ez8EBEG+NSeotxKzrueZc1Pol/XxJQRkIoSoNJHb8ktLMajPIokSda3IVgABySNDMRcEsJcuUZ08DKm1gjw0tQj2dMvRMsumcxp81NjXXNO1b+z9anVqdWp02Xp2IAotI+SNjRmv9krqOq9m/4fJZoeo7OhUkz8p+ydyq4ar9ksY3qdmkTgcJ+CVZEhufpF46y6SCUNcn6a412fCkAqaogHzPHbPrhpShB8nQYA/5NfzZqd4WGgOhmWZd336/rU4br052301efv/Dcp5mq04xBRLFrLoRs4J4JIPUfklCJYv0g3eqxCTXVxY7L1JBzDJall+yso6r5ZfUwTu68g6h1PglNZP0l85yTa6F71GzRt9XCYw/mGdDydCDpC0h84y9zb+5mvpJqvrx+2x12vh0Gg8T6SchIB1Epzppr93U60RVlKtMBZF+SV2JR5tbiwLnRfAOgNo6rhoo3eIC5VSQOr9kLoTjl+TC80tSlSsZJ0CclPyS9tJZOhWkMLnawCjBRb+02ACpf7P5PEPRc+h9kgT15hn7+6ZmnH79h248UvG+1Wlm6aS3V8pEIu9I9Zy1jrnOxPM0zDoRCyxsvySjxJhbGSHB4B0AMg2kooa3zSirUkF8v2TGi5U/SixSyGAfWH5JQZms3xrwSzpLZ7GsSAXRhQW4UEAoz5YOXvUjXikN30U+UM4Ek+tQM0n/BgldNv9maDLXsfuyZ51V/+12rU4zT6dKVmevbTcZFUAa9lXFYDf0eQrpMow6Gb8cRckvqYHSmFyV2RWAiXAtHTcv12/lJXNrkQri+yX99SW5AFIuIIS3vqRc5BIgtChRZ1XeYUmsAoyK6FYdyGNyKQmBG93qskc/4rUfeyRsw0PUtGhw2WWXYaeddkK328Xee++Nu+66q7Ltt7/9bbzyla/Es5/9bMydOxcHHnggbrnlFqfNsmXLpD3fe42Ojg6kl2+C8c0odTdK6EHl9+Ufx/8f6rvVacPqhJptspM+IBYCzn6vKmkImPZ/Z3cM17WbKTrF1CpRR2VFGmmCJSZ4hxmfpNyH2sARWFvS8UXmubNdr5IheB70S9rBO1wUbDKz16AUACy/pGaSJIql+ZXRoF/SmF0dk2uht+2XtLdTC/yo6mumypSD5LXXXouzzjoL55xzDu677z4ccsghOProo/Hoo48G2//oRz/CK1/5Stx8882455578PKXvxz/+I//iPvuu89pN3fuXKxYscJ5dbvdcenozyzt91WXTsC9Kf0b1O7bv1Hr2rc6bRid/L7cHSrAarKYZJM+GvZfBe6z+drNNJ10P5TInElTfUeZXCMFkn6Eq50G0jjCVYGmvxAzFyolhJeDd2Rkq1A+SqW7SgXxF2EGk6ZXGkclv6SMbKVlk2sAFO2gnSL9o8a9MAMYpJYp90l+4hOfwMknn4xTTjkFAHDppZfilltuweWXX45LLrmk1P7SSy91Pn/4wx/GjTfeiP/8z//EXnvtZbYTQrBgwYJJ0dG/Afybo5/YN2Gob/99qL2/rdVp+nQKK1QDVoPuU6tA4GFg9+N/r7+r8V8Cw3PtZqpOlBAQIoHSFDVXhQaSQITrIGIq8NAcFB5genVcuQJI81LgmOZCrmcsioWYoSvvqKICsqCASgVh1MmXpMwGSOqaXHnu+CW1hIoIbAxAOaVa9Ho93HPPPTjyyCOd7UceeSR+8pOfNOqDc46nn34aW2yxhbN97dq12GGHHfCc5zwHxx57bIlp2jI2NoY1a9Y4LyA809TbQ+/RYHs/8c0+tomnavbb6jT5OlUxrr6MsWr7VLHIQbdbMluv3cagEyEABTEFBpgqGhCFfJLe2pJVooEwtM3OlxQcMspV13L1igqkeQGWXKBU7FxQBqiiAqDUMEkNjjpfknoAadJCqO+XdD9TKyLWOWcBM/NMkCnV6oknnkCe55g/f76zff78+Vi5cmWjPj7+8Y/jmWeewUknnWS27brrrli2bBluuukmfO1rX0O328XBBx+Mhx9+ONjHJZdcgnnz5pnX9ttvD8C9KXyTDLz3/s1SNTutMnX520PHanWaHp2C4oNOCLj6ABoRfKBXIz2abK+R2XbtNhadKGTgDoEb5WoH71ALGJ3FlwcxtRpfpUwF4Vlq+SUBYeVKumzSLXauiwuY4B3qMknCmCpNF5ulswgr0kEItUyu1sogTXIjNcgC2j85s8ByWrQhHs0WQpS2heRrX/saLrjgAlx77bXYeuutzfYDDjgAb3nLW/CSl7wEhxxyCL7xjW/ghS98IT7zmc8E+1m6dClWr15tXn/6058KXby2/W48u41/o4b6q9pmz2iJ167VaWp0asQc6xij3VdT0KuR2n0HAcUGQFn1eWO5dhubTkyzKY05FoM0L/UM1EE7dWZXv2YrANcXWbEqiF1UQC+fpf2VaS7BMxi8Y8BSmlV1cQENjjSOzMLL7sog1LBJwAdKlT+pi7uzwU3NG0Km1Ce51VZbgTFWYo1/+9vfSuzSl2uvvRYnn3wyvvnNb+KII46obUspxb777lvJJDudDjqdTmm7fXn63WT+DSMqtoU++8cJzVT7zWJbncavk9+3bBAAwrrPQD0Q8gFB0jMt2X0L298Y8kEKjqCvMuCn3Niv3caqk04BCUW4Mitn0ja3AqgvJuABpf6+XH2nWDJLm11tJpnmQqWC6OAdKn+DMrkSUqSBmKIClIGpqFbb9Gr7JSVAcpCcGN+krN2qATOcH6nrt1bVce3HrKdappRJJkmCvffeG7fddpuz/bbbbsNBBx1Uud/XvvY1vP3tb8dXv/pVHHPMMX2PI4TA/fffj2222WbCOtszTN9coz9X3UT2fvZn+yaq27/VafJ1qmSP9vs+TDLI9uzV0gcFSH9//3eEjtcAxJvKxnLtNnadCIoIV2r75my/pJP64QJlPwmZXQEov6R6CREM3pGpIDJ4R5tauTx4EeHKmMmVhFqhhMXF+pK+X1KzQwCWb7K8rqTvw9TbnHM/g/yTUx7dumTJEixevBj77LMPDjzwQFx55ZV49NFHcdpppwGQptC//OUvuPrqqwFIgHzrW9+KT33qUzjggAMMCx0ZGcG8efMAABdeeCEOOOAA7LzzzlizZg0+/elP4/7778fnPve5gXSrukFCs0b/BrTFnk3WzWxD/YX6aHWaHJ3KX9YATQAYS1IHhoOAls/47H6thwMRvMwqB/mMjffazQadAIAQzSxlEI9mk5HFqAhFI/cTAJQCd/IciDRgcus/TOCOZpKZxyjtqjs6nxKxjHAVhJjKO8bsanyRzDG92gswawDMea78jJLJAirKt4+/UQKv8k9a7zekTDlILlq0CE8++SQuuugirFixAnvssQduvvlm7LDDDgCAFStWODmTV1xxBbIswxlnnIEzzjjDbH/b296GZcuWAQBWrVqFd73rXVi5ciXmzZuHvfbaCz/60Y+w3377DaRbaDbY730TUwypaRvSwZ/xNtGj1alej/LBqwGxL0CGwHECTK42xYPziQGlJxvjtZstOhlfIymngdjBO377Up99loriXKWCWD5KP3hHFxTQEa6aPerKO0IU50MQUphcNYtUwTt2UQFpctW+RVoyuQIAhQRKW3S91+KzHL+1ATsb0OQ6LbVbTz/9dJx++unB7zTwafnhD3/Yt79PfvKT+OQnPzkJmpUHeshkEzKr1G2rukntfar6bXWaPJ1kowmwx0HBsR9w1uVE2t/p4+qHh2pjwLIPMJYO4auBmX/tZoNOVWkgWrRP0o5yrV0JhOel92V/ZEXwju+XVMXOORcQsEyuAqCEFjmTUaz8o9SYXA2DtAJ2zEuZXIVik4CbC2mDowZV+b4Zk94QMvQFzrWEBrp/Y/nbfKmbwYaGgD+LbXWauE7jAci+4DiewgJN2vcL0PFYZamvAUFzpl+72aaTnwaiSaPOlRxE6oJ2wv+lVjqSVZtTC7MrnO1CCMMmpblVvvSyWbryjp3+QRzfJHX8kYQRwyb1GpEFiNLqIB0rFWSmyFCDZJOZZ13bQcw7oRuz7iZrdRpMp9ItN1UAOREzqy9NIlctoCyZXqv6tNq0Y3zD6ZQwApYVaSChwB0Ajf2Rjg4WWNp+Sfs7O4DHj3DloihPx4UAB8w2XeRcBvEwJ4DHrrxjB+84ATip1JEyCo7q+8VeZsvd7o1xe3WUDSAzB643gFTdOFUzTf+z3Y5Y34eGvH0T6VeofavTYDoFHy/9olf1vvZ2P9K0Sf4kACLEQK+g9ANiXgPqfWQmX7uh0IkUD1m5NJbXjxfAI9sNDgZF7VYZvKMB0uin3muQBFRJOiH/G5+kruGqfZLMqiVrmVtpwDdp+yVDTNFE74aAkZHSPjOlqEDLJJX4M8Z+phj9v4n5J3RTNtm31al+30YAWfFdCSCr+gh9BqoBr4/Y+wmbQfissokJtUGbmXrthkUnjYHM80Uyz+TaJKneTvXwcyRNGxO8w9W8TjhrS2rRaSAy+jWQBmL/t6Jc7QhX8xu9NA6bIVK4bDJkRq2t31rBKqdTZgZUb0CpMt1U3UghU00Vw9EvEXjVHbvVqb9OUwKQjXImaxihvY/9qpBgP1W/oR+brDuObuLvEmg7rONpSnUiOk8S4/ZFhrb7gTyhtv3SQADFJFFEuWoWKQiREzlt7rcAymaRAFCV7wjACs4pgnSKmq8zkz3aMvM0mmape/DWcYWQecZ+b9+YVaYa/6ZtAgatTg0Asua7WoCs6a8SHJsAYs33fUF3EmQmXrth0skXGygpJZ7JNfxIHhQsdRqILQU46rUlJUACMIXOuRAGJJVCxtQKwKSByPdWhKsVvFNU4CnMqtQDU190P6bfDeR/DMnQg6QW38RS1UZLk5vGntH6+4c+tzr116kRQDb1QTbZHzWMbzxBPDVgGTx+nVnY/76PbOhrN4w6TYaEVv7wt+varXabwtQKCGt82WZXHbxTOiYhDlgaoLT8klrGG4k6yH5OaswA6U+TIS1Iorgp/IcxgXvjDXozVJl39LH8z61O/XUq7zxBgOzTXwkgxwuOfY5T+30QVAcP4NnQ124mjqfp0skX3ycZkqplsezvmphdg0E7Kv0DkGtJ+gUFABTpR6aerFdv2DK3moo7JuqVwK/E43w2eaG0kl3OFBnqwJ3QTYTA+9B+/g1X9zD3P/eb5doDtdUprFNQ+gDLoPsEAbJfH1VSVUjA2k6EcIN5JkFm4rUbJp18qaqqY441njrASjjP4RspNUDaka6+P9LpQ1gFBQAUS2eZ0FsHHGWTyeNadl8zxT85M7TYQDLIbDDUtsn+odlqVR8CrU4DSUMgbGRmHQ9ADsIqq9rWHTfUfsCH6Ey4djNxPG0InZoK71OGLiRh1ulqZeqz6uNof6RVdccRf2Ln+QntOqvE8kH6fsgm1XRqiwts4GLnQw2S4/FVjEfqZrg+m211Kn+eND9kQ2kMkOOR8fY1zuNt6Gtn9zlTxtOG1GkyRLPNUDCPzpXUwlXhgCrhJWRU4gOktYSXLihQJ360K7UiWauCeOgUsdOJyszRZIZLX9/YgH3ZMpBJ0etnmHSqlKYA0oBFTilATtb+UyTDNp42hE4asGyTZ52IvBykIz8XQNmvADpQA4b+8YTHsnV06yRJKFVkpqeBzCxtplmaDvBBHPW+wz/0vkqHQcw+w6JTIxbZ9LvJkMnqvzaPc/KMd+14mhk61YlvFi1/bwfpTGz82fVb/e1iwHFnm1rl/8H59UD7bKCVQIYaJH0JDZHQTRG6rP0c/lVO/X5DZJh1Ch98gJSHcfgia4/VJCK1YSGBxjLJoD/M42lD6mSL4xe0AmvcYdmMITrHDawSMtUSMouaCjwDFk6YqTLUIBliLVUmGbtN1Q00HvEDDFqdBtR7EkFkQgxuIpGv4xQzCWhQbcf+PGzjaWPRCRg/uE0XKFbJTF7qaqIy1CAZkvH6KZo+Xv2bs8kxh1GnjUomM4hnGvQYxvG0oXXiqpi4ljqf5GQAXpUfsSo3c9ByeQPpspEDaAuSltTdcHpmKVCeZTaZhfrHIVbbVqfqNu6BB0jAbyUowzaeNrROAErVbmxwFJYvsC4KdTKFUYIoAIqEEAyapqt9pDyfHt03hAx1MYGQv4J434W+92el/vDod4P1858Mq04b7XyT0JkB0IGCBe0Y37A62cJVvVSgDJZ+9GnVYspVQtR6j1VCK5hiaDuRB5TvBa88Ns8bWi4aACjxgoBmksw8jTawCDR7mPd7wFfNLn2nfhNgGBadhk4mWINS+EsaNd0PwzGeZoJOevmpvKJ2ql4QufhcBOzwhgBZJ3INS6kR82ii3l4FoG7d4EIXHxyF+qzBULPKflG7G4u0IInmfg3dNtS+7maqujFDs9Zh1WlSwHLCoNNHi7r+7ZUT6rZtIBm28TQTdOJCp1bI4Gq5yLG7XJXZR4hJARWiCpDL9+XxHFrLEpDngZLiFZS8AGs+wVSUiYqYxvtqqM2tg0hTk0poH38W6/cTmo0Oo07TJrZ5tM5UOh4zatObd7LbTYLMtvG0oXXqcRmso8HRXnFDAyQPpH7Y//vqUmFmJaZCDjEvHxgZIeoV6Fhwiez6fwAUBeeGVYqGpteNUWbGNHcDStMHtD9rbGquadq3HQAwbDpNizQsczUhNjkRsfqdiiLnTWS2jKeZopNeWYMLIFWrbuQczkocmkHqF4CBq+kAEhSpVTquSnwmqXGTEPVSv8ekQwlumVolWIqcO6BoB+9ok2sTP6QtMxlkhx4kQ4M95NeocuKHbpDQTLOub7/fYdJpKkG01iRjf9e0XZP2TWQ8+0/gmMM0nmaSTlwIcGhzqzB1VHXFm3BRgYmlfxALKAklMmKVAoQQCyApGCUGICmR7ymU/zKQf2v0sqr++GBp2hrfJC/5KfvJTATLoQdJW0LmGXubf3M19ZNU9eP32erUR5oAVh2YjJdNVh13ssCuqp8pYK3DNp42uE5CbtfmVr0Sh34JqwC5Acq8GYMkHnP0/9uBOdRijzab1CZXAmLYpFSCSzapo1v1S39tgRnPuWGRobJ53ALKQRnmTJChB8l+N8t4fCL9+g/deMR7P2w6TZWU2CStYJBeu0ZAqbc3AbOqdv2O68s4VkcYxvE0U3TSwTtcCAsguVn0mHPb3MqDy2SFALMIzlHAyCqA0ixuLP/r/EhGJGuUAGoF7cgDmhfRUUdcgqXIc8kgtdk1CIq8NgjJZpgbgww1SPo3SL8bCxVtQv2GZq1V/+12w6ZT1Qy8eqfB2eR4za5BoOwHllWvfsf2j9fHHNw0um/YxtNM0kkAEEKYajvcY5Hc8UMG9s8HM70SykCY9E0SStXQ0yZXUvJH6qAdpooIEABEm1vVS+QWg/T8kfq9ZpCaURb6i75m1o0BLIcaJH0TjG9GqbtRCNybyb9B/VkrCfwP9T1sOvntG8lEgdJnY4MAZdXxB5XJMqX26WfYxtNM0QlwcyQ5F0jzsqnVTv3QgTp2wE6d2VVHtvoRrjKIp4hqJZa5Vb9ipvyQmlGi8E0Su0C/Zo/K3GoYpJ0O4plRJThy53MIDDcGgASGHCS1VJlR6nwXvh+iihHZs1TSoP2w6tTk+K4y0wuUlaxyULCr2KcRi5zAQrTDNp42tE69XAfnQIKjY261/JFWQE9TkSzRB0UNltQE7ehCAlT7HhVAdiJa2k4sNok8AxG8qLZjAFIWEuCKNYoSs3TBMAye5d8500vatXmSKN8AgzIc+yYM9e2/D7X3tw2bTiH9+prYQnmM/jbvsyC0WD2DUjf/y8+fBLx9SXilkIlEnjb1fTr7DB5xO2zjaUPrxAGZ7qHMrakCwrGMo5dxY24FYKWBuCwy2L81UQoxSPezmyOZRBRJRJ2AnZgREHiFBBwmqV557phbhQWUgAJEs80HS9mGzsCSc01k49R6kiQ009TbQ+/9fSd6TLsfva3VqZBGzHIqGWVwXxJmluOQvgA5CSyyHU8bRichYNI/0tw1t+r0DwmOcMytWvggOZLMNbsSysAY7Zv+ESumyajyS+pzIQSQZzDmVp5DZKlnbpUvO7LV6G4xy1B9V+nDHJA9TsCKMlEZapC0bwrfJAPvvX+zVM1OQzcMCWwPHWuYdBpE+oLlZAClH/XqmzwrTKSDAmblPg0BUlSZYquOh+EYTzNNJ64KB2RcIOXcKiYgX71MMq48514AT3VBcXNMWgZFN2iHgVAr9UOxx8jxSVJQqpmkNLUySgAuwdGkfxhwDEe2+kE7dXmRg0a1zpRi50Nvbg3dLFqqHux1D/6q9v7N6s9sbSAYBp3GI6GHVKFE2Txa2uZ91oBTa34N7e8fBwFWOIhMlEH2i4St+TxbxtNM0knmQ0pTa8o5cgGkuTSz9rJcmlu99A+uzK2m3wqgDOVE+v5IFimfZERBGQWxTK1JRBFTKk2txicJMGKlf/BMvrJMAmSWuqZWDZZ2fqTJkyze+6kgoVqygwphbFKeJYPIzIDqDST2Jau7Afz3pGZb6LN/HH+mat+0s12nyZBaZjnZrFK3rypePl5/ZNX+NQA5KIsEZv94mok6ZdwN2klzySR7nj+yyI+EyZH0CwnY70MAaedHFi83aCdm1DDISLHHiGmfJDWRrYwSkDwD4ZapVaWAiKyHPM2Qp1kpaIc7bLJIA+lnUrV9mnVSV2ZvOmTomaQvvq9Cv/e/8yVkrtH/B5mRznadJlMqmeVksUqgnln62ycidUUPLP1Kbcdx7Nk0nmaiTnbQTsqLoJ3MMrXyjBtTKxfhoJ0m6R/2ewckFYOkCiBtJukH7UgAlWzSFBHgmWSQWQqRpqWgnbynAVOYqNUqv6R7bjhITtAU9vQkYEPKUDPJqhskNGusMxn6N1PdTLfqwd4PWGaDTlMlAuWHolSmhgFWfBaEhpllyGc5WeA4XoAM9eXJbB5PM1UnIYoydGnOkeUyaKeXcYw5TBJOZKs5jmZwof6rwFH5I2kUgzHti5T/dURrEjFpbmXS1BpTaoJ2TOAOz03Qjsh6EFlPMsm0B55mkjn2spI/0je1+hGuvjRdsHkmyFAzSYLygO/3vokpZhAm5c96Q/vOFp2aSr/AtzrXRvBhOBnMEqhnlyVFapbfqpKA/7EWIBuA9GweTzNRp0zAsMfRLFfvOXp54Y/sZVaqBC9Asi79wzc5lgN1KEpFBIj0S+rcSJ36EVMJlFQDJIWs2ap8kYTnEix1ObosLUyraRr0R9qmVhsA7fcUtLFfMhi0o++PySrE0VCm5WiXXXYZdtppJ3S7Xey999646667atvfeeed2HvvvdHtdvG85z0Pn//850ttrrvuOixcuBCdTgcLFy7E9ddfPy7d/IFu+yhC/gq/XWhbkNV4+4Rmv8OiU5XI9faat6trP9nMsi+7rDqW/wpJoK/SMfsBZM2DY7aPp5mkUx7wR45m3PFH6qAdLopiAgCKnMOGVXb0Zxol1n/FIhkFi6hhkklE0VEsMmIKKCk1ZekYIdIXqfyRIu3Jl2KStj8yTzPDKvOeFeXqsUiuzMmDCGF0xkS1aplyba699lqcddZZOOecc3DffffhkEMOwdFHH41HH3002P6RRx7Bq1/9ahxyyCG477778MEPfhDvfe97cd1115k2y5cvx6JFi7B48WI88MADWLx4MU466STcfffd49YzNPjtGSNB+Waraj9o/wTl/mezTr40Bcd++4f6mCywBALABbiA2Q84q/bzdR4UEMcRxGOOZf3fWMfTTNKJQzLJTLHJsYwjzYsiAr2MI1dMkmeaTRZpH+Fi5oGAHc/UyhRQMiYjWmkk/ZEJo6XI1lgH75iUEOWPVEE7vj/SZZKZkx9pUj+4MJ99gLSBsp8Z1v3dalxTJl8bSKYcJD/xiU/g5JNPximnnILddtsNl156Kbbffntcfvnlwfaf//zn8dznPheXXnopdtttN5xyyil45zvfiY997GOmzaWXXopXvvKVWLp0KXbddVcsXboUhx9+OC699NJgn2NjY1izZo3zAvr4FbxtoYdt6AarEr1/6MYU3ms26lQlEwHHqv5CgBn8LYOAZQW7DFa/CQFnAyAN9lf3uYFfdLaOp5moUy5UOTpVkm7MNrcqf6QBScUg81yaWv3IVh8sSwBpfJAJilJ0sqi5ZpCaRXYi6vgjtcnVLiLACAp/JNepH64/UgOkZo48zSFygbyXF4E6HjBqPOQ8XFigr3jgWFm+cQplSo/S6/Vwzz334Mgjj3S2H3nkkfjJT34S3Gf58uWl9kcddRR+8YtfIE3T2jZVfV5yySWYN2+eeW2//fYAwrNB+wboN8OsmpE2MQmJivazWSdfmgKk/zDr92Cz+2/ELkPm0AHSPvqCZo1U7tdPnwbHsa+n/qz/z4bxNNN04kKmf+QChkH6+ZG9jBeVdirK0YXSPvT76ohWJosGREVUK41CLFIF7jArR1IXEeAZiBAgdm6kYpG8l0HkuQTLXqaAUZRNrZZPUgNk0/oBTsk9z+Tql9ybTr/klB7piSeeQJ7nmD9/vrN9/vz5WLlyZXCflStXBttnWYYnnniitk1Vn0uXLsXq1avN609/+hMA90HZxORibw/dfPbNVbWPfVP3Mx3NJp0GlaZA2AQ4+7FLRxowydrtKINm3Sso4zCvVl3v2TqeZqJOuaqyo9njaM4xpkByfa8oIpCr9I/cmFubrfphjkstFqlMrdofSSx/ZGyZWm1/ZCdiMneSwBQVMP5Injn+SJ0fyTl3ciSd1A/L1ApI1qiLKeQDFG4HoFJXVNAck1YXGzwnLap8AJmW6FbiVSMRQpS29Wvvbx+kz06ng06nEz4Wwg9LfxYOr41/UwnvfWhm2vTYs1UnW+oCbiYqdQ88+7g60C7Y3r4R+1Xc8W/aqsjWOhkHYDa9RrN1PM0knbSpNVU1WkezIvXD90faUa3cgGR1ObqQqbVgkIWplTENkPJ/wSKVqZUS86IEsqCA74/Me25+ZJYa9qh9knkvV7mSeVFZx4AlNwCpRb4nQUZGKAVlpMQcqe+SoNSYXgUh6j6YnjSSKQXJrbbaCoyxEsP729/+VmKCWhYsWBBsH0URttxyy9o2VX3WSdVN53/ni902tE9dv/7NaN/g/k26sesUkqkEyH592g87rYcdlT5hwPS/G6+E+qgAyGEaTzNVJy6KyNaUS//jaJajl3Os72WOP7JgkTCVdgAUbLJPjqT9oopFalOrLkVHLQaZRDKAJ2YUXcsvaaJaBQfJU+OP1AxSZD3wXgrey8DTtADKXJioVh8o7SAdbWZlDc1JRLFIvVqIZJUM0AUFqMciJ6HMXROZUt6aJAn23ntv3Hbbbc722267DQcddFBwnwMPPLDU/tZbb8U+++yDOI5r21T12UT8m6KqjZZ+N43+7892q/qbrTo1lbo+/ZSPpq+q4/gPxHGZY6tMshM1BzUIJhrm8TRTdcqFQKZMrWOZNLWmXBgzay+TuZIyqlWuAJLnvPBHKmCsSv8wbNLOjbTeM1Vhp87UqgsIyJcEr8j2R/Jc1mvNUsMmQ6kfBTAWplafRYb8kLwmspV6SKoB00S2ap+kjEwCaARBpyfNf8qPsmTJEixevBj77LMPDjzwQFx55ZV49NFHcdpppwGQ/sK//OUvuPrqqwEAp512Gj772c9iyZIlOPXUU7F8+XJcddVV+NrXvmb6PPPMM/Gyl70MH/3oR3H88cfjxhtvxO23344f//jH49LRn1HqbVr875qK3s+fqfr9hcw5s1WnqkCapm0HEX9/f+IZYo2NzbHA+NhkyBRbB6qB79rxNLN04iJsah2zIloNiwz4IwFUFhIIBeoUeZGxYpFy1Y+wqbUI2jFgyfRKIERGtaY9y9Qq/ZFIpdlVm1q5DZCKQeqoVhOww4UDkLkQYIQgF2E2qRkjUV/qHEnCmGN+NTVqKZN+fEKlyXW2gOSiRYvw5JNP4qKLLsKKFSuwxx574Oabb8YOO+wAAFixYoWTM7nTTjvh5ptvxvve9z587nOfw7bbbotPf/rTeO1rX2vaHHTQQfj617+Oc889F+eddx6e//zn49prr8X+++8/kG76utWZb6r2C91IoX5Cn/vNcv0be2PXqU6mCiD79TmlgAmEwTDUrk4q2g77eJqJOmlTqwbG0SzH+jTH+l6GdTpoRwGk4AI8U4UEsl7fwJ3QUlg0TizQDJta5yQMScQwEjMFkBIoGVE5koSUUz+yFKI3Ct4blakfNaZWv9qOTRK1T7IASvm/9NsMQBbf+YE72h9JGCsC3maLT1LL6aefjtNPPz343bJly0rbDj30UNx77721fb7uda/D6173ugnpNchzONS2yf79ZsP2bHY8M+aNQadBpQ4gxYDRclr8oK46ljkewLTbyg8TCObpA47DPp5mkk4CkkX2dCm6PBzVuj7Njak1z7mstpOlanFlnWNYzST1eztgR0a1xnK1D0aDptY5CTOm1i5zTa0yYKcnTa15CsJzCY5ZEbBTZWqVQCn/85Q7LNJmkz6D1GBIHaZIzX/CCoDUAUrS3EqLgJ3ZCJIzVapmk3Xtx/OIrpvh+jeqf4yNWSe/Tcjn50vQHDtOYKzrow40Q4BJBmjrt5cbJub+r2M2wzKeZqJO2tRamFdzxSS5YZDre7kxtXKVAuLkR+YNTK1OnVY3YIdGamFly9Q6krDCJ8nCptaIEpBUmlnBM/Cx9Y6pNe+VTa08Lcys+n/hi6z2Rzq/y2KPTpCO/bL8kcTyRwrtl2xa2WoSZKhBchCpM+tMpC+7v4DZfqPWaVCZCECG5pR1t1EdaA5iZm0CmP4+ky3DMp5mok49LgyTHFXgOKaAMWRq1aXoJFDmzisUtOOnfNAoAY1jJ2CHRZJFRjFzolpHkggjscyJDJpaUUS16tQP8zJVdlR0a6CAgAnY4cIyr7r6V/kjbaGMmKhWzSadHEkNmJpB0giCJQB6A1658clQg2TTm26QB3+Vv6Sqj6a+j9mmUz+WCdQDZBNDS1WbEHjax5pswKzbp4nMtGs3E8fThtDJDtgZywTWpTnWpwWLNJGtVlRrnnNVik6DZP/8SAAOi9RgaQfs6Fqt3ZgZFqnZYyeiJVOrjGpNXVOr8kfaATs6ulUXEJABOxy5KkkncuGwSKD47/sgqXVTyKpABMTLkaSMghrAZECcSDYZxYZBarPrxO1LzWR6SxfMcAmd9NBNFnrIhWa7VbPWQR6YG7NOE5EqgOSYuCeCe6/QsfXL2U80rAlrta0rixfar06GfTzNNJ0Mi8zdgJ1RVYJOM8pMm1utqFae9Uy9VgDVtVqZC452MXM7YEczSm1iHUkijCQMHVYUNC9FtWY919Q6tl6aWnujyHsZstGeU0BA12p1ipjn3GGR5SIC3jlU4KiF2pGttIhs1eZWJ7KVRpY/cvpkqEEy5JP0t4Vu1KobaDwivH1ni06+1AXjlIAncHM1BUchyq9+0gQwfX0b51WiGiz9/UL7DzrxmK3jaSbqpAEy5ZJF6oAdbWo1pehyFyBtUytQBkijgwJI6vghY5P+wZgbsMOi6gICHVVxxzG1qqhWkvdMbmQ/U2ue5jJQxzK1Aj44ln+LzyqJMrFKvyRxfJHmfRRLU2sUS6B0IlunT4ba3BqSfmaafvs1aTeob2Q26TSIXlrqwLEJCFa1CVUxtI9l34r9zLFNAnjqzLG2DHqNh3k8bSidRvOCRY5mEiDXp3nZ1JpKFlkUELBNrW7ATp3Z1fZN6oAdQouAnShmZlmskYRhTiLTPjoqR7IbMTACA5TgKZD3HFOrBkrf1CojXEW5DJ1jaoWXI1nti9QBO3YAjw2ONI5AlJlVs8kiYCea1qAdoAVJR+puOGK1sd/r70IPxqr+7Bu230NhY9apifRjkVUAOQkBr6U+fNDsB5j9fJdA9YOYi+ZVtdrxNLN0AlREq8qNXJdyySS9gB0d1cotJskzXphaLbC0g3YIsxZUdgoIFGkfdsCOzo3U4GjXau2qgB27VmtMATLWM0XNtalVjK13TK06slUvi6UjW4VilFmamyLmTaJaqdbVKTtHTWQrjaNS0I5kk1ZkqwramYTbv7EMNUiGbrbQjRYKBLCfb4OYyKpms/2OubHpNJUyGQDZr98qwJwouwwxy35g2Y6nmaMT4LLI9VmOdWlufJJPj2YKKHOMqtzIrMcNmywKmlenfgAuQJoUEO2LpESmfTCKKJFRrXZu5EjC0I3kK2ZE1mtVhc0jatVqVT7JyqhWa1msvFeYWPMeL7HIfqJZpcMetamVFuBZFbQjFIMsiptPnww1SIYkdL39bSEwCM1qQyDs/28CLBurTlpsllU7e2/AIusAko8DPWnFyjFVgDkedumD5XhYZTueZoZOOqJVv9alEhzXpTnWjmUOi+QZl2wrL9gkz9La9SMBlErRuSwyMQE7UcykT1IBo37NSZjxQ3YiaYaNFEDGlIDkYyaqVQfq6BdPJYvM0wy5MbmW8yJ1wI7NIkP3hilaAAsgVfCO7YuULJKBJhFoHEk/JGWF2ZXQInBnmqUFSQzGfupMOVWf68xDVd9t7Do1kUFLz1Vh4HjAsWrfEGjqJoOwSx8sm7DKpn7KYRxPM0WnsQCL1ExSg+P6nlz9I0tz5JkwhQR0AQHf1Gr0qkr5sFgki5hZEksXEUhi5uRGJl7qhzSxyojWiMAwSKJX/LAKCBgza08XEOCqqo5baadYM7LPCTO/h7hpHypohyWFmbUwt6riASZwJ1K+yAgiSpzrOB3SgmRDqTPz9NvHn8X6/YzXTDmTdZoooPoscioAsl9/PmD2Y5d1YNmUVdbJMI+nmaCTXjNyLJMrfKwdK0By7ViGtaOpAUo77YOr3Mg8y6U/MutVLocFoFRZh1BqFln20z4iBZAlFqlSPzqRZpESKE2wTiYDdwyD9Gu1BsrQ+bmR9nkJWX10RKsd2WoH7dj+SJtRIopBNJOMErXiByuAchzXbiIy1CkgQPOHlEB5Ntpkn6Z9E6vP2aRTUxlP6blBAFJ4r6b961epP1EG7lAaSSh9xNer6rvSMeu/dtrN1vG0oXTKBbBeLYHV4wJPj2WqeIACSotFrldBLVnKDVhWBez44hcN0CxSFw9gTEaySn8kM6bWOQkzLFKXodNrR+o8yYiSIjcy7wG9MYgxCZJQLNJEtPZkzVa7DJ2fG6lfdaIB0g7a0UBp+yNZHIHFkeuPVGDp+CO9azcdMvQgGboBSc02v33oQoVmv3V9+/3OBp0mU0L3YT+A7AeK/vf9HqyDgqXbph4o+0k7nja8TikXGM1kZZ31KppVv9b38kYs0g/Y8YGSBouZh1lkFEsmORIzp5i5DtjxcyMjauVG6oAdBY4iTY0/MreiWnWwjp0byVOO1Ava0eNdAyaFm/7BCEygjja5skQxR+WDpHFcZpJxIn2S2h/p+SRbJrkBJGSesbf5N1fdA7iubxJ4P5t0mqhMtKLOeHVoAph1YOm0g/s76oCyn77DPp42tE4pB8YyO1inAMhnermJaF07mlWySL9Oqy+UlteNDLFIu3hApMrPaRY54gXsdCNmgnVkwI5kkITnIDyX0azG3JoiX99D3lN+yVRHtRa5kZpRAiixyBCj1EE7df5IQiVQ2vmR0sSqo1pZyR85XQxSy9CDZL8TPh6fSL/+Qw8DP5hgY9ZpqqWORU7W7LIfYIbAsh+rbMIo+7HMYRxPG1KnXABj1vJXz/RyPN3LFZvkhkVqoKzzReZZr++yWG591rgU0eoXD7CjWhNGTQGBLqPGDxlRL2An77m5kVnPmFr9FT+0udUN2Cl8klUTWt8faZtZWcIKM2sSycjdOJLvoxgklkxSBu5Y/khVr7XpGJosGWqQ9G+QfjcWKtqE+g3NWqv+2+1mi04bQqZKh35gWWo/AFDax6iSdjxtOJ1SrmuzFkXMCxaZlfIi+7LImtxIoABKGsfmvc0io5iZ1T5sX6RdYUcXEHACdnQhcy9gR2QpxNioAUe7DJ2dG+lX2AHs/+HRGwJIbXZlCZPMkVKwJJZsUpegixLDKAWNAKaAMnDtpkOGGiR9E4xvhqm7eQncm8m/Qf1ZKwn8D/U9W3SajTIoq3TaON8VXzbxT7bjacPopM2so8rUurYXCtbJHF+kmxcpmVcoYCeUG1kApE73CLNIvdqH9kUmkfRNdi2A7BewY2q1Kl+kBMbUrPhh50a660ZWB+wwQow/0n7pogE0pmAxc3IktU9Svo+L1I8oNqkfgiXS1LoBciSBNgUEgDuLrLrJfPG3VT3r/Jlt6DizWacm+mxMUmfq4UI4aSNCoJQqQs13orTwsz6PdTmTwz6epkunkJl1XZpjbc9N+Xh6NMPa0cxU18kz4UW0yuIBOu2jX+EAHaxjs0hKCl8kZYUv0k776PhRrX7Ajr9u5NiofKnFlX1Tqy5FV143En1NrVoYIcYfaTNJGjPDJO0cSROwo9hkyNS6IWSomaQW2+TiP5uaXJg6JmXPbusesKHjDpNOG5vUsUqnXYMTM0i060y8drNNJy6gFlB2o1mf7rnBOmstU6tmkZkGywoWGfwdXrCOzyKjRAfqFCXobFPrSMJMTmRXrf4RDNhRxcwLU6ssJJCP9pCPjjUytWrxTa12LiQjpDL1gyWKSVopHzr9g0QJEGtTa+yaWgMscrqeJ0MNkr4pxt4eeu/vO9Fj2v3YD4zZpNNUSFUpufFI3bqP/WQ8QNnEPzmIDNt4mmqdALdowJiKZn26lxkzqwRImfKxdjRDT/siVY1Wn0VqXySABkBZlJ/zI1rrStDNiYvIVg2QtQE7mfRL2rmRxfvcmFmbmloBVJpaZRQrMaZWljDL1Cr9kTRRDDLpSlNr0lFMUka1CkKD1246ZKhBMuSzANyTH5qFEm971Y1ub6uaKYfMR7NFp/HKeAfleI5tmzU3JFDqY+tmdboM63iaap2AomjAWC4wmsuiAUU0a2FmLad85OHqOoEarX4pOjtYhxoGGTu+SM0ik5iVWGSHuWkfMUXfCjtiTOZI2sE6dhk6wXmtqdWWEItkRBU9iJlhkCFTq1Or1Te1stjJjWxqMp9sGWqQBOp9HFUP3aobNdRf1TZ7VuTPjGaLTpMlgxDH8QKlfo1HmgKl8934DlV5vGEYT1OtkwbI9crUapece7qXYc1oZsysdspH1svBM2HYZDkvklcCY2mtSOOLpI1ZpC4eoNM+IiYDdhJWUWFHBezko2PI1/eQjY6NuwydMauiKCBgs0jbF8mSAiBlykeMqJtIU2vSBemMlE2tLDYgGbp20yFDDZL2ie53k4Vu4robu8p0FJo9h8xAs0GnQcQPYukndSbX6byBtDT53VWY2YRNtuNpanUyAJkWqR5rx4pAHdvMavyRY1mR8pEW+ZE+i6xK+/CDdZjFIs16kQOwyDlJUTwgoQREr/RhVdjRLNIP2NFl6AQvigYMWoZOMkg3YMeOamUJNf7IotJOBNrtSvaoo1otUytYZEytVdduqmWoQTIk9izFn7Hoz1U3tr2f/VlY+9TtP1t0mgzxB2YIEzcGoGxqdm3S97COp6nWKeUFQK7PZJGAp3vSD7m2l2FtL8eqdalTNMA3s8plsITyR/aCLDK04odtZtUFzWXpOWJyIqOYIbIYpM8i58QFi0wUg9RpH9rcqpfEgk77GB2VJejSsqnVLkNnm1qrxGWREih1sI5mj7qAgHwfWWzSLSBAkq5jahU0Gtd4mkwZapCsOsmhmWzVhdLf6bZ+O/9hLSq2h2bJG6tOTWVQ8+Z4gHJDgKUvTYCyqW9yGMfTVOqUcpnqsT4VKt1D5kOuHZPg+PRY4Ydcqxjk2tHMmFmzHjfvc8XEiuWw8uBqH07ah2VmLYJ13BqtlNFgRGuHUYzEZRZpp30Qm0WOjZqgnSJYZ8xik24ZOt/UGgLKYt1IYsyslCr2qAJ2dK1W2xepCwgYf6Q2t0YJBEsKU6ta9SN07VomOQ0SeohWmXpEYFtVO3vm22+24z84ZotO4xHf5BoanIMCJTC9YFn1+5usWFIFlHbfwzqepkInHyBHsyJQZ23Prapj+yFNNKsysxbBOmEWqRmkNq3q97JogGtmNSkfTBUxVzVam/giNUCW0j7y1KR8cAWWeWndyNzKiwybWm2hKC+szIg085ZSPmKmAnYoWDcBTSKwbgLWTUA6XdBEmltJFMvVP1QBAbAoeB37TbYmW4YaJIHyiQ6ZfEIP2LptVTepvU9o9jsbdWqiY50MApRNwXImsMtBzK5Vka7DOJ4mS6eezyAVQGoWuS7NJWCOuutEPmP8kIWZtVQ4oIZFAnD8kL6Z1S4/p9eL7Fb4In0WaUytBOG0j54b0WoCdlRupL/ihza11okGR/3eZpHaD2lMrtrEar1MbmSnW5haI9fU6l+76QJHLUMPklpCN589i/UfroPayOv6r3p4b6w6DSK+yTUUwNMUKGV//cESmFrAbMomJ9PsaredbeNpsnUKAeQzvRxre5kpGPB0LysF6qwdK5tZZbCOBBM/ojWoTyCa1Taz6jUio0S+HxeLzEbLaR+6yo6VG6kDduzcyJCptapGqx3NmtBqFimBsmCRVbmRJJamVmGnf1Rc6+mc7A51Wbo6X0fI1BVqV9dPaP/QDd9k/41ZJ0oGy0EkhJQS7SnKjEtjYciSaQNlP1Nn3YN6sqVf6Tq5TZas0+XpQpOPYR5P49VJoDCxjmYuQD7dy7Au5cYXuXbU9UO6VXWKVT54JoIs0tHXXyeS+St8SDMrjYhhj5pNjgzAImPqskh/YWWRpeC9VDJHXWFHBexoUPRNrVpsf6S7VmSRF1nJImNmgnRoHCHqJoi6ifJDdg1QCqaWxmIJBAv7Iu3x1Jpbp0H6nfx+s96qWXITk5CoaD8bdOonfvtQAE9TRinbVjNL2T9pzDBtHf3XIPuOR+qKDPjvh2k8TZZOph5rJqNYbYBcq5ikBkrfD7neM7P6KR+lvMiKOq2SQRa1WW0zq17dI4pDKR/l6jo+i4ys4gGlhZU9FqlfPM0g8nBUK1C9wgfgBuvYEa2meAClRcBOUhGwEyVFwA6NgCiRLJIljcfTVMtQg6R9+ZuYgeztoQtYNWu297Fv6n6mo41Vp/EM4EGAsh9YNgXMQcvbhYCz6TWyZTxpIb7Z1TZFzvbxNFGdgCIPUtZj9RlkefmrULqH9D0Kx8yaW4UDfBZZKl7OCj+kW3rOyom0gnXsIuabdmNs2okwJ2alvEjNIhMKE81KsjGT9mHXaeVpVgTtpDI3Uq/44ZtafX9kubIOmrFIHdUaCthJukXAjjK12nVam4ynqZahNrcChRkmZOapmsH6720zkX4fmi03PfZs0qlKbP20hMyyIdMr4AJlCFjKJsywHiGgbBKJ6hxroNbFMarMrnq1kCqzq/3Z12O2j6fx6OQD5HoFkKaijmKRRUWd1FknUoOiHc3KM1X8u2b5K8ACSgsgtR/SNrM6OZEqWGfTblReL5JRxSaLvMg6FmnSPhSL1EtiFQE7YVOrLTabtIN0HCaZsJIvMhpxK+xE3U7/gB21LNag42kqZaiZJFA/q627EFUPCN98FLrp/VlRaJY8W3TS0jQnsopR1lXkoahnmLKPZkxT6jB+tjmINA3kEUKYIuw+owSGazwNohMXwGgu8ExaFApYbzFI28xarOzhAmTPKhpgIlozDi7KLNLRk1ngWAGQtplVvmiwcMBm3cisF9kx5laGxFrpw7BIFbRjWKSV9sFVEXMdsKOr69gl6LhyPsrUj+L3uH7IAiATKvUnlFSySNZNwEYSCZbdRFbYUSxSV9ixA3b8qNbQuJm6u7IsQ88ktYSYTV2bfjey/eDwZ7tNjzkbdBpPu6pAH+Iwr/ARfKCsMl+GsK8J2xyUZfYT3Z8+hu6ekPD6k5pFhhjlMIynJn3pycRoxtHLBXpclprr5a6JtciFLADSXv7K9kNmabHCh+BQ9VndPMiSD1KBIwAPIBNjWtXRrDQiRU5kIFhnjgri0ebWmBJErEj7gDaxOizSTfvI1/fA09TJjRScFyZWddOJgJk1F6JUVceUn7PqsroRrVadVjtgJ4oNg3Qq7CgWGbIQDDJeJltakIR7w4dmKv53TUXv55sI/P6qZuKzTaegObWifb/VOUoLFjcETdNnYFsTE63PLCcLNKvMr1rPkPlV7le8H7bxFBIugB4XyLgExV4uMJoJpFzmQToLJ3sMcu1oEbDzzFgmTay9omi5rG0qZGSrlfIBwPNFWj416qZ6+H7IejOrZJHdSAJjl0kWOaJW+kh0wA4BSDqq8iJl8QBu12mtCNgx60amxXJYoq7+HHxfJNR6kKoua0wrWSTrdlQKSGz8kKTTBe2MgHsVduyxMch4miqZUnPrU089hcWLF2PevHmYN28eFi9ejFWrVlW2T9MU73//+/GiF70Im2yyCbbddlu89a1vxWOPPea0O+yww4wJTr/e8IY3DKyfPwv2zTcC4RvUNx357/19/M/+QyHUz2zQqan4x/OlySod/ngYxERbZaptYqKdTJMsF8IBXSEKoK7Lo/RNr7N1PNXpJMERJmp1fSoXS5a+SF4UCqgBSF0wYH1aTvfQZtY8d32RAIyptZTqUQGQ0qRqFwyQ7zudyArUibBpN1YsUoKjjmqV7JHKlT6svEjNIvn6ZwyLFL1Rk/Zh12mVoCiK5bB8v2SATfoAGcXMC9ZxWSRTzDHqduRqH0lUpH2oKjuCxeolgXI842mqZUpB8k1vehPuv/9+fP/738f3v/993H///Vi8eHFl+3Xr1uHee+/Feeedh3vvvRff/va38bvf/Q7HHXdcqe2pp56KFStWmNcVV1wxsH6DPNhDbZvs32/GE3pAzDadbKkFOvQf/DZgNlneahDwbAqaYb2mFiwBCZQcCPopbdC0wWc2jid/W67Yo14Hcn3GZZm5XALlWlWofJ31PsQg7UAdrtM8ctfMqqvQVAXr2ODIrChWDZA6UEfnQfpFA+xgnc26kQFHDZR6UeVEASQDt6rrpIBmkNZqH4ZFegE73CogIHjhj/TFXUiZmMo69jqRmj3GIxGiboyoGzurfcio1o4xsZLOiMqNTEzah2CJub5Nx9N0yJSZW3/zm9/g+9//Pn76059i//33BwB84QtfwIEHHoiHHnoIu+yyS2mfefPm4bbbbnO2feYzn8F+++2HRx99FM997nPN9jlz5mDBggUT0rHK/FPXfjwXqG7W7c+qB7XBb4w69SsuUMdYqvqrkybmWqBssq2KoLV39a2tGignwwxr+yt9XyUAUM0qQUCJBAuCej/lbBpPXCiAzDkyDvRyaVbt5dLcuj7LsU4tlrwulQwx5IPUDHLtaIaelQdpCgUoMysXZRZpdLRYJACzLiSxKurYOZASGAtz6yaKRc5R6R7azGqnfHQMiyRy3UhKQNL1INkYSDoGko06vkiRpeCjoybtIx/tFRV2VBk67ZPUEa1V/kj9XgNkYVJ1g3U0k6RJVM8iky4QW+AYJQChQeuC/9kfT1MtU8Ykly9fjnnz5hmABIADDjgA8+bNw09+8pPG/axevRqEEGy++ebO9q985SvYaqutsPvuu+Pss8/G008/XdnH2NgY1qxZ47wGFd8ePhHxH8+iYnuTfmayTnXSNNqV1LyaSoh9hlhoHdusYphV7LIfqxR9XrbYzLLKBOuzykEqHJnfgpk9nvR/LnTlnDJ7lMUCuCwzp1fwGMtqAVIH66QKHGXKR+F7lMzRZZG2UG1SVS+bPfoAaedDRjFD3IkwogBys26ETbuSQcqcyCKaVb5XkazK3MpEpnyQqrqOnReZqoWVVUSrYZFpppgjL4BSMUjfH+kG6oQBUi+HZZtZdYAOc17NWGTdOLBlOtnklDHJlStXYuutty5t33rrrbFy5cpGfYyOjuIDH/gA3vSmN2Hu3Llm+5vf/GbstNNOWLBgAX71q19h6dKleOCBB0osVMsll1yCCy+8sLS96YkeZHbt286rZs8hHQa58Bu7ToAbfDIeGfSBGzpMCKy1PlXRtBooQ+zSJpCUkHEzSn8vApedUvXruTquzSrlsd2gnn6ysYynlMu8vYwLpLlAxuGwx14umeNoJv+PZZpJcoxmBUCu7+WFD7KXYzTNrSIBXC17JUossqQjZc4qH/q/ZJCxTLK3iwR4gTq6qs6mXe2PVKXnImqZWmWwTmIVDogpQHpqpY8sdSNa1ZqRIu2VCgeYqFbLDym4KAEkpQScCyf1QwMksUytNKaIupECxwjxiGVeTWIT1RpikbL8nMsiBx1P0yEDg+QFF1wQBBxbfv7znwOoNmk1WYU+TVO84Q1vAOccl112mfPdqaeeat7vscce2HnnnbHPPvvg3nvvxUtf+tJSX0uXLsWSJUvM5zVr1mD77bcv6xbQI3ShQttCM/DQ+0FNTRuzTk2lDqgmU5r6OUKRtSHArALLyQLKKv1swNRgmatj+2CpHzx+BKwtG8N4ssExV8CYcWH+ZxxY18tVPVYJkusVMIYA0smFzIvoVbtQQBHFCis9orjaGiD9JbD0Ch8yD9JK76jJh7TNrJskhZlVg2TkpXzoqjokHQXJRl0WaUW0SoBMSwE7eY8bU2uVaKCkavBogJSpHtR676Z8RN3E8kO6eZE2ixSRCtqJupM6niZbBgbJ97znPX0jSXfccUf88pe/xF//+tfSd48//jjmz59fu3+apjjppJPwyCOP4Ac/+IHDIkPy0pe+FHEc4+GHHw6CZKfTQafTKW0P+SSB+plv1QWaiC+nbvY023RqKoMuyDyoNF3MuA4wq8ByIkBZNzkIAZ3PLjVYQghVFD4MlrbM1PGUCyDnAhxwwDEXAlkukHIY9jiacYxpk6vFIqXpVZtVCwbZy7gTyVoE6AirUIAwLBKAE/FpA6T+rP+zSIFJFUDqQJ2YWWbW2BQN6DDqBOzErAjUMSkfWbFeJCpYJLdSPnK7wo7xQ6rfpd6HAJOqlT0II2oBZSoXUVbRrJJFUhOso1f60L7IYF6kzSJVyscg40qPp+mSgUFyq622wlZbbdW33YEHHojVq1fjZz/7Gfbbbz8AwN13343Vq1fjoIMOqtxPA+TDDz+MO+64A1tuuWXfY/36179GmqbYZpttmv+QCulH9fvt16Sd37d9zNmu00yRKhA2QGht8wGzDiyrgLKJ9GPPoe9dEHfZJbfAMhdSX/u6DToRmY7xBBTgKJdpkuCYC8kacwWMKZd+2NGsAEMbJDVQrk9ds6r9vpdxq0i5ZWLNuPTzBs2rckoUBkhqzKtMgUoUMwskJUDGnQibdCz/Y7dI/dDg6FTWsRikSfnIxkydVvTGvIjWnvRDru+ZaFaRq+IHqph5lR9SC2VWrqcFkM76kJXBOoVPspZFRh2IuNt3XNWNp+mQKfNJ7rbbbnjVq16FU0891aRnvOtd78Kxxx7rRLbuuuuuuOSSS3DiiSciyzK87nWvw7333ovvfOc7yPPc+C+32GILJEmC3//+9/jKV76CV7/61dhqq63w4IMP4p//+Z+x11574eCDD56QznUn3p7t+jPfJjNj/zgE4Ys/23SarME8lTPHvqZWr20ILPsBZT82GQLAfiBLSHk/GeUqpM5CHtdml8LWGWGw3BDjyWaNBiADQKkZpc8eUw2O1nYbIO2Fk/UrzblhjNL3qIKkrJMqLHKlzY9usQBqvtPskVDIKjp6fUhWVNexF1EufJF+ukfxKgJ1pC/SSfnIxlwWaQGlYZFWwI4dqCMB070qlFHwQJkNHyB1bmTUjcESqtI+JDDKIuYdsJGkvy/SKmY+meNpsmVKK+585StfwXvf+14ceeSRAIDjjjsOn/3sZ502Dz30EFavXg0A+POf/4ybbroJALDnnns67e644w4cdthhSJIE//Vf/4VPfepTWLt2Lbbffnscc8wxOP/888GYG4bdT0IPgNDFCpmKQkyj6rMtdTOiumNurDoNKhMGQ1HtY3EP5K40UOoG9YDpg6XNKscLlObYDU9cqJ396zVgAgBRbYXSk8AFTP1bNGj2Gz8THU86fUOIAhgFYMCw+O8CZcZlkfKUuyCZ5UKySgWSBWvMDGu0X6nlh8wz7Xt0S7OFAnW0fw5O4QDFtAgx5lVpalUBO6wAyBHFIAsW6fohR2I3mlWzRw2WpGelfOQ9iNF1bkRr1nOLBqg6rdIfKUx1HQAmKMkHS2INfG1qpVagjhPNaq3ywayUj6ibOODos0iwxGGR4x1P0yFTCpJbbLEFrrnmmto2dtTgjjvuWFleTMv222+PO++8c1L0C+rTYFuTQIcqwPD/NwGT2aST//24pCkQjqcPb2YLhAHTB0ufVfYzvdrnxn4W++0GDvoRRfpJbnSS/33QzCHbEkgg0tMGO0hJ14nV76ukzlQswU82KNJW5G+TQOm+rwLHlEtQTHNRYo9pLjCayQCdXsZLAOmYWRVAmsAcIQyLFOqzLyTw4/U2Sohhj5pNyrUhreLlSVFyzvZDzkkYNknKLNKOZi0F65gFld1AHf0+G+0VaR+qkDnPi5QPAJWFAyij4Dk35tYQQNrVdaKRyKqsE0j56HRBupuUWKSIO85EFZjc59NkSlu7FYOd8DpzQNXnOpNV1XezUacpB8WJgKe+Yf0+CK0ETA2WIVbpA6WWwYJ43HZNz78BQm9HYYGfSVmBANTv0Nl/Nh4YgG14bMBfPLr4HQIql1Ntsz/nKtdTg6KAC46pKhQwluUGJDV7TBW77OWSQY5lvASQmkHmXJSYo88izW+n8upSlWfDrZOgJyKEynYsoiCkYJGRyiGsA8jNuhHmdmPMiakqXq5YZMJMLqQ2s0bgIOmoDNbRLNIGyFJEa2ZMrtInWZhY7ZfzexmByIVhjwAMQBqTqwJGne5hwHEkAY3jgkUm1nqRnS7oyCbgNouk0aQ8n6ZDWpBsKHWmzH77VJkUJjoz2lh0mhJwnCzgrAJH/Z293QJMm0EGt3lAOWggj1OWrvRd83602CwSKMyvmk2a7VY76g2CKrO0Lz4zDoKkMvdqYLSBkgtIf6EQBhzTnBswdN4rs6sGQQmIeQkg9edUmxiV79FmkQBKwTrEOgnMOgOEEuOHJGo1DKoB0s6JtKJYdck5DZC6YECdH9KwyN56WThAFTKH44OU73V1HZtF8rRYEssE63B3rBNG5DjNhQOOkkXKwuWUFfmQRdGA2DGzxpt03WCdzgjoyCbKzKoCdaKuZJE0DD1T/Xwajww9SDY92f4Dv6lJsglA2O30+9mk08AyHnAcL4usM7t6AGk+K7CsY5V1QKnZpN8+BKL2pjqzbD/xrWt2qnIuRMEe+4BinYR01YBo3gsYP6QPkplKt5DAKNcz1ICo/2fqu9GMm3aaPfYUg9SAOWaBZ65SR7SZ1WaRtsjgHAA0nAerfZI+OGp/pB3NyiLJEG0GqYN0JEBKUNy0E2GzhGHTJEI3ouhGBB07mlWbWU1U65haI1KBowLL3PdFppmKZs1Vikc4zcP8NqtygA+QRVQrNTVa7WhWbWY1wTojm4B058j33TludZ0Ai7TH0KDPp6mWoQfJEJUPmRz1f7+934e9j/1dXd8ASqA0m3QaSAYBwYq2ZAJmVxFilh5A6vdEtfVZZR1QNhGbeRXblFrWRh44y03B03/AaBCl43j02HqYknlGX8XQYIEkhJkUCBSskXMY06pO+bDBMRcFe0xzmR+pwXC9YpA+QOZcyG1WgA4AwyIBhCvpEGJQkln2Zw2MABxw1EtfUfVfV9IpwNFnkAybJi6DNIE61ouJrGRm5V4kq17pI/d9karCDvdMrSF/JLEAkjLqVtVhxESyRt0Ikaqqo82szArWoSObgGpwVME60g9p1WgNsMjxPp+mQ4YeJG0JnXwfMJpcoNB3oX6aMLTZolOjR29TIAxsqwVG3gCeVCi/34+oAEjz3mOVdUAJDG52BcoAGQIlv21fqWiXD/josYNc7KAcWxcfFHPFGDUwakDk3GWQ2uxqg6Vmj2W2WAZIm0VqvyOAkv+RUALKC59jXdyzHckqfZHEAKOOaLVTPOZ4aR42g7QLBnQi6gXqUOOHNJV1tJl1dJ1cDksBJdRKHzaLFJybCjuiZp1IQgmo53H2AdLkQZoCAjZz7JRzIhU4kqQLdEZUoE63lkVO5vNpsmXoQbLfCZ/ozCXUfwhc6gJmhkGnRmDYFBybgGKTfSh1+je/yzfFomCVVUAJuDmUoQCeEIBWAaTDKK33fmTmJMQBl44X0g+QYGhv06AIhIFRR7RKQBRBcHTMr4ppNgHInIviJSyArJmhUELAVSCOD6L6ewmSKi9SBerY7DGJqAOQmkHOSZhrYk20qVX+twN1EkqQUID0LIAMmFk1i8xHx9y8yJ5M+9DgaJtanbJ6KlDHjtzVZlYd1Uq1adVaBkuzyKCZVaV90JFNimCduGNSPqp8kbYM8nyaDhlqkAxFStVdHH+fun71vvbMp+o/rM/2MWeTTnZfJRkHQJbAMQRyE412tfu0ALMElh6r9IESqGaT45kVV5k0gXJkqS9NmKao0cjf3z6GD4gADCia9woMufYRKhDUQTsGJLkEOs0euSjMq7mOZvUAMrOA0QZK28SqhVACcGlA4NbopPoE2v45BYxAUabN+a/YYwggNYMcsdM7rGCdEVVRp8uoG6ij/Y+q9FyVmVWkcvkrn0Xqlza1VokBShOwIwGSxXKdSA2QpsqOA44VOZF+sA5LICIFlFV6WGNokOfTdMhQg6RP4wGUgLMKDIi3zb/IVcchXvuqvmejTo1lEIBsCo6DFhnwfZL6OAosRQAgq4DSNrtSFbQCDF5cwDazhnx+dlu7DVAGvtq8xsB3/qac27oUgAggCIpyuwgCpTa12uBYvC+2aaZo/IwKIHOuVgCxgNHXsUqkjxEAhaqm445YE6ijWKQPjjGjSCJqANIGR+2PlOtClqNYN0lYyQdpAnXSscIPmY0W0awaHLOeSfnIrUWVZaCOrtOaGzYZMrfqnEjNHgE4AFkUDZAskql1IWU1HdfMSruSOZqcyKRT+CBZAsEk1NjPpMl4Pk2HDDVIaqmanfgzF3jf1X22+w711YT5zTadJgMwawGygXnW7Us4uYPBfXw/pDqmwdJgx9VACSizq2datb+vE4e5VQCk7QvUUhUZGzqkDy42kNtpJPbpNwAZAEV7ewGUmmUW7zWL1Kkfmj1q4HODcXJnu2NetYHS0tePXDXqqzeMuWPBmFkDqR4xo2CUGHBMIuoApH6/SeIXLGdeLiRxfJFuoI5c4YPkqTSzaj+kFaxjciHTMpPkFUE6AJycSP2ZMiJXL0kkSOqUj9gO1PH8kKXSc+o/FHsUtrnV02Gyn09TJS1IojxL8QGgn9SZzEJ9hdr3M0/OBp0mKpUA2Zd5VmtX950gJAy0GiyrWKVqUwJHAnAQxzyq2WS/8xdikXK70lWUwTEUEWsfJ8QGARdYgGowLLbpdgUwFezSBUbzfQU4ciEc9qhZo80UNUDqz/Zv6ccebaBk2vdYU01HA6MO2LHBUb/mJLaptQBIWaBcpoF0baBMmEnx6FgsMlIAafshkfecIB2z0seYVTigV7BIHaijUz00WDrngJFSTqT8zUWah2aSMmBHskgbKE1tVqf0nALIpCvzIWtSPibr+TQdMtQgWUXnmwSsjMeXVHVMAff4Q62TCINfI4BsAo4DmF3t/YOAaRFMQP1On3nCyoO0dg2xSfNdAzOsDbRVACnMNil1JlIgDIZuW1ht3f39Nv2AUYKh/1kzTtd06ppSXZNqxuvNq0ylcji5jgAAVayclR+1Ti6kMrEyIoHRB8iOYZKWL9JbyaNYF5IaH6QNkN0oEMmaubVZNVDqnEjNGrPRnlwv0meTuYAI5EQSSiE4d3MiKTUmVzuKVaZ8JJV+SG1mNUDZ3cTkRIooBqKujGqlhal1sp9P0yFDDZKhEx9iT0A1IPjt62Y8oX5DJojZrtOEZoANALIEjk1zL+1akn6lHZ1Tp8HSZo82q9T9WLmU9u8OsUn3uzBwhsRv2w8gq3yHzrY+DNEcOwCKuo0PjFqnJuDom0xdU2rZrGp0rWCQTJ9UDyjNd57YJlZGCBglBhhtgOxEti+yYI/diKLDKLqRDNDpWkAZAshSqocyr7p+SNcfyUfd8nOmiIDFImtNrfYqJoFoVhsgaRyBecXL/dqstLuJCdYxOZFRt8iNxNQ+n6ZahhokgTAgaOnnZ6sLWPG3+bejz8rsmdEw6DSIBNM8mgDkgD7KvqXpbLD0H7kctUAZMrtSIcCJTOAfuJC5fWjhvrcB0hQWF6IEjnUsUEu/NsX3RXsfGM3xLXAstg0OkL7obSHQK05M4XPMaQXjVH3ofnxwZJQ44JhErDC1KiDUIOmuCalAteSDpEiIB5A6UCftgY8+I/2Qo+ucGq1mAWUrWEfnRfrsMVSf1ZZ+ABkZ02rZD1kUDSiWwXJyIqOk0EMfH5P3fJouGWqQrPKvhbaFQKEOKKqYk8/C/MHTz1E9G3Qat/SJZDUA2Q8cB4l0rQBOE/Rjs0q7zoB+o45nA+V44JCCBCvsaNEJ+8XnaoBsDnzjA0azTe8/IDgC0ozaVDSo1YGl3UbXYLXb2cDovzQwFkySOb5Imz12FCDO0X7IhCGiUMDopnm4JtZ1BUD2RiFGn7GAsUj94GlmollN0QA7L9JU1imPW3shZQBFsI4VsFMLkLYfsruJLBrQ3aQws+q6rIHKOlP1fJoOGWqQDInvg9Pv/e98sS9kne28H+saFp36yoD1W4MA2QQcq9ij/12ogAB0WbpyuogBSqs/Y1IV1WyysA66n5sSTeGBcB1AVkWhAs2AUX9f2iaEBdBlcLT1CplOM+4DZzWL1FIFjDkXtQzTBkf93wZHGxj1ew2OMaWGJcaqvc0cRyKGyIpctQuX9wNIO1jH+CF7aSlYRzNKCY6FqRVAqXCALSZYx6R80EqA1IE68Zyu64fsznGjWZV5VUe1Ahvu+TSZMtQgWXWSQ8yojurbF7afvd3vL9THsOg0YdHmzH4BOhM1u1aVptNfg7qBPSGg1NunSUppHAGADDHHOnC0gVFvK+1fyyhd0C6la6ggnSpA1KBnf65q47PLUDv/f+QxSMkeyz7ImFLEKuAmptSwxy4rWGTsAaMBS1qkeZRMrJpB6khWm02mPQOQkkWmVpAOd1gkAAOUeoUPXzR71Eth6YWTQwBpB+poYKSKSdLuJkU0a9yVABl3zVif6ufTdMhQgyRB9QWpet9vRhNiVv10sIGozmE9W3WqNGsOKrqPKoDsV7Un1GWNydU2tQaBUh3DubEts2s/NjnRqbINSO624rOfrgH4zNJqVwOOQGFW9b/z2aNu6wfe1JlYbYB0TKf9TKsBkyoARB5z1O81MOr3kRWs44NjpCrlGF9kJE2uMSWIKRApUIzV/6gfQGrG6OVDmnQPKydSr/DBDTjy0gofOpLVr6qjwZGwAiRtgKSJHayTqCWwOqU1Ikl3jikaoNeJRJQAVrAaMPXPp6mWoQZJoHyifSYUmumgz7aqi+fb1ZuaEWarTrUyGcDZJJ2knxp27dZQPiTgACWAwvyqgnlKx68Ayhyu6FSQiYKmzSKLbS6AVgFkiD2GwFF/J/ty2aNum3vt/fdVwihFznkJEG3W2M+sau/j/5cvGjazMgmMGiBtcIwZQSdiBihjvUAyLVhkRCH7oFCVdIro1RJA2mbWsVHHD8l1BKtlZvVZpBaRc5MLqUUzRwAGIJlaGNoHyMhK9TCRrF21uodVVYd2RsCjbrFOpGdmnc7n01TK0IOkltDJ9y+Ov82XuosXun19pjZsOjls0hygDzh6bLHki6xhkyVwHLBUXWXtVq8tEcIBSkJRLMFVdxiPTfoR/BQEnMhltyqi+2slFEFrb5tKgPQlBI4RJYZNlgEwtLpjM7+jbuf+p7BNq7apNYkoGCFBcIypa2btquo7OjgnCgElgQTDrGet6JGWANJmjhog89Gx/7+97w/SorjTf2bmfXcXCLyKK+wScTU5DlRIih8noN8SfwWwijOJlkjk9kiKI+qVUU6tRO4qEVIVQXOndXdJLomF4hk9KE+5lIfhDu/A825BCRCFgMTzUPRkQTnYxQT219vfP2a659M93fPj3fd92d23n6qtd6anp+eZ7tl5+vPpT/f4S8+d7pbcrKoVCUD7GSw63YNaj/5YZM7fjxFIsaIO/bpHELgj1mPliwYEblaTB6rc7yfrbq0C0vRe4vJmcRHoxCfu4ak5TuVyuarQCaTpOmr0rMYK9EUwZu1WkUcjlKToNNYkFU0VYh3YjF1rnbiqadKUEkUE/W2zQKaFzgrsKzLhBjXDDc4PrqmxMMNruGRbthypu5VHrnqO/wksbhHmPV8sqeXIRZO7Vl0HQhRDyzEUSt+96i9Sjt4zcLhQ9nVHBLJIhZJ/I7K7l4xDhm5WLo5cIKmr1fFcYU3SNADCveq4Lty6nJgHaRRIZbk5MQ4ppnvUZ3KzlvP9VC2LsqZFMkkc0gwoqz2aJLejrjyaX3UvDHVOZUWcNanm4Yj7rJZONLno8uLocc1qO2I/QSjDNL0wiqhX5kS++eiX0T9HVDGF2zOLCGZBklDqxiMBPuboSfl0ZQMQliJPE39EGLn16DqhSOZdJyKOfNtzwrFHWSid0L3aGwik4mpFT3e8QJ7RjEPyOZGKFan7yoejTPfg1qP/QeX0AkkXCvBdrcE4ZDDdQxfNWq33U7VQ0yKZ9KLXQRWRNC4ER/nleZLOrRVOlX7gU39zMm46CD3HDa1Hyark+YWQuvIC6oapIUA0iAcMkekg4jSHL9DtgM4NoWOXYqUZAHAZ/EL9g6W4assBz3HQx6JjiHEBOFwcky1M+Ty6LYljIIqe64/5+vuQrMa860ju1nC80Q/k8QVXtiA91+dY5zrwUITT2+27V4PPXImvevR1+wJ5Jhx71AlknzIOyfr6xL5qRVLQsUg6zQOAcK9yFysVSDefl4J1wg8oh9+HlMYh6XSPfANYsFaxDpV+P1UaNS2SgLnhdL0VkytBZ3XprNS0165VTrrPTsVOx8gKYdVlGJtUA3T4+YpVGSuU6iKvpGzV7coFjAbthGlRa5KvAVvqOCWHv/B3eV5BnLvn+uOSbtBRKDImVrbRzktAumkepvPUbX4tnSh6riP2c8Iq9Ndp1VmRqjh6ju9a9VTrsdirtx77uoG+bqC7yxzFyr8PGSwYQKd7UDer+vFkjvDLHrI4cutRiGNdzl88YFidL5T5vLRYAJ/qISJZyZ8Yh8w3iF8+3n4230+VRM2LZJJrwASdCxKGNJMLQveQmNwLQ51TpaxJJ871qknXzbkU1qDmk1lcLCPuV5NQxrhd+xiksUYXvuWlc8HqrEkHDlyHpY6EFYJFrEs/LZzKQcWTW4KhCPqCxkWeHwdkoQRksYzw8BzJlZtaGEl5tGwuiDyPKoquE67NSoUxEqzj+e3iObI4cqvR3w9cuRrrUbIk+3rCjyZTUVQEkn8fko5D8jVZ6Vc+dFGtAKRFA6g4OsG2F7hZw2ke9f7vMNmCdIV7NfxOJOoa5E9f5esjHb9qvp+qhZoXSQ6dTzwuT5qHQX1xJvnra52Tnxi1Ilng1oQunwlpgnPiFkWnlyLHdIsGRNyvGo5JQil9WgthEE+YBkgu2BTWZJzLFYrl6AUX4mm+TgWiGKggFUKdUAY3oq9EZb1UDw6ot9AkoCqUoTZJDEPeZlHkoqcKo0sE0j8XQgQ9RRw9fiyIXAUfeyz2CZeq09sjuVeLQhQDoQw+d2VysdJxyIibVWNFRpacC4KWqHtVTPcwCKQ3fHi4JiuNZOXrsmrGIZOitqv9fqoErEgiajXxNA71WFrw89RekFqezk1Ri5y0oGLouvqxxFKQRiC5WFM6QV5p3VZhVUIvlEFZRqFUvj0ZWpWyBanOm3QQWpOhqMrWZJJQCjr8GkFaH2NaoQxuSq4nWkWSy5ZYd44TCfwhMTeJkK1Gku5ycXQkodSJoueE+agw+vu+1SgsR4eswiOEUhHHoh+5imKv1npEsVdyr7KuM2C93bIF2dsjBFK1ILlAUjerCr5gAN0HIFmPjueK8Uff3ZrXTvuQpnoEcyLdhhFA/bDwqx58PiQZhxwo76dKoaZFUu21ZHUhqg+Iqcek7pseLHqsFjmFJyZYiWWcLpL4WS3D57SkBc55erGoF0pynhaar4Woblc+oUQSTcjzJoULlkWFUvfZJG49hlMPfberTiiDC6KYZDWS2/Qgz4dMay2K8xW3q8lq5ILI03SiSPepMDrwrVPPceA4oWuVCiW1KIU49vX6gsitRz4OWewNg3O6A1EMBBG9PeFHk+k0D4NA0gCdInGvqgE78qev3HC6R2A9StGsdXl/gYAgSMery4nFAmiADrckwxV16qWve9BxSI6z9X6qNGpaJLP0cnR505yf1KPSuRhqmZOEJJcrfItOCF1/xTPNubrPZqlWpUkokex2deiHmg1uV0k0mS+UsqiGQkkDgfyN0Jr0A2kQEUpCQE6DI48fCtesIwxILlZibFLzUeM4eIqQUp3kH0NWBZEfM4mivw/hSuXC6CAURDr2qAoltya14ljs9V2rgTg6fT1gXCCDcUbJvRpYkujtCRcsV1ysrK9PfN3D5F4FEJnmwdNEkI7iXnXz+ciScyKKlQpkMNVDfNkjV+9/9orPh/TqNGyiqMb7qRqoaZE0WUxx+Uvxh8f1klQxUq9Ra5xCI0UfLSq5XONEMatgpplTqfsos+6zWf0UStdxpUUGHLDIuq4O8Za6zAFzmLIOrC+Unuuvnapzu4Yu0LAwmuYLIrRiCcgBN2I9HCKcWeAqVqNqLfK0UCiV4ByNKIbTPRzhSuXC6CIca/QtyNClKsYgg3TJrVrsC63FvsDNWuz1I1d7e/2xx8B6BLcYuTXZ2wPW2w309qDvTJe/UIBGIEUkK41mTSGWVBzFtiKQ9CsfVCDFYgFkqge1IMHHI3MNA+79VGnUtEhmQSo3YQll0fKy9o6GIqdIL9FkTRrWT013kcC9GTcWmZROFwtIEEpdmVnGJxlDZAF0ljA+mSSUnhdYe+oYZcCH3LQQSxd+YA83DnkADxAORXoZLUc1kJVahv4+zycLIj9mEkUHgfvZCV2pXBiFW5WfT6xGh4pjX7dvOerEkew7xT4Uu06HokisR/R0h+7VXt/K9N2p6QVShWpB0nFI1b3qW5P5cOHywNWqCqT4/FVgUfL1WLnlyAUyC6rxfqoGalok01Z0lt6QyeduKqPUhh/qnBwgnTUJxeWq5C0pMjYNaFBPglA6AQ+RV9yrLJTwSDRszPhkUZkW4gtpOD5pEsoiAxzXAQOZi0isSpevu+o6RBAdMTZZZMS6hH99AJJwpkXUcgzS1XFHo+VoFkU/eAlCDNVt7k713a40wAf+s8LdqlwcA7eqJI5BsA7r6UaRiKNkPfaE29y9qkawsr6iXiCJOOoWDQD04igtFhAE6PCgnUSBDKZ7hAsFkECdQCAH2juzGqhpkVShq3xdQ+nSdD0mk2WWxV1Rq5zCQmRxiYhePyzKiLiS66QrQBHwJKHU3I8QSo1rlgul7/GMD+TxgnkgcUJpinqlViUVy6gF6ZBgHh88X1qobth0lmOYVxXFMB3CWnQMwsjdqi4JynH4NbkwEiHkYqiKI49aLRL3qdZ6pJZlX9EokGqQjsmKpAE6AMh6rKH1GM6HDAXSGxa6WJ18nVEgnToSwcpdq14ezPNlIq1gne33U7lR0yKp/mvrfN1pGjsuPQncaop7ICwnRN2Wruu/5NMKZjlW6tHx4cfjhDLII927ZvUdUyCPAzmQp+j48wzRT6HMKValKpaqBQn4458cXDjTIMly9NNkQeTHuZj59RG1Frkw+mONTtTNKokkd7MSq5EV04tjb28ojFwAe3v8fW498uMa96oQy2DeY1qBpFDFUUz34FM98nk4nitcrEIg6xvg5Oq0LlY/krWBCGOdiGSlgToD4V0QGZKpMGpaJHVIMvWTzkuTTy07afyvljn5F5EFTmdNMhTTuVyzzrVMGp9UXK5aoSwG1wXKEsjDhU8K3iFC6TDHrz+HgTEHDgMYfBctY07g/g1W1VHE0nV8kQUg5v8Xg3HLiBWZ4k1lshwRVklEEP06CQXR3zdbi1wYuZWoE0bhTgWIO7UojTeCFdOJYyB+QhhV61HjXmV9frRqkUetxgikiuhi5a7sag2WmePjjyJYRxXIOl8kw2keQRr9qkfwySsRsOPVDZh3QanDQP2FFUmCuIqnPSa195Smd6Vex4G+8S2nKKfwhJTWJM1jsiCzppugGZs0CyW0blUgXihNn9WC6wQr0skWJY16NVmVvuyEYukAwXglXw2HrKoTTPp3Iw3laPsbilcQgH4JOVUQ/WOcGRJF0Q1Ez3WiIilcsAjdqSgWfXFkxVhhFGkliiNfjLwvEEPqXvVdrD3yVzwUgTRZka4SxSovN+e7V+nCATySVQTkqN+EpAJJFwnI1aee6jEQ30/lRswM5/7jxIkTaG1tRaFQQKFQQGtrK06ePBl7zle/+lU4jiP9zZo1S8rT1dWFb3zjG2hsbMSIESNw44034oMPPsjMT9dDcmD2gZsaSLdvakS1N6b2jiyn6LUYILsnHVdeDstxgzTlTlSXpmZCf+ScUkBFVVkrVrJui8VoXvLnMBbuF4u+9cuPgYpCIBqA5EJ0uEgAkqCIeX9kagO1tsL1TSGmSvAFvfOeG/650b/6XPSPH2vIeeKvznPFn78uqr9AOP2SRp0XLhRe5znkzw0/ZOw6yjH/ryHIV+cFeVwghyK8Yjec3jP+QuM9Z4KPHp8Ovu14Bk737+D0dPnpQZrbcxo481uwM7/zv9Zx5nf+YuSnfwt25rf+VztOB5+44vMh+Rc9grmP4jNXwceS+fijSSDj4NKoVc2XPOj4I/3UlddQn1kg+VxIPtVjoL0LdOdWGhW1JG+77TZ88MEH2Lx5MwDg61//OlpbW/Hiiy/Gnjd//nw8+eSTYr+uTu7RLF++HC+++CLWr1+P8847D/fddx8WLFiAXbt2wfMyrHWlga4B0vjYTQ+Juq3+pukVWU48gyaIx0U00hVRa5IB8S7XcixEEGdRcvNQjXhNMzWk2OuX4+a0FiUP5gEYmBO4WxngBPtFJluVcEIXbBG+pcVYaNX59ejXPF1lzvUc+mUuLdQ+B3XPUguR53XFebKlKI4r1qI6pYOfJ1ypyjijsBp14488rRjmE9Gqvd1AsRi1HIt98rhjsU+4Vn0Xauhe5eOP4Uo5fUaBpG7WpHVYqfUopnuQaR/+WGTeH2fM5aMCGQTpSAJJp3ooLtaB9i6otiVZMZE8cOAANm/ejB07dmDmzJkAgMcffxyzZ8/GwYMHMXHiROO59fX1aGpq0h7r6OjA2rVr8fTTT+P6668HAPzsZz/D+PHj8fLLL2PevHmZuWap8Dh3gGk/zsVgOmY5RTmJ963J7UrTNPnEN+8UV2zcFJLM8y9LEUqFt9H1WuyF47jwnPAL8KpQSu5WLjZUPAEUwYQwBloIFpTIRY6LpufIQmkcmFJAhVCk8SICYePHufuUn6eKorQfnO+RY8KVSoWRMdl1qoijcKeyonCpsmJRcplG3Kr0eCCO4juPYipHOPZIp3dQcQRgFEgKVRwBhEvNeV7EvSqmezQ0wMnlQ1HkwTp8LJIKJA/OoYuX86UXMXDfBXy7GqiYSG7fvh2FQkEIJADMmjULhUIBbW1tsSK5bds2jBkzBueccw7mzJmD733vexgzZgwAYNeuXejp6cHcuXNF/nHjxmHy5Mloa2vTimRXVxe6urrEfmdnZ+b7ibj/MpyjtYpgfhAsJz0nP7MsYJKFKNL8xcRjI10VCzSSp1TECKXuuKhn09QQwBj1yq0n5tDgHI0VqRFLBNd1ApUUlqQimkAglAm3rTqyHWkMkqdFrUSfV7IoSq5mIFEYQyHUjD8Sq1GIHf/tCSzIEsRRshxjrEcAsS5WKo78l1uPPDgnumi5/yumeOTyUuSqsCR5FCsJ0tEJJH8+ePsMtHdBNa3Jiolke3u7EDaKMWPGoL293XjeDTfcgFtuuQUtLS04dOgQvv3tb+Paa6/Frl27UF9fj/b2dtTV1eHcc8+Vzhs7dqyx3NWrV2PVqlXaY2krW+29pHVDpOnt0Hx823KKyWd0u4ZpoPnUvJrAH2FNUlErdfoIFUICbcSraWoIi/lqCM9qCOgJ3a8xYulvSILplxm2IDWu0w5iCIuQiCEgC6K/HxVFnt/oRqVjtWmEkbpYidWIYl/UpVrsC92pKcWRmQRSEUcARoHkx9VFyvkvFUfH84R71QusSEkgqdWYz0cEUloogAsk34757NWAfhdUAZlFcuXKlUbB4di5cycAuTfJwRjTpnPceuutYnvy5MmYMWMGWlpasGnTJtx0003G8+LKXbFiBe69916x39nZifHjx/vnkXzUraf2WPivzvMU52s3laPLpyvPcjL8c2kEkLpdpSkhurxpRLCclmXc1BBVKMm1swil58hWpc7lCkCMWfJ0ANKxsHAkjkH6HMJteQxSFj9+PCKUMFiLgSj6YqgIIxE+Lox0/NGRhNNgNfYp+8W+MFpVk1f6ADJZgLxIxxg11iMAowWpWyBAEkmN9cinfYSr6eQB7l7N1SkWZANZizUfrsfKxyC5uzXBxToQ3wUD1pK86667sGjRotg8F110Ed58800cPXo0cuyjjz7C2LFjU1+vubkZLS0tePvttwEATU1N6O7uxokTJyRr8tixY7jiiiu0ZdTX16O+vj7xWrrKVx+SNA2kO6YrJ02vzHLSbwOQxI8ByW7XIL/Iq7hdI9YkRUWnhhjmUCYJJS+PjFNyqzIanOMLI//yhyqKXAz9MUjCImV3nc6HNAkiP0ZFkV9CEsY+bv0VQ6FThdE0/miwGiVLkbhUxW9fn1EcVSsxjTgCSO1eBdJZjzQ4R3Kv5vIiQAfKijpCIPlHkskCAWLbzQ3Kd0G1kFkkGxsb0djYmJhv9uzZ6OjowOuvv47LL78cAPDaa6+ho6PDKGY6HD9+HO+//z6am5sBANOnT0c+n8eWLVuwcOFCAMCRI0ewb98+PPLII1lvJ7HC+9tz0ZWve6ASLSfLSconvbup+Clu1/TRrv7xirtdVaEERCCPaQ6lf9+KUKIIuK6Ul49TasXSH6gU3haTJQko1mQCVMvRT1OsRySIInWj6oSRuk2FiLJoetFPF1YjFUKdSzWIVEWxL5U4qkE5qjj6t5NsPVKo4ghAEkganBNxr9Lxx1w+/AYkHY9sGB6Io87FmpMWC+AYTO+CasBhLI1DpTTccMMN+PDDD/GTn/wEgD8FpKWlRZoCMmnSJKxevRpf/vKX8cknn2DlypW4+eab0dzcjHfffRd//ud/jsOHD+PAgQMYOXIkAODOO+/EP//zP2PdunUYPXo07r//fhw/fjz1FJDOzk4UCgUcbW/HyFGjAJjdACrS9GLUslS3gc6NYDrPcjJzEmDhixWA/mWr5qN5eX6eB5DPob/qdhLU+ZzkV4gkT3ddcizYpufQuaD8mEvmjCrncLGMbAf3Ru9CfQsUY14L6io6agQrF2KtKAJSG6QWRsWdqrpUudUoxC/OpUrFUZNfJ45qUI5/G/HWI9/XgYoj/1Wtx0T3qjr+qLhaUVcfCCKZ2hEsFMDcnLAgB+u7oLOzE01NTejo6MCo4D1eCVR0nuQzzzyDu+++W0Si3njjjfjBD34g5Tl48CA6OjoAAJ7nYe/evfj7v/97nDx5Es3NzbjmmmuwYcMGIZAA8NhjjyGXy2HhwoU4ffo0rrvuOqxbty7zHEnVjAfkRojr0ThKGm1k3Tm6xtbxode1nJI5+RtlGJ/kbld1Wkg5LEp6PZPblUwNiViU5HrcKo61KiU3rOalxi090gBMaQ3PcSQR1YV0aCNYyb4kimQhhVhhpOJXVI7rrMa+PtltWizKLlV1vJEfN4gjn+uozmXMaj2q26LODOIIQBp7dDxXcq+G0azh/Echinw8krhahUDmGvyveVCBVL7oMZjfBdVARS3JgQpuSba3t6MQ9EBMldBf/zd9ENKWldRDs5zkcwR0FgpJl17GUjrZz2JR6va1RDXWJNlOZVHy42SbOY58zDWcQ68VXJrOfSyl3WjdqwKp1nFiW9B2UN2pcVajZB2GLlXJzUrEURJRLpL9FEcAiQIZ+f5jBuvRXzQgYfyRuFp9Ac35Qkg/d0VdrZp2HIzvgiFhSQ4WqL0UZtg2Ia4hdWXp8qtpllNpnKLjk0WSVpTHJ+MCedJYlPx6pY5TZrEoNdfxg5L6QpHtC8pzEXBXODuuqCtPMx8uDfQdE0RFEZCsRQDxwqhzp0oi6Qua0aVK0qVgnDKKI4CIa5X+SvWkCCNNM4kjtR7psnOSe5WMP0KzYABfqDyNQKptPxjfBdVATYukyZxPch/EpZdyTQb5+pZTiZyUifuSUAbHyyaU/Hx+XQ5VMA1zzyL3m9b1Su9T1BUJ6gFCsQzcsJJgqucT4UyEYVw2IorBcSGKPL9JGIl4ShZjcIz19aFoEDppnJGLpE4cNW5VdSEAVRx92umtRxMiLtYs1qPnydM7lPFHfsytHwbmeqFA5uujwTopmniwvQuqgZoWSZPfO6knE/dAxPV4dOXqenaWU+mczEIJkR4RyuC8TEJJryXdRApR1FiT2uNcKPk9xlitDr9RblnyMqhgAkI0kVBetHySj65UpIoiT9O5tA3CGGc1FhX3abnEUV0IwL+t9Najuq2tsxTiSAWSWo+O5+rdq5rxRydfJy0SgJwmmpVzwtB7F1QaNS2SgP4h4DD1fOIeOFN+tbeu9sRoz8hy6h8nJ6tQqhyoUCI8TxJKABGxKxWq25WWXQytwaSxII6wA6AIJuCLJiALZxp+mn3teK3qdlWFkeZTLEcRiKO6VHXBOKo4krHJJHFMcq36VWe2HtVtqe6JmzVJHN1g22g9cvdq4E6FLkAnl5OnePB5j3TBANp0uubF4HwXVAs1LZImn7ouTfcgxD0cas+JlkOPqQ+P7pjllI0TQwlCqeQVfFgxEikLQG9V8vz9QJJQcver7r7DCgjvhQomALnsDJyksmN+VWEU5xusRqNLVReMk9ZyDM7LIo7+LeitR7/6zAJpDMwJxNFPi7pWueVII1fhesJ6jHOvOrm66Pijm5MXCYixIIfKu6AaqGmR1EH1u/Nt9ZgKnfshzYNBz7ecysfJTyhdKPk4niyUBvcrz8OvKchmEEwqbElCGVzHUccaE8r1yybHdK5hXVm6sUgqinyfRLAahZEf17hUs4pjJIiHuGNNcx25OAJIZT3yfBRxQTl+terFUReY43Kh5K7VQCSl4BwevUosScm96uVCsTQsElBr74JyoqZF0lTJut5QnKlPGzbJ357Us7OcysupP65XSSgB7TglAL1YAtCKUEoYhRKQxDLJGyJx0o19Jp2j7DuKSGqFkR+PsRqZKmwx4qhGq+qmf6gRq6VajzxN3HbacUcy19EJ5msnuVb95eaikati7JG7WGn0KnWvup40/si3+fi64Iih+y6oBmpaJB2YG8S0ncbFkHbsiHOgD5/uXMupf5xiLUqRn6zzqogJA/TjlEA6sUyLiNXHou5Rg1hSNyznrC2fl2E6RiAF62hEkXMU+1QYI2nx4qgbc5SsyB6NxZjCtQogk0BG6sBz4+c8phRH1bWqBuYI1yoXxlxejD0il49Gr7pedA1WQwTrUH8XVBo1LZJAtKLV3o+up4OENFPjqX71tG4Ey6l0TuFBjfBRyxBEKGOupXW/BmlaseT5S4QklLwsXrZOLClPE5L40OOaSFZTFKvqUk0tjn2KxUiFsgzWo38bUYFMizhh9I+nE0fhWlUDc3TWI1koAHX1YG7gUnVzYgWdiFhSjqitd0ElUfMiyaGrfLVx1DQVcY2ne2mpvTPLqbKc/MyulMdRLEMRmJM0TgkQqzJ0wQKQxVK5ZqxAGdyzWqGk+ekL3+2HJasKBynDOL0DkF2qQXpmcVStR7qEXMz5WQQyvK1wDFIH9fNVFC4dewzGG/3tqDjScUfJtep6qaxHHpyDQCC17tVgDVYgKigqhtq7wLpbq4A0vZe4vFlcBLoHLu7hsZzKz0mUqVltRnK/8sCcLFYl5PMBjVgq186CiFCS60jlZrCQjGVB4ayJZI24VEW6Io6cU5JAknmPEeuxBIHkoAIZN77oeq7R5aoKIxBajX5aCnHkUaskMMc49hiIJfNIxCq1GLlYBmuwAgP7/65SnKplUda0SCY9EGkGlNUeTZKrQVceza/rDVpO5eOkE0phIZrGKXVQrcqsYlkC+PkRsSTX6m/ZkfLioll14ggkipvReiyDQAr6JIrVeM+eJ1mTrhdta4d8NEG1GgFExJEG5fBxR7iuED+4Xirrkbm5wMWqRK8SsQQGz/9dJThVCzUtkkmNq4P64KRxITjKL8+TdK7lVFlOjnGckqYVzQsIkOtGxLIo56NjloJPiaIZK5YZzpegC9Ih23HiCECInxAzoGoCKd1GmmXiXFe4XJ2YLwdRt6vOauT7SeIoRDJPLUky7zHGeuQCybx8MB5ZJ9yrWs4Y+P935eZUadS0SALmhtP1VtQekVoG3dZZqWmvbTlVh5MklGI6CJLHKVXw+Yr0ujSrEuAjTiMiV4pg9tcyjVifqvUIRRz5LwngEZaYTtiAighk9DaSLEY/QpVGqsaNO/Jz6K+rWJFcGHlATqw4uq4+MIdEthqtR2WfkY7XYP2/qwSnSqLmRTLJNWCCzu0AQ5rJBaF7SEzuBcupcpx0FiVgsCohW4dat60S7BO6YaP5xabGKuy3CKrQuWQNFqRWHINf1Xr0kzXCBvRfILW3UTSOH1K4ritcrlQo40CPq8IotksQR2FB5utAP5iMXPDxY3XskX8UmU/vcFyo49mD/f+uv5yqhZoXSQ6dTzwuT5qHwVHyJvnrLaezw0knlCJdI5R+eeaXrbiPOLEEYBJMkVQu4SyTOPLrR6xHQC9sSQKZBkG5aaFajS6xGONk1TW4VuliARFh9DzA9bKLI3et8nmPbi4MxiHiSK3Hofh/VwlOlYAVSUR7SjyNQz2WFvw8tReklqdzU1hO1eUkzjWNUwLpg3qUMiVOVCyB1IIpDmUJAkoSR2W/vwIpoHGxaqGzIlOCRqPyMcYka9GLsSJNC5NzYaT7Yp6jK4tkkjjCdcNFAbj1yOc9UnHkY4+OKwnkUPy/KyenSqGmRVLttWR1G+j86rpz1X3Tg0WPWU5nj1NEKIM5kKVYlX5GzZhlkF6qYJYUMdtPgQx5KoIoiuszWn7UiswM1xNlcgFjxaIvlNlLE1DXW6Vp3GLkaZLV6MoiSQNyIuJI5kQilwvFkQbmaAJ1dMFhQ/3/rlROlUZNi2SWXo4ub5rzk3pUOheD5XR2OYlrJVmVfA3XUsRSM55ZimCKhdazIk4gFUhjkOJ0xa2qCCMdr+wXeKQwIE3Z4NYjtyi1i46nDM4BELEW+fUkYSTbTi4PBMfTiCOo5ai6VskiAXTpxCwYCv93pXCqBmpaJE29pLj8JbyOYntJ1RgXsJyyc5KEkgiaZFUCpVmWCpfI2CUQHb/kXEQB0aCfsgX6xImmwYrsN1zPbyNePt0XddGnnbLhkSkdCAROF9ijzoNUrUdRtkEY4XqhS1Udi0wrjl4u6lr1glVzNJ9qq7X/u1I4VRo1LZJZkHYAOmtZtLysvSPLqbKcTBalxEVxwfrH0otlSdYl5aSIZWR1n34uMlB2EMsQAOBxMeTji55ft8WiEEpA/5KULEvuhg3E0dNYkfK4IxFEziu4vlYYVauRiyEdn0wpjlKawbVay/93WThVAzUtkmkrOktvyORzN5VRasNbTtXhJLl24iJggfRiqYohKUtcKqs7lqzuYxRK03apUAWP8ve42HH3aNK+K/bFMVoeALheaFkSUQUtx7Q4gEvSqSDSYyZhVKxGfxwyOuVDFUc4rnnckay5WqpbktbNUPu/S8upGqhpkVShq3xdQ+nSdD0mU28si7vCchpYnPyNmHmVQGmWpWYhdQDheGGSOzZpgfUYcZTmdmp+JeElQTQUDhcwXR4qpkLUihEx1AVnRNqPlx2UE14zJnJVEkiD5QhohTFiNSpjkHA9WRwdV+9adT3tijkD8Rkf7JzKjZoWSd2YJBDfezI1UH9873G9J8tpYHESlmWSCxZIFkuDRakrE0Dy2GWcVakTSp01GXNMDpwhVh0gW4DEVSqsRdclY4xkPVT1HpX7pqIYEcRAaGNB5z8qlqMQxSAtIox8rFEdfwwsSeY46cXRI3mUe+UYKM/4YOFULdS0SOqQZOonnZcmX1afv+U0cDk5fCUUOjbIj5ViWapCqLEuAaUOTKv6kPVitevPStaiK1utyjYXXOpGzSSUCm9jWiCKjucBfaEoMlUQFbGNgAoxtTI9ajl6IXdVJPOhIErWo+f58xwd1+xWTRBHjsHyjA9kTtWAFUmCuIqn/8iR3i6SXwTqdRzoG99yGnyc+mtZ+tdNEeQjTjQE+2QRS1UoKV+dhVuKUIp7I/XBRVCXxt2yosxwvDEy1tinqS/deCQVRECIoEjjomia7pGr8++XW41cHLkwOm6iONK6VTFYnvHBxKncqGmR1DWYqaer5qW9Kl0P0YS4HlHcNS2ngctJlG9wnSaJpZ8nQ0SsOKk0sZSsSlJWxKpURJTzlIQSKaxDXVqCMDpFGqSkEb+4Nxe1HONEMm4eJHenBqLIuMfAzfnpnsbNmmA5qhhMz/hA5VQN1LRI6qBrADVN15PR9Yx0Ihx5sRquaTkNPk6ZxRLR6FCtdWlywWrK5rwEhDBTi5GsoqMRQomr9j7Cyf2RvHTsUE0LBFGMM/IxTlUYA9GUrpmwMEFkbJK4UQVXTRSr5FLlFmOwHJwQQdVq5BYiT0+wHIfSMz5YOJUTViSRrcJNeeN6RqbGNT0UltPQ4JQklkA66xKOl2mhAHF9Kn6UCl8rIMti7TRRXWkoTixVYVTcs9IUDuIupav7+GXmY++Z8kBwff9XiWJV9lVhhE4cXVeyGqloprEch/IzfrY5VQNWJFMizlWQdI7aE1LLKbVnZDkNbE5GsaTTNUiSj6h16efL7o7VWpeSK1YuO678WLF0gnJzOV/MAwvRKIxFIoxiKod8XSeXT17RR5n2YZrqQaNaqSgKi5G7UhVhlASTu1ndnCyajpvqmRqqz/hg41QKal4k01a2+pJI64ZI09uh+fi25TR0OCVZljQPkGBdckFCiYJJo1g110kSY74snygnEiWLiGACCCNVDcLoIIUo6hA3xYNbuIooivtQXakuyaMLzqHpCNvaPuNnl1OlUfMiqTPldW4G/qvrnasNr/Onx5UNRB9Ey2nocZL+sVNYl/CIoJUimLp5kMo98OtAuY4om7t6DYsQGAUTAKNrwOb8V43DlDmSfYaxRnUM0jDdQxJCet/cwiPCKFmLXDg1whhxp/LJ/4ZxW34vapq4R+XYUH7Gq82pGqh5kaTQVb76kKRpIN0xXTlpemWW09DkhOB8XRCOlk+SYCa5TONELjjusKIsmIHrVyuY4GlhRKxIA/QLH/D7oTxcTyvkxlcTrS/q6qQWIt8n21pRVN2s1J1KRRPRdh5oz9NAfMbPFqdyo+ZFMqnC+9tziXO/0W1Tb8lyGvqcItZlggWoFUxqiRILUxv0o4hjxIKlLlkhmkQwgXjRBEIrkqer9VDiurFMEcnINhc7nuaGYqkde+T7LhHOFMvGDeTnqZY4VQM1LZJqwwPxjaOeE1cuP5f2fEy/IPv0mpZT7XEqi2BG8moEUyeUktAarEwgVjQFfaZYs6oVq0nTQueW5mVQMQTC8UmDi1WyKGOEUeIYsz8YnqehzqkaSD/yXwJOnDiB1tZWFAoFFAoFtLa24uTJk7HnOI6j/fv+978v8lx99dWR44sWLcrMT214ug9lm57DjzkkD91mkBvQ1Ni6si2n2uZE08ITo65B+cUf/Hm5YLK8H2gCKgDEemKO4/9JlhSZ4qDZZsEapdL8QS+n/+PXSfrz8sl/aj7XA8vlwXJ5IFfnf6yY/3l1YLkG//NTXh2QawDL1UvnS/lzDX4+Mn2DYWg9T0OdUzVQUUvytttuwwcffIDNmzcDAL7+9a+jtbUVL774ovGcI0eOSPu/+MUvsHTpUtx8881S+rJly/Dd735X7A8bNqxknqbeidpzgXIsbp+WrSsrTc/KcrKcJC4J45eR86iVSaeWpHHNGlyyRncq4eY4CRZikgWpuU+tm1Uz/igsRZ5OrUXA6EoVRaM2nqehyKlSqJhIHjhwAJs3b8aOHTswc+ZMAMDjjz+O2bNn4+DBg5g4caL2vKamJmn/5z//Oa655hp85jOfkdKHDx8eyVsq1F6K2uhJiHMn6MrS5VfTLCfLycTFz+SG1zAJGiC7TdOKJgDqPo0sY6eu0KO6Ukscb5RgcrOq7lY1XRVF4nq1z9PQ41QNVMzdun37dhQKBSGQADBr1iwUCgW0tbWlKuPo0aPYtGkTli5dGjn2zDPPoLGxEZdddhnuv/9+nDp1ylhOV1cXOjs7pT8gas5zJLkP4tKToLoO1F6T5WQ5pYXUw6YuWOJejbhmucs0cM8KFy1xlUZdrWaXqZSX/wUuzEx/3EXK/9xcvBs2Xx+6TvMNksvV/7hx6B4eiG1nOZWHUzVQMUuyvb0dY8aMiaSPGTMG7e3tqcp46qmnMHLkSNx0001S+uLFi3HxxRejqakJ+/btw4oVK/DGG29gy5Yt2nJWr16NVatWRdJpY5saX9eTMW3r9nkaoC9XZzFYTpZTqZzCTIqlCSDW2uTHg+AcyeKkKMpWpNlqTPjOownUgnSp1ahxsQa/unoGBl/bWU6lcao0MovkypUrtYJDsXPnTgCAQyf4BmCMadN1eOKJJ7B48WI0NDRI6cuWLRPbkydPxoQJEzBjxgzs3r0b06ZNi5SzYsUK3HvvvWK/s7MT48eP9/mo/Mi2rvFoHt1xU371jtXeEUP8g2k5WU6lchJ5TNMnAGijW3VQxhvTTuUwlqe9hhvlF6SbBHGotp3lZOZULWQWybvuuisxkvSiiy7Cm2++iaNHj0aOffTRRxg7dmzidV599VUcPHgQGzZsSMw7bdo05PN5vP3221qRrK+vR319fSSdVnZcw6rbvLHiHg6150TLocfUh0d3zHKynCrFSZSvGfPTIuv4YxZxJPl1XHXWRS23neVUHWQWycbGRjQ2Nibmmz17Njo6OvD666/j8ssvBwC89tpr6OjowBVXXJF4/tq1azF9+nR8/vOfT8z761//Gj09PWhubk6+gQTQf0T1n1L3TwqSZnJDZOlpWU6W00DlBPhiSs/LHHELPWeVk+6FOVjqyXI6+5zKiYoF7lxyySWYP38+li1bhh07dmDHjh1YtmwZFixYIEW2Tpo0CRs3bpTO7ezsxHPPPYc/+ZM/iZT7zjvv4Lvf/S5++ctf4t1338VLL72EW265BVOnTsWVV16ZiaOpknW9IVND8WM8r653pCtbTU96OVlOltNA46SWof6p16nVerKcKsup0qjoYgLPPPMMpkyZgrlz52Lu3Ln43Oc+h6efflrKc/DgQXR0dEhp69evB2MMX/nKVyJl1tXV4d/+7d8wb948TJw4EXfffTfmzp2Ll19+GZ6XLViA91gpdI1Nt5N6NGpPOKm3o+t5WU6Wk+VkOVlO6ThVGg5jGb7mOkTQ2dmJQqGAo+3tGDlqlHSMmv0g22olpU2LO561XMvJcrKcLCfLyUdnZyeamprQ0dGBUcp7vJyo6bVbKXSNRXtCau8lqXekK9+UX3fMcrKcLCfLyXIyczLxKjdqWiRNDRTX+Gq+uHJ05zuatDTnW06Wk+VkOVlO4W+aMsqBio5JDnQkVb7aU1H31V6NY8hH0xj50+W3nCwny8lyspzSc6o0rCUZQO0JmRqB5+O/ut6MmqZr2DTnWk6Wk+VkOVlO8ZwqjZoWScDccLTXQtN02/RhoQ+ELm+aa1tOlpPlZDlZTuk5VRI17W4F4ntCcQ1halBGfvmfWq6j5FV7TZaT5WQ5WU6WUzKnaqDmRZJDdR2Y8nCkeRgcpVxTw1tOlpPlZDlZTv3nVAlYkUTYKI6S5kBuvKwmvtrQtMfkaPYtJ8vJcrKcLKfSOFUKNS2SuoYA2WbQN7Kj/Krb6jnqvtpT0pVjOVlOlpPlZDklc6o0aloks/RydHnTnJ/U49E9ZJaT5WQ5WU6WU/pyK4maFkmdCyFL/rSI6yWpPTPLyXKynCwnyyk9p0qjpkUyC1R/eH/LojA9gGnKsZzSlWM5pSvHckpXjuWUrpxKc6oGalok01Y0bew0eZO2TRyyuDMsJ8vJcrKcap1TNVDTIqlCV/m6xtY1nq7HpNtWy0vqnVlOlpPlZDlZTuk5lRs1LZI6/3qSWW/qIfXH9x7Xe7KcLCfLyXKynMycKo2aFkkdaO+llPPS5DM9VEnuBcvJcrKcLCfLKf255YAVSYK4iuc9Jka26TFd3rjrOCSv5WQ5WU6Wk+VUHk7lRk0vcK7zeTvKMd1xtWejPihJD06SD95yspwsJ8vJckrmVA1YS1IBQ3IDqo3G00z7uodDfcAsJ8vJcrKcLKfycConrEgiW89E90DoytD1fHQPhemY5WQ5WU6Wk+WUnlOlUNPu1iyIcxUknaP2hNRydL0sy8lyspwsJ8upvJxKQc1bkml7I2pvKK0bIm3ZDinTcrKcLCfLyXJK5lQN1LxI6hpR5xtXezg8TddQuh5UXNlquZaT5WQ5WU6WU3pOlUTNiySFzsSnaWoDqT0l9RxT2Y5m23KynCwny8ly6j+ncqPmRTKpwvvbc9GVr3ugHGXbcrKcLCfLyXKK51QN1LRIqg2f1Dgw5NGVq+v5mH5pPsvJcrKcLCfLKR2naqCmo1t5Y1AXgPoQqA2h68Wo7gDdOY7mV8eHXtdyspwsJ8vJcjJzqgZqWiQ5aMPSxmLQN7qaT7dPy9aVZcpvOVlOlpPlZDll51Qp1LS7lYM3BjX56bEkxPVwaC9J16MylWE5WU6Wk+VkOaXnVCnUtEiq5jxN122r5/b3mrQc+tBZTpaT5WQ5WU7JnKqBmhZJ2ti00VX3ARB9CJhmW81H00y9LZ0LwnKynCwny8lySsep0qhpkQT0DwGHqedjamxdeaY02itSe0aWk+VkOVlOllMyp2qgpkWSVnRSQ+kehLiHQ+1F0XLUHhiD/ABYTpaT5WQ5WU7pOFUaNS2SOtBeitpj4fumh4OeR/cZOSfufMvJcrKcLCfLqf+cyomaFklTJet6Q6aG4sd4XjWf2tthhnRdT8tyspwsJ8vJcornVGlUVCS/973v4YorrsDw4cNxzjnnpDqHMYaVK1di3LhxGDZsGK6++mr8+te/lvJ0dXXhG9/4BhobGzFixAjceOON+OCDDzLzU3s9gL6x6XZSj4Y3Om/4pN6O+vBZTpaT5WQ5WU7pOVUaFRXJ7u5u3HLLLbjzzjtTn/PII4/g0UcfxQ9+8APs3LkTTU1N+MIXvoBTp06JPMuXL8fGjRuxfv16/Od//ic++eQTLFiwAH19fZk5qhWtcxvoeixxaaaGpufoelCWk+VkOVlOllN2TpWEwxir+DXXrVuH5cuX4+TJk7H5GGMYN24cli9fjm9961sAfKtx7NixePjhh3H77bejo6MD559/Pp5++mnceuutAIAPP/wQ48ePx0svvYR58+Yl8uns7EShUMDR9naMHDUKQFj56i9Hf3svceebemaWk+VkOVlOlpP+WGdnJ8Y2NaGjowOjgvd4JTCglqU7dOgQ2tvbMXfuXJFWX1+POXPmoK2tDbfffjt27dqFnp4eKc+4ceMwefJktLW1aUWyq6sLXV1dYr+jowMA0HnqlLbBgXQNW8pDoPaMkvJaTpaT5WQ5WU7R87h3sdJ23oASyfb2dgDA2LFjpfSxY8fivffeE3nq6upw7rnnRvLw81WsXr0aq1atiqRPmDChHLQtLCwsLM4Sjh8/jkKhULHyM4vkypUrtYJDsXPnTsyYMaNkUo4jG/iMsUiairg8K1aswL333iv2T548iZaWFhw+fLiilVsJdHZ2Yvz48Xj//fcr6mIoNyzv6sLyrj4GK/fByrujowMXXnghRo8eXdHrZBbJu+66C4sWLYrNc9FFF5VEpqmpCYBvLTY3N4v0Y8eOCeuyqakJ3d3dOHHihGRNHjt2DFdccYW23Pr6etTX10fSC4XCoHooKEaNGjUouVve1YXlXX0MVu6DlbfrVnYmY2aRbGxsRGNjYyW44OKLL0ZTUxO2bNmCqVOnAvAjZF955RU8/PDDAIDp06cjn89jy5YtWLhwIQDgyJEj2LdvHx555JGK8LKwsLCwqE1UdEzy8OHD+L//+z8cPnwYfX19+NWvfgUA+L3f+z186lOfAgBMmjQJq1evxpe//GU4joPly5fjoYcewoQJEzBhwgQ89NBDGD58OG677TYAvvW3dOlS3HfffTjvvPMwevRo3H///ZgyZQquv/76St6OhYWFhUWNoaIi+Z3vfAdPPfWU2OfW4datW3H11VcDAA4ePCiiTQHgm9/8Jk6fPo0//dM/xYkTJzBz5kz867/+K0aOHCnyPPbYY8jlcli4cCFOnz6N6667DuvWrYPneal41dfX48EHH9S6YAc6Bit3y7u6sLyrj8HK3fKOR1XmSVpYWFhYWAxG1PTarRYWFhYWFnGwImlhYWFhYWGAFUkLCwsLCwsDrEhaWFhYWFgYYEXSwsLCwsLCgCErkgP9W5YmnDhxAq2trSgUCigUCmhtbU38eorjONq/73//+yLP1VdfHTmetHJSpXl/9atfjXCaNWuWlGeg1XdPTw++9a1vYcqUKRgxYgTGjRuHP/7jP8aHH34o5atEff/oRz/CxRdfjIaGBkyfPh2vvvpqbP5XXnkF06dPR0NDAz7zmc/gxz/+cSTP888/j0svvRT19fW49NJLsXHjxn5x7C/vF154AV/4whdw/vnnY9SoUZg9ezb+5V/+Rcqzbt067fN+5syZs8Z727ZtWk5vvfWWlG+g1bfuf9BxHFx22WUiTzXq+z/+4z/wh3/4hxg3bhwcx8E//dM/JZ5TteebDVF85zvfYY8++ii79957WaFQSHXOmjVr2MiRI9nzzz/P9u7dy2699VbW3NzMOjs7RZ477riDffrTn2Zbtmxhu3fvZtdccw37/Oc/z3p7e8vCe/78+Wzy5Mmsra2NtbW1scmTJ7MFCxbEnnPkyBHp74knnmCO47B33nlH5JkzZw5btmyZlO/kyZNl4Vwq7yVLlrD58+dLnI4fPy7lGWj1ffLkSXb99dezDRs2sLfeeott376dzZw5k02fPl3KV+76Xr9+Pcvn8+zxxx9n+/fvZ/fccw8bMWIEe++997T5/+d//ocNHz6c3XPPPWz//v3s8ccfZ/l8nv3jP/6jyNPW1sY8z2MPPfQQO3DgAHvooYdYLpdjO3bsKJlnf3nfc8897OGHH2avv/46+81vfsNWrFjB8vk82717t8jz5JNPslGjRkWe+3IiK++tW7cyAOzgwYMSJ/qcDsT6PnnypMT3/fffZ6NHj2YPPvigyFON+n7ppZfYX/zFX7Dnn3+eAWAbN26MzV/N53vIiiTHk08+mUoki8Uia2pqYmvWrBFpZ86cYYVCgf34xz9mjPkPVD6fZ+vXrxd5/vd//5e5rss2b97cb6779+9nAKRG3L59OwPA3nrrrdTlfPGLX2TXXnutlDZnzhx2zz339JujDqXyXrJkCfviF79oPD5Y6vv1119nAKQXUbnr+/LLL2d33HGHlDZp0iT2wAMPaPN/85vfZJMmTZLSbr/9djZr1iyxv3DhQjZ//nwpz7x589iiRYvKxDo7bx0uvfRStmrVKrGf9n+6P8jKm4vkiRMnjGUOhvreuHEjcxyHvfvuuyKtGvVNkUYkq/l8D1l3a1YkfcsSQOK3LPuL7du3o1AoYObMmSJt1qxZKBQKqcs/evQoNm3ahKVLl0aOPfPMM2hsbMRll12G+++/X3yP7Wzy3rZtG8aMGYPf//3fx7Jly3Ds2DFxbDDUN+B/jcBxnIhbv1z13d3djV27dkn1AABz58418ty+fXsk/7x58/DLX/4SPT09sXnKUbel8lZRLBZx6tSpyJcePvnkE7S0tOCCCy7AggULsGfPnrJw7i/vqVOnorm5Gddddx22bt0qHRsM9b127Vpcf/31aGlpkdIrWd+loJrP94D6nuTZRKW+ZZmVw5gxYyLpY8aMSV3+U089hZEjR+Kmm26S0hcvXiwWkN+3bx9WrFiBN954A1u2bDlrvG+44QbccsstaGlpwaFDh/Dtb38b1157LXbt2oX6+vpBUd9nzpzBAw88gNtuu036gkI56/vjjz9GX1+f9tk08Wxvb9fm7+3txccff4zm5mZjnnLUbam8VfzVX/0Vfvvb34qPGQD+es/r1q3DlClT0NnZib/+67/GlVdeiTfeeKMs34gthXdzczN++tOfYvr06ejq6sLTTz+N6667Dtu2bcNVV10FwNwmA6W+jxw5gl/84hd49tlnpfRK13cpqObzPahEcjB+yxJIz1t3/bQcOJ544gksXrwYDQ0NUvqyZcvE9uTJkzFhwgTMmDEDu3fvxrRp084K71tvvVXiNGPGDLS0tGDTpk0Rkc9SbrXqu6enB4sWLUKxWMSPfvQj6Vgp9Z2ErM+mLr+aXsrznhWlXuMf/uEfsHLlSvz85z+XOjOzZs2SAryuvPJKTJs2DX/7t3+Lv/mbvzkrvCdOnIiJEyeK/dmzZ+P999/HX/7lXwqRzFpmqSj1GuvWrcM555yDL33pS1J6teo7K6r1fA8qkRyM37LMwvvNN9/E0aNHI8c++uijSI9Ih1dffRUHDx7Ehg0bEvNOmzYN+Xweb7/9tvGlXS3eHM3NzWhpacHbb78NYGDXd09PDxYuXIhDhw7h3//93xO/w5emvk1obGyE53mRHjB9NlU0NTVp8+dyOZx33nmxebK0Wbl5c2zYsAFLly7Fc889l/h1H9d18Qd/8Afiuekv+sObYtasWfjZz34m9gdyfTPG8MQTT6C1tRV1dXWxectd36Wgqs93phHMQYisgTsPP/ywSOvq6tIG7mzYsEHk+fDDD8seSPLaa6+JtB07dqQOJFmyZEkkytKEvXv3MgDslVdeKZkvR395c3z88cesvr6ePfXUU4yxgVvf3d3d7Etf+hK77LLL2LFjx1Jdq7/1ffnll7M777xTSrvkkktiA3cuueQSKe2OO+6IBDbccMMNUp758+eXPZAkC2/GGHv22WdZQ0NDYvAGR7FYZDNmzGBf+9rX+kNVQim8Vdx8883smmuuEfsDtb4ZCwOP9u7dm3iNStQ3BVIG7lTr+R6yIvnee++xPXv2sFWrVrFPfepTbM+ePWzPnj3s1KlTIs/EiRPZCy+8IPbXrFnDCoUCe+GFF9jevXvZV77yFe0UkAsuuIC9/PLLbPfu3ezaa68t+5SEz33uc2z79u1s+/btbMqUKZEpCSpvxhjr6Ohgw4cPZ3/3d38XKfO///u/2apVq9jOnTvZoUOH2KZNm9ikSZPY1KlTzxrvU6dOsfvuu4+1tbWxQ4cOsa1bt7LZs2ezT3/60wO6vnt6etiNN97ILrjgAvarX/1KConv6upijFWmvnlo/9q1a9n+/fvZ8uXL2YgRI0QU4gMPPMBaW1tFfh4i/2d/9mds//79bO3atZEQ+f/6r/9inuexNWvWsAMHDrA1a9ZUbEpCWt7PPvssy+Vy7Ic//KFx+szKlSvZ5s2b2TvvvMP27NnDvva1r7FcLid1dqrN+7HHHmMbN25kv/nNb9i+ffvYAw88wACw559/XuQZiPXN8Ud/9Eds5syZ2jKrUd+nTp0S72gA7NFHH2V79uwREeNn8/kesiK5ZMkSBiDyt3XrVpEHAHvyySfFfrFYZA8++CBrC0SibAAAAaxJREFUampi9fX17Kqrror0rE6fPs3uuusuNnr0aDZs2DC2YMECdvjw4bLxPn78OFu8eDEbOXIkGzlyJFu8eHEkrFzlzRhjP/nJT9iwYcO0c/EOHz7MrrrqKjZ69GhWV1fHPvvZz7K77747Miexmrx/97vfsblz57Lzzz+f5fN5duGFF7IlS5ZE6nKg1fehQ4e0zxV9tipV3z/84Q9ZS0sLq6urY9OmTZOs0iVLlrA5c+ZI+bdt28amTp3K6urq2EUXXaTtQD333HNs4sSJLJ/Ps0mTJkkv9XIhC+85c+Zo63bJkiUiz/Lly9mFF17I6urq2Pnnn8/mzp3L2trazirvhx9+mH32s59lDQ0N7Nxzz2X/7//9P7Zp06ZImQOtvhnzPTbDhg1jP/3pT7XlVaO+uSVravez+Xzb70laWFhYWFgYYOdJWlhYWFhYGGBF0sLCwsLCwgArkhYWFhYWFgZYkbSwsLCwsDDAiqSFhYWFhYUBViQtLCwsLCwMsCJpYWFhYWFhgBVJCwsLCwsLA6xIWlhYWFhYGGBF0sLCwsLCwgArkhYWFhYWFgb8f9B8w6/CQpkqAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7jlRJU2/lZVkrNPN90t9wbExgsDAgoIAg0DqCCIIILOgDq2l0Ed1PkEUX/KCKPip+ioDN4AeQZhUEEGkYt3cEYBpeVTBBxFHVQQL93Dze7T9Dn7JKmq3x91SaVSyc4+tz7dJ+t59tl7J5Vk7aRy3rzvWrWKSCklOuuss84666yzitFN7UBnnXXWWWedzVfrQLKzzjrrrLPOaqwDyc4666yzzjqrsQ4kO+uss84666zGOpDsrLPOOuussxrrQLKzzjrrrLPOaqwDyc4666yzzjqrsQ4kO+uss84666zGOpDsrLPOOuussxrrQDJg73//+0EIKS3bbbfdcMIJJ8zJ8cfHx/H+978f3//+9yvrrrjiChBC8OCDD86JL/PJHnzwQRBCcMUVV8zYPq+88kq84hWvwB577AFKKXbbbbdgu3vuuQfHH388nvKUp2B0dBTbbLMNVq5ciS9+8Ysz5stc2DnnnIMTTjgBu+yyCwgheN3rXhdsd/XVV+OII47AjjvuiJGREey88854yUtegjvuuKPVcX7wgx/gDW94Aw444ACMjIw09llCSPD1kY98pNTO9P3Qa+3atbad6Sd1rxe96EWl/f7P//wPXv7yl2PrrbfGokWLcPDBB+Omm24K+vq73/0OL3vZy/CkJz0JW221FV74whfipz/9aanNmjVrcM4552DlypXYbrvtsHTpUhxwwAG49NJLwTkvtX3d617X6OuPfvSjgW333HPPKZ9T38455xwQQrDPPvsE12/cuBH//M//jL/6q7/CyMgItt12Wzz/+c/H/fffX7vP7373u/b4jz76aGX9l770Jey///7o9XrYbrvt8KpXvQp/+MMfKu1222234G86/fTTG3/TdC2a1b1vpvaGN7yhciPNpY2Pj+MDH/gAAOB5z3tead3xxx+P1atXY6eddtoEnm159oUvfAFr167FQQcdBCEEsiwLtlu3bh123XVXvPKVr8Quu+yCjRs34ktf+hJWrVqFBx98EOecc84cez41+9d//Vc8+9nPxoknnojPf/7zte0ee+wxHHbYYTjjjDOw3XbbYc2aNbjgggtwxBFH4D//8z9x5JFHNh7nP//zP/Hd734X+++/P5YuXRp84HPtb/7mb/COd7yjtOwpT3lKsO3ll19eAYZtt93Wft5pp52wevXqynY33HADPvrRj+Lkk0+2yx588EGsXLkSO+20Ey655BJstdVWuPjii3HSSSfh2muvxctf/nLb9pFHHsHhhx+OrbfeGp///OfR6/Vw/vnn43nPex5+/OMfY4899gAA3HXXXbjyyivxmte8Bueeey7iOMa3vvUtvPnNb8aPfvSj0nk/99xzg//kX/KSl2BkZATPfe5zS8tHR0fxX//1X5VlIRvmnALqQfDjH/84dtxxx+D6J554As9//vPx5z//Ge95z3vw7Gc/G+vXr8cdd9yB8fHx2m3e+MY3Yuedd8af//znyvpPf/rTeNvb3oY3vOEN+MhHPoI//vGPOPfcc3H44Yfj7rvvxtZbb11qf9hhh+HjH/94aVmdvzNmsrNWtmLFCnn88cdPads0TWWWZa3bP/LIIxKAfN/73jel422p9sADD0gA8vLLL5+xfXLO7efjjz9erlixYqjtDz74YLnrrrvOmD+zbe7vXbx4sXzta1/bett169bJOI7lqlWrhjrOxz72MQlAPvDAA8G2AORb3/rWgfu8/PLLJQD54x//uLXPrj3vec+TixYtkuvXr7fL/uEf/kH2ej35xz/+0S7L81w+85nPlLvuumvpd7zrXe+ScRzLBx980C5bv3693G677eQpp5xilz3++OMyTdPK8d/61rdKAPKhhx5q9PP73/++BCDPOeec0vLXvva1cvHixa1+a9tzaizLMrnffvvJt73tbfLII4+Ue++9d6XNGWecIRcvXix/+9vftt7vW9/6Vrn//vvLc845RwKQjzzyiF3X7/flsmXL5Ete8pLSNnfccYcEIP/pn/6ptHw6/4OnYwtGbr3hhhtACMF//ud/VtZdfPHFIITgZz/7GYCw3Grs+uuvx7Of/Wz0ej087WlPw6c+9anS+u9///sghOALX/gC3vGOd2CXXXbByMgIfvOb3+CRRx7BW97yFuy1117YaqutsMMOO+AFL3gBbr/9drv9gw8+iO233x4A8IEPfMBKCkYWC8mtz3ve87DPPvvgxz/+MQ4//HAsWrQIT3va0/CRj3wEQoiSf7/4xS9wzDHHYNGiRdh+++3x1re+Fd/4xjdACBn4tG/Oy89+9jP87d/+LZYtW4ZtttkGZ511FvI8x69//Wu86EUvwpIlS7DbbrvhX/7lXyr7eOihh/DqV78aO+ywA0ZGRvDMZz4Tn/jEJyp+/vnPf8Ypp5yCJUuWYNmyZTj11FNLkpprP/nJT3DiiSdim222Qa/Xw/7774//+I//aPwtxiid3i2w3XbbIYqmLsicccYZGBkZwSOPPBJc/+Y3vxmjo6P43//93ykfw7Xp/N4lS5ag1+u1+r3TPa8zbb/97W9x66234pRTTsHSpUvt8h/+8IfYd999scsuu9hljDEcd9xx+MMf/oD/9//+n11+/fXX4wUveAFWrFhhly1duhQve9nL8LWvfQ15ngMAtt56a8RxXPHhoIMOAgD88Y9/bPT1sssuAyEEf//3fz+1HzsF+8hHPoLHH38cH/rQh4Lrx8fH8W//9m/427/9WzztaU9rtc/bb78dl156Kf7t3/4NjLHK+p///OdYv349XvziF5eWr1y5Ettssw2uu+664X/ILNj86smzaCeccAJ22GEHXH755ZV1V1xxBZ7znOfg2c9+duM+7rnnHpx55pl4+9vfjuuvvx6HHnoozjjjjAr9B4Czzz4bDz30EC655BJ87Wtfww477IDHH38cAPC+970P3/jGN3D55ZfjaU97Gp73vOdZgNppp53w7W9/GwBw2mmnYfXq1Vi9ejXOPffcRt/Wrl2Lv/u7v8OrX/1q3HTTTTjuuONw9tlnl2Jma9aswZFHHolf//rXuPjii3HllVdiw4YN+Md//MfGfft2yimnYN9998V1112HN77xjfjXf/1XvP3tb8dJJ52E448/3v4zefe7342vfvWrdrtHHnkEhx56KG6++WZ88IMfxE033YSjjz4a73znO0s+TExM4Oijj8bNN9+M888/H9deey2WL1+OU089teLL9773PRx22GFYt24dLrnkEtx4443Yb7/9cOqpp85o7NKYEAJ5nuORRx7BRRddhO985zt497vfPaV9bdy4EZdddhlOOOEE+2Dk2xvf+Eb0+3187nOfKy3P87zVS05zkh/OObIsw4MPPog3v/nNkFLirW9967T2GbKrrroKo6OjGBkZwQEHHBC8T42dcMIJYIxhm222wcte9jL8/Oc/H7j/z3/+85BS4g1veENpeZqmGBkZqbQ3y8yD88TEBH77298G/0c8+9nPxsTEBH73u981+vBf//VfiKIIf/VXf1XbZv369fjKV76Co446Ck996lMr6ycmJrB8+XIwxvDkJz8Z//iP/2j/r/jW9pzed999+L//9//i4osvxlZbbRVsc9ddd2Hjxo3Yfffd8eY3vxlbb701kiTBgQceiG984xtBP0877TSceeaZeM5znhPcZ5qmAFB7/u+//370+/3S8ttuuw1LlixBHMfYa6+98IlPfKIS551xm3PuugntrLPOkqOjo3LdunV22X333ScByE9/+tN22fve9z7pn5oVK1ZIQoi85557Sstf+MIXyqVLl8qNGzdKKaX83ve+JwHII444YqA/eZ7LLMvkUUcdJU8++WS7vEluNZKTK10deeSREoC88847S2332msveeyxx9rv73rXuyQhRP7iF78otTv22GMlAPm9732v0V9zXj7xiU+Ulu+3334SgPzqV79ql2VZJrfffnv5spe9zC57z3veE/TzzW9+sySEyF//+tdSSikvvvhiCUDeeOONpXZvfOMbK3LrnnvuKffff/+KnH3CCSfInXbaqSSXDbI2cus//MM/SAASgEySRF500UWt9+/btddeKwHIyy67rLHdLrvsUpG/jA+DXk3SdBu5dY899rD72mmnneQPfvCDtj/P2iC59VWvepX80pe+JG+77Tb5la98RR533HFBufFb3/qWfO973yu/9rWvyVtvvVV+5jOfkU9+8pPl4sWLK/ela3mey1122UXuueeelXUnnXSSfNKTniQ3bNhQWn744YdLAPLDH/6wlFLKP/3pTxKAPP/88yv7uOqqqyQAeccdd9T68J3vfEdSSuXb3/722jZSFn3/6quvrqy74IIL5AUXXCBvvvlmefPNN8v3vve9ctGiRXLPPfes+N/2nHLO5cEHHyxf+cpX2mUhufXqq6+WAOTSpUvlYYcdJm+66Sb59a9/XT7/+c+XhBD57W9/u9T+He94h3za054mx8fHpZTF/w5Xbn3sscckpVSedtpppW1/85vf2D735z//2S5/y1veIj//+c/LW2+9Vd5www3y7/7u7yQA+epXv7rxnE7XFhRI/vznP5cA5Oc+9zm77F3vepccGRmRjz32mF1WB5L77LNPZZ8GtG6//XYpZQGSn/zkJ4M+XHzxxXL//feXIyMjpX9m7g08FZBcvnx5pe0rXvGK0n4POugg+axnPavS7oorrhgKJA2YGXvlK18pCSFyYmKitHzlypXygAMOKB1/r732quz3zjvvlADkxRdfLKWU8pRTTpFLliyptDPn1vzjv//++yUA+fGPf1xmWVZ6XXTRRRKAvO+++xp/k2ttQPL3v/+9/PGPfyy/8Y1vyNNPP11SSuXHPvax1sdw7Z3vfKcEIO+66y67bPXq1RXQPP744yUhRD7xxBN22Y9//ONWr0cffbT2+G1A8uc//7m888475bXXXiuPOuoouWTJkoH9xLdBIBmyE044QUZRJB9++OHGdg888IDcaqut5Iknnljb5utf/7oEELxO3/3udyUhRJ588snyt7/9rVy7dq0855xzJGNMApAf+chHpJQFSJrvrhmQXL16dfD4d911l1y2bJk89NBDZb/fb/w9Bx54oNx2220HtjP2la98RQKQF1xwwcC2oXP6sY99TG6zzTbyf//3f+2yEEh+6UtfkgDkdtttJ8fGxuzyjRs3yp133lkedthhdtmdd94pGWPylltusctCICmllKtWrZJxHMtLLrlEPvbYY/Lee++VBx98sD3/a9eubfxN//iP/ygByJ/+9KcDf/9UbcHIrQCw995747nPfa6VHTjn+OIXv4iXvvSl2GabbQZuv3z58tpljz32WGl5KPv0ggsuwJvf/GYcfPDBuO666/CjH/0IP/7xj/GiF70IExMTU/lJ1tzsPmMjIyOl/T722GPBTLBhs8P8c5UkCRYtWoRer1dZ7soljz32WPC87LzzznZ9k5/++Tdxune+852I47j0estb3gIAwZTz6dhTnvIUHHjggXjxi1+Miy++GG9605tw9tln18YUm+wvf/kLAJRiZDfccAPe+973ltotW7YMUkqsW7fOLttvv/1avdr06ybbe++9cdBBB+Fv/uZv8O1vfxsrVqzAGWecMa19trFXv/rVyPMcP/nJTxrb7bbbbvjrv/7r0lAJ3y677DLEcYzXvOY1lXVHHXUULr/8ctx22214+tOfjuXLl+OrX/0qPvjBDwKAjVVuvfXWIIRU7nMAVu4Mneu7774bL3zhC7H77rvjm9/8ZlBaNPazn/0MP/nJT/DqV7+6sZ1rJ598MhYvXtz4+4355/Shhx7CP//zP+N973sfkiTBunXrsG7dOuR5DiEE1q1bZ/9/mP8vhx56KJYsWWL3uWjRIhx55JGlYTB///d/j5e97GU48MAD7T7N/4GxsTFs2LDBtr344otx6qmn4i1veQu23XZb7L///thzzz1x/PHH2yEmg34TgFa/f6q24IaAvP71r8db3vIW/PKXv8Tvfvc7rFmzBq9//etbbRtKHDHL/IsZSvz54he/iOc973m4+OKLS8vdTjObtu222wYTQOoSYmbj+GvWrKksN6nh2223nW3nJkwY8/007c8++2y87GUvCx7TpOXPlh100EG45JJL8Lvf/a42rlhny5YtA1CAJaB+46OPPoosy2zyh/knbNoDCCaGhOzyyy+vHQs5rEVRhOc85zmtk6KmY1LHUtskAEkpa9s9/PDD+PrXv44TTzwRO+ywQ7DNa1/7Wvzd3/0d7r//fsRxjGc84xk4//zzQQjB4YcfDkANs3jGM56B//7v/65s/9///d8YHR2tJLTcfffdOProo7FixQrcfPPNpesXsssuuwwAKnHTQdb0+/12QHFOf/e732FiYgJnnHFG8MFn6623xhlnnIELL7ywMV/DP/4vfvEL/OIXv8C1115bafv0pz8d++67L+655x4AwOLFi/GFL3wBn/rUp/CHP/wBO++8M7bbbjvsueeeOPTQQwcmiQ3TT6ZqCw4kX/nKV+Kss87CFVdcgd/97nfYZZddcMwxx7Ta9he/+AXuvfde7LvvvnbZVVddhSVLltQGp10jhFSeEH/2s59h9erV2HXXXe0y02a67NK3I488Eh//+Mdx3333Ya+99rLLv/zlL8/ocersqKOOwvnnn4+f/vSnpfN15ZVXghCC5z//+QCA5z//+fiP//gP3HTTTTjxxBNtu6uuuqq0vz322AO777477r33Xnz4wx+ek9/g2/e+9z1QSltn/Llm+tEdd9xhx8P96Ec/QhRFuPPOO/HXf/3XyLIMd955J57xjGeUkip+/OMftzpGKPljqtbv9/GjH/0Iz3jGM2Zsn3X2hS98AXEc44ADDmhs98ADD+CHP/whjj766OD6K6+8ElmW4bTTTmvcTxRFeOYznwlAJc9ceumleOlLX1rKZD355JNx4YUX4g9/+IO9Xzds2ICvfvWrOPHEE0v/0O+55x4cffTRePKTn4xbbrmlMt7Pt8nJSXzxi1/EQQcdVDuQP2Rf+cpXMD4+jkMOOWRgW/+c7rfffvje975XaXfmmWdi/fr1uPzyy/HkJz8ZgFLGVq5ciR/+8IcYGxuz6sf4+DhuvfXW0vFD+7ziiivw7//+77jhhhtKmcTGtt56a3uObrrpJvz617/GRz/60YG/6corrwSAVr9/qrbgQPJJT3oSTj75ZFxxxRVYt24d3vnOd7Z+Ctl5551x4okn4v3vfz922mknfPGLX8Qtt9yCj370o1i0aNHA7U844QR88IMfxPve9z6bZXreeefhqU99qk0fB1Sq/YoVK3DjjTfiqKOOwjbbbIPtttuuthpMWzvzzDPx+c9/HscddxzOO+887Ljjjrjqqqvwq1/9CsDsp+2//e1vx5VXXonjjz8e5513HlasWIFvfOMbuOiii/DmN7/ZZv295jWvwb/+67/iNa95DT70oQ9Zqeo73/lOZZ+f+9zncNxxx+HYY4/F6173Ouyyyy54/PHH8ctf/hI//elPg0+zrt1333247777ACgWNz4+jq985SsAgL322ss+TLzpTW/C0qVLcdBBB2HHHXfEo48+imuvvRbXXHMN3vWud5VY5BVXXIHXv/71A1ncSSedhB122AEf/OAHscMOO+BXv/oVHnvsMbz+9a/HWWedhfe///34whe+gL/85S8VCfbAAw8cfMIDduutt1ppmHOO3//+9/b3HnnkkfZ3HHrooTjxxBPxzGc+E8uWLcODDz6Iiy++GL/97W9x/fXXl/ZpQPM3v/mNXfbII4/g1ltvBQDLvr71rW9h++23x/bbb2+LEXzsYx/Dfffdh6OOOgpPfvKT8fDDD+Oyyy7DzTffjPe///1WLQCAo48+GkcccQSe/exnY+nSpfjv//5v/Mu//AsIIVYe9e2yyy7DrrvuimOPPTa4/uGHH8YnPvEJHHbYYViyZAl+9atf4V/+5V9AKcVnP/vZUtt3vvOd+MIXvmD778jICD7ykY+g3+/j/e9/v23361//2oL2hz70Idx///2lijRPf/rTK6rDDTfcgMcff7yWRf7+97/Hq171KrziFa/AM57xDBBCcOutt+LCCy/E3nvvXdqu7Tl90pOeVClWYpbneV5Z9/GPfxzPf/7zceyxx+Ld7343CCH4xCc+gUcffbR0/kP7NNn7hx12WOmaXnfddfjzn/+MZz7zmej3+/j+97+PT37ykzj99NPx0pe+1La76qqr8NWvfhXHH388VqxYgXXr1uHaa6/Fl7/8Zbzuda8rEZcZt1mLds5ju/nmm23CzP/8z/9U1tcl7hx//PHyK1/5itx7771lkiRyt912qwTMTXLJtddeW9nv5OSkfOc73yl32WUX2ev15HOe8xx5ww03yNe+9rWVhJHvfve7pQQfk2BRl7gTGvwb2u/Pf/5zefTRR8terye32WYbedppp8l///d/lwDkvffe23DW6oPvdYOcQ379/ve/l6961avktttuK+M4lnvssYf82Mc+VslC/eMf/yhf/vKXy6222kouWbJEvvzlL7eDjP2MzXvvvVeecsopcocddpBxHMvly5fLF7zgBfKSSy5p/D3ubwq93MSpz3/+8/Lwww+X2223nYyiSD7pSU+SRx55pPzCF75Q2eenP/1pCaCS8Reyu+66S65cuVKOjIzIpz/96fI73/mOfPTRR+Vxxx0nFy1aJJcvXy7PPfdcKYQYuK82ZjKhQy83Iecd73iH3HfffeWyZctkFEVy+fLl8uSTT5Y//OEPK/tcsWJFpZ+Z+yD0OvLII227m266Sf71X/+13H777WUURXLJkiXy8MMPD2Z3nnnmmXKvvfaSS5YskVEUyZ133lm++tWvriSSGfvhD38oAch//ud/rj0fjz32mDzmmGPk9ttvL+M4lk95ylPk//k//6fSx4395je/kSeddJJcunSpXLRokTzqqKNKiVdSFvdo3SuUcfzCF75QLl68uJQU49rjjz8uTz75ZLnbbrvJ0dFRmSSJ3H333eX/9//9f6VsfSmHO6chq/t/IqWUt99+uzzyyCPlokWL5KJFi+QLXvCCYJ/wre5/x/XXXy/3228/uXjxYjk6OioPPPBAedlll1X6++rVq+VRRx0lly9fLuM4losWLZLPfe5z5UUXXTRUBvtUjEg5zYFUnW329qY3vQlXX301HnvsMSRJsqnd2eztlFNOwQMPPNBaEu2ss87mry04uXWh23nnnYedd94ZT3va0/DEE0/g61//Ov7t3/4N55xzTgeQM2BSSnz/+9/f7Aqfd9ZZZ2HrQHKBWRzH+NjHPoY//vGPyPMcu+++Oy644II5SetfCEYIwcMPP7yp3eiss85myDq5tbPOOuuss85qbFbTGW+77Ta85CUvwc477wxCCG644YaB29x666044IADbAHxSy65pNLmuuuuw1577YWRkRHstddelWy7zjrrrLPOOpsJm1WQ3LhxI/bdd1985jOfadX+gQcewItf/GI7l9g//dM/4W1ve1upGvzq1atx6qmnYtWqVbj33nuxatUqnHLKKbjzzjtn62d01llnnXW2QG3O5FZCCK6//nqcdNJJtW3e/e5346abbsIvf/lLu+z000/HvffeaydRPfXUUzE2NoZvfetbts2LXvQibL311rj66qtnzf/OOuuss84Wns2rxJ3Vq1dXqt8ce+yxuOyyy2yZrtWrV+Ptb397pc2FF15Yu9/JyUlMTk7a70IIPP7449h2221r543srLPOOuts/pqUEhs2bMDOO++8cMrSrV27tlLYescdd0Se53j00Uex00471bZpqj96/vnn4wMf+MCs+NxZZ5111tmmsz/84Q+2fN5s2LwCSaBaGNyowe7yUJsmRnj22WfjrLPOst/Xr1+PpzzlKbj//vux1KloP0h3JgPa+Ovd74O29ffT+dT5NB2f5pU+IsXsbFPThoSWi8DZCrXzlpFgNKrBtzZ+E5/1qO/S/A8jFCAUkjGARrZ918fLtmHDBuy+++6lWUlmw+YVSC5fvrzCCB9++GFEUWRn2ahr0zTd08jISHDqmSVLlmDp0qWVC9F0ocz3YTqV2Q4Dtmnad+dT59MwPm0SkJwKGLbZbigw9Jb5bZzvFQB029Z9DnwP+tHCpAFL990AJCHqM4sgaaTAEtW+spD7uG03yyGzeQWSK1euxNe+9rXSsptvvhkHHnignRpo5cqVuOWWW0pxyZtvvhmHHnrolI4ZugDS++xe3GEvdtsL7bbpfOp8mgmfZt1mgyHOFCDWgWEbINSfSd160QCg/vE8k64iBhQASQ04qndCKEAjSClAqIBkAqARCKFdH59jm1WQfOKJJ0ozAzzwwAO45557sM022+ApT3kKzj77bPzpT3+y052cfvrp+MxnPoOzzjoLb3zjG7F69WpcdtllpazVM844A0cccQQ++tGP4qUvfSluvPFGfPe738UPfvCDafvb5kIO+8wy3Qvd+dTOOp/myDYlMM4UKPrv7rHMuyh/Hxpoa8xeb59FCsUeFThqwJRCfZdS7ZsJSBqB0GjGFISujw+2WR0C8v3vf9/OEejaa1/7WlxxxRV43etehwcffNBOowKoYgJvf/vb8Ytf/AI777wz3v3ud+P0008vbf+Vr3wF55xzDn73u9/h6U9/Oj70oQ/VTrobsrGxMSxbtgz/u3Ytljizwk/F2mrubSSHmXqC6nzqfJpRAWpzBcaa99aAOGj7UJs6XwFUYpEOUEpHarVyK1PxSCO3SsqAKCm+V49YsS25j4+NjWH58uVYv369nd9yNmxBlqUzILl27VosXbp0aCmgSY+fKet8mvpxhmm7pfo0IyC5OYFjCKycZa2AMQCKle0qgKmOLzl3fHc+h4yywn/GivgjKUuuoJEFS0kjgCUKKGkEGSVBoFxIfXyuQHJexSQ3lbWRC9rq8XXbDRvM7nzqfJpJn4a2YQFyvoBjE2scBIzuNsHlsgBDDYTCAKLr9yCQBCxQSkpBDGhSBsKYWufLrVSo6ysj9R2AjADiJPS47651fXx61oFkC5vqBZE1nwd1oGH3PdXtOp/abbcQfCofaAiAnK1EnFkCx9L2PmP0gLHEEgWHBCAFL/anwbC0zFk+0CgDqErEIVSBo6QUJEoUWEpRgKWM1PcoUd/NqYlgM1+HtQXdx4ewDiQxM08ow2zbpl3nU+fTTPrU2jYFQM4Ge3RlVZ85hsBRloFUcq7ADw4IhkBR8Aq7rPwevQ1xZFYAKkEHUGBpGCSlQJ5BRjEIZSBxUvgnlbxKmLD9CygYZVM/6Pr41K0DSaDU4YYxd5u2F7HtNp1P7bbpfBp+m1qbpwDZNimnNXtsYI4GHKULeOa7C5SaXZrjFO0bgBJZeYELkgYgDWAKrpil4CBRAkTu79MM1/kdMkpAWKKPo6zr4zNjHUhqG0ZjN5+HeeIKHadJf+986nyajk9D2zwFyOD6YQGyAoYOewzJqg4glj6HgLEJKPkA2ZUVscgSSFKmtjVgKQSIiEFi9VskS9Rv8BglZHmIyJbex2ckOa2FLXiQbPuPJdRZBnWiqXayzqfOp5n0aUZtJmOQddsNKbFOFyCHAccSEJrvgltAlKF4Zeh8UAbkmU7gyRRAWsm1YJLgZZ9IlChw8M+XFEXhgUBCT9fHp24LHiTNk1jbk1/3hOOb/5TTdOFD++186nyajk/zyVpVywluV/PLfKAMfK5ItDMFkAFwlA3xysKF4jOhDFZ69bNcDaM0IGmPWRybCA4kIxYsbSKPFADTrHhAQs+W0Mfnqt8veJAE2v3DGdQp3I7jt3W/t+1gnU+dTzPpU6O1lVqnyCKH2m8bmdWxEgA7STq2/XQAMktbgWMlkWdAtmspNmmHfxRSq6QURIgCLPMMMs9AohgYUcckgJJfmROnjOoTehZ8H5+GdSDp2KAL2nZ7/6LWXfzOp86nufZpXlgLFjnQGoC1qXZqdTdNDDIMkDLLwuBqfpuT8Sq5cI7lyMh2/sMMhOnPboarEFWwNMcb6SnpVXCQiIPEOk5pjoN6oHTXd328nXUgOcDqnnTarvdtJi5251Pn00z6NB9tGKALWksWWTJPYq0AZJZW2WMAXCUXFhCFBkkXLEu/k1EVkmQUhAtY0DTgaIaDGElX+0KSnmqTKKm19BvF8ENE7Gmbyrn2fxO2rD7egSSag8WhJ5vQdv76NnJE0/rOp86nmfRp2jZVKXWqhyNkOKCcKjv1mSBQylgtMcgQKOZZBRxdYDRgWQeSyBRQikyxS8IoqFCASRgF4qTwxyQIVYabaNBMynE9C5TUKXXnrAO6Pt7GOpBE9QLP1BPOMNp+51Pn02z6NK9My4mbep+VzFNXJhUeGJWWu2BZBUjzWXosshYoASu5EkYhGLWAyQxYuhmuBjANmxzpqW2BIFBC14YlLBlaxuz6eAeSFWvz5NTWmjrkMPvrfOp8mkmfpmSEzh6bdPfd9jiz6Y8DtkXVHVECTQOWTQBpXmIQmwQso6ScWsCkSQSpQZJxAZrwMqt0fJVcxygFBx1xegIts0cXKLs+3s4WPEjWSQVNbaZ78Qcdp/Op82kmfJpzqwEuSWh1GEgL5mclV7Nf/93sGygdVxICAg8cpgKoIf8cGRYOgDYBpPls2tYZ4RQCCiwJoxYgDVgyIUBjDyT9kngABOD8erNzPcMIUGGUQNfHm2zBg+RUJIJhnrCGaR96whvUtu57nXU+tbMtwaf5ZAOBsoZN1gKlv43dH8IM08Tj3EIFlIVBy2STGnOlVv93edmrdQApHcYHFAk9pcMayVUwEE4hGQURCixpEkEKAcpFwSq1T0QIEC25GisBpTePpQFK93sbW6h9fMGDpG8zTelnYl+dT+2s82mWrY3E2dBmqkA56DgD2aS7H0Ih4QErUK5wU/LNlIcT9aAKDywDAOmCY90+uF5OuFDZrg5YCiHA4vK/a2r8rjEBgBBSxCj9xJ0Ao5yKbVF9PGALHiTrpIMmuWCYIHVIoght3yZbrPOp86mtT5vUZhgoG2VXoNyeosomjcxonRBqsmPAgowBQMJ0UXFafm9rPliGANJv45qRWaXOcC2BpWaRBnyt/Ao0Stekp84B8Za70uvm2Mf93zNbtuBBsu7CheQCc6HqLpb0PvvLQvsK7bPzqfNpuj7Nmg2TWAME20q9jlSkUgfszLYOUAJQ7DAAlNLszwFKCRGOTWo2SRgDBCvOF9WAQ5kep1i8E6qTdXwptsZ88PMBsi7j1cQh7bsHlm47KQQiABT9ZpCkrNQ/SsdDWXoFNp8+PlcPhgseJIcx/+JJ791f3nQx67btfOp8mnOfhs0UHab9MGBppU+PVTr78JNyhgXKsuSoARBQLNJnkwAk5SXJ1cqyerkCMmHf29igRB7lSwGULlia7Wmi/nXnACgXjf/ITXzSPkAZCdacN0IrdV63uD4+DetAckgb9LQ+1xfQHLPzabB1Ps2gNYDfsO0bwbKGVVr51d+XORwQBErpyY5GdiURIPPivaipytTMGgAI1XM8QsuzVACcqxJzGsBKLLBpyAcKgAwl8UCzRykEiB4WYoeGsOrvzgGV0FN3LP0wQNwHCnsS6MCC6NOxzbaPa+tA0rG2klXbi1rXbhhJrPOp82kmfaq1qY47JB6rG6a9t00rsDRtdfIN8WHBAClqgJJGatYMkav9UOf8WbmVg8QJZJYWU0/lgDQJPIACSMqVZAuACgrJC4BEDbt0WSTQXLaOmyEggAVLdcrMuyjFKZX1g0DpskkyYs6hOl+EUF1gPWrVX13brPr4FK0DSVQp/mxeqLbB7M6nzqeZ9GlOrAEAW23jZKva1VKUBsTD22UtWMJhSyFGSSNAg6UBSiCBzFOQSL8blplDya6UgcSAzKAAkjIFoIAtI0c0gFFOFcgZ3x2mCSCYvFOb9eqApUjzojpPAFglN3HKqkkN6CZG6Y6dDFXl6fq4sg4kUX4Sqsuikg3rEVhe104GPofadj51Pk3HpynZTFexCcihJfOPFQDZWsAMgSVhRb1XwyhNUXOi3qUQgCQgentJIxDNPG2szhQJQPk6AlCSbIxifQ5IKkAYBxUUQASBvASYUijplDfELAfWeIUDlnq/BeCqqj9UJ/LkQBAo3bGTBF4/cWVYDZRbZB+fgnUgqS30RBS6iKHl/nah73Xb1bXtfOp8mo5P8wYoBx2rztyEHbMouCkt5Fgp2oEl1+xR6nUiB9HM0qAMiYpjEhOHNH74QFl4AiCH1DFEhggcuZVJSYA9DjI3C9aAotDH8eVXtRSNQCndWCugpFYjtwaA0nwP+hZYv6nvu9mwBQ2Sg/6R+J1guhdmUCcgDe06nzqfhvVpyjZsUs5s2AAWKh0wrwCmFJAEijF6M4koAIjKrBIoQBQAYgrizwpitrXLWHmfhQfFZshBOQWSCCLNQZkqO+cCHgWsLOvKrU0gqmKRFEzvl3iJPE1AKbzvFUYJKAmWUPXggC20jw9hCxokB53oNhdjuhcsJCVM93idT51PM2LTTcqZafNZrs12dZYzXaxAs0sFfsSyxqAESzQomoQfI78mI4pF5mkJIAilkHlWApc6oAQApDkko6CIAWQl5meHj7Rgln4brgGSQYGla01A6bJJ9cZg4pPuS8a0JHdvkX28hS1okGyyTZ4EEbDOp3bW+TQLNgsAOJXzQXw/gmMpKUzQ0QDmILCUlAI8ByEUUuQAoSoDVifmqLGRzE6EbPxvDZQAOHINlOozABBObZEgux+vHuwg48gbgZIzCpv1SinkpPZOx3cFpSA6cccm8BgJNuq1vk6bfR+vsQ4ka6ztxR62U7QNYk/nWJ1P7WxL9mm+WVsfRcuG1EUnM3TEfC6NqVSAaYaVSC3HQgolxeqYpAJLCslzgBAQwRXD1KzKyq+UOoDpAKfzOwcBJREMzHz2ZFf7k8x4S1+GdQoN+PulonpE4fhGWApQWkiutAyWxKmRLl3A1BV55lsfn6vknQUPknUZVk0ZW2332TZ7C177zqfOp+n6NB9skG9NgDhoW64bhP5RUgOaLru09V1FlV0aQHUYpJFgpZUfNXjmeQkIS2ySMhANQk1ACSjmaKKahgG6scVBMcm6fQJhNmksctpSVpZdCWVFIg9PC9kVAFgy7/r4XPX9BQ+SdRe37mIPwxoG7bNpu86nzqfp+rSprMmvOmCs26YtswQKdukDKDVsECgAswksCQWoAEReSLAOq6SMqbieYZGMWYYpoYDRrkczUBJdYk6kuc2GLZ2XAJu06wLLQkDJzbhKRiEYBWOZ8nWyr0+Q8lNSVgBl5sUnvam1FlIfX/AgCQx3Iab6pDSsdT5N7TjDtF1IPs2FDQuO/qJgG9n+bHCvKdFF0c1i9Y2CUlpktFIjvQorxbpgSUzyDycOaGhWSVlVfgXUOyuyX0EVMBFKPfjSfqfZQKB0TeiSdUAZKCUXoIgU+FLhMFTNFFlxfObu0IAkU7/BJvJkzsNB3oeMCj12IfXxBQ+SfuC9jaTmL3f3Vfd9mI7R+dT5NJM+zbbNNDi6wBgSFtviJtFH4tIZRE+Icw7DgAnuxChpBIi8iFdSBgi9jOYgUQSkk+XYZOgzZVClBhSz84dt2Om0aoASKACRMmrL2VGv9J1ADqq3Z4gguQBPVaKRTeTRvjHj32RfZfFO9gHKSok8JGfB+KT1CVt+H1/wIAk0P+m4n92L3kZuGPYJyj9W51Pn03R8mgubDkC665uA0QVFEUDIOh+Is4IDoIQAUoKQMmhS4gGmSf7RgGnBkuYqXulLsCMUNE4gJqkCm7TvMMy+kkuN9EoZCEstBBJGwRktZaa2AUrb1i2ErhN6JBP6N1e35w44E0pBqZJcpZvEQ2k5Pqkal+KTC6mPL3iQDF0A6X2uu+htzA3wt/Wl86nzaSZ8mm0bBiCb2GMIIOuAsQ5k/W2MEYfacylV3FK68UpY0LSASSIwathlZGOTlkXSXC8rWCV4CtIjBauM4oKhufKrZpYRAMHC8iswGChdNhkCSvuba45gpFczhlJQWmS8ap9LQJn3C6CkUQGexifv85bSx4EOJEvW5kKSAet9m+6F7nxqZ51Pc2eDfJgKQDaBowxuV25T65uzgEAxSkCzSgCESM0ky4DJCQElFEzPjmFZpBCq2o4LlrmOV2pZNsgqU2qlTSPFMqZkUE5pKV5oXTcl6ZgA98ZANgFl5RQwUWKqJjZaSL9qaIikDEiV5FqJTxIKEA2UzvjJLbWPuzbLJTKUXXTRRXjqU5+KXq+HAw44ALfffntt29e97nUghFRee++9t21zxRVXBNv0+/2h/PIvXt3F8Z+S3O+DOgCpea9r2/nU+TRTPs2GDQuQTevrAFJICSGlPTdCqpfULy7Ueu604VK9hFQTboReuX5xCWRCIhMSuZDIuETqvoREygUyob7nEuAkgox6kLF+RSP61YNMFkHGzvdoBKS3CKS3WL1G9XvSAx1dDJr0QPV31htB1EtA4whRL0HUS/SyEdA4Ak0iEKpK0BFazCtpZhdx55a0027pKbQkV8lIPM3tMpHlEFkGkeYQaQ7eT5H3U8jJPmTar7yLyQk1HISnQJ4qRpnr7w39YXPu477NOpO85pprcOaZZ+Kiiy7CYYcdhs997nM47rjjcN999+EpT3lKpf0nP/lJfOQjH7Hf8zzHvvvui7/9278ttVu6dCl+/etfl5b1ej0MY+bCDSsFNEkLdcdokuP8tp1PnU8z4dNM21SOVSePNgGku50Bx4HrnCOFZFdzbOqdXCPHUhCPVRIrzzKp2jHDLllSlmGFZls0B1ikKvIQCkJzNVwkiyE1O5NZqpllMfyC0r5TGSdsIs3BkqgVo1S/p2xmO4oIPFOfDZs0Q0MIK3ySNuHIi08Szaz1uySDedbm1MdDNusgecEFF+C0007DG97wBgDAhRdeiO985zu4+OKLcf7551faL1u2DMuWLbPfb7jhBvzlL3/B61//+lI7QgiWL18+Iz62kQuaLljd9nXBbPd7XWfpfOp8mkmf5pO1AUgDau66OnAs2pT37x7DmD9MpEjg0d9LMUr1nREDkhKUEDACMOqBJY1AeGYLEoAygGf2M6lU6WGF/AqopCH92bBFX35tC5SAll/93542J/IAANOSq9QA2RifzPpA3AsC5ZbUx2cVJNM0xV133YX3vOc9peXHHHMM7rjjjlb7uOyyy3D00UdjxYoVpeVPPPEEVqxYAc459ttvP3zwgx/E/vvvH9zH5OQkJicn7fexsbGhfsdUL4j/9GRsUAcadt9T3a7zqd12C8GnYY5dZ02xyLZFAUq/0QNIFzh9cKwHXnffVSeIkyZiABIAKKRN5ClAUoMmddklRazBUrIIJE91DLOI8xGeqVgl08MrolixSmpeFCJVQOMm9ITYZRNQ+hYCSgWkTnzSGUPJKQWhfVDtD9VxyVB8UtK0qO/KkgpQbo59vM5mFSQfffRRcM6x4447lpbvuOOOWLt27cDt16xZg29961u46qqrSsv33HNPXHHFFXjWs56FsbExfPKTn8Rhhx2Ge++9F7vvvntlP+effz4+8IEP1B5nJp5Qhtm2TbvOp86n6fjkL5tOXGc2/ymFEnB8ibUOIH1wNMuUz9Luyz2OWlfyoHRuDHsEjOyqGGQJMIVaxigBIxJckhJYqpJupABLJyuUUAZkabn4AIoqPZIyK3ua8Yy+1QElBUpsEqgCpSjND1Icw63KYxitqRpk3kvjJzNSjJ8MZLu2sZm+72bL5iS71VS+MCalrCwL2RVXXIEnPelJOOmkk0rLDznkEBxyyCH2+2GHHYbnPOc5+PSnP41PfepTlf2cffbZOOuss+z3sbEx7LrrroU/mNo/EXebthex7TadT+226Xxqt43r01T9mwnzGV9pnffdlVjVtlWADIGjC7ISKtHH7M81rr8z53+RyXpllIBAjankpAqYhk0yYt4VWMaUgkU9NRdjnhZjLE3iix5bSRkrzoGRNtMi8ZABNjknZP48kqZ83TBASahK5HGN9FVCTsxMZm5DfNLUd81TIHbGUTbYbPbx2bJZBcntttsOjLEKa3z44Ycr7NI3KSU+//nPY9WqVUiSpLEtpRTPfe5zcf/99wfXj4yMYGRkpPl4jWvDWvkwrCJ0nCb9vfOp82k2ffK3q7Nh/ilRMlyt1ZC5AOcvawJIFxzN5m4WLAAYRZJ7B8i8X2lAk1KTrKNAkaCQXZlUkiyjBEwAkQZNLiRiShDRCCyJIHmqJNjAfI1kESkAMhCvNAk9TWan3HLmpPTjk0AVKCUVlTGUhFLFFhkF708Ojk/mRQIPKC2VrQPmpo/Phc0qSCZJggMOOAC33HILTj75ZLv8lltuwUtf+tLGbW+99Vb85je/wWmnnTbwOFJK3HPPPXjWs541tI9tKX/on8+gf0pT/Ufa+dT5NJc+NR1nOhb8DYRU6rGGquj4LLJYPhggXXAUogBFtUzvx0HzIKOkBOAmDkkUWGrQjBlFLuCwSS25arDkEoglEFFSlmBzpj47A/NJD7bgQIhdm1J2TcZ1KTqhQa92lhAHKN3ydYACWZFltmRem/ikpK6szACmS/npY8xlH59Nm3W59ayzzsKqVatw4IEHYuXKlbj00kvx0EMP4fTTTwegpNA//elPuPLKK0vbXXbZZTj44IOxzz77VPb5gQ98AIcccgh23313jI2N4VOf+hTuuecefPaznx3aP4mpa+NN2/hPOU0XPrTfzqfOp/ng00yZzzIpwpKrbz6LrKzzADLjogSOBhgNKJpl6rPej0d/DUACPkiqzFaaC8SMWMCkBGACiKkCy8gwSkasBBtFvRKLlDQFyYiVX4mu7WoSetxz0xYoiTOfpCu7Sv1DCSNBoHSLDRDGSiXziFfXtRSfpKx4ANDvPpsE5qaPz6bNOkieeuqpeOyxx3DeeedhzZo12GefffDNb37TZquuWbMGDz30UGmb9evX47rrrsMnP/nJ4D7XrVuHN73pTVi7di2WLVuG/fffH7fddhsOOuigKfk46GIMWmf2QRD+h+R+b/sPq/Op82m++dTGfDBss09KSJBNhsxlkQBaAWTGRYVFqvXquy+/FgBJ7G8qgSQhYDlBzAhirsAwZhRcFmDJKFGMkgKcGgk2AUsUmBA9wwayfgGUQCG1AkXmK6pAKZ3CAYRRPeFymU36sqvkMgiUrpUq8TjxSWjfSvHJKFGxVw36yJmad1Kzybnu47NlRA4zF80WYmNjY1i2bBnWrl2LpUuXzsox6i7qJr3YNcfufGp37M6n9lYeelFeHhqu4WaxBr9DgosCJLkoWKTQzC0TwgJkJqQDhqqqjgFGBaSy5GcFKB1jOrMVgAZKgpgq0IypAkj1rlijZZkUiBjRAFm8JxQaKPtqeEjeB8kmQXgKkk9CTE5A9schnXfRH1cVcPp95P3UVsrh/UnwTFXPEVluq+sI886FZZKuEUZAdeUet6oPjSOwXoJIVwJio7oK0KJFqmJQb5GtIEQXLwUdXQwRj0LGo7ry0ChkrFjzsP1y2D4+NjaG5cuXY/369bP2fxzoarcOtLonnbbrfZuJf2idT51P88GnJh9dRlnZTscl20quvvks0sQggYJBGoB0wdJ8tkAppZP5Cru9byVGSYmVXyMLhsIBSIGRiCKmFJwRxBLg1GGUjEBKwyoLJmnmbzTnRx3Qk09RMEopBBgPnz3uZL6q7apAKbmEgGKUIs1B9ZASQqkqXecUMyB18ck4CcuuOolnPvXx6VgHkmgOFkvvvW47f30beatpfedT59Pm7lMIKM0yP4HHSK6UaOAc8j+jkVmNrOqCZWYYpf5swLEMlmo/TbKvyXK1McociBm1gKnAkiLj0oJlL2LgUg8PkUqCFUwl9iQsQpQsskCppt4iSnrVCT1+bNICpTfZsnknXNd21fHJ6tRa6vdRRsJA6ZWsK8uuep+UgUQJ5ORESXaVJjFJJ/GExk7OZh+fLetAEtV/GDP1hDNMrKjzqfNpS/SpCSgB/Y+foJKU0zZO6bbgTpKOK7FyKZHrzyo+qSVZXmTBGkbpv7vGtObKKNGFBAhiJkCJK7sKZBG1YJnpmGUvYppRKsDklEBIgoRRJMkiIO8X59JkvhJaYdtEgx4TvORbDoCWCpxrVsppkE1asNTrDFC6pjJdmc14zfupGj+ZZxYgQRlklIBEkYpPDpHEE7Lp9PHZsg4kPZvJ2I/bfhipqvOp82lL8MmYiecJ6QElCjap6qVWgZGSIgvV/eya0CzSGC+xySJRxwBkJgS4MO+y9MqFLAGk+WwA0nyODFBSgiSiFjBjSpEJacGyzyl6GjB7EVVSrAQkU+dBQkBKgiTqKQapK9q459QFSvtZcDBAxxwFqBBgomCUQCG71g0JUbuRtUDp1491x08KWpZdSRTrAgoRQPo6wSdSryFspvr4TNqCB8k66ampzXT/mQw6TudT59OW4JNvVmpFGSipTsYptYMCTS5V1RsqCTgKQA0dLMQ8LVDqdxcg07wAyUnnMwBwDaAhU+BIC0ZJCUYiiiSiSJhKIPLBMhMUmVDSay9iNuFISCW/CgCJiVN6MqUFSiEAIUAEBzSTjLh6t1NjcQ6ZREp61bIr4RTw4pfuxMwCenBnosvjcQHpVONRYyYpOFWyK6EU1NSl1bKrjGLQOFEASYjNekXcU+X4wpes0dr08bmwBQ+SU5GchnliH6a99N7btK37XmedT+2s86mdDeuTyyorQOmwScMaCQoGSYiKZQbnwtJmpFaToGNYJLfvZYA04Ki+V5klUJZeXcnVvCcRxQRVIGnBUgOjActMz1spBEPGJRbFDBIqiUdKqoaxMGCERWCxlik9Rkk0MLrMkggOxgVkT1Ulc+OTRnY1Q0QERJCKF8wTkKy63kylZWVXmiJmCiRlFKtEnTiBiGIVU3VlVxZB0mjW+tNc2IIHSd9mmtLPxL46n9pZ51M7mw8+GVZZB5SWQTqfzYEoAEm0XClNvdUG4CyxSVlij6kFSe6AZVl2HRSfjIzkqt+TiGFRwpBGFKMxQyYEMk6R6ySeTFDtC4OIFHgJyxd1Qk/sxfOkAOktUrX1BLdskghupVYpBCKeIDNjJ+MIgosSm6SM2HikcABTJfIo0ZX4M4XQquwqshwkziDSvqq+EyVAFKuSdVp2NWMnCVVA2dbmE0ACHUjWSlFN8tMwSQ8hySu0fdP6zqfOpy3NJ8BL4PGAkshCdjWfpSSQRAbjkpQqSdY/qotvXI+h9NlimvMKs2xilHVsspBdBdKcI4kY0kRgNGHIWJFNq7JtYeOmUprZQASE1GDpAqUU6gWAjippmnAFkpRzCCHABC/ik1kExrn6zGiJTXJeTvix58km8gjwFEAC2JlCWDFTCGEMeT9VUq6RXaNEFUOPYpXEI3I1DtRku+r5NmejP82FLXiQrLtwIfnJXKi6iyW9z/6y0L5C++x86nza0n0y5sqvLlBKZ0iI+UyIlh2JnqFDEhA9ZVWm9Udqx5CUzYx/dBN00lxUADItya/1sitQzXZNIorUAcvRRO1/Mo+wKHFZJFNysFDyq96bUpEjALke6GGA0gFJKQVIwlXRdMFVjDLPgKSHSAMji1VMkmrQdNkkYWXJtTJEBLQElO5MIUVNVwoR58hpiiSJIU0R9CguJ/EIriahtnNsFnAzW/1pNmzBg+Qw5l886b37y5suZt22nU+dTwvRJ8MqDVAy7YmQEkyPE5GQlk1KCSu5CqkG/AuiZvSok1+FB5RuDNIAZBAkdYxTBmRXooGSUoIkpyWwnMyFkl1zgTSP7HcuAB6X9yUEgEQDpgOURMcoiZSAFGqaQSlABS8SefIUUnCQOAFLckiRaHapAM6wSXuuGYFPKE3JOilEGSgdoVXomKRgFHm/PFuIjGI1Y0gU2yQeSevZ5Kbs48NaB5JDmvskU7d+rq3zqZ11PrWzTeVTE1ASAjAQgEpAKEC0bFIDI6USTABC11kNzdsVGg9ZlV81WEoJngtIzfrc4gdSSAuQpkIOjygIJUjzInknzZXcqvbJkOaRLmQQFSX1nOm8pAOUVDO+EZaozFPDKEUCkuRFXDJPK7IriyNVIECzSsFFreRqxk8W4yhVBjADSkDpTgLty64kivWYybhI4nEq8cg8rh0Ssin6+DDWgaRjIS08ZG0val27tvGezqfOp4Xmk5FfCQDuACUgwaHik4SgYJdEMU0JNTjfsEhViLzYX8gMUOYBgMy4AkeeK/ZmgdIDS0DLv1QVDieUICdEya4RRcIKoKwAsilkYGOS2pIiRglQEAL0WAKZGJBU73REQuSZjk8KECEg8xQsziCSSMUmHTYpWCG5Ekbh0slSEo85P+AloDSl7gilyNmklV15nIOamGTaL5J4nEo8hCWtYpMz0Z9m2jqQRJXiz+aFGhSM7nzqfOp8KsBNEsMIdWvNEI3sygg0OMrSlFZUOp8FcSZPLqOmzyANeBmAFFyo2KF+16HBivRKKFHzD1MCQggEp+A5BY8oUl5IuUXcUyhw7hV1Z91dEgcoTeWdkagH8BwmRimlAOktVowyz0AMqxQCNMuL2KQXo0SmzzEj/vBJXapOr0cZKCkrEnnUUJBJxSQZBWUULIr1sJCkSOJxK/FkOst1yAIDbfvTbFkHkig/WYcugnsz110kf3ldOxn4HGrb+dT5tNB9snimgZEYwKQqPmlkV0YVeDE9EweXBELoqa00QA4yV34VDkAaJslzzSY1gNbFJ4kugM65AGPUgqVwZdxA5mzQEqaHwagEJkIIEieRR8Uhc5Ckp0AyT0GTHkSeIeolaphGloMlcYlNUkYhmQzGJd13Uye2AEq1gYlLmqEgeT8FjSPQyX4xdtJL4pF5rKbRylMgiYLXfNj+NFfWgaS20NNs6CKGlvvbhb7XbVfXtvOp82mh+2TemdZhiYQeSa+yX0E16xEEkgDCY5NMFJIr1RKtzyRdc1mklEUckucS3JNfAQTZJAAwRkE4gWDSAUsBEbPSEBT/2CEjhIFqNkkgwCKdyCM4ZKxYJR3hSnbNUpvtSvIMUU9PoaVjk0LP8kGoznKFkk5lSXYtqCUFBecSLKHgcBE1LfzTMUmu45NxnKixk3FSSuIhPLMFBmSN7DoT/Wk2bEGD5KCnEf8Gnu6FGdQJSEO7zqfOp4XqE6CAkpg9UJSYJKjKdhWEQFJAGDZJKTIi1byPTFW+YaQoJVd7fFGwRSEU0Incl10L6bX0WynAqQClBJxRME4tWNp9OSzSrxVrrJjoGaCEgXATZ5UYjRLISMuuPIeMRpTsmmeQeabYW9IDzVJQHZukWabmjcx0bDFDIC5pqvVoVs05CCNACvVe+p05OKWgcV6SXVncL8ZOukk8LLbJOySPLZscZMMA52zZggbJQSe6zcWY7gULSQnTPV7nU+eT/3k6x5svPhW4RnR2ieabAgocFXQiBtU1WwlioQAzJ9W45ECwlFIrm7IEkCKvl11dyZVQoeRWA5a5RJTQWrnW+GQ/G0ZMCAjUNF1MSDAOjMQ9lQgT90qyK8lSLb1mIHFSsMk4BglJrv5vNpKrKCKTZlAIT4unAsKInRnEyK4iVdKrHTsZ67hk0lOTSxs2yRPLJqdicwmQwAIHySab66eVNtb51M46n9rZ5uhTLVA6JqRETCmEnpoqI1LN9yhU0QEz2D/NVcQtBJRmsL9llaYerCO9qvVmeiodr6NMv6vsVs4lGFNgKWNm68qqbcos0vWjJBsTPW8lB5hOVmKUIjKyK0v1sJCeivnp+CTJsxKbZFkEEUcgWnYFuCpHJ0htgQEphHpQ4BIsYeCpUPJqKkBZrsdKOkNBGAVPIpXEM9m31XgMm0QeQbJ0KDa5qa0DyRpre/GGvchtkyKmc6zOp3bW+dTO5ptPIaAUEqoyDwFiCiW/amBU4EgQU4qYSiRMIqXCMkl32ivfhBN/dBN3eM4hRfGq/FbKIHIGGsWQEdUjNyQiwSyLNGC53tvWna9Sya5ATCkoYQ5ISkQsUQCpwRKxAko52VfDL6IYJE5A4xSUqpJyRhZVr3oWLbzaf6a4AEsYRKYLrTNSkl1FnIFnkU7k0QCZp5CTangIHRmFZDmIYZMyPDFz5Vyivj/NhS14kKzLsApdmLZP3nX7aNrebd/51PnU+dS8T5uQI91/lWoPUkpElECCIuYSI1FRJ5XmsJKrrY6Ti0KCJURNYOwAZsEq4TBIBY4iTyE0SPpsklKm2zDwKAbjWmr1x0UCeEIfL3KBm6hs3fFMIKYcMSM6pgowruKriWGTkQIeOjKq6qjmGcjkBEgUg8URuGaTKm4Y2WxXFZ8sQF4KAcFlaYJmwGS6mio8yjgjFdmVMAYWK6CMY1OBRw0JEcmEik3yGBA5SNYHkkWt+kXI5oqFLniQrLsx627UYZ6GB+2zabvOp86nzqfBPpnM12J7CTN7oQQwEqn4ZEwJYkrQixgyIe20VmlenhcSgM1S9a2IQ4oSQBaM0siUmcoapQxCcAuWUiQAIgu2xiglmPDipGa+ypip+GasP8eMIuZATlXSTxxFkEwPr2AZpMgtm0SswIkmMWjsAKST5arYoDv5lvN7vUxXHygJ43qMpJJdRZqDx5likkkE0e+D6AxXkvQg0z7oyKiNTUoWA1Jl7k61P82FLXiQBIa7EFN98h7WOp+mdpxh2nY+tWs7331ygdJgj5Tqn5tgQE/qCZCFmoGjF1FkXNrScRYwdXFyQAElDcmvLou0bDKzwyhc6ZVQBsIYBKWggoNpoJRJolvkpX0TSsD6pATaSaTmpBynHCMRxUjOEVGmmaTU03SpIRaKTUZKah3pgaQ9kEnF5lgSKUbpSa7GKCOVJB4AzphJAXBAMgqWAIIT8JSAUF7IrnEOmuUQWQ4+ocdOmnikrshj2WQeqyo8PIWMeoEjzx9b8CDpizVtpCJ/ubuvuu/D/KPpfOp86nwaziefUbpgKRhFjymZNOMCOaXoRWpGDgWODIzyQn7lFDwXIMSUuQv45QFkKD5JKAMRDIQyyz6ZXZ/oNjq+p7NiJxygTCKKDX1V2k7JrlwxSUoRUYlISKRcII7LbBJx4sQkVXk4GkcqgSfWL1sQgKg5JjOoZVp6VdNuSf1bi7MtINxhkgpcjezaT62ES+MItJ+CxRFYkkFOToTZpCkyoNnkVPvTbNqCB0mg+SnV/exexDZS0bBP5P6xOp86nzqf2vvkAyUAW0TcyK5qqiogEwI9zR5dRmkTZjRohRiln6hjpFdZE5sklIFGiQXTwhL7yS2WPkEUQD7Rz20mbsx04hHj6DHzXSIXBCmXGCmxSZ3pOjIKkvZBJvsgcQJC+5pNKhAjaRGXdJN4ZCnTtRkoVYm6QnblaQ4a5+D9yQIsk/Zsctj+NBe24EEydAGk97nuhm1jpuu1aV/3z6PzqfOp86mdTwYopYTzkpARgZAUmWDgEsi4klxHY6YLkEdIc1HM3pEZoCykV59VSsErLNJN4vETeGikQLEssibqGJq1EpKDUoInqMsmcyUJM4qRnGI8U9JrSqVmlEAURWqIhWGTUaSYpGGUWnLlfS/LlZazS934pNRjQ0vGASp0oXNOwFNVcKCQXVO7bxrH4P0UPIkQJb2h2KTfHzalLXiQdK3NTRgWX+ptuhe686mddT61s4XgEyNAUhreoAbEGzYphEQWqTgllxKjCcOkA5CJnsGD57TEKAEliwpazU4FUCTxmPikeWdGcg0PGSF0BEBuj8Uijn5EkaQFQE6kDOMRQ8wUQCrplSAXik3mQoIZNkn7IEyxSURxkcDjSK6mKLl6J+VSdYzADVBWM13LwGkkWyO7UltYYBI0icDTHMyJTZKRHsRkeza5qW1Bg6R/49VdHP8J199HG3mpSS7y/Wk6XudT51Pn02CffKAUUOyyFzEIAV2RR2WsZpxhUaImRjZFyBNGkVMCyigoEXo6rEIWLfnpAJ8rqVrZ1cQlWRhcFeOMQGhuZxMhmk0qgOTY0M8xmjD0cjWZ8yQTyLgsscnExCajBJJnqmaqk8BjxkyaLFdO68dLusXOq2MmFVASqpikAshCdmVxkcTD+ym4HoKiCgxMQCY9BeBCzYkpRa5mN4nK17ZNf5oLW9AgaU78sNJSkyxUd4wmmclv2/nU+dT5ND2fgDJQCkkgWRGfzIRikhmnyCKJTLPJNGcYTzmSiKIfqXJyNCKqrBxXFXQIZfZl550CKuAoPemVCAWSQvDSP161n1EwRpFnXLFJxsEYxUTMLZvc0GfoRczKrZO5KLHJTAAJi0BYAkn7kCz2EnhiNaWVznKlSQTSV4ySajZIGHF/UvHbHKAszw5iqvAUsmvOMstUaRyBZypWyfIMIu2DpH3ItK/AmyWq+g5TpeqIU/i8TX+aC1vQIGmsjdTTdMGanprrgHjQU1LnU+dT59P0fTJAKSSBhAJJNUGzik0KPSwkExSLEoY0j7Ao4ZZRilzN4pFT4dRkpTbeCKD02QXGUIKPaS+cpJ6cTqj3jNn4JGMULOLYOJlbNjmRcvRzbtmkAcuMqUzXXEgkkQJIEiWQ+aStukOisOTqlpMrnUNGwLOy/yY+GZodhBipVcuuLNFJPP0UPIktmzSxSZn0IJM+SDICInoKIPMUMikgadj+NFvWgWQLm+oFqZOLBt38w+57qtt1PrXbrvOp3Xbz0SdAAWUvcgfMqwxXLhWTXCSYll0l0kRgQrPKiVTFBllE1XRXjIJHQhcrZ3YcpJeJE4w9GjYp8hQ0SsBzlR5q9pGnE5qdjoBFAnnGwSKCKGaYSDnGU47RNMdEGqEXKf/6kZrEeSQiOnNXIpcEsQFIGgHJiIpLmiQeneVqwLEUl6wpU6ckVyeZx5zHFGCJLpTuya485apUXZaDp1nBJtO+Asg8VTOW5DkQpSA8rhQ+n+n+NFXrQBIz84QyzLZt2nU+dT51Ps2cT4pRUkgIDZAEUjJksdQASbEoZkh5kek6kTDLJnkuwDkFzUwiDwOlqlBAIb1WLVTXVeTOfIxWuqUQeQqex8hTAcoEeC6RZwqoDZMcTzlGE45+TjHKKfpcYJFgyLkEpwooI5YoyZWpCY99ydUUFjByqIlLGtB0CwuIhuEgAgKEEyDlOj5ZyK485kE2KXqJlVttfDJOgFxN/+WzSXvsFtd4tqwDSRQ36rDmbtP2IrbdpvOp3TadT+226XxShc9N2omUFFIKLIoLFqmq8TAs6UVIc47RhFXYJGVUzeoRMYgoUbNtlGKUgd/pMUoaJRYoubMtj1LQPAGPqGaS1LLJNBea3eZI8wiTXH3PuEA/54hphFyoyZslUyXxCIsgaWQlV1AGaEA2QzQISy04AiixScoouDMcxM9yBQCeciBh4Bm3Ei3T30NsMu+noL0MMlNzX8o8BdXJO4Snam5M77pO5XrPpHUgqW2Y+Ij5PMzTcug4TfGczqfOp86nmffJACUXAlzqyZklsyCZcYFMMIwmKjZp2GSeavkzYRBc2AQeFiUQeeYwy/rhHkZydeOWIkvtNiKPwdMJ0CgGY6rqj2GTExkvscmtRlygVENZ1IuAS4AagKSRAkg9VpLoWq7l2UAUQFINkP7YSXespF/PFVByrOQSIhMKWNMqm2R6WIjIcsgsVUwy7UNO9lVxgWgEkudqCIuabqRy7UL9YS5swYNkW7kmdKMP+gcw1X8QnU+dT51Ps+dTTKHjeKrAgJDAopghEwIZVwXQ014xHCTNBfqZBsdcWjZJoxgiT20ijx+jLANitYC4W4CACg6RZRAadHlENRhrqVf7YdjkRBZpn6UFyoyp5B0rudIIkjLFKqOiVJ1J4CnFJWkRmwRMibqqz64JridjdpJ3bHEBRsATWrDJNFe/T0/MHI+kgJ4gGrkqKkB4AslTED5iQXLYh6rZsAUPkkbyaXvy656YffOfcppu2tB+O586nzqfZs+nmBKMMGLjk4sSA5LSAs9owuxrImVObFIBJosoRJQo+TTLSrKrAUgXKIEyWFqQ9NhkOTbJEcVKfp1IeRm4NWhmsUAmBLig4K7kymIQFgFackUUA7qwgRkK4gMk8RJ4yvFJYefALEwBpaACPCWWSbJYDQ2xbFJLraw3ApblQF7IrUUCTw4ickCzSamBsk1/mk0bPOPlDNhFF12Epz71qej1ejjggANw++2317b9/ve/rwbueq9f/epXpXbXXXcd9tprL4yMjGCvvfbC9ddfP2X/2tD3QdReOm18WcjX1NvIBJ1PnU+dT7Pnk0nk6UUEPUYxwgi2ShQ7M68lvQhb9WIsShi26kWIElaKTUYxVdJolKj4npZcB8coRUmOLc0okmXgeQqRZxBSZZWKXILr+KMByvGUK1DXwD6ZC8si1dyZAFgEyRIlu8ZJZSiIiUsWQ0KKM6QSecJn3+zfDKERXNiYJU+5etcxSfMuHLlVpDlEmjmS64QaN8lTVVRA5CDSeZho0Q9m02YdJK+55hqceeaZeO9734u7774bhx9+OI477jg89NBDjdv9+te/xpo1a+xr9913t+tWr16NU089FatWrcK9996LVatW4ZRTTsGdd945LV+bnkyGkYb8i+puO8zTc+dT51Pn0+z5FFOoeqgRsa+tRhgWxSrTdXHCLECOJgyjMUM8EiGKaQGYEQXVbJJGiZVc3eLmtX77QKmLpIs81S/DXIUGS2EBMs25ZZN9roAy12X2ciEVm6SKRYJGkIRYNmmGgpTGSrJCdjVJPMb8764ZoDTDRIQDkAo0hQLJ1LDJScsqZV5O4CGCg/DMgqX/8LOpbNZB8oILLsBpp52GN7zhDXjmM5+JCy+8ELvuuisuvvjixu122GEHLF++3L6YU9LpwgsvxAtf+EKcffbZ2HPPPXH22WfjqKOOwoUXXjjj/hPvfdj1vs3Exe58amedT+1sIfsUU2A0oppNUoxGDFslEbZKFJvcSrNJxSojJDFDlDAFlDGrsEkaJaqGqp75wx3iEfTLqfdaTOCsmCbPOaSATeDhXJTk1vGUK3Dk0rJKJbdqJmliklGswZKp5B1KAS2xsjgqxSWpUxSgyYpEIcVcBRcQmbDgaNikZZWZyyKdBJ68iEvKLNVya26Lnzddu7myWQXJNE1x11134ZhjjiktP+aYY3DHHXc0brv//vtjp512wlFHHYXvfe97pXWrV6+u7PPYY4+t3efk5CTGxsZKL9dIzWeg/JTqG2lY30ZKalrf+dT51Pk0Nz7FVFXl6Wk2aeTW0ZhhSRJZ2dXEJxWbZOqVqFcdmyy/in+3BgiL7w6bdADTsEiTwJN5QOlKrm6Wq5FdFVB6Q0G07MrcQufUZZSm4Hm1wICSWatXxZVdXTbpMkort+oEHmFik5MTkJNKejX1XH3Jte7azYXNKkg++uij4Jxjxx13LC3fcccdsXbt2uA2O+20Ey699FJcd911+OpXv4o99tgDRx11FG677TbbZu3atUPt8/zzz8eyZcvsa9dddy2tl97nmXpibiMT1K3vfOp86nyaO58SphJ5eoyiF1FsNcKwRLPJxRooDZvsWYBU8UnGCKIkCbJJPzZpgNK81w0VMZKrFGrWEjNtlXCyXI3kaoevCFW0nWu5lUtAsgggVCXv6LGSJIotkyzGS5azW4HBMmvxkiXZ1WeTRnKVQoBr2dVU4JFpv5TAgyzVQKkZZQAo55pZzkl2K/HnYZOysszYHnvsgT322MN+X7lyJf7whz/g4x//OI444ogp7fPss8/GWWedZb+PjY1VgNLuF4OfXttaU0xkmP11PnU+dT7Nrk+mdB2XZvykGjvZzwUW5RRZL8J4GhcsTjO8eETJoKqW6Sh4noJGmSoaoMHPBUr1vUZ6Lc1NWUiuImfgucosFRoA01zYd8UkixdnrGB8JiZph4LEGigDcUmHPRJnKAhhIlj03JiqMaAecygXIIxAcGmTeRTDVEDJei6jVAk8xGS6avmV8BSSj6gxkyK3w0E2VWxyVkFyu+22A2OswvAefvjhChNsskMOOQRf/OIX7ffly5cPtc+RkRGMjIwE1/knvs2NOt0bd9BxOp86nzqf5t4nRlR8UjExgkzLrYalmUo8qo4qQx4r8Ir0u8gZomTUAh3zGKKpsuMWOrd+6WVmzKQruQopIaWEyBXgpI7kOukxyVJhAa/6DmhUFBWIfTYZVZJ3StmugUxXI7syogoYMKLYJOUFo6Qxhcg4eMrAY24BkqeZTeahuTdm0plCi0jRKL3Phc2q3JokCQ444ADccsstpeW33HILDj300Nb7ufvuu7HTTjvZ7ytXrqzs8+abbx5qn8banPg2N1rICIbTz4fpDJ1PnU9tj9P51P44ZtaQxJFdTYxyq5FyEs/ISKSTeIqXkVppnARlV1+CDQGl+129tNyqJ4yusEmHRZrkHenIoeW4ZOLIriouaeu4BpJ3CCWlAgOhfB4DlqUkHp3pKjL1bualtDKrEOBZDslFZcwk8nyg5DqXNuty61lnnYVVq1bhwAMPxMqVK3HppZfioYcewumnnw5ASaF/+tOfcOWVVwJQmau77bYb9t57b6Rpii9+8Yu47rrrcN1119l9nnHGGTjiiCPw0Y9+FC996Utx44034rvf/S5+8IMfTNvfmab0M7Gvzqd21vnUzjqf6o16smsuGJYkirFN5gJpL8KEll0nUo40Y4hHhJNgE0HkCWiUWvmUBthko++VGGU4LpkLiTTn4KLMJM0QEK5jlJKp8nQgVFUECsQlCWMl6dVN3gEGV+BRQEksiJakVs0qWUIheQQpWkiuIi/K1Emh4qqbyGYdJE899VQ89thjOO+887BmzRrss88++OY3v4kVK1YAANasWVMaM5mmKd75znfiT3/6E0ZHR7H33nvjG9/4Bl784hfbNoceeii+/OUv45xzzsG5556Lpz/96bjmmmtw8MEHD+1fnezTJPW0vaFdWWnQ9k3rO586nzqf5s4nI7vmQtps162Sgqkt6UWYSHNspUvXKcm1iB3ypFdKyDGyKxGsVNzcxCsBlGKW9nfYQgOyYJM1cUnDMrlUjNNNqoEGyKa4ZAUgSzHJ9rycSwkmAMolBBWQnNqYpNBs0g4B4Up+lUKooSAhyVUKQIraazcXRqQM5PNu4TY2NoZly5Zh7dq1WLp0aevtmpILgOKmBKo3emiZfxNPxTqfOp86n2beJy6Bfi7wRCYwngn8ZSLHXyYy/KWf4fGJDA+PTeLxJybx8Ngk/rIxRX9jinQiR388RTrJkY73kfWfAE/74JMT4OmEqqSTpZWMViO/Ui3TsigBS0bBRnqIe1sh6i1GMhIhGY0wMhqjtzjGokUJttkqwbZbJdh+aQ/bLk6w9WiMrUdjbNOLsbTHsFXMsCgm2CqmIP0x0MkNoBPrIcfHINY/BrH+MfAn1iFbP4bJdU9gct0GpGPjyDaMo79+EpNjk8g2Zsj7ObKJHHk/B9djM1MNyK4xopgkIwQxI4h6EVjCkCyOEY1GSBYniBfH6C0bQbxkEZKli5AsWYyRJ22F5ElLQRctAV3yJNAlW4Mt2xYiWQzRWwKZLIZMFimgd67d2NgYli9fjvXr1w/1f3xYW/C1W4cx92Y03913f7m5mKGbsW7bzqfOp86nTe+TyXbNBZBziUWxnuiYCyzKq2xS5EpujTKdzJMkkGLUFgooJfBkZcl10DRbUgibvGMYpUnMsYxSmnkxzWfF6iRUUk1EqGaTkTqeM16SMgpKy8XOKSOWRZqkHTd5hxGT1QqbtBOSXM27m+WqJNjiZQsLCA4IAQiuCgtEIyouqRml1JLrXLO6DiSHtEFPoZuClnc+tbPOp3bW+aSMETVbSCYoMqFmCunr6akmRyKM94rY5ETGEGXMDglRlXIUK3SZI6EMNE4gsrRUBH0YcyVX95VxBY5mvKQaM6nPjT91lhOXpHEEmkRgSYy8FKd0k3ZUoXPKKJjgGhhJsLCAK7kW5epEMXYyFbb6jhQFWMIk72S66LlO3IHIayXXubAOJB1rK8W0vVB17Ya52J1PnU+dT5vOp5gSne1KsDhxQFKzyaKWajGllRkSEiURpBjVQzmKpBeep6BxAsnLQ0EIUwXSK79HcACxzXC1bFKYJB1h2SSXDoA6Q0EiGoEYNmnquJq4JGPFtFlJZOOSfuWduuSdppClAkeqAFKYTFcNjEKApxkkV5muVPByLVcpiqEgeapq0W6CBJ4OJFGVZ2biJht0rEH763zqfOp82vQ+mSEhvYggFwRLEobJnGMyZ+gnEcYTrqVXjomUIU8YYjMrhpCQQsmuxozsynXyDmFuNZ76ouiudGneQ0zSreMq9VyZahgItUUFiF/HVc8KYgDSACONGQjLi+EhTBUKoJyASQCQVnL1jUuAcgEaF6DmDgWxsqseChJpJgnB9UuooSCRHiuph4FsCjbZgSTKT7Ghi+DeOE1JBLLhu3ss/3OobedT51Pn0/zwKaEEuWaTIxHFVkmkB/AL9POoGA6ia6uqwgJuJR4n25V75eecWCVtiE0CsHM5SlmVW3NhslpNibiiCLmQEpIURQVMHVdQpuKSen5JE5dkiRk7mYMlTBcDcMdNDpZci98og9V3gnFJzjWLdIaCSKGGgnhxyQbyOuPWgaS20NNs6AYMLfe3C32v266ubedT51Pn0/zwiRIFlCOMIBOklMSzZMSAZIRxwyZjpsdMKtlVCgmpK/GUjiO4lhPLWa5NiTxAAZY+k3STdzIhICQrFRWghEISCkJoMb8kZSUm6cclQ5KrFBLICoAcBJTBc6zZpJFdDVBSyyRNEk8BkETkig03XLvZsAUNkoOeRvybZboXZtANTBradT51PnU+bTqfIkpstiuPykk84wnDVr3YsklT15XryZKV7MogEyW72hJ0RnKlZcnVn5Oy9FscNulmuPrJO1zCFjuX+rMtKhCaXzIQl2QJRd4vwNGt40opUSyZwDLK2vMfSN4pxSY5VyDJ9WTUTlySmrGSJomHCRA9FGSubEGD5KAT3Ub/nq5GLms+T+d4nU+dT/7n6Ryv80lnujKCLFJs0k3iWRQzTOjJmf26rpwzPXQDECKuVODxq+tUZw1pZpUhNukm7wgQuwxu4s6AuCTVpercOq6mRJ0ruZorURebDJnQjaUjvQpRZLi6TFJybkvUmbjkXAIksMBBssk2RYB4kHU+tbPOp3bW+dTOjE+UwGa65oJgUUwxmVMlv44ogFzS45pRRjomKRSLFBJCMgA9AECu9y0FK42jLFgkbQRHU30HgM1w5U59VxuLNCxSQg8D0cXOCS3HJZ3xkswBSBOTZCkDTzkII2CJ+j2UE7Vz76qZogJhvzXQubHJkuzKS+MlIbiKSwon05UlHZOcD9b2Igx7sdomIEznWJ1P7azzqZ11PhXWYwS5znQdjRjGI4FFcTEkxC0wkGYmJgk9NKTIeGUaFKXgEICX5aoA0k3kcQfyu/W+eSU+CT1GspgRROrvEkRJlabYuS4qQCgrjZc0dVxpEoH2MxuPVIApIJm0bBLQyUlTiEsCKCXv2PGSwsiuxXhJC5A8h3SmzpoL23RVY+eJ+Sea1CyvW9a0z9C+67qReR7rfOp86nya3z5FztjJRTHFophiJKIYjRlGkwiLEobRhCHRM4OwiCBKGFhEEcUULGKq7JyeIYRqybN4+TOGNP+b5g6jBIrZONzKO3ZGEDMJM6FAFKmhISYu6ddx1UzSSK6UEdCY2hileTesUTHIgkXWTdpsYpKCF2hv2CQAxSCztGCTun6rfTnXbi5swTPJqlhQLHeNNLQN7TO0j2G263zqfOp8mp8+9bTcmrB6NjmqgTIz00aZ5B0h7f95KRL9Xh4KAqBUVIBqFkm9OR3NWEmgAEohnSm1PLlVSKjsVjNeklAFjiYu6c0vyZIIvE+dYSDUJvCwpAC5QnZ1/Ve+EloUSw+eexcczXeHZUvBQaVU2a3OeMm5tAUPksBwTyR1N/FMW+fT1I4zTNvOp3ZtO5+qFlFiX4tiivGsYJMm03UiYUVdV6EmTZYxUxMTSwoqYnVMbygIAPhDQSgpQMe3kuQq3QQe9XukjU9KOyMIiCou4MclzfySLInBPcmVJQw84xb4WKLilEZ2dW3Y2UPcDFcmihikTd4xs4EYwJzDyjsLHiTdyygxWJZpesr017vfh7mpO586nzqf5q9PgGKTqZZcexHDolhgPOMYiaiVW03ZulQn8EQJhZASkWaUSBhyAFIwiLxay9VIrT4whvDBzXA1dVvLGa5abjXZrcyLSzrzS9Ik0mMjC8lVJe4IsJjpMY4SkklIPW6S1kTujORaJ70CKDFJa+aBwUvegRQgPIWMeg1XZ2ZtwYMk0PyU6n52b9g2ssywT7/+sTqfOp86n+anT4AaFhJTgogCPUZtkYHJXGArXfx8VLNJM17Szg0pGZByIGEQOQGQBAGSUjXkQpG/9szMrbbDBWzyDpcEkUncceOSzvyShPYVg9SSq8gisISD6co7RMcmBVdl6hiYmjvSk1yNv7Qlo7TDQESR4WqyXYkbkxRzK7kueJAM3TzS+1x3w7Yx0z3atK+7UTufOp86n+afTwmjSDlX1Xgiih5TkqthkxNJhEWJLjCgQZLnAjKGAspIQsmUimUJUWZbBiAp0UBJSK3cWqm845Spk5AQUAAp1Y5hJmEuxSXjGCSKbVk6I7maGUFYzMCSoiAAixWg81SAgkLUSK7EGVtpqvf4JgJsUgqurqNwpFY9I8hc2oIHSdfa3ITtn+WUtb2pm47X+TTYOp/aWedTO2vjU0zVuMlUEIxEBVAaRmmSdyY1SGZcIEpMcQF3DKQCSqJZpvXBYZF+0o4x7rE3O1ZSwtZwNYk7NnlHT5nlxiWJjkmWigro6jtUxyl5KsASCsmZHeNIBQWSAihL59CZast8H2RmrCQRTqarWqGBUifv6Kmz5sIWNEj6J7nupvCfJv19tJFymuQi35+m43U+dT51Ps0PnwDFJhMukVJV03U84xjhZTZpmGRqS9RJJ3nH7FFAEgJBy0ewLJISUM0q6wFT6HdYNqlmA2EWPLmUAC3HJameXxKUViRXlimAFEkEluWQXMUmaczA3DI7CezQDuu7U+/VAKQBzlYSrFNUwCTslBjlHNmCBklzOYeVcZokmLpjNEk6ftvOp86nzqfNwydGAEYJYkoQs6L4ec+Om2RI84JNplyA5xRRzBQ5ioqjCSFBnKGAJkHHHU5hj+0BZWgoiJvhKqCYpZRwhoGouKSp40qiRMmhjuTKGVNsMvPZZCG3Wv8hwBiB5NKCopJYSTHO0kngaUrmcU26bFIUjHKubEGDpLFBN0VTYL9p+6ag/6An3M6nzqfOp/nvEyUmeUcBZU/HJEdYwSbTXM03aZJ4hJBaci0fjVAVs3SzV23ijjMExP3MAqxSeJVvVJFzomcEkRCSgLpxSRoButg54rLkaooL+GxSmvqrQkBqsCOUqN/kYKcZLkL0bCIA9HezjZltxANMwQF3WjHOQSKhzv0cJ+90INnC2j5ZNm1X97Q6E/ue6nadT+2263xqt91C9SlhBCknuhIPtUDZ44pNjkfcxiYtUDIKGRmwVADBcwEW0WpcUkusJj5ZZ2ZeSfPZDAMxMUoBBZBcAszEJe38kokdClJU30k1OMZqGivNJouKORJUs0nCSTFfpAbQcmWeMlhSBzQbz7dw4pNqAbrEnU1gbeIWbffRxtq063zqfOp82jx8IgAiWjDKkUgB5WReZpMmLjmaMBszpEKCRhImw1UKCUHKR3azXIEymwxZuRxdkeFq2KR045JOibqK5BpH4FpqLbFJIfREyi5YcZ1+RMtM0gCkW9rOAmZR4Weg6fJ0REp1XUSuXnNgHUiiuCmGNXebYW6oNtt0PrXbpvOp3TadT+22mYpPanYQNRyEUSCmFCMRQ8wEYkosm0wsYAokOQWPqCO7KogRVDZkudYn7YTMskhb9LwYK1mKS9pMV1aWXJPYAceCTUouwLiA5OWYJKESkingFFza5BxbA9YBR3vujOzKGKiuXTvQirp+rc/FdKwDSW3DxCLM52GeTEPHaYqddD51PnU+bT4+UVJO4Ikto2SY5KLEJm2BAVPL1SbvCCAHRKBwgMpyhZVeaQ1gumMlAdhC5yYeySXR8quOS5o6rqWhIIpRSp3AI7IymyxAsnymlNyqZFeDg67kyhJqpVbqMMggk2yYJkwVFpBzlryz4EGyrawSuqkG3WxTvRk7nzqfOp82P58YKWbC6EUU4xlBxAhGGEUSFa+RiCrJVUhk3B0GAgACRJAKkwScJJ6WbNKNSUrAjpU0Dxq26g6lzlAQMwxEAWU5cUexSVNblXnJM5JLG5ssnVdHcrWMsjTriSkyYF71ADnX8UigA0krr7S5OUz70Gff/G7cdNOG9tv51PnU+bT5+ORKrjEFYlbEJSf1Z5dNGsDkgmHCy3KVVJqRDsp3XUzAjUMSqqelqmGTdkwkNJsUEoKSInlHSERUZbfCDAXRpemkiU1qZsmSvMQmJRegXFRqrgoqQViVYbrJOoZFqnkrB7DJJrCcQ1vwIAkMvpEGrTP7IAjfaO73tjdi51PnU+fT5ucT1cBFiURMqZVeY1plk2lEwYVEyssAwXMBSlGa7deUpDNg2ZZNuiXqTPIOFxKC6bgkCUuuCijVy2WTsjeiWGQAJAmXkFwVRDBJPSbGSPWsIarua2QTeczwD+J8NoUN1PabHig7kHRs0M3Ydnv/hqy7cTufOp86n7Ycn1RcspBcFUAqQJzkwn4eTQo2yYXEqGCYALTEauq4VpN3qJe8w/Q4yTCbhFOeTtqMVyGV/4ZZEhaB5FQNBckpqI1JxpA6gafEJoUA08k7EQA3v5RwAcmJBUugYIgmo5XFBYO0kzubpB3mJe7MA4AEOpAcaHVPqW3X+zbMjdr51PnU+bR5+RRRAkallVxHIoo+V8UF+kxU2GRpiqtIArmu40pDxQZIiVGGzK/lakzomUBMMQEJJcMy4kiumlHCSeChSQ8izxST7CWQXED2RgAogHTjkoQKSCYsWALwKu8U03AZsGSapZYAktIyg2yT8TqL1oEkyp3evwFCT6Wh7fz1bWSbpvWdT51PnU+bl0+UFCySUYKIykJu1XHJjDOkkcBoEtnB/y5QZgCIni3En6LRLSpQF48EqpMwF7OBeEApJcAiOxFzIbkWcUkZZyBJD0RwMC7UOEkttVJHbiWMQmQ5JBcgVAAx1MTJtIg5FvNTRqUkHXe8pGrD1NRdjuxqWeUcTrZsrANJVG+EmXo6HSYG0vnU+dT5tPn7VJFcKUXMKGIq9OdmNgkAGYrKO0Ivc+u3uiyyTnI1pemEUPVb1bySSmKVUgMoVdV3Ij0UBCyC5BFI5AKlKldHogQ0yRDpOR+pKMutJFWfpGaTvrnl50zJO2Zik9SNTRqALMCRbEKABDqQrFibJ8y25rZvSirofNpyfKpLp6hb3nTcmfIp5MumPk9bqk+MFJKr+WzGTkaaVSbMJO4wJJGapNnEJ41xKnXB8/KRiBePbDJ3UwOUEoXcqr4TSBrpZBldWMAk8Iz0gDxTbDLPIKMYNOZgvQRAQG7VbBKozg9ZzCVZMEqii6fb77SctOPKrISxgsnPMVgueJCsk1Sa2kz3xh10nM6nzcen4L+pqY7lIrQWTAedl/l+nhaSTxSwciizkqtmk6yeTSbOe6rlVr8nUUdqbQuUho2a5B3pxiWFRGQkVxOT1GMmDTBaNpn0ACezlfEig1UwCp7lIIwWkqt7nhj1JFedNavjlFaCjWLFHA2j1O/2mjSU45stW/AgORV5Z5gn0WHaS++9Tdu673XW+dTO6nyq3KIhQJzJAc/6qdk97uZwngYdZ0v2iRACQiSIjlEamdWVXRMmVUF0zSaN3GoA0gAmJ8V4R0aqLNIHymCmqxkGopN3BKAlV1XdR0IBnR6QWQwJ0Qk8yDNgRKhC44kAFbxSSMCY0HJrZXiIznJVCTvMDikxiTyEUnUsHY8sYpLM1pmdawZpbMGDpG9TeVptspnYV+dTO5stn0r/dnwAnCmQJLS6nb/MA8yp/taFdO2mY1P1SSXwKFAjRIEhJQSMKCYYMwKaEyQRLUmtuaOPpnlx3Zn3aBZikSFWyUsFBdS7BJzkHahxkxJaZmWaUeYqgUdnuGKkp2bjiGNVaDzp2Rrm0pNbSZZDcg7EZcm1VKM1jkrM0rBIBdBGemUYlNU6V6A5J0e56KKL8NSnPhW9Xg8HHHAAbr/99tq2X/3qV/HCF74Q22+/PZYuXYqVK1fiO9/5TqnNFVdcoZ/Wyq9+vz+0b/5zV/Afo/d9mPiSaTto+6b1nU9z5xPxfCEA7PQ8LV9kyBdCx/CXBb6TwGuuzpO7r/ly7eaLT2Yi5gIo4UiuxBYZMFKrYpPqM6OkJMUmepn/AgpgjGrYozGDvdwk70hnvKQGS+iiAkWmq2aTSU8n7hRVeMzckzSOEPUSsF6i3vUwEdYbAY1jsKR40di8FIM0LNIUFiBxAmLYI9MAqYGSUKb8c15zKbvOOkhec801OPPMM/He974Xd999Nw4//HAcd9xxeOihh4Ltb7vtNrzwhS/EN7/5Tdx11114/vOfj5e85CW4++67S+2WLl2KNWvWlF69Xm9o/+qeFEOySpMEV/nHGtgutCy0z86nuffJ92c6gKimXWj5AgaDpvvd96/m9yykazcffaJQ1XfMsBBbfYdRO1GzqcLjgt9IDSjWvYwNjk1K+1KVdxywlFKxMifL1QCmYpN6rsmkB5jvUQIy0lOgZyZnTsoAyHpF7VeaOBmtuixdIbnG6thRXJZbmSO5bkKbdbn1ggsuwGmnnYY3vOENAIALL7wQ3/nOd3DxxRfj/PPPr7S/8MILS98//OEP48Ybb8TXvvY17L///nY5IQTLly+fVd9982+8uliG+wQqA+ubtu18mlufqg3FwM+l2QdCsZm2ciuh1e0pLe1fupKr/9k9lic9+UDZ1janazfffSJEvcwMIUZyjRkF4wKMwkncYZVCAFxIpLkAo8Su81lkmVmGOY+SXYvvagJmMzsI0Zmv0FNmpVZytdJrFENGMcC5AkrXhLBMqzRW0kitcbm5W23HzgSia8YSylRh9VI80hn+YYB8jm1WQTJNU9x11114z3veU1p+zDHH4I477mi1DyEENmzYgG222aa0/IknnsCKFSvAOcd+++2HD37wgyUQdW1ychKTk5P2+9jY2JC/pDBzc7R96pwL63xqZ65Plefu0Bx1bYBxphN33E0dwGwFljMMlPP12tWtn2tr8okQVb+VQifxoJBcKdFjJqlERlSyjioqoIDSBT4Tr/SZovkeDchyFY7s6k6bZV5F6ToCZiVXrtik4AWbzDOtfvDyCwAoBWMZSJqBMgqhs1+l9wDoFhaw5elM3NPKq3pOS+rEKBkrxx/nOIFnVo/26KOPgnOOHXfcsbR8xx13xNq1a1vt4xOf+AQ2btyIU045xS7bc889ccUVV+Cmm27C1VdfjV6vh8MOOwz3339/cB/nn38+li1bZl+77rprsF0ojhGytjdkXbth1PTOp3bW1qdKm4ZYYK2EOlCClQNfg44NICjJVtrUMd9pnqf5eO02J58oUdvawgL6nerqOxHTtV1ZEVd045EjXoyyjeQK1I+fFMLJcEUxCTOXmnVryVUyFYuUOu7nxiaL+SYLudXEKhHFoL1eEXNMVLzSyq16GUsKidUCpIl3OizSjVHa+OMmAso5yW4lXpBVSllZFrKrr74a73//+3HjjTdihx12sMsPOeQQHHLIIfb7YYcdhuc85zn49Kc/jU996lOV/Zx99tk466yz7PexsbESUPryTNNNNt0nVncfTfvrfJp5n0oWAhdZAJI10QxGRAaO2Aqsqje5rIyKQ1mS1cxS+uzRZZEBRqmOt3lfu83NJwI9UTKkBkwlt8ZOQg/Vr4RR8KjIbnWHgoxolumbm7ATjFE6/1+FkIAT1lPTZBk2ScAFwIkCTWZlTR2blFJ9joRieIIr2dV1xmSi5pnqo3mmzh3noDGU/OpktwJQwOgM9bCFBHxWqZN2bJ/f0srSbbfddmCMVVjjww8/XGGXvl1zzTU47bTTcO211+Loo49ubEspxXOf+9xaJjkyMoKRkZHa7X0Zzu+S7o1TK694y+vaycDnUNvOp5nzqbpzEXxvC44lYKwDxCagrBnuYfYrCQmuhxBhCdYHypA72Dyv3ebqkxkGQvUwEEq0NGqSeKjUyTsEghGknDhFBRjSnBdFBaC2NWDZBI6hTFdj7pAQE5dU80uikFwNOAquK/EIJblKAToyah/jJACIMlhKAEQoYJOC23JyxI1LGsk1SmzmKolinRAUwx0bWZJa3YzWLUluTZIEBxxwAG655ZbS8ltuuQWHHnpo7XZXX301Xve61+Gqq67C8ccfP/A4Ukrcc8892Gmnnabsa+jJ0e9uTRJM6Gbzra771j2Rdj7NnE+qQUCm9AGyQVK1UmnT0IxBr1B7b1lFknXXOxLssLa5XrvN2SdCAArFHs1QEEqLl8p2VWzSZLcmeliIK7+adfXZr7Qxw7UAR53hKlG8tM9SJ/hIp/KOyXS1smtUznZVMqzOdNWSrJVPjURbernLkxJAGiZZkVpLQz+2MCYJAGeddRZWrVqFAw88ECtXrsSll16Khx56CKeffjoAJYX+6U9/wpVXXglAAeRrXvMafPKTn8QhhxxiWejo6CiWLVsGAPjABz6AQw45BLvvvjvGxsbwqU99Cvfccw8++9nPDuVb23jDIOmlrQ16EiYN7TqfhvepdH3bgKO7vtRG1q6rfA4d01iIQfrmsELLLM3zu8cYrfTqs0m3DTbPa7cl+GSSd1SWq07kIcQyyJgS5KRgk1zSUuKOYZQAShmuxkJjJtsk8ZTYpGGRWnJlgOo7hk2KXEmiMlL9KhIgoqCG9j7LU/WZMRDOVdKO4ABiSJ3gYwuVG3nVlJ7TAEmiWJehc4aDNIHiHAHmrIPkqaeeisceewznnXce1qxZg3322Qff/OY3sWLFCgDAmjVrSmMmP/e5zyHPc7z1rW/FW9/6Vrv8ta99La644goAwLp16/CmN70Ja9euxbJly7D//vvjtttuw0EHHTSUb4M6eptYyHTjJSEZaLrH63yaJkC2AcchE2Zq29VlrTrriZSFBGv+MTjSa9PTddfHwzZXPhnp1cQl3RlCGFFFz5kgoEJ9T6LiWqrydAxciCBAmvcQi6Q1OR9mKIhij9LGJU2Wq5AE0paoU1NngQlIKQCpZFck+v7S4GeBkjJVEJ1yEMEBbh7UvHEgrIhFmvijLYHnDgdhJoHIGf7hFhWYIyNShjIPtmwbGxvDsmXLsHbtWixdujTYpu1NON2bdRjrfGpn9t9Dm+SctgA5ABxJW6B0rAJufnKC916KyZh11Etq8LdpOP58vXZbik+ZAFIukHKJVEhM5hIpl5jIOcYzgUn7LtDPOSa5QD8XSPUr1+MkVV3XcP8yAJlEVNeCVfKsKV7Qi9SEzyORms9yJGLoMZM9q5J/Ejs7if5OCRgESNYH4RnAUxCeqoQcnoKIHIRnkFkKmWeQaV+xziwFhIDMU3tfGRZZOk9OyTkTm4TJaHXkWkQRwBIl9bIYiNRnsASSxVg/3seOOz8Z69evr/0/PhPW1W6tsbY34LA3atsEhOkca6H6FGSP7ucmgJwCOFaAcRigJDVFAxreLaM0x/JlV2/5IJtP127YY20OPlFSVN2hAFip6DlBZtYRXWxAqKQe+185F4CdbzIst4be7foBIwiEE5c0kisjim0yqoaDqBh5pJgk1Z8BtTxOit+ep+pccq6kVCFU8o4I9EWT0GPKzlkGGRfZrj6LdB7+5nomkAUPknXZcU2ZbW332TbzDl77zqfhfKrcMrMFkCFw9IGxTVIN9WRVQsvxRWf5wGEeWnZtsvl87bZkn9RQD9jKOyYuGTOKjEsFlowWcUFqSscVYybhFjr34pIuOLpFBcy4TN+41JMwU5O8Q5zSdEVhAVUAXWe6khzFkBAluxIAkEKdGwcojdwKwRVYCgpV6dy7J9wJlQNxSQQSdoCA8jJHtuBBsu4mqLsphnnyHLTPpu06n9r7VF45RwDpHqdtaToX2Iw5gGl+S7C6jn4noEE2GfxuFmP+Xrst3SegiEmqbfXYSapmBGECJTYZSwo1OIMihZohhOlptHKd1ONX4DEACRTl74pjD2ZdUqrUMAk9GbP5XcRlkwKSRiBMaCYZFedBA6UUaj5UKXRRchOz5GXJ1Y6VdAuYOwCJqMiotcyRFkxSbbuFFROY79ZWTgm1na3YSOfTYJs2QJr9NAFkW3BsI7WGsl2dQgGFrCrqgVL7K1EGxOkm8DS1XSj9KXScYdoGGScpltoEHk9ytZV4JAUX3Eq0CVNA6Zs7FrKS3apB0eyjzriUkABUTyIVyVVIQBKUEncsUAKA3r4ElJyrz8IApMpsJVFcfTAE4I6JtJ+jqMwg/ZfasP6HzYIteJB0+5FEO1nGX+7uq+77MDd159Nw/lSdCAAaUJukE1zWBJAN4BiswOO75zJBoADLEFCadk0xxwGS63y7dgvNJ2JeGiBNrLKQWyW4JBBCSbGmgG/GFVByKu2kzM1ZrrqIusmgpQUAN5kBSCO5cgkQCVBJEOm4IKG6+g4ASKHGTLrnglCAEFDGVAKPAUihWaObwGOHgnhg6QBkqYAADcQm59AWPEgCzU+E7ufSk1Ngu7YyTZ35x+p8qvepYg1MLph56sqsUwHIEBMd5I/DBAFUZVMPKEvr/M/uMVr845hP124+9qfZ9glQRQUoJMxQEEqh5VYXMAWEA2pCAuAAaHisJOAApQbIOomVEbNP5TUX0s5MAqjqOxLEAUwUbFIKSKmBUcclS7/dLJMCSEZUH+dFEXTpJPDY8ZKAjUu6MUgjs24qUPRtwYNkqDNL73PdzdHGTHdt077uRu18qrYrOzJNmTWwXWnbmn1UwHGQ5FpJ1nHAMgCU9gk9AIalTNcBNl+undtmIflUSJ+yKDCAon6rAkgCLiUiRqByYTWbFEDMACrUWEam27lm9mOOxWzWbDGfZVOmq5lTEiWAlDaBJ9LAZQGSRpWHBJvIox8wpRQAISBSZ7ICpdikiUtKQkossfyZVMZGGjCVcwigCx4kXWvT4dv9Wyqs7U3ddLzOpxm2uuzUJhm2CSB9cGwCS5cV6u+VYgGOfFqJNQ7BHoOHx/y7dgvBJ1dqLT67AElKUqsLlEIqYDUxwxBTNAzSAKQbn2wyjY0qWcd8lopRGtmVQxU+N7JrkEVLUjBJHb+0YOmeBHPcwFjgEkCaajuhYSBzbAsaJP0uVHdT+E+T/j7aSDlN0ozvT9PxFrJPrVlknQ1ike6xQgk6dZmwbY/vtvEk1GBVnZbZq03mn8euP82tT2440ACk+cxoGSCF5BCEQBDo+nAUlEhkXAAwAChLc0SqfRVyqx1zaZglbU7gUb+jzCIl0ZMwQ1fk0WyvDiDLTJIW4NiU9Ob04xIIOmyxlNG6iZJ2gAUOkqarDSvjNEkwdcdoknT8tp1PLQGyzuqk1iG2rXw2frSJP9aBZR3g+UBpfHbZpL99S+v6+Kb3ySd0FICaOkta9ieIVIUEDJMUUEDJAZjkHh1DFLJ6NxggtMk7jtQKGLAk9t23glFKEEksWBo2qeRhWoCXpJDUZZI6PCAEIIkFS7XvmkS6IJt0ANKTVe29MYfDP4AFDpLG2sgqTTdb0xNq3T+pQU+4nU/F9xm1QVIrmllkpf1UmGxTpqq/vIE92qEgAMyIkLphIF1/2rQ+qdqtKnmHEIBRCSnKbJJSlVEam7wWDZRUuJKrtFNDmiQek7jjM0rDIpmTnNNkUhcYMJIrkWpMp6r3qvftsEnw3AKlZZJEy6wWLGW5L1dOqAeAIYAMMck5ZJQdSLawtk+WTdvVPa3OxL6nut3m4tOMA+UUrXY8pf95kIVAcACbrGwP1ANs3boml4ZqHd5uc+lPM7XvYc2dW1JKxSbVpMwKKHUrZFxYoKQSEEQl6xiwBNQ4R+ogXzE+Um9nKu84Q0DaxCgBWBZZeofqlwoIi0QeC5QCqgCAiUm6YAno/s3CB3QLBFjQLIOjZZhm3RxaB5JoF7dou4821qZd51P5H9qcAGULljlwO3hM1G02QG5t7V/btm42LLr+tCl9shCo45Imy1WVj1MSqlBUEy5QUj1+EgI2s1Vo2TVklJISYKrvLsusgqXQciohWlolBYu074RY2ZUSXVmHUBAWFUBpJFYnJklI4IHSLaBhT5AHjmaZn7Azx1Ir0IEkgKn/E3a3GSaO0Wabhe5T62O7QySals2RNc0GEsxUbQmcgyrqDLKF3p82pU8UKrRoiu9QEEgzz6RU7NJmtuoxkQDV4CgAqiab4lLHJB2QM8NBXOAzEqsLkOZ7mzJ1rvlskhvZlVDFHEWugFII9Rll4LMJPHaMsIBfWLbUrwMgWarjugmsA0ltw8QizOdhnkxDx2mKnSx0n0I28B+YB46S0CpoTRdA65IQWlobsBtmDOQwtpD706b2iWrJ1DI2KCyURG8vUQFKQQCAgkoJQRSrBFSRcqAATdfcRB0fIN24ZJP0qgBR+QYUma6EEFDdN7n0gJICgJFbncQd934b1PebEnl0rDIYp5xlW/Ag2VZWCd1Ug262qd6MnU/t9l/sYADw6al7KuZvNxUArUv4abAgUDZJrlMY+lE6Hrr+tKl8cvspJdBxPZUgozBRP/pRacdAKplVlaVzJVcqpVNQQDHSkBkw9AGy+K7b2YQf57dJCZOOa8BRMV8FnkJLspSgDJRSAESPjxTCAUtZ3FdN95fPJoFSHHJT2oIHScNO2so2dU+nvvnddxAI+Ptd6D612X+j/DrPZNhamyYAtjoEuv60SX0iJr4HJ+4HzSqL2B+jygMJoiuNA0KQEpM0LJIOqBFczyjLFXrqTECCgdjf5QKmLmNeBkrnPBAzkqUkt7JypmuDlTJdzbs7ufgc24IHSaAdi2nDcAjCN5r7ve2NuBB9GtZKQFkDgEHJFepGLI15bGKVdZ83I1uI/Wk++BQy6rBJSVwmqYBSSCW9UiEhiFQZrhosQVV5OuqNlbTg6c4QUmGU1d8Rwkoh1bZuBR7DJu1nqNlDDFBSQkH0vVFmlbD3jHW56f4JMMpQgs9cWgeSjg3q+G2392+Suhu382mWgDLEJl3JdYDMWgesJQsco9V2m9gWUn+aDz4ZU/FHAy4FmyzNpUEVcBK9B0IVq3TBEnAAU5uRYO2xiAuUhlG6w0RIaT7KoP8WIAs51nwWsohPGqA064jLKgktwBLe/QdUwdIHQOoN+dgEYySBDiQH2iDWMywrmg4gLCSfAB2uqbFSHAUNQAkHvCjVRSrNcgKCAXFJB1wr7HMLsYXQn+aDT0ZqNbFJQKqCOs6WEirrFUKxTCFhwTKGKiAgiESMotC5EGHAs7FHBxwBFYs0LFIVOQiXrjOSK1AwSAEdj9SoGAJKOKyyJLkyJ8NVeRQ+0doqWa+h9zmwDiRR7tR+Bw89lYa289e3kW2a1i80n3xrAkh3vbm5g0DpfK6wvBCbBJoBs2nbIdhk480fshn4h7DQ+tN88slIkuoz0UzMJN4UQEmIZpISZVZJoBioA5gAQO1NYKa/qlqJVeqbpU5mDZmUsMDoAqWRY1WsVM9BaYoNwAFLe4LK90jrkEXoXplj60AS1Rthpp5Oh4mBLGSffAsBpC+d+W0p8YASaJBdMZBNSjhPvN42lf37vjYAZZvkg9ke/rGl96d56RNxEnAccDSfJYGqmQqoqjzSFByXeoYOPcsG0exRApSRYh5kNPcZs9YtsK6WDy6AHjIJDcxS30MaLN04ZQUspxrb9++ZTm7dtNbmCbOt+f/Ym74vZJ9ccwGyzT8yc38bqceygEB8sgR8dcwxtKwUr6xJa28R16wA5BA3+9Dz5zW03dL703z0iRIoAPGA0oKj1GKrB5aGWVoZFqatMgOawGD1xfih9kLK30m9+FnHJotYpV7msUoXLO2xathla+sSd+be6iSVpjbTvXEHHWeh+jQIIH2J1W1HEGCVdUBJUUoi0M+/5adcve8Qm6yNTQaAspWFJNe6bQeBZWD9Qu1P88Un0yYElEJKDR7NYGnAUWjAZMTMF1KwyRAhVDNDVte49xApfS63FZCl8ZiGQbpAWVpmmKoHlkD5/rbHJ3WjPeePLXiQnIqUMsyT6DDtpffepm3d9zqbjz4BxQ3kbxN6OvaXlRgkyqyyApTQLM+M5RrAJKW5iZuGgwwrIzWAXElqbapTSWqqkYT22exNsM3m3J/mk08mocUHSgbDDg34KeDzmaWKR2rpFWXAJPaeUR98lV6BZxiCQtN3Nf5uh00CZaAsfqdykpIwWKK0ffkcVfwb4M9c2oIHSd+mKxf6NhP72tJ9CgFkMC7psDf3iTcUl6wFSgCV+CSg2KR9JHf+Zbjg5zDQWtnV3b4u6Sf0vY5FkpkfRL2l9yfM0L5myicfGOx3DywBlJgkQzERcggwFZssQJM5x5CuJuuYHowR/r0ekIXMDvVAAZSE+ENFCvbpgqX5zf4xmh56m2wm+0uTLXiQrJNYmmSVtjePK+EM2r5p/Zbuk28l2bUma89fTgipxCWbgFIClfjklGXXOhAeBG4eQDayyGkA5ULrT/PBJx9nDIs0ZgfsA4CeYUO1qwJmCRz1dkJK3S9J2Ve9I+kUG3Dvp5rJqqzVDQWhhr2SMFCqdsU+TLbtILD0j2kecAf5NJe24EGy7qbzl7s3XOhGc9u427vLQvsK7XMh+GTMZ5GlJ2G3Xc3xDXTIwJOqRAugrItPAiWws+fMG29ZAUoAjUzSXe9/brNuCmC5EPrTfPPJN3+5GfsvvfWSEMsIVeyR6OxWFzAdcJQakPzlen8CsjhWmyeMAeYDJVAGxKZ1QBUslY/1gKn2UV03l7bgQXIY82886b37y+tupKZtF5JPgwCyTd6b24bqbX1W6d5k9UAJBOOTKJbXxSdLQOmvbzJnfR2LDGa1mnjkLNjm3J/mk092nf+g5PUN0445/dEuN+MO9cFMXLDEJklZlnWXA2UwNQcT3q/3wbNt1yo9gKKeVQL1YAkUgGnuW7Odfy5d8J1L60BySHOfIuvWz7Vtjj657YBmgGzzBEyIc2MGWKWRcUpACRQs0QAlABuf9MEpFJ/0gdKsd9tXnC3vt1LQOdAmCLhTZJaDbHPsT/PRp8q0am5/qIlXE/3O9DsAXTMVFjTN+MlQHBOATfwB9HL1wd5jDKR0Twky+Oy5Wa5236QMlEAADPXyOrAM3bchsNyUQNmBpGO+FFNnbW/IunZtwGNL98mNO9QBZOlGbkBKSvybXi/3WGUFKIEySwwBJVBmfICKT9YAJYBwAlDASmzQtKXU+efogWAdKA4xQ8KW2p/mrU+mJBtQxLVD07YBVQUBsMDJ9LWXMGzRAcyALNsImPAUGL9Yes2vqgwHkQVQAjMDlkYNUstIha0Ccw+UHUiiKs/MxE026FiD9rcQfHLb1AGkD47+fonXxgCmvekcVukXanaLMdvSdT5QNiXyGKAsOS5K4BcaT1mRSl2AtG3qwbF2nr0GoFwI/Wm++GQlef0ycyzCLHffXTOLHEYJAG6hb6L7gpVnHcAsig5UGaZKFPKGm3iHNV21ALbqLzTL6lglUJVgy/ss2iC03jzgAsHQySZQWzuQBMpPjKHO7944dTeHv7yunQx8DrXdUn3yzUhHQBFvUcuLrYd5km9KFDBAaZ7AQ0CpGtMqUJr1IaC0yTzVDNfG2KF7bFowh9KsB5XhIB77bJkFu6X2p/nok9qRB5D2uyzW1xrXB9N9TZAycBrlQIMma2CYZhymYZECZbAE3CEp2jUHLJtYpWnjbuODpTlndck9LphWHnBRBcpNYR1Iags9OYZuwNByf7vQ97rt6tpuqT4B5gb2JFdUAVI67dtYo9xDCqA0bYPT+wD1Q0OAClDa32uAEiiDpd1xYBlQAkcAYYAcILu2lVq3xP40H30qyasaIIngxTpHgh0Yt3bBkVAAHFIQyygNYLoM0wI4ISV22QSWEk7hA9IOKIEy2zTDRIBmsGxilSGgLJ1au59al2bcFjRIDnow8W+W6V6XQTcwaWi3pfpkCjgbqwPINsk7pThL4MYzQOk+mdYCpRtvRD1QWpnWbuyBpTEfyAITyVbmzfM+V2TWFpPRDmL0W1p/mjc++QDpgqNhmKZdkwWUBQWIEpIIQOrvNeyyDVia8njA1IDSmMsum8CyiVX6QAlseja5oEFy0GVvIxm2lRXb+NBmP5u7Ty6LdMdCuvKPyzLbJu8AKCUV1A1sNkCp2jRMGAsHKKG+DARKv6BAU1k5AEE2WMMk62RW6bWr7LfZg82+P03VZssntUMNgi5Airy03EqwQO0cpTYRzEvqkiWw1MscdilZVAJLbh4IEa4b6wIlQRgoS341nAjFAB12KUmx3AFDl1U2AaXyddPanBz/oosuwlOf+lT0ej0ccMABuP322xvb33rrrTjggAPQ6/XwtKc9DZdcckmlzXXXXYe99toLIyMj2GuvvXD99dfPqM/TvQlnw7ZEn4zM2gSQQsrS+tCr0s5uW7QRUtqxZqqNLIM2UICT+WfkZJsCDpvzwUy3r8ilPsPzlle2cdvoz6UhIj5Auvsd0rbE/jQbNpRPPgi6AClygKsXEVy9eKbWixzgafESOQjPipfgIHkG5ClInoJw9bJt9f4gcrXe7FPkYATFi6rHPDXhMrGgaL4bmypjk9J7sIUsLa+OjZalexXO8vJ+nQfqqbk2ZZt1kLzmmmtw5pln4r3vfS/uvvtuHH744TjuuOPw0EMPBds/8MADePGLX4zDDz8cd999N/7pn/4Jb3vb23DdddfZNqtXr8app56KVatW4d5778WqVatwyimn4M4775wxv9teiGEvWF3fa9MnN3effBbpC00+QBrQq4Jh9eW2sds5N2Zx7GkApQW2AFA67yXg8/Znf2sdoA4CSGf70PJhwHJz70/D2Fz6VGKRIgfRLxccDYARkVvAI07b0rIQGFqwrV9PeG5Bmkhhh0ENAkr3nAwqLODfh/ZcOGApIEtg6d6Pah+yBKz++W5TVGQ2jci64pgzZAcffDCe85zn4OKLL7bLnvnMZ+Kkk07C+eefX2n/7ne/GzfddBN++ctf2mWnn3467r33XqxevRoAcOqpp2JsbAzf+ta3bJsXvehF2HrrrXH11VdX9jk5OYnJyUn7fWxsDLvuuivWrl2LZUuXVgLy0nlHYN0gq9vHoO0Hbbe5+xQCSTdxwAdIwL2Ryvtye21lRgMnUUB9J6XJZomzTP2zIN46FMk4NVmKgJbJ3NjSoMHiIauTSusA0ok9BbfzbEvuT/PNJwIAPAXheYkhugBp+5NmlwBQJ7tWiky4D27ugxxlhRRLI602RGp7Gqk+o5dLQu19yEX1HuSi+AyYe7XMCOGsa7LQdFzuuEj3PqWkvNy/d0P36RMbxrB8+XKsX78eS5cubXZmGjarTDJNU9x111045phjSsuPOeYY3HHHHcFtVq9eXWl/7LHH4ic/+QmyLGtsU7fP888/H8uWLbOvXXfd1a4zN4FvdTfFME+e/j4G3ejudluqTyGALO3PA0j71Om9/G3cl88ufVbpLlN+1JyFAYzStvHalr4P2G9lH/p9pgDSvG+p/Wle+WQfphwG5wKkwxIN60OWAukkkE5CZinE5ATE5ASksxxZWkizDsO0IMyzErMswNkw1gKUXUZJSMEo7W8LsEmgHO8H2mWXuuzSZZXmuyu9uv8HXJY5H2xWQfLRRx8F5xw77rhjafmOO+6ItWvXBrdZu3ZtsH2e53j00Ucb29Tt8+yzz8b69evt6w9/+ENp/TAXJPj0OAu2pfnU1PELdjkgNqllm0GvOpnVAmMNUFZkV99PDyglIeWM05qYYlBKDbXT760B0vgBBF9N16PJNof+NN98sv4IPRZSS5w+QIIrwEOeQ2YpZJ5C5hlk2odM+0CeAc53s84CZ67354GliVsOA5SMFEDpyq5DnzMpgy97SmqA0l2nPsvKA7B/nE1hc5Ld6s927dYdbNveXz7MPkdGRjAyMhI+lrsPNP8jD0ks/o1S972tZLSl+uRaSGb1YxLuspDUU+snKdqbzDqBQqLxZ1V3Z1R3Cw40FhsACrAydVtNZR5neav4oAeawwDkQu5P89GnQQwSIlfgKDhkngGCQwoOm0FtxlK6ZqRU+5lBUgoSJSCMQUoBYqRUAEQKSMmUfzRSx7a+RgDR0i6hNptUTYqs2CKX0n4W9v9u/b3XBFzB8nKyuEepLMIgdSxe7QebNMt1VkFyu+22A2OswvAefvjhChM0tnz58mD7KIqw7bbbNrap2+cgq5NT/M/uzTHoxh2035D5x9oSfHLNH/bhWwg0fYAcGAdx90eKefAMKJrjTBUoJTRWedV1LFDq7yWwDFlAsh2KQWJh9qf56pNhaOW4YwAg81QxRcHVO9fA6IKlMQccCWOQVACUg1AGKYQDlhKSamAktHyuaKR9o5AGMJleptsSooaGcPNbXBdI9Z4LTWcX6uWmh1fKy8lC4vXvTfcY9t6cpRlv2tqsgnOSJDjggANwyy23lJbfcsstOPTQQ4PbrFy5stL+5ptvxoEHHog4jhvb1O2zyUI3j/Q++0+Ywz6dmvaDtqm7UTdnn4CqfBlikXUA6UunavuwvGMk01ICEAoJ1o+BDCW9huKT7nKgmmjhbVcrufrbtgDIhdqf5qNP6ouSVl0WWcQgMxVzNBJq2oec7Gv51JVW0/Bn035yQr3r9cgz1U7HLF1ADkqvOtHMjtXUsqtNoNHvw0qudSlqwllnS09696Z/rgdJrpvCZl1uPeuss7Bq1SoceOCBWLlyJS699FI89NBDOP300wGoeOGf/vQnXHnllQBUJutnPvMZnHXWWXjjG9+I1atX47LLLitlrZ5xxhk44ogj8NGPfhQvfelLceONN+K73/0ufvCDH0zL1zY34bDPNNO93luST6FhH3VmgA2oMtC6fVA4N6P2wMCRIEre8YsMNDHK2vx3I23VMUopm5mkJ8POhsRaZ1tSf2qyufaJuPE/M9RDJ+io2GNWAJv+btijklwDUiugJFZkhexKGRDFAOdAnKjtoqRoG0UV1k0IhbTASHSfLWRXwyahWZuRXJtOQJsp7Uy3HlSHtY5NzhebdZA89dRT8dhjj+G8887DmjVrsM8+++Cb3/wmVqxYAQBYs2ZNaczkU5/6VHzzm9/E29/+dnz2s5/FzjvvjE996lN4+ctfbtsceuih+PKXv4xzzjkH5557Lp7+9KfjmmuuwcEHHzyUb/41qesT/tOkv482Uk6TXOT703S8zdWnyhAO1LPICvNrcUMCCE7k6oKlAcq26k1t6brK9FpOrVd/yqyGuGSlis4QEutC70/zySc7PMiOcywAEulkkZiTOezPgCTnkANikoRSSMb0ZwWqJErUe5wUPlGufktUACORFJLnFcAkukoUUFS6kdKWVh/aQvejWRYqWG7Wm5DIfLZZHyc5H21sbAzLli3D2rVrsXTp0qFlnGFv2KnYluSTkCo5QEoJ7oEiF2GAhF0mHcmmfAwXeP2n0GJcFsrjq0hRM7IyZtL/rrcdOH4SgFtmzGePtePfbAMHDP1yc57EOlXbkvrTVLZva8P6BEBlmmZ9kGxCveeTCiQzRzKdnFDAaBglV8k7jYk7lOl3CkKZBUzEifoexSBRDBIn+nNiv6uxkxEkjSBZDDD1GcxZxyI9nlKVrjPjJrmQ+n4FuAk9eA+vTfdl8FzN4P3I9LqxsbkZJ7mga7caayOrmDahtk1PqDLw2f1ed1NuST5ZsHSW+RmtvtXdiHWJOz5gFll0KBc1R1l6nbLs6gAXsVNlAaGkndrpsvzY5ACA7PrT/POJALZ4gGWRIg8CpEz7arkQCijNO1AFSiuzKoA0STswCTqMNf/OOFH9SE/PJYUAIaJgl4ZNegk8wwYE3eahe9M8vIbuR38/7v3Hau6ZrsD5PLWpPq3WyTeDbv5h9z3V7ebCp1AmnO9DmyfVUsmrAR4KWUisAKqzf6AeKEPKT1B2ddiiLW4OWMm18tm3QPKO2deg4gD+54XUn4bdbjZ9IoAer6iq65A80+XkMgiTeOMDZJ4V8UkhAMEhOYfkfj/JQJjuB1pqBaWAkVl1HDIIlJSqmCVRRc+lyBVClWYiIer4Q6Ruuvemb00Prz5QltahveTaNGxwNq0DSbSLW7TdRxtr025L8ilUuNjEIkNtq7ODGB9lqV3IVHxFgqCccu4CpdlvMyBWh4Uwt31o/KQ78bI3J2WtOXHIyvKWMutC60/zySdisljz1GaRSsMiM6dQwKSbkaqTd7iAFAJCA6QLlIRRna9DQbgAYVwNAwEUs6w5B4QyVZCAMhDJbMKOYZOgJiygpVxbTrHc/yhRIRJjfiaqGesM1D/Amro9oSmuBo2Vr7s/N4V1IIniphjW3G3a3qhtt9mSfLLbB26qUCwSKG5CHyD9IsrGbCadXkaJaU8qQGnHQaJedmWBH2pYr1tb0q4zbDIElHXmAWTbyZNLu/D8q7MtqT/NB59cFkl4WiTrGICc9IZvaGaJPINIM0ghwNNcSa8VFgkgU0ApOQVhFFQosKQAJBVlEKcMRFBAMJUcRKkFSgWWSlYF9GdAgabTP93CAsNY6AHWmFkWfGAd7jCb1DqQ1Daob4RkjWGeTEPHaYopbAk+ue2F9z20L7+ua9FO1oJjaFl5fjpZD5QoZFf/P6MCxIJNstofPGCoRxu51V/uFS8orcbC7U/zySegYJGqbqoe7uGUlyuBZZ5CTvYhshyCC4gsV0xSv4RXSIDqByfCFEjKOLLyK00AKSiIYCqGmaVaZjVgKfTwEo5SMlkgscyApm+D7rdhzCg707HQ3TJXRHPBg2RbWSV0Uw262aZ6M24JPgGBIRzuWMfSuMfwAGI1kF86+2npp6wHyjrzZdYKaMqaSjyh2KRhk0AYKF2ArGORARBdyP1pPvkEoMwi9bstGOCzSQcgeZoroExzCFGAZOV3a0AkgoLy4rMx6vpKma4Hq9mj4JCCAoKDOoyxxB5dybWlVScn0LsKqDzWNVLefiYSb+Y6eWfBg6SRV9reHE1MyLWKHOcsD23n73dz96nJykM83OXlG9CVcKS9IcvG9Z3J9J1j15tjwANKhNkk887O0Df0INbYJkbZsG6h96f54pNlkbmew1FPgAw3DmkSdozcmqXI+6kFR65ZpGKTKptVOEBJdTySMAbCqQVMmkQQyIt2BhDzVI2lpNyOvSRRrLJnucqInco0bu6DbB2bbAJIs9zNEzD7qo31a/NnJrGfS8eeG1vwIAkMvpEGrTP7IAjfaO73tv8cthSfKjMABMDOz151zQVS04QHGrvLGCXFb5IFUDZZXbumrFdrDggG2aRpM0Xr+tM88ynvl1gkuDPco79RzdqhGaTo98GzHLyfWoA04Ch04o7PJKVmjIQLUEZBEYNrcKRJBEkFJBM2/kiEquVKjMQaqgNrbMiM1tB96d+vIWm2ksVKqp9L27R4IN1UFXk6kHRs0M3Ydnv/hqy7cReaT2adL7WW2jgsspw1p8wFQz871hRC5kKWgFK1Vck8ITbpP8mGxmmZ8V2ty/W0MT+jFQjGI+fDtet8MiuEjUGaIR9WZtXyqpjQQDk+bhlkrkFSZFklJhkyG4s0gClYdT0VIG78kZt4pLNMxyXd5J06q31Q1WfDLytZFwpxv7u3y1Rik5u6uDnQgeRAq3tKbbvet5mQCDY3n+rEnZDUGmrjA2Ro6Ii7nBJigdLso+leM+WxXMnVMMsqgKI6FKSlfDUbthD706b0ifBUVdTJU5C8D6R9iP5GyMkJ/V5ktOb9FLyfWibJdVarSPPg8A87LhLQ2awUNInAkYMBkJRCMAFiEn6YKMUfCeIp/zb/gdTcd7UZ6c4ZbUrs8fMD2lgIGN0qPXNtHUiiOdAfeioNbeevbyPbNK3fknwq+VBz05X9lJVlIYDk3t1p2J+ZXscAZR2brCbnVJcFf8PgJu1MiDCbbDhm1582nU8QOUg2aYHSyqyTfcj+eAkgs4198H4Ri+RpVolJmpqtlk1mhiFSW+tUpLkFSkCtl1QxUcIoqBt/LLFK3oqz+QljTZnjftZ5KBTin8vpmNmeet+HVQWmax1IonpzztTT6TAxkC3RJ3ddKQnAbSPLn/34RmgfPjga445M6s5DJ/Uf/wE1JKH6THHYm7FUy9XupCG7dZh9t/BnS+5Pm9InIgVI1gfyvgLKXANjf6N66UQdMbHRMkj1PqnikDqr1R0b6QKl9V2PiyRCjZFkSWSBUlABygUE0+Ml9T5ITfxRigBQ0kBFJ0IBidJ0VkLqaeccqdWsqwuFhM6lyQuYSdV0LgES6ECyYm2eMNua274pqWBL9qk0xZW3gRuPbBIsuZADAdK29eKJruxaZxUJdYCVmg6SWkPr3fquQ6zr+tOm88nKrFlfyazeMA+hATPvp8g39i1A5pWEHWHHSgKAdEbvE0YALspSa5qDJZGVV12AHaSuElrEHyvlDgO1gQWKB1GJsurjs0gAwVCIMTfb3L1fZGWJ57N+n+4clzNpCx4k62SepjbTvXEHHWdL8GmYwf9+LUgj4wz6PXUTuRugnOqs5kM/qfpAWJdZ6G9DaFlybQJPf/MB34Etqz9tSp+IkVlzPcNHPqnijxMbIfobbaIO70+WGKSNSZqxkRocJZcQXFaSdgijoIxAQJSkVsEFCDWgyoE4sixU+kk6IRvQpyTKWee+uhNikU0AaZa5D6du9rj/UDroFt2U8UigA8kpyTvDPIkO0156723a1n2vs7n0KZQt5yfdhOKRrrk3oMsiQzjUFOKT+o+6UZufZpus9kZ1p81yljWaA4ru/H51ttD706bwiYgcJB0vyaxiQgNjfxzSAOT4ODKPQRqA5P1Ul6HjFhwFlyWpleii5JIRlcCToJBUzZAPLqzkGmSRDnMkjFWWSUIse5SEWOnVzVD1pVafRdYBZCjTPJRl3mRV9lhstQmJZAeSvs10UHgm9rUl+NSmbf1YSQ9YWxA1X3Ydxkjd5zb7M87VzC1Z7MwBxCkk8EzHtoT+NMhmyicicpB8EjSdqMQh/aEeSmqdKMUkjdTKUwVyPFNsT3pFUiXnIIxAgIJCQHLFKAktALFRYnUBknoA6cqqjsxqPhu26EutIRbpmhsG8W2qKk7lZ017D9O3BQ+StRKLt7wx663GXAln0PZtMv02N5/qLFhmbsBGhkUOAsgQ3oTiksPGIYPmTj3kL3ff67Y1w0dcNmnW6zn+/HO+kPvTXPpEAJXNmk4UcchUgaSY2GgZpE3UmXCTdQqAzPuZZZAiU+9AFSQJ0xnXWmwlXILpDuon91SsASDNzCGlGKQLlHBijnDYpMcifZm1KU9g2JyA0k/R25LSsrCCM1fscsGDZN1NF5J6zE0UutHcNu72IakhdBOH/mFsrj7NpU2VMba5b9021Fvub06kCGa0khr0l2Z+PwOUAmV01+u6/jT3PhUAOV6KQ/LxMQWO/Y02USfb2Ee+sY9svI+8FJNMwVOuXhnXTFJWEnaIBkLFH1U/IxQ6OYeosZAABBegARZJnD5jP1NqX67EauRVX2qVUpakVpdFFsvbAaRZ1jYnwJdYS7+NlNWbpms3m7bgQXIY82886b37y5suZt22W4JPrpUqdNTseKpD8blzo05VWgU8MKy5We3nQTtzmGUJIL3arcRKW2WgJBTVsWvOsRdif5pzn/RwD5JNaCZZsEc3USfbOGFBMe9POlmtCiCzidyyR55ySC8OqQ+lx0UKC5SECTXRcoOZ8ZQAClBkemJmwyIps7JqCSw9qdVktRoQdFmkkVl9gGxSdiid2j1pWivmWI1Hzsb/pzbWgeSQ5j7J1K2fa5uPPk3XzA05G9amNFYoeaAEoI7UallkCCCbknkIVTMzGHT020yj3ut0bD72p7nyybJIE4fMxpXEunGsSNTpj4OPjysGubGPbHwCfKJgkNlEriRWzSB5ynV1Hf1gVGGRQv8VYDXgSE2Rc12uTm2vx1RSpgDRzB/JGEiUqO+EAjRSgKjffalVSjWPpJASXJRZpJVZ0Q4gzXKD30KjsFvUo/LbnDUurlLUS61zaR1IOhaKY4Ss7Q1Z165tbGVz92mqNig+Oay5MRH/hivJOQFg9Nv5UmsJIO0yiVZxSdMeFLYon8smvSEhC70/zbZPBiDp5EYrtWJyAnJ8g5JYN45B9DfaTFYXILPxvgVIFYcUlj3yjFtgdGf7AFegZyDSZKRKLiGorFRZ9cFRAaYDjiWwpEDkgCIzQMkgWQTQCFwqxmdYJJdVFmlB1AFIA44hqbUUjxzAJknNAyhBVX6drf81bawDSVTlmZm48Qcda9D+NmefpmuEzDxQhm4818zTbAkA7bry96aEnSBANk3IrN9LQIny1Fptron/ua7d5tif5sKnEkBm46DpRmByHGJ8gwLHjRsUQD7xhAXIvD/ZCJCGSYYKBwCKSQpeZo+SS4ARUM0yCaXFy4AiHLlVAyIxkmsUg0RxIbXSSAGjwyhDLJI7sUiuGaVZlnsAaZlkaNiHiUc2JGzXMUP/4ZSQgn226U+zZR1IovwUW3cDyYb1CCyvaycDn0NtN2efZsIIFANsklybnlLbxEMs+AWa1lX8cIHSl1ktQLYByYBZoBTCVAqzQLqQ+9Ns+1RmkE+ATGqAfGJdAZDjYxAug9w4YRN2XIDMJ4pkHaljkQAgRZG0Q51C5oQRC4zqvZBhK79VgyGLowI0DSDGCUiUWGZJ4kTJqzTSccoIkpAKi1SAqNij+WxkVhuj9ABy0LCPYeKRfjMTj6wLNLjXbq6sA0ltoafZ0A0YWu5vF/pet11d283Zp2GNAqipFTL8vlqG8ULlruoGM1cqfvgT2NYBpI1PVkGynjVRNaWRAMAKtrmQ+9Ns+kQAgKcq/qgBkvSfUKC4cQxy45iSWsfHkW4Ybw2QRaKOtFV2jAmtGFADBWY4IyMWIBVrJEXc0cqr6sWSqABEzR5dJikpK1ikBUsHIIXUL3UeuDRAWTBJCSDjogKQvOZiMtJ+fKR7mxISVnqa4pFzySYXNEgOupT+DTzdCzPoBvalhc3VJ9dcACTTQFOmn1D9uYybjBJSGaNFQBozWP1xWiZ5gJhlfrIOUAZIByRJA5MkjtTqZ7MSAUgKEJ6rJ38pQAJAuVD606z6xFMrsZLJjaDZBPj4GMSGdZAbxyDGN4A/saEWINMnUuR9VSygFIt0wFF4qEJRzxYB2KxV6oAj1aDI4ghUM0kDiJZFOu8WGDVzNLFISaiWUsuAyEUBlCZRpw4gRZ26Q4kFSgCAII1JunVjH83Qj7ozNNeS64IGyUEnus3FmO4FC8lA0z3efPTJNUrUDTod0Azu1zyY+7ENqGP54x4tQ/TikS6jrGWRogqKFYAMzQhScrjwr3IapPbJTpaLIFBWNqv5XGeba3+aCZ+IB5Ck/4QaC7lxw0CAzDb2kU/kQYA0UmuocEATOFJdu9W8jLxqQJHGUcEqk1gBogFK/aplkYNkVicOKWQBkBmvgmNdwo7Qk0a6P5EPYJZUP7RSEn54rbt2c2kLGiSbbK6fVtrY5uzToP7fBJhUD0y23wNs0pdZm27M0rhHP+boMMq6hB1SAkNZkV8tQPol6nzjmk3SgllKqm5JwyYhBAjyIn1/Bm1z7k/TNZr31RjIySfUeEgjsdYwyHTDRjsO0gVIMxYym8hLmaw8LYoA2GMyqsAT+vmIFRKrYY+FxEpAk0jLqhQsiTU4RmBxFGaRSQ9IRgpp1bBIFkPSCBy0JLMWTFLahJ0mgGyTsDPIBg2/MvfdfBj6YawDyRpre6MOe0O3TUCYzrHmi0+GMba1UHs3ecdIrkB97NG9Uc3YLMMifak1CIxefKSUsOOxyIrM6gPkgKo7ACAhymApcpuJSIQ5v5FGTVEByoXUn6bSLnRswlMLkEUW62CANAXMXYBUTJJDZG4Bcy21OrIkoSqTlbICDEv+OWBJGSmSczSDpHFkpdYQi1SfEw2KCWQUq3cjs9KoKrNKiZxLZyhIFSAzXgVH9x7145CGTTYBnJVTSTkeWSe1NvWnubAFD5KhJAEZWB5qO2ifdfsOmdt+c/epcmynkXnqNMt8YFRApgdDyOq+XaD0jVlpdMDTKuqlVnd7c7NSAgfwyqDYBJAhlln8UFN5R31WWa3KOXW4vASU9nzTyMYwF0p/mimfCFDEIF2A1FmsbQAyfSKzwOgDpBnuYcDRLRoghQTx4+OUOBIrBUvUZ8MmWRJpNhmDxRFYL0HUU4yRJD2QkVH9rr5DxyJLMmuUACyxQJgJiVy4cUg3LiktQGZCWvboJ+sY2ZVSAp2YawHUnfTcfWAdBtD8MZNN/WkubMGDZN2NWXejDvM0PGifTdtt7j4VcUeCQYMe27RxJdcQUPoAGarwQclgqdWspgiwSD9Zx1leC5B1yTtuVR2dmAMiVfyRUBAWFUApVcariU+a2ORC6k/T9SkIkBMb7DjIQQCZbZy0zDGfyMEzbt+NvGoAsjrDhywxRwOKLns07ywpknNKLyO9xolijrFmkH6yDkssMFqZVcIBRwWImQZAA5C5kMiEqAXIYDzSDuslrSYLMPeTlVO9eKQb4jBt5woIm2zBgyQw3IWY6lPusLa5+xQyC5zmOwi43mvTMBAjufpAWd1/AZDGXKm1WEZqpVazrJSwM4BFNgJkwzAQQO3bZrcaAKQAeA5Ci0QdHywIjabVR4ZpOx/603R8KgFkf0wBZH9jZRykKRSQjo0jG5+oBUjDIHmp7JwsFTB3zR8X6S6njChgTDRAJswCIk0iRL2REmiSKAY1TNJ5SRaXZVYWW5k15wU45sKRWkUYIDMuamKRzm8iTiFzLbHC3sv1iFmXWV4ntc4HW/Ag6V6QpqfzNk++TdLT0Df1FuCTL2GGZFJXiiVEgaWQVck1BJSuVap1APBx1OzfbuNIrXUJO3YXNUM+ggApcrtNKcvV7Mc6VEyRZYtOAyACilUCKmnH8ceeX0JbZbua7ezhsfn2p2F9ssfgKWh/g2WQcnwMcnwDxIZ1Ram5J55Q4KgZpJndI+9nSDemyCe4zWC1MqspXO4ApDs8gnqI4MYjaayTc2LmsEgn/thLFDgmEdiollkdWbUis1pg1O+aTWbCsMiCPbqSay4kJnOBTAjFOLnwmKQ+hZV7zvy2qU0u4MYj7flBOWFnth7OhrUFD5JA81Oq+9kHgEFS0bBPv/6xNmefavenG7qxyEEJPr6PTTFHX2atS9gxN6k740AZLMvDPppikRWA9MdIDiW5FjM0EEDJq+b3SwGCpLjWNGpklFtSfxrWJwIU011lE7ZYgNyoigTYOOT4BmQbJ5CNjeuhHRMWINONqS0SkPcznclaxB+LoR6ifuwgoEFQKxPMxCHLsUhXZo16iQbKEUQ6Dkl7PQuMtLfYxiORjFSA0cituVQgmItCbnUBMuWGPRbvhj1mjrwa/G32aVNfEQE7/6Vr5bgkKak0QFlqNXsrnbvA9Z1rW/AgGboA0vtcd8O2seJ5q70vW4JPrhkptXIDlFgkAZWyIrm64Uojo4ZK1VWKBpCqtDNobKSfsKN+WCAW6UuonsRaAlR3vdklL34lYQyQvDS/pAVLwLJFIgTAFCASGSnwjNAovW5J/amtTwTQ16uow0rSCdBUFyjfsE5X01GxSMUcx5FrcMw29pGP95FN5Mg2ppU4pCuv8pQ7sbqyHwYvyrN3KGnVZZEsoWAxQzxq5NXEyqxRL1GMsjcCkvSUzNpbbBkkHRmFiHqQ0Qhk3CvikBogUyOftgRIk8lqxk4KIVGL/UJWmDLXD79CyBJgMkrKs3uQIh5prpkBT3cCgU0NjsYWPEi61vomHMKme6E3V5+azJVe3bgkEJBcDYg6x6yb6dwsLSXn6JtxOgk7FVboschagHTAUXIOiGrUVZpleoojBZiiYJKEqn1qICwxqjwdCJShc7Q59qfWPvnsMRsH+hvBGxJ0QkUC0o1ZKf5oigb47NFkhxoLSY+EEg2QFITqGGSs448xQzTqMEgPIEvZrKOL7Wc6uhgyGikn6miwzEFL4JiXPitJtZ8LG3808qqRYw04NmWRCwkVpKTq6rRN3HHrJRtwdMdGAvMHHI3N6oR1f/nLX7Bq1SosW7YMy5Ytw6pVq7Bu3bra9lmW4d3vfjee9axnYfHixdh5553xmte8Bn/+859L7Z73vOfpcTbF6xWveMXQ/vnXte7i+E+47vdBfYPUvNe13VJ8MjawUDjCrM/dnjjb1PnqA6QrsxrgnVLCTk3hgMocksGEHgnJOWSWAoJDmleelV+CQ+YpZKZeyHMQwQGegogcROTqnz/PgDwF4alaZ77nqVofOCdbSn8a5BMROWjeB51Yr179DSCTY5BPrANf/xiEfvGxx5H+5S+YXPeEfm3A5LonkG4YRzo2gfSJDJNjKbKNqZZbizGRpiZrnnFkXCK1GaIFk3SBxbDHsrTKbLJO1IsQj0Z2eIcBRdZLynHI3mJQDZB0dDFIb7GWV3uQ8Yh61wDJNUCmXIGiYZMGIPs5twA5mXMLlH0ukHGB3LJPocdJCvsSNtu1HK+s/O5KKUhvWEfw3iO1/WjYh7aZtlllkq961avwxz/+Ed/+9rcBAG9605uwatUqfO1rXwu2Hx8fx09/+lOce+652HffffGXv/wFZ555Jv7/9s492paizu/fquruvc8599yDeL0PRrw4EwIqzIRHeGiW4GN4JIQZNSIDIcwsc0fNIkjQNQPJmgFcawScRNdEx4zDQiGKA8somXFwSHAGjMkFQWAUBO8Qg6KRC0rgnHu555zd3VX5ox5dVV3du/e5Z597HvVba69+Vff+7e7e/envr35Vdf755+Pb3/62U3bXrl34yEc+YpYnJiZG9i9U/zHM/LLDwkB+eKnte/yHwFr2CWhuBtLYRlKFXLmlJgWEDOGgOkQjKD1ANpXRoR4C7w9r/U4TtgNaYdikIjUgNRxN7zsBNanXCarK0BLgegBdAUGZbP5BE/UdAqAcYBrgSq0yDqIH2MX6up/afCK6g3IVWiXFgsxetdWjGji5a3jVUY+qLWSRl1ZD/LCfjEhVRSkxdZF2mJVlFEk/RTLBFChTA8eknyGZmkA61Uc62QednFT1j32Q/qRRksj6CoxpBcgkQwmKwRBALhZ+mFVns1r9szaEWXkp/4ugVdWEH1rVRgmRg4/YdZI6pGq9vFZqsq4ku9xPK2Fjg+STTz6Ju+++Gw888ABOPfVUAMBNN92E008/HXv27MExxxxT22dmZgb33HOPs+6Tn/wkTjnlFDzzzDN4zWteY9ZPTk5i+/bty+Jrl1BP17qUpv38P7kTNluHPtnrtDlhVqtTASrckKu7vwQlUAHNjwL59R32/DAVqX0MJuwABnwhFTkSIPW8tlC/eryUwx7xUgLTgiWSxA276jaTgGlDCSHBGUroWev3U7AsL0DzBdmt3OAAaD4PUiyqZh1zEAqM9jiQfvMOu4MAHV41TTxUeFXXPQ64CCpGoB5mpcwKrVph1qZ6SF33WEvUmZgyiTq0PwX0JlwFqRJ2SpIEATkoZecAOoPVD7MWpajBMdT9XAU7YoVZq//xsG4g9UurHUmy20baqnGp99O4bGyQvP/++zEzM2MACQCnnXYaZmZmsHv37iAkQzY7OwtCCA477DBn/W233YYvfOEL2LZtG84991xcc801mJ6eDh5jcXERi4uLZnlubm6k37LUC9L0kBr65x/x2EvdbyV9CiXv1EKuADh8NanDpvqP60LR+Q7zB6zXQ1bfUYHR3kdub0jY8ZtwhDJWuwByRDVJKDOwJLyUDcZ1pwI0qeolGa9AyUsJSqUq/RFGmmwt3U9EcFnvWCyC6D5Y8wMQB/aDL8gEHTH/cqt6LBcGwezVJvU4sLI9/W7ZbLNVpGkHqeoddT1k0k/kcj9DOtlHMtVHqhXkVB9schKkPwmqATkxBdKfrANSh1gtQPqQ1IDU4dRFvy5SwVHPA7InnppR7+pyAcqIzcug6fwBXR9ZZZVXXUYyqxu7cd5PS7WxQXLv3r3YunVrbf3WrVuxd+/eTsdYWFjAVVddhYsuugibN2826y+++GK89rWvxfbt2/H444/j6quvxne+852aCtV2/fXX47rrrmv8nuV4Qxll3y7l1pNP/qgffvMP3R6y9n0eKHXoFagaNvt1mbXmHnBVpL1PKNSqf6eTsKOWzTrug7ECZysgeelkttZgSRmgthNmAVLBUvBSDaxbKVhwqUBBCyDJLFjK3nqQZBVQsbbvJyI4SL4g4ZgfAMnlFIvz4Af2STAemAOffxli4QDKAwdM28dh6tFPzikHpcn27BpiZYSAOok5VQcBGpQakFoxyrpHK5PVAiSxAEkmNkkwZhMOIAuSGMXoA3KxkMrRV5GFbu5hwbHkdt+swvltAACu/yyiseu5+jnx1KMXavVVZJsdypDryJC89tprW4EDAA899BAAOO1htAkhgut9y/McF154ITjn+PSnP+1s27Vrl5k/7rjjcPTRR+Pkk0/GI488ghNPPLF2rKuvvhpXXnmlWZ6bm8ORRx5Z+YSlVQ7b+4xSt9Jln/Xkk21+361mPQg4Ea6aNPu4oNTr3N/g/yFdQGoV2SnU6sGx1sUc4PbLaqtIoB2QGoyh4bP0Okrlfirj1YEl53JYJMqARLWtFBwQiYxD08KM/gAFU6J6XiF09HfiQ3k/OZEGrRw1HHW948LLCo4KkmqAZJOpukT1qEOrNiR98wHBSBVmJVZyjoalTtSpwqsSkOlUpSbt5ByqAdmftOoeXUDaYVUbkoOyAmRIRXIBBUpUyTiBisgSwlKDcjosvMqs/xiB/G/qekddD1m1VR4+RNZS7sHltJH/NZdddtnQTNKjjjoK3/3ud/Hcc8/Vtv3sZz/Dtm3bWvfP8xwXXHABnn76afzN3/yNoyJDduKJJyJNUzz11FNBSPZ6PfR6vdZjjFI/oudHeVsOfU9b/H09+ASEk3eqUCdRIwiEOxOgkC+wQrigbDJfITaVsUOtwbaRQBVq9c0Lt9o96hgItgGSc69uMhB6pXKkWqLUo14GYxKQGqDcgqWuo9RtKHUIliaV0mRyhAhihWCHXftDcT/p60CKBZXNm8uwqobjYAFCh1UXDijl+DL4fNVTTn5gAcXCYqe6R91JgB1abVOQoRCrVpEajrL3nOZEnVSHWCf7anlCgrE/WQFycloCMp2UYMwma4DUHzejleNAbmexVmrSdBrgwVF/nN/lh2QAgBNQJv+LofGUjXrUY6VqYAIGlBqedrMP//p3vZ9WwkaG5JYtW7Bly5ah5U4//XTMzs7iwQcfxCmnnAIA+Na3voXZ2Vm88Y1vbNxPA/Kpp57Cvffei1e+8pVDv+t73/se8jzHjh07uv8QZV1DPaE/+rAHwFKBsx59Aqp6SSCU2SoTeGw1KTRULVACCGbe1UKoaFeRTrKP9zub6iCJD04HlpaK1NMmQLapSb3eUpNArlRkKcOxNiyTVNVXiirE6oNRq0heAmUBEAqh1KYGpg3EQ3E/hVQjyoEMrypIIh8YGAqtIBcOQCy8XLV1fNmC4wGlHvcPnKGtqg7Ky1po1VeQQNWPN1DdK3aIlRGClLlhVqkgmQFk0k+RTWVOJmtVH9mvADm1uQq12goyrSvI6sNN93M6g9VWkUUp1+s6Si7kPiE4FlwgsTrt8EGpX2xDYVZbQQJVXSPVihH20HWy6Z7/wnGwL+njsLHVSb7uda/DOeecg127duEzn/kMANkE5LzzznOSdo499lhcf/31eMc73oGiKPDP/tk/wyOPPIK//Mu/RFmWpv7y8MMPR5Zl+MEPfoDbbrsN//gf/2Ns2bIFTzzxBD70oQ/hhBNOwJve9KaR/Ry1nqbpDcc3/xZqu/Ch464nn4B6vSRQwSvcF6sbdrUzW5vCMz4gg2W8+WFZrcFjqFCr3cmAryIBNANSwVFY5eonoFKTACCoUo9aXWpYKpAKlRkbgiUhOQRlVRiWJiBlta5NXY7rfjL765eMcgCSL8r2nsUCSKHAWA6kWhwsQKi6RrE4X4OjHAx5HqUaFHlYaNWoyAY46iuvw6zNdW9VmJVZmat2qDXpp7I9pFGQfSRTEwaQMkHHAqRWkEkfIp2QgFTTECAHqonHgUGJhZJjUbWFXLSUpFaRPhyLgII047d6fzRGFSADGq5SkMQsm4iAFWqlCoyhttEHez+Ny8baTvK2227D5ZdfjrPOOgsAcP755+NTn/qUU2bPnj2YnZ0FAPzkJz/BX/zFXwAA/sE/+AdOuXvvvRdnnnkmsizDX//1X+OP/uiPsH//fhx55JH4J//kn+Caa64BY6EAwHAbdjGGbdPHIAjDxF7uCpv16JMOuYY6KdcJPFpNmjaRqu0kgBosq+Nax/GOaatIp77SBqJ9AA+MoRE9HLPW1VQkEARkDY5lAJJqndD3tAYkrXroQZJWsCxyIEkhilwOxEsLkERBUQ3ijDKX+zF7XQLQgVwmVMbJWGadAFdpLuV+qqlztUwGB2SnCarDBJIr9VgOjGoUgwWIxQVZ97i4YNa1wdEGoh1azeeLWr2jDcdcOazBqMdK1OucAb0JkFGCjBIkqd0GMjEJOulEgnQqk/WQk30HkKkNyMnpOiD9EGs2iQIUg1JgoeBONmteChzIS6McF/1kHRViHRTyU3gKsjXMaq0rG9pE1oapI8REawiIE2qtQKlguYT7aaWNCBF4jV/nNjc3h5mZGezdu3dofedSremiHtKL3fDdK+FTKWSYVOg3dRWelOt0/YgsKwTAIdR6va4CZcickClxm4DYkGSkPm8agBOYzFBSqo7K1UNcP8hRFtWDXZflslcdwUtA9aCDIq8yXYs8HG7VILTDrlY3dbYRSiUM1TZCmQSaNU/STO5HqRqlnip1mcm+YakMvWpACkIMMIWBpF4mBpxCQ3WJRvIFec7s0LU+l2WuzrcC42BBgXHezPP5CpYahDqs2gWOfr2jDccBl5GK9uxV9eC35jUgU0ZMaDXV2av9BNmmVE2zICCz6cl2QOosVq0gQSUcVU8/GpCLRVX/GIJkXgrM5yVKpShLLjAo5P1WqgxX57dqJUgpGCVglKCXyPlMTVNK0U8oUibne4n8pJSgr+b7CUNC5blKKEFKCRIKeb7Ucluotcv6ubk5bN++HbOzs2N7jgOx79ah1vSm03W7b8sBo7Xqk5lX6s7PGNTJOW453TZS1lG2PaqdLuX0Me3MuoA/neojm6xpu6cig1aWFRxtBWqOYXWCrusjdSfrtHQUpgZjpSKVslRqUxS5ASdlzACTEApR0Gpeg5GqYbj00F20IyT9c6emzsuFBUlS5vLloshlOHVxXnbTp4CoVWO5sIhiYYByfiCV44F5M6/hOHh5IMOoHeCoAWnD0VaPQKUg6xmsLiB1E49lAaTdzMNSkgMuOyRfdMKsAvNFiQO5G15dLCv1uFCUGKj1g0KHWXmjijRqkRKouA4AWU/pbqvMXtQKUodaCVS9LdUfrSBdFTn0tupQZpwWIYn2ymLhTZv287d3CU22bV9PPmnT9Yx2lqsJs6LKdDVhV3U0k9mqHlih4IcPSA3ierlAko//RhsKDTZlu9rWmIjjqUgNSB+ODfsbmNqhVgVBA0yV4KPDrgac+UB2nE4ZBF2QqjNJlfpkFTTt0UesobpMGBaQ5TyzRzcJdbBg2mwKDhQFRDEAOAcvBlJtLy7IfmsHCxB5XqnHhQULgoMKlAsVHKVqzINjPbbBMQ9krvptA+1QKwBLRVofp94xcUKtnQE5tblqB2krSDVdtJTjQlFlsh4YlFJBKuV4IC9lMw8FSR1aXTTzZS1RJ6QiXQhyMMrMPpXKVOfE+s/pThTsUKufsFOFW9Xt4d/n+p4KbHPuuSHbl9siJFF/2C/XG06X4zRtX08+AW42q27a0bazne2q9wFcWIa+Q+/rHIdoIBOrLFHb6+qzzUgA0HYHAaZesgyoQ8BVkHp7oCcefz/dXR0Ap1ceobdRBkLVIMzFQPb3qkHpzzMmk3ZUOBb2vDoeUUrVgJEEXjn8dqP6d2s/deftdvi5yCUUi1yGV7VyLHLwhQWUeeGAsBzkznKxMLA6AODOOI92nePioDRNOQZc1jfaCTpAc/MOu/6xymCt6iAzSpD2EyeTVQMym0qDgMymJ2Ud5NTmKklnajPo5DTQn3IVZNoDT/oSjFZYdcAFFgtZ/6jrIA/kpQHjYsExKDnmB2UNjlpJFiPUQ+pyTdsAF4wSlFVWq18PSeAm9ITsYJ5P47IISc9GjYu3WVNF9KjHWy8++X8Ou51kTU0aoEpF6TcDAWSZmgok1X5N7SUb/6ShcOGwch3NqYsE3HaU9rLZzr39rWWlKDXUJDRzCA06HWrV9ZiUWTD1oAnAdFqg5uV3UOc7Gn+T7a/9guDXxRYD+YJgRj+RSpIPchQLA/C8kNNBgWJhEdyCpVynYVgGOyG3s1Vt5cjR3O4x1P+qrSBNQgqqph46UUf2oGN1EHAwgEwnwbMJIOmDZxMoaabAaHUMYNU/6jrI+ZzLJh8KkjYc5weFA0ddHwmEAVlygdKqg9TrfWOOeiRVL0PBUGsVWmUWPNteSJfr+bSctuEh2RQ2bCtzsHAa9j3r2Se7aUcgp9Psp8EphAtKwERrWwFpf59WkX5Wqz3qxyE1G5Bt/bta5QFLUSI3UDN1lDY0zXpVRitJ2KC19ldGFFxDVsvQbQgnGxWpgMkHOcq8AM8L8EEh5y0wyvkKmlotFvOlBUW3C7l8oagl4+iQqg9IINxxRQVGuw0kkFp1kBqQUjUyJ4M1BMhsegrJVB/ZZtWDztS0mtYBKdIJiGwSJUlM3eNCyU39o4QjdxWkmmr1eGBQYqDqIXWo1Q6xNnUY4KtFvRzqgQdwIzL6nDmgVHWQ9WzWdhVZu8eGLK+UbXhILiWEOYraGqV8l3q9Jh/Wgk/BDgT8ukhUzUNCoNT7NZnpwHzIv7FxexeVqLuCW27zE3lCTUNss/p5dcHpQVNNpVJ0FaJwoOgm5zQDMpBw1NDLEM8LOUBxXkCUvAJjXqAc5DUw8rxqqqGBqNUjz3lrfaMfUtXzABq7lgPCbSAdFaRCrb0sDEhTFzkEkHRyM8jUtBzNIwDIgiQmg9VO0nlZ1T/qOsh5W00aOEr1aMNxEIBk7Xd69ZCMEpmoY0BZJfD45bQqtEOtCSWm2YetIomutxz2v9T3WHuxFbUND0nfllvSL8ex1pNPWiU2pdvb4BTWOg1KAAaWvvmA9DNal8MEISDe1xPGjLIy/asu1fw6zcCQDMJkudJaGcKsrFjGIJDLBTtsqsOscMOpnV6EbMVr+SpKDsE5eMklDBUURckNFEVZGuUoIVkYMMqhqdwxHM2QVXnprGsKqYbCqn69Y6i9o22uipRwnGCyuYPdFlJms6Ymm1XDsQbIyWmVqKMAObkZ6E2CKzBqQA4ElYArqyQdnaCzb1A4yvGACrNqQGo4uok63QDp29A6SFIpRq0e9XJKqRrVQx5bzqseiejwPlrNPdat2IrZhodkUxixLXTYFRB2mHLY/m3b16NP7gDL9bpIvX+V2aq+14Jl+Lhy6oRVCWlJ4PEP0KISKa2PI0QoIMpqO6/Une4Fx552MR+QPnS59sHzhTLqls0L5SIFNCwBEFYpxk73jOeH/n4NRg1DUXJwbkNSQtFWkHqbDUYfgjr5xh/T0YdjLtwQawiQ2tyXMrngwtJVjXaYVbeFTK1OApJ+inQqNYDU9Y41QE5tlsNdDQGkrFdUSToldxJ0DuQl5nNuzWs4SkC6iTqeitTtiz1IUhWmKblAZtVB+kBltNomP259ZMokLFNGDBBtFakzX7u+rI76fFoJ2/CQbAwpBZb1hWq6WMKb99eFjhU65nr1CWhXkXq7HXbVoATqsPTNj5od1J/IhqVqFuE0DdFNI/Q6K/vUwJIy1Q+rNR0WQm0xbkExpDDL4ECA3s9i1OalY/4xnSxcG4wKhvay4BzlIDfQ5INCrZPTarkORm7Nu+vbQ6p+WDVU7zhscGQbjubBbwGyn1AHkLINpAvIdLJBQaq6R6KU5DBAys4A3ASdAzl3YTkosW+hMOpRh1oHHiTzkkMo2AkPkETBkFMJODuhp6m3HX/ZDrWmpj5SQdFTkaGRPpb7+TRO2/CQHMX8i9dUX+e//YQuZtO+69knbUYhoq4m7RCrDUoBOEqztV7SU5EHZb6yJBQgwgOoDn+qYa00IMvSAqaaMtnzZWdVGVBvoe21/ZqAGQBk7Zhq2QahnkoIlsYnH4p+uLXMZfhUzpdqXlhAHK4adZdxdpOOYepx+MgdVY8vduaq/7E7CmgCZLZ5shGQVGWy8rSqe9TTRZWcs1hUSTo+GHX948sDF5BaPc7bkCw5OBcQ6sO5qLUpJkT+iXQfqxxASYbD0ahEK9SaMmopSmpUo/vi4SrJ1fB8GtUiJEc0PwwQ2r7SthZ9CpnTJES462xQAm5Yttq/mj8YNAoi04QcM43qA+qS0KpeUmWUCs7DIVdAwZM1hpMIqpBro48BlefPt63jQ/YXBpBlBWgvtGpD0VeLXIFQLtfBKErRqBo1AENZqktVj37nAH73cia0SnQ9pGwLmU2ljYBsDbF2AOS8BcfFwk3QsZXky4PCgaMOtQ40JBUcecENGDUkfaOUgFAiAxtQqrJhLElAwjFRoVZbNepu5VImQ61EnWcdkq3Cs5WKXE3Pp1EsQtKyUCw8ZF0valO5UeCxHn3SEPTVpP1sczJbPVDq7W3+OcstZbn98AypRlF6YVWqxm2EE3KVXb0p8KlBkmV55k5tNamXm36HqjtsSwQSAYVpz48CQ+mOC0RdNgRFOzFHlKIVjPX5SjVy7tc1IqgYQwMht9U9hqBoh1XtOkgNyAlGg4Bsa+aRbp5EOr3JgJGY6SZw3YuOmvKkr0KqlYpcLAX2LcrknP0eKG31uH+hsDJZ5TQvOXjBUarwqlGSDb1SmVxVKmsASKCxsQ0491OFWplK1EkprZp91M5tpdZX8vm03BYhibrEH+eFGlYZvZF9as1stUA57Lu1tSboNDqhgKiSdEw2q6ccdchV6O7cgLqa1OsAOYKHNTW+Wm0Rm9QkoVT2UtQQQvVBGQLjckKxWu+CUcNPNvkorXk51apRcOGEVEO94jQpxi6h1TbT6rHWg86IgMw2T8m6yCZATm2uuplTTT1Kmkk4qizWBTW/X2Wv7hu44VUJxxL7F3IrUUd+bDiWBTdglJCs/249wAt41SsrCYzoUTtfGpAKilSFVrWC1M0+XBWpw7Mr+3wal0VIwlVFoYtgw6HpIvnrm8qJwHyo7EbwqVY36ZWzM1ttUOrtbTZKXWTNTw3K0JRQgEKqSd3pt+nblMuROPIBBOVGVeo6SAJAJAAp3HOAInzezQuBghdlVKrrDgk6bXDsAkazrkExipKDlwI8t0KrKoQqDDiFqWu0YdkFjm3NOZoGRNZmt/a0VY2GowbkBKMyOUeBchggUxVeTVUvOtnmSbDJySq0On1Y1VF5Ognem6q1gdRwXCy5yVjdNyixXylJP7yq1aMBZF6iLGRoWsNRqkhIJRkcm5XI7VQO+iIpGf5/2OFVRqmZT5lUkCkl6kPNp64iq0SecT6fVsoiJJWF1FHoIobW+/uFlpv2ayq73n3ym3sAMH26+pmtPigBBB8GIevKSh11MmAiVLJPUAhUQBROx9+itk5AZrGSBBAFqmmayc7GsTRQAhJqGpR6GZBh2TZw+oCslpvrF5tUo07AcVTkMsCxa1i1DY62+eFVk4ijFKPJXlVwtLNY06nU6Umnt7lvBkjOpqeUkpwE27QJdHKz7ChAqUgyudntJKC3SWawFm4Gqwbi/sXCCbHuX5SA3L+QW6FWVQepwMiVeixLDl5IMOpkneD1V/WQlMsQK2MEnAsQWpUPhVf10FgZsxVkpSL1J6EECZNDYVXAdO/flXo+jcM2NCSHPT99IBzshemirIZ9z3rzyVaTdj2KrRp9UOrtQBiWB5XRqtWhlb1qVKRalmFTNeUAaALBCzmkFC+AJAFsQDaBklOIojoP4Ez2aYpmUALqZcJa1oBsg+VSAamTcHzlWAGRdwqr+jD0OwAYFl4F1JikLZdOK8gmQNofWz1qQJohrqYyS0VmyDZPysQcDcjpSbBN085IHrqbOZ5NuQk6nJi6R90Hq4Sh7CRAA3JfCxzn8xLFoDTq0YajTtYB0FgPaZQ104pSwO4gzmkvGgClTtipqUgru1WHWxP1GZas09VGAee4bENDctiJ7nIxDvaChUIJB/t9a8UnX03aHQzY4VUBF5RAHZZLMQ6oMC8xx7eTeCQMUalJUAeWJuyq1svyHUBZlkZJkgQSjpDwRJKp7t0oCGfVPGUgrDR1iT4oASssS9vDsksB5HKpx1KgMWN1WJOOUQGZ0XrTjgkm20FOMBlutbuay1QXcxqQvc0qQWd6UoZYN08Gh7qik9PAxHTVBlKBUjbxcJN0Xh5UcNR1kS8PSrx0IK8Bcv9CgbzkBpBSQQoFyW6ZrDpBh1H5X2IWHEkAjomBIzODLUvFWFeRlKCqgyTVuR9W/7+cz6eVsA0NyTY7FBXEw2w9+uRkujrArECov8MuY29v9K3lzypEeLsAqrpGwFGRwbArSyDKSkUOBSWnVb0up0Y9kiSDoKUcmLikncKvIVACLhzt3nVqvQU17KvBaSvIUQFZ5GUNhLkFv3BotakruWZ/m9Sjn5hTV5AVILWC1M07sqkM6VQP2fSkadrhjORh98OqOwmwFCTPJhszWPcPCpOgs2+xxMuDwgDShqOvHoucGzjWMlkbEnXsTFbBBYhFL91OkoTCq2rKjGoMq0hnPdPzQ2+xNWcRkg3W9cE/KiC6VmIfzHetVZ/8JJ6uHQp0rJ40JttiVg8M4alJSuDC0KaR7rhVh1gBF5SC10KvRKjOxJU6lCBlphNwk9ijoalVpa0kG1QloRyCKTihqM6lctkGpl2fCW+bvywsMkloSlCKUphMVq4f1joUay3b4AvXMer58LiOIfOfv25nAOEkHTtBx89gTXSSzoQMsSYTDL3NPaeTgMQk6QxpA9nbZJp4zDdksO4bVPWO+wdV/ePsgYEDyAULkEVegiv1qOsjZZvIKknHrovUIKRqwFaOeo85ZgxVqvpfrYGSopdQZAkNqsheQmX9oznnVZi1iy3n82klbMNDMpR0IgLrQ2WHHbPp2CGzy280nzSc7H1sLoU6FPBVJ2Apz47/HiF0olCbk1bYVWUIEuOYB0rOqzpKIbNaIbicTzPZiYA1xJQGnqMqeSnrO4u8UpVNsPTOF5BAKGiKkoOUHKUFTl2utBJ+ABiFGarT5AF66XXCmtrzOvSnIQhU17JtPEfb5ODHur6sXi40KHJTmDVU/+gn6NgdldudBOgmHqQ/GQZkb8o09ShY3zTxmLcyWH04HshLzM7npg5STuVnoMAoIemqx7IIJ+pwqwcdrRg5laAk3s1d1RbIZB5dl5gl1Aq1KkBaKrKXUPRUCFY3+dDJOhKY4TDruJ9PK2EbHpJND/qmB/8o6mrYMdv220g+2eYn8YTaSYZAqcsOM+1bbX2LmjT7NYFS5t+DQIZbIQgIB4RSlkSotpGE1FSl6bKuyKUyVLCEGjzZCcHagCwgk38CqrIcVGBkCpw2LBlglkVZZczKXoKomkpKUUa6RGk7m+z9RtTmq+0AINdXzfiIt7061rA6SHskj6b6Rzl120DqUGuXTgJ4bwolzTAfaOKhm3eYBB3VrOOlAwPsXygqQC4WjnosBhKMblMPr8s5qz1syWFGhdE96fimoyeEyv5UCa2HWXVdpFaRfbVsh1u1atQdnOved3xbiefTStiGhyQw2oVYqmoa1TaaT76aNEk8aAclEO6ibpjpkKutJkcFJQQBEVSGVSGhSIgEpgDkNq0kATOPrAcqBEQ+qGCpO0i3YWmv82Fpbwsk9vCSG1XJBwUYEnA1D1SgpFkCPijk7y9Vpwil7LxAMIGylA9fyuRDmjACyomZ12pGQlVdSyq3A5UipDCbAyC0H6fyTOuu5Kry7vywEKvupHyCKVj2E0dB2l3NZVNZ9yYeqg2k3UlAQTMTXp3Pu2Wwzh6oFOR8XmKwUFSAzKV6rLJZJRglLNXg1gDs4dm0meHTnCw0KwyrQqz6owGpwWiryH5Ckahwaz+RHwnFqr2kn80aspV6Po3LNjwk7Wsr0C306K+3j9W0PMqNsdF88s1WiU3JKfYxQqrSN7v3Le3jwYJSLnNTF2kgKHQHAtyAVBAJU2KXa4Ml57K5iA1LPaBxMWiFJWMMZJCbukoAJvyq5znqoGRZgnJQLRPGwTIGDEoITiQgQSFKAcKENa9VJ5UP59JuK6dVhjyv9h2SUYIBr0Cq6ydDfa0CdUAClXoMDXHVNFByqJPyRHUSMKyJR2ig5HmvDaQPx/2DwslglUpSZrK+vFggNyqSW4k6VV2kBKQc0Fp/bNP9Ahuz51HVQdoKklDZ/tEOr2oVOZEyCURK0Wfyk1KKTCXryCxYGWZtGydyJZ9P47QND0mg/U3HnrcvepfQ46hvUP53bRSftIXUZFPY1f/OLqD0fegKSnl81f2cBhyRYVRwDUZilGPVXV0h5zUsCTUQheAgvHBhqessi7wKw+rBjdU2UeRSLej1+SAIS0qZhCyV4dRyUEAwBUmqpxL+nFbwBGBACUiIEkahH7vlQIZiGRhKlGbebCuJAWsGmcWqYQgI0AAobTAOS+BpUpAUXjdzagxIexQPuw4ynUicPlh1gk5rBmtomKuCYz5vbuIRymDV9Y/zGpAqvKqVpFaPvOA1OGpAcl6CKhjaHejbJruiI6ZTc9lhFAFjFMxSjbaKnMiYSc7xP1o1ZqwKs2o+Hqrn00rYhodk6AIIb77ponexKoDU3ZeN6JPvnwZUW9hVl+0KSr8v5yZQAlX7Sfu4jqrUwGuBpTD9wKp6ybIIbicavJTJZV852vOW0qzGrFTb89zdTimIVqSUoswLEErBcwm+Uk2JGpxZQxSA109sAVG6cqEclBYcq3kAVWasB0oDQU896tCrnjffoeCpzVeSaaAu0ocjTamTnCPnewqMfaSTE9V8W4JOyzBXui7SbuJhZ7CGALmo4DhYLKSCHAQyWYvcgSP3VKSpFkcdlDq8ahJ0GDVw1CpSQ1F+EkxmDBmj6CnF2EvCYdaEtncasJLPp5WwDQ9J27pcyJbQe9AO9kJvFJ+0ueqtHnYNgbJp/5B1ASUhVUcDAIyqLIUGuJVZ2gGWlfqkFRC5UpNCuOpScEA1H3HUpQIfSVIIrTTLEkhSozxJksk2l6XsCccoUQVLwgayYwCVxUoYVWFVquApVSphFETVXeplnntZsoygHPDaPFBBklACnnNQ1amAhqIbXoU5x/VsVxuQxGkT6YdZk5SBphQsY2AZdUKrMtSaBtWjDrfSyUlZ/zgxNdIoHvO528QjlMGqm3jYCToDBcl80W0LqdUjLwYQvESppgBqYVZ5jllwnuqwKqmryCxljSpSgpFhMmXoM7WdUWRMZrNmSkFmCpCr8fm03LahIelfvKaL478l+cfoEq5sCzn4/rR933r3KbSsw65NoPT37QJKXc721XSDp361rSpLrWo9WEr/AmFYQIVZKxjadZZGXTYBU9dzUhmydYCZpFXdJOemuztw7kIzTSHy3IDVTC1YEkZBSw5OKUo9z6jZpuEoQVqAMCJV6KBU80TOU2qWZT1liXJAZOZsyUHzqo1fKbRyrMBoq0hfQQLhph5JymS4N5VgZBkzypGmVZg1mUgkFPtZXT1OTYD0p0D7k6b+kfQn6wk6vSnZSXkuVePAagM5u1jUMli1egwl6ORaPfrNPZR6DAPSrZknlDaEWKmBomkHaalIagFx0lORWjXaIdZ+whwwJmrUj5CCtG2lnk8rYRsakqEY+jDzyw67iH64su17miCxkXwCrFCrPU/cvl2rsmFQdrFhsIQCcQkJZgihlCZxfpM8RjVklgGdrS6BpQHTSgoCk1OqOyFIUvkQLfIKnPkgrC61AqXMhWWaVGFXpTAlIBlKpSJpmoDnRbXMClBGwEsBQstqnhFnnqW6Zx4KngnTU0+i5KOGJtBeF6nDrJRK6NKUgjIJZZZRBUmtIFOjJJOJBEk/A+tnFiQ99difAtHdzE1MDa1/tBN0Fgu3ice+QYF9VnjVbuJhJ+ho9eg09RgU4MVAfpw6SA5/AG45JBs3mayAVJGEMqv+UZ2rRHaGwRKKJGVImZvFmiUKlilDj8mkHR1mnUyZCa/a9ZApXT3Pp5WwDQ1JbV3CBW0XrE2FNYF42FvSRvVJW9ewa9NxRknkqY1GQuxtrrosARBIVavVJeCe0xowqYIcIGHoK0xdLvThHISX7nbqATPJZBmtFnkJopqSGIAWOZBmIPlAwjJJDSxpVoIPcpRpAZ5bzUI0HAe5CckKnQGryzICnjGUg9KZZylDmZdgGXP6cmUZdTojqIbtCl8s03RBQZEymRhEKDFgpBYkWcocOFaQnKiUpK0eJ6aUepwCmdwEkfRb6x+reki3iYedweqEVwMJOjrUyguhQq2lAaRWjxqOfoiVUCZfkBiz6h+Z+lAVUiVgiVSOjEk4UqUkdR2kVpHT/UQupwz9RIZYJ1O5rOshMzXSR6Zgad/vTXYonk/jsgjJDrbUC9IUchh2A4167KXutxp98m2UsGun72oppiN89vNaA7MU1YDPEIDQafXQkKt8LAWsYbcoKFWI1Z0K0Kr+UQBGPTapTBuYcl6o5cIFpu48XQPTnuYDmcSjgCnX5TJkW+SgSQpa5BKWuQQkzQsXlmkuk348WIqSo8wKlAOm5qnq15WZYbaqDtJ1Jq3VY0xLbwVU9QpEKFHKkYEyAkJpDZIyzJo4cEz6PQuOfZBeH7Q/ZYVVp0D7U0CvqncUST9Y/6j7YD0Q6KR8bqFSkHLanqBj2kIOXDhy9XITqoe0k3NMxwEGkMyEVnVdpAyxSmAmSi36YdYJFWaVTT+oqYvU9ZDVtAJkF1uNz6elWoQklucNZZR9u5SLPoXVpA/KUY4/jKOh7VIt1v3SdWm6K9du0NQPtqohhA3CJmg2qsySVcDU0PSAqestq3BsKlUmL0GSHKJQ9ZYKqDQZgKoHtQRjUYOl6JcKpFJNyjrHAiwtYI8ekvTt0UOSqr/Xsuotxu72ziT8WA9jDUSpIis16arHBDST6rGCpIQjm8hkaLXfl5mrE1NSRVpTkfRUBmulIkuSmC7m/D5Y9UDJupPyuYVAgo4CpFaNPiCLQWnqH0ulIm31aEPST84hzFeQEppOaDVjoIlMaGKq79Uqk1UCcrqfmCSdybSCpcxyJUpByozWvgfI1fh8GpdFSKK62KOavc8o8fku+2x0n7TZbSdDIdQ2Ndmtk4EOHomqSy+gqj+z4Sn0LxPy95ZQ+wgBQqpeZ+R+VeIDUUqzOtAI0FRJPUZl8qQGTJIkcp9chWHtcGw+AIoUJFOKMx9IaKrtJM1B04EDSzlsVgE6KMDTXIVSJURFX3aJx/qyZx97wOZyoHsCqjpI18tNRtWDmShQmlArIwaMNE08SKYGjlJN9mQoNesrMLrqkSvVKJI+RNJz6h91co7uYk7Dcf9ioToJaG/i4WewFoMSZSkMIMvBfKUg87wGx+qWCCXoMEdFMjXuow6x6g9lSkU6YVYJyImUYTKVTT56iRVmVfWQKSUm1Br4S6y659O4LEJS2Sgxdj0/ivoKfU9b/H2j+9R63BGzXUPWBMem/YxybCgsLGLq2VIICcMGcAIhcMr6TMNNDU09byf38MRRmUJ1UCCboaSyGzsDzBSEFwqYsl6SZH0IBUtS5BBZX06LgQnFkqwPUgzA7FBsLoHIBwVKBU6eS2Ays1yYcSp5XiDpc0s9DoekDUiq6kN1cpENRpomYFkKmipIZkkFx6wvAalCrKTXD6pHJH2ItAee9CUYSwlInaBzIC9xIOcOHP1Oyk2IdbEwXcy5CTpVBms5WHBDrLnbHrLNZF0kdVQkS6Ra1MoxSRlYQpBkLBhm9eshNRwnU4ZeQpzwatvwV6vh+bQStuEh2VXyh8AxDChLBU70ybWlhF3bzAdk6HeN0nuPHX7VB9R/YANGZUTFZyslCXeZ+OBU0HRepy0olpWaNCqTWwqzLOrApAwk6wFFYUAoioFJ9jGgLHLAUpcsy2UoNh8YRWmgOCjAeaUgy0EOZxBnb4Bn+TPstpUqsYnZGZs6mzYASQVGDUvWz+R8vw+SpBKQE1JBVipyCsj6Uj2mvUo9pn0TXnUhKXvQ0c06ZIflCpQLRbAN5CiAtOsfQyqynpijw6oZWJKBJpmsS04qQNrzScrQT10wbuqnBpB2PeRkqtpEUguSVqLOsP9oyFby+TRO2/CQHDWu3vSG45v/ljPsBvOPG31y9zuYsGtXP/1jdj1MW/MF4gHUhl0FSPlrjbokepvs4KARnBQAyyr4GZWZqvlS1lHqbR4wCSvkEF6CgxRFBUorHCuK3KyDWtadGfjA1KpRQ1Gv03VtvKzUpDt2ZTXvQFLBkaomKYRSqR71NE3AsgSs35PZulkfJMmkYlRw1CoSmQtFWKAccGBQuO0fcy570LGVo85g1erRH8VjWBvIYYBs6izAfBhzwqw0SVV4tcpmTVJqAJkpQG6yADmZMUxlrnqcTBkmEuYk6vS9RJ3V9CzocqzltLFC8sUXX8Tll1+Ov/iLvwAAnH/++fjkJz+Jww47rHGf3/zN38Stt97qrDv11FPxwAMPmOXFxUV8+MMfxp/92Z9hfn4eb3vb2/DpT38ar371q5fkZ5c3pGE3hX3j+GXt5a43WPSpw5tmi5rU5drqJUOA9MHIPQ9GHeDZ3l3XTWqr+u1xAQlANSWp4Fmtd8FpoEmzCq7cr6sspONMg1T1KVsWnYCJNmCq7dQawUQDMjGArD68BZI+IAGV5GQpSMJ0ok6qmrFkUjn2FCAVGDUkkfUAlqmmHQqULDXqcaDAKFUkx4DLeT9BR2ew+oCcV/WSowBSqHaubYAMJetIKGoFmVVQzJgBY5IyZL0EvV6CTX35me4n2NRPMd1PMJUlBoybNCytRJ0qYac9mLkangUrZWOF5EUXXYSf/OQnuPvuuwEAv/3bv41LLrkEX/3qV1v3O+ecc/C5z33OLGdZ5my/4oor8NWvfhW33347XvnKV+JDH/oQzjvvPDz88MNgjPmH62zDLmjX/f2L2nTxo0+j+TSsk4GlqkkfkDYY7cOEYBvq4KCrhbJm7fXUK6chKPuQ1euEASojGpqJASsJhWZ16JUVLjCFAHjRCZjgHKKwpmVZh6bqX1aD062TbA6SG0A6YVZmOkJAkkpwJClIb8K0+SS9CaUmUxeOSerAUbBMwZEbSOrPfCHrH/Ugybo+0u6kfN6oSdlJgOwgoDsgh9VB2mFWmmRBQCZZEgCkUpFWoo4MsyYGkNM9ZhJ2JlOG6V6CHiPoJUR1Q1d1OdfFVuPzabltbJB88skncffdd+OBBx7AqaeeCgC46aabcPrpp2PPnj045phjGvft9XrYvn17cNvs7CxuvvlmfP7zn8fb3/52AMAXvvAFHHnkkfj617+Os88+e1l/R9ObTtftvi3Hxd7IPo3SyUCX72oCZAiONhDtR3yIk93qNEXtYWSDk0LDX66s4ChH0zAgtLbZ0CQEYISq8CzAVGhW6CG7ykIl+5RAotZzWadIeCkBmuhkoAKkKKBHItFT2f6yDENTQ9LukB1wwWB3t+b1IAPKZL+zap5QKjtEoKwCYyrVI5IUtDcBQRkEyxQgUwiWQSQ9IMlMaLUobDBW6vGAUowH8tJks2pYagVpuphTw1x1BaTuRScEyNY6yAZA6m7mbECmvQRZP8GmnqsgD5tMsamXYDKVPepMW+FWncG6FEA22Wp8Ph2MjQ2S999/P2ZmZgwgAeC0007DzMwMdu/e3QrJ++67D1u3bsVhhx2GM844A3/wB3+ArVu3AgAefvhh5HmOs846y5Q/4ogjcNxxx2H37t1BSC4uLmJxcdEsz83NOdvbKotDbzah/fztXcIRbdujT+0+OeFU1MOutpoMhVxD3+UD0oejPnYQoN4Rw6qz4bcFHkrhusuqPIXw4OmDU4ZlGQ1Ak2ZSdSYA1HBdjsrU63jhgVTClXAZphXW8F3O1FuvQSh0R+2A7Jw9ZDoSRKseZbRyBKVS4dqKMsmANANoAs4yCMokEFkGwVIzX4AitxRjwV31uFhwoxptWO5fcAE5P5DrFvKyNg5kqB9WPXqHbgdpzoN9/f3QagdAJpmEYhsgZyYzCcpegk0ZU6DUodZE9dVKjJIMAXItPAvGbWOD5N69ew3YbNu6dSv27t3buN+5556Ld7/73di5cyeefvpp/N7v/R7e+ta34uGHH0av18PevXuRZRle8YpXOPtt27at8bjXX389rrvuusbv9C/wcr3hjFLPF33qfgw77Gr+WIGwq3/sUFd2QLsSFGqYLrucD8ZQfaZ9yDJAzKZwMPWIyWj1C/QWN9RKPIWpQ64SnIyTRmjK8GwCRgHKMtN/bA2Ooq4ydRathiZ0J+z5wFGONRWp4djW1MFqMG/UZJKZKWFMwpAmEDSRMGRyHhqOLKngyAUKLkOrOa8gqdVjBUj5WSx5LUHngILj/KDEvOlirh2QTR0FhMxXkTRNVfOO4SHWsIJUoJxIq7pHpSI3ZYnT1KOvslpDCnK1PwtWwkaG5LXXXtsKHAB46KGHAFRhItuEEMH12t7znveY+eOOOw4nn3wydu7cibvuugvvfOc7G/drO+7VV1+NK6+80izPzc3hyCOPDJbt8ubU1ULKZynHiz7VLVQ/CaBRTXb10wGdB8gQHK2+0AFUQNTfa2e28kA1XH14qMr8kTB0NJIZBSl/BaNy8Ntg+FUpTqM2SwJG69BklICCgNEEhCVgCSo4enWZQkFRQxPCAmc6oTp1r8AJoBrBBHUl5ZsJtQISiITIjt4JhSBUgpGyCowalDSBSKSqLAQMHPNSoODAoOTIuVy/oOoeF82UW6HWZkAOPCDagCxLURvJQ1gvB50UJKuaeVBVJ8myfjBJJ+2pRJ0AIA+bzDAzkVbKsZc4gOwxqSJ1kg4ja/dZMG4bGZKXXXYZLrzwwtYyRx11FL773e/iueeeq2372c9+hm3btnX+vh07dmDnzp146qmnAADbt2/HYDDAiy++6KjJ559/Hm984xuDx+j1euj1esFtTaGCtjIHe/GHfU/0qf17tNXqJ9GsJocOn2V9k4RftewD0odjExg59yDpDAtlfXeHCkxKiWx0CWtUDAVLA02qxl0kxAOnrTgFaCmh6CjNUsKWcjlMlROaZZm8lhqOfgKQXc9pdeBe61IPkMrTnFjvrUF3Cm8PbC0HQpSgZAqUGoxaTTK5XIKiFLLOsRTCwFHCsqqDXFBA1GBcLOV0oeAWFKsEnflBiflBafphlZ2SC2ueoywFeKGyeXX9ozWSh/sz673nADDq0VWQKZKMgTFSA2TWS5CoMKofYtWA1GFWDch+opp4JFVbyJSu/WfBOG1kSG7ZsgVbtmwZWu7000/H7OwsHnzwQZxyyikAgG9961uYnZ1thFnIXnjhBfz4xz/Gjh07AAAnnXQS0jTFPffcgwsuuAAA8Oyzz+Lxxx/Hxz72sVF/zpJCBKO8YY1SXnjTLmWblptsPfhkm91+ElChRksB+mpSqqtu2a++8GsCpA1HG4w2FKshoerQ1GVazRIhzZAkzjZGSCM4Ga/qMplWmlzPW+qSwIJmIo+noWmFXPVg08QGpwdH2N3sNRmtA9L+GAVJqAQkkWDMuUDJuYQkF2q5ms9VDzoH8lJ1Vl6BcqHgWChsIBYOHPebuscwIHkhaoMlcx5Wjn6H5QCC6lE28ZCdA9hZq3rebuYxkTGZnKOaebQBsp+EOwvoYqv9WTAuI+JgctiH2Lnnnouf/vSn+MxnPgNANgHZuXOn0wTk2GOPxfXXX493vOMd2L9/P6699lq8613vwo4dO/DDH/4Q//bf/ls888wzePLJJzE9PQ0A+MAHPoC//Mu/xC233ILDDz8cH/7wh/HCCy90bgIyNzeHmZkZ7N27F5s3b3a2LaekX65jRZ/ajVvQslUgh1aBwtsu19nLsrwwqlGHWs2yAiTUOhuQGo6AAqUQBnpykOEKmvZ6Xd7/Hbbp7X7oFagSeWxIymUXoBqeNjhTSl1okqpuMzRfgbJKAqKAOYZpo2mDU/5QT0laP9JWkqTKbBWEVMty9GCpHhUoSwH1ESi5PKdmKgSKUhhwajhKMEq1uFhwLFqKcn5Q4oCCo5439Y8mtOoCsiy4Ge6qLOsDJvtjQgJwxoWsOimnNfVIKDMJOqb3HAXITCXrNLWDHAbInqqDTFq6mxvVDtWzYG5uDtu3b8fs7GztOb6cNtZ2krfddhsuv/xyk4l6/vnn41Of+pRTZs+ePZidnQUAMMbw2GOP4T//5/+Ml156CTt27MBb3vIW3HHHHQaQAPCJT3wCSZLgggsuMJ0J3HLLLUtqI9kUOmgLF4xSSR0KUYT2b9sefWo//rCwa5tylOWBrq+KTYD0Qajh2AxMua4KzbrrtTXVWdrQ1LCsIEnM+jAkCRjhNbWZMqqgaalLYqlLA01LaXI3e1Zm2GagamBemlTqwChJP8xqmx1qRRUl4AIQ3jm1wVjyalpwnZjDkXNuwKgVpK0eQ4DUCrINkLL3IOmL4MKEWcM/icqEJwuMclr1oEMNIKuec5wmHpkaNLmXIEtZDZC6mYdO0gkBciKhqj1kde+s9WfBSthYleRqtTYl2WZNF9oOEYTCBU3r/BthKRZ9qsx+oAK+GhyuJrsoSRuSOeedAFktS78kWEUdlDo8a5FyWHWlnZHI9ADFtoq0AGqrwhA4U9oETVddGgVpoGgnDIWXgapzBACNSX0AvGQp9xrp86iBKESlGrkA8lIm6thwzBUwF4rSKMhBwS0guoAcFNwBpFSNHGWphrhSylHXQ3IuTHMPvz4SQK0dpJ6vupdTfbBSYsKrfhtIXR850aAgRwFkCGYIrFvtz4J1oSTXm9kXVC/bU3+9vpihm6Rp3+jT0n3SitLujYcKAT5ETXY1X0Xa1gWQNhwdsFoq0gcmALR0TmOMUZh6y1pdJdH1iy48fXCmjHhqs0RKqVOvmWg4cp0MJLwu8oQHz2qw6lBH7/a5tc8l4L3QqBeYksuXl5LLF5eq3lHDUSAvXThqYOalcNTjwJnnRkEu5KUcENkDJC+4fHniQkWQlZ8Ndax2sw5t1O9NR43iQa0+WPXwVnY/rEnGMNVLTF+sdpKO7GqOmnaQoRBrCJDr+VmwnBYhOaINe7s6FLI8+lSZD0ptdthVh1j95aU4FQZitZzrdRYcbcVYXxduPhJqa9lkrBZ2VcvUUo4WOA00y5DaLEGVqvTrNX21qbNo5XdW8JTnX94NTicJat5/dwnXK1dQtJW8DUZ7WpTV9gUFSheIhVGTGpCDgtcAWZYVIHXdo7BekkKZyYQy+NV9TSN66PEfaUKMetSdBdiA3KQAqZt46BCr7qx8kwal6pvVBuREKttBAhvrWbBcFiFpWdcQQ9eL2lRulBBG9Gk0n+xlXT9pZ7u2GQUBJ7JB/tBsU9STNEPADAHSh6NWirqOUwOxaaqtsJZDHVIbWFpTG6Ay43UIOI3aLAOgrCDqZ9Lq79Ne+UOEtZ5XUYHTVu66/jdXWax5ycFVU48QKHXY1YWhhKO9TkMyVzC0AckLWeco1aP+wMz71tS8w56yhIFQAsYoCIWBowm1siq8qusfQ4CsdVQ+Yl+s6/VZsNwWIYm6xB/nhRpWGR19OjifgEBHA6iHXUNq0gajDtXaqRh220vffEVh10EOA6QNR/0BJByKIaAMKUxmPRH9+cQDpgPQoeDkwTBtODFIXwvitON0/LTCr6FOF/zEJw1FX6XbqrEULhwrGJZBOJqPlZBjA9KoR/WyI6+ne86J/8MQgiMFpaQGR2r1wcqscSDtwZI39RNMqqGu7AxWG5CbetVwV0vtrBxY28+CcVmEJNw3odBFsG+ItopoX8m0xdXt+VDZ6NPB+TQKKPVOhABUSDXprEM3ZanNbt5hP1hDgMw5d+CooVcEgFla0tWGY1MoNgRLph7oPiCTEDQ7gbNevwkgCEvjSyBpR58vcw5NyLm5XlefO60auVAdlhdy/aKBYNkMRw1FD5BCvbxU9Y4h1UhkD09cqKYcdVhqMBJ1vnw4Os08UgaWUGccyMmMGfVo1z/qBB1dB9lLqBoDkhpQ2oBcj8+ClbIISWWhN6LQRQyt9/cLLTft11Q2+nTwPg0DpX4o6w4HbGjq8lo66pSHYX/OEEydukVfQXqALLi/ToLRB6Y9Ncf2lpknIeRy2RCGdeHpg7NrqFafTz+zVu/nm193bJ8vu1lMSIlrMJZC1MBYcuGox0UfjgWX6t0DpBAynFrqJh5c1IZDo4SAUwlOos6LhiixzrkNRkLlS4MPRx1a1VNfPU5YCrKp/tHvZi5T186+/BvlWTAO29CQHPbA82+Cg70ww24C0lIu+rQ0n+yHsA3KEjY83exXXTcJofqCVV+uQ7KMEvBSgNLmwSzsUKu/zg6xyuVmQIZCsLba1Ou6mgZZEgSlH4ptB6ezzamL9MKspP79bWZn+wLDQ9OLRXWeBkWpphKEhTVfwZOb+kfOBXjJDQx13SMQVo/aqOpZQd8zGo76HNhgJJSAEFKDo10X2U+rMSC1etTjQNqjd0zocSAzCdGe6j1HdxKQsUq9j2pr8VmwErahITnsRHe5GAd7wUKhhIP9vuhTOPTqvOE2hF0NNAWBIMKoSQ1IXS9JiVSiTKtQSlCWAkzvT1xV6ffvqteFwqshQNog9fftEnrVFg7BumFXPV+HpgSnv76tnhOoZ9lW3+/6Zjd18TN8hyluDUcNQQ3H0psOSt2u0QWkAaUXZrWNUiLHLKUVQJn1qm1AaYFRt32khDhw1M08UkYNHCtApiZRp5+wWnhVL5tRPFrqH9f7s2AlbENDss1W+m2li0WfulnIJw3KtvpJ4YVdCaSSFEKqSSJkO0Ch1aQg4BCNwNTfOzQEy31wNgMypCxD0y4WgqQ/HZrsY9V1hgAZUqzDLAT9pjraQcFr52jgKEsLlLo+01eQRjk21D1abVkM173foQGpwajrIU2SjgVHXe+YJdSBow6tTqomH72EGgVpQKmHuaIEPaUcJSiXKB+X0Vbjs2A5LEKywbpe7FFviqYbqcsNFn06OJ+GgdJXl0Il8ehMV0EALuToGVpNUioJyolQCrKq62SEmNFFdIjWtxAQugCyKQTrH9NfDkGqKyzbFWcZVpFWyLbp+0NWh79bN9vl3NiQ1PWPdj2jadZhJVhpM6pQLeucKRKAka5ztRN0aFLVQTp1kQnFhAXISaMiZWh1ImOYyhh6zAak+mQMKa1G8Ogx2UtSWyflq+F/t9Ryw757pV4LNjwkQxXNIrA+VHbYMZuOHTK7fPRpfD5pUDKlHMErUAKyrtKBphV2JZBtKAUQVJNUDWbJiQC3VCUTVfiQEoISUnWWkMNTtam/YRDQZWpQCbRV4VwgL6uHevUlblJNUz1laF0TOKtpPVHINn9dE+D93+qHnds+uUrCsQHZVN9IKAFVIVc7CacJ7hqKep4lMswq56lSkqQGxyyhdUCmzFGP1TzFRMKqgZKprH/sMTe8upr/d+PyaSVsw0Oy6eI2XexR3qiGHbNtv+jT+HzSDxauQGeDUkCYRB49z9SedtiV6MSeBjVJKWSCkFKuVHXZJhN/AK7GdBwGyGFWA6aXGRqCQei43HralkLNK3gOU5jD1iUdYNP2+4B6klLTi4LzsdXiEEDK+kZZJ6lBKR1uhqOcqjpIBUZHPSYUKaPIkuozoZpraDjqJB0JvRAgmQmvNjXvANbG/24cPq2EbXhIAqNdiKW+KY1q0aelfc8oZbWqtPt41UC04ajrJzVQJUMqJQhQ5OCggiBlAEpLTcrNUk1S4mTalkIYqBS8UpX+1LZWRWmFDUMZmm2DO9vqUljznJJKfVqKcxgoQ1N/PrQuBPBh9a9BYHqZqm1GiBw1RoMSgKMifTPhVQuMVf2jUpCENMIxS6p6yCnVx2oFRopeUqlHM/Yja27eYdta+N+Ny6dx2YaHpH2vCXQLN/jr7WM1LY9yY0SfVsYnoFKVduiVqdBqiQqUGoqEEDB1JGEdhAsCMCigyDCtVpOA6u7OV5OiAm3igBEOKO3u55rUpw9IDQcbjG0D/uhEI6LOg/lp6gRpcGrFqdUm40sD5Kh1k03zITgCqDXlsM8DoYF2jUo5MqUchRC1kUr87FVZnpq6yJTJ5CUbjllCg3DUodW+CsP2GXUUpK8e9aep+nEt/e/G4dM4bcNDEmh/07Hn7YveJdww6huU/13Rp5XxydRTUgIigBLCqaO0QQkqUHINyupIKaNAycGJVJGyfYMM3OYlr+om1cM159XoHEA9U7TkpQFi4oFxWJg2ZBqQw5SV8JRUWQoHnF2hqf20p/58aDlkXUApfai/GGijlMiecZRq1L3lVAWI2devs7UzV/WxTJKOApkPx54DygqOmQJjz4OiVpM+FEPqcb3875bDp5WwDQ/J0AUQ3nzTRe9i+u/WpXzTDRh9Gr9PGpTyQUQULLqDUggFSgVGcK7CrTLsarUdAMAlc1i13NZG0Z4CMArTMfO19V8XAmRb6FUWqGAhIILQpJYi86FpN4Ox1ebBwr4RmC2A1GaDEoDJVLUVduI13rRVo4airqfVHw1DRomBo1aOOkHHhmM/kXA0gGTUZK6mFEPV43r63x2sTythGx6StnW5kN2CRJUd7IWOPnWz5fDJflMvISGogSAIqq53QqCkskcYB5T2tFS7W2BECXAqwIV80AIACo6SEmQJw6CoMkObkl+aIOOEFJV6GtVs4LiqS313WQFHb9ddtZW8AiuH23ZU12tq35eazGOWrd+mQQhU58DPUq2raVKrg7RDqz4UfUDacNTKUYNxImVIGanBUXYAICGZWkDUTTp6jKoO5G0v1+f/zrfVAkdtGxqS/sVrujj+W5J/jC4hiraQg+9P2/dFn8bvk19PCVM/CIDL+koNRiF0KFIuc19ROlM1sUFpAdOAEsBiwZElcgSJQcHltkIew4ZKllAMCuvYVI3BaIVHfWg0mb/NBge3jmfX55lxH63ecurdfJtfHy7QZRyzFmNW21TtY9uh7d/lh1btxCRf0Wsg6k8vscOszK1/VBCU7RqZmZ+06iK1YkxoHZKM1O/P9f6/W4pPK2EbGpL6xI8aCmgLLTR9R1uowi8bfTr0Pplnp6qnBIXs65wKEAuMAlCck6qqVP3bNYGSUoLc9L/mbePE+Uc2gjKhpqE80AxK2N9ifaWwQql+Qssws+vsQrAkhJgyIgBnYkFbH8fufGGp1rQva8h0aaobDbUD9aFoA9OGowypSmXYTyhSSo1ylLCs6h0TK7SaUMhecxJZE25e0pRvG+l/N6pPK2EbGpLauoQL2i5Y25tX040+7C0p+rQ6fNJv9HY9JYEwlZgmDEuhYCpMWFaDklIKSgQo14C0lKUGJKHINY2tf6Wd2WrCk1wogFaw1PPmQwRKWmV1Oj3HqAUblnLb8j2OQgkww8rorv1CNmpItm2/UCJRExwTD4o2GBOrPjKlUh3q0GrKqrBqyohSj0wCkRIklmqUwGzPXG2z9fi/W4pP47IIyQ621AvSFHIYdgONeuyl7hd96rYfJbpdIzGKEVyAMqUclbosVW8DlApQtUxAFejq6pERgZwI0BIKkFaZRD6sB1aIVc/bWZ1+zzNGUQKVSFXqTXCh+KgSWJhbVxkKk7ZZrR7PAtwwQPplfDg2QbENll2BaM+Heg2q1zsyA8rEAmamAKgVY0pJKxx1WDWlFRgPZtQObev1f7fcPi3VIiSxPG8oo+zbpVz0afX5xFQsjAjZFrJUypEInaVJqvVWPSVAwCgDIxxMjRTCSoGcuOBkhIFxDkYEGAdynehSg2Vp1jEPknq939kAY8QoS6HKCeWjqbNkoyf4+G0JbfD5YyuGyoS6w1vqsr+uCYp6Guq4vfrQVjBSQhwo6nmdkCNDrhUcNRhdSNbcD9pG/9919WlcFiGJ6mKPavY+XS9i132iT932WUmfgCr8qpN6ZD2kVJWUw6hJwgDCZQiWQK4PhV8p4aBcdqiecxVuVeFXqjogyDk3D+/FgleA9KaFBcrGvkxVGBaAA0wABpp62zALqcWDAWPXjgdG2cfPDm6uc3STcnwwUkKUapQwdKeWmvTgyIiGIlRyDjVwXI33+Fr2aVwWIalslBi7nh/ljSv0PW3x9+jT6vNJm34WE0pk36yeqiQQKE2POwBFPfzKiHBUZaUuq/Aro8JRlfoBXilG+XDXylKHW9s6RHd6pyECYOE2hmTE+kk/9LpUKI4KzSYY6nXNdY51KDohVg+MjEoQJg2g7Kt+WkNwTFW9o1xXnaPVeI+vNZ9WwjY8JLtK/tDNMuwmWupNFn1a/T4B9aYiIVUpO0N3VaUsTpSaRFBVpgKypx4FzZRCKko9dqV6sBeOcuQ1FTnKCCJgVn0nHf2dva1ecSlwHLauaazKMBjbocg0xFQolZFKIVKCmmq0p7LHne5wXCv3+FryaZy24SGpwwZdT37TG45v/lvOsAeuf9zo09rwyVaVAlVaDkFVV0mJ7ALNVpWq+WWtrjIVQE4JcgVLyoUBIy0lULnKAtVNP3oJxWLBUXIKRjm6Dto8rONwbV17xVmOsGhoWxcY6qk9fuWwhBxGFBApTB2jVow2GCn11aNSlea4UNmpYTjqXyS86Vq5x9eCT+O0DQ9JYPjFGLZNH4MgfAPZy11vsOjT2vIpBEsqZB1mKSpoEgIwIcGjQ7CUUKQMyEsiw6oEHjQ5ci6QKnjmJTfKMqUUOecOMAtuDTbcAkygYSzKQLOTUawLLEeBob/OVof1dS0JOR4U5bKEoT0/DIyMStXMiAVgElaO6+keX+0+jcsiJC0bdkG77u9f1KaLH31afz7ZsCQCEEIpSAJQrgApYMFSLuv6SgNLKpBzCU0HjpbSTIXarqYZoxiUEoo91W5Sq0cJzaoJSUhNhtpkLgWSQLNyDHWvN3xKa+ttsIYScQA0QtFWixqGjLhgZARVWNV0EWcBUk1TBc1QWBVYn/f4avdpuS1Ccog1vel03e7bclzs6NPq94kS3d+AhCUTQKlUZSMsCerKksrhn3IukFMCLoSBZCkEUr2dctUlnmy7yYVcrwGpFWa9PpJ3CruOAsulKskQDPW0LTsVqAOxWleHoqsgVai1AYwGjgRIGHEUJDPHJiCQUYONdI+vJZ8OxiIk0V5ZHHqzCe3nb+8SjmjbHn1aHz6xFljaSlLXO5Zc1mmWHAaWJRfIObcgaYNTwlFuA0ohh+biSp1yIRWmBmZIPYbHZqw6JVgONSmXaW19U3aqD0OzTneo3gJEWzXaUAwl5ugMVqZASYBaONVXkIl1TAKY6Ua9x1eLT+OyCEnUL/ByveF0OU7T9ujT+vIppCw5KmAKpSxLQsAh3PUUSDhDP5EZF3Wl8QAAHN1JREFUrzYkOZN1kmViwTGhKEphIFky4UDTV5pNCrIIKEptoXU+FP11I4VaPRiaeVKNq9gERKjzbStFO5wq56VqlMdwFSOjqu7YCqcyItdp1ej/1HiPH3qfxmURkp51eXPqanZ5f/9Rjhd9Wj8+6QcyoJSfUpAVJKHWW5DkAKeVusyYBBgXAnkppHq0gSkAziyQch+S1TIAB5xAtb5LuHXYcFeNWa0WBOU2uMsBGNrrfSBqCPpQ1CFUqusQlVrUEJT7umBsCqea+masnvtpKcfYCD4tp214SDaFCtrKHOzFH/Y90aeN4ZNRMIJU4VcNSQEIlf3KqQrFkkpxJmpdCJjVvIKikB0FyGUFSw+cAAw8AXeMRm7Nl1bXsMPMG7/YAV21Tpe1lKMFP90pgQPNFiBWy1U9ZaIAqGHqAlIvw6hKH5Sha9e03MU20j0+bp9WwjY8JJcSIhjlDWuU8sKbdinbtNxk0adutpI+1dSlkH2olgqIXKlJQYGSq3AsDwNTQIZky0SAcziglOFYOQ/UwanXAajB0gYlMLye0leWbYC0QajXm3kLVF2AyJTq01AkqNQi0fWYkFOCbmC0bS3cTxvJp5WwDQ9J35Zb0i/HsaJP3Ww9+GQDUwJShWOpVpXtwOQCSCgFF3KdVpmlkOFYX10CLkgBdz1QAVNbKbr/ohAU7fUVIHUZMgSQfn1lHYoShBKKlPih1Uo5UgVGEmi6Ia/A2r+fhtl69Wk5bdTRcUayF198EZdccglmZmYwMzODSy65BC+99FLrPoSQ4OcP//APTZkzzzyztv3CCy9cko/+S6NoWE8a5ttMhya67N+2Pfq0MX2S9WlAX41a31Mj2ctR7Ql6CUFGCfqJ7Bqtl8h5XU6XnUjlYL9TGcN0L8GmLMF0xrCpxzCZMkxn1Tq5PsGmXoLpLFHbmPlMptSUm87k/v7H3U6tfZk55mQqv0eXn0wZNqn1cpvcV6+f7iWYzBgmEoae+k39hKKnzkNfnR95LvQQVQQ9RtBn1bwumzGKiUSPyrH818631XA/rWefxmljVZIXXXQRfvKTn+Duu+8GAPz2b/82LrnkEnz1q19t3OfZZ591lv/qr/4K733ve/Gud73LWb9r1y585CMfMcsTExNL8rHprSUULtBvTP424pWx97fXhY4VOmb0Kfrkfz9T6idtUZhCEKMIhZAqU6iyQghwSHXJqRxAWqtN/V2lCbUKt07SqodsqqsMGbVUpKMoaWAdqZp8mIekpQ5lGbUOrkqkIFZZeSxbLdr7tA1PtZHup/Xm0zhtbJB88skncffdd+OBBx7AqaeeCgC46aabcPrpp2PPnj045phjgvtt377dWf7zP/9zvOUtb8Ev/uIvOusnJydrZcdt/sUT3tRf33Yxm/aNPkWfhvkUAqaGYMllGa5BKYRaJhKQAXACFTzl9wknxGqz0PZtlHpJRxVYC1XGqAtCoAKbvb4JiPayDtESousuW91ckq2n+2mj+TSqjQ2S999/P2ZmZgwgAeC0007DzMwMdu/e3QhJ25577jncdddduPXWW2vbbrvtNnzhC1/Atm3bcO655+Kaa67B9PR08DiLi4tYXFw0y3Nzc0v4RdLsN5mm7Stt0aduth590sAEZNKPUJ0K6MGTSweUdXACcOAJZ71c4Se0GmgyUquvtM0A0IaiV8aGoC5L1WOVEBuiYSDaKlEfpy3xZjltPd5P47DV6NMoNjZI7t27F1u3bq2t37p1K/bu3dvpGLfeeiump6fxzne+01l/8cUX47WvfS22b9+Oxx9/HFdffTW+853v4J577gke5/rrr8d111039Pt8Od9kXS9qU7lhx48+RZ+W4lPVREKvVeNcooKZzJqtQAnoxBylNJ31Lm1sRclVqbaIa6UIibOszVZ4xKwjNTja6/1EoFGAuJqvXfRp+XxabhsZktdee+1Q4Dz00EMAqrc724QQwfUh++xnP4uLL74Y/X7fWb9r1y4zf9xxx+Hoo4/GySefjEceeQQnnnhi7ThXX301rrzySrM8NzeHI4880iz7En+cF8o+Rtvxok/Rp+XwSUMkIXobMeAE3MxV2akBceoam/zT4Vs5Hy7lA8/3u6l8U0YswdJDp2vx2kWfRvNpXDYyJC+77LKhmaRHHXUUvvvd7+K5556rbfvZz36Gbdu2Df2eb37zm9izZw/uuOOOoWVPPPFEpGmKp556KgjJXq+HXq/XuL/9JhS6CPYN0XSR/PVN5URgPlQ2+hR9GpdPFTBdJcYEMSAdZrptpbCAW/sNxO0EoIvZIOzycNxo1y76VJVdKRsZklu2bMGWLVuGljv99NMxOzuLBx98EKeccgoA4Fvf+hZmZ2fxxje+cej+N998M0466ST8yq/8ytCy3/ve95DnOXbs2DH8BzRY6I0odBFD6/39QstN+zWVjT5Fn1bSJw0nEigfMkYkVIfZUpTfaj5P0afV7dM4bGztJF/3utfhnHPOwa5du/DAAw/ggQcewK5du3Deeec5STvHHnss7rzzTmffubk5fOlLX8K//Jf/snbcH/zgB/jIRz6Cb3/72/jhD3+Ir33ta3j3u9+NE044AW9605tG8nHY/9e/CYT1WYo13QT2fPQp+rRWfNIdH7R9VtqntuPZFn1aHz6thI21M4HbbrsNxx9/PM466yycddZZ+OVf/mV8/vOfd8rs2bMHs7Ozzrrbb78dQgj8xm/8Ru2YWZbhr//6r3H22WfjmGOOweWXX46zzjoLX//618EYG8m/YReuy8U42AsmvPnoU9iiT90s+tTNok/dbLX7tBJGhBjSIngd2tzcHGZmZrB3715s3rw5WKZJ5i+13HJY9KmbRZ+6WfSpm0WfutlK+zQ3N4ft27djdna28Tm+HDZWJbmWretFHPViN71FdXm7ij5Fn7p+d/Sp23dHn7p991r1aTlsw0PSP9GkYX3TurZjho7ddIOIIftFn6JP0afoU/TJ9WklbMND0r74/nrbSEvZpn39Ywy7qPZ+0afoU/Qp+hR9OvS24SEJjHYhQjfCOCz6tLTvGaVs9Klb2ehTt7LRp25lVypMuly24SFJrA/QLdzgr7eP5R+7aVv0KfoUfYo+RZ+Wx6dx2oaHJCAvWtOFI165tvj7sFDBsIvuf1f0KfoUfYo+RZ8OrY11PMm1YKG3IOHNE2udvzzMhr1thb43+hR9ij5Fn6JPq8OikrSsy1vLqG82/hvXqBZ96mbRp24Wfepm0aduthp9Wm7b0JD0L17ThfHfkprCDG3f0RZysMtGn6JP0afoU/Spm08rYRsakvrCjXIRQjdJ2/5+iKLtDcm+maJP0afoU/Qp+nToVeWGhqS2YRfBvqDD4vFN+/k3xbC3pOhT9Cn6FH2KPnX3aVwWIdnBlvom44cctBFreTmOvdT9ok/d9os+ddsv+tRtv+hTt/2W26elWoQklucNZZR9u1zk6FP0qatFn7pZ9KmbrVWfxmUbvgkIMDxG3mTDQgoHs0/0qds+0adu+0Sfuu0Tfeq2z2r0aVwWIamsS4xdePNd37i6hBD8ctGn6FP0KfoUfWr3aSVsw4dbu57o0M3SVsncVtY/ZvQp+hR9ij5Fn5bu0zhtw0Ny1LBB0xuOb/4xh739+MeNPkWfok/Rp+hTN5/GaRsekkA3+T7sprBvHD+0QBrKRZ+iT9Gn6FP0aXl8GpdFSFrW9mbS5a1FWFP/Imsj6Has6FP0KfoUfYo+je7TcluE5BAj3nTU7b4tx8WOPnWz6FM3iz51s+hTN1uNPh2MRUjCvVhNcfHQhSIt27uEI9q2R5+iT9Gn6FP0qbtP47IISbgXa5T497A3nC5hgqbt0afoU/Qp+hR9Gv0Yy20Rkp41XaSlvL34cfWlHi/61M2iT90s+tTNok/dbDX6tJy24SHZFCrwy7RdvC7WFFoI+RJ9ij5Fn6JP0afh37MStuEh2eXEL/ViEYx2c7TF8pvKNi03WfSpm0Wfuln0qZtFn7rZqD6thG14SPq23BdoOd5+ok/dLPrUzaJP3Sz61M1Wo0/LaRsekk2hg7Z4+CiV1KEQRWj/tu3Rp+hT9Cn6FH1qPv44bcNDsumtJRQuIA3b7BCBHy4QCN9U/o0gvO3Rp+hT9Cn6FH3q5tM4LY4CMoL5F68pRm+/WYnA9rZ9o0/Rp+hT9Cn6ND6fRrUNryRHtWEXaqUvoP2d0ad2iz51s+hTN4s+dbPV6NMoFiFpWSgWHrKuF7Wp3Cix9OhTN4s+dbPoUzeLPnWz1ejTcluEJOox7nFeKB1OGHa86FP0KfoUfYo+dfdpXBYhCTduHroIJFCuqUzTsv1d/nyobPQp+hR9ij5Fn7r7NC6LkFQWeiNquohNN03bctN+TWWjT9Gn6FP0Kfo0mk/jsA2d3TrsbcS/CQ72wjTdBP7bUdv3RJ+iT9Gn6FP0aeVsrEryD/7gD/DGN74Rk5OTOOywwzrtI4TAtddeiyOOOAITExM488wz8b3vfc8ps7i4iH/9r/81tmzZgqmpKZx//vn4yU9+MrJ/w050F0l/sLLfDyVEn8IWfepm0aduFn3qZqvdp5WwsUJyMBjg3e9+Nz7wgQ903udjH/sYPv7xj+NTn/oUHnroIWzfvh2/+qu/in379pkyV1xxBe68807cfvvt+J//839i//79OO+881CW5bL5vtJvK10s+tTNok/dLPrUzaJP3Ww1+rQcRoQQY/9dt9xyC6644gq89NJLreWEEDjiiCNwxRVX4Hd/93cBSNW4bds23HjjjXjf+96H2dlZvOpVr8LnP/95vOc97wEA/PSnP8WRRx6Jr33tazj77LOH+jM3N4eZmRns3bsXmzdvPujfN4o13UiH8gaLPnWz6FM3iz51s+hTN2v67n1zc9i2fTtmZ2fH+hxfVXWSTz/9NPbu3YuzzjrLrOv1ejjjjDOwe/duvO9978PDDz+MPM+dMkcccQSOO+447N69OwjJxcVFLC4umuXZ2VkAwL59+2oXQC+HLkzXG6XpGMP2H7Zf9Cn6FH2KPkWfpOno4rh13qqC5N69ewEA27Ztc9Zv27YNP/rRj0yZLMvwile8olZG7+/b9ddfj+uuu662/uijj14Ot6NFixYt2iGyF154ATMzM2M7/siQvPbaa4PAse2hhx7CySefvGSnCHGrdoUQtXW+tZW5+uqrceWVV5rll156CTt37sQzzzwz1pM7Dpubm8ORRx6JH//4xyseKj4Yi36vrEW/V97Wqu9r1e/Z2Vm85jWvweGHHz7W7xkZkpdddhkuvPDC1jJHHXXUkpzZvn07AKkWd+zYYdY///zzRl1u374dg8EAL774oqMmn3/+ebzxjW8MHrfX66HX69XWz8zMrKmbwrbNmzevSd+j3ytr0e+Vt7Xq+1r1m9LxNvcfGZJbtmzBli1bxuELXvva12L79u245557cMIJJwCQGbLf+MY3cOONNwIATjrpJKRpinvuuQcXXHABAODZZ5/F448/jo997GNj8StatGjRom1MG2ud5DPPPIP/9//+H5555hmUZYm//du/BQD8vb/397Bp0yYAwLHHHovrr78e73jHO0AIwRVXXIGPfvSjOProo3H00Ufjox/9KCYnJ3HRRRcBkOrvve99Lz70oQ/hla98JQ4//HB8+MMfxvHHH4+3v/3t4/w50aJFixZtg9lYIfn7v//7uPXWW82yVof33nsvzjzzTADAnj17TLYpAPzO7/wO5ufn8a/+1b/Ciy++iFNPPRX//b//d0xPT5syn/jEJ5AkCS644ALMz8/jbW97G2655RYwxjr51ev1cM011wRDsKvd1qrv0e+Vtej3ytta9T363W4r0k4yWrRo0aJFW4sWOziPFi1atGjRGixCMlq0aNGiRWuwCMlo0aJFixatwSIko0WLFi1atAaLkIwWLVq0aNEabN1CcrWPZdlkL774Ii655BLMzMxgZmYGl1xyydDRUwghwc8f/uEfmjJnnnlmbfuwnpPG7fdv/uZv1nw67bTTnDKr7XzneY7f/d3fxfHHH4+pqSkcccQR+Bf/4l/gpz/9qVNuHOf705/+NF772tei3+/jpJNOwje/+c3W8t/4xjdw0kknod/v4xd/8RfxJ3/yJ7UyX/7yl/H6178evV4Pr3/963HnnXcelI8H6/dXvvIV/Oqv/ipe9apXYfPmzTj99NPx3/7bf3PK3HLLLcH7fWFh4ZD5fd999wV9+v73v++UW23nO/QfJITgDW94gymzEuf7f/yP/4F/+k//KY444ggQQvBf/+t/HbrPit3fYp3a7//+74uPf/zj4sorrxQzMzOd9rnhhhvE9PS0+PKXvywee+wx8Z73vEfs2LFDzM3NmTLvf//7xS/8wi+Ie+65RzzyyCPiLW95i/iVX/kVURTFsvh9zjnniOOOO07s3r1b7N69Wxx33HHivPPOa93n2WefdT6f/exnBSFE/OAHPzBlzjjjDLFr1y6n3EsvvbQsPi/V70svvVScc845jk8vvPCCU2a1ne+XXnpJvP3tbxd33HGH+P73vy/uv/9+ceqpp4qTTjrJKbfc5/v2228XaZqKm266STzxxBPigx/8oJiamhI/+tGPguX/z//5P2JyclJ88IMfFE888YS46aabRJqm4r/8l/9iyuzevVswxsRHP/pR8eSTT4qPfvSjIkkS8cADDyzZz4P1+4Mf/KC48cYbxYMPPij+7u/+Tlx99dUiTVPxyCOPmDKf+9znxObNm2v3/XLaqH7fe++9AoDYs2eP45N9n67G8/3SSy85/v74xz8Whx9+uLjmmmtMmZU431/72tfEv/t3/058+ctfFgDEnXfe2Vp+Je/vdQtJbZ/73Oc6QZJzLrZv3y5uuOEGs25hYUHMzMyIP/mTPxFCyBsqTVNx++23mzL/9//+X0EpFXffffdB+/rEE08IAM5FvP/++wUA8f3vf7/zcX7t135NvPWtb3XWnXHGGeKDH/zgQfsYsqX6femll4pf+7Vfa9y+Vs73gw8+KAA4D6LlPt+nnHKKeP/73++sO/bYY8VVV10VLP87v/M74thjj3XWve997xOnnXaaWb7gggvEOeec45Q5++yzxYUXXrhMXo/ud8he//rXi+uuu84sd/1PH4yN6reG5Isvvth4zLVwvu+8805BCBE//OEPzbqVON+2dYHkSt7f6zbcOqoNG8sSwNCxLA/W7r//fszMzODUU08160477TTMzMx0Pv5zzz2Hu+66C+9973tr22677TZs2bIFb3jDG/DhD3/YjMd2KP2+7777sHXrVvz9v//3sWvXLjz//PNm21o434AcjYAQUgvrL9f5HgwGePjhh53zAABnnXVWo5/3339/rfzZZ5+Nb3/728jzvLXMcpzbpfrtG+cc+/btq430sH//fuzcuROvfvWrcd555+HRRx9dFp8P1u8TTjgBO3bswNve9jbce++9zra1cL5vvvlmvP3tb8fOnTud9eM830uxlby/V9V4kofSxjWW5ag+bN26tbZ+69atnY9/6623Ynp6Gu985zud9RdffLHpQP7xxx/H1Vdfje985zu45557Dpnf5557Lt797ndj586dePrpp/F7v/d7eOtb34qHH34YvV5vTZzvhYUFXHXVVbjoooucERSW83z//Oc/R1mWwXuzyc+9e/cGyxdFgZ///OfYsWNHY5nlOLdL9du3//Af/gNefvllM5gBIPt7vuWWW3D88cdjbm4Of/RHf4Q3velN+M53vrMsY8Quxe8dO3bgT//0T3HSSSdhcXERn//85/G2t70N9913H9785jcDaL4mq+V8P/vss/irv/orfPGLX3TWj/t8L8VW8v5eU5Bci2NZAt39Dn1/Vx+0ffazn8XFF1+Mfr/vrN+1a5eZP+6443D00Ufj5JNPxiOPPIITTzzxkPj9nve8x/Hp5JNPxs6dO3HXXXfVID/KcVfqfOd5jgsvvBCcc3z60592ti3lfA+zUe/NUHl//VLu91Ftqd/xZ3/2Z7j22mvx53/+587LzGmnneYkeL3pTW/CiSeeiE9+8pP4j//xPx4Sv4855hgcc8wxZvn000/Hj3/8Y/z7f//vDSRHPeZSbanfccstt+Cwww7Dr//6rzvrV+p8j2ordX+vKUiuxbEsR/H7u9/9Lp577rnatp/97Ge1N6KQffOb38SePXtwxx13DC174oknIk1TPPXUU40P7ZXyW9uOHTuwc+dOPPXUUwBW9/nO8xwXXHABnn76afzN3/zN0HH4upzvJtuyZQsYY7U3YPve9G379u3B8kmS4JWvfGVrmVGu2XL7re2OO+7Ae9/7XnzpS18aOroPpRT/8B/+Q3PfHKwdjN+2nXbaafjCF75gllfz+RZC4LOf/SwuueQSZFnWWna5z/dSbEXv75FqMNegjZq4c+ONN5p1i4uLwcSdO+64w5T56U9/uuyJJN/61rfMugceeKBzIsmll15ay7Jssscee0wAEN/4xjeW7K+2g/Vb289//nPR6/XErbfeKoRYved7MBiIX//1XxdveMMbxPPPP9/puw72fJ9yyiniAx/4gLPuda97XWvizute9zpn3fvf//5aYsO5557rlDnnnHOWPZFkFL+FEOKLX/yi6Pf7Q5M3tHHOxcknnyx+67d+62BcdWwpfvv2rne9S7zlLW8xy6v1fAtRJR499thjQ79jHOfbNnRM3Fmp+3vdQvJHP/qRePTRR8V1110nNm3aJB599FHx6KOPin379pkyxxxzjPjKV75ilm+44QYxMzMjvvKVr4jHHntM/MZv/EawCcirX/1q8fWvf1088sgj4q1vfeuyN0n45V/+ZXH//feL+++/Xxx//PG1Jgm+30IIMTs7KyYnJ8V/+k//qXbM//2//7e47rrrxEMPPSSefvppcdddd4ljjz1WnHDCCYfM73379okPfehDYvfu3eLpp58W9957rzj99NPFL/zCL6zq853nuTj//PPFq1/9avG3f/u3Tkr84uKiEGI851un9t98883iiSeeEFdccYWYmpoyWYhXXXWVuOSSS0x5nSL/b/7NvxFPPPGEuPnmm2sp8v/rf/0vwRgTN9xwg3jyySfFDTfcMLYmCV39/uIXvyiSJBF//Md/3Nh85tprrxV33323+MEPfiAeffRR8Vu/9VsiSRLnZWel/f7EJz4h7rzzTvF3f/d34vHHHxdXXXWVACC+/OUvmzKr8Xxr++f//J+LU089NXjMlTjf+/btM89oAOLjH/+4ePTRR03G+KG8v9ctJC+99FIBoPa59957TRkA4nOf+5xZ5pyLa665Rmzfvl30ej3x5je/ufZmNT8/Ly677DJx+OGHi4mJCXHeeeeJZ555Ztn8fuGFF8TFF18spqenxfT0tLj44otraeW+30II8ZnPfEZMTEwE2+I988wz4s1vfrM4/PDDRZZl4pd+6ZfE5ZdfXmuTuJJ+HzhwQJx11lniVa96lUjTVLzmNa8Rl156ae1crrbz/fTTTwfvK/veGtf5/uM//mOxc+dOkWWZOPHEEx1Veumll4ozzjjDKX/fffeJE044QWRZJo466qjgC9SXvvQlccwxx4g0TcWxxx7rPNSXy0bx+4wzzgie20svvdSUueKKK8RrXvMakWWZeNWrXiXOOusssXv37kPq94033ih+6Zd+SfT7ffGKV7xC/KN/9I/EXXfdVTvmajvfQsiIzcTEhPjTP/3T4PFW4nxrJdt03Q/l/R3Hk4wWLVq0aNEaLLaTjBYtWrRo0RosQjJatGjRokVrsAjJaNGiRYsWrcEiJKNFixYtWrQGi5CMFi1atGjRGixCMlq0aNGiRWuwCMlo0aJFixatwSIko0WLFi1atAaLkIwWLVq0aNEaLEIyWrRo0aJFa7AIyWjRokWLFq3B/j9rQW2Xo+YwpwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwlRXk+/lRVd59zZ2VnGMIAIouAC4usP1GjgrgBEhk34m5QTNDRRDFgRKNoXAKogHyDjEhAgggogjIq4MLEoAZiRE2MGhKcEcHAwMw9t7ur3t8fVW91dZ/uc869c++dO3P7/Xz69N79nt6eet73rfcVRERopZVWWmmllVb6RG5pBVpppZVWWmllrkoLkq200korrbTSIC1IttJKK6200kqDtCDZSiuttNJKKw3SgmQrrbTSSiutNEgLkq200korrbTSIC1IttJKK6200kqDtCDZSiuttNJKKw3SgmQrrbTSSiutNEgLkjXy/ve/H0KI0rK99toLL3rRi2bl/Js2bcL73/9+3HHHHX3rVq9eDSEEfvOb38yKLnNJfvOb30AIgdWrV0/bMa+88kq8/OUvx/777w8pJfbaa6+R9vuHf/gHCCGwaNGiadNlNuScc87Bi170Iuy+++4QQuC1r31t7XbXXHMNjjvuOOy6667odDpYvnw5XvziF+Ouu+4a6TwXXXQRjjrqKOy0007odDpYsWIFXv7yl+OnP/1pabuNGzf667948WIsXLgQBx10EP72b/8WGzduLG37zW9+E8973vOwfPlydDod7LLLLvjjP/5j3HLLLaXt+DlpGp7//OdP6ZoAABHhiiuuwBFHHIGFCxdiyZIlOPTQQ3HTTTf1bfvFL34RT3va09DtdrF8+XK8/e1vx+OPP17a5p577sELX/hCrFixAmNjY9hhhx1w9NFH46qrrqo9/49//GM897nPxaJFi7DddtvhpS99KX71q1/VbvupT30KBxxwADqdDvbee2+cd955yLKsdtubbroJz3zmM7FkyRJ/Dy677LIpX9NQvvnNb/rtHnroodK6qT5nv/vd77DjjjtCCIEvfelLA7fdXIlm9OhbqbzxjW8ceNNnWjZt2oTzzjsPAPCsZz2rtO6FL3wh1q5di912220LaLbtyRe+8AWsX78eRxxxBIwxjR+RUB544AG8613vwvLly/Hoo4/OgpbTJ3//93+PpzzlKXjJS16Cz33uc43bPfzwwzj22GNx1llnYaeddsK6devwyU9+Escddxy+9a1v4ZnPfObA8zz88MM48cQT8dSnPhXbb789fvWrX+EjH/kIjjzySPzoRz/C/vvvDwDIsgxEhFWrVmHvvfeGlBLf+c538IEPfAB33HEHvvnNb5aOedBBB+GNb3wjli1bhj/84Q+49NJL8cIXvhBf+MIX8OpXvxoAsNtuu2Ht2rV9Ot1444346Ec/ilNOOWVK1wQA3vKWt2D16tV4xzvegfPPPx95nuMnP/kJNm3aVNruH//xH/HqV78ab3zjG/H3f//3+I//+A+8+93vxn333YfbbrvNb/fII49gjz32wCte8Qrsvvvu2LhxI/7xH/8Rp59+On7zm9/gnHPO8dv+/Oc/x7Oe9Sw87WlPwz/90z+h1+vhfe97H57xjGfgnnvuwc477+y3/dCHPoRzzz0X73nPe3D88cfj7rvvxjnnnIMHHnigBH4A8JGPfAR//dd/jTPOOANnn3024jjGz3/+c6Rp6reZ7DVlefzxx/GmN70Jy5cvx29/+9u+9VN9zs4880x0u93addMu1MpIsueee9ILX/jCKe2bpillWTby9r///e8JAP3N3/zNlM63rcqvf/1rAkBXXHHFtB1Ta+2nX/jCF9Kee+45dJ8XvehF9OIXv5he85rX0MKFC6dNl9mQ8P8uXLiQXvOa14y87yOPPEJxHNPpp58+pXPfd999BIDOPffcodv+1V/9FQGg//qv/xq4XZqmtPvuu9MznvGMocd81rOeRQsWLKBHH320tHzUa3LDDTcQALr22msHnifPc9ptt93o+OOPLy3/x3/8RwJAt9xyy1BdjzzySNpjjz1Ky172spfRTjvtVNL/N7/5DcVxTH/1V3/llz300EPU7XbpzW9+c2n/D33oQySEoJ/+9Kd+2Q9/+EOSUtJHP/rRoTrVSdM1ZTnzzDPpkEMOoXPOOYcA0O9///uhxxz2nH3pS1+iRYsW0ec//3kCQNddd92UdB9V5o259cYbb4QQAt/61rf61l1yySUQQuDf/u3fANSbW1luuOEGPOUpT0G328UTnvAEXHTRRaX1d9xxB4QQ+MIXvoB3vvOd2H333dHpdPDLX/4Sv//97/HWt74VBx54IBYtWuTNRd/97nf9/r/5zW98i/C8887zZgo2AdWZW5/1rGfh4IMPxt13341nPOMZWLBgAZ7whCfgIx/5CIwxJf1++tOf4vjjj8eCBQuw884748wzz8TXvvY1CCFqzbuh8HX5t3/7N7zsZS/D0qVLscMOO2DVqlXI8xy/+MUv8PznPx+LFy/GXnvthb/7u7/rO8b999+PV7/61dhll13Q6XTwpCc9CZ/4xCf69Pztb3+L0047DYsXL8bSpUuxcuVKrF+/vlavH/7wh3jJS16CHXbYAd1uF4cccgj+6Z/+aeB/YZFycq/AVVddhTvvvBMXX3zxpPZrkrPOOgudTge///3va9e/5S1vwdjYGH73u99Ny/km+39DWbx4MbrdLqJoagYofq5H2X/UbeM4xnbbbTd0u//6r//CnXfeidNOOw1LliwprRv1mlx44YXYa6+9cNpppw3c7p//+Z+xbt06vO51rystf9nLXoZFixbhhhtuGHqunXbaqfSf8jzHzTffjFNPPbWk/5577olnP/vZpWN+/etfR6/X6zv/6173OhARbrzxRr/s05/+NDqdDv78z/98qE5VGXRNAeC73/0uLrvsMvzDP/wDlFIjH3fQc/aHP/wBZ555Jj70oQ9hxYoVk9Z5SjKjEDyHJMsy2mWXXehVr3pV37ojjjiCDj30UD//N3/zN1S9NHvuuSftvvvutGLFCvrc5z5Ht9xyC73qVa8iAPSxj33Mb3f77bcTANp9993pT/7kT+grX/kK3XzzzfTwww/Tz3/+c3rLW95CX/ziF+mOO+6gm2++md7whjeQlJJuv/12IiLq9Xr09a9/nQDQG97wBlq7di2tXbuWfvnLXxIR0RVXXEEA6Ne//rU/5zOf+Uzacccdad9996VLL72U1qxZQ29961sJAH3+85/32/32t7+lHXfckVasWEGrV6+mW265hU4//XTaa6+9CIDXoUn4uuy///70wQ9+kNasWeNb/G9729vogAMOoIsuuojWrFlDr3vd6wgAXX/99X7/Bx98kHbffXfaeeed6dJLL6Wvf/3r9La3vY0A0Fve8ha/3aZNm+hJT3oSLV26lD71qU/RN77xDfqLv/gLWrFiRR+T/Pa3v01JktAznvEMuvbaa+nrX/86vfa1r50S4xzGJH/3u9/RjjvuSJ/5zGeIiDabST7++OO0cOFCeulLX9q4zY9+9CMCQOedd15peZZlIw3GmMZjj8Ik8zynNE3p17/+Nb35zW+mRYsW0Q9/+MOR/2Oe59Tr9ehnP/sZnXTSSbTLLrvQ/fff37edMYayLKNHH32Ubr31Vlq2bBm94hWvqD2m1pqyLKMHHniA3ve+91Ecx3TzzTcP1OO9730vAaDvfe97A7druiZZllGn06FTTjmFPvGJT9CKFStISkl77703fexjHytd50svvZQAlBgby+GHH05HH31043968MEH6TOf+QxFUUSXXnqpX//zn/+cAPhnL5R3vetdJISg8fFxIiJ6z3veQwDo8ccf79t2p512Kl3XJzzhCXTooYfSF77wBdpvv/1ISkm77747vfvd76aJiYmB12rQNd20aRPtu+++9Jd/+ZdEVHw7mpjkqM/Zq171KjrqqKNIa+2/tTPNJOcNSBIRrVq1isbGxuiRRx7xy9gE9KlPfcovawJJIQTdc889peXPe97zaMmSJbRx40YiKkDyuOOOG6pPnueUZRk95znPoVNOOcUvH2RubQJJAPSDH/ygtO2BBx5IJ5xwgp//y7/8yz5zCxHRCSecMCmQ/MQnPlFa/rSnPY0A0Je//GW/LMsy2nnnnUsAwC9vVc+3vOUtJISgX/ziF0REdMkllxAAuummm0rbvelNb+oDvwMOOIAOOeSQPnP2i170Itptt91KprRhMgwkTz31VDrmmGP8B3FzQfK6664jAHT55ZcP3G733Xengw46qLQMwEjDoIbCKCC5//77+2PttttuQ0GmKp1Ox++/33770X333Ve73TXXXFPS+3Wve12ji4KfVwC0ZMmS0nNXJ3me0+67704HHHDAUH2brsm6dev8+f7oj/6IPv/5z9O3vvUtOuOMMwgAvfe97/XbfuhDHyIAtG7dur7jHH/88bTffvv1Lf+zP/sz/5+SJKGLL764tP773/8+AaBrrrmmb98Pf/jDBIB++9vfEpF9TzqdTu3/22+//Upm4E6nQ4sXL6btt9+ePv3pT9O3v/1t+uu//mtSStErX/nK+otEw6/pO9/5TnrCE55AmzZtIqLhIDnKc3bzzTdTHMf0k5/8hIho1kBy3phbAeD1r389xsfHce211/plV1xxBTqdDl75ylcO3f+ggw7CU5/61NKyV77yldiwYQN+/OMfl5afeuqptce49NJLceihh3pzQhzH+Na3voWf/exnU/hHhSxbtgxHHHFEadlTnvIU/Pd//7efv/POO3HwwQfjwAMPLG33ile8YlLnqkb5PulJT4IQAieeeKJfFkURnvjEJ5bO/+1vfxsHHnhgn56vfe1rQUT49re/DQC4/fbbsXjxYrzkJS8pbVe9R7/85S/x85//HK961asAWJMUDy94wQuwbt06/OIXv5jUf2uS66+/Hl/96lfx//7f/2s0xU9WfvCDHwAAnva0p/ll//zP/9wXPPK0pz0N9913Xyna8+677x5pePGLX7xZOl5//fX4wQ9+gOuuuw4HHnggTjzxxKFm+VDuuusurF27FldddRUWL16MZz/72X0RrgBwwgkn4O6778a3v/1tfOhDH8L111+PU089tc8MD9iozX/5l3/BTTfdhBNOOAErV67ENddc06jD17/+dTzwwAN4wxveMLLeVWE9NmzYgOuuuw5/+qd/ij/+4z/GJZdcgpNPPhmf/OQn+yJXm56TuuXvfe97cffdd+NrX/saXv/61+Ntb3sbPv7xj4+0b926UbczxuCxxx7DxRdfjDPPPBPPfvaz8bd/+7f48z//c1x99dX45S9/WXuMQdf0X/7lX3DBBRfgs5/9LMbGxhr1CGXYc/boo4/iz/7sz/Dud78bBx988EjHnC6ZV9GtBx10EJ7+9KfjiiuuwJvf/GZorXHVVVfhpJNOwg477DB0/2XLljUue/jhh0vL66JPP/nJT+Kd73wnzjjjDHzwgx/ETjvtBKUUzj333M0GyR133LFvWafTwfj4uJ9/+OGHsffee/dtt+uuu07qXNVrlSQJFixY0BdtliQJNmzYUDp/XReL5cuX+/U8rtOpev3ZT/eud70L73rXu2p1rYacT0Uef/xxnHnmmfjzP/9zLF++HI888ggA+Oi/Rx55BHEcY+HChZM67v/93/8BQMmfc+ONN+Lzn/88Xv/61/tlS5cuBRHhkUce8ecIgXWQTMYXVCcHHXQQAOCII47AySefjEMOOQRnnXUW7r333pH2P/TQQwEARx11FF7ykpfgiU98It773vf2dZnYfvvtcfjhhwMAnv3sZ2OfffbBy1/+ctx00019kZP77ruvn37JS16CE088EWeeeSZWrlxZ61+8/PLLEccx/vRP/3T0P16R7bffHkIILF68GEcddVRp3Yknnogbb7wR9913H4444gj/LtY9x3/4wx9qvzUrVqzwPrYXvOAFAICzzz4br3nNa7DzzjuXjlmVP/zhDxBCYLvttgNgvwW9Xg+bNm3CggUL+rY97LDD/PyOO+6I9evX44QTTuj7TxdccAF+/OMf44lPfGLfOQdd09e//vV46UtfisMPP9y/K71eD4BtZHQ6HSxevLi0z7Dn7K//+q8RxzHe9ra3+WNyo2TTpk145JFHsHTp0mlrwIYyr0ASsM7rt771rfjZz36GX/3qV7UO9iapCxzhZVWQqrtZV111FZ71rGfhkksuKS1/7LHHRlV/s2THHXesDQBpCoiZifOvW7eubzmHhu+0005+u3/5l3/p266qJ29/9tln46UvfWntObmrwebIQw89hN/97nf4xCc+gU984hN967fffnucdNJJpYCIUWTp0qUACrAE7H986KGHkGUZ4jgGYD9s4fYA/LphcsUVVwzs9zcZiaIIhx566MhBUVVZvHgxDjjgAPzHf/zH0G3Z2jDqtl//+tfx+9//vg+UHnzwQdx88814yUtegl122WVKegPA2NgY9t1339p3hYgAFAFAT37ykwEAP/nJT0pWmzzP8fOf/3wky80RRxyBSy+9FL/61a+w8847Y5999sHY2Bh+8pOf9G37k5/8BE984hN9IzU8/5FHHum342crZGJPecpTRvpPoQy7pj/96U/x05/+FNddd13fun322QdPfepTcc899zT+97rn7N///d/xm9/8ppaovOY1rwFg3yNuKEynzDuQfMUrXoFVq1Zh9erV+NWvfoXdd98dxx9//Ej7/vSnP8W9995bMrleffXVWLx4sW8xDxIhBDqdTmnZv/3bv2Ht2rXYY489/DLeJmSB0yHPfOYz8fGPfxz33Xdf6eX94he/OK3naZLnPOc5OP/88/HjH/+4dL2uvPJKCCHw7Gc/G4BlEv/0T/+Er3zlKyWT69VXX1063v777499990X9957Lz784Q/PmN7Lli3D7bff3rf8Ix/5CO68807ceuutHrAnI/wc3XXXXXj6058OwJpboyjCD37wA/x//9//hyzL8IMf/ABPfOITS4kL7r777pHOUWc5mKr0ej388z//cy2zGEUeeugh/OQnP8Gxxx47dFu+3sPORUS48847sd1229VaU6688kpkWbZZplaWU089Feeffz7uuusuHHPMMX75LbfcgkWLFnk2dOSRR2K33XbD6tWrsXLlSr/dl770JTz++OONDbpQbr/9dkgp8YQnPAGABY4Xv/jF+PKXv4y/+7u/80zs/vvvx+233453vOMdft/nP//56Ha7WL16dQkkOTL+5JNPLv2n2267DbfeemvJnXHLLbdASumfy1CGXdO6d2X16tX4/Oc/jxtvvBG77777wP9e95xdcMEFnkGy3HPPPXjHO96B97///XjmM585c4k9ZtTjOUflFa94Be2yyy6UJEnJ4c4ySnTrrbfe6qNbwz5Gg5zJ73vf+0gIQe973/voW9/6Fl188cW0bNky2mefffoCRvbcc0/af//96Rvf+AbdfffdPlCnKXCnGthBZANLwuM+8MADpejWW2+9lU4//XTac889CQDdeeedA69bk/O9KYClqhdHty5btowuu+wyH7UqhKC3vvWtfruNGzfSfvvtR0uXLqVPf/rT9I1vfIPOOuusxujWTqdDxx9/PF199dV055130g033EAf/vCH6U/+5E8G/h8iop/+9Kd03XXX0XXXXUeHHXYY7bzzzn6+LjpxlP/N92hYdO2jjz5Ku+yyC+2444509dVX0/ve9z7aaaed6C1veQs9/elPp6997Wv08pe/nADQxz/+8aH/ZRS54447/P/rdrv0rGc9y88/+OCDfrujjz6azj//fLrxxhvp9ttvpyuuuIKOOOIIUkrRV77yldIx99lnH9pnn338/COPPEJPf/rT6e///u/p5ptvpm9961t0ySWX0AEHHEALFiygu+++22976aWX0qte9Sr6/Oc/T9/+9rfpq1/9Kv3VX/0VjY2N0THHHFMK3nnJS15C5557Ll1//fV0xx130NVXX03HH398Y9QnkQ3s2mOPPQYGcI16TR5++GFasWIFLV++nC6//HL6xje+4YPJqvfnC1/4AgGgN7/5zXT77bfTZZddRttttx0973nPK233pje9id75znfStddeS3fccQd96UtfopUrVxIAHxnK8rOf/YwWLVpExx13HN1yyy305S9/mQ4++GBavnx5SU8ior/9278lIQS9973vpTvuuIM+9rGPUafToTe96U2l7dI0pUMPPZSWLl1KF154Ia1Zs4be/e53k1KK3va2t035mlal6dsxmeesKm106wzKbbfd5iOp/uM//qNvfRNIvvCFL6QvfelLdNBBB1GSJLTXXnvRJz/5ydJ2g27cxMQEvetd76Ldd9+dut0uHXrooXTjjTf2gRkR0Te/+U065JBDfHQgR9xtDkgSEf37v/87Pfe5z6Vut0s77LADveENb/Cdcu+9994BV23zQZKI6L//+7/pla98Je24444UxzHtv//+9LGPfazvhfvf//1fOvXUU2nRokW0ePFiOvXUU+muu+6qBZ97772XTjvtNNpll10ojmNatmwZ/fEf/3EphH7Yf6obhiVzaPrfn/rUpwgAff3rXx96/h/96Ed09NFHU6fToX322Ye+8Y1v0EMPPUQnnngiLViwgJYtW0bnnnvuwK4ckxGOhK4bwujmd77znfTUpz6Vli5dSlEU0bJly+iUU06h73//+33H3HPPPUvPWa/Xoze+8Y30pCc9iRYtWkRRFNEf/dEf0atf/eq+hsf3v/99etGLXkTLly+nJElowYIF9NSnPpU++MEP+ohxlo9+9KP09Kc/nbbffntSStGOO+5IJ5xwQmP3D44Ifd/73jct14SI6P7776eXv/zltP3221OSJPSUpzyFPve5z9Ue9+qrr6anPOUplCQJLVu2jP7iL/6CHnvssdI2n/vc5+gZz3gG7bTTThRFEW233Xb0zGc+k77whS/UHvOHP/whPec5z6EFCxbQkiVL6OSTT/bdw6py4YUX0n777UdJktCKFSvob/7mbyhN077tHn74YfqzP/sz2nXXXSmOY9pvv/1q30mi0a9pVZq+HZN5zqoyWyApiJzxuZV5K29+85txzTXX4OGHH0aSJFtana1eTjvtNPz6178e2STaSiutzF2Zdz7J+S4f+MAHsHz5cjzhCU/A448/jptvvhn/8A//gHPOOacFyGkQIsIdd9zRmKC6lVZa2bqkBcl5JnEc42Mf+xj+93//F3meY99998UnP/lJnHXWWVtatW1ChBB48MEHt7QarbTSyjRJa25tpZVWWmmllQaZ0Yw73/nOd/DiF78Yy5cvhxBipH5kd955Jw477DCfQPzSSy/t2+b666/HgQceiE6ngwMPPHCkhMGttNJKK620MlmZUZDcuHEjnvrUp+LTn/70SNv/+te/xgte8AI84xnPwL/+67/ive99L/7iL/4C119/vd9m7dq1WLlyJU4//XTce++9OP3003Haaaf5FF+ttNJKK620Ml0ya+ZWIQRuuOGGUkfWqrz73e/GV77ylVKKtjPOOAP33nuvL/i5cuVKbNiwAbfeeqvf5vnPfz623377gfkbW2mllVZaaWWyMqcCd9auXduX/eaEE07A5Zdf7tN0rV27tpRdgre54IILGo87MTGBiYkJP2+MwR/+8AfsuOOOM5Lrr5VWWmmllZkVIsJjjz2G5cuXb1ad1GEyp0By/fr1fbkXd911V+R5joceegi77bZb4zaD8o+ef/75OO+882ZE51ZaaaWVVrac/M///A/+6I/+aMaOP6dAEuhPDM7W4EFlYIhoICM8++yzsWrVKj//6KOPYsWKFfjP//xPLHE5EEexOYuG7eqW87KmfYadp9Wp1WlzdPJvAxk/CDKAoWIZAEEEwJSW+W15f0PFtN8Hpe1LUp1vVFL2TwfLSIhiXgq/noQsby8kAFlsH+zjt3UDwV0Cdw5D9vthAPi/RVRZz9N2IlxX+tuj/OVg2v8lANJ9v4QAlLDfOCUAJe14FJlvz/hjjz2Gfffdt6+iyHTLnALJZcuW9THCBx98EFEU+eTFTdsMKvfU6XT6EosDtirBYlemaNANmsqDNEgm86FrdWp1mopOAqgBSAOY3IJcsM6v523I9G1jQVO5eUYTBkz72SStCwWMxkCRCoADXaUAkAU5mDLQiRqgYzCUPF9eDyFBUvlt/HoZlUCSAVKTBcBiWTGPcJlbYtcXf4Ub8qM0DbgJwI16KSwwSgg7FvZqMjgqKRAHQNk+4zXrZthlNqdA8uijj8ZXv/rV0rLbbrsNhx9+uC8NdPTRR2PNmjUlv+Rtt91Wyso/qohgzDeg7kaM2hIaVQbtV/fgtTq1Ok1VJwD9AGlyC3xuDGMgjC6DIq9zgElaA0aDjLbHAgCjYRgMg2VeL10PlCKscSndtJQQfloV81JBKlViiUJIkIwKUHTbh8sEABIGQAQhYYGSjAffOoDUpgyWmsgDIrNNoAySBKoA5oD74D44lkESBEQAktYaJgWghIAmghJA7I45iFW2z/jMyoyC5OOPP16qbP3rX/8a99xzD3bYYQesWLECZ599Nh544AFceeWVAGwk66c//WmsWrUKb3rTm7B27VpcfvnlpajVs846C8cddxw++tGP4qSTTsJNN92Eb37zm/je9743ZT35BkzmJg79MFW2GeXY4fPf6tTqtLk62QPXAKTJLQgyOFZAUxhdgGKegQJwpCwtgNAYt7wyz1LHJmUBkCIASF4uHOBBKgumUkFEcQGcUeKW544xRhAUAUYC0gAqsoAIQMgIRAZAGSAJBegZB5TkQDEER20KM6xln+RZpQVV8iZYzWxyAJ3k2BLlWaSAkgIChZnVgiRBSQESAgQLlpF0THVE8+u8esZnWGYUJH/4wx/6GoEAvF/wNa95DVavXo1169bh/vvv9+v33ntv3HLLLXjHO96Bz3zmM1i+fDkuuuginHrqqX6bY445Bl/84hdxzjnn4Nxzz8U+++yDa6+9tlQ3bVSp3oBGOl+zLmxRDdq36dh1xxy1Rdbq1Oo0ik4AvBm1DyB17gFS8HIiUJbC5FkBkAyKxoDytAyMWoOMKRgm4AB5iKkVaGSQQkpAKYgoATFYOpAUcQKSPQuUUQwRJ57tkoyKa6gcOJIBSFidVH/0I4MdA6Q2ZaDUxgKjHRegqIlg/LYWZO1fLwNmKCowCUoHdFIIKCEgpV0fK+lMrYAiB5YkLECSZZX2AGWgnO/P+EzLvExLt2HDBixduhTr16/HEueTnEkZ9aGYTWl1Gk22Vp0EUAZEndl5nZYBUqeWOWapBcU8BTw4WmCkPAOyFBQAZcn06pgnaUujyNEpo+tplVTM9CQETzexRimBOLFAGsUFOEaxB0skHetvlJEdq9gyShkBKgFJBYoSu05IZIZBkJCbMkBqY0GvAEkg0waZJg+K4XQIkCE4VoN6OEjHs8gAKGMlrWlVSsRKQAqBSNpBMYBKC5axssvjSQT0DJOt9RnfsGEDli1bhkcffXRGv+Nzyie5tclAZ3KwbjZbRK1OrU4lMRU/Y2BiZYA0E+MWGB04Utpz8ykoywoGyQCqNUyWw2gD0saCpy4Ge9rBYSyyBJB2WsYRpJIQUkImMYhBkwExjoEoAeWZXd6xAC0AiJj8tREuihXshyQBQTbsxvsSHYs0JeZYBsg0AMfMEDJtKiDp2KQp/JJ1LJJFBcE6FiStDzI2zv8oCbERiKWEUQIECU1A7EiwAUr/YZjpdd484zMsLUhuhgy6aWxWCMdN+03nA9Dq1OpU/W6GkaqhiZUB0oPiRM8zR54OwdNkOXSag4yBSXOQNtBZHgCl9uyRApBk4BSByVNIaQFRKc8ohZJQceQBk+dlEoOiGCLpQkSZBcukaw8UmHY9+xASEA4YOSo3vF6OBXKUawF4djo3BXvsaWOnjQXDzDHGPGSTpgBMoOgqUhU2r9ppOAYpMJEbxEoGIOnGmtCJpPeJxpXDEgGJagbK+fSMz6S0IDkJmezD0tQqmk5pdRpN5qVOlW4eRfcOG8hDmQVBD5CpA8mJngXGtOfBMe+lMGnuQdECZtbHIskYzzAb/7cDS2aNVSYp4xgyiaDiCCaJILMcKs4gjQGiDDAMkKY/UkYICO7uEUbnGlPFyiBy1bFHxyAzbdDLLTBO5BqZLphkZmpMrgbeV6kDOytPK2dr9WNhTapKG8RSejYZS4HYFGDZiaxe3cj2A216Yhgo5+UzPgvSgiTKN7KpJYOa+eq+kz0fj4cdt9Wp1WmyOvWzSQZKG6SDPLcgmPYKgJwYL8Ax7cGkmQXHACRNlkFneR+TNAGjBOCAsv+fCEd7qgAppIRKImdqjSDjCCqJIeMIUTeBSSJExkB1OyCjIYyGTLSLhOVuIAoyTiw4mhwwyka8VqQwWxZRrNqgZGINAbKnDXJNyAyvMxZMjXH7FkPOwTsVpyQDpPUzFkOiyPolPUjacYesqbWrpAfgbqQanw3rp2x+NiYjW8szPlvSgiTqaX34oWl6AKr7TvZ81Yes1anVabp0KlaGCQEIwplcDZtVs9SZWNMSQOreBPJeCj2eQmc5dG/Cg2PeSz0wsm9Sp5Y9Gk0eKOtAErBAac2twjJIJSCUcKbVCDJzLDLLIeMIpA1kFrnjG0Rda2IlqYC0Zw/KfSWzGLbjYeRZM9VkACqZWgEQbP9IBsUQICfywuTKIJnmdsgrIKndf28CSSVlCSQ7kUQSSWTOF9klwCgB41iuMYQOFejXjRSanxLhu5FUn43JyFb3jM+wzGuQbLrQ1Rb5KM7mum0GrQvPX73xg1pfrU6tTqPo1AeUQQAPaW3NrNzNIzS3VgAy76XIexPQvX6zKwOjzjRIE3RqSgySGoJ3LIMUzicpIJWAjBWkyqESBZUomG7iwZKMQWTKGbMiOJB0g8gzILZBPdJ3DaG+60RAkGYuMLeyH9KYkj9yIncg6VjkeKY9OFqg1H1sEhgEkgGLjBTS3CCJJDqRhI6s+TY2Ah1l2WMn6qeHTUBpyLLQMOnAtvyMz5bMa5Csk+rNqWtNhdPVcSiD1jW1zuqAu9Wp1WkqOvUfgE2utvsG+yRDH2QIkNmmngVIzyYtUGbjOXSqYTLtgdFk2rJITR4oqdoPgnWVogSSKlYQDJCZhkoVIm0sQHaTwO9ZBOnYfXu+byVFMZDZLiKkNaAq/tjqpSAeLBgR4PyMsIzR2OAcBshebjCeakzkxoNjmltza5VRAsNBMpICSWQcWEqkkUISSSxIFDRJaAN0B9zQbqTc8xZsJIUPfRXSRs7Ou2d8BmReg+SgmxRK00MwVRl0s1udWp2mSydRl4PVaJssgBlkXphbTZpBp3mZQbpp3UuR9zLoVCPvWRapUw2daejUMUnHKBksgf6+kgyMdlpAJQq5tABpQVdBJdZsqxKD2BiQSYr/5FLasR9TRikoj4E8g3D/qZRiz1/kYtpwdCs4606VRVr22Mt1CSA3pboEkKljmQyUIUCGINkXuOOAcSI3lkF6gFXQhixQRsOfChGp/rsfAGXkgHKysjU947Mh8xok66R6M0a9OZO5iXWtq1anVqeZ1In9kT7dHI+zzEe4MlvUWY68N+H9jwyQ2XjuAFL7scksWBpNFixNwSZNDZOUkgHSgqUYLzNIlVhWSoFvs/Q/HDiaOIeOc0gGxiwFJV2bGCHPIJIOvJk5kCLnasgmObq1YJGZsT7IECDH07wEjmkwlEyuDV1AlChMrWxmDc2tYwlBG+mB0upbfyzbncSl3KsBSkn2zzJQzodnfKZkXoNkXSOrzsQwigzbrsl8MZXtWp1anUbVCUCl7JXLlOPAhedNmtluHS5Ix/sfs7wEkHkAlNqZWxksTdD5nvsc1okSAio3LhWbcEAroRIDlWlE2n6W6iJkhSyiYmUSwaSZZZOma5mktpGvosYfGV4nHxhDQM4BOY5F5trOTwSAyADJJtfxtGxu1UTQufEm5moDQUqBHM7ULG2WHQbIMDJ2QaLKptqkKKMVHmsit/dUClc9hASE4Sojbn8pIIrJgbK1P+MzKfMaJEd9COqcycNaNKOYGzbnwWx1anUa5Vylmo88HeRfpYBFmjQvgnKCQB1mjgyQDJLZeA6TGeSZhiYgdSwqNUG6too6/BFXwoJlYgQSTYi1cSzUMijShGjMHoTNs0JKyx45qjZ1bJLT5xnHJB1TFpEpcrjaA5T8pOyPZPNrmUUapNp4YEwrJldeljm9dW5sHUqXdKBOpANIIQQoIggpRgr6CUUJgQlh/PEsWFaDewQEyDJIsvNVkNymnvEZlnkNksBoN4Zq1g27gaPcyMaWf6tTq9M06hQCpE9O7hKUs+mVWaTJMgs+qTO9pqbEHKsAOZFqpIY8QGaE0ZiksFUvLKhasBwzhS+Tx1IJ5OOWPerEAWSaQ8cW2GVmkyKIpOsTsddKUMyZI1q5wod2yQGMC9bJ3JDmxoGiDkyuhT8yzbQHR2aRRAVIBths/4sDSCEFjDaQSoKi/iQEtddMCigD9HKX1k4AGed/NYCSCpoIggBJgCABaWDBUgKaypl5trlnfAZl3oNkUwuobp6fsaYb1bTfMBn20LU6tTpNVqf6A1ofnfVHulRyRheJALQp5WO1/R9dBGumkY8XAJn3cgskphiygEUyULLY+ohWMyXIASVBuw+9BVSJhDiCNYJQGtm4CLqMCCjni1ScGq/rsvv4qiQagiuR1ES1AgyQ5PO3hvlZ7diyyAkXpFOOajUYd+Coc3eNcgOtjWuLUL8f0f0l6QBSSEApCeNAlQwBCYC0vJv1X2o7TrXL1GP1lI71Kk2QgqCEgYCtImJrUwZgSQAM+YhXfka2yWd8BmTeg2RVBpkXRm1ZDdp2lHO2OrU6ba5OI31EHPPywMjp5pitOXBkoGQfpMmMB8hxbZARSmwyBMkym7TTDJC2uDCQSFhqpK3pUGXaBvUoAanseYUSMN3Is8cQIBnsySdvby7VVS2czOWvPEBqm00nDMrpC9LJnYnZg6QFOq0H+yQNrE9SKQkyBioK7lKKElByNxELlNxVxEAKgUxaf64dA9IIxM4HSyAYiL6Ue8Jda7hLvS0847MlLUhOgwy6YVvCho4h52x1KmTe6ORzmOqin2QAKH3VPEw5g07YzcP6IAvWGLJJXWGTdcKm1r7E3FJAGeuvlKm2zEcJyFhCxUUXkYjB0ZXnMtpAVepYkqsOUroEbsxMzxZRtrqyqdVQkW4u7Orh/ZB9LNKCo8lNmRmiAEopBYx2QTtGgAxB+nysBdsVuUAKQOXl1HVK6iISVklkhhA7YI+d7pkezCa1Iee6FHypwXPbzDM+Q9KC5AzLVE0aMymtTqPJ1qxTsUNNEvDqJtrAsBkW8KbWIjmAC0hx8yEwZpzYm/oBsgkoG0ES9juuBKwZMTMwCdno10zD6KgvkboxlWTqdf818EcWJbJQKnXF+jNAcv/HUj9I53s0uh8gmUUaY69VqYumJKeGgJQCROEfL4CS/ZVpbiqZeSxAdiKJVBvESiDTBrEsxpzftYlNkuD/TiBh095NhlHOxWd8tkyu8xokR7nIU3k4pmLvD01kw/ZtdWp12qxtmXUFwAgAYfUO7qfI3TDCMQOgAWqYJEpmV6AMlNbEatliIoE0ABMlgIxsspxEkveJqkRafTxgO71CgGRm3CRSOmB0LJLLWpmiVBZX9Ch17TBUMrNykE4VIH3gjqsIEkbRCgeK0ljAFH39MSSEcH1LcwFdiXq1XUWs2dd2GQGMDLuxMBu25mMpygBpiCDIRrwKYbuFjJpkYC4/47MF2vMaJPkiN92gqTqkm/apO3aTDq1OrU6bo9NkpNppv6nMFWfPCRliMUbAIOuDd9zRvcapISQy3Ff46dQQEmZlnJygUorLA3qf/v2m1tL/oHJka1jmiutDck5WD5AeHAPWGACkycmDYzUdH7mgGQ2CggTgfJgwEFKAhAVcIYUt4FzpFlLtHuL1Da61MQQt++++AYEcqwzZJAI2WSdbwzPeMslZEIHBLZjqchqwLjzmKA/WVB6kVqdWp1F1mi4JWSRQDkgpwBDBsvI6oNJXkooJDtwpAyxg3D/QBMQVXfr1Y+Y7GBj51AT4BOcElHySbH7lPKxsatWVfpBkYFmkW84AyX5JoAzcQlraJ6WAhoGChM4NVGTHoa+Sz1EHjtWMPsyKjSFfK9OW/xKORRIAO101bTNAhkC5tT3jU2kQTkXmNUg2tbyn0koKjzls3TCd6qTVqdVpKjptCQmxrMpJw67vuvLxrgPbai5YNrs2VRgB4PO72hkJCAkS5Q73tvJHATIMkHUMTjt2yCzSM0keBwDJkbalcxkNIRUMpPVASoI0ljVKZZkmCQpAuNx3sq5GZbWbSVOQVJ0Y9NWftnqOsO98fMbnNUhWZdRW0iimrcncXMLgh6zVqdVpKjrZg9dU4vVFiiWEslU0AJtPFQCEKvYJq3XYXUUJzeqCbyYjZTYq+taNKiVgBCCk6vvv3ocHKvny2GxpmkCSygE53N3DBPMhQA7yjRpIiIDa+WjYOtTC4Ow7syVz/hmfYal5g+avDLuJ4XajSt2NrFs26CFrdRp+zFanASJlPViWNikDZFEYuaj9yCDKKeWK5ADlY4Xzwz4wxTEm98ljYC8va0AaUf7/3i+HwnzMQTt1IOm7dgRMj4fCD1kAZHUAUJlu9l82pbSrSjWf62SvX5OwC6oqc/EZn63mw7wGydloidTdyEE3t9Vp8DKWVqfBy2r3FaIoUuwGSGUrayjHKrkElZKQvkO/KNWA5LRytruGKKWZCwGUwVJWBhZe3/SBD5f7/K1Op2K5LAOmZ8nKmlh5nZAO6IpNCwYZBMQYgjamz9TKbNFU0s6FuVqrLDIEyGLZ4O44shJJo4J57hLitxWitI/NyOMSngtA8PrK5W366I/y/M71Z3wmZF6DZGgKqMqgh2EmH5RWp9Gk1WnqIpQqmVwlg6SrrqGSqKi0ocpp4WQsAyAEElmMeSiWV8GzDKRA/XLuK2l1tefl6fL/CMHRAmP/n5W2cQC42pFUmF0dXoWRuhy0E/oB65KWV+fr/JAj3YsBfTEYEKMKOBaNkOIae6Dk0lgOKCWEZYcCxVgU5bN4XNWiSaut5RmfTpnXPslB9vRBzuaZbNUMst23OrU6TUnY3BgyK6lc2SkFGUe+9JTKImjJ07kvgqwy5cphEaLMICFtu2xoQiKFD8Ip+j8Wy6tBqSHI1n3ww/Uhg7V/pR/UhSr/L/a1+mAdb251jC9glMwM66ycVX8gM0ffx5L6zaV2u2aADFkvAySXz+JkAoIbGLJ+kA7kioGBkgHPNjSEB0vht+MMgCFA+j9XVrTWDzlnn/EZlHkNkiObqQasq3uQRt22bt9Wp1an6dSp5IsUFhTJmVpJKSCKIZQFShVH0EpBJhFkZue5CLJKFXSsobSETiVibaA5c4xGKfCk6AaCWpAECiBk5llmn3ZZFCvvCy38oiIwB0tIKUsAymZkEgJhVCsBPttOoWclCXtd1wvqZ5FVqZpQhVQ+opXnvXkbcInGHUAGSc9DoOwHR1uYOYkklHSM0dWlVEIglhKxlCVTq4RraFRYZAkgw1JqwXMCMrV+7Dn5jM+wzGuQrJNBN2FzPox12071QWl1anWajE4kJIRnkgoiikFSQkQJhOyBohgqzmCSCDKOPGCaCpuMTQTShNjVeez2ciA3FmhcvwIliiw6o4BkaKpVAoiDefY/cg5XlRTMUciyD1VIBYRm5JA9u4+9N7W6a+X7GVJ9JG3IJOsYI4uQso89hgAZbudrSkprIpXMDGV5sGAoAmB0YBkAYszXTAlI6cyyzMalHaSfD0yzIUCG9Tbr/puQQ5/JufCMz6S0IFmRaqslXDbVGzTIrDuKtDqNJq1OA/RwzEoqxyTjBJT2IKIYIkogkwwyyxF1k6CyBme2KVLBcSFkowOghK1GAQ1AFlU+LFMTfYwtDNgJQTIOmKWUAipWUImEShRkrCACoJSB39SaW1UwlNkzp6SrkypLnEyXCykEyPXIb4ysRcEkGSC5ZJZUstbUmijpc7aG+VuTSCJWArESiFQVMC2LZJapHGMM5z1ABuAogkLc9k9ZFhn2Kx0GlHPlGZ8paUHSSVOLRwxYP8rxwpstKuO6bUcx6bU6tToN0wmwDBJCFCxSSJAs2JaIElCcQeRZmU1m1jdpHKuMuqbUoR+wzIoDarq9HMrRSWVc/lVh08ylxmpYZWplnyQ8QHpWmThQdOAola0EIpX0PtRSVG4UWzDi/pJBwA65jzzBmVzJmVYDlTiyFagHyjDAhqNGWaQU4Ex+dWApvP/XlskSElCRZZVKSahIQEXSTUsPiB0/rey0kiUW2QlBs2SqLhhm1ddrk8vmFhxNDYvUxpnlK89UYLb2y7Dln/HZkBYkA6m7IaO2iKo3sbqfqFlX3a/uHK1OrU5T0anvIyILoBRRAkQWGEUUW79klEB2DaKgXJYJcrjGNV0XGDikkpC9HCoLk53D1YoUnlFWhUEyNLEmUiDuRlCxQjwWQSXKM0rhAFLFlkUqB+IlBunAv2pqBcqJBEIZNWkB+w3t5RQ2WTkJl5u1vqNA2cQqPEAKISAjCRkVfVClA8Ikqh9CFhkriVhJB5TWTxnLwswaskcPkCa37FHnCM2sovL/SRiArImeVFT8+br/hy373s2GtCBZI003YJAJoLqs6QEY9VytTq1O06JT1TcnJBBFFhjjBMgzoGMgXGUQ1e2UqoEACKZ79pCcfYd9hiq3456ATDWUJiQyLJtVH+Fqx+VuIwyQ0Ziy3U0SiWgsgnRAySxSJbHroiIdi3Tg73yVhiN53X+uAqMJun00CQNNte8il7sSUrjKHjZqFFKVzLe8Xx+DdIxRqYI9Kgd2VRY5lkRYkCh0I4WOkugoia4bYmnNrZEsuonE0rJK9ldGbgyTQ5gccAApiFDrjxQSggAIAgmbRZdUZAFWNsPFXHzvpkvmPUhO1vY9iDE0HX+yN7XVqdVpOnXyUZ5CADKCIGMBJTG+xJTodP3mke7vwuAz8cjUR5jmvdxHmupYQyoBHSuozBZoTjLdVw2EQSlMNpC4YBVmjdEYs0flwTEeixB1E6gkstG3cTGGVEDsADKIbPUmVyFd1w3UZtupiqqAIlAOsiFpE5Izm1SQMNJ2B1GSmWUBkNYHWQOQFTPrWKIwligHjsoDZMEipRsso+y65dY3KcqBOwyQMIDOLXs0uQVHk9cDZPC8wAV7eZbogFIEQDmnnvEZlHkPkiG1r5oNUFk3mZbNKGa4VqdWpxnVqcogVQQQgchARBGEiYGkG5T9tSIBxM63x+AY5nUVvksGR50q5L0MKlHQqYbONHRqIFNZKnUFFMDELIu7d6ggMCfqWjNr1I2sydUDZhF5y6ZWESfeHwlpu7TYYJ3INQwckwSVkoIPM7GG3S/6gmtIlNgkYBOWQ9nix6UuHs5EyyZWBsUokYhiZYdEYSwuwHFBAJBjiUI3kuhGEgtihQWxHRc+SoFEFewxkigAEwZCpxYkjS6Bow/eqZrRZZAQPugrKciAogRhUM+ceMZnQeY1SNY5mEcxC1T3mawM2m+Qjb/VqdVpsjpBSpCxwTskI0AaCIoAlQBJ8Q5IACRVAZZSIQaDmETmAmRkEkF7sEqhkgzZeA6VSD/Wrk8ljUXQqS4F/YR+ThmALQOlStisqhx7jBCNRVABi1Tdjh3HkYvOjb35mBObl9hkcDmGBa/Wschy9CkgTcEmVSSDBOcEhYJB2svvfI7S+iCZQfo+oJHEWKw8i2RgHAsAckFsQbQTSXRcEM9YpDw4MkAWYAkINq/mqQdIwSBpGCipzCaFtJYFDvZSkW1QUWRNrTq3z7dKSs/dFn/GZ1jmNUiyVFv/k9mnSarHGuXYdY7qVqdWp6nqVGwsC3+SMiAyABKrc1LWncGSpISREiqKIeQmCCk9OGpn6tRJBJmkUEkKnWrIWME4FsmMMupGvh5lXV/DMKNOCJRsco2cmVXGFiijbsezSJlYcASzSQeURkbFf3bdP8JEAk1AyQCpmIm5Iey/qJQEGeOKJ8MCpCAIWf5/DKwctKNcd48otqbVKFaQkUQ3AMjF3QhjicKibtzoh+wqiW6kPDgmqgEg8xRCZ5Y9Bv5IYTTKQTuB75kZIjNxMhAqKj3Pfjv3PM2ZZ3wGZVZyt1588cXYe++90e12cdhhh+G73/1u47avfe1rbautMhx00EF+m9WrV9du0+v1JqVX9QY03ZD+tmWZhdatH3auun3qzBOtTq1OU9UpNJvZrh+RZZNRAlIxSCWgqAt0xiC6CyEWLIZYuNiNl0AuXAK5YAnUosVIlixEsmSBHRYvRLJ4IeLFC5AsXoDOdouQLBnD2PZj6CzpoLMkQWdpgrHtu26+45fHC+PSkCyKkSy0y5OFCZJFdnnUjT1AWnBM/LQas9MclSuiOEhq7hhkYDYkFIE61GBmZfNobSq4oA+jNZ0WwCejwsfozaex8n7GwqQqEcUSUVKYWBd2IixywMgMkgFyYRJ502ppSJQHxb5BAkKnEFkPIp8AdAqR9+x8NgGRT9j1POQ9QKd+EDotGKi2ICvyzAFuasFW23mYvPY5HPQ8zsgzPgsy40zy2muvxdvf/nZcfPHFOPbYY/HZz34WJ554Iu677z6sWLGib/sLL7wQH/nIR/x8nud46lOfipe97GWl7ZYsWYJf/OIXpWXdbhczIZO1n1eX1wVzbG4LqdWp1WkknVwYv9A5SAICSeGrkxIit0AiZGT9lFKBogQUJ6AotkMcw4xvhIpiyLiH3DHJqJsg76XIexNQ3QS6l0J1c5jMDjrVhbnVGF9AuSo+Sla6xAFKIOrGPjDHg2OFRYqkCxE7oIwZLCPfGPCA6a7PZE2tVb+kChOqw8AYQBgBEgQji4MX/kgXsOMA0wftVEysVQY5WYCMpUAkYEEvYJCCTa0O/EAGwmgQB2ZVc8xyliClfNYiNreW3AhCQJjAd1kjc/G9m6rMOEh+8pOfxBve8Aa88Y1vBABccMEF+MY3voFLLrkE559/ft/2S5cuxdKlS/38jTfeiP/7v//D6173utJ2QggsW7ZsZpUfIqNGaNW1iGbqhrc6tToVK4oPGCkb1RomGPBgqRVgLLgIGVk24QEyAUWJTTwwMQ6T9BB3eoi6PeS91LK6cQuWxoGmSXPoLIfKctvfMsu9yZVBkruVFIFB7JeMiv6QiTWxWqDslFilSLqORTKjtKZWqvgjw+4fRC4lHZXjVcKSXNbMWs50w7lcs+rlFQSSBGNstY1QZODHZKYpXTeP0Oe42QySA3TyFCKb8IzQRrRmFhyNNbNSlsIYbf98pYyXT4LgTO0iSixYBqZZIlMGL9e4agLK2kcSc++9GyYzCpJpmuJHP/oR3vOe95SWH3/88bjrrrtGOsbll1+O5z73udhzzz1Lyx9//HHsueee0FrjaU97Gj74wQ/ikEMOqT3GxMQEJiYm/PyGDRsm+U/qZdBNC1te1Rs8kw9Aq1OrU+lzHXSoJ5MDwsDmGjWAYXC0H1Joa5LlUH8ZJ6CkC0p6oLQHSroQaa8Elsgz6O4ElANH1Usdi8wsODrA9KnuHDiG/TBFEDkr48hn1eHgHFUFyNgBY1wE7CCKQUJYc7KKSiBJDVU+QvGZaQJwTHNTBksikBRlf6QhSAXvjwwDdkJfpHLRqGEXjwUOHJlNdiM1eYAkxxi9eTVgkjotwDHPQHnqAZIq3XwIAYOUEjDGgyUiB44Bo+RniyJAqGRa/JJTfsZnWGYUJB966CForbHrrruWlu+6665Yv3790P3XrVuHW2+9FVdffXVp+QEHHIDVq1fjyU9+MjZs2IALL7wQxx57LO69917su+++fcc5//zzcd55523en8HkP4jDzAvTIa1Oo8l806n2o+KCLQgApycD2X50MBpQOcj5pEjHlomoGCLpQKT1YEl5BpH0oLo9mDTzIMngyIBJxsCkeQGSfZUzwjRznE0nDoDSAqTsdiGSLmRix5ZRxi6RgIvCDIJ2CAF7rLlyqlR2quyLTCLp60tqQ0iURIqiG4sRDiADP6cvdCxFCRzDzDlFBGvkAXJhYoN0Jg2QWc/5CQtTq3D+xBI45nYexhTJ2ENzq1QWnLgbTZ7ZsTGuqxB8kI9nkZr93VHJalF97ubaezdZmZXo1mquQyLqW1Ynq1evxnbbbYeTTz65tPyoo47CUUcd5eePPfZYHHroofjUpz6Fiy66qO84Z599NlatWuXnN2zYgD322KPQD8VNaWrJoGa+uu+oUj3HsOO2OrU6ba5O4fkEYD9qzACYSZrYgaf1Y8HkoJzBMukHy+4CO057oIkeRJ5BdnugLLWmWAeWpE2FTepSVxAWyXlYXT1LyWPnl2SAFEnXRbQWrBJR4YdkkyuJIrLVX4NhjNKDpISSxke5JlEBAloQtBS+20ff/XCRsGGi8jqA5OmFiQXEPpCsAGQ3cqn7lHCBN5ZBitxee29qzVKYtFcCR8ozO210AY7MJlVhaoVUQJ4CUWLXO+YpAIiYwj9pnzkOklKJX1b3zJWuT8PyQTLqMz4TMqMgudNOO0Ep1ccaH3zwwT52WRUiwuc+9zmcfvrpSJJk4LZSSjz96U/Hf/7nf9au73Q66HQ6zeeqmQ7NCk0fueq+o0q1tTTsA9rq1Oo0Ezrxtj7qldfrFELHllWqBNApSOcQOinAMl8YAOQ4qJt5sKQ89aZYk2Yl/6TPC2vKZlfvmwwYJfslfdIAZo0dB5TsiwxZpArYZPDRNhV0DFOtSg+M/d0/mE2yKCmQ5sayS0GlOpq8HoCv4NGfZq4/UQD3g1wQK3QZKAOA7EYFe/QA6SJY7fSE80OmQDpR3JcQHPMU0NrOA42lvWyFmLjwWwagSkZDduD82BYcSacA+4BVMqvP+GzJjIJkkiQ47LDDsGbNGpxyyil++Zo1a3DSSScN3PfOO+/EL3/5S7zhDW8Yeh4iwj333IMnP/nJk9Kv6UKHrRWBwS2fQUxh0Lrw/NUbP6j11erU6jQTOpW2UwlIJda8plPLJo224JnHEKYLRClEnECOLYSZGC8AMrHg6E2xeQbJjEbrIIin3+zKScI5J6vN06qKrh4+mjX2YMkssjZHrWOSRfeP8jXgvo/Q1tQqnV+yMLMqaEPohCzSpZ4rFWZ2ywD0mWu5JqT1RQbBOi45wIJgzBl1OFFA1bzaB5AhUOoMZnxjAY5pcB+M8f5IylP7RyrmbuKanFKB8hQiypzPN7H7aZu60AC+cLO/zsYlGgjMrrP1jM+GzLi5ddWqVTj99NNx+OGH4+ijj8Zll12G+++/H2eccQYAawp94IEHcOWVV5b2u/zyy3HkkUfi4IMP7jvmeeedh6OOOgr77rsvNmzYgIsuugj33HMPPvOZz2y2vtWbU9c6D6er41AGrWtq7dcBd6tTq9MW0UlIUNT1bBKmY6uH6BTCdOzH1PktZWcM1E0LFpN0QbljMo7RUJ5BGsdmmJ3U5oktAki4H6QIkwYkXYjOWBHdyl0+pCo+1JzcnIrGQJ0U5bpcMnPnl4x8ZGsBkJEUmGAWGbDLOpDsRFVTqwrYo2WQBTjaTDqDALKjhOvzOAFw30cHkJgYt+ZVbqg4U6tl9UXADmXp0MYJN0o8k2zoLiK6cCBpWSSbXSnqzuozPhsy4yC5cuVKPPzww/jABz6AdevW4eCDD8Ytt9zio1XXrVuH+++/v7TPo48+iuuvvx4XXnhh7TEfeeQRvPnNb8b69euxdOlSHHLIIfjOd76DI444YlK6DbpJoTR9VKYqg252q1Or01zTicESgOts3rHmVwZMBssoLfyWbH7NUm/u84DJEZZG2+ojQPER9l0RCmbDfSG9ebUzVgJOCk2tLnGCryE5qMqHa0EUgTu2zFSiJHREyA0hiQp7asgi8xpfZGimLQBSeXMrm1c7LmvOWBzmZOV8rGXmmChpkwTUAWTeA/U2lcGxApRs8iZjoNPcg2NtdLGUUEkEITPIxJVSS7oQxpQS4NttVblOqbBlyqBMbe3JmXzGZ1oEDXqKtlHZsGEDli5divXr12PJkiWlddWbMerNmcpNnOqxW51aneaCTtbMZ/vj+YwtlQASHzyS9ixrDJkN+7tq2CQcm+RoSz8O2CSSjjcNk4ptAu6oa6fjLjSkrW2p7ZAH06k22JRp9HKDidygp+14Ijfo5QaZMRhPNSZy432Qaa4HFmYuA6Qq+SITV/uRQTI0sTKrbATIdFMRoJNxoM5EYV7lsWOUfL3ZH2yCAKqqLxhw5u1hvuCk633BIulCji2E6C4Ekq5lj3EHFC8ARR1Q3EVdEM+w52kUCffZsGEDli1bhkcffbTvOz6dMq9zt9aZoupMVqPIVB6IyZjNWp1aneaaTqQSC1KOXSKbACkb9IM8AaK8SGeWdr2ZlVzEpXAd2/u6JHDml7CQcuibjGILkIGZlQN2SIgiJR1hYDQr+yClFFBG+O4gsRIwVES0spm18EX2R+aGCQjY3MrgGCuBTlAkmYNzCp8kA6MsmVkjGIi0YI0iHbddPdIeTM8CowfKgEmaXg86y6Fd31XD3W+cb9Fe6mqieeW74ag4gsk4qthAhgE8bCZ3jRipVMEmZVoyu072earKqM/4TMu8BslRPyp1zuRhraBRTGqb86FrdWp1mjM6BangvK8ysv31OOhHqMSZam3ndjLad0nggs99EppeuaBylNhAHY7IdWZWqpj+CChl2kEwL0SROg6wZlc2t8ZKwpBBrAQ4tXXVzBr6KYEiopX9mMoBXqxsUWQGSc8kIxfFOkofyAqDRNoD9TZacKwBypyTOYynff1USfcncxBKQgOl/qkmyyEz2+2GjEFkTDmIVyrbMAFgpC0BBiEhcjXQ7DpTz/hMy7wGSWC0G0M164bdwFFuZNM2rU6tTlubTiFYgruN5LHNxmJyFxWr7XTUKQBTa++f7KttCJR9k8p9nLkDu0qKYJ0Ko7T9I6mv60cozCIlucLFfQBpIIVCZopgnQT9ptZqMvQQHGMpESmBbgkkbYBONCpAMoOcGLcMcnwjqLepAEfHHvNeCt1LC6AMsh6RMbVRxdWIYsOZjrQGaYNIJ9ZMqw1if09sSTUJeFM4Vw6BigBnfg+DeCb7PDVJyyS3gDS1qOvmue3ZdKOa9hsmwz5irU6tTluLTgRYRhd1PVgiTy2guUTb5Eo2WcC0mX+EL93Uf2bOxVpUNKmAIn+gw3y0NX9ACmaRcCWwAGUA48GSEAUACUhIQVBSQhvblaRarJnzvkoHjiFIRi75eDeSiGUZJPsY5KAuHgyQmx7z/seQSWYbxwtwTHPkvYm+rEe+j2pNQ4TNrEZJiDSHyiKYOILq2u2VKfqpx8F+5PzE5HzHQkag3Jlfc+VzAVefm77nhfUYsF2fziNuNx0y70GyKoPMVaO21AdtO8o5W51anbZ2nWrBUselbD4+HR4n0Q4Hf2Jnsqv0f2SA9IApRBHd6s5veNzAJrnLh5RATCE4wk9LAxgSkIIAiP6kBKLwZSpZBsdYyT6Q7ET9dSAHAmS2yUaw9jaBxjd6Jml6G0ETPWQbex4gdW/C+iIDU2uRO5dc8esakFQSUgmoRPm8vrIhfaBU0ppeXSJ0RLH1T0axqyITNFryFBShlKjCn7Pm+ZnOZ3w6pQXJaZBBN2xL2NAx5JytToW0Oo0mU9WpBJYRXJcR1ZcrFoYBkgqQJONBEu44JTAMMutABn5JDC6LJSAgQB7gjCCY0hiAAqSQyIQ12cYQzswa+DJlwSKVEIiYSUrLJjuR8iCZKOmLIkcBMMYBQMp0vL6LRw1Amk2bbJmyjT1frkw7M2tYiUWnxqUF1CBXgYUrsUjXB4bLlOlUQyUKKvBfRrqc7Yy7iyipYKS0SfCDCGTBJnedFvlza0ByLj7jTdKC5AzLVE1kMymtTqNJq9NoMqovSQC+ywbyHqAVhIlsdRIy1hRLpuybDIEyKKRcAkeOgq0pjVUVCdhAFVEcUpJjkwGTlMRmWFvpwxAQV3J4S38MC3Z1/shOxNPCgaRAJDF6H8gGgMw29aDHU2SbehYgxwtfZN5LoVMDnWrXP5LLlBkPlCxCCRfdaiCVgHGMU2kDVZdfV0qbWzdObTm1iV5hdo0SSJ2BZOqSQaSuG09eC5SDnpVRZLZMrvMaJEe5yFP52EzFfxS2UYft2+rU6rTV6xR1SyW6hNH2QxqYXAWVP9JVk6s3u4b+Sj6XQ8g6RimF3UZJ29WDQzczFEApySYwZ7CsEymK4B8lgFhKSGmDdGJlza2RtNswQCaKQXLzALIwsxYAaeczW+w60wVQuqLX1txaB5LC+SUFlC+Qrfr+r3AAyZGwsesGQnFso25doW4baBUE8XD3nBGekVEkfJ5mQ+Y1SPJFbrpBUw1waNqn7thNOrQ6tTpt8zr5bhx54aMkY4N3yFhW2XdQ6ccMkHUssk6EgO2u4ABUwHb5gDbWxCoLoJREMMKyTKAojwVY5ghw15GiryWbWWNpTauRS5oeskgLkmJaADIM2NG9FDrVyMZzmAAg2czKLLJatURIEbBJYbepAKRQElpJiF4KqSTyXlDOLLLp70SU+JyxMrYRzcidyVXngMwHBvFM9XmaDZnXICkwgj+lYb5pn+pHpunmT+XD1OrU6rRN6hT4FgUZkM4BEgDUwGhXBsjQFwlY9mjQHLAjBCBIQAgCiCNTYe2wEh4cLZN0x2DbqpOQQZYjWwv2qAR8EE9hai0AEnlaKpQswioeYdL4oA+kHk9rATIbzx2LtOCY92ywjjW5FiBpAiYZ+iRtQvn6mpDF9hJ5L4VQykXRpkiSuMgPy2wySws2aXLPJqmBTW7u8zTTMq9BMmyVhDKVVnd4zGHrhulUJ61OrU7bsk4kpO9TyWAJM4RNyrJ/sul9BpyJlQRIkI0NEnZbAxeAY4BYOV+kEZ5JxhAILZRFvldmkPDgyOZXxcuc/zFWAUiKAiBru3lU+0G6xAHZxh7yjb3CB+kAMtvYg04N8l6GfFwHplYNk1nAZDNrtYanBgoGqQK22WeSlZDKgqKQEjrOIOMIMsuhexNQzjc5Kpuc7udppmVeg2RVRm11V2n/oG1HEcLgj1arU6vTvNFJRpZNkgFExS9pjC8ESYHZtRrRWk1HLYUo9W+0pZ4IKtBISIHcnUoFYAmU+wYC8MDIFUME4IFRiaAmpdhMgHSJAsIkAXlvwke06l6KfDyHzjTycV1ikuyTJE2VyNZyOjqTGeuLjBUEtwDCe6MEhNTOb5lDxzlk2L0kziEneqAoGZlNNslUnqfZkBYkAxn1Jk3mZtZ9GCbTYmp1anWabzoRl14K/ZJkLBL5E5RBko9R9UlKAc8EhbB6SQBE1qwqXB9IA5tWjmC7ekjXJaR8LOeLdMDoExMIARGwSI50jQJ/pIKByNMCIHVgYnXsqzCtOlNrbyOyjePlbh7jZRNrFSDzXm5BMrVZckzmxpyYPWTFLhWg1M7sqgvYEUpAZ9oH9mjlfJceHAs2abIcIk9BWWYrw7jSaE1sEkMiXTf3eZpumdcgORstkVrT0oDtZ8PW3uo0mrQ6jSYzoRMBRSmmYQE8sOA47JwAICGgQRDCmlQhrRlWACBhu3oI738UfYzFdx2pgCPPR9KlqRMVgNQVgORqHjorakFyijk31oFZNZw2ae59kE0A6U2uhqAJnklXTcdKCHvxUg0ZNEKkcl1hlLBBO8r2ofTsMWCTpmugfDm0GIKrvkQxhIptUWZjE0cQmaH3f7LP00zLvAbJQbbwQTdyJj88rU6tTq1OxXYCKEyqVbAUgwNN/GbuoM716NmkQeF7lLCZdZSwYFl7HAeXPr0dHKsUhamVA3jY3FoCSMccRZ55JtlXxWOinIvVpLnv+1j0g8wKMCyN+wEyrYBkKJoYKAFFQAzjI1x1qiEk95s0IF0kGzABm1TdxM1nUEkGyixYCmOrvthEES5yWTnGyYFaW4nMa5Ac5J+hynbUsG66ZZAvqNWp1Wk+6uSZXM2HdZCeUhRp5HiaA3iMoBJQwgGf3bzexsTAKBxzrLJIJV3hZWEz6wiqB0iboi+FmRi37KsmklU7IGIzawiWNiinHKTj+0U2AGQdUCoRXmGCMoDUBCMNhBYgY8GS2aSM3Xxsc7qSK8Fl4hzUNQ4Ui1JoiGKIPIeQjkWa3CePECrZouxwMjKvQXI6/DOTaXFXt90cO3urU6vTfNEpZJ5TOQ4zSAkbwCOE6+IhyDJHEjBkcwpQw1GFT2TOYGlBUaAwr6ohAInc1dZ0XT2QZ/1+yNxW7tA9zr+aFYnK09wH4ujUeKC0YGaKbh4NAKn7/loBkHBRvFIXbNJoU2aTPiFBUVGES3AZbaAcQAo/NpZVxon938alIdT5yGxylOdppmVeg2SdTNYENZkbNtV9W51anVqdKqwykNqsOrCBOdWDChSgqSBcAA+DJQqnY1UHB4w87RMJlICyBiCN9uZGzyaNhnF+O+SZ62fofHpZCp06X19QxcNknIu1SA7AXTuKrDp2uQXFeoAM07fbZfaqKmG3YzaJGDYiNgjtJQeQYW1K0toWdc5ykNb2/3L5syyFSLoWNMkUgTvOBDsKm9ycZ3G6pAXJilRbLeGyqd6gQWbdUaTVaTRpdRpNtmadQu7DIkUBlBYAhe8GEppZmU3yPOCWuaw6EICp/IMQGKVgkBWlyNaCRQYA6cqBlZIFOHDwZtYstd0mXDQoHItkQGQWabTxLNJo6mORhd+QXKCO/Q9NAOn/dzCviXzZL8B2FVGQIEO+7yQnIjAVBhkWciZj88VyIW3KU5DuQqjcBvCQK7A9hE1u7vM0nbL1eE9nWOraj3Uv7mSPF97s6rKmbVudWp1anUZbP+hY1n/oQA1hPUnXhQNcWxIuZR2DXjBI7gPJfkdRnq8ApGeNjkFycWlmT8hzwAEiVVmk1tBpUfvRmzRDU6crnhwCFoASiwT6/Y818cHTKr5WJYMjF9F2Jlefk1cXTBImL92zqTxPsyEtkwyEW6hhS3XUFna1dTvIn9JkY687R6tTq1Or03AZxCbtsn5GCRSp65ToP5cI9q3r+sHRrSFAigpAMigwWJo8tWwrSy2jYhbJJktjbP3HYJ6BkSpVPHi6miGn9vqgDJRVdqQazMxVCdPasW4UsEm7XLui2s786sughcnrCSBTuu9TeZ5mQ1qQrJFhLdW69XUvWN0HZdRztTq1OrU6DdcpFAZK/5EVRRcPojJQwm2rhKgtqeXPHYCjZZ7VvpFlgAxZEjNK4UqBkdaeRVqGlTn2ZX14JeaobUd/UwEgMwQQrW/R6qeDBoCmOmAs2LCdt/loOZcrAJ8AHbB9Jjnfa51w8E6p1BlfR64TGiavryQXmO7nabpk3oPkqC8gy6CWcNPxJ3tTW51anVqdpq4Tm1ENNQMlgJJfsk54fQiOYRcQD5Bc1otNq642Jk/b+YBFauurY3D0ywJArIJjNTl56f8qAaEtsBmXRQfgPLPC+Rv79/PmYj+uHFMVABmmrCsAdIC3joN3XDAPaQ2ogE2a3NaaNNY3WTW7zjYQDpJ5D5Ihta+afFBZN5mWzSjmpVanVqdWp+nVyYMj6oESKIJ3RLBP9bzF8QJTK+yxbGRrAJDMGokKM6sJ1jGLDHx2MAbQhe+uFPxSU+yY08NJJaCDZcgq22gBRXx1wqvbL2WAdFVNEgUVK3cu6YailJaoAGRYX7JJvNnVA6QBpDW5Wiadl+pNTuV5mkmZ1yApgvGgGzTdN23QfnUfjVanVqdWp9F1GgiUQKk7B0uYdMCfqwKOhcm1BiA5OCdgjuE0OdaIwBzpA134/9aYKWv/nwMuciBGikBKwsBAKokYxpb4ADmzq92vML8KN7bLE2kBUirpzas2sbkzvbrk50LKoECzdNVBZEkvyEqx5oDZuj/pmTeFfkoMvrdbklnOa5BkqbZqJ7NPk1SPNcqxw9e21anVqdVp6joNAkoAnlWy1AWu8Oe/CSA9KyoFpPQvA+C6RjizKoNm+L+GAKRUDEzO/CklhKJyDci0mIxhoEyRei7s4lEFyciDoGOSiYSKVcAqpV2W2O1kEgX6qH4m2WSGZTAkl7IhBEzTn/h8rphd5zVIVm9A0w0ZZAriV2vYzWzaf9j5W51anVqdpqZTFSgBG/UKoCimPEAYHPm8DJT+465zhJGa/RGcdlwytTadS8o+hmaCsdAFi1OJ7e4hjWWTpAkqsQyOK3lY0yshgvVvxnBFpAPbsjehOhapEunLZnmwDEBTKgEVR2VdpYTkeSkLgFSKT1L+ny6iNYxyJWNqOyOO8jzNhsxrkBxVBr3Yo5gH6l7ozb3ZrU6tTq1Ow/cJgbLEMAPmyF1FRIVNhuwRcP/RMDA2gKJxoAl45lQyOVbNjw3iGZqUkHEEcuniVKJAxnhQLA7rWJo2kEqUCi3L2CYFCPdgYLTnElCJ8z/G0gNm1I3tcg+aCjKJoJLIjuPIAnoSeXAXUrk6ksoDpKiaYKtSY3KdiedpqtKC5GbIoJbNIH/LTLaIWp1anVqdyuJZJJXneVkIjuG6PoD05sKCFTaxyD7T4iAJGKRQEopBUVoAImNAcQSlDYAcpCvsTErozJa60qkGKYJwfSoVZG1ULHfl4O4ebGqtMkkZK8RjkZ3vJraGpB9iD5QqjmyOVgeODJZCDQBIf51Un8l1rrBIoAXJzZJBN41bQ+G4ab/pfABanVqdWp3qdaqySl5WFVFZF5pYPTuszo8qUgHIHNuSII4SVaowrTJYJjHIGMg4sowwKT7XlrW5Ch1pkZQ8TE4OwOd0Lf0/WQCkVcmZWmXhdyz5JQOAjLqJY5Ox9U0mFjCFcqZWKSHi2E8jZJVCgurS0NVcw1Gep9mSFiQnIZN90YeZhqZDWp1Gk1an0WRb1ykEykHi/Y9ArUkVQMmsKkYBS99tQoGQAaowTZI0JdOqiu2nWbmkAhGAvHQwOyeVgFAapC1jZJC0apnGvpWyFABUdPEIwdICpQXCiFlkEiHqdqC6iV0XR55FisgOJWBk4FRq8D00BhDuOrtC2nNFWpBE+SVsaoWiZr6672TPx+Nhx211anVqddp8nViq5te6dX0AWVKowihZagJzSAjPHgHLGMnoMsuKYsBoyMSW3CgnESimIwBGSWjJwT02+blQ0uV6JahE+sQDYbo6Exwn9EVK393DBQZxJCv7G2Prg2QmqZLYA6TqJo5ZxhCRG+JgWhVmVxICvnj2EKm7t6M8TzMlLUiintbzDQmn627MVG5WtaU77MPQ6tTq1Oq0+TpVpc7UClQAMpgOWeTkT2aDWkiawG9ngNgCJCJbNkpoDRWYVSMA2nW10EFEqXYAZrIcyhVB1qn2zJFB06pu/X7+/zlGy6DI0ypR3g9q2WTk2aNyPsiQVXqATLp2iOIym4zikqmVB2IfcJPpdUBx7fB5mi2Z1yDZdKHD1opA84sabjtK66fp/NUbP6jl3OrU6tTqtPk6DTpuSQaZUavrpATCbDkOFIRSgGGA1HY+ih2jVBBRXDqMUkUaHfZPageOxk3LJLLlsxLrrzRZDhkHmXtcUnSvqgPManq5sNsJT4dRq3ZaebOqGkv8NAMkmDl2xiwwRnFgfrWMktgfGQ7Va0/GbkMGosHkOuj5mSmZ1yBZJ9UXqK4lHE5Xx6EMWtfUsq4D7lanVqdWp5nTKVxXHMTUT48iDAKcSIBNrlKX2KSIEq9neG4CoLpwUau5By/jGWRsa03GNvLVpDnITQPlvK9NSQp8WjnXF7PURzOOXHcQF5zj2CWbXiX7ID17LABSJF0HkGx+TUDMJGXkrkUFMEe9rJhdcGSZlXqSF198Mfbee290u10cdthh+O53v9u47R133AEhRN/w85//vLTd9ddfjwMPPBCdTgcHHnggbrjhhknrNegFC6XpBZ6qDLrZrU6tTq1Os6/TMPNdbWBO8IH3UZvBOAQC9s8hAA9482QMMLCw6TLpQna7iBeOIeom1v+3sIvYDdHCMcQLxxAvGEOyZCGSJQsQL17gt0mWLLDjxQvqhyXFEPv5hUgWL0S8cMyN+VzFedWCBZBjCyG6C6yenS5EZ6zQO/wfDJAyKgos17FJN66NfB3h3s20zDiTvPbaa/H2t78dF198MY499lh89rOfxYknnoj77rsPK1asaNzvF7/4BZYsWeLnd955Zz+9du1arFy5Eh/84Adxyimn4IYbbsBpp52G733vezjyyCM3S9/qzRj15kzmJta1jFudWp1anbaMTo0m1lEYZMAY7cfegISAgPO/ychVuoAFxiwFRWWzoQiDeIyGkNKCSxQDeQYZxZB5BtIaJrPBOsqZWH2BZs4HOwKLBJ8ThTlXVvpqsk/S+ijjwizMwB7bcRPo9wGkjOy8ikqNB++frEllV2c52BJgKYhGyM+0GXLkkUfi0EMPxSWXXOKXPelJT8LJJ5+M888/v2/7O+64A89+9rPxf//3f9huu+1qj7ly5Ups2LABt956q1/2/Oc/H9tvvz2uueaaoTpt2LABS5cuxe/Wr8fiAIhnUmbipd9caXUaTVqdRpOtUadaBlkFybCLR5CXtZpIgCt+FBVAdHk5JzvnUll5Zv2SDgBL81yQ2RhXVsvY0lN55ktQkS4XZLaqVkts1fRBVLI89tGyodnVsV4OMnJBOCVwZGbs2CODJKKozB4ZIKX0gGkbEEFAT9UEy+xywL3bsGEDli1bhkcffbREqKZbZpRJpmmKH/3oR3jPe95TWn788cfjrrvuGrjvIYccgl6vhwMPPBDnnHMOnv3sZ/t1a9euxTve8Y7S9ieccAIuuOCC2mNNTExgYmLCz2/YsAHA6D6LukCAUV6+YaaiJp9Nq1OrU6vT7OjExx8mJOTQvpAkXG0RSygtezSwwODAkmxJEbedZY5+rJStw+gYJKIYwhhQHruyWkVFEcGgaTQUl98CfLHmOnAsXQMPlEGOVReB66ejxDJO5fynbplNGJD0s0ul+syrHgiZQY4CkIP0xuwzyRkFyYceeghaa+y6666l5bvuuivWr19fu89uu+2Gyy67DIcddhgmJibwhS98Ac95znNwxx134LjjjgMArF+/flLHPP/883HeeefVrhvlpapS/qbt6swDg2SQf6TVqdWp1Wl2deo/cGBKrS4HQDDWrFo5dh9Qkj0OAUXO19hFceZ5AZJRAjjWKOLEJUbXEKYLX5PRmKLslgNOD5BG23NXzaycL7aaQzVIbmC7pFhA5LRy3JeTp0vAGIwRMfDVACGzRw+IUbnPZB1ABkA53X7pqcisRLdWEwcTUd8ylv333x/777+/nz/66KPxP//zP/j4xz/uQXKyxzz77LOxatUqP79hwwbssccedr+qrpVl1VZs3T6oWT6ZFs+wB6HVqdWp1WnmdOpjk1VwDOelLEBIyOFACWmBjITt1lA1zTqwlEQgrSG4a0jAGv20B82i/JZgAAyWealLph4ApU88zv7AKjiqgFXKivmVWaMog2Afcwz9j3Xska9vDUDytayTUdj/dMmMguROO+0EpVQfw3vwwQf7mOAgOeqoo3DVVVf5+WXLlk3qmJ1OB51OZ6RzDTINjdoqHrTtKOdsdWp1anWaXZ36gLJu+9DkWuniUQLKEAzJ9IMlSd8f0NdTJAOo2M8LBs2QJVZZI4N1YGot/YdhIFktZxWaWyvztq+j8CzR1IGflH2g6YNzJgGO02oNmAaZUZBMkgSHHXYY1qxZg1NOOcUvX7NmDU466aSRj/Ov//qv2G233fz80UcfjTVr1pT8krfddhuOOeaY6VF8kjLohm0JGzqGnLPVqZBWp9FkPuhUAkoGscqYhHRBrKbyYXeMshLtymAJAMLlJiWgCO6pFCAuBQ2p/sAhzhfLvsc+UytLU2RrEEVaKmEVVOwogZr7jyEoloCvhjHWAaM9bkPXj3pN54zMuLl11apVOP3003H44Yfj6KOPxmWXXYb7778fZ5xxBgBrCn3ggQdw5ZVXAgAuuOAC7LXXXjjooIOQpimuuuoqXH/99bj++uv9Mc866ywcd9xx+OhHP4qTTjoJN910E775zW/ie9/73kz/nUnLVM1RMymtTqNJq9NoMm90qgIlAIQ5BwQcoCrvhywxzhAAJcoFiE2wzm5cmS8fQ0SVlHmhnoMCjKqBMUEfReL5Ul9PUcwzUxwEinyM0NdYOW54vevy54bSlDoQmD2T64yD5MqVK/Hwww/jAx/4ANatW4eDDz4Yt9xyC/bcc08AwLp163D//ff77dM0xbve9S488MADGBsbw0EHHYSvfe1reMELXuC3OeaYY/DFL34R55xzDs4991zss88+uPbaayfdR3KUizyVF3tz/SLD9m11anVqdZoZnQayyWCZN70yM6vmQBf8AwuYfkXQPaPEGivrmzL+sO+xuhwFyxwkVI3bCAEwmG80iTIghutGYIqGLy5Gu0espaF+oAzv3WzIjPeTnIvC/STXr1+PJUuWNL5cmxNM0HSMUY491f1anVqdWp2mR6daZtYAXH1dQ+pMnXWVRKq6VT/FI+wzcHnfCWq6V4TLPECK8roqEPKyJjBEM1scBDd1xa9FZTrc+7ENG7Dr1t5Pcq6LwODWZ3U5DVgXHpNqpqvzU/0ItDq1OrU6zbxOJaAMGSVQnq7TSdWAUXjeBlAbylamWoGEpSarDdWAZGm6YiKtBUFvIbZLq1oOo2EeG4l8+JOBgBQF8PK03wcjXK9pknkNkoTRWptNy+u2a3pRUTPfpFOdtDq1OrU6za5OtUDJ036jMmD2rR90riHbDdJtMtLk96suLjE+P0Ml0AsBz1TQbyp6CrejdEhp3AWXRB4ot7TMa5CsyqgtXH4RBz0Uk3lg+GVs+kC0OrU6tTptGZ3KCyv9J3lZOB6gSwmEKhsMM0k2cchBLK0KYoN0q+ow6PhNxx3U+AlFBmZVISxL1ETWtIoCLEOgrPomSw2YGZYWJAMZ9QWbzItY9xJOprXb6tTq1Oq0ZXUqfYwb2F+4fR8YBsuqJknGmxB4qvuE21W3rZ67TofStkMuohnxKtcdpyGXiwc+3kYTFX5Ggu1n6uYJBVgyUDYdeHMZ9qgyr0FyNloidTdy0M2dDVt7q9No0uo0msxXneqAcRAohoAYbte0HOE+bk0ZLANdghVTYZ3TISGWyZrl0l1kIQCiCjCSZZjGbWeILLjWsMjZlnkNklUzTiiDXpqZfMlbnVqdWp3mlk5127HUgWMVGJn5EQpQrANKAwoAswlg+XxUnq9hr6HoYR0Sh4iqQalwSQkgmSW6LaQgxyAteAohQCJgjCgDowmOYVCwyS0FlvMaJAf5QqrmFmpYN90yyO/S6tTq1Oq0ZXSqA88QIEPmGIJjHTBWQZEBsdivDIJExbm1IQ+6mkHUUUcdsskKbdSTvHiqAkayYvJUbp4DZv28GyspIJzW7HcUECABCPe/Q7AsmGUBlAJlNlnVabZkXoPkqM/NoO0m07qtbjsZH0mrU6tTq9OW02mqAKlNPThq0w+MmsgDIoOhJiqBoF0GGFMBSg+cTr8a5qip+V+qGr+fDGgbA5QHQQ+Swq8P10npxhXQFMIur4IlJEGSgEuyB+kA1bjCFarmHsyWzGuQrJPJmnsmc+Omum+rU6tTq9Pc0qnvHAHgWTArwFI3gKM2ljHacQGMmaY+QKybBwpwBQpgDPFxEDBWpQqUjJEFEAq/PATJEEAtQAooE84DhixgKueYJACCLBAqELQpgNKDI7m+ksyst5DJtQXJilRbnOGyqbZkBpl1R5FWp9Gk1Wk0aXUaTQbpxNP9ptJ6gGTgZLaoqQDHTBtoB468T6ZNCRQzBkpDZWAk8v7GcDmvC6Vah7ma8yA0qYaAaLcVZaYYACjP1wOknY+lhJQEQwKxko5Bkr+yIVCG4IiATQraMibXFiSdNLVWxYD1oxwvfLlEZVy3bd3yVqdWp1anuaNTk7BZtQ4gtSnYowdMQ8iM8eCYaTtfBcY8ZJYBSBoHtKGPkgGzGqhTF7hTDcbhedXHHAWURB9IKikgTQGSFhALwIyVgCQBIwQ0GcQkXLIAAykEIimg3ZW1FlcCkfVksk9SkCgBI/+L2cTKFiQDqXtpRm3NVl+s6n6iZl11v7pztDq1OrU6zS2d6iSMPg3BsgkgM208KLJ5NTNklxvyINlnfjWwQGrID4AFwbwCkE1AWRepWgXISIrSMj8IUYBmAJAhYEbKgqEmQqwkjLBmVEDa8FYNxArIjT0PCWaRgCDLMNnsSoRiDAKH0U6m4bS50oJkjTTdADFgfXVZ08s76rlanVqdWp3mrk6cBaZpW0PWB2nHgwGyGBcgac2tDIgFMKa58YCoS4O1pYbAyfODJARMVQJGWZkXHjjDIZbSA2YsBYwU0GSnrS/TwAiBWNn/XQVKAvsZmUXaMd909k1uqchWoAXJSfstBrU6m44/2VZPq1OrU6vT3NepTjg6lYgHKvkkQ4Ds5aYEjHkNcGqywJjmBnkAkrrCJkNwzCtACZTBssnM2sgepSiBZgiYOiIPloaoAEsSiIkLNtvz2O4iBVBKAmQQiSNgiSKzyRAcQ7+kwOwG78x7kAzNMlXzCirrJtMqHcWU0+rU6tTqtHXqxGLzjpa36WORDJSGapnjRAUseRsGx4mcWaQuscl6RmmVaTK5slQZJI8HscckkiXATCIJbciOJSFRskgCQAADohEEQCKGBUxjCEYAmS62Ec7sGrJJAvpMrrPqjHQyr0FSBONBL9dUXrhBMmi/UX0hrU6tTq1OW1aneoAsFjCLtMkBnMmUQqB0oMhg6VhmqgtwtECpPTCGoNk0AAFINnQBCbt7VIGxadCG3LQpAWRuCJ1I+v0BaYtIOxCMpbT5WqlYBkjECjBGwAibsdVQP5tUFVQkov7C0TMs8xokWaotyMns0yTVY41y7PDWtzq1OrU6zX2dmj7X5fRyrg+kgY9YZSY5kZsSQI5nuhYgy4zS9DFK7h7CJa54XJdUQEqBnPWXAsIBJHfnqANIBkUlBToeIK3ZN4mUP7aSwqGKBUppAG9idYslCUiywTnxkOtrgdOaXgWoNunBTMu8Bsnq49P0Ugwyu4zqxxhmtmk6RqtTq1Or0xzXSbAtsCwGAIGz7RRAxuwx564fzsQaMsjxNC+BYxoMHiC532Rug3aMIcu0BgAkCycIYIAUrk+jdqDJgMkmVmaNof8SAJJIIs21Py4DqBLkzKnufIIgDWCEsHq5/ZlhSkO1JtdqK8QA3i85WzKvQXJUGfQSNT2G1dZsddlUTUatTq1OrU5zRycpHGgPoZ5FxhzyGXM8o3QAOZ7qPoDclOp+gNQGOjcg11XEaFNmkZUMPHUiA3AMmaSQwqaBi6SLVLW+xmoXER34NJll8pA60E6UdF1ihDNDF/sYBnhRmFzroI/9kVtSWpDcDBn0XgzybWyOX6XVqdWp1Wnu6STd8aUQ3g/oc7I6U6umCqPUxvomTTl6tQkgU2eaNbnpA0fy5lYUTLLBH2lLUpEDR4KQFiDJFCwScMukQApAmTJIsi9SeWAsaOOCRFVP6fQJmGONqZUA75esdvmo9pecTb9kC5KbIYNeOG4XheOm/abz5W11anVqdZpdnUb9XFsGCdf/kbPuoMTAOIK1amINAVIHTFJr44HRUL9Pks8LFOzRwJlZtR1LI0ASEJw71QEikYCChLa9/pHmpo818hBGy/rl0nYJYVNrXEmDp4kQN1w9Axv7MxekBclJyGRfqmGmoemQVqfRpNVpNGl1Gk1CnaRwPj0Bl4+0X8Ik5DwdppoLu3JUfY91AMks0uQFOLL5FShMriFYUmC3FEY49kggKWy+VGODbqQEdG6gIgkNAwXp/IjoA8eQTdq+mwK5ISQN1yCahDfR0JYrjxVKC5IoP/BNrVDUzFf3nez5eDzsuK1OrU6tTnNbJyUA7T7oTKqaLILGsT42vYYsks2uYfRqHUDqnAImSaMF7QSMkgNjhBAcdwojAeTwQGkcQzSGIFywTVOXk6psbpHnYWKoP+PRTEkLkqg3yfDLEU7X3ZOp3KdqS3fYS9jq1OrU6jT3dZIYDJBhn8WwP2N1ujp4EKz4IesAMgzgAQAKKn8Ih4a8SLofY3wHDUAJu4+EZ6dCCX9sNSK1q80P21C4uU7Ca7mlRQ7fZNuVpnsQvhA83/RSisp41HW8vNpybXVqdWp12vp0YpNr9ViDPvRcuqqaRq4EklQE5ui838RqKuvIB+8AWheM1W6PcmBPEPTDYgKz8ChSl+Iuqi4TorSdEuVcrNJVGBHueg0DRzN49bTLvAbJOqm+BGyWEZVtwvXhGCOuqzP5DPogtDq1OrU6zW2d7AfeVsmQECN9XAsWWZ+43FTYITPDOhMrAySDYlUMFcegCggOA0Xfd7IysHC6utK8qxZir01RQsvPy6JG5WRktkFrXptbRzXj1L0smyODWsitTq1OrU5bp04C1sxa991XrgjxZKXE+oJCyyEwhgyylBYvAD4xSdsl95kcJE2VQXjwDQZRHFOKIspWieK6KGlrSgq4sRCN13K2pWWSFanek0Ev1qD9Bgkfb9R9Wp1Gk1an0aTVaTSZqk4Aig89RK1/rknqAmKohhUOWg70M8XBugZ9I4WAkHYZUDBIUUlZVyQ7L1cJiXidY5G8T8z7O1NrrKRjk8NNrdz42FIyr0Gy7rpXH61RH7Vh241yrlG3a3VqdWp1Gm272dSJzYn8sedBgMtEzbzIANzCobyuDH7V7T0oRtJn5JEO/HgIAZHnO8G0FLZ8VqzsmFkkzw9ikRy0IyFKoFk1bc+WzGuQHPVlETXrht2j6vqpvpitTq1OrU5bj04MlMx+QgYkHdgUvr36wJeqv0800KjqchH4/0Jhs6cFxzJAcgo6IQWUkp5FymCdiqRPTccsMgTEJFLBtPTgKAUQS4lIWSZZsEfRyCIl+k2tocl2SzDKee2TBEbze9QFAgzzV4zSEp5MwECrU6tTq9Pc14nBUfr+hwQhiojOuh4UkQ960X3rwryqxq2WwqaLg7Gp5SRcMnVDBVAaERyjOFYIjn7aAaSKCmCUSpYAMmSRnWB6LIn8srFEBezRgmIIkOWxZZSRayyEvsiQRYamVs+E21JZsyvVF6H6ooTzfGuaXrKm/YbJsJez1Wnr0olTj40qvpWMshlpW79O26JOBRtC2XQoikhOJYqglmodx2ogTKYLgLSmTxugw4BnXJ9G6U7OUaqiYiMMq34wQMpIOoYpoCIBqZxZtAYgxxI1KYDsRmpSAMn+S8/EBb8PBVgCW8b0Oe9BsirVh35YyxKofzEn8Y0cum2r09zVKSeuGWj3MrDBF+Ex6gCz6muRovDHcEvZ+7PE1n+d5pNOQggoQaW+k3VdIUKfHFBf8JiTjHt/IQn71c4BRBLIDYyB7fBPNkNOXVSrf6Yq7FFIuLEzrSoJGUnEFfYYgqGdt+MFbj6WEt2o8EGOCpAMiFWA5IZFyCK3VPBOC5LTIINetsm0bKdTWp1Gk8nqZMgyRSIqAaIFSheeH8wPkuIDAAhQAZSCSsDJXQfYXLc1XKfZkLmqU9UywI2dEBhlAARNXSi4r6FxgFaIAUlX0DiSEL4fpUshF9h0SwxSCs8cufLHIPZYZ2IN2WMSSYzFygNfJ6oHxNJYSd9oYBO0cJGwEvy8B43GCov0OXJRbmjOpLQgOcMyVdPPTEqr02gSniczNq0YEVy+zQIQtQEMyJdGYgD1x6ko7MHRzxfJsflDId3HgkFTCQEdtLiHfSTaezeazIROFgQEpLH31JteGZhqgneKbhSmZHJNImmfOyl8UnI4L6QxgDC2ULGRzsxawyLLEa9lcGRGOYg91plXk0iiG6mS/7EfJMtgaaNeuVuI/Rcc2SrBptd+gNySLBKYJRPvxRdfjL333hvdbheHHXYYvvvd7zZu++UvfxnPe97zsPPOO2PJkiU4+uij8Y1vfKO0zerVq10EVHno9XqT0muU6z6VezOZfULfhhhx31anmdMplMwAqSaM54QJbTCRE8Zzg/GM0NMG4zlhPDN2OrPrJrRBTxMmckLPDRO6PPRycsciu602fllPG6SakOrydDHYZbkhB9xb5jrNxXs3V3QK/ZKceacwsRad6EO/ZKev32HRFzEJWF6J+blgGxm5wBslEcXKD3ZeQkYCUWKnw/VRrBB3IkSJQjdWGEvKwwI3XtSNsagbY0GwbGGi0I2siXVBrLAgVugqO983dmAaSVjQdCwyUqHJuehTaaeL+dANETLL2ZIZZ5LXXnst3v72t+Piiy/Gsccei89+9rM48cQTcd9992HFihV923/nO9/B8573PHz4wx/GdttthyuuuAIvfvGL8YMf/ACHHHKI327JkiX4xS9+Udq32+1OSrfQCV/XmqwuD+fDl6zpuKMcu0mHVqcto5Mm16E7YIzh2ATLCTx2hXV9Qd2gNFKFRobBG4BlFyr4WMqAORamJ/fRkDb+UUnABMuN+/iGvsv5eO/mkk72g84skrs5lLPQMEDEUiKVXKtRlRIKJFHBY9Lw+LLI3SoE+eKL7BsPI0DrolplZMGWTasMyqGfMfQ9jhKc01Vl06oUYiTfYzjNWjf56OHX19ykGRJBg9I2TIMceeSROPTQQ3HJJZf4ZU960pNw8skn4/zzzx/pGAcddBBWrlyJ973vfQAsk3z729+ORx55ZEo6bdiwAUuXLsXv1q/HkiVLptXcUn15JvsCDvoItDrNnE6abCFcD5DDgNIQMmNNXpkxNqLVJaRmYKyyPBZ2GUn2T0mXhURKSIk+01QBkkWrW4DnnWnPzduPcfmaTed14mPOpXs3F3WyVgiDicAKMKEJm1KNTVkxTGiDTZlGLzd4vJdjU6oxnuZIc4NNqe4rvJyGVUBya9Svqx3ZFLCjfDacciKAYabVpMac2nEm2qkE5tT5HUuBOugHxxAXpbDf8WXLluHRRx/FkiVLpunO9cuMMsk0TfGjH/0I73nPe0rLjz/+eNx1110jHcMYg8ceeww77LBDafnjjz+OPffcE1prPO1pT8MHP/jBEtMMZWJiAhMTE35+w4YNAMotylCm0ppkGcROR3kBm7ZpdZpenViq4GgTTMPX+WOgzA2QaQNNhEwTMq7zR3YbO10urgv0R7byCy+lKH04pBSIpbHMQpn61jgBShAU2X0JBHJjJQTA9f+oOM+2eO+2Fp14ufdJCpdxxvAgkRlCLCUyYVmjff4sLayryaiksHUmpe0jWS6L5Vhk0EryiclFjRnXAWCYOSeJrDl1EDjW+x/7wbEalBP6HKv+R2A0YNwSMqMg+dBDD0FrjV133bW0fNddd8X69etHOsYnPvEJbNy4EaeddppfdsABB2D16tV48pOfjA0bNuDCCy/Esccei3vvvRf77rtv3zHOP/98nHfeeUPPNaw1WX0RB718k2mREga/ZK1O06cTC7PFrAKOmaESa7SAaErAWABkGRy5ynwIlnXiwdFFG/I8f3CktoDZHyVoTasGBNtXXACSnO3VXZ0aoJzKdZqL925r0kmKoruHBCBBpf6SvC6WApkDT02yr75kKAyQSpaLHzdJU8RsNY1c1aw6GebYdcvqAnLqWGOJQaIZFAc9u03zMyWzEt1azZBARCNlTbjmmmvw/ve/HzfddBN22WUXv/yoo47CUUcd5eePPfZYHHroofjUpz6Fiy66qO84Z599NlatWuXnN2zYgD322KNvu1FfsMm8iHUv4WRau61O06uTYUAMGGTOgOhLFdltJnITAKRBL7cAmWtyAGrnTRDtygwUaGYCvl+cEJ4thgzS+3kMubFEVwGG7MeJAJB7fQzggh1tR3MhBATVZ3aZzHWai/dua9IpZJChX7JgWfZeZoYQK2kbVhLQUQh8EZTUPslA7hpAVYCsA1MeV4dOiUWqkqm1LmNOFSi7Qdq5KjiG40bTKthfy0yyuF7FRTUDLuzspxOYUZDcaaedoJTqY40PPvhgH7usyrXXXos3vOENuO666/Dc5z534LZSSjz96U/Hf/7nf9au73Q66HQ6fctnoyVSd68HvYBNLdvplPmokyG7fQiExbSNFM3dPIMjg+JEbkoM0o4tcGpD1vwVHAtA3zj8cPHYV0xwARQyZ6C0QRGZA8ku2QCNDtnuAN1IOQZpr4TNtkIQJCAJ3gw7les0FZmPz9MwKfzJzCAL3xubXDNjmaSRAkYJaBIwJIGkfCwGuDQ3HiyHNcR4XO1OEuZaDc2sDHwMgpESfYE43BeyalINfeVVYGSTawiKAoAvjGmCzlJkqn+lGRRnESxnFCSTJMFhhx2GNWvW4JRTTvHL16xZg5NOOqlxv2uuuQavf/3rcc011+CFL3zh0PMQEe655x48+clPnpR+g/wYg16amXzJW52mX6cqe8zZzOqAMQS9ibwfHCe0KZldU22DKCZcMIVt1ZsptfC5NR+avmJpGUY3ksilZRmdyLLdLtmPAwOlIIuXgoTvwymE4GDHrf7ebe06CR4co1TS5lXlKhla2efTMkmCUQKABcoCHLkPpR74fLGUrBXBM1YFRrZkMAh2lCyZ+DuR8tPdSDWyxgIoy8DIEdceFMl4UBTB9EBx5VMoBEUh6wF1hmTGza2rVq3C6aefjsMPPxxHH300LrvsMtx///0444wzAFhT6AMPPIArr7wSgAXIP/3TP8WFF16Io446yrPQsbExLF26FABw3nnn4aijjsK+++6LDRs24KKLLsI999yDz3zmM5PSbZDfgSrbUcO66ZZBfpdWp8npFLJHNqvWgWSqLTBO5LbPY6btNINjzzHLcsShLrHIidwM/YDV5elMIo0kkhh3H7Mw/N4QoaOcCZcIXVVuPXcjZVvnsF0NGCwne53C7erWTbfMJ51Cv6QSRReeWAkYcuxRCmglELsGkGWfovSc5K47SNEQawYJru1Yfs4Ki0W1m8Ygk6qt/lHPGiMZdmUpoquVQAkUPSDyMgBiUC3M0BVHtnSJgAGkLK73tsIkAWDlypV4+OGH8YEPfADr1q3DwQcfjFtuuQV77rknAGDdunW4//77/faf/exnkec5zjzzTJx55pl++Wte8xqsXr0aAPDII4/gzW9+M9avX4+lS5fikEMOwXe+8x0cccQRk9JtOnwhk2ndVredjI+k1WlyOoXskQNw8iAwJ3eg2cu1Z48MkhNumk2u46n2rJHD85lJhkA5WZDsD7+34DuWRFiQuP5yEdCt+bO2xW4ghYQkAUVFJC1n/plMCru5dO+2FZ28v82xyNDsGksJI4FMkAvasWDJ2XTcEaBi0eeHzA2BO0Zq56dkYfMqgKIwcuD7HpQRx7JH6aNUS2ZVlwigiUEKADA5QAZC5x4QBVEJHIcyQGHT1vm6XqRBwthpN/LXeJbY5Iz3k5yLwv0k17t+kqFsKXPPIGl1Gk34vHXmVV1hkZmmABQ1NmVlYJzIDcYz7ZljCI68LATIsP8agNrK8GFR22pftWoSaQbKsUShG9nsJh03cHaTBbFlnpzFJFESictskiiJuMmdg7l77ya7biZlc3UKn7/URUfnmpBWGmiZy67E/u48MO1zA4+DwoBmfzdPF8kpXN9bYSOnOctNHVCGUaqxLAAwkmUw9EzS+R1hcgiTAw4YBZEHSztfAccmBsxVqYW0plVf8ytyy4QHTlJ22YbHHseuuy3fuvtJbo1SbXGGy6b6og4y644irU6jCaG+a0cRkQrva6xjjr1cuxRxlj2GHbt5vtqxW+fGZz4hKrKgVEEyrAtYVGAQSLVEkhcgqRPVzxqCRFJKCGTSQAkgMwKZFpBCQsF1DaHwSjZfp6Zr3j5PhWyuTswLi+kiqMUI8mwSMNBUZpFSSEhhwVGJAiB9oooAa8IKI3Xdi0Jg5KQVTYE4PB2yxqgOGHUAjEYXLJKMXw6gYJJAPfNjMDSyCDazCWYtILpthJAgxlEys9poakHSSZMJRgxYP8rxwpdLVMZ1245iFmp1qj8HJyHv69ahi+jVqv9xU6YDkLRAGQJkCI7jDJIOHHVuYByDNJ5Juv/RAJKcYFq7HJw6l9CRRKolxjglWaJK+0beTAv08iJyMpOETBISZU2sRM1+tfD6hbKl7922rJMUcF0/uMILl8+y6yIX1QrYAB4LkBJKEDJBkNI2uGJZ9MMFHIMMHhFmkiFI2uQUham1rhpHGIjTD4puGZtTyRTgaHIPjIJZo84LQDS5vU7DzKyizB4FM0hBIDKAiiBMDpKRO560XZ+MKVoGsyAtSAZS99KM2nKsvjjV/UTNuup+dedodRpNpyKFXD9AFllzqJZBMkBuTDktWD1Ajmfag2OeaZsaTBuY3H7AyBRMsk7KtfzI1/IzWoKMwkZTZFthUVJgU1oEYUghrLnYFAE9uSH7wQ1Oa70o/YxyLt67bV2nKkAqIUDMJhWzR8vylCZkwriCymQjXt3z65+r8iNSm72pSHMoSn7HaveNIsm4DSbybJJZo07rgVG7eQZPH6jDAEkgra2CRvdfJGn/hFAKJEQAkBIkI8scAbCPkmRkj08Csxm0A7QgWSuDWuJN66vLml7eUc/V6jS6Tj7XahioYzhrDko+yMzQpABy3A29TMM4cNS58eCo2eQ6wNQKlM2tUkkYaSAjad979wGMjEK1jg2DIwNlLCUyaaAj6RMZ2JJdXKprsKl12PVsn6fp1SlkjmxyJZf43Ca5LwMlYCClCgCSfF7gKjgC8PUii+4Xop9FNnT6rzOpxtIyQKHTAgh1WgZGNq0aB54OEClPvc+RjAbVgSNfP6kAqUBS+mmhFEgqa06VkQvgoaKxIqRlk2zWnaXAnXkPkoMe9joZ1OpsOv5kzEWtTpOTcjJyBkv47h2ckDwM0uEuHr1cexNrHUA+3rPTmTbIU4080zDaIE+NB0dvbg3YJIBac2tR9NZARRJCGxhlWaSMiu0ZKC04anCtwTQ3SCKDzAhrQpYGmZbQEfVFtlavLSZxfefr8zSTOglwzlJbJUZxnx1TBkoppU2aLwxiiBJAhqkOiyoywmdX4gT5nM1HACXWWBeIwybVSMACXpoWrLEGHBkYkeceFA2Do9GWPTI41gXpcL9HB4qQCojiAjCjBIgiD4KkEssemaUKCYzYEJwumfcgGZplquYVVNZNplU6iimn1WnzdOqv1hFMe1OkjSK00YImYJSuH6QpfI11AJlm2rPHPNPIMwOTByDp2GTBIk1tC1o485KKFIQU0JqglAA5cJRUNiGlUmDcAST3y5zIJZLcoBtJZMb4DDzGOHAcct3n0r2bTzpJ2P6RQsAmf3Bskoi/9/aoibIJzo0gD5YxbJKBqgwutVauvlHXfaPOpCp05vyOjkXyfBUY8wyUZxYUMwuQZBw4Vp9/o71pFSjeA0gJRInt+5ilELGdhjEQJoaIk7K5VUgIYayvEmq0RATTJPMaJEUwHvRyTeWFGySD9hvkC2l1KkQ7xmQQ1ncMwNKxSQZGTlDec2H2PRd6z30gw/JEDJpZEKDDAJmnlk1akytZwMy1Ny+FZiZjNGTlA2FyBRklEFKCnLkVAGRA/6QUyFONVAjfHzMJsvtkmqBVUZZLkzVJWaAkUNDSnov3bj7qJEVRtUX5pPQAjDW9wrAZVoBI2Ge5wbcNFME6AoU5twqM1b6MypthKybVGnC0DDLtA0bK3LTRxThLQY5JAmg0swrpzKlSAkqB8syCZhQDRhfAyNvHCSByC5BGg6TNtCPc8z5bMq9BkqXagpzMPk1SPdYoxw6NCK1OzWIcQDIg2vkCGA1gP0googKZSRpDHjhTZ3atq9/Xy7Q3sYYAmWe65Is0eQaTpyCjYSogScbAOPNSwSQTkNGQUQLLEwCktlFtcgEjBHKpIaRApiu1BHONiVxhLHH/2TFnrj4SZjWvtrPnyr2bi8/TTOpkQcxGuAoq2KQQgIIFSkEApG3cMLEkkC/QXRXr3xSFv9Odo87vWDK1sklV50CelkyqIs+KaW3BkNJeGRjz1DJIB4oUmlkdiwTQGKhD/C44BhkCJLNQaF1miS6oh4RlmZBB5p7WJznzUn24mx72QWaXUf0YTfsPO3+rU3mZBUfYQBmCZ1Das6h6FukDeNxgiDz4cFIAHsZdkI7RbsipmHcAmac5TJ7awWgHlMYGMDSYW4VSIKMhpILygJoASQSRF35LkQtIZaCUQaqK7D5jgZ5ZZJAZ6YGSr82w69k+T1tOp5BNAmRT1MFGvsIIC45EroFjc/GWzuNOUKqkIcr9L8Mcqo1Rqswc87TEIoXRMBPjMGnPgmIAlMgsQHozK4+1BmljG4TagHQ/cAnXXUMqCSElZJJ5XyQZDcEsNGCjfl+prB/SRbfOdh9JYJ6D5Kgy6CVqumHV1mx12ebe6Pmok/GgaD8khgoWyf0E61gkh8+bIBqUWSQDZDhtTMEUNbNGb2ItA6TOU5g88+DYFNUnpIIwyoFl+UOipXTgaGxiaCWtSddlYQmTCxSD25eK/wWg78M6qszH52m2dAICvyQKYGOglCSsOw6WTSq4Bk9AJMMUdwyKPmLWsUaBSkYcFH0ba02q2gbpWABMYdIeaMIBZNqzzDErpmEMKEthstw2GLPcAmQAjqbiK5TMHpX0g8xySCUh48iaVKMMMF1A63IjREqIKIaPpJWR9UnOYnJzoAXJzZJBJplBvo3N8avMV50YIMMoTgrGfhtybNPYgBZvjnSAWvgri0TRPM2s0rgsOkQhWFofpM2wo/sAkk2uA0GSh0pfSCGVLZckBIy04CiN8P0uyynwnI5EvpEAwPkl7ZfVNPSRnIpsq8/TbOokhX0OGeAI5Dp82L3YhSycLxLorwfqWWQNMMqK7zHs+D8UHBkMJ3ogZpAT45Y1BuZWk+XQae6BUYcA6SwoAGACJikVA6T1QzJIqjiCTCJIbaC0gUwKX6Z01xJSlf2W3E/SbjirQNmC5GbIoBeOP1PhuGm/6Xx5t2WdWKqvhwlMrXXCQT6aQv+l3baPoQWsU+fkwZIBi1zIu/c/BgDJywH0AaWQCtKBpIwSyzylhDEaIk+hpYKMpO9naQsn2OkwRV2R4DrI4TmD6Ze35edptnQCnHmUyFpVyTFDAV/izKafg2/bVJs5vmhxAJIcpCOdSZVTwg0zqzJzpCpzDE2taQ8mzaAzC4wmze10moOMgU4zB45lJtn3vwMGKaSESmKYNIfMIkTdBKQNlDFQ7v+SA0cb/Rpb36ljk77UVk1/0ZmUFiQnIZN9qUYxw2yuzAedmC1ZpkhuugC8um2BSpaSYJmfroAPgFIOVgABOPJ0aFY1froKnLX/A9bsxtsDFjyLYyiQEgFQOrAOQL36P6oAOSAgciSZD8/TdMioOjGLLC+z8GeISmDZtD+fzwMl4Os1+rJUITgOCMgxE+MBY+x5cPTM0YFj3ks9OOa91AMjM0k2uTKTBFACSvZDMoNkf6TJcsg4gnIAG3WLCtMe+zi5QJ4BsQ10E2GwjotwFW3gzuxJ+MA3tUJRM1/dd7Ln4/Gw485XnYYdc5BUwXMUtlUFIgqA0xD3gyyYYuiHDJfxdK1egP2I8fYuKlb6ZbYhYP2sBTuuMl77H4PjmsEA2T5PW04nC3CAQcEmATa3BiyyIgym1QhWgQHgyP0aHXv0XTnSCetzZHOqA0Tvc0x7ML2eB8e8l8KkOUyWeQbJJldmkCazKegsWJb/uXB/iMFROB8kgyMZA6Wr1hZpu0zlqesiFQNZDBHFQcmt2e3+AbQgCaDeJBOaO5pelOq+kz1f9WVsdWo+d5NIIUoAyC13TtHFEk6PIoMqyJkKyIXLeHk4ZrYYTnOXEAoCHRiMqzlg63LBhoBebRDU/p+a6fnyPM0VnUKgBODBsunZZGDkfWvBMajC0ZdKLohYZdMqAyIyF6jjljM46vHUTWceKEOTq2WUGkaTBUpNpWeYRUiOaBXWD5lIKAesqptAVcyzQkloJSGUNa9SlPioV9/4VFxZpK0CMmvS9NkMW5oCgz/ag1qbg9aF56eG+Van8jah6YrD6S0gcmCEQDW8U0rB75aL+qu/65wj1Z9vkqBaFaqAZgGKNgNJdf2gPJcsIYtkaUqmzjLoPs/X52lL6sRACcCDZd9xKsDIYw+OPOY8qpWk4xYsbSKAAggD9shgmWeePepe6sYT0A4sq/5InVqAtEySHFBSKViHRSoJoYQDSQHSCjo1UIlLS1cyzSrkvRRCSRglIeIMyFNQHgN5DOH6ZIo4QSl4Z5ZkXoNknVQf8LpWZzhdHYcyaF1TK7bu0zyfdOJzhR8uKQpTIgdAhOH0oHLiaF9PT/rGp/ft2LRdRVUNzmfJIqXwH6lSUnIRbqOs2dQF4owCcHUyyn51ydI3V+bT8zQXdOLnNwRKoABLBMv4mLzMg6NPKG76TathblWOXE0n+kHRBeaE7FE7tpj3UuS9CTsfmFvzXgadauhMgzRBp8abV23fSBpgahUuWKcASLI1wRAByHl76fyVcQ4tJWTsgnU4Dyy/J7OcRIBlXoPkqCaTppdlqjKoNTqfdRr0oeIPTRhOzydgsBRwJirYDCec0zIsPquMy0QiRf3gqijYjv3wHfwBC5aGS/xIBSDzekqpoAPQ8zkqq/8n2L9uun/74qpU2S7rNEjm8/M0F3UK75YHwcoyv10YqBKaVrmLhwky51QSAlSDc8z4xj7fo+5ZtqgZIMfT8vLUOJB0DFKTB8sCKO0VYDbpu31I4ZikBBljfYy6UicVsCbWXgqpJHRmu4ZYn6VNWCBc9xIxi7laqzKvQbJOqi/BoBdr0H6DpK4V2upUVci9FJzgGEGL3LHJEDltVw0Ok2dGyeWCpEtNV4BmomxV9jRSSCKDJJJIIltpQ0gLlB4shYCMBIQW5f6OqkgQYFVVlb+gS8uF6t+OfTcstkqI8DoAw4GwKX1Zk8zL52kL6+TZI5W3q2OQ5ShOU7BHombzqmOXdf7HcLrOvFqeT6FTjWw8h8mKsdFkfZFZwSSNY5BlJqlLZlbp6qUyeJauiesaYpSEznLINLdsMs4hXV5Ym5HHsklBrhiz4e4g029lqZN5DZJ1n5Y6U8woMmy7JjPPVLbbFnUqfSBKOzhnvSu0yh8VDQuU5HyTSggYQVAStt+ZECAJGCWgSSATrvisG7Iak6uSwgKlltC5hDQEpcjWfpQ2Ew5FCmRsWDpFsVfT5ClUlEC7rh2l/xaAowxB1oGl7z/p2GtpXweAaiijbL6u8/F5mqs6Vds7pdmKOZHZYy2DrAAkMpsBahhAZpt6njGyedWbXbMc2Xju2WM+nkNn2oNjEbDjmKTpN7UC1twqpHAgaKC0hIr7A9Wy8RxCSmdizWHiDDqLoHTAHoPKIqS1T3c8mzKvQXLUl4WXNfki6mQUs8zmvMDbpE6DnPJkLKsUsgSUis8oOfuMA0fYUPEYtpxUbCybjI1EbAixISRRP5vUhpDkEjqStiuGNtDaAqaMCJIkpIl91w0htU8QwEBZrCszyypACsUVQXhZwFxF4RtVAVCG4MgJrcP56kd4Xj9Pc0SnuuOWT17OJCNCtjQiQFaTA5T6QYYMsgEg816KfDxH3us3s1qg5KAdC4x5Zq0kNRhpc8c6kJSxtGbZYEMhtQNSDZ3k3sTK/S65LyaMBjSzySCytfVJzq6M8lJRzbphL9UoL80gVjWfdKptTQOlzsIkZAkolaNcJIRPdGlc6SESAkYAJAAjCLGU6CobCRpLQieSPq2bTpRLJlCkp2M2SYaglUQUVzLvRBJkklLwAZkietWbiKr/OwBIGSeQUQwpi9JZfWZeKaAi2cd2uYo8A+aw7i3z7XmaKzoNV8T0jUcFyMLs6hJTOGAMs+fYqh1pnw/SZNlQgLRmVgeSqSkYpQlrtvb3P/YNOkNIDNnUcwk3Fu3bIpwpViXSBvSwiTUr0t4ViTpM8S5NMUBuc2Xeg2RTS7Funh/8ppesab9hMuzl3NZ1sgtr/DCl7Yy1KZKxgCkklIzsscKoHn+G8mfKkPBFijURcikRS0KiyLPJsaTcYX+jIURGWWCM4QDSZd+JFAALlEYqb2atJhgo/YcSg4yhosQzSRVJKDZTRRIqsgApAjOwBUvpius6f6X7m2VGWf7v8+15mis6DQTKyQKkW8d+SWGsKbYoY+WqduRpUdLKsUnuymGDdCaKbDq83INgGSCz8dybWvNMQxOQcgaoGoDkf84J1gFAEYDU+eaVgM4si1Sxi3iNOfcrD9qzSlVXHaTtArLlZZAZZtQW6KBtRznnfNLJ7lAJcQ+WlbdzkXNC2ormZCBkZFllBSgp+EwZAhIXOBAmBmfA1KQ8MI4lRZo6bQg9wCcWoL7E5MIzSTtvu4OY3Ea9VtPT+UTPUnmAlFECFSkoJR1Q2kE4c6ssAWQ4FIFJHNgjRuMv2/TzNBd16j/wCADJAMTrwm4e/G7kuW+QUVDKirKsmOYUcmk5/6rm+VQj72XIx7VnjXUAmRpyAFmwSH47GSy5oaaDDEI+k1CqnZ9S+ChZlSjPUFXXeHA0DjQRNDa58TnaEz690oLkNMigl2Ky/orpkq1GpypA1nwkCtGAkCBhALJmV5ABZIRIRtZEGZxEOKAkXxVD+hd8kFQ77fs8rpWWs8gBIHKlrhSkM335vpOuXh6AUgSscuyRAVJGEjJyPpxIQkhYwIwkElUAZAiWIUBy/UApgEkGuo4sW83z5GQu6mQ3qA9MC6VIwdY8CAaQPCuYVmWgLPXVOtjMGmbQsd08ii4dDFh+WQ1ApsZWMKl7jzw4CgG4bRNp/ZbK5T62/SWD4B8tffYea2ItVxYRQB84illOTdeC5AzLVE0/MylzTqegFe1NTE1mFdclxHViBJGyfamUgZKRq18XmiIJtvekASDQjQo2yK3iOv+k38YB5LhfUnBH7sMopLClrgx5sKymprPblQN3GCCVEh4UmUlKxyy5a0rHAWSHgTOo/iBFTbTrZO/BZsice54mcZ4tBabhc11lkXXblLZ1y71Z35skjQ90YRZJ2th0ctXyVtqUzKyGAZK7e2QaRpuBAFkFSiUcIApmkMJt51JFOjZpdNGNxP9Vt6xPQreLMbXXZKZlXoPkKI3uqbxEU/GLhD6MYftuMzqxv6XaUbrqn6wIcT8JISEosoBJxjZXZYRYRpBCIPO7WqAUTDOjqdXaYaAUwr7sItO2GoM20EpAa/Jg6Ssj9IGk9IE5SlkGqSKJKGaTq0CUKM8ikygcFJJIQgqBWNn+n8wouQHPBXn9OTGPnqc5pNNmE/oweI19kUHDkbT2AFIu+F3485mZmSpDC+cdo+OuHeT6Q5ImZJo8wIUAyaAJVP2S5ZgAC5rFMWK3ns9TZOwpVxKpLb21hYJ2gHkOkqETvu7hn6rjvmmfumM36bCt62RJnvEt4zBIIVxe13pkn6RlksaDpfVRWrCMVAJI4Yu49vXHj5RrfE/uU9wL2CNn5DG5i0bNDUgJq7YvtxWBDJVYp00YYE2qMvBFRkkBlkmsSiySp5W0ACk9k7Tp97hSRFXaZ3zL6jTjEga1AGWTK+DBJiyKHLK2EBzJFAkCeD377Yvp4lTFcnhADAPINBFkwCa5BFxxDupjk6H4+S0IkMA8B0mBwa3D6nIasC485igv4FRfuG1FJ1RBMAxz50CFql/SASKgYft7wNWekxZcZQTIgo1GynWtEAJsbg1Z1oJEQUpAZs3tfhX00md/4EYAShnXXUNDK2lD3ZWxlTy08R+EqnA3j4JJyoJBxsoOiQXIsUSVWCSbWn1SBCWdT1IU6cxEfRaXbf15mos6zYhQA3CEOU79ooKdhWM7XYBV/ykKUPTHcuMmU2sxzdycBnZNCt+NJj3misxrkAxblKFMpTUZHnPYumE61cm2pJNnkXV18DiKb4jJFQBISAjjGKVUEMp2NLYmKmuOUlFifZVCItXkQVIKi6eiocw5+/k4+Xk1unTc+VdsxJ6B0gJaub6VLhtJHUv1qeac2VRGwke2MkCOxcoD5IJEYSyJPFiymTVWEkoAMTNTcBKCyjWq/Xfb1vM0V3WqP2DR33dK/jURNA6D3MHTLbXl2aaAZWyinQYD9BaTeQ2SVRm1NVk12QzadhQp2l7zRCeOZmUza11H6WCbwj9jj0S+GC1/MCLLLI0GZA6oCCQj7/NElFhWqaRnWmnQ6BZC+b5dik2YQvvSWnXp65QUGJcCaSShcxsFGMUEnRtILZzazqzk9PZFdJ2pVilZJAxQsgSQY4lyAFmAZTdS6IRMUtoAnkiKUrYdATSW+tomn6c5qFN1vhEihLR6cGwZAJAugyh3dwr2KYlU5cEvlrZaDicdD/KnCjUYtCR3qQqEA3Oa5muPg8nXcp1r0oJkIKO+YJN5Eetewsm0drdJnTgYwTHGvnI/LpsI9wVjM5KpmJOE+ygIpZ2dMXKA6cDS5IBKYJO5WlbZVREyISBcoSIhAKEBQPrk51Lowt8nClbJPsEwmGY81UiV8WAplUFERdHksPtIWIKranKNXZBOFSDHkshOxwpdt50dhB+EQDFM9Z5McTtgDjxPW4FOJbPuEDZJwnVlEtJaS3gbngcglAJJWZ+0NwDLAiBdnmCXUNxOF4nIi3yrRdWbsOGoXXk65cvvCN/lg32S5X0GP4n+XE6HgdJQIWe2ZF6D5Gy0b+peokEv1shmm82QLakTm1pDP2SpmjoDpANHyrNSp+KqzkIqkPNLiiiBVHZeyAhkEkDnQJQDJrEAHCVIoi6kkJCCIDVBgiBhCtbIDFJoW15LaigJJJFEJAWSSCOJch9Qk+amNGSc/HmAyZVNtXElgnUssb7HsURhUTf2YNlxptaOC+TpRAqxZLNroTMD/UzcuyZpn/HRxRseQ6Dk5SGb5Ehs19XJDlRMQ/tGIlTIJKUHT67TKKWEkbbihl/mKnBwpY4QLCV3QTI6sK7ANStD/l3m26VMO6IMspzPlcGxKoL1C1hvyHx97MEWkHkNkoP8GINempl8obZ5nVyXj5A19gFkOlGAI491f2ACAOeLtB8Ikj2IKIGIYlvFnJmk0YCyZlf2VUZRAqEiz8CUlFCarJ/SBfTESiDOtAefWFogLUDNgmWaG0zkBuOphjaENDel9HZhAEQ1WXnIThcEATueQSYKCxyL7CiJrhti12dSCrj6mCglE2DT6zb/PG0FOoXtJCmCc1XMpiFQkjAQkAV7ZJMr9w+umlij2AfviDwDpIJMYojMJhAXWQ4VRzBpDqEkZBy5fou2UgcDJ1fukLELRqOw32MVIAtwZAmZpPTzrgHnj8/MlcGZmW2/WbgPGKum5lmQeQ2Sg/wOVNmOGtZNtwzyu2ztOnkWWamJ58FSZ0F6LZeTMkt9qRzfaToU6YJ2fCu6BxFboEQUQ3bG7AfFJDZLSZR7HVTcRVclUEIg1YH5VQBKWqbG5tdYCmyS1gwbK1HqmmEZpEbHVRGZcIyymrknlCpIMntMooI5LupE6ETSA+SCuGCUXcdqY45uhe0rWc26sy0/T3Ndp7pbXwVMzyqD4wkJgCQIBSiGbJL97UKVwTEETM7Go+IIhgHSAaZyqepUomw3DGNAWrl+ixJK28odKlEl531qrIYS3Aey3ydZBsjyUGWqxbwosVw/HZSY42kAPiZhtmReg+R0+B0m07qtbjsZH8m2oBNHtPrisVzyx4EmZa7cD4Mjg6Uxdqw5i02QrcS1NMmxSRHFdj/HJk2eQSRdyFiDDJtdDRAlNr2VypHEXRdtas2vSpCNhAX5fombMtvlI1YSmzKNWBrEsgDJiVwhiTTSXGMsYJN5DVBydhzOolP4OVXBJh0gVgGyG9npRElXDaRgksoD5vTfu7n4PM1lncJbXrePCLaxDZsKUKoI0DlI9nM3QQYkI9vYC1kkW1u4tFSUQSYa0mXakVkE5RKIy8yWp7K1G5XrEqKggn6TXgKgLDLoFGAZSgGOdl0iBRJpuzeFPk+VOKCUDJYWHKWy5mGhpH2fAzNrqfRcyTY9szIr3PXiiy/G3nvvjW63i8MOOwzf/e53B25/55134rDDDkO328UTnvAEXHrppX3bXH/99TjwwAPR6XRw4IEH4oYbbpgWXQe1UerWTaZ1O9UXc5vRqdIf0tfE06k1sTJAcnV1roU3vhE00YNJezC9TXZ5byOotxGmt8kO4xtB4xthNj4Gs2kDaNNjMBs32MFNo7cRItsEmW6ETMch0schsnGIdBMiyjEWCYxFAl03jMV2vCBWWJwoLO1EWBSMF3cUtuvGWNKNsd0COyxdkARDsTwcFncjbLcgxqJuhEXd2A+LuxEWdSMsTCIsiK2ZdcyNPWC6vpKWRQKRsmySAdMy4cGpzreZ52lEmW2dGPyosiwcKFjP8yFjJJttolgmbcQ2W058kFoUORdD4i0o1t1gLSmIYkTdBDKO3Dj206qbQMURVKIgYwWVKCg3jroRVCL9fKwExpTwoMdDLFAaqusTF6QmY2mP7wYhpQNKEYClZY8MlrYTswNGHm+L5tZrr70Wb3/723HxxRfj2GOPxWc/+1mceOKJuO+++7BixYq+7X/961/jBS94Ad70pjfhqquuwve//3289a1vxc4774xTTz0VALB27VqsXLkSH/zgB3HKKafghhtuwGmnnYbvfe97OPLIIzdL32qLM1w2VXPPILPuKLIt6CRcFKvv4uHMrByk46sWMEDmmSsmmxXm1yC7SFhho/BJ2kTjlCr/saA4gcgzO59ndki6rntIUsoZS3EHnahrU80Jsj5KcFCP8kEysTKIlUDP+SJjJZBpiVhKZK4uZZVJ1rHJsEtJwokClLC+x0ghUgJdZYGR/ZKDANIzySHWqG3heRpFtqROtYwy8E1rgo92ls50ac3lReJ+MjmEsuXghIHzRUYFY6XI6yVMYHZ1qelkomHcdNS1qd8inVhdjGOR3aRWf+4iIhQXSBYwmYHUppSujq9MmG0nZJJRrFztSGVBMbbgqJJiuYwjqCQKzKxserVguqWBUlC1tME0y5FHHolDDz0Ul1xyiV/2pCc9CSeffDLOP//8vu3f/e534ytf+Qp+9rOf+WVnnHEG7r33XqxduxYAsHLlSmzYsAG33nqr3+b5z38+tt9+e1xzzTV9x5yYmMDExISf37BhA/bYYw+sX78eS5YsAdBsvul3U48m4X6oHKPJ/DOKWWhr1UmQgch6lrnlPQdYPYh8AmZiHNTbVGaQWearrcPYunmc47GaSSR0/Ms48r4aH8QTxUCcWHBMuhCdLmR3IZB0QFEXUAkottMUdUBRAi0im9xZW6BLtR0y53NkgOxpO860wYT7gFighAdMBkge+2LJDiBjKaEkXLSqBcnYgSODJANkooT3RUbOxBp7Fim8n6sOKLel52mu6hSySD/tPrF1xkH+3IeJIPj+FSkbXaOSDITOCktM7qZ1WgS88fsz0YPpWQsMW164lqQeT5Ft6iHvTUCPh8WXbS3JvJcjH8+LQsuV4ss+36vPzFP8Hza/Sul8j55BWlYajUWIuhFiN04WWUYbL+giWthFsmQh4oVdJIsXQC5cArlwMeSCJRALF0Mt3h4mHgPFY6BkAR6d0Njlj/bCo48+6r/jMyEzyiTTNMWPfvQjvOc97yktP/7443HXXXfV7rN27Vocf/zxpWUnnHACLr/8cmRZhjiOsXbtWrzjHe/o2+aCCy6oPeb555+P8847b6i+dS/BqC3H6otT3U/UrKvuN+qLubXpxP5I3/fRFME73g9ZrYfnwdIViHXBBmHy4ypIsl/DmnIiC5hsgkq6QFZUcDfGQOQZ5BhZX2XYJWVAUI/StrVv+ypqxLkFqcxIxA4sMyNhiJBp6auM1BU4CGtCxsqCJbPDruvmwSAZB6wxlsKBZZk9DutuNpV7V7cvS/uM1wsDZBUc6+iIhn2uQASiAixtaVTLKi1hkxA6tzrxsggQedAoSMr/V1SiwcPehqYaAFcRqQSycetD1MrYLktKQyXSVg3hbk6a+kCk6HMpHVsszLY8ln5s31OZRFBJDCmDhi6zSMcq4a4D5222V2/mZUZB8qGHHoLWGrvuumtp+a677or169fX7rN+/fra7fM8x0MPPYTddtutcZumY5599tlYtWqVn2cm2SRNL8Eg8011WdPLO+q5timd2NRKVPgi3dg40EKe+Raw90X2iqrqXO6HC7J6oDTGB+9457+UMFnkQt1TqDiC7IYm19Tq4Cq5y+5CiA5n5+EE6/1BPcoQUkEQLrhHCtdXURpkxniwtEBJ6CjLPDnjTmhyZTbJIMngGLvuHd3Imm9DgAxZJE/bUlkj3rCp3LsB+7TPeP36KkAyOJomox0zTiEgUIAlg5900axlVpwU1XC0KHQKgLIutCUESikrEaVB38l8XLixhJDam0Z1qqESWymEc65SJcS1iFitsEkGyqTwT8o4su9nAJZSSWsJ8oE7zp2yhTL3zEp0azVFVph9ZNTtq8snc8xOp4NOp1N/Lt6/UZuyDGp1Nh1/MuaibVYn9kEGvkhyIMVsEswqHUDmvdQDJIMlae1asQ1sUkqoJIboSds6jSOYJILMckTdxPslpdZlVmm07S5CBkSOXUZdgAyiuAsVRY5FWsaWGssqOS1cbgqwzLTzTRKQaQND1ZJChTALZHAsxrb2ZSTRB4w8PQpznJZ7hzn4PM1BnXwADs/DAiSDIwXbVcX6JQmCLD/irjzKgaUSEkIlPl8x6dwzyjLbTPuAkqQqgaVyvj5uXPZdByUhVYpsPPcBNjplgLRMUsbSVw4BimTqvq+jLEBSJWzdUYjGGCyl90UyiwzBUnCkOncFYfYYDrMkMwqSO+20E5RSfQzvwQcf7GOCLMuWLavdPooi7LjjjgO3aTrmIAnNMlXzCirrJtMqHcWUMx908qbWsAwWs8iQOeapnc9TD5C6Zyur614KnWbWH+kYJYNk/8spoXup7zCtkti3Vk2WQ8Ypoq5jkBVWiTyD6C50XVK6g4N6HKtUhpAZIDIFWBZASTAqMLlWLpj33wgRJCy37DHyptVygE6iCh/kTN+7umPULZvvz3gozCJDgCSE/knernyEIh8x62IBkxxYGjapyyDiVedWH57PU6ekNdN6FoYCLMll35EuW5NQtjEplG1cyiSCHk9tR/84t+9hqiBjC5BGk+1OVaoH2c8kAbjuHmGQjkTUjd3Y+iKLqFsGS+siQRQDSkFEiWeVYeQvCVEw6RmWGQXJJElw2GGHYc2aNTjllFP88jVr1uCkk06q3efoo4/GV7/61dKy2267DYcffjjiOPbbrFmzpuSXvO2223DMMcdMSj8RjAe9XFN54QbJoP0G+UK2Rp0AFCbWIKE5+yDho1p7dnqiFwQSWCaZ9yZg0rzPNwkUTBIo+yQ5jFzzyxdHUI5NmixHlOU2f2zAKo3RVs+kC9ENAbLwpSZRAqUib+bMHJvUsgDLmARMZFmkjQQMTK7BRSqDJPsmbRYdBsKoxtRaZZDz6XmaizqF65oAso5RAmGgj59wwMegafOjkrNgGCGghIRyrBJSAlpBaOnnRe6y9AgJqRyL5P6GUvrUjSQVYqV8ijoGRyEtcOpeChnbsU5ykI5sAE8ifaktDuKpCvsj2examFqdibWbBEBZYZE+6C7x/kgRJzAystcl6BYzGzLjZ1m1ahVOP/10HH744Tj66KNx2WWX4f7778cZZ5wBwPoLH3jgAVx55ZUAbCTrpz/9aaxatQpvetObsHbtWlx++eWlqNWzzjoLxx13HD760Y/ipJNOwk033YRvfvOb+N73vjclHastyMns0yTVY41y7Logg61dp1LNyKA0lskzb271XT3SXgCMqY/GC82tJs19hGu1Jh7nhLQvZVSwySyCiSN/DNVNfOHZqJv6VF7CjeXYQgugSQ4k3YIJB5l6lEo8q8yMDcwJwVIbIJISibLXShtmk4W+HDLPCdQ5qbqSdswRrLEDyESWIyDn4/M0F3UCiv6PQDNAhvN+PxSNJxloIgS5CFcLmEIQtANKEgBJASEiKBWYH03BtqCLabFA2O5QrksURTzEMFEMFcWQcQ85+wQDgJS9FCqJoF0jNeoa6CwH6YpfshIIxKZc6XyZ/E5KF1AXdZMiWCeJoMaSEovkfp4878Ex7Du6LTBJwHbXePjhh/GBD3wA69atw8EHH4xbbrkFe+65JwBg3bp1uP/++/32e++9N2655Ra84x3vwGc+8xksX74cF110ke8jCQDHHHMMvvjFL+Kcc87Bueeei3322QfXXnvtpPtIVl+CRiZUsy5seQ7at+nYdcecFDvbSnSyOxSsTBjrV/Rp53hIe9C9CQ+QBVCm/gXNe2np5Sz8kvasvm+XlJAqdy9nWno5TZpDpRlMmiNyx421sYE9RkNmqWWUWkPkKaTRNqiHwb6SqUc5M6mWApkh5AFYamNjKgwBkQQMib4IRy7dJVBEqHLEKgNkIotyWLN57+bi8zQXdeLtmUUyIGpTA5Zu78LsWhxDu3XSnUQIC5weMAEYaZ8pzqlK0rJKW/0mLxiWTEt+vJL5dQCrZEanXaNSJzF0mkEFsQGc1o77XhZdsoo/U5hcC2YaRp2rbmL9kI5R2mWdEovk1JKCkyeE4DiLyc5nvJ/kXJQNGzZg6dKlpX6SMymjvtCzKbOlkyAD8f+39/7Rtl1VffhnrbX3vue+GB6GR/ISDQEtTdCgJUlJAt8hPw2hTVG0hEiaRgeNPzoQUnAoaaskjiEBbXVY1KoMfhViYVikloKxUQO1TQJIkB+CkWIUqASQJu8F8+49e681v3/MNdeaa599zj33vnvvu+/dPcc4d5+zzz77zLvXPuuzPvPn+tdhp38HMz0G0z4COvb1VBGHjv0dV8Q59ndo/24N3d+tzc3h8lOv8rSWM/VYHVGXfpzZ3FOdtprMPvVpq+yTbCawq6fBTA7ArKzydnKgzKl0TcqphGvQEbPFNrDvsYvsMoC32gw3c40M+4yMYpHODDNIYH/fT5uR3dKJA7M48IbiNsT7oQ+QRMPpIX3p509mwIwdNXr3ipNcWamJHH3t8FP2u/t2trpVLyZAR5b7tXX4aZfiAtjd0UYWGXoWnTDDJEW068Mq14etmUHKb6+aNDArE/XbO63YUrUScyQnQDVBaFZx9O/WcNbhwyd3nuSpLotMMot8G8fjVzmZdDJAMq9qNkldW+ZFdi2bUlteqfppO5jkHFqfcrRCu0QIurVwTYifc3BNyH7J+OMO8Qdfx9e197DBJ/+klSo/IXBOpZhda/X/uA5V9FUao/rsWSQ2SWTSJAmUdTuBPAmmiU9FtQqL2O/3017VSVgkwMxRQFEAUsCzH9QD9Gu8RosITMoAtIbUIipGwZrc8DjV7k3PK1RVLFnXTTny1VaAn4I6biFnbAVbNwgxfziBpTLBVs0EbrqGMGlmoszJB4S2TVHmkpJFvQVrP3/ZxfxHCaRzqzlwJwFkM8ksUpoWGMP/g+6AcqpEt57qsugHJyYhvZ33ue388e41nYzPQS/Z1NoWrbCojSZVCc4RsOwBpGxDNLn2Q9B1+DkAzutqPVwESAFLLuCsfty9dJLKB9gDPgYZRbAEr/pN42GaCJRV4PZFApxVg8ZW8MbCR7D0cTJLkyTmpwAY9BlCDtIZ76e9qVOqx4oMjAWbnAOQfC/QTNRrX1Pd+swgpyB5k59ngOTn3gCV5UhR8lP+DUqtVz8FugpkpzCuhvEtQpXrvKKq4VZWQevH2F/ZtLCTNuUsV9HUGqZdkbPMYDmc3G+cS4xSuz5SwY+VSQ7UST7JJplek6lVp4HsUtAOMILkpmSzP6p5K9rtlD2tkwp4ETbJNVgZfKT0nAbGbm0dPq5cmVX6AiD9NMyYXQFhk74IP/etjxGuHq51CSwldL0O8cctIKm2NQAbAgJyUraJLNMAMHVcNeugngiUzlZwtkJHsWUQxPRmZgI3iuumTWlmtkjAvr+flpTd1ElYpAbGgk3SAJtEyTZ1kQmdGqKbZzvLhQZMBEgDBkUPgiMxtQLOEGpnEsusLN+P5CqYzsVC6VOu9dq1/NxyqgUpVqnBkqSTTowjCNNsdpW0LACp2IcW2y/0EQPqGCyjz1HYY2STppko0ObC7uw3jUAvnX92YmAHZARJlD/CeatQDLzuf3az36d/aKesTr3I0FSHVfWMFJNnMumIL2Qa0K11PSYZUuCOn/rEJPtBA7ksVkj98XJuV0hsshoocyc/9CoEOCABJdRzEx/8v5H6PwmwHahqeDXvbIxcnJ9cLtcTyAApPqZlZF/dT3tIJ80i05huwCbluYCjjniedespwIw3oDQAdzZGxEYmyakieb8Gy8paOMu+ePgp4GvAR4DsHDcmd1MYP2WwrBrQygS0vpbNsd00LWpd08LGfpXkfUrNAjBjck3XVXpIWsvgKMUCJFBnZaI6mDQqBaQM2DkRVXdGkMSwSUZ+HPr50I9qK6uZ/kp3o4nhZNRJ38qpUDNRbJ6c/XzyIxNfJEVzDhdUjj7IHkAuKrTsDIA2F1g2zoC8g58GuNaj8hVcP6t/gRhrE8DNAGXwMCu9a0ABxsXOCi4AtkJlKxhr0sRKVAZscBkyfi4BPJuZCvbD/bSXdNLvkwI9zSJDYouzANkpcAwBc/Notbh4w0gZQ2szYFY2WyG06VWDJUdLW9TVBMaFDJauYZNsZJlwseVWO03M0qxMil6v2gpkQoDppnBzOvSISKeeVIdVys7p5gOFmTWzyMQedRuxXZR9DZLzJiK90jSY/0PVxw4ds+g9/f005/XJrpPxEmHHfsnkj+ybWqUua6sCAzxF86oAJQNke6wDBWaRkqgPDHRID9zqyhlmmQKWQMk6F4mYiur4nFTTV5Ku6QBME+tqUgBcfk4UYGwAuZAqpZABPBlmqCTXtiypOK8W636/n/aSThuxSIoA6ecApC4y4QlqocfboTqvYn5lkDTJNK8LUXQBcJbgQqwMZU0Bll1gsHRuAidgGdkkxUjYBJZ+CruyirB+DKZrQSurRTN0AUyo3zUAbvgMJNDMra5yGoqxlsFRALOqOZK8yvmREqyTTK0noCQdsM9Bckj6P6yhVad+3t9qWfTevFXs0Px4suqUighIcEvqd5f73qUo07YtgFLAkULoscqArvXwBEwDTzRDmOdMfvipR61sl4tAUkfkpX2xhFdik7EWZgrTl2vkcm8+qsQcS3wNHHeTN8aikpqbcqyuSRy3Q0C53++nvaKTPNfZc0MsMmAxQLaBEEIJlsAsYGoRgIRX/uuOgdLG3qZF5SZis24fLIVZMlg2A8xymp+7mqPUuy6ZXk10myCCoxGQFGAcCuJxuS+kRK8mkKxzXqRdWZ31QUpUq40NqAfGa6dkX4Pkoh+YlkU/lq3IohXyqaQTH8hmVm4i6ws2ieCTs1+XmxMTa4jPKXCAjpd9ESD7ICkmTAEvF/00jeUJpwlSZ7IC0M3qHws7A8jdEVSHhAqIP9TISBWzlNqSxWQrrDJeFxMCKFYMMcbCSWHqKNweaeDCbiD75X7aCzoBs9V1qL+NLJL3aXPsLEBKIfwMlopNDoVBg10JQC6O74yB9bFkYQTM2hOsBSaV42Miw6ytQReAypLqRWpQRWZJoYPpIliGDsbXXEzdtzCug6kb2OBzWckYoY64Dyn4LYKkbtcVfy8mgR2Xm4O1ufdr3cTfWBWDjBRYngBTK7DPQXJIZkyGWO7HuexxUMdt9dwnjU4SzCLPQyhYJHmf86x0YrIytzJQ+vRoPRUA2dLsilt+lgEmvZeIZCvvVqnrOvfMszCujfmVHTo7TcEG3VpOiDZ1C0zXYKxe2TreB7BtNoJlAkgKMMQ/eAPE3K9cCUXMR85sDQj2zf20R3SSfWJqXcQiJe2n9SEu6BgguTuMNrtG32ToAeVQKLTvmV4Novk15tV6g9oG1M6i9ZR7lVqDzhK3WAsGzhK6WM3JBYplEBu4lSanjviGA+78lMEyeAbPaiXVZKZ2ymwySPQ6918tAFKL9k3K86qBidV/YCsu1iG/rxPU/UNkX4Pk0KJ9yBSzjGx03Dwzz1aOO+l0StGtMWjHZxbZf/i2U9V0CKGNnQaUaSpNNnEy8TQLlE4l9SP0GhK3DI4MkCE2leV9re3iezaVwjPOIUw7dC52R7AWYcolvTCNP9pY5kv7rYwyq+otKDbTdVW+PgKaS17TfX0/nUCdMoOkpVmklwWdzwxyiFUmoCSKka/zW6wBuvYvYu3f3ICbW64FWJv7lE5c7E3quD9qbQ06Q6ii+bWzmmE2qIRNdlOQqzNAzgFMUIDpuhzAI7/3vkhaiPgnpTSeFD6IDBIuB+6QMRkwd1n2NUgu+2MZCgTYaDW6jKnoeH7Ae10n/mAoIltD8MkMQ6FkkXlbpmnkdA0BQ/FFlgDZdzMmgFRayec9AXbqY5qISb3vEqucOljHqSjGWvi6Tfldvu5guxawDtS2uRbm+lr6buscYDruxIBynAwAir9zTvIeMCENTAT7/X7aKzoJUGoWibRvmEWGGMUaqDSxCkB2KoinCOiR+JcUnDa7EARyAQoNks4HZo/io7QB65FR5kbevHUBqDWrNIQuNfWuUDex6XMETDhmlxRL4AlgSoGNBJjRimQGgD754U22quhAHQ2QRVRrz0WxG7KvQRJY7kdFA+9t9KNaZiDnHXMq6FSw9BjZmv0VoQjaIZ9ZJYAEihoogzJXATwR9YFyvtYmNkrOxziDGCUbktnV1S7lX7qGmSQ1VSp2QLEnZZi2sFXNZb+s5aTnlNoS/1djVDNck9k0BZiQgRKRRCbNFECO99Pe0qnPIvP+4TNqFtlf0LU+FAApzbnbEFJhdB8ZpRQb0EUHtDjLXWTS8xjxak1gn6M1CTBrG7DmubH3pLIJKBtn4aIptu+37FLB/WiKFbAMkTW6jl0KMQ8aqgwlSEV+96+P3Ov9PEg3kBsp+06A7HuQnLd6HXotE/+8H9m8z20kG/04T0qdQpcCdgpREXA6aCe/PayhzoXUoDiPSWatWTNPAIz4KGOStScEG0BSbEAxWT8NcHWAn3awdQXyHr7tYJuKQb5rgarJz4e6K8SuDCb42N+PV+OwFQxZkIQaBXBiW1I7zKyY9/39tAd0EhapX2t87JtatQiLzNscrKMBUpikgKM8OgWWQI5YFZHnVQRFeTTOxjSRkMyu4q9cj9GwK5VDbQODprOF37K2UK/FFBubIwu7jC3wIL1idanGFOEuKww1H0TQS22wbMkYk9nVVnmfGpvdkn0Pkn3p/1A2WsUCy5tvlv3Ok10nAMnkgtBL/xDpOfXF5MpvZcDi9zIgahlij2xmnf0JpUIDyKAafICt8w8vJPZqs/k35ELoVvymETjRTTlsvZfWUrBJyZcM3AjJuCoVSTfgvEmAV9pDbHLe9V0kp9r9tBd00uDY50R9sNT7xdQqkhd1ZcCPBshpF+ADYT1uSzYZ4rb8wswkbQGSlTVoKpsAk8EybytnsNYxQK532RQ7qRwqSzGv0qTIWBcUaJpYySeaXznAR373JZssAviGRINj/6GDdwbGZqdlBMltkEUDtpmV7XbKCdcp9H4cev9mTrOJ6jgi84BySCS9hGJ6iM6hDJ7L0hX1XVX5LQNwVJ/P4KgB05DLXUPKL01sMb+3nClp395PA3IidNLdPhZJ3zKqrR+aRSZzbKy8M+0Cpl1AFzJY+jAElrPfz0DpC5AU0GwqmwCzSWbWzC7bQKhtQBv4PYmKnVQuvqeCfCLDdJZUq64Krqq4mo8skL34Jqn8HSwAysLEOlBh50TcZyNI7rBs1fSzk7LrOsUcyfxyTmj4gNhlC5hGWRYctyL9QugJGGeOiyDJL2QnuKW8AkfNJkPg3Rv4Xcb7aTnZTp10cM5WRFs8dO5jmT5SmlYFIKed39D02hdhkK5veq1cYpUrESyFXbbeJhPsSmUHwVKKEzhD8BEsU3ECknJ4sQk0ANguLwiLwiIbmF7l9RwWmT6yteHYtOxrkFzmIm/lh70Vv4h4z7DEZ08aneatGDcQ6QUpHT2MjWW4AiWTaW4jJVqWfsk+ts6+VufuRbhuVkgzSO/ZBAuwydW60pSKaFqdB4YCosjXdLyfTrxO/fesMYPm/kWio1QF4/osUptYBSD75lcABasckj5AMosMiVVOK5fAcrVxaB2hdgErkVUuYpYaLCvXq+RDiHVkOTLWWvA9bXPlrbTIXMQogTLyeyCgbbcWXPsaJOUiz/txbTWYYN5nhs49T4eTWaetii4Fl/ep4ATD3+QMr+ql8ax+rzxWStPF0Hjk5wC4W/rAd4rk/pTbEFVHAYDjFXX/OxUw5mORV9fq0P14P+22TkPnN+B8xAAD7YA0BjARGPSHrNmYeQrICYuUfQyKIT0vgTNsaHYV6QNlaXb1CSyFPTaVxWrtCmbZBsLEcdrKSuXQesKksgjOoopF1CtbFlR31qitgTUWLuYQkwJMAINRrwBmI1/1e2pMdkP2NUgaLJ7g+/tpwXv6nMtMCluZBE4WnTYSY13xGWmhw891zqJN71tn4YJPDNITz0yN1f4eDaiyjYWgUdZzrdX36BxJ6RxiXC5LxzqrEnU2r3SRytfFOpTz/+n8mXThwswEMPMxjPfTbutkeq/7gGfBVZ36k7Qx4EL1A/mM7RzNE7vsMcNpL2gnm18H/JNzGG1aKCqAnHaZTTIwhgSW8r4wy5WKI2+7yqFyBq2naIpl4JTUEU+EisQ3yUWnKBXziHVjIT0xuRgHG4E4qC1Jb3GYnm9isbgTsq9Bch5l38oKV59zo/c20mlITiadBo/tASNX2rAzTVlNNLUKWLnaxVxGLrfVqJNMg17Cz/ZfFBYpANlYkx4MzAyMrnZwjUsmXmMtXGOVTqJPqevg/+kyWBrH//Nc0+om8r728/20mzrNAB9KoLTRemEMYGFAIJCJWzLwoMguuUmyVRTT9ulmFAG5LoEfg8U8FjntQiphl/qpDjDKDmA3QnRXCEBmk6tVgMnMcrWpsN4FHGgcpt6mwJ1JZdHFikECnpOKAbK2FsHFxSfxGkEAU66NAVJTAAZLwEpZRv4Hhn8PAwC527KvQbIvy65w+yabRccuI7J6nTdBnGw6LRSpdQok4DHOJYbGrDEzO+MMXGNB3oE8RTaZQc8TwQ4AJKDZoylAsqodbG3hmgiO8bv4Ne+3ChxtUyUdbVPF91xmjy7nR+oizilCr39tl6iwM/OZTVziU+1+2i2diltIsZo+UBpjYIkSm9QmVxuJpI/7Ab4tXABaxBqrwaBboOkiVikA6buQSjVKxO0QUJqYGmJi9xBjDVxkjI0CyWk0t/pABaOcVrwNRKhtzutcqWzqXFJbwoTYPEuQnpaECgbBiBmWwdIZgxCoAEsgAubSI5fHbjdkBEkly/7ANvNDHJoYNrPaPZl1Qt/prjpoQDNI1WlDnltnYGsHOw1sam0IwXMnDilSrsvMzWsrJCDZWH5eAqSFrS3q1Qq2jgBZy/4qPZzaGsvvIXVVr2MHdV1MQP2fQ3lf6pos02l9kSlx3r5T8X7aSZ3SKMxJUxDGYw1/JsDAxalas0kxuVrD5QScNWhDLhk3ZHbVEdna16ijWJOJVQGk9xkoWeW4LXymESRtBknfcU3X1ltYa9B0NqWGTCOLbCr2i04rx+Ac/ZXMHE0qu8cgaRCIsBJZZe2AYAwCOH6gtgawxLFtNla7MrziMLGMnuC71EeYx+iHxm6nZV+D5G6sRIYGctHg7oat/YToVLSVEh9eCY6urhCaCq7tuH7qNHB5OM8TlORMVgCsl+RrCd7RHT+iL0axSGtNNKnyloExA2S9WqGaVKhWS1C0TQVb1+m5E1ZpHYOjky4GsSde7JXHRZtzpRAp0DyTMJ2uz3JtgMb7aTnZjE4FQPZBUqfspBZn/FYAm1SFRRphTEaCy/j92lqEECKLZCBIRcnD4qvRT/8QE6sGSKlYxe8N/9ecTWFgTDa/Gh/gnEWoCFMf0HQc6SpskreheO3J8f9DuSjCJLoePAETx/93E1klLIAQi0qZbLOmuMAw4ApFGixlIbJXZF+D5GZX58u8N+rUP8CmQt/SHoecVP/P4OgVWDJzdLFVloOL4Oh8DuTxrYeVuq6BElCKCDCmQJwIjmJWrSZVZIwZIF3j4OoKbtKgmjRwqw2qyQoDZZOZpWkm/Kjr2AevSX3xEJvJUuwvOfcBFAnT+nptZ43KU+l+2gmdZgBSFeaGek8vYDRQAiYCQWaTzrCZ0RpivxxMMrmmIuQRIDn6M6dp6FJzWoRFkgJKAUgBRwpUFDkQZmmsSe212EeZAdPbAOdtAksBRAHLA3Err+W5iJTZ80SYpBQX/h9qWADE6cEEwMXrFa8VLMFFk6wlQkAJlHtF9jVILvKFUO84mvPedssiv8vJplNxjsi+KJkjLTMvF/s21jVs08G1FUJbwfkA8tVMxR3ruL+kcSYXQQ+ESh1X5FdGkBRwTKbWGKxTrfLzarVCNWlg66oAyASYcWtWJoWZ1TQTZXplwEQl3QxU258hFqkSpvu1KeeNwWblVLqfdkwn3bUi9KItU85qKPuA2ioBJREveJwlIBgEAUfKbDKBoTHJLykdO4ZkHlhS9EFqoNQASSqYRxcusNYgADmQRwEmBQJVBBu3UglotQeQqzFqrgsE3xACOazQwD1bOaBTlaRsZI0B6TlAMMRbAUodG76XgHJfg+R2+EI2M3n1jz0eO/ue18lmAMjmxsggo6mS7Foysdq2YoAUU2fsAKLBj5sjBxhrYjk5rrMqQEqeirzKHADEvkdmqDb6H11ij2xyzQzSNtVcgDTNBLaZwKysZnBcmaTO6qgEGCv1f9vZtj/CNPtm1oHk6WWZ1Sl9P+2ATkazR9/FL+2VEdRpCT6wb9LGPqHGwhmrckSi740AIm5fFaJhsYaNRQQMPBm0yuRaO4M2lPmMywhRBsgZ/2QvmIciuzOBtymIx1kuu0gRJIWtVpEVDuRj+rAg1UmkEgsQV5WCZbN0pI0QRgmbFxGk2KRcgWXup52WfQ2SQ7JZc89mBmyrnz3ZdCoPLBmTcQ5U1eyPrBoYt5b9kZFNVp67a7gQEgAyQFpIc+Si12Qvqi9F9Km8R1e7GCmrA3QcqkkdQZHBkJnkSgLLRQBpmkkGyGZSAuRA49i5ADkncXqj67tf7qed0Cn1OZX2Trpk2lCCu4lgE/ucGYDdCLaaAcpgwdAYmCGRAYKJvkkLtIZQOxsLm0v903691bDQ/KpFTKxBgZy8Vgelp9YaEBmYwItNW1lQMLAVFaxyDcMgCZSl75ghE6zhzzlPsCYzSWsikwRgLafKEJDMsLLts8l5Y7fbMoJkT/qrFr1vqwO0yKy7jJxsOuU3ysnfRF9d9kuyydU1HSiExCbJB1ShSaexzqAFisR/aWkFDBdB16XthEEKWErqh7BHV1dwq3GrAJKBcyX7IKsaZmU1gWMCSjGx2grkmhIgjU0AWfgp++ZXdb02GpP9dj9tt05sVu14q4pwz3SsKD4Uza7GAjFyVfqF9oGSgTGySggAGJAFWsuFLIRN1jZuncHUD9dcTeyyV/J4KE+yH+3a/1eYEFMK3hGGSdYgRdlE6aYAGgDTja+1s4D1sXCCgKUhtCbABsBZBwLBk4mBTmxmnSd7xdQKjCCZZN5qdR7tX/Z8+odqetuhY5cxVe11nQBEADARBEw0U3HkJwmLrFqgajkgxge4ugJNVlIzZrk5je1gnOGiAtbHvMnYvWNOlxCdZ8nFAZzyS1bJ9ygBOX326OoKdqLBcaICdrIv0q6s5p53QwwygiRPmtXS4KgX7kMTxn66n7ZTJwhACjgOtHRaWCpNFnwUeMFHIUbkVHC2AqLvD5pJKrPrpHIIAfAOqAObZuvASfqNs/AV12gdBEpj4BVYsp8xXx3qBe1QGOhWEgN4KBDIUra6BLliJVCGjheoruP3S51yxxHuW0lwIcD6aEo2gLXx/w0Eg+gDJWaTgQCODs4m10XjObSQ2g0ZQVLJ0IAsu5rtD2L/c2bgvf7nhr7jZNTJAIBreCmaUiBiI2LrYOoG1LUwdQ3qOHXC+cDpHz6AJivpuyoAPuVOdnCNhZ+WvSf7Ip1DJN9SqukIIObUjgquqTObnDRwDbNJYYm2mQARFDVAmqoGmhVO81hgXk3s0VWD4CjaD+SBJ+nnkGkQ2O6xWyQn8z0+A5ChKwAy9T8FcvBOr0ya6TUFNsTgqMdDgJJ1iP5J0zO7RiZZW4NgeVtbgxDZ5Epl4YPDtAszzNLEqNT0/0sJIH0NegDZd0cESVuO6SeSN5klA6WA6NSWIJn14sICUx8Ks2tNrFYIBG8l6pajfznHlBn2ENr1F9x6PGX/Vq0LW5ERJAdk3gAsMinNmHQw/ONd9rtOZp3yF/aCd1SyfTK9Vg2zycajGmg7JWkh3nESf2g7uDooU+vsZ6QWbJGDGUHRxPNocBTTqq2rwsdo6nop9kiuzkA4AJDksj9Ss0aZu5YBAqCM+NtP99Px6jQXICWqVfklB9s4wfO4BQ9KVpEYjEUBhriRtomzqQbKnhYIhFTvtA5ctaYONrHKxlFik7rWqjysetAGOZb8bwwDJcBgKUDJka8MmCwWVr02nYE3s6XtfAiJ+cr/FWJVHmtyoQFPNGMp2ajhzvHeT9sl+x4kN+tLWbQSnnf+zQ7qqaBT/mCZ7iCgSDGNgstwTEDBw9YeVoGecRZ+bZ0BsqkQph2oqZI5FkBuu4O40ocwyBIoBRiFUWrmOBccq2bQ90iuWYo99sFxCBgXMUigTKw22Fpo/KlwP21Fp/zhCJDdNIPjEj5JMbvqjhQmbokcTAg89hRg0IC6KYwNQDULlBSBqCYUZtcQuNyblHmrg4Enm9ikJPMncIomV2NVzmMwIBsDcUAp+nvutVTvaaCkQEBMCQmW4DuCMTmtpPWsgy6Rx2AZX/vALDkQgkXqlcmMkk2u1phBBmljjWUptLCXZN+DpJ6A+iYf9N7bzMpmGfPSqayTAVT6RyxkbFR0a90AXRt/PZ5ZGviGDL1C4nbKgT2+bjlcXQBygEVq9phrrGZgLE2udQGAGhyL1A4dudoPzNFgqc2qAphATAlg/fh5z/ylnvezzkKcTQQsh4ByP9xPm9UpSeiYKfquBEjZR1TmSQ6UpUuXWrkOTMyhJAowLppcqcoDXQGVAsoi0BQMHiuxQLg8Omux4ri/ZFNZdEXlG1uUphPgspYDggypQJxAbLAY6G0e4mf4X2SlBCilpmowBBMIZHJOpvecejXU/Ll8zueT6ldicp0JW1XSv5eHZLdNrFr2NUgOBQcs9cPD8Q3aos8t8s+cjDrxCWwyT8J2MNZxjuEKM0gEz6vyKM61ALIvkuoKvu1g62qQQZZfpdij+DKbqjS51pLTWGefo4Bl3cxGrfaYI1VNyRolICflRtoEjBoUReNFvXqLwtjgzxpjinJdfaDcT/fTRjqlSXaOebUATB3lqnyShogbZvfP7Vw2t8qDKraG2A6omsgq+fupalC5BrCmGHNSi6YJMYMMsREzm2GJ66QGgm8q+BABVdibYpPWWYTgCzZpI5hZE9NReukf84TiTZVyJS0DpJH0l5ALDZSPAB8dnTpQyM95PjhuBqk03aBuCz+9s7KvQVKkv6rdzGfmSf9cy5x7yFF9MuskEa7iw5FIT1M3GRwjgwQY4AIAWAdnHWw9RWg7BB9g226GQcpWt7CSrYBiAk0FjIk1VgoQNXBqn6NrZk2qAxGsCRgR3Vukwv8lgGLJay39ECTg0M4Byo3kVLufltEJwMbsUQBTgWMCxuARgi8r78h3x7KKAPgeNobPaSsGSyKgCpFdNknfyjWFA06zSnLCJnOhfgFNqXQzrRxWG2ZrqTycYpNSEECzSQ64IWaI0TyxyASbdAtU5GZKr3CKbDAocBTp51JqQJzHIq1B7JqiO4GUx5xI9qhlR0HywQcfxMtf/nL8t//23wAAL3jBC/CGN7wBj370owePb9sW//bf/lu8//3vx1/+5V/i4MGDeO5zn4vXve51OOecc9Jxz3zmM/HBD36w+OyLX/xivPOd79yUfv0BmDcgi0xBy/pW5n1+o+8/qXXq+SPJumjbiQE7IZYBCz6d1wIRoDjIx9UBLniQ9yA/HLAjzZkzi8yf5w4ddhYYxeRblJdjAAxW2OOASdVW7GuM4OgjMHpfgiJB+R+X+KUn9mh4kjFgsDSGGWgfKIGN/ZOn3P20QCdhbxuyxyJYh82t1E4zMAbPCzhgFiil0o51HJ0d6/SiYlMticnWhRkd+0AJiM+u9E/KIwFO46IpM8zUUQ0x6R8Qa4UFBYIJ3A6Lg24oxh2VJlYg79tIkiUkmmNFhoByGRlqfGMxu/Bb5n7aDdlRkHzJS16CL37xi7j99tsBAD/8wz+M6667Du9973sHj3/kkUdw77334qd/+qfxnd/5nXjwwQdx44034gUveAH+5E/+pDj2hhtuwM/+7M+m16urqzv2fyz6Yc8btP4Ku7/veAf7pNBJA6T4JWNEIKoAE+oEkLmFFvdnNBWnh1CcvExv8ioWpxKwY0twNNbGc2VgRExBSfmPdbM51mirtOpn81MJikPMcd78IXOUiQdbY5JJlvPSaRAo58kQS1tWTor7aY5ORfUcnf84xB5DBtAEjl2b7jPEBRmAfG+KyD0aF2HUTfk+CzW7EeoG/ZxL/aiqSQJKMblSvHf6/km5Z3wF+Caztz5QUiwfx2AZQJE2SlpHJIK8fug7vDELlIvMsVsROZ/kQKZ73vTYZM/UuhP301Zlx0DyM5/5DG6//Xbcc889uPTSSwEAb3zjG3H55Zfjvvvuw/nnnz/zmYMHD+KOO+4o9r3hDW/AU5/6VHz+85/H4x73uLT/wIEDOHz48E6pv5QsWtks8rfs5Ipor+hEQA6VDwYm+iMR2HdnKMDU8RtVGy2Iv7Jr2VcYPOA9m5P6k5b6jACipJcULFIYYzy3qRqgbjJr7PsaFwGjz8DoFSgWIKmu5BCLFJxL9TSNYpAKLPtAOXN99Tn734HtGc+9cj8NnXuGPSpwXASQ6DqEbgqEAJJtO42R1kEtxgbut37f0E4itfleNXXDxQWAiIIMkKKvBsp4QgAhzsSzdklmm67wAWqgBLggjrA9W4k9Jl6rlMbBplc4M1NggIudZ8DsL8Tk9SIAHSqf53qf4ybLMYoVsUydyfe/lr3CIoEdBMm7774bBw8eTAAJAJdddhkOHjyIu+66axAkh+TIkSMwxsyYaG+77Ta84x3vwFlnnYXnP//5eM1rXoPTTz998Bzr6+tYX19Pr48ePbr5f2hAFg2a/Cj0dt7ntvMG2Gs66chWBpxompIcszqXn4O1DF7tlMFMJqxeYE8hVjKjFTjWDQpGKYwxVr2ZG6Hq6oXAKCt8HxgUfWBAlAAdADNBOjPqxq0xBh6UijkTmTRZCDBqoNTVSIaiW4dkO8Zwr91P6Xz92quhF4yzACCpmzK4dS0zx3aawbHjoDG572ZEN9QWc6svTbWm8jB1ALmmHJt4bwwBZUBAcMOBPPxwhS+wU37AflBMBw+503wX4CqbytVR4HJwvToJ0E2Z0+sInvIaYMDrF2Kf2cZatPw8/ocWChRNYpCpbq2yqix7P+2W7BhIPvDAAzjzzDNn9p955pl44IEHljrH2toaXv3qV+MlL3kJHvWoR6X91157LZ7whCfg8OHD+NSnPoWbbroJH//4x2dYqMitt96KW265ZWv/iJLN/tA3Mldth5wUOmnfZMork2OmQLOSAA4h5G1kkQDmTljGZTNt8hGl4ukumVKDjkatmrl+Rg+bfIwCjD4ogKQMimVwDqtBC66sgeHpywAmHicNZynWsuwzSJkNpAD0QpPrQDk1qS+6rOzl+ykxR10+bsi8Gveb4GH8tDCvUtdmkPTK1JpMrtlyMe+eI7D/G90UqGJlKWGUdQM0rI9plLk1lH7KqpogxET7QECG01mbqICm+CeB2WCZY73PCFAaaxC6wGkdNrfXMr2vEYA0JoPlEHD2pQ+QVplNbQJCBk6jWKMwyD6L3I37abOyaZC8+eabNwScj3zkIwBmaTuAFNK+kbRti2uuuQYhBPzar/1a8d4NN9yQnl944YV44hOfiEsuuQT33nsvLrrooplz3XTTTXjlK1+ZXh89ehTnnntueq0nhnkrGQy87n92Wel/x0bnPal16plci7wyOUfogApcts579kcqXySAZAIzfdOsRBxGwEw1Uo0tTKm6XRW5ugBGigE4sirXwChs0ceIVS8ACUrmVfl/5wUvyARiQDCG2SkDpQEZwIEgywYNlAAGK5MI+5RtvECDIAkKOWWhN0Z7/X4qzMk6f1FaW+naq0v4HwuAjK8RvGKUbQ7cEcvFHL+kRLpSy+UV06JOHs0ECB52hYqxSSkiAJpqAvRqpRJhIOJ11gzro376nusDZbABvuP3TWSRApZ8KakAPgFIW9lsghXQjP0ny24luWtJLlOH2BkkM0qbHvzfuhjR6tLrmX9vRpa5n3ZKNg2SL3vZy3DNNdcsPObxj388PvGJT+DLX/7yzHtf/epXcdZZZy38fNu2uPrqq3H//ffjj/7ojwoWOSQXXXQR6rrGZz/72UGQXFlZwcrKysAnWYZovV71zZtQ+p9dVvqrpY0mq5NaJwHG2D0hBe4Yy0nQ8rmYmA3rAAqwvVy1/u8oAaJiqaHfcUMn9vfMqyTm1DnAqJmjDwyKvOXPSKktIM+nfbNX9snk19KFnhlkvnpGXT0XGaSYWTcczzlJ8MX7vbJ4cj338v3EO3rgGFnZQoDU0auLAFL2eQbKInhHPZ8R7ZNMATwRLGPUNnkPszLhBc9K+f/o/1EDJQHIeJiBUUe86kAeYHZh1gdKIHBqVcd5jwKWABBi/qNVTFHMrLYqGaWrLGwsRTdbv1WVzRNAtPlRO5P8kWJqTS22lo2w7W33tLn10KFDOHTo0IbHXX755Thy5Ag+/OEP46lPfSoA4EMf+hCOHDmCpz3taXM/JwD52c9+FnfeeSce85jHbPhdf/Znf4a2bXH22Wcv/49gY1+O3MyLVtKLGNWi9/T39wd+0ar7ZNKpmPCMBRkGS7JVMp0VABm48a2E08PV8UShZEICiEAGRWMAJwBZzYJlz8/YdcPA6ENmi9oHyfUoJfKQUk1paUukAVL7D7kLfQzGMYC13Hg3TxBsoHXIxZ+N4c4IziCV8Or7JdPYzCmlVqQvWMvXWncd6bHLE30/zfwW+6C/BEBm02Z+vhFAUtvm4J24lQjXeYUrJNUIKtVIuwfYLyklFwNCCDEXVzFG9T8LUNKMJzumhtR9Jrl42p7G+8QYLqDOka5cZo4MgyXA7JL/n2wqTaXuYqECV1k4ZwsW2VQ2PTRA1tYm9lhbMbPK4jC201LmVnm/fx9s5n7aDdkxn+STnvQkXHnllbjhhhvwG7/xGwA4BeSqq64qgnYuuOAC3HrrrXjhC1+IruvwT//pP8W9996L//7f/zu898l/ecYZZ6BpGnzuc5/Dbbfdhn/0j/4RDh06hE9/+tN41atehac85Sl4+tOfftx6D030/f36eX+rZdF781bWQ8B9MuvET2IxAcpskgCe7BAnIYpFB0jFhmpW1G8rJSxSVbqZKQ/XA0bvMwh2YRYYM2sEWh8SKLayklcAqRvazmeQGSBdXF27ANTWJrCsXcnsHMqmtDPXvRdKL9cpAUj/ugEcYSTfkRYXqmWXrQod+pPUTtxPC5lAjz0CmAuQhY9yKEgn+I0BUvslvU8FLAAUubnp/+rVCLZ1VUa5di2wMkGRBxw8+ynV/9cHShoYcGpKgJTcyv7UrcHq2JTZb2sNQsfA57vAdVhJAngwE0wr4JhMq5VNz2tnB1lkUzmspP3cF1NMrbW1fK/3TK3yGHTH9baFfnP277TsaJ7kbbfdhpe//OW44oorAHAxgV/5lV8pjrnvvvtw5MgRAMAXv/jFVHjgH/yDf1Acd+edd+KZz3wmmqbBH/7hH+KXf/mX8fWvfx3nnnsu/vE//sd4zWteA+dmbfeLZFnT0jxA2KosGuxTTSeZmCXKlSxgAnhiDh2zSpP9NUOVTgBkm6VqVVQUKdCl4eYAowbDrheY0wVCGxgYNWssATKySzFXzblg1ghA5glDA6SngJqdkYAPESj5ahmDDZvSpr0DJsgMKvNGkztZICD7Km1XFvHugaaM5WZkcLG0SDSw99kjMAuQvdxIKVCe6q+qKFZJ8ZgLkAKgPsDHyk5SI3ioTrCu7BSchZl2sbpTC9u0QDOJbLJlYAwexvPWAhzQo66rXJ+VKlefEgkEHFBAWS7I5k/fApZTa2A6BiSi2BYrVtDp1xAWQBQza2KQEQQ1g9RMsqksGpcBsXaWwdIaWAsG1OTLZEY5xCIXyYkCSGCHQfKMM87AO97xjoXH6IF6/OMfPzNwfTn33HNnqu1sp/QHY9nB2cwgDrGuU1UnMacmNhnAZlfkwgLCKgEAtgeSPQZZAKNmkhEYCQyM7QAwatNqF6gAxjZwlwMBxVaAMT4PlP1AKdF7wMQqDC/5XIxB5Rgwa2syQEoUowNsDKDggtImzZqBAGlKW1tTxD0WplYFkEU3izQIJSPPjJJbQFEweV8ETQAZOMU83g+J3EA2nAPn+U/jtg+Q/YcsDqRIeeGHlJzHCIAIYSFACnsMApLxEXoF9Y2zQBv/P1UfOMTawtx02Kco1yKYJ3huSRU8jMLDjYASXQbK2RqoPIVLAI2wvEemPgOlMWgtdwZxzsInM/LsL1ZHuNrKonZ8ztXGJWBcSSCZWaQwSOmNaY30ybQKFE0K2llUp3VINjs/bafs69qtQ2M0ZB5aRjY6bp7paSvHnZQ6CZu0AMDBPCADQ6mw5OBnAJQBOj0zIUExxgEwFDaog3FaH7DWhQIY+wA544MMSEnY84o158AcwAaTfDE1sa/GO6MAMiCH+wc461IkK5GeNkvTqvhzCqAYYFgzPsr+eA20f9ILkVTIGwBMl5g8DQHlsvvmSV/HOQBZ9Hpc8CAvIJkf1E15n/eDAOljp5kw7QYYpQreadW/6ByCLqg/7RBaaebdcTnFqmYGmXIps7Vkq0Apku4FVAkcgWx6FaCcdiE9PBFs4LzJuSAZ2aQzs+xRA2TaH1kkM0hmkbLVLFJSPpw1S7HIZeennZZ9DZLLAsKQM3mjFc0y5tDjAamTSad8gNS+BGKXVwZLAINVkIV9AjPtp1KPOlrOnDr1whh5u+ZDAsYu7vdBGGWOXu13PAByIrdIf3IqAhksM8LaKfaYADLAGYsQuGuDsUYBZf/i5espLFLnCeqglaLl0xw/ZQJAZcZO11kKQMh+YwGPEjjVZ4rzyDnk+44HLPum9wEfpQCnUUBasMgCnCTdgwsHaIAUBunbjoEygmNQpte+JLOrtXBNjWAtbAhw8TPBB1QTFbwTU5oskIJ67CqBKKScWw2U7LNT36uAkllZBm9JvQCAR6ZmBijFLDrtQtFyqy9iEdH+Rw2QQ4xypYrAaDN7HGaRZSDPzPXE1uannZZ9DZLAcgNDA+9tNIDLDOS8Y041nfqmOgIAF3vyDSRPD0VhEmLEaUDKV5wXndoq1rjW+WROXVfPBSDXuxABEmhDSJPIup5MUrj9MCtzESA0QK5UFr7ijgreAp4MvCVM0mKAAbL1BGsolrbLEa79JQOvwuPM0jOzzhbuHmBe6eKGbGpF3Eh0MHrgqf2/8l5h/vbpc6C83yBk0NRRtemfGQBOpaPp66v/l/7/M/C6qJYTTa+JRcp7XcvmVAWCGiD9NPcuLXyTc5p8i7nVti1CXcO23LOUfEissm9yTfaEWHbaAmrROJxHOcQogWzel+cMlDYxyfXIJDVQArMpJLo4gPY5rig2udpU6bUGxASWzmBS2RlfpKSCaBa5XfPTTsq+B8l5bGjotYztvIHait9w6NhTTaeCFJkNGIc2+QEpYd8HXmnrknDzTKrCGNe7zB7FvNp5YuAM+TgxRQkwTjs/yCCHigX0y3PxxJIb5DprgAaQxYALvDBwxhQA6YlQD4yDTHz8PJrXQs/MqgFSBbEsY3aVcZgxuYaeyXUANEvGSQyYAsI+pOM0JhZjvhUZiHzVr8U0ms2t2S9IkVGSpHhEEAzTbgYgC99kZIVz2WQLWGf5XM7C+gCnATY0zCpV8I6AZR8o+//nMkBprYFtfVnmLYIjbz0adY8XDZwXgKQs9jRYCkCuNg6TymES/ZYraeuS6bXvi5TUEM0ij2d+2i3Z9yDZl0WmxmVZ1qJjl/nOU1UnyAQ5ZLITcx8yMOrSb2JKJVoeHMWkuq78j+vR7Dr1PGk8MvUJGKcJJEPRdb3fEkgnQGv2WMWJiSchCx/YNAUgAaUzBCDAesAaq1JKkBrlzlw2ZL6dAnZC6YecaSasIz37gNI//9ACxdiSOWrQ1IApn9PHk2KYQJ7fLVsPBv2aW5Wh/63P+HX1HDHFRhbZB0MNkBLMo6NdAQxGuuoo1xDNt7auQJMVhBBQTRqQD6jj5SiYJOYAZdS9aQ6gD5TWA6ZxXNOgjcCmaqZaY9BUDJLrncWxqYezvmCS/RJ3QAbJnOIhAOlKk6vLrHGlssrUmoN4yio8DJhyV+z0/LSdMoLkNshm/IC7JXtRJ/7yAfNq3AbSILmYOQpocpBNNquK+XSty+Ao+1pPONb6tKI+Nu1yQIMysU4HTa2LV9x6QilZqDKNxQYR1lgEKwULOOfS241HpPBFSo7gss2EgWyC7Is0Eo4pVAkMjQLDBILErGwIMNXD9JPjjYXU5T0uoOwz0QXnKQJu9HMpdRjBLiTWp9jlULRrZJSFRBZpPAfvUOAKN4lJhoAqrIA8AyUAVD7AhlAApIn6DQKltcOMEoD48sXfZ9WjDcIqPaoIlkOWkr6UlhE3a3KNzHFSWaw4m4BxEs2tjctFBSpbBu/I+nLPzk8DMoLkDstWzZs7KSdCp34cij7vEDgKYww0nMYhxQC6CG6aNa75kMyqwhwFHB+Z+sQaSyYZCnCcpgl0fhSgtdrnYhLL1Kt0AAXL5KAFQk05xUQAMgxEtUq3hBQyH1TAigDiUL3SCI7JHzevxFr6Mgfq9eWU0n+LAJOiZUDq8RbXCDabYPnEmwfKZGEIMNTbH1lrYSYGiiAiLaT+f/Etal9jYo09lpkZZRwnX/6nHgHWGRjHVWqMZbC0Pgbx+MwkBThr9GKco/kVwcOe9qhB/RcBpWaQkpe7nu43ZpVicp31S5bn0z72JvoWG+2DFECMZtVJlc2sk8qx/1GxRyesckkb6V4zue5rkFzmIm8FKLbi+9PT40afPZl16oOj7NsKe5RUjj5IrkuKRwTKY1NfMEd5Pe09fEy2Tm2FYrBIHyR1371UEFqBZF+czRGGklISegA5TzJQ8jVO1WR63S6GK80sUbAbiEyyzeAiNUkHisebVAYwgqWtmDH6jgNZTMxblWsFq4J7eqb2OUImBnVJubd84fM5FqQMpZfO8TXQ594AKPuFBDRABk8RQGfHjCICGGfhGlucQ1ilm5Q6V4GbhyegtA7kHIJ1s4wy/m/zKvOIydwqk2suMM6ssrYWTcX3+kr0S/Jizs2YXPt1WZN51ebtikS2xuCdlcrmwubR9Jprus6oXOqPrc1PuyH7GiR1oMnQBd9qwMwyzuj+QC/6rlNRp60ApEStDvke1wUsI3tcU2B4bOoTQDKTzMB4rPVcQLoL8F4BpAJJXYLOKoBM1Ul8gHMWoaJUZk4kTzYhrcx99D/qTvH9RrhG+W+sXMcYuZqqy4QN+iXqgt1eBbL0RYMjUNYklSbYQcCSQNblHqFAqqSUZvt+uomYXucBZH9/ZJkZKONuhAQGnHNrU/F8CT5iYGQ2TGh7XxPBX+3PfsYMnjriVQDSTz2DZALWcrxCCxhnYCKQusYh+JwOYpWZtl/mTgPlhj5KzOZRGgNwNogtQHLNB2V6JbQ2JLDspzj1JQFkZKK1i4E3zrCJVUyuyvQqZtVkXk1pH6bwR27n/LQbsq9B0mDxCmYrwSl9gJg3+FsBupNdp6HjjgcgNYvMIBlm2OOxqU/geEyDZOvhu2haC5S2HAtCM8AlMlQImgLBBooBOrOh9D6EGMyTG+oi/v/zvkeufWFq7fkhZwByupYLdrfTHKhSpEX0gLLXuJo6ZpWmbkA2mmkVWHID68CVeKS0YEACSmNU/d05wFgE/cz80zmIK70UlcXmWvhASZmDA/8PNiigtwz8PVY5qNcAmAVhkSEzSj62t7BxBtYRKBgET3CNA/k2MUk5/1At2BmAxCxQpihklECpwcIawMXFjrVcaccZw755Y+BCQG11FSn+XP8eTEUxTAbHVEVHolmjL1KKB2gzaxW3Uugc2Ln5aadlX4PkPMq+Fcakz7nRexvpNCSnmk5axAcpoFl0ZVf+yM0A5CORPfYB8tjUo/UBoQvoIkgyg0RiksImAQzWtyya0hoDW3G5L4D776IBXJf9lDniNSdxy0OLLgRtUfbhMzFgJ0WvSlPhIYBUpdgSYGqQ9D2Tq2pcXTBI8R9GsDQAg48cW6EESoqMkeKxQ9HMxcVcAJRKCBkoU0lDYY+KTeaqTI7DP1U7q/7DWP6sLjNXfGcCNSqes8mVVAH0PIbGGVC8D1zDoOpqh+Bzek8/jSREwOz7KIeA0pjcUA3IBQdMXEFYGExjZ9LTGgfbIYGksMoqmJlSi7Jgk/tRl1iU/Ms6Wk0EJCfR/Mos0qGy2WoiZlZ5rU2tOzE/7bTsa5Dsy7KMaRmb+GYGV278eYBzSuskJk3x/0WwzAXFVTk5qbMqBQFi3uMQQH59rZ0FyAiKnWKQ3TQwKHclmwSwMGBHaly6iiFNB1OEzmBqTQJKCZRoqmHT1sx3mFzCK5ldVXUdoyJbBwFyfQ2pq0XwQDvN7GWoiXXXln5JpwClig2FpfVTxdO9qQB0SECZGK6t+LvcBgCZL+hyfkrIYRUodDGyNvcmhaEI1IGjdKN5uPhfrJ2/4HMOaLv53x9CAZCkTK/5mAyaIZpcyRNsbHXlovm1LzYy+Y2A0iiGLb9BHczDYGRhDMXnDrWlFMjTWpNSoWr5XYW8IO2L+DMFHIVRil9S/JHJD1mYWrOZFdi5+Wk3ZARJJcsO0mYGcwhoNrNi2i86ASWLJDHDEptfpXUVg2Ppg+SUj2GAFPa41vqCPXYtM0jxRUrADgXWgXpAmYJ14sraWMBVFhSPtZQnemO584J3tvD5+JDzL/si+ZGx1HgO5UfML/MKGBWLNMEjdFOuTbq+lot4d20Gx4EIVwq+9NtFE50E65iqBjmXgNHIZ9S4mgow5JjJ6WhVyV0cAj87my6i75VAyMxDFzkg7jFqIjITEE28VdLJUOCgIQoomWM2uZqq5ibJzhaPITYJKFOrAj8ByCGzq3H83Ab+J8hZZarduEtRDQbNIaDUraWGgNJGU7QEegFSri6zSvZNmlyb2M4ySaDHJrW5tUj5cKmoeZWAdNbMKvouK8c7P2237GuQ3I2VyNBALhrc3bC17zWdUvW0yCKlkEAAQCDFLCmDpY+5j4GwptI5dICOBshuynU4u9ajm2ZgDHHrPRWm1j5LSNfC2hTRSiHAVvkuCsbA2nyeqQ9ogh0MjtA+IF1OTMBR/OXOGujiATpYB6Fjs2psAYWuTYyS2hjZ2o9w1dGdGhkimIg/j1s9NTDW57GXfEr07odmJQMjBcDMAYNe8QFdVQnqnNrVZyARvhFMbQWYkIERCiDJxWCfCqgCTJDGx7mWK6yDqRqga2FjqytrLRcqHzC/WmekgF8Bhn3gTOLB540vyBNML/eh78ssL5Flcg7EFnAubWHt3KLoTTXJCy0Fkm2I91Lloi8yJLCs7WwTcS2itoCjM8jRrc4mgBRglPqx/ZzIzcpm56edln0Nkots4YuAYSdBY7/oZE05GerjJOxDwNIHQggozKycAsKr4Vyb0hcRrPMAsmt9BsmOFJMMKa9Qpwqk/0cCWxLrMpB1vjEG3ofYuy/wRFkUFZjHIHmbWwjJJBc7JwDZrKqDdfw0m1mna2xiVQCpO11IdOtQ0Aj/XxZAywARzZOmqvlYYZGIJtbgQJ5ZKIOvhSXKbJIC5harB4qAHQFIDZQ87sKITLo3GCxt0Zi7AMroBwVRAk1TS7FzNjmbaDKmbsr/l20TMEoD5aC2mWQbBAWc+hrq/EkR733yTxpHiVVuJFILFsgTc5FLKcdNUCwy5OyVa7gmsvYBGqADpUAcFxRY+hIgQ+/+tBEAc+4lgyT7GrM5tYrFzYVNDuVE7magzXbLvgbJRb416h1Hc97bbllkuz/VdGJQMOCeib3zKrNroNilI/pQhEV6Kmuv9gFyGs2pQwDZTT28j6kfHYNikHZKAMIASNoIksY6AA1c5RAswQSeLK01KXVko76ouvycTEAmmVeNeo4UsCMssjSzxobByuRKnQJJ74vyakA5yesi3TZYGB9gnC/8j/2xZXeXAwULE0FTz8wmAtXABZxhkGlLRX0euQn0hn3AJoJlbJOWgbLh76wA0yG2YgvMGkMA6jaxycQkm5ojT0OAaTsY5xgwbX5IIXgTiwVA3RYaIIf81xos07/UC/TJzy06u56eA0DtbI9N2sT2dTcWHfVauSZFK4tFwsLE30pm5s4yWEoqSAiYydmV+xJA7OiRLR0aIMt0j+FmyicrQAL7HCS3w7e2mRVS/9jjsbOfyjr1zym+kvSDjuxSWGQXZmuvTruQIld9F+CFMSrzqgBk6Kb8WMAiATZ/GevgqgZBwlgBWOM4AEKljYjJdR6DBFSyd8pHQ0r3YBNWNLX6XDhAm1lpupa3wibF5KoaCUtSPIDZBsJAMjGGCBCuqWB8YJNfbwxhHaSjhpG8yuABRF9gX4xN/UDFF0nGpqAsXWFJm6A1Q/KIaTcgECEybAvnGgaIYNnPKEBpAwwa1ieaXamqWefEJnlra881V2PHDjNte/5KE6/P/GpFApBDZlcACAjAVL01LVHEOItujQ+wzqJby+NSR2av2aTch/osfUYpaSUAYp5kZpUOBj7wfiKOmM0NxYfdAGz6Z595YpFxWwuz3MHCAVv57HbJvgbJIdms+XAzA7bVz56qOlmTfZAekYzMOWkyCamthLDrR796TgLKBJZsYh0CSGaSvSa78j+5bEL03RSuaph9Bk7MNiGbCftmq744BYoAkknLwOTVv8mm1lwwQLNI7YNso4m1BEjdJ5F8SDVKk7Tyv7FfLgWxILOZBJTWcsRo8DDBKl+fMrnOXDTlg1QsUhhkPz82+SZ7JzKGfdOGADKcwuBiOoSL1X1MhRIouyngGrZW1BSvYUj+SVMxs0TXwjVVYpOuYTOzbbtkeiVHDDqOQM4yG+zdI/2UEOMMWxcwDJTpf3MW1nXcbkuBpXEWZm0K62zKe6TIJIN1qcCE6QU/CT45xSjb+I6lzCqtAktCLqyvq/mIcYDvybx4MwMAqaNai/8PJ2Z+2k4ZQbInMytntW+rA7TIrLuMnMo6icmVfZSLPylAqfMMNUDqzh1SVo4CJVAMMQ/SS/GACJA+mlkFIPts0kT2ZKyDjRbI7Ltks6PMDkNmN11YoOots22MlpUVuDG5c3uKatUFA4RFdtMctKPZZDtFtxZZ5DQ3Etb+SFkECPAbb9l/FiysjyAZMlgWaSLtNOVQShUf02vyVXQA0b7IaGYV5uJloaPM6sDA/UNq4RDTG0jMetYwUEaTI/munJgpAC7AVB5oQgpmMisTBsxmAus911lVbNLWFayq42qdAfV8i9ZZeAWW2pSagnowHyitM/BTz3VfbQcfTbxeANJadG4ag8UswtTCRmZJcWudy4sRa+cCZWKTIBhicz4RYi0kkxYm/dtX7kkLbeUwkVVC+SYNalkT4cTPT9spI0hGmbfiMQveX+Z8erBNbzt07DKmz1NJJ2GTuj6pXXCWISDts0kfGBTFPyh1UkOgFMUaYg5hNrEGhDb7JOeaXGNXjyB9AdP+xf9n0V5rIP/MoOza7qyZCdhJLLIXqBNSwE4JkLpHInmfyq0labvIkNi3KGAJALapQJbNtBaITNInNjkEjoUk06pJz2Es5732AFIzyTRZq/EXj5sApAG4i4rhoJZgDJxh86sARrqDpJ9mHQN7gueOG8EDKxNe/NQNnA8ITTWXTRpnYTzBuMCVdYKBj5GrQwuj4ImB1dMMUBpvYCzBT2MMbPR3GhcB0tkEmOyrnKKOixVqW5iKc2FhHUflitVBp9PIPRWBUnz+1gA2AJZiy0+HFCBHRIP+RAFHBstZc6t0H5n5HHZ2ftotGUFSydCALLsi6g9i/3N9/8HQ54a+41TXSfaJ+chGm6uR7QbnExmKIBVgJMUqc4qHV49ZBtkHSfG/cWSnLY6hQIMBnUAPHFPwQ66LKcERziIFpqRI156JNbPINkWuptzI9bUEkP7YlAGy7UDeZyY5kMjO7Z04YEfAsv++sQEmdh/hC5tNrfOkyIW0GSAltUcDZGKS0efYxxxJQtETNYGbPPOWmSVs9FOK7jw4CSwNBZhmEq+lMrs2ATZ42LZL3Tr6bFK6edgYiMOpHQR4cO4sLALKSNd5QEmeQC4geAPjDXzrZ8yu2fwan7cdjFtD6tZiLdDWKZAHDRKbhrGAz6wyLR6s4Qp+wibZiJ0D5DBs6gb4mhuTXQMaIMXykca+t50n2zE/7YaMIDkg8wZgkQlgaOIfugGW/a79pJMOWDGGEqvU6RE5cm4WNvutfiQKFhhmeKkmp4CkL82rfYDsm16XFSlAoLspSBPastSXTQERVv2vKVAnmVwji4zmVkTApOkas8ceQOoGwnPTP3z2RVKwcADIWgQXYGLAj3W2B4yKQfbPqSvoCJu0FchY1TC7BEip06uDeAavZzL78YTuATiSVky8r7YGlQJKQMCSEmhk/2TIgNlMUMU0GRebJVNgcJRrYJyFjWXmhE2Si+A4xw8tQMnPA5zlwufCJsnLI8BP/azZ1Tm2CtSR9VdTDjqaMmAa50DTtRjxOuXFSWeK36AApbWRflsAgfXy0QRLBjDEND1HE/NWfocGOZdXIrD7ADkzZkqPvuz0/LRdsu9BcrO270XMat75Nzuo+1EnZwCvwFGXZdtIpP/djA5q4pJqOrmSziwLGgLHZUBRip3Lcylbx7r1AdKk1kLJ3CrAKaasaGot0j78tGSR07VkZg3TloN0oonVr61nU6vPzYI1UM6mfuSgHRFrbfbJ+QySZiCwKZ5UPphNrTYH6/hAESgRfci6/CAlEAXKIJ7ZABIGV5fMrXx8HY8P1qB2jR5IVi8+tyvENVODTyBJwcOsTFDJ9QoBrmUfpY1bKSmnO4EYR7BgZqnZpHWmaKlFPdPsPDbJZv8umV2pruDbDjbus5L7ah2bXcVHPF1j/6Sf8rX3HTPL+NwAgGu4jBwZWPA4GMts0od4PYlmbJn9IgUJII3pHzoouzE/7aTse5DU1H7I9q3f28zKZhlz5ahT3ic/Pg+KWw4qsNG8o4t957wsbcqc/bmagX0bySLWuOHrqKOJDzsAkE2sVKL9kToYIrUVWsQip2tcUUeZWf3aNG4zQEqEK6moVm1yNTFYhyJAOjAYBBtgHAf8GGcTEzWaNfbrlspY9ErOUXxwR5fMJAUgNZsMytQq3VJEcjqCMJqSSdaWjYdVwvkIlLo0nqoKZJpJ4Z+03iOEANu0qHQ/SZ8bJrPJtYWruSara3j8PXzKeewD5TxZzCbzNfcxfzNMoyl22sJWUw7S6WpgalM1Hmpr9kX6GB1kcwsximNjbAWnTK9i6mawjGxyQIqoa5PvU9l/ouennZR9DZJGbRcN0HYP2qLPDYHQftFJAlY8UTblUBlBl4JexBQbwUc/l9zDQo/I9hYBZ/I7Dvgj5T3j+LmV19YidQSxpnjeOJsiWpvKxaa0uf6l1MQsgNKAS6spcDTKF5mq6sRCAsnMqrfTDt3aNOVHajZZXG/FIC0qeOQC39ZZkEzWQZlq57XZAiIgmp4/skpBIbn92WwLtJT7GkL6in6QVqonaiW5HYlREhEcKf8aEYgMGlcBddl/EYhmV+SKNpDnETBtXSVwpBBQ+ab4vLDE4ANX1Gkc/NTH88z6J/ul6dI1C8wmHbjGq5E6r/LwIfmVbRNZZWSS1EZG2bVc3KFr+T6N1950KjXEWKCbgiokoIz8kD2ThiNczZxfq4CjRLnqYJ0TPT/ttOxrkBTps6TNfGae9M+1zLn1z2g/6uSMRCpSMr+Kiad2BnUwsD4ztBQAM/DIoDULjCYGO9hYycS4MJjyIc/1fv2czxEZbgJIpOfSAaSpbDa1pua1tujDl5ikNUBoYXyb0j6MbxOLhORETtcQ1mKwzrSLTHI9AWRKAUmmVirMf9aZWBEmwKFCQAeLCuQygzIumh3lQ3MCdfTEnP2QDuQ4NSMBY+Dmv5Kq0+8RGgJiJaWcazpYdNua1N1CriGBWWUGSb6vAoDGVnBDQJkqGalAnsBFFHRrKwErqc7jVHFzl66pT/5JIAPlIiFBeCD6ObmkH5u3w+x22sHWVWSTNdBNYWou2A5ruUKSjWkipuPFijdFU2r4jkFTGCXYCmAICSyB0i+cg3eQYge0n/JEzk+7IfsaJPsDsBkbuWZXiz4779xD51x2RXYq65Si5Sib0iSiLjV9tQbrwsIUMFY9kBSgTCZQ5SssAc/O9T0mBhmDJOTY/IjA6GzBJp0CRwHKJjaqlVqXus1QNcfUqn2RiUVOOaJVs0Y/bWcAkqNapYtFKH1kMeXAAvDo2NTqIjjaMshnKCo29WoEeNuLZC1SPnReq2KQXQTM9S6kWqK64HYItAAk42IjGNSeUDtm7uLfrGMlGTHfzgBlCABNSjapAnlM8IV/UnJLxbebQLTfQNmbglEukiF2ydc6m1s1kw+KYaJrgaqJKSFNKowA60BVw2NCgUsESvcYY3nRhfg7jEDpiUEvwHDg1oBfMjX+Rll27kTPT7sh+xokl5XN2s/7+4duiuMd7FNVp2x2pNxdgLiiB7NJC9eFNEk2ziZzZlOFXBrLZt+ggFbwgdlnZUHBwVZsQvPdNK7iSxkCSFs1cFUDLk/n4JyFq7gziIs5dc7Z1AlhJQKl9N7LrYZsYpXCICtrMnuMDBKhS/VZU69ICdZZk0jWbHbVAOmnIYEjsyG+2kaiGj2BnIFrXDK1GmsTm5Si6ECMzBwYv7S46JlY4SrAVswiYwlBfo4EkFPPwLjmQ6zHy3V5BeiETQrQySQ9A5KWUAc200uXiqHk+LmMEkgRr2JyNcHDhlD4J4FywcCBPDXKPlseiH0kh4qfy/WXknVDQp6AGjMmV+0ntV4FHcWC7ZDgqm46zCYFII2FiYxSgFK7U8JAOI74HpeVvTg/bVVGkDwOWbSyWeS/28kV0amg0yCbtHECtJTAsnYBdShNmun5VIDRcncOyxOTrQiBzAwjtBXYB6e7XIiOCiBtOr4u/Jy2snAVf6dVzJEfjlmkMEgFlEW+WWSRxrepeEDR6UMKmq+XZlaOaJ3mfREg/dQncNQsEimohLP3MPXcINhl36WY+RzmMMl4XSQNIYg/0lbJL5lZZPZDdpEddhE413zAeudzh5cIkm0I82veiiXBxvsggmTrCSsVYUJcFCEQEGNrGDSrHlCq/CAzyTmgJhaKCCHABV8Uh+/7dYHpTJ9IYwkenpmkm/2MBkgzJzJ7nhSAraONlck4VUPSbDJGuyKamMmyuZlCB9gKxrBVI8Tf29D8sIU4uBnZi/PTRjKC5HHIokHTK7P+AO/kDXAq6GQNRyv6oNhkYJNk6oyuQLOpLFYiIK1UFsciWLYxQd45y0GNlSoqUGnPE7PJ9L/3Jq7sf2T2yWzSJhbp4ncIc61dCZIHGodGM8jIirWJNeWb+eyHROhSqbmCRaogHT9tOTdy2s0AZGh96nuoJ2oup8YpCa4BAmI1mQiOOg1yECAjOPLJZqvqwEYWSarIAzEIig9yvQsJINc6ZpHrXcjNgMXsOvT1Ks/U+cDtm5zBxMUWUMFh4ggHGgcCB/BIJSFywIqLQKmTaClwCyrFJq33CEDKn5x7PYCYPtPGYyh+F7N459xgEI9N28VAmdljyWjLAg/xuc5n1e3LyKjn/BohMG5KikwESmC2oMN2ACSwvfPTbskIkpuQzQLHRuaF7ZBTVScDCetnFlJZJHPaSsWT4Upl0QaeJDNjC1htXCx0bkEVIXgbwdHCdyGaW+WbMiJImbq+2IJxNsnMaithp8wiq8ahapg1rjYuAndmkZPKobYGk2h6lQLRwjDhpymaFaGLxQKkL2RmkQKIQ5GtGiD9NAya/KSFk+T3AQHk2TunfWGDIvmVsYVTEbQTA3Uk9SCndyCZWruAGYBc7wLWo+lV+ybndVDRUcx87ZhJdp6wUtnCn3mgdnGWy300jImMsjmgbsIYcLPKBQ0kF9QErsajA3mgnpMPcRKdAqhhLF97AJwDaWMD7wH/I5edM9H8Gq0bsfPIIun7QUmDo2KV0ueTwdIqgFSvYUtGHU2v2wWKe3F+2qyMIIlyIOetZDDwuv/ZzX6fbDc6737USdJBHAF1BMiKDPwAm5xUhDZk5rYSQUoYjO8sbCDYilCRQzcFbEVACqzgKZAk0rGvuwJJVznYigHSVcwkqzr7IjWLXG0cViNoCttJujvV0V0H7PgpTMeRrQVAxkbKfRZZgOUcgKRQBu0wg7GpjqiT4uzRF5bGcSbdw/W2tgjaIYlqjSySSIoG5Mda59GGWYBc6zJISieXbgFISpBWU1k0jpJvUoKDdNBPIItQSXhOHPM5pleiANN42LhgsiEkH2XlB8AJQAcooFT3jY8l6by6vvKeYpFWAWV53+WCD30Zqp40V0ixTdvbL2xS8kkpJKBcJHtxftopGUESw7ReBkQ/X+SM3sr39W+yUadSuNyYSdGKPjCjHGKTk2jWlHZZydzZWYTGqdqt2eyqJ01rm1jTtUwHAQQks2lVALKqHapaBe9UJVBLbiTry2bWlcqlgJ3csJb9Q7rbh/G5Nqv4JNG1wyxy2rH/0YcEkOKPFHOrFv6vJYoymmMtsf9R50QqEZOgUQApAU3BVrEpcJVNrcIGxeSq/ZBdSAD5SOsTizzWck/Q9dQXlMehD5TMJHNajZjaV2sXmahFV7lksg0kPsMMlJLWMImVeaRRNBFxaghyMI/4KAGeMFPFHXWdBCit6+L14io65CmBZT/yKTFIxSJtDOpJLcuki4cUWXe6IfRiSX5J/Z3a5GpcBFDFJvsF4uede+D5bs9PuyX7GiTnXWi9WjFYfMMsWkUtek9/f3/gF62+9ptOApQhMkoigncGE7Jog+NgDWfResJqzWbW1aaa6QpC9WxspjGGq8t0YB9dIHA7JG6iLAUJUjqJMQVAMjjm15PaJfa4qsyukwiQsm1UwE5l+f8zfp0n5Riwk9I+NIuMtVj7LFLA0EcfpHT7GPJHApLDF7lkLItma87V01cpm/9UuTlkUyusy/5ISf2I7Zo8IZtNKZtZi4fPLPLY1GO9ExaZG2gvMrlKsNY0mrR57B18hRwhO/PRHqMEAyXFLiHZPBlgJ6dxFR7MRrwCHNijxcfrVANcOcfZuM1l7GbuwQiQdgAw+709j0uIczA3I3ttLthIh52SfQ2SQzLPYTxkXsDAVsui9+YxtSHg3s86pZJjBHjLve9qAoKzHKhR2RQU0gaeJNlMNzvJcsCOsEidJ2lgpLVW4GotMi1JOTRbxZxLFaxTNYpN9gN1KocDjUumVWGUk4oBsrYDATt+WqZ9rB9LQKnzIodYJD/KgB1ml7NXNXWkUOY9ZkXzJ9HEXGIJNI5sHSggIAE7ysFiJgAARj9JREFUAo4qanVNPQQcBSAfmXocm3bJ1Lq+BEhmFsmWg2nFYz+tAsJKpXIuHcrLwEBpImuyAJpqwmOu/XZAkTcp8DrvKmlQM5bHR2q4crm/2f/DSr5qBEhXV4ktWs0cnctMcjtAc0np/8b32vy0G7KjV/vBBx/Eddddh4MHD+LgwYO47rrr8NBDDy38zA/+4A/m/Lb4uOyyy4pj1tfX8eM//uM4dOgQTjvtNLzgBS/AF7/4xU3rt6wpYKNIq83KosEedZo9n7DJZKa0zMBWKgadSTRvHqgdJhGcVpsKq40858fKSoWqdqhXKlR1BLjGJaDjwBsb34uPhh/JvCrHK4CsGofVyCIPKAYpLHIl+ipXKt5WRdCJKcrP6YAdig2V0bVzWSS/ZmBMplMFkNIerHikkmqzptjBcVCmViN+SBW0I+Aoka0MbBkoAyH6HPmxrsytGiCPTT0eXuvw8Bo///paVzyOPNLO7Ht4rcNDj7R46JEWX19rceSRKR5e63DkWIuH1zs80nocaz0eaT0envJjvQuYxmjaqSesecLUE6iagKqVYmsmB2Amp8Gunsbbhve5AwdQTRrUp01QH5igmqzATRpU8SHPXePgGhu3w48+QFoNlE0VC1Vw4+WCXcaWWfOKYRjdkNlsfqpf9nd/ouennZYdZZIveclL8MUvfhG33347AOCHf/iHcd111+G9733vws9deeWVeMtb3pJeN01ZN/HGG2/Ee9/7Xrzzne/EYx7zGLzqVa/CVVddhY9+9KNwbnMmhb70B2PZwdnMIA6trkadFuskQNnEJrFEBsEBB2qXTHshENqKfVCahXQ9JjJtpeScgfMGviMYaxKIALksmphcbay7aiuTfJB9gMyPCgcEIONjEosHSNpHUWGnnc4E7KQ+kfExj0UKKAow+tYXADkvRy/4kH4rfaDU/q5yUnZArF0La2HqBkGBI1yVo1kpA6UUCuibW4+1DJBfX2sTWE67UDzKtmeUKiZZK4UYcm7stAvJL63HXQoaiCQCXVu2A8Omdm1Nv9gAhTLiVedQ9u5XHWiTW13ZlLoxWD9X+R5tUyVTq6sr9drx84Jh5mAyuH7RC1eCpgLIoq6ufq+3f5HJsy97cX7aTtkxkPzMZz6D22+/Hffccw8uvfRSAMAb3/hGXH755bjvvvtw/vnnz/3sysoKDh8+PPjekSNH8KY3vQlvf/vb8dznPhcA8I53vAPnnnsu/uAP/gDPe97zltZxyHQwZG5cRjY67ngiv0adcu5k3+xK0ewaapd8UF5MbHNMdUA0sRqPYA2MCXAVgyWAmd6AuiZraW4tAfKAAsjV2qWWWAKWk8oxI055kmWFHR2wU6R9tNO5vsgczZoLB2iAnA3aYVPrRmkGJlYP4v9fmVcFIKsm+yNj6kdhag1SPACRNfpkZm0DAyQzxk6xSX5MI+ukQPBdiObxPC7G5i4rxhpMPQdoCVCKb9MHZrWnTwg81XWz/2jNOaKMvQFwloFSmV2JAuwqgODLYugYNr0GlwEyOFu0KbMDqTWyELG1Yo1NBVtXcE3N+5Wf0tZVYvP5YdX4xMWPjI887wf7qHQdLVtxySx6PU+2a37aadkxkLz77rtx8ODBBJAAcNlll+HgwYO46667FoLkBz7wAZx55pl49KMfjWc84xn4uZ/7OZx55pkAgI9+9KNo2xZXXHFFOv6cc87BhRdeiLvuumsQJNfX17G+vp5eHz16FMDyN8GQM3mjFc0y5objAan9qJM2uxIAcmzKO9C4BIwMksPWBF3b9djUY2oNfBdgY81S66I5UtULlYLPUtrOxLJ2TV2aVQ80JZtcUSxSfJF9FllbwHSxcEA3nR+wIyxS2l7FUmV+6hOLzIwyFAA5m/qhrnUv5YP/T80iXTbx6Xq1dRMnZI5kJRXd6n0uBtAFUuXmCJ2KbNUmVg2Qx1oP3wX4jsckhNkxkXGRWrm+s+iswbRxaDo7E7Sl7gD0gZJ9ziqHEgG2sqgUUMp3m8lps11DwEApEafGWXRrvKjwNjPJ0PL36uo9+TrbBI4aCPW+BJp1xWwxFjNPlaOkXqsGy5iWg4GHBtBiv9YLe3cu2E3ZMZB84IEHErBpOfPMM/HAAw/M/dzzn/98vOhFL8J5552H+++/Hz/90z+NZz/72fjoRz+KlZUVPPDAA2iaBt/4jd9YfO6ss86ae95bb70Vt9xyy+B7ywzM0MpqowFcZiDnHTPqNF8nZ4Ammtx02bEDtYvh/sNnHGqpdWzqMTUGrTWgYBlc5kzIReHyXi7kgcbhGyaVMrM6xR5LX6Q0Wa4sV0BBN00+SfjpcMDOtMs1WqfcIzK0HYOi+CIVixwCSIB9kBYAHAZTEgRE+5GV1qmJt6oZMKsm+SOFTeZ0DyS/pGaRa51Pfshp3Gr/41rr0U25DJzvArwPkEbZ/XG1qWB9ZvghEHxlZ0ztJVhmoMxrhgoGpHomEkysypMKhAMpNWQGKC2XMpfJlIFyCmMzk7RNFbt4YLBQgw7KMdbCNXVilOKrdNHkWoxBWrCw+TuZWquqBEY7AJi9fcuytr0yF+yWbBokb7755rmAI/KRj3wEQF6FayGiwf0iL37xi9PzCy+8EJdccgnOO+88vO9978P3fd/3zf3covPedNNNeOUrX5leHz16FOeeey5/rnfsIvv6RuHHG63C5slGN92oUz7WRjYZoOtyEqgyKR9OTH56YtVNmd3UJ6BMvq9YcFv7vwAUPjDpD9kHyNWemVWCdSbOYiUCpmaREtlqpMJOBEp03dyAHSlNpn1bwiQzowzZpyql0VRR85nrmUDRzCSuG81sUp1bm/2RMT9SGGU2tUY/ZCxiLixSUj6mPrNIzSAFILtWQJLgfUDowoYLF2MNnBMTMy92FlXsASo463NXkejbtB7cms1zP1NJDUk5hCriVRedSEklsYB9tzbl9A87RYjgSCHAx2uc8ix9mMmHFHAUv6RmkbauGAirBqaqYeo6scjE7iOAivm7WMj0WOQigCyuNfbmXLBbsmmQfNnLXoZrrrlm4TGPf/zj8YlPfAJf/vKXZ9776le/irPOOmvp7zv77LNx3nnn4bOf/SwA4PDhw5hOp3jwwQcLNvmVr3wFT3va0wbPsbKygpWVlaW+b9FqatmV1aJjl/nOUafF32kVmwQAIq4es1LxRDMUsCkTooBj0wVU1ij/FaUt0Av0UGbasliALQDyG1aqwswqATvNAIt0CLONlSNz7AfsSPPkfsCO7uzRZ5GyL12jWKs1jcUC0LQaKF02twprMVWTJt6+qVVHtq5H32Lq8uEpgmKX2OQ0BvAIQHatR+iIt9FsLCZXgPEqWwlzWg5VfIyPx8tjqBABb1V6j2HANI2LjYUpNRheqSaxrVYAImCalaDaa0lbrMwuK7Bf0ljL42Yt51vWlepP6ZOp26TAG2VuLfySGiBr9WgYFBWzTCxSA6SNgFkUfegF8CyQvTwX7IZsGiQPHTqEQ4cObXjc5ZdfjiNHjuDDH/4wnvrUpwIAPvShD+HIkSNzwWxIvva1r+ELX/gCzj77bADAxRdfjLqucccdd+Dqq68GAHzpS1/Cpz71Kfz8z//8Zv+dbZHNrMJ2S051nTRQEuX2PkQWB+pZ0xxLVZhaBSwl2KNRpjot/YbOGSCrlBcpfsgDtYupKNnUKgCpWWQCRx9ZZOhiQ+UpKPgUsEM+RKDMrZL6hQJSY+Uei1xGpOpLYWq1PRYZfWCFPzJNwNWsqTUGUHGxcUq5klOfg2o0i9QA2bXMHrvom5S8VR15DGSG75yFsYG7vTgL520y0fbZJ/uk2zSmGSR5EWUtYIyDjTmURcSrLu0GzJhdAcA6F9NhHIxbG45w9dKfcsAvqUAym11LgEQESNRNel6AZ93ETixWAeWA6VXtO9nngp2WHfNJPulJT8KVV16JG264Ab/xG78BgFNArrrqqiJo54ILLsCtt96KF77whfj617+Om2++Gd///d+Ps88+G3/1V3+Ff/2v/zUOHTqEF77whQCAgwcP4qUvfSle9apX4TGPeQzOOOMM/MRP/ASe/OQnp2jXvSRbNW/upJwqOglQektoiCNf2eJaOtsSi4yNm4XNrXc2VXhpVPJ6P2UEQFkrVBUuFxOr9j/yI5akcybXZ5UCAgapTmvREiuyR7RT7hMYGeSQqVVPsqHHGPV25vopBmkLZlkGj1g1aZcRlC4ySTXJxomWkCNbhTlKQ2XxRWoWeWzqMW2zibVrQ/JJdlPxSdLCcoE+lgukANiKZiJh0z0w4JNORdKtgTM+pZVYwxGvPFYE61QgjwroMU2YAUp1cWHtGoybDka4DoGkbAUc2ScpLJEB0jYToAeKCTzrJuesCmt0uVSgvN4KQO7VuWA3ZEfzJG+77Ta8/OUvT5GoL3jBC/Arv/IrxTH33Xcfjhw5AgBwzuGTn/wk/tN/+k946KGHcPbZZ+NZz3oW3vWud+H0009Pn/mlX/olVFWFq6++GseOHcNznvMcvPWtb910juQyF3krN8dWfH+k9Nnos6NOWaeUGjJzrnwvCBa42F3dWfRYpI2m1lAwSR9oYGLtmVs1QEY/ZHpULk3CwiIra1JlHSMBO2JqDb4wteaGu7kjPamgHF0MYKOiALqAtvTWBBBz7mS/ZjIuA2cV/WTiC3OOmYpTplYxs6bcSOnowWCpWWQqPycBOh2DYogRrQKQvgsIXcvMOj6K/ykGqVBoGCyjP5J6ZQiNMfg79C0CPIZyT1hrUHc+9/k0hGnI/knnKkACeWrVNQMYLIqvi8C7OsBGq8DQIofHR42HjIMybxvFIMXUaupsbk0m8CFAHHgNLPfb2+tzwW7IjoLkGWecgXe84x0Lj9EmkdXVVfz+7//+huedTCZ4wxvegDe84Q3HpZ92Lg9d8K06pJdxRvcHetF3jTotHqtK+ScD5cdqxROVgKQ1SN1FuB9hLGnW6zrRN7nqybVSbFJKzglAppQPl/tF1lalnmgWGbrCJ0na1BpLoflpp3xY5eTa90cCQw2BZ6Xf8FfXDk2gqKq+pJw8lScpk3GagI1N3TdIm1p9LhfYLxJwbOpTmkfXMih2rU8A2U07hG7KjwGQlGR5Yx1c8LBVg9zNRd0/1kCiWb9e+Ja79Lx2BnUXImB61M7AGgfngdYQXOD+HitS4zXlUBIzSl1/ILFuNrdSV7N1wNrY/5H7VM6PcM2s3cRoYiNMUgCymSSANM0k+iZ76TgLAPJUmgt2Q/Z17VaDxSuY43VIL7phtnIjjToN6zQU8Yq4XzNKa6I5LYJkawPakMFyfn5dL3gnVs8pu3uUJfIaZ1WnD8Uixf+oA3ZSbqSYWjmwg4L4r2b9ken6zmmZZJwpIlul9Jm81n0MU2Htnj/Sxpy8xGa0P1IVNk8FHAKSbzIBpDK7Tjs/wyK71ifWKGkfGiB9JwuHGOySpI3VZRg8XQLSBmiq1LVKfJfGsjn1WIxQXqnKSGUJ3qmtwSNtKMyukhrirEHlGqDKhQbkXrQrNGt2TYuLuMBQfR/N0Lil6GFXPDd1DtIRE+sMQLoms8QNGGS6R3BqzAU7LfsaJOdR9q2skvQ5N3pvI52GZNRp8TH9iFfZx+KyPzKCpIv5kW2gBJYhTvSBci/CdIbkz+RWXdaAK+jE+qsT5YeUyjq6RqtmkUWdVgqJOULAoJsWzY+1P2uRWGfhFZAMRrBGU2tuyaQY5Bx/JCeq9/yRLjMXqc8qbLINIZWjCwRM/SyTFBbpO8qBOp6iiTUDZOhahMiwAaStsQ7oeGvrBhS4B6QLHsAq0FQwHYNjKj/oA9ZaX3QQaSqfzK619TyePbNrG3j8p544NaNqSroqDZuR/ZPGOS4tKNetrkFtm5sjAykIKA9grsFqqjoBrI5kLQN4JE9SgWJVx/GJ5teqWZpBnqxzwU7LvgbJviy7SlrGJr6ZwSUsvslGnZbTyfWAUp4agxitqEESCiR5G6IvDcAgSAKIpjiTJlFhkbXyQ4qZtZa0D6NYpOREegZIbWrNTEP7H7M/Ml2HgXJz6To4w5N1fN8q9phB0cyYWlNRbWdh6zoX1u75IwuznjFF6kcgxKAditcTytTqZ0BSmCPnQzJYhq6dAcjQzYIkoH2SYm7VsgqggpQftIa3xhhMncWxqUdTWRybdolNrns2u/K4BdTOF2ZXExc61lWAAGVsXByVg12JQNlvTB182hov/0vPL2ltqsOagnX0VgGkXVktzN7k6swYXTNrEu9dnVNlLtgNGUFSybKDtJnBHLq5NrNiGnXanE6aUWqQlNfOOtgOESRjcEkESU+E2g6DJJADf2pn0zb3iWQzq5h+2TQbg4QGWKQhyqZWAUYBg+Dn+hfn7TfO5AIIESj1e8wUM4scMrU6SVjv1witM5MsUwl48iXKRQQIyGbWkE2tXrpuSF1WohS9KhV1fOfnAqTv2H7aB0nbL+at3vPWplxK7wOsN3A+YNp6TCsGypUIlGIiZ71tjMhlk7ozBi6w2bU14LQQJyCZK/Kk754YYLqe/JOmbkDtlFl4/D/Sgqinc+rZqdl7P4BHolidsMhoUtWvbQWqmkGALL4Tp95csN2yr0FyN1YiQwO52Zt2u+VU12nI9AqwOcwAMDHqlEHSJLD0BLQ2pEa9GihTZGxkosIQU6COtan1VW7nlR+aPUrATja1xq332R+pWaQE6yiALCNSCfDRlApONyhTPRgsNIt0jYNxhts11VVhanV1L3ldsxg9Cbtc0Jw7s3DqR0isMle+0U2UU+HygFyntQtFFKsAZBG44zObNNbxdXIOrmoQBHyihAiewRp4Z2BdgHMW3nGt3mMtM8lHpuVWgniYTTJYVsEkk2tnAGsI1kT/ZOBAnnSnUOxT2SjQ69rMJqs6WQsMeuZjIAOjDuCpMkiikuCcyBA1gxx6veA3hDm/oZNtLthp2dcgucgWvuhm2MkbZdRpe3QSoLR6HwyMiYEYxqJ2QOsVWHpCbU0qZ9e3aDqTg38KYBRmGQExNVQ2qh2Wz+kebGaNUa0hRFOr+KkG0gnkf1C5dGj9DBAGiG+srKIiACm9C9O2dplFNlWs8FIP12uNJj+KwTrCJiWSWPyR4pOUwua67J+ApbBHHxklWywps8g2p31ogNQRrgKUAOAxLYDSOAffTRkkqxreE1w06wqb9F3fT+ox7RybiiObXPMBdWSTVTDJ5JoeNvsnDSvFrNJYfm1sKjCQQDICZBrnCPxGmVlnAniqhn2cfRPqEIPcBEBuRfbiXLDTsq9BcpE9fZGzeScHe5HtftRpczqJ6VOOt3Fyk60PgO2BZe5mP/y9HKlqYWMATyVm1cgexcTKRQRydZ2c7hHBkmK0ppo4dU1PiWzti3UWHiWjtMHEPhYZKIv3oy+SfY8MjLzNrNHWkrxepXJoHNFal0WzB7p+iD8yEGIHEEnDkUhhVfaPNDhmU6sUCxh8eJ8AsJ8rKSJAmQDVWgbZrgVVNnV7ETZZ1RnA1ztOA1qPUbdtsFiPbLL1mU06K9G7gDeANwZOzJoUANfwfdlNATT599Cs8PUbAskZJtmLbJUqPsbOgqNmj5HZwzXFb2C7ZS/OBTst+xokt8OevpkV0mYivUadtkcna4DG6eWQySBpuOeuJ4IBg6UX/xjRUPBhUbUn5V0qgBQ26YxJLDLV/pQgj/S8ZEb69cL/KQXcEMhZkKcEjxYWcIitv4R5ZoB0jYNrbGSUtugu4Zqaa4b2Uj8Sk+y3WwKbWHlLCRhDMrMCuoqRT9VzZrf5OkgeaGSRvrxG866PcQ4hFh7n4/i1DT6eX3Sk5A/tm4IFNNuKEKqc49l6i9oSqmAiODJYdiGaXS0H8hQsKwIljOVI5toCFGCJ8uIIGARJLtZgkKoZqcbWgzmQC/yP+2Eu2GnZ1yA5JJs1GWxmwLb62VGn49epcbFRbwzpN+AUc2sUMyCe9IhMOk+/qICBYqPQJedQAKM8uJGySvvQzXwTqxgOxrHWwgNl/qK1ADysM6CQ/Yx9HinVpwRQhVHKa/FFJgYpjDJGtaYUA9WCaZ4/UudH6g4sgYZaVcUxTQGhuSZrGIhgldfzAFL7JwVo+ubZkNhqCcy+C/C1zo1lsBRgXHFUFESoyeROJyHfO8ZaOFvB2BzIYyqAfAcj3TaiiZ3NsQZAxcFb8n9IdJnqzkE6QMqYMt9xgxzIdH0G9w7LqTQXbKeMINmT/qpF79vqAC0y6y4jo07LySKdAF7MAwbGIAZggAHTACYALk6AgQCKn8zF0VW0LCSIhyMdBSDrZG7VptaQ/JCgwBNj3G6U9zgkRuU2Gk+wjoDGwU89AAtnMxvL7a8YIF1jFZt03KswmlddU5emVzG1KqAMc/yRASWL7Aft6IeAFIC0BYbNqBux6gSQoQTI2eO4NXJmrfm7+/olUCdKEc+tD1x/tTC1AjY+NwQ2u7o4xmiizSLef8YwwxWwlEXSzOBGYIzPEzimEoDVzEJFjgP25u/uROm0nTKCZJR5Kx6z4P1lzlca+srt0LHLmDtGnbauU20BSxzQ04J7kGYmGYEy8KcD2JyYviee0AKRlTI4Sv6cZpMG4AnRc7rHjKlVZA5DSgCnO3I4CxM4qIYcgSKbtADQuNQVxKgaxn1/ZDK39hhk8R065UNaY8WcSFITN3faEJMrFcE7CSgVEPoCFDe+S4QhFq8HStP1P7OskNKvX5IwJDbM4N+GAB+4L6iwSVds2T8Jx+BnKJo+o7mVjM2+aP7yoX84bQtwLDp6KIB0/dzQ5eVUmAt2S0aQVDI0IMuuiPqD2P+cGXiv/7mh7xh12n6dnEEqV2aJGaIN/DwQgyERF7Trz+U699Iqc6sx/N3OILHMlPLRfwC9Emu9/0V3hIiRpiFuyTOwBR/gYg2+YAmAB5yB8eX0kfIgxcTa2JlO966pU8COq6uZnDxprKzzI2FsZJA5aCeE0icposFyGXCcuR4DLFHXbt0MMA5Jv6g9b+N7RAkUOYDHwcX7QwOlITaPw1Z8D+qIVwDGBJCUpqMAQ2UEsja35tJ/5fXeapFyYG/87nZCp92QESQHZN4ALDIB9PfNuwGW/a5Rp53VSSJfTZzgDAiGDHwMxgiRIUnMTwAhBvYnRikpIZlJst/TGUCb1dJzoGSSgwzS8aSj+wpKR44IjiYw0Hl0DJRTD8CBQoDrlaLTxcsFIHWne3kkU2tTl6ZW8U3qDvfWwicGCY5UHbjwfT/kIsmgZxPwWetACzr7yHEmBrvY3uv8fuywMZA7OyQaMKV5swghF9Anip1iEmhyEA9RgIlBNAKGJPeBUaZWMbdbZWIFZsFRWLwyr84DLNGxL3vld7ebOm2X7HuQ3Kzte9Fqat75Nzuoo067o1OeMw1gM6uUCTAQpc84ta41yOCoi1+nnEgAYl5Nptbohxz8PyIwSikz41xmj9YiKJOrq8ufrACl8QTysyBgVIUdDZDVpCl9kcIiddd7ASznEKSbfez6wWBBBdMW1rUIG3PBcS7KYOIDAKx1COiB3wKWOAyIGRht/KwUtJfvZZxfDJihN1YMlvycQLHRN0DgYB4bF1tkkAESAIUOxlbpHiC9SCrJZGbqKXDHxCAde1zFAfba724ndNpJ2fcgqal932yA3nubWdksY6IYdTrxOslcaQ2zSGNMZAUEh8woi3Oa/FkBSBtf28giZ3yPg1+ueh5G/58knvd9ka6JbaB8gA3R7NpEk5sLMJ4TQHRNVyk2YHutrwQUq8kKXATLgkVWdQrWQVVnBql8ZSGxSAGLUvogg3idgBKgMlBqFhhgQmaT+ir2QVMA0lXNIGjaqknAKIBsFVDr7i7F0JjytYgPlDrOEPUWVMIm5Vq5bHoFGWaV8+6LZfyROHV+d9ut007KvgZJo7aLBmi7B23R5xbZ+Eeddkan5Ge0zAoIGSwNCDDl8SZ9LrJJqPQQAH1T60KwlNJlYnKLz5M/sqngUlk6D4rAaKyFbzsYaxHaDrZmAEUNUAgqstXOdLt3q00yr+qtsEjuW9ikXoYJIHVH+5BZpODhEDACKEDIJFBUoGUMXMXNk6XlVQFyksphZ6vtaBOrrRrYuoGtariqiQBp0/c4Z+OY5Vq2uk/oPMAUET/r0MKJwIsFQ4AHR7sidAyUvovHBMC4GX8kgAyM0ZxNfVapvmfmswP7Tobf3XbptNOyr0FSpL8y2sxn5kn/XMuce8hRPeq0ezoJE/TEvkoBS2ABmwRgYjRrwSL76R1z+gfmKFIuJG4kbzIEuFi/NTFGVbs11XN1AcZZrtLjBrpKAMlMm0C35vJzyczalCwytWKKNVuDpB2oSTskkyNfGPHjif+uz8QEfGz029oIWr4LCjAj0Clfrc6RNHN8uAkkZwDSwVUWzhm4KhY7rzKbrGNvyeEH5oJlGlLFIh1MivIlw3m2RnyMruJFUwzaoaHTbgCOwKn7uzsenXZD9jVI9gdg3oAsMicsa5+f9/mNvn/Uafd1Er8imQiWTClnzx3TQAQgky+yUEwFZ8gkbzgYh7r4MhWzFpMrT5i2qeEUuNoQUiCPn7YwziJMOxibGeSMjpqV1lwowE1W4OoKbrXJKSDNpGCRM6ZWq1iO/vdovg+yz8zEb2utMDlisKwsry0qB6CJPSEZAEPXztRtzf+bNq/aZHa18VE1FZyzESgtqtql17bXdJn1tIlRCshbZZ51c0ywQIyKBqVjAgHOZMZIEIuqLRdMthesIw+M89MyOu2G7GuQXFYW3RzzBm3IPEdz3h912ls6AbpwAIPlEBAkYEwnjkn8i0ysKYKRmROqhsFNWKWLTY4DczRbZ2CoAIRpF09jEdoWxloMdQop0khsbKrsXOGTlAAeszJRATt1NvnGqFad/kHij6Rh86qN5fqAEiRXKotj8bkwOVcZeG9hA8FWBJvMkKsRILlIeWaTc5iy8kkyQNYZGBsGx6p2cBUDclU71M4mgKz6YClF7KVNlhGwRCpHOA8vxeTqoone9IAyXpjZe0KBY3HsEnKq/O52WqetygiSxyGLVjaLbPY7uSIaddpenSTaVSa9/nFyzFyOoSc+Y3jSTL4nB1ifg2R0iTrVvX4mCNJFf6SzsKmdlo8fU8wzAaVLgTsaIF1qh9WkLvfCIqXzRIjFA4oiApjvfxQRRqV9fQJEU2/hOwZH5whUcT1VgEsFssRAHNVwOfSYZIpeVUE7rnLMEl0GxKp2PbBkPVYbp7aOe0rGdllieq/FZzowwIussXyNYgqR6Y+gEl1hB9t7v5/Mv7u9wiKBESSPSxYNmpgV9Hbe57bzBhh12l6dgDwZboZNFlKY0oirrxgLVBX72YRNxl6DBkgtlPhLLJxj1ugdB+okP6TnbiHy3NbqaxWbtLHDh5hdq0mT+0VWdcyLrFMxc9OLai38kbT4GgqbdMYkM6ZmlY2z8JVNnUD6EgyzTQrc6ko6hNh55lZr+TsrDsyxijH22WTVOKzWLgHkgbhND2djCzR+WJtZZW1tDM5SLdgWuy2zeXEeUPZNsguu62blZP7dLaPTbskIkpuQzd4sy5j1jldGnZaTreqkZWEcR9/EGut0ynMybPYkacobH6bm9k6miugWPH+3gKXSx4IBLzhurEw+cGQrkECy+J/7lXuiT7JoqNxMYFYmiU0axSaTn8xVJVBSvj4a4zTjEr+eZpArlcW0stxxw8eydolFxhxRYxBsgInFirgwuQWFoRJ00VfobAr+ETOrjVtXmUGAXG1cAsjVpkrPcxNt9XDZ1OpsXBipPFlrzIaschFQbtd9fyr97k4UaxySESRRDuS8lQwGXvc/u9nvk+1G5x112js6DZ0jv4iToAJHjvwJJcjoZHMKXBtVzqXZknWA6lAvjXuda2G9T4wSQOpBWaqjmKT4Jps6VdExunBAaqxsmUWKiTX2MkzBO0AyjWpJOZDRn2djY+psanVoqoAmguRqcDhWnIGrBhlrEDoO7Ak+pKLkInIp8/+YA4GETQo42hikIybWPkDy8yo9n1Q2AqMCS2GW1ubOLwKOPT5jjZkxjS+SNObYW/f4XvzdLaPTTskIkhim9foGXmQG2cpg9VdLG91co057Ryct88gDs0YAPmQ/ZNqf2SS/roCqnAS0fmkSlUIDXZvBsg6wbWxGLIE7CijLXMlYpKCq09ZUNczKKoNmM0ksErGIdpGKYEyqtKNFMyiXADI/bxwDjg+UzJu6kDga0dXAGM9E1VluzBxs0TVEwFnScoqiAJL3qMBRGOWkzr7HRQC54iwm0TeZwZHBvhITskUsPThbt3eR6bV/T6L3fC/d4yeLTrsl+xok511ovVoxmD/Y+tihYxa9p7+/P/CLVl+jTntLp7yjZ14FMjhawIS4Xwpg975jBihtmRaCEDKrVB3uTVXHHMKBerCpkW/udJ+Klxe1WevCP4lKtWBSrbHmmQtTGoxFyj9sA6EOBnUwiT1OKwbIA002nbrO4BgA08W6tz7AdwGuMpFFYm5RdF1izpicCyngKBGs2v+42jOxDgHkSmUxieA+iedxFrmZtkUBjFLDV3JmdVqQlv4iqPhf1DFDr/vH7vff3cgkT6D0B2doNaWf97daFr03b3U29CMaddrbOiVd+uZWa5Fqqhli0AndckAp4OgUSErbqm4K42NKhALMuaJA0ljLUazWZYBcWc0FBOommlmrsgpM/N+4f+SwlA2no8nVWjSO4CvCajPrVxRz7DHj0VoDChbWhRTUk1hkDyhzvVfTY5KctiF+0H6AjvY/rtYuAeFKDNQZAsjKqobaVv2f1iSAlN6i8wBS5GS9x/eqTrsh+xokFw2Slnk3wVZl0WCPOp18OhUrbV2DkwJguKckWQCU+0wmgIyRrini1VhY50DttKzGE3wGy6pms2sESOOlXNtwMQEAiYUaxSahGKT4Kcm6svycPNf/mz6/yQ8bgdGaHPQSHLNJT3amK4izBo9MfQLKaRci4yx9kUNMsl8ovXG5OEA/WEhSPFYbl16z/9Em5lhbw2BZOUwc+yObAQZ5PAA5JCfLPb6Xddpp2dcgOSRDLGGZwdnMIA6trkadTn6d0ns9MEllySJYpvZJxsKYjj9XsLYOMAaWiP2QAoqy9Z5BLaZGJNOrfJ+qWJMkAm4CybrJPsoUvFPlYtqxd6H4I1PQzsA1sUD018V0CTG3Ok4XWXGzn3LW4Ni0S+C4LgAZt4XfckB0JZ9cMcfMFAfQ4NhUbFKtnZlhjxkkJQVEUj9UhxcBScvjL4XtpT1aUYBiUOtZOdnu8ZNFp+2UfQ2SQwu+eRPfRrLRcYsm1c0eN+q0t3UqwDL6KlMT3qCeS19Bo7rXR1YpptkCLGNOpQkeJExS8imVyXXmvk7F091gAA+sSwCZGvqaso5oeq7+cQOJ8CQYGBgQamfgKbJIa+CdQa0KejPI+FRkYNoFTDuPRoHjesf/xzyQLMrc2VycPLPInM4hYCnApxlkHSsB1c7OsEdn5LybZ4/74R7fSzrttOxrkFz2Juj7j+Ydt+g8W73hRp1OXp3kexPQAGx+pcCgIzmT8toGBkZvYIhKsLSO2WjXRbCsmT3qmqaLgneA4QAe51LRABpgkYsCdtK1MAbWUDK5CpvUIhV4rOGm1k0V0HQhssgY2NP5mB5CRePj4jwKIGXbVK4of5fMrU5yHnkrzFGDozDI2tlUYUcAsbLzwVHyQQUk9+s9vhd02mnZ1yAJLDcwNPDeRgO4zEDOO2bU6dTUydjYzSN0G4BlBMbgGARj014TOn4vtuIyRCDvh4GyL6rOqTBKyYWcAUjVjYIkr2Ew/cPAGIopH1wphywQHHNMQMrXWbTxuHUf4AyhphjUUwWsJjOrQ7cAIEU0QPZZZG2ZCQow1taikuIAGhTl/SIwpzStVnPAcShqddF9sJ/u8ROl007KvgfJeSugodfJ57PEuTaz4tnopht1OjV0SsxSwBJgMIz+ygIsBSjVewKQAphEITFFAU0AqY5roYfj41L91b4ZVaJZnTK5StCOnWWScj25+kxmk84CNSyAAE8GqBysCVzE3MQUEUtoQ4hbg0CESeUQiOBpEyzSSFUfpGR/Acoq+RRNAstcTcfOmFLleM0cxecoOZJD//94j584nXZL9j1I9mWReWHZldWiY5f5zlGn/aFTAZiSZ6kB01bMOhU4DgFmSjmR565GX9L3CjDG5zmKVdp06Y4fJaCKWHB9HGMQO14YkKFogjQIhpK51XneL9uagNYGVIHzIANxM+MQwVFez5NstlWl74xJIGcNEmN0xhTmVjGp9oNwhsDRzWGN88ZVj+l4j594nbZTRpDcBlk0YCfCho4NvnPUKcuJ1KlYbQtYagD07Itk5ujL93RzZzG9arCc+0+pFBWJqLWzrHIjX6Q1BrnBcOyjaMGJlNbAE8HAsg8ysC+yJoPWEwf1EKH1FAEyA6PkRfYtrQJWtmCRSP0pBRTleYpOXQIYrYlsERkotyrjPb6c7EWd5skIkjssWzVp7KSMOi0nu6VTwS4VOInJ1VCsy5pMrREwKQA2+jaBDJrpxIt7Ws6AY68MnQbQwRxJZDaZK9AYODEsW+LX1ikTq2KOFYOivAYAv+BC5mCZDIjiM6wTk2Q/pekB4yKgNDHVY6dlP9/jm5G9ZnLd0VvjwQcfxHXXXYeDBw/i4MGDuO666/DQQw8t/AxX1599/MIv/EI65pnPfObM+9dcc82m9VvmIm9lIDbzGW2zN0t+dtTp1NWJ1IM7cDSgagKqGlDVcFutaiU9UE34fdfwo87HUj0B4meKh6v4/V7KxxBA0hA4xnqlAFIXDKdBKIJXFVldZYHaGaxWXDf1QC0Pm55/Q1PhQO1wejP7OLhSxUfNj0nFj5UKByc1HrVS4RuafM7VymC1sliteTvpvV6pONJ1tTJoHAPkqXo/He9n9rpOuyE7yiRf8pKX4Itf/CJuv/12AMAP//AP47rrrsN73/veuZ/50pe+VLz+vd/7Pbz0pS/F93//9xf7b7jhBvzsz/5ser26urpp/bS5a+iCb9UhvYwzWvbP02HUadSpOHYg2KdgmEAyu8pzANkEOyS9SjoJHPvvDQCljccH4mAdBPlvDP91ABEH3xhjQMQmVAKhsgaBeJ/+HxflRMr1MUbSLkwKGhKmyBbfMtm/H53aZ4wbjWX/uKHXJ8v9dCrqtBuyYyD5mc98BrfffjvuueceXHrppQCAN77xjbj88stx33334fzzzx/83OHDh4vXv/u7v4tnPetZ+JZv+ZZi/4EDB2aO3azIymjeiqS/f94E1j/nMjfWVm6kUaf9qxOp5+K/BMCACZSgGV/nky8ASqAEQd0Sa46J1Ro2iwooCVAaMkAgkOHnApYAMkjGfzQgPwf4vVpFyeiAmcRagZzA3wNEa3J/R+nMIT7Gymw8oe+3++lU0mmnZcdA8u6778bBgwcTQALAZZddhoMHD+Kuu+6aC5JavvzlL+N973sf3va2t828d9ttt+Ed73gHzjrrLDz/+c/Ha17zGpx++umD51lfX8f6+np6ffToUQDlqkTLVlZJIotWpMsM6jI30qjTqFN6TwNm9FGWBzF4JtkgjxLAYPTrjO6xElBQQGkNYJ1JYMh+RgZLIYlEPM0G9d9osBRABFD0a8wMcj4gCoD2A2/27NiNOm2LTjstOwaSDzzwAM4888yZ/WeeeSYeeOCBpc7xtre9Daeffjq+7/u+r9h/7bXX4glPeAIOHz6MT33qU7jpppvw8Y9/HHfcccfgeW699VbccsstG37fsqukPu1fdOwyUrCEUadRpy3qpFM1Ek6QgiMK0U66QUDPvNdKX2uAAAZKGCSTKr/P+yhqoa2oGRBNCtbRYiNKap9n/s4ceToPEDcje2nsRp22ptNuyKZB8uabb94QcD7ykY8AQGqOqoWIBvcPyZvf/GZce+21mEwmxf4bbrghPb/wwgvxxCc+EZdccgnuvfdeXHTRRTPnuemmm/DKV74yvT569CjOPffcWd2W0mpzgzl0c21mxTTqNOp0XDr1TKkaPDf+sgFfJFtUE1DCMHN0ACh+66Lfd4mLs8dpVtj/3vSdS8gpMXajTlvSabtl0yD5spe9bMNI0sc//vH4xCc+gS9/+csz7331q1/FWWedteH3/PEf/zHuu+8+vOtd79rw2Isuugh1XeOzn/3sIEiurKxgZWVlZv9urESGBnLR4O6GrX3UaTk5FXUaBE9s7rcgQCUM0Zl43ghs/a6R/XPP01eO20yrqXlyKo7dTsipoNNOy6ZB8tChQzh06NCGx11++eU4cuQIPvzhD+OpT30qAOBDH/oQjhw5gqc97Wkbfv5Nb3oTLr74Ynznd37nhsf+2Z/9Gdq2xdlnn73xP6CkbwrQsuhm2MkbZdRp1OlE6LQZfUWOF8xOxus06rT3dNpp2bE8ySc96Um48sorccMNN+Cee+7BPffcgxtuuAFXXXVVEbRzwQUX4D3veU/x2aNHj+K3f/u38S/+xb+YOe/nPvc5/OzP/iz+5E/+BH/1V3+F97///XjRi16EpzzlKXj605++KR0X2dNp4Lih97ZbRp2Wk1Gn5WTUaTkZdVpO9qJOOy07Wkzgtttuw5Of/GRcccUVuOKKK/Ad3/EdePvb314cc9999+HIkSPFvne+850gIvzAD/zAzDmbpsEf/uEf4nnPex7OP/98vPzlL8cVV1yBP/iDP4BzfUPPYtkOe/pmFtP9Y4c+O+o06rSsjDotJ6NOy8nJqtNOiyFaUE34FJWjR4/i4MGDeOCBB/CoRz2qeG8vmgxGnZaTUaflZNRpORl1Wk5OlE5Hjx7F4cOHceTIkZl5fDtlFyoWnlzSNxmYOe9tRvrn2ayMOi0no07LyajTcjLqtJzsRZ22U0aQjLKRaWGzA2Z6WxrYN+/YUadRp1GnUadRp819907JCJJKhgaEetuNPjv0OcLwOeVzi75j1GnUadRp1GnUaVin3ZARJAdkkX193gqm/5mhG2DovMsO9qjTqNOo06jTqNPuAiQwgmQaxHkD0pdFq6l55x91GnUadRp1GnXaOZ12UvY9SPap/dAAaRv5vHPM27fZG2TUadRp1GnUadRpczrtpOxrkNSDvGiAtnvQFq2+Rp1GnUadRp1GnZbXaadlX4OkiAzAZgZxo0Hrn2uZc+tjRp2W+8yo03KfGXVa7jOjTst9Zq/otBuyr0GyP2jzBnGROcHMeX+j7xr6zJCNf9Rp1GnUadRp1OnEgeaO9ZM8lWSz9vP+/iH7/PGaD0adRp1GnUadRp12XvY1kzxeWbSy6Zsmhm6AnZBRp+Vk1Gk5GXVaTkadlpO9qNNGMoLkcciilQ2hNC8s+tx23gCjTsvJqNNyMuq0nIw6LSd7UaeNZATJTchmB2Yj88J2yKjTcjLqtJyMOi0no07LyV7UabMygiTKgZy3kgGGB24rK5r+d2x03lGnUadRp1GnUafFOu2UjCCJYeewUP9FN0D/s5v9PtludHONOo06jTqNOo06LdZpp2Rfg+S8C91frRjMH9hFN8RGN4vcUNR7Peo06jTqNOo06rSxTrsh+xokh6Q/AIS8QtLH6Pf1Fku+J98ztCIbdRp1GnUadRp12lin3ZB9DZKLBknL0E1wPLJoJTTqNOo06jTqNOq0vE47LfsaJIekT/OXHZx55oEhkfMt+5lRp+Vk1Gk5GXVaTkadlpO9qNN2yr4GyaEL3h/cZVcvGx23zHcte9yo06jTqNNyx406LXfcyazTTsu+Bsllb4IhZ/JGK5r++1u94UadRp1GnUadRp2WO8dOyL4GSWC5gaGB9zYawGVWPPOOGXUadRp1GnUadVpep52UfQ+S/Ys+ZF/XzxetZPS5NrPi2eimG3UadRp1GnUaddrasccr+x4k+7LIvk4D7wPLmyWW/c5Rp1GnUadRp1Gnreu0nTKC5DbIogE7ETZ0YNRpWRl1Wk5GnZaTUaflZC/qNE9GkNxhWXbFs5s3xqjTcjLqtJyMOi0no07LyV7TaV+D5DIXeSsDsRXbOmFj+/1Wzr+Vz4w6be7YUafljh11Wu7YUafljt0tk+u+Bkm5yPMGyKAciGUd0ss4o/sDLd816jTqNOo06jTqtJxOuyH7GiRl0OatSI7XIb3ohunv1wM/6jTqNOo06jTqtJxOOy37GiSXGbRF+4eO66+8ht4bdRp1GnUadRp12h6ddlr2NUj2ZdlVUp/2Lzp2GSEsvslGnUadRp1GnUadltNpu2UESSXzVklDxy0rQwO5aDU1tH/UaeNzjjotd85Rp+XOOeq03Dn3ok7bLfsaJHdjJTI0kIsGd9Rp8T6RUafF+0RGnRbvExl1WrxPZC/qtNOyr0GybwrQsuhm2MkbZdRpORl1Wk5GnZaTUaflZC/qtNOyr0FykZ2cBo4bem+7ZdRpORl1Wk5GnZaTUaflZC/qtNOyoyD5cz/3c3ja056GAwcO4NGPfvRSnyEi3HzzzTjnnHOwurqKZz7zmfizP/uz4pj19XX8+I//OA4dOoTTTjsNL3jBC/DFL35x0/otO3DbZX7YTKTXRjLqtJyMOi0no07LyajTcrKbOu207ChITqdTvOhFL8KP/diPLf2Zn//5n8cv/uIv4ld+5VfwkY98BIcPH8Z3f/d34+GHH07H3HjjjXjPe96Dd77znfhf/+t/4etf/zquuuoqeO+PW+fNmgw2G5G1lc+OOi0no07LyajTcjLqtJzsRZ22UwwR7fj3vvWtb8WNN96Ihx56aOFxRIRzzjkHN954I37qp34KALPGs846C69//evxIz/yIzhy5Age+9jH4u1vfzte/OIXAwD+5m/+Bueeey7e//7343nPe96G+hw9ehQHDx7EAw88gEc96lFzj1tkWtiMbNd5tvNco067e57tPNeo0+6eZzvPNeq0fec5evQoDh8+jCNHjiycx49Xqh078xbk/vvvxwMPPIArrrgi7VtZWcEznvEM3HXXXfiRH/kRfPSjH0XbtsUx55xzDi688ELcddddgyC5vr6O9fX19PrIkSMAULBTg+EBkf3z3p8n+nPonaN/ro32jzqNOo06jTqNOpXHyvy90zxvT4HkAw88AAA466yziv1nnXUW/vqv/zod0zQNvvEbv3HmGPl8X2699VbccsstM/uf+MQnbofao4wyyiijnCD52te+hoMHD+7Y+TcNkjfffPMg4Gj5yEc+gksuuWTLShlTWrKJaGZfXxYdc9NNN+GVr3xlev3QQw/hvPPOw+c///kdvbg7IUePHsW5556LL3zhCztqYthuGfXeXRn13n05WXU/WfU+cuQIHve4x+GMM87Y0e/ZNEi+7GUvwzXXXLPwmMc//vFbUubw4cMAmC2effbZaf9XvvKVxC4PHz6M6XSKBx98sGCTX/nKV/C0pz1t8LwrKytYWVmZ2X/w4MGT6qbQ8qhHPeqk1H3Ue3dl1Hv35WTV/WTV29qdzWTcNEgeOnQIhw4d2gld8IQnPAGHDx/GHXfcgac85SkAOEL2gx/8IF7/+tcDAC6++GLUdY077rgDV199NQDgS1/6Ej71qU/h53/+53dEr1FGGWWUUfan7KhP8vOf/zz+3//7f/j85z8P7z3+9E//FADw9/7e38M3fMM3AAAuuOAC3HrrrXjhC18IYwxuvPFGvPa1r8UTn/hEPPGJT8RrX/taHDhwAC95yUsAMPt76Utfile96lV4zGMegzPOOAM/8RM/gSc/+cl47nOfu5P/ziijjDLKKPtMdhQkf+ZnfgZve9vb0mthh3feeSee+cxnAgDuu+++FG0KAD/5kz+JY8eO4V/+y3+JBx98EJdeein+x//4Hzj99NPTMb/0S7+Eqqpw9dVX49ixY3jOc56Dt771rXDOLaXXysoKXvOa1wyaYPe6nKy6j3rvrox6776crLqPei+WXcmTHGWUUUYZZZSTUfZ17dZRRhlllFFGWSQjSI4yyiijjDLKHBlBcpRRRhlllFHmyAiSo4wyyiijjDJHRpAcZZRRRhlllDlyyoLkXu9lOU8efPBBXHfddTh48CAOHjyI6667bsPuKcaYwccv/MIvpGOe+cxnzry/UeWkndb7B3/wB2d0uuyyy4pj9tr1btsWP/VTP4UnP/nJOO2003DOOefgn//zf46/+Zu/KY7biev9a7/2a3jCE56AyWSCiy++GH/8x3+88PgPfvCDuPjiizGZTPAt3/It+PVf//WZY9797nfj277t27CysoJv+7Zvw3ve857j0vF49f6d3/kdfPd3fzce+9jH4lGPehQuv/xy/P7v/35xzFvf+tbB+31tbe2E6f2BD3xgUKc///M/L47ba9d76DdojMG3f/u3p2N243r/z//5P/FP/sk/wTnnnANjDP7rf/2vG35m1+5vOkXlZ37mZ+gXf/EX6ZWvfCUdPHhwqc+87nWvo9NPP53e/e530yc/+Ul68YtfTGeffTYdPXo0HfOjP/qj9E3f9E10xx130L333kvPetaz6Du/8zup67pt0fvKK6+kCy+8kO666y6666676MILL6Srrrpq4We+9KUvFY83v/nNZIyhz33uc+mYZzzjGXTDDTcUxz300EPbovNW9b7++uvpyiuvLHT62te+Vhyz1673Qw89RM997nPpXe96F/35n/853X333XTppZfSxRdfXBy33df7ne98J9V1TW984xvp05/+NL3iFa+g0047jf76r/968Pi//Mu/pAMHDtArXvEK+vSnP01vfOMbqa5r+i//5b+kY+666y5yztFrX/ta+sxnPkOvfe1rqaoquueee7as5/Hq/YpXvIJe//rX04c//GH6i7/4C7rpppuormu699570zFvectb6FGPetTMfb+dslm977zzTgJA9913X6GTvk/34vV+6KGHCn2/8IUv0BlnnEGvec1r0jG7cb3f//7307/5N/+G3v3udxMAes973rPw+N28v09ZkBR5y1veshRIhhDo8OHD9LrXvS7tW1tbo4MHD9Kv//qvExHfUHVd0zvf+c50zP/9v/+XrLV0++23H7eun/70pwlAMYh33303AaA///M/X/o83/M930PPfvazi33PeMYz6BWveMVx6zgkW9X7+uuvp+/5nu+Z+/7Jcr0//OEPE4BiItru6/3Upz6VfvRHf7TYd8EFF9CrX/3qweN/8id/ki644IJi34/8yI/QZZddll5fffXVdOWVVxbHPO95z6Nrrrlmm7TevN5D8m3f9m10yy23pNfL/qaPRzart4Dkgw8+OPecJ8P1fs973kPGGPqrv/qrtG83rreWZUByN+/vU9bculnZqJclgA17WR6v3H333Th48CAuvfTStO+yyy7DwYMHlz7/l7/8Zbzvfe/DS1/60pn3brvtNhw6dAjf/u3fjp/4iZ8o+mmeKL0/8IEP4Mwzz8Tf//t/HzfccAO+8pWvpPdOhusNcDcCY8yMWX+7rvd0OsVHP/rR4joAwBVXXDFXz7vvvnvm+Oc973n4kz/5E7Rtu/CY7bi2W9W7LyEEPPzwwzOdHr7+9a/jvPPOwzd/8zfjqquuwsc+9rFt0fl49X7KU56Cs88+G895znNw5513Fu+dDNf7TW96E5773OfivPPOK/bv5PXeiuzm/b2n+kmeSNmpXpab1eHMM8+c2X/mmWcuff63ve1tOP300/F93/d9xf5rr702FZD/1Kc+hZtuugkf//jHcccdd5wwvZ///OfjRS96Ec477zzcf//9+Omf/mk8+9nPxkc/+lGsrKycFNd7bW0Nr371q/GSl7yk6KCwndf7b//2b+G9H7w35+n5wAMPDB7fdR3+9m//FmefffbcY7bj2m5V7778+3//7/F3f/d3qZkBwPWe3/rWt+LJT34yjh49il/+5V/G05/+dHz84x/flh6xW9H77LPPxm/+5m/i4osvxvr6Ot7+9rfjOc95Dj7wgQ/gu77ruwDMH5O9cr2/9KUv4fd+7/fwW7/1W8X+nb7eW5HdvL9PKpA8GXtZAsvrPfT9y+og8uY3vxnXXnstJpNJsf+GG25Izy+88EI88YlPxCWXXIJ7770XF1100QnR+8UvfnGh0yWXXILzzjsP73vf+2ZAfjPn3a3r3bYtrrnmGoQQ8Gu/9mvFe1u53hvJZu/NoeP7+7dyv29Wtvod//k//2fcfPPN+N3f/d1iMXPZZZcVAV5Pf/rTcdFFF+ENb3gD/sN/+A8nRO/zzz8f559/fnp9+eWX4wtf+AL+3b/7dwkkN3vOrcpWv+Otb30rHv3oR+N7v/d7i/27db03K7t1f59UIHky9rLcjN6f+MQn8OUvf3nmva9+9aszK6Ih+eM//mPcd999eNe73rXhsRdddBHqusZnP/vZuZP2buktcvbZZ+O8887DZz/7WQB7+3q3bYurr74a999/P/7oj/5owz58y1zveXLo0CE452ZWwPre7Mvhw4cHj6+qCo95zGMWHrOZMdtuvUXe9a534aUvfSl++7d/e8PuPtZa/MN/+A/TfXO8cjx6a7nsssvwjne8I73ey9ebiPDmN78Z1113HZqmWXjsdl/vrciu3t+b8mCehLLZwJ3Xv/71ad/6+vpg4M673vWudMzf/M3fbHsgyYc+9KG075577lk6kOT666+fibKcJ5/85CcJAH3wgx/csr4ix6u3yN/+7d/SysoKve1tbyOivXu9p9Mpfe/3fi99+7d/O33lK19Z6ruO93o/9alPpR/7sR8r9j3pSU9aGLjzpCc9qdj3oz/6ozOBDc9//vOLY6688sptDyTZjN5ERL/1W79Fk8lkw+ANkRACXXLJJfRDP/RDx6NqIVvRuy/f//3fT8961rPS6716vYly4NEnP/nJDb9jJ663FiwZuLNb9/cpC5J//dd/TR/72MfolltuoW/4hm+gj33sY/Sxj32MHn744XTM+eefT7/zO7+TXr/uda+jgwcP0u/8zu/QJz/5SfqBH/iBwRSQb/7mb6Y/+IM/oHvvvZee/exnb3tKwnd8x3fQ3XffTXfffTc9+clPnklJ6OtNRHTkyBE6cOAA/cf/+B9nzvl//s//oVtuuYU+8pGP0P3330/ve9/76IILLqCnPOUpJ0zvhx9+mF71qlfRXXfdRffffz/deeeddPnll9M3fdM37enr3bYtveAFL6Bv/uZvpj/90z8tQuLX19eJaGeut4T2v+lNb6JPf/rTdOONN9Jpp52WohBf/epX03XXXZeOlxD5f/Wv/hV9+tOfpje96U0zIfL/+3//b3LO0ete9zr6zGc+Q6973et2LCVhWb1/67d+i6qqol/91V+dmz5z88030+23306f+9zn6GMf+xj90A/9EFVVVSx2dlvvX/qlX6L3vOc99Bd/8Rf0qU99il796lcTAHr3u9+djtmL11vkn/2zf0aXXnrp4Dl343o//PDDaY4GQL/4i79IH/vYx1LE+Im8v09ZkLz++usJwMzjzjvvTMcAoLe85S3pdQiBXvOa19Dhw4dpZWWFvuu7vmtmZXXs2DF62cteRmeccQatrq7SVVddRZ///Oe3Te+vfe1rdO2119Lpp59Op59+Ol177bUzYeV9vYmIfuM3foNWV1cHc/E+//nP03d913fRGWecQU3T0Ld+67fSy1/+8pmcxN3U+5FHHqErrriCHvvYx1Jd1/S4xz2Orr/++plrudeu9/333z94X+l7a6eu96/+6q/SeeedR03T0EUXXVSw0uuvv56e8YxnFMd/4AMfoKc85SnUNA09/vGPH1xA/fZv/zadf/75VNc1XXDBBcWkvl2yGb2f8YxnDF7b66+/Ph1z44030uMe9zhqmoYe+9jH0hVXXEF33XXXCdX79a9/PX3rt34rTSYT+sZv/Eb6//6//4/e9773zZxzr11vIrbYrK6u0m/+5m8Onm83rrcw2XnjfiLv77Gf5CijjDLKKKPMkTFPcpRRRhlllFHmyAiSo4wyyiijjDJHRpAcZZRRRhlllDkyguQoo4wyyiijzJERJEcZZZRRRhlljowgOcooo4wyyihzZATJUUYZZZRRRpkjI0iOMsooo4wyyhwZQXKUUUYZZZRR5sgIkqOMMsooo4wyR0aQHGWUUUYZZZQ58v8DPJWe9B9IZxgAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9ebwdRZX/t6q673tJSIKAJIAYFhlkUZYg67AomwgiuBB1jBvqoMxnQOQ3ygAq8BkZx2VcARmRiIyIioALKDCDiENEhYDjhjrqxCUZ2cOS9+7tqvP7o5auqq7ue1/y3stLbp98bm7f7urq87qr+lvfc06dYkREaKWVVlpppZVWKsI3tAKttNJKK620MlOlBclWWmmllVZaqZEWJFtppZVWWmmlRlqQbKWVVlpppZUaaUGylVZaaaWVVmqkBclWWmmllVZaqZEWJFtppZVWWmmlRlqQbKWVVlpppZUaaUGylVZaaaWVVmqkBcmEvP/97wdjLNi3ww474IQTTpiW6z/99NN4//vfj+9+97uVY8uWLQNjDL///e+nRZeZJL///e/BGMOyZcsmrc6rrroKr371q7HrrruCc44ddtghWe673/0uGGPJzw9+8INJ02eq5bzzzsMJJ5yA7bbbDowxvPGNb0yWu+aaa3DYYYdhwYIFGBkZwbbbbouXvvSluOuuuwa6zhvf+MbkvXruc58blPvVr36Fs88+G4sXL8bmm2+OLbbYAocccgi++tWvVuq87bbbcPTRR2PbbbfFyMgItt56a7zoRS/CTTfdFJSz7aTu8+IXv7hW79tuu82Ve+ihh4JjO+ywQ22do6OjrlxTW2GM4bTTTut7n+ra1r333oujjjoKm222GTbffHO8/OUvx29/+9vk3/K///u/ePOb3+zu13bbbYeTTz45KGPfJ6nP6tWra+/T2rVr8Vd/9VdgjOHDH/5wcOyee+7B6aefjuc973mYO3cuFixYgKOOOgr/+Z//Wanns5/9LE466STssMMOmDVrFp7znOfg7W9/O1atWhWUW7VqFc477zwcdNBB2GqrrTBv3jwsXrwYl19+OaSUtXpOhmRTWvtGKm95y1saO9JUy9NPP40LLrgAAHDEEUcEx44//ngsX74c22yzzQbQbNOTL3zhC1i9ejX2339/KKXQ6/Uay3/gAx/AC1/4wmDfnnvuOZUqTqr867/+K57//OfjxBNPxOc+97nacg8//DAOOeQQnHHGGdhqq62watUqfPSjH8Vhhx2G//iP/8Dhhx/e91qzZs2qvBhnzZoV/L7lllvwrW99C0uXLsULXvACFEWBa6+9Fq961atwwQUX4L3vfW+g0x577IG3vOUtWLhwIR555BFcdtllOP744/GFL3wBr3vd6wAA22yzDZYvX17R54YbbsAHP/jBClBYefLJJ/HWt74V2267Lf785z9Xjl9//fUYHx8P9q1cuRJLliwJ6tx3332T17/00ktx1VVXBWXPP//8ADStvPSlL8XIyAhe8IIXuH2//OUvccQRR2DvvffGl7/8ZYyNjeG9730vDj30UNx333145jOf6cr+9Kc/xRFHHIGddtoJH/7wh/GsZz0Lq1atwne+853k337llVdWBjBbbrllsqzV+6mnnkoeu+aaa/DDH/4Qb37zm7HXXnvhqaeewmWXXYYjjzwSn//85/H617/elX3f+96HF77whfjABz6A7bbbDg888AAuuugi3HjjjVixYgUWLFgAQAPvVVddhde//vU4//zzkec5br75Zrz97W/HD37wg8a2vN5CrQwkixYtouOPP36dzu12u9Tr9QYu/+CDDxIAet/73rdO19tU5Xe/+x0BoCuvvHLS6pRSuu3jjz+eFi1alCx3++23EwD6yle+MmnX3hDi/71z5syhN7zhDQOf+9hjj1Ge57R06dK+Zd/whjfQnDlz+pZ78MEHSSlV2X/88cfT7NmzaWxsrPH8brdL2223HR166KF9r3XEEUfQ7Nmz6fHHH08eP/3002mfffah8847jwDQgw8+2LfO97///QSAbrvttsZySinaaaedaNGiRcEzSMl3v/tdAkDnnXdesP9Vr3oVbbXVVoH+v//97ynPc/qHf/iH4Fp777037b333n3v35VXXkkA6Ec/+lFjOV/uvvtu6nQ69JWvfIUA0Ic+9KHg+P/93/9VzimKgp7//OfTzjvv3Lfsj370IwJAF110kdv3yCOPULfbrZQ9/fTTCQCtXLlyYP0nKkNjbr3hhhvAGMN//Md/VI5deumlYIzhJz/5CYC0udXK9ddfj+c///kYHR3FTjvthE984hPBcWtq+cIXvoB3vetd2G677TAyMoLf/OY3ePDBB/GOd7wDu+++OzbbbDNnLrrzzjvd+b///e/diPCCCy5wpg9rFkuZW4844gjsueee+NGPfoRDDz0Us2fPxk477YR//ud/hlIq0O9nP/sZjjnmGMyePRvPfOYzcfrpp+Nb3/oWGGNJ864v9r785Cc/wate9SrMnz8fW2yxBc466ywURYEHHngAL37xizF37lzssMMO+Jd/+ZdKHStXrsTrXvc6bL311hgZGcFuu+2Gj3zkIxU9//znP+OUU07B3LlzMX/+fCxZsqTW/PPjH/8YJ554IrbYYguMjo5in332wZe//OXGv8UK5xu2C5xxxhkYGRnBgw8+mDz+9re/HbNmzcL//d//Tcr11ufvnTt3LkZHR5Flk2eA2mqrrZJ9bf/998fTTz+NRx55pPH8PM+x+eab99Xpf/7nf3DHHXfglFNOwbx58yrH77zzTlx++eX47Gc/CyHEQLoTEa688krstNNOeNGLXtRY9vbbb8dvf/tbvOlNb+r7DK644gowxvDmN7/Z7SuKAt/85jfxile8ItB/0aJFeOELX4jrr7/e7fve976H++67D2eeeSZGRkYG+lsGlW63ize/+c04/fTTsd9++yXLbL311pV9QggsXrwYf/jDH/qWXbx4MYQQQdlnPOMZyPO8Unb//fcHAPzxj3+c0N8xERkakDzhhBOw9dZb48orr6wcW7ZsGfbdd188//nPb6zDNrx3vvOduP7663HwwQfjjDPOqNjkAeCcc87BypUrcdlll+Eb3/gGtt56a9fh3/e+9+Fb3/qW62BHHHGEA6htttkG3/72twEAp556KpYvX47ly5fj/PPPb9Rt9erV+Ju/+Ru87nWvw9e//nUcd9xxOOecc3D11Ve7MqtWrcLhhx+OBx54wJl+nnjiCfzd3/1dY92xnHLKKdhrr71w3XXX4a1vfSv+9V//Fe985ztx0kkn4fjjj8f111+PF73oRXj3u9+Nr33ta+68Bx98EAcffDBuueUWXHTRRfj617+Oo446CmeffXagw9q1a3HUUUfhlltuwcUXX4yvfOUrWLhwIZYsWVLR5fbbb8chhxyCxx57DJdddhluvPFG7L333liyZMmk+i6tnH766ciyDPPmzcOxxx6L73//++tc11NPPYUrrrgCJ5xwQmAq8+Wtb30rxsbG8JnPfCbYXxTFQB9az0V+pJTo9Xr4/e9/j7e//e0gIpx++ukDnbt27VosXLgQQgg861nPwt/93d/1BT0rt99+O575zGcmX6JKKRRFgT//+c943/veh1/96ld417ve1Vjf5z73ORAR3vKWtyT1PPXUU3HmmWdi3333HUg/QPsvrd+vblBt5YorrgDnHG9605sayz3++OP46le/iiOPPBI77rij2/8///M/WLt2bfId9fznPx+/+c1vMDY2BkCDJKAHNS95yUswOjqKzTbbDCeccAJ++ctfJq97wgknQAiBLbbYAi9/+cvx05/+NFnuwgsvxFNPPYWLLrqo8e+IpSgK3Hnnndhjjz36lr3jjjsgpRyo7H/+538iyzL81V/91YT0mZBMGUedgXLWWWfRrFmz6LHHHnP7fv7znxMA+uQnP+n2ve9976P41ixatIgYY3TfffcF+48++miaN28ePfXUU0RUmuUOO+ywvvoURUG9Xo+OPPJIOvnkk93+JnOrNY/87ne/c/sOP/xwAkB33313UHb33XenY4891v3+f//v/xFjjH72s58F5Y499lgCQLfffnujvva+fOQjHwn277333gSAvva1r7l9vV6PnvnMZ9LLX/5yt+8973lPUs+3v/3txBijBx54gIiILr30UgJAN954Y1DurW99a8Xc+tznPpf22Wefijn7hBNOoG222aavacuXJnPrvffeS2eccQZdf/319L3vfY8+97nP0W677UZCCPr2t7898DV8seaqK664orHcdtttR3vssUewD8BAnybT9CDm1l133dXVtc0229D3v//9gf62j370o/TRj36UbrnlFrrlllvo3HPPpdmzZ9Nzn/tceuKJJxrP/bd/+zcCQB//+MeTx217BUDz5s0L2l1KiqKg7bbbjp773Ocmj7/rXe+inXbaiZ5++mkiKtt5P3PrkiVLSAhBf/zjHxvLPfroozQ6Ohr0xTqxbf+aa64J9v/Xf/1Xcj8R0Qc+8AECQH/+85+JiOhv//Zv3b059dRT6bbbbqMvfOELtGjRItpqq61cOSKim2++mc4991z6xje+QXfccQd96lOfomc961k0Z86cyrtuxYoVlOe5a+/W/RGbW1Ny7rnnEgC64YYbGsutWbOGdtttN9p+++37tpPvfOc7xDmnd77znX2vvz4yVCD505/+lADQZz7zGbfv//2//0cjIyP08MMPu311ILnnnntW6rSgdeeddxJRCZJ1HfzSSy+lffbZh0ZGRoKXmd+B1wUkFy5cWCn76le/Oqh3//33p+c973mVcsuWLZsQSFows/Ka17yGGGO0du3aYP9BBx1EixcvDq6/++67V+q9++67CQBdeumlRER0yimn0Ny5cyvl7L21L/5f//rXBIA+/OEPU6/XCz6XXHIJAaCf//znjX+TL00gmZJHH32UnvWsZ9Hzn//8gc/x5eyzzyYAdM8997h9y5cvr4Dm8ccfT4wxevLJJ92+H/3oRwN9HnroodrrDwKSP/3pT+nuu++mr3zlK3TkkUfS3Llz+7aTOvnqV79KAOijH/1obZmbbrqJOp0OvfKVr0z6KomIfvWrX9EPf/hDuvHGG+lVr3oV5XlOX/ziF2vr/OY3v1n7Mr/77rtJCEG33nqr2zcISD788MM0MjIyUJzCpz71qYH92fvttx9tueWWFV+iBckvfelLlXMsSK5atYqIysFkDMorVqwgAHTuuec26vC73/2ONttsMzrxxBPdvl6vR/vssw+97nWvC8oNApJ20POud72rsdzatWvpqKOOotmzZ9MPfvCDxrL33HMPzZ8/nw4++OC+ftf1laGKbt1jjz3wghe8AFdeeSXe9ra3QUqJq6++Gi972cuwxRZb9D1/4cKFtfsefvjhYH8q+vSjH/0o3vWud+G0007DRRddhK222gpCCJx//vn4xS9+sY5/lZZUJNrIyAjWrl3rfj/88MOBCceKjSAbVOJ71el0MHv27CAM3u5fs2ZNcP3UFIttt93WHbffKZ3i+2/9dGeffTbOPvvspK5xGP9kyuabb44TTjgBl112GdauXVuJ3Ownjz76KAAEPqYbbrgBn//85wN/1Pz580FEeOyxxzBnzhwAwN577z3QNQb1r9WJNXntv//+OOmkk7DPPvvgjDPOwP333z/huk4++WTMmTOndsrMd77zHbz85S/H0UcfjX//93+vNWHusssubvvEE0/Ecccdh9NPPx1LlixJ+vuuuOIK5HkeRFVaefOb34yXv/zl2G+//fDYY48BgDNbrlmzBiMjI5g7d27lvKuvvhrj4+NJ823q+s985jPxspe9rLHcT37yE/z4xz92fmpfbP+O3zMA8Mgjj4Axhs033zwoe+yxxwbl9t57b2yzzTa49957G/XYYYcd8Nd//dfBc/rYxz6G3/72t/jyl7/s7pPt22NjY3jssccwd+7cSnu78sor8bd/+7d429vehg996EO11xwfH8fJJ5+M73//+/jmN7+JAw44oLbsihUrcPTRR2OXXXbBTTfdNOl+11iGCiQB4E1vehPe8Y534Be/+AV++9vfYtWqVX39BFZSgSN2XwxSqQ5+9dVX44gjjsCll14a7H/iiScGVX+9ZMstt0wGgDTNh5rs68fznwC4cPutttrKlfvhD39YKRfracufc845ePnLX5685q677rpeOvcTMj6/fj6plMyfPx9ACZaA/hsfeugh9Ho9F6hg/Xi2PIBkEENKrrzyytq5kBOVLMuw7777DhwUlRIiSgLZd77zHZx00kk4/PDDcd1116HT6Qxc5/77749vf/vbePDBByuDq7/85S/45je/iRNPPDHp3/zZz36Gn/3sZ/jKV75SObbzzjtjr732wn333Vc5dsUVV2DBggV9506vWLECK1aswLve9a6+z+yKK64AgCTw7rzzzpg1axb++7//u3Lsv//7v/Gc5zzHDVKbYivq7n+/cj/96U/x+OOPBwMUK+effz7OP/98rFixIhi8XXnllXjLW96CN7zhDbjssstq+8j4+DhOOukk3H777bjxxhtx5JFH1uq1YsUKHHXUUVi0aBFuueWWoE9MlQwdSL7mNa/BWWedhWXLluG3v/0ttttuOxxzzDEDnfuzn/0M999/P/baay+374tf/CLmzp07kMOfMVYZ9fzkJz/B8uXLsf3227t9tozPAidDDj/8cHz4wx/Gz3/+c+y+++5u/5e+9KVJvU6dHHnkkbj44otx7733BvfrqquuAmPMzT984QtfiC9/+cv4+te/jhNPPNGV++IXvxjUt+uuu2KXXXbB/fffjw984APT8jf48uijj+Kb3/wm9t577wqLHkRsO7rrrrvcfLgf/OAHyLIMd999N/76r/8avV4Pd999N57znOdgs802c+f+6Ec/GugaKcvBusrY2Bh+8IMf4DnPec46nf/Vr34VTz/9NA488MBg/y233IKTTjoJf/3Xf40bbrhhQsyAiHDHHXdg8803T1pTrrrqKvR6PZx66qnJ82+//fbKvmXLluHzn/88brjhBmy33XaV4z/+8Y/xk5/8BP/wD//QN6rWAl/d9a2Mj4/j6quvxv7775+cd5tlGV760pfia1/7Gv7lX/7FsduVK1fi9ttvxzvf+U5X9rjjjsPs2bNx8803B/vvvfderF69unL/Y/nd736H//qv/8JRRx3l9r3nPe+pDLZWr16N17zmNTjttNOwZMmSoF0sW7YMb3nLW/C6170On/3sZxsB8uSTT8Z//ud/4mtf+1qF/fpy33334aijjsKznvUs3HrrrXjGM57R+HdMlgwdSG6++eY4+eSTsWzZMjz22GM4++yzBw6L33bbbXHiiSfi/e9/P7bZZhtcffXVuPXWW/HBD34Qs2fP7nv+CSecgIsuugjve9/7XJTphRdeiB133BFFUbhyc+fOxaJFi9yoaosttsBWW21Vmw1mUDnzzDPxuc99DscddxwuvPBCLFiwAF/84hddxNtUT4d45zvfiauuugrHH388LrzwQixatAjf+ta3cMkll+Dtb3+7i1B7/etfj3/913/F61//evzTP/2TM6ukJkJ/5jOfwXHHHYdjjz0Wb3zjG7HddtvhkUcewS9+8Qvce++9SYbgy89//nP8/Oc/B6A7/dNPP+2yvey+++5uMPHa174Wz372s7Hffvthq622wq9//Wt85CMfwf/93/9VomiXLVuGN73pTX1Z3EknnYStt94aF110Ebbeemv88pe/xMMPP4w3velNOOuss/D+978fX/jCF/Doo4/i3HPPDc6tC7/vJ3fccYebbiKlxP/+7/+6v/fwww93UbYHH3wwTjzxROy2226YP38+fv/73+PSSy/F//zP/wTTDQC4l+NvfvMbADrTy2tf+1q8+tWvxnOe8xwwxnDHHXfgYx/7mEsGYOX73/8+TjrpJCxcuBD/+I//WGFtu+++uzNHv+xlL8Nee+2FvffeG1tuuSX+/Oc/Y9myZbjjjjvw6U9/OglYV1xxBbbffvval2+crAOAizQ/5JBDnLUirhPoD3xjY2P44he/iIMPPhi77bZbY9kbbrgBjzzySKP59oILLsALXvACnHDCCXjPe97jkglstdVWQXTv5ptvjgsvvBBnn3023vjGN+I1r3kNVq9ejfPPPx/Pfvaz8Y53vMOVPeqoo3DYYYfh+c9/PubNm4f//u//xr/8y7+AMRZEsD73uc+tJBuw09B23nnn4D5+5Stfwamnnoq9994bf/u3f1uxCu2zzz5uIPTKV74SN998M84991xsueWWgYl33rx5rv898MADDrT/6Z/+Cb/+9a/x61//2pXdeeedayPE11um1OM5Q+WWW25xATO/+tWvKsfrAneOP/54+upXv0p77LEHdTod2mGHHSpBCE2TzsfHx+nss8+m7bbbjkZHR2nfffelG264gd7whjdUAkZuu+22IMDHBljUBe7E0Y9ElKz3pz/9KR111FE0OjpKW2yxBZ166qn0+c9/ngDQ/fff33DX6gMa6iaOp/T63//9X3rta19LW265JeV5Trvuuit96EMfqkSh/vGPf6RXvOIVtNlmm9HcuXPpFa94Bd11113JiM3777+fTjnlFNp6660pz3NauHAhvehFL6LLLrus8e/x/6bUxw+cuvjii2nvvfem+fPnkxCCnvnMZ9LJJ59MP/zhDyt1fvKTnyQAA0W93nPPPXTQQQfRyMgI7bzzzvSd73yHHnroITruuONo9uzZtHDhQjr//PNrg1gmKjYSOvXxA3Le9a530V577UXz58+nLMto4cKFdPLJJ9N//dd/VepctGhR0M4eeeQROvnkk2mHHXagWbNmUafToV122YX+4R/+IYgsJ2q+/7FOH/zgB+kFL3gBPeMZzyAhBG255ZZ07LHH0je/+c3k32qDXd773vdO6B41Be48/fTTNH/+/IGi1//93/+dANDnPve5vmWPPvpomjNnDq1Zs6ax3I9//GM68sgjafbs2TRv3jw66aST6De/+U2y7L/927/RnnvuSZ1Oh7bcckv6m7/5G/rDH/4QlDnzzDNp9913p7lz51KWZbTtttvS6173ukpwXkrqAnfe8IY3ND5T/93VVO7www935ex7r+4zmQlGYmFG0VaGWN72trfhmmuuwcMPPzwhX1AraTnllFPwu9/9bmCTaCuttDJzZejMrcMuF154IbbddlvstNNOePLJJ/HNb34Tn/3sZ3Heeee1ADkJQkT47ne/GyRxaKWVVjZeaUFyyCTPc3zoQx/CH//4RxRFgV122QUf/ehHccYZZ2xo1TYJYYzhL3/5y4ZWo5VWWpkkac2trbTSSiuttFIjUxrO+L3vfQ8vfelLse2224IxhhtuuKHvOXfccQcWL17sEohfdtlllTLXXXcddt99d4yMjGD33XevRNu10korrbTSymTIlILkU089hb322guf+tSnBir/u9/9Di95yUtw6KGHYsWKFfjHf/xH/P3f/z2uu+46V2b58uVYsmQJli5divvvvx9Lly7FKaecgrvvvnuq/oxWWmmllVaGVKbN3MoYw/XXX4+TTjqptsy73/1ufP3rXw9StJ122mm4//773SKmS5YswZo1a3DzzTe7Mi9+8YvxjGc8A9dcc82U6d9KK6200srwyYwK3Fm+fHkl+82xxx6LK664wqXpWr58eZBFwpb52Mc+Vlvv+Ph4sKK4UgqPPPIIttxyy3VKJ9ZKK6200sqGFSLCE088gW233XZKE6HMKJBcvXp1JffiggULUBQFHnroIWyzzTa1ZZryj1588cW44IILpkTnVlpppZVWNpz84Q9/wLOe9awpq39GgSRQTRRNiQTSqTJNjPCcc87BWWed5X4//vjjePazn43f/PrXLgdibHNmZp+tlaL9cZnU9yASl/X/ilanVqd11anSG0hN7DcAltgH1UeT1DmTLWwGrRW/vn9v/Ldw/eSIcX3MfDZ0e/J/W9nQOj3xxBPYZZddkqu0TKbMKJBcuHBhhRH+5S9/QZZlLnlxXZmm5Z5GRkaSSZM3mzsXc71ligaRuAGkjqcaR12Zpn2tTq1O66OTE/9FXrNdAURVc07TPgBsGkIcaF1cJIMC6wRBb33/3uBvsTrab85BPCvBEv3b2TC28al2mc0okDzooIPwjW98I9h3yy23YL/99nPLzBx00EG49dZbA7/kLbfcgoMPPnjC12Ped9PoJn7I8cjK/x2PilIPN9UIBh1ptTq1Og2iU1IsAKTAsQ4Ug7LRlSYAnpMpbBDAi8uQXLeL9ft71vPvZYAHjvr+ElN6nwIYioBVMg8sh72NT/1wTMuUguSTTz7pVgYA9BSP++67D1tssQWe/exn45xzzsGf/vQnXHXVVQB0JOunPvUpnHXWWXjrW9+K5cuX44orrgiiVs844wwcdthh+OAHP4iXvexluPHGG3Hbbbfh+9///oT1Sz2Iugfkj1X8MnUjLr+RDDJSanVqdZoKnSrAaL4r4JgARgeKAzDRxn1W1z6AQoOCX1M9to7JBuu6+ga4jv93J//GiEEyxgFGGizJAKNllX55WyeGvI1PsUwpSP74xz92awQCcH7BN7zhDVi2bBlWrVqFlStXuuM77rgjbrrpJrzzne/Epz/9aWy77bb4xCc+gVe84hWuzMEHH4wvfelLOO+883D++edj5513xrXXXtu4knU/6fcwUiMfu7+uLn+7bhTW6tTqNF066RMbALIOGFOg2GSmrQMNNQCYAEC/KMUaIKV+4DhJ5tYk0E/gb3bP2P87LTv0wdKyRh8sbRmeBWy6beNTK0OZlm7NmjWYP38+Vq9e7daqi2WQkcwg++securcfg2h1anVaVCd3MvIA0CQCgEy2F8DjnUM1AeGfv5LYGDfXaO/MQV0daA6WcE9yeClwYCy6W+u/J2eHxKMVwJ3wDiIC/0tMsD4KpsAZFNv42vWrMHChQvx+OOP177HJ0NmlE9yQ8ggjaHuwQ8ywrFlUvtbnVqdpkMnXSACtTqA9EGwDhgTJtoAENbVV8m4dcslj8V+RWIMkCos4yS63kTm0a0rCA7KqmGeoa+v9UeS9keyBFhqJqnKNmIYZdvGp1aGHiR9sQ8vOSLH4A0n1UD8xjGRUVqrU6vTuuiUrJNUhfUxoiQwBqzTP299/JVWh0gaTaWpY9Z3R3GZEkQrTE1GdU/Ad9kIhn2AsckPG/gnI38klAQxpn+LTJclBcaz8Jl7ptdha+MNNodJlRYkG6TuYdc9yNSx1HdKBn3ZtTq1Og2iU6MYMEwCpM8eI3Dsa5K15/nXGUCSQJIAsQqY+r8j8yojVPYFMki06wTmljb+3XUDhgRI+n5J55MkBSZC8yrssxNKB/Tw8lU+LG18ndv/BKUFSU/qGkLqYaYaQ93Ips4U4R+rO7fVqdVpXXSakHgAWWGPTeZYIO2jnIDZsSKNzDECQ1IhcFamfST2TUQmCop9BggxIyWW+Bs9kLSmVmdStSZXUppBImxjLAJKd53EvkAv9G9PM7GNt0xyGiT1AAd52PGxfnUPMhqyD73VqdVpMnTSPyLwU/5vCo43AmSdn7IPONQFrpDULI4JkTqov3xzqQ92EfAFL0ofNCdDBmGKSTZd/t32bwX6PF9zLxxwOiapwZIZYLSsMm5Hrn0MmHhgU2jjLZOcBqkbqQD15gBbNh7FxKObQRtDq1Or01TqNGFJAWTsp6wxt1pwsMDgdFJp0ybF+3kImgGIkiyBs44hWjCxp9TNqUydO4gPtWFQ4P/tqb+78rfGoszfau4BE8IlFXBgCThWyZQxtZICIwOeXAWRr8HfgbaNr6sMNUgCaereNPqx5eseblw2VU9TmVanVqfJ1qmiYx2LrAPImD0GoBmBw0SAIRYlwTygJCUD4PRBk+Lo1cofmQDMsuLmUwcJRqoZGNi/3/3tcaRs6p5wAbLluD1PAFyEYEna/+hYJeDMr4wyBH5K0UkG9GxKbbw1t06DxPQ+Rffjh5p6uP1GUH49cZ3xea1OrU6TpVNFfIDzz+8DkIEZ1jfXogEcgPRUCv84r5pbSalgukbqRcyEKK9vwdJnjfG2/RsnKg0scmBwTN0XK/Zv9Y7ZQQJxpQEzAssAIEk1m19FB86PGR13f5a3H9H2TG/j0yVDDZKp0Q4S+1iiTF3jGOTBp0ZFcYNrdWp1Wh+dKhIDVswK+0kEkIOCQ3l6CiRC5pi8rLcdv3wtWBJj9QAZgeVAMhH22PD3J9lkfB/i+8QjRsk1SBLnYFlHg6UZuJAJ3gERwD3zKzoVoAQ2vTY+XWA51CAJlA8gNQqKHwINUJ4ltpsaByHR+VudWp0mQadaSUVtNrHIBoAcmDnVpKVLveiS+nMOsqBqzLAkZcgqLVimgnzq/JgVhWoGDXUMEhFA+n9/fE+kz7LTZldEQU2WUTJrks1yXS6DezaUinQlzxxrTK9D1cYnUYYeJOtGOamH1O9Y6nc8sqqrs9Wp1Wkydap7icSZcZK5V/sBZBMQTMQXlxIDhgACQLSmyTqgrPwNdcE568oo/d11g4Sa+xKz7to8tt5+V681tTrzqwSyHExJsLxTsko/gEeosF0xDoiOrje65MbcxqdLhhokm0YjqYbQ71hsOvDL1o2Y6xpIq1Or02ToBGCwpNyenzFVtjLHLwaCQUyLKYl9lC6ApQqI/YDSmV6nSGrvTwxuMUBG96a8VzX3x/5tgI5YNX+nA0slgayj70PWCVglfFMrvHbDuMvWA2x6bXwqZahBMjUyiUc9VlJmgEHqG7R8bJJodWp1Wh+d0gX6MxhbrhLJCrgXfl+A9CNcZX+gdEzQj2atAUREgT2B2v0AciLrUFrWGUTIsgagrPoaY4CsgOMgjJIbgOQKVPQ0ixTa9MqyXH+rXLNKGKChMHUdYxwouqAMDig3hTY+XSbXoQZJhuaRDRCOxoD0g+xXR7/9cb1Aq1Or0/rp1ChNgSlNJsYUENT5JGNwrPPBeWWZECFQDigVc2u0PmNl/cUasAwYtwXI+NtcLwX+tVNeYoCcIKNkXIHQKyNhrV/SbpvnoFmlH42sW4ff5nygrPz92Lja+Dq1/XWQoQZJOzJqGvGwaDtVPj43NTqaiE6pa7U6tTqti05N4oNCkiH5vki3Swb+NwATD1Dxj6UAcQDWWCsNANkvG49/nNUAZC2b5EI/s35/rw+Qtmwd27ZJGewgwDJKA4ikpC6Td0Lzaua1qcL8bSjbXopRDiobWxufDBlqkPRHRfGDtftTDyz1YO15dQ+4bhQVb/vXbXVqdVofndZLBpgaEs6JnCBA+mU8RplMVeeLD5p+4gHf1BoBZGq1jUahMr0dM799MywxptkkvPs9wKLSZfUGIC0INvlxzWCBcQ5IqQHTDiCy3LBMc54BYaZyoDM4UNq/c+ja+IAy1CAJ1ANlv4fQz8QQ15UqmxpRtTq1Ok2GTusj6zTxPpaJZttJSQ0g+nMr9SR7Zg8EAEkpc+sEo1vJTMaP909YDIDFTJMiVl6dOuPNlwQMYBqw9MytyPIKkLBc/xoEKIetjU9Ehhok4xsej3ZSo5fUw/Efnl93v2vH23UNsdWp1WmiOk3bS2QCDKqfMM+s6Pb55tgINJMAmVhyKvk9kELazOo/MysEVWWTdrvfPTEskuKoWKB+PqmfncexS50K0EXAKqXZqQe8ri2SSoJbnY9yY2jj0yVDDZLxKCYGzKYXT+qB1Zkm+pkKUtdudWp1Wh+dNhqpC9JpYpGDAKQPim5/dGdSS2sBABOh39EDy75AqWSpu2969qe3+JKIFi7VKbeDKS/KzJm0dea5xzRlpQ4+YvVNs0AfKNs2XpWhBkkrgz6wukbUr56mOvztpobY6tTqNBGd1ucl4pZmGkQ4T7/8vbl+9ecmkpdz4UDGAqK9Tj+A7AuO9lhtMJDZrxRIU8IKYNqVRfTSY0UAlBbELJss95dzP/sFMtUxyjgBOuNhggE9HcQE9Hj1MQAK6A+UubfSCDaONj5dMtQg6d/8+Ds+njonFv+h2t9IlG96ibU6tTpNpk5N0giGdctMBUVEkBkGSobTI5qAsg4gvbobATICQ/LZpA+OMTD2iXZlpADhzZV0gMnAyItyBfQix6RAqjB/QwdUdM31vMhVbpKMKxneMyt9ooXDsiGbtGDppoDYMhE7dUAZMWICAMYAVYCJTgBKKdnY2vhkyFCDJBA+3Hh//KDiBzqR+lN1NDXEVqdWp8nSqSIJANRTG/qXc+IDYMQmK0BZp4YfyToRBtmHPboyHjAmg3ji315Uq41oZczOHeUamDywJFXoe86zEiiVMb9y8+2zSTetRSSnfcTTa4L8sNLO0eRBftcgtytQskq/YlNeATpJOqL24q9XOSBQ+t/+/hnTxidRhh4kfUmNXlDzOzY7pMr7daYebrw/NdpqdWp1WledqidzgGR1n7/cFBACI+NI+97MSzvBJgHUTri3x5x4YGjrSwFmI0D2A8em4J26dSYtY/QSLFjA1FluoMGRFJgqSqDMO0DPZLcpAOLKsUjnr1QSEDU+Snt5KR0wanVU8M04B0kFJmQ6XZ0FW6XCdmh+B+3IZ9eoB8qNoo1PgbQgiepIJab+iI7VmQ5S9fm/4+OtTq1O06VTtVKPJXIOyBgY0eyXtECkfBajggCSxjmPUdSqi2I1AOn/njBA1phfkwE8AbMUHlCKckUUQIOjTa7ATMSrYZVkjmsw9ICSK7AMoAJlIgCgTAhgk7k3+CotKCoZPQupwIVmt8wHS5uuzjwDJ1H9PlCCsQAs4zyvKdko2vgkydCDZN1IqG7UM8jDSo2e4u1+1251anVaX53c+YyDwc8YY0/wgNIyxuBiPsOI2KQfxekDJRCCZZ34Cys3mFetzg4MeTYxcLRl7N/jg2JdAI/yWKQBTuePtGDJOJgqNCgB8H19REoDJSxAyvLeFXD5WLW/suq3tSzSB0iKQRKA9EywXHEHluYkwPoo45SClo2ajx+w43TIRytAOZPb+FTKUINk0yin7kHE++ORU7/yqfNTI6ZWp1anydApKR44VoJ3YtMbAN8M2Q8o6/ROq1Ef0TowexRZMzj6wMgbfJO+8PJvZjZ4h0J/pEs0wAoQ54AsyuevChArgdK/l25FD65MQgDL5tNBTj5AOpOr9J+HZpMkeQCWvFOySVJS/0llpeX5iMCN8TIheifbeNv4JMpQg2TTKCc2IfQbRdVJPBKK96UaRKtTq9Nk6eQkYVL1WSSMa7LCJu1x2GNUD5RAAJZOp8S+pLnV7GsESJ5V2WMduzRlaqeG1Nwqdz9tIgFuc9gadkcKTMnyOJV+v+BbFWYAUEahOoB0q3uU0ap2YWXtz61OAXFg6fsqpdJAKRWY4g4sAYB5eV0VoP2UNX8v8+6Pvl8MkF23DqW7Hqpt1q9ng7bxKZKhBklgsNFPqmGkTAv9ruGf0zQaanVqdZpMncqLRNGqHlj0ZZPudxUo++ldAUggZI5AwB4pAjQfBB0Aiixkjz54xuDoRW8q0srG+ioCePR2ZuB6H+POjAquDFPketqE+SZooCGp97l74ycb9++VXd3DskkuG/2SPkBWANQHSsENWCqITqZnfpr5ksHfHF2LW/+xH/hk9RadSvtN6hltb5A2PgUy9CAZS+pBNJkWmswPiI7VNbR+jafVqdVpXXRKK2R8j0gAps8m0QyUAMrpDeh/H6pqhOAIYOLmVR88uegLju7bJAeIeZX0lLd/PWMMnOm/jxtTpL62ZW4FwJjerzyTq7f4sQ+ULqDJTP4P2KSfHMCYUX3xAVLFrFApcO4BpWGTSiqIvATLpHAONc71PMoE6+4XyLOh2nhjO59EaUEyktTDjo/7LwTythEds7/rGkdT2VanVqf10YkBqDDHWFKMcUCg1PtUCXA1f19SPLMq4IGj1SkCSB8AK8zSHouZJeOQBBCVwGjvhN5Hgd6VW2NVZQBj+raUgMkhPDBmsqg8hyRQ2ikaACDN5H8Vsklnlm1YrFqp+kAeJjigFAQyKBRgqnyGzi/pAywXwPiYrtf8jZY5BwONhH/SyoZq44MOyNZXhhok7WgkHqGkRi/+/n4jqrp647JxXamXb6tTq9O66qQPeCZVA4D6dwiCwd8wEaBkAKgESzTMjwRKYNTnslLHJvZoGaLve7TmVZ5VjhE0K/TB0QIjwZhczT6gBEwr3Jsiwhh5TLIETOJMg6XoaKalPFOrNc8iBEq7KgeU9hWSt4pHwCbRAxMCTKrQj4wQIOOAHuYxSYkC3PNPklQQSkGMNoML48KZi2EBk3GQ8U/OyDY+xTLUIGkl9TAHYQzxKMeXuL5UI4rra3VqdZoqnQYVtzRUA1CCVdPZuVynAJBlyYWJibFSt1QgTT/zqmditQySzHEYc6AiGAapwVGqEhhjBqk8FYN85l7kUgmQLABMhRIshQ/eXpQrmI4StUAJmOdjfIQudZw1vbrE5TyMQDXgFwfslNGuZYYeN1dScpDxTwJwYAkAPK8fxBAXGii9Z0OMg/XMszOBPBtzG5+oDDVIEupvdtMIyD6k1ENNNYi685Eo2/TwW51anQbVqVY4b2ST/nWTQGlMuAFYWrOuZ96lmAYECvPgu29igCbzqjkmSestVckcJVEAjgFYggJgVNGNs0E8mjmyiFEyEMiBpWIMgpWs0p7IAFCGEChJgY/M0o/ALrxs867aeZOGUTIhwRUP5kNWEp/blHMWQG2SASnBlNBgafySwd+HscRjEaDuGGySduYFQfmASTwNGxui302HDDVIMu+b+nwD6UaQMjX0e+ipRlA30mp1anVaF50qYiMu/WkfmABQMkDPE6Ty/NRaiwP6QeMIVqdjv+jVyLxKjAfsURpAtP7IACgNMMY+SgBIEF9nWgWo9EcyQDB9PWHAkpi+P45VZtDmV6A0XQaMsuv8kTZXKxkTrGWWNsCHRRGrTl+lQFI6cPSDfKRSYGbKDxccHDkk9KrLloFyqfTL31/T0p+3ChPxGg1gwDjQyYI2sqH73VTLUINk6kHUPSB/1NI0ck81kkFGSq1OrU5ToZMu5DM8bnyTqgqUEcC56wqz37DKYPkoC5b+uV5AEPOThvv6RN+1mXMcGEYAacyrkkr2aE2rUoVAqUCQCpF/EiBz52IWacWxSTBwRg40JdO3RAIQpEFTcP0y1awygxDGL+mbX4suGOmVQ5ApMJWHK3bYtSGVDNgkes2PN5VkwPom9Z4emNJzL3mnfOUXMABgpnyQnfphvhXnLpDH90+iGANlo/oczJA2PoVSHUJOgVxyySXYcccdMTo6isWLF+POO++sLfvGN74RjLHKZ4899nBlli1bliwzNlY1IQwi/R5GauRj98efVLkU02h1anWaFp3qfH88NqOxyhQM8AzEPUYnMs9HyLyo09IviHhif/Q7KGvMp8noVa8u4kLrIjJ3TFIJkP53TxIkEQqlWWRPEQqzr6eAQpl9SpcplD4n9RkvdJmeInSl/tg69Lb3MccLU7cEB4kOKOuARA542yQ62rfXGdGs0f/YpApZrpMsCAEuOBg3GXVqUulZn6X/Ud0CqldA9grIbg+q14Pq6t/2WDHWBY2PgYouVHcMNL4W5H2jOw4mu2CyB1Z0dYIB+z1T2vgUy5QzyWuvvRZnnnkmLrnkEhxyyCH4zGc+g+OOOw4///nP8exnP7tS/uMf/zj++Z//2f0uigJ77bUXXvWqVwXl5s2bhwceeCDYNzo6ul66+g+r7uEPYgZIjYLikVSq/n5mhlanVqeJ6FStKIpUJVX6KJ35tIZVmt8hs6xZnNhnjqTC30B6EWSfPcb+xyhAx/c/arDUJlX725pZS4apWaMyDFIqMkzTMEnrzotsrsLoybne5oxBcX2vU0wyh752Zv4s4hyZ6FSenb0vzPonPbNr8Mk6JhOPiVJNMEqbaCCVjcf+tvMmyQTx2HOEKesYJUxAkre+pwvkif2Tls37VgPMgDY+BTLlIPnRj34Up556Kt7ylrcAAD72sY/hO9/5Di699FJcfPHFlfLz58/H/Pnz3e8bbrgBjz76KN70pjcF5RhjWLhw4XrrN8gLr44ZDPLg6kZBTee0OrU6TaZODoyiIBuKDruAHgN8AVjac7xtf61FB5j2Ou7aUbYdHxjN78a8q4kAHd//qMHQA0oqTas+gPrgaNkmUJplAUAl7K6cMwibXpUxCMaQCwauGDKu7zsxDY4WIG3iAm3KZBWgdEnSzTbrjFbNrlK6lH82J6syYMcUNwE5cWJ0hTgBgX+MdzJIFHpqSSQ+UPq+SRKiDOSxz88HTDsFBhu4jU+hTClIdrtd3HPPPXjPe94T7D/mmGNw1113DVTHFVdcgaOOOgqLFi0K9j/55JNYtGgRpJTYe++9cdFFF2GfffZJ1jE+Po7x8XH3e82aNcly9uHFDMDKoC/HVAPxG8egTKTVqdVpXXVKV1pjqgsOc+evdEtDxcwy8kMyUppKASVoWlEqzO3q6VIJ3vEB0vofBwRIqUrfowNK87uIwNECo1LlbyDMuONEaqZoAZJzhp4Ccs7R4/o7455PkoCcR08kAkrHyIlAogNmgJK8aFe4NSH1h8lmRulL3bJaqlsE2Xgq5wkOIXrazAo4JhkG8oy5AQzrmXr8qF5Mb7+bDplSkHzooYcgpcSCBQuC/QsWLMDq1av7nr9q1SrcfPPN+OIXvxjsf+5zn4tly5bhec97HtasWYOPf/zjOOSQQ3D//fdjl112qdRz8cUX44ILLpiw/nUPu8kMkHrw8XdKBn3ZtTq1Ok1Up8rLxAcnj1264BthpnYYM2zJHkW5CobPSD1WBBbNoYxeyEEQTxTZGphYEwBJGBwgfRNsTyn0ZD+grL+XNoDHgmTOGXqMkAttflWCIQeHIkJu/hxl7r2NrIXwgNJnkaT0JP2cdEYe3+za6+pgGgOOlkVybudA6uhXP6mAqjG7KkCDpeLgJhtPnQjAZeIhb4UWG8jDvMhiGH+xfY7T3canQ6YlupWxsJsSUWVfSpYtW4bNN98cJ510UrD/wAMPxIEHHuh+H3LIIdh3333xyU9+Ep/4xCcq9Zxzzjk466yz3O81a9Zg++23r5Sre9mlHmaqMdT9RXWmCP9Y3bmtTq1Ok6FTXKb8EbEKHzCZeYlbdknWB2mmgrAqYLpz3YVV+loxOKaSkyfmQIYmVPNdA5A9qRwo6uAaFQGlKWsQ0gKl75t0fklmTa8MPQbkghtGScgVQy4JIxl3kbN5/NB1ZchEB/7qIfa+QiiwTAJZz5ldKe+VbLLomfmP/dlkyuxqfZvWC8lklU0ywSG5DhLifEw/h3Eb5FUuhs1c8JUXiJXz4PluyH432TKlILnVVltBCFFhjX/5y18q7DIWIsLnPvc5LF26FJ1Op7Es5xwveMEL8Otf/zp5fGRkBCMjI5X9qQc4yAstPpaS1OgoJfHoqtWp1Wk6dXIvmhjAIh9kYIoFqgE7MWCm6o33uWjbeoAklACpUAKjD5hNANlTykS9Kg8odblCRubWCCwBj0Vy7YcUZr5kTxFyziAFIMl+E0YzDpPptfKkGIMzvTpzq2XppMCyLDC7MjNfkooukOXguZ4X6Vil5Bo4ozmUVpL7zNqTopNBdUM2KT3Wnwv9LFwgj12lpeiBy57H/Ls6qIfzYFoIkndg8tv4dMiUgmSn08HixYtx66234uSTT3b7b731VrzsZS9rPPeOO+7Ab37zG5x66ql9r0NEuO+++/C85z1vQvrVjVSAenOALRuPYuLRzaCNodWp1Wkm6gQTjGG33ctceObUgF1GgAmEYOnV5fSJE5snANLmYPXnQRKh/KZmgEwBpTLTNpSNgCVEYBmqLDgA6fklDZMsGHNgmSvCqOAuanY00yuk2HmZ4S3Q2XmgDFMnZf4Ypc2uRc+xRygFlvUCNqlEaXLtO4cyAZQAII1/MiVMcBRjXWQAGBeg8bHAP+nmT/IMrOjqaTlSAKKMZJ7ONj7VMuXm1rPOOgtLly7Ffvvth4MOOgiXX345Vq5cidNOOw2ANoX+6U9/wlVXXRWcd8UVV+CAAw7AnnvuWanzggsuwIEHHohddtkFa9aswSc+8Qncd999+PSnPz1h/VLUvWn0Y8vXPdzkKD061lSm1anVaUbplGCYVd+lb2pFCY5xZGugVMgm4yWuCHBRqUTkgDFmjVLZY/pbGh+jNGZVC5T+nMmeUsZXaYES8KeESBXeHWHopJ0GInjJJHPiUJxpXRVhhMr7NZqJyp22zLTDOUTWATwm6RiliXYlm3knzx2bZLznAniY4mFWHskdwlPkq7TfLAqikpFvknGuQVDYaNqxqn8yNrvKrvuO2SQwdW18kzC3AsCSJUvw8MMP48ILL8SqVauw55574qabbnLRqqtWrcLKlSuDcx5//HFcd911+PjHP56s87HHHsPb3vY2rF69GvPnz8c+++yD733ve9h///0npFtM71N0P36oqYfbjyX49cR1xue1OrU6zUidWJlmreJ/jH2Xsck1JTE42n1eonICXJYc53/0/JCWYWrzq00UYNmjBUtUANKxSw8cpSo/QBoogw9j6DHNIC2THMl4FBQEjGTcvWX9MAwOgIsMsECpCoAXmp1lmQbEkVE3X9KySd7pQSjl5jqqmuQC7vklfJM2AToTOojHB0oleACbdf5JyjrO7EqFCd6RhfatWjO6vaZ/fVtvzXZcBtE2RWWnQxhRbAzY9GXNmjWYP38+Vq9ejXnz5gFI0/n4RdNonhrgeGq///BTx1qdWp1msk5+pKbdDsyxdWJToSUiXG2gjjWDxiZVn0VKgmGEoZl1rCh9kCmAtOyyWygHjkUfkLTfmQHKTsbRERy5YMi5/h4RHLngGMk4ZucCo2Y7Fwwd++F2m6PDAVaMgXXX6u/euP4uxqHWPgUaeyr87o5BPf00irEu5FjXfI8HWXSk+bYBPJUpIUCYxSfPwASHyDOIWR39PTqCbLQDMdpBPmcUbGQUfHQO2Kw57puNzgabtRkoGwV1ZoHy2aBsBJSPwloDprKNP75mDRYuXIjHH3/cvcenQoY6dytQPoDUqDp+YDRA+di00DR698vVHWt1anWa0ToNYo5NCMXmVs/MCoRm1n4sMmVmVVT6HlMA2ZUaHLuFcuBYfrTOPlCWIMkdm5SK0OXKgKU2tUpFGPVuqp1iMhvCmVqtcEbgzES8igIVs2uWg7JcB/BEbJL1yjmPbu1JT5iIEqJHk0AVlJvNqlCAIwMJ5YJ5mBCQpv5irItclCuEBGbXrGPyuWa1QTxT2canQ4YeJFOjmLqH1O9Y6rf/0P3jcZ2tTq1OG6tOuvJo7qUtW2d6TYAkoTSzAi4BkH4xehclD0AJdgksglIIzKw2SCf2T3alcgxyvLBgKRtNriVIKgeS3YKjk2lglBm56FaX+adipBNAZkytYOhKMnnDOUQ+WgKk0uZX1hlxcyep6AW+SZH3dBadbgHFuQvosWbUusw7yoAlByClBBMKIjFv0k4Fsf5JOTYOwQXQHSvnbuYdUHdMm4dlF6wQ5dxJY3aNwQ+YmjY+lTLUINk0Gkm9WPodq5iiUN8w6uquMzm0OrU6zXSd3D5rQh3ULxkBpGWRAFzEqb2Ojzs2sAcIQcmySD/a1TfT+gCpt1VgdrWmVytSkQPJLPBNKnQLhm4m0Mk4ZneEZpLRWzVMd6eBkplVRZgs/ZMs6+g/UBWA0r5KlhVA1nPBPKwXskneycCtn1GEcyhjsFQemwzAEkUFKG3gTmG2NWiO6ajaIgeKnot6ZVluGKRJgC97QRCPfXbA1LTxqZahBsnUyCQe9VhJmQEGqW/Q8rFJotWp1Wlj1Cl44dWkwQsvWl/GAmIqG44Pv+X8RguOZZKAMPFAFSAtg7T7Y9NrLBYgAR2UY82uUmlGaYFSkQimlbjzGYPgAgx6EWfOgB4DGGPoCLvGZBn1yvICTEk9LaTouWAeMmxS9Qpwy/isj9EkHeg3d5IJDiUpAEoS2ofJuoWbN1mMGTYpOJiLcjVm1ywHdcfA844GRhvEU3RdEvSpbOPTIUMNkgzNIxugfGn4v+Ny/erotz+uF2h1anXauHWaCFim6olf77E/0p1rgdScULLJ8jzLIq0fsgTC0i85HjHJlNnVD96x4FiCZPmZ1UlPfeHmfM4Blgl0JTSbhPZPCmGmhSjjn5QFIDrgudRJBnpd45/MwbIOeKcHbgJ0WK9wiQX8HK928eXkfTf7FbgDSl/sPEomBIqxbjktJO8BRVczyu4YKO9Aja/V00IMiwTjGigz6HmUmLo2PtUy1CBpO3PTCJpF26ny8bmp0dFEdEpdq9Wp1Wlj1CkG67rjKbYYC2c1Scgj8dPM+SwTgAOybiENk1Tevnqg9CWeDhIz0LTu5R3gPb3NmDDmVp2UgDFg1De7ZoVmjUIH77CRUW3mzHtgRS9gkyLP9JQQM2cSPVSCd9z98W4iF0yfZ4CShFl6iysoExwku3pupsoLSM7B864OzuECLOuAxteWQTw80zryTAOmWSR7Ktv4VMtQg6Q/yo5fFHZ/6oGlHqw9r+4B142i4m3/uq1OrU6bkk51QJkSk+Sm/M0YJBE4GIjRQGBpxQfIaiSr75tMAGVqhpy0ZlOWZJL6Wsr7Xb5mBWN6/UmmVxDR5laCUNb0GpldRVEG8RhgdGySC/BODm6mf1hTq/JMrnaZLRktq+XujfNNaqDUUbI2wpWDmXpJKUgDmi7atehpgMxyrVvR1UE8NhOPCeJhvHBscrLb+HTIUIMkUA+U/R5CP5NVXFeqbGpE1erU6rQp6+Tr0k+YOSnFIC2IDrBOAoByXiWA4DsFmlLpCFilCFTDDBVnkKQTnjeZaIEwY49Na8cZQ84VBBcQjNBT+t4Ia3YVGaDM1A8lNVBGbBKZDqAReQbVySBkyf7iZbWYqN5EG9TDuPVNKpBkUFBghknaJbb8aFeeZ1DdHnjmmVwz/a3ZpPFHqsIka9dJEoDJbU/TJUMNkvENj0fPg46G/Yfn193v2vF23Yut1anVaVPUyRfO0iZXyyAZAxiVwGnPse99zuEcmbyuMiAJYrG51QdIUoTUYsz2OpIzCDsNxAPJIgGS3AGkBUyppxtGZlfBoHO7Gp8kZTralXWKgE2yrKMjX0XXAFcBnmcQUpaJBLx0dVwwpAiln67OBvJYs6vsFhocewWUCd7hPR3Uw4uenprS6+rvohdMCdErh9jvEiiByWtP0yFDDZLxKCYGzKZRT+qB1Zm6+pkK6kbZrU6tTpuyTrF+Fts4AxQYOBGUAcegLgadYJt0hKgwCyHbBOS9AV+hKR+iNKBIiiAL5aaipBglEQNTTANpVh+cJAwA+YE/3HzyglXMrj3zN2U2iIdn2tfH9SohrOi6SFcqumB5B9xMB9FJBkTJJnloctWp6FTgl9R/n/VLlmZXxhVIlGZWJRW4VM60m2STWQ5WFGC80FNBRObYJHkgORntabpkqEHSyqAPLH54g9bTVIe/3fRia3VqdRoGnVJASYyB4H2T9ktqdsnAQBCMQTG75iNKxuYtceVP3/Al9kFaBklUMskUSDIDdERMl8koMOsCel7lWpPFJnMgWQJ6zhk4kxA8c2ZXYVYXETaIR8mSTWaFDpaJ2CTPM3CptOnVsD9/oWadZED1jXxSkiAEQJKSQTyOTXYyyF7RzCZVodlwDZucjPY0HTLUIOnf/Pg7Pp46Jxb/odrfSJT3XxStTq1OrU7hdwyUDAQBBnCCRkKdXUewEiw5Y+DcBsAY358ByImIi4xVIUC65AYeAHJiIMUcWFrpuv9C8ZlkzpUDScEYciHBmYCQPqM0QTyicEE8THX6skney1wSdGFWA7FskgQlTa4AnNnVRrv6bNKySNkrwPO8P5vsjmv2G7FJm8DeymS0p6mWoQZJIHxZxPvjBxU/0InUn6qj6SXS6tTqNMw6+UAJMEiQ80kyCgFSMAbigCIWAKQwAFkucdX8mrUM0IKiD5B6u1qecXJgCcCxT3RQAcoQJLWJNROh2VUwBqEIPekF8djgHdEFSb1KCMs6wIgGS94ZhSr6s0k9LYSVJldU09dZs2sjm+z1+rPJogemioHYZF3bsDJIe5pKGXqQ9CU1ekHN79hklCrv15l6uPH+1Oi91anVaVh1CjGN6ZBWg5ykShOrBctccLMsVmlyzTkzPr5wBY8602tFfw8grcnVTinhjOn9HGBcgym3Cxl3AXQAUZTAKLoSgjOMFxxjhYTgQF6UjDLnCpnxrzqTK9NBPCR0EI/PJvWUi46eN9kZBSt6FTZpI1RJcpdYoC6AJ/i7G9ik75vkeQaSUicXUFoH6nUbfZM+m1zf9jQd0oIkqiOVmPojOlZnikrV5/+Oj7c6tTq1OvXXSTDvDAOUxJg2uwI63SljICIHOIpzSGEWRxbcAA6rJALwwVJwhl6tKbJMMWfBUoLATIgtV8y8Tb20bwXDWrO9tivdNQTnDqx9s2suFHKpj1eCeEQGJjpAVoCUBMu6Op9r0dOm1ywH64yC97oBm+RekgHeyQxTVI1sMvi7IzZJZpqJEhyqk+ntXgGRK5DNwlPkzb5JYdYcrWkL/u/4+IaQoQfJulFs3Sh6kIeVGo3H2/2u3erU6tTqVIpg9pgGSgIByjBJrtPVEYAcduFjzchyzlAYEOoxvQbkeKHMklcqYJa1f6vyt8MgHlIaKBUHUGhd4qR6XQ+cnzZsUjiQ1GtNjkmGvJAGLHkQxCMVIbNsUmZ6gr7QQTxkwNGaOdnIqJ4vWcMmeZ4BKECC9GJZUmo/ZASUdt4khNBZfAybdIs9GyZJeQbZLcBznTKPej2wLMEmLYtUUk8PyUaTz99vA/G2/T3dYDnUINk0aq57EPH+eNTbr3zq/NSIqdWp1anVKZQSxwyjdLWUooiQcw7FgZxTySaJI1faFDuScXQLlWSUnLNK3linmweQQQCPPcYZBDhkAVigZIwFrkm9xJZOrG7NrnbR5rFCIeeqEsSTqXJKCJO9kk3mRckmEzldU2wyjnTlgkFJSgIlYKNdmffbAKYJDJLGvEtSL+cFn00qVWbhUQUghQ5CkuFSWpX73Of3dAPlUINk06g5Nv/0GwHXSWp82vTSaXVqdWp1qt9OAaUigIx/MjdWPEVML4JMZMyv1u/H3ULJ3SJhemU6QQCLomL91TwsQJYRr3q/zgKkHFAyRlAmd2qPM4hCA2TJJjlGMo5xoZBziUwwjEkVBPFkRCiU9k9mIgOJXEe68i4Yz8rpIB6bdDldB4h0dXMjDVDWiWWQxBWQQ2/bpAU26rWj176ElHraik3IXhRgogBUBlIFmPmG6CSvNdH2NNUy1CAJDDaaTnXqOrNQU13+OU2joVanVqdWp3qdqkDpl9axPR0TxJMrjlGzgkiuCLkit1ByNxMu044PlMyt1sGgjI+SMx1h665G1W2lIqCUNu0bgyoUupxhrQFIyyaf7uqFm8clQ14obRaWHD2lkBND4bHJImCTnSqb7IwCvW6STdpIV2H8kpZN6kRF6QQD7u+TBHgLm/gmV25A0oJmyST9KFdrai3AVKGBUprkAjUrxEy0PU2lDD1IxpJ6EE1moSbTEaJjdaPzfi+jVqdWp1an8HybLIBTyDEUgJx0udFM6DzhipBzMkxSszSZkWOTnYyj8MDSZsMhYmCM6cjVhA22kmCAl0CpOOlsPFxn7gEAVjBIwd3SXB2TWH1tV6IjOHpSYbwwATz92KT1TfpsMstBeaeRTZJUzvwqkEGiCIASMP5IwRALSS/KNYczuboUeDaAR0kwJcvvoqfXm1QFSBZ6GogFTdFJPuNB2lOKcU6FtCAZSaqjxsf9Dk/eNlB9GaRMRv53XdlWp1anVqd6nayIkFq6YwraRDqSaUZpP4rgFmEeyXjAJh3DLJQzuTLO9DxIDjBitQnPAQOaBiiZIkgowEKQmbbSlcqZXX3fZFcqzSYNWDayyTjSdQA2SVKBdXsuwpXyDAoFuLIxrhooyUwRAeDWkwS0L1J45lh/CS6lyqkhQmmTaxzAQ70cELnHKiUgC5DorHN7qn8SkytDDZJ2NBKPUFKjF39/v9FwXb1x2biuuhdBq1OrU6tTvU6ZB5QWw4jKTy4YcmUDdwi5YsiVZpCzOxokO5lybLJjgJUUGXArtWA2y4En1kdpgRAcDkyJ6exAslBgnIEVDF3GJsQmc66TvBfKi3S1K20MyCZZr4Do5CClmaQfxKMBsgRKXyxgclE1i8Z+SftbA6FlkkqDppJlcgGVm2+hI12Nb3Jd2tN0yFCDpJVURxxkJByPcnyJ60u9AOL6Wp1anVqd1k2nmFGGOFaaXe1HKoLMYACSe37KkE1ywaEUgXGAKz3Vg3Omg3U8MAR0/TY9nVJUMbva6FhJ5DHJ/myypxiEBCTX00IyzqpZePLOQGzSrhAi8vLVr7pFCJSRb5JFpldrdgUQ+CXdMQOS1uQKE8DDiABS3nSQzLFJ/1mva3uaKhlqkCTU3+ym0at9SKmHmurMdecjUbbp4bc6tTq1OtXrZIHSXyfZmldnd0SN2VUECc4tWMZsUpiFhyGpwiY1aJa/Y7ProGyyWyjHJnuKu0jX0UxAkp7KknGGQhEEz0BceFl4dOJzdEZ1ergEm7TRrRbUuCoXZgYQAOW6iPVRwn6kBAq97iWZaFdw4U0HURo0G9hk/Oz95x4zzamSoQZJ5n1Tn28g3YFTZqJ+L5FUI6gbJbc6tTq1Og2uk2BAxzCf0uSqEw3MzgUUkfnAAWZXlmbXGCxVRuCGfQpt14U0PsZ+bBLQxwZnkwKdTAPkuBfpOlboeZOZ0gApOYNElNNVdcDyAjDJzlNsUgOjckE8vijolUosUPqSMrUC0OzRBPBU/ZLSAGZkciUDjKRMtGsGkAqe90Tb01TLUINk6kHUPSB/1JIa1cTH/A4+yMi71anVqdVpcnTygVKLefULDZSAXjFKGsDsSRGYXWPApKxcNotxnYKOONPTPYxp0gdGpz9pjchjkxWTr6IKm+xlhB7XYNlT2uyqMr2Qs7RRrpyFbFIWzjdp2SRGZjk2mY0aM6thkcIkb3XzJpEFQBmLnUICIAjoSQnJ0twKL8oVSuk5k9yYWs10EMgw8flE29NUy1CDpJV+DyM1arX76+ryt+tG0K1OrU6tTpOvE5AGSmWiTTWDLAFL5pQ0u86yYGnXmMz0VUgpMDP1hClWYZO6jElXpwiCMyiicoFmqaC86SBlVK32TVo/ZCEJPamDjXpSIeM6B22mNGC6FUKieZMoumAjs/QcxZFRB1CiUwRJBWw+VwBmKkhW5mmVIZt0q4mYCFcfNN3f7AXwMEDrYxMLmDmULMtRMkmPVZo5NuvTnqZKWpD0xH8IdQ8lNdqNJTUKikfBqfr7mRlanVqdWp0G1ykGSmXglcgE8uQi8E/aBZMnYnYVGdfzIA1eWLBkkcnV/vbXpexJhY6qzpvsFgo5t2DJMV5IjAqOjtDBO4ViBugNmxQmWtREuvKRWVAuVV0HLOsFCzP7ZldfpGGSKenHHiti/ZJuW6ZNrqQ0iJvkAswkFxi0PU2HDD1IDtKR60a8gzw4Wya1v9Wp1anVaWp18oFSkQUqgDrW7Or7JzVz1GZNVQFMa3bVYlip558kogAcKzqp0uTKjH8yvkY5Z9NEt0qFHtfp6kYUR6aYjnKVQMYJxDmYyHRyAcMmoQqdx9WyyTwHFblLfu6bXSs6mmQBxKt+S8se63yU6b/Z90tqoHRRrkTa5Mq1XxImVd26tKeplKEHSV9sx4tHtlYG7fSpzu137EFH2K1OrU6tTuunE1ACpQNJoZmjTjQgXF5W55/spMHLml0BBP5JZBwolCNOFkgZSwOmb5qNwdGaXGcpckxSEpmIV51cQCpAmijXHmPomAjXJJvsjAJKgkupg2s6vSCXayzldBDNHn0gtQDpL+ZcK8YfWf7NUj9Ta3oVqpwradkkKRCVy2gN0p6mQ1qQbJC6jtpkBkh12vg7JYOMjludWp1anSauE6CBcjTTr3+CBknSXBPK+Ch7kif9k4X5BqDXh+zC+ScBBRQAMq6nexi2aCUV0AMgiHKNr+PYpDcdRAM46amFZE3DmlXWsUm7EDOKnl6Y2QTx8FxW5jZqdpi533alDwiufZci9EW6aSOenzIpHliSLIESkcnV+Si5BslB29N0SAuSntR14lRHTHXkupFNnRnJP1Z3bqtTq1Or0+TopBklB0FpkCQGJSyjNIE8FPonu4XUx72IV+ufLEUDpTJYEUNGnQk2jnJNMdeeomQAjwVIyyoZz4DIN8nyjs7AYzLx2IWZoUJzK3eo3gO8KFfLJP10dC6AxzFKERyrFQuUNtGACdSxpley5lbK3PNc1/Y02TLUIJnqfIN01PhYv7oHGQ3Zh97q1OrU6jR1OumltDgUKRDpiNc4kEeDkwbG8SIrQcsDSnSAwiwUSUT6TeoBZZP4K4hYCQFSB/LMUmaKijG72iw8NoBHA6U+V4isZJMiA6lOhU1iRGnfYEeBK2lVDsyuzGTSsVGuKZOrBUjuTQnhTWzSip0GgggcbQCPt49qVgcBBmtzkylDDZJ1IxWg3pRjy8ajmHh0M2hHbnVqdWp1ml6dcg5IoTPzKDAXyGPBsaesyRWYO1qCFwD37ZtcNatUKFGHBetPAnqpLcsoGdNTQ7hAMnhHB+7o79FMBKyypxQKL4DHMklJ0GwynjdpEwvY+Yp5rsGqMwoOVCJcVdfkeJUSyphcY4ZoAZIJEZhfAz8lF6gV57yNzKykAKnnS8YLMje1p6mWoQZJIE3dm0autnxdx4zLpuppKtPq1OrU6jT1OuWcmQAe5gJ5bEYea3rtZRosu50y0nWWn2jAAGEZqKPBksw7f12k8MBYGlBUxFFIghLW7BoG8GjTMJCJzCQ9lyGbDEyuHUBKZ/bkuTWDlgrrxZX1epMkpVs42koMkAOxyEh08E5ufigwj1UyVYAYD4Ay9Xyny9y6rmn6JiSXXHIJdtxxR4yOjmLx4sW48847a8t+97vf1Wu4RZ9f/vKXQbnrrrsOu+++O0ZGRrD77rvj+uuvn7BeKdNM/G3NQ4j2223baf3ySJSJr8sSx+O6Wp1anVqdpkYnG/Hqf0Yyhtm5CD4jGcdmoxlmdQRmdQRmm+9ZHYFZuYDIODLzzUyOV5Ex8Ewzx/BTBvL4AT2p+ZlSKRfI01PKMUlJZhoJ+QE8dhugrAPiAmSy8ZDoGN9kp2SV9rfZx/NMfzoZRK4/zqSa5xCd8FPHIEuGOQCbBBCbWZ3YJAM1zy71bKdSphwkr732Wpx55pk499xzsWLFChx66KE47rjjsHLlysbzHnjgAaxatcp9dtllF3ds+fLlWLJkCZYuXYr7778fS5cuxSmnnIK77757QrqlRqpo2Mdqtv2OmtpOlYlfBnGnb3VqdWp1mlqdMqYjXkcsUHKGkYxjds4xOxeYZb5HM465oxk2G837AqXIOBjTizYzjuBjgbFpLiWAwLSrP0BPqsDkapmsBkibuB2GSWYm8bneJqEDdlhn1AXvsFwzS73dQTaqwVKMdhxY8o4GS55nGhS5Bc7MASOPwdIG89Sxy2hqSCAWMCNpak/TIYxSXuRJlAMOOAD77rsvLr30Urdvt912w0knnYSLL764Uv673/0uXvjCF+LRRx/F5ptvnqxzyZIlWLNmDW6++Wa378UvfjGe8Yxn4Jprrumr05o1azB//nysXr0a8+fNS3bIuo5c14GbOmy/F0G/F0erU6tTq9PU6dRTwLhUWNsjjEmF8YKwZrzAk90CT3Ql1vYknhiXeKpb4ImxAk+O9bC2K/HEWIG1XYm1XYmuVJCF/iipoMwUD//1audNMq5BlAvugHVWLlwqvLmOuWYanEcyx2w365jvEf3dEcxk49FMuMMZhOqC9cbAemv1dzEOVoyBxp7Wn/G1oO6Y/oyb70IvkKx6BWRXp69T3cIF7ajId5kCR9HJDICKEoyzjgZkA9JsZJYDZ3RGdPIA0QGJHJR1zG+zzbMggCd+do+vWYOFCxfi8ccfx7x58zBVMqVMstvt4p577sExxxwT7D/mmGNw1113NZ67zz77YJtttsGRRx6J22+/PTi2fPnySp3HHntsbZ3j4+NYs2ZN8LHi33R/X2rEWncsNXK14nfYpjqR+N3q1OrU6jT1OuVcr9Hom14Dk6vQ7HJWbllkVmGUHQ/weLTt3EbG7Mq975TEgUL+El8u+laaTEE+k1T1bBIm+blljs7c6sAsd6ZXC3a8U36sGTYwxwbs0WeRAsyYWhnn/c2uvjgTrHLPsenZTYdMaeDOQw89BCklFixYEOxfsGABVq9enTxnm222weWXX47FixdjfHwcX/jCF3DkkUfiu9/9Lg477DAAwOrVqydU58UXX4wLLrigsr/J6FE3gm06Fo90/LKph9pvpNvq1OrU6jQ9OnWiQB5JTEe4Unr+JOBFulrpAl17XUU6tytnleTnjLOAVYqazDz+dewSXz1/282ZBJSJcJWkkwtAZC7NG6T+ZrnJbNMZTV7PCgfAuE4goGzSclGNRHLJzgV3wAluTK0eUOpKa7at2OAdAIxIBxLxMvuOuyamFyCBaYpujdMzEVFtyqZdd90Vu+66q/t90EEH4Q9/+AM+/OEPO5CcaJ3nnHMOzjrrLPd7zZo12H777ZMjEzv6bBqZ9uvg/vag5W25VqdWp1an6deJM2DEpK4jAFIxKLPwslL+gs3lC96CWOGDoAFKuwizUgQmWMXsatlkPymjXQ1YKs0iZVYG7SjuBfAwHfGacS/SNesARJpN5h0X2QqzQgdsyjjAgRwrejpDDlcun2tKwjR15lwPKCE8sKxjlKQACG/bfNuPB5Txs5sOmVKQ3GqrrSCEqDC8v/zlLxUm2CQHHnggrr76avd74cKFE6pzZGQEIyMjlf3WFFM3KgXKDur/jsv1q6Pf/rheoNWp1anVabp14kwH8hAUpNKJBhQJM+2CGzapWZzsiGC6hv8tCqbXhQRcqrr4le6bXoX3sWIjXAHh6vXZrDLp7zSgG3Bk9rdeRsuxSZ6V6zUKBZbJcpUOmwkncb8ZF2BCOrBMSQmOHkBmuT6X83A/UAb01LDJ8ls4ZlknTccmU6bUJ9npdLB48WLceuutwf5bb70VBx988MD1rFixAttss437fdBBB1XqvOWWWyZUJ1COam3jqBvJxtv+6Bao79DxdqtTq1Or08zVCdBTQ6x/Muf6408HGRH6M5qFPkm7bRdu7mQcoybilZtPPCWEN5harZQAWf5FimCy8OgoV4JZFJqsjxKhb5JnZaQrz8wUkLwaSGP3e35KWF9lJ3cfJri3HQGkNbP6LNIeFxFQNj6QEjCnizHWyZSbW8866ywsXboU++23Hw466CBcfvnlWLlyJU477TQA2hT6pz/9CVdddRUA4GMf+xh22GEH7LHHHuh2u7j66qtx3XXX4brrrnN1nnHGGTjssMPwwQ9+EC972ctw44034rbbbsP3v//9CelW19n8/anORtG3f15d56wbAcfb/nVbnVqdWp2mVyeg9E9qv6T+Hsm4DpbJhWN0ypheK75JI45hMpN4IDKvChayyJhNVuqhMoGBBcKeUsiU0EzSTAORBixTbJKRWZaqM6L/7ni1DkCDWa+nt5Uw2Xq8KNOIFQZAaIEyzyv7Kn7KVOq5eL4kKwN4Us9uOmTKQXLJkiV4+OGHceGFF2LVqlXYc889cdNNN2HRokUAgFWrVgVzJrvdLs4++2z86U9/wqxZs7DHHnvgW9/6Fl7ykpe4MgcffDC+9KUv4bzzzsP555+PnXfeGddeey0OOOCACes3yKi07rx45Jrq8PZYqixF261OrU6tThteJ850ogFps9oI5vK7piJNZ3fCVUMAQHBtcgVQOWalCRjjfRYclQeUvsm1BG7zMfsEj7LwkAIoAyMFllO5hJUvRU/fD8711BDFwZB7iygbUK0BSwuQFRbpBfQwIcp7H4Ol76O0vxmvPLvpkimfJzkTxZ8nOW/evNqRSWr0kurQUzGyaXVqdWp12nA6KQK6ijBeENYWCmMFYaxQeLJb4OmedPMnn+5JvX+swNNdibVdPXdyvFBmfUhVC5JACJTWTDvimWxndTJnyh3NuDclpTQB6289RzIzSRH0VBaODgcgu+V8SdnVCc9lF0x2gV4XVHRB3TG9pFavC7LLa3kBPuT7L813HL3KOAf8KSDGN2lNtuDcTTtBZ6Q0/5rsQBDlb5sEgewUliiXK6Df49MxT3Koc7fGI1C/M9aNQv3f8XadCaefqSB17VanVqdWpw2nE2c6v6vkpFmlIkjB3LJadmqIM4V20pGbllGmkqRbtljHKEXCdycVAaJktMp99BQQQeU91GUYBOOOTZJJLOvMrnkNq+dCL3OiBIhLPXVEGsaIXCc+9/XzwdGfAsJrol4HET+na2IqyHTJUIOklUE7W9zxBq2nqQ5/u+kl0urU6tTqNL062fUnJekFkINltRShl+mIV0CvUGUXTrav1TqTqw+GMVBmDSZYK/aayvknddCOi3410a6CaTAXPNPzHJXxSQpVml0BIPOCY4yJlHpdfY+UBFMcUALIULLISKfAT+kzyQSzZELoTDqpT4PEz3S6ZKhB0r/hqQeQeiBND8nvkPY3EuWDEVurU6tTq9OM1UmwklHmpNdvHDHzJyUJNyVjlMpAHi123SwNgOMRm/QlBZBN/kqgBErNaO3fb8ASZQJ0QQjZJBGIlF43kkj/naSX+fL/bq2Y0HMpjY/SAWZKXIYdj0lagMxCHyUxBjCeXjOyLpjH80tOtww1SAJhx4z3x50s7owTqT9VR1OHbXVqdWp12vA6caanhORCmzNzrs2uo8RdBhzpMbpQMggu0S2UY5Xx3EoLgjFA+lIHlNbkC6Hr44xBAXoqiANIEwJj2SRpUytZYCy8e+IDJRegoquBTQg9V1JxwA/g8cWb/5icFmKAElkWskbGNWj6pts+jHK6ZehB0pfUyBM1v2PzTKq8X2eqmcf7UyPlVqdWp1anDauTnTtpF2vuACCybNLLrtMQA2nNrKkgnpRvUnDu2KXWoZ5DWd8kEXNmVzIfZTLxMM50pKsxtTLK9N/HVXivMoALbW4F5yaAx0sGYIN3ZLiSRzkHMkoeYIN3IjNrxdwKpJllJE2DnKmSFiRRHWWSt9+Kf6zO7JOqz/8dH291anVqdZr5OnGmQSozJlciHcMymmn/ZC/TL3cbyKMEgyS9zzJEHbxTH+maAsh+JlcrcaIBIoKCZZGGXQIOnJgxu+oLq/AeMw5ShY5GlVKDnrIZesr5kizzGKXHAt20D7M/AEguEPsgyYK/xywBlPuttObWDSd1o9i6EesgHS018o23+1271anVqdVp5uiUc4BMBKkibXYlALlgGM206XWEykAeIGR/Gigtk1QNvskSIDMPIDlj4BFwKEXaVwqmg3cAEAgKJaOUCmAgk7TcsEnSAUgM0KwSicEI4wBjYCRcjtfKfMmUBCnoLHtkAXMk7plc9UKb5XEAteZWA5T92sFky1CDZNMIte5BxPvjUW+/8qnzU6PdVqdWp1anmaVTR3g+P7Oto1/LTDch9ulJ8dUoV1YLkvbbZ5CpaNiUWL+kb3JVRCCPTZIJ4HEAybMqQAKw6eD09AsNlgwozayphZNt8I4xvVbAMWaRNsjHB0cfIGvAcpAB02TKUINk0wg1Nv/0G23WSapJN3XwVqdWp1anmauTTiVnIl0VkHlmV+ublETIyb7gFWyKbD94p2nOZCXKlTEIXjJTi5P+epSqvIz+e4zJlcAcYEpFjk02AiRjYEpqUPPnKhrABKAZZnwPzTFKgF4TQMYs0ka/zhQZapAEBhu5pjpQyizU7xr+OU2joVanVqdWp5mpU87LnK7aBKtZZC4YRkwwz6gIX/CcaYbXU8rzT+pa/WW2sgST7AjuTK2coWJyrehKJh0dQ8AopVlKkOx9qAFIBgBuXUcNkhYg7ULI9rjdBpBkgBWw9AEwBsgB5kluKBl6kIwl1YmaTDBNZhpEx+pGwv06fqtTq1Or08zQCTBskhEyA5g5AWTMrnZqiCSmaSYAzSYBgEOwMMpV1ATwAHAAaVmkZZWcszhXekVs9lNrcmU24MiySc8fCOIAIz1NBIAztSoFEAvB0hxvlNi3GLPDOoD0y6V8lf4lkLYWTIW0IBlJqqPGx/3ORd42UO14KZNRMGqrKdvq1OrU6jQzdbJsUhCQkZ3eUZpdR+xbtVBQnEHbQRWEYZNcaZCVPB3lCmhQtADZxCL94CAd5cpgUgSUjNI7zpgOPtLXCtkkiIVMkmkGacFSr/FoTm4CyjhCtQkc7fEYIGvqtBIPfqZShhok7WgkHl2mRp7+/n4jz7p647JxXakO3OrU6tTqNLN0AkwWHkV6DqUJ4lFEJukAg+Ic0gZ5KnIACXBwRlAEB5axWDC0AJl7vkk7HUV/0ucBgMFLKJQskpjeTyAdVAPoKR8mkAey0KRSQbNKa2Y1YAlAAyZgQLNGfFD0flciWAOfZQSQDSwSqD7XqZShBkkrqY44yKgzHqH6EtdX19nqRrGtTq1OrU4zVyfBjGmUdGYbwfxcrzrheBlJU5pbOSP0pIIi5sAyFgeSFhS555Pk/jfzvqv1EJVaW5Mrg2aTjPQRbpegYhxMZIAK/ZG+TxKABkx3gQSb9EAtSA6QAkggNMNa82/q3Kju6ZShBklC/ei0afRqO02qQ6Y6c935SJSt06fVqdWp1Wlm6WR9kxowyxU4RjMb+am0b9KYWwGAKwDQfku9zWqAsjS9WjbJbaRrgkXW6m50cizSY5N2JUluEgzoOZMFAMsiS3+krswE7FANUMYgVgN0dQkEHHtMHUvIdLHJoQZJ5n1Tn28g3VlSJpl+HTbVIetGya1OrU6tTjNTJwtkPpskBihGyDmH4gAyQEgDpJLQYwTOSS+YzMuUcrHEbNICpAVL7oFlU8q6WBTBsUlO2uyqyGOUPAOYiWRVyoElYNglgL6BO1YCVlkPjPp4AhT7zJlsGthMpgw1SKY6UV3n8pthakQaH/M70yCj3FanVqdWp41LJ8EA5bHJnDM9P5ExEAeUYChZpMcmSZ8nDZtUCf+ePxfS90Xq3+W2D6a1K4agNLUKOw2EAMUAmJyyDiiZF8nqgSUAL7p1QFCuA7n1AEYr0wWQwJCDpJV+HSk1arX76+ryt+tGq61OrU6tThu3Tr5vUpIBHOj40k4FII1PUmkmacESqK4gEicO8AEy5zwCy5J5Mgaw5B1CCY7QbJKDQTHo2R8MBiihgRIAGHdgCaCcJwk0p6YDEDtJkz7GeDv1G9MLiClpQdIT/2HUdZLUyDKW1Ag2HgWn6q8bubY6tTq1Os08nQANKhxl4A4xDTzaFUnIEwApGKHHFLhhZBYwffFNqBYQrYk1BMuSRQasu4bsKSrZpCINlNLcGc50aj2G0vwKVvokKfA/9p8C0rgvMaVjpsrQg+QgnaZudDnI6NSWSe1vdWp1anXa+HViLgoV0AnGYRbZYNo/KSxAamBRDOBc6ATlRFAMJkl5eR0/MMcHR0CbdS2DtPMpGTQwclayz+Dv9m6IZZOaPZZASVT+LTaYiDMAPmAGlTZHtwZFk3vjXLf9pV8ShamQoQdJX2zDj0eRVgbtYKmO5HfsQUezrU6tTq1OM1+nMmAHJZPkABQZc6rOcmPNrkrpoBnFAE7M5XzNYUy2EQ20zBHwAdNPOMAcQPp8kk0goMf6KDnpVUT0teCAO67JgqcvKr5h8TUG1iYU/9rWJDyd0oJkg9R1irpOmDqW+k7JIKPjVqdWp1anmaeT9uMx803O7Aqug2agGIjpKwku0JNK+yMNWIIzF+GaJ/hvEOkagyMQAKTWIch1rvX0qrXs0WeTAJyPEqSX1pKUBlofPH0ZhBVSw8LUddfyn7G9znQCZQuSntR1mFRHTHWauucW15nq+HXntjq1OrU6zWydgCqbFJyglPEtcgKR/lYEbX5VBMVKX6RS9W99GwNjwRFAX4AsQVuDX/x3WXHBOijBEwCkqRseqFngTQEkUKZMWGcx4BzWqfWxYDmN2OhkqEEy1fkG7RSpsnV19xvJ2m/W6tTq1Oq00enEUGWTjEqAhNI+PwFrDNXmVwLTJlYDmHXiA6O9ngVH/TsNkP1E+yBDZqYCUAwrSawgWZHUnM9+4qfTc+Bsj5n6lPkb7fOaqC9zfWSoQbJulAnUm3Js2bgNxiPTQTtyq1OrU6vTpqGTBSprbrWJxi1QklcLeSnptL+SJXXz/14LHr7v0V4TqAKkZZE+6NRhpwVKX4d4WsqgMgiA+SBur+Puo9lirJxAQ8ZXuiEY5VCDJJA2uzSNXG35uo4Zl03V01Sm1anVqdVp49SJwbzQjbnVOPicqZVI0zbGACIdjKMIxl+pxQeYmA36wAgg8D3G4AiEAFnHLC2bjK89iDRhaB2jtKzRN9nGOvo+UsAEFLl628CdaRV/VEiJ37YMEvvjMk0jTb+euM74vFanVqdWp41YJ2aSiBvwEYZJMjImV66Ti1tWqQGCOcCpy8kamCC9awExaLKgvA8oddgyEcKYAr+m04OpJAjZqdOHNHhKCvVWpBer9iNvJxKxO1ky1CCZGhUisY8lytR1okE6bXxdezx1rNWp1anVaePQyZoCdSJxvVfCAKU5mwAwZlglAEsiqXJF79p+YgEf9CygRMDol4shJbUmZUpiMIy1i1lnP6CNg31iXSURGDz2iBAo3T6f+k6TDDVIAmUDT40W4+dOA5Rnie2mjk1RHa1OrU6tThunTvYcyyY5tB9SASZoh0AMen1HW56FV/PBJoUFfjDNIGxxUFAEmoHRB0VbTEV3ZVBGyrwHw1EyyBgs44QHvlnYT3gw1TL0IBl3ELsv1cH6HUv9jkegdXW2OrU6tTpt3DoBIZtUrARHCR3tSgQHloA+HrzsazCt6p/0j1VP6oeNMaD5AEluX7W8BUb//LBcM3IxxkqAZICE9tFyCsEyNZeTg9Xen6mUoQbJpvud6jD9jrHomF821XRSdaf2tTq1OrU6bTw6WTbpsuqYowRtMrRgWV67HlgGAcCJBLK4iFpzToxpMUD64Oi23bHyZH+OZB1O+vMu/WQFHCFYxsCo71l5HZGsfepkqEEyNapMjQ7h7RukM/nbg5a35VqdNj2d6s5rqnOqdZqJ92lT0okzM7cvAMoSEP3VpsSA9ChVqp85NTahlhGkpk5WBTUfIH3mGINjmaM2PM+KC06ymlOpg5+swOWMBUyChRAo/YTseoBB/anyJMpQgyRD86gUKDuD/zsu16+OfvvjeoFWp41Rp+mWjfU+beo6+ctOWaAES7PIflKHBfUrLWqxzM7mgS1ZoN6IwTKWFECmwNEBpymbrq/cWa40wgB7j1iZMzYFlDYhu7CAztpkAtMmdgTZNDJk0XaqfHxualQ6EZ1S12p1mvk6TYdsCvdpU9fJFwuUgDYTkgHMflKXx3QQUVSaJB2wmXNd9CiF8bScsQrr1OeXAKnifREw+qfXDVbKaR5kBhMaLIlplk2kMwtZoETEJjeEDDVI+qPHuAPY/akHk+qU9ry6B1k3Ao63/eu2Os0MnVLlZ4LMtPs0E5/dhtKpstyUq7AZ6VJHJzp53tcZjDnQJGP61TnVmZleUTWbNokPkBo8vWtBp9hrEsFt8JIFzBIsNYuEXgQamlEyYo5N2j9suv2S/Vj7pMgll1yCHXfcEaOjo1i8eDHuvPPO2rJf+9rXcPTRR+OZz3wm5s2bh4MOOgjf+c53gjLLli3TYdbRZ2xsbMK6MaQ7Wb82E7fbVMdliBqst10H0K1OG16njU3q7pmVYXp2M0EnK/5cxbqPXaxZMCBj4W8BBQEFRuajivSHVPARcT3Myy2LvjgNoAzU8VlkCiDt4EEqQk8qKCIo0mtnxh9FuoxUhEJpHpqsk/xtTydat9yw6ytTDpLXXnstzjzzTJx77rlYsWIFDj30UBx33HFYuXJlsvz3vvc9HH300bjppptwzz334IUvfCFe+tKXYsWKFUG5efPmYdWqVcFndHR0QrrFo8N4VJgaUTKkO5d/nl933SOtu26r04bXabJE0bp91leG+dnNFJ2s2EWQ/Y8PXj64QRXlR3bdNpNd/akDSXM8ON+CJ8pVPgTTTM4CpV2s2c//Wid1AOmDozSfntQroMSfnjTHDWDKGqDUgKzvvLL7NgA4WmHUb2LLesoBBxyAfffdF5deeqnbt9tuu+Gkk07CxRdfPFAde+yxB5YsWYL3vve9ADSTPPPMM/HYY4+tk05r1qzB/Pnz8X+rV2PuvHnJ0WXqpvjtqO543KkosT81+q0b5bY6Ta1Okw2SUxFQsK65Kjf1ZzeTdYrLlIVVddt8M/tbqWrZ1G8AwcLHdtusrUWM633mQ7BgZFYegQYo6TE3uy1N1Klfzt/v6jDAaFX2085VI2v1HbHBRPHamOUggplE8QyCaz+q4OVvwXTe26effALbbrMQjz/+OObNm5e625MiU8oku90u7rnnHhxzzDHB/mOOOQZ33XXXQHUopfDEE09giy22CPY/+eSTWLRoEZ71rGfhhBNOqDBNX8bHx7FmzZrg44sdRbJo2x8x2nL+dyxxh/TrTHU+v2xcb6vT1OoUs4B1xCEnk8UCJ7PuTfXZbQw6Be2JVPUTMMECrOgCsgCKrmGPPTAl9Uf2wt/+xz8me4aF6g+Tun7HLFGySt/0avc3iR+okwJIyyK1qVV/JCH49FRpivXPc6ySyrZuza5NFG6KultFphQkH3roIUgpsWDBgmD/ggULsHr16oHq+MhHPoKnnnoKp5xyitv33Oc+F8uWLcPXv/51XHPNNRgdHcUhhxyCX//618k6Lr74YsyfP999tt9+ewBhx4k7lX887kR17SnuQHHdcR2pelqdpl6nfnpNRKYSHCfjWpvas9tYdCoLeazQfCwwapQwABYBnzO5WjOq3U59PPOsA04lHWAyWZTATMqZfC1QWoZnAbPyJ5g/2g/UiQHSgqMkQClyn55U2hzrfpsyifMLZVlqaXbV3xvW5Dot0a1xODPRYNncr7nmGrz//e/HjTfeiK233trtP/DAA3HggQe634cccgj23XdffPKTn8QnPvGJSj3nnHMOzjrrLPd7zZo1AVD63/B+x53CH10OKnHZeITadE6r0+TqNNmyvuzOykR1m+hyQZvCs9uodbIACRjfoweYRCHDNOUZJUyuKjK38qqp1TexMsYBRiAODZScg3hmmKMxv6JctWSgPwVlBGvABA04WnNrDGh+onIoDYCc6wjWHFyvuQmAwEz71kngCSYZvD2V6ldKmSqZUpDcaqutIISosMa//OUvFXYZy7XXXotTTz0VX/nKV3DUUUc1luWc4wUveEEtkxwZGcHIyEhffVMjRdT8jkevqfJ+nf1Gr6nrtzpNjk4bEiAHKbYuwLmu6+ptbM9uY9YpvrYDSFVUwdECo++XdMDq1WyPMw4oqXdZ8GEcjBv/ow+WAIgpABkYCg2UZr+dXmEXiXbfZmmv8u8pt/0gnRggLTjGq37ofWTW0DSA6dLqKAeUXBEY14kEGEpA1DqW1xeDhOhOkkypubXT6WDx4sW49dZbg/233norDj744NrzrrnmGrzxjW/EF7/4RRx//PF9r0NEuO+++7DNNtusk55+I487j2+eic0xdS9Avz6KyjeNZFudpk6nQWWyut5Emc+6nD8RJrsxP7uNWacAAFMA6fkmnS+xSPkZPdNqZH71y7KiBxRdsKIb+iOt+VWV1xWGoDHGBpoWYgN5AHiBOiFASoKJbh3U3Gp9lyYiNkpyYE2uG1Km3Nx61llnYenSpdhvv/1w0EEH4fLLL8fKlStx2mmnAdCm0D/96U+46qqrAGiAfP3rX4+Pf/zjOPDAAx0LnTVrFubPnw8AuOCCC3DggQdil112wZo1a/CJT3wC9913Hz796U9PWL+6EWPT6LDfM6tjMZWRZcO1W53WX6epkqZOO9n9ud/fNAij3Bif3SahU2wq9c2rqijBUxZImV5ZZIJNio1o9dijM7OSAhOZ1tEySqu3yABSzuyqU8VB+yX73GjfpBoDZGhy9f58k7hA/4BptOR+u4xABMcmiZWmVgWCACvT0jWrOKky5SC5ZMkSPPzww7jwwguxatUq7LnnnrjpppuwaNEiAMCqVauCOZOf+cxnUBQFTj/9dJx++ulu/xve8AYsW7YMAPDYY4/hbW97G1avXo358+djn332wfe+9z3sv//+E9ItaDTRsbp2Eu9nDcdS+1Lnx5271Wn9dVofoBzkhZySqRzwNv1NTUC5MT67TU2nwL8YBfBAKc3y/H2Rj9KaW0nK8HpCAJDO3Mr86R7GpOrajbdNABjnGkSt2RUAMeYAjvXpBNKAIoCEybUsE55jp38QpCQoxpCb1Dmc9H6ldEo665tkgIlyZc4fOZX9LCVTPk9yJoqdJ7l69WrMnzcvedP9NlK3PYjE7674Zdfv2q1O66bT+kqd7rUJoQeos5/ZaBAfY12RpnM3tme3qejEfOCTvsmzcAzS7YsAkhFpUFQSpDxw9IN3TOAO4wLgAkwIDZgeUIJnZluAso7+zTMQF4DIQKIDYhw9E4RTKIJUerqG3i7NoYWCMZ/aaRxwiQRsogA7l1KrWr073DRUPT8SyAU3GYEYcsGRc4ZcMOScI+MMGddzI3O7zYBc6O21Tz6B7aZhnuRQ524FBhslpkaYKRNMv2v45zR1sFanddNpqs2s6yqD+lT8cnWgV8com9jkxvDsNkmdGEdgJvXNqB5AOnA0/kqSEqroGh+mCc5RMq7dXEKA0AO4AHHuABOZjmIFKQ2WjIGpotSRMV0/12yyXJ3Dq9v7kWrDSpVmVh8gLTgm271LaKvvXE8qQHBoFqlzy1o2CeggIhhW6edvnU4ZepCMJdWJmkwwTWYaRMfizubXH+9rdRpcp4H6TezTYc0xaxNhLhNlnYNIMjm2d73JNie37WmKdaoxufoBPCgKkJKgolcySB8oZQIohQFF9DSzzDoAl2AAmCAQF1VzK+NgSprvQn+Dm8WPYVLWpSNUU2JB0QJknblV7zMmV0UOKJUiCKFNvZz00mI5ylU/NhQ4WmlBMpJ+L2D/efkdMDVqtb/rOlFT2VanwXRq7Dt1wQ7+sT5gua4yWRF5dQxxfd4bM+XZbeo6OYnTzCkTpKO8jDhFASq6QNFz4Ei9rgNIKFVhk4wLDaicl+ZWpcCyHKQUkOVgeUfr4wfumCAfC5TgCpxznVyAheDGEqsyS489+izSAmTdXMnK3TRAycn3SWo2KUlPB+EmBR2gg3doA6DlUIMkQ9p0khp5+vv7jTzr6o3LxnWlOnCrU7NOSWkCx7qy6wiWqb9xskPW13VOJDCzn92w6ATARa4yjzkyn0FagLQsstctgdEySsABpTOzAg4ktZk11+WzvNQl7wCsKAFSFnA5Xa0JGGWic5u6jiOcKwmk2aG/P5gr6Zldg/brupoGSsU0mwRnsForpcu55OcenbSm1+maGjLUIGkl1egHZTGEamfyy6c6U1NHbHWamE5hZesRGE6qApQDXXOil2kYXTdloUoBZTxYGCTKFZg5z25YdAoVDKeBMCLtfzQAST2PTTpWaRikZ2511xA2PDQCyNg0a1b80NNEGBgpkCp0RCwpHelqTK6DjMesP9KyR9/MCtjcrmY7tpc6U6u+c9rMakDZM7mqDW1nNTLUIEmob9BNI0XbEVIdMtVx6s5HomxTB2t1augyG9C06ktt9OsAQeS2TB1YrgujnGnPbia2p6nUSf/wfY/hHEgHij5AFl3HKCGlNp3GUa72+jaylZvjXABKgmXGzGoYKOMCyOCmiTg2aedp8syZXAFt5mTehEl/EWnfjGoz79htm6w8NrsGaekMg7RAyRUcm9SBO7qhS5NYgEBQYAMvDD3ZMtQg6T2yoKOlvoF0Z0mZZPp12NSzrhuRtjr1kRQ41gFmv+CdBJtsvHT0e30AMlV+kPzG/WQmPbuZ2J6mXCevzbEALK2ZVbNFB5DdMQ12va47hhqQTEW2siyv3gM7VQSjCPK6Ggbpm1wBm/CczDZq50z6gT02AbkPkKXZ1VYc3S0DlIo8NtmHRW6I7DtDDZKpTlTXufzHlRqRxsf8zjTIKLfVaWI66ZNU8+9Bzl9PoOx7ifUY/qYWAojZZPpVEh6Pf2/oZzdMOpUnlvMfyykfxpRa9EqALLqgnmaTUMp9JyNcfVOriWwlJcFseWWATwgHllwIgBtwNGyS8cwBJmdcZ91hzVYLP6tOnGWnZJQw+8yd8dPqmDskYIN0EPgmdXICbbblLGSR080ohxokrfTrSKkRot1fV5e/XTdabXWamE6Vl05qe6LSBxQHAuu6qiehNw+6Yk7fesx3256mVycGOICEt619kaWZVZtYPYD0gnhUt2dOVVCybOtcmITm6IF38jKy1VfCsUhoxpl1AG5MrVxo36RncmWmLwxi1o+TBUg/RZ2qmmXLE5kDSm4CdHw26dLd8ZBRbqgcri1IehK/kFPPJDWyjCU1go1HnKn6+5mIhlmngQFyEMDsxx7XgU3GHbgJIFMaTuRq6xPt2ran6dUpEG+JLDu9g6xZteg5gKTumAZJKaF6BZRUIKm0b9KvrgcwzsEE1wDJOXgnjIZ1wrkO6Cm6jk1CycDcClI6UNb/2/u0Mzf9w09Hp2yqOqqULZXXQKlIm105IwOYmkXm3nl+JKsjpdNIJ4ceJAfpNHWjy0FGp5UXfFRnq1N/nZIAuT6m1lQgzySbWVPSpKFz2ySOrS+bbNvThtUptSyWSxpgP5ZNGoBU3R5kr4DqFRogzadSt9AgqQQHz/XrnMd62OCeoheySZ4ZBlk4kysAvSoI0jMS9RqSVZAqp3vobxfMk6J/tpErpsGRMccYnfmWUwVo/Wkg0ylDD5K+2EYejyKtDNrBUh0pZkWDjGZbnaK6UgCZAEeW2EcpAGxikOsBmikWOSiEG+tTss46oPRfHf1YZtueplenMHCHwGxeVmtmVbKMZjUf1e2hGOtq82pXg6TsFfq6HlAywYGe/hZ55oBUKAUxanTgxiTLhWavXOiltLJM+0Y9f2SFfRqp6wUyBsTIzCpN7temSjUL1b5J68/MzZ22gUHTxxnT0oJkg9R1iiYTTqrTxt8pGWR0PIw6ubr7AGQKGAMdveM0QQbZ7x7085VM1GNaB5TxNdfV5OrLsLWn6dbJlfNZpAFHG7Sjzaz6YwFS9QqobgFpmaRSLmhHSQXuAFKASa7BMQ9f52IUJvJV6CCfQmfg0WBcAmTsM+WMg5vsO7zPHfTztNqpHtJEuTaCJKCz7Vg2qeC+S1+kl6zIGwpO9/zJFiQ9qeswqY6Y6jR1j63OZOMfqzt3WHVqNLFOAByT1yFVD5QDMsi6rh+zyHUNKUoB5WQE8Qxre9qgOiVMrTpytVcG7BRdUK/rTKwWILW5VVaYpOpZJlmAcQ7RyUFSgSvlXuqMc3Bras1yA8hdna7OW57L95WClAveaRJtctXbKdNrHUgKztw+wZnzZSoKTa526S0IXV/GmV6AufGpTY0MNUimGvognSI+1q/ufiNZ+81anYJr6J0TAMgac5ETXnZ+e27SDOtfexoSENTJIIyyn7TtacPrFBZUYV5WaYJsip4GRwOQmk32oKQK/JK6CmWiWuF8kqRKJllAv9il4GCiC3AOKnLAsEhmWCvrjFQAXLd5JAN2nN/RAz5FZVSrVKEv0pYvatiktLlbDZvMDUAGZbypJRtKhhok60aZQL0px5aN21A8Mh20I7c6NUgNQAbg2A8YfbFl+QD+yUmQOs1SgXmTMMsjfa2abWD42tOG0inMtEPO1OqiWouuM7PKtZZNmsCdAXySIs/0tieKlwE9IteslRkWSVJqJlkUYEIBJrMNM9/WjD+RNulMrR6DtOAYs8nMXEAqcmwSYGZOJLnVRCQnV/d0s8dA3w125RkiKbNL0yjRlq/rmHHZVD1NZVqdbIF1AMgm06sPgEqV88d806sFynUEzMFSz9XvT72UmtjkoH7JYW9PG1In5q0Awqw/0k9kboJ1pGdilWPj7rfqFZDdwvgkDZOUKgjaIakgOuGrXBqGKTkHz7t6/mTRc4kGdNKB0uTKyBgyzXc/sQkE7BSQ4Nrejn5+SWmWydIgy1zdMHkSpnOqR50MNUjGppkm01+qo6VGl3V+EL/j+XXG5w2zTpUXVx1A+uA4qE8ynvZRB5QTlLr+H2s1SF+vA8qwzMT8ksPcnmaCTvpgmdS8XNVDunmRqqtNrdYHKQOTq2aSyjBJl0ygZ5IJSO5YpJKeP1IIB5SqV4DlPc0ii64O4DErjASp8ry+ZHtD3NRqVwFRCAJ2isgnaVljDJjSMEZrcnWs0k9rRwQilJ/o3k+1DDVIpkaFSOxjiTJ1nWiQTpsa0cYdc1h10gXDaDsgAZATmSdZF6TjAeVUykQGwymgXB/f5LC3pw2tUyVfq/LZZDdgkapbQHZ7AUCWEa4EFa2CLKHABYPoCB2008lKf6SZ+kF5BtktNJvsjBofqE5iwDqjnm7ld78hmPMTqnAuYwogY1bpS2ZAUyqCYAYcFUHxcvDZtPDzZGS0GkSGGiSB0GRifyPaB29fv/KxCaZpVOqXqzs2LDqVJ1dZYiNADsIkYxaZAErHJmOT66DRrl6HXdeI1rKu/oxyIjKM7WlG6OSZMstUdCYXq0loHrJIL3jHN792talVSQqy7jDOQYJBSYLolG1UeQkGZC8D75g5lEUXZFikZbPWDzlRiZMF+P5Iu19/Ur1B6xr4LEXV99gEkNMpQw+SdaPBVAfrdyz1Ox6B1tU57DqFB0smGQBk7RzJ5t5EFnF8sJymyNXpcqlUBhvRMWC42tNM0Amq0H4/qROak7RTP3SiAFLSJQwo/ZFdzSK7BYqxHmRXQkmC6skKk+SCQIqBuf3aJGtZpMozXXdeQOYFuLumdOZWkhIsC1cDqRMbnOPmMFK53zfDxgDpM0htctW2ETu1A7BJzhkUD5ffUop010e9a2OqZahBsmmwnuow/Y7FJhi/bOr5Npl1hk0nfULYSZMAOQFwjMsFYOkDZcwm10P8V0yTeuH6elWZLDY5rO1pJujkm1qZKtxcSLe6R9GD7HossquDdHyAlD1pmCQFyc0BgAQHEwxclFfmwkwZ6WTmOy+nj0TLbjlGmXBdMMbBvfUkY4AqAdL4IyNTK4DKty+Cw5UX5pych0ts+QE8dXpMhww1SKZGlfHo0ErKhDNIfYOWj003w6JTuTNkiU0AWQHHfiZXZgN0qATKJkmwzKa/ZyLiR+v5202ACay7X3LY2tNM0ol50z6c38+kofNNrX7iAGt69QFSdiXImFotm+SCgSSBCQbypn9wwcA4N37IDLLbgxjtGMbag+iYuZnx30Sk2aQnipoHev6iykCcREAF+3yJ2WSY91X3Ax8g64KFpkuGGiQZmkelQNkZ/N9xuX519Nsf1wsMj07hBT0fDtAMkHXAmDKjevscUNawyYlIuTJB9Q6m+nVTOHs/ZhnWPXiE67C1p5mmU5Bpx+RotWnoymkeHos0PkgLkMXawoGjzyY1i9QmSvLMsFIwMMFcVCvvaJMrjarAxMtshK2NcG0Qe1SbQWE+1aCdwgPIpqw7ViybtOe7pOY2005Uf25Ms9PNJocaJO0IsmlkyKLtVPn43NSodCI6pa61qerEgOBF4mRQgEx1cH+fH6xjfleA0tc9NW9yQGl61azLfK/JMLkOW3uaaTo5k2tROCZpP441WgY51tUMslsCpOxpFim7ZtFlgxA+ixQdQEkGJpkDUx3oo7y8r/q38BZkJinLvynqR/HAL1jlSpGXs7XM1QpEoNdnCohUCoILZ3L1JQWEfv7W6ZShBkl/9Bh3ALs/1dlSndKeV9c560ab8bZ/3aHUyZqlXCVqMHCMfyfAsVYmOYgnxsNBAXIibHJQiV/e/n5gCNrTBtQpGORFa0cqM9XDmVu7pZlV9aRnbjUg2TMgaVgjEwxc8YBFAtrcKr1pIfojk8tsAZhQxiqlwpR0TYDYbwqI8KZ/hOcBKlghhNZpgDmZMtQgCdQDZb/H0s8UE9eVKpsaeQ6TTjGLZDEIpgBy0OkfddM+zHcTm+wnE+my09XBm6B1WNrTjNOJFCALE7SjM+zYdSOl8z2W0z58M6sFStWzjJAcS2SCAZJAgiA6wrFMxrmOhDVmWZ9BKlUG77gI1z5/F6ATivtN2M+y4wftABbkQlNrnLfVT0mnv0vfpC+xH9L6KzfEmpJDDZLxyDEeFaZGnqnH43c8v+5+14636zrspqhTbTP3VyRwyqj0d7wdXCzBJPvNfWzwS9bdO2uWSmkxVQA5kYw7KbYU798U2tNM0wmyG620YXK1esnMbSYd64skqVygjgZK5aaABNGtUmfbUQDQlRAd4YEild92n/LNrh44KhPAk7TChOBICIErDtpJJRCoy91qRXiAac+Pp5PUyXT6JYcaJOt8DED9KNT/HW/XmXDqzDxN197UddI7IhYZzYV0UYF+Wf/cJunDJG39lWkh/vnrlL+1z3FvO/WSnWyTa9PLfVNqTzNOJ1JuniRTEsrkaHVp6DxTqwqiWctvZRIIyK4EKQpMq6QITDKgI8CkAuMMsqvAuITocAOsqjJtBMBAJlZbgqhc6QOw5k99THr+yBSLBJpztzYF9jhfJ/n7+qo9JTLUIGll0M4Wd7xB62mqw99u6rCbkk76hARj9I7VAmRqHmWq+n7BN+vph+zXYWMWmSpex0amQjbl9jQTdSrTvBXaF2kXWjZsUrPGXhm00w3NrP70D2ty1dUSOGfgZkKQNbVywR2bVD6LlOEnKTX9IG7DykW3lkkFYv9jU2o6P3DHT0kHeICZ8EFu6Mw7G26xvBkgfudImVBSHaHpxZbqaH7dcR2peoZBp4qOPoscACBZ7L/0jvl1shhYU+ba1O8aqQNGf9SdkqY+Pmj/T3XUQVYAGYb2NBN1gkkgwEi5lT5gAndkPC/SZ5HOzBoCpFKEntQg1ZOEwgb1qNIUa5kmeX7JgYVx9yGUbVkRQCAHkIBZAcQE2aQAcZDcrUWwfwJ6bgAZeiZJ0be/P+4U/ihyovWn6qjrYEOhU8rM6gfqeGXsdiWwJ1WnUyJa4aPGHzlwgoHUn1CDiv5IeAMPggEMSXuaQToxUmU6Optpx82R7Aa5WXVka8Qiu2XQTtGTjr1ZkBLMaKAIXBIUVyDJQSIM2gEAf4ktAPVssuZ+kDGv2jUedVLzMvK0ztTab44kgDST9H4HkbR+n5rmTjX0IOlLaqSImt/x6DVV3q+z3+g1df1NUScG9GdusSk2xQqtxKNQXg3YqQClf531jGyNWeS6AOSEWHcfQO/HLje19jQjdVJF4I+EW1zZy7BjTK2yVzi/ox/dSoocQHZVHMxS/nVcKjCb5BwI/ZaBD9NYYfzFmbnQ/YVxPVBkHODcm3phziXdzZwP0v/0YZFNQTuFInRQDeyRCuV6khvKEelJC5Ko9zPUmVsafRFRff7v+PhQ61THIgcByCbzjD3GQ59kJS/revgkB+m3k9G1ByW4gxTb5NvTDNLJBu34/kg39SMytZJNXu7NiVTSRLh6ABn65corCwXwOBtPwonHBskmxTjImlthwNFsl35IBP7IFCgOApJxcoHUdJGZIkMPknUjxroR6yAdLTXKjLf7XXtT1MmxyAF9gBWAHHSx5X5p5gYByD7HKWH+sSyywjYTD2cQf6Irm9o3gfM31fY0Y3UycyOZKkDdMcci7dSPlKk1nCOp0JMUAGQdk5SkX+LK0K8moHTCORgXYEKAcQHnjwQAxktzKvQ0kHJqhr+wcrjaRxNgWhFeo41Nq/7+WDY0mxxqkGwaDdY9luSLv+GcfvXWjXY3ZZ0A9GeRdQA5CMBaELRA6bNJYHAG6QUypMTXpG5OZG2wD00M6IC0qdXfk6pvGNrTjNLJXx7LJhEwICnHxiumVn+6h82so82sGiA1UKauzIxvUgMkz6vZd2IJTK1+bcbMavsFkQZHO/3DAmTok2xmjnUgaEVESQVisUA9E2RaolsvueQS7LjjjhgdHcXixYtx5513Npa/4447sHjxYoyOjmKnnXbCZZddVilz3XXXYffdd8fIyAh23313XH/99RPWq2k0WDcSjd9D5H1SwrxPvM+ePyw66Y3qfMeJAiQjavz4ZScErg2io/yqHTfGRvLKT1Unt2A4CMZuyu1pJuqks+x0wWQP6I6bVHRpU6vPIG1EK0nL2MqPQvgpA3kGm3jvg6Njj5wbn6Rx/nl+SYXSJ0kgF7QjidBTVOuP7GdubQJRy0aB6ctSNahMOUhee+21OPPMM3HuuedixYoVOPTQQ3Hcccdh5cqVyfK/+93v8JKXvASHHnooVqxYgX/8x3/E3//93+O6665zZZYvX44lS5Zg6dKluP/++7F06VKccsopuPvuuyes3yCjRNuBfIk7YL9rxPUNeu1NRSdnarUSL6KcrDwNkMHxxHzLWqCcJCGiJIv0AXIQaSpnSSN3v/WOOvbZxEo3xfY0U3VivqnVsshek6m1TGCupHIs0ppaNSiGwTKDtGZmVwMxLgcm9ELMDhgNUDIhYH2RzidpBoRE2qxqg3bS/shmU+tEpoLMVGFUF8c+SXLAAQdg3333xaWXXur27bbbbjjppJNw8cUXV8q/+93vxte//nX84he/cPtOO+003H///Vi+fDkAYMmSJVizZg1uvvlmV+bFL34xnvGMZ+Caa66p1Dk+Po7x8XH3e82aNdh+++2xevVqzJs3Lyhb50ujmuNNZpqmOuPjmOD5G6NOdnK1b2oNUnf5LDICyAo41ipejvtcxB7gRfGVvhcdzZeV5YzZyb4wfHOrzyQtSPq+SP9v9ft93Ltii2nMCm22nX4gWZavvxV1sqm0pxmnkyrAx58CW/sY+NjjUGsegXr0QcgnHoV87BGMPbwGY489gfHHntSfNeMYf7yL8TXj6D7VQ++pHsa7EmulQlcReo4xltcQDBCMgQPocIZZgqHDGTqzc+SzMuRzcnTmdDAyv4OReSPozJ2NkWdshpHN56IzdzY6m8+DmLcF+NxngM/dHGyz+aDOZlCjc0GdOSjy2VhbKKwtCGsLhbGC8MR4gSe7BZ7oSjw5XuDpnsKasR6eGCuwtltgbVfi6a7E2q5Et9Cg2S10H/WZrmAMgutPJ+PoZByzOgKzOwKzOgKzOhlmdwQ2G8kwOxeYnQts1jHfI/p7VDCMZBwdwdB96gk8e7tt8Pjjj1fe45MpU8oku90u7rnnHhxzzDHB/mOOOQZ33XVX8pzly5dXyh977LH48Y9/jF6v11imrs6LL74Y8+fPd5/tt9++VudUp4iPp8w2fseJTTL+sfjbHk+NUDcVndyxeJ5jYlI/i/dTlOQ8TjKQiIatXCeuP7rm+kg1K4mplqoAafdPVNYVIDfV9jRTdXKmViWBogCNj2lTa3csWBIrNrX6fsl4zUYLkG5dRaom/+ZRQ2CCeds8YJPgHBCeuZVxkA3e4WFkqw3a6SmdyKCQmk32GuZEBmZUb26l/Z3yQfabTxn/fdMtUwqSDz30EKSUWLBgQbB/wYIFWL16dfKc1atXJ8sXRYGHHnqosUxdneeccw4ef/xx9/nDH/4AIG26SXWEuCPFZhz/3Lhj1tWbGsVWOt2mpJOXLccyxOSUDyv+qu7e+Y3RsdH+gH2uo8m1H4u0ZYAQIBvr9NVqKOt3ziaArAxGPL022fY0w3RigEkiUIBJ7YMcxNRqza2krN8PFZNqCZDNDYsJBm78j4xzcMHdb25+s8jcGlhMeFau7GFNu54/UvskVcXUOl4kQJPCZABxhGpTUI8Vv42LyAQznbg5LdGtcVRev5XVU+Xj/ROpc2RkBCMjI/XXQ3pk6neIlImlyeQT1xd3ytS1N1Wdyos0sL3YzFoHkP53RcGazDrrMifSD4uvEd/MmgLImGX6icuJUDsP0t8ftHlXT1h+2NrTTNQJpMB642VUa3fMBeyobg9ybTeIai1X6iiXwIqnfKQz7fQXDY7aH2nB0jHKLA+mfxDPNIM0bNJO97CBZzoVnh/RGmbH6TYAJEUAqACApxdgHujvYtX3/nTIlDLJrbbaCkKICsP7y1/+UmGCVhYuXJgsn2UZttxyy8YydXXWCXmf1DHUHK8z+cQdt+5xxiPRuM5NSafAFAVU5zpOJPtOv/IJEGX9aF1KasAxxSKBKkDWLRQ7kai9FIuMt526vo7Rvk2tPc1UnZy/XeocrSh6GignZGoto1mBqj8yFh80LWt0ATsWGAUHz3P93cmDyFaWdxyD9IN2yiTmcBGtPannbirSwGjBsYjB0gNI/zNRse08ZWrlzLxbpgkwpxQkO50OFi9ejFtvvTXYf+utt+Lggw9OnnPQQQdVyt9yyy3Yb7/9kOd5Y5m6OuuETeA71cGAaoekaF/qMTZ1xE1SJ9/Uan7HgThJFlnjW7TJy/1PqtxA/sYIECn6XTf1w7LIFEAG9UWXmwhQxiyyzsQ0dO1phunEAGdmtaZWGh+rNbWSzajjmVotY/N9j4OIYKwER87ARfkJgTJzZlaWdcCyXAesGYCEyBwoxv5IOzdSEqErlTO1plikD5C+P9IHyyYGKTirLBUnmLbCMDAHkJyxgZn1+sqUm1vPOussLF26FPvttx8OOuggXH755Vi5ciVOO+00ANpf+Kc//QlXXXUVAB3J+qlPfQpnnXUW3vrWt2L58uW44oorgqjVM844A4cddhg++MEP4mUvexluvPFG3Hbbbfj+978/Id3iRxWPSOP9VlImmfiYP0JNmYqGRafyYMJUGjPDFEB6ZZqWxrLH+i6R1SRRhp7kS5USQBgBZOq+AOX9sGtGNplcnUrupVDuG+b2NBN1mqipVfZkxdRaDdipZ5HCAIT9Zg4UjYk12PY+WQ6W57qdZ3kZ2c0zEM/0tT1/ZE8pzSCV3S5ZY52Z1QdIK3Z5L7stxGCm1hSLZBYw2fT5JaccJJcsWYKHH34YF154IVatWoU999wTN910ExYtWgQAWLVqVTBncscdd8RNN92Ed77znfj0pz+NbbfdFp/4xCfwile8wpU5+OCD8aUvfQnnnXcezj//fOy888649tprccABB6yTjv06Ury/yayTKhfX36/Dbko62ZcIgGrAjjlWiWh1FSQAsskf6Z/ngSUDB0FpO1ZN1pGm+vyAHf9vU9QMkPY9YDtz/IJdVxnm9jQTdXILLA9gatVzIrWplRQFplagTBbQT/xAFsaZC9qx4MgFh+hkEHn5cSwy75T+SJFV/JE27Zw1r8amVguK4wYs7T7lAWQ8s1ApbbZkAyKbzchjWaRmmAOdOukyLYE773jHO/COd7wjeWzZsmWVfYcffjjuvffexjpf+cpX4pWvfOVkqOfEf6x1naSOJfiSGsHGo+BU/XUj101Bp/JAjTk0ZpETAUh7LE5kPhE26Zfz51pGxXwza2qeZGqA7IOlvc+WTfriRsgAGGONLHLY29NM0YkBYEW3NLV2xwJTqxzrVqJaLYu060H6UyT6iWClj0wwzbZ8f6ToCIiOAM8zwyRF6Y/MShbJ8g7IMEjNKLmOVjVstvCmfsSm1m4ha1mkBUjfDzkIMPp5Xe04VjBmzKpM32cGcJR9ZLpkqBddBtKj0kFHsIMwg7oyTd1hU9HJZ5F18xNrWaStIxXZ2jRHMqq/Iv7+FIBGDBJAbcCOLpMGSOvXSU33GIAoOElFsg5re5qROpECK8aBogtYf6RhkarbC3K1klJBoE5pag2jWVNSmletqbXZH8nzDLyT6e8808CY5cYf2QFxoRkkz0AiC0y9di6kskBpTK0+a4ynfThfpAeQgT+Syu3av9EkGgBQGUCWg8fpj3IdepD0xd72eBRpP4N2sFTn9jvtIJ1xk9KpbgpHKmmAB3wsBYx1EgX2TEhsYucEg/SBL2aRdVNA4neAv69SH9WvEhI/k7Y9zSydGADWGwtztY6X/shirBtFtdpAHb3Sh1sWq08UqxUbqOKDJc/1dA/NHvVHdIQL1hF5BtHJwLIOkHccWMKYWmGYZAl4NgkASp+kLOdHdoswq063UCGLjAJ2muZKur8rGglagOR2IGCTZBnrimAM+TQiVwuSDZLqgKn9sZknPif+Tskgo+ONTadAfH8kEAJl00T/mjmVtcA5UYBMiQVNqzpC4EsBpAVCBUp+4NVhI2YDtf3L14ySh709zUidZM+ZWy2DpPGxSlQrGeYou/pbM8nB2qpljYB+YVsmmeXC+B6FM7VaFqnBMXdsklkmOTIamFqJC21qTTBJDY4aILuFCtij75tUiiALFS4fp6qMsvFv5ByZxyTtQIBz883SA8fpkBYkPelnovGPpUa6dQ8wZS6Kj9Wdu7HrlDSBJkywSRbZFAmbusb6AKQbrupv39Sqf4dTPqwEvkkPDGNzawyUA6lU8wCGuT3NJJ1YUbJIJnu1y2Jp5lgES2LZZa1slp2U+GbV+LtjgnVEh4PnHCIXHqMMTa0s71RNraJkk0FErYLHHm3gThjVGphaiaAMQPps0t0vz+Sa/BsTjdyCor0HdvqHH9na9OwmW9r1JL1tAJVRJyXKxsf61d1vJGu/6zr/xqhT8GJrAMq+q4FE4BgnByDbYyoRrZ6OqaAcZ2JllWM+QwQiBkgJs2sfAHTnMwI3d0ZRcwi7/xKPWdMwtqeZphMAwAvYUeNrQfYTLYslu4UGR1WaWIEQOGI/nWAMksgxSD+puQ3YEblwUa3W3KoDd7LQ1NoZrTW1kujo+ZCyNLVa86oFS0nWBxn6IbuFcqZVHyB9RjmI79D6IoXHGoFyCoiNbI2DdiYw3lwvGWomSdF2PNKs66iphzNIGb/sMOhUG0jTNGfSZ5EROKay51T21U0laZIEiDqgtFXY3w0AqRo+rgyoMXVdnbTtaeboBGgWyYpxsKKnA3a6YyDDIml8zJvyoVyWHeuPDOdH1uvkB+mUAKlZpDOx5gKiw81HOPbYaGoVxtwq8oqptScJY7JqavVZZOyL9INy4qkfcaSr+7s806ovzh9pBwNeZOuGCNoBhpxJAmnm0zRyteX9c+o6aZ25p6nMpqJTuTPNAium1jqJsvOQlOV5QrjzibGQTU5QqCaqVf+maMpHFfDic2JR0KNhIsMoibmbSfGN9fXytoe5Pc0UnZwYFgnZBbrj5dxI64vsFiApHVDqLDsmolWV5tZYNHOk4Lfvh/RZZAmMlkVyiNEOeCeDGO1AjHY0MGY5WGdUm1pFrqNaRcdFtdqFlAsVJRCQZVRrKk+r80V6Uz9i/2O/FTwyn0VyBsHhMUoz/cMMEqxPMucl+58OGWommTLNxN/xw0iNOFMjzbhMfF2WOB7XtTHrFEicr9XfH0WwBiwyYoA+QNrfdt+k5GhNAmWVRQJVgCQiN1Uk/uh6KO3PTKhlgxSAtj3NNJ0AwyJlD6zoBXMj0TPLYnWLMomAMbPaYB3f3OqLnxygjF4tAbLDmftUWaQ2s2ajnSB5gMh1VCsbmaX9kp1RPS/S+CUhOhoglV4GyyYQ6JkpHj2l50Zq9igDoOxK5Zijb24FKt22VsK5keH0DxfFKphjjwwl01yH3r7OMtRMMjVSRWIfS5RJdapBTEXxfr/Tpo5trDpVpGkOY+M8SdPxIoCcNDHr6DlV4IEivEw6ASCWp1uALMGwegllbggn0owSVTapCGCg4GXZtqcZqBOpkEX2utrE2h2D6o6Bet3SzNr1pn4MsFSbSFw4nB/JkOWiwiKz0cwE8GSGRY5oRjk6qv2RhkkiyzSDNECp09ARChUnEFCVuZGxqdVnkaHJFe47PQ1Z33nhfYvA9+gNEMxvBs0w46Cd6QLKoWaSQNV0E482faEByqe2UyPi1DXqjm2MOumNBBhWIlzLs2MWWQFIJasf/3h8jTqpSyLgz5OkkClaFumbWX2AdFNAEp9yeggco4zrTknbnmaeTszOiSy6YDZPqwnWgWdqVb2eM7Na/6PPImM2GUavhpGtlkHmgulI1g5HNpohG82Qz8oci/Q/NmCHjWigZJ1RDZBZ7oCycABZssfxQrpMOz1Vssg4X2vAIh2bNPeqz5SPGCDd9A9WBu5wzpB7JlhugDJeV3I6ZOhBMu4gdl+qg9UdS3U4K/6ouKnOTU0nd60EYNVm0UlIAJAp8fbHK4s0So3v0oGbrQZwJlfVAJAOEBP/fLC0QAmUQT8pHdyfEauN4WxPM0EnpgovotVO+zBMsmemfnQLKKXKdSN9oDRs0vdHWjAsf5dg4ZtYcy/lnP/huUA+KwtYpP12vsiRUaAzogN2hPVLZiYwx071KOdGalOrSmbY6RbaZ+mzSAuQ8bJYcRfkCfOq/+HWvGoB0ppYAR24g/JeNcPw5MpQm1ubxiR+h2nqTP6x2Ozjl00CSGJ/kxlhY9OpLKSqPkMVAaVXtlLeA0Iy24yL8DQpXSCP09vP45pSizHYdfTAeOXFWy4+q/f6bDEGSAuGKeHMgCJZUyvASHd+AkDM1B01yLY9zRydGCmwnolo7Y170z7GylU/et0geQB5/kgLjBMJ2LFM0gGkMbNaFpnNKgEyZpJJFmnmRlLWQU+VEa2FIowVEmNFNWAnzrCTYpEWIIN7piiZs5V7oAjEYKlNqhYgOdd5XJnNLrQBWCQw5EwyNaqMR6xWUiacfvXV1ZUq32QG2th0qq2/gTGmcriSlEmAtNvudx3LXEexplbLIoGSRfoAaeeVESgwq5ZACrMuXwikZOvw6ox9n0DbnmaSTiV77LoEAtTVmXXsyh8uklX5AFm2aeUBJDdZvLkzM0ZTPBIAmc0q/Y9u32iuI1lndZwvUoyOOHBkI6PgI7M0g8xKFqlNrYME7IS+yBSLdH8fUXLBccZZAJgWIOPI1tgfmXMO3x+pgbL67KZahp5JNo1KgWqHS41m+9XRb39cL7Dx6zRIhpxKiroGockAQt48JvRNrX5Ht2BZZs8xvxH6F+0Z/lp5LoLP1MsZQZEJaycCEdPnMX3t1EKybXvasDpZMytkV0e0qgJqfG0w7cOaWmXPZNmxTNIzs7p6zUNmggHSPnPDrIwibqqHxyBFbqNYc8MktYlVs8eRWhZJItcs0gBlT8EztcIBojWzjhcKa7syCNrpxyIHme/LzCAAqPojO4L390dGzLT/FSdHhhok/VGn/+0Li7ZT5eNzU6PSieiUutbGpFMgg2TU8beNqdVnkQFA2heOATxS0plerck1Nls2CjcBO4xX/ijL8GIWGfggSZ9mgTF+WShJbj08e4gzglQM4NrsyhiBwMpsPhY17W3xb9cE/jS//MbcnjakToyUyc2qc7Q6Fln0QL2u55PsBgzSblv2GAfqMMHAJDOMUmkzvCoXJ3ZLX/km1lmhmdUF6XgfG9HKOqNgs+aAj8yC8lgkRAdFUbLIQlUz7PjTPsY9gOxJL5pVeVM/vGQCdctiMabZZMoX6fsjc8FLcyszuWpNwM6GMbYOOUj6o8e4U9r9qc6W6pT2vLrOWTcCjrf9626sOiUbcyoXa3w8eZo1qUbHlQqZoZKA9VM2JBWw/sc4mtUdj0ytPot08yANi/QB0r4oUssA6aTR+kVg7UWcWRapv+0UEDJ3z7LKtj1tWJ3sYsq+uZXstI+iB0gJKrpB0gBqSF7OBAN6epsLDlIEIQRIkmu+5dJXPJgHKUyQjmWUFhgrLHLWnFoWWRBcjlY77WNMKuePHIvYo++PJEWQUgUs0j0bN0eyBErbvfoF7Pj+yHh+pE0sEGSPbHjeUyFDDZJAPVD2ewj9zENxXamyqdHwpqZTRccEUE54aSsrBih9NrmuknoxxyyyYmZFCZB2eSEgBEoXss7NPm1zBaDvI2OaTUrSjNNdB+n7n9J1mNrTdOpkWSRkF5CFBkwl3XxIm8wcxveoukXJJg2jtKIXRmaQZpuEHnAJCCipAgZWLqDsm1iNeTUXyGZlBhw7AZusY5HwWGRPkpdyLpz24ZtbKwE7RLUssmnKh00hxzkLcrFmnKGTcQjznXPNIHPBDUCW/knBgZyXOV0rA5kplqEGyXjkGI9UUyPP1MPxO55fd79rx9t1HXZj06mvNEysjk2tlfI+Y5wEoYhRWn9kXb/35z/GACkTQQvKgJ+UOqqVcwLADVASoBg4L9kkmXptMIfTs9/fkdjeVNrTdOvEAMBGs0rtg7TflkVqgDTbSmr2qFTfpBdccJAknZgcZszkxU8ys2hyaWotEwfYeZGhmXUEYpZhkaOzk75I8liknRsZmlmr0z4qeVoLVWGRTQDpg74N3PFztsbzI60v0kaxZmbbTv1oeo5TLUMNkvEINAbMphFrqrPVmXDqzDxN195UdOorDSbYSrBOHM3KRdXs6tfFOJpMr7EE8xMNU/RNrZZFWiCzANmTvrnV1GUq49yu5mAvwtAzr0bGGYgRJDEwcx2dtICZuZTei8bqheFuT9OhEwAdxao0e0TRdWZX5fsiexoglVkOC4BJPVdjauUcTBiAVBzK+CL90ZBd1UMvpsxNNKuObLVBO76ZNZ8zimy0Az5rDngU0epYZDZSyyLHCmUSmlenfVQSmUcs0j0Hs22B0U9SzjhzbNIHyIBFer7InOvf/tQPwav+yJZJTrMM2tnijjdoPU11+NtNL5GNSSe9o9mEOtDqHUDJIid5modWojlXKxCaWsuEAagApKQSGH1zq5SaFSpoLFeMkIM7oAQYwEnPmySAEYPwrmeTOg9ze5pOnfQOBUjPF6mkxyK7mjlaBqlkYGKtE2bYIVcMZKZ/MM5AIvyrGGduAWVnap2lwTH3zKz5nFklm5w924DjLHDjj3QsMhttZJHjhUJhgHNtT+JpE9XqB+xIf0msiEXGTDIO3LEmVj9oZ8QAZGrqRy40UFozq/VJ+v75prYwFTLUIOl3nPg7Pp46J5bY/MOi/XEdm7JOkypN2XYMmwx0yPo368o6koRgBQ/f5JpikdbE6gOkb27154wrk0yAE4NiDIDSeVsto2QMUgEcGlClIkgGSGOGatvT9OkEUg4YoQrni4QqtGXD+SHNPF2XRScNklwwMM7BBYGcqZXAoZkk81ik9UVywby1IXkFIF0066xoyseoAcvR2Roc89FaX2RP+cE60jOtlr5IP5G5st8JYEwJM0wQKP2RPoO0YNkxDDITzPkiM64DdSw42j4wnezRl6EGSSDsmPH+uJPFnXEi9afqaOqwG7NOrt5+eVQT60paf6T/AiqLeynoJssvWVlomUJWSXZ/yCKV0mm8YoD0GaUVzSK9uyR9C7GC4AKATnguicCIuWwoglgwgXoY29N06OQDpDOvmkAdPU+y0ABp/eXStE8lg0hWP1iHcQ5AggsGUsyxSQEBEgpMRqzLAKpd5cOaWi1A5rNHkc0ZdSwynz2qzayjs8FG5+jVPkbnlNl1GnyRdl5kv+QBlkEOwiLLv5uVptYaf2QnEyWLNPMifVOrSJhaNxRQDj1I+pIaeaLmd2wySpX360w93Hh/Cmw2Rp0q1xtgorEtVymZmitpfjMukoE8en1JYCL+yFhK0LTRpiGLlB4gxmBpz/OFE0GZVFtuBRATsCGYQi64C81nzGTz8dik+9swfO1pOnTSb3/NHJmSJrOOxyKLrhm4aXAkA5B6ubYYGL26BQMTHEwSuCCgIyC7ej4v4xSUi5mkTV7uGOSscrpHPme0jGYdmeUYJPJOXxZpfZE+i6xLHqAKNSEW6aeO48YfySIGWfFHGvPqIKbWDQGULUii2W9hpc401K8+/3d8fFPVKSnrOs1jGsQBov1t2aM54mfUUZ6ZVakQLKVhoQ4ovRcK50xHt3pgac2tKMxUGHD0YECSlbk1c3OHh7U9TaVOPkAyA5BQhWaVSuppIGSy5pjpHhYs67JAMcHdhys93YMMm+QA0NHzIiH8c0pw5MYnmY3mZUadOaPlfMg5ozr13OhsPSdydLZmlCOzoLLRcqWPfBRdBXQloavKxAFjso5FykoKuon4Iv35kRYcY1Or9UemTK25i3ZNm1onYkmYTBl6kKwbxdaNWAd5WKmRb7zd79obs06uDONgjIOYWq/RX93LKJgfaf2SkzBfEkDgj/SnfPgs0i4xpMwIXRrg9N8fOrKV6UV3GQVgCW8SgJAEzgiMaczk5gUhGCB5OR1kGNvTlOrkAaRljcz6Is0x5wKQsmST9vSaYB0uOJTgYJKDCQUmOAQAxQlMqCDROXN+S8069fxIbWIVncwBpDW36ukefjSrZpKUjZTBOjZHq5ddx82FlMokEAhBsS4F3cR8kSyIamU25Vxkam2KahW8NLUK1t8SMdUy1CDZNEKtexDJkWjDOf3qrRvtbuw6uekXdb/t7oRfslGitHR6n2dyVRIQAgOZWnk1ulVvlwyywi49FhmyyRIg4/mSdpszBijSE6M5A6CgVPwK5+AM6Ck9mi6YZgIdEZqdrAxLe5oKnco0iMoxRz81IlMWKKvJ9FMDNya4A0f0YKZ8aDaJDkCSgUkCSQbk1XNFh5vpH+XKHtbE6gfq2AhWNmuO3h6dDdgk5sbMSvkoukGgDgIWaUGzK5WJaA0DdoJE5l52nSZfJGfMsUjHID3T6kjG0fE+cQKB3ORvdf5Lk4quX3uaahlqkGwaocbmn34j4DpJMaimDr6p6LQ+4oJ2KvMkVbg9aLYdUmDE+zMRqtk2Z/qRqyk2qcgE8yhbPqzfXzIrJw6lCLkoza2Axm2hBBiAnmGWzDBKIdL5K4ehPU22TroSpYFQlQBpf/tgqeL26CUMYKI6EGOCO4BkioMjA+MKEgWEYBokg/LMgSMz39lox5haNUDmc0Z1oI6Z7qHBUYOly8+a6/mQyDqQ4OgpFeRotdl16lik/9tPZK5U2P4rf68XoBP/Fiz2RwptcjW+dp9JWsuJDtypX/GjZZLTLIOMXFOdusnMWFeXf04ToGzsOk2JNGTpiYWkdNNAgjUllZrQ4nA2Aw6g/7aQMZbAGANkik0CZVCDNt1KDZCRX3LcmlUzYc7Rny7TI/QOH772NNk66R8GCJVyPsjKx0o8OIvE90EyIcCkAu+Ur1aFAgAgzOuWRBjo487lHKKjWaQ2teYOIDM/7ZxlkiOjYKNztJk1GykXVM5GDTDCsEm90seYSRjgs0g/BV1d8gB9u5rvuJ9AwA/Y8YN17EfwMJl5LrgDTssgc8/F4D+76QZIoAXJigxK7+MRbt0D9I/VjYT7dfyNTaf1AspEFGt9WS/bjp+Fpzy52eSaAM3Uu8D6I/V2zCarANkzL1Kp4tG3yc/KbZ5WBSV0OjoZrZGlc75ydM2fxQAwKHDGkbHhak+TpVMMkJWcwf4SbqZMvzRzTlfBwTmH4twkLufGD2mAkSsHjtaPaVmoBUfGOXjHmlpHPHOrSRhgAnR8oETeARn2aIN1CvKXwiJv2kfJIsvsOiGLlN6Uj0FS0NUF7IiMIxclMI54ABmaWjUg6rUl4b7tslhN7WnKBuSRtCAZSaqjxsf9Dk/eNlB9GaRMRjGY1JmUNmad6lbZmAoJlssy224aSKwWqeTfE9RXs99PYO6zSD11wwfLMiMPUF1fUpm5j4rrlHSSE0YhMIYES2HcmVw5Y+gpgrDrEWJ42tP66lRWFDFFY1J1v/tZLDgHhNDtjQtACO2H7Bmg7GQgpRybVN0CAhlIeCuDeP5Ibhgk72hTq8gz8DwPAdIsomwDdRxQuqQBI+U3z8xyVxocZQ2LLM2t0vkh7UcVqjZgx9/209ClAnbilT6sqdUG6fjb/tzIjIeBanXtabpY5VCDpB2NxCOU1OjF399vNFxXb1w2riv1UtlYdXJ1c47Eu788j/H+q4DECc5d3Q25W/tIck6mf0mQi2z1RZLPJm3ka2li9QHSvnSAEijtCNm+OHKreyGRU/h3lHPOzCr20D5KDqATMc9NvT1Nlk6BxIshTzSIDAC40CZTG6QjOSjXr1XZ7WnQNNl4eI5wTqVnphV5BiZE5I80ADk6p4xitX7IWXNK86r33VNl4gDLIsciX2QTi7TTPpoSBYTLYVn/o2aRIuPO5BqzSBewI2w0K0/OjbS9YJD2NB0y1CBpJdURBxkJN5l84vqazAaph76x6xSeqDOPrLcMmr/Vj3ANmMO6TQ+xicctgwTKuZAODL08rl2pgpE5oF9cgB4lAyVISk5QxJ3ZFahm7NGiE5n59mELlMPQntZXp1qwnOj8Xcsg3UeayFTDIL1gHQAgKaE8U6svzJhmLTgywTVA5hlEJwsA0kax2lU+rO/RmVlNsE6Zl1UDZFfquZB1LDK1ZqQN2InXjCz1LgHS90WKTKdY5GYOZOiLFMHcSM0ivakfDM4POYipdTqBcqhBsomyN41e7UNKdchUZ647H4myTQ9/Y9MpvMAUmF4TuVstq/SDd5ysC1NISLzSR8kmQwYplTV5lWyyi5BNjmTcgCyH5Bp0RzNurmPrt3dXB/owFgLlsLSn9dHJB96wUg6QmdbBuC4Tt1XOzUcA6BlTKwdxrrdtsE5etjeJAhyZLuN8kX5UrAiCdkSeOX+kyLNwbciRcD6km+6R5c7MCtFxIFh4bHIQFhmvGQnAmVrrxAKk9j+abEFe8oA6FjmScYxmohKwk4l0wI67XuK5N1oJJlGGGiSZ9019voF0B06ZiQbpsLHUjZI3Zp0qwrh7ERFj+mU/8PzIPknO3W+VSFPn+SHjpblIJzrgDMHq533VoRIcAZNGzgNI+/IJTa762sIAueA6mbn9lplhlZ6PU1/Lv6MaKImqjNKXTbE9DaqTv9/eQ5e5xQIgGTN9nAyA87KtMc3yqDA/hWaPhJ7zSxJXQJaDSannQ3qvVOIKSniJzz0QtUE7wpv2YSNbWd4JAJKPznGZddjobAOQI4GZteuZV21iC8sYfRZZu6iyH6zTJ5I1XCsSbl7koCyyzLBTBuwIxpDxMlfrRNrTVMtQg2TdaLPfKLTJT5Lq4IOMvDdFnWol9XLyRvT9hKTOfVl73A/e8daVdHMlG8yvnOm/gQ9o1LGm1uC39+kWMtivRUW+Se6AdXZHaFap4E0lsdG0+jeRgKoxvVbuReL3xtqeBtEJ8LIleccUhfPu/LVGiYXs3A3g7LYxrRI3wJrlgJJgWV4GjeUd8zQKwJladQAPEr5I+23NrJpJ5hpwbZCOzclqmCR3DHIEZNaJpHzUmVm7npm1MMkDekoFLNLP0eoDpJ9hx5paASQDdQDtL+dZmMi8LqI18EU6c6vAaMYheGhmtQkzJtKeplqmNPzw0UcfxdKlSzF//nzMnz8fS5cuxWOPPVZbvtfr4d3vfjee97znYc6cOdh2223x+te/Hn/+85+DckcccYSOoPI+r371q9dZz34PIzVqtfvjT6pcagQ9DDpZ5jghU2ufxADWZBWE5ruk017KsFrmObiplSWopfVL2ukfgGdqjUysNnIwfil1vYTSa7sSa7uF+Ug8MVbgybECY4XE0z39ebJb6O/xAk+OSzzVlRgvCGsLZT76Bdl43+zfhI23PfXTyQ4mCDbAKtynzLeNvKa4Xfpt1W4z7vkfuQnUEaWZNetoYMtysLzjzKX+kla8k0HM6pQf71hmPta8ym26OR8gR3VmHQ2Oxg9pvolnjj0WChW/45iXXcdOU0paOxqmePjCGQujWQ2LFIJDRKDos8hZucCIAcjRrJwfmfEww05d25iAkWfSZUqZ5Gtf+1r88Y9/xLe//W0AwNve9jYsXboU3/jGN5Lln376adx77704//zzsddee+HRRx/FmWeeiRNPPBE//vGPg7JvfetbceGFF7rfs2bNWm99m8w5qTKp3/G5sQkJid9N19xYddIH06PzZLl18BPWMkpjciUptQ01Ct5hpDTDNHPliBQYeHLEyPv0TvteiX2RIZsss/AU0YsoswE8iiC4glQcUgkUirS/kkRpfs2FlzuWMHckMwkPFBQxSNIvndy+57HptKd+OllQtAzItib7TBXMtBuypnULgBwgDjBywKmPkdtmQjj2iLyjB2NZHry4/Rc5EzrPK6sJ2AFQ+iPzDsA5WGZMrLlmkizrOIAsF1E2fsgomtU3s9r0czp5ebnSh/VFxqZWN+3D80WmwNJf3aMSzWr8kRbsYhY5qyMci/SnfWSemdX3RU6kPU2HTBlI/uIXv8C3v/1t/OAHP8ABBxwAAPi3f/s3HHTQQXjggQew6667Vs6ZP38+br311mDfJz/5Sey///5YuXIlnv3sZ7v9s2fPxsKFC9dbz0E6ct2Id5AHVzcKajpnU9GJAVUWGTPLCQBkamJ3AJSeP7I2XZ13Lbe6Ay+TDjCYeV/MMzP1AUprSfNZpIxG7YW37YsN5BHGP9MtFDqZQifj6GZCn9MRkBnMPEwKAoVm5wIEDqn0GpQdwUCCBebXTaU9pXTywVEBQTpBoIypZtBLnbmFgA1QBkn4PeAkKn8TY2E0a97RlgsuDbPU35QZvZQO6GGiavVwbdUwU5Z1NAvNciA32z6T7IwCndFwuocxt1ozq53uIalMP9eTVGGRfsCO3x6tqbUuUCdmk4wDwgCjNbPGLHJWR6CTCczuCHQEdyzSAuVoJspAHc6CNHTr0p6mUqYMJJcvX4758+c7gASAAw88EPPnz8ddd92VBMmUPP7442CMYfPNNw/2//u//zuuvvpqLFiwAMcddxze9773Ye7cuck6xsfHMT4+7n6vWbMmWc52vHhka2XQTp/q3H7HHnSEvcnolJoraUbrPmjRRCJn/OtJqa/PhQZHd00JRkK/8Cx7hDc1xFeR6Reo7qjk9sUiBtAxZpHxCykGSqAEShfEE5nFZncUeh2BntKBPT3Jy3UCpcCcjoAkpZMTqCqrtLJJtCcABZU+WztFx5bzg3VcXaR3cCKYFgLBOMCz8qVMhk3yDEwpfYwUGM/ABDk26YJ1or8bSuhtZdY5hfFZZmE2c+aZb1nW0ezRN9v6AGky6ugpH54/kmceAJb5WQsDiJZF9pQKWGQ8eIt96k1ix7b/v73vD7akuM77untm3ttFsAhWyy4WWmSHABLY4Uf4pZRAP7ygBGNLsgBDCHaRteQUQQQUG5KyAVdZgJJI5UhWLKuQwBIylCJhS0EmQTYQJQsCA5ZASGuiICFFLEgK7ELY9+6d6c4f3afndE/Pvfft7n283dun6tXM9PSde+50v/76O33OaQJIVUh/XiXWIi1QyoBFzquWRZLTTinbSd1S+9NyyNRActu2bVi3bl2nfN26ddi2bdtEz1hYWMBVV12FCy64AAcccIAvv/DCC/H6178e69evx+OPP46rr74a3/jGNzoslOT666/Hddddt+Tf0PePOsoMkBpI4mNKJjUn7E06hZUcKE4gQiqYUWuHcUKBZJ2EyRURe2RmWP4bBJvVEibGm8nGYZ9x0oC4LDZvpYSD5GKt3WBjWSV37Bk2lkG2qcfsoPiqqkBjBGopUGvLKlcVAnM9Tj3A3tefGkPOUi0wWibZTcDdgKwCtj0bbWCEgEIElJ49WlO8pUotQMJoGAK2FDjSuW4gpITfkFk3ECg7O9cQSAopW/ZIIMk8WwOALOd98nJEZtbavY9ao8sim3C9PO6H1BfJaafTFmySxXOycm9W7qyz2gEj92idIzNrgkXy7Dq8vSftT8shSwbJa6+9dizgPPTQQwCQdHwwxiTLYxkOhzj//POhtcbHP/7x4N7mzZv9+THHHIMjjjgCJ554Ih555BEcf/zxnWddffXVuOKKK/z1jh07cNhhh3V1w+g1k3igSN1PSZ8Zid/r++zerhMP+0heA+060K7EL7oQEM8mST9ilXEu1751SbRhIBwgpSuPHQtGMUqarQNIsshRbBKAM7lKf5xz56sqFcS0pVjl6tKauCxwCjRGYKiFc7/fO/sTYLcOM2znFe3AMmaPNM5T8xgYa7BwYGnctylYwGwMoIgxCgkjlU+KL1QBGGOZpdFAUXR+S/C7tIKRjd1RpJGA7k7ghEtrRw5A3OkHDiyDnKwEjLJo94g0bRxko+17sAkDdJdFah0kMo9N/3w9MtDTbwwelvlYSOeow2MiU38EjqUUnkVKkWaRwXdh1/vTnpYlg+Sll1461pP08MMPxze/+U08++yznXs//vGPccghh4z8/HA4xLnnnounnnoKf/3Xfx2wyJQcf/zxKMsSTz75ZBIk5+bmMDc31ylPDQgTDfw9dfuePclsiBp9n9OJewty+sXXfXYzuL8TK+nLekyuUd5OQ+fOeYd+M4WBUOSWjSkXIF8M5c2zaRnlyAOga+ZqWvDl8ZMElnS+qrIejcQq5wrpWeWCy9O5upRYVSjUWmCgBCplMKdasOSy0voTnXNg1ASQOmKPMJ11SHqIEIAxLTgKmgmRJu4d20mVM7saa2a1z9AtaEoLkEIZB4bar096kNcNhJYtWAKdxPt+0laULUgqZYGRGCUDyMBRx5lZm8b4LdrIWUcbMPO78SySTK2TTtSsji71XDQRjAFSOabYNbMWWF0pnzTAsscwkYBPZs6+Ylf603LIkkFy7dq1WLt27dh6p556KrZv344HH3wQJ510EgDg61//OrZv347TTjut93MEkE8++STuueceHHzwwWO/61vf+haGwyE2bNgw+Q9B/0wF6DcvUd14bEzNMPtklMlpn9SJx5yNCQcRSo3Z+aP/XodNujUipEyu8VZIUkNK6QYG45137Dql8c+lf2oOjnzXApLUAMRZYCpxtJACDexg1BgDJUTAKsNzhZ0DhVWVwv7zhfdoXF0qt2+gxGJpryslUakWLO1apTXD8nW7ldCfAAuO5ITCGWOjW1Dkzjop8fk/nWVAOSYJZ3KFbIESUkCRNUO1YEkMkpthjVSW9ZHQJsxAC5DezGrXJUPFKDk6ebYqu2ZZlDYOUqoOQEIWHTPrsDGBp3PMIvm9pQAkCQElnQPwAEmxkRwgubMOgWWpRJtdR4YsspStuZX6yq72p2nL1NYkjz76aJx11lnYvHkzPvGJTwCwISBnn3124LRz1FFH4frrr8c73/lO1HWNX/3VX8UjjzyC//Jf/guapvHrlwcddBCqqsJ3v/td3HrrrfjH//gfY+3atXjiiSdw5ZVX4rjjjsOb3vSmJeuZou6jZtO8QUfNgoHuIJOaAaWIyL6kkxfuvMNj0Jzrvf+jhAI880mf8LWeCdlksI9gYl2STKuNMX4vx3bjY+HjxMDqjkpLmxqYCCC5R6ExBmjQel9KgRqALCQGjfab1xJI2jXLBoNaYeDWKldVCgu1ZZGLtT1/edhgdeli1QqFwpm3SmlBs5DAKpcGLwbMafanWCgxN2eMbfIEe03eq9oA7UbY4XPa3yBcYggHqsJOZlyJLXBAKYzVURGb1BGDJCce9m4IKE0NiAK2n9VDO1HTDqK5uZVsl1L5zD2Bd2tZeXNqAJDMq7U2fLNvMrV2WeSw0e6vdRyLTa0pEW59QcL2UWKOAPzuHlJ21yFjZ51VlU0UMF9IFEqMZJFS7Hp/WrHm1qXIrbfeissuuwybNm0CAJxzzjn42Mc+FtTZunUrtm/fDgD44Q9/iC996UsAgH/wD/5BUO+ee+7BGWecgaqq8Fd/9Vf4wz/8Q7z00ks47LDD8E/+yT/BNddcAzUiC0tKYnqfovvxIJEaLMaxKf6c+Jnx5/ZFncIA7Qnmg1JNDpB07sAwAHK/S0jbLzprkbr2Jl8eL0mZd/i6pBQuFsz9kQOPL2dsMmaWJHxD2zaJdAueXnUanBrt49GGjcaglsF65SIlJKiUN3MtVArzhcb80A5Oq0vtPAtbwKS0YJUS2Fkbn/GEyrj29C52pz/F47KB3RCYQNEQALD0fgSKtAZpTPtdo5yf7PebkEU6YDTCMnRIey2kcbl47eeUkDCqCM2uSgf9vgOUWnqrhTenpvov3XPg6I9FASOLFiClsueysOdFBSMkGubByv+6a5HGhQqNZo99nq1Csp046H26PihcGEcMkAGLVDYWck5Zb1bKrkMerZxF0pvflfFpuWSqIHnQQQfhs5/97Mg63KPq8MMPT3pYcTnssMNw33337RH9RjIfhP8UcZ0+oJhkIEnNimLw2Vd0sgUsSBtNe51gi0EYyCRgSZIASqOlPyJKLCCMgWlq+DjNpgZk4U2uSgCNgD9apgG/LmnXJoUHSBJKMxfHvMROEhwgPbNkfV8zVimkgG60PSqJwVD49aCdgwarKoWXBw1WVxYsq8LO5ldXCqtKhZeHjZ3Ne+9CN3B5r0MRpAYrpAhMlJVqf+OoNdhksxjnvMSADuDp9lqm6GMeYcHSuPfW7sDSfjYlXkfZsv5CCmgHjBYg4aiSBUphhDO52smO7ZdFC4xsPTJ5XVa2b3mrBXm2hssKHjyJQTqzrZHK/j84syqBItg6JGThzazEHgng/K4fjEWmku3zfsiPSghoGA+Mfu4pQ6sGxUTGAEkWDIqJXFVZoOTerBQfGXu0LmXy1Tc+LYfMdO5WIDQt0TWiMrCycfVjU9Uo5sXr9d3bF3Ti46oRonvNQXQSJ56+8JB4b0naHcTFrXUdeETILLUFTRlsdExmVWvioo1h6Z+cnHekaBMCUCgHkGaUJgJI7fbws/fiNwkXoWDNXY3UkFKgqSWaQmJh2K5bEmDSzP4l5kRROXMXmb7misZ7G875XRnCtSP/W51nbzB/mQAsaWxuYxkRBP1zkDQAho32YNiYlmXG25PxUA8yfSs2oCvdsnutLFga2ZpbCRShHcOUtky6H1awWEkjle3LRtvwDqMgNAKghBAQRnmwtJOzntAPWGA1DpBBDFIW1sTK2CSUPedm1na90YJlyyC1n3gMGwumqRhdoJ+F0/uz0k7QAFhHHdHvyRqbWQkovdk1ioskFrm749NyyMyDZB8LSzXSuHup65hl9T1zX9fJpwDT7nxMTleKlRwVMxk7+Agyr/LfR+wyZpPOzGo4s3TrlEpKNHAsEnYAbmA8GJZSopQGQ2HsFj/aAsxQ95tcU2BJDNIe0ZpdE16vBAaUEkwpidoxSl1r7JT2fNVARTP92nsccgAtpR28SiVsNhSfEYUDZXtNuzO0caO9TRf+RgMPgpwV2t8PN7jD58MlYKT30wJj+vmkB5m/OUCWyobAlJ4+ishhB4xJCnvLrcUpWcAoFz9rTHdN0iXLt/fdRIuDZUKEUi04OiAm9ggVmltRWA9XWp/1YGdMwCK1S0MXAqhhu9PY7E++K7EXSd7TUopeByhal4x39vCWCmbmJzNrKa2ZlSwVlZLezMpZJMmeGJ+mKTMNkqP+z1OgMO5ebDrgdVONOsp0uS/pZCv0rEsmnHfGerj26UJxkRwoZZsFxdQD+w5K2TLIpvZMFkJYpwtZQLmBQ7lZvJICygCFBIaO2REwBmuVbiAZ1C2j7FufBBDstqDZeiWJjgYxMnvp2g7m9bAJMqDUgyZwrHjJD2p14KIfrCWxHeI9ODoTmRRwpjIEpmXJflNfroI02HVBkBgllXEGSp+JhTNIUkVKMhvbgd0CpI0ltY6nAhVk4LBjv8MCZONiuBtHLikshCeb8EDZ1OF9N9kisOyIcDvQcIB03rJJgJSFXYfUzEknOmpjPIMcOmsEmVsJTH1bRLMMvk0bbSgTA6WUYZ+mI022KGkAWSrmEn+l5AAJn4bOvxbs/vg0bZlpkEzNTDoMyEnKDDDJ8yatH5sz90WdJl2X9OK9VifwdKXviBMIxLuCaBvsbYTsZ5O6hpKFZ5N8fdKai4hJtk4IQwGUSmDQkMlVQkkdmF+VFBgmfkYbthk69FAZ/+nckYLWimqpHbNsAXNYSCwqmfRErIphtI1RO8j5wVBJzyQJiJQM12A59nPQ9K+eg73pgp739k3cs/e770rxDDAi0k0L1EJ4dq+lgDYGpV8jlpDC9U7p4ibd2qR059b8CkiTCAuh9nLnRhPTDJ3BkksGfNcRDpAyYpTM/Erevak/g5BBaoN21xNas0w46/CsTsHkTQNKtaFHvC4HSW6NCE35oZm1VK2loiSHHdWfYYefL2V8Wg6ZaZAUGM28gK79O9WQ454xrjx+LrDv6SSYeTWOl4zXJY3QY512TAx+JDx/K9Mr5cQjhITRNdCIsWxSmRYoC2kBsdQ2iL9UEqXzKKyUxEDqJJtUznRlpOiEjWjGpPh6pf2t3RaK3fNr531YSx3s9SeV9IBJbDOOb1NShABZSCjZXsdA79dbGWOSKfYU/TagBcNRziR9Eq/z0lppDOalsaZjsD1A3CKk2+7Rml6tOd5AGoFGw3m6OlbJza6UjYeSoHvTa+2YpIAwrYd0H0h6FikEfOo7ep4q3ZEBpAe6FvyMO9L6LTFIvnVbLH3ZnbzzDrcKoAuQ3Mw6F02saK17TrXerPQXbLIsRcD69+T4NG2ZaZAkljSK/YjoPFU//mxqdrQUnVLftbfrZG+4dUnTssl2bbKPTao2BrJnrScQHtzN9OdmV+/E4xx1uKerENKeS8smtRBQwngWaUzIJktpGQsxSq2ED82oChvDGAw4wiUMSICKYaDYxlK6n9VZpzRsnRKt6bWw3rly6HZo8OAovBv/wAWEy0L69SYCRM4aCDw74CjJg7e71poyLfclVgivu8CimBNW+N1d4NamZb7aaGglLLC4dUk70lkmOdQaStptxyxAGgiFFiB7zK6+P7t1dSMLCGFN9sZuxgXvLR0LB0cZmlxBTJIDZPDn2CNjkZRxp/X8ZefO1Bpvy8bfZYdJJtowNrNycz33np4noIxMrYVrJzK1cha5J8enactMg2TMNlLlqQZLNSx9rq+B+1hen01+X9RJgJlc/aza5XENEgy4Pfz0mETnXCJPwjhm0gwHbouj0IlH6LplkAlPVyWkX49UxuI7rU0Sm9TGoNQhm6R8qzydHA3oPr2XFDAuVi81RzBu3cn0MEq+TklHXRvQ67TMMgwCpw1zOWguyvacdCNPxiSDjNaV+HnRM/DuiiSZo/9rB+9CCjSF8WDZOuoQgwRUYwBoSE0sWKNUsgVE5xjdGBsWYh1aLHAWLAk6jLTbTwKAtkzS5njVtq8aDYhEvLY3tUbgyMyucOuQPmbUtEyS1iK1Y5ha05ouN7Oa5Ppt/E5TAJm65iCZWs/m65CF2+mDzK5kZiVnHTuJTLwW7N74tBwy0yAJ9APluEYYZ26Mn5Wqm2J8+7ROfSZXnsc19QzydO1z6IkTC7hndpIL6MZmSOG/o5QeEDtsUkgoVTmnHMsajYFlloxNasYq5wsLmmSKarQKwNLnb3XmPOFMrzZMQXg3zhgQW3Y5etIgpPRm2HpoYystMMKbW/l6Zss22zATAsqXGcBSXXo2X7fiR5JRzkqj6sXg28cgafAe1AJVwTap1gaNkZ45ElAOnbOYFBpK2ITwUlg2bgHSAo4wto2NcI7Ybv7iza6qsDG1wliQo4QUVsmWRfJ2oombN+lHAEmOO0IGZlZtbD+1qfjaOFPvmOMYZGxmja/55KKOAJKbXfn755aEeO16dRTuQcnL5513K5lZlQyddfb0+LRcMtMgGb/wJPOJzlONwxuPP3vcd8fnfaC0r+hkK/SYXOmZ8bqkbMJ1R+a9OtKZJ5VcwOV2pQwpKSceOGYphLRmNCGhRGEBEsYxSsssSwXMG2KSAnNGQhuglMYmFHeDdh+b9AxPCv86YgmcebT2k4T4aF+tZTANOxduSybv5DPUAWjKSBcPhoLO3WtnAErX9vnuyNcnEwAZb9wbl6XAN8UgCRzbrcRo8mF3SJkr2ESLm1gbDSlo1xQLkDbo3ubm1bDersTiOJs0giVBJ2cv6cyuAGjfyWDLNRVO+Dw4cisKB0hnZtXGgrMBWqD0Za2ptbMtmGm9gvuEJhmp8viam9r7AHKOMuv0mFnJWYec37jsqfFpOWSmQbJvHQ3on8nw6/i8z0w5zlSQ+u59VSdvcgVCgOShICnhHq6pTD0JwIz1ELU7ShsOYp+lrKnV6ZVy4lFKwkjpzazck7BUEnMU3G2spyEBZmPc1laFCsCS/kxh/NZxQra5Mo2xYNRlk43/479ZJ3675Kn4KKk2O+eMMwTGFjz9PSE6dYHQWac1+XId2P1oDXYU2Er2HXGcHrFyYkD0XmOxnsSWh8kGUMLuv6kYQKbYpGWPXTYpgGDvSWhYRx4kwDBekwz6OANIxizp/8iYkEW2SRhCU2u7M0o/XBRSoPGmadMxs/axyJitc4CsChYL6dYh54vQzEoJA8hZp49FArs3Pi2XzDRIkkzaYHHjTfqcUc/g56NAaZ/RKViP1B6QBJlcWR2/Lil1x3mH9oscJcm4SS3D9UmKnSzg10p9GVoGUKjKhxQoAWd6tTN7GzztYvzcX6Nt6MGqSrlAcJuEPMilSXGRDiyVknY3EE3s0jKalHer0Q10AjBJ+DAtIsCUEWB2z7sACsCDKJUDXZADWkAMQDKqx5Mj2GPX3MsBupHaZ33hwDguh6sUClrapAVSSDSyTVggHSMzxqas0xA+8YF2bNJem5ZN+v4KwEh4hx0uHCgjgPTOO8LmiKVzv64YgSM57MSm1iC8ZhyFRHodudEmYJZph50wPIhnbSqUcOyR52zljjo2pWEhpjc+LYfMNEjylx8f4/upz8QSmxBEVB4/YxZ1ooGm1+RKg1Dk8ZrMvBOHiSRAswPmbtcGMxz4cgNAKubtCrTrkw2toUqUsrADKuzAWcCGiGgFaEPssQ2Q125QmyskmqpAo00HKHVhILX907rxQGlMBDCx006HVWqYXu/fYXAlVAuG9G75sQ9Ew6N0dWOwS7FMhPc4Uxxh5iXQJIciow0aKYKcpH0sctGZtingXgppEwo4INLaQAt4b1GgBSbFBnVNTD9ik74fAy1QpsCRvQQOkOThSuEkBq0ZlfoNkURuauXSxAX0+0UqZEeiKsL4yb714DgEKM7S5FPO8ZAPt8MM/SnPJKc/Pk1bZhokgXCgj8vjhoobdCnPTz1jFCjt6zolvVwjk6vd9y9cl5woGw+BhWpBNGDEKaD0+wQO2gGQr0/WA6CUKKS0wOh+nHEzfOPWoDQb6Nrgb7dW6Aan1VV4TUzSuHVHWUhobaAK63jSAI5Zpn87AeSo9cpYYnYZn08KpKl7KUBNgemotVHuiUsmaVMYSPeeB+y3ECjS+aBuPFMaNNqzycDZRRqUENZ0qY1LTACfW5abXIN3jRYc+fZvBjYZRd9yQQyQ3MxKEypisZ7NIkwKD6TXI0kSy43e5OpqgBROxUlyr+HYaScFkOE6JLw361L3iuy8q+h6kvFpmjLzIMmlz26euo5NkKn6/Jmpxo3L+2zv+5pOwWChRQuW40yuBJbceScWzqYiZpUCSvJ49TvHlxUg6rAunUvr7Vqy+D0a4KwQk2zj28IMMqNThQW6Fvae1sZueykFhNs9wugGUio0ScAMGSaVTSLjgJOfLxVM27XQtEMRgaZPgqCNB0ujbXksAxAoau+5mdy/k8UPEkCSyZW2RA5YpGtwbQwUQpOrUx4wujW7MqD078mw+vSZCCDJzGqBse0LNMkCK6f1yHEiWQaitOexhJI2LrW9L329DkCylIUxQPJ1yELapAFkZqWdZKY9Pi2HZJBEd6YSU39E98bZxFMmhBTTmlWdaDbeYY8pZhm7fE6YVICbZoWU/jPGgawoLFACFhjNYCH4nfy30Dk5+BTFPCCFZ5Ek2gCrivSeptoYNFV4jwd7x+uTtNWSHSS19cJ0bJIDTQyAMTjqBKvsN8u2oBeUMZCUEQjy89RRKBUAKK2J0rlmjkSqkM7bVEAWlkm3jJqhkf/eFiDpyAHSbzA8ZptZbXhLx/dCz0x/HTvoEIN0ZQGg0jECSMOeqRGDY9u3xmGjlNbbmozqSlrzP4HgnEtuwd+PYu3HwbTg65G0S4yKt71qN1L24R4sqTyZWYHlHZ+mJTMPkn2sqG/WM0ljpWZP8fm4797ndRrhwAPN77Um12BdckQ+13jtkq4DMK8BIXWrowxHUv+7hISonb5Nu/NDUcxDp+xbAOYL5YO9J5VGG+yMCweIEgkQg62g6wGkVNZLEi3wCamg60EHLE2TAMvU+6vT+qXCSwDOJEevZ/o/paBpP0UGmLKoYLSCKpSNF3WgKCMWJKVlg0Iat0YZbgEVM/W+jYV9HWPNriQaXUzl65JBKAOtTUq0lo2UuXVEGbHI2NQ6iSgRrjbbNVh7TmyShMKRCse4uaTSDlKye0p0TwyStlabK8J1SO7NSiySft80x6flkJkGyVGznL6GiMtjFjWufurzqRnTvq6TZ5O0Czxjk0GigYTJldYlO0yKM6QeUySkCoC9DQthgEnrn/y31CK8FhKVqtD9N7aymrHGpYBlByhJKgCDBhwoSZp6AKEcg2EJ3lMsM7VeudQdV0axSM3MsClP2hgwTVFGz6g88wSk9Tp2gKgJIEW4W0oaHNtsO6OE55+dVHp556jwj4hFAuMZIhBz564oIaAFoF0oixTWjGyXbkP2ncq204lFZduj0bFQIgDI1lHHrkMqb2JFAJAk0x6fpi0zDZKjZjmxOXEco+qT1D/TqE4yUzr1sUlngg0SC8TSsy7ZZZHRnpNUpjWEbGDKygKlbHrXX/lviK8nBcpYRuXNfClR7h1eas3IXhXU0YBNkkD69TLtfgefSQAz2GWFXQfMUbegyQGTg6RE5bYXtd+pCseQiwpGC2hp7AbH2kALA6HdvpuybSU9gTl1HBByT9wUrErRCfLol5SHq+x+mptalypSCMgQ/7zJlawbQw3YrU0klGgZd59HK4EjbZNGbJJMrH5nD8cqpYBfh2z3IW1Tzy3n+DRtmWmQBCZjQimQSJkZx31HvNY1KQvbV3UiNunDQWIHHj7z5iZXqVvWyMFSufN48GcmWsNYogEghgMYpSCKysdHBr9JN5Bz3d/IrytVtXF/0X84AaWUApLtk8UHZh7ETbIzDr6vw+s+oAQATV67UiVW8trflTrG5ymJs/xwVs+PHExN08AoBVW0+up6AOn0J5ZLn9daWlDcBaYXe2l27gvhvVn97xCtdyh9JTnBkPj7qS+VcrTJlUt0f8LsxDZBAgdGB5aS4j6F61eSga80gN/ztPtfKIUN/ufbjrUbcKcBsgXE1rxKfyTLPT5NU2YeJGPpYxN9JoBRpkhE9/pmU+M6zz6tk3C7KWhtnVKMjhimjVvsM7n27TfZAcjo3ABdT1ka1Om5bsstDVigpG2QjAnNakZbZ56e3Yf3qxRktNbHNw1OJfJuXw+FRjTttTvXHkC6QBmsQdYDPxB3mHVksg7PJx2+EZh5++4JpaB141mZB1RFwGjTBMbP0drES8ZeZLSWFouSggGAiNY4bddRzEToEyEsFZvHvCszDjh7RAIwoo2J5OZVLQQ72srK1SsVIDXatHvOUzd4NuuDtIZJ5lUOkimALMg0y8CSv7PlGJ+WPn3aNckgGckocxvd5wBi2DnQBZeU2YEf++rOik72ImSTRrp1ysCBh+VyJZHKriX2MZ9ROV4dQPrfPrRmPwOE65OurgYgiqrznjxoAihUBSgZsEkp3FIiswnaXJbtAAWkXfaVFNgpBRYkZaJpIJynhpQCtWxAcYYNc4ZpnPMOAG++JKCUZQXTNP5+vIY5SSYjLt4pirP06Bn++Q64NQDFGOc4SaWu45mAuHDAbB1SnCMLgaUUjE22a83EJl3SRAjhBmORAE++yXL4QtpzBozChYzsqkhhu5kFervFl2WR9lgCrdcRvXoJwMWA6jjgk/0WAkcp7LvmADlftPlZac/OcPsruAxU7GdH3zOt8Wm5WOVMgyTNRuIZSmr2wsvHsau+58Z142elQGpf18kWtGwyYJERsxRKOa/UyOQKbvaT4SA/IrBeuPs+BtM59RilwrVL+i3uPPUPK9z9opz3jictQLrvE8oN1CyezR1lAJbDjrfhTtkmQ5eyQe2BomWYWorAOdWzt+HAnjuv1wbWzJmKqSShd2nPx+88shTpCyPha5Zt/KT9bS1QEpu29+O9MDvJ0AkMJb1nO6hzoLRgaNcdLSDa9qR2ke7cs5cYGOn9pPaRTAn1aXof6N1NdaQoAc8mIQUkhbIkWWRXuImV3ke7vhjGR7bMsXXU4awy+HnuuBzj03LITIMkSaoxJ2FWo8wG8fNGmQ1SjT5LOgnAs0ljlJ91UzgIMUsjdAuQ3OQ6KrkAGECmQkOkDMGS6jUNUDIzZtP4zwvdQFRketWAtvtQCnetynnMq8JnhfFspAGkkA4gGweYDQoloGQDJeH3R1SyDnZiUFJgJ2NQQjSQTZulRjXaAeccmrqErK0TTONiEPVwCAoPEVKhcYBJmXpiwFwqo0w67yS8WdP1ZOKapagT7ZZe7URBBKZWnl+0ciEK3NRqB333J9t4PwJPJS1blGhNjxOxyFEASWBIO9Lw9+WOUoTp5YSAdfT2LFZAwOaRFYL2zHTmVcCzScAASmLYaPv0CVlkO1lo1yLJiWeOkpmrFiDJFMuZujdV45Udn6YlMw2Soyj7qBkQNVKqUVMdou/zSNQd1fj7qk62csQmaa8+Cgfpc+Ahk6tkCdCl6ppYR5heOVja7DsMeB2b5OuUqObtAFaaFijjv3Iec6qyACYMZGMgYTAUBgJ2sCtVY81bdeNZTSm1X6e0A37NziV2DiR2FnZnknrYQMrG7mLRWG9dWVswqaVwAGkD9htm3iSgNLrpBUv7XlpnGrruk7EgyTxcZVGBYiOT5W4iIAubt1VKtuelkvbPBbLTe+EA6fc/pGwxqmWRHhxpjZLYPAgoQ3ZPLFIJxiJTAJkCSfJ0dawxNrlygCRw5Pco8TqlxzNAYHKFdizSg6M919o4fx0LV6k4UcV/u2ytG+06pOgFSDK3klXE/x9Fx+BVYDrj03LITIOkYEcz5gikO0HK7Diu0VOdoG+mNSs62UoJNqkKwLThICgKuwckmUhjUSNYJQ3+Ueo64XK8eobK2CrVaUGSxSPqBqJoIMrIocfYPJ6m1Nbz1a1TCgEo7QZdDUhnfi2lZZalFHhZNm5W37Ijm2y6boFgILFTSSwUDjBUg3rYeOBsCu3mGRK6VmjqCrIeQNcD6KKCrkvo4TBYg+S7inDApN/KjymJTadBMgHn1RqEfziAlEUJVVSQ7k8VCrKQUEp4cJSFtICpbFYe5bwt282Awz96T60XZssi/WREtc4nwjFHCTvox2uRZAq0VoO6BUjDQBKwuVupfwvRAqTRzvurGx5CbBHGsj5Kf0fA1uoQsklAYggdsEitDaC1fXdG+PhcGf1z0zo4B8dOfKSSHkQJIGlNVwmXgECsjPFp2jLTINln+us1CTpJzWrie7yTTDJTyjrBbWbbwybdecwmwUyu3IknyM7DdSSvz4Z5ujYaQkkPmNbsOoQoShitYaS0OjmQNLqBKEo7UBbD1vyqa0BXgKphSsc2VI2inIdSBSSAoRtYLHvRUEK5AVzg5aHNMFMqiZeHjd/lvSokXh4o7Bw0qBaGLSA4sBw44GhqDVnYjZWVkmgajabW0LVCPbRgabR12mkKC5rckUcyJhlswzUmW08yuUBPbKSQCrK0CQNkUXkGGQNkUSkPkEVpmXNRKRSlguoBRTKz8j0PKVtMnHO0VDaHqZKtQ49ynq5K0JFtGJwCyAQ4+vfgygxCoBQSfs9JSphBTjn0RrnJFaa9z9kkmV2hABtZZCuWLn+wFGhNsszcSsyPe7b6+EhijQ4gKb1c4dmkcAkECFxXxvg0bZlpkCRZCtWP6/c9i5/3MbKsU/d8JJskr9eATaqOyVVIN8D3pK4jgOQg6r00Gw2haA2zAVxGGEMgGbPKuXkLmvUQopr3rFIYA1M40DQaoqgwpyrQBriDxtjzxnhWSWtli0p7VklrQxwMVg1q7Bw0eHnQYCf7GwwbqEKiKDXqYQNdGzSNPZeFsKyy0X7NkgBT6wa6dhOCxBpl3+bOKe/UcRl2aP1RMZOrZZPSgaLw50WpIAvhgZGOq0qFVZX9W13ReeHP+Z6HPt8omRAdSyo64IgWFCcESBGHAiVEQLZA2b4439fJ5NqyRQc+xCqNNalyNmk3ULZriGg0oACtreOOFvAs0jNGBuKjWKQUtM7YvosYIGkNOF6H7P7u5R+fpiUZJJmMMgmk6qSu48+mGrmv0ceZGWZCp07cpGOTcQwlhYNIGTrwUDbL1Lok10dr6CYxwDUa0iUXF42GaBprwi1Ka5LVTZpVlkMbV6kbyLKBYazSDrKNZZVFBaUqKGFzaCphULhjKW1uzZ2q8QP6Qq0x50Bz3u3rt3Og8LJjlXw7o50DiUGpMBg2KEplgbLR/ryp7W9uao2mUdC1htbz0PUwAMwWHJe2BdeoBOc8V2u7Jln6nT6UcuuPzqRqAVFAqhYcKweOlXsPkwAkZ49tvlH4UAblmRFnkj0A2dRdcIziZd0Pb49Gt0AJtGzS1RdCeuCwMZHW1MrZpIzWJrUzu8IwoHRrlEq0YElCTDLFIqW0m4Z7Bya3VsnBspTtu+HJy4FXfnxaDpl5kJwEGPoY1CQNF5sd4mdmnRI6BTldw7jJmE2iqJzjjQVIIRUMX5eMwNI0OgBIkwDKxptfLWAGYKkboB7C1CVEMYQoS6tDPYRoGKPsYZVCNzCqRlXO2zU2YdcnlQAG7qikHeyt+73GYt2gVHYnhznVeLCcKyReHjQBsxzU2jPLYaVQDwgopWOVGrrW3hRrtEHTKHus5y0wRiwy3uAZCFl422wsLlD2m1tpxw/rsRqCo2eTzrxKJtf5sgXHFEBWDgDHASQBQQyQRQogtQNFB44BQHJnnQlCP2KghGrXJ6VLlK6RZpPOX9U6gbH/sgYtUEqXuq8xBhICmqGkNC2rBFwCBRYaI5w6AoxFRgBZMIBciePTNGXmQZILNV48OyKZFERSHYR3jkkZ28zqROuRqg2tMLIAZHsujO6wSRQlW590yQK0HrE+GZpdOWAK2qqqkRBKpsEyZYKtLaM09QCimoecWxWySjLBasYqpUQhDVRjULvjUBsUUmGullhUFixfHjb2moHlQq3x0oLyYDmotTfDDmqNnWWDgQPEetigKIlNWlMsAaYFSW2Jk2kTiGu3EXRfcvRkG3dMriP2jUyAIwfNioFjVcgAHPn1fCEx5xJv83yjfQySD/5JE6uuIXTt2rjugqNfj0yHfpjIs9X28xYohXEJKyijFPjao3A7j6AFTCMAadDoECiNsNtrCSlgYPfh1MaAdjwj0PRmVmKRLMSFJg7WaanLrosEg2x/0ys7Pi2HZJAcIX2NPcoMkGr4+JiSSc0Js6JTu3VWAe81qoo2HlEWQKG7bJLWJ4lN0kbNfb9R6xYsI2ceABBKQmgJPbRMSSgJVRYWLLW2YFhUEPXQgnQ5hHAAiXoI7ZllDaHtOqAFyyowwRbMBFu4NUsyx5ZKYK6xzGih6QfLnYMiAEvOLul62IRMkgDTMkodHLUmsGyB076z0T3CZ8ZxgGjP7bUqpI1HdGZWAswYHGntkUzJxJw7AFmqFgzZvoexk04RDPacOcLH/SkBb1YNzKu6CcBRTMAg6X+iO7A7oNTWA9kwNqkN/NqjhGWRkHbnDm521WiB0icMcF9WOLAkkVFSczojcCT2aENgRMAiA6emCRFpucen5ZAMkkz6QCHVmKnO0NeP+kwR/F7fZ2dZJ8jCXhsNYYo26blsz0VZeScdoSxIcgce8HAO3UAo2csqU6ZX7/mKFjCpTA5ryLJIgqUtYyZYAstiAKEqmGYIowZAUUE0Q5iiRlVUKIsChRZQQqPWwgNmKScDy1WVwqAuPJt8VW2PiwwoCTRjwGwB0gKhNsatWzpwZEA5avuvVBo5ziQp5tEeBWOS6dCO1X4dMmSPpZQdBx17rfzWTpWSgWmVmCN5crYs0gGkrq15ldij5qZWZmLtSyLgd/7o6dNwQElhIW6HG+GceAzsnFBzFuncXBvA5V9tgVI4limAllVS3zVt0nyytrYON7QG6dpHoAcg27XMvv/5lTY+7WmZaZBMNeAkjR3fG/fsSWZD1OhZJ/bdnRR1zARL4SHGmlM9m3QONp38q0CbbIB/jwNHAkitQzYplPQDomwYWCoJUxbQje4FSzFn2SSqeZjhwDLMonLrlWyNsnCDcjOEUSWqooIqCssqtR3ch9oyy0ECLBfrBgsOLBcbjYVaY1WpMJjXHiB3OnZJ5lg6p7/GmAgoLZPUjXaM0r0TB57+HUVgyfOp+ow5hBvOvCoDsLQgWSXAkTslraoKzyQrzhJlCiTbTDE8jCE2ISbNqzF7JKedKDYyFfbhOo0FtYbClXqsMc6ZxptdmROPkgJwO6CQ2ZWYpUYIlN6j1T6N/X+aAEXojhQMMN138QQKHYBknqz2OStrfFoOmWmQ7JupAP3mAKobz2Li2c2knSHrNEa4Ew8xSKXhEwzIAqI0aTbJTK58XVJI5xEYiU6YXgMTLDFKLSGbllFqJSFTYKkb69zjwBH10G4y7Myxoqhs6rumglBDmGIAKMssRTkHpSoUUnqwJGZZa4OhMpgrBFZrhYVa4uWhZYaLtXbA6a4rhWFjsHNYeIB8Vd2C5CIHSm3aowdHtjZp2nP/ThKMkoCSM8qYTUppWR7PJhQDI2XP4eBYKuHXHlObARN75EAYhC/0mVcT7FEQi9Q9IR89WXaEcf0Wji0mgFKY8WZXSr/fBUd7LoQNEbGOrq5cwOXbD//zODBSmj1rZiWQhN82K2bYXFbi+DRtmWmQBNLUfdTsh+r3NW5cN/WcUXWyTpFOtC7JGKQx2jnxsPCQonIhGYxNFpVPUxfke02FfvDvT8RR8mvRSGspc4xSSgk9qCGrAmJQQ1UOLAkUq/kWLN1apVlcgJib7wfLxpplhbIZaaqywFDDAiSxSubgM18oDB2LJKAk0Bxqg9WlwlDb+12AbEGzZkDZROeNA8TG9ANlwCTdOaXZSyYgl21+2hQ4Uno5H++oQtZITJKvPaZi/MaxR6Gb8eAYpZ/jTjs+3RxPQwdpmaUrE6po+z2Fhowwu5K3KwdHMsFquHhIYSyLFA4sjUn/A6M1q7rqnj0Se+UOPH4SkXoOVsb4tE+YW59//nlcdtll+NKXvgQAOOecc/DRj34UBx54YO9nfv3Xfx233HJLUHbyySfjgQce8NeLi4v4wAc+gD/7sz/Dzp078ba3vQ0f//jH8drXvnZJ+sX0PkX340ZNNe64GRR/TvzM+HNZp4RObh1SSMsguecrjGWZgsUyUhIAo12Scs4mpU0WILUNieDCza4UIwigE08pPaNUwBDQzqFHDGuosoB2jNI6+QwhCSyLCmJow0Y8sxwHlo5ZkhmW1izJwafWNrB8qA1ql3hg2BgMtQNLB5LELP251hg2ljFywLTA2AQgWTOQ9EAZHWNJbfsVb2FVeXBU3STllHeV7UbBmSPfvolCO8i06r9DhGuPVObXHQkcyazKwHGpzjqCgaOherR7DTnrNHULlLq2fVrD7hCXMLuStytfn4QUjim2jNICqnEssh86yGxL58Qe6dym5gsZ5IobC6K6yyFTBckLLrgAP/zhD3HXXXcBAH7zN38TF110Eb785S+P/NxZZ52FT3/60/66qsJNZS+//HJ8+ctfxm233YaDDz4YV155Jc4++2w8/PDDUErFj+uV1GwHiTKRqNPXOSZp+NSsKO5wWafoe5zZ1c7AEZpdaTCTDCibNlUdyjLMzaqUy6zTOuJwIYDUPYyyoethbcMblASGsNtSOUYp3VEPa8hhbcGyGrZrlkUJsbgTYm4VzGDBguTcvF+z9GApF2GUjcUUdeXBsioqNEYwZtmuWzbKYKglVhX2mkCRADMAS3eujfGgGYOjBU8dAOM4kATSAKmk7ACmB8sIGKUQHfYY7HMYpU/j4MgD37lpVdSDfnBsuqEeImaQfR6tLOTDx/fy2wSU1H/5s4xoATQyu9L6JHm5EotUjmVagHRg6f4J49V4Doz22XAgLFx8ZOvZSs48rd5ORaycsSDFRqcpUwPJb3/727jrrrvwwAMP4OSTTwYAfPKTn8Spp56KrVu34sgjj+z97NzcHNavX5+8t337dtx00034zGc+g7e//e0AgM9+9rM47LDD8NWvfhVnnnnmkvTkpgC6RlQGVjaufmxaGDXb4vX67mWdXD1udgW8tys3u/KQEIphtLP2xuVhZcnLKTMPYJ1wekywfSEi/LN6aI8eNIdDyLKEGNY+ZERXBcTCAKoqLMssLVBisABZzVugHMxb8Jxb5ZhlCVRz1hu2tmApigqmriwLSZhiGwd2tbZm0aE2mC+kLyeGSedDZ7IdNhrawJc1pgXOxoRMkoCxHgGUPOyAmCOV05/N9AIPhlTGnWx69zaMsuYQW+z1WuXrjs602gFHMrdG8ZBB4vKmG04klAKMiyEV3NwaD+4SpqkBVfiJHoBgfdKbXRGuT0rTBUoJ69ijhPseh6cqYYhsvVpb9kjm1dBxp623YscC9ozlkKmB5P333481a9Z4gASAU045BWvWrMGWLVtGguS9996LdevW4cADD8Tpp5+OP/iDP8C6desAAA8//DCGwyE2bdrk6x966KE45phjsGXLliRILi4uYnFx0V/v2LHDn/fNclKNNO5e6jqeWfU9M/WMrFP0TDK78pR1sdnVOfEIb3rV3vQqfDxlA1lRrlIZxEQGjjoRQCbXKl38JH0eALQzvQopoaoSelBDLDiwHDqQVAOosoCsSjTEJBcXrCl2sGAZpTPDoihtUgKpYOrKgqbz6CV2OacKVKpCA4lGhYDZGHiG2RiJYWlDBYZNDJYajSvX7EiA2WgTXANJ/6dAFHm28lRogtbA3A4ozMGmTbYd7m3Id6XopJJLOJwUAl2zKl9zjLxYBQv1IGCME7v3JlHQznrl0vBZD1fHKl3GqLafuxAkCXB2SuuToqmtxQTorE/GQAkBCEPmV3jABLpA4uNVRcgkCSApYTnJih8LsHwyNZDctm2bBzYu69atw7Zt23o/9453vAPvec97sHHjRjz11FP43d/9Xbz1rW/Fww8/jLm5OWzbtg1VVeHVr3518LlDDjmk97nXX389rrvuuk75qNlIqiOMuxebDnjdVKOOMldknXq+XxYwBSBqgEytsdlVFJVnkJQNxzvxFK3plZIDCC19qEcqjtKHibjyTs5Xuh6iNb26Z2vOJocWLGVVQJUFGiUhy8Kxy4XW3Lq4YBnlYJVNsF7Nwyy8HLJLWcA4gBSqgFEWPCl5eKWKDmDS2iWdN4WwR9OCJgErZ5HaWKDV2vi6sfNOyurKB10CQiqnfQwJ7Ph5nGw7lS6NM8VktpwYHFkGnQAwnck1AEaXis/+MNe2fQBJXtOUTF8rD5Y+u46uA6C0CVgBIdp1SF8O9K5PcqA0xoIisUrAvpdUZEpsZrXnbYYdGQGk/xxW+FiwTLJkkLz22muTgMPloYceAgDvaszFGJMsJznvvPP8+THHHIMTTzwRGzduxJ133ol3vetdvZ8b9dyrr74aV1xxhb/esWMHDjvssOTMJJ71kKTMAB0dEueT1o9NElmndH0AFihVa5aKn+Em2c7kGppdiVlCh2xSKBvWETvzxKL7GCXdj5ilVBLCeb+SN6waFmiUsgBZFmgccMoFxy7n570p1jNKcvyZm/fAKYoKoqzc+6i8l68ZFtbhhwGmEdKyRDKZGrRHBprGtKCpXZ0YMAF40LTno4eteOcJoN19gifYFghziPIsMNy5pA8YoXXHpMqZY4o1Crd/pgdGSjUIxhz79id1wCgoP7BUQd8PgNK0K4XevMrW1+1aprE42RMWwoHSxkZG5lbAm1zt51pVOThaB54WIPtG45U+FowiOXtSlgySl156Kc4///yRdQ4//HB885vfxLPPPtu59+Mf/xiHHHLIxN+3YcMGbNy4EU8++SQAYP369RgMBnj++ecDNvncc8/htNNOSz5jbm4Oc3NznXIaTPtmNkDXbJFqyHHPGFcePxfIOo3SSQCAqtrZdu/6JPN2ZeAIlspOuoQAxCaFlhCNhGkaCCkDQNQRoxy3VomhM706VhkDpvRssvTm2IbAkq9d0lplUQILlWeUoqzS5lhZhIApCxhVQqoChSyAsnDgiHa90QGigSXGGhY4jbHDfKMBA+MHYGPaNmoCRtmeSzZppTVJgZjZpDO/xLF7AiEwSoH+DDkxa4wddIwG6roDjIbOgRYoE2uQtn0ZMDomyf9POkAZOex4syslOo/YJNAmQCezax9Qxu89jm0MTK2kPwNIvl65t40FyyFLBsm1a9di7dq1Y+udeuqp2L59Ox588EGcdNJJAICvf/3r2L59ey+YpeSnP/0pfvCDH2DDhg0AgBNOOAFlWeLuu+/GueeeCwB45pln8Pjjj+NDH/rQkn4LzYxGzXhEdJ6qH382NTtaik6p78o6hXVTQNm3PklmV88u3fZPtG6pyqJNNddIGCVteIcrM43uJCBIrVFyMyxtt8VNrw0seAY5YJWEUAML1lUZmGNlVUCWA6hyAbIqLYMkz1hnmg3MscQwS7dmOWQMUxU2MbwDzEIWUKpw4TTSg6Yh06o7mvgchq2B2frU+n0cnO2k2InVo2B2Do7BOdpk3EnGyIHROeH4tUa/ByQzpw4HLRhyYCRGaRvSHfsZpN+azW3UTf2STPsdoCQQ5InPDQPPhBNPvKVWCighnHdrj6mV3jO1Q/D+kTazjpKVNhYsh0xtTfLoo4/GWWedhc2bN+MTn/gEABsCcvbZZwdOO0cddRSuv/56vPOd78RLL72Ea6+9Fu9+97uxYcMGfO9738O/+Tf/BmvXrsU73/lOAMCaNWtwySWX4Morr8TBBx+Mgw46CB/4wAdw7LHHem/XSSWe+aXKUw2Walj6XF8D982i4nP+vVmn0ToBsIN8wcAysT4Z6ONAU7DEA6JpoKoCRuuATUol23CPHgm33Wp/VRMwkAbCTe8lA0ntnHsIMJuFgU1IsGAdfsgcWytnji0L7+wjBvMtaLq4S2KV3nPW33cmWelYpVQ2WTy7LoRE4ctscnnt2GKjLZskwDRAwCiBkMnEDME3FWM09poG6tAE6Jmia1PoYTrhOAPGdBq5OgBGw4GxHro2Y5YGgJlY+9cg6Z6QlkEa2+A+25NnofT7lWpZIV9vjNmkB1BXX6O9hzSjBOA3VdbBP4ZTl9qBrQenwHFvHQuWQ6YaJ3nrrbfisssu856o55xzDj72sY8FdbZu3Yrt27cDAJRSeOyxx/Cnf/qneOGFF7Bhwwa85S1vwe23347999/ff+YjH/kIiqLAueee65MJ3HzzzUuKkSTpA8pxjTDOxBA/K1U3NaPKOk2uk32A22NSakCZ5EzXM0i/WTL7c/dEY02vptEBmxSMTUrVrlnyfSkJHLU79oWTWDapIZUIQFOSU4+UrdnVAaZlm2z9ksCyWgxDSSYETBSOTRKrlMrmyCWmSQnkhYB0gFn4ja5dHl3AAyjAAXN0b+ADNbVRAIZ+ndC1FVs3bM8TMY0jGKMHRtrCjIFiBxBjoOx0Nb5PqWyZIwNLAcDo0PRKAGoEIjBkptYgztIlmXMxl6ZVwL8/D5SGvdfE+4/BMX7/pOPeOBYslwgzrmfvg7Jjxw6sWbMG27ZtwwEHHDCRPZwPuiTTnNlknSbXCYBN41YPIJphcC4am+INg0WYwYL9W6TjTph66MubhUU0gxp6WKNeGEAPaujhEM2wduc1mkFtwZGODiR1Y9ok6QSWIzYmlg4k7VqlBU1imbIqAoYpq6I9L8ugvPWO7QdMuPVMUVaBydYmXyhalskAEspeU9iNTzQvhD+3P0S2KdnsD+xvLMam7ItqQyB8PGInRlF3QXGE840Hw9iMyoExZo4cFHvWIP0GjWyvTPr9cPtmQkrH2t25S24hpLImcCH8uzT+qNp3zd+zVO25asv5JAXoTlRi2R3T6ihZCWPBjh07sH79emzfvh0HHHDAbj6tX2Y6d2s8i+EN2jeT4dfxeZ9pYpypIPXdWafJdQLQrk8mPisAoOqffdJAKUvyatRQZeHPfXYe5wVLZtmkd2tjmGNPyDABQCpXNoRlk8PGZe0RLWAO69bJx5lf+RqmX7OcBDClap1+XJkHTpfKTxSVHdSLyjIeN0B7ZskAUnBG6dOuIQTHPqDk2Wp4jCDPZtOTL5UH+Aeg6NiiqQdjQTFgjk3b1r6sTxyDtOvSNnF+sv9K5/AVfQ5SWZ2KosskAVtHhWXe0xUI2SQQmF2pr/cBYMwe4/K9eSxYLplpkCSZtMF6TX5jnjPqGfx8VEfMOo3XiWIog/ojHHn4+iSZYyUAyU2qHCyVhNTSJyCInXligGzNr+2baJrwrVizq2bMUoSguTCEqhSElD6ukkyyHDC5SZaYJ1/DJEbDWWYLoFXAgjzL5MBJAClagBQ0yMdHwO2BGEpne6nAqzMCyzion7FDMyFTDNratWEnvAPod9ABgjAPctYRtiE9WNq+15piLWDa+vzogS8Fhinw9JOK7qSDmCHfP5K+m+77n5AAyH1lLFgOmWmQ5C8/Psb3U5+JhTcqXSNRP55hZZ32kE5kGqQdQwxz6nEi5/q9MElUYrss7wHbtKEiAFyidDvgSmWD81vzq/3mlGNP551wxx7VrlsKKdEMGmaWHdi10bIFQlrXJDOtqkpvtlWsnmeZKQYppWWaDBy9KbGsWvOhuw/AX3vvTgaMYgI22Un3xgGMxbdODIj2ZTvvZd19Ht33qoxgj/T7EmEe4cRM+edacJT+2icYoGPsM8EBcVQ593RtlfNACbTm1knAcV8bC6YtMw2SQNi4cXncUHGDLuX5qWeM6ohZp13TyQhpA+lZeayfB8qUI49uIOcBYMGDpHQDrIwccjRqB5raxk8A3uTm6zDHnjZUJPFmhhZktTO/AmjXKZUIQNOe11BVG3vZAmSBmq69ibZlmcQ+qa4HTcYg/VFKO7AHZS1IcoDk4Gnfw2gnuiST47GJzJkmAEAOjkA/II5KCDAGHOn38Ew69HsC5uie1WGTo357ChiNBuCcdEat6Y5SdxcRZF8ZC6YpMw+SXFKzF/Rcx2aHVH3+zFTjxuWp2VbWaek6TQyUI8xssmpQAKjRMkvFkgiQ2dWbYJWBhnSejMKDpv8NWifNrzy2kjZ1BrRbr2QOPlJ2QLNeEA7sFOTCEEIJFnsZsszwukS8xtmN3WxZo2ecxBwJDAlAuRMLkAQJDzIpgOrzLmVASO9wYjCMkgGM20M00FXJIP4RCPtgzKI4YPoQEDUBYI4SCgUZeV8m/xd6P5Io29vHguWQDJIYbfsm6TMvjHsev47vZ52mp5P1CqyCWXvn+dX8yGdLtMAItAMtd9ixjj0SqgIwaGCcyVUq0Vl/tM+wZZxhkjSRZ6VQAg3g9q/UHhztz2tBs16wrNKyzNqbZmktUzCgTIEoMU3aQDoGTh7bGYCn7LLIgEEuBSBSZtAY8BLlKRDsy7EbA6VQIWuTKr325z/Pr/lvI3CMRU7ICmkfyqV4CY/o12O/DvvmWDAtmXmQ7JsJ9c16Jmms1OwpPh/33VmnPaCTkHbHDMAPKsE/9AiPVxIa+ozWjFm2A7N0jj021Rx5wRp4UIPsgF9ogm1BsyMuYboeutAJSu0Wm2GlRL0TFhS5aXZn6wBEptladgFQMuCk/TGJbXLg5HUIYAhArV50DMMlliQcLBt+Hk5QAgaeAMjUvVhoXRmwk47GeTHDxcT6e4n4a8NMsEuSSYFwqY/FrjHKvX0sWA6ZaZAcNcvpa4iUuWHUZ8Y9t2/GlHXagzqpKvlZwAKlVGqkMw8Nhdz02i81ABuaKZXNVGOdcmQnBi8GyJRjT4pdEnjGoNkMGw+afaZZzzBZXCZnmiFrDIFTKBXcA+AB1OrRngNozbLosrY+SYGaSbD5VN1JTaqkC6UiTN3XjQ7T6QGTM8MUm+ZlKS/gpYDnEsB1FsaCactMg+SoWU7fetY4G3zqOaPKUh0i67TndPLCgZIHwzuRq/abCCgnEdMMgYo+0cAoCQ0NqYXbLNdeAy1QdrP2pN8YecEGmXt6QJMzzaBsoQ6cgCxoDroAmTS3MkB04GmvVYdRxudyUpBh0rduvJQ1Ri60JRrpMwooE8r0mFUTQMjO/XosJWKwhe25TJTx6yW8t5Xyf7ecY8G0ZaZBEphs9pPqGCnTwrjv4J8ZNRvKOu15nQCkEw6wQUmu2g9aSh/6EMukQKm09uuTRguoSgIDC3wSOrlWCXQBMmmCZcTSeIASHjTpendAM5UFiAOnfWYLnnTNARQImWS83pcyYY6Tvh05UpJ6vohAMY5CnJTt2me553vTcgt49N3cE9jGmrK1xyi21ETgGceZmhSAjtKPPjfBb9kXxoJpysyDZCyphhhlWhi3MM3v9c2mxnWerNOe0UkALVDSrvG+ojMfxnGUFBvohA+9owfVgT9rXIJzVSk0AzgnH3g2ScxSogVKb4LtyzcGoKFE2w2xS3jg6wNNOm/L0+bZGDTtqwiBk94BB0W+Vkllfe9rKaC0lM/ESR5SDjnx85LMNP4cA0L/PWgBU/C+EqSrU6FZ1QOjAGUvGsUiJ3HoWcn/d9PSKcU4pyEZJCNJNXZ8n3caw86BbodKmR34sa9u1mmKOqnK7xTfeZaQ/ZuCuwFPuTCIWrZA6NmDkm5VEhCyDj7eDLQHSqGMB8cUEEq3LuZ1H5GIgO4JJSxwDgEhRRI0A5BkoNkmM0iDJj2/DzhJZ/vcLquk8vZ9jfcsTX2ucy8BvAR4fYyRP9M0dqoSm4I7YBybVFNHYpFRPKlnkSyVXwiWo1kkv+fPe2RF/9/tYZ2Wi1XONEjSbCSeoaRmL7x83Iyq77lx3fhZqY6ZdZqSTkIC5Xx7n639CABi3jIDIxVMwrFHIvznadyg2rhnaAeWBeBBBAjBzijNCWfLJlk9IUUHRJNmWMCbYqWSMI3pgGZrnp3MNGufFYImbfvFwZGA036+BU96HulEdUk4EDXRdVw39Rmpwvy5sTk1Fs30oM8l1yMjHQPzqTtSogWfochnI1IBi/SJzSNwTLLIOIG8jEDVfrnVP9YZe8n/3R7WaTlkpkGSJNWYk8ymRpkN4ueNMhukGj3rtAw6EVBG6cZoUBKiHfwkYAFTKhgpoaUNjShprW5h4D4aMqgmGnCbAc/G4zQc0NcKNGg8UEq0bFIokWSTOmmOdcARgSaBrWj6WeYoJyD7rBY04Z+h/T36TGq3E5IYQOk5GNJ7GGGi1S3YNhFjTEGj3zR7jJmWe/P638WTI9A6NR1TyRZUN6UfBz2/8wffZaVvh5UegNwn/u+mpNO0ZKZBchRlHzUDokZKNWqqQ/R9Hom6oxo/6zQFnVx2HnuTz/iFB0ofIuIHSVYGoFTKgYVEIwf2uLBoHxk4utSQSqBRAkI1aAYtSIhGoBk0UFAwygCDpuMJC1iGGZtiY4mBU+sGUgqgaQETAIw2fj2TOwEZt1OJUAJS2zhNMs1ycLWvRLDfyNc7u8BJ76Nh5fRuwjVUtp4YxTIS4KWAj5tVqS49PxbujMRNrbGp2AMfT/gerTcGyeE5cBZ8+zECSrYFFmeQrLwDkAn2uNf/3+0hnZZDZhokBTuaMUcg3QlSpoZxjZ7qBH0zrazT9HXyQCkLoB6Eg5P7k6sQer5ydlkP/Tql3Th54AfYWi3adUoqk86TVEkI2TjQtAxTKoFmoFv26JIOiMaySB82woBSStEBRU44CYuojgdMWADmZlnhgLQPMIll8jVQWzdMo8dBs80YREBpwdBvFQa45AuASZhsG0rzhzRT9G0ZmVoNbW01RjqJEhRPsKDC3VPIv8uC4QAAJstJREFUzEqJ4GkLMkrXx/fypHVIAki3wTWEtBtcu7KlAOS+9n+3p3Satsw0SKYaoq+B+KwlNauJ7/FOMslMKev0yupEWz+Z0gFhrRxoLvhZv3BMgdYpjVQwRQWzuLNjfpXD2g7AUqKWi45dDtD42MOQVQolvCmW2J1dRzQQjUYz0JCQgAK0tM4+0sOGy0LjgJCAsTEtYDLixkC1NcvG65gpwOyAlg4BE7D1hQNWqV2Zey59T+OvDaQSdg9GZdP50Z6NUglQOH/7K7W/HgeKnBGS9CVE6CRNiB1wCCBpT84IIDubXdOenLsCkMz8GvffffH/bk/oNG2ZaZAkGdcYqZkPlfc9i5/3zcKyTitQJ84qhw4g5QBiKODNr2UFHThpWPMrrVmWZQW9sBAMxnrocqqWNfSwtsyyh1XqxrGtxthtsqTLqDNooBuzZLDsE62NZ5XapWKL1z15mAqBWwBaBLDaQEgRlLX1tUs3KluQdXW6nqcW7LSLKbUl0oGpacE4AYop6cR3RmZW2i2FdkWxO6qUXQaZAMhg/80UQHIgjNcgZdGuQapipHl1Jv7v9oBO05IMkkxGmQRSdVLX8WdTjdzX6OPMDFmnZdKJWGW1Ghgu2HMhba65oXPqWS0gihKmKGHKyjLKooIpSujBQsgqqwLNzoEd/MuhA0iJpqwhhzVUWaOpajQDBVk20MMmaYIlT1cdm2EdWCqlnCk29IBNO/d0hYASaNmfBz8GojGwcSBFoqyt354J5Z7pz40HwgAoe5C+z/N1VFo9no+2f7eUyMTK99pkW4mJsurUQ8GZY9ECYR9AyiI0r8rRw/E+/3+3Czoth8w8SE7SGfpmTZM0XGx2iJ+ZdVqZOhnAmV/nnau+8LN8UysIWbg/xygdm0BRQjLQLMsFzyplVaBeGECWJeqFRchhDT2o0ZQ1xMKgY4JVlbRm1lJDD5uAWZIZloMlgA5gAuiAZp+MilUEQrYZA1vL8CyoBmVRfV4Wn4f6hGVxnXHp81qGWPryGByDsrLdhNo76ZTh5tQoSvBNq/2aZFEE7NGbWGUIjtzEahQzrUbsUbDjLP3f7apO05SZB0ku1Hjx7Ihk0o6T6iC8c0w6S8s6vfI6CSFhivlepx4hJERRQAwWw7VKqWBKyzRFUUJWC2gWFiHLAs3CwLLLhQGacmjXL5VEM6ghyxqqqtEMGsskS+OZpW40VKnQDBvL6BxIptglYAETgAdNACOTEvj3wT1P2W6+oQNOOpRjlPSywsDTtXX8sddtijzSYZL8snwbMJqgxNuABeZVMpsSUyxKGwdJwBivPzJG6UGP2CNff1wCe+wDFkTls/B/N6lOyyEZJEdIX2OPMgOkGj4+pmRSc0LW6ZXRScii69TTDAJWKcsKmjFKDBb8YKqLEqooIRcXoByjVKU96mENWRZQw9oCZwSWurJmWKM1y9rT+I2c+wBTQfr7JAScS5Fw26g0QPIsPlQeg6q9H4aLBKEkUXxlKoes/SxniQWmaV71LJLMqwGr7Dev7gp7JMn/d5PrtBySQZJJX0dINWaqM/TNbPpMEfxe32ezTitDpySrdAMjmgFQF9bBR1r2YYrKrVWWMIOFwAQr6gFkuWDBsSqgB3UvWKp5bU2yVW0BstRohq0ptgXHNGAqhPtXEnD63z9mtxEuMmJ8tqwLjkG56m4UTfcnTXk3CXskdrhH2SMB5wTskTvoeO/VFHsk8ES3r77SfTyuv7fqtKdlpkEy1YCTNHZ8b9yzJ5kNUaNnnVauTgGrrAqYZgBRkydjey5kYU2w3LFnOHDnJcziggXLwQKkY5N9YElrlnJYo5jX0MO69XJ17NI0phcwge4mzwScnXccAWYaKLlHaT8w2ut+cKT7uwuOKdPqUtYeWzMqB8sx7FEyR5xdYI99fW8l9PG9TaflkJkGyb6ZCtBvDqC68fARz24m7QxZp71YJ1WB1p6SJlhVQVRzEIN5mMFC6wVbueuihKmHKMsFmOEgYJaNA0g9HLLzusMuLXMMAbPLKF0oRQSc/p0QOJYjfji6oDnSDDsGGKkON6vSc5YDHIPsOSnP1VGhHanYx761R552blx/imRF9PG9QKdpy0yDJJCm7qNmP4H5LXE/rpt6zqg6Wae9TCe2HuVNsKpyYDnorFcKD5AMLN2Rm2EbB4oeMIc1msHQs0szr30d02iYVdozTNM4JhmBJhCzShYmMoFDD0nH61TGDDJhak0AIz1rFDDS8yQDv0nMqhOD46jEAJSgXNrsOSNNq1TWA47Ewsb2p0hWRB9foTplc+sySEzvU3Q/btRU446bQfHnxM+MP5d12kt1kgVAJtimDtYrTVNCNEMIZY8BWNJxbt6aYat5yHoINViAHlgWqThYOnapG90CptaeYZrGmmQJDDloAvDACXQ3ebZlSw8V6XPmiZ1w2nPGMCNgtJ9Ph3Mo52jDy1UEnoEjz4TMcZTX6sTgGDPKEflW99o+vsJ0Wi6ZaZBMzXaQKBOJOn2dY5KGT82K4g6XddpLdVKV3a+yGUA0JdBYVhmDJXRtzbD10ILkcABTLQD1EGZxJ0w1D1EPIQetKbZxgNgHmCFAageI7TlnkQSedO5/q16a9ysP1xi1XVbfXpPjYhxTqeRGskZKJ9cBwZ41R25W3RXmmEo1tyf7U09dXjbL/3fLITMNkkDbAKlZUNwIZoL6InE+qnMYdBs967T36+TBUtcQNQNLXcPUBJYVRDNoWeXcvAXJah6mHlgAXVyAqQeWXdZDD5iaANEBJgGkaRp/3QXIFjgB+GugZ41yQulseQUErFAkyjgo8npLAcYgjIMBYq9JlY4sGYCv6+Nbl7jmGHms+ne4h/vTSuzjK0Gn5ZCZB8m+WU6qkcbdS13HM6u+Z2ad9k2dKL7Shn6UQDNs1yybGkLPA8UAoqwgdeMZpXGA6NllPYAZDj1g+vuN9muWprEsU2sdgKaOWSWBpG53HOFl/rdMYHqNk4jH+2n2MkhmXh0FiinnnV5gpGsK45Ay7YzDP0eZcljauE6u1ZS3KiUBmMBb1b8b7Jt9fCXoNE2ZaZAcNRtJdYRx92LTAa+batRR5oqs076jk8+u4sFyAKNKCN1YptmUMM2cZZfFnPWIrWuYemABksyx9TAATOgGph5CUr2mCVgmB0UdmV45eAII2KXXewKQ9L898HQNgTIGQyrjLHMUKLZ1GSOMGWMCGGmtsbMuSZ6qKRCUqbIuaxzX9rPWx19JnaYtMw2SqZlJPOshSZkBJnnepPVjk0TWad/TqU2cXgBGwxgNUQ+sKVbXXXapa7t2We/XAqZjkB4s6yHgANToxrJM3XjQJFCk9cyASTLwpGsADDibnl+fFgJAoMsoiR3S+fh1SRUwxPjcrzHyTY4JIAkY+S4eZeXNpDo2nY5IQO5ZY2RO5e2eklnt48ut03LITIOkwOiZDdA2Mr+O6417xrjy+LlA1mmf14nCA6rCguVwAaawbNLoGkLPWcBshkBRM8Cs04BJwFgPgKbxoAmtAd1A1Y55MuDUibXJ3WGUk7BJAkMqE4xdjgTFFFvka4ypNUmlWrCLzamj9naMylNtHJe94v1phnWatsw0SNLMaNSMR0TnqfrxZ1Ozo6XolPqurNO+pxN9xm/LBThHn4EDSmeO1RYYhW7SgKl1C5xNE4KmbgDdJIHTaMcU3TUAD6Jev8jbtS9EpBMW0mGSIRDaOip5TYDImWLAGt36YswWIVVoSp0AGDueqz1Jx+O2W4n9aVZ1mrbMNEjyWVHcsFSearBUw9Ln+hq4bxYVn/PvzTrNlk4AQCnvAPiYS6NriGK+BczGAijKFjC9008AjtoyTTpPACfggNCBpgAsaAIeOG0de64wXoRkteicAI2VcTD0n4sAkYCvwyxpzZGxRQgJzYAuualxX8q4xF6OvB33xv40Czoth0wVJJ9//nlcdtll+NKXvgQAOOecc/DRj34UBx54YO9nhIjn2lY+9KEP4V//638NADjjjDNw3333BffPO+883HbbbUvWsQ8oxzXCOBND/KxU3dSMKus02zoFz1IVjKrs5zlgcobZtNcoV1nQNNqCZtN45x7PHAkQ3T0PnnQPYAyTrUlG65N98ZTBZsgqBsUWMDvA6OqNXYskUHTA5kGRs0IpPZPsMMYxwAjsW/1pX9ZpuWSqIHnBBRfghz/8Ie666y4AwG/+5m/ioosuwpe//OXezzzzzDPB9V/+5V/ikksuwbvf/e6gfPPmzfj93/99f71q1aol6xe/8Hi2k5q9pBonNcCN6zCpun0dMeuUdRoHmDC6BU1jYIy2JlmjIdy5NKYFztjsytijd9jhIBmBotEhaAb6B0yyBUD7O0aYXV39JCC6Px0DopAhKHK22Mcko3aJ3z2/t6/2p31Fp+WQqYHkt7/9bdx111144IEHcPLJJwMAPvnJT+LUU0/F1q1bceSRRyY/t379+uD6L/7iL/CWt7wFP/uzPxuUr169ulN3qRLPYmLAHDXrSTVYn2linKkg9d1Zp6xT6vsMLGBqVUEY7UJILEhCN4ArgwNHYzTQB5zuTxr7LQGAAiEw6phJjvZ8jU2rASCycgLNGAwBdFmiZ5AEkkX6vnLmam92lbk/7YM6LZdMDSTvv/9+rFmzxgMkAJxyyilYs2YNtmzZ0guSXJ599lnceeeduOWWWzr3br31Vnz2s5/FIYccgne84x245pprsP/++yefs7i4iMXFRX+9Y8eO4P6kDRY3XizjZlOpZ/DzUR0x65R16ugkZJvZB/CmVsscXYhJH3Bq7a4deNIf0AIo0B69UtrrIUyf5g70AA94naPT31AZux+AoS8LWSKAgEka/nzHFuM2WVFtl3XaIzoth0wNJLdt24Z169Z1ytetW4dt27ZN9IxbbrkF+++/P971rncF5RdeeCFe//rXY/369Xj88cdx9dVX4xvf+Abuvvvu5HOuv/56XHfddZ1y/vLjY3w/9ZlYeKPSNRL1eWfLOmWd9phODhw0r8eBE2idfhwQGsCfEzj69cYIIANQ5J9NSQx6cTkQgCCAFghToEm/bwQg+q8Y954S8oq3XdZpl3WatiwZJK+99tok4HB56KGHACDphGOM6XXOieVTn/oULrzwQszPzwflmzdv9ufHHHMMjjjiCJx44ol45JFHcPzxx3eec/XVV+OKK67w1zt27MBhhx1m9SG9Yj3Rbai4QSeRuG48Oxr1maxT1ml3dDJAB0RE0QKnfwYBaD1ogZCDH90PHs6AtU/XBOCFynNWKdoyWkOM6wkZltPt1Hcn6uxNbZd1WppO05Qlg+Sll16K888/f2Sdww8/HN/85jfx7LPPdu79+Mc/xiGHHDL2e772ta9h69atuP3228fWPf7441GWJZ588skkSM7NzWFubm7sc1KzF/Rci0TZqJlS3z+ySNTNOmWdpqUTALuWl/qcqqzpFUAvQ+TPrwdtfVim2WGNMeDxe8mHuvXFvu9kOiNxzuvta22XdXplgHLJILl27VqsXbt2bL1TTz0V27dvx4MPPoiTTjoJAPD1r38d27dvx2mnnTb28zfddBNOOOEE/MIv/MLYut/61rcwHA6xYcOG8T8gIfFMxbByEn6vb/BJPY9fx/ezTlmnFaUTpc2bVCcC2xTTjNhjSvdR53xAXXHvKeu0InWalvRM53Zfjj76aJx11lnYvHkzHnjgATzwwAPYvHkzzj777MBp56ijjsIdd9wRfHbHjh34/Oc/j3/+z/9557nf/e538fu///v4m7/5G3zve9/DV77yFbznPe/Bcccdhze96U1L1rNvJsT/SQ07n6SxUrMnOh81M+vrIFmnrNNK1MnwWERZtInBfQhGCJDLoRPJSnpPWafp6bQcMjWQBKwH6rHHHotNmzZh06ZN+Pmf/3l85jOfCeps3boV27dvD8puu+02GGPwa7/2a51nVlWFv/qrv8KZZ56JI488Epdddhk2bdqEr371q1AswfIkwmc5sfCGjsvjZ8QNOeo58XX8uaxT1inrlHXKOk2u07RFGDPCj3sflR07dmDNmjXYtm0b1hxwQLJh+Yyl73wSiRs07mDjvjvrlHXKOmWdsk5dnXbs2IH169dj+/btOOCAA5bwDUuTqTLJvUH6Gi+eyaRmVJPOaFIzo0m/O+uUdco6ZZ2yTqO/e5oy8yAZS6oRUzMhakTB6qSE10k1On12VOfJOmWdsk5Zp6zT5DrtSckgGUncsH3UP25Ew+rzz8Rmh/hI91Mzr6xT1inrlHXKOvXrtBwy0yCZmo2kGjjuIH0NlGrcvuf2zZSyTlmnrFPWKes0mU7LITMNkiRxY/IyPnOJ68azHC7xbMkkzkfNzrJOWaesU9Yp6zS5TtOSmQZJ/uJT99BzP57R8OOomVH8ef5Z/sysU9Yp65R1yjpNptO0ZaZBMp7VjDqmGgnoNlQ80xk1Y0qVZZ2yTlmnrFPWaXKdpi0zDZLxS45nNX31+hqf7vFGn6QDZJ2yTlmnrFPWadd0mrZMbausvUn4LCk1O4nLR9H9VL34+X3fk3XKOmWdsk5Zp13TaVqSQZIJb4S+Rhk3Y4o/m2rkvkYfNyPLOmWdsk5Zp6zT8spMm1uB9Mxm0lmQSZTF0ldnVGNnnbJOWaesU9Zpcp2mKTMPklyoYeLZEf1N2nFSHYQ3/CSdLOuUdco6ZZ2yTqN1Wg7JIDlCUo2YKuedIfWZ+JiSSWZYWaesU9Yp65R1Gn9vT0oGSSbjaD6/l5ot9XWiuDzVefo+m3XKOmWdsk5Zp8l12tMy0447qcaKZycmUTe+N+7Zk8yGqLNlnbJOWaesU9ZpMp2WQ2aaSZroPJ6t9DV2qnEmqcPrZp2yTlmnrFPWafd1mrbMNJME2obijTBq9kP1+Wf6GrrPZDCqTtYp65R1yjplncbrtFzAOdNMMkXv4yOZGBCV0zk1PK+PRJ34e0XifvysrFPWKeuUdco69eu0HDLTIMlftEC6YeI6qXPe2KnzVJ24Q8UdJ+uUdco6ZZ2yTqN1Wg6ZaZAEwtkJXcdlYNfj6qfO+zpH/B1997JOWaesU9Yp65T+jmnLzINk3ABUlmqkvnupjkTCZ2Gjnpl1yjplnbJOWadd02maMtMgKUbcS3WEcfdE4tywY6ozZJ2yTlmnrFPWadd1mrbMNEimZibxrIckZQYY97y+Z6Xqp0wJWaesU9Yp65R1Gq3TtGWmQTKm81Q2zlQQ1xs1O5qkPH5u1inrlHXKOmWdJgfMacpMg2Q8c4kbGwgbKa7HZ1epThGfZ52yTlmnrFPWac/qNG2ZaZDsazAR3eN/SBzj5/V9V2oWNep7s05Zp6xT1inr1K/TcshMgyTQNm7ceONmM3FDpRo/7ji8bl9nyzplnbJOWaes09J0mqbMdFo6munEjcJnL/F5qnHoXtyo4747PudlWaesU9Yp65R1Gq3TcshMM0mROJ9kJpO6l3qe6Cnv00P01M06ZZ2yTlmnrNPosmnJTIMkCc1oRHQeN1hqRhU/h+rHz+TPiDtA6rlZp6xT1inrlHUardNyyEyDJH/5ccPw+3Hn6JvFxB0jfnb8jNRzsk5Zp6xT1inrNLlO05aZBkmgf6aTauy4QSd9/lKfkXXKOmWdsk5Zp11/xp6UmQdJLqnZC3quU7OaVCPymdG4+qlZUtYp65R1yjplnfrrT1sySCKcqYionDdUbAroazD+PBPVj78j65R1yjplnbJOu6/TtGSmQ0CA/pmQiK7pPK6fknj2lDof991Zp6xT1inrlHUardNyyFSZ5B/8wR/gtNNOw+rVq3HggQdO9BljDK699loceuihWLVqFc444wx861vfCuosLi7iX/7Lf4m1a9div/32wznnnIMf/vCHS9aPXnhqltI364nL4pnTuOfE132dIOuUdco6ZZ2yTuN1mrZMFSQHgwHe85734Ld+67cm/syHPvQhfPjDH8bHPvYxPPTQQ1i/fj1+8Rd/ES+++KKvc/nll+OOO+7Abbfdhv/xP/4HXnrpJZx99tlommZJ+o2a5fTNZuIGMujvHFQ/7hD8Ov5c1inrlHXKOmWdJtdp2iKMMVP/zptvvhmXX345XnjhhZH1jDE49NBDcfnll+N3fud3AFjWeMghh+DGG2/Ee9/7Xmzfvh2vec1r8JnPfAbnnXceAOBHP/oRDjvsMHzlK1/BmWeeOVafHTt2YM2aNdi2bRsOOOCAiX4Dn0HxmdS4l8c7VN/5rkrWKeuUdco6zapOO3bswPr167F9+/aJx/FdkRW1JvnUU09h27Zt2LRpky+bm5vD6aefji1btuC9730vHn74YQyHw6DOoYceimOOOQZbtmxJguTi4iIWFxf99fbt2wEgYKckqc4xqqHijpCScR1uXOfJOmWdsk5Zp6xTeP8lN35Pm+etKJDctm0bAOCQQw4Jyg855BB8//vf93WqqsKrX/3qTh36fCzXX389rrvuuk75EUccsSfUzpIlS5Ysr5D89Kc/xZo1a6b2/CWD5LXXXpsEHC4PPfQQTjzxxF1WSggRXBtjOmWxjKpz9dVX44orrvDXL7zwAjZu3Iinn356qi93GrJjxw4cdthh+MEPfjBVE8Oelqz38krWe/llb9V9b9V7+/bteN3rXoeDDjpoqt+zZJC89NJLcf7554+sc/jhh++SMuvXrwdg2eKGDRt8+XPPPefZ5fr16zEYDPD8888HbPK5557Daaedlnzu3Nwc5ubmOuVr1qzZqzoFlwMOOGCv1D3rvbyS9V5+2Vt131v1lnK64f5LBsm1a9di7dq109AFr3/967F+/XrcfffdOO644wBYD9n77rsPN954IwDghBNOQFmWuPvuu3HuuecCAJ555hk8/vjj+NCHPjQVvbJkyZIly2zKVNckn376afzf//t/8fTTT6NpGvzt3/4tAODv/b2/h1e96lUAgKOOOgrXX3893vnOd0IIgcsvvxwf/OAHccQRR+CII47ABz/4QaxevRoXXHABAMv+LrnkElx55ZU4+OCDcdBBB+EDH/gAjj32WLz97W+f5s/JkiVLliwzJlMFyd/7vd/DLbfc4q+JHd5zzz0444wzAABbt2713qYA8Nu//dvYuXMn/sW/+Bd4/vnncfLJJ+O//bf/hv3339/X+chHPoKiKHDuuedi586deNvb3oabb74ZSqmJ9Jqbm8M111yTNMGudNlbdc96L69kvZdf9lbds96jZVniJLNkyZIlS5a9UXKC8yxZsmTJkqVHMkhmyZIlS5YsPZJBMkuWLFmyZOmRDJJZsmTJkiVLj2SQzJIlS5YsWXpknwXJlb6XZZ88//zzuOiii7BmzRqsWbMGF1100djdU4QQyb9/9+/+na9zxhlndO6Py5w0bb1//dd/vaPTKaecEtRZae97OBzid37nd3Dsscdiv/32w6GHHop/9s/+GX70ox8F9abxvj/+8Y/j9a9/Pebn53HCCSfga1/72sj69913H0444QTMz8/jZ3/2Z/HHf/zHnTpf+MIX8IY3vAFzc3N4wxvegDvuuGO3dNxdvb/4xS/iF3/xF/Ga17wGBxxwAE499VT81//6X4M6N998c7K/LywsvGJ633vvvUmdvvOd7wT1Vtr7Tv0PCiHwxje+0ddZjvf93//7f8cv/dIv4dBDD4UQAn/+538+9jPL1r/NPiq/93u/Zz784Q+bK664wqxZs2aiz9xwww1m//33N1/4whfMY489Zs477zyzYcMGs2PHDl/nfe97n/mZn/kZc/fdd5tHHnnEvOUtbzG/8Au/YOq63iN6n3XWWeaYY44xW7ZsMVu2bDHHHHOMOfvss0d+5plnngn+PvWpTxkhhPnud7/r65x++ulm8+bNQb0XXnhhj+i8q3pffPHF5qyzzgp0+ulPfxrUWWnv+4UXXjBvf/vbze23326+853vmPvvv9+cfPLJ5oQTTgjq7en3fdttt5myLM0nP/lJ88QTT5j3v//9Zr/99jPf//73k/X/9//+32b16tXm/e9/v3niiSfMJz/5SVOWpfnP//k/+zpbtmwxSinzwQ9+0Hz72982H/zgB01RFOaBBx7YZT13V+/3v//95sYbbzQPPvig+bu/+ztz9dVXm7IszSOPPOLrfPrTnzYHHHBAp9/vSVmq3vfcc48BYLZu3RroxPvpSnzfL7zwQqDvD37wA3PQQQeZa665xtdZjvf9la98xfzbf/tvzRe+8AUDwNxxxx0j6y9n/95nQZLk05/+9EQgqbU269evNzfccIMvW1hYMGvWrDF//Md/bIyxHaosS3Pbbbf5Ov/n//wfI6U0d911127r+sQTTxgAQSPef//9BoD5zne+M/FzfvmXf9m89a1vDcpOP/108/73v3+3dUzJrup98cUXm1/+5V/uvb+3vO8HH3zQAAgGoj39vk866STzvve9Lyg76qijzFVXXZWs/9u//dvmqKOOCsre+973mlNOOcVfn3vuueass84K6px55pnm/PPP30NaL13vlLzhDW8w1113nb+e9H96d2SpehNIPv/8873P3Bve9x133GGEEOZ73/ueL1uO981lEpBczv69z5pblyrj9rIEMHYvy92V+++/H2vWrMHJJ5/sy0455RSsWbNm4uc/++yzuPPOO3HJJZd07t16661Yu3Yt3vjGN+IDH/hAcj/N5db73nvvxbp16/D3//7fx+bNm/Hcc8/5e3vD+wbsbgRCiI5Zf0+978FggIcffjh4DwCwadOmXj3vv//+Tv0zzzwTf/M3f4PhcDiyzp54t7uqdyxaa7z44oudnR5eeuklbNy4Ea997Wtx9tln49FHH90jOu+u3scddxw2bNiAt73tbbjnnnuCe3vD+77pppvw9re/HRs3bgzKp/m+d0WWs3+vqP0kX0mZ1l6WS9Vh3bp1nfJ169ZN/PxbbrkF+++/P971rncF5RdeeKFPIP/444/j6quvxje+8Q3cfffdr5je73jHO/Ce97wHGzduxFNPPYXf/d3fxVvf+lY8/PDDmJub2yve98LCAq666ipccMEFwQ4Ke/J9/+QnP0HTNMm+2afntm3bkvXrusZPfvITbNiwobfOnni3u6p3LP/hP/wH/L//9//8ZgaAzfd8880349hjj8WOHTvwh3/4h3jTm96Eb3zjG3tkj9hd0XvDhg34kz/5E5xwwglYXFzEZz7zGbztbW/Dvffeize/+c0A+ttkpbzvZ555Bn/5l3+Jz33uc0H5tN/3rshy9u+9CiT3xr0sgcn1Tn3/pDqQfOpTn8KFF16I+fn5oHzz5s3+/JhjjsERRxyBE088EY888giOP/74V0Tv8847L9DpxBNPxMaNG3HnnXd2QH4pz12u9z0cDnH++edDa42Pf/zjwb1ded/jZKl9M1U/Lt+V/r5U2dXv+LM/+zNce+21+Iu/+ItgMnPKKacEDl5vetObcPzxx+OjH/0o/uN//I+viN5HHnkkjjzySH996qmn4gc/+AH+/b//9x4kl/rMXZVd/Y6bb74ZBx54IH7lV34lKF+u971UWa7+vVeB5N64l+VS9P7mN7+JZ599tnPvxz/+cWdGlJKvfe1r2Lp1K26//faxdY8//niUZYknn3yyd9BeLr1JNmzYgI0bN+LJJ58EsLLf93A4xLnnnounnnoKf/3Xfz12H75J3nefrF27FkqpzgyY981Y1q9fn6xfFAUOPvjgkXWW0mZ7Wm+S22+/HZdccgk+//nPj93dR0qJf/gP/6HvN7sru6M3l1NOOQWf/exn/fVKft/GGHzqU5/CRRddhKqqRtbd0+97V2RZ+/eSVjD3Qlmq486NN97oyxYXF5OOO7fffruv86Mf/WiPO5J8/etf92UPPPDAxI4kF198ccfLsk8ee+wxA8Dcd999u6wvye7qTfKTn/zEzM3NmVtuucUYs3Lf92AwML/yK79i3vjGN5rnnntuou/a3fd90kknmd/6rd8Kyo4++uiRjjtHH310UPa+972v49jwjne8I6hz1lln7XFHkqXobYwxn/vc58z8/PxY5w0SrbU58cQTzW/8xm/sjqqB7Iresbz73e82b3nLW/z1Sn3fxrSOR4899tjY75jG++aCCR13lqt/77Mg+f3vf988+uij5rrrrjOvetWrzKOPPmoeffRR8+KLL/o6Rx55pPniF7/or2+44QazZs0a88UvftE89thj5td+7deSISCvfe1rzVe/+lXzyCOPmLe+9a17PCTh53/+5839999v7r//fnPsscd2QhJivY0xZvv27Wb16tXmP/2n/9R55v/6X//LXHfddeahhx4yTz31lLnzzjvNUUcdZY477rhXTO8XX3zRXHnllWbLli3mqaeeMvfcc4859dRTzc/8zM+s6Pc9HA7NOeecY1772teav/3bvw1c4hcXF40x03nf5Np/0003mSeeeMJcfvnlZr/99vNeiFdddZW56KKLfH1ykf9X/+pfmSeeeMLcdNNNHRf5//k//6dRSpkbbrjBfPvb3zY33HDD1EISJtX7c5/7nCmKwvzRH/1Rb/jMtddea+666y7z3e9+1zz66KPmN37jN0xRFMFkZ7n1/shHPmLuuOMO83d/93fm8ccfN1dddZUBYL7whS/4OivxfZP803/6T83JJ5+cfOZyvO8XX3zRj9EAzIc//GHz6KOPeo/xV7J/77MgefHFFxsAnb977rnH1wFgPv3pT/trrbW55pprzPr1683c3Jx585vf3JlZ7dy501x66aXmoIMOMqtWrTJnn322efrpp/eY3j/96U/NhRdeaPbff3+z//77mwsvvLDjVh7rbYwxn/jEJ8yqVauSsXhPP/20efOb32wOOuggU1WV+bmf+zlz2WWXdWISl1Pvl19+2WzatMm85jWvMWVZmte97nXm4osv7rzLlfa+n3rqqWS/4n1rWu/7j/7oj8zGjRtNVVXm+OOPD1jpxRdfbE4//fSg/r333muOO+44U1WVOfzww5MTqM9//vPmyCOPNGVZmqOOOioY1PeULEXv008/PfluL774Yl/n8ssvN6973etMVVXmNa95jdm0aZPZsmXLK6r3jTfeaH7u537OzM/Pm1e/+tXmH/2jf2TuvPPOzjNX2vs2xlpsVq1aZf7kT/4k+bzleN/EZPva/ZXs33k/ySxZsmTJkqVHcpxklixZsmTJ0iMZJLNkyZIlS5YeySCZJUuWLFmy9EgGySxZsmTJkqVHMkhmyZIlS5YsPZJBMkuWLFmyZOmRDJJZsmTJkiVLj2SQzJIlS5YsWXokg2SWLFmyZMnSIxkks2TJkiVLlh7JIJklS5YsWbL0yP8HG03IVDHs/34AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwlRXk3/q2q7nPPDMuwzwCRQRFQFtn3gLiwCUZxAU0kmlfxBU1ECYliFAO8Cm6IGyAJcUQDQUJADSiMCq4DLyGAQXB7Iz8UZ8KiMDAz957uquf3Ry1dVV19lrvNnbn9fD7n9rnd1X2e7q7ub32frRgREVpppZVWWmmllZrw9a1AK6200korrcxVaUGylVZaaaWVVhqkBclWWmmllVZaaZAWJFtppZVWWmmlQVqQbKWVVlpppZUGaUGylVZaaaWVVhqkBclWWmmllVZaaZAWJFtppZVWWmmlQVqQbKWVVlpppZUGaUFySPn7v/97MMaCdTvvvDNOOumkWfn9tWvX4u///u9xxx131LYtW7YMjDE8/PDDs6LLXJKHH34YjDEsW7Zs2o559dVX4w1veAN23313cM6x8847923/wx/+EK94xSuw5ZZbYsGCBdh1111x4YUXTps+My0f+MAHcNJJJ2HHHXcEYwxvectbku2uvfZaHHXUUVi8eDHGxsawww474JWvfCV+/OMfD/U7RITPfOYzeMELXoCxsTFsv/32OPPMM/GHP/whaGf7c9Pn4osvDto/9thjeMtb3oJtttkGCxcuxGGHHYbvfOc7td+fmJjAxz/+cey1117YZJNNsHjxYpxwwglJ/YuiwPnnn4+dd94ZY2NjeMELXoDPfvaztXb2vRB/ut1ure0zzzyDd73rXdhxxx0xNjaG3XbbDR/72Mcgpay1ffbZZ/Hud78bO+ywA7rdLvbdd1/8y7/8S/K6FkWBSy65BHvvvTcWLFiALbbYAocffnhwXr/4xS9wzjnn4IADDsAWW2yBrbbaCkcccQT+9V//NXlMXz7wgQ+AMYa99tqrb7t169Zht912A2MMn/jEJ5JtHnjgAbz+9a/Htttui7GxMey88854xzveEbSZaj+bbsnWy69ugPK2t70Nxx9//Hr7/bVr1+L8888HABx99NHBthNPPBErVqzA9ttvvx402/jky1/+MlatWoWDDz4YSikURdHY9pprrsFpp52GU045BVdffTU23XRT/L//9//wu9/9bhY1npp86lOfwote9CL8yZ/8Cf7pn/6psd2TTz6JI444AmeddRa22WYbrFy5EpdccgmOOuoofOc738GLX/zivr9zzjnn4NJLL8U555yDl7/85XjwwQdx3nnn4e6778aKFSuQ5zmAqj/Hct5552H58uU4+eST3bqJiQm87GUvw1NPPYVPf/rT2G677fD5z38exx9/PL797W8HOp1++un453/+Z5x77rl46Utfit///ve4+OKL8eIXvxg/+tGPcPDBB7u273jHO/DlL38ZF154IQ466CDceuutOOuss/DMM8/g/e9/f023b33rW1i0aJH7n/OQf5RliWOOOQa/+MUvcOGFF2K33XbDt771Lbzvfe/Db3/7W3zmM58J2r/mNa/B3XffjYsvvhi77bYbrrnmGrzxjW+EUgp/+qd/6tpJKXHyySfjhz/8If72b/8Whx9+ONasWYN77rkHa9asce1uu+023HzzzTjttNNw0EEHoSxLXHfddXj961+P888/H+edd17ynt133334xCc+gcWLFye3+/LBD34w+M1Ybr/9dpx44ok48sgjccUVV2CbbbbBI488gnvvvTdoN9V+Nu1CrUxali5dSieeeOKk9u31elQUxdDtH3/8cQJAH/rQhyb1exur/PrXvyYA9MUvfnHajimldN9PPPFEWrp0abLdb3/7W9pkk03ozDPPnLbfXh/in+8mm2xCb37zm4fe96mnnqI8z+m0007r2+63v/0tCSHor/7qr4L111xzDQGgK6+8su/+zz77LG266ab0x3/8x8H6z3/+8wSAfvzjH7t1RVHQHnvsQQcffLBbNz4+TkIIetOb3hTs/7vf/Y4A0Lve9S637oEHHiDGGH3kIx8J2p5++um0YMECevLJJ926D33oQwSAHn/88b76X3vttQSAbrjhhmD929/+duKc089+9jO37uabbyYAdM011wRtjznmGNphhx2oLEu37lOf+hRxzmnFihV9f//xxx8npVRt/YknnkgLFy6k8fHx2raiKGjfffeld73rXfTiF7+Y9txzz8bj33XXXdTpdOj6668nAPTxj3882L5mzRrafvvt6cQTT0zqMUiG7WczIfPa3HrTTTeBMZY0zVx++eVgjOEnP/kJgLS51cqNN96IF73oReh2u3je855XGxXecccdYIzhy1/+Mv76r//amVt+9atf4fHHH8c73vEO7LHHHth0002x3Xbb4aUvfSl+8IMfuP0ffvhhbLvttgCA888/35l0rFksZW49+uijsddee+Huu+/GkUceiYULF+J5z3seLr74YiilAv1++tOf4thjj8XChQux7bbb4p3vfCduvvlmMMaS5l1f7HX5yU9+gte//vVYtGgRttpqK5x99tkoyxI///nPcfzxx2OzzTbDzjvvjI997GO1YzzyyCN405vehO222w5jY2N44QtfiE9+8pM1PX/3u9/hlFNOwWabbYZFixbh1FNPxapVq5J6/cd//Af+5E/+BFtttRW63S72228/fPWrX+17LlZiFtAk//iP/4g1a9bgve9971Dth5WzzjoLY2NjePzxx5PbzzzzTCxYsAD/8z//My2/N+z5pmSzzTZDt9tFlvU3St15552QUuIVr3hFsN66K2644Ya++1933XV49tln8ba3vS1Yf+ONN2L33XfHYYcd5tZlWYY3velN+L//9//i0UcfBaDPkXMesD0A2HzzzcE5D8yjN910E4gIf/EXfxG0/Yu/+AusW7cO3/rWt/rqmpIf/ehHYIzhhBNOCNafdNJJUErhxhtvDM5p0003xetf//ra7//ud7/DXXfd5dZ9+tOfxlFHHYVDDz207+9vs802yffXwQcfjLVr1+L3v/99bdvFF1+M3//+9/jwhz/c99i9Xg//63/9L7zzne/EgQcemGxz/fXXY+XKlfibv/mbxvdoPxm2n82EzGuQPOmkk7Dddtvhi1/8Ym3bsmXLsP/+++NFL3pR32Pcd999ePe73433vOc9uPHGG3H44YfjrLPOStrkzz33XDzyyCO44oor8I1vfAPbbbed65wf+tCHcPPNN+OLX/winve85+Hoo492ALX99tu7B/Otb30rVqxYgRUrVuCDH/xgX91WrVqFP/uzP8Ob3vQmfP3rX8cJJ5yAc889F1/5yldcm5UrV+LFL34xfv7zn+Pyyy/H1VdfjWeeeQZ/+Zd/2ffYsZxyyinYZ599cMMNN+D000/Hpz71KbznPe/Bq1/9apx44om48cYb8dKXvhTvfe978W//9m9uv8cffxyHH344brvtNlx44YX4+te/jpe//OU455xzAh3WrVuHl7/85bjttttw0UUX4frrr8eSJUtw6qmn1nS5/fbbccQRR+Cpp57CFVdcga997WvYd999ceqpp06r7/L73/8+ttpqK/zsZz/DvvvuiyzLsN122+GMM87A6tWrJ3XMNWvW4KqrrsJJJ53kBkaxnH766RgfH8cXvvCFYH1ZlkN9aIoT/0gpURQFHn74YZx55pkgIrzzne/su0+v1wMAjI2NBevzPA8Go01y1VVXYfPNN68BxwMPPJB8Ru26n/70p+533vGOd+BLX/oSbrrpJqxevRoPP/wwTj/9dCxatAinn356cMxtt90WS5YsSR7zgQceqP3e3nvvDSEEFi9ejD//8z/HI488Ujt/zrkzKVux18M//wceeAAvfOELa4AQ//5vfvMbPPzww9h7773x/ve/H4sXL0aWZdhzzz3xpS99qaZjSm6//XZsu+222G677YL1Dz74IP7P//k/uPzyy7Hpppv2PcYFF1yANWvW9PXDf//73weg+84f//Efo9PpYMstt8Qb3/jGRtfEZPrZjMisc9c5JmeffTYtWLCAnnrqKbfuwQcfJAD02c9+1q2zZhVfli5dSowxuu+++4L1xxxzDG2++ea0Zs0aIiK6/fbbCQAdddRRA/Upy5KKoqCXvexldPLJJ7v1/cytX/ziFwkA/frXv3brXvziFxMAuuuuu4K2e+yxBx133HHu/7/5m78hxhj99Kc/Ddodd9xxBIBuv/32vvra6/LJT34yWL/vvvsSAPq3f/s3t64oCtp2223pNa95jVv3vve9L6nnmWeeSYwx+vnPf05ERJdffjkBoK997WtBu9NPP71mbn3BC15A++23X82cfdJJJ9H2228fmBcHST9z6+67707dbpc222wz+shHPkK33347fexjH6MFCxbQEUccMSmzkjVXXXXVVX3b7bjjjjXzF4ChPv1M08OYW3fffXd3rO23355++MMfDjyv++67jwDQhRdeGKz/zne+QwCo0+k07vvQQw8RAPrf//t/17bleZ5c/+Mf/7hmslRK0XnnnUecc6f/TjvtRPfee2+w7zHHHEO77757UpdOp0Nvf/vb3f9XX301ffjDH6ZbbrmFvvvd79LFF19MW221FS1evJh++9vfunaXXnopAaAf/OAHwfE++MEPEgA69thj3bpdd901eEatWNOwNQOvWLGCANDmm29Oe+yxB331q1+lW2+9lV73utcNZcL+h3/4BwJAn/70p4P1Uko65JBD6I1vfKNb12RuvffeeynPc/rWt75FRJX7Iza32vfJFltsQX/7t39L3/3ud+mKK66grbfemp7//Oe7d6Uvk+lnMyHzHiQfeOABAkBf+MIX3Lq/+Zu/obGxsaTvwZelS5fSXnvtVTumBS37QFiQjDujlcsvv5z2228/GhsbC15mL3jBC1ybyYDkkiVLam3f8IY3BMc9+OCDae+99661W7Zs2UggacHMyhvf+EZijNG6deuC9YcddhgdcMABwe/vsccetePeddddBIAuv/xyIiI65ZRTaLPNNqu1s9fWvvh/+ctfEgD6xCc+QUVRBJ/LLruMANCDDz7Y95x86QeSu+66KwGgiy66KFhvX4jLly8f+nesnHPOOQSA7rnnHrduxYoVNdA88cQTiTFGzz77rFt39913D/V54oknGn9/GJB84IEH6K677qLrr7+eXvayl9Fmm202sJ8QER111FG0+eab01e/+lX6wx/+QD/60Y9o1113JSEEdbvdxv3sNbn77rtr2/I8pzPOOKO23oLktdde69ZdeOGFtHDhQrrgggvo9ttvp6997Wt0zDHH0DbbbEP/+Z//6dodc8wxwTPiS6fTSYKyL3fddRdxzgM/5+OPP05bbbUVvfCFL6Q777yT/vCHP9A111xDixYtIgB0/PHHu7a77rpr8L8VC5K2v/3oRz9yA4yHH37YtVNK0f77709/9Ed/1KjjLbfcQp1Oh173utfVBnMf//jHaauttqL/+Z//cetSIFkUBe23336Bn7cJJI855pjkQOemm24iAPQP//APNR0n28+mW+a1uRUA9txzTxx00EHO5CqlxFe+8hW86lWvwlZbbTVw/9gk46978skng/Wp6NNLLrkEZ555Jg455BDccMMNuPPOO3H33Xfj+OOPx7p16yZzSk623nrr2rqxsbHguE8++WQycm2YaDZf4mvV6XSwcOHCWih8p9PB+Ph48Pup67LDDju47f30jK+/9dOdc845yPM8+NhQ8yeeeGKkc2sSe32PO+64YL31O/3nf/7nyMe06RCbb765W3fTTTfh7/7u74J2ixYtAhHhqaeecuv23XffoT7D9Ot+sueee+Lggw/G6173OnzrW9/C0qVLcdZZZw3c7/rrr8cRRxyBU045BVtuuSVe8pKX4DWveQ323Xdf7Ljjjsl9iqLA1VdfjX322Sfp79p6661rzxkA58aw5/rQQw/hvPPOw/nnn48PfvCDOProo/Enf/InuPnmm7HFFlvg7LPPHnjMNWvWoNfrDbx+Bx98MHbbbTfceeedbt0222zjXCaHHnoottxyS/zVX/0VLrnkEgAIzn/Yc7L97wUveAGWLl3q2jHGcNxxx+G3v/0tHnvssdpxbr31VrzmNa/BMcccg3/+538OfISPPPIIzjvvPHzoQx9Cp9PBU089haeeegplWUIphaeeesq9Py699FL893//Nz70oQ+5dtbNMD4+jqeeesqltzQ9K8cddxwYY8lnZbL9bLpl3oMkoB3id955Jx566CF861vfwsqVK2tO+yZJBY7YdTFIpRzWX/nKV3D00Ufj8ssvx4knnohDDjkEBx54IJ555plJnMnosvXWWycDQJoCYmbi91euXFlbb/0U22yzjWs3jJ62/bnnnou77747+dl3332nRfcmfzUZn99kAmJsYImfO7hq1So88cQTQSqKfWH6gSjxoKDpM6y/ahjJsgz7778/fvGLXwxsu9122+GWW27B//zP/+D+++/HY489hgsuuAC/+MUvcNRRRyX3+fd//3c89thjtYAdK3vvvTf+67/+q7berrO5fffffz+ICAcddFDQLs9z7LPPPoGfce+998bjjz9e61vxMfsJEdXu/0EHHYQHH3wQv/71r/HAAw/gd7/7HV74whcCQHD+e++9Nx566CGUZdn393fZZRcsXLiw8feBeh+89dZb8epXvxovfvGLccMNN6DT6QTb//u//xvr1q3DWWedhS233NJ9fvSjH+Ghhx7ClltuiXPPPReA9o0+/fTT2HXXXV27ffbZB4BOB9lyyy2dzoNiOwY9K6P0s+mWFiQBvPGNb0S328WyZcuwbNky7Ljjjjj22GOH2venP/0p7r///mDdNddcg8022wz777//wP0ZY7Vghp/85Ce1PDHbZqrsMpYXv/jFeOCBB/Dggw8G65sSl6dbXvayl+HBBx+sjSSvvvpqMMbwkpe8BADwkpe8BM888wy+/vWvB+2uueaa4P/dd98du+66K+6//34ceOCByc9mm202Lbq/9rWvBQB885vfDNbfcsstADAw4jAl9iXjJ07feeedyLLMRTUWRYG77roLz3/+84OgiqZBQfx55StfObJeTTI+Po4777wTz3/+84feZ7vttsOLXvQiLFq0CFdccQXWrFnTGCh21VVXodvt4s/+7M+S208++WT87Gc/CyI+y7LEV77yFRxyyCHOImGXPrsDdJ7lf/7nf+KP/uiP3LpXvepVYIzVBhPLli3DggULBuZL33nnnfjlL3/ZeP933nln7LnnnsjzHJ/85Cexww47BAFJJ598Mp599tlaxO+XvvQl7LDDDjjkkEMAaOB41atehYceeiiIbCcifOtb38Iuu+ziBo2AzpV89atfjT/+4z/GTTfdVHvvANoacfvtt9c+++yzD3beeWfcfvvt7l69733vq7W79tprAQBnnHEGbr/9dtcvTj75ZDDGas/KN7/5TRDRwGdlMv1s2mTWDbxzVN74xjfSdtttR51Oh97//vfXtjf5JHfccUfaaaed6J/+6Z/om9/8Jv3Zn/0ZAaCPfvSjrp31m11//fW145533nnEGKPzzjuPvvOd79Bll11GS5YsoV122aXmC1u6dCntvvvudOutt9Ldd9/tfJBNPsmUo/3Nb35zcNxHH32Utt56a9ppp51o2bJl9M1vfpNOO+00Wrp0KQGg733ve32vW1Oe2Jvf/GbaZJNNau1jvR577DHacccdacmSJXTllVfSrbfeSu9617uIMUbveMc7XLs1a9bQbrvtRosWLaLPfe5zdOutt9JZZ51FO+20Uy0Y5bvf/S6NjY3RscceS9dccw1973vfoxtvvJE+8pGP0Ote97q+50NE9NOf/pSuv/56uv766+mAAw6gbbfd1v0fBzi98pWvpLGxMbrwwgtp+fLldNFFF1G326WTTjopaGfv0aB8zqeffpq222472nrrremaa66h8847j7bZZhs688wz6aCDDqKbb76Z3vCGNzi/63TIHXfc4c6v2+3S0Ucf7f5/7LHHXLvDDjuMLrroIrrpppvo9ttvpy9+8Yt08MEHkxCCvv71rwfH3GWXXWiXXXYJ1l155ZV05ZVX0ne+8x264YYb6G1vexsxxmo+XSuPPvooCSHoT//0Txt1Hx8fpz333JOe85zn0D//8z/T8uXL6eSTT6Ysy+iOO+5w7aSUdNBBB1G326XzzjuPvv3tb9MNN9xARx99NAGgL3/5y8Fx3/a2t9HY2Bh9/OMfpzvuuIPe//73E2OMPvzhDwftXvSiF9HHPvYx+sY3vkHLly+nD3/4w7TFFlvQDjvsQL/73e+Ctu9///vp2muvpTvuuIOuvvpqOvroo2nBggX03e9+t3ZexxxzDG255ZZ05ZVX0ne/+10XoPaVr3wlaPerX/2KtthiC9p9993p2muvpZtvvplOPvlkYowF75sf/OAHtGDBAtp5553pu9/9Lq1YsSL4PP30043XmKj5fRJLk0+SiOgv//IviXNOZ599Ni1fvpw+//nP05Zbbkn77bcfTUxMuHaj9LPZkBYkjdx2220uYOYXv/hFbXsTSJ544on0r//6r7TnnntSp9OhnXfemS655JKgXT+QnJiYoHPOOYd23HFH6na7tP/++9NNN91UAzMiom9/+9tBgI8NsJgKSBJpB/nLX/5y6na7tNVWW9Fb3/pW+tKXvkQA6P777+9z1aYOkkRE/9//9//Rn/7pn9LWW29NeZ7T7rvvTh//+MdrUai//e1v6bWvfS1tuummtNlmm9FrX/taF6ARg8/9999Pp5xyCm233XaU5zktWbKEXvrSl9IVV1zR93z8c0p94sCptWvX0nvf+156znOeQ1mW0U477UTnnntuLTn7s5/9LAFwUYD95J577qHDDjuMxsbGaJdddqFbb72VnnjiCTrhhBNo4cKFtGTJEvrgBz84qejZlNhI6NTHD5T467/+a9pnn31o0aJFlGUZLVmyhE4++WT60Y9+VDvm0qVLa/3sC1/4Ar3whS+khQsX0qabbkpHHnkk3XTTTY16ffjDHyYASRDxZdWqVfTnf/7ntNVWW1G326VDDz00GTT11FNP0d/93d85Hbbbbjs6+uij6ZZbbqm17fV69KEPfYh22mkn6nQ6tNtuu9FnPvOZWrs3vOEN9PznP5822WQTyvOcli5dSmeccUYNIIl0xLY93jbbbEOvfe1r6Sc/+UnynJ555hl617veRUuWLKFOp0MvetGLgiAkX/7rv/6LTjzxRNpss83c+X/jG98I2vTr0/F9Tsl0gGRZlnTxxRfT85//fMrznLbffns688wz6Q9/+EPQbpR+NhvCiKaYNNXKRilvf/vbce211+LJJ5+s+S1aGV1OOeUU/PrXv8bdd9+9vlVppZVWRpC2dmsruOCCC7DDDjvgec97Hp599ln8+7//O/7xH/8RH/jAB1qAnAYhItxxxx1BEYdWWmllw5AWJFtBnuf4+Mc/jt/+9rcoyxK77rorLrnkkvUSbr0xCmMsGYrfSiutzH1pza2ttNJKK6200iAzmgLy/e9/H6985Suxww47gDGGm266aeA+3/ve93DAAQe4YuFXXHFFrc0NN9yAPfbYA2NjY9hjjz2C4sCttNJKK620Ml0yoyC5Zs0a7LPPPvjc5z43VPtf//rXeMUrXoEjjzwS9957L97//vfjXe96V5AvtGLFCpx66qk47bTTcP/997u5/Pw8qVZaaaWVVlqZDpk1cytjDDfeeCNe/epXN7Z573vfi69//et46KGH3LozzjgD999/v0uuP/XUU7F69eogKfX444/Hlltu6RJZW2mllVZaaWU6ZE4F7qxYsaJW6ea4447DVVddhaIokOc5VqxYgfe85z21NpdeemnjcScmJjAxMeH+V0rh97//PbbeeutJzW3WSiuttNLK+hUiwjPPPIMddthhSnOiDpI5BZKrVq2qFbFevHgxyrLEE088ge23376xTb9aoxdddBHOP//8GdG5lVZaaaWV9Se/+c1vgrKC0y1zCiSBehFwaw3216fa9GOE5557blDl/+mnn8ZOO+2EX/7yl0EdTwZdfiLQx1uX2j5IpnP/VqdWp2H3D54GUvXv3jrmb1dUbxt/d/v1077evr8MZgI0yOrDZjDEInH+7men6LEKzotx/eEMxDjAM4BxENo+HsszzzyDXXfdddpqMTfJnALJJUuW1BjhY489hizL3IwaTW36Te00NjaWLOa72WabBVMSNYntwvGNa7qBM9FxWp1anUbRyb12Y1A0SweMKr1dt6HauhpYpMCjD6A0Sj+Aa9o2mX1GkabzGHX9ILG6WoAEQFwYsOQgnmmwRHP/8LfNlz7u2s2wy2xOgeRhhx2Gb3zjG8G62267DQceeCDyPHdtli9fHvglb7vtNhx++OFT/v1hOwd5y7gzDNrH32+Y32p1anWaNp18gPTB0a2PQLFpaY8RHdeJmgRYNPmUEmBH8brJgOggGRL82TCDhn7i6UgWJBnXx2UcRELfW1IAz8AMq+yrurecd318BmRGQfLZZ5/Fr371K/f/r3/9a9x3333YaqutsNNOO+Hcc8/Fo48+iquvvhqAjmT93Oc+h7PPPhunn346VqxYgauuuiqIWj3rrLNw1FFH4aMf/She9apX4Wtf+xq+/e1v44c//OGUdB1lhOOLv822HcY0khohxfu0OrU6TUWn6qA+EBqAjMGR6qAJUhUIxMzTW1czN06GUakUGEYMwQCKW+sD6zBgOoIMBL/Edaj2Hf5V7s6RcX1eXIOkNbUyUiBSYDwDSIFEJwDKto/PvMxoCsgdd9zh5gP05c1vfjOWLVuGt7zlLXj44Ydxxx13uG3f+9738J73vAc//elPscMOO+C9730vzjjjjGD/f/3Xf8UHPvAB/Pd//zd22WUXfPjDH8ZrXvOaofVavXo1Fi1ahFWrVg1lbp0uGbaTzaa0Og0nG5pOgbnVfGKATIJjDIzKB8wGphl/RwJk+kgSzFgfAAzYF2tuN5WIx5gNp8zQ0fpBPtyk+KZWsyTG9P8iq/ySPNMmWJE58+t0978NrY+vXr0aS5YswdNPPz2j7/F5WZZuGJAc1EGmun0y0uo0nLQ6GZAcBiD7gWMMjP0YZvw99X9S0eEBkmJA6fcdCSY6gjSy44bzHep6JH/IB0fv/HgWgqUPlFlnIFDOhz4+WyA5p3ySc0WGuVmjvrCm2iFbnabvGPNap34AGYOj3wao2pjjpMytJGX4eyr63woX9fMSdp1MMkSWAETqA5gsoCBDsMp+IB8HPPnba0FR4d2pXRNfLXPOxFh1fjzTJlbjnyRSYMKYXUkDI+MKlAGsASjndR+fZmlBMiHT3WH62dmHlVan4aTVqUGUqr/0Y4CUZQ0cWQyKHru0L39S4XK4wJ2i+mrMolQCzAdP8z0JnjFwMu7Oj7zvDhxH8ZMOClBqAMXG6wGkrwnnoNKqKQAuwIQIAdL4JUEEcAUI+9vmN/sAZZNstH18hqQFyRFlOkZM0+2AbnUaTuarTix46SdAUJZJ9si873Y7SRmCgH35p4AB6A+Yns/QgiOhqFgmN8f0wdMACcgAJqkAIP3IUKOQXgwZxDNZUKwNELzrULsm8W9y4c6bOA8A056fY5GkXLSr5do+UM7XPj6TMq9BkkXfky8YhDeoaf+Uc5lF24YZLfVr3+rU6jSKTjWpvezTPkqmykZwdMDYxB7t+j4mxuCcRTM4+sBISmlQVRJQDYBpz82CpgeMLPq/7/Vp+O6ug3+e0UChL1g2XRNRnQ84N0sDmFmnAktSgDW3CqWXZj1lHTARTpA+L/v4DMi8BsmmG+H/3+8GDeog8fHj//t1gFanVqep6qR3SrAh/6P6AyTKsgaOARD4oDjIvJiQgGVF5lXi5hg+aHqAyez+8X4jV/txytS++6zRgmPy/OPBgwXEIUzQVBYVq+ZCg6YFTKUcWCLz2T3pbVmnAh5S2jxrWOW86eMzLPMaJGMZNDKKR0iptoO2+22GuemtTq1O06WTn/JRy5eMAJIp6YCvBpD2uw+MSkU+uOGYpAM4LhyQOOCTUgOf+d+ClDPNemAZXKsUWPom2X7SYFJtBMMUOHrssgLUPmDpA6Rl1JZROgatwFQOlut7SAAYZZXOZPMphwvo2Vj7+ExIC5LoP9ph3jIeIQ1zs0a5oU2jsVanVqfJ6OSkKWgHqPkh3QvXAmRZNIOjD4wRCAzywwERMBq2qIFBgnENDhYwmf0NA5Yps10jWFrfZfXDoSIReKYAMmaPNTNr0zVpAsuU8ITZ1Q4YvN9lWUcPckSnAkd7HsLoPmRAz0bTx2dQWpBE/eHypd/NGmbboFFY0/FanVqdpqpT/SD9wDI0sVZAUAECFb1GIEiCQD+/pBDVPg4YK+ZUZ40eWHrXIQZL5gELGSbKiMKUkgZGmUxl6QeQCfZor1nw3bsW5DPJmqm5ALPnbk2uDiQlqOiB5R2g47FK4ZlfMxUMIIZhlBtdH58BaUES9Zsy7EhmKiOeQfu2OrU6TadOQVvfFwkEDJIRVT7IsmgGyBQ4poDAbrNi2ZJpwzjX+1nQdKyxAssaELpjaabJvOOSA9sBQNlHav5Eq48PmH7bfgAppb4eTYFOTorqfLkAyiIEybIAstwcX4KyHExJsEyC5R1jftX3lbzUncmkiAAbfh+fTmlBEmmzwKC2fX0/3rZ+I65B+7U6tTpNRaehxE/1AKoUD/eiHwCQPhAAYTRnyrSowsjVJkbor6sYoqr+t4390nPWfzeNkj6HBrOz/V720uCYAsuUcBu4IyuQdJG95jjSLDvaf8w6xvxq9UYzo5x3fXyK0oIkBo+K/Js2jEnA7xBN7QaZKVqdWp2mqhNQmVGbfI+xf7LmT0uAovVTBsxxIFNq0NcwvxpYclGxRHsNElV6nFgwmQZhQjg2ybjoD2hAfeCA6poMigpOHi8O3rHpIO5++PdFAp0uoCT4GAX3kwBXbIFybxoubFx9fKalBcmExDdjOm7OoNHUqOaNVqdWp0Gj86GiOb22NRYJGLYUMqUUe0wVFhhKfJOpd0562xRAL04L6VcIHdDnz1hYUs6aO/uJNxjwmXX1f0NUMACS/r6e+RkAUIAJXk8HKXtgWQGW5wYc9X1jY10oADyaNtf1EZGBic5AJrch9fHZ8k+2IDlFabqBTZ2m6aZP5yip1anVqa94uZE+0/TZXcBWvHUxU9LfRzAlGkkFhQRM0QKJ19Z9T4GnBRL/N2KAHGKSZps24rPJUcW/NimAJKkcKCppzdwVYDKhdeGKA0UJxrle56WDuIFKXoAZJgmloJQC63TBvLoCxDhYwfT1M0C5MfTx2WKWLUhOUSZzoyb1Yhvx+JPZp9VpuH02ZJ36TmHls0EgXYvUY0rVuhHNrZY9+oEpng4aMBsAbYDPMSjpBlQzaeiNffd1YlmlELVr677b87S+wpREkaw+QCqpArAEPKAsNFCqAg4gueJgUlVgacDXmWA73fA6AGB5/R74QNl4+tiw+/h0y7wHyfV14fv9ZqtTJa1Ow8lQvzmk+TVZmNsuvYCUoQDSgYkPhCoESrOuxiZ94aK+zatz6n9nQoTsMQGStpZrctBgCg8QVBIoLbAzc84pv2Wqvm0KIMl8d/tJy2S9knqCQwkOxjlEJwOTCrwTmb/tdfUsAAwIZ06xv4HhgLJJ5nQfnwGZ9yAZm3N8GdQZZqqztDq1Os2axLmTVgKgTKRE1A4TAWTcNgWWQwhrMqMGs4UkANIHRn+uRrvO6h3PEmILpNvtCaB0gUaWBTt/YgWWzJbPs8cx7DsFkCS1mTQQ738uNZtkgoOU0mCpFHge+jx5p35/GBCYXqvzGgyUTbLB9fEpyrwGyX6hxqmQZCsULWdCn1anVqcZFwpf4vUZPEb0yQ1ZrzUpPtBxL2DFiANLV5XGb58AyBgcB5lcPbAk878rHm5n3oC5j1yFSx8suQDjiWsZSQyQlPBNuraCOxMs5xy8k4GUApcKwmOVCgBTJiVESdgzdUDJeDDgGBUoN8g+Pg0yr0HSv2HxCMcfOQajyBGOnwLhQRFbrU6tTtOp00xJEM06kxIAo3As0jez9gVI/wP0LSjAiJypVfslua5nC4A4AMaAEmAZ9PRdZqn1Ubq0ng+OBsjj4grkmV+Vzyjd+hBgmZn1hEkOEhxKKXDO3X6OVQLBPVFACJSJc46Bsu3jdZnXIAmENzWWuOMA/TtJSuLtTSOqVHBAq1Or02R1GkoiVpV6oTfvak2OXnsbedkkHgu0x4jNrz6LDJkirwAyyys/pJlKihgDeJYEx8A/2Sfwx507MTAyfkmewUUBqxLIsgAowXVFH1ctiCuQEKGvcIBU5tfKJOvrw8z/XHAwJQKwFGZfxyq74fXvC5T2+gC1qNcNoY+PAr5TkXkPkk03sOkmN+07yvZUR4lHZK1OrU5T0WloMS9KJhJJ856/bWRpDMDxANJbFwCmD4xRUn313QNILqoXvgFKB44+MMa+yZpuqEysAGxheKYkyMxHyVQJZACjSn+fLen9JBiXpgiAqoA0EaDjr/PBMdnWSwnhgoPnuWaSnuk2A8D9QgPwgNIEGyUZJeN6kIENp4/PFquc9yDpS1NHsNL0Mhq0PmWWGPYYrU6tTpPRKSnDpkAAsFNVue/G35YsWu5FevZlkzFAxlGphkWyCAzBhS7sbedVjAGSZxV75FkIjj6z9K9BU0EBswQpMOabXaXbzhgHqVLrZHcF9NReXAFZXoEsN9GvXIEJCa44yATihEBY5Z/6Ea+p/EkdwMOhpILoaKDkhlUCgFAK8RBlIKMUmb522HD6eMskZ0HiizxoRD7q6GgUU1hqNNbq1Oo0WZ0af5Px/i+X2I9m8wDtUoj6iyyO7uxj0gwZYwIgDQj6ZtUUQCLLHPtxLIhxA5oNPknf9KqV8S6MAiCCou/kwLIEcQ7IsgJIew08oLRpLJpJKiDXBcl9NomirN8TFTLIACSDij7W/BpGu4o8C9inbdcPKLkQ3nUZr65F1u0LhnOpj7dMchZkuuj7ZMxdTZ2t1anVaTp06iuc64hNj1URU2EZNl6ZYC34OT+kxyb9uqtWj/6/XaV0TAUgK1DMKvYoPJ9kyuxqz9eP8IxTPpxf0jO1mmAexjhIlkBwvF4FlH6VHbNkWV5dO65ccQCm+rN6vyJPHPFaFReoGCnP9au8BByjVFIhk1WUK1ABpQLAF3i/ZwZPxDiYKZQ+1/t4yyRnUYa5Yf3aTKajpDpbk32/1anVaVSd9I8MNq/GIGFf5tXsE56pFaixybhAeV9JmFuHBUgXrGMA0vkeeabZo8jq4Gh9lby/ydWZWAGAVyDJyEScqtJMtWX8t6oM7zkr0y9sWz1ImeNw6QBOmZQOZsDOj2glGQJkKjqWZGV6FXnm2glT1UcphayrwS4DBgIlY6ZsnVn6M4rYazTX+njLJGdRmi6274wf5oZMKYAi2rfVqdVpqjoBBgQNU0xVX/FNkVWUZmVydWzS6MK4Sr4og8CVpvNJgKMfpBMDpPue5XrORBPB6tijAUefUdbA0QdNo4eyFtVAWWOGZhycmXMjBXAFprRZE4zpa8kzMNYDWfOrrd7jHy4u+G4/eUdXzDHAxiVHU2hUmBZSLX1/JlP6u+hkzkzLTVqIL/2Aki1kgVUBMPc6yqGcq318pqUFyUjiCC2WWD+ME3s6b36rU6vTtOkU+OioYlCeyZUBzo8GwLFIvV6GugsdzBODZU3sMaypMwJIZ07NOyFYWoA0wBcDpANHa3LlWQCOxDgUaUDUS61pEzDpdEh9FoLp5H3wTKd/UAbIUn9nHGA9zTLL6F56s5roH1OmnJ8GSt7JdXk6UfkWdWqHCliklVoepTdjiAVNfS/6Ww5ioCS/pF8X+pyKcY+JZ0NZI+ZcH59maUEyktis4P8/ig181Js9yDTR6tTqNK3i+SWdydWySaCKygQ0SBU9AADLOqawNgeUV4bNgKU1qdanfoIGRqDOHu2L2gfILAczjNJFsDYBpGWPIquBo1QaGBUsUFaznajoonJzQxgInDFIpkFFcAbGMghumLniFYuUPQ0kZXU3+ZgBYVsM3tZSNbVVbWk5558U2uQa6CI4pMce41lDAABSgZvgHZJKV+IxLDJlpgVCoAwiXrnQbJJxoDRAKXsukGcu9vHWJ7kepcn2PZOjnEHHbnUa7titTn3Eq0TDPAbpB7UQ0yZWKKFntC+t6S2cGDlgjrxKpocPmr44JukF7vh+SCEcMCLL6ykeDQDpttsUhggcpQeMFaOkxmtvX7ycAYwBggGSzJIxCJZBZJlmkTaIR/IaiDigtOKbXE2dVWEAk3NdHICb1A4btRqL9lGGmkspwQTTptNeWWOT9VhaIPcGKzYaWHEO7gOliXi1gTxzsY/P1vPTgmRCUqOmoXwuXptUJFa83h8JDbrhrU6tTqPoFAjnAHGAjPnUT4mAxybNNkJodmXQlkbGRcUogQocldSM0Qvw8Qt9B3rEYDlMikcKIEWnBpjSgKBUFTi6dUQVSJorRomLz5j1ThIEByQ0YAqugZIYQJxBiA7AMzDZazQp8jHowuV+9R3f7JpLcK9+KxPCVdfpJyoCSkgCCQITSs9BCbgqPBnqQMkF1+khXOjUFnMfiAuTGjLuIoJdQM8AoFzvfXwGZV6DZHzB7c1I3exhRi0UfU/t56/v1zFanVqdpqJT6mVCJvDEJchzbiI3CDawxQVwROXX3HHzDuzciHY6piST9M2sPjACIXuM/I+1CFbPnEpZp/I/egBJBiCl0mZVC5JSacYolQZG3y9pocgHSptCyUFgjEGSBU1AGDYpePU94xwi64ZsPPLhMX+eR6WAMeXMrlAKvCihTOFyZSrpKOGldwQziZADyDgtRIE7sATgzLclUANKyzYFF4HJlYSA4qIK5LHRwjwDiU4S9ObCczfTMq9BcqoXfNC+TR0n1TFanVqdZkInGFAMln4kI4f2TZrgFOKZK+odAKXSwSVUGiZpANGBZcQka2JB0wNHV0zA9z82RLAGAToeYBLjDhALDxQlkQPH0PQKWGNr7JN0qjJ9Da3JlYMgiGmQ9MBSAcgtq4zuifs/10wcSgJjXe3PHetWZtc8c2ySW3+lqCZatqki8eTMdTYpwQXTYNmTYKJqb4FSGj+o5PYecm2m5Rxc2Gtq7ssCA5DWP8k5aAj/5CCZzj4+W6xyXoMkMPhmx1Q/vlmDJB4BDaNDq1Or01R1CsCbcTBYoJQOJGMTaxNQMhJAoc2KLOu4+QsdyNkJhlMl66zenh+sNllyVIO1L0CK3PkfJbgHiBoES6XNqhYkJVHN3KqBlKBS9lYAnDEIbl7EzJhbCRAsBEt7vIwz5KLjBiApiwKzDNsG8ljAzDuu9irvlVC8yntkkrsI1uR9Vik2KUGCQXQEpMcfVSLylXGuA3m4ZuqKCxPNa+6Ji3LtgRXWwpCuyBMcF7PTx2eLTc57kPQlddH9GxXf+KZRkb8+1VlGGYm1OrU6TYtOnANSaZMrKiZJAJjQqQ01oLTFvm2dUvOCt6zSFhwgFRUJaPp92yYGypT/0VTQCfyPNkBHdDR7NKBoAbHwvvvgKJW+PoVUGiyVBc1mkAQAwRhywcAZQ8Z9U6sGyyAQiBgynkHkVc6kOzopsDEPLE0OJe9IPe2V0kE8qshqbNIvOMCE0iftiR/IQyaIp2KTHNbQatkkE9xBpzW75sKW8xPBkgthAJKZQgpMDwREVLM2kvX93E23tCDpyah29FRnGLSPv98oo6pWp1anKevkEsWVBsogcTwCSjvZsCo1OJFJpicRgCUAN99h36mhUvVa4ymuholgNQBZGuZYqJBFOn+kAcfSMMZCEgqltMnVgKkPkjaC1anLGARj4JJpk6oBzFzoYgO5YZKSCDnp4BYFoMM5RK79kDVG2VEGJG0qiAQrC6DTBZfa9GpZpa2cwwV31XX0ZWS1GvO+6ZUDZgJtBgGdxWGBUnp+YiU4yvEqvzIXFhy5LtAuBFSW65xRP3/SDWISg4E+MpvP3XRLC5JGhhnhpCR4CBCaCeL9Rh0ttTq1Ok1FJz+IhOy/tuqaB4awZdaEAUelAGJgCuF8irbotwFLBjifJAAHminxC5tbcGwsUJ4CSOODTAFkaZih/r8yrRZSOXAsJLk2FUhq3aQHlsKwSM70d861eTXnHLliyCUhFwxKcEgiZMRcQFBHaGbZERxZE1B24aJdLau0Ztesa0vLVZVztP9ROR+l7GPSBirA5AAkZA0o9b0I2SQb7+mIVy4q/6Srq+ulhdicUG7YpFfFKLjXmMU+PgsyuJzCNMhll12G5z73ueh2uzjggAPwgx/8oLHtW97yFjDGap8999zTtVm2bFmyzfj4+KR1bLroo9yMeOQzSAbZ61udWp2molO40Rb+9tI/3JRSVTSpNm9mBqhEfZvvG7SRqJ0xsLwDPrbA1FkNP3xsgTbXZpk2rUbHdcE4QwJkYT6lAcjwf80ax0uJtYX+jJcK41JhbSExUerlukK57eu8z7O9EmsLiWd75jNRYm2h8EyvxDM9iWfM9rU9iYmS0JPVx/+/BAflXVA2pgEl6+il6IAv2ASs03Uf7pa5DuTpZBoUbQCP4OB5ZooPsGRlHZIUfJRZykIzUtlTkEUJVZQox3tQvRKyKCHN93K8BzU+DuqNgybsch2oNw4UPTDZAysmNFCWPTewGtRvB8m09vEZkhlnktdddx3e/e5347LLLsMRRxyBL3zhCzjhhBPw4IMPYqeddqq1//SnP42LL77Y/V+WJfbZZx+8/vWvD9ptvvnm+PnPfx6s63a7mC4ZdDMms33YF2mrU6vTtOlk2aSJbK0xSqb/MDLRr8EUUWbWC2872SIEHrsEUK33p6KyeiUKiwfs0fc/Ot+kALJOkANZOlOqNa3CgaMkA5iGPY5Lpb8rcktlwNSaX4Fm36QztzI9q0bOOQpFyDkzS4VCcYxlHN1MeCXv/ApDFaMML4gC624S+CeZYZeZMbNm3U4jmyRBIMHQL6WSJLn0DssoSTIoM1WXNABsI16Z4Ch5T/snsw5oYp2OaHVVkPS9YaU3xZZndgXm5nM3HTLjIHnJJZfgrW99K972trcBAC699FLceuutuPzyy3HRRRfV2i9atAiLFi1y/9900034wx/+gL/4i78I2jHGsGTJkhnReZjRyig3azpGP61O03eMeadTlLtHACBM1R1bD9T3UwamVd2ObFtSes7FFGC6H/C++ybfKP2kVoi8wSeZ9EE2AOR4qQFxopTG1Ep1sLTpIWQDfepXU3ALkjrSNecEXuogl7FMg6UtVqAUMJZxUMagoKDAoEh/ulkElKQA6oKRAu9u4ooNMCVBpZ52S3RKXQygyFxVHmuC1bVaTWCPpFpEsV+2joMHQBl0CZOPCejiAuW4BkpVlGC98ea0EGuN4Jn2U+bdapqtxg7o9bshZX0G6sQyoyDZ6/Vwzz334H3ve1+w/thjj8WPf/zjoY5x1VVX4eUvfzmWLl0arH/22WexdOlSSCmx77774sILL8R+++2XPMbExAQmJibc/6tXr+77m9P9UuxnZx9WWp2Gk1anpoPw8DupGlhWoNfELG20qzIUVFSACYTg2KSDSz9h9fkfGwCy+lQ+SBfJagBy3IDiRKlQqAosS88naZc9qQzQ2uPVr15mCrkKztDJOARXxi+pwTYX3AAvocg4JAko0swyFBUCZTSwsGySKQle9KCUglASSqoqFaRXBNGuXHFIKHDBQIrVIl7dL0sVAKXiBCYJTCqwXukCecrxHpgQZqmZpU0LIVc60EsLKTMd9er5J4nF5z2azMRzN10yoyD5xBNPQEqJxYsXB+sXL16MVatWDdx/5cqV+OY3v4lrrrkmWP+CF7wAy5Ytw957743Vq1fj05/+NI444gjcf//92HXXXWvHueiii3D++edP7WSMTMeIyW6frhvf6jSczCedUi8Z/cUzffqmUuaxQQuY/cASiAATum0/Pa0PFHC+0ZqJ1QPNABxdagc8cDSM0phYY4CcKCuT60SpHDj2SoXSLC2LlIlaqYJzzSg5w1jGDVgydDOB3DBSP1JWkU2BCa8DZ1SZXq2JWpQAdcHHCKosdP5kWdTMriQVlJk1xGeTosNRrtOF0rkwBdwTYOkDJRPKBPEAQFkBb6+EzAswzqHyEjIvwcsCVBbO7MryDqg3Xk8Lsf7lPiA5F5+7UWRWoltZ5Kcgotq6lCxbtgxbbLEFXv3qVwfrDz30UBx66KHu/yOOOAL7778/PvvZz+Izn/lM7Tjnnnsuzj77bPf/6tWr8ZznPAe+BsNEI8Ya+/9TtJ687U03uOlFNqhDtDq1Oo2qEyHx2xG7rPyKKmSXMVgC7nsAmEA1h2JKeAXQzvQazQHpCpUjZI+uaID/vwJ6LoKVagBpQbOQhHWFRM+s00ApAzbZaHI1n14mHKvsZQoLOsKwSB0lW0XK2mhZL2e01FxOT5BcASUj0jmona5mlGVRM7uqIoNQHZ3WIRVYUTo2KToCal0JZquw+33B/M8Ec0Cp1ymQZM4/aQODlCmPJ4ssiHalLAfKAjQxrlNEbBF6nukgHguQOa983nE/S/RJYHr6+GzIjILkNttsAyFEjTU+9thjNXYZCxHhn/7pn3Daaaeh0+n0bcs5x0EHHYRf/vKXye1jY2MYGxur/4ZZxjeiaUQe36BBL8H4+PH//TpAq1Or00zqFBwvDqyxrJED1ixIxh/p+yRjwNTHagbJIIDHL7IeA6QpNUdeJR3rR/TZpItktUE6BiwrBqlBs2c+a3vSgaNlkdbcWjFKvRSeuTXjDJ1MeSApIBWhk3EoEga87dI/4woouSQwBnR4BpF3NUDa6zmmApCMza4kFVSegxWlM8Fa36ToCI1Vwgbq8GguStIgCp0e0mR2ZZxDCu6q/si8BM97OrrVgmWRg3rjOi3EDW602dXmsMb9bqb7+GzIjIJkp9PBAQccgOXLl+Pkk09265cvX45XvepVfff93ve+h1/96ld461vfOvB3iAj33Xcf9t577ynpO2j0H4+QUm0HbffbDHPTW51anWZaJ38/BjiWx4AKMBPs0vdJ1qJcGxVIpKB4AAlmp7oyM3gApnJOxST9SjeSqqhV54OUChMGNCtwVOiV0gFmxShVDSB9sUzSmlq12VUfa0EnM3qKyNwaHAEATNF0vaYrOqBc56dClIDSaTKx2ZXKHkReQHUy8CJDpsaq+SLtx0S6xr5JJlhgfo3NrpZNktDHkUUJ3smgikKDpUkXYXkBlB5Y5h2g7OloV56BlT1dnckuIza5Pvr4dMuMm1vPPvtsnHbaaTjwwANx2GGH4corr8QjjzyCM844A4A2hT766KO4+uqrg/2uuuoqHHLIIdhrr71qxzz//PNx6KGHYtddd8Xq1avxmc98Bvfddx8+//nPT0rHfqMd5i3jEdIwN2uUG9rEOFqdWp3Wm04W1DywBNAfMN0BrPk2ChoC6gBpvls/pAIM8FQl5iw4+izSmlkLWbFHG1BjTay9UmFdrwwAsheBZAooRS14h6FnfJNjGQ/NtZ10ST5dnEDDE2O6Wk/BGDqiA2Rlxcj9tBDDKFnZA1cKmap8kdwwyTg1hEmqsckYKN1tkVRjk4xznTspOHie6++GTbIsBxUFWOb5KLMOGO+FZlfZA2XdWe3jsyEzDpKnnnoqnnzySVxwwQVYuXIl9tprL9xyyy0uWnXlypV45JFHgn2efvpp3HDDDfj0pz+dPOZTTz2Ft7/97Vi1ahUWLVqE/fbbD9///vdx8MEHT0rH2A7uS7+bNcy2QaP6puO1OrU6zSmd+rFLIAJMs0sUyEOWSjl/ZOibJFjmSFEh8jSLrMCxYpKFJBfBWgGijEyuEUgaNkoJJsm4rrrTKytzqza5cg9kcxchq03C9eNwxivfJBR4VgXyMFWaqjvaP2lTQqzZlRc9XbIuz1wQj51iS5tfC8cmbQqsD5TBPTD190jV2SQZMG5kk2UOlDlYWWiza2YBUgDcLEWVj9u3P/XZNkofnw1hRA1VfjdiWb16NRYtWoRVq1Zh8803r20fdiQzlRHPqPu2Ok1v+1anqevkANL5Kqu8y8Z0EC+6lQLTqzGzkhesQ/WiARYIJ0wVnYlSV9SZKLWJ1VbYWdeTDhDX9crgf/eRCkoRVKmX9lVowZIZJslMeTrGGUTG0REaKBd0BDoZx8KOwKbdDAs6GTbrZtikk2FhzrHpWIaFucBmHYFNOxnGMoYxwdHNGBZkHGOCQage+MQasGItWG8dWLEWtPZZqDWrQWufgVq3Bmrtaqi1a1GsHUexZhzlmnUox3so1ozrijlFCdmT+lNIyJ5yDNL3TwIwVXwYREf7IUVHQHQ4sm4HPM+QdTsQCzrIFy5A1u0g26SLfJOurhLU3cQsF4It2AR84eZAp6un0OosqJZTKFnXT+J9V69ejSVLluDpp59OvsenS9rarUibBQa17fvy8Lb1G8EP2q/VqdVpTuvkTbWVNMdascDpFdj2AdL6IWMWaU2sesLkUBPL/uwckRY8LZOzH8siJ3xwtOkgpf4QkV4acPR/y0bhW4CUpYLMOHqSu+CdtE8zg+A6gb8icxkYyNSF1T7KBaIDsmZXWYKpjo52LXsuf9KaXbkJ3FF5Du7lUQIIzK6iAweUXFSBPNwrZ0eSzMxpllGqilEaNqk6mY56HcQmVQnIEuClLlkXzRQyk318NqQFSdRvRnwz/Zs2jEnA7xCjmB36vcRanVqd5qpOQOi7BCkNghYo41qjUZSr/U0NiJUv0paLs5jlm1oBHyipCuKhKmI1BkhrHu1JhbInIaUGRguU2uSKmtmVcQbGTfCLAR1ZcihF6JVNIFkXXb2HgcsKJAVj6ORdDTR5V6fHkZ4+SykFVhbO7Jp1e843SV7wDqBL57nZPrxoVwuUyXuoFGDm+XTgaPydSiqoXgnKM8hewjdZ9PRk2WUJxktAFro4hDKzyXhBPDPZx2dDWpBMSHwzpuPmDBpNDTJDtDq1Os1lnawu8MHSB8pAOS9fElWOYcrz4wASAIFAqNdbVeYAfpm51MdnkEpV7FFKBVXqYzo26QEeM6ZWzhgYJ4iMgRvzLOVVwE46OtYsGQNnEoIxsI6AYDqQR7DKP2nzJqE6YJ0SrCzAip6LdmVlD5lUUEVZ5U52TdpFFO2qo2qlLdEb5E3GokwAD89RB2HpLcsEm7SRrspjkVyYyN3+qXuDZJg+PhvSguQUpekGNr2Emm76dI6SWp1andanTgDC3Mt+QBkfwzvIMOdgp7nyASqOVvU/FhyVDAHSskrfN1kdMPRLkuJgXAOq/fSrAQtoFllNvwUILrRplAGCE4TogEQJZF1XI5cvIEBJKN/sWhYQpvi5Nbv60a5OehIWKAFXz17rkgBKQAMk8opVkpQuNUQvdTF2n02ysgAsm1TW9Fo4PzN4HWLmYh/vJy1ITlEmc6P6jY6mQ1qdhj/+ZPZpdRpuH/cqbgJEVCwyZamcDFOIwdH/Li2oWTNtBJABUCZMrhYkZakgMh4cCwDWRbr4FXssixRM6smbOYdghJ4ChEnyH7PVeFSpK+/YajxlUZldyyIoWWcZn4hBEnBASUrV5kRkgoHx+n2x5ltrehXw2KWUJkcy19G4qmKXlW9SALwEs4BpwdL/jWFvZrTPTPbxfjLvQXJ9Xfh+v9nqVEmr03Ay13WKAa9JHxYpa//nABgYGMhNjDyM+MXLJYXsj8xMID5AahMsUJs+S5Ixt0IDpGea5VnVdh1CcAR0sXQLkJlgyAsJznQlH2aCeDSj5MiyjgPIpNnV5FCKol6yTngAZ6vxoCehXGLIcKKM6dUey4KxKkqIXGmALHquCg/L8hqbJAuYURDPVGR99GGgBclgxBvfhEEvl5l6+bQ6tTptbDoFzDIhnDVOZpGaohLcrLSAKTgDZGXejCU2hZIHmJY5+gBJCTZJnIGRzjHkWfU7PMoHXcdYAJSCl4ZNaoAUjCHnCuuEhOBCBxnJtNmVOTZpQbKnQbJbuJJ11B0LS9EZsJQoI6CMrqExuzaaXw1LVUqbcwG4+S/JmwOTjDnYVV5Slg1nJuq1mndyfQ3YpiLzGiT7hRqnQpKtULScCX1anVqdNjadUiYzzipTK2MMnAjEGAjekjTj4iYi1E6ILIyfkHMGrlgFnBGLi0WpykTqm0wtQNq8Sb29Ah89hRQDcT1XJCkCZYQMNq4U4NHv+WXtOhk3plaFtTw0uwrG0JMURrtmHZAsqiIDFiSLAuh0Q7Nrdwwl4PyTVixQ6rkn62ySNUW+JtrqyFfppveyJlcNmhJcSa23yqBniCldEA8TncZ+ONdlXoNkbA6iaJsfkuxHWg0rKRAeFLHV6tTqtLHrFIsFSs4AZUyqjDSDtEsd9AIoxqDsvL+cQSg4wLQfIARK+38svkmVVBXdqgFTv/j1NgnGBUhJEBcOLOGZMTNo3UouwThDr5BYZ8BRF0gvnU45Z87smnMNnEIqCM5RKoIQ2uwKJUF5Caiyqu1qg2WUBCsLM0FzxxREr/yTvpBQfdkkE6wxTQTwTK7muOTNgelYZFnouSeFYZOGQVqGaSfwHiTT0Z+mW+Y1SALhSyIWitoA/V86KYm3N43Q41F9q1Or03zQyYoPlEThClKaYSnDJm2UaM4ZCrfUu/CaqbMCS8EYSlRsjzOmU0s8syp5AGk/er1e6hkwhJ65RB8Fsb+PMQnGGHqZrvxT6aFrvmpgVMg5w1imkJcMgglkiiBsxGvW1UCjOmCiqAXxoOiBdbpuppDMRLwKKWv3R/VKiA7AZFWJx+lqAJJxXk24bOaZTAlJY2YFAGkYpaxA0wYegQtdbo9XJlcb8Tyd/Wk2ZN6DZNMLoeml0bTvKNtTL554hN/q1Oo033SyuCjMF2tuFYwB3CTHk2ZsueCQRMgVR6EInOt1uamCo2ut8hpQ2lJznDOoAWcXA6T9boESsAEpGihtPiUrGBiX4Jw5/2Qn41jXK53ZtVty5JxhopTIOUNHcJQSKBghU2aKLhvEY9hkKnfSn6A561YBMrG5lKQC47qqju+/9BlkEzAmxQKl0cGaXJktT2inAvMBMxHpWrvmDesH9aeZlHkPkr40PcRWmkbVg9anzFzDHqPVqdVpPunkrKLOWakBEkozSeK6TJ0kaEbGCbkxYZaGVeacOzCys3dYoCqkATOv3BxzP+rp5AGkUiE7s695VfbgAyUrFRgzNV4lQ1lo02tsdh0z9V9zwbC2UMi5Qi8zoJ4K4lEdQPTCknUmytUyuMyaQo1Z1PeTAgAZgLRgGdwXA44+m7TLfkJKaTbnASbzwVEJgCtjllX6e2Ji5kAXjNafZkPmNUjGF3mQaWnU0fagUXqqbaxDq1Or03zUSTADYAQzrYWZAcSYXXOuWWUuGLrEg2m1LJscyzjWmTkge4ZdcgOQDhwN/rF+4bUI2aSeZcN894BS+0sVVKkBmzEGLpQzu2o2KdHJJBZ0BMZLDZDjmcJYqZALzYoFY7qYO2PoZJ2qZJ0/U0gEktz5JLUuJRAAJQkF2dP/McEDpukDY8o32Y9h+v5JZ3rlAn7Re3K5n1VR++nsTzMt8xokp4u+T8ah3PSiaHVqdWp10hKySpj5izXPICJknKGbCSgFwygrVmnZ5IJOhl6pKmZZcshM118VGYOUzFXTsT5KX5Tnl3T6KhkApWabHFIqsLJip1wysEKbXXtCA+RYxtErpQZLwdHNzAwmQiEXEhkX2uRq6rsKkVVBPKKXnqA5K4COgoj0tEAphZ4rknEOWWigpASbDHyT3v92ez8hKQ2rNH5JoGKVZBimxyb73fcmSfWn2ZB5DZJWhnkB9GszmRdP6kXRL7Ch1anVaT7q5AMlc40JyuxNgJ4A2dZtdcXRgUJpNmmB0k6Y3JMcstTmUSE4KNNpIJrk6Eo0NpqVc2GCe+pgaYGSlNSuN96BlOTMrkJwKK4gpcJ4oZnkWsMoO5l0bNeyybzUoC8YoVTMsEpAiA4gdEpIUInHm6AZSgKdLriUrkRdzeRqZgqxM3744oMh72QGLIX+f1igVNIBV8UgNTC6HEq/AP6IMl0DvlGlBUk0X2zmbR/mhkxmtN2kR6tTq1OrkxYdtQoIb0JnKwra9VWZXCuza6E4ZEdgolRYYJYhm9SVcyybZFwDGykyqR6iBozBuRhGyUwbpQjMK30npQJXpoydiKbqKiV6pdbJssmu4BgvJbiNdFWA5AwSHCLrgMlCT6tlK/HEIGl08V/qFiiZEJC9wvklm3ImgwhXj1U6v+UQQMk9BhmYXL3vg3yTc0lakIzEv2n2JsbrhwlAmM6b3+rU6tTqpIGy4wXZhL+tX9560mYDkpJDZsDCTjVNVjUbiGaTXBGEIMcmdfRqxSYZF+AApJcrCcBFufrfdeoIg51uixRBlQQSOveyJ1UwddeEmZVkvFQYE3oSacsm9QTT0GBp2KQ1t0KYeSezEuh0tdlVSUBK7a8EglzJDKjMrFJC8TqTdPfBACTPc8cifeDUl5oHc4MOlNjkyrzqQP5v1+7p3JAWJCOJRzf+/6PYwKdqb291anVqdarrFAOlY50EkOBYmOsjKEVQudBm144w4CjQM6zSzghCRGZGEO4q6DiQc6kecADpLwP9jTlWKcNozfGVYZTCTNHVqzFKhSIjTEiFMalQSJ9N2gAeU//VmFuRlVUQjxc0A1PIXCkF3lUAxsPrb32TwhQrT90jIRyDFHkWMElngnXXhNeuQ3RRNDB6/6fYpN8HRpHWJ7kepcn2PZOjnEHHbnUa7titTsMde0PWyQKlLnpu2rh3tQ7kUbkwJleCJA2KE6X2TZbxrCAG0DhpZskz8uqxdqDKXuCb7AsMqFhkVR8WVX1Yw2QnjMl1ohQolAZHa3otJIfKYPRkkBymEk8HxHt6+imRG7OrnpgZeVHlKpqUDH0GGiiZ4GC9EtwG7+RZX5OrZZDWP+kKDHCh8x65cBM2My7ARP9rYoN54PspJ+GXDA45pb2HlxYkE5Ia8cZ+kqb9bJumyL7YpAVvn1anVqdWp+F04gzoCJvvGCXOd4QJ4hEmiIdQSGHMrnk0CbM2u2a50EQn88GtMrvyrAOUvaHn0vBNrm7OSancvJN1NqlQKI5CamAvpELGTUqI9U0SKjZpZgmBCeKx6Rf2u/3wLuCAknOoonTBOyphcuWJAB7RycDzTAOhNbXagYJndm0cPChlI5xgQpQrVulFuo7an2ZL5jVIxhfc3ozUgzrMqCU2HaT289f36xitTq1OrU6Ddco5YCve2LaKgIW5MN8rJqkoc2bXeCJmIAI1Y3Y1v6KjV110aXMwTyzu2HZy6FJB5uQBtQ7gKaQ2zVqALCRHRwCSazZZKJ3yInimS+KJji73JjpguQrNrsYvaYV3ASZ6UNYvaYsK9Cl4bs2rwot0RZaDZR3jq61YpQ+ag1i2TQtxwTwem5xsf5ppmdcgOdULPmjfpoc+9aJpdWp1anWanE4+UAJ2VhFuvuvqPNo/qAN6fHOrnUJrDTSQWTBz0nO/AlWiUVLgoBTpSTAonMjZ/u5EqbBAGX2INIuUhlEqhVJxZIoZoIQrfm7ZJFlWyTOw3DLMZq7LodkkKVVNsxW1D1JBBK8YZJbrc7SAaHyTLAZKLkB2brNhzKkJoAz0QXN/an2SsySDHtSY6sc3a5DEI6BhdGh1anVqdRpNpxgodTsGRaIGkrJbgWPKPwloYLP+yapsQA5SIpkzybwgnybx/ZLxJzS5aiZZKIWcGKQztxIkGTYpcl0PNcvhTJeZBDpVLdUAMA2QsbLQZlkvwjVVy7VK//AA0jLJXC+R5fqYNpjHml5NVZ0BFwNgFUCm7veg/jRbbHLeg6QvqYvu36j4JjaNhv31qQd9lFF0q1OrU6vTcDp1DFCSA8rqRa0UeX7KOpP0gdK2d/tyBfQAxhlUyaAUd2BpxZoguVcLNp5bMtAj+l39gcvztME8KqtSWqRhlcQ5IDIwmelZNngZssnI3KqV8diemwdS+zF5HjZ1QThcgGV5BbBZxzOzco9FVsE8TAgNYLb8HGP900USU2hNtT9Nt7Qg6cmofpnUgzxoH3+/UUbprU6tTq1Og3XyGaUigIhBZRybjlUsT4NktY8Plq6N93/ZA7KO9icC3BQM0GDpiw+Qw1gaYzZpwbuQShc7oCqAR3pm14IxdDw2CZFB58AooDNWBe7IqgJOpaQAzHyUpLgGwYBxWiYpamDI8twBp2WSLO8YIOWVqXXUqFUDlP0sBqP0p+mWFiSNDDNiTom/LTYTxPuNOvpudWp1anUaXafQ9GqXOjXElq2zEoNjk6jSFEUvFVRJUFxX16npzRmEqAqop9hkLFKpyi9pzMJKaR+lzDwzsUkHkVSxSShjblVKB/GQ0rVdvevEgIpFFj3HJtHPh+mDI+faB5l1HKNElnvRrh6LtKbWps+IMqg/zYa0IGmk6aKPcjOaRkFNMsjX0urU6tTqNDmdcg5wFgIldUKfoQbI3PterZcmgIdzBs6lntXDzCCiuHL+RYowxtZ/9Wcb4awCS7uMWaSvQ5XfqYFSGaIoDQMmkw6S8UznTHIJiExHi4oOtH+ymlsSnvnUB0gmZRW4Y03HXqEAt69ndnW+ybwCTGb+Jy4Abk3AmTO1kgeQLqhnkrI+2GQLkg0y6GZMZvuwL4hWp1anVqepbxcMWJBVQKmqqURM1KuubKoofA1asFoXvdBZWQGdlMoVIYiFc6YjQ7k3JRdCH6WIGKb9TVt/Vro6tAZIOaCIef5JQAjLJkvHIkEEEh0wcy2gVMUmLYsse4ASIO7N3AHPMemnc3hMEZwbcPRAMwZI3xcpspBB+ssGP+VkB1UzKS1IJmSY0cooN2s6Rj+tTtN3jFan+aOTYMCYqJteZZzqAdQYXe14TIFxQJUExpkDyThtxE29lXFwxjROeHNYCgO+KaAMfKWkPxosmUlRMdGuDCGbJDIMToFRpk2wmQJDN0zPKHqaJSpVmVwRRe4AaaC07NGySbOOuDDAyA2TFA4cffPrKP7K9eV/TEkLkgmZ7oc9Pt5kOkCr03DS6jSczCedgoIDpJebea++FBusHZszMC7BSm1uZSVzVXQAuKjYqq0xs2bM5DZyB5RABZAxUAJwBQ6UZ34lC5iopgJTZMyZhk0yngHCzriRuaAde12cb1IpDZbIKzNrIngHttxcHMBjI16zrALGGCBFta7ml+QheKZkOvrTdEkLkiPKdIx27fbpuvGtTsNJq9NwsjHqFAfzEClgLHPFBgC4ABlAB9NYEZxhHWcY5wyMSSjOwJjSc1AasETo7jRAicDkys0nBsgUUFrRYKnPTUfr6u8EBHmTjk2SAhPG7Gqum71+fmSrBUv9I4kKQl7eYxDpmnVMgA5zAEhu2QyQblvkozQ/0OfOaZnu/jSKzGuQZNH31MWPI/Oa9qdovd9Bm25warTUr32rU6tTq9PkdbJAqUhBgUERsGkn/QosPWbog1iPM5Q96cytFixjNuoH7oiMQwgOnnEIxtDJ+NBAGZuFLYuUSpuSCdAgJLSJlZEJ4OEqvB6Mm+o8UWTrAHNrwCANOMbsMfZBUgocmxhkn2o7wOD+NBsyr0Gy6UH1/+93gwbd1Pj48f/9OkCrU6tTq9P065RzgAQDkWGT4MmqPFhY/w3BGdb1JHqMoZAKqlSBbzIWyyKF4I5JCvOxQKk/3B3fF8dqTfBOxqGZJLFqcmkFnXLigRIjY3ZF4j4wBkYCkJU/MlU9SJ9ANbtHDRxjEBTeeh84hwDIfvdzUH+aDZnXIBnLoFFtPLpNtR203W8zzE1vdWp1anWaXp06gkFB+/QUAWTrvHpVeQBAdqsjCQ/g1vUkRMnQ48yZW+NC5swE57gAHs7QETwAxzHve+YYZfN1UqSNxQoEAgNB/28DeEjowuGWzdUBkutSdqQAxgBkYEQ1pg7ApWqEgTcJcOQck2GPg4CuaWC0PoCyBUn0H6kybxmPboe5WaPc0KaRdKtTq1Or0/TqlHMGKTTQpKryxCK8lAUfKKXg6EkVzCTidLDskVXs0X580PU/nHk+y4acQmuBtT5KRQAxaDZp8iVjgGRaOQ1YZhYOkJk5xU/2jHyFcXEAxw4T4Njoe0yAY79YqSHqL8yqjF4CYRJy2WWX4bnPfS663S4OOOAA/OAHP2hse8cdd2hbfvT52c9+FrS74YYbsMcee2BsbAx77LEHbrzxxknrx9B/hEp9tjVJ04sg/t2m47U6tTq1Os2cThmDZnZCM7quYFiQCSzMw88mHYHNuhk262bYtJt73/VnQUdg07EM3Vygmwt0vE8uuGOP8WfMgaUHmJZ9esUHYqCsA6ROQVGECtR8VmeBkwuXy2gT/kl0qqX9RP9DdFzUqp6iKwNl3nZ7PJGDRK63i6qggDXPEuMmnUUzX//+xve6H4CuD/yccSZ53XXX4d3vfjcuu+wyHHHEEfjCF76AE044AQ8++CB22mmnxv1+/vOfY/PNN3f/b7vttu77ihUrcOqpp+LCCy/EySefjBtvvBGnnHIKfvjDH+KQQw4ZWcf4ngw7Mp4K7R+0b6tTq1Or08zqFKeG+MUGfAnYHWdY1yshOEOvVJgwkyZ3Mp6sARszxRAgq/8di2QVOA5T0g7QJlcCQhMnCQcopEowE9hDSgHEwMjjR5ZJ+kE0fk4j9wA3xRpTzNGwRkXDgZ++zh7rTchsm1nd71JtArXplUMOOQT7778/Lr/8crfuhS98IV796lfjoosuqrW/44478JKXvAR/+MMfsMUWWySPeeqpp2L16tX45je/6dYdf/zx2HLLLXHttdcO1Gn16tVYtGgRVq1ahc0333xS5qJ++8Q+FCTapvYfxvfS6tTq1Oo0vToVClhXKkyUpJeS8MxEiWd7JdYWCmsL6T7rehJrexK9UmFdr0SvVG5uyCaQtMsxDxj1R2BhR6CTcSzIhWa0GceY4NX3TKBr/s8FQ278l3oJ5EL/LxhDzqHNqKoEk6VeEumKPHY6LbMEkK7b6k93BSRrsdYCcnzmijow+hCTqhRrodn5cZm+T/EYIb53q1evxpIlS/D0008HhGq6ZUbNrb1eD/fccw+OPfbYYP2xxx6LH//4x3333W+//bD99tvjZS97GW6//fZg24oVK2rHPO644xqPOTExgdWrVwcfX1IPUvx//NANGiH77Yc1GVGf7a1OrU6tTjOjU851MI82vWoAWpgLbNrJsDDngfl107EsML9ak6tdt5n5334Wep9OxrHALDuZCMyvudBAZ02t9rtgGrc00wQYq4OHb4L1wauqn5qFZlZbX1WEH8o6NTMszMeaU0nkQNbRbbPK5GrNqe6jqvqz8Xo3LRnBK5IAN+m1D7KD7t1syIyaW5944glIKbF48eJg/eLFi7Fq1arkPttvvz2uvPJKHHDAAZiYmMCXv/xlvOxlL8Mdd9yBo446CgCwatWqkY550UUX4fzzzx9a7/hmTMfNGTQSHtU01erU6tTqNH06dTgDCR3xqku5mojXyNDmwItLCM4wUXL0SoVeKZPFyn0madM9fJNrJ+PIufkYpigioBxGiEinaQBgxjTKOADS82syeAzRMMnk9fWDbPqlcPiskSrGqMEO7tr5v+GTbM6qFBcGgINBmVPlRADTkceWVTbdu9mQWYluZTXnM9XWWdl9992x++67u/8PO+ww/OY3v8EnPvEJB5KjHvPcc8/F2Wef7f5fvXo1nvOc54x8HilpuoFND3zTAzudo6RWp1anVqfRdOIMGBNMgySsyZBBUeij1MClUzU6gkNwibGMY6LktVk9gv08v2TmmVwtOHIG5GbSZg2UqCJjGTOsmnmmSb1UpIsKWNH/VyDGRKbL0JH1RRJ832NwLexB/YjUBDjKBmD0QdGCZ6VX9Q9nzFU5ssxYEoGR3gYGB5DD3LuZlhkFyW222QZCiBrDe+yxx2pMsJ8ceuih+MpXvuL+X7JkyUjHHBsbw9jY2AiaDy+TuVH9RrbTIa1Owx9/Mvu0Og23z4amE2dAN9PMy5+wOW6jQZJhnClwxlAoBcGZA8gyAZJZHMAjdPFzyx67mUBmvut13Jlac8EDM6vPBXgNIM0/XqI+s9X4AFA/+mXNtMDQrFEqctuAOlgC9YAdu5UZBYkxd37KkJ2YTc50f+onM+qT7HQ6OOCAA7B8+fJg/fLly3H44YcPfZx7770X22+/vfv/sMMOqx3ztttuG+mYVmaLssfS72a3OlXS6jSctDoNJ4N0EkwDmvZRVikivl9yzATa6P+5SRXJsOlY5Z9cGPkjnZ8yF+hmArlg6JrgnBAgffDkjkVafyRjDBzMgHX6KhIQApwFPxHmNNpKOc4nKbLAF0k8gwRHSTq4qTR+Rn+p/YxwgwO93q6D55f0PnY7aV1tRSHri5SKTLGH8H6tD4AEZsHcevbZZ+O0007DgQceiMMOOwxXXnklHnnkEZxxxhkAtCn00UcfxdVXXw0AuPTSS7Hzzjtjzz33RK/Xw1e+8hXccMMNuOGGG9wxzzrrLBx11FH46Ec/ile96lX42te+hm9/+9v44Q9/OLJ+doRiv/syaOQyUyObVqdWp1an9aMTYPyTBEhO6EB/J8GDOqoTpYJgDBOMQSgFwTQA5EJPZRX7MrUfEy7NgzPNEAVjAUBWS+OjNCxSMG1qHZQVkrwufoWbVEkfv0xcFKEam1SlDazxGKP73/yKZZuNOrKKSRJVLFIa2sgZTCF3CmnzepIZB8lTTz0VTz75JC644AKsXLkSe+21F2655RYsXboUALBy5Uo88sgjrn2v18M555yDRx99FAsWLMCee+6Jm2++Ga94xStcm8MPPxz/8i//gg984AP44Ac/iF122QXXXXfdyDmSTQ+p3UZROysULadLfH1anVqdWp1mXydAv7A7nn+ycktW/knBGMalAmdAphhyTiiUTgNRBnMsqFZFAhDkQ1qgtCZWzSCr/zWr1PtbFskso0S1bD4xo4gpVde43TPNxuBo57MMza1U+SVBAShaQLXijxUs3knSJkzGGIiRA0vBK6Bk0GZXRnBMen3JjOdJzkWJ8ySB9Og0fmBHtYunQLjfceJ1rU6tTq1O60cnSdq8OC4JPe9TKkJPKoybQgKFUihkle5QmoiU1KTOFhiryFXLJuFFt/IaQAoeLVnFTC2AcmgA9gGFAQhKzgUnHRYXTzFH399YY5EeOIbBO/bap+8WQzVgsHozy7KRPldhApni+zRbeZLzvnarvfCpWxo/qMDgB7zpGPH/w7wYWp1anVqd1o9OnBnfJODy+TSfYLChHJpNMnCmwE2Rc8m9mUQicZGxLsUDAXsUrM4gLVhwhsAXKXg1GLBAk5SmSFazHNas6jNHqerASKAgeCe+1sz7ZcbMgIUYiAECBKkYwAnwloxXbNJNC5Y85szKvAfJpoev6QFt2neU7amHnBq+tzq1OrU6rR+ddFoGc8AXlg3n4Ma3JhiQE/T0Wf4kzok5Jh0L9IBSp37oZcaZ80H6rMpnWdbMaosNMAOiw4BGDI72uyQK/IzWr+q+Q2+3QTUxkNpj6QCc9B2wgUbC+HwZq+JcGSqAZKT/l8TAHQCzehGFIc53OmTeg6QvTQ+MlaYR7KD18fZRjtHq1OrU6rT+dGLQQElBO310xgDBBQrJUEiCYHDzUgI68MeK80vWgFKDo62o4xgkq8yQPgO1DLIJIANTa8M5NbFHnzFaALTg2Q8cLTBKIlfpLmbS+vwJnMMAHnNgaYHRZ5KcMacTM0USUvduNmReg2R8kQeZcUYd2Q4aEafaxjq0OrU6tTqtP51ssI0gIEyZJHBiOgnesMqcNFhCpM2tABwwVpV7QnB0kazB/15ZOpjvCAGyHzj65zksQFr2aE2r1QweGjTLCBg1cJrBQeLUC+hBBFQ1QLDBSgCD4AQiBoJeSgUwXrHJuGiCf04zLfMaJOOLPNmLPughH2Yf+3+rU6tTq9Pc0kkYoFIMIGbKpwmA6RmQdeYEA4gYctFscvTNjQxwqQ9N4BgDJY/aJcExDtTxfJJxWsYwAOmYpFlP0GZlC46FUiF7puZzL1ANEhQjAByc6yVgmCQYoAhMwANIawoOTa4tk5xFGeZh69dmMg956qH0f6PVqdWp1Wnu6CQ4g/L20JZU/V2SZpU2gEWbCuuv8KBqDiwgVoxwEDgOFcEaT3sVpX/4LBKo/I6+GdUHSA2MemnZYyE1gyxssBKRA1ofLN21c6ZWBsXMtWIMkhRyMvQyAkqmYEyzBAKrpgOL7t1sSAuSaL7YzNs+zA2ZzMi2SY9Wp1anVqe5o5PwkIlAxnemX+3WHChN9Gsqmd4vKReYSpkOyqmzxWbmGABjvIylIboVgPMpKsPW7Dn4AOmbV226SzNQ6uPGpmZtatUM0Q4AcsHAiaEq+lYBJeNwJl5G2tRtr2lscp0NaUEyEv+Bs6PMeH3TQ+mvm+qD2+rU6tTqNHd0AqzJVact+EEmjEI2CVYxNXcsr6CAD4wV+PUPygnA0ZsTkjWAY3wNGOOmkLj+P074t2zSprrYijcxQFpQtP/7AT5KpYFSMIYS5HJEFYOpTmSLylZAKbhw15IZfaTS/kx9yNlHyRYkI7EPaPzA+g/usMcZRQaZlVqdWp1andavToDJ12NmT5vPB21iDcuzhVpz838MjLF51SXXswgYlTdpMlBNmNzgg3TWVv+fSCx7dEvYZcUkY4AspPKAsiqgEATuRDS6QDVlGFe6BB/nDBVAVkApmEJuSgAy0jWOCHrWEAEN8pZNzhZctiCZkPihoYb1M/mbg7a3Og23vdVpuO2tTsNtt9GujjIaJkkEMJBJjq+/vpnbv84gkybVGBhVxR4rFhlqR4zB+SClWYpq/kgw3hdYfBZZRcFSDSB1PiiqpS3HRxWDjKfGKhSZc9Q5jznFZla9FJLAWZUCIhUci4xNrjPZL3xpQTIhqdGl7Vz9bozfJj4GS6z3O+ygG97q1OrU6jR3dGKMQZgjW3C0YFk7hvnBGoMEvKCdBGuUJULTKtWAMvwdW4uV3NyQjJRjk00ASUA1UTK8MnSKnA9SKX+JilF6/kll2CcQF3g3TJtXjBtQkMSgXLiqBkrBAK7gzK6CDHukSi99zWdP5jVIxhfaPhCph2KYUQtF31P7+ev7PdStTq1OrU5zUyf7XpeogFJvI4ClwTgFjI41AoDSgBgwSCWN8qEfsm+QjjW3Qs+LCVmCiUxPutwniAeoQIhga7ba6a2QNLmGTNJrn5gCRHDmUjiUSfvgNg1EETRAchSGSeYGUC1AxvdimH4xXTKvQbLpgRpWBu3b9NCnHupWp1anVqcNSyfOdKk6oeEIglVM0i+l6gMjUGeNTJWVOZVUxRhVaZQz4OmDo/VJcg/47NyR5sN4pjVTCmB6f26mwiICpHcuyjtzRZpFWnao8yK1KdUHyJhJ2kmnm0ASADoZhzJpHzpvVLlqRNbUqojMRNbC+Ey9j3fM2WKT8xokgcEPRWymGXU0E49eh9Gh1anVqdVpbutk3ZIVUEJHtJof86NZ7b5hIE5ZsUZVVsBogdIwSwCebzKhoZLOtKqB0ZtoGdBAaUCWSFUm2dT18MrN2Z+1U2XZQJ0g0McAZE+qACBLmyupyIEjoAvGS0XoZByS9IwnACCU9kcWjMAVObDMOSHjMACt/ZPEmQvemS02Oe9B0pfURfcfsvihbRp5+utTD/ooI9ZWp1anVqe5qZMPlPoHKkCw3xojVH1wVJXvkZE2kQaM0u6fMrNaXyPjACNnVmUiAxkm6s6b6SAeBu6YbVP5vKrknDW3hqkfdtmTCr1SOXD0maRdWqCUnLnvgjMgAwTXJlZAgUs4/2xODIVSyJSoAndQRd2KWUyYbEHSk2EfIv9BjB/kQfv4+40yIm51anVqdZp7OrlA12idPUbADmMAtH5IC5LK+CHjffzj1BSt/JBkTKwws2s4XyQpgJhjk5zzZH1VX6oqOmGxAGuGjQFyovTZpNYzBklhCrkDmlUCthqPNgNbJqlnVCHkXN+D2OQ629KCpJFhRqcp8bfFJp54v1FHuq1OrU6tTnNfp2Q90RjoEszRgaMsAz8k8/b1zawkZfC7TAgAxtzKuDalkgLxrMa6GeMgWTrm6YoaME/n6BoBMaO0ka2hD3KitGCp+jJJwSlgldU2HcQjuGGrUiHnzLBVBs64qS1rqhlhdsGyBUkjTdd8lHsRj1oHSfzQxfu0OrU6tTptGDr1BUfyGKIPkJY5xqBpgJGkBJSEslGuKmSSxK3fUQBcgAkB4jpLk0iBoVMBpanC7nyT4LZaKgBb7CA8w5htOsA0ANkrVQCQvXIQSLKAVfrbdJUhkyNp/J85VWXxbJEGzWYB2TTJ9AxIC5INMmgkO5ntwz6MrU6tTq1OG4ZOwat6WPZoTa4GIJllkEqGwKiUDsyx32PhHIwLEAogywGlwRKZ0gE7hjUS5/r4lk3yDJxzE1xEJsqU3P9A9XN2iixrarVA2SuV54OsANKut+IH72QeSHYyQCqGiVL/kOAMQgFc6vk7C6lQcIaCM3QzOHAkY4KNy/7NpLQgmZBh/BGj3KJh/RtTPUarU6vTdB6j1WmEY3i+w0EA6cBRlVXQTllClb0KGMsCMAzSAmdNuACEAUYlDUDmGrgzT3fJNED6kbM8M/NYMjBGGETMKp8kgkjWXilrABmngThm6YGkLzbqVSpAcTgWqbwUlIxzN13WbPslW5BMyHQ/WPHxJvPwtjoNJ61Ow0mr03AyUvtUysYAgGRKgoqeA0W3LDRgkjO1NoAkFzpXkgsg7+h2SoGhq4HSBPY4fyTjIAvgLBsIjkAVAeubWn0w9AHSAiYQ1nD1wdGyR3+b+ygd2WqLGNj8TJsjWZleZ09akBxRpmO0a7dPx0h32OO0OrU6DSutTsOJHxzj1sXRqP0YZNHT7LEs6uBYTgIklQTLO955duEKCzBtciWeGeDO9G6AYZTVh8HUKPB+MjWRcpwb2SvDfEnbRhimaIGwk/HAzGqDfwTXuZM6spVQcG1yVYIHxeP1dzYwQne6ZF6DJIu+p655HAXXtD9F6/2Hp+nhTI10+7VvdWp1anWamzrZHER9IFUrDuAiVz2AJA8gqbDfPXAsepr1AX1AkgNCgGWdyndpo2A5BxcCYKUO3FFC68AzpytjuvYsAwaySr/snPVFyohRWlYJIAmUnYyjVypdUMC0FVy67YVSjknaggX2NxVn3hyYNGtm13kNkk0Phf9/v4dr0IMUHz/+v9/D2+rU6tTqtGHo5ANzqGjln/SjW5mSAYOkiXWaSZZFAI4WMAE0giSZ4B1Iqc2tkc4KAOsywyQ1OJIqASkAXoKzDNyVzBvsmwRQA8UyAshUaToLlBYgexGT9D/WF2lNrvZ/ApmSdua+zlLwzrwGyVgGjSDjkWSq7aDtfpvUA9vq1OrU6rTh6VT/sYTZ1Swrk2oEkGUPVFRsMohs7cckuQApCWbbKaV1skE9pfZHwoFj5nQSOjPETQTNBwBlqi5rik06FmmATHgH9ZlkzCb1ehNJq6qKPwCMmbUCytmSFiTRf6TKvGVq9DhoLDNMm1TbVqdWp1anDUun2iwb8RRXqgTKEqSkAcReBZAGLGsBPFKCpKrMrr4+nIMJHgTs1MCUC6A3rs2uqtRs0i5lCYiOm+fRn9JLDKCUTcDoPqYAQaUHICVBKBYApPVF+vsWSqFQzM1PaQsZAFXwTltMYJbFdod+I9SUDLNt0Gi16XitTq1OrU4blk4McLmJTlTIIqEkYIARPoO0pldjhlW9AqQUlFQDQVJIpcEyBknOgQkOcA4qchPcU5laQTmgtMmVwVbh0UMAndyfPle/gLn/PQZIitJAGGcaLB17rJtafZOrSzsh0pdxFoHRlxYkUe/8w45CRxmtjrpvq1OrU6vThqVT80GrlBBlWCKZwB0qe6CJcb2uNw4qelBFCSUVVFFqgDSf2m8KDZJkQFJIBd6NGnEBZgCY5x3HIskUM9Azg5h8SZCJbq3OugkopQfaccqHBUhK0D0FoAeFDrgDSr8owYQzxUYVfkjXo7URrgOu+LRKC5JIm08Gte338KT8FaM+/K1OrU6tThuWTswrNl4doPJNkjQs0phGNVhWDNICpOyVGih7JZQaDJKOSQIAxjVQuvSQcZD5TlnFJpkqNUDKEkJ0ICxQMg2UgjNTiWew6RXwgJIqgFQRSFoNFQDJwmCfMc8E65ikO2Y9BWU2cyVbkMTg0aP/wA1jzvEfnKZ2g8w5rU6tTq1OG5ZOA4HSBOKQlCY4RwZsUhUlyvEeVK+ENCxSs0kJlQBJLriu1yoVRK5f5SQVMlSAxDjX4FjkoN64Y5MkS0AYk6uZZ1JwApemAg9gfJX6jHkDUNbMpD6bjIBNqUovyfv7NAFTDi8y2apExZ6ZlhYkExI/KMOMRgfJoJHwqGagVqdWp1anOaoTTwNlEKmqFKgo9P9lUQNI1SuhisKBZYpJKsckdXAPVwrCtMsAcM6hejpXkmWdKh+Ti6qwupIgVYLzjgZGruunMmYKCiCc5cSXVKSrPlVKfgevgFIpCthk6YEjYOaNtLmSXoQrgFn3TbYgOUVpesiaHq6mB3Y673ur04alU/wOmgs6+TJXrtOGoBMYrwfv+GJ9kj6TlFKbWA1AyvEeZK8IfZImiMcXLrhmilKBSwWhQjDNhSmAXmh/J7Lc+SbJFloXusC6M7eCzITM+sr4ptYmNmnFmloti4xNrtz8UQpgihybBHxGqgLA9CeFTlX9mQ1pQXKKMpnb1m9kOx3S6jT88Sezz0zqBKRDEoY1M86EzMXrNJd1YoyDGAvuIyMKq+dI6dI/VKF9kJZBWoD0za4UASATHKoAeJ65baS0qVUahlmO95ALYcAx1wE8vXFQloOJXIO0nc8ygwNKzggMTJtbuV5asEwVKE8VD/ABkkxkq1Kkp+cSzG3vZ3K1oOink5C7i7Mn8x4kZ/qF1yT9frPVqZINTaeZkkGBKBvadZoXOsUmVzsVFmCKjEvHIkkqqF6JcnwiAEj73QKsZZM+i1SCayYZMU0mOFSvAM/GQVknYJPMK7xOthIQy9yMIHaGEBvd6udOZn38ghT5IskDSsBUAOIV0KVqvVbfQ/a4vljlvAdJf1wSX/ZBD81MPeitThuuTjMt/utpWP3n4nXaqHVKBe9YieaJtAxQFhoISVmw7DmGqXMlCcpzzEkocMHABHNBO4E+nEPyHniegVsGmRs2WfbAyhLIqsLrREqXgTVgyBi5CFfugWLFKHmNVcbRrA4gDaAxsy8pgmIEpggQlW8znofSHXc9P6gNd3J65bLLLsNzn/tcdLtdHHDAAfjBD37Q2Pbf/u3fcMwxx2DbbbfF5ptvjsMOOwy33npr0GbZsmW6MG/0GR8fH0mvVKSav4287/4H3n7TKf7xW502LJ0mK1MxHMXnFh9rLl6neaET44DIGsGSvHJzLkjHmll9BlmUkD0J2VMo1unv5XiBcryA7EmzTun/x3v6Y45Xjk84/6bqRSXvTBqKZZNQpU4FceZWDQz2/AQDOGeNATwpURFA2u8+cJJXSScd3drkmxxej+mQGQfJ6667Du9+97vxd3/3d7j33ntx5JFH4oQTTsAjjzySbP/9738fxxxzDG655Rbcc889eMlLXoJXvvKVuPfee4N2m2++OVauXBl8ut04k7a/+Nc6FTwRjypHvTdNL67U77U6zS2dNlTp9/KeL/dufesUMEp/fRTdCsskbWCOB44VQGpgVIVEOa5BUQNjadZVgKkMKAYs1LDSoLKPm7+yrAqvk673ypi5foyBsTANxErKL9lPbA1W/3//e1NBdPd9PQIkMAvm1ksuuQRvfetb8ba3vQ0AcOmll+LWW2/F5ZdfjosuuqjW/tJLLw3+/8hHPoKvfe1r+MY3voH99tvPrWeMYcmSJVPWz44SU9eeojZA/WEadM/i7U0PWTxabXVa/zoBwz+U6yF9q6/M93s3F3WqHVNKDY5KuRqtLsrVAKQsNJPU5la9BAAmGCQA0REgSeC5AADkgPFFlijFhDa3FiVUr4DoFGaKrtDkyvxUEAgXvMOZmYnLBO4EBQYG+CUBJPIkSWfHgDmTqz+M8CNcU9KwesZlRplkr9fDPffcg2OPPTZYf+yxx+LHP/7xUMdQSuGZZ57BVlttFax/9tlnsXTpUvzRH/0RTjrppBrT9GViYgKrV68OPlaaRpDDmHdGfVBTx061bXVafzopCj/DymT2mWmJ2Y+/Lv6+Mdy7uaQTWRbJE69YKQMW6ZtYrX9SSXIAaQFTFQY0DatUhURpTK6qkFW7npdzOT5RRcnaAur2Y02uqpqpRHDmZgWxEa6AF8jDK4CMlymJ/ZRABaL2e4pJlqrKkwTWX/oHMMMg+cQTT0BKicWLFwfrFy9ejFWrVg11jE9+8pNYs2YNTjnlFLfuBS94AZYtW4avf/3ruPbaa9HtdnHEEUfgl7/8ZfIYF110ERYtWuQ+z3nOc5Ltmh4YK01dYdD6lPlm2GO0Os2sTsD0A9xcAspYNqZ7N+d1avBH2qWfukFS50GqXgmS5HyRPjhav2T1UQYwCxTrSpTjpVmGaSUOgC2LVLIyuZoartYvyWB8kGAOGG0aSEpGNb1aSYEnkE4naWo7WzIrgTssusBEVFuXkmuvvRZ///d/j+uuuw7bbbedW3/ooYfiTW96E/bZZx8ceeSR+OpXv4rddtsNn/3sZ5PHOffcc/H000+7z29+8xutV6znAH1GHdk2mXj6tW11mj2dmoCRhvgMkmGe69mw0G6s927O68QzEGNIBe/46RyaTcqqBJ3ygNEtFcp1JVShoArrj9TLmElWy9KZblVRQq7Tfkoqe6HJ1VbeMUzSZ4yMaRC0gTvWPyk4q4Fj/H/IFlFV5vPXR+ywqYLP+pYZ9Ulus802EELUWONjjz1WY5exXHfddXjrW9+K66+/Hi9/+cv7tuWc46CDDmpkkmNjYxgbG6utb/JbjCqT8UfE+zT5Q1qdpl+n+FmczPk0vVznmmxs925D0YkYN0UFGqrvWKA0lXRsdR3Zk9rUavyQztxaSOePVJKCFBBfdCEBzToZ70F0MpTj2jcpeyWEMbkyO01X0QPyBVXBc1I6aAdVhCv3TK4+o4yBkXPWt+g4KT1eINLFCvQ6bVZNBe7MFdCcUSbZ6XRwwAEHYPny5cH65cuX4/DDD2/c79prr8Vb3vIWXHPNNTjxxBMH/g4R4b777sP2228/KT2HedH1azOVl6z/f5MfpElanUYDKZ859mOFsV+y37Paj1nOkWccwIZ77zZonSyDbMiZjEvOaZMrQRW6oLksZACQNrI1MLc6k6uXDuKANWSTygTwOJOr1Kko1i9pI1057IwgVYSrZZMAAiaZJVilPuXJDR/LGCyjYgJEdQY60zLj0a1nn302TjvtNBx44IE47LDDcOWVV+KRRx7BGWecAUCbQh999FFcffXVADRA/vmf/zk+/elP49BDD3UsdMGCBVi0aBEA4Pzzz8ehhx6KXXfdFatXr8ZnPvMZ3Hffffj85z8/KR2bLrkf+DDMbZnMyLZJj1anqevkb/PBEYn1gySo05x4/uOX7SCZbQa6od27jUGn4Dd895IygTuGTfpg6QOl7EldwcYCZGH8mYZRkiIwyUCSIDrkgInnElwwyJ7w6r9KF8DDjcnVBfB4c0vq4J3MFBOAi3CN2WQTOAIGIAc8WKm5JuN5KYNt63HAOeMgeeqpp+LJJ5/EBRdcgJUrV2KvvfbCLbfcgqVLlwIAVq5cGeRMfuELX0BZlnjnO9+Jd77znW79m9/8ZixbtgwA8NRTT+Htb387Vq1ahUWLFmG//fbD97//fRx88MFT1td/4PwXn7++6aFMmXGmQ1qdJqcTkAbHvszQG6U2+c3t/vE7YlSgXF+yIdy7jUEnBjSySNfOlJKzbNKyRiUpDOBx65VJpWCA1OXpAAA9gAkNoqLDIQUHz2UQvCOLEplU1VyWZQ+kJLgHkEyWYLxjCgow2AhXPw3EF8sqJxPAQ6bizmRkNjFzVsrSveMd78A73vGO5DYLfFbuuOOOgcf71Kc+hU996lPToFldbOeOH45RX4Cj3sR+D3er0+g6+UAYA6ZbP8BsE2+PQVPR3MuPHEbm+r3baHSyU2b1M7d6hcvJA0aSZhYNkwpCklAW0jEqab4IJd1LXPYYuOCQPQWeKxcEJGz9V+v7LHpVYYOy0PVkvYmYOdPn59dw9SvuVME74XkJxiANeI8ig6JX17fbYt7Xbk1JfE9idjIbvzloe6tT8/aYPQaAmQDGVLBB6rUW16C0x/aBMn6BpoB0qBcsNYRADGAmw8pcvXep/zdUnargHQbG9LRVbpuU3nfPzCqpYpUWLD2A1PMs6v10zA4DigoouWBgnGk22ROQufQAsnBAyT2/JJQEI1WxSXizgbAqwrWKbq3OcbIpINMhs+WanJUUkA1NUredNaxvahO3Ta1nGO64rU7D6+QDZBCoQ9XsBCr6JI/TZ/uMBg748fKT2T6kzMV7t7HpBNHpyySBCiydX9IztVoWqaSCJKCnCD0bDUrk/Q+UhfZfyp5ySxspWxUoqJakpPZLmvktdQ1XBUakgdKyxkhff8osv5hAMnhniDQ/K0k/5PqmkEbmNUg2PVDxrbEmlmFGnSkfRtwm/p3Yp9LqNLpOgAZEe+x+4Oh+g5o/wXFRB0sfKPs9yyOxyFHAb8i2G8K925h1oj5A4fsjNXsks55cwA5JM+8ikWORPjhasJQEA4rKLckCZM/LwzRgDPObrpasHXzZfElYkyurmKUNDGpIA7HfWTRzyGSMH3MFIIF5bm6NfQ6jyqB9h3nA4oe61Wl4nazE7BFAAIxunxFOwLYNghIxQ6PKyTJDm3jWrwnm5r2bbzr1u092jkj/u7IVeAyLrD6VuVUSQTCgw/U2oeD8mBVAKqguBQBp57LULFL7JxlpFulMriwzYEhhGoi5aDGTrE4zHBRwM9nyhizzGiSBwQ+F3/njB2GYW+8/oE1jyvg4rU7D6QQMB5A1ZjgEWtrRcgyWPlAOWzmqr0zVdDokUPaTtj/NsE6J+q3kgaFd6iAe8lhgzCI1QAY9xoBnT5H2GfYkRC5MjqVA1iXPlFsFCtkcSajKzOoA0swtWQXu+KeSLlG3Pn2TMy3z2twaS6qj24csfkD8ZSwpxpPav9VpajrFAGlNq9Y8ak2niij42H38T/3YFIDpIFydVBm6afAtjipz5d7NF52Sx1aVHzJY75lbrek1ZJG6X/ugqYDA9KpUBbIVGyVn0rX5kpXJ1RZb90yuygbvVINDP1cSSKd+2O885Z/s75qd0yDbgqQnw94m8pb2oRl2H3+/VqfJ6xT7H/uBoz1WP1Bs2pYCyvU0Y0+zjAC2c+HezXedgv1VFbBj/wfg/JEAAkC0bNI3v8brA5OrFy1rP+53HFhL55dkUV9K5UrGeOYXFrAAyTjrW3XH35YC1bkEmvPe3Gqlyacwiv8jNvHE+/nrmka6qeO1OoXrLEC67+ZFAVTgGP+mbdtP7HMZswRFVJt4dhjxn/OhWWQ/wJti+sdcuHdzsT/NpE6jSJUCQuZ/FYFixRj9XxIs3F6BIzkTrv4oN3+li3D1ZiWpTqTKlQTSucCDqu447RgD5+lcyMmWrpttaZmkkaYOPUpHj0etgyR+kOJ9Wp3qOlmAtOkdFiB99khR+6pt+oOobT/dYjY5qXSQFBAOk9rRr80QbHJ937vUPvNBp0DUcJn2KjLF2v8sQPpl2uJ1YSBQZbqtWGtVwMDObQlAs8goV9KZW72CAk0zgAiPRTYJ52xoP/5cYZMtSDbIoNszme3DPozT+ZuDtm9IOvkA6fsffdOqD6AxMDZJ3CYuhK7XTQIMjQTnGIPZZPIep8mXOd/707AyVZ2aRKnK9Kk81HPBPCpkjlVUa7X0g3ncd0WBaVUf0wClD5DKW6rmfpjCtLjqjgNKrzEfYFLdUKQ1tyZkGFPJKA/aZEwvkznGxqxTDJCxedUHUrte/z+cBn4062QCVu07oJ+JKgmQk5Uholr7yXzvT9N5jMn8hvU91tZPcyVv37fpBwqRB9CB+JGuYEHKB1BV3RkkjDFQdGUGAeWozHGqgeXDSsskEzLdD1Z8vMnc2/muUwyQsXk1Zo4+s+z3sRIE+XiM0tdrMmyy8br2M5v6n1FkhPbzvT8NK9MCWQ2ACETA1Qcg62yy6X9rWqXgeHEkrdZLpr8biUHIn7oyVZquacqslHmV9zHN1uapXM8ktAXJEWWY+zXsyHO67v3GrlPK/xibV5vA0d8/NUdkCiyB/ubZ4DyHHc76ANZkch3VVzlDKSQbe3+aTZ0mKzZ4J55PMbWstofL5HFtMQErSlZBOw39qQkkUgUFxKCoVu95sd/92UWy9Y2ICZnXIMkavg/bhnmf1D7xtrhdaqTb6hR+d6keEUBacFMN4JiaMLleVKDOFmOZTLGQ2PQ6ECCHkUnWbG370/rVKSl9mGUsqcT96ZAkswSa/ZLe92F04hFYMlYxyumIap1NKJ3XIOmPLP0HJzbz+d9T/8f7UrSdef/7x089vK1OIQN0gIe6eVWqNGg2RbIC6XVNZtVRrasDH9wYLCfDBEcE2bY/rV+dqgaj3eukGdJjXv6y2h4u+x5f9Hn1e7r6h/Lrtw4rkw3YiQOB/HOacpWrEWVeg2Qsg0aQw4w2hzHp+A/zoNs9X3XyAVIS1QCyKaLVmV1BfT9OjwagbNI3JUHZriYW2Y9NAqZ2Zv2TVmbyZtb52p/Wp07TITFYNP/vsbcEWjLBwRJl8qakW2RyjYExBfgs4ZNsSi1x/3spKbMpLUii3plTo8F4hDnMg5bab1DbVqdqvyrVIw2QFLQLwRFIs8kqzzFsB4Sm1UFBOvGDkzzHAQA5EAy9Nn1lAAADbX+aCzrRgBxJJlgS2CYjMTA1Mkdvjktv54HHjyNck8XOfcD2QJFHYDrMtFvrU9oUENTNMr70e9CG2davTcrs0+pUD9RpAkg/3SMGPAA1f6KrqGPWM6b342BB6sfQL+LoRVFjkUBfgBxFGCmQ//IaMQVkPven9a3TZIVzBmEKl9sZP2KIdrNz+N99oPKAtwaUBiAZF/r7oAKrkfQDNMZZ7QHcUCrsxNKCJOodfNhR6Cij1VH3na86pQJ1mgAyBY4xMPozdfjbOIMDRguUk5HG+SIbfIdJcEwFciRMYjWgHEHma3+aEzr5/ueGoB3uMUguOHgfn2EFmqGJ1Seh9hhcMPcBjLl1BJPrVMGfcQaOelk6+0wO47Nc34UIWnMr+o8sm9r2eyhif8Wwt7ifn2Nj18k/ph+oI4n6AmSV+hFW4vEnW06ti4sOWGmKZmWom5jCbf5JqOQyAEg34W0Do2zYxoYwrTbp6MvG3p/mgk6MFFiQi5i4nx5g+WCm/+eOHeoPC3yQdr1mkXYdAxdcM8iab5CHbJKb354mH2Wq6k4sftQri0y0PiudS6kgLZPE4NGjb4IZxpxjzXXUp90gc8580wmIgc4G5vQHyH6TLKeEo2KXikJwG6baDjMvpVSEXdLMGgPkCOH/QfspvsjmW3+aCzox2QPMZMZshFBpxpkzk/rgKF0H1cfyGaQPmsyArQZK7o5lAdKySb2z8UlyY2rlHMSYMbtWOg+rvYh8j9IkbQ5bbScodefNODKZCQamS1qQTEjcIaZqcgCqh61x1Dngd+aDToTKzOoCcyKAdBVFPEAFEJSpaxJtWg2B0h2LjW5ytTMl1FjkMAA5iAXGZlWlHFAmza4j+ijnQ39a7zrZeqhDMH4WgRo3TLDySxpzKsGN5HwG2TGTIXPOIHJhjsHdMa35lXEOzu13C5Ci+u6fqzlZq31TMJvgrJH5MTOqtMURLHvkQ7DOuSItSE5Rmh6ypoer6YGdjhfChqyTpMrMKpUGRanqABmzxxgcm8yloQ+y8jPEbHKywgCkgnQYqdHAMW43xemxpkM2xP40Z3QyIEnebBtWuDF3+iZQH9wssAnpgSQIPpyF5lhAdEKAFB2hzbh55sDSmXhNwA4zbJJs4A7jgXXHl9SUV0NdG84qoIyKCvSbwNmeo75ek/rpKUsLklOUyXSZfiPb6ZANTafYzEpuXRog6wXO/d8Jf4kZdmjBMABKj00OI76p1WeRAUB6zCEAyFGKADRFsXpsMrl9hmRD60/99lnfOjWlgTiW5wEkE8ozuQIdztzcklbsesEYslxo9ikYeM4hcg2QGjg1OPI8r8ytnFeRrSa61bdQTHbmG8EZColahGtQgaeh3qsPlnamkeA6rQfiOe9BciYfmn7S7zfnk05xNKvvh+wHkD5zjIHRPpecVdsYWA0ohxUNhkPsMAxADsMkhwC+USJd51N/GiSzrVNTqo8fXVoBJAtNrWaZ5QIoJHpKw3xQaNyYW3Prw+wIwx59XyRzjLX6GBOrCdxhQgRM0g9sI9LWHR+cB+YRcwapCJwzbXWmikWm8iSBuRWs48u8B0k7urTffRn00MzUgz7fdIrNrHHQTgogqwo51GhijcHSB8phhLFEikcTixwEkEGOZFph8oHYB8pBbHKAzLf+NGd08u99apYNz0/omF4UbMMFBykClwwdVHNIAmFepOgIxxwZZxAd7taJPIPoZNrkKjh4nlXs0fgjq2Ad6OCdPucbF1a30jdvcsAgM1UoPdjuz1M5y1g6r0Gy6YGw2yhqZ4Wi5UzoMx908llkyszqKugkANIyxKZUDqcf80ytBiiHkZg5WlNrTSKmUAPIIcAx3u7AsgkoRxB7f+ZDf5pLOrl2AywH1h8IoIpINYxQFQqi4x25JwFFIWAYgAyAsSPAY1OrMeWKPNPAnOVgeQ6W5Z6plQUmV+U9f5Y5BrOSDPBP+n5IX19mPoKl/ZDV0tSLXc8Ec16DpH/74pEgIXzBMG85rKRA2D9OqovNN50si4zNrFL5eZB1gIzBsfHlZjYoVCNQRRrwFNN+ydj2GuvOo1FswCIBB4ZNABmAY9NL0wNARpQGyknIfOtPc0YnVbocSd/kaqNI/TSMygTqR6Jqv6KS2i/JpAnCiebBYqKKZmXWF9kxx7BRrnkG3smcPzJmki79o8Hc6k5pEkE7tphAP2macqvWbj1Fws5rkAT6j7QpagP0f5hSEm/vN/KMf29j1inFIn0zqwVIqdIAGYNjPKoVnNVG/5pR9meTTRV04tzI2MyaAsihwDHezmyaB4Xm1ynIfOhPc04n2zcGVFNyplYPHEWHQ/Y0KwwnTiYoHh6PCw2KFiwti6zMrZWplTuTq9BM0kS2Mi5APAvAkhR5zxg1mlhTIjiDUCyYSKA6Xy+1pcE8m1oX51nOZt7kvAfJpo7e9DA07TvK9tRDHo9c54NOMYv0zayuig7SAJkCR0XkHh673oEl1QhjX/H9kXa/Wl5kDJCeD8oBZKrIefIHp2ZW7SfzpT/NJZ2Y76cmVYtqZUIEgTSik0GOa2CThdQAqRREpzLHkiQwGYGFqMyt2YKsBpQWGLnQ+ZGikwHWxJrlQJaD5R0XtGNNrtrMap9L/VuSQtPrILHBO9bs2lS71U8BEX5Ak6kgFMxsMpJNYXpk3oOkL00PjJWmEeyg9SnzzbDH2Bh1amKRhMrMGlbeqQOkBcH4gfX/50w/pMPOKlCBoW9eZWYbM/97LBJI5kEyomZw9P9vSvUw3x2bnEbg3Bj704agU9CGC62fxyIZ14DGihIi1wxSyTDBnwSBeZMl66AfL6rVAKTocOQLMu1/9EytvKNzJVnWcf5IP2iHGAd4FjyPrlhH1I2b5myOn7UYIB2LZCwAR3/frE8A0PqQeQ2S8W0Y1MFHHdkOGn2m2sY6bKw6pVikb2YlIldgIAWQqUACXwRjAbO0bFJh+AlcfVOr/38czeqvSwJkE4uMAXMQGE4CLOdLf5pLOjHAWRYag7W4ZpKa3eWQ4z0wrgNrNEAShGdqZYKZ9Q3mVq5ZaLZAIOvmGiy7HWTdDkSeIet2DGAacMw6FZvkGYgLwJhcw+cRXrrVcGZXC3y2JF1yAukIILMIKF0dWrOrYP6AdaAK0yrzGiT7mV5GkWFGj4P2afKHbIw6NbHI2MwaA2TpsUfZMMIFtGvFzpKgdIjswJGpLUnngNE8lIzBpX3EKR+BmdUHyGFBEqibWeNlqu0IMh/601zTCarUn9T9d5Vuwuo3vJNBFJk2sSoFJQnkdW7GCSRUYG7100UsgxTWzGp9kR6LzLodbV71zKws6zg/pGWT1TNaXYtBUa0p/6IwIeF+wI9lkal9m4J21vcsIPMaJK0MZSLp02YyD1TqoWzyg2xMOlkfRxOL9IsHxADps0cfHP0HWDDmUgn96YT66uz5HO3/KRY5NEA21W6Nr4cFQ2A4JjkF2Vj701zUibmi5pG1we5vKt1YcOSFBkiVZ+BSgaSCkApADsYluGAaNCMmWVXnYcYHqQEy63Yg7CdmkZ0ukHcMm8zBhIDiGSAyB5TVM+oFz1FYTADonwIijD8SCEEuNrM2fWzqR7AvXz/pIC1IornDM2/7MA/kZEa2TXpsrDoNYpG+HzKsvBOyxyazj2OQQ+Tc+5t9f2QAlh6LHBogY3CMX5QugrWhas4QYOn2i5dN7RvWb+j9aa7qlBSbcmG+OxZpKt7wTgYRgGRZ/b5QIEkQ4FCSvPkhbQoIDwDSAqPojunjmoAdlhmAzDWrtGZWYrz6LsMp6HxRDbEAVpyp1cYCqLD4QdwuVZYu/u6bWteHtCAZif/A2VFmvH4YZ/9UH9yNUadhWKRvZrUAWUgVsEcdZZc+E+5NSKsUAG4e0CGi4vwWnLFGFhkApJI19pgER3/KK489OqAclkUOQv4hjrGx9Ke5qBOz9z8uJOGCdQRIaHMryzsQnRKqMGxSSg2QnpmEC+UxSW2G5TmCSZRthCs3gTrCBOtk3TGdAtLtQHTHvICdjgNMDZBM+yONqVV6z6W25pj4AAeQg69dDJT++viTue/c+27aM5YEyMbiHjMgs/I7l112GZ773Oei2+3igAMOwA9+8IO+7b/3ve/hgAMOQLfbxfOe9zxcccUVtTY33HAD9thjD4yNjWGPPfbAjTfeOC26+g+D/79dDjueGfVB7XfcjU2nQSzSmVlha0aSY48+QNpiz37R56aAnibTEGcIpsiypta+LLKBQTJVVttlieTEyv46/5ju4iRMs03ANySLjGVj609zTiel0vfRTnDMq7qpjPMK2PK8ArqOBjeeZ8i6OfIFGbIFGXLz0UE6+nvWzZ15Net2IBZ0kFkGuUCbXJFpU2sAkFmm8yONqZVEFqViVe6PYQCyqSBAk0k1tc2u44wFVh3BmHsuR53Sbqoy4yB53XXX4d3vfjf+7u/+Dvfeey+OPPJInHDCCXjkkUeS7X/961/jFa94BY488kjce++9eP/73493vetduOGGG1ybFStW4NRTT8Vpp52G+++/H6eddhpOOeUU3HXXXdOic9wP/NHklMwtI/zmoO0bok7Vg9efRVozq/WF+OZVO6q1I1v7ASqwHCaPKx6c2kAdt7TtULFI38zKiKrgjJg9+PMINn2AADyb/FdVg+pRdYWoo/WjgOXG0J+mQ6Zdp9R9ZD4wisofmHXAO3kVYNPJIDoR4JkPN77FrJt7n07Q1gdIfx3vdjVA5n7ATl6xRxvdyjikGZzGka1As4sD6A+M8f8DQTTKj1zfc04yoiHeKFOQQw45BPvvvz8uv/xyt+6FL3whXv3qV+Oiiy6qtX/ve9+Lr3/963jooYfcujPOOAP3338/VqxYAQA49dRTsXr1anzzm990bY4//nhsueWWuPbaa2vHnJiYwMTEhPt/9erVeM5znoNVq1Zh8803r7VPmWx8n0ST+G1qZpjE+niU2k82dJ2UY3yEUhGkZYZuSW67VKiZWQsDKL7ZJyU6eq5KROa8MtlkXEer6uCBaMmqwAD/f8EMgKkSTJYITKwGJFkMjkDfOq2uko5XUNrlqUUfV3jazRrvgeMQANmkxYben+aiTgwAZA+sGAeTBVg5DlZMgJXjQG8cNL4G1BuHWrcGNL5GL3vjUGvXohzvQY73IItSL3sFVFFqE2tRuoAd8gJ3/ALptmiAA9k8Q7ZJV4Pkgk3Aupvo5cLNwBdsAr7J5qBsDCpfAOosBOULQGObYkISxiVhoiSMS4WJkrCmJ/FMr8TaQmJdobC2kFhbSDw7UWJtT2Jdr8S6nsTankSvVJCK3BIIC3v4n07GMZZxLOgILOhkWNARWNgR2KSToZtxbNoRWJjrz6ZjetkVDB3BMZYx9NY8g5123B5PP/108j0+XTKjTLLX6+Gee+7BscceG6w/9thj8eMf/zi5z4oVK2rtjzvuOPzHf/wHiqLo26bpmBdddBEWLVrkPs95znMA1M0l/Tr/MCNZv01sqkFiPUXLjV0na04FBrBI1M2sQAiQ1vTqf6xYNjlKKS3/HKyptcYiA7aYBkgd1Uh9WWTQZjISM8k+ALkx96c5p1OTP5rpwBx/1g0dQKM/vNutWKHxIWbdsSRTjD/CsceKQTo/ZJ6BjVUsUi+rgB1najVLglfhClVMQPhsNT9XWYI5+t8HmV99f6Q1s3Kv+IC7nAyzGuU6oyD5xBNPQEqJxYsXB+sXL16MVatWJfdZtWpVsn1ZlnjiiSf6tmk65rnnnounn37afX7zm98AaH6ghpVB+w4zArU62M/GqJN//CogAElfZMrM6gcO+H5J+7Hi+06sxHmUPHrAOFjS1Br7Ih0IeoE6zPoepS5m7YDPM8MmzayxDzKV7GklZpEJ9kjRx23GxtmfNiid7D1izJg4uUng51XVmyx3ZtfAdNodg+iEZlWxwIDiJl2v7RiEAdUgurXbraJZO12XI2kDdnQRAW1qJZP6QWaAaSNb/cpWw9Y3HwSGdVBs8EvyasJp+3yOMkn6dMmsRLfGJ0bUf0b4VPt4/SjHHBsbw9jYWHLbKOaW2PQyTJ/xR55NZxwfZ2PTCfB8HECV4tHAIi0LTAFkyt9o140SJm6B0OnPBrNIHwQdQMYBPGYfAEFATirVg4H3ne2jscC5B5ap+7Kx96e5qJM+gB7wxKZ2YhzM+iWzDlAWQNYxuUwSpCSgJEQXYJyjBFxNV8ozyKIE98yspBTspM3MTH/FhGdyzbPKD9npgo0tMJGtmkUi71R+SOOXBM8qd4d7FusD0SbxQc5GtcYlIZvBkwf+SBu0Y9mjq7QD+7+5B7MEmDMKkttssw2EEDWG99hjj9WYoJUlS5Yk22dZhq233rpvm6ZjDitNL5x4JJryc/jir089VE37baw6xXVY7UPXxCKtmbUJIOOkZqAqNSe1rQhCDPcABYUDmlikYYqBiTUFkE3mtvjaBEUEqvqcQd6kv+QJf2XiOg8jG0N/mos66ZWhidX6lJn5zoQAWSYpNTBCST1tGwBwAQ79UialIDkHKQXeyUAmfzI4X69AOjPFy3me6cAcB5CGQRqzKx9bYGb88AoICJMnqfyJzivmWEWQp6+eLkqudcs4g2ywhfogaVlkJ+PB/5wx5A4svSLnPKx6NZt8ckbNrZ1OBwcccACWL18erF++fDkOP/zw5D6HHXZYrf1tt92GAw88EHme923TdMxhZdgL7z+Iw96weCQ87G9tLDoBHjjCZ5N1Flmle4QAGaR6qNC0Gke1xkDqj2gdWzSrwgICEYuUoemU+RGtFjhVqdM/7LY+5tY4ijXpm4yAMgZIy5D86zzf+tNc0sn2FbfO1gv275lhbs4XmXtm0LwDbs2hnS54t1szn/qmVt/cGptnnQ/SAKT9bk2t1hcZL21gnfVHWt/koIjWQT7IVLBOZpYaIHnUJg6g08F3lZUHHtMc8iZNUWbc3Hr22WfjtNNOw4EHHojDDjsMV155JR555BGcccYZALS/8NFHH8XVV18NQEeyfu5zn8PZZ5+N008/HStWrMBVV10VRK2eddZZOOqoo/DRj34Ur3rVq/C1r30N3/72t/HDH/5w0noOMzpNib8tNvHE+4060t1YdGoytTaxSL0P1QASqEe22v+Hqe+oWWPVzvojfVOrzyKZSrNFxyxT6R8RAKbMqcG1agq6cQgeBug03Yv51J/mqk5hY8+XTEL3EZ4BmQJTeb29YZFki46XBbhdmiIDtZ9wkzbrfZjZl2WdCiA9FonOmPNFuoAdY26tCghU1XYAm9JbnXXK9JoCypQ0+SHHDJv0Ta254OCcIRd6vS0ewME8sBz2ZkxNZhwkTz31VDz55JO44IILsHLlSuy111645ZZbsHTpUgDAypUrg5zJ5z73ubjlllvwnve8B5///Oexww474DOf+Qxe+9rXujaHH344/uVf/gUf+MAH8MEPfhC77LILrrvuOhxyyCGT1rOp8w/9UERth9kvfujifTYmnfyo1uAh7MMibfs4qjUW67uQNPyD45ij+1+bWh1DUWWV0uGxRR8gWcQYrS+KpAyuCRPC/O8BKOBV2hH6t0QEmN70RaNW0gE27v40Z3XiHCAOMArN4zwDkQLjGVhuO7eZY9IvV5d3wIqeBkslgawDpqzfMo5C4y73EnYKLM71MRxAan+kNbOS6IQs0jO1EuD8kfaZtNKUdpVxhh6iCjsNUgdIHjDMXISm1pyHRQWs9Yez2au2A2Dm8yTnoqxevRqLFi1qzJMEBo8ap7p9MrIh6gQAhdIFygtV5UgWhiXa//V2hULq0Wwh04E7QFX1w38etVlGm2Bybkah5oHLhRmZmgfP5kBmtg03DzBjyDl0aTHZ04AoizpARqZVRuSAEdHkuk7MLPB+3iN5I3niQvuGbNShyIP/McR1HlU2xP4013RyXdA3xyvTL/y+EvUlJgtQ0QOVBajsAWX1P8pCg2LRAykFWJBM/b5LK+GucDm4cOkeztyadzRAZmNA1gFlXVA2Bso6kCxDTxF6Jj+yJxV6Sn9fW0hMlDo3clwqrCskxkuFiVKhJxXW9fT2XqnQK6W2BnkfKz7btH7ITqbzIjsZx4JcYCzj6GYcY4K7/MiFuW6Tc4ZuxtAR+jMmONY9uxpLliyZ8TzJtnZrQoZ50EZ5EKfjwd1QdbJBO35YuW9qBUIWCVRBAvXAnfqxgTp7lETJ0lVxNKvPJm3Ajs8ig7qsgwCyabQP6FG+OU8mhGaUtm5rHNU6RJGA+dyf5qJOvhDj+pZ5bJJ4lg46YsyVp3Ns0jO3IsvBlAIpqfuejIBSVAzUgaNdjpn0j04XyKyJteMGXuR+N9MFPQyoWX+k/6z51htXpINVoBenb6Sk7psUHljy4LjW1Ko/5vn03SKY3TzJFiQTMt0PVj8fybCyoepEqPyRflQrUJl1fLG+SABJgIzNrYNKVnGuH2y/FWOsmj+Sme22TcLHGJtVnQm2LEE+OHqjfVJSvwDd/wos84DSgmNTQQEW5kW2/WmwrFed/LKBABjjGicBgFQAkMzcWxv1yoUwoGWASyn9Pe5XKTbp1YEFFzrNw5peLUCKTmBm9XMkpRnEktHNf7wGpX7EoOhHuaa3VwBpLTmdjHvWHmZMrJ7Fh3k+SJiAHT57QTtAC5Ijy3SMdp2vaoi2w8hc1smGlLvfcWwSiAN2rC/SFQsYAJBW9HYaKvWjxiC9IADBYCMVQr+jUiGLNAAJJbV5zDeHeUyS7HxdBjCphANKMAYEQOkBalS2ru1Pc1On+JgBUIpMWwoAgFjIJDkHZGV2Bysdq2RZDioLvTQgyZR01opALIsUoV/SLS1AWuYoLDhWLNJkTAUD1jBmIH2lBNduFAt2VdpHCJRVe73dAuSYi25lAYu01XW064M7f2QIlrMr8xokWfQ91R389fHr1/+fovXkbW96OFMj3X7tN1SdAC84ByGb9E2tFhiTE7wmqulwXk2LNYz4fNIxSMAF7CTZIsWAmQDIsjAnKSvfpP0d8wJzL0ilOSwjzSarF2k9KMP6Itv+NPd0isXta4GPFEiVYCIDlAoYJFTpArcCVskzQJXgeQdU9EIm6QOkP+0aEAbvGDbp5oZM+bftesBV1bHA6INl06DU4mE8gbLXAjFQ1lM9quIBlkU6cBSVqdXGCtio89k0s1qZ1yDZ9FD4//d7uAY9SPHx4//7Pbwbi06+PzJcFz6MPosEQjNrCiBtmzj1oynC1WVUoGKOvqmVGxbp50UGRQO8dBAywEhlz73EkiN9QLMBG7STadJAGbR/yU8P8ZgkgKBCT9uf5p5OQOgq8MFZ9y2uWZwqAaYr5JA0jNFFLZuBmGWVpPQ20uZWZvublFWEa+rcbfCOCQwjf3aPCCBtRCtMGTppTK2VK4QarzGggbFAlVvsl5gL2nFR39dL9+hkHB3BHThyxpA5c2vd1Or7I2e7NN28BslYBo0g49Ftqu2g7X6b1AO7MekUs0FXG9L+FqXneazSP/rPZceZCU3n+tebLK12lNs0CnUBO3GRAJvW4THKWkSiq5yiki8x65d01yUDmNL+JssmEzu5r21/mps6+ceM+6WvC7dBO6qEC9aSpQZRU2HJAaMsHZu0gzQLmCBlLBB1rWzEtPVh27ShWsS0mQ7LtpEKjj0SPCtPw5URjKGETvNQBBSggE26diYdJNiX16vsVDmRXuoHr5tabX5kPMfkbEkLkug/UmXeMn44Bj1oqf2Gbbux6OQH7dgHUu9rga9uavXTPdxxzL++eVXR6OYXG7TDEEbMxQE7jkXaOq2qBElZB0gbrt8Q2UrcMEluTG4mIIMU12zSvgApejU15EXO9/60vnWy/1e5vZp9+Xfedl3GmNM3BktnobCpQMoDSKX7BPzoaiBtmm+qysRYzcSqU4v0MhV17g9gY+GcAYpcqTiAdFqvqoCvVyoHkBlnKM0SqEe35px7gTrMpWzl3JpbtamVgbn8SPuZzaAdoAVJANUD2W+EmpJhtg0arTYdb2PQqWnWAH/0CiAwtaZYpP0Orz1Qj2xNpX5URZJDHXx/pFbKBOx41XWCWT3KElT2gpw2KOVMrlXgjscmDSAyripTq9lkwTIZ3ZqortP2p7mjkz+dmy3fptfrLxIGSIhcoIk16TOWQXBUwOgYpNCWCrPesUhvCjZndUiApD/biF+PFTwRrAPLHKsBbD/RJlYKZ8+xYMkJivRJdjLemBtplzFA5oI7cLQskhsmyZgOEPL9kbMdtAO0IAmg/kAMOwodZbQ66r4bi06xOSconJxgjEDol4wBUhG5HC29Xo9whylo7vsigbo/Mkj5sCzSJIWT0qwRSgUAaYN3bA4beWyScQkIE7RjfJFMcReIQYqDGyCmqKTdqDJf+tNc0MkHSKkoAE8rkgyoEAKrhU6hZGDg4KKj7znPwFRpCgeUYKY6j2aXntkVqKwV9n/f4hBP3p0qVGF9kSqy7Hhs0hfHGhm0L5IzCAKUMbkC3gDUqJLKl/TLzrkgHRe4Y9JAuBfEwytTq2BVPeWNdqqsuS4pk86gtv0ettiHMuiYTfttyDoNkqA2ZGRqjYERCEe7qamxpAeeqXPwJQRK8/DFEa0eo6zMrEUdIPtVReG63BzjEiREeP1MfhtJCYj+4Nj2p7mjkyQ7uIOLwibyAl+i4wJ2MEaur0nSJkM9QNNFvitfZOZMsTp4h6oBFCkd7GOPb4AyOXOMBUefVRrrhCSb9lHXOSXa1KrBSjFAMTJgB02bhXF9KAbBDJuOrD06v7EqRqCZJEcmTF6kq4pVRbMKVplaKx/mAGVnQFqQxODRo//ADWPO8R/mpnaDTEwbuk5WUj4P3x8JIDC1plika2eGrv0qe/gSzGYO5iJbgbo/MjC1qopRMiWhrJnVsMkAIJ1PMiwmAADEFWB8kpYBMMBLFJeh3ylmCd71nO/9aS7oZCOyXX81AzxCyMJsAExVsKICSAuYklmgNDjDWWiKNf2PfAuH7Z9W10FmV57BTbPGNVC64gFkrlOksy/WzAqjN+cAJ3JsUq+3Vx0AJwgwSBUOYG1JYjcNFq8AsjK5cl1S0ishGZtb7QTMsy0tSCYk7i5TYUxWBo2ERzUDbQg69SsLrEe0/c2tKYC033WEXfUAjyK+dSgwtRpfkB/dqqNXlTOz1gDSLyZQK0BtQDPrVN+5AMoeXCmyLG+cRWTQOcy3/rQ+dbLgWNrCF8oDSsSmS/3FH5DZ/+1ATTCT+WG/k13HIBgHD9ilMbn6g6hE2pD+EQ8sOXcmVmtmtYU8rCjP/RFfF8CyR4IKluanNbprF4gCFOm85Tj7w48LsKbVLPJJcuurNCUcGQyjhDd1XYOOMy0tSE5Rmh6ypge+6YGdjhfCXNLJf/BqbDLaFpta4/0tQPo+EH/GAZcFMkCCcnTmf8ck41J0BiwtiyQfFL3vtVzJ+DetT9IWFOAmIMeWECsLoCzBhI7HT6aEoO1P61snf1Cni++bHENKBfBUe6UAkhuAFPY7NGOy66QxNQaBPtbU6kW66h/z+guvnoI42lU65mifpQZw9C6SZo8ETpZF6mUOaKS1QAkAXP/LG8Z4fmWdzEv5EAY4c1M8oJpTEh6bZC5+IL4nsyEtSE5RJnOj+o1sp0Pmgk6EKnouJVJRKmMCALy8SKoBpP2esrgqMvt6Gzmrptfx1/nsk1Hd1GpTPqCUATLzUTIESJMKQlKP9JWZ94/buf6kApNSz9AA6Il3dQPt38zyKC9TNQJlk8yH/pQ6/mT2mYxOiuBmsLEAWbqC4ND5hqBk4AuAoP8xGACAAUOuzbIEAgOguAVOPQjU7Sp2aQd1ZJZudGhLHLofDev+EsIgnX7XQKddWGtN5Ye0bBKc6YAzMEAgYpF24BrGCLiqOTyancc3s3JjZvVcI3YgsT5SP6zMe5CcyQe5n/TvpBuXThowq8hW/0US+yP9KjtWUiNeZZ96bkxCI0S4WtHRh36YfTTzh5KaRUrpCplTEQKk6hUOHC1QAoAqNGtkgoMrXme6QgBlDmYAl3XGPBbblM7dLPOpP01FRtVJeYBYSEJpzKyFIgeOemkGfgmU9GfMYCBXFSows5LuxzoPWO9jgVMzSRvoAx0ZywAwL+EpEe1qHxG3JAoDdoa4ATGbzGEKsAuuB6QKgAF9yyIV1VOvqvQOa3KFlwpiTLDcVvEJo2EZPNfIepB5D5J2dGm/+zLoQZ6pB31j0CllWg23p/2RvkjP/Npv9o9+ka2++KavIGgnZWolgjIpH45FOp9kBZCyKEFSQRUlAAQzyDPBwRQHSf3icq8vW0YsKyo2WZZgIgzUGGai5WFkY+hP60sngmWRQKnS86DavmwnDPeB0gGkCXyxL37BmWGLlblVGdZEJrhHG0UqsLTAaosUwNOXR32lKtoRnWOfC8eZYZnMmmYRsElwnQbigJIz5AC4ec6FMGzSO6YPlvGcrxYgbbAOs21QsW/GqlSt9SXzGiSbHlK7Le6IVihazoQ+G7JO/XRIcSTfH+mbWq0MAtPU8UYSP7rUS/uALUNnWaQzuSoHkMqCZK+Eiu3HBcA5B+9kIKXApdIPHDdBFWXuscmeniRXSV0Yu+wBnWxK93Nj6U/rSydJQM+wx56sJg0vTF8tpHKTgxfKn+ItPaALJwXX63NnbNXgxJgGS80eGQQnKKnBypp0/ZxLyy7jEpBW/GCifkZ8Dg3agBlAkgZqUMUmNYpXQMmJ9Cpi7tx5pEd87n4KiIuYDVI+KhbpDwzWl6kVmOcg6d/PeHRK3jr/+yj3KgUa/nFS/Xpj0CklNv3D7uOnesTitpH/PRyd+4UE+AhPkF+5w0W2OiW9XEkXsWo+PlgWPQeQqqdB0jJKfRgTXME5SHAopSBy/agpwcExrgN5Jsa1bzLTQOkAUpVVbpzHEOZrf5ptnYDKD+l/LEAWklAoZZaEQiqXM5nqz4ABCZMaUTByIGHLLObgJv/QMDky7NLkJ5IiByIEnWqhGAATPNSPaTVFmdsgHQuyzLBUTuTYpIJNueIooBxQ+uBowRLQ62LxwTEeKOScOzOrD5TcB0tzbjNlQRgk8xokgfCBjIWiNkD/BzwlNXNHw/p4BL2h6+RLP5MrgJo/EghTPmJmGAcF2N+QRMgbXqdN75AgaMeTKvdRmVzIyuzqs0dpgVJp9qk8cysXetjN8xxkWGQJ/dAxoQGS+ZGyRQ8sG9MFsJUc6mU+X/rTbOqkCOgpQk+Gn1IRelJhvFQOHC2DtGZYIARKO0uNUCwwOUrSAKCoAksLGLbUm4IGRmKmXjEnMIJ1pkPH0FRg6Zs5GWMBODaxSPvbzIAeMYKC9p0G5S8MUCpG4AQU0lxNriPGbb3llN/QB8cKLCuAFIZV2yAdn0VawOQsfe9mQ+Y9SDY9fE0PaNO+o2xPPeTxaHpj0mlUSZlLPexxycnWF6moKnreDyhj8VtZsHTTE/lVdGwAj5LazNrTLNICpCoKHbijVOCTVIX2SyqpIDo5SgBCViyT83EozvX8gVkO6nS9MnheAWxzvLY/zY5OBBhADAFyXSkxUWoGOS5VAJJx4QsnsgIGAMgEg1AMBdMBLD5YKg4ooVklZwQoC5DQpg+lWRYUGb+lZpUBWJqm/XKUU9fFFNVxQTJExuzrXTXGGUrbvQWglI1yrZhlSiw4AginxuKmcDmYY7HV3JHhXK+D7t1MyrwHSV+aHmIrTSPYQetTJqVhj7Eh6hS0jRrYupFWgijWgD1WLx0ZDYOlAsAtQCZTqgeKM09ZPySAlD8SZaHrshomScqkevQqgLSmVooiXJnJW7M+SWHyKJngKHkPGbTPkjIDkr1xsE4XED0w2QMrxkFjm1Y6Y372p9nUSRIwXqoAIAtFWNuTGJcKE6V0IFlaf6RUjSAZBO4wzShtqoMiQJl6pXATFXNIksg5B3E7IGRVJDeYSU3UxfwVDMCR/p+xijVaZhmzSDuwtMDIUf1PpNM8hFHQAiWDTkvJOAOBgStyrBLQgJkjHT9gmaP9ngtTMIDZiZurpQ2osyXs7HPadO9mQ+Y1SMYXeZAZZ9SR7SgMKzWS3lB1ajyet1Mc4+JHsabmmNRt0lGsUhE401U/rL1HKYKMowiMJB8uHyi9CjouYMcUC5AGHGWhTazS80v6qSDutwQHKTvpbt3olQsDknkOmlin2WTe0YE8WaF9lN7MDcD860+zoRNQAeSEJIyXIUCuLSxIagY54QftyCrCNSVVRCvAFYPk1ZyMUmjTqxRwy5wYXG4FmImGGQ0o4R3Bwi+gQYioGSjt9FcWKHXsTnXnyETdMg8sAZ1HCfQJ3AnSYDQIMlQAqeMEqomcLYhaU+ugezeTMq9Bcrro+2RAo+lFsTHrFIubFqsPKFpcsSN0C5SWTcbTZdnj5vD3a3rKVHIZlJjzIltVUTqTKkkF2SsMmyyhTBqIC96RCsz4JJXg4CZwp4xUYIIjz8c1k8zWgvIOWKcLJiaAchysyAM22STzsT9Np04pgBwvFdYWGiAnSuVAcqJULnBHEqFXKjewS002HHwY0yZV4pBKIicO5VCgYpNaDHyxCjQYQdeCJQYywBg/AzqQJzxv/4jDACUjm2aifZQCZPbTuvhgqVsZMEycv73OQAV8LkAH1f8BYNpUkAH3bjZkXoOklWEetn5tJsWqEv/7v7Ex6jSKxNNj+RJPl+Wzy6YgoYEuGr8upu+PdLVbpWOJOrLVC+AxAGkDeFzwTqEXXHAHrMKArG3DBAcXawHOwYxfksbXhGxyiOs1H/vTdOkUA+SEVJgoyQHk2kJiXaEwXkoUijBRKvSkcuBoiw34QBnPoZh5QCmJQ3IYM6sBxdI3kup1rm4qmaugdCqG1A5AMNLBLjZy3LFJy94S5+/Aktn/rU8fOgWFmAZZkJngQ6eCEFWs0gdLML3OlYwULHjW7KNZVRyy5fY8EzRjzswaLGPwH3AvZ0pakETzxWbe9mFuyFQBghq+b2w6+RJOgdWc4+iDpjAjYCimJ9Qw+ylKm1r7AqQf1erPsGD8kvqA0pWes6bVEDA9E6wkKEORLZskQTp4x5hkeVy6TnDwfBwqWwvkHSDLITpdMNEByR5YOQ5k3ZGv7XzpT1PRqVDAhFSOPU5IhXWF8gBSVUyy1EDZM2zSgqRUKgBJKxWD5O77mJmYWGYERRzIKlDULMwCJKFgZj0jbd5kltWZ60Ma2AZen4S1RQA6uMeAERFqrBKgCjiBGlgK05YMWLvTN8DJPK7nF/Lw8ztdbqRljx6L7GdqnU1pQTIS/4HzDXXDjIBTZpz5rBNQN/s0SaoMnZ2KKPb1SM/EFJub/OjWkYsKAGFJOFUF4Tifow3cseDoAaTsWZZI1YwNhdSRrIKBJDkm6UshOBjn6AhhzK451FgXvDMG3utAmWmOmOhMy/3bUPvTdOvkA6Q2p+rlMz2fQUpndu2VCmt7etkzYCkjFulLBZKqYpFKoJNFHM8Ape3HFiA5FzoHkWzNHQOM0GCVsjdyz4xpwbEJaJQ1kUZgyXxwjP+HBkvAbDP6APGzXv9RHxy1jiFAaj9lxSLnAD4CaEGyJrFJyP9/lJs26stjkFlpQ9JpOiSdBqLXaZOV+Q5TCksBnBGy6IqkgikG6ujPC2l9kpEvMmaTsqcge7ZdxSbNQcAFgzLrRQSSgI5yZYIjz3Jtds06oKwDxjMwLsB5BrWgM0hzJxtTf5oJnVIAaZnjsxNlwCTHS4l1PWkA0oKkZpOxmdWK74e0ptYaOJp2hdQDvUIpcMZRMD1nozLRpbp/k0uLaKqdkVrN01iqf9tsIC9KXJtT+4OlAHM1YS27BDRg9pOQTYYAac2so7DI2QLRFiQT0mT7ni4AGOY3B22fyzoBYQf3H47JSmo+Sf0dwfx11tRqK6BYvbRJNvJZejMl1CQASo9NevmQypWlIweQmk2SAVAzwhY6GlEYhklSgCQ5RskEBxMCTHCIXIOiM7tmORjPAJGBiRzUWTjU9dqY+tN061QoYF2p/Y7jxv+4rpR4dkLimV4ZmFvXFRoc1/Uk1vXKhKk1zSTjgB0LkKl2yGCq8XAoblJJTD/OwXT3G1DGt8mcyfxt0T4xAwc0YFa+xwZwjAAUzKwbgJLVJNTwdIvY5Agscib7qi8tSCYkNeJ1nWjAfrZNzeyYWO93hEE3fEPSyR1rEqZWX6yptSklxC8moMhOwmxC680uTdNxUb+oV9vGA0obaOMYpReA4wOk7EkNgEpVbLL4/9v79mjbqvK+35xzrbX3OZfLQbjCvUQEk1JQIZZHeWiH4COILSVRKxLoDcmgV02HUaqOKO0wgmNE1LQ60hgb41CxipVhlaYWQ4sJWltAEYiKKKEWRaoXH+Ge+zp7r7XmnP3jm99cc67H3vuce865j7O+M/bYa6/X/s6aa6/f/H1PeHMrA2TMNEm4a8hASSp6LhVMmkGlZHIVMoGUEiYZbqj7aTV1agPIfTmB4/5CY29oas019oxKLOUllnLtwTFvAclQwqCdLJHBhM5iPlPIXZCOkgJ5aZwZFh4gpUE00eNI7Wm3LAfs1AHSH1KrKhWeSgVFKwSaYMnf38YuAVSAGQj/rMPnQAjYYRs7XuZ9WO9J99N6yYYGyfoF58GY9OCfJLa23HZcuH7Sj/pw10kJ6m5QZ5HTTCjatOebdfl8jOXyWSThbsbZkLSxSFy7IWtFZwRsm4RAGVXT8cUDCPCYTZpC+89hiToNF+VqDHQukcwFfksnxCgpXSRTe2ASYpPCAaaQClAZRDKsdMLGuJ9WQ6cQIJdcNOuecQyOe/MS+/ImQFa+yAAgHeOztRtKSFeGzQhoYz2LzBKJcStABp1EZpi8+e9xQBK+s6kyAkiuA8zLjRNJcHUnoAJM4b7EAs682m6KBei3RcE7thqT2r/BH+uAGOrexiKn3U9rLRsaJA/0gk87tutH3/ajPpJ1mlVCcGxx2zX3N9RDUjt/JPslQ3NVWCydhUPmLYi9TW1JFQGljsyuHKRTmVltwCYroJRKwhQGRksPllanAHLPKqUL4GGwTJPdEFLCSEVBHELCKDLH2sFRG/Z+Wq5OQDdA7s1L7MmdWbXQ2D0qsT/X2DsqsNctL4UAqQ10aWhsjW2Uf/PBMlLAJFR2ri5JBJCyAlxnNTGyPZWJWRcvA82IUJ+sL1CBo2v/BqDdtOLK4Vj+HQgJISRF0QaA2WaKZWDkfzMEzTapg2M90Kg+iZ50P60Xq9zQIAkszwRU/3HO8iOvz4Bm0eFI06n+Har2S1BCoCsbsC0wgmffYQAP+Rur84bdQ7wZFoDp+q8dWFohYienk7ZqObze+yBNZW7VhY7MqtoH7xgCTC1dIE/7T1C6BxexRwVI15leJgSWQGeRgSP9flquTgyQS6XBUkFFAhgcqyAdg92jwrPHECCXcu3BUZcG1toKJDtYJAezWCmQB9uVFBgHDLIrMnbi/yaEr05TzyusA6QwZZwDHL77Cyr9NYOQMWgyYLaAJQRgbQWYdA7byiIj/d17G0AyAwam30/rxSY3PEiG0nbRw4Gq/2i7ZrTh+rYf+nJm0YezTkB8k4d8TUoAQWzMNKkH7oSignA/7k0JZ4rlDiNkaoXPB2Ozq3APgQabdOZNIVXzAR+UoDORudV4gAwDeLzecGxRGSgtfWAPnZOWhcudlMG7/5FKBeUAnKqHScAF8myE+2m5OnE/yLBQwP5Ce3BkE+seB4p7RiX2jgoPjntHFKiTFxq6dP5nB5JcJSrEGyFBlXCM8JVoFCSBqxCNQJ9J93SdUSkZpE4E4MgsMuyiwe3eRK1HqmAka5hctb//rTCuLI/7XUgZg6X7R6naT8wuDVxbr+Bf6aplC1Qm1i5Z6f202tKDZCCzDkT4Q2wDhknHhMctZ0Z8OOpEpifak5OTRXB01R2APwsuUgOgPaAnjGwN95NGeJMrm6u4v58x9A0c3UrLLvfMsUc/iw5m0l6k8uDVJlWgDpnhLIOmY5MAKgZZGAglqgjXYP/o2tV0SJweQFXQndPQbTa/Ie6nWXXiMV4qmykeHMHqAXJcgeNeb2olP+So0Chz7cFRa+PwpipkzkxSSAFpBKwEhLRRRwwFiUJX7DGUNhYZ3t5KOCMHAAFXqs2BYWha9cEuDJC6jMExML12ipDB78B6wBTB72IquwSYS3rQ7JJ6LmfIIuk88fLBAsoeJJ3MMjttkzprYjNA23HLnX0fCTpJ72ewEWiuRLrqYwKUgM0mV9+bMvBLhsE7xlbBCAyMtsYohVKwUraaXlnqwAbAs0sGyJIa71G0rdZkCivgQFRA5cxIjTvePXyDbiIsCe1A/69bJwEYayg1RMgj/n6aphOzx9x16si1jSJY9+YUnLNnrLEvjwFyjwPHpVwjLzRKB5JaG5jSJfWbytQaipSu0HgiIY0AElAOIXfLACIGWXaYWH1krBDut8ONh5lBkqmVAaWqCVsDSFNW4OjargGofJN1CszXNfwN8DIDpu1gl2GgDxDlXQJobdsVVgFqA8j62ALd99Bay5SIhQOTp556Ctu3b8fCwgIWFhawfft27Nq1q3P/oijwtre9DWeeeSY2bdqEE088Eb/1W7+FH//4x9F+F198Mdnfg9eVV155QLp2XfTlDEZ95jNN6oNdP+Zw1ym86cMJZffcsl26/DaRv9IVQ+cACG4Ca6IXl9FybMPaij2yP1JI8gPyCyB/YAeTZCBjk2v4KgtND21j/WtJ0/s41yhGJcpRiXxvgWJfgfHuMYp9Oca7xxjvHiHfvR/jXXsx2rUH46f2oty9CLNnF8zuX0Av/gLY+3eQS4uQ4z0Q+f4j/n6apJOxle9xX0GvpcJiX26wa1Tg70YFFsclFkcFFkcldo8K7NpfYHF/jl37aXnvqMTupQJLSwXGSwWKcYlirFGMCTDpc0ngGbyMJpZpjIUpDd1rpfXr2Ic5Scic6lgVR8cKEYAl/YaU5Fe1XaAFII0mcNS561FaQpQ5oEuA3/kVfBampDZths7DL2F0cE76nnAfYU3QNDlmt0qKxvMaiFM9ZpWDwSbXlEleddVVeOKJJ3DHHXcAAF772tdi+/bt+MIXvtC6//79+/HAAw/gHe94B573vOfhqaeewnXXXYfLL78c3/jGN6J9d+zYgXe9613+89zc3KrqPm0wVrJ91gfEkaKTgPOduF9BWEWDf/wsSgiULWcKwbE++06C/DM6B81nwwhB7V+VX9LAAap0ZbakBGRSMUpJgTLkk3SfgSjpnz63/7yZGfL35qYqbFD9v1RlJbMaqTPTGm+abb+ixhgMtEHqC69rCvl3ZjRjDUSSwc5Y5/Vwu5+6trexx7xWQafuf9y1P4/Y495RGbHHsnDA582sFrrkXNna/yitD9gBFytPJCSEB0fbkdoUdgcBav5FSX0YEykgUIEibw9fDFwhQApmkKZmdvWKm4BFOr+k0dVkEQgC2hxzlMlUZgkhqWA6qihd/tw2nvR/t4/3gd5PqyFrBpLf/e53cccdd+Dee+/F+eefDwD4yEc+ggsvvBCPPPIITjvttMYxCwsLuPPOO6N1f/Inf4LzzjsPjz/+OJ75zGf69fPz89i6deua6D7LbGU5g7Uas5/DUScp0FpiKmSV1JBVdLfvmCAhaHKkKxcWCE2uxlDPv1RS01hNv28X2COq4B2VAKUEEpdmIaWLLFVVakbwDrDv0HX3c0BnA3bLAKltO1BqS/0Es8A36R+sHBTk/Z1V5Z/Mt/IykGUBaQ1EWcAMNgGZAbL5AwJAzLB9uedbjXOE242leyA3VXursAdkvUAA+x8X6wA5Lh0wMkgasgIE6R7W1RFuY4TCCuplSvZwABISDo8U3Rf1zuBhVxCWijkSWKaSGjSHDFKKgEk6Myt0XgGkLqqgHeeXFEYj9EeKFr9klP7h3iEkrANSTpWy1gAycWDYDZaVKbYas66f+DQz68GWNQPJe+65BwsLCx4gAeCCCy7AwsIC7r777laQbJPFxUUIIXDMMcdE62+55RZ86lOfwgknnICXv/zleOc734nNmze3nmM8HmM8HvvPu3fvnvidq/1jn+S3mVUOd52arLJ96qikQDEBMOv1MRkoK38l5UqawCdZGIPUcrSrbfolZRKYWolRIkkJHJOMWKWqXixdJljAlccLWGxhm4FIBgLamV8zKTAXbOaydpWvsqody/7Kgetzacsc0miozcQgrM5hdQGbDmCCwgOhHM73E4NjYRwwmgogx0EPSM5/DP2Pi/tz54ekFwfnkBmVWGMcrNP0Q3ITbQCOPVKwmOB+VaiAMfTH+QLmAThyVZ5UCaRKIFECqZLuJSKzqhKuDmzAJtnEyuDoGaQuI3AUbYE7vBwCo3uPmaGNwNLyvm675Z+BI6Y2PD+fA91ssU1W435aLVkzkNy5cyeOP/74xvrjjz8eO3funOkco9EIb3/723HVVVfh6KOP9uuvvvpqPOtZz8LWrVvx0EMP4frrr8c3v/nNBgtluemmm3DjjTeu7B+pyWrMwHn7ag38oawT5W5VZ2RmCQQs0qWCTPoRcc++UOIartztnXyPhbaQwiJtMbl6Zue6xIPNrQ4suai4SDNYNrumGYQcNcBSBiZX0fEPhEwyBkpncpUEltoaaGsx1AZGJ1ENWC6cHhZat9pgoHXVJLosIOY3Q84fTU2iB5sgMwMzY71X/3/g0L2fCuPYow5AMmCPYQ9IZpF7x02AXMo1lpx/sRiXKHMHkJzu4XyKxCRNVHkJgP9spYJKiCZaQUXJhYz/YyGDlJCAQWaJ8owyDNJRAkhlxSq9HzIwr6YS3s8YAWSZV75DzpOspYBY3cy9EkoBCEytQUBbHSwZUK2g340w6GaV4XdwmskKxn+176flyLJB8oYbbpgKOPfddx+AOIKJhZNPp0lRFLjyyithjMGHPvShaNuOHTv88hlnnIFTTz0V5557Lh544AGcffbZjXNdf/31ePOb3+w/7969GyeddFLkMO66+OH6utbhZ1tbb4PtXQPcNluatP/hqpOvCuLOJEBtcVh8fleHzBI2z+u1rNJBjLUotEEqBQptUEgRmVy1pHxJbQGlEoiSTK62lJCpY5BJBpGkgJRQGdVOVWlSq44jIrCMdLKUP9YFlEpUrb8Mqn3mTBGZXcPuIvVC6wNNAGnLHHI8IvPrpsKzSuFYpXWsctIs/VC8nwAgd0FZubYRiyyNbW2Q3Jb/GDLIcRiA48yrDJBaUwCOLrkDjG6ApAiino0h86qR1hfx9vuFfvcAIKOXN61WJtZUCWRKRuvDriLCFwpgM2tesUcTBNVYA5Ql+RpRgXtUeUdK2BJVwBoINHnCWPdJWl3SskpgDS1DJhCQoLsdTVbpSt951jph3CfdHweDTS4bJN/whjdMjSQ95ZRT8K1vfQtPPvlkY9vPfvYznHDCCROPL4oCV1xxBR577DH89V//dcQi2+Tss89GmqZ49NFHW0FyMBhgMBg01ncNRPh50gBN+3HXz1//POkGOFJ0UgLQojK1chqIABE41ZK2Na0CT9dnZSyV+0pdkXMXwFMYi9TSg7VuctXOL6lkAisV/djdskiISSLNCCw9KCrINIHMEshRAamE29YNlkAMlNU669mBthZaCscoBeaWysAvSQfVQZLbdqVFibQsYAsCS5uPiFXOHQVbjGGzOdh0Hiabg1BVy63wHqiPXdtnYP3uJ81jCGde1RalofFkNrlUVo2RuTlyW/6jB0jnf8w9SBrvjwzZoymLCCBNAJJSKlijq2ITxkxMFRKCmGS9dVZsaq1MrINEIpUyYI8xkCoBilR1LNIDJPsjGSAZHNnS0AL2XkepYKkSP/0wjfPFK0u/BWaWQGVi1SUBJUDftwyg5PGu3xPLvZ/WQ5YNklu2bMGWLVum7nfhhRdicXERX//613HeeecBAL72ta9hcXERz3/+8zuPY4B89NFHcdddd+G4446b+l3f+c53UBQFtm3bNvs/0iLTZrX1GXfbvrOYBcIHwbRBP9x1YuHgnXqEK20T3vQqzfSfwSQmCQC5NpBCoRDU5DixwgfuFNoiVU2Tq3Ul38AAKRMqLJ5m9DBMUsgsJWBMkyCIR/iXdKyybnblIKKQSYZASbhKfkltAS35uMr8yqbXsEZsGNCjXduurCCAtPkIcjyCyEeQ80dD6By2GAPlCFAZrGu7JQKT2MG+n3gfBsdqjAgYQyZZGjTMq2NNALnPFSdvA8h8xCZWHbHHsjCePZoyj8CxDiwGBJQAPFhG/48DRcIVuq9TJSNgzBKFQSIdW6wY4yBR5Jt0DDNRAomEe1WBOhFAOhOr0LmPbrUF/Q9wYM8gCSAyt5KZFQFAahe0ZgCpAWQ0PsIF7JgS1plYG0DJgUEMlKG5NfB/xlG1zfugTZZzP622rJlP8tnPfjYuvfRS7NixAx/+8IcBUArIZZddFgXtnH766bjpppvwile8AmVZ4p/9s3+GBx54AP/tv/03aK29//LYY49FlmX4/ve/j1tuuQX/+B//Y2zZsgUPP/ww3vKWt+Css87CC17wghXpOmn2LIL3+oxnlsFazoB2MbPDWafKzOq2B6yStrczLyXJ/xRKk0UaKCn9+jCIh32T2liU2qIQFMBTGIFCCyRSeoDkdBChEghNvRutTsjkmqQQ2RBivAQkqQdImSZQWQKVJlBpCam0B0qppOsCQfqooIhCm8mVAVPbOOLVQPr9zZ4xMp16sGRwNNzXMi/9e1aUUPkIdjyC5Pe5TZCbjoYoR5QikqSw5Rg2GfgelaL24Fqv+8miqpLDzFE7IAxBks2s49JgVDbZ4/7CtBYI2DsqsVRo5KPSB+hUplYdmVdNmdOrw8zKYgBfIpBF8kSPfYxSQCXSs0gCRxkte+aopGOQAkPnq/RBOiGDDPyOIgRLlxOJsoQp8wocy4JAsc3MCsCWRVVhSipXRMNUYAl4VokE3lzaCpRRgQJFYMhssgUUZ7lHDgVZ0zzJW265BW984xtxySWXAAAuv/xyfPCDH4z2eeSRR7C4uAgAeOKJJ/Bf/+t/BQD8g3/wD6L97rrrLlx88cXIsgx/9Vd/hT/+4z/G3r17cdJJJ+Gf/JN/gne+851QqtvkMUkm2cgnDdYs26bNoLvOdyTpxME7fHyVFhIkTEtqLcTBCl1CBQSCeqgBUPp8SWM72WQh6ZUpOIAU0JLOm6gMVubUjkoWxCizIex45E2uKk2QDDPoUQ7tAFNlCiqTkCPHIBxYojRkOu5oidDmnySzK78M5lRgft1XVGkm2sK4qj7ELgksdV6gHOXIjs6RjkZQ+QhiaR/sps0wS/sg5zZBDDfR/5WMiVEWS55BQyZAGkTE1qr4tI35LPdTnS0CFTDyuDI4hkySgVG7gJ2lsgLFUWmiBskcoLMU+SJL7HMm1jaALIvKvMoMUnsm2fQF1MsF8rqQOfJLKgkhCCgZFAeJxFyW0HuqPItkoBwmElJQYE7oj0ykgLJVoI4oRzGbNCWQj320cwiOtnTFHplRhhICpHQBSgFYEiAaiARACSBJwAFBViYQ1rHGMHJWSAhrm2wSaLDINlPrcp5P6yFrCpLHHnssPvWpT03cJwyRPuWUU1pLGIVy0kkn4Stf+cqq6Od1qH2edSZzIDOeacceSTpxjdau4J0wwjU+bvJPomKWxn0Wfr02xBwZQOtssjQSysCBKJwvEFBJRoEuSQpo54tMKXhHZEPI4RBylHufpBpmMEUJmSrIVEFlBnJUQiieAFBJsi42OdE/6RjlnJIuqMdA7y8wjFpxWd/seViU0HkJPcoJMJdyJKMc2dHO/DrcBzsikJRzBJRiMEcgqTICSZXQZyHps5CwSdZeBD6UZTAFHjZmkFXUcVU1KQRGbSvzKjVKbvoh9wY+yCVvbl0eQOrAzEpBUbVgnZZJuC80weDI/sekYpKZqkByLlP+nVnkIJEYKnpxsE5oZs2UgIIhgCzHDXOr0AWZV/MRgWQRMEkHjH65TRggUfhgNQZL2k7HVUAJmkxx1Cyo9ZsQpjK78v3g2GQUqbdCOVgMs6/diuVFUM3iQK77daads+u4I0UnIDaztgXv1MtYsW+yXsycpd5BISweHTa25VQQZQykBgopUEgy2SVSeTZZGAdQMoFVKaATCnBJMwKTbAiRjyCSlJjkMIMejaHSBDpNoLISKlMwhSZmmRukuUZuhKuuwwEYFQh6/Wum1zZGmUkBrYQDTjK/ko9S+5cpNNJNzuxalChHY6SjHHqUI9m0hHTTHMRofwWW2RDCgaUczMFKBauyKnBJJcQWyjHqpftoUP0sh+6HECjr+7SYcrvYo7Y0qdGWzKyF5iLlpmZeddGsgQ8yrKCzEoA0zMCAyNRa9zvKoEtMaF6VUkA5BimVjFjkfKaQJYrelcTAmViHDijnMzKzZsoxSBfhmrhAHaELKhxQjCKANOMl2HxEwFjkxBxDkNSOFbeBpFSAA0cunMHrRQLYIodIM8dICSiFVZQKYo3Pn/RMMgRHUV0zYU1UF5bvAb8dK3s+rYf0IInpDCkctFlMAiFgde03zWR5pOkUVt7hlxDN4J02CYsGhNL0UWpkLmetdJGu1bkJLAszhU1CBmyyJDbpGJfIRwQo2QhqmEENB1BFCTnKoTIJlUnoXEGmtKwKhUxbB5RcNq/2P7RU4gkZZbWPA0glI/MrNXKuuo4wq8xGOQHkUh6BZbppDDU/cmA5DzHaT6bXAU0EkKQeMMkEmwSmWJc8HlRVCcFTANW6jjw5bSsGOQkgC2aUEwByXJoIILk4Ofsgqyo60wGSTK3EHrv8kP7/CABSSElFzRPnj04kVCKQZApJpjCXKsxlDhgdg5zLFOZThWGiMFQSg0RhmEjPGhkoMykoH7IcQbigKw+Q5Qgocph8RNHM45FPA7JlARS5B0Ybmln5f/Og7wBSKsAYCEmpIsQs4YESvGwkoDX9eMMCBQ4QQ+AUQTPm1glUICt9Pq2H9CDZIvXBWI3Bmcb2lmvqPJx0YnYoDLFHZpTslwwBkiNc67VdQ2lrxMySlwSUecgmjYFywXrEJKewSZXBqhwwGYQqYjY5GELkQyTDwrPJxJlcCaCMY5TGs8nMCOTGevNryBT9/1RzMzCj1DaIenWsUisO6qmiX3WukRWp81ESq9S5IRbpAFKPxihHOZJ9I6SbhlDDfd4/KRxIiiSFHcxV5uU089G+1uXMCTbFBnU9q3ZKSTOpXDYfM5Zr6QL+PWSQkwByXJrIxLqUlx4sl1yVnbDMHKd1cA5ku4m1GyArk6p0zLECSZXIKEhHucAt5VI6QmCcyxLMZ8ozx7lUYj5VmE/pc+L8jyFQcnAOdB77I4MoZjteIjNrPvLgaMs8Tvto+FergJ0omjXJIIocNs0gSnigpPNICKMAoxtsUlgyuc5qVl2OFWvS82k9pAfJA5RpQQ31z12DvpqzpENVJyUFlAW9nBuScsECU5WJb/1G78goaMd2LFP9TB2wSQJdYpIjbVxYvkCuBZSUnk0WDtCTJKNQ+iSv2OTcJoiygCgKyLKAGuZINs1BFyVUUSItysj8GbLJTHKxABGZVJum1/C/rVhmyCrBAKkEciOi4gM6N8g2pZ5VliOFLNfO/ErsMt00R8ubhkiGY6jhIJ4EOHaJJKXPrqACAyYXg/fvQlDdW1fbU4RgiQRUkgUNBuE7s7Av0qAVIMelRqGNB0cK2NGuOTIBIzdKXso5pYNKy5nSdeYIlrmCTlehgNb7V6kag6RKO0IKyEQgSRWUkkhSiSR1LDKrWORclmDzMMFcqhpm1mGiPDiyqTWTgiJZixFEOa7eGSBH+xxAjnxeLOfIog6SbD4OGoBXRfpbolmloudBmkEYypm02qW6OLD0bHIWkZNZJMvBfD5Nkh4kD1BWMlDT/IcHKoeiTkCHyRWxXxJgQGtPA6lLW85kXhpkCZCX7nxSuGhXgbFwEafSYFQSW02VhBJk4lPCMUqVwaoSSIYU4p65yMKITY6IQQ4HPgUjdSwujDxlNqmtRS4EMhmbVOn/Fh4s/b/s/rXcMVxmlYCJgnpQGuRG4ChbYhCZXjWyPPMm2GQu92kiao4idNP5IdRc7sByBJE7kysH9Tg/rHDsEknqQDOJwdJaMrkq45mjkJQWIHQJqyjQQwqJwlT/I5cJNKCWUpS2A2cSN1QpyQEmrxuVBIp5aZCXJlougtJymosDBE2TjbGNHMi2IB0W4SI9mUWqJINMMsgkhUwqUJSJRJLJVjPrXAiYafOVBuZVBkply8q0OgkgQyZZi2y1QZpQ47doHEhqA6E0gWUCYo8JAKNc9R5XOMHImE36e7RWDzYQG4Jo4I88VJ9PXbLhQfJgXfhJ33kk6tRlcmW/pPSval9o+DyxSeJTP4LgHQZKbUQUyKMMUBgBWdK5UyUxKjWkUFAaAaMUyNIhJWcnGawuIIbzkC4oAkUOW+bEIOeHsFp7ACImSabXZE7B6ARzpoC2whc6ZxNqG5tkCcGSj6m6ijDrND6nksDSYq7QPqeSATP0WZq8hBplMJsoZSQZDaCHWQCWA+jcFSLIhs70VvjiCmCWmWTUMYVNbjJpPMwEUBXArgn5JmnPsKZuaSyMofq7haleo5IAkwFxKS+DZY2cW1s5QAzNrPQstw0W2SVVezT2O2YRQJJp1ZlYA7BMUoVhWoHiUcPEs8g2gBwkFTDyK4GJgLEOkGZpX2BqHVXA6AJ3TFFWBfGDzjH+f1MSpoCvICVdWT0BAkg2qUJLWKmbbBJwvs0Z4EPIqMPIgUjvkzxIwj9qXg5lGjCsFZgdyTqFqSAStpEvGRY9l0HaRCIFtBQupUNHXd5Zmv7JeIbLdTJHglglJaZrVzBaUgNbbV3jWAulJFQ6pIcpN6T1THIOsiyoFJymijfJJno46aJ0gJT4KjlJYZAZNp9KELjVg3Tc/2sDgES1zIwyk1TL1P/fAVhqKwBIaBfUo3NTgWSe+JzKxEXAqiGBpSkKKJc2QmCZQQ0LmLIgZlnkwGAOtiwgtCawTAof6FMFcdSAkjLJo4AOWfPHchNsY3mZgqu0q71bvSj/dVwa5CWxx7EDSW2sB0dubWVN1fCYu8J0gaNQMQiE7LHOIBkU6V1FrywAyM0BQG5yLLLuhwzZY6ZkEyCLMfkluwAyr0DS5AV0UfqcWQZGW2OSlalVEgCCcjsknH+yzN2PtcYmkbobUgNIXS5ki4RBXeG6w1Q2NEhOCjVuC0lmsbX3tdDnSNRJgMAgTAURoFywQiLyS/pSdTMwybbIV5YQKMOOC2x2ZZBOpXHbyMSrtIUQwJzKKMrVlPSgGJTOL+mqnpQFkryA2TSkh1NeumXuDWn88lAbH2zDeZnaVv9bbghe2lgl4MDSVmBZl6pyDxUhQM4NoIOOIk4fZpWZYxwmJ79qMhzAGPc5L5EMC8jhEMYYCGMg0pQekmUBDIaA0TAAscoUPsLVgqJZo6AO2R5swaZW+iMGyekfJng3tmKRPEHi5dyDYwWM1Qto6wPJIqTL81NVgA69twOkUnWAbPohNw8THDVMHUA2WeRcojwwelOrBEVQhwBZjoB8VAFk3dRaFjCjUQMcrTYwrgB+4/81EjLwExqf/OiAMnW1fUM2ibQ7zzJM66iDoQwioDtH4NCWDQ2S4aDV2VA4Gw6XlxNR1QbC0yK2jmSdpANGH+EpKYiHzI5VDqEUlV+SZVaTK0tpqNtHlnAAj44b3EpgVFbflSoDWaJhds2FQJZkDiQJLOWcdj0cjTe7piYESHo46VzDuDqrutDe7OoDbyTArJLFA2CNTbIwUAI2YpPRtQhqv85ZgeGo9Nu47isDZ8Qq2V+ZF0iGA2+uS4yBMly9JYXUGhi4L2dfnnEtlFJUEbCuW0SUR1cTHjXewuPIzbK5kTYzyxAcy2CZ9/evoOF2l9RzH8N1YRTrZAYZ+yGPGiYeIOczhaMGCeZTqq4zzywyUw0Ta6ZEZFqdCSDzEfRoDO384WzRsDVTa+N/1BLWsUipJWSWwEpDkx1pIFJU/kdmjy0S+RyBKkAnyKet50ZOk5U8n9ZaNjRIAvEDvi62tg8wGTDapL69i/E1/DhHqE5V2kfT5BqmgzCecRd2Wl4eUAIAHJPMEhmlhXhGyZGuzuxK3y292VXAQCVJZHa1poScP5rYFYOlMUjd7N3XVS1Kn8NoQ/vi/iJikOFytY6ZZTtYageUtF/79TDBUrY/KGlnKp0YxBkwozZcpmIjRhskWkMMhlTg2586YBdSQioFiNI9HAMza5h8jvaHJg9fWBDeeLM613OlsoR1c3vMIKcxRwLCcHoSAmZUKCDJoBIKzFGK8h8pilUhHRA4poMEmwZJAJD0vjCXTg3UGSQCQyUgA2CcBJDe3Doe+Yhlk5c1Jql9sA4DpW8SrSSZlY0CGXcpeMeghERCk5wAIC1PfpyJteVi0vdwkYnw1cIiV/v5tB6y4UGy62He9cDvOnY529tulDo7O1J16jK5cipIqiQKY8nsGuRMhkDJr+qhOdk3iTbfpAxyMwPTLr8EGCQBJS2GbHa1BsYaSGsokCfosJAaHYFMGFXoH1oOpI4alage0TGbBAggKbjH+gu4UrD0+wWMsi6kr0VqKoBsM9XxA4OhTgCUiO6qtVApO1GlgQQNfzvN8sFwGcccq88BeNbGus0vPUmkFKRfIMq1vQJiFkkAmZILYAKDbAPIo4YpjnKBOkd5NlkF6gwTgYESGDqfpNA5AWOx3783AHJpHxUOyEcw+/eT3zsAyBAcw8bcLOyHtIa61/AdJ0EsstpOkb4iSVtyK/lC1hh4yBZFyCabZta1ej6tpWx4kAxl2mB2zYKmrW8zUc56jiNNp0km11QJl4bhANPlL7JfMpECect5Wdp6TSoX8DNJVJ29uu+TLhVMllR/dZDNk8nQlNQ8fI4YpNCa/JNGI+USYIB/UGWB6YvBUkiBo/YXVIWnNFBCYklbhFAYRrGGYNn6v88IliFQht1ErJ5gVqulR9SB0otr2is4l9KUroOEM7UaQ8tCdnDJSjiHMvw8cSJUE25XRsBoIRxbDwuUi6AvJH/2VXQcOHIEq1TSs8h0oLwPMgTIhfkURw1THDOfYnPND7k5o6CdAfsgFQGlMjlkvuSq6UwAyNF+AsjRCCUXh/DdX4rYzNpiahU6CNZRFKwjAVgpYZSB0AZW0f0g226FOjByXd96haVaoYkuU+tqPZ/WQzY0SNYv8jRTwHLZ2zSG1bZvXYcjUadZTK5hLiWbXPk1SboenuOyHTnY7Oq/Swgo4ZhFpggkYT3rzRxQeoY0b+iBH7QiyoDGTD4U7jsJANhPPsolXbFKmkBYn+7BAT1dqSIMkEqICCzDFwOnEgiAMoFUBgW6GSbgHqyjeHqShsxRuYdikboC2WnVhNfo6HoBaHR5mZST3qhENANrFBIUHS0FrHUdOQxgJKASCWsEjGHmpCLgZHCUgooEcKAO5UJS0YBskDR8kG0AySwyBMiQRXIuJMoRZL4UA+S+3WRWDQBS799PALmUe/ao88KnHoXWi7aIVhlUw7HK+SCVA1VZu1fbWCSDn6TG4x4UW0ytli0JHWO0ms+ntZYNDZKrRd9X4lDuAp6NoJNPoncsUlmqxJNIYpOpkUhdblxV7JxEuTQQJZsPzy7TGzNKII6EVVJgKe/OlZMSEEJBgqrISGFc0vh81a3GGoh5kNkV8GCZdQBk4zuUhNyX0/XQBI5L2vhrlLsCB1XnkHpVnop5c94lUAdIC7hrzeeTufZsK0UCrahuJzWN1pBKQMgSWkoI6Wp3Sgnjcuv0aEz9FJk9JhlFvKYZbFlQL84aOIbBO/X2aSuVcNLEHTg4fchKAWFcSpHrYGEksUzh7wOOZK1M79J18AjZI5tb00Hi0zzqJtblAGRiS4h8P0SxFAGk2b8bdmkf7Gh/5X8c7fMlBakWbw5TUEs09kOGeZFdKR8h86/SQzSQJtU6ZpEMhrXWYMy268DoQVGIikVOkNV6Pq2HbGiQZJllwCbtsxLQaAOeLl/fkaiTL1HHgCms90tW6yqTayolclkF3vB7EhQQYGnrEAJQOggvt4Fpveyk9A9gBX7ECBgMkwRJNkcPHH7oH9UMR8k6roOQ0rNJqajXnxyVULmG0gYyYJPUhJkiWbtA0utfe2owsLLvNQRNJQBTGEgloR1gCiUqhgu4zxLamehKOfbmOi0lZJr7h6ktqRoPipzqv2oNChdOiJU4v2RXdZYuqRe9bwviUlJE5lWlXEqHJSZI15xM2RKCgnqUiJpWCJd+xO2ufB1Wxx7ZvDpsAGRaBetkCY5y+ZCrApAuWKfYtwQ9yisza174dmjcdDu0XISmViElrDZRTqQE/DqgBo4t4s3Q3CqsxdRaBetURfEnyWo9n9ZDepDEZGcxb59lQFYyO+rS40jXqY1NCgOkSiLVFqmkV1EzubJfcjlmVwbKWcy1IbIxSNYjXgGDuSQDshgY24ByUENeMnvtJ6amhGNsAiqTEPsKqFFJ4KiNr7BDoMYRnxWrBCpzJINJCJR1cKz6VBKjlJoKDQgl/Lt0DaOtoUIEUpVUoUVRqoApSuhgWakCSDJKBXGFB6zR1O8wqXoOenB0gCmFbPQYrUs4VGG+bFsQFxcYt9aC+zkCEhrGmVgthBDeAsDRrwyuQlQgyeCoQiYZmFfDQgHHzKc+MCdkj1w4YLkAafbvoRQP55MsRznKfeyHHFPATmBubQsU40hqoQSgTWxmlQZQsgLVKeDoTencKSRJY1OrVFGnGKsqgFyP59N6SA+SNQkHjZlUff0sAS2rOfhHqk4hmxSOSXIAj9RV0XOOeM0UscnK5NpkJZM6hGhjo1SQTumigAAqGJwBKF2wwwBVwAT7hoTc75aFKw/mmJwUxCoFMT4JuCo7XJKuyo9sN722gWX7f2KMhQKqwgc+JcRA52R2VZmEdAE+Ji9h06QqmpAmkC5oyTpTq3DpMDABc3TvdgKLlEDDLw2/zv0fHhRlBJBKUlL+yFCVpOA/JBNxaWGk9SZWYpJuvBwwSmeqFRK+WACbW8Myc/O1UnNHD1Of/8gAeVSWYJgQOHKAzswAubQPZrQPdjxCsW8UMMixT/coHYus8iLp/zLNnmuQSsBQ0UIIN/kxmpqR18Xfm66YOw1AaFJPY1OrTGIWWavPejCfT6spPUjWpD644efl2MAP1N6+EXSK2KSpzKxUAad6lbXqO21MIqzbCqA1LURJ4U2uU9MHHFBWJtdQOoDSPSDEUZRrV+0uMeAyZ0q6cmcSImCUQgmoTEEqiSJTUKMS2ahEJi2WtPUpIfRetZPiHMsuRtkGmqFYbT2bCPMn6TNXC6qiJo02kGEUpa663gtX8k2EuZMhkwxeQshGI26BKhWIX9U4V5YEJYWf7PCyNpYmU7X/TwgLKbkkXfV/imBcyWLo+kHKoFlyGveA3OxYJBcK2JQl2DwghsnsMQRIn+ahxLIA0rgAHWaQ5WjszatcOMC4jjPGjU8DIAEHkJzuYahQwCytrEJg5FeaBevJpGqF6GSR6/V8Wg/pQbJFumzfaznLmXbuI1Wnik1ab3pNpGgE8KSG0kPChyMfP0miNlTaEhh3mF0ZNDm4RycAgsjPGGgqoBwmGZJBkNYgJKW7AJ5NGhDuCkUlwXJmlWkClSmoVCHfV5C5k5s2pwrJqERWaCxpYpGpAApvcg1Nr83/h/26vkgCmj6+NmFwBOCKD5jGy+/HzJEusG/NJLhFk0rrJydzq+wqKRBcYWdJkEGZwog9JtLnyWZJdTYGSiEEMWBjIVVlYg0l9EUqJZ2plirkMEByJw9fRadRrFziKBewUwfIAXf0CAHSFQroAshi/8gH6DBAMnvkvEiuwcvjA9TMrIADSOKRqmWWFNVwDSZvPmgnpWhlJGllck2Czi8qaMjdYWY9mM+n1ZIeJFukjUGFfrdJx/E+bZFYbSYIBMdsRJ0qNhkE8kjrCo6b6gEfVOPJEolxAJRt+ZPamSYBxKXJZAWWdWmwyiEvdKVIhECZIBlsIkbk8gCFqGpkCqlgpEIqlTNpScg0jR9QisBRpoUDzpI+L5VICmoBxT5KbYlVGlS1XruiXlnTMCCKC8mLLorZIRwcYgwxSvoQNPUNGv1y+ofPkWwxt4apPlLQvSEds1MmZpVShGUGJbJkQkSzFNAlVVPi8bfBhEnwdeFgHWfWz5LqFbe6qvpB+vqrvli5wuZBgoGKzaucBymK0cwMkgGy2D8igHT+x4pJ6opBuslMnUVW0wVDPsUJIpSKXAF0L3KuK0UtC+Xek6xikeyLDIN1aoUD1vr5tF6yoUGyfsF5MNoe/LPMWuozqLbjwvWTboyNohPgANIExQWMoHQQKX0AD5teC8cmBolEXpJfcpLZ1bgi1yyaTW0SUaHszodtZsH5A/ywjZ9J7IMxGKgE2eAo+l6Agn0cYFofAMG+HQp+8WwyTSAz8kMJKT27VBm9dK49WGaF9lGqIaNs6habXRkgM0nL0jGn0B8KoBH23xi/oLiA0Ybde1UJs84D4wjXMA0kNL2yrmH+qi80EbBIbYwHzeh/dmZ17VJnuuq3Slmx0yyR/j1LZASOvLwpo4bJ9TJzm1wtVioxJ1sLBcwKkJUfchyke5B5tVhiP6T24GhbzKwGZGql8bGtOBkyRykDX7kzq4okpXzXkEm2sUiVRmZWf36s3/NprWVDg+SBXvBpx3aBSNuNsZF1UgJIpcvzC0yvZHLlF5leyfwa+qVmM7uGQGmNhZUCRgq01U2tSt2FzKf9p2IsYK2AseT5gZIElELCCElRk0A0MzdpCkgFme0jQEwTFFkKmSUOMEcoRwXyLHcgKaFz48Eyce2v0ly7IuBAW8RrdX1FBJapi2AV7l0Gn5lZChdQ1Cai7alb7xDh+jaKenRrNQiNCNewqIRP/eEyhYbWaQlozyArPeqTpNDvDMRWgjafNoPjwLPIpGKSqcIgka6snIzMrHNJ1RNyqKSvxSp07oExrKSzXIDkyjrcONsU2oNjGM0aWgTIyAp33zWHylsyIvZIkzVfDMIVixBpFrNIlUURrR4sW++UlnsHq/d86n2S6yTLMSnWB3iWG6M+A5pFh42oU8wmyfQapoNI19qKGGUV5Zolyj8M24DSBkwyYhSuPqyVAqMam+zOu6x+LhWrtAAUDAyslTDWwCqBgQNKD5YygUozmISr0tBylqRQ2V4PkJ5V7h9BZQrFsEQ5UiiXNJJhgnLkTG6u1VXYVJn9bzyqDJr8/OSgFB9F68y7KlP+s/QBRM4cydG3sjIJhyJVy1O4q/sER7ga46NL/TYRB++EJtfUTWiMokmNsRI6ab+rEilQBiAZj5+7HgFIZon03WLopSImSWZTiWFSmVeHDijnUu4HKQOgdMXKne+R3zFyUav79tB7B0ByTqTOSw+Q5VIZ9AR1pQSD4Co3EnQdJ5jP46Ax2WJqZbNq6t/BjDKpzKwRi5RJoz3Wej2f1otNbniQDKXtoocDVR/4rllRuL7tZlkOK9soOkVs0hCbZDNbaqo0EGWICYUBPF0vHZiijLGRTwog3yRXZCmAqBVT18vYxBfdJlNeAmOATZmCtQYGgsASwDCbJ5+kS7gmsKTC2TbN/ANIJBnUcJ8HyCJLoeYylPtGUENiEwSWBZK5xD80iVkYGK38AxSAq8dqGylwDIQAKC+TmWQqPWDKVEXRtlxQoKr5ichE56Wl7VT03WGD3pYIVyD2TfKEyEgJrainZGoltLQOLKvvpvE2ULJqxj1wZti2XqNJ7T4JwZGZ5DBxAOle86nCUFWtrnwnD0UFyzNJJlYPjCGDHC81AXL/Hl9mrtg3QrlvyTPHKtWjaE6IXIUoLkjvL39QLN/AQCnlAZMtBUAzSEfKytzvAZHvTWaRaQarMs8cPZtsMbMCB//5tNrSg2Qgy7Wjt90M044Jj1vOrGoj6MRsMpHUPiq1gHFscqioS30ZVOAJA3hmLRbQiHB0gTzGWKhERqwS6Og84Vs5KQ+W2lrMpwrGUqNhbQW0ERgmQyTDxAVDJJB5AiETevhkQ5gkhRjMeVaZDPdDzWUo9o2g0gTKPTgZLHWuUQxLGPfgrB6iGsnQunZYcbRjKCJ8YMoKCJUDRzbvqpTYpEqT2DTXKFMmmwBZ38eaGCB5NzazOmBkwGSTKwcXMZsEgNRKKnyeBOktNVMrt9Li8QolZpHK+7eVFJjLFPnBfeBNAJCBuTUESArWkciEceAYM0i7tBd2tL9ijvt2w472Q+/fT+A4yhsA6cd5qfTmVZ1r38SbwTGMZjUuJxKI2T2vEzI2sUpXEML7xbM0YJEpRDb0Lzavkv8xg1UpFZCYUlUnlPV8Pq229CDpZJYZTpuE26Y5l5c7W9poOoVsMrH0gEsC3+QwITY5sBLaWj/z10YhL02DIShDZro6MNbNrgBcMWxKRvcBMcZiLlO1llwpLQ+tb+ukLaWpFMbCWAULCW3ILBgF9MgERiYQuXJAmRCrHMzRzH1ADyU53I9kuB/FMPMPUeUfniWSYWyGC1kGP0SrFI6WiFLvj6wKGTCTZMDkgCEOLKqib1P/YI0As17ns82fGfolW4J3JFwRd1AdX29edWwSMDBS0MaSPgMK2loPdl3t04BmOUPPIhUBIwMkgyMxSccgHXtMJQgUVQWUlAPpGibn++m92E/guH+PLzFnXMm5NoBkcysH6LD/kc2roS+ycVlrPkkaYxGYVYUfx+qVdrJIZo9gM6sDRsvA6HyT9WhWlvV8Pq2H9CDppOuiL2cwVmp77zpmI+oU+iYTRYCZKYnC+SaHilgf+yaZTbaZXxvfa2wj2pWFo16tsa4sm4VJYqCs2EkYFUvHmuBVaIp4NGBGCehEYJjNQ6gEUiaw5QhSJhAqgxzMQSQpDM/c3bsa7kOxbwmJA8swqEMXBJb1tID6w7SNVYqAcXiw9GzSmV056naYuchbeph6E12WQDmwJIAMSphNvQEcQLqPHLwjnIldSbovUtBkyFgOsHIsEgZIJKQGpKCJii8CP2uwjkspIXAkcz6/DxLpgnCkN7mG7DFTBLIcoCOKGCBlsVQDxiZAEiiOPVh6FhkE6PByOPHpmvTUx7ba1rQG8ESHx1AOHWscxO9yMEdgqDLPHBks637IaHin3wGt+66mFWs1pQfJDpk2GCvZPivgbGSdmE1aUOAJmV7Jx1QY04h0ZTZJeXMyMo8qF71qpQBqwGhrOZRSCmfOEt70aoyFTYgpzpkKKOupI4VRnkkWgTl23ijoJDa/ZipDNkwgipRYZZlCFBmEVFDZEGbgQHIwB5MNkWVU5LreBaIcjQkgHbvkNAEO6ggrsdR7C/prL2VljgvAkdNTqtSUgH2wiY4DQFKOfFTxC/ClzaIHKgOkM8HWzazCmWAFiGGmUsLV5abm2Ykkc6whYFRuwpK6+4T6TtJXcfNm6c2ytD6V0oExTbSSAChDcMwUBfWE7DHhZQkyqxbjKsWjJLA0S2xWDXpBuk4e0wCS/JDGm1fDoCygfbITjievr/uUYxZJ46qGGVkJfKBOHKzjzatJ2mSTM/yWV2P7gT6fVkN6kGyRWWYryxms1Zj9bCSdEmdy5QdfYgW0BJnTLByrFBGbJIBsCeYxApycIGpgGZYqIyZJGktLjJILZltjsc+lHIRVeXh5XJqJ5ldtyfyqjYS2BloJZOk8lCKwFCpzXRYyyGwAmw1hB3PksxwMYccjiOEIarQPejiGGuVI86HPoStHY9d8t9kVoq3wNRA/YBkYfW3ZNPFMkhkkA6Tih2yWQGZVJRYhqyT0qPZnC+PwQTzWQLiyaVLAm1yFoIISZIYjtgdUJle4LimFsJCa2l9VAGl95KyxiIqkc+9QJQQSJapoaWdqHSTsj1RIpKv8JCvmmCmXYwpTmVdrzZJNW7Pk0T4ftbpSgGwzs4ZjGfoj2dTKLDKc7KgsjS0DgzqLpPsO2aACRn5Ph4DKVmRixQzbl3u+9ZIeJFtktcFjkp19VtlIOkkBZErAWIvUmSvD4gIEllyurskm68E8XHqsEe0a1PKkdwJSAkyKhmXTqzQWSzWgZFaZl8ovFwOLQluUmgKNjHEBPZkigLQCpREElCpDNsyAckSz83IEFJk3wRr38LJjevjabEhg6TrUJ45JVoBZNEBSF1QtqK1bPRCyDzkBLAOAZBNdmlQVWdq6RQSMslWMAaSpKhKBQMzCwgCwmgJzjMuVrMARUNqiEFRNJ5XCs3ce1zbhwgE+claxuVV6oBwmiiKqnc+yAkhij6lEZV7VRQWQtTJzba2uuA5rve1VG0DWcyGrdA/rxiye4PA4MoOUgU/Zj1cWsMcsQTLMpppZPXNkc2sHQAKH5vNptaQHyWXKasyYVtsBfSTqxA/NxDFKay20Ehha6cFxkBB7KLSN2OSgZnblfEhO9wh9VT6HktND3ANJGgErAWO0qx9qPavUNgbKCjCT1ujXwhgUxvjcOmaVpTEolUCmXAQss0o2wSqKMrT5yIOlzUew4yWI4QgyHyHdVECPxkiYSbrantSMt3DpIEGvwY5m0PUUD5VVVYFkaH5172RmTYNXaHJ17DJoqTTxXnHgZcMAHgnAWBhBd1IIlFJQcQFjLLS0SF0hBROwSO38lACClmfwwEhmfRewo2QEjkoiYpCpFEhgIMrcm1dFmXsm6VM8agBZb3W1UoBs86FX4xb4lF1kMuW6VgUCvIl1OPBAqYaD2MwaRrOqFDYZVsDIn1coh+LzaTmyoUFS1JanmRHqoSDhZ1tbb4PtXQPcNluatP9G0okfWtYCWtooJYSDdzglZJg4s6bhYtfGM7uwjZKUwheGCcHS2OaDSMNCWBGBpXU+SmMsMcMAIMMqPaWxyDODwrHJQiu3TEE985lywClcSTmBTCpkg6PogcVgye/88MoDkPTLI4hhAZWPYIu4U4Tv3GFMZH4FEJWW4wo6IavkQuz10nlCSQ+QUV6dq9TCplbfUonHltsrtdwb3i9pXeqHtDCGwFNJCxi6UzJFAFkYKiyhJZu3K4AMqw2FIMkASWklBJAMiFyRiH2TStTYoykb7BE6pxSP0X6f4mHzUQSQYaurOkAaV0VnpQAZVkviJt68TCUN46CrJADIZOjyIJk9Duc9i0SawSbD2A+pKpio/84P9vNpPWRDg2TXQLSFHdeX2z53Hcvr6p8n3QC9TjTz544g2lYJ/BzEM0ykZ2qpCaumkG8yDOTxbNK9WkPp68E9hsrXebA0hkywjlUaRWZfMrlWr5BV1oN6QlaprYS2AoURKCS9RyZYlcEya3FgKXUBM16iB3ORe+BEkcPkI8iygCoL2ub7DVZschKjbO0KwTl1aUJgmsT5dEizmEkmaWxqncQkgyhXCQJSISyEdQDHAOneraA7VEnlCjtYV9ABDYCk+4dBsiqSn0hR1YeV8XvqQLPOHsGsUROTFJo++3HgHpABUHYBZFiH1fse87gW6ySA5Fq7VeWk6WbWZDigz3MEkKF5VQ43xX7IZBj7IdncikPz+bQesqFBsi7TZkazzKJmMQuEN8RKI8I2gk5AAJQSxCqtgFFxEM9AERgWigA0T5Rnk+FrZKzvQG+NIL9jDSsaPq0QYC0dJxM7lVUyWIZBPXVWydVbtAG04ibKFNiTqiESxyahxrBJRmCpCwiVks9yvEQAWRbEKEsHmkVBnTjKArLMq84cWjeCeeoS+7jIZMomVCEDkJQyBkiu0MLFsZ2p1Ue21t8rhzAA6fMllSCwtHwnOYCUzpogJJllpRCw1kVBd7AtTvsQgAdG8kkyS43BUQnh7zVhSm9SJdZYASXyEUw+Ip8j+4unAKTvATnKG3mQbUE6swBk3czqza2BiTVxEayJY5Dsh5RzmyCGmyI/pGGAnNEPydf2UHs+rbb0IInJsx0RvNdnSLMM1nIGtGs2tpF1YrMrmdaA1JIJdpgoGAMUQRDPIGn6CxmwlAve4YhVIQVFsUo0WmdMKl9npYCxgiqrTWGVxCip0EE+THDUIIlY5UgbjLTxhbJLI/zLR1Sm81AOIJEUxCxVSmCZDCCGOZCPYYeFA8icQLPMYUsHlgFosr3Zhu2t2oRBEahAksHR1fiE61RflTBLPZO0QlAwUtitvoNRkj+SJkG2ZmJloLRWAMZCCMBaqvEKQYCZSBFl+HBci9srAkYO3KmzyMSZZFXIHnXh2SN0TgDpJibGgWIElONRBJA6aJYcVtJpy4OcFsUaNYl2AFkxR+kKQMgIFNn3GC6LbAgZ+B8ZMG0yIEBMh0AyhE0HDT/kwX4WHCyZIfN35fLUU09h+/btWFhYwMLCArZv345du3ZNPOa3f/u3XU++6nXBBRdE+4zHY/ze7/0etmzZgk2bNuHyyy/HE088sWI9BSbPcuyEbV3SdTPVv7frfL1OlSQOKFMHHPSCz2fjhO9hIqOUkLAWJ1dWEVJ4NsnCeXSRXsZGL6MNtDbQpYEpqbdjmdN7MS6Rj0vkoxJL4xJ7R/Tatb/Arv0FFvfn2LW/wC/25dgzLrE4KrE4KrDbvS+OSuwaFdiba+wrjH8tFQb7S4OxVSjTeZjhZtjBZtjh0TDDze7z0bDzCxBHHQO1cBzUwnGQm4+B3Pw0yKOOodfm2mt+M+T80bRtfrN/ieF89XnomMZwE+RwnpjHwKUIDDfRA5arBEU+yoxaKnHhayEdYLalgrgarmC2R6bQkPkp/y68z5DZXupMoz49I0j0z2RVV5WKj1ctrLgY+SBx1XWUQCZBvR/z/VV5OV4uR77EXJTiMQUgywAgTV4VfeDiAMaz+smQwAzSm1JbADKZq9JzGBSTACCTYRCc48aQ2SQH5th00AmQ9d/oofJ8Wg9ZUyZ51VVX4YknnsAdd9wBAHjta1+L7du34wtf+MLE4y699FJ8/OMf95+zLIu2X3fddfjCF76Az3zmMzjuuOPwlre8BZdddhnuv/9+qClNRtukPiizzmQOZMYz7dhep/jYRAoYYKLZ1RiLohbEo411Js3qs02q9A4KyGn/7k7Tq6VIWWsspHXtnhIGU0oZKbRp+CqPGibIS0OBO8MEY21QGIVxST5KNsEOEokyESilQOL8lWnILFMDoXPYModIimrZaIgkhxjMQRpNfknHKmEMsUzHIIlJxmzSBu2uRJi+wX0wfeSqis2wSVa9O4D0DLLt1SFSVGwSsLACnlFaATJ3g1gha10j/VWxdIiqQAE4IIiWueKOcgyTWGIJoQvAlMQYAyYJDpJyQVM2H5Ef0q0zrlB5HSAnFSvv8kNW17/OHGUng2SAZDAk32MFkOmmyrxK7y5QZ7gJyIYeIP17iw+yLofi82mtZM1A8rvf/S7uuOMO3HvvvTj//PMBAB/5yEdw4YUX4pFHHsFpp53WeexgMMDWrVtbty0uLuKjH/0oPvnJT+KlL30pAOBTn/oUTjrpJHzpS1/Cy172smXr2mYWmLbvpAGr2+GnnbPruF6nSny0q6Jo1Axkdp1rMbty+kUIjGFpOW0rhqiUpGbB3FeyJXgnFC5fx2BpHHBKK70J1hgL5cCyyqU03vSblw4YM4ViwIFIoflVYVhSvdDEWA+WqRQoOS1BDZEkQ1j2lyUFLD/gdVkBpjUQpgTK0oMljK7Mrc5XCQCi3hMSqKrnqJrpVca+SpFmkYmV+w0yiwxNrbbO3F1vSW2dr9DdOcZSX1HhTOwC1plYAQVnYmVQDE7JoAjAA6NkUJSuHZcAAWKR07vRle8xBEsGRRdJzEBJPsn9MKNRJ0DqvErJMQEg+lfN3C1UHFBWLx/YVoR+EkAmm4ZINw09IHqAnNsEOdxURbIyQGYuP1LIVsZ2qDwL1lvWDCTvueceLCwseIAEgAsuuAALCwu4++67J4Lkl7/8ZRx//PE45phjcNFFF+EP//APcfzxxwMA7r//fhRFgUsuucTvf+KJJ+KMM87A3Xff3QqS4/EY4/HYf969e3e0fdqsKBy0WUwC4Q3Rtd80U0SvU/P4MNrVAg4wmU0qV/EGVeWbTLnUDBfEEwClScifSCXoKCBHwzaKDgBo6RdsYWUTLG1iobWAUhUI69KgyOKSdtUrqcBSWwwTiVJbxyyl91cOEwLLzEXAhsnuicyQDjIfaGLNAEI7wDQDD5hISjJvmpJMnGXpwVIAFaNsA0qgilblNBFuIq3I/2hdx3qfF8kAqVpYJZ2gurjuoUxgBhgQUApRgaMVATCCGGRYlS1stwVUwNgI2HHXQOiyAsdwcsF+SI4iDsGxttwFkGRarfpB1lM8OGiqrWB5oxJSUIjed2zJJJJh6oCyCZDp/BDJpqGPZJUcoBMC5GCuAsh0HjYZeICs/+78fd+xzNf7YDyf1kPWDCR37tzpgS2U448/Hjt37uw87uUvfzle/epX4+STT8Zjjz2Gd7zjHXjxi1+M+++/H4PBADt37kSWZXja054WHXfCCSd0nvemm27CjTfeOLPu9cFYjcGZNptarqlzo+qkBJC5J6GxQKYAC+q4QSXgULHIBNBZLek/ACw2u1pjIRMBQELDkCm19u2mbtfTgDSAlbTeBwQJQec1FlobYqrWwpQGeWCC3Z9rzGfamWDJDDvn8icHpUShFQaJwbiUmE+N87kSWNbLpeUCSKVCks5DwThGWQKOEVlDAGkZMK3xoMl+waqmKv0/YR4lEDBJIMp5rPyOMRCGAGlnMLUCDiBtBZSSENKDJd0ffiE4jj5Uplb4IB3PGq1xIFgDR1N6cPRg6dJpIvOqixqeBJDaFXNgXyQH5NjA99jFIuvNq6NekKmK+n0yk/QBOSmld6Tzc55BJsMMcn6eANIBYwMgk0H1ng49gzxcngXr5Z9cNkjecMMNUwHnvvvuA0A3al34QdIlr3nNa/zyGWecgXPPPRcnn3wybr/9drzyla/sPG7Sea+//nq8+c1v9p93796Nk046aeL/MKt0DWDXTdM16Ks5SzqSdZKi8k9mihiFtQLGmVs5sdykyrHK2OwKoGl2dV3u2ezK7FCimV4Qml99wQEhUOYGQiKq9xqaYLWigunageRcRlGvxCQ18mGCcQSWFkMtMS4lRqVx/QwrsCyljVhlKaneKQFoBqWyiDVZBwyWmaShhzgta/7nYBksk/gh3hinkBEGyx5A5QTwrIOlb5slI6CEIOaoAD9pUS2/cf7dxywS1QTAmG5wDJmkKSlSOB+RL7fN1JqPYPIi9jkWZFLl7izWmEZ3lq7WZQyG9XZXYRuzerBOOscVdLJGkE4nQG7a3ATIdOiLBYQM8nB5FqwXs1w2SL7hDW/AlVdeOXGfU045Bd/61rfw5JNPNrb97Gc/wwknnDDz923btg0nn3wyHn30UQDA1q1bkec5nnrqqYhN/vSnP8Xzn//81nMMBgMMBoOZv3M5spKBmmafP1A50nWSAZskhkHd2K0l/6RJlSt4jYn+SQDYZ5pmVy5hB8kBFK4MWsAmG2ApBTVChKlabjFbNbI1sGeYVjVfK7BMMS4N8sxgzgXxTANLYpMMmBa5rCrHqAAwbWBmhLXe9GpDRumA06JilZ3jEwIWA6NbroOjB8gpwgAHEFgq54NEx7G8llkjQmDk/8cEDLrGHoWpwNOMlyh9JgTFMo8AUo/GkSk1LDDP4GhyV2ie/ZC1Hp8sUgkf2RoWKQ97fLJ5NezxqWppHslwgHTT0AfpeBPrNIB071wswI8rDp9nwXrIskFyy5Yt2LJly9T9LrzwQiwuLuLrX/86zjvvPADA1772NSwuLnaCWZv84he/wI9+9CNs27YNAHDOOecgTVPceeeduOKKKwAAP/nJT/DQQw/hfe9733L/nYN24Sd9Z69TJV3f6YEygS+EbhVgMxXVTdW2Pdq5Ak2FkVtXApCJBWdG6dI0ar0CMUBWxdEJKDUqM6wxlTlXaAGjbCOwJ9cEhqG/ci5TyIcpAWWmqABBElTt0RTsM06M63VINUhLX3uUgn2UyznkFIoGYDoTpKO7FcDYECibjZK9RME4LUUD6gwzXF9PCQnOLdxxcgqm+s0BuItg2bPkOjiGbNIFNZkAECugXCJG2QGQFJxTuDq55IesqhvZoLpR8y7mEoASBmGz6smRrIkvTl6xyJYo1mzYDpDpfBWkM6Wrx+H0LFhrWTOf5LOf/Wxceuml2LFjBz784Q8DoBSQyy67LAraOf3003HTTTfhFa94Bfbu3YsbbrgBr3rVq7Bt2zb84Ac/wL/+1/8aW7ZswSte8QoAwMLCAq699lq85S1vwXHHHYdjjz0Wb33rW3HmmWf6aNflCM9QeDmUaTfDWt0svU6zCQOldoE8ZF4Fdd1wwTvAhECewPwa+icBAxOYXVUiCTBdcA8zxXqKiARqpewAazRsEjRythZKcY6chS7JDMvgGNaBXcol5rIE85nCXKYwTBSGicQ4kRg4dhnmh3KrJyUESml9qkPCy4bXSUiZUSCLMjGbDAHGWm9+BdAEybqEZlTvsxTxtjZgDc8vZGR+bWyvL7PeQAWUDIwMjuyPrIGj4DQZNq+6ZThTq8krwDR54Wvisu9R50XEHLn0H7NIUq/pezQIJgSBr7etCTYH64RFAiqgrBhkMsyaaR6hDzIEyGTgq+ocCKvj5VAO1rNgLWVN8yRvueUWvPGNb/SRqJdffjk++MEPRvs88sgjWFxcBAAopfDtb38b//E//kfs2rUL27Ztw4te9CLceuut2Lx5sz/mAx/4AJIkwRVXXIGlpSW85CUvwc0337zsHMmugeZttrYfi629r5a0RYT1Ok3WyaeGgADSWgubCBjHIDmQBwCVf6sF8tD6moZ5/DzWzoQK54PsKjrtGzgjBkvANBo5W0PLPrCnpWIP53fmpca4TDCfUaRsYQgg62BZmAosS1dwQUkLZUJGyUCJCjCFdFGgaLBJ949FoDTbIDUBfXOIBgAANXFJREFUky5OS/AOg2P9/G3fFTRtjnRzoN4Gjh446+yxzCvWyDmlQR3cECB93VWX1mGKwoNiWBeXWWRdpBKuBZidGKTD9Virjh7S+x85QCcZDiJ/ZLqJaq9OBUiOYs3m6VJOHsGGHIrPgvUQYes1uDaA7N69GwsLC9i5cyeOPvpoAO0znPqgL9cu3gbCk85TX9frNJtOxgK5sci1xbgkE+bIpVLsyTX2Fxp7xyX2Fxr7C4N9eYk9oxJ7RwX2jmh5Kad9ylyjLDR0aVAWVGXHlGG1Heu7hoRsMmQM3pQWFFSXQvjAHiEFlJKQiYRSEioRSDiCMZHIUmKOWSIxl1F9V1pOos/DRGKgyDdJZlfh2KTEUBGrzJSMOl34RPqgLJuAa0gMRFGhDT9fHaD8AHQAZxsgooVB0kVr2bEW5NIB2qJmKhbO1wpd0rY29shFFphBBgDpTaxlATMaedOqz3ksYhbJ69gvWQXrGO+TrAJ3mn5JEfgiOUhHZcq3KmMWGVXRmavMrVwBaSpAZs4nydeTL3N4jXH4PAt2796NrVu3YnFx0T/H10I2fO1WvvCT7PLh4Ey7SbrOUf88y83V6zSbTl2BPIBsbcZbj3gtA0a51KEfFw1AAqAEjHumy9q5gQowDWSjQDo8K0UHq1RkhrUWWSm9r5KjYakWLJlg80RiLqVI2FFJTYMLY5FKg8KBZSop2Id7JipTY5dG+PXEJq3PL6xAU1LkqQyuf8gsZfTPd1zBKdJyXATGJvi+MF2lDRxNiy/SsclWgHSAWAdIW1TBOXHLMY02Fgk0o1cBnjTRehUmd7ptBJQyMLMmVf/OwA8p0zSOYB1S7qN0PsjQF4nhpmYeZACQ/rJ3fD5cngXrIRseJLsGsGuQu45dzva2G8V2LPc6zaaTz590d7QBgyab4KtbvcNa6qUVKDOgzOnMIVBaB4IGsuF/CsGSccQH9hgNlTi/XS1dxKaK0kVcqy9u+ZUnMgjwUZjLqpQRBkg2uTJYpkqgMMovV30UHVA686sQttYlg5mk9SwTCJkms2VXXCD+x5vXbxJ4djFGYCZw9H5JNq0Gkbut5lUHgFEheA+e1XYPjnnlhzRFUbUf081uKlJJaK5gpCQkgglTtJ+o9gnA0ffudCDpe0GyuTWIYI26eQTLUak5Bsh0OkD669+y7VB/FqylbHiQDKXrRmDpmgVNW1/fvpxz9DrNrhMzSsLFavbO7eqNmd1nPStQIqGAHPq2JlACBJYMlOyrVKBgIPZVgrc5isrdRShdJAbLLAkZJlft4UhYi1SZyD9J64T7bAOwdGXbDJz5FQ2QVEJAWxubYAUaoMljAwAyMJ168AwCctw/23rdI5NquF+LWdWDY509huBoTVWSbyaAzF2pPtNoXh2ObVs/Tv8/qGpSweAYhktUAOkiWblvZw0cqWB52jSvcqFyjmANys55xpg2CwU09MTh/yxYD9nQIFm/yNNMAcudHU2bVbXtO4vdv9epWycpgIE3aTWBcpok7omvpMCSYJ9iUH0mA0wpoLWhc9dNr2DAa7JK3ibhgoGsgAKlmlgTBHTkiHpWSmOxZCzyDrDkdy5xlzlgHCbU5NlHvsrqc6qMTx1JFdVNlaIK7uF+ixoxYApRASbQDprhGPE+tC0uRRctryZ79GZW10NzOQBZFhTJ6ivmVGZWAK4QuWmMsQiCceg+aDevAoiAkZtbqyzxPkgCyzRij1EvyOG86+QRvA/nqaxcRy3WNjlSngVrLRsaJFeLvi/HMd11TJedv9dp+TpNA8qwTVZdVACSrfpIIpCVGAjj6gig8lEK2W5+FZL8j3XzK/0S+eEbm19DVrnP5XaG4DgIwDIPgdJwekgTLFMjqnfHNKUQFbsEoCwgweZY0jUsGC4EYGEBG6yDrUrIOZap/XZe3xLJCjRzMicBpCmD3MiaeZX9j10AGRZ3r3VEifyNASACaJbqk5JCpsN1DiyVrCZLcR6k9PvINPGAGYIj+yLVXJX2EZlXXSQrFw3wRQI49zHo5jGp1NwkOVyeBeshGxokWWYZsEn7rORGabvZuuz7vU7L14mBktL0JCQsAAMhmj5KKbiVkmiApJICS1JgCfTQFwU9KA2zTCGcX8rACgEjLQRHvgZ+qHYzLGluJJzpFnQeG/78uZ1XzCoZKLkebenAcs6luHAvTZ0pZKoCRW0t9eY0LWApJQoJb4rVtjK3sgmW14WMMgRMYQHLgT+uTCCDJfuCPRPtAMtQOhnkcgDSg6DrfsJMsgjaiPF252ec1bRKeY9OVzcxYhC02kBm1X3GYCmU9P7HysyaRoE6zCKZPVIfyKYfMvI/qoyaJyfZ1GLl0+RweRash/Qgie6LLYLtswzISmZHXXr0Oh24TvVgnopVVkAZs8rq59DGKEeB2dVIA1HSNk710CWxygZYOmYZio+WBYFlCJRsjvVaGwEgflDncCX3aqX2CCC5MEEFnpQyggAkO8BSCRgJD5ZWEjgaIZw5FjCiMrMqIRrg2AaWBpXv0lhEJtvahQnAsAMg7YwAyeDHLDJsE6aDfpo1FsnSBY6haRVwpmYlYXQNINNgIuYYIwDILAnMrDE4sl+SfY9I0jh61ZlX5WCu0/8IIZflB5xVDsVnwXpID5I1CQeNZ0/19bM4sVdz8HudVq5TWL6uYpUElGGxbCkFlNQUwCKZVUooWQSfiVVKKVAWGkLQQ1S7hymzSmNs5KtUsrsAAZezCz9T8gpghAVKAyRs43V+scD8iqDsZpjSQsBZY5zGYi5VMIoKh/O7VgLaCmhFzawLUYGlcWbYNrAUQsA6P2YbOAIWEoJAtQso6/7ISeMbBukEABoCpw3AzwOljj9HZlagYpo8Bp3gqCLjfbVewmrjTawAgDTeHvofqbKOagVHmSbEGJMsYo+hqRWDORjHGn1pOVckIPwt1mUjPQtWU3qQrEndrBB+Xo4N/EDt7b1Oq6eTFMAwCKAgn5jxUZjcoZ5SIIQ3vSY1NumBMgjoEVJAaYFSUAF0DuqRkjp+WLde1ICyDo4Alc8j1khAKaSlGJYaUHJkLAAgB0wSVxAKhdZLzyoBQFsJLQkQtbRIrYSRDjjdJCAEzVQJGEsBPtY1QjaW0kisBRWCB2BtDI4aFXBCiggoo/98mtl1WvWfgFla31DagV5oZgViFsnb+WumMEcypcZAyQBZZ5fhcSEwcsBOKzimDhiTNAJHMZjzy968GtZedUwSmP23d6Q8C9ZDepBskS7b91rOcqadu9dptnNP8lsMo0hDCeGqnzAwhiE5VVHw6pXUGOVICgihYZxvUmvjfZW6rLqBMKAxYALw20KglCL+2VtjAUm4IJxJVhgB7YDSGuvNskVwXNQ/swU8qdempR6cLawytQI+RtM4gJQ8sRAAyCcJI0D1EWzFKh04ehYJmqRYiwajNDZunExBJjWgakkbaWWRQBVY432MFYvk9VFT6XB9i3jgc9tDk3lkYm2pLMSRyiEwCiUhoyCdAByTtDKtDuaAJI2Z5HDeMcYhbJI2arDSFV87ORyfBaslPUi2SNusKbS1TzqO96mfQ7SsDx+J0wa812l1dBq6HDbOCZRCghPmAUAK7dMd6HMMlPXXkgdEDVEK76sMATIsiC4CIoSW9ICuvsS+24igq2MdU1WJhBHk/9SScie7hMCy/pNnXlS9G2M9q0xVBZjMKgHprhd3eaSoVr76bUApaqZXbn01kW0EACna2GPwLizp0mCRLCFjnACK9cAbgAomGN6uY8AUqhbdGgTn8LvkPEiX5uHBUSnvdxSJi2D14BiwxzTz7BFJVgGkq8HqvxuH7u9uLXRaL9nQIFm/4DwYbYM9y6zF1pbbjgvXT7oxep3WTqdMsSnV+HtAagCDpGKQDiylAJRMJvopc2UwkgJKGe+rZFebkAKmNARksl7vtf1q1c2woRhLIESBP5xuUrFVuHQQftVBU4U5n14qgNRGI1UhcMIvV4TJbZPVI46AkUZKCAtpY6C0wpmTQbbWiEUuwy8ZSgM4Tcv/1rauLlL6/YSkog86MKEKJSE4HURKmAAYPWiGeZJSxiDJlXR4Oc0AKZ1pNYNI02o5MLMiGxB7VFmnebXr99MmB/t3t1Y6rbVsaJA80As+7diuG6ftxuh1Wl+dlACGiYQUFpQa4r47U5CSAnmkJD/c/kJHfkolBbKk9FGjS7n2YCmkgFQGyhVEFxKwSkK71lgMklVbrm7pAsvQTMvnFKpiq1pU4Mi5lKWxUC2gWQkBYyolCh0zSxKDFBJGAIVrLh0CJfNNCwtNdBHSVuAobBC0A4ovjv57BsqW3MPIHxl+DncJTK3Re4tQqoaOwBFSRfeXyhJKBZFVOogP0An9j7UAHX73VXTCwgGBWdWDowvQQeiHTDJij/WUDjavymSm+/5Q/N2tpk7rxSo3NEgCyzMj1Ad4OTfqJLNS28yp12ntdVKCWCUgIXUFlkoqqkYjBfbLyvzKr8yBY8goGSyXpECeEEA2wNIQqLV2Eak14xG1yFvuJtIldLwz8UrH7Fp8k5PMsSFQUg9OypGs3IQEjKkCjBEo3GdqNs0sksyp1saM0alHTFgI0leIhl9y2bLSgupSEUA6cAzvE78LUJlZpfN7qub31U2sdWCElBBSNcDR+x05YCcbAkkSs8cko+IAjknWq+ccjr+71dJpvdjkhgfJUNouejhQ9YHvmhWF69tuluXMxHqd1lanCigBISSUoJZb7Kesm1+pjBuBYiIFskQjS6jVVhYwy1yZVrC01jHJGmACaGWWDIz8LkU3WBpDOjObVDIGyrDbSetL2iAnM2CSCpAWkJYiVKUVgGFmaV3wLQXuWEt+R2Hhza4hm4wB0wEoj9MKza4TRSpileE7XSwIqTrvO4AZYTc4soQgKZSi72BglIrYo1QxOCYp+R0DoLQq9eDYyh5bHNaH6+9uLXVabelBMpDl2tHbboZpx4THrYbJpNfpwHVSgqrzJFJACeP6LgJKA1IoD4ypEthfUIRnKk3EKrNEYymvTLB5aVrB0lrra7WGgAlUIGkCVhlGvFaA6dhlDTDr5fa0qQKSGAiT6LOBNsKbYrWxUC5qVQoLaeDfjSDwJXOrAZR0gMnXk1hhaHZtY5NcTKjV5Fr9o0BY03USeLptQqnYhBqZUqt1AoA1mkyu6HgQM8AZTaAHNErSAfDbPPC2AaOUAJtZ3XoGRyQpFQWQCkZlLnqVgBIBk7QyifWbIofL726tdFpt6UHSySwznDYJt9XNBPXjljtb6nVaP53CaFcpCDSUsJAun5LTRFJpvBk2VdTkeC5V2JuUmMuUY5QVs6yDJfWNNJFf0jjTK4OmnOBtYSBkgPSm2Jp5NpQQLBkQw0pCDTbJOZ9WRGZXzyYFPGAaI6AUnUM4Ngm4iFbHJhWqoucEpLHJlf6hGVhkm7+ydb+aKdXoijUGbDJkN5AK1kgI7hRjNIDU51eKJK1/CwEif18IkFICShFrlLJij2GqRwiOMqlMq6GZNWCPR+rv7kB1Wg/pQdJJ10VfzmDUZz7TpD7Y9WN6ndZfpzqrlEJCaQLMRAosKe1Z5ag0DjS1/zzwzLL0AMlg6V/KQDtANKVpBPJMin71ZtfADCuEaPgt2+rQtoluAUzlgM2vs002STVd4dkkM15mk+xntNZdW1H5I3k9f0Xol/S5kkICtiMy1QGqFZIiXHlfD4qBKdWBpVMBNgFEyYxRUXstLf0x8EUHGJzSKggoLFQeAKTPk0wzB5SyYo1pVjHLABytTMicKlVlWlUpAWNLabkj/Xe3Up3WQ3qQ7JBpg7GS7bPeZL1OB1enBqv0LxME9UgHjgaDkiJgCTClY5QK+x2rZHAch0BZGgqkCQBzWjBP9D+ICixDcJRSIFMySlEBKqBMlgOYDhxlLbLGg6NDOWOohJ6FqExpFrComGIEhMG5pqaCdAFizRRrw0IMDFodgTk2AYShKg0RWAKA5mPbW6t5QFQhSMbASP7HikUyWHpwdMwRKmmYViFkAyBb9cCR97tbC51WQ3qQbJFZZivLGazVmP30Oq3eOWb9DmaVFPFK7Y+YVTKbHJSGTK9SYJQYDBwYppIY5XxGYEnAqBuAyRGnkcnTTs+lBJqssl4hqO0FdLPMSYyTRdvYHByyQxZbGTFpH1TMNGKQqErNR0c4s6oVgkrahYCIrvXkIwzNdhMDcyT5MIWJQdG6PNKuK1ExSNkESOUiWGX1PhEc659nAMf6/9Ilh/PvbtbzrZf0INkiq33DTLKzzyq9TrPJauskBVXp0VJAwPimxEobKKGQKmpcPC4dQCrjwXJYSoxK432V41K1gmUrUAbl5NpqsobSBoBtr6QBltIfE57LL4vpoFkXG+NjZ4pHZHoNN3T5Jut5lCHDBDybjIAyNK0C3pzKRdCFlBU4su8RaVyAQKpAhRggAcTAGDBJJAkgExhJ71YqAkPpUjzYzOq2N67DBNkIv7vV0Gm1pAfJZcpqzJjaZrcHIr1Os8mB6MTFBwpjPatMjIXSQCIVhonCoNTYXxikJTHLVFJgDzPLwrCpVQWmVx0B5LgGlgCmgmUd5NpAM3G5nLOAZxhRW2eXKwFOlqljGAJkS2Rrq8kViNikhWkCpVFRkfPI9+iiVj2jBBBVCABiQOTPQaCON6sqReAnpAe/CByZObaA48qvau0S4sj63dW39z7JdRZRW267+A0zTcfxtrY+vPG7BrhttjRp/16ng6uTEoByrFIJSyApKP8w15bSRaTEWEkMEoNxqV1wTwWWRWJQaItcM5NUgdlVYy5I+q/nNfJym7Q1iwYQAWBV+EB1M04hoCRcNK87twsM8t8Vuv8OADQBxBGuvK4evNMAQ8caUWOTfHwdKN16zyQ5RYTXTZNw33okq1LkD3XAaGXilmNwjCJYW5jjoXKPH246rYdsaJDsGojw86QBmnaD1M9f/zzpBuh1OnR1UgKYSwQSQxGwuSYgSYz1jYsHugmWHii1QWEkisR6dkksUgWssml+BWKQLIPlMCCny/dY1Z6l5UGdWYatwpx/MwRLKWL/J0vYBGMWzGwzwfp1NbOq9z+its04MPQMsv4AJqCk/BQdgaMIg3K6aruG4Mmg6NZHwMisUciKOUoZg2OdTQZfc6je44eLTushGxok6zJtZlSfIbXtO217uM8sg97rdGjqBACZBAAJJYlNJhoozWSwHCoy2Y5Lg8IYFFqiSAy0QQSYTdMrmRxn8VM2WaVsgGVVg1ZGAJkqXoYHS8kMM+iMQuvibinVNQ8AtAU0Z4gPcieKA3Mi1ihR+SadREApJCy30wrBEqgBYzP/sVK0MrMyKHpgdMt+HQOhA8sucKz/64fyPX646rTa0oMkJs92RPBenyHNMljLGdCu2Viv06GrUyqBFAKFEEgCsMwNVexRDngYLAtjPKskRmlRatsKmHM1Jll2MMpwueFDDMCxzfTK4MgmVgbIVElixyFodgAjfxaoADDKyEC1fSZp+CZ1tQw3fg48XXdKf6jlCjzB8dYvswYJ9aRskSiVJEzHaANGIQDF5lXHHNtMrZj9nvNfjUPnHj+UdVoP6UES1aBOmuW0ySzbps3Cus7X63R46VQHS6UtSkl+S22EZ5aFJlZZ6JBNWjK/agNjFQpjoA0xTmMttKFoUG0PPKDHL3eAI5tY6wBJoAmkUkZgKfl4KTwGVUA5Gyw2argCUQNm739kYXbpystaGEAoCBsH+XiwDH2afIpJCjEYt4Ei1QSsQDMERplEptZJQNL4ygn7Hir3+KGo03pID5JoDsqsM5kDmfFMO7bX6fDUicGSKtIQ+yu0jcyw2gpoA+QJA2T8rq30DFNbBkpqhFx9pu/jOq96QuGBBvOTMQusg2PFGilCl0ExBEharnIzmUUKuE4gfK0awDnt4gYs0vkeASCqviOquqtwJm8qDOBYZWCmtWE6yaSyd2HxcAZGoB0YQ3AUwgXlBH7JKf9i46txeN3jh6pOayU9SKLdLDBt30kDVrfDTztn13G9ToevTqkElHWMrOaz1NaiMBaJVNCJJfaom4CpLRy7RFXGLgJK+swyC1AC8KBIyxUwAhU4SlGZimPfZAyQqSJjqnAAGbJIKcjUWgFlqMMEtGzJlWywSb7enBbiwNIa4wDS+RNtjYHWv6f2HX69DIGyBRiFjH2QHYUAjuR7/FDQaT2kB0lMnxWFgzaLSSC8Ibr2m2am6HU6/HWi4BcCy1RWYKkdqyTzKYFm2gGY2n0mcyvVdSWQRFSZh8FyElACIat0OkoRrQvBsA6O1WcCSmaQQlT/K7NIXubzhpA4k8mM2aIzqdJ1jf2PvqCAWxaWupOETZpt9GUd6R4cntthZo2AUUhijc7XOK1KzpF+jx9sndZDepBskfpgrMbgTJtNLde80et0+Ojk2ZUrMFAYi8QAFsKZV51pVlNd1DpgaithXDBPDJQVcAIVQE4p0BNFl4Y5kAyE4fo6OFa+zAogmXkyQArBJlcRmVcZTCfp0ylhsYAao2Sxwb4eMCeI78/Y9l4DRkg5lTXOKkfiPX6wdFoP6UHyAKVrALtumq5BX81ZUq/ToamTT85XAkZS+6hEcuSqgJbka9RBe6pUKljQegsGTQtjMAUop2tVj07tBst2cGQfZB0gQzMrs8g28yrv3ykRmwyiVTsYZT1VZNJ5G8sMiryuBRhZuq5sf48fvjpNkh4kD1BWMlCTZkerIb1Os59/Jceshk51wCxNxSjZBKuNgFH0bqWtWKa1vgWV5ghYB5zAyoASCMGy+szACPd/TwNH0QGQbZ87pRaNaoWMzK4AMUrSKWB/YdrItHMDTVB0/3zD3IrZxru/x2c//0qOWUudJsmGB8mDdeEnfWevUyUbQScpgMyVoKHI1xgwjaw+WwvPMq2FY6Tko/S9G1GlhcwClJUejj0GoAjEZtI6ONL22QFymvDD0Av7HT1Q1goICATgOEOJubpplUGR14WAifW5vzbCPb4acjC+E+hBMvpR1gdh2s2wVjdLr9PG1YnrwwJNwDTuMzFIAYMKNK0lbkWfgdSBJyAiH2UbZtZZXQiI0Wf3HjJHXh9HsXYDpF+HKaZWIDajhkAJRKyyLRo22hb9c7XgHN6nHulaP03LuuVsX6kciff4wQK7lcpkz/YBylNPPYXt27djYWEBCwsL2L59O3bt2jXxGHL6N19/9Ed/5Pe5+OKLG9uvvPLKZesXDvSkwRa1F4LjVlPC8/c69TopxzDnEoGBkhgqgblUYqAEBonAUNFypqjRcuaWh4lbJ91LTX5xxxJ+Jb46j0tlEa5QusubVG4bB+2oAAx9kYEpAAm/ruuCtgfV+JJwsvZSSftLUjSqf8mqlyOCKjnhuB2p99ORqNN6yJoyyauuugpPPPEE7rjjDgDAa1/7Wmzfvh1f+MIXOo/5yU9+En3+y7/8S1x77bV41ateFa3fsWMH3vWud/nPc3Nzy9YvHLD6DCe0gYfLs5iMwnN2fU/XjKrXqdepTVJZaVWIijlSQA+cuVXAWOu/lximW3Zr60yyLRK2DlwVgxTxZ884+XO1PdwWrffnrL5k6jWoB+ZghodtW3BObTl8oG+0++lI0mmtZc1A8rvf/S7uuOMO3HvvvTj//PMBAB/5yEdw4YUX4pFHHsFpp53WetzWrVujz3/xF3+BF73oRfjlX/7laP38/Hxj35VIOKh1afsRTbpJ2qS+ve089XP1OvU6tQlvDwFTS+EAks2tFVAyALIJNvy+aWkioYSgKaL1AdC1AGcIjkATIKemfrQF40wLzqmvn5KusZHvpyNBp/WQNTO33nPPPVhYWPAACQAXXHABFhYWcPfdd890jieffBK33347rr322sa2W265BVu2bMFzn/tcvPWtb8WePXs6zzMej7F79+7oxVIfwLblrkFd7mC3nbtt316nXqdZtytB3Ui8edWZXtk8O83U2mVyDV9UNSgukJ4q4ZpPu5egl0BsbvXFBQDvGuHCA+F1mWh2bSsZF77qplNRderoGo+2a9rfT4evTmspa8Ykd+7cieOPP76x/vjjj8fOnTtnOscnPvEJbN68Ga985Suj9VdffTWe9axnYevWrXjooYdw/fXX45vf/CbuvPPO1vPcdNNNuPHGG6d+X9eNwNI1C5q2vs0sMes5ep16nWbVyaeVCN7HsUx3dMUsbVUStfZFk6JhpzVYDjdPY40xI514WndA93y+i2EcTmPX67QyndZDlg2SN9xww1TAue+++wCgNXrNWjtzd4CPfexjuPrqqzEcDqP1O3bs8MtnnHEGTj31VJx77rl44IEHcPbZZzfOc/311+PNb36z/7x7926cdNJJjYs8zRSw3NlRl5lg0r51HXqdep0ORCfursHLAPkq287DaSQHIuFvu8tM27Y9FH5Idm2bJkfK2PU6zabTWsuyQfINb3jD1EjSU045Bd/61rfw5JNPNrb97Gc/wwknnDD1e7761a/ikUcewa233jp137PPPhtpmuLRRx9tBcnBYIDBYNBYX7/IK73os9jZpx3TZefvdep1Wk2dgG5wUqIC0Flkko5TzagHcO7wOzbS2PU6NXVaD1k2SG7ZsgVbtmyZut+FF16IxcVFfP3rX8d5550HAPja176GxcVFPP/5z596/Ec/+lGcc845eN7znjd13+985zsoigLbtm2b/g+0yCwDNmmfldwobTdb+B29Tr1OB0OnlYLarHKkXKdep0NDp/WQNQvcefazn41LL70UO3bswL333ot7770XO3bswGWXXRZFtp5++um47bbbomN3796Nz372s/gX/+JfNM77/e9/H+9617vwjW98Az/4wQ/wxS9+Ea9+9atx1lln4QUveMGKdO262ALVbGXWme2BiO1Yrn9Hr1P7cv07ep3al+vf0evUvlz/jl6n9uX6d6ynTusha1pM4JZbbsGZZ56JSy65BJdccgl+9Vd/FZ/85CejfR555BEsLi5G6z7zmc/AWovf/M3fbJwzyzL81V/9FV72spfhtNNOwxvf+EZccskl+NKXvgSlZihLNUXCQeui9rP4S1Zz8HudZpNep9mk12k26XWaTQ5FnVZThLUH6qo//GT37t1YWFjAzp07cfTRRze2d9nju26G1ZBp5otep16nXqdep16nSvbs3o0Ttm7F4uJi63N8tWTD125tky7b91rOJqadu9dptnP3Os127l6n2c7d6zTbuQ9FnVZL1tTcerhKG+0XHeu79qnv27ZeYLbz9jr1OvU69Tr1Oi1Pp9WSDQ2SXYNSn6Gw6WCW2VQ4g2obyHB922yr16nXqdep16nXaXad1lo2NEh2DcqsMu3Ythunvp514FevU69Tr1OvU6/TbDqth2xokASmz0hEsE99UGaZzXTNtOrnqc+oep16nXqdep16nSbrtB6y4UEylLaLHs5a6gPfNZMJ14fHdN04vU69Tr1OvU69Tquj02pLD5KBzDoQ4YxqVtrfZi7odep16nXqdep1Wl2dVlt6kHQSzlra1ndR+3BbaCZoG9Cu2VLb9l6nXqdep16nXqfJOq2H9CDpZNKAruQcsxxXv8nqx/Q69Tr1OvU69Tp167Qe0oNkh0ybraxk+6w32Wp+57TtvU6zbe91mm17r9Ns23udZtt+oDqthvQg2SKzzFaWM1irYR7odZr9HL1Os52j12m2c/Q6zXaOQ02n1ZIeJFvkQGcr08wUK7kBep1mk16n2aTXaTbpdZpNDkWdVkt6kFymzDJYs86oVmvge51mk16n2aTXaTbpdZpNDkWdliMbGiQnRW7Nso8IXm3H1LfV92ubLfU69Tr1OvU69TrNptN6yIbuAhLOTsKLH35ebnRX27G8rv65/r1dOvQ69Tr1OvU69To1v3c9ZEMzybpMmxnNMouyU7aH+9gp+/U69Tr1OvU69TotT6fVlh4kMXm2Ew52fYY0y2AtZ+YTnq/Xqdep16nXqdfp4MuGNrey8MC1DcykwZpl26R96jdM243W69Tr1OvU69Tr1K7TekjPJEGD0nYDTJMDGTCeLXXdEL1OvU69Tr1OvU6z67RW0oMkJs+YuvadZBKo2+FXcgP1OvU69Tr1OvU6HXzpQRLNgasPUDhos5gEQtt718xn2rpep16nXqdep16nyTqth/Qg2SL1wVgNii9q713bu6TXafL6UIf6516npvQ6TV4f6lD/3OvUlENRp9WSHiQPULoGqu2m4fe2Y1ZzltTrNJv0Os0mvU6zSa/TbHIo6jRJepA8QFnJQHUN+mpJr9Ps51/JMb1Osx3T6zTbMb1Osx1zsPyUGx4kD9aFn3Sj9DpV0us0m/Q6zSa9TrPJ4abTWsqGB0meobQN/LSbYa1ull6n2aTXaTbpdZpNep1mk0NRp7WUDV1MoB59Vd9ma/uxzBKtdaD69Dr1OvU69Tr1Oh182dBMMhywtkGtg+hyB7httjUtYqvXqdep16nXqddpdp3WWjY0SAKT2WQ4K2ob9FkGrX7erpunbRbW69Tr1OvU69Tr1K3TesiGB8muARQd+3Qdu5ztbYNrO5Z7nXqdep16nXqdln+u1ZIND5KhdN0ILF0zl2nr28wSs56j16nXqdep16nXafZzrLZsaJDssn13yXJnR11mgkn79jr1OvU69Tr1Os2u01rLhgbJ+kVe6UVfyYym62brdZp8TK/TbMf0Os12TK/TbMccyjqttWxokGSZ5WJP2mclN0rbzdZl3++SXqdep65jep1mO6bXabZjDlWd1kN6kET3xRbonkF17b9aevQ6dUuv02zS6zSb9DrNJoeiTushawqSf/iHf4jnP//5mJ+fxzHHHDPTMdZa3HDDDTjxxBMxNzeHiy++GN/5zneifcbjMX7v934PW7ZswaZNm3D55ZfjiSeeWBWdw0GzHetncWKv5uD3Os0mvU6zSa/TbNLrNJscijqtpqwpSOZ5jle/+tX43d/93ZmPed/73of3v//9+OAHP4j77rsPW7duxa/92q9hz549fp/rrrsOt912Gz7zmc/gf/2v/4W9e/fisssug9b6gHWumxX4M7/POpDLNQVMM030OvU69Tr1OvU6zabTaoqw1q65affmm2/Gddddh127dk3cz1qLE088Eddddx3e9ra3ASDWeMIJJ+C9730vXve612FxcRFPf/rT8clPfhKvec1rAAA//vGPcdJJJ+GLX/wiXvayl03VZ/fu3VhYWMDOnTtx9NFHH/D/10svvfTSy/rK7t27sXXrViwuLq7pc/yQqt362GOPYefOnbjkkkv8usFggIsuugh33303Xve61+H+++9HURTRPieeeCLOOOMM3H333a0gOR6PMR6P/efFxUUAiNhpKDwLqq9Dy/qufernEC3ru8wUvU69Tr1OvU69TpN14uf3WvO8Qwokd+7cCQA44YQTovUnnHACfvjDH/p9sizD0572tMY+fHxdbrrpJtx4442N9aeeeupqqN1LL7300stBkl/84hdYWFhYs/MvGyRvuOGGVsAJ5b777sO55567YqWEiK3N1trGurpM2uf666/Hm9/8Zv95165dOPnkk/H444+v6cVdC9m9ezdOOukk/OhHPzqsTMW93usrvd7rL4er7oer3ouLi3jmM5+JY489dk2/Z9kg+YY3vAFXXnnlxH1OOeWUFSmzdetWAMQWt23b5tf/9Kc/9exy69atyPMcTz31VMQmf/rTn+L5z39+63kHgwEGg0Fj/cLCwmF1U4Ry9NFHH5a693qvr/R6r78crrofrnpLubaZjMsGyS1btmDLli1roQue9axnYevWrbjzzjtx1llnAaAI2a985St473vfCwA455xzkKYp7rzzTlxxxRUAgJ/85Cd46KGH8L73vW9N9Oqll1566WVjypr6JB9//HH83d/9HR5//HForfE3f/M3AIC/9/f+Ho466igAwOmnn46bbroJr3jFKyCEwHXXXYd3v/vdOPXUU3Hqqafi3e9+N+bn53HVVVcBIPZ37bXX4i1veQuOO+44HHvssXjrW9+KM888Ey996UvX8t/ppZdeeullg8maguQf/MEf4BOf+IT/zOzwrrvuwsUXXwwAeOSRR3y0KQD8/u//PpaWlvAv/+W/xFNPPYXzzz8f/+N//A9s3rzZ7/OBD3wASZLgiiuuwNLSEl7ykpfg5ptvhlJqJr0GgwHe+c53tppgD3U5XHXv9V5f6fVefzlcde/1nizrkifZSy+99NJLL4ej9LVbe+mll1566aVDepDspZdeeumllw7pQbKXXnrppZdeOqQHyV566aWXXnrpkB4ke+mll1566aVDjliQPBx7WQLAU089he3bt2NhYQELCwvYvn371O4pQojW1x/90R/5fS6++OLG9mmVk9Za79/+7d9u6HTBBRdE+xxq17soCrztbW/DmWeeiU2bNuHEE0/Eb/3Wb+HHP/5xtN9aXO8PfehDeNaznoXhcIhzzjkHX/3qVyfu/5WvfAXnnHMOhsMhfvmXfxl/9md/1tjnc5/7HJ7znOdgMBjgOc95Dm677bYD0vFA9f785z+PX/u1X8PTn/50HH300bjwwgvx3//7f4/2ufnmm1vv99FodND0/vKXv9yq0/e+971ov0Pterf9BoUQeO5zn+v3WY/r/T//5//EP/2n/xQnnngihBD4L//lv0w9Zt3ub3uEyh/8wR/Y97///fbNb36zXVhYmOmY97znPXbz5s32c5/7nP32t79tX/Oa19ht27bZ3bt3+31e//rX21/6pV+yd955p33ggQfsi170Ivu85z3PlmW5Knpfeuml9owzzrB33323vfvuu+0ZZ5xhL7vssonH/OQnP4leH/vYx6wQwn7/+9/3+1x00UV2x44d0X67du1aFZ1Xqvc111xjL7300kinX/ziF9E+h9r13rVrl33pS19qb731Vvu9733P3nPPPfb888+355xzTrTfal/vz3zmMzZNU/uRj3zEPvzww/ZNb3qT3bRpk/3hD3/Yuv///b//187Pz9s3velN9uGHH7Yf+chHbJqm9j//5//s97n77rutUsq++93vtt/97nftu9/9bpskib333ntXrOeB6v2mN73Jvve977Vf//rX7d/+7d/a66+/3qZpah944AG/z8c//nF79NFHN+771ZTl6n3XXXdZAPaRRx6JdArv00Pxeu/atSvS90c/+pE99thj7Tvf+U6/z3pc7y9+8Yv23/ybf2M/97nPWQD2tttum7j/et7fRyxIsnz84x+fCSSNMXbr1q32Pe95j183Go3swsKC/bM/+zNrLd1QaZraz3zmM36f//f//p+VUto77rjjgHV9+OGHLYBoEO+55x4LwH7ve9+b+Ty//uu/bl/84hdH6y666CL7pje96YB1bJOV6n3NNdfYX//1X+/cfrhc769//esWQPQgWu3rfd5559nXv/710brTTz/dvv3tb2/d//d///ft6aefHq173eteZy+44AL/+YorrrCXXnpptM/LXvYye+WVV66S1svXu02e85zn2BtvvNF/nvU3fSCyXL0ZJJ966qnOcx4O1/u2226zQgj7gx/8wK9bj+sdyiwguZ739xFrbl2uTOtlCWBqL8sDlXvuuQcLCws4//zz/boLLrgACwsLM5//ySefxO23345rr722se2WW27Bli1b8NznPhdvfetbO/tprqfeX/7yl3H88cfj7//9v48dO3bgpz/9qd92OFxvgLoRCCEaZv3Vut55nuP++++PrgMAXHLJJZ163nPPPY39X/ayl+Eb3/gGiqKYuM9qXNuV6l0XYwz27NnT6PSwd+9enHzyyXjGM56Byy67DA8++OCq6Hygep911lnYtm0bXvKSl+Cuu+6Kth0O1/ujH/0oXvrSl+Lkk0+O1q/l9V6JrOf9fUj1kzyYsla9LJerw/HHH99Yf/zxx898/k984hPYvHkzXvnKV0brr776al9A/qGHHsL111+Pb37zm7jzzjsPmt4vf/nL8epXvxonn3wyHnvsMbzjHe/Ai1/8Ytx///0YDAaHxfUejUZ4+9vfjquuuirqoLCa1/vnP/85tNat92aXnjt37mzdvyxL/PznP8e2bds691mNa7tSvevy7/7dv8O+fft8MwOA6j3ffPPNOPPMM7F792788R//MV7wghfgm9/85qr0iF2J3tu2bcOf//mf45xzzsF4PMYnP/lJvOQlL8GXv/xlvPCFLwTQPSaHyvX+yU9+gr/8y7/Epz/96Wj9Wl/vlch63t+HFUgejr0sgdn1bvv+WXVg+djHPoarr74aw+EwWr9jxw6/fMYZZ+DUU0/FueeeiwceeABnn332QdH7Na95TaTTueeei5NPPhm33357A+SXc971ut5FUeDKK6+EMQYf+tCHom0rud7TZLn3Ztv+9fUrud+XKyv9jv/0n/4TbrjhBvzFX/xFNJm54IILogCvF7zgBTj77LPxJ3/yJ/j3//7fHxS9TzvtNJx22mn+84UXXogf/ehH+Lf/9t96kFzuOVcqK/2Om2++Gccccwx+4zd+I1q/Xtd7ubJe9/dhBZKHYy/L5ej9rW99C08++WRj289+9rPGjKhNvvrVr+KRRx7BrbfeOnXfs88+G2ma4tFHH+18aK+X3izbtm3DySefjEcffRTAoX29i6LAFVdcgcceewx//dd/PbUP3yzXu0u2bNkCpVRjBhzem3XZunVr6/5JkuC4446buM9yxmy19Wa59dZbce211+Kzn/3s1O4+Ukr8w3/4D/19c6ByIHqHcsEFF+BTn/qU/3woX29rLT72sY9h+/btyLJs4r6rfb1XIut6fy/Lg3kYynIDd9773vf6dePxuDVw59Zbb/X7/PjHP171QJKvfe1rft299947cyDJNddc04iy7JJvf/vbFoD9yle+smJ9WQ5Ub5af//zndjAY2E984hPW2kP3eud5bn/jN37DPve5z7U//elPZ/quA73e5513nv3d3/3daN2zn/3siYE7z372s6N1r3/96xuBDS9/+cujfS699NJVDyRZjt7WWvvpT3/aDofDqcEbLMYYe+6559rf+Z3fORBVI1mJ3nV51ateZV/0ohf5z4fq9ba2Cjz69re/PfU71uJ6h4IZA3fW6/4+YkHyhz/8oX3wwQftjTfeaI866ij74IMP2gcffNDu2bPH73PaaafZz3/+8/7ze97zHruwsGA///nP229/+9v2N3/zN1tTQJ7xjGfYL33pS/aBBx6wL37xi1c9JeFXf/VX7T333GPvuecee+aZZzZSEup6W2vt4uKinZ+ft//hP/yHxjn/z//5P/bGG2+09913n33sscfs7bffbk8//XR71llnHTS99+zZY9/ylrfYu+++2z722GP2rrvushdeeKH9pV/6pUP6ehdFYS+//HL7jGc8w/7N3/xNFBI/Ho+ttWtzvTm0/6Mf/ah9+OGH7XXXXWc3bdrkoxDf/va32+3bt/v9OUT+X/2rf2Uffvhh+9GPfrQRIv+///f/tkop+573vMd+97vfte95z3vWLCVhVr0//elP2yRJ7J/+6Z92ps/ccMMN9o477rDf//737YMPPmh/53d+xyZJEk121lvvD3zgA/a2226zf/u3f2sfeugh+/a3v90CsJ/73Of8Pofi9Wb55//8n9vzzz+/9Zzrcb337Nnjn9EA7Pvf/3774IMP+ojxg3l/H7Egec0111gAjdddd93l9wFgP/7xj/vPxhj7zne+027dutUOBgP7whe+sDGzWlpasm94wxvssccea+fm5uxll11mH3/88VXT+xe/+IW9+uqr7ebNm+3mzZvt1Vdf3Qgrr+ttrbUf/vCH7dzcXGsu3uOPP25f+MIX2mOPPdZmWWZ/5Vd+xb7xjW9s5CSup9779++3l1xyiX36059u0zS1z3zmM+0111zTuJaH2vV+7LHHWu+r8N5aq+v9p3/6p/bkk0+2WZbZs88+O2Kl11xzjb3oooui/b/85S/bs846y2ZZZk855ZTWCdRnP/tZe9ppp9k0Te3pp58ePdRXS5aj90UXXdR6ba+55hq/z3XXXWef+cxn2izL7NOf/nR7ySWX2Lvvvvug6v3e977X/sqv/IodDof2aU97mv1H/+gf2dtvv71xzkPteltLFpu5uTn753/+563nW4/rzUy2a9wP5v3d95PspZdeeumllw7p8yR76aWXXnrppUN6kOyll1566aWXDulBspdeeumll146pAfJXnrppZdeeumQHiR76aWXXnrppUN6kOyll1566aWXDulBspdeeumll146pAfJXnrppZdeeumQHiR76aWXXnrppUN6kOyll1566aWXDulBspdeeumll1465P8DlL5MxUbdaT0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZglRZU2/saJzLy3qjdZm0W7UUSERmURAfnpuLC6AaLgxiiifqjzuKCjoMiAjKKiDKCCOqKNC8jHh+DGKpvjyDjK5ijqyIii2D0IAk13V1VmRpzfH7Fk5HbrVnVV0XTleZ5bmTdvZOapzMh84z1bCGZmdNJJJ5100kknNaHHWoFOOumkk0462VilA8lOOumkk046aZEOJDvppJNOOumkRTqQ7KSTTjrppJMW6UCyk0466aSTTlqkA8lOOumkk046aZEOJDvppJNOOumkRTqQ7KSTTjrppJMW6UCyk0466aSTTlqkA8kGOfXUUyGEKG3bYYcd8LKXvWxOzr9+/XqceuqpuOmmm2q/rVy5EkII/OEPf5gTXTYm+cMf/gAhBFauXDljx/za176G17zmNdh5551BRNhhhx0a273pTW+CEKL18x//8R8zptNsysknn4yXvexl2H777SGEwJve9Kah9nvDG94AIcSUnoHbbrsNBxxwABYuXIgnPOEJeOUrX4nf//73jW3/+Mc/4s1vfjO222479Ho9bL/99jjiiCNKbV7wghcMvAerV6/2bT/84Q9jjz32wOabb45+v4+nPOUpeNvb3oY//vGPtXNnWYbTTjsNO+ywA3q9Hp7+9Kfjs5/9bKOezIyvfvWreM5znoMFCxZg8eLF2HPPPfGd73zHt7npppsG6nn88cf7tjfccAPe/OY34+lPfzoWLFiA7bffHocddhhuvfXW0nmVUjjrrLNwyCGH4IlPfCJGR0exyy674MQTT8TDDz9cartu3TrfpxctWoQFCxZgxYoV+Od//mesW7eu9j9dc8012H///TEyMoIlS5bg5S9/OX71q1/V2k1MTODMM8/EbrvthgULFmDp0qU49NBD8ZOf/KTW9u6778YxxxyDZcuWYWRkBDvuuCNOOOEEPPjgg7W2v//97/HKV74ST3jCE7Bw4UIceOCBuO2220ptVq1ahZNPPhn77bcfttxySyxevBh77bUXvvSlL0Ep1XivZky4k5r86U9/4ltuuaW0bfny5fzSl750Ts7/17/+lQHwP/3TP9V+u//++/mWW27h8fHxOdFlY5J77rmHAfBXv/rVGTvmAQccwLvtthu/4Q1v4Kc+9am8fPnyxnZ3330333LLLbXPlltuydtvvz3neT5jOs2mjI6O8r777svHH388J0nCb3zjGyfd5/vf/z4vWLCAFy9ePPQz8Otf/5oXLVrEz3ve8/gHP/gBX3bZZbxixQrebrvt+P777y+1/a//+i/eYosteO+99+ZvfvObfPPNN/O3vvUtPvbYY0vtfvWrX9Wu//XXX89xHPO+++5bavuOd7yDP/nJT/J3v/tdvvHGG/nzn/88b7vttrx06VJ+4IEHSm3f8pa3cK/X40996lN844038oknnshCCP7Yxz5W+7/+z//5P9zr9fjEE0/kH/7wh3z11VfzmWeeyRdddJFv88gjjzT2lb//+79nAHz11Vf7tq961av4hS98IZ933nl800038aWXXsr77rsvR1HE119/vW/36KOP8qJFi/htb3sbX3rppXzjjTfyZz7zGd5ss81411135fXr1/u2Dz30EB911FH8hS98ga+55hq+7rrr+CMf+QjHccwvfvGLS//PFVdcwUIIPvzww/kHP/gBX3TRRbzzzjvzZpttxnfffXep7THHHMNExB/+8If5+uuv50svvZT32msvjqKIf/rTn/p2999/P2+xxRb85Cc/mVeuXMk33HADf+Yzn+GFCxfy7rvvzkqpUtvtttuOV6xYwZdddhn/4Ac/4P/v//v/eNGiRfyb3/zGt/ve977HT3rSk/jDH/4w/+AHP+Brr72W3/ve9zIR1frJTEsHkkPKhoBkmqacZdnQ7QeB5HyW2QDJ8IF96Utf2gqSTXLTTTcxAD755JNnTJ/ZlvD/XbBgwaQg+fDDD/P222/PZ5111pSegVe/+tW85ZZb8iOPPOK3/eEPf+A4jvkDH/iA36a15t1335133333aQ38Vq5cyQD4y1/+8qRtr7zySgbAF1xwgd/2y1/+koUQ/PGPf7zU9q1vfSuPjIzwgw8+6LddfvnlDIAvueSSKeupteanPOUpvHz58tI9+N///d9a20cffZSXLl1aArQ8z2vgzsx86aWXMgD++te/PqkOH/jABxgA/8///I/ftvPOO/Mzn/lM1lr7bX/4wx84SRJ+3ete57eNj4+zlJLf8IY3lI75l7/8hQHwu971Lr/tX//1XxkA//CHPyy1/fjHP84A+LbbbvPb/vEf/5HjOOY//OEPftsjjzzCW265JR911FF+29/+9jdO07T2P73zne9kAHzvvfdO+v9PV+aNufWKK66AEALXX3997bfzzz8fQgj84he/ANBsbnVy+eWX45nPfKY34Zx77rml352p5etf/zre9773Yfvtt0ev18Pdd9+Nv/71r3jHO96BXXfdFQsXLsTWW2+NF73oRfi3f/s3v/8f/vAHbLXVVgCA0047zZtonFmsydz6ghe8ALvttht+9rOf4XnPex5GR0fxlKc8BZ/4xCegtS7p96tf/QoHHXQQRkdHsdVWW+Gd73wnfvCDH0AI0WjeDcVdl1/84hd49atfjSVLlmDzzTfHCSecgDzP8dvf/haHHHIIFi1ahB122AGf+tSnase499578YY3vAFbb701er0edtllF3zmM5+p6fmXv/wFRx11FBYtWoQlS5bg6KOPLpnTQvn5z3+OV7ziFd60tscee+D//t//O/B/cUI0/UfgggsugBACb37zm6d9jHe/+93o9Xr461//2vj729/+doyMjOB///d/p32OUKb6/77vfe/Dtttui3e9611D75PnOb7//e/jyCOPxOLFi/325cuX44UvfCEuv/xyv+1HP/oR7rjjDrznPe9Br9ebkm6AuQcLFy7E0UcfPWlb91xFUeS3XXHFFWBmHHvssaW2xx57LMbGxnD11Vf7beeccw522GEHHHXUUVPW88Ybb8Tvf/97HHvssaV7sPXWW9faLly4ELvuuiv+9Kc/+W1SSmyxxRa1ts95znMAoNS2Tar//4MPPojf/va3OPTQQ0vvu+XLl2O33XbDFVdc4U2ZRAQiwpIlS0rHXLx4MYgI/X7fb4vjGABqbZ/whCcAQKnt5Zdfjhe96EVYvnx56ZivfOUr8b3vfQ95ngMANttsM3/cpv//z3/+86T//7Rl1uB3I5Msy3jrrbfm17/+9bXfnvOc5/Cee+7pv//TP/0TVy/N8uXLefvtt+dly5bxV77yFb7yyiv59a9/PQPgM88807e78cYbGQBvv/32/KpXvYq/+93v8ve//31+8MEH+Te/+Q2//e1v529961t800038fe//30+7rjjmIj4xhtvZGYzYrv66qsZAB933HHeVONMH1/96lcZAN9zzz3+nH/3d3/HW2yxBe+00078hS98ga+77jp+xzvewQD4wgsv9O3+8pe/8BZbbMHLli3jlStX8pVXXsnHHHMM77DDDgzA69Am7rrsvPPOfPrpp/N1113nR6f/8A//wE9/+tP53HPP5euuu46PPfZYBsCXXXaZ3//+++/n7bffnrfaaiv+whe+wFdffTX/wz/8AwPgt7/97b7d+vXreZddduElS5bwZz/7Wb7mmmv4Xe96Fy9btqzGJG+44QZOkoSf97zn8SWXXMJXX301v+lNb5oW45wKk3z44Yd5ZGSEDzjggCmdI5S1a9fyggUL+JWvfGVrm1tvvZUB8GmnnVbanmXZUJ+QIVRlMiZ53XXXcRzHfMcddzDz8NaU3/zmNwyAP//5z9d+e//7389CCB4bG2Nm5o9+9KO+nxx66KHc6/V4wYIF/NKXvpR//etfDzzPf//3fzMAfstb3tLaJssyXr9+Pd922228//7789Oe9jR+9NFH/e+vec1reKuttqrtt3btWgbAJ510kj9Or9fjI444gj/zmc/wsmXLmIj4yU9+Mp955pkDrzMz8+te9zomIv7jH/84sB2z6VtLlizhI444YtK27n3wne98p/ab1pqzLONHHnmEr7rqKt5mm234ta99rf/dscBTTjmltu9+++3HAPi3v/2t3/bud7+bFy5cyJdffjk/8sgjfM899/BrX/ta3myzzfh3v/tdSf9ly5bx85//fP7lL3/Jjz76KN988828bNkyfvnLX+7brV+/noUQ/I//+I+183/uc5+rnb9J3vjGN3IURY0se6Zk3oAkM/MJJ5zAIyMj/PDDD/ttd911FwPgz372s35bG0gKIfwLw8mBBx7Iixcv5nXr1jFzAZLPf/7zJ9Unz3POsoxf/OIXlx6IQebWNpAEUPILMDPvuuuufPDBB/vv//iP/8hCCP7Vr35VanfwwQdPCSQ/85nPlLbvvvvuDIC//e1v+21ZlvFWW21VAoATTzyxUc+3v/3tLITwD8T555/f+OC/9a1vrYHf05/+dN5jjz1q5uyXvexlvO2225ZMW5PJVEDS6XjxxRcPffyqOFNZaP5rku23355XrFhR2gZgqM+ggcIgkHz00Ud5hx128CDBPDxI/vu//3vrtXEmt7/85S/MbHx8AHjx4sV83HHH8Q9/+EP++te/zsuXL+ctt9zSt2uSD37wgwygFj/gZNWqVaVrsc8++/B9991XanPggQfyzjvv3Lh/kiT8tre9rXSsxYsX8xOf+ES+8MIL+frrr+fjjz+eAfCHPvShVj0feugh7vf7pWdxkLz+9a/nKIr45z//+cB2f/7zn3np0qX87Gc/u7GfX3zxxaX//9hjjy09J0op3nzzzWt+yoceeogXLVrEAPgnP/mJ36615lNOOYWJyB9z2bJlfPvtt9fO/Ze//MUDrfu8+tWvLpnU77vvPgbAZ5xxRm3/iy66qHb+qlxzzTVMRPze97534HXaUJk35lYAePOb34yxsTFccsklfttXv/pV9Ho9vO51r5t0/xUrVuBZz3pWadvrXvc6rFmzphaNdeSRRzYe4wtf+AL23HNP9Pt9RFGEOI5x/fXX49e//vU0/qNCttlmG296cPLMZz6zFM138803Y7fddsOuu+5aavfa1752SueqRjjusssuEELg0EMP9duiKMJTn/rU0vlvuOEG7LrrrjU93/SmN4GZccMNNwAwpqlFixbhFa94Rald9R7dfffd+M1vfoPXv/71AIyZz31e8pKXYNWqVfjtb387pf9tWLnggguwxRZb1CIwpyI//elPAQC777673/Yf//Ef+MpXvlJqt/vuu+Ouu+4qRSb+7Gc/G+rz8pe/fFq6nXjiiYjjGKeccsq09gfQ6rIIf3Nm9v322w9f/vKX8eIXvxhveMMbcMUVV+CBBx7A5z//+cb98zzHhRdeiBUrVmDfffdtbLPlllviZz/7GX784x/jX//1X/G3v/0NL3zhC7Fq1app67lmzRpceuml+Pu//3u86EUvwvnnn4/DDz8cZ511FtauXdt4jG9+85sYHx/HW97yltbzOPnIRz6Cb37zm/iXf/kX7LXXXq3t/va3v+ElL3kJmBmXXHJJoxn94IMPxs9+9jPccMMN+NjHPobLLrsMRx55pP9fiAjvfOc7cf311+P000/H/fffj7vvvhtveMMbsH79et/Gycc+9jF8+tOfxqmnnoobb7wR3/nOd7DzzjvjwAMPxO233+7bPfTQQzjssMOwZs0afPOb38SPfvQjnHfeefjxj3+MV7ziFd6EWr3GTdL222233YajjjoK++67L84444zW/WdCosmbbDqyYsUK7L333vjqV7+Kt73tbVBK4Rvf+AYOO+wwbL755pPuv80227Ruq4Y2b7vttrW2Z511Ft73vvfh+OOPx+mnn44tt9wSUkp85CMf2WCQbPJX9Ho9jI2N+e8PPvggnvzkJ9faLV26dErnql6rJEkwOjpa8jW47WvWrCmdvynFYrvttvO/u2WTTtXr7/x073//+/H+97+/UdcHHnhgkv9m6vKLX/wCP//5z70/cbry0EMPAUDJb3fFFVfgwgsvLPk5lyxZAmbGww8/jAULFgAoA+sgkVJOWa///M//xHnnnYdvf/vbGB8fx/j4OAADFHme4+GHH8bIyEjr/+76YlO4/9/+9jcIIbx/yrU9+OCDS+123313bLvttrXBp5Mrr7wSq1evxgc/+MHW/yOKIjz72c8GAOy///445JBD8OQnPxmf+MQncM455/jz33HHHbV9161bhzRNfV/fbLPNIITAokWLaqB86KGH4oorrsBdd91VGwACZkC11VZb4bDDDmvVFTAxCP/8z/+Mj33sY/iHf/iH1nYPPfQQDjzwQNx333244YYb8JSnPKWx3Wabbeb//xe+8IXYcccd8ZrXvAbf+c53/ODulFNOwdq1a/HP//zPfkD00pe+FMceeyy+/OUvY/vttwcA/PrXv8Ypp5yCT33qU6Vn7dBDD8Wuu+6KE044ATfeeCMA4JOf/CTuuOMO/PGPf/Tvwec973l4+tOfjhe96EX45je/iTe+8Y3+mrb1E6D+rgGA22+/HQceeCB22mknXHnllRv0DA4j8wokAeOQf8c73oFf//rX+P3vf49Vq1bVnPZt0hQ44rZVQappBPSNb3wDL3jBC3D++eeXtj/66KPDqr9BssUWWzQGgLQFxMzG+aujeMAE6QBm5O/a/ed//metXVVP1/6kk07CK1/5ysZz7rzzzhukc5NccMEFADAUMxgkLrDBgSVg/scHHngAWZb5QAX3wggDIZqCGJrkq1/96tC5kE7uuusuMHMjS/7Tn/6EzTbbDP/yL/+C97znPY3777jjjhgZGcF//dd/1X77r//6Lzz1qU/1A6pnPvOZrXowc2ug0QUXXIAkSXDMMccM8R8ZeeITn4jtttsO//3f/+23PeMZz8C3vvUtrF69ujQIc7rvtttuAICRkRHstNNOjc8KMwNoDoq6/fbbcfvtt+N973vfwHt22mmn4dRTT8Wpp56KD33oQ63tHnroIRxwwAG45557cP311w+8flVxAB7+/1EU4ayzzsJHP/pR3HPPPdhyyy2x7bbb4uCDD8aTn/xkPPGJTwQA3HnnnWBm7L333qVjxnGMZz3rWbj55pv9tjvuuAPbb799jSi4fX/5y18CMNf0qU99ams/GRkZqQ0Abr/9dhxwwAFYvnw5rr322lpw0GzIvDK3Asa02O/3sXLlSqxcuRLbb789DjrooKH2/dWvfoU777yztO2iiy7CokWLsOeee066vxCiNur5xS9+gVtuuaW0zbUJWeBMyN/93d/hl7/8Je66667S9m9961szep42efGLX4y77rqrxg6+9rWvQQiBF77whQDMqPfRRx/Fd7/73VK7iy66qPR95513xk477YQ777wTz372sxs/ixYtmtH/YWJiAt/4xjfwnOc8x79ApyvOdB8mY//Hf/wHoijyptgsy/DTn/4UT33qU7Fw4ULfbjbNrYcccghuvPHG2mfp0qXYd999ceONN+JVr3pV6/5RFOHlL385vv3tb5cGgPfeey9uvPHG0oDm0EMPxejoKK666qrSMW677TasXr260ZS6evVqXHnllTj88MMbLShtcvfdd+PPf/4znvrUp/pthx12GIQQuPDCC0ttV65ciZGRERxyyCF+25FHHok1a9bUkuevvPJKLFy4ECtWrKid0w2ojjvuuFa9Tj/9dJx66qk4+eST8U//9E+t7RxA/v73v8e1116LPfbYY/A/XBHH9ML/38nChQvxjGc8w7P366+/Hu9+97v9787aUy2aMTExgdtuu82DqWv75z//Gffdd1+prXvPhW2POOII3HDDDaXo3EcffRTf/va38YpXvKIUiXzHHXfggAMOwBOf+ERcd9112Gyzzab0/09bZtXjuZHKa1/7Wt566605SZJGh/sw0a1XXXWVj2795Cc/6du5wJ1LL720dtxTTjmFhRB8yimn8PXXX8/nnXceb7PNNrzjjjvWAkaWL1/OO++8M19zzTX8s5/9zAfqtAXuVAM7mE3kV3jc++67rxTdetVVV/ExxxzDy5cvZwB88803D7xu7rr89a9/rZ1nwYIFtfZVvVx06zbbbMNf+tKXfNSqEILf8Y53+Hbr1q3jpz3tabxkyRL+3Oc+x9dccw2/+93vbo1u7fV6fNBBB/FFF13EN998M19++eX88Y9/nF/1qlcN/H+YTYL6pZde6hOjt9pqK/+9GuDEzPytb32LAfCXvvSl1mO6ezRZdO0jjzzCW2+9NW+xxRZ80UUX8SmnnMJbbrklv/3tb+e9996bf/CDH/BrXvMaBsCf/vSnJ/1fhhGXsH7ppZdyv9/nF7zgBf57Ncm/Km2BOzvuuCPvuOOOpW2//vWveeHChfz85z+fr7zySv72t7/Nu+22W2MxgU9/+tMMgN/4xjfy1VdfzStXruQnPelJvGzZslKeopNPfOITDICvvfbaRj3vvPNOftGLXsTnnXceX3311XzttdfyZz7zGX7iE5/IW221VSknj7koJnDmmWfyTTfdxB/60Icaiwk8+OCDvGzZMt5uu+34ggsu4GuuucYHkzXdn7GxMd5ss834uc99bvMFDf73Qw45pLEAgZP169fz3nvvzUIIPuecc2rtwsT/L3zhC/z617+eL7zwQr7hhhv4e9/7Hn/gAx/gkZERfu5zn1sK3rnxxhv5U5/6FF999dV81VVX8Wmnncajo6P80pe+tFQgQynFe++9N/f7fT7llFP4hz/8IV922WX8ghe8oJan+fOf/5yTJOFddtnF63Duuefy1ltvzUuXLi29P+6//37edttt+RnPeAZffvnlfOWVV/Lzn/98XrRoUSm6+Te/+Q1vscUWvPnmm/P3vve92v8/Wd/dEJmXIHnttdf6iKv//u//rv3eBpIvfelL+f/9v//HK1as4CRJeIcdduCzzjqr1G4QSE5MTPD73/9+3n777bnf7/Oee+7JV1xxRQ3MmJl/+MMf8h577MG9Xs+/QJg3DCSZTfL0AQccwP1+nzfffHM+7rjj+MILL2QAfOeddw64ahsOkszMf/zjH/l1r3sdb7HFFhzHMe+888585pln1qLz/vznP/ORRx7JCxcu5EWLFvGRRx7JP/nJTxrB58477+SjjjqKt956a47jmLfZZht+0YtexF/4whcG/j/h/9T0aYouPvDAA3nBggW8Zs2a1mN+9rOfrVVWaZNbb72V99tvP+71erzjjjvyNddcww888AAfeuihPDo6yttssw1/5CMfmTTFYFhxkdBNn8mim9tAcvny5Y1RwT//+c/5xS9+MY+OjvLixYv58MMPr1VxcfKv//qvvNtuu3GSJLzFFlvw61//ev7Tn/7U2PZpT3sa77DDDq3XZPXq1fyGN7yBd9xxRx4dHeUkSfgpT3kKH3/88Y1J52ma8j/90z/xsmXLOEkSftrTnsbnnntu47Hvvfdefs1rXsObbbYZJ0nCz3zmM/krX/lKY9tvfvObDKD1d+bB9yN8B7lCGm2fMEr53//93/llL3sZb7fddpwkCY+OjvKznvUsPv30030Ufth2n3324cWLF3Ov1+PddtuNP/3pTzcm7j/88MP84Q9/mHfZZRceHR3lrbfeml/wghfwlVdeWWt722238RFHHMFPfOITudfr8VOe8hR+y1ve0nj97777bj788MN58eLFPDo6yi9+8Yv51ltvLbVx7722z0wWGKmKYLYG9U7mrbztbW/DxRdfjAcffBBJkjzW6jzu5aijjsI999yDn/3sZ4+1Kp100skGyrwL3Jnv8tGPfhTbbbcdnvKUp2Dt2rX4/ve/jy9/+cs4+eSTO4CcAWFm3HTTTfjGN77xWKvSSSedzIB0IDnPJI5jnHnmmfjzn/+MPM+x00474ayzzio56TuZvgghcP/99z/WanTSSSczJJ25tZNOOumkk05aZFZTQH70ox/h5S9/ObbbbjsIIXDFFVdMus/NN9+MvfbayxcQ/8IXvlBrc9lll2HXXXdFr9fDrrvuWiqY3EknnXTSSSczJbMKkuvWrcOznvUsfO5znxuq/T333IOXvOQleN7znofbb78dH/rQh/Cud70Ll112mW9zyy234Oijj8YxxxyDO++8E8cccwyOOuoon1fWSSeddNJJJzMlc2ZuFULg8ssvx+GHH97a5oMf/CC++93vlkq0HX/88bjzzjt9IurRRx+NNWvWlJKPDznkEGy22Wa4+OKLZ03/TjrppJNO5p9sVIE7t9xyS636zcEHH4wLLrjAl+m65ZZb8N73vrfW5uyzz2497sTEBCYmJvx3rTX+9re/YYstthhYXLeTTjrppJONU5gZjz76KLbbbrsNmhd2MtmoQHL16tW1wtZLly5Fnud44IEHsO2227a2GVR/9IwzzsBpp502Kzp30kknnXTy2Mmf/vSnUqm7mZaNCiSBemFwZw0Otze1GcQITzrpJJxwwgn++yOPPIJly5bhd7/7HRYtWgQBU7bBH7/yfaC+U2jr2mOIfTqdOp1mQifN5jfN5jnRANiuF9sBbZ8zDvYBAA2Gc8houww9NFP11Th9w+eVBOC+EgSE3ebakxAQwraz+wphAiqEEH67W4K1/wjW9h9y3xmALrUBYNq5tvYYgov14h9uWa/9o9T83S5ZiGIbmXUWBFBk1yVAETiKzbJyDbs+bmq87rTTTjNen7kqGxVIbrPNNjVGeP/99yOKIl/IuK3NoOmeer1e43QqixYtKk1TVJWp3syZ2ne2jtvpNPv7ztZxp7NvCJCK2YOhCoCxBJRwbcqAao7DAUjaZXAupQdrJx3qIQTKEAyFB8sS+AkDnJLKgCmFWZeiaCtDkNS5AT6VF4Cn8wIsdQ7oADirwMrCaMra/6MGNAVYqeAiB+tOSAIoAFRICYAtMAb/vBAGGC04shCAtCBJESATMElwlAAyqV3zro/b/WbZZbZRgeR+++2H733ve6Vt1157LZ797Gf7aWb2228/XHfddSW/5LXXXovnPve5Uz7foEu7oZ1oNjpKp9Nw5+10KsQBHlug1GwAjQEobYBR6QIUlS4AkS3IKs0WXBlau+MYjVSgmG4BSrJIKB1bFO67AJFdCgFJwjJFB4LFumLTThJDMCy6GtCS4IKKAgGDdICoPEAKnQMqL4GmsKDqAJOVArQCa2WO4dbNP2mXZXB0wCmq83eSdBcBgqT5HqyTlAYcKYIQBFaRYZOUg1lDUOTBmymCsKyy6+NzJ7MKkmvXrsXdd9/tv99zzz244447sPnmm2PZsmU46aSTcN999+FrX/saABPJ+rnPfQ4nnHAC3vrWt+KWW27BBRdcUIpaffe7343nP//5+OQnP4nDDjsM3/nOd/DDH/4QP/7xj2dM77abXTyWxe+Tta1uczIdM1WnU6fTdHTSMKzRAaSygKl0wTAdgLo2mdbQGsi0hmIDgA4c3XfA7AcUVkq3TVZG944xuu1EImCDArEUtfWIDINUACQBWpj/RQphTmiBUggBweZ6OCA24JZ7gPTgGH534JjnBgjzDOwAMc88WEJrC5hloOQmFhnenwAgQdICo12XBiRFFPuliBOAcguSFhylA0kGpAZH8EBZOx/mbx+fTZlVkPz5z3/u5wgE4P2Cb3zjG7Fy5UqsWrUK9957r//9yU9+Mq688kq8973vxec//3lst912OPfcc3HkkUf6Ns997nPxrW99CyeffDI+8pGPYMcdd8Qll1yCffbZZ8r6tV30tpvZNIJrG9WFx3DfhxmBdTp1Os2UToyCRTpGGAJkboHPrWtmZMoAZKbMb5lmD5Bu3ZlvPZvUdaAMxQMkiTKLFEAsyZpKDTjGRCAlEFPxPSL7vwiDFZD2v9QMkgLsLhqAsp+Ry+xRK0Cl1tRqwJHz1ABinhmgzNJi3S6hFHhIRln803UGKYgAB44kgSguQDJOzHoUg3ojBixZFyDtzcAaHPcNw8T87uNzJfOyLN2aNWuwZMkSrF69GksWL550hNMkw7Sdto0d7Z2u06nTaVhRDGSaoTQjt6zRfC8AMtdApnQJHIslI1Mami2j1BYoLbAWJlceyifpzKoAEEtRAkopBCLpwJEqS4F+JE1by0Bd28h+9+uwDDJPIVTmQVHkwbrKDBim44Y9Zg4oLUBmKVjrAkBDs6tSYOWYZOF31EqDZDlYRxBBSPKssQSYDiClhIgSA5hJ34OlSPpA0jN+SZmAZex9kyxjcNyvBfRMta883vv4mjVrsM022+CRRx4ZGFuyobJR+STnWppGOMPKZOaCJjNDp1On01zr5I7tgM2ZWB1AjufKA+JEsJ4pXVmyB8rwkwfrTtx6GKwjyfgcI7t0n0QSYqlBogDIXsRmXTP6kqDZHKcfSWTWzCq0CfCRAjVaIapBOCr3JlahMuiJMXA6bgBwYtyDo1sPmaVOM7DWUGlugFPpAiTtUgdgCcDn7BmAtB8LmCQJFEfWtEoQUWLBMQbyDEj64CiG0ApCK1CPC3bM2vcBAJ5RNvWH+dbHZ1PmNUg2jYamYi9vO94w+7T91unU6TRTOhXpHRYoweAALB2DnMg1xpVGpjQmcm0BU3tGmSqNNDe/Kc1Icw1VAUwAtaUDyXDpwTGSkCTQiwiJ/cREiC0w9yNpfKSa0eOCofUjaXyebPyTigEJgTJMoRSxagDHAKUDSJ4YD4ByzIBkwCzz8RQ6y8FKQ6c5tDZLA5TGxKobGCVgGCQAkGWRBaMkyDgCJREEjUMmEWS/B87TAizz1LBIy1611hZEi3M0AWVTf6nKptjH50LmNUg6GTQyqt6YYW/UVDtHp1On02zpVKR1wPskU6UxboFv3IKjA0a33YHj+lQhzTXSXAUgWWaRVTYZiqywR8Mmcw+OSSSRRIReRBhJJPoReb9nLyqbMKUQECAoAQOUHKQ2ukYOtIIUEOgcSCcK9piOl8CS8xQ8Me7BUac5lF3qLIOygOk/WhcgqcJ0jwAgHVgmkWeTMolBcQQZR9BZBJXmHiyNHzQGKWfe1d7nWSXMVaCEBcr52sdnUzqQnES4ZTldmYnRUKfTcNLpFBQJYJfKYUDFm1V1AZDjucKEBc8QHMfS3IKkBc+8YJFuHQiYpD2ni2QNmWQSUWlpmKTCSCKRRtIcN5HoN7yZpBDIiBHLIvhICmGLI1QaW1OrYDZmVq2gnRnVscYALPW4AUg1nkJluVmmWQkwPTimuT1FAZShON9kyCApjkCSoCyTlHEEimNE/QQ6i6CVRqQURJwY9qh1bfYJAUAERQnaGOWGyOOxj8+2zHuQbLoBoW0cld8HtR/m+MPc7E6nTqeZ1EkzQ8PmQbLzMxrz6njulgVAjqUK61PlwXEsVR4cw4/Jm2Sw/bi0kGqVLJcnSRFhLDMBO45FpnapNCOJAoaaMMLXkxTC6KwFMiVAgkxqS+nKuouiax8TtZoa02o6boJzLECq9esNQI45M2tmlmleMrsaoGSo1JlbuWZqBUJzqzAm1iTwRdpl1E9AiWGpst/zDDXqF+CoUZ+miVwepqvcE/z3HCVFvmWoDzb9Pj6bMu9BsulmNo2Aqr9N5fiisu6O0WaW6HTqdJoJnVzpOQY823I5kS7yNdOMCRucUwXIYl15sEyVhso1WDOU0h4cWTPaAuWFEBAkQJlZSklIMwEZEUZi6UFyNJENe0cgAWQk7Ic9m3T/jy7lgASiXam5vMh9tFGsusogLUDm4xNQ46lnlTrLoVJlPpkCKzbgqBhaabCq/89CCs8mZULIx4U1teaQCVlTa46on4D7iT1OYcaNtIa7EiWgJAlNBOrBgyTIlLPz/73UYJnUgLJNHu99fC5k3oMk0H4zm0ZFbftN1rZp+6DRVqdTp9OG6FQVZ2bNXaSqDdTJFfvgHWdidQD56HheBshMQeXGxKhybYKAcssinVm34pcUjkVaoJSRQC4MQKqcoDUjzakWLQvA+i4VJNkcS5sOkmkBpQnaHpsRACUH/sigXiu74gB5Bs6sydUG6DiAzNaP+XUDlJkHR5VqqFRBZ6oEkgBKQClsNQMTtCNAHiAldKagUgmZaEgXFKQ0on7SeM8cUDKRKUIwYZZMErC1X0UeMEoHjLbMnfu+qfbxhmHRrEgHkhjuJk12wwa9oKrtRGXZtH+nU6fThugUii9NB7aVd9izSGPCNEE6TQxyLFUYyxTyVEEp7Zc6t8fKtWGSzB4gndnVmVkFCVNflQTyzDBJpTSkJFMOT1It17KaJpIRIyYD6CpydWfZp4eUL1AQSMMmGrVgktbsmo4HYGgZpGOT68eRjeUWJA045uOFqZV1wSJ1A5M0ZlZhg3fMuswkpAVInSmwisCKS8FAoQgiCBoHEUGnZMysJIGJcbAtRiBEakFReEAUSIA8BUeoAeWG9KeNsY8P2n8mpQPJBpkOpZ/KPuFNHna/TqdOp+no5KJa3bqyVXW0Zs8iM8UlX2MTQOaZ+aickWfKm1ud6ZWD4gIhmxS2yo6p422AUkmCVAQtLbjGhjONoQjyqeZTxlJAMRW5m4rQiwz4axb1axUULi9yH1PPIrUNyqmaWEOAzMdUCSgdo2TFUJnxSzoWGRYTcGxSxtKCpYDONFSsIDOJSEXQihFVANZFxobrsTQFCDjLABo363kGpOMGOEUOKAuQEWzBdAGhcnNNLFCG/WRD+lObbIzP3UxJB5INMugGtN2gycwL0zlXp1On00zp5Gf0CCvvMHsWOVGJYm0CyDzVBigtONbYZKWmqatdKohAVPgjBWkwy5ppFgDGbKHziVwjCYDbmYhVRL7Yupm5JPgfa3TH+SRtbqOrmpOblA41ZtM9LFiq8dQDZLo2Qz6eexZZmFuNiVQHJf685EYbaWcnUamyATsErRhSkWWP3OLLLNJH8nETFauzHEKO+7J2HMVAFhuzaxYbsytFtjB7bkywjlUSgR2rrk7d5c45oM9gkt+GbfdYPXczJR1IYnojmqkef6r7djoNv0+n02BxU2AxipqrLspVaTSyyDQ3QFgFyNz6JZUy4Khy5YuCc1jbNNTXmgcpSqCIICMy+JW4WrAyaCswVio6QJjICanSyDQhV7bAugtKCphy6ZxhdKstTu4r62Q2ICfLodLMpHtYH2TBIHPkY7kHyHw8N/87A6mreVsFSbi0F4YUZj1RjFhpwyRTQjzCtcGBM8+K8dQCZAohpUk9iXNQHBkTam6q8og8A+IEnGegODGBSY5Bsgbr3M4okpu+aOeobJNNoY/PpnQgieFvxHRo/jCjpQ2xt3c6dTq16eTYYyjhLB6uJutEUCjA5T66KFbz4RJA5pljkhl0noK1gq6AJGvtUyE8SOYpKErAOgFHBhgpYuOrFMJGwSqkEdXSTdJcQycBuLPJqXTTfoS4I4J/WjBDu9qrygCl9kUCchu9mgdRrNoH7OTjObKxHDrTmEiVB8fUskiXUlO9Q1IIWzKPoVhAsUCiGRGADLm9JhYYpUBuU0VIGl0ojqDSzORWWh1lbGYiEe4aZylEFJu6syS9eZlLqS/C/N/CBjA1RLw+nvv4XEkHklOQmRzVcMP6dI7f6TT142yoPF50CkVzMFtHMJNHWC2nVCjARbGqsonVAaRKx6HzFForC5RBgExFhJ0aiqMYWitIrcA6AZAggkROyoCGTRHJU4VUFkDpSuBlygUeuf/BrvtXeHgRbH6kKqa6YlvFRtucR5VmHiwLn6PyzFGlugSQ7pMFLLJqNTWYzUhIQENAKdcWSFihB0BJDSD3/kolCRQryIQ8cFMS+ZJ4hk2acnWcZRBRBkSxn75L2MIJbE3LQrhZQ8jPHsKsjSm2pX8M05829j4+W9KBZIvMhHN4ph3MnU5zd7xNSacicKd4qXuza6VyjtJcYpHapng4E2sIkCpPTRUbpTyjBFACSscihZZgpUB28nQAUCQNOOaAsEAplTBpIUqXgHvCFi9Q3tTJDSxugLj5ILXyxQFYG7AMWaQOgFJZ9pxqxpjSyBpMrQ2uRT9JdEIWNAPHqcyUZ5A601BSg2JdpIfE2udN6iyDTqKiYEE4AHFl64A6gzQ3odIJ7G8BUG5KfXw2pQPJFpmJGzXTN7vTae6Ot6nq5OaGBOyMIJXaq2mY0uGA1BUNsCZW1soDpM6suTUASR28zImcWTUpJiG2IkhCkUmTkO74Mfk8zBC43acanMNgcFMaCKxf0oOjZZN2qqvwY5hlGRxdAYGCPcKvDwOSbvJnKWCqAWiznmqAUjsgSKiUSuKAuyklxPxWmFv9f+yCkmQcNA5zRa3JVVKxfQqMciqysfTxmZYOJCsyVyOZ6nkGnbfTabjzdjq1C1d+1Q0szJljwzJzbl0p990ApAecACC9X1IVIMnSTjCcpzWQ1JZlahJQNq9Q5wwlNaK4XjzdsUhvag1wpPbvBD96M3AAQA6MtC015z4OKNmad0NgrPok282t5m6kGkhImJlKBLzZ1V9Xd97KvJRetwawLP+PDaZtrt7pdplKv90Y+/hc+SU7kKxImxmirSNMN49oWAd6p1On03R0GiSOjRXm1nqRcm1zH0s1Wb1vT1XWDUDqLLXtyi9vVgosJWSUBPtIaK1AWhXnssyVLRCWAVJbJun8qeX/pU1qurg0lWDyZO2YnNYevFSqPAhqoBUg6ybfsjHTAaPyOhev9rAQQVthgoHiUmykLPyGYnjoGASCj4c+PlesswPJBnEXf5hormFHW4N8AMN0mk6nTqfp6NTEGNskZJK181W2OXYWMkjTrjl4BwA0KSA3QCpIlgBXc7lQOju/oy1Vt8HizK5AwdJCZmlBSqt6HmQBiKgBZB3XijsjGwDL7CMQ136pC9kZRAY3avg9mCnElKirt2kCnMdbH58rmeQOzD8RwXIyai8q2ydrP0yn6XTqdJptnaYiOgCoai5kaV01/xYCZnW9/CnMu+b3gk0Coe+0YG9u2YqhXA94Cae2ckDpGFw1wT8Ex/B8VYCcahCRbLiZLtLVzUNZqr7jptwiaYsKSAN8ZKvx2Dqu7sNuvXSC4PcWveZrH59MOpC0Ur1BbSOt8CbP9o3qdOp02lChAea36m+uJFypTbCt6lNsk7qJswDLMuvUPsiHS2BcPl7TZM66ie1OAlSFDhrVKa7CYuWs6wyxCszV7cNKyC59EQEiP61WOAelkBJExbqrumMAUnrQLAEjhWApyr8FAKm5PGH1dGRj6eOzLR1IBjKZWYGDT7jN7Vtt2+nU6bSx6QQAIRaayjZUAkjRAJbFbzIoNyeHBs5hpMnMO5fSNIHyZOInlq4OOILvpkyd8OXqXIk+XwTdF0R3RQWCiZoTM1kzSEJEMRAnEFECESdAFBvwtLN+sAVMCDtTCEVgGZUA0vlzw763IWC5sfbxmZTOJ2nFjXpCGdbBvKHSdp5Op+HO0+k0+XmE1cZPgCwEqu4uVwrOFSIPi5ILEnZmCumLAwht0ztIgmU7WM4UmDb5JqdI5AYKDfD/FeXmhGePLmK1AMqibmuxboEx+J2kmTqrKIBOfjotiiNQHEEGEzRTHBmAdEAZxRBRbEytJIuyc0RmPfjuARS22D3qgOjGRJrLAygnG2sfnyvpQHKAhCMexuAOsCEdYyr7djp1Ok1VJ0dqKGA9/sVemW1DBqBYgKOZyYNIQJME2cl/XT1W3ZDeARjzZrhd2H3Lhc/duhjIYAEzM8hMiWgKeAGs+VOU/IZFzqMBSJfmUawXv4fgmJD5hOuxFKCYIBPDIGUszUTMFiBlYtljHEPa75419vplFhknHhQ9WDpGKSP/XQXg6EzSjjMTDNALIUCiGSgfD318NmXeg+QwIx+uLGdbOp2Gk06n4YX8i77KJotC4n6Z2jkfJUFKO99jpEFMEHlRrJy1htDSg1/VWFkCSFkAZNOnvF/Z5NvkK/VtB+GmC14JzMMkCUTFbBtmKWosksixQFNIwLHDhARSDRSssgyivrA5BcBo90tIGAZpWWQ8EiEaiRD1I8QjUYlFRv0Esp8YFpn0QUm/zCKjBCxjMEVmGSWATBoBUllwDGv5amaQEHDeYwFTBF+SaGWU/rJi4+zjsyXzGiSro50NuaEzZWbodOp0mimdCGUQkZYRSgFEUiC2Exr3IsIYCb9MIkKmzJyPeaZAkZ3/MWfISNq6q6gF6LhqMJrKUa0hgyyZa/13KjFXD+IWwJ3upf9tA1mln/vRFWEPJkp2H5lrSGFATglTZi7V7AsElAGyGSRjAYxIQkICUVyAo2GOBYuU/cQDo+z3QIkBSsMeY4jeCETSN9+TvpkFRBqghIwKgIzsdkFGR12Ao5s5BXCmV/NNAKazWSophBtE1a/bxtbH50LmNUhOd7TTdHOne7Orx+p06nSaSZ0AgCAgBEPA+sScr8yBJgkkkUQSaSQRIYkIaU7QkhDF0sw2JclMbcUM0ibLT7ZEsQpdB8nwQ3ECimIPnEQCUhamXWFnBHE6RgFQSqoHyTRKMAOJ+V5Eh4oAIF0kKbnAmWB2jgIM2TPIhKrFAYyEIOlMrCFA9hKJqB8hGrFLyx6jfmw/CeRIgqjfQ9RPEC/og/r9EjA6oETSKwDSgWIFIDObKsPs6vSWWSQAKBQmeCEAaAYLAQn2RQkeL318NmVeg+R0x6JNtvbp3Lhwn2Fs+J1OnU7D6lQVxyqJHFACMRFiWQBjEhlWmdp1xyZNPqGE1owoNmfI3TlJ2kLlBJ1ltVzJaiSskBIUxZBRAoosWEa2fqskOymz8Cyy+NR9iHIA4yldl0pQkUupCAFSSGGZnYbMFFRqdEgYUFw465oAMtQnITNNlmOSI9IwyCpAJgtjs1yQIFrQt0zSAKT53jNm1pEFEP0FHiipNwKWxrTqQTHqGXMrRVAgn0uqbCqLA0qgHrSjmEECEJZJsuuN9v91THlj7OMz56EeLPMaJJtu0LA3bjo3u21U5tbbjtPp1Ok0VZ2ckAgDd8yLPJYCsSRM5Lpkck0jiZFEIw/KwbkqOABKkyMDMDVXff1VA5a+ZJ2qmGKlM6vKACATkGOzFihNUKYNnmkKKrIA35SQXxUWVAJphDmIVCxlIiHGyKdjSAuWrBl6PEcShH8SHHCEUa4WrOFYZAGScT+CjKUHyGRB4v2QycLEm1njBSOIR/uIFvSNmbW/ANQfNQwy6ZvvIwssIPbBca8MkDJBzvDAmOk6i3STb5fuiwCYhVlqWyWI6kC5MfbxuWKT8xokgfabMOgmttnlm9jFVHRo27fTqdNpOjo5MUBpkkBiSSALjrEkxJrRixiKJSZywypHE1mqm+pBskJDtDBgpoLUkGqZOq+TBStpZwOhKIGMJKJYgiJrXrVMkiRB2kCi2sdG2Zpo2wYWWa00A1hTKwW+0AIsZRJBjRug1JmCTCVYMWSmwMoOCsZzH8QTlqSLKzmSIThGsbRRrDZAxzLIaCRCsiBGsjBBNNpHvMB8pGWQ8QLLHpM+hGWR7vtkAJlpV8bPMckCGF1kaxhc5a6UEMUACsSmQJG0PUmzjW7e+Pr4XMm8B8k2GXQTuaHNVI7Z6dTpNBc6GWA0vkiyL0IDlAKxJsRkwZIEYirAEShPoRUKkfLpICrSECkgSECTgI5i6DwDNcwrCRQmV+OPFKCIQJE1RyYGLGVExswpyUfclpnkENdFCAibQG8q1ZD3SYKMmVXaKFJFBEoiyCw38zkmphqPTMusmVJl8yKFr7/qJPRHkotgtezRLEMfZFQDyGjBiF935lVasKgAyP4CoDdaAGTUNxGtcR9METJtckgdSPqyebZovOLCzFoE6wjrkwRcZKsWJjVECmGjkmxLntykbY5t73PD+mP13M2EzHuQHGQCqN7IthvWZIqY6ogo3L/TqdNpQ3WqimNCkqwvkhi9iLw5znwKYGgCSJeWISyDFJkyDFBpKCmgFIMjqs0cYva16RYOHIXwoCgjKrFICsCxZ9cjl5LhUzPMR8CYCieL5XFRtKCioo2Q0uQkZpHNSTSTH2slEY0U/7vLnWTNiGwR9KqQJFBsWbCNWI36EWRCJjBnRCLqx0gWGBNrCJDJotGpAaRlkEpEyJUBR8ces6C+rdIGFMOgnQKkLFj6wZOAJIuUztxqgVIwQFz4JzeWPj5XbHLegyTQbgIY5qZNpa1rDzS/VDudOp1mWifnwxOCvck1ooJN9v3UU8WeITiGKRhj1leYpwqCFGQkkKcaSmmQ1IiYoXI73ZR2UZSypEtYxceZVaNYQkYCUSIhI0Isi0CiIvKWTCK+/X+GSgGx9UtNZRoCpISIkqLcW5CXqC2bZBWVpqwyaSEaJIWdGLkMkj6VRJpJlB1YFiApPYuMF/QCgCx8kA4gaXRRYWJdsLjug3QAGfeRgyw4mnkvm0CS2TBMH81acUj6SGcyFgcGwMIAKhMMeoYRSg2BPI9lH58rltmBJOoXu8lsMOy+Ttr2HfbGdjp1Om2oTg5HvM+JAMlmn34k/bzEjZGapbSL8meMDAPMMwWSZmoplTOU0pBS+6mummqxuhQPGUS0RnHAJiPCSCJ9pG0IliRCFlkMAPyxRXGVWJB5uYqyqdUE7xhWacAxhs5yUGbyElkZtuivoRRQUoNigs7c/JN1kAxZpImSLUAyHol8gE60oI94dMSySAOWPkjHAqNjkToe8aCIAChTa15NPYs0rN+lfWgGMqXtBNVumwPKIujJXU8X8RyDoAVDCwHtehYJkA56WhDIE8rG8NzNlsxrkBw0Fp2KE7lJprvvoPN2Og133k6n4LwOIIWAFkBsozU0G3NrVVx6iGMYxtyZ+/UkIiQpYSxVSCOCyrUHy0gTlNLFZM0NQOlK3AkSkFHBJqUkRInESGwA0gFlEklE1kcpAxbp9ANMHmjlJOWlA0ZXqSaKIZMIOjOmVoodQGpEfQOAJAVyKaAkgWJrhk0sANeYpiiiZC2jjPqxXYYRrCa1wwfrjI5C9Ecti1xsWaTZpuNRD5B+KRMPjKllj55N6gIcM8XItDa+SDtZdHVe0bBEoWPoihkxkWGRDYZUATY1aFtCix+rPj7bMq9Bsk3abrbb3uSYHuYYYdeaaofodOp0mo5OprC2gBamzihXwDKcCEiKIsBHknl5hmXrkij3zG4kkQYoc400lsiUhs61BUljdgVQ1ArV7E2kzqcZmlxlRBiJJUYS8+mVgJJs2oqNyCXnjxzgi3SmVpsGwmExAWdytaZW7vfAWiNSSbG7m5EjVhYgpQdHrXTJzBpOeeWYI8WGPco4ghxJEI+OeCYZ9RPQ6CjImlVFfxRiZAGovwDoL2g0ryoRIVUOHMssMtcFOI7bCaPrIBn0CeHut7kHmTZ+as0CmgAtBYCmeSfNIMW0r/fFje25mymZE5A877zzcOaZZ2LVqlVYsWIFzj77bDzvec9rbPumN70JF154YW37rrvuil/96lcAgJUrV+LYY4+ttRkbG0O/3x9ar7aL3nYzqze7bVv1GO77MCyj06nTaaZ0MiBiGIB57xW/uPxJA4gSsXJRrhqx1Ihz7aNf+0GhgZFEYyTNMZYqjCYS6x1Quo99SetcF8E7FRYjRFGCTkbkI1kd+I5aoEwis57YQJ+YyLNiIqs/iv+j+WJQYWaNYnCcQOQZRJxAJjlYJ9BaI9K9YhdJEOMpSOaQCUGlEqx0yVcJGLbp2svEmG+dr9OBY9TvlUrOlcyrgWmVFiwe6H90AFlmkow0AMdMaWSazYCFrZlV133OMjBTx9JcUyVt5K5dAkAMKvUyB5BmvVwE/rHo43Mlsw6Sl1xyCd7znvfgvPPOw/77748vfvGLOPTQQ3HXXXdh2bJltfbnnHMOPvGJT/jveZ7jWc96Fl796leX2i1evBi//e1vS9umApBOBo1wmm5QU9thXqCDpGn01OnU6TQTOpmXoUUTX7maIWwCuZvCiYQFIikQ58KnhkRSWMAk9COJ8Vx5sBxLc4wkEmmuMRECZa5LKSRNExO7SNWwsLrL0TRsMvIA2Y8MeyRhX+pUzGLSfKHCiYcJZAN2mMaLIuFJH1IraKUR9ZPy7jbKVqW5SQeJ89okzcWpTAqJYZGRDwqK+j1vxnXBOqLXB/UXeNZYMq9GfXA80mheTbUugWOqTLDORK49OE7kZYDMtLkHIYM0s5YI3y8kCWSaEQfLPjN0UN1IWGM2gZGJok8pDT9bymPdx2dbZh0kzzrrLBx33HF4y1veAgA4++yzcc011+D888/HGWecUWu/ZMkSLFmyxH+/4oor8NBDD9WYoxAC22yzzQbpNsxLrE2a2ja9IIe96Z1OnU4zrROJcOojm3zPxTyISht/npvySQqBmA1j60XmxdvLNSakxnhk1vu5ActMa4ylpgCBMbsWjDLXXAPKJglBMgzSGUkiv96PpC2fZz5SwAKmY8OV3MmwmACFExCTmWIqz8BxBpFn4ChG1K/mchJ0nEFlOSjOwUpDxaYIHwcBO67+K9k5H93cjzKJCzOrZZCuBqtnj7ZQwLDm1fCTa8ZYrgxA5mVwDJfaFRNoGKB4f6RNB8rs4EPbC6lkbQ+4nkcQyMAFkxsydxWYvedutmVWQTJNU9x666048cQTS9sPOugg/OQnPxnqGBdccAEOOOAALF++vLR97dq1WL58OZRS2H333XH66adjjz32aDzGxMQEJiYm/Pc1a9YAaB7hTMVeXpVBrGLY43U6dTrNpE6F/8mY0QQDzAVYSjJgqUhA2vQBwywGg2WmNPoRIVOMsURV2KSCCoDSTZZcTS2JKlGzLlDHMciRWHpfZM+yyZjIs1CB4gVde08HbBKCPJN0ZlfHJoHyS1CTmSJMSAmOI2ilIbUuASRQgKSZHFl6E6szt4bg6IqUk6vBWikxp5ORWvSqMV0z0sC0OpEz1mfKM8gJex8mwmAdXbDItgFKeM0zwYilmR5LW/tp85jGWBoybWDMF6fgdlP3XPXx2ZZZBckHHngASiksXbq0tH3p0qVYvXr1pPuvWrUKV111FS666KLS9qc//elYuXIlnvGMZ2DNmjU455xzsP/+++POO+/ETjvtVDvOGWecgdNOO631PING/9UbM1PmgKn83unU6bShOgHFnIiAsH4qWz3GMsuYhM+1i7RATKayTD+S6Fn20ss1stiY+gyL0RiNJcbtumOTEyUmqRtf2GHxcgeSnlHaerIOGGMSHjCJzHVrBUjLIM2PReUdESVAnAFaGzapNVweTATDClWcg7IcOs2hLTg6gGStg6m1QpCkki/Sg2MUF8wxKcrNoTdizKth9GoyWmOPLkAnVQV7XJ8pzyBDcMyU8U+GA5O2a+6WrlCDYoKiwhfZBJIkRKkGcKbhizhIrqTi4LHr47MhcxK4Iyr+A2aubWuSlStX4glPeAIOP/zw0vZ9990X++67r/++//77Y88998RnP/tZnHvuubXjnHTSSTjhhBP89zVr1uBJT3rSULpzy3K6MhOjoU6n4aTTqV0cE4ghoEgE8w4KRL4GaACaJD1YZooxITWyWFtwZM8us5j9izs0ueYDWE1UYZPGvCps0JCJdDVRrUUAj3tBD3qNsLDRPTZ4R0QxOIoBpTyLLOkiMwjLJCmObKH2dhbpzazO5BonBTj2QhY5YlI9eiNDB+ekSiO17NGDo9KeSboByng+/MCknPtKSG2tXqUZKmJok/sBReX7RCQwkWsYNlkApNJALmxh9yCKZ2Pp4zMlswqSW265JaSUNdZ4//3319hlVZgZX/nKV3DMMccgSZKBbYkIe++9N373u981/t7r9dDr9Rp/a7oBoW0cld8HtR/m+MPc7E6nTqe51EmKcu5bZMHRAWUU5OLFFJm0A8sme5E1+ckG35gFTM3sjwcUZtfSS9tXf0EAkiGbLJikbw/jU6UGpAzrt4IiQOcGxHLDJKGV+Tix9V0pikF5BlbKAGRDwI4vsZfEHnxhczBFHJfB0a4j6UO7ouQDgnOqQLk+UyX2uD5TnkGOZc1m7uFMrdqwSB0Us49s+4ggtQYpM5CacAySAKklBMwk1DlsEI8o0kIeqz4+mzKrIJkkCfbaay9cd911OOKII/z26667DocddtjAfW+++WbcfffdOO644yY9DzPjjjvuwDOe8Ywp69h0M5tGQNXfpnJ8UVl3x2gzS3Q6dTo9ljrFZBimJoFcMyIN5Fog8WXPzPZYCoyyiXh10ZbO9Ffk65VTEoB6MIkDuZiK6bD8LCUU5kc6NhnMbCLKxwBQqbZDgCawA8ooLgOkn0qLzIwaeQpESTFxdBUk7WwipZlFohiIE8MgHThGsam7Gid+/sdqcfLQvDqR23QOWyBgfaoa2eN4rjGeK4ylyqbfKM/YXdBUG0iGvkjH3k07gtK1aJ1iPyFAQiMjASk0SBByXVStU2x8k21m19ns43Mhs25uPeGEE3DMMcfg2c9+Nvbbbz986Utfwr333ovjjz8egDGF3nffffja175W2u+CCy7APvvsg9122612zNNOOw377rsvdtppJ6xZswbnnnsu7rjjDnz+85+flo5tN7NpVNS232Rtm7YPGm11OnU6PdY6kQB60rxQc83QEL5WqGJRY5dpVPjIetYM64CyKWfPgWVY/cWnedhlFSzdTCAuN9Kt1y9mmAZiWSVFEDGbyaCr7aMYyDOI2JhjWWuIyiwmRllbKF3KgkWSNOAYmFuR9AwwOnC0LBJR0hqckyou+R0dODr2OG4jidenCmNpXjKz1tJuAtYeMnYApdlV2sCUbEF8EmbA40yu5h6xTwNRooh2VS7iuKU/uf42k318LmTWQfLoo4/Ggw8+iI9+9KNYtWoVdtttN1x55ZU+WnXVqlW49957S/s88sgjuOyyy3DOOec0HvPhhx/G2972NqxevRpLlizBHnvsgR/96Ed4znOeMy0dh7lJk92wQaObajtRWTbt3+nU6bSx6ESi8DkpEkiomNi3mKJJIJHCph8UvssCKNsrwDgpCgUIm+phciJDNunboBkcGSjMrLCs0gIkm3p5oN4ItL1evqarViYCNk8Brc21bJoT05plRZhW4kytSR+IogIcZWzYacgea77HokDA+rRgjiF7XJ8pjGUOHAuAnEpuqp/z0gKj8/+GANlknnXXOyMNKYBMm1qukZY24Mvk3LrpuUI2Odd9fLZEcLUcxjyQNWvWYMmSJVi9ejUWL15c+306lH66ZoBh9+t06nSayf1mQidXUDucicKxxtymk+S6iL7Ubm7D4CUeml5LjNKCo6stGgKk8Vua39yMJm4qrZgAoXOIPIVQmTGxqhTIUwitzLrOjTk1S8F5BmhVLFVginWmVpdcbydtLir4JMUyTgwQh+AYrLNMkGmYgJwKe8wUe2Csssd1qSqxx7FUBbmpBTi6Skes2wvLAzAlAEWYckOthRxGEonRWKIfEXqSMBqb772I7NJOMC3NMpGmxm61ZN2w/WlYcfutWbMG22yzDR555JHG9/hMSVe7tUEG3bi2GzuZeWE65+p06nTamHVyvkvHLjMb6BPOTGHSTIQHTBfE42anAAYBpWGTzsTqAFKKYg7J0BdZytcjAmtjZmVBEDICmMEUFf9f0jOMUCtjbrUm1iqDBCyLBEomVkSRAUaySweObj3uAzJBzkCalyvmuPSOsVxhfVY2rbp1xx7XjmceFB2bdACZKe2BUflUlWaQFMLMianIlAOsShFlrL051uSlGrNrZgc8pAUyrT2bFBo+jSjXXCtZ91j18ZmSDiQxtRHNdEc+U92302n4fTqdhttntnSKhImOdaY8F+ijgkAfRYzE5mVqhpmzELCl08pnpMA0KGAKHphJgU26AQkX1WqAsmZ1LeVIcuGbJFlcB0EQOjdIzxrE7Flk7XguuEdKsBAmWlZQAY4kS+AIyxydadUx7VQzcrt0hQFq4NjCHkNwHEuVLyivtZnf0rPIFsNgtag8a4aO6iki5qN8cE8SaUgNxCxMxDIVQTwxsZ9+zVdwEkXJukFm18lkOn18tqQDSQx/I6ZjHhhmtLQh9vZOp06njUUnl0riAn1UkHPpCxdoAXZmVzYTQGtuDsEwQSBBoA6KdJEQHMn6KEs6WV8kCw1BUfl6CGEYozAAKVgbfyW1RHhakNVBSgkLAUjLImViSt8F4OjMzM4EXWWPBTCWWWSVPVbBMVUaeapKs62wDYpyU5TV1RcQxCAWYG2uGttrngGQeTEoCYEyiUwuZUymslJM5n+J7dRbIZt0QOmWrhLPbPbxuZIOJKcgMzmq4Yb16Ry/02nqx9lQ6XQaLC7Qx4CgA8yCUSptJvVV2jBKl2RRJUE+vQPwNVodQDZNulze2aZ/cMEmnakVrA2IWrOqC+hpPY5duhqwbJmkY5GIErA1u2beD1sENYVl5aqFAcaCSNaxVOHR8bzGHr15NVNQuZvkWjfO3dk0f6dgAdLCXApbKEBGZoJlYf2ZYaSr+6S5Ri8iZFobJqk1Ihuk40CTAXtvzb1R2kS+SjaDn9b7Mw1p6uNzIR1Itsh0ncozfYyZPl6n09wdY6aP93jTyVf1IVML1gAkTAk068diNoDpALJKhHzpOWtiLVI/CjYZRrlqBqRliFU2CZ0bgGMNITSYyAbnyGaQdEBr/Zq+MIEDTMskmSIPHNUgpnBKq6bUjvWZyXs04Fg3r46lCuOZgraTW4fgqAJ/pG4xtQptTKwcgGUxLHH/pvCg6MrVVQFT22IQ2ua9+hKGyuRNatjoVriSh2ZsEt7DYWSm+/hMSAeSLTITN2qmb3an09wdr9NpZo/hgnwyUa4Xy9bsyoD3VTaJA0eBAiAdWDbvYIDSRKZGYJ0boLSs0bNHAkQFILlS9zXMtzR+R+uLFGR8cX4C5HJajJsQ2aV2TNggndAHOZa1s8exVHn2mGfKMkiumVodSDYJkQCzgNAmWEeTAU4ms48gG/QT5EsWBQnC4gQwEzKz+xRBWBzcR8Mo4SOZW+9Pi2xsAAl0IFmTuRrJVM8z6LydTsOdt9NpuPM+VjoBDWCpGWzZB3MR6VrdL/Q/hoDpfw8r7rj2gsw6AYDLkxQQTAVzZF2/FqU8SxuoQ5ZNVsAxzBdVAUi6snJhOTk3c4djkmsn8kb/41hqwFMF7DHPFHQIkHZZpH00XH8ynJFg/qhcQ0YEFia6WIjCROsijZuKEQDFffHtLFt019vcP7aMEoa1WuA0A5u6flOVpj4+F9KBZEXcA9b0kDa9WIZ94VTbVfcZdIxOp06nTUGnUGICiE0QjmMjmgvABMqsMpyBwp3LA2ajMsVWD5QOF4X7AwANwTretFo2szJQAkdjbmSf+hCyx/FgzkdfGEDpgf7HtdbkGgbnuKUDSOeTDMHRDyzshXM5kca0yh4ohTQpIJoYQovSv64DYHRSBUpVAUqt2aeSMkxFJg7unXYss8Im56KPz6R0INkg7uIPEx047Oi97cU02X6dTp1Om6pObuou4sKPxQwI27Ip6LXKKCcVxwj9qvVDigZopaJKT2hmdXqZKN0iUKVIcSlA0tWwdebV8VxjzPodHUiuHc99ekex3ux/zDNtQVKXzawWHB0wNkW1aiqAEiSszzJg3AHYuavRNkH2IFE2N9Kfl819ZZhxieAym5yp/jRX0oFkRdxNGcZ85W5U00umqf0wL6FOp06n+aZTFSxdxOugWmDVyNem8wnnlwxK1IG1SbysHbDsh2QUPjaXsuJyPJVli85c7CJaQ/OqM61O2ILkLkAnzH+cKkAacGQftAOg0R8Z/neaYIJpdFHDtSoUbJct620Slr/z/mU2AC4ts2Swv2Fz1cdnUjqQtDIMtReV79VtnU6dTp1O09NJwAClsYQKCPdyRTUW04gDAgeQ4ftcG+JUAGXphO0A6YCxeNm7fE4LkhUm6VJbqubVOkjOHEAqVU71aArY0ZpLwNd67cNqRTY/0kl57km73jAYadrm9WBjFZBC+L422/1pNqQDyUAmM1M1/ea2TcUf0+nU6dTp1KxT6HNkYZilBJrTGyZ5QTugNG3L4MiVtm5bEzgyl02sjj06n2Sm9QYBZGrBcJCJ1THIMOUDQG2+SzfXpRNnBiVblk7YGT4MYRb+4+q5lj/mWG5WEMCWBgyO2Sal64uyyXW2+9NMSweSVppGOMP4dmZC2s7T6TTceTqdhjvP40mnElgCgCgCekIZRJgcULrzuG3hud02F5lZBBAZU6vmuh8yLN7uQDFTwwGkK1DuZ+8IgnNUBRRdcE7ogyxduxaApAD8zPaiJF24HgJn01yT5fXiWpI1jztxtXUnk5nsZ51PciOR6ohn0AtlQzrAVPbtdOp0mi86AeaF7IBtOmkEVWCtgmUTODq/owNKxx5DsExVMbn0hJ0WbBiArBYoV6E5lbkUxerKzRl9ucYiQ2kCSMcYm1gkSTLgGBFiSbVZQRxIJnbWELJMM5Ki+C6KCVIA+NScJmFmP9DZkJqu1fs4FzLvQXKYkTRXlrMtnU7DSafTcPJ41cmJe6m2AV6bNP1eBUezXjatVtkjc2Fe1QxkNkAn0zwUQKa5apz/MSsF4zBUXpSXAxAsK9eDhC0EQLXtVYCUEYGkmZdTSgJFdmm/y6gASFdtxwClmRJLkp2qjNyMIG6+TweUpgi9gAj8xI8/v+MgmdcgWR09b8gLYqbMVp1OnU6dTs1SBcu2F/Fk4AigkT0636Pmqg9yOIDMlDZzZ2odgKIqAWM4/6ObtcOVlAvTOJyeTbVYuSEwJzStkhCgqJjxg0iAogIgZUSIYgmKCIkkO4ekxGgiPUB6VikJMRm2GXmwdHN8mnk+fXGHYdNynM4t92pjk3kNktMdPTfd3One7DbndadTp1OnU7O0Mcs2GcQeq+bVyQAyUy4fsljPlf1u8yRD1uhqok7YdV8LVXMQkBMG4tRBEWCQFtBkfhctABkG5MiIIIRZhgwyBMh+LGsTL7tPLyKM2AmW4xo4kmeVAkXReRLFFGau+LwL+GlL05mOzDW4zmuQnK5JIBwFh8fakBfRMD6hTqdOp/msU1WGAcsqgzTrdQZZBUh21WJglgUoag+IrsB3prUFUcMQC8ZYAGX1M6jeapMIVxhACh/A4wHIp3gWwTkGGMmzSikJUSL9dgeQIYs065FfD82ssSQPjiFYSkJpImwz92fZ5NpYEWmaUu1PcyHzGiSbuuiwD/B0Xh5tI2q33nacTqdOp06ndgmDewZJm4lVczARNKNUPCDMh3QpH5oD5qhdSogBS1NooAyI1e9hAn7tOlhzqrD19oJqev4KSRSmVSDwRYoySBpGaUyujkHKwMTqQLIJIPsRoScJfeub7EWEvqSSmdVEuQo7zycKZknCT2UmrBm2Wmt3WJmsP82FzGuQBNpvwqCHts2n0jRqnooObft2OnU6dToNZqIhUNaO3QJKIWCaKj8GLDWK2S4MmJoapZkHS/u7Zg+wSqPCFssMEpi85JsgAShjTiXY6nlS+Jk6qqGjDhgBNIKjM7eSZZGxJA+MSUTeBzkVgOxFZjsJMwWaFPARr1IU6SAOIGUFIMPUHn8fKvd3GJkrFgl0INkqg14K3NBmKsfsdOp06nSaGZ3C8w1ilGGAqAG+4De77lhkaGZVumCRHhTtNh387uZbbAPFQQApSJiSfGBI2Fk6yEyIbHyUAloU+7ugnWqwThM4yog8e2wGyKhgk9YH2Y+MWTUESOebnAwgHYOUFQbZBI7+/0d7v9nQ/jQTMu9BMrwJ1ZtVvaGDbuQgs8AgEcGy+hLodOp06nSamk6DJJyKq3rskEWGvzkW6eZO9DVcA6B0vwHGNAvUQbFaB9X5D5kNa2QtQGT0AARIw/gfyRyn6tdzoGiOhXIkqwVHQcYsOpIUATohe0wiGbBHaUHQsEgHlr1IIiazPXE+SOGKDKAGkNKy4CpA+v8+zGcZUAVpkIjKcrZl3oMk0G4KGuamTaWtaw80vyw6nTqdOp02TCfHJmssE4CqtPVTTHF1e5lpOnAMfw/3H1Z8VRstAAKYzGTIsPmMWrOZ45Ese9QMaoGCUoGAmqnVAZpoBMgkKqd8hObVSArPHENGGTvGSI5FBiAZBu40gWMIjG69Unx+0GCnrT/NFcvsQBL1i119aKeyr5O2fYce9XY6dTp1Ok1ZJ6BepcfMc8gmh69lxza8C4NsnKm11qahAnu9Dmr5Aw1oC2isGVqw9z26c5Cd77Ga9tEUqONYY7Vyjk/nsMxxJJH+e0wWCKXYYPbYCo7B5NatMglQzhUYtsm8BslBdH0qZpwmme6+k42oOp0mP2+n03Dn3RR1cuKAss40xcDo0lCGnVtREpBZDIhIQFVMq25bWOrN+y3JgKL3P8rmmT28/gEouso3YcWcEBgLoCzAMbGBN6FpNZaTB+f4Oq4NplX33QOjLsBRtIBj7T9smp1lI5F5DZJt0vaguu3h75O1rW5zMtUXQadTp1On09R1csxGQ3i66HQMAXMQy2wTCnZyYOVEEkESI4kIaa49gAHwBQYcWCphwNHp0gSSLlinabaOECCr4BgyySpzdODoWGMvctV1DPjG1A6Ojjl6cNQ5wNqAop6EPQqCgAaIype8ASg3pD/NlMxrkGy76G0PYvVBbdtWPYb7PszoudOp06nTacN1AurRrgRA251stgUE2gFSkvAM0RzPBNeEB3XpDg4fy+AlkebK10SdCIBRkphSisgg022vxCJlDSxLvkXb3hQGmB44ukmyzezPeQGMHDLI5v+FhYD3RdoFAyWAHLY/zZXMa5AEBo9Om25QU9thXgyDpGk03unU6dTptOE6OaAM2aRjkFVwJEs2wwAfKQS0ALRgZEE7IgHJxq+oGdDEJbYIwLJF41h0wJjmulRcwP0WLv25HXsMlg68yjN1yHqB8oAlVhljGIzjwLEppSMO1ksmVZ1DqLwEjIIZA32Qzu9o6ubBFwh0QGmBc7r9aTZlXoPkMA9nmzS1bXrwp2rF6XTqdOp0mlmdQqBkNmxSuO9CwORECii7BwnLYrhuUtWCoQPgNCzSLGNDMz1YASEA6lYGmbcwyKgCjlWWWmORsgp8IVCKUkBOLAlRQ0BOHKx7JhmyRmXNqloVoOiBsiWK1W2yAAlBFiwZ7EoKCe0Z5lT702zLvAbJptFp2w0a5sYNGi0Pe7xOp06nTqeZ18kBpRACxAwO2KRg+FqjQggIMAQLCJvATwQQi8qSG9kkQEBkWGQvMK2muagBpllv/u/K7JFKABkyySZg9LN1yKCUnAXMiJpBsWxaNSZXY0a15lSVF8AY+h+H8UECBvzIskgHlhQZbLTncmxyqv1ptmVeg6STQaPa6o2ZKXPAVH7vdOp06nTacJ0cQ9RwQFhnkyxsxR3bVpKA5oI56gY26RhkUWmVIGOBVFn2qBkRiaDQAE3qf3TLqIFFxkQ2X7EAQBLwfsaqz9HVWR3GpBoJGGDM82Zg1IWZtWZiBRoZJBxrdEyRCEyROSZF5mJrXWKTU723sykdSE4i3LKcrszEaKjTaTjpdBpO5pNOUtjjsQFHPRmbhDWpEpfYZCzdkQmZ0iWgJMHWvCuLSj0DytVVq/GU8ikBD4rkmV/BGB0bDNmkC8RpY43GlNrEGjPra7TgqHMDij5AJwDFkEkCdRZZTE1ifhYEQZEHSwF4oPQmciLzW4VNPtbm13kPkk03IPRroPL7oPbDHH+Ym93p1OnU6TR7OglYtmbrojK4lU1KcnuE83EYYCQC4uC7YXRmhhDNogBLbYDIVeip5mnKYK5FshVs/LowAOjWIx9kI2pmVjc7h/M1DmKNzrxaYo0qKzPGkEm6bZUIVlbVOkb2GkszimAh4H2QrMEUeRD0QMkaggmsclQr8VTv3WMh8x4kmx7EptFr9bepHF9U1t0x2kxKnU6dTp1Os6eTFDb9QxRm18l8k1Wzq0EyjQwGKEkQMs0gDUghS0XPdWA9bCpk4EAyTCMJQdHlJDoTag0gg2mrqmXjQl+jM7cK1hBqogBBnResMdgmQjOrA0StwFoB2lSZha6ApC0TxGSjWUmabVEEH5QTBOe47wZ8hfdNCsdAMbg/zYXMe5AE2h/EphFt236TtW3aPmik3OnU6dTpNHs6hRGs7CJYQ3ZZ8U0yG5DyJlVmOHaphTHBmnUTEETaaOoAsq3KTxUgXRUdB3qORcaSDBtsAcZ2gLQgicKc6hljEzDqInqVlQLnqQHEABwBlMCRlfLM0fwTEiCCIAkmDZCC0AoiTgwAUlQCSCFy812U2SQ3+Car/WcuZE5qAZ133nl48pOfjH6/j7322gv/9m//1tr2pptuMqO4yuc3v/lNqd1ll12GXXfdFb1eD7vuuisuv/zyaes36AFrGt027TdotFtt526uaGnT6dTp1Ok0+zoJlKd3CgsD+Mo2ARAJWDYX+AJd3mGYmO8KhIef0Vg2fkZiwsLErC/sRViUSCxMJJb0YyzpR1iYRFjSN9uX9GMs7Jm2/UhgJCKMxHYZCSyIya+PRoQRKZAgR5Sth5hYC5pYBzHxKES6Nvi+DpSug0jXgrIxYHwdeN0a6HVroNc+DF7/qFlftwa87lHw2DrzfWyd/3A6XqxPjIMnxswyDT55Bj0xBuR5DYxh00pqUbMD7t2g/jPTMutM8pJLLsF73vMenHfeedh///3xxS9+EYceeijuuusuLFu2rHW/3/72t1i8eLH/vtVWW/n1W265BUcffTROP/10HHHEEbj88stx1FFH4cc//jH22WefDdZ5OpR+KvuEL4Bh9+t06nTqdJpZnRxxDP2TWnDN7CrdHsRQumCUxIDWzvdoJ2PWbOqxBsxRVRR0wUNkWaQUrg6rDc7xJlYTeONm16jOulE1o/qEf5fsH7BGoXMgT8uMUedAnnu2qPMUyDNjVs0zyxyVZ5IA6ubVUJxplai0LuIErDVEFBeAF6EI0BECQueGVTKDtQaofG+n059mSgS3Tds9Q7LPPvtgzz33xPnnn++37bLLLjj88MNxxhln1NrfdNNNeOELX4iHHnoIT3jCExqPefTRR2PNmjW46qqr/LZDDjkEm222GS6++OJJdVqzZg2WLFmC1atXl4B4GJnqDZqLG9rpNDvn6HSanfbTkdnUSTP8PJFmEmUUSzbAyOFckgwwmyIALnpV66D2amVqraqEICltqTsHisYfCc9mawAZgKGLdHV+RhOEEwChSgtTqkrrwJhn4DwzfsYsLdbtEkoZwLLAyCFAalN71V9vB4qAyYeME7uNIKIEiGKIOIGIYiCKQb0RMEmwTACKwDIGR8U6ogQsk0aTq5M1a9Zgm222wSOPPDLl9/hUZFaZZJqmuPXWW3HiiSeWth900EH4yU9+MnDfPfbYA+Pj49h1111x8skn44UvfKH/7ZZbbsF73/veUvuDDz4YZ599duOxJiYmMDEx4b+vWbOm9Pt0RqNTkcn8Jm37dDoNt0+n03D7dDo1i/NPGraIoI5dyCALRml8aQwhTDBPDAOqxeTL5szOfRdgSeCDNABn2KqbXsqAoZtZwwNkAIxtaRtVP6PIAwap0howcubWrc8xTw0oegapiyCd8J8JgdLN5WULlTugZCIIB6JxUttPAGCSEHECCMsgLbCX2WR7zuRcyqyC5AMPPAClFJYuXVravnTpUqxevbpxn2233RZf+tKXsNdee2FiYgJf//rX8eIXvxg33XQTnv/85wMAVq9ePaVjnnHGGTjttNNa9Rz2AZzOiLmtfXgst95kXuh06nTqdJpdnYB6/qRLC/Fak0kPgTZ5lczCmmwNszTzPYqB5wUMIAIFKBrGaMy6YSCOwIDC4iqFSIN8RscSLVgKXfxm/IB1YOQ8A7IU7AAyWMIF7ShtwAqAbpg0k6SLYCUISYAMzK1aA1HsjyeipHxtHMAKYcyuwu5DlVJ3LfdLYO5kTqJbhSj/S2YC1OZ/c+edd8bOO+/sv++3337405/+hE9/+tMeJKd6zJNOOgknnHCC/75mzRo86UlPmvL/MZMmJW5Yn87xO52mfpwNlU6nqR9rY9bJiQwdlRYY/bQhDgBN8RgwCrCUbheY7VURcOzRskYUoOjYYtm82gCMQ/oZhcq86VSn483AGJpZ7VKnGVhraKU9OLIFRm4ASCEJyi4dSJJdpyQuzLRRHFwHGKYJWL+liRJmbSJahSDPJkGyVKpusns3mzKrILnllltCSlljePfff3+NCQ6SfffdF9/4xjf892222WZKx+z1euj1elPQfGb8LDPtq+l0mrvjdTrN3TFm+ngbcgwpAG1zJGUFKBUACZM3ySwgLJYys9nPn91IaCgMQZEgvIm1CoylSYydn7FqTq36HZ2fMR0vgm+y1EeVhsDIQXCOznJopaGz3ACj/eghANItyQKkkARtQVJqDYqj5ntBtoZrnlnTrASSXgGIlk0KrTYak+usgmSSJNhrr71w3XXX4YgjjvDbr7vuOhx22GFDH+f222/Htttu67/vt99+uO6660p+yWuvvRbPfe5zZ0ZxzMyDP9OjnU6nuTtep9PcHWOmj7ehxzCmVzMrSFE3wLzuWQCCDat0BdCZDTDKynG8aTUARUNWC2Ckis9RAO2sMfyuDFCGYOjWPXPMMvubAUbHFlWal4BRuXWtfQUdZ1515lb/P1kHK0mCkBI6AEkiAiWR318qDUpUYWonMqDtgnxs9CyxresalLvjFpPrYyGzbm494YQTcMwxx+DZz3429ttvP3zpS1/Cvffei+OPPx6AMYXed999+NrXvgYAOPvss7HDDjtgxYoVSNMU3/jGN3DZZZfhsssu88d897vfjec///n45Cc/icMOOwzf+c538MMf/hA//vGPN1jfuboh1fMMOm+n03Dn7XQa7rydToPPGxYagJ3aSpIFRzaGVxaGVTrLbJM4UDTrZWAsBeUIoDQVVZOvUauCNWYpOE+hHSA2scYAOHWWe2DUaQ6tNXSae1DUgXnVfZw4kBRhJKtjjc68agGTLXtkpT1YCmlYowBMsI6UnkU6HyY70HSVfZoAs2EKrbnyS846SB599NF48MEH8dGPfhSrVq3CbrvthiuvvBLLly8HAKxatQr33nuvb5+mKd7//vfjvvvuw8jICFasWIEf/OAHeMlLXuLbPPe5z8W3vvUtnHzyyfjIRz6CHXfcEZdccsmM5EhWgwuctD3Ewz7c1XbVfQYdo9Op06nTaW51KvknyYAjYKYKlsJ9bw7VcfmPTezRR66iwddYKRHXGKFqmSFPBIwxHTesMS+YpE4zqKwARmWXhkla/2NaMEgdmFer7NFfSwrMrIEvUkvy5tUSQBJBZ7kxOwcmVs8ilSrYpFYAVUyuLspVNt/vuWKXs54nuTHKsHmSUx3dTtZ+Qx/4TqdOp06nudPJ5U8yG3BkNjmQHPweiistV2WPLlBHOtAMC4ZXwbGa8N8GjsH30NeoxidKrNEBZRUYyybWwAcZAKRW2kewAmWQdCxSJpEN1olAcQSZxGYZR35b1E9ASQyR9M2n1w/WR/w6kr7JjXR5klG/yJ+U5ehYAeCRTSFP8vEo3n6Oyc0y7mHgyrKtfdsDOdkLodOp06nTae51cqCnYCZq1mIwiywxSKAI1kHFpBpOYryh4GgjWJ1JVY2nnjXqLCsYZACMOiszSLaVD7RdhuZWEYAkSQEhBUgThKJSAE+bCElQWW7aWNYolMvD1H4bwtlGBphch713MykdSFoZxiwjKt+r2zqdOp06nTYdnZzFlQFoCEhYVmlPXpriyu0bAKP3SQ4CxwGJ/z4IZ2K8bFZ19VAtOObjacmkGoJj6I8sgJKhFRvAdMConbm1fAeETSAVRGApICSBJUNIDbLV2wkRFPLiWkgCE0FLDVIaTIapCguMHIKjNbm661SKcuXJTa5zIR1IBjLZTWj6zW2b7GHvdOp06nR6fOrkAA8owLIqoanVg2NYsHvAtFQuIKeU/G9B0AfguILhlkVWwVGNp1BpVjOzFn5I5YFRZarEHov1si/SFwuQAiQZOjPrMpaGGSYALDgSIrAsomWFlEUgkKwAY/ixwtUoV7Ox+OgckMkG3NHpSweSVppGp3M1cmk7T6fTcOfpdBruPJ1Ow52nqpOvL4ACDKvHKfkjK+DoZ7uoTk0V1lNNJ6Ar4GhY5FgRxZqOe59jaFbNxycawdGxRpUqD4wOFEMza1ugjs6UDc4RYGmWBEBBQcKQXiSAIAOEWmkIcoxUgYnKkbIha/QnCUyvpZsQsMoGmU1LQlU6kBwg1dHqoId3Qx7qqezb6dTp1Ok09zo5oKy+nEvgGAbkaFsIgHko9jiMaTUfT6Ese8zHU+gsK5taA3BUqfas0awXwGh8kVwyrYYsMmSQUAqkBVixB0uZkAdKVsIzSCYNxDBmXNIgW2zHmHWD784vWb0fSvlUkPIPdb/kXJpd5z1IDjNq5cpytqXTaTjpdBpOOp2Gk8l0amORqASZDGSPFd+jDgNxhmCPBhwte7S+xpLZtQEcVapKwFhmkfX/2P1mzKxkp5l2fzWEEpBSQCuGUAxRAsAywGmt2yctbmGwAErBOyKIKH4s/JLzGiSrI9UNufgzdfM6nTqdOp02fp08XoYAGYKjKylXBUhXECCdKKJTJ8aC9YBJBr5HNZbW2KMDTBOco7xZtQqOKtUBiyz7H0M26YJ0oAo2qaFBAUQaX6MB27BaHCvDIqtCNEMl5R7DEnXzGiSnO1JtejCn+6C2BR50OnU6dTptfDqVyGSVQU4XIKvBOS3mVed7NEE6hV9SpTYwxwKkqcdqAnVUqjw4NqV7lEQxyAKlA8fSujRm16bIpWoaSCm/UhZVeQSZj6m2MyTghQE8mHs2Oa9BcrrO3yY/yXRuXDWCbjL/S6dTp1On00aiUxUgdTkSsxUg87zOIAcAZMEaJwxgVsyr+Vjug3IcWBbfVQkcizzI9v9UAx4oG69dw28U5Ev6abPc9wE5lENJ4J+s+iXnKnhnXoNkU1cZ9mGZzoPaNnp1623H6XTqdOp02nh1CnP6SqwnBEzWRf5jnvrprLyJ1fkmKwyyFL3aApAOHFmx/V5nj4NSPYAy82u8hgE4CldUwH5qwEiWNYbzTRIVJelqHzNtlpBy8uv9GATvPPbTPj/GUh2NcMv2pn3csmmfqYxyBh2n06nTqdNpI9apIafPMUsRVpHRypeOK31ssfIw/1H71A7jgwxNrGGAzmQAafyUuhTdaoqZs/84aQJOJ+HkyiSpBIzCFhgQRJBxVJ5X0par84zSgSGRN7s6E2xxQVsgqRLxOlcsEuhAslUGPYDc0GaYm7ahI59Op06nTqfHVqehmE4NMHObI6iLKa0cMAaAyUqXgDCsnOOq5oQ+SBdA4wDSf9cOEOsg2BTNCtSZpAE6UWKNQooai3TAKC0YUhxBSGnqttq6rjKOIOIEIkrK/siAXQqSYFfBSFBp/bGWx16Dx1iq5hsM+N72gFQf3kFtq1IdHXc6dTp1Om38OpVDOwNTq/vZFXh1v5UqzVgfplJgbT9KFcXIXY1VpYuiANrVXGVfd9VHreogD7ISoOO2N14Dm9NSrqxjgdACpEykAcRYQiYSMiFIvy4LYLSsMSxw7sCTkrhgkVFswDJKSqZWkDTX1H2q13jAPZxtmdc+SSduhFgdMU7F3zHVh7PpAe906nTqdNr4deLweIIghKlD40WX2SRXwNCv+yLf5bkcTRHyrDQxsgfNin9xmIAckuSBUlSSPcmaTM26AcVhAZLiCLKfQMYR5IhZVmcAoTgCQmCMEyAyoCnipIh2jSLLICtAaZSuDUogaIMtBMNKB5KoPzBTMa9M9rAN277TqdOp0+lxppMg1HxllWhML02zXtgPZ6lnkSEg+qmsPIgWLFJ75mjOMcinCDQH5oTg6AoHCLJA6Wu0iqEBUvZ7/rubIsubWZM+RBxbJhnb7bEB0DgpgSMLAVAAmKUbMve5kvMaJCcLEtiQkcp09x103k6n4c7b6TTceTudhjtv62/h1E1CNL9PuAqMdVNrKFoXwAiEvsTBINgkJAXa9nJpHiE4unWZuLkiDTiWmWR1nsjIA6T7HvUNSIpevwyQif3u2KRlmAYUIzBFAEVls+tG4JOc1yDZJm0Phdse/j5Z2+o2J1N9mDudOp06nTYenYoG1qfmglwFDeUrG2RqZVvX1E+EPAlLBKxJ1SpBCNcr6nr26CJWm8HRMMg6ezQTK0cFk0ziglH2E8jEACaiABR7/cIX2euXfkNkgJHbWKTb1uCn7HyScyBtnb/tQaw+qG3bqsdw34cZqXY6dTp1Oj1+dCq9vIdgPU3scUNEUAGJIThKkiaSVVbbVxhkkOsYgmPIJEP2WPY/xgWbtEBJfQuIiVkiTvy6sOuOQSKKAJkYBikITBKQkf9eBUh+jFjlvAZJYPDotOnBaWo7zEM4SJpGvp1OnU6dThu/TsIGm8wmqxGSgCz4TgSSDJZ1eDTl44yZtlodpxbFSlQCy8nAsTCz9gIzawt7jEO2WACkA0smWTKxso109QBZNbvOVA3Yaci8BslhHoQ2aWrb9JBN1cfS6dTp1On0+NKp5kMjAnTzS13Q5FVlhJRAlpfA0QCaNikX0GBtQA0pPDxKAljaKFZVAGRYZq4KjC5ox02kPAgcXXqHY4+l4BwHgL0AGKMYojdSBOhY9shVcBRUZ5BhSgi1RL3OkcxrkGwaNU7F19F2vGH2afut06nTqdPpcaaTe5FrYdJBAvOgEDYHsNTcsqbqcV1lmsyBmalew8quawISM8uWUAxAG/anRFByzgAiVWbkqKZ6iMDEWqR+0NTBMTCtit5IAY5NptVKcI43r1aYozextgFkF9069zJoBFl9IKZrytmQ3zudOp06nTZenbzJtQSQFjCdhHVK/TZXs7QARyKCtuXfWBcFw4UmECIAOZBY/ZSAJoaQxbRXsqE+jANHY6YVFnwdgywq5biAHCHJRqjG3qw6CBwn9TtuKDga5cvLOZQOJCcRbllOV6ZqBmqSTqfhpNNpOOl0Gk4G6kQRIHIgBEwAELZwdxUcXc1SW6aNJEHLAjCFlmYy46R4RWvkJaBkJSyjlKX5HHUw5RWAEii6uqruPBRHph6rBUIXkFP1OZIrLefAsMocG8yqNZ/jsGZVe93agHGm+sSwMu9BsunhCf0aqPw+qP0wxx/mxnY6dTp1Oj1+dPK/hyZXqqQw2N/bZsJwM2UIaXyCrLRnkyFQMhm/pEhzIIYtLGB8kk3iQBFAUFuVPDAWLDJuMLMGATlRUvc5Jv0yq2wKyBGiDIwhm2xjjHM8y8dkMu9Bsq3TT/bbVI4vKuvuGG3mm06nTqdOp8eZTg0m13BbyBpD0ysHJleZRGBtg3MCYFTI/XeWBhQFkS8wQG21WQPW2M4g6yZVsx6XzKa1aFVXKMBFq8oYOmSN0oFhNBgY3UDC6qwrFza8j6FQ08ZZknkPkkD7g9g0emzbb7K2TdsHjZQ7nTqdOp0ePzoBKJlcHYP0oNkwf2LJ5Bonxrwa11/JQkqoNIOQZBhmULIOqJekC6e2EqEJlwgyiYsAnTBQp8WkOtDfGCcARTVwbAJGluWUDoYBRLYXtTo5CTNDOAbu/i9R3IuWyUxmRTqQxHAP2GQP26B7Vm0nKsum/TudOp06nR5fOvlXepVVhn7JislVRLEpLqCVmS2jIkQEleUQRKboOWlvZnWVeCr1AkqTHZuoVulNq9VAHQOYw7NGJL2yOVXGJWBs9T0CUBYM3XRdDtq59aIzvKUagLZXmEQzu5wt6UCyQQb5OmZin/ABHXa/TqdOp06nx4FOzi9JEUA5oK1pkaQBnUqhc9bKb2eUPYsGGE2+pLJLmqSWa+h/FNJMfOzMt4ZJFsBY8jUOCMSh3kjha5RJmTHKwg/piwFQVANFDQOGmtlfz0Fs0LNGBkgIKAAC7MGSxNyxyQ4kG2TQtW97aNr2mewhm+oD3unU6dTptJHq1MAgQ5NrlU160AQMaNrjEQzIOYB0y6ZarlprUBA5WzWvloN0ZA0Y4QJvwrqqkTOrGhD05tQoLkyplkWyLGqvajbAqBSXANGpOxlAhuZUBQOOQgAMhgBAENCizpxnWzqQxPRGo1M9/lT37XQafp9Op+H26XQabp/p6sSAYZDVVJAQMAM2yVoZUAIAFdRzJQnkGaSUIKWgrfnUTZ8FFEwyqgCk2Z0KtmhNum5ZBcbGknEyLrFEjpICGIPvLMiAomYoZmhmKDaM0Xy37BHsTapt7M8DpDBg6MGRYQca5goTBBjsTa9zIR1IYviHYjrmoGFGusP4SjqdOp06nR4nOoUmV6nBrAGOIFhDSAYTGbAK2KMAfOQr56kJ6LEmWRkb8yxVZgcBAv+jtPzKBgaJKDFLB5JNwNhgTtXOfBoljUBZBUbFDKXhlw4QlTWxAs7MWlwexyfd5GJlgLRLYZZSGFCUEGBh2KgQYk7ZZAeSU5CZNIFzw/p0jt/pNPXjbKhMppOqvhQaIhOaIvcEph/a/ni8TtM5zobKrOtk0x5EG5u0ZlYGAK1KbFcAPmeSSxM0a9+Wg30EBcAIeFAESYg4ZI8WMFuq4WiZlM2pMikCcmTigTHTDKV1AJIFOLJlkSZitWCRxtzadrUYkgxUemCEAAn2AAliMJsltDD1ae05ZrJfDJIOJFtkOqPX2TjGTB+v02lmj+FfDFyMnN0LBEB75B6CyD0PkALSj6qLUbbfNqROw8p8v3ezcTwPdg0Fz5kMm0QUQWhl2JprD1gza2qWFiCFUkWQTgCQvj1ssI50RQkCJhnFdT9kaE4No1MdUMrYs8bcgmHWAozhUjv2aNmlttsBw/6qQrZ/SyFMNowQICEQEUoACW2WggUEzLIyucmsSweSLTITD9lMj3Q6nebueG3HcMEJDhTdiyMMVGjyxTRJEd4u7EiaIUWxHgKnEKIEmDMh8+3ezdnxGgqeM0kI1gYoAYi4OCrDsELOUgN4FRbpGGT5FAV7DMERJJuB0ZlTW4AxZI2ZBvLcgF2mCmDMVRkkcwugWsMDqQ78kwD8YDEU6QeHwoKkQExmXUsDlkz2uhM8UJIQ/jmrWmJmUzqQrMhMj0KHPc+g83Y6DXfe2dQp8yPnenCCYvZ+l3AdKPwvzfoKa14tzEvO1EQwpiVhTVIOQB1gSlE2zW4s12nQeeaTTqGZ1TFIZgOUHjRjW6mcCMgzv2SlIBAXplYANUhwATsOFCsBOiBZmFPDVI0qa5TmN8UF6OW2rxvzqtleBcZMmd8zpaE9mBbPA2AAs0nIAiLZPh9LgUwIxJKg2Hy33klrgmYQCygNCHKxrnMncwKS5513Hs4880ysWrUKK1aswNlnn43nPe95jW2//e1v4/zzz8cdd9yBiYkJrFixAqeeeioOPvhg32blypU49thja/uOjY2h3+9vkK7O/FG9vW0PzLAPUrVddZ9Bx+h0emx0csDI3h9TBkj33flhlC58MMVI2r0wzDHDOtfOxFT4Zdi/OIRgSG1fJBqQZEbgIXDKgF12924j0qlScq1seo1KxxVxAihl1rUsTK1ALT0EQKP/sbQehdVuKsn+laAcpsj4GhUbINSmnxsgLEDRAeNE7sBRe1DMNEPb9to+E8DgKFYz6Cv6b6wJMQloZmgiaBZmOs6IjLVFCxAYQgIM4S01cyWzDpKXXHIJ3vOe9+C8887D/vvvjy9+8Ys49NBDcdddd2HZsmW19j/60Y9w4IEH4uMf/zie8IQn4Ktf/Spe/vKX46c//Sn22GMP327x4sX47W9/W9p3QwHSibv+4cPQdk+GHZW2PXCT7dfpNDc6OZnM91L9Lbcvh2IkzSWzkxMHmhSYiZypybBC4UfVsTQz3Uty7JEhtDDftWkvGZDCgKWehil2U7p3G5tO7pyhydWZWZk1RAUoIQRISrBShZkVKEAyFFcswAXoSGmKiAfA2FQibjKTam4BUjFbYATGc+UZ40SwnintQdGDpaoPDB1gSir8j4Dp67Es+rtmQEkBxQJKAooFEAGkAUkSJEzKRzVKdq6KCQhuCr2bQdlnn32w55574vzzz/fbdtllFxx++OE444wzhjrGihUrcPTRR+OUU04BYJjke97zHjz88MPT0mnNmjVYsmQJVq9ejcWLF5d+8yM8TP4gunfShox0h5FOp9nXyYFj5kCwAQzbTE46CG4ofDLNZicKbKRVkxNZk5MUQEzkAdO1kVQsnQ/Hb2sxw870dWo6zkzIpqaTYA2hUkDlJkhH54DOIXRutjGbbazNNtbmA5jfAAOa4Tlsmkdp3kUHjOE8jWHCf5C+oUC2HxeMscoeHVOcyDXGc20BUntgLJYGFFOlzbNiP7kuAyRQgGRExmoiSSCJqBgU2r7ek4RYEnqRYZb9iDAaSySSEJFAIo3vMpHms37to3jSdtvgkUceqb3HZ1JmlUmmaYpbb70VJ554Ymn7QQcdhJ/85CdDHUNrjUcffRSbb755afvatWuxfPlyKKWw++674/TTTy8xzVAmJiYwMTHhv69Zs6bWZhizjKh8r26bael0ml2dgDo4uheHY43O5Kq5PLIOXxqa4ZeeTeoyUIZSjKgL01NMRQBDLAkx6WAp0I8kFBu2GLMxN0kBRAxoMrENJmWuOPZMXaeN8d49HnRyfkkWupQGAhmBVW7yKFmbsnWsjb+SdXE+Z1r1EzkHS2e6dYBZrZ9KUaO/sVg3gTiuf2fKgOG40p41mnVdAsZMa6S5+eSakeYOJAuwrIpnkiSQRBKSBHoRebDsR5Y9ImCHEUEqRkZs/PE29UPbNptMgfMHHngASiksXbq0tH3p0qVYvXr1UMf4zGc+g3Xr1uGoo47y257+9Kdj5cqVeMYznoE1a9bgnHPOwf77748777wTO+20U+0YZ5xxBk477bRJzzXZKLTptyZzTFvb6Uin0+zoFLLFzI+C6wELVX/MuCpeGrl9aTiQDc1P7mUx2UujxCJbALIXSWSK0Y/MSJthzK2RBUUGwxeznCJQTnadwm0by717POhkVmz6BxMg2LM+oXMDaloDLCDYgCRzcz1Wfyy7LAGjm6OxwcSasykRl1X6tgPHXBsmWACiwnhu+vqE257rEjBO5G5dQQUgmbcAJGD6ecEiFZKIkEYSSUQeWEdiMyBQZI7h3AeZFohZQGkBZd0Mcy1zErhTDddtmgalSS6++GKceuqp+M53voOtt97ab993332x7777+u/7778/9txzT3z2s5/FueeeWzvOSSedhBNOOMF/X7NmDZ70pCeVdUJ9JDiTpptB0naeTqfhzjMVnVwKhzOfuhB395BnAThO2BdE1ezkXiBhAIN7WUzk5RF1G0g6oAxH1JIK01M/IsRkTE+ZYrPUjL4063Gp5Ij9b0mAGGBwMdHvNK/TTMum2p/aD07efArHJikCdG5AjDWEsMzRgmVrVVIHkOTK2zVMXmzB0QXjDAOORb8ug6NbT5XGWKpKwBiCpevnaW7+z0EgGZpZexEhibQHy5Ek+L8jgtQalBuLS0aGTcYyjBi3nzmK3plVkNxyyy0hpayxxvvvv7/GLqtyySWX4LjjjsOll16KAw44YGBbIsLee++N3/3ud42/93o99Hq9qSmP+mh10IOyIbdrKvt2Ok1PJxOBWjethqxxkE+mBJiKMW5fGO5lYUBSB+anwSPr6iexI2vzAiFkSiKWGpkm9CRBMSO2/k/FjNH6BEkQYFvOa/iyXY+He/d41Um4ijsEgAkM7U2snjk6sAQKUHVSNa9WKvf4eRrDcnGq3r9dfqPr36FZtQkcxzKF9anp32Np3sAidYlFmuIBbP8Ftqpba4b3nRcgmdo+3osII0nDINKmQmXO968FlCZEBBP5OsdsclZBMkkS7LXXXrjuuutwxBFH+O3XXXcdDjvssNb9Lr74Yrz5zW/GxRdfjJe+9KWTnoeZcccdd+AZz3jGlHUcZoTIleVsS6fTcDKsTo49usi9tlD3NHhROLPqVEbXZR/N5EzSfQwwGjOUA8vRRGMkkd6Em2nGaGW6QQeUrjiJRBEer3lqlXo21nsXLmdbZkUnxygd4JmJnkq/t5pZAxOrN7OGU1JZEK6Co3MdVANyhgXHsVQhzZXv52Np0cfTXBt3Qq7NFFiawcweHOv/gjCDtoggSCDNyfZzgkrqQznnoycBZCSgIrJpVgzNwrLHuQXKWTe3nnDCCTjmmGPw7Gc/G/vttx++9KUv4d5778Xxxx8PwJhC77vvPnzta18DYADy7//+73HOOedg33339Sx0ZGQES5YsAQCcdtpp2HfffbHTTjthzZo1OPfcc3HHHXfg85///JR0q44KN+S6z5SJqNNp5nQK2aMDSRfu7k1Qugh3d+yxeJkUjHK89NLI7Si7AEtVAcjqCNuJG1kD8CZW99Iwo2uFkUT6kftoIr2/BigHApkRuoTSAIGhgrJ2U7lOU73mGyrzTSfPJh1hhAaENL5IYACDFMV3xxqDXEsHjqFfvcQgp9i3DUDmfj0NAVJpqNx8tNIGHC1AmvWG60CmvwshoJUBSS0JmSIo3QyQY6mCJIFMiyIwThqXQyLh56WcS5l1kDz66KPx4IMP4qMf/ShWrVqF3XbbDVdeeSWWL18OAFi1ahXuvfde3/6LX/wi8jzHO9/5Trzzne/029/4xjdi5cqVAICHH34Yb3vb27B69WosWbIEe+yxB370ox/hOc95zpR0m+5ItenBnO59aws86HTaMJ0ce2TesBH2+kxVXhp58wjbvjh0roceXU+QANlgnBAoDTjqWsSgA0iX8pFpgUwJkCDDIsFB5J8Y6joNe72nc4y2Y80bnQSVtnmgtOySBSzLDAAjZI+AYY2hDxLNubw+x3GAaXV95oBR+f7dBI5jnk1qjGcKOtdQqgBIlZu+rW0fd/3cDQhdmpMgAWGZoVIaUhI4YpBmjFeumQHI3Awac42YCDoqTK6KyfohTbnHutd49mTW8yQ3RnF5kv+7ejUWTTO/pvpwTGdEG+4zjK+j02k4nULzaji6bsoJcy+R9ZkKRtfmJbIubR5hjwWj7Exp/xJhbc1QldE1a/Y+GqAYYZMkv5SR+YzEJpBhJJGGRSYSC/sxRhOJhb0Io7HEaCwxEpNfX9SLbF5ZkUOW2Hyyx9u925R0EgDC/Eef5uGkWiwgKMdU9UOG4OhqBjuLiKpYRpRGyXWwPlM19rguzQNArAOkA8c8U4ZBKg2dc9HPVWFuNf9acQVCf6QgASnJL6PETAIdxRJRItGPJRb2I4wkEov6ERb2YyzqR1gyEmM0llho+/2iRGJhEmE0JvQigb4kTKx/FDtsv+3jO09yY5emh2LYh2U6D2rb6NWttx2n02k4nYBmgFS6PNpuygubCF8ogQnq0fF8qJcIM0MFL5HwBRKKG2VTRCChQZHJj4xiCZWTCcxpCfwJ/TUkgFiSN0lFRGY+v0rex+Pl3m3SOgV+ydJvkqotC2C060Xx/IY+HTBJN/DTXDevrs9Uyfe4diJvZY9jqUKaKeSZQp6qEjiGpladF0wSQC1gxzFIQYAiDRmRb0NRcRXSwMTqfPwTOSFVGr2IjGVEF7PqOJ/7XMq8Bkmg/QEa9IC0+S+aRqhT0aFt306n4XRqBUi3LSi5ZaLmyibW8bwZIM2y/hJRFiTDl4gzs3qfTYO7SZAAZZZJZsbkqnJGFJPfvwkgi48FyKq/xiVcVy7o4+HebYo6mZVy4E67MkEeJFAKwHJzNYZTUhUssr0gQOg6cIM/B4prx7M6QFpgzD1IVs2sGkoVJlaV20mgW2YoEUQ+YIc1gy04RpDQpKFJIE8VUiG8Dz4J/Po+59haZswsO+5qz53Me5Bsk0EPIDe0mcoxO51mXqfQB8lsz18FTQ3DKMNEaVXkQ5rRdjtArp3ISy8RlbMHS/cSYQ3PJoH6TAjOBGVG2oZJSkXgWPpACLfvWrtPAY42RcQCZKZpg/w1G8u921R18neikjNZEx/5WgSbOXB0plUGanWEq0UvhgHIqmVkre3f41WAzHTF3Fr423WegbXyn/q/Y0CSogSsJWQkYee8KrcTZqCYqWpqiUKaS4zEbKNaTfumWshzIfMeJMNL3eRbaGtb3T7IpDNIRLCsPnCdTsPp5F4s7qWigxcJs3u5AAzrj3Sl5YLPuDVPpbm2QTplE1QVIPPUvkCUtmapIGhHa+g8NTo2jLLdR0YSQgk/Mue4HvE3VknEXp/aPEpNJjnchf5r9qZWV76r6RpvbPduPuhkDtDMJKt92K+7QvlcnXlmagDp+nUVIMPBXxNAuu8lU6sFR52n0JOApCAJ1souE5COgUQC0GaAGJEJ5lEarIvKOxO5xojzrXqLUDFZQBGYNncy70ESaDe7DHMvptLWtQeaH8xOp6nrFI68XXi4+W4jPWHD1C1YanaVcqofrgFkGAYfvkTSCfNdK102SeUZdJ6aF0nDS6QwQ0kQSego8aNt1oZ1GuYZ2XYC4wFAjqUKSWTSQ7KoiPoLTVHMzfxqY7x381Wn8Hf3wq+yRw4Assok2wDS9eNMczn/cUB6xyCAdGxS5RYYLTiaPq59AfZ6H8/M7CRRXEwODecvJ4hcQ0oNLQSU1CCpkUaV9Ck38GP4/t00KcpcSAeSqHfq6gMylX2dtO077EPd6TQ1YT/SLMwzzAWrct4MFYzQNSNgk7qUMO3yH10Eq1LaM0htzaueTQYvEeVAMsvaR9lSQhOBtILUCqwTaB0jYmumciZZoSAlIZXaAiTZwAZpa8ZSKRjJ/P/OFFUGy43x3s0HnQYN7tzvRX8tADL0P4YA6d0GXNQVdoO+MAcys1aGsayc21tK8VB6KIBU6VjRr+2k0G3mVj8Q1G5AWPyuSHr/pFIaFFkfvPU5VgESaJ4gYK5lXoPkIJ/GVAIAmmS6+w4TJDBd2ZR0AsosEkDJF8mAzxv00YHajEZ1EBSgg1k7TPh8GSzdi8QkUnPN3JqnBTjqPIXOCjY5yBRlzFAa7IFSAeiDhEBOyvotgTxToIjKOuVBUfVglN1khtoY79180ymU8B5NBpCuHzfNZWoGeAUYusGeMcG7Eoqq1m/Cj7OGaBvB6gZ/bj0ESMcedZaWALLNnQAAOktBcVJqq3Iy+ZK6GuBWB8lwAmf3fz8WmDmvQbJN2h6KaiTbMG2r25xM9V53Og0+TpuEacCaK6xLFyPzJhaZ5kXEqrZs0plWzdIwyDwdM6bWLC0BpG55iVDgs3Gj8sj+lltwJGmSr5U0I/pUhi848/LTCddeIMwMHiKkpetPc6eTk5A9uu/eAoI6QLp1XyQCxX3OlIbW8FaQTGlrii2mtXI+Ptdfwn6dhX3Z+R0b+jYH5tWm/l3/J5Xv3xQlpn8TQWsFkacQJO2groj+1gFIhqJ0MZFzKMP28ZmSeQ2SbR26rdNXH4q2bdVjuO/DjFQ7nQbrNB1xL51Q/AuIi0i5ppGsKxCg7OjamIrY+iAdgywA0vtt7IgbgF/6ETbJ0ggbAHL3P5IERQSRKciIQMpUK3ERgHlJP5TC40vXtfJCrkrXn+ZOJ6DO8sPvoQ8SwbpnkxZMlQ5KLQapEcr241yxB5ZwZpqmsomuL7toal8IQ8N+d8yvmUGGA0BWyk8I7f4fAoL2sjRYbGKRAGoMcmOReQ2SwOCRYNOtamo7zEM4SAaxpU6nok21vZ9CUcAnG9f2szMKDJJw/ke/TRcvofCh9oWdbZCOzlOwqvgkVTEKB+og6ZYsy991lNjjSLAUULllk7lGFHPpRZfrwFTsXq4Drl3Xnx5bnZqOUw3SYRSDNnbbAxYJu825DTIdAiUHfkygcB9wbd0PrErm+qLUnA5A0lk7ANQA0m0H4NdDsCztH8Ul0JxM1BBROnNlep3XIDnMg9AmTW2bHrKpmgc7nZrbFwc0idnV9kKYqaIEA8L+SBBQttUQ05cCQONIli0YmVF3MdI2LwtdjmgNALLqs3Eh8QCg8xSEBJoCM1SeQpOEyhNQRJBKl+pj1phuAO6+IknDtev602OrU1UGESX34i/52Z0pHQ5Iw0CtcrK987MX/aQ816PS5VJyvj9zuM3soyt9d0NkQ/d/LGVeg2TTSHAqvo624w2zT9tvnU7138xOwevfrgtBJTbJDLAQcB4LIWDnV4Qt5WbnthPFTBwAyuvVsm4Nw9XiJaNqkX5tHwCl3DGyrBGASQfJTZBDkToS1WZaaA2RtyqaF2FF/4ZrPN/702OhU3VbY7+qbNKVo9R+H4C24UCvadq2uS7ZHaaCiMozNu1jzpFbcl6DpJNBI8gaY2loM9kxN/T3+ayTaRQUiW44LwlT4zFkk9KGmgth/CMCwpfK9PVTLXgCZXAM10XLk1gdGesBgGna68b9HQMVtf3LZl4O2EMT2w1fmE3vzq4/PXY6tYnrEc682nTepns5TFpEdbBX3SaEaAUrYQutE0kwSQipIXQwwEPZYtFkag2juEXgVihcDsIv3Xq59OIkZfzmUDqQnES4ZTld2dAHq0mXTVUncyBdAkk3iwIHNTEdULo9WcCzSYKwTJJtUXCBTJslKeGLhocPKGAfWAuQbUA5mVQBkrX2L6DQ9BoCZuH3sea0wCQGtDCEDWQF86U/bWw6DSNN/nYpBLIhzh725XAbhWBpawk70BT2dx0AmmlX/u6AkrUqgSAAH91afKiybgepJT0Gg3pV5ohEAuhAsvHhCf0aqPw+qP0wxx/mwZrvOpUAUufF9EIBGxPQZmoh1nZS2whki0ObiYeFKfiNIP/MmlzdJyaBCSEQy6KqjSSBXkS+HJxL7CfhXiQu2b8cfEAka/5A8y/UtxbluppzKcN/P5RB5jW/T0OT+d6fNhadquKAhoQoRScL/3vhUweKQDXAACWRAHSxTtoM7NygDwAkESTpMktz7d1HlNfZ9m9TOjEBrJ6iEnBDAFB5DkQVIKUspT25c7jC58XzJCpM0ll7zKw3Upj/U4jpD1qnK/MeJJs6fdNIsfrbVI4vKushGEx2jvmok9kQAKQus8mijWFlQkZgnUNQBCnIv020AFgIsyRAMhCRYZGxJsSaEZNGTAKJJEQkkEQSkpR/UEUIlEFx8upLwOghIXS5bqX5VyqFnake3TfdwIZhWOR8708bi04lHYSo+QVD1tgWsW2sJuZIUoTrDiDNDFySBKIAcHq2IIX7ThGBtJkAmSIGMfl1zcIWJTdpSg4oATRW2wn7eljcXEgJimJIW35R2Io7gsz/L4P5VKkBJENrzmMp8x4kgfZO3zR6bNtvsrZN2weNSuerTubHACBVDrCGYK6DpE3tYNYQFJnfKUJEEUDCl6PTbMBSCkZEAjERYmLEJBBLC5ZSeyaZROQ/MiLkmYCMBPIsBEpbf7VkSiqbp4qAnWb/StlHUwfOyWZXAjD0S2S+9qeNUaeQEdaOIyyDZONPF0DgaxcQgq2FAyA2IBJL094AZMEok4hs6oep95tEVAr64ijMk4T/DhR5u8CIDzADACYyeY9qQEUpWZhYHUBSlEBGEtJOMO4Hng4gRTNIAvDs87GSDiQx3AM22cM26KVfbScqy6b956NORSPtAVJoVbDIpuAdQRDCTKTILL3+DijDM2sIaDBiKdBnU/e0F5kyXjEZUBxNJNJcmZG3nZYqlwQlyVbAIVOcObIFym2dVlOoXIFja56yaR3Fv1QebVcBNVx3Zimg7LchmvxF0fYumY/9aWPUqSoEQFtg1BboFJdNrixsCoiwQMxATASttQVIB5YmgE0RQ0sBxeRza6sA6VKIuASW5VFZAZSJ75dNxfudpcQNBos+LEsASRGZScYlmRSnyJhdKRiUOvYbUcCMhXsWysF2cyUdSDbIVPwK09knfECH3W/e6KRzCJ0XAKlzD5CiCpRuHj47m7vgyLJKDZYakUz8E6UZiIGigokk9KUByF5EtryXAcaRJComgY0IaSJtQWYz96NWBKXYPPxaQccmL5Iik8LhXxJRUVWnEQitCaoa6FC0E/7fDCMAnXi/0zRG2fOmP20kOjn26H4z7sTC5FplkC4TWKFgkxLGFOrYpANIA47mOEoKxOzAElARYzRpT94fq+qe2z5n+5S2AT2sJZQFSaqApMunpMog0PTx2DDBiBDFhkVKu0524OlMrd56Q1QKqHNAGfbzuWSWHUg2yKCHou2hmcwMM51zzTedwLoOkA40dQGQwiU+++hTAogMQHJkUdBkmYVACRTz0WkGehFBsbTTZzEyRRiJpR19R+WC4rEsJlV2U/1EZq68KBnxx5eVBOymXEkABUDGSQGYshh913yhwUuiHNhgzlVinEO8P+ZDf9rYdGoDSrKVd9wxbTyOYZEO0omhtIAkNtQTjFhSUVSATBiQYgFNAloK2NAaL20l3xxQupln3KCMSEBFGpQL6JxBEUHn0s+ZCpg+XoVgF8XqwJGEAEUCUSwtQAZm18g8c42uDjKM2QcpARCYO3B00oEkpjcanerxp7rvfNQJIUCq1ANmyScZpoM4p50gQBMgckBGYIogZOLbGqAsvzCYGRwJaCZkWiJTDB1LWzDcFYaWmAjqXSo7S0KUSF99R+s4GF07s5O0lXPSUqCD+80tKU4CUDSjbveCkdJF/xmAbAtsAJpzPasyH/vTxqjTIKCEcAE95ugaQOFAMEBpbLMBUJKPkTX20dIb3VVRLUSSwFial75LEhgTAmmmjP8zUwYgJYGUGRCqyNYtlsL0e3Y1V80JWXMp95FsJLggY1KVzsQqDYuMEokoloilAcSRRKIXEZLILKWNHSAB67MsIl3n2j3ZgSSG7+zTMb0MM9IdxleyKevkWWQDQIYmV9HkmwyBkiyLJNtGJv5/CIHSmVs1tGWTDK2ln9A204RF/ajkv3EzJ7jqN6ZoM0OzBNAP1KFgXfp5+Gr/sw1q8GapuIgCNOHxMKPtACybIv8Kk6s5blusz3zqTxuLTmWPeCFuLONIHRl7qqkcxSYqW8IE67AAoM16I1BKQJKEFOaZIB1YFEiARN2PH/ah9WkRyZ1GhDFbWD/PlJmJRhmwjLSZKSSKzdLl7TalJVEAlq7/GpA0SweQSSwxkhgW2bNA6VhkTGRymQOALBdDaO/rMy0dSE5BpsWOhjjWVB/QtuNsqDwWOhUAmZbNq3nqAVI4kKwUVfbHkBIshGlHkfmUAn4Y0BpR3Icggp3bGNq+xpgltJtRg209TA0s6tfLwK3VxawFZTFAqQOm6IJ3mgqdh35JimMf4GDYZJFH5oIbZMkMZQIbXL6nL3owheveJo/3/jSVY82lTtV741gkUAZLDQEJgMEQQkBphiRAsKWgcJGtAIFBLKzJ1UCGtHkjJAQmcgOQ1dSQxKeCmP7kJvQes4CZSo00Ijv7jbGeqFwjYoLKGZGtE+ueg+rzUKqiI4MBX2T9kBF5gAw/jkUmkQVIm8vs+rgdS1h/7dxJB5ItMp3R62wcY6aPtzHq5M2sKjNgaQHSAafQCpyZKajM7MJloGSSgEvFiBOALFi6FJIoB7gPsIaM++hJ1+2NqYoZ4EQWxaFZWt9NVI8IbKmEYyZLHkGeGvDLaQwUx9BZVisaUM6xJMseCxYZBjW4fDLHGotcTlNmzyeGV2xQw5ikNtX+tDHq5CWoEuVEijq79SZYMuZXAbNO1h0ALSAkIDRMUX8AAmQqSxEwIYq+kZH26SExEcZtcYFeRFifGhPnWJp7gKpOzpwpM6ep1mZe1WpN4SZxfnTn23TgKG3EuDOxjiQSo5ZBOiZpUrQMQLqoXaKCPXbm1o1EZuKhmMkHdaaOt9HppHNjZlVZyScpVAqoFMhzk6eVG7BxIBkySiElQBJMBJFnEFFswFLngEwA7880bC8ESs2ieAp61cchh2YHlLoEkuHo2Yyac7ve80Cp89RPf2X2KYfKU5SUwuSjJPIRgFEiTbBDIksh8mGAQ1s1kmHfIZtkf5qhY8zo8WpFMOomUAEAgjxgCsBYR7hglQ4gBVtTLAQIAasUZuAUaWlK1xFbkCzAZiI3aSOxFMgi9qBYLPPaBM0+eE2baPBqTeEmcdGxvpqOBUdJomRWHfVMMjIm11ha/ch+jLnV+Sf9cecQKDuQrMhMj0KHPc+g827KOglrYoXOzZRRjk2qFEgnwHkGTscNMGYpoHXBypwZ06VOEAFxZr4nfQOWScWPaddlMmqBkoBcg6WxZo3G0rJJ2OmHzIvJzceXN9RQLdyiCiIFBMXQuZnySucp2KaClP7vSpi8C24Io//c0gU3VIEypoJFuhyyoa45Nt3+NJnMuU4Ns9cMbGtZpvTpTWYgxzB9zgX2FAFArsiAqSiVacsqBSGWxqiSkQNIhZgExpVllLmqgeVIIjGWKqS58uDogtfCSZvTvJiCq63qU7VAQDjAK9hjVALLWAr0o4JJGlZp9hMQXZ7kxiBVR76Ttgdm2Aep2q66z6BjbKo6iYqZtcQg0wlwOm4+WQrOMwOUdgkAcGxSSg+UnI5DRAk4SyF6fcMskz5EbPMto+JFJZNRJA4ofRA+oemxaAqdf8TtEQQqCCEglUbu8suiImS+bnItwuSlFBWApFKidTX6z704nElKBiPsyXLINtX+tDHpVLoDLUApKqDpi/YDfuQlBEHamsSCDFhqNiZWB5aS7UTLbEyRSph1pQGKJXQEA4gkPJPMFCOSArliZFqjHxHGc41Ma1tQI2STygNkKdo7sKw0PR9hBHZYF9kBZQiQSUToR4SeNH27Z/2S7iNQgKNwnzmyu3Yg2SBV/0C4ra1ttX1Tuw154Dc1nQADkj56VeUGHKsAOTEOzi1IWrAsmKR9oYSVPqIYHBuTK/IM6PUBOxVVKTrWvoyiZBSQkTG7ejFAWWWTQP1lsJYExsj5XnJIaSIDBSlQbqbrUspVMyk/bibqrzBHOfYYJUUEYD+IAAw/sRSlHDISZqQ97HtjU+tPG5tOZkPDHKgNxfoLfYJtLhK7ApYQBBaAZAHFFiDZmNwdMCoBMAtkgmtgGUuFTNlqU0ojs8Dni2oojYlII1OMVDkzaxSwSdXqp88rz0bkgncqbNL51H1EqzWr9iSh7waBkjyLdGZkKebeHwl0IFkT9zAMY5Zx96vp4WlqP/TDNQ90EgEwlsysFiD12DpjZs0z8MSYAceQTQLlAB7nkyQJRDFElEDEsTl2lhpGmWegEQazLs3YESWj6EcR3DS3mgGGwCJur1QSiiSBdZZFGoA00XzKRgVKG+xQFe+vCXLIpE26DkPkXXCD89sk0pijIjfSpqIyCYBJw+M3xf60selUnKQyzZsOzP7hsioa3vTq7flEZsYbC5iSyJSkgzHJKmYwmaXSJppVaQFF7JlmRBJKA6nSFiw1+tIsM8UYVxp9yy4zu1QadlmYXPMaUDb/H25eyBAoQzbpUj36UcAgnanV9u+I3ABQgFBEdc+VdCBpZRizjKh8r27rdBpOJwHLIlVWLFVqmKJjkCGTTA2bRJ6BlYLOcmhVfyhJEiiOTEqIA8os8wApstSwyv4CENucRwCCGVEygpEoAQmGgAYJwqAQGGdGCmdaGJOmrJ2MCHmqzHyVtmSYC3YoXUvHQG1FkqYcsjD6z5ldfWDDFMPjN9X+9HjQqTSbDQBfIMMfpAlklAVIl0IkTAENV2EqYJewgMkwzFGTZZV+6cDTgGZEEioyeb6ZKgBxtASQJlDHLZ1FJVMuCrzOJoHC2lItoRjm94YpHq4vx7IAyX5EnlGa1BX4QgJddOtjKJOZX5p+azLHtLXtdLIvEpsHGS6FyqAtMDoWyW6ZZ9Dj41BZDlYa2i4B+KWQVHyIIJMIst8D54apUmZAVlvTK2ll/ByswawN80qAnkxQ9lE2s8nS5MxUlNNaO26SskMmWYTNV66jm0vPzq9HFiRjacBwYT8qRf+NWtNUL3ip+AhAKsLjBwU2bIr9aWPUKTTrV6d78+BYDSibTCcHiIBZCmGXBiSlLagRSYJiGFapGYqEBTX7nQPAZEbcApieSTI8SPqlZZahK8LXj638K9IR4dJ0XkVFnQIkhWeWzu9uordFqW87sJyrAJ4OJK00jQSHDQ7YUGk7z6aqk/NFhsE6emKszBwdQKbjUOMTyMdT6DT3QMlKoz5PowFJGUdQ4wSZ5hYsM2jHJrUCaQ2tTXECMVIcYxBQmgfcVTEpCi67YJpkPPNmpDTXhlVakFS59lMSAcbPWQv2CXLIyiZWA5CL+pEP3vF+GypG4gJlk2uTbKr9aboyFzo1AmRDtLVv67Y1Hqzup0TpU4CmlBEgCJGMDLu0AKllAJQVwGRmKCntd4lcF2CpLYN0Vam0jWp1IOl890DzHKelwDIqz/DhwJFCMyu59A/z3PkKU4+BU7IDyQFSHa1OFiCwoeeZDzr5BH8f2RqYWStAqcfWIR9PocZTD5I6y6AtQDqwdOKYpLQmVxpPEfUTu5yAHDVAicyyS1cBJxj1E2uIRIOiPoQwydlFDczicXFg6cplGTaZI4kI620Fk1KOmS9nV1wZl2jtQuVDk2qVQY4kEqOxRD8i64s00YD9iHw1FT//IDB05N/jvT9tjDqZHepAWKs/XJ3ZpuqvBMomWcDkTgIlPyXc9+AjVGQmABAEISMIQYgoAguCJhP0o9hMweV8mOFS++3k2+W6DJZhqlT43fwr9avjBoa+zJyrSWy/O1CMZcEgpZugOajbKjB3JemADiSnFOE2F6NbYBPXKWSRKgNUWgNGHl8HPbYO2bpxD5BqfAIqyy1QGp8kN/glC5AkUBJBZzkojqDTHJHSiPrWL6nNCF8owyzFaPk4BKAf9f03IYyfUlLsWSUASFKQBGtqJSSRQhKZ6iUTlUTsplkYqjlkYfWRJoAcie26i/5z1Xj8i6Sh+s5M3bsZlPmgUxioMxAgdQVEgTKbDEHTr1B96e67Nb+CDJtEThBkQFNQBCKCpMj7NRWLABQLlskQNdB0oKoZJeA0g0BzegeYbeL6p7T5va7fSiryIB2DFB4oi/J6cz0B87wGyeqocEMexpkyEW3KOglbxNykeuSlaNbqxzHIbN048vEJqPEUOsuhLEg6c2sYwEPW+aEcSFpwdGCpshx6QR+x0oZFamWMqtZHSQsYOnhpkdYYSRx6BuZXW5nHBx4QISblZ4M3n3JCdl5JwAbKwQwRhfsG5tbYmVgNQPYloS8Jo3Z7RCgFNrgXSphTtqn2p41Vp0ZzagiObo7UKjhWTa/D+CtFwamEIG+KhZuMXFBRtlEQ2AKnsNuFIJCdOQdEYOvPVNoEtTnQDMHRgWV1nVGAJyrXMBwcOn++gzrXX12xgBAQXSUpl/4hbPupVJbaUJnXIDndkWrTgzlt4Kjsu0nrxLoU0Qqdm9SOipk1WzeGfN24B8h8nQnaKYBSQSs2QTzKJOr7Um9SQMgcMjGMMmSSMs3MPmmOxDJJN82VE1oAVF9JI8moDRwgEBhCaAhEAYNTNgDBmIzcrAYTuawlYwP1F0bBJsszIvQj6aP8elEZHF2ydVQpKFA1RW3S/Wkj1Kn04g5ZJFAGQgeQQSH+2iw3QZBPqbB/JfUpFLLF/s2JqQBEt05lMyzbYJ8qaEYWTB1oNjFJxzYdMGoEgBnMkcmMYpqa6vWzm8l/rwOlAAKWKebU1ArMEUied955OPPMM7Fq1SqsWLECZ599Np73vOe1tr/55ptxwgkn4Fe/+hW22247fOADH8Dxxx9fanPZZZfhIx/5CP7nf/4HO+64Iz72sY/hiCOOmJJe0x2JNPkkpjOiDfcZ2tfxeNaJtY9oFTovWGSeFebW8cLE6gCy8EtmUKmCyhRYMVRqHsMqmxRSWJDMIRMJmUjoLEeU5YZ9WiYaK41YqwIUHWiOmsIDOnhh9ZLQHmtYpRDSWLVssMH6THtW6SqYpA3zUobSxCZd/cowudqBZC8yQBlLgcTmSHqgtLM8hKPsTbo/baQ61QCvJdK1BJCOXVpgZGUsHQwUNYuBWnH/Jn08cLq8YZIFeIYM04KmY5uCAqZJUZlpisJ8q4IyeRoIgFNYkCzAEygAdDIhFMUwHDiSZZIhq3S/z5XMOkhecskleM973oPzzjsP+++/P774xS/i0EMPxV133YVly5bV2t9zzz14yUtegre+9a34xje+gX//93/HO97xDmy11VY48sgjAQC33HILjj76aJx++uk44ogjcPnll+Ooo47Cj3/8Y+yzzz5D69Z024Z9WKbzoLaNXt1623E2BZ0Ea4i8mNUDKi2zyDz1Zlbng3QAma8fRzaWW5DUUKkFSQuWJb2kAEmBfIwsQBKifgSZKuPPtEzSjcxZaSQAtC2cHkxhW4pvBepASdAgIRETYT0JkFA+yX8i14hJIwuql1TLeNXSSKSpLtKPigokztTai6QHyV5UAGMJIO0oO3yBbKr9aWPVqcQEUfZFhsDpALIEjrZwv581xhXzbwDJpinjSrpLA5TcAJh+xhySQBSaXw2jhPNfSgegwXaSiASBZYTIbYMrZuAYZAiWVm0W3gw7jL+yFSyBOStH50RwWxn3GZJ99tkHe+65J84//3y/bZdddsHhhx+OM844o9b+gx/8IL773e/i17/+td92/PHH484778Qtt9wCADj66KOxZs0aXHXVVb7NIYccgs022wwXX3xx7ZgTExOYmJjw39esWYMnPelJWL16NZYsXjzlB6Rt9Nk0Qh3mmMOOjh/POkHnoIl1EOlaiIl1EONrodc+DL1uDfSjD0OvXwO1di3SNeuRProe2boxpGvWlwAyH1OeSTqgZDt9jxNykxRLYUAyNkwyGpGI+jHikQjRaB/xAvOJFowgWTSKZPECU2RgwSLQ6GIIu0RvFDoeAfcWguMRcDKKCcVINWM8Z6TKfDLNWJ8qjCuN9Zky5b1yXUrIdvNUVl8SruyWC3uPyUSw9ksgaVhlRKaAQcgiwxD54qUyc/duY+xPG6NOALy1RKi8GBC6bTo3wWLhROKVuVI5T+vg6Ga9CcCyWuS/VYL5TY3Zw363M+eIKC4DZ5wYxkkFQHq/piCgwipbt8P5KVvMrxgMlkAZMGvmWABrH12DbbbZBo888ggWL148+DpsgMwqk0zTFLfeeitOPPHE0vaDDjoIP/nJTxr3ueWWW3DQQQeVth188MG44IILkGUZ4jjGLbfcgve+9721NmeffXbjMc844wycdtppU9K96aFz69zQZirHnK48XnUyDXUp7cMXLncscqJgkS5QR42nHiDTtRl0ppCN5dCZDvySDSBp2aTONFSsIDMJlUqoVFs/ZpFCEkqCcpnzEqMMAiQ8o4yK5GZSgEgkYmVAazwvpibKSJQSsIHyRLsAfJRqJIvcxxAkE0mWNcKuw/skiyCHmb93G2N/2lh1EkCJMYa+yGq+ZKldBSBLQKlUME1cBSSrhf4BVKdj89ulY5R2IgALmCF4VoFTRLFnmwXDrJhoG/yajplSYL4FUcAqHXgWd3AQV6tOjzW3PHKWQfKBBx6AUgpLly4tbV+6dClWr17duM/q1asb2+d5jgceeADbbrtta5u2Y5500kk44YQT/HfHJIHBI8nqzWi7jU2j22EfzCbf0SanU8XUKrQyU0il4z5HUmc51JhN9RhzYJl5BpmP58jHcssiLUhmRXSry8tyE7wKKSBTDSEF4pEIKlYWGBlatV+JBIB2QUAw5iqSxjcTSi8ZtQ9vYFoTsLmVAjFpjCuNmAQybQpH95h8vmQoYXJ1WKLLgaRjjs60atbhmWSVNVbvwybXnzZCnRxA1iJRa1GrHICmYZFNAMm2hKKf9cbNIqMVoExf9mwTqJtjQx3C4J5gMgBYPyQcODpGGSUFcMZJaZuIElP2kaQNAmoBzRA4K4FCvpSegGedCHyYrdc3/JfmECnnJHCnakNm5oF25ab21e1TOWav10Ov12s/H8qjwkYmNOS+w7QHmh/MTVYnO1o2Ua2peQHkmSkTZ4uY5+OpiWB1H8cix5QFyhz5eA6VagOYmfIJ0SXMUwyZa5OUnCrIRIIVQyZUAkgHmE3iGaUbZaM56jWJ+4AkCGgIOJ+gOXdEArESyBRhXGloW0TaJV+HUk6oLkp09SNpgLMBJBM7Ge287E8bqU5eKozRS2MgD3uzagkgHXv8/9t79yhdrrJM/Nnv3lX99cnlYDgkJ9EQ0GESNOiQZCCB3+JuCDMRvAwXwQy6mHiZhRDBpWSNyGUtuTmjS0FHZXETcGA5yDgMGA0KjE4SQIJcBCOD0YASQCY5JySnu6r23r8/3v3uS31VX3/dp7tPn9P1rtVd36Uu71e7qp79vNeMRfq2nTfDbtJfuYyvksGxSsAZGWXF24e6yBE8TR7sUzJKBL8mFAG2BM2YzylVgvq5n5s97zskOwqShw4dgtZ6juF97Wtfm2OCIocPHx5c3xiD+9///gvXGdvnRtIfiCHzyrLbioxtu+ygnyo6xRm2dP2QtI+2iUXL7do6l5wLLFIA0rUMkG0AyLgMPkHreQkgAmVM8lcKtVOorWewbHVIF+EVneVLX/VslBRK21WYB0V1uipuYICBkgxX5mmsh1IEZX3IWeTGtwyWHtZziyKgBMp+1ZGKmD0aEl9lAknxRYra++162ss6zVXQkW2DqbVgkbKJtchNqXMA2TXMHOdAM5lj+znDsa7xSGcOMcUqLWlTFEs6DvoqTc3bVPU8aGZMU5kKFHyaAph5IYMImJQB50AN2shEgWTB6d13uwmeOwqSdV3j0ksvxY033likZ9x444142tOeNrjNFVdcgfe9733FZ3/yJ3+Cyy67DFVVxXVuvPHGwi/5J3/yJ3jUox61Kf0WMfalbooFstVtlwkS2KqcEJ3GTK1dC99y+yvbdAWT7NYa2Ib9j8Icc4A8Zl0ASaD1JUgCDJRaAY3zqInBctWx/3IuGjbz3cSHRJCK2KzkScORBpFOlXmy7YwwSgUoy6ag1gGdRQiiYbC0A9VJZFdSdcQQR/EJEJosQKcPkMvIKXc9bSAnQqeh4Zir0dqXPouMQGlLMBSA7DUdd00bgdHbskyjjy6I8tjeugiMAE8IgQSW/QYBBXDmwCggWtWl/7Kqh1mmsEtrAkA2ETBj5KykpQx0OoEiPo95oYSR874TsuPm1he96EW45pprcNlll+GKK67A7/zO7+COO+6IeY/XX389/vEf/xG/+7u/C4AjWd/whjfgRS96Ea699lrcfPPNeNOb3lRErb7whS/EYx7zGLz2ta/F0572NPzhH/4hPvjBD+Iv/uIvtkXnsZtCPh9y4C+zjyF/0amuE+84+WByU6vv2PTq2lBqrmEzqwAjM0k2ubrWFQDZekQ2KWZXEU6s99CK29ja0AFhdUBZymbTbXgoAPzAIC3lvTQHIehUuaQQ72CqGZf8AtAEMyhBQWe9/CylUPhcFTlPmgAuVB4KP5MqAnTqJfyPy8rJej3tRZ14x1mRgL6M5EzOsUjbM6NKk/EMIOP9knXDkT+XA6XsD2UecV8oXu86A0WKFpX4vjJFK7rYs9VU3Ohc6wCKVQRMn63DQBpAkgz/ZkUAdQyGWX4mlIdXDvDhXhOwBOYBcxdkx0Hymc98Jr7xjW/gla98Jb7yla/g4osvxgc+8AFccMEFAICvfOUruOOOO+L6D37wg/GBD3wAP/MzP4Pf+I3fwHnnnYdf//VfjzmSAPCoRz0K73rXu/ALv/ALeOlLX4rv+I7vwLvf/e5N5UgC4zfM2I3Yv1HHPuvvQ94vM1M91XRSCLNqyyHw3tnC1BrBsWkjWNrGZkySUz661kaAXHNsZhU22fdLCkBqFepQhoLOgAOaoHNGx5RWaLSCIkKbzabjMkQDRjZJms9h70bV1QykTTwnpAI4qtQIV5Kv+/Wf+1VGJLWj0gyOEqCz36+nvahTdCnELxeUkRs6Rp9FRqBMDDMHSNuEohgNg6TNyjR6a2HbjvfbY5Z8rCzQrGdFkaVc9xRYJEmZR+J6yPJeVwZUV/OAWcnrAJTCOON6JuRcGigXzK/kGAy9i8wTysOHMHNF2fnfRYAEsPN5kntRjh49ioMHD87lSW7G1LPMuls1HS0zYz5pdHIdaO0eqLWjoPV74O+5C/bINzg38pt3o7n7KNbv/ibW774HzdH7sH73vVg/uh7+GjTfbNHc2+De1uGYdQVAjoMkL+sQNVoHFjYjhVWtsKoJs1UDMzOoT6tQn15h5cwVVKfVWDkz5FCG3Mn6jAOoTpuBTjtzPoeynsGbGXy1wkuzAm9qeF2zuTUwXfZHoijpBWAuIC2vKiIFAnIGOV1Pe0+nONXK8iAH8yNtF/Mjeb0O6LqyoXhMiWoLFhknlE3L9YdlYhmW3jnYYH6Vsou5KRZI4DjUFADIQDJMDks/ZWKSApoMkKlGsq4MaDYrwbCq5tilqmfJJJuBpRQqyM2wc7mYeUqJIhw9ehTnnOx5kntdhmaHy8pGpp4hE9F+00kB8YEQ/ZFxZlyaWqWZsgvl5mzDN7ltbepj55mZbQSSAAOl9UBN5WewgWmudVCkYGuCbTTaY10sZyc3vq0rdBLIU63Bmwo++FskNaQIQMik1jVIKbSOz4MUjdZQWRFoBQcPCo/avPyWAGTVA8j9fD3tVZ02yxyj9AsBuJLx9U2xQwApreNcBphzpliXyjeORXQDybrSB8i8T6t014nt6AJA2tpAt11kl7mpVa3MAFPDdy2UtcF32ULVM6jKZyZoA3jPqSQIY0AGiPmUu29qBfY5SA7NGjfj6xjb3zLbjH13SunkXTSzig8G0ceSBxrYwtTqQsI/J/+nKFZZ5gCZ+yVFcoBs+s8vDRyzDloRaK1jP4sWgNTojnXQFQcPUQhe4IfCGpuSTMUgWdVwpKEOKEggAZ8AiufM6BqgUCrOMwDGYtChZJcWgERWekuAUpVBOvv+etpjOqmB7zYlpAG0fPyRAubR3Grd/F8GiHlD8rxLTt4MgHftR6NegWSC5UYBFJaKgTBjlTmTNLMVUMtNBGwwx5pZDapbBktnoUzLYJmZluX3KVMD1cAEJ/gflSd4BH+v3l2ABPY5SIosmkH2b5RlZ6ibvbFPRZ14xayAc1FeyybzUPYn+Yvy57JI1pw19gEyD9yxnkGmcb4AGY54BSr5znro1sI2BKqI/Z81oVtrQbWBPdZwJ5HwAKJmDU7C3NfX2GzUrHPkHgAJZc/9YUbXXCbPA6oASDXslwRiv8qNarCOjc1G35+s19Ne06ncsAc8EmAir4OPbYwFKa158ji6+2QulQCd6MfvAaQE9qQKU74opCFsciigJwXyqAiQ7J/smE3WbIq1FYOhrlM7Ol0Z6NlK7L6jZzV01YKcA0woirAyCybpMrdTAQkoFQFecQxDDNTRc7puiu0fh0wguYH4keVWZav+klxOFp0UwEE7Ibk6Vg8JUX1Wbu7IKgM4Ohdrsko+YYpSlaXvvR/SiH9ZAlUGz9Z7aAfU5IsHh2stl6+ruBi6rVJxA1pjwNR16FhiKmB9LVQeCRV5bAhjBwqg1KHRLYVmtkpxhKtWZf3KvIizXjLVYz9dT8cj261TMQmcOxgB3mavBwBUwJIGQDNjmEBimTlQ9l8PAaRtbGCTLk44fcYkxypPUbjw2MyaKliRVrCNBmkFXVvouoNrA1i2Bq4yfM/WFbSrWbdZDe0c9Cwr5pKxZhV+rwdCpxJi94wi1pOk6EII6jkBsu9Bcujm6ZtTNprRbsa8s8yNeqroxB9mYe8xJ6wMlU+mI5/9MVDOM0g+itzf8vnc7eP5n1Yq7iOtnz7rWgtqKPomzYyPb9sOOgRB5LN16log5HkqMR13DZTUt3SGU12kJVHXwBtAkYFWXHzdekD6I+RVovIizmP4uJ+vp72i0+DYxMlRAC8V8v28C6Xb+CEvvR0VmD3CcfK+D9Gdg7vWGggRq/H3SGk6oKhFnAOka23w8dsIjnm946X9k8IqiaBrLvWoWwvd6AIs9awuomz9bCW8rwEABRfUUjM2lL8DQoCOCgDZ8WvvThg4iux7kBy6EYdmr/3vNrP//g0m+xgzKZ0KOgGAsg0kaRqeAxHKcPf5BOjc1Aok1phLAryNf6v1Kdo1B0pAxaV36cGRm3zFt2ObFnpW8/u24Qi+tmE22XLkHrqO2YHrAKuKhyFsx+c5ACWA2BhXDfyGRXUp9+v1tJd0KqTPFIlCno9LjDF/LSZXRZwLCCTmGOupulgQXJGGxwIzbC+9wwf/owBiv61cYpOLgbIM4lGRUdrWQlca3upohXHWQ8t9PKtZj1k9px/QA8pYDi8AprMg7xkUpdjCCQZIYAJJAOM34tCMdmy7jdYd+nzRTPmU0MmlIs6xI0JWXzI3G/FnO39DyDPBZe+r7PvkC00Pmz6Ye6l80mOTpDX/XkXwtksmtcAMPQAogo49+BjA++cY2LiA8768nvaIToNsMgvYUiGxz8OlBsdAwSYFKFVV88SRUkk4TxbQOgFkKETe7+xR/Kbs3nHZRDMHSDa/JnBc5J9MvkkXfZMCmLJPZpJyf+i4r/yepmy/8htIJgNtk0Ay/nZdFmQfkp5LY6dlAkksd4NtdLMtmun211O95dD2p4ROMguUZb8Xnqy2AThqVT7KpOycRLFul+QmKRFn+wDpYhkxFZixkjJipuYKImJqFbNr6DCvAHhtos9Fxw4IZXGBzQDkvrqe9ohO+XsFlGxSinbLJa18qDDTFWzSk2FTonKh3FsdfHDUY1gaIFtUv4ml4nomWGDczyjuizxqPNZ6dfPlGl3LZlW0gIqddRgwvfOgigr/Zt48wADINXOaODJ2rQm6N8yUu4rB0VTspwwWJhUqdHmpYCSYeYLqt04gOSBbcfJvZpv8Bl12u5NVJynmHEPcF4SfF9sFc48AZH8p3/Fqfk4RBlEVwTR9Jt06xo/J+vbqXmb+Hy1VUayE54ebW7rN5zd4L/BAeVcyl3DjH0/rn/10Pe01nSJY5p0ryEChA7iyGpQDYp1SOb53ESiFTSpTRb89SANVFYEDWoM0wYXKN45S/iJaxCVpBZmC9qPFo6k18/nnYDnXncYmk6t3HsoqeE3BvErQlaBXC2c1KqRwIwPABh1tAHWrCdR2cJqgKw7kY1dFy0ApvTAXmVl3OUcSmEByUBbdFGM3zUamoa0c62TWiVfoM8nFXdRVCBJQMbpuHOQEHHk5/4sSQKaqO3nuYb4flSEUh7urohD0hpLlfOU+FUl9iWHsXnHeqDaltr20kYXnaIN1TtXraS/p1E/dAcIkJx9HMoByULZjoASSZYEI3ocM2TBpUsIke6wqZ5QqA0apiuNk2SKYYxffY6lVXOaHd2V0uPUh4C18qJ0FWVWA5ZDYcM9YSR0RBqkJlji/0jUdXGVAwbcvfTGVS4F9C2UCyRMjW5mNbnb/m932ZNcpyhIAKTe9CAX/B2mKDYkr5WMNVqmi0zh+nUevipQgmQC2D5Z5k2bqgXSh35g/KOZ7lRG7MfBAzoGwScXrFrUo44GyogRYDACLvh/b5mS+nvaKTrGk4MjnXIM3Y5XaROtBrk88jmd2CeOgMAs7cwkksz+qLXTwkau246Lksb4wxUkmm0QDqFmPfux37n/MATKPHJfX4tLQPoGlrjVsM38/Kwo5j9oGEOfcSheq9Li2g6/SMroqxG0h58daQFfFvr1SsffkbplZRSaQxPI30VZAYpmZ7jK+kpNNp2UlBx/KQs3ziDpposwgV26fUkTKz/sgKfVbtQKq/H2tQ0URHROlOdQ9zdYXSg88vbVl4IFzUMpl7FLOTradRD8uUXJrv15Pe0Enl1n1x9ik9bw/Er+0d/AuWQ/Eh9k/rlwVymUmViCa9SUqnCoL1XD5N28ddAiAE/Ak8VlaD6WD+VImfsEWSppge5PWfq5xiijvQbvzQGhmLkBJmmIJSaUVvKWYjkJSKKQJAOn4s8K3L0ewATSLk5pNOLJ74zi8E5uWCSQ3Ids5g/EDr7ey/72oEwAOTgmFBNSIf6HoPCCJy5WG0h10rblsXEWoW5Vmtz3n3TIgKeAoRc4FIE2lIzjqWkdwjExWqorkxZy1BFYQBx3ksiD6cP78ZGxyG0xIp/L1tBd0EoDsF6cHmKcR0jWolIogSIqgdB3y/ig2HleoY4pQhCPvgLoHAME6QQD3h3QOZsYgI2kX1FvGzyUq1bGfkjTBax/NqGNSVq9KucY5UJKYbUPUrES9SgAPA2bwPUorr15HkmhetdmkYEgGaiPvJpucQHJEtmRa3IF9bPf+dksnqdc6uA3puf51sfWO7qLZU9caznqY1qH2FtaHmSxJUE+qzWp9CZ6lqZVBURjkqias1BpUEcyqhpmZCJRU6bDkklsSSUiUQBOhfRaAMs8L4PJiC0BPeQ+/xWnwfr6ednsfQ8J1d3nPDkCeviuPeI4r8/C+B5ZUml2HlqJ7HyiFRSoBTGdhJJDMJRapC5CU/EUGLl1zioawSvErkg33VNBiCD8FKPPXzjrobJIYU0tcmXspKVTxdQaYCxM98sYBsQnziYGrCSRHZDtusu2+UU8qnUIpujkRthVARsBRCijrOjC7UB5O29DRHACa0MHDeZ5Zg3tGAuXsFygBssqAsiYVAbJaNYFJaphZBbOaXgsgxr9aQDM0lyVeJsAPeW1SQWcEKOP3c19s3dS6VTmprqdd3kcuLlgqvPdZP1A/eCwpDuGVgkIfLAlaBwbpOJdW6v6qzNemFBVAqfrFz+sZNNi3aGLSfml21S6v2ar5s1qHdT0QzKXsTnAFu9RKzd1PQFmYQ/bjyEFZVQAeM0YqwHBRUXUAfD+FXEmldXleJa1m4Hzvhkwg2ZOdmoVudJxFxz1ldCrYF0HXAo46dhdQuglszqFyJjPhEFYALoelUkBBFZYum3sL1OSBOjUpVIGd6kpnDFKjPq0O7ysGzlkduhgYmFCwObLI2BuvKspqxb9s5ivBBn7AXDR/Qo/P5Lovr6ctyGZ1ssHM2gfI0vTa207xpC0VrEdsqO3BtXzjdWI71iE3vUoAVwBKhrEgmVnSSE1X6+Cz2qiuYJRSGUfH73StgcbCZ/72Ci7Q4b4vMolMOuPvXKa48DLSc1t4peDD/ZMv+/fIbvklJ5DsSd/8ITJqVhz5fKP1+tss2sfJptOgZACpgrkyNngVptZyix3bpDZAZjXzj2hOcKbGQlspcD486y2YZPQxMlOtVk1kksIg+wCpV2uY2Up8rWsTOqynruvcWDZ1ZBdTqx8yFQHlTS7guUA2Ayqn8vV0InXy4D6gLiwFHJdmk0pMlIAPYOmUglaJVfJGmQWia6Lug0Apx3EWBuhV20nssi8tEHIZs1T/Jr2s4KAdMv/jxkKhndai7xd8Wfrx8/dLmFp3i1VOIDkg+VzK9z4bW7e//tB6x3PDn0w69W+ZWMM0gKOPZhVhj2xydYGtVascuVetlhpwaLni/MlenlcuFHyW0bcZgnOUVpE9Mps0MDMTwbIPkDq+rqFnK9wktp4BFXdbL/6kpFa4oedYpDDL/ox4iwxyP11PJ0on6+cB0rrEJAFkDbR7++6xSQZMfu/ljxSzyoqgbMP3iQ3XDGWl6zAMlPK+mj98eQ6Cf1KS/ftAKf5JpRXQWMDlwTpJBAtj2lQviE4AMaVSZdGoAzme2YbRx69yawyVk8z+mO+WTCDZkyFnOgbey2fA8A09tP4yN/ypoNPg+lKLMponuW6l0qFnY1WB6g66NfCuhpmrJaliGytbU9niaqDuZN4PL2eR0Qe5mgNlnQByVjLIAiBDl3UBy8Qsa8AYBsfclDb21zfBDjHNkfOdy365nk6ETtYzAI4BZGST8IMgKTvn1mcJIBUAR4BTycdniKDNDFANg6LN/JNhV0rxBJMAeK0jWOZAuagAhtIK3TE+cwKUVjsoUrCtmG35qBTuKdmbcz5OPIH8/kp5xZKyJVHqsShHXhko1ye4KsSXX7gu+gySaO7e2C0WCUwgGWUZs4zqvR9iTZNO2fGz2SAzq8Agg7kSpmWArA2oNTBuJTr7c5MR3+AERRY6tLTKuxnM6ZjlWApYStSqrqkI1mG/Yw6SK8V7mmWg2AdIYZbGALpmgCTDjFKXgBlZ5JIAuRMPgZP+etolnZyXYB0PG5LtfXjfB8d+xGsuMqJKJb8kQUXzqw5g6SBugToDBcWv1RpiM+9okdGJVQpwko4Pc5UxujGxmu8nFSeS3F6L8xxT2ToAMd0jr4SVItBpYFKaNWzWJXss6s/mkeHSlzW6LDJ/JJldBcW+TCCZyUbmlwUTxg1v9v2kE4DS15AxKFXV8M0aVFXBdxVoNoPJQsMFHCneWE3Iw+pgVjVs40LPx7KBbKHfQLPYEiRNBEeqTMEeqU5+SQFFqmdQK6sctJODpanZ9CoMsg+QASSTGXYAIPPqLAtO536+nnZbJ48EkB4lQFpfgmMK5pFtkwbSFZSCk5KDd0LRARWq2MSlh/cKmgjGzPja6ZrEptq1aHqlwCQpmPg9aTjSINKo9L1ZB4+0zO8nBqk2A0gVWaV3Ie/RqpTK0bPnjllpOM9YR3CkHjhSVcVUqhjJKgAZCp0LKMbfvUzQ2w7LBJJBhmanywYHHK+MHeeU0CkDBDG3KlMBpoYyLWDaCFRD3UAUEajqYoUPN/Ox4zqQTERx/TjbZXNPqqhjog9UByCkiqNXczapK5PY45B5NXvtScPrepg9ymdDJtYRP8t2ySl9PW2jDB1H/JDeI5pYGTCZPVqXwNG6BIrDvskMMAUcwUstQEkJLD34tVWAIQNdUWKVioBuLUy6Gm7WHU2UXPTch8LnOkuv4mWvfB01DIyVRadVwSq99REsY5eQgXss7zOZuzEoxADkplaqTArSq01ZkKPiNCqYqvRHalMuB8Zut2QCyQUy5xfA+M17PDf1ZrY9GXSKEiI9pX+eqmqorgUq7sEobFKtzOai9FRMC+ng2g626aBnobzVaurIASAmSYtIablo5qlMqqAT0k6oqgrmGMExZ4umDubUqmSPxsAvMq/GwB2zITgOlTcD5goLbUpOtetpt3QSgJTqTjlA9plkbnplMBWwHNaIlIIm/iXCJBUyNkkhpYmCGRaAVoTKzKAyVumpgWoz86upI5MEaZCWnowERfdBEaGjDCDz4h11F+6P5Mawjbx2C0ES4PtM11LGMZR1jBYbneUWE3RdxYmqChNlyTMWgOSJJ99PPlhgxkytu2l+3fcgucys1feWOy0nu05zn8eoTpn96sgmqbbRlyPBB0oTXNNBEcFVLed2tR37K0MPvbkSVyh9MfnMlW/iime1tZkzt0aGKGDYB8f4PoBinz3GAIPF4DgEjP1zpnrrHA9Y5vs8ma+n3dBpWYAU9sjLEP3qOR3JufmiFrlopbiaoVIBNFPwjoCl9R7aKVQEGOIUp4oMjLDKLrAtG4J8yICkYbFYN6TYBWlQvZbug54J1DYdFDWwdQfb6AwsHahK7oyhHpWRKQYmWbo09HwxjsySQzVHg6uKI8MXmlr3gOxrkOzPVI/nZtwuE9GpopMPoJh3YQeZGLCTt8XJQ9sNGORs1XHngKaDDQDJ1UNsLH81pyflIeg63ZgBHMXUGoExpG8oE/yPwiJDiseG4DhkWiUqA3aCbnlxbHnfF1Ili9oOOVWup53UKQdIFwAxLlECpDDJLgPH1spr3l+ekpSXdAMQutoEZik5vErBkIImBkhDvF3lFUxgq44yVpmBiO90jHxVpoIjAkyVzK+mQkUaumKwtMGK0lUGtNZA1wbdWgNddQVYSnm5oQjy5PNMvkndA8honalNZJEyQZWCHGmyHEyt1DOxajOYH7nbcuI1OIGy1ZnqZsLMN7uvU0kn3pn4TUJ3dmNCg1UbCxsrJKBks0sLqho2s1Ydl9qyWd3HkRJX1DMnCZuMZp4+MFZVyRqlMEDmc1wUlBOBUdhkjGTlh0i/KDaAojB2X4qqQeFlVqp2udONU/d62gmd8lxIAboNGaXzaJ2Dc0DrHIOrC2xyBCxjCoVFCZKOQbLSChVRBEjtFCyx+dWSR6VVYpUrpwPdGjzpAjSVIuiqhjP3cpoIaVC4jrnYBTE41vxn6wrd2jqoYqCktotgKYXLU//JkXiBEKQjUa45QOb5xjJJpVoKcUjlqlSUw/VNrdkkc6PrYCdlX4PkVmfrQ36SrQxcvs0y/peTTafC1BjMkMo70MpqGS4fAg1Ia/i2Bbom3EAt9MzGupRShWdI4uw2AmUWDBDTTioOFIgpKNUccAprdGPRqhk4ep0xSWSgKL2mQ4BHLjlG9su4UvhSKVWA47JAeapfT9utUz8XUlI9PHjZB0ifAaSwx9YmcJTXQJoYRfNrqCYnrJKDdzKQdAStHCoiVFqh1hQrSlVeRX+lJY+KFOo+qxTQ7NZjUA+ZCv7YvcEEy8ytqtagqzVQZQKr5P6OYrUR/79rO5iZgw3uDWGVIlJlJ0W4ZoFxASClnKMszaxOLLKq0z1oqmLCKffZWMDOdltbNpJ9DZLHM0vZyo06NqOW12P7OSl1ygGSDJTmRrKeDOAd3yCCJjpEunUVlGnhuwq+baGkGWtoQuudHe0ckOdcRWAcip5bAIyjaRwbAaOfTwkA5oM45Hz2TzaFB6cLX5L3BVAqDAPlvrqetlknAUgBvwiMBSjKd8nEKgDZOg8X3lsPtNbF/Tnn50EyE/ZJ8uvKEQNm5wKb9KicQmt9AksCNHlYnQCTa5QvYJXBteGDr9KZiiehAZSoXoMVRnmsYdBcW4dtuxgs56T+a2bJKc6rxABUyd+ZB8fpLK3KzOrS919YdPIgOHFt8HKj62k3ZF+DJDB+Uy+6Acd8KkOz5s3oMLbtSamT+Odc8kt60twzj0zqxN4vEC5AVluOgJWCzlLMOTP7xIbNUiA5q97BnTpCkFBVx8/ExDNqSs2DcHJgDA8gKXjtslSAvOg10Dev9k5LBnSJKfJKXJkl9CcMQCnnejOz5lPyetpGnaRYgIDgmB/SZet2PQbpsvfWJ9CMQBnyLBdFL2tSaEMJOFICmA6VJlTkMDOE1nqsGIIhxeCtE6N0XqEiBaNnqWh6YJUp+tUAaxXnVJoK3twHbyo4U0GbClStoasMdNvBVga2FTbZwkkswAIrzliQnDDHGCBXVymidWW1qHsco1jjPRnuO4xf97vFIoEJJEdl0Q3oB9bZzD5PdZ34gzL9wyuC0gYIYKLCOilknU2iAoyxS3nsRWfnflfq6ZglJOdsMg8tD+Zen5WOG/QxSmSqrBOA0XlwonUGiHlu3Fix675I8WsKtTElf0720QdKBzVqdt0v19N26iQmcZngyFjmbNJnAOqRAWgoS8dMMjFK6z06AcucUYZrYsRDAE3JN0kK0JbNra1jkyovHVpHqIiwYogL+ueMUgPVCKtUpKE6k1JFTJVYZVXDG/6rqjX4tklgGZglR5O3WZ/I8ebpiyLI87rHMaJ1Jc83DpPQgYCd3WKLi2Tfg2Q+CEP+jrF1+58vMgssEpUt+w+Bk1mn+Fleg9E7voFz/UIULFU1fNuEoB4XGWQExzxwQBoc91pvRZOryfMVaR4U+2wx+8wrSv0Ds2AMj8XFrd0GZzcUFItM0sOHgKUSLHOgFMnNrhvJqXo9bYdO/UCqNMEZZ5HWib9S/tBbMkC2zgV/pbBICQTyMYfSZrRSS+NwUkVKSEUe1CGyyUpTAZYrhuC8DkE9oQsOcVBPPcQqxWxJa4lVmgp+fQ3e3AtfVQyeXTsHlq7p4G0do8sBLKhwVQbJpaIdK7EJQAyKy97nLLLIkVwwjqq33GnZ9yAJjJtvlnkIbGZdWR8YfliccjpJ4nxIBfG5j0FyJ73j77xjNugdlLAyawdvBBXMq0VXDZXlJUq+okSeDqRqiAk1B0WutCLAiNF6nUBZsxMYr9vJP1XBS2kyMDDK+jlYOpRA6VRpdpXj5mxyX11Px6FTLnlAVc4iIa8zFgmULNIFIGytQ+sSQEazazDHNpZBU/4ANtnmYnKgjH8heCewySocS8Cytfw3M4RaE2oPWAK6YIqtNVfrqQOrjDEBwirFV2lqzqtcPwZfr8E3a3NgGf2Sudl1qCqW+CajudUERlnFyHEp7dg3txYsMosB6I+1jNXQcqdlAknMn+z+TbuZbUXGtl12YE8ZnYgAT2xnDMEuCmBWGUAyRrF5x58D7LvsXZ0+gm4qdRcjZ/NUjH7N1B5TjEEbzsM6V7BEiXDsF7BeVKNzKPE/1e3kDbm4dQLMMWBcND0uGHpvDDaSU+Z62qJOQ+k4c4FVvlxftslZJKd+BLbpElMUgGydQ9MlgOwyoLRuWOscJE1Y1gEEKy0Rrw6tJbSG0DpC6zRm2qMzHA1rQ4qI9bwPqxXqwCpVqxMQtYFZij8wmGC9qeHrWQGWqmugu3YuunwMKMU/SXUWlCMMcmU1q2TF4DnIIuVeXWKsd0v2NUguouubCUoYkq1uu0zgwlZl13XK/JKeAOUQgQqug1IBFLUJkTDp5pvbp9w4WducHBBzUOxHoMZcOAfYEI2YRzL2a3JGcMRw6TFg/gFLGdvTpKDCL4gdILziprsBfDlM34N8AkrebwJNvYBB5ud/8Hxl358y19Mm9o8N9tM3tYqIqVUkLzcneY8Cms4jMso+QK6HJb93cyZXWeo5NkkRJI2ApWGfZGuYxa53DivGYd0QDjhdmGCt8xwR63wASmaV3jbMJslA2QpoA6usV6CaWcYmM7BsW/iugXIOvmsA56DFDRIC6eI5H4oHGMhFliYBUtpxIxa5F2TvabQHZOxGLXxpS67b/0xksw+Ck02n9CYUE3BMKOEVlA+g5jNgpJHohh5rLJijRNBmYCnh8d572C49zPotj1Iz3QSGsl5eZgwogzDGREBSSo/F16GailIhYMkzpSTvYV0CSgywSe85LWQ07aX3ejPjd7JdT8vqtFURf2QuEUiz6yDmVrp0bbksmlUAsukcms4WLHLM9DpsdlWojY6AuWIIba2x1hFHvUazL0e/rhuHA5UO+ZWO2aQHrHcMllRDrwQQsmzmVF0FZWsoXYNCQI8SgJRlx9WxfNvGNCy4UPbCZUA5ln6VVbSKXXSqsu5ximxNE2CR47metkt2FCTvuusuvOAFL8D//J//EwDw1Kc+Fa9//etxv/vdb3D9tm3xC7/wC/jABz6Av/u7v8PBgwfxpCc9Ca95zWtw3nnnxfUe97jH4SMf+Uix7TOf+Uy8613v2pR+Yyd97Ebs36hjn/X3Ie+XmT2fSjrF94r42pckeyX/dPQ/zu1bWJTKbpweIApLFHATf2JuOs2TwPPcONlGKqfk1VLy6ikIxxiT2K29AEkuPVYRgSRUXxO8D/luLgGl9wpOeShfRrFqVR5nKEeyL0NgcipdT4s+W3Q+tkP6VXQEHPO8yqZzcwDZZ5YAMGZ6nTe72sgkG6MDg2SwbB2htYTO6AIwD1QanSGsmGR+tS5ExJJCXR+ACqwSuuZo2C4wTF1B2ZbBsmvhV1Y5mK5rI5NkkLRzKVlFOpaUm5MiHlLmsZ6BVlbhdRUaBOjEIiXADstfT7slOwqSz372s/HlL38ZN9xwAwDgx3/8x3HNNdfgfe973+D69913H2699Va89KUvxfd8z/fgrrvuwnXXXYenPvWp+Mu//Mti3WuvvRavfOUr4/vV1dUt6bhodjo0QEPrLvNgWCRDs/GTXSdekcp1NLGvEUipHf1tKDOl5uwRpV9J2hkNgaKYTov3CKaxXl5b/7U8uyQpXGTI7yilxmIIvwCkY4C03sXXgAtAqgqgVJ59lV5O7AJRmAfL3EQNRRuCxcl6PS3SqfjNcj7CtTfKTrMvSClwwQAFu8SvkQIBuSl2iDE2ATC7DCxzgNwIKOVvxRBqI4DJYHmg1qgNYd06rHSEmdFoK0LrHFasxgFHWDU65lZKuggXIahhVuqULqJrLpjeGnjdRbD0bQMfAFJ1/F7lQAmkqHMByTxXuaoTYJqKATIwRzGzRha5ybSP3WSVOwaSn//853HDDTfglltuwSMf+UgAwBvf+EZcccUVuO2223DhhRfObXPw4EHceOONxWevf/3r8YhHPAJ33HEHHvjAB8bPDxw4gMOHDx+Xjks/7Adk8MbD/M18vGawk1WnyCb7TvhoPnVz3+WsMQdFa5OvMGeBHnnpsASKYjoVUCyrovilE8DHqqUACaw0qSLXrdJcQcVqFAAJECrNUYgClN7zwxmF77FXEHvg3CqgBEcJfsoAYmysT9braWjdeJb8gKm+dy7YzxuWUID3ERxzSwGpxZaDvrgMMFOQTvJHdhlYjple+9IHySawSQZLZqlNZ1AbwoFaY7USNskBPRwBS2grZpYeGavsp4vomhs6h/xhZRugM9ySS1dQroPqugSUeQUs8UuK2TX2sRxmk/3+q2VFqwSQ221KP17ZMZC8+eabcfDgwQiQAHD55Zfj4MGDuOmmmwZBckiOHDkCpdScifad73wn3vGOd+Ccc87BU57yFLzsZS/DGWecMbiP9fV1rK+vx/dHjx4FMDw73Yz/pS+LZsvL7u+U1GmgBmMfEIH5Em954v4ybLFfNkyCKvKwfecRc9rS6+xh58cfXkDKawOQ5bZRrKCSAm+AihQEIHOg9OD1FBgflQdUMLnmZtY8V1Ie9AVA5ks/P+lQWb7ZqXQ9DYLjEFDGDUqgBHhELPpjwAeL32XnXyugHdl9PxdyDCALoAyWCj9wrakwA6NwrdUmBfMIMDadw2pYNjW/bi0DZBdA04WJ4CCrJEkXIVRigu2k4k147SxgGyjqoIyB8p7Zpfgle7nMrPt8eUiYrIgHGXhdReYYfZGZqfV4rRbbLTsGknfeeSfOPvvsuc/PPvts3HnnnUvtY21tDS95yUvw7Gc/G2eeeWb8/DnPeQ4e/OAH4/Dhw/jsZz+L66+/Hp/61KfmWKjIq1/9arziFa8YPc6iWW1/YLZqXjqe709WncoVSkAEElOMrzcAxty3uBEwbjaPrcsecvkSKCMQAcQwfXlwtcrHTg7csSGBYvh1AAikPMgD5EL3dxX59qiorM5nBMgeSKrsfZFWIzmoveTsk/566k8S+q/jRvPsGkhsUoEvQFKAVwo2pOrwOefrTFMIxMp2r5VCN/DrhiJYc9C0jq87AUcfJnBDnWFUMN1bUmitA5FC3QX/ZOficrVmZrneGRyoHdpaBysJ+ywPVB4usMuCVYaUkTp2F6lhasNmVwFL1yWwdB3/Cbv0npmkG8hlDtWv8gC7xXWRlzOznih2uWmQfPnLX74QcADg4x//OAAUSdAivpccPSZt2+JZz3oWnHP4zd/8zeK7a6+9Nr6++OKL8ZCHPASXXXYZbr31VlxyySVz+7r++uvxohe9KL4/evQozj///A11AOb9H8c7UNsxGzpZdBrar2CPx1AOYj8CNaVn9NsViSl1zbpBYFzrbGSKrU2gOO8jSmAJjPuJZNkP05cHFrNIgtPMEl2khCHRWvlYp9MpKSHAv7X/lCFVppQUvsgMJJV3KfQyrutCbqqLpu2+2bv/C/fq9SQ/eY45DoCkGgDJIR0oFI8gtrjCKwUneawKbAJX+fusSXIArtGCrOAUI14OAGUASNe5CI4ClPxz0n5zNqlIQWuCJYfGUgRLCQgSZtl0hgOEZh6t1bBVciW0jkIULkfA+sAm2eIBeI2yZ2XXsF+SAnBaDTiumgXX8VLPT9iC8jGmoCjwMVAG0me+yDE50ebXTYPk85//fDzrWc9auM6DHvQgfPrTn8ZXv/rVue++/vWv45xzzlm4fdu2eMYznoHbb78df/Znf1awyCG55JJLUFUVvvCFLwyC5MrKClZWVga3HTPn5DfpRrPszZgIlhnsU0WnXI4HHNnXM88a1zubvXbZdwkY84hDBsky6rDbBED2GWTTcZh+5zyH3BsPTthIzJEDdijm2VliNllhLIq19EeS6plZvSvBsf+QUhSLhao8RSb7G5qi7sXrKe2wxxj7DBqYmywAaV7gZbtodmWgVEpBhyN6pAmMQij8AE7dyQFSuzQmmhTIqcKHnEt+PVmXzKvOcRPjyCh7QWK8AQOks6ynJQdtCLZzsIbQWAbJxCh1Mek7UDs4b0JtWZ2qSnlgpj18YJw+sEqOwM56VtaGcyu7JgTZdMwsXceA6X0aizFTdx54N1QnWfKZsfj6O5EACWwBJA8dOoRDhw5tuN4VV1yBI0eO4GMf+xge8YhHAAA++tGP4siRI3jUox41up0A5Be+8AV86EMfwv3vf/8Nj/XXf/3XaNsW55577vI/JMjQ4AzNqPvfbWb/qvda9jFm5jpVdRoCyH4e41Cj2xz4cjBcsy6yRgmBX+vsXCh+7hdaHwmgWDaIoow4DEnbjiMNs60AOJAFtNKB+XqQkrSS4YdqblYVs5+StcMMPgJkARaZ7j74iZQK64Qi88AgYOZyIq+nodeD5lSZJAAlMA49qK0AI7PrXCcKv90Gs6v4JHVgk0pxuo53yeTKAJkxyixNMLcy9IsU5tdWDoreeVjrwlCmdWJXmAC+ihQUAc46kKbIQO91Hk2XX4fzf6fPTMzjbC0xQFcMkAcqDaeBGnIvsp/Se8CRQqVrvkYCMCrHJlhQYJK2C+MxfMVEcysNmFylqEgo+FFsh+Wvp92QHfNJPvShD8VVV12Fa6+9Fr/9278NgFNArr766iJo56KLLsKrX/1q/MAP/AC6rsO/+3f/Drfeeiv+1//6X7DWRv/lWWedhbqu8cUvfhHvfOc78W/+zb/BoUOH8LnPfQ4vfvGL8fCHPxyPfvSjt6Tr2MNhiCGNbbfRumOg0d/XqahTsX8vSfzjATmdS/lnTc+syiDJYCfguN45NNbhWGOx3jkca7oIjCWL7AVQ+GFTV/xdpGKaR62pYJHzJccIcjtxxKuGIzb3kgWqEPnHeZj8+ymjkf0C6DmLnGOQwScUFB8EiAiMysMrARjakF0uGvPtvp7ydUbZ45j/Na/QtChoR/yz4qbNdKE4SVAhtsrDK448duD5hgog2je5aqe4Co4wzaFySHOq+MIfyWAXPvcpiEeWDsHsasO1qBTIMAu1mqAtwWn2Pea+z3wi2DmPM2aGJ5yZ+ZXZZfBTeoqBPN6DTa+BZWoyMMYwMM6BpZlnk/2UkJ7JNS8CspGZdZnraTdkR/Mk3/nOd+IFL3gBrrzySgBcTOANb3hDsc5tt92GI0eOAAC+/OUvx8ID/+pf/ativQ996EN43OMeh7qu8ad/+qf4tV/7NXzzm9/E+eefj3/7b/8tXvayl0FLX8FNyjI3/UYDtggg+uup3nJo+1NJJ/k8mlx9ep8DJLcbQojMA4NgYI9rApDWYd06rHUuMsc+OMr7pvdnvYftXBEwER9IPZAUcFSk2NxlCIq4KMA4C+0AmMQqXHgQ6+Wq9ojvkZSaY5HKdSVA9h9OfaDIKhVFn6QA5hBYZtuoLTDMrVxP4ztbAJC5mXmQSZe+Mf7Mzv/uUGyfQlCT+Cc1eTjLfkhPbPb3ACpQGEOFNjO5stl13hwvfyJ5OpFce9H86pOfEkAZyBPMrQBfk+QpgqV3Ht54kPM4Fq7DeVbJgHnGjP2Rcqnm996BymNmdDy2Q2rFVQVWqZWB1uFasR0H5zgLeDdeOWuoWlZudu0FlBWXQO/1cV1Pxyk7CpJnnXUW3vGOdyxcJ78gHvSgBw1GeuVy/vnnz1Xb2W7ZCqXfzDb5IC+73amik4OU8RoysSbz61pnA1ucZ48Ckscai/saG4Cxy8AymVgb69iP07lBP1B6DvMvUREc+XMiBdIUTV2OHKzXPXBM5rYmVEWxwY/qSB5I8+eCFFJtVwFHpM84g6QrATI8mAp2yT+gNzhZUQZ5r6S/5zxYxnXz6NhsP/1Z+0bjvuUH2QBAjrHHgk3ny/6+FHEfz/x3A6ESlIFWlOWHKLiMVToFeAU45SNzrIhgNU/mKs3+zVYxQK13bpBVaqVge5/5YEXZaNImEzbvFZzzESxdx+ZarQneazbf9q7NoaA0YZKxzJ7jEowrhuCNKusXBzCtSMETcV4lmcAqu+w69OOMPi8lKQXMh9LCFshWnk/bJVPt1gFZNACLTEabWX+ZY52KOsVtA5vktI5UNLpz8wApLFI+E/Z4X2MjOPJrG5lkax1c52BtAkjbpZl7HoLfl5xFak1Q5KGNguo4eAIAnCm3y9nDeoh4zXMveVmuH89VDyi1gKWAYR8gxTc5FMBTDEJgkeITys2rPbAsfHdjea1Lyoh7d042tFD2A3P67HGMSffZZC8lBlJHNzAZpQiGTFlxAIBHFlwWmGUVglw4wEXBkUKr+PPGJr9kDpgbmWJzM2ueOxl/GpUTOG3Yt6gNwXnFp8F7+Eoz4NXJojYMkvy9XJ954XaA/ZS5uHCvah/SnxSDpQ9gqTx3CBkN4slMrPk1uNPPp+2SCSSxNca12f1vdttTVScBRwCxqLQXJumyKjkharUPkPc2XQTEPkAeayzWWgvXOXStZQZpXZxxp0CJ8URuIPkiFSnYAIzWMmCKGABr4XVebzM3dwGlmS3WeRWSBsW+R6hoahXA1AqA7aBslwAyhN5HZrnRDJ6dWWwO6wNmMHcVYJn57pClkMyxy56MgeLQxzlcZHg0KqOBSrm5eSjaNSrBn80xah8agHvH7Abch1EFoHQyIEBqnQZgZjT7lDVQBbdA5fharTVXxWkCOOavdbiegBS1WqjpE1BG4izXjhS0ifMBy3m23jOLdB7ehVSjMBjHXGnpGJIx8/8BiOk1L4rhg1VEWCWDpdI1+yfVSECVSN8PvoFs5fm0UzKBJJYfiK3Q/GVmS8djbz9ZdOo/C+UG5QcQz9o9JKeLo1nXO45ezRlkDpD3rHURHI81Fk1r0bUWXWMLcExM0hUmrkXVTphFquJhNLSezXyU/d6Bw2Xt0vlgUFQFg+Q/ZJGsCSBVZuIa8kvmIJGDQvJJloC5IbPMAl3GgDL6med+afm9gGG+nkICSrnWeKXxQJwhgFTZORh8QMu+e4xaeRejK5Vz8AbQwiiD8l4p5IHLznPXDes9ZpoZXUUKs2A5qGPUsy6S/nWYeOVpHf2zVtYKnr8+pa6s8ioAJk/4SK7NBiAj9xUvvzlyHq3zwGz88T/zhPyHO3Dakg96OzC71gogaabuunCy0/VYWCWWYJHA8s+n3ZIJJDch2zmr8QOvt7L/k1mn0u+RWKRz0oE9pHu4ZGIdAshvrnfomgCQrYXtfGSSAo7WZkncUqQZwFxJrbBURPAhWEcCJExcD1AdB9e01kF38wxykegAjCoEfUjwR+o96SIg9gFy0OTKP6Q4RgTGsPR9MASgctCIZcEoPAIxFxHaz2nrA+Sin97/LgfGQUaZR/P2/V5DAOnyycKwIgWjFt+Yd1Ce0xJUB3jtgt8t5zIq/oYqnNKZZ1Bc8RT96BV51NpHn3RebCJOnMiFlA5O65hzVGJ4Eie+yPieAHTJFCv+TAONrrfTYyN0XczAeW5uLuXnAaIIgAsF4YO/lvunhglGZtqeM9tvwReZy9DzaTdkAskR2Q7n8HY7mE9mnUixT25gAh2BUiJAGRhT+5/Wcmg7B+mUvsdjjS0AsmuCqdW6wCgZHG3HvfDyP9ezeVEGkmRqeKehjUZ4MkT26JSCIwdv2NS1EThK8XMKaQQk78GmVvFBRhZpBwCyayJAKtf1gGIEFCT1I4JjBpbIQEOHkP4AlhEol3igzQHmBoF3ALOoQQa54cEGAFKCR4DS9DzARpWgUmDUSgJJAlBKgryHMEr5/ayl/DTnEfo2cuCLmF3Fry7BM43RqE2q8KRJQRuKAEghrcOTgnKhDF3vOnI9oBQFKJg8lVfIr00ABVAqpbBG6TrXpKAbG18DedF+vhbXQhm89c4BRYn9EihBYfSchyaOhqXccjEWTDY3MnNH2FMygeSIbMdAbfdgn+w6CVAW24vZNbyXqiA5YDZW8h1tEcFamFgzgJTX0dTatXAdF2a2YQkAvmeac6EosyIN7yzI1OBUawAgqM6FB3yZ77ZI5AGkM3MqBz9IkIcwSgZI5R2UAKRtSoAUwPRcXFpqZ3qUjBhIrDjV0XQlWIJBwxMYkINfLgIOgmnWgWluTySYI76WIJCFZyOoFNdVESgFNNXQwxUZO+wzyCVMz7nEUn1hQpDA0iWwBIDIKBNQ8lAnMBL/pAs+7opU+KNodpVKOM0Qm1SBUfpymkBqvmXX3LUKivBlweUrvPNwil0MAEdiO1JwnUJDCrpTONbY6CM91nThtQUphXXl4oRuPfOfa+JIWC4gxX50kJ8DypiqIi6FLbDGvQaQwASSc7JbM5n+cRYd91TRSUHKfQ1L/sBxkaGhyHXM8x9bmwXoBBNrDpBd08F1DVzXRHD0zsFbW5hbCzOrdlBkOZ8rSp3MrtEUVs7yB1NCIoNE9EdVOplalUJgkIlFqq6BFJMeBEjXAV0X2TBC26K+eLTgbgwWcLoESzJQruNcweCCjECZpU2I6WzOt5SPWQ8glyCSHBQDBksBykL6QNljhxEg7XzOqOqBZdwuT2XJ/LMqfx2BMiyBHlDymWVWySZr8U/Kn/OS8pNSMWrD9VVTDVeKJny+nvja8F7F60yWY+KdK4DSKw4yS6dQwXYeSgVA7hQaJeBoY06nvK4N9z5tnQJ1Yv1waElBKwcl5S5CWUU4BUXcuUaBAZJ8SJsJapOav9eP5zk29HzaDZlAsidi/ukP5hgoLAsW/fX622zkyD4VdAJSwAIN2V2DFD0h3XwZOQFJ17kYwSom1vi+B5Cua+GtjYwSKNmXMEjleEkV4JxlxuYsvNPh2TsQUOF9Eeqf+3okYEMrjhIsA3SyxPMQrJObWQUglW1iAE9sVRR6+8VAlRwoI4vkCYAnV4AlDEqg9MG82vdxKh3ezwfrCPuTCkoAMnNkOj9D5lQCTxQcSqB0fr6WbdpRz4zaKyrQN0EDiX3GvocA9zqEhVcqAiSDcjC3kuP6c/KDnIM2da86DOsMIDxBU0rFkNk1gWXwVXYEF4oAqM6BTMh7jGZUD3JsTiWUk7F8UpcDpQvbOOehiF0MpBSsdcl/Hthknp5SG5541h2zyJZ8LMZPweWhQ0lFpQDybBJWGrBegTzYNxmIpfIlOIrm/aCbnX4+badMIDkgQ4M5NiDLMq8xUNlou1NJJzGt5QDZj/JLOYUpOpSjRl0BkHk/PhfyHyVAh02sJUC6AC45SAIMhBTMqwKUZGq40DxQvuPmzMO/Li9wXXYM4d8qJrhoaqVQpUUhgqeGgxLWGApL5wCJln8PnIMPS2Qm1zkRoMwa4HpyUAZSGCiVFXMdFBl456BU1j3Ec3BGfxwHx9cjtjiL5zZ7k7NF530sw8cWOw+pxxdBdcjs6nvAGFjkkI9WrAV9M7SXAEzK2bVK7NGbxCZ1HR/22gCk5x+XDjz34EAeXbgKnPewtS6uX+t8NMF64+EspVSOEJnKoOiTGdZ5DiRzLpnR++ffcYqGcqXZlV0HyQIi91CZouJigFHrHCrPAWkVhcA0BVSemS63E1NZ1azEJgkc0JNPeoZihrbr+bRbMoFkT2RQljE99mdLG62/DKjtB51yc+NGMtRyyAZAdDbkQfos/zH4IMX/KADpormVA3byh6cNABlNV9ls3Tlb8Kih4gNAWUxAWmflrFFMrQyOiUVWwiKt1MZkP6SyLQOkbdi82jXMHrsWvm0YGLMo3Xkm2Ubfas4sARRAqQDOmfQuUIKMjY2YWPssMgfIFMDTG8eEg+EByisQlLi00gN1xC8JIEa8Dka6hknDkCm6bzUQc7QXP3Tl+fxLn8PAIgUw4R1QzVAPAGX4VTGQB0ByFxjA1vNlDFelC4cLBQCcjTmP0u2DHEexEglDpDnf5JAIm+TfnbsIpCayj8X+md2m4KKKCK31qCiBvfWpQL8ApPOACi3ffGCTiySfUOfvd+r5tJ0ygWSQZai96r0fMiVNOi3WSfyS0VenytlmzspixRqXGGXcr0tl5eIDwMpnKUAnf2jK50BpgovHAwcppPXFrJXWzcPwY68/SsUEYlEBTahIwWgGx4q47iuDY8YgSTEohv593CG+B5DNWgLJtoHv2nmQLCQAJDFAKuKITaV1elgZQHld+uD84vw1KCqiWIcAcsjkmgaNmbU85gUsxZ+F4M8Sk6uXKkBjkgFYBMicZY/4bD3ETKDZ30gavmuhTMVgKaA4VMDb1Kh1HSwgpW5eKtk47rQBzPsn83zaVadxr/Mw4TrrYEG+mJKFyQxBidUkTNmYVc5PYvK5jXce0KWf37l5wM7/XM+/KmXrbEw1yf3Q5XgFjdHnujkw7vTzaSdkAslMNjIxDn03ZHIcW3fSiW8oq4KzH2UAS/+ez/O0hmpRxn27ZHqVHMgYpDOQ8pEH7gAoTFg5ixz6nt+rLAWxZJC14bZZlWZQFFPrzBAMIUa2VprB1ChwNGtkjl1octsAzTozx2aN2WPXwncZSNrhKF1FBC9mVnLwZOeZPxFvr1QJAmJyHRhDkZwtCkBa2TwzuQ6ZW12w0wlYUs+fpYNJfizKtc8e5S8HyEFz9EgVGACcI1nV8F2YoJgKqqpTU+FeaonyDrWZQVKDomoeAHQ8lABNX/p9JteAom5rV55toGNGCSTvsIBlPmkD5sm/mLb7JtfRPwnCEqAMQCuf5RAnb5330APQJ6qNscOdej5tt0wgGWRohrOsg/l4Zew4p6pOKWdQcgV9MsVRMlFuJGP1V30PDHMTax8g4zZ2Hhzn9ZYkcBULn1NmXs3BsiKK7HHFUMEiK2GdCoEtNnGpunUGy2adwTEApO/aBJJtm5gSUAJAYEboQnRrVUVzawTK8L0HQFqniFaf8YAMoHyWNuKRWGQOkMuYWwHEggny8HZA4c/yi8a9F7EaWaT3kTVGoOybpBcBZTxfBFQtvKkSWNYrCYwdm1zlx80BpTxN6/w6SpCXTJ0Vv88mfDEYrOlvBQAOynGqh0S96iwKFuHzsaIAi6TLJp+yLGq6LtnBRkQweqfZ4uST3CPSn/Fs5GQ+3uPsF50kYEWHQAOlFCh0V9DKhSRrlNGfQxEA+X7jw2beB7WMKD3PHhURSIJ5AntUUgxAADL0mZQmzCsCkIFJzjQF1sgskgGyF6xj28LcirZJALnOplbfrAHWMrPseiDZlxCUEn2QZIsxgtbwjqCcZqYlgSt84kbPkQumNof5fqC5uVV4aP+5KjFa0tTYgxlIGDHOG/QIaTEh6pSob9Wcy5mMk6EcICX6N0YBh3PVN7OHcfcS3BTAMYKls6CVzATrHXyVqgHV1QxkElB6mWPU0j80Y40LgKawjgwAJV/fLsxjOFc3LyDAEzjECZzkYG4FOEd1HNG/f4z8Vt0Lz6fjlX0PksuwIN9b7rTsB53YF+e59mMERKn6gQiUuZgeWAqrk9e81NmyXUKTJAKIZXk6iXjlEnXaEIfskwJlCeO8NFitNSqtsBIY5IohzIzOADIsFaCatQCQayVArt2bALJZg18/VoKjLAf8qkqnlA8OUAGbXWVcSANtw78xgkfme+t7lIoi58EsyBbTAJoc2CHgKD4rQPxWYXNGRWaRyoO8eBsZKCWNQNhkYbEYqt+WpXkIGBYAmZteLZvexyYWEumKtmHQNHUCS8eBYKqeQdUd4Gd8zCqBpqkPYGYIxNn2acd1eS6l+waAuYhXoKyzqjr+9U6lQvuy9C6cM9cfolSYf8h3ro4TMPvWHbEKAMhcJ6lYP7B3TaibkX0Nkn3mczwDul1m0P2iEzNJBe3Z9aOUDwwiiwoN/ryhZraq9xAojiEgp3WcjhPp0RAQpeeBkaoqvtZGs04ClJpAmk2owh5Xa81sUrP/UVik+CJzBmlIcRSrAKQE6gh7bNbgjjFQom3gmrUY2Qpn4Zo2+iGdTb+KNAFtxwy4DikfALwB4EKTXDHDOgvvCHCWk8DnTkpZmFrGXcyszqd+oAKQ1iVgzHMnmUH67L2CD+MNsH9aqrf02aSXMmd9nYCSRUaTqi38tr5t54N5gGR6JYomaB8CeZRpoaoqgWU943ScwCq9pJxU6dybasZ5Ij0/ZR8oRexs+C46RgprpKAU6+ko5DmSggsVn8S3ONRzsqjkk90nRfu3XrAZUKYu9fcp9+SYRFcJ5gPxFsluuY6OV/Y1SG6VjQ0N7lYHe8x5vR90Yt+j52hPx13hxUxJyoZkfMSAGE22AMloAs1m0CorLSdRngKAvcdX0pM0KORHkqlBVR3Akd8rUiDD4Kg1QRuCCewx/ekIlDmLrDWDvCEO1qm1gvYdVLtW+CNVtw7XrMGv3RsBMjLJENnqmha27eCtiyDpA0gqTXAtB+0ozakCVEnR8uy8C4O0lpnSAvFKQTpniKlVWGS+lAAVn6dACJtElu8HwCv2QXrPD2SbTb9USFQnQmrSywM0D5C5cKmmELzTJkAUgMwLL4hfOptcKB2AUkuxhRa+qxJYBn8wupZZ5ey0+cLqgVFuBij7kgOUtGFzpELVHGaVMdVJeZBOk5JYEi4DR75W2TUQ/egDE86hIhikSnAVoBT2qJQqWrzxd2rUV7iTz6edln0Nkls1Pgz53bYycPk2y/jzTjWdOBdLQTtAk4d2EhHq4lKq1vQDY461yS8Yg2lCPqILoOdNNReQ0wfK3MSa/igCpDY6AiMZgqkSi1ytNQ7UOi5nRmMmJtbIIhkYK1KoxczaBhbZJnOrWz/WM7GuFYE7ru1gmw5OQNLOw73SDJDKEbyl+HsBlObVPJAlgAto+EEeg3YCCDrvU5NshyxVIJlaPXwRwKNUugI8AOXZvBoLY4crRaq3OAAqvB6r/5lAqv+bbAxu6ueWyuTCDZw/FerTkiZQZdhsbSpmkaaNTFLZsKxnULNeeggAUx+AyoAyErAlgRJIObfHSKFruHek6lRklXnj8LnzEu4DicBWKvkoydCcn3/uLwuak1KJlIEoAySypRTnX8wid+r5tBuyr0FyaICWHbitDPYYQ5PXY/s5lXXim5YBUisPUijyCitSsZmtmDaPhc86YqDU2sNpgjUOyqrSl1gxW3IhPxLgXMjitwQWKeubejWwyoqBsSaYSsNUiUWuFn/si5wFFjkzhAOVDrmSCL8hM7OGCFYBSDTr8Gv3wR+7F27tXgbI4Jd0TYturYngaEdAUmkCWkBXBkoTqDawDduatdYMGERQNoHjYKWedFIiexP/o42+yKz8mvMhkCeBo7BMIAWkCEsR0PRyRUikJhCKaKvom3SeG/uCCN6NsxQAJYuUtI8MIF3bwVm34STDaYJqOihN0FUL6lqgnsF3DSj4OxHZqgOtprJ8Apa6PoAVAcrODUa9DqWG5OdJpFEKTWu5sH5gld6XOcLlsKkQ78TAqA1P6rSZj8ROboz0mUSdV5Q61+hwTyqwcZyQ1RrOWORoSUE5Pbme2J7n027IvgZJYHwQFg3imI9uiIVtRoexbU9lnYRNVgR0xKySo0MzRqldloNoU0UbQ9CW0LU2BtW4zsMbDe/qOX2GypQBASQrBkVhkMwiE3PUWoBSY1bpjEWayCLFxLpixD+pCnNrbmZV7ToD5PqxAIwZkwwAadfWGSCbLoIjP+SDvyo86CkApNIa3jpQzbc11QbOOqim5TZgzsUAFjjOnRwsjt4zc4opNbHIrL4uEBml9xyQEotAZIE7zidTnqbQdirrIAFCMrcGc54POkS/5ACr7I9pzI8NJtYhFm5bnjzkYClMUmkCBZO1qw2o7aCbFjSbwTkH5VzyTzrLuZ4AvHdFHVtdzbCiaywCynRu0nnSIXczdepgF8MaWbguFUC3nQMyc2vebzJGtsok0vCfRGKLiyC3zKyE91wVSuoNh5xeomhq5ZKKeaPwxCIXyU48n3ZL9j1IjsmiQfQD62xmn5NOpQib5JmtjxGgkVES9fx/FBra8sxfa4LTIVHaOJAnkJv3t3lJeciEg3ao8EGSqWFqUzBHU4+xyACYFT9oDlT8OhYLIDBYEqCawCLbtRjR6po1+GP3wq/dx77IAJDtvcf44X6sgW27CI4Clrm4NpharUtd6jMhTfNmyb7kwChLacoMBkNhkd5j2OTquLVZnkwv0sKH8nzMENnnpVC2WgpFBgIbdbnJta9fcQKGza7o2gIg88mGdIOZC3zKrglqDXRl4GoD4xyoDTV1u4YBMphf4Sz7KVGa83WFUaDsp1PI5CEPpDE9oDxGFuSIi5drKgJ4YuXBPEBHp4jsWpf3jiGV+fpTkJyAohS8qLQK7bJCeUUwe9QFYJYsci89n7ZD9j1ILjIB9AdybMCGzJKbnRHl2+8nnYDMN6m4J19HHjNDWO8YeNYt15RcCTf1irFYrXVol8XAJUxHxzZEBCABJZFOBQWc5A+miNYEkFVkkKbW0cxqKo1qxWB1gEUeqJhJ8pJTPuoQpMMAOW9mhW3gjqUgnT5A2rUmskjXpoAdF0yoeZUdCdbhgJ0SRJQmOOtA1pYMEmyiLMYuAyKvVPRHOieJ74lF9gGytQ6t9cjrffYlpn4ogMgD0jgtRLVaJ58wm9QeyeTaC94pol7jAVxI9wj5pAEEc4Bk0GwDSJZmV4vMN1kZUNvCVRWoNXBNBz2rYawDOcessm3D68Aswb7SMaAk69M3K4sfvX1foQBl0zk0pIp+pv1iGoWfPrgmcoBcMcPvBRRNNjmlyCRDqpaAZfRFzgNkLjv9fNoN2fcgCYybADZjM9/sAA+Bz37WSWaunQtJ98EPuWbZz9caj7WQatF0Guudi0DpNMEG36SvkjlLkUIHBkEXumoMNScWn6Q2nA+ptYoAWa3owsx6+oyB8fRZhTNmBqfVBjNDWK04WOdApaMPUsytGi6xx2Bm9Wv3MSiu3ctMMgTp5ABp1xrYpo0P+UVBJ+QIyrIv0lHojWjLPxUp3gibBCJ7lD8bTK0eOTiWALnWWTgX2pp5Nv31q7SQUmjDOBMpVBy5A4FFBUB6FWqo6APVPEiJ1XI0yiBAiqlVmKVru0GA7J/PuVOgCS74JanuoFsDV1VxH7rtYGYZmwwA6QBQmITIe+U9UAtQAgXXHAHKseCavK9q07myjFwvHSTfh5hWa0M4EHN6dZhwUlkhKlaKSn+xSbhKoKgju0RsjbXbz6fdYpkTSGL+ZG/GRr4RoCy7/n7XqSKgcwomBPGYkA4y04Q2sMmZ0WiMw2pt4oNCuinIzLqQxgI1V5exoYPCMEgGv43mQgGm0tCGIkDWKwYrKwanzzhAJy5XDA5UhNVKBzNr5osUoCRw0YBuvfBDRvNqswYXAFMAsr2X/ZE2M7cmE+EwSPoQsFP+NoJtO1BtMl/kSLaoosE/BkeprIM5n+RaZ9Fa7jvYSkcWnx7a1vsQLck+s8gmnYLzimuSGuIoUMcPXeuYTcprrVXQR5Wm1yGRCNfAIr1l1icAadfmg3gAzKWEKE18XbQGlgh6tYZuTWTz3jpmlQdygORjBX4cfZUERKDkwNESKCWalCII2V5UN0WQXO+DZFaMwIYgKGCeieaMUQBSADPP7TWx5nD6k9ZuRrrYZP5K8UXuhefTTsm+BslFdH0zTuQh2eq2ywTCbFX2uk6SS9g5Nr/OjEZrfcEm27pkkbF7QSjgPKdfqFDCAQ8EwEQwzVNHFCGYWXVM9RgCyDNmJrLI5IMMf/W8mZWLBSQ/JJo1DtQJ5lUByj5AJiaZpX1EJhn0D3YuCiZWlZlaOW+yZQC1vN1gEoL0VJTxyMvBKeL+nH7+bwggE1DO+yMBzoUVIKh04lvkwK81AzB5cBBPYJLcaaJncu0BZV56jmv0ughorskYZD+VpndO0/njoBfX8uTDth3MrA7LlQi8VWCuKhw/AibC8yVEvApQ1lSHp24GlCGYJwGkmDZN4ZtsOos6AOR6BpRAr6wd5kGyNLEmgFwNEzvx/89CRPlKZn4tmoQHJhlrD+fnDCfm+bTTsq9BckzGBrsfobXMuv3PRDZ7QewHncQ3acij8qVvsjXED2FHOGNmYvPYLptND4XDa809J7UbZptzUYA6T/nQWFlJ7DEHyNNqjTNqU4DknJnVd8we2/sYKLv1CJBOAHLtPtj77osAWfgji2ATD2f9MIvUATQlN1LMhUSgwuTKpsEh8cEPGf2RZJgRArGQgHXpT3yQ651D61wES2H1faAEEJlHpUPvRQ1EsDCcmtM5H1MMrPOwirvGFCBJw0AJCFgG1h2YXXzdZEE8bQfb2HhOXQ8kKSCAri2UVhzAE4DSNRzxKufVWIfKWbjA0uUcEwC1kgUGAUANzAZMr6oX9UqkoFtmlOJTvK+hwCITWErrLWA+3cb0mKR0qImMMgCkpC4JMM7Cspai/Aqx76kU6O9HtO7F59N2yb4GybGTPjaY/cEe+6y/D3m/DBvbzzqx2VWh08wipC/jgUrzg9j50JsPOFA7WFfNmZyOyf5IQbVcpYQMRwSKCdB7P1ehREytDJLBzBp8kPMAyeC4WqVo1hWjMDM9M+v6GpD5IWOgTsiJ9M0a7H33BXCc90fKgzw+zF3JeJRWUNbDxwc6ImtUNF+VZ26Mpbi3VLcZMrXK+c1YZOc81gKbaZ3DWsdj0+WBO65sE0WKK+lqYn+j0eKTBACue6qVgwIxMIb2Sz6MFzdH7ukINpePXp/Z5CD3S+bn1bY2TkB4G58YulawrWWza+2gA/ukysyZv711qELkNFkbf5lyZXAUAfCVw8zMsk8So6SQ40itDZMKWarM5JrAsn/9i+RmV4lgLYJ2NEWAlJSrWUhf4tZuOgBiMrNG/yTN11U+Ec+n3ZJ9DZLA4hnOIvv4MiCyrPlhaPa0X3VSkG4ZgNUc8bhiCAecjr6u1ni4FVO0HcpFal8SKdjAJL2myCIloCSvTBKr6gSQlFzIHCDvd6CKfsjTeyxSwHFmaNjMun4sBuo4YZIDAMnmVvZD2sYxQLbCeIZMgh7epUeGIoJrO04RyMrXjQr1GBrbnTNTa/JJil9yPYBiHyCFUSagTIcRd2nlCdZZVJ7gAmAW6oRShNYxg2QmycdVZADVAIrmfJMFWLrkj+wXYPDWFQBpGxdAkpdyvqShsdIKutZwrYVtNGzjUK2ayE7751iuxjyQR67rYuwUzZleuUC4zoJkkp+SGbjCunaojYtgOQaSfM7LGq1ibpUuNQKQkt9bEQefrRiOZhVATK3dkrk1/g7sjefTTsq+BsllBnhMNjIXDJkZJp021omCaccGk6vVbIJdMcQmPUPRlHf6zMRuCiJ5SS/bOZB20NalkPleZ4qhpGtJ8+j7IE9fMTg9C9g5UGmcFvyQqXiAgnapWIDq1qMf0h1Lvki/vob2vrXAGtcLgOzW2uIhbhsbATLvSK+0gtcEXRMceSjrYdsupn1ogFmUGwBLkqbMOjFHMpAI0gSOiT0yg7RoncN6ZzM2mfsks+722YNbmI0NQSDOAy572moFkFNonYN2moN2fAbSvVQQL0E8oSh5lOx3FmxPgneERWbntj8JcVm+qdIKrrWgSoOatD8jPs+crYZjV7yTwj8p13o8/cC4j1IaKmdM0miF9c5Ffy6bYMvgnS4733m+ZYxwldzHAJIrobyilFHM/ZBVDxxTB5vyMtoLz6edln0NkkMznM3Yy8f2t8w2Y99NOvEDs9YE611klN5zx/dUK1TDeY8zZiNh9KTQaIfGuNheKA/umTO3BhPUahYif8bMYLVmJnlwtSqDdIRB9gJ1jKR7tPdl6R5ZoE6IahUG2d17jJfBxNqttWiPdYG5BIB0rsckHbNIpwp2SVrBWzUYsTko0nA490eSBoI/MoJUOO9dAMG1LvkgW1f6JRs7H3Up4wEA1oR6rcH/LLKm0tgzcyIGSsURsFZMrtoAXUoHoV4fUAHMuYILEczYtJoDpG1cxiQDULbCKBWf68bxZMQ66DqNx1iJu4oHJAFl1vg6qgpEoPTBP0vwIDiQotQNJ1hFW2oXnAAATQpJREFUhMm1TqEN0d/M7ucnJXLOk6kWMd8xNgKnkk3Owj0wD46YA8i99HzaadnXICmyiCX1B2a7zAGb+X4/6iTBApFREptdW0fxoeD8cNHouZwyPZ9Tlnc3yPPI8qLlApDMHOcBctZP99AKqjlWpHukSjr3xaLl3VqDLrLGJr4XgOzWurkHOIAyqtUisEjAWQVlFZxlNsnrjgAkaSBvDaY13IA/Ms+FlMIBzCCZMa5Zfr3eick1ne9uEUiGNAVrPJwvaYlW/PBnAADaUPjeOsAH06xSxGZXMQ0jmFoF8PvXl02RrjLZcOKHLCYiHraRcn/lxEMiXW2joOsApsE066znCNcBmTO9Bl2VSiCvlMoKDqDcwqQ6w0QpgGbNKlTk0ToVqhyVboRiuLNUDamFnJYq+CBVBEiTHcdQCtRZxCD3yvNpp2QCyQ2kb0M/3oHajtnQftCJFJdzc56DN5wHPBQH7gQTHBAi+rLnS55Tdl9jQ/k6t9Bv0688IgB5IJpWGRRPr3UM1FmtknlV/JA0kO7h1+6LFXXc2r2w990XALFBF8ysOYMUgOzWOKJVHuBF+TTH5cYcpKC7z/xpugjYGUqW551wKb4YtEMEkIHXJvaIFHAUU6swRgFHAci1zs6lJUhD4fw8a6IEkr1xI6WwZh0XGtAKrWU2aR1gSQWwVtBkkqlVGPBIBxOXnYe8EIML51WWErxTTEiyNCHSBKUdM/UwFpUzvdSRteLYFBhtrbmPKWnuV+mIuPOMorIyT02hKHrcQ+ix6nGg1qCOJ44t8QSvJQfjFDrrUWWFG4YmJhQYIZHqgSSbWcV8K2zR6ND7NAvU2YzsxefT8ci+B8mhAcht48DGs6LNmAiWGexJJ5Y5s6uXaNfECJ1U2AkP3DynTB7G6yMgORTUIH0hD9S6KBIgkaynr5SBOtEP6Tuga5If0jaFmdU3a3D33ZeY49o6OjG5rjURILtjXfCXWbg2mQGF3ZBWsDakJUDDNhakFZxV8JaSqbXHbrh0nU4mVvnL/JEMOJmpNavPuh5MrNEPaUuAvK+xCyMu+Vy7eM6tS+NGSmFducAkHdY68ZtlZfAcWxUimJNJwTvhN0n1pEXXs8tYoExABCAFLHm9sqar0qHxsQ2lD62HWe0fiYGSixHo+LoC4IKORFTkUaosslhXM9QZUKoMm5ThgJ415QJIKjZ3U8pLdc6jnwwrZloJAMp9kmJmjf1OA0BWEvATwHWZfMgT/XzaSdn3IDk0mEMzoP53m9m/6r0es+UPHWO/65QH8tSQNkrsn4wAKVIn4FvvKDAXh3oDkJQw+bxsF9di5WVK9dBYjXVZad4POWRmzeqydnmxgACOrmVgdG2KuOyOddH8149qtSFFgQBYWGhoNrNSAtLRwgEyRqGAQCz1JmAZAncKU2tgkq1zWLMpqnXdJhPrfY3FsaYrKsF0AyCZ5+0NsXpSiGbBNetQWQVDFAHSe0kNKoN3VK8gAhdIoMjmAER/pEwe5Lw66wqAdCHIKw8k1s6CLDNKBlU9F2mczm2DVoJ+Qk1d0gRNzCR9mJx4U4N0Mr2K6ZgbN8/nf5JiUzMpDm5aV0DlgZZUUeUoz03Vmd+dTaiUsckElgyGCSClwUC/YMCJfhYA88+n3ZB9D5LA+GAOzYrGttto3aHPF822Jp1YdM/sakNk5IGBlkPSD4/9jI6Lo89VJskjYZMvUtjkaqVj5J+UmTtQhcIB/Yo6c37IYGZtm8LMKm2vkmk15UIKg5xnkllqQr8AglWcUwfA6wCiwQE2nxRP+Rv2RWbMK6V/sJ8vj2iVZSwWYHMTq8OxxkaAPNYkk+uiwB3x/7J0xfetUzEQqCKF1hJqDVgKTDIzuSoygA6MMjLjYb9kX/IgnTz9o2ttEbBUXFvOQ1sfKgWJdMU67LtUERhbnQrPK0qMl4jgNZte4xiIj7Vdg6lmESiFTTJIhpQQx6yytdwQoA1BaZaG7yphkKRSBZ1KU5yAajUMkGOBOvn7E/182g2Zn7Jso9x111245pprcPDgQRw8eBDXXHMN7r777oXb/OiP/iiH5md/l19+ebHO+vo6fvqnfxqHDh3Caaedhqc+9an48pe/vGU9Fw3S0AxpaLtFM6b+ejK4amSdSadSJxMDCRIwmRDIk5eGy82jpwV/4hkzg/sd4BQOSefgnMc6fibRq2fOTPA9pmCdM2oTATJW1MmWefPkwswqeZGhR2Q74Idk32ML27joi8xTE2zLJtfom4ymQl+YYN0G+ZDSH7E0tRJUVXPaR8iL9NHUmmq0Sl6kBOoIUOYMUsCS3w//fXOtK96ndbv4er0rj7FmHRobAoECq/XeJ19kAPjcjCxgNNQyDEA8hyIunE9nXQTIJhyvcfN/a51DuzY/seGlDZ+FSdCxBu29x9iCcN9aDNzyWVEJrB/jayhLGVLtGgwc6gBccs1XxNeclI07EBp9H8gsHbMQpSp/eU3h1KGGYgs3Q2oUIPfis2CRTjslO8okn/3sZ+PLX/4ybrjhBgDAj//4j+Oaa67B+973voXbXXXVVXjLW94S39d12UD3uuuuw/ve9z68613vwv3vf3+8+MUvxtVXX41PfOIT0P2Q8C3IVij9ZrbJL6Jlt9vvOhlSqAE2t3rAexWuXt0zKw2Hya9WpSkKwFx4fO6nkdwxqclalpxLfkjVhqo6XZu6e0jATmigHP2O9x6DPRYeoG14yB4ToLQBKF3hj8y7OzjHqQAEgiMHrTXn9FWS9tBjnME3JswGCCZA8d3FMnRZ6of1MWLSep/qswZT63oArj5ACpMU1t4MBAxJqbk80jV+RypaAjhXj0Lpu8AmY9UfbuGlxC8pgTzym4rI3eQb7IuzWdqH9dFU2TgfwRIInUhUWkYi2VoYAFY7AB2UVuh0G9kk6SaaW7tg+m2JOJCHCFTV8KYqAnnQSsQrA73R9ZzptQ2MsgvmcApNsbnCkejs4/kGpEBDaG1F/LmKLFKiWOcZ5F59Fuy2yXXHQPLzn/88brjhBtxyyy145CMfCQB44xvfiCuuuAK33XYbLrzwwtFtV1ZWcPjw4cHvjhw5gje96U14+9vfjic96UkAgHe84x04//zz8cEPfhBPfvKTj1v3RQMwNkAbmRe2cqxJpyRiGkpZHylMPiZfU6opaVwZJu+yB59IDGggBkejVYz2WzGaQXIQIKnnhyzNrO4YM0m3dm9hZnVtl/Ihs0hW2zi41g0C5Jzry3lInuSYXwxALDiQv1ch/QNEgKlCAAyDI0JUq81AonMIBebLaNZhRhhA0qa8VKBMt5EoVQHL1cxknie9c+COC74zhxVHsJ7NinUASqVzgDT8e0yVFUmg2BVFTJ6LJBUtSOZWgXnn+Qpj3bONWqmDa6A0VzlS1EWTq6ImtNsy6Nb4ta0NtKngTT3nn/SKoFpVWlHMDPlBFdjIS6rsyEJK8cRx6FoI94SCiiBJKhUpHwJIkb34LNhNgAR2ECRvvvlmHDx4MAIkAFx++eU4ePAgbrrppoUg+eEPfxhnn3027ne/++Gxj30sfumXfglnn302AOATn/gE2rbFlVdeGdc/77zzcPHFF+Omm24aBMn19XWsr6/H90ePHi2+38qMZjOyke19bJtJp1J0uLFdKCjgZIuQTyZh8hzc4GOY/DIFt2WZQJKwanRh4o2mVkLW/mqtLF6+fox9kcHMmkezFvVYW1suG8ndY4CU8m5DZyl/jvVruVLI6eP3hLwhM0wFZWqoqk6+MG1itGgBEqGIeTR/hmjW3MzaN6+21sF1oQzgAEgq4ipI2lAZYEIKurGojcaxxqIiCrV6A5t0Dq1TMI79cDV5mBBkJKZiCd4Rn2vuC8wBUukSSIZSZAQgcx1tuF7ggSb3EbccacxMkhmlbTSUbqFrAoV2Z4oSWFK1FkCSx8RXdemfzPpmQgmjZPbXKQDwUJ7fKxeaU4MtLAPxUMmfGc61UqkvpPgohwBykZzoZ8Fuyo6B5J133hmBLZezzz4bd9555+h2T3nKU/D0pz8dF1xwAW6//Xa89KUvxROe8AR84hOfwMrKCu68807UdY1v+ZZvKbY755xzRvf76le/Gq94xStGj7nsQGyF5i8zW5LX+WeTTsM6SaLz0HoIYfIJJLOgBu8H6oT2gxrm88aGAnUgfshs6QI4ig9SigbYY6mbhwBme6wL7LGsIWpbWwDkXPBI+NnOee5yP1+2Np2PPGhEzK550E5Vw0kZup6pVSJb21CPVdI/WleaWfO/prWwHQO87VysbCTmYiIVywDKd1KMXiJfjzVdZJNs+k7BVzOjo7nVehQmYk8GVNXJ1xoBM2OTRBEgVTaRABJQSuGE9Lp/Vj2jTQaUWilQY0M+pQJVFM2u3bEOpBtQZRgs1xroioGyqtbgTcW5tKaCMhXQNmVaS1Zo3ugaeVVxcgD5VKhAAHKwXVyYDAo4ynUvrHIIIE+GZ8FuyaZB8uUvf/lCwAGAj3/84wAQS3/lkndgGJJnPvOZ8fXFF1+Myy67DBdccAHe//734wd/8AdHt1u03+uvvx4vetGL4vujR4/i/PPPX/gbBo+x6S2W29dmL7yx/RyvnAw6iZloeE0FhRQmPw+SpWYSCZtH/s2MjqZdAUmpY1mTgnLJD4mugbINm1kzcJTXUiu0W1tPba9ycMzMrDEf0iWA7Ifzi18slz4zEvZEOYvs5UYqU8WcSD9gao3l52wqYJ6bWfO8SAHIrgDJrLxbMAU6+FD+T8XvvPM4hvlUnGON5V6iAaBnwT9ZkY5AZr0CBRYJMbsKUw6m1/5EQc5JcQ2Iv9amFmI5tyzZfHhMB6C0ASy1Qgj+CZaAOhQpqInzWAM42qplJlkb+HDNKFPBdy18sxbGxgCuA6yGCsXcAZ4UaDIRKJWwSXh4sN9dKb4HROUYGQuVmVwlCjyxyf41JXdT//VeexbslmwaJJ///OfjWc961sJ1HvSgB+HTn/40vvrVr8599/Wvfx3nnHPO0sc799xzccEFF+ALX/gCAODw4cNomgZ33XVXwSa/9rWv4VGPetTgPlZWVrCysrL0MYHtcQ5vt4N50omFFEfmIduOHwQ+zZhJQyvH1UhizddhkKQQuMN5fOhF+WWBOnBQnUSz8hK2B5ALWGQsrh2AMg8eca3LUhCGAkeCLy8s584hUeyBmAMlEUHXhgGkCowlMrDExOS4EknKaR+uqM3KwGgLgGytiwDZtRau4/PsupCP2DO3esctydAAqAHVKRxTNgPJLvglbUjF4SjXlY5ZpXUqdCRhk6sKvyP6JYli2T35/fmkQczRiU0O99ccEh6TBJRpMpPYpA7AqCtd9AC1bQcK3Uhc6Gmpqha+ayObhKmgmvWibB1UYJddE9wKCSjhPBeXcOCqSwhdVbLLQ1ZVcr1TAkphlYNzzi3IXnw+bYdsGiQPHTqEQ4cObbjeFVdcgSNHjuBjH/sYHvGIRwAAPvrRj+LIkSOjYDYk3/jGN/ClL30J5557LgDg0ksvRVVVuPHGG/GMZzwDAPCVr3wFn/3sZ/G6171usz9nVLZjoLZ7sCedSqmLKXB6OqgQ1LBM5F+lqYj6k0CGHCANKRgFBsZuvTCzollnFtC18F3DrKBtso4TLVx4OObg2GeRIoUfzKel/FTRO2eQsSJMlqeXR7bmTFJVzLR8yIucN7WKP9IXLbCOZcAof2utRdeUANm1NhaSj2zSMkAqxyySPMFndE1RWWv3WNPhQK3RGo6mXck6jNTahwAeFfIk2awq+ZL8+2rAVGzmrA10XaHL/ZThPMl5VFoYlUrdRzZxHVrvUYVrr1/XlRllBpBtC9sa2KaDnln4roVyYdkxaFJVM5t0zCq96wCloFyozKMIoFBQwgMgZpU+XCd5Kzi5H4RFUviNSs03Tj5e2YvPp+2QHcuTfOhDH4qrrroK1157LW655RbccsstuPbaa3H11VcXQTsXXXQR3vve9wIAvvnNb+Jnf/ZncfPNN+Pv//7v8eEPfxjf933fh0OHDuEHfuAHAAAHDx7E8573PLz4xS/Gn/7pn+KTn/wkfuRHfgQPe9jDYrTr8chu2br7x1l03Emn8fexpFbInRTTaJW9XjHSyoqDcVZDrhiX5Er7kJwxMbEW3Q9sw7N518Wlsmwm87m5tUvsMTX47SJQ5pVe8jqhKU9vzB+WJDKzHisSv1tuZqXaxBxJYZGqqiF5kSADjzyqVSrs+BDNyikg66Hk3HoGZi6AI/8FRhmYZddYdI3L/mxat5H12H/ZNRbH2hQtK+bcWMTA+RjAUxRd90gmYzL8uwKbjH7JXvASyUSCKPoRRYbMjn3JxyaPiJVWbCnvMoGldAtxbZe6kTgH17SAs/Bty5Msa/m9tQEkO8DyUjmbXnsXJ3MSzMZLxObIOlhFePInPkhVbLcIIE/GZ8FOyY7mSb7zne/EC17wghiJ+tSnPhVveMMbinVuu+02HDlyBACgtcZnPvMZ/O7v/i7uvvtunHvuuXj84x+Pd7/73TjjjDPiNr/6q78KYwye8Yxn4NixY3jiE5+It771rduSI9l3UIuMmQGWNQ/01+tvs2gfk07j78W3kqZ7ZeSf9x4u+GmGAnfyqL8ymCFVI1GuS2ZW23C3edswOHZtwSLRtbBNFxr9Wrimi8W15x+cfi5Pb0gSi8zOE8nDXtijykyJFFMPVCgaoEyd/JGS9pEVNE/gLME6Nppbj7Uli2w6x4E6Aehd52NUa9dY+NC+qagUZAGtCT5UhenE3Noy6NvQraVklBYzQ4HN+hTQJCZXD2idTK5e6rdmfklhk/FchHMlzZRtG4JuSAHBv6iVRE7zVd73DS8DpjIR6hdTjf0tA1BGJulsZJLoGihjoFzH4+S6lD9pO9ZK19FsyjkqyRfpQqpKwSSxmD2eCs+CnZIdBcmzzjoL73jHOxauk0djra6u4o//+I833O9sNsPrX/96vP71rz9uHQd1Cst8kMYGZMCtP7re8Vw0k07jn1cEwCWgXDbyrx/1l8+yY+1KOAZJZ+PMXoDSBdOq7xpmA87CNW18ENq2yx6KvgBLkdEuHT0RM6tWKdgkPvCDr01pAlUGOvyJP5Kr61QROPKIVpApzKzR1JoBk5hAhUUeEx9kY2E7D2sTQNrApGyXCq1LsIx3HmRkVADXKTil0JEFaUJjXNZNxGK90zGqVgBbUnliJGr4DbG0nvzGkOaS+yV1LeemA2kbGbiuNVzroG0CSet9iHzpOfmKMdl43HK/ZM4i5b0GGCAFKJ0FnIPyHt478IzD8UUd3ivv4F0HHXzJmhSUBzw8XHatAAkck7l1RE+cfM+C3ZKpdmtP8ttio8GUgRq6KIbWX+aimXTamk45UA5F/jE7KCWP+pMqJAKQApawmXk1A0sBR8jsP/iV2IzWRbaQt2eSnMa8ue+Y5A/gFIXIjCf5H2mhPzKyJ2GRATgkotUTJ7Dn0bRias1NnLmJtelcimIVcIwm1MAoO37ge5c8eyowPec8vMnyFklBdQpda6EN4Vhob3ag1rE4wVrnsFr50HnEoiITg3e8ZsBXUsc1zwPt+SVtZeL50TWB1hITp4pQWRcLBuh4gc9foVqlXNWx6NCNJPb7DKCIzNSqxORKugRG7/g7RcFM4qAV19ulwH6HbGlDAHkqPwu2WyaQDLIMtVe99+NzzEmnE6FTwSjnIv8ALdF/GI76KwJ3FDgfsmsKFgnXAd4lM6uzESDhbMEWABTMgd+P3946Yy55gFEeVMK+x2Rqzf2RutbJvBgAgeoqpEaE6MlQr7VI/eg1VuZycMzcmh5ACkjajs2sEriTA6TrmkGQlD+ggiIFwIG046hQG0yuJj8Wm3Zb4+dNrlnOJOlUog7GpN8aAJOq7HxUBromdGsKVGluouy4VRZpQh18szWFXMgIlEkImZ8vRkir8JvC780Cg7Ykcu58j1X2QBNIAWpajYPSdgbo5Pvea8+CnZAJJDPZyKww9N2QmWFs3UmnndepIoB8ivzLQ+Ml+i9uo+aj/iKDdB2UTcxRWKRyHdB1WYCFjaZWby2zRufi641E2i+RVbBWgFF+EUqApORLi361SkPXGUAKYAZggKlS/mDRromBhaN/0SsgUJpa84Cd1pYssvBJBoB0XQM3AJJEqa6qIwWAoK2D6xSspliIIG/gLOkna53FqqVkcs06jQylguQpL2JmZYBMJlddS84qp244SyDrUHugcQkoNVKkcX9M5E9Yfe4nloIFwvCL63VBmTzvLI9+DoZicg2fwzlmk0BoocVfDfnd5WraL8+C7ZYJJIMMzXCWscVvh4wdZ9JpueP0ddJiW3JcYMJ7NsH2S1sKOJbBO4Dy7IfMZ+6w2XsBADGVgR9sOYPc8Lf0pvakCdrZ7JekfEgBSF1r6EqDIjjqAI4MlIkpVWxirNj8CIn6DPVaxdQaUz98qkgUzawjplaXsUjbhfqyoc6sAKQNTJLPC/skvbPwpKFNDe8sbGdjmTpFChQA0lTD7NXVpW5W6xhwFFNB+ibXgVQQG19r6NbCNolNSmQqGtZdgLJfxKEEydIELmNSRhqrOMYxJWer4lMwkPKOTa/eQYXKPLvBGKMqOLHPgt2SCSQXSH/Gs+gCOJ4LYzPbTjotJwKUEtAgYJlLHvVHgREo70L4vStZpPcROL2Ao3MJLJcUeZjmr5UND1GrIhXIO5tEvyOVD2JhkQyaZqGpVUDDZykTscpODNgpA2QKE2vo7GEtl5yTpQvVdVwwPdtoamU2DYD9bCHy3HZNPBc2pGHokD4h7NR6XwTwWGfQOofOcr5raXJls6uhnsm1ns2ZXPWsBq2tgyoDM6s46b9OfTu1JcRHYmOhFQMlMM8kAaAOUbH55EVR7jPm7yhMXhT101Ekf5VC4fkAfhv0xIzmVzBASlWevXDf7cVnwfHKvgfJZWY+Q07mnZRJp+VkI510MKV6lcBybh85QALRxFWwSJf7gkJ3+545cUNds3zGmLLhiJsma4KD4wdqTB1AVqicmSMDJIEqykysgU3WKapVVwZmVpemVlMBxhSpHx691I8AQlJAgAGU+zk2gTVy5GqKYHXex0AdAUjXthmTtGzmDUuquOWXEiB1BNuxb9JUOvo7IzB3Ze3YNuqmMzMxoE0N1a2XJtd6Fk2uZlbDrjUws5WYw2pWTQyoqpw8CjsABooUXOtAA91YhNnL5CU3eafJC48NBwXJpMUUKTrS+zI2jQZSa69Q7NxLLddM/FD5zQCWu8Hk9uKzYCdlX4Nkf7ZzPAO6XRfnpNP26pSlkQFKFT6bPOpPAFJAUTk7D5hAZEdRFgBl/jCMCezaxSCbQhrAwUUmAiSTLIVozPRATiZWXWuYGZsU9WoNqqrEJgdMrcOpHx7eowChVEAgAZaYWn2oh+vDZ97lwTouBu30gRIAXBvOPWk2zRJx/mRgp8axj1YAUpaNdVmfy1Q+L6aCiMnV1PDdejK51jOoegaq1+J5kaWuTDC1hnSMiIRdPO+2tSDr5x6UwuyZKaowDiYDywSaSrOPmM3hVcb6qwiQKuSwxspIoXVWBMis4Hm4OMrlBnIqPwt2WvY1SG51tjM0uFsd7DHn9aTT9ukkQCmv8332AVJlgFjUThvdeQl2ikJeXmAEiTlIMAc/UL1znL5gfQRMMbtKBGzyZYVgHVIwq2YOKHMWaWY19KyO5ef6ptbojyxSPwR02O8XGxxnIBqZZKiB66wL8wnPICnAaO0cSPbFO12wSSk84MP+rXXFceV17pN0PpmJORVEQfVNrr2C52ZWp0pIIU2nCpHH1Wp5JZHm3p55305nXcHuxSKQ/MMEM6sYIGVswpjIGElhA10ZvnZCgJF0Z5HKSNIQm9mkKkExK3qeXXj8GfbOfbdoP9up007LvgbJrTp/hy7ErQxcvs0yNvxJp63rNBT9VwQ5DJhW4+djepFOepFObZmEPVYGruliqyRda+4UYT2oSuAq5lXVSxNJ6R2ZLzJ7IFerpueLzAN2hk2tPiTe52ZW51Pqh7zv+yOtDwDpyg4fwhz5VLmCPeYi74VRlkwzY6Zh2Qag7ILJV+rvpuAiD1+VqSBKDxQ8l8IC9QxUJTapZzWXCnQ1TC8KmbSCDakpUjKQx6UXhDMyLmZmYFbThEVSUPRspWSRcXzqMtiob2rVhl+HbifotdLKAVKWe+W+E9kpnXZD9jVIDg3QsgO3lcEem5XJ67H9TDptn0796L/IIpcUpQMwZkEWPjOR6dpwhwdJCagNVMtA6ayLLLLYpwTuVMws8z6RqSpMyoU0qzowFg09q2HCXzInhjzBldVBU2ssRecAH8DShVJyzs37I20GXjx/KMGST6Gde91PAZHPvLXccFjeO53tM/32nMmKX9L6rJ2YQ5EOYmjA5Loyg2pmUOtrUCszmLyu7qyGs479t5lYTVCUWORQVSTKrQMZQOpKFwCZlgyQelYzi8x8pjJGKZ818x1LI2apKhQA0vcAsi977b7bKZ12Q/Y1SALjg7BoEMfs8kMzr83oMLbtpNP26dTfX/F+CCyHHkIh4AIx8IL4oU+p0a+uDLx1UG0XX2vrAHTwtm+i5cIHeVUeIDPphTSC/EGsa+IHbp1YpAnvJaoTY6bW4I90Pvkj8xxJMWHaAILWlWczB8iCEdrNBTMNSQ7Atv/nfWS7reMwLOtDVSUPrm8qJlfN/lhh0gyWa5FF6lBbdyiXVYWSdbrWsE1iyeWYUTGBoYJJzgOkmdXQq2EyM2M/qRKgDPr1iz34YH4V9i8s0uegKect1w17777bCZ12S/Y9SI7JokH0A+tsZp+TTidOJ2Tv57ZTBCXF6/pBEpl/SIIthEGiqqG6lnPyahvbIhUA6eZzKCWgR1oqUYW5ijyLHsTywJeHsJj0VD1jUOgxk/SwDYEyPtS2BbNI6bnpQnk6IIHlMHs8vpFyzoIGQNWPgWRITXGegbq1Ditax0IIzitQMEOKyTX5ZAMgdQ1028HM6lg2MBfShPZYB0XsL+UiAyOTlzCBkeAdM0tBUxsDZA21slouTR2KPZgsn9XMWQHGAHIv33cnSqftkH0PkotMAP2BHBuwIVPEZmdE+faTTjuvkx9YBwCzQ0+ADwxChVB9R6kTQ9abEV0bAzC8s0DXRmCUBzFlD+IuOxSXQlMcQRnAck6dLDhEao7mTIUyn2RK+6gjOMxFtWoTi4R7D2aRTtI/StaYs8llRdI9lpG8Ao8PHVuGpK9DmSPp4cAAycW+Q+BOABiSCNf1NU4HqWfQszaVD+yBpPiTbd3BNqnubqF3zHMNk5eQBxkr+sSxqQqAjBMYmcTky3oGVDW8rgFdw0vPT10PAuTQ9Xsy3HfbrdNuyL4HSWDcBLCsyW7ZdWV9YPiCm3TaXZ3STjKTasg388rFDvGRQcZOEw7ogrnVVKHyjoVyDqgdyNnIHI1lf1cBjiTJ5NxfUGkafBgDqaRZ/jAeNOXNag4GibmBCTDF1IrQQ9IKG0MK2imbPfulAFKRyuqxgv21WbrH8DbD3ykC1FD+n+iUmVydBPFEnyTid7lJWZGB1+KfZRap2haoZzDB1JqDpNIEu9bE8dFVSg+ZH5esX2foMJImKys9NpkxyHoGWj1tcwApYxh6f/bvjUWyF++77dJpt1jmBJIYZhnAcjbyjS6iZdefdDpxOuWPZmaOYDapfDRPKm2AUOlEqdBZI1TdEZCMf/VssBuDk+hXIg4O0VwrNH8Y9816ALIcOxMfxn2A1JVJZrys2kwMApH2WIpCqgWKoB0AMbJ1GfbYL6vHYGkLJtkHxBxMC3BdspZaHuEq0bn8O9gv6cPnRhvAJrCklVXYZi2YW9swobExqlXyWe3aejjP3VyD5PJ3pCjmODaxPmyVUj4CQAoYUj1j06oA5Oy0YYDUdWCOVWlyDcc/Ve677dZpp2Rfg+SiW3MzTuQh2eq2yzi/tyqTTuM6RNbopKltOWuHd+zn8obZpnFQrhrdJ9Bvt8tRk7JUmuArE5oz84OYBoNIUimzmGdXmcLXpWsDms0SY5KozszUGh+0MT+yZIoS2bqRxAbFECbJFWNImh5rB+XG2KJm82fYpg+U0kljGdAUNunBftVoQobiwJ2QOiFgqeoZ0LW8DCBJzhUPQKUJ1HRwVZvGZcwkmxWK0HUVWaWYwE3O7HusMQJlPQPqGbyuA+OtE4PUVTSvFvmQogNO/vuuLycaDMdkX4PkmIwNdj9Ca5l1+5+JbPaCmHTaWZ3iZ8Qg6F2XgNI7fvACoWYmd4VHHXTtFTvPRcf9EtRaM/cgptoUnepz0x5lzJNqk4ByxNdFIVIyssh6JTAUSSmgEPgSAmCQ2KQQWDviFwRCFxJKgEahuLfLAE+RBVX1XKSrCikyOagqiQbOgDcdZ4HpNTcNOw/vVWyszakgeVNpCeCpgXoGFTq3kLVwzkGqtSrN4+OI4GoDaqRhNv+G+VKBenDywj7JlZjiQYEp9sGSVlYZCM0sMcY+WEoka09OpftuJ3XaLtnXIDl20scGsz/YY5/19yHvl5mBTTqdWJ0iqyTDptXeesqAmy17UwKlyECHB00aitYYINsOrupg2/Qgtk2LvP9k8ZtjWTsuaaY0RXPefDBIZsqTjh8qRXv6YLLzQCz27sGgOSRamk9nDC9nexEwQ9ASBf+ZC0XMYx1S+S0BILWpQaF1lzYELe2lDGUBxenYQ5IDewpE4tjkaB63IYDHmhBk1aRgqxUGSCcVktbXuAxdxWPiqi62PesLZUXKoxk8z08NJm8JFJpjj1UNN+R/zMBSgnOG5FS877ai027JvgZJYPEMZ2iAFrGQRfteJEOzp0mnE6dTBMosinAOKLN9RaDMClUjf9+sgYhAXQu7tg4bmKE8iClEwwIYyccLD+OwXc5Y4kO4qoq8SFXVcLmpNfyemEYBHyNbNxIt4KhUKAivuN6qScUFvOEAJTVScYd/CzNICiCpjU6Am+2XNHF3jQCQegFgssmVR8cJUPpgEYgRvRWU60Arqwx6mW4EZtSKNFTVgqqG/ZEjY5L7I2N3D62HwTGYvSOrFPaYM8bM/+irGWSWMHStnur33fHotJOyr0FymQEek6F1hy6ezdrpJ532lk55RKGAZwGUofMCVigFqkgdzmaNA1mI4LsKvlmDJg2qGnjrmLVYF/MqgWEmKUvpJiGsZdDfFUyuXqfekTHnTlEER2C+QS8Q+iTSwJ9KLJIMt/eS1+SFPdeDlXf4NKUKRQKQFFikNgRtiPcr7ad6egyJK3yqiRVbr6BjdZrEJkFd9EnmQlrDr69lzZpbaGmqPSBK2lpRCOAKS4kqjoFTMi6h0LxbFJwzwB738323myC4kexrkFxmtoYNPh/a3zLbjH036bS3dIpAKQ9d2/F38r5rwucNd4jXGm6dAdNrDd82DJqST9k1DGLOgroW3toYSQnMgySQWAv7JjOTXv4grmcpL7JeiRVbct+W8wi+uwSUY2ICOMmyNoTWErQlLq+nKau64wGwb9F2FCNc53ySwQdJwbSqtYKpNbTmTiBEKoAlRXBcyV7r4AfVWaqIROT6UEzAg19zj0bDLc0Cm5QC9qqelT9WqiW1DTPiruFOMMB8lxcBx9i9g0JlnyztRoKn6hlHF+s6skdvMnDMUjuGrsH9fN9tRqedln0NkiKLZkb9gdkuc8Bmvp90OnE6xQeB+CmBAHqcN+kDQEIpwDJwKqWArkvmVtJQXcsMolkDrIXvWviuhXIWaoXzKjHCXgrmQplpb8jnFR7C0R+Z1f8UprXoHHBvTQElQp2BFBGbQ60mkPEwEpZUA6pzcJ2HIgXXKQC6YHoSmEOGOODHBAapCabSIKNgKh3BsjblsfuMUphtMW4eMSDJegQ2qVKkq7OArqEq7lyiknKxIAS6lk3Xdr4cnZhapUGytLbKCzfMgWOfLfbAsn+9Dcl+vO+28v1OyQSSG4gfWW5VtmM2NOm0nGynTh4BKHXNEa6BRQpQKtUEwBSgbJhVSuujrgXakNzfNfwwbhv40LvSh+hYNeDLQ2bGVaYu2UtgkHkJuuiD1FlR7MAkRdg8WZ4RytlaBkwCWHVHcMbDhBSPDjYBJQAibsRMKvSOzOgqBfbHajHr7AMkaWaRtaZ0TEOojWZGGVhkjo1azQOl92GsZbJAllN7SAPeANqBVsDvw/lVVQ3fNjw+Eq0MzAeISNqKsM8qteLK81KjObUXmOMNA2V+XR2PnOr3HXDiza/7HiSHBqAwtfW+X7T+MvtfZrAnnfa2ThEso7lVBdbW8cPThs4NruMHatskM6uAZdfCh+R2H/L2YO1c4E7UhWiUwaScuxV+APcDdqSeaSgKPuyLTICjCQU4rhhCYwirteaUC+NjCTkBSmkrJUsAg0xSwFGWkUEGv2Sl+Thy3L6plRTvi/2WSf/+WWMLcOiYIRV4NLc98aGQfdw8MEiunhQmLcsw+rxRcsYc58BxoGrOsjLddycWIIEJJAcHc2gG1P9uM/tXvdfxYbvEMSad9p5O8TUZvoO8YV+llQ4NXQBJw0CpCMoYNsFmYKmcZfYifRiltB0wX7VGTH05SPbYZNE9IpahS6kfQAmQKvwiUgmAKiJU5FFrH8BRozYOteHI2NU6MUcpI+fIgZyC6zzIUCxQDjBQlsUHVDS3EnHxdgHJutIRIA+EpbDI2hAqrVBpYZTpd5CSKNVUAB1g/yRivV1O6QE5KJ8BlVIg7/mcSa5rborNpQeQMLlJezlwVNl1tJev8ZNFp92QfQ+SwPhgDs2KxrbbaN2hzxfNtiadTg6dYpEBRfDacH1QFx6atmFWSQEsqYEyBsp7+LZhoKxnCTCFvchDWlhlDpC9yEphk2PdI3JT6xBHlcjV3JTJf6Wp9UBgkXnKSBsYnbUOtnNw5IqekHmXEBWBEolJBp8kZQxS/uS48roi6umo4t/gmIVAHk0GUF0EM2jHY65SwXo2nzNYAhhlkbHhcaznm/l85ZwvwRxPtmt8L+u0GzKBJJYbpI0GbNHspr/e0ExymRtp0mkP65SBJVyXwJGa8r3r+I80VL0CdF30SSoJ3hG/ZG56lfy8ATOfz5mMNOmV/oPS3HjBb2SrpIp/lSZUzmO1CsBYc//JA4FFxvzFTqEhBdWFgB7rYkstYBgkJY0kB8rVqgTFAxEsTY9FKpiCTYZCB+FxGZJx4FFOCLzmKkpF5SQZQ0X8naRfeBcjYWNlg7Be3ug4nud+O6sNzKon9TW+x3XaKZlAckC2Quk3s00+yMtuN+m093USsOS/BIZwtgBL7yv2QbqO/WSu49QE7+GtHU3Ij2Y+IJn6QmePOUaTlzVTBHgUaR/CGBUQzZcVKVSk4GSpVfRD2pofFZoU7mssNCk0neM/7UK7LTdnagVKfyTAgTu6x1RX62RWFYAUsJwZQkUKK5qXWgGVVuxqlXMzwCg9H7QAtuJhSyGlx4dzyJURyp1kfUW9UsmMLcyUDH++QTrHmJxs1/jJpNN2yQSSA7JoAMYGaCPzwlaONel0cuq0ECx1l9ikC222PAMls5j0oFb9BzYwb+4Tk194gPve+5T6MbArxX+kFCoitMqj0myanflQ7o0Q/ZCaFI41XQTIdQHJzg02SO5LP51DUjwkSIdNqzoCpgDkiibMjGaGqyn4TflPBbAfEucBrxB8kqFPqPKJ5QmD9KGby1DvFuqd6zEmOVJntTjfOHWu8ZNBp+2SCSSxtRnNZve/2W0nnZbfZq/qNAiWVrPPMgCj9w4qAKYPbDIymiGQBEp2kz+shd30QLSPVyTgGF5zDiSzM+uZSVqtsOLTQ1+Tgi4YpEUdAHJ9ACSHpA+SJk8vMSmitQ4m2EqrCJArgU1WpJLpNfpTs9/UY5TOM/RJPVcGx2Cg9S5GuoIWT0ii+boHjAj7XlZOtWt8GdktnXZKJpDE8gOxFZq/zGzpeOztk057X6cCLHXoMGI7IJhdfc4k5c/ljLLcoxcgyNM7BooHxHUGfghBQSlO/XDKoyKCC9krc+sqYN2yWbY2AowUwXJ1CRYJZL7MgklSAY4SpDMTPyTxdwKSM3mtE4vkmrKJUc4Ry7wOb5xcAEomASOMPZ7n0EElTkLk+8FfOS6n8jV+InTaLZlAchOynbMaP/B6K/ufdNr8fo5XtqqTBwBFUJJPByTAdJp9kjlQSrDJ2P5yIIwmP1WAZ1w3AK34IeNrxeDnCXBagfllEq0U1oP/sCWPSquQ7C9mVo3OeTQdAw2D5DAD1iGIqF9yTsyuFQkwcnBOZI+aMNP83UoA0VgZKICjVswOh4JdC3DUhs3YLmOR0OgH6sg5LNh5Po7bKKfSNb5oP8crQzrthkwgOSLb4RzebgfzpNPu7W8ndYpgCaQEdGGSLgfIDDRHd5yAkqNZM9YT2E7/d3B6h4dzASCVhyagjj0xKOYhkvMgBRinUJFH6xJYzoyG8x6NdQWD3MjcKq9rTUEXRIBk/2iIsA1AKq+FWVaazawVpRSWlBYSlmPnKZwPfjtvJi0mHrlZe3wElpL9do2fyH1st0wgOSLbMVA7OeM8kfvY7v3tV52i6Ugq+ACQIB7luQlzlnTI6y4yvebsR5VMUikFBQ/lQ8COzwBSAYACyKMGgZQHOQab9c5xNKkHWnIRLK0nOO/RWi464LyH1GYf6k8pvkJN6XWVVdKpJP2EJMUDGbNMhQS44AEzyJjjSYFJBpY8kjqZzhMw7kfsnbftug726zV+Ivax3TKBZE92aybTP86i4046LXfck1WnYl99wMzMrvzRCKuk7OHfe9AXqykFDw8flloieBx7nRQFEyxpaOWglWL2aD0qUmidh9MerfOw3mNF+9j0GEgAmbPJvDC5dPGQ8nLyWiuVmGRM9VAFOKZ1hwFSZ4E7qlfjlT+kebNq/l1vPHbL77UfrvHtkCGddkOWD8vagtx111245pprcPDgQRw8eBDXXHMN7r777oXbSGPX/t8v//Ivx3Ue97jHzX3/rGc9a1t0Fgf1nF5j+i653/56g8Edk077XifZRkyyiMWxQ9k5U8NrM//XT1MYOBYBBdvKQcZItCgxUzME1Jor7RyoNE5f4eUZ8r7m16evGJxe6+zP4PTa4OCsin/y2Zn5uiuGt681zqgNTl8xYf8GByrCgYqLChRRrQTUOulqKP8NDJDyu/oAGceoF7GaB/X0TdOnwvW0X3XaTtlRJvnsZz8bX/7yl3HDDTcAAH78x38c11xzDd73vveNbvOVr3yleP9Hf/RHeN7znocf+qEfKj6/9tpr8cpXvjK+X11d3Ta985nkRk7rZWdbfsH3m2Ebk077R6di2xz8eibYUiEql0FIAQ4K8D6wLQ8LQENBETcqJgLIM6lkcywzRFIE74GKPJtVDfszuZejh/WpcIAdMLXmnTrywuSRVZIAm5hfs2CcQHQ1lQAYv+utlzNIhfEcyrHzPfb9qXA9nWo67ZbsGEh+/vOfxw033IBbbrkFj3zkIwEAb3zjG3HFFVfgtttuw4UXXji43eHDh4v3f/iHf4jHP/7x+PZv//bi8wMHDsytux0ig7KMuUEGauiiGFp/2QfjpNOk09C+CzYExIjNAiwX+NMYMNjMKhp4BSivQJ4BTnkF7zm30DpAew7l8Z4bMXv42LzZg82q0cS6oJOzAGXyTar4m2MqB1QRcZvyOZktKuRsMb1eFhw3yzxO5evpVNdpO2XHQPLmm2/GwYMHI0ACwOWXX46DBw/ipptuGgXJXL761a/i/e9/P972trfNfffOd74T73jHO3DOOefgKU95Cl72spfhjDPOGNzP+vo61tfX4/ujR4/OrdMfoKHBUr33/c+2WyadJp0WyRxojqxHKlXcEUap4aEUA6LKwJIbF3t4MOPzXsHBx4bGgOLi4WCgdCSgO1zVJwGXmv9MGCUSyAkoJuBcHhjzfR+P7Nfr6VTQaSdkx0DyzjvvxNlnnz33+dlnn40777xzqX287W1vwxlnnIEf/MEfLD5/znOegwc/+ME4fPgwPvvZz+L666/Hpz71Kdx4442D+3n1q1+NV7ziFRsebyOzwtB38tlGF8xWZdJp0mlZnRatI+DhfHitFFR4YvmMLQpAyro+ACN/ngMlInjy94uPm0ecUvaYjEDZA8T8vawnZlc+Yrn/7Zbpejp5ddpu2TRIvvzlL98QcD7+8Y8DwHDRYe8HPx+SN7/5zXjOc56D2WxWfH7ttdfG1xdffDEe8pCH4LLLLsOtt96KSy65ZG4/119/PV70ohfF90ePHsX5559f6oX5Gc5GF8B2ydhxJp2WO86k0/LHyUElvlQqAqBYTMWAmyyoKppV07rlZ0N6COiN6ZDrkQfejOk6tO1Wz+nJNHaTTvPH2S3ZNEg+//nP3zCS9EEPehA+/elP46tf/ercd1//+tdxzjnnbHicP//zP8dtt92Gd7/73Ruue8kll6CqKnzhC18YBMmVlRWsrKxsuJ++9Gc8iy6A47kwNrPtpNOk0/HolB+zDzhaAc6XH5b7St9J2of3+Wdp7b5ZNH2+WHcFFCbUaewmnbZ7283KpkHy0KFDOHTo0IbrXXHFFThy5Ag+9rGP4RGPeAQA4KMf/SiOHDmCRz3qURtu/6Y3vQmXXnopvud7vmfDdf/6r/8abdvi3HPP3fgH9GSZmY/vLXdaJp2Wk0mn5WQzs/tlzZdaAdr3V57feGx/uU6LmApGvtsJOVnHbtJpZ2XH8iQf+tCH4qqrrsK1116LW265BbfccguuvfZaXH311UXQzkUXXYT3vve9xbZHjx7F7//+7+M//If/MLffL37xi3jlK1+Jv/zLv8Tf//3f4wMf+ACe/vSn4+EPfzge/ehHb0rHfLYDHN+Abhf9n3Rafj+TTsvtZ6d0klSNRX+7rdPx7GfSabn97DWddlp2tJjAO9/5TjzsYQ/DlVdeiSuvvBLf/d3fjbe//e3FOrfddhuOHDlSfPaud70L3nv88A//8Nw+67rGn/7pn+LJT34yLrzwQrzgBS/AlVdeiQ9+8IPQeqCFwQLZ6mxnaHCPxy8ytJ9Jp8X7mnRabl+TTsvta9JpuX3tRZ12WpT3C5KbTlE5evQoDh48iK/eeSfOOPPMLe2jb3LYisN6yOS0nYEIk06TTpNOk06nqk73HD2Kcw4fxpEjR3DmFp/jy8iOMsm9LkMDtOwsZSuDPTYrk9dj+5l0mnSadJp0mnSa12k3ZF+DJDA+CIsGXvWWQ9tsxiSwaD+TTpNOk06TTpNOw/vbDdn3IDkmiwbRD6yzzKAd78xn0mnSadJp0mnSaXdl34Nk3wSABe/HBqx/ASxaty/9Gdak06TTpNOk06TT5nTaSdn3IAmMmwA8Nh64/rbLHKt/wQ0dZ9Jp0mnSadJp0ml5nXZKJpDE/MkeMhssu63I2LbLDu6k06TTpNOk06TT7gLikOxrkFw0oArHNzBb3XbSaTmZdFpOJp2Wk0mn5WQv6rTTsq9BckzGBnvIFj520Qx9rrK/SadJp0mnSadJp53TabtkX4Pk2MxlzHTgMX8x+IH1+vvo2+vH7PuTTpNOk06TTpNOm9Npp2VfgySweIYzdEEMXQyLbOzL2NMXXQCTTpNOk06TTpNOGx9np2Rfg+TQDGdZGVq3f/GMzZgmnSadJp0mnSadtkennZZ9DZJDM5yxAVpm4IZmXItmTJNOk06TTpNOk07Hp9NOy74GSZFFM6P+wCw7UBuZDDZjTph0mnSadJp0mnQ6MTKB5AbiR5Zble2YDU06LSeTTsvJpNNyMum0nOxFnY5H9j1IDg2AypbLzIoWDWL/u2UumEmnSadJp0mnSaflddpJ2fcgmQ+A6n2W0//+d5vZf37hLLLlDx1j0mnSadJp0mnSaVin3ZB9D5LA+GAOzYrGttto3aELpX+xLbr4Jp0mnSadJp0mneb3tdMygSTGZzr5rGijAfMj6wytNzRD6m876TTpNOk06TTptLxOOyUTSA7IVmYom9kmv4iW3W7Safv3v5VtJp2Wk0mn5WTSaTnZik7bJRNIDsiiGcrYAI1ts9GALjsbmnRaTiadlpNJp+Vk0mk52Ys6bZdMIImtzWg2u//Nzn4mnZbfZlmZdFpOJp2Wk0mn5WS3dNopmUASyw/iVgbNZ39j+zoee/uk06TTpNOk037VaTdkAslNyHbS/L5jeqv7n3Ta/H6OVyadNr+vSafl9jXptNy+dtPkOoHkiGzHTGW7ZzuTTru3v0mn3dvHdu9v0mn39rHd+9srJtZcJpAcke2YqWz3bGfSaff2N+m0e/vY7v1NOu3ePrZ7f7sdlLOMTCDZk92ayfSPs+i4k07LHXfSabnjTjotd9xJp+WOuxd12k6ZQLInHsMnf2xAlh2o/nr9GdOiGdSk06TTpNOk06TT8jptp0wgOSBy8peJ5so/XzT4YxfSRttNOk06TTpNOk06bV6n7ZIJJHuisuVGg6kwflEMrb/MRTPpNOk06TTpNOl0fDptp0wgGWQZaq9QDvJOD9Sk06TTpNOk06TTiRVzohXYS9KfCfVl6LvczOA3WHfSadJp0mnSadJpZ3XabpmYZJChAdotu/fYcSadljvOpNNyx5l0Wu44k07LHWcv6rQTMoHkAslnPPly0brHc5zNrDvptNy6k07LrTvptNy6k07LrbuXdDpe2fcgucyMxPeWOy2TTsvJpNNyMum0nEw6LSd7UaedlH0NkmIT3w6n8nbR/0mn5fcz6bTcfiadltvPpNNy+9lrOu207ChI/tIv/RIe9ahH4cCBA7jf/e631Dbee7z85S/Heeedh9XVVTzucY/DX//1XxfrrK+v46d/+qdx6NAhnHbaaXjqU5+KL3/5y5vWb6uznaHB3erFMhYhNum0eF+TTsvta9JpuX1NOi23r72o007LjoJk0zR4+tOfjp/6qZ9aepvXve51+JVf+RW84Q1vwMc//nEcPnwY3/u934t77rknrnPdddfhve99L971rnfhL/7iL/DNb34TV199Nay1m9Jvqyc7n0kdz77y6K5lbPiTTpNOk06TTpNOx6fLpo/pvd9xs/Fb3/pWXHfddbj77rsXrue9x3nnnYfrrrsOP//zPw+AWeM555yD1772tfiJn/gJHDlyBA94wAPw9re/Hc985jMBAP/0T/+E888/Hx/4wAfw5Cc/eUN9jh49ioMHD+LOO+/EmWeeWXyXD8Kysuw2G6039v2k06TTpNOk06RTKUePHsXhw4dx5MiRuef4dsqeypO8/fbbceedd+LKK6+Mn62srOCxj30sbrrpJvzET/wEPvGJT6Bt22Kd8847DxdffDFuuummQZBcX1/H+vp6fH/kyBEAwD333LOlgc/t8n7g87Htlz3WpNOk06TTpNOk0+JjiXVxp3nengLJO++8EwBwzjnnFJ+fc845+Id/+Ie4Tl3X+JZv+Za5dWT7vrz61a/GK17xirnPH/KQh2yH2pNMMskkk5wg+cY3voGDBw/u2P43DZIvf/nLBwEnl49//OO47LLLtqyUUqW12Xs/91lfFq1z/fXX40UvelF8f/fdd+OCCy7AHXfcsaMndyfk6NGjOP/88/GlL31pR00M2y2T3rsrk967Lyer7ier3keOHMEDH/hAnHXWWTt6nE2D5POf/3w861nPWrjOgx70oC0pc/jwYQDMFs8999z4+de+9rXILg8fPoymaXDXXXcVbPJrX/saHvWoRw3ud2VlBSsrK3OfHzx48KS6KHI588wzT0rdJ713Vya9d19OVt1PVr2JdjaTcdMgeejQIRw6dGgndMGDH/xgHD58GDfeeCMe/vCHA+AI2Y985CN47WtfCwC49NJLUVUVbrzxRjzjGc8AAHzlK1/BZz/7Wbzuda/bEb0mmWSSSSbZn7KjPsk77rgD/+///T/ccccdsNbir/7qrwAA/+Jf/AucfvrpAICLLroIr371q/EDP/ADUErhuuuuw6te9So85CEPwUMe8hC86lWvwoEDB/DsZz8bALO/5z3veXjxi1+M+9///jjrrLPwsz/7s3jYwx6GJz3pSTv5cyaZZJJJJtlnsqMg+Yu/+It429veFt8LO/zQhz6Exz3ucQCA2267LUabAsDP/dzP4dixY/iP//E/4q677sIjH/lI/Mmf/AnOOOOMuM6v/uqvwhiDZzzjGTh27Bie+MQn4q1vfSu01kvptbKygpe97GWDJti9Lier7pPeuyuT3rsvJ6vuk96LZVfyJCeZZJJJJpnkZJR9Xbt1kkkmmWSSSRbJBJKTTDLJJJNMMiITSE4yySSTTDLJiEwgOckkk0wyySQjMoHkJJNMMskkk4zIKQuSe72X5ZjcdddduOaaa3Dw4EEcPHgQ11xzzYbdU5RSg3+//Mu/HNd53OMeN/f9RpWTdlrvH/3RH53T6fLLLy/W2Wvnu21b/PzP/zwe9rCH4bTTTsN5552Hf//v/z3+6Z/+qVhvJ873b/7mb+LBD34wZrMZLr30Uvz5n//5wvU/8pGP4NJLL8VsNsO3f/u347d+67fm1nnPe96D7/zO78TKygq+8zu/E+9973uPS8fj1fsP/uAP8L3f+714wAMegDPPPBNXXHEF/viP/7hY561vfevg9b62tnbC9P7whz88qNPf/M3fFOvttfM9dA8qpfBd3/VdcZ3dON//+3//b3zf930fzjvvPCil8D/+x//YcJtdu779KSq/+Iu/6H/lV37Fv+hFL/IHDx5capvXvOY1/owzzvDvec97/Gc+8xn/zGc+05977rn+6NGjcZ2f/Mmf9N/6rd/qb7zxRn/rrbf6xz/+8f57vud7fNd126L3VVdd5S+++GJ/0003+ZtuuslffPHF/uqrr164zVe+8pXi781vfrNXSvkvfvGLcZ3HPvax/tprry3Wu/vuu7dF563q/dznPtdfddVVhU7f+MY3inX22vm+++67/ZOe9CT/7ne/2//N3/yNv/nmm/0jH/lIf+mllxbrbff5fte73uWrqvJvfOMb/ec+9zn/whe+0J922mn+H/7hHwbX/7u/+zt/4MAB/8IXvtB/7nOf82984xt9VVX+v//3/x7Xuemmm7zW2r/qVa/yn//85/2rXvUqb4zxt9xyy5b1PF69X/jCF/rXvva1/mMf+5j/27/9W3/99df7qqr8rbfeGtd5y1ve4s8888y56347ZbN6f+hDH/IA/G233VbolF+ne/F833333YW+X/rSl/xZZ53lX/ayl8V1duN8f+ADH/D/6T/9J/+e97zHA/Dvfe97F66/m9f3KQuSIm95y1uWAknnnD98+LB/zWteEz9bW1vzBw8e9L/1W7/lvecLqqoq/653vSuu84//+I+eiPwNN9xw3Lp+7nOf8wCKQbz55ps9AP83f/M3S+/naU97mn/CE55QfPbYxz7Wv/CFLzxuHYdkq3o/97nP9U972tNGvz9ZzvfHPvYxD6B4EG33+X7EIx7hf/Inf7L47KKLLvIveclLBtf/uZ/7OX/RRRcVn/3ET/yEv/zyy+P7ZzzjGf6qq64q1nnyk5/sn/WsZ22T1pvXe0i+8zu/07/iFa+I75e9p49HNqu3gORdd901us+T4Xy/973v9Uop//d///fxs90437ksA5K7eX2fsubWzcpGvSwBbNjL8njl5ptvxsGDB/HIRz4yfnb55Zfj4MGDS+//q1/9Kt7//vfjec973tx373znO3Ho0CF813d9F372Z3829mM7kXp/+MMfxtlnn41/+S//Ja699lp87Wtfi9+dDOcb4G4ESqk5s/52ne+mafCJT3yiOA8AcOWVV47qefPNN8+t/+QnPxl/+Zd/ibZtF66zHed2q3r3xTmHe+65Z67Twze/+U1ccMEF+LZv+zZcffXV+OQnP7ktOh+v3g9/+MNx7rnn4olPfCI+9KEPFd+dDOf7TW96E570pCfhggsuKD7fyfO9FdnN63tP9ZM8kbJTvSw3q8PZZ5899/nZZ5+99P7f9ra34YwzzsAP/uAPFp8/5znPiQXkP/vZz+L666/Hpz71Kdx4440nTO+nPOUpePrTn44LLrgAt99+O1760pfiCU94Aj7xiU9gZWXlpDjfa2treMlLXoJnP/vZRQeF7Tzf//zP/wxr7eC1OabnnXfeObh+13X453/+Z5x77rmj62zHud2q3n35L//lv+Dee++NzQwArvf81re+FQ972MNw9OhR/Nqv/Roe/ehH41Of+tS29Ijdit7nnnsufud3fgeXXnop1tfX8fa3vx1PfOIT8eEPfxiPecxjAIyPyV4531/5ylfwR3/0R/i93/u94vOdPt9bkd28vk8qkDwZe1kCy+s9dPxldRB585vfjOc85zmYzWbF59dee218ffHFF+MhD3kILrvsMtx666245JJLTojez3zmMwudLrvsMlxwwQV4//vfPwfym9nvbp3vtm3xrGc9C845/OZv/mbx3VbO90ay2WtzaP3+51u53jcrWz3Gf/tv/w0vf/nL8Yd/+IfFZObyyy8vArwe/ehH45JLLsHrX/96/Pqv//oJ0fvCCy/EhRdeGN9fccUV+NKXvoT//J//cwTJze5zq7LVY7z1rW/F/e53P3z/939/8flune/Nym5d3ycVSJ6MvSw3o/enP/1pfPWrX5377utf//rcjGhI/vzP/xy33XYb3v3ud2+47iWXXIKqqvCFL3xh9KG9W3qLnHvuubjgggvwhS98AcDePt9t2+IZz3gGbr/9dvzZn/3Zhn34ljnfY3Lo0CForedmwPm12ZfDhw8Prm+Mwf3vf/+F62xmzLZbb5F3v/vdeN7znoff//3f37C7DxHhX//rfx2vm+OV49E7l8svvxzveMc74vu9fL6993jzm9+Ma665BnVdL1x3u8/3VmRXr+9NeTBPQtls4M5rX/va+Nn6+vpg4M673/3uuM4//dM/bXsgyUc/+tH42S233LJ0IMlzn/vcuSjLMfnMZz7jAfiPfOQjW9ZX5Hj1Fvnnf/5nv7Ky4t/2trd57/fu+W6axn//93+//67v+i7/ta99baljHe/5fsQjHuF/6qd+qvjsoQ996MLAnYc+9KHFZz/5kz85F9jwlKc8pVjnqquu2vZAks3o7b33v/d7v+dns9mGwRsizjl/2WWX+R/7sR87HlUL2YreffmhH/oh//jHPz6+36vn2/sUePSZz3xmw2PsxPnOBUsG7uzW9X3KguQ//MM/+E9+8pP+Fa94hT/99NP9Jz/5Sf/JT37S33PPPXGdCy+80P/BH/xBfP+a17zGHzx40P/BH/yB/8xnPuN/+Id/eDAF5Nu+7dv8Bz/4QX/rrbf6JzzhCduekvDd3/3d/uabb/Y333yzf9jDHjaXktDX23vvjxw54g8cOOD/63/9r3P7/L//9//6V7ziFf7jH/+4v/322/373/9+f9FFF/mHP/zhJ0zve+65x7/4xS/2N910k7/99tv9hz70IX/FFVf4b/3Wb93T57ttW//Upz7Vf9u3fZv/q7/6qyIkfn193Xu/M+dbQvvf9KY3+c997nP+uuuu86eddlqMQnzJS17ir7nmmri+hMj/zM/8jP/c5z7n3/SmN82FyP+f//N/vNbav+Y1r/Gf//zn/Wte85odS0lYVu/f+73f88YY/xu/8Ruj6TMvf/nL/Q033OC/+MUv+k9+8pP+x37sx7wxppjs7Lbev/qrv+rf+973+r/927/1n/3sZ/1LXvISD8C/5z3vievsxfMt8iM/8iP+kY985OA+d+N833PPPfEZDcD/yq/8iv/kJz8ZI8ZP5PV9yoLkc5/7XA9g7u9DH/pQXAeAf8tb3hLfO+f8y172Mn/48GG/srLiH/OYx8zNrI4dO+af//zn+7POOsuvrq76q6++2t9xxx3bpvc3vvEN/5znPMefccYZ/owzzvDPec5z5sLK+3p77/1v//Zv+9XV1cFcvDvuuMM/5jGP8WeddZav69p/x3d8h3/BC14wl5O4m3rfd999/sorr/QPeMADfFVV/oEPfKB/7nOfO3cu99r5vv322wevq/za2qnz/Ru/8Rv+ggsu8HVd+0suuaRgpc997nP9Yx/72GL9D3/4w/7hD3+4r+vaP+hBDxqcQP3+7/++v/DCC31VVf6iiy4qHurbJZvR+7GPfezguX3uc58b17nuuuv8Ax/4QF/XtX/AAx7gr7zySn/TTTedUL1f+9rX+u/4ju/ws9nMf8u3fIv///6//8+///3vn9vnXjvf3rPFZnV11f/O7/zO4P5243wLkx0b9xN5fU/9JCeZZJJJJplkRKY8yUkmmWSSSSYZkQkkJ5lkkkkmmWREJpCcZJJJJplkkhGZQHKSSSaZZJJJRmQCyUkmmWSSSSYZkQkkJ5lkkkkmmWREJpCcZJJJJplkkhGZQHKSSSaZZJJJRmQCyUkmmWSSSSYZkQkkJ5lkkkkmmWREJpCcZJJJJplkkhH5/wHeY040emo9AQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7wdVXk+/qy1Zubsk5BE7gGEcFVEvEBQbhVFkEtBxVqJWvEG+IUv/YlEW6XgV4W2aAVFrSAWJAUrUkQuBVTwhigRKQWsohZbNIpJEUROSM4+M7PW+/tjrXfNmsve5yTkJCfJej6Zz9579uzZs3f2mWee933e9xVERIiIiIiIiIhoQW7oA4iIiIiIiJipiCQZERERERExAJEkIyIiIiIiBiCSZERERERExABEkoyIiIiIiBiASJIREREREREDEEkyIiIiIiJiACJJRkREREREDEAkyYiIiIiIiAGIJNmBD3/4wxBC1NbtuuuuOP7449fL+69evRof/vCH8d3vfrf13JIlSyCEwK9+9av1ciwzCb/61a8ghMCSJUvW2T6vuuoqvPGNb8Rzn/tcSCmx6667Dtz2/vvvxwknnIAdd9wRs2bNwt57743zzjsPq1evXmfHM90499xzcfzxx2OnnXaCEAJvf/vbp/S6t7zlLRBCrNXfABHhsMMOgxACf/mXf1l7btWqVf77nzNnDmbPno3nP//5+Nu//VusWrWqtu1Xv/pVvOlNb8Kee+6J0dFR7LrrrviLv/gLPPzww53vu2rVKvy///f/8JznPAcjIyPYeuutcfjhh7e2X5PvhIhw5ZVX4qUvfSlmz56NuXPnYv/998dNN91U227lypV497vfjZ122gkjIyN4znOeg3/4h3+A1rq1zx/96Ec4+uijMWfOHGyxxRY4/PDD8YMf/KC13fe//32ccsopWLhwIUZGRoaeB4QQnctHP/rR1rbf+MY3cOihh2J0dBTz5s3Dq1/9avz0pz8d+B0AwPj4OJ7znOdACIELL7yw9tx9992HM844Ay94wQswZ84cbL/99jjyyCPx7W9/u7Wfyy+/HCeccAJ23XVXjI6OYs8998Tpp5+O5cuXt7YdGxvDOeecg+c85zmYNWsWdtppJ7zhDW+Y9FifKSJJduCUU07B0qVLN9j7r169Gh/5yEc6SfK4447D0qVLscMOO6z/A9sEcfXVV+OnP/0pXvrSl2KPPfYYuN1DDz2EQw45BL/61a9w8cUX45ZbbsEb3/hGnHfeeXjTm960Ho/4meGTn/wknnjiCbzmNa9BlmVTes2tt96KG2+8EXPnzl2r9/zsZz+LX/7yl53PFUUBIsLixYtx/fXX46abbsLrX/96nHfeeXjta19b2/ZjH/sYVq9ejXPOOQdf//rX8bd/+7e4//77sf/++7dOlE8//TRe8YpX4IorrsD/9//9f7j99ttx5ZVX4sADD2xd1KzJd3L66afj9NNPxxFHHIGbb74Z1113Hd785jfX9lmWJV71qlfhi1/8Iv7mb/4Gt9xyC1796lfjAx/4AM4666za/u69914cdthhGB8fx9VXX42rr74a/X4fRxxxROsc9K1vfQvf/OY3scsuu+CQQw4ZepwA8Od//udYunRpbXnrW99a2+amm27Csccei+222w7XX389Pve5z+Hhhx/Gy172Mvz3f//3wH1/8IMfbF3EMK655hr86Ec/wjvf+U7cdNNNuPzyyzEyMoIjjjgCV111VW3bD33oQ9hiiy3w93//9/j617+Ov/7rv8Ytt9yChQsX4n//939r27761a/GxRdfjFNPPRW33norPvrRj+KBBx7AwQcfjF//+teTfh9rDYqYEhYsWEDHHXfcWr02z3MqimLK2//+978nAPShD31ord5vU8UjjzxCAOjKK69cZ/vUWvv7xx13HC1YsKBzu3POOYcA0C9/+cva+ne9610EgP7whz+ss2OaToSfd/bs2fS2t71t6PZ//OMfaaeddqJPfOITa/U38Mgjj9AWW2xBX/3qVwkAnXHGGVN63V//9V8TAPrv//5vv+5///d/W9s9+uijlKYpnXzyybX1Z555Js2ePbv2+kGY6ndyww03EAC69tprh+7vmmuuIQB0/fXX19a/613vIikl/fznP/frjj76aNp+++1p1apVft3Y2Bhts802dMghhww8zo9//OMEgB555JHOY5jqd/3c5z6XXvjCF5Ixxq/71a9+RVmW0Zvf/ObO19xzzz2UZRldd911BIA+/vGP157v+n8qy5Je+MIX0h577DHptvfeey8BoPPPP9+ve/jhhwkAnXvuubVt7777bgJAn/jEJyb9rGuLzUZJ3njjjRBC4Fvf+lbruUsvvRRCCPz4xz8G0B1uZdxwww144QtfiF6vh9133x2f/vSna89/97vfhRACV199Nd773vf6cMsvf/lL/P73v8f//b//F/vssw+22GILbLfddnjlK1+Ju+66y7/+V7/6FbbddlsAwEc+8hEfJuEQUFe49RWveAX23Xdf3HvvvXjZy16GWbNmYffdd8dHP/pRGGNqx/fTn/4URx11FGbNmoVtt90WZ5xxBm699VYIITqVawj+Xn784x/jDW94A+bNm4etttoKixcvRlmW+MUvfoFjjjkGc+bMwa677op/+Id/aO1j2bJleMtb3oLtttsOIyMjeN7znoeLLrqodZy/+93vcOKJJ2LOnDmYN28eFi1ahBUrVnQe17//+7/jNa95Dbbaaiv0ej3st99++Nd//dehn4Uh5dT+BNI0BQDMmzevtv5Zz3oWpJRTVmVNnHnmmRgZGcHvf//7zudPP/10jI6Otq6q1xZT/byM9773vdhhhx3w7ne/e63e713vehde9apX4XWve90avY7/BpIk8eu222671nY77rgjnv3sZ+M3v/mNX7d69WpcfvnleMMb3oDdd9990vea6nfyqU99CrvuuitOPPHEodv94Ac/gBACxx57bG398ccfD2MMbrjhhtq2r3jFKzBr1iy/bs6cOTjssMNw991318KOa/p/NxmeeOIJ/OIXv8Cxxx5bO98tWLAA++67L2688cZWeDjPc7zzne/EGWecgQMOOKBzv13/T0opLFy4sPb/NGjbhQsXQilV23bY3x8A9Hq9IZ/0mWGzIcnjjz8e2223Ha688srWc0uWLMH++++PF77whUP38cADD+A973kPzjrrLNxwww045JBDcOaZZ7Zi8gBw9tlnY9myZfjc5z6Hf/u3f8N2222HP/zhDwBsiOHWW2/FlVdeid133x2veMUrPEHtsMMO+PrXvw4AOPnkk32Y5IMf/ODQY1uxYgX+4i/+Am95y1tw880349hjj8XZZ5+NL37xi36b5cuX4+Uvfzl+8Ytf4NJLL8VVV12FlStXtvJEk+HEE0/Ei170Ilx//fU49dRT8clPfhJnnXUWTjjhBBx33HG44YYb8MpXvhLvf//78dWvftW/7ve//z0OOeQQ3H777Tj//PNx880348gjj8T73ve+2jGMj4/jyCOPxO23344LLrgA1113HebPn49Fixa1juU73/kODj30UPzxj3/E5z73Odx000148YtfjEWLFq3T3OXb3vY2POtZz8Lpp5+O//mf/8HKlStxyy234LLLLsMZZ5yB2bNnr/E+V61ahSuuuALHH3+8J4UmTj31VPT7fVx22WW19WVZTmmhZzDk55vf/CauuuoqXH755VBKrfHrL7/8cvzoRz/CP/7jP066LRGhLEuMjY3h61//Oi666CK86U1vwi677DL0df/zP/+DX//613j+85/v1913331YtWoV9tprL5x++unYcsstkWUZDjjgANx6661r/DkA+30vXboU++23Hz7xiU9gwYIFUEph9913x4UXXlj7nvM8h5TSn9gZIyMjAOAvxnlbXt+17X/+53+u1fECwJe+9CWMjo5iZGQECxcubJ378jyvvVfz/VevXt0KuZ533nlYtWoVzj///DU6lrIscdddd9X+nwbhzjvvhNa6tu2CBQvw2te+Fp/85Cfxne98B08//TR+/vOf493vfjd22WUXvPGNb1yj41kjTJtGnYFYvHgxjY6O0h//+Ee/7qGHHiIA9JnPfMav+9CHPkTNr2bBggUkhKAHHnigtv5Vr3oVzZ0714dLvvOd7xAAOuywwyY9nrIsqSgKOuKII+h1r3udXz8s3HrllVe2wiwvf/nLCQDdc889tW332WcfOvroo/3jv/qrvyIhBP30pz+tbXf00UcTAPrOd74z9Hj5e7noootq61/84hcTAPrqV7/q1xVFQdtuuy392Z/9mV/3gQ98oPM4Tz/9dBJC0C9+8QsiIrr00ksJAN1000217U499dRWuHXvvfem/fbbrxXOPv7442mHHXaohagmw7BwKxHRz372M9p7770JgF/e/e5310JVawIOV11xxRVDt9tpp53o+c9/fm1deAzDlmGh6WGhxZUrV9Kuu+5KZ599tl+3JuHW3/72tzRv3jy67LLLasc8KATIIUpe3vGOd0yaoiiKgl7xilfQ3LlzadmyZa19zZ07lw499FC6+eab6ZZbbqHDDz+chBD09a9/feA+B30ny5cv9/t89rOfTf/8z/9M3/rWt+i0004jAPQ3f/M3ftuLL76YANBdd91V28cHP/hBAkBHHXWUX/fiF7+YnvOc59R+p0VR0O67704A6Etf+lLncU4Wbn3zm99M//Iv/0Lf+9736Ctf+Qode+yxrXCl1pq22morOuKII2qvffLJJ2nOnDkEgO6++26//v7776c0Tf33x+mPZri1C5yuuPHGG4duNzY2Rs973vNo5513ppUrV9aey/PcnwN4eeELXzjwO1hX2KxI8ic/+QkBqP3h/tVf/RWNjIzQE0884dcNIsl99923tU8mLf6DYJL81Kc+1XkMl156Ke233340MjJS+8/ee++9/TZrQ5Lz589vbfvGN76xtt+XvvSl9IIXvKC13ZIlS9aIJJnMGG9605tICEHj4+O19QcffDAtXLiw9v777LNPa7/33HMPAaBLL72UiIhOPPFEmjNnTms7/m75xM95igsvvJCKoqgtl1xyCQGghx56aOhnCjGMJB955BHac8896dBDD6WvfOUrdOedd9I//MM/0Ny5c+md73znlN8jxPve9z4CQPfdd59ft3Tp0hZpHnfccSSEoKefftqvu/fee6e0PP744wPffxhJnnHGGbTXXnvV/k/XhCSPP/54Ouyww2oXEMNI8g9/+APde++99O1vf5v+7u/+jubOnUuvec1rBl7kGGPorW99KymlWifef/mXfyEAtM0229DY2Jhfv2rVKtpxxx3p0EMPHXjcg76TRx991P+tLl26tPbcCSecQL1ez5/Uf//739NWW21Fz3ve8+iHP/whPfnkk/SlL32J5s2bRwDomGOO8a+94oorCACdfvrp9Nvf/paWLVtGJ598MimlCAB9+ctf7jzOyUiyC8cffzwlSUKPPfaYX8fEfd5559H//u//0sMPP0zHHXecf/8f/vCHRGSJe7/99qO3vOUt/rVTJcl/+qd/IgD03ve+d+h24+PjdOSRR9KsWbP8+4Y4+eSTaauttqJPfvKTdOedd9K1115LBxxwAO222270q1/9asrfw5pisyJJIqKXvOQldNBBBxGRVXI77LADnXjiibVtBpHkkUce2drf1772tdoVEp/I//Vf/7W17UUXXUQA6LTTTqNbbrmFfvjDH9K9995LxxxzTO3kvDYk2VQaRERve9vbavvdY489hn6GqZLk73//+9b7zJ49u7V987j22GOP1lUrEdFvfvMbAkB/+7d/S0RERxxxBO25556t7X72s5/VSPL73//+pErqe9/73tDPFGIYSS5atIi22267GlEREX3hC18gAPTd7353yu/DOPnkkwkAPfzww37d+9///tYFz5vf/GYCQL/97W/9uuZFwaBlmModRAj33HMPCSHohhtuoCeffNIvO++8Mx199NH05JNPUr/fH7jf6667jpIk8QTBCwA69dRT6cknn6Q8z4d+N1/+8pdb0QmGMYbe+c53kpSSrr766tbzX//61wkAveY1r2k996Y3vYlGR0cHvu+g72T16tUkhKC5c+e2nrvssstaEZIf/ehH9LznPc//DrfeemtPiE2T0Uc/+lHaYost/LYHH3wwvf/97+9Uo4y1IUn+Tm+77Ta/rigKOuussyjLMv/+xx13HJ1yyikEgH7zm9/495s3bx49/PDD/v/zwQcf9AabJ598ksqybL3nF77wBZJS0rve9a6hv8V+v0/HHHMM9Xo9+uY3v9l6ns9R1113XW39k08+SfPmzaO3v/3tU/4e1hSbTU6S8Y53vAM//OEP8bOf/Qxf//rXsXz5crzjHe+Y0mu7jCO8buutt66t7zL+fPGLX8QrXvEKXHrppTjuuONw4IEH4oADDsDKlSvX4pOsObbeeutOA8ggQ8x0vH9X/dPvfvc7AMA222zjt5vKcfL2Z599Nu69997O5cUvfvE6OfYHHngA++yzTyv3+JKXvAQA8JOf/GSN98kmhCeffNKvW7FiBR5//HEUReHXcS47NC2kaTql5Z//+Z/X+LgeeughEBFe97rXYcstt/TLb37zG3zjG9/AlltuiUsvvXTg63/yk5+gLEscdNBBtdcDwD/90z9hyy23nDQ3+NKXvhQA8F//9V+19USEU045BVdeeSUuv/xyvOUtb2m9dpi3gIjWygAzOjqKvfbaa+A+gbqx5iUveQkeeughPPLII/jJT36C3/3ud3je854HADjssMNqr3//+9+Pxx9/HP/5n/+JX/3qV7j77rvx5JNPYvbs2Vi4cOEaH+sgdB1nkiT4xCc+gSeeeAI//vGP8bvf/Q633HILli1bht122w3PfvazAdj/06eeegp77bWX//980YteBMCWg2y55Zat/OmVV16JU045BW9729vwuc99bqAZcmJiAieccAK+853v4MYbb8QRRxzR2uaBBx4AUP29MZ71rGdhzz33XKu/v6kimXyTTQtvetObsHjxYixZsgT/8z//g5122glHHXXUlF7705/+FA8++KD/cQA2OT5nzhzsv//+k75eCNFKkv/4xz/G0qVLsfPOO/t1vM34+PiUjmuqePnLX44LL7wQDz30EPbZZx+//stf/vI6fZ9BOOKII3DBBRfgP/7jP2rf11VXXQUhBA4//HAAwOGHH45//dd/xc0334zXvOY1frsvfelLtf0997nPxV577YUHH3wQf//3fz+tx77jjjviJz/5CZ5++mlsscUWfj3XsvHJZE3Av6O7777b//H/8Ic/RJIkuOeee/Anf/InKIoC99xzD/bcc8/a+957771Teo/ddtttjY/rmGOOwXe+853W+je+8Y3YbbfdcMEFF2DPPfcc+Pq3v/3teMUrXtFaf/jhh+OEE07AmWeeiX333XfoMfD7h+9DRDj11FNx5ZVX4rLLLht4cbvDDjvg4IMPxg9+8AOMjY35+s7Vq1fjzjvvxEEHHTT0vQfh9a9/PS644ALcfffdtTrF2267DVtssUWnKYWbUxARLrroIuy44454wxve0NpuZGTEfyfLli3Dtddei1NPPRWjo6NrdaxduPrqq5GmaSfxbrHFFnjBC14AAPiP//gPfOtb38JFF13kn//ABz7QarKwYsUKvOlNb8Jpp52GRYsW1f6vlixZglNOOQVvectbcPnllw8lyNe97nX49re/ja9+9as4+uijO7fbcccdAdi/jwULFvj1TzzxBP7rv/6rk1jXFTY7knzWs56F173udViyZAn++Mc/4n3ve9+Uryx33HFHvOY1r8GHP/xh7LDDDvjiF7+IO+64Ax/72MdqFu5BOP7443H++efjQx/6kHeZnnfeedhtt91QlqXfbs6cOViwYAFuuukmHHHEEdhqq62wzTbbDO0GMxW85z3vwRe+8AUce+yxOO+887D99tvjS1/6En7+858DWPcW8ybOOussXHXVVTjuuONw3nnnYcGCBbj11ltxySWX4PTTT8dznvMcAMBb3/pWfPKTn8Rb3/pW/N3f/R322msv3HbbbfjGN77R2udll12GY489FkcffTTe/va3Y6eddsIf/vAH/OxnP8N//Md/4Lrrrht6TA899BAeeughAPaPfvXq1fjKV74CANhnn338xcR73vMenHDCCXjVq16Fs846C9tssw1++MMf4oILLsA+++xTs/svWbIE73jHO3DllVcO7d5ywgknYLvttsP555+P7bbbDj//+c/xxBNP4B3veAcWL16MD3/4w7j66qvx5JNP4pxzzqm9dpD9fjLceeedvtxEa41f//rX/vO+/OUvx7bbbov58+dj/vz5rdf2ej1svfXWLQLkkyM3DNh1110H/lZ32mmn2usvu+wy3HXXXTjqqKOw8847Y9WqVbjrrrvwmc98BoccckitocC73/1uXHHFFXjnO9+JF7zgBfjhD3/onxsZGcF+++3nH1944YU4/PDDcfTRR+P9738/hBC46KKL8Pjjj7ecmVP5TgDgfe97H/7lX/4Fb3jDG3D++efj2c9+Nr7yla/g5ptvxoUXXlgjtHPOOQcveMELsMMOO2DZsmX4whe+gHvuuQe33nprbbuf/OQnuP7663HAAQdgZGQEDz74ID760Y9ir732ah3n73//e9x5550AKtfr1772NWy77bbYdttt8fKXvxwA8PGPfxwPPfQQjjjiCDz72c/GY489hiuuuAK33347PvzhD/sIDGBL1u6991688IUvBBHhRz/6ET72sY/hmGOOqTnO9957b+y999614+EytD322KP2f3rdddfh5JNPxotf/GL8n//zf/CjH/2o9rr99tvPC4E///M/x9e+9jWcc8452HrrrWv/p3PnzvV/f3/2Z3+G//f//h9OP/10/Pa3v8X++++P5cuX4+Mf/zhWr16NM888E9OGaQvkzmDcfvvtPv7+X//1X63nB+UkjzvuOPrKV75Cz3/+8ynLMtp1111bRayck2zGzomIJiYm6H3vex/ttNNO1Ov1aP/996cbb7yxlTskIvrmN79ZM/hwnuSZ5CSJrHnpyCOPpF6vR1tttRWdfPLJ9M///M8EgB588MEh39ozz0kSEf3617+mN7/5zbT11ltTmqb03Oc+lz7+8Y+3DBq//e1v6fWvfz1tscUWNGfOHHr961/vC4ebjs0HH3yQTjzxRNpuu+0oTVOaP38+vfKVr6TPfe5zQz9P+Jm6lmZO+Nvf/jYdddRRNH/+fBodHaXnPOc59N73vrdljvnMZz5DAIa6KBn33XcfHXzwwTQyMkJ77LEHfeMb36DHH3+cjj32WJo1axbNnz+fPvjBD661g7YJdkJ3LZPlpAcZdxYsWDDUFcxAh3HnBz/4AR1//PG04447UpZlNGvWLHrRi15E559/fq3Ant9n0LF3vf9dd91FL3/5y2nWrFk0a9YseuUrX0k/+MEPntF3smzZMnrjG99IW265JWVZRi984QvpC1/4Qmufp59+Ou2yyy6UZRlts8029PrXv55+/OMft7b7xS9+QYcddhhttdVWlGUZ7bnnnnTuuee2ct9E1bmla3n5y1/ut7v55pvpT/7kT2jbbbelJElozpw59LKXvYyuueaa1j5/8IMf0IEHHkhz586lkZER2nfffenCCy+cNGdMNNi487a3vW2oTyA8dw3bLvxMRNZh/Jd/+Ze05557Uq/Xox133JGOO+64lpFqXUO4A43YjPGud70L11xzDZ544om1LoqPqHDiiSfikUcemXJINCIiYuZiswu3bu4477zzsOOOO2L33XfH008/jVtuuQWXX345zj333EiQ6wBEhO9+97u1Jg4REREbLyJJbmZI0xQf//jH8dvf/hZlWWKvvfbCJz7xiemN6W9GEELgscce29CHERERsY4Qw60REREREREDMK12xu9973t49atfjR133BFCCNx4442TvubOO+/EwoULfQPxz33uc61trr/+euyzzz4YGRnBPvvsU2sYHBERERERsa4wrSS5atUqvOhFL5pSg2MAeOSRR/Cnf/qneNnLXob7778ff/M3f4N3v/vduP766/02S5cuxaJFi3DSSSfhwQcfxEknnYQTTzwR99xzz3R9jIiIiIiIzRTrLdwqhMANN9yAE044YeA273//+3HzzTfjZz/7mV932mmn4cEHH/RF24sWLcLY2Bi+9rWv+W2OOeYYbLnllrjmmmum7fgjIiIiIjY/zCjjztKlS1vdb44++mhcccUVKIoCaZpi6dKlreneRx99NC6++OKB+52YmMDExIR/bIzBH/7wB2y99dYDO0FERERERMxcEBFWrlyJHXfccVobocwoklyxYgW233772rrtt98eZVni8ccfxw477DBwm2H9Ry+44AJ85CMfmZZjjoiIiIjYcPjNb36zVm0hp4oZRZJAuzE4R4PD9V3bDFOEZ599NhYvXuwfP/XUU9hll13w8MMPY86cOevisCMiZiyMS6hQ87H72zLBttR4Lnxdc38hnmnSZlhARw55bl3Hgbo+xlQ+r3kGX4B0H14I+1kF7DlOCUBJexvRxsqVK7HXXntN+zl8RpHk/PnzW4rwscceQ5IkfsrGoG2a6jLEyMhI5/TtOXPm+ObHERGbIkKCDMmRiZHP7XySbxNp/flwm+Z7dCHkjqlkNroIsetlcsDO1jR7Mojbpvp5W2TZQbPDvgOJNkFKISAEPEmmkSiHYrpTZjOKJA8++GD827/9W23d7bffjgMOOABpmvpt7rjjjlpe8vbbb6915Y+IiKjQRZBEdWIMSXFSwgyIoK2o1uzYOklxAJGEz+vgjWv76Hj/SZ72aB77ZJ+3qcjttm00v6Pw80lUkTIpHFkCUBIgIUAgECGqyg2IaSXJp59+2k8GAGyJxwMPPICtttoKu+yyC84++2w8+uijuOqqqwBYJ+s//uM/YvHixTj11FOxdOlSXHHFFTXX6plnnonDDjsMH/vYx/Da174WN910E775zW/i+9///nR+lIiIjR5NgmRy7CLMkCAqNVntxz4X7vuZHVudOIY8J+CZjtdr4tetHYM01V/z89p19c/cuY3bzyCyZbQ+D1hBwitIzcTobhPp3jsS5XrHtJLkv//7v/sZgQB8XvBtb3sblixZguXLl2PZsmX++d122w233XYbzjrrLHz2s5/FjjvuiE9/+tN4/etf77c55JBD8OUvfxnnnnsuPvjBD2KPPfbAtddeiwMPPHA6P0pExEYHQyHpDSfI2mNHjF3qk/cLVKQQrgOmRpgttRg8FgHZWVIk/5qKEMN92e01aGj+sgttQhtOhk0i9Dlct702/Hx9x6HyVSL8fPa+kpYolQS0vyUoEpYgCUirF0WiXI/YLNvSjY2NYd68eVixYkXMSUZssmiSpG4QojaDybFOqnZ/BKqpzCYxVO87tVNKmFdUAbvxvW7FJdrrWuHZqaNLDQ8jxC4yZAI0bmf+cYso0SI3KYQnTSmBVEooaUOvSggoWd2mUiBxOcpMRaIcGxvD/Pnz8dRTT03reXxG5SQjIiLWPWpGHbQJUtNgcgyJkdBWSoMIYiqoKSrZsc6rLAFDTJ7kSZHfSVCdOPWUj2B4uDS8GNCGap85/LzVesCYxvcyyffBJCmlgDJAIQhKCKRKIFXSE2tKwf+J26UlzDX4sBFrhUiSERGbMJqGnJDwmgRZI8sOcmTVZEybBHTABcYMJwYAkFKgcKSkBABjCaMABcqK38M9DkiTPxMACFG9X/OdRUeekhpbDQudNokx/NxMil3r+DXh/lvfgTs0T5KiIs3UCKSaPFkSbH4y3Jc9NhmJcpoRSTIiYjMBn19rZNkgSE1tciyM8QQxVdWkBxADUJEiwMTICpI8eXYRZxdpKikqsnTvWw+/DifsYTnFLsUYEmPzu+DvrlLXbZLk5+qKGY4kbZg1VRKFAVJJnixHEulzk3zc9r5BJMrpRSTJiIhNHAaBe9WRH+cgBxFkGSjHQrcJAqiUE9AmzGEo3O0wYjRBnk4J+16SLJEYEKTk4xWt3CYRpuRzDY90TcmxixiNIU9ifruAIbsUpXSlHdD2c6dSoDAu5MokKe379BIJzrjasDh/ykiU04lIkhERmwlMEHJlkw41CJLzlaF6LAx1EgRQvY7v+/caEGOUgUHHuLuSSTcgRuNCqJIsYUop7HsJghQCWjuSdQTilVngxFGTWF2H5VfXhhxDYqwpSt5/VxElrJOVw6yFbyAgUQggNRIjSXg8hF6ibLjcvZ4AEAw0xcYD04FIkhERmwlCFQk40uRbpyBDgiyM8aQQ3p8srDhUTZqK0DwRSn7sjDeaPDECVFORcGTpiaBi2trbSCFartvuw6nnHP39SQiSLxwGkaN9XHe/DjoeJnMbbrWmnULYfCTvL5UiOAZgJJEwyr6eQ6+Zsvej83XdIpJkRMQmCkuIVCtd8M9R+BzVQqwhQRba+JOzvT84tMiYjJyMbBhxyJKjcaFXDsM2ydK+2O0kXAcARvgQrBLCH8+g9nX1/OnUCbLgde7zF8bUyLEKTVvS5O8ivN8FJYVfChOYd1zItZTSvYf9f9Ck0CMJIglSbfNRJMp1h0iSERGbETjU2lKRsMRRaHeCDwiS1zERlLqRl1wDJamEgNFMYOTKO6iqFzTUIkubcqtIUQlh1atbJ4VVl02i5ONjyIA8GbpJlh2PQ8IcRJD2vn2/XBtPitoQygZZdn4vrCZdLWSWSORaIFP1vGShjVWRRDCkbD4ZypfvkKoSk5Eo1w0iSUZEbAbgfCTQrSJ1QAJVKLEiyMnCi/Y9Js+9hQpPO4KWAoB7LiRL61EZTJTVZyOvGI1BiyjD7aaCMOdarauUM3/mJkEyaWpDyEvjybFajPt+BhOlcs0EJkpLhrk0yBKJTFEQduVj4GO14VdK2DYsfXlIJMpnjkiSERGbOGoTLcIIZUNFGsO3lZr0hp4B4UXePxPjMCIyOgh/1nKIVl0yWfK6yYiSH09GAs2Q65qOtaqZlAKzT0WWlaLOS+PVI9/Xpq4sgW6itCRpfNg1LyWyRNrXJUySsnpfVrWpcv8XCkYBBgYZBKRT7JEonxkiSUZEbCbg0zKHWgG0VGRFjEFYMchFDjKnAI3QZYMEOJzoc4ZMmLKtDJ8Jmp17unKSMgjFKg7V1o6BMEAM+8/AMD4kWw+vMkHmpW6oSfu831dwn0OtfD9LJPJSIE8UskRiJJEYzVRVphKQNh9Tj6oyERnkbEeUWOO+thEWkSQjIjYj1MY+tTrPhCfdQK14U4rpJMime3NSV2lYz2dEoCpD9Vg9Vh0yqKtLTfgc0O7QE0IbqhOorMw7gHPcus8npYBudEdofsYuk44eEn7t2kd4rLWQa2lDrnmiUBrbWECT6nTUGlL8CcChV54skkU5uVaIJBkRsQmjOc0CjcdhqNW/JlCRYXgR6CbI5kl/MhenNuTJwDjDDWQ7hzgIgxyrUlZlFPxeQHdjgUSK6hLBO2apKilxapJNQUoIGFFdZChZGZBClB0EGZp3mgtQfV8hmXPIlb+rGvFmib2fKeikMky1v3YJCQMhpBvDFXu9rg0iSUZEbGbw46CCk2oYag1VpH+OSXMIQXapKx9mDU72fAtZD7NqohYBhs0HZJB/bKrIkCCVFJ2TRNpfhL1RTjXaFnjGE6V0YswI6y6STlWqwAQ1DF2kWOUpByvKUE22SdItWWKJNyPwabzLVSyFBEqrKGNnnrVDJMmIiM0EgwTesJINQ3UV2fn6ISf8UCU1iXIyhJuEIdTm/S6CdH0HPDobnYvqYkF4ZSktKWoA0rbQSyEBY2BYTbquP1IwqQ8nzEEqsva9hd+t5vFY9e+Mw66zMgVtCKNZdfrmcpD2dyiABBBsjIpEucaIJBkRsRmCuWwqXWnC7e39drH8muyrC13kBzD5VcqRc5GprAiSZzCG5MikOGjmpOUTW06hhCVMJsvSAKlCjSgl2feqqUlXjsHkPNU2eDWSDPLAFHx/RgoUump83lSUTJRhWLfrdG5JXEHUiDwS5ZogkmRERIRHVz4yRFcN5JqSY5NMgvp3/xwTox8+7EKrdbKsE6SSlhxDYuRdiwZLkq+3hJufafdh1aUAwdYcVpUqVbgSMDCmUpO2/tPuP5ECeghZ1ojSfdfkFqD6zjnMTFLAuFZ8mZK177rs/N7rp3QpdOt7tYhEOVVEkoyIiFjvUH40VEMxhkOIg/u2p6m0A4ilrBGkDNSjknViHKQkgWDEFlnSFMKRpWtGkCnpiMg7e2AJ0h4LYGBIICUJbUxNTSpOaHZAB4TIBGkM+VwxAO+mFcZ+fpICfUPufSdrc5dU35373EoIzMoUZDCRWkSinBIiSUZERHhIUQ8rdjk4m2gZcjqe59uQSGyY0r2nCImzHmZNPWFaYkyVJc1EClfewK+piNGqSOduZbNPQJTGCkYAPDasPltTEtdPcoeDiigr044r7DfaNSOX/ntoftYmOH8YEmSXmrQdkYQny9wM7gs71FXsvgSRKb/O+YsRiXI4IklGRGyGkMLWQtqG2muyPaoyCXdibRbEd6FJGM38o3JqMQyzpkp6gkyVaBGkcoadkCiZHKvcZL1kRATECDhTkgDI5SeJXCUIWYXJeU4lFZQw1imacMIS0MoqSUMGqRLQjihDsuQQ7LCcJZMl3w+/VyGdmnRkCQB58NphFyb2OwaUC7vaZguq9l2wASmWUXYjkmRExGYCJromlLBDjwe/TkCjPl2j9vrghDysnKFrJFRXmDWVVWi1SZCpkj68yupSNRQlE2NIlOFnYRji/CM8QRoiCBKeLCVCVWmvCpT/EjU0CSBxVwsloCVsCzlD0Maaa7LEhm1rCtMIX3MZhlmpEXYFANIEMiIgSxeiTbrVY50gq5CrlAKyYHWtILS9oMi1DTV3NW2IiCQZEbFJQ4I1TwVhk292PBXXCgoBI8iVOVCt3IEVp+2vKupF97JeD9lEjSSDHGRIkJYQBRJVJ0hPjA2CVKJSkTYHKZxpBz5HWSPK8HPXvwkQUb1FH9nRXdpYshQCECZQlZCQokFMpbFOVyWgyYVdE24gYIkyVJNTKX9pm6YsWTNZMgoAyCdTk4n9Xgpn4hGs5KtmA5YwY1eeLkSSjIjYDMDlfBJWFfLjKhzZVWMHX+5gHweJvAZRdqEZXg1zkOuKIEM1yc8zMfr8JIJSkOD4XDAzaPJuCdIA0E51a2Pvl4Z7oQoXpuz+0NqQI0sZ5Aql77oTqklN1pAjjPBuW6qVhNT3bZUnQUFCl/ZJYwjIJvnuXWia/x98Qwb+fvzostiVpwuRJCMiNlMIVORozTqidqs1eYUJ2FKEmuPFEWU4p1Gpqo0bg8nR33chVCksMYYh1iZRjiSyln9kQhxElkyMisOsZOwS9N0TZEBCesJUQgJCAlKCYEd4ceNzJkspAC0EhCBLmC5PWUsOIqw/bYddw4Wne5gg3xgWozJBUmOdkAIaBtKVnEgpUObwRMkEvDrn0g/+/jjnq/3/g71vayilAHIdHa9diCQZEbGJg/uPCv/YhRbBphQBQ1V4NQy5wg1AhuFQK9pECQQ9T+t5vyY5sot1GEHaW6simwSZKNEgy4A0OQfpSFGY0pJjxTgAAEFUrwkJSBJCIhESkAk0CWj33VmSrJoVWLOTLeqXZbUr5rQw+lkOIEpWk6FgFIGq927XIEcpDWCpjEtTrPPWE2WDtGt5UFEtLDS9acrF5O3qSJQhIklGRGxGEIGRRQp7Oibi0g+qqUnuOmNs+gopHDk4orQK0pGIqywIhyozmuQYhlpDF+sggkwayjHtVJaOHHUJoUuvIAVRpSYDshSAJcbmrVT2ViVQ0i6ahM3tBiTpQ7qAc7vWEc7anOXKLrg7TrNNnUmkbU4gnY4jJkFRU5K8P8kfJQH8pA9JMKVBAUCVFTGO57pGlN5B7I1P2l4bQNXLaSRBURyvBUSSjIjYLCAFQKKanSiEsH1lyIYQm2oSSqLQxhbtA160pLDdZaQgN8GDydK+Tz3M6tY1yJEbBXQrySoPOYgYE1mpx1Q2yNGUlhhNSJRByLWZ6GOCdCoSTkVCF5YwZQKVZFAqQUmol5bAfncAIAKiDB3E4RgxP72juRBBJdK6Wg3V1GQIryxdXteUFBBlhVyKGlGqBlEq9/1J/v5L/q4l8mjkaSGSZETEZgQbahUgQSACqENNhg29qybfNrJaAD7cakmvHRKs3ss5WxvkyCqGCbEiSoFeomoGHd9IwCtKt04KJAKWFE1pSdJoS46m9MQ5UE2GGKAkIRNAun0mGRKVQSmJQggoQb50gr9Xrj9k1IZQE6vJdgMAbQh9Q1DcTac0Xk12HS4Z8kRJxhp6hCBv5hGlQM7fvfuustJgPNeN/GRwsSLshYoAoIwNLxfRyAMgkmRExCYLgVAxulArVSHXLjUJSBTOGNJs8s1q0jhFagIVOWgWZBc5Sk92gx2saaAWWTmm7nVMltA5hC4hdFGRIxNmoCZFSJBhXhJWXdsVVkUKIUGhklQJoDLAaEBZssxU5stLnA8mCEu2Q6/GzeAEKnIczdph19xQ1YbOWDUppIA07YsQT5QuR6lhoCBBxpJl4cgwL00t7DpRSqssg/xk1bBBQyQKhal+I+xo3pyJMpJkRMRmCIm2mrRP2LArFFDo+jQMOxtZWHIkOGPP8FFbXeTY7MM6iCCZDJkg/WO48GqZe4JsqknhSBNkgLIEjAYZx2jG1IOZtg0NhFQQaQaI3KnIxJKjtuRo96tBqkSS9iDc69gZGnxqf69Z76gz5cjRBJM8qrArYMtAhBS21AMGgCNKiYE5SiGFLx/h/GQz7GrVZGnvJ7ZDUGEE+roddpXu/64wVi2nnaOrNw9EkoyI2AwghesD6m7tqbdSkyooB0mVhHSNvY0RgFOWlhypRpYAgkkZdfjWcwE51rvqsIJxBp6AFH1oVbGarPKPQudAmVtC1DmEKSHKokaOwmhQkVtiLAt7a4wlPQfSGkI5QpMKJCVE3gekgkhSyDQDSQUhE/t6lYICZaqSDD2VNQ2l/Ont26V2/4aJMAF01p6/6dUkgrZ0HWFXIdtmHgC1sCsZsu5kQ15JhqoyL42/b13GEoU06JfdYVcbet181WQkyYiITRzcdceSog25hrlJuAYDIVEiCL2mkC1y5McAfM1eE2HRejPMylM8umogBxIkk6BTkELnzrDjCFLnnhxNWYDK3KrGIrfkaIwjy4Ao/ZekIBxRwilKkaRAkkIkGURaAiaz+0/sfQ7ljiQ9d7HRSCBm7dCrRdLOTfK2OWCSJgkakAutGqcyB6GpJrWsZlBOeJLUWJ0Lp9Al+qX2LuPCkH2c1sOum3P9ZCTJiIhNGFJYtyUbJtnlasj16/TEWBGlPQXzyVjCCBdeNaJGloBVSCnaIddQRdrHHGat1KMAOmsg2cnKpR+eIMvckWFRqUlduFBrDpQlTN635FgWjhxNRZZlDmhLkGTqhCakBClVkWWSQiQpRJrZ+1kPcmQUZBxBKhfKdeSbpT3u/l4PTDaI0pBbRuypd9A0j8J9t5yfVImN+krD+2nnKAFrtPLjtzrU5EgikZcGWULu1qAwNqw6URpvjCok+fA3N1QozebZCD2SZETEJg4hLLkxOVaTPAjcc0UI2z2H5yrCWJUpXC2kdCddJksmRlaTqetUA6B2Eq1UZNiaLhim3OiaM4wgQ8UYqkmhC5iJcUuMZQGaGAeVhXtsiZE6Qq6coxRSWUUpFSClzU0mKcipSZFkQFlA532IrAfRmwVhMpDRoLQqNcmyWZBJxxzJLCwPodr9kCRrQ5Rdc4DSxXJ1aTxRAhVZNmEM1RqVkyFoSZ1qkvOUHG4tpEAhBSZKm69MjEIpqpCrFLaT0ObWCD2SZETEJgpWkQxb0dEmSnKkCOlmFxKq+7AORyls6zSC609K5HKRwnd8S5vvH/QLZXJk9cgDkteGIEUx4ZytNrxqJsZBeR800ffESHkfVBR1FekIkrQG6TbLCCUhlLJ5yCT1uUkx0oNwBAlHvqI324ZgG/WXSdpDL0mcK9RUjX24oQC7XIl8WQij1aQ8BygIvTJRGtNuNNAMwXLIlTpUqjY0UE3axWAiMPFo48pBUOWxN6ew63r5qJdccgl222039Ho9LFy4EHfdddfAbd/+9rfb+H5jef7zn++3WbJkSec2/X5/fXyciIiNBpbknJoEF8NXZBUSly8LkKGJpr5euhKMVEn0EuX7q1qHarWMJBKptNtkyuYekwYBMimmcvIQa6ggmSBR5DDjq0D91aCJPijvw/RXgcZX2cd9+5xZNQazejWKlU8jH1uFfOXqwcvYKhQrn0Y59pR73UqYVSvd/TF7u2oM5uk/gsafhihWQxTjEHl1m1CJESXQSyQyKTCSCGRKYFamMCdLMCtVtWU0q5ZZmUKWyGpJFVQiIZX0t1IK1/PATgRhgrSd9doqzzQIsvREqVE6wiw0odDGLeSX0tguS9q4hu8u7DqFWdybDKZdSV577bV4z3veg0suuQSHHnooLrvsMhx77LF46KGHsMsuu7S2/9SnPoWPfvSj/nFZlnjRi16EN7zhDbXt5s6di1/84he1db1eb3o+RETERgwmSoMgp+gUpXRP2tnDVlUKpxiFcj1eXRkAK0s7pJhgCJBKuAHG7ZNzWGgvEA5F7m5SXiNIMpVTtSsHWTi1mPdteJXvF4W9dXlJ3Z+AzkuQMTB5CdIGxhiQNi01aZWkhJTuNksg0xwq7UP2ehBlAVEU9rYsIF34Vo4SiIw1zThFqdIeRlQGQLpBze5NMlULudoaykEGnwqVg9a1oRPkxnxNna26uv3kpcFIImGIAiVp1WRhBAotIIUMCLIKuwq5ebStm3aS/MQnPoGTTz4Zp5xyCgDg4osvxje+8Q1ceumluOCCC1rbz5s3D/PmzfOPb7zxRjz55JN4xzveUdtOCIH58+dP78FHRGzkkMIaRZgoIWw41eYeO8hxCFkagp+/SGSVJvtFqONkzRagkBwFK9KOcKuf5BGWeXCjgGYOkkOqIUE6NUllAdPvQxclTFHC5KW978iStIbRpmXeAayBR7qwq0wTqDSBzhKooqzIMu9B9mbBlAVEkYPKHHLWXAgy4IykIAIydBOlM+2YIOSqTXdpSIgcVilqbWx3HZcfDIc0C1ENZ2aQoVqPg06y1DYPaY/JKsVCEwpJSFU1Mox72Bbg9nnY5IlyWkkyz3Pcd999+MAHPlBbf9RRR+Huu++e0j6uuOIKHHnkkViwYEFt/dNPP40FCxZAa40Xv/jFOP/887Hffvt17mNiYgITExP+8djY2Bp+koiIjRd8Eqv6q1qHa5MsLekRiGcsks2debJ05SIhYSrBNpXuMyXnc6oRVsL3Pw0JstYooNkYwNVEsrL0Ociamuz7+yYvUPZz6H7uydEUBXThlKQjSwAwgZqUipsKWBUplIRKE8g0RZKXniyTni0pEWUBYTSkMVbfGe16ugLkCLNJlKTsdzcrVY6Q7HtbUpz8dFwEx0vGlXsE+cmu8pBwXWgSat7XxhJjKgmFNEil7axUaOPVpHSKUhD3Ad701eS0kuTjjz8OrTW233772vrtt98eK1asmPT1y5cvx9e+9jV86Utfqq3fe++9sWTJErzgBS/A2NgYPvWpT+HQQw/Fgw8+iL322qu1nwsuuAAf+chHntmHiYjYyNE8mQlUZAnhOr0MUJc18kSdMBXqo6Ga7+nDrk49WlXbqI90CzcqDzvnhD1ZkU948wyrRh9izfs+vKr7Ocp+DlOUKPsTPtTqibKwNtFBIVfRlxVJZglMUXiyNEWJVBvIXuGOTVsFaUw1GcSFXVtE6S4p7HfZ1ZmnOiV3qUnAtQiEbUTvzTmN/1whhVd6w2Ank0hvxtJuMe7/vDCE1D3WbvC0dg0otLDmLLOJTwtZL+7W5n8W/zFOhiVLluBZz3oWTjjhhNr6gw46CAcddJB/fOihh2L//ffHZz7zGXz6059u7efss8/G4sWL/eOxsTHsvPPOa/gpIiI2LfCJjf8SSQhPeERwYdVKTQJoEaYlV6dCGyFXHmsc5iZbSlLAl4T4xuSNPqwhWRpf5uGcrGGINS9qBKn7E9BFCT2e10KvZIwNt2qC6XCgSCUglIBKE5gsgSwSmLyEGs1gigLKEa0qSqRGwzhVKlxJiQQgegCEtMOdhYDKJDKVwDhVbqjyTGqyJOlrKEkNJEglBZDDNgkoja+HDEOu9jsXzuDTPs+G+67dD8Z7WQVpVaUxdjvp6mo1kbu1ylK0OXqTwrSS5DbbbAOlVEs1PvbYYy112QQR4Qtf+AJOOukkZFk2dFspJV7ykpfg4Ycf7nx+ZGQEIyMja3bwERGbCYYpzDAca6iuLjk8a3OS9gQantubJMxNwasWdY1ZkDzyipWjm+DBYVZy+T9/Gy5F7kOsTJBlP4fJS68oTVFC5xpGE3SuXX6yI5eqhMtNllCZgsoUdMqh1swRrEHqbx05au0rJFlRhlWTSTYLvSQBwbgLEQGTSNcsvm7oYQwiy7w0yOFKPQyhq1UdO1+layTAUI3/8LBW07jaTcP1lWRNPCm5EiBH5NrYaIMUjiRp020yMK0kmWUZFi5ciDvuuAOve93r/Po77rgDr33ta4e+9s4778Qvf/lLnHzyyZO+DxHhgQcewAte8IJnfMwREZs7+BxqSbCqjVRCeHVp1WRFjHx+98SJalQWAK8efahVcN/YKjxZH5ZsvIpksjRlYWsS3S0VhQ+9MhGyYuRcZBVyzaFzY0mysERplWSbKIUSzrwjoAoNlSuoTHuiTdwtGUuUQFUjGpJiiyiFRJLNwoiSMGRAJGFgQGT7vNZrKNt1lAwmOe7DqqUltSZReoIU1fZNggwREjLf5bypdv/fmgiKowzB/70hRJJcWyxevBgnnXQSDjjgABx88MH4/Oc/j2XLluG0004DYEOhjz76KK666qra66644goceOCB2HfffVv7/MhHPoKDDjoIe+21F8bGxvDpT38aDzzwAD772c9O98eJiNis4NWgdOYdpy5DwhSo1CQAH5oNz8dMjjWXK+chObRKxqpIT5Tk73P/VW5a7hWk0TB54Q05Ji+h86JytAYEWfYLT5SkyYVdyZOk0aYy7ygBqQR0rqAy48kyceqR1SRpG24lY8DxLk+KUkJKZYcYCwGeW5mNbAFyjGJcXpeC0pBB+d0mwoblWljl14QS4bDlakkCog2h3bQRPg6+fqhCruGFUnXBpDdhNTntJLlo0SI88cQTOO+887B8+XLsu+++uO2227xbdfny5Vi2bFntNU899RSuv/56fOpTn+rc5x//+Ee8613vwooVKzBv3jzst99++N73voeXvvSl0/1xIiI2S3Spyy7CBBxp1l5b5SaZILnNmZ/xyF1rfH1koCjJNib3zcmNtj1YnaokY404xhiYovCKrwqx1gnSFBo6r/KSZGiAy1VAZcZtb8lSu9emLi/ZhCdK17nHjeCsqUkIiSyb5b4zCSLjHa9Auy8r0A67dk32GLZduITPhbeDwKFXQ013MxOksO0KN1E1KaiZ8d0MMDY2hnnz5mHFihWYO3fuhj6ciIiNEnw+JlQlIUCrcymArlIQF2ZtzoJ0o69adZHjq6xBx93aTjurYMZXoVjVh+7nKFb1UfYnUK7qB/nJAsV4ibJfohwvHclpmKJu3ukOubKBR7ncpIRMFdLRBEkvQTKaIJ3dQzqrh2R2D9nc2Uhn95DNmQU5ey7k7Dm2fnL2HKg5W8Kko6B0FDSyBSgbRal6mNCEfmkwXhImtMFESXg6L7G60FiZa4wXGqsLjX5p8HS/xOpcYzwv/birCXcb1jw2ERJkltgOSXx/NEuQJRKzXMcf2yXJbjMrVRhJJHrKPu4l0ndPSqVtSM8DmxPfQWn9qcmxsTHMnz8fTz311LSex2Pv1oiIiLVCM5xKrBiHlIPwtr5MggclNu7XQq2ahyUHjcmdsmQ1R645QLhoNuo4YgwJUueBmjRtkgTYwCNq4VaVVcTa5YwFbJ1lphSMG7slpYSRCnI2YGzvOEBIKCGRqcwrcyIBJPClIa3d9xJPdjw8mRfungNMTU0OVpeV87gLBNdtKVCUyoXabROFoHHFJoJIkhEREc8YYcMCPmk2IRrbelIMO99Qlw4Nn9Yd67jVnG7kCysyIzbqBASpC+3NO6ajH6kScKOqCDq3ZJm60OwgZyyHagEbejWwU0aMrMZwQUiQTCCEQDKSIFPSOV5twwF2vE7WH1VJAyV1LezapSbDsGqoIrNEVfM7A4PPIGiiVhN7Drmy45kHe29KiCQZERGxzhAqiC4DCjtcJyPDtQV5gnSmHEdmurCt6Iw2niB1ru28xYAg2TzjHaGGoDQhVcIrzmRUdRIkYJsRAPD9X1NHkNLPq5QQQkIKaVWlkNbIQwJGoeZ4ZZgBTp5KCeoaQXITc0Zo0mGC7FKTsjHKbDI0L4iMq3/f1NRkJMmIiIhpwVqdJIWs3w8fA9XsxymClSLfD8s+QoLUQamDe6Unykza9ZmpXp+ODg61AoBQyjZJVy686pSklAoiyazj1alKqARZ0qtco+Cm8bY0xLChx1SlNda1qisVKA20MQNDrkAzN9lQkbLqgMRGK84d+9cPUYjO0+Pub1pqMpJkRETEesOUTp1C2mYG/FApEBPNWqJysVZuVp5sYYnSkmSobwsi29CbCJm0HWYy0hgBUKCsH7Iz+kjVDyaI2P6vQkqIJLOju6QCJSmkUhAycQSaQAiJVGbQkpCRqHq8ZsM/c0h8ecnzH9tEWYVcq3Br4sOudqyZDPrrcn2lFPVay2H/fzavajcym5CajCQZERGxYSElQNK5PriVm/RKkoSwClJaVWbv2/wek5ANbyrfe3UyGENB0X5FkGEuUAlAwyo7rQkZ7zbXvokAEHboEZYg0xwlk6OSkGkCma2CcWRpxlcBSWqVpExAsg8hFZKsyk9q8nOaMeJzlB050KAOMpHCNSuXtWkizbKPZm6yNvhayRpR8vfA7wXUp7sMw6ZSNhFJMiIiYr2gdk4NwqgEQAgJEqYiRykBExAmm17SDFQWEGkKylWNGD0p8VxIV8IxDL5YHu2Qa0iWtulB/bWyMNDKQKjSd+gRyvZpZXLUWQrN47aSFGZ8FWSSgvqrbdjVESRk4usnq/ykC10motHrNVCIgqBM1TRgUF4SqOcmfV5SuEHZ0g7OZnLkoduWNAUkD+hmwhzynRpUk7k6eq9vdIgkGRERsV7gO/LwijDf2FSTMgGkgaDEmnwSAyQpUBaVkkxSF7qcqBOlI8tK4clOsqzMOtVtt6uUE271eKwqtCfGUpW+nZ1KS0iVo3QTRKS/7YM47OqOXSQJRJkAKrGqUudIZIaUYEOusI0aRhL7XYWNBqQUkMJAakAK1w2H7GxIAJ1q0odnvUkHniBTKX3to3RGHiWqWZ8cPvWlPMItqJrYb4qIJBkREbFeUSNLR5QkE6ahyv2qEhAZgBI7iDnJgKRw5JLakGWSWRLiAckBWcpATUpX8ygDsgx5sxnKrD8Oj6wiSiUAmWu/X5lK6FSj7NvG6LKfWxXpljJNkKZ9S5BZH5RmEHkPQiagMrW5yVJBubCrIXKNxZ2qVLJ2XBPOpKOEgDIGSthm5FLYWZVQTdXJYVI3+FrUlSQTZKqkv2UVmSrpCFE4cmyzoi/xmfwnsFEhkmRERMQGgT99u5BqQEMQyOytMgARiAxEklhiHOnZdnRpYQcfpxlUVsIUdkCyzEqoIoHuB2FXWYVDufE3DPlQqoHozPkBTDTVkSlh1+UGUJp82LVqW6dQjFui1K53rD2uBCrtQ2Q92z0oyUBZHzLNIHQB6NyGXXWOJOkhlcJ3M+Kll7SNPIWgSk1q23vVzoQkpA2rDecVlTPppMrmJMPuOaweLVFaAg1VpOT74PaCoqYuNzVEkoyIiNjgIMAqKrSJEnCjtFQGOUJ2fuNIz7axK3KIrAdZ5JBpYkdZFQWMC3GqogyalCuYwkBl7laTU5ODyLF1hABcM283T1EToSy0VZG59mpSZe5xP7dzKYuq6brMWU1asjRJCqFSoExAMgdKWxqSyAwGQCqD/CTaRCndrEfpJrUwQVbjr9x23H/Xh1IdyclKQSqBWn4yldKVidTnf/JcUA61WhJ1xh4xtTrLjQWRJCMiImYECPAGFghp+7nyeu7KQwYi6wFGQ2htc5TGQJQ5Em0bnaveCDTPfsxL36Rc5Qo61ZC5DY2m2tjRT45YLGFWitIqxvZxakJdTQphe8FmrqNPoWF0Ap1rqMwSo1eUWYKkl9vB0U5NiqwHoQuQzCHKysSjsgSplK65eJWfBKhGlEz2ShMKQW4+JXlFGaIKucKXdnAOMgy1chiWzTphmJVzkSpQkeGEF0ZXCYj//9yIEEkyIiJiRoGEtKrS5SubJ1YBQBjthjPbW1HmkMZAuekcxt2qvERqjCOsSk0a16IuC7rtWB6uk2XT7xMSpHShTE1BgwJ3q3MNnUnb5cfNtjRp4WdcpiM5qCjsuK9QTTbCrioIu/o6RPsteaKUgiCNM/EEA5MNtUkSqEKtVT2kVY8VUVYKUrBxRzZuRZXbZDUZTnhpEuTGLCwjSUZERMw4cOkHpa42EgFRkoEYMXb8lDGQxgDGznVMZ9v+rZYstSWnokQ6qt38yCQgM3v6y0jbvqSOHKsQbDtP2UWaDLtPWY3g0gSdGyQ9R5TauHFepc2plk5RFrnNrerCunp1Ccjclb2USGQCgyovCbjOPIKJUrtjk1C6GmulqbulHROjD7nWiBKdIVYxhCCVFAMJsoscNzY1GUkyIiJiRsLXTyo3pbHhCmFFyWpSag1jtCVKYzxZpqbq5apzG3pNPFly2NXt2xX25V5VikkbjQOWjMgRUn2gc0CQTlFSz8DkBVRWAIUjSiZLVpMq8bcqSRw5kVWVBLiKEGiyRKmEQaEJUhAKpyZTYOAgZgAtcgybCbDS5BykaDzm51lBKim6ybHZo1dsfN7XSJIREREzFp4ok149X+kgevYkbFWlhjBWYaZBo3PSBomf3FGfIclt6noAUPJUEkuU3LYu1D2h+9M3GQgQjs+qppAEx+KOQRclpCNH4QiSysINnC6dmrRzNSETpDIBkQCBkBDgacgAkAQBCSmsggzVZIo6yYfdcxQ3CXDkaFWhzT9WfVyrMCurxkqFttWjL98Jb/1/lrTrhNyo1GQkyYiIiBkN73CVCSjttZ4XAODIEXC8YbRXkBU5GjcJJCCyIBzZJErpyz3q76eEaNUCyoZDpTlrsjoG7Y/Fz8QM8qsoS1v2YrQlS5NYokyl7btKtsTDznR0n56JUggYEp4srYEHtfFWrv960ExA+JxiRYpt9dgVXg3VoyfHQQTZxEakKCNJRkREbBTwZSIhUfLUjVn2odDa5yhhnIIMycmNzuL8ZBM9sFuUfONzNugYVO7NsBONb/7daFbQBc5LAgBpq3z5WK2SZHIsAUor4jEllMpsTaewA66NACBt7lQQoI018QgIEIQNtw6YBiL8fascpUDNpCMxXD0q0UGOjhjFAIJsHgnXxs50RJKMiIjYaFAjymbodZYLu6IisxR2xqQxJhiZNVjlCCmAvp3woQSQm7BtHZeGtEOuUsla/9ZhZMlkDcASpK7UJBltSYaMD7kKk3gSUlLakVogZ+IRliiNvSUSNqrpnpdKeEes77vq84Z1cgzzjKF6rNZVSrNJjoJMrUyn44v1/1XkHm8siCQZERGxUcETZZaAVFKvzZsV5iftks3V9debbpIUUqB05CYLg7LQvoZSO0LiukrAkkXmagyZHKt9dfeLrR0Hk7YxliCdshREjnzsLXnCTCxJCgESNuxqmdISpCTb4FwIWLL0B1O9Z9gZp+ZIHUCUzdCqEugmx5qSDMLZodlKG0+WxNtuBGoykmRERMRGB5+nVBnMCNpEaSpiNMYg1ZXjdRBJ+tcrgXLcNi9PtO2oU6UYq5O+EkCSKjv5I1WQ/lYG8yVt0/NJEShL0hpQAfGY0paDGEuUrOYMJwQdUdpmDLZHPLl6z/CT8lFw39UmOU4aWg0IUegyIEquS2koSSEhqpZJFWEaACLYBjPbxBNJMiIiYqMFAYDKQFmd+OTsWgEjACCbZF/cEL0Yt8RWjAuQJk+WdlfGb+v7wCoJlUmoTPlRWVXotT6ZhMd4Tf7BmCANoKw6I+NykzKBcaFQMkw+BA1AQUAIG3YFqpFVDB9ydR10QnKsq8ggtDqMHBv5yFqolUOqztUqhARP/BK6BKnEu11nMiJJRkREbPQwSa+mJsO8JALlyKUhXRCy9OO1yn4JIQV0wX1Y7WtM8NpQMapMQabS3arWIOZqUXZAtOwgy9DpyghJiMkJltyIXM0j5yRBIAEIEgOVWUiMvpVcSJSo1KR1DZdtcjS6HXLlY61/oXZ1kDsWBlZVSku+tBGUhESSjIiI2CRgkh6EkFUpCBnI2QAZHRCmRgZ4gqrPn+z7ECkrQp0r19KOfEcdBs+PFJK3V1CpsrdOWVp1KaHSpDYYmgnTdtVxQ6Z5sHQDgkydQMhAQNo+qiAIci5VN1ZLOLJs7cfdDiPHWt7RlJ4ca8RoyspcBFQ5yS4I+5khZEWWMgFI2DxrUDs5UxFJMiIiYtNBI0dpAKg5tnHbZKdhq/z6fmCzzhVkWinJyh1rKcuTJOceQ4JM7S3PuqwRpQu7QqqqcDFEB1GGqo3glCRcL1dpDTuSSyYHdEplYgTa7eRqeUdd+tsaQYbkyOFXDrnyMVZfprulSi0yWbr3J+nCru7/baaqyUiSERERmwzsDEpHlO5E3UmUUkGoMQCo5QqFkpBpDpVJlOMltFOTMtW+vjIEu1iZLJkgk1E7BJqHQcssgVCqpighpVWOrCjdrdvxkA9p83u2CYCAJJuXNK4he6PDXnWsqE/rEKJR0mFK1/HHEWKTHJk0G7nIgXWRHGJ1CpJI1UKrwm0jyICcKWkmYmYeVURERMRawhNlNrmiHFE23CmlDX+GhClVbqd5pHaiB7eZA+ANPQB8eFZIGSjJBKqXIellbtiyJUyZ8W1qCVIqiCTz9+GOY6CiMqb2AaSwdZyW+OzxmGDUl93G3uma1DEwtOoaGnQqSibGpmknhCNDrmUl/5jqBGm0C8NO0qFnAyKSZERExCaHqRKlkdLnKFnhlY7QyjSxQ5OzEjrXvmE5ULWd46YBwjlcpapCrEyQSS+D6o3Yx05ZIkmBJIVIUxtyTVKvLEmIqlFCmMsDauHZiiCtmjSBc5VRuVnr5BiWdLTUIytKDr06cvTrAncraWcyMvVaVK+MoUFSWTVJBiQTF2qVloiFvRVSgtgB+4z+59c9IklGRERskhhGlIbzgVLBAEilqodc3a1KE+iihOIJHmaAy5VLPIL8oxrNnKIc8SFXlSWQvZ5Vj+GS2ltI1TC5BAQ5JATriRJ1YuTnANRDq40wqlePTIZd66hqemBHk+lafWfwhQAoQBxOdoRJUlV5Ry0qNSmk/V7lzDTwRJKMiIjYZDGIKOXsxnYc6nRkp9MEMk1R9icggxFXOrct68LcpHDqTmWJDd26kKrK0k5FKZLULiM9ryghJUSSAklic3MyaSnKQfD9BNA2J3VO6WiUddTCqw2CbJKjKXOnOm25SoskHUHa+86clKSAURBp5kOt/v/GXxAICNNQzTMEkSQjIiI2adSI0uXPmkRJrHikzUuWThHKLIHu59BpATIGqldNFAlRmX4SF3JNfS5S9TKozCpKkfXsMtKryDLN7Lo0A8mkIgpV3WfCDEmk2btcCAEi8soRwDMnSFMCZVknx7KoOgM1w6z+jVk92tcgyWwNaJIBKXy+klwZiOD7PA5tBiGSZERExCaPmusVAIypEaWRqmqOLhVStQpSSZT93IdcOdxKWtfCrQA3FlBeSarApKPYqBMSpL8/am+TDCQViFVkcB/N0GsjbxeS5VCC5FziJAQpdO7zk1TkVjG62ZeeHMvCrge6iTIwIkEqm/tM0kpJpvDkCFNa8pfKN0uYSXnJSJIRERGbBZgoKascmTWiBCClBEkJIyWUVNbA089tyDUt/USRLiUpg0YBNtzqaiRZKboQqyfINPNqshZmlQpQiS+858fkCJNgiZFv/ecLVGSz9KPpSp0yQZYFqMwtKYbkyOO9TIea5JArh7CdioTRngClUoBw5KgFIBN7TJoJc+ZQ08w5koiIiIhpBgGgpGdnTjrCIDKQs+d6Ew+kgnRGE8r7SJWCyQufk6QBJBn2Z/XkyC7WJKtCrKwg3X1kI7b/rLJqEklWU5Q1ghSyRZAUTt0IiJJVpH2i3gSgOcWjTpodBOkeh+FWuKbxAFrGHSGd2k0z+55JNfrZuluVzUOySmY1aRRAyYxSk5EkIyIiNjtQkllSQNXnVY6651RFlmw8UZkNN6qehsmtMaVp3qm1mktSf2sV5KglS1aQTk0iSboJkh8PIUgmRz6KgZk8P8KqozF5R4mHJ8i8DyocSbqcJJW5JUevKLuNO97ZaowNuXYoTgEAI44ktSsTMcmMU5PrJUN6ySWXYLfddkOv18PChQtx1113Ddz2u9/9ru1J2Fh+/vOf17a7/vrrsc8++2BkZAT77LMPbrjhhun+GBEREZsIyA1upmQElPZg0lFQMgI5OhuiNxty9lzIWXMgZ8/x60RvFkRvNtQWcyBnzYLiZYstIGfNam0ne7MgRmfbJevZ50d69vmsB6QZKOlZglSpJUiVtQnSmXk02bpIbQjalXtosq3piCxZGljybJp6BqpIH36tTDqsIEOCpLIATYyDJvowed+qSX7OPfbE2lzKAmgQL2+PIofg+kxdejU7sBfsBsC0U/W1116L97znPbjkkktw6KGH4rLLLsOxxx6Lhx56CLvsssvA1/3iF7/A3Llz/eNtt93W31+6dCkWLVqE888/H6973etwww034MQTT8T3v/99HHjggdP6eSIiIjYNkMpqTkpbY2gbhyNoOm4VYQEqUx9iFAPMKkJKQClX82jzcQgdrO4+qbRSjElaV4/SDpNmcjTEZEiOBKuuOrW3d+Ov/Ocb+MHrDQG845UIpsx9iDUkSATERqHTVevOqSpCSd9ur5puYhphWdeaL0lsLtSFXWEST5IzIeQqiDq+7XWIAw88EPvvvz8uvfRSv+55z3seTjjhBFxwwQWt7b/73e/i8MMPx5NPPolnPetZnftctGgRxsbG8LWvfc2vO+aYY7DlllvimmuumfSYxsbGMG/ePKxYsaJGxBEREZsXuCxCTqwCyj5E0YcoJyDKPpBPVCppYrwKN7JhpbmvwM3pw62NvCTSzJHgJOFVmVhihFWOITk2DTth0/KwN6sfeRW0nRO6cPdzG2rVhbuf28/Lam9iPPjs/So36fKRJrclMWZAOQyAKjerVJWXbbh7pVPZGBm1qjoZAWWzvMKnISHXsbExzJ8/H0899dS0nsenVUnmeY777rsPH/jAB2rrjzrqKNx9991DX7vffvuh3+9jn332wbnnnovDDz/cP7d06VKcddZZte2PPvpoXHzxxZ37mpiYwMTEhH88Nja2hp8kIiJiUwQBEDIBpSMts4gQLq9W5rZ8oSyAIvUuzXBOpW8X54jRq0ivJhNPjr7EI2HCTFvqkcOqBva2ykPat2ElKYXwvVvt5yEoCBgBCOL+rAOyag1FaYz2YVZLhsYpyIogqchhitKTI5uYQqJkkjRKQmrjyLL7ooLyvjVKpZlXkWRKCJPY6SEzANNKko8//ji01th+++1r67fffnusWLGi8zU77LADPv/5z2PhwoWYmJjA1VdfjSOOOALf/e53cdhhhwEAVqxYsUb7vOCCC/CRj3xkHXyiiIiITRGkrAuzNrvR1fGJJAHKsiJLXx/YJknhjD7CkSVxm7kutegee7JkctQE7VQj5xxZQQKNsg+3VpAlTANAgCDtVEnbhMB9lupFQVNydvhqZ8LhkCgTpg+7VgSp8xKmKD05Gvc9kDaWIAv4chjSBpRampHo++9MSOm7HCFJQUXqQrO2JIW44To3V9iAWC/2obDAFUCrK0SI5z73uXjuc5/rHx988MH4zW9+gwsvvNCT5Jru8+yzz8bixYv947GxMey8885r/DkiIiI2Pfj2aGkPACpF6coTOF/GZCm4JVsAHpYs0qzqjiMDZ2pXaUfwuBxAjtqZcKwxp50Z01TlIllFavephBBQ/Pk6PrcIM22+9lFXucei8C7WJkGavPT1oqwoAfiOdCaoGVXueamNJRwpYXI3HNuFp4m7HcnEdd4JDDybMklus802UEq1FN5jjz3WUoLDcNBBB+GLX/yifzx//vw12ufIyAhGRkbW4MgjIiI2J9SIstn1hSdV8MzDrhmK7kROrBq7GgHwYw6tqsyFVS0ZWtdqFV7VxhKjVZL1ekj/tkKABNnjJQFIS5Qk4F/nQ65SgoxoEyabZMJWc+FSFi2C1AWryar7EAUqEeCcZArSBsptU6IiHZIKKAsIznWWuc3h6sI2UzB6RoRcp5WisyzDwoULcccdd9TW33HHHTjkkEOmvJ/7778fO+ywg3988MEHt/Z5++23r9E+IyIiIkKweqTElWSozN5PUutG5XpGZUs3wOUaXMaR9CrzSTICSp35pLauZxeVITdAbgi5Nsg1VYuxt4UhlHxrCIVBbdEUkKsn2urWEIE4TBuqseC+CAgSgO+kY128VlWavIDRpkWQOi+q+/3cqsvc3S/sdmV/wt/X4y6fWZRVCHeiX6vHFEb7DkDcQm/QUOf1hWkPty5evBgnnXQSDjjgABx88MH4/Oc/j2XLluG0004DYEOhjz76KK666ioAwMUXX4xdd90Vz3/+85HnOb74xS/i+uuvx/XXX+/3eeaZZ+Kwww7Dxz72Mbz2ta/FTTfdhG9+85v4/ve/P90fJyIiYlOHTABl6sOBuQE3l02gbvLxEztcf9WacuRm5Sqr5R2LQDlWhGcVo2b1CAo661TvJ9wsSduXVUBJqzhtA1oBIQmaBCTZfCUJVL1Sge4QJuck4VQhd9gxxucgQ4IM85JhYwUAQAHfx5aMgWqUithB132rbssUyPugNIOZGLdhV6NBZmaEXKedJBctWoQnnngC5513HpYvX459990Xt912GxYsWAAAWL58OZYtW+a3z/Mc73vf+/Doo49idHQUz3/+83HrrbfiT//0T/02hxxyCL785S/j3HPPxQc/+EHsscceuPbaa2ONZERExDOCD7uqzIUwjSdKCGmNPUNCrQhzkEyOQUlHqeuEWLjGAKwAm3lIXwLSCLVKIaCkABEgBIEMoISbmSUB4QjSEIdrReVyDQiHhGyFX7nPKodf2cmqmSgdQXLDd9NBlNyBiIyBTCua0S5PWcocqbLjwagobB1qYY1RTJC2wYGu/g+e0f/s2mPa6yRnImKdZERExDBw/WRtfFRQMlHfOJjOwYqyQY5haLQ03SRJsLelI0VNZCOfHadoJQSkdLdCIJECyj1WAkiUQCrt+ozvw9g6UF20akKpvxq0eiXM+CpQf5W9zfswq1ej7OfQ/dzdTviJKJynHFQGEvazbQ6hTmf3oHoZ0tmjELPmtDodoTcbJpttayaz2TZE3VCTm0SdZERERMTGCF8/icDtSgKC3Ik6CAHWhiPLINQKzh3WTTllcx1V5FgYY8sTjYHmmkgXb9VEVi0CkFJAGasoUyVgSCCFBKQ9YmFcQwFh31OFXYQGjIBswbg6yIAEjTY1gvQhV6coGdK4UpA0gTB1chNKoeznEErC5AVk0gclmVeTVBZVqzpXDrIhQ66RJCMiIiI64EOvQkKoxJKGV5G25MMTJY+2ctt35RpD1Vg27hfGoHB5SsO9WTk32WjEGhKkEo4gpZ+GCUiydZNOwQoS9r1IQMkEEHk1fWMQ8QQt5LgW0hSFJ0w28lRhWILR1XFqGEglYLSBCsKtQkloaRWmSUvotITkLj9p6pyuOURZAkml4jdkyDWSZERERMQgcCmHKQElW05LqoVaXZ/VhlIsA/dpYSpibJJjoU2DJKtQKxOllALQHGYFUiWhSUArQBOPyLJ5RgmCduFXzm/C502LqksQE6Wr9Qzh842BimwaeXRehVpDoiQlXPed0q/je1JJ6CKxczrzAjLJXV1mXhEl5yRdYwFfWrOeEUkyIiIiYgBYTXJ9ZKv7iyNIX/w/QD2Ghp3SAIU26JemRo4hSTJBthqZ60pBSufTMVLAEMHI8Nika1nH72vJO1GVAzdUkkKqoSqNSZDJsmpJR24d+cf+NUZAuMekC082RknoooTo55DS9neV4bSRwhJlOBSaTNk8pPWGSJIRERERk6GLHOHcp65cY1jukXOThSZMlMYryL42nhwtkVqyHESS0uUklc9FAloJrybD7YSwpSJKCGgBuxA3FlBVScgAdcYTPjwhBu3nrMtV26XQtXAraYJQ9s2kcuuUPe4EcOHW3JaBpAlkP7eGnqw+bcSGXKvesrSB8pKRJCMiIiKGwLd1C0snwHWMwwkyDK/muiLGiVL7+7ZhgH2OiZTdrYDdH8NO9rCO1sIAqSSkRsAo6esppRSYKA2UVFbNCoKSfJycl6zcuIJJ0w1KHqQoQ7K0Rh1LjFS7deFoZw4i1+ycjAsFuxCsVtKGWoMGBTLvwyQp1MioM/DYkCvpql5yQ+QlI0lGRERETBFhk/GpECTnI3MXXmUVWd23ynFCGxeeNdCGkJfGk2PpbhM3E0tJWyOZJRJaVrlIJkkn2iBLQKbKHZdw2xJIOiOSTmypSikhle2dSkHIVqjBOcow5Go0QedWTTZrJbXWbl/CPs4NpCqds7WETgvINIFyuUmVVXlJuJCrr5ss8w2Sl4wkGRERETEJwibhTYIkn/Or8o6sIJsEaVWk8cTYL9m4Y5CXdrHEWi0hmCCVFPb5hGBIwhBhxIU2pbDh1kIKFNKWf2jpajGlDdGKMNTK9Z1s3OHpHOHn17rxuAqt+sURpofWkEpA54DKFEyh3e4FhHTO1kBNUs+4ZupVfpJdrt7Es07+N9cMkSQjIiIipoDmCZr7sDBREuq9VDnE2iTIidKgX2oUxuYnc20wnmtMlKwidY0g+VYFSjJLFPLSIEskZmUKmipSk4KbCti8ZWJsaFaJeikIdwUSviG7Gxjd4XIF6uYdAD7cagJFGYZcpZLQmqAyO9MZsIpS59qRJpOjdi7ZEqph4KmFXMnYiSxJb72SZSTJiIiIiLVEOATZ9l211YrWxUpVeYdxBh3tTDuOIMcLjdW5dipS+zArL2VDSSZORTJBamMJjYlUCoEJbSClJciJ0tZQJobVpL0lKb1rl/OSQioIpVwjBTe+yuUUOfQaEmRl5KnnJFllaq2tgSe3veCNFtA5h101ZGrJ1eYjWVHakCtPH0FZVMYdU9ZneK4nRJKMiIiIWANI5xJl+PArKhXJg5IrcrSkOBEoSybI8Vx7guRwa5iTbCrJLJFVuNUQtDHQmT2Vc0eeVEr0S4NUShTGICVRnxQiBYRKIMqqIbuQqgq1DlCTTYQlH0yQ1CB2AwM4JSmVhCk0tBJQmVWPMrWhVm/g4VmWrn+sDHq5bojRWZEkIyIiItYRDGwPVgKcWxVOSXLDAOokSA63MlEOy0lWKrK9jZLW+dovtWs2YJCWAr1E+WNJXF6Sp5QIlQCltGrRh1xt+FW6HqxA1Y+1iape0hJkrT2dm8ZoYCC0DbUKJXyY1gRN01Uvs0rVaFCZeyVJRQ6ko919c9cDIklGRERErCEE7MDjcH5VFXq1zQK45rG2GJuDzD0hWoKsQq4NkmzUSSpRmXby0kBnqhaSrYw9thuPfV+JfqmRSGXDrbxfyYOhE9d+T9iQq6xCrv7zyjVzlLLCNDCeKEkTSBlv8tG5gUptuFWZqiesyQsoNvG4uZa2oUBVLynWo8M1kmRERETEGqIr5Aq49m9BIwDj2suFSjLncGteeoIcD0lSGxhjVVkzdKmlgJACuTbInKqrK0np85apNEilQKoMRrREaYDEzZnUhqClQOLnXypr4ElSS55KeUXZpR795/Y5SuNVZK3rjiZPlEbX1aRKq+bp3t3KtZhlDhR5PS/pW9Tlduj1ekIkyYiIiIi1gHQdbfh+E+GILCbMXFcEyWTJ5Diea9ttp3QkSW2SFFJACAEpBUxi1eZoVim+sIayLw1SJTDi3rOXGKRSeYerJkDJxJKja9AupIJIM4gks80FVH2RQwgzRFgKYluvGwgpamqS6ytVz/iQqy5K2xTdNy0I8pJkbFMBXa5X5ookGREREbEWsE3EuwnSGNuU3Lh2c4WuVGTeIEZemCC1NtClVWbNcb9CWCUppYA0BEq63a9ZIpElEoWWniALbesqayFX5fKSHeYddruymuSQqyVLN7LLGXEYzfZ0gJ9NAlLk1WRYNlLVSDpVWZT1vKQxtk7TlN1Dr6cZkSQjIiIi1gJWSQoIEEKeZNrSYWs5oqCG0i6hiiy0QZlrGEeQWhvnU+lQkhIVSVI9H7k6144kNUYSiVRKjCTW6TqS2LBrKgmlCUKuqspLIkkgktQRpQu5BupxqrnJMOTKMNqqSX6em6PzLEoKllpessgBoy1B6rLKS07pSJ45IklGRERErCWU625jCdMSQ3jyDhuVV8RYN+nkHGINCNKU9jXNvKRwOUkpBGRDRY4HJSLjeenVZK+0RMnGIR3MlwxDrj4vKRVEktYcrjJwutpFOMKcfIKzzUsCSgn7eTQBaaMZQW2yiGumbrRfqCzsmDIXchXcnWA9IJJkRERExFqC85JCABLCE2UInuTRbBLgHwch1rJgFWnXN/OSnJNUiQQgUUKDDEEIgb60KnI8tyrSq1TjOv0oF3I1qI7BuVx9KYiQlZJ0uUkfbnUNBUStv2sYdq2HQcPOO4BTlwo+1Fprbcfk6CaP2G00oHU1ANpUKnJ9NhWIJBkRERHxDMB5SUuU3WBisveppiJ1WSlIHeQlyeU0myFXlUhPntK1oxMuLzhey0laNTmaKYyoqstPmbLD1R4LKemUZOLzkiLNXH7SGXayJCBLpy4dQVrStKTFI7KasARpc5EylbV2dvb5KuxqHGGiad5hglzP9ZKRJCMiIiKeARIpUBiqcpSCmv3BPUI1qZkEHeGZ0t7WjDsGPuzq83nGQCY2dJkA4HHEUgro0iBXpmUQKlLy4daJ0mAkqYdcpauZhEyAJLFlIEnaNu84guTHTJSAVblh9FUqWWsswGiViLjcJH+2rnCrN++QWe/mnUiSEREREc8QSgooA0hB3u3KLeIYvoVcoCg556i1sXlLT44EravnDfdmlcJN8hBQwSBjIwRKqW0NZSIxnmunIm0d5miqHFGSG8elamSdhA0FhHRhVpubRJJCKGkHI6eJHZrsCFIEC0MqAd1p3CF/zF1gQq0aqVsFiZAwqRrCDF2s3X/WGiKSZERERMQzgBRAKgVyQTY/CeEJsqs8BKgUZRVShS/5sKFXquolXcgRgDPXSEjJBSjGm3lEKSCVdcnmSrbMQRNeUXI+UvhaTl8KopyadEoSbs5kZdpRLfOODAhTGukbm5OmoXWVVU6yHnYNb8HhVp5LSW5bpyjXByJJRkRERKwDKGfesWpSOCIbjrCzjjfrOMI0hmDKwhMkANuizU3osJAQpfH1k0oLaF21vluda4xm2ht4qikkocvVEmYS5iWTzBJikgFJCpkmvlaSb5kAQ7IkTZ15SaFELTTLDtcQ1AjNth67MhCfkzRttTodiCQZERER8QwhYEtBlCQo4cKvbq6jFNUcSACVs9W5Xok78rCydGqSCZIX/15+5mMGwIZajTQwpYBWElLZnCb3gOXOPn5sl2tswEOh7XQQQKnED2IWSvkWdZyX9ESpKqIMhyk3Q67DdJ4YEHYNy0Dsh6vnJf3YrJiTjIiIiNh4IIXrdiOEbzDAatI2Je9+XdgMgO9TEGLlxQQkybsyZQ4he9DaQJTWOCO1sWqybJt3fMN110fWD4km15SA50vyLElplWQzLymCmskwLylNFXK1/Vrr7ekATLmtnf0e1v/Ejy5EkoyIiIhYRxDCEqaSbmJHh2BKGmHYesiVSbIiSF3awvl6XlJBJRlMWUDKDFoTlHF5zNS6SgtdnyjCLtdwOsmIUq7hAdp5yaDZeZiXVFkK7VWl8IqSc5CkCRI2N1lzv3LJSON2piOSZERERMQ6gGSCFAICwk6ict14pOARVsOVFIddAXgF6cnRtHN0lkStq1WXxpZdlASTWtKtmqi7vKR2vWRd2LXKSVZ5SQgJYocrNzsfkpeULt8YOl3JkCdBn6cEfBnLGiFsKLABEEkyIiIiYh1AwBGkKwNJpbQ5SR9yrQhCTUIWFTFWBMkOTwYrTCEVyCjrZXGlJL7FXdC4YKK0zxXGumarUhCblyTAdd+xbeoG5SVllkCmCVSWQPetitSF9oRJjZCqgamFWStirRqmTxlx6HJERETExgmrIoPFTetIpXAhWOGXLpiGW9P4kKupagZbr7FjpHSpIRPpHLE25EpuNFdYD8mPC0PQZImRjUO+XnJIXlJlSdXHVbpOPEXp1KWBTBWMC7dyiQcPXRYyUJuycsba5ypD0EzDzDuiiIiIiI0UIRFy/SSrSH8rq8ciaDjAJSOTGVbCusGauacMW9nBOmQbIdeKIKu8ZDX3EjYX6RyuPi/J9ZKuj6tVkqlvVSeVVZMqc/dTZYcqZ8oRovAEGSrKqnSkftHQmjSiFDYkopKMiIiIWEdQATFyflLy1A5RV5J826ynbJJEqCK5TtLeNy7UGtZRwre587WXoZJ0IddSW/XIeUki1/4Owpt3fF6S6yWlhMzSWhmIyhKYIoHMtVeT7HS1cyQlEHCcCPKXdVNP5Zjlx7XvYYojuqYDkSQjItYx1qTGeW18DBEzGzwVRAmBVImKOGU1FLlJkFMxtDTzlABAUvqQqzHVeC1DVU/Y5vQRJka+5XFevo8rz5cM85JJCpFkIGnzks0WdSpT0LmGymTQm1W3aiVl0HjAP56qy1Uqq3DXMyJJRkQ8AzzTph/N10fS3PghYRWlcK7W1LWRk81wK4chRUWUshZ+VTAAhFKd+cgQnLtk2caTQ0yDJLmJgaHq1qpIVLdC+qYCPi/p2uGJJIVKE5RK+pCrLBKYvLSNBTRBZQS4cY9CUi18bNVm6IQN5lRKWctNCiUtMW5gRJKMiFgDNEltXTTGag7pDRFJc+ODCHKQiQzcrUEZSKgmmRyZLKUUMJJnNyofVgUwBbKsSkh4wgjQnj6iDfn6yNC845sKMEEKWeUl08wOZObRWX1p3a6qMvCozB2vEpCwTQXY+sKKUWUqUJSiRo52u4Za3MBEuV606yWXXILddtsNvV4PCxcuxF133TVw269+9at41atehW233RZz587FwQcfjG984xu1bZYsWeJG0tSXfr8/3R8lYjODoWrxJ5RgCZ9fkyVEuL9B7x+x8SCV7G61apLdrVIAWWIJMgmUpHS3APMT32+TQ9WSbjjCGZS6QZQAfIjVK82GeYfcLEk/X1LZiSAiSSHSzIdcpbJEKaR0jwVUak08bNSxph7l74c5SVaTwodf2QnrWuNxLnIDEuW0k+S1116L97znPTjnnHNw//3342UvexmOPfZYLFu2rHP7733ve3jVq16F2267Dffddx8OP/xwvPrVr8b9999f227u3LlYvnx5ben1etP9cSI2A4RkNhkhEud+prAMeo+QBAcRZiTLjQtSCNfsnHOTEqmSXk0yWaZKOvcnPFnapVKSTBghOTJxTQYmSx2SJodcg9BrFW617eq8w1VIiDRz9ZJudFbYls6FXFWWuFsV9HWVnixFgxgtkVZdfMIpI1LWS0H8595A5p1pD7d+4hOfwMknn4xTTjkFAHDxxRfjG9/4Bi699FJccMEFre0vvvji2uO///u/x0033YR/+7d/w3777efXCyEwf/78aT32iM0LfB6hjnUAWkQHYGgTZwb/aTdfH9r/+X3C8Cpv3RWOjWHYmY3QvCNZWTYcrkyUQlRqknOXwhXwS1evyHm9pooMybQJrrvn8KttrG5cqJUVpXO3gmBg3a2GACmciuQZk44gyTlduamA6Lt6yTSByEtPjgBAWkBDt2ZIVnnHINQadPHxBBmoZn9B4I5nfWJaqTnPc9x333046qijauuPOuoo3H333VPahzEGK1euxFZbbVVb//TTT2PBggV49rOfjeOPP76lNENMTExgbGystkREMELVqMPwqqlUoCaCAWqLdlffXUtt/42F0aUyh4Vju445YuZCCg63St+eLlUCI4msG3gSafOYrKgkoBIJyYOPpYJMUjfLMVicspKeKGXNJTuZEZRTCMY0jDsASCU+LwnOS8qqFIS776g0gXJlIV5NpolTkK5mMiDCSkGKKpep6gTJytL29VMbTEEypvXdH3/8cWitsf3229fWb7/99lixYsWU9nHRRRdh1apVOPHEE/26vffeG0uWLMHNN9+Ma665Br1eD4ceeigefvjhzn1ccMEFmDdvnl923nnntf9QEZsMwjwjk2MXKQ4iQ+NDVfUFGE6cwwgzPLapmIQiUc5MSLjxWYAPq9bDrcqrScFEGeQn7VKpSU+UofKqOU8rJRnmOAchHNXIOcuQKMNwK4K8JKSserkq6VvUhQtPC7HhVlVbeHKIypTPZbZDro0aSaCmKgGs11KQ9eJuFQ15TEStdV245ppr8OEPfxg33XQTtttuO7/+oIMOwkEHHeQfH3roodh///3xmc98Bp/+9Kdb+zn77LOxePFi/3hsbCwS5WYMvlr29/kkEWxTI7WOMGsXN/Evumt7KURtn/zz5/cMQ7LNMGwzBBsjrTMf9c47dsZk07wzEuQlCymgEgGtJZS2TcqlFKDEzoxEmbdC+yGB2vv1EhK7TXv4M+cnOS8JVL9373CVTJCu2blUvlZSOKIM50uqLAUZA6XtLEiDEgoJSBkIbWpNzmVTNXqCTW0+0odenVreQOTImFaS3GabbaCUaqnGxx57rKUum7j22mtx8skn47rrrsORRx45dFspJV7ykpcMVJIjIyMYGRlZs4OP2CTBBNlFjuGJgjFV9SbF1IiTT2L8FiFZNnOXTJaTEWXz+YgND+7fyqOzUilrajJLpF+UtKHWUlSlIDIRkORye0ZBJhlQ5oBUtnlAzdjDIU3h3bFd5DgIbNYh13HH2B3bXCSrycSqSZLSloLkfedyzaHSBKQNRF7YcKvLn5Iytn5SSpDinGqdHJUj2pqKVOxsVX5MF0KyXM9EOa3vlmUZFi5ciDvuuKO2/o477sAhhxwy8HXXXHMN3v72t+NLX/oSjjvuuEnfh4jwwAMPYIcddnjGxxyxaYJDqzrINYahVDYzaD5hoJ6frPKU3WHUQWUeTbdqGJIF2mHYEM3wa+25js8XMbPADlcem8Wdd1Ilap13skRCJtLlIW3oVSUSyvU9lUkKmWQ+R6ncbbhOOqLl5gRMtiKoz+Q5lgMbrLtb4kiLG5nl+7m68g/hFCW47MPlFTk3yRNCfAP0UC2GjwOytHlWF75VQS6yYUiiTU1JAsDixYtx0kkn4YADDsDBBx+Mz3/+81i2bBlOO+00ADYU+uijj+Kqq64CYAnyrW99Kz71qU/hoIMO8ip0dHQU8+bNAwB85CMfwUEHHYS99toLY2Nj+PSnP40HHngAn/3sZ6f740RsZOgKrRo0wkvB84yOiOmUwqgMIdpOVN5MoK4sQ1UZKsquzxIV48YD0VSSrvNOKllFKow4NZkqiVJJKCVhlOu7mpB3qOoSkElWaybAClJKAZlUhh/Ob7KarI/ommyeJf82RdVUwClK4Zy28N13MsisgCxKryZVY5yX0QYk65d/rBz92K1QVbpwK4Kcaziqa0NcC047SS5atAhPPPEEzjvvPCxfvhz77rsvbrvtNixYsAAAsHz58lrN5GWXXYayLHHGGWfgjDPO8Ovf9ra3YcmSJQCAP/7xj3jXu96FFStWYN68edhvv/3wve99Dy996Uun++NEbERohlYnI8eucCtjUCh1MuIcRJZhGLaZR2qGXgfl72N+cuZDDhibFYZbeckTCaMltDaQJCENQSYEwJKeKQWMCeYycv/XxLpn2SXbrLsEUOvwYx/Xj9PmKRu5cM5LiqqpAFxrOnIhV0jlDTycjwwhpPGh1mqdrLr2SFtrKZrhVkfGlcNV2dIPlye1t+vn1y+oq/hrE8fY2BjmzZuHFStWYO7cuRv6cCKmAaFbNQwjMTkOIsY1yUE20VwVkh/fDV8nOrYN+TA8j9VGKg3Yx6DjitgwyDVhVWEwXhJWFwZjEyWeHC/w1ESJp/olnlyd44mnJ/DH1QWeWl3gqfECeb9EWWgUExploe24Kx6g7BqHc4MAT4AuLKsSiSRVbpFIMoV0JMHc0RRb9BI8a1aKebMyPGtWirm9BFtkCeaNJJjn7s9KJUYTidFUYDSRSEwOObEKolgNkY9DFKtBq5+GWTUGWr0SZnwVqL8KZnwVyn4O3c9R9nOYvIQpCuiiBHURZ+BgVVkKmSZIehlkZm/VrFkQWQ+yNwtidDbk7LkQvdkQs7YApbNA2SgonYWn+gW2e/aueOqpp6b1PB57t0ZsUhikHpvKkdcBg5sHAN1h11AdMkLjTpdKJKpe16Uow/dbz7XSEdME7uEqBUHJcCqInQhShVy1va8kdGKHJRtdNSv3+5MuDOsbolfuVeFyksrVWfLjVDVqMr3j1h7H8A8g24urkaQkhUhTUGnzlKwiVYMQzQAlKbm7TmjecXlLVqtg8w4rSj6G9YxIkhGbDJoEqRtEOIgcm6qyts+GtpRo5yCbIdVm7nEYUVbHPjzsGrHxIZVA7jrtCFiClEIgUTYvyaYdXkYzZU1lhkCpAqDBRCmlgNam1pMVQGXUcXlJmTiyZDNQB0GG6HLA1oxnLsTJLlchHUG6/KQvDVG5D6GSNkBmqUUo4wdEG22q3qyOIGtlICpov+dzn1VOMvjQ6+B/Z+qIJBmxScA3BuhQj13k2Aq3dgRau+saB5PmIKXYRYD+PRDzipsyrMuUXI2kayrgHK6Zkt64M+JyklkioUnBGHInZ0uUWhsIKWpTPsJZlErVCVIpa+jJgv2HjdV5KDSj0/EaKEhfDuKIi1yzcyQpqCy8mgRgSTIvAUeYJKWtoQy6BPn6yobj1c+uZGIMG5yH5LipNROIiJhOTJUgm+QYEl63m9XeStF+vkmaTJaTKcVh2wzDIANPJNmZD25PZ8nJhV2ltETpQq6jmcFEabyaNJlCmdsTtBAGQtperDxQudp3ZdTxClJZFZmpoA4z6PLDBCnd8XRdwNmRWcEKVw4iksQSpXJOVzcdBEZDZnamJaVORTpnq1FVXtJP+wjMO1XINegexMOew047MdwaEbHmaBKkNlMnx7DGsYmwoL8z/xioR8Dus4soI4lt3hCiak9XNRUQ/n4Ybp3lCHI0s6TQB2BKR4KlVZEUdMkBnINVBM3RlTPsKFlTkSFZpqpSk81jra9o5AGDvKSfCJJkgNagsrCt6tKqBIQcOYpGGUjoYq3mUaaeFMNQKzcV4PIPEmK910pGkozYaBESpKa2emz1pAS1iHEyc3fX5I6mwhxElOsSg8pAIgFvHLAF/gQpw+47Bqm05JiXBlliMCurm3VyR5BCCNsRx3SQZCMvmSqb3xzNVEDCVU2mdM0GOARsc6bDDj4ouxDcu7UAFbldH6hJpJnPo3ONJBt3SJtqsDIrSQ6zMik6QxCP5GLTzoYgR0YkyYiNEmGJBxMkd89phVqHkONURl0xJNoKs0mUIWLxfwTgOu8IsuYdKSGlsXlJKdFLCIWpVGQTqhTIhUDh8pEDSdIpyUzV1emIMwTxY9vUwNZrKkeQUg65qJMNFSmkD7UKpaySNMaqSaM92UpUNZKGc5WyIsla/1bXxQec5wzVpDMJNV2265M0I0lGbHRggtREnhRDgtTUDqsO69U6FXA3HKAiy6kQ5TNBdLZu/OD/Q+68oxxBpcq5XI1AL5HQmULZRZKcTzQSeWl8dKS2TWNGZRi+tQSpgpBr1diAFw67StR/wz5VwO3puJhfCEueSQpobRWk0RDG1NILQmmQ1hAcak2rfYf9WSuCzLwqDUOtLdPOekYkyYiNCk2CtJPV0brP6rFJjsPykIMwHSTICtNfeXc0E2AMaiQwaJ8RMwtCWGOXEAQBO1MylRI9RSg1IZWETFEr1KqkwERpkLslSyS0oZriZFdqOMS5riCbKrKuJlNZhV47jWFCVqFY0Qi5lkW9ljG1LMhESYbbyenWfjmM2jVdBG4dXMhVKOVIOgj7rkdEkozYaDCIIEOzTqUuh5MjdZR8dEGgrRa5fnGykW+drvopEtlUTgOREzcOsLvVzpasmgqkxo7L0kTdClFqX7YREmQzLBvWQCaBmhzNkkpRpsq+p1OwHGplFRpmJZu/W1/+AdRDrpyHdGoyfBkBEEYBRoNM+9cctp1jgkSa+UYCodOVmyfEEpCIiCGYjCC1aavHqhzE7oOJcSoqsqp1pE6iXFPIDjW4LlVkxMyE/f8jH2oVBta04xSkXWzINUQiBSZK6VSkhjaEvLRhyy6S5NtKTao2QUqBkaBOM1UuHwn4WZcDf2Os4kxQN8lE58o1Wk5uR5ACqc1bhvB1kAoiTav8Y6gkg1ArufeMJSARER0wa0CQ2jQbmbfJcbJcZLuDDmES/1/r9f7+gPWMrhq1Ko81mCCbr4oEOnMheBFWSWpCpSRJtlSkFMKrSCY+dr92mXsAVpP1cCu3ukuVJcdeovxMy1Ral2sqpZ9WwuUq7Q9QqchaBx4mM1aRxoCSYB9aAsaFkIPpJTz+SjhnbI0geRwXrwtDrUDt/vpCJMmIGY2wzIMJUpu2QcfOeayrRwJ1EuMgjuQ/7rVxqza3D7cbpiKbr18bgoyY+bCzJQHpVCWrSa2AXoMklev1ap2qxqvIMgi18m2oIpszKrkm0ypV5drhiZqS9M0FYPOmABN680cnq/xkOIjZaCDJQMZYgivhiZKkts8DljD9B3TEGbadc/MprVlHeiVJTWfrBkAkyYgZDUJV5sEKMiTIyqzTTZB8/uHT0LArcX5GYHifVUbzRCIb9GXDWFUodbIw69oSZFSRMxvShVx91x0CjCCMJO2TvpQCUhhIbXu/pkqg0NQy7Qwy7yjJfWERkKREogR6TlWykrRqknOmwv1GJ/kxhaOzyLiQqLYOVXAuUvpbuFAryfocTPdhK6J0qrEy8SivIlumnfVMmpEkI2YstAufhgTJj5sEqYeQY5MYm229gPqVeSu3MgRsymAwGTbDrM+UIAcdTyTImQ3//y6q34oSgBECJAGjBDQJILHEoTRBubrIwhBSEigkud+6jZgA3b9hJavmANxM3arGKg85kqiqBEUKf0wyOL4aUXZMAeG8pFeTaHSWYvXoQq22fjKt1vtwazUv0hNksM7nIDdgPhKIJBkxQ8GkZ2BPCGEOspaXDN2sAUGG5Ng1GJnBz3X3r6wTYJMQQ1iLfzvM2pWfDNeHf/ZMkFE9bloIL5wUk6PLlHN/GqX5d2ggjTXzFMaSY1ojyeq3HObNAdRGYEkBP+S5IknpTUKpko6wK5crG3iav+P6hwmanQdOVxhlmwUkAJWASDM//UN4d2ta31etFjIIuSYZkCSATCoV2cyLrkdEkoyYcQiNOl5JBiadLoLk+2FYlQmwy14fQgnhG5BrQ90TEQLYouvgKnxAmNUToWiHXnk/QCTHTR0SjiBd1xwlBIxwT4CQQfqWdawgjSEUxkATUEjjf+MAah13au8TNAZIfaOAetiVw63SE+QABYmO3x/nJYUEBNmQK5yKTDMArjaSb2WHaad2wEGtZFgOEpp1AgVbM+3I9acqI0lGzDhwHpJJr1KGkxNkFzk23ecM/jvTRJ0DaNfkgjVUC0yQYYi1lpv0r2mHViMxbpqQQoDABGmNOTD2x2CNMoCSCkoYpEQotA21agKMkpWSZNd2B1Hy6Cye7FELuwYzLD1BSlTGHVG5W7vop1YrKSWIDERAmiSMJUqtqxpJYGCdJIA6OXI5CE8XCVRkGHZ1L1zb/4a1QiTJiBmFZh6SiZHLPAZ12wkJUhPViHFQKy9j6hekXXMfLfGFqrGtIqdCkKF6nAo5TpUYJ9tskmqXiGmGJUABAYKgKifp3a7kHK/EtbgSREAq679lJkkAnUQZEiRQkaT0zQukU7OVgmSzDoddZaAmB/6uagqPKhMPYIkTAJB59TisTtLuLiBH4fqxMkHKxI3j6gi7rkdEkoyYMeAwa5iH9LeoCLNJkGVAjgD8SaXab4dRx6nHJlFOBVMhyGb+cVBoVTT220QUkRs/uAkFpPB2afuYIMj+PpS7OFRuioySgCExML8+KIXg+7AK7qQTRjmserSdf1we0pE2q0gh2q5tSAlQQIrCNicnMhAyAUzp3a4EuxNBTklqNvE0Qq5s3gnJ0StHS5DDnKzrs14ykmTEjIEv9wjykE1FGRIkm3maV9zAYLNOaNQZFGYN0aUigckJcpB6bDpfp+Jgjdj4IYSAJEuQ0v2GhSNB6X7LSoiga5SolzVJ4aw+1ai2rp94mAcH2r9fJYW/wFOyypWyipSonK6gjjxFSFoqAenSEiUZkAnuw73e/311U02LHMPHfkxWu5nB+kQkyYgZgcqs08hDUtUoYCoE2QxJNaGGMFHX1bd/DvUw61QIchA5DiXGrhNTFzbgVISIqSMQj05huQ5OQvipNcoRX+XS5taKojHmTUx5xFsYuaiVoQQXd0q07wsxuLcUueP3IVZTVkQJFx4l43/Dgn/Lg37TXV10GgTZUpMx3BqxOYLJMawFq8ixq5lARZCFppp6nMzYoMnVqXXkH5sIr8KbecipEmQXOfp3nSohdiF8bSTMGQ3+fzfut1eRDXeMqsa8AaI2C9Uqx6odP4dgGWZA1jl0XHe5rLt+syok1OYOPYlV7+c78KjEdtwhAUHS/zZpiiTZ1faOCZKCsKsv/ViPzlYgkmTEDEDoZuUBylUesmoUMIggB5EjkyeHVI2hGlF2oaki6/nEepiqOrl0kyPvrxZiDU8Ya0uSTVIkE4lyBqL5E+PfHIEv1AAIUSNAoOoeZe+HDfp5u+o5fpeu9EJ4EdgOww6+oBtmGiMhrGoEaspRCONCrpYsAVjC9C9s/NaD32ttygeTY5eC3EAO10iSERsUYZhVB0RZOVqrMo9hBMnk2GVoaJJlFzjUymAVyScQa3gQlU1etMmy62TTIsfJrq4HQXSccJrrIlHOPDT/n70DFFDh/5eQ/sdCnviYGMM8ZD3cWv3cB5MlMIAw/ePhBGmNOtWbEkxFlME2nizd5yQgcLXWZ2XWDy5UkvWwa5eKpPX8O48kGbFBwXlH31WHax4prJUMJnwMIMhhhp3wBMFq0j8n6+TJKrIZZmWC9DVoLTU5hBwbxCjWgCD9CSES48aLrjzdMLj/U1UjDF4v2ooyeCmr0amg3SoxeDxZHpGJ0pEj/xabIVZPmkNATXXY1WFnA+UjgUiSERsQrCLrdY71MCsrynISggzJkUOvHN4alH8MyZENO2yVZ2UYGnW6CFIFRFojSD5xNE+OgzobdEFK/7oaWQ4iykiaMwbN34AgY//vOyIJIvjtUtM40yQQ6TraCGm1Wcfzfl8dx9VsZdc65vDYgmP0ahKoFKVw2whV5SIbF3W0BhcFtfuhemSClB1h2PWASJIRGwyhitSmcrWGYdbK7TecILvcrINyj0x2jFa7uCB0GqrEkCCVFFUoVnSTY4sY1yTEKmT1uiZZRjLcOMC/A10GvwnqjC4wOnVgh9KyRCkGkmRtrFVw64Oe/PfSjFQMen8ydp/EhcXu9+mfg89FApPkIwd9Pv5M4frgc63vMCsjkmTEBkFTRdbDre3hyprqhFhoM7QDCYBOk45sXEKzmmyqyDDMWrPIoyLImvocRI6TKAdG6+QQhleDjgfCnayigpzhCH8LZOxcxTC6EDwHYPIIg6yTne+hyusaCkw01wfk6RH+zkJ0rfdh1gCKL95k6zPUFaRaI6Ks3W8e9wYIu0aSjNgg6FKRVV/WwMTjGj0Xuk2QgxytTTfrIEgZ1EaKulkn7G8pUIVbQ4JUDfUoTFlXjawc+PEQhEYI720MybCrNVAXOUbCnDEQZABdWoI0ZfUbCUKvLWUJ1O8PCEXWlGTD+BJO6PDrjfCvG0icXapykhx4LQ2gqucG5l4na6Tcte/wOKK7NWJzQKgiueSDayLDWkivMA06CXKQo3UqnXR4PBBQqUgZECHnIVk58noOvXqC5JNfmHMKT37A1E6AwQmICZNgOonSq8mImYvw92BKwJT+IsqrSlPWIhD+dV0YZG5pPQ6IU1Q5vJA4Sbjfk7a3nucGvdew9V2GMt5X12cJNxukYod9/mHbTBMiSUasd4Qq0hOlM+uwm9U4QuQ8ZBdBVo7W+v6lGE6UUgh/4RqqSN9xhFWkGEKQTfUYhtSAqZ34hqk+ISGI2kQZMeNRjy7o6ncSqEqvKMkAZWlfaDRo0FgpAH70lGsIXlOT4SITwARzHxuF+X7UFf99BGTZefEV5gyHPDfodUMvV6eap9+Av/1IkhHrHU0VySUfbNbRpp6H5Pl6UyFIXjcoyqpEvQl0qCI5zMp5SCnqBOkNOqwCQkNGM+eEIOQ0TB00VWEzH8mv5/tr05E9Yv3CRRZqhKhLCF24iypLllTklhSNqQiSw5EdDcEJqHLTA8ZMQSqrXJkshbSEKZX9PQ4jS74es28ABLfNspNw3VQx4JJ10ok3Uy9qmR5EkoxYrzCu/nGQitSuBVcYZg0H0FaOVru/Zqh1aMOA4K9RNXKRIiRDWeUjeeSQcgrSh1e1O9kR+XUDzRgDTBCA8ZZ+oBHuYqJFYIWPanLjgMtFegVZ5hVB6hwoS5gyB8oCVBaWILW2xGjMQDVZKUlHeo4UyRElJSmEVBBp5lrfVaQoyIBIBflMR6Lg39iQj4N6TWaNKAc0LxiG5pSR5h6ahzKIRNf8ndcOkSQj1isIrlcl2iqyZtbRFTFqapZ8dE9pt27W7jBrqB7ZsFPPRdZn64Vz92RAkKwKECiFGjmGhgz/oRt5SHKz9oRwNWcVWbbyQmuKSKIbHv63UIVYPUHmE6CyAJU5aKJvCdIRpSfIkCS1BpQlR6sklVOOjii5EXiaAWUBJCmoLCCSFCIlT5Y88xHCzRJRCciUldpsXoBx/hKhP8B9vEbbvBCTNfPgF4Wrwpc0R8kB6EynrE9EkoxYb/DlHKZytIYqkv8YLTnW85BNguxqYD6Zm5VDrU0VqQKiVCFROnWZNAhyrd2KjVCqgCVMT5bOSdu+spZVbjJiRkMEoVZhgt8KE2TetyQ5MW7J0REmtAaFYVeg7gQNwqyWHCWg3P2AGKnIIdLM70ckGZAEvyuZQLi/PaGC3qvgbjkdLlMEESBeRxUhdoViQ/AFbW36TXgNGdYpE0HCRpi6CFNgeDplOrBe/uouueQS7Lbbbuj1eli4cCHuuuuuodvfeeedWLhwIXq9HnbffXd87nOfa21z/fXXY5999sHIyAj22Wcf3HDDDdN1+BHrEKGKZEdrqCILbWphVs5DdhFk2PR80B8owOpR1B6zilQSriGAM+XIKrTK9zsJ0pQQOrfrysKG03RhT4Zue+G2Ec7FyOtCx2ONWE2DXCfDBrDDR0wCDrVyxIF/J2VpCTLvg8ZX+ftmfBVoog/TXw3qr4LprwL1V4NWrwT1VwXLalB/tXt+FUx/tX+t319/tb2dGK/eK+8D+UTgrg0MQ01nLSPIQ1ZO9Gq2ZeUXcOVaJvARDFkKTdW2VI3Fq0rBwhRMVTMd/n1PRsjTgWn/67r22mvxnve8B+eccw7uv/9+vOxlL8Oxxx6LZcuWdW7/yCOP4E//9E/xspe9DPfffz/+5m/+Bu9+97tx/fXX+22WLl2KRYsW4aSTTsKDDz6Ik046CSeeeCLuueee6f44Ec8AmkOrHL7pUJFs1gnDrFZNVgQ5jBRDUw/QaCQQuFp9XSSYKFEjSu6kw+TmCVLnnvjYjBFa/JkYPQk2FybLVmF5dcwDa8wmcR5GspwBaKhI+1vRgYLst8jSE9/4KpjVq6FXr4buT6BYNe4X7dab1Y4c+0yMq2B4XyE5TvS9SrWKNShD4d+bMZP+1gh1gvQXraZJmAFpDl3ctkFEKSTN0PXOF9AUkOWGgKC1ybyuAQ488EDsv//+uPTSS/265z3veTjhhBNwwQUXtLZ///vfj5tvvhk/+9nP/LrTTjsNDz74IJYuXQoAWLRoEcbGxvC1r33Nb3PMMcdgyy23xDXXXNPa58TEBCYmJvzjsbEx7LzzzlixYgXmzp27Tj5nxHAYsv1XC0MoDdytfcy9WXNX8sHNA6pbqhEkMNiwI4XNTabOhJMqgVTK+q2SSCSQ8DZSIJGWHO19pybhXKxlXhFkV8iVlaF3tbowlK5yS4LzSg3Lfm0yu7TGCqikMlY0nwv7VwKTqskNdF7ZLCHIQBR9iGIcIl9tb8u+V4E0Me5vTe5ILO/D5AXIGOi8BBkD0vZ3xLcAIFyhvlASQkqoLIGQEjJLbZ4ySYEkhUgyiJGezUm6+0hSiKwHOTIKkgqkMkAm9jeVZNbtqjL7WCX2sUxqxBXWMDNZVmFYe4w827LJKM2UJA8LAOpN1cM5l611qIdfBYCnV45h/vz5eOqpp6b1PD6tl555nuO+++7DUUcdVVt/1FFH4e677+58zdKlS1vbH3300fj3f/93FEUxdJtB+7zgggswb948v+y8885r+5EingGahp2qFIRaKrJu2qkIkh/D7adqTddhGOhIXHCotakifblHsExGkF41OrWAsrR5pyKHmRh3V/FuKeyCshGyrZWMcEypfnVPzbMMo1lQ3kAkyPWMWuMAZ9bhPCSrPEeQHGrV/QmU/RzFqj60uy2DW174sR7Pa9vp/gRMP1CnzhDkzUFFbsP4ZWHvNx3YXWVKzrDDKpJJMfx79WFWCpTkgLBrGYZZO15TiyKZ+jp/rsDaOWnXBabVuPP4449Da43tt9++tn777bfHihUrOl+zYsWKzu3LssTjjz+OHXbYYeA2g/Z59tlnY/Hixf4xK8mI9YeuUCuFf3imKvkodFXuYYLbQeOwmlM+Qncr5yM51MqGHekaB0iwQcflIMM8ZLP4Owiv+no3IpC2Jomw5q0JknUHq1DKmnHIzhckdhcOME/YD9M9BSGS4YYHNxAInaxCFzCNEKsJwqGW5HKYvIQuSpA2TklqGF2/UJJeSSrINIFQEsptL6REAvuraf0WgnpKGA1JVJl13MWp3bH7Lblbn+tHGGKt1KOm8EJ3sNvVI3C0UmDKIUHu91/9XRoiSAjrZQseb6iCyfXibm3VxRC11k22fXP9muxzZGQEIyMja3TMEesOzdpIH7IB7KxI1B2tVW1kpRrDcVg6SE6oKdrc2NUqUJV78BisqllAw6jTNOg0CNLXu3UVgzchtXMmGkBqwLh6tmaHHtEYTjukHVkkxxkEMhClM22VtiaSitwaZ1xYlcnSrF7tCVIXJUxewhRFRZSNcKtQEtrdCiUh8gIqS0HaQGkDmSUoAShjoHrwjQeElJYgk9T9Ri0BQw4YgBz8xogqFWkVpVN7hr0EzVyl+xqG/CoFMTECAnUXK5MlXCOPkCj9yDsAkuwky67pPtOFaSXJbbbZBkqplsJ77LHHWkqQMX/+/M7tkyTB1ltvPXSbQfuM2PCouVobYZUuFdkMs3YRJD/uIsqqAUD1BxXmPEJS9GQZGnVcATiaCpKNGEVeFYKHBeFAXUm6E5JQFUGKJLOnEq3tVbS07zvw9NLMRUaCnHlgFcnuZl1Y1ejDrM6gEyhIDpcyUbKSNAFRMoSSkC4fKZQEGQOlNUgbSGPJErDEKF39JJeUoCyqvGXYOrELQW0kO0x9iNTUXeZVZKiKCPmvI9wl37q6D4IlTHJ/d0x8EoC2z3qiVEL488Zk/ZinC9Oak8yyDAsXLsQdd9xRW3/HHXfgkEMO6XzNwQcf3Nr+9ttvxwEHHIA0TYduM2ifERsWzVBrqCKZAJsqsivM6ocyB8tUEIZamRCHqcha3jEgSyZIwye+0iqFKt9YVC5GXlhJhNs49UllXjP3tJoOiGoqeyTImQsOtVYXVHn1G2kQJecemSA5z1j2cxSr7fOl26a5hDlKfk3Zn/DhWlO4sG1R5cIRNCcIO/k0Xa0khO/xypEf8n9nQfkVNYgzyCuWzoxnDXjVkmtjTXqaR9/VXxuWeNUMQmio1A30w5/2cOvixYtx0kkn4YADDsDBBx+Mz3/+81i2bBlOO+00ADZf+Oijj+Kqq64CYJ2s//iP/4jFixfj1FNPxdKlS3HFFVfUXKtnnnkmDjvsMHzsYx/Da1/7Wtx000345je/ie9///vT/XEi1hKm9kdX/fjZQl41DAhUJFVhViZIALWuOoYve2V3Szo273ColQ07rBz95A8BcLu5mjGH7+scKPJaOzFPenwicqFWPhlxGzGS2nVKMe462V1NJ1l1ZT9oIkLQoBoyiQQ5E+FCrcLlIYUuauUenIcMFWSxatzmI4sSpctLViqSYIIp4lIJCCW8kpRZAtLGn7xL2BO5cSrTKAmlCutcLYrqd+Y6+rT+SsJ8pAu1hrXLzTplJjlyxMgXucCQbINkP4Hw4+lsbtIpRwQqEuxbsGFZVpMbCtNOkosWLcITTzyB8847D8uXL8e+++6L2267DQsWLAAALF++vFYzudtuu+G2227DWWedhc9+9rPYcccd8elPfxqvf/3r/TaHHHIIvvzlL+Pcc8/FBz/4Qeyxxx649tprceCBB073x4lYC5C3i5PPdYRWcuOuJgtjaiqySZChg5XvD5z04cw6vI0UdcMOr7P5SacidZCHdLklrosEX52HypA7pjBJ6rphhwDbUowJUuqKIKVyeUxpzRThCxslHmzJj5ihIOMaSXSpSFsCovsTLYL0xp2ihM41jCaQNvY2YBshpSNKe6uMgUwTT44AYJSEdjlLkyaQWrsLPNd5ZxB7dTQyr13E1hRfI+RqyP3N1j0DgP17Bqp8onT5SCMsYTJZJlJAu0ymgrDRJQgIQe6xU5AbyLQDrIc6yZmIsbExzJs3L9ZJrgcYAnIfhrFmnFyTC80A/VKj0ISJ0qDPIRq2jbsc5SBnqxT1TjmplEiUrXVMlUQqBXqJxEgi0UuUr43M3DaZEsi4LpJKW+PmuubwfVYHJgiZ1Yq0jQYVRXdIKxxtlFb1bLZVWGrr2bKefZxmoKQHUqlVACqr7ic9u+/19H8WMXUIAKLsQ/RXQvZXQk6shF75JGjVSpiVT8KsXgn99MoglDoelG84oswNdK5drSSbdpxZ0bEMq0mVKqjMLjJNoHoZVJpAjWZIeiNIZ/WgRjOks3qQs2ZB9mZDjM72t6I3C6I3y/6mVAZKR+zvLhkBJRm0SOzfqguPlo4AuZ6ZCTIcYzfZfFdfwyzZA1DVMDNR1pp5hGmQYNgAG+44NbK+6iTj5WnEtCLMK/AVahhqNa6xQM2kE4ZgqX2VGkI3yj9C1NQiqlCrLftw67izTjMPyV1TugiS85GOHJulH2SckxWFs99z+FVXTaqN9I7D6stq5CSlK+xGJMgZCzIQxYS7mHIqsivMOl7PK/r74yV0oaFzDrMaT5AMoQRISU+Y9eesoce6YjWMMZDOAOTDqwOmipAQVa5but+bC6+aIMyqBxAk1zIXzjTEZNmEcYYdSQKGu17Z+CpSBZTGXrySsApTCEC4UKwgAQF7q8R66qPaQCTJiGkFJ/5DcgxDrRU5VgXG3swTkCVgE/4MJav6SENA09TeZRHnUKuf9iHrZp1mHhI6MNs0CXKib8nRh1vr9ZEhQQqeBZhkrumAe87nMhth2saJK2JmQgBVM4liwv5eGmadMMxauvshQZb9sqYkbci1TZJSCchUtdaLvISWEjJNvCvWhmxN7W+ilYusdX2yZElgc1y9XWSYk+TID894bY6w64LxStISZgqJAqgRJcH+HUtBIOquiWSHK0/uWV+If4ER0wqO5hsi30AAqDpsVB1zUFORoVEHqAiSiVEbS5TDIKWo5SM5J9kcsgwTDE0e0JS6qnUbD9yrjkCdFb+ZRwIK204szerTPaQCytyeNZwtXzQ7nvBVPqKKnNHwhh035SNUkRNh15yJwJFaEWQxXsIUNh+pc90iSKBSku31ElJxA4Lq1qMj9C+4vSFQGcJE5Wq1hp1Gn9WWgiQ/nacKudbDrOFEHuPzkuSubo3LUUr7jwBpCEJW5GjdtRuugUCISJIR0w5CdaLn0g8OtfqrVMNkGtREeuNOPRcZEmVXXXTTzMOlHxJhfaQbl8UDlP2Ujqo5teFyDlcU7gkyWG+KsrOuDXAnMSN9iKgy7bgi72a4FagbKaKKnLHwuchywhu8amadWph1ombUaRJkpSTJd9ohTVU+0rjfRG5vbHiVvGKUwQUaDTLoAKi6+8v2IpNaSzli57lrJVdog35pPEFWRIlaqgQITHXusRFMmMK+RgikypV4CcAYASPIq0mbBrHRodC0MyitMt2If4UR0wrb1srer4dcu0OtoYpsEmToaK1Crd1FxtyL1Z8XIGqhVsEXqeHYqsDd6mvNmCCdUadqL1Y0WonViVIoCRQAuTCY0gay54hSKjskl/NFpqNFWKyJnLHwvzanImuzIgOi9MToyjx0P0cR5CBNoR1R1ks/mqYdZMF7awGdawglatuGF2qtCzZuS8f3G831SSW+T2tdRdpbrnFsEmQVcq2iRWGzD+OUpBQCigKylM7targFo4GU0qtJcmUhhrrTJusbkSQjpg3cRACoNwBopi7CUGu1riLIZq5DDyDGLrBBpxZm9arSGXaI2iqSyzs6RhwxQZqgU4oxbZKU0hoqZJa4dbnvoSmK3E6R14ONFREzF6GKFGWgICfsBRXXPpqigB7PfaG/zjXKcY2yXziiNEH5R6UkAQDaqkadGyCDJRBNIGUJ1avHjigGAFd6VIVahFQQSsEEU2X41s93pKqXsg+zGuMm8lhinChtC8mSzTsdKhKoLo6lIBhXkpUCNh8Jmy+RREghbFBFTF7rIdzf8/pEJMmIaUPTtNOVj2Q1GRp2wpAro9mv1atK2Ptpx58Oh2dCPhW8CAE/6HiIimTTDuchTV7YE6AjyFBN1uBUpDBVLskXeUsFSjJbu8aOWK2BlA9SVlf+ETMKa6oiy44wq86tkgzvG21Apm7aEUrAwEDChVcVOUNO8JvqzGHWfzvCNzlX1ag2NoVxqFU3ojlkw6z9UtvyrLIiSK8iaznJtrnOuAYCbK5LFVAY+zM3Qvhwqyabr5RUpWWG1UauT9MOEEkyYj2ATTtAOx/ZJEo/xDVQkUyQ3Ke1q1+rNoQ06LpTzZesiJJHYnEothZqDXKSXkX6esjcDcet6tt8v01joN08wBBCSpDWkGlaHaOUvrcmyhxUphCm552Hvn+rkLZOct3/V0SsA9RUJOciJzhnndfNOkGzABtmDW4dQepCt1Uk4JUkYMOsQhsIacOsdtt2Ql64iyupmAhtqFUo17vVNaYgR5Ck7NxIg2qUVWGomveqq1BrSJAhUQ6K+HDDAEiWmZYoDdkLW0muLMSRJbNiV5iV20huCESSjJg2cKed0LQThmW4DR2vMzU1WZ9gzqgRpeo27zTnSHonK+ouVx9qdc2paypyol+vjSzyWn9M3c89OXI+shluNUpCagNl6uuFyu0JS2tQmdcUZcQMB5m6igy665hARdpQawmd23xkMV76PGRFlHWC5L8HIOhUo+AVJmmqog0daA5mFlLVJ4FwiJX7AUsFHq5cuotTbhpgCJYUDVWh1ka41fZitb1agfbwAR49Z8kSgAKkseFXaarSEI4EGWcckkMSketbRQKRJCPWE6qQa50Ew1BrqCIB1Aiy6w9wWCMBoO5yZdMOYAlTAPVQq+uf6lvNldyKzk2Pd8TolWReVDnJxuQGNu2oNGnli2RRwigJMWKnhwhjLDE3y0AiZiREMSgXOe4drc2aSCbH0hOlqUKsmlAW2pNjpcZstMNoA6UGjLYCgnZ1AUG6BVIBTkEKqYDEKUjl2hyqBCRkzcXK4VZLiAYTpUa/NJ4w7W3VbScvTeffaBjxUVIgUxKFvw40UEJVxj0Xch3C/3AFIxukIiSSZMS0IjTsNJP7YYim2Xau1qe1QZBrAiUFONXPph2fjwwW4eZDekdrEG71eci8UpBVGK1s16cV9mRF2kBl1Z+YkBJa5hBSQgX7Z4crgMHNziM2OLgDk9A5RNmv5SIHqUg26+jcuNC89vWQ7GoN3aSAVZGak3KGIDXByHousnVsshqjJVx4FVLaloesJIMuTiQVyKlI3VCRhSabgwxCrU2CzLXxBFk2oj2A/btLAtmXwyBTrhaTw60G0LLbT+A/l6iXfkQlGbFJoetUT4DPR/rtTNWCDgi67Zh2uLUJJfh1As2cSAj+42Kna40giVxu0k1KKAuvIlEWPv9YNgiy7OfW2epqJWvv505W5NqEMYSSVk3mBWSS26boHG4NyZFMVTMZscEhyEAUfaDs17vrNFSk/Z2EucggxJobVwtJ0IWGCfqfhn8PegqlD9VsSeGVo3SOaqFskwrfIzjNHFkmPsTKi+/PaoJyD2NVY1/bfsoTXklaA0/ulnLI36iSAtqpyEQKZImElgRphHW7UlXm4Tv2yPo+QkKUbhDBhkAkyYhpQWgnZ2crm3YA1PKRzVCrbpBkGfwBJgOMO02VGuYl6wQpfH0k5yPZuFMff2W8iuQ8pClciDUYb2TdrVzfVidDlUlv6DE8oSEg3CxLA3NQAWl0vV4yYsbAqscJPxKrqSJRFtXvwqlIM0BFeiVp6gQ5bLKNVEyIIhidJRAOYpZpCpklUGli85GpDbOKJG2FWinJUDZUJM+DtKRoXa2lrkKvIUFOOBVpF9MRagWUlMgSe6Gn3LbKlXloQzBTvAb0aZJo3InYlNAUf6HOqmbPVZZz+5qqbySAFkEC1mDARAkMD9dIWeUwmucd0Qy3EvmRV2S0bznHKpIJkfOSluiKqsbNVI2phRIQjjRVpuBbpcApyTTxalK4sCuMtmUgMdw642BD8bknypqK5N+JG35siiIIt2qfrw5VJHfWqavH7ksjKUWrsXk4OktICZUltVykzNKakoRztZJKbahVpUHZR5CLNM6sw2FWbWwJiG4TpL2vB+Yj7UWsQV7CqkgmVFmpyKHfeUCM7GzdUH0FIklGTBuY9Lj8o+lcrW9rbwc5WrvAalIbIJ3CVWk4UxKAr5MUZCcocB4SRdWTtaYic6cQAoIMJziEEMpAuq4oFjYXKdMSuj8BlSbQRQnJBqGCJ8mXkSRnEDjMKsqJytXKKjJwQfv8Y1HVznoVye7VjgkfnI+c9DicamwqSpkllihTqyBlmtRDrSN2FJtXkSrzZR++zMPwKDunGDnM6ss9rEFnda5r5Nhl2gkNO1ZFGmgjUBryalIbwEjULpCBsGzLfeaAGCWikozYxBCOKQ3DrozOtnRhs5HAENC8Sg234frIsKDZGKp172nCO1tDNRlM5CA3Ysg0VCSHWr0ZI+y72TEoV2WqVuwtZO6u9BOU/RxqNAvqMQtP2JEkZxBCs44u7Oi0vB+0Kyx8SJ67L5E29vfiyja4zCMchTVoakYYalWCc48uxCoFVGZ/VzxXUkj7e6qFWpPMhlqZLNPMkiPnJFXm5rXaC0ye7VoZdjjMakOv44X2KjIvtSdHzkuG4EgPAOSlqavINTDgcckWp0c2VD4SiCQZMY0IayQZYQ4mzEfax/U/pq4/rC7CHBS+GdbrmYlIENl8JIc72UQTlHXUVKQzY+jCthcbNOJIKEua4XgjoQRkUUKP51ZJjufQvQmIXtUCz4b0coh8NdCbG/OTGwj2QsrOFoXOq8YBQVkQFTaf7EPyQaiVL5p8w/Kh5jNRa7WohJuFKoVXkEKJihS57CNNoDKrHqW/deSY9ZxhJ60MOyqzg5UbKpJLPkKTTt+VfrCL1arIiiy1y10C3X+TjCpnKfzjrkhS+Hrus8zwzT82ECJJRmwQNLtpVW2t2madQfVXnkSDMjLTeNxELSobqjZHjsRLUfXbNOxg9UaMSkFy9xRyuSaGcCc45T6oVALluIBUub/6V70R6LyE4gkjhR3PJVzjc4oO1w0Cb+wqnVnHlF5Rmtq4NA7L2969Jmh2zxdNpMMm5A0HqBAAyLlZ6wQZqkiVSahUeaKUqYLKXG47TaCy1IZbs8SSo1OQIusB2Yjt3pRkPhdZOtNcZdaBq4XUvtyDmwhUOUjdMu3kDZKsdcNyhp2mAS9DN6QUrU6M4TCCDYlIkhHTDlaMXP7BodBwVh0/ZtRLQEJJKP0fI4d1qpFawwlyIDjcClRlIOEA22AcltHU6Jqia1McGEKJasRRAKsAXL1lfwK6n8H0+5Czqgkj6LncZMQGA4dXrZpsqMggbx2GWv3vJCDKqSBUSUyQSUCKnINUjhxtuNWpyEBJqt6Iy0OOQoz0KsMOl32oBBoSheHyDUuUfSZHTV5JTpQG47nG6lxjPC+Ru8d1V2t3Nyy+D1Su1sGfvWFKQnsYAQ9a3lCIJBmxQdDMGYaz7FhFtgkS7rElHzYD8Ouh4OfbMeF2/nkOyvkZ4+oWdWuQbS0XGdS+DZriYENkBkrLFnmqzLoQVT+vlqBBttR5pV5iD9f1Cg6z+uHbLtwKU7ZLhDp+J10TOVo9WeFKlEw7TWDHu1WkKD05qrqKdOSY9EaQ9DIkPWvUkVnPO1rlyCiMygCnIkllVf7R/Z0ZgiNHjX5Y6qFDF2tFkPkQkmz6Beq3BtrITsK06tlN7AnUo8CGJ0ggkmTENGNYrj407Qyb+tEOtxooqWp/qKlsv9dkrkERlH8YF2YFYE07XknqQFWSmyJvamOOuqY4mMJAprIWbgMseaq0hFR5XU2Or4LozQZNjANFDlFMQObjMKODAlQR6xq1MCubddz4NO7GZAmyKhEKfyf25cY5Wck/lkra34MS0HBzIl3gIlSRUgb5x1A1eqNOpSKTXgZVW0ZsqHVk1N5mPUeMlhyRZF5FFobHXFFtykc17cOS4nigIkPCnIoRp0tVhhg0Azbss6yk2KClH4xIkhHrDb5hwADyal6hcpFyZzePxh9hOLjZUD3HaaSoz7AckucjY7zjp5lnYsXIRMlk6cOujeOUvk4SAEoIJVCqolKSvRxyVR+qN4Kyn0P2V4H6s0H9VRAjs4CyD+jRqCbXAzxBOtXYGp8WECSK3IXktc9HAt1zHe1Ujmq9VNKOv1ISUtVVZhdBytQ2pUhGEyS9BOloUhFjIxcpHTmKkd5QFWkNO/Dh1dCwE4ZZOQ9ZlX7USRIY3ABhKnlIVok8mcf+P1TD0T1hRiUZsTmg2UdGhyQWEGfYB7LpdGVytGjUX3X0g22qU1uzWf3FkZADr1L9lPeAKKuQKvkm1SFB5v7E4RSCIWSGXyN9UTi3EytW9SHTBMWqcSS9DOlsawox46uQzJ5r6/OKvlUCEdMGJkgmxnD4tjClazTh1KILsdrmD2H+cXjZDhu5hBKQLl1AhmrNy4VTkiFBpqMJkl4arLMqUqZJt4oc6UH2Zv//7X17tCVVnd63f7uqzrm3aa5iC92MCM6EgApjeISHZgk+BjEhzKgRGUgPM8u0OllGibpGSZYDzFoj6iS6JjpmHJcKURxZRsmMwSHBGTQmDYrAqIgyxKBotPER6Iam7z1VtX/5Y+/fftTj3ttN336xv7VO1zl16pxbp87p+ur7Pb5fUJHFFFxO0UQqUkKtsYJccqHWXXVKkLGC9CTJAy1W0bVA+v80Rbf61eZg3Y1UlId04db9zZDIJJmxH9ELjyYhVtNbP9QOEq+LSVEmrRtnh2d49/+zeaJsY6IMzeG+980R5MykHpzaTTeouMUEQLPLxtjsiVBDlw10uYhiWqHeuYhi5y6o6eNQiztt+LWcg2qWsopcQ/hfhWns6DQ3Mi2ZDONGmklRF+LQ/Ag5UmQf58nRkB2cDFiidEoyTPCwr4kJkkqNYk6jmJaWLKcV9FyV5CLVdJ01DXBKEtXEkyPrEtCVMyUP1nOzXstH6qoTinbaQYLstrQYwBNl/4K2c2xUIEMgVLZ6Z51IXe5/iswkmXGAoR9yHc59SG6yNSrazilTw0kFrbyc4UwNACgJua7QYtE9CcYE2dYtmrpNCHIW7asUJAAAZmFeJOkmVCxWGvXORehphWbnIorpDtB0HmbnDhRz68D1nO2ZrOYzWa4VTJN4+AaDiSYymrBheCHH5SCkJ/dJK7C2+WldaSh/oWWVpMxPVEmRDoFKbcOrsnSkWEwnKNdNUa6bgubnPTmquXWWJHXlyVE8WiXUOmvTlo9FZz1Xt9yrZu3easm7m1RJik+yAaCXaWgUuzpN9j65m+8LdeFVKeDRav+HWoFMkhkHAOLK1nR9f55k0h+J1JknDG1GLyTEbNWkcUsCPEHyCo1Y4ssqDeLB0Jy9YhWCNAih5JrD2KOWlbdwVeKeUmrMqhl0pdFMK9TTCfS0As09CjW3DmbnDlAxAReVNaItppko9yJ8Jau3J2Q/Nk1JVIJXR4xAPOxYfFSdgowMJdpZ61WkiiuhI+MAXZEPsRbTAkVEkMPFOlOrJqspMJmzKrKoEhUZj7zqFussiUdr1A/ZDbMKQbauNzJ21DLGzXp0M15X46xDPsxq75eaoBBCrlrtX5edGJkkM9YUYQKHbZzuYuj/U3eqQNdcIA7lxKXlbad4xxKlG/TsXuvfhciSpCNKRatvsJQqVmtSHUKtNQtppmoSvtzfALMQVhMlOStn0NNFF0arUK7bCbXzUahqCj1dB9IVjK7AxXTV+5ixPHweEn2ze7+NGN8v9z7RmKo2eWwvgrjlSEXa1/g2oTJVnF0lKQQpYVU9V6FcNxfCrK5Yh6JwqzUOKO0FVTnFzKnHmfs/NFSsIypSblK8ExOkaYwNs3LfNIOd4xUbHpV+mggFCQkqrxxLIqscAWiCU5DKh2QPBGSSzFgTKDVMiiuhS45dguySZbxdUJOhraR1J7nYO5YRinZYKR96VaRdNeIwjFOQ9r5zGxEyju7HROmVpP8fb6AXG68cZjtn0BX5Ip5iOoF+9HFMJjvsiW8yByorqHoCtVSCJ4ft9jHNSOHPvT6sGpFj9zGwgr8h3AxH7cnS6ODbm6pIQFeAatOzv/VlDdZz4rAjBFmum0JPK5Tzc/4xzc9b9TgXCBLVFFw4hx038aNpXB6yDYOTUwVpi3ViFbkSQSahVliiNKY/vg6AJ0Z/iwhSrPdK7apZ4Qp5qJOq2M/IJJmxJqDYwX8VP/a+iUCodpV1Q6+JibSblxTrrbo1KEm7UJByPdyU3shOcrc77AbXOnSJUwgyPlmIgu0W71hPznS/d7UMWmx8z+SsrG2TeLmI2Y6dLrT2WMg1VVMoXUFRAVIEU82vfEAzBpEQ5GrRvXAibS+oolmOyZJkhFX6OqWVDbeWSMaqAbDFOi40G5RkCK2KguyFWSsXap3O+35ILibgcmrbPIyEWdFTkNITKXnI2DBg5gwFhBRNa0YLdij6HDGENGPy9EU7UT6SourWA6mqVZBJMmNNID9+hb7y66LbqiFYzugcQDR6J4RcbZm7ck4iBkaTU5MhJ9kyh3BrvCQNaO1DrxI6E9DAiSAox/jWr3LtfGJ7fBbTAh5daRt23bHT9r9NHwVXU5hqCl1NQVTA6AoqF/HsMWxgEKFgq0uW8lswnXw12fWKtD32pL16lJsuCztD1Bg/EYbbGqjk99Qdn+be2pEjJb8D2+ZRrpsGcpyzKlJN14Uwa1ys41SkGAfMWmMLdVxV61ixTn9OpOuFbAzaxiQEGeciV5MzjIkyLtrRSqEkhdKHYUNVa0n719C8i0ySGWsG+dErxavOL6xUvJPmI63JclzMIyHX2hhMmHxesjUAE4PhjAUUgUlDKbKhV3fSs4pS26rEThHGivvuc6KBKKUNxD5vl1op7GoZetZ6mzoJu5Zzi6GIZ8dOTKopUFZQZQUqCihdQukSmByWiXIP4YkSCKTIBKj0iEpIPiZGuN8Eu4sqXRYwdeOXfqi2izYUANra+vByq2CIQWW6P0KONidpfViFGItphWLdnK1mnY/UYy/M6op1Ctv+0bTBOGDmWj7iUGtcwDNUzVq3liA5avkQgjSGQZKLNOiFiuLwavexJUGKwq3ohVoPlIIdQSbJjH2KITuqLpabBBKTaJOQZesHvfpqWQ7TDBjaz88zrtq08ARZQJWVD6MhIse4nB+Q/rdO+BUdc/YeUSrMTBx2tUEq3Yb8pC61C7sugcrHrTdnZd1UChl9VJQgKgAiW4iUiXLV6AYibE+eqEVyF0vGrlMUctUuFK9clIFJ24uWprZm4noGKguYWWMb/J09ne60DpEeHroMwJOjEGwxrTxRFlGhDk2teqS5dS7EGsKsvljHtXzMDEfGAbblY8hZR5Rk7KrTMsM4gmwb4wkyTi8IUXaRzMP05GjVYqUpFOxoQqmVL9yRUOuB4NXaRSbJjH2GPfntL9crKeu6arI2BoYJTcsw2uUmXV7SwBIkA2BdQFHhT4q2zaKEIm3n8mlbkJFMhF+msGcs5Cp5SSFJuzQgELSy+cnZzjr0Tc45ovTT5h+xo49Ig4oS5E7eRlHun1wBxvXFxj8fKTb2RJmoSfKkadcXULq1JNTUdj6jI0huaqiygm4NTFVARwbncX+tIrIergMG6D5cS5TMhixcO5Av3Jmfh5rOWwU5nQ/VrMXUq0exn5s1nJgHiGLsOut0R2B5kmyi8GpEkHFkern2YiHHuGinKsi1eth2j26oNSXKvfHN7z1kksxYU9hQig25CnZHTcr9eCkYmny+5NbVxqBl8oU7dUtoC07MBwoq/CghRYUnIjuo1lqAKSK/lApEsQ9bdv+5qy77//m1YqsmFUA76yTsagnTzgqkqsCkfMQSNBG0CxN7Q4RMlD0IOcpvJqYmZhvSY7h+PCpsCNYY+1vgAtDGzvM0kZIsSjsFpCgB01o1aVpQ1aKIKmAbuDCrI0BujQ25ln1zColWkFOS1nKu9C0fxbTyBElz61y7xxxoug6QXGQ57RXrSMvHUhNaPuz/A/bOOkPFOhJmNb1w68rHXHUrWR05VoUdb1fq0NqhHWEGgnQVrQeajEQmyYw1RJdGRKwBKVHSMqQ5VLzTzUs2PjfZoirIkqcme1IghdpQ0jvZskLLNszGpKF0AabCkmNR2uKdwipJqgq/tBWIUZO4K0CgMV/aHnMxZuJv6dSkVgTt8pP0WO0qXt1IJKcmhaArIsDlTTVgK13lrTNRAhAjCWceAdcj2ykMY1dQxgxAKioV2ciCG3Tt1SQV1mCgrMCmtWF5Yz1cUZTWaMC0oLL1SjEQpEbrVKQUgCUK062jqnBKsuyFW2OC9PZz0/lgGlBOgrOOK9ZZseXDG5ibXjWriYkxIshub2R8X8XuOb1bGmotSflQa6hqTZXkgYY1HXv+8MMPY/PmzVhYWMDCwgI2b96MRx55ZHT7uq7x9re/HSeffDLWrVuHo48+Gr/1W7+FH//4x8l25557rnOKD7eLL754LT9Kxh5AuatGScwLJJcR+zcKuvMj7bq+6fnYzVfmuXykVLmKomxNWmADR5BweUlVVlCFnc2nywIUKUkxABCrMdKUzMKL/4MHogwGBzMTlrvasFw0jF2twezxGrPHasx2zlDvtMvZo49j9uhOzB59HPX2HTCPPgLzmL2pXTtAi49CLT0KNXv8gPC53F8QchRv0jpZwt98KNy16siShRB1OqSYSYMl2lBU9uLJ/UbUZM6ts7+buArVhsll3uPE9zrqOacQpfdx3dQ9P4dyfhr1RIYQq0z3CLnIeU+Qfqkr/1ln7XjLR9dZJ65mFTvH2HquS5BjUNID6chx4hSk3IZCraUOeUghygMRa6okL7nkEvzoRz/CzTffDAB43eteh82bN+Pzn//84PaPP/447rrrLrzzne/E8573PDz88MO4/PLLceGFF+LrX/96su2WLVvwB3/wB/7x3Nzc2n2QjD2C9DyREsJk/x9hKOkvGGv9GAq7xhWuoiaXGkLVGJREvsq1H3KFD7kqkpOhU5DVFKqoQC7UqavShT5lhBGFakRvr9UNJ6ehVsHMMCoSGzsbct3Vhvxksdig3hlyoKHR3FbbkiYUkTsQuRuzgWEDFJVVFnvwfR2sMI4cvbGDIz+OnheQ/00qaHI2hgCMq7oEFVCF+/bYQGln2UQFUBibBzQtZDi3mqQuSAVsuBWAD7UaNymERvKRRGGIsuQlJedIrsVDCnVobh1M0TEN0JV11XE3uUDotnx0reZWUpErEaRyZgBKqcFQaxxylSKdWEl2C3YORBUJrCFJfuc738HNN9+M22+/HWeeeSYA4CMf+QjOPvts3HfffTjhhBN6r1lYWMAtt9ySrPvABz6AM844Aw8++CCe+cxn+vXz8/PYuHHjWu1+xl6C9Erak5OEWNxzEVGGcnECkHplLle8I3nJWWNQuDCs/MevCkuMS43BxOUpDWuvMitWVi3oEqqowI21+kJRQpU29Cr9anKTUKhUpOrFJvpPHshSK5XkJKXpum+CLkU9Nj9ZzVqonbUzPg/5yW7DOuCs9Ehblc4GxAZczoMr86TweY3Vo1WHgSRtdwKjE2lNcuSG3e/OMEAAsYIme0pUZADNNi9JBtCVtakr2U4KGQMRCgBGE4xrC5Ew7FjRjuQjdVmAptNwoRaZBQhZchHCq5KHlDFYsYIeavmYtaZnYO6jL51ind4orN7HVKOh1qAgNSZFCLMW2qlJCb9SlJsciCodKFgzkrztttuwsLDgCRIAzjrrLCwsLGDr1q2DJDmE7du3QymFpzzlKcn666+/Hp/85Cdx1FFH4eUvfzmuvPJKrF+/fvA9lpaWsLS05B/v2LFj9z9Qxm7Dh1oHLOp8paerblstlnPeWXKKsirsiaFqDOrCmgssNQZTTVhsWhQUiLJhhVJyknHI1YW4dPm4a+x3M/yk2VtcUUoN3TIIHJHl8AnGnyI5kGVMkhUp7HJtIfqx2p2EXOVjuRhV2RImmhInGIL1GjUy4qlt3MDdQ28WZZcc6zaoSOZ+sY4t1LH3Cc4flABmBQaDlQrzTkmhoAKsjVOSlVeVYr6qijAVxOcnO8SpdQ1qW0uWAwQJhKIdRQSq7EWZKqqUIKMwK8SbtZx4b1amArXriRSClJYPPz+y7RuWJ8YB3Kli7ahIwxyGIpNKKlu9ilSBICeuUEfIshtmnRaBIAu3rA5UGYk1JMlt27bhyCOP7K0/8sgjsW3btlW9x+LiIt7xjnfgkksuweGHH+7XX3rppXjWs56FjRs34p577sEVV1yBb3zjGz0VKrjmmmtw9dVX79kHydgrkEnj0lAMjOcgNKmkRxKI1GQsDdx5Z9YY/7oQfpVqPUZN9kSx2BpMWttH2bSMllyVq67sydANqpVwqypsb5qeW4R+fDjkSiWhmilUpFCz9EMqT34DbXFRX2XonxwKu8rfqHfWLh8qqsOGW6daw4idnmlBh7VWTTLDVHY2IpcG5hAyRp+1wW6wdYQgOUYDZxoB7vVFAoiiGeyJ04ZaAcQG/KRQROSouLBhbLbKUpXVcP5XwuDi3mRaT5bAcGWr0jqQY1Ha4rHoIk0UJMoqzUO6CR9JiLUdn/IhKjLORcr/laFcZHrc0k8rIVZRkCpSkEFNal+wM9EhzDopCGVUxHOgFuvE2G2SvOqqq1YknDvuuAPAsHMCM6/KUaGua1x88cUwxuBDH/pQ8tyWLVv8/ZNOOgnHH388Tj/9dNx111049dRTe+91xRVX4C1veYt/vGPHDhxzzDEr7kPGE4dcuUuISyG4/ANhuKr0VQkKUphh2JLO/yeOpqHHuclYTc5ag1LbClcp4LEKRPmr70rbKldEIVdrLj6FWiyTKfBxyJVKS2LlYgPduitiiokyGJx3YcmTk9ykVkBFtqBnyYVd46G9ulrqhegmnfdVpoWac6FXNwaKjHHjtux/94MxDBtybfBRAF+EZYKKlLaPbkWr/N4K5/BiVCBLaLjfUYcoyZKjV5KF8VsoDPT9ip0hud+TaYGishcrpoWKi9KcxZ138SkqqHJYSfpKVpd/ZF3aMCvH6tEW63SnfEjbR6wipRp8TEWOIVaREmpVjvyEILsFO6IiJwVh6qta4fsjbej1wGbJ3SbJN77xjStWkh533HH45je/iYceeqj33M9+9jMcddRRy76+rmtcdNFFeOCBB/A3f/M3iYocwqmnnoqyLHH//fcPkuRkMsFk0j2dZOwLFKSgDfsKV2kDiScBrAaiIruuH/E09JgoK6cmd83a0A5iCEtNiyX3n7UwjMYo1AaoigqqWbJKMrqSV5X1zmzKyCpsboZysUATqb2qMdb+yxGlhP98czSnvXoG8GHXEHqNQrCtQTlr0exqocvGz5608wmLpAm9kpMtQhWxAsJEC9NAtbWvglRRvOxAJszapPlGf4HjCCEu0qmNsfaD3CdIIJho12THMxlypgIuFcD+kLgcOizZaV1ZctOhEMiP1ioMlIk85rySdB7AbWs9XAfCsUDIKQs5wilJWzVbBoIUYvS2c9abVS4agrNOaPmQC0JRkUuNgYyg8xXgHQW5bJGOI8hYRWo3BzPNQ4Zc5Fype8U68liTOzcc2PwIYA9IcsOGDdiwYcOK25199tnYvn07vva1r+GMM84AAHz1q1/F9u3b8fznP3/0dUKQ999/P2699VY87WlPW/Fvffvb30Zd19i0adPqP0jGPgO5q/a4wlV6DIGo6IWC3+NyiP8zGwCgsZCrrXSdtQZLrUIpeUkXdq10OLlUbkhtXMATK0o9XYSeTlBMK7TTCsW0QTEt0OyyBDYtWjdTEpgZCbcuryaBrkG68iRZKptXIkfEXlFG+UlFzl9Wk63MlOMN2CHC89GMxMLlKnWTtr3IMd2D73WtMKYaY8JsHDHKMGEjF1Ejx1lIstQKtWJ/wrbkqGCSIxAUJWmyoVZYcmQ2gDZ+K1QDs0h9CDwQpGo7JOn6XVWkJFGkF2goK2c5Zwt0UEx99bKYlkuYVYp1JA85piKXIoJsR8Krfc/3qC9SKehCcqmrUZEhHzkpQtuHzU+m0aMDFWuWk3z2s5+N888/H1u2bMGHP/xhALYF5IILLkiKdk488URcc801eMUrXoGmafDP/tk/w1133YX/+l//K9q29fnLI444AlVV4Xvf+x6uv/56/ON//I+xYcMG3HvvvXjrW9+KU045BS94wQvW6uNkPAEo78nISYUrkRrslRydFjJyxdsaBpzzThxylbaQWE1agjSuGlCFEw0rFOUU3NZQugKqSSjDn65DuW4R7eIsTIWvllDOFWgWC7R1i7bWmGsZM9NiTitvWLCcmvT770nSmg1UxD6/WdUtaFeTTAqZ7Zx5FVk7+7yex6ws52wejZmdsqzsjYbJEtj3hBkX4sS5xtoRX2OGiVHUUiBI+37p0OvQk1tqQm2ckmQFQ4DRCujZQQBClEoplGQdeMAmDsj6rezS5X3F8EHs62IV2Qm3xk4+Pjfp8uExQfq2HhdulTBr3UrqwPaAipuO7ws2ocpVcpFJX7E7Tl1fVkX2p5KaBvQrWnWHFIdU5ERCrQV5FVlo5VXkQcCRa9snef311+NNb3oTzjvvPADAhRdeiA9+8IPJNvfddx+2b98OAPjRj36Ev/zLvwQA/IN/8A+S7W699Vace+65qKoKf/3Xf40//uM/xmOPPYZjjjkG/+Sf/BNceeWV0Hr10+Uz9g0oCrN2i3eEKP3jVSpJIMpLGmu0bAxjhqAmJcc5a6ya3FW39qq2MVjS9sQxLXRUMs8oCsn3TIDWkiMvLULNFr2aLKYTtNMZynUTtLMWxbRAO2vRzmx4dM4QWjZRyDV8npnhZRkoDb1aNTkzjKI2aGfGq1YpHKKyAO3c1ZllqMHOAF1StiQtxC78ylK1yQaKjK3kjGZrroW67EbyGFKEE0KmQ8pRQoiBHI2rZg0K0vDyYVbAKpfa5YpLYpRGYVLAXcwwpoXufWKlpIBMoYp6TweJUo5bVLQDrX0/pT0IjiT93FLdL9wpw8BkyHzIKNwah1njUKtcAHZV5HLGG0PzIbuQyDyRM9GQcGsRjMmlolWIcq7SKLXyRTpd8wAZhXUwqEhgjUnyiCOOwCc/+cllt4kTxccdd9yyiWMAOOaYY/DlL395r+xfxr6BJgVyJ6hu8Y4PuVKqIMfIMg4PhdE9sGeMgtCqTgFPFGpabAxKMlgsDCaNwcS1g8xaRkEDanIyB5pbB54tgpYWvZpsFpeS3KSpW5jaoJ21mDM1WlYwsGQpJNkyvInAcCGPGKIHBRqrSbVoR2rZPKiGohqkF5N5hn7+peudNLKEI8oojsaArdoUhakL6zoT31bACudX/3dqw94ejt3rvONNVHgTK8YhYkzUo2/9sPcHOix8a5GfUehO1m2k9KfaqkoAPaKUn6BSsL+NZYhSSJJkUohpA1kOuEgJUaqiisKtVtkLKXYJkqlIwqxyMWEYQUFGKrI2plews1zPcefjuN10StwRJGmy4dZOHnKu0pirCsxXOqloFRU5KYKKlMrWg4Qjs3drxtpDKgGlUEcpTop37Hy5VAV270sVniC+mGI3MxKNQe3WyWsfn7VJk3Ptql4fp9Zd5RIKskqyJKcmiwm4nAHtzJfh82wRNFtEsW6GcnEGUzcwdYN2ZvytnLVgw6gerzEzjDkXygNMohIlSGdDsWk7TMhRKh9+nRlG0bIr4mnRLFoz9HpXAypnaMvC35qyQKl3whCBtO4oynXJ98JF+H4YsB62HXKUQ87dx3KB4r8DeZ6T7cNoMrtN4qEbFd948+34RC/VyAlRGv+es9aMmt93f0MlkaumtCqyIbJuO4YxCVU7nigJQC29lXIyl4pXZ36uuOgdQ6gGUArEHMhyhCR94Y4QqxCkVFpHZAldefNyuTiQC4vFpo2IMVxABGI0PRUJYDAfaXctzUF6wwBHkLogVDqQYzcXKQpSKlq7uciCDh4VCWSSzNhH0KSgWvZEGRfv+HUk43WopyS1Ut6Hh3kgTOTqJJSx/Y+xmpy5nMzjM1dQQAYlqaTStXREWZBC5dQkipmtNGxq0NIiOFKTpm5gZvbWzlo7vb01MC1jvmUADdAYT3gAvLl5yFUuf6KIR281dQsqyeY/Z9oRpEazOPPjlagM+UlNcuINS0MENVVQ7cz/DS7gklBKDmCiIkX5xYbhQKoKx9aJ442oRhOTZCe/uNS0PbUYlkKOoTJzJVUU56WLSPW05C5AyJHrQHnltNDuMoZBUKiliAdRxStCK4gnysgYndkEsuwW7QCWGJWyZupUeO9Y2//YV5MNS/jZ+dC2UetHy15FNq19bLjjZdw5Vt1oBpGyFzwDRTtJqJVUjyBjFTkttFeOYamTXOTBpCKBTJIZ+wAxCWoDkGKn4mwPI7UpUXYnm48hvgom90/rqlxnAHTTVZMS9rHEuNgYTApb6TojmwcsyEAXBVQxAUrr00lzrVeSPFtEuW7JkWONtm5Q1Q3Y2IG6cpu2QpCxlrOIyU8gbj1hm1RxtqxcSNegLVvoimAcYZq6sWFgR5bN4szmJ93IL5ZqS1Evk2iYsOunlBO7r+BUTmk5gmwHwqVjhChkKoQoSlHccYaIsKsW7TzE0PQuDjFdVQQMq8juJIpu3mxa2M8Xq8jwXSgoWFPu2il/UvBkiTGiNA3QWuJDdEzRrX4FfGjbh7jFP9j1s8YEKXnI2CzfmrMjuOpEIVY7Jm78IiJ+TKTQRj/EuFjHF+qIcYBTiEKQ3WIdOa4liYK0hCnKUXKRB+I4rOWQSTJjn4BchaeSJdK8pMybi8mxGCBLIUafl4xOlHLVK5hFpCtEmZSnk0GpW1+KbsOugCaGLqeAacCmAbczO+h2aRdoaRf0YTMUswalC7maugkEaewkd9MazJkaANlLf+eko5VMA+m78cQesP7zIihPmWxv35/RzgyobF3Yt4F2ZKnLAm3ZgGaLbjhwCTQlVFODmxpUVjYsaApw24RyRoSTOcvNh39T4/DWWGJsTUyioalfKlGNnMhHcotdtdi1TWtN6g7TLEOQ3RCr/H6st69CWxX+9QDQDqRdtVJYVMZ6DkuxGdueTaUUiAHFAHXM0BPCBAJByg2uvxKBIO1/jMIqyqjSmHXpSNMqTDHjt4U4oWe4qyKNPzbohVqbAbJUpMDGmbtQqIiOn5eWD2n3iMkxqEh7E+Uot6m2YVkhyJgoDyZkkszYJ7A5Sds/qNwEBpkEEOcluyoyJkjVuQIVpxAPY0lFkSWSujVeTYZ2kMZe9WpCSS0mDbn8pPIuILplm6t0YVcuajuySEimqVEdXkcEab05TcvRzSnHxy1RynBluc1MIMk0Nwm3HGmDcWFddn+DjS0YotKFfkurbqluYGY1dFWD6xqqqP3AYK6twpQTuFePUtjjTuCGnW1bRJDdYhuxgeu2aBjmPSbG2DpN3GGGqjOHMDaFYuJahOaqIry2gh/ZoZXtn1xsDYiU8wHWaAz76uzGOGs7Rs8M3ROjhFvbBmAFJUqVTa/QR8KtCUFKbtIV6gRDhXCx1FWR8v3IaDjDyx8j+bwG7sISLm3a8WSNWz5EQcpt3pNjCLNKu0ccag0ECV88dbAhk2TGPgGpWBkytFHJjLmlxnTykv0Cnrrth4eAoCpJ3HeaENpcdMtUTbZeTT5ety4/aTAt2NnLMbQyWFdW4HIOxjQg00BNnTpzZFmtrx1BtglZiqr0cERphywrryhjIwEACVHKbajG1BOk+zumZXBr0NYNtDE2V1o24KkBNzXQzMBNCWWmtgXEtN41RjFj6FQqYVaWk7NJfVJjshRyXGp2XzF2/USXItUYk6NYqMn3PdS64Pv3VEqQ/fBsdFQr2wK52ITf6ZI79osNMFdoG0E19ruowaGnlIIZeldJQhGUaex9Y2zON+wo5AfLVCThVqskLWEGUgx9jbGKtB7rnSpfDv2PYxcUYrhBFIaX2whMekEqx9NO7FBeRc675VxVJGHWaaEx1WmxTimh1qg38mBDJsmMfQaSPklX4WqvMglatd5YoCQxSaaeqhxC16ZuiChnpLDLEaSoybjqUZSkVbPa+6iWxJiUU2vpVsygJvNQ8zOoegZqZuBmhsKRoyhHNiZVkvLZ3UitXa1VJtaFR/lq166aDKO3MHhikdCuECSbMI5J7rezBnrqqitb8Q+1j5Vr/WC70+mbK3J5xmiyBgeCFEu4mBDTlo1+C8fi4ASKNiLKlByFFI1hGGfCLVGDsd6+OH+myIYJx9SnpihqIU5QxqAwCrq1pvgl2QsATaIeAe1adIhDiF9T0Qu5go0Nq7KBcpXbrkPf3u202yQEqSt/YSLh01AdHCqGfe7RHSfxrF1Ni4d2F5tChvExlYiNEGRXQQpBSm5y6ghxEi3jYp2SrFVjuRvTfg4kZJLM2GcIecjQM0nOS9PmB11YcqB4R7ur2vh0Hk6aYZ09cTE0CG1joJRC2xjMVCBKufmwq1Z4vDYoHVn6SektQxOhqOZAprEkM3dYCLvWNUpHSJUxjrSGPHUsposNrJq06qVmIUs5OhZCkoSYLFd3Ce6VrRGybJ3BtrFLedy23kUmeX1c2RrlGWOC7Db527FMoYl9Sdo53PO7Zm2PGNN14Va3NqfbNsZXMcsFT+wM04kMJ8N/KTrxmyIljaELrmBuYduAaiUFMApkgMJo99u1BOXnoypHmER2cDciomRbvAPJTcpOB4fwQJBKJQqSYX8TBlJdHI6/YWfiHhVTGfc9GUegY4h/+61xF2Vud+RlktOPjQK6t1hR+jCrD7X2i3UKGj7uBwsySWbsM5CKVBKJ+wmh1MYTAUX/OYdCr4oUMDDzNlUXCi0MNMiTVk0KukmJMg67JopS07JhV1p3uA1jOsuxypFQCLcaVANnK9IEWmxQ1dbn1d5CuNWfqNyyoqAktUI0T9L6uApEuco+JMeldeFVIHiJjkFUDuBzW+xOvKJmJNQXJk20vr8xJklRjqIS40G/ss7fWjv0t21cG40rfLJhVdfPN9T243fbKR8lCtISJhcMMmxzj+ibVWhq/cBuTQolK9TGoHBGA3WbqklRkIoteSrYi7yWFQpfpUoAClsxTEUgxi5BuiWTtkshSEVONfZVpCj7Ngq1xiHZ1SK5+IQjTN09NuH/4Fgecq7UPswqhTrz5aFRrBMjk2TGPoUU7VBrlwWF3KQPzbj/ZFWhoSlSf65XcqVRaywhzEh3mkZhEfYEsGvWYlIQds2aUO1KrfP37IddNTHmompXwwY0v943irNpUQ3ODHw8fG6tQNqOvqKZJUvdsh+NBQy3hHhVSapHjsq5tlDnDGQiso5WRsenHZ6HaN805CPhqloRcl2GkRCkzCwUJbnYGCw2LXbNWp9v3DVre+S4a9baiszGoG07BNkEUpSG98HeWASCjNsU2ChQET5hM4PNPTYhKiGFPH5qTEGOFF07iuulrY1ByQqtsd+FEcJiBrvQq2J73RbCrg2AwhVDKRva7pg0+KIdIUh33ytCDipSFD1HfzsOs64EudhsI3KMc7W9nmRKVeQkUZDak2VSyRr1RB4KxToxMklm7FMkStKEKtc45Fpqk1zFxmGiOF/Cxga3RGnEIAPERCmv2+VIN/RO1q6gQCVhVyLJoZJTvYSqmgdLTm9qhxqrtgW5dRW6JAkIUVoVaPe/rVzDf92inbWoIkWQHisV/G0rbedYauWWKUHKVJA9woAdna1qDSE8uVl3l+ANKkN9hSx31ZYcd81arx7lsbcHrNseObYNo3WkKaTYNsYTo0Qs5XsWT9Z4vqEuCMYwdEHo9qaaRmEWhRqXPDkatMaqyUpTYnggTkFtYpLg+kChYNiqSWZLer7ClQpLlBJlVdEHSHc6EKQv1Ak+tLZyWHpQ01Br/Hs3JhTtdP8fDFX7dp/vhqLj/3djBDmNiLEbZq3ENOAgLtaJkUkyY5+iF3I1IeRqJ5abxOxc/qPKFb9MQx+KGiYjtCgQJVPIa6lGYZdKc5Nx2JVcSwqRFBXZSlRSBlQUKKs5W5Qhw407IcyhqaWkFy1BulFXzWID0g3aGaEttVVQ9XA+U8Krwdhcu4kg0fisaAKI8iFZStbHSEY7DXi0MoJqYa8q4768EG6tDY8SpKjJXUKSrUEzaxNybGaWLNmwX88uzBqrSaBjHhGF3xXZ8Ceb1hGk3wqAsRcmrYFqlJ33GamoWWNQSd4yIhqf83OhzdYwCgIMVKrslGs7Ysm5h8IclfJ0eryJkuId9sc9DI+WfKOEWuM6ZMlH9pxzoihLlxBFTcbPx0qyS6apaXnh+yKnBfk8pFSzdsOsIdTa+3kddMgkmbHPoWIlGVW5lmSSkOukIMyGQq6RogQkTxlOFt5gAAzFCrGqUEqhpm4RT+3vh7mDrQu1llDKQCmCgoEupyBjbMiVDdS6qE3DkWVMlPFwZKXJE52uyE72WGyskpqF3scYQpLkRmVR6YiSwpIc+S5HjEOuL71KS3IhPxPyXMPuLiG8Km0fMUE+tlgn5Cih1cbZ9zV1myhHT5ouzOrVpJGK4TZZKtKuH9Z9flJgUu67Np2PaC9CbOQhaqNwxUdAMCSQ6lBAyJEBHRR+CLWGsKdi5UiNg5p0x5YRXYOEypj0mHfCrHFfKtD9e/D5yCFoFSz0YrchTexzr5OCEkOGbj+yhGZjN524qlUKdSQPGcKtaZhVQq2HAjJJZuxzyJgcrdj9p0QynHUs5Cr/0aXUX5ECcQgXAYjCc9FVd2Tz7drhfH4yFAfVCRGL4iWloFCAYHzoda6aB9gRJQA1b3r9jBMgIS1Rd7oi6LLxBuVClm3ZeqcewLZ4qCSUqsJMyVJ7ovXkWRWRgtSu4lII2hGkjHFyptpGKivhwoWiaDoVk4aRuLukEydsDlLyjLtmTY8gZ3XriNESpHEEKeu65GiaGmzaHjnGUG4Wo3K2e4qs8bbd0vjqVo6KXExEhl3Hnib+vThyXAnyChO17xgOajLeJhbsieNOpCKT9xY1ucqBZVZB2gKjblV4VWjMmjZRlgWp5DPHBXLh/1zqz1oSpYU67jZf6l6Y9WAv1omRSTJjn4NcuLXUCo2xhTGV83KdFtZYoKQQ6hkLuY6FXXuerkiJ0pCCaZTPT8aKsohIkiJlqZSGktArgIkjSinvV9HfEtXmiiotOZaFm/+4CF3OoKsaVGrnv2pdc9q6XVFNkstHWrLVXk0qsvMl/TIiTDgSsfti903IsZuPFDUjodY4BBluYY5hWsUaco9dgpQwa1MH9WjXhTaPmBzZtDARUXahSIMioqSicjlqR/iGYZTdX4rKlEyXDFdAUJFeIw5CQq49YnCVrd3pKv45IJmsIuQYY7nxgVLUBcPeNFzaNyYu9BwXJyXtMAO5SCFV2T4oSEoU5HxpyXG+1D73GIdZD6YpHyshk2TGfoEtrbd+qVLAYwnShm+WWkuUEx/yMZ40Z43xIVerKBlkFNqBq25juEeUvrkbwK6eqXoTwq7U+tYUm6+UsUkEFAqTyWGeeoEOUQIAESZaQoKWsJQmtFUBqmbQ1cxN83CG5a0d4AwgdeyBVMeSz0cGNWlVpK4Kp1RLT5CkRTkS4MjSP+6EWO0fIefL6shQilIYPhcZe4XKOKYl1/8ovY9ClHXU2hETpCjItrXqsW1amGbWI0d2rTVdCOHHx96+LkyPMYZ9hLnrlSAYq7pMWkVUaC9ZLZanUySyMqjR/mbLcbhEOeQdtFIwpEBG+cHmcVVrVWhHkGbw4qBr4OELdhwJ9kOsOrJ3VE5FWjVZ0cE15WMlZJLM2G+Q0Iy1O5Mwq4RdQ8g1VpShXN/4kOtg32RS/RedTJUN9QE2lzmrW+zqFDOEG5JCHht65ZCjdBWvg0TpFI4hjYq0JzEqC9Q7d4Hc7EcqZ86g3Fa6mmnhJ4p0IYU/urJVrsW0dCOywk1RUK0qnvzh9sc/tgcgLEVJuopKKd6JKyrlFs8t7FrIxb2PRto6WhdSjfKPQwTZRkQpRggrwQDQ7vNw14BUjtuAiOvm4iTcKJBIBTDuo/uEeGCVg62HIK5S9r6CNgpGxWTJMJwW4IQ8pOqRZHwsJnFvpNjLkUoIcr509nMuD+lVpJsZeSgRJJBJMmM/oqsmC2JMCnIjrAiLTVrAMylazJySLDXBkPEnMybb5D3US8fMaFvnwhOFXVVjlegi2ZNxN5cTF/Jo1bhQWgFSBIKteIUu+kSpKAw6Brx6mxCBHl90atISXFsW1nPVzads3UQR40hSWkqUtJCIoiTyBFlMK6cm7XtaRVmAqtJOvBeCLEpPmKAiDbVSyEcCIRdpzctDqLWO7s/a4LWajrNirx6tknRFOkbaOrAqghzLRY4hboGhgTO1/FZiYux+7xRNpgmvEVce2Kkgbmm3d69BIIe9xRHk6tGUUgCzV4i1gd9HozhUYzOhNa2/sKtcPrw1DB0VKw1NTolzkrZv2F6wyuireLKHeLPa4pyQizzUwqyCTJIZ+xXyn1MIc1poLBXGGY5r1IYHrbFmjQEVBOUVpQ25ssvPAGnxjrQBxETZRBI09ncdK+TxOUpSXk0CI0S5ztqVsRb1ZhWcqMlm5yKoLGCmEzSLdj6ljLxiZ1JuP4OoXskphmpZLSqyKlBMJ6CySFVkUdq/XZaWIHW/aIejZaiuDK0fab8gknFMoY2i7XmkStGMmABIUZL0tNrq1XbgNk6Qq0VsVUcq5K8VKZ+v67rK2N8gRc5PCPMPlYICYKdMBqL0vZoqGFz0OGIs1iu5bLezQohdEGwaQSKrts3EVrHaXKRTjwowbk6ryMy6tUSZDCEfDbWG37rvW3Zh1lIHggzhVhtWlXCr+LMeghyZSTJj/6IkoCE7Kb4gO+RWrlwXW+t6Mldq188mqtIRZWugNYEL12wtE+SpPykktIUEopT2AEMKzazFLnTDrf1CnnDS1KBIlVJRoHBEKUpSzhfkwq6krZory8ehywJ6cYZ2cWbJsm7QLC5BTy1B8tR45xxBUikbKUldlR1FGVRkoiSdoo3dXromAt7VBZ3hya46NFS89kdX+Vu8fUSKsc1cDBO7Aa0ixOqPR7d4h8Jop+SmlK8Q7lqtySBuCa+L85PPRRP52ZLkyJDgSFOF8Dq5+8r+2MIN8HMkAXjT8zjUGhOkUq7nMqQbg6J0zrCxiiyJ0LIBsSVNzYCJmMowgNY67ADDA6oBRHl3FSrMSUzLA0HGhTqFDu0eh2KYVZBJMmO/I1GT7j/mYmv/Yy7pODeZFvBUDaGltCVEQq5KKd98HUZpuV45Ico2LeRRFIwGACHMJn2sFEhZlaeUBiKinHNECVnr8paSC2RHVFxUUMVOULXoingKtLsCWfK0dWFXaQdJiVKUJGkClTbEqr2irEBlkahIVTglWUj4VVxeUpIMDexOibvzqdTOxI3r3Sb2OIwXD8QeIkW73gyHU7UeJEoJsyot1bwpQdp1Clq7kKomeyusEw+5E78Q5KRDlpXkwZ2atLlxG2qVCyXbNytKMhTIKKc0SSEhSE+OUfGRcCOnH86RrgoHHegRMbswr3YhYGK7LFnBGBWXV8OrSQOUGiih0BrrR+y3UvK7DuFbUZHSrxyHW2XahyhHyUNKReuhikySGfsdQo6NU5OlVo4gLWHWbTBYnjVtR026aR+k7Hk/Crl2RwDZUVqhPQDiwuPrV+zJeVdEirKU/KTAlt4DtqEuEOXEhV4RrVWKQK6fD0UJLnaCiWCKErooQeUizLRCszjzeUmdjL0KpCEtHN6cwLV7xASpJlOvIv0tCrV2G9ljEwFgvGgH3fuRehTI/eXaFrzfKulRohxbJwSpi8q3flBRQheWFBVZ1UgFgQrlTeFpIGRfSYWmnPwj/2AhzJLIEZMjJwSylEktJCqzS5D+gBr54K6KjOyga7fORxyUuPioyJyAwawcWbLfpiSCMca2uThyQwsY5X6SIJCynZaGJRTcr7vVEdl3VaQde2WLdPwoLErzj3I7hDkyk2TGgQH5z6aJfZhn0mprgabtVexsTE0WFOW+jJ3SMBByBSKiZNtkrow11F6ukEfyk3ZdUBEBKVFCF6gmh1niUWSVhiIbbiUN1k5NzhZhdu2095uZJctOXlJUpInUCEXuOt38pCfIampzkZKbdEqym4eEosREoNuSEBPgKtoKPVYyoVdE1trPKcKRzJ3f1i51oiC7BEmFQlFq/9gqSXubljIHUUczEbUvUpl4JRnmIgbv0ejmyNLmBiW60CHI1llWRCFX/1iRr0xVBN9nSy4nrKSCmtPQq5CjhFm1IzEkJWKiXAFogAyglfZ9rtQ5yPGFX+nytilJdgcop/2QcjuUCRLIJJlxgCCoSYVG8aCanCs1ZpVZtZpULgRFSJvIfe8kxcOZbbXsco48QDx7UAF+a6BPlOQVpW+vcKFXVZQwxU6gKEFFCZ4tgpcWPVnqpoaZ1b285FARD2kxD3DVqxFBqmrq7ofcJMiOZIIz1pb8ZFy045vbERPkMg3t0Vkyvi/fh8x4tFXI7C9iWEKopP0pXtRlt4p1yDxAXHa0JhRiGl8QilKjKAlFpVGUGlUpI550MjQ4Hvfki1Oi+6X3IhUlKaHX6AIqIkhlGqsUvZocqLSGSclSQv2wRCkqvqsmpThHufvM7IqSOIRdI6IkBoyyw7zJAIb7PqryVQk5dot2JMzaJcg4D3mI8yOATJIZBxB8+EYrlIxETTau0nWu0lhqCt9ysLtq0ptlA54oJU+pGoWuI0+MuKjH7TG0irdJiZLJGg50w5qKCuiygil2gssKXJT2NplasmysIw+bFtoZqHM0iksKeJQOxTi+xaOoXB7ShVnLyuUiS6Dotn0Uo716y4VLu8ekez92RJIKU6ZQSEMGYFLQhUbbwLnl2GHQ9jtKj7uKyNQSZOnHYmntco7akqLWtCxBzlUah01LT5Bx75+fZuF7AB0x6kAiQpBlTJCmscu2CeQYD1oOHwQ24kmuLApQbWMngQDOH3hcTWoCuLW5SfsTiJUkUCMQJbGyF4OOLIE0jxxMEoJrTzfUGsgyJch43aGuIoFMkhkHEEKlq0Lr/jPOl1ZF2gZ2Qt1qzFe2H0+W1m5LW4IspO1geTXJhj2ddQt5YneCmUrN0D3mxz6FhoEBM8G4/11VNQ9yBMlUQNXaF/SoauoIcg68tMveb2qgntl8ZDMDjPEE0oOQpFNW8KRY+TArihKqrMBU2FsUao2LduLJH70/E4WYQ+gx5GwT70+lEkckKpRtbvfm6/Y4G5JCHwIbMQRYpmjHKUcp0JHxWEWpk3CrhFznJkVCkIdNC0+Qh02KDjn2ewDDwGB7s32BHQVpGhteNU0gx26YVRBVtSoGWHLhQpRsIt9XV4hjGHB5dGYb7rVSX1m52CFKo2w1dd0ae9/lI41hlB3dJ9Xa3aIdMfQg1wbTJcjqSUSQQCbJjAMMsQtPQ6FvsjZsybJg1JX2VmjzlfbFI3VLIGOn0VNhXUeIlHORsSfkwWIeICnkkYpXceQBuoqJQiP6QO6NOShKGXNU6Sm0y0/6cGddQFEBVRRQsyVLkGUFrmfgpoZqarCZ2uki7TIWbd6fNTIMKMqkgCdp+4hDrZ2inZUQf960XSb0HUobSHzREgjSHWE3voyUdiOxyH0vA0U7okBVCN+GPCR59ehDrZVGpcmpxqKnIA+bFJ4c42XoAwzEUPm8ZCAMrWBJ0TRBPZp2uLK1+9uILkyUAaDYGmG0jf2FUjEYdtVKSQzVh10VKyg3RUeI0hgFYgZAjhidgiTVm8UpClKI0le2kvKFSV2ClIuhJwtBApkkMw4wyISQghiVtjmV+dKGXOsiKEpb6ZqGXWcNRUqSw8V8Y8CsvJqMJ0RIpWVcyCPWdaoJZ4K44lXyk3Z/x84WliiNu9JnDVS6QjEpgHoxVZVkyZLKClxNbY6yqcH1DMq0VlmaFipisiRv56Z7eHKM85MSZhUVSTpVkO6EDCyfd5TPSio00gfjefLk6JvWlYIp7EWLPcm0kB4FRcrnkNn3T/Kg+AqVx5YYlZgDFKHFgzR59RiHV4dCrOuqwk+uEKNuCbHOV26aBYUq10ASLtQKG1b16jEiR2WaoCCHrjpcVascdwl5KwPnGGXAprHheEX2QEeq0bQh7OpkImAUWAVFaZQNsVo17wp2uP8bjRUkkfRJkg+/CkkKQcp3KiHnJxMySWYcUJAQT6sVWrYnrFbbk5qfZxgV8ciJOW5kHwq7ioFAlyiBtJBH8pNSyANgpOK1m5+08FMjDABoF7q0ZfiGrUNJVc1bYmtcIU2zCDQFmGZQurRk6dQkNzNLjpKXlJmKchIWKzbX3gFXGCRLVVaWCKVgJz5BJyYCfYJUCCdLUR1i61ZqhdrE6pGi0Ld7rxnAhb1fAE6dS9QxHmXFozlQIUUAtq3DhW+JUnLUhf1NxBWsligLrJ/asOu6ys5CFIKMyXLOz0O0OciK0urWkgAVqUdlWsA0KTma8YIde4xDWasi952YJhAlAKULMJvB/KTukKYQJbNdKmV/Y+RanIgBYxTKgX2Rn4298LGfU0UEKWFmIchDaYjy7iKTZMYBB62cnRYbtKxQMdAUhHnTL+JpDGPW6KRnb6eEXF3YFeKw08lPxoOb47ArATDEaF1riBTyxNZ1yyOqeq1crk2LcbhVtVUxhaICaGZOVc6gGg20tVWYurQn5aZJ8pJs2nGVErnqSG8kRxWtrJQPtUYSbbC1Q0WWL9YnXUEbUReEWtxeCjnuGnPVMDnU7vgpUlCNJUddKHd84a3qhkBiEuH2gTT55RA5Sj+tEKTcn3dVrHMurBoTZdz/J8qp0iqQgwLQzlL1KITpCnaSfKSg46yj5Lhz6yaFND4fnBClO/Ka5PSc5ie7RNmCoZ0fD+AuAGHJEtSPEAQTgeAcFM9Q1ZkgE2SSzDggITmguIhHcke2oV1HUyjSsGtrNHZFvqFRLatt+Rgo5BHEYVdrXRfaSzALhTxAf3JEuv+R1Vql0yHG2u5RSQWKklJV2c5snqut7YmYGpuzZAa3bSBKIJBl1EcYDAOUVSqiIl0ukl2Iz+cjlwG5En8JsfmJKMp+Hy0rGLZE2Tii7JoLAIB2FxiqscU7xlgfV9Ls1fygknUECaAXai11MAWIyTFp76g0poVOFGOcf5TwakFpaDXOQ2oYqGbmQqz1MDlGYVY1VLQjar2Tj2S2PbXKNKsmSjbsZoGmRMni7+rCr4YB0spFMlQY/uyPbfiO7bzUNMwaV/E+mQkSyCSZcYCCFFxOUjlzbQVml5s0tHLYNap2BZC0hchEpSGiZHf17UOxkdEAgKSQ5/FZ18IulNV3uXO+SgtSmK26NEQoi2lQGVQANLOKr5kBpnChvAbQoShksAfPnfm8SYC3n+vnIpOwa+etVLT/wYJN+byVkH1LDKMVWo6H+Rb+eMTHpTKEmTauwMr4Qh0zQJLeLNy9hxTuxLZy8S0mR68kY6U4EGKtoh5Iez8Upnj1aBqoZubJMS7WickxNhIYNTR3FoXxcVeiIl1oVYgSrOCu1AA2SSFPXMATEyWzsu0lct//JkbC2IimmkDs9foEeSh7sq4WmSQzDlho5XKSBJujNMB8aRVkHHY9bFoMhl1bDsTEruIPANCYhCiH4MOvxFBGWeXjCk5qCmqyO5cQCOGsLoQomRmsCYZtcRKzQkEVdOWUpFKWHBW5k7NJyNJbmo1UuvTaO7yxuZykVRIGHCvXEbKUHKRhpx5dzrhkcmQJoELneNgLiDCUWYqrDCpDieLs+sAComrCsY2NyaVgKKjIyCRgYEhwXJzTrV5NqjelQGdIPTqFL4U6Xk1GxgHePjBuY4k8Z1mZHlkquFaQtkFEe+lypJAnJkr232SkKgGbrxz4XgE4y0SrHsnlnxVSgpR2lyczMklmHNDQpFBpqyRbtxwKu9pWkLI3M0/yk90Ky5goh2ZQCthVuxoDH3Y1jcGMFHQzTJbL5SwnBYGtTIFxJzcJCJdEKIqpJbC2sSfYtg5KUtYN5b9idMmQIlUp5EiUEKV/qSNGURgKyru8kFeS7MkShX0PbcL3FY5D64lt1pho8G96G8JQgVSRqEjtjcrnXMvH0IBgIcZpYU3MKz3c1tDNPaq2tvc7hTrKKcqEGE1rJ5kM9tHU9libOBTuyJIKW80KR5SOfPeEKNmFWpWKVCVC61P6Hac9r/5iaCDc+mQnSCCTZMYBDmkJqZySbLUNuxpjFYiEXddVRZKfjMOui7CRS+rkJ5WxvXpKq2UdZgxbNcmut08pqyhnKpzAH/dk6YhnGkyx+yCggB9FZf+GvW9IQVNlc1Gmcfmr1lWnNoEwO+bZEn6VkKuQY7fdICHK7l45GzPbTODCb2RPsyUoVO4SoRWR3higIIg5kShAqyDJh8CHZk7al/ePe3cYclCQ5IlRyHK54cCSx+5WrnZbO3zlaj1zqrEOodYOOSpXZcyNNXtA1yUoJsooV8xkANRuOosjS8CHXH241ZkKWBImW+nKZrDiVTuiVKzsYGWCnYIDQCkJY6e/v6Aio/FfELvFTJBDWFOSfPjhh/GmN70Jf/mXfwkAuPDCC/GBD3wAT3nKU0Zf89u//du47rrrknVnnnkmbr/9dv94aWkJb3vb2/Dnf/7n2LVrF17ykpfgQx/6EJ7xjGesyefI2L8oyf5nbzWs+nLVrjY3qf2cw9oZCwD9uXmLbmnrTi1RtjDQheTG7PPMPGjOLdsoxT70WrcGukmVzi43LLlb1EPRfUs2GkYPkCRbg3cmQqFt+0asIj1hxk3rEn6NMVAsEqtLHiVKS7RKsbdBi2cXSjsLQP4kSoY9OdZkfXcrTaiKkCtuTCcUHpGJfFdBhZJ/LLd4tFVsl1YmCrI71ol6hTlVRJJJYY4QYjsbJ8d6ZhVjU4cq48gycAi2wtgRpG/XaQGjnQsSRtUjBtbFhTxS1QrYqldmF2xVliwRvY/fn6hgRwF+Vmbom8wE2cWakuQll1yCH/3oR7j55psBAK973euwefNmfP7zn1/2deeffz4+/vGP+8dVVSXPX3755fj85z+PT3/603ja056Gt771rbjgggtw5513Qg+M2ck4+CFhV8M2RzkpFAxrtAxPkqJ0bFjPBVgjshwiSlbs+yeBkYiZAxuAyRabtK1z5ImIUvZTU4vHZ3Ehz/AZZ8oEdk40gSTdyVBUpSqgC6silWnAHX9QjsOuHZ9QvxzJRXqLNAR1kk6dsOE340hQRjChAEgxyLjP3DJqxaDWXtDUxpKlNaZnzJW2f7WrIodCrd2wtbQjDA0EHhoMLAQtrjHL5h3bDjmaBqqJKljbGeBacGKLwKRndWQupj282hpBiNmDqEfS4AJAPQtEKWqRyRaZqei77RTyxNZ17Cg0JkchS8C+NNknt0wGSbvjLQU8mSBTrBlJfuc738HNN9+M22+/HWeeeSYA4CMf+QjOPvts3HfffTjhhBNGXzuZTLBx48bB57Zv346PfvSj+MQnPoGXvvSlAIBPfvKTOOaYY/DFL34RL3vZy/b+h8nY77C9k1I8Yk/gprAhQGPS/OT6aTGa7xKiNKSglPF+rYZsO4ImtWyO0hi2eR8J1brQopzcH5/F1a/uhK/6ZJkWq5AjSfZ5yoJiVamsgvAOLXaUVjJtokuUHTJMbOlGWj8I6NmgGdOpqNSAJg2tDHTL0Aqoia3RA9lwbWEUSrLEaFwfpVzESM9eO3IxIqPI5LgJOWqlEqNxmXUoZtzTQnsjCq1SU/I+OS6Nk2NrQ65Cjmhq73jE9SyQYpSDHPObZUQESfZ1Nv9o/BKAJUoM5CFHlmJdBwAtFBz1WncdZTcUshxCTI5BSYY+yYwUa0aSt912GxYWFjxBAsBZZ52FhYUFbN26dVmS/NKXvoQjjzwST3nKU3DOOefgD//wD3HkkUcCAO68807UdY3zzjvPb3/00UfjpJNOwtatWwdJcmlpCUtLS/7xjh079sZHzNjH8L2TGtZAHCbJTxpGdBIeJzrJUQZYowHbXzb+uuQVhqGIYRqDNiJKb8sWkaUWt55RCztAymQkQGbYflaGLToySoGUzctZogujmVjUhv0rSXtIkqMc+8sKbrgykqkTqtty4MYy2bwlOTWZqkfJExvN/juxFzIcZlQuN3ZLejEdwUmezCvJzpSKMId03CXGh1W75NghSk+Os0WvGrmehfCqD7M6UpTJLJ3wgyLX2uE9dQ2YWl/p6iteC4AN2fdRKm0j4fRxLz8J9IhSKeVD9kKW8luKU+OxmtTKVbiq3OoxhjUjyW3btnlii3HkkUdi27Zto697+ctfjle/+tU49thj8cADD+Cd73wnXvziF+POO+/EZDLBtm3bUFUVnvrUpyavO+qoo0bf95prrsHVV1/9xD5QxgGBghQquNCky09yFQbLStvHmFIRLAKJC4xpjYtoKd9b1jWEFjAzQieaJcxWcUKUkpOMq1/Hwq4BligN2DdvS09iSfYiwSgF7ciSHVn63KRTlwNV/xZS6TpU1QpX9chRs7qrpCRlQ3HE9uLDhmbteb0g63pUciBJ+z2449J5HKNlTi4cJG/bnUyRTKkY8BcdI0it+gU5vpUjau2QfKPYAML55noF6ZbeZD42dLA/APkA9vcBqyRhDBS1YG8XCHDjyLGe+eMuKhHFMupRDAhkHRV2kLc7fC3sd2fcsQm5bk7UofwGffVyJsgVsdskedVVV61IOHfccQcADBdAjBRGCF7zmtf4+yeddBJOP/10HHvssbjpppvwyle+cvR1y73vFVdcgbe85S3+8Y4dO3DMMccs+xkyDkyQsr2T9pdrC0kAoHX9k4K4sX0MM1JApCiVYpdztBfwujNaqMstbKxHpjKMltgXqWhSrm/T+DaIQJa2bkMrZfN4ziko+oRJsUVwV3HRTnIdIKTcVBEKuUkVTZ8Ysa7rfAD3ucmrSROF7+KCEKmiVMr+fXJFI8x2n6wvrc0HW1IMxVBxmNU+DrvQPYHHhttiok5q2BnGj7Fy23vVqDDcyuGUow+p1jObb3QhVa8aRUU2M3BdB1IcqmbtQEznmYz9omOyBKyqhCVK+74EZTRgWijWqVqM85PO4zXJTzozdCE4Vrb1gx1Z2uPbPyf6jKYKxzZjHLtNkm984xtx8cUXL7vNcccdh29+85t46KGHes/97Gc/w1FHHbXqv7dp0yYce+yxuP/++wEAGzduxGw2w8MPP5yoyZ/+9Kd4/vOfP/gek8kEk8lk1X8z48CGECW7Qh67JMjPOVUt/Z+4jlTeLgCqsXMPrZrkiCz7YUEi1bsYE+eYVoXCFFGT8nhJwrCrOCNVNjvo/iAgtmNJvtCwU5U27JaQJRtA0+i4pjEIYZkofEcuXCo5LnLKVrt2EcOuyAiWPAsXIpZCJIRPsmyhjhyVkC8LObJuw/tQP593yGkDGSYmAG2dFuNISDVWjRJOFVUphTlSsAMsW81qC3NqS4zUhtYPaoGigqpn4LKCMrZvkls3ycWR5W6HXQG7zl3kSFjVfn8YtfoDQk4yY2XsNklu2LABGzZsWHG7s88+G9u3b8fXvvY1nHHGGQCAr371q9i+ffsomQ3hF7/4BX74wx9i06ZNAIDTTjsNZVnilltuwUUXXQQA+MlPfoJ77rkH733ve3f342QcpCAFTLSC1TTGVYWmFa8B4Wc+RFIzpbwJd9saT3qh1yy8V+wnqkYIT4ixqya90lQKpBjaGCs2HBmQUX6mZQXyhtVWFaS5QalolDpGSyapUoyPgBBmL9QaqUnI+yBSJVGuKyZLw1ZJGimiAvvqXEC5IiT3J2RHBqpCuu4vpCQUmDa5S5tCXIWZEKM0/HcNAKQwpw1kyLPFRDWGwpxURcaVrNwan3s0nVg+uQpl5dYr3frWD+V+etzMLFGaFuz87xUAaL16NdmpdlUEP1mkS5QA3Ji2FPKcQlaQq8Wa5SSf/exn4/zzz8eWLVvw4Q9/GIBtAbnggguSop0TTzwR11xzDV7xilfgsccew1VXXYVXvepV2LRpE77//e/j3/ybf4MNGzbgFa94BQBgYWEBr33ta/HWt74VT3va03DEEUfgbW97G04++WRf7Zrx5IAQpTXaTite+z/t9HHcYrBr1iYm3OxaPOJRWr2/vQJBxvelmV7+Xuts9bRiV/zC0C0DaIFCQ7d2vYUUzADxDEEb/oSLnQU1FqtKDzbDfZEDEyuUsv2PPuA6QJaGGez+Zrd1RdYBaXVl3MlJ0cl7rG9vqDVBwfFslxgjX9WkhWMkpMqzxRBWbVv/XJx/NLMabAxMa8CtVLEOK3NT22Id5ciSDEG1BlSFHKTdsHUefrBK0uU5B9XkMlDMjhzT7zkmSjmmvddi/LmMYaxpn+T111+PN73pTb4S9cILL8QHP/jBZJv77rsP27dvBwBorfGtb30L/+k//Sc88sgj2LRpE170ohfhhhtuwPr16/1r3v/+96MoClx00UXeTODaa6/NPZJPQkjo1UQVr66hD8Z0fw+p+XYMTdZmbqasSUA8EFiRU5Tu7OOVpLKG6UOKcowsvZosFWqnJH1+kpxBgbL1OAD5yQ4E9qFXIUrJT8rgpVhJeFUp45o6oVcVE+cQWQLQzg1GKxfWRl8pxmYIQJcok7/YO0apqlFJMYknSeX2ydRWDQ8QY9c2LlGNnZAqzxZT1RgTZNvC1I0nRjZuKSQ5UA0mxKg0QRk7J1I8ncysToiSXZhVxecpVy3LhpBMflwm5Oq/T1GT8Tgu+HqrwXBqJsfdh+Ll/LgOUezYsQMLCwvYtm0bDj/88P29OxlPEIaBmWEsNYzF1mDW2vu7mhaPLbV4vI5vBotNi0cXG5uTnNnl47MWM2fELVZqtVOTY4pSCFKR8i0LQ1MqvL9oYcc3yeOSxBnGGnJ7p5gB15jULqyfm4t73eREqYD05OqwXK7Sn3C7pgPi4BMd88HHqzidxHkxYHx/VRtMxHtDjof8VDu9jb2Qah0pStmuQ4ymbhJiNMYMkqP/LKIenZKUG5WFnX1ZFpYUi9LO+CxKOxS7lPsV1GSaPl9WYF36QdlMGtBFOjhbprrI+LPYNCLav+VU5cGOHTt2YOPGjdi+ffuansezd2vGQY+xildRlF2481rPI1RGX8X9jq20MRhbxdqFEGT8PkMQK7Y2moChlX1vMoAhe0KrXai1diFYUq7dxE2etz2MrtIUYUnOfcVgxDHFqY+EIAfCh0qOXVQJmygVyV3Kewr89iucjdkAYEd+6LWvJOYI8SiqaALHbhHjgGrkegZuDVpHiDExmq56FMOAqFgnVoKqtaQo6tF/TLIxDUXGbu9bR5yaNC3glCO3rSXOznHyxTnd47dMz6sU8sjrDkVy3NfIJJlxSCCueB0iSnJkRqSgo5mQALyFXHe0UzDnNmgVA3p1Y52Wq2CNp5S0ZFsjDEue0s4ONI6UW+dko8kObbbmQLahn+GicOzqOFiqUW0V7GDYNUbHIH1gR/3d5NMMnaCXG94cE3HHFciTYVK9aUIoUUhR1KOMpxpxw/EVqq51IynCaWqYWT1KjGbWJIRolslDSoEOaXKDsDVUS0BVeKJkNxaFtQlVrMsdmzE/RHbpAyne6R7/OOQaEagC+gSbsUfIJJlxyCBUvAIrKUo7SLj1BGeJkrBr1iRFPa2zqtuT0U4rkaVdAqQCWVqHGtjGcGYYY/OUlbY+s+wmPiiNRE2SI0woadFY5kCJagNSwhpDYnU30P7QDmw79PpoqeJ1JlKQ3UHGxg445noWXG9EMUqhTUSMsq4bTm0dCZpZk6hIm3e0pMhm+fyjQEKs7HKQnhhblxHXBG4N1HIXD6tFNNpszJTeH8fO85ko9w4ySWYcUhgjSqV0yOup0GQtTetVQbbKlRRmTYvKKcmlOOy6m0QJhJDuECTkCtj3LymycFOBLMlVjkoxhjT0x2rSW5DBXhIM7WES1gQCMbn7ybJ7P8bI+l6us2ts0P17XfUot6YJDfxNHSZvtJE13BgxOis5yTOauvHEGCvGLjEOhVgHPyM5AtSBkCTUyuK4Q+F50xoXcg3hVQ8aCldj+UktA+s4yhn3NkcmyieKTJIZhxy6RElgdLNGFPmCkgqzHzUpLDVCmK0f07TkQq/LTbEYnGCxClUpaJlRwIZeiZUnSyFRRWKZZxXnUG5y1B92gMCScGe8jVeXIyHZoRAqOmo0fm38fp318eDi1B/VeLXo3W+iHONKxMitJcQuMbZRmHWo93FFBdka3xeZQLt+xoHnlKbg2yqIHvscJw1sN7gjUXFVTLRDBLryu2WsgEySGYckhCgDZ1hVSYp8qBWISTJ4hFaFdcuRocGzpkVVhAHCTUdN9uchKu/dmt7IPxfDRFLQRN3gLTNKKFvzocI27PoWmRWG6mSYebzXrlsc06l+TYhsZLDzqkm1o1h98Utk88YxOcbjp4T8xAEnXrcKYgx5x2FiHOp/XE2IFUByuTVEijG6hKpIhzAsaYQpIc70XOtetWrvZt9oZEcjRbrsnmWsFpkkMw5ZxFWvyhWxqJat4pJWCtWCSKFsDEoyKKnFUutaOXzI1RJkVYRint2eiegIsvscqb7xefyWLYcgnYRc43yjFO7Eyx5xdklP1o0UzMjzvRFcy5FhRKSDZNh5PDiTMZqykXimxiHWqGVjOWKMn+8S41DucSzE2s0rdh93Q6+jiFWi1o4sNeLJIL64R0KtMuKMKAmp+sku8fpOyDUT5N5DJsmMQxqeKAewrtL23FWHSQiiKksiLJIlxjg/WRXBQQfAIFn2STIQZKwwl9vnGKIoBSsW5gxAdVSd3O8R5IDKVF0yXIYQPdmMESIwSIoyYSOxgxtp8hfySytVQ45RcpBDxLicvRw753UVHVxCyEMmiEwE/DHu9EoqTW6dEKIjSn/fPVeU/jnf/7iK2xBBZnLc+8gkmXHIgxQw1W7cU0SGszYU9JQUql1LbXOQpOycxJIoIcvGMKqCohzlsAoRcrT3bW4zUZeJKYBMwFgd+0mBzooYKsRZRcvFYEENkOQQTTR4eEWV2L3fHTs14Jc61uQfyLFOim8k97gSMXI0hsS0fVoJoVRrei9ECb++ry6T3klHjuSIUohRkYYqy6Ago5siDRTF8ioyHp5NmSD3FTJJZjxpUEUKQapEVQufp7QEabDUtCBlp9svNQY1mYQs45CrzU+Gk+ZQfhJAP0epQqh1OV6MK3H3GEPFNZ0WjFGClBaMLjHGMxX3lBijIp0hv9SxXsahPGPa0jFMjDEhjuUflSaYlkFagVtOVCXQJ8tESWqCLou+inRK0S61v588V1aBDMdcdpSy94ns+mWqWjP2HjJJZjypUGnlhgYbN0yYMYMBCkCTBjVh6G9tbLVoTfZ+TJaGGbN2D/OTflZiUJFxtW1oVVkmJLu7H7zbGylEaDpqURr3O9WnicrbA8W43Ou7fqlxy8aehlNjxWhaDjZzA8rRH1OtfI5RiDKGt6DzBGiXuipBZREI0qlIqkrAEaMqKpuLFPu5srLPucdM2pFjgcHQqoRhu3lIh6wi1w6ZJDOedCjJmncv+RMmQSnbs6gg4VfCojMbF5JcUgraGJRkbeNKrdAa+CHDY/2TAHrk6AcMq+g+uccr5CvHnvbqWNmJGYObjbRhDIZYmyZUnw6EQ8eKblYTShUya7067CjCqNF/rDp1qDAHgFeNQ8Q46KAz0PRPWkFp1SPEZKkpfd7ddFWAysKTo/VjFW/WlBztY/FjHfZq7fm0CpEik+O+QCbJjCcl4haREHa19zURSg1QA5TkQq7G5igLo9C0jNLZyBkxAGD2Tm6m414j1asSmYsJstQU2lDcetmGRGE6Uh2jTiHHQUTEF/cxehXptgnKMli/rdi7KJWorsAmIcem7qnGbjg1ziXGnqndXONKIdWVVONy5gAroUuAkmekSpSj9vfJkSOVBVQZzMxFPXpyLCtPniiKoCDHCHIgxJrJcd8hk2TGkxbdylchSYIlHio1anIhV6N8CLYmO+S5JtvUXxsbdoWGs5UbceSJ8o9xX6aQpajIktKQq4RklQIUVFCLahlyHMNAIU5XQSrmoCA77RcJKXb6GFeba1xNSHVvkyN3wqzdXKOEVi0RRipyYKoHVYXPN1JZgIg8QeqYIKupXU7mnHIsU/IsK7AQpK5GCZJ1EXKVu/l1ZzxxZJLMeFJDiJIA1CrMdtSGURv7fEEaszaEYC05sg/DFuKOExFkV02Gvxfb4cGP2AqqElHoNajI1XwOm2ONQrKd1o4k1Ar018U5yEQtmh5BJuqxQ4orzWdcrXIcCqva3QwEubvkCKQEafOHwwRJLsfYJUivIMsCxbRKCJKm02GCrKaWIN16VJNhgtSVJUNXpMM6KtxZ8VeQsRbIJJnxpIclQuWG/bJVkxJ6VQqNYihlQ7Blq7DYCEnaKR0tw07t4ECU3dmTyd+jlCiFFLUCSqKOmnQqElH7itxHyGnuDiTUOmYWgIjw4hDrSgQZO+GM5g57ynB1jf97Wz1KHtKSIg3mIIUkpSDHh1XLshdiLaZVQoIrEaQlQEeIRZgd2Qu5jnm4ZuwzZJLMyEBkJODCnLGqtOvhlKUdhFy3xpGkQsuw+UlmT5jxWK2hwbc+90hiZBCKd4QgS618LnK5UKt9bqBop+u5OoLYii6og9jmCQAAHz9JREFUyLC0H8Kk5LkKgoyLcrrq0T5fj6rHvZF77IZUgT45hvuBICWcqt3SK8WoijWscznIydTmGaupLdKppv2BytXU5iC1C7PqMpChrtLwalaPBwwySWZkRBBVqV0oVbWWIBuloJQlwdaTJVC3CnXLKF0INlWVrjWkc6aTc3cSeu2RpbvvcpFdFSlYSUMmRTtdc4BO+FVykR5xmDUOv0pbR0dx2hDrcNXq3iBIv1sjbRyKqE+UUeVqHFaVx7ujHmU9VQX0tHL3y6AWHSmqjnpEUYImc2DSQT2SBooq5B+FMKPq1UyQBwYySWZkdCAkpKJcpbWrs2qyVeiRZWssKdZtGKYMBIIcCr+GsGtKjqFVRCUKV5QikIZaB/ORu4NurlIIMHoc7re9pVeejjzjiRq9mxCv/OkVCHI1IK08cXbbOYaI0T5WvfaNOPcoj5dVj2MFOmP5x4gguaiS8Kp/nFs7DjhkkszIGEE3V9m6eY6eJCOyLAhojUoI0+Ym7Xu1NF7xCqBHjhI+pSjMKiTo21awfOtHr2hnBcTkBSAQobsvxBn8WdNlTGrxZA3TUXfdAcdjUHrAMxWBFGO3G4JJXtfd3q7vE6NXkIOFOv3c46B6HAqvuscoK59/7KnHHF49KJBJMiNjGcRKrjGOJB0xdslSK5t/JAUwKzCCC89YtWv4O8H0PCZIUZCEkIvsFux085GjiFx21Mj+JAoSSIlylViO/HpEPIKYIBWRdxgyjgx7pSw6dbJNTModGcr7xuQY28gNkaOst1WssQnAbhbnRGqRddkjRyCrxwMVmSQzMlaBWFW2zImKlPvMlhQ1FJgtYRZkl8z2pD10IpTTuahCUY9J36Y49UjxTrRfEmpN3m+VRTu9fSH9hJrvV3x/rd1kzz7i9WMDjP2aFdzdY1KUZawa/X0pzonIMel7HAmtIn68J7lHXWVyPEiQSTIjY5XwqpIVWqXQGFv5SgbQLGpS+VYQZoaJCBMAeJlToujALjmGx3ERT0qW8f7599tDokw/tPbhVEug40pQafLkJkSrtFWB7Sryi6IYDdALtcrj1cxu9MQYEeWgfZzrd5QKVp3kIlNy9ApSCnOcg05c1YpCwqpFr7XDq0fJPSKT48GCTJIZGbsJiogqVpLkfFwVO2IEPEFawgSE1oainV5J+sfDBBmHYz1ZxsnJofFYHbBSUJ19UDqQoCINJgNIeDQhS7LbEdlwrBTLtK0lptYkBTRD5BarRiFAIUUtVaqakiKgIY/VdP/jStaBEGtkSN4Nt8ZtH4PkGOUdvbWcFOyUFViXSSvHYGFOds05KJFJMiNjD6GVrYBVDCiXk2zZqUrDYChHkIEwAacqHaexWxmTnK+udeTo7zuClIpWH3J1y1UXtToi85CJEtyG54UshTiFDMnFOY2BAsDklsb4mYpkKAmnUlUAsyYlRSIoHcwE/HpHlnJfCzGW4x6sQ6FVWYa5jjpRkrFqDK0dMrFjBXKMwqxMGmYotDpkM7fa7yfjgEImyYyMJ4AkBMtx2DXkKQ2nhKkVYPwpc5jahsjR/r0QZpX7sh/Ju40qSErDsIqCkYBSTjG2dkmtv6/I7nFYtvYTkCPTAuDG7RcAoOkRpWoNmNJqVxWRJQAYMgkhrqYCNn4vAAkpyt+mrlF50u6hewU5Puc4phxJ+7aOnqVcbBKQyfGgRybJjIy9ACFLw1ZZMgM0QJD2MaDduuXeD+iTY/JclLeM148iIkSrHq3BACuCcs8prQGjHRHqSCm2Tjm6pdZ234rKuu2gT5SKDFi7/kd3n1vjyRIlvMkAysIpyNhWrgXKZT5OVNHaDa1SnI/0huTUJ0bSqWosKoDIK8WEPF1Y1XTt48aKdFb4OjIODmSSzMjYi4jJUsNGNUNusq8ogZXN0NOq1/S57noAK1e2KpsRZKU8OYYRTMYqR7hQqhBfWYHrmR0Q3LgltVD1DCgq5+nqiNIQFGkobQ0GhsgSgCdMlE4xOtL0H2NERSa5x6Eq1pFKVlU6AoyJkcirRgm1xtWqft4jFZYcx6Z1ZHI8ZJFJMiNjDRC79jBkhFYUbuVQ56p4XAJ2Lehi4oxVpMcYQcZkyCbkJaP5hEoJ0egklOpDqjFRmhaqAbisoEwLtK6dwRCU0c58oE+WEko1MTkihFdplS47YxWssk65kKvPMZK2BLkMMfZUozT7DznjZCPyJw0ySWZkrCHisCkp5Stdhdxi0lz+fTqqElH1KwbUpKAbYpXwqnvMMJ4cfd8eyXsF1eiVYllZwmsALgBlyIZnqbV5wGjwcjpNpIXyDj0tyOUguyQpMB2yJJ0SUBpe1bJRUIrRfVWU1mwgIkxPjJ1CnUQ1joVUpZVDjmEmx0MamSQzMvYB/LBlBbQuFGs49E12FaFwZlcodttDVgUhQ5todH/AqUkDSC8IUwFlGnc/EOVQKBVaA/XMEqRpU7IUZekUpY2jtpGNXZvkOYe8YROvAEoe+ZYTT4ZunTxWRIEUqZN7HMhFooiGGi9Hjlk1PimRSTIjYx9DR4RpnH2d9CyyZ8fh13aLdFbd9gEEggSCmiTb1K5krCQVtoDHNGArV6HYEtFQKFXGZnVVY3IfgBLlKOvdvvdt8DrhVuoqyKAafd9kTIiuTUXui1qUUKtfLkeMXW9V6XHMDjlPSmSSzMjYj+iSHUfScaj6dWhM1qCilDxj1LVv/X9CbtK3azqiBCsoJsA0VlU6Y3RmA1QTqKYJBDlElkCfMIFkJmVCjKIkV3WgtPtYQTkm64Qcte6TImkbJlYK3kg8IcLweIgs7bHLeLIik2RGxgGAmOiEHLVa3us1ft1qycZXtMpjBKKEcUTq1CT7WZRuikhpCZaY/ZzJZJakaW1+zz1WiAzNO0QJDKjIoc8ah1pFOcZk6Nb38pBCik4tmnhOo5CgrBNiVGRNx3WVHJ+MJzcySWZkHGDoKsOxfsrRnGRiEECJmgQbMGmrGGOlyAZKucfGBFU5QJbMxiVLiz5hAoO5x2R99Nz4QeiTYxxq9cToHiutE6VoJDxKRSDLKKeYiTFjtVjT7PPDDz+MzZs3Y2FhAQsLC9i8eTMeeeSRZV9jxwH1b3/0R3/ktzn33HN7z1988cVr+VEyMvYbgldselsRkkNTZIlGhZsnjnid5Od04QhF+7wcdGXdZdwNsbtMWdlw7HQeNJmzjfjVFGq6DqqagtxSTeej27rh2/x6e3Pb0fx60HQdaP5wqOk60LrDoeYPg5o7DJiuA+bWg6eHwVTrwNVh4HIeppwDl3Pgag6mmgNX8+CJfY7LOfBknV0/OQxczdvPBvhbRkaMNVWSl1xyCX70ox/h5ptvBgC87nWvw+bNm/H5z39+9DU/+clPksd/9Vd/hde+9rV41atelazfsmUL/uAP/sA/npub24t7npFxkKLbDxm3fRAAUBiSDAOoVFVCUaosAfvYqUtAQzH7bewGxlvdMRtAl71+zd2eSNJpS5Gl6RK7D6nK46Ag/fNU2LyjoqwYM3Yba0aS3/nOd3DzzTfj9ttvx5lnngkA+MhHPoKzzz4b9913H0444YTB123cuDF5/Bd/8Rd40YtehF/+5V9O1s/Pz/e2zch4MqInKmOCjMDR07b1QwgUIbwKhDBsdB+EEG4FHGk6Y3IxRohIs4fVkuQIOfqCpiFC7JJmTIpSpJORsYdYs1/PbbfdhoWFBU+QAHDWWWdhYWEBW7duHSXJGA899BBuuukmXHfddb3nrr/+enzyk5/EUUcdhZe//OW48sorsX79+sH3WVpawtLSkn+8Y8eOPfhEGRkHJgat0uN+yCGy1GJ07pSlKEigT5humRAhCUGa8Dqg38LR29mB5+P9oy45Ro+jNowuIfpt8ziqjL2MNSPJbdu24cgjj+ytP/LII7Ft27ZVvcd1112H9evX45WvfGWy/tJLL8WznvUsbNy4Effccw+uuOIKfOMb38Att9wy+D7XXHMNrr766t3/EBkZBxG6xCCuOmFFPwRr1wfCAwCYmBBdcUykGuPH3FWPnb7/3UKXENFRkE5FJsSZCTFjjbHbJHnVVVetSDh33HEHgL6LCJBacq2Ej33sY7j00ksxnU6T9Vu2bPH3TzrpJBx//PE4/fTTcdddd+HUU0/tvc8VV1yBt7zlLf7xjh07cMwxx6xqHzIyDlYMto90w5mR0vSEp1K1F+cTfahVXhs9pzrWenHPZ1fNjkKqTYdel51uMvYDdpsk3/jGN65YSXrcccfhm9/8Jh566KHecz/72c9w1FFHrfh3vvKVr+C+++7DDTfcsOK2p556KsqyxP333z9IkpPJBJPJZMX3ycg41NEjTjE1j+7bDTvEGEPUorOw80U7Q39vd/KBcSh19a/KyFhT7DZJbtiwARs2bFhxu7PPPhvbt2/H1772NZxxxhkAgK9+9avYvn07nv/856/4+o9+9KM47bTT8LznPW/Fbb/97W+jrmts2rRp5Q+QkZHRwxh5Lgelq5CrHNwg27hlHPxYs9jFs5/9bJx//vnYsmULbr/9dtx+++3YsmULLrjggqRo58QTT8SNN96YvHbHjh34zGc+g3/xL/5F732/973v4Q/+4A/w9a9/Hd///vfxhS98Aa9+9atxyimn4AUveMFafZyMjIwOGLZYZvSGTJAZBz/WNMB//fXX4+STT8Z5552H8847D7/6q7+KT3ziE8k29913H7Zv356s+/SnPw1mxm/+5m/23rOqKvz1X/81Xvayl+GEE07Am970Jpx33nn44he/CK2fSNVARkZGRkZGCsW8wiC7QxA7duzAwsICtm3bhsMPP3x/705GRkZGxm5ix44d2LhxI7Zv376m5/FcKpaRkZGRkTGCTJIZGRkZGRkjyCSZkZGRkZExgkySGRkZGRkZI8gkmZGRkZGRMYJMkhkZGRkZGSPIJJmRkZGRkTGCTJIZGRkZGRkjyCSZkZGRkZExgkySGRkZGRkZI8gkmZGRkZGRMYJMkhkZGRkZGSPIJJmRkZGRkTGCTJIZGRkZGRkjyCSZkZGRkZExgkySGRkZGRkZI8gkmZGRkZGRMYJMkhkZGRkZGSPIJJmRkZGRkTGCTJIZGRkZGRkjyCSZkZGRkZExgkySGRkZGRkZI8gkmZGRkZGRMYJMkhkZGRkZGSPIJJmRkZGRkTGCTJIZGRkZGRkjyCSZkZGRkZExgkySGRkZGRkZI8gkmZGRkZGRMYJMkhkZGRkZGSPIJJmRkZGRkTGCTJIZGRkZGRkjyCSZkZGRkZExgkySGRkZGRkZI8gkmZGRkZGRMYI1Jck//MM/xPOf/3zMz8/jKU95yqpew8y46qqrcPTRR2Nubg7nnnsuvv3tbyfbLC0t4V/9q3+FDRs2YN26dbjwwgvxox/9aA0+QUZGRkbGkxlrSpKz2QyvfvWr8bu/+7urfs173/tevO9978MHP/hB3HHHHdi4cSN+7dd+DY8++qjf5vLLL8eNN96IT3/60/if//N/4rHHHsMFF1yAtm3X4mNkZGRkZDxJoZiZ1/qPXHvttbj88svxyCOPLLsdM+Poo4/G5Zdfjre//e0ArGo86qij8J73vAevf/3rsX37djz96U/HJz7xCbzmNa8BAPz4xz/GMcccgy984Qt42ctetuL+7NixAwsLC9i2bRsOP/zwJ/z5MjIyMjL2LXbs2IGNGzdi+/bta3oeL9bsnfcADzzwALZt24bzzjvPr5tMJjjnnHOwdetWvP71r8edd96Juq6TbY4++micdNJJ2Lp16yBJLi0tYWlpyT/evn07ACTqNCMjIyPj4IGcv9da5x1QJLlt2zYAwFFHHZWsP+qoo/CDH/zAb1NVFZ761Kf2tpHXd3HNNdfg6quv7q0//vjj98ZuZ2RkZGTsJ/ziF7/AwsLCmr3/bpPkVVddNUg4Me644w6cfvrpe7xTSqnkMTP31nWx3DZXXHEF3vKWt/jHjzzyCI499lg8+OCDa3pw1wI7duzAMcccgx/+8IcHVag47/e+Rd7vfY+Ddd8P1v3evn07nvnMZ+KII45Y07+z2yT5xje+ERdffPGy2xx33HF7tDMbN24EYNXipk2b/Pqf/vSnXl1u3LgRs9kMDz/8cKImf/rTn+L5z3/+4PtOJhNMJpPe+oWFhYPqRxHj8MMPPyj3Pe/3vkXe732Pg3XfD9b9JlrbTsbdJskNGzZgw4YNa7EveNaznoWNGzfilltuwSmnnALAVsh++ctfxnve8x4AwGmnnYayLHHLLbfgoosuAgD85Cc/wT333IP3vve9a7JfGRkZGRlPTqxpTvLBBx/E//t//w8PPvgg2rbF3/7t3wIA/t7f+3s47LDDAAAnnngirrnmGrziFa+AUgqXX3453vWud+H444/H8ccfj3e9612Yn5/HJZdcAsCqv9e+9rV461vfiqc97Wk44ogj8La3vQ0nn3wyXvrSl67lx8nIyMjIeJJhTUny93//93Hdddf5x6IOb731Vpx77rkAgPvuu89XmwLA7/3e72HXrl34l//yX+Lhhx/GmWeeif/+3/871q9f77d5//vfj6IocNFFF2HXrl14yUtegmuvvRZa61Xt12QywZVXXjkYgj3QcbDue97vfYu83/seB+u+5/1eHvukTzIjIyMjI+NgRPZuzcjIyMjIGEEmyYyMjIyMjBFkkszIyMjIyBhBJsmMjIyMjIwRZJLMyMjIyMgYwSFLkgfrLMuHH34YmzdvxsLCAhYWFrB58+YVp6copQZvf/RHf+S3Offcc3vPr+SctNb7/du//du9fTrrrLOSbQ60413XNd7+9rfj5JNPxrp163D00Ufjt37rt/DjH/842W4tjveHPvQhPOtZz8J0OsVpp52Gr3zlK8tu/+UvfxmnnXYaptMpfvmXfxl/+qd/2tvms5/9LJ7znOdgMpngOc95Dm688cYntI9PdL8/97nP4dd+7dfw9Kc/HYcffjjOPvts/Lf/9t+Sba699trB3/vi4uJ+2+8vfelLg/v03e9+N9nuQDveQ/8HlVJ47nOf67fZF8f7f/yP/4F/+k//KY4++mgopfBf/st/WfE1++z3zYcofv/3f5/f97738Vve8hZeWFhY1Wve/e538/r16/mzn/0sf+tb3+LXvOY1vGnTJt6xY4ff5g1veAP/0i/9Et9yyy1811138Yte9CJ+3vOex03T7JX9Pv/88/mkk07irVu38tatW/mkk07iCy64YNnX/OQnP0luH/vYx1gpxd/73vf8Nueccw5v2bIl2e6RRx7ZK/u8p/t92WWX8fnnn5/s0y9+8YtkmwPteD/yyCP80pe+lG+44Qb+7ne/y7fddhufeeaZfNpppyXb7e3j/elPf5rLsuSPfOQjfO+99/Kb3/xmXrduHf/gBz8Y3P7//J//w/Pz8/zmN7+Z7733Xv7IRz7CZVnyf/7P/9lvs3XrVtZa87ve9S7+zne+w+9617u4KAq+/fbb93g/n+h+v/nNb+b3vOc9/LWvfY3/7u/+jq+44gouy5Lvuusuv83HP/5xPvzww3u/+72J3d3vW2+9lQHwfffdl+xT/Ds9EI/3I488kuzvD3/4Qz7iiCP4yiuv9Nvsi+P9hS98gf/tv/23/NnPfpYB8I033rjs9vvy933IkqTg4x//+KpI0hjDGzdu5He/+91+3eLiIi8sLPCf/umfMrP9QZVlyZ/+9Kf9Nv/3//5fJiK++eabn/C+3nvvvQwg+RJvu+02BsDf/e53V/0+v/7rv84vfvGLk3XnnHMOv/nNb37C+ziEPd3vyy67jH/913999PmD5Xh/7WtfYwDJiWhvH+8zzjiD3/CGNyTrTjzxRH7HO94xuP3v/d7v8Yknnpise/3rX89nnXWWf3zRRRfx+eefn2zzspe9jC+++OK9tNe7v99DeM5znsNXX321f7za/9NPBLu730KSDz/88Oh7HgzH+8Ybb2SlFH//+9/36/bF8Y6xGpLcl7/vQzbcurtYaZYlgBVnWT5R3HbbbVhYWMCZZ57p15111llYWFhY9fs/9NBDuOmmm/Da176299z111+PDRs24LnPfS7e9ra37bV5mk9kv7/0pS/hyCOPxN//+38fW7ZswU9/+lP/3MFwvAE7jUAp1Qvr763jPZvNcOeddybHAQDOO++80f287bbbetu/7GUvw9e//nXUdb3sNnvj2O7pfndhjMGjjz7am/Tw2GOP4dhjj8UznvEMXHDBBbj77rv3yj4/0f0+5ZRTsGnTJrzkJS/Brbfemjx3MBzvj370o3jpS1+KY489Nlm/lsd7T7Avf98H1DzJ/Ym1mmW5u/tw5JFH9tYfeeSRq37/6667DuvXr8crX/nKZP2ll17qDeTvueceXHHFFfjGN76BW265Zb/t98tf/nK8+tWvxrHHHosHHngA73znO/HiF78Yd955JyaTyUFxvBcXF/GOd7wDl1xySTJBYW8e75///Odo23bwtzm2n9u2bRvcvmka/PznP8emTZtGt9kbx3ZP97uLf//v/z127tzphxkA1u/52muvxcknn4wdO3bgj//4j/GCF7wA3/jGN/bKjNg92e9Nmzbhz/7sz3DaaadhaWkJn/jEJ/CSl7wEX/rSl/DCF74QwPh3cqAc75/85Cf4q7/6K3zqU59K1q/18d4T7Mvf90FFkgfjLEtg9fs99PdXuw+Cj33sY7j00ksxnU6T9Vu2bPH3TzrpJBx//PE4/fTTcdddd+HUU0/dL/v9mte8Jtmn008/HcceeyxuuummHsnvzvvuq+Nd1zUuvvhiGGPwoQ99KHluT473Stjd3+bQ9t31e/J7313s6d/48z//c1x11VX4i7/4i+Ri5qyzzkoKvF7wghfg1FNPxQc+8AH8h//wH/bLfp9wwgk44YQT/OOzzz4bP/zhD/Hv/t2/8yS5u++5p9jTv3HttdfiKU95Cn7jN34jWb+vjvfuYl/9vg8qkjwYZ1nuzn5/85vfxEMPPdR77mc/+1nvimgIX/nKV3DffffhhhtuWHHbU089FWVZ4v777x89ae+r/RZs2rQJxx57LO6//34AB/bxrusaF110ER544AH8zd/8zYpz+FZzvMewYcMGaK17V8Dxb7OLjRs3Dm5fFAWe9rSnLbvN7nxne3u/BTfccANe+9rX4jOf+cyK032ICP/wH/5D/7t5ongi+x3jrLPOwic/+Un/+EA+3syMj33sY9i8eTOqqlp22719vPcE+/T3vVsZzIMQu1u48573vMevW1paGizcueGGG/w2P/7xj/d6IclXv/pVv+72229fdSHJZZdd1quyHMO3vvUtBsBf/vKX93h/BU90vwU///nPeTKZ8HXXXcfMB+7xns1m/Bu/8Rv83Oc+l3/605+u6m890eN9xhln8O/+7u8m65797GcvW7jz7Gc/O1n3hje8oVfY8PKXvzzZ5vzzz9/rhSS7s9/MzJ/61Kd4Op2uWLwhMMbw6aefzr/zO7/zRHY1wZ7sdxevetWr+EUvepF/fKAeb+ZQePStb31rxb+xFsc7BlZZuLOvft+HLEn+4Ac/4LvvvpuvvvpqPuyww/juu+/mu+++mx999FG/zQknnMCf+9zn/ON3v/vdvLCwwJ/73Of4W9/6Fv/mb/7mYAvIM57xDP7iF7/Id911F7/4xS/e6y0Jv/qrv8q33XYb33bbbXzyySf3WhK6+83MvH37dp6fn+f/+B//Y+89//f//t989dVX8x133MEPPPAA33TTTXziiSfyKaecst/2+9FHH+W3vvWtvHXrVn7ggQf41ltv5bPPPpt/6Zd+6YA+3nVd84UXXsjPeMYz+G//9m+TkvilpSVmXpvjLaX9H/3oR/nee+/lyy+/nNetW+erEN/xjnfw5s2b/fZSIv+v//W/5nvvvZc/+tGP9krk/9f/+l+steZ3v/vd/J3vfIff/e53r1lLwmr3+1Of+hQXRcF/8id/Mto+c9VVV/HNN9/M3/ve9/juu+/m3/md3+GiKJKLnX293+9///v5xhtv5L/7u7/je+65h9/xjncwAP7sZz/rtzkQj7fgn//zf85nnnnm4Hvui+P96KOP+nM0AH7f+97Hd999t68Y35+/70OWJC+77DIG0LvdeuutfhsA/PGPf9w/NsbwlVdeyRs3buTJZMIvfOELe1dWu3bt4je+8Y18xBFH8NzcHF9wwQX84IMP7rX9/sUvfsGXXnopr1+/ntevX8+XXnppr6y8u9/MzB/+8Id5bm5usBfvwQcf5Be+8IV8xBFHcFVV/Cu/8iv8pje9qdeTuC/3+/HHH+fzzjuPn/70p3NZlvzMZz6TL7vsst6xPNCO9wMPPDD4u4p/W2t1vP/kT/6Ejz32WK6qik899dRElV522WV8zjnnJNt/6Utf4lNOOYWrquLjjjtu8ALqM5/5DJ9wwglcliWfeOKJyUl9b2F39vucc84ZPLaXXXaZ3+byyy/nZz7zmVxVFT/96U/n8847j7du3bpf9/s973kP/8qv/ApPp1N+6lOfyv/oH/0jvummm3rveaAdb2YbsZmbm+M/+7M/G3y/fXG8RcmOfe/78/ed50lmZGRkZGSMIPdJZmRkZGRkjCCTZEZGRkZGxggySWZkZGRkZIwgk2RGRkZGRsYIMklmZGRkZGSMIJNkRkZGRkbGCDJJZmRkZGRkjCCTZEZGRkZGxggySWZkZGRkZIwgk2RGRkZGRsYIMklmZGRkZGSM4P8DyHjqf/SfI30AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwlVXn//znnVNW93bOxDzCy74sGGJBBgkBQFje2BNyIGsTg8hUl+UUxLiBGNKhhUcAFRSQgIcMWZBsVUGRQxECMKGoCAXFGZJFhZvp2VZ3z/P54zjl1qm7d27d7unt6Zup5vaqrbt2q6ufeqlvvepbzPIKICI000kgjjTTSSJfIta1AI4000kgjjcxUaSDZSCONNNJIIz2kgWQjjTTSSCON9JAGko000kgjjTTSQxpINtJII4000kgPaSDZSCONNNJIIz2kgWQjjTTSSCON9JAGko000kgjjTTSQxpINtJII4000kgPaSBZI2effTaEEKV122+/PV73utdNy/9fvXo1zj77bNx9991d711xxRUQQuDxxx+fFl1mkjz++OMQQuCKK66YtGNeeeWVeOMb34jddtsNUkpsv/32Pbf9yU9+gqOOOgpz5szB7Nmzcfjhh+NHP/rRpOkyHfLRj34Ur3vd67BgwQIIIfD2t799oP3e+ta3Qggx8G+AiPDVr34VCxcuxNy5c7Hpppvi0EMPxXe+853a7S+++GLsvvvuaLVa2GGHHXDOOecgy7LSNt/97nfx6le/GltvvTVarRa22GIL/MVf/AVuvfXW0nbuOuk1HX300X5b91vvNX3729/2237ta1/Dcccdh+233x5DQ0PYeeed8e53vxvLli3r+1384Q9/wKabbgohBP793/+99N73v/99/M3f/A123313zJo1CwsWLMCxxx6LBx98sPZYP/vZz/CqV70Ks2fPxkYbbYQTTjgB//u//9u13fLly/G+970PO+64I4aGhrDddtvh1FNPxRNPPFHa7rDDDuv7+ZcvX+63/cd//Efsu+++2GSTTdBut7HjjjviXe96F/7v//6v6/+P5zpbvHgxDj74YGyyySbYaKON8PKXvxzf+ta3ard95plncMYZZ2D77bdHq9XC/Pnzccwxx+C5557refw1FmqkS5588klaunRpad12221Hr33ta6fl///xj38kAPSJT3yi672nn36ali5dSp1OZ1p0mUny2GOPEQD6xje+MWnHfNWrXkV77703vfWtb6Wdd96Ztttuu9rtfvKTn1Cr1aJDDjmEbrjhBrr++utp0aJF1Gq16L777ps0faZahoeHadGiRXT66adTkiT0tre9bcx9brnlFpo1axbNnTt34N/Axz72MQJAp59+Ot155510880306tf/WoCQIsXLy5t+6lPfYqEEHTWWWfRXXfdRf/8z/9MSZLQaaedVtru29/+Np1xxhn07W9/m+6++266/vrr6cgjjyQA9K1vfctv1+l0aOnSpV3Thz70IQJAl112md/W/dar0957701DQ0P0/PPP+2233nprestb3kL/+q//SnfffTd9+ctfppe85CW01VZb0fLly3t+FyeeeCJtvfXWBICuu+660nt/+Zd/SYcffjhdcskldPfdd9N1111HixYtoiiK6Hvf+15p21/+8pc0Z84cOuSQQ+g73/kOLV68mPbaay/aeuut6emnny59/l122YU222wz+tKXvkR33XUXXXbZZTR//nxasGABrVixwm/7i1/8ouuzf+9736M4jmnRokWl//+e97yHPvvZz9LNN99Md911F33pS1+irbbaiubPn0/PPPNMadtBr7PLL7+cANCJJ55It956K9122230xje+kQDQF77whdK2Tz31FO24446066670te+9jW65557aPHixfS+972Pli1b1vP7X1NpIDmgrAkk0zSlLMsG3r4fJDdkmQpIaq398mtf+9qekDzqqKNo/vz5tGrVKr9uxYoVtNlmm9ErXvGKSdNnqiX8vLNmzRoTkn/6059owYIF9IUvfGFcv4EFCxbQn//5n5fWjYyM0Lx58+gNb3iDX/fMM89Qu92md73rXaVt/+mf/omEEPSLX/yi7/9J05QWLFhAhxxyyJg6HXbYYTQ8PEwvvPBC3+0ee+wxEkLQW9/61tL6P/zhD13bPvDAAwSAzj333Npj/fu//zvNnj2bvvnNb9ZCsu6YL774Is2fP5+OOOKI0vq/+qu/os0226yk/+OPP05xHNM//MM/+HVLliwhAPS1r32ttP/VV19NAOj666/v8clZrrjiitr96+TWW28lAHT55ZeX1g96nR188MG03XbblbY3xtDuu+9OL3vZy0rbHnvssbRgwQJ67rnnxtRrMmWDcbfeeOONEELge9/7Xtd7l156KYQQ+K//+i8A9e5WJzfccANe9rKXeXfDRRddVHr/7rvvhhAC3/rWt/B3f/d3WLBgAVqtFn7729/ij3/8I97znvdgzz33xOzZs7276Ic//KHf//HHH8fmm28OADjnnHO828O5K+rcrYcddhj23ntvPPDAAzjkkEMwPDyMHXfcEZ/5zGdgjCnp94tf/AJHHnkkhoeHsfnmm+O9730vvvOd70AIUeveDcV9L//1X/+Fv/qrv8K8efOwySab4Mwzz0Se53j00Udx9NFHY86cOdh+++3xz//8z13HeOKJJ/DWt74VW2yxBVqtFvbYYw98/vOf79Lz97//PU466STMmTMH8+bNw8knn1xy/YTy05/+FG94wxu8G2jffffFv/3bv/X9LE6kHOwn8KMf/QiHHXYYhoeH/bo5c+bgla98Je67774xXW695IwzzkCr1cIf//jH2vff/e53Y2hoCH/4wx8mdPyqDPp5nfzd3/0dttpqK7z//e8f135xHGPevHmlde12209Obr/9dnQ6HbzjHe8obfuOd7wDRIQbb7xxzP+z0UYbIYqivtv9z//8D+655x6cdNJJmDt3bt9tv/71r4OI8M53vrO0fosttujaduHChVBK4cknn+x677nnnsN73/te/NM//RO23Xbb2v9Vd8zZs2djzz33LB0zz3PccsstOPHEE0v6b7fddjj88MNxww03+HVxHANA1/e/0UYbAUDp+6+Tyy+/HLNnz8bJJ5/cdzsA/l5V/f4Hvc7iOMbs2bNL2wshMHfu3JKejz/+OG6++Wacdtpp2HjjjQc69qTJtCJ5LUqWZbTFFlvQW97ylq73Xv7yl9N+++3nX3/iE5+g6lez3Xbb0YIFC2jbbbelr3/963TrrbfSW97yFgJA559/vt/urrvuIgC0YMEC+su//Eu6+eab6ZZbbqFnn32WfvWrX9G73/1u7y665ZZb6NRTTyUpJd11111ExK6S22+/nQDQqaee6l0gv/3tb4mI6Bvf+AYBoMcee8z/z0MPPZQ23XRT2mWXXeiyyy6jJUuW0Hve8x4CQN/85jf9dr///e9p0003pW233ZauuOIKuvXWW+mUU06h7bffngB4HXqJ+1522203Ovfcc2nJkiX0D//wDwSA3ve+99Huu+9OF110ES1ZsoTe8Y53dLnWnn76aVqwYAFtvvnmdNlll9Htt99O73vf+wgAvfvd7/bbrV69mvbYYw+aN28eXXzxxXTHHXfQ+9//ftp22227LMnvf//7lCQJHXLIIXTttdfS7bffTm9/+9snZHH2sySTJKG//uu/7lr/pje9iQDQHXfcMa7/RUS0cuVKmjVrFp1wwgk9t3nwwQcJAJ1zzjml9VmWDTQZY3oeeyxLcsmSJRTHMT300ENEND5vyr/8y7+QUoq+9rWv0XPPPUe///3v6YMf/CC122269957/XYf/vCHCQCtXLmy6xibbbYZvelNb+par7WmLMvoqaeeoo9//OMUxzHdcsstffX5yEc+QgBK/7tOtNa0zTbb0M477zzQ53S/9wsvvLDrvbe85S20aNEi0lr77aqWZJ386U9/onnz5tHxxx/v1/3qV78iAPSlL32pa/u///u/JyEEjYyMEBFfGwsXLqS99tqLfvKTn9CLL75IDz74IO2zzz603377UZqmPf/3r3/9awJA73znO3tuk2UZrV69mn72s5/RwQcfTLvuuiu9+OKLPbfvd50tXryYpJT0qU99ip5++mn64x//SOeffz4ppejf/u3f/HZXXnklAaCvfOUr9MY3vpFmzZpFrVaLDj300CkPd2wwkCQiOvPMM2loaIj+9Kc/+XWPPPIIAaCLL77Yr+sFSSGEv2E4efWrX01z5871bjj3Y3jlK185pj55nlOWZXTEEUeUfhD93K29IAmAfvzjH5e23XPPPemoo47yr/+//+//q3VhHXXUUeOC5Oc///nS+n322afLjZNlGW2++eYlALgbYlXPd7/73SSEoEcffZSIiC699FICQDfddFNpu9NOO60Lfrvvvjvtu+++Xe7s173udbTVVluV3DhjST9I7rPPPrTrrruWjpdlGe24444EgK6++uqB/4+T6667rtZVVZUFCxbQXnvtVVoHYKCp34NCv5vXiy++SNtvvz2dddZZft14Qw6XXXYZtVotr8smm2xCS5YsKW1z2mmnUavVqt1/1113pSOPPLJrvbteAdDcuXPHdB/meU4LFiyg3XfffUydb7vtNgJA55133pjbrlixgvbYYw/aZpttuiBxyy23UBzH9POf/5yIaFyQfMtb3kJRFNFPf/pTv+5HP/oRAaBrrrmma/tPf/rTBIB+//vfl3R7/etfX7oWDjvsMHr22Wf7/m8Xt63mZDhZtmxZ6ZgHHnggPfXUU32POdbD2I033kjz5s3zxxwaGqKrrrqqtM15553nz/exxx5Lt99+Oy1evJhe9rKXUbvdpocffrivDmsiG4y7FQD+5m/+BiMjI7j22mv9um984xtotVp485vfPOb+e+21F/7sz/6stO7Nb34zVqxYgZ/97Gel9SeeeGLtMS677DLst99+aLfbiKIIcRzje9/7Hn75y19O4BMVsuWWW+LlL395ad3LXvayUubZPffcg7333ht77rlnabs3velN4/pf1QzHPfbYA0IIHHPMMX5dFEXYeeedS///+9//Pvbcc88uPd/+9reDiPD9738fAHDXXXdhzpw5eMMb3lDarnqOfvvb3+JXv/oV3vKWtwBgl5SbXvOa12DZsmV49NFHx/XZesn/+3//D7/+9a/xvve9D0899RSefPJJnH766f7zjdeNCQA//vGPAQD77LOPX3f//ffj61//emm7ffbZB4888ghWrVrl1z3wwAMDTa9//esn8GmBD3/4w4jjGB//+McntP83vvENnHHGGXjf+96H7373u7j11ltx5JFH4thjj8Udd9xR2rZXaKPXexdffDF+8pOf4KabbsJRRx2Fk08+Gddcc03PY9x+++146qmncOqpp46p9+WXX44oisbM+u10OjjhhBPwf//3f7juuuswe/Zs/94LL7yAv/3bv8WHPvQh7L333mP+z1A+9rGP4V//9V/xL//yL1i4cGHX+4N8V1mW4eSTT8ZDDz2Er371q/jBD36Ab37zm3jqqafw6le/Gi+88ELt/nme45vf/Cb22msvLFq0qHabzTbbDA888ADuvfdefPWrX8Vzzz2Hww8/fMLhhttvvx1vfetbccIJJ+C2227DkiVL8M53vhNvf/vb8Y1vfMNv58IxL3nJS7B48WIcddRROOGEE3D77bdDSlkb2pk0mTL8zlA54IADfNZWnue01VZb0UknnVTappcl+apXvarreO7J88YbbySi4okxdBU4+fznP+8z/m655Ra6//776YEHHqCjjz66ZMFMxJKsWhpERG9729tKx91pp536foZBLck//vGPXf9n1qxZXdtX9dppp526khGIOMMQAH3qU58iIqIjjjii1t31y1/+smQd3XvvvWNaUj/4wQ/6fqZQ+lmSRESf+cxnaPbs2f7YBx10kH/y/uEPfzjw/3Fy6qmnEgD6zW9+49d96EMfoi233LK03Zvf/GYCQL/73e/8uql0t/74xz8mIQTdcMMN9Pzzz/tpm222oaOOOoqef/75vtnVzz33HA0NDdF73/vervcOPfRQ2n777f1r510IE6Kc9HK3VuXoo4+mjTfeuKfX4Pjjj6c4jmuTZEL54x//SEmS0LHHHtt3u06nQ0cffTS122367ne/2/X+e9/7Xtp+++1p+fLl/rv7j//4Dx/+eP7552vPy9lnn00A6J/+6Z+63huPu9V5Yh544IHSdv/zP/9DAOjss8+u/Vw33XQTAaB/+Zd/6fv5Q3nyyScpiiJ6//vf33ObXteZMYa22mores1rXtP13l//9V/TrFmzvBv+sssuIwC1/+eggw6iPfbYY2CdxysblCUJcELA/fffj1/+8pe4/fbbsWzZsq6kgV5Slzji1m266aal9XVPfFdddRUOO+wwXHrppXjta1+LAw88EPvvvz9efPHFCXyS8cumm25amwDSKyFmKv5/3RPn73//ewD8lOq2G0RPt/1ZZ53V05IKrbQ1lQ996EN45pln8POf/xyPP/447rvvPjz//POYNWtW7VP/WOISK55//nm/bvny5XjmmWdKYwTdGLAwESOO44Gmb37zm+PW65FHHgER4fjjj8fGG2/spyeffBJ33HEHNt54Y1x66aU993/00UcxMjKCAw44oOu9/fffH48//jhWrlwJAHjpS18KAPj5z39e2s59D4NYYi9/+cvx/PPP1yY/Pf3007jlllvwhje8oTZJJpRvfetbSNO0K2EnlNHRURx33HG46667cOONN+KII47o2ua///u/8fjjj2PLLbf0352z6N/2trdh44037rLmzjnnHJx99tk4++yz8ZGPfKTrmDvttBOGhoa6vieAv7udd97ZJ7o89NBDUEphv/32K2234447YtNNN8V///d/1362yy+/HEmS4JRTTun5+avykpe8BFtvvTV+/etfD7yPkz/84Q9YtmxZl2cJAA444ACsWrXKJyi+7GUv63kcIpqQJ2dQ6Z8Sth7Km970Jpx55pm44oor8L//+79YsGABjjzyyIH2/cUvfoGHH3645HK9+uqrMWfOnK4Lsk6EEGi1WqV1//Vf/4WlS5dim2228evcNiMjIwPpNagceuih+NznPodHHnmk5HINB0xPpRxxxBE477zz8LOf/az0fV155ZUQQuDwww8HABx++OH4t3/7N9x8880ll+vVV19dOt5uu+2GXXbZBQ8//DA+/elPT8tnaLVa/sb9xBNP4Nprr8Vpp52GoaGhcR/LXUf33XefB8r999+PKIrw4x//GH/+53+OLMvw4x//GDvvvHPJpffAAw8M9D922GGHcet19NFH46677upa/8Y3vhE77LADzjvvPOy888499996660B8Gd529ve5tcTEe6//35svPHGmDVrlv9f7XYbV1xxBQ488EC/rcviPu644/rqSkS45557sNFGG3U9qAJ8bWVZNrCrdeutty6FDUIZHR3F8ccfj+9///u4/vrrcdRRR9Vud8EFF+BPf/pTad1DDz2ED37wgzj77LNx6KGHls7lueeei7PPPhsf/ehH8YlPfKL2mFEU4fWvfz2uv/56/PM//zPmzJkDgK/Bu+66Cx/84Af9tltvvTW01njggQdK3+mvf/1rPPvss3jJS17Sdfzly5fj1ltvxQknnFD7PfaS3/72t/jd737XFRoZRDbeeGO0223cf//9Xe8tXboUUkpstdVWAIADDzwQL3nJS3DnnXdCaw2lFAB+wH744YcHCpdNWKbMRp3B8qY3vYm22GILSpKEPvKRj3S9P0h262233eazWz/72c/67foF6D/+8Y+TEII+/vGP0/e+9z265JJLaMstt6Sddtqpy8233Xbb0W677UZ33HEHPfDAA969uibu1qeeeqqU3XrbbbfRKaecQttttx0BoHvuuafv97am7laX3brlllvSV77yFZ+1KoSg97znPX67VatW0a677krz5s2jL37xi3THHXfQGWec0TO7tdVq0ZFHHklXX3013XPPPXTDDTfQpz/9afrLv/zLvp+HiAdTX3fddXTdddfRwoULafPNN/evwwSnn//853T22WfTLbfcQkuWLKHPfe5ztNlmm9H+++/flbThztFY2bUvvPACbbHFFrTpppvS1VdfTR//+Mdps802o3e/+910wAEH0He+8x0/sPpzn/vcmJ9lEHED1q+77jpqt9t02GGH+dfhgPQ66ZW4s9NOO9FOO+1UWnfCCSeQlJLOOOMMuuOOO+jmm2+mE088sXZMoSsm8JGPfITuvvtuOv/886nVanUVE3jDG95AH/vYx2jx4sV0991309VXX+2LCdS5IYk4sWubbbYZM4Hr/vvvJwC19wMnr3vd6wgA/eM//mPXAPyxxnP2ui987nOfIwB09NFH1xY1COWXv/wlzZ49m175ylfSrbfeStdffz3tvffeXcUEnnjiCdpoo41owYIFdOmll9L3v/99+trXvkY77rgjzZo1i371q1916feZz3yGANCdd95Zq//DDz9Mf/EXf0GXXHIJ3X777XTnnXfS5z//eXrJS15Cm2++OT3++OOl7Qe9zs4880wCQKeccgrdcsstdNttt9Hf/u3f+uz+UK677joSQtBrX/tauuWWW+jaa6+lvffem+bNm+ez/6dCNkhI3nnnnT6u9Otf/7rr/V6QfO1rX0v//u//TnvttRclSULbb799V1WIfpAcHR2lv//7v6cFCxZQu92m/fbbj2688cYumBERffe736V9993XZwc6n/6aQJKI6L//+7/pVa96FbXbbdpkk03o1FNP9QOdx8oQW1NIEhH93//9H735zW+mTTfdlOI4pt12243OP//8rpvY7373OzrxxBNp9uzZNGfOHDrxxBPpvvvuq4XPww8/TCeddBJtscUWFMcxbbnllvQXf/EXpcoqY32muimMCT/66KP0yle+kjbZZBNKkoR23nln+uhHP1o7dOHiiy8mAHT77beP+f8ffPBBOuigg6jVatFOO+1Ed9xxBz3zzDN0zDHH0PDwMG255Zb0sY99rG9scTziMqHrprFi0r0gud1223VdZyMjI3T++efTy172MpozZw5tsskmtGjRIrrqqqtqP8uFF15Iu+66KyVJQttuuy194hOf6Bqq8NnPfpYOOOAA2njjjUkpRZtuuikdddRRPYd/uIzQj3/84/2/FOIsWyEE/c///E/PbXp9bwDo0EMP7Xv8XveFfuejzob56U9/SkcccQQNDw/T3Llz6bjjjqsFxG9+8xs/vKvVatG2225LJ598ck+Y77rrrrT99tv3vM6WL19Ob33rW2mnnXai4eFhSpKEdtxxRzr99NPpiSee6Np+0OtMa01f/epXaf/996eNNtqI5s6dS/vuuy998YtfrB2qcuONN9IBBxxA7XbbF6YY6wFlTUUQEU2GRdrIuivvete7cM011+DZZ59FkiRrW511Xk466SQ89thjA7tEG2mkkZkrG1xMckOXT37yk9h6662x4447YuXKlbjlllvwta99DR/96EcbQE6CEBHuvvtuXHXVVWtblUYaaWQSpIHkBiZxHOP888/H7373O+R5jl122QVf+MIXcMYZZ6xt1dYLEULg6aefXttqNNJII5Mkjbu1kUYaaaSRRnrIlI6T/MEPfoDXv/712HrrrSGEGLNYMcBVYRYuXOgLiF922WVd2yxevBh77rknWq0W9txzz1Jx30YaaaSRRhqZLJlSSK5atQp/9md/hi9+8YsDbf/YY4/hNa95DQ455BD853/+Jz7ykY/g/e9/PxYvXuy3Wbp0KU4++WSccsopePjhh3HKKafgpJNO8iW+GmmkkUYaaWSyZNrcrUII3HDDDX0HB3/oQx/CzTffXKpjevrpp+Phhx/G0qVLAQAnn3wyVqxYgdtuu81vc/TRR2PjjTfuW7+xkUYaaaSRRsYrMypxZ+nSpV3Vb4466ihcfvnlyLIMcRxj6dKlpeoSbpsLLrig53FHR0cxOjrqXxtj8Nxzz2HTTTftWzC4kUYaaaSRmSlEhBdffBFbb731hlOWbvny5Zg/f35p3fz585HnOZ555hlstdVWPbfpV3/0vPPOwznnnDMlOjfSSCONNLL25Mknn6wttTdZMqMgCXQXBnfe4HB93Tb9LMKzzjoLZ555pn/9wgsvYNttt8Vvf/MbXwNxECEAE7U712TfqTpuo9PU7ztVxx1rXxdDMcTLhvh3YgCQXS7WA8a+DvcBAGOXXFDGBMGZsSI14W9SCrfOvrbaC/sez4Xfxq0TQvBru1xsCwgygJ0EGau4e00AivdB3GrJ7+O2Bey28K+75oOKkN3Ldk5CFOukCNZLXnYTJG8rI0AKkIx4eQDZ0K7xF198ETvvssu47uETkRkFyS233LLLInz66acRRZEvuttrm6p1GUqr1eoqLA4Ac+bMwdy5cwfWbzIupMm+GBudpu9465JOHoB2rok8DHUFjNowDHldAT8HVAdGAlUg2V+38LmV4SaK5Sr4BIMzBKSSorxst1eiDElhcsAYwOQMPOJlD0/tlguI8mthl/0HtMAUIK15ndGDnQipABgIW3ib3GcXCIApuqDo4SklA9G9JyOQVICKBgblhnaNO5nqkNmMguRBBx2E//iP/yitu/POO7H//vsjjmO/zZIlS0pxyTvvvBOveMUrply/yTgVk306G52m73jrok4OemRBaQjQpgClW0cWngxW8hYmQ5QsXC08rYGlx6CksjcvFy5SQkAKASWFtRIBKQgCAkoCEsTvCd6WDEFZSxKGACmgqv+ETBmQJrfLDEdhtIemKMGTQFqD8rT4QEbDGF16DaAAZq9zoAKtpPIfWEjlX7tlqVQBRgvDYp4Dil8TGQiKeC4NSJli21569NVyMFkXr/GplimF5MqVK/Hb3/7Wv37sscfw0EMPYZNNNsG2226Ls846C0899RSuvPJKAJzJ+sUvfhFnnnkmTjvtNCxduhSXX355KWv1jDPOwCtf+Up89rOfxbHHHoubbroJ3/3ud3HvvfdO5UdppJF1VgzYagwBqYmgTTEnuDmQacPwNA6iFqCG/GsA0AEjjTUxpSxuacq5VoVgQEpnBbrXQCwllORjSQEo4v1IWshKgoIACQdtYsgAhaXorEQHSJMXgHSvTQ7kOWA0KM9Adg6jGYIWjmQqy8DY1qRkSIoAkJCqeC0VgzSKPSxFFNt5AEkZsT5SQSjjQeksXQLGBGUjky9TCsmf/vSnvkcgAB8XfNvb3oYrrrgCy5YtwxNPPOHf32GHHXDrrbfigx/8IL70pS9h6623xkUXXYQTTzzRb/OKV7wC3/72t/HRj34UH/vYx7DTTjvh2muvLfVNa6SRRnwbCWsxFoDMDXXBMjeEzBgYA2TGINMFEItlC00LxND16qxKFbi+HC8Zjuw6VUIgVmxRxkpCCYNYSsSKXxtBMELAgGAEADAoYQSE5NyDWmvSWYsmh8izMhyzlC3GPGNAZqmHJSwwYTSgC4DyBzSFNdkDlMICss6CFFICcQIhFcjB0sExTnjZglPECSBzhqADozQge4cW7nMqA1JJA8pplA2yLN2KFSswb948/GH58nHFJBtpZF0RAoMxs0DMjV0mQq7Jv2eILcdMk4djMQ+3txalCWBZuXVoA6jg3u0tRuHii/w6UjyPJQPTQ1JKtCKJSLL7NZK8jRICkQRi5ZYFYgkLxBRCZ4BOIXTKFqTOeNnkQDrK4Es7DMc8A+UpAzJLCyiGc61Bml2uZAyM7p/AI5VkIAIQSnZZjZASIkoKaEYxRJTwNiEsowSIIhuPjACVFHFJlfg4JUVJY1GC7+Pzt9wSL7zwwpTex2dUTHJ9lKnKGlsTaXQaTNYXnTh5x1qUBiVAdnKNTBNGc1OCY6ZNaW6sxZkZA21NSG0BXCfKmpFKcgzSuVWlh6PkuZGIJSE2Aq2I4duOJBKb/ypBgAQECe+KLX+4IHvVGAijCwsyHWU4WkBS2mEojna6LEvSBjrLQdrA2LkDpbExSqrAUtgnAimlhaOd7GupJGQcQSgFshAUeQZEMSjOGI55xu/FCZAYCBNDxIV7VSDx59yf+zxlC3MSQLm+XONTKRs0JKfDhJ7IDW2qL5BGp8FkXdepGN5hQQm2CJ3rtJNrjOYGnZxBOJobD8UQmpoIac5wHLXzKiC1KQCirFXlAKmkQCuSUFIgiaR1uRprORJiKdAi3seUBoVLSCEgXBKRzcj130IwVEOQ8TFIF3/0gBx185HCqkw7MGkGneUwWQ6T5iVQkjEgrWHsMlCGpAhMZiEZiEIpD0gVRwzKJIKMI0g1ysB0lmTSLmCZtIu4p5278xyCMsySFTqflBjlun6NT4ds0JAc9GRM55NNo9Ng0ug0uDhQajvaQZvAxWotx9HcWGBqa0ESOrlGatc7SKa57oJk1ZqsWpEMR+Uh2YokkkgiUeQtR2N1HI4BaQSUJkhBUBIQBCg42As7RCUAZTisw3DCjgmtRgtIE0Az76QwWQ49knpQktaFNZnmJVdr1Yp04ixGUbEmlbUgZRxBxZGHpUpyqHYLZDRblpVM2jBJyINS2FGlhsEohCxZl9Ppep2p1/hUygYNyUGEgvlUnXT3P8ZzAbp5o9PY22+oOgEuq5V8AQFNxEk61sXa0aYEyFHNlmWaG6xOGZJp7ubGxjfZsgTqXa5VSLIVqRmMkUQaKSSRxHCifGyzpWx2rP1SlACkASKjONuVxvD86NwP7yCbqMOWY1oAsrMapsOA1B2Go+6k0Gnmrckul2sJlIUGwvp9uwApJVQSQcvCijRJDJkxLMkkMNogagdDTYByBq2LZQJsNVooQttlkzMghYQgAzL5lIJypl7j05VM00ByDCnFAsYp4X79jjHINo1OjU7j0al6AzEgOxSEwZkZ507tBuRIqj0gR9K8ZE2mFXdr2eVKtVbkiLUgCyvSIIkktCEMJ0WuqpICMucM2EyyJRlLtia1AYwUrH/4WW2BAEHkXa7GZa1a16qzIB0g81XOksx4nubesjRZDqMNdMoxSaMpcLd2Q5JdrcJalAIqUdAdC0gLRpPlkHEEardgjEHUTkDaIGqbchsmn+hTyZS1Yyp5bGfOr+1nJQBC8XhKu0P/iyiQdf0any5LtYEk6k9GuG6iJ0NUlsd6IgvXNzo1Oq2pTq70HKFws3I2K/nJxR6rgBxJc4xYUBYWZQBJOxSE7FTSUwo/j1URi2QrUhZWZAWy0hYbyOxwlJiEtYRFUE4v+D/VUnNkfIEAn8maWWCOlgGZd0ahO2nhdu2k0KnmKdMgTQxITRyX1OXPCFSsSSWgEgkxIqESBZXlDEgLy6idgIxBZLjyVwRAKwmhUjuW0mbIOkgqO7fFEITJbbUewdaj/8yCLVIRPDoMCMr14RqfDmkgifoTMBknpXohjXXMsS6yRqdGp/Ho5MTF+7hgAAOOLUmOR3Zyjk9WAcnLzqLUSLWBzg3IWEAS+eWqSCkgpIBREkIKpFoiyaWHZWhFeuvTDhFxw0MyScgkIVE2rlp3aw7qsoKMr6BDbqiHtSKdi9UB0sHSuV3zkRw609CpgU4ZkgUsx3C3KgGpBHSqoBIFk2m7bBCbIktW9YhrRoAdS+ngKH0RAl+UIJbeYqYwBkuuOo9B6SwMAMr16RqfSmkgOYUy3hM8HRdEo9PU/I+ZqBMQ1F21Ga3sarXjJLXxCTwjGWe6VgHppkwbmNxAB6Akb03W6CoZlFpJnucSOpJItcSQKZcDKJJ7DGIlkBmBzEgebkISuSFEUhT1ZqnmmwiGgfhiARmD0tiYY9WC5HmGbCSHybSf65TjkCYzJSvSBJCUzt2qhB3qISFTA5NpyFhBBW7aOjgKKWFsLJPiiMdtumIDxpXa08XkQOiGuogAiq40nxpfTHJ9ucanWjZoSI4V+F2TwPNk+OQn87hrsm+j0+TstzZ0ApwVhqJWqx3/aAjetemtReteDQGZZhp5pqFzhobOrQVJ/d2tSkkISVCRgAwsz5GKfgxJLiKQKMkWpDbIpPBjNLmebPENGEIRzzNFaTpXPcdZksh5mIceKWKOVUDmncKSzEdykCHrerWQtJ/PwbKIRwprSRrIlOORRksGpCaQtsXOdfmhQCgJE2fW3Sqh4xxCpRBRzLCME18BCEZ3n/ewSwkZQNiyeM6atDHLftbk+naNT6Vs0JAc64SsyQmbDJ/8ZB53TfZtdJqc/daGTlUJS8xlxsDYMZCjNos1dK+GgMxTDa0NTE7QFhzaV6WhrtqtQgro3EBFEloLKGVjezHf0B0olRQ+g3Y0l0i1syalB7rTF6h5sA3ikqS1haQBXExSa445Zjl0mrF7tQaQeYcnB8fQ1Wqs5R2Kr0srGY5CChhNUFpaQFYeHJSEVLm3HHWWc5GBOPKFCxzghbMe/UfUkKGbtbswX1+pi+utz9f4ZMsGDcmJyGQ/7bjjzaQnsEan8R1vJuoEBK2uQKUhFK6SjrZDQcKknDCLNdOmBMg8K1yuZMi6Xe3/CjJqpBA2IVPAaAOpJCgi8M29uPmnQmAk1T6xx/3fdqRsUQMHSvghLIAoFxQACsvKFSbPUy4GYLQf2lEk59jlVNcCkl2u/Ll9bVvq7njiatQqQ0gMQUruWhJajSJwyQqpIZWAjLlggUwiBrixhQucixVgC9J9nvFKtY/l+I9Qkpl8ja/pZxtUGkiOUyb7aWdNs8HWdN9+x2t0Gux4M1GnqrgOIMZaZ87V6sZNamNKsEy1YThaKDpAOrcr9y0u3K1h8o5L2hFSQClReo+MG9ogkGY6sCSdNamshSvZLWx1JMAPYakVKnfwcHOdFlakG//oMljdvArI0VRzlaGwCHzwf5l9ZJOMuMxfQgBSWy2nFK8UbFkaHk7ih4NoF+8sEnv4RPWpE+sbM9evo8p71a9qIrCaydf4dFmeDSQbaWQ9F2cEmeBm7wbxF5V0jO8OkubGxx+NdbGGgNSaX3PSTtBSyooBZ2uqSIGMgFISObRv5ixyASE0hBBIo8KCTcJhJrFNNDLdhdT7flbrciWjuaiAca5M4yvr+HijA2UFkKlxgLQtwlC2JDNiS1ITQQkgkUBq2SY1xzMdHHVqIGMD0rJUNL1XBR/I+jgiBd1VuFlzBZiy0szZnYvgq5Ni5sb9ZrI0kGykkQ1AyN42XYwPsMXOK4UBnBXprENtY5DaxeYsIHUewKjGLSikAhkFGcV2jQRgIIS1MCNhk4AYiNUiBa7Js3d3Gs5qrau84woKhK2tYAorzZWZ84UCPBxdBitbw3lWADI15OFYdbeGgAQEUkNIbE/MPNOIlfDHBODHXAKA0WbsiKJr4myHf7iCAh6MARBdA2eqALIuhmuoAeVEpIFkI42sx1JnhbmhIE6qoDSmSM4JJ5MXrlUyGiZPeV4DSSkVZJTA5ADAoBRS2mxRCZ0TpOLjlQHplgsdnTXZ09Xa9QGLxJeiWLmbyE9cWaewJgvrkQEZWpOhhIB0yGGQwv7P4vhjtdkC4MvZcUGBouqOUEEFngoU/SQjkIq6ABmC0p8TUayTogHloNJAcgCZiU9ejU6DSaNTIdXkE9cfsgCTtXwcGCmIYTrrLjcweVYCZNWaFFJx6bg8hYwSkGG3q9YEIfkYSskgc9T1vCzmYe/Kks722xuElwUcC92Mq6RjTFFVxz0YWNAVccjeSTsMRCo1mebvuP9NNaz1Ku0QEMCBsige4JozQ0ruMemgqGyvSSG5+IAMYGn/fzg2tqqbsP09nVU5VdfhTPzdTVQaSFakLptrvCd7OrIoG50anSYihau1GzPVMnEmgGU4HtIBMQQk1SScOFACgJBtiBr4uoIEVWvW6xm4XccUl7Sjy9A2NdZk1R1aitUCNdYjzzlRpwzHImbZfZak6zlp67uWu4UoSFn0nGRAFtV2fHNmIUG24bK3GF0zZslNmnVgPZL9DNWvTAhAEsFgckE5067xyZYGkoEMcpLrTmZ13VSl9Dc6NTpNl5QzUouqOr7Ydw0gSWse+xcC03az4AQfYce/h8Dl5br2W1WOk/1mBnW7Vl2ddSAPxzNWQVxnRWrqbvwsEQwJEZzV6irxuGWX6RpakMJ1ClEFFBEn3EIrToAo5u/TgjCEImQ3ILUp4Ohc1U57m5ALEgLCDglStmD8moByXb7GB5UGkoGEJ6rXk82g6yZLGp0Gk0anqZdqZZ3Se1r7uQOlkArGDo5ny65IWXHgrav7WrVyx5Pd2kscMF0CTV3Bcv//+/y/EJChNamEbe9lh75IVcwLF2thTYY9JmUcWauRJ/jlBKRib0WSh6PiOKQFpIO5L9uHouG2E6cqgbiJtWBTUtg3JgrK9e0ar5MGkj1kJp7ERqfBpNGpt1RjaL3EVc4B4MvMDSoFKDXH2az4BJwKBKliRTrRwbbOCAxv/L4Z8QAiK3VNRdUcDKSavVosly1GnkQwt3Vcle0Ekiiu45rY1xaIDMcYKo6gkggiTiCSdpcViYitRVIxoCJAWWhGCaCScvzUxlTrrEj3QsBakqKwykWAtj5fyUAyU67xyZYGkhifP7zO/z6Zx290anSaCp2qoirgC/s/hlK0veqGJQ/zcAPolbcmhR3CEAISKIO3l9TFSgeW6v+rgtH2fiytC14zAMkuA3Vnxm2eSNutRLhlIFYCMpbcMksKD0cHSplwy6yonUAmEVQ7YSsyabPlmLQhWm2IpA3ZGgIphiGiBFQBZE7wYGRI9rYi/WcVFUtS8jIkV0maqmtwbV3jkyUNJDG+kzGW/73fPuM58Y1O49tnPNtuSDrJ0o2/cK2591xxcaAAp6uW4+uwiqKCjrDDFITtdSiCmKODIx/DJqxUwSVEFyxD+FYh3UtClnKczf0DCShVAnSdFencoe51aBl239bL35/bzgHSTc56VIlCNBR5OMZDVTi2/GsHRdEa4rmdSMUMxiiuBWRmCuuxZEXCuV3L35e0H0MIQEJASYLR9vs2xMXiLewHOQMz6RqfamkgOUGZyMmb6pPd6DSYbIg6OYw4QDEgyxakq6E6kgkGo+BqOUYaSCk84MhCUkUJtM1e7fp/sgCVWw5hWLVK66zYyRA/xCLIKmVAyhIspRRQVFTP0cREcWXnvJ5C2ESdMiDjdoSoHVkgRlCxsssxonYM1U6g2gkiC0jVTiDbbcj2LAZle9gDE0kbFAWgVDEobpcAmduxpM6KdEXg+2a2gh94SHA9XGXjktUBlIOCcrwyE393g0gDyQnKTDh5VWl0Gkw2NJ1cGFJW42eiDEe/rLj3o9ESWhvISEIagowIkpxVlsDkKVSUlMZLAoWb1RUUEHZoA1uiZRdunQs2bMJcJyUAhAW9g0bFbjiFG2pRAmSQfcrtrWy2ra3Zmtj/7xJ4XOQzjEt6OCq2IKN2BJVIRBaWyezYQ1NZqzFqJ4iH21DtBPGsIe9eZVAOQbZnAdbN6sBIUcsDMjVAbshbkbkp4pFFViu7VOssSQEBKQjCXgMkCCQExyenAZQz8Xc3iDSQbKSRDUCkKODDVqGFpRRoRRIjdp5GkjtyaAmdSygledhGVIyXLDo5Jr7yjgrik0BoPXJpOhVJ2x1EePdtqRB6j5ho3zhmpeNFZcdiPKIM58LGJjl2qFO2JlWsQJo7ehRjJrsP6xJ1Eqs/w1F5CzJqR4iGHCgTRMNtxLN4imYNIbLLoj0Lsj0M0Z4FMTQLoj3MgIwKMPYCZAHKsiXpSvbVxXWV5CQdIWxpOute5mqB1hc7TRbluiYNJBtpZD0Vdq+xJSQEQaCwJmMlESuDWEprSSokkUFiIZnkhTXJcJQ8bCMi8PB5BpMx0ifw1ENSBjAEVCR5UtK7dGUFklVYspt3jA8rbKxUFXDm5XDwvrQZpa64OVuSxdCWiC3MVFs3a2FRhvFI10NSBZmrVQuyDpBuWQ5ZQA7NgrSAFO3hWkCSSpAZcFcWg1pIGio6vLjWYl3XgoT3HkRSwAiCEQIGxIxEAUpps3/Umqa7rifSQHINZSYElqvS6DSYbGg6CcEZmLGUkMJACnYXejBGssuaJKNgAldrBOsuTTWkULbGq4AxEkDsB+yX4cgtszwcK8BMFIM6snCMpHMHDzBkxblZgcDVWrhdPRjtZJIIKsuhUwWV2D6OldugsL0hI1t/NYbwyT/CWp1CCe9edZCM+1iQ8aw24uG2hSJbj3LWXF5uD4Pi4VpAppqLrWeauiBpCNwXlPj9sMtLtQm2Mu4BScAohiVJvt7sswBKbJUCmQFiOfnX40z83fWTBpIDSL+T2u9kT+XF0Og0mGzoOklRJG046Egp2JKUBrGNQTIcC2tyKFHQhjCC8oB/46CV8PhGkaPUW7JwxTJspBCQEf9PqSSkBWUBy6oFycB08VKgHpREVPoy/JhJV9LNlnfz1W2UgkwiiE4xjrGowJMBiFgfpUFacpyy4m8tquYIa0UqC8oY0ZBC1I6RzEpszLEbkGr2HHazzppj4TgLYnh22YKMh0BxG1pEyC0gU23drJqQWbdrbgijuQWkrz1bBiUAQFvr18WhpYCmApYxJCDJEpKTkgSIrxsCJE3M7ToTf3cTlQ0ekoOclPD9cPu6fcN1/d4b77pGp0anif5/BqXw7tZYBi5XQ2hFBE2qtjQcUIGkNAyTTDMkrdXl6ryWPmcQd3RQVEpCRYVVGavCii3D0rpZg2SZ7i9S2sHxXM80dLWSUhBREgze50klEcgktuGxsiCMwaBkEJIreh6UtZMO6j7hR0LaDFYZZrI6OLYTRLOGkMwZ9i7WEJBy1twCkBaMISAdHPMQkjZZp5NrZHZdpk0Fkt1fU/hwpAxgpERcBCR57kHprjQqHSAE5Uy8xqdSNnhIjufEO3Hb1m0vML5j9TpGo1Oj05rqJISrqMI3SimAyGZkxlIiloRYCjux9chDC/huGSaAjFjg5ZmGEAZCAiYnyEj6BswASp0nXLxRBKBUUVGVRlbgGC47y8fd3PmzCfTzvvIA+dDdKn1ckl2tMUybAaniKLAUcwAxhOQ6tH2tSJv8E1qRpQzWWW1E7Rbi4bYHphyaBTk8p+xiDQGZWFdrMowckl2sFoIhKFNtkGlCRxsPxxCS7nRVe19KYeOohpe14nirnxOhHSlfXEASIEhAGmtVAlBKdF2nM+Eanw7Z4CHppO6Lrztxg5ygQdwM430aa3RqdJqoTgKAEMUUS2mtx8L68DfYpMYUsZK6rFRloLSBVtyMmRQn9fhyaPZgzt3qY5CKY5BSSUSJQjtWpVioy7RVQUwSKNyFvYSE9NYkpOQyb672aRRDJRFMFkFm1pqMI1A7YR1tcopQ2ma7Fj0gSZN/3xUrl0rYIgE2aSeuAeQsB8ihIot11ly2JofnlGOQybC3IENAeijaOGQn1xjNDTp5GY65DtysNUXhXVazNMV3aggwUnCJQCkBSCjhkrGotK8gTuRx8cnqddV1LmrWT+fvbiqkgWQfmUwzv7rvRI/T6DSYNDqxOJelCiaSNoHHSLRddqS3PopbQliJR0mBNDcYkQJpZKBz42EZttSq1mWVwZAP52KVUdnNWkwKSrrEIjtUpZTlaj9r6YMHw0BshiuF4ySdy9Un7sQIu4G4rhyu8bKMqbZbiCtppxKbtGPhqJIQkkM8FnJWG2qYM1bZipzrh3mIIWtBJkMlSzK1GaxpEIdMNSfkjOYGHW0wmmsPSY5PsmVZQJJ1NUT+oUJJABr+O42VhCEDrTg2iQhsSPvriGO7EoRMFN/7oPHJmfi7W1NpIDlNMhEXxVRLo9Ngsq7qFEKFLQpAEe/TjpQfKlD0SnRHikrZpkmUoxVJrE41V+RJNVJlkEYMSOduLcZRBnpKUXK7umxWlxw0lCgMJ6oESyX5Zq5s/DRM4qkc3M99bNK5WaMYFCcQeQYRJ1BJzrHICgC1H0uZ28ICpoerNWiWbGObrvaqsx5dwo6PP3owzuJCAe1ZZUDa+WgFjKEluTpjMDpQ5pqtysxa7g6SdQXifeKTFMgEIVZFa6yYJBBJIDddoATsmFbDtmVWiU9G0/QjmCm/uwaS45DJOFGTfbIbnabveOuiTh6QQsAIdpkRAUYQWlHhP1MirOmK3iXrLCjT3PhJx0Wj5GoCj6uuI60LtWo9tiIHzIiXleSxm8EQEGWTjtyYz/IHlH4iISFtwg7JTtF2KmlDGQ2jDSLrZuVdJUQnBcURdJxzQ2bbnNlvE5S1U0nke0BG7QQyjrnE3BBbkmp4mIuTWzA6UMpZc9m1GrVhkiHAzkkl6HSBkWORq1PtrcfVGccgR7V1t1orUhvi798m9dRJFJw7TQLaehF8lk4ASmkElCZflcfWQC/FJ7lSz/TGD9f2g2kDyUYaWY/FNQQ2gts9kRAI2AglFWReHiYQKYE4N3aISAGz0dwgiXIPx1EHyeBmXc2MDa2ZMDnHHZOtycjDMlacWBQpHqbCLlf0TdjhD2pB6SzJOAHyDBRnEHkGimJEbV3axVXe0VkOmUQMSV3jalUMRgZl7F23MnC1yqFZXGbOWo0iKBJg3BCPIEFHiwijeQHGjnW1urjj6kwHblYTxCOLh5M8+N75Oy/r7obTKCmgDfE8IhiSMGGhgEhaOBq+DgxfF7ktfB7CkmEspmT85EyVaYHkJZdcgvPPPx/Lli3DXnvthQsuuACHHHJI7bZvf/vb8c1vfrNr/Z577olf/OIXAIArrrgC73jHO7q2GRkZQbvdnlzlG2lkHRW2voS1AABIW6cTwo+fzA1hKFJFLVfhsl/tZKHVjhQ6ucZworA61fZGrf1NerQHJJ2EFmmrEocctm7XdqRs1q0M+jQGGZqogaWUJWsSguOQiBiMoTUJFDc8oSRMnENnEWSaWwuSIeoSd4oCAopbWqlys+Swi4e0gCzcrLOKQuVxqzTUI4dEJ7dQDCzIEWs1jvq54YQda0F2P5zwvO775u/cBJBkl7Y2BCRAMfyjW/g6MBCQ0ALe7VodPzldbte1LVMOyWuvvRYf+MAHcMkll+Dggw/Gl7/8ZRxzzDF45JFHsO2223Ztf+GFF+Izn/mMf53nOf7sz/4Mf/VXf1Xabu7cuXj00UdL6xpANtJIWdiQs4SxASkBgiDhiwxoAQghbak6jUzbQgPKIM4NWopdfbESyCLCUKJ63rDrYmNOyq5bVbImE1WxIqXwwJRC2OEf5buyj1VVk3eUYkBaaxItU0JCBMAoCW1dp8a6WgGUYpbStftKIh+LlEpCtVsevDJsc2WtR9kaAkUtGAtFBKDk+CMDspOX3aurM56c9eisyVQbjKTaf9fhw0noaq1a7yVXqyEPSgDQEQFQ/ltRguOW0lbzcW5XJVE7LEQJAY01b9S8LsiUQ/ILX/gCTj31VLzzne8EAFxwwQW44447cOmll+K8887r2n7evHmYN2+ef33jjTfi+eef77IchRDYcsstp1b5SZC1HXSuk0anwWRd18ml+ztQSjtmXApO4NGGY3xcm5QTeKRQMBEQK42WlhhV7PJraYZlZq3GLOLYWKoLd2s/9181U7YVuF3bkbLWqkRLSW/BOldrVMlwDXN4XKUdEtYnKyNA5tyJJIqBVptryhrtQSmkgogzyDgFaQMdc9ZK1dXqMl99/Vc7tARRDJm0gThhUDpXa3sWECeFezVul9yrzmJkN6tBanjZwXF1pjGSla3HkVR3We7u4aSX5e6zkQEPyCT0sQfbcZIOQRkDqYFYCmSa3a4xCWgjfLarc7sqe814j8SA1+OgMtN+d1MKyTRN8eCDD+LDH/5waf2RRx6J++67b6BjXH755XjVq16F7bbbrrR+5cqV2G677aC1xj777INzzz0X++67b+0xRkdHMTo66l+vWLECQKmmxJTJeE/2dFwgjU6DyfqgUzjWUJOAIAtIsq5MybDU0sJS83uRVMgN0I4MWvam3I74xt2KZGkIQjgUIaza06sbRdiSyxc28HM7SWkrAwmffFSX4AqgyGxVEWA0ICOIOPFwdK5Wgh0J6IaIRDEozyATdrM6dyvALlafKWuBK+w+ojXkLUnfNLk9DKik7F61oHTjHzu5KWWxOmuRp8JyZFgWcBxJ6+PAg8SAewEy3MaPsZQ8JlMaQkxAFiTxKAjfiktba5IL9Ux+t5CZBEhgiiH5zDPPQGuN+fPnl9bPnz8fy5cvH3P/ZcuW4bbbbsPVV19dWr/77rvjiiuuwEtf+lKsWLECF154IQ4++GA8/PDD2GWXXbqOc9555+Gcc87pWj/oyZjOJ5tGp8Gk0am/VI9PKMZJAsKOjWQwasHvayOgJY+3ywwhkoRIcsZpai3HVtRd7aXXmD1XXMCNwXRDTFzDZ1ciL/bWo+yKhcZK+vipqLsZi+6YJNmhICJKAGNQaoshFaAKQCKKeb0x5WM7OLo6sEGBAkRxEYtsDRXNkXsWKDddGawjucbK0cK9OuJcrYH1OJLmPNwmgGOYKAUUcCx1KqlkJdeJkgKjuQkKN7A1GZGAsefWWZNEwnodqJzxaqEp0O12nWnW4JrItCTudMUSiLrW1ckVV1yBjTbaCMcdd1xp/aJFi7Bo0SL/+uCDD8Z+++2Hiy++GBdddFHXcc466yyceeaZ/vWKFSuwzTbbDKQ7BfOpOunuf4znJuvmjU5jb9/o1P2/nGUWQ7AVaS0JIsGANAzR3ForkVTQEaGlpQfiqM22ZDjKgSrAuP8dlp6LFM9bUQhLngQAAS687YZ/9AKlhyNFABkgMhAmrvxz64bNMwafa+8VWJFQym8rotjPRZwUFmSUsGvVwhGRtSJts+TQvVo3vOPFNC9Zjqutm7UKyFELzRIgdVAGMPiCNXjITaZ5yI3rrlIVLgyhvaUZnq9cE7QsCqVr4lQvAsEE1iTPybroRemam65rfDo8gcAUQ3KzzTaDUqrLanz66ae7rMuqEBG+/vWv45RTTkGSJH23lVLigAMOwG9+85va91utFlqt1viUt+JO+kROdrhfv2MMsk2jU6PTZOoUrlcCpd6BkRHedZrb5cgQtBGIJbEFauCty9DtqonbN7kqPqYGlH48prViYltZp2xVFoXOlSwetMPydIY49YQ/UFGWDkaCZARBBkiCzyolA1Brhp0xRQ9MN5fKHi4YSuJg6SzJOAGpxLpX42LZullTA4ZaTfWcavyxWNZ4sZOXrMfVARxTm8DjijcAKNXL9d+P+3IjiRQGCaS3OpUUPm7sAeknwMigPyXx8Y1ha1WKOkCyNakN2RKExbU1Hdf4dFmqUwrJJEmwcOFCLFmyBMcff7xfv2TJEhx77LF9973nnnvw29/+FqeeeuqY/4eI8NBDD+GlL33phPSsOxnhuomejOqT/FhWR7i+0anRabp0qq5PJO+t7U01M5w8E0IztC4NKXa9emDKUtsmdzPvcrtKURqfWYpPOjersyKtu7X7QzIYyXBckmQESANBhkEJMChd4fMoAfLUumF1cUPWmuOQQH0sMk5AUjEQZcQWY2ThGFiPeQWMoXs1tBpLsEzLgAytx5FUl+AYVjYKSwA6OBLZLODcgFzyDqR30Vbh6DwFrmGzO0/GPoG480gkLCAJBgB5q5IBXbUep+sanw6ZcnfrmWeeiVNOOQX7778/DjroIHzlK1/BE088gdNPPx0Au0KfeuopXHnllaX9Lr/8chx44IHYe++9u455zjnnYNGiRdhll12wYsUKXHTRRXjooYfwpS99aUI61v72JnSkslRvTGMdc6wbaaNTo9N06uQszMjC0ijnfmVQJjZ2qYkQ1wBzwqC0gFQ2dilcN5AeoCwVOLcJPESmbNFEgFSKYRjFNqknqKzjFqSrsGPBaDNmjYwYiFIxHC0onZs1J3R176gO7+joICnHxh9XdnKsTjVWdrJSJquDZKaNh6MJ6uQCKHVcISOs3q7ereRsXkPQojvBhyFpoI30LleAoVcFZC+XqxLW7RnEJnslVw0q473Gp0OmHJInn3wynn32WXzyk5/EsmXLsPfee+PWW2/12arLli3DE088UdrnhRdewOLFi3HhhRfWHvNPf/oT3vWud2H58uWYN28e9t13X/zgBz/Ay1/+8qn+OOOS8Z7g6bggGp2m5n+szzqF7tjcxS/BwIx0kQCU+8xYiUS5ZCC2LgEEtWKroHQFA1ybrHIBAZ+4Y/UpdQSpjJF0sUmhIn/DdRAlMmwlkoEMABMKCeGPY2RkLdWoHo4qgYb01mPWx71azWTt5M565Pjji53cw9FZjzrnKYRjWESeTPgVEMPRuGEu7CoVhmOMQAHI3BDqAlgm+E50j+/Hf0/OirTZrUTE3x3WLBY5E6BYFUE0xrexHsqKFSswb948huzcuT23W5OTPRk++ck87prs2+g0Ofutbzrl5CDIzYC1zWr1Q0GoiHERFa6z6pg+WB3cUA8Bm/1q33cWZWku7GB5AcDkECYHdM6JOCYv1hnD68j4STi6UJD16hJ/7DJkxDd9FVkXroWjjEBRApIRMgPrjq72fex2r7rlTm6wKu22HkeCyVmP2oKSDHFLMq929y3btSNzXVdcSzIVSV9UfsgWkndF5V1JwKLikcRwrNBSXORhOOZ1LTuWNZLuO+f4ceTq+4rgPAmUYpPjkfFeiytWrMD8LbfECy+8gLl97uNrKht07daxTsiaPNVM1ZNUo9Ng+zU6DbbfmugUWQuzyJLkzNhw3KU2oohjWbdc3bA9YTVxVmPoXnVWZGle53cVEiSM7QZiLUlhGM4kACgIIrYoa/cVPsYJH9+M7LjKyFuSOfEYwtxaj7ltc+V6P7ri5FUrcjQ3WDnaG5BpbpBm2luPOjcgIuicavt1str2ezP8LRoQlOJhHEJ2d2XpJ6GFruq+34rUHZkQFrAYn8xEKxLYwCE5EVmTJ+9+x1sbVsZYx2t0Gux4G7JOAgUsGYA2bmkBycMJGJhhdiRQrhzquCkCOEqEhQS6NSKnq3OxcqUAkAS4hzDHJiEkW49kgVkaNxm22wrimg6OgSWZE6B1YTlnNvHFWZLOvRq6VkeDdlfVBJ2SBWnhmNt5aD3yvBuQoRjJoBSSH0pEjzMYtkALC6CHY1jLPTxFFzB7FnUgKgWNJ+NarP0/wXGnQxpIjlMm+2lHVOZrcozJkkan8R2v0Yn3ca42JYRty+Tcr1ylxVkZRGzxAAUwgeL+6sdDBsfrB0sfiwQDEwCDkqR3sZasR1W/f8maDOCoCXb8ZwFGHViPuSn3fixZj9pgVVqMf6y1ILVBnmrvXjU+m9VmlprubFaAXatkh1+UPo4Qfu7e61dcIByz6iYpy3AUQBd4x/MgNZkyGdf4eKSBZCONNDJpUoIlCWhhrUjrfi3G2RXQrEoY05IBIN1NsbbImosnSulNVBL8R5B9rxKD5G1E8VpFhTVp4agtBLVvcFzEIXNrUXZqunc4YFYTdAYBpHOvhhakG/rh1RfsUg2tvhCWbr3wMd1yX9CwXZkbjypFMSlRjGMNz4HrxDKAN3a9kQaSjTTSyKRLCMsYwgPHgBN3CKLkegWK7ErpLSHY12VghuKGIjghGQHCJucYdrUWVmRgQgZQpZIlKX190qKgAi8XFYVgy/IV9VernTvCBJ01AWRYMKCfuO9MSmGTeFyB+DIgi84gquRqdXVzZfjaFnWIZBgfFpAQ3qoPrfu6OPFku1rXhjSQbKSRRqZM3A3SDSPhwuphjJJ8bElZcIYeQW891gDSSehmDddB2VhkxfYsZbEGrloez1nJzq1AUgfu1Y5rhqwLOFYLlNcB0lXPWVNAhkB02a3CukqFEJAR9+VMSv07iylsdC0FSnVzq1akEsJmG9cnUtWXUF8/pIHkADITn4YanQaTRqfBZKp1cokWrsi6pMKSdJmvvF0l7la1KtHHYhE2BungR6YAolckSNQBSu5fB+5wKEsIRk2Fe9VZiw6SgwDSlZdzSTrGUNc4SBeD9J+rBpAehM5iFMHwDyn80A8pRS0Uk0gVgLQ1cn33laADi7MiXUxYyXor0p2TwuIvn/d1XRpIVqQuI2u8J3o6MhYbnRqd1jWd3PYOlhwy5PZdzp7s1figaqmEN2JnfXZZlFVAosiIDGOiIRyNtR5d7NEtO/dqZkxPQHYsAKuAdB08nBUZFglwFiPZrilhDLL2O6wBpIysazWAoxsbWQdID07bqqxl36/rwOJq5/qknsp4Ve+CrQBybV/jkykNJAMZ5KZRdzKr66bihtbo1Oi0vuhUuFCL1ySEL1jey73Yr3NQCMpe7wNhhm04dpNB2M+KzA15KGa6HpCdPCxIXt/iKrNgdJVzuA5r76Ed1c88FiCVkogS5YsHuAICbvKFBGJliwQUcHSvw+IBJTjWAFJVAOm1rUmSCmUqr/HJlgaSgYQnqteTzaDrJksanQaTRqfBZCbp5I7paoA66xYWmL2k1zi9XvuUrMcKHAnwvS81VasGjQ+QhVu1G5AuDllYjvXDOvxnlMK/F2aqurlSPC6U56IWkA6MYXWdViRLgHTVddoRu1odIN3Qm8hmvroG2GHFIxFU2OmCY1gzz7nAA5nJUKxKA8keMhNPYqPTYNLoNJjMJJ1CV914Krb0An2IHgdHoIh/hsNRivZQBSDzwIqsA2SuXdNpngoolttbue4bOoQj9YYjwBCkYHhHCEdpxz6qqH/5OQfJEJBz2lFPQLYiheG4bEFG1sKsKwmopPAZzCUw1lUzKj7YYCd1hkkDSYzPH14Xz5nM4zc6NTptqDqFbtgqQ/oYlmO7WGusRxd7dJakA2VRLagAJLf/MnaZh4F0cu3jlKHV6KA4apf9VNPeqjYppwJG/j6KdXXWo7RWoHOnVuFY52IdihXaJUiW67M6y7FffVY/zMaCUdQAsusTDgjKmRSjbCCJ8Z2MseI5/fYZz4lvdBrfPuPZttFpsG3Xlk6hVQkUbZjqpA6QIRwB9HSvVgGpqQxIZyV2LBwzE1qPFpC6gKM24XIxdelsiiQlrn3A35qsLSkrPFccHEsxyCBBpw6QRfHyolh5K5JoK1vM3EIyUdLCEYhUUcS8aj2qChz9Mn+wqvIQMDwWNVg3iEzkepoqaSA5QZnIyZvqk93oNJg0Og0ma1MnH59E2Q07lowFSEN9AGngrUm2HhmEhiwcdQFHQ+TdrHngUg0bGYdTaEGKiqksJZfpq5aX8+5WIUpwlFLUWo+9Acmu1bYd+jEcs3vVWZLc7LrsXnUdVmJfcMCe26C7SuheFRWrmIQoYpF2RkBtfLKfrG1AAg0kJywz4eRVpdFpMGl0GkzWtk4hKIF6WFa3AfoD0rXsMsQWXDUW6SBqgobSDEXeJ9OmKFFXAqHpaz1KyZ1SpBTQmiwYAQGOPyrV/W07MApXHKACx3Aa9m2wJu5e7Yak8ONaS3A0OUOxruWY092PRyWQMAAiBuU4ITkTpIFkI400MmOlDoJ1MUugv6VZFA0I+lvahB4Gpx0r6cBoeIB/AUpTgmhRsq6AYh0cAXZTak0+IUcIAaFE0cqqJkspBKMb8lEHx1YU9onsbT1WXaxV69HFHt26Ehw19+oEdffmBLpjkb7MH38QCBmBTA6ASwaO15pc29JAspFGGpnREsannISgdCAN11WtSATHoMCKNIC3EtnCJFuazlqWprAiCzjysUIo9gWkIe6oIQFEEsIP/wCE6uFilYWLta60nCsOwIBUhSVZyV4N447OeoxrYo+RLFyrUQWOvpF12LS6LhZpwSfC9mMy4mNZUPqHHpX0PeczSRpIrqHMhMByVRqdBpNGp8FkpuhU534dJE7pxARxM2dFhuKsSO3ctXbuXveCYh0gXfFwbahoT2XLyBpYVyqCJB67jYOk69wRduwoV85hyzF0tdZZj8Nxd+wxUYW16ErPxS7u6OCYpyU4hnHIkqsVCCxDbT9n0XJMAL40oLD9PQUZtizluoGfdUPLtSz9bhL9bh5TeXNpdBpMGp0Gk3VFp16grHPL1knX0JLA1VpsUyTa6Aoo3fuhhF02qnBMIok0N347bQhaBPur/scJW1oVliS7VJ2rtW1rsIZuVQ/ISuYqLzMci7GQ9XAUpoebFYGLtWJFOlerEJLjkWDL0n1if556uFtnygNZKBs8JAc5KeH74fZ1+4br+r033nWNTo1OjU71UrUohRCQRDCDkjMQExhIepz7AvDtqBDAMYlkV9zSzZ2VGc5DOEZS1MIxsa5T50Ytl5UrFwaIrPVYjkHauCMMRJ6yW1VnJTh2WZIBGGuzWWETdlxnFRmx1Uiq/BAjBITOGagympTraSplg4dkv5tBL3Hb1m0vML5j9TpGo1OjU6PT2DqFt2qBbmBK25ZrMkUGTYwjKaClgJISSpbBBwvHMOO16pqtg2MUQDIsSh7CMVaitmpO3bCOApAoAAkDoStwdK9DS9JZj3nOChsNMrrr2UNIBUgFoRRnswau1vB6ISEhjGZAOqsUa349TaVs8JB0UvfF93L3TORY1fXjfZJudGp0anTqvX8IRynKVmC4b/W9qkgJDhqCszszuGUBIwWyAHLdblGFNNfeclTBuEmgd+wysqB08cewKXI/OPpaqwEoe7lWvQUpAOgUIk+74agzG3vMCzAaDcozwHC8kYyLOxr7ZbkvjiFJUkJIBREnHH8MLEUSEkLkHpQIrMnJup6mQhpI9pHJNPOr+070OI1Og0mj02CyvugUWpEEdLlcpWCX4CBWJZeBs1ahEDACyMPXkmBIALLbvZpEqmvMpOqT+ermIRiVdZ06S5L7PYqesce6ijldVmQPOIo8dLGmJTBSntpxkRqkHRx1zRemAKUsKCUQJSCjIaKER324c2h7eIb9PvvVep2s62lNpYHkNMlE3EtTLY1Og0mj02CytnUKQSkFYCAAIu9yFQIQBJ6DQSpAECQgBCfaZPaeLaWAJGEtSwoaDfPxYgVAw1t7yE3gXhW+wADQ24LkuSzFH72bVTmXqe35WLEcXR/IakGARJXjjrGEhaGFo045SScvlmFyIM9BaacAZJYyEI1h6zG0IJ04S1IGgJQKMAYiikHGQJgYSAJLEgCMtSaFLFmTdecTWPvXeAPJcchknKjJPtmNTtN3vEan6TvGmhwvBCURYCwc+T1hs1kFSNhCAoJvxIYKy9EIghECGSwgpYAiwFi4ZYaPnyiJFIZdpaZaYED2HR4CwCfmuHUOitz8WPr5WHDshiQYhmkAR2c5umWjQVkKSjslMDr3auhmhXbuVhtHdID0FiRDUlgrEkYDUVycvySwJLXgZSH5iYX6Y2htPwQ2kGykkUbWG3GuPT80xLpdycLRoI81CbYSpSRvRcYkwFUAnAUVLrs4qISWhXs1QXcWK9DtXgUYslK4no2F9RgFoBwEji4pJ1FiTDgiS0F5ymBMOwzKPAPyjAGXpQxDm6RTsh6t8MeWPmEHUjIwjSnB0X16IRVcMg+E5PJ0Lku2jzU5E2RmatVII400MkEJQUlgt6sAwQ1EoB7WpJIAQcBQ2Zos5rwuDrJ7DLEL1vgC6dQ37qmE8FCUwla8UbyubD0KH3/keGR/OEZSQNEAcEw7DMjRDkPRwhIWlGR0AUsHx15xSMAn6lAUMwi1tSLt/h6UUkIqVWS16rywJqXqG5tc29JAspFGGlnvxN2ci6pvAhpUWJE9rEkpCLGS0KS9NSnJxiABANJCUHo4SlPAEhBdxQaAoickQ5KtSQdGKbvdq7G0iTo2Q7UvHGEg9ChENtofjs5qTANAZjZBJ88KN6vWIG1AxsDobnhJVZSfE0oCcWLdq0npuw/PBWe+KkAIP5aSNFfdcYUKZmrx8waSUyxrO+hcJ41Og0mj02Ayk3UKQckWo7Ui+8QmiVCyFgGJTBsPSmljl5k2ARyDMnY9xkI6y9HFOF1j4zBBx80TJX03jrHgCJuUI/JObziOjnj3qrca8wKQJs1AxkCnuY87kjagCiSFktB27iCptGFYBi5aUU3wceMordsV1oIUJuf6rjrndSqZcdfTBg3JyR1iXC/jPdnTcYE0Og0mjU6DyUzWqQRKP5hSMOlMOEf5PXTHIrlUnYEkAWMIUkjfasuY4lMZl/RplQjrsUqBsou14l6NfDEBeIh2jXWswlGn5WUHxgocabRTshopS2Gy3IPRpDlIGxhThiM5CLrvVElIC0iZRCBtoJIIbgs/5MOVoytlv0qIKLLNmjVbjyZnYFprUswwa3KDhuSgP9TpfLJpdBpMGp0Gk0an4KYNa9XZzh6DDAkxJHx9VcN+Qz/+0sEyhoCWPcZCWjcrd/OAByM3NLbWo5IFPIOxl9UC5NWxjiLvlOAodAYzOlIA0YPSxiGtm9WkGXSWw2S5B6POcu9idWMiq65W72ZVCiawImUSgYyB1MYDRQAgW4EHecaQjBO2NnNrNToL0rpcnft1prlcN2hIDiIUzKfqJuIzwMa5faPTYNs3Og22/fqsU2hICps4Uwyo7GFdguOT0lqQxrBrNTNk4QhoyXHJuEbLUhyyBEm2Gjku6SzGbjh2FSDPUoh8tAxKnQI6BXVWwwRwRJ6BRkd4nX2tO6PQaQFHB0aTZTAekN0uVifGQ1JCxRGE4acHYwxUHPltJMBWo4OjVByzzFJrSca+kIDrKOKyXQdN4CFMjycQaCA5poRPoeOVcL9+xxhkm0anRqdGpzXTyYHSv7KgrMYnS8AE2TZWEkaQj0eGcKwrc+fioD4OKZ2bVVqL1rbDGgSOvTJW8w6QjpYtRutiNQ6UacfDUXdStiCte1XbOKSzJquJOlU3qwzikKQNZByBtIaM7ZAPJaFTrvGqVFaGYxQXxQnyDDJOuKhAaE264SDWmhzrepouz0cDSdT/GKs/romIqCyP9TQdrm90anRqdJp8nQQYYC5Bh4TgwuQVC9ImsAKmACdBQBrysAQEjAHiGh0cFF0xdAF26yo3/ANlOKogQafUnaMu7ph3upNyqqBMOzBphrzDcce8k8KkOUyWFaC0YKwm64RzEViPpG0c0kgI7eAZQSi2Po0FpFASUuuyJZlnXKbODg8hrYuhH9XJ5IBKBrqepkMaSKL+BEzGSaneBMY65lg3iEanRqdGp8nRia050TeRRxAAyRYmpI1jSkYtwWax1oTPHBSBAoxSlCEZWpHO3eoyVmHychm5MO6Yj/aOOzo4djrQGVuOdXA0WQ6jDYyLQ/YZ7oHMxiIzFFZkHJUsTP+dKglhj2eyHEqpYMykLUxgx1GG/SkFUWFVuqbMVHQSWdsyLRHSSy65BDvssAPa7TYWLlyIH/7whz23vfvuuzmAXpl+9atflbZbvHgx9txzT7RaLey555644YYbpvpjjFvGe4Kn44JodJqa/9HoNDXbT0QG+R9KWMvSwSqEV3UuykMxuBAAbNJNeWpFotTDkQuMwy8nSiCx77UjibZd11ICyqQQWQcyHYHIRiCy1aVljK6GWbUCtPpF0KoX7XwFzKoVMKt5nr24EtnqDrIVq5GuWI181Qiy1SPIVnWQr+ogs1O+qgPdSZGtGkXeyZCN5MhrJp0aZCM5dKqLZJ+sSPZxrlvSusttS9q21QrgGNaDFUSc5VrtU2kGj01Oh0y5JXnttdfiAx/4AC655BIcfPDB+PKXv4xjjjkGjzzyCLbddtue+z366KOYO3euf7355pv75aVLl+Lkk0/Gueeei+OPPx433HADTjrpJNx777048MADB9ZtrMDvmiQNTEY8ZTKPuyb7NjpNzn6NToPtN106ubihhstqhU3oYctRWAuSSEAQQOAi6UQiKFJQFsFGKJfDE+51AVwhKok6Amw5ZpXWVXVZq53VPV2rujPqrcbCxTrqLUefsGOtSJ1ai0+Td7UCANkAq7AfUNjXpARUomBgALBbVSICKXazspXJw0ekZh80aVMeL2lMUMWnACO7WA0gK27XGSKCaJI7klbkwAMPxH777YdLL73Ur9tjjz1w3HHH4bzzzuva/u6778bhhx+O559/HhtttFHtMU8++WSsWLECt912m1939NFHY+ONN8Y111wzpk4rVqzAvHnz8Ifly0sgbqSRRjYsIcCOdeTxjtqQdaXa8Y/EsUtj45RhnQB36xSiIGYIRnavwpehC12sSgCCTAFEo2uzVquJOaazqsu1GsYddSeFTjPoTtoFR51qGE3QqbbWH8E4CFayjxwkpRIQSkBICWlBKZSAiiPIJIKMI0TtBDKJELVb/rVqJ7y+3YZIeJJDs3i51YZo8zLiBBS1QSrmFlsqKS33Gw6yYsUKzN9yS7zwwgtTeh+fUndrmqZ48MEHceSRR5bWH3nkkbjvvvv67rvvvvtiq622whFHHIG77rqr9N7SpUu7jnnUUUf1PObo6ChWrFhRmiYqk/1EQZX5mhxjsqTRaXzHa3Qa7HgzUScAdoyic7EKG68MoeaWbfxQ8rpICUSqGPhf7caRWBds6GJNlCsGkEKkqyGyUYh8tMu1KvJRHtax+kV2p1qXKo2sAnV40qtXI1vNrlPvWl01gnwVgzNb1UG+uoNs1SiykZxdqp0MeSdHPqKhUwOdautW1V0TabLbOBcqQ5Ws9VlN8vE9J3t952EN2HDZuVm7d+h77qbUugtkSt2tzzzzDLTWmD9/fmn9/PnzsXz58tp9ttpqK3zlK1/BwoULMTo6im9961s44ogjcPfdd+OVr3wlAGD58uXjOuZ5552Hc845ZxI+0eTHVNY0k29N9+13vEanwY7X6DTY8WaqToSiGDon8XBSjpKAIAEiTtUhu5OC8BalG1LijuesRuGWRZHIowTsMI7culWdxZh3WY+mx7AOSjswq1d3WY+ha9W5XXWWexByFquzHo0HHQBvTTqRXJ4IWmu2GpWylqYBacHdPqxQ4FqtTfMdjwSJPGRMTxNuMq6n8ci0ZLeG7giA3RTVdU5222037Lbbbv71QQcdhCeffBKf+9znPCTHe8yzzjoLZ555pn+9YsUKbLPNNuP+HI000sj6Jw6UYTF0SJTg6GDpJIxJutuOFEXWrBvi4eFocoajBaKLPYo8WO5XMafiXnWZq2Es0mW0OtcqJ9voWjg6i7BODAAJ43tGkuYWY6pXIBaozXbt2kaqMbfhf1iJTa7lCjxTCsnNNtsMSqkuC+/pp5/usgT7yaJFi3DVVVf511tuueW4jtlqtdBqtcaheSONNLIhSR0oNQgS3NVDCXhLsrofwFajS9qpwhHGQARwLA3xcIk6WRpYj/2Tc/QIAzLvjDIQO2mpWICzHk0WxCArcKwd7uE+C6QHJSB9Wb7a761U01XxMJBg8vVaZQV0vYAZuFgFmWlzqfaTKUV0kiRYuHAhlixZUlq/ZMkSvOIVrxj4OP/5n/+Jrbbayr8+6KCDuo555513juuYjTTSSCOhhG48V0vVuUtd5ZyuKRjnWC0G4BNxsk5RTk7b137cYwcYHfFxRo45rgaNrIIZWQXT4Xm2aqQYvmEBqUsWZTcgS8vBaw/NmqnrOwkSeErrXYFzB0QLQhmsL4kqCpz3BGQowbCQtS1T7m4988wzccopp2D//ffHQQcdhK985St44okncPrppwNgV+hTTz2FK6+8EgBwwQUXYPvtt8dee+2FNE1x1VVXYfHixVi8eLE/5hlnnIFXvvKV+OxnP4tjjz0WN910E7773e/i3nvvnZLPsCYp6VMljU6DSaPTYNLoVIirMSAFN2yW7HdFeLv2HS/cUA8U7laYHMJakLxsM1dNXo4/mrxvWTm3Lq/C0GavurgkD/vIvHu1SLjRXdYjW5Q1MJTd37Sz/vxwEOksRFECYwmW4fo4gYh4KjqBBN1AXBPmXu7UPnHJ6ZQph+TJJ5+MZ599Fp/85CexbNky7L333rj11lux3XbbAQCWLVuGJ554wm+fpin+/u//Hk899RSGhoaw11574Tvf+Q5e85rX+G1e8YpX4Nvf/jY++tGP4mMf+xh22mknXHvtteMaI9lL3A9zTcpjTfaPu9Gp0anRaXp0ChN5QlAC3V7HLjjakmqCDMPQ6MK9avKu+COVSsuNDUiT5hMCpE45k7QXIP1ndzBUwluOUkk/DETaSdmKO26ScQQZx31drcL2khRK+WUKckj8chWYMyAuOeXjJGei9BonOciPrG6bqXzibXQaTBqdBpNGp8HE3RQN1Q81cHAEUFSNIY49gkwZkG4c5DgB6bNXa2KQdRmszsXKJef0QBYkUFiRDEJpx0Ha8ZCJgkokVKzssoKMI6h2AhVHUEPJmOMjRRwXy60hv4w4AWTEYyOl4rGRMuJ1Utn3op7ts6ZrnGRTuzWQ8AfX6wc46LrJkkanwaTRaTBpdBpMqhZlKKVhH1VAOveqKxQQWJTOxdoLkJRnXBQ8z0qA5HJwWdHiKugBWU3ScUCsArLn55wAIGUc+WICqvo6iSCTGCKyk5Te5cruV7veulpdxw8PwX7u17UkDSR7yEyLzwCNToNKo9Ng0ujUX0JQVtcDKOAYxh9tf0S4+GMFkEhHQXnGU5ZyM+Q85ddB9w6dFj0fTZb7Oqnl+qkU1EoNEnBMfbJLbdwxgKO0lXV8VZ0egCwq7CSQcRxYlAlUu8VtsRwMW0P+tZ+kYkvRApGEAKTk+GShLLtrZ4A0kMT43DZ1sZPJPH6jU6NTo9PM1KkERzv3gAy6WfjEHRejdMt5bgGZWkA6WGZ+2aRZCYykue9jUUjc1VwtV8AB0HNYh+gxvtFloPp4Y6wglYRKCouyzsUaAjJqJ12AFEkb0rpW3WvRahdJPJFzqVorUkUli5KEmFHWZANJjO+HNJGkArfteH60jU7j22c82zY6DbZto1PNfuHQBFeYO4xBOnDqwu3qXLAmT7kcW+BWRWBNcjsp492q3HIq83A01mp0dVepz1hHwMKvR3pomJxTtR7da7Yku2u0qjiCardKFqVqtzjOGMW9AZm0GZCqEnt0LtaK67Vv5us0SgPJCcpEnlKn2pXU6DSYNDoNJo1OvZRwlmMFmIFl6dyuzoqkLOUWUaGb1ULRdcdwblbS3E3Dg9HBUZu+YJRK2i4drhxAedgKb1OAsepqZUtSdMcfE7YieTkuknMcONttdq06ICYWiq12AcooKRJ1QkCq4jWELKA5Q1ytQAPJCctMip04aXQaTBqdBpNGpzEkdLNWS6kFgBREMEZ7a9G3jMrSYJ0OrMQCjAAGshhhXa4hKAHb+quybehmdZZjLzjKIEFHtVs+/ugAGVqJBSA5FunBGXP2KqlkbDhaQHorcgZYkw0kG2mkkUYmUarQdFYkTLkRsbMiyWhuWlzTVaNXEg4AHqMIA22shagEjCZ2sdYUtSm5WIMkHd8CS0rvWnUwVHYMZBGH7GE9BqDkpJ3CvUp2mEcXIK2LlRN3om44AiVAuhzd6X5QaiDZSCONNDJRCS1HF6N068HAJKBoDWWtxlKrqJq2U/3ENTiWAAwkFAAjOatVKdGzvJyroBP2hZS2GIArClCOQbYCKzKxbtdycg7iJBgPmXhLEkmrv2t1QDjOhEH8DSTXUJpyXoNJo9Ng0ug0mKw1nYQsknd6SaXuKJUAGexbhWXff2sr2RgLOsNuVQ9KBW5jBQYmUK63KkqVc4JyctatGlqRdXCUcdTtWvWW5Dhcq/3gKGQJir3Gp073uW8gOYAMlBY+zv3WVBqdBpNGp8Gk0Wkc0g+UlfWuETFVLMeB/o1SENpAKAnSBlJJkLaQRAQhDUgZCG+F8qdWpWPwuioYXb3VMObo3Kp94RhWz4mTIqO1NQSSCqYfHG3ckVTUBUZDAHpUNwL4fLoygdMtGzwkB/lBhe+H249VKqvfe+Nd1+jU6NTotPZ1KpSzGZgkAVHj3pxg9wpf+9RICM0gI8NWnklzqCSCTnO/LWkDIe3/qml6XCo6HoDR11xVcnxwtFmrfeEYlJfzSTkqYqvRrYMt+UeFxVhXIdX1CHb1cdcGKDd4SPb74fUSt23d9mKcx+p1jEanRqdGpxmqU50lWYqlaZCQg+kiFYCMoWXYUhRKQmoJUhLCKG8phqD0ST7SADF8gk/Yt9F355DlwuNcoFx1xSCrMUcPxMCV2hOOKi5ZjqXaqy5BB5yEawwD0X2DvaqHC8Fvsku56LYy3bLBQ9JJ3Zdf92MZ5CQN4iIa75N0o1OjU6PTDNJJcDxNWCgCqAWjUAqUg7teIOOVDmQWkK5tlINh1ZpUSQzSGho5ZBKx6zW2ST4BIFktWToGAG8xOjA6UIaZrDKJe8OxGnNUMYx0RQEUKErKLtUQlijAqIms5Uj+OwX61MYlbmZtBCCJPCjDfadDGkj2kTVyx4yx70SP0+g0mDQ6DSaNToNJ136lyjDCwjJ4z891AUjXSxEApIKQGmTbSJE0EEp7d6pQEsrenkkb3k4pP1Sk79AQKT0UQytShVmszqVqi467SjljZat6yzGKGYSug4eMPCwdGLVma1EbKrlXgW5Qht+xa5slBEAg9mZL19dTTLvLtYHkNMlE3EtTLY1Og0mj02CyQerk4pLQ8HFKo0sA5e2c1agsIA3I9lYkaQCpS4k6EhEMcihEIGlglPGwlBXr0X/WihUpA0CWs1jjYixjFFfKxlVe92pnVbEiSUgPRm2tRe1jjmVImh52oLPDhSB2rRJ/f0oyaCEFBAE9StFOmTSQHIdMxrmZ7PPb6DR9x2t0mr5jTPbxpuS+GrpcA+vRW5ai3q3KXTC0ByaktTYj+EqrpBiWxhY5F861al2yJoCkDODo5i5ZpycYo5itxl7xRhV3w7Cm72NODDBNdjIVQIJ8co5LzOkqlee+TlEk6BAJjkmCAMOgJGLLMmzWPB3SQLKRRhppZCJS43IN45RuWShVcqtCSm9NIuaUVAIgcnhQktYQkod9mKBmq7MgqwV1wuzVwsWqGIxSFYCMY9uJI+7rUiUV97QaNQqrMTcMRg9I8Nwl5nhAgrpij0DYm1NACmJQgoHJzBcACIIEBAhCFNbkdMUlG0g20kgjjUxUSkNBnOUoAROMAxQGIkoYcFJDxAmAbhcwARDGWpd5BqE4IUhq3QVJ/tdVC9JZptzo2M1LYIxi/v91hcctHL0LNQAlyQiagMwQtDHIAzDy3LlZiwQdgnWToohBVkUKASUdAJ0lKaAkW5CQ9luy7lbpgTt91mQDyUYaaaSRiUrV5Rr0RAzXOasORltr0sYlpWZQOTEaZNjqhK3xKqIYoi5Rx0FSBnB0Mc+YmxuLKABkYDW6LFVvKYaJOA6UKoEmsLWYkwUkBYBkMDpYEoBMG2gin83q4FitlOfiilIIKCEgJRBLCSXZovSAtHMphI9vCiGa7Nb1SWZSEoOTRqfBpNFpMNngdXKdK0zF5SoIJCMIMiDBYEQUdyUTkdG8zoJRuMLmNTVeAZThaPcTUgJKlSxID8aoiEc6q9FULEVUrMicgCxwp2Y27pjrMhhzQ8iMQaYZiJmmWjgaa1FK618NIRkrCWXY+HawJGndqRKAEeyClQSCKBUgmA7ZoCE5Hd/zeH+o0/HjbnQaTBqdBpMNXqcQjDLiQgMqApFhaFpQCqUAY4d7RMH/NdLP+X3NDZsRQ+ia2q4qhKMKYpwWwkqVk3RCqzEc+O9ij3b4BskImQHyitXoAWm6wZgZQqYNMkMwxgHSWpE9SCaltR4FoIRAZgixFNAKUAaWShLseAWkZDALEpCm+PjTJRs0JAf9UUznU2mj02DS6DSYNDoNJmukk6jEHyvWZFhxxscjc3hQwmhvRWIAC5KXK4CsSdJBFPUf2xglIJVAQ5ZcqgxBthoz6zZlIBZgHM01xygDQGaGLcgiDtn9/UkB61ItQBkrCSMFDBFiyfV1jAQQSY5TEifrOHdrtZzdVMsGDclBhIL5VP1g3f8Yzw/VzRudxt6+0Wmw7RudBtu+JyjDBB4hy9akhSbJAJRGWndrEIPUGgJx7+4g1sXaM0lHqWJwf8VqdFZkmKXqrMK84lLNrMWYagZjRxsPRDfPA3A6F2sxBKSbYAxFHs7hIBkrLg6glYAmtibhepsYQEkFTVxQQAHsbgUPI2myW2eIcALyxH6o4X79jjHeAc+NTo1OjU4zTKeaBB4SEkJFRewRgDB5AUqtfSYrrHu16DtZn6gTxiG7wCgkl4urFhqvjHV0yTghHL31aF2qqTbo5AajuUFmeLkKxhCQ2hDSnHV2lmRu55GLQ0pRmmIpoUkgE4QWOWvSf1hIQVDCQArJ2bLWemwsybUgdRd+uG6iT7KisjzWk2tXOnijU6NTo9O6o1MlgQeliQqXK9maM0JAkPKuVk7gibsBWZeoUwWjc+mGtVPr4KgdDLvhmBugk2tkmjCaG3S0haQ2GNVlMKbaIM0NtOFttSncrLoG8MpmrrqpFUmk0iCJpHWxAsa19RKc2CONQGzdq4YYvspmuU6nNJBE/YU/GS6e6g9urGOO9WNsdGp0anSawTrVxCJJ8OB+tiLBIDM5hE3wITIelt6yDZJ1hM1S8VVmLHRLYBSiu3ejirkDxxhw1IFb1VmODo6juWFoGo5JdnKN1K53lmOaaw/IApJlilUtSCUF0kghiSTvF7ntrZtVCihNkMIgkwKx5DJ1CgIGBTSnSxpITqGM9wc/GTeIyf4fjU5Ts/1EpNFpav7HpOsUJPB46xE5W4/EGZtEBiDj+06Sa71FxscdXd/FoqpP4Mq1VmTP9lQ94FgXc+wFR2c9jmQFHB0YU7ucB4CsQlIFblYASCKJSIoCjkZ1AZXdrIbjlxbkmTGIpPIu12k2JDdsSI71Za9J0sBkxFMm87hrsm+j0+Ts1+g02H7rrE4OYtVmzG4YiDCAtjFJ4p6UDM4AkOGxKsclIQowhg2Me8DRVcipZqsOAseOheDqlIE4kuYejKElqWsgGUrJeswNlIVkK5IYSgjayPK2XJTIWpACxnBhAgJKFiQBtU2ap0I2aEiOddGvyRPmZMRTJvO4a7Jvo9Pk7NfoNNh+67RO1UxW62KFYUtSKOtmNQawpdUEya7DlNyrskgEQhWOgSVZhWM4ztGBshxv1B6Uo9pgdaa95bg61RhJNdKc54UVWcQi09z48ZBk6eXmwlqPQgo/LlKVrMgerlnBFXeywIrMjIA2EpGt5TqdrlZgA4fkRGRNnnL7HW9tPD2PdbxGp8GO1+g02PE2GJ18yyyw2xVFkQHvZhWF9Vh7z69xsYZWI6QswdHFFt2YRlc6rpqUszrrhqNbroOjsyTDKdMGZMGofU3ZcvEAGUBSCAalDAAZwpEtTWdlGkghkEmOR+pI+tZbhoS1HqcXlA0kxymTHb/olzAw3mNMljQ6je94jU6DHW+D0ElYN6qQzDmSIFhQBttQnYvV7V+dBzFIUkXCjoNjWA1nkLjj6kwH7lV2sTogjqS5txxHvKtVI9UGOueJiHhuiLt9eCuy/DEcKKWSDElDoKjHGMrAJZso6V2rmTYwSvp9XGeR6ZQGko00Mtli8u6b31gSWgyNrNviziGZwiKEAYTysci+5zmMP7phJYGbNYRjueD44K7VOuvRAbJ4XYaj0SEk2ZI0VLhayx/BAlIIyIgKSNrtR+x2Do5JbqCkxmgukUQGsRLQJIMSd9MPRycNJBtpZE3EAtFlKXJZsRyCqAzKXhaDXQ6TMgDrZnPbyeZnuk5J1Zo0wToLy777Bi23yA31qIGjJvi5yzIdJDFndVZvPZbgmBukmS7BUWsDkzMYTW44FknlWCR/BOtqdW5WklBKwgRVhEQukIpyUk9ScscWlXvcnJN1uGfl5PsWekvz62ukkfEIOQiabiC6eFNoSZox3GpuoLgoWwuiLpuxAea6I96CDJ6HDMpWJlB+WJL1cUhthz5UW1O5mGPocnWxR+dK7Yakwao0H9N6zFON3ELSwVHbWKSblxN2yh/HJewQcYYqRcSglLyhEAKZFFA5J/PkftwlT0Mxw9IY8jHJUBiW0yPNL24Amd7nlsGk0WkwmTSddMpg1Dl3aLCw9FA0btxbBZhjpPeHN8QSGGUBTOjIZkuqrvT/yZL1+txNooxLpwCUwUsrlWvAbeBikCjKr2lDMECX9Ri2ruLi4vWAHMn0wO7VTqaRpxpGGwtJspA0BSRzw5d/natVW0tSE5QSHpb+K8kFuIC5AJnCckxzg1YkfbUe102kdGhDMHL6r4hpCYBccskl2GGHHdBut7Fw4UL88Ic/7Lnt9ddfj1e/+tXYfPPNMXfuXBx00EG44447SttcccUVEEJ0TZ1OZ411pcocGP8PdbJd541O4zvemuhUEpND5B2IdDVE1oFIRyCyEYhsNU/pasjRVRDpCGS6CjJdBZGuhEhX8nJnJTDyIk+dVaDVK0CrVxTrRl6E6Kzs3i8bscccsf97NZB3IPJRq0MHIusAOmVQr4XvaSaeuxmlUx34JD/g+EmWq+TAvs8ARDGUw7pTc1OZ2+QcF39cnQ4OyJWdDC92crzYybGyk5cAmWd2So2d62KeGmgdgLNmMrmzOInds0EsUmtjxz4ybDV1j7f0BQpcSTr7HawtmXJL8tprr8UHPvABXHLJJTj44IPx5S9/GccccwweeeQRbLvttl3b/+AHP8CrX/1qfPrTn8ZGG22Eb3zjG3j961+PH//4x9h33339dnPnzsWjjz5a2rfdbq+RruFTYq8fQ92TZHXdVKSqNzpNj06lGKOzGk3OwDR5aZ1wrlfbvQFGg2yxauPaHgFdHR38793X4pRFiyPfF5BvmkJIkI4ggrqcfEO1eskIpMzArtj1+dzNOJ1ETZJO1foPrE1DwZwK65EQxiLLbtbcQiUsRB66WHtZkNVhHVVAOvdqnmlvPWpNfugHu1oNqKZbCdkm0FIKIJJADgCGjRlD1slSzox1cHTLfc/N+pbd+oUvfAGnnnoq3vnOdwIALrjgAtxxxx249NJLcd5553Vtf8EFF5Ref/rTn8ZNN92E//iP/yhBUgiBLbfcclJ1DS/4Xm6VQddNljQ6DSZrrJODo849+GrBaIr3KUtBFowOjqQ1kGd88+jX0QEoNcsltxwHbY9sw1zIvLA2jObXISztjZiUGdMNu16euymQSdOpTwzS3evr4Oh6J1bdqyEsxwIkFyfnJJ5BXawmiD8WlmElWcfC0QHSzX0Bdve5ICEMwdiiCs6adIDkfctjJsMiA9WWW9W45HTJlEIyTVM8+OCD+PCHP1xaf+SRR+K+++4b6BjGGLz44ovYZJNNSutXrlyJ7bbbDlpr7LPPPjj33HNLEA1ldHQUo6Oj/vWKFSvG/L8zLRYCNDoNKuPSyVmDg8BRp0Ceg/LUg5GytIBiAEfKMj5+cDPp0lMqC0kJKAURJSALSLKAFFEcdJnnsmOQtk+h4sHpAvbpHfbGO2C8cp0/d9Mkk6JTJT4JFHD0yxXr0YwTkK5KTa5dz8ciizWsuVqqnmPdpj6DNQCkcQk6ASCNvcargOwlZITPdiVD3BTSv1cPvaolWTeucjplSiH5zDPPQGuN+fPnl9bPnz8fy5cvH+gYn//857Fq1SqcdNJJft3uu++OK664Ai996UuxYsUKXHjhhTj44IPx8MMPY5ddduk6xnnnnYdzzjmn5/8YTzDebTuRfcYjjU5TpxO/CLJUq27VPO0Nx7TDMMwYlMgzXp9lJXcrBV3mw64OToRSFmg1jXPjuAClsyaTNhDFkC1iS5LswDFpE+Kp3LewCsr15dytizpVb/GOAb2sR+de9ZZkBZAuk5VLtrkWVuTbWvF6jlMWUKwBZB4M7bDxQpec4woGOBdrPwvSGA0pFbf6snOAHwKNIXaxChF8/rULvfHKtGS3ClG+hIioa12dXHPNNTj77LNx0003YYsttvDrFy1ahEWLFvnXBx98MPbbbz9cfPHFuOiii7qOc9ZZZ+HMM8/0r1esWIFtttmm0G88n2UN9hnPD7DRaXz7jGtb7zY1ZetRpx6YwibFCKNhRkcYhmmH4Zh2GIZZYFHm1qLUGibL+Slc2xqdAEiXXa5CcQsloSSkXZZJzBZhFEMkbYgoBsUJL2cpRGsIxhh+7TJole1yH8EPIxG+BZPs/uzj+J5m4rlbV3Sqw0AIR/d6LED6zhdEnOnq+yuSbXgMC0rjY5WZJu9mDRNiqrVXdej+DGKF4dAOwMYPK/HHEJBuHoKy67sKR7qMce9XlQxWNQArplKmFJKbbbYZlFJdVuPTTz/dZV1W5dprr8Wpp56K6667Dq961av6biulxAEHHIDf/OY3te+3Wi20Wq3xKT+GTOQpdapPdaPTGBKOY6xJyhF5VsDS5EA6yu6ltAMaHWEYph0gS2GcRWmtSpPl0GkOk+UgbaDtHCgA6YAp3NhIZSEpJWQS8XIcQcURZDvzsESWAq0hb5nCaF6fAG7oCExeFNYWclLy1mfUubOyrujkLXorEwVkqXCAA6UFIYPS2HGEKLlZjd0vtCKrba1MMLl4IQCfUOOgOYhIC0aXeOZAKWXhbq1K3fqwvZYUogTIseA6VTKlkEySBAsXLsSSJUtw/PHH+/VLlizBscce23O/a665Bn/zN3+Da665Bq997WvH/D9EhIceeggvfelLJ0XvQWS9jZ1MsswYnQZxr+qUYamzsvU42ukCJaUdmDSDzhiMJs15Oc1hsszGc6w1WbEigQKQQlpLUikPSJ1EUFlewDJpQxjDFq7REFpDgr9b4XsOCjuWMvIPA2sqM+bcBbIu6jQoIE2w7CrLGOJB84aKGGZmjC9kXoCyGDIRVuXpJbpiLY77M1urUQZWo6gsCyl5nKRgUJYmN3QvaKUVVfpP9vzf03wRTLm79cwzz8Qpp5yC/fffHwcddBC+8pWv4IknnsDpp58OgF2hTz31FK688koADMi//uu/xoUXXohFixZ5K3RoaAjz5s0DAJxzzjlYtGgRdtllF6xYsQIXXXQRHnroIXzpS1+a6o/TyLoo/YZ1hIDUqXevluAYLucpaLSDvJNCd9ICjlkOnWYemGRMl8u1Ks7dqmJrRSYMSdVuMWyHEkTGQLlM2dDdpYIndyEBE/kOE5MByEYmVwYBpGsobCwgQzcrobAijSnies6KNDbBxkm1z2O/no9VceXkSBKEa+clB0gEC6xINwSEoWgtSlG8dkUGZABJNwG2pqsQkAK21Rb/j7VQS2DqIXnyySfj2WefxSc/+UksW7YMe++9N2699VZst912AIBly5bhiSee8Nt/+ctfRp7neO9734v3vve9fv3b3vY2XHHFFQCAP/3pT3jXu96F5cuXY968edh3333xgx/8AC9/+cun+uM0si5JtfJNnYs1SNAZE5BpB6ZTADLvsJs174xaC5JdrmRMBZR8YzKaIFXxKxdKQCoJHUdsRWYRTBxBZzmidgvGWqJGG0TWevQfzWbGIk8569XkgFaAagC5LooDplsGUGtFhnB0vRzdtry+DMuqhFaaL0IuBYytlCOoKCcnpIA0gLGQM/YKFD1ij8K7XKVvjeWr7igJFXENV2WXhRRIlKxAUiIKAOlECjGmhTlVImi62jvPIFmxYgXmzZuHPyxfjrlz567RsSYSI5lqaXRCYU2FZeOqQzzyFEJnRQZrOlrAcGRVFyD16tUMyBEGZN4ZZTB2Uh+PZFBq6FTDaJvwUFMuRChhXa2CrcmELUqZRIjaCVQ7sfMWonaCaFYbUTuBHJoF0Z5l58OQs+ZCtGcBrWFQ1IZJhoCoDYpboGjNimv4rxLN9TSIVHVyVmG47G631aEe4bjIMBbJ2xUJO5kOhnvY8ZA+szUYK5lqUypgnuYm6BVpSjVadTA3lSEgPOyj6PZR7RsZSthDUilpyw4zDKNYQSmJKOHwQtKKECUKQ7HC7HaEOe0IQ4nC7HaMjYZjzEoizGnx+3MShdlJhDmtCC0lMBRJtCKBdNWL2HbBVnjhhRfW+D7eT5rarQNIvx/kWKnfU/VDbnQaQELXY7Wuqg4Kk5vcDvGwiTijnJQDl8kaWpABIJ01qTtpCY4609Apw9FZkqHLtUjcsU/YiYROFVRioGzCj3PVmko8M1ZsQVIcA3lsh6GkPEzEWsw0AXfrjDt3Yxx7XdFJigKUTpyrte7Y/H6QWWpdrQB8RupY4hJcqi7MqOraNAJaCggjoKKwCnuQFS0JgOFiAELASIJEfUJPEX8M3KmBBSkjfh3FCjKSSJREEvHEDZeLZSXhE3fcnGPwY378SZcNHpKD/KCqT4f9UsvDdf3eG++6Rqfe69zPtad+JojVOddrZZkLBKR2/GMaFAxIawGZryrcrjrLkY/kHo461TCZtSQDUJa+KwtIoQSUBaTJNHSqGKpBwo9URTYs33Ri0GiHx1JmKWe69olHzuRztz7rNB4ZZOygkgJZ5fRKS2EpCqgYSeXYnpRIIrZMXTsqNy/gWNIGAFuAJudyci771Q8PUd2fNnTf+kbLkbQ9Ja01GTE04wCQrcgtK15WErGUUEIgdq5XuXYACTSQnNBF7rat215gfMfqdYxGp8F0Cm8tdccTdVZV2JmDDJA7d6xhC9IYUJb5YgE+McfGH0MLMu9k0KlG3smhU2NfW1dV1h2TBODjkkIJqFhBpxoqU1CpQjRUhaksLcs4ghztgKIElKcQFuQiz4HIFA8EoeXa5/vpJRvq9TQVOq2piOBISggYARhBsDWdfHJLFZZlIJrSa6CobJPW/E8pubGyFKLL1dorQucSflwGq4NjaFFGsUISKw/IoaRYdlaktPHISAXJPS6JB9MPyw0ekk7qvvfam+4Ej1VdP96n1kan+v87li4kJERN57mS6xXw2aNcizW11XNSmCBj1cUcXcKOti7WvJMjG8ktKDVMZoqYpLMkK+4pl8ygUwOVSGs92sSNwOp01qPOcsiU458qiSBslR/KUwg7fnIsV+tMOncbik5rKqIPaRmYBGPBGUsBQwKGgFgJaCp6NSYRJ9VUs1uV7emY2v6OJmfAkSEIYbrGTPrkoprrGUAw3AM17tbCghxKFIYS5a3IoSRCK5IYihViJRArtiSV/VzOheyK0ExnDk8DyT4yEXdML6nuO9HjNDoV2zkJf69S2GO4DgyDiCuzZTt5QBdl5dxYR+2GeISwtGAMAeksSp3a7gmpLjodWD19OrsUUImCTgVUYhAbBmpsIojA2nTjKVUcQWcRdJpDuSo/rvSdhSR/kMFjks31NJhMpk5jiYSAhq1KZqEk7aIUAlISJLELspgTpBSISQIw0CQQS1l7h68OufBTLpBKAWkkTG4glexys/rEowokfdKOKHpIFgk8HPNMVNl6HLagdIBMIsmAlOFkYSkFBKw12ViS66dMxJUz1bKu6uQTHKj8OlwnhQUlwN02SAKiLlvCVcNxYxGdZcnwMdqUwOgKBoQJOhxLDF2uuYdjaopeeC7pwlURUYaQGL65uSdzpV2ZuhxSCeQjAirOoWO2YGUcW8s2g2rbWpqZtSZtctJkuPgmIuvq9TQTxLk1nTgLUgIgARgSEIJjjYbYcuT8GoZiMed1WpJfdnf5InHHQEntB/C7pJmwZF2qjB9iUs1q7eduBVByucaqnJTjpmELyqEk8rBsRwqxlDxXFph2EnC/6cK9PUhp08mQBpLjkMk4JZN9Wjc0nUJAErozB4Eio1C5zguudBu3TQeEBNlsubpuGRQUJi9Ky2mfTEPG2EzWYs4u1gKQmXaALEqKhZ/CgVITkBCA1BUKiJArbqTMVqRA3skgk6io5mPHYFKecsk6V65uEgoJbGjX00w5nhMpLOrILQsI2IxSsDUZKwtEDe9uLQMTaENBGQMlCMrAW2PhlESENNdILBwdKMNar2EBgmp2rYOmDEy7+v9TgDJ0r4awbEcKbft+pARaESfvSJfdKmtzhaZFGkg2ss6JqzISjjlzwrcJdstoB0oOkIBIcdxOyJ6ArAoZA1OpnsN99ziGqK0VGU4OkA6SWcWSBPgHL+06TRw/asPFKq2ryg4N0bFmMLbd2DXDLlfnDnbu1kLpNYZlI1MjQghIIhjBblVD5MHoXsMtCwtHAowABAkoyZ1APCghIQUXNnevlSBkgiA1IMO5ENblaXxHkAKMpgTF0dx0VekZpGJPnRs3qgzvSCLl4ciAZCC2LCTbSrKr1VqRkXW1CiEgITw4p0saSDayzgihAKQDTlipRAoBDUDYEl5KCgal67/ogMmjnGHLjASNj7ltVV8dgnGPxRhIsoUDyLtY3WSAWmtSCZ4MhDeHlSagk9uhITwcRMYaph3ZmGgOFZS9Q6Vc3dp0tTYyttSNmQzfc255D01iUCq3owSIBCDJJucwKJ1nVQkJpQmZMJw0IwBp2GsREyGTXHggVgzLoaSwFqtQTHPdE5B5jw8R1l7ttiYVlBTBcA8Go4tBtiOFSAm0lQWlA2ak2IqU/L2otTAUpIFkI+uEOEAWVUioJjbJC4LA/etM0ZJNSe63yBV4AlgKLi5OUvkej0JKBmZVh2BYRZiN6mGpg/5/tj5n6HIF+D0lhJ1bF5K9CSrB63SmoRLpj2syDdJRUTDdF04PGjqb8SftNDJ9Uk1SlUDJmuRksxrrMgClIECDoOygEICQKM5eVYKvMykIMQlkmq+lmIBMGq7WIznzNTMGWrH12Y4ktLHrSjVeo1LXEADBvP4aU/YBU1Vg6SxJJRnOUogiQcdajS2b+crAtACVksFoh7S4ggIuNjldCTwNJKdYZmLCwLqmUwhIX7OSylYkAGjYFHTBwDTET56AgJQSQkZc29RoHiohc25OLHO2IF09VFc8XKlSYee6Is+uIo6x1XEKq7GAZbFs9bSAdLdOTXxzTA2vjzTZoSEGOtMwOrLu3QCOrtiAG98J+ObOgsy0WpTr2vW0NsXFGV2ooA6MSggQWY+IdbMyRNnvSiDej/hhiwf78zZKmBIstYcjIZO8fYskMm28R4bbaklkxi2HNWK7C6P3c7lWAamCmKJ0xQFs1mqkhC8YwNCUFpbCW5luGEgBxuk/qxs0JKfjRjLeUzodP+51TScHyMyUe+65xB3HSSFgbxB8vNBNBWNT4i0UBUUll6uIEpDscKNj2/iYrUvb7zGoelOVutqsxulN9e7WwrawLmFRxCcdcEMLNUwa4v8ZWLWVDiEl3cb4bidD1rXrqU6mUqc6N6uPTaIMSiVsQhrK8ISFJSRx8XGChaWwD4v8WgrJrlhpgWfhaIigI062yYyBjiSMCdpr2UzWMjitp6QSU+9VHSgEWFigPOwNGYJRyqKiTgjGWAUWpCx3BHHZrZPQLnVg2aAhOeiPYjqfShudyhICMrQmXb+9StIo62t/YGQIJPjJG3ZMWSQjUMR1TgsrMoKIIogoAeLMAxK+1yO7ZIUHpfCTKy03/s/lvq3C8oytG9an3QfuXFcs3cETKLJwS1JxtzbX02AyHTq5xyIHTQdKoHC9Aihg6axIKtbxUBF3/aMAJJG1UPl1JHnYCBHQjuB7ThoDaJK+mLoDpfu/3esCOFZIXx2f7JedNRkM/FfCVc4pKgLFSnjXK7+W9uEW3oJ0gHTr5FqwJjdoSA4iFMyn6tS4/zGeH6qbr686OSsxDwDJMRKGozbuxtAtEnZYpOCbT+m3LRmUiBJ7h8kBkwAmZzhGMUSUQMQ8l7Yzh7Q9H32T5IrrVdZYmKG4G021oEB5m2Ie23UlII4lPazJsWRDuJ76/Y/p0MmDEQUoAZu4BS4GgIq7tQpLACU3rEI3MAHUQjSSstSzsrASKYBnGZYAgkIYxY9orDqzvsB6MG6SXwdFyy30HBhdjFHZcIkDYghIP0ZS2KIF4zwHE5UGkmNI4RQbv4T79TvGINtsSDoBZUDm9gecmQKOfhgIiided+MREDBubJm0STyBc11ICeWsSJUAmuciybkWqgNlFEPECYTs+LqpKomgO9ziSiUKuc1GBTSX4NKcRFFFpkvWqZPCkuz/PYXANBVounjkRGR9v55mgk5AGZTu/9bC0v4zl3RGZDOhqQxH956xXgn3YMmHEN7TYuzrsNkzlOj6/bh/7a7SEKRANVwAVJ/bqiH7wpK0kHRVeVBA0VXRcUM9hYtfwsESPqYp7DEkypbrVEsDSdRf+OG6NXGvhMtjPbmG6zd0nTTBAzKz7p9cdyfuhE/FAGz5KrJxPr5RGBEemX+MUjlr0gBRwn0mZeTByKDkKWontmZqzA2SkwgqUZCdnAuUx5yNqjPrIhLCZ6pyrLH4fHUWpM9ynULZ0K+nta2TEw9FKh/L3/RFAUAFfiB0G9ZBEwIg76aFf7/0GiEo7Xs+VBEC10IR7nWhYeiNGXSgUWjr+QdYO3dADNc7MLqcApeEF+YYuP2mUxpIov7Cn4zTUP3BjXXMsX6MG4JO7gedWxcrg7KwIsPms85NBBRDKwB+oo2lhJHWQpNFzCaUlrKQNBoUsdvVWZMiS7kjSNqBTGLvcnVzlSjIWEGo3MclXc1KZcemOfgxAOttEBX84B0o64ApwuShmixbobqHrJTeH3DdeGWmX08zRaeq1FlCHo7BexReH24buyo07EKjrlhfFCcIPTTuvQKmbpseUKwwcSK50zI4tgelA6TbxkLRvedA6fYJwSowfdZkA8kplPGew+k45zNZJwfI1LtZKXC5MiRTbZBp8u7Xui7pnDVHPjmAlLQDnan0P4UQSFTCLaZseylhcoikDZEzJGXShskzRO1RrtnaGeVC43EEleRQiYLJtO8JSYa8yzUOfsmpqzVWI24MmFsGwLUvbWJQnci6ogc1YzunWmby9TRV20/VsasPR3VXS3kbgZrLv7Jf2coECovRSfXhsQTfmhABTdI3VrakayDqX9uHX9G933TIBg3JsZ6H1iT+MBnxlMk87prsO5065QEcU80gTDUh05y6ntl1PM6ryMYLpZRabjgW2I6UT60vxEBGElHEiTuIEt9Nw0FSpEMQeQbV7kB2Uqh2CyrLeTmRiNoR94NMDFSmQVohTjW0dVVpO6g7sdV/qq5XPw4MwbIUwZAT28BWiZI1WXzYChgrpfY29OtpsvZbE53qDzh2IlbX/6vZZ8zHInc9jGVa9yjR2AuIvYZKjt/G7C11/3k6Y5FONmhIjvV9r8n5mOi+G6pOLg6pCQUIA0CO5gYdbZBp4yEZWpJh4o5r0hpLB0k+pit1FYoUBKEiqLjNZd1stqtoDzMk28MQeQqRthEPF62ydNv2lEwN4qGo6BupCZGO0O7kQG4YiqaITVaHVCrBQz8cSJUohpWoWDEcXbusMLs2yLAVfSzIDfV6muz9JuXe3K8BeJ9tahuH12U7jwXe8VZjErLn55b2/e43Kg9pddsMuq7fekyfRblBQ3IiMtlPlO54a+PpeazjTbdODoq5AXJdAHJ1pkuQHM1NUV7LDoB2wvUdha/uERuJTBNakSxiL1T88KTm6iVtlYBiY4eE2LZTbRufTDsQ7VmQeQbVTqGyHGoogcpyxFkOCsYxMix5nGNiFVOCXcgSosulJu37iR1DFisBGcsCjpKXZQhKO2ZTKFnclAJQ1t6YxiHry/U0yPGmTacQUD2WSzA0/bcXoRt0gGMPDN9xSte1Fr4OIest2uJ9H2+tvifDbWT9Nmt4jY9HGkiOUyb76aVfwsB4jzFZMt06OSsy99aj4bikBWQIydG8sCarJbScuJRxruBh0FJByS0ChmOCc1RJkE8KaEVtHg5iu2iIJGdLMksZlvkw4llsQZrhIV8FJ+wK4gDppcNtr5QQvo5rKCqwIhPJw0qqEycIMTCdBelhGRRld7Vn11TW9etpPMebFp3qYOVhF/Qv7bkNda/vdZzq8fpBdQArdiwRvSDp29RVQCiD90VlOXhNQhSQdV18XCP1aQQk0ECykbUsDpDOamRQAqN5AUgHyVFt0MmNj09W+90B5Q4EiSLERlhLsqijWsQwFVwBMMAm8iTD/iZERkO0c8g840zXLAWGZiG2nThKvR19RZyoq0ydtO2z2OVqY5UUZsDyPIoVVKygElmyJqUSUK6YgZKQScSuVldrNuxeMs03kEbGIXVgqxamD6HWA4olIJpwff0+ogaqVXh2jbMdtDBF4MFwGdYhGD3kgt6uvrFAAENI1+e1eK/o/WoAsuukLB4Ep6mYfwPJRta6ODdrGiTrjObGA3IkM+jk2kPSdVAfrYEkUIAybMuTGYlMc71KEwc/bKEgwW20pLCJPMlwEJ/MC7drnkIYA5VniNK86DNpTOFyranjKqSAzFwvSFfNxGWz2hhqUgCS52xBqkTychJBxTxJWbhahZQQrtVXOH6sgeXMkJ5wqgCyCscK7LrAGEKxDohUbOMBaPuO+v9rNAgor7PrvfpjFKnwQ48cLKtxcvsAJ+zDnFSqAKMHpQWijIAAmiQj3kZGgCCGJSIIueYhhfFIA8lG1qpkJqisYwHZyXUJkKszjU7OoBxJNVan2ve7c9ZkKK4L+kjQ4DWNJGYlEQzVZeYpCOEKoxsMRRFE3PLxSZftKrIU0hhQniKelZZaVxltkOjyk60bO5krAZMQdKpBhhAFIPXjK5X02bIOmPFQ5IEppLRjNGMPTOE6ljirsuq2amRmSR9A1lqBDo59wNgTihaIrr6vB6HRJWjCNu32rwGvGw1oTYoKIF1/Vr/OtqHzwIwSD04RJwEYo2JuJCANoCLbsSeCsH1huSr89FiRQAPJgWTS078nQdYXnTQVbtbUW5DGu1gLWGq82MmR5gYjaV5rSWpDJXcrW5IGaa4xlESc5NMqX/IuE5YzY12BZYKM2pAmcLsOzYY0BsZoSDs8JPatq0ypK0dVhBIwmYFUAkY79xb595xb1QExakeIhiLIWCEaiqDaCaJ2UtSPdUk7UVx2t64BHNeX62mqZUI6VZNzegGyznoMAWl0LRyFA5/RMA58eVqGYgjE6rLWRW1gU9Oj1K7vkjCrOrQgZdBizsJR2GtVSMXVrJSdpx3AlYFUmo9JBiQjTqwiA6FsL1g2IZuY5NqWuqy38f4opiMTb33QKTVuXGRRgq6TG4zmGh1dAHLlaI7VqcbKToaRlOHpXK5ho1gnRTd0drW2Imm3j2wXke4EGtbf1o3MufZqK24DJvduVzmkQblN4skySKMRm+4WVok7nh3jmKsMWhnIWNrYJQ8XKSroWEhaCzIaiqASaS3JotKPSmL/mmvK8s3HJ/AAhStris/dTLyeZqJOxcFqkmQcIOvWh1nWAUSFybvgSEaD8qwAXJ4V1qRd78Gpe1iXwTJQuFndw19dgf1Sr1U/rld1uVi91RjFIKW4LV0UF8CMEyAqaiYj4ocAIsPWo5AQwoBMzudDyHKcdYqlgWQgg/wY6n6I1XVT8UNd33QiWDdrUDCgcLMajATzFzs5RtIcKzu5dbUWkExtnC8UZx06SKaRDLqsG+SGgOHq9pwVK4WEBHFBZSGRJMN8A9EMS9mexUk8wc0nCixJN08AWwAgZ1jGGibTtXFLZ03KwJL02a3tpABlHPHQkzjydWVLyTsDuFrX1+tpRupUuYn3HHLR5TKtca+aPLAsc3arZmkBxRCO4WujgcyGBkLr0kHVNfB28fXKA1/VQ+JeV/uqiurYXcXjedn7oXyPVkQxNwyIYlDMTQTgmgrECZAYCBNDxFR8n0IGluT0wdFJA8lAwgu+11PpoOsmS9ZXnTJrPaau9JwmrM5MycW6Ks1LgORlhmQn0zA5A5KoPOxCSAEhBNJIQkUSiZIly9PLcLk5rBQCkRQQghN5BAxUFEEkQwAZGDKQJocwGkJrnhuN2OjSzUQoiaxUMUdAJxI6Vb7oAMAu17AnpQNlPBR5QEbtBGooQdRueZerTPhmA3uTcdakCQFZV7Zuks7dZMsGpZMpxw9rAVl93wHSWZF5XrYe8wyUpQX8QjhWgWlBarLcQ9HYsb6kubtMCMcCmL3jk+zJKODoGpWHmdjKzmUStKPLM76OW9aCrcRG/QO14L53wuTWiqRay3aqpIFkD5lpsRBg/dHJWZG5TdZJbUWd0TwYE5kb72J1gFzZyTGSaeSphtYGOudaqUTlGq7SQtJoiTwT0LEquWWriT5uHzccw2W8SiEhBUG58ZOGb06CDA8LMS4OVLhYS8dUEnknhVQpdKqhY10qOgDAN2zmG4nLbuU4pEqiMiCTCFE74dqyQSsvSNWVSj+IrC/X01TLGuk0DqunFIN0+1aTc/K8AKONjXvrMU8LcGbB+3adSTNoV/zCznUASDIGOs18QhrQbU2GcArB6OblqlDKx9GVaw6Q5VBxBplY6zFpQxgDEcdA0uYDh/FPIfxwEBI2maexJKdfxhPLmEiljonEStZnnZwVmdkxkamPP/JYyNWZxspO3gXIVaM58lQjzzSMNtA5QWvjrUgyBOF61kkBpSRUJKBzBmqmuzNhoyBxh+c5J+QJ5QuVKwG07PhJH5+cRSCjObkHnHAXV562/cB/KSHjHCpxT+/kE3gABOMhpXerhhak8suJjd/EEK22jd84t2tUuFtrILk+X0/rkk69D2ZKy/VWJnkL0rlOuwDprMcAolU4mjQPXmc8NKkCy9D1WoJkxWMSLrsiFzJc9pZkzOGCOIIZSgpYGgMkpgxGwIcQhAsjyMg/MJD7vpqY5PTJeC7wiQTwwzjcoPutzzppYmsut1mtnaCaTpjJWgVk5iFpoLWByY2HZJclKQWMktBaQinyFufKXpakEFAyhxRArCRblChcr0pKRHHbJzgQGcjhuTCGEyikBWRix42VAJlE0J0U2hceMF03G7e9cq242gkn6liXa9ROoNotiKQNmbSL+E7E4CQhQVL1HD+2Pl9PY+2z1nUa62Yevt9VKad47ZJ0fCJOlg4MyBCOrhCGB2UATTLGF8gIwwLhQ11dXDJ80POAjCOIDluRJssh4wgmiWGMgYojUDtBBEAaXViRxQHt8BEJEUWcsCSjApDTKA0kJygTeXqcalfSuqCTJh6qwRmtbEWO2uEcnZzHQ7o45OqUx0WGgMxG2ZJ07laTc7m5akxSCoFcaqhIIooVtJYlq9MJZ8JKO7ewFK6OqoTSsNakwVCUQER5EZ8kAzk8B0BRt8eAk3ayoDqO7qQMPnuDci4rdxOqPnlzok4cWJMWkO1Z7J5qDdk5w5Kk8gOvXUmvyRhsvS5cT4PITNSp2NnUL4evAyuyPIyjkqFaA8i8k5YBmeXQada1zluZ1tOh0yI0AHSDMhQHSABQsbLWpIBKcggpYZIIMuPrmqz1S+2Wh3JkDBeJDJPQ0g5nykYJu5itJVmapkkaSE5Q1rvYyRRJVadwyIemshU5qg1GUo2RtLAgVzrrMQBknmnkqQniksGAaMBWoJGQUkBrtjKVliBT7pYRjql0ky+MrnhZIPIuVyUJypWtMzmIiAsNGA1pdAmUsVSQarVPYpD2aZraGjrLu78n6bIBi2IBPi5ZAmS7DMo4YUDKCFCBy3UKzt1MkPVOJ5ex2Uvq3nNu1mD4BmVZAc8eFqTujAaWZA5t5w6OOjW24EVQqD/obtMrWaaITQpIpaES28UmZWCqLPeWIxkDaid8zHbL78+/105xvChmS9mFE8J47TS3TW0g2ci0iW+FFWS0hlbkKltNZySYGI45slGNdDS3kLSu1lzD5JwGT3YgtbTjBYVUkFECkSuQiWDySuFxAKts/LJU7zWSiKXgno62aTNbmJIhKQSSuM3uLxcrssdzgJRKwUgJBQu/OILspHxzMgaqJrXeuVx9goONS4rYJupYQMr2LA9K2RoCqRikksLVKicXlI1MgowFwnA71GxXdbX61cHYxsDKJDsWMkzOMVneE5A61TxlGjotLEl2uRagBFA7fAlAKUNbpxaSiYFKJEgrD1kyRYqbURJaSYhOCoA9N5ASlPOwEBEl/jNVKwtNpzSQbGTapARIQ6XOHqPa+Go6DpQdZzVmprAgM8PZrWkHJk+hPST5h6PhnkwVRJ5CRQnIJKDE/TgLK05IgREpsLKTl6r0xFJCSW0tSvtaECLJblcVcf9JCiugtPkp14MS8GPDZNqBiqOSa6sXJF1ygxvm4WOQoYvVWpUhIKHYmiQheg7/aGQGiJQFB8kCrx9EXY1TpUChAyJMdKmWmdNF4o2LNeo08y7VEJDZCEPSjeGtLofFL1jlmiIcIShtHWKhBO+rlbdKe7lr3bVvshwqNqA8g8hSzn41bVsakhOZ3BGE9eJMh0zLr+mSSy7BDjvsgHa7jYULF+KHP/xh3+3vueceLFy4EO12GzvuuCMuu+yyrm0WL16MPffcE61WC3vuuSduuOGGqVK/r9Sf9rUrM1UnomIIhiH4/pAuFllnRRZwLAMyT0eQpyPQox07jfgpH1mFfGSV306nI8g6I2yJpsYfKxvNkTq3rh2D+WInx6o0Ryc3vm7s6kxzAXY3XEUTwylqgaK2n4vh2dx3cmgWg8zN27Mgh4cRzxpCPNxGPKuNqDLFs9r2vSHI4WHexx1raBa37HLHS9pA0mYdVAxECUglbEXaCiWTaUnO1OtppkmtTqX2T+VzUqqO1K+VlD9UWAauh8/RV8wpj3WkEJ7GeAuyGPphkI/kMNaa5GVjrUu3TiMbybumfET79/KOnfxy5td7i9UmsZUSiVKGtx/vaUzgVi7qzXZVKJoGmXJL8tprr8UHPvABXHLJJTj44IPx5S9/GccccwweeeQRbLvttl3bP/bYY3jNa16D0047DVdddRV+9KMf4T3veQ8233xznHjiiQCApUuX4uSTT8a5556L448/HjfccANOOukk3HvvvTjwwAMn/TP0C8z3i0dMZe3JdU0nQ0XpucwAnVz7BsqZIR+LdKDMtClij7lhuAWANHkKPdphN6u1JkMRUgWuJ44ZAkAuh/h9we5UqTTSSGIklXixkyOJJF7sSO92beUSo8ogjQwPF5GAMgSlbdm6igtIDlHJkuSJXUiUZ5ARp+6r2pR3WYx/dMUCAldrl4u1Akhagxqu69r1tE7oFPY/DK2eqjUZtJESfj9dXuf3VQCy/joGsUOGpS7VGA57oDoXqwlg6VyvzgLUqdXF1He5MZnhQv1agJSE0QSV8Gcy2iD2qguvuYxzaJuoZrIMJok8yMkW6SjNWQH+WgOLcjpEEE0tmg888EDst99+uPTSS/26PfbYA8cddxzOO++8ru0/9KEP4eabb8Yvf/lLv+7000/Hww8/jKVLlwIATj75ZKxYsQK33Xab3+boo4/GxhtvjGuuuabrmKOjoxgdHfWvV6xYgW222QZ/WL4cc+bOHdcPqlparbpvvx/RoNuP90e+LuikCViVcfHyVZnBC50cz49keGGU58+uSvHcylE8uzLFcytTrFyVIu1kGB3JMTqSIRvVyDqj0IEFafKUJ5e84J42bS1TaeOSMkqgWm1EyRBUMoS43ULcUkhaEZKhCK2hGK2hGPOGYmw6O8G84Ribzm5h4+EYs5MI81oR5rUjzGvHaEcCQ5HEUCTQjiQiyiHS1RDZCGQ6ApF3IPJRmJFVoLQDGh3heZiiX21NBJTqWxaVdBKIVrtwu7aG2Gq1gKQoAZy7VUYgVT9Wcn28nmaiTqjbPyxabudh2Tk/JtJW0/G1WTVXdoLJbR3XnCvtpB0e8jHa4eEfwWtKeXJZrbqT2vmof63T3K7PPAzzkTAmqdmCTEN4FnHJaglIJ1IWlaOcy1XaesRcZlEiaseIhhSidsxVpdoJ4mHnSRlC1E6QzB2GGh6GaA9DDs2CHJ4LMWsOl4NszwLFw6C4BYqH8cLIKLZ4yfZ44YUXMHfu3HGcufHJlLpb0zTFgw8+iCOPPLK0/sgjj8R9991Xu8/SpUu7tj/qqKPw05/+FFmW9d2m1zHPO+88zJs3z0/bbLONf696kQ8iPX8Qdt14jtXrGOuTTgBbkqGr1RcT0Fx/1ZWNG0k112N1xQLsMA+ep12A1HkKPToCk6UFNDOedF6s06OF6zVPcz/W0rlwc1vuzlmyq1NOJHJxU9eqy1UKcn0vSUacpq4S/vFa96usuEilc78OsQtVtofL01Dxvrce7bJs87G8ezdugeI24Fy9cdsD0yfuTNK5m4nX00zWiar7hw8tpcox4WtRfq/HJFRQLFwV4wgBlIdP9NO38nDmLEPfONzB0GW1VgCpCdz3NZg0gTv5WMiSKYaQcNasLixUOy8VKzBlCxfVh8hpLEFXJ1Pqbn3mmWegtcb8+fNL6+fPn4/ly5fX7rN8+fLa7fM8xzPPPIOtttqq5za9jnnWWWfhzDPP9K+dJRlK3Y+m7slykCfNQdwxgzy1ri86GeLxkD671cYiM82uVgZk0d3DVcjRDpbawOSZTdIx3sWqLRBddqtzubomxKIy5ENIBS0VZJ7C5Ap5qqEUj5/UmoupJ6nEcKIwkuYYThQ6uUErNxhV7BpuRwqZ4SzX3BAyIZBE7a5SYkCR7SqkAqUd706tZinyxra6iJRFVR1bfg6xdak6EFddrbYA9IZyPc1Enapgpep2oevVHS9IZiUJbpEoI5Dh8YWlij5kQMLY68eUoSgVhNQgN/heVSdVKm5RFZeUAxQuVQ/PCiC5g055f008RAoQ7scOlSh/HFLk3bk+y1VTKcGoXFTduld14GpdizIt2a1ClD8mEXWtG2v76vrxHLPVaqHVao1LZ2DN3TH99p3ocdZFnZy71bWocp0/smAYSKn1VR5U1MmNtyK9lRgAMhwC4v+f0R6UJT3tEzjvn0BG0v4f8v/HWZNDifLzTLM12coNWrlGJBUywXFJYWu8RlFiAVmuHCKEANJRvpnZjgelbETAP/3z4Om4VJe1K/4Y2azWuM1W4xSfu/HIhnyNj6UDAK5BWj1GL1ACEMi5XZSQ3F+RjO2oIdktb7S/rtw1D9uIWyoJY8fomgoYhXWLOpFKwmTuAbP+U1UBGbaaU0LY9fZbMQSpCUYaCC0gtOEKWH7MpQxqGBsPRjOgxegSoCajYMYgMqWQ3GyzzaCU6rLwnn766S5L0MmWW25Zu30URdh00037btPrmDNB+sVT1pZMh04EfrgkArThKTOhJclgLLW+0obDMtpA+/FVOpgHffQqE4ASHE2e+nXS7qfzFDJPQSYqW6xhC65gGo0M2roYttKOFJQgaCOgJbuOlbJu10qRagEALemtRESJT0YonQtnEbj2V7ZIQFf8MWrxsgXkhnY9jVemW6ceITsA8N1mXMFuP9ZWGAjN4zs8KB0YEehuE1ZElDB4bcNkGM0eh2AspZCZr+Lkxt+SNlDWvSm9lSlsHLGgtVuH3o0/SsKWZPnbNdoEw0AIPnvHSq8m5WHz535CfYysyZYpRXGSJFi4cCGWLFlSWr9kyRK84hWvqN3noIMO6tr+zjvvxP777484jvtu0+uYkyWTcVom+9TOdJ0McZUdZ0WGPSQNoat5svn/2/v6aFmuqs7f2edUdd/7SC6ER/ISDQEdJgESHZIMSWAW4csQZjIoKiGSeUYXE0UXQgwuJTODJKwlAZ2RpYCjsoAgxCHLQcZhwDhBA6OTBJAgH4KRYaIBSQIyyXv5eH2r6pwzf+yzzzlVXX1v34++7773aq/Vtz9udfXuqur61W9//Ha4iYQc31gowFvbLtSZurk2kK5zkykizCL5KrcO+dHVEAKuGhf8DZW4Ye6l9T72fDZBqB26zPKTWR+jLoFyzDnKkG+k8Z6px7S0ByhHqb1DWKMpU/4xA8hF77vDuY7tXt8ifRJczAHS99ysD7l5H96T5yl1UkySQiyuWObXo/QgGcCYEG0IYhOm4AuwIrxGGlQWrAMc1Ju6IVdWeFLpPrvJMHDKGKdMyNFb2JB5GHdd6+ZWg9B5nr/NfweLtIV/ytVXX439+/fj3HPPxQUXXIDf/d3fxT333INXvepVADhf+A//8A/4vd/7PQBcyfqOd7wDV199Na688krcfvvtePe7392qWn3ta1+L5zznOXjrW9+KH/zBH8Qf/dEf4eMf/zj+4i/+YtFfZ7BNmPO+xSJtGG0lLFIGIdsIiqGBOQPJnCnOAkix9jgf/rG1mWfOTBHnUcrn5cx2NbDb2vrIfGtL/H2IwVErhUZ5nkepy9D87BjQwMyBp6snBgEAFEJW8sOXog05GXpTpFykhFgHJZ1dbX2A2TVSDJQKrOSkMlapAO4PBKB8lr8EAO9bjFi5YppxOQs4DvmTtaAQzqTaQIdWEGGTWhR1nGvnEEMLh604XMqg6cKXanHb2d9Rb+44beVMdcrTdxZKtx2whYPky1/+cnznO9/Bm970Jtx7770488wz8bGPfQynnXYaAODee+/FPffcE5d/8pOfjI997GP4+Z//ebzzne/EKaecgt/8zd+MPZIA8KxnPQsf/OAH8R/+w3/AG97wBnzv934vbrrppoX0SA62dfMAHDw8PFzQbXUx/Nqe8yjTOlrv7wDkZs05OyX7KOLocu87/sitdg7O68iCG+dhnIJVDJY2fB+tiRlBOOFxWKwBbLoCFqUQnxdy5KyCWNiZWUQq1hkAcvea822AXKuzzvpUUyFwI2DJx0Eo3LFNu+LWgI8jcCEPygyqokSdSwUvozEMOLRpxmVYLIBmuGeJRLmQ1KmAxnHBjW+BXRco2yZMk7JxdTF0C3QeTx/LFDVgpyt041Dxw/Ab2BG++rM/+7P42Z/92d7/3XDDDVOvXXjhhbjzzjvXXOeP/uiP4kd/9Ee3w73BFmh5TtKF5L8L4VcXwq85GEkflgDWdhp1Qzg95maAZGLBFFlw4VUAxwCWgSEYXWbMoExVinIi7PbOCVDK7DxtEkCGkO0AkLvTukeoAGSecevipVL8IiEBZgssdQnvGt7ntoEMHhZhgVYhUA6UmcUMo3Mw46xydDy7gJFDoQVYrCAL6dsEcmQ9yDpoh6kqVwHIpOPKodxc1zUP4SpqV+DyZ2TKQ1LtLb/bvHVmB6UXB+3WBdtuKmIQ2ymfPNq9kQyUCSCBNpMUm9WwDKTwaWzzmAF83f/1XZ1O+dtz9W9DSFj8TUCfFSR5KY9nNskDn0s+oTUVA6UiKNVwmb40kue8NvzwY96JTADIdt/jsXw8bcR20idhkTlAyqHk+hhleEmKTxQ8fBcsQzWrVwTlAquUVp9wD1HjEaDs9EnmOsLzn+gb5ECpSMHWInUXKlYzsMxNQqxKqzAyS4qC8jmTeR6UUgFRNrAZ+W873Fq5yB6Jv0XaMQ2S28tT+m2jP9Sd+HHvpE9SpGBDPiWWkAc22Wd5uIbv9Zq3PpP/UShkaN/S1SkplT5nnYo5mzFgGRztSMEFlixFGZod4BNcLOcPx5t3UKozySAPucaCDR2KOcqWD8f68TSv7YRPPrvvAqSA41o5Sus9SAHKcyEpKWaZBJ5Mo8DDvmMoPoRf4/NQuY0QoWhru4biG2wcKJWWKnGbFfOECvBKRbCkgtCd4wqkgh9dEnShoUsdx2dRuLEIelZIlIFli0WKaEIGjizoXwKYzPmNtmbHNEhupM9pp65KjyafXDhZuAwY5fV1PzPPawi4ZXJzXrNYQB9IdtkmFSWoB1y10fzbCzquAAO0ntErJmZbJ0FmAd4rWMdN1ZFNCkB6x2fCMDjW+w5IsrOxYi9O9diGq+Wj6XhapG3tGJ8GSAFOYG1WGdmk4mNJeX7NOR/0fwNY6jIp9TQp/AoiqCYVhsmYtmhECSiJ4gk/Tp2Zuq9QH2rCMioCmw0gKWApvY5dI6mGLTXyiSAUwFLu4wi50qTPLkwASh3AUkdWGSfcHIa85DENkvNYfrW4yF5CbGD9R5pPPgu1zgqlCjARKajA7ohUBEki/vELO3TOggpmWV0xAaANkDrot5IpQUUBHdll+3O0oQjOeg6w5AsABQcpTFKhSKlT4q9NYJEq9sDNAslWpesmS9yP9uNpu2wrPgGdYh1MA+Q8jFLYJLzkJBWUCgwT+dg1vuhCziptxjIbacJMoBgZGQDSLLYP8NzGXJGnaxIOtYVFoxXPfCSuBrcRJFPNgCj2xHArpVYSXVIERl1SuNdZawoPGpfHIqjRqmyVWak9msQ7YQNIrmPzFTz3W/6+tdax0YbnI8GnvhPKLNMZMEXgUvk9McBl7Rta5N2ANJBWfJETQ2CQCSAzsDQFtCZoQyBD0CZ9dmkoG8TMj2mdUGxiC6lIySu02z8AbhafquSQcKsK4db+q+Vj+XjaTT7lJixyFkDmz+N7OmuxHpBZHzlAklJR8s2BQ7KamFUiY5V5rg7OhOONLy59iLq4wMoovFYEVR4VVHnyPkpbNAGwqgBiNraEUOHivEnpeZwCycA+JQcZAbLQATRNZI1xyHgATZiCL2BNGdWnYEz6vlnRzk5FGQaQxAz2k7222Z2hOo/Xu3LNXz8afGpCwc5ag210h7m1mJ0mWOOgLcG7ErqjquOaCjISy3WYpIRXJSdJRQldjiOrNKUGGf4MHcJNWhMKzaDYBsowIovU3A3VPrBMrbIfthS1wgFKQ3mflEMEFPMcVMeO9eNpt/gUgQ8pzJoDonXT4OhCWB6YkZ9ExigVg6YApu+ApVMKWhloAQ8p6iED2IpXEPLhqgOOMrrNmQI65udTuNMWBs2k4srUwvDkkLKBrTSoCGyykkHKbuYQ5lZFa84kA0DqgqeACIuMoVaTxBG6+cjDUbQDDCAJoP/Hsx1XKd0f3HrrXO8EcaT5JCEo7znf0jWRssrBKIU+FawlaEtwjYc3OgJl/OwAlN7ZKemoPNwqTNSUS+HeQGsFU+jIIoVRluFmAlAKWJLMn1TIHvd/exdkurxsv1jEA+S9AQyWmefyeMZJ4Fg/nnaDT/lRzBeAcnwnUGyxSfgUWZAK6Xx9ARSBVNRGCECp+J4ZZLj3gFY+XbBRyblvbaCaagpQlCIoY9LEEFMApojhV2UKUDmBDWzOFgZUFGgKA5pU0CWDpi4a+KUwyaOwmfaqsEm+l5xkXsUqeUkzLkGFgRmX0EsldFm0WKQqypZyUGSSlBSHUtHOztkAkgu0jf7gdyJ8sFt8EgZpAjjKfakJjSZYTdDaw2mCL+XUFBRswjQP7yyoKMKPNQNPnSpYuUAnhVhNqaG1QjEyMKWGKQim0DCFxrjQWCrTrTQaI0MoNUErhSIySTlBBdBEOtHNNMlDCqPMhASmWGT+Wr6KDW7jY+l42spnbHT5nEXGXHsARdv7OPVNCmAC2YVjhrwKKlS68otKcf+hDWDKINkFS0IhY9JsBTQ6PvaNDoySpey8KeELnkHqTQlvCmaVpgAVEwZHAcyygK1qUGHg6ga2akBFAzN2sHUThzIDaGmxSp5T5O5iSDUwSAFFAUwu4ElTb1QAcmXKtojA0SwmsFttvcTvZnMiW3nveu870nzqq+jL2RiHNjVKYyNzm5jAIK2Dnxp3NYJtClBTRhY5K9Sa2kAKaBPCqoYZpABkOTIwhUaZAeQoY5SlIRRahRtxszQpjgKBT2rT369/a/hMbWfqx56HWdfJR27Ejrbjaavr3uz7unlOYZHyfDZY5lWvDIzdHGX+C1HZM2GTeXuIVswqyfG9CWBpQ2i/MGMoMtweIj23tgIafqyMgTIFSx5WEzhTgIoAnqZEUUygi0kMvdq6iWCp6wauakLItWlN8QAQ1XpEWi5v69ABJAUg9XjUYpYMigXUaBw1ablvWHRsd15EQOyYBsl1L/4XuO7Nvu9I9UnAhDI2VuiU+8tBaVzomYo7qgEUKXhDsE2RyWi1w7CKqJXbpBBSNYWG1gRT8uNiZFAWGo8ZGyyVGsulPDZYLjXGRmOkCSNNKEhlN4onMU2Kc0hIkx7WNBEUyJ+vu/02Z0fr8bTd753Xp9TW0WaRkpOUEKsApO0BR4+8HSod491pGhTTEeGCLIAkucAivWIpRAK0AwwxWBZkYMowl7IpgMbAUwUVGKbSXMTmTAEyBfzqBL6cwFcT+EOPxBCsG5doJlW6rxq4uoazDrpu0pgr51ozKaP/mUiA5Dx1WUCPy5iTNOMg0l6OGSQji0yhVoR8axR532E7pkFyM7aVq9y11nc4rp7XW992r5cybUdSnJMsNWFkCJXRWC5ZVHyp1FHHNTdW7mC9Sec8TEE8lcp75LN4uCIWsQiIQhVri0kGNikh1seMTQsgjxsbLBUaY0MYG41CM6McB2ZpsiIeJVf3SsWTmZLHMzdGAErKhAS2wY7W42k3+CQ5ZmGROTCm11nCsAuQ1iVwjKpTAVdyUY26E98S0CRCuLDkOlhNgHKAJg/tFDR5FF5BO6AhD0MZWGrDYKlLeFtB1SEEqwvQaAmuPBQBUhimX51AVRPQuIabTKDHJVxgkjZjlN7abKByGyiFRVJo7cjDrTHUOh6nMOtoKbFIUwDGJPGArP0l33c7YQNIbtC2O6eyVsHARtexXbYdPgHtkJJYDpSFVqCmzSKXA0AulSIIEFozlAVZZoXOe7iGgbJPSk6pvMcyVLCaBJam0NCGsNQBSH5c8ONCY7ng0Gu6aRTEoMnVrqniVU5cpBQIElJeY+NkALmddrQeT4fbpwiCPrFIxNcylpiFWLsAWVsXwTEpN4X1ZBeEU4wyxFy1AqhxKLSKgNlkQNkoD6MVtFMoKAfLEmaUADLlKwsoWyewNGUAyEOJWdY1VDnh+aurk5ib9M4xUFoH1wm7trZzq82EWgAZGWQ5hhqNmUGOxm0WSWmEWCxG2uC+26oNIDnYtptHW/w4D0vqkIssSGE1C7kKONq+EKu0g4TByM46uMAie0OypEL6Iogs52wygGNpKIZXORcZ2GMIsY4NtUByudAYB9YrLDjdREash0WKuo53KR/psvvDkGMZbOPWFQ7oskh+3UeW6dcASBbKR0voH0AvYOYACYSLzEYuMNuASYrDrgV5NKEYriCeUlOQgqESepQBpC7bYEkaqhzDl+MElk0dmaUvx6Cmhm5q+LqCt1LA02aSci8FPLk2qw5FOrEwJwCkgKVU38KYFGIVBqkPD1wNIDnYQkyusMWUYtAgYsUP3TgUxOFLF3RQBSjFpC2kahwqzQORTcFDkmUGJDB9UlFBtSdX0ik1TTFWAUrJPzJAcv5RAHIcGKQAZKFVOOGEatfIJtt9lNzztgZAxg3FQCli1oPtPosgOINFAm0WKUU6AqwCkLVN7LG2Lj5OYJk+M4ZgQ6o9hl3DBRrZcPx1ALMggtUcdtUZWDbEOcuCFIwesyBBFyx1AaVXI8Pz5Rg+MEhfToCm5uc136OpQU0NhIHo3QIesZSX1FEsIILkKOUiVWj9oNFSEvrXSct4p4Ysd20AycF2zFRkYEChFUae4Dxf+Y6zIzHvmywN4VBlW4OQbZHE0bsydyKOrlW7KEjuRwEYGSBNBEthj8IcBRTltbHRMIQEjkrBrAGQqguQ+YljVoXrYLvOJMyas0h5XUxyke2KVwbLKIofcue1TewxPU4j5KLOcU8aIQdKKYArqAuYDgXxMWtIwdIGwdKUQL0K6AqqYJUryVlCGGQ1gRdwDICpnOPnM+a9pokeQTCgKLJeyILzkYFN5j2RESwP429lAMk5bLuLBrbDjhSfYo4uKIoUmlBYj4I8rOYBzCM//QOIINk4jAxhtXG9cx773if3Ao6jVgVtu80jB8ciLCvsUZhuqSmGrmJPZwD6brhVZwxSORaKTqOxuhss9ErugrDrkXI8HU6LYgA5e+xZLmeRLstBWo8WQNYRQDOg9H7NQQCS5xaBCx0ELiTcWmhCQQ4Tyxd6hQ69xyE/OS9YKlsx+GU5ywiQ4bEwSzjH99YmFpmDZRw4QIAOouUmA8msuhXGTOUivVJTI+N20gaQ7Fhf1dtGf6g7UYl3JPjEJew+5um0YvmtQisUTsF6hXFHYFnClzk4MoO0MwGycXwC4PerqVtpdATL2GZiKF5x5+AYX9MqskdmjRxajYICgVXKSUqHcDJc02aPfRM/uhaAUlF20l3gDMkj9XjaSZ9aIVasrT3cDbV2WSSvR8AwMUjrPZoeZinL99TBRJMisXj8WWaQq42LQLmqVbjYc6Eqe+Ng2cpZmhFUOYJqmhhu9YFdKmfhmxpKwLGbVgCiWLkIl0sVaxQQKEchtNphkXI7TDaAZGbz/ED7fojd1xZx8jjSfIqfGwsOslYJJ7mT9rJaKUwahMIeQmkcysAgVxvdC5DWOeiMheXgKNJyouQjORu5N1rFq21hjgKOpAQQwRWDqp89zgOOU4Lmsh2Vmh16zRR5huNpZ31aq7VgLf3VWZazSLmvXQJIzk+Ggp4QlhWwlGO9m6uXeymEY9DkPL8AptEKk4YBcrVpX/xtDiyrEJJtoGwAxrpKodcsP8kbqRN6FUbZk5sUBulFOUhYpEwCOYw2gGRm+Y9s1lXpvK9tlx2pPuUmAEkAFDiXx3+yZUhhVTmQ4hBsTQ7OE2rDJ446XJnOCrMCGUC2ThxSYJOAkcGQYjhVgLPUxEw2Y46zwDGGVrvgGEKsyvs2g+wBQwVqA2XAxUUW8Bypx9NO+7RdJrlIYZESWpVinS5A8v10xKTpOeZFyhHI0gtSPa5dPM5XQ1RGQrDyfDNgyQIFFfdcuobZpWsSYDob85MAeqfzxNwkaaggkcfVq22d1igkcJjk6MQGkJxhu/EHeCT5FIExMC2tFDzJRJDwrgCUWgHa8pSDmhTnagyFK22pfqV1ixq6+ZqCuMJVQqRdJhml5kJBkeQcJZzaus+Zo+QcbdNijREYBfTWykPG7UdpEki+DLDwE8ORdDztFgsZBJaLW4dN9kkySpg176/MAbLKcu/NOvl3YHqKznT0JIRhrcNIE1ZDQdqkcVg1GwdL2CYBpK3gbQDIDDDlt+CtDVGWnvyk1pxrzBR1WgPH5fEW5qpulw0giY2rbnRzJ9u5/qPFJzEFZnMe3CDtFABqA2XhFWryqB3f91X/AeitaM2rWYFUIl/oVNggj2OYlVSqtO3kGeVeoV2xGlmjC+DYB4ytEOs0QM5iiAqEKIHtwDFpYApQ43pw7B1PO+UTss+Ze/k535CDqg0FOjbkHnOAnC5Scy2gnBl6pTT/tJuDL4gw0e3QqzDKDYGlAYsSBDYJ1zBAuiYCJryD9w7KzLhgzMZd+VxJJwBki0Uept7I3A6/B7vANvJD2kxRgSy7kR/tke4TwOFVr1gyy9mUk4RTESg1AdYpkGJZLWuyfrJwdEpoqs+SbJe0X4RwKyGGnrqgSFibMao1gFFOAr09kLN6IdlBXi5MA+kCZgTKIILugZlM8lg8nnbKp/y9HnzR5QJzdFCA93EYslJAGNaRiUikklfK0DM/fvOLPJdVtOYAyYDZZpbzhl6FSR4iGR5AETAFICcN5yYn1iXQnBMstSj4SOjVNcwWdRPTD7BNqGaaEVXJpt3EvGPOKJWK4Hm4W6UGkNykbfaHt0jbbT7JSUP5cMXrgofkQV5gQUKZgPMK3gNjMy0AvXbfmGop3nCIN6s6jeCYwDBNVOhUqHoHeJtCqa5htuiaNijmBTrAzOIcIBToWGGFQTwAPeRD6bBe8AZZJ+x6rB1PwM761LeP5BpPZUDI1awKNiytsndS2OVaqSld1jxCkgNhDpACkpsJvXLrk42tTzlYLhW6HYK1tCGw5By/gS4Nh1hdw8DoLD/WgU3mv5U+E3CMw8mTcMDhbPvIbQDJTdpuzJ3sJp/EF2GTXhI5jq/EnWdAE3US7ZOcFwC48IPvG9YcJ4qED4lFQQHshDXGfCglQfX8fxsCRZtyLezYOrlHIP7AVbxq9gyYjjdM6ySsiPM4c7LJnbDddDyJLdSnHrbD6YI2myTv4zHtkANmIE9yDJJC7dqMsmt5m0eThVdzgFyvR9g6HwESSCB5iPJeYZspTmk8amwmpEGobRsslwuN2vrYJ9wVJRC5uwiWxkBpF3KVTfwd+Z5URHcbx3thlTISaxewSGAAycEWaFLcoBSgEUJRxGxRIYElAHivQlGPPJdH7dNibCmBareXIEzhCOBHHUBUyBr9Xc0VeFkOhV9v0pWvbabzjUD6P7AuOMp9Xp0Xw6pdoIyssYdN7oITxVFt6+xPpWgKKBU8dNh7MaXgUvRElhcGScRScTVCHr3DBvN8Y35rh1/7gVKiLLko+pRqFamMSdqgZJWENUSSsbaExmgW+cjYZQ6WLASShNQFLOPw55CrlFTFVP5+agPL7ySEWLU57BWtuQ0gOdhCTSm+8naKgQ3wgAI8coCMS88Y0qzCuuS5LJ3AUJhklIUDUnuGy5hgBooqy590AVH1XAFLxd6a31drADZVrCpiJpmFlBSZFlBKnrKXTaoBKBdqa1305L2qHaD0PoVdJTeplYJXPlwEcp5dcuQue5yHXTUB9YxrrW6ItQWUoZ1E9Iu982gAqPDjkHsihbJJilNVpj7Fo+ksSqOx2rg4/aZ2HrVjwKwN8WOnMdYeI8PasIUHD3vWCoVXneHPCloxu8wvPr2bsa3zi0o6/C0fXRtAcou22Qq6Rdpu8Kl75a3BoVOVXe32p/FmMUfE9ybmGJbOQS+/chVAnMUQ89ezq11vbVuHsmewc/vLJlUEH/q/WqXucg5AYI2uSUCJLLTaZZOg/pPJDttuOJ66ti0+zVORLMuFix2tCDbLsUvYVe6lgpsUJwo0cREZeSkoYwaWtyx1rS+cGoEyzFKVoeRT4+KyQ1RE/i05KFKomvaA86pxLbCsGoOq5HmutdWojQ+AGWT0AmDmWsYOHDIuiDu6dADLVBlOIF3yNqROoRswJckYAXIXAeUAknPYWj/ItX6oizy5HCk+CZjxExXzN/GfmeUnDZW9FoEQAm7t5v0WCxTgy3OIecO/T+9pgWFogHbyGEgN0TPYI7NGcTQ1SHvUUZ8yti4oB5BphVcViK+u+9ikAvuhd+ZEcaQcT2Jb9qkbNegK0MfwOJ/E88NWh8G/8UowFKPBMWPUJLn2ULVNBOdcDLlSiHZoUiAnVdbTHveFV51rz1IVoGS321edMnQcAEgTnIClJZQNtcBSJvBUjcVqY7BcOtSljoxSQrARMLN8pSGEGZoqgCSPQPcKsAoJLKVgLWfvagaj3CUACQwgOdcPKv9/vnzfe/PX1vrfRl870nwC2qAnv980F2/Gezvhr67MW84CW8Bnm2lAzBubgxrIFBiKjFZ4ntjj2mFVkOZtElVEiIFSy7SD8H6ygAvKIq6J/V/xROwzNtlzYogsM76QXXX3bPOj9XjaVp+6KklA+7iT5wBvb+s4ZE7tkLmWK8AAlE6xIIb3XEXt4OFdYpPa5S1KCSCpJ5fYNQmx5uzRNo4Z5YyJOLCpj1g1DtoQFCnYxsEaaoGl5D/zua7WedhSwxpEAXYJ86ah0R5jw78FB2aUiVWHtLpCKGaSdAilYrZZef1Z+27Ga4u0Yx4k1/rhzTJZtm95hY2ta9Y6jgafctP5m7xDPPN3w12zFGzyHKKbkVsUhpgBokwpiGDY1OF/PaCYMcbuTDwAPMUAYCAEAhjqCJCKwvpEbqupoEzJX9VaDr2Gk3MK4+k2Y8zBcxNX00fz8bQtPs3Q2G218OQA6W2SDvSUwBKI4VcBShdA00NYJYODEzZJgNXc1lRnIVcR9TekUAUXZoFlctFHgOTwa5tJutDP6eBDfpKXVYpnrEYWahIgLnUBUlpPSg/ndQTG7rBoABgbzYOoPWIY1oXrB0f8WBi2tGtxJfr2HOOLtGMeJMX6Nvys8OFm1tV9fTPM7EjxqXcdfvqKfVOgKOFU+V/DvVkiruzinLsqgWAOjDLOJw+zAi3m2Ks3CXB5OhDDqhEgI3sU4eYgvqcD2zQlfx4AyAlXwnkSWpVts4GTxrFyPG2bTwKQXcUkYJpJymtAp4UngCUAHxklA6UDYp4S5GNLkxNJRs2TbxxRq0KUHEvIVeSmwLELlDkwAmgBpPPtQh4HMEBavvcuDCQn/r8lB20JThOs1y2gzNtRUrGQbo3yEuPB0cAo02P2HoAOWz8WJ0gLFIO17Oe8EG+tfXq4cuMDSK5h20nz5wKSOeyI86kDjnMDYzd86rLeK2GKYVSPgOLUNIK6nso5+m6YFYgT1dnN9FiYo9Jy32aOIB0LdZQp4HVoCjCAapDCsc7CO0qAK2xyk2yxbzsfM8fTZm0WQHaKd3rDf1mujCuVfWSSvI8TUEaPhUlK2BVAAQoMLI2Ka4hgyaNWKoY9ucDGTTFLATspzmE22AbIPEfJ35sfUwBxRQpacy5cwNKbkOssE1DOtUl936u8rVzoDfWEdhVf2JsanMNsVQzL5k5bcVuOp63aAJI7ZFsNVy7CdsynLkCuUWzTYoxdYGxqOBnymg197U5J7wuzessl6M66+LgFjp3hfQkYwz0RlCaQJigiUFkkwDQlvykAbARKRwkgHYOl8joxx65tAjCPyeNpI5ZffDl5PIe0YNdyVRhpzyHN79NclKXJtIGyB+4l7JoPHS88oXAezjObZLDkgpqcWWqlMCtT3lftmodffTjolFPwzrfA0nsPEgZq+L6vaChW3Y4TbPRHhAnQXNHLrBFoMcpQ5U5+Gihbm3yNLbmTNoDkBmw7dtR27+xd7VNfBaHrYYh5D2MGjgjDXX023LUFjAE4c1bp6wreOti6ScBY8WMnrRw2AeRauUelKYKkLgyU5tCUIoJ2LoJlPBWRba/DaZ6EENgk1/ytt/HaQgTxcQdAfefxdu3DXX08bdR6xpjNLPwCUoSj1wkOseYao8ozOObb38wASuc5P1lornodeWaVY01wjjVRnW6zSXmc3xSp2NrRV1vms5Brl1ESJQk95QJoeoUgtocmvH8t06SgK9t6LkZSmOMATVwNC1JcwBq0milsBxv+Nw9nPdwXXANIDrYz1gVIAUNhjz3giKaGryYplCoAKYwxA0ZXN7BVAxfAMYJkZI2WWWTGILvsEWgzSEWBOWoNVzVQmiJYeudABf98CGjlHmGJ/SXNbDKYd3auH3wUIiBqV7yKMknfe3D4Tya7xroXZz3tQF12CaB/Bmjc/pbBMbwmYvVciGX4nhy8djC6BEgh7S3V6gn24RgTcfPCEcaegbTUHtb4yCal6lQYJVECSC7C8RnGZ4U7mdCAmICsACaQql8FKLuWK/doUjhUNel/SmGiHEgpkPipuO1FK8cKPZ61m8lzDpKfq1AFDHgk/ebdagttRnnggQewf/9+rKysYGVlBfv378eDDz44c/m6rvFLv/RLOOuss7Bnzx6ccsop+PEf/3F885vfbC333Oc+lw+Q7HbZZZct8qsMtgWL8xfXAUhla6BaZWCcPAp36BG4Q4/ATx6Ff+Qg3CMH4R55CO7Rg3APPYjm4AFUDx7E6oMPY/WBh7H64MOoDj6K1QcfQnXwEaw++BDfHniIlwnLVQcf5dtD6VY/MmndmnDj54fQTFZhJ6toJhVs3cAFQObHGYA7m9jpHO0kXOTRDuXxRuv0jIX8l0eoGOzcgH7wPOYsB0g7HaUQcGyFX71P/5fj01bhmKygbJh0YSsoW/OtqYEm/K/1Oj83cEHjlIeMl1oeh5mPYa7jyLAsnNEqPKfQ4K+nRMmlQV+RCmH/1AeZP56xOWL+UsKyzjpY6+AavrdNeK3hW20dDlU23h6tbNSUXW0cKutCz6RDY0V4wMVeysbxmDvvGaClmYnB8cixhTLJV7ziFfjGN76Bm2++GQDwUz/1U9i/fz8+8pGP9C7/6KOP4s4778Qb3vAGfP/3fz8eeOABXHXVVXjJS16Cv/zLv2wte+WVV+JNb3pTfL60tLS4LzLY5iz2AWaWhb8iQNoKylm41UNt9lhNwuPwWlPBr04ia7QtwKrj4264NWeUroc9ilE3/xhYI2ni95f9Pxf+v4RVXWgvCeHVGdMPeqW3ZslzqdTMPgsQZxU/HDPWF9qPjHEd5aX8fTNyk5xWS/vHSxGP9yG+6CKrBABox4OKo5rMNNcfG82Hi4CW4wZ9qSCVnsXSODTOp/BrCKlSVrEqwyqVDBNYYzOJPw6BPyoPNPIPglIMlq5RsKRauVF+bLPHittZnIPxCrX1IOU4fOw5tOs8WsMMku7tkWELA8mvfOUruPnmm3HHHXfgvPPOAwC8613vwgUXXIC77roLp59++tR7VlZWcMstt7Ree/vb345nPvOZuOeee/DEJz4xvr68vIx9+/Ytyv1ts90YBjssPnULJcKJi6/qbco3VhP41QCOq4fgqkl83U5Wp8CxmazChce2TuFWVzehSMfDWc+vWSlo6JwAw4mMtAqgqKC0AtUNqDDwhYGzDnpGeNZWDQNrgTVzj7G6tYcldkWeuwCZg2NfVaGcJ6Wkfif38WE/xjcCkGspMXXbQoBYAd3V5I16vAKMzgLUwJsyVi4rAJoMKA4OTlvKe4ay5Z5KUut4lmpqyXCpsT/kJp3hYhvnPLSRvCKAxsF7DvVyeDV8/ew7kVIBLKVNJIizOw+vPKxlZR5rHVSjYJVqCa6ztB0/Lg2hth4FeTTWw1IYmO48ivAdfet7Y+pg6SptHfbjqWMLA8nbb78dKysrESAB4Pzzz8fKygpuu+22XpDsswMHDkAphcc+9rGt12+88UZ84AMfwEknnYQXv/jFeOMb34jjjjuudx2rq6tYXV2Nzw8ePAhgZyj/Rnf2ThwgO+5TpmqSn8QkB9lijR2AlNeaSQU7qQIwVnB1zfcZOMpjW7nAJm0GkqGYoQfoOO+oIjhyLlJBlzqCIwUWmbeDRIaqg3hzH0BKu4hsy2yYbCvUms3Ri2OCQlGI821w7CuucGEPdcESOAqPp9bK1gDIjCnmQNgrROGTbq/0yeb9sj6k4pLCkmbgDADMhTxB0NsErVLvufLVAKU2QXvYhW8vOcAgGh7Ua7hFRMLo/FlTCjjhsTe52o4FOQVPoSiHEHojQwuI6h8ewN/TQ2le1pGPFbBy6867FPm6qP+qKSry8D2CT+w7KZVG4s3Y8X2SlLvFFgaS9913H0488cSp10888UTcd999c61jMpng9a9/PV7xilfg+OOPj69ffvnlePKTn4x9+/bhS1/6Eq655hp8/vOfn2KhYtdffz2uu+66qdfn3Rk7eWVzTPjUuWp3obeRC3T41geQ6X41A0thlDVsZSMw2spFJslh1sAibftEIeAIMKPUpYbSDrokOOuhSw2gif93NRfweGvhiXqLf3pNxAY6LFHAMD0O09kzBhnvve8prZBt6pk9eMS5mn1l9TPfjiPweMrDo53XWwDZM+2lBY7SJtTpo+VVtYUlPGp+Ij2ypkxg6R3gDYOj6QwdNiVKXSKBYwaUBsAadZ5dBZyojNMRDwAcnFfQhmAbF3sjEeTxcvm7qU3WoXgiWCC33hFdch/AXR4DHEK2tD4N4dFi4fG6Sx8e2zBIXnvttb2Ak9tnPvMZAGhNfBATaaT1rK5rXHbZZXDO4bd+67da/7vyyivj4zPPPBNPecpTcO655+LOO+/E2WefPbWua665BldffXV8fvDgQZx66qnr+gAktrnIk8hG80hHnE8UdKp6rvAlzCoiAL6p4VdDiHUGQNpDVQTIZlLBVg62smgmTQBIm7FIF4GxW+0H8NU2AyVBaR+qVjW89dBlFqLSLgIkWQZgWq+joyVbx1WyLYDMAbETZvWK4lV5Do5CBrrhM4B7zFnsxUewlP2x1pX6bj+exFrv7VShtlik/D+/uenq1hZA5n21s5SYMoAEat6vTQ1vChaUKEoOueoy9U9mn+WBXqB0cHAaGHuKFa/CzPimZwLUIQCoEPsbvQMsXCji4c8RoJzX+HeiWs/7Pj9/Ln4Docq2B/NZhi4dr/x4/gu5lo8b+kZbsw2D5Ktf/ep1K0mf9KQn4Qtf+ALuv//+qf99+9vfxkknnbTm++u6xqWXXoq7774bf/Znf9ZikX129tlnoygKfPWrX+0FydFohNFotOY6ZtlWYuT5+9Zax0abZo8on8jwiam7vJw4wkmJZeRs6n1samaJAoQdgOTndQRHAUpbW9jKBgbpW3nJPov5R02ggmJ5PgAoq3jaulVwNpT4520lM4pyIjiCw7KK+NYKtZJOABnCrF4bvg/jmHL2yOGq/pIMuXrn06JqgaWEYXOw7ALPbjueZp385vKxL8waXu+GXrsAOaXz2xmVFk2KcUTQvqkBU8A7y8zSOz7ufcYmM/9KMwZAoDASx8Vv1d9s4DyHWVkqjteVg5Uzvv9E3nBpDreJtKeF5PMmgTahUeugVtPTWrKedXmRQHiXRW7keNop5rlhkNy7dy/27t277nIXXHABDhw4gE9/+tN45jOfCQD41Kc+hQMHDuBZz3rWzPcJQH71q1/Frbfeisc//vHrftZf//Vfo65rnHzyyfN/kcz6dkb+2mZ3huo8Xu9qOn/9qPYpnDSU9yGX58JJqi0zZ6sG9lAVC3S6AFkfauBqG+9zoMxzkdwf2c8ifchHet0fjiWt4CjkNOdkjiqTqouvFSU8mXDTgDatUGsfQNogGC3gmHKS0x8tJyEPz/vBA14pKPjAJ1RvvnKjDG/qczuPN3s8bYoV5ODTN9BX7l0Czlz3tw8g48XaPBNh8khBELSAYcCk0VIGzD75Ex6XuozV1O0exTZQcp6vv7gnv59g+mROSoXWDsciOJKj7IBgd1DzRm2WELvO5r8mnxKblLRA9xjKH2/1+NwOW1hO8qlPfSouvvhiXHnllfid3/kdANwCcskll7SKds444wxcf/31eOlLX4qmafCjP/qjuPPOO/E//sf/gLU25i9POOEElGWJr33ta7jxxhvxL//lv8TevXvx5S9/Ga973evwjGc8A89+9rM35WvfDtiOndIFlXmuoNcCnCPVJy9qJXnLQzhJAchCXIFVZiySi3LqVoEOF+fYFkDyPYOkCyFX7xJI9hlp4qtqq4BSA5WNxTrKcqO2sx5UoJeJRmUeYuEBCauy4DnFE6gyBY8PIgZCaNMu1ukAJPeU8X3KR7ZDrFMnDx9Oij6FsZz3ILCGKALg5vlKYBos592nuR+bOZ76wqlis6p3+z4PQO+w5Jlh17xIpzMpRgBSLtTWBcoMJH1T80VRAEvnHJQpoMoAyq5s5ymNgynG2bzQfqCcEQDptS5QWitMUsUZlEqrVuFXHGROof9SsQC6qPoADJ45EJoeUMzznSJ4ACQAJfBxKRdocox2baPH007YQvskb7zxRrzmNa/BRRddBAB4yUtegne84x2tZe666y4cOHAAAPCNb3wD//2//3cAwD/7Z/+stdytt96K5z73uSjLEn/6p3+K3/iN38DDDz+MU089Ff/qX/0rvPGNb4TWs5Pfh8M2uoN34oA4LD6tNUQ1D23ZbN6jTaHNWL0aQq/NoQbNpOkFSFu5Vj6Sx/rwR1nv49UtAGhnQZarWG1lgVJDhfJ3YY5S+NNNsnSl61ihh8OqPHC5hCrKeC8AGcOsuowA6TsAaQMg2gwccybZZ8wSfQq5BrD0CIonisEyD8H2gSUwDVxrHQNzXSSt8xxY+7vJ/1sn1RnzCPP2jV7wFB9sujDrA8gIlDI1BpgGyu4UmBAJEbD0poCSEGzRAepgXaAM5VqYFXqdZVERJ0gjKlJQjYIjFgmQ6lapWG1tsxZAqgiY8jgHPN15PC1Ll9RziCQsGlgjwmeEb6dVzwXPhr71zthCQfKEE07ABz7wgTWXya9qnvSkJ62rHXjqqafik5/85Lb4t95F2lYKGbYjx7Od693Ke7fs0zyTxl1qo/DWTrFIZ0WD1Ye8o0tVrB2AtJWN4Gi9b12NS/6Of8iMEpRVvs4Kq8YKWJ0JneePizKAY8EnyXCvTBGBscUaSQMmhWBzgOSS+zY4eo+oWNK7D7yaCrkSuLqxyypJCiyQwl19YBm20IZtHvLTBcX13iM+9vWAcqRiBiB2Q61dFhmB0ibpQ8mNr1PII4O3ZXSaJw1VFLxfBSybGijHDJalTH/xLcA0xRhKmyxvRyA40JyC991wZ6UUqtpCKQVHCkqxoo5yCl55QPcXfilS0CZpw8rsSa3UlDydfK6oAMlNXNGKw615cY4mvnCbNStzK+e2Rdoxrd263g7Zyg7bjhzPdq53K+/dNp+60mtinVmOubaqMEpXN/DOxaIcZzNAtG4KIKsMcGZ7zT9Lsq4VhcivtKVvkh/n7FFDF4ZVeaR61RRAxh5hCqAchRBryaxRl/C6mALIWqoFfQqzWsfAmCpa+78JKcB2gBFILNIrBU0doIQUBbXzQhtpG5lleTg1t/WAca3v57Nlev0jAqzjPOxaiCu5yJxFZhGMHCBnVrxGk2pXCa3rMGi7boOltVANS9nR0p4AjuOUR/UOuhijpBIwISypiAtvivRbmdVjqMPxmfRV+fdUk4JrVGSV+SxKgoqEVn6OAoza8IWfNuFGKsnihVtpdNKTDeBIARgLovBaGCqtUqhVq1SwcySwSOAYB8nN2HZf7eQ5mp1miOutb1t9og449l0lx9609pQOee6Cao4U5EgFa94T2QXIvpzOemLKeQED5SIDQeCc5FYa6NKAyoKBcYpFlqFqtYQ3Bbzm54gFPAa1Yz+5cjFvyPaxAbvbH+k9WtWCAqJKMVPoY5Fw/UAJJOBZ5EkqB0A/43UAvZGkPDwszJoESOIbHXplEFsrbxf6tFhka+aom1nxOksU3wPcLxnYo2+KBJaBTcJZOGehyjHUKABlFn7VBTDWJQhyIUBQ4QDOc36tlAGpmCOUx7mE3CGyUA2Dn0wIieLnWQZBjnltKAKlItaYLTOgzHVk5bMK3RZfp/CaIRVDrTqCpgDr7N20nnXz2ou2ASQ3aNt9IlGd+62sY7ts232K/X8qMEnOSygt4ar+XHL3hCT5wSQQkAsGBHbpMQWQOZvUobgFaOcno6sREPNbAkcJr+ZgqcpxOPEthXt+jqKMzDHmIXUBH1hk7bicXsKrtWNgFIWT1PoRvj/aSCNt2D5cqefFOSAP8nMAZda3PFfRRBeE5ggJ9gFk67Vs//RBXB4eRvw+GVB61w65Zr2m6x3DUyzSZgxTJs30zCPtWpo1WnOkoSgBk4Gls1BNBVWzTrFyFmocgFLW4T184TAy46jOE8ESHoAJYNnEx6T4wrIbDhVGqUmh0g6V4SrX7szJ1ndQKR+pDUGHQdByG2VsUl4riCJ7LEjFm4RaNfFNwq2Sh9yOc8tOMc8BJAfbGeuozMQTWA6QM8Cy78SUs0kAkUV2rS/cKvkSeSwTFWK/pCboQrP6DhF0SaDS8OvjEno8iixSwqqqKFpAiXKUANKUgBn3AmQeZpWpCcIio3qJx4y2j/DdASgfqlYD8NmQf9IZo5R1CWjmFwnrhllnMbRuzK5jawFklFTrrrLzXcPow6lc6hSjJAI8AT7PG1LUUY0+9vU/tlhkNrw75Me7w7r7hnTbcE+Fibq/CSwrUBlCrM4FAQ0HWvLwIU/pM+GDMhT0CPALWMZqUWVjeDPeeoBSpnZUjUOlWQO2jlGa6QIeACg0tYBw+qYzRglmjVrx+4Iv+eOuj1sN5++0DSA52M5YLsEmg2ulYECzxNd6Jm0Ya03yWMu6zFHLlXMAR10msFRaQZcsUyesUY9L6LLIno+gyjEoMkm+p9ESh1Z1yTqeGVhaZeJYIQFGYZE5OAowcm6yP7AkJ0xmjz6CJShVsSqVGCX3TKa4aiCXLTbZa2uFMPNl1mCV6wFkDoxdjVHhgzlY5kCpozg8T+bwykUB8l4TxZzoegDNjoCAzCl1khPPKq7zAd5AylcTUZw9SoWBLhNYOudCbjKwyfB5arxnSmQd3qEsl0FGulyD6xbAyETQAZqYD5RQJgOYRWkaHKosVhseeRW1Vh211HJyy5liDpQCikulCWO8KLBHarNIzbfIHLeZRR4OG0BysJ2x0DCvbN1mlZl6SWzC7xTKSCWpVJimJmwOj8o9WQXbSUJOA6NcfbdZpC4Dgyx1ZJF8zywyD6/qpRJmXE6HWcPNa84/+mIEb8bwZpQAMrDHJgPGxqYcqgvhVet8aAMJYJLhlGwy54VVqIxhMIsUoPRewQVGuW7xS7675EG3Mb934awdYw2gzAGyC459PaBi0toivaB5K0usds2PJ0+A8lPRi5avHWuJmkueUvLg2Qg21xm9Fi1grqOs6rlq4GqTwLKu+ELKWVAASBdCr+RsyFO6VNADbhEZGxPUeVzMRatseohWFkQqjLCaDr2WDc+2bJxH1bheHVYgXXTlQDnqMMj4WBOKMANTWGShA2B2WKShI5dFAgNIzmW7sTT5iPQp0yiVk1osnScNH/rN5CTDb6HOKgiAjcU0qBHvAUTwm5XaF4AsScEUGlSIqLkKjwNQhnszZkBkYBzF5zRus0e1tCflIc2YAbLLIENREQ+k5ZN/3SnYqa3jx/G1HhbpMrCg9Bp6gFL5UMkaFlEzcrH9O3QGQHbBMA+59gBl/g3yXFgukNCXq8wthYvb+VQXMrMSdu2ySa+C0IPryVHOiF74TgFZ3q+bQq6hl3fm2DUCFQVU3UAXJoKlsQ7kGGyV48eIzyVP6Vrb3pTLUNoAoNCuJGCpg36FAtU2FscU5Frh1yqMtDpUWYwMYTUDSiBFKrogOWqxSY2lMoVZC61aOUi5jQy1WKT8Hhkod985ax4bQLJjfZWdG92xO1FtekT6FMOtaSwUFWXoJcwUanRglbEYQq7OE2vkcVZ8s2ABAGaYDjorzMmJZc4iTaFbYVYzNtClBhUaZknDjAuYcRHDrBEg94w5zDpehhqNQeM9CSBHSwyQukgMshj3AiSzyVS0wwyTJ72LkIDkWLuFRwCf352EUhVA5MH0MQGl92EAr1JwSINufc/BINWtscp1lsRbPACy5z3srHuJkoNfKkhKALmW5B5vg1TR22ptgYeF5Jdns0mvVLowmxHezwFP1KBiZbXc13UExzw32Q27Ok0ZQDagmqMR3jlQ3cCMK1DGJIVN5nlKl21nXYwx0mXYBkl0QCndjoyEY5wU5woFHFcbBrqqsSg7bLJr0yFXHVnlUqkxNoSRJoyNRqEJYxNYZKholcKdHKjXq57ejRf9YgNIZjbPCb9vZ85VFTj4lEKuDbXzklHzVCdmqQkkgBmAUsKhrrap8jSESqXClUAo4KAdn1jzdg+twlV3EDOPjDGEV83YoFgy0IXm+3GJYs+YmWRkkyXUeA/nIcd7mEmOl6HGyy1gzAGyCoBYhVwk5yQDk7RtcKytjwyyr32lhufv4RWcUhEsCxBqJBmyoJPABcXZdujDoJn5yI46TJ+Cjc/ZY/e+u2ynlUX8yQuT5pHea1XsogOUYQanArhghwzft4rGVFRGimo5Ii+X+eYyAGxVtzoXw6/yWrQ4KISPWVc1HK4PFbLOOQZL65hVLieAFJ0dB4CW8l5WrnxFyS0iADKwZNGB1JdoI0hKDyNXqXLxzmpDWcjVrRlylV7IPOQ6NimkakK4tSDCOIRahT0WlIA7V+HJ9+2izk/bbQNIZpbvqFlXNvO+tl12NPnE/0hTL1RglcoUQbotsUldGNjSQE1CTrAOIavKggoNqlwcjOxdGmvlSE5YbkrYS4YrM7AmgDRLJgKkGRuYJWGPZaxmLfaMUSyPQYE1qqU9/Hi8Z12ArGwHJEOItbKuBZK1c5FB5pWt0X8JOWbgSD7EtpxDAYJTrLfjAjBy8Y+wyrV2TIdFZgDZAsdOclT+58O+XS8vCSQWmQPkPGFXUiE/GVikyO5NAWUMs4bZjsIuXQrH5pNa1vS1BZS2BZB5+DVfVmmCq5GiIXUDVxhQ2fBxXBTxfcY56GUGT7KBWXYKehgsw33hMDbjeGwrxb2UCj5Tv+EcZdE4FORQkMWqlZ5HF0GymcEmhf2ZjFFKDrIgZpQjI8AYgDIU7CT2iNg/eaTIz82yASRn2G7ciUeFT90repWAkZVqQmO+nvAJJgClnHBEZ5WHIusgQJ4V8tgQbiyorZwjV8iljuAqbLILkAKIZs8YxZ6lyCZpeZlZZARHfuy6AFkutwCyC5ICiKtNGyRzIQEJtXaLbIiyfJxSKDTnMaEJ5D3IA+R4FJJX6wex4slWXugDyBwY8/yjvB7AMgLlHNYFyBwcW5Wu4T+5Hi2/n8GSN04CSq9UBpAO3msoz2wS5KBcJ+SazfvEDO1nqWTt6gn7jFXypgnbo5ZNxMes0wRVCUAa6HF4XyaSUeyR0KvkLLOCnny7B7AcGe6vTJWtXPmqSs5TFo2K4VcOvXIustAMltKLu27IVTNLjTlInQByJMwyrFOKdGKhjlKRUR7JNoAkNhYP78vFbef6j3qfFLF+qQ3TMKyBMgbKsCpNVK4pSlBRQRcGuixiXsdbB13ypA+d9UnG1VtmmH1TO6TYJ1avlgQzLmJOsnwMM8dieRwLdYo9YxR7xtDLyyAByOXjQIFJumIpAuMsgGwDpcOkcaidx2pjA0jmVa4Cjj3+KwXtA4MkxQhngUIz+3QKcE5NscmuiUSYAI6cSHOgjOwxH0EV/jelbOPQBsp8X3csZ43xNbRzkrKWfDEbXhMfo1at8yFkH460cFWhQ/47hl29AajhfHgYl8Wh/TarVKLH2vU7Y4sxHyms0iVRi7bZNNCbiPORucyiiBSEW7HHcrg1AmRgmABXvsr2D/tlVC6zvmpoEWE5O0ApHaXhCnIoNF+QFaRQO0Jt+fhzmUYwkOsaizIOYrhWWKTRihmkVLQS5yY1sYKehFsNcbGOUTt3flqUDSCJje2M9XJxa71nIzv+aPbJR/bYE3LNhMF1YeDKrPWiEJBsWEzAOQAmFvSQJtZ21R4aKackLSMSZhWgNEsmAmWxZGCWx7E4RxhkBMjl40B7jocaLzNA7jl+JkCutsDRhZwkMGm4Zy2BpENtHVe1hvyQMMmu8YnLw0meSRYhzk8yi1SRTYpGexcop8Jeon4ERAYZ2WOnaCdO2PA29rhGC0DZdwzki8TH3TBrAMeuTm1XGSaqAwX5PSAUJ4WLA+mlBCkYyU9SEAogk9gkMWgqU3Jjf8iFS268j1X6nFFmACnj2STcKhdouSg+aZUKeUoTL/hydgog5iljbjLcqx5GCQBlMQYZHuBM1oPgQ56S87OFtigaZnSrjeJIBqkMJKePuXwOpCbRYkUARQmvJjZJCkmiLm8/Ue3jYNHnp0XZAJKbtM3svEXv7CPGJ5mr2FPlqkwBH1RsaDwOlYBluoJ3Dt6V2cqypnAb5uX1zX4UDVZKBTsUCnTMuIhFOnw/DZBqiXOPtOf4aYAsluCLMRplIjhOrIvscbXxeLQOAGkZGFebdDUvodZaxBK6zfRKccEOAYUPE+01AaHvXSthkQISCtb5eJKO26DFHFXUCOWIZRZmzYS3EzB2Wh0YfcI+FnYTSCbS/ziPOH1MyPcUFikAyeA53UcZPzdjmaJVq1XoBVWQip74RQ0ZeJ2Bvw6A6R1HMFwBbwqgrlh3t674mES46OocR9PKTy4CpFy4yfHnYnuSDYVnfGzqTmuJHNfOpTwlQksIhFXK91/qOiRzKU3cx5Kn1MpDQafWEE0cvSAV24/cjAszKf4hSmFTCiAoxTujrBUk74eU592eyN14fprHBpDcpO2Gnde1I8anKCzAIVe4Et41XBAj0xLqCq6pYcZlKqGvDfy47FmdjSFWYZU5UMprko+kEG4tlpKSjuQdTZaD1I95DIdYhUHmABmA0RdL8OUyGhAmDQNjHmpdbRwerS0mjYsg2ViPSWOnQHJWEYXcs3iAC/qdIQ/pgDqEX8l7FFCcKuxEOhNAqvi8l0Xapg2QnQrX/n1MLaCEzsKxs5r3M8boI6tMADlLs1Z5YZKBQzKJDCMZU7hV3swDgw2gXZJ9oyaEXzM2WfAsyDgw2xRRh5WoHyyjjrAI79c2ssjp4y+lATinbmHG2YWfTUPIBYg1EMOtDuAWEYB7KYEp0QEZtyUXPpVF0E9l5jdpbAi5+hRydSkX3rXYTkIpHxlVdSgBZGr74DBr6lXuHidHpg0gOdjhMV3C6zCx3Ta9bFJA04ybVkjKW9c6cEkr2HACknYQgMNeKeTVZpG6yCpYJf8YcpHF8hgkOchZAJmFWCtPqKzrhFk9DjUWj9YOq/HeoXYh3CrVrJkKCsD9krnlUx0YMIlzkJ6H6DqvUqEPcXFLzzhM3k5Z+KuPRbYA0tmp0N5Ub2RWyZoDZbeIJz85dls8JMwqAGkFLJEKl9okx0MFdsp5VAVNHt6CZVtVCL+2GCVBk+GwK1nW0vUuhPkTm+QJLiWU4bmS0nrEXyUVj2XBizSVxgmj9L35SaUVvKZ4jMr7iqx4p9tzGQt6AK58RafQqpMr1sUYY12iypZRIXWtACijUVAoFJOQq/Mt0QpxOw5OjjqsSMCoQ/g1A0iTVbOaOfoijyQbQHKww2YtNmkNvC5abBJ1BVWOoZ1tnUScdS1FHkVVrHpNV/Lt5m6paFUUxMoLE1s8pEBHGKVUr7aKdLoAGZhk5QmrIbRaWY9Jw2GsRyvLDNK6GGrNQVKAcXWNxm5NCrZTjs/G3IL74zwM1Ex1HgqMUbRmVAi1dlmk6oJjduvrj0SYvJFbBErnIptUPUzShVxkXqwjDFIAMjJM9GvXalJJs9Yx48nDzciAkqdbGD7bxbBraA/xDqrwfLwVNXw14SIb0qlHN1OAmmW+A5ACmnE/OAVXc/sSpwVS64juCeHyOvm+QGCSWreBUgaIdHpZZYqIClGHCh5KcbheO8C4BJa5slM3LK5VKtwhYpA0ob0jChhIsU5W0Xo0ASQwgOSWbTcklrt2xPiUs0ndAK5JbLIc89V8GFlkxu1ZfnayCgCpzL5uQMW0pmauAyujrsy4BJUGZjxq9UMWe5YYHMfLIQfJ4BirWHOALJeZOTqHSeMzkGRQlNtq47AaKlpXG4dDtQ1N3cIi7ZQ8GDDd1G1DwYR1HpY8n3QpgE23T2SGScouD8nBNVCuAWyTANI1LeAE0G4DAVKPpIxBo5ATQ5i60QOifSYs0oGHTHv4cD+tX5tb7fIqTMlJKq5ydVmREKnAzhVKMolFSu41hlyLWF3tC75I86aALmq40kDVDSi0c8h9zijFfIdViommsEQ3qJDCoBre6vDe/jFcQAaU2T2QASUQvhd/TmnGAPgiSikGx9qFgugAbsbp3u3sXKrByrexHDMx/0hdNqnyGdEzbTeen9ayASTnsLV26lo7e5EHw9Hik7BJb0ooZ1u5SZRjnphQ8pnATI0n0mj0Kg+9DZJf3bFawgC0zIKMYuVFDLUWy2PWYg2Vq61eyOXHwBXL7SKdAJCTLO9YZQU6D1cNJo3DoTrlIycNg+OjlQ0s0k2JTYt1NTT5cfvsowtmj8WMLRulwFQOjOFKP+yPCIICkAKO4T7Peak8TKoUI5oigAJvc00ESnjF71X8flLUqx4kuUgeE9UGyK6GrZjzPuZVmTX6MHVCcbg1fHyfvB0pBaPLCCY+sucGqij5mBvxMQeT9etSW/2pz1xgkfK4L+yqtAIs4MM6mH3q1ri3PoszTEnDESWglLaVDCjz32CpS24/kWMA0m8a9IIVb1tSKolNdD8b6RiKMyJVAshcEi+vZt2N56fN2jEPkvPslPz/+fJ9781fW+t/G33tqPUpsEnlmqTEU474hBUG1cZ8jGvnIq1IfxV1bO6mKSCllqwdFUVgkWVkkbkGa9RiFam5Yhm+DJqsHYBcbULfY1agwzfXYpKHahvB8VDVtMCxT/Wkq3gCAKUBrGNWpLM8knUernPezvGUkJ3kSAo5Qnm+bVp5yAiQVpikn85HKkqVrZ6rRKFTPyIAKJ+xSfFDtatcU4UrYpjV+WmAFBUiANm8UB++J38P6/lk7bSKqkNOqexTgusqFPLoMlSPNtyr6xg4u2wS1QSqKLnlqOa2DVXVKT8ZKlYtEO9bbSJBKjF+5yDyYEOBjtK5f83UcdtnGoitKj5TDJoFlEaXrQOCFDNKpfgaRnvEPDC/t7PNkF1sIQurkjDKdLzmYdadPj8t0o55kFxr580yWbZv+fWuomZ9/rHsk9cGcKFoIjAaVY7hhUVKhV+4NwjgN6ngiLjvLPSsSYVg/JxMLF0XppWPjJM8SslDLkegjGLl5RIDZWCSOUBKm0cXGA+F+0mY4/doZSM4Sqg1B0qAQ15dBmkpz0Mi/k+Wtw581sz/n13NK6iYj9QhByksMvVDJhY5FXbtkaaLIVQRCwfB2yY8Bvciesd0LnzO1FQQAb2sncOHSlXrUjuM5MlkSPBUztXlOTMFG4qYCiJ4qXbNTvqyKUsiaFNG5iyMWZVNi01SOYZr6himF0ZHIfwqovukFVwWeu0ywpa2q039vGqqBJSBUmkFNaniqzIqLhYSBTbpM7UgRbqtT4v0uzO6ZEAHa/8qpTImyUCZKovbPiX5uyAugCwn2cpFYk1b9PlpkXbMg6RY34bv23Hz7KB5wgwbZWZHtU86Vbh6UwCuhCpcBEjJh6lwT0RQqxM+2RQNq5cEoQHXyZ2R6GeWJlS38rBkhLxn1GLNQqwox2ncVcYkuwC52qQK1odXm8QercMjlcWhyuKhSYOqsXH4bdXMDrPGzUHtobfd+X+zhjDH94ewmOSQRIlFckvCIvMwawsg+3KSApYZSHoBShVAqVXswwozUNnAYGC6lSLTqPVAbIlp9Y+6JNPX289HitsfiVA7hbEGnOYR0x5tEQPxgzSrPEnYVTkL6LJ1ceabmo+TTP3JtcZfNRmAsbIOF+V4Dqs6nxXhZCFjOMACGlxslpvS7eekCc2kgtKaj+XQzuFJw5GOICZ5ytbvORsNpgOjVIqjEaQAciGFG8Le0nrTNWaREmqV4whZX+TaF9E7eX5ahA0guYZtJ83vvnez6zlafYps0jWALqBcAxotMeiF/jC+eia4Klw56wkonKyicklP0Y4OAEllkXJN2SzIPA/JA5LHaWByuQRnxln+sQ2QD6/aVqHOo7XDI1WDRyuLhyc1DlXtXOTU0Nuek37OKOPrpKZCtF1LkyBUCxx15wbHYdYWQDZVej5V3Zp/lp2aCerJcPox7Pc4GSQDWNVp3MxbO+SxdW2AlFCrqBKlwpIUbq3hoR1/X6uDVoDzKJzCyHuMjUbOJoXNKKW4uMWFsHARvmvRpKKxcjyzX9dVTSvkCqCHGYavnxXtyHHMW9JOAWUaB0cg3TBAEnHuPRvoXGgJuQbd2Wwua2SUaP8WtS5BxFCqPKDgoTxXCbNwPMdL892dC1AopFy35La74uW78fy0VRtAcodsM+HKRduu8knYpOYwWMwTleOpRUlr+NUJQBpoKujCQTsbtTDF+IQSpMZMwfflmEXUSxmavBTzj7lQOcwYrlyC1+VUeHW18XgktHg8VDWxQOfR2jKjzAAy5SJtBMjaupir6oqwuxA2BDCDRU7HWOWklc/wU8hL8lOFopK8Y7hNAaS87j2Hrp3FFByH9givXCvMKuxRqSYC5ZSea8ccQqgViBWW1qMl+j5TGSZsO2k7qJ1HQQpWI4ReOQgxMtRzpuOCIlOME6CHSmsaLcE1NVRdtfp1czYZJ3rUTZQ5FMUncpyfVKQidc7bQXKw7AJlBMkgkKGoQUMVlCY0tNoK+8ZCHgHMcE9apxC3jP8K4XaQQUGGJQwhTDKBpfN+6mRAWWQiAiUSYC7Kdsv5aQDJDdh27Kjt3tlHk09e8kShsIKv7EO4zmVhqHDlrOoKvingw7BaFSfKW9bfBNoAWUyzyNaw5O6oKyqn2GNlGSAfqppQyZpY5MOTaYA8lDHI2jq4xsE5P6VJCgDKcegQhlCFIKEwyMZ5TGsNtY2I+9kUUqhVCnYii5Qwq62hbBUBUtkq5ie9tXBNldo+WtteA6jhZWqL1olByj1RZKDeOYAchwqjVFknZzfFIplBCkCK8HuuNdr63iqcsJ1Co1QEy3FrGzNQEjh0yIo0PuSqA1CGex8uzrr9umZctdmkaApbB1u5GHJ1teVUgE338RgPAKmC+AUB8KGAxwfVHlmHlZmpocVJ7l3VwBYNqGApPV/XAE1iQY8L2xqKeHarIsCGPGU44xsyUMSM0voEliKM392+fEypTgHP5tIzG7XDfQE/gORgu8fIAFmeKIb7AAZAmdawSulxEYp9wqw/IP2olIw/CkCpDGvCxjDraAleF+3wajYLUhR0BCBXLYsEPFQ1LXAUgHxo0uDhSR3BUW4CjjYwSOfaVY/sKwOkl4IXQ7CqPxfZrYSlcJMBtynE2mGXQVVH2ZovRkLIVQASdQXvLOfinI0XHwAYKANASqGIdy7m7Fqh1gCM6OzDPksh13bBjsimNbY7SiwULHVMJlYUpFB4giMVmCey+Zw6nPFSp6FSQEkGuhhzWNk0fJE1WkrDkEO/rmoqmFBFzcOUE5vUJcFWBKUdqNBRItG7wC7RZpPCOnnTOh6fbB2UVbGox9Y2hl1tCO/agguJqOZQrIRdFVHQoC1ahTxeEdCoNiszfK+lZQesUqRUEGjoXMTkUoZxoPMcAHm02ACSg+0q89LcnQMmADVCxg6Jm73rKooNwPWciIVxRiYZWKQpgHIEZ8bcgtIByAYUhQGk/7EPIB+uGmaVARylUCcCZG1hG4emtvDOwzaOKwhjqDWLinkF7xS0IVg4bhWgtWf9SZeAVBfGsGpQ1IlqKHJSa6oIkPJY2QqwFdA0vB2bOoFkCLe2t2nYB0UJUJZLC0AZc5WuidNeJOQqoTnJc+WKO/w8B0q0AJIl/DgMC0yr8EiVZa0UisAkC2mVaeV+20ApzIh0GfOSIqgQw67jZb6YaCrocQ1bBdH9jqScLpOeKwUZOm89CJS1fbQF+IVNQiOq9njNk0VYEJ3X7+oGvgz598AmlSa4qgYZjqigCW0rWsM3Nagoed+qrAJZERcmZUDJ7TnMKgUsp35KQIwESF73WLEBJAfbXUZhzqScrIxrhfI4rxKYpAknBlPMPJmrIlT1ZXMqvS7gdbgvAlAGgBQdVhEqnxcgU6iVQXJSW7gAkDayyFDxmIcBLWIjvDaAbRy0ocg416pmzYt0CkpDbxM4pukMsf/RNVC2A5DVKnxTJ5Cs+aLDu36QZBZpeVtmhVWqKAHJRzoNUBZy9QmUcpOvJrnIBJSuBZC15Z7UtST85FY7FuAe+6RI1C6QSkCpFEXwHhmppm6YUXbCrqmIp4Z3PHhZRri50kDXTRQHcDbljYUZCpvsK/Bx1kGHY5YHiYtAgY8i6rbiz7NVYJMlC2jIhY2qWQTBx/uCr0hc07pwUQC8bdLvikxkhl4xWAJceZwDZgq79h6OR60NILlgO9xJ5z7b7T55XXK7hw6tzc5BIYT0FBcqeFMCTRV7K33nZB5Zpyk49FSUXDavS241yQEyMMnKIQKkhFrnBcicQU5qi6ayaGrWnLUNh1ettAN0TvCeFDSI65YMhwed891BHtGi6HkWTiVSQWA6C7PmLDLLQ7JQQ5MAspowSNbCJNcGSUh/Xgi3xteB0C9gYq9lK2w+ayIIpNMnCZzHPGUGkLmc31oMe2QI1vDFSOHUjIsMBkplfcZwFcqsfzKGXQWABCzHNYzMkwwsj2oTRrr51kBwpRkUNTQs0sir7sxJxNcdtNaJVbpsBFc27FlCvpyb5O3tmyDMHmZkRjYprN6qGIJVoSArAqUikKI4RCXuS3kou38Hwqy77fx0TIPkWlV322Ub3dk7cYDsep8UMQgCHKoLgKhQxt48UMNgGUKCCohAmRftwJjYpuADOMKUU0xSALI7yePRrEhHbrMA8uFJg6q2kT02tYVrfDsX2SnYUaGU3sJBgzidp/kqvgumDAKhrSUwSKNVHFnE0xpycGQWiVDBGu9txSxSALKawNcVfDVhcGyqlOPtBUnicCvSSVZUXeJJmUzofW3CF3IcAFjnOHAuY5GhmCcHyNRC42awSULVOJSG5x0ulTrmMKexUkMhA0k4aBPyk87CF0FPeGkPILnJUOiknYWOIFlH3dV8ILjvsEkBSqC9HaTgZ5ZJyJVsGyhdDpzS0+ks7z95XFdx+yvJ9TsOvbbkA4EWq+4r3tkp200ACRzjIDnvztjJK5vBJ/lQnjkpRR/MKBuoBjH3BZVOwFN+Zj18CALcngIDFYAMYNmdASm3R7LinLzNYz2AbCoLax2aul3NKkApRhTGOiHocZKHcmoKHHNLEmCJTUbVmaxgp9AyBBdQdQqvxkKdAIq+msCvhvum4kpJYSVAb2Urh7cDgLps/wCtEF9+ckZHoi436ReVm7BICb0KQB6q7JTmbd/2KQ2hahQqo2Gdx1IZwpg9m1WTiqlVbm/wGOsS3gQ1HpuFXZf2cDGPta2wq+706fJjja7yjgCld54FBeJmpd7HfeasY2m6bPakz/YFrI37RiIB5CxAgdU7B6VCBW9XPjBj+7NAcTeenxZtxzRIzmM+u1/UTpfP2MgBKPdHrU8yWULLD9rwZxhw2Mj71LQOtMY5RbYZgVJznpNMGyDJRICs7fQsyHzMldw/nIVVpYq1C5BNzTnIvKLVNhJqTV/PBi1PRaxTOuv0mOfb8qKdWM2pec6fjsCZinlg82KdejZArh4KeckMJGexSGen8sAKAELBiCINRQ3gTAq5BjBVQVNVTsJpbqSP47MEKGvrWwyyauzUiLG+bSVMsiW+UHo4r6eXVwoqgKhWClUopBlJW4hrV7tuNOzaNemH1KTjxZAKG0Nyld0QbNf65k5qfsB9qoDEr1N1ckcgIt2YTSpC1N6Nva+dz91t56ediAQCA0iua3nRyEatlWdbYx3zLHNM+iRqLuRaLQYqVuupKZYS3xf6xKBNHOXkdcH3GUDGkJ4Ljx2H90SLVYBy0rgoFHCoalptHrV1MwHSNgyS3qG3YAfwsU3AO9/SCVDZ5Xw+fLk0xANwqT01PmlqBhYJbluQalaEQh1fTeAnj7QA0lWTmMfydTWlXsT+hLmKWgegzDo3RflFhhdnE0agcx1YWvMYkTYPVttJRToCkN285KwCntXGYWQIpXExNNsLqkqFSLGGVqmQRxPBZJNp4B1oZIGmhnOWAXONsKsZ87brmaYVJ4R0C3goyNvxdlYt9Z2NmA/pB7mI8da2Q668UNgfOu6XWG7tXS9Q7rbz004x1QEk0b8z8tc2uzNU5/F67Cx/ffApvB7CrvGHJwowiucZCktpGQUGKWxUEQOkNvC6hAWF9gI/FWpNrDFN8OB5kEmoPO+BlCIdqWDtAqRr+KTfF0J1xFkx53yse+lal0GKXiYpMIMMBTtRdYdkhBGiOECrmlXykAEg3aFHYqgVTQ1XpYkqs0CSp6nY9nYPBT2qWzDiM8AMY7OmtkO4eIg9jS6McgqMscpuffq3s7bXrCkrreWVZQEHMLuTQh6tPLQJbSGhMtibEY9Pm1Htmoddc+sCpdfcDzk1RgvMIiVHSQEw+fW07TcKmmsZR2Ry57K+JMz+Te+W89NO2ACS6N8B27FTugfSeutc7yA7Jn0SFojOFWpeOdk9Z3RDrWQ4v0mGATIwxsaBb5ZPpnXojZTbavb4UAaQkUVmbR5SpDMLIPvEA8LXCKGunoKeqRAri54XmpljAkoGSxGdbrFIUdUJYVY3eYRDqzlAVhO4yQQ29OAJG8oF40UoXsngYdseW4bVCbeG5O0HumCm7xrAlxw2V0G5JQu5AgkgAalu9REIhUU2zrcAcy39W85LhrBrmRXQdPYDKSSQVCznF0FShbaQ0DrjvefZk+NlFhlwFso5kLMwLm0zubjwzkG7NqNUOogFEPdDto+JJJSuIliqCJYCmLyeNNtyvTzmdtlhPxccJlvo1n3ggQewf/9+rKysYGVlBfv378eDDz645nt+4id+Aio0Q8vt/PPPby2zurqKn/u5n8PevXuxZ88evOQlL8E3vvGNBX6TzdlGd/BOHBBHpE8xXGpiAQ5PlO+55S0esZKVX+8CpIRX6wCWqwEYVyNA2lgwIhqsudRcrGC1Llax5gAZWWUo3slvU6CZl9tHBZ0UXpX70lDMRY4NxYnwWjGDFBaZs0dl6xRmzXOQGUA2kwp2UsEeqlA/MuHboxN+bVKhyW6uYjBtJhWHZpv8xm0IXqaJyDiqUCDSLQhRnb3f6pt0vgWGOUBWjcOktpwLrtq3qrZ4ZDUx/qSG1OBQFR6vXRKyRgAARH1JREFU8mDstji9TdEFiTA4RC1faRVird89LXlDvbwMPS5R7BmjWF6CXiqzmaUFiiUDMzbQJfHjJQMzLkCFjjddyo34VjAQ6lK3RmXF+aiUsUppzQHa1d3r/K583ria5/L7Fl97bdtiuwEUu7ZQJvmKV7wC3/jGN3DzzTcDAH7qp34K+/fvx0c+8pE133fxxRfjve99b3xelm3Vyquuugof+chH8MEPfhCPf/zj8brXvQ6XXHIJPvvZz0LrdQ6MzNZL/G4l8bwdMfntXO9W3rsrfBJmmA/49QqAbk2piLlIxTkyH8DTenDozSMIaDN7lJu0HUws31bDrbJSWdm0dFgnoc3DOQ8bGGPKPyYGyYA4zRgAhBxkGxzZbcXDgbMQq7Q0lDHEygxybIjZY1bNquFSq0dTQzUT+MmjnIesJvCHHoELz+1klQHyUJUxSQb+7kQVCoLx3jroLKxowCdmvzrhgcV1+NzYciAqNtJqkPKxfSYA2WStHt2way71F7dlvh2VgjdBB9bpXlk/nrJiIHMc+UKDoMqUn5S2EFWMUo5VZk8u7QGFSlLnHIo9dopNAoAN+1t0WFlcgJV5NKjVMylh1wSQCRhllqXO5ltGhhnnSqbHvNKwz+T3I6CYA6GkJuawXXEu2GFbGEh+5Stfwc0334w77rgD5513HgDgXe96Fy644ALcddddOP3002e+dzQaYd++fb3/O3DgAN797nfj/e9/P174whcCAD7wgQ/g1FNPxcc//nG86EUvmtvH9XbIVnbYdsTkt3O9W3nvrvGJDIe9tAkDg/nkG3Mq+eSDLB+ZA6SAo4hnW8/PJaxaW8f5ynDLJ3jkJ2qZFeikBzJIzjFQYiZAtr57BooU2joEIAUkhT2WRnPBjlYYGx1zka2CHcXhVmVXmUU2FVQzSdWsq1yw4wKDzAGymVRwNecjpVpzyl85SYdpKyShWE1Qmqey+NVDHG4V2UDNVbASGldI4auu+k5qAUlglrPJHCCbymbbu91/qhRvP2cdSBMOOQ/r2hfPcgHCZqDJhtmIFkQpP6kVt4XoXI0ngCQFcIxtIc6i2NOdmAkoqtL20w0PaQ4qOqKuEw/xAKQCmPmg8DT8OWOWESxZCUm0iqUSWZFuXzj23ajzfA3bNeeCHbSFgeTtt9+OlZWVCJAAcP7552NlZQW33XbbmiD5iU98AieeeCIe+9jH4sILL8Sv/Mqv4MQTTwQAfPazn0Vd17jooovi8qeccgrOPPNM3Hbbbb0gubq6itXV1fj84MGDm/5e2321M5Vr28I6tst2s0/5nDxoarV+AO32Dx8A0gX2mKol0brFxvV4Y1YpLFLYTAz9hZNzDJ/6dgi1r1CnNZkEKScpj+MtpBgoA8huVavRrCozMgRDKcxahFyk5CBVs9oTZmVWaR99FPUjKczaTFZjGHXWbE6lKTJIyUk6IjSaZx6Khqjo6vqmZjm8MJ4rAqUiKNXPIsXy6tWms+1d44KSUdLClQsT3q4+XXxkPaqy/7vWbanhimGCgucLEOs5z1mMO2o8Lomgh/ykchamr+gpDk8mKGqyfspwzAS9V1425CWJIkAKWOoiex7uWXpRhPxLBkzNj0E6MUWJruSsMv9fD0Du5nPBEd8Cct9990Vgy+3EE0/EfffdN/N9L37xi/Gyl70Mp512Gu6++2684Q1vwPOf/3x89rOfxWg0wn333YeyLPG4xz2u9b6TTjpp5nqvv/56XHfddVv7QsG2+2pnq9VgW33vWuvbjT51f8i++7qcAIAMIOUEmYGlTyySWWM/i+y2HUguUk68cnLunqyn/I/5IoqFIqQyYAysUhuCDmHVMoRSS0NYLjUX6GTqOgVRLNQx1GaRsVinWuUw6+QRuEOPwE0eiTnIHCDb4dbZIOktF6N053Y2VKEsi6gBq8I9ZRNdJPxKoc2CR1b5OGUCQJzyMT1HM217a0OYO+jhSi8qgDi/UQkzN2E/Gf7/oZ5jS2f7I2+r0aSgrRTxOJDh+ZOsRxvAfxx6QK2NoVcAyMghFKVZkHZSwYVB4ZRtZ50t280/tgGySM9LAyqLMOGmgCqK2IYDU6RQa0g5REYpAhtdFtlju/lcsFPMc8Mgee21164LOJ/5zGcAtIsRxLqiuV17+ctfHh+feeaZOPfcc3Haaafhox/9KH74h3945vvWWu8111yDq6++Oj4/ePAgTj311DW/w2C72Dr5lO7/PDL9z2wGofU+DJZlBul9YpF5I3sC1f4bkICxr3J1vq+wdqhVWORSqbFUmhhqHWnOQ44zAYGcRap6FaqZhKKdGjbvhwxMsn6UC3OaRw6lgp2qgZ1U8I4nUHQb4WP4L5zUTXyd0EwoAMAqdJhv6JswoaWuoMwIUeTcuw2d3VrbPtveLgNIUTUC2ucBIgXyxB+bhWMPodtaU/PFiCY8SjaBpFIgpWOlK3XbQmTmaRn6UEPvJAGAcy2gBAAn1cFVA6dpJmMHEMExhrgDQJpx2Qq/CiDKKDiZ8SmPPaV8ZBTU6GORg820DYPkq1/9alx22WVrLvOkJz0JX/jCF3D//fdP/e/b3/42TjrppLk/7+STT8Zpp52Gr371qwCAffv2oaoqPPDAAy02+a1vfQvPetazetcxGo0wGo3m/szBjgDLf9hZb5cApPV8YvSeX/MdVumD1ksurC35MBnumxeOdAFyfjeJVVCk340UKFSoKpKwmgIZfqw1oQgscmSoVbAzNhQZ5ChUthYdFpkX67jVQ+1+yMkjqUinxSQFKG0EyL5iIwpjnqStwQAhhKij2LYODDKKEjjLIfGswlWBcVKp6bykmOizpsc+skfbsGh8V9VoSvLPcw+qNx7etYHg4ewxA2UT5f4K7fAoWd7WTSYW7zy0BUa6BIyEkS1QjmN+kpyLYgMEZpTCCPliQsOGMGqe+42zUDOQVJo4pFoWUEQRIPW4jGFWAUMUZWKQIuhgUtW3p4xRdtqiBpBc2zYMknv37sXevXvXXe6CCy7AgQMH8OlPfxrPfOYzAQCf+tSncODAgZlg1mff+c538PWvfx0nn3wyAOCcc85BURS45ZZbcOmllwIA7r33XnzpS1/Cr/7qr2706wx2NFgHIOVU6YDIEF3GIhObTD12kl/MG9n78lfdnrx+dwKTCevNQ6wpDMizI4kUtA73hkCxUKddsDMyCRxHph1m7eYi0ZGek35IO1lF84iEWldhJ9zu4eoG9aGGAbK2cTxT6ztpB11SxjBDMQoRGr0aBwG7qoYug6RdaAcRUQMf2BeZdnVrKqAJ+y3bxvkFirDIqIPbkf3L09Mu5CW1oV6xeAA4pFSLUco2L2q++Hi0tknNKIRdSQU1niBbF8OuIT+Zs0kH7i81SKDnwrgrVzfwhZmqIk7HkIg2FO2QawBIGnPriSrHUEUWch3Ja2US9Q+yjANAbs4WlpN86lOfiosvvhhXXnklfud3fgcAt4BccsklraKdM844A9dffz1e+tKX4uGHH8a1116LH/mRH8HJJ5+Mv/u7v8O/+3f/Dnv37sVLX/pSAMDKygpe+cpX4nWvex0e//jH44QTTsAv/MIv4KyzzorVrtttu7E0efCp/bm5uYxFzlqGlwtVlJmwdtdmKbXkpkixzBwpePIgp2DBRSSULSMAGds8VGCVHRa5VOoWUC4VXM06CmFWafuQCteYi2xWoz6rtHrkYdbU65iDZYXmUANbW9iKQ61+BpP0VkOXPjXGU4OGqhRqLQzPWGxqDrkGkW3JS6oAKsIiOS/Jto5caQTJvmIpAchuwZTyCt45kJleuSKFqrY4RGm8VmmayNqFSfK9giGNSqpdlee2EFNyP6iw5JCfjACZ3avVCYemddheIb9LfUU+M0KusWBHADLkISNYjpbaYdbO1JvIKncAIHfj+WmzttA+yRtvvBGvec1rYiXqS17yErzjHe9oLXPXXXfhwIEDAACtNb74xS/i937v9/Dggw/i5JNPxvOe9zzcdNNNOO644+J73va2t8EYg0svvRSHDh3CC17wAtxwww0b6pGcZX3VXBvd2TtRbTr4lNYhlrPI/P8ClrnCa3xtDmaYm1YqdNWxCUAqxRM9pLpSg+C8R17FKgCpDbMEbRgYdXics8jlkItcLnVs+xiFvCT3SiIq7KzFIiXcmsKsq+1Q66EGzaSJAGlrG7VFo9+aoLTMNtQoANiQo1Sa4OoGNtx03QSB9CoySV9XQLHULt7JZATkXndirxLy7lpfsVRevOOc5wsW5+FJmk4knKmgGgWlLJRSmJBFaQiPVjZsexvzv8IkVxsXhlqzuEAMu0Y1nhLQDZQrQUt7ONwaRrgREABLQ+kJFBHPgOy02rgMKCkDSSoNFBEX6UiIVQByNG4DZHiMIoCiLlMeUgQ2TADLbbTdci5YlC0UJE844QR84AMfWHOZPKG+tLSEP/mTP1l3vePxGG9/+9vx9re/fcs+tnzB+ju5b2d2X1tI68Pg00Isr6zsqsHkvXT541a7BgXGmJ2MQ5YJ5PI2D8TlWgAZwq6m0BgXupdFjnTKQY4M90WKeEBBCnB1UNVpEovsKOp0VXPspEKdAWQzqWErbktwdThxhz5DVzvu2wzybklijfv+bNWAitA+UoWQ65jbJLxlNqlc0y7egeaLhjgVJFWYUg9YAojMsXvrE24QjE9Sbgko4/6ouUjnUGWzcGuTwq7kMDEOo8ahIMeFUhaolPRPqhh2ZZlEHxjlns6niQsaRBMoXXHhTmFa1a3euqigkwsIcCuI5BrLFGJtMciePKQpIlguGiCBI/9cMMsG7dbM8h0168pm3te2ywaf5vPFg0HOeb6X1JmE9uC55SDIo08VjOQsRhMycKQpoBSAlHyXFmmwJky5oP7Zkfn7tCaYkk+CptDc9rEGixQZurHRKdRKCkaBRQNEfm4Gi8zzkFKkI8DYTGrUhxq4OvXuSe7RwrWUYMSsJihds7ZowYzIVjwFg0OuzGg5J5mBY+yVNEDQb12j2D19XofxJ3m/tnCDhHgBxLYbG6k/Q5e03BApWOtQ1RaVIRyqbAi78v3YEEsUaodCO4xsGGrtPCobRAY0h13hbJhBOebipJCb5I8Nzf2rE27LMAVUwQLpfULy7Lu0gmgGR+J7CkxRmaLNIE0BlKMAiAEU86IdCbFus+2mc8GibADJGbYbd+Lg02xLZSDheRDRRgaWAFonZRlWrEP7hQiKk8smbmQ5q3xOoTcc7iNNcM5Ch+yaCjkyHnnkoy9Au7I1B0gKjHGp1AEgw33GIrviAVK4E+dFBqCcxSK7Gqz1oQbNIdsCSK5udTHUKs35Pghut6ZWkGWx7sJClyHU6hggjeXcnIAWQt5OZblJojY4yj7IrVvQA3DkKQ+RJwH5BJACkvwdLMiUESgVUdDaVQz0Iex6qOYwq0gQLpUak8AgJ8ahaCxWNeeCa5dmT2qlUGoOt8IHVR4/jspCOfyxdJ+I7msoU4TtE5ZyNumtBrWcqJxjylCgw1WsUpwTQ6zGtAGyM1wcui3tuQjbLeeC7bYBJLGxePhmFCg2E28ffNr4exTabNJ7wIdcoVeKVV48n7wohMsoFNHocOLLgVNOmvlEiapxDJyGYrhPa4InD4DgVQCWTi4tFe0o6FCoYwoNU3KYNfVEpr7IUWCOwmqERSYmCajVKgKlsnWUnPOrE/im5tBq3XCxThAnT3lIGwFSqlu9862cpIRbqaAAloGlaQ6/WhF4l1CrCBIE4XMZ4ExZAz6cg9LpgkWwMA6Lpn6AnNr3rTCsnQJJUTlyTQUyJbxTsNaDh1xzC4kiQIe2EpEgHGWsUtgkh7odCsvTWGrloR1QWceRAQm7mjKx5dKlnKRmbVsQ8dDmmntS0XCVcN+4NwFJFgnQqRdyNE5AGdo/fC7sv0GAPFrOBYuyASSxsZ2xmcR0HhKc932DTxt7T/5cgFLYpPLpZKyVglN8QrbwsRm/zprynVYonEJlhUFSZJBVuAcAZ3wQ91awjQPg4BygnILPZNekeEebFG4lTTCljtWsSyWDoYRZlwqNsQClnpagM6R4bJNotNqK+yIl3NrULRaZJnfUoZLVopm0AVLCrdI3CgA6AI6cKGwV8rKRRRJsxUOGWakniXzDOZ4KEnKT0ifpwzQQZlthPJXI7nZ2aGTzM2KyffJ/AOCcBZFuAaZteF+4xsMRs0mvCbZxIN2dWWmx2jCbHGmH2hFWm6wlRPH0GEMKlfMYS9g15CURhhur/BglDawS35uCwbIoADut9yoarCpjkjBF6I1MTDKGVXXJOUh5vAEGebScCxZlA0hu0jaz8xa9swef0vtJSaRVwSvAB0B0KuXBNAEFCLX1KDShdtk9EUrtYY0PAMnguNSZTZgP1CVSqbikZz6kopSPJEMtBrlcajxmbCJgLndCrTmLNMQgr+qKexC7LLKuU0VrxiJjLvKQjUwyCgjUPPYryfax38LuUNtMZYdDrwy2GlTYWOHqQk6Sw682AqRvqjQkW4TOA7uXi5e8eEfmZ07t2zUSmDlAyr0ApbBK7zwcpVYSax20UfCepQm747iqxmHVOIxFrtDxcoYI1ik0jot4agm7OsfVrmizJ0UaqEJOUsTfpYUkD7nygSQbOuYiWZ+VYuEODA8Qj20eYaA4dGj/2ESI9Wg8F2yHDSC5SdsNO69rg0/tz5VaE75ngNSKQ7BOAV4BTnkUWsH6wCJD/tF5j5EnWO+xHICxq7wDALpRqEJbQSwg6fbrCZMM6jqizbqU5R8ZIJlFCoNs90VOC5mneZFhrmMmP+cmLBKQs0hhjxEcQ2+kAGSVKQ+JWS9ACaDmnkFbOShtoUsdm+FFYq2t/WqZJQkISKhVcpNKZSHXlBtuF1GlquJc81a2q+pSz451gdI5guqKEmSVsu3ZlRZVo8Mwbg6/1tZh0rTZJIeIPawiaFOyZB0QLwY8AKUq/i1Qm0nG7dO1IFIuYdYYbi0CCGbhVQFIr4tQ1br9VazbYbvx/DSP7b4tOdhg22QRKEP81YXHHh4OHBlzivsOrfcYewZH6xWcZuY4DuFV6zxsOf1z0aQYKJViQYLshBv9oFRNKbnOnEEuZdWsebGOgGWp+4XMRYIOroGvJnzSDblAG4Yi26qO+UIpzLG1DYU6/DgHyCpTIQKk6pc5gPUAVZZzrpZiJWy8OYeWOHpT870If3cqXAk6FrhoagNkroQjz2VbApgq8uH/pfDqehZ7LUOFrMtAsmpckCRMY9WcR5g5SlNsUvKTBEBrE/KSnoEMGaNUBGUM0DScizRlUCLKmKT0SHbGXUVwpKzvsRNejWxyUNHZVhtAcrCj3gQoHQA4n5gkscCABzA2Gs4Bo/CLcB4YB6ywPb8STQqPhv46uXWZpvV+6qSf90COMgHz5SwvOTY65CF1W10nY5FoKh5DJeIBQTPVBbDMC2lsJc3+NmvxcIlRerQAMlek4+8AlBRYpbRcZMDorDxPABmnhGTFNCqrcJU2EOmVVBAR8VRU1b2pHqAUYXgfAFKRDnKA/WDJ7RadSTKZmk9X2D7OsDQBIK2D0xyiLzVgKbBvp2AV0HjAhLCrgCMQgFIRVBAUJ605T+v6mWQs2tE6ipS3tFdNmQByk+HVweazASS3aLshsdy1wadkcqKKjHKGN857jAyfPJ3zESz5f9Pr1RQKWjLwk5mHQFvOTliQzIacBZBjQ5yLzEKtZRiqHHORpFg8wNkIlL6pYsEOmhquqlnNxbkMKAM41jYyyhYw+ASQU117HhFIrQdMBMgMLFsAaVMRTwYCLYDM2kC6IVcp1OkDSe43Tew8PaYWkyTqV99SPXnO+DV96m2dnv7Cx4jMG7We0DgPE8AxgSWH1aXKVXnD39kAsApxLJVqmCl6B+rkr+NIK4CZYxhvJRqsuYJOlJmbAZDDuWDrNoDkHLbWTl1rZy/yYBh8ms/y8vNZQOk8UMRzJ60rYs4skgtLqsaiDGyjzEKzAJ9ou0IEowCUrKyTwq17ym6hThIyjwySkngAbBUEtRsOa0rBTlPHwhlb1a0QKPdA+tjm4a1vgZ8A5HS4NS/mSXsqZ6V9k0OkwlVuUuE6qw0k9quGIh7TAUlRK8qFGfJQtpdCF/n8TFRAzQDNuGxHVL17L5NhpPJXxqvJ+DVhklaFCwkyDGhoF/BI2NUrStW+7CyCs+xPPghZUT9AZs9n2eH+3fXZ4fJps3bMg+Q8OyX/f75833u7fXvrfda8rw0+bc2nLlCmuSEKXUxcRv8JlcOACfAejXJmHlVje+dOAn1MUrfY5NgwQC4XHGaVlg8esCxsFUGCrglqLk0AyCa2WchNimfyUKsLYJZAjW85i+wz67l/RmfP5b3o2U7yv1xJJmeT67WBaBWmmsTtTK02kCjrp7mNQ0DVZ2xy6hgIIKlIZzM7U9gWmK6aTQDp0vf2YU5pxsB9vMDILjgcr1vrko8776BQxnCrtw2gVItZZ87G+8godWKTUUFnRnh1t/3udsqnRdoxD5Jr7bxZFsu6Z6xvI+uatY7Bp8X4BIT2iTVCrwAD5SwVmDwsKH11KdzqWgCZv08TRaAUgCyIsFwk0YC85UM+Q/oi87YP2KYdam2YRbogDRerTJ3LimoSUPZZziKlqnXLJn2Ktg2Ua7WB8NBjaoWn5VbV0yFXMgrOh31lCniX8pNiDJLUEnXg17PHnararqVtE4p5HB89ETx9mmWqeeXwZKDItZgkFCUtW+g2SIb/cyyaEjgKm1wnvArszt/don1apB3zICnWt+H7dtw8O2ieMMNGr8YGn7bXp77Q63QLHrWWJwVQk3JnMpGjNBxuHRmKVZHAdLg1z1+WmpniSHdVdfhGCi0WqZXi4cWBQeahVqlq5SKZnqZ+YAoYu9qyWzVpA4mP89BrroAj4cVgvTnJ0Boi26qVmzQE23CvqdOpkljzDgUaBwcWBe8OMtaGIouUUWVdVinShPOYFPkY4kpp77l4S6uMTSqC16YNBN4F8GNWPbUt+0Ktwiiz8OqR+LtbtE+LsAEk17DtpPnd9252PYNP89k8Ps3KUbbyZKRBjYAkn8Br58O9Qk0+gmVeGQmkkF0r3BrYEguXtwcpjwJY8igsBaNDLlIFFhnykK1Qa6we5b5ElwGjmIiVC5ucx1KPqWrVgkqOkjS1lpchwe3PnQbKbq8koELIlbdToRNAFiHUKqHp0hDKhtBkDJI8gSLYB4F5acFpMckg5qDDe2U8Wa7bG/ZPu2Bo/XYKF3K5XCmtmF2CjyivCIo6uUlPkU37PhYp4NgXbs3aO47U3928tl0+bdUGkNwh22xocJE2+NQGyhwcleITtwKgQugzgSTn04xTKMijdgpW+1TMId0PITwnze+cVwwsUafRV0XIQ451W1lHdEzjzEjbpFCrD72HrXxkaOiX5n43DZhicbxXxiYJAEK/J2+bLPyo1EyAnF73OsDS6ZXM20D4AoIvHjTJjEcd5zxqYpF4bUU7F/AmfQdFHq7heGd3+8ssz9izqtPAaxKhh1m37PuLuSi2zq+nGaUIxTw+sskYQkWodvWKwVK2hzgIJHAMLBQCkAu04Vww2waQ3IBtx47a7p09+LT19QlQamQgiVBQEmXsKANJBszaedTkYBzL0SWQ5LOl4I+QVclnFiR5NxWqWHUs1knFQWixSIg4eBjDBBdYpA3gOKPfrrUNiKZGXsn6+WUv5Zfx/4SkuCM3FUZnUZgO0gea1AeUeQg265WMOUlK/nC4OYVacwGGqnHwhc7k/3LG6EFBdo6yvd4dVSZMVAZe63CxIkA8VVkbQsCt75htpy5AOu/DIO6sopUMFJrYY+MjCqjEEAOYdkOu89iR9rvbyXVsxQaQHGwwpPCiCpWvQjDbOTPAkEZlORQ4sQ41Ke6fs1zMUQtAOj8FkqIokzNJYZGpmjVv+ciAKc4oTGApSjY+K47pskfVA2ACbKQJ2tkMJDkgqNEu3CkzJiVgQzq71/K8HXLtZZwiKADEXknZvgoqbAMGrEI7lGHbVEZjZHju41KpubLUxZpbABoyfSWXBwTQGlWmMgYZATLcl51bm03KRU6HVQtL7ZzJYwDYy7HEkO3JACrLRTqXsczpfORgh98GkBxssMwiqyRmisqmHr5aeTTKQylCoYHCKtSWUDuHmkS+LDTkZ6o7vF6RXWsX/khOUgDSZIAk+TEJsXLRjktAI8yxK5DdMQGyHByV5pmXZBW0Z0WdKuRac4AUgfMy+K5LHRmkisCowoBg6s1N9loACYXE2kn5rLo15W674FUawpLTeMR5kAuTWBSPvfIOsDaMqOpIA3ZHleVi86VuKyFJmFdyxNK7WYQ+TdmnwPTkkvgVPSBj2oIT6X/xgMu21QCOu9IGkBxssI5pFUJkgVXWCmjyYh4F1I7ZQaGB2ipYw2xyLZAEEIGyIAKFHGWhU1iVc5BosUi4EGIVNulzNZueqfZa9D9lun1ieTzaSkGXBG8DE6ssYDPpueykH2c8KsAUzNZ0SdCFhi51Br4ZUGodAXNNc45b/0IbiIoFOwkoC+KB1FXjsFSaTi+qxgSAa0IoNYjMayPTWML2kKEaWbg1gmSP2Hwu9FB2GL7s/0KHvs45K2GdF8Y8Y5sM4LhrbQDJBdvhTjr32eDT+ibhVtMp6tEKaMLUh9pxqT8pgvdAQUmFxTlMNegzm0z9gBK+KwJwxmpWSixSeQdlm9iEDyCEWnv0PrWOwEQdZkdaBYAk6JLzebrM/KsstAO6xa9aISndFPzeeCva9xGUw31wpFVlGv3PeiVl+/J2STM+JeRauDabXC51qxdVprAopVqTPXLLc5IUin+KjD0KQJZhpudSeFyGIiL2hWJRkUQDmAmHEL3qZ5Wu23PaBcPDCI677XcH7D6fjmmQ3L4usdm20Z29EwfI4NN8JkBZahWGOLPsGClhXIo1OwO4aAKcVyHMhpmiAgo5KxUGmYdZ2yyyOz0jWs8MQqUJRBmbC6ClSw1b2wCQDs52WziYhZkgOACknKLSCrpg1qhLAUsBzPwzTMYmA1BmsxFnbucMICmwNAYjxwBFHkuFbrFIGV8GIE1hMTxA2Wd5Yd40Kn5HFcC3Wwwk4g45EC8FHd1urpj9k/XwfldKxUIhFQq/pvtus+N2DmA8ln93u8mOaZCcd2fs5JXN4NN8tlM+5UynJAUbTubWJ51OG9omrEMaweU5bApMV7kqqIyZqlZVZy57p4DpQp0cKLsARDoySCoMqDDQhYErDbRz0JUOqjsaBYAaPPdQaQVb8SBlRw6UhGyzClbF+cjAJqnQWdiVQKVhoCxMxibZrzV1U70LVcRpe0SA1NwiU7vEJrssUpPCocomxaMw4qyPxeeFON1pLDmDzAFybChq6ibwFjaZ+kgZKNOFVTx+eqpi5z0mj+Xf3W6yYxok5zGf3S9qp8tnbOQAlPvBp/WX3w6f5ORHofDGuhwkE1g6MFj60D/XV07DobkOUGZsUqpr88b7mZbNH/QUwqulgaobDpGWBlQbeOtglpI3NYACgNU8Mou0zIfsMExp9SAVmSOF8Krcm3HJoFwaKK2hCwNdGh71JDMRtU6gLibFO8IiQ8uNQgDLwCJHAnyG2flSziIpyQPmAvNdFt/te2wX6FArB9kHkHmrTqFTgZXkUQlpH/KxorCZIOrwu5v/M3YiEggMILmuKWx+Z+fvW2sd8ywz+HT4fZLnWgFaqzANAlDw0FARLLUCvGfAnIVvLFagYp5Th7xkPOlKqBWYDrN210U6TsAQFqkLA1cUIOugCwZJ3dFttZqgyEJpNVPXtd0PqUCFRrFk4r0ZF/HzhL0Kq1SmgDLFOhvaxfaIxKxZxahwciMUzmPsAefbAHmoaqIW7uqMUWWy7JQ0YBQqSIA5DjM8RTKwDyBlCHarl5UQeylJFJLkQgizK2Cn9qVsFgy/u/V82immOoAk+ndG/tpmd4bqPF7viix/ffBp9/ok/zOK81wSbtUBJJ3nk7QPS/ZJpMpJM7KReHJV6TNmgaOiyNJ4AG8BVRTwTQFVlNDWwZUGxpZBrq69DhEUUNqGPKOOAClDlAFuHeGPo7gcaQUzNrF4h0pmjXqphC4LDrcSgcqCw8BaQ5kysco1qjhFRID7JQmF9SiIbyNDPPPTp/eajEVWjY1MEuif55lYpJ5mk5mWbqHTPM9cEUlGl/UBZDds3geQ3eO2+1prH3WWHX53h88GkET/DtiOndI9kNZb53oH2eDT7vMpCp/7UNzjOScpbSS5AktuFMAxnUiT0gwptKtZW19OimkCeyxKnidJAYxMDSotKEwB0W56WoQKvZK2srCFha0tvKWk8ZqxydTeoWIBEOcimTGacQk9LjnEOi4jaEJYZAi38q2dmxT9VqUSC1PKQ4dWFGGTI8+6uC4XKlAKmmzGIruzPHnbifZqHmoVPVhNKoKjtOJ0QVLyonmrTkEpND4LIKWaVfZv9zrpSDrGd7NPO2EDSC7QNrqDd+KAGHza/s9QYFbpFaA9h2G9z4t4Eqvs+4w8PNdikfl9640sfq1MAd9UCZCchW/43oz7JeqUJjSTKhTXNFz1WlkemhyqWl0GkpFNhh5LyoqCTABFBspRBEo9HkGZMoVbYyhYs6JMxyQ3G6tc4VMBj/WwGhhnFxmkFFaVgyZEYflynVCr3AswilBBbDXJ7nP2KOFVLRq6U4VWnXxyxh63crLfbcf4ZpbfjO0GUOzaMQ2S6yV+t5J43o6Y/HaudyvvHXya34QNOq/aTBLozU9ybjKF52bmrkS6zFEc3gthj84FoXMHKm0sFsp/3BSKelxRQ2mCqxrYgtkmFWn2JNCe3kFZ32Pe6kGRSY4iYAqjjKBdlAyWRclzHpWCl+kWHSMkFq2Jw9ekgJHpAdXOFBbrPcaGuLo4m/mYC5JTljeUXtSCCCaywwSOoqlbaBlZloDQZI+7LTx94AgcXcf4bvRp0XZMg+R6O2QrO2w7YvLbud6tvHfwaWPvU8hUewBmfeGJ7yBl1BXNT655LlIRWJsUiUGS4f8bB+WYOWI0juskRA1tFJrbQhrN7NHWBlQUcHUNWzdwVQLIvjFbQArPClhSKYU6RWSSkVmOx1DlOGORDO6z8pEqq3BVSJWtWnk4peAJcFrBegUYDtdq61ErD+N5CkuUA+wIy8t2BZK4vFaqBYw8mkv1guNGQqt94Ng9LjZqu/kY3+71bvW9i7RjGiQ3Y9t9tRNPpFtY7+DTxtaxXbaeTzlYahVYZV+HOfpDdOmfYWySIihtAO95ooR3UAVruHbfRyFn6asJz8QsDJpJBaobuKJhsKwa+DFL3K01WiuXudNlEdtMJC8pAKmKMgBkCTVaiixSCnda2qQ9jLKdlwzVwQDK0EyhLRdH1eRZL9d6WGIheVY5mqbquc5qBL4OMEYd3R7mOAsc12KOm7Uj8RjfyDq2y3KfdsIGkNygbffVjurcb2Ud22WDTxtb37xX18Jq1qp2TW8Kat2K4JXj8Go2qV4BcWAvjZg5xlUQARUlSbimgjIFiqKEryu4uoGtGrhQ3CMzKP0MJgkghltJ+jCzVhMqCw6xRoAcAyZ/rQCMSQDZo+kae0YpXUw4xXlekEcJ4l5KB5DyKLyaEpXvs1RAozoAKc8phXlVf1g1hlfBecntBMbWNu7cb2Ud22VHq08bsQEkBxtsh6wLlrP+L8ZT7QF4gqf2FT3fl6lEfqyAajUBI2mopoY3BXw1ga/rCJaqqKHHFq6qW2HWNYc05+FW0YQVcMyKdNRoKYFjAEtVlPBk+KbUdNjVOyhQNqJMxSpXgEPVCgKiGlo5WO9RECJIAm3d2Rwc+XkCSMkndoFR2KJCElrvssa+/TTY0W0DSA422A6bnGTXDBfJlHogTo6YCZRSyDOipHBjCvimBmoGMd9U4Tnfe2ehy3AvcymtzKXsD7myao5OOUbSKfeodWSSMAXUKLBKU3LYlxKTbM1M7FgESBW2FHnA8T15Keihlj5ut70mX1dXK1chFPAggN8UUCbWKM/zfTbYsWcDSA422GGymWCZhVoBwGvOP8I2CSgFZFzDunjhuVIEZQzQNJE5emeZVQaAVM4yYDrLDDMMblZAUvnJp4xEbdgkgQfSUEURgTICZqhkTYBpgACQXnom87mK2WMp3tFC21y4HBCAdD5M+gghWfgwpUX1FuvkGrl5BXEu4NBXpZpP7BjAcbABJOew3ViaPPg0nx0JPs0s1um+RxvAOWaOzqZiHkWcn7QacAZwDRQ1XDTjbALHcpyBY8XrcjYObY6PZxllguWUVH9gCmaZeei1KAMocpgVZABtWowy/44UCpx8yEemYcU+auUqjQiQQH9LTdx8KgfItnBDFxhVqGJdc3/k+2GN/x8OG3xarC10kNkDDzyA/fv3Y2VlBSsrK9i/fz8efPDBNd+jlOq9/dqv/Vpc5rnPfe7U/y+77LJt8dl37oGN7+ztrroafNrY+o4qnxQxwEhOz5QMNrqA1wWgS3gzhtclfDGGL0bwZgRfLMObMVyxBIz3QC0/BrTneNDycVDLx4GOexzUnuP4tT3H82uPeSzflo+fcTsuvV/et+c40NIeqPEeZo/lGChH7FsGkL5T3TqzyjewPAazlCs0QQbOUBpZVWrqvbHeqkKpFUpSGBmFsVEYaW7xGAdlnaWwTBHYudy2bd9hFx5PODZ82k5bKJN8xStegW984xu4+eabAQA/9VM/hf379+MjH/nIzPfce++9red//Md/jFe+8pX4kR/5kdbrV155Jd70pjfF50tLS1v2dz3Zpe4ys17bziuowafBJ15BYl5eEUChlzIMZAZpZo1kAO04DOuL8P8ScA1LwJlRHL9F3nMeMoRb4drDnH32uDXuKgu/xtCr1gx8MbSahVh19hrNrnKNhU0AQBxWVfDwClBhTqeEQvtk/gDEGY5duT/+3+YY49F2PB3tPm23LQwkv/KVr+Dmm2/GHXfcgfPOOw8A8K53vQsXXHAB7rrrLpx++um979u3b1/r+R/90R/hec97Hr7ne76n9fry8vLUslu17lVk346b97XtssGn+eyY8qkLmEAbML1jYPQO0AEcXcMhVR9Gb0XQdKG6FMhFDNYazxVZoHx2CPvmBTmROWoTQN1M/c93Qq5ASEVCgbyHCyFRAcv2hlGd9yWQlPwjkA2v3qAdU8fTFmw3+rTdtjCQvP3227GyshIBEgDOP/98rKys4LbbbpsJkrndf//9+OhHP4r3ve99U/+78cYb8YEPfAAnnXQSXvziF+ONb3wjjjvuuN71rK6uYnV1NT4/ePDgup+9G3fi4NN8dkz5ROkn7EWJxzs+YbWA0/O9gKMsFwY5R1DM3h+fxy/Ryc7kzyWEKgwxB0FhlXn7Rw+LlFodAUoNsEJRAMs+yxWL8vVs5/Y+po6nLdhu9Gk7bGEged999+HEE0+cev3EE0/EfffdN9c63ve+9+G4447DD//wD7dev/zyy/HkJz8Z+/btw5e+9CVcc801+PznP49bbrmldz3XX389rrvuupmfs5Ek82YUKDaTxB58Gnza8Po7zMwDADX8WIDRSSi2BxS9AOYa4uqzPhcZq+1T1snAsXe5fHVISkXoAcf8lbUA8Yjad4NPW/ZpUbZhkLz22mvXBBwA+MxnPgMgXeXl5r3vfb3P3vOe9+Dyyy/HeDxuvX7llVfGx2eeeSae8pSn4Nxzz8Wdd96Js88+e2o911xzDa6++ur4/ODBgzj11FPj843sjPXi72u9ZyM7fvBpY+/ZyLLHlE8505QHrkmgKOvMWCez0DlKKbogGsEyC8f2AWPfvbi7zhc6pvbdFtZ/LPq0KNswSL761a9et5L0SU96Er7whS/g/vvvn/rft7/9bZx00knrfs6f//mf46677sJNN9207rJnn302iqLAV7/61V6QHI1GGI1G665nI7aZnbfonT34NJ8d8z7R9M/eA1zwE4BvnmpDyXO2193pgewyxRkDl6fWPeP1Y37fzWmDT9tnGwbJvXv3Yu/evesud8EFF+DAgQP49Kc/jWc+85kAgE996lM4cOAAnvWsZ637/ne/+90455xz8P3f//3rLvvXf/3XqOsaJ5988vpfYJtsN+y8rg0+zWeDTzNshgrOLPOKAL3GAhtYFzDfNtgV26ljg0/z2W70aR5bWJ/kU5/6VFx88cW48sorcccdd+COO+7AlVdeiUsuuaRVtHPGGWfgwx/+cOu9Bw8exB/8wR/g3/7bfzu13q997Wt405vehL/8y7/E3/3d3+FjH/sYXvayl+EZz3gGnv3sZy/q6ww22GBd6+Qep26DDXYU2EKP5BtvvBFnnXUWLrroIlx00UX4vu/7Prz//e9vLXPXXXfhwIEDrdc++MEPwnuPH/uxH5taZ1mW+NM//VO86EUvwumnn47XvOY1uOiii/Dxj38cWq91WTvYYIMNNthgGzPlu1NgjwE7ePAgVlZWcP999+H444/f0rp2Q2K5a4NP89ng03w2+DSfDT7NZ9vl08GDB3HSvn04cODAls/ja9kQE5nD1rqKWGtnL/LqY/BpPht8ms8Gn+azwaf5bDf6tFk75kFyriq+Gcv3vTd/rXswrLf84NPg0+DT4NPg09Y/fzvtmAfJvB9nXpNl+66IFDa2rlnrGHwafBp8GnwafJrPp0XaMQ+SYn0bvm/HqRnLrreu7usbvRobfBp8GnwafBp82nkbQHINm4f6z2vd9272amjwaT4bfJrPBp/ms8Gn+Ww3+rRVG0Byh2wzIYpF2+DTfDb4NJ8NPs1ng0/z2W7xaQDJDdh2XMls99XQ4NPOrW/waefWsd3rG3zauXVs9/oOF4MUG0BysMEGG2ywwWbYAJKDDTbYYIMNNsMGkBxssMEGG2ywGTaA5ILtcCed+2zwaT4bfJrPBp/ms8Gn+Wy3+XRMg+RO7IyNJp0Hn+azwaf5bPBpPht8ms92o0+LtmMaJOfdGTt5ZTP4NJ8NPs1ng0/z2eDTfLYbfVq0HdMgOY/5zv2iPmMzEk+DT+svn98vwgaf5v+Mwaf5PmPwab7P2CkgHkByHVOd+42Yn/G47zM2ol84+DT4NPg0+DT4tDM2gCT6d0b+2nZINMlBtt6OH3wafBp8GnwafJrPp52wASTRv0O34yqlu3PXu/pZ7yAbfJpefvBpvuUHn+ZbfvBpvuV3i087YQNILtA2unN34mAYfFrMZww+LWb5zdjg02I+Yzf6tBN2TIPkejR+KzR/s+8dfNqe9w0+zfe+waf53jf4NN/7DodPi7ZjGiTXu2rZylXNdsTkt3O9W3nv4NP2vG/wab73DT7N977Bp52xYxokN2PbfbWzHeXSg08bW8d22eDTxtY3+DTf+gaf5lvfTjHPASQ3aNt9taM691tZx3bZ4NPG1jf4NN/6Bp/mW9/g03zr2ynmOYDkYIMNNthgg82wASQHG2ywwQYbbIYNIDnYYIMNNthgM2wAyTlsN5YmDz7NZ4NP89ng03w2+DSf7UafNmsDSHasr3JqowninajmGnyavb7Bp/nWN/g03/oGn+Zb327yaTttAMnMPNavnFpPs3Ct927GBp/ms8Gn+WzwaT4bfJrPdqNP220DSGaW76hZVzaL0iycZYNP89ng03w2+DSfDT7NZ7vRp+22ASRn2G7ciYNP89ng03w2+DSfDT7NZ7vRp+2wASSxsXj4ZtQeNhNvH3za/vcMPm1s2cGn+ZYdfJpv2UX7tCgbQBIbuwLajNqDLLuRHT/4tLH3bGTZwaf5lh18mm/Zwaf5ll20T4uyASQ3aZvZeYsORww+zWeDT/PZ4NN8Nvg0n+1Gn+axASQ3abth53Vt8Gk+G3yazwaf5rPBp/lsN/o0jw0gOdhggw022GAzbKEg+Su/8it41rOeheXlZTz2sY+d6z3ee1x77bU45ZRTsLS0hOc+97n467/+69Yyq6ur+Lmf+zns3bsXe/bswUte8hJ84xvfWMA3GGywwQYb7Fi2hYJkVVV42ctehp/5mZ+Z+z2/+qu/il//9V/HO97xDnzmM5/Bvn378AM/8AN46KGH4jJXXXUVPvzhD+ODH/wg/uIv/gIPP/wwLrnkElhrF/E11rTdkFju2uDTfDb4NJ8NPs1ng0/z2W70aS1T3vuF+3zDDTfgqquuwoMPPrjmct57nHLKKbjqqqvwS7/0SwCYNZ500kl461vfip/+6Z/GgQMH8IQnPAHvf//78fKXvxwA8M1vfhOnnnoqPvaxj+FFL3rRuv4cPHgQKysruP+++3D88cevu3yuKrER2+z7FrnuwafFvm+R6x58Wuz7Frnuwaftf9/Bgwdx0r59OHDgwFzn8c2aWdiaN2F333037rvvPlx00UXxtdFohAsvvBC33XYbfvqnfxqf/exnUdd1a5lTTjkFZ555Jm677bZekFxdXcXq6mp8fuDAAQDAQw89tOGdmS/f99611jfv8oNPg0+DT4NPg09rLy/RxUXzvF0Fkvfddx8A4KSTTmq9ftJJJ+Hv//7v4zJlWeJxj3vc1DLy/q5df/31uO6666Ze/ydPecp2uD3YYIMNNthhsu985ztYWVlZ2Po3DJLXXnttL+Dk9pnPfAbnnnvupp1Sqn3t4L2feq1ray1zzTXX4Oqrr47PH3zwQZx22mm45557FrpxF2EHDx7Eqaeeiq9//esLDTFstw1+76wNfu+8Ham+H6l+HzhwAE984hNxwgknLPRzNgySr371q3HZZZetucyTnvSkTTmzb98+AMwWTz755Pj6t771rcgu9+3bh6qq8MADD7TY5Le+9S0861nP6l3vaDTCaDSaen1lZeWIOihyO/74449I3we/d9YGv3fejlTfj1S/iRbbybhhkNy7dy/27t27CF/w5Cc/Gfv27cMtt9yCZzzjGQC4QvaTn/wk3vrWtwIAzjnnHBRFgVtuuQWXXnopAODee+/Fl770Jfzqr/7qQvwabLDBBhvs2LSF5iTvuece/L//9/9wzz33wFqLv/qrvwIA/JN/8k/wmMc8BgBwxhln4Prrr8dLX/pSKKVw1VVX4c1vfjOe8pSn4ClPeQre/OY3Y3l5Ga94xSsAMPt75Stfide97nV4/OMfjxNOOAG/8Au/gLPOOgsvfOELF/l1BhtssMEGO8ZsoSD5y7/8y3jf+94Xnws7vPXWW/Hc5z4XAHDXXXfFalMA+MVf/EUcOnQIP/uzP4sHHngA5513Hv7n//yfOO644+Iyb3vb22CMwaWXXopDhw7hBS94AW644QZorefyazQa4Y1vfGNvCHa325Hq++D3ztrg987bker74PfatiN9koMNNthggw12JNqg3TrYYIMNNthgM2wAycEGG2ywwQabYQNIDjbYYIMNNtgMG0BysMEGG2ywwWbYAJKDDTbYYIMNNsOOWpA8UmdZPvDAA9i/fz9WVlawsrKC/fv3rzs9RSnVe/u1X/u1uMxzn/vcqf+vp5y0aL9/4id+Ysqn888/v7XMbtvedV3jl37pl3DWWWdhz549OOWUU/DjP/7j+OY3v9labhHb+7d+67fw5Cc/GePxGOeccw7+/M//fM3lP/nJT+Kcc87BeDzG93zP9+C3f/u3p5b50Ic+hKc97WkYjUZ42tOehg9/+MNb8nGrfv/hH/4hfuAHfgBPeMITcPzxx+OCCy7An/zJn7SWueGGG3qP98lkctj8/sQnPtHr09/8zd+0lttt27vvN6iUwtOf/vS4zE5s7//1v/4X/vW//tc45ZRToJTCf/tv/23d9+zY8e2PUvvlX/5l/+u//uv+6quv9isrK3O95y1veYs/7rjj/Ic+9CH/xS9+0b/85S/3J598sj948GBc5lWvepX/ru/6Ln/LLbf4O++80z/vec/z3//93++bptkWvy+++GJ/5pln+ttuu83fdttt/swzz/SXXHLJmu+59957W7f3vOc9Xinlv/a1r8VlLrzwQn/llVe2lnvwwQe3xefN+n3FFVf4iy++uOXTd77zndYyu217P/jgg/6FL3yhv+mmm/zf/M3f+Ntvv92fd955/pxzzmktt93b+4Mf/KAvisK/613v8l/+8pf9a1/7Wr9nzx7/93//973L/9//+3/98vKyf+1rX+u//OUv+3e9612+KAr/X//rf43L3HbbbV5r7d/85jf7r3zlK/7Nb36zN8b4O+64Y9N+btXv1772tf6tb32r//SnP+3/9m//1l9zzTW+KAp/5513xmXe+973+uOPP37quN9O26jft956qwfg77rrrpZP+XG6G7f3gw8+2PL361//uj/hhBP8G9/4xrjMTmzvj33sY/7f//t/7z/0oQ95AP7DH/7wmsvv5PF91IKk2Hvf+965QNI55/ft2+ff8pa3xNcmk4lfWVnxv/3bv+295wOqKAr/wQ9+MC7zD//wD56I/M0337xlX7/85S97AK2dePvtt3sA/m/+5m/mXs8P/uAP+uc///mt1y688EL/2te+dss+9tlm/b7iiiv8D/7gD878/5GyvT/96U97AK0T0XZv72c+85n+Va96Veu1M844w7/+9a/vXf4Xf/EX/RlnnNF67ad/+qf9+eefH59feuml/uKLL24t86IXvchfdtll2+T1xv3us6c97Wn+uuuui8/n/U1vxTbqt4DkAw88MHOdR8L2/vCHP+yVUv7v/u7v4ms7sb1zmwckd/L4PmrDrRu19WZZAlh3luVW7fbbb8fKygrOO++8+Nr555+PlZWVudd///3346Mf/She+cpXTv3vxhtvxN69e/H0pz8dv/ALvxDnsR1Ovz/xiU/gxBNPxD/9p/8UV155Jb71rW/F/x0J2xvgaQRKqamw/nZt76qq8NnPfra1HQDgoosumunn7bffPrX8i170IvzlX/4l6rpec5nt2Lab9btrzjk89NBDU5MeHn74YZx22mn47u/+blxyySX43Oc+ty0+b9XvZzzjGTj55JPxghe8ALfeemvrf0fC9n73u9+NF77whTjttNNary9ye2/GdvL43lXzJA+nLWqW5UZ9OPHEE6deP/HEE+de//ve9z4cd9xx+OEf/uHW65dffnkUkP/Sl76Ea665Bp///Odxyy23HDa/X/ziF+NlL3sZTjvtNNx99914wxvegOc///n47Gc/i9FodERs78lkgte//vV4xSte0ZqgsJ3b+x//8R9hre09Nmf5ed999/Uu3zQN/vEf/xEnn3zyzGW2Y9tu1u+u/af/9J/wyCOPxGEGAOs933DDDTjrrLNw8OBB/MZv/Aae/exn4/Of/zyesg0zYjfj98knn4zf/d3fxTnnnIPV1VW8//3vxwte8AJ84hOfwHOe8xwAs/fJbtne9957L/74j/8Yv//7v996fdHbezO2k8f3EQWSR+IsS2B+v/s+f14fxN7znvfg8ssvx3g8br1+5ZVXxsdnnnkmnvKUp+Dcc8/FnXfeibPPPvuw+P3yl7+85dO5556L0047DR/96EenQH4j692p7V3XNS677DI45/Bbv/Vbrf9tZnuvZxs9NvuW776+meN9o7bZz/gv/+W/4Nprr8Uf/dEftS5mzj///FaB17Of/WycffbZePvb347f/M3fPCx+n3766Tj99NPj8wsuuABf//rX8R//43+MILnRdW7WNvsZN9xwAx772Mfih37oh1qv79T23qjt1PF9RIHkkTjLciN+f+ELX8D9998/9b9vf/vbU1dEffbnf/7nuOuuu3DTTTetu+zZZ5+Noijw1a9+deZJe6f8Fjv55JNx2mmn4atf/SqA3b2967rGpZdeirvvvht/9md/tu4cvnm29yzbu3cvtNZTV8D5sdm1ffv29S5vjMHjH//4NZfZyD7bbr/FbrrpJrzyla/EH/zBH6w73YeI8M//+T+Px81WbSt+53b++efjAx/4QHy+m7e39x7vec97sH//fpRlueay2729N2M7enxvKIN5BNpGC3fe+ta3xtdWV1d7C3duuummuMw3v/nNbS8k+dSnPhVfu+OOO+YuJLniiiumqixn2Re/+EUPwH/yk5/ctL9iW/Vb7B//8R/9aDTy73vf+7z3u3d7V1Xlf+iHfsg//elP99/61rfm+qytbu9nPvOZ/md+5mdarz31qU9ds3DnqU99auu1V73qVVOFDS9+8Ytby1x88cXbXkiyEb+99/73f//3/Xg8Xrd4Q8w5588991z/kz/5k1txtWWb8btrP/IjP+Kf97znxee7dXt7nwqPvvjFL677GYvY3rlhzsKdnTq+j1qQ/Pu//3v/uc99zl933XX+MY95jP/c5z7nP/e5z/mHHnooLnP66af7P/zDP4zP3/KWt/iVlRX/h3/4h/6LX/yi/7Ef+7HeFpDv/u7v9h//+Mf9nXfe6Z///Odve0vC933f9/nbb7/d33777f6ss86aakno+u299wcOHPDLy8v+P//n/zy1zv/zf/6Pv+666/xnPvMZf/fdd/uPfvSj/owzzvDPeMYzDpvfDz30kH/d617nb7vtNn/33Xf7W2+91V9wwQX+u77ru3b19q7r2r/kJS/x3/3d3+3/6q/+qlUSv7q66r1fzPaW0v53v/vd/stf/rK/6qqr/J49e2IV4utf/3q/f//+uLyUyP/8z/+8//KXv+zf/e53T5XI/+///b+91tq/5S1v8V/5ylf8W97yloW1JMzr9+///u97Y4x/5zvfObN95tprr/U333yz/9rXvuY/97nP+Z/8yZ/0xpjWxc5O+/22t73Nf/jDH/Z/+7d/67/0pS/517/+9R6A/9CHPhSX2Y3bW+zf/Jt/488777zede7E9n7ooYfiORqA//Vf/3X/uc99LlaMH87j+6gFySuuuMIDmLrdeuutcRkA/r3vfW987pzzb3zjG/2+ffv8aDTyz3nOc6aurA4dOuRf/epX+xNOOMEvLS35Sy65xN9zzz3b5vd3vvMdf/nll/vjjjvOH3fccf7yyy+fKivv+u2997/zO7/jl5aWenvx7rnnHv+c5zzHn3DCCb4sS/+93/u9/jWvec1UT+JO+v3oo4/6iy66yD/hCU/wRVH4Jz7xif6KK66Y2pa7bXvffffdvcdVfmwtanu/853v9Keddpovy9KfffbZLVZ6xRVX+AsvvLC1/Cc+8Qn/jGc8w5dl6Z/0pCf1XkD9wR/8gT/99NN9URT+jDPOaJ3Ut8s24veFF17Yu22vuOKKuMxVV13ln/jEJ/qyLP0TnvAEf9FFF/nbbrvtsPr91re+1X/v936vH4/H/nGPe5z/F//iX/iPfvSjU+vcbdvbe47YLC0t+d/93d/tXd9ObG9hsrP2++E8vod5koMNNthggw02w4Y+ycEGG2ywwQabYQNIDjbYYIMNNtgMG0BysMEGG2ywwWbYAJKDDTbYYIMNNsMGkBxssMEGG2ywGTaA5GCDDTbYYIPNsAEkBxtssMEGG2yGDSA52GCDDTbYYDNsAMnBBhtssMEGm2EDSA422GCDDTbYDBtAcrDBBhtssMFm2P8HgUAywMdJ6eEAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAGxCAYAAAAJTk3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9e5wlRXX/t6q6e+4u7C4vYQFhRUDlJS+VV1CUh6IoIBFMFBVfQU0UVn9RVCKPKD6iUVRAIrIiisQgoIIKqCiGDTEqGEWJxgeIu0FQmGXZmdtddX5/1KOrqqvvvbO7Mzu70+fzuXPvrVvdfaa7ur/1PefUOYyICJ100kknnXTSSUP4hlagk0466aSTTmardCDZSSeddNJJJy3SgWQnnXTSSSedtEgHkp100kknnXTSIh1IdtJJJ5100kmLdCDZSSeddNJJJy3SgWQnnXTSSSedtEgHkp100kknnXTSIh1IdtJJJ5100kmLdCC5jnLOOeeAMRa0PeEJT8Bxxx03I8d/7LHHcM455+DWW29t/LZs2TIwxvDb3/52RnSZTfLb3/4WjDEsW7ZsvexvxYoVePe7341DDjkE22yzDRYuXIgDDzwQl156KaSUjf6PPvoozjjjDOywww7o9XrYb7/98MUvfnG96DJT8u53vxvHHXccdtxxRzDG8KpXvWqk7V7+8peDMTbyPUBEuPDCC/GUpzwFY2Nj2H777fGGN7wBf/7zn4N+djy3vd7//vcH/R944AG86lWvwjbbbIP58+fjkEMOwbe+9a3G8fv9Pv7hH/4Bu+yyC4qiwJIlS3DWWWdhzZo1jb6/+tWvcOqpp2LnnXfGvHnzsOuuu2Lp0qV46KGHGn1//etf48UvfjG22GILbL755jj66KPxox/9qNFv1apVePOb34wdd9wRY2NjeNKTnoQPfvCDjXG1atUq/P3f/z2OOeYYPO5xjwNjDOecc846ndPVq1fjpS99KZ785CdjwYIF2GyzzbDXXnvhH//xH7F69eqg7xFHHDHw/K9cuRIAMD4+jve+97044ogjsHjxYmy++ebYZ5998IEPfAATExMNXf/nf/4HJ510ErbcckvMnz8fBx10EL7yla8k/68NItTJOsl9991Hy5cvD9qWLFlCL3jBC2bk+H/84x8JAL3nPe9p/PbAAw/Q8uXLaWJiYkZ0mU3ym9/8hgDQ5Zdfvl7299WvfpV22mknete73kU33HAD3XTTTXTmmWcS55xOO+20Rv+jjz6atthiC7rkkkvo29/+Nr32ta8lAPT5z39+vegzEzJ//nw6+OCD6fTTT6eiKOiVr3zl0G2+9rWv0WabbUYLFy4c+R5YunQpcc7p7//+7+mmm26ij370o7Rw4UI68MADqd/vu352PMevo48+mgDQL37xC9d3YmKC9t57b3r84x9PV155Jd100010/PHHU5ZldOuttwbHf/GLX0y9Xo/e97730c0330znnXceFUVBL3zhC4N+DzzwAG299da0yy670LJly+jb3/42ffjDH6bNN9+c9ttvP5JSBn132GEH2muvveiaa66hG264gf7iL/6CFixYEOhZliUddNBBtOWWW9InPvEJuummm2jp0qXEGKO/+7u/C47/m9/8hhYtWkTPfOYz3XhK3fdTOad//vOf6eSTT6ZLLrmEvvnNb9LNN99MZ599NuV5TkceeWSwz5/97GeNc/+tb32L8jyngw8+2PX77//+b9pmm23ozDPPpOuvv56+9a1v0TnnnEO9Xo+OPPJIUkoF/9NWW21Fe+21F33xi1+kr33ta/SCF7yAGGP0b//2b8n/baalA8lpkHUByX6/T2VZjtx/EEjOZVnfIPmnP/0peLhYedOb3kQA6N5773VtN9xwAwGgL3zhC0Hfo48+mnbYYQeqqmq96DTd4j/0N9tss6Eg+fDDD9OOO+5IH/nIR0a+B37/+9+TEKIBCF/4whcIAF166aUDt3/00Udp8803p7/4i78I2j/5yU8SALr99ttdW1mWtOeee9IznvEM17Z8+XICQB/+8IeD7d/3vvcRALrppptc27/8y78QALrllluSfX/0ox+5tv/3//4f5XlOv/3tb13bI488Qttssw2dfPLJru2qq64iAHTNNdcE+3z9619PnPMAUJVSDmAG3ffrek6JiP7+7/+eAND//u//Duy3bNkyAkCf/vSnXdujjz5Kjz76aKPvhz70IQJAt912m2v7m7/5G+r1evT73//etVVVRXvssQfttNNOwRjcUNKZWxNy3XXXgTGWNM1cfPHFYIzhJz/5CYC0udXKtddei6c+9ano9Xp44hOfiAsvvDD4/dZbbwVjDJ/73Ofw1re+1ZlbfvWrX+GPf/wj3vjGN2LPPffE5ptvjm233RbPec5zcNttt7ntf/vb3+Jxj3scAODcc891Zg9rFkuZW4844gjsvffe+MEPfoDDDz8c8+fPxxOf+ES8//3vh1Iq0O9nP/sZjjnmGMyfPx+Pe9zj8KY3vQk33HADGGNJ864v9rz85Cc/wUte8hIsWrQIW221FZYuXYqqqnDPPffgec97HhYsWIAnPOEJ+OAHP9jYx7333ouXv/zl2HbbbTE2NoY99tgDH/7whxt6/uEPf8DJJ5+MBQsWYNGiRTjllFOc6SeW//qv/8KLXvQibLXVVuj1eth///3xr//6rwP/FwDYcsstked5o/0Zz3gGAOD3v/+9a7v22mux+eab4yUveUnQ97TTTsMf/vAH3HHHHUOPl5K3vOUtGBsbwx//+Mfk7294wxswb948/N///d9a7T8Wzqf2eHjrW9+K7bffHm9+85tH3uY//uM/IKXE85///KDdmmqvueaagdtfffXVePTRR/Ha1742aL/22mvx5Cc/GYcccohry7IML3/5y/Gf//mfuP/++wEA//7v/w4AIx3fXv9FixYFfbfYYgsAQK/XC47/nOc8B0uWLHFtCxcuxItf/GJ89atfRVVV7viMMRx77LGN4yulcO2117o2e38Pk3U9pwDccyXLsoH9LrvsMmy++eY45ZRTXNtmm22GzTbbrNHX3iv33Xefa/v3f/937Lvvvthxxx1dmxACxx57LO677z7853/+51Bdp1s6kEzIcccdh2233RaXX35547dly5bhgAMOwFOf+tSB+7jzzjtxxhln4Mwzz8S1116LQw89FG95y1vwT//0T42+Z511Fu69915ccskl+OpXv4ptt90Wf/rTnwAA73nPe3DDDTfg8ssvxxOf+EQcccQRDqC23357fOMb3wAAvOY1r8Hy5cuxfPlynH322QN1W7lyJV72spfh5S9/Ob7yla/g2GOPxVlnnYUrr7zS9VmxYgWe9axn4Z577sHFF1+MK664AqtWrcLf/u3fDtx3LCeffDL23XdfXHPNNXjd616Hf/7nf8aZZ56JE044AS94wQvcw+Ttb387vvzlL7vt/vjHP+LQQw/FTTfdhPPPPx9f+cpXcNRRR+Ftb3tboMOaNWtw1FFH4aabbsIFF1yAL33pS1i8eHFw01r5zne+g8MOOwwPP/wwLrnkElx//fXYb7/9cMopp6y17/Lb3/42sizDk570JNf205/+FHvssUfjAWPHzE9/+tMpH2f16tW47LLLcNxxx7kHWCyve93rMDExgU996lNBe1VVI71oHQoC3XLLLbjiiivw6U9/GkKIkbfr9/sAgLGxsaA9z/NgMtoml112GRYuXNiYkPz0pz9N3qO27Wc/+9nA49vv/vFPOOEE7LzzznjrW9+Kn/3sZ3j00Ufxve99D+9///vxwhe+EHvssQcAPSb/93//t/X4a9aswa9//Wt3fM55YwKWOv6osjbnlIhQVRXGx8fxjW98Ax/+8IfxV3/1V9h5551bj/PLX/4St912G1760pdi8803H6rXt7/9bQDAXnvtFega6+nrvjb//3qXDU1lZ6ssXbqU5s2bRw8//LBru/vuuwkAffzjH3dt73nPeyg+jUuWLCHGGN15551B+9FHH00LFy6k1atXExHRd77zHQJAz3zmM4fqU1UVlWVJRx55JJ144omufZDZ5fLLLycA9Jvf/Ma1PetZzyIAdMcddwR999xzT3ruc5/rvv+///f/iDFGP/vZz4J+z33ucwkAfec73xmorz0vsRlrv/32IwD05S9/2bWVZUmPe9zj6MUvfrFre8c73pHU8w1veAMxxuiee+4hIqKLL76YAND1118f9Hvd617XMLc+5SlPof33379hzj7uuONo++23n7Jp55vf/CZxzunMM88M2nfffffgXFr5wx/+QADofe9735SOQ0T0pS99iQDQZZddNrDfjjvuSHvttVfQBmCk1yDT9CBz66pVq+gJT3gCnXXWWa5tVHPrnXfeSQDo/PPPD9q/9a1vEQAqiqJ125///OcEgP7mb/6m8Vue58n222+/PTCFX3fddQSAPve5zwX9LrvsMgJAT3rSk4L2P/zhD3TIIYcE5+0lL3lJ4Pe///77CQBdcMEFjeNbk6c1A3/0ox9tmCCJiM4++2wCQMccc0zyfx9036/NObVmX/s67bTThrp93v72txOARkxGSu666y6aN29e8OwiIjrhhBNoiy22oFWrVgXthx9++FrfK+tbOibZIq9+9auxZs0aXH311a7t8ssvx9jYGP76r/966PZ77bUX9t1336Dtr//6rzE+Pt6IcDvppJOS+7jkkktwwAEHoNfrIcsy5HmOb33rW/j5z3++Fv9RLYsXL3amDytPfepT8bvf/c59/+53v4u9994be+65Z9Dvr/7qr6Z0rDjCcY899miYl7Isw2677RYc/9vf/jb23HPPhp6vetWrQERuVvqd73wHCxYswIte9KKgX3yNfvWrX+EXv/gFXvaylwEI2dXzn/98rFixAvfcc8/I/9ePfvQjnHzyyTj44INxwQUXNH4fZBYbxWQWizXR7rfffq7tP/7jP/CZz3wm6Lfffvvh7rvvDiITf/CDH4z0euELXzhlvQDgHe94B/I8xz/8wz9Medt9990Xz3zmM/GhD30IX/rSl/Dwww/j9ttvx+mnnw4hxECT72WXXQYADVOrlVGuwbHHHovddtsNb3/723HzzTfj4Ycfxje+8Q28853vbBz/z3/+M44//niMj4/j85//PL73ve/hoosuwve//3286EUvcibUqRz/ZS97Gbbaaiu8/vWvxx133IGHH34YV111lXPNTNXkDazdOX3uc5+LH/zgB/j2t7+N9773vbjmmmtw0kknNVwbVqqqwmc/+1nstddeOPjggwfq89vf/hbHHXccdtppJ3z6058Ofvvbv/1bPPLII3jFK16BX//61/i///s/nH322bj99tvX+v9f3zLY4DyHZa+99sLTn/50XH755Xj9618PKSWuvPJKHH/88dhqq62Gbr948eLWtjhcfPvtt2/0/chHPoK3vvWtOP3003H++edjm222gRACZ5999jqD5NZbb91oGxsbC0LeH3roIeyyyy6Nftttt92UjhWfq6IoMH/+/MB/Y9vHx8eD4z/hCU9o7G+HHXZwv9v3lE7x+bd+ure97W1429veltT1wQcfHPLfaPnxj3+Mo48+GrvvvjtuvPHGhrlo6623Ti4JsCb0UcZPLDZ0f+HCha7tuuuuw2c/+1m8+tWvdm2LFi0CEeHhhx92fiEfWAfJVMykVv7zP/8TF110Eb785S9jYmLChfgrpVBVFR5++GHMmzcvaVKz8qUvfQmvetWrcPLJJwPQY+HMM8/ELbfcgocffji5TVmWuOKKK7DvvvviaU97WuP3Ua9BURT4+te/jlNPPRXHHHMMAO1Te9/73ofzzz8/8JV94AMfwJ133onf/e537p49/PDD8ZSnPAXPec5z8PnPfx6vfOUrseWWW4IxNtLxt9lmG3zjG9/AK1/5Sgc2W2+9NT7ykY/gNa95TXD8qchUz+mWW27pzuOzn/1s7LrrrnjpS1+K66+/HieeeGKj/4033oiVK1fi7W9/+0A9fve73+HZz342sizDt771rcbYP/LII3H55ZfjrW99K3bddVcAwJ577onzzz8f73znO9f6/1+f0oHkADnttNPwxje+ET//+c/x61//GitWrMBpp5020rapwBHbFoNUasZ55ZVX4ogjjsDFF18ctK9atWpU9ddJtt5662QASFtAzHQcf8WKFY32P/zhDwD0w8X2Szn3Yz1t/7POOgsvfvGLk8d88pOfPFSvH//4xzjqqKOwZMkS3HTTTY0gDgDYZ599cNVVV6GqqsAv+d///d8AgL333nvocWKxx/HXua1cuRIPPvggyrJ0Pi37EPb1SgUcpeTyyy8feS2klbvvvhtElHyQ3nfffdhyyy3xz//8zzjjjDNa97HtttvixhtvxAMPPICVK1diyZIlmDdvHi666CL85V/+ZXKbr33ta3jggQda/e/77LOPO9++pK7BbrvthuXLl+P+++/Hn/70J+y666545JFH8Ja3vAXPfOYzXb8777wTO+64Y2NS+/SnPx1A7WueN28edtttt9bjz5s3D0984hOD7e+++2789re/xerVq7H77rvjhz/8IQAEx5+KrM059cVacP7nf/4n+ftll12Goihw6qmntu7jd7/7HY444ggQEW699VY8/vGPT/Z75StfiZe97GX45S9/iTzPsdtuu+GCCy4AYwyHH374CP/t9EoHkgPkr/7qr7B06VIsW7YMv/71r7Hjjju62eYw+dnPfoa77rorMLl+4QtfwIIFC3DAAQcM3Z4x1ph9/+QnP8Hy5cux0047uTbbJ7XweV3kWc96Fv7pn/4Jd999d2BynakF8UceeSQuuOAC/OhHPwrO1xVXXAHGGJ797GcD0LPef/3Xf8VXvvKVwOT6hS98Idjfk5/8ZOy+++6466678L73vW+tdLrzzjtx1FFH4fGPfzxuvvlmbLnllsl+J554Iv7lX/4F11xzTRBA9NnPfhY77LADDjrooCkf246j22+/3T2U/+M//gNZluGOO+7AX/zFX6AsS9xxxx3YbbfdgkCKH/zgByMdI2U5GCbPe97z8J3vfKfR/tKXvhS77LILLrjgAuy2224j7WvbbbfFtttuCwC48MILsXr16tZAscsuuwy9Xs+Zz2M58cQT8cY3vhF33HGHO99VVeHKK6/EQQcd5CwSvuy4446Oubz73e/GZptthte85jXu9x122AHf+ta3cP/99wcMZ/ny5QAQgMCJJ56Ij370o7jvvvvc/bpq1Sp8+ctfxote9KJk1Ki1nBARPvzhD2OHHXZoBCRNVaZyTn2x1zR17VauXIkbb7wRL37xi5NWKUBHph9xxBGQUuLWW28NonxTkmWZC3x65JFHcOmll+L4448fut1MSAeSA2SLLbbAiSeeiGXLluHhhx/G2972tpFt5DvssANe9KIX4ZxzzsH222+PK6+8EjfffDM+8IEPYP78+UO3P+6443D++efjPe95j4syPe+887DLLrsEvo8FCxZgyZIluP7663HkkUdiq622wjbbbJM0VU5FzjjjDHzmM5/Bsccei/POOw/bbbcdvvCFL+AXv/gFgOn3FZx55pm44oor8IIXvADnnXcelixZghtuuAEXXXQR3vCGN7ho0le84hX453/+Z7ziFa/Ae9/7XmcC/eY3v9nY56c+9Skce+yxeO5zn4tXvepV2HHHHfGnP/0JP//5z/GjH/0IX/rSl1r1ueeee3DUUUcBAN773vfil7/8JX75y1+633fddVcXdXrsscfi6KOPxhve8AaMj49jt912w1VXXYVvfOMbuPLKKwOz5rJly3DaaacNZXEnnHACtt12W5x//vnYdttt8Ytf/AIPPfQQTjvtNCxduhTnnHMOPve5z+HPf/4z3vWudwXbpsyRo8h3v/tdt9xESonf/e53+Ld/+zcAehL1uMc9DosXL066Fnq9HrbeemscccQRQbt96P7qV79ybf/yL/8CQJ/Dhx9+GF//+tdx2WWX4X3ve19yQvmHP/wB3/jGN3DKKae0TlRe/epX45Of/CRe8pKX4P3vfz+23XZbXHTRRbjnnntwyy23BH0/+MEPYvHixdh5553xf//3f/jXf/1XXHfddfjc5z4XgOGb3vQmfP7zn8fRRx+Nd7zjHdhpp53w05/+FP/4j/+I7bbbLgDst73tbfjc5z7nxu/Y2Bje//73Y2JiopEl513vehf22WcfbL/99rj33nvxmc98BnfccQduuOEGzJs3L+j79a9/HatXr3YWpbvvvttdk+c///nu2TLqOf3Upz6F2267Dccccwx22mknrF69Grfddhs+/vGP49BDD8Xxxx/fOLef/exnUVVVqy/4gQcewLOf/WysWLECl112GR544AE88MAD7vfHP/7xbkLxwAMP4MMf/jAOO+wwLFiwAL/4xS/wwQ9+EJxzfPKTn0zuf8Zlg4YNbQRy0003uYiv//mf/2n83hbd+oIXvID+7d/+jfbaay8qioKe8IQn0Ec+8pGgn41u/dKXvtTY7+TkJL3tbW+jHXfckXq9Hh1wwAF03XXX0Stf+UpasmRJ0PeWW26h/fffn8bGxgiAi0Jsi26Nox+JKLnfn/70p3TUUUdRr9ejrbbail7zmtfQZz/7WQJAd91114CzVp+XP/7xj43jbLbZZo3+Kb1+97vf0V//9V/T1ltvTXme05Of/GT60Ic+1IhC/f3vf08nnXQSbb755rRgwQI66aSTXBRjHLF511130cknn0zbbrst5XlOixcvpuc85zl0ySWXDPx/7Llse8XHWbVqFb35zW+mxYsXU1EU9NSnPpWuuuqqxn4//vGPEwD6xje+MfD4REQ//OEP6ZBDDqGxsTHadddd6Zvf/CY9+OCDdOyxx9L8+fNp8eLFdPbZZwcZTdZFbCR06jUsurktunXJkiWNcfapT32K9thjD5o/fz5tvvnmdPjhh9N1113Xuu/3vve9BIC+/e1vD9Rh5cqV9IpXvIK22mor6vV6dPDBB9PNN9/c6HfuuefSrrvuSmNjY7TFFlvQ8573PPre976X3OePfvQjOvHEE+nxj388jY2N0ROf+ER67WtfGySTsPKrX/2KTjjhBFq4cCHNnz+fjjzySPrhD3/Y6PeGN7yBdt55ZyqKgrbZZhs66aST6Cc/+Uny+EuWLGm9Jv59Puo5/fd//3c67rjjaIcddqCiKGj+/Pm077770vnnn++i8GN50pOeRE94whNax5l9rrW9/Ijchx56iI455hh63OMeR3me084770x/93d/13hubEhhROuwOKqTOSevf/3rcdVVV+Ghhx5CURQbWp2NXk4++WT85je/Gdkk2kknncysdObWTlrlvPPOww477IAnPvGJePTRR/G1r30Nn/70p/Hud7+7A8j1IGQCGvwkDp100snskg4kO2mVPM/xoQ99CL///e9RVRV23313fOQjH8Fb3vKWDa3aJiGMscBX00knncw+6cytnXTSSSeddNIi0xqi+L3vfQ8vfOELscMOO4Axhuuuu27oNt/97ndx4IEHuqTgl1xySaPPNddcgz333BNjY2PYc889gyTAnXTSSSeddLK+ZFpBcvXq1dh3333xiU98YqT+v/nNb/D85z8fhx9+OH784x/jne98J9785jcHWeuXL1+OU045BaeeeiruuusunHrqqTj55JPXurJCJ5100kknnbTJjJlbGWO49tprccIJJ7T2efvb346vfOUrQdq1008/HXfddZdbsHvKKadgfHwcX//6112f5z3vedhyyy1x1VVXTZv+nXTSSSedzD2ZVYE7y5cvb2S0ee5zn4vLLrvMpd5avnw5zjzzzEafj370o637nZycxOTkpPuulMKf/vQnbL311muVbLqTTjrppJMNK0SEVatWYYcddpjW5CazCiRXrlzZSFa93XbboaoqPPjgg9h+++1b+wzKKXrBBRfg3HPPnRadO+mkk0462XBy3333teaFXR8yq0ASaCb7ttZgvz3VZxAjPOuss7B06VL3/ZFHHsHOO++MX/7yl1i4YAF8ezODTgth35H4bVi/QTJov2377HTqdFobnQBAmQ+N7+a+soWQKGr396m8LynnjJqCx4a33KdxM4++x1u13e9raxhK/QuxJyruoqKGqZ4bHjzTbJv+XxljEAwQXL+7fujGuG0bX7UKu+++OxYsWDCFvU1dZhVILl68uMEIH3jgAWRZ5hLptvUZVMJpbGwsWapn4YIFWLBwobsBR7lw09U37t/p1Om0rjoB+kHuAyQRBcCoPFCsAdT2DwFzKFgO0Iw3YG4wMLKgvQkmqW3i7aYigwDQ/1990Bt1IpE6L/75iAGSMwbB9WfBGfIIKAfJXBrjDnyn2WU2q0DykEMOwVe/+tWg7aabbsLTnvY0V+7nkEMOwc033xz4JW+66SYceuihUz4eee/DTrOdzaRmUG3f49/8ttTx4m07nTqd1lan1EPfAqQFxxgYbVvd33w2rTV4escZmUXW/eKHWgCOFjDMf8QYIM0xuDkh/tY0AEBT+weaDNDtKwGGKSBcP+eFjM7M6ciY/r8ZI0gCBGMgEIiQZJW+zMUxPr3QWMu0guSjjz4aZPv/zW9+gzvvvBNbbbUVdt55Z5x11lm4//77ccUVVwDQkayf+MQnsHTpUrzuda/D8uXLcdlllwVRq7bG2wc+8AEcf/zxuP7663HLLbfg+9///jrpOtqQHtw26sUf9bidTp1O66KTZZGDADL53TyYfdNsbJYNAGEK3JZ5/0kaHKPvrP4uKQTP+NgsUsMyUNmiXmwKHRUQh5msaxP38PNiT0ENktp1JDigmN6Xsp9NxxRQzsUxPvqoWzeZVpD8r//6L1f3D4DzC77yla/EsmXLsGLFCtx7773u91122QU33ngjzjzzTHzyk5/EDjvsgAsvvBAnnXSS63PooYfii1/8It797nfj7LPPxq677oqrr756rWr0Ae328WEznkHbYkD72syuOp06ndZFJwABQMoWcJREDWC0oGAf+D7DjPWSLRRNBFSOAgbQAEMwwxjJA0bbl4EMEjqWQSFo+vuSI7LclKm0DRRDU7X9j5rnZvTzUp8PxjR75I5JAoIDgoCcsxp0E0A5F8f4TMmcTEs3Pj6ORYsWYeXKlVi4cGHw26CLGPeD17dtgLBEnzYzwrBB0unU6TSqTg78oB/Syrzr7xFYQjNH288HRvvgt/uWihwDsyCkLHIMET9KXzgzo34XnAVgoX+zzLNmWoAGTd9MGWzjPT6HuaoC86oHisBgYIxBse3c+OclBdjuHHALjsydB2HaGIPxSTJkvPZRFmKwn3IujPHx8XFst3gxHnnkkcZzfH3KrPJJbgiJL9Sgh07bNmj53naBUwMq7t/p1Om0LjpZ8c2GFjh9gLTskUybD46K6ge/D4juswME73gRa+I+i5RwD3YHjgmgADQYEAHMMEcCwEizTAmAgcDNsRljAMH8RjU4UjpgCAiDaVLAqPsMBsa2cxOfl/icNM6POS+caTDMBQNXFhRhfJIEBYbc29YC5Vwd46MA8/qQOQ+Sa3PyUwPFSttgiG9VfxDEA6HTqdNpfehkRUEDmv+A9wFSEkWACVQeAPgPf0n1Q98HBP098Q94wAikwNEwIlWDBOeAojRg6v9dgyJZdkkaMJVlncHhKckowyAd2zZ1cEydG38SMXQCEU0ccsFRKvuZIeccGQcyzgJfsdU/4wx5tI5+Lo7x6ZQ5D5IpiWdM8cwmZQ5ISWq21TbQRjVpdDp1Oo2iU5tYsFRoAqRUej+lVA4ASqWCh7//4PfBUu87fUyfTA4FR0bgxKAYwDlBMAYlyZkiLVhyZoDU/l8M4A7kWHDs5HIVry0GR/t7bG4eBRyb3xGco0BkfU440++lIggG5JxDEUPJCL2Mg8AHXGMNlCmmtymP8bSNYP1LB5KRxHTfyigXdVC/1MAY9SHX6dTpNFWd7LZkQFB/9t6p/i0GyFLWD3z/c/zwr82M9VF98ImXXnDOUEIDHydCCSTAMQWWducm2IU0oNkAFwYNlsoyMqMXY6wVuIEQHGHOix+MEwNkqVQSHJsTCeuTrCcPg4KIav+sPkc51+CYK2bAkpBLwljGoQQabFKzed5glPr/GPzdysY4xkedGK6rdCBppO0Cp2ZQqZlRvN2w49jZVqq906nTaV11SknMIrUZtg7w8QGyVBQAQCnVwIf/sKw7nDFAGWZo/IycM8cAm+DYBMtcIAGUFtCYCegx7ahBsC2LF9BcvqHP5XCATE8k6vPjPhO56FYfsCWRA0eY/0Nw7YusGEMmGErFkHMNlmOZ3qZHHCS48yMD5jMUiJhbSzkXxnjHJGdA2i5UakY+aB+jzGj82Q/ztvPNE/H+Op06ndZWJ18sOAJIskhFTYDUoEgN0Bzl4W8lBAHTl1vWxCDIgGACLI2Tsc4gAACyHSitHjFQ6v95lDM62MQ6DCDj8+NPKuw1kMo/FgWZhAQHuGK16dWwSCkYJDFIAnqCO3NvLxPmaisoMHfNM31ynZ9zUx7jo13VdZc5DZJtJ3nQxWYtn1MSmyFSgysefJ1OnU7rQ6dBelgW6fyRxkyYAsjS/Fb5ZlcPDPT+9LsPAgC0adUzAXLP/MkZQXEWgGUuOCzylUADKAVjNQgnTK9s6BkMJcUiG32oGYjTBpClqs9P/Tncx7C1pDbCNxe1ybXi3B1jjLwTmgkQEr5UwtAlIsDGP8Y7JjmDkprZxKaBUR9Eg/qPOoPqdOp0Wl86NbLBgByLtGZWy5SUMxU2AbJUKgBHnxnF6yaD41PNHCUIilsGxWrqZ/6bUqoAKK2PEQoQwgCkYhBiyD+dEN/kapmlxeA2cUzZsEjrdwzBEgFAOuCUdZCPVPXL368vDiS5NpmWlkkSg+SEnHgiOAiBn1Kf73qfbUC5qY3x6ZY5D5LxRfBnMP7sadQZENA+eAYNqliHTqdOp3XRyRfbFgZ76PeARRowbAPIYexo2MNfH1ebEy1YKjImVPMf6H3q/4STzyDDTDpt1URSEvskGWOBCZaxwWzSFz9YqZ4wIAmQfakCgKwGAKV/njIDlDIjB5a50lGu1ofsBwpZPyUQrosF0mspN5UxPlPgOadBMvVQGTababvw/qDwB0u8z7bj+vvudOp0Wh86+eIH1igANnG2zyKlx5AGAaRtAxAwJPsdqB/6UpF+4Jv3aM2G2agGSm6ciZwxKEWOQXIwqCjYxYrNzNOWlcf2qc9F/RunOqMOZ+15Xn2J1z46tpgAyH6lHDjWLxWcK/98Cc4dm5ysFMYyDpkRFGl/5JioJzU+s7T/tY+99t/3gRLYdMf4dMmcBsn4wqRkKhcnNVgG9Wub9Xc6dTqtL52CfhSySUINiJJ8c2v48I9NiTJ66AM6+YAv9nvmA6SVCCgF0324YM4CqwhDfWoAkokCBqWt8w8P6DWVOmBInxcNtiZ3KjdrNDkgZXgMB1T2vFFodvYBsl8pB47Dza7KgaTgHFKRA8t5hYBUQM+7Vr6JWxJhXta0RTMGMM6CicKmOsanQ+Y0SAIjPFim2L9ttmV/Wy8Pu06nTqcRdBokijyfm3vgtj/8pUISIKsBD/yBYpBKGBOrNr2aJSKGQTY28bL1BLlePRZpAdJnlfpw3hcGl5bOZuqxQKkBWperAhlf6qi2WNhzFZpXLUDWYDn4nNUgqSAVd2ApFWFeITSjpHBRpG8pmJcJB4icwSUqsPUqgbkxxteXzHmQbJO1nS3RgD7rakLodOp0Wp86AXBJuP2sObEJ0fkgEwA57IE/SIRgkArgwjDHtn6+2ZTXYMlYDQIpgIzLagX7hM7eo5jOcEPEwEinsTOhQ1AwbNKs01RML1Gp34EqOuOpiUQMkG3nLvbf1ixcg6VUApUizC/0mfIjjevj1/8hAPQNA2ZmUYyfcGCujPF1lQ4kPZmKTTxldojt8KnPft9Op06nmdBJkX3o68hWa3IdlIi7zYSYYklAe9BOw9TqSVsADo9Mg4ApG2XS11kWaRmSBUjBmQPHZgmuUMg0MqrBkpueEgRhzjIZNsm5DiTiHC6gyN9/m8TnyJpP4/OWAkrJGSqlM+3U5164/vOK9LSiJuFCm1odg6yBclMb49MpHUgaGXRRRjEXEJoDwv/Mos+jDIxOp06nddEJwNCozWZFj5CZ2N98EBwFIG27H8BjJQWaKbDhZh1l/a4Bi8E++NsB0poWfdbpiz0vDKQTpZNekM8YAUoDJSMGwQmEJpvknLn0d/oYg0902gRLjXPng6V9SQ8o436DRE8g4lx1TUa5sY/x6ZYOJDGaGWDY76MMmNSMi6K+nU6dTutDJwANsGuTOFH5IGl7qMuoqKTwike2sck4UpV7ib71C9E7c2CoP9cA6RilB472O5BgkrbdMEkLli7q1rxLpQN59PpNBWnYpFBwYCmoPk78P7UF6wxbO+kzysIAZJFxr2/60V37Ipn30ueJw3xmGnZiRrmxjfGZYpYdSBqxFyx+H2UbJPr6+4l/j9vajtXp1Om0PnWaivj+SL9tbcT3scV+N1tc2AKdNbUOYpHWD+kDpOBNcPS/p8QHRweWnCApBEqd1YBcJhxFZBb6KwilfZQ276rNwVr/73XKgjjIKcUm4yUzqSU1WipI1cxo7mfuqQFbmCe9n6wPsEAJzM0xPqp0IGkkdeHaLn7bRUzNcNoGQqdTp9NM6zQV0Vlf1t+eQ+DQny3TsdLGIuu6iqwGVRYCpM8kfT8lgMZyEOWdWKI6rZteK8oARbUJ1QNKHVDKoTggSSEnBsV1blWbd1Wn4mPJ/xdoT7xgJyUAII2TWCi9n36lGpOLet8hg7fnk3PmCl7rc6S9rIyR81Pa/n4g8Vwa46NKB5IYbhZo+81ePH/2kxoMoxwrHgidTp1O66LTVIRzlszPJhiD4gRl6x56zMb1cawnzWpisAiYjtmEM10/MWaRFhwd0xwAkJZJCs7CKFc0/Z0WFBQBYNoXqUgHMHEySQVsUgPAEDBbfplBmaTjevG+BlbF63Zlq3FEzDkzwTgpJpkqOwauAdOCpd1PKBWArD6emxB4nzkDrwBmlob4u2DmBNlzsjGN8RYDwXqXDiQjSc2ERrl4qYE06rE6nTqdpkOnYZGXsVgmNLBPtNPYLOj3iwHCb7csMucMueABi6zbDFAGv3up2xxY1ozIj3xlAECqXufS+H8NSjMOiToBOyNthmXkXT1nqSTklqNWCopzlKaSSV3FgwWgGE8W2kQpAkWmV2btygoBo/SvheBhpgPOGCaZcmsjJ1kdHcwYDyJ/3e54yCiBjWOMz4TMaZCMh23bRR4200H0+zDTQao9nml1OnU6rYtO7nfWDpaWbZSozYu23qP97oJpElGqQPsyj1Qu0iLjCQZY+yI1OPpAORpAun2a/5VZYCRVf3YnUAF+xCfnIMY1YPIM2h2p2ajNmmfiXt13fba5iQRmGCPzOWCTOp1c5Vi2aoClP7nwAZISplhr1i3AXTaf1DnX51pCcGCiqs3PE0w1AnlKM5FgqM/vxjTGZwos5zRIjnLhU5/bZjPxxRwEwm3H73TqdFqfOvl96+URFASzCKZLU/nLGoAwl6lgZv3giPQ0Zo8+QFozqvM1Cg2KGihNu/nNPuRzHgKkBVMfLC0gMlU5kNRASfpz4wRzkDLLJBgHeAXwDBnPwLhOLsAYUDF9dhn5/7uu6agUIAXQc+tKAckJpccm/QhV+z3FvlPiA6YCIJkGyCLj6Ff6f8qc31IGZl7OGCalcv7J0qzRtP5JgJIRr/V/aE4TZucYnymZ0yAJNAdA20VB1Ja66IMeUql92X7x/jqdOp3WVadRRHBT4FjBMUgLloKgmRHpih1Qo5kMATRMq76/LBcemzHv1rzq2CPndaDOAIB0jJIBUJUGR1nVwKiqGhzNOyMF8pikA0jGQVyAsQoQGQTPwHlmEgfoc1tFOKtIr18ENBMcy/Qympx01Q6fTdrMOY1zYsCSR6Dp+yY5Zw4sS2P39dnkpFHMprKz+9X+XELOyZhfzYRIMjBoc3ap2gN5ZvsYnymgnNMgOeiipfqO2m/QzMnvQ2g+2DqdOp3Wh06DxJpgFdmcnjFYwplcOdPLHWqnXI0UgzLqiAgoc84hzDKOEBR54IfMOcdYpgHSRbNGAOmDJyMFyApMVgYopQZEVenfPNNr49xbsOQcxDMwpU2uUFIvhBTKsEqOyl2l1KOZu5y3PaHrPuqyVgRJfrYcHiQGCIBSav9jbGoFNGBy7xxLarLJOgpWuvNVZApCAaVi4BIoeWh2teAoSU8AOANKU+RasNk/xkedDK6rzGmQHHSS4wvnD5LU9m0XLmWWGNS/06nTaX3qZEU/FMmZUBkYmOnt+yF12jUK2KRbEsEJgGYnktPAoB37XgeywJlPfYDMOcNYxpELjp7gDgQtQOYJgMytedVjj0yWjjlac6sDzIhN1ievDtzR4Z8cEJkGTAO0yArNKkVmImZDU7W1TvdMKSugzlo0Jkxi+KxOKScVNQBScAZhsqvbc8k5C9MEKnJLWhRs3ts6OrZfKZfrtV9poCwqHbxTcgJnupoLVxSYXaXS+Wc56qAtvdKlBkpfZvMYny6Z0yDpi70Q5L0PmzUNMjsMa48vfKdTp9N06eQ/pOz6QWk/szovaS44FEmXvFvnyK7ZY2mWQugf4Wo9tmXTseBoA4SsqbVhXvU+F4Ib9tgOkBmDZopVX78bgHSA6YEjS5hc65Phg2Sm35XUgCky3UbkWGUhiuhs1kLCssnaP6kLIpv1l87sWgMlgAAwLZvUqlIDKH2RpPPLxvl0rQnWN8fmomaSnOn3tNmVgSs4sBSCbTRjfDqlA0lPhs2a4ouT6u/3SZkI/PbUjGmYDp1OnU6j6gTUgAjUgTiWERE02/PzkuZehhioZpsiva19dnOVBg0fHDmDM7mGTJJhLBPIOUPPsEnB4bHFFoCUfTDLHmU/BEcLlqr2TZKUgJIgFS6VYNxWehbgQoC40MBoTa68AtkIWdLFtQpRNJKy24Adv5ajLTvml7WKza6VSTVngbIARx/KGbR9oPTNraQISJi626q0lJKQc6BUhJy8d6kZpuDQFVBIz4EYMQjzPwxLNDAbxvh0SweSkcSzI18GXZxBJga7bdxn2ADrdOp0Whedgv2ZzhwMZLOukDa5pqpccA7kAACOUioDcPqhz5UGS0kE3lLfygdHC5Y2itWySguQlk1mBiDtesmMtwBk1deAKPtgsu/MrRYcmZIgKUFVH6RUDZDRekkyCRAY1wDJshzgAizLAFEYJqkar0wUgOBg8UUBXMSrUuRegGaTumhymk0CZh2kMbvGQNkmqWTptjyXBWNJhFLpDEH6Wup3wYCcGKTSkxGp9KSKgSBZaHYdNL5myxifLpnzIJm6wPHsJe4b9x80w/L3P+oF7nTqdFqfOtnCwQw+WALEYLLeMIRBOfpziRoopQeOPli2iQ+Olj2m/JG5YOiZTDB+MoGBAOkxSFZ5bFJVQFVBVX2gKjUwVqVjkgBCoDQgSVyACQHKcs0usxx8jLTZlRRgl5DYz0ohy3s64IfgvTQ7H8vqQJ7YP2nLW/nAZhOXW+lXKgDKWNgA0KwUQUTAqV92vaVlkto0XEpCLjTrZaQt7ATmWCVMQgP/kLNxjE+nzHmQHMQIUhd+GP0fZpIYZRB1OnU6ratO8TacAcQYCDbkX7NIRjqgxze7GgoBQFn3o3FFsgZYpqROjWaWkzB/HWQaIK3/MfciWv08rtYH6QDSflYVmNTMUk2u0aBYlaCyrxlkVWqANODom1xrcyt3TJK4AMsLqKoEK3pghQngUQWQqdr8CmigFD7AmXMm6kAeW5cTsGZZ7Z9M1YJ0ZlcbtRoBJSkaCJCp/fnFna2fVJI1weoArFIqcKYB32eT3IwTSWFCitkyxkc/E+smcx4kUzKK3Tt1sTHi99RMadgF73TqdJqKTva4NRg2Ta5Emk3abWw5KJ2jDQC4MRcqcDK+MQ8sM6QDSywwAnDgKFidnzUFkMKwWt8nqd9hGKNnYjUAqU2tfc0e+xMgyyDLvgZHyyZLY3YFakZpzxUXYJwDwjO5VqVmlUqCWbDMveAfLwAoBkoFhkKfhcZ5sQAFNP2Tti1+l8zL62rOLeBlK2oBzTjiWDlWa0zAovaZWrarSLNhBc0mFcGs4QQkNdPW+bKhxvhMyJwHybZZTWomlNpulMEx6HipfXU6dTqtD53a+mssZIb4hEe1QGlTsGkmycGJTEEMDYw5NFCCs6BupX1m21RzNq+qXg8JL6MODwDS+itbATJikA4g+5Og/oRmj5NranCs+qCyDP2RLcE7OmCHO1Mr5aUDS4z1ACU1YJICqIe4krUFSkWEwiQfIEIQ8eoH8gCApBZnLuDWQLoIVZggHQ+l2qqMjCo1QOpTo7MBaZAnA5hSEbhgUIDJZ1vnxJ3NY3x9y5wGSf+iAeEsJXUB4r5t/fz9x33a9tvp1Ok0HToB1v+oTa02KpIxC5jMAaV5vKMQXPu2GLkIyPqBqk10iixQNo9vn+WNpR82L2sCIMMSWajXQfoAKVsAsj8BmtRMkqpSM0drdq36NUBKCZKhp48ZFtjwSRY9DZZKgkkDkkqCjxEokeIuy3soRO3XrTEwDOSxogJGKQLmZxMD+GAZr0eNq4K05c614kDR+CUVoXHtNJOs303VsJpNmhFigRKYPWN8OmVOg6R/0UY1maUeim3f49/8ttTx4m07nTqd1lYn214v+9BswPomrZYuH6sBTihtioU20ppF6ApKsYBNAjCMUoskciZWAAGL9IEyrglpAdIF69i1kVB1MI4FyKp03xsAacytGizL2vQqJVRZQUkFkqo2u9rzZiNcBYfISzDBA58kSr0fVCWgFJRS4POAIOLVSFHMB8BBUO78KwLmR/5H5Ueier/F1TwsWPoJCOLf7bt9+YWtRxF/0kPEApOrLURNZgwJkBk7s2OMT50/r53MaZD0ZdjMZJTZzKgXf9Tjdjp1Oq0PnRjTAEeMQRHV5lZYMARg1sqB64cl4ybikTOTmcXzXyl4plZ9xNx7ZIW1DGFS0tl8re0A6R72UJotWtOqH8XaBpCTa6D6E0HgjioryH4FVVYaIKUGuVg452CCQwoOnmcQRQWeZ7U/0mTvYUqCKwmlJFhvs+RDuijmg+wkggCLgfMLEUS8WpGJJ7A9DzYna2q5SAogUy+XR5eFBa6HCRkUVCZpgRVFtdl1Q4/xmWKTTe/yNMhFF12EXXbZBb1eDwceeCBuu+221r6vetWrdLBB9Nprr71cn2XLliX7TExMTFm3tmEzyqxl0JBru4ApM8WoM6ROp06nqehkzWI2StFm2NFm1jqZtV+42DE577Ndv5gLjl4mMJZx9MxrLPHSiQGY+SzcPmxS8owzz8RqA3bCbDo2OYAFSxvF6kypCYC0wCkfewzl6gmUqydQrZ5ANdFHNdFH+dgE5EQf1eo1wat8bCLo3x/X28vHHgNNrNavNfpdrR6HMp/RnwCrJsDKSf1e6fcxwVBwhkLUr4wD83PhXvbczM/1+7xCYH4hMK/IUGQchTmXuk2/bLutqOIqq5jXWPCdJ02xdrLSPs6oXqNpBpSNynXtQ8Zi2/e2tvrYg/c76L6bTpl2Jnn11VfjjDPOwEUXXYTDDjsMn/rUp3Dsscfi7rvvxs4779zo/7GPfQzvf//73feqqrDvvvviJS95SdBv4cKFuOeee4K2Xq83Zf3iC5MyEbT1S20Xf/fb/bZ4n36/TqdOp3XVKRb9YLRLQLQZDZycSY1xAoFBKugcr8b0JqlmlgQdBckFA5FmoHnL8RjgEqkzmMQCBqx9c2se+SM1GNbZdHywZErWYFj2mwA5OQFVVqgm+lD9CrKsoPoVVFlqc6tSjlE6PUVtbmWcQxU5GOeQZYWsV0D2K2S9Eryn/ZNcapOoTffO7Pn3U9wBKLJeADZEzDxtNbVUHpv0A59qYNPJynWCAWos5/D7++W32l4+u7fjYVC0qpWA2ZEeA2B6bFiw3ZD33UzItIPkRz7yEbzmNa/Ba1/7WgDARz/6UXzzm9/ExRdfjAsuuKDRf9GiRVi0aJH7ft111+HPf/4zTjvttKAfYwyLFy9eZ/1SFD++IG0X05fU97YL3GaGSA2STqdOp7XRyYqLy7GfUfsWBfTyEGJogKUFSB74qerIRzDzwET4kLfH0f8XMyxWA4rgms3GAGnzszKTa9XPxerYpKrM0o5+DZBVPwDIasKYWNf0NUCWFWS/DMytpBSUTJhcLUiWlfZPlhlIKog8AymFTCkIQPskAeOflCFQAiDGzQSBo+B6MYjGw3gNpQXLUI+mGVXWUa6RydXvB8BjmCIET5dD1+bq9cCSh+DJUH+2Yv2SVnyABDbsfTcTMq0g2e/38cMf/hDveMc7gvZjjjkGt99++0j7uOyyy3DUUUdhyZIlQfujjz6KJUuWQEqJ/fbbD+effz7233//5D4mJycxOTnpvo+Pj7vPa3PyUw9DK22DITWLsr/FA6HTqdNpfehkxT7QFGn2QEwXFCboYBsFGPDz2CR0ujoX8ej6wAV2wIBmipHY5y5HzR459DuDnyygjmaFNPUg/dqQXiYdsj5Ht+RjwgXVKAuKBiDlxKTHJHXgjgVLAA02qQxIsrLSwCg1mKoih1I1+xRK6qAWA5YBo2Rcs3T7PxccBc9cpOugNZT2Ok2a2B0f5Pyk5alCzT6wWoAc80yztjRWmKCBOXO7PjYLrlmbKFguHILlhh7j0ynTCpIPPvggpJTYbrvtgvbtttsOK1euHLr9ihUr8PWvfx1f+MIXgvanPOUpWLZsGfbZZx+Mj4/jYx/7GA477DDcdddd2H333Rv7ueCCC3DuueeOrHfMCuKZTcockJIUo2h7mKbMCZ1OnU7rUyd/9i+YzppDgANMa4b12aQPnjFgAiETItL78I+nWSRzplfLapjRQfDIzGoreFgzq0lUrvOwSp1JJ1rmofqlDtAxJlYLkD6jJAOSyoFkeMaYYDWbLDLwMnMs0hcllTYxG7DknENxAQ6ACxEUcQbjEMV8FCOsoYzFTxagAdKvSxnqJEyErvVTZr6/ktlC1ia6WLAgExKgg6ss0DorgLl2DPWEB2gH0A05xqdbZiS61b9xgObN1CbLli3DFltsgRNOOCFoP/jgg3HwwQe774cddhgOOOAAfPzjH8eFF17Y2M9ZZ52FpUuXuu/j4+PYaaed0roiPYsZ5aIO6pcaGIMGQKdTp9N06xT4lJiu/NBkjoMBUzB4Cx7C/9IHRwa40lmWSTLLZMhb7mFZpCuYrFkkXJIAnUXHppuj0jOteu8+QFrwJElQkgxLDM8QFwxMcHDBIDzfZe3HlIE/M9cbuSTpJAQUF/q5xrhGHgOU/hpKAhyzJLOGMiXc1PcUHpusfZK81eTqB+8Upj6nBdzcY5J1mkBd9JqhntSkns3Dntap8bYhx/j6lGkFyW222QZCiAZrfOCBBxrsMhYiwmc+8xmceuqpKIpiYF/OOZ7+9Kfjl7/8ZfL3sbExjI2NDdxH20MsNSNPzYzi7YYdx862Uu2dTp1OM6GTlTaGaYFQF2mufZeAD5hwSwRSmXcsOPpg6ZtaGVBHs3qJxFtZpEszp4FSeUCo+sYH2a8aACn7CrIvDehpRS1QcsGgSs0mGedQksD7Elmvua7SlxzG3GoAktvMPRGbBOcosp4LdrIp4Nwayj4a6f2EUhCMdClLxgJza5vJNXg5Bsndu58SsAbK+vro6pLGdwlW+zA9djlMYgYZt0/HGJ9umVaQLIoCBx54IG6++WaceOKJrv3mm2/G8ccfP3Db7373u/jVr36F17zmNUOPQ0S48847sc8++0xJv7YLFc9gRpmVDxN/9sO87XzzRLy/TqdOp5nQKT6mfSgKpnN2MkqwS6bB0QKp7d/4fyImaQN3uGmHqly9xsAXacGSyJS7ql+klFncL12SAA2KNWiSVA2AVKU0TJKC4B1Xb1NwMKH3b5MMWFapElGxXHAILqA4B/fT22WFA0piHKzU74UooKDXTsZVQ2Lh0rBJWbNKu0514JpJFmc30gBp0/5Z9uhHFWfcljWDWyrkm1rttbP+ZX9pkT+efJnJMT7dMu3m1qVLl+LUU0/F0572NBxyyCG49NJLce+99+L0008HoE2h999/P6644opgu8suuwwHHXQQ9t5778Y+zz33XBx88MHYfffdMT4+jgsvvBB33nknPvnJT05Jt7aTPOiBxlo+p8S/qP6+UvsfduE7nTqdNoROGYNJTxaySwuYmnlS63HsvmKAtNGsGhxVyCK9z67Mlcm7St5n1S8dGPpA5oJ0lAoAUvZtH3IMUUmdnxQASBKYYCBJEAWhNL+LliUjAMA4BzdVRMjmfnVFnPtgJTNAyQBmAnkIxuTKdYnlTH8G6kxFEwzgSgdWWVZZp5YzS0i8RD42UYAwyRs06IUAaauv+ECZm7qYgrWzSMc0PYBMjZVRxtP6HuMzIdMOkqeccgoeeughnHfeeVixYgX23ntv3HjjjS5adcWKFbj33nuDbR555BFcc801+NjHPpbc58MPP4zXv/71WLlyJRYtWoT9998f3/ve9/CMZzxjrXRMzWwGzbSHzWDa+o86g+p06nSabTr55lMwHzDr+AJqUcYuAfEfsgwwgBgVNbbbOADVPI+krQcZFlAmkyqOVLgOkqQxr7plH2TAs2aTendKFz0xPkMmGEQuoKSCcGCaA+jr8yBC1scERyEMSGa5LrslBFSW1/5J2dfvVR8i58i4LaMFFNZUbUDTFyEJpccm/dyrMnGy40LX6fJkdZkym0NX2AmMt1zED7Cy1y9mkG0gFQNc/Lltm3Ud49MljKhtaG+6Mj4+jkWLFmmQXbiwYYYCQlrvtwPpizboIdR2oUdt73TqdJqNOlnXmA+Y7jfzbh/7sZmOWfOqW/LRUgarPwk1sVpn1zGZb1R/AjTxmMusU9ksOhN9nVHHvJdrKsi+RDVRJc2tFij9Oo02ylUUHDwXEIWAKDiyXo58XgbRK5D1CmSb9ZD1xpDP7yFfOB/5ZvPAepuBb7YAfP5CsHmbgc9fAPQ2A2U9UDEveJ+UhL4i9KV+leZzKQmTlcKEVCilQqnIvStFbv2qSjy2/SLXfh3P2DcZA6QFRVfLMwqwcmtcgZBJJhK9u6QKkUzHGB8fH8fixYvxyCOPYOHChcnjrg+Z07lbUxdi2GymbfYUmwj8bQbN4OP2VP9Op06n2aiTYNH2hlGacoVOwiCemkWGO08HyMSlrfQB2oNpfJOr3t6YV11kK5kAntAvaR2TXPEgsEd/zgCUwXEY18tFeJ6BT/Sdf5KyHJQVmlFmOXheAIyDKmHYpH63/kkbwAP4TJyDc2CSaTYpzLtORG5AsqWOJwCIiEU2gngSAGlrecYAKeLJjb1WLdfLnBz9/9ivLd3WxxifCZnTIDloxmJlKhcn9fAZ1C/Vp9Op02lj1KmRsCDav+3jAyTzfZBtunHR1I23sJUokw55bNGKTk8XMsngdyhwcMi+hCgESGizrdZF6qUivELF+y54h5kXzzOd6CDLtW+yP+HMroxnGjzsO+PIjX/SHdv7LLgw54zAFQNnqlGuzG4TRie3F7nOOW9UYUmZWJ35ldlKLhE4RmZxSrFHk3lo2LhaH2N8umVOgyQwtYs4Sv+22bv9bX0MhE6nTqfZqpP/wE4tCVkbcUDJBSDCslPM8xEykQZPIGSUABrLQGzQDiSBhPkcCRcMUjC9VERwtyaT9yuoXOeMzfMCqj8BnhcukIdxUYOk9U8yjqzIoLiOWs05CwBTEqGXCQimHJuM63nqfrp/XMMzZpGpMmVtAGl/Y3a/HjgyC5Aem2dQbuISjAmWaEvIuozxmZA5D5Jtsraz73gGPWimNNUB0OnU6TTbdfIlBsYkTjIOYkovmQD0w1aZpROMa2DkQhdFBvRns4jfLtPQpa4M8zIp5tzuE2Bnzax+AA/gASe0L5WENs3q9ZME2VdgQhoGqctw8byCykvIMgMvK6iJCYgs1z7ULAcmJ0BZAS5LEM90RRP7f8k+clGY0lpkJhVaX0b6TDNwwyY1LlmAtIBpE8zXplYfKOHYo2OGLYDog6aLPgb0GlYLjspjkb65lXHoXIbcJML32qPrP9NjfH1IB5KeTMUmnjJjxX6d1Ge/b6dTp9OmrtNApsu4ZiFuA7u2kLl1hkyYrDZcgGW5zrpjgNJW7ojfATgzKEprKrWZVvVvUoa+TgucXGifpALAZG165YJBSQaSPFhmErNJmVfgVQlUOm0eMwWgqdSMEjwzyRPKmlHyDDaG1p11g9QMMJGnuqanLYCdA87kCiBMMeflarXrUVPskaEJkC6Prg2s8sExNo2TBkaQ1P5oUgBxMJHp664qMJ4F420mxvj6lg4kjQy6KKOYCwjNB4z/mUWfRxkYnU6dTpuKTuHODMMgY6YjrqkT8xikD5h2/WHZ14v1TVAMywuIonKVOwLA5Nz4D3WCAADGTMpAiaAXK0oqt8yDJLkIJCUJjJNZSkLGdGvAsl+zSSEVqOxrQC/7IZvMC0D2TdKBCkxpwBRZhtwwQUX1GeT2s2LgjMDAHFjqvuH/YYHRAmuwvMNjj42gHY9NWlDUaQItUBIaDNK+m2vpkifA5N1lHCSyGkjjIYD1M8ZnQjqQxGhmgGG/j/IASs3g2x4knU6dTpu6TvqhCsc8GKAfqiIDkQIo0+WzctKsLC80k8wNQ+M1MIo80xU7ygqi0InJWVmBC2bysjJwxUCGKTLBXBWPVACPFSUVGNcJBkjUiQiUfS8rUJ7VUbWGXbIxk1+20nUoLZsEF3q5i6pAqgKkAFgfQhRQjCG38wcDjuAAB+nMR1y3c2b9l+EZtWnjfHC0yzdqsBzAHq1p1WQ8csnmo4Ad5plaXdCOZf5MT3j0vEeBLJtM+CfX+3iaJulA0oi9YPH7KNsg0dffT/x73NZ2rE6nTqdNUScGBOyCoJkIMeXMc0wogMiApdLMTEnNIE30KMsK8KIEN2noeJnpCFOpwPq25BWZrDlkwNEApApNrnGSgDbRYFibXAXQSGSgpIIwidiZyTHLTHJ2VowZc6vHJmUF8AyCcZ3diME4dGugZOQVwDYn0c9zZOtA2iTlbm0jmyJ79Cux+CZXADY7UjAGeA2S5HLVZmAK9QSItM85HnPTMcanQzqQNJK6cG0Pk7aLmJrhtA2ETqdOp7mqk9uHfaiSaoI3KYArMDImu2IMUFKzSZNxhymdkSczFTosmySldNHkiE2KQmgwM2xSFALoS+cVtYwyFezT+r946fDCjD9S62fS6unvEqgqMF4BxtRKqtKopioIUYC48dK6tR0ERixRADu+ClFWI4ZE/c4Bvkc/qYMPjp5PMrlURxl/JDP+YAOG4Bk04itoxKyB0sp0jPHpkA4kkb4AI93k5rM/+0k9XEY5VjwQOp06neaMToyDiSICyiJ8oJICH5sHZYBRm19zUOX7JjMIVYCkhMozcKmQ9QrHJpUk8LxeQmLXQjKzZtJlCTIgabPvtJ6j1DpLm4AdMCn0ajC3zBI++BhzJGQFYhyCZ1CGCpLJ3Wqqfuq/TLNJW9YMCGtAAk1wbAbumGvoJZS3JmAHjtbk6uXR1f90FGgF1CZW439MWiysORbrdzzNhHQgGUlqZj3KxUs9BEY9VqdTp9Nc1wkAIAoduKM4qOqHQGn9YUVPM0rD0LiUUEpBeBVBqDdWf5YKWa89O4zsS3CTaFxEDFIXYWYu4EcHA7UvLyHPfKuZpTG3KsMqlWnzyoHB+O3AhW6DScZAJmKVayYJVZcqs+ckJrxxxZU4c85A9ujX8bRly/zlH941CA9qfI2Mm7WglARIpvQkgGIzO6ZxPK0nmdMgGc9E2h4aw2Y6iH4fZjpItccz906nTqe5qJPNSMMAkKyafXMNJByAajG7AnDmTwDa/OoF28Rig3N03/poFiC5KcYMwAHmlMRnkV7FE+tvdYBp2CTnmS5/pTwYMckGbF3PWGyTD448lRigjT36NT0tOPrFr4GkudWZWq3ZnGdNJmnBkTdNrutjPE23zGmQHOWmTX1um83EF3MQCLcdv9Op02mu60SMA6KoATPhy2IWdAAXpcoBt7g+BslARy69zxyylEFVECuWNYpC+9tEIbxlJXVKOtuPRdmA9LFleI6MfxLCy1zDwwhSRgoMHIwxCHM1/KLXKddgW91Ol1bOMsQUe/QB0wNHZnU151lFeXSZSZ3nkj1woSNaSfuS3ThiHGBMWwisH9q7lsDajaeZkjkNkkDz5m27KIjaUg+Rtpu/bV/uoRBt0+nU6TTndbLgaNZEuIett32dHgDmIa+BM5Pt5lVfuGAmiw5zSzuYZI0+GhRrs6tbVsLrNZk2JR5vySsLQAfvuC/NPKgWIIkUhNmPNADJodPXcYYkQvjg6FftGIk9RuZWC46q6hu/qSlXFieb90ASWW7em0zSTXRkBd//DKz7eJoJmdMgOeghkOo7ar9BM3G/D0WfO506nTqdwjYNlD2ddICFGvpAyZVybBIY/GBjnKMSpcnDKkGSm4LMDDxHI8pVM0bmGCUTmlXaxOZ+AgO7/7ooc80uU0wTgANGQNTRoNAM0GgCCR3EY1mkTSRgiy3HNTtbl3aoypQhi8DRmlaryoEjxSAZZSmCECZtoGGbXICpHCwnuIhlU0fTJYmQlU7PF0141mU8TbfMaZAcdJLjC+ff4Knt2y5cyqQ0qH+nU6dTp1P0UGQc5Jlf9Vq8mmE6oOR8KFAyzlFxXUDZJionqRxYqkTEqk1GIHJhANIrkyUi02uRhQBpc8/yNEAGupG38tGLFNXuUqaXfpiTK7wJQ7D0AwPqdbaxR/M7lTqVngVHKvtuuY1WKcEkTcpACMMm7f+SFwD65lqaTEPG7ApVgYlC7xPrPp6mW+Y0SPpiLwR578NmvINMRsPa4wvf6dTp1OmU1okAOJNd3ot2wEOgBEzaN5vfdbXX1UtdJzh4WUHkOveqBct2kOQeWGYODHmemVcOkWc1YOaFM0f6vjtnomwpTuwvtWBM1320KjHGwCOHJLM5Ww1ADo1elRWYLEMGadmjSXjgg6NjkxgCklyYNaH1chc+Ng9gOhgJkoExk9zdsEmKymmtj/E0HdKBpCfDZrzJmzf67vdJmQj89tSMaZgOnU6dTnNVJwJ0Rp4YKKHZJueiXuuIZjBPXFZLTvQhXVo7BVlWjRJa8ZpJntfgmPUK8CKDKPLA7MrzzIAHB8tz99m1iUSNTKcYb9RotOxQUQ2KVpIFkacCkP3Jmj06gKzBkYyvF1IGAVCMm2AqUbNl2L4mWEkB4GPedWUc4BWghGOT6zqeZkI6kIwkntn6MujixKYAFv1OiT7DHg6dTp1OnU5N0GY8AxXz4Uyv3kJ1P5gnBkpnBhUccmLSgJ2p5NGvwIvMra0EoAN5eL2NBUFRGPZYZJpV5pljl6LIwIQAywqwrKgBxDJbLtyyiTqJu11ryMx7mmW6VSHwEgggAZB+xQ5K+CQHAKTNN0tVvwZGwwwB1KySRyblPK9B0rumCgDrmaouKtP1NG3yBGM+X5fxNBMy50EydXPGs5e4b9x/0OzY3/+oF7jTqdOp06ldJ4JmjlTMB4kMPBH1SoZVBkBpAmecubVfoeKTjhmqsnJJCBr6WjMqr/2OwjOzinmFM73qSE/NIpnJNevMr1zUwGh9q9GyCH3AdqAM/lcfIO3C/yiK1a3DjEysAUBOTugk7FWpq5dEgTsNU6tTqGaRLMvr66a8xHn9SWCMm4LTDOB9VyWkLdLVv9YbWuY8SA6a6aZu2rhtquakUR5KnU6dTp1Og3WybUwUUIUBRsZNEIvHKrkA5xzEORQXyAEXZKNy7YvUTLIMmGQMlHEkqyjygEFa8yvLC8ci3SsvHFgiyzST4lmDUQagOURi1hWkuovWXLoUc14EqwbEFoA0vkmb/q8tulWbjUs9KQgyCzV9l4yLmk2anLXMsMl4Hax/veNr7v/vjXMwTTLnQTIlo9i9Uw8PjPg9NVMadsE7nTqdOp2aOhEAeEBpWSNDzSoD8yvnEFzoJAIWJPuVqx6iytIlFIh9cBpchWOTPkCKPNNgWPT0a6ynwcN/xSxSZO6zBUzyzbDQ5tW2cxKwSKBhZg0KJXuM0gbp1CbWJkA6ADVZjHR5sHDiYJk1k1L7JlUduFN3soE9HFyI+n/jGZgsdc1JE+nqX+PUNbefh42R9S1zHiTbZsmpWWxqu1Fu7EHHS+2r06nTqdNpajpRC1ByE1hCQmhWaTPDZDl4fwJcaLC05bZkmSWZJFCzSW5AkueZ808GABmZWZ1/Mi9qFsmF9snZZS08C0yvMUD6daJ9k2urxCzS+CtJ2qhVA4CWNVqA7E849qj6JUgpyH5ldlmn/NMMHEE9Tybr5SIN4dxFHUNVYFXfAGU7m4yv+bC26ZI5DZL+DQeEs5TUBYj7tvXz9x/3adtvp1OnU6fTuulkgZIxXW6KMV1Ymc8Ll4coL5hGZDn45ITzR1qw9HPA+gE/LnGA9UkWdW1LB5COTc7T756ZlUShwUJkAWBqEDHfUQOkSvyjtoqWIi/JeZS5p/FuGKWyZlYlHZu0ZlXyloDY86G88zFo4kBS6QmDU9JnkwKYnNCTEy50InSVGZNryCbXZjxNt8xpkPRvuFFNQambve17/JvfljpevG2nU6dTp9MUdRJhiS0NljoPqjX9ccNqiHNQleuHd17qSiKGPcUBPC7tnAve0eZTvwA0G9OA2ADIYkzrZQExK2pANIDpA6SkGhwpkajVXwbSOIcRQPqmV3LrGHWiADJ+RCprE6sFSNmvAoBUqgmUTOiKLdwUoSalwKWCkAq8By+yd0JH9VYlUPXBzITBsUn7nsjRa/9H/3v8+3TLnAZJX4bNTEaZzYz6MBn1uJ1OnU6dTlPTCYAruQUAQfqzHsC4gLJ+siwH+hM6KtOwKJ7piE5hk3t7wtyaQK6XPlhwzPU7LEB6pldkmiU5BmkB0mOUFiClxx5tYWUfI129SCIosNrs6hWvbj+RKljHCKU0i3SJA6TxQSoHkKpfQSkF1a88U6t3Tkp9TpRl1n55MtSZjwA4tmzPHbOmZrMkhFQ11DcZt88Um5zzINlm2x42gx60LQa0r81svdOp06nTaWo6ubWUbiOzltIkHSDjpyQuQFkOVCVY2dfM0pXgSmeYsWsDGeeAi1wtXLCOZpC1DzIASJNeTx/XfGYcijSD9MFRxSySAM4YFKuBkiGqK8k4AG9No18P0u5GyppFWv+k8VHKUgOi6lcmuUIdzOT7JAHDJKXS7FqFafcqoAZKzkGT3DF5ygqzdrNvUtqZSNcIJOPrnWKZMyFzHiTbbsBhs9UU9U/d3H57yheT2r7TqdOp02nddAKgAcgmHXAdDFCaQB5kOTA5AVaVNVgmMszoTc1+TLIAcF4zSAOWyHLwsXkGhAvHGB0gity8Zw4gJQFSaXCUqs7fGvsjdYo6AiP9hROBmC7CbGs2MvM/uuUkHs5TvN4xYJbSmVctg7QAKRN+WndOBIcSlknqSFiuNJOUgoOJfh20U5X6PBv2rn2TUrNIm0OWZ8F1HzaeZkLmPEimTEYpW/iw2W3qe9sFTs2C4/6dTp1OnU7rQSc/jR3jQDXhPrP5DKw/qUGsKoEy1w9xV3YrYb40bMiZW4UIAneQafOpY4xZHppXPX+kBkcNfBYctak1wSIBkC2FxTSYgjMwgmGTflICDwhTay69zDiOUUoZBOqofhUApG9yDWpuKg4m66onVirvcwa4yFYy542qElyWIN4HUzZbj8npitHH00zInAfJtTn5qZvcStuNnJoB29/igdDp1OnU6bQedUrle/XMr4wLE1CiH95xseFATIFhF7Rj3lle1OwxDtDx/Y/GX2rZoyQNkooQAKX7HwjOF0nQLJIYg+AWKPV/z5lmk+AcpEwauGHi+Rf9CFalVBC8ZAHSfvcZNhmA5Iq77bnxSVpfpRIcLNdBO1RpPzDlBSjLwYRm78T7QCXqiF+MNp5mQuY8SKYknu3GM5uUeSklqZly20MiZU7odOp06nRaPzo1gNKWbbJAmWVAVQEmFRuzpkmfTXr+SBeAYsGRexGqbeZVUTTYowVLgm5XRnuK/gnGACLNJAkEKA2URPq7JIbMmlyDvLDmf4xPkv2/TLQrAO2fdGApnW/SrpWkARGuFLFJJbhjk7r6yoSOKs4KsKzOE1uX6qoCNpm65m3jabqlA8lIYvORlVFuyEH9Ujf1oAHQ6dTp1Om0fnVikenV/ca4LkTsg6VKM0kXtGODfhgPwDFY3iHyJHssW8BRm1nhln34mYIADZQaGBnANVCC67OmGSYigAx9lIx71Ud4yDRDdhiyxhggg75KOXMrU/U+beCOFBxsoq/Zpk1WkBuzdtUHqyowUYFkBYhKT1DQBMjU9Rw0ntandCBppO3mTM1+U7PaeLthx7Ez5VR7p1OnU6fT9OiUZJSVqXNoGQ3PYKNCmUfp/FyrZFPIJdY6WoCM2WOlyDBIBO/xko84YEfCpqAjkNRA6QBSMTCuQZcTQ8YzgFe1yTVldh1QANqaWi0o2qhWMv5Kl7LPq7vJhHK+yUBvk8ZPmtqdqq+X2FCpwRJZrpllXtQJ2WUJkv1gOciw8TTdMqdBsu0mi2cwo8yAh4k/+2Hedr5pKd5fp1OnU6fT+tUJgAazrM7wQoB5QBsQ9JKDx8cIcquaXKxBMgDLHo35NcUerR/SgiRRDZYAEMfsMKaXh3AGCMYARVDMaM8JjHQbByAE0wv1WeV0gyz1Z1uqq+1cyXipSIpdUrMwtSSQIIgCUCaFHTc5caUpdK3ySqf/s0kLKo9NlgYUDZtksgqSQgwbT9MtcxokWwfLgD6s5XNKYhNS6sEQPzg6nTqdOp2mXyfwDBCqfugaXx65XKcEihfn+3UfhamFGKSWq5d2SPAkeyxVyCQJ9t0sA0lEtXLGIDjTLJMRFGMQnIw91vy3nIGTBtOMZ1o/u7zCVOCwJmL7rgsmpwN8/OUe5NikBkj7m1+YWoEDfemAUnp1OJXgkGXmsckJUFYYc6sBSsMe4+Ugw8bTTMgIIVDrLhdddBF22WUX9Ho9HHjggbjtttta+956661gjDVev/jFL4J+11xzDfbcc0+MjY1hzz33xLXXXrvW+qVO9qCbkqLXsP3ZflO5qJ1OnU6dTtOnEzFu1jFa9mey4mSF9itmuTGZeq8sB+VjoLyn+9p1kCI32+i2ChyVIvSlQqkIpST0zauShErVr8lK95uoJCYrhYnES7dLvT9v+wB0HRhrpupS4HlVN8hLzecCkPzzZwJvbFYdP3mAkv5nA5YuCpYg+9K9SNWmWZuUQPUr9xmOTeoAnnptah9M6VqYTFVTHk/TJdMOkldffTXOOOMMvOtd78KPf/xjHH744Tj22GNx7733DtzunnvuwYoVK9xr9913d78tX74cp5xyCk499VTcddddOPXUU3HyySfjjjvumLJ+sdkmpvXwPg+6YP5vbbPgQbPjWIdOp06nTqfp1ckCJWWFY4IOLG27//KAEaIAZWMGPHW7ZBlKBZSK0FeESkGDozG32s99qcFxjQHGx0qJx0r9Xn+X7vuEVA5AS6XQlypkqURe1Kx+BdVFRP2ZeenhALjvzGOUTNTg6QfpWOZY+yxJs8tSOrC0gKlKk/s1SkqgDJu0KfH8pOo6C49lkqoxRoZd7+kSRqkMuutRDjroIBxwwAG4+OKLXdsee+yBE044ARdccEGj/6233opnP/vZ+POf/4wtttgiuc9TTjkF4+Pj+PrXv+7anve852HLLbfEVVddNVSn8fFxLFq0CP+3ciUWLFw4tL9/sVIXzu8H1Df3oH6pPm03dadTp1On0/ToxADAlJFi5gHtkoLb37w8sEHwjgc+FdX+Rs3uNEjGJlZFQGkYYan0u27X26ooaoebBK2CATnn4Jwh5wy9jCMXHBkHMtNWCIbMvBecQag+WDkBVk2C9R8DL9eAVZNQq8eh1qwGPbZKv0+shlqzGuXqCVSrJ1A+NoFqYhLV6glUE33HAGVfOaYY+ya5YGCCmYLUAqLQVVJEr0DWKyDmFcjnz0O+WQ/FwvkQ8+eDz18AvtlCMPe+OajYHFTMgyo2AxXz3XKQ1LUbHx/H4sWL8cgjj2DhCM/xtZVpZZL9fh8//OEPccwxxwTtxxxzDG6//faB2+6///7YfvvtceSRR+I73/lO8Nvy5csb+3zuc5/bus/JyUmMj48HL2A089Cgmy4W3ww0aJtBfTqdOp06nWZOJwJC0HO1Hm1+1zz4bpkZZTblXIa+YY+WLVYqZI+1aVXhsb4MmOKEDJlk/b3+7MywUmEyMMtKVJZR2uAgVZtcYRIb+MFFxFiYKciaXz32yBzLDBmmL45VmndlWGW9VKQ2x7o28y77lVsn6Yo7V32z9EazSWtyHXTtZkqmNXDnwQcfhJQS2223XdC+3XbbYeXKlclttt9+e1x66aU48MADMTk5ic997nM48sgjceutt+KZz3wmAGDlypVT2ucFF1yAc889N/nbsJMe/z6s/6CZ8rAbf9SB0OnU6dTptP50AqDBRFUgkZkCxVHQDudhZKuXlFyS8REasJSkfY+WVSoCJipp2CNpJum9K9PHMkon0gTtMJ1Rp1SEnDNIg2eK9H/dy4T5/wkcuq/gOsGAEBmg8jovqjG5Upbr97wA+hMGKOuEAG3gCNTAGL/bmp2KE5gkMKnAvAhXmZfgeVbX7KzMchATwAMLjC6fq4kwHiV70DTKjES3+vXPAICIGm1WnvzkJ+PJT36y+37IIYfgvvvuwz/90z85kJzqPs866ywsXbrUfR8fH8dOO+00WGcMvrHafo9NS41Z6xSO0enU6dTpNP06OWZr1kcSKYAlIlstQAKN5RylAcWa1SFgkNa0OiGVA8fKmFpLqRxIAnXeVs6sqVUDXy44FGduqYik+ncGDs6Y809WSrcLu7TCi8DleeESujO7LIRzXc3DB0r/e9l+TZSpBEJSr/VkQoEk0y+hAkZpc8PKsgJXtnyXyfATZ+CRpWbsfrmzlus/nTKtILnNNttACNFgeA888ECDCQ6Sgw8+GFdeeaX7vnjx4intc2xsDGNjY0OP41+AUW+stptzmD9lmLmp06nTqdNp5nRyQJliLR44+iWthgGkjUa1wKjBMsEkzXIQZYJwfNEAqVPQKQKUYA5Qe7YQtAFTXVwa+gVAMDJAmYFJE8AjLVhynVIvy01FDgGeZw4UuVm6YYULDolo4oA62bkFSkAzS59NchMdq/oVKM8gy0rXnvRMrn4GHmRKA3um16sOu3bTLdPKY4uiwIEHHoibb745aL/55ptx6KGHjryfH//4x9h+++3d90MOOaSxz5tuumlK+4yl7YYa5cKkTD2pG5t5/clrj/fT6dTp1Ok08zq5bf2KGsan1waQdURpO0A6P6IBysnofaJSWN2vsKaUWNOPXqXERCXdcpDHzPdgfzby1fo/JQVmYFeuy2OTdamvXNe9NH5KnmfgXK+ptGBpmSUXzAXotIkzwfq+ST95uqyz95DUTNKaXOGZXG0GHiYrnfmo5drNhEy7uXXp0qU49dRT8bSnPQ2HHHIILr30Utx77704/fTTAWhT6P33348rrrgCAPDRj34UT3jCE7DXXnuh3+/jyiuvxDXXXINrrrnG7fMtb3kLnvnMZ+IDH/gAjj/+eFx//fW45ZZb8P3vf3+tdGyj8G03X6pt0Kw1niWn9jvKw6PTqdOp02l6dap3woN+7QAZ+iAtMPkAWX9WHovU0a39Sr8sCwXg3oWNbOUMYxlHnysUGXf6WKkjYBkE1/5JoQil1G2SAJGZ1G9ZBZIlWKaBkviENrmataFcTIIXGXiZgfVLF7yjfZR1LlsuGKQkzTgjNqkk6cw/9lwr1QzisYE8do1kbHIlpddKms++X3LotVvPMu0gecopp+Chhx7CeeedhxUrVmDvvffGjTfeiCVLlgAAVqxYEayZ7Pf7eNvb3ob7778f8+bNw1577YUbbrgBz3/+812fQw89FF/84hfx7ne/G2effTZ23XVXXH311TjooIPWWk97s8Xvo2yDRF9/P/HvcVvbsTqdOp06nWZep3g7Rfq7za+qqA600Qv5azapCNr/qJRb6uED5KRp60sNjpMGJHVUqgabJkhy9CsNkDZ6tec9uYUxt3LOwCuA5wKl8UmWiiAYIDwWCZGDqaIu8WWiXFMmVxa8mH6XBJISTLAgh2tw/jyTqwDCDD5elKvoSVfTktk6nkQOHJmSIMMkR71261umfZ3kbBS7TnLlypVYuHDh0Nlo/Hvqgg36Hu+37cYepa3TqdOp02nmdLIAaZOQ+yzSj2T1zazWLGpNopUkbSI1v1n2OOk+Swd+QJpJCs5QZAJFxjGWccwrBHqZQC/jmJ8LjGUc83P9efMiQy/j6GUMY0KvqRwTDJmcAOuvASsfc+/06CN63eRjq6BWj4MmHkO56lFUqyfQX/VYsF5STvTrzDqlBEmC7Dd9ksyYZXku3JrJrFe4NZP5Zj1km5k1kwvmg2+2ELw3H2yzhfrz/AXAvAVQ+TzQ2OagfJ7OchQF8DwyQ+sk53TuViupm2rQzCGezfgz10E36qBjxTdnp1OnU6fT7NDJis8ilU1M7rHIyplR65cPkKUk9M1aSQuOlkVakytQgySgATIzIKmBlEOqMJ2cwVIdAcs5JiuFjLOATWbcRLqKCpBZvRyk6IH1JzSrNOZXkWe6ckeuTa76vQLPMyipkmySi9HDW6xfEkDtlzQ1POFYZVUzSm+9ZHztZkI6kIwkZfYZ5cZL3XCjHqvTqdOp02l26sSZSfPmH9OyS5A2wRJMiStyZlbloldrH+SaUjoW2a90YI40S0QsWAJNkBQBSFLwu+6j3/UyEaWz8kgGwTlKRhCG5QrBkZnyXZRpsOR5oYFycgIs10DJCw2MIs+gihyqrCCKDKTMUg9BIMFAiul1kfa8SGoN6vGDd4I2pTxTq/ZLMmWiWpUO2oFJNs8iP/FMyZwGyfhytt2gw2apiH5nibZh+4pnyZ1OnU6dTrNDp2GMhWCKJ9vUciYVnU5BR4EPUrNIDZBNn2QIgrG5VdrE5g2QrPvllTIp7BhywSEYQaqITfK+ZpGi0LUbsxxsrAdW9cFMpKkoMqhSB/DwPAOZxAAxm4Su/wHlAeSwCFgAQbSrMEDZ8EuSqstnVX1QHtbHnCmwnNMgOeoNEn9um4m2+UhS+207fqdTp1On0+zSKSWOPZrvUhGUgmGQtkKHcll0akCUCZ9kCJSxDGeSBpwYQ86VMbsq5EKCM4FMRWwyK7RZk+vyVDaylWVFzSbzrJVNijwDoE2gsg9YoHTnzAPLlFCczUjJ+t0CppRgmUnsYF9ov8bTKXMaJIHmjdJ2QyFqS92wbTda275sv3h/nU6dTp1Os0cnzkx/0osgGKv9gAC8DDh1VQ5lEwsYFmnBzQfINX0ZAqTZjjwQZJyhlDrbzjCQFIwh59KZXfOKoZcJ7StVQBazyawAkyVgTK40OaGB0kS9iqJqsEluGCBXtdlVBUZXq3e9thKAW2sZXBff/KoUIC2bNJl4/LqeBiTjazcTMqdBctANl+o7ar9Bs16/D0WfO506nTqdZqdODAAz6eFsVhw/C2ZcLFkH95gsOs7v2PRB9itd+kopgqpUowoIoJd29BVBmCUgsdTRrwqTkjmza84ZxirLJplLkxewSdEHlGaTbKynazuaDDi87AdskpTSmXJkBIiSQJIlqoJYoBwc1KP9kD6bNGBpwNH5JVWlmS/CazfdMqdBctBJjm86/2ZKbd924drMN239O506nTqdZp9Olk1aFpliMcqYVt0aSvvyGGA/MrH2pYKsFEgRpFSORVqw5JxBSc0oSRFUxoG+Pp4L6ulLCM5dFGzOuQka0pGuOefIeYtv0meTvtk1wSaFlCDjQwSgPxcA+hIKHNxjk3qdZV0+y7YNErI1JP3gHe/FZKVreg7cy/qXOQ2SvthBT977KLPLtv7D2uObttOp06nTaXbrJBigGIMEgTMd2clB4KzOn+qLZZc+SFYRYFrzqvTAEgDs8nUlNYNlxqSqFAEFHFACup7kmn7lQDPnHLnw2GSmUCoW+CbzjOvUdLIEiRxMmuUgVR9kl4QUPccms14RmFuVVOBFBtWvIAqASZ3UPDiPgnlrJ72k6QMqjMAlPfeCd5SOdAXlGixNmsCZkg4kPRk2u4xvrFR/v0/KvOO3p2a7w3TodOp06nTacDrpMlS62oZOJl5v7QOlD5CVyaYTR7BK0iZWHyDJ+SU9/TiBk2aSIuOo+gAKQFQaFB/rSwjO0K8kJiuOiUpqkOQKY5lmk9Y36dikYihEAYg+mMhAogDL+ppFFtbsWoKN9ZCZpRq8zEwkqja7unMjFYAKKvJLcgOIFhinspayNXjHmFxnUjqQjCSeRfoyaPYyyDxkt437DLsxO506nTqdZpdOgungHc0eremVYZTnv78OUkfD1oE6tbkVQeAOYPCBmyIelclwUzH0OXNAOVkpiL5EkQn0K4Uy09G1k5VCT2jgzLgwABmySZKlXmYhCpdcgNyykFKvmywrxyaFlIF+ChU4MjBuzLBKBSZW9+LNdHfhjowvMvrnGZE5Cfp90HiYDpnzIJm6EeKZZ9w37j9oJurvf9SL2+nU6dTpNHt1EpxBEMBAgY/SlrUC0uZXIDS9BsyRyAGkomaEq85owME4uTZWMfSZBsk1fenMrkXGTVID7ZuckApjkqNSQMYJlWJmiQpDYXO5+myy6IGVuioHK3qgqo+sp/2RWa9mcUFiAK507UizhhKoTaw8z1qBMemntEtEbDCPpdWkmn1nQOY8SA6aVaZukLhtqqabUR4AnU6dTp1Os1cnwcyLM3AFMGbAktcFkmNJRaW6fXuM0gKkD5KkCIwzSCgIcBAnyEqBMYYyYpOFCQha05fIuc7zamtZ9jKFjHNIriuEZJxAQqeoIxPIw0QdtAPjo2RFD1AKoqiCCFfug6QwZbB4FPlqmSP32aRIM0nupdtTETDad1UvBUlPQ9a/zHmQTEnqhosldaNixO+pWe6wC97p1OnU6TR7dGKM6aLGHBCKgZsCx1Z8VgnUaxmtyAgMaywgB5q+WDjRhY85GCNdyNiYXQvFg5R3kxV35tYxxywJhTBsluslIZIz7YeUJWBMr6wY00WQS8sqSyArIXpjLu8qVwp1SgFoBmnYJBAlPOccvMgCwOSB6TXMRWvFmV47JrlhpW1GmprFprYb5cYedLzUvjqdOp06nWa3TjkHJDEwSc4vyRlDLlgIlilaGYmLZKUaIOPiTErVQElM+y8ZZ5BmYb8tpVVFy0zKTFchsSW7xhTXka6kg3ikImQiA4kckMb0KjPNJu26ybGe8xdmvdofWUEDiBIc0hRRti/R6pMczCIZjwDTZ5B+8A7PpnT910XmNEj6NwEQzjBTFyDu29bP33/cp22/nU6dTp1OG49OgAYtwRmEgmaSXAMl59rkasEyGwEoUxIE8PAaKBUnMMU0W+MMqlLoc9ZIcdevlCvuXCruEq7nxFBJaLOrglk3qXO5QvS1b7KowKoSMDldYZaEwDO3+hGuAKA8Jmn9lX5kKxPCJSdwoMm5B5A2U3sEoD6D9LLvzJTMaZD0b4JRzS6pG6vte/yb35Y6Xrxtp1OnU6fT7NVJA6QxuTI4YMx5CJR6/SIPKnoIxtAsAGV0iAJ3AAOYBiiZIhCrc8XaV5i0QKJSQgfoSHLJBUpJUJmOA7KJBSpFdVFmU06LqcIF7VhwZEoBhU5CZ4GDCQ7FOaTgYGUFMpGvyvgm63WSYUFnJjiEMcGC8yYwpoDSi3Qd5TqtL5nTIOnLoJlp2+9x26g37qjH7XTqdOp0mr062eAdoWwQDzlzq63CwZkKwNEXNgLD9DPvuOMrguIEDuYiZMlLUDBZKczzzK5l5jNJDZgZ587cKjmDhCmjJTNAZCCZgWWZA0jYeo8AoCR4IQOfJKAB05pbeR7+Hw4Y8wy80LlgnfmV6xeEaIJj+qTMKJuc8yDZ5tsYNlsdtC0GtK/NzLjTqdOp02l26pRzhorroB0brGOBUtjPPP0CNFD6CQkAgDEGSmhi2aTlUHr9pLfOMsrmU3+HrnFJQgOl5DqAx1sOIskryqw8NplVQFbqdZNFz2TD6QGAY5TSssN+BeIKSjQBzAbqhOZXDmS5NrfGL6Dhn2RkEgvYf36GZM6DZNsNOGi2avultou/++0pv0dq+06nTqdOp41DJwZrUiUIpv17FihDc6t+Zd5nC5CMMzAOcMVAnAFmyQcp0j7HxPIRUgREMS5xnlhpoltLpaCozudaKoVKcWSKQZqcrpITiHOwmE3mBZhX5xFFLzhmUCKLc52ZJ5UE3QNIYZlkXmgg5NY/aVilYZdmp43/fab9knMeJFPmmfhmGmXGmfrednOmZqtx/06nTqdOp9mvE2cAC8CQTEo4jlxwXbLKrFdcwzmKrPZN8uhlc8loYATA4YASQMM8q/2WLPBL+tJIgUfafGsLQxMIigyTVNDLQXhm2JyOdAUp8NyCZFjWyp0DLsBEH6qs6rWSOVzdSD/7Dhfc+CaNaZULnUM2ZWqNI131P524itMrcx4k226cYduMaprx+8f97G/xTdzp1OnU6bRx6AQ0Ta455+BcJxfnTKes06WsePguOCRXIaMko6EBPMsoLUAyVgNmyqeZSqQuTZICnWWHGiZXzSThloNogCz0UgsldQL0TAJZ6QojB2LYoBAluKkU0iisDNQJBfJCs0dbbcRGuPIaOAOATLHJGZQ5D5IpiWeW8YwyZcpJSWpW2nZDpkxBnU6dTp1Os18nhqbJVQfumPeIQWYGKPtVCJAiYwA4JFTNJgFn02RmeckoAT++WL+kBUr7XplE5xooNZOUBIiscGsRwfW7NbsC0InHUwfiQq+rFHU/dx5twgBrXjUACROwo8HSB0od1EMt5lY2gybXDiQjiU01Vka5IQf1S93Ug27eTqdOp06njUMnzoBCMJQqNLlq32Roci0ygSJTjlH2Kw7K6ghVxglcMSDjeqmHIgeWfoQrZ9qPaYEzFp9FAnXxZ9/cGppcUQfwMB6ySbPsguWFzoIz1tPnwGbEERrcqOproLOJyrO8oZcFQguQLNf1Kx14Gj9lI6lASjqQnFlpuxFSM83UrDbebthx7Kw01d7p1OnU6bRx6QTU6yStyTUXHDnXACm4RJHxwORqs+SUUudhFZllTQqoAGW+ppaOxGzS+jVtX3+bGijN3g1QWj+lJAIRqz9zU3LElqVSyoCmAh8DlG9K9cDMBu5Q1QdDnjDL2jR1BiSF8UdmeZ0v1jO3EmPQMwHz2kAyp0Gy7SaLZ5+jzDaHiT9ztSYa/6b3b8TULLfTqdOp02n26sTQbnLlDNrkKsiwSc0q+wYoc6HZJKABjBMDMoApppMGeCnquB8NayNkp2CCtUCoDEMl0i8FbXIlY3LNuPFNcmkAU7q6jsxGuCpvUT/noKrUkbAGLHUfY3L1s+oY5sm40ADpLf1w0a7G1OqbW2kDgeWcBsm2AT/opmAtn1MSm2tSN2F8k3Y6dTp1Om18OllgHBjlqphhk9rkapmljT4F4HK2MkYgTibDTswkDXMUHCLjEIJrnyYL12D6n2WUC1YavyTBAKepWWkjXTOTCYdspGvm+QEzBQYDlA70DAO0gT12yQgik6sHhAFQ5rWPkmVFk0WOkmRgmmROg6SV1Kw0NuuMOsMd1H/U2W+nU6dTp9PGpxNnMCnqfJOrcsE7OScUGcf8QqBfSYxlHLIQdQIAQPslmc7LqhQ5sAz0MWySe0E/1tTqBwdZsWnwUiIVIeOGTRqTq4JOWye4KaTMDYsUdZkq/d5z50CzSR24o6t35DWLrJ2q5j0CSs/MyrK8DtgxrJGs7pZFzjCbnPMgGQ96f/bpzzJHnb0C7TfZoJsv1qHTqdOp02nj04kBZt2kNbmamo5KJxq3ka7ziqwOrimMX68PoABkZdcXtpTN8hIRiEyzyUKEEbRtqfAAzRxt4I5+MQOMJsqVAZIxCBPdSlyAkfZJapNrplllZoDSssiq1KxSeiyyxS8JkzQgCOIx75ZFks8kNxBAAnMcJFOzxmEz0bYbxL95/Jsq3mfbcf19dzp1OnU6bXw6uVyupiKIM7l6ATy9jFAq65MUmFfUaxoBAH0NUKVZH+mDJBG5dZIWKEXGAzNrG1D6tS3b3JdE9USAbKSrZZNEIFJgwnwGwAxgORbpzK2eyTUlNtjHLAWBzbaTGzMrz0DGJ0qGcW4ofyQwx0EyvqlSMhVTTeqmGtQv1afTqdOp02nj1ckBljIVQSxACoZMMOSKoWfMrJVJHTe/CJc79Cu9RKRvTK4cCKqCOPMqC4Gx8IKCrO8z89jkQHA0u9csU5tcCdBAJWwFjkwzyQxglTdBYVyvobQgWZVmZ2a9pAeWbmmHS0cnHKu0AImYQXqvBsucAZnTIAkMH/SDZpcpaZuV2t/W9ibudOp06nSa/TpxZhllXT7LBvD0BKGSpH2TJtJVFuEj2DI/qQiiYo5hSg8k/cCcOIuPD5AhmzSVSpjVU3+wAT0WHAENmFLpDELEDGMUGiAZmWLHHlBqAKsAxsDIY5TIa/+kJz5QWnD0TatkgFKDJk8nFJhBmfMg2SZrO6ukAX1GNf90Om28Og3zoQ2TQQ/iTek8bao6xeWzhILxS2qf5FjGXWSppOaC+cwHST4cJNMAGX7XQUPcFYT2g3jigB4dwEMg6JyunBgybgCSZ45yWqCEZGBKalbJuGaaXMDWfmw1k5vjBuDoIlmzZnTrBlwv2YGkJ1PxZ6TMM7G/IvXZ79vptPHrxAAkM3+Mmg0kuunZgIfAxnye5pJOgjEwRm7dZOZS1OkI19ysoexl4bUWnGNNvwoSDcSZc3S/ECQzHptcBeYXQn8WHIKHiQ4sUPIGQJIxs+ooVzLskhgMQCoQiaQP2AGk0hUmB5a1ioJw4gAdB5Aii0DU0uAuunWDyKAbahRTD6F54/ifUwMrPu6gm7/TafboZG/6BkCuTZosUiFQxt8B993XdWM4T3NVJ8AzuSoTwGPYpGWRiepXDvT6lXQsMgbIVP+aTcY+SR6s1eSsNgenUtnFooi06ZUYMmMGdaDonQ/GOEhWADE9yRu17qMPlj448ohZpqJbZ5BRdiCJ9E0BtN98qbZRbqzUzJSivp1Os1MnkApB0QJl6iGQqIDgJDELHvjgNQ8d99XPQJLYfkOfp04nGDBiYCAHlBk3vknFkat2kMwc6NU1IVNAGSYNCE2sFjStmdUWgdZJDbTZVRhmyRlDvITSskgwHcDDCJAAhAEuJrIQKM3EjpHSYIna3FqfoDSbDNZAcn9tJA+CeHwAnWkf5Ywc7aKLLsIuu+yCXq+HAw88ELfddltr3y9/+cs4+uij8bjHPQ4LFy7EIYccgm9+85tBn2XLlulFtNFrYmJirXVkLe+jbAOkb9S2G4tF26ZmxJ1OG0an4Ji22oCq3IvZl9QvXVuvCl82M0nqZfso5V5MVmDmWGzQtkYnn8nGr5k6T/5xhp7HOaaTYLVvkoM5VqmDd/RrLOPIBEMvExgTHL2MY14uMK8QWNDLML/Qn+cVGTbv5Y3XvCJzv9n+bptcoJfpfVommZmKJD44cl6bblPEkgAT+aqXfFjgImsK5QIkcpO+Ti/boKzQaexEBspy3cf0C16m3fbV+9P7tss/GgC5qS4Bufrqq3HGGWfgoosuwmGHHYZPfepTOPbYY3H33Xdj5513bvT/3ve+h6OPPhrve9/7sMUWW+Dyyy/HC1/4Qtxxxx3Yf//9Xb+FCxfinnvuCbbt9Xrx7kaW1GzTNy3E7W19/d/jPnG/TqfZo1O9swQYkarZ4QDzajBzjnWMp+uxWdXblW0mn0UO+tz2v8Q6RO+2/8Z+7WajTowxcGaYJDEIAjIOKMEwRjp4pyc4Sqa3FJyhNOsqS0mt/khfYt+kZoum+gi3y0/8dxYwS8EYGNIAqYjASLNhxhgY6f/LVgghVYGJrM7fStzdM4Gp1VpHExYXajOhxtl2vNR0SRPsNAsjGnBnrwc56KCDcMABB+Diiy92bXvssQdOOOEEXHDBBSPtY6+99sIpp5yCf/iHfwCgmeQZZ5yBhx9+eK10Gh8fx6JFi7By5UosXLhwaP+2Gyy+QQMTxBR1mspN3Om0/nTyWeNAYPRNnvaWWRsfZJCwmSXb3Wfu9034Yto+222molZL/9l87WazTn0F9KVCXxIq87lUQKkIE5XEZKUwUSmUijBZKV0I2RRHLqVX99HUgWwTW9SZ26Acw2AtexSMNQDSvRs/pbCFof13ZhMjoDbPcmaAEu6eYMpYRYJ7h8LJ5tCT2hzHDhxtm29mNQA5vupRbLd4MR555JGRnuNrK9PKJPv9Pn74wx/iHe94R9B+zDHH4Pbbbx9pH0oprFq1CltttVXQ/uijj2LJkiWQUmK//fbD+eefHzBNXyYnJzE5Oem+j4+Ptx4vNWNsG6KxWWd93XCdTtOvk+3vg2MbMAY3vf0t9bn1QOnAHEb1b4TEfmwTN/6eFJt0tLMZ8DPKBGFjvHYbg07WLym4XosoOIOCNlv2snrph5C6akjJmU5dJxVyDg8k0/5LKxYUfZC00au5STqQeyzTAiT3WCRnab8bEUBm9mF9k5zpvK6ccX1eeAYwVTNFZZmkMGPVVP9oAfqGhSWeDHLPR2nbZ9jsOq0g+eCDD0JKie222y5o32677bBy5cqR9vHhD38Yq1evxsknn+zanvKUp2DZsmXYZ599MD4+jo997GM47LDDcNddd2H33Xdv7OOCCy7Aueee22iPrQxtN8Oos9RRzT6p9nhm3Ok0PTqlmKMDR/c9YopxFfSGmXWAKcnvPxDQvBm0/d2+KxVu7v82RaDcmK/dxqQTADBWR5MSY1BMg45i5ICSM11kmTOFnAglZ0GdR5uSLgWULjGAt/bRMkMLhIEJ1gvgYdB+UgYduMMswCYM9ooIHAwEgoLupyxQ2mhWwIy/KKDNjN2RJzEp6wnQBM9NLbqVRbMFPwfhILnqqqtwzjnn4Prrr8e2227r2g8++GAcfPDB7vthhx2GAw44AB//+Mdx4YUXNvZz1llnYenSpe77+Pg4dtppp5FukDbTTtsMHUjftKnjpI7R6TR9OjlRVTs4tgXJTJE9shgYkT4Xje0sWMbM0oJlzCpjoIxkU7l2G5tOggGKMUiQYZRmDaKhmZI0UAoPHEuls/E4Fml2HCc498Uu5RAWMIO1kAjAkTMdPVuDt/msVXJRrr6PUlH9XQHgRi/GmPv/ubWMeJYOB5p2WK7luuFk26bEJLfZZhsIIRqs8YEHHmiwy1iuvvpqvOY1r8GXvvQlHHXUUQP7cs7x9Kc/Hb/85S+Tv4+NjWFsbCz5W3yjtN1QiNpSN0fbjda2L9sv3l+n0/rVKWaPsR8lAMcYGKMZsdvPMHE3sqorsntgNgwwGXg7qxwElEPY5MZ27TZWnYDaFEogKGmy2whoeyUYwAmccSgCcq4z8ihVm1phuyINlCmA1N9N5KoBRutLtODIDBtkDM5EywyLbOMulk1Kux/SrNI/L4bL1iDLUrzUnrgB99AGimJtk2kFyaIocOCBB+Lmm2/GiSee6NpvvvlmHH/88a3bXXXVVXj1q1+Nq666Ci94wQuGHoeIcOedd2KfffaZkn6DbrhU31H7Dbpx/D4Ufe50Wv86MSAAP+Yt0WBEjlU2gDGKZm34VFI3eWBilbW/RXrAZa1FA3S2YDcMKEeRjfnabew6AfpyM5hIVGWOLACmAEEaBC1by7gAoU5BVwNl+xFqM6sBSINQPijq7z4YwplXYfuBeSDaFDL6cMZ0Jh4GgHTydQvk1jooqRkx29xnc/yOkN+godNMyLSbW5cuXYpTTz0VT3va03DIIYfg0ksvxb333ovTTz8dgDaF3n///bjiiisAaIB8xStegY997GM4+OCDHQudN28eFi1aBAA499xzcfDBB2P33XfH+Pg4LrzwQtx555345Cc/OSXdBp3k+KZrsJJo+7hf3O5/H9S/02n96qQBT69DtGsYY3BMAWPSLzlMIhNrMjDHBeOE/yfZ7aLAnFagBEYyu27M125j10kDlQ7ecUioNNBwmGAYBRARBJhLA5cb9gmwgUE7VnxwYZbPGUAEajhKAaP77MDU7rPeqVXdAqX9hznTzNLuAx6YS2pfhN/mamud5HoyVSBdHzLtIHnKKafgoYcewnnnnYcVK1Zg7733xo033oglS5YAAFasWIF7773X9f/Upz6Fqqrwpje9CW9605tc+ytf+UosW7YMAPDwww/j9a9/PVauXIlFixZh//33x/e+9z084xnPWGs945l926w0dTOk+g9rj2/aTqf1rFNsWlVVbVb1fZKeXzIZuh4s/WgHykagTltgTgosbbYSYDSgBAazyRYf5UZz7TYRnaxwwFgVNNoQAYzrJOKCAUQm8tXsQAMjw1RW5/nA4wNhrQML2kJg9fp5G/nb+0BpxTJcPRlt6mQBNM4Ra//RlubW/8fqEbdNt0z7OsnZKKl1koNuGitT7TPsc2q2O+h7p9NoOtksOQF7VBIBq0yBYypQZ9SAA3fwRMh64j1YBxan4/LD3FMLq207j7ZJHWfAeUqqP8U+c2E8ra1OimDYF0wRY1thIyxLZdkZedvFEgJI+njDTJwNsBqyv/UtKWAbBtBJFmzaHl01jsUb+zrJjVHiWaQvg24Ke9PEM1Z/27jPoJlpp9Na6mRZoqxq9uibVr2gnRgcg0CdqUSzjsDa4v6MdEB9cvnGoCUjbWxyQITrVHTrxtP606leKgEoMAjUUf01a9QaxvsbZmYdxqSmintth4v1aKNUgxIeWEkxSx+gCSEz5WbZDFAHClk2O4NEsgPJ1I2QmoX6feP+g0wx/v5HpeydTlPTyX02eVWdeTVmj75PMgWOEUAOSjMX/g/tIMqA0G9o9+9/VggiYNtMt4youfh6BJnN125T18kHSpj0brYjETXqOU5FRllGByBptlXB7157xGpdvNGQfnX7cH0kUQ3y5J13L9m6Pi4FYOkD5UzKnAfJQbPK1A0St41iqhn0e+pm63QaXSfXbgFSRuBoWaTyTK4pcPSCdUjK+jhKIik8LJjLhDDbeI8f51NEMluO8zUChhUiZIOD2OEUmONsvXZzRSe3zpDq5Rq6Q/i0b3v4rwsmkLcHH8DsR20S1t8UdLRsygQM158a2wMRgI4wLSGq/ysbOCSJTFYfZtZi1mDJ0QTKUQB5fcicB8mUpG64WFI3BUb8nprlDrsROp2aOrUCpK3YkfJJtoAjSRmAIrWBozumBLNAyQVISjAharbXAETUDDEGuBTgjdLHnoeYfY4gG/razRWd/P0HAJky51PYHgSKDSq/lhLe9FGL6LvTzyYGIOjCy0wH+rSZUAmRT9X852Hg0WDRSRaMKqhBkzEN2gxGB4RAOaN2ViNzHiTbZn+pGWNqu1FuokHHS+2r02m4Tk7aANK2eT5JHxyZBUMpQUrWoBg/jGx7xBz9/zc20zEhmkAJhBGstm/ChLo2oDdIZtu1m43jadp18k35cXCYUuHvQDqJ/ihBZHEqNzu2bHCXF+zFGNdVPQxgAtp3yiOgDEyuaAKkXbqi28jsJ/r3qUGcHagyxkCMYAOAiZgDS+EBpd0vT+1sGmVOg2T80PVnmKnBHvdt6+fvP+7Ttt9Op6npBECDYdWv/Y++edUzuzIV1XisKgeKpGQNjINYpM8cAQ2aJnCG7G9KOjBtgN8UzKPrU2bjtZtzOsUm/rY8wcMirEdhkx6DJJvxxo+YZtz4/riu4WjaLGAyANIDSv+f8pllDJBEXto9xKbdGmEZ6nvCWlyZ2Y+NYFWMwIkZoK2BkqFmkzNlagXmOEj6g3tUs0vqxmr7Hv/mt6WOF2/b6TTgeG0A2eaT9M2qVd/sQwE+i7RtLZLSE0AIlIAzva6trE8W2Y3xDaxTDJBx8NigNbv+9vbzQMVCEytjXsFibooZ26TkjINIBWDJeObysEowwGTYiTP++AApVQ2ONdsMK5eEm5Mjge6aEAOxECyJNcHRr0iy9nfX1GVOg6QvwyYmozCbUW/cUY/b6dRsZwAg+/USjxRABgE7VQ2OFhB9cIxY5EgSs0fT5vaTMM1OWaaQ1HlUUN3Q126u6tQASOsW8JYkDQsqAzwTbJtesWnVf/EMYJX+LDIQz/QxeKYnBtZHaYCSoMEtvivC9Z0IANKCowlKdRIXjbap82pzq8kv5IGlvZLCgKNfBHpdIoLXRuY8SLb5EYbNVgdtiwHtazMz7nQybRb0YoCU/aZ51YKkMa0mwdHzSw4TJjxzamxmtf9LbJINdpAGsiBBwIjbDP0t7opZcO1GONamqhOAmiG2TOoaboGqCq0cSgUWj+RY40Inv+cC4EKPWcckM/dOpMCEqtkkZSAuwHjNLhk0o2OgetmK/VfMf0pEAUBKpc/BsNyzpaqTrwMmCTxpsAR0bippgJIxDY6cwdW3JHO8mZI5D5Jtg33gzBBNk0zbjeS3p/weqe07nZo6JQFS9lsZJFMSVPZbwdEBY8rUGqd786JX14UpNrLpBMew/qJ2Brk2aySBDX/tUtvPGZ08VhiM0aoffrcWj7IPqsr0eI2sHYEe1hcuBMgHyywH4wIsL3QfUgBlAJEGRv98yUq/M+7YpIz/WSOWRaYAUpf5Inc7pRK0KwZwbsG0LuMlDfwJbXwFUV1uLJaZgsk5D5Ip80zKjzFsJpn63nZzpi5u3L/TKdzvyACpqpo9DnvYeP5Hf5Ye3I6cO2AMfI2J3KnBDH6YRP6i+LdGlGLqM29pjw+FbjxtSJ2CQJ14zMq+m9CpqtT+8qrU47Qqzdit3QJtS5OYAUYCwLLC+CANOGY5qCrBslx/F6pmkPZ/YFzrwTjAKjBRAIBhdd7/RvZFjtFZgCylcuCYKvcVnBITnKM/A7kAKhVWMdE/EgTXid41q2XhUpoZkDkPkm03zrBtRjXN+P3jfva3+CbudIp0smseRwXIql+DogXKCBwbDxtvqYf9jXmm1akySAeAzGOIUYRh+I96fby2IG+r3+6OM9zs2o2nDaeT++xleQrcBGUfquqD+hMaFH0mad4hJSgVZGb3bUpswZpMxYQDSlQlyIKj2Z6PATDLkZzuLuiH1WZXkzk1FbxjWaTNTytVzR5LpYI6mGkmaWtemgZpmSU36z20dozBrN9EHbizjpmKpipzHiRTEs8s4xllypSTktSstO2GTJmCOp2Qnn0PA0g3AzcPlrKOZq19PC1+yAgsA6D0xfP9xH6gYQBZn0CeNrNG/YKADO/46yJzdTzNuE7UZJE+QFJ/AlT1QZMGJM13SA2SpGQ4noFw7DqA1GPQmVqzUoNdrhkkqhIY6wFK6ojRrKj/N8YBVWk2SaQBmStwznXqu7YsO6gjXG3BaAuQFhxTbFIwDXScmANLxQg5OEq9EhKM6whXIlO0GtCBPeakTzG1wjpJB5KRxKYaK6PckIP6pW6gQTfvXNeJAXAh8rICk2UzSGcQQFqTlXm4OLMVEJhZk7IWzDH9z6QBMjCz+gAZA6nPOKPwfr2fZlaVuE9SLcy98bShdHLj2GORzFhEVNV3AEl9/YJhkhSZXkkqkFJQsjl2uTBLPjgHL3I9brNSm1ttgJpzEEpvOwEwDY6Qeu0k8azWd4B4ZSWhIgZZSmX8khosgdAvqWyhaF6bXXWbCoGS6VWVDqcNuFLjikyvdCBppO1GSM00UzPIeLthx7Gz0lT7XNfJB0g2VQbpm1d9nw4wml8nJZzXvsaIOQ5kkXqnHqP0AM8HyLiv+dwKkGvJIufqeJoVOvlJBFSlzar9iQAg3WczllW/hCwrB5Ak9Sv5/wkOJjh4WYELDp5ntYm1ysGLpgVFAWA9FqybhKr0WDYgGeeT1esjyZlarZlVGlC0AFnK2sxqmac0ZlLLLnXCAs0ka+enBkplWaSJeLVLS2YYHwHMcZBsG9Dx7HOU2eYw8WeuzNvON+PE+5urOlmQZD6DnApAlv2QPcY+yBgkbRKAQUs4UjIAIO3C7QAg/SCdmGWatgbbtO3meO48jcgeu/G0YXViXuKAkEWWtXk1Bsuyj2qiD2UAUvUrqAgkyUz4mK0eY0BS5JkGyzyDKCqI3pgzsXKjI7gA7ISvMmsneWbcCibphj4INKNrObdUs0j9TgFAKjIBPN46Sbt8hHPvaiighFaQk872wwmolC4tZgOEFAAygDmTMqdBchSzScpUk/qckthck7oJ45u00wkI1jra1wgAqcHRC3ho80Fak5OLVB1uWk2xyLUCyHVkjw3fZUPRsK0bT7NAJ38NpGWRVV+P16qsAXJiNVS/dACp+hVkWRmwlFAeo3TH9U2tgkPlOXiRQXjm2aynx7sFSgDOOoKqr82uqgKUNrWSZb2JW0Jn29GgRYBjkaXUfkkLkKWyoKm3i4N3BBlTK9fVPXIYoDRaCsYcm2xUT7F6zBBYzmmQtDLMbzGV2eSg/qPOfueqTnojlQTFtQZIC46phAExWPriQJDXABqZWRsAybOGD5IYA0TmMcREEM+6guMIEa5zcTzNBp10JwM6BijJB8bJNY5ByolJDZD9ygGl7JeOUab8klxwxyZ5kYGVFUSZQeU5Mlk4QLUPerIssm/Gb5aDMr0spJE/1qatS4g1tVoWac2tPkCWygvc8RBNL+nQax8FQYOx0kCpmAn64ZpN6gmMLo81k8Doy5wHyXjQ+7NPf5Y56uwVaL/JBt18g0w8c0Un3aiSfkgXtNMGkJ7/0QEl4ICQEsE6bJhvL/JFBn7IrKgB0jBHB4A8a2ePg8AxEb06JXAcweRqvwOb/niaDTqFycxVY+wqA5BqYgLVRB9yjTW1lg4wY78kAJBUYIJDQrNJxrkGyDwDSQVu+gtVOL1yIXRwkLWAWBdF1QfLshrMW4J24tqRymOR2syqGgApE2zSfueMAMG1L9IAJefa3Foq7b+USoNpWGlkyAVYzzKnQTI1axw2E227QWLzzig3b0qfVP+5oBMDEJtZfT/kQAbZCJX31pZZicLmU+IzR+ub9M2sDYDkomaMnonVhuEnwXEEn+OUWeMAJtmN8Q2oU5CLlbSp1Y1db9mH8UFagKwmJiEdk9TmVlVW2tyaWJnPBHPBOqqswMsMWa8Ixj8THHJiEsKYWBnnev2k6gHK+CFHSKbu1kZSnTDAskhFcACpA3jCpAL1PmwGHab7cQaAA0IH/gjGHZtUVJtcgRCgZ0rmNEjGN1VKpmKqSd1Ug/ql+sxpneJ8lhYgR2GQKYActBayNZI1MrN6wJgCSPJzYiYqLrRGt7YB46im1BFMrMAcH08bWCfrJrCJMHRO1jphAJkkAtVEH3IiBEhnbp3oQ/YllCQdxCMpBD/OwQXTwTp9CVEIxzaFrIN7JNfAyPO+M7EypfQ9lOUg2QPLFGDBEtD6miFrM+34/5/OrAPHIq2p1QJkqRSsZTgGNc4Axet0c5wRuNLLQ0pJ4KwGYHfdNlB465wGSWD4oB80u0xJ26zU/ra2N/GmrJNjkS1+SJtpRw0DyLJfP0AGZCcJJDClesDl8l2GAInM+B15/d5gj22BOx4wJkFxWFDOWspcG0+zRifLzGSUbL8qgbJe5qHKqgGQ7r2vIPt60if7TSbJhAHEQptclSQHjvp3jopPuuUhqqzAcm1ipapmklCylT0G/zPpkB2XxFzVLLIyZlcfIB3TjHySmmEy5EInPLcBO9z4Iut1ltqfmXEAYFCw5tuZA8s5D5JtsrazShrQZ1Tzz1zSqQbIfsPM6icsd8s6hgGksj7IKZS+AkIzq/NDNgHSsUYfHBmvC9j6ZlcfHGNgbAHEmTMibZrjaTbppA9eZ9uxVhA30av0Oki5pu9MqgGrXFNBlrIGyohFAnB+dZICTCjzew6gX/cRvI6WzSvHJmFqqzLV08ufgjJdPoPT7wrkpaMjkzyAXHYdC4YWIPU7NUplSZOP1a6NzAWgSAfzVNL4IqkO4IE95tArNT3SgaQnU/FnpMwzsb8i9dnv2+lkpM3MGvghTQYSG5zTApB+aaGGpAJ1fP+jrZogzHsMkB446s8iNK26AJ4aHEmYWyz2Sfr//logY7zIe1TZ1MfTbNIpKKBsgmLc8g8z2ZMTfciyCvyQPkBWa2TAJOOMO1xwMMFASoHn1kpSAsjBRaUBsl9B5iV4noG7ICC9T6aUTtw/JAuVby61/khnalXkWGSpqAGQMVAKzhxQFhkHVwyAAmccnFENvNwy0w1jZrXSgaSRQTfUKKYeQvPG8T+3BRcMuqnngk5+KaGUmdX6IZ0v0iaAbgPIOL9lyvdoEkG7pR8+Y7QA6fsifYC04GjZY8onKRJLQcyh67yXTamj/gafQ7/vsP7xtpv6eJpNOlkriX1ZcLQMzrI7x/L61gepAoDUbNIySXJAyQWHKhUYZxCFMH5LApCBcal9ldywR7feUkGWFXjKZ58wtwbnk+AKKitVm1r9tZKOYSpCv9LvlU1NZ4CxUoTMDNp+pQwKcZSMIHgIkIDef119pD6/NEPBOx1IYjQTzrDfR7mxUjNTivrOOZ18Fmn9Nx5YWsZYz8KHAGSqusfQIB0DiKbmnmOUbQAp6u9Jk2sEjrZSgg9sg25w63ZiUaoTzhJsBaOD65wYT7NJJ38CWFVufNoxLM3yDrsWUkezSlQTpQPIaqJyQEmSoDyfpIQyQTsMpAg8N4kFBAMXDFIwF8ijX7LO2mPuGVLSTErNfeMDpbF6KM/06i/nkCZgx2basUDpA+RkpfcnI6CUijCmHY26jVG99pKbdZhU3wszA4dp6UDSiB3Y8fso2yDR199P/Hvc1nasTV0nlsjN6pcUIlsJwSUL8ABxAEAGpa5S+hgW6diiA0q9uHpkgPRYJQmPUaIOk9fv+r+2j59hE2CHjUTwDcTKe6RbwPQf8opGA8pNdTzNJp3cZXDLmuo1vOQF7JBUwVIP2a99kD5A2qCd2NxKxtwKsxxSs0sJKTh4TpB9CZ6b40il09v5JtYW371fms0HSBu0Y82gdklIKet0dNa8OlmFPkmpFATnDignK4WxTH+XnMAVg+I1ACubtUfVx++SCWxAST7Ekb5J2m7A1Oy07Sae6zoFpqhEsI5fJQHW/1j5Vdu9WTmQjGYNcrH6YAg0l3bkxWCAFHkAkNofmSXBURpgVEBjXdeg81w/WOFC45Vp5KjBljHmADEGykGyKY+n2aYTZN/kHbam1jorlB2/2tRaOpOrb1qVpU5DFwTuKGpEt5IiMGm0KADZl2CCaUAsJZRhkrKsIKKUdk4G+CMV1e91YnNyLE/6ATxUs0gfIKUxvwKAVNIUVtbTv0oRhOknrD/S5nsVCAKCcjMD7HK3bgBJnfNB1yGeifoPqmG+i7ZjxTffpq5TUOEjKiNk81sGZlaPLVJZ1qAYR7Omaj96ErJI38xq03RFACmKmkGKIskoCXBh8OQFNPgzcGAwg/Qtq5zph4N+lKTBsg0o29jkpj6eZptOzBvTeiJoUiWWJqrVJC2XZZ2f1bJIMr5FVaoAIGXf5GA1A4pzBm7Axv7GBa+3N2srbURsbXatTa4NYWEUNpmMOS5nKyFieTWzlKQBslIWLOWA6FZCkQntk4QJ5uFelh7ezPdKU5oSrj/pQDKS1IxxlBsvdcONeqy5qFOSRdpF1zaa1VT0cH7Iqh8CpPVNAuFsuA0oYxZpgdKwR80kmwBJWVGbV0Wu2aNZJ2nB0QYX2Fm2zyD9/78t4IaRbdPh74yZBddmRxy6SrtNUj0IKIfJpjieZp1Ofjo6JaGUjKKzNZO0gKVsogBJNZv0gnVkX7pAGStSEoSS4NL6Hsnsx5pUax9mW4mt9n/eRmKbcW3eCWbtojWJUm1utX7IftWMbLVAKbxBL5UezWE/OIC0rNWPcN0QCQXmNEjGp7rtZhg2S0X0+zCzT6o9npFuyjoFiQNMsI5jkW7WLd2aMgeKMrH8AxhoLgLgALHBIrNcm1mNL5LlBagFIEnk+t18lwRIVYOjKw2kNCja2TcAVx4oFkk1U7Sg6DNIhRpIFVEDKEeRuTCeZqNOAGqriPSCz6w/sl95JtdKL+9oRLHWgBlGkvpVMRigCFwSFFcgyRsBPqlCzYF45dvipUp6XSQ5/7pdB2mXe1hTqzWJTjqglA4wgWbgDqAjW4sMkIo5kLSMFKj/15TMpMl1ToPkKDdI6nPbTDS+gQaBcNvx54JODRZpGWSwJrJ0ZlabocSyy7rCR7Tcw4q/7tFnj8Jnjno9pPND5oVmiTFAWnNrVgOoJFts1tzILrMIgll3bWZtngUbuUqGQjIARCxgkD5QauCtgdLuN46AbZzqxPVpu17+541pPM02nfw0dMwu/ZA1k7SJymW/hF9M2aacU9JLHiDJAWTfAk3ApkwhY6nAc272ofsp39Rqj+NPKP3AtkSQGwE1eySAQPD9kdbUaiNaYx9kvAQkJXYb55u0QW7ePWOBckME7QBzHCSB5o0yqo8idXO03Wht+4r9GG0376akEwNqYPRZpDVLVV6tPaU8JlkDo37YtABkQhyLtIzRY5LW1EpcpAHSBuyIAhIcUulgAwuOfnFZP5o1DNqpdXHWJiIwVvdhTFdht2ApeBMofVlbNrmpjadZqZNd6yttsn4zjqW2gvhRphbIrKnVf7emUzsZA8J3YSZI2iIBB44AmunrOHfVQgLxS7/5iTA498ydcEE71h9p87PaPn6wTr9SAUC2mVsBeKBa6+X8kqou2Oz7J2doeaSTOQ2Sg264VN9R+w2a9fp9KPo8J3QyD43QvOqZpfQqZRO52g/MrG6Zh7/cw6sTyZJ1IbljkXGwjvZD1oE6NijHB0j7WZIGx9IyyIhJ1gE7dsbtnQMHhPWsmDOAEQMxY2olXTOPA1CMAJUGyphNDpNNfjzNQp0sk6wz7dg1iSbrThRAUwOlcqZWIAS9ECi1udUyyrgg8SjCBG/67YN8w9ydHz9oR0UTQ2duTQTrWNAEwnqSUhHgrZFsvhAUfFbethsiNd2cBslBE5L4pvNvptT2cb+43f8+qP+mrBMDAlB0Ea0JFknGh+PMrJZRerUiKSqkTFKGQGkSA1gW6XyTZrmHC9QRBSgCRf9zRTDptgiVMp89Jun7JK15yiWA9qa9dlmH4Lo+HmMmXs+CpTmTJpfz0HWPo8imPJ5mq06uJqMBSuUKgddBO34RZcv67LtfEsvmRbViJ1mhXzKhsymfFTNHJgyjFLVLgpkJJHn1T8F4zRShx3hlfJB2/JdS52j1I1p982kqJZ37Pyyz9EC08vraY/sy0wzSypwGSV9iv0bbrDR1g6b6D2uPb9o5oVMiYMc+TGIWWTNJa2atl3xYcPQj9piIHgZ+VQ/3vTaxIgrUaWOQFiAr43upbGSfIpRKs0ZrgrVBB9YSHIewC8bAua56IBgDZwwZZw4sBRikOaOMEbhGTijPtLYussmNp1moE4t87fXaSJMv1Wa9iYLNfICM21JiAdIHStYyo+IOGE1GHm7fo5JwfmJ+nkEaX2M9CbSVOWyu1to0qk2s0jHIOMI10N3L3Qqg8Xvoj9xAyOjJ+qvHM0Auuugi7LLLLuj1ejjwwANx2223Dez/3e9+FwceeCB6vR6e+MQn4pJLLmn0ueaaa7DnnntibGwMe+65J6699tp11nPY7HKYmYWiPmxAe+rGSw3xTUonvwitmWW7h0nEIm2OS/8BA5MpBAgBsvHdnz27gB0ezJoZF7UfkmeAF8XqA2RfUv0y5lb7uVKEyYqwppKYrBQmjF9mQio8Vuo2+yoVYUKazyY7SamUAdd65kwEXY7InLS2YAUOBEE79tMw5rlJjafZqJPLPWwqf1hgdOO3XtDvB+ykhBkE9CdIgvkAyVwbNwCo87Uyl65Of+eOVTqwzPLQH5nZ5Px1YgzfKuL7I11KOqXQl2HigLblH8Nf6Yoh7rRuCDurkWkHyauvvhpnnHEG3vWud+HHP/4xDj/8cBx77LG49957k/1/85vf4PnPfz4OP/xw/PjHP8Y73/lOvPnNb8Y111zj+ixfvhynnHIKTj31VNx111049dRTcfLJJ+OOO+5YZ30Z0jcNMNwk4/dJ3USpGeoo+98UdGIWGF3y8joCsM5r6S3/sGYpZ6ry/ZDGTKWaM3I/mjU0tTZZpPNDZjqq1Qbp+ADpWKSZPds2C44WDB8rZfCakCp4TVYSk5XEhAHMUikHlMFDiFCXI0qcSc5YI/HAVGVTGE+zWacwiUBzTANouArahPMaCEOwZEGbM68acPSLMduAHS44RJ4ZwBRgeW6WPxWORep7Igzasf5IO15LazVRaIBcbGYd9mqLfJ0NDNIKo2lOpX7QQQfhgAMOwMUXX+za9thjD5xwwgm44IILGv3f/va34ytf+Qp+/vOfu7bTTz8dd911F5YvXw4AOOWUUzA+Po6vf/3rrs/znvc8bLnllrjqqqsa+5ycnMTk5KT7Pj4+jp122gkrV67EooULAYQ3Weqz/W6lzfwTS3yDjiKpG39j14mRAisnwKpJsGoCrJzUqbuqCaA/CTWxGjQ5AerrF8o+VH/C1d7DAFMVgHqWHKWXY3kOVvT057Ge/tzbDMgLUNYDZWOaOWY9UD4GEgUqcMcYLUDaz1IBfakBbsIkd9bBC0BpGELqvufMmlv1wy3nHJwz5JwhFww558i4DtbJONMPQe49DDlz+2B2Xyw8322AuSmOp9moEyMF1n8MrL8afHI1WP9R0KOPQK16GGrVn6EeW4Vq/BH0xx/D5MOr0B9/DP1Vj2FyfALl6j76j5aoJipUExXKNZXL3aqUtlz4hNOyyYLrMZX1MohCIJ+XIetlyDfLUWyeo9isQLFwHooF8zG2xQIUC+ejWDAfYuEW4Au2AN9cv7P5C6HGFoDGNoca2wx9VmBNpbCmUpisCI+VCo/2K6zqSzw6WeHRvp4MPjpZYdVEhTX9Cmv6Eo/1ZRDdGrNDwZkrkWVfYxnHvEJgXpFhQS/DvEJgfi6woMgwL+dYUGSYnwtsVgiMZQw9wTGWMfRXr8LOO26PRx55BAvNc3w6ZFqZZL/fxw9/+EMcc8wxQfsxxxyD22+/PbnN8uXLG/2f+9zn4r/+679QluXAPm37vOCCC7Bo0SL32mmnndxvhHDwpz7HN4Q/O52q6Sb+nXmvTVUnBgSm1tjk6oJ04hm374/0ANKGxseLpOPo1jYW6UezWuZo10hKA5CVagJkpeDYo2aQ9nNtXl1TqoBZ+ibXCalQyppB6jB67cP0M/O0TVsZoCNhozbOBjPKTW08zVad/EA0mDqSttKG/jntKrCmUeY5GGuzKTcTK+ZMrZZBWoAUhdD9zDaiqM2rohC6jmSROVbJi9wthXJBO4ZBujzEVJensv5I7SZQzuohiYJlH5NDTK1AmFRgkHk1Fs4xckT3+pZpBckHH3wQUkpst912Qft2222HlStXJrdZuXJlsn9VVXjwwQcH9mnb51lnnYVHHnnEve67776Beo9yLezNMcx0k/ru35zxjbkp6gQgNLXKep1kkPTZgqW38Nr6IX2A9KWRTcSuh/QSCgS+SGNacsE69t3kYrXgaM2qFiAnK8JjfQ2IEw4EfXA0ZtYqBMeJSrdNSoVKkvNPutp7Mgyjt88M38DDDWu00bHMfLcAmTILDrs2G/N4mq06+Wt/bRUb60xLWT8ANAPODNABcOZTLjgE06zRgqNgJner4GBcA6woBEQhDDhy99kBZp6B51ntj/RdD949AZNu0R+TtsKHIriMOzVbHA6OABpAmZJhoKl98YOvx/qWGYlujbOCDMsUkuoft09ln2NjYxgbG0sfC2kTjt+eumypfqNIqn+8r01NJ+ebMRlIbMCOy2lpcrT6Ea0hiwwB0s7E4wdMIF7Ajovgi1ikDdCBeS/N8o4yAZCWCVq/Yg12yvMnmjVenlgVc+KQSiIXHGEqAAXOBVRLdgDfpOqbWYXXPtfG02zUyUZuOyuJTa+Y6m+WYLhoUy+4xrJKW0RZQEBCIoPQWXXMPpz/kVtw5OB5DY48N22FBkZR5GDGJ+n8kV4iDVsbFSJzCfp9/3gd3drMsjMwWCc2i6g6unVUFpmSdV0aNRWZVpDcZpttIIRoMLwHHnigwQStLF68ONk/yzJsvfXWA/u07bNN/JsACGeXqcsX923r5+8/7tO2301VJ93QNLUGM21nbm1hkW6hdTOitX7Q+BGt5nNUJzJgkVleJw8wgTrWpFopoIoA0gbj1NGqmlFaNugvqLZiQ9x1hQOY5ACAcmY1bUrzK7ETeWwRrDaxMr1+0gfI6b52s3E8zVadfCbpkggAtQshpacXUMOFNpMqKSBM1h1RcMi+goCA4iowx1pTLDPbiVwE4CgK4ZijBUpeZOCF7683/nu/9JtNu+iYpM3XapZASUK9Trh9XaQPkH7VEiDM32q/W3H3DKvfrbmZs9CKMiwl4/qSaTW3FkWBAw88EDfffHPQfvPNN+PQQw9NbnPIIYc0+t9000142tOehjzPB/Zp22ebjHLDWUndPMNMXHFfFvWNX8NuzI1VJz9Xa52qq6qZo6yrpKdYJFCzx9aoViAys/La1JoX+jchvMw6NZskxk3EqWWQCv0IIFOvyUphtQ1kmNABDI+Z4IXH+tIENOhAholKer7I+kFjQ+pVPONGDY6CGRbJWeCTm6vjabbp5AOkA0dSdQJ+u52Jtrbg6EeeikI40yq3plMHeLz+bl+F95v9HgElLzJkvQIizyBy/bmulxquFdal36yptc58QzAJzS0wOouJ9Ue2V/wAwmw5o8ooa4LtfTETMu3m1qVLl+LUU0/F0572NBxyyCG49NJLce+99+L0008HoP2F999/P6644goAOpL1E5/4BJYuXYrXve51WL58OS677LIgavUtb3kLnvnMZ+IDH/gAjj/+eFx//fW45ZZb8P3vf3+t9Rx2KYfNROPvsemmbf+DjrtJ6GRNrDazDpF7V37AjktinmaRelejLZZivqk1y/UaySwPfJB+ZY9SIfJFajbpA+SE1H5Ha2rtS9XIVwnY8j9aBOcQnKFShIwzyIyg820pcKkfBiUj5C5pdH32bDBODZQaIO0EfM6Op1mqk3UfMB8orRhwdMDtg2OeQRUZWFlB5LbcVRiARoLAvCw8eh8GUHMeAKQoOPJ5WcAiRW8MYl4Bnmd1lHdkanWTRsZdikUyTNJf+uFn2RloajUTQJtajxmLCbhOmuFLnM/VnTYGFw3OGQODzyJnzuQ67SB5yimn4KGHHsJ5552HFStWYO+998aNN96IJUuWAABWrFgRrJncZZddcOONN+LMM8/EJz/5Seywww648MILcdJJJ7k+hx56KL74xS/i3e9+N84++2zsuuuuuPrqq3HQQQdNWb8230abf2KUbTGgPZ65jnqsjVknl6arYWqtA3baWKQ1s9pUXu44goOUavolPROrZY8sK8x3zxfJM5DQ0ax2aYcf1TpRhWsdLUA+VmpmWIe6y+QMGgAEV8b/IlBkvp4C3IFjGNoP6AcAMw8DP6Ix9VCYi+Np1ulkfe72sw+Sdt2usOOxBkdpo00N07OJzUUEhrIvdTBPjqDdmVsNQGbzBLJersGyVwQskueZNq8WBiDH5jVNrSJzkzUd1epnktKs0AbupEytgJeOMboXSFFrRiArPlimuvqTxpmUGQnceeMb34g3vvGNyd+WLVvWaHvWs56FH/3oRwP3+Zd/+Zf4y7/8y3XWre0GHDRbtf1S28Xf/Xa/Ld6n329T0kk3qvpB4j6HATvhS0H5ZYRUmKWECR74I51Eaej8hObIzCzZzZz1u30o2GQB1txqI1cfK6UXuarcWrA1/SpZ7cCK4Myse7RBChxSCfdbLhhKqZCbGXb8UOHQaevsfvwAnrk8nmabTklTa7wfLvQ2NrG+6BtwzMGLCkIqqCKDUHX2HS4YpOCQfQkuWCMrj82kU0e1cmS9XLNIC5C9wrHIrGcAMvcKjBdjoamVZ87M6mfVsUs/fF9k1RLVCtQWEVLxmRsuej2wvlI+i7QAapP7z0iqOCNzPndryjwT30yjzDhT39tuztTQiftvKjrBL4vlV2r3g3VswI6fn9UrI+Sn8gIQACRJBXgJm3X6ORvRymHT0blsIsKL4jMssnRJA7RpSZtU/WUc+vWo8TlagHysLwOTky920XQcyecWUwuOnNeRg+6csTrM3SYTiAFyLo+n2aaT/tGf/HnWDi5AXnS1/W5NrLzMIMoMJBUyVYCk8smi3odghmHGayvt8hBmfJAiBMh5BbLeGDLz3SX1L3pgYz3jhsjqGqrG1OoXUJb21qQ6T2uzdmTIIu1nv5JJG4P0A9vsS383bSa/sXU1WAuLDeCZKZnzINl24wzbZlTTjN8/7md/i2/iTUUnAA0/JItNrVHAjmWRzswa5boEMHjpB6BNW0AdyOOFuFs2Sab8lTV3WlOrD4y+T9IC5KMTJdb0pUvinMosYm/2IuMOJG27NcEWmUIuGCQ1/xcbwSdaghPm6niabTpZFsliBulSvNU5gv0sULwowctKm1h7Y26si14BQFtVNZNkrhAzydR6Si/Ixzex9mqAFD3jizTgyDLNKPnYPKggmUZtVdFMUv/vvi/Sru0dtAYSmJqpNfZHOsbo3QM2kYCN7mYAcg6sGXBt1qfMeZBMSTyzjGeUKVNOSlKz0rYbMmUK2th1AtD0R9qo1sjUahOcB6WEEiwSaAdLZ2IFvGhW0TC1ulmzmS1X3nuplFvq4RIFGBOrBUjNJmUdvGDS0/nCo0oHVmxKLjdT92rzAXXAjgVIf/O5Pp5mm056Qz2xY9YawDlgglqZMABp3pEXYFUJynKIvAT1NHukXriGW/stK49FUuMeYF4ULONeJKtvarVmVpuO0WORxIUpMJ65z7rqh2dqNQWfrS8yZJktSz88q4gftGNFsJA1AnbyyJ17wrLH1PIPBi+pRss1W9/SgWQksanGyig35KB+qZt60M27SekU+SNtRQT7orI2vZKUgZnVivLMWJzXptZGpXUgYpBh4mYboKCoXv9lb3afQU5K/XlNWfsgfYBc05foSwVZKVDKp8gZVEYmeYAWwRkKj4HOy9MLrq1ZKRsQ6DCnx9Ms0MmyyKQfMig5xQ2DzHUEt2WTPQWhFEgVjc2V4JAG+FS/clHd1uRqK35YcLSBPzVQ1mZW3qvB0QIlH5sHJbwkAiJeG1ln2fF9kWqAP3IU4YkJY+ZMrMyZWH0XQxzZ6if4H+2o6y4dSBppuzlTM83UrDbebthxfHNP23E2Zp2Ch4jvjyQyptXQBwkVrosEUJcScpUTEsE6sfDaNxn4I20SAVsrz38okGaRfrKACZMwwAJkbW7VYFlKBVUpSFmDpG9W4pyBKwJl+ozYh4CNiK2UcL6e8FowE7Qz+N+Mr8emPp5mk07tBwnrMTJV6chqpYC8dJHbzIx/YRgkSeUexFxwVBN98DyDKiuoPHNWFREcykTGmuhYDZBj4HkWBO2wogduWWRe1CzSBuzYnMVUm1pTWXbs0o82YEy1+QySxWDY8nIpGE1eWhu0YyNb/aCdjknOgLTdZPHsc5TZ5jDxZ67M284348T72+h1Un6artAfmfRLyqhquwHIGDhtBrfk8g8gyNtqi8kSYzWjdKbWeumHTTjul7Fa47HGgEGWElUpHYuUbh2nPgTggaTHEgVnmKxUwCZlTsacFT1gWq5ZfK7n1HiaJTqlrg0xBmZ83swvO5UpMJXrDE9SghU9M+57AOCArxJ9ADDLQgRkv6yZZLRO2BVNFppJ6iUeecPkWptY57mgHcciRQ4Sdbm4wNSqUN8Lkpy5NfZHTpVJ+pIK2tGvOmgn52HQjm92ja/TdMqcBslRTDkpU03qc0pic03qJoxv0k1FJwBBsI7uZG/2eqkHpPRMrWFEq0r4JIcySSsWKIWAsg8tptmlJDPzpTpyz+ZiraNZazNrCiCrvoSUCqqqAc73wXDGwA2LZIyhdCwyNFOpiE3aGbOdPQfnE3N3PM0WnZLH5hwgDjCCjZwmUgBl+h7ISSf3B/S4L3rB5hYoGefgZQXVrxyTpDxz90TwP9rE5UIE5lYHkGORmXVsHljRcwk0IDLneqjc/VCb//1sUKXXtjagyHjtW0wzyNAfOShoR4On2e+UtFh7mdMgaWWY32IqM9xB/Ued/W4qOukDxYE7Hii6qNY6v6XPIgcF7YDrtZJxzLxb/gEAXHgMktcZRYyeRKhnza5Ch3LBOtYP6VLLeQBZlcqApA7a8RkjYwwi4wA4KhPFwTlDX9RZenQSggxxQnQApt6kZ6pCN55mi07NDfR40ixSgXENkExkAJEBS1WbXcfSaykFF2B8ok4wYFhkaqIIoC575fslTXYdZDl4b7MGUNp1kZZF6iLjJmDH3AvW1OpX/VCRPxJAcm1weFpYI6o1Xurx/9t792DJjvo+/NPd55yZu6vVxWKRVrKFwA6RMJIdJAVJ8CvztBCJgo0dhIyyll1EfqQwKEDZKCkbyVVGYCd2OX7ENsUrIAfKwcQh2EpkWxAnkgAjzMNgmRDZQGABE2lX0u69c053//749rdfp8/M3N2du497vlVTM+dMz5nvnO7pT3++/X1UOViK9BE77cQpGbdbdjxI5n+AePUZrzKXXb0Cw3+yeX++eSaeU1YndtYBPEjayMSamFvZ1GrSfUj6aBx7Jt2lDZTLulP87Spy2sn2iuKAaQuLuL5jq8lblUM8PGAyODqAZHOrcZ6tuSeftXROWkpi3rWUNWVWSc8oN12C9FLWnVjG8XRy6eTfF5FVQ0oAFbW19AxpIND4zwtuF9c55Uc3I8DrWp9IQ9fdoId3mvc1yqgTxUKK6e5gcm2mVPFGNWnGKYvIshISmhubJzKPS12V/3O5xPvzOYvk8KjSfmSlouLkSvpC43m+1q3x2aOXHQ2SpRXiopXo0J82N+8s8+ct6VNqf8rr5MtkccyXA0gdFaSNU9DFD26f67Ws2RUAx0cyWBrE8V4u447LtrPhACxmkUc8OAaA9CDpzK25qdUaDVtZVAA6ISj2UfVjK2eaCy9b5HPPSdF3WdudrlPvux1QWlkBwgRTr2OYMF1yTiqFuJs5jtJ2Lrdw10JWM8AYyHrm/wNAWjuVa0QKJV0Cf+ljIPOQD9FMgboh9hglEYgzTsVASfVNKfSj04FNAvPrPSop0ipwfL5gZq08UEpMPGAGUKylQC1lsh/J+5XbLTsaJPM/VUm2YqpZ9KfK3xv8451OOsX19YBQNogRgUNBgJ6zDgNk7vru28qBFW3suMOrfWaTgM9LacCxkcGDj82twSxKDNMDow4ssmud404XHCuEJOZI5ib+agHRCqiKrpWaXEOprdJ9L70earcjxtMJ1AkgU2TONiU761iTXEeAKsxQQwFoGoNCiAgcW2KWnUs43s1g2xa2m9EeYjdzX2yg+L8TeXCzc5rgMJO6SQBSTneTmdWFfFjvtEMZp0LyAE5qTn9HipF0wJgB5KJ9SSWE/8zwPmTGLJVELWXisMP7kd5hB4stC6uQHQ2SwOI/xbzVZUmGVqX83tH+iU81nehkvp8YmVmBZD8yNrWWABJAUnR26VAQgMysfA23KrY8IdgQC8axk8z2+GE641ljNwsASeejUBb+DqkgK9osFR0gJJlatbtWfn3e++HnfBIeur87aTydDDpx3+T4oC07lUgIRcAojITVXeTxOiPA9EDpAK6bEdh1LSXX6GqIqoXtamdpmYbtifx3MUBKSeDIdSJdwgDeh2QzK6rgzQrVhJAO938w1iXWsMGhbAgoc8nrQ/p6kAVAnESm1qaSaCrZM7XWSnjQZIA8ESwSGEFyUI52pZtPcPNWuVtZLZ9KOgmgF/5RctqJ9yNNxiIBFL36DACllHfaYTOtwoDETFIGpx0yuYZYsM7tS3Ico087p8lBhx9GE0B2M8o/a7oZrNEwhh10SBMCzgZARdXjFX1OVRqzRiWJ0Xlf0rg90ljG8XRy6MR7d9Zaby61FiGw3QLGO5k4IJKubmon3PjrXEYesnAIWUFUVL7KzjYI2BxYCkMsUvjYykLhZp80Q/oakfG+JAMkm1k9i6yazMwawDLsRSICy2GAjPMT83Hp/XwPksBReeedWomeqdWHhHCsJLB0/PDxlBEkI9nKfkbJPJPvoZRex21PV53ojSj8I3baATLnnUKO1qiWJIBeGjqrNYSUMMZsqRoAm76MY5EW1iVwDvFhm9Ge4cwxSM8i/T6k8QCpHUjybzNASI0HQEvpXOA1ZCX99WImyRXftWWm27/PO3k8nWid4sQTbH3w1436isN3NBgcKm/mp2LjnGi/o2dTObDsCCy7joCxa2G7loBSa4iupa8qFHH2ydOV8tl8uMKHB8g4JtKFfsSJAQyCqZVDP/iRl8BiGcq5GqdizGMhm0oWWWQtpQPG1NQqRZTsX4xM8oTLvD/UMqYei/6fOX495Fww7099Kusk8tCPeE/SOe34vcjM1ErN0n3KWAwAoXInn4HVNhAmKqSmMhNPCuywwA41DJbOg5Uz62htoTvtAdJ0M5g2TGJCKtLN6JBFRa5RsmqXoYdBkvclZ27/p9UmMgMDNpoTdvp4OlE6GRsvoqw3tzJYslC6NOtNgwYMlhKKAcoQOApDoUgwHW0L6JYcfBxYoqMCzgSUYTHZG9/MIqN9SbgcseScE5hjXPEjYZGOSXpTsvurxXvkpTAlgEI4dBTSkcvg/mPEIolhurhgzyiDqVXJuOhyub9WLSNIYjkTzqL3l/mzl1bLNmt7Oug0uN4reaqaYGoF4AFvqEQWgHK+1uya88SDkJvo8qTNcbJmay10ZyNGaXoAySZX0k1BGDKDdaA/mO4aYpGcfECTGTdlk8ZXIjEDU8BOHU8nUieLAJDsARoDpf+coAO/f2aJ/WjLLMiBZQ6OsiN2182IWTqwhDWQdeMXfz7fcSyceYfDSCqXIICT+Ks6ShpAzjoxi+QFmXVm/jiRANDfe2UZYpH8OmeTMYtkgGQWSebVwCalO+YaqilQzu+7VckIkk74z5E/L/MZFNrG18nfz88NfdcprRPHSCbhH8Gz1edvjUDTuPOlMllAZG5lc6xLKBCqhhC4CmAhUCaq2jAhJNlwnOeqdckCmEVaoxOANM4DkZkkAMiKEldrqSC7GUyn0M00qlp5s20cL+nLERmDTktsagMl5MJakiicOy3H0wnQiR25aO84zm0aHF1iYXOrBHl38sSuZADNSlZQVRWZXBWBo6wAPaP9StsQkJoOUME7XNi+tj5ZRpSf2BcVV1WUNKBKQj48+Ls91jhpQJwFKv+NQzUgh9oAVDKukuneJLNIZo6V25Okh/AmVuHvYfo928kmR5B0UvrTDf1xh/6ApRXO0J94J+hUlCg9Vxwjme9J8vn4OLmMNJC1SyqwpO650EQRjmlCND6TiHUPjoOkh3b7kMYDJDvuMEhKqTxwCqUc82yiPUkC37guJcdptlH2E5ZxPG2/Tuzp2TqADIH18M47BcxyIGkp65KkPTUGSCVpvFVSQAnKkEPA6PYrZQUoB45awdqaTKz5lkWILaLDBCTdvqcDSF8azpeH43EeFof0m4IJdkgC+EkoaT3YzWsfAyLHRQ6xSH74UlmOQSpx4rLtACNIAlhs0hl6j/948cq19Ede5rtKZp5TXachiR0Q8rqRzCxjgPRxku4zwmXaicE0FG2O9zp12BvdgugYJB1AmggkQ4YgHUDT661hVahrKaSCrurAJluNqqHnYHLV2HAetZ5VOrPeOJ5OjE45QPq6iQwsnK83uzAzHza5Slgo6yZ7yyZY64BSQMmGHHxMF8DSOKbp668ySNryWE4S+Ac22TOzRiyStxk4naJFvB/Z/4rhhOTDptY47VxsZmWz6xCLrDKv1mULj69KRpDMpLSKXeaPtzSTKnzX6a4TV/+wGYAhAjqWxNQaASS/JwFfMstqHRIQuDCQwE51+idaAJS871QSzygjkGQGyQAZe7jyniRAIGm6xrNJ0yna13QOPHFu2FZTwec4b6bdwkywU8bTqnXSFh4gZzokm+Di3BYhdVueBEIJLu8UxU9aQIkULLUBKsfGlJCoY+ceB5a0RRFCqVIHOPfM+/NxVik2t7rUcx4gTTAT+8QBAHg/siRsLm5NqP84Q2CTjUuzyAAZ14cE4M2rPYCUMmGRSnDOYukBMja15tsO2yk7GiTz+WfoD7polYrs/UVmn9L5fJV8KuuUXqQATtl+oY+PzJhh7NDjPwpASAeM0kDG70chJoIBmfdDQWAd+/yU9I1d3tkNnn+GjZKyxwAZO+7w98uqifYuZ55Nal05D1cKKZl1VLPy8ExjU4d6ljMtcaQzqBu548fTduqkLQEjA+RMG7RR6kJjbbSI6Zsn2ROTwxjICYUYpjJALQNYagtUDkC1dR6dMVha4/YoybPVxubWfI+hkKOYAdIK6QHRe+na2HktXCYvHh5+l0C+1xgDYcwg8zY5QDaqwCIdYAaGDW9qjfun1Herlh0Nksv8aUuvh1Yz+R9xHggPff/potNCcaZRk4FgzCzjvJUAvFerN8+qvqmWC9rSd+gA0hFY8wo1Fv4zllW10evU2cibX2OAjvck3evAJqeUB7bW0J3CEQeUR2YdNhxAHm41ztDKsRgMlgbaSeNpO3RigAwPgxmbXDUX4g4lpBaDpCBQFCFYXtsULI2FZ5eWXzNYAoDsIAwlOk+Sc2Tis0oxUEYAmbPIZcHFszgTKnE0FQ3Gzc6gqRRmHY37IQce3oMMnq0OIKVI9yIdaDI4SsR7kuWxs12yo0ES6P9Rhv5QyM7NW9kM/ZlLq1tbuN7polNPBqoHxCAXm0/j95PLILBJq7VnoVabJAbTGg1pQ7kiGAOhAkCyBx3LkLee18PMB8c82NsaDdPOYKTybFJ1LbRWLrUdJU6PE6lvTDQ2HKOcVeTlWg+EvOy08bRKnRggNzoCRmKTFptdKKEWg2TLFocCYHEqNcogQ2yyNgK1th4sLdjsalEpEUAy8oRVUkAI5w3r9ieF7W9ReOFFZJTEgJ1zmEVaf0z7kT0PXSmgTPiPMOAbaWFsfy+yqVSvOohyejCoxo47Uza1KgJOvxfpzgkGRxnuwby+2w7Z0SC5FQqfd8i8dvNWvXEbm70+HXXKxTKIFcQnEEgSnPdNrgCIRWrT28OMzaGC4zKdC721JiRKjiYBWWKWS4Cld9bJwNL/nm5GTJLNro5Nmq6hEludhda0L3l4pvHIRoczpzUOt5oma02mPdTjeFqlTtrC328GyJkOBbg3O94rdrGskbkVCCZ6HjMMLJudcQBgCST52YFlo2j/zcCxJZt6wvJrKwUEiF1aawDZt47QDwxJM6wDSE6l58Gx4HBU8tJlJgxj3f+jzybzmpLapCbZ3HGHTaoTxyxjj9ZJJUO4DDPxyLozbzytWnY0SM67yfmfLv6Dlz4/1HElk9K89qeDTsuu8Jg50uv0mV+XkgkABKhCpkBqtIFic2vXhuw+kdODgPvDIwpWTpIxyzDZuSwg0h3H6eaKv2cOUNqKAsN1N4PuyNSqNeWA3Wi1L/LMXq6HW409kwozY7GhLaaO8u7E8bRKnWKA3IxMrUeifmAGyfU/kz3JDKeUjMytAqiNpbAGLVBL45gUgaW2FrWUMIpM6taSCbaSDtAkYERISMBgKWW0Tx0DJQMkglnVWvbIDXej5JHr9XeACFifR9U4s7CRFuRjbsI+ZASSXea4E1f4kELQb1ciM7FGHq3uvgkPli5WckFfr1p2NEjGwh1ho+dFK955JqNF5/OOP910Ch9YnF21Z06N9iKHTEtWGs8mrTHQbQflzK15mAbv6QhnehX8R+QckdIlV47iupQUSVX19CelYJmaYfM91hAmIrsZrJnS3qSuKWZSUxYfNrc+stFhz6TC4ZbY5UQJHJEGEhKNEjt2PK1Cp5kBFdh2wLjRkRn18EwTOEaOVBud9nGsxtJ+JVDOaapkYEK1CXuSnSR2V0uLiaW9wqkCjBWwisySnHhfSaAGYIWAktabTCmXaaiMAcjEChLvOVJe1vD7rR3uB8BZa01gkdJa+m9Y9wbCsxIWMwSvVgBoBu4Dp5kLz5GJVXIyc4SH+228WN3KeFqFjCAZyaIVb945pfZxm5KJID5fWu0u0uFU0GlQ5qSTi/O3+nNZHlcgxEpaRcxRagM9ayHrCqbtYGYtVBOxSPZwNZrc6U0Hidpn81AiBCznte+EFK72n3CWLOmrfACgpNJd+hvi10KqZO+SvF1b90x7kqarEi9XTjBwpCUWs6tRaLRFrSwaFSaNnTSeVqHTzACb2nhw5FCPRzY7zyAPt+RxvOGTPYQsSamZ0S40M2oroKV17JFY5NTlDZ5YZoCuSo2AZ3tGwIGmgHWAK2BdBRICy9x5KMbtPMdsLvx55RijZK9cK2CMoO8XlgBfAQTKFq0GGpcBS8tsoeCoqXQAGQNlYmZVxC5jFhn/B+Ml6tB42g4ZQTKTfGUby7zOmWce4s/mbZYFm1NNJwAEiNH+SJmTlSWPk7TRLGAQYiWt7O9d+n3Jliop2G4Gye7zbm9SKTcZAH5FS44W6eTGxZP5QcdUcSFmkwyGvd/hPF2T5AORydUa5ROexybXRzc77KqVZ5O1FKikRSWD2XUnjafjrVMOkBR6Yz0wHm41jrTEHhkkefHiq8O4ZPhAHyTZZK/cXltS7cJYTKuQbH8SzcDaWkwrBSOsRy8riU1auBqN0kJYOheDZfKbOfdqdG4gsgMAfZW1kZOOsDAO2FwLABQKU6uwJQoIGGshTfr9uclZObZYqczM6lhlcNIJJta4juS88bQdsuNBsvTnzFeeedu8/bzVcXz9ZTv4VNcJcMDoMoAAjnXBAcqS3xmL0RZSCVhtYeD2I+MQEFPYl/SluDR5BpqOCuEqNu3QRMPmVinCpMamIsUFYT1YUpFb4Wr5pWApi+ZWfg5JCKZkgtU2MbnOuuDEsxGxmV2NIicQScA+cWbXnTKejqdOrQNIZo8MkI/OOne/6b4zmzwSsfxZp30ZNb3MXlwloQ313a5GQVcWxganl2nvZkkAGtNKkfesc5whjCKAhBFuD9FCgpgerO2VjJuXOkM48BEOaIWlCiZc11Fbtw3hnmuvm3Fs00JJl9/YCtQyePkGFslJABgYpQfISaX8a+8XIFMWySbkEwGKuex4kJy30i39aY/VnLTMBHA66ATVwIoNAsp8X1KVHWDiuMjguWphHJPkZwkk3q1sclXTBqbtYNuZY5Gtez3z3q2wJux5uKDl2v0pa5mmz2oqiSNCQFYCUskIJFXI0Rodl9gkEIDSGO2zAuVerp1jkocdm3xs1mFXLXG41Xhks0MlK2xog0pKb3bt3XOcvuPpWHUCyKzIALnpQj3YrH241XhkRqDIC5S4P+Jk9DlIxhIzyFln0FTByYWBEgBQSaArjRcJJYyLqXS/1FgIBQhLv1JBwC29wDaajMzRu5F6bFYN3FDAClcJRLjFhA0mUm4FGLQIQKmthTTwYMmm3DrqZfZKVYKSBfhCyrwnKcnM2rgiy2HrA9HWR9B9aDxtxTp1LLLjQbIky9i9S39ULHlcWuUu6vBTVaek/ZIsMmZjRttCnKSEcN6tpu1glIRsKphZBzuN4iXbGXm5dq1P98V7k0oqStIsYi+71HmnqSRUJaEUmV6VSkEyNr3GrLLkbJTuTZJJmKuMsMm11Smb3Jy6fclaYbMjc+umpFV8bnbl16f7eDpanbQFjnR9gHxkFptY6fmxWQqQcSL6EpNkiVkkAaQssk4vlYQyBlI75iVApsvOuPshybwqBHnRSvr1woGjFbTfKIVwZtcF99fdOClcrDH6bJIYMTvowL9mECYyKzxYksk1/R4pXLylCEwxcd5RIphZnUWHWSSHmuR9eTTWiuMlOx4kh1akpVVs6XNbBopC+/xap41OLp+k4FRZwFznnVjIfBqu6FmkEm7/UfRjJY2BmXXQbQfZtXQNlzJOGu0BUpgOSlZ+xVpLiamKVrjRQ1XEIKV7VpWCqhpotdEHzAUhIvS7tEuAwGCJnpcrO/BsdAabmoBy4tznlbBQgsxrjRI7azwdpU45QG64GEgGyEc3g6n1sVmHwzONRzda3xdx3U8Pkrzv5xBCZuZC9vrMYwnzKZeAxEIaC6UtpKASaa22kCIApJQW1jozu/srBYusTWIK/b0SgU0KuL1H4fYRBeh6wt1NZ8rV4P3VFCiNIX04mQJFgwSApNJgMZsMXrJsblUCznFHJuFX/D/khUL+S+aNp+2QHQ2S8R8OSFcppQ7I2w61i6+ftxm67umqUyIMIlxRfcDsmlxLG2KTjp0Zt/sitPVs0moHjjV5uSpvcp2Rd6szu6IO+5J1FVax8eq2lhK7GoW1Rvk8k7NaQSlN+5OVhKwayKqGrBqoiCGWQLJ0LvF2tVxpBNA6nowdm6kkJj47CU/EhszYQGJ6je+//36cXuNpWZ0sCER6yQG09YAYwDEA5CMbXQKQR2KQdIzfmhQgAQLJDnALKTIjDptlK+8BKyO21SZg6Uq0OSAzEBAWEMKxPqSgNHgvBJlWjbWOOYZjxXudfIcdUALWhT8RUJJuBtLSIk3LkJKP70FibpUMeiIDylBQ2XuVZ2xSuPNbGU+rlh0NkvEfbllTUOnPPnScvxefK31f/tlTWadwIiReBhCA8igl7FkK6BkgFZlcbUMhIAyYhtlkN4Pd3ICdthDa7U9WLXm5ihDE7N3TVdiXnFQSa43CkU2JqpZUMHmmIasaqmpg6tYnC+Aiy5yzNb0FZZZJQEkVRoZMrmuN8mxyWklMKwulKSm2FGQuq+XpP562opO2dBznYd1w3qzEHB2DjEytj26WAfLITHtw1J1JSqflws5d1liYqmwxIZapk0D71lgoY1BZQSZ4GSqMMNjbZW4W0HPgAQj3lDPJApaYqEmBUgibOAcxw1RSodUGUhK7pSakZ41++If/nQ4c2VITkr2LBBgpEV28H9kfP0PjaYnbcVxkR4NkLItWJsusZpadTJb93lNeJx8CIlJP1yTWsP+3DvGR1rPI2PQqlCBvVxjomYaQEnrWuVjJFlaTQ4ztWgLIZgo724Bc2x1MrnqGSk7dn5jMQFNFrG1aZWyyVmjd3iTVgjQwzRp0N4Nq1hIPVq7+ETvxzDPDprUq6cEOIuQwUmGjM5goAkoyVakAki64m4HytB5PS+jE7LFzgf8zl3+Vs+g8uqnxyKzzDjuPzDo8uhFMrI9sdEku3VmroV1pM2Osf85FSgGjAakkrCFGaKu0lFYaQ2nIuUcb8ijldHcJSyMvWMn7zwNIKV1yDF9vNWOYkk3DGYsU1gGnJHbKACklVSWBS2LQKInOWFetxJJeTs8aYmElFNqTJBcjJZHGRTJYOhYZ70cuGk/bxSaX2yA6SnnooYewf/9+rK+vY319Hfv378fDDz882L5tW/zMz/wMLrnkEuzevRvnnXcefviHfxhf+cpXknbPec5zXNaU8Lj++uuPSseh1cgyq5Z5K5mhDiyZmJZdIZ1yOkWxkhDSO7rQofKssgSUJfGg6YAzAVFDjFK7R9HLtZ1BaHpAd6glonI97J5OQLnWKKw1lXtWqGqFqnFAWUvIqkbVrEHWNVSzBlU1kHUDWTWeWcbPJTYZwDUUeNbZ/tfhmUbrQhU2ulBvMq9WwezpuPXdgs8CJ9cY5zyliXlVB4B8bJYC5COzzgPkIxsdDh6eOSbpHpsdNjc7SkLvHu2mRjcz6NrCYxbKnzGoMvvkfcw4CYE28esQx8i/Y6hk1cL7JUIuYn5QovTYxJmZO6OEGjWDuEBStopzzbLzzdTnX6XFZfxgi0ycYUeKPjimyTz6+ZPz3zhvPK1SVsokX/7yl+PLX/4y7rzzTgDAj/3Yj2H//v34wAc+UGx/+PBh3H///fjZn/1ZfPd3fzceeugh3HzzzXjxi1+MP//zP0/a3nTTTfj5n/95f7y2tnZUOuZDsWTeGWpX+lx+HJ8v7cWUPn+66GRlBSErQFWwnQzAKKV/lorZpfRgKZQE2ug6URgIxUny6s44s6uGkB1MXXlTKz+Lbua9XO1sA2KyRl6uuoUwHSqpkiTLZNJUmFYGa43CrkbhSKPwaKNQtQpV7bxRtYXpGlTNmvdWrQBoZ26N9yh5cSAzsKTk5+GOGQZKkz42OjK1Uv5QjU2XwqzlFGKCTIuV3ws6PcfTkE7aktcoF0puI6CM08zFAHm41R4gYwb56EaHDVedxWjjQI/M4XHx7VikFJRX1QoXWG+S91ptoLrg9TrJvF7ZtFqqKJL81igGMSTmDyySExoI9AHH94egvU0LcgqKmaS05IBDnq7wDkMG5DxkBX+GHIhqhLR8HAriwz8iXZQEqLpHCLuKQZpZJG+vb2U8bYesDCQ/97nP4c4778R9992HK664AgDwlre8BVdddRUeeOABXHjhhb3PrK+v46677krO/dqv/Rqe8Yxn4Itf/CKe+MQn+vO7du3Cvn37jlnPksmoZAufZ2bCwPFQBw+ZkEqTzqmqkwW8V6uI4yQZIGPdl2SStgCURloIZpZtB1tX0LMWuu3Qbcygpi3MbANitkEg2dKepNUziG6Gut6FypnB1iqFw5XBpDKJyXWtUVirFbpaoWq0L3VlGjKtqiaNd5NSebBkUTGjjDL2cPJ0MrlSWy6MG3tTtsagc1VBNrTBxEgoA7TCUnA4d4YME+npNJ5Kx5yntI3MqzFIlgDS70EuAEhmjyYCSH4GqL+476wVEEZ4sGSHFyEFtHbPpr/48Rl7InBcBJQcFxkSAgSAZHBMwMMaQEgPQP7eZ2CpDe1VCkuvOSOVQQqWoSYlmWKl4r3OFLKEX6y5zDmiBJBhP5JBfavjaTtkZebWe++9F+vr6x4gAeDKK6/E+vo67rnnnqWvc/DgQQgh8LjHPS45f8cdd2Dv3r142tOehte97nV45JFHBq+xubmJQ4cOJQ+WoZs/rwPiTsyldL50LYHhgXC66EQXpTAQCJnFFEr/DBBQ0rnykCQ2afyD2aVpqZKInmkf/uGZ5KyD3tgkFtmRudXONsjk2s0gdItKwDPJSgrsqkMpn91NhTOmNXY1CmdMK1SNQj2pyPTqHqqZomrWoJop1GQNqlmDrIhhqqrxj9T02t+b9b/TMZUQOsBACbTGuCTbHNQOz0A4LEH7qg+n33iKddI21ICMAXLmHHRigOQ0c1sFSDKlhmM2n3YzlwBiFkyqRhsPosZ5K8f7zNxHQBYrmYnPWCMDI2OQicHGs0kUANLVniw9hEumQeMekeOa8JYI9qKuZDDBcko5Zn+V5GPhF5l8vrfnGAEkV9+RMVBmyQOGxkdpPG2HrIxJHjhwAGeffXbv/Nlnn40DBw4sdY2NjQ28/vWvx8tf/nKceeaZ/vwNN9yAJz/5ydi3bx8+85nP4JZbbsEnP/nJHgtluf3223HbbbctrXu+2s1XNiVzQElKK+V55qbS+VNZp3g/ErKCjc2til4LJecyyV6aN86+A6qMYQDoVkMo6dkkmVpb6LaCnnVQ3oFng3K56hZCE5uEnqGSDSpJk8a0UthVh+oPBJA1Ds80zphU0J1BVRObtL6m4DS9L1K59HOp846QCrImoAzMMuSFjSXOC9o5JqmNDCWanOejNoAW9JAGoDR7cPFw8/d5TrnxhOC5SosCYo3aBIBsHZPc6KiKBwPjRkdxp49udj5JQOzBWgJIEyV6sI7p+3qMxoVJaLrvVlqoSsIIC2Gsy2bT/6XFLD0ilGujY8euJAODcNU/AlAyA4vZWFISjs0S/P+JFp9+0SoklJAu1pIccKR0mXmc8460cOPNVaBRSNikErFxOfyG2IkoB3cPmAzy0Rg9mvG0atkySN56660LAedjH/sYgGBDj8VaWzyfS9u2uP7662GMwW/+5m8m7910003+9cUXX4ynPOUpuPzyy3H//ffj0ksv7V3rlltuwWte8xp/fOjQIZx//vnF783pvtd7QM/8/KIJYOjcvJXRKa2TqoBOph6uEVgSuySgjPcn/fc4z9VcOIerhITVFnqmIZWArI133pG8P7mxAdFMg7frdAZRzTyjrCcNGiUwMwKVsd75YFetsNFUONxo7JlWbkJV0JPKhwJYP+kFoDTdDEIpn9Scfofbl3ThI4FNhzuYZ+/LY+yMJTMf1wdsXZo6a8nkZ6yFBfm7co7suL/yfjrZx1N+PXZq4RqJMUC2xqI1xNI2upCDdUNTQoZNHRIFcBYd/1gAkKZjdhj3dwBKIylTjjEWQro2ivqKHyzzinknDFGE2ooc6hOKEQcG5gHSdAEcTQDLcPPgB5jf/pAu2YesPFhq68ywFglA8msL4UNSDOhZoZ9A3ZtPBbFH/h0lk+uihdzQue1ik1sGyVe+8pULPUmf9KQn4VOf+hS+9rWv9d77xje+gXPOOWfu59u2xXXXXYcHH3wQf/qnf5qwyJJceumlqOsan//854sgOZlMMJlM5l5jaMIorX5LK+38c4u+Jzctlb7nVNcJADnvRLGSeSo369ikjMyuQAqU/lq8J+nZpaRk51pAKOft2rpQkFlHcYycgWe2EdjkbAOimUB0rXfgqaVCIwU6KbCrUb6W4LSSHiD3TCmwvNXsvZg7chBQGqlcRp1+KEhsepXO9Z2z+lCbMqtkc2oMlAB8nUEDmsAAuLqBFrxRWZqDctaY992JHE+icJ7NxwyQwcRMrzt3f2bO+7fVxpulN9xj5sJq8kQB7KTDeXRzgPRm1FLoB79QIgFQY0Ne1VziUlpxQgEPIoLLS3FmGnZwCYws9grl5P0wxplUnR7WZN/sxiJnwLKuCIE1HiwrIWEjsNQZWFpL1grev4RwQCloDNI9iRZ+DPJwJlZmxw74l2GDi8bTqmXLILl3717s3bt3YburrroKBw8exEc/+lE84xnPAAB85CMfwcGDB/HMZz5z8HMMkJ///Odx99134/GPf/zC7/rLv/xLtG2Lc889d/kfguE/fr6CWWYFvEji1Q9PArlpKb/eqa6TBa1arWNNVgx7uJLZNTW/SsWJnKNrZjUb4Zhkyia7JBzEZ+Bxzjt2tgExmwLVDKLbgGhrVM0ZFA7i2OSuWmKzk9jsFFpjsGdaYdaFHJ79SZPYrpRr6GaKynMVQDLek6XsPaFmpXTsAAh5QIfEmLI3pHETVjIB8WSZV7GPSpid6PFUAsb82n5BYClswgLJfqyxoHCZLpjLWweacYq5OA/rrNUeENmLdQggc9O/kJSujWoxUuJxZpHs5SmjRY/KwDE8OPNTCJ1gU2vIQpMCowdIPYPQjkUajdjkSjcuA8qYTbqHNc7Ko1Kw1KDfwQy+yCat9WnyVKEHGRxzsJQIISrz+pyf542nVcvK9iSf+tSn4pprrsFNN92E3/7t3wZAISDXXntt4tl60UUX4fbbb8dLXvISdF2Hf/pP/ynuv/9+/Nf/+l+htfb7l2eddRaapsEXvvAF3HHHHfhH/+gfYe/evfjsZz+L1772tXj605+OZz3rWVvScRnzUonul16XJDchlYAmnzhOR50gpA8HEcqZWasmcd5hx52SSCWgh/K4GgOjRY9NUnIBctzRdYWurlBPKByEGaWYrPkMPMp2aKRC69gk700SC5E4Y1r1klzbjFlIqdEJASEnbh/L9FLWEZukvUilhJ9ElTM3xzlAgcVg2btXwhPI0A/5PpUT3puCrAbHzarGU++6+aQeTeb+mtZVrUAASnJeoudWG+fc5Byc3GPDL260z2YUp5nzSeaj/cfYxMoAWaryko/Z2HzO4CiiPg0P6RklVcaQiam1lqHOYuwwEzvYeIA0XQBI55yT3Mt8XzKq88p7k5AVrDUJWCpZAQWw7LFJAIX1mus/99Uxm5zDIrc6nrZDVhoneccdd+BVr3oVrr76agDAi1/8Yvz6r/960uaBBx7AwYMHAQBf/vKX8V/+y38BAPyDf/APknZ33303nvOc56BpGvzJn/wJfvVXfxWPPvoozj//fPzjf/yP8YY3vAFqiVygJSmtlHNT07Isbl77ZVfkp5NO9KerwqpVKoiqgS047/AjMEsBqQRMi6LENSZjNqkaSXuROZvc3IBpBsJB2g00kzPQGoHOSLTG0J4kMxJjMZtWvUoQyb2QAkJqiBmglHQsRBXaEECqygFjJaGqULMyrkSSgKXoT8B5X/j3eZXOAOnYRswsBCnEilGfqQqQ0bSQb5RGn112PCWLuGSfrOufg5u8XehCSQc2vRq4uFLnxNS6EJnY3NpqmyRnSAonuzRzsZmVEzoYS8c5QA7l6JXOGkDqutqjIhTsLjFIX4jZJ7SgwPtpFeU3jZimN9NGACl0G/Yj3TPvSSZmVyGpMg5Apla2IkhawIIBksHSnbNuv5ILpzNYxnuSMZvk/sn3w0P5LCQJD+I2xzo/rUpWCpJnnXUW3v3ud89tE3uAPelJTyp6hMVy/vnn48Mf/vBx0Q/od0K8gpm78p1znSEgmQcw88yYp7JOFiCm4rxbY+cdUTU95x0OA1kUOxm8XOHS0zm9lICeGUgV2KRpO+gjM5hpQwC5ecSnqhN1A9HWgGogTIdGVeiMQWsEtCXnHc9KtMVsSoykK4Ik/ORotIE0wntF5m2kpBqVVaMog49bHKi46HPMOOJMKsws+BzYtd6FArh+EMwsmG1Y2zfHsVL8snOLGQZkIWGrJo11zcZA3ue9Y94vy01/vT0zRMwmMEghhnb32PyKLATGmV69V7D1LDJOVm6NA0QXthHSA8JbCXKAzCVfrARgDGNBSuGrynBRb34kNRZdxpraJYuIHz5MiQGymxF71LMAjrrcx8LtOQYdQyYsaxWEMeDsWJ5NWktmWGlgVeU9YRksi0kJQIAZe6syOHI8p/d2ze7jsc5Pq5Qdnbu1tEpZtJoZ+rPmJoJlAKqkT6n9aaETT3yyIlNrTWySWGVw3vEsUqaMckhCYgEyu1ote2yy29iErCt0GzPIOmKTG49BNFMItQm4vclmcgY6JRxIigCSzEymVREgAd5/0pBCBNOdTc2y8cQpXT5Y5cBRuaojSakuN8FKxyriCgsEipyakSYiD64CLrNQZI6LGQcQzHD9H+JZphUSoj1SZpQDLLPfSQWAHLoWWxwsLaisqtxnJe3XRotoa5FMzuFBMaXG7VfmhZI1x6Jqk4CitbaXAamvZpRFyce7EiiqSnpnLCnFYJ82FWVyqqVjjS7NG+9HcjgSAyOniEsA0jFITrEY70f6/o3Mrj2rAb+2zspjnJXHsUd4Nmk9E/VgKaswn0RgCaAYudALB0GaPAA4+vlpO2RHg2TeMSXZSucsa/6ctxI6LXVyZlZE+5KiqsO+ZFVD1RU6JSHrGkLNenuUQgkIJYpzrdWWvAu1hZ6ZrbHJjccg6gZoNyFUA1s1aFQDbQkkdSXRGolWE1h61hLFMQIETke8mU1DatpnNLa/dyl4Iq2ET5quFCVSLzEOLuclXWA3hwew+3zyQOTxyADJEyoXnh5glDnjABAYZHx+WXCcIzaeTNm64Pau2RRopdPJUhWKofFlLSdVQOr5apAAYxe99kyx0D9DkgMkm8fZ1CqE8M5YMlr85H26yyXOn0a5Tyeu6kzDLNKBZSXhcqYiBciYTXLf+j1JC6sd643Zr8+VrILJlQFQSAhbwcWzUCpJa+g/aw0BKEALXQegyu0XM1g6nyV/X/19YyemDCCB4zM/rVp2NEgCi2/6PAZVkiHmxe8dj4FwyunE+5JuAkySCtSN35eUTQWxke5LSiUcWPbR0bhqIVJJXxXEaAE9o73B2NN1kE3ONiA2j5C5lT1dJxUaKdBKAa1AbNJlcel0mj0FSL0WH3NOOF2roZVJ2AlvDbEXq6896IAyZRuhXFfjCkJzhpNaUekhdtJJitdKAcFswgFkwjbiCdU79IRJdZ4Jf1H9T1tgEb7/s2MG39h5yApyvvJmPzQ0jngyh/RekkMSxyUamy5m8nRwecxjLlIKX780VT8ApFIEiswaY8uArCTWooUPJ81ngJxEj6minMGNCqbV2r9GkiVKdBs+/3AI/+iArgMMFfSmcJC+eRhSkQVHsj+ACjHMjkXywkSosC8pADLBMsOP+jEBS3+T5u+Zl84fzfy0HbLjQXJIjpY5zdvHO1YTwimtk4uXpHCQiphk3ThG6V7LDQgloeoKWsrEeUcqAaso3AM6/fMbHbLvCJlVCRn0dI3YZENxk5AVhGoAWaFpdjmTK8WM7ZlUft+Ks94AKILlkZmGrKSPt8vDRXiCFSJMrmt1yBO7KwPMOnLqCBOnzMoNxWEBnQdFD5CReU4YTYkOXFFqH6rC5tfS5DokpTJgSTIIlbbLJmg4RgPpFlHWetZCE28D6M55W8peSFAyDgYYYck0vog9cl1Iep0CZREgPTjScVUr1CqAI/UpPa/VyhfS3lXLqKJGug/ZuGdhKFG/6DapPxksTQfoGdB1ocB43JcDIBkn9GDAFHVDwBgBZdIXzCoBWGECq2TvaJcf1qKfWCD5+gJSrnJ+Oh4ygmQkW7GJl0yQ+Z5c6XXcdifp5D1bVQUrK8i6AaraOfDUgJRQTUUAyfGSS+5LxsIhISU2OdfTdTaFUA1Eu+HAssK0aqCtIbOrCYwyj0/MvVG52sNM0T5mnqklTkWnhPB1K2OAXGsqeu1qXHp2wd6QMgbHjEUyKEYAKVwKPnQdFYaOSojBTao0ubKZzrj7uRgwe96eDCqReTJObC/qJoBlVftJGrKDVQ2Ejfe8JAGppQmaQgese50SlpLH77DOoncckpRbQMN7pRb7js3lDiBjM2tVK1r4RIuetUZhz5RKr+2qFVWacWbWXbVyix+gUcI/KimgbAfRbniAFO2md9YRuo3Kwbk+1dr3Z1G4H1Qar2yNpu0P5Uzx8b4jaKHg5w5mklbS/9l0fp9TuMw9LHzrhrpmFfPT8ZYRJJ3M65RlzJkWfXCIXw9tUM8bGKeVTkICVQPbbQZP14qYpK0biKqBrCsysdZVML3KYHIVivYbpUnjJoFjY5OmqoGqhqobcGkvIRWqSYWpEtCGzK4WEtqqkPkmK6jLTjZNJUMs3kC4SN6e96rYJMf7V1SbTyaB5iGGLk0iXQmkTh3MOBggZ5uUTKFriUV3LTEP9wytKWA+ToKwDLuMQTJO3u5BMgr3kQrWAaOtajL3VTWx3qohBqOaMJ7YNKs7WlwJGTLUuFaLgDKPM/VlnCKzt7AOIK1jieB9NpsAKu0/IjGVy4pqjPrE944txgB5xrTGWqM8a1yryXN6V+0ce3y9RgeS8wBSU7yvmW0EcGxn6UInW+SIiMnHaSEhFW158GecVScBSMCZvyOrkKE9Y+iOgDK6v96UjsXgeKzz03bICJJYzky5VTMmn4vbldiXzdqe1jq5bB49k6tjk0IpD5RCktnVNBVE23mTK0/VQgkCRR1WzEYbKKU8myx5upbYpKwb9/oIhKphu5rA0pldtZWwMLCWymmZpv8bQzwjOdpMKonDMx1i8gZAkoFyEu1Z8cQ69c4dXO+S9ijjqgtxJQY4xxxvVo0A0m4cJoDc3PC1NakySgqU/tmZtK3myXaBdyqCWZKzJwHwk7EP93F9bZWLl61qiGZKE3RjIEwNNMH6AEOmVhgFmA5KNS7WDj6sQPp9WfeVkh1FwgiO7zddOo5jBIXrRGzS/epeFpk4fCeApOgB5BnTCnumFc6YhkoyU8ca+TGpwj5k/KhzgOw2KIVit9Ff7HCtVDadc4k2XvCwMLv3DDL0izXaA6P/nTlQygrWGAh0ASjd/wLGQMjsv79ENqfjPT+tSkaQdJKsmrDcamUZs2NpoOTnhr7rtNNpyOTq9iVR1d7kqpoaemPWM7nKgX1JFg4JEXKxp6tnk1UTcrpWgU1CNxB6FrxdjYS2BrZRCNU4AoticCQm2aGpZBLAngu3Z6BMAVL5TCyTaM+qjuImaxnKEykBb2YlJw8XZB5PqpshLR8zkdjsajUlh7faZQvSJoCkezYFsOzl3Y3CeLwTlpSQTe0sCNznLURdE4thNttMaSxOJOnOTiWmogWAalyaNusTfwukwep8b/m5ZA6X2YM8aTmFnIRPVB6PY/ZgzfYkY4DcPalCDdJo0bO7qbCrpr1n3ofcVauEOXozK0wRIEW3CbN5hPqPk/V3s7Cw4QVPbgUAKHkHIobPTnOOPSb/U/69JUYJQAhy7IHpCDytAZxTWg6UfF2gP1+sYn5ahYwg6aTUcUNAMNSJpRXO0EDYkTrJaimTq2wq/6zaCqatIGe6Z3Ilf8eUTfb01RaWk1dncZPMJm3VEHgceYwC5ytikZRKT6FqyNtVK8CAXN131cqbW5XgJNU6ST82c6nQ1hybzCUwSZWwyWmlEu/HaRUysdSqsBcp4PYbZz02idkmzMZjASD5NbPJdubN0b7MWASQBJba3+MSo2QG6au4xMkhnCMWm9GV61tRN0DVwnY1pNbAJGY9Lr+tkIBm55AOsDWxSVG5GFEbEoPzPqEQvj84U03xIQQ07y8q9p52+rs9ZCPSf0UMjmRuJYDkpBDTmk2rzCJrep4QQMYskpik6LHIHkC2ztTKALlx2JvKebFjmUHmjjup8mTilgaQmoDSGKCu52+v1E3IgGQNYEV47c/zPz3zBI6zJpWujeM/P61CRpDEYhPi0HuxXV1E5+Z9fui78oFwuuo0aHKNvFxlPSM2GXm5qkZ50ymnoCuxSd6btCrkdOV6k6o2ZTZZO5ZV1Y5N1s6JR/mwFTK7AsYK2AqgCSH9+xBgUTIB3pfc7GQWfkCTF5tl+cEMNAfISRRLVyvpGWSRRTpvVm9m5aTuOUA6Nqk3NqFnHfTGjIpVzzpYY6BnrWeSxpUpIxN2xEzc6zgzkozYY8wmVVM7Jkl9SougGappAzGZRvDkL+SelDO5VgT+LoRFVlVInGAAIciRp1YCqgs1C2nv1jgGKRGbt2ed8YBHjlUCyvWrFRZGWkgAvm4k4OMhlUtKz/Gt8R5kGSBV77FWk0PW1AOlDADZHgkA2W1A6BbmyGOuL4+ERP1t5LDj2HhuJk/6KHbWqRoCy+w/mryWkv5jjq1TLCXVbfVsUkgKIRIg0B3IlLWq+Wk7ZATJTEqsaJnOW9b0WPqunaRTyeQqminE5oYHSlVX0E0FWdc0obZU+ko1Ckbbpdik0TY48Dg2qdsOsqkcc2oDm2QwqWvHJmvSK4rvZLOrccVnKX+oAFB5FsmsplYCGx1N0q1JnXe4Kn0VmQMbjoV0TjlJ7JwKx5yJhRlkmug69malYxNVPYnB0hx5DN3GDHpjBjPr0G3MXJFqLljdeeYdM0q6r2XWHtcC9Tl46wpSSejYKlDXkC2BpdUGlTaQxsCYKCJRuuxMbe0YTwdoBSh6Fsq4+ofW70sys5aSwmU2O0N9UViMzDqDpqLFSwtAOiDUnQFgYAwg4RJXKD9sfXwr59xVVUgAcYbzXC0B5BnOo5UZ5aSSiXl1oiQaUQZIzDbIEhAvdjaPFE3l8UImB0mpJODKyAm3by+qepjZSUUmcKkgrCJALLHJmFG6eNY8IcXQQnuV89PxlB0NkvMcUxaZMkuyrOmgdH7Q3HGa6cRp6bzJVdVhX3KyBsw2IJs6MbvmDjwxm5Qw0Nq6hAJZouyoQohx7anOZBUceWI2WdWwVQNz5DEfmoDWmV2FoCQDipwVKMmzcP+gaF+SU84JgVZSDthaSrd/aZMMPb69iALHVQDIiTOvspk1z8RSSwEFA+HMrLFnK+9dhYm1D5DhedODoze7OqDUM8coe7U8szHkTa7CJ4FQjfIMkvtRNhWqaQNT135ir0FAZ6QkoOSwBF9WrAKMCzVgk6ts3GKBSlUJA5+RSAkQ69YGSiLxII4B0u8TN4Bx5nAphc/hGgBS+Pe8w45b2HD4Dod3LALIXbXCVAlnRncAKQExKwOk3XgssMhsX5lN5SYxjZs+i2wB41i90caZv0PyiOQ/LNlJSsMa6b2eIURIMmCHsx9lg2Jb5qdVy44GyWVAoPR6nlNLft38/dKqqgQ6p7NOXLPOVjWgXS7XCSUcl80UeraROPCYtovYh03YJCAhlAPMAVMPwIDpwkIcY9J1gU06wLYbh/0ELVpn9nPertYKUHEPCXTGA6U3tzpz6GYnKO+rNK7MkE3CRsL+GbwplR10eC+SM+7kWXUYDDg1GScJYDMrhwXYLjK7zjY8MLaPkbmVj2Nw1DNNj1b7+03PxieWz4XjWKVzsFKNhDhCZnLVdn6hI1tikGqagm0NcgCyjsEIx5LQzWj/0meWoRyl5LQTTK5K2sihSUIK4xyfLBpliUFWCk1VDslpAZ9AwLg8rv63xc46FfVFyKCThnnsaggQGRxLAOlDPqRwAHk4AOSMnrF5JOwl50xytgEzc8yfzeTaeKeqHovkBUxTQRhJ97+pQk5V/r9KSfdcKqCd0SLRJyXgHLpOYpOrNYBQ/r+djAusbn7aLtnRIAn0wWDZfbhSpw+BydC1cvv8EECdbjqBGaR2GW6c047gyhzNFLLeCA48EZtUEdgBoELLzuxamsDzMlqUXMCZXntssoGZuZCQqu6bXbsKkBJNNfVJ8qwlpw9RsdckUHdkblWCQFJX0qezy0ESIEbIwFq7WDkGyGmlXBWIkPC6dqZDzsXKZlZoYpS2SwtMs9lVb2xGDHKzxyhjcNQzAz0jkAxgafw9TcZMBpBSCXQOIE2roWcKqjFQbYdq2vRMuABN0LUKKQstJxqoajdhV7C6cybXbtDkWiuB2tB9bI2l1ybEo641VTkcpxOheHOvTmhYnHAuXWaQcWzrnmnlvVgDOKoeQE4qQWxSifkAeeQx76hjZhv0up0587hb6BVM4j7FoFLEIp0J3Bjjnaj8b6MfCGEUbNfSZ4wG4LyO3WvhypH1kidzWsFC6sHkf4jVzE/bITsaJOd1Wqntsu0W2dpLQDRvsJxuOllBmTqgGlg5I7f+ZkomJ96fnExRxXtkjk1abSBnGqpWBH4uJETCFLK7khhtILSArOGTC8i66rFJs7EBVdXBiaduYCKza5xVpJEhWFIICeGAQ1QqMqFKbHYa2iJhk7Ewk1RCJHuSZGZVqJwnK5tZk8QB7KxjwjO6zpvifJjAbANmg1hk39TqmOURYpDdBj0bB5S0N2kSFmkKixHpEtBL5/kplIBqFZQDSNNqWE2WgGqagiMAv49ZKwJH29VkbqwbzyZ9JROjYQdMrrWSkJ3xi4kuY5PaWKw1aYYg3q/Mc7vyewCSiiyxJ3JThUw6uxt2ygksck/j4iGdibVRBYCcHSZv1vYwAeHGYQJIZx5npysza8OCxoEj7RuT93HPFN52IYTKKAhN91qhco5tBkIaCheSCtZICM0p7aJkBEbT/3pRJZesqHMuq5qfVi07GiTn3eS84xbZzoc6rmSinNd+x+ikGmIFVUP7aN6B5wjEhADTh4FMG+hZ6509VNNRQvM6THZ6BpfgfFhb2rMRwSmlqTLzawc526BJekahIfDVSirYzlUyacmc2MiqV5GdzICUFaY1BkrAgaRw+5Jpey575Z1OpPAhH5XzXo3ZIycSwBCLjB06OKtOFznlzDq/BxkDZLfRojsSM0kN0xKbTMytxg4ySQ6nYHMrs/faVDCanK6q3mdpEtdtRcx+1kJWGy4Uh0zGwmXksfybFVU44cQCsclVW2aTErWrA8pscq1RDgRTkOyMTUAyl5hBxtVZ4rjW1HtVJl6sjQx7kI1cDiA9k3RWgPaxI97qob1ZvE32IW22J88LDwI/Q1sXzlvZj1clfSo7gdpnXOK9SOFiKF0Hp/+nUmWYuFYlvxV/JtYPx2d+WrXsaJCMJbeNLzIPIHs/b7/ofN7xO06nmE2qGWAcSE7WKHi6mUJ0M88mq+kEpu3I3NpWUFHcHpfRgk9MN1+8t6sLB7F1Fcyv0SRtGTBd7KSITUvtBlSzC022D8p7ZVIAyhCrbLVFHYFknuycgbJWBJaNkj68g5Ne++QBIgv5yFlkN4uysFCIgJm1PtuQadvg0TrregDJTDIxuZoAkpTgvX9PlQiOLUIJWK2gZwaqceyl8CGhpItbnUEoRV7NdQfp9LZdTXuTRhNYqtqzSF8bU0jHJAFlnNOOY485m9QSRRapDe1nsudx7lxVRSAZ14OMY1o5g86uWuKMpvJxkBO3/5g66QwA5OFHiDm6vUjek+ybxdue53HJ61gaCaGDtzEAqMY5TEl2yHJsMmKPc4XBMGKNXP3FFgAyf73q+WkVMoJkJIsY1KJ9uLxzF+3vlVZMi3Q4rXSqpsQMFrBJNW2go/0s5fe1WqiETWr0Aprj79UU/6bgWKVbheu2g5x1MHUXJmkXEsImP1HVBJKyAroND5RVPU1iwzxIut8ohUStgFYbt9+F2BmWPsPhCyKkm6tk5KgjsiofUcIA/2y6KDWZAxkXOxezSO/swSn6ZgEMY4DsjgTHna7VoU6jLZuMAUAZC6WpMr3VFrLm+5KzFwGtBFTjAFJK6LpNFiqqaSm1WjfzQCl8aS9XocKZXDmxgJKANG5xkbHJiZVuT1gCzlJOZlYDbQoer0iz9sQJH5hJTiuKdQwA6Uysk8pn0uE4yLkAefjR4MXqnw97E3m8j5yH6cRerbEIJWEdQEojIZ2J1WoNKyWMopAbqw15TW1BuBZl8pDlvclVz0/bISNIZpIzpViWMTuWTAz82bzNsmbN01knBsh5bJIdPsysg2w6KG28Ew9Ae2RSWaBRiYMJS+71arQNxWFNmGhSNkl5TUXlzJZcrcLXxJw50JSoqmnIhxb/VkHOr9paSCGpyDv6pZuUpGBtXxtSIjBHzhrDmXwiFunZFBfajap62Lb1weW8EGAWqZ03pJ653+2A0WgTGCSbXI3FzNi5IAnYAOYM5K3OJpfO9YWAVhJC0fVlbfyCxbiFip0y0LcQxhCL7NrFJlcLzypzNmmcGdtLE+9F9gEy7pvG5cv1pctkWg9yqqJsOo1yJnMGR+fNKkwI8xgCyMcOeQcdffgwAeORmdtL3kycdUoxrH7cSfJgFUpCGEp6IZg5SgOhIvNsjWBizcev4hAc1QdG+iJ/nktm0WiIR8awHI/5aTtkx4NkabLPVy9527z9PLYVX3/ZDt5JOnlz6xCb7GZQ0xZ65pikA7XKZxmfRfuQ2icXAFz2nYGwEKMNpDM3SW18cgHPLGM22dXe9Mop60Q3C2WchESlGhiZ/s0liFlqA5etB7CwSeJtuDYCIi2izA47MgOfOO2cM7XCEpCwk4XP5Wl05NxhEubBjh8UB+nMqa3x+4hWWw+QOUiWjHLa2lRPIAFKqQTtcSoDISlzEmVQCjl17TSYABXr380gzNT9Fg1RmSywPZhcZQSWlQx7k1NftQV+xpNR+sAYIIeSPVDYTRS3KkM9SCp3JbEWJSufqJBJJ0kUMA8gXRJ6BkgK0yHzqt5I0wfGZtb+HnE67q00jkUazyZRO0AbjHuNK7uoAIRuYWhlcGTzLLJ0nej1KuenVcqOB8l5zKkEAsdqnlwGUHaaTnYOm5TtDKZrUU1b7+HKZlfpJn0VMUdaJVNsH4MlhyXkNSljh4c4DRuBpSbmwmyynQE+AfqsZ2KyABrV+LsnBdDCQlhBOGoAay0MhHf2MTaUEgphDCJhk37iZ7bp2COs20Nyr0Oh3TR/ZwgLCIzN6nCPQkkxE5IHGGLjBIzoASQzSW0jQBTC1Q6k3ubPSU17xkZbCAZqLmHmnYGc2XvWQk0b77EpjHHVLNxrtyAQ1lJQe+TlKhMmm7JJIyUmPNN1ACrXxsBnRQL6BbSB1OuYnyslfLKHeD/S52D1plaXao6BseekkwHkxmPQG5toH9tIEj3Ezjoh7IP7r29mhbawynLFscSTtSQiqvVJx3EFlyjlUMQcOXMWPVc9Frkd81PfdrMa2fEgWZJl7N6lzsaSx6WV0qIOP111sgDEEJt0QfCoasjplIL+GRinAeAIJMmcp2cA4FKcFUygRR29uzsFZLPHq6gpmN12xCaFY5eiqnyqNCFmfhVthUQtK/rFbu9RGkBal1EGxCohCDCVB0hmLZQOzScv52dOYm46CuJ2YJE8SnUgjfbscd7v9mDJWXUci9Q2fgSAjIlLeE0mV+2AkkFSGUDqOD1gCs7sRBWDuX82VO5JMEPmfUnHoq3bn5QMjpIWIzGbnFac7YhMrqgk5fcWFlIDRgK1FUn8Kgt7HcfgGGJYVZQykPaSGSCnDjCruNzVHCedEkB2jx2hPeMjUVyk20NmcIzjhQEHdppigQ3Io5X3Ha10ptVsD5JDcOgHSweY2aOKWGPMKIWEVX2AHJLjPT9tl+x4kBxa1ZRWQqXPbXUjudQ+v9ZO1KnIJrsZxGxKbNIYVNNZyvx6piKXjFsLGGl773MB5+R7Y6bl9u84dZ104QcJm6xqiNmm93SlCcPtT3YzoIIHSsHMyggISRO1lIBJ/vYkEiJ4xQoRzK6CzbFIQFE4RsXP/t5yGrH8/jJTzkBzXgWVWHKAjPclY3CEoILFMQut3PeoyKmKvjf1YOoBJcfnuUokwmSLAvcsnMlVgBYeOgLNGhI1KwHQJjEkpGRQdyXPCiyS09zFiR6mLscuJ3qoXaKHUDhZpADZHglAWQLIxx6B3XgM7WNHBjMhcVxknCKQFxjJ/dOaWLvz8rZa9JzESiKU9FVC4nqTwlXp4XFupfK5jOPXrudPyPy0HbKjQTLuNCBdpZQ6IG871C6+ft5m6Lo7WScA6d6k0Z5NyrXdMM6BQ3QzVGyuiyZUlYBhB6sFhLYuJjJ8c5xXtKdztD+ZmmGd2bWbBTbZtVQL03SAdns0eka/2a3Ma1kBhmyoAg4gLWCshQWbJoMwEEoPkHCFhR2L9F6d/QfHudmBGpvzZF4qv6QdgGWvnphhF0huMuwVefbM2MXyxZlfoocSMjjv2ACURlASAbgc6QAlNG+1CSAZ5Wn1vzcKu0niV6NkDxyek5S7kq5gsmeOISdrDyDd8xBAcpgOAySF46Smchaf9YhuFoFdQbggdlypBXAm1hgc64ZeKxXMqbFp1ZWSi/Oznqj5adWyo0EyMfktaMtAUQKPoeP8vfhc6fvyz+4knQQiNll1gG4gJ2sEkNNdFAvYzSCNQRUFUFfTBrFw7B1mGgYSSsF7+gFZZhiX9Lkknqm6kApR1QGIulmoUCGkM7s6VtkJiAqAoAmVgRKGygkJS3uSovA3jwFSCuEdfzyLNMQaASwX0xbfl7gAclSxA9D+nvikAEpQMlMnDCYU6mEdCKYjgUFRInXeWQSWvHCZJ55RAsF5h97wDymDoxSzSGsBI6igsnFxtErAh6n4mFUVmDH/Lo5fjfcia9WPYfXMUTqANLOIOWYAuXG4F+bBqQJLAJmnCszz6Cb3kVl6dMNjL+7SPfbjgQFRSl8QG+61larIIq1KAbIkq56fllyHHbPsaJCMZdHKZJnVzLKdv+z37iSdLKK9SdNAqBbWdM7s2gYnHkOej/P22gACAN0G86s/71OnDYOjMcHzVfn9MOMTb6NuApsUHVWo0B04ZZ1/LSsoQRGTkvwpIBDAMpeYTSrHInMzq38sI1KFxYD7zaGUVXBm4tRl1Nal8PMhFdRjypsTyoauGDR93KTI7rlfoAz3wTzAjMGSGaWw1t8PZt3MIq0zbVuQ2RXs+yws5fs1FlqWf0sPJJV0pbdElOSBPGjZUUfoWX8PcpBBUphH+9iGB0jejzRtV8ylOy/JvIFxlXAslHOUqpt0jMVjQNWVf82A6HMoK1cMvW4Cc3Sl7RKwHPBo9f21xLljmZ9Gc+s2yZBte9GKZ95nMef80ayudpJOtp6SebN2YQ5NRyDp4v/Yy7Fy+4c9faSEdmySAqrJ7T1v0zM3DUzOPmVX5DwCv1c5A9c7FEJSQL8DSugOFoByLoYaAgoWQgQmWbpPzCaF82yV7uaJhXkz2TTG+0qBLfr6jhFY8msKxWCwDOnkVKOAGZk6ZwZoJDAzxEwkRC8MJDBIApfGMauqVj6XqwdimYF0NHnHfRReZ6ZDBkVXuon3J6WQ7t4hCaexAoC0EA4gKV2ggJa257ATUgSyZ6uMijjDpwZkkGxckgDoGeTsCNBtBKBcAiDjZPPeOccBZHuEi2CHZPOlkI3SYiPeUoj7XioqXebHROPSLnKOYil9YnkrydRqVU1gqRpvZi0B5HbPT9slOx4khzpx3oqH25U+lx/H50t7e6XP72SdhJBUIcQ0QEXhDnLNkqem0a5AL4FWnCjEaoMKaW6XOD6M28SgKCIg8fpEr5O9MqNd8ucILI2GNBqQ0WQtyfsSghgahSg45wYhAGOdBZbuDE/SHDvJoSB8bzyTHBJBe0wW8PtJXIcRVQ2hKKONlNTOFz92qf30jKp15N6tXhxQsol1XtadHCSlA0fVKKhGQtYpmxQJaMqU9SoZ9sn8T43AMr8nznmHwdoKASMAK9iLWJCbMQSUpByuXOMz/g3cF5WMnKey5A6xqbUS8DUgiwC5cTiUuyokm+8eO1I0sbZHOpiWPFljgMxzE0slHHDK3r4qWwliC4Ksa0gpfWUdX2mljkKvminQTCi/smORVIxAJd6s/ntw4uan7ZAdD5Ilil+yhS9aIZWOhzp4yAxRGiQ7TichKbG46bwTT2x25RAINp5VEQBqB4DaTbI+dZeLD2NGGVeeiCfmkhOL1VleSx+LaLzXJWQwtXo2aS2s7ui3CQklJAGNJKCEcFEizCzdzZQILHJQOEbTcOiJSFz2GSC59JFqCBRlW0G4pAmyJpCs15id5FNBWG7IJDUdh330FYxBsqoVZC09QKpa0Wv3LGsGzopqGzYVgbibwIViJxL+XTkCuL6KzM8yYuCCkwvwqsO4ESYpsQAVUha98epZKPqhODFINjIUvJ4LkJys3OViNYcPoz28QbGPhWosbGIdAsjcWYeyTYX9ZMnAmI9tV59VREwyYZFc+Nwl9PfOOVUNqxpik1UDH3wZyYmcn7ZDdjxIHs3NL4EGy9BgKK2i+L18IOx4nWRFZleXn5NCQjpv8oyfpTF+EIuNGT0rhQ6OLc46D46xs0PMYHIHHlkwXwHw6bsEXSw8nOdpiU3CGEB0gKwghaQJmhmLtTBIAXKhFCoxCCFpYov2S2E0eeJWNWStPXOw0wmsMag0ZS9SxqDSNYAWVqdAJJR2ycothBKooiTnQIiR9E47UYJzMt32AbJaq+hcQwnNGbCFA0fZVLRYYdMfg2X0XNwLi5hlHEpjhHXgR+Zugj8AAj2Dd571iK8Rs0clXBYkuCw6ul0MkBFQ9lLNuTSB9Bz2IBcBJAuDIvVXvOcr/D314FjX/p5X0yZlkW4PUjRTGkMMjBlADv3nT9T8tB2y40GyJDl7ylc2JXNASUrMa575snR+p+rkCzNX07DnNLEwxnizp9Schi4dyC6pCvSsDfuShYwjImOR7Bofv1/Ul8sIpSf9gwHTZ4bhY0H7WxbwYCkLQew9cZ6z5EFrQoymVBCWEhsIpWCrmpyLnCcuqpomPWNQTUPoTGUmTuXSXq1IHpKztTiw5HJZQD8vdlwqSzozq2eTEUBW0xr1miuD1vBznYKm3yNTUXhCqDhRvE0gcCQHqQCWzCC14X3h8IkhFp8kc3DPXPxamI4YZAyQuoXQM2C2SekMN4+45w3/HLNGD5B5svnISWcRQMYiXWgTGVrirwAARe1JREFUL/xUo9L7ywsQd0548+o0fXbOOglz5P3IeUMUJ25+WrWMIJlJTvdZll1BLQKUoXPz/gI7USdRMrtaA9HQPiBP7xIgb1Skg1k7dkiOD61nk/E+oy8f5Mx7W3HoARD2JaNgfgZG1wCIvVitIbMsaPIu5NPufweCGRpSApYBsnLZZ1zsmjXEJqvWMVwDTJypuDGQRvvQGX/t+F5IiU5R3Ad7n+o61JZUtfXp6krFl9lRxDvo1LTwIJMqMclqWkE1CvUaVXappg3UtIFylV7iCRxSBTNgbEbmwHZGtgKrlCATtEUIW7GWgNJaTvLAP9x9xjFITupAYSTCPzOL9ADZbQJ65sFSdBvA5pG0DiQD5WzDO+SQg07rnXRCJp0Ahj5/7hyAFBFbTBc15HwV70XSwqP291lNJ96sKioHlu7B7DEJ96gaPxZLcjLOT8dTRpB0MtTBJTZVWhnln1v0PbnJoPQ9O1knAMHsajRs7VhazfUTtQcD4RhRDJRCSRgXBsJgabWGkanJldoSQMqmcg4uwQOUGi5hCM1DM+LXxgAiAGQs5O3avxtxXlcICVgT2KRUxE5lBUhDbNIaoDLEHIHglTuZugtqKPQz7PBv7eTMh4bomYKsOQm5gq7TCbucVJv3xFzR5VolTjve5NqoBCArN2l7oGQW6cyAcIHttE/m4lLjbEf5/ezdX0BYl7LOCrcAK5gtkWY88izSgWQlkICif91tEoN0KRQ9c5xtUEWP2QbMrPWJAXxdz8zMGhKW92Mge7+RFyTeSziwSNUo78GqmgpqrYFq6mRBwhaGnEUmZtZqGtikc9Qp7TPGcqLmp1XLjgbJoY7KB8MyjGqRxKsfEX0uNk/k1xt1Ak2GqiYQUB1gp5SGLErozU48QABKHTFCruxhpYTk0kCsVxwikTFJ4TxC6cJzYiu1Th1LjHF0pp96DQgmwcF7YK3ft2SwFNLli2U26dgjVOWqYhCzFLUlT1wGR68TeanWYCBzvzfyfOSwGVV30E3nwbJaU8U4Pb6PiXewm7RVE8CSwdE7DDVVApAxYIrJlCbxyZTAspn64PYkh2hcvzCvYejqSzIWSkG5WaXglLrp9MqLEU4H6IFShCosRYB0JlahWw+IdrZBZb4YLNuQOafjgsmZmZWTvScexgVPVr6/ACdhED22ntznAkuX02kZIJ03q60msLUDyHra24c8GeenVcuOBsll7eKxiIHXJcnNEKXBlQPRqFOmk6yAeuqYUuMY2xQiwwAR1cOTAISawSgJLdOYyTidnc/CE3u7NlUSR+jTdDkQjF/77+YQjNJvi/OqOnNrLMwiY+4g3XnjHEk8ULKZle+XrehZmeT75QTFclacdkxxdpVoUaCaGt3GJmRdJSWZfFLtaT+pdiktGufH5fR/OTiyc041nSSTOAOkaKaQzTSYAdmphHOIckB7XJWCvrh4/xkYJQJQJv2DEJvKyRx8JRZndvWg6Gp4CtOFPUjTwbBZtZ1RDU8HkOjakByg7XzifH5wNZaYReb3Nb631IUiYZApQEoPjpVj5TFLV9NJuL8u5aOY7oacrAWA5H3IzFHnpJgLstfbxSSXcqg7WnnooYewf/9+rK+vY319Hfv378fDDz889zM/8iM/QivB6HHllVcmbTY3N/FTP/VT2Lt3L3bv3o0Xv/jF+PKXv3zUepZu9ryOtdlj0fW43VY6ddQpOi8r+tNWU//nhaK0dbwaltPd9KdvppTGbjJNWIqaNlBrjr047z5Vpw4NDJDKPQsOymdQjPJhioHcmHPFTeT5XmQMaNbSsQEBpXa1HI2FL2xrOQOKqp2DU+OP2Vwmprv8PZFru8Pr6S56b9cu1LunqHZP0Zy5C/WuKZo9u9GcuRvV7inq3VM0e3ah3rMLzZlrmJw5xeTMKabrE0zOHH7Q+9S2OXMN9R76Hv6uevcU9a411LumqKaNPyd37QoTOPdrHYcnhPyh3tQas0r0x1lct5NAkMEvekg2rSIc5wDJRa71jJhj17q8vZGjjje3HoHtZrBdCzNrfXkrMqu2SZL5uGRY2OeNtwNScFwEkB4YPVBO/D2upi4X8nQXhANHvw9ZTci8Wk+Bagpbu+N5Q3nBuRMxP61KVsokX/7yl+PLX/4y7rzzTgDAj/3Yj2H//v34wAc+MPdz11xzDd7+9rf746ZJPatuvvlmfOADH8B73vMePP7xj8drX/taXHvttfj4xz8OtcXJa8jOntP6ZVdAQH8QDK3CljVdjDqBgMAQi0xydq7t7rOwTUnnpIKUCkLNokmpX829FzcpKYYseFa6tF0cluCTEESscoDJ5N6YyYrYhYDQa3o21vpEAxpucrcWGsLfXyWr5L4Ll0OTnyEksZwGiBNXs+5SkTOGrRrUtTMJ1hWUm9DVtHH7Z60vzmxmnb9/AAZTAvYSBPiFR+0ncNmEMATZ1MFxhE2AVWCVbAqkBPhNWn0iB8zovsZjx4emZoPT1/IEAyh83c4EINnEygDpXqPrKNzGPax7oKOKMf7eGQPTtr4SCz9Ke49SSRjHfa0xwSHKgSMAt+8oigBZ+cVgasZm1iiihaWY7gaaqQNId49rZ3bFSTwXDHxmVbIykPzc5z6HO++8E/fddx+uuOIKAMBb3vIWXHXVVXjggQdw4YUXDn52Mplg3759xfcOHjyIt771rXjXu96FF7zgBQCAd7/73Tj//PPxx3/8x3jhC1+4tI4l2/g8syO/LkluIlhmAJT0KbUfdXIsKjK3Ju2azPYKEBBsbnhwEMbAtjMKA8n2Jf11vPnRZavhrDVVAyiVAU7IBtMz+fEe3RBwImWT1obMOxYhm41wJ6zbY6NwBeG+Itqf0y4mU7vjbubfE7KDVAqGE1bXBI52tgFb1xQs3rWoJzMKeI9MrbyXywBptfZFkr3ubqJPk6a7kIS6DubcCBzpdR0cSBgUvUOJm8irOgAkm1mrkE/UMvC732rssMdwKTlDYmpFGSCphieZWKHDa2E0TDdLWCTamQdKq03CIk200CiNvZ5uLiF7eB05RTnv1UUA6RnkJDavEpOUMUBWzlGnIbPr0Lg9WeaC7ZaVgeS9996L9fV1D5AAcOWVV2J9fR333HPPXJD80Ic+hLPPPhuPe9zj8OxnPxu/8Au/gLPPPhsA8PGPfxxt2+Lqq6/27c877zxcfPHFuOeee4ogubm5ic3NTX986NAhAP2OKclWOqc0WOa1K7UZdRrWyZtd45qC7rv9H5EnzpnbT2ypaDJX8uBAewBJaangoKMQZ60RPutLOB/MsDL1uEQBMDMnE57EmUUyQObAmd4HckKJwZImdAmlGvJ6NS6W0ri8mqYj3XRL+5hSAa4eJjvG2M0N2GbqJvoWtplCdi2UY0KcsSjsn5lkX5fuYQqSAHoOULKuHGhW3oTKiw9Rp0AZAyd5t1aBQeYA6ZJuwzFrvn18X4eEx8ogQJouKu6snWmVvaoJKP3+IwOj0X5s5SwyBsaYPeZ7uuyAFip6IH3fsUfe6+X9Xr+36wCy3jX1WwtyF5ndBW9FMEDyPmQ9ga13kcnVjaUw7kpj8eSYC7ZTVgaSBw4c8MAWy9lnn40DBw4Mfu5FL3oRXvrSl+KCCy7Agw8+iJ/92Z/F8573PHz84x/HZDLBgQMH0DQNvuVbviX53DnnnDN43dtvvx233XZb8b1FN33eqqkkQ6stfu94DIQdrZMDyuR9ayCawoqV2R4XkjU6PAPhmb9XZkBZNQSQfm+scZ6WwZmHnXaSPbLM65Lf85O4RREgY5Nr8vPcZK6d44kAfBIFKwXlhpUVIDvHIgVg3LGq6JysIGTlHWFsN6P9qJkDSm8ynBFgurJktptR+r12lpiph8IUZMQoe6w8jn3M7ikxySawR7/32qSAmB87gPT7ttG9y+8jUAZIrrbiAZJB0dqEOTKrZDOrX3C5pPcMlEk9UlfMG+ibqIWr1yWVAL8lVZo8Po4/pbAa6UJqUrN1vAep1hrUu6YJQMbPmKw5BjkJz/V0kEH6cZg9L2o3dJzLscxP2yFbBslbb711EHBYPvaxjwEIpqFYYvf2krzsZS/zry+++GJcfvnluOCCC/DBD34QP/ADPzD4uXnXveWWW/Ca17zGHx86dAjnn3/+3N9wtKslO6fNsZoQRp1AYKMaZ4pME4uJBt60CCmByNyagySVXapDTta86gQzyLpJMr54FunA0gqRgqIM8Xv+Pae3sfQ7rLUJQPIEaaLfk5hjQR8UCIBpDaVb4wLHisGylp75wCgHlhQ+YjtFk71qaH/NaA+QVFQ6MCM4dkSTv4mSupvAxLNFhr93QMrIpYKoaw+SHizrJjBKd0xJtLnaRAqGQwwyBsh48VEaZ0AfIEO1lchC4Zlk54990esoJaE3r/p8vtozx6HEDbFIJaC1W1RIUKrAuILHAm9h5U2tqYm1CJC79qQAyaEearmqHovkZJyfjodsGSRf+cpX4vrrr5/b5klPehI+9alP4Wtf+1rvvW984xs455xzlv6+c889FxdccAE+//nPAwD27duH2WyGhx56KGGTX//61/HMZz6zeI3JZILJZLLwu7ZiEy+ZHXI7fOl13HYZGXVKxQIuG880fCarCMEhEEIq2isqgKTg1X0hNRuAkDN0aFKP8oj6Cu05YEamVjYHMouMAbLIJqM7oS28Mw8n7g77aVRVJIClhJANlehi5qM799urcKwaShxfTSBMB+nMhB4wHXtEZEaEMQEYCwAZOiCEy/C9D1VJCvu9znPVDAAh1S4UzvQanHa0W3RoYxMTq8kWT/OE7yUtugIQCpeTt/faWhi3YLBRVRj/yGRezVN20lGNgnChIMgcDxkciUnm+7rMIoOTTr07eHsvBEhmkIWUc6fCXLBdsmWQ3Lt3L/bu3buw3VVXXYWDBw/iox/9KJ7xjGcAAD7ykY/g4MGDg2BWkm9+85v40pe+hHPPPRcAcNlll6Gua9x111247rrrAABf/epX8ZnPfAa/+Iu/uNWf42VepyxjLrDoD4j49dAG9byBMeo0/0+TAGX2npzAOXYwk2mi+o9hwi/98XqTu5RR9fbwHk/cvSwwhWN2KtGORQ4BpIGNJvugk4YNtSUFXIYYOqdBk72SgDA2CmOoIKuK4ihNB6FrQLeA6ujYdFSphFP+OcAU1gBdlwBkzCL9Xm4JKBkg5+zxQqqQGEBGrFCI+eDI7THMHuNxwPev5LTDLNK/n7PI7FgYKttGwBhYI4wBtANNd29KBcH9/qyRsDqkPaR9SEqI0QfIUJya93ZLsaY9L9Zo71Hs3pOaWJu1kE0nShZwqs8Fq5SV7Uk+9alPxTXXXIObbroJv/3bvw2AQkCuvfbaxGnnoosuwu23346XvOQlePTRR3HrrbfiB3/wB3Huuefib/7mb/Cv/tW/wt69e/GSl7wEALC+vo5XvOIVeO1rX4vHP/7xOOuss/C6170Ol1xyifd23aosYwbYqpmAz8XtSisum7UddVpOJ//HcaEhwjruxaxSSFBNRwdqXRv2KDOzYW+yz8BQxKwyYz9+v9FN8B4cI89LKyQBowNIba0DzYhNgk2wKCYYAEKWHprg3WsBn2uUE3srC0hho7RqgV3axFOT9tmsA0YGTErcQOfYgUVam4BjydSa9Gnk/UuMW0T3JgK86L55cOT7J2TCHHNw5PuxyPGJkzHEE6/XM2/s2CKAYF6Nc/EmzHGxl2rx3ihytGJRUhYLg3Nb6ap4pPuQk8ibNSQKEBwvHHuxTtbIOaeO9iALZa9O1blg1bLSOMk77rgDr3rVq7wn6otf/GL8+q//etLmgQcewMGDBwEASil8+tOfxn/4D/8BDz/8MM4991w897nPxXvf+17s2bPHf+ZXfuVXUFUVrrvuOhw5cgTPf/7z8Y53vGPLMZKxcIflz8t8BoW28XXy9/NzQ9816jRfJwu4Is0uwTe/LySgnYFSuLjAOFaQAZLNZb16FkjAMWFCVRPKNcUPVS1kkWxmNZZMhDFAapOyIiBM+jE/EhBwhuIoKTegRQSYDhQUHzt2SV6cFRSzS2ZIunOvtSv3FUCTQcNmVU78BFUqCB07LPFzvJjgvdsILGNgjN+zvJdrU7NqDowlp6e4kHWSCzdX1/0OkefezY5zU+u8hUJS3NsoCJfhSfrS4FVSFLxUfcZX9IjqQFbTSRRj6sytLhFDMcwjBkj2Ym120U/C0f3vkJ0/GeaCVYqwpezKp7kcOnQI6+vrOHDgAM4888yFK5qSmQFIO2zecX7docGxzLlRp/L3D+XWDM4X7JU4ixwsMkbJ4p1PguOJ93b1gFsNhyOo2h9bWVGhYpc5R1sCRH7OAVKbAIrxHmVJQikoAs+8FmJeF5EZZzFwPgJHROAIZ2ZMQISfFzEpDn0Bit6/HjCzBYYHRqQm6nmewENjCIgcdQSd498v4sw6sVcrj5s4eYBLRWfyElj8ugsJzk3b+XytHGcaJ2bgGEogeAnnoTR5QgblKnkwMHqgnFKGKelMrL0wjwGAnHfPTpW54OChQ9i3bx8OHjyIM888s/DJ4yM7OncryyKzwNB73Hnx6mdeZ8/7rhJLGnVaXichK9gq/T7AMU0hfQ1GqRSxgG4GYRwYDjGC3EMzBsh4omeP1iivKB/nLJL3IelcAEhvRnTn+Ldpw4DZvyPMlAjsrPu9wdRKLJO8vpWkTD5KAgKOWRobgaeElOQ1rCoAXETam1zDMQBvkiwySeoQejuOG42SLeSgyU44xoJKcqHPGPN9xzwhg/9qwfeH29FvNxhmk+FC2UIgOh/H1aY/NYT3CKUAV3lGKAmpJaxjkwqABoGjdFOvr3Fa8+cjBsomVpeUIWaPsq6Cgw5nJ/Km1jSTzrIAOXT+ZJ4LtkNGkMykZDpYpvOWNTeUvmvU6dh1skKWgdJ0ZIv0EzIF2TNYsrk1N53FoQy8p+aBMAbE2NEk9miNAtzTHKwpo4wBMnXqsa6t9YRNF4BS+Qw80WvBYBiBpnGOPtqBqgNIKSiUREmRec06xx93HRndV+T7v3M7L4TAxOCWAmJgikD0XgaSQMQgoxHB50Q020oI2qN1DNJY6+8Pfb5Un2XrImRIbk+v2xAjasKzROW/0zgzq9c/MrfyXqRq6sTcKpuQNMBX8ohS+YW8xQMAWU/9vV36ty3Z/mSbC4637GiQzFciQ528aKWD7H1ROLfoWvlKa9TpKHQqAaVjkVZ3gVWazgGdApsV/fdpnSQv9+CYOZ34HKIF8yG3CR6tDJbRs+0DJO9VGmvRautBkYEVAEzBO0U6F1cOr+NE3gycPdD0DNJ6L09mmgyqASxTMyVcezeV++OSWP7BCKA2BIb8O3vnUPb2Le0Sxd6qGtblvQ0MkpPHC6SAuawIpWC76NiBIqcstNK4RZVOvFgVKmh0kKhgpYTwBcDdwqyGH3NJZRbei/QxkROfkcgngp/u8mn85NruKFl5miggjoM83eaCVcuOBsllOr70emg1M2RnL1136PtHnY5NJ+81yUDJwAjAShlYZWRKjM2IiJhBwoISoAwAmeYRDaEK1ulF4Be8WWNAJBNsCpCtMRRVYC1aYz0o8nXodXbDIoAEAkgCBKBhHzIHTrcnKS2EdqxSIAqy52PhWFqI0Yy/a5npKt87jJlhCqB83i0QENotEhFdh4HcCAtpSWlmk2HBYmkRhOg3CUk3tHfxcF64LE62a+GTUEgFSA1OOCG0gWpoEDJrtC5vsOFEA3WYfuOybbKpfD1TDvkQddNPBB9VwEEzgXGgiKpJcrEyQJ5uc8F2yY4GSaA/AIY6Bdm5UqcPTtwD1+J2+fVGnY5Rp5hR6i4xvTKr5CDxdJ8tNR/aCCQTtlgIWYgTB/AemzY2YY9sZmVgZAeeGCBbbT1zbLXxr2OwBIbDHeICwoBjmUAGlIuBMyQtoLsXe9ICMXvs12gsSYkF5gDYyzI053eWfrOwwseNxjlujbD+PZsgYiQR0+odxyyM2WOcyUkqCOkSVbiUiRKAmbVQTQWjDe1bOnAU2iQO1ck+ZObR6suFuYTveRUP0UyBuklDO5hJDuRiPZ3mgu2QHQ2S8zqt1HbZdvNWTnEbm70edTp+OlkhIeKq6kIQQJqOQJRNruzFac2gHnnoQhLrFzFLBk02oSYhH7zfaOHjJa2byHOAZFMrM8kYWIEAmPMAhIEjgKTw50tAyW1L4EmfIwDlew/YpPTUVoESSNlh/JZeBhkBr0/Yk7RurDCLBIQlwLIIplZhydFJCAFh6fcowFscUguC8Oe8E5JnjYocb6SCVYq8faUmIK3c92oN4fYgjQPHUqKB2JvVZyWqmjTXbb4POVkLicnZvKpqAuoMIP134fSbC1YtOxok593kvOPiQVL6/FDHlcwS89qPOh0/nQBQRhHhqmS4fUk4gBTCZVExzqVinqdmlBggMMfMmzUyswYg5H1GMivGZtbgwELOOSWAbBkkTQaUzhkolqFYQAaTBBAFg2IfPAEMAihfh9qEL5P9+XihDEWQlByUSt/Xmj6Ik6mVwFJBQDNsOrOrdWzS5vcpthpAl5kk72M7IIRS5PBV1b3xLgyZ7YXbo7RaQzJAFllkIQ1inAie9yCrmpxz6gZGNal5dU6i8tN5Lli17GiQjCUYj8LzolXTPLPDovN5x486rUYnAXhPU38NIcjUynuTMkpeXfwCmZpes1ytNnLgKSUOINAcZpHa8gNFgOy09XuSDLhAuk8JhETpsahoiy0HN0plNwyg3DY24cYgyiIj8Doah5hlJfluQ99rPGO2MFagVhKwzBqZRVpYG8yurHu8LwnAgwuzxxA6ZP1roRRggpMOs0nLzJIB0ND+ZEhf5/Yz45VBVLx7XuWZuISYnKy5pORN37xaTU+a/10s26nTKmQEyUgWrZryzim1j9uUTATx+dKKaZEOo05b06kElDBkWhU2OPDYofg4IGUSSXxklexD8m+IWSQ7oyzDIo3zbB0CyDYBS1KJw0RYhkyVKqKYMfui9+CPY6Dkz5XAFQigFb/Hsoz5NdFvAFyT72DfqsgcbIQl/YwApAW0gRQClYxZJCBsAHZjU5OrghsnbDGwaUwnjM763bHJihDRjysA4NhbLem10bBGIqk4w9dFAEghJXnJVo0Hy6SEmNt7NIrSyflCyWxerfqFx3fCXLAdMoJkJvnqKJZ5nTPPxMCfzdssGmCjTsdHpxwoIZwjhe4AKxKwLJmq6OJh4kzSp/nJs8wivVenxVIsMjwHgCQHHiQAyeCoTTC75s8lScCSmVl2bh6IAn2wzK8hC4A3j2HmgJoCY/iuFkjB0QqY7JiDHy0EYAEriEUym7RAz+RqLI2P3r5kBIxxUoqUTWpfU1QAPmm+lZry4KLuVZxJKs0AfTMrJ9N3zjq+vqZqElC0qk5ysJ5s/7vt0Gk7ZMeDZKmD89VL3jZvP2+FFV9/2Q4edTr+OnmRlWeOnlVaE8AS6LPJyAwXe7JyUgE2s5ZYJD+zLMMijUXksBP2IoPnawBHfnQFgNwqWAJAlQHn0DPQZ6T0fnSrM2AsAWUJaKVJvyNmrkQYbQ8cjRCoFdBqENppg1pJD4DMJoUILFJB+EUL4r4VElaYLFuThd+HBgjInFjAJxUQxu1bxknQqwCecG3dD0KxjFipviazR37tzKuJDtF9PVn+d9ul0yplx4PkvNVSqePzc1s1SSwziEadVqdTzBIsQKwyT7smCrlYkj3JLG7SNSmxyNzUGss8Fsmf1wlYBoCcdcaDY8wgw+vwbcuYYOlY9t4rgWkOpEu/jh1vCsDK4BgzVRPvmVoHihlY1ow5lnrbONOrNBZCih6b5MFEABrFToItDtJtakYLIpuCphUucYCbQW03I+B0yc+Fkd706gt8owCQKtuPjMGR2SOHlmRMErHOTk7W/90qdBq2TRxf2fEgWZJBFhJJqbOx5HFppbSow0edjo9OyXVcEWJiAgAgw77RAJvs5R0FEha5SGJT6zISwBKDABkeZqHpNT7OQRLQSwKfHHy/xEoXtfXPiacqtZVG+PR5xu2PMljWygV3aDgWaQAlIa0FDDnqWIiETSrAm1o5ZtIAYc+yxB79IzqWFbigBwOl339kJulva3g9r85mAo6cpILZo0ucz+bVU+1/twqdtkt2PEgOrWpKK6HS55YZHPO+r3StUaft0yk2v8KaaEuyvzdZTC7g3oszyFj37D9n4c2wQ1IytcaA5rPtuHNDABk/4vb8mWWk6jHMHODKYLpVII0Zqcpec3gHsUlyzqEQF+uop0DrTKqAjVikDR6vFp5NJuwx8nL1fSXoPTVkcmU2yeZW03mgFJYZo+wlzbcmOPjE+YBLifMTcJSKAJGryjgmyWPuVP/fHS+dtkN2NEgmkyXSVUqpA/K2Q+3i6+dthq476nTidBJxVhIOCykqmoKkRWCRQN+cmoPl0Qhn5gH67HAeQJb2KeexShYlBWaFc6XXJaYYns2c96T/nvi9ygFkDpjGZcshpxzhGSMgnGevoAQLUkBaAsycJAfHnTAS2MtVCbeIiVPUeS9Xm4YQcQ5gWXmgtNYAzSQUpo6S5osoKLKUNJ8T5hfLrjnzKheeLmXPSX/jqfW/O146rVp2NEjGnbasOaE0YIaO8/fic6Xvyz876rQ9OlnAl9JaWNkiMrOyGIuQau0oUXHZHKh9oBwGyEWer4tMvn1z7HLescAiByDjATBmnNqdqyKgBOBJvXfKiYBSGnpfWlA5LBvYpMlMrml8JCJ2GbLv5CZXZpOJ9UACwoCAzIYYW2sNKA1RlSTNB9ArGWbjxBTzapJyMoy5PXVq/u+OVadF33+8ZEeDZCyLpqdlVjPLdv6y3zvqtP06CdE3sybCnq5IWeTxEOmYUC5KYrDkJcsQQA6B5LGA5aJ9yxJLBJCAXwBJGx3LIlg2lfRAyaqS+ZUSCEh33hgLpYanTjK1+igRz/Tj7DuJyTVmkwycqgJ0505LJKb6KCFF7456D+kYbF0okUrNrLQX2fjvLF4vk1P9f3c0Om0Xm9zxIDm0fl+04pn3Wcw5fzSrq1Gn7dPJs0p/ImKWS05YyfcI+i4hXPC6pRRpbEY0gpxQ2ugzUjrnFCmSWEvAMa4l9xZZlgXLeZ+PZRmQzJ9ZbwY/fh2bV8lg3V+k+O+XzgPWZddRIHO0NEjAUbPJ1VpIm2SBo2+JWCVLnH2Hx0CPTcoK1nQElJzOMIqztfOsEJGpvpQkP6kiwxmdsHP+d0ej03bJjgfJoU6ct+LhdqXP5cfx+ZI9v/T5UacTq1P65gJmOUfm/ZHz95Qg06ARATil8+qUzoFFZeBCryW00UuBZylUJD7vj0tsNgrZ4Pbxd8a65c/8mdLrvgSgjNvzsbEU38jnZYZ22i6X7ccgTVFXlJxNAgEo4dQ0jolaAUBRsvxIEjNrnv83q03KjjnAzvzfHY1O2yE7HiRLFL9kC1+0QiodD3XwIINBf5CMOp04nUrCbYfwSApyJuEtRilADiPChtAD8GQuIKVjPRLRs+2zSWZPDnwqZ5YsAdNWxAPngr3U4vsLtm+PVjj8IwbHVUmeos5XBXH7055Nun1IAMFZxxoIkYYMWcBVA4kWVyILG4rNrapKklLwNXby/24rOm2H7HiQPJqbXxooLEODobSK4vfygTDqdHLolOuz7J+SPxMDpgB6JldybiE6YiyzyMVssqkkZp2JTJUy2dubJ0vHZ85px2njGDiVKINziWkuo+OyUnQsEqRPeN76d/FY82Z3l1zACgOBDPxK6Qxj40MOjJzZZwAcYx3yc/l78/Q/lf93W9FpO2THg2RJ8hVTvrIpmQNKUppwhwZayZww6nTidYrbxiJF7EQCGAiXAYa8LC2sD1LP2SQXO9QIe5O1dLY7tuEB0JbYJFErT2PA3qGVFEAEmAA8gOZSMnEmLFSIhC1KKQaB0hib5FfV1hbBaL5ZdTnJvWRLqe7kcWSalmpt0UHMJiUAVK4eqQr5fheFDHmHneXAERj/d1vVadUygmQmOd1nWaZT57UrDYx5A2DU6eTWCQhA6f/8goBSu89IQZOjidikch9is6u1w2bXmt0udTC7kmumDP/czgAVTbaUjUcXgbKp5GIWyfGYDiyXBR8GyHl5XkvHvesUvF+T60UZeaRIAVMK5x3sQFO63K7Slb2i9rTEGFLDRoPHO/fEJlAHlFSg2ziwtCjtW+chH3muX74my8k4xk9lnY6njCDpZKiDSyuo0soo/9yi7+HVVun8qNPJr1N+PmaWQoSYPX7NQewaXJ7JaSJZoz5bLJ0LMfoBKJX74lln0FTKA6U2FspYbBaYJTDHU7bQPGaZJda4yLM1bsePOHlAnmgAQO99TlenXIFlzsjDZlU2sS4jEv2EA/7nO4C0AJlcY6bIeV2dkNOOOxGD5VAaw2zfkV+fjGP8VNFp1bKjQXKoo/IVzDKrqEUSr35E9LnYPJFfb9Tp5NeJJ1qX8KVndgWIWar4U9JCm60BpRICUgOtsEkbVQvMXEqeSgpsOtPrrNO90I9+Krtgbh3ySGVRc6akRWEgJYaYAyDttSr/elLJ9H0HkDGLDOwxZZHxfqSSrp4k3HOv7uUSU23G/Hp5fpP9yCgekt/LUhiynCpj/GTXadWyo0Fy6CbP62wx8LokuRmiNLjywTfqdOrpBAQmqQSo/qAFQgo0Mq/CkOMOA6O1TD8DUCqpoISB0pYme/fcaosYOJW0UMKiNXwsvIm1c0BHidCNB79SYnRgOI4yBr8hx5zS8ZDJ1O+jRseNB0NZBMimklBCoFYEgrUUqJX0e5HhODjs1FIOmloBOLAMfVtilBZ9kyu9YTwAJqdzFhnHRSJ816k6xk9WnbZDdjRIspRWNrlpYNlV0rz2y66gRp1OLZ34vRKrVCDzKoEOQNm3aRqwADhdjHATurZc3SKwSCkVpDCQxtJkb6ggsxQWUgNSUK1JVYsEEOm17IFlKTsPsDjRwLykAvFx6bmcbSekpmOwrDLwrKWEkg74BDxAVooAMgZGBlLp2lcFFilFamqNiWSJVMYTdr73aAt7kUMm1fh6wKk3xk8FnVYlOx4k806IVzDx6mnZFRAwPHjmDapch1GnU1cnPwEjsEpIgHw8LLQVkJYAkcJBAG3gnXe0tRCQBIJU6jJhlUpbaGnROq9UZQxqd8zp2vpmVDk3IToQTLL8mmWZsJGSyXURMA7tTzJ7lI5B5kwyZ5AxQNaKgZXuq/LASP3CLBIIplaBJcyuvDc5L7lEIQH56TrGTzadVik7GiRLq5RFq5mhjo8HRTxY8msOfW987VGn00OnGCyJORJjZO9WYQnIpKDoO21BweyWPiMEoKSiNgYONIUDRDLJtsKisgKdtglY1kqg1VRyi514Zp1xzLEPmEDZ7Jq/nieLnHfiZOaLwDFmj8womUnyMzNJBkZmkEoGhx56JhYZgybf35gMSwS2GYsfHwyChVSFed/vlDF+onXaDtnRIJl3TEm20jmlwTKvXanNqNPppxNPuswq2UGS06ppQwxTWEEhIRaQoPRr2sABhfLg2OoULFvHLCtDYFlbC2MtWkkgaSyZYxksF1UL0c4h5WiToMeeqnwc70+WnHZy5piDI7PHhFVmQCmF8CbWGCCZVbKZVTid+LV0ABrLXBaUm10LTXbaGD+ROq1adjRIAotv+rxVU0mGVlv83vEYCKNOp55OjCFKUJKAGCwdxyTTqq9xSGbXHCyrCCyNAVojPBi2xqKVBsa6vc0YJKPX2n0PF3Y+XiZXoFz5g497jjwRa2RTqg/1cCDHzDEHx9hBJ2aP3JZAMQBkzCBLAFlikSWHnry/58lOG+MnQqftkB0PkkNytKul3OQyb6W01QEw6nR66KQcwzGWnHfYTYcAFFCWQCkGS36P6w1XRqEzFrVNQdIoidYYaIsEMCfKve+Akc/HoAnAAydwbCAZv2ZABJCAYswY42PJ7FCGkI4SOCp3joAPEEjNq0oSe2SzqgfPBQBZwkaL4cn8RI+nrby/03Q6HjKCZCRbsYmXzA65Hb70Om476rSzdfLsUglo6+odWsDaAJjWwr+nLaCFOyeIpZE3LIFYzC61RQKYxjCTBFptEpAEkAAnEIFmtP22TEHp2AGGE5UzAAJIQBHAQmCMQz1U5LmqpBgER3bQidkjg3MOjkD0Gf8byr9taEycLONp1Gk1MoKkk3mdsmhq4M8OrYDyVeiyA2PUaefoxOxSWeHBUcHFK4LMrcqDpPCA54FUArVVdM5Ivw+pbfzaMcdKJqCprfV5WstAmWo8RCpjcGEWGYMht5EyA01RBsacNUohErOqALPFAHSDbDE/jj4T980QQJ5q42mn6LQdMoIkljMDLHp/mQFTWnHZrO2o087VCQiB7wDlatVCwFoLLUKeWG1SdmktnTMIgGmsQKOofasNdGVhTGRitTG7DMdADJJIj5c0ucY5X1UERB4YI0D0bXogmQKjQMoa8z3H2Ky6LDguAsZYTsXxtNN0WpXMCfo5dnnooYewf/9+rK+vY319Hfv378fDDz889zPkqt1//NIv/ZJv85znPKf3/vXXX39MuoqB52U+A5Q7e2jAiOyzpVXVqNPO1SmevGsJNEq4h0Qj6fXEnZsqSceV9O0mSmLqXtdSYK2W2FUr7G4U9kwqnNFU2NMonDFR2NPExxXOmFTY01TYVSuc0SjsqiX2NCp5P37sqpV/xOf4M7vcd/trZp8JDxleNwprlcKkkphU9BsaRZ6rtYR7pvvBrysJ90wOPsmxjFLVudcC8YKk3L+ny3g6nXXaDlkpk3z5y1+OL3/5y7jzzjsBAD/2Yz+G/fv34wMf+MDgZ7761a8mx3/0R3+EV7ziFfjBH/zB5PxNN92En//5n/fHa2trx6RracXCHVEyMwy1jd/P2+TtRp1GnZbVic2xAO9fksnVJoySEgkQ2xQw4PeJjTLTNDKUxbKendrEeYfTksaJzfM9SV24GSq6gT1Tq0R6HLFEABHzS9livM+4LGMEFrPGRWzodB5Pp6tOq5CVgeTnPvc53HnnnbjvvvtwxRVXAADe8pa34KqrrsIDDzyACy+8sPi5ffv2Jcd/8Ad/gOc+97n49m//9uT8rl27em2PVhaZBYbei1dY+Wpq6PND3zVvFTXqNOoUCwNmHQEmg6A29HkjU9A0LgZzHnBapwlbVRkTY937+5P9X5Y676QgSO/zbxP+uAhsESj6dtjaPuOiMI6dOp5OF522Q1YGkvfeey/W19c9QALAlVdeifX1ddxzzz2DIBnL1772NXzwgx/EO9/5zt57d9xxB9797nfjnHPOwYte9CK84Q1vwJ49e4rX2dzcxObmpj8+dOjQ4HeWVkLLdF5pIC2SZduPOo06DUnMMI0FrHTPnhXGQDkMnAC/Fz4bV8zyWOioYoyVNtMyBj8gBUDfRvTbxCwRCADo318CFONrDsnJ0nejTqvT6XjKykDywIEDOPvss3vnzz77bBw4cGCpa7zzne/Enj178AM/8APJ+RtuuAFPfvKTsW/fPnzmM5/BLbfcgk9+8pO46667ite5/fbbcdttt/XO5/+loU5etNJB9v4i00HpfL7SGnUaddqqTlwDkUETYJOoSJxwYqAEIrD050QKgtmXBlANWsTt++Ao0uPoBwVg64Nh7zzmM8VTue9GnY5ep1XLlkHy1ltvLQJOLB/72McAhNViLNba4vmSvO1tb8MNN9yA6XSanL/pppv864svvhhPecpTcPnll+P+++/HpZde2rvOLbfcgte85jX++NChQzj//POX6vjS66HVTN6Z80A4b5cPtFGnUafjoRPvEVYOQNlEmwMbgGiP0ybXi8XYoEncltvHOsZm0dLvitsBAURjj9j8MyWWeLr23ajTfJ22S7YMkq985SsXepI+6UlPwqc+9Sl87Wtf6733jW98A+ecc87C7/mzP/szPPDAA3jve9+7sO2ll16Kuq7x+c9/vgiSk8kEk8mk+Nl8AAx1CrJzpU4fGkBD1+J2+fVGnUadVqUTEAAzdrIBKEbT+k8MS85KhyQO6F9GhoBw3m/BgvdQOHeq9t2oU1+n7ZAtg+TevXuxd+/ehe2uuuoqHDx4EB/96EfxjGc8AwDwkY98BAcPHsQzn/nMhZ9/61vfissuuwzf/d3fvbDtX/7lX6JtW5x77rmLf0Ak8zqt1HbZdvNWTnEbm70edRp1OpE6MWgOvc/iQXYOQLKw6TS+5rzfksvJeJ9GnU4unVYtK4uTfOpTn4prrrkGN910E+677z7cd999uOmmm3DttdcmTjsXXXQR3v/+9yefPXToEH7v934P//yf//Pedb/whS/g53/+5/Hnf/7n+Ju/+Rv84R/+IV760pfi6U9/Op71rGdtScd5N1lkz3EHCfQHQNyudH7edUedRp1ORZ0o+D88y+g4OBSN92nUabU6rVpWmkzgjjvuwCWXXIKrr74aV199Nb7ru74L73rXu5I2DzzwAA4ePJice8973gNrLX7oh36od82mafAnf/IneOELX4gLL7wQr3rVq3D11Vfjj//4j6GUOmpd804cWtlYpJ2ft4+Ph87nq+pRp1GnUadRp1GnY9dpFSKsLQQ6neZy6NAhrK+v48CBAzjzzDMBlDs3l622WfQ6v96i41GnUadRp1GnUSeSQ4cOYd++fTh48KCfx1chK2WSp6Lkq6NY5nW2yNrk17CFNqUV16jTqNOo06jTqNNyOm2H7PgE53knxK9LK6e8Taldfg0+XraDR51GnUadRp1GnU4MKOay45lk3hFDHZ+3F9F7Q4OidM38fRE9Rp1GnUadRp1Gnbau0yplx4NkSZa5+dzpQ6uhecdxBy+7Whp1GnUadRp1GnVaXqfjJTseJEurFJudL3VIqd2y35d3cn6tUadRp1GnUadRp8U6bYfs6D3JvNPijih1QN52qF18/bzN0HVHnUadRp1GnUadtq7TqmVHg2TcaYtWN8usZvLj/L34XOn78s+OOo06jTqNOo06lXXaKiM9WtnRIBnLopXJMquZZTt/2e8ddRp1GnUadRp1Kn9m0fcfLxn3JJc8X2o3byUz1IElM8WyK6RRp1GnUadRp1Gn7WORwAiSvY7JKf6idouORXaOzRTzPj/qNOo06jTqNOq0vE6rlB1vbuVOYOEOQXQ+b5MfY+A47uC4zZAZQmTPo06jTqNOo06jTsM6bYeMTHLg3LwOiDsxl9L50rXilVE+EEadRp1GnUadRp0W67QdsuNBsiQ57ecOjs/brE1JhlZbfJyvtOZda9Rp1GnUadRp1Kn/nauWHW9uzYU7M++AoZVLfn6onSi8F5+btzIadRp1GnUadRp1Wl6n4ykjSDoZ6mCRHfProZXRoo6Lr1daFc1bKY06jTqNOo06jTqVv39VsqPNrSUqv5UVEV8j/uyQ5Kufknki/+5Rp1GnUadRp1GnYZ22Q3Y0kxy6yfkKKBYx8LokuRki7/T4dTxwRp1GnUadRp1GnRbrtB2yo5kkS+lmz+tYmz0WXW9otTXqNOo06jTqNOp0fHRalex4kOSVS3xcWs0IzO+w3AxRem/eCivXYdRp1GnUadRp1Gn5z6xKdrS5Ne9sZMe20G6o00sDxEbHi743vvao06jTqNOo06jTYp22Q3Y0k4w7aUi20jkWw52ctxtqM+o06jTqNOo06rS8TquWHQ2SwOKbPm/VVJJ5JoZFg2vZgTDqNOo06jTqNOq0PbLjQXJIllktlSReGeVtSiaEUadRp1GnUadRp9XodDxkBMlI4g5Y1Dkls4PIXg91/NC5UadRp1GnUadRp2PT6XjLCJJO4g6Kzy3TMdwm/nz+Or4Wf1c+aEoDaNRp1GnUadRp1Kms03bICJIodzaQmgGG3o+vUbpuaaVVGhjLDMBRp1GnUadRp1Gn4c+vQkaQdCIGnpf5DFBeUQ2tkvKBEK+SRp1GnUadRp1GnZbTaTtkBEknpRXLUOdzhw2tipYZCMt08KjTqNOo06jTqNPyOq1CRpDEYrPB0HsiOmYpnVvmu/JBNeo06jTqNOo06rS8TquSESQzKa2Eluk87rStrHiW7eRRp1GnUadRp1Gn7QPGWHZ8Wrr8mDtrKysdZO8vMh2Uzsefzb971GnUadRp1GnUqfzZVcuOZpKlDsqP45VOacWUf27eyih/b94AGXUadRp1GnUadVqs06plR4Mk0F8J5SulUsfFnZ+fH3qvdK14hVQaZKNOo06jTqNOo06LdVql7GiQzDsXheO47bLtSgOndC2bvR51GnUadRp1GnXamk6rlh0NkvNucm4miFc8Av0BMNRxQ+2G2o86jTqNOo06jTotr9OqZaUg+Qu/8At45jOfiV27duFxj3vcUp+x1uLWW2/Feeedh7W1NTznOc/BX/7lXyZtNjc38VM/9VPYu3cvdu/ejRe/+MX48pe/fEy65p04tLKxSDs/bx8fD52Pr5kPiFGnUadRp1GnUaej02kVslKQnM1meOlLX4qf/MmfXPozv/iLv4hf/uVfxq//+q/jYx/7GPbt24fv/d7vxSOPPOLb3HzzzXj/+9+P97znPfif//N/4tFHH8W1114LrfUx6bto1ZR3Tql93EbMOV8aUKXOH3UadRp1GnUadRoG4VWLsNau/Dvf8Y534Oabb8bDDz88t521Fueddx5uvvlm/MzP/AwAYo3nnHMO3vzmN+PHf/zHcfDgQTzhCU/Au971LrzsZS8DAHzlK1/B+eefjz/8wz/EC1/4woX6HDp0COvr6zhw4ADOPPNMAGknAFvviKEBlZ/bynVHnUadRp1GnUadynLo0CHs27cPBw8e9PP4KuSkipN88MEHceDAAVx99dX+3GQywbOf/Wzcc889+PEf/3F8/OMfR9u2SZvzzjsPF198Me65554iSG5ubmJzc9MfHzx4EADwyCOP9DpGDLzmY2TtS+2QvZe3XySjTqNOo06jTqNO84Wti6vmeScVSB44cAAAcM455yTnzznnHPzt3/6tb9M0Db7lW76l14Y/n8vtt9+O2267rXf+KU95yvFQe5RRRhlllBMk3/zmN7G+vr6y628ZJG+99dYi4MTysY99DJdffvlRKyVEasm21vbO5TKvzS233ILXvOY1/vjhhx/GBRdcgC9+8YsrvbmrkEOHDuH888/Hl770pZWaGI63jHpvr4x6b7+cqrqfqnofPHgQT3ziE3HWWWet9Hu2DJKvfOUrcf31189t86QnPemolNm3bx8AYovnnnuuP//1r3/ds8t9+/ZhNpvhoYceStjk17/+dTzzmc8sXncymWAymfTOr6+vn1KDIpYzzzzzlNR91Ht7ZdR7++VU1f1U1VvK1UYybhkk9+7di717965CFzz5yU/Gvn37cNddd+HpT386APKQ/fCHP4w3v/nNAIDLLrsMdV3jrrvuwnXXXQcA+OpXv4rPfOYz+MVf/MWV6DXKKKOMMsrOlJXuSX7xi1/E//t//w9f/OIXobXGX/zFXwAA/t7f+3s444wzAAAXXXQRbr/9drzkJS+BEAI333wz3vjGN+IpT3kKnvKUp+CNb3wjdu3ahZe//OUAiP294hWvwGtf+1o8/vGPx1lnnYXXve51uOSSS/CCF7xglT9nlFFGGWWUHSYrBcmf+7mfwzvf+U5/zOzw7rvvxnOe8xwAwAMPPOC9TQHgp3/6p3HkyBH8i3/xL/DQQw/hiiuuwH//7/8de/bs8W1+5Vd+BVVV4brrrsORI0fw/Oc/H+94xzuglFpKr8lkgje84Q1FE+zJLqeq7qPe2yuj3tsvp6ruo97zZVviJEcZZZRRRhnlVJQdnbt1lFFGGWWUUebJCJKjjDLKKKOMMiAjSI4yyiijjDLKgIwgOcooo4wyyigDMoLkKKOMMsooowzIaQuSp1Ity1geeugh7N+/H+vr61hfX8f+/fsXVk8RQhQfv/RLv+TbPOc5z+m9vyhz0qr1/pEf+ZGeTldeeWXS5mS7323b4md+5mdwySWXYPfu3TjvvPPwwz/8w/jKV76StFvF/f7N3/xNPPnJT8Z0OsVll12GP/uzP5vb/sMf/jAuu+wyTKdTfPu3fzt+67d+q9fmfe97H77zO78Tk8kE3/md34n3v//9x6Tjser9+7//+/je7/1ePOEJT8CZZ56Jq666Cv/tv/23pM073vGO4njf2Ng4YXp/6EMfKur0V3/1V0m7k+1+l/6DQgg87WlP8222437/j//xP/BP/sk/wXnnnQchBP7zf/7PCz+zbePbnqbycz/3c/aXf/mX7Wte8xq7vr6+1Gfe9KY32T179tj3ve999tOf/rR92cteZs8991x76NAh3+YnfuIn7Ld+67fau+66y95///32uc99rv3u7/5u23XdcdH7mmuusRdffLG955577D333GMvvvhie+211879zFe/+tXk8ba3vc0KIewXvvAF3+bZz362vemmm5J2Dz/88HHR+Wj1vvHGG+0111yT6PTNb34zaXOy3e+HH37YvuAFL7Dvfe977V/91V/Ze++9115xxRX2sssuS9od7/v9nve8x9Z1bd/ylrfYz372s/bVr3613b17t/3bv/3bYvv/83/+j921a5d99atfbT/72c/at7zlLbaua/uf/tN/8m3uueceq5Syb3zjG+3nPvc5+8Y3vtFWVWXvu+++o9bzWPV+9atfbd/85jfbj370o/av//qv7S233GLrurb333+/b/P2t7/dnnnmmb1xfzxlq3rffffdFoB94IEHEp3icXoy3u+HH3440fdLX/qSPeuss+wb3vAG32Y77vcf/uEf2n/9r/+1fd/73mcB2Pe///1z22/n+D5tQZLl7W9/+1IgaYyx+/bts29605v8uY2NDbu+vm5/67d+y1pLA6qua/ue97zHt/m///f/WimlvfPOO49Z189+9rMWQNKJ9957rwVg/+qv/mrp63zf932ffd7znpece/azn21f/epXH7OOJTlavW+88Ub7fd/3fYPvnyr3+6Mf/agFkExEx/t+P+MZz7A/8RM/kZy76KKL7Otf//pi+5/+6Z+2F110UXLux3/8x+2VV17pj6+77jp7zTXXJG1e+MIX2uuvv/44ab11vUvynd/5nfa2227zx8v+p49Ftqo3g+RDDz00eM1T4X6///3vt0II+zd/8zf+3Hbc71iWAcntHN+nrbl1q7KoliWAhbUsj1XuvfderK+v44orrvDnrrzySqyvry99/a997Wv44Ac/iFe84hW99+644w7s3bsXT3va0/C6173O12M7kXp/6EMfwtlnn42///f/Pm666SZ8/etf9++dCvcboGoEQoieWf943e/ZbIaPf/zjyX0AgKuvvnpQz3vvvbfX/oUvfCH+/M//HG3bzm1zPO7t0eqdizEGjzzySK/Sw6OPPooLLrgA3/Zt34Zrr70Wn/jEJ46Lzseq99Of/nSce+65eP7zn4+77747ee9UuN9vfetb8YIXvAAXXHBBcn6V9/toZDvH90lVT/JEyqpqWW5Vh7PPPrt3/uyzz176+u985zuxZ88e/MAP/EBy/oYbbvAJ5D/zmc/glltuwSc/+UncddddJ0zvF73oRXjpS1+KCy64AA8++CB+9md/Fs973vPw8Y9/HJPJ5JS43xsbG3j961+Pl7/85UkFheN5v//u7/4OWuvi2BzS88CBA8X2Xdfh7/7u73DuuecOtjke9/Zo9c7l3/7bf4vHHnvMFzMAKN/zO97xDlxyySU4dOgQfvVXfxXPetaz8MlPfvK41Ig9Gr3PPfdc/M7v/A4uu+wybG5u4l3vehee//zn40Mf+hC+53u+B8Bwn5ws9/urX/0q/uiP/gi/+7u/m5xf9f0+GtnO8X1KgeSpWMsSWF7v0vcvqwPL2972Ntxwww2YTqfJ+Ztuusm/vvjii/GUpzwFl19+Oe6//35ceumlJ0Tvl73sZYlOl19+OS644AJ88IMf7IH8Vq67Xfe7bVtcf/31MMbgN3/zN5P3juZ+L5Ktjs1S+/z80Yz3rcrRfsd//I//Ebfeeiv+4A/+IFnMXHnllYmD17Oe9Sxceuml+LVf+zX8u3/3706I3hdeeCEuvPBCf3zVVVfhS1/6Ev7Nv/k3HiS3es2jlaP9jne84x143OMeh+///u9Pzm/X/d6qbNf4PqVA8lSsZbkVvT/1qU/ha1/7Wu+9b3zjG70VUUn+7M/+DA888ADe+973Lmx76aWXoq5rfP7znx+ctLdLb5Zzzz0XF1xwAT7/+c8DOLnvd9u2uO666/Dggw/iT//0TxfW4Vvmfg/J3r17oZTqrYDjsZnLvn37iu2rqsLjH//4uW220mfHW2+W9773vXjFK16B3/u931tY3UdKiX/4D/+hHzfHKseidyxXXnkl3v3ud/vjk/l+W2vxtre9Dfv370fTNHPbHu/7fTSyreN7SzuYp6Bs1XHnzW9+sz+3ublZdNx573vf69t85StfOe6OJB/5yEf8ufvuu29pR5Ibb7yx52U5JJ/+9KctAPvhD3/4qPVlOVa9Wf7u7/7OTiYT+853vtNae/Le79lsZr//+7/fPu1pT7Nf//rXl/quY73fz3jGM+xP/uRPJuee+tSnznXceepTn5qc+4mf+ImeY8OLXvSipM0111xz3B1JtqK3tdb+7u/+rp1OpwudN1iMMfbyyy+3P/qjP3osqiZyNHrn8oM/+IP2uc99rj8+We+3tcHx6NOf/vTC71jF/Y4FSzrubNf4Pm1B8m//9m/tJz7xCXvbbbfZM844w37iE5+wn/jEJ+wjjzzi21x44YX293//9/3xm970Jru+vm5///d/337605+2P/RDP1QMAfm2b/s2+8d//Mf2/vvvt8973vOOe0jCd33Xd9l7773X3nvvvfaSSy7phSTkeltr7cGDB+2uXbvsv//3/753zf/9v/+3ve222+zHPvYx++CDD9oPfvCD9qKLLrJPf/rTT5jejzzyiH3ta19r77nnHvvggw/au+++21511VX2W7/1W0/q+922rX3xi19sv+3bvs3+xV/8ReISv7m5aa1dzf1m1/63vvWt9rOf/ay9+eab7e7du70X4utf/3q7f/9+355d5P/lv/yX9rOf/ax961vf2nOR/1//639ZpZR905veZD/3uc/ZN73pTSsLSVhW79/93d+1VVXZ3/iN3xgMn7n11lvtnXfeab/whS/YT3ziE/ZHf/RHbVVVyWJnu/X+lV/5Ffv+97/f/vVf/7X9zGc+Y1//+tdbAPZ973ufb3My3m+Wf/bP/pm94ooritfcjvv9yCOP+DkagP3lX/5l+4lPfMJ7jJ/I8X3aguSNN95oAfQed999t28DwL797W/3x8YY+4Y3vMHu27fPTiYT+z3f8z29ldWRI0fsK1/5SnvWWWfZtbU1e+2119ovfvGLx03vb37zm/aGG26we/bssXv27LE33HBDz60819taa3/7t3/brq2tFWPxvvjFL9rv+Z7vsWeddZZtmsZ+x3d8h33Vq17Vi0ncTr0PHz5sr776avuEJzzB1nVtn/jEJ9obb7yxdy9Ptvv94IMPFsdVPLZWdb9/4zd+w15wwQW2aRp76aWXJqz0xhtvtM9+9rOT9h/60Ifs05/+dNs0jX3Sk55UXED93u/9nr3wwgttXdf2oosuSib14yVb0fvZz3528d7eeOONvs3NN99sn/jEJ9qmaewTnvAEe/XVV9t77rnnhOr95je/2X7Hd3yHnU6n9lu+5Vvs//f//X/2gx/8YO+aJ9v9tpYsNmtra/Z3fud3itfbjvvNTHao30/k+B7rSY4yyiijjDLKgIxxkqOMMsooo4wyICNIjjLKKKOMMsqAjCA5yiijjDLKKAMyguQoo4wyyiijDMgIkqOMMsooo4wyICNIjjLKKKOMMsqAjCA5yiijjDLKKAMyguQoo4wyyiijDMgIkqOMMsooo4wyICNIjjLKKKOMMsqAjCA5yiijjDLKKAPy/wPuT8UptjBZzAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import KrylovKit\n", + "\n", + "# to find the smallest |λ| eigenvectors, we need to multiply repeatedly by A⁻¹,\n", + "# not A, and we do this by calling F \\ x with a \"Cholesky\" factorization (a type of LU) F:\n", + "F = cholesky(A)\n", + "@time λ, X, = KrylovKit.eigsolve(x -> F \\ x, size(A,1), 20, ishermitian=true);\n", + "\n", + "# the frequencies are the square roots of the eigenvalues of A, but\n", + "# since we applied eigsolve to A⁻¹ we also need to take 1/λ\n", + "ω = sqrt.(1 ./ λ)\n", + "\n", + "@show size(X)\n", + "\n", + "f = figure()\n", + "u = zeros(N,N)\n", + "for which_eig in 1:20\n", + " display(\n", + " withfig(f) do\n", + " u[i] = X[which_eig]\n", + " umax = maximum(abs, u)\n", + " title(\"vibrating mode $which_eig, ω=$(ω[which_eig])\")\n", + " imshow(u, extent=[-1,1,-1,1], vmin=-umax,vmax=+umax, cmap=\"RdBu\")\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that it took **only seconds** to solve for 20 eigenvectors and eigenvalues!\n", + "\n", + "This is because `eigs` is essentially using an algorithm like the power method, that only uses repeated multiplication by $A$.\n", + "\n", + "Or, sometimes, particularly to find the smallest $|\\lambda|$ eigenvectors, it might repeatedly *divide* by $A$, i.e. solve $Ax=b$ for $b = A^{-1} x$. But it can't actually compute the inverse matrix, and I said that LU factorization was $\\sim n^3$ in general. So, what is happening?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sparse-direct solvers for Ax=b\n", + "\n", + "Even if $A$ is a sparse matrix, $A^{-1}$ is generally *not* sparse. However, if you arrange things cleverly, often the $L$ and $U$ factors *are* still sparse!\n", + "\n", + "This leads to something called **sparse-direct solvers**: they solve $Ax=b$ by ordinary Gaussian elimination to find $A = LU$, *but* they take advantage of sparse $A$ to avoid computing with zeros. Moreover, they first re-order the rows and columns of $A$ so that elimination won't introduce too many zeros — this is a tricky problem that mostly involves graph theory, so I won't try to explain it in 18.06.\n", + "\n", + "Julia (and Matlab) both use sparse-direct algorithms automatically when you do `A \\ b` if $A$ is stored as a sparse matrix. When they work (i.e. when the L and U factors are sparse), these algorithms are great: fast, memory-efficient, reliable, and worry-free \"black boxes\"." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: Helmholtz solver\n", + "\n", + "The following code solves a **scalar Helmholtz** equation\n", + "\n", + "$$\n", + "\\left[ -\\nabla^2 - \\omega^2 \\right] u = f(x,y)\n", + "$$\n", + "\n", + "This equation describes the **propagation of waves u** from a **source f** at a frequency $\\omega$ is the frequency. For example, imagine water waves travelling across a shallow pond, with $u(x,y)$ being the height of the wave, where $f$ represents an vibrating disturbance that creates the wave.\n", + "\n", + "We discretize this into a matrix equation $Au=f$ by discretizing space $(x,y)$ into a grid and approximating derivatives $-\\nabla^2$ by differences on the grid (this is an [FDFD method](https://en.wikipedia.org/wiki/Finite-difference_frequency-domain_method)).\n", + "\n", + "You could also think of this discretized problem as a **grid of masses and springs** similar to above, where each \"pixel\" is connected to its neighbors via springs, and the right-hand side $f(x,y)$ is a vector of **external forces** on each mass oscillating at a **frequency ω**.\n", + "\n", + "Again, don't worry too much about the details of this construction (take 18.303 to find out more). The important thing is that we will have a grid (graph!) of many unknowns, but the problem is sparse because each grid point only \"talks\" to its 4 nearest neighbors." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Helmholtz2d" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"\n", + "Return `(A,x,y)` for the 2d Helmholtz problem -∇²-ω²ε.\n", + "\"\"\"\n", + "function Helmholtz2d(Lx, Ly, ε, ω; dpml=2, resolution=20, Rpml=1e-20)\n", + " # PML σ = σ₀ x²/dpml², with σ₀ chosen so that the round-trip reflection is Rpml\n", + " σ₀ = -log(Rpml) / (4dpml/3)\n", + " \n", + " M = round(Int, (Lx+2dpml) * resolution)\n", + " N = round(Int, (Ly+2dpml) * resolution)\n", + " dx = (Lx+2dpml) / (M+1)\n", + " dy = (Ly+2dpml) / (N+1)\n", + " x = (1:M) * dx # x grid\n", + " y = (1:N) * dy # y grid\n", + " x′ = @. ((0:M) + 0.5)*dx # 1st-derivative grid points\n", + " y′ = @. ((0:N) + 0.5)*dy\n", + " \n", + " # 1st-derivative matrices\n", + " ox = ones(M)/dx\n", + " oy = ones(N)/dy\n", + " Dx = spdiagm(M+1,M, -1 => -ox, 0 => ox)\n", + " Dy = spdiagm(N+1,N, -1 => -oy, 0 => oy)\n", + " \n", + " # PML complex \"stretch\" factors 1/(1+iσ/ω) at both x and x' points:\n", + " σx = [ξ < dpml ? σ₀*(dpml-ξ)^2 : ξ > Lx+dpml ? σ₀*(ξ-(Lx+dpml))^2 : 0.0 for ξ in x]\n", + " Σx = spdiagm(@. inv(1 + (im/ω)*σx))\n", + " σx′ = [ξ < dpml ? σ₀*(dpml-ξ)^2 : ξ > Lx+dpml ? σ₀*(ξ-(Lx+dpml))^2 : 0.0 for ξ in x′]\n", + " Σx′ = spdiagm(@. inv(1 + (im/ω)*σx′))\n", + " # similarly for y and y':\n", + " σy = [ξ < dpml ? σ₀*(dpml-ξ)^2 : ξ > Ly+dpml ? σ₀*(ξ-(Ly+dpml))^2 : 0.0 for ξ in y]\n", + " Σy = spdiagm(@. inv(1 + (im/ω)*σy))\n", + " σy′ = [ξ < dpml ? σ₀*(dpml-ξ)^2 : ξ > Ly+dpml ? σ₀*(ξ-(Ly+dpml))^2 : 0.0 for ξ in y′]\n", + " Σy′ = spdiagm(@. inv(1 + (im/ω)*σy′))\n", + " \n", + " # stretched 2nd-derivative matrices\n", + " D2x = Σx * Dx' * Σx′ * Dx\n", + " D2y = Σy * Dy' * Σy′ * Dy\n", + " \n", + " # combine x and y with Kronecker products\n", + " Ix = spdiagm(ones(M))\n", + " Iy = spdiagm(ones(N))\n", + " x = x .- dpml\n", + " y = y .- dpml\n", + " return (kron(Ix, D2y) + kron(D2x, Iy) -\n", + " spdiagm(vec([ω^2 * ε(ξ, ζ) for ζ in y, ξ in x])),\n", + " x, y)\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's set up a scattering problem with a cylindrical scatterer (a slightly slower wave speed, e.g. a different depth of water, inside a small cylindrical region, with a wavelength $2\\pi/\\omega$ of 1:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((230400, 230400), 4.991666666666666)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A, x, y = Helmholtz2d(20,20, (x,y) -> hypot(x,y) < 0.5 ? 12 : 1, 2π)\n", + "size(A), nnz(A) / size(A,1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, this is a huge matrix: $230400 \\times 230400$. But it is incredibly sparse, so solving it will be no problem. As above, there are only **≈ 5 nonzero elements per row**, on average:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.991666666666666" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nnz(A)/size(A,1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we can visualize the sparsity of $A$:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "230400×230400 SparseMatrixCSC{ComplexF64, Int64} with 1150080 stored entries:\n", + "⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The key fact that sparse-direct solvers are exploiting is that the **L and U factors are also sparse**, though not quite as sparse as $A$ (elimination \"fills in\" some new nonzeros). The sparse-direct algorithms are especially clever because they find **permutations** (reorderings) of the rows/cols that keep this \"fill-in\" as small as possible, resulting in L and U factors that are still quite sparse:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "230400×230400 SparseMatrixCSC{ComplexF64, Int64} with 8565338 stored entries:\n", + "⠙⢾⡀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸\n", + "⠀⠀⠙⢧⡇⠀⠀⠀⠀⠀⠀⠀⠀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢨\n", + "⠀⠀⠀⠀⠙⢧⡀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸\n", + "⠀⠀⠀⠀⠀⠀⠙⢧⡄⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⢰⢸⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢾⣈⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⣠⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢶⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢾⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⣀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡄⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢧⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣬\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡄⢠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡟\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢾⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢶⣶⠀⠀⠀⠀⢠⠀⠀⠀⡇\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡄⠀⠀⢸⠀⠀⠀⠇\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⢸⠀⠀⠀⠆\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣀⢀⠀⡀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢾⡀⣷\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢧" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F = lu(A)\n", + "F.U" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "37.175946180555556" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nnz(F.U) / size(A, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So there are about **37 nonzeros per row** in the $U$ factor, which is worse than $A$ but still not too bad!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the right-hand side `b`, let's use a \"point\" source on one side.\n", + "We'll use the `reshape` function to convert between 2d arrays and\n", + "column vectors for solving with `A`. Note that the solution is complex, since it corresponds physically to an oscillating solution $u(x,y)e^{-i\\omega t}$ and $u$ has a phase angle due to the absorbing boundary layers (which make `A` non-Hermitian); we'll just plot the real part." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1.856797 seconds (4.02 M allocations: 834.875 MiB, 6.61% gc time, 37.35% compilation time)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9y69l2fbfBX7WnHPN9d6Ps88zTkRk3LwPG2OqyiosSwgBjcJ/ANWjRQ8JYwm5gYTcsSVkyzQQHYSESjJ03DSCFgKVhBFCKqmQqgyFze/n63tvZEaeE+fEPvu99nrOVY0519r7REZGRr7uzbyOKYXideZ6zjXGHGN8x/frdV3X8XF8HB/Hx/FxfBx/gCH+0BfwcXwcH8fH8XH8szs+OqGP4+P4OD6Oj+MPNj46oY/j4/g4Po6P4w82Pjqhj+Pj+Dg+jo/jDzY+OqGP4+P4OD6Oj+MPNj46oY/j4/g4Po6P4w82Pjqhj+Pj+Dg+jo/jDzY+OqGP4+P4OD6Oj+MPNtQf+gLeHsYYvvjiC7Isw/O8P/TlfBwfx8fxcXwc33B0Xcdms+HJkycI8f5Y50fnhL744guePXv2h76Mj+Pj+Dg+jo/jO47PPvuMp0+fvvdnfnROKMsyAP70T/+Ukfvztxnv4yL6uvjq63iM3jf/u8z9uvl/qLlfN/+HvOcPPcYPfR0/xrl/qHf2z8r1fpe5P8Z7/SHnvj02mw2/+OUvB3v+vvGjc0J9Cm6UZWSjkf0393/HD+mHNko/VoP2dfN/ivf8Y33WP8a5P8a18c/SvX6XuX+o7/6HPO/b89+21R9SUvnROaHj4fHVD6g7+plvM78/xlfN/y5zv27+d5n7dfN/qLlfNefHaMS/bv6Pce5Hh/dx7k9p7tfN/yZR04/aCcGHPYjvYtC/7tzfxRG9b/yhr/vr5r9v/FQX/j9Lc3+Khu2nOPfr5v8U534f87/J+NE7oePx9oPpjn7/qTqD73Ld/Tm+6tzv+vmvGn/oRftT/Fg/zv3jnvt18/8YHd93nf9tbNpPygm9PY7zjz9kau1947vM/brxXRxgP37MzuO7zv8498Pnft38n+Lcr5v/x/isv27+j/17ftf4STuhfnzIjb9dMPs+x/ddZzk+7vvGT3n+j/Uj/7He88dn/c3m/5DppB/CEH/l3M6Ad+izOT63cX8R7zphZ9wB3z33g8799iG/5v+/7fijcELfZHyVM/q+Io6vS+19k2N92+N8Hx/Jj3W39dGgfvNzf5e5P+Q9f6O539UYwzD/XXOP5w+Hecfc4/HeuV9z7nfN/crr7v/pHXOPxzuv+63ndjz/+Lw/VDbnQ8Y/c07ohxwfWp/5qvFDO48POcaPef5HB/T+uV9rXN7aHf/YjPHb1/6luc6gfitj/I7xrvlfN/frzn34wQ93Iqaz9/0h1/1t7/mDr/srxodO+2euJvSHHN/3zuGjA/qJOKB3pDn68Xszxu84/7cxqO+b+5Xn/UBH8JXzP+C838UYf915v6sxft/cb3vdj951P/c9kV//93dGi8e/f8Aa+TGMH60T6sEG8Ps3+F81fqiQ9ffhgH7o8XvNN39bR/ANDfk7jcPx339gY/x1cz/o3B/ogN42al+XDnvf3C+d+x0G9XjuV57v+Pd3vOvj2/be+v3R3Lfmf5/n/l6v++25bz030z2e+15H9I75b193H4F9yPgmIKlvaot+tE7oePxQzuhDxx8yX/p9jd8n6uWDc/TwXkfwtU7kmziCDzTk39UYf+Wcr6lNfLBhese5v40x7h3Be43a29f9HqN2PPed537P3K8cX5GKe/u63znva5zvNzLmRz/3QdHEO9b4B113P/c9Dgze8319gAMcfpRvbtc+FNz1R52Oe9fH9q7//76cxu/D+XwfEcw3PsYHRhLwYWmhb5zr/opUw9uO4NFO7SsM+dvX/d418J6d8fdljI/H4ES+Jgr6Nsb4g0Z/7m9r1L7LeM99H99z/477Z/7omX3DWtRXrjdPfJBh/rZjOOfXvOu31/mXIm33y+sMXX/N7nr7Z2Y66Dp7AIP3+Ptwv3vuz8PjeUfqt5/3TaKh4XBv3c9X3eeHjp+UEzoe7930ut/f56i+bvwUo5+vzTfDV+4u+/lvO/ovOYKjeW+f++3TfxND/l5HcDz3PYbpax3BBxpjOBg1+TUL4V0G9fFFvccwvSNF9LXn9sSXdtYfYtTg3UbpXUbtS+f+Pgz40XXD4/v90nN767qHa397vXSHgzwyyG+Po7XmcXi+77UFx/d6dN3DtRwd6+scZ/+c33XN8q35XmfAGDwMCEH3tiPqOvoziK7D4OEB0jmtfn5/+u7o/j2g7Q7P79hhf9vI6PvYRP9kndCHjG/zYL/fC/h649OPrwrzj3eJj475jt3N2+mC493he6/nPfPfm/N+xy4N7Ified67d6dvzR3+6R3nhi/P+5JBhfcbx29hjOFgIN65hj7UoLrzHRsGxGGe9zVGfTj38U7+6DxflR46XivvM0qPjsfBqA1r7gOczvGz+UqD/NZzbt82phye96PrbpvDeaSi68yXruldBlk4g9sf69Hv7r76tXl87YcfeHeU/q5MzHC/pnnkNAEbzXhiuOe26+iXmOfZa+6OCD69tnlrwyWO3r2g6zraDow7SOd5eHQIz3v3pq0TeG6dekIhjjcvR+/6OBo9vrcPGR+aonvf+KN2QvD+h/NVi/AraxDf83jXbrY3hD37bL+4hg/8HQXexwvr6PidPU6H3dl6bxsztyjbrjcO3dG8r5gPByPm5ndAa+y5h4+MbpgPbqd2PPfoHvrz99ffG6VHDvirDCqH6+p3Zm/vUD3T2Hm9U/DEwRmIwydw/Ox6A2GjgreM8VvP7W2DyjFzcH/NbxmG/vxSKNqOLxnF43O9/bzfZcj7p37sAI+Nmtd1dMbDE2owSp4TVu6PYQB6QymOdthfkc760jfztjE25vCc3zLGrekeGT0pQBw/t7bBM+1w711n8IShU/aZdUDd2fVmemPedXQeSOEhv8oR9VGBJ5DHz/hovGtjd7xB6TdY0ju657YBc3Ca/fvqj9ffc3v0jnunK6Vnn1ln8Nr6y85bgZDaXVPn3r09suwvXXioo2/M6zow9eHdSQNSD+8c3u2I+uv9tvWibzP+6J3Qu8bb9YP+396Zzviq8Va4/t7xFSH6sfEfPqb+x9wOx/NAHu10euN67ID6xX08Hw4fd79EHjmiI4PWX8OxYaB7PH84d3+vR4a4P3/bdY8MqfQen1+4j//4/Mfz+x1e684lPfCcQflSNGCM/Sf378IZueE63zIOXtc9+rg74+Ep++feyXTdY0fUp6WOo4JjJ9C/t/bIQEnv8EU/Mgq9QaV1RlXiGUMnjTWqR0bzS1HgW2vmq95354ESHl1///15jXVGniegvw5pkFK7Y3uPduktYEw3rDt7Lf29HM73duTjmcZGL70RhIPj652oW2eNOVy/PY/bfAnv4BzcOxyuXdhr75RGSo3xPBp3jP4d9O/Grj2BFGJ4FsNG5h3fdX99vYNqv+Id9+tL9U66M3hNZZ9zWx09HHV0XEXXQWP678zuU3xhv2TZr5V+zbp7ftv5e54CHjuz3obYHxFIofC8xjog5xQ94967MUg/BE/Q4tF13ffqiL7t+KN1Qm/nyY+NY8eX/+1RLvxd+d1+HC3Wwy7py8c7Pvfx7oOj3dXx7qh3AI+NeOd2df3vj5fFsQPqF7c5Moii/7iPHMlxymMwbu5Ds8ezx+gdoF2Zdn5/T97Rvffnr033pXuQHsiOR9dvn4mwwUH3+NqPjblHhy89DPZjlX3E4h2l1Y7exePnzRAJeK37GPuPu3+HQtkPUzagNEpqPOEN1/92feFdTr/tOur27Xu296p5y4HSPlpTnumvoQGh8IRz0Mch3vAwjtI6pqN2Rrx3+n3k6ov+/Qu0UOA10NWP7x3AaGgVKINUGiEUGI+Ww2aIDlq3EXp0Ke6vgj7isA7PMw001fC8h2hIKLsIhEAo+w779dKYzj3rDiU8fAEoiKQ+OLPesQEIAUbjmZbON/gqdNd7cM6HNQrSdG7tCJQQg0N75CiPouPO80BpOqGc47DX2B49azg851AdRfdthVcX9to8D6SCzhp8qZWLYDqqthuusxEeWnr2/pU6OJ3eqQGIarhGP0hpjHVc/TcDIEVHazw6JYiUOmQGjp+dVPa9A9IP6ZyjfTsN+4dwRD96J/QoOPnAOW/n6I/nv532Gn7uOCcNh11T/9feQLj0SWve7UTevnYpvGHHePxBHxve1jgj/lbOWHr2w1QCfACXsjjOR3suL8xb9/n2GNIHxwZJKGvc3eozzpiJdyw94R1FGDDk1T3PwxgzOLHaHO2oByd0cEb9M+jTCv2u+F3377eeM06efQZC2p3e8WuCwaEdp0mOUzFeWx0M5LHRkT6e0nSNppM+Sig6qb7sCDrAE4ijD7c21qA0zin0xlAK+9609AiVRyAVWiuocntNziEOu1447MCHhXOUMhES3HUJqTFYg1u13SNDDtY4KukRdYASaKVdNMij9JbnlXRC2ntXIZ300X5IJxW1eRxtNe692Hd2vJY8lLBGPpBqeL5eU+DV5eCIOqHopA8mtY5LhtAeGWRn3Ptn1nYeIIj80F179TiaE6U9Xhsi/IZAx3ieoGwNLTbaMC6eFXhIYR2clh6+UCiB3Zy4yMVrqkOKTgi6RoMKkEFKg03HVm1H1Zoh+uiPB4bEt+vRMw1eU9r7d++w82tMZ/CkQgof03TDuumdb20O6epAabx6j2davKaw9y8UXVvTmQY8gfZjauPRubXXdh1e69GI3v4IYh0Pa2t4dk0Jsho2QkrHzql3jxzR22CY34cj+tE6IY8v33yfhvo24xC1vJW/f+tnjh96d5R66p1P03ZHBgiq1rgPtxt2qnBwPr7bLSp5iASO02lt19G0X05nCc+mV4QHcohiPJRzJL0xlZ6gk4pWeC4aOdyD8KwR14LDTu0tQ4xQeNJHKo32rRE6rkvJ3nm11eO8tyfwpEJLjVDCGUX7X60BQ/clZ2bv+RA59AbcfuQ2quh3jPZZefiyNyCeM3yPnfnjFKZ97r7w0FKhlHtWnkB0nasNNcMusxMSamV3vkLRKd8aj6Poaoh6ndH2pMZ4AlzUUJuOsumNlL0SXwh86VE2HoHqiJRH6Mco1bh3IB6nXcyhbvM28KMTEqSyziJI0DKkcYukd0RF0/blFyIlB+cY+5IoSF19oIG2tg65T2/Vezq5p5M+nR/SqcA5I00FdKaj6iOvtk8B4tY3zgFZpxH4IV5TWmfXFFAVdFUBQiCDCNPWGNOgYoGWPmXjYTr77MrG3nOgBFVrI77Ot8a0a2toKoRphnSX5wm6pqRrK7q2RocZSIXpzBC52GdkL7bfyATKI1IK7YfW0PeOoz04ok5qOh1hAB2OqJyhr9x77rMEoRJ0nUCKjlhpqHb2fZZ7d98SEdXDccNkRik89kDdduS1XYP2OG7tBhrdp0hNQ1fkNu2sw2HjqKR69PwaA60xNMKj7YxL9Qki9+y8ujys+7aiMy3GrTEVpBhXSzOAPLJL3ytc/2vGj9YJfdUYHMR7fuZd3rz/ePrieW/H3ik/26drjlIKlXM4VdtRth1F01E0hm3VkNctRWOoTYdxJ/KlIFCC2JdkWhIoQSi9R87IvmiPTvQXeIhy+o9cS49ICQLpodoCryyhKR6lljqhkFLjS/+wk8eF4/XRDq0uhx3W8X12Ug+GSEptDR8cDGNb2Q/17WKx9OmURqsQpSM6rd3u9pAW7NN64uhZd52LHjwP5w6cQTeUjaE+qt760iNQAl8IlPCQ4vCUOg7pKPsuD9FjoASREiThyNaLcNdQ50BLVx/y956QeFLaNMo7QAiDcZI+nY6t0VOarjNUrV1fReOu3QEnfGHffawle+URyo7IFwR+ig7Aq3Joa/cu7W7fPuMKqpKuqd3pBSKI6FSAaQpUOCbSKXXbIjyoW0Nem8GoSa8m1YoyUNYZaUEWjQ8brtLYNVBXYFo8IRFSuncZ0umIzo8JggTPGfba2A1Gf4+9sw3d+m47SLUg1pF9vp2hK3aY3RqMwQiBSEbIUYXXGaL0jEoJitauk6I1lE2LqDxiX9IYZZ1IIInDDGEaurZGNCWm3DvAwxYRxnS6hLYiiMagQjp3va0z0HVrhs1M2Hq0piPVisAPhmulKuiKnX0+ykdEqTuHQssI6Xm0BvK6HZ5zf52eB34YolVI522gqQ/3vVsjxxUC6FRAoBJkbddu2RiK1pDXnlvvCuF5TIIEr87xKgFNTeeuzQsLexyhiJIZlfIoWiiaxw6t7Tr7vWlJ6Ed0TWHvs3/fukF0LlaUCl+FYA71Id5hD79NNPRNgoWfnBPqx1c+lHfUczxPDIia3kBKzzvktHmMn4ejIjrQdNYB7ZuOfWMomo6Hfc22bFiVDduqoWgM+8oZAuGhlSDTilGoMMZnGvlo54BCZSOU3jAYDumPfh30xc9Qeogqx9tvEOUOr9rSFbndbbntr1AaT4fgazqpD4ivPhXlFrLZ7+iKnZ3btiDd7j6M8YIIEcbW4Al5MMamsUbR7WxNXQ3n9XyNCBNElGD8iM6PbOFT6oNBf3uHj41AAj+k8zVF2yFrEBg8Tw5PpHapmraxEZIQBulZp9an8urWGcjWPIogreNXpIEk8QWZjkmylK7cIsoNXrXHU87gNw2YFtPY++r63+sKnCMAnHFKkMkIE2SIeIqOp+6bbWmNtIZl2Iw0+FLgC2tY00AS+5LQOdVIhYRhjOoSRLGBcuveVYnZLu27qgprONw7EtkUOTrFS2aM49mQ/szrlro17GvrIFZFwypQjAPFNFJUgSQLxgR+gPAEFCC6PabYWWfnIkNPhwgdQpjgBRlBNEYGI7oOqrbFdPZcm6qhdsCFVEtOY03VSogC4iDDq/YgpF0vu419vtslYrdGndvoYDy+dqnYjk3VUrcdRduyrVq2VcM08qlNx0moSJOZvb6jSKOrK7x8gxdu7TtpKoJ4itCpc0Ae+7Z1xzZIz76HUShpDIyDgFAnyGpvr899GwBemCCnNjoKRxcUSiNr+6y3VUvZGFayccY/QHpwEo3xyq1L6dV0u7Vd61WBbGqEkESTkMQX7F3kVzaGbfvYsSshyfpnqLZ0uzVdVeCVBcK0FrThCdJ4NmQQqA8OMm7kIVoNY3Rb01V7PFxkWhWIxKVXhXK2UQ9AhaEu/rZZ5cMd0TfNVv1kndA7xzFEtG0eRTKdQwO14Hbf4Nc5cnNH5wd48dQilDpDJzVtJ4aQtK9b9C99UzZsy2b4YHZVy6ZoqNziksIjCxWtbz9UGxEJRlqSaoHfFnjF7pAGAFcMFV9yIF61x6tzus2CdjXHbJaYfE1XFnStwZMCLwitAYkSG7rrEIQE09oPYnBAOW2e0xQVnatqylCjQo0XhIh4ZI+lfDsf7G6s3GOc4zNFQed2+8JXdl6YIJKRdWb9NShto4u2tdfh0DkIgac06JBOhcggIY7G1EHIvjHsakHpcufGORpwqUpjoyVrsOzuf+8+vqIxw/PXQwRqjfBprMkCSepHJElCkLZ4VW7z7y5F6TWFNXBNRbffWQPtHMEQlSjfGqjxDDm7RKQzJtk5YZygpcGXHiL32JYNuTnsmldlQ1AIwqPoeBQoAuWR+II0mBAECV2+QHYGit2wo+7yDV3bWocfZ8jpOfLsGq8pmI2u6LFkddtRNhV5bdgaw7ZqWRcNq1JxGvtMQsVIayajK4QKYb9CAO1qbtdSVdC5yMjTISKboEYzvGTGJD3DdMI5DM8a4bKhbi14ZLGvOU8D2k5zEWdESYtsCrzNAjZLTL6B7RKz29AVOfJijwROxtd02DpO2bTkdce+bclrj7x2xtlomlAySc/wOmOjoqqwzyffwG6Nt1kgxjNkU1oHHU1p3fcK9j2UjUEIj3Fl14NBchqN8JoSWef2k9vvMFWBt1nSFTvkWYXwBOPpM/aN/YYXe2vw26pjX1vH7HkhvlSMojGqWOEp39ZJix24a5VCIJUmy67YN3YdUELZGkq3mQJXb4pTwshd12Zpo6p8TddUCNMiPIEvFKke2cyMEsNGuGwOxxIezKIxNAWyKcBtQFvTIjNsTVT6yMCiF9/b8MsPVx/643FCxxDM5qiYCRbaCbb+4QrqWnjIhy/w9mva81+w7jSpEojtPagAgpHdFXQNWiqKt1JENg3RAT6+EIRKDimo/v+noc95qjkJFSeRIqFELO8RxQqzemON3LGB8zUoWywH6JoKs99h8g1ms6RdLymXW+pdQVOUdMbgCYEKA/wkRI9iZBw7J2AdSddU1nnkOXVeUO8K2qKyzgEQvo8KNSoJ8csCESX2GoS0jsOlBOrdnmZX0BQVbVHaa5YS4Sv8JMRPwsO5dYgnHPKujy6a2h4Pl/5yEZTIJsjRDBlP0GHGKMxoopDK7ZLro3pZ4+pOtbEbAWM6Z6hgWzRuI9DSmg6tBGnoM4l9TqKKaWij0XGoiJQgUglRnNlIsymssy/WiGBD5+7d7NaY/Y5qk9PubfpOaIXObpHzG9TsCv9yg8jOCdIzYl8RSo9NoFjsazZVw742FI01gmtcjU94RL6NjPpoZRxIxukFWmrrVpravvu2pdrkmGqN0Ev0ao7aLJCXa1RTMxtfImN9ZDwqVmU3OOZNZTdM08jnNNYUrWQcTIi1jXgl0JoW06fP+vW4miPHS+Rsh9dUnEyu6bBRxKqooYRdZTdem7IZojEIuYgnRFmDLPd0RY4pdrR5DkU5ODuFrUHMxtcWmNNqalfj6p1G3fYRscZ0kpPswr6DzmCaetgosNvQVQWiKpCmQQPjYELbdewbwaqwxr52jqNsDKYLEHicJzO8KrfR/FoOm44+06CEpPNDRuEp+7oj9uvBEeW1XWvCczWndISIp4hsbaPZbQ1VQdvUoHxUGOOrkEyPGYfKpfI9dxz73EMl0NJD99eVrGmLHbStjSoBKSRCKCId2dRrKwiUdI67dTXVHjziMYnGNhrS+4MD3+8QKqCrQwtQ0vEjc/pVdaEfwhH98TghGIq8fSG2r5t0AEZCZ2wh37POpQsSitNf8P/8zZK73Rv+b5+ecC01KM2+MSS+QOQrmxvWI4eIsSmWVEvOO43pGArDj+oBWhIrjyyQjLVAbF6j1rc0ty8p5zc0D2+o1jlt3SCEQGiFDDV+EtlIRvn2ntyCqXcF5XJLtdnR7iuawhpFqZV1RrI/RmDnCWkdgXNowhjcERFCYNy1Sl89ioYGByYlXtsOBlnIEk8e6iVtbetNsm3pWoOpGmRR2eMcOaC2ajB145zXl52fP4rR0yliPEOkE9R4hooyAhXS+cGQXuyUTxeFNNh0xigQjEPFm7wmUNXQtLfMbVp0X7Vsi4ZVXjEPfbJQMYl8m6bTkjRQZFoS+RbWGqkx6XSKX+eIeIGfjPCUTwOourGOf7enrRuK+QqVLIke3uAv7pBn1/jnTxmlZ6TpGZtGMgoku9rwsK9ZFTXrsvnKiG0a+VwkmtNYcxqPGU19pFAo7EbEc87fbHKqdY7e5IT5BrXfoa5ypuNrdDpCC1c/21Us9rUzlHZ3vK1aVmXDaak5T3zGgc/J9JntuRE2Yu3KApNvaIsSs1jgr+e0qznqcoNqa2bTp4AkrwL2tXM+Vcsyr9gUDWWPGSbkMjkjmlZIF0l3pdsAVWu0sdGxMgZpDGfTZ4d11dn0atkaFkVfjzKYLqRDMhtd2fXTNHRlQVvaVHPbR66ldUTRRDAJbaSwLW2aL68b2so5aHetSvjM0jNUvcdbzfE2S5pii9nt8ZsahEDpgMSPGAcR08hnsW+scy8aWmMh+aESBMrjMj1DlTvEZoHZbWjXS7y2hfmtjTBVSHYSsQ98ylgP76dsDaui5kZ4aJfGnSYzZL1HVAVtnw7vHZHykX7AeHxN1Ur2ri7Yp2UfsE5NCo2OA5J4aqPTqsDsbYQmmhKvLkBZ4IMU6t0N0z/w+EZO6G//7b/N3//7f59//I//MVEU8S/9S/8Sf+fv/B3+zJ/5M8PPdF3H3/ybf5P//D//z1ksFvylv/SX+E//0/+Uf/6f/+e/94s/nPQdPT09ysn9uf85KaATHp2nKLMr/r+vc/4/X6z5M2cpV7HAWyzZ6+fc7xr81CMut6A0wjmhvp7jH9WT4DH4AUBi7E5mv0LMF5j5DcUXv6G8vSW/nZPfLWnyAtOawREE0xSdJQSTFD8JbWSEjTikthEHQOsrVBIipED4Pn4SEkxS5OQEmU0R2QQvTKwzgWFn15V7dJFbo3AcgQXRo1SaCCI7r21tJFXkmM0Cf7exH/x2Q1s3h5Setn0uQvsH5+nqKm3VYKqGZrd3EVyFqe3mQPgKFWr06AGd3dhILk0PaUHnED1fI1yE5YcJgU4YhyPayZTTSLFKNW/ympu4ZLGvme+qR1HRtqjtjr1obD1GS7RLjYVKkDrHdBprMu0zjq8YJTNENEGPZ4ib3yL8l+zvllSbHU1hNwHNbk+wzglXc+T8FnV+jT+7YhJPGSUz8ihgEki2tc88r3ntnEPVGJZ5TdVYhxxpxXkWcBprXkwiLrOQi/NfofwI30WlnryhmK9pi5J9UdLuK6L9DpVvUFdr0tkzovG1TfsGitttyTyvWZU1u8qmLTdVw7poWOx9zhPNLvE5jc5JdGIbV7FOj6Kk2RXU6xy53BDka/xyj99WnM5eYEbaOgvTO/yGh205ONcesn49uibg2MjcUu8KqvUOzS20Lcq0qM5wPn2G5/kIz9ZN3+Q2tbgqGurW1drakNbALLtCA9LY9dm6mmdbFZgit+kvIBlfM4vGVK0mr23qfJtb59GDX3wp8NOQcXaBOrPr29tuaHcFpl66b0Qj/ZiT008pW59VYTcUe5eGt4hMu6GIlGaaXSAviqF22+Y57Na081u7llXA6cknVG1HXvsuvdk73ppga0E4OolI0zNkW9lvtrbfsQE8dY8KIjqhmKYXrh6p3IbDOltwSE3hoWOXlhsg7wZT7vF68IL0QR/e1O8zLfeNnNA/+Af/gL/yV/4Kf/Ev/kWapuGv//W/zl/+y3+Z//1//99JkgSA/+g/+o/4j//j/5j/4r/4L/jVr37Ff/gf/of86//6v87/8X/8H2RZ9sHn+lKbxvt++MjJWNI/CZ7t1AYGmCsAbYUSCtoGvzP8C+cx/+eL50Q3/5D93/9/IP+5f5Fd/JRV0fAktXNMOGZdGbT0SH2BzBeIfDGABGhqW0Nx9Q5P2jy9Kfd0+YZms6SZ31C8fsPuds7+bkmxyGldzUCFhkAKOueQ/MTm5PsaD4BsanRdYVw4DdhoR4eIJLNF6/EME2SYwAIFEMr1Ajg6kLZCvAXTPka5dSrE+AGNODTOeU2F15SIOkeWO0S9t7UKVxwehpCD08S01oEVO+Rug9kuUcv1o0iud2KmbqjWO9qqpt4V+EmO0A8IXyFceOMJYWtfvj7c72iGPnvCLJkxTWbMopDLVLMsGt7k1bBbLRvD3qVNWpe+yx2ApN/FamUj11GomMWai0RzkWpOR89J4ikqPbF1oPFL6jev2c/XQ1RXbWw0q3cFertELu4Qoxn+6RVpNCFOZpxEKZmWTEKf223JrRK0pmO+tdHafFvxsC05SQNWZc2qjCgnEZejp0RKo8MEL0pQoXWEdV5Q5wXcLQlbQ1cWqCJHVXtm2TnRKCNSHplWvN4J5rlLDboIcVM1rIqaVRlQjkJmUcTJ7AUKZxCMoSkqysWWOi9o9xVxU9M1NQo4O/2UbhRgXLNuYzoetiXboubVsu97sb+uRtdoDobGk/fUuz31bg/c2/WPTc2dTa4RngLsmn+TV67u2g41wrbrMPhcjK5QbeMcUU3bG/uiHIAWEshOfKooomoD8rplV7Usc7tRAQilQIkInU6Ix5fIfIPZbRAucq+Wazz9Cj/JkDriJH3CVRYM6biyqdgWDb4Q3GxKCz5JR8TpGXK2oisd8KGqMdsl7SLEjzNkkHISnQwOsjZmiJQX+3pIywXJFK8pkFObSjOmtb9vFrRBiJQ+WoWMw8zByI1zSC3bCqRXEWtJIFtOkhmi2iPCElPsrF0wDV5T0fkWxi3Eh7mE79MRfSMn9N/+t//to7//3b/7dzk/P+d/+V/+F/6Vf+Vfoes6/pP/5D/hr//1v86/8W/8GwD8l//lf8nFxQV/7+/9Pf7tf/vf/kYX97Yjgq93Rsc9Hm931B9zRwGIfEGyvaf57E9Z/aP/FRVquPolD0VLrCVhs8PrOnIZcbcuOYt9hFmjFi+pX/4JzfyGemUNEvAondaDA/qaTL1aU+8OYAIVKaSWSC1RcUg4G5FczQjPz5Bn18jpOV4yolPhAS7ed5Afw7Nd2soEGW04Im86drWhrG3/UkeHh8QXPkom6MjCVXv2hb7XoHYLuK6gMQbbumbTFVpqomBEmAgiZWsoQ93t2JkNL8sCRGS1R9U53XaJv5oTLu4w2yXVekezKx5FU560jqZP7bX7CmPsn01dY9zPCSlQSYTOYoJTCxCQZ9dMxpdkyQkXsxFXqc+mstDlbdWwqVoLFnDpqV1l60d7Z5j7PpVYS8ax5nwUcJUGPB9HXKQxZ2e/QsdT9MkF8vVnqPtXtMuHwUAbY2h2BaZu8PMcubinnd9axzU9Q47OOU9PGY0yUm1Rk74QSOHRmj151TLf2uhtW9QUjb32so25Ss8YXUb4YeKQiC8p38zt+YyhXG7pzBd0TYXa7/Avd6TZOdHoitgXpIEkVAV3O48HYJnX5C5VaVNULc/HIU2iOT/9FOUJFBA0FaZqKJcbiuUGYwype73KE5yffoohGOp1AKu8YlvU3K49twMXeJ7H5bEj8jWIW9o8t7XF9QNIaR1g17mUn0KKyK3Pik3V2Bqg6yHruWAvp8+QnUFWhQOTWOds2oX9ASGQUnNy9gsqo9hUAdvqEMHMqQiUjYgDKbgeX+FXO+RujS52FHVDW1Q0ywfE/Sv8eESkU07ClDyzKcmqtRH2rrKbn3GobJNydmHTcq7u263mdHVla7vzW2SUEauAkyimNqGtfZmO0gFuHva1dWjKY5ae4dUlwqEZu93abkZXc4vaVCHZSUIVSMrGH5xa2RhWNLzelvgiJFSKNBojWgcb779fR+/UdeYb9WJ+lSN6V4/n+8Z3qgmtVisATk5OAPjNb37D7e0tf/kv/+XhZ4Ig4F/9V/9V/uf/+X9+pxMqy5KyLIe/r9fr957zKz3wsfPhqOvbgOlsr4CWAuVBZaDpfHR2hUrP4OLPEv+l/zv3+5b/dVUCDf/CeYz6/H+jC1PKxhYfY99DLu+o/un/xvYf/SPWv71hP1/T7BuklvhJQDgbEc7GNqWWpTadJCR+liKkwE9CwtkYU7nmM5eGUyenqLNr5MUzTHpGG0+pZUjRGJrezrvdZd97c9wsua8M221haxAOvVe2tmgvBQTSgici36agfCEQwsOYvk/DHO3uvtwL0qesMq1ItHT9E7b35yAFYIfANufqxLM1l4sOsV/h5wtEuUFvFpjN0qUIi8foObez7Q1K1eaYwgygCFM31omHGj+7J5rdEM5+jTq/Rs6uiKbnBPGUWTimG6Xkja3v7WsLsV8WNW/y2qbt8oqb5d6mMIqGh23F3brk84ec81HA3aziehTyfBxynpxw+uQMOboiuLrHPNyiV7ZmYnbroeZVrXNY5wi9RIVfoEZji9yaXZLMnhKOLslOYtJAkmpJohVSbLlbl+yrlptlQeWuZ1s15CcJT7KE88s/hwwymx4cv6Rd3A0boHpXYNq7IW0qz5/iz1acZhekoymRSzkGsgBgvq1Y5vbXtkd6jiPaacjV2S9QQg31w641VJsd1XrHFkhai6BTwOXsBUyCYZ28UoJlXrOvWu625QFd2gVcZteEQuH3Kdb5rQVeFAUs7qFtkU2NMg2n06fIWOMRDZ/3sqhZuzRa4+D7Ao/z6TNU1yFLCyho6zc0u4KundvvS0iU1JydvHD1oWZY49ui5s6l1m0qLWA2foL/pKTbrfGLkmqdU+8K5OIeL0xQQWydWuIPEQdg31nVDtFQIH1mo0tUWw3ru8stgKJdzfGSDCk145PnlIGkSG2Kc7GvqU3Humx4vbNOUgnFJDtHNS4LUleYIsfs1nhCInWI9AMmo+shxWfrQ/Z7fjuy8tsKaRpEW1t7alo6x7PYOfDWN3FEfJVN/sDxrZ1Q13X8tb/21/iX/+V/mT//5/88ALe3twBcXFw8+tmLiwt+97vfvfM4f/tv/23+5t/8m9/s3O/5v55HqnGd+H3jmt35C5QwaA8aPBZFy6YyvFqX/Ha5xHQdn05j/q9XKcn9P7Zh74ktml6lPqN6RXf/kuLlb1j++hWr37whf7OnrVpUpIhPI4Sv0Fli6zVxZuszLiryTUvQ1ANSzKLEYsR4BtkpJplRRFOWZct6Z1gV+yGl1Hbd0HfiSzFg+fvu621ld0+LvGK+LV3NwQxIsUAJ0lCRuiK9VsI24XXdUC/ZFjXbwhabe+aHPlU1jjWT2CcNrDMKlbQNt86Rme4AzACbi458wTj0OYl8Ej8jHY1JfeGabne2/6nnGusjvMqmCrrdBn+zIFg/UD4sKRdbyuXGIcUaqqpxdZmCcrkhXG4JZ7eIdGKN/niGl44Z+TFpmNHpBJOlbGvFugxYFg03m5JRqHi1LLhfF8y31ZCy6oENc1fHuR4FXI9CpuEJk4sz/NEVMl+gtnPaxR1qu6RdzWm3Fr1oax853nyNn9wT3L9Cnt2irl4wdvWbSAnSQBEqQaRz7tcFm6JhmddDD01rOvI6omgDzkZPScIRfnaCnH+BvPucdv0wwO6r5RpV2LqI3CyQZ0ui6TXXk2tCFRD7EuE8w83SGuGbpY3ESsf40JqQq5MXBIBvWmKAz25tLWy3Z3+3xPN/jY81Hpenn8IkwBeW4UI7R5S79SiPiguXyQWhUCil8JSmmd/Q5RvriHigMwblemGm4yd4SUhHZK+r65jvKlb7etggSc/D8zRnkyf4jS3c+5VFfza7ArCRgo4StB9wllxSTCLyurWN527d36tqgM2HWUY6ukReLlCVde5tUVFvtnj61jbd6oTTyTNn8FtMZ51k1Vroeu88oiwhyS5Qbe2g0WZoPjWL+8F5nIyuqY0/oAN7Z7suGt74ta3pJBFJeoZqSgupd3Ves1vD/NYi7/yYSThh3yi2lbKIwNo6xze5bWJOfME0GmOaClFujoyq+VKm6Jva5G/riL61E/p3/91/l3/4D/8h/9P/9D996f/eZiHoeb3eNf6D/+A/4K/9tb82/H29XvPs2bN3/uzXjbcdUOEYDloDvuhsI2OoEPsViecR65BpqJkEkp9NQlItOWkWyM//33i+pv7Zv8hdKZFdxyk71OIl5Re/Ib99oJhvKNcl1a6yDkd6qNBHj2Ki8wn68inqyc/wRjOMTmyHvScQRyCKTiiQmibM2HeSVdmyeCh5tS6421XM8+pRAVsrSRYqIi1dOsdS5BSNzXOv8or5tmKV1+zKBuNCKKEEoS9JQ8UkbtiGCq3kYCD6tNQyt05oX7e0bq4nPDe3Ig0VmXNkWtniKdimu6oxVE37qFcq0opJ7DON/QEifRL5dtfpj9HRBF9aoEfPdOCZxgI6qh2q2KDWb1DzG8L5LeWbOcV8betKRYVpDZ0x1Du7w2+KCj/Z4D/cI+IY4WopIkyQ2QSVjplEFjRwGkWcuB6iWax5lWo+f8iZb6sB9dQ7g76Ostg3nCea81QzDkaMphPC0SVi+gQ/XyAXd7R3nyOX9xTzldtF721Ka74mXG4IV3PU1Zzg6Z7rk+dEKiT2bbT5Wai4We7ZFnbjcb+29zXAlicRsyjl5PxXyGiMn04Q8xvE/BaxmlvHt8kRRYW/W2M2S4tsq/ecTp6ishApkuF7+fzBsMprqqZwG5YD08XT2QtUZ/CFHBxRX4sq7h/wlI8Sdpd+OXuBIHDv0GYctqVdUw+iRnje4PzO4hOSnrlcCNr5Ld1qbh2RmdP08O3OMJk8pY0CWhMN6eL5rhrei/BwqWWf09EV6iKnK3b4eU5ZbWl2Bd79HcIBWhI/ZhalXI9CytYMablN0XC3qxiHhaX2yS7wT3eove3XKt/MMXWD2a1p5zf46QQdpJyEY8rMZiva7gAtX7hUWqSEhVo3BXJmU2lms7StF7s13uLeNpT6MdNwQmNsdNU45zZEMdJGMWEP2x7vhkZjWx9aYh5eI/yYWEeMA59t5JPXFtDRM7u8ySsSLYjigCgc2exDT4XUGSug16fnvkE09F3Ht3JCf/Wv/lX+m//mv+F//B//R54+fTr8++XlJWAjoqurq+Hf7+7uvhQd9SMIAoIg+DaX8WiYrk/DdQ654whCXV2k7TzbaFobsjBD7FfI5Reo1S1BkVtAw26Dydd4Z9c0L/4i/68vdtRtyV+4TFDzz2ne3GBc86BNv1k4stSS5CIme37OyZ/9BP3in0Ne/5x2fE0VjtnV1hke08vAUTptY1jsK+52FXe7kpcPe26Wex62Nl0CdtdnI5nHjkAKj6oxgyPpo5/uCKonXPH98EsSOSqhvjgPDMV7gD1gTDcYj+P/31cNrbHgi6qxUUNfZ9gfRVFSHK55lmpmacA09km1spQ2vhh41vrfLWotIvIT0uSSaPYCeT5H7eb48xuiNze0y/t31pW61jqkdl/BfD3UmXoUnkyzITWWTi+JRlecnI44S3yu0oCLJOCLTcHdumSVV9YgmI5VXtEal7Lb19ztqqEJdhz4ZNEV4/E1IrvHn54jbn+HF79C3N6yv7c1sMKhwsrFlmS9Qucb/GdrTmefEE5PSLVkGlkY+d2mZJlXVI1hlVsj0adLr0ch28TnJLogC8fI5ASRTfFev8Rb3FE9LG3qclcgNzlBvkHt1vhP90wnT5HpFI/EUdEcouC7td2pw4E95KmrEflADBSv3wxRnnd3T4hLdwHn06dIoQeapbtdxaa0fURv8grTWUqr1sBZPGY06R2R68naLKl3e2RlswSqrlCd4eT0U7pEUZtwAJks85r5trL8jC4zEGYj0um1jV72FsFYO4SfCm8tsEOHzM5/RZHqR6nnqjGs9vUBWCAFF6NL1GVO19TopqbebGmKCm81R9y/QgYx2TSgjAKqNsR0FkhRHhn82LfO42x0hWpqZGNTc30q2mwWQ00nmQTUYUjVaorW0j8VjYVt+w56H0iPWXaGbEpksXOQ+jUUOxuNhwlCBUwmz9jXykHTG8qmYVO2BLIe+uSCMIOmsCTdziD1zCbf1vl822joGzmhruv4q3/1r/Jf/Vf/Ff/D//A/8LOf/ezR///sZz/j8vKS//6//+/5C3/hLwBQVRX/4B/8A/7O3/k73+LyvtkY+OGOnmLPz6YdEWZr4G7focSI8ckU7Qd4xcZSzVxHCBWS6xEvFxV1a/h0GjEq50Pns6dtTaetG/zMNnjpUUxyOSP+5BP0L/5PtKcv2Ean3OcNb+72PBSW4qdvAOvTamCd5r42rMqaN1tbo7hZFix2FXXZ0LpOb+VLF13IAy2QS6sB7CtFGraMY3/YSfcOJtZyaNwchT5ZIAmkwJdiaALtP8rVvh6K9scpuUirITXXn/PYiMm8GpzU1jWS1q2jO3LprVVeDynBwDlEYHCCB6irTVOduGbfcXDO+OKK4OQF8skcvbdNm2azcAXpfEDr9XWjdu9qJXVte5qwPVEqiYhmI1uDu3hOevnCOqOzEReJz+tdOGwGFi6ttHf1u2VekVcti9xGhbFfDE2gp7HPNDxhdnWGTGYE03NE8mtU+Ft2tw8U85W9tvsFTVGSFBXhbo3/dEl2+XPik0/IHEz8ZVwM5++ZOO42JVVrUyuLveYqC5jFmpPpC8JojJ+MrPNTn8HdnW1qds3JwWaL2W3wn64ZXf0KOTpHinio2Xz+kA+GHbaO1sr+39XJC7TnoX2Np/8J8v6Oeu1SoosFiN9aUIFpOJ08RWbhAH2/2ZSsnCN62NvopWgNjQnp0ozR9LnthzItjTGI2oE96jtb+zAG5Qlmsxe0iR6QXxbibut30PMFJqjsgmhWoXZrgqqga63TLOZrvOAVng6ROuFi+glVG7q6ScfdpqR01xhvSlKtiEYh4/E1qrbAIrBgiq4saBd3eJGFtc9mL6iNom6DQ03HpdLuZEWoJL5QTLNzZGv7pmhb24Be5LCe4wWWs3E8fUoVSvaN75p16wG2LRwBq5aaUTJDTXcHlGqxs4AHfYPSIX6QMg7HnDWazRG35apseJPXtq7rKxKd2OinbQ7tLDCk5L4LYfQ3Gd/ICf2Vv/JX+Ht/7+/xX//X/zVZlg01oPF4TBRFeJ7Hv/fv/Xv8rb/1t/jlL3/JL3/5S/7W3/pbxHHMv/lv/ps/yA181bCd6b3mie3viZR9sJvKsK5aVqVByzPa6JRdZVhtGtskFtWcRJJfThLUw0u83YM9ZjZBAbHyCc9OLH+Vr22T5eVzvLPn1LMX3BUeX7wp+PUi57Plnvm2HHjlIi2JtHpUl+kRNivX9DdEElIgpUAowSjyOR8FnI1CzkcBJ5GNKAJnyI1jO+6LpT11R8+ZFfkWlTUOFZEvhhRYr+lTtR37pmVbtkMzX9Me6D8CJQbn2SPr+t3atmpZFc1Qj+rrSsepuT5q6/t29u7PvSPrayDAUL+axJrzLOA8sUb3JAwYZ89ITz5BzNYHHrg6p8u3mN0a332QZrukXG4oF9thV2yRiWv2dwuCyQPJwxv04g55+Zzs9Dnx6JKTKHJQ7/AR1Hvj0ku5S+Es8wqtJF8owSzRTCPbe/N0FHIaXzC6yvCjzCLawl8jfUV+v3D1hZytQ/5FVWF7cOo95+MnJJPM9Sz5vHYp2XXRN4Xaon9e28bTqzQgzzSzaMxkFiBViO9g8p0xNnW5dqnL2tLdaCC9NFynl0B8tGHLLRiiaPh8sbcURO49X00/QQNa+QgdIv0vLAqtbmwzpnoFgOoM08lTVBIjvcj2/GxLVi7F+2BqK6JoOiDCJDGT8ROUaWxqqaloq+UjYIEfhCipOZ+9oGg1m8oa1H5zcLe29cdUS7T0uJ5c41c7unxDUBYWaVk3VA9LRHiLP56hg5SzeErRREO9tX+2i6LmZlsS+4IgnRJNClTlCF8BUxSWAWJxhwpjB9u+omk7ilbTtJ3j1nP1oW051HTS9AzZFG/VdDZ4eo4KE6QfMM2u2DdqaGJdlTYCFi7FF0hBlEzxyi1iPKPb74ZG1nY1d/RdI7LTMbvA1mTXjmKpbAzrwq7nxBfEcWpZyr3qK+tAvw9H9I2c0H/2n/1nAPxr/9q/9ujf/+7f/bv8W//WvwXAv//v//vs93v+nX/n3xmaVf+7/+6/+0Y9QvDd0BaW2MBzJKUWGRaYAm+3wasLTnTMJJ2ybaBsO3a1ixh8wThQXGc+4fyf0v32pe3/GZ9h/AgvOUFMLpBXn0DlEH06wIRjTHrGxgu5WTX8k4ecfzLf8ae3Gz5/2LMvGzrTobRkHPmMY59ZqpnEejDOgRKMYz1ELieppjXdYJBnaTAY5NNYD2G175il+x6Knsb+XZT7oXoHxNrJBXRK04qIsn0M6IBel4XhefYLs24PFPe9I3pwKKae1613NFJ4X0r79YakR6ft33JcfRrvbBQO936eWgccq4g4SAiTY4bxHbLYoMo15uE18s0NweSe/GbOXtoaTZ+qsvWTHfFiS7y8H0ADo/ElSXLC2cmIy9RnXZrhvhb7enC2y7xi5VJm9+uCSEvORyHzvObZOORJFnJ58WdROiHIJoj4T5DRZxTzNfVuj6ka9vMVXWtsD06Ro642ZNMnxONrMi2YxT63G5+7XTWATnLnCFfuWh6KmqdZyGWmuTz7BVIF+I73r2sNxXxFvdvTVvWAyPRNS3xluE6fYLp4oBL6/KF3RDWvloWtOx47IqVRygdfI+a3Q4qKh3uHbrSNp6PxNTIdIbzQzS9ou46ti+pqYw1/RwxJzHR8jTKN4ym0wIJqk1uOQiGdjpTkYvR0iGAsZZBdP7frYqirhSrgdPwEdbWhK/cEdUO52FqwwsM9IvkMFaVks4jTOCCvw0GQcV/ZPqJ5Xjnme4/L0RWqLi0M3BhgaVlMNktabQEBoQo5iSbUjgOv7bqBXf+dPT8zS1/U9o53NbcNsTpw9aGMqvWH7ETfaPvGXVeoPE6TGWq8wmyWePmGdlsg2GBWc0R2hwgzxvE5p7E/sGcULqW72NtoKG8EiY7wrG7HkJb7fY9vnI77uuF5Hn/jb/wN/sbf+Bvf9poOx3r7/F/z833qTQjbqCY9q6Uj9ivLCbd5g9ksAVDZhGk8OrBOt5ZmvisVFI7u/uwFJswwYUYrtJMi5iAR7AkaBNvKsCpaXq1zfr3I+ZPXG/70dst8uafc11ZNWXmEaNrARi+TWHOa6ndGMz0rtPAgVLaJ8iT0mUaKTAtGgcSvc7xqh1cWh14daWUZ6FUawTWcFnh7FzHs1ocwvudyUxoRJfhxRhhEtvdIBbbR1V7YwMV3rNDZSW2pdXSKyTL2JiCvLRy6cDsvi/g51BqMo2EZenjKlvttycO2HEAV+7qldj0YPWDifl1wkwbWeYf+QL3T15ZsIXhMkk7JTgT+dIW6uEctbpCT3xDefUF+vxwAA50x9vfWUOcF4XJDsLhDza4Q0zOSyTlRPOU0mVKkIatSs3Yoo9tNyetQcbMshusGuFuX3K0LXu9ino8jfnESc5leM4rG6MxSEwWvX1K8tpRNpq6p84L8Zk5YWcJSeTbHv1hxmp4xHZ/ZFF2iudkU3PiC+50Fn1gEZMUi19Y5luHQ4BpLhVb+8P7yOxuB5fcLutaQmBa/qYmvDc/Hz/Ad7YwvBLfrwkaqVcONA0a0Tm/mIrkkkhodRDRhgnf/ina9tOnO5YN1Ik2NqgqS6TVX6YVtKXCbj8pFMLfrckCCtSZGjDLGk2eopqEr96iiol1uLdydWxACrXwiP+QimVG38ZCWm7sm2dtNSagsH18wShnNnqMcD1xb2X6fOi8Q8xu8MEaqkLPTT6la7RphO+6xKeVVYRFusS/xhcfp+BLZVjZtCJitq+ms5rTaptKSic9JFNOYcGDq71Grr3fVwFxwPrqy+kjFjq7c024tI0m7uDv0/MwiisBGw9uyGcAFPUghUIIodZHVdG2/6f1u6Lvy5jeodEIcZIyDwB6nstGQ5RO0jm3fCKIwRLQHja3Dx31AyX0fvUPvGz8p7rj3PQzhcaAh78Xj2gqR7xDbe7o3n9PcvsSs53Rta6GW0zNb1NWhRatIiTh7RptdYMKMsrP8X/t9R9XWrvHTG+SDu66lahuWhaVkud2U/OnrDb97k/OwKh45IB36zMYhn5zGfHKacD0KuUg049Afohk4aONgb2PQE0p9gSrXiHyBnC9pF3c27VTuByJTHKOAp8OBtaFrW0xV2IWab2i3FuZ8zKStQo0MNXqUWGJRJ+1w7IR6qp+3qf+9KEHEGWo8Y5RMHBw6xcQRyJCmO0RpXXeQxC5bK4uxLlre5NWABrw7gkr3URFgWQ62JfuqYe7qUz0FjyWQtSmZcWgBAydRwuRkRDy6RE2vkJef49++JHbOqNnth2fQFCXFfI2pGvR2i5zfIB3UW03PSZIpUTLjbDLlJJTMIp/R2jpArQSNiyBWLqWzymsLU65bdlVs+3yu/jwyyAim58jpS8L7V5TLzdDsWi63ts5Y7DDbJXJ2iX/yhPPRJekoI1Y2repLGzn3KLqtSw32jbhVG3OdXZJeCbSQeC4q6h1RsdzgyRtirFJtBDydPBv6z0IluNuWbFwK8G576OFrTchZPGV0opDSd2S7r/BWc/ss16uB9FY2FSFwnlhAUk9GWjUWhn5nyiP5AoteTKfXqCc7dJFjXARTrXOEbxFuOhkxOo04jSOej8NH/T7LvOa1Lol8W1OMsgv0qU2lBVVBtbD33263iLkFKkgdcZZdO6JcmxJelQ1tZ2s6N5sSLQU61YyzC6RpkE6XxxQWoeYt7g41nZPnVKGkavWwASsaA0XDa1Haeqr0mKZnqGo3sHZ3+QaTb/AWd1YuJEiYjq7ZN8oRnbYUhUPLFTXx1kqUxMkMMVohxgu87RLqLW2eW/DEwy0iyBiPnzGNfB72taM+spvDTdUyriWF71Rs6+Jb2963R/cNfhZ+Yk4I3i9q16uWDnQz1R6xX8H6De3d59R3X5DfLelaQzDNCZ1Wi4gz5MVzTDylTs/YtILVrmVTVUPjZ0942MNQ+/4YqzFiUVM3y2LozxHCI4h8pBTEkc/Tk4hPz1NeTGOejUMuEp9xKImVQBqnWvo2Rt8pP4rNDs+lmNo3N1RHEGBTOw44KR1jQ4gKtZVZcFIKTVFRry2LdrXeDb02bd0gpBgITP0sxk8iSxvkqwODwREBaVvVb3G/BehRTDBJLSP2eIZIRqjQUg75yqqWDmwWTu65C1JMmlCmIetKsyptlPEmP9RB+qJ8a8wjxJ1FAj5G84Gtt6Whz1kacJ7qAfE2O/k5cXaOmj21zuj+Fe1qTr1aP0LYNYWlE5LrHBnaZlOZ2l4vObtCn1xymp4xmpyRasFJaOHmgRIDvLtHB/Y7dau/E7FvQs7Hz0miCWp0aiUZXJ9PvdkOvS1tUeFvt6jVHLmaoy5WpONLosk1gQqdwF+PbMuts3CNrnunndOR8jQ7J7200U2MZaQo5muaoqRcbiwZrbAOXAPX02d4zgnFvuT1zvaalY1hnldWQM90tF1Il2SMTl4g5YGiCixEvH1YuoioQgFRZzhPr6z+k+kGuYFtUQ/vzsq3J+jRBcFpMQAL2r2NXsrlFul/YR2HH3F29gvKVA86RK9MR+XaFO58yTj0iZTgfHyFX++R+x2+aYE1bdUgt5a1wI9HhH7MLBpTm8Cxax8YsnseN8tqPSJKK9R5/Yhp2+Qb26ej9NDzc8wJ19dNbVquwBcRQRqRJDPkdOcIY3PLs7hd4s1v8ZMRWqeMg4zTWB+46mqb8g5kxTTyybRvOQ7HD4jFPcb1i8ncpuXU5JQgnjLSESeRbymQusYJIbYuW9ERBgpPKjjq8/t9jp+cE+rHV4Z8LmXk1aUVmSrXtolw/WC5sHZ7APzKNpB6UUKXTGmzc3I/Y75reJOX3GxL3uTVUJCGQ4E9VJJQHZxFz4wshcck9m0BfhS4Oo/P1STi6SjkxTTiMtHMIomfzxGLOV6+sjxOR3xwjyKQ/Y4mtz0f5Zs5+/sl5WJDudzSFDWm7YYeJeUkFfwkQoYa4Y7TFBV1bqUYqnVOU9TU+2aIoPyqPcCcjXU6wne8ey5S6Dvz26J6dN6edkiPYnSWoEexlXUIg0ES4tFwUhUiyZDZlHRyShxNOU9mPMti1lXItuolCNqhWfcAurDAix7I0fd6HL8jW58JuJpEPHGMB1dpxGTyKdn4CfL83iLsFncD40GXb2ztxJGT9r1HnnxA+q8Ipr8bWC2iq59xPb5mPBsxCp0cQ6x5+ZBzs9wPDuHzh5yqOQAJfjaJmMUJp2e/Qicz/NkT23Q6v6Fd3Nsay64YIgC1WKAX96iza/wnKy4mzwgnGZGyEREwOL/51tan+mfVmpQn2YzplbYRkfJR4efkd0taxwTgSZvq8o3Bb2uuZy/QMhxSxKESrN1G4H5XHaid2ojzJGB2+ilKKJSQFmrd3lJtcor5Cr8o6eoa3xgi4DK5dPQ0xhGfNoMjkp5rwBbw/OQT/NrypIWF3SC0RUUxXyPCz6yekwo4n3xipcdbg+k6bla212nu0mixL1BCM5s8HVgLANrtFlPVeKs5bfgKqUOyqU8bx5jOMjTc7arBEc1zW9NRwuMiObNs02dW3bVd3A29P62QFpmmwkeccEXTsnVifZbx3UZDUXaBqPbI8dJKhhQFXZ7TijvbwO5HjE8Tti6y3zoS2m3Z4EuPm21JogVJZqMhOb637SV1Q71zjOD3XyDCMZPJJ+xqPQj8AQekoasBB1KD1/C+8UOBFH6yTuido6/VtI2VTW7KQRUU0zq6lwAVasKZS8fNntCMn7D2Ql5val6tC16tS27WxSNUW2/cJg484Hd219hLB8e+YBL5R+y8lkByFvtcpgEnkWQWeMjlK8TdLc3NbynnN7Tb7ZAWEr5CamWjEF8PxIc2gskt2mu5pVrvqXYVnTuXCi0PnXA9MX1k0zsSoZWVefDtsS1RqF1wPQWODDU6S+yfIzu3j4KEVlRYh9QZg1c30HYYC6vDExX1EDXVNoWiD07M1A1d2z6CSss+gjqZWH612RXp9Jw4nlqgxzhl7yTUK9d8XDYdu6q1JJ+FhZveb0vu17a3Z1s0tmt9X7PKa+7WJTejgDenCVdpwJUDN0zSZ4xOPkGerJD7JX6xwqwfUIt7t2FZDk2xzca+m/x+gZ+8ITq7Jbh/hf/0F4wuPiU+eU7qpy4FaAEnxw2nq7wGctvLVbecJ5pNZgvZJxczZDKzvUV3n9v+k4d7B16wjaf1OidYPuCv5vjP14wvfk4wvrDKvN4B3t5zz716yIfPoTYxbZYyu/wz+DqwkUT4W/Z3i8HRivs7u4bqCmUazidPCUfhsKZvNiUPe5tmnO+qQeenbCLqzOeyJz4VAkxLW99Qr22zqGk/B9Pim5boSnCZnGG6eACi3Ln60+cL+72E0gr/XUyeop5ZaHRYNy6CqygflnjhS3SUEOqYs3hGY2Jq01G1ZojcFq7nJ1ISncaMxteopnE7/RtMntsaylEqbTJ9ShP5A9S63dm08aZqeL3zhubwHqggHCt9u36wDN5gNYN0SCx9TqKUogkcB6Cx67Zo8IVF3kXKY5aeomZb5GZJV+TUmy1sN3iLe1suCDOm8SV5onko6kE+Yl00zP2Kk9An9QWnie19M5vFEA2Z3RqznuNv5wTJjFEQcRL6Bzqvzn1braEytj/P+wCmhB/CEf3xOKEjUTvPtAN4oDOt3X3HGdE5BFWNTDPk7BL17JcHB7Rr+O1iz8tVwe3a0rj09DV9T06kbeNlD4+OfSsm1efTwaXrXMOelZYWpKJBrr/A+/wzms//Cfvbz9m+ekO52Fg2ZCxTdC8Op5LIOgytBkJP41JGVsTOx3ONHNLJOgSTlHCSWR660dhKOfiOAayvCzll1V7jB46cUBzbHViUWFE9x77dq6qa3ZrK6dn0EcOg7Do0hAaD8wEG8tFewqGHCh/LV+hRTDi7JT77zEpRTM+R4xl+MsL3IzI/otMxnQ7o0pjS+G5XZ3iT19ztAm7SgDTMuVsXPPTUO3VLu+1cI2/LfBTyJq85jX3O04BZ5JPqhCzLLOR7ukKezlHbOc39K2T6Cnl3z/5uMfCHVeuccrEhWm5JN5aU1f9kzeX0E9LZiHFoBerOEj0ACPZO+O1uXTgBuJbFvuEyC7hINNNwxuRiigzH+NkEL/otnrRs2cVyQ1OUVJsd4a6wcO6qILoseDb9BFzTqXVE24Eu53a5H9gsAMQoZXr6C5TUluVdv6RaLIb0X/PwxvbkmBZlGsajK2Q6sRRRjmj1HqcZ1FRDM3htQroOrnpH5FJUPYdev+lASLQOGV2ENHFGPo4GmewD+3ZBIC3hajSJbY/OdY7e7xx/nX0H/vKB5vVL/HTM6DShigKej8OBhLZ/9zaCKdAyIsxmBG2FbCoHxrk7aCct7lA6REifk5NPHDDIpuYWxcGp9Q2jWnjMHI9bX9MxmyUUO8xqjoleIVXIeJaSh1Yrqldf3lWNRetubP0ySRNb1xnPrDqscyBiPaedJ6hsSpzMyALBaaxZHyFIV8WBMHU0GhOm9jhiuwQXzYuNrR2LdMZ4+gnbSLEqFavCvhf7Di3KtZaghbLUWd+Ctue7jD8eJwSDqN0whLJImPEMT/l0TY0npOVqG5/TjC5ZejF324bfLfe82lgHtHKNl71Mdxr6Q2/OaawHhc7QdfiroR/JpeyEhzQVolghFnNYvqb54jcUr16ye3XP7vaB/Zst1c4JT2lBMLKsEUJbMbM+mrG3ZVBJiM5i2roZoLZCWyaAoR7jDLiXjg/s2544pCib0gIZnGokOD0hHUKPipO+lb3wBLTNIH3d5Wv0ZmmLqMfoul6y26VkhlfRVIOaq1hs8Ta7ISpqK0NbVYiiHtJ85XKDzh4IJrcDQMLT4WPp8jDBd6ifWTzlMkl4yLRNt2UBN5ty2EAcy63b3qs926LmPtbc7SoHYjhQCSV+wnQyIpk8QYwvrXx39mv8+DO2r96wv1/Y6xzSdXuSTU60W+M/X9k+o8k1oyDhSRZa5gUHre57UPpi/yK3/37nHOKTTHOaPSWJxvjxyAFLfo0xFmJd7fMhcslcX1FoWl6cfoovYlcnErx8yHnY2sbLu/XjQnOdBpyd/wolNX6SIW5f0sxvDxpP8zeWaLMqUFcF6fQandmIy5cHhzZ3JK89+3jPrnA1e4EyDaosCCvbn1NtduxdDdbzfXwdMD39BVUWkNcRtTEDK8Qqr7jV0qXSJCo7IZ09wy9yt1bvbDp5kyPCe8TN75AqZHb66dDICpa1oKdZepOLIf116aQflAPWtKv5ALVuhEQpH6U0p9mVpcJyktsrF9HO89oplUaEWUSaXaDOS6sZVOSWdmi7pH1joyHpB0zSJ+wbG31sypa1a1/whWAc1pa5ID3DP1kgNwsr++LWlre4s990PGWaPmEb+7zJFZvKcgtuy4ZFUfOwrxkFlh5Izq6sbIpzZu12g1jb5m4/npLphNNY2/pcayyDRXdQLu7wDtHQexzR9x0N/WidUI+w+DbI9c7zrAH2A/sw/RgxubDFcR3RBhl1MGJR2Dxtz9W2do2iPUNAFirGkT80Il6kAYkvGAViABSIaut6bhr7e1vjtRVdvsas5tSLe5o3t+xuH9i+uqeYb9gvCpq9Y9GOFDqxjiQ+nxKdTQhOZ18SpsOYoRdjMPxOItvLppggo4smNGFGaTyK9lC0F56HEn0B2ENygJh3nqA2ltmgaq2sw0AQqey8ob+oyvHqPeqYePRITLDzhP27aSzTb75Gr+ZEmyWNSzNZRmaHzutRfTAYLVM3lMutja7c//WqsX3EJkcniOk56flTouyCy9MzzhOfZRG/0/j34nat071ZuUbTPsIdhcpJsdvo5CS5ZpKdobJT5OwKOfoT/ORz8vuFA4PYFFHPzBDnG9TFHfrpkrPRJSfTC2aR5KEIudtWj/p8NkUzwKvvQ9sDdLfVrl6YcH7xZ1HKOt5U/QkA+zvrAPuIOCsKdFXgm4anp5+iZYwvLSrsVagcBU/HfFsihYfpHFAiC7iYfYoOEuvsogQxv6VZWzaH8s0c7WQR1JMdwVnF9fTZgNwEBlj03doR3To6HtOFXJ9+im8auqYirGon/meRh1L/Dk9plFCcn/+KahxYQ992tE4cb74tiZwj8oWHHl0T1CWq7ms6lsOt3mzx7l/hR8nQyFqbYHCIC8+Ribr0Vyhtv9P59JklSDUttK1NpfVQayFRSqOF4jQ6dQg3W0NZlbbBs+eqC5SHTqd4dY6YLhCupjNoJPkaP0yIg4xJkHCealallXvIqxYpLKQ805LY10zTM+RsidksES7L0G43iDc36Ok5YThmGkZcJIdoqHTRkOW8U4zHY4J0hpye2xpVvbAgm82S5s0NMhwzPhmxra343bZqEMIbEKut6WiFh/rAKOj7dEQ/Wif0rYYjRaQTloZHKDotrFNyom37tmNbGbZru4uwXfEWTiuFxyzVaCmGnfJp7DOLfcaBZOz6c8R+hVdsrMBbedBt7+oK06uY7i3UtpivKJdb2zS4yWmrFqkFUmvnfBLi8wnJ9RnBxZXVx5ld0UUjOhXQKX3A67t044AyUwGNjtkbj22vn7OrBjRNPZA8iqG/IHTMB3YRmQEpcywF3TuhPgVxYFqwMtg6mjjGhUMasie+FE7XXgtsV3e5Qe1X+JsH9OLOpiycplCf0jNvoXK61tiUjkPimeoAohDaspQH05Tw8hJ1dk1w+ZyL0SVn0wvOE8WqbFkWzdBcunU74wOIoRnUVm/paYlss+llFnCdhTwdB1yc/JwonhKOZ4jsHxHevhwoeIxTjN0/rDDGEBe2+11dPkfPFpymZ4zHM6ah5DzVNkoLJPe7ytWvaicfUTJPA1Zlw2IcUkwjrmefoqWP9jUpVo497yOxhWU+zgAtJH5nuJi9wJseiFAjLR1QwSLG+rqRlQUJOU/OSVSI6nWv1Ct46CluHKigqVFNjWprLmcv6LrA7aBtk/Eqt0J8w0ZHePgi5GLyFP9p6YAFFfv7JU1Rkt8tkeFLvDBG+THn0xeDCFvVGm6We+c4qyEa0tLjavrURlhODqFere2a2a1p7z63UYfyOcuujxyijWBqY1NqvrS8hFIw9PxI125gtksrdy0s24D0NaEKmIaHmk6vQbWicU3tll/uPLvALzaIzRJR7GgeLP8d6s6S5sYTpqcj8loxjZwiq1uDD8q2dWSBZJydIUYLxHiGv11aR5sXiO2xA3nBLPZ5k/sHMb3SihMu9jXTUHLq6ovt4g7l+POMs0OqWOEXK0Y6o2oP7qPD8mu2rpWi8z584/99OaIfvRM6vsmvfTiesMzUPQOs+/u+sT0p+31N3nRWc6eoh7x0bYxlJnANkOPA1n0moWIUCDIFYjdHrBewfbA7p3xjNe1deN83fvay1n0NpN4VtFVtazlxiIpDvCNdofhsgn/1DHXxHKZXmPSMKjqQnjYGDFY7BRh0hNquoyo78m3tOKGsM10OEUBzpBx6YN8OlRxE7Vq3Q97X7SDlcCzy1vfh9DIO46E51MKS+276tuseOaEe5hv7AYkfkc4uic9aRL7A368Q1Q7teN96qCt1dYC97ndDYb53Vn3aCED6S1sHu5mTXN0Svn6JuniOf3bNSTpjksx4kqZsq4BdbdjVZnjni73dfPQkpT2kHuBmWfB5qnk1ibjbxXx6EnGVTjh7MkWFY1tHnL0kuv38oDpa1TS7PbvWoPOCYLu0fUazK8LZE86yC8bjKSPXw5RqhZaC383NACboGdA3ZUNeGxoTczV6SqI0elDrtY6o3VdW2+fVGzL5J5alwDScn7xAj2Mi17D5SsuBe27jagCFQ87VJuQ0ypiefooUCt/XeEJi2psBnddWDUFTD0SiV2e/sHIdTmq7cvWcBxdtDQza05iT6XPU9Z5gt3FR48rKkt8t8PRv8aOEMEg4j2c0J/HAc9gj/Jb7mhu/1+XRzI6ofeDlAObxtku8+1coHRKqkLP4hNZYOqnWWBaP4qim47uen5HT+RH73WHDuFvTCAHKt0CF008pIklea7ZVQ+GIeh+AyOlrBcofophut0Y6GQ8ht4jFnSXLDTPG4YyLxDYV94KK66Jmnltk5UhLTnpwwWp+FA1tkYs75PQcHU8ZBymnsc+qqNnXctAwsrVOTZaliNjWVc1ug2yXB4e9uMOLJmTTMftGYDpF0bSHlpfOkhGYzkN+g/TT9+GIfvRO6Hi8Nz13HEYKZfnQTMe+aNnWxsk+WyPUdw8DDgVkF1Uf9WTaRj1BtUauH/A2Vimzdsqgx4V5YCjMe1IMktRCCnAINT2KD4qqfUrJIcLEySVtdkEZz1iWLauyZb7csSqaL/G3+Ud5kT6C2TrU0sO2dIa1pqjbRzIOSWABFZGWj0hPe6qSngF7ta9pqtZxe9ndreodc2wJUCNtj9MXvnvNm76fB6zkRKwlU4cYm0aK8yQg0xPS0YxIeQRPOjwnNe611eHPjtVBOyXW5uF+YDool/Yjr3YWJt7sCupNTjhfE97dE5z+xtbFpudEk1PCYMRJmGHGY/ajmE1pWJWtldhONK9WBfIhH5B1q309CNvdrQve5CkvJhEvphEXo+eMsnPU6XPk5Uu06zXqWavburHF+H2FfFgSzG+Rk8+Rp1dEp9dcjq7ITiaMnR6T3ZnnbzWdHppc96cJT0dnTJ9rgniESDJU8hsn772nzvfsbh+IW6tR439SMT15RjQ+I1Ie41Dxam3bDOa7aqiR9WzcT7OQIvO5PP8VUgUo5VvhtfbWwv+dhHlU7PCdrPf12S/outA5MjNEWr3kRP8tqdGY0fnP8R0q9RhYUNzd4+lfo8OE0bmiTcbUM0sELIXH0jnON8pq8sRaIpOYycRGRPZTf0W73WAcpBkhUEqReIKLZEKHZS1gWw6ptH4oESGTjPSInLRraktOunywGl++RvrRoBm0Ki3cuteYuhOVyyx4JKMZ4XiDmC6R2+VQu/OERbipZMQozJxsiAUp9NRLD/uaVFecRD7ZaEYw3iCn9/j5BlPbY8nt0sp1RCMmp+OjviFDa2rXO1S7YwmC7Aw1W1nEnavLWrHDJf5+iYqnpDqlNlZx2W5q7SbS4H2rMsh3dUQ/KScE71fy66OfAyGnYetQVDfbcogU+p4eK9BmF8dVFjIJJJPQOZ+HN7C8pb1/Rbu4o1oshobPrnWMAa5BVEmN1BZ2fCzt7fm+/V1Ii9DTISIZ4aUTTDylTWasjGK+b7m73Q1G425TDuki4JH8wrHxtx9F7XbSNdt9PTBv20fhoYykkoKqMWgn3dCnUI4JRKvGFiqN6QYp7a7z8BqPSpoBqm5VPw8ccPmRCFzlUnnSiZv1jutsFHLmON9GoRoiqkAplPAtA3JoSWYDKdBdhcgX6HyBmn+Bf/c5ydzW1crlZqjLALRVQ7nY0FYWhee/eUBnLxGJNdwinaDGM7L0hCSecj49YxbJgYV6FPqkoXUG92vLVP3gduT7nqOtbHgxscSmJ9OfEaenqNlT1OoO5Xp82vVyMLSNQ4epuwXh/BZ59wr15AXp+c+Ips+IVOzIYMXA2bbKrQPs341lGEhpxyNmF7+yiqQ6xE9+O9SI+v4Z+AwAVRVEJzlPp88IlO33iVY2FfVma3nn+sh3X7cUbURr4HL6Cdqz/UK4PrFyaUUE27ohxZKEKk9wNfv0kEbrG3Krlvt1YSNnX+LLBD87JT7/GaosiEwLX9wNMhD+wz3i5reoIGJy4tOkEXV7UFHt+77mecVLKRBehExSRpNn+F131POzsam0xb3lXhOKZCKZRSnN0JPUsTmq6QSu50clU6Jsi5ytB2nwXqrB9lTFaB0zDadcpQHrwiLclrmt7Q2Kw77kIj1FnT3BrOeore3xqvMC6cAFIhwzGT3lKgtZOYh1r9210LYkMAoEp8kJ6uyadjXHd8rC7XaLXM0R4zf46RnjIB1qTIXT78prK5cxjRSpDkjjKWJ6hnB6SJjWRkOrOSI+IZ2OXErO0HUH/bdjtpbv4oh+r/Lef8jxLs/bawrVrq+kaDry2obj66Jh6WQKenLMaeQP9DknkWQiKsTyc8T6jub1S5r7V1QPS7cDt9EP9Ki0AD8O8Ucx/niEcLtVkYwGZBe+tlxuPceaH9MEySBgt14bPl9vebUu+Gyx53a5t7ty50g8l0I4jmJ6KQdgMAK94fKc5IOQAqnsrzRQnKROFfVIVRWsE+k/+J7Bu+/47wEafb0k1tKdu597cEy9IyvLhrY1dKYjFx7bfc3DVjHfVtzG/pDWs2nBx1pCgaPhGQe2/jTSp4xPzwknT1HnL1DrO/zXn9HMb6hX60cbgt5pNu4dlYstQj8cwcATRGrRg/ryOWfZOSeTK8aOn+s09vldqvndm92A/LIF+GpwtJZAMuDpKGQWx0xPfk44ukROnyBXt7TzW+T9K8Sb+bBeqs3Oof6WxOs5arPEf7rh4uQF8iQiHGoVHr97sxuof373ZkfrSGjbLqEdRwOyTSQjvPg3NA9vKBfbgfIHPqMrC1SxQzXl0O8TKLuGhOcNOkV7txsvXM9P24U8mTwjdDo+YWPTyeVyQ7u0NahUSLSv0dLnMntKY2warYeE94i8NFSDCNvzk09QTYnv1IS5s8XyapMfONykZnb6KXXmD1pglhWjZe3YAfrUr59OiEYV6qodgDomzx+n0oRiPHtBFUqKLBiaMrflIT3dE4pejq/wqx1yt7EN44441ZP3Vn8oHpGdZUwjySz2WZX1gHCc57Z2dZposlFCmlhQgFzNEUVFu69o1ivE4g49PSdOZowCSz68KpthQ9DLzc9inywbIZMT5PTM9h7VjeW92y4Ri3vE6Jzp6ZhtbTfOed2ywda+rMRHQ+pL4mSGmqyQu80g9dDrF6npClGMif2M2lgZlyM0P6azDkR8Ey/ixu9dWfXHOkxnjWLtpAGGDvLuALlOXPRzPQp5kmlmkSLcz5HrG9rb31Hev6K6vxsYj3vn06fTdJbYZteRbbQU4xlidEIXjDBBglEBnR/SSW07kp1T3NeGvDA87EtLgrkr+fwh5/OHPfebkmJX0dTtICbnBwoRWXSc1QQ6aPH0sgj9jrTvR+k/tJ7Cpq/lpIFyaBw5gAlsB3zriq9HIl89RZHrE7FgBvtnYKgl9fpDvZz4yu3uaueIPNErt1pnVTo4bs+ofUy507NRpKHPzDGF9xIO0+wFk9NPEec/J9zNCTa2Lmeb8+yHdsx20DoD2kPZ+/cWTDKi8z+x9aPrn3MxvWY8u2AW+VxlAZdZwKtVwd36QL/UK5xWTcsit4J2x9ISk9FzsvElYvLawrpf/Rp189kQtZW7rQWmLDckyw3Rao7/Ys3Z1Z8hOJmSaEvPH2s5sB9UjS3U96NsDOU44PL0FwRBQjCaIW9+g0ztJsner+WeM8VuELEbj5/Y9IzwBgmOxiEE79fFUP+zNZmY50ey3kl5gFkX8xUAqbB8dKkfcpVaItG+/vKwLd11F4RuQ6Gld2hmNS2R+C3lwxJTNdSrNZ76DN+3mYTL2YtH3/HCc6mmskE6/jopQisRDrbnp6ksc0Geg2Mt8KRECcXZ6ac0xh/W9t6l0+7pyUQFoQw4GV0hz3JMbms6fVM46pVlZ9AJJ5NPuHTgkV3Vcre26z3yJZ+vCxLHVeefrpCrOX5uabHqXYFc3NPcfY6IJkzHzzlPXeNp2RzkI/Y187wm9SVBeop//hSTb/Dduu5K60Dkdm4h2+GYXRJY8EXbUTQHFdZxqMiCgCSZIaZrRLGjdf1R3X5Ht1kgwjFRkFIpQXm0nbd13YMr+S6S3d9k/Gid0De9+T4K6rrO/X4Qt/OFZS8IlSCQgml0xGKgO+TqM7zFK5rXn9Hcv6J8WDodmpLOGMfJFjmOtAw5OUOeXiGn57SRS62FI/Zt50gkO6qqo2or9k17MNgOqdUTdd6tS+7XJdtewK4nFPUlOlBkieZqEr5TQ6gvHg6YfwdW6AvEPaotDSzZYS/l0KPaLCrm4CD7XxZkYI8tPCff4PqfBlCEm7evzSP5hqVLDfZ0LMd8b/Joa9Wnuh6l8ty9aykGCYfLScSzScRlFnCVBkzCKePZKfF5hyg2lu2g2kGxw3eoO7OaUy0Wj+HgjoJnd/uAfnVPdH5Pev8KdfWC5NmvCMfXnJyPOE80N+OI282hltKnRfdVy81yb8XfdhW325Jp6A8sDLPsGVkyw08miHSCiH+N97svbLOrI4ztJSTSYoeuCsZXvyScPEPLjDRQjEJ/6PXpnYUUnmMdt+mzi+SCUThGRiObcoxturhcbqnXOW1RofPcIvWeLIjOf8azk08Gapy26wZQwZ1zrpXroJci4dnsBX5n8KuCpG4c27iN6KR/h6f+BB3GjC8V19mYuk2Gjc+DI5i9XZdOnFAixwHnJ8+Heg7iJdXD8qBFdPsSpXyk53F58on7bu06fpNXVodob/vpfAe1vkwv0E1l5RXqegACde29/X6Uj/QDzhyP29YBPvKqHNCCSnokWhKNRsTjC+Rs+SiKsfpDr/CzCWE44iQaDWm5IV3o+s1OY59UBw6kcGnZ0Htg0maLWNyjp3eE8ZRpmAzH6Tc5tqepZhL6jEcJIj1Fzi7p9jtkjxB1jbUimZKdjpmEVgCxdLRFdWvJVxeuNhQlM0S5Q+Ybq1/k5MDNbo0cbeiKDVEwpuvsuxdDSq47SD//nsaP1gnBtyt49WBfz4naxVoy7XzSQCE9GIc+mRZMQklcb5Bvbi3D9t3ntMt7yuVm4A3zk8hGPqMYNTlBOmloJheYZEYVW02ibW3IV5UlCDwShRsoThyiaOsW8HEdp2rNEPWESqB9qyXUc59dZgHnqaVjt47UKsQeL5MOHjkOJTxCaTWEeph0L+XQi3PZG9SDbEPnu/ShkAeQh2kOEg6tNSKd5+DvQYAZx+xqQ1537vf2ETy8d47Qs2cfKEyWec2D2+Huq5a2MbSNoew68n3Ng4My368LzkYhl6OA88Q+h0noE6mYOE5JxoJAdIj9CpUv8PIl6v4V+vVLirt7dmI+FMabon6EukselkSbJerJC9ds+oRZFPEk0zzkDa93JfO8fuRc+193axu13WxLrtLARdUHDSEdJWRCDr1O1SYfNHJM1TAyBr+uCNuaT04/RUuPTEuyQPJq5Q+UUb28dy99UDYhZ3HAea8dFGe2oVe+ctpBtrahi4qg2KHKAt+0XJ9+ivBwvS+W8DNfl0PKEQ5G/nr2Ar+xQmlxawYS3HK5QehbRPJr/DBmehpQZQFFexDH6xGW87zi1dqlXTNtxe66vlYpLat13RxqMEojpeJ8dG03MB2D7lCvzCrcBksKuJxco5oSWdrrpHjj2Efu8ZSPHyZoFXISTbnKAraOsaBXkPWFINPSFfMv8E9WyMUdfm7BJc3OisSJ+1fI9IST86ltGI19lu4e95WN1G42pUW5jc7wT54gN0t0vqFwvHfGEabK7IzJyYhTd5yiMSx6GfeiZr6vGQeS0KXTeui3ya1ysNkukbsFIpozDk85S/SgDtsTw66KxrI0+IpRPEVNz209qI+GipwuX+MFGTpIaKSkNr3t8AZ7cmxbfmiX9KN2Qt9mCOxDk04GQQCh22lp6ZH4goQSsb5BbO5pXr8cZBGqjdWXUaFGTlL8LHW1hDPU+VPa+IQ2nlKohFVpWK+aAfK7Lg8yun1arFcLPQAA2uH/+sL9GP9I1M634nXpkZqo0xBKfYFXrPHqPV5VHTSEeofhaHY800Jb2R6mnSU+bVZzTL62Yf0RbY4IwwNVjyt8i16Zs20HNuSuqQ/OS0oLGY4z/GzCNJkwDjPbLDtKKU1AZTrXe3D8u6UIsUqszYExe2clzXtkXy8A2DaWA66vWz1sS165mlIWKBvlHUHqM50yHo/JZiCm14SXz5Ff/Ibg5LdsP7slv5kPEYlVWX0YoN/pej6I2k3Gl2TpKRdxwmXmsykNt9uSu11lQSPrg/bR3brkdin5PPa5ObEaQr+cOQ2hIEXr0KZ0ot+yfXU/qLzu7xcAZHWFXxX4bcWT6XOik4hJ6DMKFLexz5ttNfQ13aw6J+/dcJ2F7JuA89FTkiDFD2M85RPy28Hh5jtLWBtXhUW3dYar009pTTQY+F6rqddD0r1yroisrPenVoq6aw357ZzWySv4N5/h6XBoPG3Hju3Dg1crb+iFudtVrkdH4CUp08mzweD4pj1ArZf3ICVKCLQnOE+vMBzkH+ZNxdbBzG1k7uELbcXrGrvLV7s15VDTucULIlQQMTpLmMWKVWGlrvvnee/UU8eBT6QCTrIL1Nk1ZrNEDlyNW0R0a6HW8ZSTaMZVFrDYHxgwlnnNXCvudhWZFpz20dBmieyh1nmOWM2Rm3v8aMw4GHORBOxrM7yHHlwwi3ybTkvPLGhitx7aPszORkMyyoijsatpOkdkzFFtqLZ2LpniFWurwNrUriXC6hd59R5R7gjCMXDo83vX+KEd0Y/eCX3TaMhz6p8aCxn1fJsOCqWHKLeIzQKZP9DcfU61uMes57RFSVtZ5mh/EuHFmYt6rmB0iklmlMmMRdGyKQ13D/kA9+53yX1NBg7pJynEI+XULFTD/4NFvdm0hRgoZGZR3xgrCJsdYvcauXT6QU68qjti3PaEAOkoc0xr0xNVMXC9lYst1WY3oKl6WLnQCj8OHfN2NJCY9vINnTF2R+i63gfuOldfUUmEzmL0iZNviEfIbIIfJqBD26/V92wJaQX3dIxJIyovYVO1rEv74d2cxFYszlEmHSQcDii+PgUy9KW4/qcesNFTKlnU24yzJxf4o0uiJz9Dnf0JyRe/GRpNe6nvpqjYO52dXtSuh3inJ5dE6RlmMuMsVjwUAa/Wdsf76qh+0xOl3q1L7k5KVkXNL2cJz0YjLp7/X9AOsKKzX7N5eWdrVXVj6w5gU15VgX+94WT2nHRyQaoFF0nA53HB7aZkvquGdOCmaIYU6M+nMefJiNnFn8WXGoQk4tfWWSw3tsE1L8iqGt1UlmHh4s9isOKCVWNo77aDI5JiO/SQyVnE+exn6KNvq5ivB9lwoX9rGRCk5ur0UzwvGNK2t5tyUH/td9ceMSLNGE2fD0bHE69o1ivHNHALWIMUeoKL+JzWhEMf35ut7enqhy899Di0HHMXe9sX4yRLivkaz3/lmk9jTmefss9sTWe5r4dm5duNBe6kgSQezYinV8jZHL1bD2u/WiwQ96/wx6dk0ZgzR7XUN3ZXDlzwemflFUbjKcHkCjlb4udrunb5SD5CxGMmZ2NOY8Wm8ikcm0fRWIbs+11l02npGaKw0O+uqW3ts7FRldg8IKMx4+TSSYHrIduSu/SllbMwTJMZarKzG1DHFNHtd4hiixdmSB2hhKYxNnvk/Z5Tcf07/9GP92kI9aMXtevVVX1lU1ayaxDlDm+/RBQr2vsvqBZ3tOuHgcyzbx4d+Nem5zA+t42j4ZhF0bJcVI92xNYAVUNxVzpKnB5R1iPRetmHHv3Vq1gGSjo2XUmkLGNxqiVBvbWNsW/mtPevqOc37B0Sqm+OBBxjto9yjsOTB/qbXrqhr4eU64KmsJxtYLnqhC/RaYGfhzS7AhlppGPdNo7jrXdc9a6krVrLmg1ILdGJHohT9egLdGYlHLwgPBCgwsAp5/m+jQqyCcnohCiacprMeJLGPBsHbEorF/C2PHifN7dIwHaoJfXIQGAAnJykAVeTkOtRyM+nMafxKWfXF8j4hPDimUXX3b+iuH9w1EG25tdW9QB79t88EExeIUYz5PQMff6UWXrKZHw97DzTQLnNxY6bZTFIk2/dLrtXja1PYq4v/xzKj239JvoTirv7QdenZxKAf2qRbfmG8HzHk8kTYj9gFB641O62JXPXHLotLHfYvm55MYmoxwGXZ78YKFfiqnYkoruBYSF1PVxKaq5nn9L27NONAfJhV//yYY8vLJGoHqdMp8/xXziKJfn5AIAolxs8/RI/sBGRZVWwNUrhebx26cR1UQ8S854X4fVQa0dB1ZkWs1pTrXdobq3GkdJEUnMWjymacMgw3K0PKrYWDi4IsinR+BI5m+Nvbc/WwLitX+EnGToa27RcaqOY45T43bZyvVuCIDtHXTzHbJYol7ZtdgXt4t42IPdQ6wGyfQAXrF0f4jiQnKdnqLMVZrtENzXV2kLAWwe1FvGUSTjjMg0sGMg5kHKgCDLEvnMgp1dDPadv5DarOTKdEIZjxkFImdgorzU1tavVPuxrQuURJykiGiPHswNSrqnoih1etcfTBX6oeU8gNNjeH8o9/SScUD++Lirqa9/Kw9Yx6gKv2iHzBd3qnmZ+O0B8+6hAJSF+ltrm0bNrvJMnjrVgysO+ZbmsrLTypnSUKwUrx1bc79R7lc80VExizTTWZIFkFCjGoT/QqWhpU4K+8A5Aga6xO57dCu/ugXZ+Q+3Qefu7Q5NmU9S0lZWjkFoM7Nl9BCO1RdH1+fvW/eq1fwA86SGk5xyQb1m7XTQktT/wuEGNqQ8yDKbtaIpmOI6pbYqmrS2XWeMISK1UhLsOYx7Bp614XnAAdzh6onR6biOO0ZSno8RSpNRmkG3YVM3QlLsqGhZ5xdJtArZFM8DZXwuP8GHP795YAcG7bcXzccgnk4iz+JrJ+Ao5e0a4ej2I2pn1fFA3tcCBPc1ub7nOwnuCyefom98iz67RT95wNn5CNj070OP40vX57Idm1396t2NfWR2Zuu2o2pjLySckQUKQTpDT3xK8fnngg6sb9nMrthYUO+RujbreMh1dkYzO0MLWinoS0ZvlfkAhbopDCrg7ibg6/RQF6KYmdvIZPWUUWKb2QIdoIbmefELrZBXA6hLlLtLUrgcmVBKZjhmdfYpvWjwhkP4XlMutRc4tFnj6MbDA9OrGMDiiRW4jIiE8hGd75dLxE9ss2tR0pTX45XJDwCtXI1JkM5/TOGJbWWO9VH09rrOO0iELr8dX+OcrzHqOduSdVpH1DSKxUcz4YsxZ4nOea0fh1DjEY8Wd0+yZTjLizKbT9HY52Ih6s0U6Hrc4njKNLL1T7jZJjekcuKCyIIXMSW87cIGqavs9FFY+QmUnpPF02NRsq5bWWKTbtmp4s6uIlUeajvEiuzHuKhfJNDUmXyPWc6ucOn3GrraZlNIxKBSNbWDNtAMlJTO8codINhiXRemaGuHkbry2Qgk9cO/9vsdPygnB+6OiXlW1d0Ci2iH2K8z8C1oHPOh5vzwpLDP1zAqVyatPaEdXNOkZD0XLfFnx+dqmQ+4ckqjf9fTOp08FjWM9oNemoU0L2V2sIFL2l/YMXpXbl14WVvW12g1NZPVqPrAD7O8W1ngscqpdPZCdetLDjxRCBnihTYsdSz/0qTTtUk1+Vj6STzjWG+rRfn4c2tqQ6p1HS1daFJdlLd4NTYbHKblj7aNeqwigzvdDNDZApitD1xorgOfE96LZS6LzKcHpCWp2hZyeMRqdkDmYe5ckdNOYvYO27xsLfrhxBKW3m3Lo63nYVVRFY2lvjrSEXp3EvNoUvJhEPMlCJuElJ8+u8c9+jr+b423n+PNbWiduZxF1VqqiXGzIb+ao5DXh5BXxs5f4Vz8jefpLXsxeEPuJ1XNxUPjPH/KhyfVuXQ69Uxb6HnOZnjB7NkY5Iycnv6GZO3YCB7FudgXBemVVMS+fE55/wtPZC2I/dKSettm4R+nlrll5V1kgSHsS8fT8V/idIXQNnaY11Jt8iIiE/sdW1tsTPBs9petShGc3UlaEz8LoP1vtUdIDEkinjC5+ia+0lZCXL6k2FolXv3kNgDIGv+t4MnuBcJyCpusGCYj5rrJd+e7buU5PiWbGyj/sdwiHHizmK0J+a48pNWfnv6JM9bAR6Ru0b9d2E2fJdUNOR1eoq7VFBTrpjXK5RYWvbF03yDgdP+f5JLJqyY5IduMkEV6tC0aBtA7tYoPZLgkKe4y2qGjXNoUvg8ym92qLuuvBBX00dLetDpDtqevVaWra9dL16iwxi1tkmDHJri3LdtWrnbp0WlFbSQvf1phUvbcUQw6EYfY72tUclY6RQco0nLBv/EdRlaXzqZzcuYVsq3pP57guu9qRLdcFnh8hA/1eIoDe5n5oNPRHLe/dj3c+jF5TqLWyBV61h/1m6CfpVVVlpNFZjJyeo568wDt9TjO6ZO2FvFnZ/O6rdcFrR4XzsC2HyOcg76CYpQGnqWYWa6sN4+o5qRZEDrHl7ba2COiAAv0i6nbrRzo95cJ2qFebnGKRU++s8TbOeEst8BNNOLVS2uFsTDQbIdMUESZ4QXiQUuh3mG/x2lktmV4WIR4aa+kluAFMQ1fkBEVun9tuQ1fsbBrAOTOwkY0nhEsFWhnxXga8WucWHg3239qGpmiodjVClqjQ0u2Uyy3B3YJgckcwSa2UdpzhOdkGmYwYxal1TGGGmUy5SFKWRcvNtuIyC3i52PP5Q27TYi4qKurWsh80VkZ6kdfcZOVQM5qECaNxRjZ7gTido7f3mIdb5O1L9N0X7G5c7SgvnFLomv3DivTNA9HiDv2LDRdnn5LMTkgcOGLmml37Pp9N0QxNpxY1GPF0HHA2+YQknuKPZojXL5H3r6jfvB5AC83NA/46J9ouUZslut5zevICf5wN9RWwMPcDS/hjAtinZ7/Ad5DorjVsX907Vd0d21f3ZPrX+L4mlorr7BJIEa7OdrPcD8e+9Uuk5yG8GJGekM5AS8sA4t2/olpasTnvwUGjAeUiInBy4O7XxjHUg6WDkp7HdXZB0FTI3Rq/OHAEdq0hEtLWdHTC2egpRRuy2Ntoc19ZVd0bF7GNQ590PCOePkGdzQnWlvLGVJb5Qdy/Qo9nRNGEaZhylQYDfc7epdTeBBXzvbZQ6x6ksFujHMKtzXPbMDqeoZMZ0zAbUHcHcIF1INPCZj+m6RnyLHfUQNUAlTarOWp8ShBkTMKU88TWmExX22O5np9US+JBCjynyze0rvHXbJaY5RuEHxMHieWfC/0BLdcj5VJtG1ijeIopNohkbRHEpsWUe7ygxmtrOtPgeeprnceHOKJvGlD9aJ3Qt40MPdMc9HPa6pF2juoVRxOrqqounmNOnlKPrnizb7nbuehnW3LrnE9f89GOx+pYW6in/p+EinEgSHui04cV3n5t+1Z268GId1UxINSavqv6SHq7jx6E9PATjZ+AH9nIJZikBJOM+HyCOjm1wInpOSIZYfzIwqb7InDXWTkFx7oNR9Bq5dP58cDAXTn0Wt8e4AsP5WGjtmpnZRuaEq8poGkGyhTg4PRMa51eYSO7aLMcIou9Yw/vZcV7WXBggMIP8F//zUEB9ki6QcQZYjxDzS6ZjS+ZZOfMIkttf52FvJpGvFzsuVsXTkiuHSKR3inMtyWzNODVphii1bNEMwlPmF6coUdX6Ok5cvwbZPxrhFbsXt1blNRuR5MXgzx6VuzQn27ILn/Op9NPiJQ3KKv+brHnwe2wS9d0WjpqlU3VsBtHnMYpZ5d/DhmN0eMZXvAnCP8V+7sl1WZHfr+n3hWE6x3hfof/Ys/4/Od4oxmQHJqFey6zdd/M2fd0xTyZfYrfGbcJMUP6r1rv2N+8BuWjdUh6pblKp0AyHGN4ZrtqgEULDy6TE9KpQLWHNVAt1wM0GqzCqvIE55NnQzN07VgnNkVD08PBhU1NX02u8csNXb4ZUmn1rsC7f8DTn1nnEaSchCOuR8HAWrDKK+bbkjRUjNaWaDjIzvEvn9Ou5ujcErHWuwK9fKDtodZnYy4zfdR42g1Q66E+lM0IpleojY1e3gYXyOyUyWnGPlKcJ3oAF1StZWZ4k1ckWjDKZrZFYrpG7HcYY1yvzgazuEPqlPFsRB7aXqOyMaxKG8k8ciCu50eMl1Zk0jVom9UcFWeIMCOLzxnXik2l2A+s+AwNrLGvGEVjZLrGc4z/GCe70lopGqnUHyQl96N1QvANi2G9tDfOCPcQZrejEuODRo+cnsPk8lH0c7MpebUpBkXMvuHywIGmH0U9p7FmHAimoUTu5ojlAjZvMIt7ageJ7kXdTNUMkgVdawaEWl838YRNDUonYufJvubzGIEmp+eI2ZWVv47G1OGIwjWZNo7mRXg97Yb3qOfMwsWtblBRdeS7lrzeDX0jYHeoobS7y0QrIjVBhydo6Q3CfX3V6HjvbSGz2BxzucPfr9D5Er24I3UgkGq5HlI4x7Wi4fqcYz7UoY5rSZalIjqfEFxcoS6fMz17RjZ+wmWa8Xwc8Ok05mZbMs8rFvljxGJrOlauL6unIeprd1euEfYizTi//PPoZEYwPUPE/z9UqJ0G1Jp6Vw61G1M3ZHmO3iwIP9nxbPqc8Vk8qLa+WhfMd9XQ69M3cVrm5JrrUcCzcchZfMUoHOOHTsTPCdk185UVs9vsaHYFSbHDL3LGT/85K7gnMsBGQ58/5C61VPGnty7l5nnIWczF+a/wPUEMCN+SnzZFaeslt7d4SqOVz+j0BXJ0iuclVmJbiYFr7t71coEF/lwkY8anP8OXhw1ILzvfK6kqLDr1cvyMxnQDaqvve2pNNzBxKBFyPnmKurIbGLXJKV160pOuJylKOTlPyFPNwz5g5yKYvWMviH1rxJNJyHh0ibp8TrBdDqwF5XKLTC3U2o+nzKIZ1yMbDR0T+PZKpbEvOM/O8S93mGL3CFxgVnPk6g4RZpzE5+zSHiLdDXIoi31NphXJUTrNpuUqJ4K3OziQIGEcnrJ3NDxFY1NqfTptFFgJlVFygpqsMbs1VMWAgG0Xd8gwIY7GjAIr0LhyacIe6NBDttNkarMzYT68O89t2Lu2AWkQnhh6vr7S1PL+lN03HT9qJwTfApXRa9M4GQcvTpHKR5gWEUSYIKNNTyn1iPm+4fW25PNNwTyvhr6M1pgB4dbT3pynfde+JTmNm52Neu4cis3VFXqmZ6sgeoCU9mi2451+X1vpazWetA7TC5OBh05Oz63Tiac00ZhVaRfoZmdYPexsXtqpJMIh1eEfMRT0csyl69Hpm0V7NoBjgMWxmF+qD7INtpGxPx7D+eAxE3miRyTphOzkU4LLHFms8Pcrgp1TZT2KCLumGv58XIPq8/A9Kg8cIu+ziHB2Q3L5O6LrJ6irF4wunpNkF1xdzHgxCViXB+njRWH1hOY7i2Tsmarv1iWfiz1aCWap5moS8Wwc8elJxHV2zuyTGTqZIMYzgsmfsHl5x+52Pshh727mtFVNWlSEuw3+8yWT2TOyyTXjIOHpKOTzdWHFEge+ttbBukvmuZUafz4OeToKubr8cwchO/GPMZWVP6gcA0JTVIyqAm1asufwbHQJZJZZwBGg9o5Iv9k5Tj4Bk5CLs1/gY1OxKuwdke2nkXdf2A2QaUnODNfZ+SBPLzyP+e6xI6pNh+liSMeMp8/xsTVEv/otZWUZG7r2FYFp8YFQaS6TcxoTs6+Ni9qaoUm5JxSNJinjk6eoJxvCfONqkPuhJ0nEI5ROOZt8wnMnDb4pGu7XhQUqbEpeRraZOx5dEJyuUKs5QVEMAJpmvRqg1uPzMeeJz6qw4II328pFIQ2vdxWT0CcdZaTZOerM9tf5Lt1s8g3t/AaVjAj9iJPQOsfiiLlgcCChJEp6kIKNXtpex+jIgSRhxjjw2cd66BeqjWHtINuB8ojSESKaWpRbsaOtCkyxs82+UYKIxoxH1+xqQ6alY4mwjvFNbiHbqTaMozGyzg920jRWQdm0dJ3B88QH8cZ9n2i5H70T+sZDCDrjlFV1ZOWqQ0Bpap3QBCMeipbF6gA8mB/1ptiaj/6Souo0lExDiS5WiPlrK9l9/4pqcUf5xkJ+35Z4EK5wr8LAAQhsT07vaB5JV7t/Q4cYndAFKW2YscU2TK7LljeLHXfbkoWrc7zdn9T3JPWqoX0/kpVsOIi6rVwtoTyiCvI8D+kYG9LQSjdYwlQ1HOu46fZtWp7/P3t/uhxHmqXnoo/Ps3vMQAAECA7JzJq6pXOko30J+ikz3YB0PfsiZLoC3YN+adsxtbS7u1TVmclMEiQIIAIx+zzF+fF97gAzq6qruqt7V8mOm6WBSYJBIBDh61trve/zdpL0sYw/72IxfGOGOzrBmanoTY5SidHeZ9ENaYy5W9HsVjQboQpMlxtgT9vkIrYhr6myWo6UxD7JXT1gLW/QxqfYJxfMvDETZ0gRuBxKk7hs2WSCfLBISj7tcu62We/vKZuW5b7g4zrj48DmIQ14OXJ5NXQ4n32FZQfY0Rgt+hpr+EEgePapuKklOemdSPp08gT9ZIUx33ASnTMcjAktlZFtcG3p3MY6t9tcjpDEv72KRfjgLq8pxy7n45dYmoEBhHKE1nQKumbFsW2JVE2w257BmX9CNfX75//jOu3NpzfbDFuinZSBzWz8Usi3dQPFeEe+XPe7O0X9BAhhgXcC58HJZ0mqSGHBMi56Q6OCi+JHhINn6POMowxQK7YxzTYG7lBUDdP28E9sJo7/o1HaOi5w5SEnMHW8aI4xOaBtFljbvRxZy1TW8AYzGOC4Qyauz3koaNQdneGQ16zSknvpsZmFp2gna/QswahqAbtNcrTdqpdaj6KLx51Oc5S7JiEuuIsLsdcNTtALoVg8ljkke2EaPWz7cdpwLELr0srs9zC5LGirVER4O95YKGC7Q1i6FwUk3gqVmywgWdUSWSL19FAI1eM6F+O0naEycYfogSAp9Lva9IAid0yGHeEbzmOAnvQydYo7z1AJvAgl36M5FW0hduTK8cjxySTp973+WIXoz6II/UGqDEVFUXWOOhx1Ee991E1KRUght/uSm33BXVz0o7eyFqftrvMZSbbcPBDFZ2BpGMkS7X5J+3BDtbihfrgjX+3Jt4c+T+azzCBJbzYDF3MQCp5YMJC8rwCcQCBzJF27MR0a1aRoOgROS7xpeEgPLJKS5Q/IAvusoq0fO6CugDiSdv3DIlRKbFBS1NRl07Pq2lqARsU9ShP4nOPj5/+wAHW4kqpp+39fVZU+t2jkm4x9k1loM5ZiDYFH0QksHV11MFUX0xaAS0tXehGHkW4wJC3bXd6Q3ixIl5t+HNaUDU0pqNHCx5RhrfbY41vM23fC2T6c4Q0mwofkDpn7PqeBwSZruPZMPngm3y1jPq4z1klJnJS9oq7jwm2yinjicR7MGV4NMaMp2vAbbIkCEp6tjEYGtrVljbXfYWwW6GcP2JNnzMNT/JEvopdtgWT6/oFeZdndjDepK8c5PufhM/wrFQOI5Os5uV3R5CXpYoOiqoSqigmEFyqX0RRVCXoK+e02+0xm3anUiCym09fomomiGyj6O4qHlZTWx8Anjm2LATizlrNg/tl7qpACjy6qA0BRXLRghD++QM9TrDLvwbH5Sh5sLBvDchjN3pD6Jrvc7kdph7zmdiu60aFj4BkqJ9EZ+nyNddj2j1WlOcVigeoFGNGUyclXpJXJJrNIyrrn321SEZk9cmQXMzxHT+WNWr43mzimebjFCMfYdsjECUhDq08T7sQFgoJi4Bomg2CGfiIyeTpxQSul1oYboNkBI2dEKcdxRf1oGn1IKxGnoasMvRH6MEaVBU2M0wQBQfcjTNMnsgOG5ZNxmqR/3ydC5SZC64aowQZlt3pCx97S7h5Q7Yhw4BMUAli8k8y8Q9GwNiomlUnaaPh2SFsXKN1ur1MUN7WYHnWhoP9M159FEYLfoxA9CbUTkdg2R0WllDf1QykIyDf7gk+H/LO9j2NqPS7nNBC4/qGtMXE0tHiJtrn/EV272B6EakaSmjVTR/PsPnq6A52qw5looV2xx2lNj8byyZojRd1FTrQU+ZGkzNgVYoS0K8QYqQOdrmNxsyyyiroSlGoAVRfxDQBI30pHaHga2fAUIJqpouvpcofg8yLmy7iHH9K6u4V/1bRUspiJ6AbQdIVcUzkkJcu9wcd1JkaZMgjPlYXRlPEFlqZi6xq+qTF0DEaOT+SHIu1z9gr7cI/x/CPe/XX/nJeHhCYTxslWRoB3uxP9bo1mf8DwbKxB0JtN/dkznGDG6XjOxNXFwcIReKS3i5ibdUZR1GRZxYem7fcWcVmzHrpcRjazyZd4/hTr7AX64iP2/XUfpSAUdAlVmmNsYuz1En1yjX56yeDkJf7wGb7p4Zt6nx/0/iHpvT5dQSqalqL2eR7NiV6omIZJJIkY2XJDLb9XRfsoor2B6OJn6IOZeD7lrquLDt+lJTfqY/R6HQpDq6HqGJaDYn5P9XDfd5VN9VGktNYl1qzkfPi8NzBWzWN2VdcFi8vlKjrHrgr0TIgoqiSnSjMB/jXfC7yPbnM6eU1WP47Sug7mdpsJcKet4wxcBpPn6IctjowyqJOM8pBiru5Q796h2wFT74yrgdP7dLZykvGQiumGqys4g3Oxi8kSrLqi3O4fYxGWN2iWy2DqyV2MoDKsETvTbiznGhq2H+AEJ2jTmGNd0myWvTqtWd2JcZrhMLCESCmtGqpUjvfyikUiZeR+gOuN0Yb7fpx2zBOanSrG76ZPMA4Y2FrfDXW+HyMTnh/f0LC8MXq4Qw0e986kB9rNEiMYYjgRoeURWTobQ+v3TPtcdEOhpeI6EUoRCxFX1/10ndCx/Twg9B97X/49rj+bIgS/ZyGSVbxqkT6NY5+medP5fvbC5a6pSu/xOQtsLiKbU99k4mg45R7t7ob24Yby7prq4Z5UqpfqJO9JCwJhY2OGHs44FMq14UyAToMJrTukciKyo0ZatWRlS5aWnxkxsydRCrusYpuW/cl8l1YURU1Z1NRV86i3kMXHtHRcx5DcOZPINfvcoS56oT0K5U4XQNZFfz/dBXVpqL8pArzDxXcx1H1sw5NCBGKkp8rgvE7mm5bNZwXw6Qivu3GOfKsHlJ6HFlN3yGg2wR5eYp6/wdwvcFZ3Ir5BJts+qgkLmWqacOy9MDq6fS2jG4afRTeEoxmRJaI8hq7JwD3wcS0MoFXTspNomKYVZtlNVnE1dDj1BoxPxxjBCdb0DP3+A/oPIj/qvCDfHjCXW7zNAmO3wni+52T4HHMUiDgMuVj7bhGzjsvPguzEx4AXg1OCZ2CqKiFCqJKvdj3uR/vwKCrwT1suwzmaIp5Pz9S42eaSCPAIq62aI01rCSacqmFIX1jb3FLJQnRsbrDqCqNtMRWVeXRBe0QYiMua223DLq0egacSh/VsdIlR5+jpHusgSBRVkpEutmjuB1QvxLQDpu6Ui8gWBy35Oorzmtt9TmhLHmA0xzzZcEwPOHlBUtZSan1AXd1hDmd4dsTEdZhL4kDddfqFGMs9SP/WMDzFOMs45glm21AlmUhj3SxQPNnF+GfktdmbfrtuZiNv/LauMJcIHS2X+JtYqOaa3QrFC1CtgOHwglSO07KqYdfUUqRQ4xplbxrVwwOqtD60yR7ylHa/Qg2E2CGwxkw8od4TI7mmZy0KC4iF6w6FyGqzgDQVNIbDRkSKOwOCQcjQ0XlINXa5SlmL+0zXGWWWhmf5HOtCFKJ/5PX0vvzDj7/P9SdbhP4+9cVvS1ZtJTqkbEQBiquGpUTvd8SDrGyk6s3kfOBwGdlcDhxmrs5Ar9F2NyjrG6rb72lWd2SLDdlqR53kHLsI69DF8Jzes9MRANTRKY03pnaHpEeDfdkQ71t2eSlMcoWIc+iwNB2CptvZdB1HH3FQiZZZNzQRWPeDyO2no6+nuUGW5NIB/cK0atv+YyfF1BT6cY4tOxVNhY7TfUSo6g5F3X/9my664TeIG4AfFZ0OuxPnAjXTRYgfj0c0TcWSY7xZaPF8Ihb7IiLBYRBeEU1eos7FuE4p9pj7tRxBrHoxSLGNKTZifNOsZfig8YB5fY8zuye4v0Y/f4V/+RVX4ysC0+tl1fOB8Bo9DbTrDKcH2ZU+hLbskEdMz6Zo/hRrPEcL3mJ416S3K7K1kKNX0v3vbWOcwwbzasfw7CvUwbj/mXQdRafa+24R98+dqihchCeE53L0Ztro1x/JZCEqDwnqzSdQVYy2wTmpuRhcoKmIoDxV5XafSxSPpHC34ufeAmeDCywpSDjWFW11RyOZa20lZPhCvWZy4s3Ia0fsKZ7EkEOKqXXkCIdpdI4+32LtViLGW3ao2d0Div09VjhmcD7k1DfZZHYfZdDJ5xeuycgWu5iT6LxXy1lyd9VkpTAVL2/QnJDJ9DVpaPW+mGVc9DuZ+6QQogA/QA1maNNzjlWF3ix6cUHXOdhWwMjxyWvxWO3x+Blk1zf1R89PlfbjtDZLRCeyWaK7IZrpEtlDTnyrf3+L3VCFlapC7GAa+N4YNVqjynFam+cohy3tZonmDfDdIZ4hwh03WUUihUQ7TbAqQ1PDdofo4QjVCzlK/6OaHoQ0fbjF8qe4hklkG6zSiqSkjwHf5w2RpeFYHkoRQw0oKsqxfdwLSYHCHzKS+8d0RH+yRQh+N6bndyWr1jIjJ5dSx50kXIuIaw3H1Bm4BmehLd30JlNXx4zv0R/uqD59T31/TfGw7uf/bVn3QoOnXY8+FpLhxh3RBlMOWOyKhsO+5T6O2WRVf9PuCL5PuWcdabu7utGZLw2x8HnX0KWTDmyx+B9JAYVnCBCqLdFAn7XaigaqMKI1T3KWQBQhjRalKaEWLurP2nJV56hbtEOXrBaR6T3BoHyMrXiaadRKuXguA/P2Hadrn7OOS/btkTqrqKuGoj2SpyVJXHC/y7nd5swHNvOB09PEBYHCwXd8/EjFPVNQ0w1GusGMVxjLG+z7a7JPYoeULbaCl7fJSB+SnkLh367wVncYV18xnb1gNHnO2NV5OXK4HrlCzbYv2KVl72sp65SdjFz/sMs49S0uI4eZN2N8cYLmj4XXx/4aRftIXC5lVETaj7rCwxYzSxhc/QJzcIauhqiKgmPqfUcUS3Pr42vZ51k4ZXhpYkm1pHnznnSxpZEya+XTJ2hb9CLHbioux1fYmtNzCj9J39RK3qBFtMiRpnU5889w58hI74a2vJX7HLHj8kCIIM5UzoIxaeWSy8PSI8MtFrgqS8McBAymzzEOG9w07dl12WqHZt+hBW/RnZDTyWuKRozluvC+sm652+cElkZk63iDkKBTy5XCg9RkZZ/IangBuuUxdU8pG0eq9oS4IJaCgMAsBdInnAtxQafG3K57jpuy+IhmekQjm8LRiUtTPkeVICFkVX84c4IIx5+ijWNBo5aqzma3EqZayyWYBCSWysQVFIS8FrElG7XiTlK7XX+MGmxQg6Xw++QFTXxAMUV3prpDInvKxDN5SEsOpdr7mDpIamBZ+M4Q1R/Q7laQZFRJhmIL0LHqT4j8M8aOwcLU2OZKHwO+zitGrk5gmtim298jjn/ACO6Pff1JF6F/yNXIF2RzhKal98AYqkrkGL30eB5YMtpbJzzmaA/vOC6vKe6ue9FBeUhom1YwtwYBZug+dj3Tc9ThKY0/JXPHbIuGXdJwd0h4SEse0oplXPSQ06esORAjsA546stxWJcu2u1zTO2xQ3EMrY++FjEGqlDwKA1qtkPNDyj7mGMWCyVP/SgPRzd6qKipP3KRj3Up4ho6E22ecKzEzoW2EUtsy0GxXYxgiOmFhKYvsDquw3Hg0qCKuAoZRtYcP/ckZfWxjzBeJMIE3MWY77KKMn/0BNVlw8Oh6E2mA9dg5Ft9fEP3/YuxhE8URCJxdXIladnf4ty+Y+/eiuiEbUKZlBT7gqZcU6W5oErvt5gXS8zLLWeDZ0wmY2aewYuBw8e9wAItDgIY2p38t2nF7Vbjxre4iwsuItFBnwYXhJaP5QYi0h04XN9TlHEvNa/zgkFVY7cN3mXFi9EVihJgSQP0d4u4N4gu9nm/y6saj+MgYjj/Se8l0lyhbutUgnCHVZcYdYXRlJwML9EHVj9OBcGb67xKXYT2EZdnwTnuSYVelThlLrOWkt7vg25g6gaDc4fz0CYubQ7FYze0iks+bDIhjTY03Ogc++yAkR5w8pJGMtPy1R4zvBY+HTmW63Y6XdpuVgo58kdLFCMnnGPMMrRkj1VXFOut8JAdtjTLG8xgiGcFjB2H7AfigkMpYiQE/05hEp6KyIdOECAjwZvNUtggdIvR4IJMjuW6oLlDWWOkiuz2FE79KXqRoO5WopuKxUit0Y1+vBf5Z6SuwTqrOBQNZS0eZ5VWjORhceSNUYdTIa+OD9R5iRqLbkgfzPC9MZ4hBBubvOoBuR0kNTQ13C4raLNAi8UEoEOAGeMNTiBo7JEtxnJl3fak7lweJi3DEYfPJ6o45dh+Nm365xAo/MkXod/3iei6IOgSVsWvhYdFBUTH4BoqM89i7OhMXQ19d4O6+UR9+65PVS33KW1Vo2gapueIZXfHOBufwuicJpiR6h7rvGG9EoDTRVJyu8/7uOtutNN1N51RsiMvdLsbT0pVHUPrzaJWD5FUsXUFRxedjnksUbMtarxDSTYi4mG3ooq3fT5LZ47t6NpPOW+KNBk+xew8JTd0fxfoqQW9aXYglH2d6Ve1bHTTxtZNge5RhDT+KLuno+lyDAKKSEQ3bHIZ2SCjzTskUreofrov6gpRl4TZdYJdFzv2RPz3s9Bm7A45OZ+i+xOs6TnDwddYw+96o2m5z2ibI+U+I2ZJnRd4hxRnt0KfX+GcXHIWnDAZj5m6Btui4XqbcRsXfNrlLKWirWPS3W0z7kYFi9jhi7HH1WDA5OxnmKbVo4z239+Sr4Wq73i7BmCoqph1hX1suRq/lDsV8X19JyMVylrEiT+NP69Ch+nsjVC3mTaK+Q51seg7rras++wnvSkZj19C4ACiM03LhqUE75Z1LA9qwmT8fHyF3pSC4L1PBN07ycnWO1TzI6ppY7ghJ6c/JYscdrIAdWPj5T7ng60T2sKceTZ4hnEub855KUeIFflqh3p3jRWNCa2AE9/kUNp9PHgpd44Lq2TkGDi6kFrr5+JQZUlTbJXkKLuV4LiZHqPJS4rGIJb7k24fuSsq7hOxI3NDDy84QZ+K/RB1RVtWfdicbnuYls/Ajph5Focn4/JdXuMYgqTgGQaRLCDqYUMrpemKJh7HCEe4zpDAFEQVMU6DOK8xVJX7pBTdXjBE9UdCLRtvIS9FJ7NboW4XqP6U0BozcgzuYiHoSWVx3WQVe9dgFPkiXTcYou7XkIodqdop5YINvjWWnVNJIicwqRzLhZZK5LpiL1Tnf5AY4Y99/ckXoX/oJRA09OBHAEtX8A2NkaNhZhu02xvqj99SLW8oHla99BeQLn1BK9DHc/T5FW04owlPOBxNVlnDYp1yeyi4jQtutznrJ8XncwNoBzoVqqyhaxBZhlzGCvaVJeXKZhf1oClobYlaxAL9ESccE3FaanYrqv1Kgk4PktWWSuLAsUfjaKaGZpvSq/TjyIeuCFVJTp3VfdxDBztVNAXd1jF9o49q6ICpunxc5XNTSW+8VR2vx+14wxluMGXiT7gMfXZDm13RfBYI2C1hu4LU7cg6N/v6yQjT1B8jwJ+NXK6GLi9HDnP/lOmLOdpgTjB7hvPpe/JPN6R3K4kNKmVctQgvrJIce/WAefsOfXqOM3/O3J8yG84Z2hrzxGLimnxv67x/SKTX5/NitM4q4tLn1dDh2fznGJqJbzmohs7+3a2MbSjJFlsUVSVqW6y2wT62PJ+8xNI9ucfT+bDNWO7zvhABUhjgUEQWp5PXWKaD6YUo5tcotx976Gqdl7h5wTFLMF7WjGevUUOftqXfyd1Kj1QnShEpvH6fpGone+okJ5Ew0XSxQbOvURwP3fQ4jS7Ja0+CRMVYrlO4hbboVP2xSzS+xLhMcPJUhuwJ1Vz9cIfqfYtmOMymbygbux8RLg5iB7fNBL3EN3Xs0CYK5+jzFNoGs2mEbypNaVZ3KI6HZjpMw3Py2hJjYfkYSdmwSitsPcfRFUx/ilKmaMMtbZZAKaJclM2iH6dF04DM0ZgUZh+VERc1K2nGdg0VNxhihTPUaIWaHh4LiLmiWX5CtSOiwXPGrsF9ImXSMtJilQq+W2hqjNwh2nBGs1kAomC3idwxDVcE3rgn8e/yx33cxhS7oZGtYbpDQYLZLFCkt6pN9oLqMN7h+1MZU6HjGGKfWzQth7KhqI8UzRFbM37sD3qikPtDuqF/6F7oz6II/aFtYY+RMVRMTRSkLlXVzHdoi1uau3cUt+8oFos+3+WzuIHJSNC1p+ccB3OqwTm7WmWdNHzcJ4Ivdyh67078JIhNUxW5vxG+o6eg024Z7hmqoO3qCpZ6FJLJKkPtYrilEa09bGgOW9r0QLHe9qDTYhtT7HOqpKTKatqq6YuPoqrojo7pGegyKRYeoaNPJc51XlLGwgxaZ7X8s8fH6a5jk/QZQ5oZf/Y4HWqnC8NTVFWSuoVc2h6HWLMZ+vQcb3yK64858ca0g4j0N+yZukyhXVFxJyO+F/uCrGoosopD3bICbi2d7xYJ340cPpwGvBi5vBq6nHjPGH05xzh5iXH1CUcKTB5jMYpHKsEhwVhsMW8+Yd+8RZ+eo59ccDq+YDQ+Z+SI8Z9nan13sklKioN4Ux/kDWKX15QnPs9nX2HpNp7tYni/ZP9O/LudmfNwfU/btDhti1HnzIeX2GNfxEPbOjeuITOKRPx5KX0nh7Imb8QuxzdckdqqqsB1z5xr8gI7yXHrCrNtGJ28oY188saVkM2a223eiy40VZGHNJeT0RXGVYwrpdHZYkN1SElului2iRUM8UyXuT9mNxL7oaY99pEaN9sc3xTjUis8wZnlGMkBV7IGe0rD6q5Xy828U6pW7HSa47FXUz6kFZaeYekKVjDFGZeCtl3kHJvlYyy4ZYsYb81k4o6p2seilpQ127zC0BR8U8fUVGbRHKN8NJ9Wuz31fgf6rShodsDQPyP1DDaZIfbJmTCGW5qIA3cNlZkvdsHtboW6l5Hq+x2KLdR7ljsksoTwZZNVxKooROus4j4pGDo6g2CMFqzQojH6dk1Z1WLntVuh7Zao3pjIGjNxTVap2E11Y8KHtGLmmYyCIVogOirdXvaHEe2wRTs8oPlTfNMXY71MmLOrRvqZmiN5c8QybJHG/AcaVf+Y159FEYLfrxApSOc/R0xNAQQ/rU9V3ayE6u3jt5R3H0kXW4rtgWPTitGTFBwYszP000uU6SVNeEqieSzjmts442af82mf98maXfEBpOTb6HcZ88hm4pqMXYMT3yK0REy3b6iC4ZTuUctEkL7jrWzvk94N3UmRu3iBruN5WjSaquHYHFE0Bc3Q0EwNwzN+1L10yCCg59d1oxczkPlD1WPwnaop8jF1mVekf9b5tGXdF7IqKaj6Turx6zEcvSd/2+N73OlH7LFAEWnRGD0aE/1gz9QOfeLKIi5bDmXbUy0+bDPePyTcrDPStKQuG/K0pCxqsqLuhQ+LuORq6HA1sBkHl0TDZ2jjC4zDEmN1i7O86T0+3Qk9Szbkqx3J3QpntMCdX6PPr7AvvxSx22MfW1OxNLG7++buwPpQUOY1n9qsHwG1RyEouBg8xzUsLMth4PyK9OMt6XJDk4muM71bo2rfcKxLjIuM0fQl1mCEratSFqxyIwkLu1SYqRPpG6kaj7MgYjh9hSHJCh1doKM5dONUU9UYn7zheSSC4RLZVQqxQom2iPtRsDXyGUlhgZemNHnRI6iyxRYt+h7THzA89bgILblbaHoDc5xX3McF1zsxSjsfXmCUYoHvNI1Q3nUZRPYNZjjGM1ymbkBaWX2u0Tat2OeVfC5KHF1lHs7RqwJNpgoft4L4oOxWIs/IcgjtgNwWhBMhChCj8F1ecxsXBJLBFvlTtLEgDqhxLKwW2zWqc4sZjWVQnMPEFTfuWHYyT4UBwyhE80bCHL1f91En2n5Fs7pF80YEw1AIAyydbVb1Hf0mq9hkNSNHI+o6GfcGRTImu72ONtzhe1MiOerc5lr/GDurEkpVRyNyItRgKAj0XWxLeqA9bFEGW/woZOQYPNg6qVTa1o0Y0RaWRmPoKJoh8D2/ZST3T70b+rMpQn/f1SWritqjoCN+rZQpSnpAi5c0i49UN2/7m0ItKc66Z+OMItzzGfr8CuPsBXV0RuZOBV9um/Num/HpkP+o8wF6g+fANT5TdYnYAEnY1lrBmot3KOlOyE3jLdWTgtPn78ilbpcF9Ph7jbjJty2qpmD6BopmohkauqP3IXXWMMAMROSD6ro/jnp4EgN+LHOhFpIBdd0NDOiLTpdV9DSyoXvjlYcEbZ+ibIXE+NgcaZqGtmoomyNN2dKUYoxSbGLM0MUMFp9jjDpWnhtiBANG4ZiBO6SJppx4PquBzXlocRbZvA0TPq5T7nY5RVbR1MI4u9zlMgtHCEIWscM8EP6vkXPGYHCBMdlgnd1jrD5hLj5S3n38LLah2MZkiy3xzRL/fIW3WWJcfcX47EvM8Sme9FBpqsJ3i5jloaAuG5aHR8in8FX5nAUnDK9sLH+AGn2N+eE70sW29xMlt2sBQ80SjDzBn73gxeg5tq5g6SKs7b2qsNzn/WEnLRtpavVoIp/J7LUoRHXZp+D2OyIAVcPUdebzn1MOhRDgMYdIjNO+f0gFOsfS8Qbn2M8yzDzFzctHQ/D2gHF/K5b4ts/J9A2FVKV1+UbdDu/OLmQhtZkMnqGfC1Wa1bS9UKPdr6hvv0c3bQaTlxSe2cd4d0Vtm1fcxl0YpCnEBVX6hBIQ08Qxir4Ugg3TZzS6IqsNdoX5CEzNRDf00dCwNIcgnKJGO7RIeM7qfEuV5qibZZ8XNBi/ZOwaPKQG27zqU2dtXWURi7iWmTdCH85EZLex76My1M0SbbjE8icEls3QMXiQwpaumD2kJVPPIHCHGNEEzR+g7vY9cFXbrdAODxj+lND0GdkGK7PkILuhWPrXYvkY+mCC6gZopui421x4mYx8hxVVveR7L5FCVSt2Q2XTUrYqmm6iVH+YSfWPef3JFqHfFlr39yWrPg22U8tMcJLStZBd374j/iB8P3VeomoqRuDizcc4zy4wLt9wnFxSDi9YFUfu1jnXOwGi/CgR/d3yuJNRD1yDaWhzGtrMfJO5bzH1DIa2RqC1aPESdbWh3S5oVnfUuxVNfOjDzDqzZdedPCVs99+XIboQg89zfLpwOsOzRT5SKNBAWjRG9Qefo4FU/fFFJsm5NLXgtzWl+L3jUVC9O5FBJ9Hu5sPyeUXi5NvDRvDetuseYVQd0h7g+pSUrRm68LhIjpeqdfHfar+r0iUt2x6H6KMp+uklk+kFg+iM+XnA1cDhauDwYZfzYZtxs057w2N381rsi34RL0yw4udy4pnMPJ/RKCIcXqLP7tBm79AHX2NcfyS+WZIthbQ73whpdbbeEa4ecHYrwpd/iTt9jaMH+KbG2Df55u7A7TaXlAXh9el8UXHp8jwKmT37C3RvJLKrrr/+bPybLUUctZse0A9bjOLA2egKa+TgGgJC2rRHyh+E2HWYH4Yhk9MvMdsWvxQn6fpuRXlIiW+W4nk1DHTd5tn0DVXr9ZHp7x9EAuztNhOCD6kkuxxfYTQlTpH1ERACT7TH8K5R3ADL8pj7ZyIivOnGcgVl3bCIiz6S3Ix8ovFzEeXdNMAnKaZIUMw7sYvRTGbT11StJTxszVH65gQEtJOb64HNMJwLckEm/DVVmsN2LVSfjodhOkycGXloy/htUXQf4hJDVSVkV2UiwaTNboV6EGGCxXorOjRJHRhYA9kNGf2edyOFE1PPJIpCtGAqFH87gUCqk5x2v5JxD1OiwXMmrskiKdmYWl/MHqySbW4xtC0C2Q0Z+3WfhtxKpZwanRIMQiaefAxdvAZE3lDNoWgZWhauHYmuLN7SlFuaqkY7bGn3a9RgQ2hPe6FEcxQHh6ptKaWVxTZ1FE2Htv2tUu3ftxv6346i/ZsWXb/tyeg/70myqlLGqMWB+uGWZrOgWG+pZbCdIRE7weUM4+wF+vMvaYbPiY2Q5aHmepfzYZdzu8973ldXfLqR2yy0mYci6nfuWwwdjYmjC8jpdgmbW5rVHdVmQbnZ9M76p2mn3dV1G5pj9jHZXRfS+ZM0U0ezrR+RtlV/wNGNONoBrRVQWz5ZLUx33QuttwwpoAK6oaCZgrYtzKmPaZi96bc9fvZca4qIdLB1Fb0tUfMDZn5AzXfYu1VvHn3a2bVl3UdYdGTxVgaFdR1elT12YGKcaGGPQ9zpW7zn54KWPX+BO3jGdB7wYmBzP/GErycpWSVlr7LrPFiLvTgw3G0zfFtnFtrMfOsxRiG6IvQnWIMJavC/0L1vxajxbk2+K0hXiQCnJjlRXuKVOUaVcjF5jXkimHAD2+DtQ9JTrLvlP/AYXzBwmA2e49mB6IqCrzG8a5K7NWWnRstLnCTDTvYYVxmT2Wu0KEJTlP4mn5ZJD57tOnBDVdGGEcOTVxjJHj9N++LWFSLV0PHcENNwOAueEY888bqom76A3m0zIZyxdGzN5WR4iXGV4EiZf2dizVc7FPsdZjDA021O/SFl41LJ/dJKxj/cJ4VQMxoqpj/CHZXoZS5Gae29CO/b70C/wbAcIS4Izikbqzd5biRRwVBVMQrVFbxwjDWI0dKDCKlMRTeuqGvq5Q2GH+FZAaElRuC7ouqxSKYuJNtjxyCIQlR/LEbCm4UgoGQljcwd0oMR0WzciwtcU+t5dw+p4DgObA1LHi6a1R2ak/Z5TepmgTZd40anhJbYKT7Yev/67CjbY1fHc4Z9R6XZoiBWSYZ22KDnOxwqKdfWWWdGLzI5yJ3XwBbmVS0aiy5Mjhg7ppyW7fCDk96DVcj3WdUIG0Vnr1BUHYV/PD2hvw3/AZ/7J12Eftv1tBB9VqR+mKxaFZAnooWXSh3NttBsS4TEzWYYl29QTl5SDZ+xyBXuNo/dT6d4S2WcQJeoOh84TOW47Ty0GdkaI1tDPdyj3d7T3H+gWt1RPdyTSc5ch5npbraddLqDnXYdjeHZaK4r6Nq2K1JGTVvg2m0PLEeE0pkylsLyOdRPoKeHhvXiQFw2vWGu80qBkKwbqoIhPUiG+ugnAWk2PSL4cNJz1V2W/DuRLeItPDPE8wb4g+dYpxVqkWDke9Qqw6kL2iITz7uMFO52XfV+R7ERnUaxiWnKhCKpZTE6omgJ5uJAercmuVsRXN7jnH9An18RnV7hByecngy5jIQx+CGtWMRF783qOtZYEsMB3j+kRHJcejUWAobnA5fzs79AN31cN5DFX0dRH8g2GWVSwmLXiy+8Isd4mXJ6+iXOJGJgG5JDZ/bKs87rU9ZS7Vc2vBg4zP0B41MH3ZZJuNrXxNAbRLtgQzdPMeuK4ekXqNGYvPaonlDQ47zm41oepFTB4TOHM4JnX2HmCb4s7J18O71bYQ7eYnoBvulyEQ1IK1f4aqSwIJUdUcdwsyKX4eQKo8xF3HvT9urCcvWAevsOw3YJx4JqkdeO8IhJwkQ3unINFVNVmAdzrCc7nXb10BcPRb/GsF0xvnOH5LVNXDY9JmqTlj0bzzVU5uEJenFA3a3Q97veEKzad2IkZYWMhlec+pbYv5hVn57qGBp3cUFkaVj+FH18irq6RT08Gos1f4G6ucMIToisUHQydtkT63dZxUNaMvNNsRsKJ724oIsjaWNpGh3MCZ0TJq7BItbZmpr4GRZCyHIoWka2i+aPRTcUbx8PqJKAoIaik+k6qn2u9sbjjpTdhiGalHxr8Za2iYXfL9mjpDvUfI9neAwdg0PZUDdHOTZuqVqVqj2ia7ogJkj02d933/1jXn/yReh3yf5+a8R3Rwto68doa9PGHkfY4wjFDYTybf6CenjJXnW539e822TcHHJunhSfpj1KebXAypz4ovDMfZORoxEqJdruE3z8RH1/TbW86TE//Qxcdj1dV2O4ttyNeBihixGFYi4cDHvSdms4HA1HeG0Mh9Z0SaWiRajJjqSy4HRUhk1asYoFZbuTOj8VTTz1KvWGWP3xBdct2DsPyA9xPB2he9BLzU1JbNCJLAPf8nDMANMR1IYuPVOnFfLYMkHND1jJBmt5g7e6I7+7I7ldkd6txRhsL3Zfxa6kzhrKWNxQ7bsV3uknnPlbEd0wPWcenTLzRryIQraFzSZvWMSl+Bnu8j72e5OU7A4Ny03G9Srl/UPCu4nHT08Dfjr1eRZdEblDnGCINvhb7ME7Dh/uxc+vbKgOKft3tzRVjZ8nmOmB4fwLgtElkRUw80w+BDYfdhm326w3c2blQZg605KrgcOrocPp9A2W4WBaNr7+K+ATabYS8d5yzxaWOWaZE138jFfDaY9dEplEGbusonkQgYuCR6fyanSF9aLEqUWnebi+7wPd4g93BOavsWyPydnPqEZ2T8PW1JhYyn9v93lvaTAHE/xTsXOibVG0u/4m2yxvUHQDXdWZTl/ThGZfhAChcJMjsA7aOh8+w5CGUaPMafI15UGYbYXKTRS1ieuwCyxhFpXKQxCcusjWcXSLYThHn26EP04+Z3mXxOqF2E7EwA6Z+RYbSeuI84qFfIyJaxIMHPxwhjacYXQFJC8pNxvU1R366IzBdMjMM7hzDDa2zipuZDckzNeRpXEifUP6ZoEmhSHlPkHbLDBmK4LghIE0WK+zquc37oqaVfakkxnOpNpOqFDbTATfaZMdgexkhraIaGjaSniYJEprX2oMZTfUHrZouRyH5yltvEXNdgRRSGAKS8ihbGSXfaTpuiFVQVP1/0dUcn/yRQh++1ju809qP4uzFp+kougizrtbyquOhzqe0wQnJO6Uu6Ti4y7lepd9Fs3ctEcsGXo2C23OQrsvPmNHI2hTtN2C48M11ad3VItPpIutlP0KbEk3btMMHStwhfR7EAjkz2CENhQzZTWa0NoRR8untgNKRNucVQI9VCRHkk3Goaz7DqcLa+tO/eu4JM4qQbeuGpr62JO2FVVB0xVUTRUMOlPD0NTfGPdQVg215Lt1UQ/t8YiqKL8RmipI2QIl5Ft6T3joeHSd6VZQHkb4wYRo8hrz5A1mvMRYfcS9u+5FAtlSZPaUyWPXWO4zoeaT3hV7cIM1/LseFmuNTzmJTpn4E84Dj2eRxcdAjN/eugnf3B1YSiFDVdS8zyqW0ii7y2u+mni8GAbMX/wrrECMWJyZCLPrRAt1XpLermjLGj9NMQ9bjPM1p+PnBNNRn580cAw+bITf55DXpGXCOi7YpBWHsuFN7XHmnxNd6gKLA2I0efvoZWqrikHbYAKjq3/Jy2HYQ2SLuuVOjtE+rjNMKWKwtIDnk5cYTYlbiDC35G7VRyIYd3eo9q8wbI/T2RuaoexejsdeEr5NSz7JA4qlKzwL5jgntUD7AMpCjK7y1Q5bvxFBeZrJ6fQ1TUuf5tlFjy/iAlUR3bep2UyiM4yzgmOeYKSptBvEqOaN2A/pNpPZG+LSZJdXks4gvi5NVfAtHd/U8EMRv60N7zCkRLpKcrTVA2pwgxFNGc2GHDyDRWxwJ8dpcV6JSJS4ILQ0XH8q6CebBbrshqp9KiI5tvcY/pTICpl1CJ28pqyF52cRF8w8g0k0xhzMUKM7zP1OpO/mJU28Rds9oAarz6TW3UjuIBNPD57BJBqihhPUaIwZC8VunZdoyR4tXqP6G0Iz6gkKPYxYmmljxxBhdeEYNVihSrp2N5LTiwNWm+ObonN/GuEtdkSyw/k9hAn/FN3Qn0UR+gddispRM1AsF22ooQ1FvlDjDimDE5Zpw90q45tVyoetOMF2ex9TVwlsnWloczFw+j3C2NGJtBp9847jwzX1k5tnV3zqXMIzNfUztZo9DrFn056wrURTGndI60SkitWP07Jdy75IBTBSLiE7eW13outO2j8kbNdV+1nGkKoqKKqCrmooitIXINt4zBt6mhXUHEXhOrbHvgCJqIYjLaA0iihKTUvTtGRFzTouccy876q6xwR6LJEjCRFT3+ojsE88l1H0kmh8hXZyi3d1h7W8oVndUa4eKLax2Jk8yWpqyppmtRdjkxsd3bvFDD2sgY85naGfXIqk1eic4UkgRiaOIFP86tOem01GeiioippD3fJ38oa5zyt2hU8+8TiffoXtDrGHM7Th1xS3HwWLTkr5i+2BY9tipzn2boXxbEVw+gpn+AzfdHuEjaYqNFLG3xHRD7nwFuUzn5eDE6JnIpIhLHKasiK9Eyfy5E4QFgaqhmW7TM5/TjWye8VX0x5ZSoXmx3UqxsSWjqW7zMcvMV+XAskEPfS02MTo9kcUL0TXbc4mL2mODlVzRFMUbncKWSnTWeXYVVcVzgcXWG2DXmRCVdkKjlvxsEZRNQzLRtMtTgYXlI3dA0Vvd7kEnYKhqcIwGQX44SnadIN+2PbFI1tscM0bob5zIkbOlBPPYpVWrPRShgEW+JbOyBb5VCeygOibBZqM1Ci2McbqDm18h+FPpbjAZOyZfQDeKi5ZOAUnnsnEcfC6bmgtRoRNVVPt9uJxRxui8VAIEQ46K1OjlIbqLrRu7OgMPZFjpcluqMsuancrtNGG0BfCgNAWqcXdfSYua/Z5Q+y2RLKTaTYL1EQcuto8oT1sUaMdwWjI0NEJU51D0UWqHHsyduEYaE4kuqHdSmC72kaE6MVbFG+H787wTUHzr5q2L0CdWEHTlH8whPQfc/3ZFKHfN0+oC7VDO3I0oZWstKNu0zoR2xIWm5K365TvN2nP7cpk5EDnxH8+8biUfLCZZzC1FbTtDcrqA/UTn1G22FAe0s9GbiLawRWy7/n4kbA9PhOEbW/MoYZ90ZIcWh6SRLTWeSU6neIRdvpDsnZZt+RVQ1u3suNpHzN9NBVNU/uAOk1XMSwdzxK7rG6n1aWl6qoiWvEfJK92u4fu3+mI14qi9AF2qqpI4rYoYp1CrQu764uXDL3TDQ3XMZiGFvOBw+XI5Ty0JHZnzvDiGfb8JxjJCjsTM/VGih3qfvZ/6LuFIolJl1sAYaYcfMCZfYd/PsW4eMPw4kuC8RWRFYi9jWfyq9s93y0StoeCuhLBfterVJxMc4m7z13OwwnTl2OMwSn62TXWx7cU97e9KbTYHPr4aW+7xtws0M9fMZ29whlP8GQ3AYJWsNwX3O3y3k9TNC1tG/JqdMLgGZhFRiQl8undmnKfAWsUTWNgu9iWw/zkS+qJEAGAGK924NOP6xTfksVvaDObvcasSxRVQzVFImxbVWSrPZr7DsW0MRSV89EVTev2b6HbndhlLQ5FvzvUFIXzDu3Ttlh1RXYnbtgslkIGbtpYms6Jd0peOyLKuxCBc6u47bFLtq5ihSdY4wPaZtl3MeUhRV0sUUwb0x8QnQ+Zegaz1GSVlv3B63aXP7IDhxFu1w1tNoKenpcU6y3a3TXG8JThyZjTwOQ2NljZRv/8ryWVYezq2P5EFLPVHbpUbtZJTrNZou0XGP6EyPKYeSa7fsTdcCjEWO7EN4m8MUbnfdvt+6iXZrdCi9do/oZQ7pf2TxBVh0IYs6eFkFpr0RQtWmBIMnYXG6HnO/QyJjAdRo7BvqgFEb9tyarmUaDgDNHlSL+zX4hd7B41P+B4Y1wp147LGk1ROHLskweExeWfvxv6ky1C/+CKrKgcNR1UFTSDo6rS6jZx1bKJGz7uCt5uUr6+Fzky67ikOR5xDI1Rh4EZubwcuVyEFieejpks0d6/E3y5+2sh55XRy43sfDTbxAnkuG026E/m2uwZrTemCU5YV7ArGrYPBbeHosfWdDk9Haam28U8zfx5upsxNBVkBAL8eN/jSlpDlxQbyRtU95+lq70YoTkeqdojRS1USV22US6Bh92O6DddzW8oYLu0Im4rmqKlKhqZgSTSW2NNZbNOufYSvgksno0c5gOH88jm1BeInNA6JwwuCM6FoVdPN1jJGlti/LtikC03pIsdZVKSPmSot3uM6wf2398SXN4Tvr7GePkzTudfEJ6cceIJ+fzziddLq3dZRdse+0yfTLK57hObl0OXWXjFYHCGMX6G9ulbzNt3ZDefSDuaQJJTbA/Yiy3B6g7jYkl49Qus0ZU0S4urrFvudzkrWYgyKXQBWYhe/gvstmUofzdbbPs0VePtO5EdpCg8m/+c5uihKvRepU4I8H6VyJ8raEOPyfwnmKomILTqO4GkKmsRraC/RQdMReF88BxV+bwQZaUgIKjyNaIqDvPxFUYrVFdWnpMutz1AVdENDN3AP7WZeSFxKXY6XefeJah2+Txn0Rn6fENz2KDvU7IkI1/tUY1b4f73RkwGzzkPbaF+jEuyUsCA7w4FQ9sQ6rRghnZygblZ9J1zsYmxBku01Sc0b8zAGjGXIoWn3dCDY7DJbEbDEDecoQ2nmNIEW+clzV6G1oUzomHAzLN4SCt2WfWEklGxzWtGtkXkjdHGc4ydiHxvq5pjngqpdTgjGg97yXeXG9aFzSVVS9oa+J159bBFKyvRDUnzquqOCEOvj+7u1Je5FCjEZUsUuCJ5NRoLEZDkCR7TA0q2R812+OaQoj7SHrV+L3iU8OEjyh8tsvsPuf5ki9A/6OqUHUehdz8CZXMkzhs2ecP1Lue7dcqvb/d8XGfss4pje8SXJ/Q3pwGvJx6vhi5z32Co5GjL72hvv6O4eUt2e9/fgLqxW9f1WIMAdzrAmF+gn1zCcE4TzIiNgE3RsFlXj5LiVOQa/SYBATwWlQ7/85Su3f3a1LX+97ogOtdQ+zyhyBKoGUdXhFRWE1w6U1PE3kwqYY6KSnMUeTNlI/6rW1GYagm6PD6Bwz5Syo89AiStGvZS8XMrgZ+ruGR9KOQeRu6XjkeqouF4LFjKfKHbbc5732Qa2iKUzxKL46FjENkOkesTDa+wTmKM8wX6g+hMrI8fUA2d5G5Nvskp44oyrij2hVCGHRLCzQbn5RL/5S94ObwkmvvMpZz+o6RedBlCwjMjisTiULBKKy4iW3TCo1d47hBrOEMNvkazv+VwfS+8UZLdVmwPBNsDXpljv8x5PntDe/RpZaEu65b1oSBOSt63Rxm/raCq8MXojOCqwmobIrkHy+VuIblboTnvUCyRUHo5ewN4/evk4zrtuWIfNpnoNnQVLQoYzl5jIDxnivax96bliyW2qmEYJo5ucuqd0hwd8qalbNo+nfXTTnRCgmVoM5bm0zbZY6S5SBjexCiqECoYjs/4NCLxTdaZiErvu5htTmAKAUswsonCGfp4jrVdyzF2IbxI0Q3aeI7jDhk7PjPPZOWLcVoqC8itUzAPLEbDQIzTxqeYDyspAqpE8N/qFmN0yvB0ytQzmSQmq6TsuYS7omaRFExcHcufoE3P0Vd3GHJEWKU5+m6FHq+ww1MGtsnENdjlZq8s7EyjB1fkBBkDoZQz0lRQrfOc9rBBS7cYQUxoOvIxhLCgacX7Z50JoKjrDjEGM9TdCjVPnux1NujDHVZ4QiiTiHdF3fuquvdgXKpYdiSyhnYr0QnVpRA5xFtUb4TnjUkr8f7uVLMtogD1Zv/f51bLH68b+pMuQj/8Rn9XoN3TP29Re9VHUrXsClGA3m0yvpEd0D4T8+rIM3k+cfniJOCLscuLocOpZ+DEtygP76lv3lLdfiC+eegXhkfJYzMCF3sQCNLC9Bzt5ILj8Jw6POHQ6jykDbcPCbdxwX1c9DLeLtq5euIT6oQCHX3hN5G2rd9A2Bb0bVXGZQvatqMrqGWKUu5QiwQlESy6vkWX2fKKpoFuYJg2ruUI8rVmctQM0HTRUf5Qsqmowsiqmxw1i/KoksmskrhsRXBgUvKQlp8VpDivKWVX1F1l1bBOjv1NqlPfibGhkD5PPZNT32IeWEyCK4aDM4zJJfrpW6zRL7HeCqNpfLujSirqrCa5T2nKO+okJ9ineIcN5tVPmE6vGE4uGLs6V4nD9cARRuQnCKbOX7SOC24HDnexMMg+jwbMnkXoto+jG6iaYOelt0LVV+4zYdIta/wiw2hrXsx/DgTie61bft0e2SUlRVHz/iEV6jZVwdE1XoyusI8tjpREq4beF41ssUG3vxNjNM3k2eiKrhCZutr7lHZpyfVGFDdDVSGIRCFqu85LAk9lByP+voEzVzn1ZmSV049+F/ua5T7vQaed+TQcnqNNF1jxVhqPRRejmWLfpFkB0+iSQ2iLnY5Uma7jgg+miHOPbJmgeirGroY075aHhPz+AW14jR5OGE0j5oElDm62kJLv0pJVYnw+TpueYy5vRDGTeCtrs0Rb36EFJwzsgRQXmH0I4zYV+Jxd0QipdSBELmZ8EN62UsqkNwvU6JQoeMbMs9hkNfv8B6bRsmVgG2hyN9QmB5rqQZhG++TUDZHsZCJbRIrnddfJVMSlQWaJvY4ajVGTg9zrtCK/6LBB9Tf4zkw8f6bW79+6QhZZGpHvo9oC5SO6obIfyelljFrEOIZL3ijyXqrITgiOxyPtUfmjFKL/LZJVu+v3qbhP/7ybb9btsb85dj6SpVSSAYRS3fVy5vPl1OeLscuz0GTQxuiLb6g/fE1987ZPzKyTvN/5mGMXZzYUkNOTS/TzlzThnMKbssxqVpuaj/s9N/uC63Xah7l1cdjdpeoqtqF9pjIb+yYDxyAw9Z5MHFj6jyjbpqagH2uBJaoy1DxBKWOO8U6kjh421DLe4VF1Jcyi0NGujT6uQbNNQdo2TBTdABn//Bt/JrqJYhgotofjhfjRmNaOaJ2I18Mhu6ILExSmPPFm/zzYL87rH6XIdp1pN74z5XPTJa4+H4johBP/OeOvzrCnF+jzXxPevGX39obkdkWxTagywbBLFzuasqZKc/z1A+bp9xiXbzgfnnM6Oec8MLmLHa4jUYy+W8Yy1E6IPm63Oe8fEq4nHl/OfL4cezwbf4FvONi2x8jQxRL65oEyrqg+bnrMUlRXmMCL05+iKqIQaaoiuHNJSSILkSY9WxBwOXyB+4WGp5sY3q84XC/6+ILkdo1qfI2ialhtzfPpaxTF65WI1+tUyJAlfRugal2OYcTo5Au6n2ZbvaPYxOSrvVAfqiK91T9TOQ/GQuEmd2TruOhp3rauYWoqZnSCO3+JFm+x9sKUXB5EGJ9mv8WKxnh2yMwLOQ0sVqlNLH/uy31OIHc6Q9tjFJ6in15ir5eUh6SHvNrLG1EQvDFTd8B5aLHNH1N8V3HBrfTpRcOAIDpFn55jSfRNW9WU273ohsZnjGZiN/SQmuwyURgzCRRdxKXA8MgEVmESlZisNEXbrTDTNV4wZejo0gRr9N3toax5SErRyXhj9NEJ2mGLkQug7DFPRMbPaIPtjYksq+fbtUdBLohLoXILTU08RrRBPWwfEUV5KgQKgx2uNxYUbkcAVuNjTSW7skPZ4pctI2eAHo1pDxuRLdY24rEOG1RvjBv45PpR+IK6e+iTm+g/90juT74Iwe8wp/LjAiSyhGS7KUdMAnNy7D0/ne/ncuTwxcjj+cDm1NMxN+9h8T3lx7d9BECHoFFUFWfgi53P2eyz4pN5U5ZpzfIh490m60c9Hfo/K2qazq+jq5iG1gsgRr7FLLSYeiZD22DimiJd0lBxDAVXVx8jHaoUpRSU7WOeckxlbktyoIq3lNt9j0WpunTPpKTOK5qy5Sjbb0VT0Ey1Z879EFIqPkd9RAm1QpkG9JRs3TbRnEfMjjkUXgdjfMo0mjJ2ItrBkGIU9oeBTLrF46LphRi7QnQfHSl7l5S92i9uYaPCJ0vnm7uY5xOXj2chL4YuX4xdzsZf4gcn2Ocv0effEH58S3K3fhSLlILMkNyuqJIMa7HFX92hn16in1wyG18wmlwwdQ3mvoVvanxnCx/R3TZnfSjYJKVMEhU7vF/MAl6Nzhm80LE0jZHsZuObB4p9QfYQA7cADHQDQ1F5fvIVXUdk6qrgzu0LSVjIccwYQ1VQFJ/LwXOcF2BZNor1K+L3n8TPM81I7tYo2tcYiDfu5fQ1KvS7m99UiDRFQY+GhLNXGHUlboqZ4MGli03/eZZpMzzzOA/FDXKbiz2lsCtkuKbouB1d4SI6Q5+vsWS0uqCTH0hvTdTwLWYwZDofchHarFKx0+l2V7fbTESqBxbR4ARzco4+usZc7WkkiDVf7dAWHzFGp4xOxpwFcjfkmiz3YmS6zSruk5KRo+PKAmJulr3XqslLIQx4YjydB8I31FEHkrJmnVfsCmk8jcSI8JinFOutYPt13VAwI/JOexNsLg9QRd2yK4TxNLIsEd89nKIme9pyKViLyV4gdLwNoX/Wq9y6vU5aibGe8NtZuFIpd0z2NHKv06Z71HiN6g7x7UnvO+qYe6n0DQWmyiCIaJ92Q3kiRA5SoKC7Q2zdpG6FqKjzqrf84SO239Qk/KEF7M+iCP2267c9YS2isvf6d4TZbewLP4tnapz6Fi+GLme+Tlgf0G7fU33/v6hu3ok9g8Tvq5LRZo8jvNMR+uklxvkr2tEzynDOMm34tMi43oni8zR3pijqXi6t6Sq+7L5mUiF2GliMXcE1G9gyLdVQ0Ys9anFAiROUPBYsqWQvJJtPgKfVPpXoEjGCqNNcmDuT6knEQxe3IMjWogNSMRwd1dAwch3d1tHyCuVJH35sjgKYWjXUWdP/+vFxFHTbwPAM7EgQKOxxhDMdYI4GwnwbjXGjMZ4bcjRcQcqOPGrDJ5bju6T6MSn7epWSHgrKrKYqGqqiochq0lQUhI8zj0US8MXI4zLymZ78Aic6x7n4AvP2PcH9NfmiC7RLetNmuU+Fx+XmAe/0Hcb8AvP5TzgdXRBMJviW1nudmvbIzSqlzCoeJE25696aY8jr0QnDKx0bGCEJGDcP5LuCfJOiGkt0+2t8TcMAnp/+FHhMU/3m7tBLde+24iYvLlmINB1TNwhUjfTjrVQGJsSA1zQYbYMOPJu+BpCHrpaP61Z2cVkfG29oKlo4wZ9eoSd7bJnEWe6TvhCppo3hBJycfEUa2WJ64BZ9zHmnwItsg2jqMhieo58ssR5WoouRQXjW4hPa8D2aN2bszDj1LZahkFl3toJlUnJ7KBjaGtPgBP30Eme3+uy1bG/FOM0M5wzskFPfYp1VvQimMwFvc4uB7RBEp8LEnIhi1lS1kElvlmjjFYPJUBLtTZE1JEkRe0m2HtoapieUrM1uhZ6mPWC22a0w0g2uOySQO8tYKtzKRkitV3Ic5jpD9GjS73WOhVSo7Vbogxm2NyYwjb6T6fY6cdmwzxsiS8O2I/RgiOKtUHK5F8qkXDvY4bpDASW15WOUHUFBpLfGVUtoB+I96KxoJDKpTQ9oeYySH3C8qdgBP72f/gO7od/VJPw+159tEfqtBejJH3RAU9fQ+mW3ravMA5uxozE2GoyHr2k+fkP+4WsO1/c93PTYtlL66+OejrGfXWI8e8Vxckk1es4ibVg+5Lxdp7zfZn3ns05EzEAnTXZ+UHh+yJqLLA33WKCmS9T1huNe8Nfqw5Y23dPEce+naCRnTBC1O/5a9VmMQls1Pbm6279ohoZii5A73dYxHFF4dEf/UThd3/nkJW1zhKoRvqCq+VF0hKqV6LZOvskx/RRrscO4vscM3J6QbXh2jyVSXMG6M/wB08mckTOg9cZchAGr1OF27PJu7PLNMhGxDb2vRwgb8qRiUXfy34KbWc7Lsctl5HAehoynQ4LJa8zndxgP17h311SLT591R9lyS7bccri+x53dEty8x3r+BeGLn+HM3uAZAYGp9SSJm1VKnpQku5xvpAmzbFqKOuTLyYjpy3+FrRuMbRvdtlCvBRutOqQcru9RNBUPMI4tz0++wtT8PkX3/SrpgavvH5I+8bQ9+pz5c8JnJqYq9nbqp0/ie9gnYu/UtJhtg35seTZ9TYtDJU2M3U26I35oioKq+FwNLrDPM4z0gC1v+NUhJWnFDkrxQhFeFzzjauD0irLbrdjrfbeM8U2NiWsQDC8wznZYq1tBlsi6ILwtevgOazhjdDnlWWizyar+pp+WDYt9zo1ncuJbBNEYb3qBvllgH1JJaZfigsVHjPEZk5Mh56HwDW3TiqYVUeXrrHo0ngZiOtEetphSZl3nJfpuhbZbYLhDhvaQuS9iKDrVZ5fPM3YNonCIHQj/0TFPaDebx6C47QLViRj6Z0w9k11R9wrSrpPZuwaR5eA+2Q21dSWSXJMDx/0K1YkI/TMx1pOHmq4bWucVka0TBD7qEwJCv9eJt2jJBtUdEphDRo4QOXTdUCxHjIGp4jsRqhOiuAGKzE/qJN+qN0J3IkxNp2l/fP9U5L3zD7n+MeO7P9si9NsuVRE7IUURowhLVxg74uRhqAq+qTJ1NLTNB3j3lvzbvyZ+/4n0VowWjvINaQYu7nyMf3GKcf4K9eJLmsEzttjcS5/R9U6c3D+uMxGdLBfvqq4SWDoj32Q+cHg2FF3PZWQzdgRh22sz1PgObbOlXnyk3ixp9ysRWLeJ+6yfpxELXepr19m0crymygRU3X78cYo8IFWO3fQ+ZO4pp06zzd8Y09BFfnd5O1WS911WI4vc09Felz3UlA1tI978LPkRKbtj5ZmhKxBKUxEcGJ6/wh/MOZ/PeR7ZfDHyeHeS8W6T9p3lXtIOgD7Hp4NvfjdwuBg6nIe28B35zxmPr9Dmt+irDxjXX2NdvyO+WZLcPFDsc7JNRrrYk9ytCW7XRJsF5ld7zuc/wZr5WFJ9aOoq75YJeVKSJyUfJawToGpbfjIJObn6f2HbIknWcG3im6U41ac58c0SkN3LseVs/BJz6kqis4Zjpiz3OWnZ8HGdSqDkkbx2uQzHjM5/iqkbKKrGsWlJFxvKQ8L+XUXQtlhtiw6cT99Qt26/z+kUc+8fEjRVQZe+n6vRJcZFjH0QAYmJjNhQVBUzfIsZDPAtn7Mg4CG1WSVlz+Fb7Aveuxkz3yI0NU6jc4yzF3jbdZ8/VGwP5Isl2vAdWjhjGlxwGTk8SLl291jLpOTjPie0VOxwjn5yiX3Yfva6a7aPUuuxM+Y8tNgVlfSlicdaOSVbz2TkOPjRCfrsHDPdc2zXjxLnzQItnDCYCv/RJjNJKwFJLWUHsZIYHsOfoE/PRBRCmcu9Tio6mWiC7QyJLGG6TquGKhWhg7EsZqGpYXljjGgnFGqdIEjuhvRgiO0M8Q2LoeyGchlcuJfhiKGlYnWeHy/4zO/T7Fao3hDfG+MZKoGpsy9q8pq+G4odg9QyRCEKBrT71WePoZcxaplhmiGVevytB/p/rt3Qn2wR+l1zxr9vbqkpCpoigu0URcXWRLKqa6jYxQ7tkxi9ZW+/Zvf2RlCHY9GYWqGNNfAJLk9wX7wU8Q6zF6T+nEVScb1LebtJebdKud1mLPcFibw5arpKJIGWp/LGeBnZMtNGY9xBTpci26he3pCvl5/FIHSdTldogH6MpqiqEBJ0UQ59AXn8/05s8LTwqI4nqNuOJ7oRCUXFtKCLeOhk29WjmuaYHsQYQHZkXRS4WP5W4mtsHyMojk3bF822rH/UpXXfT5f66kx8nOlbgsu/w758gXH+ivn4gunJOeehyZcTj+uZz11ccLN9VNp1kvZd9uj7eP+QMAstno1c5r7Fq5HL1D1l9mKOHs7wojFm+GtRGK8XJIuYLM4pk4pyL5br4yzBylMmFz9Dm0wxuqh1XeW7RUKaljRNy80m6wuRqii0Y5f5s19gWg6BZWOE35PcLHt2YHK3QtFUnLbFfFkwnb1GH0XYuoqta/ydqnC3zUjLhpt12p/Sq+aIMhoyPPkCo21xyrxXyxXbmLZpCZoWR1UxdYt5dElWuWLflgq13zou0dQE19QITI3A9JgMBZnc266F+XYb96mvkf8WM5owO/05L4YuK6kU7MQjy33Oh13GiWcSDQd4s+cYD7fY8rXbloLOYK1usba3BL6QSJ+HFpvU7j1wWykWOvFMRqMId3SONl1hxwfxGiqfMNhGS6KTMTPPZJ1ZfaprF1rX7YYcf4oxOUfbrXqZdJ2XIp9n/4DqDomsMfPA6iGp5RPx0tg1RBfSdzJ7lLKSUust7WYh4rvDZ30n00GChdG5Yl8aBJbxg06m6hE6x8MG1d0QyN3QJtM4lI8d0TqXu6HAfVS5HbaPRSTeomV71HSDZ0REts4613rPUFwKu8TA1vDsAMUNUWwPksOjQCGLUdwYy4koW+UzwPH/E9efbBGCP7wSd8F2qkIfUWAhqdFNjrpboizfUXz3S/Zff8f+3S3J/YE6r9FMFXfs4Z1PiF7MsV58iX71M+rhJavW4nb9OHr7bhH3wXbN8YgthQbdTfA8srmIHM4Ck4mj47UZ2v4jx3fXNMsbysVNv3fqdjlP4wwUTe13Lp1qTffEuKfrYHTbRLVtQdg2bRRLfHxacI66JUCoEoJ6NGwqRadsjr1Qo3v9adIA2UNHpfJOqwv0MhVU8jqHspD+g0qQessc6opjkQkVTyJ9MzKGPF/tyTYZTdlQJqXYUa1aNEPjcBvjDLckNw941/f452/7sed8fMEsmPE8ilhnNeu85vZQiFh1KWTo5O6bRHiSbjYZ39zFzEKLbyYer8YeX4xdLiWg1B7OGNr/XcZk3BLf7injirgUirq2rBnmJW6WMHr5L/jp9BmBpYvYatfku0XMOilpJL9N7zuiI+XI4WL+cwzDxfUHGME3xB9EtHeTlcQ3S1qJ2DfyhOH5TzAGM0ztUf7e5SOl0pVfta0wFQ+HDE+/wChzvCyhTjLSxZZmtZcBhyq27eEZNufBlHXmsJUm6OW+YLkvsPQYz5RR5aMZ3tlrzM0CW/qRKsmEsz7doEbfYnpjJs6Mq4HDSgoUOvzQzTZn5llifxGdoT97jR1v5e7tQJ0XFA9r9PsPohsaveQyEuO9Tq79lFwwcnSs8BTjTCSCmukTccFmIaTW7pCRc9IXkM4cHRc1q7RknZn4pknkT9Gn5+IQ1T48igtWt+j+gOhkTGwLlduhrNm2wjTadUO+IToZfThDk16bNk1FftZuhT6YyL2O9cSvI4QKe8mDC00Nxx32LLdjntBm5WM3FI5x/Cm+IeTqnVii74akwGDsROj+AMXxIE/kWG8vJN/eCH80xJfJuBtFoTq2/Whw5BhElo1qiUNnqxu0eSl2VOkBJchQ6hxdtT5bYfxj78H/kOtPugj9vtfTJ6mbZSqqInZCbY2aHVCTFcf77ym++yXbX3/P/t0d6UNKU7YYnoE78YhenRO+eYn58mccT1+z9065i2u+3yZ8t055v3oUHXSMORHtYPNs5PIstLkaOgJs6AjSgn7/ierT9xT312SfFqTLjVyYZ6LwdHBIVZW7GgMzdDECt+eiGVGI6oY9YVt1g8dIB8MSwXW6xdF0KVAlSPJIXh8pmpY4a4i3DWmV9PPnp2Y1TX2MBXCekBUC08TSbUxjgGEp6Opj/pAukS6GCkpTolQ5RpmIpadMjq2XNxR3d2TLrSBlL/YU+1Io9jIRT5424nko9iL22vlwj3/+TnD2pudE03OCcMZFNOWLUcQ6a1gmFR8POdfbx3Ho+lCQHgqSXc7iIeHb+5ivxy7vzkJ+fhLwZuJzcfWvMd2IYTDAGv4azX7P4eOGKhEm1/31Q78P88uc4NVf8mb6GlcPiSzxc+5oC11mEex7PH9e+zwbvMC3A6xojOr+Ev39e9KFSPGNb5ZUSU6Q7DGzhOD5z3kxfI6i+AAyN6jpc4M6skJzDHgzHjM4/xIj2eN25OjVnmyxBWBsW1iOx/DS4eVQdENdGFsnN3fMA5GU/T8fXWJcbfD3a+okE1L2JJfRD++wxqeML0Vcxjp35S5Gmm7jgpt9zsQ1iCYug/EFxrmIBX8aNW6tbtHGN9hOxMwbcBk5pFXb0ym2acXCLpmlJsHAJpSSbSvdA2uR8RPHNCsRvR26gmodFyJ3qAsQ7LqhwNLwgynqcIcuu4d2t6dJU5TdClUWs6ErVG67QtoEqkZm/FQMbAPftAg6lVsmlWV5TnPYoK7vUZ0hUXTRB8XFZU1ZthyKp4/RoXhEN0SW0GYJym5FGyzQ3CGBd9onrx4Kceg4SGpHZOlEQYjmDlD9gejEihzylGa3whzOMKoU37SILJ2VrpJWj2q9XV4TWSq2LQj9irNC6QQKWYIulbamY3+WG3Y8yl3GP+P1J1+EfliJ/z45YPf/Gi1KXaKUGWq64bj6SPXpe+IPdyJQTI7f7KGNPx8QvTrH++qnGC9/Tj1+yUNr8eEhF6O3tdhNPGXMjXyzZ8xdRMLQeOIbzFwdI75H+3AjfEafvie+eSBbbMjXe8q4pJZ4ekVT0AwN0xcCCCNwccYRzmyIGorQLXU4RfEGtKbH0Q5pLI9C0T8rNGV9JM9b4jIjrUSGTVwI4vYuExTizqvR3dw6YCkg/B/SKPvULOrK/7d17ZElpgojpKog8og0tS9Yvinw+MFEwzpLMeIl1n6Be39NtLz5UREWpGyx26rzmnwjuXCbGDO8xxq8F/Lv8QR9ek50eokfzDg/mXMemv2o8+/8mF9/2nPbHsnTkiKtKbOab5KSZSevziOSWcDL8Re4hoPvDzADFzN8TyJVbU0lvEXd5dUlZpVxMXmFM/eZyOiKb5aPQXaruKSWxSMuG9Kpz0U0YnLuYFmOwOZo3xHfLEXXe7eizguiqsaqK+wXDRfDF1SNR143PWFgJ7H/IEZ+tq5ijc7xLg84stssZYptttiyd2+J3F9h+RGn87/g1dBlkz3ioDoixIcwY+aZ+KbLdHyJcX6HdxCj1nIvZP3Z3QPa+B16OGM6fMELKVLoAKeppErcuKaMRTjHmB8w4i22JCm0VU253qItbzDCMeNTMQYTC/2G260QUWxz0Q0NbB0/OEGf7NB3K45FTtG0/TitXnxEdQYMo0tOA1OCOwXjMKsaVmnJyDbwDZWJP0Ubb2jTPcdC5nhJqbUxnOG5QyJL2CHioqZsRCHaScq2bwrPjzGYoR62Qp1aCUtE5/mx3CGh5fRk606ksMsrVllFYKl4UuWmeoF4jDwXCtfdCn24w/GneIaKbwrjeZ53IoeaidsQVxqGLcQ8imlDsqfNc5RuNxTMcD0RnOcYGlouvhch165IK53WD9CcANX2RDFsG7mjSlHqHI225z/+tnvsP/X1J1+E4Le3hL81TwhkumqBUsQo6ZZms6ReP/Q0ZN3RsYcu/vmEwZtLjBc/Q7n8GUl0wW1c8XaT8M0q6RfjHaDTkdHO5yOX50OHq+EPGHMfPlB9+Jry7prD9YLkTggeyrjqi49mqpieiRk62OPwEXQ6mKJN5qjjOa07pLUjClPImbO6JS1b4rgiLnKJ6Wj6zqZjWsV59chwK2rKvJbxDo/A0+MTLaaiKGi6KoGnkrQtadsdoPRp5lB3PeXV/ZBwMPM79d85o8FzrNMvseIHrO0dweqWZrP8jJT9w11YsU0otgnxzYMgU3g29vhrnOkA+9kl+tkVp7MXTKbPGTsGM0+Qkv/a3vLtfQz7nCKryeKSumr47/JmdSga0irg1fCc0ZsQJxozCf4H7vRaYHjWe5FltI3Zf39LW9Z4yQHz5Z7p/A3+RLjVQ0vEur9/SHpzawfHzOuWQ+nycuhwfvoTDFXD1YSooMnKzzKmwrLGbRvcNwYX4TlF7ZNWbd/BxFnVkxU6OsbL8RXG1QF/v6bYHuTuTeydDO8aLRhiOkPm/jmvhm4/lnsKOx17onhEoxOc81fYB9GpdeKXYnvAWd6gja9x+i7G7ruPg6Qz3CcFtweT0HKYRufo8y32YUsruyoBAl2gPdyguUMm7kn/ON047ZALGvUyEQmi0+AE7eSCNkswKvE4TRyjbpaYwwW2O2TQA0WrPklXdEMFoa0RhhF2MEUNV6iHLeQlTV6gPNnrDKKLnuUWlw1xXfeJp0PHILLMvpNpNgtIU/EYuxWt7IaCyJf0Al3ATeumR/mMHYOR7YpxmCwixzQVo73DluNB+IZ8a0xk6ywS8V7rDLDrrGJg6yKiwQvFSG2vPTLpDhv0bIcTnODoisiB0hSRMyYjHtL6SNooBKYnwjGfjuTKXNwfmxJNtTkqogFSfkMX9E89kvuzKEJ/8CXTVWlFwqqYySY0ZY1m6NjjEN02cU/HOK/eiO5n+pq70uC7OzF6+3oR83Gd9nBLU1d7AvSrqcfVQIgOTj0dJ3voi0/+4Tvim4fevd+d9gGs0ML0TFF4ZkPhO5qdo03PUUZnAnTqjVlJ4sAhbnlID7LlF7TcrtDEeS3QId1/TzKA6rL5rOh0ENHmyQJSVRQUVYgpVFWhaYQJtZHU7KZpKfqn89gXr+ZJvEN3aZqKYWlYjkHgmcwHdi/MmEvkzsC+ZHj1Avdlg55uMNMNfrym3Sx7Yna+2pOtdo88tn1B+pBxbLZo5gLDM3Fn3xNc/prgxQXm67/g8vQ1k/mp4IO5QhDyy487FuuUPKlo6yPpPufX8uaZlDWbzOfNxOX8+b/GCqYYZ9/gnAljaCflLg8phw/3grawXWO9WOA//wkvR1d4pwEjxyCwdL7WD7x/SHsUU5cGuitq6pnP89OfYigqblX1cMxim1DnDzTSCuDrJtEXOi+GJ6SVx16CNu82GYek5LtFgqlrIg7B8DmbvcZ8uSU8SCjpciuk1ncrzPAbnOGU4VXEi6Hbh8NBzC4VUukPm0zshkyV56MrjKsEN5ddqERTZYsNavgOMxwxPY24GohRWlm3fFynfSrrjZMzdAycKCQYX6DPNyIW/E5ga8r1FtW9wQzHhFbAzHM4lKIQ1XK8t807qbWOG4b4w3P0VPjhGllktf2KenmD5kaMpq9JPYNdYVE0LQ+SRrJKKwKzxDc0ToIZ+nQvKNSZUNsp+y2qHO1ZTkRkdUBQwXKLixpDU1gkBQNb0AuMcIMmxQFVkqPEB9TNAnM4E92Q6RBZOhtDE9MHuRfqAussd4gejlHtWxR1K7yHMnlVi2YE/lRmbWlsMqXPCdpkFYlviYgGW6jcWN3SNhmkqSAqJFsJJY0IJNYLEAcYKdce2hp+N5KzbJSOoJAlKE0JdYlm2TR/xCpz5H/jeO+n39jf+5w9SVg9to2UoHq9ikwfTTEu39DO37BzZtwcKn613PGrRdw75vNKzORDx2A+sHk583kxcnkz9jjxdAbHFH0pED/5zVsO1/fEUhVVxlVPFzA9HWvg4c4GuKdjrNNTjLMXqJNzGn9K7U9Z5wJzs7pNuJeQ04e4ZJuWn4FOs7IR+R/1Y1RC28i4BRm50P1aURV0U0Q6QLcnU/qQO93QRNDdD0LunmYMdUF3iiqiD47tURa55rPAO0UF3dSIbYPVOuVbz2QSWMwHNrPQZhYISvbENRg6Eb4/JBx9gfviiJasMOMl1voO7+6a4vYjyc1SFPPFgXyTk21qICG+PXD4uCG4vmd4e4/35hr/1S94M3tDZEWcBhbnA5u/+bgTxeFJbMPNKn08yRc1h4nHeXDJ8IsJ9uQcffxL3A9vxfh0KfxiYoyW4O9T3M0S8+WK07OvcCZjmUIqnqv3DykbiePpRp/CqBwIf1BbE+SJWLbnpRRrbAFQDR3P8Rhe2bwcBewKv/95bw+CIvH+IWEs85G8acTg7A32boUviR7dKC25XaOPvsaKJsznPycbu+ylLwaE8m65z7nxTUa2QTh1GU2uMC4PBLnA75SHhPKQYj3cod58h26FzAbPKRq3D6wTYz4htb7Z53imiju8wCgOHPMUK897CGuzWVDfX6M5IZPpa9LK7P0ti0MhuyERqOcaKk54glEcBP4mS3oKiGLfiQhrO2DgnHDiiWiEvTyQbfOKRaIx8UwCy8HvVG67FUjfkCpHe5odEQ1DJq7BQ6r3O7S9TE6deU3fDanRGHWz6B9DO8j4bndEIHlwi0QE76VlI71HpVD+hWKvo3ghqrnkKP1Z6mGLnmxQ/R2+6ROYeh//Eec1O0NjnVWMHQ1HFhHV9mC3F4dpKZRQox3ucEhkG32O1WPgXUVambRBgGa5vUru2DYc6wqlzlGaSozkFPWzCckf4x79+15/VkXoH3opuingipqGNtXQhjOUyTPq8RW3ucq3tzF/95Dwy5sdH9fi9Nm2RzRdZSQjB356FkqHvsV5YKCvBeKnePdr0msB0cxXe4p9TtscUTUFM3KwBj7OdIh/PhGE7fkLGJ5RD87YtjrrrGFxm3CzLz6DfnZ+ig7588MXSJfto+kqmq6KAiNVGV1Mw1Mad+d5MaVjX+x/BCjV1FVMTYAvNVWQJqq27XN2Ok/GTqLsu4TSshDd19Ovra4a2uORumoos4rlLsex9B+lsI49cUM98Uwm7oDhcMzg5Cv0+Q3G5Qes669xZu8wv71hf/1A+pCRb3OyPO9p2dUhJdrGRJsl5ps187MviU5OmXkGM8/i+1naCwk6Lt3yUNC0R3ZpySar+GLscjVwmM9+iuNEOONTtMGv0N++6w8U2fJR+RXut1hZwuDyZ+jDZ4BUx0kqeJqWLJ9Q0VWJ43k+eY35ekdUSiqAxCmlix2afYMR/DW2G3B6+S/5cuISyyTQsn4MD/xuETOWeyl3+Bz75QEvS4SkubnvR2n5p09ow2/RrIDT8JIvRh553YqsoH1BIXFBI8dg6pm40RT35CX6YYMn2YKd70db3qBFYzwnYuKEXEQ2h7L+zKtza4nAOc9Q5VhOTB70XBhYy0OKurpDi8ZodsDYmfYqty47a5NWuIYgRIeWRSRD65rdCkUW2ma/RV3dYYQjfG8sY7N11pnej/bWesXtIX9kuQ0mqG6AZsoE1t0e1V2iDZdY/gTftBnZBqtU7IhTyXFbJAVDR8NzhxjRmNr2ULSNMIjvd6ibBcboBCeaC3OoKQzInT9rb9Yy9fTzvY6iyvjueCu+t3CLF4ZE9mMYYlo+GmCTymQs9zqK46EZOlWVC65dvEUr9pjHEluO5ExN5dDWvdgirVqyVkczPVQvpN2tOLaNgKPWteiG2hpVNfldSu1/ypHcn2wR+l3f8N8bbtfthRQVNBPF9dFUVRj+3Ig2OGGnB3za1/zVpw2/vN3zzV3MaptRlw2KqmA5BqdDhy9OA76c+fziJGDu60T1Ae36LdX7X5Fffy8oC8st5V7IkBVNxQnFyM07HeNenD5y5qJzUmfMOq+5e6j4eEi4OxS96m4dl2SF2OF03QzIkZmm9tw5x3z8rysopq49FpTfELFty7TMbrdgaqpUu8li9WQW3GUM1e2RrGo5yDl3F7q3OBQ9hiXuoiia9rPurCtMtYx52O9zPqpKv4N6CiedDxwuhw4XkcNFOOf01QXm9Dnh5Xvs07/GffuO/fe3HG42pA/ieS72Bdt3O6Gs2xyI1lvcVzcEL3/O69EV08uQ1yOXVyNXSOuf4JTWSdmLCj5uMl5NPb4Ye7wcnHLycowVjmXK56/ZfXtDutwKZd82IVvtGR5S/PRA8Ppf8nr0iuYY0B5FIfrmtqHIKjbbjL/ufn6KgnHqc/7s55h1xTAvaPKS+HZLlYkgu9031yi2i2V7PJv9lGIWyMLR8v4h7SMW3j4kcpEd8Hz8EvN1RlBXtGVNLlNU89Ue6/YdphfiWz4X0YC88Xo1ZJfzc7PLCS0dS1e4HF9hlDHHusKWj1ElOcXDCtX9HsOPGM/eUIYmcWn3cQZZWbM4FLiGJnKrBiH+8Az99ICZ7mmrB2FAXT2g2t9jeiGBFTB1TXa54NR1aKClXuKbukinDadYwx3acIGRPEZmqKs7UVScIUNJtn5IKzapKotZycLSmHkWYadyi8Zo+3W/pzL2K5EVFEyJBs+ZeCa3cYGulv1jPNg686JlaFn9OEzfLHo2nbZboa3vUcM5vjlm6BjcxmKA3XVlD2nJxNWJ3AjzB4WsSVO0/Qoj3+EOjyK2XL5/u0K2syqSsiVtdAI7QHUDVNPgKHeoenLgGO9QowOeMeiRU93XEEul3czT8ewQzQ1QLFtQuaVAgaZGaWoU1ez3Qf//PKEn11Mm0e9q8340puviB1RdSJiVCOyI1vJpvDF3Sc23dwl/c3/gr95tuL6PydOStj6imyq2Y/LixOcvLwd8NfF4NXR45mvoq3e0N1+Tv/81h3efSKXooMpqVE3BHrqPxefZHP38FerZa5rwlLXqskxrPnzci1iJVcrHdcpyX5BmFWVR92M1VRXmVMPSMW2dyDF64GnXSXRzZL8PrFNxdE1EamuPfp/uP50Wpcof/T51iVJW/Uno8QmUz5tuczQsWt8T0u+jS1YLMnkig+/iQoweYglyTKvHk+1nAom8JpPdU4fgObZHFqrC94aG7RmMBw7PJy5fnoZ8NfG4jGbMX51jjs4ZXb4lePU1h7fvOFzfS6l30RejY/MgcnJWe8LFDcblG0YXbwgHzzj1BfD07dDl+83nndHNSjz/H9cpH2YZi9OAn858LqY/wTNcPNNGUUVkw+HjmmyTi39X7naiIsP7GXwxegUgsPplw8dlQpFV7Pc5v/6073OfrJOQycXPsIuMgRRh5KsDVVaT3K4w3HdowRDH9LgILyjqoA8U7GTht9tMdJS2jjP1ODl5g1lXhHUpM4NEKmd6s0Cxv8VyAyZnP6MaWFSNwLvwkEiTb8EH+foxNYX56AqjEovrtnonRnyHFH3xSUwSDJeT6WvSyOYgDx6324xtWnJvao+vw+gcvUjQdyuMOKYoY6p9im7ficcxPcbj1ySBgIFuTEG2XsUlti6KmW+qgmw9ntNslqhSCVist6juHeZwhueN+5yfh1SXkNQSx9R6nI8nPT/N6g5F2/Z7L8W9xRqf4kanBNI/dW9qfUe1ySru44KBJT0/0ZjG8VA0oSRs4lgy5jYE06nA7ciRWv8YecWhbMlcE92OUL0A3TYF8zHJ0Q9bATYd7PDNkMg2sHXRDRXSeLrJKiaujmcFaMEQxfZQNCGuOnbx3/kBdzDqwystXSUtGxI5GkyqVnRTtvAQKpWI/j7WJUpTQVujKb9fWsE/RYH6ky5C8GNK6++iaH/2+5reB7dhuLSmQ4bBYl/x64eEv70TBeh2EZOnYlRjOTr+wOGrecBfXgz4xSzgMjIZk6B/+Jbqu78lu37H4cN9f1I8NseesuCdjvGen6Ofv0I7vRJGV2yWac27zYF324zvljEf1xkPh4JSFp/uy9Q0FcvRsRyDyBFdwlTuU4aOwdAxxBzf1mRukIqlK9iagtKUqGUGdY5SPhabnradJZKgnAh1TZ738Q4d7UDR1MdoB9dFsV3hS/IHeMEA3/E5mj6t6XB0PI6GTS3l4mVzpGiOPSl7J1VPD2nJ4iBu9DfrjCQuyJOKoqqos4ZjC8k+J97mPKxT3j+kXJ+FvJmJeI3n0TNmX51jnrxkdPkdwfXXZDef+vFnlYhilK2E6qzYHHDv1vj31xjnrxief0EwvmJoB8x9i4Ft8Ks7EfO92uUkcSFGaPuCdVywK2riWcCb8XOCVwoughxe5yVNtaPYlew/7npj8cBy8L+yeDk4p6iDnkt21x6pipr1Luebu0OfcGuOp0TPf46bCmXbXrslk7uTdLnBev8NTjAgvHK5jEYcSq+X0ncWgY/rVMZ8GNijgOjkFUayJ6jFKE3sdBL0uztU52sMJ+D05CvKxiaWo8LbrcAe3e7y3hfmjV2i4Tn62R4r3fcqt3y1R3WvUR0P3fKYSpVbLPcoOwmWtXUxTnMNlZPgRATF7QSJXsBj96jODWowwPanDG2fmS86ma47W8Yqka0z8UyiKMQNRVCcvl3L/KIcY71EXd70OT8T1yQwCxaqQla2n9MYHIvAH4tOxr7vH8Ps9jqjDb5zwsgWYGNNVUToXVYJQVDV0EYRWjAUnYix4ii7IX23gniNHsX4pk0os7+6fd6heFJE7AA1GApxgKYKwnss9l5qvseNBrKIqPJrEGIjIUVvOYah2CvZLqqhU8uxrnbYoBV7HEmE6bqpLqFZHBCPFK0iRnKOx1Hu/mjF3lxpG47HFgX1jybP/t8qTwh+e6bQb/s9RXZCR90USg3NJK5aHtKar1cJ//PTnr++3nK7iMk6v5BrMJl4/MXlgF/MQ35+4nMVmVjbD3Dza/LvfvlZ99OUDZqpYY0F4DS4PEE/f4V++RX14Blr1eUurvl2ved6l/HNnQjT28q00brqTKr0yrLoibLsLLKZuKaUOj8Sti0q1PyAUsSohwTyhDY9cJR4nVYWmSYVbzbh/0h6V3xHZ3ga79A2wnXfRTzotiGMs65IjTU85zMoqWJ7qLaL4niYpo3tSTSI5Qo/kx/STiN2pQgUXCYiVbajTbx/SNluM7K4FPLxsiVPhJy6yGq2smi9m/l8KYvRqXfB7KdXGPMvMDc3eDdvKW/eE988yCiBmDIpKZM1+XpPcrPEPf1I8PIt5sufczr/guHsgtDumG06vwQW65RC7rn+WsqZD0VN1UZ8Nblg8EbHA0E7aL6nKXfUWc3h9oCifUAzdELTJnqt8sVoTirFLP+3qnC7SmmaluWh4Nef9gTypGoMLvG+KPBbMb5VVFUu31Pimwc0/1dYtsfk/Gd8MfZoZRHqyNvbtOJ6nfWnXn0ww7/4CUZd4TcNh+u2TyrV7Q+oboiu25yNrihqt48yuN1m7NKSD1vRqYWWjhWd4E4z9MMWKxVjnyrNye8fUMzvsfwB4VnE1BV5PmsJOY3zipttRmDJTmYQEgxO0Ya3GLKAlIcUdbFEda8xhqeMTr5i5hnc2DqmrhLnR9ZxwYNrcHvIGVgatj9FHU7RVrcoslgX2xhtdYd+ssQLpkSWRiiDIGMZQbF2De6TkrGr47kiZkRb3nz+GJslZrIiCOfydfH4dXSdzCqtmLo6A4nQ0e1PFCC7ISkOGO/wXZfI0j8rZHsZVZJWLa0vRnKqG6Ka6/69qR+26MUBRz32yciWrpJJ2GssJw1prROavoDM2qbIN6tq2jzlGO9Q8j2O7hGYOrauAVU/ndgXNVmt41g+qu2h6KbYC7WNSFluhZIY1fwnu1f/ruvPogj9gy45VmqOEJct27zhepfxdi1GMstNRlU0GJaG61s8m3r865cj/vI05NXQZqZm6B/+lvLbvyb9/rs+zrmWkQed2i24PMF6/gX68y9phs9Z6wF3cc13m33/b31cZ+wOBWVe0dSSn2aon0maz0cuFzLe4VloE1qqIGw3GWq2QN3uesJ2Iw101SHuZ9R1/jgmEgWn6Llt9RN+m/jY9jTsrgABqIaKZmoy5uGR4KA7mkAISRiqauooqtrnD4nuyZLmTxd9MEIbTpmcXDIKZzyfnPBmPGCZ+nw4Dbje5Xx9L6TNy11OnpQUuVTeVQ3JvuBd1XC3E9EYfzfxuBoJAcGz6JTp82d485/gvf6A9fFb6pu37L+/Jb5Zkq1i0oeU9CHl8HHN/t0t0ftPBF98i/PmX/Jq/hPcZ2IRbOkqfwV9Nxzvcr6TnqJSstt+Op0z/vLfEMiCoRrv2V+vxQhtcUA1PqDZJp6qMn6l8vPZDFURQpC/UhXudjmNFAL86nYvDb8Rr6ZvsABfN1E0lcP1vRg3bQ7E7z+h6H+NpRvMz34GE7fPDPpuEUscTy6TWcVu78XwOXYrIh68qia+eaDOC5K7Nar5NYZuYOkGp/6crHaEqflJcJ2uKrKoKVyOLjGKPe1hi3EQ8Rf5aie+f8dDdyNm0zcklYh8EKm0uSApSN9MYKq4odiHNpslqozVKDYxhvsJbfIBzRszsgUT7sE3e2NtFwU+8yzGoyH28BQtukG3H0Ry6iFFXz2gL29QgymRf87ENblzjD6wbhWXLJyCZ6HNyVAgdDR/gG4/9Aeydr8SvqFwRWAOGDoiybhT/m3Sioe0Yl9YhO4QbThF8wM0Yy8Od4cUY7fCyHb40bk8LIpClpWdyEEUosyz0a3gcSQnsURtuhc8uWiHawgyh2+J0WJZCwrDLq9JKgPfDgQ1RY4F+5FcIqJfXNeXAgdxqCgkgzAua7K65Wh5KK6PYrtQyswpqSBWjm2PPftd1+8zkvvfOk/oD4GYoqg0R/oR0a4Q0svOXKiqCo5vEgUWX5z6/MV5xP/7LOIyNHD3Hzle/5Ls278WiZ13IsK5M7m60wH++RTvxSXG1Vdw9iVZMOdTXPH9MuabVco38ia73uVURU0jxzeWo2M6BieRzbORw7ORiCK4jGxGjs7I1rCrA1r8gLIQ3ohqs6DZruVy9pFs3eSlyE2R0Q1t1dDKHKAu0qFtWtpK/rn8s07woGgKmqYJZV1H3DY1VEPtC5P4ey11Jk74HVi1ww11JG/N0EQB8wycofMjYcbo/CVRdM7lxZg3Y5dfzII+g6mPwYhLsqwSCrv2SJ6UvC8b7rY534Ux84HNi4nPZSTwSKeTnxIOLrDPX6KN/wZr+A27b2843KxJH1KyTS5UdZuUbLFhtH7A+YsDZ8//EnM2EBHY8FkhytOKxUPC/1eqCgF+Njth9Ob/g69qPSw2ud1S5zXZKmb39gbdNrENk+nLf8VPp2Ev9Pj1pz23WxGTLdA54qRqqAFXszcYgCstBPGNCGXLVzs04yOKbmCaFqcnX3EcOX0H07QJh7zmbpuhS0J2Ly6oc47JHivJe+J2fLMkMN9iOh7Rhc+p57OL7D6t9JDXsM3wZWy0o7ucROfos3vs/Up2MQn5ao/hfhDhhe6QkT1i5pncywJyyGtutxmhbTBxDUaOSxhM0YZTzGDRh/Plqz364gZzPGcwn3LqW9zsxXPTGWFXacltXDDzdKZSam0GH2TkuVDuWZsFZrYhGJwzduSezNSJ5U5yV4jU0xNPZySl1ob3URqGC4rtQUQ9pBvC0YiRLbxfpq497jTziqRqqT0f3RsIibiz7D1fTbxFj4VfxzU8kYRs68S5IEx0o+m0avuRnOa6qBtRRDrzqlLEeMGgV8mZshvKa7HXyeqW1g0wgyGNG6DZwmDc5AVaekAvEpxQxTHU/u93SKJD2ZDVLbVro5k+iuWIURyIAtQKfNg/tyChu/4sitAf0t51T+QREelQtUeK+tgTb8u6kWoym8g1+MlZyM9OAr4cuzyza/T7v6H6+n8Sf/0127c35KsDZVKiqCp2ZOGejoheneO8/BL96ifU45csGoubRcY364Rf3h54/5BwL0/4rSw+pqXj+RankjP3auJxEYnogYmrESol6v4G5f6W5v4DxfKGfLl+HDU9SUkVgXPtb30OVE0UEd1+/L3u63j6OV0Mg2poqJrIG3pK7O6f/1YUsa6TKmMxyhMMuM/D7hRVwfQNrPABd3KLN3uPf/6W4PJ/YZ4/x56/4GJ4xtn4lFejAZu84T4WIWe3ccHtNu/p5J1SsCxqkrjg4zLh158OPBs5vJz5vJkIQOn5yS9wvTHBcIYZ/A9U83uOzR3JIqHYF5RJKT4eUiZ5iV9kTF/+C7TZXPxsdJW/0lU+3B3Ik4oyq1msU/7qnSrjtxV+MjkneqPi64boAo0PpMstTdmSr/Zs394wMg0s02b67Ocok1A8tqZi6qIQdfucTqigKh6XszeYxxZaUeS7QpQuN6LgWTaGqjM/+Ypy7JLLzKDyIenD5sxe8egyH16iX+57oGjXxaiqimLamMGQ2fznJJVIK13siz719P1DQmDqjByD4XiMM71Ae7jF8DZ9qF5yt0YbfI81OmE0Fyiem33Oran1o8KbLj3VN/G61NP7D2jLLeU+Id8esB/u0Fe3qMEJkTUSex1bZx0rfebQ1DPZDWzG4RhjdIIWDlCNNccko04y6vUSfX2PGp0TWBFD2+gfo+uGHvySQ2ExcIcCSur7aPZj2GGzW6EnG6xR1XP1HDnW64rIOqsEEcWJUP0BhmtT7tPHIrJboYz3eH4gUpGlWjUrhXl1VwhxwMQJ0KOxVPdt+5Gcke4xigPuUOlVct1IrjOe5vWRWjXRJf1At80+V+yYifBLvUpxDRNfYny6PKmsasgkdcU0HRTb5ViVoMogxbbtKfqqov693dAf+/qDi9B//a//lf/z//w/+e///b9ze3vLf/kv/4V/9+/+Xf/n/+E//Af+83/+z5/9nX/zb/4N/+2//bc/6N/5fdVw3fXDKt4ehdS4bh+jvgF82+DlTPDRrkYuvzgJuAgN/PgTx7/5nyR/93+z+foDh+sl2UYID3RHw514hFdzwi8uMV//Bcfzn7B3hcn11w97vn1I+PruwLUMQevivE3bIJKmzS9OA54PHK6GDnPfFLlG+1vU21vqm7eU99ektyuSu1XvOSqTqu9soMvmEQWj29+IjyKc7umITFFVmaRqfBb30GX7dJ+rGCaoKoouPj4+ia0I1CrynlPW5R0VW3GD7xRjddbwGKzXUsYV+SYnuU/Zf9zhvv2Ed/oe7/SXuPMx+sklw+k5w8Epz0cz0tmQbd6wTCuud49w0q6bzNOSNC7ZbzKWy5hf3+z526nHz59F/Owk4CeTE86+GuMOZ6jB/4Vu/xLt6xv2HwU0Nb6NqSUpu8lKgvTA+Kv/g39x+hxf7hT+L1Pj3TIhOxTUZcPtKuWvZDfUHOHN6JTJm/8D33Iww//B7u0N8c1SmE+XW7baNQPArCsmFz/jZ7NpL5HvClGc13y3iAGompbm6PPi5CtMAFUTSrzr+x54CohQPEXl2ewrysZ7zAySPMOmPaCpCramYk4cJtMXGOcr3DgWIoV9StKsUE1dSM+tgJPwkquBw0Na9sKCrlPzTY2BrfMsOkM/e4G9uiOTh6F8tcP89Alt+B2aM2TknDEPLO4OlhzL1Sz3OZ98k9vYEt1QdIo2nGK4ohsSRXaLfneNOTlnMJsy800mvslCZit1Cax3h5KxozPyxqKjCu+okoymqim2McbDLfpsRTQeMfNNhgeDhSyIcV6xySt2RcPUtfA8oXIzPAFtbUvhPWp2K9TxhtASsdkD12CXClJKL1AoLQZ2JAtZgG7LsMk0xzhsMPIdwfBCIn8MXLOkrIVqNC5qkrKl8Gw0K+hFEk1WytC8A8d0/9hN2WIkl5aCKtEZT5NKx5TdlOp4KIeUY9sKHl26RykTHNPuVXKxTAgWKKmGrD4SmB664wtyQn9DfSxCKOrfG2j3x1bJ/cFFKEkS/vIv/5L/+B//I//+3//73/g5//bf/lv+03/6T/3/m+Y/bOH19Jv9vX1DndQMEVfbHsVHTQHf1LkYOriGxty3eD6wOXdajPu/ofz1X7H72//F9usPHG4PVLL7sSKT4HzI8M0F/ps3GG/+BfXsDfelwftFyv9axvyvT3uxbD8UlDJbqNv3PJ+4PJ94PWlh5uoM9Bp9/T3Ht99Tffqe7IMwu2aLLdkmo9gX/TgNBGtONTRM38D0TAxPRDpYAx9dBtSZgdvnBCndR91AsZz+111+0FEzpQzb4KjqIlNI1TkqSu+zUo5HaEpJyC5wyphjvBM7qSfjwQ5IWuxFMaqSsh8PgujA8k1OndXkm5z99QNWaGOPv8UeR7jTAcbsDP/0kmD8jLPwlBeDiOXU47uxx9eThL/9uOPdMiGWYoY8KUn2BfE252YjitXqxf+Puz9rkiu/8uzQ5Wf2c47Pc0wIBGYg54lJVleRxa7u6pLpXl1JJtOjvoPeJDOZSQ8yfQS9600v10xX1lIPpW4WmyxOyUwmMpFAYkbM4fNw5snvw//4AcAi2WQ3q5rVbpaGTAAOICIDvn3v/dtrNXmnX+XS4G1MzaJlVdHrX6Jaz1i8EJ/XyI2Yv5gDz8iyjFqWUr2ZcKd9tUiI3bU1Hp07zFchWbbmfBHw+eEcEEXjRqtO7+ADDLNCyfwM2dBwczq2lxOta2mKFkc0L7/N9VYP9RVt+kaA+Oh8VUAj5VKFS93rqFlCORSjVu9MjMFWaW5nVQTRfFDdw41MFvk+Z7gU/8jSCkuThaK81cPauoI6G6FPlkUowDkZoVWeYDQ62OU6fdtiYOucmVpRQDYR8EFFp9GpUG1uo7T6aNUpcQFMnaG3DzE62zTr22xVDE7skDPDL+geZ3Ofs6ohuiG7jdzZxmgdFd6saOnmncw5en2HplGmZWrYhsrcE0v1iROJIhnq1K0WcmuAXn9OOHNeiu+WU5TlGLO5R91Qil9jc782yxOaXUulbAowsFY5IZw5ZHEsishyguIvsM2uYOrpm7FeXOx13Dgjtkxks5ZTGyaFPynzVqxXM0qNJZZqUjUUbOPlXseLszygoGJsRnK2jZTz+jauoVLLwTYr1HQVW5NZvLLXWeWHp3VddFOJYaEYCyGQTGLW7gopdLGsDlVdvJFYaTJOkIjTgZywvbZM1qopgKjZy+lIab0uXm//4AGmf/EXf8Ff/MVf/Mafo+s6/X7/3/kP9Zsev5Givc5e+3nZes2GTC4U36BKOh1Lo2MqNNMFpUef49/7KZN7z5h+fYY7dEn8ROx+Ghr1yx0aNy9h3XkXaf9NguY+h8uYB+MVX48c7p8uOZn5hPlFvqLK2JZWjIyuti2uNEwGtkqjFCDPn5OdPCI8elSk7ZyzOcEsIHKj4sVbjNMU9JqGXtXR67agL7RqGC2hdZBrLfGuyK6zNuzCGbRWdPGtrBFlFN1gkq0Ll1CSrUkyiGOxgI+z7BW3kJwfuhroSgndkLAqEmZfQltHKP4CzZthegtqk3PS2ZDMmb8yOnR/pY019hNxnDn2kI8XKMaZGN3Vv8bqt7C322i7V2heukGtvkt3p8Z21aBn63xRXXLveMFIcnCXIXGQkkQ+cZjwC1fsI1ZhyrJf4XrrgPobZap2Hb1uo1WesDwcF52tO3QoyUeAKBjGjYCr3etoco2qrtCyde6fLjmfB8SpcAfJ0qJQB9zpWmztvImu6ZQUDSnf50QrD284J0szanGCAdQvv81BvUeWiTsiwV7zcybhCgBVllAkm53WAeq+g+3MSVxfpNImS/H1oCqYZoXq1Qrb1Tpjz+C8Xi5IFhtVg60p1A2FS/UdlK19zPG5ILi7gRDXHQ1Rmk/Q6l063dtsVw3O6iHDZVBI8I6nHodVg95mnNbfo3x+TDBZFLTt4GKM0jlEbu5QN7r0KzpHts5wGQqgqBczdCOmQULHtLAbfZRmB200z3cZIqGmTs5QelPq1T16lka3qhem2U0nMw8SOqZBpdpGrndQrRmx54sisnJQZkOk7oyqLqLWdVNl6oQF8WPmJzhRRqfaQG10kSp1VGtJtBJQ2Ww1B2eK0QypaDK1fKzn5+N7L86NpVE+kqu20KrnL6Gvfh4O8BfYti12S5rQK4hORNzPuXFGvfwyJScbIqmXBcLxIwcrytVt8UYiHwuKv7Mi5eYnGZklEqiSVUE2dOFLimKywEWOHJQsoqyUsHUFI4jxpRJxJp4fpGsiVGStjGSYrAPv9dfO9a8f8f9tPv5WdkLf+9736Ha71Ot1vv3tb/M//8//M91u91f+3DAMCcOw+O/lcvnaj//7tn6lXHBXN1TqRn7DYCno8yPWz++y/PQnTO49Y/50ijt0ydIMzdKoDGwaN7Zo3TlAu/k+6723Gcs1ng99vhiuuH8mbk3mOZusJJUwLI3thig+NzoiWrxd0WiUApTZM5LDBwSHD1k+P2d1eIE7XBEuogJyWpJLqGUFvapjNAzKrSrlToNyt47W6aK0BsitPmurQVaukZVr+CUNPxHz3jBZE8VrXDfFiyOCNCjeAW2+9fNUlB8lhaF0c/2+eWe+2VmUNRk7/0vdMjWqhkLTUGlbNSyzgV2XsC9JKLGHEizQgxUlT3RLWZ7ki6bzYoyzEdyFy5BgFhQhCUmdoFlnmO0ylZ1H1K58gXXlKs1rb1PpXKNt1tmuGgzqBp8+13h2tsLZpOr8mCxb8yhb4+TX7ouwxu1Oj8GtBlZ7gFz/CeajpyyfneENlyRBgjd2gSOyKKHmrdCuL9nfvoO9VaFtajRMtehwnTDhZOoX5OcgzYi6Nntbb6HJGpXcdLt8fkY4d3DzhGI9zTCzlNrBO1xuDPBioWtYBQknM5+LRVDgfVSphNqz6feuoS4mmPOlQAa5Af5oTkmWUK0yRq1FZ/dtDpplzvJk28KLWfoxx1OfmqnRtTQafYt69zLq4ATjfFqMU73hDONYhAuMSo++LQr9sa2JYEgk0D6ny4CLmkGzbVJv7aC2e+jDeTGCCiYLjNEJ5Z0hza0BO1WDo6rO+Vwt9kzDVcjJMqRjqpRzDI9ePyOcr3KNt0c6G6GuRtiNnZwtqFEz1YJRN3Yiho7oZCyrhdTootdPxXOjmHjpoW+ORisDOpbAGg0NMVKLEqE1WAQJjilTt5rItRZadSw6qTgRRWQxoeQvsLUObVPlLO/I0izDjXIET5TSKNdQai1Su45cXr0cqTlz1HCF3ZAEydsQAYV57h7bIHQiUytScqpVFjii/M+Av0KJPSxVK+Le/i/tddw4o7q5OZqNkINQ2I3DgLXvIIVukbKbqDKuIt7UFq8BaYahmqwVA0lfsy5JL7ugdcb6lUnSb3r8Pkdyv/ci9Bd/8Rf8V//Vf8WlS5d49uwZ/8P/8D/w3e9+l5///Ofouv43fv7/8r/8L/xP/9P/9O/0e/3KLqgk5V2Q+E+pREEN0OUSTb2EMn5M+vRzVp9/xsXPv2bxYoE/EzPScsOgdqlG8+YlGu++hXrjPeLeTQ7dNffPl9wfOnx5vOB05hdAT1VX6NQE4PRmz+Zm22a7qtFVY5TJQ5LDB/iHD5k9PMI9GeMOHTG68jdqB1nQtRsGZrdadAVqdwu5v1cQtjOrxSzKcCLxxTieRyxCDyfKu4AgLgrML1O2g5yyncR52i3KKdvpK6idHHq6ITYomoymy6i6gpm/ONRNlU7VoGVr1A21KEw1o4Gpt7ErEtaOYtyftwABAABJREFUhCmvUb0ZujejshAAy+T8EOdkjHMyYnU8wx26OZw0wEldlscrZk/nVJ+NqD85of78Kdaddxhcfov21gEDW2O7anCva3PveMHp0MFzIrIkw3ciznD4YZQy9yKWQYM7XZud/lvYZpPm1gPsXSE0dE7GhMsgTzyeEHs+9eUCYzGhu/8m1d5+gei3DZVH5yvGq5DzmV8kr5wwIdyqcdC9SRmwc11DEkS5F2lSHAJbWUbj+kdca7UJ0uylpXQVMlkE3APMnDhQ7jVo7N6inFPFo6VHuAzgfMrcOKRp30U1a/Sb17jSMJm4ERMnYrQIGK9Cng4dOrZO39apNHZRd69jD0+E4TWIBG37bILefoYxuERv0GKvZnDeshguw1xJkRTdUNfSqFT7KFuXMccXYieYB2WCizHq+SFqbYuG0aRvi+PqzRhq6gge4jxI6TZbGL1dtNEJ2mRJEAn5XTido07OkZsjGkaPrqXRrRo4QVLsvmZBzCrMyBot1M4WyugEbS7MvWleANbLCWptQU0X3qeWrRHl+m43VzT0bDWPWndRJueoS69Q1ivOHMVfULF74ii8rDJ7ZaS2CIUaISiJ3ZJUqaNVJgRRIroR3xV7ndDBVss0DZWhphThgM29jhcrGOUaUq1FaTZCUn3x8hUFZN6KUrjCNjqikLoKrpYWe51FkOCZKpV8JJcaJpIq3E3rKDemBkusWj0fySmFLC9OxVjQj9dU9DIlRWedk1LWpdJrXdDf9Uju916E/uv/+r8u/v2NN97ggw8+4NKlS/zTf/pP+S/+i//ib/z8/+6/++/4b//b/7b47+Vyye7u7q/8tX8jRfuV6i32QC+5XbosCpGtgDI9JH3+Je79L5jce8byaEW4jJBkiXKrTPNam9ady9hvvI10/SOW1R2OFjGfni64e7Lg6dBlughI4hRZkbBsnUttk5tbVa63LK63TbZsVRy5PntE8PguyyfHrI4ucM4WeQeQv/vNux6zbWJtt7G3OxhbW4Kw3dklrfQIyw1mOWF7eOyIEYcfM3LEhf+r/LZNoclyjluaZmS5eiFNsuL7k3jDecvIkkhwpLJN8EGmJMlIioasbNxCEitVZqLKqHlRUjQZSxez70o+A6+ZWgEmFXBSi6ZZo968grnzBuXFKdr5cypHD7EeHbJ8fsbyeIFz5uDn48gkSIhcEWrwhguakyX1yTna1be4vHWL2m6NvZrBpUa5YP5NFwFRIKLd85zZ5ueppptti2utLbrXWxitAa3qpxhPHouuaDQnXAYkgbikry897NWM8g2Hq/3byKUqar6ljZKM+Spkvgy4l0elRdilzrWckm35IvkVuzne53gqPqeyhGVV6B58xNWmEMSdz32Wfkzkx0wWAfdPlyLabGlUmnuo+7eoTIQePHIjgkWIfD7FePGCSquPbXfYqdmcOWXO6j5TNyKJUkbLkMOpx4uaQbNs023uoPT3KL/SDYVzB/90iDp4gVbbpmuJbuhFVS++liZOxIUTMnQjupZFtbWF2t0quqE0J3cnkzN0Z0Sj12GnanBSFV+XG/ndxBVR656loFktlNYAozUkdn2yjS9oNkTzZtSqA/q2TsvUmJgaUycU9IIgYeLH9G2FelkUEa16kRNLMmLXF1Hr1oxKvUrX1jhz1NzLlGOkohQnykgbNeRaB6nWQpnNRBHLwwElb4ESvaQf1MpqsZMpwgFlmXJeRKTZCNkNRCcSeDlCZ4FtCbJ2RZdxI5koV3c70WYkV0GtNkVAwRU3R+soIHOXyMEK0+5hqiIlN5Ml/Cwt9joiqi1GciWrSsmZU0o91kmUG1N9dGktRnK5LC+OxNeqGMllpJKGpJmsk5B/n8fvqxv6W49oDwYDLl26xKNHj37lj+u6/is7pH/Xxy+7LGQJdEmiLK2RVxesR8+JngkwpXMmRjOKoWD1TBpXenTevYZ+5yPWe29zXqry4NQpGHMnefJtvRbdT71qFDdGN9s2+3WdZrZCPnpC9Pgu7uPHzJ+c4J7N8WcBsSuwKoqhYDQMrF4Fe7tDZbeLtnsFZfsKWX1AVBkwDVJmQcrhxYIzJ+R0EXA+98Wdkx8TBQlJ/LpSYXP/86rrZwMT3XQ7IPBAJanEOpNYK3Lx8zYU7pJUKrQPkpKnw3KuXRKnBJ74OOb5z9/8PDnvnvSySjM/wr3Utgrt+aB6jU73OtruLdr7D6k+v8/y0SGLJyLF5g7dPP6d4lx4xQ4pmCyon59j3Tihc/AmjdY+A7vJfsPkUc/l4cWqCBNEYcJqGXAvFmOlk36FsVflVsdmp3sH26hRqbXQKl8we3TE6nCYx7gnBfG57q3Q34i4vP0GslQBwI8S7kUpq2XAcu5zLxYX7XKphCLVOOjdRA996vOp+HWcEeEyInsxEep2q4xRbbK79RartsVF/kJ9FiaEfszRxKNiiHh0Va+y1d5H3buOeT4VRSMS907OyQij8wijt0u/LwyqF3m0fZQE+GHexTRNtqsGzdYAbfsK9uS8kOClQYQ/WWBeHKJvXabdF93QScti4kSC3J2P5c6qoQgXVAco/T2s8TnRSiTcYs8nmY5Rp+do1QHNcoVBRWdUNYoOYO7FTLyIeWjQrPRQO9uiG9p0MkEkrKPzIXJ1QE2v0rU0JraGn9O6F74IFywCjarVQmn1UUYnqDmCJw0isoWAgZYRMri2qTH3Y6IkF/FFCfMgZhkpNMs1ces0OScNBDFlHbgiJddYULUs2qbK0JFxNBF13mjEnTijadZQa21RRJaCR7eOo2KvY9ZKWJogUKzClDSLc3W3KCJRSUPRqwIDVLaQ4kSw3AIXKXJR0gBLVakZKhMvJkozsnUeLkjXuHFGTbfE4epiIojYmThcJfQohQ5l1SpYdkEika3FPnOD11IUnbWiC3bcyxcLkH67cdzv8/G3XoQmkwlHR0cMBoPf26/566rvq2O4jFzcVoKyXEJyp8irIeGx8MUE0yVZuhZ6755F/dou9bffQLvzMVHvJk/mEZ+dzfjsaM694yXLuU8SZ5QkMEyN7Twe/Ea/wp2OxU5FRRnlY77H91k8OWF1OMIb+yRBTJaui12P2a1S2x+IY9edK5T6V0gaO4wShZGX8PTZnJPNO9qxy2gVErgRUQ4AfbWgAIXKYWNH3ZCqSzm1WsqLym/8nL7y49Iv/dzNqG7TTSVxWozzNv/+quiuJJU4USUeWRplW6NeL3Otb3OjXxU8uPoWW3cuoe/epnPzBbWnX+I+EUy+1fEUb/xS/e2cOflR6JLq2YT60RO0yzfZ2rtJp3+Vg7rBzbbFV92XKcVpvi86zlUSx1OPF3mU+43OFr1bNcq1FpL5U/F18+wCb+wzz1N0wWRBx1lRfi/g0t47MKgQ5vc59+IUZy5Yd4+TTJDI5RLydo39wS30GxNqntibzJ9OCZchy8MxcvkpneqnqKrJXv2Amx27SKTN5z5BLq9r2jr9ik6126Z66TaVybnALsXnRE6MP5yzen6K3PqKst1hu9rlStNk2BWjNDcUo77DqSciy2WZrVzjbU/nBWEjXnn4Zxcogxdodoeu1Wa3ZjBsmkURmjriduvCNeh0qlidPdTBGeXJEi/NyKJEqNiHx6itLVqdBttVnbFnFJR1P7eEDt2YjlmmXuuhdLYpz6cChZRlREtXYHiaW9TbDbarhhjB5YerXpSyDBIWYUrLFAp5udVHX85FMCBPqKWzIXKlS83o5dZUrWCoebHojFehRs1qodbbyNUmqrcpZCGyM0f1F5iVXq6JUAs470aN4OZAUtmoIddaZIsJaTzLu6kl+CsRUFBtMdLzY4JEKvY6iyDBMeRiJCctJki+yzpNBTjWXVLyF5ibkZwmEyQCPBumIiBR12UqRg210iCzqmSBKxJyYUDmzJFqK0y7IgIOmoyX61U2HV2QyJiaCZErosP/HkXn99EN/c5FyHEcHj9+XPz3s2fP+MUvfkGz2aTZbPI//o//I//lf/lfMhgMeP78Of/9f//f0263+c//8//8d/p9fltQ6as/nq1fL0SbUEIp8pCCVWHwjD2fkiRh9yyMZpXa1W2sO+8gXf+QqTng4bnHJ6cLfvZ0yuGFg7cMSdMMRRWIn4NBhfcuNXijV+Fa06CTLZGfPyZ8+BnLB49ZPj/DvRAytnWWoRiqKHaDOpXdHtblPbSDO6w7+6SNXc69hJNRxNPZkqcTj6dDh5OZj7cKifykIGxvHpt9jaJKaLqCqiuU89FYWRM3UBtfkP6KR0guiRdMqSTUDVKJggqw+b7NI12L7irN1oRpPk7YOFvyd/EzN8JfhQSeYK9FfkIc+KyzlCBL8RYaqlFmOfEYjxwenK446Frc2a7lHp8u3ctbWP1rNG8eUTl6SHT0lMWzM7zzKd7YzW+QElanDpFzhHc+pXI0pLr/EO3qW2zt3KQz2KdrafRtnft1h88P55yMXAIvIvITHroCUHo291kGTd4dVLi0/wGGotHKBLw19kUyMnaFhj1LM/qyhAHsXf6AsF8V9xZBwpMwwXMivGXIw5Ol+LyrMuWtKoP9NzGdOdWlR7T0cS5cwmWEezLGfPyYaq1FzWxwvVll5ldYeBH38m7I88XB6KNGmbapYrb2UfdvUsu7q3U6Iwli/OEM+/wQdfuYzl5HFCFX3Pu8GAtx3XAZcL4KOV8ZtLtC412eDUU0OZ3kGnWH8sURem+XzlaPyw2TSX5fczYPipj0mROyVdEwKl2U3h7m5DzH1riCGrCcIs/OMaoDOqaIfc/r5ZzuILqhsRcxCzQqdgetv4cyOUPLwaZpkCfUlmP0ap+6YdIyNaZ2XHRDG1Fcx1QxrRZyq488OUf2AlJfqBHSxQTVm1GtDmiZKmNPZZ47jzZHn16yxkdFLjcKxUMa5QR7d8namSNVFthqnbapMfNj/Fgu9jqLfK9jlmvCmGpWUHy32MtkzpxSdY5dr1E3VHHvE2cESVqM5LxYJbMqyFa9GKltlNsCweNiVXoYecptESZk69KvHsmZFUqrmRgJJjFr30WKfMpyibIiUdEUZn5MmCdgwyQjTNekJQVJ1iBNXr8NfOX19+9qL/Q7F6FPPvmEP/3TPy3+e7PP+W/+m/+G//V//V/54osv+N/+t/+N+XzOYDDgT//0T/nf//f/nUql8jv/4X5Vhf1V3/fLn6z1eo2EEL8pJSjFPqXIIc3nryVJwmhV0aoWtWt7aNffYb33NmdUuXu84qdHcz55OmU8cgjcmPV6jW6o2HWDm9tVPtxv8u6gyn5dw14es35+F++RGO8sn13g53cxJbmE2bYwu1Uqez2q1w8E5qd7mbBxiXM34ejU5dFEjJSeDl1GM3ELE+b4mk1YQFaE2kE3lOIGqWmLBWzL1mnbmlika7LQPOgyhiKjSKBt5Ha5tO7Vb0slis/Vqw3Q5tg3zWPdYbomSMSLwcwX8duRK+K8x1Of0SLAXQb4jkboJ2I3lcQkUYSbpERhSuDGLOc+T4cu1/o21/oV9utlrjRr9AYtqv2bmNeOMU4eEZ88wXlxWqgbglmAP/HEAexwxfLZGbXDIbUbT8S+aPs2te0GbVNcjP9YKvHifIW7DHGXIWGQ4OQeoSBJibdrXN19Bz2JaGdpToyO8cYe7oXLOl0jyRI9WaZctri89TZ+UmGVdxrnOWzVc0IenK6omcJUWhtsYV99h+pqLsZNUYo/C/BnPsvnZxit+5Rbfbb3P+Rm22KR0wqOR66AnS5Dnk88BrZOTbfp966gXxpRyZfo0coj9gKckzFK/wlKpVMcnk5c0TVM8w7reObTr+j0bJXt2jbKzhXs6YgkEELAJAiJJmOUiyNku0Or3GW7qjMPzAKguUHojLyYerNCpbWL3DnBWLpkcUwWx0TzpehkWiOazSrbVUMEEnLCtp8rCaZeQtPQqdltlNYAfTXP6eT50ehsiNyYUqsJ4vnEi5gbahGWmPkJyyilWbORK21xvOouCdNMFJK8iMj+gopm0ygLxcMmYeZEAuPTMGTMnKCQzkbInifIA1EggKT1BXazJQgKhlrI90Q4IMaJhDF1Xa4WRYTYKYqIErlo6whTlajpCsvN11y6Lo5Gw7WCnLPgSrOh6GSSmMxbIUcOUuhgqWUqeWBlc0bhxVkxkqvmsjxJM0gDD7KULHBRIleM5JRy8ToQ5+lXL06J0jVRJkZyZImAmMLLcMJvmZB79fX3d0Kq/dLjdy5C3/nOd36jBvaf//N//rv+kv/Wx29DT/ibXVAJuYRQ2EYea198kYgAQg3FMtAHO2g33yPu3+bZas1Pjqf85NmUey/mLCeCrlySSpi2Tqtn8+5+g/d2arw3qLBjrlGH94juf8Ly/gMB0DxbEC7Fsk+vaVjdiqAsXNlBO7gD2zeJ6rucOTEPD5c8mrg8OBVR7+XcLzqKV2V2mqWhGwrlik6vJmLKO02TjiWiuG1Ty1EfEqYqYcglpMijFHviY881vqQRRKF4txQFAtuRxIKIkAi/CGn68hMry+LINT9+lSsNMs0S0fBWAy+rsAhT5kEqsC353mqjRl9tlA1+/EogIhXRak8Uo69OlmzlkfaDlsl+w2S3ekD/netoBye0br6g8vguq1xqtzwUo7pwGbI6dVgeL1k8OaF+/QX1t57Rvv0xld71XNQm8SNF4tHxgsXYw8/VGV/kviMvzlhfanBt/wMMSaaTpuL4MB3iT3y8scfs8RBJVehqBoZa5lrrGmFSYxUk/CTJmE5ckihjPve5d7ygbopgwfXeTfTbHi1X6BBgXIwUF09OkGt3Ue0Wl2r7rCKbZW5QHS2EUv546vGkKnTotc4u1uUVlivUIc7JqDCoxifPkRtdamaDg4Yl3qVvIr35OO1kGTCwdSqtCrXuZbTdEZYX4GT5OG3uoF0cobcGtHZ77NXKRWE8n/tEScbYiThZhjQNBbPWRxnso6/mpHlRTPJwgTI7w6h0aZUttqsGizDJE2opcz/mwg1pmgp2pYfW3yNdTEQ3lBdWeTZEWY2wan3qhkLX0oTlNBM22EUogKI1XaZnd4RraDERR59Zxnozkqv3qTVruWdIZRWKsIUbiU5mFaU0qjZyrniQnTlZ6ggEj7dE9uboVY+qJhQqohsSHDcn76icWKaWe4ayxUR0Mmkq6AfOPNd2t2iWxV7Hi0VKzc9Tcm4sY+gV1EqD1KoWRWTtu0JUZ68wLUtou70YJ0pIM4qARF2XqegVUQTLFiUv13bnIz2pssKyLJG4VCWCpES25qV2JVlTVg1KSShScpui80oB+l26oV8+dP1dCtHfC3bcr3v8ug90865eJhPytjQWyztAqdYE5bnVR750G79znUfTkJ+ezPnegxHPjxesZj5RmKKoElbVoD+o8EfX27y/XeN2x6STzik9+oLgwc+Z3HvK6nBYGD9lTcZsl7G32zSu72JcexNp7xZJ+4ATN+Pp8Yqvxy53j+Y8zSkA3ip6revRyyqGpVK2dfqNMpfaFntNk+2qIGzXDYWaLmErIHkzJH+BtFqJ+xx3ydpdknor1rlzZEPXzvJYbBYnBXcq26SD0uw1Hp0klwQSyNAEkaFqYbSq6M06cqNDpbNNrd5l22pxa7/DKqkwC4S2YehGDN2Qw6lfcOBW+U3PRmrnOxGBF7Oa+jw/XfJJVQBdr/UrOROuw/blLczOJZo7X2Fv30W7+5jp12dFmi6YhbhDl9XZSuxxllP0N6Zcu/Qeyl4DQxGE6a+yNYuJRxykrGY+zzbJSQlkqcHB3rsYWUovFpHV2eNxTuL2UZ4NUa2HtCp17Ds611u7rKI6UZLxGTCbemRpxnAmClHb1DCUKpf6N9FvzWnki+/VyZQ0yvCG8zzhdp+qUeFKo8kisPHyI+WpG7HIOW7NskqjrLDfPkC76lL1VmRxjJ+7rATH7TF6vU1/8BY3WhZOKCL6Z3Nx8Hk2DziydJplFbuxi7Y3x1jNSP0If7oQVOrJGPnsGXKlQ8feZr9RZrZhp+WiuKEbcuFq1AyDemMbpTfByCcLSRARL5bIoxOUxoBm+yqDis4w7zznOdx04oluqGHo1O02cquP5ohilkUJ2WpOOjlHqvWpV4U1dehGhShxGSQF/aBZraHnriF1Nc+Tfz7SYoLiTNArXaqaiEpPNBG2iPJOZuYn1HUZLY9rZ4sJkpcjcNwV2XKCVJthW1vFXmYVSa/tlpplhUo59wxZVTJvJY5OA5csp2LbVqdIuS3CEmmSR63DBCdWaVSqZHoFybDIFJV1lBb0BKm+olzpYeYpt0Ug4aRpQU/YjOTWmo1kVUkXEwji10Z6emVdjOQ2u604W+MnKVEqs9YV1rL6e7v3+Y3p5d/w+HtVhH6bD2wzUpJLCHVtElJKI7IspaQZyI2uyOj3Dgia+3w9CfjR0Zzvfz3i+dEcZx6QxBmKKlFtltnbrvHx1Rbf2m1wvWVQWR2TPf45zr1fMH94xOLFJLd7rtFrGvagRu3KNpVrB+jX3yXp32Bcsnk+DPliuOLLkwWPzh1mUw/fiXKp3broekxbo5FbRg+6NpcbJns1g5ap0DQUjHCB5J7CcEg6OiFZTEjnIkEV5vHgTWJIOINe0TdEaU4vSAuy9kbrkEaCXJ3miCMARRVE7Q0uyGgYIlLerYpD2m4Do9tB7mzTaPVpVNrs1zrEvTqrKBNwUjdi6IQcL4NCsb0Z3UV+gu+EuMuAxcRjeKby4GjBXs/mjZ0at7o2b3R7bN/uYbQGdO06qnUP+csXZGmGO/RwLiIiJybxRdy3s3KwooCDqx8j79QKBcJ9qcRi7BGHCe4y5MXpkr9WJHRZorRT52DvHcpRQCffvZXkScHGWz4/R6/fp2JYNG4avNFpE+c/7zNguRSR/eOpz1fnK2q6gtGz6e/ewfRdgWbJMvzJksQT3YzReoBea9HdsbjZtvBj8SLJ0CmSaYczn66lYWsWnc4B6qUJFU8UvXglyNbh+Tly7RGa1aJrDbjSNHHy27DNOOx0FdAyVWzNpFcTJwCmt8oLiCBSq6MT9M4JFbNBxzTYrhgsg4Qo8fDzo9EzM6RZVqnUBqi9mfDxrDzCmTCnqnk3pFktGoZIuc38l7dr8+BlN1S1WqjtAdlsiDxfvqbN1r0pZqUjwgGGKu5j8vHgMi9mdV2mnReRdDaitPHreOLNmFSbUalahbrbfQUGKkRzKs1KDdmuC56eMyd2/cJWqgQrzOpaFIGcPrApQhsgaWioyHpF7GU0A4Kg2AspkZsfnurUDIWxJxFs1AphQpCs8ZM1sm5RssTz11EgRnKBixw4RcrNVMVIzYuzgn7gbQ5XdQvJsMRILgrEZCPwkIqRnHi+KpWEByndpOQyolTCkBQxBfk7TsS9+vh7VYReffwmiKlUEte/pSSitPFlKJq4MjZM1o1tgvouT+cRPzqa86/vDzk6WeDMA7JEGFZrLZPb+w0+Pmjx4XaNa3UF9fwe0b2fMPv8njg8vRBka1kV3U91r03rjcui+9l/E7exz+Ey4qvhnC/PV9w9nDOeegI7EyZkefExTA2rqjNomcXB6369zFZFp2MqGP4EeXlB+uiQ5OKQaDTEO39J2A4WYb5Qj4tis87WhXYhS9eFOyiLRcItTtekazEbjvLik0Fh8QSQwxQJ0BYhZbmEkRdKzZ6gV18WpXKrKpBC3QZ6u4nSGtBu9WnXe1xp9IgGTcZ+wvkq5nDh83Tq8eXxguORizPPd0mrCGfms5gozEcuz0+XfLlV5ehKi3cHVa63b1P/sEGr1kKvf4pmPWL89VgEFtyI+YuFKKZBRDdOqGQZ+5ffR92toUolyprMXVUWHVGY4DsRT0+XmLmETNqusX/5A2xJRlYVZO0RixcTYjfGn/nMn5wIb5Bm0L/+Td7q2cXn6e7hnJUb4YcCTlrJXUV6r0Pz4B3MLCXLu6xo6RHOHbHTMu+iGyZ7W28RpjZBPro6zukMx1OPhqlR01X0ZoP6zk00Z44VRKxiAWL1R3O06nP0Rpf6XoXdmsnUj0WMP6cOnM196oY4wKw1O5i9y+LFfr4iG8Ykrk84niKfPUexm3Q619nL4aabQjb3Is5XIU1DpWGYNCs9lO42+nLyUp44nSOPTlBrHZq9BoOKzsQTf5ZJftM21CN6ll7shqRGF20uILBpEJEtJyTjMySzSa2yQ9fWRDw7t4XOAzGS61oazUoLuZqP1OZCFJd6HvJsiNrZwqx0sFRBxl7koZqNrXQRJjhlmVpxODoE1ycNQkqrGfJqKgIKWo2arjDM1SZRXkRmfkzDkCmXhd5Bmplk7pIsiin5Iu5dqvYxDUOM1FRZWG3T7LWRmqVXUCoN0rIF3kpEvX23SLmVrUoxXgaBfhJJPSGqq2zuhfQyOHPIXsEIVVzKVgUrp3JvRoIibScMA7qi5XuhXz1X+rsIKPy9LEK/6pPy6lK9tM4EeDONRfoDxG7DtMnKDcL6Ls8XEZ+cLPjhozGn56vCsGrWdGotk3cvN/j21TZv9222Si6l+z/HvftjJl8+Y/bkohi/6VWdypZN4/ou9VtX0N/4JknvOmdZmQcnK764WPH54ZwXFw7OPCAMXjLmDEvFrBpc7dnc3KpypWlypWnStxQqqYOyeEz66AnxyRMWR+e455PcbSSOISNnk+QSRab4+HNFQ0Hb5mUEe7Nv+uUC9arkDngtAg4UFIVNcixyYpwLLxfdjVHKimDdVXXKjTJ63cYctLC3O6iDffZ2rrJV3+FWu8l5v8Ktrs39oUiyvThdspx4eKs1obMidMBb2jjzgNOZz4vLDT7ca/DeoMvuW39GrdXH6PwYvX6P8f0zlsdLIifGvfCAsdgPpBkV32X7+kcou21sXaFp6yJwMnYJg4TAjXlwsiwSgmzX2D/4EFMz6BkGsvF1TlcI8YZLZPVIHJ6qGtuX36fUf1mINlSFqRNx/3RZ6BVutXeoXMmwk5h1KgjZ0crDH81QnjxH0gxU1WS3eYUgsQnTlzc6Eyfi8XCFqUqYmozV2ke7vKTsuwVINFq6rA4vkOyHaJUG/cEbOE2TZT7COpv7TJyI51NPhFZ0mUuNHdTtGcbidVeQVjkUSJtyjVa5Xex1hDk14WwRUDMUurZGrd5Da28jj89QJgvCnAWnTc6RG6fIVotG7hsa50XMCWImrsyZE9I2FWy7g9YekI5OkDZHvvMV0uQcvT3A2nRDZVXEq/Nd1ViPGHsazbJMPd/LyJPzYgogO3Pk6QWS3aFa7uUBhQhFKuVAUuEW65gqlXIDtdYiNStIywVplCB7uTG1PsNuNV5z/DjBS0eQE2W0qjWRcitblGSZJIiQAo9sNUP2F9h5ys1UZaRSKQ8HiJsj18xIyqbQbucjuSwIBBXbXYpurFairAh1tyqX8OJNEROOocQwkVWTkmEKY2rgvjaSK1eFa8pUZZZhUvAP4zxwhKrklJm/+/ugzeMPtgj9RlDpr3mU4CWIL00KayAlqVBPp/Vtzp2YB2OXz483Ud6YUqmEXTdod2w+OGjyx5ebvNWzaPpnZA9/xuITATmdv5jjT3zBimsY1C/Vad25TOWNO6jX3yfo3uTFMuLLiwWfHi+4ezgvRm9pmiHLEpqtYNfLRfG53rJyhbVC2R8jHT0hOXzI8vA5y+dnOCdj3AsPf+YTuzGxn7x2kyPJUm4/VX6lDVUxtEIjXZL/5hfaZly0TrPi318tUqKzyl6T58V+Uoz0Qj/Cm/ivOYXUsjjINdtlKtt3i3SguX+Tg8E1upe2uNI0OWiafNq2+OTZlPnQZTmTCR2XyHNYJOIO6Ud+bu+MUj7crnFw+WN0u0nfrmO0vmT64EWBXordmPnzBSXpkShESUT/5scYW4NCOPazp1NORi5REBO4EQ/OhApBlSQYVLi09y6GJNOWJBTjCcvn50ROhJcz3BTjEwxFZbD3NmnXLjQhabZmlsfBH5wusfJk05XGJawDH8tdiiRYTgpwTkbIZQ270sDWLfaqPRaBycyLC51BoVfQFSxVYrdxCWVnirWYCFBsbj7Vjo9ER6BX6Ni7bFcM0RHl3cxoGXBsqnRtnZpeptnYQu5so48nxK5P7Pr4wzly7RCt2aO51aNv65w7IWeagh+FLPJu6MwOaRgyHbsjOpnKaR61DglGU+TqMWqzT73XoW1p1FaCSr0hfAzdkGmg0ywbyGZT0AvGgloRuwH6phuqdAWUtKxy/oo2e54fr/ZtjarZQKm2xIuwPCf18/3UxnhaHbxWRDwvZhnELAMVJ8qITVEESlYVSVXyQpbvlsIVas5ys3UFNT/S3nRTG+12RbOQrCooKuCTeh6Su0LZjNQUQe7f0NQ3AQcvTvESGU0XjiDxfETIIb85KoUO+ub5+ZulTVQ7SERqVdPKgpavqGRpCjkCaJOSM+QyRm7hTbOUOIeqJplMsgZVVoo36/8hHn+wRWjz+G1bwVcLUClLKGVpETlcyxprWSWzWkzDNYeLkMdjl6dD8UIkyxJlW2OnX+Hjqy2+sVPndqdMZfKI+Mu/ZvrJZww/f1G4aWRNwmpZNA6atN+6QuWdDyldfY+ZOeDrC4/Pz1f84nDGw5Mlzjwo9A6bsdtOx+LtvTq3OjZXmibbFZXy6gQePSJ+/oDlQ6ETX53M8uITFK4eEKw5xVDQLDUXyIkjWL1uo1VNtIqVf2tS0o3cKy+0DkgS5GieX3YHiU+hcM+vkxji6GWaLg85xPk7Z7GDcvBnfm4vDcQ9jBfjp2vSeYB87lKWS9j2iMrWKY2DZ9Sv3Kd++wqVmx9wfXCD3uUGe7Uyl9smvzicc/9owXyk4TkRcRDjrSKybM1XuXZ7FSVM+lVutq7S+qBCq9XHGnxK+e4T5s9GQhsRJCyPl8ATkiCiHgU0bn6Dt3tC2VDRFT41Zzy6cPBWId4q5N6JAOfGWUY8qHJ19x0MoKEIDcmmELnnU0qyRFuW0SWZnf33SLo2SbomSlIenGY4fsyLcS6vkyVUuSYo3VdX2IFLtHTxchLC8tkZqnkPw6rQ2Le4XC8z8cT4yskZcy/GrqApGCrVXkWASWcjjOHL41P3bJJrGrrU7Q7bVbHUPzM1QS1wIrQ87NC1VGrVAWpvD+3iEGWyJHAD/OkC9eIMufECudKjWW7TtTROcir1KkjE/VFFZ1DRadY7aJ0t5PzX8D2faOmhT86RxyeotW2qukXL1DjRAqaAE8Riv7QSYFNr08nYNqXJMqdri25I6+5QqQzEvY2mIEslgU/yhONnGaYEZR3LFHsdSR2K0aArotbrxQi5OsDWhKOnrMpMMhFjX4Qx842jp1xDsqrCqwWFdrsYqekdKjkCB4S228mPcLuWiq3bSJu9EMu8m1qKgEN9Rbls5lHplyO9VY4j8k2VqmahmBXh8wKx2wo8wZKLXMqGia0pqJuRYD7SW4UJflnG0ixkwxR/x2X55UjPXVKq+eiaianKKHIJEqEkCZOsOMFQJIXSK1qHX/Xa+rc5kvuDLkK/6gP/twrt1tlLUyCIVlNVyPQKnlxm4sY8n/s8HTo4fowkS1SaOpd7Nt+80uKbu3Wu1jXUw0/xf/aXnP/0PuOvzlker0iCBM1SqQwqtG/36bxzjfI7f0S6/z4nsca9/Mbo7uGc4dgV3U+SoekK5YrGTlcs3G/3KtzOKQva/Ij1F/cIH99l9vCI5fNzlkcrvIlHuIyIA1HAFFXOR11G0WGYnTrlbgOzW0dt98TxXa1FqdJgrdlkWrnQOyBrxGvxbj1dC83FZoL36ji4VMp3aohDX0UqIZNRijzUyEUKXUrenHRyRjo5J7w4wz0ZCTDp2ZLl8UrQB/wYN13jphmzWYCxCGm9WFJ9NKPx8ITmrefU71yncf0d3hvcYq/W5o1uhS/36vz8+YxHZytWUx/PCVlna5x5wLNkzcKLOd7zON9t8Ha/zf7b/wRzcMBW/8dY974SpIrjOZETM38xJ3IjYtenuZhQfuOb3Np9G0trUMuPe+8eLnCdEHcRcDcnBXhxSrbb4Nree+iqRgMxvlw+PxdMuGjIOs1opymGJHFp/wPSvtjpLLyYp3GK78c8OnfEfZZUQpNrXOrfQPNWVBZL4pWHN1zgnk+RNIWWaWKYVbb33mPREnudl5K4kIfnq4ItZzcvoW1PMC8OCearfLw3RzF0pMp99FqHTusGuzWD05Uw1U4dIa57MfPzbsiiWx+gtAZoF+PcnOrhnU9Ra88o9/dobvfYqhgcWgHHipQXoZATOxCkbkOma3cEENQ6h+mCaOWKjqpxgtq9oNG6RttUqRoqslQSKTknZOjqTP2EVtPGqnWQzCqKMRb7qZmDXp+QzYao9QUVXWizTU1m4YlCNs27obapUC7XclndSa7/jkiWC+TZEKk9x64IR4+uSEU3JTxDMQNbo16uINv117qp1HHIFhPk9gLL7hV7HTkf6QmCg4j6Z5UaslkVCB5ZIg6iQtstByus6kDYUmWpeL4XC223G2esqzYYlvCByRJJECHnKTs5WFG2exg52R54zVHkxypr26ZUzrXdiCImvTKSM8ptdEXCkCUcxBlLnL6UfeqKJN6Q/oZC9Ls8fte03R90Edo8fiuh3aYLWv9SAVI0UAwSvcrcS8RfymXA3BM3QJWc//bBpQbf2KlzYKXIj/+a1U/+Fec/ulcsv7M4Q7VUqjtVum/v0P3GWxhv/wOirTd5vEj47GzOJy9mfHG0YDUVhO2SVMKsaNQaJnd2qry7W+eNrjC51vwL+Pprosd3mX/1hFluARV3MCKyLUkljIqOXtUE5LRnYueg0/Kgh9LbQ+5sk9mCsJ1oNvM4p+UmGX6YsVqleHFAmHj5LPgVf1Am3vkDhcZh89BkMYPWZbHbsHWFml6hZjSodS5R3X4XI3GxV0Ps6Qmt02f4+fhwdTiicbzEufBwZgFO/q5r4sWETwVHz7lwcU5GNJ4dUrn1kN6N92i1DtirtbnWtPhq5HDvZMGDk2WRpAv9mMmFw098MaYaexFv9ytcaVyh/UGDZnuA2fk52r1nzB5fEMwCnLMVaXREvPJoOw7lwOXS/ntoO9XineXdwwXLuY+7DHiQL/PF11aDa4M30OOIZuCKxKE/FCSMVBSirqphGCaXBm/hdG1Grhh/nfkxrhPy4FSoMaq6QnW7SmtwDWNyhpF3QsEixD0Zo5plZPtLFLtF394RLLd6mfN5gOfHnEx96uaKrq1R1SW2GtsovT2Ms5y2vfJwzydo1WOU3nOs2hY9q0zP1nPltYh+n0w9+nnUv1UXCB2jdYh7PiFbeYSzlXAFnT5Drm0V6u3aL4nv+hWd7apBq9JCaXTRqhayqhD5HsF8RXk2RJ1fYNR3qBuq6EQ0pVCAT9yICzeXzeVFRDaOAUiCkGAiiojSm2FXKzTKgj4A4kV44kRMKrHwBFVqqHadkmEhSRPi3HmkruYowQKrKey5myKy8QwtghgvWRNKBrJhiyIgSWRZJsjaqxmKt0BNAwxF3NvIUr7XyQ9YnSglzBQU1aRkiOev04zYC1DcJUrgIEUeuqzlCnapuOMS2u7s5fM1Q3QyWUYahGKkF3soaYChKPlITsLJxPGroCesidZS8XwkWYzSo4B1IO4FdWmNIed4KalEuhZ//5P8Dem6JInX0V9BTvh9vlb/usffiyK0efxOe6KSJIyhJYlMt3DijFWUMXQjJo44KG3k5tN3d+u8v1XloBwjPf4pq59+n/Mf3+Pi7hB3KCKxelWncVCn+/YunY/fRXvnOzjt6zzKI94/ezbl6ekSdynU0IomY9oau/0Kb+/VeXeryq22RU8JUUZfE331MxZffc384RGzp0JrsCk+iipTrhuUGwbVnQqVnabA/VzaRtm+gtzbI630iMwWi1AQtifTmAt3xsyPmftxkWry8mvzDQ8sTjOyRMBIN0ek6/VG5fBLn76cR6eoMmZZpWkL6dhO06Rnixehgb1L6/I+lf33qdw5xb54Rnz8BO/wmOXzMxYvJrhDF28s9llJnBIuQ2ZPxbfO2YL60QWNw+eUr1xn68pbdLauc7lhcKNt8UW/8lqwIwoTkknKQ0/sXl7s1Xh/t8F7W3X2bn0bs9pCMn9ASZaYPz5ndebkY9SQaOnRcQMqYcDW1Q9Z92sirppk3I1TVlMfZxHwNFepS6USslTnytZtNGdONdcYhMsod0+tkcuP6Nh1dM3mUm2f622L4VJoFbwcdvpAkWjZYoRVae9iXLqFffICbzgjWIRC8mdcoFUfU+3u0LoxYL9R5nAR8NR08PwYPx/xDepldioGnW4PY7BP+fQZzslI6NbnDu75hPLJE7TBAc3mNQa5XuFsHjBzRTd0OPXZrhh0zQrtel+I4syzoph5wxnl0Qn67kioty2NuqkWi/mJI2gZQydiy7aoVttI1RayccF67pC4Af5QKBqk3oyqMaBRVilrApYrKN0hEy9iFRl0yzXkSh3VKlOSZbK8iJQXE0Glbkm5WkPsdVa5TmPjCfJtA8WsIRkmkqawXuWHx86cbDlFagrjqZ2nxMSfQRSQqR/TsxTKukXJsFAMreim1t5KYHiCFWWlmR9+yqRZhh9RBBT8RKOsi05G0sReJ4sSETBw5mKkpuiv7YU2I71FmOAnKmWt/NpeKI0SlMBl7TmUIh9NrmLIEpuVbpTz7NxIOILKqk5Jzw3KIIqY70LgUooDNFlHV0Q4IluvRTo2ezkZKZWkl+SEv+PH36si9Orj1xpVSxKlksRaApBZKxr+WmYVJlw4IdM8umobCi1b452dOu8NqhxYKdLDH7P80fc4/+l9RvfGrM4cQDiGWjda9D+4SuODd5Hf+BPG5jZfnKz46xczfvJ4wnTi4q2iAvFTaZa5s1vjG5ebvN2vsl/TMKdPSZ98xuL+F4zvPmH+dMrqTKgkNoeudsPE6lrUdqtU9/vUr++h7l5H3r5CUt/BUSqM/YSLZcTh0YQLJ+R46nE2D4SUzI+Jc9DpxhcktA2iyGxAo2ki9A0blUNaKB0y1jk5oSTLlCQJSdFQDRvV0PMjWk0c8eaHtFc6Fns1g93aHp0bB1Rv/jH1+Sm14XP6x4/xj45ZHV6wPBzjXrgE84DIiQlmIeEyYnXqMH82orr3jMb1r7Bu3mbvylsMtq9zuW5wpWnyi9MlnzydMho5hdp7gwF6Mfa4cNt8c7fOje13sQybjmYgqV+QpUcsXghdhKBlR/TyPdH27T/mg60q6XrNKkh44McCThqlPMnWeVihhLZXZ2/vTazVjHDmEMy8vIA6SPIpqvklTatC440aN9tVsYuZBzx1BbtuMvX4/HBO19apGwr77cvol65hnU0JJis8N8Y5W6CaZxi9L9E7e/TqB+w3yjyuG4zyvdVkEfB06LBVNejZKjuNLZT+HkZrSDBdEjkR/nCOd3yGsv0Uq9pnUCnTr+q8MFVmbsTSjzmb+5w0yxwEZRqVLnJ7gNF6jns+IQ5EhDwYjlDHJ+j1HdqmUG9vOqpNNzSslVmEBrbZEAidqok/nAmn0nyFNRuiuBMq1W3auYtKVyT8PHQx9cXhaFgxsaotJLuOpF7knYRPNJuhzoZIjRm2VsltowoQFeruaY7RsTfabGOz1wmJli7KYoIUrjDLNjXjZSGMkoyFH+cYHp26LhA6kmFQkqUc4+SjrObIoUu52iqo1LIkEeW21M1IraFZr+yFEIoIzxN6htDFMNrYuuhkNr9/sLkZSjPWmoX8yvMLFt1qJsINlTqmKkZ68FJS58UpfrympppIxt8sYpu9kqYaImEnlQQ7br0uOqFsTeFh+02vt39be6G/t0Xo1z5KEmtZKf49KSl4YSqOJ30BMixrMk1b51rH4t1Bhcv2GvnZpyx/+n2xA3owwZv4SLKE2S7TutFi65u3qH74Tbj+McfU+NmLOT98OuHzZzMWOeJHVkTAoder8O5+g49267zVs+nJPvLzTwm//DGTLx4x+/qU+YsF3tgnizMkVcBU7YFN7VKDxrVd7GtXUPdvkfWuEFg9hm7M8TTi6XTMk7HLi7HL6cx/DSCaxKLL2RSYX/fY+IPWWUpWFKKMLI5eK0qvPmRFE44hvYxqWKhmlQtL5ZGt8+O6QbchDmyvdm22KwaX6jt0ruxTv/EPqM1PqY6e033+oOiQ5s9GRejCG4tww+LFkunXQ+r3ntG68xX27TfZv/4hnUuX2KuJF9N/83DM0+OFiHQvxcfuOxHjVQ5V3W/w3uAqjXcl2pIYbcRunKsiPLL4ZQqwKcnsvvGnxIOqWDQ7EXGY4i4DVjOfR1IJXZGwdQV7t0X7yrvUZiP80SwnNgSszhw0+wi9YVNtDdi58i1ud2xOF0EuPhTqi5ORy/3zJf2KTnOrRuPSDaoXYgzmz0RRds9nrJ4eo+4+plrts183OOjYHE+FPj4KE46nPs+nHvv1MoP+NspgH2vwVOjFnYhwGeCei32RtnWVZu1AOHpsrRjtTZ2Ik3nAeTNi27aw29vo7RaqdSaYcq7QipeHJ6j9MbWKAMTWTA1NCV76htyQeZAyaLZQG130ekV0Ip4IB0SzGer0AqW5FIm8soqd20ZXeUc19iJWkS4cPZU6qmUQTBaiCCwFlFTxF1jVWrEXUqQS4SsBBSfKyIzKa91UEoREKw8jPzy1qtuFrVTshYThdhmKqPPariKZVUqagSRJJHEscESrGUq4pKxIWHk4YTOS23iK/CQjs02Usi2erymCIuEFqO6SUuRQVkqUFTESFIU4KeLefrxmXTZBL1NSNEqSJFJ+ro8SeEixjy6XMDUZ9ZW9UpAHHII0Y10u552Ykf8dz0dyvuiE9HIJQxHPD9NM7IWyPJywXotR3O/IjPt9Pf7gi9Cm4/m3Cu1e/QSWJFGA1uAn4rJYLBHFC3Pd1NiuGdzu2Fyqaminn+N/+SPGd58wezonmIViXzSwad9s0X3/BtU/+i7ZwUc8D1R+eDjjrx6OeHQ4ZzXziYMURRMFaHe7xh9db/PeVo07nTJ154T101+w/OLnjD57xCzXiIfLKI9561QGFeoHzaL4aNffJW1fZq7WOHUSHj6d8Xjscv90yWF+4Ok7IaGfEAdhUTg2QjohpVORFQlZloTrR5EKrcOrj5edUUaarosiliWiIG2KFIgvbIAk8smylCTQ8FdlljOfyfmKZ6bGT2yNTqMsEDw9ASjdb2zRu7JH7dK7NOZH2E+/pP7oAdP7L1g8GxcFeebGLPPx2fzplPaTE3ofHWK99Ufc3nsHU22iyxLfVyTuZ2uSKCNwfSJPjOm+F6U4gYjRfrh1hepbGe1IkJqTQETbvbEwWZbkJ6iWQa3W4vLVb7EaVDlfhizzTjJwRVf08GRJp2oIoGj/AO36O9TPzwX9IBDQ09Wpg/7wCKN/F625zV5th1tdm6dDh0duROplBF7Eo3OHSy3RNVYbl1C2r2BvC0CrNxbdlXc+oZqP0zqNq4XWfLwKSSKBPzqeehy1LPbrOt36ALW7hdE6I5y7xL7gwYXn56iTY2qtfXaqBoN6WRzBhglOmDDKeX+z0KCcU6n1+guCiUDxhDPBYdOcCbX2QWErLWtybpcVRWTohuxWVeq26GRUqyzi2rH4cxiLCbI3o2JawvZpqMiS0JovvKgoIm1DHI2qlngRT33xIp6t5pTCJbYqCdeSIcaCXv7/WlCpU7KajWLXKJkVJFVhneOqMm/F2p2jZBFGfrulKTIgKA6rMMUJU/x0jWLYxUgPECO5wGPtOShpQFkR4zitCAikxe8fpGtU1RT3Qnm3I0ZyglspJQG6IhfhCOAVtUJGtFZRFKMIJ0CekvNdlCRAziJ0ufTa8/1IKL+jdM1aMVgrOqgakiyRBmKvJAdCdKflXb2ae8LSV0Zy6/XL18z/EI8/2CL0Oy+4XvkEroF0DVFOfg6SNU6YEGdryppMTVe40jTZq2no48cE937C6LOHhf9F1iQqbYv27R79j25hfvAdkqvf4v4k5IeHE/7y3gXHR4sc8ZOilRXsusHl3Trfudnhm7sNDuoa5YuvCO/+gPkXDxh/+YLZ0xnBLCRLMzRLxepa1PdrNG5eonb7hig+nStclGwOFxEPxhPunix4cLpiOhHFx1tFJIFbjM9KkoyilVEMS2gdDBndUNHKCpquoL+ieDDzmbr8S4Vog9zf7Ec2SvA4zQoluPjn1f9+2XVFXkDopKzy4jfUFR6VFX5a1Wk0TQ66Fre3atzu2uzXb9L/5k1qBw8w9z+lcu8rjLtPGD+YCL13mDI9c7BHHquzFc7ZnMHZhOoH51y+/cdo+43i3eRn6zXTizXBcokziciSNT9Ns+Lm553+NWrvJfR9N2flZUV6ryRN0axHgvRg2lzrvcl4t87UCfk0FMLAOExYznzuHs7Zrot38lcGt7BuHFEfzgRINRK7rdXxFPPhU1o7D+ne7HGzY/Nip8ZoGTLOxYPTRcCjixW7NYP+bpXG7nUqF4d45xNiV/z5/MmyGKdV6ztcaZocdm3O5gGnOVn9bB5wugqY+Dat2gBlax+z+xR/NCeNHHHIOppTHp0gDy5olkXKrWVrjFYhab7Yv3BCZn5Kv9nJjadVvHOhJU+CSBywTs6RuzOapk0n3w1Nc/Gd0HfHLMKs0GZrlWcEk4VIqLl+IZuz65dom+L5ZU0uvs429IKkYmNUm4LtaIxJfYEUSpf5XqflYGs6FV2mrMnMPTFWXwYiKu3GGqpeRbKqKIZGJEukUUy8clBXc6RghaXWsTXltZGcGyUswhg/1rB1cS8kG5rYTcUJqeflIzEXXalTeWWv9HKkJoqBrZWRNnslxEhuHbhCux26GHIdU5VeKWIvjathmu+FNANZVYgRRWy92QvFAZpsYsgvnx8mWRFQEKK6HDicF8E0SliHAaW8iKkb91WOssrWQniZrdesKf3eGHK/6+MPtgjBb69ygL9J095cBId52inO1qhSiWZZZbdWZr9uUAsnJA8/Yf7FA2aPL/BnvkDwDEzat/v0vvU2xnvfwe2/xaenLn/1dMJf3R8yzu9/1lmGYWnUOxZvHDT542ttvrlTY1cLkZ98gvfp97n4+dfMHo9YHi9J/JSSXMJuWzQO6jRv7QnKwu2PSPo3OMfi6Szg8/MRn76Y8fRsxXzk4i5DIs8jDsSOalN4NNMsdjSmrdOqGXSrOv16mY4tmFU1XRw6mqpUqB02Cofic7fefN7WJJm4Iwjyd2lhkuFEIk66CpPi8HG4DAufkO9EOTE7IvaW+HPRbYwlmTOzxrNKmU/aJv18TPnOVpW3ejfZ+tYB7YMH2Lvfx+zcY/TlKfLXEy6WIeMoZXG0IpiJxf1gNKO7mrPzzp9SvrRbJJ1+oU6YnJXwFg7+ymF8Aj+WSsj5X8R3B7eofRyztSFB5Mw5fxYwfTxBq35N36pS+cDm7d4lnLCFH6V8mWSiyw0TxmOXXxzORNR4r0bv2vs0FgJXk0YnQjMxC1g+P6Py9B5Ge5ud9i3u9CqczX0+CxPcZUAcJrwYezxpe1xpmlSa+2j7t6ieDgnnDt7YEySKkxFm3g11a1e50jA5bptMcwiss7GntnwRLujsU97dwTif5MrrNeFsRTI8QV1c0NrZFvDbplkEFApzqhMysFXajS20ThejJfA3WZwIQvbkDM2dUKvV6FoanarBcBkW46zNvU7WaqC2+qKQjWakkTjITZYL1PkYve3RKAtzbMVQcHIeXDFSi3W0TTdknhAtXTGS8wK0XJttav2im9KUSMA886i0s1Eb2HUUy6A0kfKUmQgYSKFDudIoDpY1RSqwRqtIsNg2MFDVKouUXByLgIO3Qs6fb+eHw5uU3eZ2zU/WZJqFZFWKvdI6Fd1I5i5FQs5qFBw4WZJIs5dFJEjWrPNOSjzfEWPjSEBRS7GPrlpFQg4oXF9enBGka0xVfy0cUYzkAi8vYlYeThBnHy9RXeLvv/xbvB7/Nl63/ygj2r+NygFeFqA0d2fE+eItXa+RSuQxY4WdikZXjZGOHuA8esDiiXghkWQJs1emeb1P9+M3MT74M5zOLT47d/lnD4b89f0h0/MVzswFwLDKNHo2711v8ydX23y4XWV7PYOvfsry858x/ORrpo8nOeInQ7NV7IFN42qH9ltXMN/4gNL+m8zMAU/nIZ+fT/j0xSw/2BSdT+gsiv2MKDx2jvvRqTZN9loml9oWu/WycMdYGjVd4FksVULJIqTIpxR7gigexYKnt6FJbB55O76WFJAU1rrK2hLx9kyzSSQNP8lwIvHPuRMydCOO8purpyOX5dRjNdXwFg6hMyN2l4SLMe5IY3FRZXLW5fRsyd3tGn9ys8MHWzVuDN6hZrcYtPqUu5+iVx+hfDFiNPZw0zVnTkT21ZgsTlmnGb0spf32t/nGzgFSzoT7iSwxlkr4q5DQj5iPXH76ZEI5f9f6/vbblD/wGeRUiNFXo9zxEzB/NkKv36dda9F5u8E7g4q44QgSnqWZKK5BwtORy/2mw6CiU+8fYNx8n+Z8SrTyWKdT4Q0aOyyfHKP07mPbHa4265xv1Zg4Ec+SjDhMWLgRL8YuT5om7XKV9uAa5v4zrNGMNLog9sWLv392gTp8Qb21z6V6mctt0Q2dJCJosikg0zxcoPT2sLdPCzZd0cmMTtC7V+nZZbZrBi+qeuHX2biCFmFKw2rmce1TgsmiIAek8ymsxtQ6VxlUDDq2jm0oL6nUvigiq1ilYYs7Na0yziV8mThe3aTc1C6NslrEvdNsLVJuOQKnUa6LkV7VRJrmeyFXjOTk0MWyxEiubqqc5yM5PxLjRT9es7YssReq2MjalCQIRRHJHT+mImHrMlY+ESi6/nycllnWy6i3pghfUpQIUVzsCyK1vhFFim5OWFfzkZgpwgFFNxMFhaeoFPsYcikvQlJexNbFzU+Y5Hud4uhUEuGGKCbzXeTIRzNef36arXMoalqM5CTNeEleeDWqnYRoqo0hS6iyJKSV2ctx3HrzGvAfICH396IIbR6/ybb6qk9oU93X65dATlOVkUsl+hWNvq2iDJ8QPr7L/OER3lhg3M12XoA+uoPx/ndZdm7x2ZnLv3g44gdfnjM5W+EtHNZZilmr0RyIAvSPbnb5YKtCNxqSfvFXzH/+KeO7T5k8mhLMRBzcaOg0Dhq0bu3QeOcO+pvfIu7f5tBJ+cWzOT9+PuXu0YLphcNy7BXFpyTJqIZNuWIXXLu9jsX1foUrLYv9epmOpdIsy5ipj+SOkFYzsqOxUA+vZqTe6m8oHTYpuFeNrSCsrZKqImkKiqEJlUPFRrbrVCt1Go0u1LrcaHeIdlqM/YSTZcTzuc/XQ4e7h3POL0wWYxtnMiVYjIkDh8hbEK1mePM2q2mH0czn6ZUm37zc4oOtLXY/+E9p9/aw+t+n3L6H+cU5s6dzZmHKLEzh0Uz8P08zelFA8/1/yMfbN8QNk6HyV5rM9GyF50SEfsJ85PITdYKpCULC9csfYQK9SLwLnD6eEC4jcVj75BS9/jm1Roe9a98i2q4J2GSScXq+Ig5TvJVA8fRzz89B/wbGrQmNmUMaRDgXLkmQ4J5PsF88otzZZvvyx9zu2Ew8kSgbTj3SJBN6hUXA5YZJvbknuqHRkGjpkQ0FNcAbziifPkMbXKNb2eNKs8xJ22Lhxbih2MmcLgJOliFd06LR38foP6c8nIldSO4cSiZnaKshzfoB2xWDfr1c3Pus8lHWzE8Y2FXs7g56+wn6UHQyWSQKoj4bIbkTKlqNbi5SdIIkt6ZGTIOYZZgJv06ji14/IZyvcnVIJJb7/oJKu1/sls7ncqHedvJOJLNrqLUWasVGNcuE0SpXdy8peQvMbomaoVLJR2qb8fGGpxbLBopZRTIryIZGGsVFVHrtLVHSIHdviZSdKMYvU2ZJSUPVTSTDRFYVUlkWI7UogNAr9jIbBNCmG9pYU5OSjmpYL/dK7su9TikJ0OUSZVUqnu9HYqQWJhlRJopIydjcC+XdTv77l5IATRYHq5t7n80bgY0jaK3p4lZJe5nwW8cR69AXnZAhdkpSiZeH6ohxXLZpYX4Pe6G/dandH+Ij+zUfdZZPOo38f5ytyXRNBX1+RPL0CxZfP2N1PCX2E/Sq/rIAffBdnO4dPjl1+BdfD/nRV0OGx0uCpUC7mLUand0qH9/s8I9vdHl/YFOdPiL6xfcY/vDnjL48KRA/iqFg90xaNzp037+B9fZHcPAu52qbr45dfn6y4IcPx5ydLFnOfILlkiTykRUN3W5i1QyqLZNB1+ZOTls4aJYZ2Bodo4Q8P0Ean5OcPSe5OMQfzvBGM3HzsRQCuNhPCuzPhvf2KlkbXoJNN/w3AFmVc/acUqCBzLaF2W9S2euhD3bY2bvOducS7/S2Od+p8fRyk69GAkz66LjK7KLNarIkWIxJAodgdkHiuwTuFs4i4NG5w9HtLh/v1rl56WPqzW32tn9EdV8UcvurMc6FS5yumb9YAi9IgoiB71L/+M/5xvbbxbvj7z8YcXSywFsKgd3owuH7UglNkUgvNbl18DEVQNYUZONrZo/HhSBPtV6gVf8aUzO4evkjwt06UZrxQ+Bs6JClGWcTj18czmkYKtZOjf7Bu1QcYQeFI/yZTzBZCeJ2/S56tct+fZ9FWCkU054fC6rCyKFf0anqFbb7VykfnFNbemQ5Vy5eeQSnp6g7T6lXuuzXRRGaOiHHUyGbGy0DTpYBO1WDSm0LdecK1mRMvBHFuQHJdIw2O6PS2GFQ0dmtlxktA2HM3XRUNaHvLucdVXn8ciQX58I61Z1QbzUZ2DqDepmFt1E0pMVILm010Drb6O1DtMlSFKI4Ye2tWK+mlNsxzXJO8zbVooiscs2DEyvU7RZytYlqjYk9X6Q2PU9Qpf0FlmoV3dSmEAaJuNdx4ww9j1prFZPEFc9fh0GxlzHVmgC5GgoLLyq6CScUKTdds5AqDRTLyEebopvIvNzRo1SK5ztBTJplhKnY6wSJipGP1DZ7qaIb8RxK+dFqWZWKgMHmzx/mHDhlM5JTFSRJEp+/MBCdTCnDUCTKRcIuFxhuOjHNBE10Q5KqiAKcFzEpCdHyg1VDkcjiV85aNv/ye+yE/qOS2v26D+a3+SDlUglVWuf7A6hqMtVkBWeP8J9+zerogsiNUcsKlZ067beuYLz1R0Rbb/Hlucf3nkz4yddjJmcrguWSkiRj1mw6OzW+82af715t817fwj77HP9nf8nZj75k+PkJq1Pxrli1VOqXamK/9NFtyh/+GdHgjrC4Ppny108m3D+cM7twcGYuaSR2KUa1jZV3PVd2ary9V+dmx+Z6s8zAVtGWJ5ROXhA/v8/q+IjV4cVrkNNwGYnik76qaniJ6XlV2ZCuee3HX/1289CkEmVZoiyXqCoSDVujMrCp7lSoXe5Sv76LsX+V/cu32eke8Ga3xzd363x54fD58ZwvjhbMLpqspj7+ckoaBQTLEZMkIvJj/s888fXRfpMPtrbY/8b/h872FSr7P8TqvyRli5silyw9JQ0i+kGE9f6MG5c/QL3SpqIp/MBUeXgovFChH3NxseL7yubdXZNblz/CzDL6kgTcZ/5MhAJWx3NU8xmy+WPKeplrg7fx4hpRkvHjbM146hGFCU+HLp2qIY4v+x0a196jtpoLWWB6TuIn+KM57pPnKJ37NG+2uNq0GHsxUyfk6dAlTkU39Gzq0bM0mr0B1v4trNmQYL5inU5Jggg/74bU9g7d1jUOmibDnOG2yMkD56uQs1VIz6pQ7V5CH5xgTJaFrNDPR3Jye492ZZftqs5ZvVwcMTuBwN/Mw5RurYP6ShGJli5pEJIuJqjLMWZzj7ap0rE0zl4tIrnaYBmptKym6IYaI1FE0pTY9VEXEyR/ga01aZka9VeKiBMIjpoXr6nmagW9buejzvzwdDVHCpZYpqAniICEXNAHxF4mY21UkSoNVMtANvQiZKG6S7EXshvUjJcpu83zi3sb3aZkVVCtMqHmFHsdEXX2KJdrohPLU3Zp9sr+NF2TaWXhJzJ0ZFVhnWbCYLwZyeVHq2Vtsxfa7HXESNBU9CLckLiBeK2LAtFNxQGarBXhhE0Ri7Ocip0hwgl6Oe/kpIKeUEojlBJ5Qk5ClXKa/mYfvP532eb8+sd/lFK739ZhLpXEGE4uiX8UuYQiQ1mRqCkZ8sUR4eFDls/P8Mdi0W+2TRrXdjFuv0+y8yZP5hE/OZ7zo0djpucr/JWPpGiYNZP2VpXvvNnnz693eLtnUj76lOW/+b84/9E9Lr64wDlzSeIUoyIIC733LtH+8G30t/+ERfsGX48CfnIy519/NeTkZMli4hEsl6yzFMWwsWoG9Y7F/laV9/YbvNOvcrVZpqunqOMnJF9+gf/iEbOHRyyeDcX9y4VwFDlJRvBK0QFRiMXnosTmpVgtgZonEzYSu3RdIsrWAj76S56hV38tTSphuzG1qU/70ZT2L4ZUd17QOLhH7con1O5cp33wBq3uZa7d6vPhdo37Bw6fny757PmM8cgWxWjlk0Y+q8mSKEz5ayfixdjj9HpbdEXb71Ov9dnqbGMOfs747hOmj2Z4Yx/3wiONLkjjhJ4bUHVXXLn9J6iX6kVy7svns+Kg9eRsyffzj12RWly7/AFloJO/UC9ezAmXIfNnIyTtazqagalZXG8dFPuhn4QJ3irEdcJC5V0zFCrd62jXpzRcIWZbnUwJZp4IF7x4gNEasLX3HjfbFhd5ATlfiMPiF2OXjqXRszX267uoe9exxxNxY7PKj0ZPT1D6L7AqPXYqJrv1MhMnLBKMw2XAySpgp6ZjVfsoW/tY43OilUviBiSuTzo5R10OqdQGbFcNTqohEycsdiJzP+bCCRnYFvVqF6U1QK+PRTotDyiosyFSZ0LNGNC1NLpVoygiqyBhGsSswpSG2UBqdNDrFcKZI5b7rji6VPwF1WabtqnSMLXi49iEX9w4I7MrKLUWsl1BNZcipr2JKkcudl3shSrFSC0p9jJ+vCarVlBzUZ1iLAUhJM73OpErXgfyoM7m+UKvkBKkGZkpbuAEPWGRK9+zXBTnY9ilAgEkRmovR2IiXFAWR6uGhaSJvVYWxaKIJQGa9nKvsymCaUYumhPdTKlsCfrBJpyQRPlILkST9VfCDSWSTEStBRV7LUypmlGEEwDWcUwpjSklAYqkoMolpPT1MpHx24UK/jaOVv/eFKHf9NgkjjdjuVKphCyBCgIgWQJbAXl2QnL8GPfZIe7JmCQQY7jqfp/KrZus99/hyJf56fGc7z8YMT1bEbgxJUnGbpTp7NT4h3d6/JPrHe40FZRH/4b5v/mXHP/VF4y+GrMc+6TrNdWaQftmk8E3rtH61jeRbn+LC73Pz14s+MHTCZ88mTI+XeLMxAuxpGiUK2VqbZO9/M7o7X6VKw2DHg7yxaeEDz9jeO8h0wcvmD2dszp1mC5DlklWFA4QXYsmlbBkCVuRChHdRvUgazKy+noO5lXbauyL25cwSoui5qfi99gUpihbM81//CJMaUw82l9PsHtn1D95TP3yz6hf38W8cYdbl9/k2tUDPtyu8vCgyd3zFZ8+nxUadW8VETou4yDGXQYMxy6PDlZ860qLj3Z6HHz0n9Hq7WL1v49ev8/oizNWZw7u0CMJEsJlSGeyoBO4XHrz2+h7XUELBr58PmMx9nDmAYfJmr9M8lHDZVGIrCig5QZk8SPmzxe4Qxc4oyRLdA2T5rtlbnf6LIKEqRNyP0oJvIjh1OPT5zMsTaaiKVwZ3EJbTKhssDdjF/d8xvT+c9r2Z6hmnZ3qPtdbVrGPWfoxx1OfmqkxqOg0BhUag2uU986KW53YDfDOJ+iHD9GbPbr9t9jPZXMTJ2LqiG9PFgGntTLNjk29vYfaPUQfzYvFfjCaopw9R652aZo7bFd1Jl4ZJxAv4OLeJ2IWGFTtDnJvF2N0ItQKnl+M5BR3Qr22zaBicLIMmZgaUyfECUQ4YRGmxHYNo94VKCBrRrTKcnrAipI7w2iE1A0lH8lppFn4OlXaNqhU2kLvYE2KHWbmLVm7c9Q0wFRkGnnKLkrSooh4cYqfKSjlKlKljmKNxU4lzciiAAIXbR1haZLYLeXPT7KXaoRE0sS9kCX2SsVIK/QLDpvYK4mTh1fPG8I0Y20JmKhkmOJeaaNJiQKkyKdcFeGGzZslkdwVnZAoQnk4YTNSixPIMvH7JwFGufZaOAHE0ekvFzEU9eXvn0RkoU8pDtFkQa0IkgxJKolQwmtHmH/34YQ/2CL07zKGe/38pVTw+HRpjeSMKE1PSE6eFNflkipT2W5Sv30F9dZHjNQWvzha8OOnE84vNgWoRKVpMtir82dv9PizK21u19aUvvhLJj/4Hsd/dY+LL0bMcileu1Gm+2aHwTeu0/zjb8PNf8CLxOQnz+f8i68uePh8xnzk4q981lmKbleoNMv0t6p842qLD3frvNm16JZc5NOfEX75Y86/eMTkqxOmj6dMz13GeQHYdDGaVKKqyDQ1mbKlCsJ22xTE7VYlVzxYqJaBYmhIqlJg6wHIUrIozm87ckvmys2FZ+KIcqNqCBYhkRfjJBluXpiWSYbrxmjPF1SPV9R+cUFl6zmNgy9oXP8h9VtX2L35PtuDW7zZ7fPhTp2fHc/58eMJRycL5iOZYLlkcbHAW9iCVnC24tGNDv/wapu3dj+iXu2yVflLZPVnlD4/ZvZ0jjMUpPFgJnTmPd9l8O4/5Js7uySpSEh+EaUsJh6rqU8Sp/wloEoS8uUGVw4+oLKaiRfqRcjyeMnyeMk6y1AMnZZVpXfn27zZqzDOdQjH+SHr4YXDzzWZhqFS26vRufQG1myEN5oRLoV00DkaYtSfUGt0adxucaVp5kgfn6Ufs3Ajng4dBjWDQcWg0txD2bmKdX5MOF8RTJb4kyX68Rly6xFGdcBWpcF21eAs70ScQMS1j2oGA1ujUt9C7u9hDk+JlqIbCucOxugEvXdGs7HLVsXgbBVyZiiETsTCE+SCkRvTLpep1vo5hkckzNIgIp1PyaYXSLUJVV3EtYemipNrr1dhIgyotopqtZAaXfT6qTj4TDNSJ9duN2dU9R6tHOOz2asIbbZA8Fjlmrg5qp+/HEmF+eGqv8DWOmIvVFZZFXuhLB/pqeL5tRZq5bxI6a1zNYIUrCgr9eJ0YfP8MBUfg58o6HnUW7XKxe+fbVJmoUNZMXOEkPza88NXYaL5vVIWCwnkpogo6yQPKMhFuGKT5I3SNWvVEEWsbCFriihgseiEpDhEswQ5Qc+p2uL5vAwnKHpRxDYxcfIiSBqhaYKc4MkZ8q8405D/AxwL/cEWIXhZcH6bFvHVh1zaFKQSpXWGFKyQ3QnJ6ATvbEK08gAoN8rUrm6jXX2LuHudJxcBnx0veHiyxFuJomJVdZqDSlGAbjVkUYD+1V9y/IMHDL8YMXQj5FKJdkWjc6fF1rdu0vjWH7O+/W2eBBo/PJzxL+9d8DRH/ESeV4z3Xr0xendQ5UpdQzv7kujeT5h8fo+LT58y+XrCeOgVxQdE4ampEm1Nxm4YYkezW8HqNwVle6uL3Mj/qbXINIu1VhaX1bIq4K7FJ1qQx/U0FkbaOKQUe6y9JWtPvHhkiwnRbIY/nOOPZnjDBc6FW8BJl1GKm64ZRynjiY82C2g8nNL4+TmNg0e03/iS9nu36N7+iNb2G+xWe1xumvz1U5NPHk0YHZdwJlP82QWhM8Vf9fmXy4DRMmB6u8c3ti/R/+DP6eV/5CxOGX09ZeZExF9P86BFRh/ofvhP+GCrixcLvEzg5Uy4ecCJtOB7mixspZcb7Fx9/yWKZ+KJj+VohWK8wGj9gmqjy96Vb3GzbXHYtRktAgIvxluGPDpb0a+X2a4aNPqXxDjt8DnemTh69sYei+dnGK17WP09+nkn87xpcj4PWDkhF/kBa7+i0zCq9Fu7qN0t9DNB2Y5zOna5+5zyzlVagw47FYPDqs7x1GORF8eTRcBZrUyrXKbe2kFpdlDPp2K0t3RFNzQ6QW5fUDe6dG2dlq0zzwV6w2XIWTWkb2tYVhO5NchTbg5pFIuR3PgMpTuh1hJk7YapMnFkMdLzRMpuFWU0rQZqo4tcraPMxfFs7AWoy1w0VxkIMreuMNGUwtwqikhGZtXQai0ks4KkTYuUneqtkIMVpiVEd7YmXsj9KCVI8r1QnLHO1Qzi+fMiJba517EqzdeAqGk+0trshaqahWyJkZxsuL90byPudSray5EcvBTNhWlGWcsROoZBycuLaBJDnlLTFeOVkdov2U7XktjrGBayoZPmac51EucJOUE92PzeaSbSbaKIZawNkbCT8ph4SiLGeWFAKQ5QjRKKJHZDWd4CZb/81v7vmJzwB12EfpvHayqHX/7+dUYpDigFS9bLCWmx+M3QqwbVywOsG3dY777JoZPy+fmKu/lSO0szyhWNRs/m27e6fPegxa2GjPzg+4z/1V9y9Ff3ufhiyJmfIAFdS6X3ZofdP3mD+rf/jOz6t/h6JfGXT8b85ZcXnB7OWU590ihA1gyqzTLt7SrfutZ+3eL6s58x/umPGX32mNFXYy6OV68Vn7JcoqHKdGo69Us16vs1qvt9ale2UXeuoAwuk9V6pHYHH7W46/HilJWbFgeocRoU40upJIjZqiRjKBa6UqWiyZRbEuWeRFmRsDWJcuRgeTOk1Yjk4pDk7Dmr56c5LXvG4sWiKJbTKOU8SNDcmOapw/YvhnQ+PaT33n06H7zB/vv/kM7BTfZqBt2qwV8aCueKxOwsJVyMmbtL/GWbyBcHsk7Y57uXdxjkhSiNE8JlhH+8YhSmRA+nheJ8ULbYff8/4aOdGhMvYrIQIQVv4TEfZjyTJb6fa6Mbly5h3/6IxnDI6nha3A/Nns4wGk/Qmz9Fr/c5aO5xs2fzYizutwIvgincPZyz2yjTs1T2elco7+xSPrzAm7iCLXc8Q6+foG7fx2rssVOz2W2UeWSqrByR4ns6dNlpmuzVDDrtbZStfYzjQ0HHXgoi9erwAmXwGKO+Q8eq0bN16qbKwhNpu1e7oardyTE8JwW9IJgsMEYnGLsjmoMBPUujYWroOZV66oQMnYh5kNBpVrEaXcFyM0XoIlp6GMspyvwCs7lHo6zQMFTKmlIEHDZx745pULWawvRqCNFc6otwwXo1Ra07VDS9GKlt9jpOTlAILQPF2LDkLggjR3QU7hLFX6JnYiQnRmpxEVX24wwvWRPLBrIpRHWqaRClInW4DjZ7oVKhJzHzbiYqwgEZ67JNyRZUbjnnwJHE+V7Jp2xK2JoYqW1GcpuRWpAfrcpmRRQDVeyd16+GE1SzkORt6AtxfrgavVLERDfji24mjiglIVKy0TqI4/Mo16SIIgZpSRFFLD9aTfNxHonYCym5I0yVS2TZy6P17PccTPhdHn+vitCvVTlsCtCrhWidUUoT8T8ucklXc1JnJUYtlrCQ1m9dQb76LkO5zt2zJT95OmE8donCBFVXaPRs/sGNDt+90uJOS0O+/z2m//pf8OJf3eP0ixEXYYJcKjGwNQbv99j9kzdo/KP/lPjqt/j8wuf/+vqM79+7yPc/LlkSodsV6h2Lq5cbfPdWV0j0KqA8+zHB5z/g7Ef3OP/0hNHTORdhUhSfmirR0xWaOxUaB3UaN7Zo3TlAvXwHaesqaWOHWaoxDRJOliEnxwvOVyHDnG6wuS9JovQ1hUPxuSwJLXehb9DEX9INbbxbNRhUDbpWlb16j0bnbTofyrRmR7TOHhE9/ZL5V08Yf3nI+OsJ56cOR37CIk4ZhQnP3Ij+IuDqV2P6Xx6z/fgFzT/6Y965+S2ad3p0bZ1/Zmk8VGWGz1OC2QXu6Ig0Elw4J0jI1vDdg222P/wLtvJr+DQ6JMpHlDyZUZJLKNYP6dl1rr75Z/zxpSZnc5+/9gTROvIc5iOJ+6pEy9bYqRq8sXUb89Yh9edneGOfyFngDj0mD0YYrUf0ep/R/2CH212bpxMvV8JHBF7ExdDh86M521WDzk4Xa/8W9osXOCdjvLGPP/FYPj/H3n5Idfc6ve132a+X6VZ1ziYeQRgxXwY8Ol+xWxPR+0F7D73fR3t+hj9xCJdCBW4fP6G8d4N2V0Slm7bO8dTHDRPO5gGHM5/dWpl+r4rd20U7eYJ8MipCDv7pEHXwArW+S7NcoW2+DhQ9XwYcL3U6pip4cq/I6mLPJ5zOUSbnSD0RUNhgeKZ5wGCWj/X6FTUna3fRqieCvPCqaK41o2Jt0yyrWJqCLAmg5yrapOw0ATSttZBNk9LSy/dCuVrBX2Cq7QJIOs+BpmKvJGypupFTsU2TkieORjPfBV/QEyy1TEWTsTSl2Ov4sQgXhFkJRbNzhI/oRtZpSha4yJFDWS5hqlLRSUVJ9rITSjLWlkkpl9wphiZGkkkkEm6Rh15uF0Xs9U4sI0wFOWFD5JZV8RK9TuLX9jqbvZBbKL83Cbk1mvLyXkgKwvz5EaU0QpNeJuRiXn/jvubfjXjw7/v4gy9Cv+4T8m8d0a0zyBIxXkpC1lFAGifIqoLZbVDd76Ndf5ewfZWHZy6fHS94drYi8GIkqYRdN3jnUp2PLzW40zFRX3zC/Eff4+QHXzH6asw4SkUBKisM3u+x96dvUf/OnxNc+Rafnbn8s69HfP/Lc0ZHS7zFgnWWUq43aPVt3rza4h/f7vHRVpV+NmX96Q8Z/eAHnH/ymOEXI04nHrNYvMOxFYktQ6G+V6V9s0X7rStUb91Ev/EucfsKs5LJhZvw4KnD0+mYh+crDiceztwncGMCV9CXN7y5DTF7nb5O2t5w6EBggUryBoIqFrWGpWFYQk/ea1tc61e42bO51mpx+WCL1tWP6b/3mMaXP6b9i3s0P39B8xcXPJ/6nOTF6LETMY1S9n94jDf22RnO6P3JGZc++HP+0ZUdbE3mn2oyd6US40MNb3JKsBgxzf+M/7/8neN39rfovf9nbC3FjU76o1OOxuJzpj2eoVefYXb/mnqjy/Wtd/l4v8nZPCD0E2ZRROR5LCYyn72Yc71XoWU22Tl4h9adh6J45GM5d+gyf3xOdf8+lf077NSucaNrc69RxlkEBbLo0bnDo77LlUaZg84lyrs7lJ+csDxaES5D3AuP5fMzzJMnlNuX2a5a7DRNHp07eE5ImIcUns88brQtupVuznJ7yupwROgmBJMVzskY7fwFRmOPfsWgW9EpazILN2KWx9xPmib7dR0zLyKqdYx3Lu5+/MkCc3KG5oyoNGpCFJcDRZ28G5p4ImDQrbZQaq1CVhe7AeHMwZgNUbwZleo2jbJa0AeErC6nYodlsoYYqW1Ec2kuilMXE5RggV3fFZ2MLueeIjHSK0ZydgW12ixGaqkfFRw3OVhhWz1qxssF/+boc4PgqWsWil0XBANpLr7mA++l38cwqekqhhK+dq+z2QuVdUsovw2LkusX9zqEvigkikZFUzAUCT8XxYWJwOdEqC8ld6qGtAkX5Pc6hlxCV8ThqqHIuFGSPz8PJ+hlcbRatijJkzxcIDopkgDdqBQfdzEOzP/8UaqIvZJu5OEGF7JUjAPTKB/pqaITWr98Ff1dEm+/74TcH3wR2jx+qw/6VyU71i9fcGVVQa/ni/qDO2Rbt3ixjPj8XMSHnUVAmmSYuYr7o0tN3uxaVOfP8H/+r3PP0IQLX8xpe7pM782uGMF958+Jr/8xPz12+L8fXPDDLy8YHS/x5hMAzHqL9laFD292+Ec3unxjp0Jj8Zz4F/+ai3/zU05/8ozR11NOgwQ/XaNJJdqaQm+nQud2m/ZbB9TffRvlxocknas8czPun7rcH50J6dv5isVY6A385ZRoNSONfJLQL7QN4tPxsti8+n1AQePe0LJffUiKimLY6JUmzxo9vmi2qXdMtgZVPjxo8vagyq3ObXa+e53+za9ovPEjGlfvUv/ZC3pfjXniRpwHCdMoJcrWBPfFoWg4d9gNPAYf/yd89/LVl3BSVWaoaLijI2J3wfzsjKeqzP9tCGzKty8d0Pqjv2AriEj8hPRnZ1wsQxZxRvnpnNFnjzB6P6BqNXlvsM3QbTNaiRd8dyZCJ/Ohy6cvZmIMtruPfuNdGs/PcS8Ewy3KFRDzh0eUr96j9e4eN/MCPJx6RLleYTn3eXS+4mbb4tLeNurOVaztp+jPRuJjXIZ451OioyeYl+/Qat5kt1amU9WZz30CL2blhLwYu5z0KuzXq9T6e5RbX6BaulA9uOJuKLk4QtsdU7MvFeOscyDJ9zoXTsgyzBhYm07EpCRLoojMHaLREG05xs7J2HVTLV6EJ07E0AkZuRE7VYtqtZVTqVWy2BFhldzxozTFSK2mq/m9jEj9LcKEiR/TtxUaekWkzMoa0coVB7DOnGwxRml5mIqKnTt6Fvm9ziK3lfprXXQj+eFmnAdm1NUcxV+iraOCflBQtcOEZZDfC1lVKFco5Qv+JIjIgqDw+5TtHpb2atQ6LY5O/eR1v4/0yr3Nxs9T1ozC77P5/IlwgkjJGfm9UEkzKAVBES4oJYEgastKIbmTpVIes36ViJ3DSFWNdRqIQpLvdTRLKoIJqiQRZxlZXgSjdA2KIYqvLkytAMQRRCEkEYqkiRtKWXotzPX7Cib8R8mO++XHv9WoyivK2vwFtaSoyHYF066g9PYo7b/FeanKT4+n/PDhmNGFQ+THaGWVWsPk46st3h1U6GVzki/FmGz4xYjZPEAuwcDS6L7ZYf/P3qLx5/9vgssf86OjFf/fz0/55N6Q8ckCf35BSZKw2wN6ezW+/daAf3Kjw9s9C+v4U9y//mec/uALTn52wsmJwyxXTfR0mV7PonWjxeAb16m//x7K9Q/wWld5uIj49KsJn7yYcffZjNnQYTlaFAv9xHf+htpB1srIerlwAkmKVhQieOkX2hStNBL/ZElc/JwsiYmcGZEzY3X2hImiclHrcNLb5/HXPf7lVpW3Lzf446tt3uq9yd4/eYvdN+7Sef/79H78Bd2fHXL89ZQjP2YRZ5z4CdHRknD5lHAZsDudU/8H/5g/u/otGmWVfr3Mv7ZUzp+bOOMz0jBgfj7hq/ydtyqV+JNLb1H9TsoekKVrSr+4YLGKcGYBo69G6PUvGNRa7H70n/En+00Wfsw/82OyZE3oR0LnfbLkbtdmu2pw/dJbNN4+xMsJ2c6FS7gMWTwbUn98n8reDXZat3lzq8rToYO/ivAc4TR6OnR5MvW50TbZ6R1QubyL9fAIb+yT+Ane2GN1NEQ/eUK9fcBuzWCnaXI4cgsf1PHU53ARcMu3sCtd1O4WWuUZkizgt8F0SXB+jjY/p946KKypT0cucZgU3dBxJ2C3WqGaO34UQyNa+sQrD38o6NpSb0JVbxWOnlF+NHo29xk2TFZhGbtcQ640RMorzchyz5AxGyJ7M2xzm6rxkkq9ChKGy5BxNcKJdGrlmgCK5qK52PUJ5yshmvNn2MaAmq68YlxNmPtit9S3VawNkHRDpfajYiS3SbnZmtArzIlzGGnCMkjxrDUVzUIyrFztICYhmbtCDVeohZpBQpMlfNL86DTLi5gN5YoIGKgKWRoVfh4pdCmbndfuhTYjuVUk9kJVzXotpQbk5AZhSjWUajFS8+JSUUTCVJATZPWVvVCcvznckA9KGVqOD1LlEnHGa0UsK4u/76UNRy6Ji3BFKY1RlRKqJG4E/8Oxs18+/t4VoV/5KftVaY7N90mSMIQaFnKjK5aFOzdwqzs8OHX4ybMphycL3KVIsZi2xp2dKm/3q1yqyJTufcrss7uMv7rAuXBJ12txrPdmh91v36b+p/9YFKDjFf/HF2f85O4548MhwWIs7ovaW0UB+s/u9HirraM8+jfMvvfPOfqrLxl+MeJo7OGmGWVZYlBW6Nxu039vj+433kJ/708Jerd5NI/42Vcj/urhiIfPZ0zOHZbnx/izc2J3UdAWJEVD1spoVg3VrKFZVXS7VqgdVF1BUSXhF8rfBm18QkksIJuhHxP6SQEhFdy3KUngFp/eLInxJ6cEs3Ociz7Tk10uDvt8/mzGe1eafLzf5P2tt9j58+vs3b5L553v0/nhF/R/fsr54bLo+J4tQ7IfHhO5MTszh9Z3Znxw50+pvTWgZWv8n2WV8+cKy9GMJPKZD12+VMfouRvmGzvvUf2TlL04Ae4ifzXGnwc4Fy7j+2eUu5/T7u1x5dof80f7TYbLgJ9GKfMRpOma1dTn0+czsUs56NC4/SHtizOCyapAHXljn+XzM8rP79Oo73KzbfF4p8ZoIfZVaZKxckKejR3OB1X6nR2U7StU9p7gDlesTh0iJ8YbzkguDtEW5/TtHfaaZR5UdNxlQJasWbkRJ3OfiR+z3eqgdLcxWjVUa0rsewSLEH84wxqdoG4v6Fhit2TrCoEbFd3QxItYhRm2UUOqtlAsA1jkriHhCdK9GXajk4/kxMuAH4uR2NSPWUYpvVw0J5eFo2YT3U9nw1zPsFsUsY0o7lVHUFatoFQayIYuvmY2GKDFBCVYYVa2sfWXh5evkrmdKKNtVkRKTc9Fc0FEvHJQFhORkqs2CtspkHPkRNTbTzTsnH4gOgJPELUDl8xdUgpdymqdiqYUym0/V277sbiLk9V8LKZqEEQiYectkWNPIHQ2hUCSiHidPL+2zSJqnTkaWRC8QsT20M3ay06qtLn3WQtZXapQ1l7CUEuBW4zzSonohgxZFzBSSagZ0vUrMW9Ze9lJKZqYbOQjuVISoJklFLmE9Arv7Nehz/4uHn+wRajErxba/brH3wgtbCRNJYm1rCJZVShblKot4tY+h4uYX5wtufdCpNbiMMWuG/TaFm9t17jSMFCHD/G++jmTe89ZnTnE6Zp6WaV1o8n2t67T/PZ3SW/8CT89cfg/vjjjx5+fM3p+hj+7oCTJWJ1dunkB+n/d6vFWU0a+9/8w+av/h8N/JQrQiRMRZWsaqky/Y9J/p8f2P7hD9Rt/zPrgA55nFX72cMoPnoz59OGY0fGS5dkh3uSE2FsUHY9q1tArTfRaG7Pewa4b2HWDRr3MoG7QqQrNQ0V7OUd/9cg3/v+T999hsqVndTf827FyVVfnfPrkfCaPRjOa0YxGaYSSFQgyxoAxYIw/8+LXfg3+jOXwGUcZbAw2OQgQICQhFJA0I03Q5HTSnBz6dJ/OXV25ateO3x/Ps3ft6u4jZmAQg9/nuvqS5lTtqtq7q5+173Wvey2pDmrYHtW2Ewka1uodmlWLRtWiWe1g1dbpVNexm1VcS1RdlgTCVmmRRmmG9cUaL18tc/f+Ie7Z2c/RiTcxMrqXnbufof/A0/Q/d57ii8ssllrUXJ/rLQfnxWWcptjkRq0W+47eT2rfEGlD44sJnVlDo7Jaw7WalFdUjmvrFNImSV3l1h13kL+nyaTtAqJn5zQdGksN1k9eITP6JOn8AIeHDrC6a4BSw+aC5wtrH0uknp5aqrF3IE1ueB/pQ7dQXBBO283QmHRhnc61i2R27Gdi4AgHh4VSrt3oyBgL2deptJkumAyP7SI/M0p9boVO1cZzPCEOWFrBrC7Tv2MHUwUR/re60aJdt2VWUJuleoedfQn6B8bIjPVTm13CKlv48jW88ipms0QuPR35sJUqCr7nU205rDVtASLpopiXSafQTA2nKtJG7XIZs75BdlgMbfalTUFJdYQd0FqjQ9VycQtZkvkBzFxaRBvYLm7TwqnWMKvrGEMW+YROxtTRpaFm3RLVTMVysAsZDNlXUQ0Dv9YSGUP1CkGzgjnkko2llXZcX7hqd0RfyNWS6Olsd+bF94X7QrOGbjdESF3s+DCttC7D3iL3gzBt1PPx200ZlNcgkStuicy2ZF+p7fhkQvcCMwk0un0hSwgMTC0VGYoCXYWcF5sXMpOEA4uhVFq12yTzKgk9NBRVooFTy5OUXFgJGQaoGvgeOHYkEzdjMu+W06XjXAlEup5ASaRQdEOAn+8RODaq66AroZNK7y29yBZSXhUl93r2hd6wIPRq12Yn7XBpigqaTqDq4q4gkyfQTNz8KMsWnFyp8/yVDSprTaymg25qZPIJjk33cdNonmGliXP2OdZPXqZyrYrTdEimdPp25Bm/axcD991HcPA+jq92+JPTAoBWri7SXJsXHnMD44zs6OOBm8dFBdSvoR7/CquPPMz8ExcidZ0XwKCpMbGnyNgdU4zdewuJO99NrX8vJ1dbfO3CdZ48u8rybIXy9Vmaa3O4lnDy1swUZq6fVHGE3PA4hYE0/UMZDozn2D+aZ7qQZCyXoD+lkzVV0rqK7lkodhu8jhBvBH43vkFLEJhpbHRaTpgj5LPa7LBQ6zC70eLaepNrKw2qJeFE0NxYxSqv4LQbOM0q5dnTNNcKbCyMsHa9ytPTfbxl/xD37uznlmPfQXHmKLmDj1PY+TT5Z66yenadRctl0XJpnF6nU7Oxay0myqvsuPMh3r1nB2nZCzqjq5SX63QaddYX4Zv6svxtD3PH/vvocx183yfwz7B+bgOr2qF8pULyxfOM5x+n784Mt41PUO0I481rboDVsmnVhBXP7sEM/akik7tupnhsnnaphidD61rrLSqXFzCnztBf3MHBoSzXJy0WNtp4bpPAh5WqFYkLBvqnMab3kZtexiq3pOpOVEOZpVnS44eYyifZNZzl4nIDR1ZUGw2b5UaHsuVRyA5hDI6QHJintd6USa4WnfUSiUaJQnGntNBJMLemiX5XR1JiLYeZQpZkcYhEMYuWNKEqBk87lQbpagndbjCQMimkDClwoKeaabk+iZQIitNSJlRE2qhTa4mNXFJiobgAiGaGqrI3kzaFe0AIIqG5qlkPKbWc9HZUIx+5ugy6a7kGCSMdpY1GPnKtOkGzhuFZJLTevkzYG2q7AZ4qXbFl0JsnfeT0Vg1DRjPEI7PDpNNGx5UqtRRaOo8ioxE820Wzmt2+UDItKyGxa4fRDtG8kJEQIKabQAtcRyjsoqFVNTJXdvwuiHVcMe8T6IkuiMlKJnLUToihVV0T7jCezAFrux62r5MyklEshDi+O7CKZ2OoOpoC23kjfLsVcn+jQOjVRDnEnxcoKoqqE2gGgZojSOZp6jlmV1ucWqwxv1ijVRMSxnTWZGY8z83jeWb6TLSrL1J65QwbF5ZprbdRDZXceJbRW6cYvu9ulCMPcK6p86dnF3kqBkAAmaEpRnaOcv8tE3zoyChH8j689CWWvvwV5h69yMKlMisdF1NVGE/qjB8dYvr+gwzcdx/K4bdy2c3y5Ll1/uz0MufOrbE+d53G8ix2YyPymEsWhsiN7aY4WmBgLMftO/s5Op7nwGCG0azBgBmgVZfETM/VObzyKl5lg7ocHvQdR8wQAIqqopmGiG3IJDHSSfL5PorFIUFhFobwdo1gH97BRttjsW5zudzizHKdk3OjLC/VhQnr+iKt9QWs6hpWdY3m2jyl+XGWZyd5alc/77lpjLfOjHL4/u9jYnwnuelHyDx2CvO5RWY32qx0XJpXK4J2KjWYLpcZf/BDvH3XAdLSaugVP6CyClatwsocPC7vPBL6KDcduJeiIxI93bZH5ZoYqF07tYSROcFIJsfU7e/lrsk+Km2HatuhtORjd1xWVhs8P7vBcMYkNzlG8dCdDKyu4jbFzJDdcGgurNO+LKTWkxO3cHg4y7XxHC+3HayWLWd+GlwezDCSyTMytY/C7suChrNcfMcTljzLcyRrywwV9jAtq6FG08aR0dvLtQ5rTYfp0RH00Wkyo1dpLW+IuAGZE5QpLZOe7DCWE9Hd2ZSB63j4rh85INQ6SZK5QRL9fRjpJJrZwrM9YUwqVWppQ6jMckmdFVXB8XwxeGoJSqyQFOICPZmI4gHselMmptZJZft70krbMnY7rGaKMq007AuFlJzfqKB1GiRS+UjqDKIaESDm0HaS9CUyspLSheO71ZFpqWUUu01K9lZ0CUJtWwgbaqH7gTT0DN0D3KYVSbU3R2aHXnoN2+v2hUyhNFM1FccSlUw4L5TIqLIv0w2ZE/ZBfhRSp5rJCMR820HtWATthqykMlHETCjTDmMd7EAVdKCk1PyO1e1JOR0Smhg6TWqikvIQdFxHetjl9QRqIoWSSEGjIiopVw6juza6KoL5/lp5OLne8CD0ai7R5uvYo3dXVAIjCaqOny6yXne4stHi4nKdZq2D53okUib5gTS3zhQ5PJQh21ikc+4FymeviT6Q7ZEqJhncP8jwbfvRD93DNS/D47PrPPHKCmvzG7RKi/i+R3pgnMHpYd50dIT3HRrhSB8oJx5h+atfY/aR81y7XGHd9roAdOso0287Qv+D78bb9xbOlD0+f3aJb5xaZuHyBuVr52mXl/HsNpqZIlUcJTsyQ/94H3t29XPXngFuHs2zdyDFsOGgl2ZxT53DmbvAxuwyjYU16tcrtMsWVtnCbjo4lhuZk4YrtP8xkrqMbjBJ5BOkB9Okh/NkJ4bITY8wMjbDxI6D3LJzmvLOIrMHR3hpqcYLsxucvZJnZW6M+tIVWqWFbs9oeZbqyj7Rzzk4xPuOjvGWnffQXxBGl5r5DMHj81wpW6x1PBqrTexHr+E0bXYDgw9+iLunDoi7VEtEb1eWGjQ3VgH4pqrQlzbIHhxmz7676C+v0VoVpqT1pQa163X0E/OYuZcZHJpg5/77uW28wPWNFs/XOzQqFu2GzfmlOpP9aSbySXIj+0jvP0x+rUK73JZuCi2qlxdITZ8m0z/F7mIfh8bzXN9os+J1w+bmKm32DWQY6BO9oezEClZJyLXdlhg+Taxfp29wF9OFJDsGM1zfaFMPAlkNicDASkcMr6ZGB0n2r2A3RAS402pHXm45c4ShjEl/1qTeFC4fdUuoxBqOz2CqgFYcIlHM0Vqr4NlyI5bN/WxxTFgPpQ0MTcV2hDFqXUYbBMmMsLBJy4waWU2IaqAhB5k1KfXuUnKRyiwZukqbKLKv4zbb+M0aht0klVejoU9AAoEAEsvzo96GZoqtynNckZck007NdKFHqtyWlZCIzBau1qHCLTw+svCx25hahmRUSYmkVVGNxFypdQGggeeLSspqir6QCgldOBhoqkJLmrF2feBE0mkIQj3OC24H08z20HmhzLvjCveDlG4KEAnpPClOUFwLLRA3sQld9JQ6gR8lIrt+EFVS6AaKqoljXVsMvUpxgqYo+H+Jkuf1ouTe8CAUrm9VBW333G41pKBoJoGRoO74rDUdZjdarMnoZt3UyfYlOTBV4NbxApMZheDEcTZOXaR8pYxV7qCZGvmpnIh6uOU+Kvlpnrlc5iunllm+VhFDla5NsjDE4PQktx8Z4QNHx7htJIny0hdZ/rM/4+pXz3LxYjkCoKmUzuQdY+x4+030vf29tGbu4oXFBl84s8wTLy+xcnWZ2tJlOtU1FFUjWRwlNzLD0MwYO2eKPCAHXXcVE2QbiwTnHqN15mXKZ6+xcUEEwsXdCxquT9vzcV7lt8ZQiOIbCobGSEKjPy9cGgYODNF/YAd9h49w+95bOXrTPu6bKfLcnkG+dmaF85cyrM0OUp49jd0o06mts3ZmnebaFJW1m5hda7J+1zRv37WHybd+JzO6QeA9TvC4yORZ63i0vQ6NpxdQtOfYo6kMPvAh7pneI4wymyJOvLY0R311gcAP+EpCp5g2SO8ZYPLI3QwtXaddatAuWzTKFsqVCmbmMpmxp0j3j7N/cDe3TPVxbb2F3XZpNTrU1oUx6UQhyeCufsZ2HqWwMk9zqUSn1pHR2yVas1fIT19mbOdd7O3PcGk4E0WdV+odUQ0V04xN5+mf2kduaZbWcgnPFtlVrbUy2eU59LElhtLjzPSnudyXpN1xCUKpdFNQcv25EfShCVLDi1gbNZENJZv7ZqtMYWic0WyC4XyC5YpFR1KNFelq7feHQXNZjEySwGvjOS5OvUGiWSEzrMpoBJOUqeF4wn2gZjk0bA+/kMWQ+Tp60hQDwpaY2QlaDVK6Qs7sRmY3LFceLy10ClmUZBo9aUYqMdcSvQ06rai5H48maMeAIEil0KRCDYhMWYUrdYeEdD8IzTxDSi6sRtBlJROaeXq++OwymiEEAi1GqYneqEvHMwSlJuk8IHLkJqTFVK0nGyh0Xuh4PoEhLbKkT6Nnu2iymlHsFmZqkKQuhA3xgDwBYnqUlBqCYBgJgS2l2lqqR2YdVkKROEEzJR0nekqB40SUnKYKtwRVARVhZBo6aX+7198YEIqvG/WBQuBRFYRjQuDLyGoVV0vSaLmsNm2WK21sS8iPM/kEYxN57to1wIGBFObSKSonnmf99Dz1JRFmlhvJMnBwgtwtt+NN38zp1TaPnFtlfrZMfXURz24LANqxg1uOjfLhm8e5ezKHevyLLH7+C1z92nkuzlZZtlxSmsJM2mDqrnF2vfdOcg+8n42hI3zj0gafPb7IK2dWWbl4iVZpAddqYKQLZIanGJiaYufeQd51dJR7povs7U+QWj5N55GnWH7xFMsvXGXtzDrXKhYLbVc4CPwllhOA4/rUXFjpeFxoAKU2XK0w9ewCuzNnmNjzjOhj3XMTB4/dw55Dt3D7RIFv7CnxpeM5rvYVWb94ksbKLACttXkWqmu0KjfxG02bUnOa9x8cYe99H2WXqqFoj+I/PEu7bLHWcWl7PnzzOvAMe1WViXf8bd62a4RS0+bPmjZWLU+7vEJtaZYlQ+PLGVPc1e/eS/aWuxlc3qCxVKdRttgotVHPrJMaPMvU8FMM3TXEreMFLq41KVXatBodmjWLhaUaz+YTTBdSDE3uw9xzndzsIo0l4bLdWGlSuTBPcvQ4Zt8YO4sTHBzNs1SxmJVzQ9c32lwqNdk7kCbfN4kxtZfM/LKY02mInkxn6TrGzAJDu6aiamijYVNtinmb5VqHlabN9NgAybEZMqOXaS2X8D3hsN2pNEiUV8kM7WE0m2CyP831jTZrgQirC1VuLT9BoX+E5EABM5eOUledWktQak6LYkpnMGuSTeo0Om5UzYRBccVsH2Zft5rxPV/GbpdROw2yCZOMGWbkiM1UyKVFxo6RzqOmY2mjtisGT1s1VNciY4rI7XBeKKxGmraHr6eEuEFSYq6MZvClyqwbmS0qqU5USbl0PB8/lUKX8zaKpuKFkd9WE93pYKZk6KUaxiqIuO+ompEgFtJ5XlscG1hNFLuNruVET0npAmg7rKRCH7iYsCJUyYVDq7pK5PoezxYSSaubADCk8ywBwLqWisV1u0KmLYUNthegG4luJeXHIyFsKU4A79vZ/LnB+hsJQvG1mdZUla5vXLgCTRdZOa5P1RJhYL4fkEgZ5AfS3L6rn9snCvQ7JaxTTwsxwtUKTtMhkTfJT+YZPLYHbdfNXLN0nr9e4txsWai12k3MXD99YwIk3ndsjLsmciQuPsHSn/0ZV792nnNXKyy0XVkBGUzePMLOh24n97YPsj5wiIcvl/nUc/NcPr/G+hUBQIHvkSqOUpg6yMSeAd58aLib4lq+jPPIY8zLIdeFsyXO1m0WLfdbXitDgayuRhVOmDUUZga1vYCG69Nw/W0bluGab7vMt12MUouj50rse3KWyXtOMP7W2zl0x7sYO7qLvQMZPjeY5vl8gqUL/ZSvHCfwfTzbYv3cswS+x+fkcN93Hh1jz5vfz4zr4LZdmo/OYfsBVcfjQsMm+8wiifyL7B4eZ/dbvpO37hrg2nqTermN3azRaWxQWZpnNmPweH+KmWKKm6eP0nf4AsXLC1Su1ajWOqyvtkifWSE3dZqh6X1MzryZQ6M5zi3WqG+0I5PTcws1To3n2dGXZHp0N7ldk1QvL9AuCUfx6rUSmcuz9E9fZvTQDmb6Ukz2p1kotWg3OmxUrag3NDqVpzi2k+zEOepzglKza21ayxskl2bRhnYylu1nqi/FQr4lmuq2x1rNYrneodKfZDgvZoYSfUtR2meoktOaJQqJUUYyiSh2G4jiFRq2Ty5ZQOsbItG3RKcivMxcyxaUXKdO2higmDQiLzogosTabkAh0XWVDoPewmpGcdqk9KSwoZEgFG7GoUAgY6RlUFuCDg2hcrNsWRG0MbUsCa1LqYW9mVBpZsrNWDVCgYAjejNWC8WzMWRiaLyasSStFWjSwibsy0ggifJ9QkpLTnSEANoK00o1Q1QjsprxZVKrH+UD5TFUBVUqzUKFnQAxn5RmoOgGiqYJEAuzkVwLxRd7ghGr4qK+kBcQpJKg61ElFfh+rzjB7NJxQGxgVfSVUpqJGtJx4sMLhZzngO+iqSrqDf7Qv53ihDc0CG3nor1duRif+o0AKPCjQVUUFdsN6LgBDRmJqxsaZkLnwFSBm8fz7MgbKGePU3r5lWgmCCBZTNK3ZxRzzzGs/hnOzlZ55lKJylqTTmMDVTfJDU8wtqvIe28e4+7JPLnlk5Qe+TKzXzvLuasV5uQf9njSYPrQADvecZTCgx9gbeAQ37ha4VPPzXP+9AobV8/RLi9Lefc0/dO72XVwiA/cOs59O/rZbbYIXv4T1r75TeYfO8uVl5Y5W++w0tm+6kmqCkMJjfGkzmBSJz2YIlVMksgnMDImmqlG0+Ce7eM0RSJru2zRWG2x0hEmpMuWuy0oOQG8VLE4f2KFm2ar7D21xMw7rjJw/wM8eOitTOZ38aeDGf6sL8lctsj6hedxWiIivXzlBABfBtKmxocOjbHjng+ysyXiGewXljhbFw4IFxo2qeeWyE48zcT4To7tegsP7B/i6kqDZnUc12pg1zcoLxc5cSXFC+MFdhwaYvDAbRQvXGH9XIlyw6bm+pSvVCmcu0Z+7wtkR/dyYDDHruEMC0s1GhWLVt2mWmpxYq7C0eEcE5M7MCZ2kxo+j35N9Naaq01qV5fI7TyLMbGfifww0/1pzmVM2o0OtuVwbb3FfNVibSBDPj+GNjRBamAOq1QXlNxqmfzyHOmZZfpHhpnIi8HTpYpFs+NSatisSEpuMDuENjxJaviKUOxZNk5T9IWMVpnC8DjDGZOhfJLVWkeKA4TCrOF4+OmiiFYoZjHWkgKAHAe/WUe36mT7hqLI7JQpjrfdmHtAIhtFZutJU/iw2cJQ1Og0SWb6o75QtzfjRtVEN23URDP1LhBYLeEeIBVycUourIbCakSNDX2GfSkBgoKWiofEhSq10NTTNEzRG5HViCcjrxUZeR2nxOLH257orRAqzKDr6G01UVwbQ1ZScRAL39v1IdDNntiUMG4bu4PiWGhqMpJLu35AW5qo2l6Ah4qhmZGNlm/JgdmOheo6GNKMNKykbK/bF3K8ADRTfnbpkOLaPeIETUmi/CWRZru+0Gul9N7QIPRq1xYjU99F8dzuf6s6rh9G+IoNO5kxGcwluGNnP8dGsmTKV2mceJa1k9coX6lSs71uD+TwLoIdx5it2jw3X2F+oUqrKuIg0gPjjM708Z5bxnlgZz/DtctUvvZZLn/pZc6eK3G16eAFATszJvsPDLDrPTcz8NAHWRs6ylcvb/D7z85z4eQyG1dPY1XX0MwUufHdjOya5pYjI3zklgnePJkjv3KK+hc+z9UvvcDcU9c5Ue1sW/lkNIXptMGeQpLirgLFXcInLzc9gjE4glYcRi0MoKYygq+WVkeK54gZimoJr1rCXV+mPr9KfW6F8pUNNi6VuV7tcLVpU3Z6IanpBTy10eby09e581KZHa/MsuOdpzj81g8ycvs+9g9n+ePhLMcLWdYunaW+dAnfdajOnWVO1fiMIu5i379/gpkHv5M9lg08DxKINmyP2ZUm2acuk5t+hHzfCHdP7eLK4RG+WLOwWyO0S4u0yyusL2R56tI6h4azvHn8MIUjr9D/ylURhFcV3mjZcyXyMxcZ23eOyZl7ODyW5+Rclcpqi3a9QaOicWWpzrn1Jrv6k0xO7CU3NUL5/CL1JbDKFrW5DXKXrjG47xpDM+NM5EVfZmW1QcdyqdUszsnZo/GJPjJjMyQHzqAnV7GbduQFZyxeJTO4m/FckrFCkitJnaac17m+0WJhMMN4NkdhYJzEYD9mfo22DLyzNyqYpSWS/TMMZ01G8wkW0kZ0N19pO5RaDtP5POnBMRKD/RhLJXxZyfjNGkqzTHZIZTAtpN5LlXa0Edc70hU6I9JOE31C6u17vgAxSYmljXDeyIiiFUJqyfJ8AiOFks5hZJKyt+MKIOi0RSUk00ZT0oInfP/uzIyQOod9JRG5bUd9IVNLS5l2V2rdpdR80pqJaoqBV+gCgd9uoviuiDaIUWK260kfNrGRq4lUV5zg+9HxitsRjtSqVKj5AZ7vR30hexMQhD2pwBWUnnC1Tm16bwmeXiCTUuXxCGFE3P4ndMQOK6E4nScA0BCfXUq8QUSF47vgu6i6gqoEEZMUvI4NodfyUm9YENruJLb7t+2ctMP5FwIfVB0v6DbtPD8gZWqYepK9ozmODucYT7h4J19k9cXzrJ/boNRyRIz1SIbC7jHMfbdQTQ5x4nKZl2fL1DeErU0i28/AWJ67Dgzxtl0DzGgNOs98idmvvMSFl1e41LBpez7TaYMDkzlm3nGQgXe+h/qON/HwxQ0++fQcl0+vsH75BHZ9A81MkZ/cx9TBHTx42yQfODzCTYUAXvoTFr76Na58+QwnLm5wVmYdxdd4UudgzmRsXz8jN40zdMteUnsOok/vx+ubwkoUWO8Inr5mSaqj4+P7gYxxUMjldLKDGllTpZDQGHCbDNdXCVZncWbPUjl7mY2zc6ycWuXqfJ3LmwBppePxZws1Dn3xEqWLG+y6vMDIu9/N+w4/wM6+PXyqP8Vj/SkWzg9SmT2NazWoXb/Add3ks5LK+cCBGabe9RF2ez6+9zzeS8vMt13WOi7L5zbIf/M0ydGvM3WfcDdf2GhhNR1WbQu33aBZrnJ5LsOJXTVm+oaYOng7A4fPUL1WpXamRM31aSw1qV5eYuDKK/RN38SBwSx7R7OsLtawmhp2y6JWbnNmscrRkSxj/eMkJ6dJD19Gv1altd6msdKkPrdCYe4CmckjTBdSjPalOGtqtBtCOHFtvcVc1WLfQJpMYZTkyCBmfoHmakP6yZXILc2S2LlKX2YHwxnh5bZStbAcmfFT77DRTpHNDKAPjGHmrmOVaviOi1WqkVpfQhsvUUhNMpA26ZcZQbZMTF1vOdQ6HolUn/SSW4yC3ux6C7NaQm1XyZlp+lMCSNq2SBu1XI+q5dDJpzFyRbR8H0ZmVfSVPF/a0NRIaQr9KYN80uhJG43EBdksmoxVUE2RFhqmnSquRVJXySaEuKFbjXjdaiTK1+mCUCC93FTPxpRDn2EVBvSCmJ4AwxQ9KRCO2HYYrWChqwlZCXXpwI4X0lpgaIZ0XulWQ0HHElSgpPNChZztCirSkq7WgWGg6mZX4RZet44QCBhmF8QA3DClVUq106oWiQsiAOy0hbgAH00VTNBmmbfjBwS6SaBqEPrHxRVyvnfDoVQ/2BwQ+trXazn8DQtC4fpWJ7NtlMMmGg5VxQvAlU07gFxSRBTsH84yXTDR185SOXOK0rk1NkptLD+gmNAo7CjQf3g3TB5kvuZw/HqFlZU6VtNG1U2yxQw7dvTxll0DHBhIwktf4/ojz7Pw3BKXmzYN12cooXEgn2D6vhlG3vlO3AP38+TVqugBSQDqyAooP7mPif3TvO/NO/jAoRH2mU28xz/Dtc89zJVHrvLscmML9Tae1DmSTzB12ygTd++jeMsxzEN34gzvY8mC+WqHc5eazJZmubbeZLlqYTVt4azt+AR+gKIq6IaKmdAxUwaDuQST/Sl2DGaYLvSze2ySsb33M/hAnZG1y+w68xz7Xn6F5Reusnx8hZMVi3lp6uoEcKLaYfnkKo2lJrsX1pl+zyzH3vx+cm+aZrI/zWezCa6aKSrzZ7HrG1SvX2DeTPFZTch137//EIPv+CA7LRun6cD5Eisdj5WOS+HUKrnpE4xP7ubwgbfz1n1DXN9o027Y1JbmcCwxSPv8lQ0ODWUZHd9H4cgh+i/MU19sCql1x6V2vUb98iyDN80xXjjIgbE8J/o2hItCo0673uHKapPZSpuDg/0URqfJjA1gZlZoykTXxlKVztJ1svVVipkZRvNJEimDhiqcGCo1i9lSi7XRHOP5QeFqnUujaAp2w6FdqtFeXidRWabQLwxFC2kTVVWwLVcMrtY7bFguk4MDMu1UxEa7TUtY6FTWMNsV8oXpyJA0NOSM+kKOz4B0TzBzaaxSNVKZ+Y0KWrtCNpMjn9AlpWbj+UGPOCGdyEWUnF1rdvs6Mm00qSdEUFxSpyUrIccLxPBkYGKks2jZHEY6JTbxcHjStkjIaISM7CuJiiLWGzETaLISUg0dz7NFJeWKAEYjrUTuCXFH7ZASQzejuGyQfSFHBN0pnoOhJntALPzslszqCVQdRTejgVnx3g44osGvq0qPOs/1A1xZyaDpoiekd3tKvuMKWsy10ZPIfpb4ew6ziSxPJKaim106zfMF+LsOuCIhQFP0njklW4Kf6wegyvDK6HipkHNtwRYpwjnuL2ti+peVar/hQShcN8wSip6wfYctUHVcP5Amfz6aqlBIm0wWU+wdSDOgtHHOv8T6ycuUr1aoub5o4I9kGDg4SeLAbdTSo7x8bp2Xr1Wob7TxXRsznaY4kuW+A0PcOpYjuXSStSef4Poz85yrCQqpYKgczCXYcd80U++5H//md/HN+Tq/+/w8504us3bxJazyck8F9L437+CjR0fZ6S5jP/zHnP/9r3P6ieu8VLGwYgqMvK5yRzHJzO1jTL31EP333Av772Jd7+eVtRbPPbPES7Nl5heqlFeaNNaFndBmD7iea6qqaGYKI1MgkZVODAN58gNpdk0WuGNXP0eH93Hg/psYubfC6NWXqD37BJNfP8ni80scL7UiMFrpeHzxeo2bP3OOI5dK7L22wO4PfDfffeQIg2mT3zA1ZpOpiIYsXzuNomr8vvSEe9fumxl4l8VMrYlnn4arFcqOz/Jig/QzV8mMPkbf8A7umtzFypERKpU2rj2OVVujXe8wu1jj+FKNXcURZg7eztAtV6hdr2HVO0J8sSJmfvrmzjN8xwH2D2aYHM5SXW/hWCZOx6NSaXOl1KI0UaBvaJrsxCDpwRS168JXrl1q0VxYI1O6TrF/t3CnyJhUNJVOW8RoXN9osVDrsL+/QHpglGRfDs3QcK02VtmiuVwit7ZAYrLGUCbJQNbE1FQsz6cuo8BXGzb1vgT9hcHIkLRTaWDXWrRXyxir10mO7GcgZVCUINSwXOqWS6klguomsnlSxWHMvBz8tOW8Tb2C0amTLQpKbiBrslazaNleNLjZcnyCZB4124eZT6OVhB+ZF1J6dpOUnor6QpVQ3OB4NDpCrpw2syhJASS23MxxHQKriebbYlbIUEmZGi2p7HR8OfNiiEpITSbRTCOqpMJqxFRDOk9U02E1FWbsBJoZzRopmyg5xbPRY7M+cal1tJlrJophdI1Iva7STMid2dJTcnwJYJoJZqKnEvJsV1ZxDpraWwmFABh9dlUXPaX45w6l2p6LJp0PQFRR8fN2A9BVvVtJ2U53aNV3ZQK18J270Z777RAn/I0BofjquTDbgY+qCtG7qoKqYzu+BKIATVUYyJpM5EUKpb5xlvKFC5SviKhogH5TY2D/AMVjB/EnDnGpbPH87AYbKw3a9TaKqpHrT3Fkpsjt4wVG/ArWS4+y+PQ5rs6LpM+UprI7Y7L3rnF2f+ButLvez/NrLp98fp6XX1xk5cxzWJUVVN0gN7aHyYM7IwDa1b5K/c8+xcXPPMuLzy5wotrpnhpwtJDgyMFBdn/HMQbvfwAOvoVZL8tT1yo8fPYc5y6WWLm6SGXuLJ3a+qu+ruLutolrNWmXFqlcO82SfOx03wjfGN/N0PQ4u/cM8OChEd6y463s+4EHOHLPN5l6/GGGv3Kc088s8FLFwpFzBy9VLOaeWeSe+W9waK3M2Ac+wAeOvRtDVfgdQ+OcqrB6/kXs+galSy8R+Dfxu9IK5V2738zIu8tiLsY5jzNfp+z4rJ5dJz34CunprzN17wAP7BzgymqDp1oOG76HazWollI8f2WDfYMZJnYeInvkJoauLtFcbeItNnCaDvXrFTpXz5PeNcvOvh0cmSwwvywypVzbw2o5Il6h1mFmeBxzYgeZsYskrlRoldp0ajbN5Q285TmSM3Um8gnG+pLMJzRoQKftsFyxWKp3qHZ8sn1CHGBmxV1xp9ahvVrBXVsg0dwgJym1lKlR8QNsGVa31OhQtdL0pYuo2T5hwQPY9RbtUpVMeU0MriZGKCREvMNarUPDciNKrm4nSCQLkcrNbVq4VgevJqIVjIGWcE6Q7gcChFyqHYeW7AsZhQG0bBbNNHCtjqhoZDRCJjUc9YU2GlqUdhpGZhcSGdRcH3omiVoJZ35EH1K12yS1dNQX0lRnayVlithqLWniRkFtIiPHjGTaopoJafcQRIJEAlXOCmmmIdR1nh9VI4ZUmSVidF60mXsBgaxkFGmGHB4buKH7QEJQYptUbq6PEBeouhQXqNHfWViNGDLltNvXETRgR1ZhSBBRYtVQJLX2HDQlhaH20pAdz8cPxOfoqYRCdZ3rgOcKJfHrHQ70F1h/I0Fo2xVmCSmquKaaACBX9oParofrCRDKJXTGsgkGUxru6UvUZpdoLDWw/YCkqlCYyEVV0Jpe5MTyOmfnq1EvKJnvozCQ5tYdRfb0J1EuPcPa86+IrKGOqARGkzp79xbZ8fabSL75O7gc9PHHJ6/x0oklVi+cwKqsAJAemGBs/17ecccUf+vwCDvdZep/9inOfeopjr+83ANAeV3lnoEUux+cYed730zi3g+zkpniybkqnz1+ntOvrLBy4QKVa6df98trVVawKiusnYGrA+Oc3H8bn94/yIdun+Sde+5h5mOHObrvy+Qnv8LgFy7wxJowJwVYtz3+9GoF+zeex6612PE9Du+6+b34Afyq42G3DlK69BKd2hobV05wMZng00mdQlLn/kNvZbS0jLVRo7Xe5kpDSNFTp9YoPP0y42Mz7D32bu7bM8i19RZW06ZRsmnXba4v1zm+WOPwUIaZ3bcweOwilatrWNUOvuPTWm9TvbpEcvESo8f2sH84y0uDmUiq7XRclisWc9U2x0YG6JvYTXbiBMniMp2ajWd7WOUWbmmZZHOD/uQEY30pEikDTReqw1bLZrlmUbM9xtJF9L5+9LQw1PRsn07NwlrbIGVVyeanyUtKS1UVbClQKDVt6raPnxWu1rp0pXbbLk69JQxN21Uy6TEZrSBdsWM+cE3Hp1+mjYYWOl7bjvpCSqdOxhiIHW9juz5Nu9sX0tMF1LRQuXm2sH3yrZZ0TlCipNNQXBC6B4TiBDWTx8gk0ZOJTSo1i4SejfpCG6FU2/MjyXFaeshphh5LGxUZOYrvYmpqJPPWN6WNBpKOUxLdmZtwM1d8T9jfSAALYxlCEPMCwabEXRvE8WFF4UXZPLraBRLHF0q16Pi4uMDzCZxuNbI51ycCUC8gMLQIRMLjcR0CR4CYpoMqJeKeZErCgD7H1wlknEu0fA98D8X3tlBxf13rDQ1C27lob7lm8SC7ML4hlilku2JwK7yzMFSVQkKnmNLRGms4S7M0lip0ajaaojCYM+nf20/xyD7c0f1cLls8f3WD0nIdq1YBIJU1OTCR5+hwjqJTpnP2BdZOL7BYamH7Af2mxoGBFNP37qZw39vZ6N/HV0+v8sTLSyydOR0NbybygwzuPcatx0b5yNEx9qhl7G/8Ief/6GlefGmZ07UuAI0kNO6eKnDgI8cYfehdBLe+h6dXHT774lUef3GRuZOvvCbw0ZMZNDOFaphR6J9rNfBs6889tl1a5NpTiyydLHL94r08efsE3337JPff+3fYNThGavhzJD59gocvlyMg8oEvrzSx/0h8xplMjgd23Ue1M8lvVi2s6jSVa6ewKiusnn+R0wmNP80nmCrMsO/mBxhdXKAyW2X9xArrtsfcSpPss1fJTT9F3+gMN4/t5uKeAUpSqOBYbWolg5dny9w2UWBsZheJ/TfTv/8ajaUG9SUhDmjMr9I/f4HEzpvYNzDAgfE8K+tNOm0nimhYqFpsWB6FvjFy0yNkR66Iisr2o2omVV+jMDHNaC5BLmNSNYShqNMRiaXrLYe9g4Wor6MZGp12B7vpRDM/2Qnx3cwldRRVIfChLR3N11s2/oCIRjAyYnDTczzsmojuTjYqpEfUKJ9HU5UomiEEIT+fQ8sVowa/awmzWL9ewbDqpAtD5EwtmvdpxcxIRV8oI33kTOxaU1BDVpOg1UC1W6QNQ/rI6ZHMOy5OUNMyn8fUo6HZwLbQ7DbJpEJODrzGezNR0JuRiIkTwka7H4kLTC1BUheVVMNy8XxfusMHoCVEJIMphBGqI+jCwHGkmaegxExp3xOn80I6TtjfqL0gFgKBjMwOjxWfXbx3WM2gaT10ngADFyXwUaCXCpR7lRcQVULxvlDghUDiiuO2ATDHC8S+qapdKs/zIzftMHla+CX89a43NAi96rUpTygELccnmh62XGF3ntSlTUlSQyutUJ5fFnb9jkdWV+nbkWfwyA4Sh+5kwc/wwuIqZ2bL1Naq2M0aqeIIhUFRBc30JVCuPsvqi+fZuFim7IhMoH1Zk8m7Jhh7+714B+7nsUtlPv3MHHMnz1JbuACIpNKBPbdy6Ngo33v7FIeTDZxHfp8zv/MNnn1usUcBty9rcseRIQ589E76/9b3sty3ny+dKfHbj13hyvHLrJ156ltenmTfCNnRGfJDo+QHU2T7UhQzYkI+pCBatsdGw6beEF5q1fUWtYWL1JcubZu0CmA3ysx+8/NsXN3Hpau3cvreGT520wNM/9AUmdHfw/yNJ3j49FqPe8Mjay28PzyNkfl9pn4gw0N7bmWhYvHZqkWnsUFrbZ52aZHlM8d5MmWwazhL/9EZBu96gNEL85SvVlhfbwmRwtkSmcdOkZp4lB1vn+HOqT7OLtaol9tUV5o0qxYLCzWem6+wqz/F3pmjDBw+SfXqKp1aB6ftUl9sULs4x9C+S4zvHOHoWD7yFRS5SoKSW6zbTI9OYEztIztxgfpig1aphdt2aW9UcdcWyE3fwpgUdaythc7YgaTEbCytj0xxWLgXZA3spkiF7ZTreFKlNphOUkibaJpK4Ac4cmYoBJJiVlJahk7gBVLuXSVbXkV3WuTjKjNXRDus1jtstEW0QkZKpUMfOLveFJHXzTKZQZVCopsvZG+KVvATOdQ4CNoOdq0pzEQ7ddLGIFkJYlVVwXZFP6lpe3R8AyOVQ00LEPNt2deR9jnCg06PKLm27UYgZvvSDDSVwcgk6Ug6rytX7mBqSVKGECd0I69FRSIUbkKmHVoPAdFGrqtKJGowdUElhvS95wcEpiHoPNPoqvN8KYDyXQxDUGpxdZ4fCADy/EBUIxGdp0Zx3bhuDMR69zDXE9LpQJN0WuzxsC+keLKSUrtzSp4f4Afix/ORDvmx48PPLUVcCttksf0FVpzV+z8mWXW7E7nRyW1n4+MFRF+k8H8B0oYm5KSmil9aoi1TNAGyxSTFXUX6Dosq6NJ6m+evbFBaqmNVRW8lmUmxYzTHgcEM/X4d+8JxSudXWC+38YKAQVNj9EA/E285jHbsrZxct/jTk0vMnV+nOn8m+pyFqUNMHxzlo7dPcvdkFu/hP+DSpx/j5acXtgDQXbeOcPBjbyH3nu/lvDHJp567zp8+fpUrzz5Ju7S47TUx0nn6d93E0MwYe3b1c+tMkT2DGXb2pehP6aQNVdqGKAQIsG67PrWOz0rT5spGixPX93LyWoXl2TJrl7oAunnVFi5wem2O+sa7KDU6/OCdu9j/kR/hJkOHX/7GFiB6dL1F8bOnyYx+lvGPDvCBQ+OcW6zRKB/BKi/juw6NlVmWLw3ypRM5Dg9nuX/HLQzf+SIrJ65TrHaYbTnMthwKp9boe+4Ek4fOsH/wJm6dKXLlepV6ycRuVanKaujYeJ6JneOkdh2msPMqtes1nHaD1nqL2uwShdmz5KeOsXcgza7hLIurDVzHw+l4LFUs5qttDgykGBrbQW56hOpVMe/jOR6dcgOvtIzeLDGeKzLalyKZNrGaDp7M+AlVatnCEKmBPEbGRNXaeI6H07Lw6xU0q0baSNOXNkgkdJqqguf50eBpywnoS2YxclnpKh3gWo600Kmgdeok9H4yspIJ/ADLEZRc1XJoOT6ZKPZZjcQJnUods1FB920yMp8ndKVuSIVcW1Yzoi+TEL2RmJmo3mmSTA71CARCWqhuu1heQNpIibjtpAm1lgAiqZDTA1co3KKkUiX6u7W9AD+dQk+LgDrN0AWVF4oTXAsz0bdJnKDi+UQZO4F001YNPVLJBb4n+ir4PZRcWM34ocmvJtVxpnxvXKlSs1F9F01RSOhabyUUdOk8ND0alu1uVEIurQQ+mqKhSpUdSIFBEKuidL1HXRceT+CjKooodmJTp0LYII9X1G7lGL6vPFa5gZjr273esCAUrj+vZxY+Hg1chf8edH+Rrh+IeRhFIWWo5BIaWruKt76EVarhOR5GUic7kqawewJzzzHWlSynVle4cr1Ko7SBazVIFAbJ9iU5MllgRyGJtnaCtXNXxQyKK6qgiWKS0VunyN1+NxvZKb5+fIlT59YoXX45istO9o0wtn8v77tjkvtn+tBOf40rf/p1Tn/jGi9VunTYeFLnjiNDAoC+4/s4q47zi09c5dEnr3Ht2Ye3VbkZ6TwjR+5lx8Eh3n50lDdPFzkwmGKAJnp5DvfqJdyVOeyNClZdbAQARiZJvi9L/+Aoe8ZnuGd8J99zZC/zdYeTKw0evTDDc6/cysL5uW0rL8+2uPLEn/B5571UWg4/es8Mt3zg73HM91F+43H+7PhKz0zRs9dr5P/0JY5NfYHD7/kxPnDzOIurDRore6jOnwWgOneWxSuTPH5lg30Dk0wdupPho6cYkzHhax1ByxVPzDN05jlG3n6IA0NZhgczrC/W6TQ2aFfKLC+lOblY4/BQlr2T+8nPvEj67ALNFSG1rl2v0rw8S//ReYb7DrJvOMvJfFK6rPtU6x3mym3W2y79+TFSE+Okh6/RWhcgYtdb2KV1Es0ShfwgU30p+nIJGhULPxBAUAnTRlMF9L5+ksU0zZUmnuMJQ9BahYTdJJ1X6ZP5PiHTLFytXdFbSWQEEISu0rb0cWvVMOw2yVS3N+L7Ab5MK41cqWXQmqJ2830cGRQnXKXTW/J5mrZLreMKgUAqG1FToX2P36xF1UzO1HuSUnuiEcw0qox1UDRVWOBEaaMWppaMAhfb8v3jhpxKUtj/aClT5kZJIHAdzHRcnKDJPUEqzXwpLpDXLQID2VtRPBtdFa4JcTNTX9pZheq6CEjC1Hvflwo1IkovLk7ww0pKUmqaoW8CInm8oqFuovP8IBDDozKYU4nPKclKKpz12S6gzgvkEKqshJSYTBvfiwBIVZTXvS/0/yrHhO0AKPz/PoKX9XzxC1XlUFkhaZA1VNRGic7qIu1yG8/2MTMG+ck8hf0z+CO7mat1eP7KBuWVRlQFJbL99A1nODKSY8R0sC+8TOnsdcprLbwAiobK4IEBRu48BHvu4Phygy+fWGL50rWoYlF1g8F9t/PmW8d57/5hRivnWfiTz/HKn5zniVI7OrdBU+OevUUOf99byL7vBzjlD/Nz37jEY1+/yOJLX91yLVTdYOzmt7P7pjE+esckD+7sZ8poo155jvrDjzP78kVWT62wdqXCouVGztq2H6BJx+yCoTKS0BnpT9G/t8jwTVNM3Lyf3cfu4b0P3cbFN8/w2OxePv3MXq6cuMbyyUe3fI65Z77Aw6372WjY/NO37+WOD/8Dbkma8EsP9wDRouVy6vgK+T99gn0zB7lv99u4dOsElbWmTI0VKaql2as8ebbALZMFxqeOMXzbflaOL9BftbjadJhvO4yfWaf08iuM33SJff37OTCeZ/bKBo11jU69TGWtj5dny9wyUWDnzhlS0zNkxy5SvlIRg6dLDSqXF8jPnWdo5ID0gkuxviaqIatlc229yVzVYmZ6CHNshszYBeoL5SiszirVyKwv0Dd8iFFJya2uN7HbLq7tUWrYVDsufrEoohX6spjZCp2aj9N2sestUs0KmQHR1ymkDVYNDafjYTkCSCw3IEjIjTyTRNUUPFtKpVstAQT5riu1qiq4Mv6iYbt0XGmhYwqpMwhqx641hYWP3SBhZCJX6tADrtJyIkPQdAhispJymm2CVp2g3UAP3J6k07j9TscNRCxEMhOZiQrng44EsTZJPRXJtCstIhASiaMBRswRG+RmHAob5IxZCMBhX6U7sCoqIS2Z6AobZFAcro2hpkkZvZWQkIhLhZthouhi4FWROVyBbPDrUuEmKDkN2+1KzKO+jjzn0LUhiAsElK5EHIjmpFxZSRlhT0kVx0c9pcAXx0phQ2ge64V0nKyE2ET1RXSc7/M6sXE96/8YOm7zulGUw+YKCEQVtFn6rildKq6Q0GBxlebyBlZZVB6JfILsxADG1D6szAjnr69zbblOs1zFsURuSa4/zbGpAvsG0+hr51k7c56NixuUHR9Ngf58gqEjEySOvJkVrY8nZ6+zPFumdr1LYxV33cSOg0N86KZxdmsVal/9NBc+e5JvrHWrGkOBeyZyHPzO28m/9/s4wwj/44nLNwSgwtRB9rzpFj56307eu3+IncE6ztO/wdxXn+Tao1d4YbbKbMvZclx8NT2PddvjctOBjTZc2kD98mWOFp7m4O4/YebBfex94B4O3PIg79xzC19+0xSffmqKi8+9wsall3pea/nkozxrNfgPfsA/e8de3vS+H+Emz8f/nw/zyJn1iJo7XrEYe3iW/gNfYWxsL+89MMor16vU1m5l5fTjBL5PY+UqK3MzPHWlxO3jM0wcvpOho2eZOrPOQtul4fpcr3aYOHudoUsnGHvLEQ6P5fhmX5INM0Wnuk5zY5WVlQzn1xrcOZFjZHof2YnjmJklqisi9bQ2t4F97SLJvQtMFsbZMZjh3HwVq+lgt4Uz9ny1zXo7zdSImBlKXV6gU7XFzNBqGW99iYRdYzKfZLI/zZmMiet4BEEgg+YcrP4cmYEx0kNFjMwqTlvQSiGlltYViimDgazJVUOLguoalkO94+LnM6hpMfSpGpoAIcfFaYnY6XBmJszn8SWQNKWjNcmkSPuUG5NnexLEaihOBzPRdR8IN8OG5VC3PRnUloh83MJZIafZxmzVUewWRsyGxvWDyENOJJUmRb6OjNuOe8CpdotEYkAAqLTgCYUJkYeckRLiBENHVdUobltxO1G2T1hJRfM6XkjHJUTSaPjZPT9yllY8R3rIhQo5ce1CcYIXIKohCYBq1F8R4gJNEf5zIfiGzgteIK1wVEnHGWZPJRSEx6tCIScAsLevFCAEVsQk3rEXQJOGzVqsnPFCVV8Agaqgqr0Ku/BYAWLfclv4tqy/MSAUXzey7wmQrtooKLFnqSFnq0BaV9A7Nby1BdqrZWwZBCZAaAhtdIa1lsvFtSb1jTadehlV1UgWBukbynBsosBE1sA5foLyuWtUF+q0PZ+8rkqfuZ34Y/s5v97mqYvrlBeuYzfKAKQGxhnds5P33TbBneNZ/Cc+y5UvPM9TVyo9OT93FFPseWgfw+/7W8wmpvi1J2d5/PHZbQFo7OYHOXbXLn78/l28dTKN8uIXuPbpP+Hsp0/z1eXGq84P2m75CPeDEy8tkzy+woOffIm9D32Zme96Lz965wd408RN/Pp0H19/dJz5577UI2AoXXiBF1WNn9NVfvJte7jzPX+Xg6Uazm88xVcubdD0Anzg5bLF0NdfoXD4qxx+xw/xvpvGmJ2v0CrtobZwAadVo7qyzMtXi5w/MMz45GEGj+1m6Pl5+hs2y5aw9ClfqdC6fJHcsQV2FYuMDGZYyeZolTScpnDJPrtYY3XvEMN9Y2QnBkkWk2gKtDpSoDC7RGpjgeKOKcbySVIpg5qUStdqFnMbbUotl/Gc8OFL9GXRzIYQF1QaQqrdWCefnmY4m6CYMbGaNp6MVgj7Qpn8IMmBPMlimk6tg+8FeFaHoFVHsWr0p0wGsgnMpB5Fjghay8VT0+hS6mykdFzLJfCCKGIgoXUHN1VdhQ5RNEPL9ghyiUglBgKE3LCSci1MTYnirkMQCuMJIloskerxYXMlnbfZxy2eDdSy5byPdJVWVRXX84QRaruJ7rQxtTCpNLTA8WL5OnJo1dwkEHAd/E67J9vH1NWua4P8CYyk8FGTzgk+ruiPyIFX3RB7RHITHRd6uKF1e0JupAIQwgZDWueEdF4olfZlbyfQNFTdlG7aXQAMKxJN2mZpSpeSC6nAcNZH0Y0omC9678CPZn1URelxbvD9XjouXg2FPaG/qvVat5y/gmLs9Vuv1kU7XGGYnQhqEr8cTZoThiaLWVNDa27gri2IkLCmg6opJPImqfFhvNwIyw2bK6sNWg0b37XRzBSZYoE9E3kODWdJbMzSOHuW9XMlFmVKab+p0TdTILH3KFWzyKnVOusLNVqShtPMJP07b+LYoWHesXuQ7MLLXP/yNzj55PUeI9LxpM6ReyeZ/vB7qe16C39wapmvPnaVuWe+sOV8Z97yfj74/qP87PsP8WBqlfr//hme+sc/xy/94rN8cekvB0Cbl+UHfHGpwc/9+nEe+Xv/nZX/8v9we/1l/tU79/JD33mUQ+/+MGa22HPM+rlneebrp/j5Ry9zjhGGPvK9HPjITdw3mI6es2i5XHh5hcVHnka/+CRvme7jzUdHGdx1kER+EIBWaZH1xRovXK9SNgdIH7mdoUNDTKV0UppC2wuoLzWoXlpAWbvGRN5k72iOTD6Bqpt4dpt2vc3cmrDh8QpjGMPjpIpJVFUc3yq1qc+t4i5dJae6jOYS9GdNFFXBdwNaDUHJXa9ZeJkBtIFRkgMFNFNIpTs1i+byBtRWKSQ0hjPCfUCXseQNy42iFfx0Eb1/SLpSCzBwLRuvXka1m2RNjWLapJAy0A0NX97VtxyftuujZAuY+TR60kDVFClQ6MYTZBNCYRbZuQRdQ9CQltJlNhB0KxJsC0NVZNKoVJh5wgw1kkqHaZ2R+7rbfW/HksOXXRDruEJYEZqJhvk8QGSkGincVDA1NVKKdQdeu++tJJK9hp5u6KbdQY9VM0BvT0nVo+O1mIccER0nzjsEkvC6CYWd7CnFABCQCjkhszakm3WczovUcRKA0A3UeF8olFnLWaF4HAVInALh/6ZqPX0h8QRXVEFKF8DC5QUBQRBEEm1F1XpBTJxAtE++nhXRa32pNzQIvZqlKlt/FECRWTma5FvThkZaVygkVJT6Gu3FVRorTZy2i2ZqpAaz6EMTOKkiCzWLhVILu2WhqBpmrkhxJMvtM/3sKCTwZ0+xfvIyG1crbMik1Oxwmr69U6jTh5mr2jxzqUR5uYzTrKKoqnBF2DfIdxwZZV/Gpfr1z3PxC+d4ttw7l3PXjgL7PvIWgjs/wBcvlvj01y9z9ckvbTnvPQ98kL//kSP81AO72b/4TS7963/JH/zrL/EHx1doeq8OfZKqQtFQKRoqydfQnfzT6zV+4T8+ynM//nGKj/4K//iuSf7vjxzlyLvejZHO9zx37cxTPP31V/gfT1xhvu8QYx/+KAfev5+bConoOS9VLK589SKVR7/CpLfGew6NsGP/IH3TB9GTGZxmlerKBs9cKnFpw0LZeRPDt+9nfCrPUEJsKOuWS+XqGs7sWUbSOgdGsuT6UyRyAhg7DeELt1CzqPs6+ug06eECZsbECwJqTYf6Uh1naR6tscaYTCvVDQ3P87GaNovlNgs1Ea+gD0+S6MuiJ4VUulOzBSW3tkDaazOcFdEKuqkR+AHNjstqvUO57eKnRdppKNUGRE5Qq47arpI1VUEbpwUIqdIZOoysDswsWjYrpdqSdnMcsRnbbVK6FiWdalKgEEUr+IgGf2wzDLyuM7Spdem4UGEXSqUdPxA+bDGll++4oq8TuUp3Z2aiSigey6AZXR+20JDTakb5PGF/Jd5T6kgXgMBIip6S3u0pCTPQNkTZQN1YBjfmehBVcbq5dWBV0nGha0JcHBB3s1YS3YA68QQv8nDTJYiZW4QNiGrETESfu3vdvZ5KKC5sgFglpKiiEpIAGF475KyPqohgvLiwASSAKapQ1kkQC5cSBCivp212bP2/SpgQX/EtNPw9iEGuQNqdQ9pQUa0aXmmZ1loZq2zhOz6qoQpqZWCMUsdjtWljNUUVpBom6b4BxoazHBjMUPTqWBdPsX5+nfm2S9sLGEqo5MZy5PdO4/ZPc+58mfnlOu3yivCZy/ZTmNjJHfsGuWMij3rlm8x//QQvLTd6zuHWviR7HtpP8r4P8eyay289dY2rzz8TqerCNfOW9/ORd+3j+28ZI3/885z5H7/FH33+4p+bprova3JkIsfI0SHy04OkxwYwMuKu1GlatJZKVK6usXZmnRPXa6I/dINVc31++/F5Giuf5B7b4sPf8WP47znAf67bnPvqH/c8d+X0EzzaV+TYVB/ff/P9TD10jkPHl5iTQgXLDzi9UGfwGyc5fPSb3HTrh3ng0DAr16s014awqmu0SossL41yerXOocOjZA4eZWD/KUbma7Q9n6YX0Fhq0L4+T662xEwxz9hghuV8n/g9OI4QGJSaVC2P/v5RUkNFAQIlaHu+9HLbIN0skcsN059NoBuyIuh4tOsdlmsWddtnOFkQIJQS+ThiXqeGV17DsKoUEoMMZE2ShkYbcG1PDq3atIMkucKArGZM3LYbCQSS7TrpQZViSmcgazJnarhy8NNyfdqOj5/IoKa7lJzvBdLVui3zebJkpP1OtceTTPRHVFkJRVJlz4/k0krgY2gKmyOvw/5KoJmosd5GGNQW+rBtDpjzYgAY5uv0+qg5goq0LWFGqqajSiiKdHDFscLDzewG1MViFVTXxkiGDX665+zHXKWNRC+dJ21sFE8YkRqaOL7bD5PigvC9dTOqZiAUNtiRh1tovxM5J0iFmujp6CiGUMj5UtiA70l1nHjvuEw7FBcI95fQP+5GfaGtlZAf9qOkRHtLFSWX8lfg2/N/jDDhNUc5QMRzCkpORQV5lyH+NWWoqLUqTklIs8P5ICOlk+jLQX6QasdnqWrRsVwC38NIZsj2JTkgkza18hk2zl6jfKXCWsfFCwLyukphRx/G1D6W2wFnlutU1prYrSqqbpIemGBoMs+9uwcZ11o0nnucuSevR2afICx5jhwbYvyht7GS28kfPnqFC89fobU233O+Yzc/yDvv38kP3j5B/vjnOf2ff43f+/Llb1n9vH9HgT0P7WXi/ttI3fYAzuBumlqGqsyLAUjqCn1JjYlOBW31Ene/+A2uffV5zn/lKl9d3d7wFOAz50vwrz7NPb7HRz74T5h7515+s/E+rj31pz3Pm3vmy3xqMs/+wQz33/kQO+5/mSNXKpEi8ELDZubpRUZvf5qhQ3dz13SRx6f7KF2fwm5WsZtVyisNnr2ywd1TRQ7uPMrAwUlGTq2yPl/D9gMhMLi6RGHjOpMDN7N3NMeFfIJ6Kovv2HTawottw3KZzgyQGu4j2ZfEnK/R9gI6tY5wmK6skx3QGMiYGLLScm0Xq+WwXGkLlVu61wLHaTq0y20h1W6VyfYNk5PuBWXAdYRCrmwJSi6f6yfRJwZHrXILzxIWOn6jQkoNKCQM+tImKUMTKsbIAicgSKako3UGzdwA2xNVhW1FkdVpQyWb1NE2UVPC0NOQZqDdaqjrKm2T1LVeWikCA19sqFKiLf7kBIDhOlGTfjOI2PJ9u15oZk8l5Vp2N55AzUQ3kVGkgyeBKAhjFbruAa5lY0ofNV3tRnXHzzlSyG0KeQvjKBQv5pygba2EHDmwqphJoZCTVCS+9J/zHAw1JaowrbcvEzofxJ24o4rE91GCIDIxDcUJkf1OQDRwqshgva3VjI+i6JE6bjMQoagEihLFOfTMDMmlKr3p1N/u9YYFoXC95iiH8DFFKlX8AF0Vv6CUpqBaVdyNddrrDRwJAol8gvRwH366yEbDYanSxpEecIlsgVwxxaHRHKMZHeflU2xcWGJJKrOyukr/QIr8zBjqxD6uVS1OzlWol2q47QZ6MktuZIoju0R4njr7TRYeP8nLm2i4ewZS7H7frai3vYcvXSzx9afntkig8xP7uPv+ffzDe3Yyef1pXv4Pv8pv/9nlG/Z+3r+jwNHvu4Ox7/rbtGbu4vnlJl+7sMZTXzhLaaku/NFk0mkiWyDXn2JsssA9+0Z58C3/iJs/nGLfma9z26f/iOd+7TkeWWtt+z6fOV+Cf/1Z3pLM8AP3/32WKm0+s/Em1s89Gz3Hdx0uPnuK35/uY/879zH69vvY9fw1Tj85H8m2ny+3GXvkDAN3P8Xh2z/MfQeGmLtcor6Sxa5vUF+Z58JcH8eXa+w9uI/ikX30v3yVwZUmKx2PZq1DY6GEM3+B4ek72DuUIT+QprxcxKqu41gOy1VhKHpsYIDEyBjpwRRZXaXteb0WOqZw1kilDDRNxXbtyL1gveXgDxQiCxwQDf7QwidbK5Ee6lrogAChasthrWmLvlAy12NG6tkebrMtnBOsOvlkiqI0M212XOleICqKoC+PlpOO1kkT37O6lYxrkdRi+TzxeAI5+CnyecSxqlSyhZ5kuDa6moxASIkNUIbDl4bcTNU4nWc7YHeEM7Maqwb8WFCbH4i46jgdFqvCVN9F05Wol+XGwC88PikrChAAFmX7uN1+VA+IeT6dTZUUm+g4IWwQ5x2Pyw4HTl3Z18GQbtqqKmc/pMTbdyMn7jil5gdS3OAHJKWwQSjk7O7QqARuXVV6aEwIxQUx4I5fd98TdF5UhQnwjYsTAkKJtjw+lvAqnuC/bjNCwQ3+/6tZb3gQCtdrjnIIfEBYpIfDZIrdImjW6JQb2E2nS8XlE+j9g/jpIqsrDdZqHRzLE/2glM7oQJrpQhKjsUJr7irVazVZBUFWV8mNZQUVV5zk4tkqa2uNiIpLFoboG8pw20yRiTR0XnmO5eMrPWKEQVNj5t4p+h94J5ecLH/w3EmuPf/klmuw685b+ft3z7DXvsbVX/5VPvPw1W0BaDyp8+GPHmDvD38f7ZvfyyfPrfPrv/Qsl1483wMM261XgIeB/3XkXg7dtY8fuOdm3vP/fRvve/BT7PnFT/G5L13aNk78M+dL5P7757hj12F++M1v4txSnadmT/cM1JavnuCF43t46uAIHz78Fsbv+ib7TqxEfbGy43Pt9Bo7n3+e/iP3cWwsT3Eky1q2n051jXZ5mdLSDC/PV7h7qo8de47Rt/Ml+k+uUS61qToetes17IVrJK0yu/vTTAxlWM1lcawGvito1tWmTcNTyQ+MkhrMkswlMJ22BBIhlTY8S0ZeG6i63Ihtn2rboWa52OgkpQWNsLDxcZqOsMGpi2ommxD5OIqq4Fo+rbZDqWFTt138XK5ncNOzvcjHTbNqpMwMuYRUucmNKcz3aXsBBWmfY6STImU0cg/oRFLllKmTMrohc5FcWcqs9aSJZsbMMV07MuSMN/ghJlf2g+7gZawa8hzBHGjq1pkXAWC+vKuPD0763WMlAGpmr6lmWElZ0vlgcz5Olwp00GVPuPve3WMFHaehxhypw1yfsJoRUdtCaRaPRRAVnNFbxTl0fdg8O6LUeqjIoHvNAlUTFWRc5RYTJkQyba1bCYnXkNds87HyeCEu6NKQ2iZU8QIwwlkhVY2y1gKv92/49R5YfS3rb6QwYTsKbuuTuqcWcq2K2yGwmjgtC1dWQWbWIDmQQx8Yo+GprDY71Js2ruOh6iaJlMFYX5LhjInWWKM+tyIGHF2h0R+Uqjhjah8lR+Psco3qeotOYwOARGGQ/GCa/YNZ9PUrrJ+8zPxSby/ojmKSqbfdhL/vbh65UuLyiaXIZTtcYzc/yAfumeHuMZPq53+bb/7+yS0x2wBH8gm+7x/dzf5//595afLtfO/vnuCf/Mzv8Mzv/vafC0DxtXL6Cb7xq7/G/+fjf8B3//bLnNz3AY7+/Cf44Z96sEdUEF+ff3Ke67/7SQ7oZX7gnhmm73j7lucsnT3DV8+uUM1NMXTnTczsKPQ8frbeYfXlyygLZ9nXLyySkoVBFFXDbmxQW1vj5HyVaxWLYGiGwu4JsiMZTFXBkpRc9eoSWm2JsazJruEsqZyJbqYA6LSFQKBu++jDk6SG+kgWE5iqgu8HOE3hXqBYdQoJnT4pDgDwPB/bcqnLwU01k5eGmopUerkSSMoodisaGgXwXV+6YttULZfATEcWOEDXvqdZQ7WbpHSVVGzex/b87syNG+AbKbRsVgxPqt0mv98Ws0I5U4gTQhubsJJxQgubVAYtmYgECmF/BNlkN1QBQvHANF9SS4ph9qjEoFtJRRP8m+dWfLo2MrGeki8rIRxbUFOx/kakbgvpPJ+ev2s/dKSOu0orSk82TydGBQZ6Lx0XHSsjr7uVTPdzi0oIXEmphco88QFk9eiJY5O61vPeIZ3nBaIXFvZ1eo6Xsz6hgCpuv+PFXROkQk7tAX9P0nlENGgcAP2A3jmjTVJtpHnqX/eo0BsahMKL86rKu7iJqYxzCG8oQtk2nk3QsUSeiN+tgtLDRbSBUaodn4WKRavRwbVtFFUjkdIZ60vRl9TwVq/TWt6g0nbwAuEyMJwxKeyeQB3fw3LD4ZXrNRqlDZym6Ael8v3sH8sJVd38eTYuLPUMjg6aGlN3jZO/+0EuNlQ+88J1lo4/3HNqZrbI3tt28JEjo/DUH3H8lx/doqoDeFMxyUd++p2M/fR/5ZfnU3z/J57gK//rV6gvXX4NV713Va6d5uFf/lU+9rOP8t9nk/T905/ne/7LR3hwKL3luWXH5/nffAH7q7/Fe/b2c9890+Qn9vU8pzp/lpNn1zi73iZx7G7Gbh1jPNktyFc6HqunVrEvHGcsa3BkskCmmEPVTXzXobk2z8ZKg3PrTbziFKmpSbJjWZKqgu0H1NbbNOZX8RYuM5DW2T2YIZNPoCczBL6H03FZqrSpWB5eup/M2ACpYopMKECQ7gWqVaeQ1OnPJkikRERz4Ae4joxGdwOUdBYjk0ILQcr2cFuWiDdw2tH0PwhqxXVC9wEPV9EFEBi99judSgM6LVK6ABJT0kO+rIQiC5yEcB+ILHBCubMMicuaIhKixwEgUnoZUcDcdpLhMLI6sakv5IU2NuFdvdbbowhkPICxSakVbshBZMjZC14RAPpuj1Q4nrDqeMKAuKeSCoUJji1tbNxN/SQ/ogLDKqqnCpNO2N1qRpECga4gQ6jrZDWjGTIXSOseG1aPqiJnhXrPW1SA3VkfpaefJug4YpVUWM1EJqRBIL3ndBmstwnEwj6cFDZoatfCJ5B0YNyJW9kc7fAGWG9oENpufUvUlj5LKKpUh3QVJgqgBJIDdlwUVcVI6aQHU6RH+/Hzw1Qsl+sbLdoNG89uo6gqZtJgOJsgb6pCVbfepOkJq5t+UyM/maOwdxqvOMm59SZrKw1apUVcqylECfkEe0dzDKV17NmzbFwssxajs47kE0y85RDerjt49OoGs6+sblHDjd98Lx970zS7vGUuf/Jz/PGptS2nfjBn8p6ffhfFH/s3/JcXy3z8P36GK0/8yetyzUHY8Xz8Z36VH/njV3C/86d56BPfxTuHM1ue98hai1O/9nWyFx/j7945zc7bb93ynKXL8zwzX8EZPcTw7fs5mOvlqheXm2y8chmztsCu/jTZviR6KguAVV6mstrkzGKVtbaHMb6TzEiOrK5i+wEbtkd1voazdJW022QinyCfT2JKgYHdcVmtdVhqdPAzAyRHR8mMpDEzIlbbl/EIaqdOxlAZyJokUjq62bWKaVguHVf4sBmZZERpebaw4Am90FK6hqkLOi0IAlzHjyx0LNdHTWZ6h0bb3cjtMKgtzAby3fixwlU6rGYiC5y2HXnAhWag6U1moh03EB5uqQx6JhnNC4XRz4rroKuQ0NUoVqGn0e4TSZ17ZN4xV2lV2SoX9kKll6LKjTAORF1TTVX2lKLjJBB15c69AObZjnSVFio1RVYV8WMFiBBVYVG0QUxdF3rAxSuZsHoM6Ty2A9CYuk5TlJ7PHvbQXJ/INSFUuAWeB44tJd4uutabsCquGZH3XEgFRsdL2x8h8SYSNsSveYB0jwkdEzbb94TX+6/ZNuFvHAhtWTHgEUoQUQV5QfcnolhDvyRA0RSMjEGqmMIcEP2gpXqH5YpFp+3i2m3RYDU18kkdtdPAb1To1DrYfoApZ2zykzn0sRkqvsml9SbVUgurKkBCT6TI5BNM5pOYrRK12WXKay1CEi2jKUzsKVK4+WauWzrfOLvK+oUXek5PT2bYc2iYB3YWcZ7+PMe/dJntCMh3ffQQxe/7v/jNM1V+4Zcf/isLtvv0f/8V/uVXLqJ86J9x30+/m31Zc8vzHntukdXPf5bbRtM8eMckgwfe1PN47foFnrywzkILModvZnR375DrfNuhNruMWl5kuiCiJ8y0oO1816FdWeHaeouK5aEOTpAa6iNhangBND2f5mqT9uIqWmOd4UyC0b4kRlLcATodj/V6h1LLpqOnYz5uRtTbsetN/GaNtKEykBYKOd1QxeCqnF2xfTE8aWSS6KnuIKCwwelEai1TV2U2UIDv+rTl4KfrA2ai64PmeLiW9GJrN1E8u7cS8fzIfseR7x1O8Ivj3e7gp9OKQCw+uBlWBWFIm56UXmghkIRpn5qYeUmZmyqpHoWbgWZuqobkphjSeVuASM68AD3zMuEKs3U2Ly+k08K/49A/DVkNhUo1OXwZP852vYiWigtIw0rIs12hUpNVXNwINIralmASp8UCP4xzkNWMrMJCOrFLx/lR9bgFfGMJqyoCwOJUpuP54m9d1SUQqVucDxQ5sKqqvUamoXlq+LkVw5R03PZVkJit3Prv3w7R3BtWmLDdl/Fb4XXcSy68A/BjX9wuDnkomopmaiTyCZL9ebSBUZxEntXmGrWaRafRxJfBV5mETs7UUOwmdkU4LICg4gaTOrnJfvSJXZTarsih2ViPFGd6Mku+L8V0IYVWv0p9bqVnlmc6bTB0aAhjz82cXWty5crGll7Q8KF7+Fu3TTDprXHhTx7tMTkN14f2D7D7x3+Er22k+C+//RSlTUC2eU3c/hD7bh7nvgNDzPQLWm2l0eHxc2ucfmlxW3eGcPmuw+/+4h+wY/AH+cmP/WMeOn6RC795suc5sy2Hc3/8Mve99+u879BdPHp4V08/qlNbZ26uwvlSix0zRxg+OsLUiZVIsr5he9Tm67hLswwdvYWpgTQXc12g6lTXKW20WKxbHOgrkhooYGQM2BC9utZ6m+ZyiWJ9jb6hSQaym6TWTZu1pk3d9kgXh2W0goFStvBsL/JxS+kq+aROIWOybmqh3RZtaQYaJJJoaeFcoJkCwAJfbGyKZ2MkREWhhf0PeVceKcVUXaqdhOtBaEYaBrUZaiICkcAPaEsj03rHJehLRh5uiirMRF2rIy1wOpjp3qHTzXJlM5HqeqFFdJwfDV6Gx4ZmoBAOT3Yb5fFYBBAVjZAMqxGttBmIwo18y/R+zPJpc0ib5/v4EbfeW4l0bXBEf0TZVMmElJjj+bI/EpMwO24vEMhYhO77ymweX1KJm2IR/Cgh1YvmddSez06USRTN+mhdOlAAmB/1dQxVidGJctjVF+Cph6IIVesCQ4/tj7qlqgkpvbCCU3RDVFCxFYHPX6NE+w1fCf151yaQP6EcMvz/3Spo+1fQk7oUJRTQBkapdTyWahatho3dqopBVV3MWhQSBmqniV1v4UpVW1ZXSQ+myE2N4OVGmK9azK00sMpdEEnkikz0pxhM63hLV6leq/RQcTNpg+LBHTiDu3hxocr63PKWzzl9cJS3zhRxX/gKp758ZcvjUymdW//B/SzvuJd/+8entsznxNeuez/A//rlj3P659/LF+4s8cMnfok7fvknuOOXf4LveeIT/OHBOU7/13fxe7/97zj07o/c8HWsygq/+JtP8+VVg90/8gN8x1h2y3O+crbE2pe/wM0jae69aYzizpt6Hi9dL/HyQhVnaA+Dx3b3VFRNacPjLF6lP6WxYzBDqq8LQnazSjuUSicLJAfymBkDTYGG61PueLSWN/BKy2RNleF8EjMRUmZtrJaQ4dc6Pkp+gORAgUQ+EVUsbtPCq5YwA5v+pEG/BDERrdD1QxOGmoLK05M6iqYQeIFQXXm2GAuQ6jhFUnKBlA2Lu2M9JnMOIh+3oNOO3Jl1VRGbv+vjSSPTjuvjoQoQMfVIYeZJM9BQriwm+LtmnOHntkNxgnTTVlQ1ysdRPKfHBLULYn4094Iu/OPCqO2eisbrzgrFKzmI/S2q3WiCnmNlPg50hza7x4K/zW4Q9ZS87Qe146KI+CxMmFAaRW1vMvMMwc/2fOmGvVmZ50c0oOgpudKlZbMwwZfWO7oAwHhUdzjsKvs621nvdOeMunSaommS+vSi661HM07d6xUdG7ombMoV+qv0j3st6w1bCW1e21VB8eon/O+eXlAESvIJIRWnikpI1XQSxSxKpo+G47Nas7DbDl7HEnJTTWwiGVNDsVpijkNWMklVIVVMkhruw88MsDRXplXr0KlvRJ8vkS0w2Z+mL6nhri3QXG2yIY83FMiPZcntnGLD0YR79CYBQW5sN3cfHGZHwmHx60/y6PrWOZ233jpK8X3fzW+cWubEF27cA3r7D/8Q//u7jtH/yP/k6x/4Hb64SaEn1hd5cOjjvP3ffoC3/fS/5Ad39fOlX/zlbV9v+eSj/Lev7OCBH3k3Bz/yB3zxfzzT83jN9bn2yBnu/Nhp3rJrki/O7KR89UT0eHXhAi/N7mH5pjHGdu9haCqPsd6KJOcN6V7QF3SYKqZIZ02MdB6nVcN3bTptYQjqGgNC6pySvZVAvHe7LGZuwmom3Oxdu43ddlitdYRUOpGLPNzUUCrdFK7ShlWnkMxIhZwazdx05OBoYKSiWAXN1NAc8bsVw5tul5bSVRSlC0Lhxoii9lYSYY8iHPyM788SiEIPONcPSOhd4A7Bz7csqXBji3OB7XqyyS8HVmWuUPjeYb6Ohk9SqvMSsUrIj/codAMt1WtD09OjiIkTNvcpNtvXbB6g/Av3KGKbqicFASEYRGsbdV1X6ty7wuN7KH15niEdiO/39LPC5cqbjbCaiVoG0UftDruGgox4OF1PBRZFMsToNDknpAZBzMS09/P7Pl0XbzWmkAsvRVjao/yl+kKv1ljgRusNXwndaG0HQOHajO+qoggQC+QXDlA1BT1pYKST+EaKjhtQaTnYHQ/fFc7amq6SS+okdIWg3cCutaIB15SmkMgn0AoDtAONjbawhfFsQZdpZpJkxmCiL0lW8+ksL9NYaWLJD5zVVTLDGfSRaTYsj6X1Jla5txIq7jjIm2eKaNdPMvfEVoVbUlXY875bWOs/xO8/fGnbkDuA9/34j/CZ7ztK659/H//kO3/pBgAk1iNrLX7qR3+fqx97P3/w0d187z/78Rs+9/TXn+bxa1UmH3qAu/tTWx4/d2KFzqmnODyUYXiyV4rdWptnYanGtWoHY+YgxV19jMZUclXHo71aRm2WGM6YpLJmJE7wXRun41Fq2rRdX7gHZExMWTW0PZ9OVQCJ7tsiHyeSSovfcbXlCKl0IouaTmOk4io1G6/RiGTW2aSQaStStRQprhQ9UqjpMaDzJcVjyAl+UxPZPnGqKAh7K5qGIvkn3wu6zW7fRYndevm+sOYJFVuiV9Dtx4RVlDAi7WwZnOxVigFy+FKNzDzFwGkkV97GUDPKx5GDl6qh9/SUQmpJhUjibcqUVuhWI+KcZT7O5r5QTOK9hcqjKzfesvztK6Hu9ev9jzChNAKTTasHxPyYVDr8HJE83O72lEIqLQiIiyKiodHNAOjaEYUZyrSj949JrENBhhJReV73nOWcUdiPioQVsoryQ1n8t1DF/VWAwGuBtDc0CN0ITf88lA1PSlG6nKemgOILBVAYOaCaOmo6TWCmadoi/Mu1hVJH1YUDciFtktRU/HpFzBdZwqrHVBUR0Zzro+X4lBrCFiYEMD2ZJZ1PMJpNiPmi+RVWYjY9WV0lM5JGG5pgqd6hvtHuiUIAGJ4ucHgoQ+fkk5y5sMHm9eBIhoF3vodHrpa58OjXtr0WN33gu/nd7znCy+99L//tV17a9jnbrV/5wiWeeuC9/K93jvLAD/29bZ9TW7jAbz87h3rbuzj4pvEtjz9ftii9eIrJnMHBqQKpgd7nbKw0uVhq4vdPUtg5zEiiC0I116e9VkFtlRnJJMgUkiSy/dHjru0KasoLRL5OxpAgBLYfiN9To4HiiMCzsC/jddo4lkOt7VDtuARmSqR1hgo3xxMy7VoL1W4KOyM5KxSCSERreQFKJifFCTqq0Z3Ex3XQYiozVYbMgaRqIKJntvRHYkuTYojABy/mHOD5QY/c2HNkLIKspDRVidI6Q1GCcMOWwoZQtitXjwecKyupmLigWxXIJrth9gysQldyrKmho7S2bSUUKIqopEyjO/eySbkVByFNVbfc5W/xQXu1suOgCz6BBKPN0QZ+DETCc+55Cc8Tx0WRDFsBsEfV529yFPA2HevJftRmVZ8fl6b3RjJEgXxSzKFt6gVF59EjqOgCeHTOrwMltxlwXmtN9YYGoXDFT+pGABQ+R5SmShRbq0o37VDBErh2FGkNSNmjLhq2rvhiKqqGaog+QF/aIGUo+I0Kdq2N5Yq7QU1RMFI6SjKD7YngL08eD2BmCmTySUYyCdRmifZqpUeUkNJUzFyaIJWn1HKwNpmFpgbG2TGeZyxrsH7yEqeqnS3nPHnXBP6uO/nMSwtRZlF8pYem+I9/+xZW/u0/5LcevfZqLnXP+oPjK5z90R/kf3/3MQb23b7tc06fWmbdGGT8Tbu3POYDG2evo5Xn2TuaI1Uc7Xm8sb7C5bUmXm6E7MQQQ4nuRiIEBi386jqFpM5oIYmRyXfjB1ybhkwbVVIZjJSOIX/XXgCuJdRiiucIKxe9+8fr2cKWqe14UbRAvKIQzgct6LRIaAoZU0OXzgVxV2nbC0QllElFlZDoC4lqJmzwp0wtUteFNjjdIcSwPxL7lm9D74QrvDOPL7GpBZGPW+DacmOiZyPd7OGGqomkTrmh+pF/nBPNnvTOvEgaUdMjV2d1szou8o/rjTUAueeGaq1YNEEcUFSIwHNzX2jz2gJEyuu7nYXihhv1o3wJIptBbDOARTOLW+i4GJBsOtXNx285Nz8UY3TD6eLy8BCAgrCfpN+486L8Jai412P9jQChV7sUuoOp3cRBcVeluGIgLbAtYT8fd5xW1EjSqMjsDc1MYiQ0YUKpq/hNYXja9gJsuQkoqpA+hk1fAWDikhqZAoWMSSGp41fXaa7Wo34QgKkqmPk0QSJDtePQads955IeGGfvaA6jsULl0vK2suzR2/ew6JicP7u67fW4+d1v495Mmf/2nx77C1/TX/r0OcZOfJaHPnjXto+vnDvFhQ2L4rGDzKSNLY9XrlVR62uM55IkNuUNWeUVrm+0qLuQGi6S6ktGjzVcXwS+ldekuCCBmS6gmSmhEPJFRIDrCyAwMsL1IJKoRnebYvgyXIHv4bk2rpRKe0G3R+FL2/9IKm01pbNyrIpxfdqOMNW0vQCkI7VmapEwIfDFIKOgxORmHKvGIBwiVGN+YErk4/ZaVigV9qWwwZe9hl6VlhQ2SMnxZvscEAamAsCcGMXTWwXFYw26My9xtZcvqCWVaGZF31wJhQCoG71UnjgZAGlj00vJxTdYJeYmvXlg9kar5ynfgrrzfalI829wuyv7QVE1Ex4UXsdY1eRu7kfJFYJ+4HmRqi++4lVUBNyxk4gr6+LVzGZVoe8HAjxDANvs1uB3j1WU1w8MXqvQ7jW/7+OPP8773vc+xsfHURSFz33uc70fIAj4+Mc/zvj4OKlUivvvv59XXnnltb7Nq252qcrWHwE+SjQ9rCmKqIQc4ZjgWjae020uxmWbqqoIKs5MkUgZ5EwdPXAJWnXshkPT87HlHYqiiTtZMZAmPp2qm2hmEjOdZzifIGuq+NUSVtmi5na/rILOSxEYaWqWi2v19mmS+SGmiim0xhq16/Ut5z1oahQO7+NCqcXKhXPbXsPvv28n1T/631Ef6i+6Xvq3v8ZPvHU36aGpLY/Vly5zZrWBueswuzNbQai52sIrLVFM6ZjpXpcFq7rGctWiYfuo+QESeRND/iraXkC7bOHVy6R0hYFsgkTK7AEh2+0CgZY0SWmKBCLxGoEnNkU1tokF8s41PsjcpTjEDUYYeR3YsXybaApdbOiRH5lmoiVNNFONmYF6kYVNUlfFwKi+qRIiiGY/hNQ5Zre/iVqKb8DxFcptfVkJheccX+GGFlZw4py73wdfztmEdByyHxWfvA9fx5chb6Haqmf635O0ltethDar43rUWrIK2xwxELIYYV9o82vEVwhAoprSot/P5hXSXKrCjTN0FLXnRm8zCKnEb2T8GBDdiIrzeyqirqza69oNhZQc3Y04pAK712tTPyrm/RY5LmyejwqCSB0XyJud17tK/Fbrr5yOazab3HTTTfzCL/zCto//p//0n/jEJz7BL/zCL/D8888zOjrKO97xDur1rRvpq1mv5oSUTT9RFSTpGUMFxRNNV9cSdJxnd5UxShBEFICiKmiJJJqZJJXQyZoait3Cabaxm3ZUCXmB3OQ2bRiiikqhJzMU0gZJXcGvV+jUeisdQwEtaRIYCeqWGI6Nr0TKpJDQCepl2ttY9MykDYzpfZxbb1KdP7vl8fzEPt4y3cfZTz2z5bFwfWj/AP98/RR/f+5l/sW/3OrzFq7fe+wa+1MW07fcue3j55dr0D/B4ERuy2PNloPfqpM1dYxE77VyrSZW08ZyA1RJqYUbn+UH2A0nmtcppAyMpKBJFVXDj0BIZNzoSVOIADZtnnFvLiXGh4fT/36AUDjJjdz2A5y2i2cLakolpliSFYXreLRlFYYmeiMhLeV7gTTktFF8l4SMRRCPb7o4cjPXTHG8Zmrd/oh8stZTAXSrAlVRos8dLj82jRmNKcgbpu7wYtC1+A9BzHG7jtSuvYUe6iaUikrRD5Bu2DG5secL/zffi7zMNosLormV0MJGOkKrkn2A3gZ7TzWkKAII4hSmFDaoErjjN5NarJ8Vfp4b7SU9FWGwffUSfpduJAUHIpucOPhE7yGPD69V2JMi9u/xFc0obfN5QhAMKzohL+89Oy86NjrJ2PFdtwXlBrTva13Kpv99Les1S7QfeughHnrooW0fC4KAn/u5n+Nf/It/wYc+9CEAfuu3fouRkRF+7/d+jx/5kR/5C3xE+drb/FvPCW/6RWryogeKInjTsB/kuGKTCDeLaNCMLm2im+hyRiKhqyiejdsUogQ7vFuWX4zwD1lXFfFHoZuykhKWK7qqENhWpKrrfj4FzdAJNFPcoTq9PSFVF3eBgRRDbF5DCQ21b5jr17ePV8iOzDCaNXj0XOmG1/SbP/+7vPft/xgQcvBfH8nw5ZWtCjsnAH35PMNTBbaruZYqFn5qnGSMTguX7QfgiLCz7e7oPVfOYOhbqyi75eBaNsnAjYY+40BiS7kxeliNaILmVJUbNvtDlZAqN6fwI4WT956UUYcbRKRoC4Q6zXeDSCDgBYH4fkkAEptDr8JN0HFaVI2pqhL1GURvRJUjAwLAtgseEwBKFJEQB9kbqbsEtnYHPYNg08a4eUMMN0XP66WX4v0NP+htdofvFTX4/ahRvp1/nCfVXigqaJqk43ob5QoCgw2tGy4X9obifZkQwEKV3XYrpALjTf8t7tFhs15RJYhsV0nJgU7Zh/G9sHcc0lzypiGczdkEQD0r9v5+WD3SVfSGx7p+ON8UOzb2/pqqgreVygtfo9sTCoSisPum4jpsQwP+ZddfFMte1xrt6tWrLC8v8853vjP6t0QiwVvf+laeeuqpbY/pdDrUarWen1eztgDQ5h+61FyI+OGdo2f7eLYnKIzQ7kMJKyGxUamK0nUR9t3ouBCAvIAtarbos2la9HoqkgLaFDqnKUKdFyiqsBZxeyulIPwS30D1Y6YNAiNNtbV9+qmZTqL79g3TVr/vvin+wz//T9F/15cu847/+QPbPhfAKy0zlNvePbthuQR6Ioqqfi0rCCkD+cdhx/54bT/As+xoMxcKs+71EI12n0DV0ExDDCBLOk5RlWhD7/5uuwaOIe2jgLg58cJhzK2fL5zZCPNdQql0NP8RW3FXaDw32kyVmERbvK481gitcxRJ6ak9d+bR3bymdish2fOMNhT5oVVNAqJudIcV/RBUg+j1QNJSvifECDcY+IxvqKHCztkmPLFLLXXVceE1h1iPQ4Jv6GUWAnB8qYpU5SlKVM1sWVJR2ANA30pdp3SvW3xFVJ4q7L5CAIr3dULQVxW+pZIsUBTZw/kWG3vgd3t42+wdYeXifisQg54qKojdNITD+fE8om1XvCd2gz3s27leVxBaXhZzLiMjIz3/PjIyEj22ef3sz/4shUIh+pma6vYdblg+x//jRl+MbfOFepfvBd0Bu2ijCjerXipk85cmvDPG71IXUd/B86Ivg9inNDRz0x/JZr59Ewi5johyVswk5ja9lm8l6wVwLAdPNSkY2z/vj5+8zq0f/p6ef3vpv33uhq+nZHI0tqnIILaxbdNYT2lio3W8raouEOehqwqB6+C03V5ePui90w/8AD/s6fiezGsJQNOl/YwSVUJCKNBLa0WiE91E01XheKwAnrhJiO+virxD9gLhPu27ogryXT+ituJL2PX43Qpbqp7i36vovGSPIPIT01Q0I7YpSxAKvyLR9zJ2Y6QoSnQXrWhK9KMZgiYLgiCScgf+5hsgRWyIriN7C6IK9OObW2xDC2eMwr5nvO/S0x9xhfPAjb6Z8R7FdjMrShBE/VxV6X6vNtv+RHHVMXWdIqsZRYm5ScdAe/M3s1tJiaqMmOdkdJ3k+6qqEhkgb6ZAxWcJKylx8GYQiQBQzin2iBrkOQXhTUPQW3XGLnSkxAt/X/Gb4PC9Q1FFpJmQr9/7i4iJGt4A66+kW7WZnwyC4IYywJ/6qZ+iWq1GP/Pz81ue85qLxpiTdvy/w7VFhbTplyF+0TE5rKpL3r/b9I6W3Ai68xziiyLMKl1cP5C2+b3M558nhLJbLeq2i5LJk8hvrUBcy0VxWvRnt69O6kuXWW257JvOb/t40wv4rblf4v/3cz/N9/zf/5Daf76XTz55/cYfaGQ3Kyvb9/UKaQPF7WA3tlZlyZSOms7RcjzcTflHiqpiJnRMTSFoNyNfvp7naOIu1Ynu6Lt/iJufp8jfj6bITXnTHW4oOglnwJK6Jmlap0ctqaiKiL42TJmu6eN54icOpIrcWESVLGiSUPByI7ojPD4y84xtpmElE19xdZgmm/ThcGJ8qRKAwkrIC9gCllFvRUGOLIhQuLiwIexJbe5txJvlQGxD9bp35ttYwWym8sLhSTYJEohVYj3CohAIoqaDnPzXYgC02XEhXgXFqqmtQKR1hSDK1uvevWayLxh06TNxfDh/o0XChvC6xV8n6lcH8vsbB7EwYC8IoqLkRlVQvOrZjoYNK/UuHbfpdUI5+Rtsva62PaOjYg5keXmZsbGx6N9XV1e3VEfhSiQSJBLbb6TbrRtWQZu+RIH88QPRpAxUHVWaLoZ3jTeSxAa+F7kWW55PoBlocio+bHzHKxl187F2G9fuzrHkMznMrIGhENnSRMKGwJd0Te8fUqdRZrXewZ8skBnZmt1Tajn4lVV2Dh6M+hHxVVu4wItLde58/1E49fVtz/O//cpL8CtvJwX8xLbPEOvBoTRrqXEWzj++7eOT/WnUVhlrGwFFeiCFmivSsD0cqxdkjHSBXMYkpcs5rE0gZKqKEG9oppj0dzx8x5Z/yNL5QlUiIAiXCttu6IqqoBqG+B7oKrompPu+6whBQSAiOjRThoeZSRxPWPmLGbBuryi6w5YbuWd7IqlX2/q7iCixmG1P10dNk811he163hGVJOk4U9cwVKnVCpVVEoAVTSjtQvAM76rDc9fUUOmHuGaOEwkywtcJq4Iw2rojpd3heUD3JjOI9UdupBIL/7enJ/St1g3uznv2ZekeoEhRw3aUta7GKyGldw5HKvP8SOCgRTet/mbQjh+/3WBqKCRRu9XM5tW9WfG2pb8CRZFVWPd7EQeiEACRggIhiFK7n0UVABh/b29zFRVe17j796blA9uR/wF/8X7Pq1mvayW0c+dORkdH+drXutP7tm3z2GOPcffdd7+m13pVJ70pxiH8CRS1RxnkBkRWI3pSqJniscbQpZQDP5BzJC7NjkujI1IwzXwGM2uIIdOIdguE11bsji0EIbtVpdSwaTk+amGA1ECagtGrwnGawi05mzTQzF7bG6u6xrX1Jn5uiNxEccupX27aOFde4dBQloF9d2x7eX79m7NM/MBfXAwSrgf+xUN85uwaa2e29vVU3eDoeJ5g5Sob20jJc+NZyA+y3hLGsPGVLAwx1pckn9CwSlVqm0AomdIxCnksL6DUFI4Unt2O8pZCKTCedAqIcSmRJYyqRxRLSLXqpkbS0EgbmlBNujaBL6gzQeWpaEkTNZXB9sUMmOt40QalqkpkR6N4Np6U/IfVULgCRenpy/ibNvPNN07bDW4CUSUUzt6om/obkVLM0NFMnUDV8APh4Bw9R4JZ6IKguLa0jfEjVZ2iyZgCVcfzBQ1pSwFG+JmjSsoVcm5fVlLxJjv0UnmubLSHPaHNKxz6jBRbYeVBLxXXI1UOJd5a97/DpcWO7amkYgAXr6RQVQEEm6g4Tf6et+sJdftJgo4LJHDHezJdUQSRMIpNlVAoavAj+nNTJSVFEV0qMFZ5htclElWIfcXd7iKHMTbfpkrotbBXrxmEGo0Gx48f5/jx44AQIxw/fpy5uTkUReEnfuIn+Pf//t/z2c9+ltOnT/P93//9pNNpPvaxj73WtwJ6T+bPA6Z49SN+IbE5Cc0Q+S3JpNhgZDUE8hccvoYPvusIIGmLFEwbHSWdI5FPkInNovhS2KBJrl5M1AuqyGnWWK93qHZc1MIg6cFMT3+m7QXY9SZKp85QNkEi1ws07dICV9aa1AKTvt0TPemjIBJI1144zcHBFNOHd217PV74yjOcSR3gx77r0J93mW+43jeZJ/tDH+cXP31q28eHD93DTaM5Oudf5mx9q6tDfrofPzfCfLlNp7re81iqOMKOwQyG3aC5XKLs9P6BJPImWmGAhu2z0ehgt1qRN5+iaaRMjaSuorgdXKsjpNXh/q4pwhxU1aNkTED0g6QxbVJTwbOFcafX3WT1pC5muPQEtifyg3w3iBRRqiZmfwQA2jhNC7ftdTdzOYQq3lsYh3qeL29IN92hbrPizfquqCK+Kcq/hdiGopmakHrLcw6pZG8TcBqaUNgpvifP24+ulyLt/tFiNGQMPCNaUJFiDtuJnBZiH17elXcdB26kFtu8mW63tjsuZA26ABS/XkSfNZJpb24FxHpJ6jZ0XA+ISeeI6BVinzeswkRQnt4DsCGIGfI1QhDp+RgRnRdWUSEQhcKqGIhJKrCnnxQOC0sQu5EyTwn8iAoU5/BXD0SvpXJ6zSD0wgsvcMstt3DLLbcA8JM/+ZPccsst/MzP/AwA/+yf/TN+4id+gh/7sR/j9ttvZ2Fhga9+9avkcltnSF6PFdALPt0wu66KTYSAmVE1JP5YBQ0SeOLuK272GHiecFvuuFQsh7broxUGSBaTZPV4JeTLgUZImXpkDQNgt6q06x0RN5AukhruoxirhJqeT6fcQG1XGc6aJPO9vZvA96mut1hveWR2Tm87CDr/xCX6qrO8846tQ6Qgorn/r8+c4uB//QT3D26l9P68NZ7Ueefnfpb/+NQil77xuW2fs+PIFHv6TJaefiXKAwrXoKmR3zmGlShwZbXR4zAOkCn2M11MoTXWaa9WqMZ6RklVITOcQSsO07B9lioWdqsabVqqbpBN6qQMFcW1eiT0IDZlxTAJVK2b6YIUiUgrnYSuovguvi3oOE0RxrRmxsTIJAn0JK4vLZnkH37Ym8mYspdltfCsjhhwtUOhgIpiGASaTkcG2Xlub08pTrH4shrpEWFsGp4MQUhXtzoeR44LkooLZPXXLbgUSeWpwkcvvDOP9dZUTRUqPV1es7AKigkbdLmpKoEPriP6SRKAQrurQFEj4AqpvF5qieiuPOi5s//z+xWbKbkbrbioQY+ECVu3RVVWj4oEgrgQoOtZ15V4x3t8m6uoSFwQ+5C6BG1FATx3S08mpALF7yvoRmXEVjTfFB2/qX8dvjfBtoIZFbr9tpio51vNO32712sGofvvv1/Kant/fvM3fxMQZf/HP/5xlpaWsCyLxx57jCNHjvylP+h2yBpe7rDyCYEolP1GzdUAUPVuhoqshEA2+Dw3SsEE8F0bt93EagrL/5BSS/RlSSf0yCjTtVz8Zo2krkZ2/+FdmtOs0qx1WG108FNFMqMD9McowKrj01iqEmwsMl1IUhjYChLllQaXN1qYe44xsaOw5fHnTqzSeerzfOexMSbv/I5tr9vjv/br/NwlnY8+8xu8f5vXuNE6kk/wU49/gj9Ub+IT//F3tn2OZib5nrfsRL/wBFcf2eryfTBnkt+/l+Wmw9xKg06ttxLKD6aYKqSgvEjterXH1mgooZEbz6IOTrDeslmrWtj1cvS4kcwKXz9dxa9t0Kk0pA1P2NdRUcwkgZEUg5aO191MZVZOUldRnI5wnkbO4RgaekrHzKXxzRRtx5eWTBI8dBUjoZM2VBKaQtCqi0rIcrsyaNlPCjSTliPshQRd1a0oNFmNBJLSutG8z+aNEbrqtnCFIY0CRAzxXY/tRYoEzrSpRe7Yii/ptLASUlXxuRNJAt3E8f1IFRe+d1hJhWIOPxI19PZmxY2fH9FxcSAKe1ldKtDf9tzj5x03EQ02VzXfYm3nwh2/ZpGoYRtHgbCKCt0ywj7aluNlxRveCG9+76h/HIoawvmzGIiFlUx4zbrHi4c1VQKgVMVFnyH83IoaDV7Hr7WmyLGAsJ90g54UwCbs671WN37odVnfPi+Hv8D6VrxiHIA2P1eoVLp5Qp4v+kKBqkVpkqFXmGvZKG5HxCGbGqouLrmIC3DZaHSkrUw/ib5szK1ZTvQ3KqR1hYG0STIjlFcg3ADaDZuFqkVLS5EcGSQ/mIpsaTZsj+q1Ks7cBcayJhMTeZJ9veKN2tIsJ5Zq+GP7Gb9zcss1uNCwOffJR9jvL/HB9+y74bX6+E//Av/8TIa3nX6cn/rn91O8gWwbhJPDT/zgzfzwxa/wn2oH+LF/+r9olxa3fe6Rhz7IBw8MsvK5T/OVSxtbHt95eBDz0B1cWG+xsdzbL0oNjDM+lmcyZ+Jev0RjqdFjazSe1MlND+PlRpirWtQ32lElpeoGZjrNWF+KnKnil9dol9tUHTHHJSg1AzWTw1V0qcwTQKKoWhRWmNAFHRf2k1RNFeKTjIGWzREYqS6I+MJXUDdUMgmdQtIgKT0FnaYVVUGaqYmcHWls23JCd/ZeENJVxGbesYSDh9Ol8yLJcIxiCZegxOg2uun2hBRVBd3o9qJiqkBTU6Ph69DGKhJ3aIpwlDcFeCKFIHFRQghCSV0T/aROu+vaHTbKJQB6vhBzbAagyOkhEEOxvu1GczPRilUU21NL32JXiIFEHHw2D0lvjtmOnKXD/1Q29YNUups5XRow8q2LKXGFEErpoeNUhQhEup9JiisklReyNpsFCeHMVNhTCjwxY6SocRGJ+OxxEOu+Bl0q7wbCihuI8b5t629EqN1mJH4t18wPxC/CD+i6/4a2/raP27RQnTaJrEIhLaS7qm7iWg2RWdOwqXVcgkSeZF8uSvB0AujUOlilKrlWmYG0IYLXMoUo3rvTqLNUaVPv+IwMTZAeTJHVVcqOj+UHbFyvU794haEHPW6ZKfLS9EGWY/He9aVLPH9lg43bJhi98yD7PnmSC43eeaKvf+Mau7/8O/zo+/8fvvGej/LKl/5oyzVwWjV+/mc+wdPf/b38lx/5BP/mx1exHv59rn31Bdalo0JhR4GZd91K7qGPcVaf5t2fOsk3f+M3bnhdC1MH+YfvPcDI8ks88vsv0tw0xKgC42/aiTNygBefXmZjoRfIsiMzHJ4sMJwxsBbmqG3KOBrJJ8jPjGGnB5ivXKdZsyJ/Pc1MkcqajOWTZHVwS0si0tsLQQjMjImaztN2feodEdHhuRIoNJWUpNMUV3oJRiCiYmYFiARmmpbTEu7qQRBVSoW0QdbU0H0bv1mPhAkAmqGhJxOoqQyWF9CwhcVPSMWpqhIBgeJYkZWUZ/toYUadqomNyYt5j8XvkON3t3KJasiQCZp61OgGop6lqYs+WNgT2twP0pOCrnYDpNFpSGHKKkhV0VUiCywvVsGpsioIdAPXFxS47Xp4fhCrCoShcFgBepsqwFClFjpKxN0D4iusKMJ479gL3PD7ul1BFEqsFU3rdRUgNiOksLWnRJfKI0Z/9t4sqFHlGHlXhuKL6EU0cdOgagTeVmWeEanziIC790MIKi+AqO8Zv1Zq2I8K+3+xWcSwl/RGWG+MT/EaVk/FcwM0UiGSVYZfviDoZnIomkbg+biWg11v4tXLZAyVgaxJImWgGqL/4to2VZng6SdzJIpZEWSnKNh+QKdm05LBa5P5JMW+FMnCUPQ57FaN6xttKh0PfWSa7FiuRyE323LYeOUqxtolbpsoMDg93HMenm1xbbbMuVKb9O33c+u+/i3nernp8PL/fJg9tTP85IePMHToxirE5z71Sd71Q5/ggU8u8j+nv5f1f/NbjH3pq4x96au0/uvv8RuHfoj7f3+Nt/7gz39LAAJ43/c8yHcfHmLuV3+Zz5zfag10z0CKkXvvZK6l8MT5Napzvf52xbERDo3mSDZXqFyYZzE2CJvXVYo7+0jO7GG97XJltUGr2ohUcYlcP5l8gtFcArWxRntxldZ6m4aspFKaiplPoxYGaDsBpYYIwfNdW/aEFHJJnaSmyp6OUMcJ1wINPZ1EzeTwFJ2WpONAbMa6qdGXNigkdVRbOG27lhA2KKoSUXlqRgBgy/Fodlw8149eI2VqEgA7BFazR9kXzvkEqobnE1UT4Yokw9s0usNqKFD1yKYnPCZOp2kKBI7d0w/SkyZaMgFmAscPJB0nQCQUNSTDgDrPFnScjEQJaS3FMKL+RidWCYWfIbyrV+TxgXSXiPoTqhYlIcffP1zxfhL+pkyfTWvbWZtt6LTtekshrvXa/mw9PnK3kIOqEejHqLhI3r3Jdy78Pcfl4d42vzMBgqD4vVVjfEC3xxMwPAdJISqxSqjbG9qsrPsWfnnfhvU3ohJ6NSu8V1EV8FFQCKJJ6ejyKt2eje8JOq1TaeCX18gZKkMywdNMF3CasRhpy8FP5tH7+qN5n6rnU6taNBfWCdbmGJrZyYHxHK/0j1E1k3i2hdOsUqq0mau0Odg3Sn56kEHzCrPSaudSw2b5+AozZ57j2F1/h0P7Bpmb2Edt4UJ0XsuXrvK1CzPcdf/d7H3/MTInVrZUHX9wfIWJ//pf+K5/999Z/uH7+Q//cYX60tYeDUC7tMhzn/okz33qL36t7/t7P8i/f2g/zh/+B774q89v+5yb3rUL/Y5389hsmbnz61F1CKAnMwxP93FsJIe69CwbF5ZYiIkaptMGAweGMHYeYqFmc3GpTrvcrRAThUFGhrNMF5LotavU51aobrRpS3FBMqWTHCig5Pqp2R5LlTZWy8a12xjJLEZCJ580RGJuq47TbOPZvvxsOkYmiZrJ05F0mi1nhDRNxUyIoMOsqaFYNbxGXTg9eIHwrssYmPk0fiInALApYiN8z0c3NExDxMUnNAXFEca4TlMIGzRTjZR1gW7SdgUVGL4/hFSeAp4jxgGcOBAId4qeQW26VFpaijGEuk30g1Q5WxSn4lxJp8V7CwlJ5RmqgtKxBI0o54xUqcpTzCToSWxnKwh13cgR1JItjw83VZl5EzpUON5WOk6JQKg7JLsZRML+8GtaNxhWjdsP9Y4Zde1+0I1IEbj5eFWRsvrY5w5/V6qpR5UQmo5nd0FEU9VuNHzM+zJKhQ7HD0L6M6xcYyDWpfLE9RYx4t25IuiKGsINUkjgX+O1ex3WG7YSCr9Hyjb/Fi5V2fqjRT+KzBYS/xt9SeQvwHc8XMulXarhlpZQmyVGswn6C0nMdBpVNwl8D6fjUrVcOhioub6eSqjs+NSu13AXrzKU1tg3kiPfn8LMiYrFtds0ax0W6hZeYYz8zjHGsmb0+X3g8myV8ssnGVUavO3AMEN7DvacY/nKCR47ucTxlTbD7/0A7zk0uO31+pPfOUH1t/4z/+jOCX7wH3xgS4rp67Xe9LG/w//+rpsoPPnbPPGvPsfp2lZZ9juHM+z84H0sGCN8/uVFVs+/3PN4Yfogd+4eYDJvYF86ycbFco8oYWc+Qf+BHXh9U1wsNamWWljVNUCIIbKDY+wdzTKU1nGuX6K+sMG67dH2fExVIVVMkh7tx8sMsNqwWat1otRbVRcpqbmERsaQibmyp6OoSgRCSjoXVTKWpNp0U4gSBrImKV1FcdrY9Ra+00vl6fkCfiIj+0EOTseVPSVRBWVNoeoLWg0cGRnfrcQMKQ5ISmWdiy2pvK4PGj0S6y13x3LOZzsgMlQ12tC6dJwagUigmWJGSAJAuBmHakJTUyI6Li5qCKm8QDOiSirsKYXvnQgrKccmcOzIrSGcTwrv6i1POHbHrYIiF21fuJuHvajITkv2ZoJN1jfhsZsZtejcY/NFm8ErvN7b7ctxu6BwxijswYUVVAi6UeUaP17K4YUaUd8y6Nq1LgJ8t1diHTs+ULWYY3b8+K5zhCL7fz1uDTHg/es273nDgtBrXUrsJwIkVekZfEMRIXSh5b7TdLDKFtbKegRCk/2i36CnMgC4tk+padN0fLTiMIm+DClNgNCG7VG7XqN17Rp6bYndxTR9QxlSxVFU3cDrtGlVO1xabbBhK6RndlHcVSAZI6gvNGyWnr2IOn+Su6YKTO8dxIyFv/muw7XT1/jcK8u4h97G4b99FwdzXSAL1+Wmw6P/4StYv/vv+Jdv283f+0ffRf+eW1+362tmi7zrR/8+v/Z3b2PixKd56qd+nc9fq255XkZTOPZdRzHv/TBfv1Lm/OkVWmu9VkxDMzt4044i2cYi5dMXWFxuRn8IeV2lf0+RzJ49NMw+Lq41qW+0o36Qmesn159i30iOPtXGuX6Z2vVaJO/O6iqpgRSJkTH87BCrTZtKzcKxOmIgVVfJpgyKSQPDE3lFTr0VOZVrpoaZy6Ck81iuqIR8t0tbGQk9CjpUrIYEMB9VkwCWS6Pm+gjMDFXLpdrqyrs1TQgisqZGUlPw62XselOoLL0gGjhVkhlsH+qyn+TaXuQNFvUYPCkOiPdlQmGC3JicmLuDqauYUT9IetvJJVy8DbGpSRCJ9ye29JM8Oxrwhe6dvZJIERgxl4ltRA1a4EoKc3PCsUGgmQLAPH8LDRluyOFn3+ydJi+AECXdYC4p7r+2+bjNlVA81TWk9UMg6frWba+sC4/XwmpEpUsjEqcCZeLpNpWrADEVFfG+cRpNXG8RKhj2/8KwwvB4VemKIkJ5dw9tGTo9SCHI60nGveZC9HV877/SdaMTC4EnsqaQjtlhNRR35glk+Rs2M522KxrayyWCjUX6Uxo7BjNk8gmMZBYAu+Oy9v/n7r+DJcvT8zzwyePypLf35vV1b5lbtst0V3dXm+npmWmMHxAAAZCEREoiueJKYoiUxNjQ7ioYjJUitIpdidIqdkPUKiiSkkgIJLEYYDAY3z1tq315f73Nm96ezONy//idczKzqnowA4yIHv0iKrq6bp1KU3XPl9/3ve/zNnu0TBcpM0l0Mk3MSxBt2y61UpfavS1CB2scSusszyZJTM6iRlO4tkm30eDObovtlol27Bz5UwWWRjw/Tdtl+/09Wpdf5XAcvnp+mokT4ymmxRtv8N23N/jOSp38X/zrfOk3To0VMv/8sNTlD//j38X8H/4T/vOXZ/gv/y+/wtlv/IU/6VsenMUXf5n/+3/xN/ntv3yeuTf+e3701/9r/vn10mN/759/YY5D/8Zf5u5ggn/yxhrbH/xw7OvJ2WWOLee5MB3Hvfc++x+sstIZLkyXYioTT0wTPn6BnZbFtc06neoBdk9ETMQm5pmYSnAiH0OubtJY2aG53aJtC9NwRpVJzSdRZpao9hzWa13avsfIcVBUiYlkmHxUI2Q0sKtleo2+V0gk1JiKmoziajEM26U+UkQUTSYZUclEVIEa6jYDj1DI8xeF03GkZA5bi9Po27R6Nq7tiRo0IeXPRlSkfhu3XfeMrr46L+R1YXEM26XtXe948m5/r6JIQtTgmj0c0wq8Ov6ewTdOOu4wbNH3F8kSY54TUYAUZF0TRUTxjaqDsS4mognChN8J+V2YgK8qohPSozhIwQhzVN4t9kkIZZ2XbjwY6aR8k6ztEijz/E5KkfyxVkg890DWPhzJBX4brwMUJtkRNRrezfzhm/HI+aRuxB/rA+MFzOfGeR4jd6QIBNdKjCGW/L8nyfOSDQkv46ZgzQfsSuI1j4sKhibZgadGfPh5qyPycl8IElwvDaGr/1uIE37Wid4vTBF6+ATFB4YLw9FCxLgiZuB5hXx0D4BjOhi1Ht29Ks7+JumwzHwqQswbyQHYlsNBU5hOnfgE0akckYxORJYwHJfdnk3tQQlz9QYzcYXzCxlSuShhbyRn1IoUiy1uHbSx8keYOH+M5YeMo1cbfXbfuo6y9gGfX8px6OQk4eT42G3l7df5f7+2wr3wIkf+5t/gX/vS4ykJb1QMfvvvfovd/9vf4i9GN/jn//7z/If/2d9h+Qu/iqLHfur3V1JUjn7uV/ibf+8/4Pf+r5/j35kqU/5P/x3+1//D//DYDgjgK4UY5//2r1E9+jL/8L1N7rxzPSge/pk6cZqvnZ1mZtCg/t5l9q8cUOx7s25gMRshf/YIVv4It0ttisVWQFpQo0mSE1OcXUhxKKXjbt2lvrJLuWViOC4ROUQ+oZFcnCI0uUjZcFg9aGO0hO8rJMuEIyqTSZ1MREHuVOge1OnVhM8nJIdQPVTQIByn3XdodMVOJySJOIVUVCUVVgiHnGCUN3BFAdPiKno6gZzK0bVdGj2LtldEQlIINayQjYdJ6ypSv4XbqmO2ujiWKGK+qGGgeUXIFPJuxyN3+yOtoahBiCrckbFaSBX7JMtxH/GdjN2ULHOsCPjeJmQN2xHdiH/d6D5JlUK4fQPXtILHlCNC1BDSo0KwY7t0fbWhpwYMe7irkN1n0O/hGCPCCM1TmSkqpiPGcYbpPCRqCA2Veb48fFRZNyJ19j1O/khOCnkSaz/S2ivAYyO5kISLj915zD/uUf4aBKKG0AiBe/T4nYzqGV4fRv5IqhJ4jIS3cXjdKKkhULeNyKsDUcPITmh0HBeMA70PLI8o87ziOfCe95+lKAE+5cKE4NPHJ/y6+KL76H8fU92dgaAmhPQoSkxH0RUGrhjJdSsdrINdwkaNqUSY2UyE/YhCvy1j9R1KjR577T5uYQJ9Zpb4dJz4ap39njCdNrebdFbWSTd2OJZLkp6MEckUMGr79FtV6qUuH2/V+fxSlqlzzzDz1Mfkd1pB1s9uz2b7nV3mP3iNY3/hEl++MMP2/UtsXv5W8Px79SK33rrJP5hN8n96+TM88R/u8xf2/jv+1yvFR17rjWafnf/2bX75oy2e+Guf5z/9pb/MX336s/xg5Qm++dEOWysVajvbdA62sDyemxpNEZucJzc/z+xSlm9cmOGLR3MsDcqYr/1/eOe//UP+xTs7nxgVfjGtc+nvvIL0S3+Vf3m9xHd+vEb1wUdjvyc1f5JTpwu8eCgN977H/rt3uVsfQk8XoiqTp/NET12gNIhwdbdMvdQN/EGRzBSZQozT00kmIyGsrXs0NhoB7ielyiTnEqSOzOKkZ1jb7LJa6mC02ri2iRKJocdU5jIRUmEZd/cA46BGv9nHthzCsoaWjCDH07h6gkalR71rBfRvRZWGyrh+B7fTHBpdVQk1phHOxBlEUxiWkGd3+nYgaghHVHJxjagqEeq2sJsNUcScAbLmKdTiCdxwDMMa0DJt2j17KGpQJKKqjK4IabnT7WL3zCGA1N/rSAo928TwRA0weiMfqtvGdkKaMhzl2UPjY9AJeaw9JYTognyJtF/A9BjIWlBEnJFOSuCVZDRZ0C1cT97tF5FRc68PTfWVcZoijdzQh8o6EUg5LCIDL3ZjOJp6DKnB99o8zG8Tf4hQQXs3dL+DFDEOP+GzvXczd0e6qFFTsb8SCA1EDEkQ0+GN8nzOJQx3Ur6II+hcH/L3BHEfgYpyPIZktADJ/hjxYcjs4/xNPydRws9a0j7VReiPPY9jb31CAXIdsBUFRY2iJuJocZWQFKIXjOSqRNolCrEl5rJRbkY1WpKMbdoY7T6bdYNqP8nkwjKpQxny7++xI4do2y7V/Q71lR0yxVWWpi9xejbJdiZLQ4tg99o097f5eCXNjZMFpo48xcxzJ3ny9S2+dzDsEm7ut5l79WOOX7zMl449xatnClTXFmkX14PfU77zLn/4vQlSUY1//7nf5Nm/Wyf0n/2v/PZHj2Y11SyXf/zaBic//F948bNvsPTVp/i3n/8Cf+1fu0B5EOGgY7PX7tPui1FOPKwwHQ9TiCnk6CCtf0T9f/4eH377Y964vMPKY2IW/PNsRudL/+HnyPyV/4DffdDmH/7RXVZ+/PuP/L5D58/y60/Osii3qb7xYzbf2h7zPS3HNaYuHia0eJbVWo+P12u0y0Uc00DRY8Qm5lmcS/FEIYFSWad0e53GVouGJQQJhbBM+lAKbfEkVUdjpVqlUe7Sb9cYuA6qHiea1JlN6qQ1cPY36ZZE9LozEMo4LSGk3R1UakY72OmEQkKeHSjjzDZut+V1IgPUiIIWE6KEgZ6gY7k0DCvYJymqTCoiRnExVSLUbWA2u9iGuBmrqioe29sndVvCo9YfETVENdkjNUgMDG8f5Xmc/LFaSNOxXOhaziNmUwFAhZBtP1qERmgJTn98nxQo42SvgI2KEmRJdEHaEHPUtx8lLURUr4Mz+rhGJxgh+rggKRLDVcKY/UeVdZoijeyjPFGEOeIx8joCoepzPKPssBPzqQW+mGN0lDjsCoahdA+jcwJ59sPeLF/U4O1VRk9AWccbNz3SRclD2sJg8AhtYaisCwWIJfFQ0kgn5F3vDJ+330kpsh9rzhCeit8te9d6ndBPKho/a136k/RUv3BF6Kd6U3zVx8AHKYKLWJZqegI5M0E4LQpRu23Sb/bp7lcYlLfJHj3KQjZCJCHoB45p0K7r3NltsreYZaJwmMyxeSamN0h1LUp9m7LpUHtQZvbBNaaPfYZzc2nenYxSjqXoN0t0DjbZ35jj9ZUKpybmmf3sKxx55zZH/mgluLnfa5uceH2LwlPf5tS/eZ5//bkFDnaf5ua318de2ublb/FPvZ//7Vf+BpcSaRL/zf/CP/2jlUek2wC3Wya3v/UA/dsrXMr+AYfOTDDxxDQzCwWOTWWRPAGG027R2a/SWNlh9dYB92+Vefcx0QwPny9Oxnj5732d+G/+Lf5oP8R/+XvXufndbz6yNCnLVDYAAQAASURBVJ558ot84zOLfH4pjXv5n7H2nWt8UDWCr89HFObOF8g98xSN+Czvr+yzv9ukVysycB3RBU1lePpwloWUhnvtJrV7u5QafUx3QFyRmMhHyZ5cQJo/zl7b4sZ2Q4gajDaSohGOx1iciLGYjiA39+jsbNLabdPzwKtaXCUymUHOTdPquxQ7fWqexBoIlHFRVUJq+Z2MuFZSZbEPSuVwwwlaTZt618S2PNWdJnxouahGXJNwGhX69VYgiFAjivA2JXNYWpyq0aLa7nukBzFOiusqqbCKhi1GeU3RCfmx4LIehnCEvuMGyjxzRKGmej/wiAd+NxHsKLxuxHbtsZGU7xFSpRAhywjUaUCwD5IiMQaqAL4K46QbXBvRlOE+yRYGXX+fI+naUFmn6ljGUBbvuAPC3mOHFQl5YOManUDeDf5oShvrovwxpF/EVO+GjO0p60zRScn+7U+SRkZ5n6Cs84uQ8xC/bUSY8DBiyefGjaFzwAOXjiB7YOzDAhD8XQ1l6V5Glf93paigKAxkBac/XjiDfZJXwEI+sge/A/PAp5LyJ5O0/5zPp7YIPW4U9xML0GgH5Ec5eOgey/uUYIQGJCIp5MwkkVwSLaYhh7rYhoNRaeJU9kidkpiKh0nEwyiagtk16bZMHhTb3K90ObE8S/z4Mtmjtyh4C/G2LUZyzQcb5OpbHM/nmJ1OspMp0C6u0W+WqW+t8vbtNBcX0kwfeYaFVy5w7nqJnfvVYMR1rdRl6tVrnHn6VT5/8stcuzRPefMzFG+8MfZSNy9/i9/25vT/5sXf5OzfzaFn/nu++/+79whRwT89d8Br5S68tgGvbSABWU0OYKyG41KzHtNZ/oTzG09M8Mx/9FW0X/vb/P66wX/1rVvc+v63cczx4pWYPsITzxziz5+ZIlO6weZ3X+PmlWKwCwLBqpt6ehHl1CVW630uP6hQ229hdhqCkJCbIT+b5IlCgpTVoL9yc2wUNxFWyBxOkzq+iJ1b5O6DNmvFdjCK0xJZ4mmd5akE+aiCVNyltVnEqAh/UUQOEU6GiU6kceM5z1/UwzSEEksNKwLXE1aIqxKDjigCPmnBLyJyKocdjtPotcQozeti/H1QVldRrS5uszKirPNGed4+qWa51AzLGwX68nBhko2HZTEKbNexuga2MSwGfjfSswcB88603eDTsS+RDtn9gP0mvl2GO4pBSBrbJwXy6lHSwkgnIYqfFjy25Qzoe+o2/9qEPixCeMo6x7KDMaDYJ8UEa880MJ0RabY3WgorQ8KE0+sHtAVJ8mGxgtTQsx993aMmWXeU9KAi9jqKJm7m7qMkainkiRocWxSxsQI0HuPg33P840dABJ3UyAn5HZgkD1NsH2N2HY7THhrHeUUEScHFGRvlySP+pNAInmn0sQehkCct//lVoMfZan6a8wsrTACG6o6H84TwyNqDYb5G3x7QtVz6ko6ULRCdyhHNRwhrMo7liOX0wQ5Su8R0IsxUWkcNywxch367RrPc5VaxxU7bInz8ArlTs8zkoqRUCdMd0CwbNFZ2YO8+i+kwZxfSJCZyKJ7KrrX3gN2VKj+8c8BqL0zixS+y+LklnkzrwctZ71qsvL1D8TvfodBc4bcuzHHq0jKJ6SOPvPT1N3+ff/i7N/mv39pg49DLnPy7/wm//rde5BtzyZ/qrXOBsumw27OFuOJnKEAnExp/87dO88J/9e8y+PX/mH90q8F/8S9vcPVbfzBmSgUh7T72/DP81RcWWVYa1P/oX3D/D2/z0cguaD6iMPPkFBPPPU03v8x72w3WNuq0i+s4poEaS5GcmODCoTRHsxHkgwdU72zQ3G4FBWQ2rpE7XkA7epaSKXO31KZREaO4kCQTjmdIZiIczkaZ0MU+qb0lSAumOxBQ03wUJT+F6/mL9uqGyDCyXWRZIhvXyHjjNLdRwfSk3b48W0vEkJI5MYrzlG2j+6DJZJikLhPyRAlWR4y1ZE0KlHWDWIaud/2wiIGuyiR1b5TXawadkI8LkjTFQw1F6NsuLdMWRlfH70gEsFWo20zcXkco6/yxmqqJGHbvRj4ur5aDncww+mJkHKcphCIxrxB4kesMR3nBPgmXQa/LoC/+7iV5ZJ+k6fQeEiWM+osCUYPRwfFGcYE03DP3ms7gscw7EV8BIdt6BBgbGukKnMEA26OHj56xTsYdz4wKUlUH49id4FrG9zKj1/l7oVHOn/+cpdBwL4Rjj1wm5Nm+v8iHl44WMF+ePaqsC4qnp+bDu9blJ8NLf9oz+ISf/zTnF6YI/aTqOhj54S8nfdmib7wzbIe26dDoO7hxX2CQRI2pDJwB/Wafzn4VuVVkIqpyKB9Dj2mEJBmr06RR6fLxeo3bpQ7WxDFy544zcTpHIawgh0JUTYfq/Qrmg2vk6fD0fJrJuRTR3CwgEDzllau8f73ID1cr9JcuMf/Vlzn57AyL0aFk+3LV4N7vXaX57X/KGbXK3/rCUU5//gXihcVHXvf6m7/PP/2dD/g737zF66GjFP6j/5zP/3f/Dn/zt05zcaS4/bzOYlTlr7w0z7/13/wFjv8//j6rZ36Nv/eDB/w//8nHXP3mbz9SgGRN5+QXvsT/8cvH+crhJNYP/gm3f/sdXl+rjxnkLkzGWHzlLMr5z3GrZPDd6/uUtqr0GiUkRROy7LkUzy5mmQnb9O98SOX2DgcdE2cwIKvJZA6nyJ89wmD2JOv1Htc268EoTtYixDIJDk8nODERR6luYqyt0Nhq0vLGYeGkRnQqizKzSEeOsdkw2K/36HVFZ+mP0wqxMLLRwKmV6NcELSEkCZOqnksyiCTpWgOaPVFEBoMBshIK9kEJTUYyGtjNBnZXiBIUXSWcjqNkJ3AjKdqeN63dtxm4BKq8bEQlrklIvQZ2vYo94lFSYxGkRFqQGuwBLa+IOSMdSVQV/qSB0faIB8O9jD+KMx032Mn43cjQaMpYGB6IDizYCam6x41zx0QJYqc07GRGoaeyHkbSowzUaAB8HTW5Dkd5nqih1xGYJd8bpSqE9KggNXhjSMN0hs9dHpIehLeqF4BTvRcvlvtInr/JCTKQxvZofgc4UoCDRFWvmxlNRh3tggILCYDr4Eeojxcw73tmZBwnjdC7x0UF8hgtYXSj5Bddf5/0sLLO7/wISSAPaet/lgK5T+047qc5o++b/yFk4P3chUCx4g6gawmZa0SVmEhMoEwtEJ3KEskURQ5N26K7V8HZ3yBXOMPhXJR4Sqeqx+k3ynSqB+zvxbix3+LJ6RmmT1wkf+YuU3eq1HZb9NwBze0Wlev3mT17l1OTF3jySJbdtcN0SptY3Sbd0hZ7K1v8wcdxLkwneebpL3N4Y4Paap3SgyodZ0DHGfD+Sp3Ib7/NuXSCL3z936P7pWX+X8C17zmPGD/3r73Gm5VdytUuf/nlw3zl0l/mxJnnWXjlX/D0t9/n3o83ebXU/VO5oi+mdc49N8vhrz5J+pd+hfLUeb65UuV/fPMat9+6TuXeB49cE5IkTrzyDf76V5b51RN5ePOfcut/epV3rhQDVSDAuVSYpc8dIv3ZVyhF53jtyh4bq1XaxXXsXptwaoJUYZILR7KcLcRRi7eo3LxHbbVO0xaChBldIX+qgH78HJ3oJHfWS+wdtOk16wCEE0I2f24hTSGmMLh3n8bKDu29tiftlojmIyQWCoRyc5QNm42aQavZC/ZBmj6UdkudPczagUA+WQ6SKqMmosjJtCgiliNyqLxrfehp5iFRQjDKi6mEMwnkzCRuJEWlaVFp9zG9AqloMrm4RiaiEFUkBq0a/Vob24tLlzUZNSpQQ044Tr1mUO9aQQSFLIWCkZhk94L4CTfoKOQxn07PERJr/0Yc9oQBqk9LsCxBcpYlJFUlpOliJyQp9GxjzDQZFJFRefYIc07RNdFFefukUVGCPCLG0OQQoa53vT+K00SSbCgcwVXDmKY/CnRGikjIU+YN91GO5zEa5j5pgaBCgFeH3y2+39AXZIx1FQzl3cN9Ep+4T3qcSXYwImoYK2CekjHk5RiNChN8X5S/dhjtwoZBej5t4TFiCp8vGJK8tNvBIxlVP8v509avT3UR+kkvzv/aaPH5pOO4A/qeaiZsSLSjOpn8LPHZCfTMGt2ygd2z6Zbq2MUt9F6NxXSEqVyUg1iEjiRjtmo0KgU+Wq/xwmKWwvRxck8cI/PRBplSl5rlUK4ZVG7tkL/zIdMzp3n+cI73F8o0dpaorV0FoLF5m82JCb57r8T8xTlmPvtllm5vcK7U5W1vUb/etYh8XET9n17lTDzN17/wbyF/+Th/H7j5o7ce4cI1d+5x5VslqsXP8vZTs/zGhVle+I3/M2c+d5djH/6QCz/+gL33t9i8X+Ve2xzbxTzuFMIyy3GNhWNZpp+eZ/qFc+jPfplm/jg/2m3zz759l3fe3WLrw9cx27VHrpc1nWMvf41/86vH+Y1Tk0SufZv7//Pv8cHb22Mqu7wmc+ZknoUvP4e7/Dzvb7b43vV9Ktt7GLV9QpJMbGKeybkUzyxmWUio9N/9gOrtTar7HUx3QEqVSS8kyZ44hDR/UggSdho0K12sXoeQJBNJZ5iZSnAsFyPttrE279FYO6BTMXAGEFMl4tMJInPzOKkZdssmG2URxWFbLuGIQjymMZUIkwrLhKoVepUm/WZPKONiMmpMR07lGOgJmhWHetfCtIZFKBfXyEc1ovIAt+35g3yTa1wNRA0GKjWjS6M7HJX5+6R8VEMx2zi1A8xWB8sYUh5Ubx/VdkMeqcHE8B7fpxVEVImQ2cE1Ol4IoC8v95RxjykEYU8iHYzE/Jux34loygiuh0AYAIyP02RpeCMf8QfJukcs9zohX57tP2/fJBtWhkXEJy0EXZge9TBH/SBCwn/8IfnbFKPAkesBjzouRA09xx2Rd7sBgDTYrVjmkN7tFYKQqgXiAP+G7h+fYo1rjzHvwBsDeiM196FxnOSr+TwE2SPg1VH6trf3BlG8HAZje7BheKEzFCV4fMFPC0X7U12E/PNwjf5JBedxSg93IObUhr/w7akkEwUxkivEaG43MdsWnWKXztom2bNbzKdPcXouxdpGnUYxRr9Rpl0usrUT5ep+k5P5ArkTTzFx5jbV+zWaBx1qlkvlboXyh9eZOXqFZ2ae5aUzU9RLHbqVHfrNMma7RunBbX7wUZxjEzF+7cTzzH31HifXKtTe3OJ2S9wYbrdMnDe2kOTf46Rt8dWXf4v4L5/i78c0blyeZ//aa2Ov0WzXePDq73Fwb5mrN87y5NkpvniywJOf+bc59MW/xlLpAc+s38ZYvUtzfQ/joE6/2cPuWZ68VyaSixOdTJNYKBBeOo689AT2xFE2Wg7vbNX59qs3uHWzyNaVdz8xYyg6Mc+Jl17k3/qlY/zF05PoH/wuK//4d3jnDx5wtTHkzKkheGE2wdFvnCf8wq9wtQ7fvLbH9v0Krd0VHNNAz0yRnZ3i0vEJLs4kUfduULx6k/KdCjVL3CSmIwr5EzkST5yjnzvMjftVrm816DR6uJaJGkuSykU5u5BmORtBqd6meneN5raQdsshiOYjJBfyqIsnqaCzXquwXurQ65gMvH3RVFpnOhEmHZawi5t09iv0m6Y3TlMIpxNImQm6oTDlbjNQtoVCIcJhhVw8LPxFRgOnUcHqGEPoaSKKPpGFZJ6mKf6Ntrx9kKyESEZUJhNhEmEZqVvCalQwm0NmnRLVUVNJ3HCCtulS63miBq/TimiClRdRJEL9Nk6rjtUVYzFJVYaiBjVKz/ZHWnbwiT6iyg8RtEfGYZIkCpg3yhv16IQ98UxUlUUh6PXGRA2jyjrH62R69kMdmCJYe7ocgt64Mk5SVUJ6jJAeDWCzXWvc5BoUT8sQ1/ZGiqDqeaO8+AnxQdXBtJ1gt6L70nSf9NDrjYgaxIJfjMUc0UU5o+DXEdyPbTOwRmwO/m4m6GYe9TWNiRo+cZ80nP74r1mVpKEi8JFrpWAE+TiT7Z/F+YUoQqPncSO40SOFvAwh7+f+pxmAnu1guS6NvoOTz6HMLBGdyqLFxA2lW+7SWN8jsXaLqefPcHoqwbuFOLXiFGarhtVpUi91eX+1yrOzaTKzp5i4sMzB1W0yNYNi32F3v0Py/XWSiz9i6peP8OXjE9zfb9GqPMn+tVdxbYt2cY2de/P83mSc2YTOi898jWN72/RqPaof7wedyr22ifmjDcz273GyUublr/4bFP7caf7RTILvF7KsvfPqI51Ic+cet3busXX1CG8eOc3UoTQXj+U4O1vg2NJhZs7+KqmwzKQ8IGR2BYIFGMgqbjhO23LZ7zlsN/rc2e3wwdt3ub1aZfdBkfK99x/Z+4ye/IlnOf/SE/y7nz3MK4sJBq/+Y+78o2/y7g/Wx4QIAJ+biHHy188y8ed+nS19jt99f5uPru1TWblJv1lC0eMkp48wv5TlpSM5FqMO/bffpPjRKlVPlZhRJTKH0+TPHkE+eoHVpsXV3Sb1Ugez20BSNWLZSaamE5yfSTKXULE+vEL9/hatvTamK/ZJybkk6eV5BpNLFDs2d4ptWlUDy/t70GMqc9kos0kdqVXEKm5hHNQxPdyQFlfRc0mk9KQoIl4RcGxBSojrCrmYRtLfBzUqAWlB0T1VXTIb7IPqHmnBL4CpqEo+6l3fbuDUqwKc6plcfVWef33VsAJ/k58im/R4d1Kr5eGCBHdO1jXkiCZGeVqEfm9cIu2PtHyJtC8s8JE/Q2FAOBjljXYiD+N+Bn1jZJ+jIum66IQUHcs16Tvjqryo6u2TPDGF2+t50FPPX+Ttk3peETJMsVMCIcYY7pOEqEFkN1lCFKENFYViHzUuipAlhpgkD1XkPIQbQlLEPsm1xzJ9pKCLGsHuPGSS9U22A1cYbIeFxEeOeeDTh0d5ASNQeaR4+buo4U7IZpSUEFI0wenzcEHu47yW/vP7xK8Mz8+jiH1qi9DP+uJG3zApJOIcxFx0EMAILVfMjIsdk+m4SiE3Q2wqh57Zol3sYNR6NDcrGCv3SBxf59TEHBcWM+zvNmmXU9hGm16zyfpuk+sHLY5k86SXL5A9foPs/Srlcpey6VC6VSb5zk2Wjr7J2Yu/xjfOTbNX7mDUTlFbu4prW9S3bnPvbopv5aPMPXeII5//FY7sV2kXO3x7vY7lvQHrXQvz8g795g853exy+tf+Cn/7xWMcnUzwT3NRVq/cp3zn3Ufej9beCq29FTYvq9yZPU5yepFkPkoqF2UqEyEX14jrahBpbpg2je42e/UetbpBo9KlUazS2Ln3iV2Pf7R4hvmnXuIzzy3wN55f5IlIB/u7/z23/+Ef8uaPN4Puzj8X0zqnvn6MmV/+Op1Dz/KDWyV+9NEOxdV1OqVNAKK5WfILk7xypsC5Qgxl+yMOPr4pOk3TQQ7BZEwjfzxP6vQp7Imj3Fmpc3O7Qbvew7VNVD1GIhsRXVAuhlJZp7HygPp6g07XQg5BPKOTOpQhcvg4ZmKaldU69/dbGO0+tmmixyJE4mEWs1GyuoxS2aexc0C30sE27AC1o+XyuNEMLdOh1DFpdC1RRLThPiiqhgjVRfyD443C1IjfRU0yiKRo1Wyxz7GG3qTJZJhMRBEpso0y/Xo7GKUpuoqWiCFnJnEiKVoVi0rbDPZBIUmENaZ0lagqMeg2sVrtQJnnZwmF9BiOpNExDVp9exy749MKrB6DXjfgtsEIpWFEnTZqMlUlsU/yhQVBJ+QXMD0Kmo7peh8SR5R1/j4pLEtIZifYB8HIPikcYaBFxkQN/vXRUVFEu4vrPffgPqEKk6yjhDHNcV6dLEmeNNx77XYvAMb6+zBkWVDHvb1Mf6QAg09MYEg8H+H1hUaECb46biyKYcQjFBQS19vf+dJwL9BudJwnefukEIjrHyIlBI/rgU/h5wsv/ZOcT20R8s9ocfnj3ixp5DeHvF9QvB+qx6TomA41w6LRd8nHJ4jOTRPN30XWZIx6j+ZWi9qdDaInr7Fw8TAX5lJ8PJOkfjBNu7iB2RVKuY82apybSnBh7iT5s0co39onWe+xZdisNfvo7++QXHqLwvwxPnPoFJtPztKqGjimQXPnHv1GiYMHK7wZ1zg8Eec3Tp9i8hu/yslmh/Y/+oAflrrBa9nt2fzB1SLdyo84Xaox/Y2v81cvfI0j2Qj/cjHD5Y/m2Ll+5bEZQq5tUd+4QX3jRvBrih5DjaWQFS2IrHBsE9toY3Ubj9KJf8IpnPkMR586wm89f4gvHckx27hN7Xd/mzv//F1+/NE+WyM5QSCECE+/ssjiX/pzOE99gx+t1PlnlzfZvrNFY/M2rm2hpwtkDh3jiRMTfHYxy6R5QO/K6+x/sEax2BnpgoQiTj1xkZWWxbW9JvvFFv32cBeULcQ5N5NkPqniXrlJ7Z7ogoS0WyIxHSdzbB5l8SRbbYu7pTbFcoeet7vSIgqzuSiL6QhZbYC1u0Z7p0Sv1sOxHPSMjp5LIuemRHRE0WKvbtA2LAaDwdg+KK6A26wGRUREIIh9kJyZpCPp1Iwmja4pVG2KRMQb5U3GwihmeygN995XLSZUeXJmkpYrU+52aXQFaQGEtNuHpobdHm6jQr/eDoqgpCrI0SghL4Sv0RejQL8T8vdJQt1mDLsJyx5SGsJDj5DlqetgCC4VIzFEhIMtRA1+8ZOCTsRT5TlDaOloF4U9oqxzXfG8dY1QNBHEXozusqKaPN6F2YLUYPsBhpoqiPqeqs/sud4oblhEhcoshIILlvAYjZIafGKB6bhBAR36m0aI57Z43Xj0b9n3+ShKkCVkjeyT/D1U0Mk8Zhw3jL4gKNzB40qhoJsKjVLDA3+RFHDjHlbFST9N+/NzPp/6IvSTzsNv2CjQVEbMq20phCaHiKoyqhTCtMXMvdgxmZ/Ooc0eIT57g3CyQqNq0DnoUr61T3r5Csmls5wvzPPCcp5SsY3dy9Nv1WjXDG5vNbh6qMXSiQLpc89SuC1UbsV+h/2ejbzZJPL9G0Snfp/Zr6T4c6em2asbvGaJfxSd0qYYy92N8TseCubryy8w+5cc7J6J9jvX+W5xGHHQcQb8/kaD4j+4zLnbOxz71et84fO/yZkvHuON45P88+U8t28+wcG9W2OheI87dq/zCFj0ZzmypjN56gXmT0zz9Wfm+eWTkxzVDNyP/jkPfucPuPete7x20HmE4PBsRufprxzh6L/+ywxe+It8Z6XO//eNNVY+3qTy4CPsXgdZ08ksnmHheJ5vnJ3mdE7DefvH7Lx+hYPrJcqmIxA9yTCT52ZJXLiIOXWKaw9qfLAqMD1+eF0qF+XiUpYnCgn06jrG/evUHpQwvNFgKqGRPZYjcfIEdu4wK/sGN7xOyjZNFE0jntY5OZNkIRVGqW3T27xHa6dKvzkcxUUnMyiFBaquwn6rzUGzT98QRSwSVphM6uSjKlK3hlsr0a+3Amm1loyiZdMMomlapkPNEJ3QwB0ged6kyXiYZFhG6h5g1UqYzQ5usIuKE87ncCJpmqZDpWtSaZsBNDWuK+SimlDlGTUc73q/k5J1DSmaYKDF6VqDoajBdAKPUEQV3Uyo18XpdQR81HGRVSWInvDVaf4oD8Q4zO9ExtRlniJPUpUxZZy/z/HNmlFNJh5WBCvPEPLsQJSgqUKWHonhqBHMgLQwLsZIeLEZkr8T8q4PpN16DDukYFg9uta4KCIse6o8q8fA20eNStNFARNjyK7lBqKIoVdnRBTRN4bybm+fREgKkmjFKG/4vRKkubrueCFhSB33IztGpeEwHOXJo/ukEUm6L9F2B4+Hl/6rLkS/MEXok7qgR2CmIyDTkKSgef+QBPtKhGY1DIuDdp+yEWa+sEBioUA0v4W22aRuWKgbDcrXVoid/Ji5pxe4OJfio/kUnWZPdAy9No1KnI82ajwxmeDJQ2eZvHiN6r198rUeDcthx7BJ3iwT/8HHHM3lOfa5f51vnJnioNnH7J/GNg3MVpXW7gpb0RT/LKKiKzJfOvZZFv5iR3xS/Bc3+M5OMxjNAbxb61H8/jqNjSZHV3YofPGL/Nqplzg3dZLXzxT43o0C9+89QfH+Axpbt4JI7J/HiRcWyS6dYf54ni+dm+blpRznChHUe29Qf+27PPiDD/n4g70xAYJ/ns9GeOZXjrP4F74Oz/8GP1xr8I/f2eDOlb2gAAEkZ48zc7TArzw5y3NzSZS19yi+9Q67722z0xaMt7wmkT+eo/DUcaQjF1htWHy83aBYbGG0hMIwmoozUYhzfjYluqBrd6je2fBk2QLzk5pPkD1xCO3YOfbcMHfKDTaLbbptAbnUYyq5bJQjuRiTMZXBzjrN9X26ZRFEp8VUorkYkekCbqpAreew2+pR8oCofn6Qj+qRug3M2gFmsytu4pon7fak2f4+xzAdT5Tgo348f1CrgdMckru1mBbEmA8iadp9cf3oPintjQLjmoRUb2A1K4G/SI0oQ3+Rz7vz/EWm7RLXlTF1mmQZWB60NegGwkKebY/tdMa5c6PCALx/j2NBeIqO6ZlchwVMIqYpQp7ty7utkVGeV/ykWBJbi9Jv9R+7T4qoEpLdC3A/fpcvq8pIFyYKmN8JAQEvb7SLengciJeBJMaQzpg/KqBgSyFCtoVrW2OR6n74oChCZtAJOe5gpIiEghC/MQr2SAig646LGoJxnC9qGOPOyWPm3IdpCT+rSvunUS//NOdTXYT+uPfkk6IcghRDx0RRdDQ5REQRnRBAvWty0FGpdG1mUrNEFhZJzt2nfKeCWe/RqBpU7pTI3bhKeuE4J/MnuXQ0R7HcwTRsjGaVdr0nuqGFJksnJsidfYHJ2+vM3xEpn/s9m5WORebyDpHcOxyamOXS+a9TuzBLo2thds9QXb2K1W1Q27jBqqbwT7zn99VzX2M+EkNN/EuUf/YRb2w2xrw1612L0vUDXth9h6UbWxz6pQ859uIXWTp9kZcXs7y30+CN+zPcWD1DebdFfWs18Cr9LEfWdGITCyRnjzE5n+TooQyfWc7z/HyGYxkNbecqnd/5I1a+9wFrr27wdrn7CHlBDQkRwplfO8mhv/TnGTz9K/x4s8n/8NY6Nz7apXTn3UBcES8sUjh2lM8/OcvnD2eZ7G7TevN77Lz9gJ2NBg3LIa5IFAoxJs/NoZ95hnZqgesrNT5erwXjTlWPk8pHubCY4fRknHBtg/6Da9Qf7GN4PLxYMkzmcIb48WWs3BJbDVPskxo9rJ6FpGhEk2GOTcU5louid0tYm/cC1M/AGaBEFCKTaZTCAk6iQLHYZ6Pcod0xce0BWnhYRFJhmdBBBbNWE8o0Z4CmyWjJGHIqhxNJ0a7aND1/kSSFiIxIs5Mj+yDXG4UpuoqeExgqO5KiVu8E+yAQ/iJxvUpclaBdpV9vYXXFJ3pJ9Xh1iQyOnqBVtWn5GUYjPp2EphCRQ2C0GPS62L2+d73qFZEwpgtd0xmTSPv+IsWPnvAiIIa0A5WQBy61TSGRHhpkhSIv8pDHZ2yUp0cZKOFAGecr85SH/UmmwcATNQwcD/Ya8fxJWiRQBD4MTQ2u73dxvSA+358UUjVCYR1XCWNZg+B1O66LLMlIIWGU1aRhFzhKavALmDMA2wXbGZdp++q2wCRrWZ63aYTCLSs4zkME7dFR3ui90D+SNIz15n+7fdDPUs8+1UXIP497oz4xSwhE6+n/PGSiySphRYzkANo9m+2awVoizEIqRfbwadLLd0jcOqDRMmlYLrG1OqWP7xM99C5TL8xzaT7N6oH4lGz1DMxul2pR4417ZQ5nonxm8SITL60zt75P8zurgq5tOtwsd9FeWyWc+Q4zmQm+cPgZevY8/9CwcG2T2voNerV9Du5+iG2e4x/0bbqWw5eOfoaZvzpFbPq3Sf3Ld7nx4T4fjCjMOs6A7x10mP/OCuff32P+hevMvniapSef5fCRJ/ny0WW2mxa3Sm2u7y5zZ7dJuSoC3rptE7PbwzENHI+uKysashZBi+pE42IMVcjHODGT5NRUgicKCeYSKonuPoP736X54bvsvnObrbe2ea/Ueaz3aD6i8MLJPMu/eoHJP/fr1A5d4od3q/yPb61z96MtSncuB4UxOjHP1KnzvHBxll9/YpqjcgPrrW+x+YOP2b5SZNczbs5FVabOF5h87gLu4YvcLfd4a7XC/m4To2UQkmTimRgLsykuzqc5lNIYXL1B5aaQZfcMm5gqkZxLkD29RPj4BfaJcatU5f5ei26jL4CpiQiZXIwzMylmExrSzgqt+6s0txuYbYuQHAoMrvLsEcpmiPW6wXbVoNc1cQcD1LDCVDrCdCJM1DGwSzsYB6KTASGtjuSSSNlCsM+ptPuYI6q6iXiYbERFNhrBPsi1bGRNAFP1iSxSdopG36Xctai2+5geNDXloYJyURWl38Sp7NOvtYPHl3XBq5PSedqolLu9sSIW0WSSuiJQQ72m8DfVm8E+SRQSHVeNYHiooNH4iDHkTn8Y4QDDcdboTuZxceCaHEKye2D2R0jQstgHRWK4agTT9UZxzrjJNR4WMeqhfjfYBz0sxhiovrx7PAPJRw3pikSoJXZhwT7KG4dJegxH1en3XAxraPAF0BVZcNxwvXHcuEnXV8ZZHvl7NANJSLNHEnRHKBUiN8lT1XkhfpbjjimFgzRX1xY/bEt0UUEInyKo4d7vdwc/vxiHP8n5hShCD5/HFiD/a6OVf+AScmw0VQv2Qpoi0bdd9uoGa3GN47kYqcmjJI8fI3N4RaR0NvrU2iblu2WSV28yuXiSY/OXeHYpy+pBh26jT7chdgcPNmq8PZVgNhnm2JnPMP+5VTrFLu33d7ndMin1He7vtAj/8C6xqW+T/VqSzy8dp2pY/AtvP1RdvUqvtk+pb2D3zvAP+zYH7Xm+fuIwy7/+73Fubp7cd15n9o/u8f5eO7ghA2wZNlvbTZb/8AEnLu9QeOJjJi8skrtwmicOn+bM9GF+5fgSFcOh3ncotvtUupZgi414KjRZfPJL6gr5qMZkTCWrK6RVF6W2jbv5PuaDa+xcW2Hv/Q22b5a40ew/tvhIwKVshCc+u8CxX3se/aVfYzu2yLduHPA7b2+wfn2T0p3LAehUTxeYPvUkT16Y4TfOz3IqbuG+80dsffdtti/vCoWgO2A+ojJxKs/0c6cIn3+JdTvKuzslrq4Nu6BwPEV6IsbTh7OcnowRqW9g3L1K/cE+3bI3qstHyB7LkTx5Ait/hM26ydVtgfkx+zaSohJPRzg9l+TURJwMXazVmzTX9ugUOziWQzQZIT6d8gyusyJAr9Kl0uhhWy5SKEQqpjGT0slFVKTOHlZpR5CzDTvYBynpLK6eomk6lLtCWm05QpSQjqqii9EkQkbdk3YbQ96cL+2OZmibDuWuGfDqfGn3REwTqKBuDbtRwWx1cExvFBjTkeJpXF2MAmuGKGJ+EYpqwqMTUaQghM/u9EY6Mb+biNK3RX6SfyMWkeDS8EbuSaTHUmA1XaSxhhRs1wwkzkNSgtcFWX3cXidg1klBkqt47J49Hh+hKRLxsK+sE9cPeiPxEaoqcEGxJLYWodcel6X7qKHgej8DyTCHpAVNh3AEJ6R4Jtlh8VUkEaXg75PoG8EoMCBUhHVQRkgNzgi5e4x3Z3pF5CFKgwcvdQZWAGgGz1skhZAICejqQ/Lu0UTVwQhB+08BTPhTn09tEfqk9+Sxvx6SgjC7gfe/OK6Hu7CREXgXvwiZtkuja3F/v8VSNsrUoRTZ5QtkT9wWOJiO5ZGxW5RvbJA69h7Z6eM8OZPi/uEOtUqHvmFidZtUizJv3C0xk9JJHZti6tIvMb9XxagZdO5W2exa7Bg2sXtVYj+4QjgdZ+blKF85NkurZ/NHjottGtTXb2C2a8KL0+vwO22T7WqXXz8/y7Ov/DWWFk+SWf42uW9/zOpH+9xo9sdGdPfaJg/aJrMHHY5c3mVq4QbZY1nSR6dIH5llcmqO6fw0p7MFBvkkrhYBJSpac0TbH7K6hPo1Qt0Gzt4+dnGT1sYOjfU9yrf2qT6osVrr8aBtfmK43ZGYypOH0yx94Riz3/gyXPgStw2d3/1olz98Z4Otmw+orV4NdlXhZJ6pM89y/sIMv/X0PM/PxeHdf8nu937MxusbPGj0aNsuWU1mdjbOzKXDJJ/9DEbhFB+v1HjrXpnKfot+u4WkiA7uyFyK89NJFhIqg49vUL0tYKdmx0SPKCTnBGFBO3qW/UGEW6Uqd3ZbdNt9Bq6LHtNI5aOiC0pqKNXb1FbXaO3U6DdNke2TjxKfnUBdWKalJVnba7BR7tBt93FtFy0mupDpeJiMLiNVS/QOSp4yziacDHvS6gkh7TaGJtWBO0BTxSgtE1FJahJSrYHbqgddiKJr6LkUUmYSV0/RarnUvX0QgOap8nLeKE+u1ul7/iTA66QEKmgQSdM2XRo9MYqzHBddlb3oCLGXkdotrJYYJTqmLQgRuvAXuVoMo+fSNm3aPYu+7QbxD6MRDoG6zPVGWuHhPqhrOo9EivudEFbPY74N4xskXR/Kq20xyus/1IElNM8jZHneJq8L8mGvoWgcR9LELmuM1DDsguSBHRQRd4T0EIoIb5M/CvRxQf7j676s3RYFdIzU4BMP/BBAe5xa7osaZEmo21zLHMcFeR4hP6ZGdEKjwgSGnZA94hOCQBknJNp/1uJscT61Rcg/o2/THxvlMFqIQhKDkChEOCaarBHzPl0BtA2LVcvh2m6ThZROcuoE6XNnmFjfE2TlUpdmx6K2WqN85S4zR69y6PjnuDifDrworV6bTrVMcVPhOxGxAP7ykafJ/5KH2e9dx1lvUOo7bBkWmff20GLvsRTWOfLyX+LXTk/huAP+yB7gWhaNrVs4Zo/qg4/oNUq0qudZPejwq0/N8rnFp1n4rWOcPf1Dpl9/i0Nv3Of+tQPutc2gGLl4nZFho1a6TNwqM6WvMh1RiOYjxCZjRDI6eiaK7Oe4yF4WimljdXuYTUNEnpe7tPc6HHRMdns2O4b9E/lzM7rCU/koh19ZZP4LTxF5/qtU86d4c7PJ7119wIcf77J369qYjDySm6Fw8iJPXZzlrz53iBfnE0gf/yE7f/AdVr93j3t7baqm2AMtJcPMXZpn8qXncY89x40Dg9fulQRtu2YwcB2iqRSZQpznj+Y4NRFFLd6hdetjqvf2gi4oNhkld7xA4sxp7MIy67U+N3YbNGpdrL6DoimiC5oVXdCk3MdavUF9ZYfWbhvHcggnNRIzcVLHFhgUDrPftlmpdtmsdDF96bSuMpuNspCOEHM62HtrdPYqAepH7HOSyLlpeuEkpXKbg1Y/KCJxXWQXFeJhwli49XF/kBrT0XMplPw0bSVKudsaG6XFdaHKK8Q09EEfx2Pd2WOjuDhSZgIrkqLa6FJq9wNRQ0QbETV40RVOvYrVMYIMIr+TsrUo3VafVt8JHt9Xl4WVEMrAFtDUXjcYxw39ReGHwKVCwux35oIZJwrYqKhAdFGiE/KD8B6GnoYVCS3kBkVExEfIw32SP4rzdlnjogYvwdbs4nZbuN0urmkPVX2aPrZP6j20TwpEDf0eA6MTxKkHgXSa2CeZXhfX8yTmCV0RWUJyaAhd9QQdvrzb74RszxhrPUQuH0ZXOGKE6XjYnhFpt8+sGwz+bLsg+AUoQj/xPMw+8gsRCE28f9d0bDRVJ6yESGgKmiJhWw5Gu8+1zTqzaZ2JaI6F05eY3N6kW+5gvb9H3bDoHHSp3N4he+M9YpOLnJ9a4MFynnK1S69j0a3uUd8rsSJL/IGukNVVnj/9Bab6Xvv+nTvc2W5RNR1W2ybyW9vI2lsc0nSOP/+r/MVz08hSiD+UYDusU1u9imP26Ja22G6U6FTPcbDX4qMnCnzt9BTPPvObTJ+4xMRzrzPz+jssv7/O7vUS99omm10reMnWgCCmgTqw10YNlYjIEhE5hCaFgiwhANMdYLoDDGdA23Z/auDpclzj9FSc2WemmX3pLMmXvoK1+DRXyj2+9e423/9oh+17B5TvvT9Gd0jOLjN96gxPX5jhrzyzwKWCSuj932Pnm3/I/T+8zb29Nvs9m4gc4khMY+7SDHNfeBrp/Cus9MK8tlbko3tlasU2ZreBFk2Rnoxy8UiWZ2bTTLhNrNvvUb62QnOrFXQf6UOet+jYBXbdCDcOytzcbtJp9sXNN6GRnYhxbi7NYjqMUrlF4/4dGmvloAuKTcZIHZlFPXSCfnKWlfUGd3abtOsGjuMS1lWyKZ3DuSi5iIzc3Ke/t45RqmN1TCQ5FEirSU1S6zkcdExKzR6Gt8+J64o3SpOQuhXBi/NVdaqQZktJIc1u9B0qXYt2zxKLeQ94OhHTSIVlpM5BUIQcyxsFJqLi8RN5b59kBqO4kOfRyURVMhEFpd/0pOXDfZKP2yEiVHU1w6LZs0bGceIDnxjldRh0WzjejRwIIhwGqk7f62T82AlfVeenyPppqo45zCAS4zAxyvM7mVHcj08MD5lCVDAYUeXJukYolgyKSMu0A1zQMP9IIiyHhEnW6AwDAL0xpBRLjuyTnIC0MNoBhpUQoZaB2/PCB10XxYtRD+lRsQvrD8YoE0AQm6HgjvDyRlSuHmrI8orQqKhBClR5gCX2QQN/nCdJgTJuNNrbL0Y/r/Oz1rRfmCL0x70w/z0M+aqPkCR+7lqEXNBCLhFFIqkrJHTxsvuGTfGgzYfrNWYTOlNLJ4ide4b8TonOQQf7QY2eYdPcalG5ucb0oY+ZeWqGp2ZS3F5I06736Ld1+q0a1V2Zm6rMHyXDxMMznHviC0x3m0IJ9eoaK/ttGpbLRr2H8s4OSvQt5hSNo898jd94YgqA76oysqIFkmXH7FG+8y69WpFG5Qnu7DT56oUZPrtU4MRLf4W5ExeZuPQmsx9eZ/6DNQ6ul1hr9tnsWjTtR8uINQDLdmnaj3zpZzp5TeZITGXxUIrpJ6eZeu40sadexF18kgdmhLdulPjOjX1u3z6geO8ezZ27wfgtJEmkDz3B/JkTvPTUDH/+7AwXs8B732T3D7/H6vfvcnu3xX7PRpNCLEZV5p+aYv7zAqK6Jed4c73KD24Wqe61MZpVJEkmkY2yNJ/m2cUsi2kNaeU9ajdvCV9QrRcICTLHZ9CPPYE1cZT1gx7Xt70uqOegqDLxlD7cBQ3aWKs3aDzYoVs2cEwHLa6KLujILNLsMvtti5Val41yd8zgOpeNMJ+KkNNlBqubnsFVSLvDybCgZuemcOMTNPoOxU4/QP1oI9LqhCYhV8U+x+oK5I2sa2OjvHZ/aDJ1BgMiqhyo6hJhGanawPT2ScPoiIRIgfX2SX6InuW4SFJIPL6uEleHqCFfFAGInYon7e5agyA/aTTMLh5WxE6l38b1pN2uZQlcj6YOPT6WO3Yj902uuiKjSXi0gnHmm+SNw8yRxT6MooJEN+KTu/1ORNKUwF/kF5GH48gjqserUyRCnb7wRo2IMUJhsctytQhmVzAp/SKoKYLwEBTBEdLCUBWog6zhhBRMx+RhcrjqE7QdUwgy+iP7JB+aKike7859jDRcCq4feKSG4Izy7lwHlwHSY+6u/yqbo091EfppivPDNG0AKSQRkhQIeXdb1yZk9YgoOlkPya+oMrbl0KrZ3NlqMJWOsJiJsHz4ArmnNunuV+k3+7QPuhi1HtV7eyQWrpKeXuJU4TwvHcuzUzXotk3qnSbdyi4HwJthmYimoD8xzYknv8yc4ZlCvULUtl3Wix3kN9YAmLVNjl36Bn/p3DQT8TD/Iqah6HEqDz6iVy8C0C6u02uUaJdPUiu2uXw0xxdOFfjMoaMs/dIppi88YOKlD2hdu8bh6yuU71QordbZMiz2f8bAuscdCZiNKMzoCjO5KBOnc0ycPUTu3AnCZ57Dmj3DRjfEBxstvnf7Adfvlimu7VNdvTrW/WjxDNnD55g7McsvX1rg6ycmWQ4buG9/k61v/ZC1H65we7fFjiEK0HxE5fATkyy+cpbUy1+jml3mrZUa37m+T3GzTqdWFX6edI7cdILPLE9wYSpBor5B7/o7VG+u0d5r41quKECH0+ROH0ZafIKdnsStUps7ey26LaFmiyXDFCbjnJ1NsZgOo5bv0Vi5R3OzTL/ZR5Ilorko6SMzqEunsXOLrG13uLPbpFk3sC1RyKKJMMemEswlNOTaFtb2Azo7JfrNkRjxCSHtNvQUe+UWe/VegPqJaLI3SgsTV2DQqor8oZEuJJwRlIVeOEmjYVDzohvkUMi7PsxkXOyDBs0KVqOJ1RHFWPavz03hRDM0KmbgLwIeKmISUqPhJcEauKaNEtPHRQ09h0bPEqQHrxsQ0m6P3N3s4HZaOIZQp8m6NDZO6/VcjBHkTtgb5fm4HPpGoA6TJGnMKOqjgvzFviyJ4hWM8nqiE3IfVuVFE0ER8UeBvjk3qsok/AJqdcU4bcSkKukxQpE4rqLTd8wxg64ooJ4YwzGh1xG4oFGTbDgSFFDDdsZwQ6P5R74gY2BbgbIORRVG1ceQvzVZCqCnAbPOI38zRk1QxoI/f54V50/yR32qi5B/HvfCPilLyP9/OeQFR4FXhAzisSjZqMJ0UiebCFOTJTqdPrWDNu8+qLCYjZI5mmfq3EsUSgf0al0v8M6ksdGk9PF99InXyX22wHPzk5Q6Jt9s9+m3C3RKW3RKW+wpGj/wxly/eXaa5ed/lXlFIyS9ivTaKuu7bZq2y8pWC/t7D+jXOyy26hx58ZfJnF5mNhnmn2ci3MjH2H+wSmNT7InsXofKvQ/oHGxR2V5mdbXKa0dzvLCc58npaY5d/E2yT36FbGmFxQfXaN+9R2N9j8ZaWSj+ih1qfYea5dC2XQyvhTdHsk80KUREDhGRJZKKxERYJj4ZJTGdIH04S+rILIkji2hHz+JOH6epZbhR7/PB9Rpv3CvxYK1GcW2f+ubtoID6Jzm7zNSJ0xw/OcmvXJjhC0sZJltr9F//Fmu//yZrr25wp9mn1BdEhCMxlWOn8hz+2nmyX/lVmvMX+fFanW9e2eX+vTL1vRK2aRBJF8jPJPjMyUlePJRhTulif/wWBx/epXK/ilHroegKybkEudNLhE89Qyd9iNvbLT5cr9GsdrH6NlpYJpGJcGExw7mpJFmnQf/ux9TubNDaa+OYLuGkRnoxRfrEEqH5k+x0XO6WO9wvtjHaJq47QI+pHJ6IcSQTZSquErq/Tnd9k+5BA6tjougqkVyS8NQUbmqKsmGz0+yxVzcwPNROKqoyGQ972UUVnMoeRkV0EiFZQonpKNk8g3iOlilGab60W5ZCwSgurSvI3VowinMtG0mWCGfihPNZpMwUdRuKHZODZn98n5QIMxHTiGDh1g7oVRoj0FUtQA31tDi1WpeqJ6rw6dlJXSWlq0SkAaFuw4sj7wX7pJAeg3AUE4WuZYyp0/yditjJGMFiP+gkdN0jLUS9xOTRBFkxxvPJ2yG7L8ZZo0msHnnbLyK+yRUYmnPlEIrTC8jdAaYoMhzF9RwRHtjzRA2+qi+iiucu9dvBc/fjzGWP1OBqkWHa80OoIN2nTPS9DtDbh0mqIjohf5dmjptkxfViH6RKEHIssUvzpe0eLcH1RA2u9yMU+vlUoj/pn/ALUYQePj+pAD38c/BkjphIkkJGTzCf0jmUj7Kz16Rd72G0TEr7LS6vVphP6aTnThA79yz5nRL9pklttU6v0ae2WkP/8DbThcssPvU1PruUZa8uuiHbNDAqu7SL6+wrKq96Elvt+ASLT3+FOdcRn8be2gwK0Wqpg/36FmbH5FC9TfqFz/Ol5ReZThzm+zNJflCIs5WfobZxm25lB8fs0asXsboNOqUpavvLPFit8oO5FBcPZzk/k+RY7gxTL10gdalOtrGDs7+BvbdO76CEcVDDqDSxWmIsZPcsBt5CMySHBAzTc+HruRSRiTThyUmUwjzyzBGc5DRtNclq2+LOXodru1u8+6BCcbtBdbf8WNipni6QXjjJzLFpXr4wy5dPTHJxOoa+8jaNH3+HjR9cYeXtHe61TaqmQ0SWOBJTOf7EBEtfOkvuS79Me/4i72y3+PaNfe7dK1Pfr2D1OmjRJOnJGCcPZ/nMUpZjGQ3pzttUPr5K+dY+naLg78UKUTJHJ0mdOYU7e4qtlsXNYosHxTa9jiV2IPEwS9MJzk4Lzpy884Dmgwe0tkVHLGsSsYLYBWlHz2JmDrG63eLmToP2aBeU1Dkxk+RwNoLWLgYG127Z8LKHVCITGdSZJZzUNJWqzU6jR7VtYlsOalgZM7jK9Qr9yr5A9ZiCeq2nE4Ka7Y/SPOq2fwNPRX1VnIzUqmE2Ktidh0d5kzjRDM2+2Oc0uiam46LK0nAUGB7fRzke7y7IToplaHnSbj9ED4bREVElhNTzqN2tNo6315C9cZqrRug7Lu2+Q8ccRij4woCwHCJkeot9X92mKWKxr0cFKshwx0QBfvxDWAkF8mqftCD5+xyvgPW8JNXeSPHzi0j4oQIovkd8f1HUi1EfkhZGk2SD597vMui0gviH0QLqqhERHjjib/KBr34XJ5kGTm8oakBFhA9qYZFi2xPP3Rcl+LHeqocKCnlR7ELa7vuEPPK3J+sePNQK/SyFJDRyr/3TlLBPbRH6pFHcH1eARn+fH6sbch1wTEKuQyIdYSGlc3wqwc3tJo1yF6Nl0K5L3Nlq8OFknOlEmOXF82TOr2FUmvSbfVp7bVp7bbTbu0Qm3yeXm+bUked55fgkB80+tulQsk2RO1TcYE8K8a2wgq7IfPFIlkNPf5l5syfUaK+vs7orlF936z26b+/Qb5jM7JQovLTJhSd/ianzMxyfjPO96QRX7sY52DhCc+ceRm0fx+zRKW3Sb1VpF6cob86wvpLl1SkRYX1yJsnRXIzF9DEyx0+QPacQs7skeg1CvRahXlt8ujJ7wzbdU+yIb7A4rp4QNzlHot5z2GubbG70uHuwyc3tBjt7TarFDs39bToHm/Sb5bH3X9FjJOeOM7G0yJFjeb52bprPLWZYkNsMPvg+u9/7Ppuv3WP1doWVjjAIxxVRgE6cK7D05bPkvvhVuoef5/J2kz+4vseVWwdUd8v0WzXksE6qkGVpMcMXTkxythBD271G58rblK+t0txuemIELRAjaCeepKRkuLFd56of/205aGGFRDbCuYU0J/IxkmYN88E16is7dA46DJwB4WSY1KEMqeOLMH2MvbbF/UqX1YMh7FSPqSxOxDiSjTIVU5E212htbNDZr2F2TGRVJpKJEJ/NI03MU7EkNhs9tqtdATx1B+jqcBSXDksMGiVBWWh1h12IN4qzoxka5R6N3pB67avq8lGxTwp167it+pigwAeeOtEMzboTSMNBFBCfspDUZOTK0F/kFwEtERP7pEgqKIKNronpSbPjukrSk3aHjOa4v0iWhuDRcBzDGoyZXB++EYtC0A3o1fKIv0iMtIY7lTFp9+gozxx2YD4zbkjeHh/lRVRBiNBlKVC2jVIefH+Rq0aHRWQM9iqJ6z2Tq9PrPGLQDUyunVFRgyAthB96/gOzNyQ1yFIwynOQMB17DPoKopPyCRXD6IxhKqsPXXUeI0b4k0Tc/TwmeZ/aIuSfn+ZFjlZk///HDK2OSajXBsTYaSq1wKmJOA8WUtQqHay+g9WzqJc6XH5QYSoRJnskS+GJ55mslulVWvSbffpNk8r9Gop+Fy3xA5KazqXZC7T70zjugBuDAeUNsDpNWsUtdlWZ35VCuIMBXzw6ydILv8K8piOpbxJ6bQVpq0Wxb3O7ZVK7UqS+0aCxdsDc+irTl17mG0sXOT1xhHeP5Hj9fpkb97OUd1q0ixsYtX3sXptOaROjtk9zL0UpNcF6Ms97mRiJTIRkOsKhfJTZbJSpZJhUOExSj5HQZKJRGVWWgvfO8UxzLdOm3XCo7VsctPfZ8ygAB9UurapBs2rQre7RLe/Qb5YeIW5r8QzxqSWy8wvMH8nxpbNTvHgow+l8BH3jfbrv/ZDt1z5m/ceb3Ct32TFsTHfAhJfmunhxmiPfuEjq879Me/YCr63X+eY1UYDKmwf0GmXksE5yYor5pSxffmKK5+dT5Jrr9D74EXvviNC7ftP0xnBJ8mcPEzl7CWv6DPf3DT7cqrGx36LXNZEViWgyzKnZJOenkiwkVaT7t6jdvU9zU/w5siYT92jb4eULdJJz3NtucX27TqPWDbqgeDrCmbkUy7kY8X41MLh2y0IQoGVUYrN5tPkj2Ok5Sl2bzYbBXr2H1bcJSSGycZHgOhFTkdol7OJmQFkISd4oLp2FdIGGN4o7aPUD4GjCU9WldaFqGx3FhWQJNRFFy2SQslO0BirlbptKxwz2SULaHWY6oRMNWcMi+Jh9lB3LBfuketcKbsQ+tTuuyUi1hgjha3XH90mJNLaeoNN2aT6MClIlEl7+Ucga0g6AIfTU8+j0bRHPMsT9SENRgtV9CJrqiQoeGuX5oga/A3tY2eYXEd8gK8WS2OEY/fZQlDC6T4pp8tg+yRnF/Wi6gKZKGn3HHNuFKT5rTw4huyZ4pAf3MbL2viP2SaPxEULWPeJPMjpjIYI+uTsAn7oDXH6+yrg/yfnUF6HR85Peq8cWKw/fE3Jt3G6TgdFBMntEVJ3DmTxPzWe4v9/GNGyaVQOjbbJfbPHBRo2FVITs3BkiZw/IH9Tplg2xY6j3KN+toESuI2sKqc9qvHToVPCQN4Dqzj5Wp0mjuIOkhPg9RKv8xSOTLFz6ZebCukiVfGMFbaXOetdis2tR6tuUvr9GY6PB9O0Npl+4wvLFz7N0+iwXZ1N8cCzP6/fL3NvMUN5p0Szt06sVMTsNzFYVs1WlraxRC0fQoinUWJK70RR6LIIWUdDCClpEQVFlFE0O4oedgYgmtk0H23Kw+g69rknfsOm3O/TbNcxWlX6r+lj+XEiS0DNTxCbmyc3PMnMow/PLeT57OMeZiQjp5ib2j19n+/V32Hl7hc1bFe61TRpeZs5CVOVELsLCC3Mc+uJFIi//GuX0Ud5eb/A7H25z+06JynbRK0AREpMzTB/O8NVz03x2McOsW8G68ip7b13l4HqRzsFwDJc/NUX6wjkGh86x0XL4aK/Jtc3GUJIdDzM9GefJhQzHchHClVXMB9dorOwE3iI9rZM5WiB+fBl3epmdtsWdUpv7I+M8PaZytBDnxEScmbiCvLVKc3XNI273PXVelMRCAXVhmYoUZbXWZPWgTb3Vx7GFSXYyGWY2qZONyMgHRazKPv16Kwig09MJoYqL5Wj0fcrCsAtJRbVhAF6nFozSXI80oKc9VV4041G3x6/3YycSmoTcKQnUz0NFTMnmIZmnbSOKYHOcspCOqKR1lbDdxW2UcZp1wZtzXWRNRYolCUWTmCGNlml4/iJ7TNrt72QGnaagHZjj3cRAjQRBdqMenzGDbE/cxANoqiwh6TGkaBJbCWP23cdKu2MeeVuYXI3hKE0VIXquGsEOKfQdc4yU4BMmwor33L048bHr/VGg7T7C2vNHebosIZntR8jdPq9uoA5D+Hx/keKp6sb8SWZvrAsUOUIaA0XDssaZc3+W5xeqCD18fiJy/CF8z6AvslTcdh1FksjPxjg7FWf9aI56q4/ZtzENm3a9x82tBofyMaYTYY4cOkf67DbtnRJGzcDctGgUu3CliCRfZUEPk39B54WFJdwBmLbL/VCI+r6G2W3SKlXYl0J8SxY8p5cXsyxd/DozioYceQ31jfvIN8usdCwalkvb7lO7WeLwRoPq3QNm76yRe+YpTpy6xOKpZZ6cSXF1v8kHGzWurqWpFudollt0K7v021WcvqBz9xulgJoreblBkqoFGUL+18TbI8xsrm3i2CauZQqunGn8RAq3Gk0Szc0SLyySmUowO5fiheU8z8ylOZ6PMGGV4dqPqHucuZ33dlmpGOwYlpfnE2IhqnJsNsGhlw8z+8pzaE9/md3IPG+s1vjWtT1u3jqgsr2H2aohKRqJyVkKCyleeWKKl5eyLCpdBtfe5ODtDyhd36O118a2HJLTcXLHskycP4Zy/GkO5DRXdxp8tF7zul8bRZWD0LszBWFMdTdu0ri7RnuvIULrdIXETJz08jzh4xdoRCe5u97gxraIEHccFzWskMpEOTGT5Gg2QqR7gLl6k+b6Ht2yKACRZIToVBZ9YQk7NUOpa7PV6LFdNegbopDFIyLBdToRJmp3cA626e55XYTjEg5UbdPY0Qz1cj9A9fi4mdEiIlUamO16ABxVY3rQxTjRDO22O66KGxnFpcIyUsXrYpqdEeBpLNhHCVGENRb9ENcVUmFFULt7jWF+kWEGHh0plsANJ+hagtLQ7FljyB3fXxQyhbTbNYYjLV/a7aOChibX8Z2K7uN+Rjw2Qpmmg6YLk6thjsmzfVxPWPF4dX0jMMn6+6RQLCkKoFdE+s6j0nBdFs990G2NFSHFG0O6WoS+I8aQjzPohpVhARWkCHtkFya6QH8U6L92PyUggK7aVtAJCUWi7MU/KEIebjqPTab+szif6iL00wbaPbYWPVyEzJ5wPnt/sZqisbTwJM/MpTlo9rjct6kV29imS6tq8P5qlflUhOShNIXTz1M42PXMehblgy7V/Q58uAe8x4IkU7j0VV5ePIozGPAtReKuJlPd1TC7DZqlGpvA77oDOqbDK0fyHH/6G0wn0kSyrxJOXif+/h732oI1t9axKPUdZt/doXK/ytTVDQpPXiH71HlOnbrE8sllnp1LcXt5ghv7La5u1tnazdOodOnUWvQaZfrtKrbRxjGNRyLA/6RH1nTUaAo9NUE0N0MynyBbiHPmUJpz82nOTSU4mtFJdHYZ3H2T9seXKb53m/0rRdY3GmwZdtD9+OO3udMTLLx8nIkvvAKnXmLFivL9uyX+4ONdtlYq1Ha2sTpNUYAK80wvZfjCuWm+enySY3qPwfVXKf/4dfbeX6e2VheA0mSY7NEME+ePEXnyJbr5ZW7utHh/s8bqbjPY4UTiGse96O+ldBj14Drt+9dpru/RG/EWpY5ME1k+g5VbElDYYov1Uode1yIUChGNa5yYSXB6Ms5sXEVaWaG1tkpru4rVsZA1mVgh6hlcT9KO5FndbHK/2KLiFTI9rDGd1plL6uQjCnJzE3NvnW5pOApTE1HUfAFSkzQsOGiLLqTds4NRXC6qDQ2m1SJWQwBHfcKBks4SSk3QC4Upd7vUuiZdr4CkoyoTXoBeVHIYNErY9eqYNDziUR7sWI5W3Q72ScMiGB4pgjWRf9QSIy1F19ASUSHt9vdJ3iivb7sCtaMrHng0RKjVxO22RAqsaQfRDyK/KEKv79I2HQyPgeiPs4YRDL1H4huG0RHQtwdjHhtdkYlr8rCIeKQCf5Tmo4IGWvQRcregfnusPTVEqOuN0kwR4ueLMXxvVM8roH6C7qhBV5eHogh71J+kebEZI9LyUWirT1rQ/C7OHPqj/ByhgaxiD8D2hAnig/yfLTLhU12E/rjzSJbQY3+TNMSWmz2MgzqhSpOB6xDWdE5PnqDRz1PvWtywHNr1Hr2uyfZ+i3fWKmQiCtHZIyQuvsxUq4vZtjA7FuWWyf5um4GzC7zDvGUy8cLX+cLSCaKqzPeiKh+qEtU9jX5bFCLXHfD7fZtK2+SXlie4cPIVsvlZorPfIzH3Ian3tllbE+O5tu3ywCtKM7Ue89dLTHzwgMKFD8mcPcmRE0+xOL3MpblZdo9Pcrfc4Vaxxf39FjulWVo1g06zT6/ZxOw2sToNbNPA6Ru4tolrm0Hc8PCtkoIOSdYiyOEIqh5HjSXRkxNEEmHiaZ38RJxjU3FOzSQ5no9zOK0zGXZQy6tYb75H9eYtytdW2L9SZGenzZZhUTUdnAGkVInZiMrhmThzl+aYfekcsRe+Qnv6HFeLHb5/f5cfXdmluNmgubeJ3Wuj6HGS0wvMHsnytadm+fKxCZajJlz5PuUfv87O2w+oPqjR6VrEoiqZw2kKF4+RfPZFnMUnuVMxeG+rzoce6NR1XCLxMDNTCZ5ezHJmMk7aKNK//YHHmWsEptLkQpbs6SPIS2cpEuPmQYPbu026zR4Dd0A4ojIzGefMbIqj2Sjh6vrYOM91XKKZKPHZPJHDx3HyS+y2be5VOkLU0BU3mUhE5VBeiBoyssmgtImxs0uv0vTk4boYpU3M4iQmPbFIP6AcRDTZU8V5BtdOFXtkHyQoC2KU50QzASWhPjbKU5mMa6R12ZOGC+q2Ly8OZxJiH5WapGVDsd0f20fFdYW8Jw+Pyy6DZgXbR/34yrykUOaZepJWp+/lF4lOKKqJUVg2ohL1oKlWqyZ2KiPS7lAsiatF6XfGPToBbscnb/e9nUxAWvA6CU2o8vxRHvDoKK/fCzoJGIbghaIJUQDNx0vDhb9ICuIjhh2cJw2PpxiE4/T7NoblPvLco6pMWBoE+6QA+CpJgarOkTT6ttgn+WNQ2WNjBq/d7I3tk5CkYJRnuX6Sq/iS+xC65191SfqFKEI/dZTDw8eTIw5kTbSijoPZ6mB1hG5f0nQyT+U4W8hRM/JU2ybb9oBe16Tb7HN9q8FkUicTUTm3cJ7EkxWmml16tR7W7TKlvsPufgfeE7LkeWDiRYkXF5YJKwJA+KEsUdmX6DWbtCt1XHvAq32RXlk7PslT08eZ+lyOQ4V5kovvknznDpMfFtls9dnv2bRtl5WO4MPNVA2q92tkP14jd/Iq+bNHyR49S27qCCeXF3lhIcVBx2KtbrBZN9god9ir9zioGcMdj2FhWy6u7eLY44mNkqIiKxKKKhGOqGgRBT2qkU3pzGUjHMrHmE9FWExHmEqoFKIKSm0L1u9jrt6gcmuFg6sbVO5WKBY7bBm2V3wGaFKIKV1hMapSODPB/GeWyb3wHPKpF9jRZ3h3tcYP7xzw4e0DDjaqdCu7IhsoliI9Pc/UYpqvPTXLV5YnOBYxCd36MSWvAJXvVmh2LGKqRPpQksKTC2SefhqOPs16V+a97QqXH1RolruYfRstrBBP65xdEN3bbBS4c5vm3fuBMVXWZOKFGJnlebSjZ7Hyh1nf73Kr2GKn0sXsO0iKRDwtJNmnJuLMxhUG6/dprazT2q5i92zUiELck3Yrh47T0NKslcSHhUarj2MPCEcUptI6i9koE1EVubGFtbtGZ7+C1REGVzWmE5lMI0/M0NGSHNQ6HLT6gSDAN6gWYmEvu6iK40mzAeSI5+3xRnnttkOzZ4/JqkUCrBZQGvqNSpA95HcxPqWh2XfH9kl+J5XRfWl3bVzaLUuCVBBPM4imaHuon7phBcq+iOaTCkIoVlfsg7otTx3miG5kRF7d9GJP/OuHzDavk/F3Kn6QnNdJuF6QnW9ytb1xVkDO9kUJXicBIGsiBC8UiXujPCvA7Yzuk8JyCC3kBtBU17KRpPF9kDmQMCwRCd4f2SeNooYGRhu31w32QYJ3F2OgilFex9sn+YIM3Uuxffi1B/ERihcg6EFTHVeIkaSRDIeQn+b6r/h8aovQT3ovfqoC5EH6kGQGSphQJCZCqBw3YGBJkkQqM8nc6Ze5OJvioN3nB32byp6L1bdplrtcflAhFVFJhXMsHX+ebK8rcPw9G3OlRs1yKRaHhWhBlslecnlu7iRySHxjvKdIlHdCdBsNOrUqtuVw2bA5aPbZOT7BS4tZjj3755mYP0by6Btkjlwh+9EW5bsVNjqiiwiK0aZDodghf7NC9uoW6aVrpI/MEj92hOmFZaazs5xZmKKzmKbWc2j2xSfmmmEF8/d618K0x0O8fHlrRBNYo0xUJRVWyUVV8lGNTEQmFZaJ2h3k5g6D1TWs7RWqK+vU721RvV+htlZnt9Gn2LdpWC6mK/Y+WU0Un9mjGQrnp5l54QkiT7+CtfAkd2omP75T4ttX99her1HbPcCoFRm4DloiQ2Z2jvkjOb56fppfOpLjqGYwuPYq5dfHC1BEDpE+lGLy3CwTly4gnXqevVCaD3brvHW/TLE4VMPF0zqn51M8NZsSY7jiTXr3Pva6F2FQjuYjJJcKxJeXYe4kOy1LGFP3WxhtIWrQoyoLEzFOFRIi/ru8St9TxPnheeFkmPj8JJHDx7Gzi+x3LO5XOgLz43VBWkTl8GScxXSEyajMYHMdY3uLXqUpElzjKuF0HGVyFidRoNqz2Wv1OWj2xkZx2Yhgvam9Bk7tAKvRHAJPoxHkZJpQIouBSs0wqPeGBcAXFOQiakBp8AUFAEpMD4CrdixHs9IfM6gKaXhYRJFrMlK1humP4kwbWVOEKs7bJzX7LtXg36IbgEdTYUVEkfdbIj+p2cHp9QPwaEiP4oZjdC1B7R6NIxljthndYZqqt88aUhoi9Hrjyjg5GOWFhridh0QFo6o8XxAw6g+KhxXPX9R9RJQw5i9yXFrePmlUGh73CROWEVzvjnZxET+6YrgP8t871YuqEfuk8SRZSVUCaOpACY+AT10Uby/8Z3k+tUXIP48YT3+ai/wRnKwJNIUmclfkeBo1FsG1bLpl0aoqsfdIJNIcO3yJSwsZ6l2Ly6ZDvSRGJft7LV71PiWFFjMsnv08U0G41iry/RpV06FY7OC+s4PrXGa+1yd5qcMLh54mqooxyWvhIsXNEJ1ai269hNlt02n22D1oc2evyUtH85yfPsnCl04wf+IjJp+5TOnD2xSublO5X6XUENENhuOy3nUp9h0ylS75K0XihQ2Sc9dJzKWJz06QmJ8kOjlDYnIOKZ3nTDLDYDKJG05hhxRMZxBg80fNZqoPNpVDSGaXUL+F1KsSatWwV3dwSju094q0Nos0N8s0t5s0t1sUvViJhuVieJ/cIrLElK4wH1GYXEwxdX6a6edOEzl7icHSU6w7MT68V+X1B2U+vFOitC1k7Va3gaRoxCbmyc7kOXligq8+McWLC2nmnBLOu9+n+Po77F5eEwXIM7imF5JMPTnLzGcvoj35CnvaFJe3GvzwzgFrW3W6zT6uOyCeDHNkLsWzS1nOFGIkmpuYtz+gfO0Bre266F5iKsmFLLnTh1GPP0kjOsWdrSZXt+vsVbrYposalslko5zzRQ2SIUQN9zeFqMH7cxJzaTLL8yhLpymF4twtNwXmp9kT6asRhflclKP5GPPJMHJ1IzC49mrCG6TGdKJTOZTpJaxEgUq5x3azJ6LivRjubDzMZMwbpTUrWJV9McrrmUGCqpyZwPFUdQcdk0p7OIrzrxfAU8+g6smqZc8bJGcmxT7KdDno9KmNCBIS3iguH1WJhixoloNRHPhFLIWcm8KOZmjWHCpdM+ik0lF1jNotNYUowu4I2oGiqshRLwU2nMDoC1GDiCJ3iOsqYVnEN0QUiVC/g9tt4XiiDDnmiRLCUa8TEp1MQErwR2GyFIyzfGZbSPJ5cV4BG6F+w/goT+yTOqKIjKryIjGkRAZXE96oUVWfP4pLaAIVJHU6OJ0mbm9okg3pMaRoAluNYJiet2pkn6QrYhSoyyHx2oMkWRdJl7zXHhHKuq7wFvmTeB/18yfpgn4e2oZPfREaPZ/4Hj2Gpu0MPMOqpBHSE7hmFzk/jZ7bRNY13HKX5nYDWV9DS19Gj6U5kVumvJCm0TW52rdpVroY7T5bOw1+rIl4cGkhzcL5V5jywq0keQX5bpWq6VCtGMhXisDHzJg2iRcdnj58ibjXXXxXldnblGkcgNltUN9rY7SytOs97u+3efZojkuHMjwx/TSTM6eYO3OLiRuXKV+5S/XuHtUHVRrFLlXToeO41CyXpm2idS2SW03SkQP0zAbRXJRoPkIkH0fPJQmnE4TTcdREHEmPEo3EhGlNUYfvmeuIT079Hm6vg9Vu06+16dVb9CpNugdNumWDzkGHTsWg1Hdo2i4NywkQQHIoREqVmQjLzOgKuaMZJk5NMnHhGPFzT8PRi1TDE9wuG/x4dZe375XZ26wH3Y9rmyh6nHjhEJPzSS4cn+DLpwo8O5sk397E/PB77L/2Lrvvb1J5UAsMrpmZONNPzTLz8lOEn/oC5eQiH2w1ef1BmXubddr1Ho7tEkmEKRQSPHs4x4XpJNNSF3flYxo3btFYO/D4cKHhGG75AvbEUbZbFrdL7WCHE5JCxJL6UIyQUFGKd+iu3KS1WQwYcdG8ECNoh09j5w+zUze56/05fcP2pN0ahydFhPhkVIbNNbrrvjdIeJ10D/MzyIrwPN/g2uhaAliqyUwldaYTOikVaApqth+ApyY0rwCIUVyrIUZhPnU7ERhcPVZcpeap4rrBLkcYXL3so75DzbDH9knZeJhcVBQxuXOAU9kT+yR/FBeNICUFtbvrypS7gnc3apJN6yopXUEf9KFdHUP9iJ1KlFA8ja1G6XbMsRA9fycSVWU0bCTLwPL2QTDqsdE9UoLg1Zm+vNnrJHRlGII3ivsJaXpgUu178QuW6wajPFFEvE6kM4xvCB5bjwWigl7XHdtljUrDfW/U2D5JHfqLXC1K3xiHnoYV0Ump0gglwnj0+oGiYw4kTEcIKizXZcB4J/Sz1KGfl7juF6oI/bHHK0bOwP8xEJhyWUeNZlDys4QL0+i5PTrFFv1ml+ZmBS15n8lkluzFHOcLaZo9IR5YNWw6zV6QoOqfzy7mmHvylyjIshfVu4LyoEbdGMq3B86AGdclaVucOvw04WN5dEXmh7rCmiZT3ZXpNcuBtLpdn6JSbHNts85LJyY4P5Xk2PTTFKZPMnvmNhP3rtC4/YDqnQ0aGw0aWy0aLZOmLcZeZdOhbDporT7qVou44kU2RFW0uMDxKLqCElGQNQlZlYMsoYHj4joDXMvBMV3snhUIMPrNPh3LpWm7HnNO/HeUOReRQ8QVmbwmM5XWBSj0uCg+0VMXCC2epZ2c4361xwcrJd5+UObuSpVasU27vIvVaQAQTuVJFWaZWkzz0ukCnz+a58mpGLHiDXrv/4Cd1z5k971tqtstGpYzLEBPTjP70nn0p79II3ecD3davHa/xNXVKg2vc9EiCqlclIuHszw5neRIWkNe/YjW7WvU7215UupHx3BFU+WWJ0aoN3vBDmc2F+XkdJIjmQix7gHW2i2a63t0Dlq4lkM4GSYxmyVxZBFp/iRFW+VOuc69/RYdf5wXU4MuaDquBV2QbwdwnQHhpE5sKhdgfsp1wZo7aPbpWQ66F143GddIh2WkdgmntEOv0sTu9JD8XUwyJ7w9jkTF6FPvWWOCgrQuRnkRrKAA+KM4NRZBTYlRnBXL0Sj3xqTdQfZRTABTpYYoYlZX3MTlkU7MjaQCf9LoKC6uqyR1xUuRreE2Klit9nAcqGvIiQyuFqNrC2m5IC2I5xDsVJQQUr+D06qNpamGVGE0dcdwO6PKMiEs0OSRUZ438ZA88rUUieFoEYEK8sChik9pkCXBjJNDSJaBbfaCx/ZRQb6owCdnj47yfFSQ7JpBFzZ2fSwR7MIMjzpuf0L+0cP7JP+1C0qEG4BPg9tm6CGD/7/i86kuQn9soN1DHdAAofQYIAqQ7YU9mU6IqJYklJxGXVgmWdzDOKjTq/Xolg3qD/bREjfIZiaZP/0yT8+mqPdE1LJtOYKUfdDlrj3AtEWe+0uH8iw89VUKegxFD6PF76Per9Gu9WgfdOH6AY55lRnDJNWqc/T4JSLHcuSjKq+ndT7UFcq7YdrlPaxOk3qnSaeapF6aYmenyeuzSZ4+nOXiXIrlwkWmFy8y8eQq2bXr9NfuUru3RWPtgOZ2k06xS9NLIO04AwzHpea16rRN5FJIpC2GQkGWvDwih/GzSExXGNhMdwg39X/NGbFVa5LoeFKqREaVmUiFSczEyRxOkz1xiNTJowHktKZmWKv1uXrzgDfulVnZrFPZb9M62MXqNIPuJzYxT2YqwdHDWb58Zorn5tMcjjlId35E/Z3X2HvnFvtXipQPuhiO6IAmF1NMPzXL7MtPEb70VaqZo7y/0+IHdw/48F6ZeqmD2XcIRxTSEzEuLGV4/lCGk3kdbe8GvWtvibyh7SZWx/LUcDkxhjtxkVqkwN39Dld2GqyXOvQNC1kJkfHICE9MJpiLy4Tu3qZ7/w6tzQPMtoWkClFD6qjgzNm+qGG/JYLv+jaSEiKZ1FmeSojwPNWCtRW665t09oWoQdEVIpNpIvNzhApLVC2Z9XqL1VKbatscI25Px8PC4Lpfolfawag0cAJVXHzE4OoDT80gAdVX1fldjMgOEgZZgemJImcmceM5Wpa4flTa7VMaclEV3TFw6wdBAB4IUYTfiVmxHM26TdUYUrfjI52Yjwoyvfwif5/jUxaGKbAP7ZNU2Yv0lgh1moLZZnSGHhuvk3G0GIYt9kl9b7HvCxoiXgyD7y8K5Nl+jLkSFqM8V6jy/O8JXRkf5Yn4CGMITdU9zFA4Nkxitcel4YFJtd8Uxnp/l+VJw/0C6heg4T5peL3wVnUCf5JvMA4pqlcEh9EVluOK4Dvve1oalcd54aA/7b35T/L10fOpLkI/zXmYJecjaBy/AHk/N50BaT1DZGKRyOF9kgd1erUurb02nWKH2p0N9NwHxL39UGde7IfesBwcp0mn0ade6vDAcfl9rxV/YSHDsXNfJK/pIiQseYfSrTLdskG3bFByyjjWDXr1FvlGhflzL5M6fIjpRJjpdITX75TY29RoHNQxakXMVg3LK0a14hTbWw0uzya5sJjh7EySE/lF5i8eI3K6zFx1i8LqDYzNdZrre7R3yrR223QOOvRqfVqesq7niqJkumC6rsB1eG+a/030Sc5pv3D5IXhxRdC1M2GZaD5CYjpBci5Jcmk6CHmT5k9i5xbZNlzuVwyuF/f5aL3GymadWrFDq1LCbNVwTANZixDJzZCZLjAxl+L54xO8dDjLk9Nx0q0tnHfeZP/Ny+x/sCbiKRp9nMGArCaTXUoz9/wShRefQnvqFcrJw7y71eRH90p8eK9MtdjG6juoYZlULsrZpQyfPZrnbCFGrHKf/tU3KX18j/pahX6zHyB+cqeX0E48hVU4wUbF5LonezdafSQPdHpsKs6ZQkKE3pUeCGPq2h7diojtiGR0kotTxI6fxp0+zvaIqKHb6jNwhUfp8GSM45NxZhIqSuUe/fXbY+M8PRUWEeJzR7GzCxTrNmu1Lnv1HkbfRvYIB7MpnUJMRTNqOPsb9Ipl7I6nakvraNk0yuQcZixHvdwLdjHBKC6mBao6qV7DrB2MY3rS8YCy0OgJSkPdu35ocPX3ScUgAM81RRHUEjHk9ASDWDaQdvtFDCDhdWL+PmnQquI2h9BVJRFGjguTrRlJ0ambY+NEnzSQjajEVAnJ7Igo8k5vnDcXjTMIx+n1LFoj/iJ/lBdWRpRtvc4wTtzvotSIp6obPFRERHZSQP02OqKIMRyFBbw52xW8urFRnuDN+f6igTEOTQ3p0aCA9u0BLfPhfZI0Mgr0ujg/P8kfBcaSoovr+3HiA2TvE6lEiJC/E/okq8vPeH6WruoXogh90gt6OEvI74Rc/G4IbGcgWljETXcqM4+21CLVqNCrNOg3TQEo3W0TvrmGmnoPPRJneeI01UMZ2j2L9/o2tunQ65g0y1023AHfcsVfpruUY/nM50nHkmjJKIp+nfJdURD6TZPq/Rq24WB3ekx2m6TOvsjTs2fIRQvMpnTezke5sapT3o3RLotC1G+UsY0O3XqSRmWSvZ0m7xbinF1IcXY2xbFsnJn8OSbnzxOvbZGo7mBvP8Dc36a9U6azVwl2OD7zzuyYYg7uFWZr8GiH43dKciiE7iWvxlQJLaahZ8JEMhFihSixqSzx2Qmic9Mos0eQpg/jpGZoSFH22jZ37te5fdDm4/Uau3tNmmWDTq1Kr1HGtU1Ckkw4lSeenyZTiHHySI7PLk/wzFyKoykFdeNDeldeZ++dG+x/tE3lgRB/AOR1hfzxHNNPH6Lw2edQzn+Ocmyed7ab/PDuAVceVKgWBYpJDcsksxFOLWZ46WieC1MJsp0d7FuXqV27Te1BccyUml6eJ3r8NIO502y3Ha4XW9zYblCqeYmpEZXZXJQzMymW81Gybgtn4xbNBxuiezEc1IhCYk7EXiiLJ2mEs6zttbm936TU6HmcOYmJTIQT00mO52Kk3TbO9n1aa1t0S3Xx58RE5pDogg5TtxXW6002yh2qbRPHdolHVKbSEWaTOrmoglzao1/aEbEL3d6QcJCZxIlmqfddih2TctscAZ4KMUBKV1DNNoOmoIr4IW6yHkZOppFSecyw5+0ZkXZHNVkYXOMaCU8VZzUqQezDMEZ8EieWDajdo9ETcV2oMJOajNQte7y7VqDsU3QNOZ7GDScCaXejb4+kmXomUyWE6vQYdOqeKMEM5OW+PNpwhibRwKPjZfgIUUFXxDf4ogS/gIUFZcEXJVijJlE5NBzl9UUB81FB8kOqvH5/aHIFPOipz5uThsBWrwD6z320gD68T9IVeWwU6IyYXGVNCDL8Lq7XsYLnr8uSGMWFBLz0py0cP2/Qwi9EEXr4/NQkbW835Le/XUu0mDP5w2jLTXL1Kv16m9qqoBzX10oosbvkNZ3kk1HOFw5hOXlM2+VD26XiDDC7PeoHDo7t8geeWax3JMfpI88Ti8aZ18NoyVuUb+1T32gEURBmx6Rfb5PfPSBxbo1jJy4xsTzNsVyMd2eSvHWvzNZOlFpxkk71AKvTpN8oB51RvTRBcbvB+xMxDhXinJxJcnwizmJ6ivzsHPmjz6O3isTaJdzKHvbBDk7tgF6liVFpYLW6mM0uZsfE7lk4psvAGeCOzIZlTQ72RVpcE7DLZJRwOkF0Io2SnUDOTSEX5nHjEziJAuX+gLLhsLbTZaW6z43tBqt7LRoVATzt1ktYnSaOaSApGloiQyRdIFuIMzef4tLRHJcWMpyeiJDu7uG+d5nSu+9S/OA+5bsVSnsd2raLJoWYSIWZPJ1n6uJhci88h3TuC+xIGd7bqPODOwdcf1ChXhJLf5+MffRQhs8uT/D0bJIpt4p75zLVD69Qub1N52DYuaSPTpE6dRz56FNUtBw3t5tc88ZwZs9CUWXSSZ0zcynOFOLMJ1TkzRW6a3eC7iUkh4hNxkkuTosx3MTRQNotaNsmkidGODaV4Hg+JkQNB3cwvC7IL4qRTITEQgFt8SR2Zo69msVarct21cAwLCQPdjqfiTCbDBO1WjjFTfr7+8EYS0mIAqBMzOIkJmh0HQ7a/aAA+LBRgekZ9fZ0cExrTFXnxobZRT5mR5ZCHqtOJa0rhK02bn3IihOxDxHRieWnMcJJ6u0e5e4weiL+kChCLtfoj0SZS5qCmowG0u6W6QbAVP85JHSFlO5Ju3uCGu60W+OL+WiCQTiGYQl59GiQXVgZ6SQ8ZZkvSpD8cZbHmxtCT4dFJKLK46O8fm9ocvUwQ74qr9cRdAhnMNwnxbWHurC+8RD1O8ZAi49Jw4eydk/arUhIZjeAno7x6nyDraeK7XsrBfAD8IRH6M/qfGqL0J82ygFEhXcHYDkDGl70cd92CaXCTM+cInKmRc5zhDe3WgJSemsHgAlFY+L853h2dl5APt0BV6UQ1b0QRqtNqwqu4/Id06HVs2kcyXG2cIbci3Fm0hPouSuosVXqa3WMWo/Ghh8J0SK3vsfk9gqZJ57j6dlTLJ4p8EQhwfVii8sPKmzuxGmUu3QbbfrtGrbRodXv0a3rNMpZDrYb3F6pkMxGOTwR41A+xmI2ymwyzmQsQypzktRpGdXqEu41SHvxDW5XzMoDsrBljSQuyoRUL87BGx9IsSSuFgtiHfqoNPoujb7Dbr3HzmaF9WqX+/st9ipdmjVD5DPVa5idJrZHLpcUDT1TIJadJJWLMj2b5IXlPBdmkpzMx5iiSej+uxjXLlP84C7Fq7vUVuuUe3ZAWchOxZg6X2DmhSeIX3wR9+glHhgKb61V+dHtAx6s1TwRgohmSE9GOb6U5ZWTk7ywkGLGrTG4/RbVy+9SurpGc7uFYzrECjEyRyfJnz+OduY5mulD3C52ubLb5M6uGMMBRBNhTs+lOFNICG9R6QHmvY+p3d+ie+BTDcIkl6aJLy8Tmj/Jvqlyu9Tg5k6DSqPHYDBADSssTMQ4PZ3gaDZCvFfGWrkuPErBn6MRm80TXTrMoHCYg16I+xUxzqu2+gwGA6IRTfy9pyNMRhWU6i79vXW6+xUvQVVCS8bQJiYhM01roHHQMSh1zMDgGtVkcjGNSW8UJ1eqAWZn4Lqo0YigLOSmBWWhOxQU2N71k8mRUVy7Mh6gp4l9lJKb9joxJ9gn+QUgHVWZiHnS7kGfQaMU7JNEFxMWoojMJFY0Q6tmBiZZ2xvFJfURaXergd30RBEe6kfIo9M44QRdb5/U8bqosBe/ENcEtVtqGbidEeab5w9C00Un0nbGdjqqJDqosSLiRaRIsiQiUjzo6WgReBi4KmTlbQa9ruDdOUIaLkXEKG2gRTDswdgua3QU6O+Dgn2S+xA1PBwXo7y+LewZ3gQkRAjJN6kO3D92H/TTdkH/u9oJ/az1WQqJDkiMlgZ4AjB6jku7b9P23dWZGBMLZ0icOcBsdbCNTVp7bYxKl9rdXWT1Y3KqSu70i1ycmRczVCnEFSlEZQ+MlkGnIea2bwGGadO18jw9c4iJJyPkYknUqI4auUdttU5rr023bGC2LbrlLu29Ovn1fdKnbzL9xHPkp49zPCeK0ZW9Jlc362zst2iU03SbffrtBo5t0muWMLsa3UaceqnLwVaDawmNeDrCVEpnOq0znY5QiIfJRFSyepp4OEckKqFPCg+Q4tGz5dFdJGKXZnn7M9MdBH6GRsOmvNem3LXYb/bY9+Idms0enWafTrNPv93B7DawjQ6u7Y8CIoQTGSLpDKlclFlvv3V+JsmZyTizERe1eJP+tbepfHyT0rUNqvdrlA+6tG0XOQSFiELuWIaJM9PMvHiWyNOv0J89x51Kn1fXyrx+p8T2VsMrQDbhiEYyHwkK0HNzKWYGDQa336L5wXtUbq4HBcjPCMqfPUL41DNYU6dYr/S5UWxxc7tBsykKh6aLtNTT0wmW81FSZg138zad1TW6e0MRQXw6LSTZx85hZA6xsd/hfrnDdtUQYgRZIu2JEY7nY0zHFKTVFTprK7R3ylgdE1mTiOTjgra9eIJ+cpatYpfVquiCbMtBlqWgC5pL6iTcLs7+Or39fYxKE9eyCceEPF8Zxfx4BldfFecTt9O6jNprYJf3RBfjCQrUmI6UzBFKZOmGwjT6PRp9K1Ck+bLqCV8V1/O8Pd4YTPW8QZLXSTUNN9gnjVK/cz5rzhvFma1usFTXElERoOeLIjpmoOwTz0EhEZZJhRXCWIQ6tSA/yZd2S9EEoWgSNxzH6App93CUJzoZXZHQsAU0tScMsuJ6z+TpkQ78DB9nMBgziWoe6YC+EWT4hCRvlDcKXDWdMV5dWJaIhz1lW0+YVEep3352kqPF6DmCmt2zx6XdUT+EryP2SYGgwosil6JJbA+66osSAEHRl0CWhtlrP6/zv7udkH8e1wXBoy9YlkQLNAr1AwT63LCwHBcpFELLFcgsP0WmI+bPdm+bbtmgtdcGNgnJMlnHIf/ESzw7O4/qtb+XpRC1okS3ZdJtmZR3m7zvuBimaNOfmp5g5gmxJ1JiOlryPrJWpLHVwuhYGB2Lbtmgud0kt7JDdmWd1OlTzC6fp1A4yvHcFE/PpblbbnN9u8GdvRbNalxw7ToWdq+DYxoYpkGvKdOqRqgWO+yHZW5FVMK6gh7TiEdUUp4JMBXVBGpeV0TmiBx6RCFneUmThtfdtT0FUrVt0u6YmD2LXkf86BtmUHQc0wjwP/7ILRzPEs/ESOaizE0lOLeQ5tx0khP5KHMJFXX/FtbHH1O9cZODK/cp36nQ3G4F3U9ckcikdSZO5yhcWCJ78QLquZepJBe4udvhx6sVfnz7gOpey/MBOYQjWtABfdHzFy3IbQY336D+3mXK11aorY4YUudF5HfkzNM4c2dYbZh8vNfko40a+5Uh4mcqF+XsfJozkwkWEirS6n2MFUHJNmqGt1OKkVycRl06jZVbYscLvbvn4XkAzxMkxAgLyTBKZR1r/Q6tLWFMdb3wvMR8AX3xKO7EEntti9Val9WDNq2OUMSFowpz2SiL6QgTURm5tou5s0JnrxLARtVElHA+i1yYp60mKDd6gUF1lLgdGFTrlYA156vqAoNrNEOrLwpIzRuDhUdUdYmwhGw0cOtl7GbDIxxIIvwumUNKT2IoURo9IzCYAiOiCI2kJ4oY9SdJmv8cJh+hLPjxBQldIaOrgtpteKiiZmMY/eCRr91wgo7lUu9ZgrQwgvoZlXYPDEHudkwR542vLBvhzY3uZMZMqpaAjrqjpAUvxM5W/RC9Ia9uSAz3R3mev2h0nxSJBaigfvvR/COftBBIwx/aJ4X8UaAWpe/tkyx3gCqJD6H+Lkh6OJTtX+H5hSlCD78/Xp35RJdvSAqhAY4bCv6RAFTaYhxhuQNUOcSpyRNEzprkzZ5gypkHdMtd6hsNHOsBVsdgotdl8snP88LCMVK6QlxXeeNuicpeS0BCOxaVvRZXPPNczbB4di7NsVOfJ5nOE566TGTiOuGP16mt1ulUDKrNPu22KW68dypkr62QWb5C+uQRZk48xdTkEc4VJnlhIcP9SpcHlQ63d5uslzq06yL7qG/YWD0L1zYx6m0MGIluEBw4WZZQNAlJloL/l5QQ0kNvnOsOcO0BjuPi2C625WBbLrbp4Jg9AT81e7jWEH7KyOMpkRhaNEU0FSWe1snkYpyeS3JmJsXxfIyFVJhJyUCp3Mb68Aqlazeo3dmgcr9KY6NJpWthuoIxNxlTSR1KMvnEFNOXThM5/wLOoQusm2HeXanx5oMy11erVIvtYFwWSYTJFuI8cTjL55YneG4+RcEuM7j+JtW336F0TeQ0mR0TLSbSVifPHyNx8XkGR55h247y4W6dy6sVVvc8xI8skUlHOD2X4txUgsW0hlq8Q//Oh94YrsHAFWO4xILwFoUWTlMmxr1ymxu7DXZqhuf4l5nPRTkzm+LURIys28LdvEnnwQM6O+Wxbip5bAH18Bma0UlWdlrcKbaDLkhRhRdreTLOUlonabdwd+7T3d7DKNWxexbhdIzoZAZ1egkn5RtcDbZrRlAARsdgMfpQ38epe6M4x0VOhFHSWSGrjk/QbNhURmIj4l4BCUZxNVHELJ9wEITfDSkNRY+yMCoNF52YgtZr4Fb3cerVoT8pGkFJZ5GyBcxohmalP6bsi2oymagfXSEjNWvYTVHEXMtCUlXUWERET+hJ2pbYJzU9yoIs+UmospcC28Zt1cVIzLKHqJ9oAleLYVgD2v2hPNr3B8VGlGlBJ+K6QZQ3uofbaTv/f/b+bDmSNE3TAx/TfbF9wb454HtEeERkZlVmFZscnszI9AEvgEd9Dy084Rkp0kJeB3nEWxgRisyIsMnKqsotFg9f4dg3A2xXU1XTzebg/1XN4BGRlVmVVZ3VQhWBmMMdMADqMP30+773fV7CNCOTo7A8diIf5eX+osLkalkoToW5UZakk4ggzgpi+D1p+NI+KAfOKoaOYrlkhkuYzsVOKRWdkKmJm1FVKaEqJUr5KE68qP+ga/DvO/6zGcf9Qy3d8nX0Y56cCliqwnyuYGtz4cSeKqTZXJKH5UhBU3m0/inWixntiXB4p1GK3/MZnYxJgpQ0jFhNIqo/CfnZxgscXaXu6Pyf7h2nFyPG/YAkzhj1fN7M53hhIoyr23WedT6l9vMWK40V7NavcL8+5O7NHdrJmGEQ441njKcxkyuPu9c9Gt+e0Hj8muazPdwHn/B06ykP93forle43G1yOPA57vscdj1Oez7+ZCYLUkwUJCSRKBJpFDDL7gNKSz/Cico/Jqdqz9O0yBia/8BzKJqBalroVhnDKWNXDNyqSa3h8GitzKO1CgcNR8RclzXcsI9y9TXR+68ZvH5fFJ/x+YTxNC5Gb01DpbFRpvWkRefFAxpfvkD79N8waTzgXT/kb87E+O30bMSkHxBOAxRNx6kYtDeq/MWjFv9mv8VfbFTo+Oekr/6Gwd/9iutfvS+8QLqrU9ut0X6xT/UnP4WHf8Hl3OW31xP+9qjPu6sJvifk2G5NUBG+2Khy0LAoe5ckH74RariLO6JphGbplDfb1B7tYDz6HK+2zeltwFvJh4tCmZhas3i2UeVp22WzrKNdvyI4EaKGcCQLacMWooa9ZyTNPa68mMN+wIeuhzcVF6aKJCzsNx1WXB31+oTw4hDv4lbugkoYVQdrtY26vkvgtLi+8bnyxCgux/y0ljE/k2vS3hVhbyQEBaoiOpBai7nblOF1sexi4kLR1rBFgqpNLGLEpSoOhKquKGJui9E4j21YFJBFJ6aIAvJRCuzC4NpgXKCCFqO4siQs1CwNM/FhfCc6oTAiSzOMisjvKVUaIjpiGN1LcbUNsQuqWVLaPZgQe8MCd6O6S9BSs0w4EQbZQtmmLmIj7KVOpMD1aPdHebMkKaCp30f9+IW/CIRBNh/lZYZNkGRMPxrl5dJsWytJVNBHrDzLpeTmMeoZk1myQA2VxIQoH80zTynNM8Hb/AN8Qv/Q8Z/dOO5HhQf3PmgJZjrPRGUvKdiaQaQr1KUj2zZUrobpYjmrqxhqlb2NT3A/H9IOI7I4IQkTgkHI+HwsAqDSjFXfx/6JxycPfoatt6iZGv+Xo/Pd8QBvGDILYrxhyGkiC5EfMwobfLKyysbn/y/qrTXstV9ir7zBbpxjfhgyvgsYxSneaIbtRXhXUwYfBtx9e0bj4Vvqj7ex95+wtfOYtcYOT9pNen6VKy/idBRyNgw4l/uC/kjEUERLtOwkSkRAXRHdcL/QiFOWfv/cymJTUlXZVRloVhnN0LBcHcsxsMsGnYaIEN9tu+zUbA6aDm1bpamnaP0Tsm/fE5+8Zvj6iMHbC4YnIyaXHqNJVBSfmq5Qa9rUd2u0n6+x+pfPMZ//Jdn2C84yl69PRvzd6ZC/eXdXjN+SKEIzDMp1i+Z6hX/zpMN/vd/ikxWH1uSU+Kv/H/1f/ZbuV4IwkXca9d0anRcPqP/0JyhPf8G1Uuerqwm/Oh3y3cVYwknBKhs8Wi3zYrPGs45Le+7B2Xf4714VhaOkKNgtqYbbl2O4SczrO4931xMG04j5XMQ97K+4POmU2a1ZONNrog/fMj66IuyPC8KCu9nG3X9Aaf0RAxw+9Ce87064ncwEfsfU2Gra7Lcctqsm1vSG5Owd/plQxOWRD05HdkHVde6CPDxPYH6AgvO2UbGoaRnK5Ja4d12MwQpidmuN1G0WBtdREN8jZrcdnaq52OWknjS4flTE/ExlEMwKWXVOaWjaohsra1Ca9osiVgTw1WUAn+ykBCoovidqaNj6vQA9kZ80E52/LSkLUto9CpN7Ka45ZcGR0m6CCdl0AX0toKXS5BkmglaQM9vuQUOXisg8jopRnvh8k1maiTjupX3SPWq39BfNl/Y5pY9GeTmlARbSbkEdV4r8omXKQ8mwxD7onjQ8KyZIuqpISwaQ/f590D/npO5fRRH6oePHSNqlLFnEes8zSmlC2XCIUpVV16BbNrno+/S9iA9SoquWSpQ2Kuwd/CWVVPyCZekr7l73CAczsciOU+KJT2foUf35mIePfk75QZO2Y9Asm/z2eED/dkrgzQi8Gd045f+cJdyOQy72Gny5XuXhzs+ptLZZ3/2G2sGvuPv6kP6bLuWTEaN+gJdkXHkRxmFM7XRM702P6lfn1HZfUd1bp3qwhbv9iOr6A3aqq3y+2qIfJgwCQcq+nszoejOuhgHd8Yy+FxEEMfEsIZ6lcsQm5OXzDLL5nPlH8YolpYSqlmSkg4qmq+imimnrVFyDZtlgvW6z1bBZcQ3WKyarZYOmpVKZh6ijU+YfTonP3zM4PGZ4eMH4VHQ93s2UcSRYc3nxqdYsartVWk9WaL84wP3kS0qPfsbQXuV9f8bfXtzyy/c9js9HDG+nBBNxp2g4FrWWw862SHP9f+w1edqysG6+Y/ab/y/dv/2a3qtLxucTQaKWHdDKlwc0f/FzlKe/4NZc4zeXE/7meMCvjvp4w4B5Bqatsbta5ie74v9txy2hvP+a4LtfC8RPV0Sc2w2b6oN1nCefwPZzMYbrLY3PolSo4STi52nbZdWI4fQNwZHoXsKRMMo6KzXqB5vo+58wa+5xerfopvLk1WbFLKTdG2UN5cMR4bl4ntk4RDUUrFYVZ3sNdeMBU6fD9W3A2SgQBtcopWxpdKoWazlhYXJNcnPK7K5H7OewURu1sUKp1iGWsurlLqbmGNJcKllxowGxFBTM0xTVMjHrFZRGRxax3OAaF4q0IvzOVGR20RXJeKkTq4gEV+qrhKrNMMxRQYtC2nB0Vpd2WtGgSzzOA/RMEaC3JO0eBPE9ebltCEGDI6Xd6ajHXPqLAEqmNJlaYp80WvLoLFA/Oe8tECmwS3Hc+T4o1R0ZYifiG/JrjqkpOMZSfEO42AeVdKHqK0Z5/kf7oBwTpCkCehoHJNKfVFIVVMsU3iirTKJahEkseXf5PqiEpoj9uVpC3LRnGYWS61/w+LMtQv+oKIelx1KWQpZAGqMDNdNmtWxw55tcVC264xmjacTrS9HepvM56laN7cd/RVXNx1av6L8b4N1MmVx6JEFC5EXE05DGuMfGs7+ivP2Ahq2zXrf45fseJ5dj/PGMeJbQv/H42o847wcc7fj8bKfO806HnRf/b8qbj7Ef/pbWm5f0Xh4xeH/L+HyMJ5Vh/SgVF+27gMGHIU77hvL6e2q73+Budihvr2Gu77G9usNmpcPzzQ5+qcJkljGWe6l+EDOeJWKMIscQnlQW5TLR5SiH/O7M0BTKli5SLmVcc02OX1q2WERXDRWnFKN6t6jjO5K3p8RXRwxPLple3DI5XxSeQI7c8p1P01ApNyzquzXq+01ZfL5AffCCsLXP0TDid+/7MsJ8QP/GE+c0DFANC6diUO+4fLbf5N88bPOzjSp7Voz67v/A/93/yfXfveLuuxum3SlplGE1TBr7DTovHtD8679CefbXdI0Vfnvl8R8/9PjtyZBx3y+o1hsrZf7iQZOfbdR4UDMwLr8ieP1r+q9PmF4PSJc6l8qjfdQHnzEpb3B8G/Cq6xUiAkUpsSrHcM87EnTafSfiHo6vmA3FTZDVcKjurWMefEK2+ogLb0FY6E9yzpzBbluMODcrBlr/hPj4NePja8L+WHYPjuDMbR6QNHboTmMOBz4nd9OiC6o7Opt1i52aTctSUbo3xJI1lwYRWt6BtNZIyx0GYcrNNKI3vU/MbklvkD4bC1m1NyQJI0qqWqjqlMYaM7PK5CPCQb5PWikbNEwV9a63ECRkS/uk1lqBGup691FBwuAqCpAZe2SDLqnk1QHojsD8KHVpsh1GMsQvpyxoVAxNdlKqkHZ7Q+JpQBon4mewXJRyncRw8WcLf9Ey6qeSy6M9IWjI5dGqZVIybQEdNV1m06wQBaTZHMuQ0m41h47OSJc6mZKUds91h6SkMZO8uXyUJ7xNMnsplaigKGQub6LzXVaeP5THP4h9lPh8tSSEW+Q37v+Jjj/bIpQf/6goBxAFKUtkZ5RgmdCwLHZqFt2pzdUwYDSNmHgzXl/mi8ISbFTZevhzqvJpVP0dJbXE5NLD7wWkcUoapyThjNZ0Qu3zf8MXa5+K2bSp8beOzuuLsdhZ+JEc0yVMvBnnfZ+jnTqfrFZ41t5h/S92qDz4DOfRVzTfvGT0/oLB4Y3wLPUCwiAR/LZhSDiZ4d1MGZ2MsBqXlFff4669xFlv4a410VprlNvrVJurrFs15vU62VqVWVYiSEQrH6VCfp0TdLNsQUzIZ8S6qqApyEgHIf20NQVjHqGEE5TghtLdkLR3Rdq7ZnpzhX/dZ3rVw7saMe1OC1LDOEoL0KmhlFi1tQL303jYpvlsF/fxE/THPyVeeczJNOPV8Yi/Oxvy2+MBNzcTxncBs0CMEg1HiB5a6xV+ftDiv3jQ5PNVl046hJe/ZPSbv+X2t+/ov+/h3YhcIKth0nrUpPPlQ+o/+SnKs7/mWl/hqyuP/3jULwpQEmeYlsZK2+Unew0+X6uwXzcwb98ye/Urhq+P8Jb2QO5ak8bjbczHXxJ3HnIxEoXj7fWE/tL+Zrft8rAlhBn25ILk5BXTE3nRj1KMstgpufsPULafMDQaHF15vLud3hcj1CyerFV41HJoazF0jwhOj5le9YiDBM0WtG1nax1144CRVuG873Mmu+IoybANteiCWraGMrkpuqBoIgqiZpkYjQZae52Z22I0jOjJi3f+HA3HoGnLUdxkIEdxAtNTUhay6syuMZ6lBWx0WZbdsEURs+YzmV3UXxASXButKllzToPxKGEQfn+fJDopFWUqgKciuyimpChoriW/h4XBVUizF/LyqqVRMRTMLKQUjIXJ9aNRHHaFRHcIphHeLClQP7myLQ+xU6Kp2AfNRBFEUe8VkXCpiIhrjfLRKC+U/qIlSoPcBwlp9fzeKM9a+vrFKG8md1nLqCDDIUiyewZbXVXk61zaNJZFCX/ANfhPffzZF6Hl4w+K817++HlGKYkpzWfMs4Sq22LF1dmr29ytlOl7Ed27KeNhwDeyhc7mkG5U2H38X1DVdHFHZLxCUW/wbkS89+DDkDTKiCc+K9Mx1pcejzY/xd1rULN0mmWTr0+H3NxMCLyIcBoRzxKCScT57ZRvV8v8ZK/B806Z/cY+m794SPXhl5TP37By8pr+q2O8s+6CBTeaiRA9PybyY6Zdn/H5BLPax6yeYzcsrIaD1apitWqY9TJGo4FSqWM7VRy3guJUheFOFTnzaIpIns0XkPMM0oRSmlKKIkrJTIwXgimZJ1zo8XgoCAz9EWFvTDjw8e98gl5AOJoR+YuOJ51T8OZcR8ddcahuVak/6BR4HG3vE+L2Pqehwtszj6+vJ/zmeMDJ5Zhxz8efRKRRiKIZODWHWsvhYKfOXz9s87PNKk9bNk7vPcnrv6X/d7/m9qsjhicjwkEepWDTfNRg9adPqP705/D4L7lS2/z6csLfnogR3OjOJ4nTIh/oy70GP92s8bRt4w6OSN78PaPv3jA+vhZUBEXBWakKP9DDF6Srjzn3Ur7rCjTP9TAkiVI0Q2W37fB0tcyTtiMApSfvmB29kSICkd5qt6pC2r3/CUlrj6txwmFfpOJ6QUypVKJeMUXcQ9Nlvayj9t4RHb/Gu1io2YxKmcr2KvrOY5L6FjfThOOPuqCao7NZt0UXZKtol9cEN6cEt8MidyjvQNJym0GY0vUibqdRMQYrW0KM0HYMKhqowfBeF6M7lsD8NDokbgvPz+51IAtKgxyjyX1SPFnEkOfA1Jw1lwcyfrxPajs6NUNBubuPCtIdG6NelbiiBuNImGR704U/qSJvGsuGSinokw669/ZBmmUI0oBVwU8yxtJjmEu7dUUpSAWlmQfh9F6c9veLSFaM05b3Qbm0e+57EEeQpZRUVVAa5D4oh54WAXylUqHKszRFqPKWRnl5AJ5A/bhFgN+yKMFSFXRFCBNKcVKIEUrzjLnyTysLf6y3819VEfrRY0nJMS8p4iTky/a5cDGXkhDShE59k4OGjR9nDP2IcRDjDQO8YcBXifD6TKKEX2zVefT0v8atNtmq1jAqix1D5MVi2R0kxNOQzsTH/eSarYc/pbKzyXrZZKdp87cfTN6dj6S/J2I8CJiOQ0Y9n6OrCX+/WubTrRrPVso8bu2y9uIA9/Ev2PjiA/HZW8LTIxEPcHGHdzPFv/OJpzFxkIjHqShIqq6i2SqapaHbGrprYLg6RtlAcyw0yxB3hoaOahkibtgQ//UlVWGeZsVbGiek4YwkFGPHNIyIpzNm45mMd4iYjSPiacxMhuzlRSfnzuWFx2nZVDbKVLbqYqf1eB995zGsP2JW3+bEi3l/HvC1NOeeXQvcTzCJSCJxMbArZdH9rJb5+cMWf7ld59NVl3XFR3krKAu3v3vH3XfXTK7E/41qqFTWy7Seduh88YjyX/5XZA9+xnls8fdnI/7j4R0vpcIuiVMMW6PRcvn5wxZ/vdvgsxWX+uSM5NXfMPr6G4ZvzwgGYl/itF3qB5s4z15QevA53VKZ13ce315P+NCdEswSFE1hU7LhPlutsFM10K6/ZfbhJSMpRgAw6+69Mdz1TOHV7Zg3spilSYZt6+y2HZ6vVthvWrh+l/TkO6ZHInMoCRKMsoG73sLe2StEDYf9CR96Pt3xjDjNqNo663WbnZrFiqthTK6Iz98TXHaZDSZkaYbVcjHbTbTVHeLKKv1xKlV1M/woFemrji6J22KXk9xdSVm1WMbrUpBAdQV/rjMMxT5pWdHWtHUhwzcUlF6PRIbX5fsko1lfiCKWxoG5P6nuLEnDpz2y/g3JsH/PZKtWm5RqHWZ6meE4+Ah4qhU7rYqhoA4HxONeEeJXUBZqLVKrhif3ScvdXA4ddfQSij8h84YCepqjfgpRgEsgoaP5CDxX1RXSbj8HpopzkFMOvrcPyruoJUGELUUNy6M8ZAGb6wIVNEvvU781VRRBTQEVOTGaz5mXxPXzn3Qp/kd8zp91Efq9UQ4/dLKkvDCP9UbRRE5GlpLNPBRJpt1s7hJlDl4kcoPeRyn+eIY3DHmVZvjyFyZK6zxc/Qz3LxxWLRez/i3my2PJhJvh98TdXxYnNMY+tcmQxie/4IvVpzRsYaJbqVp8fTrk7tbDG4bEs5RJPyCYRIx7PseXY36zUuaTrRpPOmUetVzW135Cc/tzys/OcbvHxOfvCS8v8S5u8a/6+L0p4SAk8mKSMCGNMglilfNkpSTUQYZCSS3J7KClv1O+f+7mmcgUSqOUeToXI8dAjB7TKC2I5HnMQ34IyrbILrIqJlbDxGk7VNYrVHZWhHJs+0DcoTf3mOhVrqcxbz4M+e5mwqvLsSRD+AReRJx7RCwTuyx2P0+3a8WO5qBh4gyOSd/+Pf3f/Jr+yyMGHwZ4Nz5pJACi1a0qnU836Hz5COvL/4pk72ccTeb86nLI/3XY4+XJEG8UkiVZUYB+tt/kFzt1Pltxac1uyN79ism3L4UQoTeVkd9id1N+9gz1wQvGzhofbn0ZeOcxkGO4tuxcnrRdtqoG5vCM5PgVk6OzYgynu4KQ7e4/QNl5xtBocHwbFGSEmaRkr9UtnqxVedJ2WbMVlKMjQpk5JMQIKma9THVvDW3nMUlji+4o4XgouqnREmdup+mwW7dpmSWU7hXRzRlBb0QSRqhLiJ2susIoUeh6IXf+oguyDZWWY7BalpifUa8QJGRxgmoZ6LWqICQUHUjMZCZ8OXkX1Mp9Pf6AbHQns4sW+yS11ipEESMvZCx3mfn30Jb5STVTRekJaXc09u9lFymyC5rI72EYLPKTlkdxWuQJavdkSBpI0odtoFTqlNw6mVlmGkSMZknBu8u7mLKpCml3OCGRU4Mi+kGmuM4Nh8BL8WZJ0cksUxYstUQpFkWkICVoRhFCJ/xBuaggK7qg/PNFdMQPj/Jy1E8+ysvmc5S8C1IFPSUvQGKy9H0Lxx8zivvH0uf+rIvQH3rcO1ElhZKigZpBqkFJEXJkf0IWRyhRiAbsNHZJsmrR5p+lGVNZiA6jFC8U89/RRo3nnX1aP7Vp1VqYjTJG9ZDhhz7BIJCA0gFxkBBNprT8MebTPg82nlHZqbFSNtlq2Pz9UZ8Pl2JX5HuRSEcMIqbjGaOez9nlmF+1XR6tlWVYmsNmdZuVJw9wH/yU2viKyu0Z8eURs+tr/OsefndI0PMkKXtGPI1FwQgSubdKyNKM7CMF3HJ0w8dxDj8U9ZAfOerHVoUqR7M0rJqJWTWwWw7uaoXyZofyZhtjbQtt6yHz1jZpfZOLcM7FOOJw0OdN1+Pl+YibuyneUKB/8uKT+34qDZuNtQp/sd/ky40qT9oO64qP+uHXzF7/it5Xb7j79ozx2YRgIG4urJpJbbdK+9Nt2j/9DPPFXxNvvODtIOJvz4f8zWGv6EzTRFCx8wL0V7IDas1umL/7FZOvBBdu2p2QRhl2w6K8vULtyQP0R18StPY56c/47tbj1eWYa1nUKlJA8GylzH7DppFO4Oods5N3+Fc9El8UDnulTvXBOvqeiL64Hid86Asywkiq4WrSE3TQtFkv62j9U0FYOBV+GgDdNXE3O+hbB2SdB9zOSrztTYvMoTTJqLlG0QV1HA11eEFycYh/0SWe+MBS/PbqNml1lf5UdEFXw5BJmBQdSEvKsvVwJAQJy7scSbtW6gvO2yCIlwyuehHZUDUUlMFAiAkkJ04pso/kGE2y5oYfAVMblgSmJj5MFt4gkP6kaq1gzY29TCr7FjutuqPTtPR7+yShzBMpsJploJTrZNZC2r1MWbANteC1KZEvpd2CujLPMqFsk9EPs6x0L0QPuMebU5JwYVJd9hfJIpJjekQUuXgd6uqyvyiAWXBvlKcYwuSaFtERuSACdE10QbqkyZRSsTP/l/QFfXz8qyhCf2iUw+JQUFUD1IS5plPSNOZpKnYb3hA1nGJlKfutfcKtGiD4b8dJRuBFeCPRsfx/ZglXw4C7vSY/3Vhl6/P/J7XOJmb7P2K13jA+umFy6RFNI2mGjJgNPJo3d7iPj1h9/FOa64/Zqhjs1W2+Wqvw1emQ8+sJk0FAOI2JQ3EBzvOKLs5H/KbRZ73l8GitwqOOgFSulg9oP32C+2hKxbujMromvTkj6V0xu+uLHU1vxGzoEY5EQYqmEUlekALhdcriDEUWplQy9kQ0tzhzotBIpIfsqBRdQbc1NEvDKOuYVROrIVRUzkoDu1PHXFtD62yiru2SSsL2VZDSncYcHY446vu8uhxz2vMZ9318SZrIx26aYWC5elF8XuzUebFe5bMVl62yit59S/zq77iTpIW8+0nCBFVXcVcdWo+atD87oPrFlyhPf0G/vMnrqym/PBvyy/c9Lq/Fji6Tqabtjhjx5R1QJ7gke/t3TL76Lb2XR3hXY6mus6g+WKX52SPMT/+KeO05R4OIr67H/O50yIWUY5umxm7b4ZP1Ks9Xymw6oJ6+JfzwLaOjq6JwiM5FIH6y9SdcBfD6bsrbrsdVPoaTz/VspczDpoiNyM5f4x99YHrdI5pG6LaGs9ak8mAbbe8Txs4Kp7cBR7Kbmspuar1ucdB22W/aNEohpdtj4ssj/NsBSRihWQZ2s4a2usO8sckwMzgfT7kchwWdIO9A1ismTUtDubshub1g1hf7pFyQoEhfz3CWcTuNilFcrqorBAlpQMnriQKSo4ZkF6Q0V4XBdZIV3qACNeQarMhOTJlek/au73mDCsxPuYWXafSDsBjFgWDN5f6kfJ8U5dRuqcxTy2UxirMFKkiQw/NuTniLxD5J+JPSUY/MF8y+ghfnVphbVZFKPEvuS7vVEmUz3ydNhapuFi72QaYY5aW6Q5As9jnZfF50UW5uUg39AhUkXkj60ijvvj8IRBdmSYOtppQoRfE/mRn3T+Vv/9kWoT80ue9jknZuxEpRUDWDuWaBKkyX81lI5k/IJkPUYIo1z3jSPEAtlYpkwZPLsdjh+BG9q4y/l3dRXpTys80au5tf4tpVVhorOJ1vMd+eMT7tEwxCgkFIGt0RTXwq1z1avWuMx5fsrj+is7PFXsPmUdvl2+sJX58O6cpOIPAikighmASE0whfFqTj8xF/Wxdm0P2VMtvFTH+T+tYOtQd/iT7tYfoDquM7oVgb9cgmQkAQTXziaUA09knDPMIhH7F9P8pBURU5tiuh6KosPDqaa6G7FkbFxWyUMZt11GoTpbGC1haE5MxtMVVt+kFKL4g5vRlwOhRu/5M7n8EwKNh30SwhS2JKiopumUXxWWm7fLJV48stgbbZqhg4g2Oy33zD5PVX9F8e0Xtzg3flFZQBs2pQWa/Qfr5G54tHWC9+wXz3Sy7mLt+eT/i7syF/+77HoDclnIoLkVMx6HTK/OJhi/9ir8mztk0zuCJ7/UvGv/st/dcnRQEyqwbVnTatT/Yxn/8lycZzjkYxX99M+PpiJHw8swTNUNls2jzfqPF8RUQ96LdviN5/zeTDOcHtUFzkHAt3s4O19xBl66lQw934vL+bcnI3JYhTDInmebJW5WmnzGZZQ7s4JjgRYoTZ0ENRS5j1HHQquykv4V1vKropKUZoSoXeftNhxdFQB8cyQvyOaLzogpz1Ftr6HnFtnd5ERIhfDQMmYYKqlGiWTVZck5atY0ZjGN7I2AfhDTIqDmq9idZeJ3JbjKcp/TCWBldx8W7kBldDRQm6pIOu8OVI4rbuWsLXYzfwUoVROKMfLICpOaVhWZCQLBWx3J8k9kmL6Il8n1QYXC1hM1D8AdlwMQ4EMYpTy3UoN5lpDtPpfcqCIaXRRXTEcELqDcn8hdFXsRzUSoPIdAkCQb724wXqx9aXklA9T4zxlvdBlqB235N2p4suKqc0mGpJREcE00JiXdJklLfukKjW0ihPXCHNJcpDvg/6MULCvxRK7s+2COXHD1XZ31eAQNCgS6USqmow10zmmognQFGJJZrH8CboUYj7GJ60HxZFSFVKHCslxv2AWRCTJhmv5HhuGMZ8sVbleWef5osKtcYKVutXGNUjRkeCORdNI5KTmNl4RtgbU7u4pfLoPe7DFzxee8LagzpPO2Wer1b47mbC68sxl11vASeNUwEHnSX4XsRkENC78Xh1OqRVt9lq2mw1HdYqJptVi9VyjYrboNJ4SPkAtHBCKRhizybMp2Nxl+WLqOMc65FFMWmcCDFC/surKII3JY1ueaRDyXZRnAqKW6VUrjE3q2R2TWBQ0hLjKGU8y7i5mXHt9biQ7vzzfkBvKHZfoS84d0mUMM9SSoqK4Vg4ZQOnarIud2LPVys8XymzVdEpB12U92+Zvf41/ZeHjA6vGJ6M8O+Covtx2ja13RqtZ1s0f/IC45Ofiy5lnPKryyG/OhnwzZkwucazhFKphFs1izHfL3YafNqxqU3OyN78HcPf/JrBqxMmVwvKdmWrSfPZLubzvyTd/JTzUOObmzHfXI750J3iy9FZp2KKqO6VMrs1E8e7JDl+iX9ygn/dIw0jVEsICCoPttEfPCdq7XE1iL7n5WmWDQ5WyjxqOayXNdT+CdHxKybHl4S9MfN0XozhrL2HsHZAL9E5Gk750BPJq1GcYpsa63WLvYbDVsWgknpkVx8ILy8IugPSUPiCnE4DbXWHrLFBPypxMRbG57wDqViaCK5zDRqWijq8I7m9IOoPJaxULSTRqdPESxWG4YxBEN8bYdVMGaBnKiiDEbE3JBpPi4t3PkZLpbn0zo+YRslHqro8/G5A1r+5V0AK6netQ2yUmfjRR12QKIQrZREjrgzzfdK06GJ0Jy+ENbwo5W4ayZG9KMaOzO9xdQU99sHrF6q6gnRgC15bVDLw40gmoS5UdZYqAugMEjGK8xfREUq+D5LS7jxKfCGv/ojSIKMj5kkkZOH3gKsLXlw2F4kCuipizDWlRCmN5E4o+0cXnD9FCtGffRH6+PjxEZz8d7nHmM/nRFkJw3DITBfNrYplITAbevjdAfbQw52F2M9Cnq09R1cbOLrC31oaL9Uhk4EoRJNBwHGaMfJjYXKdNfhspcnW0/8Ku7HCSuNXOJ23DN6dMTkX+UHTG5/ZKGJ6M6FyekPt8Jjyk8c09j+h2t5j66DNp6tlDrdqvL2bFqMqbxjgT4SkO4kz2TmkQlV353Pp6nxl61TKJmt1i5WqxUrVpOMa0rynU7PWcaub2E0xd7ZU8QunxCGlNF7yT32UH6JqQp6paMxVnbkuFqNhkjFLBbLET+b0hzGDqzF3fkR3siA03E1mBJMZoR8zC2JBaVgqPKqmYtgmTtmk0rTZ6bjiwr1a4UnbYc3VKYd3KB9eE73/mtGbI/qvTxifTZh2p0RTccG3Gxbl9TKNhx3aLw5wnn9J6eAn3FmrvL8J+dXliF++73F2LRE/0mvjVE32t2qFxPtJ08LtvSP57pcM5ZhvcumJAlQzqO22aL84wH7xC9Kdz7lMLL7tenx1Oeb15ZihhKfmJINPVyscNCwa8QDOviN4LxA/0dinpAiaQXVvTcix2zLwrjfl7c1EFI40o2xq7LYFaXu/YVOLR3D5lvD4Pf51T47P9GIMpz94TtTc5VyKGk7upnhyDNcsi52SKGY62vUbwrO3hbS7pCqY9TL2xgra5gFRbZO7QcTZSHRBXphgaIrogsoGq66OmwXQvyDtCVRQlmYYri0yf1rrErEjzKVD2cXkHYhQ1amSuC3MpancwxgyuI5qm5kuCshIdiCwGKOJ7COxT0pGvaKAiC6oXFC/R7OUG090UjnxumzpxT7JKcWUvJ7YB0llXi4vVxsrxG6LiZctdXMZtqHhFgZXBSUQqKCcspDn9yiVhpB2y1GcN0vuUbfLktKgzDyxT5Jx3KU8QM+tkpkuQZIRxFnhL1JKOaVBKaTdzIJClICiFJ3UXEY35CIruN9FGWoJ4khcB+A+vPSfuB/6Y49/VUXo9zHk5kiyNmLHMZ9DiTlJSUE3XDKrhlprobsXzNNU7E7kyKrmjzGfjnm08wX2rvD61Byj8JGEfiRGZnHGL2cJfW/Gnd8Uhsb2c2o/bVBf2cRZ/5q7r98zOb3Fu5kKWfM0Iuj5jE97VA4vqD54TeXBNpX9T3iyesDD/W0+Xytztl3neBjwoSdC4i4HQXFBT+KUJEolfifB12ZM+gHdqwVSx1mKbWiWTeqOjmuIX/ayqclFqIKlWeiKgqLwvSiHLII4y6SvISVMJwRxymSWMpYI/ZH0fORIoCiMBc17lhDNxPeZ5QtWRUUzNHTTxLR1IbWu2+yvuIX4Yqdmsl7WMYZn8P5QFp9jRocXjM7Govh44vkMV8ddcanv1Wg83aX+4lP0pz8TRldvzlfHQ35zPioQSqEvog8MW6fasHm2XeOvD1r8dKPKfs1Av/ya2e/+DwbfvmXw9gLvRqjgzJpB/YGQd1uf/iXzBz/lPHH4+sbjtxcjXp6PGE5mZNmcWsXk6UaVFxsipmKlNEW5+I7Z+68lFeH+HsjY/4T55jO6qcnhYMp7mTcURCm2rrLVtIW3qOWyWdZQT48IjxfFTJGFo7KzKr1F+1xMRGzEu5sJt2PxfTVyUUNDEBaM4RnJ6Rv8s2vZTWUYVQd3vSU4c81tbvyEo4EwuOaRD46hsl6z2KrICPHBGcnNKeGtCJ4DMCoOWmsd6mv4qs0wnN3zBuWy7FxVp/R7pINbUm8RG6GWhSAhk5y4vAO5z6oTkQ9WGsC4WxQQWOyTtJUtonKH0TgpAvhyQUKrvNgnqdMb0t71kiBBFfLyRod5uSV5d2EhrADZzVkaDVujoisovdyfFBTRE4pTRa21iO0aXiDIJZ4sBI6higgMU8PWFUrjcSHtzqMfSqYl/D26TZhLu9PFPsjWc1SQkHZn/qQwyJYUVYzypCpvFtzfByklClWdoZTkDaksPtofX3j+VFmsf9ZFaPmH/IfaxeU4DAVIEWO5+RxUw6Fk11Cbq6j1DkZFKMtmwymJHxJPA5q+jxWFbO9+jr1ZpyxVNL85HnAuF9pJlDIeBIWMexjEDNYqPGuvsfq4gdVcZaVcx2q9wzi8YHI+lPQAIZ/27wImFwPKhxdUto+oHmyhbz9ia/MR660tnrab3G5UOd6uczYKOJWmxeuR8BnNgqTgv+Vvs7AkFHaaQlfGNuTMN81QBWPKULENFUNTikhh9aMohxzhk0cHB5FYpAayAEYz8bULBl2UkqZzkkgCUYs8IR3dMoviaJcNKlWL3bYQWuzWbfYaNpsVg5YxRxuck339mujkNePDc0aHF4zPF8UnSzOhJmtYVLcqNJ5s0Hy6i/nsZ8x3PqNvtji8nfGbqzG/Ou7z4WrCeBAQyTGZXTZpdlxe7NT4i50GP1mvsG3GaMdfEX77N9z95hWjoy7TmynzTIoQdkQHZL34BfOdz7mel/m2OykKUF+GGdoSTPp8rcInnTJbZRXt7D2z918zOhRUhCxO0CsO5XwPtP2MqbPCxV24MKXKvUunKk2pLZf1sibyhk5eFYDSeZbdey5WDxiWHI6GophdDUPCOMXSVdbrFvst574Y4fyQ6fWi+zDrZayNDdTNAwK3w3U3EKO4oSiKRRfkGnRcHSeZFl3QwpwqjaESsTOUvp7+UheUZ/5UDAUz8ReChELRlqvq2sROA28s9knjMCbNMgxNSKqLUZ4vFG2pNyHLxAgs58Sldh0vgUGQFAF8Qpa9MLhWDQWlPyBaMrgquoZeKResudzgmsvLl4UVZV1FCUbMvSGZPykKoWYZKK6IfYhVCz+RAXrxx9lFCrYyF5SFJdSPYlnFPmdulgkmcaGqS+dzHEUtRAWmlHZns6BQ1ZFTu5ek3WG6iPK2NKGoM9QS6jyhlEaUspR5Ttdf9lv+gdfoP8XxZ12Eft/xozlCQIqIV50DcTYni+eUnQakEdrGA5zhLUF/xGw4xbsRRIJo7NOc+JQnA1Ye/hR7Y5emrdNyDX5TNnh9MWY6Fqq56XjGh0SM53pexCBI+HS1zPbqZzh2g0Znk/LmS3ovPxQKunAY4t8FhIOQ8dkE50Ofyrsz3M13VPfWsXYe0Ng8oN7aZn93k17o0g9SzsYhF+OQy1HIRd8vmHfFuEsCSUWBSMCX50EpFbnxilIS7ysLAcbHRw4znWdzkS0kc4XmGaRpVvz9csEBUXQ0Q0PTDXRTw7R1ITQom4L4vFJms2axV7fZqJi0bRV7NkTtvyM5eUNwdiggp8fXTC49gp5In03jtNj7VDbKVHdaAvPz7DPUB5+RrDzmaBTz8mTE15djfns84PbWw59ExfjNrZqsrggBgqAgOKxmQ0pvf4P/3a9FyN3hDWEu8W5Y1B+IEZ/9xV+T7f2Eq8zh2xuPX5+LAnQ7CO6RsT/fqvNitcJOVUe/+Y7o7W9F1MOVuNhrjoW71sI92EPf/5S4vc/FKOL1ncf77oTueEaazWmWhYDgsUT8VKMB86t3hKdHTK/FHb9qGTgrDdzdTfQHzwnr21z2Z3xY2inlniAh7RYjTq33gej0LZNT4ekB0b0IafdD0tqmICwMA077ftEFVSyNrYYgLLRtFbUvYKdBd1DATvO4BeqrhGaNfj+k683oeZGMjdCp20uEhEmvoBOkQYSiiBhypbEiBAkJjMKEcbiQROdFrGnrlDVQfNmB+GGxT1Kr0uC6tE8ahwtzaS5IqBoqqj9gPu6RecMieiI3uN6Tl4eLTqps6VRMTUq7FUqjYVEI0zhBURRUxxGjOFsYXHNcUf5ziBhxsU8qyVHcPJgWIXT5Pmdu2ATpvJB2f2xSzaMflDggDf0FOduwin1QPkLPUT9KqYSmip2WIVl1pMmP+oP+oeNP1QXBP0MR+h/+h/+B//F//B/v/d3q6irX19f/6Of8fVX545OhlMTHl0qi00yyOdEc0nlGtbJKKYnQd8dUpWpsNp4RDkIhaZ74NIYe9cEt1ed/ySebn9K0m6yXTdbqNi/PR1zdCZVVFCTc3nr8nRzP3UxnPG27PG6ts/7ZOub6PqurX1F590qMlo66TK48wkFYdEaTqwnG6x7u6hnl9TeUNztUtlcwtg9YW99jpbbGo+11RkmZYZjSnUZcTWb3YrZ7nkTsh0mxRypI2fO5LCTzYuSbB2rl9Oz8cdlLNP8IZpibWxWlhGLoqKqBZqjopoZhqliOQcU16FRN1us2m3Wb9YrJTs2iaWs0LRU7GqOOTkjfHZFcHTM4OmNyesP0SkSf50QGANVQcRsO5VWX2oM2jcfbgjH38HPilceczxTenU2KGPTTG4/JIBBFGJFgWm3YPN6sFibX/bqBOzwhffv3jH4nPECjkwGz8QxFLWG3HJpP1ml/8USIEHa+4Gym803X41dnQ74+HTIchwVM9JGkbP9ss1Yw5uLXv2L85h3exS2JH6LoGs5KnerBFsbDF+J7n8R8dzvl3e30Htl6q+lIs7JA/KjnHxZjOLm/ubdTau0XoNP3XekJms+p2XpRzHZrFuXwjuT0Nf7JCcHtoCiMznoLa+cBrAnO3Nkg4HjgcyW7oLKlsVa32axarFV07LDP/OaI+OqM2XBCFiUYVRerJaTdWWWVfphwNZkVmJ/luIWmo+EyQ/X7zAZiJ5VlIrJBKYs9TCL3SXd+tEQnyFV1RkFpyEZ3pJ4wl5ZUyYlrdKDSFtTv/uyjMZpGy8kNrooYB/auiYbjIrzuh+Tly4KEvAtq2Bo2MWowZFaQwzNUV3hzlHpbjOJ8MYqbyH1QHhvRtHVBWfBGwjIi1YGqzP9RynUSc7FPCnLUjzSplg0NWy8tSbuDpX2QjeJWSQ1XoH6iJWm3FEToihzFzWZiHLcsz1b+5fdB8M/UCX3yySf87//7/168r6p/+kr7Yxy5ksT25KcyzSBKM2aJKEjNxjZ6lmInMY0wIg0jRifDQtWWBAmzwYT2eIj16ZDN7U8ob3VoOwYbNYuvzoa8u/aYjMXC2x+HvI5Sel7E1VrInR+L4LLaQ5pfrFLdPMDe+ZbKznsGb8+YnA8ED04SDyIvFrlFZxOsxh3l1VPctUPKmx2czRW09T3aqzs0Kx32Oh2mncZCkebN6PmCln3rzeh7QtHkhQmjICaJluMb5kVHkxcoceoWRWg5bVVEOijFYz7m000N29Rolg2Rzlm1WKuatCRKZVWGlNVMFd3voU5uyI4uiC+P8CT14YcwRAC6rQk69apDdadFbW+d8pPHgtHWOeBWqXB8N+O72xFfnQ95eTFm3PcLVaGmqzgVg2bL5cu9Bl9u1XixWmbHmWNcf83s1a8YfPVS/D9cekseI5f6wzXaXz7H/PSvSDaecxKo/OZywu/yHZAsQIats99x+WKnzudrFXarOubde5J3v8F7+5bJ6Q3xRAgR7JV6wZjL1p7QnalLeyC/WPyvy6TUJ23BhtNuD4mPF2M4EJ1LebODsfcMJJrnaODJwhEWO6X1usWjjstB02HFmqOeHhNeiDFcPBWF0WpVKW+voW8/Jm7ucjOMOB74ReZQXjy2G7aIELc11OsroutT/NuhDM9TiswhGuuEZo3BYFZEiOfheffiFqZdkrsrsnGv6IJyNdrcbRKqNuOZ6ECWI8BrpvD1VE2RnpqOegKYmglCgl6r3t8n+VEBK10WRTRzf9J0cM+flHdSWntdJLj66T1BgqqUqNnC4Fo2FvlJC9KDNLhW6mRWjQCdSRQxChe4IkMTBcTRVcq6gjKbkEyGBWWhZIl9EJYrRnFeKqXdApiqa/lOVxEm2bFk1UXSXyTVrHPNFKifaXaPN1d0UZoUJUhl3NIL/g+8Mv/pj3+WIqRpGmtra/8cTw38njA7eSglhVKphFKakyFQM0kGQZISpXNWmnuYQDlLiyz60clQkJ/PJ0TTmNgPaQ49yp90aT78AmflKTVLo+0YdKoWry/HXPVE1ksUxlx1U0ZBTHcccrlR5WHL5UnbYXPzS+zGJrWdx9jbX+MfnzI+vmJ00mPaFeKFJEgJZIc07U4xT0bYjWuctoOz9gZ3rSUUTK11qqvbVCttMrfF40aDSZzhReJtGArQ40jGN0yjRXyDF4pUxSASv9TRR1EOsIhzUOXeyJaL1LKMNK87YiQhoh3yGb3An5QNFTPxUbxLlK7Mh7k5w7u+ZnrVE6Tt7qToBPN9D1AYYN0Vl8pWg/rBJu7+A/R9wVQbGA2uvISX3SHfXI15eT6iezfFH89I5Lzdcg3KNYud1TJ/sd/kJ+siDbWdjSm9+S3+q1/Re3nE8P11EfGgWRrV7Qr1gw0aL55hfv5vCon3b67G/Pp0wOvLCeNxSJaJEdx2y+GLnQafr1bZr5s4o1PS97/Ff/e6KEAghAiV7VVRNDafMNJrfLgNeNdbjM7UpdFZrmCzvSuS09cEp8f4twOyWLDM7JUG9s4e6tYjguomV/3ZAs0jnyvfKeWJtlr/iPhMFMbZwLsvRtg8IG3t0PVTjgcBJ4OgGA0ud0FtR0P3bkgvj5jdXDEbTorQOatVRe1sklZW6IfCW9T1Zvdgpw1LquJ0UO4k5mc8JSuMoRUZXNdkLMdok1laBNeVTSEEKBsKeuQJSfREXPyVnJZdrlOqil2ON44F8DTIgalqMQ6smAt/UjYdizGari3k5XZdFJDZ9zupmqXRdgVuSB3dFyTkwgql1mJu1wvW3DLw1DXE68bVFUrhWOyTloCpwqAqY8Ql+X4S/cAoTiuhzRMhzQ6XUT/CpJrptkhxTZP7o7wlZVwpjSglQhm3DCvNuXF/yP79T3n8sxShd+/esbGxgWma/PznP+d/+p/+J/b393/wY2ezGbPZrHh/PB7f+/ffG+XwAwWIeUappKCUFh+bZhSBVKamEiZz1uq7lJ+Z1DQJ97SOGB3d4d8F+He+yA4aB9R6I5q9a8znfQ7Wn9DcbrBeNtmoWby6GvPu2mM4DolnCd4w4F0Qcz0Mede0Odqo8rjlst9ssLazQnn1EY2nJ5TP3tI8fv89OGkSJiRBShL4hIOQyaWH8WGA1bjAbthYzSr2SgNnpY7WbKM2Vmg0VmhWmsK706yQmTWCZE6QZITJnFmaFbPlmcR/5OmK6Xx+bwynSJSHLtv2fIlqasLXYGoKtlYSvKyZhzIbigVtV1CI00GX4LZL0B0S9kb4t8Mi1iGexvcKj2qo2FULq2EJyKnkzFl7D9EfPCdt7DLUKlx6Cd+dD3lz6xXj0Ol4RhSIF5+mq9hlg1XpNfp8Q0BDH9R0tO5bkne/YfL11/fk8/N0jlk1qW5VaX3ygMqLF2iPf4bXPOBDP+K3V2P+/rjPuxsPfynP50ExgqvyqGlRHp2SvfsV3nffMDq8IOjJsLtWtQi7Kz14gVfe4Kgf8ubO4/XV+N4e6EAKEXZrFs1sApdviE/f4l8LMrXoXGpU9rdEemt7n8ulMVz+XDVnMYbbq1u4wR3Z2SuCo8PCE6RaBs5aqyhmnrPC2W1QFLOcbLBSNdlvOTyo23TMOertBeHVEf51n0R2U2a9graySam9g69X6PZDrrwZPW8RG9FylwgL3i3p7aXA/CztYZRaC2orghM3iorguVyZV7M0KctWUcY9ssGtGGNF0uBaKRdjtFGUSUFCUuQOFeNAOze49ogGC/q47loYjUZhcB3NhLBiKE22i05KwE7N2GM+ur2nzMsLoVJrE9k1JiORXeTNkoL0UDHVhbR7IqTdmT8pxoElI5d2V+9Lu9OFtLtiSFRQOGLuj5nLJFYUVUqzHTKzXEi7w1Tw5op9kIx+UKJA7IRk8OccFp3Qfw7juJ///Of8r//r/8rjx4+5ubnhP/yH/8Bf//Vf8/LlS1qt1vc+/n/+n//n7+2Qfuz4g6Mc5hklFJRSCcnUxo9FPHCcRXLmbLFVWaH99K8puxWMqovuvi/ulKNpxPBkJKjRQ4/WcIzz5IrWg8+orj6m6Wisl8UO5NvzEReDAH8yk4KBPD8o4J2kHTxsuTxsVlhZ+4L62lMqD09xLg9Jro6ZnlwIOOnSRTvH7QSDVHRINz6aNcKs3WC4BmZd0gvqFcx6WYwkai1Up0q1UqfuVsl0m7luMzctcESEw1yzhA8I4bXKS1AJsU8r5TlMSUQpnVFKQkrxjFLoC1y9PxEL2cmAeDKUUneBC5oNPcHTG0VE00iy7LJ7hccqC9acu+LirtfFHmxvA337EeqGCGO7yUyuvJh3vWFh6L3uCdTPLIyZZ3MUVcFydapNp9jPfLZS4UHDpBEPKL3+htnb39F/ecjg7SXTmylJmFBSS8W4r/XJA9zP/5LSg88Z2Ku87vp8dT3hNycDjm48QgkktVyDR+sVfioTcp80LdzBEenhb/G+/aooQPN0jtWqUN1bx338BHX/c/z6LmejiO+6Hm+uJ0W2T140HrVdHjZtVo0Y9fKQ2UdsONFRrWDsPSPt7NOdqRwNpsUYLr/gbzVtHrbFGK5jpCgnh8zO3uFfiwW+YoiYhsreBvreU5LWHpdewoeBz4db717cw1bTEagoV0MbnBCfvSW4FB0MgFF1sdfaaOsPSKtr3PoJF+MZl6Nw6XkMVlwxoq2bCmr/lkjuYVLZ3anl5eA6ARodhAuDa9kSu5yqqeIoKWowJJoMCmm4Khlv+Rht4i8UbXkXVLU+2idJQsLyPkmRwNSZXmbs3+fd2YYmOym9KITpoHuPNVeQHpwG46VCmHdSwuCq4RoKjpKihCPiyYBUUhZURxNmcFcYwadeKgppLJSqZVPDlsBUR1co+Z4woIe+8BeZubFcSLuDJFuidgteXH5DaagKhOGSMm6pBPwnGsn9yYvQv/23/7b482effcZf/dVfcXBwwP/yv/wv/Pt//++/9/H//X//39/7+/F4zPb29h/3RSU9e/lQZHa6qgiRAohC1JMsrEEQMwgsHrdqbDz8BVa1ScepYFTeFjLhaCpk1Wl0SxpG1IYe1cEt5tMRe6uPqW1WWCkbdFyD1zce764n3A4CojAmnArD5ngc8qE75VXT5vFahb2GkM2uVx/RWX2KfnBF8/k5lYtDkutTvIs7/OseQW8swKSjqACRRlNxcVcNFfXSQ7N7Bc9NYHUcdNdCc2101xLzdsta0A9Mi5Kmg6KiaPp9TUyuestSQVWIYyEdjUJS3yeehvItIJ74RGNfFpqoiHjIid5ptFDPLRceq2HhrlQEvHNvHXN9C33rgHlnj7SxzU2QcjWKeHM34N2tSBa9uJ0SeEINmKUZJaWE5QjSwo6Mwvh0tcLTtiMk0rfvSQ+/YvLdNwzenjE+7cn/Q0HYLq9XqD9cKzA82fYLrinz+nrKry9GfHU65KonvGGlUgm7YvJwVSSt/mS9yn7DFAXo3a+Zvnl5rwAZVZvKziruw4foDz8n6jzkXBagPPI7iFJsY7G7EVgeHa17KOTYp+di8S/v0t31FsbuI0prB0zMJpe9kONhcG+ntFI1eShHemIMd0hy+hb/oiu/t6zYKembAnTaS3ROR9Mi7iEXI6zXbXalkrEcj5nfHpNcnxa0bc0ysFpVtM4mNDaYlCxuvICridhJzpJMdA7Sk9OwVJTJDWn3nEzGJczTTMiyay2U+orYw4xi2QUlRWGtGEKNVjUVlOmt3AUNBd1AVdBdWwTXLe9hZkmxh6ks5Q5VTRXlTu6TfP97+ySB+fk+IWGZd5cXwiK7KMf0VKSwwm4wmS0LEgSuqDC46gpKMBTkcH9SjOIUS47izApBVmIaZYzDZEFZkF2MrSmCspBLu/MUVukPmusOmeEwk1OfwqSqlgpptlHKKEnT+jxNRQVQFOY/opr9lzj+2SXaruvy2Wef8e7dux/8d9M0MU3zB//t90Y5fHx8VMVLiB1H7g42NRWlBJMw4XYs0DKXI4tRmPCsU2Zn9TNcs0qzsYLV+hqzfsbw6FaOkoR4IZ7OmA0nNIZ9rEfXtHaeUes8pGlprFcELfvrsyEndz6TcUgUJExnM3wvYjTwObrx6NSEZ+bhSpm9us12rUVrY5X61meY4xus4RXJ1TFp75rg+g7/diBMteNAFCEvJpPprmmcMhvPCHolSspExDYYKqqhoOqq/LOKomsouoZqaAWeBygeizyhLJOQ04QsSkS2UJRJ5ly2BENNfpQ/pxoqRllHs4TIwG5Y2O0ydkd0PebaGvrGA0oru6TVNcZahVs/4fh0zOko5O3NhHfXXoH8yTufklLCsHXcqslK0+HpRpXPNyQotKJT9i7hpTCJ9l8dMzq8wruZEktenN2wRaje421qnz7HePoT4rXnnHhzvumO+fpyLCI3+j7RLEFVFdyaxaPVMn+x1+RnmzX2agZO/wPJm7/De/kt4+Mr/O6ILJ1jNRwq26tUnzwSz736lONRzLc3Ht/dTAo/kG2orFRNHq9WRNRDRccYnJAcvyQ8XUBFVV0Tu8CdPbTdZ2IMN4x4159ydCdk1EDRUe1LNI8b3JGdv7m3U1ItA2e9hb21jbL9hKmzwtVgxmE/4GJJjLBSNTmQooY1V0O9PiM6P8S7uCt2XUbVxVrpoG0eENc3uPVSTkchF0ucuZpjsOqarLoGdT0ruqCwNyrGaMJbtCAs3PlyQrEkSKguGUPV/oB40C0YbYquoZRFeF7qNgtBwkjuPg1JJmjYGlVDRY+8QpAQfzxGy4nbk2zJnzSXyrzl7KJbsU+aLAQJhsxPmrsNZprDaBwyCBf7JENTqJgqLVsWwt5IFtNJcS5KliNRQfXvZRepilDFVSSwVAnHzKdDMYrLTaq5NNsU2UUfh+DlKa5WkeI6Yx5H96+d8u2f6g/6x3z+P3sRms1mvHr1iv/yv/wv/7RP/GOt49KeSC0pGIqIp66ZGmVTw9QU/Cil70Wc9wOuhwHdacTzTpkn7W3anzWpdjYx136L1XrL5OwG72pE5MX4dwFxcEU09qn2xlRuLzD2r9jZeEprs812zWKtYvJeYnjOej7+WMR7+5OIcBoz6QecX0/4ujpiU3Lg9lsOOzWb9coGza1tans/w/Busbxbqjdnwtndvy1STaOxL7oR7373kcn4hnl6/1ehpN4v4Yp8P1v6uLyY5J87zxbvZ+n8R2GnqqFgWgaapGzbDQuzKpbW9kqjiB5X13YotbZIKyv4eoW7IOV6GHE2GnDYm3LY9bjoB0zGEugap0XxsRwDu2IUxef5WoWnbZfdmkE1GqCefWD2+teM335gdHiBdzWWMFnR/bgrLtWdNo1nuwLxs/8FI3eDo74wuX51NuT11YTpKCRNMzRdpV63+WSryhdbdb5cr7Bf1dBvviN+/StGL79jfHRF0BMjs7wA1T55LPh1q085nc755mYiw+7EuCvvWp6uV3neEYy5ctBlfvaK6OQd04tborGPqmvi3O0KZV3S3ufCS3jX8yUbLrg30nvYdtlv2LRKAUp3MYbLcUHOSoPy7kaR3nopn+vozvteMfuYsBCcnxH2RqRRglF1sDt1tM0D0uY2/VjldCRo2325C2qVDVYqJptVk7ajoo4uSK9PSO6uF8mnUlKtNNeIyx0G4+U9jEw+NbUlVV1P7GEmQ2L/o31SdYXErDIZijFazprLO5gC8zNa+JNyMYFRr6K218mcBpNUKYjby4VwOYBP7QthRd4F/SDpwY+KeBig8CflwoqS17v3c2iWgVppiOwiu4Y3iuUoTnQyFUso6uqWLlJghyKGPPMnktKgiwlHucbcrDCNM6HKi1PSTEyC8gA9W1MohcEif0jThcl/qQj9g5fd3/Nv/9gC9icvQv/df/ff8d/8N/8NOzs7dLtd/sN/+A+Mx2P+3b/7d3/U8/whXdAP/dClfDQnl26GqmFrJSqGQtsx6DoGjqFynWQEQcxISkq7kxmjmaQ37/4FZrlFs9bCPXrD4O0Z3sUd4SAkCRMmF2LROxtOqA/7mIMu1d1nOI0daltVdmoW23WbN12P15djuoMA35sRBQmzMBbt8njGoDflvWPwdc1iq2mz23bZqFrs1CzaTptGa5X6xgtU7xbdH2CP76hKUnY67Evs0FQUJV+My5IguVeY8rC65SJTyLJlUckLT5Z+/4wqkqpdMhRU3aCklhZ0bVvFcA2Mqo1ZF/spq1XFaLVRWyLaYV4Rd6q+XqEfpvS9hPPxiLNRyIdbMaLqDoIF5FQWH0VVMB0dp2rSadg8WqvwdLXM03aZ7ZpBW4vRbr8j/vAt08O3DN+eMT4VwpJoGqGoCnZDGF3rj7apPXuI8fgL0o3nXGcu76+n/O5a+oxupwSewN0YpkajbvNip87Ptut8suKy45YwLr9h9kr4gEaHF4QDcUdeFKBnDzGf/ox49Snn0zmvbqe86oqwu74XFZ3Go7UKj1oOe3WTRjJCuXrL7OQ1k7OupGMrmI2KwPLsPCZt7XKX6JwMA05HwT2aQS4geNxyWXM1tJtTIWq4WOyUjKpDebONvv1YjOFk4fh4p7Ret9it22zVTBpqRKl3RnJ1TNAdFKF3VquGtbGJurZH4Ha4G0ZcjGf3aNv5LmjFNaiWIpTJLbPbC2ZDjzScLZGuZRcUw93SHgYoorcLQsJIEBbyAqLoYoeiNlbI7BoTqQz1okVcQll+fsVQsOYzsYeRlIZ5moldUHnBiRuH2ff2STVbKPvyAL75WBSQe4IEuU/KnAaTkTCuC2WeYM1VDK1IcFU80YnlwoqSmhtcZQGKMyZRck/abWl5dlEJYx4JaXcOPM0yUUiWRnHBJJbAVOEPshSxRzI1SVmIfIhmgueIvihA0guY65R+DAbwY8c/pYP6kxeh8/Nz/tv/9r/l7u6OTqfDL37xC375y1+yu7v7J/06PwYyLVRxsgiVsoSybjEH0rmBN7MY+A5DP+YiiAm8GedBTH8aSSZcneedMgeNPZqf1nA6m2jNr7HefWByekPYm4hdUW9KEsZEY59Kb0z59gJ9+zGrW09ptXdYc0WG0H7LKfYby8Uo9+/k+UU3XY+X7ohmxSxI2RtVi/WyyUq5RrXcpNZ6hLUToIcjzGCEPekLkYD8xY4nHnFRkAIZ3yC8UGmUFjEOP9bdgOhwgKLLKSkKqiFiHVTLQLMM9IqD7toYVQezXkGptsR8XxoGM6dB5jToJzAIU/qjhCtvxMU45Hwg9hnXoxB/Is5FNEuK70PTVYyyhlM2WZHF51HH5VHLZbtqsmKmaP0jstNX+IcvherttCuAseOZ2KXI7qey1aT+eFtQFvY/J+485HgU883NiG+vJ0Lq3RcyewDLMVhrOXyyVeOnmzURI65FaKcvCb/7O4avDsXvwECMpqyGQ2VHdEDm05+RbDznfDrn5e2Ub68nvLue0F/qNPZXyjxuuTxsOrRLAWr3PbPjV3hn10XEdl40tM0D2HiMZza5GISFgm0oR2etssGDdpn9hiBtG8MzkrO3hBen+LcDUhlT7a61MLb3UTYe4rurXPQCDvuLndLyc+WEBfXuSMY9iNiIeZqh18uiq914QFLb4PYHOHN1R2etarFTs2nZogtKro5I+ncFqSEnXedd0HCy6IKCKCkQPfkITPUHQpa9PEaT+6RSRUSIjCdxQSeYyQjwmqUtguv8OyFIkKDRPDYil2WHJZNpHAtzaJSSZhl1x5CxEYbE/IhOKkcFiQRXF6XaEsDUQpCwEFY4MsG1ZmmC9BCOiMf3WXMly0GptkgsUYQGQYwvoaWaUsLRxRTH0RWUcMh8MiCbjheUBcMSwFOrQpDMCX8PZUFLRYBelku7DWsxhvsnjOJ+6PP+mOf6kxeh/+1/+9/+pM/3h0Q55H+3/LGleQaJUICUooCqYaO5JuAQZ3NBUkgybu4yZkHCOPb5OkzojmecbQS82KjySafK9oNfYDY2aay+pHz0kvHRFZMzcSGKphFxMCCe+PhXPcpn17gPjtG3DthYO2BlZYedmslnqxXerVe/N3YKfWEojYKYKIiLlNXL6wlfu4ZMxLRYq9uFIXTVNWjYLcqVDtWWiiPnxNpsghVOYOaLO63pWOTW51kls5AkjIp9zzzNyDKxCyrOmaqg5JEOhtgjaTKqWLHc78c6GGUyq0Jm1whLBl6UMokyBl7CXXciCA8yl+ZqGNKX6sGPC4+iKhi2juXoOBWT/Y7L/kqZ/aYjOWo6DTVC670jefma4Og1w8MLvLNuAYpNoxTVUCm3XSpbwiRaebSP+fhLkvVn3MxtPlxN+ep6wtdnQz7cTpmOQpI4Q9UEY+7ReoUvdhp8tlrmccumMbuldPyS4NWv6L8+YXpxRziShIW2AJLWnj+5N4L7+sbjpSxAt2NhPejIDujZSpmnbYdNO0O7eMvs7W+ZHh7jX/VI4wTdtcTebPcR6t6nzBq7nA8j3txNObyb0pXPV5cF7VFLAGBr8Qiu3om01Ou+oCJIb5Gzs4X+4LnABY3jYgyXP9eyT2mzYmB7V2RnbwjPBZ6nKGbrLfStA1g7YKiUOR8EnI0EtSMfoXVkF79a1qlkPvTOSG6FcCONYnTXFoSFlU3Syir92ZzuNBLEbamqcwyVhqUvxXcLukG2JEhQyxW5CxKy7GGY3AvPK0vMT8PWhCy7L4jbqTcBKEQRamutoDTceDNGEhWUd0FtR6duSWCqTHAtxmh5J9XZEAF8U0E0ycPvVEUpSA/VXJk3WJDDAUHtrrWYO3VmmsNkKjqpZYl6WXryyoaK0h8Vo7hcYagYVkFZ8CIxisujxHPKQs3SC8oCM3+xS4J7+6AfSyb45z7+1bHjfqwA/dBRylJKSSiK0czDNctsVhqUSi66IpIFfwN0pes+8CLO45SRH9P3hGHteafMXn2D9tMGVmcDtfNdsSvyr/rMxiHBICDyIsL+mOl1j/LmOc7WW/Sdx6yvHbBS32CzUueTlTIf1ir3RlG3OZw0TMiSTFAOopTQj/GGId27Ka9tnbKt06maYuZetWjJOzUxsjBxDRu7uoatieREbZ5Qiny0ZFaoYYr8kCxlHkf3GHAgVDYoKmgaqAZzRZN5TIaQeusWsWIIH4L0Ik1nGYNhRD+cMghietOI7jik50Xcjmd404gojAvC9lwy6kpKCd3U0E0Vp2zSkoKN/Y4QbOw1hES4mnpog0OSs7cEp0K56F3c3dv75KM3d9WhsrNC8+kuxsMXlLafETR2OR5FvL4b81J2P9dS/TbPQDfF/ufRWpmf7Tb4fK3KdlUXHqDD3+K//Zbh2zO8C5FmquoqdrtM7WBTiBA++Tnx+qecjAWO5+vL8b0OKL/If7JW4VlHpsTeiKgK/1h2LfGia7F39tD2nhG39rjwYt72ppwOAq6GQeE52Wo6PGg4PKhbdIwU7fqU8Py9iGiQMup7I73GLt1gztEw4FjyBxfSbofdus1u3RKg0+4R0dVRERshcEE1rI0N9K2HRI1tbkeCM3c+CIri0SobInSxbosI8dtLQdu+uVuSdjuo9Q5Ke5PQaTEcCwzVwI+KLqhWdB+qCM8bdWV43rRQ+SkV4ckRcQtC2p2TqjWlVIzyKoZSjNHSyWBJUm2jVOrM3QaxUWY8Eqo6b7aQVOfGdDFGE/6kuT9ZkB5cS44DRQDfZCYICfeI26ZOy86l3UukBylIUMuVQto9iVKG4aKbA7CXElzNLKTkD8kmA7JQ7KRKukHJrTK3yiS6QyDN6rNUGNEtQym8QY6mUJp4ZL4AppY0nZKikimqAJguGVX/mEncn6Ju/asqQv9QlMO9I8/KSSKUaCokieEIc+axU9/EUF2BNdcUvj3Xir1APEsZDXxeximTMBEX1U6Z5x2XzfUXmG6LcmsNs/2SafNCFKPuSMq5fcLRjOB2iHV6Q/nkAnf3Ldr6Hp31BzTqW2xVa/R8l/PVChfjkDMptz3vB/fApGmaFSO7KEiYaiG9vo9hapimVsQ2iEeDmq1Ts4SfoCJ9CY5uYmoWmlZHN0TRFbL10j0zb35usznMpYk1zuYk6Zw4gySZM/VT/DjCjwPxgo0EZHIoC7aIeYjxAyFNzxl2+Y4HBAooJ3znkNO1uiXUXS2H7ZrNRsVg1dEE5PT2jOTkDf7ZIZOzrmDNSepCHCRifyIVeNWdNrWHmzgHj9APBOD0JtY5vp7yzY3HN+dDPnSnjIcBSZxRUsBydVaaYvz2YqMqED8VaXJ98/d4r14xPLzA74rods3SsNtlGo+2qTx7KmIk1kTS6stbryhAt3nOkIxTeL5a4XnHLZ47Pvy6iOmOp2EhRHC21qWHZ5/rEI4GeVS3X+yB1us2Ow2bh02ZEXT3nvj0LeHlpZB2S2q3s9YUI721A8Zahcv+jLNRULDh8p3Snuw211yJCzp/j38mKdlphtko46430bcektS3uA3nHA8CTgcB3XFYjOFWqhabVZOWrWJMb5nfnZN0Lxb0b8cWu6CVLdEFhSnXk4g7P2a4FCHekNHbdUtFHfQLNVreBSmOGF9ljoCdTqScOSdVi7gF0QUJNZq4+M/9SUHLLjmC0pA5DcaztACmFpQG2UnVTJWymhW+nsKfZAtZtiKzi3Jg6miWK9okMNXWqJgL0kNODs+yDF1Ku5WaZM1NUjFSXGLNlWUxdHWFUjAiG/eKLqikKsUobm5V8JMML0rx5D4IFqo4W1uM4tJAjuLyG86SInyDJYX5/90Jff/4Y6McvnfMM0pZCuGUZNSDJKZkWujBgI3aJuXVBjVLo+MavKyavL6cMBgGRLOE6TjkQyxUdFfDgDs/koqsNVYedTCaG2irb3DWxd359KpH0POIp1FBQJheDzAPL3DXDylvtjE2d6msP6DS2GBrdYNJx6YfVLnyIi7GITfebDG68iL8IC4u5Fk2J56JKAVfmTEeKlxqguemaAquqRWRDY58tA2t+LOhKuhqSQZjlX4wyiGnKMTpnDgTiJ8c9eNJE2EgU2ans+Qemy6JM7IkK/h0sCB56/b3Qae7bZftus1m1WS7ZtGyNWpqgjq6hHdHJJfHTM8F4si/7uPfiZ1PXnwM1xCE7a0mle1VwZjb/4S0s0/faHA6jHh9N+Q72f30hiKgMEvm6KZa+H++2GnwfKXMo6ZFJxujfHhD9PZ3DF8K3I1/NyWLU3TXoLwuxnzlTz9HPfiSoLXP0SDi65uJTFr1uJvMUCRr7NFahc/Wq7xYK7NbNdBvXhO//x3BoQyWG/vFwr+8u7FgzKUmx8Ow2N3kS/+VqslB25WMObEHys7fEJ1JKkIQFaRta+cB2s5TouYuV4PvS7tbP4ILCi9OCfrCE6S7VrFTKq3uMzGbXEif0sehdyJ63hbxHL1LwvP3TK/7JOGMkqJgNsqonU1K7S1mTovBMOJiEnIrVXWGptCSgoa6lXdB16RSjZZFicj7qbXQ2utiBBZmdKezYg+jKSUqhaBBRZ+Ni+C6NBQ3BsU+qdYhc1tMxnEBTE2zOaYkE7Qdg5qlovhyjOYNFwF8FQe1sQKVRQDfIEjwwoQ0E8TtmrlMehgI0oMkh6t5bIQsphMZPfH97CKJxZIS9Zw1l6OcFLcisousmhzFCVVdfj4dXRQxRy9RCieC2i2p2yXLAU0TUw5VI5uLm9DfJ0j453IS/VkXod93/L4oh3vHPGOexMzDqbgjikKU61PUziX19X3KK4+pS5/PStUqEk7DqcgPGgwDvpmJO/7uZMajtjAYrjceUqusYq3vona+o3z2gdGRwPAEg4B4GstiJDKE7MML7M4J9so3lDc7aOt7NFd3qNfW2F1dZdKxGYUpd37ClTcrUkvz0dbIj4sLfx6zkBcAgCCPJ9eU4uKvKCUUTUFRSqil0j023PKR8+Nyllwq6dvLJG7xNb8PQZ0vzUVz2KliKhimWkQ7NOVua71us1YxWZfR5E1LpWmpqOMr1Nsu8eUR0dUxk+NL/OsefndUqN1yBV/e+bjrdWp767gHexh7z8jWH+M5K1x6CW9vxrzqevdk8mkyp6RQSL0frVX4YrPGp6tldqoG9uiM+Yff4b/75p4aMv+alZ0OjcfbWI8+o/TwJ4zdDU76M357Nebby5HosqTAIe+AcoTQTlUXlG1ZgMbHQuafj7qqD9Yx9j8lW3/MQKtx2g9515vek1Dn4oFHLeEHqkYDuDkkPnvH9Lov4KSyoNnbWxj7nxJLOfb7vn+vc8mp3cKnZtLAp9Q9KnZKyTQsiqO9uYGx94yotcf1KBICid60+L7qjs7Ox4SF8/fMrq+XRmguZruJtr5HWl3jLkg4HQaCVC27oLIlRstrZVP8Ttx1SW8vSIf94uKvV8oy/ruJXzIF7DQQXQzkIzCNdq5oGw5EJ+VPSCOBx8mNpakjuIuDICkECUUXJGnZ4uLfk/skbxFcJ5/jXgCfLISqohTy8Kqp4swlOXxJWKEY2oIcbjcYz4Q/aVnd58qfpRgpTvrFSBFAtUyUcp3MrBDrDlPZiRXAU0UpAvBcXUEZTUSA3ixYuohqxdvymkP9F/at/qsoQv+oLkhRlk6yIogA/oSwN2KedtFurjB71xj7I7ZXHlJdr9F2DNYq5oJ+MBJMuCiIOb0VZsOuNKPtNxx26w4bckTnrO6gr7zFORIquuB2iH/nE3kxSRgXLDiz2sVqnOGsHeOut4Txb3WH1toOdafJdqvD41aN0Uws+X8fKdsLE+I0KwpTtlQcst+zZfyYeFRItpeKSp4fBIvI9HvnvLQoOKqqoOmKiHawNJrugrC9XrOK87ri6tRNVdylTm9Rh7dkd5KwfX2Nd3FLcDtkejMR6CLpeSqpJXRXx2k7lNfruJsdEW29/wmsPCBu7nIxiTm69HjX8/kuLwrSowWg6Qp2xWSv4/L5Tl3GbjhsmAnazbfE77/63vitpJbErmmzTeuTfYzHXzLf/oS+2eH9XcB3tx5fSXOyJ0P02jLq+/laRRY4QdlOD78iOBS7xLwA2a0qle0V9N2nsClMpJfDiHe9KYe304IL1yobomg0RNFoaTFq94TZ6VuC6zuiidwD1SuCirDzmKS+RS/RORuHnC6N4YQc22av6Qg1nKOhXZ+KMdxVr1Dp2a2qkHZvHZDUtwTodBhyPFjkDeXPtVOz2KgYuMlEEBZuzgh744JXZ9bLQq5fX2eqVegNZ1x5s4LUkHPm8i5IDwZyF7RgvH0sqR7N0h/tgsqS8aYGQyJvSBZ+5MmRHcg4EBf/ySz9qAvSv3fxT6WkOhcTUG0XsmxhcF1w4urWkiDBHxTE7e8JEtwmM81hOhUS9Zw1V7E0yoYAppYNFWWwiBHP4kQYzi33XnbRKEwKf5CqlArWXM55LEUe6XTMPInFPkgXO998FJfKm7zSfwJywp9tEfpDTsXvY8nNSwooKnPdRLEcSoYFikoSRrIQZRjXfSp31xgPLmjsPqfSeUjdqrNWNtms23x3OSp2NUmc0huFeHIPcr0y49pz2G84bFfXWHm4idbcpLq2g739nuDsXOwwrvuSHD0r3qbdKePzEWb1EqvhYHdeFwVJba1R7WxSrYqZ9aOG4FFNZFHKZ8+DIGYYxLIgxZKWLe7oApknlHcwmQyrWy5Oy4Vn+f3i3ColNBn5q5REIJ6qlVBUBVWOAQ1dpWwt9lOtskm7bEhlkohzrhiKoGwrCeq0hzLokfWuSK5P8W/kqK07IOxNCAYh8TQijcT/ZUktYTUs0fmsNajsrOLs7aBvPaS0uk/c2uPGTzi7mvL6bsrbmwkfulNupe8oS+YomjC75l6jz2R3slXRKQddSm9fEr7/mtG7U8ZHV/g9QdhWDQV3RXDghAfopyRrT+jOXV7fTPlOAlVP7nxmswRFU2jLqO9PZQF6UDPQu29JD7/Cf/eq6ICAIqLbePAUZecTpuUNzscx3916vLud0h0LD09FonQeNB0OGjZrtoLWPSY+E3ugQFIIjKqLu9ZE334MKw/wzCZXwxkf5E5pWdq913I4aEgqQv+kkHYH/VFhJrVXGuhbB5TWH+FZTS7vwmKn5C2NB3caQkSy4mhoN+dE54f3CqNRdTFXVtDWHxDXN7mbJpyOQrqTBW27JqkEAnaqonZvSG4vSIb9gh5hVF3URkd0QarNeBpz5y8u/o7E/BR0g/Gg2CflOxTFdiWZQGB+pnFc4HES2SHmYp98n7R88Vd0raB+Z0uy7DyAbxnz07R1KksBfAUnzhaxEUqjUwgSlpV5yx4nVxdJtEo4IpE7qXmaCRxXpU6pLP1F07SQdguP0/1RnBJMmHujAnha0nTQdCE+UnXSOeRXzx8L3fmx6/EP7uP/yOPPtgjlxw8aUu99wA+ATPNlm26JkZFZRam1UCcDNKtPFiUCtnk7xO8OKF/3qdycYjx8wc7GE9oba2xWxdjoaODz7nrCeT/AC2Jms4TT2yl9L+Ki73PadjlouezVbdYqm6w930Vff4Sxf4Zz+pbw/FTASa/7+HfT4g7fvxOkbO9qgmb1MavnWA0Hq1XF6TSwV8Rdn9pao9Nep2XVBCm71cBP5nhRxjQWmSF5fEOeP5K/KLwwLqK689ju5QiHj6Mc8mM5zkFEI4tIB9tQRcKkJegT5aW5dS4jLRsKZV3BJEbxB6jegPnoVoSI9a4Ib+4EYVvGq+dhdokcqeRdj1k1cdouzlqTys4q1uYO2s5j5u1doso619OEk3OPw4HPofRh5dy+JMpE8XF1qlWLR2tlnm9UedIuc9CwWFFnaLdvid9/xfTtG0lZEFEeIMZv5fU69cfbOI+eoj/8QkiwJzGvbif8TgoQrkchSZSiaAqrNYunG1W+2KjyrOOyU1bRr74tvkYeTgdgtarUHqxjHjxHffACv7HH6SjiZdfjTde717VsNh0xApaIH+3uPcnxS6KzDwRdgeXRXQtnrYmxfYCy/YRZY5fLUcS7ns9x3783OtvvlDloOGxL2gTXhwtpdxCJIL5OY4ELau1xNfrhndJuS+CC1twln9LlxVJhdIS3aH2PtLlNLypxPhJJwXmRLVsanbIkLNga+vSW7PaMpHdViCPUioFSbaGtbBFVVxmGKVeT8N6Fu2pptKSkOh+BRaNekdeju+LCrdTbUpYtLv45Hifvgj7eJ6Vyn7QMKs33SSMvvbdPMjRFdkH6EjC1W3ic7nVSlTaxVWM0XpDDc8WiUObJ5/B6JHdX95h5iiW6wsxp4GdqwczLaRGWJkQNFVNmF/VHpJMhWehDloJuiOwh3WSuW6TZnPl8wdj8Y4/80/5siAn/3MePFqB5dk9mSEkB1SCzxI+oZAlqFGJ5w4IwENx5hKNZQYKuj8bYg1vKe884aO1T26ywWTVZLZu86Xqc3Ini4wUxXhDzIZZhdsOAs7bLrpQWr7kbdB5uo608oLp/ji3hpJPTLtPrXnHXnzPYZuNZAUvVzkeY1S5m1cKsl4U8tlXFaDREIW2sUK+1qJrCnzN3XRK1XMimRVzDIrohz6ifJRlxtoj7zeZz0mzRCYHoeFRFPpZEdIOuiMecwls2NCxNwZIObFtXsJU5SjihFI5RBiPmExkaNugS9u8IeuOCtB0O/AJ6mhtnATRLQ7MF9sdZqeGstYpxkL71kKS2ge906E5jzq+mfOj7vJX/J9eDQOzwYplPZGs4FZPNhs2zjSrPpEl0o6zheJdw9h3h8StGb44L8UESJiiy8ypvtmk+3cV88gWl7Wd4tR1OBgJE+s3VuBjVpkmGYWms1Sye5R3QSplNOxMihDci6C43fZZUpcgZMh88Qd0Tcd/no4hXtx6HvelHRASL/ZZQr22U9UKIkFwdM70SXUIe9WCub6HtPiFp7nA9TTgeBJyNAvrerBjxrNdttmsWOzWTlp6i9c4J5RiukHbXKzibK98bw+U7pbxw5M+1UTGopJ4gLNycFmO4fD+lrSwICz0pRrgahcUOpiYTT1fLBnUD1P4NUfeCqD/8fhdUbuPPdYZhJLugpcgHcylCfHrzPcabYgtjaWY3CEsmXhTf26GUJauulcctjCTdwB8v9km2W+yTvAQms7TYJ8GCd9fKgalSlp0XwkKWXXRBC+J2rsyrWBpVmdlVGFy9IZnvk0WJGEs6QpCQSEGCyC5asOYsadZ1dUVErUyFtLuQZms6immTqAYpitgBz+eolH6w5flDa1PpR/78Dx3/6opQcfxIAcpNV+k832WU0KwamqIKllyWUk1isjgmixL8nhAPRN4N8TSk0htT6V1h7HdZ2XxCvb1J09JYcQ026xZHd35RjCI5ohsFMVfDkJO6xUnbZbsmXqBr5Q6dnXWslYfY4yuM/SNqN2eEMugtuB0SjYNC9ZXFKbEkU/t3Pro9RnfvJBrHQa84WPUKZqOMVq2JO7tyHdOtYpVr1HWHuWEzNxzmZZu55pLMIUqF5FqIDoQCbj7PJdmLWbBSEndDCiU0RXREuZ/KUJCxDiGlyKPkByJYy5MGusmA1BsS9YdEE5/ZcMJs4BFNxF4snsYFCDU/VENBcw3MqoHdLovEz80O1sYG2uoO6toeSW2DoYScnl5MOB4GHN5Of7D4aLqCaesFaeHpqkgr3amaNOYe2s0x8dvfMT18z/joiun1QFIW5miWhrtaEQieJw8wHn9JtvGMvlbj6C7km+6Eby/E+G04kYgfS2OzYYsdU6fMs7bDhh6hX79j9ua3eG+kCm5yfwRnHzwuCA6n0l/07m5aEBFy+fRBx+VR02WjolMO74QQ4eIQ7+KW2A+EsKFewV5f+IHyPVCuYJuECaY0khZ7oI+k3aEMqhOBd030zQPmq/uM1TKXoxnHg4+l3RY7DZv9hlOM4eLz9yLuIR/DVVysVRH3sExYuJa07URmIK1VTbYqViFQSa9PhC8o3wXVrUUXVO4wCMQuaBAsRT5IUGndEpEP+Qgsx/xoliEu3I0VkiJuQexg8gu3o6uSsKBgExd0g9zYmdOylXqb2GkwCTMpqV4E8LmGKr1FopPKA/iWSQ+FLNtpMPYW0RP591ExBa8u30llo7uCNbec4Dp3G8S6gxeIndQ0EiNFW0q765YuYh/GkjWXxz5o+iKBVTNJMnFtgH95QUJ+/FkXod8baHfvHxYFaC4/Lz+5iTzBpupQbu+jGjamYdGwXFTLpHR4UdwJTy4GRBOfsDeicnOHe3COtfeMnc4+zfWmlBPbfGjYvLuZCCm1VNHdhgn9yYyTO59OVeQM7TRtUZCqLs36E1prz9EmN9QmN5RvhJs8uu3iX/cJe6N78QhplBEHCXGQEA5CVMND0dUFt821RFyDa6M7FnpVoHRKlit2YLaLYliYpo0loxzQpFBDYjruAQsl5giZJ0SSME+igrYwDwV5IQ2mzEOfeOKRTEOiiS/iHaaheF9+/3lRXS46JbVUdDxm1SzGj+5aC3t9FW11B21th6S2QVrucBOkdL2Yo+GQi3HIh65XFIHciwSi+FiuQadmCTSOjMrOMT/63VuS09f4krQwvbgT2KUgRTUU7IZFebNF/fE29sNnaHufEK885tRLeX/r8fJmUmRGRXJsWHYNdtsOn23V+WxVjPnacw/l9CXh298yOTpjcnpDIscwVqtK7WATe/8J6sHnzNoPOR3FvL6bFl12XoDW6xYPV8o8bbuCMRcPUK7fER2/lpHfwvlv1is422voe8/I1h4xUCucj+QeSBpJReKqJf1ADhtlHXN4Rnb5nujscCEgsEXgnbG9j7L9hLC6yZWkdp/KnRKIkd6DttiFrn2EC8rHcJprYa/URTHr7DJWBWEh58z5UYpjqMJbVLFYqwjCgjK4ZHZ7cU/UYNSrkrCwwiTTuJ2KCPE8ejsPrcvl0Kp3TTYQI7BCSVauoDRWhBBALzMaR/Rl8mkuJqiZwqpRM1XU6a3A/EwnixFYwapr4M91JlFcAFNBdEENayl3aDhYBPDFwpyqVWuFqm6ScI/0UDyH5NXV8ugJKe3+HjPPaTCapfTkXmyZNSdG40vF1BuK128qWXMygXVuOESJuDlVSiU5Ffm/hQk/evyhUQ653j2diwIUJnMiOfKZaBk1Zw13x8Us16hX6uiuJRbSt8NCOJBGgnUluHDX6DsXVHef4zZ3aFplwXNzDU4kz+u8HzCWYXbDOGU0mXHa83l3LaTJOQdus2qx6jZptjvU1p6je7eY0x5O95y0JzwRYW9M0BsRT/IMn1nBfMvilFmcEk0jSoMApYhuEHENqmUIsq8tHhVdFyMAXSswPIqq3ItzyI/lKIf5UpyDQP3E4lG+L5h0MWmU3oOlLo/XYFF0VENFd3WsmolecbAlYdta6aB2NtFWd8gqHdLqKr1M485PuTr3uJiEfOj5XPQFbHM0mRGFMWkiR3iy+DQrJvsrLo9XKxw0HHbrFptlsXTn+JDww7dMPgihiN8dE8l4B93Vi+6n+mgH8/GXZOuPGdkrnA9jvrmZ8F2O4BmFJHGKqirU5df7dKPG52sVQfMObyldvGL29neM3p0yveqR+KEcl8kC9PhTgeNpP+RkHPHd7f0CtMxxe9Ius1cXaavq7QeiY5E1VHQtFbfIB2LtgKnd5mYc86EfcDYMGPnLEmqb/abDetmgHA0p3R4TXxzi3w6JpwGKoWE3BZzU2HtG3Nzh2os5lNLu5ZFeIe2umlRTj9LtsQSdDosxnC3Hg+rGAVFtk9tRVMQ95D9ns2yyVjHZqdu0bUlYuDomuhW+oFJBJRCEhbiySn+ScjOd0Q/ipV2QLvN+VFxmKFNBuk69ycJPI7ugVF64B4HkxEklmaMvUk9tuctMRj2BvfooMyh2Goxl7lBexJaVeVUZc68GQ2Yf+ZOUSh2luUriNBgF90kPhqZQlby7mqmizcYCFTQZLLKLKtLjlJt1c4NrlJDk6r7lBFe/V3RSWRRLHJdAcKWGQzRXiNMU8ZL94QL0L1GS/tUUoe8dP4Adz7ug+VwYL+NMFKBlFMbE0qmbLp2NF2hWjUq5jtV5zfjwXM7up8RBQnDnSQHDhMrQwxn10Hce0+rsUWttU7dUNqsiuqFTFSO62/GMiVTS+ZMZ4TSiOwh4d+0V3dFWQ3plyiYdt02ttUpt7Tmqd4vhD7BGt1RkQUrGI4LemGg8JZmGxH5YwEizdC4eZbcEM2BaxDSUVEXQr9VSUXjyv/+h434RygGngsCdxYuvJyjcCzL38qEaCiVdLWId8rC9nLCdx5JrrXXUziZZuUVW7jBWbfpBSq8fczH2uRiHnPSmXA1DriXWKInTwuuz3Pnstp3CP7NbtwRtwe+ivD8UROmjD8VNRjgIC+Wb1bBw15qiOBw8Rt//lKTzkJtI50PX57uux3eXYvw2mUZFxEOnZhUm1E9WhATbGZ0yP3vF7P3XDN6eEdzKC7KuFQF+9sNnqA9eMGvtFyO4vAD1JGV72UC6VzdZ0WO0m2Oi41cE52ei04gTdNfGXqmjre+hbD4iae5yPRJF42wUcDsOixiAraYju3FTRHXLjKCwKxA/wnzp4myuoMk90CA1OJ8EhYDAlyKJtbrNXkPEjqw4Ktr1D6jhKiJ1Vd86IKltcOMnHA/DIu6h2E/VRBd0j7DQu2I29MjiGM21MZt11M4mabnDKEZw5iT1PkpSQQqxRORD3VJRvJt7XVBJkZRqyWeLrRreOC7GaEX0trE8Ausxl+zFLIpR8n1SuU5m1YiNMt7ovifHXlLmVUxJyx50i32S4N1Jc6pVwy+ZTCLBmVuWZddMnbZrFB6ne7LsnBZRW9AiRrNkCbqaj+K0wuCqDCekE9EFpXGCbtiUbBfsCnPDJUozkgwy5qj/OYfa/WOPPzTQbvnjcqHXsl4unc/xYyFtDuIUpRRSMzXZlWzRetrCWtlC67zCPXnH6Oiq2NVE04g0FkbAsDeicneDsXmKsf2YzdYOndVV1soG2zWbs5bDh54oRtfDEG8aEc8ELTv0I4bDgJMbD0cy4NbrNut1i1XXlB6aBpVqm1rnKeaejx4MBClbqmuyyZDMGzIbToSw4iNKdhYnRXGap6IzSbJFPtDH2UHFOVsCmC6yhLLvfU5+5EVO1VVUVwToLbodU4wIl3dX9SZqoyMc5vVVQdh2W4xywvZAELavJjMu5B7j/vmTcm0FTFvDcg3WaqK7fCyDAbdqJmuujjW9QT07JT5+hXcs/Fr+dZ9gEJAEKSW1JKLFZax49aFgzM3XHjJ21zgfx7y6HfGqK3xil4OAWPLETFsvhA4v1qs8btpsVfR7FITx8ZXoCOQduLPWpH6wiXnwCaUHL5jWdoqo72+vJ5x/FCi3L0dwj1o260aCdvue6N1XBKfHhRJOswzsTl0QEWTY3YWXiK5FSqhz7Mu6ZLkdNGw2yhra7XuSkzfMrs4Je+MCp+OuiT0QqwdC2j2K+ND3Oend79D2miIVeK2sofWOSc7eMrs6vzeGK3ZKnT3GapmL4ULa7UdpsZ/arFps1UxaZgmtd8ns8ojw5o5kGlBSVcy6iP4utbaI3A49yZnrTSOZeqrIwDmdpq3hpAGqd0fUuyL1BKJHk/HfeXLqaCY6h/FskVoquiCtQPSo/oBEGlxzzE+RnOo2GctOatmTU8nD86Q5tdhJ+X7xfagyhjx2W0xmudUiLrogkb6qUTWXPE6jBXG7COCrt0UnFWbc+Yud1LK6ryz3SUzu7tEiSoYlvEWGKxNYU+JsjlL6A1TI/4zHn20R+oeOHyo+86U/K3LBrpQgk6qwfhAXHoeLSchmxRJR2yuf4FbXcVa30VdeF7Lq/I42mvjicexjd4eUuxfoGw+wNw/Ybm7TWeuwWzPZbzgct13OlsZ0k2lEJItRPEvxvRmDvs+ROcG2dZrlBU2glWexlA3q1grl+hrV1efosY86m6AHIyx/JObMkyHpZHBvPyMK0mwpviERY7U4+cEORxQb9XsdDSyC8EqKUoz9SmpJjPtkpINqG+iOiHQwKo6YvVfqRbTD3BVmusyuMUEXBtxZxu2FT3cacTOdcTUUlO2+F907V7nuJBcbVCR1YX+lzHbdZq9us1k16NgaxuSK0vEJyelbpqfHBVw2GASF9FuYXV3Km21qB2LspOw8I2nvc+VnHF0J78/rq3HR/SRxiqarVFyD/RWX5xtVGfMh9j/q6SHR29/ivTtkcnYj7uLzWO61JvXHOxgPX8D2cybuBifDiO9uhQz7Q9e757d5JIP6HrecogDF70UBymGiimTM2Tt7gojQFoy5k+H3I7/XZddSZA31T8gu3xNfHomdSxSjWSbu+pK0u77N9ViYZcVIb3kPJKjmmzK9dX7z4d4YTrUFLsjY3EXdekTU2OZ6IAgLp/0F6LTm6MX/X8fRUAfCKBvfLc6fXa9gtNoFYeE2SLgYi13Q0I8lr050Lxu5qGHYJeme3yNdq45MPa10iKwaI4noGckIcWMJ0SMiH3rMJ325yJd0A9kFzd2mCM+TsRG5JyffJxXhebmYYDoW/iRFdkEyNmKmlxkHeQBfWnRBTbnXqhoqymRwT5atGBLzk++kZPTExyF+ZUMkuFYMFaUvOqmcFqEamtgXl+ukVrWIfUjkOFFcM8X18o/NEvqnHn/2ReiPiXIAcQLnc1BLJTRFnOBcapxmc3rerHjxn5ZNutOI/abDbq3G+oO/RK+toa19wFx5i396zvS6JwO5BCU79kNmwwlOd4hze4G2voe7uY9VXaez2mGjYnDTcDhtOpyPQ07uxFjpbjIjKlhwGUkcEfoRk3HIVc/HNDWaZYNW2aBTtVirmnLRadB2DRytiVNtU26rMtxqih6OUeIAK5iQ+ZMfjW9I5T4njWWEQxwvAu2y7/usROFRUHRdjBLknkmzDCHmWBY/uFWUch3sCpnhMrdEtsk0KzGZZXhxyvgu5c4XCbY9X1C2u+NZIXfPO8Z816NqJTRTxbB12hVTBK61XXbqNg/qNh1Hp+OoaKMLStdnJBeHhKdHBakiuPOKvY8QHtiF38jZ20ff/5S0/YChXuOsH/OuNy26n+tRWOQL5V8/H789XymzVdGp+Ndw/orww7eM353eU8AZFUd0WQdbGI+/YL71CWOzxclwxjc3E95JZd9yARIjOJEztG6DdvOe+MO3Iu5bQk7zXYu9tY2285ikucddonM2Cguidf6cNcdgs2YVKB07uKN0d0osi0Y8DVCkWEJf2UDfeUxc3xLS7mHI+TgsRnpFR1Wz2KoYtPQUtXtGdHlUjOHykZ69voq2KUZ6N37CyTC4l7pad3TWJS+w7Wi4syGl/sW9uAfNMu8TFlSX3mTGtSe6oChJi9jtFSkksJIppckt6eCWeDReSJnLdRnX0Cy6oEEQF7BT11AlZFQVkQ/D/MI9XnRBS/ukSZRJP15KmCz2STVL4HXKGijBSO6T/CVlXrVQ5k2iVEqq00KmnndBFUPBKcUowaCQZc/TDPUjdd9klsmd1MIn5RqLXZCZ+IK4LWkR8ywTmB+3wtwqixjwKCNK58yZo86/f6X9l6xDf/ZF6OPjDwlQUpUSZHMMtYQ9F5p5L9IYhCqqUiroAldD8WK7GodctwQYcqOyQ72ygtlcQ229xb46xju7JugOio4o6AqvkX87wLno4lwdo61uY68/YKu+zvrqOts1g15Q5rTlcuXNOJNhbrfjmTC9BqIQ5FDSUBMF6UJXMSxNULEdnVbZoFU2aciY4IakZZcNF8eqYLkKdlumJs48lGSGmoSUooBSGlFKY1GUkgiSWEQ4JLEwrf1AARK4I7VAeyAlnYppC1mnaggZuO6QGTbRx9EOfsag5xdUh54vZvh9byYYeEFMFCZLhG3xZUuKiFUwTI16xWSlaoodRNNhsypYcx1HQE614Rmcn0mJ8UVhBhYZTzHzdF6kvjorNSrbq7gPdtB3HsPmE4Lqpli833m8vhNG15M7n9FEhOKVlBKOI9RvTzeqPO2Ui/Gbdvue9PhbZoffMToSxId4OhOjPinBrhzsCRjp5ifclcqc9md8d+vx6nosTM+yWyk6oE6ZJy2HTQf07ltRgI7fM724XRSgZk1kA+09I1sVSrizwYzDvjCk5gy2Ztlkp2lz0HTYrBrU5z7q3THR6VvC62uiyVTQx+sVrLW1AvEzmFucjYN7ozPHUIWyriGQQYW0W5pSc5We7oqRnrZ5QNZ5wLDkcDEOOR2FxXPleUNbMvSuY5VQry+Iz99/L+5Ba6+hru8S19a58xNRFCVnDoSKrO3orFUMmraK2uuS3F6QjXv3OXO1FvNyi9isMhpH3PlRwWfL9yeFtygPz5sMClm2Ygs0ztxtkNo1xpO48OTk5tT7nZTA/GTTCVkYFnuc/PtIzCrjcXxPTHAvNsJUUXypzFvyOOmuLfZaUt3nhQtZdpE7tJzg6g8EcTt/DkVZjOLsGrO5ShAnxNlcFBtFFJ3/VGuhP+si9PE5+aER3Mcfl7eSqiqjCxS556hYxOmcMMkK7tpoGjEOYrrjGed9n5vpjIOGnHu3n1GurmNt7qOtvsM9P2R63S+KUeKHJH7IbOgxve5htS5xVt5grG2hru2w2tygXV1jt1oVsdaBeDFdezOuxzOuhwHd8ezeRXmezYlC0Rn4kxldTeFIV7FNjbIl3kR8g2CzVQxJKTBFDn3F0DA1A0OtYrglDKWELs+DLmMcChl2LslePr/LAVclhThbqAzjdE4khR5ROsf3Uvw4xpt9P9ph5EcF324cxAVtO4eg5kfe8eimRs01aEpG2mbdYq1sslW16Dg6LVtF93uovSvSyyOim1P88yu8i1uhJlwau6mGiHdwOnWc9ZZgzO09o7S6L4ycQcaxNLu+uhajt1z5Ns/m6KZWiA9yn9FuTURxq8fvid5/fW/8lofp2Z06lZ1V3MdP0B9+TtJ5yFWk8e7O583dlNdXY66G4RK/zeLpepVHLYcnbTmCu5EjuKPDogMqqQp2s4a7u4mx/wnZ+hNGRoNzSTE4GQghQip9N1vSv7Ndk8KG22Pi41fMbq6YDWTk95J4IFs9YGw0uBhFHA98LoYCTaVJBVu+B9oo65jjCzHSuzgm7I1JZHheQWuQ6a03o3wM538vb+ig6QjQaf+E5Pw90fV5EfdgVFysThNtY4+0tkk/VrmchGIUJzOQao5Bu5wjfjQMvwf9C9KekK4XtO1qE7WzSVJu0w9SutO48AaBkDLndISaISLEs8HtYgQmu6DcWDqaCXTWIEgIl7xF+T6plhtcpSBheRekNDoF7HQUCjFBJLOP3CVKQ00HdSCUedl0qRuTHV2O+VmWZeeYn7Y0yJbVbIEKkruxHPOj1loiNiIWhvYwSbG0BahHkdfSf+la9GddhJaPPwQJUWTkZAnMM7R5hqpo6JYmc3RsYEGNPrmb4wcxw8kMb5YwCRO67dnSiK7CyvoLjHIHq7OJdnGIcyUIy8HtQEqoQylcGONd3GK3brBXPhTy4/LqDk6lw0a9w26tyjBM6YcJVxPxdZZJ2Z5UyyRRWtCq81GVN41QNcFts3X1XmxD2dJEnr3MEzI1BUtTMFVFjCJVMY7MH9VSKY+Uv3dkWUo6F3dIcZoVj7MkY5ZmBXnBmy2wQF6BCBIvikh2OPe5deL5c2WbZqiYtk7NFp2eSI61WCkbbFUs2o4wHlZKEeroDC5FQFp0fSrOfXdA2B8TjmbfKz52q4qz1qKyv4W+eYC6cUDS2qOX6Nz0Y97cTXlzK1RpF/2AQHakiqpQqYpo9acbVR63XB63pa9mcML87BWhTNbNVZQAumveV8BJE+r5RHiAXt2K/c/VMCzuwPMC9LxTZr9piQLUfUt8+A3BkTCjJktU7NwLNF97yNhocOUlvOv5fOj5RQFaJmPv1i3WbAX19pTk/D1x95KwNy5UZ7myrrR2wKy8SncccTQMuBgtFGw1Ke3eq9tL0u4T4qtjIe32AxRdw6xXMNe3xEivscX1NC5iv/PubFnaveLqlOOxBJ2eEvTGJOEMVUrZtc4mpfYOgd2iNxIRJ7ee4MypSklkF7nCIlHXM9TBDbHkzKXBogtSGitk5RYzo8poFBXMxXzEmKNx8g4mT079uAuiLCLEvWIXJLqPZWl3xVRRghGl6YD5dLxILjWt4jlSu8ZkHN8DptoSrbP8fXxMy867IMpNYqv2vU7K1BTKchQngKkLWXYai9dGgfmxaswUi2kcFxHgEiiDmpP3/xN0Q/9qitDvO/ITlxegUpYsor2zBEPRaJoutq4XOyJLE4F2J3e+AJRGKZdyrt73ZvT8iDvf4UHdZq28Qmu3hVZbQ+0cozUPsS4v8K97BL0x8cQnCWOiaSQ7oz5G5QqrdYKz8h16exW1s0ljZYua22Kr2WK/XmU0yxhLGnB3Kgx0+ehqGUgayrt00SmJIjWZyugETUEtCc5bznrL/2ze+zv1XozD74tziJJUPgrW3DJ3Lkqy7wFSl8ndy81VSUEQtm0RZGfLML7lvVd+Qem4S3eDkxuU21vSmzMiSZgIuoOCNxctQU6/V3x2xF5C25ZjJrXM1SThw0DQFvLRWy48KCmle7ufRx2Xp+0yOzWDVilAu35D/OFb/Hevxc6pOySaRihqCaNqU97sUDvYRH/wCaXtZ0xrO1yMIt7c+Xx3M+Gw63EradgiydTm0WqFT1cr7NctVo0Y/eZNoYLLC1BJjszK22sYe89g/RGeu8bVOOb1rcfxQBSgRWETeT5516L1j8muhHjAvx2ShjMUXcduVdE3HqBtPy78QMdDwXPryQK0wPLY7NQW0u74/D3h9TWJDHczqi72xgLx00t0zkeB7FzC76nhNqumHMOdEV0eF2O4kiJ+VqOzgra+R1LfoBcknMmMrXwMV7ZE4F0enqdOrsjuLmTyqk+WZRiuhVptCiVaucMwTLnNKdWyw3OljLluaYsuSO6C7lGqc7xOnBX+Ij9eqOpqOV7n/8/en/tIkmXp3fBj99q++O4e7rHlVlXdzZnv+wRSIQiqBCgRlChRIoUXIxEjkSKpjECAGGkI8j/gP0CAGJ0alQ9DTk91ZWZkRHi4h++7226vcO69Zu4ZWV01U92ofvEakIglMy3cPSLssXPOc36PwcC2EvOzLRdL3Zo6x0bMkyQwFaBqTCJ6aiYD26yRLSdqnqSqILGcuhW07CoqSMJOlS17KR7HfnNa0Qlw6yHJEabkGFa/pz+RIeH/cey43xZoV33B1Luy1ZSlFGedhtCSCMhTsMMSvunA8bvwDZcG/iIRUl4o9hG16I5xhtUhIbtw18dN3cbbpouuf4tG4xJG5xb69T3spztEo0fsh1MlRvEuRrzbYv+8hTGcw/AsmMFHymbpNegXrT1As91HI6Af0G9aFN2wS6jkn4mQrHWUYHk4JWUfRU87TnPEMr4hzxEn2QuvEgkVALDv+Qk7J2vLGAeZF/QyhVueH+r8UnA4p2rHryTAtnwLXd9CS2yE930LgcVQM8WS4XYMvlkgnTwiESSJ42SF43SJaLVDvIuRhinyrCAB8AxYNdrMd7tNeK+uoF+9I9RP4xozzcX0kOJuucX75QEfJhSnvthGynatGxyNwMKrjouvLwL8ouPhTcPGwDdgLe6QP/4a4adyhyzeHpDFOQxHh90ixJD/9TuYX/1/kfW+UoifX892+PUzVVtr4eaquwZedVx8cxEoh10r34I/fovou/8/9h8+4jBdUgUkeHDBawq6w9UvcBCU7b+e7hQZW85tJGVbBtRZqwcUo98geaCoB9pZMohB2BeMueYtJqGG+7W0UIenWB5hApHprenDb6h1tiQHmxl4ytpdXLxV1O5qG07SGl41HbxriiTYxR3Sx+8QjU7bcE6vCePyDbL2LZaZKdpw4QnMtSdmgz2vJCzE43vEC7rr54YOs1ED7wyQBT3smYP5McZoF2F1TNTuVN3W0fNNNG0Otpuq2Ij8QOYSOcdB0EHutbHZ5+U8Kcth8sosyGQwwjW0/YLyeuKyCuKigslFDPlSVDByniRnQXWLgx+WFMC3XSETj0NVQTXxOBTmp7Rl+wIVRMy8+UmC68k5Aoqe2GzJXn5IMthiZ5AzMnKpVlwVg/Zbji8Jz48RpJ+tCP2Q4zOY6Rl6RksiaPEOxWFHaYK6CWM/R8fvot66QMPm6PkWBjUb72d7PC4OWOxon2ixq4hRw8FkH+O2LqgH9deo1fokRpf3sAYkRjKWQInRPka0icBme/DhAlbNhhl8gtUM4HQbsDoEJLXafVzUu+g6deSNJqJWjaJ6kxx7wbmSc5e1aNlRpZScpJ+eULKLinhU8EXFC9EN5yKkXtIKV06+1Q0KyWOc3uoitdURbcHA1tXMqiGw+BQ0ZlLP2mSomQz8uAY7LKFNiLCdzEc4LmY4TFZq7hZtwhPeHDcZnJoFq+FVOHNX0Pu30PrvkDUuMctNTA8p3i82eFiH+DAl1M9S7B0VeQHd4HAdA/2GjW/6Ab7qeApwWkvW4A8fqfoRu0ay+gGghK/x7grWq6+hv/3/IOl+hXEIWnKd7vCb560yIBAdgJZQf3nh4+91qcqqR3Ow8W8Qffgr7N/f4TBdVhZcm1QBvf0j4PpX2Hl9DLdfFqCbhiMevwHvMCHG3P23VGlsDyrZ1Or3od9+g6xxgyVcPG1JNGgOlCgBummQaPR9sr8Xzx/Jji1aZ7ptwe01YFy+Abv6GlHtCs+bBB9XL9MaXjdpDmQfptSGG8mZUqUNN3gN7eINIv8C01WMh3WIJxGdIh1/gwptm8/GSJ/vkS4qzsSae0pY2FFApOTMSSdaxzXQsnUEOii0Ti6WCiGrVjDbFCoCXFZBlqAb1G2aB7GFMALIBVfTODmHjCFfh+XSvAytU0uy83KelGc5WaoFqFSeYyVo+RIV5Fu6ijKvW0wluFajJ1SUuVPHVlxPtuKaYXMGpgkBkpXQS6kEXzh+qjTwn70IfemJnlQ/8m2Rnzq+ihxIU/rh2K2AJAYMQl/Y7QGu6lcIunX0PAP9wMJdw8HH2Y4MAwdiU003kWrRTVouhrUIN3Vy+XTqr1ETlZFxPYT99BH++BH70UJRo+lCmiINU0SbCNyk6AbTG8GsuRVSdp32a5pdeM0eXK+Jjh2gqNcRNYmSfUjK+IZdlKmtbflHzmfiNFOiFFWE6TzGASDjwZeOahprtdVXjQ8PhGGiapKQ0Q6eweAaFO2gxzuwcAa2WBPefjlFvJwgms0RzjcEPF3tkOyjk3abrHpMn8LRnG6Tdlv619Cvv0LRukJWH2CV6phuU3xabXG/DvHdhNh+U8GZK/KCXGGegX6dLN9fdz183RaMOUeDPvuA/PFvED78Bpv3FXu+oCwo+/XXt9Qiu/wG+8YrPG4pNuFb4bQbrUIckwwmZyrK/O9dBPijno8rmWP08L8R3/01th8fcJwsFTFaRX2//hVw9UslQL+e7U8ESLa5bpuOqIB0+NECbPoRiSIilBdnu9+Hcf0V8u4b7MwGJtuEIKebUIlG3TUxqNm4rdu48ISFevaJ7NgTEkluGrCaPozepbJjTw4p7tdEWFjsIjV3uW65uAqEtVtPhLX7DuF0gWR/hMbI2m1dDE5Ap59WRzxt6VwAteH6ogpqO2RGKOaPSKdD2i0SsRF6ra4IC6sYmB1SzA8lZ05VQZ5F0d27KYr1VLTiyiqIBQ2qYNzmZ1VQFXZasxj0aEN8tu0KRUjnICdaA5pHcQu7MFe27Dij/SS/sliqRxtlqZbzJG5bFMBXF2J4PKVll1UQ7QVxMZPKt8vTKPOgCS2g57IT55BiqhKXpRDJa+gPqIJ+KgEC/gBE6Px4Mcqhqt6METJBZAppnAN5huK4V2UqN+7AGy3oF7doDN4iaFyj7fi4rtkYBJbCxkgxOsYZRquQqiL/iFHDwYPocV/VbHSC12i0X4NfvIW3foY1+oh0OkT4PKMLWYUmnYvohmgTgU12JEi+Cd21hSgFsBo+tRVqLbB6G269Dc+tIbcC2sOpeYjh4JjmiNICYUZvj2mGQ5IjUm9zhGkmDAYFkvw0T0hWR1KQ5JxIZ6fiYzAyOhhcg8Up1kH+8UwOS9dgcwbH0ODoDEYWQou2YOEWbLWmHvV6jmQ9R7paIFruEArRkdDTasXDBHPO9A2YgchY6jUV5JQPXiELLhD5F5gfM0yXCT6u1vR9E0vCs22kEmel+LQEdPSbi0AN8K98A+ZmCO3pE+IPf4XD3b1y3cnqx/RMOL2G2jMyv/7/IWm/wVLzcT8/4v9Mdmr/Z7qJkBUFHIMMCF/3A3zVpjyg21rZ5ouFySGcrxVhwW7XEby9phbc5S+w8/p4EDMgKUBVKvbbtouvW0QJrydrwZj7NdmnlzvljLIvyAmH/juE3gWeNjHeLw542tIcCKAL/VXDVpHfbRZBn98jHr5HNB4rErQZuMranbVfYVnYeNwchR2bWnry8V3XbEFYMMBnn5AO33/WhnMHbeiXb5C1brCCTW247Wkbru2b6PsW+r6JBovB10Mk43tEs4WyMZuBC969UoSFxYbacNN9fMKZk+mtAc/B93Ok8zHy3Uo5/eROj4SMbs5mQbbO1JrESYT4foMiicFMA5rtgdfbyGTeT0SdjFBUQbbOUBeUBQU73cwVMJWLCoY1u+U54gTLY4q9mAU5IstLOuvYkh5HtluV0RMe5ahVzyHNGZbOwDXAYIDBNRgM5Q38ea/97PgpBQj4AxQhdXwhzK4AoDEd4AUKPUahW9AsB2AceZKqxVNtOIP19AT7+R7G9Vdo916j3rpF2wkwaTi4qtm4X9Nuz0RUQ/LPfBfj0T3grmajL8RoEFjouhdoXV3C7n0FazeDtRjCe75HNheD9emSkDuiXZclmaqSNH4En2zAzanC3+ieDTPwlDhpbgAeNMHcAG7QgOfWUBguhVPZtLdTcIds1EJ40pwYepnID5IxDgVIfD7PE9LUzgAX+UIyzsFgGkxOf3TkFOuQbGk/6XAEooOgOSyRbVdIdivEm72Kdog3B0F2SBRlW6KBZMWjO7oSHqddh9PvQO9egXevgOYlsnofy8LE/JhhNNrjYU2uLrkULEGysvKxPRPdgFxvbzo+3gnHV8/T4YUL8E8faO+lsuwab47I4oxo3w0fXr+tqh9t8DWOrdcY7hJ8XJZ7RqMVRXoAQN0xcN1y8It+Db/seHjTtDGwcxjP/wfpx/+N6NNvsL2XFu9UEBba8N7ckg378pfYWG08bQiiendWAfUbDt623ZOYCj75DvGH/32G5LHhDtowrighNWm9wmiT4G55xP36qOLDHVPHdZNel9u6RZHfzxT1kIwelGgYrq2s3UX3FfZ2C6MV2bGf1lRRSTjpqybZsfueAWs7OqE1pGEEw3WIJTh4De3iLQ5OB5NNUmkPpupcN3UHb5ouERYW90iHH5BMnlTondwt0i9ukdb6mB8zQViIKoQFSjvt+yK9dfukTA2JMFqoWZCYwSy3iXLVySrINyVktMTrJNsV8pDckqoKqrVpjhNmmAvMT5KX55BzHAk7jdd0kyLSAACQQklEQVRzNU9iNs2TWL1DUeZHAqbKAL5yP8lQ59D2i5OKTgFTBXR1HWZqwVVGmVs6gy5WOFQVJK6jX7zs/h0u2V86ftYi9KOjHOT/001ID3Ke59RX3W/ADxuw5Q6h4K6F8zXC+Qb+Ygaz/wjj9a/Qa12j0RrQvMgzceFZeNqGJ2K0Fjsw812Mx8UB9zX7hAN34TloBq/R6LwFGzzD2M9hLsbwJ4/IVlMcJ8tK+4moBumRhu4SSMqWB3CTQ7cNhcnRZXSDiHHgvg9me0QusD1wx4Nmu7Cqi6WMA7rIkzd0+ljuA537tPOsnK3lWek0jGjp9WT5VZAZ8nCPfL9FEe5PQKvVeIeXRAegGY9p6zB9E0bgwqy5cFpk4NDbffDeNVibYh0it41FmGG5zfC42WG4CfGwPJb7VsLtVm27tTwT1y0Hb7u+qHyIe1bLdtCnj8iG7xE+fCsYc3OxtS/uVpsunB4x5mT1kzZvsTLqeFxE+JvZHu/ne7yf7DBehXSR0mj+86rj4ZteOf9pa0cY4/cnDrhotVOJn/Q1bmG+/WPkg19gaTTxtCE7+XczCrqrtuAolsHDdWCiiQOM+UfEd3+tBOjcik2QUxF2t6KqZbKJcIzLpdkrsUTa9w3wxSdk4zuq5ufksuI2VYP6xQ20/jsk9SslGjIjCKCW3pVw6vV9smNrs08ntAZu6LCaPsz+NYzrrxA3rzHdnxIWpJmD2nAWOg6HfZyjmN0jk2048bhkeF5ev8BB9zDfEeh0KVrqklAtqyA73X+Btl0rd3piuRdEhoYsL9Qcp24TJ46tSica0gQa56oKkqmnu5gEKMrKKsg3OWq2SD3dlecokvjUzVY9R1TOkxyDo2ZLajedI98IRE81eqJOwNQjDHWOMKWfU4NpcHROu4RMA/IEWpHTruAPvB7/VMfPWoSqx2+N9AbUxbUAKN6b6Wqorl9kQJ7BiUoadbylhNVouYUzWSFYTaFfvYN99RZXjRs0ug1ceAZGOwtdz8RQbIDPdzHWh0T9mW4ifJrtP7MeD3wLHbeFeruL4OKXYDdTGIclLBF3nS0niJfk/opW2wr/LVast3gfg4UJIuxVZAMzdHCTGG7M0KHblmK50ccmNMuGppsqSRGGCY1xIiAwsaBWFaFcYnwyIE2Q5xkg6ApFmqCIQ+RhiCxJT8CpEqSaxelJxIOMdaiKjmyzGY4uXIMkPHImxhtdEp5WH5nXRuZ3sUiAVZhhMt5juInwJFo1o1WIxS7G4ZionSopPrLyedX2Smejq6PJY/DlB+RP3yEavsf+01AJgmy9GaL6UbtGN9+AXX2DqPMW432Kj88H/Gaxx9+IyPf1IUGS5bANjm7Nwjf9gOK4u4T48Y8TsGeKk5AGhOqsxuu34b19UzrseB13ywi/WexVjEWVOPCu4+HrtkvpqNoR+pxiHsKhTDWNwG1a1tX7t9Bvf4Gk/RqTY4HHTYT7dYjxJlR7N72ajcugRPyYu2eF+AmnZXqr06ZcH/3ma7EPlFI8QyWqW+5A3dYFnNQswJ8fkAzfI5pMFNPNDDzYvS70yzdk7Y41PG4jDLen55J5QwPfRMssiLAwvkc0m6u4Bwk6ZZ0rJLUB5rsUw02ImViYBsgg0RYJrk2bgy9myKZPqj0vadu82QVq1IpbbxM876kKOibZyRynZjEY8Q4sJERPHu5RZJnYC6IqKHObldRT2snhmqikBN/NLiLC/IjU0yLLaadHBN+lDp1jFZKQyXmSmknJc4jlVHkOw7PBvEBFT2yjHHMxT0qyAoZB6asnXY0sVZfQ7xOi38XxByNCJ8cXYhzyonxLA3cOw6pBN10Uhg3dpAtzndPF/DCeI94cEMU7xYTzJks4z/cwBm9Qu3oHr36Fbq+GC9/Ec8PBsOniQbTppBgdkwz7KMVUhNr5tn4iSG3XxIVnkiDVO6j1fgnjdkOCFK7hrWYqjjjbrFSFlByOyI6xyPRJy5yfJEV6kC8FZQNplZwg4r7pJ59nnNF8TPyfz14/KUIZzVGKPEce09fMzr52nuXI4lz8XfYiqZtxjUL4BGnb8GwYZ3MvvdWlyPJ2X9lhU7eJZZhhHeWYjY9qqXe0LkGnksIgETtyB6lbs3DdctWSpUT9NIoD+PoOxeQT4vtvcXgciZj1DaKNyGoRbUBv0EZw04P56mvor36FtHmLGVwMZyF+Mz+cVD9hkoExDU1RcUmb91tBrTZmH5B/+t+IHr7F5uMIx+lSXfSku895804RFiaJgbvFEb+e7fF+usdkUyUsOGqH6aZuooM9tcw+/TXC+484TlbIk4QEqNeAcfUaxpu/h7T9FpOI49M6pDnQuhSgtm/hsmZT2F1gnBgboslEERushqhaXv0KWfMVpjHH4ybEw7qM6laiIeZAl74Bff6BlmVHDwqaangOzYGEtXtvtzBeRie0BtmGu6zZJS5ocVfaxNVMyRWg0zfI6leYRwVGO5oFzXcxsjyHb1Mb7jqw0RGmBiyfkE2HxJlLqB3Kay3w9oAIC2GGqSAsVGdB0s3WsDjYco58OSGIcBRC47ycJ7kUIb6JKwuuRaF2i8oKZo5C4HWokmInVVDIHWwOp8BUz6QI8a4nYiP2ZfpqFkbgZhl8J4Gp60OsnkteFDA4CaqlkxhpWUgL/hoDcRM+v8b+rqog4GcsQj80ykH+27wy58hEllCWFzgA0BmD43ZhmR644cJ0PNTc72B4Nu1/bA6iPUeJjtFqC3exgr2cQO/fwuu9wqv6JTpdDxe+iX5AvyBPm/KufH1IECYZtnuCcj6vQ9iTvVrObPkW+jUbHZegpF3PRmBfwQ9u4A8AdlhCD7dg4Rr2eo58uySa72GrKNnUuotU4FwmRKGQQXTCuvkSlPT7DgUzPRMTSduunvOcuK0JsXkpYM+ozLTMwAVvtGim1eyC1WlvIbfrOBg+tnGGTZRjNtrjeR9jsosxFiBNKfZRlCITj1XTaMm05hjUTmq5eNUk4SHcD0dQhODrexTPHyn3ZvikxCfeHNXOkVErW2/O7WsYt9+g6L3B3h8IAsCOCAVTsWu0j5Hn9Mss3W+fLbmO7k4YcMd5uTzotGuovR6Q0L3+IyTdrzA6Ah+XR/xmscd3k53C1EgBetepnB97asF9+CtKNJ2slHXabtdgXr0S4XSvMc8tPG1pbjNcnzrhruq2sGIbaBQH6KtHxMP3NG+p2J6tfh/69VfIWjfY6AEmIqRuVKmoqufruVRRFROiIqgWoRBI/eIWbPBWtfQ+vtDSuxQA1q6rU97QlNqD0XKnXke7XYN+cQM0L7E3a5hvEpoFbSNhOedEWPAJmNowAb58RjodIluXnDnunxEWtiVtW+5OyTmOdMTx44qqD+GIg25QFRS0kFUjxIUdmmsl7LRWrYJUBVNWUqoKSnIVwCfnSa7B0LLJVSdjI+Q5VABftQqKM6xCqoLCNIfBSmORzRl05Gqxv/hCAfS7FCDgZyxCP+So0rSlEOUoeWdxVggxAgyWwTEs1FuvYdoBrEYHvP4bWI332A1nCOdrNZ/JJpQLH612cGfPMHpDGNfvUGtdwQt6aHVdomXXbQzrDp5a5cxosYsRJhlRDaIUu32M8fKo+G9SkHo1ubhpigFjDb7XgNt4BWeQgYVb6OEGLNrC2m+UzZxI2QdkhwM9VlEpSXFSFYt4KwUKgAqtA14WnJcOFZJnGupjbnKqrkRaK9G1Teg2GSrMmku/2G5NMau0oEnuPqeBzKljleTYxTl2hxzT/Q6zQ4zZIVHCsxKtzmNUcvU0sRArieM9UflcSluxb6Lj6PCyPfjyiSqfp484PjziMFmS+IiFU4BcbzJe3L3pU+vt8iukrVtMY47h9Ij3ywO+m5XOt71YdJXiJ91vMjpbtt/iu7/G/sNHZfOWbRKn20Rw24P59o/Abv8ISfs17rcJvlsc8WFBQjc5ISy45IJre98rQNykZVRrQC3EtPUaK+ZjtInxfnnAcF0SEeRF/rbuoB8YaBsZ9NkjksfvkE6Es048XqtDLtKifYPQ7WKyJcTP8y7CqiJoUjR6no4g24Evh4ifPiKaLZAcqFI4t3Y/H6ilNxboKvmcBw2qqPq+iQZC6GtaSpXnAkCVdO8KvP8KSeMS80OK+9URz/vycQViGXTgW2g5Ovh2XBIWtsLUEJAZQRIW1mpZvIzuloRq6WbjiwU50bZLFEmsqiAWNJA7dYSaRU60s90iWQXJvJ9ityLMTywqKZtQQbldR2K42GzoHKGYSdk6rUBQ8B2DdlyLAD4CpqoAPhGedwJMFagg1yAhcw0GS9egJUdoWSJ+20uO3O/z+NmL0PdFOQClAAG0XFnIeO8ciLMCUVZgGxEPzWCaWDBroHPZhi6ZcL33SCdD7IYzRKut4sGRm24La7KCNxuTA6d3hUbvFWrBBfoXddzULcwPLh5bLsa7CMNViLGcG1XgnZsoxXanYbI8KppAVZTanil+0A3q99pEyfYCBqdPtmcW7cGjHVginGiHDYrjHkV4KOMbxOxGtvBeinAo8vxEnIBShGTyavUtN8jqzgz981gH0wZzAxXroLkBNOHay+0AuR0gZCZ2Me047cMci+Ve/aLP9zHmkrAtDB+y4qkKj+5w1MWFv1uzcdWgeYHcHWk7HMZ+Cj4ZIRt9QjT6iOPTBIfp8qTyAUh8rIYPd9CGf9MnxtzVO6TNW8w1F5NNiu8WW3w33yvX3fqYqOpHmg/edcl6/apuo2cX0Ofvkd39FcL7b7G9nyi+oGxpSQec8fqXKK5+ha3bw3AV49fCgCBbvNLN1W84+IUIuruumQRRnXxHSav3d5R3FSfgpkFBd9fkrst6X2HJAzxuaH/pYXVUF/mqFVsy5vTZHbLH36glUmUZ77ZgDN6AXX6FpHmD8ZYQPyQaVKlVz3dds9DRE+jTeyQP3yJ6HpXzL2ntvn6HrHWDZWGTuaTS0pMzqquajdcNG31PB59+QCJBpwrA6sLqtFUbbpFwPG5DjHanj6vjm2IuSzcmbDVCPBkiXi6Rx5TTw2sN8PYAmd/BnjlY7stZUJW2fSFiI8xwDW07RVrF6zgeVTCNHrnZolwQT2gGAwDVCHFXowjxbD1HXt0t8moUWleBnUpDgqyCJKXhNIBvU8Y1VAL4qsDUspLiqFsGXIPB4Rq0kGj7BdOhFcVnVc/vugoC/gBE6Pz4Ekk7/8KrFaaZIg1UhWgQ2Gg7PbRfd8EbA+iDIfQ2wR4P05UyCiR7aWLYwxwvYLcfYXY/Qr+4hde9hB1coN+5wFVgYhlmGLWik8C2yYYG6FUwabrPEB0TLDQNT0sO2+AnlOy2b1GUg60TW8om6oBr1ODYDVg+7eOYWg4tPkBLI+jirZbFgBAjyhQ6UnRDmlCcQ5aR0SAXmJ/z1p2MAddNmh0Z0txAZgfoBpjtAaaFQrdRGA4K00WhW8hMF1GuqViHY5pjM8uwjjZYhymWIdF/z/l4+yhFnuaq1QbgRHjqAq903XTQ84ig3PNMtB2CnLLNI7TxCOnoDsmUzAbkQKTl1xL1IxZee01izA1eQ7/9BbL6FTZWA+Ndio+rHe6WR3ycidbbLkaS5WBMQ80x1O7Pm6ZbVj/hDPyeaNWHuw9kdqi0jaymTw64d1/TXKX7DgsW4H5Bc6bvZnsMz4jT1y0X79oe/qjnY+DrqMVLsNHfqKjvsEIvOBGg7lss9XopQOtzAXKUAF36Oi3oPn2HZPQR4XxdWZqlVhe/ekeMuX2Kx3VERoRthDjN4Jg6tUIDqkR7rg4+u0P29PHEwXZq7X6No7BjP4iWXtXafdLS246If/f8INqZ5PqThIWifYOj1cBsk6jHRamrlATb88TqhMPBp0RYyJYTpJWdJ97sgrUvibCwTzHahoozJ3N6pBW6YTGw2VzsBZVxDSeOuMLAJk5OZjDW+V6QjBAXhgQwctUR362JSHex2yVYR+U8ydYZ6mK+pWLItwsU0pkneXe19mkAn0D0xGkOTyyU12wOR6foFy0N6RpQnQH9BMaEH4Oh+1mL0A+JcqiG2eXQoIHiajkrd12yAogywmZIp8toG2EQWLip22j7N2jULqDXe+D9R+hPdyRGkxXiLdmO5Y5LtNrCnKxgj8eE3Wn3YVzcohN00fQ76Pse1pGNTZTjcRNiIhbmJpXZxi5MEQsIaBpn2MUZDscEU6bBFIRs39aJ9usa8G3js+iGQNyhWboJk1mw7AZMXu7y6BqALIaWkq0aeQom6OLIUmhyP+iMOFpomrJvF0wHxJ+CG8iF1TvJgTjLVaUZZwWiuMB2GWIXp9jGGXYi/Gt9TLA60PNWUNYKALWo7ClJ5lw1S2nQcND1KMDsMrDRsDmaNod5XIIvnpHPn5CO75FMnhSpIt4eXhQfu11HcNsjgOfgNbL2LfbeBaaHFE+TA94viEwtc59k6802eFn9CHfajdynmX1APvwW4cO32H16wmE0V/MUblPaqDI6vP4jJJ23mMYc7+fUfpO4KHnRa4uv81XHwy/aHq5rhOJhz+8Rf/grHB8eKwuuNAOyL6+UAG3MJp5F3HdVgKRg3Mo2nGdAXz7Q3GZ0pxY/pX1a799Cv/kaaeNaRCoI99pWWrtpifSqZuOVaMMpxM/zPUIR+U0WahI0rfcKafMGz1sibZ8vy/aFG0629NjiEdHzPcLpQvHvTttwV5juRBtOtAdlu1GCTjsuB9+MUMwfkc3Hqg3HHdqjoSqoi3XKsAgjzA4JVscEqUpNpRlu3RZsts0E+XqOItxT1IIgLEhH3EaE1lUt1XIW5BscjpaBHde00xMegDwTVVBQRi3ERENZh6ly1VmchEyF563KcxRZRq46cY5qAN8mLKMnpJA5OoNnMGi7I7Q0UdeBXNNOnHF/2yrox3JQf9Yi9KXjpSyhAhJqqgGM/o3NGVKDXClLTUOc5ZjvYrUfMVybGG2jcpjdeIug1ofRvoY+vYchLm5HgZWRYkTRDWvowynsxhBO7z14swfe7qPWvYTvtTEI2rgOAqwjF9s4x/OOKqTlMcFEDGFXgsZQJWXHCcUhbI4JGNMUl83U6W0gYhvk+57JFcVARjjI9w3GYHATXLPAGb0+nGvQDIo+B8ogK6kFOailKQ0eWVqI1maOJEsQZhEOCQ1bq2/PeXbVeIcky08qHdlm0zQNhqWrSlCCTgcNWwFmB4GNhsVRtxjsdA++mwGjMbLpEKGgUhxk1bM9IIszJT7E6nPhDtoUuta/hXHzDbLmFUL/gmKjJwfcCebZB2EI2EWpar3VXUPFir8T4W5XgUGLrvefkHz4K7X7I40tcoNf5RndfgNc/RLHxg2edgm+W+zxG9Hqo30dujFqC8bcN22PQukCA876ARj9BvHdX+PwOMJxvlZ7LbICMl7/ElnvK6yNOka7FL+e7vBJtOCOcQbfNoR1WlK2dTi7EbTpHeLH75QTjgnGnNG7hHH1DlnjBhvu41lULeMtVa8A2Z4va7agzJeIn6qFmtJgKb1Vv6FdpckhExVVdGa+sIVAkrVbnzwiGb5HPJ2cWNqJtP0GWeMG07DA4zYW1u5I7QT1a5RH1fMM1IoQbDVCMr5HPJ8h2YcktI0AensANC+RuG0shKlBcuZ0piGwdLRdAw1bR8BS8B2lt2Y7SSXXlSMu89rYw8I2+twRJ6MWyM02KcPz0vikCsqchqpg5DyJ3GzaySyIHZaE6DlsSmCq7VIV5LdPAvgUMJXTflJLzqSiHbT4AGQx3Wj+BMffFsL9ByNCv02VNYiLrAbwQgODFCWOzAGilC6YNPAmMZoI5PywZmNYpwTJgW+hLcWoewt9/ghTiNFJm+5Af2SOkFkbUlplm34oebOLRu8agUvcpreNAOuIHGDrMKWZSEg/bHORGinZb5L7JvE6O5mZwzRMKzgdyXOz9FKoTBFRIWMcTM7ANAq34wLZfh7jIA8iKJCxIy+IuJAVZaSD5NLFApgquXQKnipjHSoUbvX90Wi2w3R20n6UybFyJnbhmWgLHlbd4rDiDfh+AW0yRTodIp6PEU0mCOcbVfWk4Wm0g12jlo3bbRJxYfAa+tVbZLUBjl4Xz/sU4+dSfKQYyLlPtfX2quPhdbMkVLf1BPrsb5A9/gbh8D22d08KuCqjmKv2a/PtHyNtvcaSB3haRPjNnBhwHyY7rMQyJUUn2HjT8fF128VXLQcDl0Gfk8U7efhW7DNthWHAgdNtkL371a+Qdd5gwesYrqkFd7c8vLC746jn4O7H0CYfkdx/i2g8VpWbUXNV3HfWeY2NUcd4l+K9qlrI9tyoxIf3fYOWf5cC8fM8Ook6N3qXCpo6Tw08bWPcr48Yb8LKsqyYA0k79vwDsuF7pON7RX/gckZ1+QZF9xV2Rg2TVYSH9RHjTdmG6wn01nXNRteh9mA6+oh0PkYixEz3bNpJG7xCWifCwvNeZA4dS8JCUxIWHA6+e0a+HAvIqJjjSFK2ICysjxQbsZFzHOGIazm00+MWEfhhScTu8EBtNFEFsVoLqdukOU4kZkFZDqaVrDpVBa0FCmu/pUrKMEtbdiWArwpMlTMpT7Ac2WZLs+UiR8H0k0BLtWv5I46/SwrEz1aEvi/K4aVraBVoykHtOJ0x6KwQd/s2ACDJ6eIeiYRVScqe7yIsjgkuAxs3daIfdFvvYAc96K1L8N4j9PE90tlYiZG0dkdi8fUwWQmaweeC5DR7sANByq43sU0sNaxfHunuaReLQWKYfEbJPiFk54WqoORxnhV0/gcgJpz8++oh2XFVlpz8cw49lfERks6tCNxngsOYBqZzGJzEUBK2SXgsNF0TdbH13RF3m77BULM4jEgIz3SBbD5CMh8jXUzV6x4td0gP4UnVY3pElLAaPnHmri4J9zN4hax+haPbxuyYYjw5kviIXS9pr5dzH084765bLt51PIWyGfgGzO0I2uNHNZfZj+an1U/NVZlGxs03YLe/Qtx+jUmo4dP8SHtGsz1GK1pyBUBpqOJrfd128apOGUP65A7p/a+R3H+rDDMAofndfgv21e2JwA03LwuQvMB/1XLR93R4xxm0GaWaJrPnE8Ewuz3ol2LW4nQw2SX4JOzT1b2bgWibXQYmVS3TJyRPH4mGXqlarF55vr2Y3dyv6XxVa3c/sPBGLsvupyhm9xVrd2lr1y9uoF28QVK/wnSTKGdd1XYu23Bdl8PYPas2XLTaIRM7QWazCd67Ru53sS1MzI8Jxtsy7sESWBxpRnCzI/huhmQ5Rb5bKeNGlbCwyxi2capmMOd7QXKnp9guygrmbBaUWjWaBcmWdU5ctyrslB2WJew0peet2S6Y30DhCmDq9rQa+6wKCjfQoj20NKL2O3AiQD/m+Cky8H62IvRDj/MsIS1PadBW5NAB6FyHadtiVuJQi4rRhVEOg6UY7cIUEz/C7BCjH1D/vO246LS/hhNcwOhcQ188wRjfI52PKe9msS6ZaEmIeHsA4wzcXsBwbejeA+xGQH32VofsoM0eWrU2Gk4duVNHWvexS3JFyt6EGdZRcjJbOSaZyBNKTwjZ50IBALG4+5Efnx/nn5ck7ZdyheSRv3AuJkL1NKap1qFsG8p2oZxn1WwddYvetmxDUbZ9k8FlGdhhCbZdA08zupit50gX1OKqwk7TMFEuN24yWIK8IPOarIsB9P4tWPcGWXCBvd3E9ECVz3AT4tOq5AHK3S6gnPsMGjZetUl83rYc9FyaT+ijv0b6QA4yCR6V1Q8zibLgX3XhvnpFKai9N9h7fTxtU3xcHfBhccBvnreq/UYXYBIg6YAb+AZZsJ9J6OKHD9gNZ0j2R8FI8+BfdWgP6O0fI+m8wxIuhhty2D1UWnBSgF6JmIe+jKmY3SG5//bEbUZW7DaMyzdA742a2zysCSY638dqrtQVcQrXdQs9V4e+uEP29L6cA4lYa6slED/d1+U+0PJA2T4qY8lEv0ZsuJ5noJYfwBdE2j6nIhi9SxjXXyGpX2J6IDbcSIijdMPRYyvzhvTNWFi75wp0KgkLWucaaW0gdouIsCBbjb5NbbiOa1IVtJggnY3EbhHNsJjjnWQOrXcpZvu4nMFoZfKqrILY8ayCqVZBTh1bgQp6CXYamIxC69Zr5Js5iuMeSBMyClWqoF2Sq3mQDK5TMymTqypISw7IoyOY5dBNfgXj9ftwxFWPn70I/ZgoBy1PaeieZzSUF4N4g+lomh6CwIdrMGWFbnsmPs33Klp7JYbni12EUc3GeBuh59Hw9cJz0Wh+haB1C957A301gjEdwpuPEU7oYhktt2V7aHNEvDlC4xr2xkwsb36CWfNgNXz6Zai3wYIGrGYPttyjsWvIgwBRYZ+4zI5JrkSpjG8gSrZslR1F/1dWTekLlUw1QVW+5eLVzDTxaot1gWrFVK2qzpNbZayDa3LUbEPsIXBhhzfgmRyuwVS0g1nEYMcV2H4NbbahFsdygmSzQLzaiH2evao0z4XHtI3TGIwLgpzqF7fIaz1k9QEWmY7FMcNosaOYAUFckOKTSJaXEJ9ezcJbEWD4RuTfNBCCLymhNHz4FoeHMQ4iZC+PU3VRU267q3fgr/4estYtZqmBh1l4gt+R9mvJa3vb8/Gm6eIXHRdXvgHnUCJ+widq85UW74AESJAcks5bPMcGHjYhPixPo77lftGtEKBrQUPg0w9I7v5aCVCWUASC3etCr0BOn3YpPq1CgfgpZ1Z9sY/1ukHGBnMzRPFM7rV4sTqJo9Avbk6YdYT4kXOgTBkRXjcc3NQovVWfPiIVy7LRStixRUUl01uXhY2nbfRCS0+IY81G39XBJ09IRLS5vFmwGj54k2ZKaa2P6THDSHDmpNAGNlERrms2Wg4nwsJ6TJitzUoBZ1nQULERizDDSrTYZfy3a5EAtRyCnbLdnGIjzh1xQRO500Ri1bDZiY6IsHYbXENNzoJE/Ld2WCHbrtQ5mO2dVEHrXUruviileRIr478DU0ZPbFEcdsSKtJyyBfcjK6GfKgn8Zy9CLx3fmyUkA+2ymELtspiQFGwJZjjoeW3UGh5qFgFKm46B512kmHDHmCqOKD1gfYgxck2MdhEGPtk9O66Jln+DevMGrDuFtZtCnzzCmY8/a9XJO/c4joF9jGi1B5+uwAz9hJItoxuYG6jlziBowjM95HaAwvZQ1Mj+HGbFZ/EN0hwQiuooynKEaf5ZfEOUvpAn9AW6AmfsRHiqMyYZ6WDrHI5xGu1g6wy2ThZyR9dgsYIo2/Ee2noL7bCmlsZ6jnQ9R7pZi6gLEh3J9ZOtNqAUHl0swjqtOmwx8OadAVjnCllwgdBtYxVlWGwyPGx2GG8jPKyO5d7WmfhI04G8YL8RM462pYEvH4CJyOZ5Khlz0t4rZz/eoH1KWfD6AhS6x/sFWb1HAkcDQM1/vur5eNt08aZh4yowYMzvUIx+g/j+W+w/DXFcrJEdY1FlCQF6/Suw218hab/GOATuViE+LGgPaHqy7OkoAZI5Q3xKtPCqAKll1MFrsMFbJRgPmwgPa+mEE/s7Af38SyecvX+GNn9QA/9UDPztdg28e0VVS+Ma07DA0zbGcBNiuiMBMnWuRONGZBfpizsFTZXLsnJXSR+8RtG5xdFuiTZc2dIDqA134Vu4rTvouhx8PUQx+aTyhuS5zBbx9PLGAHs9wGwdU6vxECuhbboU99BydNR5Cr6kWWS+KaspWXnkfhuxXcd6U9ktEsmr1cwhOzsqssG5I441OkjdJjZRpqqgJC/AmaxgaI5D8d8CVHrco0gTWp1wytiIbUKdFDlPAkQlZYsIcYuDrdbAkYDD0A0UmoaCcQIbM10t/f+2qO+fSoCAP0ARelGAzg8V8R2rpU5ZuhrBCsxp4Nrvot620XIMjLYRup6pNrfXB3LIzHexqowmvoVRjUSo51G+ScPuoNm/gNm4gbGfw9hMYE6HZAVdLlVYm6RJZwkRsnFMkewjaHxDy58CcUPC5Aiwp6eiGzQ3APdqMLwaPMNFYTq0DOqeRjdIQkScETGidLWRGEmjQV6Q80222GQ7jmtlFDjXIAwNDAbTROYIE2+FDVy8tQUIkaUhtHgHLTlAOxzB4j1tle+3yLZLchXtdog3B2GjPqo9rDSMT4CnVeExPFvN2Mxuj+5mu1fI633qx3MHi2OG6eSI0Y7aNENxYZZV7rn4SNrCK0F8vvAN9D0d+mYENiZnVjK8UzQNeTddrX78qy6Mm2/Ar79G2rylBcxlRFbvxQGfZnt1YyMTViUB4ZcdH1c1E10zg/H8a6T3v0Y6fC8iHrZqmdJu12mh9uZrsJtfIe28xVBUKr9Z7HG/OCrqNAmco1pwA19XOUPJA8UyHOeb8gLfrsMYvAG/fEfOtSMJxsP6iInY4yp3bkzc1onF50Ur8OUQyegO6WyMVFRrZs2F3u5DH1DE+kazMTtQu2u6l68DQ8M1MFCiQYgfzB+QPt8jElHd9NzFrlL/NdmxBWl7Ihac5e5TX1jPlbW7EvtdbcPp7YFqw8229LieRdwDQISFpk2OzJYtzAjzJ2TLKbVEc6JI8HobrHWB1GtjGWZYHE85c5/tBW1KvttnsyC7jsT0sRNV0DHJVBWkTA2WSCKOtiI8rxIb4TdQeE2aBe1TrORMSs2TyirISA5g0Rb5YUukB90gZxwXqxga++K+5YvX4J/o+FmL0A+OcpAHY0BxOmAr0hjFfkvDwCRBxu6hiTuZRqOPoHGJjuviqmZRn7lmk516QzbqgzAubMMU002oBusd30TblRvZLupBgHrnLXh/CXM/h7mdwRGk7Gy1ULONKik7S1KkYULVkpglSe6aROGcRDe4Lg0hHY8W5LzaaXSDbqPQDRTcBEwTBTdErIWOrJohBAiyxAtzHhn1C9GC00BZI3la7hxlMbQopHiHNASiI5GE91sR7UBooSrzrgpjlc+9KjoSB2SIKtEIXNjS3NFoKeEpgi4yr4W9WcMqzLDaZxhttxhtI3UTocIIk0y53TxLP6l8Br5Fbiyx9GrsnsHvhxS89vTxRHxk600Sv+VcxrgRLjKng8k+xd1q91n1I6uTavvtK2G/9qMF+AO1yI73dwqoCwDcMeF2m3Bvr2G8/iVw8Q6H+g2Ga2KtyYVaaXDwbV1VdL9oe3T+cAY+u0P84X+rVYNctJOcXpPah9dfI22/pvbhJsKH5YGG9AcyDjRcAxfitRr4Bpo4gK8ekA7fI5sOlbFB92wYnQtKu+1Q1tBYRD3IORBA1u6rOjnhLjyK1eDze8SPZMeuEiaUtbt5i2lUkrZHa2m80DGo27ipO7gMrNIkMXz/melC7whxrF9ieszwXAGdyvZgV7Te2w6HE2/Alk9IJo/UhgtjotYHDfB2H1lAsRGrTYLJnjhzcZrDMTgCU0fPJ1ODEW3A9nOkyyndDMsqSDLiBB1BRnfTTk/pZlOzoI0IzzvuUeQZtLNZ0FZgsBZVMeRUBTVk9MRGoILEORjj5IzjJgquf7aH+b0GsJ/w+FmLUPX4YpSDxlQkbQFA4zqKIqcMnSyBJrKFiiRBvqHBosYY2PM9XdgubtFsXqJW76PluBgEFp73McYBxQbQBY0qotUhweqQYLKJlNOrV7PRdslWfOFZaDo+6rU6gs5XMAZrmIclQUmXExKk9RzJeiNaO0fFq6ty3lJROWkVGrbE5VDlZFV4bSaYbUMzxR/DoLcixoFZNjTGoYsIB80wTx0xZ6+rVhQoMoq9KNJEvZXkhTwOgSRGrogM4Uk1k4VRKTRxqsjb1fYacCo6Vdip1fRhtRoqVVbvXSNzqN99tGpE2A4zzBZ7jLcRnvd0wyCrHrlzBYBowY4uDAcOBnWJhHHQdnR0XU6Vz8MI6egjwpHc91mruQ8A5brzBm3Yl2RhRu8NkuYNJscCD1Ny3N1Vqp9YLAjKr/1ORIm/qlvoe7pqv0WC6n2YLul7zkqXXZWCsLNaGK5j/M18j3thrlgdEuhMg2/rZCVvOGq/yBc27Pj+W5VmeiJAg9fQb74pBWgdq2ygqmD0A4uI5CKiW58/kkFjOlSWcd2ziWZ9+QZF+wZRMMBkS866kXLW0bylJ0Lq+p4434yqznRWcdYFLhlMrr9C1qDE1ck+PrFjy70qaSBSLb0nEsdqS8/qtKFfvkbeusaGuZhsCcA638fl4q0gcVx4Bto2B38eEWFhNRXsOwYjoJkSmgPkfheLfYbxLjrhzLkGV7tFDYuBz2bIF8/ItkvqxgAnhIXI8NVOj5wFycyhko6wLCPE5V6QEDLliDvIuIbT3aKmY8A3RPTEcU2diTgEdIP+cLpZlTeqn11rfw/Hz1aEfpRDQ15MNYaiyKHpAIqC3s9iaI4H7bAFGEcaxiKqeAVjtoC1nEBvD8AvbtBoXiGoD9ByHFyILf1JUCJ4pBhJe/R8F2O0Cim73jUpvsEzxaKliabjIvB8+M3XsLoH8OMSRriFtV3AXc/JKXPYIFlvTijZmeS+STq2jG8QrQUAgufGlFBx01BQUfl3VQHTKlEO+J48IeQZiiz7LMJBfpzHKfIkqbyfKrEp/88pHJVxDRrXYJwRtg3VenShN1oiTbJNRGO7Tr9cVcL2kgjb80OMsRAe6W6UC6aMaWoPScZpVDlzHVdHx+Hg22fowzFxyZ4fcBzPyHSwpORdgOY+Zs2liuSmT60rwZjbMBfP6xR3SxKgT/P9Z9WPpB/IPaMrEUKnj++RfvprJI8lPDdPUnKCNQMENz0YV6+JhC0ccKN1jL+Z7XG3PGC0OmIbptArDrt3TRfvWi4ufZ32gMbfUSSDTFoVF2QlQLe/oJiK1MBQULafxOsp92S6nombuoOrGlmx+fxRzW3i1UYREcxmUzjhbslZt0upq7CLsDzEyi7e8ck+fRmY6LkcfPYJ2eijIhkoZ12nDb1/i6J1haPVwHRb2rHlHMi3DSVAkrSN+YMI4iOiRIkfuoXWvkZSG2C2TvB4ljckQaeXgY22q4NvRqoNF2/2ZUaPT1VQ7nexioFVmGJ+KBdCHZPC5mRqKtvPoe1o9llIsoHgzGm1NjKHKNfrkOgIco5jCbKBZ4i9oI1w1R33KNIYGuPEmavRYuoh0wgGXKE02DoTu3ayCiLYaREeUKQxmGmDWQ4y0ZLLULbimPayEP2uxOlnK0LV47Mn/4U8IfV3MtBOXGyZMC0UUQj9cBDUgyPizR7RcgdrtoA1H0HvXsG4uEWr3ke9doGW4+IqtDDZWxh6FmYHyrU5px2sDwlGq1DZkuuC/yYXMDuuibZjwDcv4LcG8C/Iq69HW7BwC2u/otgGSck+bFVYnASpZnFyUi0VOV3wqweT0NGKuJwDSc/ffwliKs+fV77WSzTu81iH8vwauKF/RtmWrUUzcMFrDWXCYLU23dE5dWROHducYxNn2B1zzOYEO50fYsx2hD9ShG1BYwBw0nKTuJ++GKbf1G20bIHy34zAnp+QPt/j+PyAw3ByYrMHAGbqyvbtX3VgXL6BcfsN0vol9m4X432Cx/UB9+ujwvysxeKprH56NQtf9SjR9XWDWlnObqSqk+P9HS25bg6lSaAR0I7Rq1+CXX1NO0YRP3HAVVNWW76F2xZRHL4SGT7WZkiEBbGIesJvE0mr+u0vkLZeY144GG5jfFgc8bQtBUhWLLd1cq5JPFHx/BHp6A7xgtpTzNRhNugizy/fIW1eY3LIMN7FytotA/nanokruYPn6uASGfT8gOgzZ90ttIs3StDu1+FJReXbBi5FG67vVUjbTx9PWnqGmFHRUipZux83IcZneUM9YTtvORxusgXfThBPHpGuFup56rU6eLuPojFAaNWx2MYYbWm3UM78AhH30LA56gbAVnNk8zHNghRtW6B1vDblBR1pt2gXn85x2mIWVFZBywodwTupgjZHGdeQIclpwdWpAFNPqqDoCHAKt6R2vY3CsKldXxQqBPT3efxBiNCXjmqUg/w4Vy+mDm764IaNgptg3IShG+oCfZgA8XZPTrbtHuF8A3u2gDUdQm8PoF/coF3voxH00PNcXAYW5scEozq1BiZi/lDdMzrGGRY7gjFK/lu1Smo5Buq2sIc7NlzDhdcYwO+dUbKjLazjDsVhSxEO+y21vsJ92e46xpU8oUxVLVWRAqCE6kRs8vzzz73w9993cEOHZpeV2Ok8y6rEkQs6sBeA+Q0ibVfs6JkdYFdwupOLc6ynCWaHPZYhDWol7LT6Op8Lj0T+UIggbcxf1Sy0HQNNm1O0w/YRWAxpn2X0gMN0RTMfYQMHPhcfvX8L4+od8tY1jsEAk0OKZxHv8FDZN5JLw3L286rj4VXDwddt2v1paiH06XtlPpAtv2RP+H21YHtzTa2+y18gDAYK8XO3POJ+ccBiF6llSpmyKmGkVx4RForxeyT33+I4eka8OdAw3bUpSG7wmoL6Om9VBfSb+QFPopUJUFXQEy04CTnli0903qePiOczdWG2GoGCnKaNa0VEuFsdMd3HJ8YGRUTwDDjHGTnr5PmO8UnVQtXmNaXBCmjqeBOW0NSA9oFuahZ6jgY+fURy/y2SyZNq6RmeTcu3oqW3LGyM9/Jc0Ukbrh9YGPini7fpfCw6JgJ02u6DX9wirV1gfkwx3pK1exOScMvWV88zyNSwHaNYPJXR3VlOvwdBE2hcID8zNci9IGlGCCyGQAdFiAtgapHG0HRTxTVkbhO7FPR7U4mNkLtF9IdiyAsR/12kCREWHE/MkC1kYMqcxIoCEGSV6vG7lKafvQh96cm/JEBy6J7lBQoQgoZrDLbbhmE4YLoFw/agWQ64O8RxTJvoaRgj3uyRhhHizQHWYgVTVEa8PUDQ6MP1O+i2a+h7JlZRhtE2xGTvYLqP1Qa8rI7iNMf6mGB9TMA17Wx585QYIDPrG7YBR6/BcRtw6wKzHu2gxXsY8RFacgDCPRkARHxDER1PZjPV1lg1woEqmewkxgHAZ29ffP1Fy0++/1Ksg6x2pGGC3rokOH4dheGisDzkVoDU8nFIC+yFnXS3SLE4HhX0cSWER7Y+pfBkRXHSbnME3LXtm+jVbPQDC33fEq5FjpbNYRyX4PNn5NMHJJMh0tkY+/HihHYBkPhQpdCE22vA7F/TfKNzi6RxhUWs4XkRUTDcJlSZP7L1ZuqSMefgddutXMANWNsRMdVk9TNdIVpuVbvIagal0eHVr5C1X2FjNjFex3i/IKiqnP9keQHX5OjWbJUxdFOzKEZi+h3y4W+QDN/j+DQpUTxSgK7e0QyoIkAfFkclQKoqEC2uazG70tdDYPIR6fge6WKm6BBWI1BW7LR+hQ1zMduleNyWrS5lbPDKtpmXbqlqGX1Eupiq2Se51/rQr94hq19hmZkkGtuz2U1lDtR1dfDVA9mx5yNFRaCWnshBEi29mWjpTfexauk1hB37pibacOtHasMJw4XEMPF6W+0EbQoTiyMJ0CokwoJr0k5cTxAW7HRfmhF2K7HQbNCNWLNLbeaMYRulX6Bt0xxHMuKy750FUStvJ35HWCVC3JeOuHBN54jKc2i2h9x0UBi2cNLS//29D4TwByBC58eXSNoq0C4vkOYiWVXkCx2SApZuw2vcwLRr4LZPswf/HqZwDaX7I1KRqprsjzBWO5izBazWA3izC969gtfsw/ba6DW76Lm6CMBKMGo4n7WL5MUzznJsjgk2xwTTrQSSHk5EqeGaaLq0kOabpTA5hglHt+H4FEBlKxv0kd4mEbQ0hJZGyKOjEqMiDim6QZgJijyjj+VbMfMBXq56ZLWo5kjC1IBKpIOmCwOE44kfavc02sFwkJoujmKv6Zjm2B9z7FZHrKNEZaVso1TYqJOTFmec5icVj8kZHIef8OZ6ItLhwhPJmTaHz1Lw3Rhs+kwD6vkI0Xis7PLS7QaUlY/VCIi2MLiGfvkaWucWWeMSq9zEdEPtoIf1EfeLo7rhkFQKMqdQ9SN3c3qujiaPoU/eI3t6j3j4Xi26ZmGMXMwYqOI6tXnPcgvDVYQPiyPuliRAWyF2DSl0YgZ0WzfRZhH06b2qsiTHDjgToNtfqhmQNCE8rI9KgBxTV1ZnSdk2N0No009Inu6QzJ5VZSCpA9JttjNqeN4REWGyO521XPjUDu15Bhoshr4sET9VZ53e6kK/fIO8McDOqKk50HQvBY2s3ZcBQVO7rg77MFW7StFsUQp7w6cbyIq1e7gJTx6bb1Og5JVYSnWTLdiaCAvxcql2tMxGjeLn630kXheLbXLShtOZhpqtq3DKls3B5zPk85HIC6q00GoVwsKejASSts3Okld9npeZQ/tNWQV5gaqCpCOOKqmyCvJNjsDiCEwOtluj2C7p5lWcQzNtwLRRGC5STUeS5d87g/9d69LPWoR+TJSDZJeRIJEARSntzeQFoEWAyTX4po96tw7T78JsX0LvPcAQd8nhfIPkQOaAapvODGawRg/KKmx0r9AJumi5TVxd1PG6YWETkT1yIkCIMqytGmEgIZ/hPsP6qGG6KekDjsnhmhLsSagbT8Q1+CYtggYmUbNN7sPkASxTO4lv0KrRDVlM0Q1ZSh9LokSRE1ECUC44dYgZmsZ5JdJBwA25SQttXFg6dYuiHbh5sqcUpgXitEAY5tjF+xP00DZOBZmCdnekyUMSHpJKRWZwBs8iWnjDLTOFqk7ElkvthrrJwHZT8PkU+WKMbPKISGCVwtUWyZbI53LPRxoO7Had6NrtPvTLN0D7BmnjEutMp4iA9Y6C15a08CpFEoAyHly3XLxuUfVzGZgYeDTv0OYPiO/+GuHT8KT6ke03/6oL+/KKllwv3uJYu8J4lxDiZ3nA/YL2nA5i3iBNDtLi3fd11OMl+OQT7QAN73CYrpDuj9A4hxm4cC57FEonFlynkYb7Ndmwh2s5A8rVrs3J/Go7hPb8AcmjcK5VWlOyYsm7b7B3OhjvhHFAGBFkxSYrlsvARNcqwGf3pXtNOOu4bQpmHVWeUTDA8+aUWQeQoPWDiqAVhPhJRh9PBFJBWOWyrLR2byJMd9SGq+KHFP9u8oh0dKfyhiQJnbf7ZXqrICxIw0WU5gQ6tQ2R3srBd1MiLMxGJB6VsDm9M0BaMTXMDjF24oZIttDariAs7CfAdkaV1EkV1EThERR5I+kIcUYLrpUqqGZyWOmBhGxLtmzkOUWIezXkpofc8sROIdH0NRRqV/BvcxRfeP+3HT9rEfrS8dJClaZpQFGU0Q4iYTVKCXcTpdnJ3UbdqqHZa5IYda6gL8bQxxR6JWOg0zASC5VHRKstuL2AWXuC1bqj6qjZg9vswXJb6LhN3NR8rCNLkbKf95FqM1VbTNW7fflH5slIUTJ1Ble08RxTFxEO/CS64Ty+weQMOrNgMAucadB12vPhleVTrkENH1/aA5AzNblLlBW09JoVZVR6mhVIEqJsH5KDIjbIP1GWYy/IE9Voh+rzzkSlKhdmDc5Um+2lWZp0HLZculOsWwz8sARbz4HtTFQ9Y0Sz+cmSsDRzaJydEBfcAbVY9MFrFI0BstoFVrmJ+S7FcLPHwzo8oS1I8VHW4IaDm6ajMDZdV4efbMCfPinGXHX2A0AtiPpXFPCm3/6C5hU8wPOK2m8fRfUjbd6SAXfddPC25eJd00Hf0xXiR1qwqzHfVsOHMyCMELuiFtz4kOJhHeL94iAu7mXUt+S3nRgopp+UAKnKyrNp30bsAsX+BSaSMbcJsTyU7ameT2F3A9+ksLvlJ0UxiJfLUoBaDTIi9F6TEWGf4nFDKakls46LNiEJfdfWwKdPSKWzbnMGYb3+Cmn9ElvmYrYTgXc7ctbJlp40rHTFY8ue708JC7I6u7hFFlzQjckh/gx02hDGhqbDVdxDOh0i25VmC80NxD5PiwgLWyIsSM6cROtQaiqHnR2Jti2roDyjKihogDU6qgraJ7mI/z5dkqWOClN7QflhQ+sWjIHZHjSvhtzykWo6ke8Lge6SmxvV6+oPvCb/6J3OyvEHI0Lfx5CrZgkVItCO5wDTZEWUnVggHYHU6HomWk4DjYs2jOACZquPfDaEPhshnY/PxIgs1NFqi+NkCTOYwKh9hNlsgtXb4M0enEYHltNEx20iqfm4jUwCCkblAFLOPahlV16gzwnZ58Ik35a8Nl0JlakTQkfSDGydQxfvcxHjIOkHUowAnNz1KIhphaYghSfJciR5QeIjyAthmiPJ84rApCcRD1WxidP8RHCYeFwmZzAt9sV5mYx2CCyOmslp6ztcg+2W0J4XyKZDJMvJCehUxmyct9yINRdQtEP3CvziBkVjgLQ+wDrTsdhneNzsMdyEijMnxUfOfVTrre2pfaMLT0fLyKAvP6KY3CF6/E5x36LVDlmcgps6jMBVdG/jWnLaiFLwsCD32/2S2n1Vl5oUu3dNt0xDXXwCJh8R3/0aoWg1yphvq+HT17j9BtrFW6Tt1xjuCMVzpyqg0mUmBeiNECB7/6wo21KACJ7q0jJq/xZF+wZxMMDznqzYww1dmKVrTw77r2qU6WNuR9AWQySTITLpODOEs657RQP/xiWmYYHxLib32j5W+UBd38JAVC7dM0GLVls1B5KCVrSuELpd0dKTgXenLUIyrpC1W1sMT2znJ224hmjDbagNJ0GnnGmoO4aoyk20bB18/YB8NiTQ6Y7Yd8yWhIU+0qCLZZhheUxPCAsKrWMLI8FW0LY/q4IayG1ykG52qSLvyyqoDM87d8RJ16cNzQtQmD5yOxC/wzSy0FgBQDtxx/1tBej7rtcvHT9bEfptUQ4vBdsxrYwrKDiQ5BocnWPHMuQFcEgybATDa2xw1Le6iIu20bAaaF20YdYG0HtT8MUT9OkQ2XKKaLFCtNyprf8ojBFvDtDGDNx+hlnz6ELXqKklS6fZg+2RIOXNAFGTSNm7mAbyUpDWwlopQ+EkJfslQnac5thBgkWjE7abXhGr8k+ZOQTQa3MOJa0StauRDqdxDtnJYzl/bCeQ1DMi97ngVMP5fNsgVErFpEFwWUqhPCFsb9ZU8ZwRtiVzrrrwK6seuQDr9Bp0h9weULRDcIE0uMAizDDfZHja7jDcRIrBVhUfSbuWmJ9r5fIyadl1PYT2+Anp6COS0YOKXUiF6aGc/VSs3o1rrM0mJpsUd6tQ0Q+qiB9pM3/X9vC2RcuiHT2B/vwdskcyIByGE8TbvUpZdboNWP0+zNe/QnHxFmHtCk/bBB+XR9yvQzytQxV7QFHftmrB9T1dWchTAf6UEFFFQ7h8A+3iLZLmDcZC2O7XR8zFhdnSGTq+KZA8hNGxD1OwxSOS0Udky4la/DRrHq1EiLbZMjPFQirNgWQb8pxZZ0lBE1ie0llH1m7ef01LxLvkMzu2Y+oUQ1GzT63doqVXbcNRDMgbEsdjitGW9p5k3lAgbpIk6NQOl2DrMZLZCPmWQKe6bYrdIkpv3RYm1hF1SHYxceZsvbpbxGAlO2FqmAjadn5KWHCb2MSyCvocFRRYvHTE7VbKEQfGiDMXNJHaAVJmIkoypLmMutHUzemPOX4K4vbPVoR+21FtJZ0IllaiZwCGoihQt3XVKsryAtswxSQNYeocY9fAcFPSsptOgGa7Abt+Cb1zC30zgT4dwhY8uGi1IyedIB1QdbRTezFm4ImdDx+8RnswvN5GUG/Ds+vo2gFyL0Dc9HEQJfUxzbGLxMwkzrCLUwUklUF3MkxOXvA/EwpAoeiBLwfXfel4ia79fZ8DPmfOcabBZOzFtqIUHN/WVUy5pGzXbKJs+4K0zY9raOGGsPVLilOO13Okq8UJ7PRceJihQw/KeY/dbYE3qaUit9z3Vh2LMMV8FqqL1HAVqsXXqvi0fFOJwU3dwU3dRt83Ve6NPiRSczq6w2E0V/tGRZaDi3gHt9+G1e8rykLceoXJIcPDPFShelX3myRCv2p7uKnb+Lrtou8Z8OMV+NNHJJ/+GsnoAfvxouSZuQ68QQvm1Sua1fTeYWd3MN6QA+5+HWK4Op5k+FyKNuKbho2+2C+qzoCqAiRnNrKyetpJyGlpxbZ0hqZLTMVXokL0wgX44oFmLRUjghm41AoV1u4N9zER+0DVJVLpXnstBMiLVkrQktlzxannQ7+4hX71FqmApo52sbJjn1q7LVzLZdnJY2mS2JyZJAavkdUGWOUmJhWX3iHO4JocDYfmQG1Xgk6fqQ23Wag9Je4HwtTQowXXbYLJLhaEBRJZ12Bo2URYaEpTw+K5wpljYLarCAuJVcN2l2C2j5UjjmZBHB3PRM3kgpRNC640C5LA1BpyK0BuB9gnOcKUbhqNyrWCaV9eVj0/fqrIh5+9CP0g10Y1zgGArjHonIErMQKywhTtpVy0iwhMuj7EmNsx5r6J2SFGz7eovHZsNJpv4Nb6YM0r6Nsp9OkQVqX9E2/3CruTHELgAESr3cmCpqqSauSOYUEDPGjAq7XgWjW0LA+FHyCtOyK2gZxkUVrQXEUIkorTFoTs07C77LOKJP2CiLz09vz9lz7+vtA8U2fQxW6UbBW6Jodv6Wp2JUXHN3UR9UCUbc+gqGEWbaHtthR9LGgS8W6lEEdV4a8Kj8aZIpJbjYDCz1odqnq6V8j9NrLaBfawsAwzTKdHPG7JKTXevCw+1YXXK8UmM9F1dbjJFvrzI7LRR4TPDwjHY7V0KokWJWOuK/A4X1NUtlHHdE0toveLcvdH3jwEtn6y/6PC9IRLTRodyEBzJMRP4MHrt2DevKMqq3mLjVHHaJvgw/KAh3WIx+URR9GerArQq4Z9cv7kkWIUpJAaNRdmmyo47eKtiud+2kYKSiorlrpjoOebeNN00XV1ygbajESq6QjxhqCbhmsrXFbeGCB02phtqWqZ7KnSUK+FZ+K27pDzkcV0vud7qoalUaJGXDh+cYOsflWZA0UKmmrqXCGIrmpiDrQeopg9KpPESeCdgOMerQbm4lwL0W5Uz9Uz0fMrbbj5Ez2u7U6BTlm9rcwIizDDQpkR6GfN1ul3pOuZasap7ReCsFARj6AJLWgic4i2LdNXJR2hSlgITAa2qjriROaQQ5EPmR0g1kxEaYZYLJsbrHrj/vs/fvYi9NLxpSgHTcY5iMNiDKZJgXY618TchELtdKZhvqNdj4UYWs53Mab7GEPxQ0YOLAN17wr1xhVY8wrmYQl9OYYh4KTxYkUXye3+BE4qS/ujiG7QK3w03bNPohtY0ITtN2DZPuqGg8LykbseMkbCFGWl8yzJCxziDGGWK3GKxHzmh8Q3ZHn+YpUj3z+voM7be+ezKZMzZY6oGiZcQ5godA02Z3AMinfQ85jy7UMSnuKwIdHZETUi21GAnYSeyte0Smxg5gtRGK0GCU+7T8uAfhex26SFwF2GyW6PyT5WPMAq9UI+z3PxuQpo8bXrcgT5gZY2p/eInz4ieh7hOFmdtN6k8UDavY3rdyi6oj0kqp+Hdais1zLeW5odBg1HIX76voG2kUGffkv7P6M7HB5H6usxQ4fdCE52gJLWayJ5ix2jRwFzlRVQy7dwI9pvSuCWNF9Knu5OBEjx4AaviV5QoWzfr0M8V8Sz7ZWU7Y7DaTl3+YhMpq2uN2ppVm91T+ZKqm22jZSxQQrQVWDjwjfIiDB/Qjb6SLMbgdKhqqWjzne0W5jsxBxo//kcSO4WOdGqJG0LOzZZu2n3SVq7Z3sKz5vsT/l3TcegWBdHL9twAnQqk2AV6NTvILTqWAnCwjIksK6pMwSWMCNYjCzZqzmyuXDVybwgLyDatiAsrI9yFpQiyUtTQ1vsBakqSDniSmBq4TWRO3UcRPclFZER8orKxHu/zyoI+JmL0EtP9HujHHJBe84zyhACoGl7eNyA69bgGzlc3SGekq1j4poYb6hPTrQDqox8W8eTSGpsieFj37cQWG3UOz247dfggzmMwxLmcgJH7ARUBUkSo/MkRRoTkDRa7aDxxYkocduioa9rg/sBmBsQ5durwXAD2LZHsQ2mg8Ki5TIZ3xCKyAYZ4ZDKHSmZJ1QxFeR5oXancmFbl+20lw4utqYZOzU4GIxExxCirjPAFCJvMg22zijmoUihxQdoyRHseIS2OaA4EJIo366Q7TfID1sk2x0SkSOUhhFFXlRYdABOWm3kcBPC02yCN3tgzS5Ys4/MayP12timIPF5JoLzZB9hLIRHzl3kno9cNJUicBnQ4utlYKLj6ERbWI1RTO+RPFEbaD9aKDFQWTU1F06vSYDTyzfQeq+QtW6xzExMl/FJVTLZhMp0IuMXbluOMghc+jqc4wx88nDSfou3+5MYBmVy6L9DIhxww01pcpjvoorIWbiq2/i67eGqZqLvMOgLgqgmEndTaUlZ/T49j/47pO3XGB9zDDe0X1QVINUya5aQU754VGmr8XKJXBgHpADJudJkn6q22VxYnl2Tq/0duTDLF58U4idZU+R3yawjZ11Uu8Lzjpx65RyoUNbu23o5B+KrBwVNTSsVFW/Tc07qlyIHiSq+WcWp2BZt+55noKGn4MsRtRsl6JSVoFOtLdJbD0RYmB+oDQcISrYtCQs6+HYIrKn1XIT0fdBsl3aLah1kXhtrsQbyEmHBNxmtKixkbMSyrILkbpFTxxEG9kmGKCvUTacmzFzaC6SE38fxsxah8+OLr4+sggBoRVGG2qUJiZHGUBzXqFk+/KCpCLUdN0bd1mmvR1io4zTHWiybkiDRzs5wEyoOXMc1EFh91GpXMFo78P4c5nFFglQhZSebg2rZSQBpkeXIMqqW4u0BGmPgZjW+wRLiRKw1zfbAvKBCIqC3pm7Bk9ENuo3CMIgczk1kYNSOO7NYS+GR9nWg3K8CTq3bFOcgfkArNm9DGiE0UKRDIiIdknJ5FgIxpCId9huKeDiQ2FC+0vGEtl3l08k2m3xNZAVp1NwTNyJr9ZG7IktFs7COMmxWKZ53EcY7aqFIwra0xstfPLl/1PItDBo2Ljxh2RXYlSA/kAtr/oh0fI94/IjjfENwTPGYualDF4BTp9+BfnFDrbf6FY5OG+N9gqftUbnSpPNNCsP58mk/MIQ4fELx/EE57cL5Bsn+CAAwAw92uwb7+lYF6YXBAE/bBJ9WobKWL4QASYt3tQLqmhn02R3yJ5pnRZOJuhjrnk1JplKARAU03JBpoEpDCGxd0BAEFVtATqVzLd2sSwFqtMC7V9B6r2jYf8jwfNbqskSonHTWdV3Kd9IWQ6SVSAWNs5JZ13+tzANPotqY7Uprd0cggwY+GUn49AnZ6JOaUZ1UVIM3xAcUgXfVxyb5dz3PxMCnGxRp7c6WkxJ06to0hxSEhVUMLI4pJvsYW+EgdQRYtOebaFgcViziHuYjZDvBmRP7PLzZQ+a1cSgMbOIytyjJCpqjmhwN+5S2nW5XRLuvtPMKp3ZSBR3iDIwBFjj9nuP3PwuSxx+MCH0xygEoYxxQ+XyW0kUyDYE4ov9vWmCHJVpuE/V6E3WLoeMamOxiTDxaMp0IUu9R5AjJdt3I5Gi4JuoiGrzj0tuGbaHm3SBovoLe2YEfljDCNcz1TM028u0K8fYgUDFl1IEEhKbiohZvDgqNU8I/icPGTL0UJhnbYJURDswSn9cNGKalIK70lpZMTyJ8X4ryrVaXuVhuzXNVWdLHKZDERGdIYyI0hHvCB0Uh9aEjaqGV7ckIWZKe8e7yE1yQer6BCe6YMFwHZs2lIXaVsN3oIXfqyJ0mDtzBJs6x3WeY7A+Y7KjdMT5rt1VbbpIz1/ItDOq24IYJhL+rw0334OsJceYEQ0yifmSVJuc+ViOA12/BGNxAH7xB0bpC0nqF6THDbBnh/fKA4SZUez/V6kfu/tzUbbxruSpbR39+RPrwLdLRHY7jGY6SsM3L+Y9x9VpkGb3Bzmx8ZkBYH8qLsAy5k5VKR0+gzyjyIB3dIZxMTxZRrV6PWnCiApItOFkBvURD6AcGei6HPr9DMb1HOr5HtlqotqFeqyuCQVq/xCqlnRuJ+CnJAwZ6noUbMbfx4g3YaoTkLFLBatDAX4JJyVlHeVLV2Q2JxqmgFdP7Uwq4I6zd3Sv6/nlk7R5+gbR9LfKGzMMc2opWOaTYMkMnM1J7QDMls4bFLvkMdCqzglrSjDCrmBEqaB1eb9NiqtfGep9idkhUaupJ5pBs562XyFczFPsyxFMyGzOnjggGdnGKXUTtfJeR/HBW3mSq3/8fEfP9dz1+tiL0g9W2kicExlAUHFpOF1ityIE4Ijr1UaQRyjCoWhsdr41W4wIdR8dVzcJkH+M5sBSCR272H8Ti5XwXwxIW47pr0ia/pYvYBgNNx4RvXcIPruH2C7DjGuZxDS3awNrQwD3frlQb6vwinccl6y2rzJYA0ZIydVE5GYrdJi/eXPwdMw2F1wFjhOlgjMi5jBN+R1K2ZaQDUJITJNw0jYEsowoljYlCnsZAmiCPEyUmeZyqtqMkfeeisjmvcOTzAEAxEzb7cYRtt4l1Ctq92ueY7omwvQwTzHZEqJA3DnImVoXJNgR1oedbSnzajo6Ww2Eel+CzkjOXTJ5wmKzUrO9cfNxeg0LXLl9D69Ld+CrVMV3G+LQ6YrgNFfVAYnfOZz+vGw5VPy61nLQZhbuFj/fK+CJjBKxGQASEm29UFPcsNTBeUZLrp1XZ5gPIgDBoEIJHEhZq2Q765I6WaZ8fEE5LJ5fV8CnDp+KCG+3TFwVIBt3d1u2ytTe/Q/H8gYR7MVUCJAf9/PIN0sY1VpqLyZ6ccJNdjF0kHq8wNkgnXC0X4XlqIZV+fyXFwBCMuS33Bd2iTEmtpsG+bjjouTqccEEMPxFHfgJh7V6BX74Ts7syhkLuKqkZldh7CvID+HqI9PmBbOfS2i32nrTONdL6ALNDpkCnexH34IvrxSCw0HJ0IiysBGFBcuZct0xv9TtYRTlWYaaqoCwHXIOJXTpa3mb7CbTdHNl2SRHioL0gRVjw2tiEOXZxpmzdgNip1KjdrgEvJ1X/ba7LP+L42YpQ9fghUQ4AKL4BKEPt0gga48RKi0PkJ3cINfB6G0Z7gLbXRsNrU46Qb2IV0l7A/JBgXmnVRWmOrcDNvCRIgdhzaQlSdmD6cL0avAaDdZGAhVsY4RZavIO1XRIhW5Cyi/CA7HD4jJCdxcnJhVzm+6iXohLfwATrTWOn0FFWYcGd/z/gc5p2XqFsVwGoL5G6z+MePvtWSbq2R2LJTKruDNcuKdsB0bWZT8JTuHUUdoDcriMyXEHYzrBdJCLWgQjby0OszCXVdhsAtVwqHWe9gKLZ+wG5H+sWQ8vmYNtn8PGUUD/PBOmsik8unhNVZbRzpC7WnWtkYjN/vs8w3BwoSXRz2nqTIM9+w8FVw1aznwtPAD1H97QcWql+qqBQ+TUl4iepXwmbdKhafZNNKJxgDHXXVDOm18IB54UL8DkhftIxiVw1+lqdXxgpqjbs8fbUwScF6FrGPMzvUEzvBOR0qs5r1GtqzpI2brBhLqb7FPerIyb7SBGopdvsOqDdogaLoc8fkY0/nTrOqs661jWOdgtT8TqcM+s6LjnrZOR3VTQkuFZaxY3rr5DULzGPCmoRCju2bJs2hWhQG46DT8fIRgRNrXL6eJNmXmlwgVXCMN2TmK3CpGzDCdBp0+bw8iMRFkQbLo8T+n1xqQ2Xe21Eho/1jn7u12GCJCvOklc5XC2pEBa2dEOpGzRbrreRVmjbW2FqMhjNdw2mQWfUcpcGr99nFQT8gYjQbzsK8aJpot1Eil6gMMVsyLKhHTiQ58h2guG1mIHPx+CzEVizB7MzQMPvIPC76Dg2uq6BxTGlELWAXHMStFlF78ik1XIfRldtu7rIrJeUbNeow/ObcHQN1kVG0Q3xDnq0hxbuCK9x3NOC2XFPwnncq3lSlYwtIxzkRbLIc2R5DlQG+r/1dTv7d+dQU3Xu3xLzoDFGImhUAvVEuB4zjNNYBznXqghPYfskOlaA2PKxT3LskhyHY47l4qAWe5fHBPM93RBI4ZG7U0DZbpNcN5npNPAtZadt2ByBFoNtx2CTKdLne0TzMeL5DEchPrJVyoT9+2ThVSwxZrUBjnYT00OKp+0Rww0l8crW20uMueqia8/RwFePxJgT6B2JGyLqsl62++SSa/MWO7OBZxHx/bA+YrgK1fzHFBlDN01HWbD7nsDwzD5R7PXoQQkQM3U47Zqq6IqLt4hrV2oRVQpQdQYkh/zXNWEaWD6gmN4hE8grtaQb+BSJIucsZg1TwZibCGQNURvoxu2qRm29tkVOuHz6oOZK0ozBGy3o/Vti/NUGmAqY6HhbCpprchXTfeGL852JxjmWJ631sdcDzLcJHrchFsfkJIaiJ+ZKbdnSmz8inY/IJBGn0D1bteGyoFe24UTqqsobskiA5NyRzyfEOlzPkR8odoP7lDek1bvIvLaogCRhIUdeFHA5F6MAIizw3eQzwgKrEBZyp47dIaU9xChFVhSwuQ5dLLkbshX3WyJcfkgV9LfxNfzsRei3RTkA5yw5Bq7bJEZy0K5C7Y4owj0NxzcxsNyBTRcwAwo509sDGO0+an4bnt9Bu1VD3zewjmxM9slJuNrqEGN9SE6YaGvxy2rqR7JgnlEBAoujZumo29TGcw0XjuHDcSv25fgIHu+gxUdoaYjiuFOxDefxDS+1xmQlc17F5GcCIw0AVYGRH0uKNpcVlH1aQWmcqcqLGcZJ/Lh0/mmWTZwqxxO8qgDMrQGWi9z0UFg+MstDxEwV63AMc2xWRyzCBJswxTqit+fiL1tt9BhP221110RXiE7HNcnFJLbIjeMSbDkFVrRYGM/HCKeLcg9JRjsI8bEaAex2jcTn4hZccMT2ThvzY4rp/Ii7JTnwRkIMqq03aTy4EmTq6zrNJrxoBT56QDr88Fn1A5SUBWdwIfA7bxC3bjFPOIZLIiw8imprLe7+5fznqm7jbdOliAeXgy8+AeP3iB+/QzydqJhv3TZhNX2Krbj+CkXvDY7+AONdgsc1xVZMznaYCCDqKAHSlw/A83ukT3eqLQUAZs0jyvbVO2StGxydDiZ7YteNtxHmlbTVlhQg30TXEdEMs3ukk6EiD3BTh96gaAZKb73G9EAw0eE2PIlUkDHdtJB6xqxbrMo02HZp7Y79C0L8rI6Y7OITaCpVVGczqkqsBTN1GHXRhuveIq0NMBPJsrMDtRvTitgOApsESIJO50RYqIJOydp9SlhYR2TJtnWmWnp1ixNh4Zy2LdpwrNaiFnacYxsJ2naWK6erKf7oTFMz36KSUv1jjvPr9P8j2XHV40thdgC5vVIAmmbCsE1qyzEdnOk0C+EcFoAwW5eLpvsQ+moHczGD/nxP7qt2H16jB9tro+030fdcrCML2zjH8y56sSVUFSQyNMQn5AAJIZWOO0kO8EUAVWDpsDgJk+XQD4jDNYprOItvQBaTKKnYhrA0CySJmt+cxzfIFhrweeVTPapxDkyIjsYZNKMyazJtaIZRMUo40Gy3jHXQLRXrkJsujgVTi7jHlCqddbQv0UVxik2YKq7euehUW23nvLmOb6Jpk3uxK3Jd6haDnR3BdiOwCe1gxNMh0sUM0XKnWHMy+E8KqVx6NXqX0HtXYN0bZLUB9lYd8yMF2z1u6YL6uDy+KD6UeipICzXRZkKodo2ix+9UxISc/VSrHxmol3Ve4+B08HxI8bg+KsqCJGxXI76vajbeNV0K0sOBlmqf3iMZvkc0W5RLqJ5NAXL9W5ivf4W0cY293cJoG+NuRTDSiWjByVbipWDlXQYmBi4jcZt8RPp0R5RtYU+WzDWjIkDPhzIdtdqakrtA14GgUGyG0OYPZGwQosbNM2ND8xrzWMN4X7rXSmKDIZBBTsmsm92TaKwWpbVbGBFkeut0fxpHfl5RKWv3eiiWb8+p4oSDSmt9TI+Z4t9J0KkrxPY6sNG0OYIipMXbKXHmTkCn7QHyWg+J28ZqlxCZXJxHUrI7romaoMfz+Qz5ihy5RRxS9Lfj0W6R00Ri17HdJViFCbZxhjQrYJtiz0+IEEdpQgL/wqjje67Hf1dX989ahF56ci8JkDxK+zGF2sUZYDALVnAB6DaYblOonWnDMcfgAsOTxyligfvXlzvo3hzmfKw4cEZ7gJrXgu82kTXr6Lk6NnGGbZRhdojJtRKmLwpSlhdqWFxWSmV0gxSlwKaYBqIL6MJ+ScJkMA6TB7DNGkyH9nFMrkHLU2WRRhaDyRgHaVHPMxRJfJonlOdAnn0e45DnpWEBIBODMDMo0dENaAZFOhTcJOcdN1AYNsBN5IaFQrcR50CcVZZswwLhjhbstmIwKuMdJDPvHOZ6Xu3IVtt5BpPc47rwLQQmbYz7PAfbz8BnS+TLMQ22xWKxpA3IuRtA4qN7NmxR+eidfik+wQWOThOzY4r5glA/w02kaAuyJVh1vQ0aNga+pVpvbYfD3I4IOTOkKIPdcIp4s3+x+tGv3gnr8TWWcDHZUFaP3DOS80kZ8X0l3G+vGzZ6ro5asoa+vCek0PMDjuNZGXXgUXiffkEW77T1Ghs9wGSX4MOCDBWzXfyiAF3VzNMZ0LkA1TyaiwxeI29eEkR0n+BpGyvLvGobijkQLQPrMHfPYMsncsJtFmquxH3/xAm3yk3Mj6kSoF2YnjjrbhsOOq5gua1GSCoX+iqzTorGPCSruDQiSDt2R5C2LwP6/vH5mOzYZ9ZuFXgXXGDPPSwPdC7p0pN5Qz3PRMfVqQpaTJBNn5AtpyXoVJoRmj2Ke4iIsDA/UBsuKwoClFo62o6Me5hD2y9IgEKKaoBpg/kNaAFVQds4x1Ykr0ohMzgxNS2x26dlEbmJhZmr+H9nQl8+zgUIlY+LCgU6zcv9GE0rwDXANmpw23UwO4Du0BYymxP5IF4RLTsT+J3kQIulhketOj66o72Uehtmo4O200TTbSL1fWwDUwmSXCRbinZS9Y6+Gtug2ncVGoFjcmV0kNgbGd3gGp/HN7gGFyW1BYPZ0HUNhkl2S10ulzIh5MpeLZZ55W7Ql5wwGkOhacrOXXBd5QplhQgMzMvwwDgrkCYFkqhAlIaVWIeS6iCFpwppPRecc9GRibSSPdf2TTSc0pHY8UwSHVNEIR+WYKulAp1Gywmy1eIzxBJALTe9glVyek262HWvoLUukQcX2Jk1LKMM83koZhmRmsFUTQeyFThoOLgUgMzLwMSF2M7nzyNko4+IhCU6nG+U20vyBr1+iyqv229QdF4hFHHijxuyXj8I95scvruV9tttneY/FxLwOfuEWMRdy4wsEgkX9kUHxuAN+NU7JM1bLOFiukspY0hl7pQQ1Qufcoaq7b3i+QOZEIQAASRuvNElq3r7BnHtimgIW1pGlQLEmYaGQ/EHFKXA4YQL6JsxCdByguwghv2VuVJWG9DcZk+EhdmBorUBChbsuAZu62SfrhWiajlD/BiuTW3Ci1tkIg12skmUVVxau2kBlxA/HUeHsXtGMbunxNXlsmzpCedf0bpCUmnpzcXMUj62tmviMrDRcnQYe9mGGyPfb5DFhAviFdDpnjlYHogzt44osM7kDIFZtuF8loLt5xT9vV1RbLcwXLE6hd5VTQ27OEOS5TDUNYQWy3keA2kMrShQMIC4CS9fd1+8VHzP3/3Q42crQt8XaHd+MA3IQXlCMtSujB4AChTgcQ6Ta3CNJuoXbbDgAnrrErz9BD4fw1rPES+XSAQDLAsjZGEkWHALGN4zuWl8EjBeb8OutWG5DbTcJvJ2HYfMIidXkmETZmq2sY0pQZT2Vk4vwPLiuwtTRciWf6xKK8/U+YlQGYxQOQbXYHEGQ+BzDKYJNFFJOOBMA9MYmMagwVBb0S+xouQiq4xHLwqiaid5JJBAJYUhEkF0kmcXpTmOCT2varxDLP7uJcEBviw6DddA0zXgm6XrkPhzJDwOErDDHGy5BjYzaret58hWYs6zPSDZH5XRAChbbnLp02x36MLUvUJe6yEXnLnFMcXzmuY9422E0bqc+ciLqTQdDBoOLVgGtogIEMuu848oJp8Qj+8V5ife7lVcgOE5tHja7xP5oPcKWeMay8LGdEVW77vVUX3tKM1V+23QcHDbIJdd3zfQ0RPw2R2K549k8x4TlFPur1gNn5ZQJWGheY1pzDHaRWquNRGwT1Pn6NUsVc0NfFMsuBK5IHn8DulipgRd7u3ogzcoem8omG6f4nEb42F9VBWLqTMF/lRVW7oFXw+RPH6HbD5GtttR8mzgq6oqa1I0w7PILpKZPtLYUDrhDFqYnQlk0HR44qzTO/QYs/atcNYR4qfqrJNx5CcZUcuhmANN1RzIbNROED/TI9EfJvv4BD/Uccn113Y4vHQr+HcPyDdz1W5kXg28MwAafWTBBRYCdDo7xCeEhbZroCUShPl2DKyeCfAbivUTUQWp9FbBmFtHZeaQ7LR4gt2ohaKTojGiPwP/rzvupeO3KbH8e8k+IiR5oe7aD3GGJC8jdNcmg2/UUO82Yfhd6O1rYD0Bn49gLqfINivFL8uTBEmcINkfEc7X4PYCuj0izIfvg/sNAhXW26j5LfhOHYUTIK252CWWImXvogzrKDlJGt1F6YsXa3mBllw4ACqu4RwcWo1rsCq5Q4TdISHiFRwHCdKX71/yggRC0hVyUVEm+WlsQxWe+qWIh3NGXRWAKmGnUlRlS7KmhIajbhtoOwZcQdf2TZGTEq7B1msUG7oTjMX+FRkMDp+126TRwPAcmIELu00WWN7ug/eukXttJH4X65RhdaDFV4nul5y5c/GRO0eDmo2buq1YYg09hb66B5ZPKt5BZh3J1pts/clgPePmG2TNK0T+BZ735La7X4d4EuaDXUjDbUtn6Nbsz2zefrIBn3xS+z/H8Uy0jDJw24LdrqnoclzQPsyz2Ie5Wx3xJCqsqgBd1WwlcG0joxbc5BOSp49IF7NyN0bs7eiDNyi6r5QASeSNXNKsCtArcYGX1uls9Em0prYi+twBr5ERIW9eUpWxp7WJyT7GKiwFSBobLnwDXUdUajNyr1WJDbzRgt6rVC2C1kCiUSJ+5D6QgqYuaA4kl2UBYe0WdPa0folFrGGyj5XpQtIfGqLlqNpw0wkytVtEBAxuW+DNLlh7gDToYRFmmB2IsCBBp56pV+IeKoSF5QT5YQukieLDScLCLmPYxrTgekwoc6hkOjI4OgOLD9DSiDoiTAfAP2vF/S72gs6PPwgROj/O+UZ5QT73TGz/ZkUBJuQpywvVHpLOEJm90XQoYbXeacIIeuCNPvTdHNl8DF3gd6QYyYXSNIwRATjO1+CmofZdzBpRain3ow0naMKyAjSdOgrfQ1J3sE8sImUn9JiqgiSjG8I0q1RKp3Rs4DROQdqAAZxc4L/vLb1/+oOWVYwJ51+n+vXO4yO+BEKtPqbzQD7ZbpTGAhlhXrd0ZdDwTBId12BwtAws3ILtaOk3XxGJItkuka0WikRxLjxAOesxPOdlyKnXRui2sYoyrLcZxltK9JwdYoxWoUrCfUl8emLZ9bbhoO1wtG0OvhmBjR6RipTO8HmGcL5W9nrZerPbNdiXV7RrJNxey8xU1c/9OlQzJ9kiCgRjTlK9b4RDzdx+br+WF0vdc+B2G0R0uHqHovMKR3+AyZbaZHfLg7Jgx2kG3zbQC2iRVxkceAw+v0c+/A1Zps8ESJcC1L5BWr/C804KkHCHidmSnItc1cqWmb5+okTT+YiQPEIwWK0NLqzYWf0K00OKsagyqnOluqWj71sCyaODVxA/0lnHDOGsU8ggqlqe94kyD6TCiNAWURQD3yRBm30q50ACy8NtE7zeVhTwgxFgsS0D785J24OA4h64sHZngrAgbees1lZtuIPuYblNhBvuc9Bp0+GoG3gh7oHT2oMgLGRuE+sdzZNkems19M4zGFxdg7Y/QksoLuL3PQeqHr8zEfqLv/gL/Mf/+B8xGo3wR3/0R/jzP/9z/ON//I9/9Hl+mxJrIAFS1ZC4y6doag1xpoExDUleYCeQF1lOaYa+SX57Gmq7qDfewG1eg7euYe7nyJcT6DLPRrTqJGhT0gyi5VZxzqQoGTUXhueUohQ04fgN2E4NhUXZ7kXNR5RrCLMyuiHKCmyjtIzJrsQ3JFmhWl1pXg2UIyE6FwW5OyOP9LdENXwp1uElcake50F6Mlyv2kJ0TQ6nQteWjsBAzLskYdvRGcwiBgs3YHta6i22ZD9NtivkuxXi1QbpPqRl0srulDyq7Taz5sJqNVQUO2sRXTsVLK5lmGE+o3bMZB9jsosUdUC63aozn7ZvYVAj1M+NCDOT4sPnEwKBPt8jmi0U702Kj9Uk04PdoztofvkGWf0KB6shnG8HDLdlqqv8+q7JFWLoRtivu66OphaCTz8gH31AMrpDOB4jWu6QJwk0zmnOJXl2IkZ8owcYb2LcLcmAMBaE7TJl1cZt3carhlMSFmaPyIYljDTdhyqtVu9dKXGLg4HaL5LIGylATTFjedN00XE42noCfX6PbHyHbCrSVmXFUm8T5LRD4jw5ZBhXMDqKu2cTyfpaOA/N3TMZPwTip7owqwLq6peYi6pFVmnSPCCZddcnUQ+VOZBoa5rNJlm7O7dqV+leQFNl4F3DNRTi58TaLUwSkr5Bu0V9oHmJLLjAXIjZOei0LVYNmpZswxHBPz9sUWQZmED8sEYPqd/BMsywETPqQ5LRbpH4vQssDt9g0MINtGhH5qWCA9z8rA33+6iCgN+RCP23//bf8G/+zb/BX/zFX+Af/aN/hP/yX/4L/uk//af4P//n/+D29vbvfP6XOHIaAA6Qw4NpgA7khYZM11C3dERphkPCVBtsKS8wlo7xLlL23paro2ZdoF4bgDfW0C8o40Ofj5Atp+pCGG8PCsKZxymS7QEJgHC+VmQAw3XUoqZZ86C5AQ0O3QA8aMLwavAMl0TJdFCYLmK4iLJcRTdIQraMb4jSTM1fpDjJyO2s+Dz9tBrhALwcViePL1Uz52/PU1vl7EpGjL8U6+Ca5MZR0Q66BosV0KIdWLyHtt+DxXvCjmxXJDqHDbKdaLHtS/HPk1TNeKTBQKJ/JFaHN7rCaj9A7lMgWGTVsAyp6pkdiDU32RMvcC04YfL1k5b6uhCfvkj4vBT9fUlb0OdjomtPh4hmc+W+k/HiKlZcONKkcyyuX2F6yDBdRvi4OmK4CVX1VR2QV6uf68BE3zdg7qfgiwckD98imw4pz0i035hhUPtNUrAv3iARO0aTTaJ4dpNNhGOcnoTc3QqTw4Wnw48W0FePNP8ROzZV1A3vXtFz6b5B6F0oE0J1BlQVoNcNRwkQXz6WArSefy5AojqUVuzHbagiEKpLn5QNxOHFmxNjg2x1SWMDH7xSRoS52uEpnXVNlxhztxWjhLSKp4tpKUCtRgXCSt+/py3dvMg5kLRj9wMLXdeglt5S5CAtS06fnHnx3jXSeh+zY9mGk6BT3yoj7hsWh51swQRhId8K0Klh0o1uk5ZbI8PHepsQkSIq4x4kbbtmclhIKL8rjejaKdibENdPVD/+PRy/ExH6T//pP+Ff/at/hX/9r/81AODP//zP8T/+x//Af/7P/xl/9md/9oPP871RDsDncQ7iLdcYbK6DganKKC9MmhFlOeIsVxec1SHBROx2TPaxYMARoLRm+ggaNTiNS5UlVGwX0JcTWMKVotpBcgAuWnYQEeBMYmtsU8FIFT3Aq4HZLjSvpsTJsBy4hkuiZLgobAu5biPOCsTV2AbxcTW6QeYKSQNBVtC/ywoyE1TjG+SsRx55habNVFJq+bGkZ8v3q+YHS+ewhTHC0kU19NuiHeIdLeIKbFG+XSEP98h2IktItEBfqna+JDzMb6hoBwQdSqJ0m1gnwDbKsN6Fqm0iCdvyol+lLgS2jpZvoVez0BXk5Ksa7Xi0bA6+fQZfPCN7fkA4HSKeTpQDT4qPvFi73QYNxC9f0919rY+NZuN5RXfjMla8umvkChSUZL9JnhrNZj6gEIy56HmEcL5BFtLFRPcctd9k3H5DLbLmjWDARUTYXh8F0UEYBVxTzbUkYcE+kMjFD9+Sy1AseVYFyLh6h7x1jdC7ELTwWCWtSnedsk2LqO+WkYEvn1BM75UA5UlKZA2xpMm6NwpyOhex2jKJFAA8k1pTMpwukOF54/sTy7O6yF+IHS+zhtku/aKz7qpGMz11vucHVVEBYgG3SXTxpNYnLM8hVtBUaZlvuuT8G/hk7WbLx88D71wbvNZS1u5tYWIZphQfLnbjTNGp6bgmWo6YKc1mZO1ez0sWpox7EGaEVUgV0DpMX4z+9k0Gtl9Di/a0b8h0Wrf4EtT493D85CIUxzH+1//6X/i3//bfnnz+n/yTf4L/+T//52f/PooiRFGkPt5sNl88928ToGqonYYYFtdhWiZ0Bsq74aV7jDNNWah3YUahdsIaXUXudFwTdVtHzeog6F7AaodgvSX04xrFdgFTkrIrFVIWxnTXfoxR5ETJplnSTomSZKiVEQ6V6AbbhSbwNtzxoNseTNMWkQ2Wim6Q+zmpMGDQzAYiQZbeL4oy0kG63QqUVU9VfOTBtDJFlam4X62EHTKojCFdvK8zDbwo95Y0uVibHD6PdjjukR82yAUrT4Jc0zBS5Idz0ZGwVsNzyjlco6Z2uXizR6FdblOxsrZxju0qxWgbYnZIFPZHXvCr0Q6y8mn5FlmTPap+ZN5LwwT49hlsMUU2+oRoOkQ8n70oPsp5VyUt1K+wM2uYH1KMdqXxYLIJsRZ30dXqh/A4InpBADj5YngCH41WO2RxAqYYc5X9n+Yt9lYDk02CuxVhhUabEPNdVIkRt3EpWnCXgYVLX4e+limr3yGdj9UenVziVUaK1g1Ct4vxniIkxrvoJOq7JtplJEDC3LC4LynbQoA0xsg0UGmZrWBjepCMuRjbiMSZ5kqlqFGVMSbEj5grnRsbivYNYq+L6a5E/EhnnVMRtL5nUj7Q/AnZmBA/ZXy6tJ+/Voif6ba0ikuqBM2BSgq4sXuGtiBnXTXwjtca4L1rFI0BEq9LuCBxrr34OZJie+GZqurGaox8OUFx2Jag06Cp0lu3GcM6qqa3lmOHjljgNuId2HENLdzRnqBF6xgSAA38uDbcT1Ex/eQiNJvNkGUZLi4uTj5/cXGB8Xj82b//sz/7M/z7f//vf+t5vzfKoSpAMtSuyKElADSGQLfguS48I6dMd8fA897AxIqwOOrKOk2ClGC+i+CY+olbS1qEazZHYPbge3043QzsuIZxXINFW5jrOcU3bJcoDtuTSOrqBTYXmJ10HyoSQZW1RgJlKoGSkQ1MUglMG8yyodmeim5wOGUJydgGGeNA7/Ny36d6t/PSXc9LabVZ+ZoiT6ElMX0uS2j/KIuBOFKsuyIOCS0k3i/iUFWKsrKpvh5VigNQig53TCXUkrBN8ehNEevQQW7XUTgNxE4dmzjHLs6x+R7Q6aECOZVVT9010HBN9AJLJep2XB0tR4eHCGw7BBuNkU6HSOZjRJOJCi/8ovh0r8D7r4gx57YxPaR4noUnpIVq600K4FWDEl2lg6zJY+KzTe5UoqusfuQF12r4p+235jXmqYHnVSwEKFQtRwBkQBAW7HctkeJqFtBnH8iCLcL7JGGBOyasDgmFfvM1suYr7IwanrdkcR5uTl1hUoBeC/deSwrQ80ekk6FizHFxQVYC1LjGhvuY7gWUVAgQAHimLsLurNKKvaCqSiJ+ijw/MTYUHRL/512K512sYKJSgBQRQWQNkQWdED/ZbncSxsf7tyiaV4j9CzxvEjxsyjkQ8ALiJ92Stfv5nuzYMvCuXiFtV63duwjbiNpwdcdAU7yGLYfacHz7LB4XgU6ZaYjdojK9dSEIC5tImBEE6JQICzL0bg7tuEF+2NACuuXQtYFxumb8RJXQjxGn35kxQTuzARdF8dnnAODf/bt/hz/90z9VH282G9zc3Pw4hT3PEypyaFmsLp6FpoHpJmqmB9+vUQqhxVWW0MyJsVZ7PORKU4KkVwVJP9lZqdkcrlGHX2/CMxhYewMWbaGHW+C4hSEqJAklzQ4HtTBJYpQQhVqw3tKM2ngaZ4grbDZm6mCMncQ2cNtSkQ2abkDTDcCQ75v0d5wTMZxVyAfyfYD+/uyQJIUTukIF/YM0QZ7GlNqYxBSelSYo0gR5GJb07xdI4NWoitNvH4Nhm+K5kbmDzAUutSlFJgqrt6F5DeSCsB2bPnYJCc9+GWO2j7EIqeJZHROsDslJu60a7UDiY6Ltm5XtfRs1i6FpcdjpHnw9pMVCIT6xIGzEm70imcsK1mr4sDrkmtL7t8iCHpLaANNjhuUqxv1K7OJsI0W8Tiutt16N5k03dVts6euwj3Pos0eyRT/fI3yeid0fMh/YAqxaNQgktYGyXz+sQxVnLuc/vm3gqmGj71t423RLnNDs8cQBF1dTVsXz4pdvlMFhsqednXMBkjOg27pdCtDysRSLTdmCk4N53qeZzV4PMNunKmlVtpNsnX5XibJtEMl6+QAshsReExEI3LbAfHo9tM4t0jq9/tM9VUHrKlrJprTky8BUWUNYDClSQTjrTsL4OrdIG1eYCajxZBdhI6zzJeJHzIGMHHxGPzdyRlUSJXrQ+7eqpbc8JpjsIuzEz6gibfsU9VDXc/D5RLXhVN6QcMOhcUHheSegU9GG4ww1YWOvWxxsPwcL1/R6JbGIe6EbVQgBkgi032fC6k8uQp1OB5zzz6qeyWTyWXUEAJZlwbKs7z3n974eVeVmDCrXrsjLtlAu90XWyA9LNO0a6n4ddZujZevYxra6c5bQTLnZn+WFoDYnmFfcXlKQ6paOuk1QUld34FoePP8SFivAwi3BSCUle7eCLVtRxz2K8KAu3JkUprP8HZktlDOmBErGMyiYaIXtJjlvzDTKvKAz8QH7wt2OFAcpPPJzeYZcCkklTqLI8tN4hzxXggPg5HkAp5lIUmB12xQVjwnuEndO0rWZV4PmNwh4ateQ2gGigmOX5NjHOfaCqyWXgleCTiHj2qs7V1VEUsM10BApuT3PFL+kjALGDkuwxRxYT9TcIp7PlDNSPj+a7Qnrt1x4vbhFXr9AHFxgnTLM1zHGW7oDfxY7R7uwJAdUTQ9XNbnoKvdT7oHFELEI1iO3XahAl3L5VL+4oYt44wY7o4bphvZf7sV8Zr6LEacZHJMcfvJrXddIJPx4Rbs6Quji5VLFSBgycfTiljKM6pfYMBfPKg+oZMHJ34m+YrdVBGh2j2zySLlecULt6KBxYhrYmzXMDqmY2SXYRhmyooBnclUVdD0DXYcEg63HSOdjNaBnpkEzwS7hltJaH6tUxzIsAaBhKizPpq7SWzuODjtcgm8nSOZjqjSS9JRZJ0jbi6jA/JAq0ZDzO2ntvhBzIL56QLF4Eg62ktfHG+SMzIIeWbslafsF04Vsw/HtE8V+bwjNU80b0nvXSP0udrn+WRvO4GS6krElbhGBHZbINwsUxz1dAxhDIWZCBSciym8xw/5Ojp9chEzTxN//+38ff/mXf4l//s//ufr8X/7lX+Kf/bN/9qPP96IAfSlPSGPQmE6DD/lvirwEfeY5oS1sD8z20bAD1NwmQtdCz9OxiYixVKU470WgnbyTrqauyvgGT7LehO24bhnwTA5Hd+FYPhyPweIa9IxApDw5UHxDGtJjCw9l60pQsmV1USTxycWentIZgFRe7BMgg8gKErsi5Uv25TK7WplUz1l9m7/wNV/6/7pNNxTnYlkmxZrQDJPExrTV7It5NWiuT2YMy0NuekgtsrHvkxzHtMBxk2MX0Y3COqT9qm2cVlh9qXL/yfmKqZeg07rMexLmk5opIKdFBHaYgS3Jlp+taQk23axPKld5N2sGLu2F1dovL7zuMkz2R3VBXap9ozLvR1Vg/ud2b7YaIZsOqSpZEXhUOsh0z1b7TtJpl9QGmEcF5gIbU+WgEX7HIgeYb6oZTdehHSO2GqngOLm/wm2zJBZciOiE5jUWsYa5yu+hC7vMA/JNjoEQuK5c9Fw+kQDNx7RUmWdgtk3uUHFxJzBsg9qVghIg7+RlZs51QLHrFx7NWfh2Qnbn7RJFnhGx3a0p3l/auMZGs7E40jxwE6VIsgK2zuEa7ORxKorB5BHZdgmkQiQ9Ye0WVvoVbGWUWEcp4qyM6R5UrN3G7hlsPUYinzME0qjZo5Ze6wppbYD5NsFkT1V7KG5KpABdBjY6LocTb8B3MyTzEeUEoWTMkamhh9hpYrVLMJXLrUUBg5Mj+MIz0RDprWw9hrZfIt9vibRte2CWg0y3UHADYLogpfw0KJ4fc/xO2nF/+qd/in/5L/8l/sE/+Af4h//wH+K//tf/ivv7e/xf/9f/9ZN+napoaxojp4f8RG4CPAVyk4LtAIpDOO6B/YYuhG4A3VvDtQPYVoBGrYaDy3ERG9gnJEjrKFULpXKZVApSua+TIEzJ/r3UGWw9Vnsx5S4MI6MEr8F267ACBpNBEbK1NARLopNI8iJNlDAVaSKE6fPE05cqF/UaZZl4e5YddNYSUzMZ4+w1Pvt/1TA8VgnU00SgHhin1qB4q1l2SdyWceS2B1SNFoaLzHRQ6DairMAxLciOvs3U7pSEnx7FUu8hKblzcqjv24ayjDumfP2pjVq3dNSsEvnjGwz8uIa2XlGLYrNAWkm+lQGDAF1EWINMEZpLeS+82YNWayPz2kjEhvr6kGMVxnjex5SBFKbYhLQMKRddpe22I9pWTYeqcSvegM9mwGqs6MrZRkQZ2GZJ6BCkB61FuyVHs4bFIcP0kCgnmbyIB7YOR1zI5eJkx9GpXbR6oGpCfC0iMDO1SqDC4+oXyITILY5ZSXXOhPXXoQtxz6ewwI7LUdNi8DXts+TrOf3OQbSQPDq3hMOGdhOLQ0p/xHm5psG2GGriAt92qAVnHpfggpdWVFE1jgfeHoC16TU56B6WB1rW3IqKxRbL0h3XII6bzRGwFHxNFGoSyVzNXnmzR1WaeI1X+xTzI9Hec1GhWbwUtI7L4SZb8N2UHp94zsx1lUBqbUpcXYQZ1lGm6NgGI/Bu0zFwLW5IAsmGk69fnpVUhLZA/PhdrKNMQErJji2XUjsuRZmo6v64pr2iNKbfTUtQ7g0bhWEjA3EhZRvu+1py1U//LI0JAPAv/sW/wHw+x3/4D/8Bo9EIf/zHf4z//t//O169evWTnP+lJ14AtCPETdr+rZgXNCcHA93Nywt6kSbQkhhaHILZWzAnADPXMOwaAsdDZFPw1DE1EWW52C/KykXSyo5OlpPLjGkakqwAUC6X7iL64adfAroTs3UOQ9iYDWbA5CZMsyECpkAEbEnEzmJoeQqWlnRsCSEtEjGbybPyraRj57mY65TiVApVhZ6dVd7/0iFnR3KWJCPCZVx4Zf70Im2bmyh0Q5T9pnL4pQXIep4ViOMC8TFBnBeI0uJkYZf2owTSqCgoXVLT4Bi0BCvxROf7Sb5FC3qOLugLOoOVh9DCLdhmDy3aoNitkQl7uErehcCpuC49F1PY6YMGhfAJF17u1HHIOTYhxVAsj2SEqEYo12wDnFF/XhIhOq5J4XqC+M13I2qVrGgxWubCMNuG6brq65P9nBI3pRtqeUixClOKyo4Jz2Lr5Wug9kzEHbGXH8FWU7CduJjvyY2q2R50vwRgshZxzDKvjUWY0WJv5SLsGsQv9E2Onk/nb4mYAradEt15u6SfS8bB3EAlfaJxQQJk1bESi5XbOEVe0OvkGBqCM3uynWzB9nMUu5WaizCHiPis3gZr0uONnSbWxxT7OD+ZKemiOuj7NOxv2Rx8PYZ2WJHdWVzkNcMQc6VrpAHNW9aHTH1Ps6KAxel3uOnopaDxHHyzQLFdohDx2prtkkAK0U2DHna5jk2UYR2mSLIcTIPKGbvwaA7UsDj4dgLtsEK236AQ4qhZJI6sfYnU72CXMRWBkuR0/fGFmHVlG46Reao4bFBER/peOB6YW0NuOCgMB+CmctLmIMQX/wEC9FMdvzNjwp/8yZ/gT/7kT/5O5/i+KAd5vNTDZEwHTFcN3HKuQ+MmmOWokDh1wU4T5OEeWp6BZTGK5AjtaMExXdimh8J3EWUFwkxHlBaIsxxhRsugX9rNySsPijENeQGEaa72lA48PwGM0ltKN9S5Bq5xGMwFNwDd0kQGPMAh3GlZWtKwc/m+cLNl4vMyqlc63IDyc+rF/C0JrNW2p1xiq+4TCNq2cuNposfMOFWlYvCZKQiqIJynBZI4VYDZVFSV8rUMU0qQlK8pQDZww+TqNeVqX4leQ0kWt3TaTyLhJ7iriZSW88IDVZ3JAcVxh1yGBaaCrO144pvGlfho4he2sH0UlofM9El80gL7KMchSXFIcuziVGyn02OtWzqYSK0sKzK6CfHFH3ZYQttuwMI1it1a3PHmdLGRFaSYkWlBE7ldR+o2kZi+uHBn6uYoKwqxp8XU16yLCjAQRhw92oDvF2DhGtlOkJctB9xyTiLvc7uO1GshMmvYhhk2EbEPozQD04CapcPgDIEgjtRMjsBicLMjDb+j7WmlIsIN5bkzce51lGEnbjQAiO8hRZjULB1BxSTCjmtaZk5jgFEEtmbZ6qYg89pInCbWUUlvB6ilx00IQxFd4Ju2HNKfPU63RuGL9Q5Sv4vc72Id5SJ0sTyfIRBTHddQu2Ns+wwt3lErnTH6uRGVixTIyKxhJzA6SZ7D4Aw+KwVXCrkRrqFVHhtzPHrOgoqQ+V0kVg27Y4ooo98T+fsRmLqyY9ctDnaY08+7vBlwqANUODUUlo/CdJFWUgiALwvNS5+vsjv/tscfFDvuhzzZMuBOJKwyHRo3oOk2tNSBZrhgbkgX7zRVrSyNcbp4ZzFlauQZiixGEe/hcBO2YaFwbcQ5pzacXBrNi5MdHfo4R56fLobKQy2CqiXaAkkmxlgawHOAifgJzjT6nBAh2t/RoWk6uKERsFX9nfgheUl88or4VCvEF3aE1OsonYzndm72uRBlRfm6y0ynrCiQJUBeZGpP6aW9pbygnaVEtAclZDYvipPWINMEiJUBBmMC5goVT6yrylIrl2PTCFoYqZ0l1epMyahCbUO6YNBTLKs5GCa1C00HmW7TnEq3CbMUZiorKRbVsHzcls7V90q2gGxOoijJxSw+QNtuwYQgIhab65ZDllmR38Qcj+5WLQ+56SO3AxwyDccowz4hqkaSiRmATS+WzZmiU0jwq8sLsOOSUC3JQTijSHRUVpTrozB9pHaAwg4QahZ2MX0deSNQjRJxdA5Hp69RsziM5AAWrqElR3KkMi7Oz6GZNgrbRyZcjYnhClGjLgJjQGDSpcg1OWxdI2CtQfM6Ld5DS47ie2ZCC0SwokOPOXfqyNwmdnGOMC3KwbypU3tKnNM3SIyZQNYgT+nxOWImadoo3Doyp47ca2OXAkeByZLf32qLvWaJ8x3XYNEeSGIl5rL6K9w6Mo+iFXZhhigtFMXAN+lnpG4b8Aym5pNauIGWxShQ3hhptqcygnK3iX1CqK8ky8GYhsDUyR4vxLtuMejJ4fR5irRjOAFRWiwPGZj6/n6fOfv7KiD5d39bMfrZitAPjXKo9jDP/21agC7YJt2Va6kFzXAB4ZjTRIsLRU4zI/XFxbcjS0npi1wEyEWwuAGT63AtWhLNclkBCSRO5UJcvShXH2NReTZa5Zky7TReIS/oByNDgaLQoGlUOTAN0DL6xdC0ohQgQHyOA+BlZINeLp5+6fX90mutHrMUVPlvchkemKt/VwYKVj5G+VpQuU8H1zTF/dMZYOFzu7gmWgOaRq/DuShLQjidQyREZhEQpyetTGRpKb4ijE8zTPoa1QpPVHGFLtqGuqXej7MCcUIVb1xBH8ldDCmYrPL4TF6mV1pcLPOGRC7WUmqrQmOA5UAzLfqeaEy1MDMxL8tNBxkziTEokE7ypsUz6XstXxeDQVWBjs6gFylYuIeWHGjXCwBMq/x6okWam46KXY9yDce0rEJ1Vn4dznBSabo6I8NNcgRERVkwDs311XPJdYvuui0PCbfFhZ1+ltTrB6gbCOIIarC0DFp0pNdKYyi4Ac2rlec1HRIhO8BRIK6KogBngKNzuAa9JvK1cA3xWNOIbsA0Ji7ynghnFAgt4cKMM5r9alrlMXINdkXgjSwE0pB+vnSdLvKM002M4SJ36sidOj2+vBCVMkPdJvqIJR6bnFNqh6P6PqnEYsNEbjgkjm4TUa4hFgQUqkhxei6DERIrPD0XczwUukUrDqZHLfHKz9L5NaL8Pfxhx9+2KvrZilD1+CFPjGl0oau+EOVFvyJGeQrNsFDIBUwhQqpyqLaoqu0ouagJ0P/JUnFHTncg0t6YFeXd/mcX5KL47LGp01c+Pl+n+j7xoAt95WNQWaKBnHLys98X3/B9R7WKe1mcXv63TBMXGZBC0l99/2Oo/iKciipUdXFaGUIsKafQss+XaumkjNqFGgO4UT4HVlZ4aklPJsWKNq4c1qZpUVZyABg06BzgledEQllSJU5IElIc5ZyvoNt/+lqVck8+Vm7S53VTJdWmGbUyc3HBMDmdW75e6mvySvJuFhMlOSvFAYZL71fbqBUSRyRFVpDoDfF8wKGemxRWW32NqBRUOfeT55dibtjIGIm58sCItioAReEwRT6WqeXQYtGxEK8VBStWzmsI3mLBVCXNmQYTAFgZf1Jty2oJRRcUmkbPW7fpZ0AnESpMBym3kYj2uTyfyanzoPMz9mEY0Y0O0+lcul3+HFk+cstDDL3y+IhiQM+fblQcg8Rciw/l94qb0Bz6uVWCawX0GqY5ikJitTQYjJ+cyzNYWQFpDIVuQ+M5cqYLRmXZhqteO+Qe599lR0g7e/tDjj8IEfqhx7kQVV/MAmVlxHQdGs9RVMUnLz8GXm5VnbSoCrqV01Be7Lj4AyaXvjT1tasVhaomvnAB/9s//59+bHh+Tvk4+Qs/bcWP+NE7/5fy6yghAv1SqGoOL7Qc81NUE0DfIw10MQSoii2/KFP/Rn0sv1+spEnI9mKWl98rDfRLrxV0sa8+A/m4mJzdsbLKU6m2mfg5qczO1G+frMaqZAspgnmZ66RpYjZW+dqadlp96WK2iCym2aH4miTCuTLwqK+nm2KOpyPJ6SYKEJUqK6BDigR9L/7v9s4uNIqrjeP/M5NkG0sMBD82i00IvpFCI4HGfiSoLYWG5iK0jReKIPGmEIiCBC+kvUguii2F9iqK6IUotOCN/YAWSiBp2lIKIi0NIiWiEqGGUC+aGNGQ7HkvZs7smdnZ2Znd2Tlns88PlmR3Z57zzJlnz/8855yZcYY//cqol258KeYG7UxyAwbWs7njqDPg2DaYZ2gV9sXmPJvLDMUx2BmRsLsOwxn2NhlgmFaPhdk+O8OzyOZ8ZYZ1yyvxKGvpMfXcbLCyA3H+jJzYi+w7ZYqVrbagiXNZV5+bF5WEdyNrZRsms4Q7a3IpW7afcMrXJdGwVpdywBLcOmslW7ZhC9Y2uKsjAtPuFBk5W2xjzeqMybbENUH1jdZxGnXYsE+2GGmQO39OfKHyaC9CUZtm7/Ccd38hCIYd0GK4DSbcE/fFJu1lm96MiWfBmOHc1dvaRmzAfIcOxekOuliMxyBU5WKWKXTeu2YUyvJk8QFg1yvyzot1bZizl72p59xJ10g550r+K10pDml+izEGg1u9Gr+7fQirQizzhFKeizPrrI6O+E72wTPPJrJqLpdjMBie0y8aj7x5QZEF2mVwaVm9U64QXvuyBpHBW0mPJUBA7gGIJsuVI8TVqVPDdKfvcvZpi4cIXfHASdPMCZCc3Vq2c/WTlyl6RDrriKYtQMjvENQJm1krA2KigwK7Q2LUWTZN6ybHWdtGvcnsbDeXiYsVrNaCoKw19AhLEB2f7SHd3KqzXNYC5OJFFvS8DoNkyxFypw7tLJLn6s8RW3t0gDMGJi5ZMZEbarbvN+nYcmKJOfHrVDeSQXsRCkJUkl/T7DdXJCPWwYueIbP/WgazbpsRBCnvQlqRWUmfiyzCzzWTBQhRGQKQlHyF9TDMNQgOfkOkdi8Z8HQCgPwZVu/30vtCw6OOf6IRDvDVVzClspxLBmQx8Fl5KPyRfbGGNZndocn3zyV8nrK56fPzLiS+sEUG1pCuyZhreCZPYKUymPzeu3oyzz53OjJe+ybL2ebMAPP479gWjavUkBqGddMuuVEVwuz4axiA0ZDrpMjib6/iFPa8ASrmJE27kXfswS0asrhvSAIGMOdKB3mO0yXoQoBEbEuCy5nhaLPIUkUnQYitXH+WgMGan/KKt3Q+5PqXSUqAAM1FqGBbXOB9kBhFKYsFNFq5HQKEyW97v80K+JHkfZtUEvow/YS9UB2HqPtinZYgv0JN3MoNSSG/PO9ln+RhZcD/mo3AHqskavnO5guwsJEbYvXPVl2fijLEkJZsWxJU2b7B3LZlEc+zDU/nQs4OvL55OgqF7HLDbu7kqpHEUmAaDEzKOmT/XfaYkd+x8NgTnYg6TwfCa0/YYt76tF+5i0eZbyfBlDoIXgH3ZtnwOTb5fdJoLUJ+BNWTleiXj7AReE5CCk1UCpWpfiCuPGKN7xLrPuwCl0iuFPwivI/ldJ58BShieWHK8hOJoDKDRNVbZp7tAAH3+u51PdCulwJiCeQLv69QFrDpJ+4c+cfPpH2CBF1uj2TR9RXbIgLuPU6xv+sQ8o+qomgrQn4/zDCVE5QVleOD6uQkqHxdBEp1HflRqbqJ41jL8a3U8kspM2pnrBxRLWTTjyCbRQUooj238Wj2hAAXtO8VXh/RLSbkgf55xDbOjKdYpyAM2oqQl6gHF1dWJNBJkLyU4k+xutHtGKNQSVGOq142hQDFUEYU+5U4r2FthvUzrACXksGGmkctc4SmnOMUn0eNmaoQoVJ/dHFmRTI6C1JYqtXvQlQ6G9RBfAASoDjt6jKCUIhKdaILoareqkKEyqVSYuS1udkadt1JohGJ85ySAJVmvxICFIW4G+c4fdSxzYkaC9qLUNwnrJINFwlSMpD4VLbsWohdyoIqZ2tTDsfFSSWzIplQK+yIUCTZYMR9vmpBgCgLUpMFxUkYvyohQIDmIlTJE1bprEgQNFEXx8qSzYbKHqpO2Q+QvAAlUQ7FOOFFaxEqRFLDXl7bcf3gglaWBO0X1k45Pc1ye8KVnkuoFLoJkIrya0UgVJ+fuNDtfJXqT9WJkDeASh32KmWJcpShvHJ7scX2D/KhnP2j1KefjXL39xJVyKPYkO2U27GJu2HTrYFRgeqhON0pZTm0jlTmsv8Y8KvcYg1vWCp9jYzq/ZOg3Ea30kIu9i9VUOKMpyRJMgvS6bgJtZTzW62aTChMwNfKYoByRbQaLlRNwoe476pRiFKyuVJ6ubqLgg5xVYuEmf+OM6uKGofaZkJeQt9Ro8j3qhvwSu+fBNVwDEn4kEQ2F4aomVtc6CSSqofuamUVnR9eX6P6rrUIxTHxHsZeWLs6CEAxVItgHD+ezeBDXH4UI6wfhV6yHfmlAzo0xLrURSHiFDVVx6q1CHkpNsavOmh1FwAdRFj1MSThQxw2VF63Eda2btRqNpTUufLLeOK41EW7OSHx9NCVlZXi20r/q26Aa31/HXwgAdLPRlR75diPWkalfFclMqo7LnIZj+32O8zToLUTISE+/+vsVOwJQRAEUQ4rKytobm4O3IbxMFKVINlsFv/88w+ampqcJwcmxfLyMl544QU8ePAAW7duTbTsaoXqLDpUZ6VB9RYdVXXGOcfKygoymQwMI3jWR7tMyDAM7Nq1S6kPW7dupSCPCNVZdKjOSoPqLToq6qxYBiSoqoUJBEEQxOaCRIggCIJQBomQRCqVwvj4OFKplGpXqgaqs+hQnZUG1Vt0qqHOtFuYQBAEQdQOlAkRBEEQyiARIgiCIJRBIkQQBEEog0SIIAiCUAaJkM358+fR0dGB5557Dj09Pfjll19Uu6Q1ExMTYIy5Xul0WrVbWvHzzz9jcHAQmUwGjDF88803ru8555iYmEAmk0FjYyPefPNN3Lp1S42zmlCszo4fP54Xd6+//roaZzXhk08+wSuvvIKmpibs2LED7733Hv7++2/XNjrHGokQgGvXruHUqVP46KOP8Mcff+DAgQMYGBjAwsKCate05qWXXsLDhw+d19zcnGqXtGJ1dRXd3d2YnJz0/f6zzz7DF198gcnJSdy4cQPpdBpvv/12qJv3blaK1RkAvPPOO664++GHHxL0UD9mZ2cxOjqK33//HVNTU1hfX0d/fz9WV1edbbSONU7wV199lY+MjLg+e/HFF/mZM2cUeaQ/4+PjvLu7W7UbVQMA/vXXXzvvs9ksT6fT/NNPP3U+e/r0KW9ubuYXLlxQ4KF+eOuMc86Hh4f5u+++q8SfamFpaYkD4LOzs5xz/WOt5jOhtbU13Lx5E/39/a7P+/v78dtvvynyqjqYn59HJpNBR0cHjhw5grt376p2qWq4d+8eFhcXXXGXSqXwxhtvUNwV4aeffsKOHTuwZ88efPDBB1haWlLtklb8999/AICWlhYA+sdazYvQv//+i42NDezcudP1+c6dO7G4uKjIK/157bXXcPXqVfz444+4dOkSFhcX0dfXh0ePHql2rSoQsUVxF42BgQF8+eWXmJ6exueff44bN27grbfewrNnz1S7pgWcc4yNjWH//v3o6uoCoH+saXcXbVV4HxvBOU/8URLVxMDAgPP/3r170dvbi927d+PKlSsYGxtT6Fl1QXEXjcOHDzv/d3V1Yd++fWhvb8f333+PoaEhhZ7pwYkTJ/DXX3/h119/zftO11ir+Uxo27ZtME0zr0ewtLSU13MgCvP8889j7969mJ+fV+1KVSBWElLclUdrayva29sp7gCcPHkS3333HWZmZlyPw9E91mpehBoaGtDT04OpqSnX51NTU+jr61PkVfXx7Nkz3L59G62trapdqQo6OjqQTqddcbe2tobZ2VmKuwg8evQIDx48qOm445zjxIkTuH79Oqanp9HR0eH6XvdYo+E4AGNjYzh27Bj27duH3t5eXLx4EQsLCxgZGVHtmracPn0ag4ODaGtrw9LSEj7++GMsLy9jeHhYtWva8PjxY9y5c8d5f+/ePfz5559oaWlBW1sbTp06hbNnz6KzsxOdnZ04e/YstmzZgqNHjyr0Wi1BddbS0oKJiQkcOnQIra2tuH//Pj788ENs27YN77//vkKv1TI6OoqvvvoK3377LZqampyMp7m5GY2NjWCM6R1rStfmacS5c+d4e3s7b2ho4C+//LKzvJHw5/Dhw7y1tZXX19fzTCbDh4aG+K1bt1S7pRUzMzMcQN5reHiYc24tnR0fH+fpdJqnUil+8OBBPjc3p9ZpxQTV2ZMnT3h/fz/fvn07r6+v521tbXx4eJgvLCyodlspfvUFgF++fNnZRudYo0c5EARBEMqo+TkhgiAIQh0kQgRBEIQySIQIgiAIZZAIEQRBEMogESIIgiCUQSJEEARBKINEiCAIglAGiRBBEAShDBIhgiAIQhkkQgRBEIQySIQIgiAIZZAIEQRBEMr4Py0xqAqUEIYeAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Nx, Ny = length(x), length(y)\n", + "b = zeros(Nx,Ny)\n", + "b[Nx÷2, Ny÷4] = 1\n", + "@time u = reshape(A \\ vec(b), Nx, Ny)\n", + "s = maximum(abs, real(u)) / 10\n", + "imshow(real(u), cmap=\"RdBu\", vmin=-s, vmax=s,\n", + " extent=(minimum(x),maximum(x),minimum(y),maximum(y)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We solved a $200000\\times200000$ matrix problem in **seconds**, and less than 1GB of memory. Pretty good!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Iterative solvers\n", + "\n", + "Unfortunately, sparse-direct solvers like those we are using above have two limitations:\n", + "\n", + "* They only work **if the matrix is sparse**. There are lots of problems where $A$ has some special structure that lets you compute $A*x$ quickly, e.g. by FFTs, and avoid storing the whole matrix, but for which $A$ is not sparse.\n", + "\n", + "* They **scale poorly** if the sparse matrix comes from a **3d grid or mesh**. For an $s$-element 1d mesh with $n=s$ degrees of freedom, they have $O(s)$ complexity. For an $s \\times s$ 2d mesh with $n=s^2$ degrees of freedom, they take $O(n \\log n)$ operations and require $O(n)$ storage. But for a 3d $s\\times s\\times s$ mesh with $n = s^3$, they take $O(n^2)$ operations and require $O(n^{4/3})$ storage (and you often run out of storage before you run out of time).\n", + "\n", + "The alternative is an **iterative solver**, in which you supply an initial guess for the solution $x$ (often just $x=0$) and then it *iteratively improves* the guess, converging (hopefully) to the solution $A^{-1} b$, while using *only* matrix-vector operations $Ax$.\n", + "\n", + "Iterative solvers are the method of choice (or, more accurately, of necessity) for the very largest problems, but they have their downsides. There are *many iterative solver algorithms*, and you have to know a little bit to pick the best one. They *may not converge at all* for non-symmetric $A$, and in any case may *converge very slowly*, unless you provide a \"magic\" matrix called a *preconditioner* that is specific to your problem. (It is often a research problem in itself to find a good preconditioner!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Toy example: Steepest-descent algorithm\n", + "\n", + "If $A$ is a **real-symmetric positive-definite** matrix, then solving $Ax = b$ is equivalent to minimizing the function:\n", + "\n", + "$$\n", + "f(x) = x^T A x - x^T b - b^T x\n", + "$$\n", + "\n", + "Just compute $\\nabla f = \\cdots = 2(Ax - b)$, which equals zero at the minimum. The definiteness of $A$ means that the function $f$ is [convex](https://en.wikipedia.org/wiki/Convex_function), so there is exactly one global minimum. Another way to see this: if $Az=b$, then $f(z+v) - f(z) = \\cdots = v^T A v > 0$ for any vector $v \\ne 0$, so $f(z)$ must be the minimum.\n", + "\n", + "One of the simplest iterative algorithms is just to **go downhill**: minimize $f(x + \\alpha d)$ over $\\alpha$, where $d$ is the downhill direction $-\\frac{1}{2}\\nabla f = b - Ax = r$, where $r$ is called the *residual*. We can perform this *line minimization* analytically for this $f$, for an arbitrary $d$, to find $\\alpha = d^T r / d^T A d$.\n", + "\n", + "The steepest-descent algorithm simply performs this downhill line-minimization repeatedly, starting at an initial guess `x` (typically just `x=0`), e.g. stopping when the norm of the residual is less than some tolerance times the norm of `b`." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SD (generic function with 2 methods)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function SD(A, b, x=zero(b); tol=1e-8, maxiters=1000)\n", + " bnorm = norm(b)\n", + " r = b - A*x # initial residual\n", + " rnorm = [norm(r)] # return the array of residual norms\n", + " Ad = zero(r) # allocate space for Ad\n", + " for i = 1:maxiters\n", + " d = r # use the steepest-descent direction\n", + " mul!(Ad, A, d) # store matvec A*r in-place in Ar\n", + " α = dot(d, r) / dot(d, Ad)\n", + " x .= x .+ α .* d # in Julia, this \"fuses\" into a single in-place update\n", + " r .= r .- α .* Ad # update the residual (without computing A*x again)\n", + " push!(rnorm, norm(r))\n", + " rnorm[end] ≤ tol*bnorm && break # converged\n", + " end\n", + " return x, rnorm\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1001, 0.3428935257217682)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(100,100); A = A'*A # a random SPD matrix\n", + "b = rand(100)\n", + "x, rnorm = SD(A, b, maxiters=1000)\n", + "length(rnorm), rnorm[end]/norm(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHFCAYAAAA5VBcVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcJklEQVR4nO3dd1hT1/8H8HfYQ/beQ1EZioriHogbRWu31tHar9VSZ1tra62t1WpttdNRa6vdUlu1VqmKirgFBw5wobgQBBxMlZHz+8MfqSmoJCRcQt6v58nzNDcn975zAuXjueeeKxNCCBARERGRygykDkBERESkq1hIEREREamJhRQRERGRmlhIEREREamJhRQRERGRmlhIEREREamJhRQRERGRmlhIEREREamJhRQRERGRmlhIEdWBX3/9FZ9//rnUMbTqo48+wvr162u9n507d0Imk2Hnzp213ld9smTJEqxatUrqGESkYSykiOoACyliIUXUMLGQIiKiOlNRUYF79+5JHYNIY1hIEdVSbm4uxo4dCy8vL5iamsLJyQmdO3fGtm3bAAA9evTApk2bcOnSJchkMsWjUmlpKebMmYPmzZsr3v/iiy8iNze3yrFiY2PRsWNHWFpaolGjRujbty+OHj2q1Gb06NFo1KgRUlNTERkZCUtLSzg5OeG1115DSUmJUlshBJYsWYJWrVrB3NwcdnZ2eOqpp3DhwgWldkePHsXAgQPh7OwMU1NTuLu7IyoqClevXgUAyGQyFBcX44cfflB8vh49ejy2706fPo1+/frBwsICjo6OGDduHAoLC6ttu23bNkRGRsLa2hoWFhbo3Lkztm/frtJ3UWnz5s2IjIyEjY0NLCwsEBgYiHnz5im1OXToEKKjo2Fvbw8zMzO0bt0av//+u1KbVatWQSaTISEhAePHj4ejoyMcHBwwdOhQXLt2TdHO19cXqampSExMVPSPr6/vI/tGLpfjq6++Unw3tra26NChAzZs2KDUZsGCBYqfHWdnZ4wcOVLxvVTq0aMHQkJCkJycjK5du8LCwgL+/v6YP38+5HK5ou9MTEwwc+bMKllOnz4NmUyGL7/8UrEtOzsbr7zyCjw9PWFiYgI/Pz988MEHKC8vV7S5ePEiZDIZFixYgDlz5sDPzw+mpqZISEgAAPz1119o2bIlTE1N4e/vjy+++ALvv/++0u8HUPOf05p8zkq3b9/G66+/Dn9/f0XfDRgwAKdPn1a0UeV3k/SYIKJa6du3r3BychLLly8XO3fuFOvXrxfvvfeeWL16tRBCiNTUVNG5c2fh6uoq9u/fr3gIIURFRYXo16+fsLS0FB988IGIj48XK1asEB4eHiIoKEiUlJQojjN37lwhk8nESy+9JDZu3CjWrl0rOnbsKCwtLUVqaqqi3ahRo4SJiYnw9vYWc+fOFVu3bhXvv/++MDIyEgMHDlTK/r///U8YGxuL119/XWzevFn8+uuvonnz5sLFxUVkZ2cLIYQoKioSDg4Oom3btuL3338XiYmJIjY2VowbN06kpaUJIYTYv3+/MDc3FwMGDFB8vgczVSc7O1s4OzsLDw8PsXLlShEXFyeGDx8uvL29BQCRkJCgaPvTTz8JmUwmhgwZItauXSv+/vtvMXDgQGFoaCi2bdtW4+9CCCFWrFghZDKZ6NGjh/j111/Ftm3bxJIlS8Srr76qaLNjxw5hYmIiunbtKmJjY8XmzZvF6NGjBQCxcuVKRbuVK1cKAMLf319MmDBBbNmyRaxYsULY2dmJiIgIRbsjR44If39/0bp1a0X/HDly5JH9M2LECCGTycTLL78s/vrrL/HPP/+IuXPnii+++ELRZuzYsQKAeO2118TmzZvFsmXLhJOTk/Dy8hK5ubmKdt27dxcODg4iICBALFu2TMTHx4tXX31VABA//PCDot0TTzwhvLy8REVFhVKWadOmCRMTE5GXlyeEECIrK0t4eXkJHx8f8c0334ht27aJDz/8UJiamorRo0cr3peRkSEACA8PDxERESH++OMPsXXrVpGRkSH++ecfYWBgIHr06CHWrVsn1qxZI9q3by98fX3Ff/801eTnVJXPWVBQIIKDg4WlpaWYPXu22LJli/jzzz/FpEmTxI4dO4QQqv1ukn5jIUVUS40aNRKTJ09+ZJuoqCjh4+NTZftvv/0mAIg///xTaXtycrIAIJYsWSKEEOLy5cvCyMhITJgwQaldYWGhcHV1Fc8884xi26hRowQApT+4QtwvxACIPXv2CCHuFz8AxMKFC5XaXblyRZibm4tp06YJIYQ4dOiQACDWr1//yM9oaWkpRo0a9cg2D3rrrbeETCYTKSkpStt79+6tVEgVFxcLe3t7MWjQIKV2FRUVIjQ0VISHhyu2Pe67KCwsFNbW1qJLly5CLpc/tF3z5s1F69atRVlZmdL2gQMHCjc3N0WhUVlIPViECSHEggULBACRlZWl2BYcHCy6d+/+0GM+aNeuXQKAmDFjxkPbnDp1qtpjHzx4UAAQ77zzjmJb9+7dBQBx8OBBpbZBQUGib9++iucbNmwQAMTWrVsV28rLy4W7u7t48sknFdteeeUV0ahRI3Hp0iWl/X366acCgKKIriykGjduLEpLS5XatmvXTnh5eYl79+4pthUWFgoHBwelQqqmP6eqfM7Zs2cLACI+Pl48TE1/N4l4ao+olsLDw7Fq1SrMmTMHBw4cQFlZWY3fu3HjRtja2mLQoEEoLy9XPFq1agVXV1fFlWtbtmxBeXk5Ro4cqdTOzMwM3bt3r/YKt+HDhys9HzZsGAAoTqts3LgRMpkML7zwgtI+XV1dERoaqthnkyZNYGdnh7feegvLli1DWlqaSv3z4L7Ly8shhFDkCA4ORmhoaLU5K+3btw83b97EqFGjlPYjl8vRr18/JCcno7i4GMDjv4t9+/ahoKAAr776apXTR5XS09Nx+vRpRf89eMwBAwYgKysLZ86cUXpPdHS00vOWLVsCAC5duqRKVyn8888/AICYmJiHtqn8HkePHq20PTw8HIGBgVVOe7q6uiI8PLxKzgcz9u/fH66urli5cqVi25YtW3Dt2jW89NJLim0bN25EREQE3N3dlfqnf//+AIDExESl40RHR8PY2FjxvLi4GIcOHcKQIUNgYmKi2N6oUSMMGjRI6b01/TlV5XP+888/aNq0KXr16oWHqenvJhELKaJaio2NxahRo7BixQp07NgR9vb2GDlyJLKzsx/73uvXr+P27dswMTGBsbGx0iM7Oxt5eXmKdgDQrl27Ku1iY2MV7SoZGRnBwcFBaZurqysA4MaNG4p9CiHg4uJSZZ8HDhxQ7NPGxgaJiYlo1aoV3nnnHQQHB8Pd3R2zZs2qUdH4333/8MMPihyVmarL+WAfAcBTTz1VZV8ff/wxhBC4efMmgMd/F5VzWzw9PR+at/J4b7zxRpXjvfrqqwBQpb//29empqYAgDt37jy2f6qTm5sLQ0PDavunUuX36ObmVuU1d3d3xesPy1iZ88GMRkZGGDFiBNatW4fbt28DuD8PzM3NDX379lW0u379Ov7+++8q/RMcHAygav/8N+OtW7cUP3v/9d9tNf05VeVz5ubmPvJnoPK4NfndJDKSOgCRrnN0dMTnn3+Ozz//HJcvX8aGDRswffp05OTkYPPmzY99r4ODw0PbWVlZKdoBwB9//AEfH5/HZiovL8eNGzeU/qhUFhOV2xwdHSGTybB7927FH/4HPbitRYsWWL16NYQQOH78OFatWoXZs2fD3Nwc06dPf2SW5ORkped+fn6KHNUVm//dVvnZv/rqK3To0KHaY1T+8X3cd+Hk5AQAVSZjV3e8t99+G0OHDq22TbNmzR76fk1wcnJCRUUFsrOzqy2UgH+/x6ysrCpFwbVr1xSfQ1UvvvgiPvnkE6xevRrPPvssNmzYgMmTJ8PQ0FDRxtHRES1btsTcuXOr3Ye7u7vS8/+O/tnZ2UEmkymK1gdV9/3X9Oe0ppycnB75M1B53Jr8bhJxjhSRFgwZMkQ4OTkpng8dOlQ4OztXaffzzz8LAOLAgQOP3F9GRoYwMjISH3/88WOP/bg5Urt37xZCCLFnzx4BQMTGxtbkI1Vha2srnn76acVze3t7pblaj1PTOVKFhYXC1tZWjB8/Xq2cD34XhYWFwsbGRnTr1u2Rc6QCAgLEgAEDHrvvyjlSycnJStsTEhKqTJhv06aN0nyuR6mcIzVz5syHtjl9+rQAICZOnKi0PSkpqcr8qu7du4vg4OAq+xg1alS1c/fat28vwsPDxddffy0AiNOnTyu9/vLLLwt3d3dx8+bNR36OyjlSn3zySZXXajpHSpWf05p+zso5Utu3b3/ovmr6u0nEESmiWsjPz0dERASGDRuG5s2bw8rKCsnJydi8ebPSaEaLFi2wdu1aLF26FGFhYTAwMEDbtm3x3HPP4ZdffsGAAQMwadIkhIeHw9jYGFevXkVCQgIGDx6MJ554Ar6+vpg9ezZmzJiBCxcuoF+/frCzs8P169eRlJQES0tLfPDBB4rjmZiYYOHChSgqKkK7du2wb98+zJkzB/3790eXLl0AAJ07d8bYsWPx4osv4tChQ+jWrRssLS2RlZWFPXv2oEWLFhg/fjw2btyIJUuWYMiQIfD394cQAmvXrsXt27fRu3dvpc+4c+dO/P3333Bzc4OVldUjR24mT56M77//HlFRUZgzZw5cXFzwyy+/KF1+DtyfN/PVV19h1KhRuHnzJp566ik4OzsjNzcXx44dQ25uLpYuXVqj76JRo0ZYuHAhXn75ZfTq1Qv/+9//4OLigvT0dBw7dgxff/01AOCbb75B//790bdvX4wePRoeHh64efMmTp06hSNHjmDNmjUq/6xUjurFxsbC398fZmZmaNGiRbVtu3btihEjRmDOnDm4fv06Bg4cCFNTUxw9ehQWFhaYMGECmjVrhrFjx+Krr76CgYEB+vfvj4sXL2LmzJnw8vLClClTVM5Y6aWXXsIrr7yCa9euoVOnTlW+x9mzZyM+Ph6dOnXCxIkT0axZM9y9excXL15EXFwcli1b9thTZ7Nnz0ZUVBT69u2LSZMmoaKiAp988gkaNWqkOFUL1PznVBWTJ09GbGwsBg8ejOnTpyM8PBx37txBYmIiBg4ciIiIiBr/bhJxRIqoFu7evSvGjRsnWrZsKaytrYW5ublo1qyZmDVrliguLla0u3nzpnjqqaeEra2tkMlkSv/iLisrE59++qkIDQ0VZmZmolGjRqJ58+bilVdeEefOnVM63vr160VERISwtrYWpqamwsfHRzz11FNKSwCMGjVKWFpaiuPHj4sePXoIc3NzYW9vL8aPHy+KioqqfIbvv/9etG/fXlhaWgpzc3PRuHFjMXLkSHHo0CEhxP2Rj+eff140btxYmJubCxsbGxEeHi5WrVqltJ+UlBTRuXNnYWFhIQDU6Aq1tLQ00bt3b2FmZibs7e3FmDFjxF9//VVlNEcIIRITE0VUVJSwt7cXxsbGwsPDQ0RFRYk1a9ao9F0IIURcXJzo3r27sLS0FBYWFiIoKKjKaN+xY8fEM888I5ydnYWxsbFwdXUVPXv2FMuWLVO0UWVE6uLFi6JPnz7CyspKAKh2JOhBFRUV4rPPPhMhISHCxMRE2NjYiI4dO4q///5bqc3HH38smjZtKoyNjYWjo6N44YUXxJUrV5T2peqIVH5+vjA3NxcAxLffflttvtzcXDFx4kTh5+cnjI2Nhb29vQgLCxMzZsxQ/Jw9akRKCCHWrVsnWrRooViuY/78+WLixInCzs6uStvH/Zyq+jlv3bolJk2aJLy9vYWxsbFwdnYWUVFRSqNvqvxukv6SCfH/l9AQUYMwevRo/PHHHygqKpI6CpFKysrK0KpVK3h4eGDr1q1SxyGqEZ7aIyIiSYwZMwa9e/eGm5sbsrOzsWzZMpw6dQpffPGF1NGIaoyFFBERSaKwsBBvvPEGcnNzYWxsjDZt2iAuLu6R6zsR1Tc8tUdERESkJi7ISURERKQmFlIq2LhxI5o1a4aAgACsWLFC6jhEREQkMZ7aq6Hy8nIEBQUhISEB1tbWaNOmDQ4ePAh7e3upoxEREZFEONm8hpKSkhAcHAwPDw8AwIABA7BlyxY8//zzD32PXC7HtWvXYGVl9dAbpBIREVH9IoRAYWEh3N3dYWDwmJN3Eq5hpXD16lUxfPhwYW9vL8zNzUVoaKjSImu1lZiYKAYOHCjc3NwEALFu3bpq2y1evFj4+voKU1NT0aZNG7Fr1y7Fa2vWrBExMTGK5wsWLHjoInOVrly5IgDwwQcffPDBBx86+Pjv4rbVkXxE6tatW+jcuTMiIiLwzz//wNnZGefPn4etrW217ffu3atYqv9Bp0+fhq2tbbV3Sy8uLkZoaChefPFFPPnkk9XuNzY2FpMnT8aSJUvQuXNnxS0i0tLS4O3tDVHNGdDHjTJV3tTyypUrsLa2fmRbIiIiqh8KCgrg5eVVo5tTS15Iffzxx/Dy8sLKlSsV23x9fattK5fLERMTg4CAAKxevVpxN/KzZ88iIiICU6ZMwbRp06q8r3///ujfv/8jcyxatAhjxozByy+/DAD4/PPPsWXLFixduhTz5s2Dh4cHMjMzFe2vXr2K9u3bP3KflYWWtbU1CykiIiIdU5NpOZJftbdhwwa0bdsWTz/9NJydndG6dWt8++231bY1MDBAXFwcjh49ipEjR0Iul+P8+fPo2bMnoqOjqy2iaqK0tBSHDx9Gnz59lLb36dMH+/btAwCEh4fj5MmTyMzMRGFhIeLi4tC3b99q97d48WIEBQWhXbt2auUhIiIi3SB5IXXhwgUsXboUAQEB2LJlC8aNG4eJEyfixx9/rLa9u7s7duzYgb1792LYsGHo2bMnIiMjsWzZMrUz5OXloaKiAi4uLkrbXVxckJ2dDQAwMjLCwoULERERgdatW+PNN9+Eg4NDtfuLiYlBWloakpOT1c5ERERE9Z/kp/bkcjnatm2Ljz76CADQunVrpKamYunSpRg5cmS17/H29saPP/6I7t27w9/fH999951Gror77z6EEErboqOjER0dXevjEBERUcMg+YiUm5sbgoKClLYFBgbi8uXLD33P9evXMXbsWAwaNAglJSWYMmVKrTI4OjrC0NBQMfpUKScnp8ooFREREVElyQupzp0748yZM0rbzp49Cx8fn2rb5+XlITIyEoGBgVi7di127NiB33//HW+88YbaGUxMTBAWFob4+Hil7fHx8ejUqZPa+yUiIqKGTfJTe1OmTEGnTp3w0Ucf4ZlnnkFSUhKWL1+O5cuXV2krl8vRr18/+Pj4IDY2FkZGRggMDMS2bdsQEREBDw+PakenioqKkJ6erniekZGBlJQU2Nvbw9vbGwAwdepUjBgxAm3btkXHjh2xfPlyXL58GePGjdPehyciIiKdVi9uEbNx40a8/fbbOHfuHPz8/DB16lT873//q7ZtfHw8unbtCjMzM6XtKSkpcHBwgJeXV5X37Ny5ExEREVW2jxo1CqtWrVI8X7JkCRYsWICsrCyEhITgs88+Q7du3dT+XAUFBbCxsUF+fj6XPyAiItIRqvz9rheFVEPFQoqIiEj3qPL3W/I5UkRERES6ioUUERERkZpYSBERERGpiYUUERERkZokX/6AVHe3rAJ5RfdgZGAAVxuzx7+BiIiItIIjUjoo5cptdPk4AcNXHJA6ChERkV5jIaWDKu/+x3UriIiIpMVCSgcpbqTMSoqIiEhSLKR0UGUddSGvGPl3yqQNQ0REpMdYSOkg2QP/PeCL3ZLlICIi0ncspHSQ7IFKKvP2HemCEBER6TkWUjpJ9vgmREREpHUspHSQ7D91VOq1fGmCEBER6TkWUjrov+NRUV/ukSQHERGRvmMhpYNk/x2SIiIiIkmwkNJBLKOIiIjqBxZSOqi6Aamf9l+s8xxERET6joWUDpJVMyY1869UCZIQERHpNxZSOohTpIiIiOoHFlINSE7hXakjEBER6RUWUjroYSNSb645XrdBiIiI9BwLKR1U3RwpADidXVDHSYiIiPQbCykdZPCQb+16wT0IIeo2DBERkR5jIaWDHjYiBQB/pVyrwyRERET6jYWUDnrUVXt/H2MhRUREVFdYSOmgR61+UFohr7McRERE+o6FlA561IjU7nN5yM7nMghERER1gYWUTnr0ipyrky/XUQ4iIiL9xkJKB3FlcyIiovqBhZQOelwd9fm2cyjnXCkiIiKtYyGlg2Q1GJLafS6vDpIQERHpNxZSWrB48WIEBQWhXbt2Wtl/Tc7sVci5MCcREZG2sZDSgpiYGKSlpSE5OVkr+6/JHKk3/zimlWMTERHRv1hI6aBHrWxe6VZJGXIKuQwCERGRNrGQ0kE1vWpPzvnmREREWsVCqgH7cGOa1BGIiIgaNBZSOqimI1KbTmRpNwgREZGeYyGlg2qy/AERERFpHwspHaRKGfX+hlSt5SAiItJ3LKR0kCoDUqv2XdRaDiIiIn3HQkoH1WT5gwfxdjFERETawUJKBxmoOEVq+IqD2glCRESk51hI6SIVC6mDGTe1k4OIiEjPsZDSQaqe2gOA7Hyuck5ERKRpLKR0kDqrHwz8ao/mgxAREek5FlI6SJ1VpPKK7mk8BxERkb5jIaWD1F2Q8/ClWxpOQkREpN9YSOkgddc1f3LpPo3mICIi0ncspHRQbe4QI5cLzQUhIiLScyykdJA6V+1VWrbrvAaTEBER6TcWUrqoFiNSy3dd0FwOIiIiPcdCSgfV5tTe7ZIyXsFHRESkISykdFAt6igAwNxNpzSSg4iISN+xkNJB6i5/UGnDsWsaSkJERKTfWEjpoNqOSFXIBXadzdVIFiIiIn3GQkoH1XJACgCwNz2v9jshIiLScyykdFBtlj+o9M2uC7hbVqGBNERERPqLhZQO0sSIFADEp13XzI6IiIj0FAspPfbZtrNSRyAiItJpLKR0kKZGpC7kFuPa7Tua2RkREZEeYiGlgww0VUkB2HmGV+8RERGpi4WUDtJcGQW8s+6EBvdGRESkX1hI6aDaLsj5X9n5dzW6PyIiIn3BQkoHabaMAjrM267hPRIREekHFlI6SMMDUgDANaWIiIjUwEJKB2n61B4ADP56r8b3SURE1NCxkCIAwJnrhZDLhdQxiIiIdAoLKVKYuPqo1BGIiIh0CgspUth4PAtCcFSKiIioplhIkZK5m05JHYGIiEhnsJAiJSv2ZHCuFBERUQ2xkKIqvk5IlzoCERGRTmAhRVUsij+L8gq51DGIiIjqPRZSKti4cSOaNWuGgIAArFixQuo4WrVq30WpIxAREdV7LKRqqLy8HFOnTsWOHTtw5MgRfPzxx7h586bUsbRmzqZTqOBcKSIiokdiIVVDSUlJCA4OhoeHB6ysrDBgwABs2bJF6lha9fuhK1JHICIiqtfqVSE1b948yGQyTJ48WaP73bVrFwYNGgR3d3fIZDKsX7++2nZLliyBn58fzMzMEBYWht27dyteu3btGjw8PBTPPT09kZmZqdGc9c3ba09wVIqIiOgR6k0hlZycjOXLl6Nly5aPbLd3716UlZVV2X769GlkZ2dX+57i4mKEhobi66+/fuh+Y2NjMXnyZMyYMQNHjx5F165d0b9/f1y+fBkAql2oUhv3vKtv4tOq71MiIiKqJ4VUUVERhg8fjm+//RZ2dnYPbSeXyxETE4Nhw4ahoqJCsf3s2bOIiIjAjz/+WO37+vfvjzlz5mDo0KEP3feiRYswZswYvPzyywgMDMTnn38OLy8vLF26FADg4eGhNAJ19epVuLm5qfpRdc64n49wVIqIiOgh6kUhFRMTg6ioKPTq1euR7QwMDBAXF4ejR49i5MiRkMvlOH/+PHr27Ino6GhMmzZNreOXlpbi8OHD6NOnj9L2Pn36YN++fQCA8PBwnDx5EpmZmSgsLERcXBz69u1b7f4WL16MoKAgtGvXTq089c3OMzlSRyAiIqqXjKQOsHr1ahw5cgTJyck1au/u7o4dO3agW7duGDZsGPbv34/IyEgsW7ZM7Qx5eXmoqKiAi4uL0nYXFxfF6UIjIyMsXLgQERERkMvlmDZtGhwcHKrdX0xMDGJiYlBQUAAbGxu1c9UXY344hIvzo6SOQUREVO9IWkhduXIFkyZNwtatW2FmZlbj93l7e+PHH39E9+7d4e/vj++++04j85X+uw8hhNK26OhoREdH1/o4umjzySz0C2n4pzKJiIhUIempvcOHDyMnJwdhYWEwMjKCkZEREhMT8eWXX8LIyEhpHtSDrl+/jrFjx2LQoEEoKSnBlClTapXD0dERhoaGVSar5+TkVBml0lfjfj4idQQiIqJ6R9JCKjIyEidOnEBKSori0bZtWwwfPhwpKSkwNDSs8p68vDxERkYiMDAQa9euxY4dO/D777/jjTfeUDuHiYkJwsLCEB8fr7Q9Pj4enTp1Unu/Dc28uFNSRyAiIqpXJD21Z2VlhZCQEKVtlpaWcHBwqLIduH/VXr9+/eDj44PY2FgYGRkhMDAQ27ZtQ0REBDw8PKodnSoqKkJ6+r834s3IyEBKSgrs7e3h7e0NAJg6dSpGjBiBtm3bomPHjli+fDkuX76McePGafhT665vdl3Ai5394GpT89OwREREDZnkk81VYWBggHnz5qFr164wMTFRbG/RogW2bdv20Mnfhw4dQkREhOL51KlTAQCjRo3CqlWrAADPPvssbty4gdmzZyMrKwshISGIi4uDj4+P9j6QDur3xS6kvNfn8Q2JiIj0gExUt9IkaUTlVXv5+fmwtrbW6L59p2/S6P5UserFdujRzFmy4xMREWmTKn+/68U6UqRbRq9Mxt2y6i8EICIi0icspEgts/5KlToCERGR5FhIkVpiD13B+dwiqWMQERFJioUUqS1yYSLkvA8fERHpMRZSVCu/JV+WOgIREZFkWEhRrcxYdxK3ikuljkFERCQJFlJUa70/2yV1BCIiIkmwkKJayyu6h62p2Y9vSERE1MCwkCKNGPvTYU48JyIivcNCijRmwuqjUkcgIiKqUyykSGM2Hc/CPyeypI5BRERUZ1hIkUaN/+UIMm/fkToGERFRnWAhRRrXef4OzpciIiK9wEKKtOKddSekjkBERKR1LKRIK1YnX8Gus7lSxyAiItIqFlKkNSO/T8KVmyVSxyAiItIaFlKkVV0XJOBuWYXUMYiIiLSChRRpXf8vdkMITj4nIqKGh4UUaV1GXjGW7DwvdQwiIiKNYyFFdeKTLWdw4mq+1DGIiIg0ioUU1ZlBX+9BSWm51DGIiIg0hoUU1angWVs4X4qIiBoMFlJUp4QAXv7hkNQxiIiINIKFFNW57adzsHDrGaljEBER1RoLKZLEVzvS8XvyFaljEBER1QoLKZLMtD+PI+F0jtQxiIiI1MZCiiT14qpkHL18S+oYREREamEhRZJ7Ysk+pOcUSR2DiIhIZSykdFSgm7XUETSq16JEXL3FGxwTEZFuYSGlo/6K6Sx1BI3r8nECcgrvSh2DiIioxlhI6SgTo4b51YXP3Y4bRfekjkFERFQjDfOvMem0sDnbODJFREQ6gYWUDnu5i5/UEbQmfO52ZN6+I3UMIiKiR2IhpcPeHRgkdQSt6jx/By7mFUsdg4iI6KFYSFG91uPTnTify6URiIiofmIhRfVe5MJEFlNERFQvsZDScW/2bSZ1hDoRuTARx67cljoGERGREhZSOi4y0FnqCHVm8OK92Hj8mtQxiIiIFFhIkU557dejWLH7gtQxiIiIALCQ0nmNnRpJHaHOzdl0Cl9tPyd1DCIiIhZSus7Y0AAfP9lC6hh1bmH8Wcz66ySEEFJHISIiPWakzpuSkpKwc+dO5OTkQC6XK722aNEijQSjmjM00M96+If9l7A6+QqSZvSCjbmx1HGIiEgPqVxIffTRR3j33XfRrFkzuLi4QCaTKV578L+p7jR2spQ6gmTulcsR+sFW7J4WAS97C6njEBGRnlG5kPriiy/w/fffY/To0VqIQ+po7W0HJytT5Bbq781+uy5IwLpXO6G1t53UUYiISI+ofE7IwMAAnTt31kYWqoWoFm5SR5DcE0v2YVH8Wc6bIiKiOqNyITVlyhQsXrxYG1moFuwtTaSOUC98uf0cBi/ey2KKiIjqhEyo+BdHLpcjKioKZ8+eRVBQEIyNlSf5rl27VqMBdVlBQQFsbGyQn58Pa2trrR6rpLQcQe9t0eoxdM2x9/rAxoKT0ImISDWq/P1WeURqwoQJSEhIQNOmTeHg4AAbGxulR0O2ceNGNGvWDAEBAVixYoXUcZRYmBihnS/nBz0odPZWHL50S+oYRETUgKk8ImVlZYXVq1cjKipKW5nqpfLycgQFBSEhIQHW1tZo06YNDh48CHt7+4e+py5HpADgmW/2IynjptaPo2vejQrEmC5+vKqUiIhqRKsjUvb29mjcuLHa4XRVUlISgoOD4eHhASsrKwwYMABbttSvU2lzh4RIHaFemrPpFJq++w9uFpdKHYWIiBoYlQup999/H7NmzUJJSYlGAixduhQtW7aEtbU1rK2t0bFjR/zzzz8a2XelXbt2YdCgQXB3d4dMJsP69eurbbdkyRL4+fnBzMwMYWFh2L17t+K1a9euwcPDQ/Hc09MTmZmZGs1ZWwEuVjAx0s/FOR+nrEKgzYfxSLlyW+ooRETUgKj8V/fLL7/EP//8AxcXF7Ro0QJt2rRReqjK09MT8+fPx6FDh3Do0CH07NkTgwcPRmpqarXt9+7di7KysirbT58+jezs7GrfU1xcjNDQUHz99dcPzREbG4vJkydjxowZOHr0KLp27Yr+/fvj8uXLAFDtVWD18VRR/UtUvwxZvBdTY1Mgl/OqPiIiqj2VF+QcMmSIRgMMGjRI6fncuXOxdOlSHDhwAMHBwUqvyeVyxMTEICAgAKtXr4ahoSEA4OzZs4iIiMCUKVMwbdq0Ksfo378/+vfv/8gcixYtwpgxY/Dyyy8DAD7//HNs2bIFS5cuxbx58+Dh4aE0AnX16lW0b99erc+sTZ88HYqJvx2VOka9tvZoJtYezcSRmb25bAQREdWKSoVUeXk5AOCll16Cl5eXxsNUVFRgzZo1KC4uRseOHau8bmBggLi4OHTr1g0jR47ETz/9hIyMDPTs2RPR0dHVFlE1UVpaisOHD2P69OlK2/v06YN9+/YBAMLDw3Hy5ElkZmbC2toacXFxeO+996rd3+LFi7F48WJUVFSolac2okPdWUjVUJsP4/HV860xKNRd6ihERKSjVDq1Z2RkhE8//VTjBcKJEyfQqFEjmJqaYty4cVi3bh2CgoKqbevu7o4dO3Zg7969GDZsGHr27InIyEgsW7ZM7ePn5eWhoqICLi4uSttdXFwUpwuNjIywcOFCREREoHXr1njzzTfh4OBQ7f5iYmKQlpaG5ORktTNR3Zjw21G8uDIJhXerni4mIiJ6HJXnSEVGRmLnzp0aDdGsWTOkpKTgwIEDGD9+PEaNGoW0tLSHtvf29saPP/6I2NhYGBkZ4bvvvtPIfKX/7kMIobQtOjoaZ8+eRXp6OsaOHVvr42nLm32bSR1BpyScyUWL97ci+SKXjiAiItWoPEeqf//+ePvtt3Hy5EmEhYXB0tJS6fXo6GiVQ5iYmKBJkyYAgLZt2yI5ORlffPEFvvnmm2rbX79+HWPHjsWgQYOQnJyMKVOm4KuvvlL5uJUcHR1haGhYZbJ6Tk5OlVEqXRAT0QSfbDkjdQyd8/Sy/QjzscMPL4WjkanKvxpERKSHVP5rMX78eAD3J2f/l0wm08hpPyEE7t27V+1reXl5iIyMRGBgINasWYNz586hR48eMDU1xaeffqrW8UxMTBAWFob4+Hg88cQTiu3x8fEYPHiwWvsk3XT40i2EzNqClS+2Q0QzZ6njEBFRPadyISWXyzUa4J133kH//v3h5eWFwsJCrF69Gjt37sTmzZurPXa/fv3g4+OjOK0XGBiIbdu2ISIiAh4eHpgyZUqV9xUVFSE9PV3xPCMjAykpKbC3t4e3tzcAYOrUqRgxYgTatm2Ljh07Yvny5bh8+TLGjRun0c9bVyZGBuDL7eekjqGzXlyZjCA3a6yL6QRTI0Op4xARUT2l8i1iNG3MmDHYvn07srKyYGNjg5YtW+Ktt95C7969q20fHx+Prl27wszMTGl7SkoKHBwcqr2acOfOnYiIiKiyfdSoUVi1apXi+ZIlS7BgwQJkZWUhJCQEn332Gbp166b2Z6vrW8T8l+/0TXV+zIZo+Ygw9Al2lToGERHVEVX+fqtVSCUmJuLTTz/FqVOnIJPJEBgYiDfffBNdu3ZVO3RDxEKq4WjsZIlf/9cBLtZmj29MREQ6Tav32vv555/Rq1cvWFhYYOLEiXjttddgbm6OyMhI/Prrr2qHJs17NypQ6ggNxvncYrT/aDsWJ6SjgquiExHR/1N5RCowMBBjx46tMhdp0aJF+Pbbb3Hq1CmNBtRlUo9IARyV0pa/Yjoj1MtW6hhERKQFWh2RunDhQpXbugD3lz3IyMhQdXdEOmnw4r3o9/kuFN0rlzoKERFJSOVCysvLC9u3b6+yffv27Vq5bQzVzhfPtZI6QoN1OrsQIbO24NtdF6q9qTURETV8Ki9/8Prrr2PixIlISUlBp06dIJPJsGfPHqxatQpffPGFNjJSLQxu5YFJq1OkjtGgzY07hblxp7D21U5o420ndRwiIqpDai3I6erqioULF+L3338HcH/eVGxsLBevJL02dMk+eNtb4LexHeBhay51HCIiqgOSryPVkNWHyeYAsDU1G2N/OizZ8fVRv2BXfPpMKG81Q0Skg1T5+632/+VLS0uRk5NTZaXzypXCqf5o5moldQS9szk1G5tnZWNCzyaY3KspDA1qf1NtIiKqf1SebH7u3Dl07doV5ubm8PHxgZ+fH/z8/ODr6ws/Pz9tZKRa8rKzkDqC3vpqRzoavxOHv49dkzoKERFpgcqn9jp37gwjIyNMnz4dbm5ukMmU/6UdGhqq0YC6rL6c2gOADceuYeJvRyXNQOCEdCIiHaDVU3spKSk4fPgwmjdvrnZAqntedpz8XB8MXbIPJoYG+HtCF55yJSJqAFQ+tRcUFIS8vDxtZCEtau1tB1sLY6ljEIDSCjn6fr4LrWZvxfncIqnjEBFRLahcSH388ceYNm0adu7ciRs3bqCgoEDpQfXXc+14IUB9crukDJELE9H+o224wIKKiEgnqTxHysDgfu3137lRQgjIZDJUVFRoLp2Oq09zpAAgr+ge2s7ZJnUMeggPW3P89r8O8HbgxQFERFLS6hyphIQEtYORtBwbmaJzEwfsTb8hdRSqRubtO+j2SQL8nSyxcnQ7+DhYSh2JiIgeQ+VCqnv37trIQXWkd6ALC6l67kJuMbp/shMu1qb45eX2aOLMSelERPWVynOkSLeN6OgrdQSqoesF99Br0S74Tt+EgxdY/BIR1UcspPSMoYEMbbxtpY5BKnp2+QH4Tt+EHaevSx2FiIgewEJKD301rI3UEUhNL606BN/pm7D+aCYq5LxNJhGR1FhI6SEPWy7Oqesmx6ag8TtxmBd3CkX3yqWOQ0Skt1hI6akVI9tKHYE04JtdFxAyawtGfHcQ127fkToOEZHeqdFVe61bt66ybtTDHDlypFaBqG70CnKROgJp0O5zeeg0fweMDGT4+eX26ODvIHUkIiK9UKNCasiQIVqOQVJ4OswTaw5flToGaVC5XOC55QcAAAuebIkhrT1gYsSBZyIibVF5ZXOqufq2svl/CSHg93ac1DFIy/oGu+DDwSFwtjaTOgoRkU7Q6srm1HDIZDK42ZghK/+u1FFIi7akXseW1OswNpThq+dbo2+wa41P1RMR0aOpPOZfUVGBTz/9FOHh4XB1dYW9vb3Sg3TL5sndpI5AdaSsQmDcz0fg93YcPtyYhtslpVJHIiLSeSoXUh988AEWLVqEZ555Bvn5+Zg6dSqGDh0KAwMDvP/++1qISNpkY24sdQSSwHd7MtBqdjxCP9iKgxdugGf4iYjUo/IcqcaNG+PLL79EVFQUrKyskJKSoth24MAB/Prrr9rKqnPq+xypSpdvlKDbJ7wZtb57PtwLb/ZtDntLE6mjEBFJSpW/3yqPSGVnZ6NFixYAgEaNGiE/Px8AMHDgQGzatEmNuCQ1bwcLqSNQPfBb0hW0+TAevtM3Yd3Rq5Bz5XQiosdSuZDy9PREVlYWAKBJkybYunUrACA5ORmmpqaaTUd15vvRXKCT/jUl9hj834nDyO+TkJ5TJHUcIqJ6S+VC6oknnsD27dsBAJMmTcLMmTMREBCAkSNH4qWXXtJ4QKobXMCRqrPrbC56LUqE7/RN+HjzaeSXlEkdiYioXqn1OlIHDhzAvn370KRJE0RHR2sqV4OgK3OkKi3aegZf7kiXOgbpgLlPhOCZtl4wNuRin0TU8Kjy95sLcmqRrhVSmbfvoPP8HVLHIB3iaWeOBU+2RHt/BxgacG0qImoYtLog548//vjI10eOHKnqLqme8LA1x4AWrog7kS11FNIRV2/dwbAVBwEAHf0d8M6AQIR4WHPBTyLSGyqPSNnZ2Sk9LysrQ0lJCUxMTGBhYYGbN29qNKAu07URKQBIzylCr0WJUscgHdcr0BlTejdFsLuN1FGIiFSm1RGpW7duVdl27tw5jB8/Hm+++aaqu6N6polzI4T52OHwparfM1FNbTuVg22ncgAAUS3dMKVXAJo4W0mciohI8zQ2R+rQoUN44YUXcPr0aU3srkHQxREpALiYV4wen+6UOgY1QANbumFiZAACnBvx9B8R1VuS3LTY0NAQ165d09TuSEK+jpZo62OHQxyVIg3beDwLG4/fX4eue1MnTOjZBGE+diyqiEhnqVxIbdiwQem5EAJZWVn4+uuv0blzZ40FI2l99mwrdF3A28aQ9iSezUXi2VwAQJCbNWZEBSLcz55LKhCRTlH51J6BgfL/5GQyGZycnNCzZ08sXLgQbm5uGg2oy3T11F6l55bvx4ELvHiA6paDpQneGRCIqJZuMDM2lDoOEekhriNVT+h6IXWruBStP4yXOgbpuVd7NMYLHXzgbmsudRQi0hMspOoJXS+kAODttcfxW9IVqWMQAbi/rMKEngEI8bDhAqBEpDUaL6SmTp1a44MvWrSoxm0buoZQSAkh4Pd2nNQxiKpwsDTB5F4BeKKNJxqZauy6GSIizRdSERERSs8PHz6MiooKNGvWDABw9uxZGBoaIiwsDDt28BYjlRpCIQUAG45dw8Tfjkodg+iRokPd8WJnX7TysuVVgERUKxpf/iAh4d+rtxYtWgQrKyv88MMPilXOb926hRdffBFdu3atRWyqr6JD3VlIUb234dg1bDh2fwkWK1MjvNmvGQa2dIe9pYnEyYioIVN5jpSHhwe2bt2K4OBgpe0nT55Enz59uJbUAxrKiBQAXMgtQs+FvHUM6ab2fvZ4sbMfIgOdubwCET2WVhfkLCgowPXr16sUUjk5OSgsLFR1d6Qj/J0aoXtTJ8W6P0S65GDGTRzM+Hcpj6fCPDG6ky+au1rBiIUVEdWCyiNSI0eORGJiIhYuXIgOHToAAA4cOIA333wT3bp1ww8//KCVoLqoIY1IAcDdsgo0n7lZ6hhEGvdKN388084L/o6WnF9FRNpd/qCkpARvvPEGvv/+e5SVlQEAjIyMMGbMGHzyySewtLRUP3kD09AKKQB4f0MqVu27KHUMIq0xMTJATI8mGNzKHT4OFiysiPRQnawjVVxcjPPnz0MIgSZNmrCAqkZDLKTulVeg2bsclSL9YWVqhLHd/DG4lQe87M1ZWBHpAS7IWU80xEIKABJO5+DFVclSxyCShKGBDGO7+SM61B3NXa1YWBE1QBqfbD506FCsWrUK1tbWGDp06CPbrl27tuZJSSf1aOYEmQxgCU76qEIusHTneSzdeV6xbXh7bwxt44mWnja8KpBIz9SokLKxsVH8q8vGxkargaj+k8lkOPB2JNp/tF3qKET1wi8HL+OXg5cVz7sGOOLptl7o3tQJNubGEiYjIm3jqT0taqin9iot33UeH8WdljoGUb3nbGWKMV380CfYFT72FjDgfQKJ6jWtzpG6c+cOhBCwsLAAAFy6dAnr1q1DUFAQ+vTpo37qBqihF1JyuYD/O7wPH5E6+oe4YnArD3QJcOS9AonqGa0WUn369MHQoUMxbtw43L59G82aNYOJiQny8vKwaNEijB8/vlbhG5KGXkgBwOUbJej2ScLjGxLRI9lZGGNUJ1/0CXJFU5dGXCiUSEJaLaQcHR2RmJiI4OBgrFixAl999RWOHj2KP//8E++99x5OnTpVq/ANiT4UUgCw5tAVvPnHcaljEDU4LT1t8GQbT/Ro5gRve65pRVRXtHqLmJKSElhZWQEAtm7diqFDh8LAwAAdOnTApUuX1EtMOu3ptl5YnJCOizdKpI5C1KAcv5qP41fzlbZ1b+qEoW080LGxA5wambK4IpKYyoVUkyZNsH79ejzxxBPYsmULpkyZAuD+vfYa8qgLPdqGCV3Q8v2tUscgavASz+ZWuedlz+bOGBTqho7+jnCxZnFFVJdUPrX3xx9/YNiwYaioqEDPnj0RHx8PAJg3bx527dqFf/75RytBdZG+nNqrtO98HoZ9e1DqGESE++u9DQhxQ5cAR7jZmLG4IlKB1lc2z87ORlZWFkJDQ2FgcH9CZFJSEqytrdG8eXP1UjdA+lZIAcBHcaewfNcFqWMQUTWC3a0xuJU7Ipo5w9vBAqZGhlJHIqqX6uQWMenp6Th//jy6desGc3NzCCH4L57/0MdCSggBv7e5JAKRrnCyMkVUCzf0bO6MMB87WHIpBiLtFlI3btzAM888g4SEBMhkMpw7dw7+/v4YM2YMbG1tsXDhwlqFb0j0sZACgOsFd7nqOZGO69LEEQNbuqGDvwM87cy5HAPpFa1etTdlyhQYGxvj8uXLCAwMVGx/9tlnMWXKFBZSBBdrM3wQHYxZG1KljkJEatqTnoc96XlK22zMjTGghRsimjmhjY8dHCxNeCaC9J7KhdTWrVuxZcsWeHp6Km0PCAjg8gekMKqTL1btu4iMvGKpoxCRhuTfKcNvSZfxW9Jlpe1NXRqhb7ArOjV2REtPG54eJL2i8k97cXGx4vYwD8rLy4OpqalGQlHD8M+krmg+c7PUMYhIy85eL8LZ6+n4ake60vZAN2v0CXJBt6ZOaOrSCI1MjTiCRQ2OynOkoqKi0KZNG3z44YewsrLC8ePH4ePjg+eeew5yuRx//PGHtrLqHH2dI/Wga7fvoNP8HVLHIKJ6pJmLFSIDndGpsSNaeNrAxtxY6khESrQ62TwtLQ09evRAWFgYduzYgejoaKSmpuLmzZvYu3cvGjduXKvwDQkLqfsOX7qJJ5fulzoGEdVzHrbm6B3kgg7+DmjtbQtnKy4uStKok3Wkli5disOHD0Mul6NNmzaIiYmBm5ub2qEbIhZS/1p/NBOTY1OkjkFEOqpnc2f0aOaEcD97eNtbwMKE87BIe7RWSJWVlaFPnz745ptv0LRp01oHbehYSCn74O9UrNx7UeoYRNSA+DpYoHtTJ3T8/9OELlamXKqBak1ryx8YGxvj5MmTHGoltcwaFIwjl27h2H9uwkpEpK6LN0pwcf8l/LC/6lXj4X726OjvgHa+9gjxsIaNuTH/fpHGqXxq7/XXX4exsTHmz5+vrUwNBkekqqqQCzR+hyufE5G0OjdxQNcAJ7T2skUzVysWWaREqwtylpaWYsWKFYiPj0fbtm1haWmp9PqiRYtU3SXpEUMDGU5/2I/LIhCRpPam38De9BvVvhbua49OTRwQ7muPJi6N4GBpCkMDFllUPZVHpCIiIh6+M5kMO3Y03EvdN27ciNdffx1yuRxvvfUWXn755Ue254jUw125WYKuCxKkjkFEpJLmrlbo8P+nC4PdreFqYwYzY978uaGpk5sW65vy8nIEBQUhISEB1tbWaNOmDQ4ePAh7e/uHvoeF1KNxWQQiakjsLU0Q7muPtr52CPWyRYBzI54y1FFaPbWnr5KSkhAcHAwPDw8AwIABA7BlyxY8//zzEifTXWE+9lgyvA1e/eWI1FGIiGrtZnEpNqdmY3NqdrWvB7pZo62PHVp52SLYwxq+DpYczWoAJL9GdN68eWjXrh2srKzg7OyMIUOG4MyZMxo9xq5duzBo0CC4u7tDJpNh/fr11bZbsmQJ/Pz8YGZmhrCwMOzevVvx2rVr1xRFFAB4enoiMzNTozn10YAWbpgzJETqGEREWncqqwA/HbiE19ccQ7/Pd6P5zM3wnb5J8Ri8eC/mxZ3CxuPXkJ5ThHvlFVJHphqQfEQqMTERMTExaNeuHcrLyzFjxgz06dMHaWlpVSayA8DevXsRHh4OY2PlWwqcPn0atra2cHV1rfKe4uJihIaG4sUXX8STTz5ZbY7Y2FhMnjwZS5YsQefOnfHNN9+gf//+SEtLg7e3N6o7A8rhWs14oYMPSsvlmL0xTeooRESSOXblNo5duf3Q11t42KCdrz1CvWzQ3NUaXvbmXJi0Hqh3c6Ryc3Ph7OyMxMREdOvWTem1ylXUAwICsHr1ahga3h8SPXv2LLp3744pU6Zg2rRpj9y/TCbDunXrMGTIEKXt7du3R5s2bbB06VLFtsDAQAwZMgTz5s3Dvn378Mknn2DdunUAgEmTJqF9+/YYNmzYQ4/FOVKq+Wn/Rcz8K1XqGEREOsnP0RJtvO3QxscWQW7W8La3gJ2FCQx4xaHKdHqOVH7+/cUaq5vEbWBggLi4OHTr1g0jR47ETz/9hIyMDPTs2RPR0dGPLaIeprS0FIcPH8b06dOVtvfp0wf79u0DAISHh+PkyZPIzMyEtbU14uLi8N5771W7v8WLF2Px4sWoqOCwrCpGdPSFoYEB3ll3QuooREQ6JyOvGBl5xfjzyNVqX7cwMUSYjx1ae9mipactGjs3gou1KcyNDXmGpRbqVSElhMDUqVPRpUsXhIRUP2/G3d0dO3bsQLdu3TBs2DDs378fkZGRWLZsmdrHzcvLQ0VFBVxcXJS2u7i4IDv7/qRBIyMjLFy4EBEREZDL5Zg2bRocHByq3V9MTAxiYmIUFS3V3LD23gDAYoqISMNKSiuw+1wedp/Le2gbL3tztPKyQ6inDYLdbeDraAF7SxOYGnFS/MPUq0Lqtddew/Hjx7Fnz55HtvP29saPP/6I7t27w9/fH999951Gqun/7kMIobQtOjoa0dHRtT4OPdqw9t4wkAHT17KYIiKqS1du3sGVm3fw97FrD23T2MkSoV62aOlhg0A3a/g4WMLO0hgmhgZ6ObJVbwqpCRMmYMOGDdi1axc8PT0f2fb69esYO3YsBg0ahOTkZEyZMgVfffWV2sd2dHSEoaGhYvSpUk5OTpVRKqobz4V7o7i0Ah9yAjoRUb1yPrcY53OLsfbIw69c93WwQAtPW7TwsEag2/2lHhwbmcLMuOEVW5IXUkIITJgwAevWrcPOnTvh5+f3yPZ5eXmIjIxEYGAg1qxZg3PnzqFHjx4wNTXFp59+qlYGExMThIWFIT4+Hk888YRie3x8PAYPHqzWPqn2xnTxQ4Vcjo/iTksdhYiIVHDxRgku3ih55MiWnYUxWnjaIsTdGkHu1ghwtoKLtSmszIx16pY8khdSMTEx+PXXX/HXX3/ByspKMSpkY2MDc3NzpbZyuRz9+vWDj48PYmNjYWRkhMDAQGzbtg0RERHw8PDAlClTqhyjqKgI6enpiucZGRlISUmBvb09vL3vz8mZOnUqRowYgbZt26Jjx45Yvnw5Ll++jHHjxmnx09PjjO3WGJamRpix7qTUUYiISINulZRh19lc7Dqb+8h2TV0aIcTdBkHu1mjuev9qREcrk3ozSV7y5Q8e1gkrV67E6NGjq2yPj49H165dYWZmprQ9JSUFDg4O8PLyqvKenTt3VnuPwFGjRmHVqlWK50uWLMGCBQuQlZWFkJAQfPbZZ1WWYFAFlz/QnD3n8vDCdweljkFERPVMVAs3LB7eRqP75L326gkWUpp19noh+ny2S+oYRERUj3Twt8fqsR01uk9V/n5LfosYoppq6mKFnW/0kDoGERHVIzJIe3qPhRTpFF9HSyTNiJQ6BhER1RNST5NiIUU6x9nKDGfm9EPXAEepoxARkcRYSBGpwdTIED+NaY9XuvlLHYWIiCTEU3tEtfD2gEC8GxUodQwiIpIIR6SIaunlrv5YM06zV2wQERHVBAspahDa+drj8Lu9pI5BRER1TOpFOVlIUYPh0MgUabP7wsnKVOooRERUR6Re25yFFDUoFiZGSHonEjMHBkkdhYiI6gDnSBFpmEwmw5gufvgrprPUUYiISMs4IkWkJaFetkh5rzd8HCykjkJERFrCOVJEWmRrYYLENyMQE9FY6ihERKQFHJEiqgNv9m3OJRKIiBogzpEiqiPtfO1xanY/GBtK/e8XIiLSHJ7aI6oz5iaGODunP1dDJyJqIDgiRVTHZDIZXu7qj93TIqSOQkREtWTAQopIGl72Frjw0QBM6dVU6ihERKQm3rSYSEIGBjJM6hWAzZO7Sh2FiIjUwFN7RPVAc1drZMwbgGfaekodhYiIVMBCiqiekMlkWPBUKDZO6CJ1FCIiqiGe2iOqZ0I8bHB2Tn88H+4tdRQiInocjkgR1T8mRgaYN7QFr+wjIqrnpF4ZkIUU0SN42VsgY94AfPJUS6mjEBFRNXivPaJ6TiaT4em2Xkh5rzfCfOykjkNERA/giBSRjrC1MMGf4zshdmwHqaMQEdH/41V7RDqmvb8DLnw0AK9095c6ChGR3uOIFJEOMjCQ4e3+gUh5rzeaODeSOg4Rkd7iHCkiHWZrYYJtU7sjbiJXRicikgJHpIgagCD3+yujL3uhjdRRiIj0C+dIETUMMpkM/ULccG5uf4zr3ljqOEREeoErmxM1MMaGBpjevzmOzeqDNt62UschImrQDDgiRdQw2ZgbY+2rnZH4Zg9YmRlJHYeIqEHi8gdEDZyPgyVOvN8XmybyZshERJrGU3tEeiLY3QYX50dhzbiOUkchImowOCJFpGfa+drj4vworBzdTuooREQ6j4UUkZ6KaO6Mi/Oj8OnToVJHISLSYTy1R6TXngrzxIWPBuDjJ1tIHYWISOdwRIqIYGAgw7PtvJExbwAWD+OinkREuoKFFFE9IpPJENXSDRnzBuDnMe2ljkNERI/BQoqoHpLJZOgS4IiL86MQO7aD1HGIiOotIaQ9Pgsponquvb8DLs6Pwl8xneFkZSp1HCIiegALKSIdEepli+QZvbD/7Z4I97OXOg4REQHgfSuIdIybjTl+f6Uj8u+U4cvt5/DdngypIxER6S2OSBHpKBtzY8wcGIRzc/tjwVMtpY5DRKSXWEgR6ThjQwM809YLGfMG4Kcx4TAx4q81EVFd4f9xiRoImUyGrgFOODunPw6+E4nI5s5SRyIiavA4R4qoAXKxNsN3o9vhXnkF1hy6infXn5Q6EhGRVnBlcyLSGlMjQ7zQwQcX50dh44Qu8LI3lzoSEVGDwhEpIj0R4mGD3dN6ovBuGRYnnMeyxPNSRyIi0nkckSLSM1Zmxpjevzky5g3A76905CgVEVEtcESKSE/JZDKE+9lj97SeKLpXjl8OXMK8f05LHYuISKdwRIqI0MjUCK90b4yL86MQN7Er2vrYSR2JiEgncESKiJQEuVvjj/GdUF4hx59HruKtP09IHYmI6KGkvmkxCykiqpaRoQGebeeNZ9t543ZJKZbuPI9vdl2QOhYRUb3CU3tE9Fi2FiZ4e0AgLs6PwvbXu6N3kIvUkYiI6gWOSBGRSho7NcK3I9tCCIHd5/IwZ1Mazl4vkjoWEZEkWEgRkVpkMhm6NXXC1qbdUV4hx+bUbMz6KxU3ikuljkZEVGdYSBFRrRkZGmBgS3cMbOmOu2UV2Jp2HRN/Oyp1LCIirWMhRUQaZWZsiOhQd0SHuqOktBzrjmbi3fUnJb+yhohIG1hIEZHWWJgYYXh7Hwxv74O7ZRX488hVfLTpFIpLK6SORkSkESykiKhOmBkbKoqqe+UVSDidi5l/nURu4T2poxERqY2FFBHVOVMjQ/QLcUW/EFdUyAV2nc3FwvgzOJlZIHU0ItIxMpm0x2chRUSSMjSQIaK5MyKaO0MIgZOZBVickI7NqdlSRyMieiwWUkRUb8hkMrTwtMGyEWEAgOsFd7E66Qo+23ZW4mRERNVjIUVE9ZaLtRkm9QrApF4BuFNagX9OZuGzbWdx5eYdqaMREQFgIUVEOsLcxBBD23hiaBtPCCFwKqsQK/ZcwNojmVJHIyI9xkKKiHSOTCZDkLs1Fj3TCoueaYX8O2XYlnYd8zef5lWARHpG6jXqWEgRkc6zMTfGk2GeeDLMEwCQdq0AvyZdws8HLkucjIgaOhZSRNTgBLlbY86QFpgzpAXulVdg3/kb+HbXBew7f0PqaETUwLCQIqIGzdTIEBHNnBHRzBkAcKPoHjanZmNJwnlk3uakdSKqHRZSRKRXHBqZKlZYB4DM23fw5+GrWL7rAorulUucjoh0DQspItJrHrbmmBgZgImRAZDLBS7fLMEfh6/i64R0qaMRkQ5gIUVE9P8MDGTwdbTEG32b4Y2+zQAA564XYu3RTHy3JwOl5XKJExJRfcNCiojoEQJcrPBWv+Z4q19zCCFw9dYdbDqRhSUJ6Si4y1OBRPqOhRQRUQ3JZDJ42VtgXPfGGNe9MQAgp+AutqRm4+cDl3HmeqHECYmorrGQIiKqBWdrM4zo6IsRHX0BAHdKK3Dgwg2sTr6MLanXpQ1HRFrHQoqISIPMTQwR0dwZEc3vL7cglwukZRVg04ks/LT/Eq8MJNIwmUza47OQIiLSIgMDGUI8bBDiYYO3+jUHAOSXlGF3ei7+OHwVO8/kSpyQiGqDhRQRUR2zsTDGwJbuGNjSHcD9UauzOYWIT72O1clXuFAokQ5hIUVEJDEDAxmau1qjuas1JkQGAADulVcg5fJtxJ3Iwk8HLkEu8Y1Zieor3rSYiIiqMDUyRHt/B7T3d8AHg0MAAPl3ynDwwg1sOpGFv1KuSZyQiAAWUkREOsPG3Bh9gl3RJ9gVXzzXGsD9+VZJF29i4/FrLK6IJMBCiohIh9lYGKN3kAt6B7n8W1z9/8jV1rTrWHc0ExU8L0ikNSykiIgamAdHrj59OhQAUFJajlNZhdiSmo21RzKRV3RP4pREDQMLKSIiPWBhYoQwHzuE+djhnQGBAAAhBM7nFmHnmVxsTb2OpIs3JU5JpHtYSBER6SmZTIYmzlZo4myFl7v6A7hfXN0qKcOxK7exNe06Nh6/hkLeU5DooVhIERGRgkwmg72liWJ19nlDWwC4v9bVpZsl2H/+Braduo4dp3MkTkpUP7CQIiKixzIwkMHP0RJ+jpYY1t5bsf1uWQVOZRVg3/kbiE+7jpQrt6ULSSQBFlJERKQ2M2NDtPa2Q2tvO8RENAFw//Rg0b1ypOcUIfFsLuLTriP1WoHESYm0g4UUERFplEwmg5WZsaLAmtyrqeK1u2UVSMsqwP7zN5B4NhdJGZzgTrqNhRQREdUZM2NDtPG2Q5sHRrCA+7fEuZBbjEMXbyLxbC62n86R/NYfRDXBQoqIiCRnamSIQDdrBLpZY0RHX8X28go58opKcSIzH7vP5WLH6RxcvcWbOtO/ZDJpj89CioiI6i0jQwO42pjB1cYMvYNcMHvwv6/dLatAek4RDl+6hb3pediadl26oCQZqUcuWUgREZFOMjM2RIiHDUI8bDCqk69iuxACt0vKkHqtAMkXb2Lf+TwkX7wlXVBq0FhIERFRgyKTyWBnaYIuAY7oEuCIKb3/nexeXiHHzeJSnMouRFLGDexNv8ElG6hWWEgREZHeMDI0gLO1GZytzdC9qRPe7PvvaxVygRvF95CeU4SkjJvYd/4Gryqkx2IhRUREBMDQQAZnKzM4W5mhU2NHTO6l/HrB3TKczynC8av5SMq4f3Vh0T3ePkffsZAiIiKqAesH1sZ6cE4WAJRVyHH11h2kXsvH0cu3cfjSLZ4y1BMspIiIiGrJ2NBAcQudgS3dlV4TQqDwXjku5BbjZGY+Dl+6heSLN7mMQwPBQoqIiEiLZDIZrM2M0crLFq28bPFCBx+l18sr5Lh9pwwXcotxIjMfRy7dQtLFm8gtvCdRYlIFCykiIiIJGRkawLGRKRwbmSLczx5juvgpvV5WIUfBnTJcvFGM41fvnzo8dPEmruXflSgxPYiFFBERUT1mbGgAh0amcGhkijAfe7zYWfl1uVyg8G45Mm/fn6OVcuU2jly+jVNZvFF0XWAhRUREpMMMDGSwsTCGjYUxgtyt8XRbrypt7pVXIKfgHs7n3r/q8NiV2zhy+RZulZRJkLhhYSFFRETUwJkaGcLL3gJe9hbo0cy5yuuVE+Izb91Bek4Rjl25jWNX749sVch59+hHYSFFRESk5yonxFu7GSPQzRqDQt2rtKm89c6VWyVI///1tI5dvY2UK7clv9+dlFhIERER0WNV3nrHztIELT1tMbSNZ5U2QggU3CnH1dslOJ9bjNRr+Th+JR/Hr95GcWmFBKm1j4UUERERaYRMVjlfywbB7jaIrmZkCwDulFYgu+AuLuYV43R2IU5m5uN45m1cuan62lomhrLaxq4VFlJERERUp8xNDBULmEY0rzpnC7h/78NbJaXIvHUH53OLkHqtAKnX8nEys0Bxax4zYwO81jOgLqNXwUKKiIiI6h1DA5lifa1QL1sMbSN1ouoZSB2AiIiISFexkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSk5HUARoyIQQAoKCgQOIkREREVFOVf7cr/44/CgspLSosLAQAeHl5SZyEiIiIVFVYWAgbG5tHtpGJmpRbpBa5XI5r167BysoKMplMo/suKCiAl5cXrly5Amtra43um/7Ffq4b7Oe6wX6uO+zruqGtfhZCoLCwEO7u7jAwePQsKI5IaZGBgQE8PT21egxra2v+ktYB9nPdYD/XDfZz3WFf1w1t9PPjRqIqcbI5ERERkZpYSBERERGpiYWUjjI1NcWsWbNgamoqdZQGjf1cN9jPdYP9XHfY13WjPvQzJ5sTERERqYkjUkRERERqYiFFREREpCYWUkRERERqYiFFREREpCYWUjpoyZIl8PPzg5mZGcLCwrB7926pI+mUefPmoV27drCysoKzszOGDBmCM2fOKLURQuD999+Hu7s7zM3N0aNHD6Smpiq1uXfvHiZMmABHR0dYWloiOjoaV69ercuPolPmzZsHmUyGyZMnK7axnzUjMzMTL7zwAhwcHGBhYYFWrVrh8OHDitfZz7VXXl6Od999F35+fjA3N4e/vz9mz54NuVyuaMN+Vs+uXbswaNAguLu7QyaTYf369Uqva6pfb926hREjRsDGxgY2NjYYMWIEbt++XfsPIEinrF69WhgbG4tvv/1WpKWliUmTJglLS0tx6dIlqaPpjL59+4qVK1eKkydPipSUFBEVFSW8vb1FUVGRos38+fOFlZWV+PPPP8WJEyfEs88+K9zc3ERBQYGizbhx44SHh4eIj48XR44cERERESI0NFSUl5dL8bHqtaSkJOHr6ytatmwpJk2apNjOfq69mzdvCh8fHzF69Ghx8OBBkZGRIbZt2ybS09MVbdjPtTdnzhzh4OAgNm7cKDIyMsSaNWtEo0aNxOeff65ow35WT1xcnJgxY4b4888/BQCxbt06pdc11a/9+vUTISEhYt++fWLfvn0iJCREDBw4sNb5WUjpmPDwcDFu3Dilbc2bNxfTp0+XKJHuy8nJEQBEYmKiEEIIuVwuXF1dxfz58xVt7t69K2xsbMSyZcuEEELcvn1bGBsbi9WrVyvaZGZmCgMDA7F58+a6/QD1XGFhoQgICBDx8fGie/fuikKK/awZb731lujSpctDX2c/a0ZUVJR46aWXlLYNHTpUvPDCC0II9rOm/LeQ0lS/pqWlCQDiwIEDijb79+8XAMTp06drlZmn9nRIaWkpDh8+jD59+iht79OnD/bt2ydRKt2Xn58PALC3twcAZGRkIDs7W6mfTU1N0b17d0U/Hz58GGVlZUpt3N3dERISwu/iP2JiYhAVFYVevXopbWc/a8aGDRvQtm1bPP3003B2dkbr1q3x7bffKl5nP2tGly5dsH37dpw9exYAcOzYMezZswcDBgwAwH7WFk316/79+2FjY4P27dsr2nTo0AE2Nja17nvetFiH5OXloaKiAi4uLkrbXVxckJ2dLVEq3SaEwNSpU9GlSxeEhIQAgKIvq+vnS5cuKdqYmJjAzs6uSht+F/9avXo1jhw5guTk5CqvsZ8148KFC1i6dCmmTp2Kd955B0lJSZg4cSJMTU0xcuRI9rOGvPXWW8jPz0fz5s1haGiIiooKzJ07F88//zwA/jxri6b6NTs7G87OzlX27+zsXOu+ZyGlg2QymdJzIUSVbVQzr732Go4fP449e/ZUeU2dfuZ38a8rV65g0qRJ2Lp1K8zMzB7ajv1cO3K5HG3btsVHH30EAGjdujVSU1OxdOlSjBw5UtGO/Vw7sbGx+Pnnn/Hrr78iODgYKSkpmDx5Mtzd3TFq1ChFO/azdmiiX6trr4m+56k9HeLo6AhDQ8Mq1XNOTk6Vap0eb8KECdiwYQMSEhLg6emp2O7q6goAj+xnV1dXlJaW4tatWw9to+8OHz6MnJwchIWFwcjICEZGRkhMTMSXX34JIyMjRT+xn2vHzc0NQUFBStsCAwNx+fJlAPx51pQ333wT06dPx3PPPYcWLVpgxIgRmDJlCubNmweA/awtmupXV1dXXL9+vcr+c3Nza933LKR0iImJCcLCwhAfH6+0PT4+Hp06dZIole4RQuC1117D2rVrsWPHDvj5+Sm97ufnB1dXV6V+Li0tRWJioqKfw8LCYGxsrNQmKysLJ0+e5Hfx/yIjI3HixAmkpKQoHm3btsXw4cORkpICf39/9rMGdO7cucryHWfPnoWPjw8A/jxrSklJCQwMlP9kGhoaKpY/YD9rh6b6tWPHjsjPz0dSUpKizcGDB5Gfn1/7vq/VVHWqc5XLH3z33XciLS1NTJ48WVhaWoqLFy9KHU1njB8/XtjY2IidO3eKrKwsxaOkpETRZv78+cLGxkasXbtWnDhxQjz//PPVXm7r6ekptm3bJo4cOSJ69uyp95cxP86DV+0JwX7WhKSkJGFkZCTmzp0rzp07J3755RdhYWEhfv75Z0Ub9nPtjRo1Snh4eCiWP1i7dq1wdHQU06ZNU7RhP6unsLBQHD16VBw9elQAEIsWLRJHjx5VLOujqX7t16+faNmypdi/f7/Yv3+/aNGiBZc/0FeLFy8WPj4+wsTERLRp00Zx2T7VDIBqHytXrlS0kcvlYtasWcLV1VWYmpqKbt26iRMnTijt586dO+K1114T9vb2wtzcXAwcOFBcvny5jj+NbvlvIcV+1oy///5bhISECFNTU9G8eXOxfPlypdfZz7VXUFAgJk2aJLy9vYWZmZnw9/cXM2bMEPfu3VO0YT+rJyEhodr/J48aNUoIobl+vXHjhhg+fLiwsrISVlZWYvjw4eLWrVu1zi8TQojajWkRERER6SfOkSIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspIiIiIjWxkCIiIiJSEwspItJpPXr0wOTJk6WOoUQmk2H9+vVSxyCiOsAFOYlIp928eRPGxsawsrKCr68vJk+eXGeF1fvvv4/169cjJSVFaXt2djbs7OxgampaJzmISDpGUgcgIqoNe3t7je+ztLQUJiYmar+/8o71RNTw8dQeEem0ylN7PXr0wKVLlzBlyhTIZDLIZDJFm3379qFbt24wNzeHl5cXJk6ciOLiYsXrvr6+mDNnDkaPHg0bGxv873//AwC89dZbaNq0KSwsLODv74+ZM2eirKwMALBq1Sp88MEHOHbsmOJ4q1atAlD11N6JEyfQs2dPmJubw8HBAWPHjkVRUZHi9dGjR2PIkCH49NNP4ebmBgcHB8TExCiOBQBLlixBQEAAzMzM4OLigqeeekob3UlEKmIhRUQNwtq1a+Hp6YnZs2cjKysLWVlZAO4XMX379sXQoUNx/PhxxMbGYs+ePXjttdeU3v/JJ58gJCQEhw8fxsyZMwEAVlZWWLVqFdLS0vDFF1/g22+/xWeffQYAePbZZ/H6668jODhYcbxnn322Sq6SkhL069cPdnZ2SE5Oxpo1a7Bt27Yqx09ISMD58+eRkJCAH374AatWrVIUZocOHcLEiRMxe/ZsnDlzBps3b0a3bt003YVEpI5a3/aYiEhC3bt3F5MmTRJCCOHj4yM+++wzpddHjBghxo4dq7Rt9+7dwsDAQNy5c0fxviFDhjz2WAsWLBBhYWGK57NmzRKhoaFV2gEQ69atE0IIsXz5cmFnZyeKiooUr2/atEkYGBiI7OxsIYQQo0aNEj4+PqK8vFzR5umnnxbPPvusEEKIP//8U1hbW4uCgoLHZiSiusU5UkTUoB0+fBjp6en45ZdfFNuEEJDL5cjIyEBgYCAAoG3btlXe+8cff+Dzzz9Heno6ioqKUF5eDmtra5WOf+rUKYSGhsLS0lKxrXPnzpDL5Thz5gxcXFwAAMHBwTA0NFS0cXNzw4kTJwAAvXv3ho+PD/z9/dGvXz/069cPTzzxBCwsLFTKQkSax1N7RNSgyeVyvPLKK0hJSVE8jh07hnPnzqFx48aKdg8WOgBw4MABPPfcc+jfvz82btyIo0ePYsaMGSgtLVXp+EIIpflaD3pwu7GxcZXX5HI5gPunGI8cOYLffvsNbm5ueO+99xAaGorbt2+rlIWINI8jUkTUYJiYmKCiokJpW5s2bZCamoomTZqotK+9e/fCx8cHM2bMUGy7dOnSY4/3X0FBQfjhhx9QXFysKNb27t0LAwMDNG3atMZ5jIyM0KtXL/Tq1QuzZs2Cra0tduzYgaFDh6rwqYhI0zgiRUQNhq+vL3bt2oXMzEzk5eUBuH/l3f79+xETE4OUlBScO3cOGzZswIQJEx65ryZNmuDy5ctYvXo1zp8/jy+//BLr1q2rcryMjAykpKQgLy8P9+7dq7Kf4cOHw8zMDKNGjcLJkyeRkJCACRMmYMSIEYrTeo+zceNGfPnll0hJScGlS5fw448/Qi6Xo1mzZjXsGSLSFhZSRNRgzJ49GxcvXkTjxo3h5OQEAGjZsiUSExNx7tw5dO3aFa1bt8bMmTPh5ub2yH0NHjwYU6ZMwWuvvYZWrVph3759iqv5Kj355JPo168fIiIi4OTkhN9++63KfiwsLLBlyxbcvHkT7dq1w1NPPYXIyEh8/fXXNf5ctra2WLt2LXr27InAwEAsW7YMv/32G4KDg2u8DyLSDq5sTkRERKQmjkgRERERqYmFFBEREZGaWEgRERERqYmFFBEREZGaWEgRERERqYmFFBEREZGaWEgRERERqYmFFBEREZGaWEgRERERqYmFFBEREZGaWEgRERERqYmFFBEREZGa/g8Ir84vxsv13wAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 24.0, 'iterations')" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(rnorm)\n", + "title(\"steepest-descent convergence\")\n", + "ylabel(\"residual norm\")\n", + "xlabel(\"iterations\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see what's going on, let's try a $2\\times2$ matrix where we can easily visualize the progress." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwU9/r937MucReSQCC4u7sTtBRaKFal1CilpZS2lLp7KVWoULS4u7u7u4S4ru98fn/MZEmKtrf39n7vb8/rxQsy+czszO6yc/Z5znOOJIQQ+OGHH3744YcffvwPQfNPn4Affvjhhx9++OHH3w0/wfHDDz/88MMPP/7n4Cc4fvjhhx9++OHH/xz8BMcPP/zwww8//Pifg5/g+OGHH3744Ycf/3PwExw//PDDDz/88ON/Dn6C44cffvjhhx9+/M/BT3D88MMPP/zww4//OfgJjh9++OGHH3748T8HP8Hxww8//lZkZ2dz3333ERUVhSRJ9OrV66brvF4vH3/8MZ07d6ZMmTJYLBaqVKnCiy++SG5u7l967N27d/PEE09Qo0YNAgMDiY6Opn379qxZs+avX9Af8Ntvv/Hpp5/+bcf7b8Tbb7/NvHnz/uXjrFu3DkmSWLdu3b98rP8mTJw4kSlTpvzTp+HHHSD5oxr88MOPvxPPPvssEydO5Mcff6R8+fKEhYVRsWLFG9YVFhYSFxfH/fffT4cOHYiIiGDPnj28+eabxMbGsmvXLsxm85967NGjR7N+/XoGDBhArVq1KCoqYtKkSSxZsoSffvqJwYMH/8vXl5qayqFDhzh37ty/fKz/VgQEBNC3b99/+Sa+bt062rRpw9q1a2nduvXfcm7/DahevToRERH/c8Ttfw26f/oE/PDj/zpsNhsWi+WfPo3/Ghw6dIjy5cszcODA264zm82cPXuW8PBw37bWrVuTmJjIvffey++//84DDzzwpx77hRde4MMPPyy1rWvXrtStW5fXX3/9byE4fvjhx/8N+FtUfvzHcOzYMe6//36io6MxGo0kJiYyePBgnE6nb82hQ4fo2bMnoaGhmEwmateuzU8//VTqOMVl72nTpjFu3Dji4uIICgqiffv2HD9+3Ldu5MiRWK1W8vPzbziX/v37Ex0djdvt9m2bMWMGTZo0wWq1EhAQQKdOndi7d2+p/YYOHUpAQAAHDx6kY8eOBAYG0q5dOwByc3N56KGHCAsLIyAggG7dunHmzBkkSeK1114rdZyTJ08yYMAAoqKiMBqNVKlSha+++uovXWcxli1bRrt27QgODva1e955551Sa3bt2kWPHj0ICwvDZDJRp04dZs6cebOX6wZkZ2czYsQI4uPjMRgMJCcnM27cON/rd+7cOSRJYtWqVRw9ehRJkm7bntBqtaXITTEaNmwIwMWLF33bhg8fjslkYvfu3b5tsizTrl07oqOjuXr1KgBRUVE3fZx69eqVOt6tkJGRwaOPPkpCQgJGo5HIyEiaNWvGqlWrAIWALV68mPPnz/uuT5Ik3/4ul4s333yTypUr+/YfNmwYGRkZNzzWn3m/HT58mHbt2mG1WomMjOTJJ5/EZrOVWiuEYOLEidSuXRuz2UxoaCh9+/blzJkzpdbt3buX1NRU33svLi6Obt26cenSJQAkSaKoqIiffvrJd313U305duwYnTt3xmKxEBERwfDhwykoKLjp2lWrVtGuXTuCgoKwWCw0a9aM1atX/6nXohh/1/t+ypQpSJLE2rVrefzxx4mIiCA8PJw+ffpw5coV37qyZcty+PBh1q9f73t+ypYte8fnx49/AMIPP/4D2LdvnwgICBBly5YVkyZNEqtXrxa//vqr6Nevn8jPzxdCCHHs2DERGBgoypcvL37++WexePFicf/99wtAvPfee75jrV27VgCibNmyYuDAgWLx4sVi2rRpIjExUaSkpAiPxyOEEGL//v0CEN99912pc8nJyRFGo1GMGjXKt+2tt94SkiSJBx98UCxatEjMmTNHNGnSRFitVnH48GHfuiFDhgi9Xi/Kli0r3nnnHbF69WqxfPly4fV6RfPmzYXJZBLvvvuuWLFihZgwYYJISUkRgBg/frzvGIcPHxbBwcGiRo0a4ueffxYrVqwQzz33nNBoNOK1117709cphBDff/+9kCRJtG7dWvz2229i1apVYuLEiWLEiBG+NWvWrBEGg0G0aNFCzJgxQyxbtkwMHTpUAGLy5Mm3ff3sdruoWbOmsFqt4sMPPxQrVqwQr7zyitDpdKJr165CCCEcDofYunWrqFOnjkhOThZbt24VW7duFXl5eXd6e5TC5MmTBSDmz59f6vFr164tkpOTRU5OjhBCiFdffVVoNBqxYsWK2x7P7XaLChUqiDp16tzxsTt16iQiIyPFt99+K9atWyfmzZsnXn31VTF9+nQhhPLaNWvWTMTExPiub+vWrUIIIbxer+jcubOwWq1iwoQJYuXKleL7778X8fHxomrVqsJms/ke58+83wwGg0hMTBRvvfWWWLFihXjttdeETqcTqamppc79kUceEXq9Xjz33HNi2bJl4rfffhOVK1cW0dHRIi0tTQghRGFhoQgPDxf169cXM2fOFOvXrxczZswQw4cPF0eOHBFCCLF161ZhNptF165dfddX8pxuhrS0NBEVFSXi4+PF5MmTxZIlS8TAgQNFYmKiAMTatWt9a3/55RchSZLo1auXmDNnjli4cKFITU0VWq1WrFq16q5fCyH+3vd98fsuOTlZPPXUU2L58uXi+++/F6GhoaJNmza+dXv27BHJycmiTp06vudnz549t31+/Phn4Cc4fvxH0LZtWxESEiLS09Nvuea+++4TRqNRXLhwodT2Ll26CIvFInJzc4UQ12/8xTfWYsycOVMAvhuOEELUrVtXNG3atNS6iRMnCkAcPHhQCCHEhQsXhE6nE0899VSpdQUFBSImJkb069fPt23IkCECED/++GOptYsXLxaA+Prrr0ttf+edd24gOJ06dRJlypS54cb/5JNPCpPJJLKzs//UdRYUFIigoCDRvHlzIcuyuBUqV64s6tSpI9xud6ntqampIjY2Vni93lvuO2nSJAGImTNnltr+3nvvCaAUyWjVqpWoVq3aLY91O1y6dElER0eL+vXr33A+J0+eFEFBQaJXr15i1apVQqPRiJdffvmOxxw3bpwAxLx58+64NiAgQIwcOfK2a7p16yaSkpJu2D5t2jQBiN9//73U9p07dwpATJw4UQjx195vn332Wam1b731lgDEpk2bhBAKKQHERx99VGrdxYsXhdlsFi+88IIQQohdu3bd1XNhtVrFkCFDbrumJMaMGSMkSRL79u0rtb1Dhw6lCE5RUZEICwsT3bt3L7XO6/WKWrVqiYYNG/q23em1+Lvf98UEpyQ5EkKI999/XwDi6tWrvm3VqlUTrVq1uuVj+vHfAX+Lyo9/O2w2G+vXr6dfv35ERkbect2aNWto164dCQkJpbYPHToUm83G1q1bS23v0aNHqZ9r1qwJwPnz533bhg0bxpYtW0q1dCZPnkyDBg2oXr06AMuXL8fj8TB48GA8Ho/vj8lkolWrVjdtsdxzzz2lfl6/fj0A/fr1K7X9/vvvL/Wzw+Fg9erV9O7dG4vFUurxunbtisPhYNu2bX/qOrds2UJ+fj4jRowo1S4piVOnTnHs2DGfLuaPj3v16tWbtr2KsWbNGqxWK3379i21fejQoQA3tBf+CrKzs+natStCCGbMmIFGU/rjqUKFCnz33XfMmzeP1NRUWrRocUPr74/4/vvveeutt3juuefo2bPnHc+hYcOGTJkyhTfffJNt27aVamHeCYsWLSIkJITu3buXen5r165NTEyM7330V95vf9QzDRgwAIC1a9f6HluSJB544IFSx4yJiaFWrVq+Y1aoUIHQ0FDGjBnDpEmTOHLkyF1fH5R+33g8HoQ6o7J27VqqVatGrVq1bnqexdiyZQvZ2dkMGTKk1HFkWaZz587s3LmToqIi4M6vxb/rfX83nyt+/N+An+D48W9HTk4OXq+XMmXK3HZdVlYWsbGxN2yPi4vz/b4k/qjfMBqNANjtdt+2gQMHYjQafdMgR44cYefOnQwbNsy35tq1awA0aNAAvV5f6s+MGTPIzMws9TgWi4WgoKAbzl2n0xEWFlZqe3R09A3rPB4PX3zxxQ2P1bVrV4AbHu9O11ms77jd81t8jaNHj77hcUeMGHHTx/3jecfExNxwI4mKikKn093w2vxZ5OTk0KFDBy5fvszKlStJTk6+6bpu3boRHR2Nw+Fg1KhRaLXaWx5z8uTJPPbYYzz66KN88MEHd3UeM2bMYMiQIXz//fc0adKEsLAwBg8eTFpa2h33vXbtGrm5uRgMhhue47S0NN/z+2ffbzqd7ob3QExMDHD9/8S1a9cQQhAdHX3DMbdt2+Y7ZnBwMOvXr6d27dq89NJLVKtWjbi4OMaPH39XZO6Pxy7WxxW/P/6IP24rvva+ffvecKz33nsPIQTZ2dnAnV+Lf9f7/m4+V/z4vwH/FJUf/3aEhYWh1Wp9IsZbITw83CcWLYligV9ERMSffuzQ0FB69uzJzz//zJtvvsnkyZMxmUylKivFx509ezZJSUl3PObNvi2Gh4fj8XjIzs4uRXL+eGMMDQ1Fq9UyaNAgnnjiiZsev1y5cnd1bcUorord7vktvsaxY8fSp0+fm66pVKnSLfcPDw9n+/btCCFKXX96ejoej+cvvTbFyMnJoX379pw9e5bVq1f7vjHfDMXC1WrVqvH000/TokULQkNDb1g3efJkHn74YYYMGcKkSZNu+Q3/j4iIiODTTz/l008/5cKFCyxYsIAXX3yR9PR0li1bdsd9w8PDb7kuMDDQtw7u/v3m8XjIysoqdeMtfl8Vb4uIiECSJDZu3Oi7IZdEyW01atRg+vTpCCE4cOAAU6ZM4fXXX8dsNvPiiy/e9lx27txZ6ufi92p4ePhNSeAftxVf+xdffEHjxo1v+hjFXwru9Fr8J973fvwfxz/ZH/Pj/x+0bdtWhIaGioyMjFuuuf/++4XJZBKXL18utb1bt2431eDMmjWr1LqzZ8/eVDC7dOlSAYgFCxaImJgYcf/999+wn06nKyVkvhWGDBkirFbrDduLNTjFOoti3EyD0759e1GrVi3hdDpv+1h3e50FBQUiODhYtGzZ8rZahJSUlBv0PHeLb775RgBizpw5pbZ/8MEHAhArV670bfszGpzs7GxRt25dERISInbu3Hnbtd99951P/3T69GkRHBwsevbsecO6yZMnC41GIwYPHnxbXdHdolevXiIyMtL3c58+fURUVNQN63799VcBiG3btt32eH/2/cZtNDgbN24UQgixadMmAYgZM2bczSXdgJCQEHHvvff6fg4LCyulBboT7laDU1BQIEJCQsTjjz/+l86z5Gvxd7/vizU4f3wfFv8/LCmUrlu3bim9kB//nfBXcPz4j+Djjz+mefPmNGrUiBdffJEKFSpw7do1FixYwDfffENgYCDjx49n0aJFtGnThldffZWwsDCmTp3K4sWLef/99wkODv5Lj92xY0fKlCnDiBEjSEtLK9WeAmXs8/XXX2fcuHGcOXOGzp07ExoayrVr19ixYwdWq5UJEybc9jE6d+5Ms2bNeO6558jPz6devXps3bqVn3/+GaCUnuSzzz6jefPmtGjRgscff5yyZctSUFDAqVOnWLhw4Z923Q0ICOCjjz7i4Ycfpn379jzyyCNER0dz6tQp9u/fz5dffgnAN998Q5cuXejUqRNDhw4lPj6e7Oxsjh49yp49e5g1a9YtH2Pw4MF89dVXDBkyhHPnzlGjRg02bdrE22+/TdeuXWnfvv2fOmdQSv7Fo9GffvopHo+nlP4oMjKS8uXLA3Dw4EGefvpphgwZ4nv9fvjhB/r27cunn37KyJEjAZg1axYPPfQQtWvX5rHHHmPHjh2lHrNOnTo3rXAA5OXl0aZNGwYMGEDlypUJDAxk586dLFu2rNS3/xo1ajBnzhy+/vpr6tWrh0ajoX79+tx3331MnTqVrl278swzz9CwYUP0ej2XLl1i7dq19OzZk969e//p95vBYOCjjz6isLCQBg0asGXLFt588026dOlC8+bNAWjWrBmPPvoow4YNY9euXbRs2RKr1crVq1fZtGkTNWrU4PHHH2fRokVMnDiRXr16kZycjBCCOXPmkJubS4cOHUpd47p161i4cCGxsbEEBgbettIxcuRIfvzxR7p168abb75JdHQ0U6dO5dixY6XWBQQE8MUXXzBkyBCys7Pp27cvUVFRZGRksH//fjIyMvj666/v6rX4T7zvb4XiKtiMGTNITk7GZDJRo0aNP30cP/7N+KcZlh///+DIkSPi3nvvFeHh4b7R16FDhwqHw+Fbc/DgQdG9e3cRHBwsDAaDqFWr1g0VmT9bwRFCiJdeekkAIiEh4Zbf6ufNmyfatGkjgoKChNFoFElJSaJv376lRldvVcERQqlGDBs2TISEhAiLxSI6dOggtm3bdtNv4GfPnhUPPvigiI+PF3q9XkRGRoqmTZuKN9988y9f55IlS0SrVq2E1WoVFotFVK1a9YYqwf79+0W/fv1EVFSU0Ov1IiYmRrRt21ZMmjTpptdUEllZWWL48OEiNjZW6HQ6kZSUJMaOHVvq9RPi7is4xddxqz/FUzyFhYWicuXKomrVqqKoqKjUMZ544gmh1+vF9u3bhRDXKx63+nP27Nlbno/D4RDDhw8XNWvWFEFBQcJsNotKlSqJ8ePHl3rc7Oxs0bdvXxESEiIkSRIlP0bdbrf48MMPRa1atYTJZBIBAQGicuXK4rHHHhMnT54s9Xh/5v124MAB0bp1a2E2m0VYWJh4/PHHRWFh4Q3X8OOPP4pGjRoJq9UqzGazKF++vBg8eLDYtWuXEEKxYrj//vtF+fLlhdlsFsHBwaJhw4ZiypQppY6zb98+0axZM2GxWARwVxNDR44cER06dBAmk0mEhYWJhx56SMyfP/+G6ocQQqxfv15069ZNhIWFCb1eL+Lj40W3bt187/W7fS2E+Pve93+mgnPu3DnRsWNHERgYKICbTtX58c/DH9Xghx//Rvz2228MHDiQzZs307Rp03/6dPz4P4ahQ4cye/ZsCgsL/+lT8cOP/3Pwt6j88ONvwrRp07h8+TI1atRAo9Gwbds2PvjgA1q2bOknN3744Ycf/2H4CY4ffvxNCAwMZPr06bz55psUFRURGxvL0KFDefPNN//pU/PDDz/8+P8O/haVH3744YcffvjxPwe/0Z8ffvjhhx9++PE/Bz/B8cMPP/zwww8//ufgJzh++OGHH3744cf/HP6/FBnLssyVK1cIDAy8awt3P/zwww8//PDjn4UQgoKCAuLi4m4I5P0j/r8kOFeuXLkhsdoPP/zwww8//Pi/gYsXL94xwPn/S4JTHHp38eLFG1Kh/2kI4UDkjgHXBgQSXuFFIPAIL14Eyk8CrwAPMjIaPMKLQIdbeBAYcAkvAj1uZARa3DLIaPAiIQMyBtxCAEYcsoyEAZeQAS1ulLUyWrxCIGHELstofGs0uIWEFwkJA05ZRisZcXg9SGhxCQkZDVr0OGQPesmAzSsjAFnocAswaEzYvC606HDKAoEGvcaA3etGL+mxeWQEEkaNAZvXjUFjoMjtQSBh0popcDsxagzYPV4EEKAzk+t0opG0gIRbyARqzeS4HICEVWsiz+XCrNXj9Mp4ZJlQg5VMhw2QCDVYyHHY0Gt0aNFic3sIMZjJdTiQBUSbA0izFQIS0eZArhUVoEFDhMlKuq0Ig1aLVWMg2+EgwGBEKyDf6STEaMLtERS5XESYzdicXuxuN5FWKzaXiyKXmwiLBbdbJt/pJMxkQoOGLJuNAIOBUKOJS7n56LVakkPCOJGupB7Xjoth3yUlxLBmbDTHr2bg8sokhgbj9ni5ml+IxaCjanQUu88rQaVNkxPYc/YKTq+XhNBgAnR6jqVlopEk2lepwJojp/B6BeWjw7Dq9By8qKQwd6tdifWHz1DkcBMVZKVucjzL954AoGGFMjjdXg6cVQJSezeuxs5jF7mSlY9Rp+W+1nVYuOUwOYV2gixG7mtdm2mr9lJodxEWaOb+dnX4dfku8oucBFmNPNStMb8t3016diFGg47HejVhzfYTHDmjnMv9nevhdLmZs/oAAHUqxdO9dXW++GUduQUOAswGRg5pw85951mxWYkIaFgzif5d6/LpD2u4nJaLVqvhof5NiQoP5NPvVlNkcxFoNfL88A7k5NqYOGU9LpeHsFALLzzZmbxcG59/sxqbzYU1wMizIzoQExHEu58s4fKVHCQJ+t/TkHt7N+DnXzaxcPE+AJISI3j+ua7o9Ro+/mgpJ04or1fr1lV4bHhbrqXl8dH7i7l0UUnO7ty1FsMeakVhgZ3PPlrGwb3nAahRO5GnR3cmMiqY5Yv2MeXbdThsLgxGHQ882IpuvesihGDe9O3MmLIJj8eLyWxg0COt6NyrHhqNxL5dZ5j04XKuXckBoFHLijzyTEfCI4MQQrBt3TF+/HQFWRkFynPWsiIPPtORqNgQAArz7cz4YQNLZu9EeGV0ei09BjSmz+DmWKzXYy8O7TrLz1+s5PRh5T0XGhFA/0db07ZHHbS666nvQgh2bzrBzK/XcPqostZkMdLt/kakDmxKUKj1Jp+LggPbTrPw503s3XzSt7181XhSBzWlSYfq6A13vp1lX8tj87IDbFy8n9OHLvq2SxqJag2SadKpBg3bViUs6q/Fwvxfxa61R/nkhWk4ipxExofy4pdDKFsp9i8da9OyA3zywgyCwwKYtHw0BqP+rvYb1e8rzp9MY8zHA2jYpsot1+Xn55OQkOC7j98O/1+Oiefn5xMcHExeXt5/FcERcj4iZzi4dyHQ4BVuZMAjPMgIvMjqzwrR8QpJ3abFLbwIDDiFFzDgwgvocMkCGS0eQKDBI7R4kJS1skJgXMKLhB6nEAoREhpkJMCAQ5bRSEacshcJnW+NEHpcQqCTTNi9bjTocQiFrEjocMle9JKJQq8HDVpcskKK9JJRJTLFxEdCJxlwyG6MGhMFbjeU2GbWmslzuQAJg2SkyOvGojVR4Fa2WTRm8lTC45S9eIUgWGchy2lHQoNRY6TQ7SZQZyJPJTzhhgDSHUVo0GDVGcl3OQnQGbG7PbhlQaQpgGtFCqGJNQdypagACYlIUwDptkKMWj1mjZ5cp4Nggwm3R6bI7SbSbCXP7sAte4kPCOJaQSEeWZAQGMzV/AK8sqBscAiX8vLwCOXfV/IKcHtlEoODySq0YXO7iQ0IxOXykG23E2o2EaQ3cSEnD6NWS8WIcA5dTQegYUIZdpy7hATUjIvhTEY2hS4XsUGBBBmMnLiWiVaSaFGhLOuPnwWgTkIsaTmFpOUVEGgy0LBcAmsOnQagaUoi59NzuZKTj8Wgp1PNiizYcQRZCGokxmDS69h1Sklu7tOoOtuOnudqTgEWo577mtdm5vp92JxuYkID6VyvElNX7cEjy1QsE0HjSkn8unI3QkCNcjE0rJzAlCU7kYWgSlI0HRtUYtLvm3F5vCREhTAstSFfzdhETr6NAIuR5wa2Zv7aQ+w/cRmAQakNMBv0/DB7C7IQpCRF8uSAlnz+03rOXFSI2yP9mxEWaOaTH9fgcnmICg/klWe6sH7rSX5fvBeA6pXjGDOiIz/P2MaqDUeV57VOWZ4b0ZFfpm9l8XKFTNWoGs+457uxactJvv1xPW63l4iIAMY9352QYDNvvb2AM2czlOemVz0eebg1q1YeZuLEVTgcbgICTIx8thMtW1Zmxm9b+WnyRrxembAwK6PHpNKgUTIrlx7gq09XYCtyYjTqeHhEO3r0qU/GtTw+fmcRe3cqr2G1mgmMfrk78QnhnD6Rxsevz+fUcYVANWhagafHphIVE0x+ro1vP1nOykX7AIiICuKJF7rSVL15XL2UzcR3F7Nzo0JYY+JDGTE2lYYtKgJKK3/53N1M+WwFeTk2AJq0qcIjz3chLuF6svmlsxn88OFStq1Rnj+zxUDfh1rSZ2gLTBbD9c83Idi7+SQ/f7qC4/svAGCyGOg5pDn3PNiSwBDLDZ+JXo+XTcsOMuubtZw+rLz2kiTRpEM1ej/Uimr1y95RZmArdLBx0T7WztvNga2nKL7laTQStZqm0CK1Dk061SAkPOC2x/lfx/kTaUx46Huuns/EZDHwxk+PUb1R+T99HK/Hy7BW75BxNZdn3+tHx3sb3tV+7z83jbUL9jL0uc70H972luv+zP3bT3D+SwiO8GYgch4CzzGV3LjU6oxKclCqFR4h4wW8Qqh/a9RKjl6tsBSTG6W6InzkRsItNHjRIAs9LkEJcmPwkROPUIiQrBKYYnKjQY9dCKWqJOvwAFrJhMPrRisZsMvK72ShVH50kpEirwetpMfulRFo0GHAIXswaEwUejyAhAYdLuHFpDGT73YhoQG0uIWMRWsm1+VEQqMQMNmLVWsi3+3ER3g8bqy669sCdRZynHYMGh1eWYPTKxNisJDtq9YolRuDRockNDi8HsIMFjLtdkAi2hTI1aICQCLKFMA1WyEGjQ6zRk+ey0mwwYTT7cHh9RJtDiCjyIZXCMoEBHEpPx8JKBsUyrmcHECifHAYp7OzkZBICQvnZFYWAJXCIjiekYmERKXwCE5mZiIEpISFczE7V6m0BAdTaHeRa3cQZjETpDdyPicXg1ZL9ego9l5UKieNyyaw49xFZAFVoiPJLrCRXlBEkMlIlehIdpxVSEnriuXYfuoiDreHhLBgIq1W9p5TvkF3q12JdYfOYHO5iQ8NomJMBOsOnQGgfY0KnLySwYXMPEwGHfc2rsHszQdxuDwkRATTrFISMzcoRKBuhXiiggJYvuu4sm/dFLxuL+v2Kcfq2awaRUUOVu85pTxu06oYNFrmrT8IQIvaydQoF8t3c7bglQUVEiIYktqQT39dR3aeDavZwOghbVm99Tib9yjH7N6mOvWqJPDBd6uwOdyEBVt4+YnOrN54jKXrDivPUZ1yPHx/Mz6atJJjp5SK0IDeDWjdpCJvfLSYS1dy0GokHh7UgsZ1k3nj/YWcPZ+JJMGg/k3o1a0OH3y2jG07FDLYrEkKz4/szPoNx/h6kkKgQkMsPD+6G1Uqx/LxR0vZtEkhDrVrJzHmxVQ8Hi/vvbWQw4eU16N5y0o8+1wXZCH47P0lbN6gPGdVqsXzwss9iE8IY9nCfXzz2QpsNhdGo45hw9vS894GeL0y037YwIyfNuP1ygQEmXj8uc6061ITgPUrDvH1h0vJzS5CkiS692vA0BHtsAaYcLs9zJ6yiWnfrcfl9KDTabl3WHPue7gVRpPybfv4oUt89dYCThxSSEVCuUiGv9iNek1TfJ9ZBbk2pk5czaJp2/B6ZDRaDV3ubcDAJ9oRGlH62/XRveeZ8tFSDmxXXjOjSU/3B5pyz8OtbkosnA43K2ft4PcfNpB2Icu3T8d+Dek1rAVxSRE37FMSQggO7TjDihnb2Lh4P067y/e7qvXK0apnXVp0q01o5J2rAH8VsiyTk15ATmY+tnwHRQV2bAUOigocuJxuNBoJjUaDRqtBo5UwmgyERgYSGhVEWFQQQWEBaLX/2Tmggtwi3ho+hf1bThIcHsAXS0YTqVby/gxmTlrD5PeXUL1BOT6Y8cRd7fPbl6v45bMVdOzbgGffufeW6/wE5w74byM4wnMRkTMMvBcUQiKcSmtJOBXSgUclKF5fBUf5W8KLQEaHSwgEBtylyI0epfaj8ZEbj9DiEUp1xi1kJIw4hAzocKsExqMSmGICpJGM2GWvchxZg4wGDQacsgedZKJI9iKhwSODjIRWMmLzetBLRoq8XgQSEnrcshejxkyBx41GbZl5BWrlxoVOKq44gVmtzCjbwCsgQGsmz+1AgwbQ4fTKBOrM5LoVcmLRKETHojVS6FKeq1CDlSxHERKS0spyObHqDDjcHjxCEGkM4JqtCJDUfxeik7QE6IzkOB0E6o24PTIOr4cocwCZtiJkAWUCgrmYlwdIJAWGcD4vFwlIDgrjTE42N5Cb0HBOZisf1JXDIjmWkYGERLWISA6nZyAB1aOiOXT1GhJQJTKS0xnZuL0yZUNDKLA5yLY7CDWbiTRbOJmRhU6joV5CHNvPKTfMRkllOHDhKg6P0oay6HScuKasa12xHKsPKzfn2omx5OTbuJCVh1mvo13V8izZdxwhoFZSLB6XzJFL19BqJHo3rM6yPccocrqJDQ2kScUk5m45BECDlAQsWh0bDyuVhZ5NqnH6UiaHz19DI0kM7lCPjfvOcOZqNnqdlke6NWLFjmOcvpyFTqvhsR5N2bDnFIfOpCFJMLRbQy5dzWX1DoUYdGpSmQplIvhm1ma8sqB8mXAe7duUz39Zz5X0PAx6HaOGtOHcxSxmLNkDQJ2qZXi0fzM+/nYVpy9kotFIPHJ/cxLjwnj3y2UUFjkJCjAx7ukuZGQV8MV3a3C5vURGBPLa6FQuXMrms69X4XR6CAu18srzqUiSxFvvLyQzqxC9XsuIR9rSplVlPvpkKZvVdknDBsm88Hw3zp3N4N13FpKVVYhOp+HBB1vR996GrFpxiC8/W4Hd7sJiMfDkMx3p0KkGWzed4JN3F5Oba0On0zDowZb0H9iU3JwiPn5nETu3KkSwao0yPP9KD+ITwjlx5AofvT6fc6eVSl7ztlV44vmuhEUEkJ6Wx5fvLmK7WpVJTI7k2Vd6UrWmojk8tOccn7+xgAtnlGpTrQbleHJcdxLKRQKQl1PElM9WsGzOboQQWKxGHhjRjh73N0anV9pMHreXxdO38etXqynMsyvX36oSD7/QlYTkqFKfbedOpPHTx8vYtvoIADq9lm4DmtB/eJsbSBBAUb6dxVO3MvfHDeRmKflbQaEWegxuTuqgZgSH3di+Konsa3msmLWDlTO3c+Vcpm97fHIkHfo2pHXPukSXqD79q3A53Fw+k86FU9e4cCKNK+cyyLyaS8aVHDKv5uL1yH/52BqthojYEMpXK0NKzQQq1EggpWYCITd53v5OOB0uRvX+jDOHL1OlXlnem/HkXbX/SuLa5WyGtngbjUbitx2v3fF1A1g2czufjfudhm2qMOHbYbdc92fu3/9fanD+myDcx5XKjZx+A7mR0eLFrRIUDzISHlHcpgIvQm05CVVzo5Abh6xUcpSfr+ti3LIWL6XJjV3ICvkQSrvILWt8a4rJjU1tTxVreUBXitwoWhpZJTIGldwo7SkJDUJo8AgZg0pudJJSjRGAQVLIjUGj7AcSRo3J13Yq8igEyaqSG4NGj8Mj8AqZIL2FHJcNDRp0kp58t4sgnYVsp1LNCdFbyHIUodfo0KAl1+Uk1GAm26EQomJyI6lrr9mKsOgMyDLkOB1EmCxk2+3IAuKtQVwuyAckEgMUQgMSSQHBnM/LRQMkBIRwJicbraQh3hrEmewc9Bot8QGBnMzOQidpSAoK4XhGJjpJQ4XQcI6o5KZGVDQHVXJTKyaG/ZfTkJCoHhPFyWuZuFSiY3e6OZmRRZDJSGJICNvVFlWL5LJsPHUOBNSMjyEtt4BLWXmEmE1UiYnykZu2lZPZdfoSBQ4XMcEBpERHsHivUjnoUKMC+89cJSO/iCCzkQ41U5iz7aBCfMrGEqA3+MhN78bVOHj6KrvTsjHotAxqV48Fmw+RmW8jyGJkUPv6/LJ8FwU2JxHBVgZ1qMsPi7ZTYHMSHmzlkdTGfDdvK9n5NgItRp7u14KZy/dy+lIWWq2GJ+5tzuFTV5k4YxMAnZpWpnbFOF79fAkut4e4qGCef7AdU2Zv48BxpQr1QM8GpCRF8vxbc7DZXYSFWHjl6a5s33OWl3/ZCEC1irGMeaITP8/YyuqNik6nSf1knn2sHd/9tJFV65Q2S/06ZRnzbBcWL93Hz79tQQhITAjj1bE9KSpw8OjwyWRmFqDTaXjk4db0SK3LlCkbmDVzu7I2MZyXxvUgOjqYtybMY8N65bFq1ExgzEvdCQoy8/G7i1i2aD8AZZMjGfNKT8qnRLN6+UEmfrycwgIHeoOWoY+2oc99jfB6ZX78ajWzftmM7BUEh1p4akw3WrSriizLLJy1gx8+X4nd5kKv13Lfgy3pP6w5er2Ogjwb33+yguVzdwMQEmbl0dFdaNO1JpIk4fXKLPt9F1M+X0GBSlraptbmoVGdCI+8fhPZtfE437yzmEtqO65sSjSPjOlG3WbXKzsA1y7n8MtnK1gzbw9CCDQaifZ96jPwqfZExYXe8DmYl13E/CkbWfDTJooKHABExYdyzyOt6Ni3ASaL8YZ9iuH1yuzZcIylv21l+6rDyF6FVJitRlp2r0OHextStX65f3litiDXxqmDFzm5/wInDlzg7JErpF3IRJZvXSPQaDWERARgDTRjCTRhCTRhDTRjMOqQZYEQAtkrI3sFDpuTnIwCcjLyyc0sRPbKpF/KJv1SNlvVVilATGI4jTvWoFmXWlSpX+5vr/IYTQbGfT2Mp1M/5Ojuc/zw1gKGT+jzp44RHR9GctU4zhy5wo41R+jQt8Ed9ymu5OVl/X3Bsv4Kzj9YwRGuvYicR0Dkq+0hFwItLpXkeHCrZKeY5CikwC1QyY6EBwkZnUpylMrNdXKj6GoUobHankKHt1hgLBTxsFN4kdDilBUiJNDhEQKNZMIme9CopEmgQZa1Cm1SiY9OMuDwetT2lEKU9JKZQq8braTD5VWqQnrJRJHXjUFjxOZVdTYo/zZpTBR6XaW2mbUm8lU9jlljpNDjwqw1ku9SSFBx5Uav0eHxSrhlmRC9lUyVvATpzOS67Fi0RuxeLx5ZEG60kmlXqjURhgDS7UUYNDr0ko4Cl4tQg5l8lxOPLIi1BHK1UGlVlbEGc6kgz/fvi/l5aCUNUWYraYWFGLVaQvRmrhUVYdHpCdQZSS8qIsBgwKLVk25T/h2kM3G1oACLXk+EycLFPEVXUzY4lBMZim6kelQUB68o38zrxsex5+IVhQDFRnP6WhZ2t4f44CA0ksTFHKUCUyM2mp1nlVZCiwpJ7DpzCYfHS9nwUMxaHceuZqDVSHSoWoFVB0/hlQXV4qMQsuDoZeV3PepWZdme4zjcHspGhlIuMpR1h5V2QufaFTl5OZMzKpkZ2LIOczcfJF8lLz0bVeOXVbtxe7yUjwunedVy/LJiF0JAzeRY6qbE8/OynYr+pnwsLWok8+28rXi9MhXKRNCvXW2+nL6RQpX8jBzQiinzt3NGJTtP3teC85eymL9GaWM1rZNMrzY1ePfbleSobauxwzty4MhlZquVnNrVyvDkkNZ89v0aDh1TCFC/7vXo0KIyr5doST06pCX1aiQx4d0Fvm0PDW5Bu1ZVePuDRRxQ20ldO9ZgxGNtmTlrB1NVwlOmTBgvv9QDs1HP228v8AmJU7vX4fHH23Hk8CXef2cRmRkFaLUahjzYkv73N+bo4cu898Z80q7kIklw7/1NGPJIK2xFTj7/YAmb1ipkqGKVWJ5/pSdJ5SI5fvgyH06YzwWVWLTuWJ0Rz3chOMTC5QtZfPLGfA7uUYTJVWslMPLlHiQlRyGEYM3i/Xz74TLycooA6HJPfR58pgOBwYrm5eSRy3z55gKOH1SutWxKNE+O60H1emV9n1WXzmbw3XuL2bFeIcPBYVYGP92BTvfULyUgLsi1MWPSGhb8sgW3ywNA8841GDyyEwnlS1d3ALIz8pn9zTqWTNuK0+4GIKF8FP0eb0vr7nV8VaObISejgGXTtrJs2lbSL+f4tletX47O9zemRbfatyVGt4MQgqvnMzm47RQHt57i6O5zXDmXcdO1AcFmElNiSEyJIT45isj4UCLjQoiMCyUsKqjU83O38Hq85GUVcvlshkKqDlzk1MGLXDqdTslbdmhkIG1616fT/U1ITIn5S9d6K2xbcYgJD38PwMvfDKNZl1p/av+pn63g189W0KRjdV6dNPSO64/uPc+ofl8RFR/KT+vG3nKdv0V1B/w3EBzh3IjIfRKEXRX2ulSxcElyo8Otkh5lQkqDW8jISOokk0b9A7Iw+DQ4vjaVSm5cKnHxCi0yqGJkgQYjTuFRxMPFk1bqGqW640UrGbF71ekpWdHnaCQDdllGLylkRFJbV14kparjdavExwtIaDFilz0YNSaKVCIjoUw0mbUmCjyKzgahVIIsWhN5bhdSsdjY68GqNZGrio0tWhMFHgdmrZFClwcBPnKjQYNRo6fI4yZYbybbqQiLI4xWMuxKtSZIZyHH6cCqM+D0eHF5ZZ+AGCTiLEFcKcwv9W+dpCXMaPGRGJNGR47DTrDBhPAK8l0uwk1mXG6ZQpeLKIsVm9vt+7fL7SXP4STCYkF4hSIgNpmwag1czs/HrNeREBjMyYxstJJEjZho9l9WhaMJ8ew+fxkhoEpMJFdyC8izO4gIsBBptnAsTRETt0wpx7pjCimpkxjHlax80vMLCTQZqZcYx/qjSiupVeVyHLuUTrpaqWlZqRyLd6tTRxUSKLQ7OHpJIT79m9Zi0Y4jFNhdRAZb6VS7ItPX7kMWgupJ0ZSLCmfRdqX90LpWebRCYs1epa2S2qQqRTYn69Sfe7aojtflZfEWpUrSvkFFEiNDmLJwBwA1U+Lo2ao6n/yyjiK7i4gQK88NbsMvC3Zy9LTSxnq4b1N0koZvp29GFoIKSZE892BbJv68nsMnFE3SA70bUrtqGd78bCl5+XYCLEZefLITBQUOPv1mFS63l6iIQMaPTuXs+Uy+mLTa16Z6dUx3igqdvPPRYvLz7VgsBp57qhPVq8Xz1tsLOXRYIQGdO9XgyRHtWb/+GF9+sRKHw01gkInRo7vRsGEyk79fz6wZ2wEokxDG2Jd7klw+ip9/WM/MqVuRZUFUdBAvvNKTWnWS2LrxOJ+8s5jcnCK0Wg0DH2zB/YOb45Vlfv1uPbN+3owsC0LDrDz1YjeatamC1+Nlzm9b+XnSWlxODyazgQefbEf3fg3RaDRcvZTNF28uZI/a5kpMjuTpV3pSvW4SAEUFDn76YiWLZmxHlpV21OAn29P9vka+m3JRgYPfvl7D/F824/XIaHUaeg5qxoDH22INNPk+z5wONwt+3szMb9ZSmK9UgGo1Ls+w57tSqeaNlhzFxGbx1C24nAoRqlA9nvtGtKdJx2q39Tc5tvccC6dsYsPivXhcXgACgi20u6c+Xe5vQtJfnP7JSstj9/qj7N98ggNbT5F5NfeGNbFJEaTUSiSlZgLlq5chqWIsoZH/OT81W6GD/ZtPsHnJfratPESR+lwDtO1Tn6EvdifyJhWyv4of3l7A7ElriIwL4du1L2EyG+68k4rj+y8wsvfnBASbmbnn9Ts+RxdPp/No5w8JCDIza/eEW67zE5w74J8mOMK+BJH3POBGFhJe3EoLSSUzxeTGJVwo2hi3WtlRdTACRU+DhIyEV+jVse9icmPEKWRAj1MuORmlUcXIxdNTSnXGLhcLjCUEGkCPQ8hoJRM2r1cRAqsiYoU4yeglZdRbo456y2h82huD+jdIgB6XLNQqjRMNWjyyhEfgIzdKpUfR2Vi0xdobLbLQ4JZlAnRmcpxOpQGm0WPzegjUmchRW1FKW0ppX8mywCXLhBmsZKjC4nCDlUy1VaVDR5HbTajBTI46Bh5jvi4sjrUEcbUwH62kJdRgJtNuw6rTo0VLntNJqNGM0+3G7vEQYwkg2+bA5fVSJiCI9IIi3LJMUnAIl28yKZUUHEJ6QSEOj4cyQUEUOpzk2Z1EWi3o0XI1vxCrwUCZoCBOpCukpW58HLvOK9WZ+onx7Lt4FY8sUyEyHJvdydW8QgKMBqrHRrP9jDL2WlJMnBgWTKjZzIELCkHoVqsyqw6cxOnxUi4ylNjgQLYeVyZaUutVZseJC2Tk2wi2mOhSpxKzNx1QKj6J0cSHBLFqr6I56VS3Iuk5hew7rbaH2tVlx+ELnLyciVaj4ZHURqzaedyntxnesxlrdp7g6DlFn/NIz8YcOZXG5v0K6bqnXS2sJgO/LNwJQO1K8fRtX5sPf1xFXqGDoAATLz7SgeXrj7Jhp3LD7tq6Gm0apvDOV8vIVYnMS0925vS5DCbPUKosKclRjHu6M9Pn7GT5WoWINVZbUt9O2cAatXXUpEEyo5/uzMw5O5j5u3IOFVNieHVsD86eSefDj5dSUODAYjEwamRnGjZI5pOPl7FObWnVqZPEmBe7Yyty8vYb8zmtCplTe9ThsRHtSL+Wz7sT5nFKrfJ06FKTJ0Z2BEli0ifLWb5YaVUlJUfywqs9SakUy8ljV/nwtXk+rU2bTjUYMbozQSEWzp26xkcT5nHiiPL8121Unmde7k5MXChej5e5U7fyy8Q1OB1u9AYdAx5tRd+hSrtKCMG6JQf49oMl5KjtgNZdavLI6C6ERymfh7Iss3LuHqZ8stynhWnYqhKPjOlGGVWvU7xu7YK9TPloGZlpeQCUrRTDg893pX7LSjfc1G5GbCrXSWLg0x2od5P1xXC7PGxctI/5kzdwQp3AAqhcN4nug1vQrGtNjKa7v/kCuJxuDu88w551x9i17ijn1EpfMXR6LZXqJFGzSQrVGiZTsWYigTcZYf+n4HZ52L3uKMunb2XbCqV1bDDq6f1Ia+59oj3WQPO//BhOh4tH27xD+uUcBo/uyv1Pd7zrfV1OD/fUHIfH7WXy+rHE3EH7dOV8Fg+1fw+TxcDc/W/ecp2f4NwB/yTBEbbpiPzxgEAW4MWDFwmPSmJKkhuhkhvQ4RIeleSo7SkkdcpKq04+KYLi4taThAGHLFRdT+kRcalYX6N63FwXGGt8gmWNZMLu9aKVlEqLQMKLDo9AHQ13qRNSJYiP7FWqNB63KjpWqjpK5cZZyuOmmPAoHjeKzsasMZPvUbY5ij1utGZyXCUIj/ASpLf4dDRWrZk8lxOrzkiRS5k4K0lugtVWlVVnxOH24pYFUaYA0tQx8GJyo0FDuNFCht2GWadHh5YCl5Mwo5lCpxun10usNZCMwkK8QpAYGMKF3FxAIjk4lDPZOUhIVAgN41S24m1yq0mpiuHhnMvKUQXEoeQU2Ml3OokOsKKTNFzJK8Bq0FMuJJTDV9ORgEZlE9h2ViEwdRPiOHElgyKXm7jgIIJNBo5dzUSrkWhTMZk1R04jhCImzswt4rI69t26cjmW7lPEpw3KlyE3386ptCz0Wi29G1Zlwc4jON1ekqPDqBAVzsp9CpnpUDuFtKwCDp9LQyNJPNC2Lit3nSAtpwCrycCQDvX5beUe8oochAVaGNKpnk9vExFs5aFujfhu3lZyCuwEB5h4sm8Lfl20k4vXcjHqtTx1f0s27znLtgPnAOjXqQ5hgWa+m6mMgFcqF8Xwfs35ZPJaLl7NQa/TMnJoG/LybPwwY7PynJaL4vnHOvDdb5vZuU85To+ONenZsSZvfryEcxez0GgkHn6gBQ1qJfH6ewuvt6mGtaJFkxTefG8hR48rVaB7etVj2KDm/PDjBuYvUNpelSrF8sq4nuRkFfLWWwu4di0PrVbDsAdb0q9fI5Yu3sfXXyoC5eBgM8+N6UaTpiksmLObb79chcvlISjYzMjnu9KiTRUO7D3PB6/P51paHpIEfQc0YcgjrZE0EtN+3MC0yRt9WptnxqbSrE0VPG4vM3/axNTv1uPxeAkINPHoqM507F4bSZI4efQKn742j9PHlOuo1aAcT7/Sk/gk5eZy5UIWX7wxn73bFE1WmbIRPDGuB3UaXx8HPn7wIl+/uYDjB5RqVZlykTz6YjcatKxU6rNs/7ZTfPfOIk6rJCsyNoRBIzvStmfdG3QhedlFzP52LQt/3ozTobSiKtdJ4oFnOlK3RcVbEpv8nCKWTN3CwikbyU7PB0Bn0NK6R126D2lBxVqJN/+gvQUK82zsXHOEbSsOsnPtEeyFTt/vJEmiYq1E6raqTI0mFahSr9yfqlj8kzix/wLfvT6XQ9uV1zUkIpBBo7vSeUCTO7r93gnr5u/mvad+wWg28OOGcYRF371H0NM9PuXkoUu89OUgWnS9fYsr/UoOQ1q9g96gY8Hht2+5zi8y/i+FKPwWUfghAF4hIyOrhn1u1YjPrbapbkZudGrLSYMHVNGw2p5ChxcZoVZuJNXAD1VLU3KKCvTqaLgRmyyjUSs61wkQaCgmN4qBH2jwCIWsaDFg97rQSUZs6oSUYuCniIiLPArxcaikyKAxUuR1Kn+rZn16jZFCrxOzxkSeqrMxaIzke5ylPW5UcmPSGLB7Pch4CdZbyHLY0UoatBjIc7kI1iuj4cVj4BkOGzpJi0HSketyEGKwkGN3ICg9Bh5pCuBqUQFGjQ6TxkCG3UaI0YTN6cEuO1UdTiFCQFJgMOfz8pCAckGhnFXHwCsEK4Tmj5NSVcIjOZquTkpFRnH4Wro6KRXFIZW0VIuK4sS1TDyyoEJ4GBkFReQ7nEQHBmCWtBy+mo5Jrxj2FZObZuWS2HbmPLIM1WKjyC6wcexqJoEmIzXjon1i4taVyrH79GUKnS5iQwIpHxnmIzddalVkx4mLZBfaCQuw0LxyErO2KPqWJhUTsdldrNx3Eo0kcX/L2qzafYKMvCKCLEb6t6zFr6v2KCPikSF0rFuRbxdsxSsLKidG0bRqEp/P2qh455SPpXn1cnz02zq8XpmKiZH0aVmTz6auw+ZwExMeyBP3tuCb2Zu5nJ6H0aBj1KDWbNt3jlmqlqZbq2rUqVyGlz5agMPpITo8kJdGdGLWwt1s2a2041Lb1aBTyyq8/N4C0rMKMBp0jB7eAa1G4skXp+NwugkPszJ+dCoXL+Xw5OipSpsqMpDxY3qQnV3Io0/9RFGRk4AAI2NGdSUpIZxnR/3G6TNK9aR/v0YMGdSc2bN28NNPG5FlQWxsCONe7kFcbCivvzqHzepYeL365Xjhpe5oJHj5+RnsUFtE9RslM/ql7gQGmfn+q1XMmroVISAmLoTnX+lJjdqJnD11jQ/Gz+O0Wulp0b4qT77QlZBQq+J589o8TqkkrHHLSjz9UirhkUE4HW6mTlrL7J83I3tlAoLMPDKqEx171UWSJFwuD7N+2MD079fjdnkwGHXc90hr+g5rgUGdkMnNKmTKJ8tZ/vsuQPGzGfBEO3o+0LTUFM2FU9f44f0l7FirVK8sASb6D29DzyHNfWPmxSjMtzPn+/XMm7wRe5FCJirVTmTQyE63JTYXT11j7vfrWP37LlxOhRCFRQWROqQ5XQY0/VOeNblZBWxesp/NS/dzYMvJUpNNoVFB1G9dhbqtKlOnRSWCw/5veuFUrJXI+7OfZtuKg/zw1gIun0nnixdnsH/zCUZ/NuhPT0GVRKsedZk/eQPH9pxn7vfreWhcj7vet0KNMpw8dIlThy7fkeAUk2Kvx/uXz/WP8BOc/wCEEAqxKfoOKEluZNXDRsKLR21TlRQW63EJN4pYWFZID6LEtJNGJUaqwFgoFRy7XDwZpWpw1PaUUs1RyI1dltFIxaLk6+7EYMAue0sY+OlwCoVQSehxyO5SE1IelWTpJSM2j6uEgZ8GnWTA5nVh0lwXDCtVH5fqceNStxko8niwas0+PxujxqRWZkp73GQ57Bg0ejxeCZvsIdRgIUut1gTpLGQ6bJi1BtxemSKvmwijlXSb8vsoldxoJQ2BOhPptiIC9YpRX57LQZQ5gAxbEUJAQkAwF9Qx8LKBIZxTx8DLBl4nN+WCQjmVrUxNJQUFczI7C60kkRwcxrH0TLSShpTQMI7chNzUjoll3+WrSEjUjInmaFq6QnQiwsgusJNuKyTcaiHMbGbPxSvoNBoaJpZhyylFSNokOZEDF64qvjUhQYSYTGw5eQGNJNGxWgVWHjypkKAy0XjdMpuPn0en1dCjThUW7TqG2+ulQkw40UEBLNyp3Kh6NqjKjmMXSMstJNBspG+TGkxftxen20u5mDAapiTw/RJFL9OwUgIRQQH8qP7csX5FhCwzWf25e7NqCK/MpDlblN83qkRsaCDv/7QagLpVytChYUXe+n4FTpeH2MggnhnQiknTN3H+ijJW/sygVly4nMNbE5cD0KBGIoN7NeTdiSu4mp6HQa/l2Yfb4XJ5GDVhNh6PTEJcKONHdWPxioPMW7oPgHq1Enn+iU78+MsmVqptqiYNkhn9VCemzdrO7/OVyaKqleN4dWwPDhy4yPARU3A43ISEWHjxhVSSy0Xy0ksz2b9PaY+0a1eVZ0Z25sTxqzz60PdkZSpj4Q892oZ77m3I9i0n+fidReTm2tAbtDz8eDt69W3A+TPpjHv2N86cUohTp9TaPD6yI0aTnhk/beKXb9bhdnsJCjbz5JhutOpQDbfbwy/frGXaDxvwemUCg82MGN2VNl1qIEkSB3ef49PX5nFZ9Ytp2bE6j7/YjVCVBOzfeYYvXp/PJXVsum7TCjz5cg+fWZ/XK7N0xnZ++mwFhfnKBFO7HnV48LnOhEVd/4acn1PEr1+sZPFv25C9ih6n632NGfBk+xsIh73IybwpG5nz3XqfJqd8tXgGj+pMg9aVb0lsDu88w+xJa9i28pBvW/nqZejzcGtapNa+6xt1Qa6NLcv2s2HhXvZtOuGbrAJIrBhDk041adKpBik1E/7lCsd/CyRJokmnmjRoW42FP23gx7cWsGHhXgrz7bzy3UN/WXAtSRL9RrTn9Yd/YM3cXQx9MfWuJ7eKbQPSLmXfca1XfY3+iij7VvATnH8zhPAqLSn7TAC8Qqm1KIZ9slqB8eIVEh48iuuwWrFRyI0y5VQyesF1k+gF102iFyR0akurWDysrLHf1p1Y0d7YvW6FjKj6HMUV2VNqQqq4PaVT3Yn/aODnkD0+Az+NSsacsheL1kKuS4lWkIUGh9dLgM5MnkvxuJHQq+7DllIeNzlOZSqqwKVUgsJUbY0GDSatkRyXgyC9mXynEwGlPG7CDVbSigowaw1IQrrrMfDEgGDO5eWik5R21rncXAwaHREmK+dycrHo9ISazJzNzcWs0xNusnAqKxuTTkeMJYATmVkYtFrKBYVw+Go6WkmiWlSUbwy8bnwsey5eVUhPXAxHr6Tj8sqUCw8tNRJeLiyUraeVm2ubiuVYf/wsQkD1uGhyCmwcuZxOgNFAw7JlWL5faS21rFSWY5fSySiwEWIx0TQlibnbFeO7ZpWSyMgtYsvx8+i1Wu5tWoN5Ww5jd7lJjAyhQfky/LRS+SbftEoSOknDzPWKTuSeFjU4dSGDpUeOopEkhnZuwOYDZzhxMQOtVsNjPZqwYfcpDp9V9DaP9mrCwRNX+GWLMoHTv2MdkOH9yWsAaFwjiU5NK/PG18uw2V1EhgXw4sMd+GXeDvYfVfRHg3s3IiEqmOffnovL5SE2KohXnu7K3KX7WKWOe7duUpFh/Zvw7mfLOHZK0RwN6d+E1k0r8uL43zl/MUsx8xvSklbNKvLy63M5pgqT7+vbkIH9GzNx0hqWr1CqWbVrJzLuxR6cPJnGo4/8QF6eHZNJz9PPdKRt26r8NHkjM37b6hsLH/tKTxISw/ny42UsVMexkytE8eL4XiSVjWTO9G1MnrQWt9tLcIiFkS92o1mryly+mM2Hr83jyAGlSte4RUWeeak7YREBnD6RxkevzeW06lTcrG0VnhzTjbCIQIoKHUz+bCWLZiqkMjwykCdf7k6T1opTcUGeje8+WsYK9VxCwwN4bEw3WnWu4SMYR/ee56s3FvgiE5KrxDLi5R5Uq1vW9xnmdnlYNHULv3252kdWGrerykMvdKXMH3xvXE4PS6dvY/qXq3zanaSK0Qx6tjNNO1a/KbGRZZkdq44w6+vVHNmtaLIkSaJxh2r0fqQN1Rsm35WI1+V0s2PVYVb/voNda4/icV+vBKTUTKBFah2adq5JfPKN01z/S9DptfR+uA2JKTG88fAP7Fl/jLH3fcXrPz32lzVE9VtXITDEQnZ6Pge2nKROi0p33gmIiFXaWTcTbP8RDptixmg03120w93g30pwNmzYwAcffMDu3bu5evUqc+fOpVevXr7fCyGYMGEC3377LTk5OTRq1IivvvqKatWq3fa4v//+O6+88gqnT5+mfPnyvPXWW/Tu3fvfeSl/CUK4FDGxYykCbporJVOcK+VVNTXF5MZTKnrBjZI35VIFvUrcgqaED45SjSkZvVDsTuwV0vXpKVlGI5lwyp4S7sSa6+7EKO7EOklpYSmj4Rq8yOgkE4XqhFRxlUaDHofXfYOBn0vIauXGpfreyAgEZo1itqfX6HF4ZGSEqqNxoJN0uL0SHuElSGcmx63ELRgkw009bjIdypi3EBoK3C7CSlRzIlRyo5O0WLRK+ynYYKbI5cYty8SYA0krunEMPN4SxPm8XLSSlkiThYv5eVh0OixaA5cLCggyGBVBcEEBoSYTQsCVggLCzcp01OW8fMLMZnRoOJ+bS7DRSIDewInMLCx6PfEBQRy6ko5Oo/G5EUtAw4R4dpy7jATUiovhVEYWRS438cFBGDVaDlxMw6jT0jCpDOuOKTeBZhWSOHDuKoVOF3EhQcQEBrD2iNK26VarEqsPnlLExFGhxAQGsnSPQjB6NqjKxsNnySlSWlRtq5Vn2rp9ADRIKYNBo2XuZuUbdN/mNdl36jKnr2Sh12l5sFMD5m88xLWcQgLMRh7u2pCfl+0kp8BOSICZR7s34ceF28nKKyLIauTJvi2YuniXorcx6Bh5fyvWbD/BriPKzXxQ9wZoBLw+cRkAdaqUYWC3+rw7aQWZOUW+EfA9By7wzuxtgOJK/GC/prz75TLOXlRGyUcMaUWZ6GCeGjudgkIHQYEmXhmVSm6ujcefnYrD6SYiPIBXx3QnP8/ua0kFBpgYO7obMdFBPPXMr1xQtTqDH2hGv3sbMXnyBmbPUghEhQrRvPxKT7RaDc8+9SvHVFLQNbU2jz/ZniuXcnjioR+4oFZK7rmvEQ8+1oa8XBsvPv0r+3afA6BRsxRGvZRKSKiVhbN28t3nK3E63FisBh5/rgsdUmvh9cj89v16n9YmKNjCE2O60kolCbs2n+Sz1+eToQp7u9xTn4dGdiQgyKyIiJceYNJ7i8nLVkbDu/VryLBnlN8D5GYXMvmj5ayYo5DYgCATQ57pSJf+jXzfzoUQbF9zlO/fXcRl9ZqSK8fyyEvdqd2kQqnPOq9XZu38PfzyyXLfyHZsUjiDRnaiZWrtm37j93q8rF+wl+lfruSiKsrWGbS079OAPo+2IaFC9J0+YhFCcHT3WVbP3smGhXt8xoMAZSvF0rJnXVp1r0tcCWH0/y+o16oK70x/glcHf8OxPed4vu/nvDV1BOExfz5nS2/Q0SK1Nkt+3cLaebvvnuCoj5V1Le+Oa4u1WX+n7unfSnCKioqoVasWw4YN45577rnh9++//z4ff/wxU6ZMoWLFirz55pt06NCB48eP3zJIa+vWrfTv35833niD3r17M3fuXPr168emTZto1KjRv/Ny/hSEsCNyngTXRkWgq+ZJedQKzs1zpbyqBqc0uXEVe9rIQvGooTh6QTHuU0bES+ZKFUcvXNfgeIUiJNZgVMiNOup93Z1YUsiK7C7hTqzFIwsEoFGjF0q6EyN0uEoZ+BUb/ikGfvl/MPAzqAZ+Jo2RArXSY9GayHc7MGmMFLqVke9AldzoJB2yLFHkdavaG2XkO0hnJttpw6I1YvN48QovEcYAMuyKcDjUoIRgmrUGhAy5TicRJiuZtiKESmIulxgDv1SQh1bSEm60cKmgAIvOgFHScq2okFCjCZdbJstpJ9oSQKHdSYHHRVxAIFk2G06vlzKBQWQV2n3TUbk2BzkuO7GBgTidbq7kFRBhsWCQtJzKzMZqMBAfGMj+y2loJYnacbHsVMlN47JKvpQsoGpMJOm5hVwpyifcaiYhJIRNJ88jSdCuUgXWHj2ltKHio7DZ3ew9dwWTXkfbquVZopr3NUguQ26BnW0nLmDQaenVoCrzth/B7fWSEhtBfEgQv6v6mx4Nq3L0XBqnryp+N4Pb1eP3DQfILXIQEWTh3ha1mLx0B063l6ToUDo3rMyXczYp+pqESDrWr8Qn09bh8cqUjw/n3ra1+fy39T69zYh+Lfh6xibSMvMxG/U8N7gtq7ceY9v+cwD071KXuMhgxn64AI9XplyZcEY/3I6vf97AkZNXkSQY1q8pZcuEM3L8TOwON+GhVsaPSmXXvnN8+Z1SEapSMZaXn+3KjDk7WbhUqTrVq53Ei892ZdacHcyaq9zUi1tSe/ac4/U35uFyeQgPC2DcS92Jighi1LO/clytnPTuU59HH23DxvXH+ezjpdhsLgICTIx6vgvNW1Zm7swd/DBpDW63l7DwAF54uQf1GiazftVhPnt/CYUFDowmPcOf6UjXnnXIzixk3NNT2a2KfWvVL8tzr/YkOjaEc6fT+XD8XE6qBKpp68o8/VJ3QsMDKMi38+0HS1m5QMnSii0TyjOv9qJ2o2QA0i7n8OUb89mlOiwnlo/imfG9qFZHGQ2XZZkVv+/mh4+W+shAh971ePC5zqXaTBdPp/PNWwvYrToih0YEMPjZTnS4p0EpsiKEYOfao/z4/mLOn1BISlhUEAOeak+nfo1u6mPjcnpY/ftOZk5c5YthsAaZ6PZAM3oOa3lXItacjHxWztzOiunbuHz2uj9NRGwIbXrXp22f+pStHHfH4/yvo0q9cnw45xnGDZjI+eNXeXXwJD6aN/Ivtava9KrPkl+3sHnZAZ55r/9dtZLCopUWZ5YqEL8dijVad6rgzP91y12crYL/2BSVJEmlKjhCCOLi4hg5ciRjxowBwOl0Eh0dzXvvvcdjjz120+P079+f/Px8li5d6tvWuXNnQkNDmTZt2k33cTqdOJ3X1fLFaaT/rikqIRcgch4F925uDM28Wa4UKsm5U65UsaFfca6UViUuAEbcqr7mxuiF4ump0tELlPDIQY1SKCY3ymj4dXdih+xFr7aglFFvZZqr2MBPrwqBb2ngJxmxedzqGLiyzSgZsal6nOJATUVz48CkNWBT4xbu7HGjkBuNpMGqaneC9SYK1WpNtPn61FSxr03JNHCzTo/+JmPgsdZAMgttuGWZxMBgLuflIwsoFxLKudwchIAKoeGczcpGVnOkzmVn45EF5UPDuJyTh9PrJSkkhLwiB3kOJ1EBVvS+SSkDScHBHE3LQCNJNEwsw7ZzSmWjoRq74PR4KRceCrLgXFYuJr2OxuUSfJ42zSokcfTiNXJsDiIDrVSOjWDTMUWn06lmRXadvC4mblYpiUW7FL1N88plycor4tilDHQaDQNa1WHR1sMKmQm2ktqwClNXKmGZVRKjqFU2jhlr9wHQpFoS0cEBzN+kVHna169IkMnIXDVPqnXdCpSLDuWnRcq4dd3KZejQqCKfTd2A0+WhTFQwT9zXgq+mbvCJi0cPa8u+w5dZsl5pobVtXJFuravx1hdLyc23ExhgYtyTndl/+BLT5ysEpXa1Mox6tD2ff7ea3erocJ9udbinWx1ef38RJ05dU9pU9zelc/vqvPHuQo4Um/7d04BB9zXhi69WsWq18pgN6pdj7Jju7Nt3no8/WqpUeIJMvPB8KnXqJPHlZytYvkxxlK1eowxjX+mJXqflg7cWsEvNWGrSvCLPjU1Fp9Pw1UfLWLVMeU4qVYnjxQm9iE8IZ8Oqw3z+7mIK8uwYjDoeerI9Pfo1RAjB779u4eevFaIUEGTmieeva222rTvG528uIDujAEmS6DmgMUOfbI/JYsDrlZk/dSs/fbkSp92tOBk/2pp+D7VEr1e+x549fpUvXpvHUVVHVK5SDE+82rNUO6qowM5vX65i/s+K741Or6X3sBb0H17a9wYUn5Mf31vMAZWkBQSbufexNvQY0vym38KdDhfLpm1j9qQ1vpZFUJiV3g+3pvvg5liDbj/W7PXK7N1wjGW/bWXbyoM+sbDZaqRZ11q0vacBNZuk/Nvym4QQ5GUWknElh4wr2eRmFmIrsGMvdGIrdGAvdOB2edDptej0OvQGLVqdFkuAiYi4UCLjQ4mKDyMiLrRUCOl/AmkXsni2x8fkZhbQ88FWDH/9xoLDneD1yvSr+RK2AgdfLH6OCjVu9Df6IwpybfSr+yoAi068d1tStHHpAd5++leq1S/Lh9NG3HJdv6avMmvrG//dU1Rnz54lLS2Njh2vz9UbjUZatWrFli1bbklwtm7dyrPPPltqW6dOnfj0009v+VjvvPMOEybc2jjo74TwZqmhmUcoGZqpiIavkxu3uF7BkUHV4FwnN7fLlSoWDRePiCvRC6p4uFT0gsYnRi6enrruTqxXx8g1akCmF21x9IJkwFnKndiraG88pd2JdWq6d0kDPw161YnYXMrAz+b1YNVayHUr27TosHndBOgsPj8bk9ZAvtuhZEb5PG4UcqPX6BCyRJHHTajB4nMsDjdYybAXYtToQGjJczmVcW9VWFzS4ybaFMCVwnxfGni6rYgQowm700OeV5mayigqHgMP5kKu0ra6ZaZUeCTH1EmpqhGRvtiFqpGRHE1TvlWWzJRKDgslq9BGhkp0jBotR9MysBj0VIyM8JGb5slJbD51HgTULhPLhcxccmx2wgMslA0N8ZGbTtVSWHv4NG6vTEpMBAZJw6Zj51Vn4ios2X0cl8dLSmw4UYFWH7np3bAamw+fIyO/iGCLiV6NqjJtzV4fmUmJjeCn5QqJaFcnBZfT7SM3/dvU5tTFdOZvOqRUVLo0ZP+Jy6w+rnzTH5bakDMXMn3k5t72tdFpND69TZNaZWlbvyKvT1yKw6mIi0c/2J7vpm3i+Nl0NJLE4wNboBHw4jtz8cqCFHUEfNLPG9h7SHmO7utZnxYNKjD6tdlkZBZgMup54clOmE16ho/6lcJCJ8FBZl5+PhUhyzz21E/kFzgICDAy9rluxMWElGpJPTisJb171uObSWtYuFBNGq9RhnHjepKfZ2fEYz9y8UI2Go3EwEHNeGBwc3bvPMMHby0kN6cIo1HHY091ILVXXY4cuMS7E+Zx7WouGo3E/UOaM/DBFjjsbt5/dS6rlyokKaVKLC9M6E1iuUguX8ziw/FzObJfJbjNKzLy5e6ERwZRkGdj4ruLWbtE2S8+KZxRE3r7qjJnT6Tx6WtzfU7ENeqX4+lXe/rypexFTqZOXM3cn5QJK7PFwKCnO9BjYBPfDUeWZVbN2c3kD5f6tDON2lbh0Ze63xBsefVCFlM+XMoGNaVcb9DRc2hz+j3e1ueOXBJOh4slv25h9qQ1vlHv8Ohg7nmsDV0GNLljNSEvu5Dl07ay5NfNXLt4XaxaqU4SXQY0pWWPupitf01AezMU5Nq4ePIqF06kceGE8veVsxlkXMnBo7oz/6sIjwmmSv1kqjUqT7WGFUiuFv+3imv/iJjEcEZ/+gAvP/A1839cT7OutajRuMKddywBrVZD1frl2LX2KId2nLkrgqM3XL8mt8tz22vMySwAuGlGWTFyswvJybz7KId/jOCkpSml3+jo0n3W6Ohozp8/f9v9brZP8fFuhrFjxzJq1Cjfz8UVnL8bwpuGyB4C3rP8udDM4gqOThUS632GfQ75ugaHEqLhYuKitKHU6ak/RC+4SkUvyD5yo5UMqkBYg1fWIIP6O69PMHx9Qkr4tDd6yYBddSfWqJlTJo2ZQq9CWryyFpeQMWstFHgcaCUtLq+EV8hYtWZy3U60khavLOEUXgJVgz4NGjSSliKP22faBxIBWgvZqrDY7vHgFaUN/IL1ZjIdthIeN55SHjfRKrnRSVqC9Cau2YoI0ptwe2VynerUVJESnpkYqExN3TAGHhLOqaysG8hNpbAIH7kpGZh560ypaE6kZeCWZcqHh5FTaCfDVkRkgJVgk5F9l66i12qoVyaezSeV93+z8onsOnMJl1emfGQYkgx7zl3BqNPSqmI5VhxQ2hCNyidwMSOXU7kFBJoMtKqczDzVXbhJxUSy821sOX5BERM3qcHcLYeUSIaoUGomxvDLKmUku22tChQUOVi4Vdn3gXZ12XrwHGfUltWjqY2Yu+EgVzLzsRj1PN6rGdOW7+FqVj4Wk56n723BrJX7OXs5C4Ney9P3tWTj7jPsOKRcz+DuDZC9gre/VaaiGtZIok/7Wrz5xVJyC+yEBJoZN6ITK9YfYfVmpcXWqVVVurWuzrh355OZXYjZpGfsk53Jzili5Csz8HhkEuPDGP9Cd9auO8rUWYp7cNXKcbzyQipLlh3g1+lbAcW477WXerB//0XefGs+TqeHiIhAXn6pByHBFp5+6hfOnElHkmDAgKYMHtKcxQv3MmniatwuL+ERAYx9uSdVq8Xz3cTV/K46FZcrH8W4Cb0pkxDOLz9s4LfJyhh5dGwIL47vRbVaCRzYfY73x88l41o+Go3EfcNaMPDhlmi1GhbO3MF3n61QdThGhj/XmY496iBJEtvXH+fT1+eRk1mIRiPRZ3AzBj3eFqNJj8vlYdo3a5n54wa8HhlroImHR3WmU596vsmg7WuP8tUb88m4qmggmnWszmNjU4ksocM4dfgSEyfM5+he5XWKLxfBY+N60KBV5VKfb4X5dqZ9uYoFP23C4/YiSRJte9dl8LOdiYq/0T3XYXexdOoWZn29hpwMhdhExYfSb0R7OvRrhMF469uPEIJje86x+OdNbFi0F7dqChgQbKZtnwZ0HtCUclX+9RaU0+7i1MGLHNt9luN7znF8zznSL9964keSJEKjgpQYhuggLAEmzAFKxpQ5wITeoMPr8eJ2efG4PXhcHgrz7WReziH9cg4Zl7OxFznJSstj06K9bFqkkGmTxUj1RuXpNLAZTTrX/LeQnXqtq9DpvsYsn76Nj5+byterxv5pvUu1BsnsWnuUwzvP0OuhVndcX3LqzeX03JbM5mTcmeCcPXbr+/zN8I9PUf1RHS+EuKNi/s/uYzQaMRr/PoZ/MwjPOUT2UJCv3EBuSoZmKuLhP4ZmSniEBg9CzZWSVUFwSXKjLxG9oLoSC61aDyrOlSqOXijpYHw9ekEhN0ZsXrmEvkZpQdllbwl3Yq0a3aAkgxd5PRg0JmweZdRbCMXpuJjcaCUdTo8imDapMQrXTf0Ud+Jcd0kDP6GSFwd6SdEJOeXrHjeSOiae63ISpDeTqxKesFIeN3pynQ5CDOabetxEGAN8U1NaNGQ77ESYLOQ6HHhkQbw1iEv5ig7nZmPgEhJlg0I5nZWNTtKQoI6B6yQNiUHBnMjIQq/RUi44hCPpGWgliUph4b408JLkpm5cLHsuKWLiGrHRnLiagcsrkxweSpHTxamMbILNJhKDg9l+5iIS0CqlHOuOn0UC6ibGcTEzl8wCG2FWM5VjIll5UPFW6VgjhS3HzlHkdFMmLJhy4aG+2IXUepXZduw8WYV2QgPMtKtWnmnr9wHQsGICGi8s2q5Ude5vVZvNh85yMSMPs1HPsI4NfOZ9EcFWBrSrw/cLt2F3uikTGUy/NrWZOHsTDrXlNLhzA76asZECm5PIUCtP9W/Jt7O3cDk9D5NRx+jBbVm15TjbVTO/gan1CQ20MO6jhT4zv6cGteaT71f5hMNPDW2NRpJ47g1lBDypTBivjOzKzHm7WLleOe/WTSvy2OCWfPD5cvYeUFovfXvWo1+fBrz74WL2qq2rXql1GDa4OZMmrWG5OoLcsEEyL76Qyq5dZxg7ZoYyFh5qYezYHlSqFMObr81lk6pBadykAs+/mEp+np1nHpvicyTu1bcBj4xoR1ZWAc+N+IkjahWlfecaPDG6CwaDju+/WMnsXxRn5dgyobwwoTdVayaQcS2PjyfMZ8/2Yh1OOZ57rRfRsSEU5Nv55v0lrFqovF4J5SJ47vU+VFZjD47su8Anr87hoqo/adq2Ck+M6+FzIs5Kz2fS2wvZtFy51uj4UEa83IOGra+TloJcGz99spwl07YhhMBsNTDgifb0HNK81I3J4/ayZNpWpn62gvwcGwB1mlfk4bGpJN+EZLicHpb+toUZX666TmzKhNL/iQ50uLfhbUe93S4PGxfuZd4P6zipTpWBMgWVOqQFLXvU/ZdEqI4iJ4d3nubA5hPs33SCUwcv3DTxOzI+lMSKsSRWjCGxYizxyVFExYcRFhP8L3nKCCEoyrdz7ugVjuw8zeHtpzmy8zSFeXZ2rT3CrrVHiIwPJXVoKzoPbErQ3+zL88irvdm9/hhp57NY+utmej/S5k/tX1XNJzt58OLtF6rQlGgXeu7gb1PshB0aeWuCc/Lw5bt63GL8YwQnJkYJBktLSyM29np2SHp6+g0Vmj/u98dqzZ32+XdDuI8hch4EOfOm5ObmoZkSbiFK5ErhC82UMeAqEZpZUjR8PVdKU2JE/Dq5UaIXZPU8JNVlWK/mSv0xekGDUD12dCq5UXxqlPZWcTL4je7EAqPqRKyXDNjUxG+jxkShx4nRJxi+ngxu1hopVL1wFAM/VWfjUYTFwarHjU7SgtBR6HaX8rgJ0VvIcNgwafV4vVDkdRFutPpaUVHG69Uaq85Ihr2IYIMZm8uDXXaVCs9MsAZzIV9pPyUFKORGKyn6nOIx8Eh1DNys0xFsNHEuNxerXk+w3szZbOXfoUYzp7KyMet0xFoDOZaeiUGrpXxoGAcuX0ODRK3YGPaq5KZ+GSVTCqBmXAyn1UmpMiFB6NBw6PI1zHoddcrEsV4lN60rlmP7yQs4PF7KRYRi1unYeuICOo2GzjUrsmzfcbyyoGZiDF6XzKZj59BpNPRuWI2FuxRn4vIx4SSGBfO7mgTevUEVDp9J41x6DiaDjkFt6zF97T4K7U5iwgLp3rAK3y7YhleWqZoUTf2KZfhitpLG3aByAlUSo/hk2noAGlVLpG5KGd6fslrJpyofS/cW1Xj3h1XYnW7iIoN56v6WfPXbBi6rk1QvPNieHfvP8ZuqpenSsiot65fnpffmKYGbIVZeeboLKzYcZekaRR/TuklFBvdtxFufLOHMecW1efjQVlRNieXpMdPIzCrEbNbzwjNdiAizMuKZX8jKLsRsNjD6mU6kJEfz7HO/ce5cJhqNxNDBLbinT30mfrWKJUsUIXLt2km8NK4H19LyeOyhH0i/lo9er+WR4W3o1ac+q5Yd5IuPluFwuAkKNjP6pe40aV6R1csP8sUHS7EVObFYjTz9fBfadqrBhbMZvPvyHJ9pX+eedRg+qjNmi4G1yw7y5buLKCxwKDqcpzrQo7+SIbVj4wk+mzCPLFVr02dwUwaPaIfRpMdhc/HTFyuZN3UrQghCwwMY8VJ3mneohiRJyLLMkhk7mPzxMmyFTjRaDX2GNmfgE+18xECWZVb+vosfP1hKvhrA2Tq1Ng+N6eabegHlZrxjzVG+f2chl84oRCoxJZqHx6bSQB1FLwmP28vKWTuY9vlyMq7kAhCdEEb/JzrQvm+D2xKDvOxClvy6mUU/bST7mkKK9EYdrXvWo9ug5lRS23F/FrIsc3L/BXatPszejcc4vudcqfFxUMz+KtctS6W6ZalUtxwpNRPvqAf6q5AkiYBgC9UbV6B64wrwlHKO549fZf28XSz9ZTMZl3OY/NY8pn60mHb3NmLQC6mERv49WlFrkJmBz3bmsxem8/ukNXQb3ByD8e7HsottATIu5+B2ee5I9twlWnp3itK4cl6Z1ItLunWkw7ESMR13g3+M4JQrV46YmBhWrlxJnTp1AHC5XKxfv5733nvvlvs1adKElStXltLhrFixgqZNm/7bz/lmEK59iJyHSySCO7meCK7DQ7Er8d2EZgo1V6pkaGaxaLh4iup6rpRXFRJLPnJzPXqhOJ5BiV5Q21PeYn2NQkj+GL1QcvxboFejF4rdiXU4fMngijtxSSKjkwwUeZ2YSwiG9ZKBQo+rlIGfqdjAT2si31PCwM9px6gx4PTIeISXUIOVLIfiYROgM5PldBCoM1HodiGLm3jc2JRqDQJynQ4iTVYy7TYl9fkPaeAX8vPQSBpizQFcyM/FpNUSrDdzKT+fAL0yQXWlxBh4WmEh4WYLXo/gakGBLzDzcr4yEm5Ay9nsHIKMRsKMZo5dy8Sk05EcGsr+y0q8Qd34WB+5aZRUhl3nL+MVgioxkWTkFpJVZCfcaiEuKJCtpxXDvraVyrPmyCmEgDqJsaTnFnLuWg6BJiONyyeweI/q/1I1meMX00nLLSTYYqJNtWRmb73uTFxkc7Lu4Bm0GokBLeuwaNsR8oocRIUE0KVeJX5cugNZCGolx1IuOozvFytj0e3rpgCCX1Q9zj2tapKVW8QvSxVflX7talNY6OSb35Wphm4tqhERaOHdH1cBUL9aIl2aVuGNiUuxO92K3mZYO76ZtomT55QwzycHKSnaL3+4QEkbrxTHU0Nb89E3qzlx5hoajcTwQS1JiA3hmXEzKCxyEhZi4bUXunPqdAbPvDgdr1cmKSGc18f1ZNuO07z57gJkWVA2MZwJr/Tm1MlrDH9CMe4LC7Py8ks9CA8N4KmnfubsmQwkCQYNas6AgU2ZM3snP36nOC/HxYfyymu9iY8P5f03F7BarYbUrpvEmFd7YrEYeX/CPJ+QuFrNBMa81ovomGAWzNzBd5+vxOVU4hmefbkHTVtXJj/Pxidj57NezQ6qWC2eF17vQ0LZCIoKHXzzwVJWzFNahvFJ4Tz3eh+q1lbiCPbvOMOn4+dyVTVNa9+jDo+90NWnezl/8hqfvTrHJyKuVLMMT0/oQ3Ll618gzxy9wpfj5/raUUkp0YwY34uaja5HNQCcP5HGN28uYK/qzhwcbmXQyE507t/ohvaJLMusm7+HXz9exlX1JhUeE8yApzvSoV+j294EL52+xpxv17J69s7rjsXRQXQf2pIuA5v+JWfhgpwidq87ws7Vh9m99gh5WaU1G5HxodRqVolazStSo0kKUWXC/mNhmTeDRqOhXJV4ylWJZ8CzXVk/bxfzf1jH6YMXWfrLJjYu3MNDr/Sm4/3/euwCQLu+DZn6yTIyr+ayatYOuj7Q7K73DY0KwmjS43S4ybiSQ1zZ24/fF49+Aze4XP8RxVYE8bc4phDiv4vgFBYWcurUKd/PZ8+eZd++fYSFhZGYmMjIkSN5++23SUlJISUlhbfffhuLxcKAAQN8+wwePJj4+HjeeecdAJ555hlatmzJe++9R8+ePZk/fz6rVq1i06ZN/85LuSmEcwsidwQI200SwW9NblyiWCyMz9NGERrrbgjNLJ0rdZ24FMcqgEENzVR8a6QSuVIeoVSEiqMXFH2N6kBcHL0gKdELyjSUEsvgFVo8QviiF/7oTmyXS7sTayQ9Dtlz3cBPNQa0eb0EaC3kuR2qsFhPwR8M/KxaMzlOO1atiTyXcrxiAz+tpEUv6clzOQk1WMhWqznF5EYjaQjQmm7rcZNgDeaiSm5izYFczM/HqNURpDNypVDxtZFkifSiIiLMFuxON9luB3EBgeTY7dg9HsoEBpFZoIyEJwYFk1Vkw+Z2kxAURL7NyTWnneiAAGSP4HxOHqFmMyFGI0evZWDS6UgJD2P3+SvqGHgCW88WT0rFc/BCmq86I3tktYqjp2FSGVYfVv7vtK5cjj2nL1PgcBEfGkRccCCr1BZVj7pVWLX/JHaXh6SIEJKjwpi/Q9HQpNarwp6Tl7iaU0Cg2UivRtWYsXYfHlmmWlI0ZaNC+XmlQlY6169Edq6N+ZuUisngTvXYefgCxy6k+8z7Vm0/zsmLmeh1Wp7o25zV245z+HQaWo3E4/c2Z/+x61NQ/TvVxWLQ8eYkxd+mXrVE7u1Ymze+XEpegYOQIDMvj+jMwhUH2KiGZ/bqVIvm9SvwwptzySuwExxkZvyz3Thw+BIvvTUPgOqV4xj7TBd+/HWTLyizbcvKjHi4DZ9PXMXGLcoNuX2bqjz1eHumTNnI/IUKYahdO5GXx/Zg797zvPzSbOx2FyGhFsaN60n55CjGvzybHepEUJu2VRk5ugtXLmXz+IPfc+VSDhqtxOCHWnHfA005fSKN0a/+wpVLivB4wLAWDBzagoJ8O6+OmsaOTYo+ql7j8jw3vifhEYHs3nqKj9TKjEarYeDDLblvWEt0ei37d5zho/FzSb+SiyRJ9BrYhKFPtcdo0mMrcvLDx8tYrBr6RcYE8/SrPWmgepG4XB5mfruOGd+uw+P2YrYYGDqqE93ua+ybKCoqcPDr5ytYoKaSm60GHni6Iz0GNSs1yl2Qa+OXT5ezeOpWZK+MzqCl19AW3Dei3Q1VjeIR8SnvLeKsOtIeEhFAvxHt6fZAMwy3uaEd23OOWRNXsXX5QYoHeVNqJtDr4da0SK3zp9tAuZkFbF22n02L9rJ/0/FSbSdzgIm6rSpTr01VajWvRGxSxD9KaG4Hg0lPh/ua0L5/Yw5tO8WkV2Zx5tAlPntuKuvn7WLM1w8SchuNyt1Ab9DRd3g7Jo3/nZlfraTT/U3uevJMkiRiEsM5fyKNq+cz70xw7ArB0eo0N7UMKEZhvt3n2XSrCs61yznkZBaivc1x/oh/K8HZtWsXbdpc7/EVC32HDBnClClTeOGFF7Db7YwYMcJn9LdixYpSHjgXLlwoxVqbNm3K9OnTefnll3nllVcoX748M2bM+I974AjHKkTuM4BbTfQunpZSKjjF5ObmieA3C83UlAjNvJHclM6V0vomo5TpKUUgrFHbVdezpxTtTenoBS1OoTxmsUlfcfTCde3N9egFg8ZIoadYWHxzd2KX7MWsVQz8dJIOl6zEUQRozeS5HegkLV5Zg132EqQ3k+O6buCX53Kq4ZmlDfyMGj0eGYq8bsKNVjLtxdUahdwYNXo0aMh1Ogg3Wsiy2xAlxsCLR8IvFuSh12gJ0pu5UlhIoN6IJEOm3Uak2Uq+3YnT6yU+IIj0gkI8spIAfiEvF1lA+ZAwzmbn+EIyz2RlK5M9YeGcz1YCM5NDQ7mWX6TEJgQH4XJ5OJedS6jZTJjRxKEr6Rh1WqrHRvvITclJqVrxMVzMyiPHZicq0Ep8cBAbjp9FkqBT1RRWHTqlJHrHR+F0edl15jJGnZYutSuxcMdRZCGoUy4Oj9vLusNKpebeJjVZuP0INqebhIhg6iWXYerq62Li/EI7S7YfU6oX7euzfs8pLqTnYjLoeKRbY6av2kNmXhHBASYeTW3C9/O3kVtoJyzIwog+zfhuzhYychQzv2cHtuGXhTs5e1kxAxw1qDVb955l426FLPTrXIeYsEBe/nihklmVHM2TD7Tko29Xcf6yEssw6pF25Bc4GPPWHGRZULlCNGNGdOKbnzawfY8yNdanWx16dKrJy2/M5dwF1eDv4TbUqZHAs2OmcelyDnq9licfa0fDemV5cewMjqvtoQcGNuX+/o2ZNGkNi9QpqeKW1JXLOTz28A9kZhRgMOh44ukOdOlWi3mzd/HdV6vweGQio4N4aXwvqtZIYPZvW5k8aS1er7J97ITeVK+VyM4tCoHJyS5S4hme6kCPfg1xuzx8/cES5k1XRMllksJ54Y17qFQtHofdxXcfL2P+b4qJYUx8KM+90YcaqtZh77bTfDJ+Dulqy6dbv4Y8+GwnrAHKyPaRvef59JU5XFQTxxu1qcITr/QgMjZE+ZwSgk3LDvLNWwvIUls/zTvX4NGXuvvWgGK6t+S3bfzy6XIKchWdTdOO1XlobOoNU1QAR3ef5cd3F/nCHa1BJvoOb0fPYS1vOdEkhGDnmiPMmrjKtx9Aow7V6Tu8HdXu0rG4GHlZhWxatIeNC/ZwcOtJZPm640nZynHUb1eNBu2qUbVB+dveXP8bIUkSNZqk8PmyMcz/fh0/v7eQfRuP80yn93hl8qNUqPnnQkb/iE4DmvDrx0u4djGbIzvP/KmJqojYEM6fSCM7veCOawvzlPeSJcB023Xn1P+n4dHBt1x7cJfyOZBcOQaO3N25/lsJTuvWrbmdzY4kSbz22mu89tprt1yzbt26G7b17duXvn37/g1n+Ncg7AsQeWMAr5oI7lbbTS51Wup2ieBKWrdSuSk5ESXdNDTzj7lSxaGZSjVHITd22evLlZJ85Km4zSRfJzfS9dFw0OEsFb1wXXujBGoq498FHqXiU1x5upk7sUmjJHobNNf1OFaV3Bg0euxuxbE4SGchx2XzJYMrfjbXDfwCdSaynTasOhNFbjdeQSkDv2C9kvYdoDNi93hxe91El6jWFJMbraQhzGDlSmEBVp0BjdCSabMRYbZQYHfikr2UCQjiSn6B4msTHMpZNQ08JTSMk2oaeOWwCI6paeBVIyM5ck2ZlKoWGcXhtOuBmcevZeKVBZUiI7iUnadUd0KCcbk8nMnKIcRsIiYwkN0XlEypRkllfJNSTZMT2XPuMk6Pl/KRYQivYN/5q5j0OlpUKMtydVKqWcUkTl7OIKPARliAmXpJ8cxXJ6Xa16jAkYvXlEqNyUDXupWZtfEAshDUTY7HrNWyYKtSWbmvVW22qGJii1HP0A71+XXlHgpsTqJDA+nbqibfLdiipIrHhdO1URU+nb4ej1emclIUqU2r8uHPa3C5vZSLD2dQ1/p8+sta8oucRIRYGTWoDd/P2uKbpBo1tC0Hjlzmi8UKqejcsiot65Vn7HvzKLIpsQyvjuzKvKX7WaNOTnVrV52eHWsx7u15XL2m+OQ8/0RHzEYDTzz3Gza7i/AwKxPG9uRqWh4jnv0Fp9NDdFQQr43rSV6uneFP/ERBgeJo/NLYHpSJC2XkM79ySvXGGTiwKQ8Mas7smduZ/MN6ZK8gMTGcl1/rTURkIK+Nnc1WtT3TrGUlRo1NxeP28tKzv7Fnh+J506JNFUa+2A2jUc/XHy5l3gylwpKUHMnYt+6hXIVoTh+/yrsv/84FVcPSvV9DHn66AyazgeMHL/H+uNlcPq9M5nW7twEPj+qE2WK8oWoTHR/KqNf7UKuhYuhnL3Iy5dPlLJyqCIRDwgN4fFx3WpSIYbh6IYuJE+axa4PyvMYmhjNifC/q/yEV/MC2U3w9YT7n1BDPspVieeyVHtRumnLDZ9+l09f48d1FbF2utOX0Rh09h7ak3xPtCAy5eQyA1yuzafE+Zn65kjNHlDatTq+lTZ/63PNYW5Iqxt50v5vBXuRg2/KDrJuzk93rjpSq1KTUTKR59zo061bnfyaOQavT0md4O+q1rsLrw77hytkMnuvxEa/98jh1WlS+8wFuAZPZQKMONVg9ewebl+z/UwSnmMAWG/PdDsWTUWFRt686FSfSl69668m4/Wp1tUb9cjDnrk71n5+i+r8GYZuGyH8NEMhC4MX7h0Rwz00SwZXQzGJBr0CLG9WN2BeaqVWjGwyqyV8xuSn+WYtLrbzIQolOQK3OaCVlnLxkrpTiXyNK5EoZfLlSstDgFTI6ldz8MXrBKXt80QtaScm+EgiMN3EnNmqUMEyT1kiBW9lmVt2JzVoj+S5lm+JObCuhs5F9Bn4SGkwavWrQZylh4Kd43OgkLUZJT45DmZrKdTiQBaU8bmJMgYrHjUaHWWsgw15EqNFMkdON0+skzhpIWmEBQkDZoBDO5eRyg8dNWDgns1SPmxLkplpEJIev3X4MvFZsDIevXlMqFFERXM7Kp9DlIj5YEQceu5ZBgNFAxYhwtpxS+sitU8qx/sRZEFAnIZaLmXlkFdqICLBQMSqCVYeU1k2XWhVZd/C00sqKDCXCamHVAeV3fRpVZ8Xe48oUVXgwNRNimLlR8UvpWKci565kse9KFka9lkFt6zFz3X4KVDFxasMqfLtwG15ZUKNcDDWSY5g4R2n1NqtRjviwIL6arfzcrn4KMaEBfPzrOgCa106mVsU43v5uhVJdKh9D/451ePe7FRQUOYkIDeDFh9vz46xtHFXbWE880Aq73ckrHyl6m5pV4nliUCve/3oFZ85notNpeOahtpiNep5+aboSwhkdzOtjerB+0wmmzlSqHDWrlWHc6G5Mn7WdeeqYbYO6ZRk7uhtz5+9h6m+KJqhy5VjGv9KLk8fTGD58MkVFToKDzYx9qQcVU2IYP242O9RKQvsO1XlmVGfOnL7G8KHTyVAFxo891YEefeqxe8cZ3p8w3+d5M2JUZzp3r82Fs5m8M242Z9XwzJ79G/LQk+3RG7TM+nkTU75ag8ejuBuPGt+LBs1S8Li9/DJxNdO+34DslQmPDOTZCb2p30whFPu2n+bjV69XbVL7N+IhlfgA7N58gs9fnev7fYfe9Xjkha4EhihaHI/by5wfNzD1C0UDpNNr6T+8Df0ea1NKUJpxJZfv31nIhsWKyDowxMLgZzvR5f7GN+hscjIKmPrpMpb+prSuNBqJDv0aMfDZzqUqQSXhdnlY8/tOZk1c5XMbNluNdH2gGb0ebk3ELfb7I2RZ5sCWk6yYtoUtS/bjtLt8v6tQM4FWPevTPLUOMTepNP2vIKlyHJ8tG8O7w39k99ojvD7kG96e+RRV6if/5WM271pLIThL9/Poa73vWt9jDlAJTqHjjmuzfaPftxdJnzl6e4IjhOCA+sWiWr1yd3We4Cc4fwqi6HtEwftAyURwoeZISSXIjdtHbm6dCK65PhGFBtlHbkqGZhZHL1xP9FYExhLXc6UUclMyV8oja1F8ikvnSoEGr9qC0qomfbePXlCExgIJg2SiwOMq7U6MkQK3q7Q7scZIodup+N4UuxNrTeS67Uosg7otWCU3ekkHKAZ+JT1uwgxWMuxFmLR6hFeiwFOcDK60qorJjVbSEGqwkGZT2k9eWREZR5sDSL+Jx01yUChnVI+b8kEKudEgkRwSxsmsLDRqGvjxDGUkvHxomG8MvHJ4hG8MvGb0dXJTLz6O3RcVjU2duFgOXU7DIwsqRUVwLb+QXLuD6MAAgg1G9l64ikGrpVHZMqw/rpRcW6SUZdfpSzjcHpIjwzBrtWw9eQGdVkOnGiks23tCqcaUiyOvwMGu05cx6XX0qF+FOdsOKVNUSbGYtFqW7j6OJMF9zWuzctdxsgvthAda6N64KlOW71TJTCzlY8L4YfH1JHCX28O0lQpZuK9dHc5fyWbWGuXGNzS1IafOpjNtu/L7Qd0akJdvY+J0hfx0a1GVsnHhTPhqqTJJlRLL4B4NeXfSSrJyiwgKMPHyiM4sXXOI9duVilTvzrVpXLsco9/4XREOh1p5bVQ3Nm07xawFii6oYZ2yPPNoOz75aiW79ykVr3t71aNP97pMeGc+R48pFYchA5vSvWtt3n53IXtU8WzPHnV55KFW/PTTJl+WVLVq8bzyai+upeUx/OEfyFBbUk+N7EjHzjWZNW0bk79di+wVxJUJ5ZU37qFsciQ/fr2GGb8opKlc+SheeqMPiWUjWDJ3N5M+Xo7L6SE41MLo8b1o2CyF9LQ8Pnh1DgfU7KmmrSsz8uUeBIdauXg2g/dfms1J9Rtr6y41eOKl7gQGmXHYXPzwyTIWqq2sP1ZtCvLsfPf+YlbO2e37/dMTelO32fVKy+Hd5/jild85f1KJTajVuDxPTuhdKhTT5fQw5/v1TJ+4CqfdjUYj0XVAEwY924mgP4QxOmxOfv92Lb9/s9b3jb1xh+oMHZNKUsWYm35OupxuVs7czowvVpJxRcmlCgyx0POhVvQY2vKuAx/TL2WzauY2Vk7f6ot0AIgtG0mbPg1o3bs+CSk3P4f/RQQEW3h1ymO8Nvhr9q4/xqsPTGTimnFExt3oQXQ3qNuyMmarkcyruZw6eImKte6u7WWxKi2ku6ngFBs73m70G+CUOv5dvmr8TX9/9UIWGVfz0Om1VK519x52foJzFxBCIAo/g6KJQElyI6vuw6g5UpJPa1NMcu4uEVxSTf6E0p66aWimVtXoKO7CxZNRN8+V0qjaHfdNoxeKTfoMJVpQsiwp7juSiUKPu1SVRouRQo+rhDuxhIT+5u7EntLuxEaNgXyPs5Q7caA6Em7WGnB6vHiETLjRSrr9uoFflsNGoN5EkcuDR5ZLGfhFmQK4WlSAUaPDoNGTabcRZjRT4HThluVSHjdJgUoyeLHHzZmcHDSShgRrEGdycjBotMRYAzmdk41RqyPKbOW0mgYebbFyMjMLo05HGWsQR69loNdoqBAWzsEr19BKGmrFxrBHJTcNE5QcKQmoUyaWI1fScXq9VIgIo8ju4mR6FsFmI+XDw0tkSpVnzZHTvkmpjNwizuZkE2gy0ii5DEvUgMx21cqz/8wVsgrtRARaaJSSyCw1Q6pN9fJcuJbDwbRsTAYd/ZvVYub6fTjdXlLiIqiWGO1zJu5QN4WCQud1MXHHeuw4fJ7jFzPQaTU83qspizYe4dzVbIwGHc/c24LfVx/g7GWlCjRyQGuWbT7KgRNX0EgSw/s149zFLCb+tgGAbq2qUa18LOM+WqhkUiVGMHJIaz79YQ1nL2b59DZ5eXbGvjMXIaBaxVhGD+/AF9+vYa/qrzGoX2NaNCzP6HEzSUvPx2TU8/wznQgPtTJi5K/k5tmU+IYXUgkKMDHiyZ/JzCzAZNLz3LOdqVkjkbEvzuTQIcWX5t57G/LQw62Y+/suvldJTJmEMF6d0IewMCuvvDCDncUC4w7VGPl8V/LybIwa/hPH1A/f1N71eOzpDjidHt4YM4vNaxUvnnqNyzN6fC/CIgJYv+IQn7+9kMICByazgcdHd6ZTz7oIIZj/2zZ++FQhRAFBZp58KZXWXWoCcHjveT4cN5urqlNvav+GPDSqs69qs2XVYb6cMJ+cTGV0vPvAxgwd2cnXLigqsPPjB0tZMk2pcgWFWnn0pVTa9qxbSteye8Nxvn5trm9ipXqDcgwf3+uGG4ssy6z+fSdT3lvsu0lVrJXIQ+N6UPMW7Qy3y8PKmduZ/vkKH7EJiw6i7/B2dB7Q9K7chr0eL9tXHmTJz5vYs+6oT+JgCTTRund9OtzXhEp1yv7XioT/3TAY9bz642O80PsTTh64wMfP/MxbM576S9NVBpOeag3Ls2vtEU4dvHjXBIc/8dQXE9PoMrcmYfYip0+DU7FGmZuu2aW2i6vUTvxTPkh+gnMHCCEjCt4G28+AkgiuhGbKeJFLJIJLfzIRXKuGZl6fiLoxEVzxv7k+9i35Jq0kX2jm9Vwpd4lcKZfs8ZEbraT3jYaDXjX1K25BlY5eKPxD9IKEHrvX4yM3GtX92P0Hd2IhNDjlEu7E0vU4BkVErExNWbRmcpwOAnQm8l0K4QkzBJBuV5K/jRrFwC/UYCbLrrSqig38JCTCjFau2YoI0BvxegUFLifR5gCuqeQnIUCp1ijkJlhNBi/hcaPVEW6wcCEvH6vegFWn52J+HsFGIwZ0XMrLJ8RkwihpuZCbR7DJhFWj50x2NoEGA+Fma6kx8H2XrqKRJOrExbJTJTeNyyawTRUT14qP4ey1bAqcLuJDgrDodOy9oLgRNymXyOrDyk21VaVy7D1TelJq9SHldz3qVmHF3hM4PV4qxIQTHWRliWrmd0+j6qw9cJqcQjuRwVbaVa/AL6uUb/hNqiSBDPO3KGRmYNs6bDl4jnNpORj1Oh5NvS4mDg0083BqY76bu1UZIQ8N4OHujfl61ibyCh1EhFh5qn8LJs3cTFpWAQEWI88PacusZXs5fEp5Dp4c2JIraXl88J0yJt66UQpdWlRl3AcLKCxyEh5q5dVnurJg+QGf3qZ7h5p0bVuNF9+YQ3pmAWaznnEju2IrcvHUC9NxuTzEx4Xwxrhe7Nx9lrffX4QsCyqUj2LCuF7s3HmGVyetxuORSUgI47VXe5ObXcTw4T+Sm2PDajXywphUatVK4PXxc9mqhlC2aVeVZ0d34czJa4x7bppPYPzkqE50Tq3NxrVH+eSdRRQVOgkINPHs2FRatKnCwT3nefeVOWSm56PTaRj2RDv6DGiCw+7iw9fmsvL/sffWYVbW+/r/a3VMdwcM3d3d3aFYqCgqoIKkgICAIIpd21ZUuru7W7oZYLpz9fP8/vg8a80MDKB77/M753z3+VyXF7jWmmRmrft5v+/7finFfFVrRjFp7kCiYoLISs9n4TurOXVYrBUbtqjE2Jn9CQ7zxW5z8OuXO1n58wFkWSY4zI9x7w6gQQshIvJyivhm7nr2KGuk6AohvDlnQBl+1MGt5/jq3TUe02eXQY15cWKPMtOY9KQcvp27joNKpD0gxIcRU3rTvm/9B8TC2UPX+G7OWm4o4jA8Jojhk3rSpveDjwWl/2bZUZZ8VkISDwzzZcioznQf1uKRaSr3yUjKZsvvh9j6x0GyUkvI03VbVqHLk81p0aP+/+/8pv+px+hlYOLXzzO60zzO7L/C2u92039kx3/qfVWoHsmJ3Re5demvF+i5e4T+inE76bZYTUY9guZ+5c+7SC6JkAj/h6473dDXRn+RYu4+/ydwHnFk2YWcPx0sK4DS4sYlOms84kYwpiRZrYgc7d8ggisrKll3HxH8UdBM/X1cKS1WSYglWRbmYzdXSqsqgWBKijjSebw3Oqwu0XOsxqCgF8QKyo1ecMqSIm6sghbulHFRup1Yh80pJlr3txNbZWepdmKRmsq32/HTmcmxCcEToPciQ0lNIasodNiVVZRS4KdMa7RqDWa1nkxLMQEGEwU2G05JJtLLl+QCMa2J9XZPa4SguZOXh0GjIUDpuPHRG9ChIbWwkECTCadTIr24iDAvLyw2J5m2YiK8fSiy2Ui3WQn39sZud5JSVEColxcqSUVidi7+JiP+emOpGHgQp+6IiUbj2GiPuGleIYYTt5KEQTc8hNxCC9ezs/E3G6kcHMTey2JF1a2WkpRyydSICsXpkDxJqW51qrL+xEVkGRonRFNQbPVgF4a0qM3Kg+ewOVxUiQwmPjiAZfvEC2Hf5jW5cCuVG4r/5oWuTViy8wy5hRZC/b0Z2r6ux0ycEBVE9ybV+XjxXlwuiZoVw+nYoDIf/LoLl0uieoUw+ratxfwfd2C1OYkJ9+e1Ia35+JddZGQX4uNlZMpLnVm19Swnzwt/0UtDWmDUaZn6wVokSaZmlQjRb/PNDq7fzkCrVfPmiI5iKjR1KXaHi5ioAGZN7MOGzWdZrXhrmjdJYNyoznz17S727FfwDZ1q8epL7fnq650eUGab1lV5a2x31q8/xU8/7kOSZBISQpkxsz9FhTZefeknUlNy0ek0vDamMz161SuzkoqJC2L67IFERQfyxYdbWL9KIY7XimbKu/0JDvXlt+/28Pv34n1HxQYyZc5AKleP5PL5e8yfupKUe9moVCqeeKE1T7/UDq1Ow4EdF/j03bUesOaIcd3oPbQJKpWK65eS+eDt5SQq/p3OfRswcmIPvJU49sFt5/ni3bXkZglMw8AX2vD06I4eH01mah5fvbuGw9vF9yAqPpjX5wws02njsDtZ/cM+/lAgnGqNmr7PteKpN7o8AM9MupXBD3PXcljp6PHyNfLk613p/VzrcrEKLpfEntUn+O3jzaQqRunAMF+GvNaZ7k89XtjIssyfB6+y9vvdHN12zpOC8gvypsuTLej2dMvHxpD/lVOQW0TKrQyyUnLJTM0lKyWHzJRcCnKKsFsd2G0O7BbxpyzLHiyDG83gF+hNTJUIKtSIJq5axD9F6P5nT3RCGC/PGsjnExfz49y11GtdlQo1yp9+POrEKx1J7pj/XzkuReD8lbi2p9vmEQLn0imxVq7RoPwyR7vNwVkFZtu4TZW//HnC/wmchx5ZtiPnTQDrZmSEuJGRFY6UjIsSWKZLmeCINZXmIeLm4URwp9I7QylxUxaaqcIhlUTDHwrNVFqGy+NKCTMznimNTunEQZnqWCVXGfSC3Sm+LqNaoBf0aj1FDjEFMirtxEa1gSLng+3EFqegpvsqqyidSqukppxl2ol9deZSLCknTll+sMCvqFAp8FORZ7cRaizx4ZQu8Isy+5KYl4tOrSFAbyK5UAgajawmrVTHTY7DTqS3D1nFotcmzs+f1LwC7C6JeH9/UnLzsUsSFQICSMstwOJ0EufvT06hhQKbnUhfH5xOicSc0jHwNIxaLdXDgjmqADPbVIxn37XbqIDGcVFcSc6gwGYnOsAPL62OE7eS0Gk0dKhWka1nxVSheaVYbqZmkZ5fRICXiYbxUaw7LpJSXepW5s9bKaTlFRLgZaJT7Ur8secMAC2qxWGx2Nlx+hoatYqnOzRgw+FLZBcUE+xrZmCrOvyw8RgOp4vqsaE0qhrNFytLzMSRpczEnZtUwd9s4oulorm4U9MqxIb68/6POwFoUiuOTk2qMPOLTdgdTuKjAhk9rC0f/7iL5PQ8zEYdU17pwqETN9m6V3zuPTvUon3zKkyas5r8Qqso6hvXi32Hr7Fyg4iut2icwGvPt2XBp1s5d0FMDoYPa0H71tWYMHUZiXey0GrVjHmlEw3rxTF+wmJu3spArVbx8oh2dOtam/nz1nPkiJiSdOtWhzGvd2bblnN8/cUOHA4X4RH+vDOrP+HhfrwzaRnHlIlKxy61eGNCD7KzCnjjpR+5ofhXhj7TgudebkdOVhGTXv2Vc4q/p3PPuoya2AO9QcuSH/fxyze7kVwSoeF+TJw9gNoN4ikqtPLpu2vZvk4ItUrVI5n43kBiK4bicrpY9uM+fvt6Fy6nRECQN6/P6Efz9qIdOC+niK9mr2OfAuWMqxTG2PcGUlWBG0qSxJZlx/jh/U0UF1rRaNUMfqkdT47qWMZEfP7YTT6fvpI7ytdTq3EFXps1gArVyqaWigqsLP5sK2t/3IfT4UKtUdPz6RYMe7Mb/kEPFu1JksTBTWdZtHATd5X37R/sw5DRnejxVEsMj1kh2K0Odq86ztrvd3PrYsnkoE6LyvR4tjXNu9f9W+26jzt2m4Ob5+9y8/w9Eq8kk3g5mTtXUshOy3v8G//Fo1KpiIgPoXK9OFr2qk+TTrUx/hsBoOWd7s+04tiO8xzddo6v3l7GgtVj//bqrkI1YepNvPLXGU92hQvmptQ/7FiKbGQqDLSo+IcbwM8r8e/qpaaSpc+547ewWR0EhfoSXyWcgoLHx9Pd5/8ETjlHlm3Iua+DbbeyFnJ6JjdlxY2EC3DJiHWVZ4IjRMiD4uZhRHAV9xPBHwXNFL03gitlcYmElVMSEyGV6q9zpVSlSv1K0AtuhpRiGHbZhMhxOHCjFwqcdswaIwWKsdjTTqw1ehqLfTQmsm0WjGo9ViU15W4nVqPGpDGQY7PiqzORbxMsqVCDD6nFhahR46MVBX6+OiPFDicOSSqDW4jy8uVegWgkDjF4ca+gALNWj16lIaO4iCCjEDQFTjtR3r5kFBThkCQq+IkpjyRD5YAgrmdmASqqBAVxLUNchVYPDuZqeiaSDFWDg7mVKfpuKgUFkpZfSKHNTrSfL06n5ImBh3p7cfpeKjqNhsYxUexXxE2bSvEcvp6IU5KpERFKXqGFq5mZ+JoM1IuO8AAzu9SqzMHLtym2O4gPCSDU24udf15HpRJJqS0nr1BsdxAXEkCVsGBWHBSrhj5NanD2ehJ3M/LwNuoZ0qYuf+w8JaY6UcE0SIji2/XCl9GuXgI6lYrftooV1qB2dUlOy2WFYiZ+vlcTrtxMY+dhMQ5+oW9T7iTn8NNaYdId3KUeJp2Oed9tA6BFvQp0aVmdGZ9soNjqIDLUj8kvd+Yfv+/n0nWRnBr9XDtkSWbyXEEGd/fbfPbdLs4oZPDnhjanaf0KjJ2ylMysQrzMeqZO6AWSzKixiygqthMc5M2sqf3Iz7fw6uhfKCqyERDgxTtT++LlZeC1V38hRZnQjHm9Cx061ODjDzezU5luNG9ZmYlTenE3MYtXnv+ejLR80Xkztgvde9dnz/YLfPL+RizFdvz8zUx4py9NmlfiyP6rLJy1hvw8CyaznjGTetKxRx0y0/OZMXYVZ5Un5zada/LG1N54+5i4ePYOC6asIDUpB5VKxZAXWvP0q+3R6bQkJWbywdsruKxwllp2qsmY6X3xDxTrpIPbL/DFrDViaqNRM3hEG4a91hG9UnyXnJjJp1NX8KdyRVu1bixvzB1IhaoloiUvu4gf5m9g+wpBdPcL8mLElN507N+wzAugJElsX36Mn9/fQK5CaG7UvjojpvYt10AsyzKn9l3m5/nrua4wt7z9zAx+tSN9Xmjz2AlGTkY+63/cy8Zf9pOfLT6ewaSn05Cm9HmxHbF/Iy7+qJOamMmFo9e5cvo2V07e5Ob5e2WQAaVPQKgvwZEBBEf4ExQRQHBkAH5B3hiMevRGLXqj3iO2LIVWigutnj+zUnNJvJzM7UtJ5GYUkHwrneRb6exdfRyDWU/jTrVo06cRTTr/14gdlUrFqPlPcHLPJc4fuc6FozcE/uFvnCBlJVSYV/yX0AsA+bmikM838NFmcXcyKijM9wHzuvvYbU4uKL9DdZqWnwg7vFNcKDVtX+1vC7j/Ezj3HVkqEu3E9sMKFsGhiBmFAI4ASJaIG1n5U6UYjnVK2Z67jViPVRKoBfGeSuLeDyeCu6GZWkWclIA1hQByerhSKjQ4FHHj/lg6D1dK66GGl3ClRDux2iOcwKAW6AW92kCRgl7QqwwUuexl0AtalYFCxUScZxf+GL3KoLQTm8h1iNu8lGmOl8ZIvl0II7e40ao0aFRa8h12AktNc4IN3qQWF6JXa9GhIee+Ar8osy9JSoFfuMmHpIJ89Got3loDqUVF+BuMOBxO8pxWIrx8yCgsEqV9vv4kKpHwSgGBXC+v4yY4hIvl0MDrhIdzLikVEDTwK6kZOCWJKiHBpObkC1+NEgO/mp6Fj8FAQlAAh2/cwQ3MdCelmlSI5sq9DPKtNiL9fQnz8mL/5duoVSq6163KVoUpVTc2AovVzvHr9zBoNfRuVJ01Ry/gkkSZn0pSsePsNdQqFcPa1GPj0UvkFVmJCPShXe1K/LRFvKi1qBGHQaNl6W4hXp7oUI8LN1I4fysVjUbNK32as+XwZW4mZT1oJtZrGTusLet2n+fSrTQ0GjVvDGvLyfOJ7DshfEFP9W6E2aBn1mebAGhYK5an+zRm9mebyMopws/HxPTXe7Dr4GUPT6pbuxr061qPKXNWk5aRj8mkY9rYnuTnWXhz8hIcThdxMUHMntaPnbsv8qsS965TK5rpk3qzYeMZFv0ubqtRI4qZ0/tx8uQtPvl4K3a7k4gIf2bM7I/RoGPMqz9z+1Ymao2KES+3Z9CQJqxZfpxvv9yJyyURFRPIO3PESurT9zexaa2YJNWuF8uUWf3xC/Dim4+2sHqxSDRVqhbB23MHEhUbxJF9V1g4cw35ecUYjDpGTepJl971kFwSv3+zm9+/3SMmOpH+TJw7kFoN4pFlmY3LjvLth5uxWRyYvQ289nZvOvaqh0qloiDPwtdz17Fb8fDEVQpj3LxBVKkl1g4up4vVP+1n0afbsNucGEw6nhvbjT7PtvS00MqyzI6VJ/h+3noPFLPbE015YWJPT4TcfS6dus03M1ZxVam+j6oYwsgZ/Wncvka5z4tXTify07x1nD0kBLnJy0D/l9oz4OX2j+U23bmawup/7GLniqMeKnhoVCC9X2hL16daPvC5/d2TkZTN2QNXPP+l38164DF+Qd5UqhtHfLVI4qpFEls1gpgqEXj5/HuYUznp+dy6dI8zey+zf90JUm5ncmDdKQ6sO4XZ20i/kR0Z8FpnvP3+ta/1/hMSGUCnIU3Z8ttB1v+4528LHG8/E2qNGsklkZdV+Jei+3mKGH4cRuPGxUcnowAun0nEZnXgH+RNfDmiWpIkjuwSZv5mHcr/2XzU+T+BU+rIUj5yzsvgOFVK3KhwukWOwu52yCXrqRIiuKywoR4UNyrPJEfrKeFzr5weRQR3r57c0XDQPwSaqVLi6CXQzNLdNu4VlFvcaD2lfm6ulF1MZhT0gkalo1hyCJ+NXfhxVGixuJx4a03k2a2oUaNCR5HT6WknFtMcA3l2m+i9sQlh5K8zk2UVkW+7C2wup9JxI1ZNgXqxdjJr9TidMgUuB6FGb9KKhXHYLW7UqAk0mEktKsRbZ0CWIMtiIdTsRW6xBYckidRUbi6P6ripHhjCpYwMVKioXlrchIR6xE298HDOKDHw+pERHmBmvchwLian43BJVAkJIqOwmJxiC2E+3vjqDZy9m4pRq6VRXKRH3LSrUoFDVxNxuCSqRYRgtzs5cycFk15H26oV2KQwpdpUq8CVe+mk54kVVYuqcaw8LPwQnepU4mZSFrfSczAbdAxpUYfFe87gcLqoGRdGVJAfS3aLdUj/lrW4mpjBxcQ0tBo1L/dqxpp950jJysfHbOCVPi34Yd0RcgosBPt78XKf5h4zcUiAF6MGt+arpfvJyBFNxuOf68iva45y/U4Gep2Gt4Z34MSfd9hxSHhiBnWrR9W4UKbMX43d4aJibDATX+nC5z/u5uLVFNRqFaOGtyPQ18Sb05ZiszuJjhR+m/Wbz7B24xkAWreozJiRHfn4s60cOS4mFAP6NOTpJ5qx4MNNHFNu69unASNeaMu33+72tBI3bZrA5Cm9OXPqNh/M34jFYhfcqZn9SUgIZc70VezfI77PbTvUYOzknuRmF/LGyz9x85oo/3vyuVY882Jb0lJzGffij1xVrkAHDGvG86M6gizz5YKNrFMK/SpVjWDye4OIiQ8mNSmHBW+v4KLCgWrfow6j3+6Nl4+R7MwCPn5nFccVo2S9phUZN3sgocqLyfF9V/h0+iqy0vNRq1UMerENT43u5Jna3L6aykeTl3FNmZrUb1GZ1+cMJDwm0PPclXQrg8+nreDsYSFA46uEM2buIA/92X1yMwv4cd56tivReZO3gafe7Eaf4a3LvXq/dyONn9/fwEEFSKrVa+j9XGuGjO6Mf9Cjo7/nj1xn+ZfbOKbQ2wGqNohn4CudaNGj7gNdO3/1uJwuLh67wZGtf3J061nuXU8rc79Gq6Zy3TiqNapI1QYVqNawAuH/xXiGgFBfAkJr0KBtDZ6f3p/rf95h/7qT7F93kpRbGfyxcCPrvt/N0xN703tE+7+MRvgrp/fzbdny20EObjpDdloegWF+j38j5ajVavyCvMlJzyc3q+CvCRxl+uYf/GiBc9Nd3lfz4QLHXd5Xt1lCuf8+184nkZWej8msp26zhAfuf9z5P4GjHFnKRs5+EZwXkNHgkm0KesHdTuxUfDOucsQNShJKRlJQC+5EVBmDsRL3titRbpesQQJPc3FZIrg7Gq6ihPpdIm5EMkqIlAehmQaKldSU21isVz2KKyXQCyrUgAab5FLEjUhIOSU1TlnyiButSoPTJajovjrRTqxWWFOFjrLtxL5ak9JOLKZDpduJVUpkPNNiwVdnotBuxynJZQr8Ikw+JBWKaY1ZU2IyLrQ5sLtEI3FSvoixVvAN4JbScVPJT0xrVMrk5lpWFiqgkn8QlzMy0arUVPQP4HJ6BlqViiqBQZxPTUcN1AoN42xSGipUNIyM4KQibprERHH8trgqqRsVzpXUDKxOFxWDArDaHFxPz8LfZKRCUAAHr91BpUIAM5WkVOMK0SSmZZNRUEywjxfVw0PYela86PWqX43df97wrKiiAn1LklLNarHrzHVyi6yE+XvTtnoFflWSUm1rV6SgyMr2E1fRqFU817kxm49cIjW7AD8vI8O7NeKH9UcpstqJCfVnQJs6fLp0Hw6ni6qxoXRvVo0Pf92F02Mmrs38H7aLJuPoIF7o14yPftpJTr6FQD8zk1/qzE/Lj3D5ppjsjB3enuTUXOZ9tRWA1k0qMbhHA6YvWEdmdiE+3kZmjOvJqbN3+OK7XQA0bVCBMS+2Z8GnWzh3MQmVCl54uhUtm1Zi3KQlJCXnoNdrGf96VxIqhDDmzd9ISclFr9cy7s1u1Ksby4Txi7lyJQWVCp59rjVPPNGMH77dw0rlhbtuvVimvtOP7KxCXnvxB5Lv5aDVqhk5pjN9BzZi786LfDxvg1hJBZiZNKMfjZomsG/HBT6es57iIhs+fibGv9OXZm2qcudWBu9NWc4txXMy4KnmPK+IkN2bzvL53PUUF9owexsY/XZvOvSsC8DhXRf5ZOZq8nKK0em1vPBmF/o+JaCJRYVWvn9/E1uUVVJ0hRDGvTeI6gpc0+lwsfzbPfzx5Q6cDhfeviZemtKLzgMbeV4MHHYnK77bw+LPd+CwOzEYdQx7vTMDXmxbJuXicrrYsOggixZuoihfFLR1HtKE5yf1LrejJDezgN8+2szm3w95iv06DmrCU+O6ExYd+MDjPc+jssyJXRdZ+tkWLigliiqVimbd6jDw1U7UaPz3cAzuYy2ycWzHOQ5vPsvxHecoVHASAGqNmsp1Y6nbqhp1WlWlZpMETI9BA/xXHpVKReW6cVSuG8fwqf04tPE0v85fx50rKXwzdSn71p5g7KfPElP537OSq1gzmmoNK3D55C0ObTpDr+fb/q239/YzkZOeT1Ge5bGPdbkksjPc3TaPLu+7clasYR81wXGno+qX6nIqfQ4ogNvGbap6BP/fOf8ncADZlY6cMxyc1xVRYVO6bGylxI0ah+xUJjpSKXGjEhwpQEKrrLDc4saAAyeiB0cWUxapbGGfe6X1IBHc3XtTPhHc6nLBQ6CZhW6gpmIs1qkMFLsEV6pIQSm4AZlucaNRiY/nkiVMaiFudErKSkIWXCn7fegFnRu9oEWSVFgkp8KSsqJChVljINcufDbuXhy3uNGqNOhVIhIeaDCTVSxWUREmX5KL8lGhIsToTUpRIV5ag4cSHmb2Jr3w0QV+FX0DuJ6djValJsbHj+vZ2eg1GiLMPlzPEn03EV7eXFf6biK9fLicnolBoyHeP4DzKelo1WpqhIZwyi1uokvETZO4aE4k3kOSoXZkGHcycsm32jwx8DN3UjBoNTSrEOMRN+2rVeTo1TtYHE4qhATgY9Bz4MpttGo1vRtUY/3xS7gkmXrxETgcEocuJ6LTaBjcvDarDomkVNWoEGICfFlxQPhvBraszckrd0lMz8XLqOe5To34desJiqx24sIC6NqoCl+sOCBYVVWiqBkXxmdLRV9N2/oJRAX58tli8f8dG1cmLjyQ9xUSeIu6FWhVrwKzvtiE0yVROS6Elwe3YMG3O8jMKcLPx8jU17qxevNpjp6+DcDwQc2ICvdnwuyV2B0u4mOCmPZGd75fdMDDkxo2sAltmlZi3NtLyVD8NtMm9MLhcDFq3G9YrQ7CQn2ZPb0/d+9mM/oNgWEID/fj3RkDKMi38MrIH8nLs+Dja2TKlD5UqhTGxHF/cF6ZcAwd1pwXXmzL9i1/8vnCLdjtTkLDfJk+ZyAVK4WVSUm5V1K+fmY+n7+RDSuV9FSdGKbMHUhImC/b1p3mi/c3YrM68AvwYsKs/jRuWZniIhufzlrDzg1iulGjXiwT5w4iPDoAS7GNbxdsYrPy/ipWDWfivCHEVw4DhHFy4ZTlpCk+nX7PtuC5N7t6iMu3LqewcNJST4V9s441GD2rP0Glrs4vnbrNZ2+v8HSINGhdhdGzBxIRWxZWeP7YTb6avsKTlKlUK5rXZg+kejmNsFaLndXf7Wb5VzuwFIoit6ZKsV98tYfX6LtcEoc2nWHpZ1u5oXQZafVaujzRjP4jOxKdEPbQt33YsRRaObb9HPvXneT4jnMecCMI/0fjTrVp2rUODdvXwMv337v6+XcdtVpNq94Nad6jPlt+3c8Ps1Zy8dgNRrWfw5TvXqJ593r/lo/TrGttLp+8xck9l/62wNEoHTrSI7BK7pOZkovT7kKr0xAU/vBJUWG+hUTl57J6w/LTUblZhVxVvGj340NArKf2bha/W22Uvqi/e/7jBY7sSkbOfg5ciQ+IG4FPcCimYLfIca+pUIr9VLhwixuljbgccQNaj7hxyoLt5KKk08ZeRtyUJoKLjpwHieAlXp4SaKaIf5c2FuuUJJVebaTQKVJTKrTYldRUvsNWiiuF4Eo5bBjUeo8YMmuM5JWHXrAXY1TrsThF6aEbvaBRadCiocBhJ0BvJlPpwAnSC/SCUaNDcqkodDoIMZZ02ISbfEguyker0uCjNZBeXIS/3kix3YldcpUp8Iv38ee2p8DPn5s5OWhUaqK8fLmVk4tRoyXIZOZ2Xi7eej3eGj13cvPwNRgwa7Qk5uaKjhuNjlvZOfgYDAQaTFxNz8Kk0xLr58+55DS0ajW1w8M4nijETfMyNPBoziQm43BJVA0LJr/IWioGHsy+y7cB6FqzMjvOX0OSoF5cBDkFFs7dScPbqKdttYqsUZhSbWtW5EZyJknZ+fiaDHStV4XFe88AJUmpXWdvoFGreLZjQ9YcvEBuoYXwAB96NKnOP9YdRpJlGlaJJjbEj+8Uc3GPZtWx21z8vkX4TIZ1bUByai5Ltor1zrO9GpOansdPa4XfZGjX+qhVKj5QklPtmlSmZb0KTPtog2BQxQQx9rn2fPTdTu4ki0LAya915drNdN77TNDDWzVO4LkhzXn3ww3cTcoRj3m9G06HxBuTlmB3uIiNCeTdt4Xf5rclhwFoUC+OaRN7sXTZUZavFJONRg0rMHVKb7ZuOcd33+0WPTiVwpj17gAy0vJ5dcQPZGcXYfYyMGlKLxo1qcgnH2xiywbxvWvSvBKTpvehqMjG2JE/c01pQH7yuZY8O6Idqck5vDn2B24oT8hDh7fi2ZHtsNucLJi+il1Kmqle4wpMnD2QoBAfrpy/x/zJy0m5K2jiT77cjmEvtUWj1XDl3F3en7yc5DtZqFQqBg5vxbPKtMduc/DLp9tZrfTehEUF8Na8wdRuLMSG0+Fi6Te7WPzVTlxOCW8/E69O70v7PiUdNJYiGz9/uJn1vx5ElmX8grx4eWrfBzptcrMK+fG9dZ51lLefmeETe9Jt2IP0aHex3y/vb/D00FSuG8uIaX2p07z8q2sQwmb/upP88dFm7l4T3z+j2UCPZ1sx8NVOf2tdAmIidWLneXYuP8KxbeewW0tETUR8MC17NaBZt7pUb5zwb13z/FcfjUZNz+fb0rhzLT5+41dO773E7OHf8ObHz9BlWMt/+f03aFuDn99bx9kDV/6yWdhz3D8zj9c3pCSK2HdYTOAjv/+XTyciyzLhsUEEPmTSc3L/FWRZpmL1yDLC3X0unkokIyUPs7eBxm3/Xv+N+/xHCxzZeQc5azRIyeWKGwHNdLcSu8WNCocslxI3auU/GZcsYt2i1M9JCRHc7acpWTm5hQvohbjx+GpEH04JNVz03pQlgmuxKtMdFHbUo6GZotRPrUyFJNzQTFu5XCnBkhJ+HJPaSIHDJnAMbvSCVqAXvDRGz21u9IJerUVWpjml0QsBCiXcS2vA4nDhlCTCTCWpKHffjVGj85iMQ4xeZFmKkWTuK/AT4qakwC8Po0aHv97I3TwRD9er1SQXFBBkMiM7ZdIKiwj18sLucHn+7nRIno4btaziTk4eASYjvnoDV9Mz8dLrifXz48zdFLRqNfWjIzzipmXFOA4pNPAGsZHcSM3yTHF8DQZO3LqHTqOhXdUKnqRUm6rxXLiTRnaRhTA/b6qFB3vWUL0bVWfv+RsUWOxEB/lROybMM6np1bg652+kcCcjF2+jnqFt6vLbjlPYldh39ahQftokXsS6N61GfoGFNfvFaPeFHk04fuEO528Kc/GYQa3YevAyVxLT0Wk1vPlkWzYfuMiFG6keM/HxP29z4JTwuwzv3xRc8N7XIjnVqmFFerevzfSF6ykotBIa5MP0N3rwx+pjHDkppjTPDmpGjSoRjJ22lKJiO6HBPrw7uS+7915i2Wox0WjRNIE3Xu3EJ59v8/hthgxozNCBTZgzbx1nFC/LsCeaM3RIEz7+aAt794rvVZeutXnjjS5sWHeGb7/ZieSSia8Qwsw5A9GoVLz5yi9cv5qKSgXPvdSOJ59pydGD1/hg9loKC6z4+JqYNLMfTZpXUlZS6yguEquqibP606h5Ja5fTmHu5GUk381GrVHzzMh2DB3eGpUKlv24j1++FAIkNMKPie8NplaDOFwuiSXf7WGRIk5Cwv0Y/94g6jYW6ZDrF5L4cPJyEhXPSLdBjXlpck/MSsLm1pUUFk4smdo071yT0bMGEFhqhXRi72U+n7qihEM1sBEj3u5dJqUiSRJbFh/hp/kbPDTnbk80Y/jkXuUaQ88fu8G3M1dxTbmaDo0OZPikXrTt2+ChDbkul8S+tSdZ/HFJVNzbz0SfF9vTd0Q7fB9jQC19ZFnm6ulEdi47zJ5Vx8jPLvLcF1EhhNZ9GtK6T0Mq1Yn9X99gHBodxJylr/PpuEVs++MQH73+C5Ik0+3pVv/S+02oHY1fkDd5WYVcPnmL2o8QpfcftVp8TyVJeswjIVnptYl4DPfrooIpqXmfB6z0OaZ44pq0Kx8a6i63bNGp5j9dG/CfLXByRoBXdhlxY5dtSleNvZS4cXfbqBWDcWlxo1JSVGLqgsdg7BY3ekXcaD0rJyFchDhxyC7UuMWNHpssmFFiOlOSjNJ6oJk6DzQTWXxeur8EzXQbkkGvQDONatGJgzLpuZ8rpVfpKXTay6AXTBoD+Q63ifhB9ILV6cIlSx5xo0aNl9ZAts2Cn85ErtWGjNJOXFi2ndhHZ8TudFHgshNuFnDM+9uJY739uJOXi0Hpuyld4JdWKPpurE4nWRYLkd4+5BXbBN3b14+swiLRa+PnT0ZBERaHg1h/P/IKbeTbbET6+uBwuLiTk0ewlxkvrZ7LqRmY9ToSgoI4npiEWqWieVwMhxQaeKuEOI7fvItdmeIUW+xcTs7A12SgTlQ4O84pwMw6VdhzXgAzK4cH4a3Ts+/ibTRqFf2b1GLdsYs4XC5qxoThozew5eRVYXxtXY8tx694JjXt6yTwo5KUal2rAkgyqw8IMfNc10YcPneLa/cyMeg0vNa/FUu3nSYlKx9fLwOjB7Xmh9WHycgpwt/HxOtPtOG7FYdIzSrA18vA+Oc6smjtMY+ZeMILnTh04iZ7jgmB9lSfRoQG+DDtg7UCsFklgtHPteP9L7aSmJSNXq9lyuiupKfn8/acVQKoWSOKCaO78ulXOzw8qWeGNqdj22qMn7KUe0mK3+aNbsTHBDHq9V9JT8/HaNQxaUJPKlYI4Y3XfyNRgXGOGtWZTp1q8sH8jexVUAkdOtVk7PjunDl5mwVz1lFYYMXP38zbM/tRt348P369k2W/iQlRtZpRTJszEP9AL75YsIn1y8X3slb9WKbMEdOZdcuO8u1HW3E4XISE+TF57kBq1Y8jK6OAD6et5LRijGzdpSavT++Lj6+J9JRcFkxezvlTtwFo07U2Y6b3xcfPhMslsfz7vfz2xQ5cTgn/IG/emD2AZkrvjcvpYsX3e/nts+04HS58/M289k5f2ioJKxDR72/nrGXXGjGFC4sO4PW5g2nQumzx2fXz9/ji7WVcUQRixZpRjJ47uNyOkbS7Wfz43jr2KUZtk7eBJ1/vSt8X2j60pM8tbP74aJPH3Ovtb2bAKx3p82K7v5VKyssqYMfSI2z97QB3rqZ4bg8I9aX9wKa0H9Tk/wlRc//RaDWM/fQ5fAK8WfnlNr6c+Afx1SOp1vCfB2eq1WpqNk3g0Kaz3Lxw728JHLtNTMke12sDcEeZckY/htZ+VumYqtm4fDCm3ebkuFvgKL8HZe63O9mrTE7b9ar72M/rYec/WuAgZSCjf4i40SoG4xJxI+Lfak8SyonKYxZ2yCg9N6XFjUGJiItmXyFuSkfDXYhOGxdqlQGbJGLfbrCm8OyUFjeliOBKqZ+bCP4oaKZOpVNwDkLICK6U6LMRLcZ6ipxluVJqNFhcTg96QYUKnVoIHmEcLhUJV9ALBXYhXtziRvhstOTbbQQazGQWi1WVG72gVWk8xuFAg4l8pZ04ysuXJKWdOMZLiBuNSk2oyYu7+Xl46XToVVrSiooIMpmx2pzkOISgySwqxi65iPfzJyk3H6ckUykwkMTsHJySTJWgIG5lZou/BwdzJzMXm8tFxcAAMgqKKLTZifH3w2Zzcic7lyAvMwEmI+eSRTqqVkQYh24oSZkqFdhzRdDAG8ZFcSs1i5xiKxF+PoT7eHPwSiIatYoedaqx6fRlsT6qEEVOXjFnklLwMujpUrcyKw+LSU2ravFk5BZx9PYdjDotQ1uVMKWqRYdQITSQJbvPACIpdelWGlfuZqDXahjZuxlLdpwmM6+IQB8zL/RowjerD1FkEebiYZ0b8Mlve7DanVSICuKpbg1Y+Msuiq0OYsMDGDmoBQt/2kVOfrEwE4/ozA/LD3P1lpj0jB/RkSvXUvl0tTAKd21bg04tqzFxzioKi2yEBvkwc3wv1mw8zfa9Qnj07lqHft3qMWXGSpJScjEZdUwe1wO9VsOocb9RXGwnNMSHOe8M4M6dLF4f+xt2u5PoqABmzRxAakouo14TnTdBQd7MmNkfP18TY177hcTbmWg0al4d3Ylefeqz6Md9/PHLQUC0D0+bPQC1WsXEMYs4p7zY9xvShJdGdyIzLZ9xI37k2iXxojp0eCueG9kei8XGnEnLOKD0bjRrW5W3ZvTD18/MiYPX+GDqSvJyijAYdbw6qSdd+wvO094tf/LZu2spKrBiMut57e3edFJWSqn3svlg0jIuKm2tLbvUYszMfvgpE5e7N9JZOHEpV5TpSdMO1Xl9ziDP1EaWZfZvOstXM1eTl1Uk/DrPt+bZcV3L9M5YimwsWriJtUqLs8nbwHPje9Dr2VYPpJWsxTaWfrGdlf/YhcPmRKVS0W1Yc56d0BP/4PKTUbIsc2jTGRYt2EDiFfF9+2eEjSRJnNl/ma2LDnBo0xlPP43BpKNFj/p0HNqc+m2q/dMJq/8tR6VSMWLmQNLuZHJg/SnmDP+Gz3dOIyD00cbdRx0BHj3rWRX+1VOUL8zF3n8hrn9TQTpUfIRxuLjQyhWlfuBh5uEzh69hKbIRFOZL1XLgmUd3X6Iwz0JQmC/1/mb0vfT5jxY4wg9jU9qHyxM3Ws8Exy67lD+Ft8UtbpyyWpnMiBK/0uLGIrnbiJX0lFLuJ6HB5e69KSNutNhkWRFNQhRpFHHjJoLL5RLBS4zFsqzGJcuK5+Z+aKaeIqejFDRTjSxrsEouvLQlqSlZVmOXJI+40ag0gAqLy1EKvSBWWnnloheKMah1yBIUuRxl2olDDCWrKLWsFu3EJi/Six5sJ440+3InPx+DRouP1kBqYaHSdyOR47AKQVNYjMMlEe/nzx13gV9gENczRIFf9eAQLikx8JohoVxITUcF1AoL41JKOpIMNcNCuZaWiUMS0e/UnAIKFKEjSRLXM7LxMxmJ8fXl5O0ktGo1LSrGskdBLbSpHM/x63fFdCYsCNklcybRHQOPZ8Mp8YLfvkZFzt9OJbOgmBBfL+pXiGTNUdER07NhNU5evUdabiEB3ia616/iYUq1rBGPw+Fiy4krqFUqnuvciM1HLpOWU4C/t4lnOjfk+/WHsdqdVIwMolvjanyyZK/ozqkSRdPqcXy4aBeyDE1rxdGoegzzvt8hBFeNGDo1rcK7X23G7nBROS6ElwYJM3FWbhH+viamv9aNJetOcPKcSIa98nQbjDotU94T5X21qkYybmQnPvxyG5eupqBRqxjzUgdCg3wYM/EPLBYH4WF+zJ3ej0NHbvDTov3IMtStHcM7U/qwrJTfplnTBCZP7MWaNSf55WfRplyrdjQzZvTn8qVkpkxYSrEieN55dwDR0YFMHb+EU8fFv0W/QY15eXQnLp2/x3vTV5GdVYjZrGfc271p07EGh/Ze5sOZaygqtOHrZ2KiYhi+ciGJ96YsJzUpB61Ww4tvdKb/k81wOSV++Hgry38WTc8VqoQx5f0hxFYMxVJs4+t5G9imTFWq1Ylh4vzBRMYEIcsy21ef5Os567AU2zF5GXhtWh86Kj4ZSZJY9+shfvpwE3abEy8fIyOn9aFTqTK+7Ix8vpy+ikMKOiGuShhvzh9CtXplTZtHtp3nq3dWkKGsrdr0qsfL7/R/wAQqyzL71p/m+9lryEwRj63TvBIjZw186AuWLMsc33mBRQvWc10RYV6+Jga+2ok+I/66sCnMK2bbH6KrJeVWhuf2ynXj6PZ0K9oNbPw/1ij8X3VUKhXjPhtO4uVk7l5L5b0X/8H81eP+aXEXU0n0yNwfm3/ccafqHtdnJMsyNy+6Bc7DDefnj93E5ZQIjw0iPCao3MccVNJRLTrXKncNukP5nerUt8G/5LX6jxY4oudGp4gbjUfc2GU7eEjgbmimptTkxt1lo3Ck0CA6jg3KisktbvTY5bLlfiIarvTeSJJH3KjRYXEbiyXhvVGjx+oqTQTX4FB6bzxEcJWRApdTuU/4xHRKIZ8o8BMrKAHNdGHWmMl3CtHicKlxyrKAZtpt6FRaHJKMSy4RNzqVWL25ZAk/nRdZ1mI0KjVqWUTCS6MX/MpDLxi9SVPES4DerIAyjdgdLiySo0w7sVvcaFRqAg1eJBUU4K3To5FVZFmKlb4bG3aXizhff+7m5iHLPLTAr2ZICBfSHizwqxcRwZl7KahQUS8ynD+TUsU6JSKMKykZ2F0SVUKDySgoIqfYQrivNya1lgvJ6Zj1OmpHhLP/6m0AOlVLYPelG0gS1I+LJDkzn/T8QoK8zdSIDPVgGHrVr8auP69jsTtJCAsk2MeL7WeuoVLBkOZ12HT8MoVWO3GhAdSOCWPJHrF/7t20BpcS07iRnIVRr2V458b8tu2kJynVuWFlvlwlBEPTGnHEhQbw9SoxyejWrBpGrZZvV4lyvH7ta6OSVHy1VLxY925bi2A/Mwu+F8mp1g0TaNeoMtM/3ojd4aRiTDBvDm/Hh99s516qmMBMf707x04nsnar+Py6tatB7y51mDRrJZnZhfj6GJk1sQ8XLycz7asdyDLUqxPD5LE9+Oa73ew9ILpz+vVuwDNPNmfe/PWcUhAITz/VgkEDGvPBgo0cUgrl+vZtwMsjO7Dk90P89qv4umrVjuadWQPISM/ntRe+Jz1NrLTGTupJ+841WfHHEX74WvHmVAzhnXmDCY/057tPt7FCWVWVTkmt/uMw33+6HafTRXhUAG/PG0zVmlGk3sth/uRlXFbSWb2GNuGlcd0wGHVcu5jE/EnLSLqdiVqtYuiItjz1Sge0Og35OUV8NnMNBxVhUrNhPOPnDyZciVenJeXw0aSlnjbihq2r8MbcQR7QoCzL7F57im/eXUtBbjEarZonXuvI0Nc6ljGPZqTk8s2MVRzaIkb54TFBjJo7iEbtHhz537yYxNfTV3BeiW6HxQTy0vT+tOhe56EroPNHr/PTnDVcVDxSJi8D/V7uQP+RHf9yOd+ti/dY9/1udq04iq3YDggyeIdBTen2TGsq1fmLBOv/R4/Zx8g7v77KG53nce7wNbYsOkDPv5mCch93Uu3ejb8ucNzMLeABNtn9J/1eNkX5Ag3iFlPlndMK0PZh0xunw8URhSHXokutB+7PTs/nhBIf79SvwQP3L/1+7yM/z9LnP1rgiJ4bt7hxeMSNe3JTIm602JXJSvniRklPKeLGWkrciKlM6Wi40nsjidi3IILrsUglzClJaR62lSKCi1I/ydNY7CGCux4kghe5nB4iuAo1kqTBLkvCPFwGmil7oJkGtZ5iJWXlpUAzDWo9VpeYS7nFjU6txSWpsLhcBOq9yLQK8eKtrK38dCbyFPRCiEGIG7VKjbfGQJbFgr/eSL7NjkuWiTT7kqy0E0eaBXrB3U6cXlREoMGExeGgyOkkytuXlPwCJBkq+gVwMzsHFSoqBwRxLVsU+N3fTuwWN7XKFPiViJsGkRGeGHjD6EhO30kWk4WocK6mZmJxOkkIDqTIYud2Ti5BXiYifX05dusuWrWatpUreGjgravEc/ZWMgVWO3FB/gSaTRy4LDw2vRvUYMPxi542YpvdwbFrdzHoNAxsWpvlB/7E6ZKoVyESL52WTccuo1LBU+0bsPXYZTLzBVOqX4vafL/hCC5JpkHlKOJC/flhg0g+9W5Zk/wCK8t3ngEEduHi9VSOXxBTl5EDW3L64l2OnVemMINbcf12Oj/vEuuxp3o1wqTXMecrkYJq0aAifTvUYtqCdRQW2wgL9mH66z34ackhTp2/K97nM20ICfBi3PTl2O1O4mOCmDmhN4uWHmaXYgju17M+g/o2ZNrMldy4pUA2R3WmetVIXn9jESmpeRiNOiZP7El8XAivj/mVu3ez0ek0vPlmN1q2qsy7M1ZxTPG99O3fkFdGdWL75j/54qMtOBwuIqMDmPneYELDfJn99goOKLv9Dl1r8caknhQVWJn46q9cUFZVA4Y148UxnbBZHMyeuJSDSlNqq441GDu9D94+JvZvP8/HM9dQrNDE35zZj1adaiJJEit/OcBPn2zD6XQRHObHxHmDqaN4DU4fvs7CycvJSs9Ho1XzzJjODHqxDRqNWkx1Vp7gmznrsBTZMJh0vDS5Fz2ebOYRGZmpeXw+dQXHFH9RQs0oxi0YSsXqJVfMkiSxcdFBfnp/A5ZCGxqtmgEvtWfYm10x3seBKsgt5tcPNrBp0UEkScZg1DF4VCcGvdLxocyo25eS+XneWo5uEz8beqOOXsPbMHh0l4eusMo8r0oSx7adY9XX2/nz4FXP7fHVI+kzogMdBjX9L+c0/W86MZUjePbtvnzz9lJWfrWdbs+2/qemFu71Vn5O0WMeWXLckzyDUffYCc4l5UKkYo2ocuGr7nNc+dlt+BDy94l9V8jPKSYg2NuTHix9dqw9heSSqF4vluj7IJ13bqb/n8D5q8ch2zGie4y40WGTJeHFQSGAS2pPekryiJuSqUwJEVyH1RP3VinFezpPp40QNwbFHyNEk6Q0BNtLiRtR6ucqaSxWxM3DieACmimmOipcsqx4bmxloJkmJRJu0hgodJRAM3PtVswag8ejI0zExaW4UrJH3KhRo1frybPbyqAX3GspvVqLFi25NhvBRi8yi4uQFUGTXCj6bkKN3iQXFuCl1aOS1Y9uJ/YP5EZW9gPipkpAMFcystCo1FQOCORSqQK/C6npaFUqaoSEcjYpFTUq6pVqJ24SE8Wx20ni73HRnExMwiXLZTpuogN8Mai1nE9Kw6zX0SAmkl0XxYtul5qV2HPhJg6XRM2oUKw2J2cSUzDrdXSsWYm1yhqqXc2KXEvKIDmnAH8vIx1rVfLEwNvXTiA1K58/rydj0Gl4un0Dluw+Q7HNQUJEEI0rR/PDRiFmujSqQnGx3ZOUerFXUw6ducVlJRn1+uDWrNl9jltJWZgMOsY+1Y6lW05x814WRoOW8c91ZO2Os5y/loJGo2bcc+3581IS2w4IYfBkr4ZEBPsy7YN1uCSZ2lUjefWZNrz32RaS3JOcN3ty+WoKc34STzYtGifwyvC2vPfBBq5cFyWAb77WidioQEa/9Rt5eRYCArx4d5oo3xvzxiKsVgcREf7MmTWQ1NRcRo8SfpuQEB9mzhqAQa9l1MifSU7KwWDQMnZ8D9q0q8bnCzezWUEatGhdhYnT+pCels/oF34g6W42Wq2aV8d2pVf/hpw5fot501aSl1OM2cvAW+/0pVWH6ly7lMzcSctIUVZSL4/tQp+hTXHYnXzx3no2KG3F1evGMHn+EMIi/cnJLOTDaSs4qVyhtuhYg7Gz+uPjZ8Zud7Lo0+2s/Gk/siwTXSGEiR8MpbLS4pqbVcinU1dwRPH31GgQx1sLhhKppFFkWWbXmlN8M2sNhfkWtHoNT7/ehYEKldx9Eq+m8tmkpVxUEmvVGsTx+vyhHmii+0iSxPZlR/nxvXWeVFKb3vV5cVpfQqPKL+rLSMpm0Qcb2bnsCJIko9ao6fZUC4aN60FQuP+jn0wRZXzblx5mzTc7SLopCOlqjZoWPevR58X21G5R5b/UMCzLMgU5RSTfTCczJYeC7CLyswspyCkiP6cIu8WOWqNGrVGj0apRq9WYfYyExgQRFhMk/owNfuwL/X/F6TqsJb8tWE/yrXSObDlLy571//b7MCsTGIfNid3m+EvJo7QkMfkOjQ587L/NJYUZVaOc/iT3uXczg6TbmWh1Guq3Kn+Cs3udWD+17VXvgXWcLMue4stugxs/8LZrfz/8yM/x/vMfLXBEiZ9D8eCUFjc6bJ4/BQHcgRAqbvClC5Fycnk8NmIq86C4KSnsEzFyWTQWK7DMYskFpYCawiDsQqsyUSQ5Rduw4qFxtxLrPMZiPRaXMA+ryiGC25yibVkQwW0CnqmwpgxqI/lOW7nQTG+tiTyFK+WtMZFjszzAlcq0FqFTa0FWU+R0EGTwItPipoALcWPS6HG5ZApddsJM3qQqfTducaNVafDTm0grLsJPb8TmcGJx2ony8iW54CHtxIq4SfAP5Fp2lqfM71pmFgaNhihvX65mZmHQaolSCvyMWi2xvv6cT0lHp1FTLTiYM/dSUKvEFOe4Im7KdtxE8eedVGxOF1XDgskttJBUkE+Ql5m4AH8OXk1ErVLRtVZltp69KlZECTHcTssmPb+IYB8zdWMi2HBCMdw2rM7+izfJK7YRFeRLzcgwVh0SAqV/85ocvXCHVMVT069ZTX7ZdgKXJNOoSjT+ZpOHKTWsY31OXb7rMRe/NqAly7adISUrHz9vI6MHtuKbFYfIyS/2YBc+X7yP7Lxigv29ePPpdnz1xz5SMvLx8TIw5aUu/LHuBBfcYuf5DtxKzOCTH4SZuFu7GnRsXpVJc1ZTWGwjItSXGeN68cfKY+w/Il7onxzQhNZNEhg7eQnZOUX4+ZqYPbUft+9k8taUpbhcElUqhzN7en82bjrDbwpPqmGDeKZO6cOG9af5+ed9yDLUrh3DOzP6c/7POyyYvwGrxUFYuB8zZw/E39/MW6N+5fLFZFQqGP5SO554piV7d1zgo3kbsFkdhIT5Mn3uIKpUj2TxT/v59ZvdyDIkVAln6vzBREYHsGHFcb75cDMOh4uwCH/enj+YarWiSb6TxdwJS7mh9OQMeb41z47qiFan4dTh63wwZTk5WYXoDVpGTuxJj8GNUalU3L2Zzvvjl3JDKdLrMbQJL03sidEsJiRHd13kk7dXkJtViFan4Zk3ujBwRFvPVXp2ej6fT1vJkR1CCFeuHc1bHzxRBnhptzlZ9uV2liqtxiYvA89P7kXPZ1o+4GG4fv4uX769nMtKoiu2SjivzR5E3ZZlE1fuU1RgYfnn21j97S5P70yrXvV5bnIfois9vqAvNyOfNd/uZMNPez0Nw16+Jno814Y+I9oT8hBB9a+cgpxCrpy6zdXTt0m8mETy7QxSbqZ7YvH/ygkI86NOiyo06lyLpl3r/q3I+z97TN5Gej3fliUfb2bll9v+KYFTur3ZUmj7SwIn/Z4icKICHvvYS0r0u/ojot/u6U3tJhUxl9MmXVRg8Yj8juWsn84dv0XKnWxMXgbadCtb7leQZ2GHkvj7q+c/WuC4cCoeHEcpQ7FO8d4ImneJuNGUtBB70lPu++4XN3qsSrmfEDcqnJJWgT0YPMiFIskpOm0kIYDkUsZiIW5ESR+oFF+OwDEUuhzoVQaPeViWRXeO8TFEcHe3jTtJ5aUxeejfJdBMM7kOYRg2q43k2q0P4Urpcbhk7JKrDFcqQOdFhqUYH50o6HNIEhEmH5IV9EK4yYfkwnwMGh1GtZYsSzHBRjO5FhsOSbqvnTiQmznZuNuJb2TnoFNpiPLx5UaOaCEOMpi5nSPK/Pz1Bm7liNI+X52+VIGfmWsZWXjpdUT5+HA+JR29RkO1kGBO3klGrVLRJC66pOOmQhyHbyQK/0h0BLfSs8m32ogJ9MNLo+N0YjJGnZZWCXFsOSNG8B1qJHD82l0KbXYqhAQQ4u3FrnM3UKtUDGhaiw0nLmJzuKgRHYq33sD2MwKY+VTb+qw/fIH8YhsxIf40rRLDL9tEV0zXRlVJzypg58lraNRqXurVlDX7zpGWXUCAj4kXezbjH6sOUWixERvmz9BO9flo0W5sDheVY0MY2KEO83/cgc3upHJsCE/3bMj8b7dRZLETFebPG8+04+Mfd5GakY+Pl5Hpo7qxatNpjp29DcDIp1pjNuiYMm8NLkmmTvUo3hjRgfmfbub6rQx0Wg0TRndBjYqxU5aKEsC4YOZM68fy1SdYu0E8GXVoW51RIzvw8SdbOKTERwcPbMzTT7Vg4Yeb2b9f+HLcfpvffj3AEuVKrX7DeKa904/bN9N5e+wf5OYW4+Nr4u2Z/ajXMJ5vPt3GmmVi2tKgSUWmzOqPWq1ixluLOXZACLBufevz2vjuSJLE/Kkr2bNVrF6ata3K+Jn98fE1sWfzn3w2ex3FRTb8AsxMmDuIRi0r43S4+OnTbSz7YR+yLBNXKZQpC54gvnIYsiyzadkxvlXEla+/mTfnDKR5RwEFtBbb+fa99WxeKiZv8VXCmfDhE551kyzL7Fl3mq9mrqYwz4JWp+Gp17sweGS7Mle2l07e4uMJS7irmEebdqrJqDmDCIks+6JUmFfMrws2snHRAZGk8jLw9Fvd6fN8WWyD5/nP6WLzbwf57YMN5GUJvlDt5pV5YXo/qjV4+FW6+6Tfy2LFl9vZsmi/RxhFVAih/8iOdH6ixb8NlyDLMomXkjl74DKXjt3gyqlbZYzK95/gyABCowPxCfTGJ8AL30AvfPy9MHoZkFwSLqck/pQkivKKSb+bTdqdTNLuZJGfXUhOWh57Vx9n7+rjqDVqareoQpt+jej8VMt/uo/lr5w+Izqw4ottXDx2gztXU/42XV2jUWMw6bBZHFiLbPgFPV6Ypd4RE/Cwh5iB3aeowOqBZ5bXgO0+hxTuWONyot8A+zf/id3mJCYhtFyEwybld6V9r7qeCwT32bziODaLg7hKoXDpkZ+u5/xHCxzJ03PzMHEjCOClxY2TskV9bixDibgRKaqSNmIhTpyoFF+OC7VH3JQANSVJeHnUylTHTQRXefw+Kk9qSq82Uux0oFJ8PU5ZxqCIm9IrKL1KT5HL7oFmCiK4MCe7ieAqpTOnNDRTpQiefIddSU0JEeSnNStcKSNFDkcZrpQaNV4aI1lWC/56E7lWK5IMEaV8NiFGbw8oU5Igz2Yj3OxNamERssx97cQB3MzJRq1SE+3lJ9qJtVoCDEYS83Lx1RswqLQk5xcQaDKhliEpv4BgsxkkmeS8AkK8zGgkNXdycgk0mfDS6biWkY2PQU+Etw/nktLQazTUigjjiEfcxIoCP6B5hRhOJyZjc7qoFh5CYbGNKxmZ+JmM1IwI9fhvetStwvaz13FKErViwnDYXRy/fg+jTkuvhtVZdeQcsgzNq8aSk2vheOJdTwx8iQLMrBUXTpifNyv3ixffJ9vX4/C5RBLTcvAy6nmxRxN+3HiUIouduPAA+rSoKZJSLol6VaJoUi2WjxaJaUWLuhWoVTGc95Um4pb1KtCkVhyzv9oicBDVohjYuT6zPttEscVOdLg/E0Z04tMfdnFbWWNNHdOd03/eZfWWM4CY5PToWIuJM1eQnVtMgJ+Zdyf34cixm/yxXDwptWpWidEjO/L+wk2c+VN4fUY814a2rasyfuISEhMz0ek0vDW2G7VqRPPmG79x+7bot3n9ja60aVOVmdNXcuKYMLUOHtqUF19qx9qVJ/j2qx1ILpmEymHMeG8Qer2WCaMWcUFJ9jz5XEuefakdt66nMXviMlKTc9EbtIye2IOufeqTeDOdOROXcedWBmqNmhfHdGLg0y1w2J18PmcdG5U+nNoN45k0bzDBYb6kJefw/qRlHoBm90GNGTmxB0aTnoLcYj59ZxUHt4upS/0WlXhr3mCCFB/E5TN3+GD8YpITxQtI/+dbM/ytbp4XyNysQr6YvpKDW8S/d6VaUYxb8AQVqpW8qFmLbfy8YCPrlLVXQIgPr8wcQOtS/TggBMDetaf4dtYqcjIKAGjbtwEjpvUrF57oTkZ9P2uVJ1IclRDKiHcG0LRL7ceuKu5eS2XZZ1vYtfwILqcoh6vaIJ4hb3SnWbe6/5aG4eSbaZzec4kz+y/z54Er5GUWPPCYqIQwqtSPp2LtGKIrhRFRIZSI+JCHeov+yikusHLjzzuc2XeJw5vOcPP8Xc7uv8zZ/ZdZ+slmnpvaj/aDmz60APFfOYFhftRpWYVTey5xfMf5vy1wQBh4ATTlCNryzu3LYuoYW/nhpmGAc0euI7kkIuKCHzrtyUrL44KSZmx13/TFfbYr6JLOAxo98HOWnVHg+X3qMbRpmfscDidr/xCT315PNOPH9Y/8dD3nP1rgOGQHBs8E535xIwr7ZIXYLZqNSxf1qZBk4b15lLhx+3VA5xE3xZJTYUcptHBJmI/dfhy3uCmNXHD7awxqI0VKK7FYa6kEY8plK0ME16r0FEtOzBozuXYbaqV7x+JyiSmNXSAVJEnExMtCM7UUOR0erpRYVRnJsVvu40p5leFK5dltBBm8yFAi4RHKtEaj0uCnM5JxH3oh2suXu+WgF+J8/Lmdm4teLSY0d/Py8NEbMKg1pBQWEmwy43RKZFqKCff2pthmp8BmJ8rXl8JiUdoX5etLkdVOpsVChK8PLqfEvdx8gr3MmDVarqVn4W3QE+vvx6m7yWjVahrFRHHoungxa1u5Avuv3kKWoWFsJLfTcsguthDh50OYtxeHr91Bq1bTrU4VNp2+LIRF5TgS07JJzikgwMtEy6pxno6brvWqcO5mCik5BQR4m+hWr6onBt66VgWKi+3sOnMdrVrNC90as3LPObILigkL8GZg69p8tfogLpdE/cpR1IwL54vlIgnVpWlVvPQ6vl8tJh4DOtTB5ZT4bqX4/0Gd66HTqPnkl90AdGtVneoVw5n12UYhdqpH81SfRsz6eAO5+RaCA72Z8WYPFi0/yvGziR4zcbC/FxNmrMDucJEQH8I7b/Xk25/3cUhJ5Tw9tBkdWlfjrclLSE7JxWzWM21ib4x6LaPG/EpBgZWgQG/enTWA4iIbr732s7hN6bfxMhvK+G3emtiTFq2q8MHcdexSnvQ6dq3FmxN7cuNKKrOnrhARcC8DE9/pS4s2Vdm67jSfv78Rh91FRFQA094fTKWqEeza/CefzFmHzeogKMSHt+cNplb9uDIrKZVKxdARbXjmlfZotBoO7bzIR9NXUlhgxext4M2Z/WnTtTYgxugLJi4lMzUPrU7Dc292YcDwVqjValxOF0u/2c3vX+xAckkEh/vx1oKh1Gte0uVxZMcFPp2ynNysQjRaNcPGdGaIksByn9MHrvLZpKWk3hUCqfPgJrw0vS8+/iWNxQBJN9P5cupyTitTsKiKoYx6bzD1W5Vv8Ey8ksJ3M1dycrdYE/gGevHUWz3p8Wzrcqc8Zd82mcULN7F39XFkhVtUr001nnizB3VbV/2X/DV2m4Pzh69xfNufHNt2jqT7kkAGk56azSpRq0UVqjWsQOX68Q98L/4dx+xjpHbLKtRuWYVnpvQlNTGDg+tPseqr7aTfzeKDV35g5RfbeGHGQBp2rPlv9xQ16liLU3sucXLXeQa+1vlvva0kSR7B+VdRDbeVdWx8tUeLqTOKWbx+q/LXnAD7N/2JLMvUaBhPSKT/A/ffvZHOxVOJqDXqctdTW1eewOlwUb1eLAnVy3rK9m45R1Z6AQHB3rQuJ3n1sPMfLXAkT4mfEDeyIm5KCOBabBJKykqlYBoUg7GnubhE3Fhkd++NUgiomIZRbisRNwYsLtFY7JTECkvlSUYJcaNRaT0CSNwnWomLnOI+q5KacoM0S6+gxNrLWS4R3C1udCotNhdK/NtMtl0U80mSGovk8nClVJS0F/vrRQdOCVeqCKNGh6xwpUKNJT6bcGUtpVdrMap1ZFstBBvN5FisuGSZWG8/Eu9DL2hVasJN3iTmijI/k1pHamEhQSYzDqeTTEsxEd4+5CvtxHF+/qTnF2B1uagYEEBKbj5Wp4uEwEBScwsodjipGBhAVmGxMAr7+WK3u7ibL7w0vgYDF5Wm4uohIRy9eRcVQtzsvaJciVSK49TNJCwOJ5XCgsAlc/ZOKia9jtZV4tl4ShhzO9euzImrd8ktthId6Eul8GA2KhiGQc1qsf3UNfItNmKC/agbG8FSxVzct3lNzt9I4WZqNl5GPc92asjPm49jtTupEh1Mk6qxfL1GXLl0blQFlQy/bxXC6NnujbhxJ5Mdf15BpYJXB7Xi1IU7HD1/B7VKxagnWnP+arKnifjFgc0pLLDyyU9C7PRoW5MGNaKZtmAdDqeLKhXDGPtCB97/UjQTGw1apr3Rg2s30pmrmIlbNa3Ey0+3Ztb767l5WzQeT3yzO95mA2PG/05xsZ3ICH/mzBjA2TN3+PLrHUiSTLVqEcya0Z99e6/wzdc7PbfNnDWQq5eTmfzWEiwWO+HhfsycMwhvbwNjXxXIBbVGxSsKBXzD6lN8/fFWXC6J+IohzJg/mJBQPz6Zu57NSndGs9ZVGD+zHwajjs/nbWCDYlqs16QiU+YOxD/QmwM7LvDRjNUUF5ZdSTkcTr57fyNrfhPf86q1o5myYCjh0YG4nC7++HoXS74RPKyouCAmLXzSYyROu5fNgvFLPDX1bXvWZZRiQgZRqPaP2Ws9V7FxVcIY/+GTVKoV7XlOKiqw8v2ctWxZLARqaFQAr88fQsO2ZUf+dpuD5V/uYMkX23DaXegMWp58vSsDX+lQ7hqlIKeI3z7cyIaf9yG5JLQ6DX1HtOeJN7vh7ffoyPeti/dYvHAT+9ed9AibZt3q8sTY7v9S+6612Mbx7efYu/o4J3ee98A9AbQ6DTWaVqJum2rUbVWNqg0r/D2+0r/phMeFMHB0V3q+0I61/9jJ0o83c/P8XaYN/oQGHWry9o8jH/v9+zuncadafDt9OecOXcNaZPtbaTOHzen5u974+O9VUYHFs6Kq8IjiPoAzB4TAqfcIgbNv4xkA2vQsv3l4m/Jz37htVQLvKzR0OV2e9VSvJ5uVuU+WZVb9Ii7o+g5r/reo4v/RAscpO5HRP0Tc6LC5+VFQStxoFHEDoMdRStyoPe+jRNyIxmIJlcrgETfFLgmVp7dGwTHIUilxo/OIG9BhlSSPuNGWuk+r0mOR7B4iuAq1p3HZLW60Ki02lyyI4Iq4EURwYUD2VcSNXq3D7pRxloFmqtGipdBhL8OVCizFlbI6XDgkqYy4cXOlzFo9yCry7TbCTCVQzVhvfxLzchEYBl+BXtBo8NeZSCoowM9gBBdkFVuI8PYhx2LBqiAWUvIKcLgkKgUGcjs7B5ckUzU4mBsZWbgkmWohIdxIz8IpyVQPDeF2ZjZWp4tKwYFk5BUJoePvi9MlcSsrh0CziXBvb07dSUan0dAkLsojbjpWS2DvpZu4JJm6MRFk5BaSkltAoJeJGpGhbFcYU30bVGfr6atilRUZglmvY++Fm2jVaga3qMOqg+ewOwWGIdDLxKbjIgb+dPsGbDl+hcy8IkL8vOjTrAbfrjuCJMs0rR5LoJeJ37cLMTOsUwMu30rj9NUkNBo1owe2YuvBS1y9k4FBr2XcU+1YvvU0N5QV04TnOrJy2xku3UgVTcQvdOTAsescOCnWPyOfaIXD7uC9L0QsvE3TyvTrUpcp89aQV2AhJMibd8f3ZtmaE+w5JJ7chg1sQouGCbw5ZQk5ucUEBngxZ1o/zp2/x3s/rlc6b2KZPqk3P/+6n42bhDG6c6eajBnVma+/2skWpbOlc+davDm2G0sXH2aRUqJXv0Ec02b05+aNNCa98Rv5eRb8/c1MmzOQatUj+ei9DWxT+DRtO9Zg3Nu9Kci38NZLP3H1kjAeP/tKe54Y3prMtDymjl7ElQvCNzDsxTY8PbI9kiTxzYJNrFE8PjXqxTJlwRBCwvxIuZvNexOWcE15m4HPtWL4G53R6bRkpOTy/oSlXFDES+f+DXl1am9MygvQrrWn+HLmGooLrZi8DIye1Z8OfUuuUv88cp2F45eQnpwrAJwvteWZsd3KxG1P7rvMpxOXeAr7ej/XiuGTej1g1jx35DqfTVrCvRsiqdSoXXVenTOIyPiykVoQLxwbf9nPog82eAzAzbvXZcQ7/Yms8Oi6/duXk/ltwToOKKkXgJa96jPsrV4k1H6wffavHLvNwaldF9i76jiHN5/BWlQiagLC/GjcuTZNutSmftsa/y1ppocdo9nA0LE96P5cGxYv3MiG73dzatcFpg36hLkrx/7bPtfoSuEEhfuTlZrLzQv3qNEk4S+/bXGhKOxTqVR/ySvkLm4MiQwowzK7/6TeySLxaipqtYp6D+m2SU7M5NKpRNRqFa3KIX877E52rBICp8ugB9NRB7ZdIDM1D79AL1p1q13mvtOHb3DzSioGk46eQ5og43zg7R92/qMFjuSJgj9M3AhjsBA3gh/llEUqSogbCRVGLLLLI25UaLApiShJ1iIyTmL1pPEANd1cKCX2XUrclPCkRKTcobQSFznt6Erdp1HpsEoOj7hRo1GYWDImRdzo1SVmYy+NiTy7BaPGQMF9RHCTxkCRXfTduMWNrhQ0M8jgRbrFXeZnIssmVlX5NjuSjAe9cD9XyuZwYZecZfpu3OJGrUxr7uXn46XTo1dpSC8SLKliqwOL00msrx/J+fk4ZZlKAYHczMpBlqFacDCX0zNRATVDQ7mQItqJa4eFcT45DVBRNyKcCylpgpkUHsrNtCzRNBwSREZBEbkWK5F+PuhVGi6lZOBt0FMtNJhD14V3pFPVSuy4IAyxLSrFculuumc6E+LtxcEriWjVano3qMa6Y5eQZJkmlWLIKSjm9K1kzAYdfRrWYOm+M2J9VS2OwkIbBy/cRq/V8GzHhizedVrEwCODaJAQxY+bxKShR9NqZOYWseXYZTRqFSP7tmDzwUvcThFTnteHtOGntUdIzy4kwNfMmKGt+WrJAbLyigjy82LsM+348vd9pGaKZNXkl7rwy8ojXLmVjl6nYfLILhw9dYvt+4VTb1i/xlSICmLy3NU4nC6qVQpjwitd+PDLbVy+nopWq2bCqK6oUTHu7aU4nC4qVQxl1pS+LFp8iK07hLGwd496PDesBe/OXcO5c/dQqeClEe3p1KEGUyYv4+LFJNRqFSNHdqB7jzq8N3sth5QrwwGDGvPyKx1Ys/I4330pJjyVq0Yw871ByLLMuFd/4drlFNRqFS++1pFBw5px+tgt5k1dQX6eBR8/E1PmDKRhswROHr7O/Kkryc8rxtvXxKTZA2jSqgoZqXnMnbCUy8oT+6DhrRg+uhNanYYD28/z0TurKC604eNn4q05A2mmFOYd3nmRj6auoDDPgsnLwOuz+tGuZz1AXAV/MWM1e5TYeo0GcUz48EnCY0RyyG5z8svCzaxWTMrhsUG89cET1CrV/1FUYOX72WvYskTQ38Njgxi3cBi1m5Z9cSvILebH99axRfEiBIT48Mq7A2ndq365q5I/D13l66nLuK2ku+KrR/Lyu4Oo37p8uKH73Luexu8frGfPKrGKUqlUtOrTgCfH9aRizehHvm15R5ZlLh2/yc4lh9i7+rhHaAGExgTRtn9jWvdrRKW6sf8l3pZ/5/EN9Gbk3KF0fqIFk/p+yOUTN5k++BPmrBjriWn/K0elUhFTJZys1Fzu3Uj7WwInO01Q4P2CvP9SG/JFJfZdvdGjDeVHFONwraYJD10L7lamp/VaVi6XDH54xwVyswoJDPWhyX1FlLIss0ppLe89rNkDE5plP+4DoPvAxvj4mcnPz3/cl+Y5/9ECR0xwjIq4MWDHCYppuETcqD2IBYekUThSOpyyBB5xY8AmO1EpK62SxmIAPRa5tLjReQr7XErKSquIm9I8KTeqQa8yUuy0C5+N06W0GGuxSS5MajN5DjGlET4hRLeNXYmEK8V9Zo2JfIcVs8ZInl2ssby1pocSwY0aPXaXhFNyEWTwJt1SpJiIDeTarAToTWRZhDfHLW40KjU+WiOZlmICDCYKyuFKRXv5kZiXi06tIUBvJKWwAH+DEadTJseuoBcKinFIEhX9A7iZkwNA1cBgrpQq8LuYXk47cXg4Z5JSUaGiQVQkp+4mowIaREXw571UgRSICOVGRjYWh5OKwYEUW+wk5gveVISPNycTxRSnZUKsR9x0rJ7Aocu3sTpdVI0IAZfMmdsCw9CpZgJrjiqRx9oJXLyTRmpuIUE+ZlpXi2fpfjFt6N6wKpdupXEnIxcfk4HBrevwy9YTOCWJhpWjCfQysWKPmGw83bkBR8/f5rrSYfNavxb8vOE42fnFhAZ482Kvpny+eB/FVjvxEYE81b0hH/68C4vNQUJ0EM/2bsL7322nsNhGTHgArz/dlg+/30F6ViH+viamvdaNRSuPcu6ymASNG9GR9IwC3vtcTHLaNq/MkN6NmDJnFRlZhfj5mJg9uS/HTt7i92XiBbhNiyq8NqIdcxds4LwiWka/0pF6tWJ4fexvpKbm4WU2MPXtPgQGmBn12i9kZhbg7W1k+vS+REYG8Pprv5J4OxOdXsPYt7rTtn11Ppy3np1KhXvn7nV4Y0J3Lp1PYu60leTlFuPrZ2Lq7IHUaxTPsl8O8vPXu5AkmUrVIpj+/hBCw3354/u9SjRcuX3BUMKjAjhx8BoL3l5Bfm4x3j5Gxs8ZSLN21bDbnXw1bwPr/iiZ6ExeMJTQCH/sdic/fLCJdUr7ceVaUUxe+CSRsSJxcul0IgvGLSb1niCODxvVkSde7eB5cbl1KZkF4xZzW2E3dRvalJen9fFMfQBO7bvCJxMXe6Y2fYa35vnJvcpwpmRZ5sDGM3w9fYXHRNz9qRY8P6VPuY3CGck5fD9rFfvWiumfT4AXz07qTfenWz7yhS/1TiZ/fLiBHUuPILnEs1er3g14emJv4qs/eoVR3km7k8WOpYfYueQwyUovDkBguB9t+zemTf/GVGtU8X8lTLNi7RjmrXmLyX0+5OKxG7wz9FPmLH/z31JgGJ0Qxpl9lx/wIT3u5KSLF/7AcgRGecfdUP2oXhuAw0rhY7PO5XtfZFlm5xrxs9axf8NyH7NpiVg/dR3U5AGv14VTiVw9dw+dXkvPJ8qup65dSOLM0RuoNWr6P9PiMV/Rg+c/WuCUndyUFjeCKyWXQiy4zcLulRMYsZYRNyWJKNFY7F49lYgbjUrvKexzyVqcqJQouL0MT8opqcUcSfHXCK6UECsqBEjTqJT0lQZpGtRGpbivxI9jUhspcFgVHIMQMmaNkTyHRYgcxTDsqxDBzVoDxXYHEhCoF+LGA810uE3EYprjFjd6tRa9SkuOzUqI0YtMSzGyTBmuVJRZGIpNWh1GlZaM4mKCTWYKLQ6sLidxvn7czc1/AL1QPcjNkiorbuqEhvFn6XbiJNFO3DAqkpOKuGkcE+XpuGkYE8nZuyk4ZSF0krLyybVYPQV+F5LT8TboqR0Zxt5L4sqme+0qbP/zGi5JpmF8FKk5BSTn5BPgZaJBXCQbTgiPTZ9GNdh7/gb5FhtxIf5UCgti7REhfIa0rMOuU9fIdtPAayfwk0ID71S/MrkFFnYoMfCXezVl9d4/ScspJMjXzHPdmvDVigNY7U4qx4TQo1l1Ply0G5dLokH1aFrVqcj8HwRTqkmtONo2rMjsr7fgcknUrRrF4K71mPnpRoqtDuKiAhk3vAMf/GMbyWl5eJsNvPNGD7buuciug8Kg+szAplRNCGP8O8ux2hzExQQxc0Ivfv7tEPuUNdXTQ5vRvlU13py4mLT0fLy8DMya2heH3cWYN3/DYrETGenP3HcHcfNmOm/OXIXN5iQ2NojZcwaRlprHqJE/eQzGM+cMJDjYh3Gv/crVyyll/DZrlh3n2y+2I7lkKlUNZ8a8wfj4mpgzeTkHlPbhLr3rMXpiDxwOJzPHLeaoUvHerV8DRk3sgUarYdHXu/jjH3uE6KkeybQPnyA8OoDUpBzeG7+Yq+fFSmrw8615bkxntDoNSbczmTdusafbZsDwVgwf2xWdXivo4N/uYdGn25BcEmHRAUxc+CQ1FGK3JEms+mEfvyzcjNPuwi/IizfnDaFZp5qe5x5LkY3v565lk+L1CY8NYuyHT1LnPrBgVmoeX05dxmEl2h5TKYzX33+CWk0fvLK32xys/sdOFn+8BZvFjlqtovszrXh2Uu9HdrnkZRWw+KNNbPhxjyeF07RLHZ6Z3OdvoxRcLokTO86z8cc9HN9+zuPZMZj1tOrdkI5PNKdu62r/lqTVf/epVCeW91aPY0q/hZw/fI15L/6DmYvH/MuCLdrDlPp70MzsNEXg/AVgp8slcUnpSarxEOI3QF52oQfv0bxL7XIfc/HkbVISszCa9eWiF+7dyuDs4euoVCq6DmnywP2rfhLTm4596+N/X7R96Q9ietOuex3C7qtF+CvnP1rg2GQXOozKWkowoVCi4TwgbjRIaHG5G4vLFTcapbFYrTQglxU3Vpfw5zhlJfaNvoy4KZ2a0ikdOAa1kQKn0+OvcSjiJt9hKwPS1KtEYZ9ZYyJPKe4zKH033lqzJ/lkVBsocNrwVVhTIiEl/u6tNZJvF48L1HuTYRVNxCqlzK88aKZJI3w2BQ474aXK/KJKcaWCDd7cKyjAR6cHCXLtViK8fMgoLMIpyY9AL5SIm2pBwVxKz0AN1AgO4VxKGmqgVmhYmXZi9+SmSUw0x27fw91OfOy24Ak1jIniUlIaFoeTyqFBFFls3MzLJsjLRKy/P0euCwxD5xqVPB03ravGcyExlZxiK1GBvsQE+LPr3A1UKhjUrDbrj4uOm1oxYZh0OnadvYFGrWJYm/qsPnCOYpuDylHBVI4IZsmeMwAMblOH01eSuJGchdmgY0TPJvy48RhFFjvx4YH0aFqdT5fsFX6cmnFUjQ7m8yXil71r82oE+pj4fLH4/15tahLsZ+bDH0U5X+fmValTOZKZn24SWIeaMTzZsyHvfLSegkIrEaG+TBvTna9/2ceFqyliBfVqF/LzLLwzfy2yDI3qxfH6iA7M/XAjV6+nCR/PG13x9TYyZvzvWCx2oiIDeG/mAA4fucF334uIer16sUyf2o81q47zm/Li3aRJRd6e2oftW8/xzVeCEVWtRiQzZw8kNTmXUS/+QE52Eb5+JqbNHkCNmtF8MHsdO5UIdadutXljUk8y0vJ54/kfuKMgH16b0J0e/Rty63oa745fSsq9bHR6LaMn9aBbv4bk5RTx/pQVnFK6d3oMaswrE7ujN+g4vPsSC6euoLDAireviQnvDaJpW7G62bPxLJ+9swpLsR1ffzNvzRtMk3bivszUPD4Yv9jDkWrbsy5jZg/wQCczUnJZOH4JZ5WP2bRjDd54bzABISWIg/PHbrJw3O8eg2fv51rxwpTeD0xtti05wnez11CULzpyhozqzNAxncv1V5zef5mvpiz1gBZrNEngtfeGkFDr4V4Za5GN1f/YwfLPt1JcIPwb9dpUY/jUfn/bPJyTnsfWRQfY9Ms+0pXkF0Dd1tXoPKwFLXs1+Lf14vxPOlXqxzN35Vgm9FrA0a1/sn3xIboMa/kvvU/3BMbdQP1XT0qi6AYKjXl8seL1c3cpyrdg9jE+kgx+cPOfSJJMxZpRhMeW35WzTalYaN29TpmfYffZoDwPNGpTlbD7Iub3bmVwRLlY6fds2e/b7etpHFTKLwc/3/qxX1N55z9a4Mgez40BqyQK+tzpKTdY072WkmTRU+MGarrFjRo9Fql0qZ9a8fYoqSmXC43KgFWZzrjXXWr0WCWHp5W4dGpKCB8HBrWJAiUS7pQROE+1kXyHrQxIU0tJcV+uwy7mPCo9xS6HB5qpQoVOLXpx3ETwkjI/WzlEcFHm53RJOCSnYiJ2NxV7eaCZ5flsosy+JBXkoVNr8NWaSC0qJMBgwuYQ3ppobz+S8sW0pgx6ITCIa1niybFqgFhLaVVqEgICxd/VahL8A7mYloFOoyYhIIjzKelo1Wqqh9zfTizETfP4WA7fEtHvFhViOXbzrjANR4VzNyuXnGIxxfHS6jlzJwWTTkuLhFi2nBXipkvtyhy4dAuL3UnViGD0ag1Hr95Br9XQr3ENVh4+jyTLNK8SS06+hRO372HUaxnasi6Ld53GKUk0qhyNQaNls8KYer5rEzYduuiZ1DzRvh5frz4keFSVIqkRG+4BZvZsWQPZIfPbJjECfqZnY5JTc1myRZTojRjQnHvJ2fyyRpTdPdu3CS6HxEfupFS7mjSoFs3UD9bidErUrBLBq8+0Ye6nm0lJz8fH28i743uze/9l1m8Ta7K+3erSvWMt3pq6jMysQtFMPK0fl6+k8P6HG5FlqF83lqkTe/HDD3vZquzoe/eqz4gX2vDhB5s4oHhrhgxpyrPPteLLz7azxW067lqbsW91Z/sWwZNyOiUqVgpl5rzBaNRqxr7yM9eviPTUyDGd6TekCUf3X+X9d1YLkniID9PmD6ZGnRgRAZ+9DpvNQViEP9M/GErl6pFcOXePOeOXkJGah8GoY8y0PnTqXQ+nw8X3H21hhXLVWK1ODFM+GEpYZAA2q4N/zNvAZqU4sFbDeCYtfIJg5QXnyM6LfDR5GQW5xRjNel6b0a8M/Xv/prN8pnh1DCYdI6f3pdvQpp777VYHixZuZuW3YoUWEunP2A+HPRC9TUnM5LNJSzzJlSp1Y3nzw2FUuC86C5CVmst3M1exd40wcAaE+DJiRn/aD2zy0EmCyyWx7Y+DLJq/zuPbSKgdw4szBtKgXY1y3+Zh5+rp26z9x072rT6Owy7Mnz4BXnR5qiXdn2vjmUb8v3yqNarIs1P68sPMlfxjyhIad6pFQOhfWxOVdwxKwZ3NYv9bb3f3mhC3MY/ptAE8tQJ1W1R+5Npyn9Ic3LZ3+c3KxYVWT3qqy5CmD9xfVGD1pKf6PtfqgfvdaJOm7asTd19r9uJ/iN+TVp1rUqHKP/dz9B8tcBy4MGB6QNzYZJRyP7ViFhYG3gfEjSfurcHhxjEoHThqjFhcLmUF5URVaiKkQoetjLjRlRE3NiUSXuBUQJqSjAyeKY1RY6RQ4URpFKq4l8ZMrsOGKO7TYnU5PeJGrRLtNhaXwyNuSsr8HPjrzWQ/gggeavQhtUiU+fnqTGRYivHXGymw24XPxuxLkiJuIsy+JBUWYNTo0Ku0ZFqKCTV5kWsRXKl4X39u5+QCKir5B3E9KwsVKioFBHItKwuNSkUF3wCuZmah12iI9vblWmYWRq2WSC9vrmZkYtJpifTy40qawDDE+ft72olrhIZ42okbx0Z7xE3rinHsv5aICmgaH825u6meKY7d5uRqaib+ZiM1IkLZdUFcnfeqX42tZ67idEnUj48kL9/C1YxMfEwGOtRKYPkhMWHoUrcyF2+nkZSdLzpu6lfxdNx0rFeJ1KwCTibew6DT8ELXJvy27RSFFhsVIgJpV7ciX60WYqZDg8ro1GoWbxeGveE9GnPxeionLt1Fo1Yx5ok27D52jT+vJqPVqHnr2fbsPHSFkxfF/eOGd+DUubvsOiJeGEcMaYHsknjvS+Gvad+8Ct3b1WLK3DUUFtuICvdnxriefPfrfk4onTejXmhPWLAPYycvxWpzEB8bxOxp/Vi64hgblQRUr+51Gf5US96dvZbzF+4JD85rnWjWNIG3xv3BjRvp6HQaxo7rRpMmCUyesIQL58TjXn6lA30HNOTrz7azfpX4HrXpUJ3xb/fm2qUUZk9dQV5uMX7+ZqbOGUid+nH8/v1eFn0rYuo168Uybd5gfP1MfLNwM6v/EL6ghs0SmDx3ED5+JjYuP84372/E4XARFRvEtI+eoELlcLLS85k3YSnnldF8/6db8MK4ruh0Wu7dyuC9sX9w60oqKpWKJ0a246lRHdFoNdhtTn78YBNrlahqpZpRTPp4mAcEWFxo5Zt317JdiaNXrh3NxI+fIrpiSarpxoV7fPDGbyReFWuHzoObMHJG/zLpG0mSWP/zfn6atx6bxY7eoOPZiT3pN6LdAysdl9PF+p/28uv7G7AUWlGrVfR6vi3PTur9yETPiV0X+H7Gco/xOCw2iOFv96PtgMZ/2eDrdDg5sO4Ua/+xk0vHb3hur9a4Ir1eaEfrvo3+pbK9/41nwKgu7FtzgmtnEln2yWZGvvfEP/2+3MBUa7HtMY8se9yljY8ifbvP6X1ivd6gzcMN59np+Zw7IiaRDxM4+zaexVpsJ7piCDUbxT9w//aVJ7AU2YhJCKXBfWyq7IwCdijm5MEj2pS5L/FGOvsUP96wke3L3HdUAfn+lfPfLnDi4+NJTEx84PbXXnuNL7/88oHb9+zZQ/v27R+4/dKlS1Sr9uh0wINHf5+40WGT5TLixu2nkZS0k+oBceMu9VPjlLWIhZERi+RCqzJicTmE4FAEEApIswSWWZKMUqPDJrk84karEnyp0ngFk8ZEgVOskdTosLhceGnN5NqtaFQaZFmNXXJ5xI1WpUGSVdhkd7dNMRqVGrUs2osDSgEyfcoQwW3IQKhBiButSoNJoyfbaiHIIERSaZ+NgGb6kFJYgLdOjyypyLPZiPTyIa1QUMDLcqWEuFGjIt4vgOvZ2eg1GiLMPtzIzsGs0xFoMHnQC346A7eyc/EzGvDVGbmZlY2vwUCQyczV9Ey89Dpi/fw5ey8VnUZN7Yhwjt4WvTatKsZxQBE3rSvFc+T6HZySRJ2ocFJy8sksKCbM15tIXx8OXxUFft3rVGGD0mPTqmo815IySM8rItTPm3pxEaw7Jjw2/ZvWZM/ZG+QWWYkO8qN+fCRL94hJxYAWtThx5S53M/Lw8zIyrF19fth4DIfTRd1KkVQIC+BnJTk1qF1dEpOzPWJm1KDWbDlwket3MzEbdYx7qh2L1p/gTmoO3mYDE4d35OdVR7iVlIXZpOftl7uwbOMpzl0R4mfSy505ff4OW/aIz/Opfk2ICffn7flrcLkk6lSPYswL7Zn78SYS72YJgOZbvbh7N4sZ74k1VeMG8bw1pgsLPtrM6bN3UKtVvPpSexrWjSsxE3sZmDG9HyajjlGjfiE3pxj/ADPvvjsQo0HHqJE/kZ6Wj5e3ganv9KNq1QimjF3M2dNCUD33UjuefKYFG9ec4quPRL9NpSrhzJg/GG8fE7MmLOXIPnG12XtwY0aO7UphvoVJr/7CeYVu/MQLrXn2lQ447E4WvrOaHevEVWeLDtV5690BePkYOXvsJvMmLCE3uwizt4Fx7w6glWKa3L3hDJ/NWI212I5/kDcT3h9CAyUOm3Q7g/lv/sF1JTouGom7e+LdV87e4f03fyclMQuVSsWQVzvw9BtdPEZKl0ti5T92sWjhZpwOF/7B3rwx/wma3edVSL6Vwcfj//D4HWo3q8SbHzxJZIUHo9/Xzt7hswm/e2K+VRvEM/r9J6n0iOj2rYv3+H7mSk7uEiN/nwAvhr3Vk57Pt/3L+IHiAiubf9nL6q93kJksAgA6vZa2AxrT5+WOVKkf/5fez/+LR6PVMHz6AKYO/JiNP+3l6Ul98Pon+3H0pr8/wXE6XCTfEkbu6IRH88MsRTYPrLX+Q4jfAPs3nkGSZKrWj3soysGd/Osy+MGJocvp8lwU9Huu1QP3r110EKfDRY36cdRU/Gvu457etOhQnYpVS0oIkxKzWDBt1SO/vtLnv13gHD9+HJfL5fn/8+fP07lzZwYPHvzIt7ty5Qq+viVmqpCQB58IHndskoQOE3acuPlRorlYVUrcqBVx424sdnqmM8Lw6xY3GkXciHVXibgpIYoja3HI5YsblZKuEp4bBaQpifeoxUCR0yHSUE4xpZFlLVZJEpMbuxWtSotTknHJEt6KuNGptTiU2/wUcaNVaZBlDRaXy0MEVynG41y7jQC9iWxlfRVi8Ca1uNBDBM+z2QgxepGu+HCizCU+mwC9mbTiQvwNRiw2J1aXi2hvX+7l5yO4Uu5UlIoE30BuZGejVWmI8vbhVq4QNP46E3dy8/AzGDGqNSTl5xNkNqORISkvnxAvLzSyytNIbFBruJ2dQ4DJRKDByGWltK9iYICnnbhxbBQHrokXwnZVlAI/GRrHR3PlXjoFNjsVggPQqzWcSRTpqDZVK7BBKfDrUrsyRy4nUmC1Ex8SQKS/D9vPXkOlgqEt6rLuyEUsdgdVo0II9/Vm4zGxT36mQwM2H7tMVn4xEYG+dG1YlW/WiTRO27oVQZJZq9DAR/Rqyr5TN7imiJkxg1vz89pjZOQUEuzvxeghrfnsj33k5BcTHuTDmCfb8PEvu8nKLSIk0JuJL3Tks1/2ci81Fx8vA9NGdWf5+hOcOq9Mdl7qRHpGAe9/tQ2Azm2q06dzHSbOWkluXjEhQd7Mfbsf6zadZeNWZU3Vsx4Dezdg4tvLuZuUjcmk553JfVABr4/9TRT6Rfrz3uzBXLmczLSFAl6ZkBDK7DmDuHYllflz12G1OoiKDmT2e4NwOSVGj/iB1JQ8TCY9k2f0o3GzBD5bsJlNaxXCcKcavDW1D5lp+bzx/PfcVZJWr0/uRZfe9bh87h6zJy4lMz0fs5eBCbP606J9dVLuZTN73GJuXhF9HcPHdGLw862RZZkl3+/l18+3I0ky8ZXDmP7xMKLigrHbHPxj3kZPwVidJhWZ9MFQj0lz97rTfP7OSixFdnwDzIybP4SmHcQKR5IkVvxjD79+vAWXUyI00p/xHz1J7VKx3tQ7WXw49ncuKGmVFt3qMGbekDJGSkmSWPfjPn6evx6b1YHRrOeFt/vQ89lWD0xUigutLFqwgXXfi6JBbz8TL0zvT9dhLR46fcnNyOeX99ay9XfBp9LqNPQZ0YEn3+rxl5uAc9LzWPuPnWz4YY8HZhkQ6kvPF9rR8/m2/9I65v+l06B9DWKrRnDnSgpHtpyl49Dm/9T7cdgE1+vvcK9uX0rC6XDh7W9+rAfn1N7LOO0uIuNDyhXQ7rNzpbj4al+qz6n0uXbuHlfO3kWr09BpQKMH7j+0/QKp97LxDTDT4b7m4oI8C+uV6ev905vb19PYq/jvnnq1Q5n7fvliB7KS8Psr579d4NwvTObPn09CQgJt27Z95NuFhobi7+//lz6GzWbDZisZ97lz9ColPVVW3FBG3LhXTh5xUzrurQgXh2Iadk+E3OJGo9JhUZJVsqzBKUtoPSTwkki4ED4SekXclDYPixVUibhRo8YlaXDIkuK5saJX67A5JSTAW2Mmx2bFoNZjdYluGz+tF1lWpczPBU5J8ogbtUqNQaUn32En0GAmS+m7CTH4kFZciEmjR3KhEMF9SFWgmWItlYdOrcVboyfzPmhmnI/ouyktblSI1uKbOTkYNBqCTGbu5OfhazBgQEtKgWBJSS6Z9KIiwr29sdodZFsEeqHY6iDTYiXS1we7w0VyQQFhPt7oZBU3s3IIMBkJ8fLmfEo6Jp2WGmGhHLkhpjjtKldgz2Vx1dKmcjzHrt/F5nRRIzKUwiIbV7Nz8DcbqRsbwTbFf9O3YXW2nhIFfjWiQ9Gq1BxW/DeDmtVm+f4/cUoSjStHIzkk9p+/hVaj5rmODVm65yxFVjtVooKpFR/OL0pyql+rWtxKyuTPGynotBpG9W/Fkm2nSMsuIMjPi5F9m/H5kv3CbBwZyLBuDXn/px1YbU6qxIXyZLf6zP1mKxabg0qxIbw0qAVzv9pKXoGViBBfJo/srDClsjGb9Mx4swc79l1mx34h2J4b3IyE2GDGz1yB3e6kcoVQpr3Vk8+/2cnJM2KqMvqlDiRUCGHMW7+TX2AlLNSXuTNFM/HX/xDR7Lp1Ynhnen9WLj/GYqV1t2XLKkye0otVK47zs5J+aNioAtNm9uPP03eY/+4arBYHEZH+vPv+UPz8TUwcLXhSKhW88GoHhjzdguOHrjN/2kqKCm0Eh/rwzoKhVK0ZxZY1J/livlg9xcQHM2Phk8TEB3P8wFXen7KCwnwLfgFeTHl/CPWaVqQgz8KH01ZwdI/SNt23AaOm9sZo0otSvzd/5/rF5JKV1OhOaDRqrBY738xey1Y3n6pJRSYufJLgcPFCnpWWxwfjFnuMxG161mXM3EF4K6shWZbZvvwY38xYhaXIhsnbwKuzBtBpUNmr3OTbGXw07ncuKOytui0q8+aHw8o1cx7Z+idfvb2UjCQxOWk3oDEvzxpIQEj5iRmH3cm673bx+4cbPAbiVn0a8ML0AY8t+HOftDtZLP90M1t/P+BpyY2qFMagMV3pOLT5fyl48n/jUalUtO7XiN/fX8++NSf+aYFjUcoP/07k/OoZcRFXuW7sY1NcR7Yrse8utR762MSrqVz78y4arZq2fcuPfm/8XZiHW3WrU8ZED+J3YMX3Yq3c66kWnrWb+2z44zCWIhvxVcI9Bn73+UOpeWjZqSYJ1Up8Z9cuJrFv2/m/lVL7bxc4pY/dbue3335j3Lhxj/0i6tevj9VqpUaNGkybNq3ctZX7zJs3j1mzZj348XCix/SAuHHK6lJ+Gh4jblQKa0pEzEvEjd4jbiRZjUuW0aqMFLkc6FRGilxOQI2s3Cei4A70agPFLjdyQY/F5cKsMZPvFCsou0uFS5YVz40QMsVKhNxLYybHbsWkMXg8Or5aM1m2YowaPRaHhEvGI260Kg1qlZZCp6MMETxI701acSFeWgM2pwu7qywRPMIkPDcmjQ6dEg8PM3mTXlRUsorKzaEEmpmDRqUh0uzjwTCYtTqSCwoIMplxOWUyrcVE+vhQYLFRaLcT6+dHZkExFoeDCgEBZOQXU2S3Ex/gT06RhXyrjVh/PyxWB0lFxYT5eGPUarmakYmf0SAYU0qvTbP4GPaUaifec+kGkgQN46O4k5ZDZmEx4X4+xAb6se/iLdQqFX0b1mD98Yu4JJnGlaLJyiviVnoOPkYDPepXZbGCWuhYpxL30nK5lpyJl1HPE23q8uv2kzhdouPG38vI6n1iUvN8t8bsOXWN26k5eJsMvNK3Od+uPkxBsY248AAGtavDh7/uFmbjqlG0qZ/A+0oMvFmdeFrUiWfuN1txSTJNasfRvVUN3vlkI3aHk2oJYYwc0pLZn24iO7eYkEBv3nmjJz8sPsjZi/fQaNRMeKUzeXnFzFggSHXNG1XklWfbMGPu2pI11aTe5OdZmDB1GU6nRPVqEcya2o8/Fh9mnWI47NGtDi+/1J6FH5aYiZ8c1pynnmrBRx9sYvdOsRZzl/ct++MwP327B4B6DeOZPnsAaal5jH7hBzKU9dWUWf1p3LwSS38+wM9f70KWoWbdGKa/PwRvX2MZ5EKLdtUYP6s/JrOeP77dw6KvdiHLMtVqRzN14ROEhPlx80oKs9/8w5OsGjW1N10VQ/ChHRf46O0VFBVY8fU3M2HBEBopo/o719OY98bv3L4qvDjDRnfkyVGdPB6YIzsv8PHEpeTnFGMw6Xh1Rn+6DG7seb4qyC3i00nLOLhZrClrNq7I+I+fKiNaJEli06KDfD9nLTaLHZOXgRen9aX7Uw9OYnIy8vn67WXsXy8mXOGxQYx+/0kati/fDCzLMse2nePb6ctIUrpnKteNY+TcIdRqVn4L7f0n+VY6Sz/exI7Fh3E5xXS9WqOKDH6jG8171PsvL+OTZZns1FxSbmWQnZpLVkou2Wm5ZKfmYlHEWulj9DYQER9KRMVQIiqEElUxDL8Qn/+Wfp3WfYXAObXrAkV5xf/UmsqiNBKb/gmBU6Ve3CMf53JJHFOSSU0f0msDsGuV+F1r1K76A9FtgIK8YvYoq+CeTz0o5M4du8nVP++iN2jp/XTZ/hpLkY3Vyupq6Mtty/w83bqayj6lEuHp+6Y3P326HYDWXWqidIs+9vyPEjhr1qwhNzeX4cOHP/QxERERfPvttzRs2BCbzcaiRYvo2LEje/bsoU2bNuW+zZQpUxg3bpzn//Pz84mJiUHEvUUCysOcksvSwkHvWUsVu1yoVULIgNpjGpaV9ZJWZcLispcSNyokpdOmNAncHft2SiqPebjQKSLhRS4hTJCF/0ZMbsQKyuoUZX5mZXJjVIvVlbvML9cuyvzcHh3hw7FgVtqLZVQecaNX60RTscvpIYKDigCdFxmWYnx1RgrtDpySXIYI7sYwuIng+Xbhs0nKF+KntLiJ9VagmRotQXoz9/Lz8TMYUQEZxcWEe3lTYLErXCk/0vMLsboES+pedi52l0TV4GASM3OxuVxUCQnmXlYuFqeTysFBpOcVCqET4I/d4SQxO5cQby/8DAbOJ6Vj1uuoExHGgWu3AehcraSduGWlOM4lplBgtVMxNBAvnY7jN+5h0GroVqcKa46KJ4H2NSty6W46aXmFhPh60bxyHMsOiDVOv6Y1OXbpDqk5BQT5mOneqBo/KpOaDvUqUVBgZdfJ62jUakb2bsaK3WfIyC0iLMCbpzo34POl+7E7XdROiKB5zXg+/l1c8XRsXJmIID8+/0NMQXq3rUWgt5GPFWBmz7Y1qRgVxOwvNyPL0LJBRbq3rsHUD9ZitTlJiAvhrRGdmP/lFu4m5+Bl1jNrfB/2HbrCemUFNbBXAzq0qsqbU5aKNVWwD++905+9+6/w+1IxOm7fphqjR3Zk/oINnDx1G5UKXn6pPe3bVmfC+MVcv54m6ODje9CgQTwTxv7B5UvJaDRqXh/blU5darFg7jp2K7DMvgMb8crrnTmw5zIL56zDZnMSHRvErAVDCAn1Ze7bK9i/Q4ijngMb8upb3cnPLWbiyJ+5ePYuKpVKoBheaI2lyM67YxdzRJnO9BjUmFcm9UCv17Jj3Wk+e3cNdpuTsKgApn30JJVrROF0uPj5k62s/FEkqGrUj2PywicIUYjbO1af5IsZq7BZHAQEezPxo2EeSKbd5uSH+RtYpzwxJ9SMYvKnTxFdsWQacvrAVRaO+52s1Dw0WjXPvtWDga90KGMQTk/K5pPxi8ukWMYuHPaAx0GWZbYvOcJ3s1ZSmFuMWqNmwCsdeeqtnhjN5Rt4715L5ZupSz0+m4BQX56f1p9OTzT/S6Lk7rVUlizcyO4VRz1Ff/XaVufJ8T2p0/Jfg2k+7DjsTm6cTeT62URuX7jH7Yv3uHXxHoU5fy8iff8JCPWjZZ+GtO7fhNqtqv7/1rsTXz2KmCrh3L2aytkDV2jRs3xz7qNOUZ4FALPPX8c/XFY8NY8TOBeO3iA/pwhvPzM1G5dfBeByutipJJ86DnwQqwCwZclRbFYHFapFULOcHp0V34nnsk79Gz4gkNb/cYSCPAtRcUG0vo86vuirnQC07lKrTHLq1JEbnDpyA61WwxMj2jDjo0d+mZ7zP0rg/PDDD3Tv3p3IyAfjkO5TtWpVqlYtMUY1b96cu3fv8uGHHz5U4BgMBgyGB9WwXZbQYlQ6bEpi3k6lhE9AMl1C3Egl4kaFBpsSI5dlMc0Rkxs7WpWBYkUAuSQ8lPBil9MjbtSlOFSiA8eBUW2k0CV4UpKygjIp4kanKkEumDQmT5lfodJ3424v9tKKxmLRbWMix2bBW2sk1yZEUIAibtxNxQ5JIsTgTbqlEBUlZX/+ehO5ViuSjEfcqFETaDCTXlyEn96I1eHE5nqQCH4rNweNSkWk2Zc7eXmYtTq8NHpSFQq41emk0G4nxtePjPwibC4XCQGB3MnJwSnJVAsO5rrClaoVFsrl1EyBWwgL5WpaJk5JokZYKLfTs7E4nVQJCSJdQS9E+/uikuBGejb+ZiPxAf4cvXUPrVpNm8rxHnHTQWkntjld1IwKxWpzcv5uGj5GPa2qxLPuuPDR9GhQlUOXbpNXbCMuJICE0EDWK+biJ9vUY+vxK+QWWogJ8adx5Wh+3ymusvu3rMXFm6lcvZeJ2aDjpZ5N+WHjUYosdipGBtG5YRU+WbIPWYa29RMI9fP20MCHdK5HQaGV3zeJJ5gX+jcjOTWXX9cJ4fT8gGYUFdr4YpEQP/271KViZCAzP9mAJMk0qRvPsL6Nefv9NeTlWwgL8eHdt/rw0+KDHD11SySeXmxPcIA3495eJtZUCaG8+3ZfvvtpH7uVdMXTTzSnW+fajJ+4mMQ7WRiNOqZO6U1wkA+jR/1CVlYh/v7CTKzXaxk98icyMgrw8TUxY1Z/omOCeGvUIq4osEiUgQABAABJREFUgmf0uK706NOAX7/bwx8Ke6px80pMmdWfokIr40b8xI2rAgsxakIPegxoyOXz93h3/BKyMgrw8jYyac5AmrauQuKNdN4d+wdJiVnodBpee7sX3Qc0wm538sWctWxYKmLejVpWZtL7Q/DxM5Odns+8cYs5r7CkBgxvxfPjuqHVabBa7Hw1a40HglmvRSUmfPgkgcrY/d7NDOa/8Rs33EbjF9owfEIPj9HYbnPyywcbWfWtEKDRCaFM/PQZKtcpMf3Kssz2ZUf5x8xVFBdYMRh1PD+lD72fb/2A+EhJzOTzCX94ki4JtWN4c+FTDy3dsxRa+WPhRlZ/swOnw4VOr6XfyI48Ma6Hp5/nUSfpRhq/L1jPnhVHkSRRzNe4Uy2eHN+LGk0rPeat/94pyrdw8chVLhy+xoXD17hy8ma5Zlq1Rk1YbBCB4QEEhvsRFO5PYLg/Zl/TA0KrKK+YlFvpJN9MJ+VWOhn3sslJz2PD97vY8P0u/EN8admnIR2faEHN5g+HRf67TtUGFbh7NZVbF+/9UwIn7Z6oygi5rzPmYSc3o4BEpS27ZpNH/3vt36gY8LvVeWg8/PiuS2Sl5eEb6EXTTg9OeRx2p8c83P+FNg/8e9y8lMzxvZdRq1UMHFHWalJUaGXFD0L8PPlqWfF/5fw9Du28iFqt4plRHT23S5LEj58I/2DPIY0Jj3p8z4/7/I8ROImJiezYsYNVq/66Q9p9mjVrxm+//fZPfFRdOeJGU0bcqDziRhQBlhY3blaURllLaVVGiiQXKtQeASPWTE70pWPfCglcq0x1jGoThS5hHnZJapwKT6rAaUWv1lPkEF4do9KB46URRX94brMLSrhD6bZRDMM+WhM5NiGC/HVmsqxFoqnY4cIlyx5xo1FpMKsN5NisBBrMZCpNxW5xo1Vp8NEZyLQUE2gwUWCz45AkYrz9uHMfEVynVhNi8OJefj6+egNqWUWmMq3JtVqxOp1U8A/gXk4eTkmmalAw1zIzxUoiJJSLqWKsXjc8nD+TUgEV9SLF32UZ6kaGczEpDackUysijFuZ2RTZHSQEB1JYbCO9oIgwH28CTCbO3k3FpNPSKDaK/4+9t46S6trWvn/l7e5GN9a4u7u7OzEgBHd3DRAkEMctENzdCe7u0A3tbuXy/bF2F91YknPPfe99v/POMc44pPYu7aq1nzXnI6ceCJ5Ds1JFOH73GRarjUoRwcSmZBKXnoWPqzOlgv04fFPKRqpaikM3HqE3mikR4oeLWs2pO8LAr1fdCmw/ewed0UTxMD9CvNzZdV70TPs0qsiJa0+ITcnCy9WJHg3L89PuC5jMFsoXDSYyxI9fdwsw065uabKz9Ow4IcYZAzvV5PqD11y9F41CLmNE7/qcufKUa9J/j/q8AVdvRdvTwb/pWZuMDC1LVgmDv1YNS1O1bDjj5u7CaDRTtKA/Ywc25tvlh3n2MgkHjYqpo1ry+k0q0+buAaB6lUIM/boBs+fv58GjWJRKOaOGNiM0yJMhw9aTkaHDx8eVObM6EhebzojhGzEYzISH+zBnbmeePUmwk4nDwryZNa8z2Vl6Bn+1mpRkCfDM6UjRYkHMnLCNC5IiqlOP6nz5TQMe3HnNrHF/kJGmxd3TiakLulKqXBjH9t1i2dx9mIxmwiJ8mb64O8Fh3lw4+YCFk3ag0xrx8XdjyuLuRJYKETlTo37n0R3R6enxdX16fl0fuVzOnSsvmD/qd9KSs3F01jBqbidqSiqm188TmTt0I6+kMMGeQxrTNc/Ce2LXdVZM2YFeK4jGoxZ2o0qDt+Oh6KfxfDt0Ay8k8NOiVw36TW6bz/AsPTmL78dtsbsRF6sQzqilvfJ1f0CMD/auOs26eXsw6EyoHVT0Gt2SDl83/ODFyGazcWbXVX6bup2U+HRAAJOv53Ql+C+UNABxr5L4fdF+jm+5aO/YVGtejh5jWv3bFFFWq5Xnt6O4dvwe147d4cHlZ/bnyi1XL2ciKxYkolQoESVDCC8RQmjRQNQO/5rU3Kg3cvvcI87vvsqf+66TnpTJgVWnOLDqFNValqf/nG4E/zf684SXEHldL++/+Zfun/hauLj7hXxYufRu3b0o1oOIEsG4f2CclFsWi5XzUlht7VblPnreIYlT16hTlXxhsLl17uAdUuIz8PR1/aB8fJs0jq7VvAxBBXzyHdu74QJZGTpCInyp907q+LrlYgTVoFU5wvL8Ns4eucezh7E4OWvo3q8eYOHv1v8agLNmzRr8/Pxo2bLlP77vzZs3CQwM/OsT3ym9FZzygJvcQE0h/bbY5d4KWa4RoBKDzSaRkMX9FDigzwNu5CjsQZoy1Oislg+CGwWiq5MLbhRI/BqwgxsHuYYskxgtCXWVMR+4Ucs0ZJlMuKkcSTMKcOModyDTaMRN5UiqXpznrnQk1aDFRelAlhTDkAtuVHIlKpRkGA34ODiTKJn5BToKcKOWK3GQq0jT6/F1dCZFq8VqI18ieJiLO9EZ6TgoFLgrHYnLzsbLwRGjyUKW0UiImxsJWdmYrFYKe3rxPDkV+ESuVGAgt968H71QMSSIm9Gx2GwieuFuTDxGi5WSAX7EporohTBPd+TIeByfhJuDhuL+vpx/EoVcJqNpqSJ2d+I6keHci04gLUdHmLc7gW6unLn/EoVcRseqpdh1+T5mi5XKhUPI0Rq5+lQY+HWvVY5NJ25gtlqpEhmKAhnHbzxFIZfxRbMqbD91h/RsHSG+7jSrUowfd53HZoP65QvjoFSy9ZjYQX3Rqgq3H8Vw83EMSoWcEb3qsefEXZ5GJ+GoUTH+i0Zs2neVp1FJODmomNi/KdsO3uDO41hUSgXjv27M5esvOX5e7PK/6l4TZ42aad+JVO/qFQvSp1NVJs7ZRVJKNl4eTsyZ1J7DR++yV+KHtG9dgbbNyzBy3FbiEzKE6d+U9qSlZjNq7O+YTBaKFPFn1oyOnDh2n5UrTwPCmXjS5Lbs23ODVdJiVrFyBFOmtef61RcsmLUXo9FMgXAfZn7bBblCzvD+a3gp+eMMG9eSJi3LcnDndVYsOCik4ZEBTFvUDW8fl3z+NtXqRjJ2ZgccndSs/+EEm6XnK1MpgokLu+Lh5cydqy+ZO/p30lNzRLjm/M5Urh2JzWZj28ozrF0qIhXCiwYweVlPgsPFont6/y2+n7wdXY4RTx8Xxi3pQVkpKkGvNfDDtF0cl7o6pasWZOySnnaisc1m4/Dvl/hl+k4MehNuXs6MWND9Pfn3pWN3WTZmC+nJWShVCnqPakHHgQ3fG5m8eZbAkpEbeXBFyMTL1CjCsO96fpQQHP0kjhVjNnHnT/F9Dgz34es53aja9P0k53crJS6dTQv2cWTjeTvHpkqTMvSe0IYi5cL/8v5/VWaTmZun7nNm5xWuHL5NRnJWvuOBEb6UqhFJiWpFKFW9KCFFA/6tvB61g5rKjctQuXEZhizty+2zDzm9/TInfr/ApQM3uXb0Dr0ntafrqFb/LWO3CCmQ9NWDmH/p/olSB+dj0ux3644Uo1Kmxqc5VvcuPSM9OQsXdyfK1fqwPDwpNo1rp0SXutk7uVAgBWNKHZjWfWq+B4Bio1I4Kxl6dumfnxebnamzh2r2HNQgH2i/ffUFNy48Q6lU0PPrt9wbk8nMuhXHARGO6+Hl/H9f2KbVamXNmjX07dsXpTL/S5owYQIxMTGsX78egKVLlxIeHk7JkiXtpOQdO3awY8eOf+GZlXaDPqGEeps19S64EV42ErixihGWAg16a15wo7QHaeYqqtR5PW0sVuzkYWsecCNTYjTbsAAOcgcJ3LzNk1LLNGSbTbgoncgwihGUSqYhx2zGTeVEmlFrN+7LMuU6FYvzRGK4XoAgKa7BRwI3GrkKbHKyzSbJqVjwcAIcXYnNESRiOXIyjQYCnFyIzxbHc8GNDBnBzm68zhSjKAe5kkRtDr5OzmTrjOjNZsLdPYjOSMdqg6JePjyRQjNL+fpxLyHxPXBTPjCQmxK4qRQcxLUP5EpVLRDCtagYLDYb5UICeRqXjNZoooifN9laA/GZ2fi4OBHs5sqVF29QKuQ0iCxoBzeNSxXmwqMotEYTRQN90MgVXHkm+DetKxa3G/jVK1mQV3GpRCWl4+7kQOtKxVl3TFzwGpQrTEJKFg+iEnBQKfmsaWXWH76GzmCiRAF/yhYMZNU+cZFuX6c0cYkZnL7/zO5xc+jcfZ6/ScHJQc2oXvVZufMi8cmZeLk7MbpPA5ZvPE18chZe7k5M6NeEFRvOEB0rPHCmDmnOlj1XuXVfkIfHft2E56+SWLVPGAa2bVKWmlUKMnradrQ6IwVCvZkxpjU/rTrNlesv8yil/BgyejPZ2QaCAj2YN7Mj584+YfVaMf6qWbMIY0e14OefTnJYMvlr36ESX31Vj++XHOaoJOVs274iAwc1YsvGC6yTlBNVqhdm4oz2vHyWwIwJ28hI0+Lp5cy0+V0oWjyQFQsOsk9SKdVpVJJR09pi1JuYOGQjtyRVUc9+denVvx7abAPTh27iipQz1b5Xdb4a0RS5Qs6uDX/y23eHsVqsFIwMYMqSngSGepGTrWfxhO1ckAiVDduWZ/C0djg4qjEazPw6dx8HpIDNMlULMm5JT/tI6tXjOOYO2cDrZ4nI5TJ6DGlMt8FvicZZ6Vq+H7+V89JCXr5WUUYv6Zkv5FCbrefX6Ts5IvmEhEcGMmZ5n/ds8S1mCzt/PsGGhfsxGcyCcDy1Pc17vy8TBwG8tiw5yPYVRzGbLGgcVXQd3oJOg5qgdvi0qiknQ8u27w+z66fj9rFQhQYl6T2+DcUr//3U6g+V2WTm9tmHnN15hfN7r+fj0Di6OFCuXgkqNSpNpUalCQj/55Ye/2opVUoqNixNxYal6Ty8Bb9O+J2rR++wZvp2nt58xehf+v3bIySCpO5D3siKv1s2m82eQRX4Nz4nm83GNYlzVfYjoCW3TkjE4Votyr4XeJlbBzb8idVqo0z1woQWfr8LeOvCM57fj0HjoKJlj/fJxVt/FirLSnUiKVQiP9Vk59rzZGfqCSvkl497Y7VaWfmdMCNt3qkSgXlk7vu2XCHuTRqePi50eIes/HfqfwXAOX78ONHR0XzxxRfvHYuLiyM6Otr+30ajkdGjRxMTE4OjoyMlS5bkwIEDtGjR4h8/r8lmQ5mnc/M+uHFAbzULQ71cvxurEosEUj4OboRh31twk5tDJbo6eqvVDm6UMiU6s80+gsq2CH5Nbuq3GGOZcVE6kmHUI5yKVWjNZtxVTqQatciRo5CpyDGbJDM/0c1xUTiQYdTjoXa0Ax4ftSAUOyrUmC1gsJjtoZlvScRCQWW12sgxmwhydiNWSgTPBTcKmRw/B2dissQoCguk6qRE8GwtJouVQp7C7wagmLcPjxLfBzf5QzMDuPUm/r3OTd5cqbzRC1UKhHArKhaTxUqpIH/i0jJJzdER4umGi1LNndcJOKpVVA0P4dhdwb9pWS6SY7efYrJYKVcgkKwcA/cSknF1UNOgVGF2XBKjppYVinHtyWsSM3II8HClRmQYm0+J7kvb6iW5/TSGqMR03J0d6Fa3HCv3XcZitVK1eBjeLk5sOSHO/bxFFS7decWjqEQc1EqGda3Lur2XSUwVHjeDOtdi6aYzZGbrCQ3woH/HGsz/7ShZOQbCgjwZ0qMu838+SmqGFn9vVyZ83YTvV5/i1Rth8Dd9eEsOnrzHGalN/XWfOrg7OzBx1i4sVhvlS4cyYkAjZi3Yz7MXiWg0SqaObY02x8CYSVsxm62UKhHMtIltWb36bexC505V6NalKtOm7eT2LWHyN2hQI+rXL8HEsVu4c/s1crmMb4Y0pkXLciycs5eTEpm4Y9eq9BvUkBOH77JMchQuXDSAGQu7otGomDR0E7euClJk34H16f55baKeJzJ95O/ExaTh4KhmzMz21GpQgugXicwYtpmY6BTUGiVDp7SlUety6LVGls3YwSkJZDRoVY6hU9vi4Kgm6mkCs4ZuJOZVMkqVgoGTWtO8i5BoJ7xJZc7QjTy9K8YH3b9pSM+hjVEo5CL/adtVfpq+C4PehLe/G2OX9qRMnmDLe5efs2DYBpJi01GqFPQd25IO/erlAyMPrr1g4dANxEcL878O/evTZ0zL9wBI9JM4vhu63q6AqVCvOMMW9cQv5MMcg2sn7rFi7Gbio5IBEYg5cH43AsJ8Pnh+bhn1JvatOsWW7w6QJQGPElUK8cW0jpSq8a9zUmw2G89uveL45j85te1Svk6Np587tdpVolabSpSsURSV+n/+UhMWGcTsnaM4uPoUP4zawPk914h5Fs+CgxNw+8Ro559WrpO0UW/CbDKjVP39954Sn05mag5yuYywyL+eSrx6FEt8dApqBxXla3/c6FaXY+CcpIJs2On9wEsAg97IIQn0t/n8w3zWbb8InlnTrlVx88zvoxQXncLxXcKdvMfgRvmOZaTlsFvi7fSWfm+5de7oPZ7ej8HRSZ2ve5OZrmWz9Hx9BjX8KLn+U/U//60DmjRpYk+dfbfWrl2b77/Hjh3L2LFj/y3PK9LCFZIS6m1K+IfBjSwfuDFYzShljuRYzShkKntKuFBU2ezgRiUTUu9ccGOwWu1AJi95WCPXSODGkQwp9VspE/wdV6UT6UYdcul16i2Wt+BGJkduU6Izm4UCSi/Oc1CoyTQZ8FQ72QGPl9qZJH22FMNgwWS14e8o3IdzOzsJ2hxcVRopY8pCsLMbMRK4CXUW4EYlV+CpzpsxZUFrMhHi6kZ8ZjYWqy1faGbeRPCSecBNKV+/d0IzE5DLZJQJ8LeHZlYKCbbnStWICOPCCwFuakaEcelFtJB7hwXxJC6ZbIORQr5emE1WHudGLwT4ceah6Fq0KleMgzceY7XZqFEkjKiENGLTsvBxdaJCRDB7r4rWbMdqpTh+4ymZOgMR/l4U9fdh9wVx8e5ZvzzHrj0hKSOHAE9XmlWM5FepU9OoYhG0WiOHLj9EIZcxsF1N9p65x+vEdDxcHPmmY01+3HqOzBwDBQI96dm8Et+uOYHBaKZEoQDa1S/N7J8OYzRZKFUkkG7NKzBt6QF0BhNFCvgyqFcd5iw/REqaMPibNrwlv248z91HMaiUCiYObUb06xQWrBFdlMZ1i9OlTSXGTNlGYlIWnh5OzJ3agSvXXrB2o+j25Cql5szbyy3JrXjo4CZUrFCA4cM28uaNMPmbMrUdgQHuDPlmHbExaTg5a5g8rR2FC/szavAGHj2IEeqp0c1o2rIcq386ybZNYrGsVb8YY6a0JSk+g7FfryP2dSoOjirGzexAjXrFuHD6EQumCF5NQLAnMxZ3J7ywP5dOP2LBxO1ocwz4BrgzdWkPihQPIu51KjOHb+Llk3gUSjn9R7egTY9qyGQyzhy8w1KJM+Mb6M6kpT2JlMi+V04/ZOHoLWRn6HDzdGLMou5UqiN2vbocAz9M3ckJaYGuWCeS0d91tytALBYrW5YfZfPSI1itNoLCfRi3vA9Fy74l/ppNFjYvPczW5UexWm34hXgxaklPylTPPzqwWKzs+vkE6xfsw2Qw4+zmSP8ZnWjcrdoHRyYp8en8PGkr5/aI1+YT5MnAed2o0aLcJ0csNpuNMzuvsnrGDns3ISwykM+ndqRa87L/8ngmKSaVk1sucPz3P4l+FGu/3d3HlVptK1G3Y1VK1fw/p1z6p9Xii/oUKBHC7J7LeXn/DTO6L2PevrH/Nl+fvB0hXbYeV8+/D55yeTshhQP+VtzFJamzWq525Cd9c84fuIVeayQo3JeSVT6snjq9+waZaTn4hXhS7QMS8mf3Y7h5/olQ9H35PgDa8tNJrBYrFWsXpXj5/GqubSvPoNMaKVQ8iBqN3nLYjEYzayQCcecv6uRTXG38+RTZWXoiivrTJI/Z4P1b7ycffKz+VwCc/6kySf0QKwosNiu5oZt2cCNTo5O6MiarAqsdpHwY3FhtwhRQJct1IxY5VNi7OrmdGz0qmRqtWdxPLdeQYzHipHAi3WhAlsvfsVjs4EYhU2C1yjFarXZwo5QpsVpl6K0WEZCpE+BGLVORbTJKgEYQhj1VwuzPVeVAtsGMxfYW3MiR46F2JEmXg4fakRyjIBHnxjCAjBBnd6IzM9AolLgqNSRpc/B1dCZLZ0RvMRPu5kGUlDEV6eXD4xSxy8wLbkr4+PIgIRGlTEZRL2/ux4ugzKJeeUIz/Xy5HROPQiajbFAA16LEWKpaeKgd3NQpFM7ZJ69ER6dgKDdfxQpFVJAfqZk64jOy8HN1JtTDnYtPo1Eq5DQt/TZ6oWHJQtx6EUtqto4Qb3cifDzzuRPvuXQfvdFMyTB/PB0cOHbzCXKZjM8aV2LH2Ttkag1EBHhRqUgI646IkVWH2qV5Gp3IvZfxaNRKBneoxbr9V0nJyCHIx43eTSuxZMMpkTpeKJCGVYrYPW5qlougYrFQ5v96FJsN6lQqTPWy4Uz//hAWi5XKpcPo1LQckxfuRaszUjDMh9H9G/HtD0eJjknFxVnDrDFtOHrqPoeldnXvLtUoXzKUERO2kKM1EhbixZypHdi05SJHJBOJ7l2q0rJpWUaN+Z3o1yk4OamZOrkdTo5qBg9aT2amDj8/N2bP6Uxmhpah36wnO1tPQIA7s+d3wWqxMqTfahITMnF1dWDqnE5EFhdk4ovSOKnHZ7Xo068e1y8+Y+6kHWhzDPgHujP9u+5EFPZj86ozrPtRkKTLVopg8rddcHV35PffTrP+B+FvU7piOJMWdcPDy5kbF54xd8wWsjN1eHq7MHFRN0pXisBssrBm8WF2SgqtctUKMe67bnh4uWCxWNn0/TF+lySokWVCmbi8F35BQqUS9SSeOYPW8/q5GEn1GdmMzhJBGSAlPoMFwzZwRzL2a9ixMt/M6ohTngtZ7MskFgxdz2MpPqJBh0p8M7vze7lQMS8SWTxsPQ8kd+NKDUoy7Lue+EhS9bxltVo5svFPVk7fTk6mDrlCTrv+Dek1tjVOrp8eqzy4/IxfJ//Bo2vieXyCPOk9oS2NulX/ZLjix8pqtXLrzEP2/XKcSwdv2tVWagcV1VtWoFGPmlRsWOpfeuz/iSpZrQjz949jeMNZ3LvwhFWTtzJwYa9/y2Or1EpUGiUmg5mcrH8GcJ7fEwAnl8fzV3XxsOhgVm9W9pPnHZWsHxrnCX/NWzabjd2rJW5N39ofBKe53Zs6Lcvi/06XMTbqbfem55DG+Y6lJGayT9rs9BnWOF+388DWy8THpOHl60qH3m/TxF+/TGK/FHrbf3Rz++t5/SqZaSN//+R7zVv/0QBHkIUVCE6/Br3V+gFwI8ck5VLJpBypt+BGjcFizgNusMu+1XKN3YDPJgEf0bnJr4xSydRo84Cb3C6NwfoW3ChlSkwWGWabzQ5uVDIlZqsMk9VqBzcKmQIFCrQWE95qZxIlcOOhciLVoMVd5UCGwYjVBgESiVghU+Cq1JCi1+GlcSJdr8Nqg1Bnd15L4CbISUjBnZQqVDI5KTotAU4upGh1mCxWCrp78iJVOBVHevvwOFmAm2JeYiylkMkp7OnFw8QkVHI54e6ePEpMRqNQEObmwUMpNDPCw4N7sQmoFQqK+fpwMzoOpVxO+ZBALr4UuTt1CoVzTgI3IlcqCrPVRoWwIKIS0kjV6gj1csdNrebGq1gcVUrqFovgoBS90KJcJOfuvSTbYKRIoDduDg6cf/QKpUJOlxpl2HZWuBNXKRqKUW/mwsMo1EoFfRpWZNPxG+hNZkqFBxDq5c7202L31LdpJc7ceEZUQhpuThoGtKnOTzsukKM3UiTUh+ZVi/PdhlMCzJSNIDLMl+83CZ5Lqzol8XRxZLnkgdO+UVl8PJxZ8Ksg1jWpVZzKJUOZvGgfFouV8iVD+bxzdaYs2EtquhY/H1dmjmnNqo3nuXYrSqivvm6MWqlg7NTtIneqZAgTRrVg0dLD3LgVhVwuY8TgJhQu6MfQ4RtIT9fi6+vK3NmdiXqVzNTJ2zGZLERGBjB7TmeuXHrOkkUCbJUoGcyMOZ148jCOOVN3otMZCQ71YvbCbqhVCkZ8vZYXTxNQqRWMmtia+k1Ksev3y/y2THQ1SpYLY+qCLjg4qJg7YRtnpbFW6y5V+HpkM0wmM3NGb+G85IfTqmsVvh7TAoVSzrY151gjdVAiS4cweXEPfAPcSU/JZu6IzdyVxl6dv6pL32GNUSgVpKdks2Dk79y8IEZ4rXvV4KvxrezkyBO7rrN88nYMOjGSGresZ764hSsnH/DdyE1kpubg6Kxh8JzONMhjS58r//5pynb0WiPObo4MnteFeu+4v1qtVvatPsOaObsx6Ew4ujgwYGZHmnSv8cELzuuncSwbsZF7l8TrLlK2AMOW9P6oVDy34l4lsXrGDs5J6eIOzhq6DG9Oh28a51N2/d3KTs/h6KbzHFh5kjdSmCNAqRpFadyzFrXbVf6XM5f+p6tA8WAmrBnIlI6L2fvrCdHZKR7813f8G2WTAKDiH5Knc8NLi5T9tJ8NCCfsp1LXtVqTj5PLox7Hce/yc+QKOY0+Mp66ee4Jrx7F4eCkpmnX98nFb14kck5SYHV+J/wSYNPyY1gtVirViXyve7NxxXGMBjMlyhegcp23PKGsDJ19BNX7m/wjqF8XHcJqsVKtXjHKSyNim83GTwsPYjH/XxTV8D9Zb8GN+oPghjzgRoRkWuzgJnd8BDK7okppBzcOaM2iPySO2exjKY1cQ7akjFJKeVN5wY0VBSar1Q5uVHIVBrMNi82GmwRu1HIVRrMNs82Kp8qFJJ0WlVwJVhl6qxlvjQuJuhzJ20b44XiqHUnRCR5OgIMrsdmZqOQKHORq0gx6fB2cSZIypkJd3HmdmYFcJsffwYWYrCxcVWqQjP2CXdyIzxKjqMIeXjxLSRXgxsvbDm6KenrzOCkFpVxOATePfIngz5JTcFap8Hdy4VlyKs5qNYEuLjxKTMZJpSLcw4O7MQlolApKBPhxNSoGuUxGjfAwzj15BUD9ogU5/fgF2KB6wTDuRceTbTBS2N8bm9nGg5gkXB00VI4I5shtcZFoV6kEh68/xmC2ULZAICazhRsvYnBUq2hXuQRbztzCZoMGZQrxJiGdZ7EpuDio6Vq3LGuPXMVitVG9eAGUMhmHrz5GLpPRv3U1dp+5Q0JaNv6eLvRoXJFlW89hMluoEBlC2UJBrNgqlAOtapdEKZezZo/YmfRpXZnklGw27hPkv36da5Ccks3KrcICvVfbyrg4qJn34xEAGtYsRuOakYyfuwud3kThcF8mDG7G/O8P8exlEo4OKqaPac2Tpwms3ig6GQ3rFufL3rWYOG0Hr6KScXRUM32SIPSOHL0Zg8FM4cL+zJnVkaNH7rFaUkjUqlWUceNbs2XTBTZvFK+nfoMSjBnfioN7b/LT9wKwlKtQgClzOhH7OpVpY7eSlpqDp5cz0xd0pXDRAJbN3c8hKTG4WdvyDB7XkvTUbCYN3sCzR3HCI2d8S1p0qET8mzSmD9/Eq6cJKJUKBk1sRfOOldBrjSyctJ0zhwSgbNK+IoMntUatUfH47mtmD91EcnwGjk5qRs3rbJeAP7oVzZwhG0iOz0DjqGLY7E7UbyNkrQa9iZ9n7ubwFpFDVaF2UcYs7mFvkZuMZtYueOttU6hUCONX9Mkn7c7O0PL9uC2c238LEAGZo5f1wu8dn47EN6ksHr6B2+eFRL58nWIMX9zrg1wbk9HMH98fZsvig5iMZhycNfSd0JY2/Rp8cuSjzdKzZfEBdv14DJPRjFwuo0mvWvSZ2C4f+fnv1pun8ez+8ShHN53DoBWEZCdXBxr1qEXLL+vbpdD/t1eVpmWp3qoCF/ffYOXkrczaMfKv7/QXZTKaMZuEOs3B5e+DSqvValfRlar+1/5DZ6WRZdlakXi8E5WQtw5sEOPoao1LfbBTCLDzt1xuTTVcPd4HrH/8JLqp1RqVpGDx/OThqKcJnJJcjfuMaJrvWPTzRI5KSsTPRzXLB+a3rDxNVoaOAoX9aJInq+rKuSdcPf8UpVJBv5HN7LdfPP2I65eeo1T+fdD4Hw1wrIBN4sXI3wM3CnvoJqgwfQTcCF4O9hgGjdyBHDu4kb8HbrJMUoCmTI3eapYciA0oZArMkgeOi9KRdKMOtVyFziTci3PVUm8jF2x4qMQISiNXYbbaMFktgkejy0GOHGeFhnSjHi+1E8k6wcMJcBCRC2q5EpVMSabRgL+jCwmSgirUWYAbhUyBt9qJ2GwRoGk0mdGZzYS5uhOdLjo7ecFNUS9vHqekIJfJKOjmxdPkVDQKBQHOLrxITcVFrcZT45AvEfxlajoeDg54aBx4npyKm4MGfydnHtpDM724+ToOlUJBpZAg/nwmtf8jC3LqoWi9582VKh3iT1qWjpjUTHxcnIgM8OHU/RfIZNC+Ukn2XhHRC9WKhJGYnsXLxDTcnRxoVLowW86K3UmrysW5/TSGmJRMvF2daFG5OKsPCQDSuGJRUlKzufQsFrVSwYA21Vl/8AqZWgPhAV40r1qMZVvOCFl4xcJ4OTuybp8AM71bVuZ1XCpnrj1HJoOhPepy9U4UF2+9tHvcXL4Zxdmrz5DJYFjf+ryJSWXzTnH/7m0qUSDIi8kL9or4iLIF6NejJhPn7CIxOQsvDyfmTu7A/kNvAzN7dq5K3VqRDBuzmeSUbLy9XJg/qxN3bkfz488nsNmgapVCTBzfil9+OcUhibDbqXMVPutbm+8WHuD0SWF62LNPTXr1rsUvK46xR1qwmrUqy9DRLbh49jELZu7BaDRTsLAfMxd2w8FRzcQhG7lzXXJAHt6E9t2r8fheDDNG/U5qSjbuHk5MWdiV0hXCuXPtJbNHbSEzXYuntwuTv+tGyfIFiI9JY+awjbx4LPg2X49rSSupzX505zVWzNiDyWgmJMKXKct7EVbID5vNxqEtl/lp1h7MJgvBET5M+aEPBYoI75PYV8nMGbyeF1IOVc+h+VVSCW9SmTdonX3c1PbzOnwxsU0+Sez9qy9YMHgdiTFpwrV4dMv35N82m42T26/w48StwtzPUc1XU9vT8rP3zdEAntx8xeJh6+zy4sqNSjF4Yc9PyoWtVisn/7jE6hk7SI3PAKB8veL0m9WFgqU+ni7+obLZbNw6/YCdPxzhijT6AOHr0rp/Qxp0rf6P3HX/b6l+s7ty9chtrhy5zfUTd6nYsPR/6fH02re5h/+ka/bmWQJZaTloHFUUKv3pTh3AGalLV7fdh7OiQHDLTuwQa0iLPCOgvPXyUSzXJWO+dl++nwEZF53CCWmT0i2PAV9ubfz+qMiOalKKIqXyA9+1S0THtXrDEpSqGG6/Pf5NKnulsdVXI5vZR5smk5lfFx0CoF2v6gQXEN99vc7Iz5LSql33ahy9/tG3nK/+owFOXnBjsJpRyDRorRY+DW406CwCwJjeiWHQyB3JMRslp2JxTGMHNw5kSbJvuUyVD9woZSIHy2KzSVJwHRq5mhyTFRvgphTgxlGhIdtoxgZ2tVSuK7HZasVbAjcKmRwHuSAZe2ucSZKM+/wlcOOgUCGzyck2GQl0eksyDpHGUiq5AjelIwnaHLwdHMkxmDBIPJtXEs+miIc3T1NSkCGjsKcXT1JEtybUxZ3nqak4qVR4aaR0cAcHnORK3qSLdHAVCt6kZ+Lr7IRariAqLR1vJ0dcVRqeJaXi7qDB39WFe3EJOKpUlArw49KL18hlMuoUDreDm4bFCnHm4Qth2hceTHRiGklZWoI83Qh0c+HCE8G/aV2+OLsuvY1eePwmibj0LPzcXahUMISdFwQnpUvNMpy6+ZSULB0hPu5UL1aAjcfFL6lDzVLcfR7Hs5gUnB3UfNmiCr/uvYjBaKZURADlCwfz807R6WhXtzRZmTp2nbqLTAaDutTmws0X3JTIwGM+a8Du43d4+FzwdSb2b8KOw7e4+zgWtUrBxIFNOXvxCacvCV7QkM/qk5NjsKeBN61XgmZ1SzBq2naycwyEBXsxc3wbfl51hsvXXgii8NeNCApwZ/jY39HpjIQX8GHu9I7s3HmVnbvFe2rdshxffF6HmTN3c+P6K6GUGtyYevWKMW707zy4H4NSKWfE6BbUrhPJ9InbuCLxUL4c2IAuParx+7o/WSd501StWYQJM9qTnJTFuG/WE/s6FUcnNRPmdKRqraKcPHSHxTMFIAkv5MeMJT0ICPbkwLar/Dh/PxazlcLFg5i2rAe+/u7cufqSOaM2k5GmxcPLmcmLe1CqYjgmo5lf5u3ngNR9qdagOKPnd8HZ1QGD3sQP03fZXYlrNinFCOkYwIWj9/hu9Ba02XrcvJwZt6QnFWq/VRJdPHqXxSM3k52pw8XNkRHfdadGHm8Zi9nClu+PsnnpYaxWG4EFfBi3oi+R77Tl05OzWDHud/48cAuAYhUjGL28L8EF3/e1MeiMbPh2Lzt/FInn7t4ufD23G/U6VP4kEfjx9Rf8NH6LnWcTGOFL/9ld/zGB2GKxcm7nFbYuPsCLu28Vq1Wbl6PDoKaUrVv8fyTX6f9UBRcOoM2ARuxccYTN3+79LwMcbabIklKplf9IPXZX8jQqWj7iL+/36mEsrx7GolQpqNG83EfPO7XrGtosPYEFfChf+8My8h3SmKhGszIfDHrd8sMJMX6qG0lk2fzA6+m9N5w/fBeZTEbv4U3yHbt37SUXTzxArpDz+cj8nZ3VS49iMlkoV7UQlWq9/f3t/f0yb14l4+HlTPd+b8HW1rXnSYhLx9ffnY69avDN6I++5Xz1Hw1wDFYrzjKnj4MbmzD8U0jgRiUTQZhvwY1M3M9izgduxP2RyMMGu6eNIA8rMUoZU+lGAyqZEr3FhhUZLgoBbhyk7Ci7j41Ji5NCGPgJ4z4BbhwVGvRmQRjOHUspZQpUMiXZJiM+GmcSJXDjpxEZUk5KNRaLDZ3FRFCejKlgJ0Eo1iiUOMmFa7GfozPpOh0mq1VkTKWlATIKuwtwI0dGhIcXz1JFt8bf0YVXaem4qjU4K5XEZGbi4+SEzArxWdn4u7hgMdtIyMkm0NUVi8VKbIZIBFfaZESlpuPt7ISbg4YniSm4ajQU8vLk2qsYKTQzhDNSaGbj4oU5cf8ZNhvUKBzGg+gEMnQGInw9cVapuPFS8G8aly5iz5VqXj6Sy4+jhbmfjweF/Lw4dE2KJqhXnr0XHpCtM1AkyIeiQT5sPys6Ib0aVuDU9WfEpmTi7eZE9wbl+HHXn1gsVqqXLICfuysbDwvQ8FnLytx/Gsf1h8J/Z2Sv+uw8fpvnr5NxdlQz/otGrNx2gei4NNxdHJjQvwm//v4nL9+k4OKkYdqQFmzedYXbD98IZdTgZty695q9R6WuTIcqFA33Y9zMnZjMFkoWC2Ls4KbMW3SAx88S7DLwzEwdE6Zux2q1UaFcASaObsn3K45xXlpE+31Zjwb1izNq5GZevkzCwUHF5CltCQn2YsjAdcTFpuPi4sD0WR0IDvFixDfrePFMyMzHTmlLtZpFWDhrLyckL5wO3arSb3Ajbl97xezxf5CTbcA/yIMZ33WjQEFf1vxwnC1SBlS1OpGMmy0iHlbM3WePVqjbtBQjZrRH46Bi35ZL/PztASxmK0VKBDF1WU98AzxIS85izvDN3L/+CplMRq/BDekmEYIT3qQye/AGnt2PQS6X0XdkMzr3r4dMJsNitrB20SG2S2CsRMVwxn/fy55DZTKaWTN/H7skH5/IcmFM+KFvvu5JUmwa3w5eZ0//btChEoPmdslHNga4euI+S4ZvIC0pE4VSTs/RLekyuMkHCbj3Lj5lybB19mDMeh2q8PXcrnj4fHzkkJ6cxZqZOziyQYwhHV00dBvZkvbfNP5HSiCjwcTxzX/yx5IDxEnPr3FS06Rnbdp904SQIv99br//26r94KbsXHGE+xefkpaQgee/MNbLrSTJqM8n6O9FLeTW9VNinSpft/hfnnv8D0EartywJK7vyLVzy2azsXeNxPXr+2FfpYQ3qZyWRl2d8ki0cyv2VTLHd4rNQo+hTd47vlbqqtRvU97eIQXRWfz12wMANOtUidA8wP7O1ZecPXIXuVxG/zHN7eA5NTmLTT8LsPXZkMY4S7+r2NepbFsvxmwDRjZ9L5n8U/UfDXDkvNu5yQ3dlGOTuDMKmSPafOAmF8C8D24UMiUGC1gl0z2txYiD3JFMk8iYAgVGm1Xi3IiMKZ3kbOyscCTDJEBLpgRuXJSOpJt0OCsFOVikgzuTYtDhrNSQI7kS546l1HIlMpscrdmEryT5FvJvZ+K1ObiqHNCZLJjekX8HO+VJB0dJql5HgJMLyTk5WGw2Crp78SJVuA/ndm6UMjmhru68SEvFSanCU+3I64xMPB0cUcpkJGTnEODigtFoJk2nJ9jNjRy9kQydgVAPd7J1Bnt+lMlgITY7mwA3F1RyBS+T0/ByciTAxYXbb0TcQtngQM4/jUImE6GZx+6JTkK9YgW58iQanclMsSBfLCYr998k4uqooWbhAuyTcqXaVynJsVtPyDGYKBrkg7eTE6fvvkApl9OzXnm2nb6N3mSmTEQgXs6OHLzyCLlMuBPvPnuXlEwtwT7utKhajB92ih9bk8qRmEwW9p67Jzo1HWtx4tITHkcl4uSgYnTvBqzceZG4pEy83Z0Z2bseS9edIjk9hwAfV0Z93pBFvx0nMSUbH08XJg9qyvLVp3j5OkUEZI5szZ5Dtzh/VYy1hn/VELPJwoxFwq24drXCfN6tBuOn7SA+IQMPdyfmTm3PlWsvWbdJeo0NS9Lv87pMn7mLBw9jUakUjB/bitAQL4YMXk9KSjZeXs7MmdsFg87I0G/WkZWlJyDQg7nfdsFoMDOk3xpSkrPw9HJm1oKuBAZ5MH7YJu7dikaukDF4VHNata/IgZ3XWLHgIFaLjZJlQ5m6oCsOjipmj/uDP6VRV9fPatH3m4bkZOmZMWwTtyVi8GdDGtH1yzqYzRa+n7GbQ1IHpn6LsgyXQM/ju6+ZNWQjKQmZOLloGLewG1XqCe+PG+efMH/EZrLStbh5OjN+aQ/KS86uaUlZzB+2kTuXBL+h/Rd1+GJcS7vZWWJMGnO/WWsfSXXoV4/PxrXKt4u+eOSO6OxkaHF00TB4bhcadMgfRKjXGlk9axf7JJl+gchARq/4jMKl3x8V6XMMrJmziz2/CgWZd4AHQxb1pNon1DAWi5VDa8+wdvYustO1ADTsWp0vpnfEO8Djo/d7tww6IwdWn2L70oOkxKUDIi6h3cAmtBnQCDevf58nzP8t5RfiTdEKETy58ZJLh27S/LN6//JjxUdLTsQFPu1PlLfMJjO3pOyxSg1KfvJci9nCSWns1OgDhODcunPhKVGPBXG4yUfO2/nrKSxmK+VqFiXyA0Gdm74XLuBV6hd/jzx8+9Izbpx/glKloNfQ/Mqp0wdu8/Se8LbplccTx2Kx8vO3+wFo3qkyBfN4/axZdgxtjoEiJYNp0u5tBMRPiw5hMpqpULUQtRqWICsrvzP2p+o/GuAYbWacZS5orWZkKNG/B24cJHDjgNZilMCNADBy3gc3eoswA1TLPwxuTHnAjVr+ViYu4hdEEniuwZ+zUgAekSclHIjdpHRwEblgwIYMb7UANxq5CpsV9Faz5EoswI23WnRx3NQOaI2m9+TfQU5uxGRn4axSg1VGhtFAsLMbcdmZ2GzkAzeF3QXnRiVXEOjsyquMdFzUapzlamKzsvB1csJstpKs1xHs5kaWVk+WwUi4pwcpmTqyjUYKenmSlJVDtkH8OyNHT6pWR5inO0azhddpGfi5OOOm1vAwLglXjZpIf18uv3iNQi6jftGCdnDTpGRhTt9/IUz7wgJJzdLyOiUDbxcnyoQEcERyLu5cvTT7rj7AYLJQNjwQuU3GpcfRaFQKutcux+YTNzFbrVQvXgCzycKZOy9QKRV81awqG49eF12dEB+qRIawUvK86VC3NNGxaVx/JDotw7vWYevhG7xJzMDTzYlh3eqwbNMZ0rN0hPh78HWnGsz/7RjZWgMFQ30Y0LkGs5YfJitHT4FgL0b0rc+85YdJSs3Gx8uFGcNb8fOGs9x7HItarWTK8BY8eBTLll2CD9S+RXka1o5k5MQ/yMjUERzowbxpHdi6/QoHj4quSq9u1WnWqBQjR20mJjYNV1cHZs3oiF5nZPiwjWJ0Fe7D3HldeHDvDQvm7cdkslCsRBCz5nbmycNYZk/diV5nIjzCl9mLumIyWhj61Rpi36Ti5KxhytxOlKsYzi9LjrBTildo2LwMwye3JiMth0lDBJlYpVIwbHIbGrcqR/SLRKYN3UScNMIaO7cT1esXJy05m1kjN/PgZhQymYwvRjSl02e1kMlkHN99g++n7cJkNBNa0JepK3oTEuGLzWZjx8ozrFl0CKvVRpHSIUxe0dsuAb9/7SXzhmwgJSETR2cNI77tQu0Wb0HE1VMPWDhsI1npWlzcHBm5uAfVm7wdURgNJlbN3mPfCRcpG8b4H/oS9I7L7LM70SwYtIbXTxMAaNuvPl9MavdBd+F7F5/y3dC1xL1MAqBpz1r0m9kJl0+okR5de8GK0Rt5dluMkAqWCmXQwh6UrPZpe/68ZdAZObj6NH8s3k9qguDr+AR50nFoM5p/Vu/f7uj7f1tVb1WBJzdecmHfjf8SwEmIFkIL/w+Mez5Wj669RJutx93bhcJlP82/uXHmEWmJmbh5OVO54ft+Nbm1Z7X4zjbqXOWD36305Cy703aXQY3eOx71NJ5TewR5uPc75GGbzcaaRZL7cNeqBOZ5rwa9iXVLxDi9S/96eObpRh7ecZUXj+NxcXWgTx7g8/DOa45JROVvxre0d5sunX3MlfNPUCoVfDO2xT8elf5HAxyFTEOO1SxiGCRwY7UpsHwA3MhRYLAKaXlu1MKHwI3qnc6NHOGfY7ZZpbGUHo1cTbZZmP85SeDGWeFIujSCclY6kGnS4ap0Is0gRS4onEg16HFVOZIh3ealdiFRnyO5ElsxWq34ObgSnyPSwT1UTiTptHioHck0GLDYbHZwI0OGv6MrsdlZuKk1mExWtGYToS7uvMkUi19ecFPQ3YvnqWloFAq8HZ14nZmBh8YBFXISc0S3RmswkWUwEO7hQWJmDjqTicLeXsSmZonkbx9vYtIy0JrMRPr6EJeWSZbBSEFvTzJ0BlJytAR7uKG0yXielIqnkyNhHu5cfxWDWqmgekQYJ+6LXXjz0kU5fucZZquVqoVCeZWQSmJmDoEeroR7e3D6/gsUchmdqpVh58W7mK1WqhUNIz1Tx+OYJFwc1HSoVooNx69js0FDKXrhflQCjhoVnzepxOoDlwUoKhxEAV8PNks5Un2bVebKvSgeSZ2aEV3r8uuOi6Rk5BDo48ZX7aqxcO0JtHoTxSL86dyoLLMkA78ykUF0bFSOqUsPYjSZKVkkkM86VGXq4n1k5xgID/Fi3MCmzF9xhOiYVFxdHJg9tg37j97h+BnRBRnQtw5hgZ6MmrQNo9FMsaIBTBvfhqUrjnLlmkgMHz6oCYUjfBkyfAMZGToCAtyZN7sz9+6+YanEHylfvgDTprdn356brP7tNAC1ahdl/OS2HN5/i58kaXeFyhFMnd2R508SmDH+D7Ky9PgHejD7u274+bszc8xWLkm+N30G1KPHl3V4+jCWaSN+JzU5C3dPZ6Yt6kbJcmFc+/Mpc8duRSuNsKZ/35OIIgE8exjLjKEbSYrPwNnVgQkLulKpVlEsZgsrFx5it9Sirlq/OGO+FZwavdbIkgl/cPagGN817liJwTPao9aoRHt+/Z/8NmcvFrOV0MJ+TP6xL2GS/bzFYmXj4kNskQL+ipQJZdJPn+UbSb15kcj8b9bavUk6DGjwXmfHarWy48fjrP92H2aTBS9/d0Yu603Fem/NzHJLrzWwds5u9vwqFCk+QZ4MX9rnkzv27Awta2bs4ODas9hsNpzdHOk7qT0tv6j7tz1njHojh9acYct3+0mVQjn9w3zoNqY1jXrU/LcZ3P3fXlWbl2PdzB3c/fMxNpvtX+Yd2aMWCvz9SIpLRwSpu0K9En+Zy3Vks+D61Wtf+aNcnZgXiVySNjqtP/uwK/H2X05i0JuILBdGuZrvA+UNS45gs9mo0aQUhd8hD587dIfHt6PROKro9k1+4vGudedJjEvHN9Cd9n1r2W/PytCybrmwv+g9qBHu0mjNYrawYs4+ABq3KU9xyZhTrzPygzTm6tCzOqFShpzlnbDWT9V/NMDJsVpwwlFKFM8FNyD/ALjJBUByNPnAjdI+ZhLgRmf9ELix4SQXnRsHuYYsyR/HSeFI1jvgxkkhEsNFt0YAGReFI2lGA24qR9Kl2zzVziRJ6eAGswVzHnAjR46rytHubZOq12GzYQc3cuT4ODgTn5ONh9oBndGM3mIRCqmMDGRAQTcBbmTIKODqycvUNByVStzUGmKzsvB2dMRiRnRrXN1I1+rQmkwU8vQiJi0Dg8VCpI8Pr5LTMFqslPDz5XlSigjH9PfjZVIqOpOZSD8f4jKyyNQbCPfywGg0E52RjZ+rMz5OTtx5E4+jSkXF0CDOPhLjjBalIzl8+7EwxYsM515UPGlaPeG+nng5OXLpyWtUCgUdqpZk24XbQtVUqhAvY1OISkrH08WRpuWKsvGEUAa0rlqC+y/jeBmfhruzA93rluPXvZewWG3ULBWOg1LBvj/vI5PBwLY1OPDnQ6Lj0/BwcWRQp5os//0c2VoDhUN96NCgLPNXHcdssVKpZBh1KxRi7i9Hsdps1K5YiOplI5i14hAWq40aFQrSok5xpizah9FoplRkEF/3qsOUBXtJScvBz8eVWWPasHLDOa7djkKhkDNuSFMMOhNT5+4R6oTKBRkyoCHTZ+/micTBmTahLTarlVFjf8dgMFOkiD9zZ3Vi754bbJQk340bl2L48Gb8uOIYByWZc6cuVfiyf31W/XSSHVsFgbdZq3IMG9Oc08fus3juPsxmK8VKBjNjQRfMJiuj+q3h+ZN4VGoFo6e1o16TUpw7fp+FU3dhMJgoUMiPmUt74B/owe5NF4W/hdVGyfIFmLK4Ox5ezpw/do+Fk4QXTXABb6Yv701ohC9Z6VrmjfydmxKxufvX9ek1pBFyuZzYqBRmDVrHq8fxKFUKBkxqQ0vJzVivM7J80nZOSsqPOq3KMXxeZxwlp9fUxEwWDN3A7VxvnL61+Gpyu3wqqdO7r/P9uC3ocgy4eTozamkvqjTMD0RS4tNZOHidXf5do0VZhi7s+cFE5wdXn/PdoDV2rk3TnrXoP6sTzm4f7trYbDZO77jCr5O2kpYowgUbda/Bl9M74un39/ghFrOFIxvOsWn+HpJjpITqUG+6j2lN4161/1fEJ/xvqtCigchkMnTZetITM/9lHs7zu8KzK+JvqthsNhvn94nvao2W76dz563UxAw7GGrW68OqKBCyb5vNRpWGJQn7AJcqLSmL/VJ0Qo/hzd4Dc0/uvOZPiTzcJ49UG0RXc81CoXTq3K+ePcNNvL5Mtko8t89HNkOTp4O5bvlxMtO1hBf2p1XXt348+/+4yvNHcbi4OvBlHqLyhl9OkRifgX+gBz0lwrFeZ2TkV6s//gG9U//R33DRuZHAjVWBBQFudPnAzdtzZB8FN7meNkYc5U5kmCTZt00ooxylzk1ecOModyDLpMdF6UiaxK9xVGjIMhtwUzrawU0u+HFXCT+bXHCTrNfiotSgM5kx22xSnlQ2cpkcF7kDaXodPg5OJGu12CSF1JssIf/2VDuSqM3BS+NIlsGE0WKhgGtugKYEbtJSUcjkBDu7E5WejotKjaNSSUJODn7OzugNZrIMRgq4e5CYmYXeYqGItzevUtIwW6yU9PPjSUIyZquN0gH+PIpPxGy1USbQn8dxSQLoBPrxKjmNHKOJIr7epGfrSM4WXRxHhZKHcVIieIAffz4VJnZNShTh0C1xQWlYshBXnrwm22AkMtAHlUzOzRexOKpVNC9XlD/+FDv75uUjufkshoT0bAI9XaleNIw/zkiJt3XKcu72C+LTsvDzcKFV1eL8Io2hmlaOJCNLy8k7L1Eq5AzpWJvNh6+TmJZNgLcrfZtXZvF64U5ctmgwdcoXZNFaIb9uWLUohYO9WbxWcCxa1StJqJ8nC38TO5gWdUtSukgg05ccwGq1UaNiQTo2K8+EObvEGCvMh4lDm7Hg+yM8fZmIo4OKmePacPdeDBu2Cnllq2Zl6Ny2EqMnbiUuXnBw5s3syJMn8SxfIRQ5VasUYsK4Vvz443GOHRVqsV69a9KlSxVmTtvJlcvP7ZlSzVuWZe60XZw/I7gAX35dny49q7Nx9Tk2rhLt7joNijNmSluiXyUzdcRmUpOz8fByZvqibhQrFczvq8+y9gfhGFylZhHGz+2EWqPk+1l77byaJm0rMHhya1QqBZt+PskG6fwK1QszYWE3XN0diXqWwIxB64mLTsVB8repJfnbXD/3hPnDNwk3Y19XJi3vTUlJghoXncLsget48TAWuULOVxNa0e7z2vYF/N7l58wbtI7UxEwcnNQMW9CNem3eenAYdEZ+nbGLg1KURelqhRm7vM97/iGXjt5hyfANZKbmoHFU8/XszjTt8b5pn8loZuOCfWz7XnTNfAI9GLakN5UbfVypE/sigRWjN3FDSnUOLRrAkMW9KVPz02GKuWW1Wjm36yrrZu0g5pkYmfkEe9F9TGua9qnz/4DNR0qtUeET7EnSm1Tio5L+JYCj1xp48yQO4C9NGXPr6a0o4qOS0Tipqdzo4yMngGNbLmIxWyleKYKIj5gSpiVlclxyAe444H3iMMD2n0+I7k35AlSu/z6ped13AsA0aFeBAkXzA6S96/8k/k0q3v5udHxHVr522VH0WiPFyoZSr+XbUfCLx3Ec3CZe08CJrezdx5SkLNb9INbEz4c2tvtQPX8cZx95Dx7f0k4s3vDraaKl0e7fqf/ob7reakOTD9xoJHDjiNZieAfcCN+aj4EbvdWUB9woMVmFf42j3JEMo0FKCRf8Gke5A9lmAy5KJzu/xlGuIducmwQugIyTXORS5ToR50YuJOdGLhiFK3EuuFHKFDjK1aQb9fg6uJCoFd42ueBGJVfgqnQgWafFx8GJdJ3hrUIqPS0fuFHKFQQ4uvI6IwM3jQaVTE6SVkugiyuZWgNak4mCnp68ScvAZLVSzMeHp4nJWG1Qxt+fe3GJ2GxQLiiAuzHxWG1QITiQu2/iMVttlA0O4HF8EnqzhRIBvsSlZpGu0xPu7YnNYuN5Uirezk4U8PTgynPRkakfGcHh22IU0rxsUU7ffY7ebKF0aAB6vYn78Ym4OWqoV6IguyTlVPuqpThz5zlp2TrC/TwpHuRrz5Xq07AiBy49JDVLS5ifB7VLFmTNQcFx6VC7NM9eJ3L3RTwOUvTCyj2XyMjWEx7oRfvapVi84RQWq41a5QpSNMyHFb8LlVCHhmVRKeT8uk0y7GtdGbPJws+/ix1TzzaVcHXUsPAXMR5p0aAUVcuFM2HebkxmC2VLhDDos7pMnb+XuIQMPN2dmDelA/sO3rLzaz7vWZPKFcIZNnYzGRk6ggI9WDC7M4cP32XzFgGAWjQvS/+v6jF71m6uSzLwESObU7VqIUYN28Szp6LjM2laO4qXCGbMkI08vB+DSqVgzOQ21KpbjEWz93FcMtjr2rsGn3/dgCvnnzB30g4MehMFCvoya2kPvHxc+G76bo5J3aD2ParRb3hTtNl6Jg9cz+2rL5HJZHw1oikd+tTAaDAzf+xWzkgqrHa9atBvlPDDuHzqId+O2Youx4B/sCfTfuhNRGSg4NusOsuahQexWm0UKxfG5BW98ZYuRNfOPOLb4ZvIztDh4e3ChBW97UGZNpuN3avOsHLOXqwWK2FFApj082f5drcxLxKZ+/UaXjyIQSaT0W1oE3qOaJZvFGTQGVk18y2RuFDpUMb/9AUhH0hefnH/DYsGreaFNOJq2KUaA+d1+yjXxmK2sPOHo2yYvxej3oRKo6T76FZ0GtL0b42RbDYb10/cY820bTy7LQjT7t6udBvbmlZf1kft8M/DCv9pWcwWYp7F8+r+G149eEPi6xQyU7LITM4mMzWbjJQsrGYLTm5OOLs74uzmhIuHE35hPpStU5xy9Urg5v1xBdl/d/mGeJH0JpWkN6kU/7Dp7yfr1YMYrFYbHr6ueAX8PYB0do8A/lUbl/mkb47FYuWwBLyb96r10fP2rD6L0WAislwBSn/AMDA1MdNu/td75PvdmzuXnnHjnEQefkf6nZ6SzZafxKat78hm+dyHn9x7w/FdohPVf3wr++PabDZ+nLsfq9VGnaalKVv5bRbWysWH0WYbKFoymGYdK9nf57I5+7BarNRuVJIqkoz86aM4dv5+6aPv+0P1Hw1wQI5V8qsR4MZiBzcKmdI+espNAM8FNyJewZoH3Jg/Dm5MIh08U/LAcZCAjKvSiVQJ3GjkarIt74IbBzJNRjzUTqTmiVxINuhwUwlOjQ3wd3AjLicLlVyJBiUZRgN+eYz7gp3deJOVgVquxFmhJlWvw8/RmeQcnVBIuXnyQgI3Ea6evEhLQy1X4qNxIiYzE08HB6xWSNHrCHF1IyVLK7o1Xl68TE3DYrVRwteXh/ECVZcLDOD2m3hARoXgQG6+FruZSiFB3IiOxWaDiqFB3HkTj8lqpUxQAC8TU0V0gp832VoD8ZnZ+Lu54OfkxM2oWBxUSmoUDLMngrcuX5wjt55gslioVDCYpLQcopPT8XZ1olLBYPZdkxQ7Nctw6OpjsnQGigb7EOTuypHrb3Oltp25Q7bOQNEQX0qG+bP5uPhx9m5cgQt3X/IiNhVXJw0D2tTgx+3n0RlMlIjwp27ZQiz7XXQ0WtQsgaNaxZrdYnfyedsqxCVkcORP0QUZ1KMOz18lceSceE2DetUhOTmLX3cJsNOrfRX8vV2Z8d1+MXKrWoSubSoydsYOQR4O8GD2xLb8tuYsF68Kj5uRg5vg7enMyPFbMBjMRBYJYNbU9qxec5ajUhr4Z31q0axpGUaN3MyLF4k4OKiYOrUdAQHuDBm4lsSETDw8nJg9vwsuzhqG9V9DXGw6rq4OzJjfhfCCvkwcvonbN6KQK2QMGd2Clu0qsHvLZX5efFj8HasVYtK8TljMViZ8s567N6KQK+R8M6Y5rTtX4c2rZKYN2UhMdAqOTmrGz+9C1bqRpCRmMmPYRp7ci0GhlDN4chuad6yMzWbjj99Os3aJMA4rXTmCSct64u7pjF5nZNmk7ZzedwuApp0r88209qg1Smw2G1t/PMn6xYex2WxElgtj0g997BJwbbaeZWO3cFYCX/XaVmDYt13zXUzO7L3BsjG/o8sx4O7twpjve1PxHblu1KNY5n+9mldSwGSHAQ3pO7HNe+DDYrGy84ejrJ+/F5PRjLu3C0MW9aRW648bsj27E82SIWt5fkeQiMvVLc7Qxb0IKvg+cPpQPb8bzcpJW7ghZZE5uTrQcUgzOgxp9t9mzmez2Yh7mcjd84+5e/4Rz2694s3jOExG81/eV5ulJzkm/237fz2BTCajUNkwytcvSbWWFSj1N7tW/67KzY3SZun+pfs/uCLWqCLlwv8Wh8disXJqu1g76rSv9MlzLx25Q3x0Ci4eTtRu8+HvUla6ln1rxdrUeVCjD76GrSuOYdCbKFExggp18ieQW61WVs2X5N1dqxLwjsnkxu+PkZOlp1CJIBrmcR+2Wq38OGsvNpuNBq3LUbzc2+7Vyf23uXfjFRpHFf1Gvx133bz8nFMH7yCTyRg8qbXdJHP/9qs8vh+Dk7OGgdL5FrOVpbP3YrXYqFm/OCdvfvKjstd/NMARnRtZnrFULrhRfQDcOLwHbhSSYV8ukFHKlBisNmyAw0fATY7ZhKvSkVSDCNVUy9VoLSY7uJEhs/vmeKqdSJHAjbvKiRSDXsqT0mOTjPviJFdiJQoyTUYCHMVtud42MVkZOChUqOVK0gx6/B1dSMzJwWojH7gJd/XgZXo6DgolHioH4rKz8XF0wmA2k2U0EubmTkJmNkaLlUhvb54mp2CzQSk/P+7FiXTw8oGB3HwThwwZlYKDuCYlglcJDeHqK7GLrVIghOtRMVhsNiqGBvEwJhGdyUzJQD8SM7JJztYS4umOi1LFvZhEXDRqKoQFceqB8B5pW6E4B248EvyYyAK8iE0hXho9FQ/05egtYY7XvVY5dv15T0i/wwNxUig5e1eMmj5vXJmNx6+jN5opWzCQAA9Xdp8TwKBfq6ocuviQmKQMfNyd6du0Et9vPYvJbKFy8VCKhfnzyw7RmenapDxp6TnsPCdGCUN71OH63WguSO7EY79sxJnLz7h486Xgz/RrzPU7URyTwM7Qz+uTna1n8a9iRNO2SVlqVS7EmOnb0elNRBb2Z9LwFny75BAPHsehViuZPr41aWlaJs/YKUZQlQsydngz5i84wPUbokszakQzihcLZtjQDSQmZuLp6czceZ3RaY0MG7SB7Gw9IaFezF3QldTkbIYOWEtWpo6AIA/mLuqOUiVneP81vI4SAZyT53SifOUIflx0iD2SZ02L9hUYNLYF8TFpTBm2idjXQlU1aX4XKtUozO0rL5g1SoRi+gW6M/37XhQsGsDTBzHMGLKR5MRM3DycmLy4B2UqR2DQm1g6ZQen90uO0t2rMWBCK5QqBYmxacwcuI7nD2JRKOUMmNSGVj2rC75EjoHvxmzhT6kT1KxbVQZKwAcg+mk8swes4fWzBBRKOf2mtKPNZ29HVkaDid9m7rLzEUpVLcT4Hz7DO8/u22azcWTzBX6e/AcGnQlPXzdGfd+HivXfJxInvE5h0TeruXtR8HuqNSvLsMW98fRz++AaZNAZ2fTtXravEHJcFw8n+s/pSuOPZFS9WylxaaybtZOjG85hs9lQqZW07t+QbqNb4/4JL51/tZJjUrly+Ba3Tj/g7vnHdtJy3nJw1hBeIoTwkiEEFvTD3ccNNy8X3LxdcfdxQaFUoM3UkZ2hJUf638t7r7l56j6v7r/h2a0ont2KYtuSg1RpVpav5nb/t2VE/VXZbCJD6l8lGOea9ZWpWfQvzhR188xDUuLTcfV0pkrjTxsM7vpFrBMt+9TO1znJW3tXn0GbpSc8MpDqTd9/vMSYNA5KJOU+Y95XJZ3Zd4snd17j6KyhxzuhmVFP4zkkqa76T2ydjwx9bNcNHt95jaOTmi9HN7ffnp2p47dFBwHo0b8+vpKdgdFothOLW3etQtGS4u+bnJhpH3F/MbgR3r7id7Nj80WePY7Hxc2BL4c0YtbiT35U9vqPBjgWQG0fSzm8A25k8BfgxmC12MGNSqZCb7XawU2myYCTwpEMk+DXaOzgRpCHZchRyVXvgBs5GpmGrHfAjZtK3McjDw/HTyPGUg4KFVhlZJtN+cBNkKMbMdkZOCpUAvwYDMK1OCsLG7J84KaAiwev0jNwUqpwVqgFz8bJmRyjiRyTkXB3D2LSMzFbbRT38eVRoujWlPEP4E5s/PvgJiSYa9EiBbxqWAiXX75BBlQPD+XSq9ciIqBACLeiYjFarJQNCSA6KZ10nZ6CPp7IrDIexyfj4eRAcX9fzj16hVwmo3X5YuyVujP1SxTizkuRCF7A14NgT3dO3Re+Nt1qlmXruduYLVaqFg3DqDdy5flrHNRKetevyNojV8WxYmGo5XKOXn2CQi5jYNsabD1+k+SMHEJ83WlfuzRLt5zFarNRr4KIXth0ULSTv2pXjXtP47h8V5B/x37WkAOn73H3SSwatZJJA5qw/ZBwJ9aolUwb0px9x+5w+eYrFAo5E75pyv3HseyWLPE/71qdYD93JszZhcVipVK5Agz+sj5TZu8m+k0qbq4OzJ3agRu3olgjGbw1b1Kaz3vVZMLk7Tx7loCDg4ppU9rh6KBm2FABZEJDvZg3vyuPH8by7dx9mEwWSpYKYebcTty+EcX8mbsxGYU0fOaCriTFZzB51BbS03Lw8XNj9nfdCAzyZMborVw+Lxbvr4Y2plOv6ty9EcWM0QLE+Ad6MHNZT8IL+XF453WWS+qlYmVCmba0B57eLpw/fp+FE7dh0JkIK+jL9BW9CQr1JjUxk5lDNvD4zhsUSjkDJ7WhZbeqgHBDnT1oPRmpObh5OjNpeS/72Ck2KplZA9by6okgGg+c3p4W3d/6fZw/eJvFozajyzHg7e/OxJ8+o0SlCPvxhDepzB2wmieS9LrrkCb0HtU830gqJ0vH8jG/223xK9QrzujlffH0zQ9YbDYbp7ZfYcXYTWiz9Dg6a/h6blea9Kj50YvlvYtPWTJkLTHPBU+mdrtKfPNt979FItZrDWxfepA/lh60Z0XV7ViVz6d3IjDifbfkf7WsVitPb7zi0sGbXDl0k2e3ovIdV6oURFYqRKlakRSvUpiI0qH4hXr/pRLoY5Uan86t0w+4duwOp/+4xJXDt7l27C4tv6pPr0kd8PD9MFD8t5VN+v9/Ad9YrVbuXpAATq2/13k6Lo2T63es8skx5OMbr7h/+TlKlYLWX7wfpwDiu7p71WkAug9v+sG/weZlRzAbLZStUYSyNfIrpwx6E2sXCjDS+ev6eL6Tb/XbPDFmqtG4lP03CCI0c81iIRnvObgRXnnA/Nrvj5GemkNohC8d+r4lRW9bc46YqBQ8fVzom0cu/uOCg2hzDBQvHULLTqKjFfM6lQ0ScXnA8KZ4/gOfpv9ogPN2LCUIxe+CG0M+cKNBa7F8FNzorEL2/UFwI9OgfQfcKGVKdBaTFLmgRY4clUxNttkksqNywY0kFfdQO5Kmfwtu4rUC3NgsMnQWM4F5XImDHN2IzcnCWalGZpOTZTKKUVWmOJ4LbhQyYfIXlZGBs0qNg0xJslZLgLMLGXo9OrOZgh6eRKWmY7VBSV8/7ieIbk1Z/wBuS+CmQlAQN17HIkNGlZBgrkjgplpYKJdevkYG1IwowJ8vxOJYIyKMqy9fY7bYqBgWzNO4JLIMRiL9fdDpTbxOzcDH1ZkITw8uPXuNUiGneemidnDTrGxRLj6MIlNnoEigD+4OGi4+FqnfXaqX5vczt7DabNQtVZDElCwev0nCxVFD19plWH34ClabjfplC5GVY+D842jUSgXftK3B2oNXyMjRUzjYhwYVirBimwASLWuWwGQws/u0iF4Y0q0Op6884+5TAV4mftmYjXuv8iw6CVdnDZMGNOO3LX/y4nUyrs4apg9pwdptF7n/JA4HjZLpI1px9PQDTl14gkwGI/o1xGS0MGepIPY1qlOcrm0rMnrSH6Sk5uDv68b8GR3Zs/8me/aL3myvbtVp2rAkI0ZtFgRjDyfmze5MQkIG06bsEECmZDCzZnfi2JF7/CwR+WrViWTC5Dbs33WDX1Ycw2aD6rWKMnFGe25efcncqTsx6E0ULOLP7EXdkMlljB6wlmeP4lBrlIyd2Z7aDUpw4uBtFs/Yg9lsoVipEKYv7o67pxOrlhxh21rxudVtVpqRM0Q3ZcvKM6xdJrwxKtQozKRF3XF2deDp/RhmDFpPSkImru6OTFrWk7LS4nn4j8v8MH03ZpOFgsWDmPpTX/yDhb/NtTOP+HaYIBp7+bkx+cc+FK8QDggeyNoFB9j+s+AKlKlemPEr+uZbsK+cuM/CoRvIztDi4u7EmO97v6eSenIrivlfrybuVRJyhZy+49vQaVCj9y4cWek5rBizmTOSR1HxygUZ8+MXBH0EaOhzDKydvYs9v5zAZrPhHejB4EU9qd7i0woaEEDq7M4r/DZpC0lvhDKqRLXC9J/bneJV/jqg8e/Wy3uvObH5PKe2XiQ5Ns1+u0wmo1jlQlRqUprStYtTrHIhNP/AWfavyivAgwbdatCgWw16jG/LyolbuLj/Bvt+OcGfe64zc8dIilSI+OsH+hfrv9LBeXn/Ddnpwgiy8N9IA89Kz+HCQfF7btytxifP3fmz+P3WbVfpo6aOe9ecJTtDR2hhf2q2KPfe8TcvEjkmEX37jmnx3vE9a86RGJuOT6A77b/ILy2/cuoh1yVezpfj8t93w/JjZKTmEFrIj7a93r6Px/fecEAiOw+e3AaVSsCNN6+S2bJSjNH6j27+Nkbl9CP+PPUQhULOsEltkMvlWK02ls3dh9FgpnyVgjRuVfb/Gf393dJZLbjInD4AblT5wI1ariFHMuWT/0Nwo5YckHPBjRy58M2xmgWnRq9FIVOgQEWO2YyX2plkvUgCd1Y6kmbU45mHh+MrgRtHhYhc0L8DbgIdRd6Ui0qN1Qo574CbCAncKGUyAp1ceZ2Ziatag8ImI1UnJN/JOTkYLBaKeHrzPCX17Sgq/gPgJjCIm69F56ZySDBX84CbyxK4qVWwAOefC3BTq2ABLjyLEl2c8BDuvo4XI6ogf1IztcRnZBHg7oK/iwvXXsbgoFLSoHgh9t8QnJZW5Ytz8s5TdEYzJUL9UNhkXM9NBK9Skk2nbwHQrEJRnkQl8SoxDU8XR9pWLcHqw+IC1KJKMaLj0rj/KgEnjYoBravzy54L6AwmSkUEUK5wML/tFjurro3K8To2jUtSp2Z0r/rskKIX3Jw1jP+iMT9uPktMYgbeHs5M6NeYxatOEpeUiY+nM5MHNef7VSd59SYFVxcHZo1qzcYdl7l+JxqlUs7kYS149jyRTTuELLtzm4rUqlKYkRP/IDvHQEQBH+ZMbc8vK09z9k8BiIYObEyxogEMHbFREIyDPPh2bleuXnnOCgm01KhZhIkT27Bm1Rl2bhPvu12HSgz4piErfzzBTmnhad2hIoOGN+Xgnhv88J1Q+lSqWojJczqSGJ/BlOGbSYzPwN3TiRnfdadYqWA2/nqKDb+cFn/PhiUYO7MDNpuNuWO2cv64GNf1/Lo+vb6uj8lk4bvJOzgumXi16V6NAWNboFAqOHf4Lt9N2IZBbyK0oC/Tf+xDUAEfLGYLv87dz16JCFm7eRlGzu+Cg5Mam83G9l9Ps2bBQWw2G8XKF2Dyj33sROOM1Gy+Hbyem1K3qUP/+nwx/q1qw2KxsvG7g2z5XoCtomXDmPjLF/jnSfa22WzsXXWalTN2YjZZ8Av2YvwvX1C80ltyZG7d+fMxCwauJjk2DblCTs/Rreg2ovlHPWru/vmExUPW2E3+mvSsSf85XT9p8pdbL+5F89PoTdw5L34LfqHe9JvTjdrtP51Z9XcrJS6dU1svcOL3P3lx520mlZOrAxUalqZay/JUblIGj78pU/+vVkiRQKZvG8GtMw9YMWwdrx/HMrrJHJadnf7flmaemZoN8Lf+Hu/WFSnktkytYn/Lo+jEH5cw6k2Elwj+pLlf7Kskzksbm44D3w+7BMjJ1LFTypTqNrTJB5Pn1y04IFyJG5akeMX8IDEtKYstP4nR0GejW+SLQzAazPwyZy8A7frWIiiPQ/Pzh7EckIi/Aye1truDW8wWvp+5G5vNRv2WZSlbRfx2rFYry2aJPLoK1QtTr5kYo2Vn6Vg+Tzgcd+pdg4gignt2aPd1bl97hcZBxbAJrf7x9/w/GuB8qHNjQ4XRavswuEGF8SPgRiN3+AC4UaPLC25kcslTx2zv3ChkChQ2JVqLGW/J20YmeeRkGA14aZxI0b0FNwnabJyUaoxmK0aLVXIiFuBFjKiycVVpMFus6MxmQl2Etw3IiHD14GV6GkqZHH9HF95kZuGhccBmgQyDgRBXNxKyszFZrRT18uZpUgogo7SfP3fjE5AB5fwDuPXOWAoQnJtowRoUYynhBZEX3NQpFM65p6/ABjULhXHtxRuMFivlQgOJSc4gOVtLqJc7bmoNd6LjcVKrqF003C4Lb1epBIevP8ZgtlAhIpgcnYGHccm4OmpoXjaSLWduAdCmSgmuP35NXGoW/h4uNCxbhHXHRN5Kx1qluf00luexKbg7O/BZ00r8sPO84NgUCyXUx4NNUq7Ul62rcuPBa25LY6exfRqydvcl3iRm4O3uzOg+9flu7UlS0nMI9vdgeJ96zP3pKGkZWkICPBjbrxHzVhwmITkLXy8Xpo1oxQ9rTvHoWQKODipmjW3DqXOPOXhc8EcG9K1DaIAnY6dsw2iyULpEMJNGt2T+dwe5ffc1KpWCSWNb4ahRMWrM7+j1JooWCWDu7E7s3HGN338XoKx16/IMGNCAhfP3c/a0uBj2H9iANu0qMG/6Ls5Jt331TQM6davGmp9P8sdGcd/mbcozZExz7t6IYubYP9DmGAgJ82bWsh74+LmxcNouThwQY7XOfWvyxeBGZKRpmT50E4/vvUGlUjB8ejsatipHZrqWmcM2ce/GK+QKOQPHt6R1t2rYbDY2/XCCjSvErrRS7aKM/050dLLStcwbtombkkdNn+FN6fZNA2QymeDpjP+D0xJYata1KgOnv+XbPL3zmtkDVpMYk4bGUc2Ihd2om0cCLsDPOm6eFd+n1n1r89XUdvlGAzmZOpaM2MifB8Rz1GhRluGLe+Pqkf+CZzaZ2bhwP1uXHMJmsxEU4ce4X74k8iPdBX2OgdUzd7BXimbwCfJk+LK+VPoLWTBAVloO62bt4MDKk1itNtQOKrqObEmn4S3+UVr1h8pisXLt6B0OrT7F5UO3sEomakqVgqrNy9Ogew2qNC/3P2oGWK5uCZadmca0Tou5e/4xc3ou5/tzM/5bnJdzoyu8/kH0RW5dlgDOp+I2cstms3FwnSRU6PvhdPnc2vHjcbHxaFCSiI8Auz2rz5CdoSW0sD91275PQH54/SXnD95GLpfx+fhW7x1fv+QwumwDRUqHUL9t/k7ijlVniI1KwcvPle550sRzicVWq406zctQPo9ia+/vl3j+MA4XN0cG5OkWHdl9g7sSYBk6uY39ff+25CipyVkEh3nTs189ABLjM1j5vVCafjawAYEhnthsNjZIeXF/p/6jAY7WYsRJ5vQBcONIjtnwPrixfQTcyBzJMhlwVjiRbhLkYZVMjc5ixk0pyMG54MZgteQDNzKbEq3FIlK/dTnIkYs8KikJPFkn5UmpXUjQZuOi1KD/ALjxl0z+3NQajCaLMO5zEd42dnCTkY5aLsdH40xsVhZeDo6YTFayJRJxbGYmZpuNYt4+PEpMRoaM0n5++cBNbuemXEAgt96If1cMDuK6RCiuHBrClZeCUFwzIswObuoVjrAHZdYuHM6lZ1GYrTYqFQjmeVyK4N/4eqFExoOYRFwdNFQOD+boHXGh61SlFHuuPMBsEY7EiWlZvJS6M3WLF2Sb5HnTpWYZTt16RkqmllBfD6oUCeH3U+Ji1bNBBc7ees4biUDctX5Zfth5HovVRt1yhXBSqdh15u7bXKnLT3j8KhEXJw2jetXjp63nSUrLIcjXnW+61mLeb0fJyjFQOMyXfp2rM2PZQXJ0RoqE+zKoZx2mL95PeqaO0CBPJg5qZncndndzZM64tvyx+yrnLj1DLpcx+psmYLUxbZ4w8KtZrTCD+tVn0vSdvHiVhLOTmtnTOpKUmMHs2eKcShUjmDKpDT/88Nbj5osv6tCmTQUmjd/KnduvUSrljJ3QmspVCjJhxO/cuyNuGzOpDbXqFWPBjN2cOiaUN58NqEf3vrU4fvAOS2btxWKxUqp8GNMWdkMmg0mDN3DnugArQ8a3pEWHSrx6lsDUIRtJjE3H1d2RaUt7UKpCOG9eJTN10Hpio1NwctEwcVF3KtUsgtFgYsnkt2Tidn1q8tXYFigUcl4/T2T6gDXERqXg4KRm9MJu1JS8b5Li0pk1YC1P7wmeztdT2tKy11si7smd11g2bitGg4mgcB+m/PYl4Xlybh7fimJO/9UkxQrwM2xBN+q/o1p5ejuauf1XEh+VjFKl4KtpHWjzZb33Lj7xUcnMH7DSnuLdpGdNBs7p+tEL7oMrz1k0cBWxkslf8751+GpGJ5z/oktgtVo5vvlPVk7eSkayaMvXbl+ZfnO64R/293OOPlSJr1M4su4Mh9eesZsAAhSvWphGPWtRp2PV/1WZVM7uTkzeNIRvqk0h+lEsywavZtyagf/WlHOr1WonTXv/w6DMlPh0+/ehSpMyf3E23L/8jOjHcWic1DTsXPWj56UlZXJM8r3qPLjxB8/JztCy6zfRvekxvNl73RubzcbK2aID07hL1Xy/C4AXD2M5IokH+k9um28EmxibxlZJFv7VuFb5gmVP7LnJg5tRODip+WrsWxCTFJ/Bemnz8uWIpnZvm5SkLFYuPgJA38GNCAgRn/HNKy84vEcoWEdMbYvGQTiRL52zD22OkeKlQ2grGQMePXCbHf9AKv4fDXCUH+zcvAU3uXEK74IboXwShn0amQNZ5vzgRvkOuFHIFIA8H7hRyhRgU6K3WPBWu5CkEw7EDgoNmSbje+AmUSe8b7RGMybrW3AjQ4afgwA/7pIrsdGaH9yEu3rwKiMdB4UCT5UjcdnZeDs6oTeY0ZpMhLt78DojA4vNRnFvXx4mJkng5m3nJu9Yqox/ALdj4lHIZJQNDOD661gUMhnlg4K4+koQiquFh/LnC9Hmzgtu6haJ4PzTl1itUK1gKA+iEwT/JsAHk9HC06RUPJ0dKR3sz6kHL5DLZHSoXIrdl+9hsdqoUyKCl/EpvEnJxM/dhcoFQ9hzSVyge9Ytz6HLD0nP0VMo0JviIb7sPC8u/J83qcShS49ISMsmyNuNVtVK8KMUmtm8WnG0WgOHLz1CIZcxvFs9dh6/RVRcGp6ujgzrUZclG06Tma2nUIg3vVtVZvZPhzEYzZSJDKJzk/JMXSKiF8oVD6Fn60pMXrgXrc5I0YL+DPu8PtMX7ScxJQs/H1dmj23Dj6tPc/v+G9QqBVNHtyIqOoWV64SPTosmpenavjIjx20hITETby8X5s/qxPXrr/hVWsgaNSzJ4G8aMWf2Hq5eFfEMo0a1oFKlCEYM3cirl0k4OWuYMbsjwUGeDB+4juhXyTi7aJg+tzOFiwYwacRmbt8Qo7dRk1rTsFlpNq86y3pp/FSvSSlGTW1LakoWU4ZuIlp6zFyl1I1Lz5k96ne02QaCwryYtaIPwQW8uX31BbOGbxYKqiAPZv7Qh/DC/qQlZzFz8AYe3X6NQiln0JS2NO8iFq7r554wb9hGcrL0+AV7Mv3nz4goJhbi+9deMueb9aQlZ+Hm5cykFb0pU03sFi1mC6vm7rWngFdpUIIxy3rZRww2m41Dmy7w09TtmI0WgiN8mfzbl4QXC7KvAzabjf1rzvLr9B2YjWb8Q72Z8OuXRJYPf2/NOLX9MstHb0KbrcfZzZFhi3tTp92H5b1Gg4mN8/awffkRYfIX5MmI5Z9R8S/CFEFwYJaPWM/9i2LUFhYZxKDFfSj3N5KmP1VPrr9gx7JDnN15xd6tcfVyoXHPWjT7vN7/MbXSv1Iefu5M3DCIMU3ncmrrRVp8WZ8ytf9rn0feSolLx2qxIpfL8PqHJn8XpY5fZMUIvN8xhfxQHZB8lOq2r/xRN2uAXb+cxGQwE1khnNLVP5w7tuu304J7U8Sf2q3f53H9eegOD66/ROOgovfI5vmO2Ww2fpm1B5vNRu0WZShVOX8H8tc5+zDoTZSqFEG91uXst2ek5bBScjPuMbABvnlUhz/N24dOa6RE+QI07fC2m/TTtwfIydJTpGQwbXsIMYBOa2CpBL5ad6lCaSnQ8+i+W1y/9ByVWsHIqW1RKOQkJmTw09KjH/2sPlT/0QBHZ7Gh+i+AG7XMgSyzMR+4UchU6C1me+q3UqbAapNjsuUFN0psNjkGiwVvjQRuZHI0MjVZJiM+UjdHhGUKcOOm0pDzAXDj4+BMgjYHD40jOQYTJqtFqKLygJuoDCH/dlNpiM/JwdfRGa3ehNZsIsLDk1fpadhsUMLHlwcJ74ObMn7+3ImNRy6TUcrXnzuxCSjlckr6+XHzTRxKuZwyAQFcj45BIZNROSyEi9KIqm6hcDu4qV+0IKcfvwAb1CpcgBsvYgT/JtiPrBwDr1My8HV1prCfN+cevUIpl9OuUgl2Xror3IFLF+ZeVByJGTkEe7lRItifg9ceIZNB3/oV2XnuLtl6IyXC/AnydOPAZXGsX/Oq7Dh9l9QsLeEBXtQrW5Df9oldUcd6ZYiOTePaw9eolQpGdq/H+n1XiE/Jwt/Lla871WDhGpErVbJQAO3ql2bOz0cwW6xULxdBgypFmbH8EBaLVUQv1C7BlEV7MZoslC8ZyuedqzNp/h4ysnQUCPFiyvCWLPj+ME9fJuLspGbOxPZcuPSMbZJKp2eXatSuXthu4BcS7MmC2V3Ys+c623YILk2XzlXo0qkq48dt5fHjODQaJVOntScwwJ0h36wjKTETb28X5i7oigwYOmAtKclZ+Pi6Mve77ji7aBjx9VqiXiTh5KRm6rzOlKlQgKVz9nFYCtfr3KcGXwxqxPPHcUwZtom0lGx8/N2YtawnBYsEcHT3DZbN2oPFbKVk+QJMW9oDNw8nju25wbLpuwX5uEwo05b1wtPHhZdP4pn+9ToS49JxcXNg0rJelKtWSPBdNlzg1zmi1V2yUjiTV/Sx7/qO/HGFFVN2YDZZiCgWyLRfP7fzZTJSs5n3zTp75EL3oU3oNbKZfQdq0Bn5YfI2jkmxE9WblmHUkp44u731hdHl6Fk2arNdJVW9WRlGLO3z3khKn2Pgxwm/c1SS2JaoWohxP3+VL7sqbz2/G83Cr1fx6oEY2zbsWp2B33b/S26HLlvP+jm72P2jkI1rnNT0mtCO9oOa/ssOxBaLlcsHb7Jj2SHu/fnYfnuZ2sVo8WUDarat+H/EBPDfUaVqRtLs83ocXHmSPT8e+7cCnBd3xYYspGjg3875yq2Tf4iuQp32lf/iTAGkcs39Wn9R76PnZaZms18CQt2GvW/IB8K0b6c09uw9qsV73RujwcyquQJAdBhQP5/9AcD5Q3e4c+k5ao2SL98ZXV07+5g/j94T3lbT2uV7/lULD5GZlkN4EX/a9XmrjvrzxH0unHyIQiln6JS33aALJx9w/th95Ao5I6a1tb/OtT+cID4mDb8Ad76Q1FRJCZn8LHV6+gyoT1i4DzabjSXz9qPNMVC0RBCnrn30Y8tX/9EAxwb/JXCT/S64QYXBYvkguPFUOZOUD9xY8dG4kKjLRiFToJKpyDab8JVuE2GaziTptLirHMgyGjFbbXZwI0eOt8aJJK1WilwwYrJa7X42ecGNo1KJs0JDYo4WPydnsnRG9GYzhTw8eZ4mFBIlfPx4kJCIDBmlfP24F5+AHCjl68fduAQUMhklfMS/VQo5xXx8uRMbj0ohp6SfPzdfx6KUyykfEsilV6+Ry2TUKliAs09eAdAwsiAnH4oWbt2iEVx+Go3BbKFcWCCJadnEpWcR6OFKiIcbl55Go1IoaF2hGDsuig5M8/KRXHkSTarkSBzu48HxW0+Ry2T0bVCRradvoTeaKV8oCBeNhhM3n6KUy+nfshobj14nS2sgMtSX8oWCWHdIAIXeTStx69Eb7r2Ix1GjYmS3uvy8/QJpmVoKBHrSu0Vl5q86jtFkoVLJMOpVKMj8X49htdloVD2S0oUCmffzEWw2aFKrOJVKhDB9qZBS1q5cmDZNyjB+7i50ehPFiwQwekBjpi3YS0xcOp7uTnw7tQM79tzgqGTONqhffQoW8GXk+K3odEaKFglg9tT2rFx1huMnxDlf969PrZpFGT58AzFv0nBzc2TuvM5YzFaGD95AVpae0DAv5i/sTmxMKtMnbEebYyA8wpc533UjO0vP8H5rSE7KwtvHldmLhQx82sgtXLsoxmXfjG5O686VuXzuCXPG/4FBbyKiiD+zv++Ft68r6384wWZJtlmveWlGzuyASqVg/YrjbJaIjnWblWbkrI5oHFRcPfuYeSOFiV5wAW+m/9SXkAhfzCYLP83czcEtAoCIsMwOqDVKLBYrq+fvZ6cUEVGzWWlGL+pm55y8eBDDzH6rSHgtohxGL+lJzeZvuQ+JManM7reKp3deI5fL6DuuFZ2/yW98Fv0kjtlf/sbrp/HIFXK+nNKe9gMavHchefngDfO++o3oJ3HIZDJ6jGpJj9EtP3gRtFisbP/+MBvm7cFssuDu48rQJb2p2arCe+e+W5cO3mTFyPV2dVSttpUY8G0P/EL+fip13jIZzZzccoE/Fu3jzVMRAKlQKqjXpRodhzan0N9Q+vxvrLYDG3Nw5Uku7L1GYnQyfv/FcV1u5Urgi5QL/0f3i3uVxIMrIvKkXoe/tj8+sPaM2BhUK0yRT/wN9qw8jS7HQMGSIVRt8mGPnM1LD6PXGoksV4BaLcu9d3zv2rPER6fg5edG56/zE5T1OiMrJWJvx/718hHtjQYTP83cDUDbPjXt3VSA25efc2zXdWQyGUNntLcD7+xMHT9I3jadP69DuEQUzs7UsWKueJ7On9WioDQiu3czyu6rNXxyG5ycNXlGUwaKlQqmY8/q4jPbfYPrl1+gVisZOqYFv6z/6MeWr/7DAc5fgxuHT4AbF6UTaUYDMuTIUWKw5gU3Sqw2JHDjQpI+B5VMicUmx5gP3MhRyVTkfADcJOt0uKsdyNQbsdhsBDu58SY7E4VMjqdaJIV7OziRoddjttoIdxWRCyCzZ0s5KVU4ylUka7UEOruSlqPDYLFQ2NOLZ6liIS3l48e9PODmfkIicpmMEj6+3ItPRCmXE+ntw734RDRKBYW9vLkXl4BGqaCYjw+338ShVigoHejP1SjRxakeEca5XHBTrBAnH4gU8PqRBTn/+JUIo4wI5nVCOolZOYR6uePj4sS1F0I51bRMUXZJo6c2lYpz5t4Luyzc18WZM5JpX++6Fdh88iYms4VqxcKwWmycv/cStVJB/xZVWXPwKlqDiTIFAykY6MXWk7cA+KpVNc7eeMZTSQ01tEsdlm8+S5bWQNEwX9rXL8P8VccEP6diIUoWDOS7teLi3bZBaXw9XVm67jQAnZqVJ9jXjfk/ifZpi/olqV6hIJPm7cFktlCxTBgDetVm/KydJKdmE+DnzrxJ7fht3TkuXnkuTAFHNMdBpWT81G2YzVYqlCvApLGtWLjoIFeuvhBeO6NbUDDCl2FDN5CamoO/vzvfftuV6OgU5szYjdFopkTJYGbN68zNqy/5dtYezGYrZcqHMWNeF54+jmPG+G1ocwwUiPBhzuIeKJUKxgxYy7PH8WgcVEyc05FqdSI5sOMqK+aLnKyK1Qox6dsuqDVKFk3ewQmJP9OtX136fNMAs9nKggnbOHUgz+2DhZx6/+aL/DRnH1arjTJVCjJ5WU9cPZzIStcyZ+hGbl98hkwm44uxLej4pSBb5mTqmD9sE9ekTKyeQxvTY2hj+27w3P5bfDdyEwa9icACPkxdmZ9vc/vPJ8wduIZMyTtn/E+fUf4dX5LTu6+xbOQm9FoD3gHujP/lS0pVzS+zziWC/jL5D4x6E94BHoz9+UvKfsTjJD46mUVfr+KeZPJXo1V5hi7u/ZfeLSlxafw4eiPnpV19QLgvgxf3pnKTvyarfqgMOiOH155h+5IDJL5OAcDFw4mWXzWgzdeN8Qn2+otH+N9d4SVCKFevBLdOP2Dfryf4cnbXf8vjPpfiLf4p8Du5TXRvytUt/pfjKaPexAGJXNy234dzokDwavaslFRRHwjDBCH7PrRJdBS/mNTmvXMyUrPZslysSZ+Na2kPm82tbT+fIjEmDd9AD7oMqJ/v2Pbf3hKLe+Yx/DMaTCyftguAFl2rULz8289q9dIjpCZlEVzAm+7969lvX7X0qP32ngPE7Qa9iSXSaKxp2/JUlAjKR/fd4trFZ6jUCkZNa4dCIScuNo1flwuy8RcDGxAS9vcB/380wDFabbj+BbjJ/JvgxvhBcGN9C27kSiwWOUbrW3CjlClQypQC3OTJjvJSCXDjoXYkXa/HaoNgJ3feZIuwTA9VnjypD4EbF3eiM9JxVqlQy1Sk6HQEubiSkq3DaLFQ2NObZ6li4fsQuFHIZER6+3A/PhG1QkEhDy8exCfhoFQS4eHBg/hEHFUqCnt5cSdGAJ2SAf5cfx2LSi6nSlgIfz4Vi0XDyLfgplHxQpx+8AKL1Ua1QmE8jUkiNUdHhK8nLmo1t17F4aRW0bBkYfZeEXLjjlVLceTmY3IMJkqE+uOsVHHxURQalYIetcuz8cR1AUJKFyQ9S8edF3E4alR82bQKK/dfwmCyUDkyFG9XJ/acuycIxO1rse/cfaLj0/Byc+KbDjVZsuE0OoOJMkWCqF+pMAul0MxmNYvj7+nKT1sEPyY3V2rVH2Jh+bxjNWRWG8vXngaga6uKRIR4M/070cmpW60InVpWYPS07WRl64kI82HGuNYs+v4od++/Qa1WMmNCG5KTs/l20QFsNqhbK5KhAxsybfpOHjyMtRv4OWhUjBi+iZwcAwUL+jFvfheuXHrO0u9EQnf1GkWYNK0dB/fe5CfJc6ZOg+KMm9yWC+ces2DGbsxmK6XLhTH92y6kp+YwethaEmLTcfd0YtaSHhQtEcTqFcfZuka83yZtyjNsYmv0OiOTvl7PnWsvBcl4cmuad6hEZrqWGcM2cv9GlGhLT21L0/aVsFis/Dx3H3s2SOnl7SsyZHo7VGolMa+SmNZ/DTEvk3F0VjNucQ+qNhCuwLGvkpnebzWvnyeicVAxalE3arcQF3qr1crGxYf5XZJ4V6xbjHHL346TbDYbu1eeZuXsPVgtVgqVCmHKyq/y7UxNRjO/Td/BvtWi9V+2ViTjfvr8PeO+nEwtS0ds4Nweoair3KgUo1Z8jscH3IFtNhsntl7ix1yTPxcNA7/t8ZduxFarlQOrTrF62ja0mTrkCjkdhzaj14R2/5I6Sp+jZ98vJ9jx/SHSEjIA8Apwp8PQ5rT8qsF/W2TD/0S1/KoBt04/4PKhm/8WgGOz2Xh4VaxT/6SDI4jg4jveoEu1vzgbjv1+gYzkLPxCvKj5ieTwHT8dJydTR4HIQGp+oDMDsHaeyGuq3KAEZT7Az1m/6CA5mXoKlQqhYcf8o7PYV8lsk7qt/Sa1zvd9i41KtudN9Rvfyu5TA7Dll9PERKXg5evK53lSxm9ffcFByY5i2LT29hTxGxef2UN2h01ta1fjrfvpJG+iUvDycaX/iKaAUE3ljqb6fi1GU1arjUWz9qLXmShdLox2XaqQnf3/fHD+Vv3LY6lPgBvRpflrcKOQKVDIlOSYzfnAjQjTzA9ugpzc7ODGXeVAil6Hr4MzqTqRJ1VAkn+DjDAXd6IzM3BRqVGiIE2nI9jFjaTsHEwWK0W8vHmaIsBNyTzgJtfETymXU8TTi4cJSWgUCsLdPXmUmIyTSkWomxuPEpNxVqso4O7BvdgEHFUqivp6c+N1LGqFggohgVx4Ho1cJqNekQhOPhSLRuPihTn54BlWK9QqUoC7UfGiIxPgg8Im497rBFwdNdQsUoD9kqFflxql2X/1ETqjiXLhQdgsVq49e4OjWkXXWmVZf/waNhs0rlCUmMR0HkYn4uKooW+jivyy9yJmi5VapSNQyWUcuSIIxEM71WbL0ZvEp2QR4O3K5y2rsGj9SYwmC1VKhlG+aAjfbxI7rI6NyiK3wfo9YoQyoEtN4hIy2HdSjM2G9qlHfEI62yWzrq+61USjUvDtj+IC3LJRaepVK8K4mTvQ6U2UjAxk3JBmzPp2P89eJOLirGHu1A7cufeaVRLBuHWLcvTsVo3R47YSFZUsHIxndyY1Ncdu4FemTCgzZ3Vk3+4brJbItc1alGX4yGasW3mGLRvFgtu2YyUGDmvC3u1X7eS82vWLM25aO54/iWfqiM1kZugICvVizvc98fXPLwPvPaAePfvVE+7G36wn+oVEMl7UjYo1ChP7OoUpA9cREyWUUpMX96BC9cLocgzMH72FK5Icve/wJnTtL9RId6+8YNag9WSla/EL8mD6r58TIXVfbl98xuxv1pGdocM7wJ3pv35O4VJCFqvN1rNo+EYuSmqxd/1t9Doj34/dwqldYjFt2LEyQ+Z3zWdClxyXztx+v/HwmuCEdRvejF4fGDU9vR3F3K9+Je5lEgqlnM8nd6DDN+8b/IEwa1s+cgNnpectUbUwY37+ksBw30+uPa+fxLFk0Go7iTiyUkGGLf+cQqX/XgJ13jLojBz47QRbv9tPemImAP5hPnQe2ZKmfev8X8Ov+SdVvKq4oL9+HIfRYPovy9hfP4kjNT4dlUZFsTxhkH9Vt889Ju5VEk6ujp/MGgNhLfDHcuH422lwk4/yfNKSMtn9qwAfvce1/uD37t6V5/x5SMi+v5zU9r3jLx7EcHiz4BkOmNY+32PYbDZ+mrFLeNHULkqt5mXyHfth+m5MRjPlaxShbqty9mNRTxPYJq03Aye3sQMfvc7I0tyuTufKlJGIyjnZepbO2A1A665VKSO5iN+7GcXOTeK1DZvUGhdXR6xWG9/N3GN3Me7QQ4ymdm69zN1b0Tg6qRk9uQ1yuYzMzL+fE/YfDXByLAZc5K4fADdOZJj0H+fc/ANwo5arMFtk73VuFDIVWrPJroDKBTcpeh2eakfS7J0bMZZSyhS4qjSk6nX4OjqTotVitUEBVw9epacjQ6SGv87MwFWlRmGTk27QC3CTlYPJaiXSy4fHKcmAADf3c8GNjy8PJHBT2MOLR4nJOCiVhLl58CQpBWe1mmBXV54kpeCiURPi6sbD+CSc1SoKeXtxOyYejVJB2cBALr94g0Imo06RcE49EpybpiWLcOzuU9GdKBrBjRcxZBuMFA/yw2yy8DhBxDJUKRjKkZtiwe9Wsyy7Lt3DaLZQpXAoOVojDyQQ1KFqSdYfExeUlpWL8Tg6kedxqXi4ONK9bjl+3nNR8GQqFkGrM3L69itUSgVDO9Zm3YGrpGTkEObvQdeG5Vm07qToAFUoRFiAF79KOVO9W1UmNS2bg2dFJ2lE3/rceRDDyUsirHNs/8bcvv+aI2fE8eFfNiA1NYdVm4Uyq3u7yhQv7M/EObswm61ULh/O4C/qMXHGTmLi0vHydObbGZ04duIe26SLY+/u1WncoCTDR2wiMTETHx9XFszvyoP7MSxZLLo0uQZ+q349ze6d4n49etWg92e1WPztAY5Jyd9fDKhPl57VWf3TSbZJi0nbTpX5engTrv75lLkTt2MwmClaIohZS3qgUiuYMmwTNy+/QK6QM3xSa5q2rcDzR3FMGbyB1KQsvH1dmfVDbwpGBvLwdjTTh2wgI02bTymVnJDB9IHref4wFrVGyej5XagtmXkd33WdZZO2YzZZiCwTytSfP8NLchc+vPUyK6bswGK2ElkuTByTLN/jopKZ8eVKop7Eo9IoGTqvC406veU6JMakMvPLlTyXJOT9pranzef5vUXuXHjCvP6rSE/OwsXdkdHLP3uP12Cz2Ti49iw/T9qKyWjGL9SbSav6f9Tb5u6fT1gwYCVJMakolAp6j29D5+HNP2iyllsWs4Xtyw6xYe5uTAYTDs4avpjemVb9G37yfh8qo97IodWn2bJwn13eHBjhR/fxbWnYvQZK1f9/l3efYE9cvVzISs0m+mEMhf8hb+bdun1GbKpKVivyjwDh4fViY9Kgc1UcnD/ddTu96yoJ0Sl4+LrStOfH08C3LjuMXmsgsnw4NZq/P6a02WyslPgxTbtXp8A7sm+bzcYvM3YJLmDLcpTOE6sAcOHIPa6deYxSreCb6e3z/U5O77vFjfNPUKmVDJrxllhstVr5ftouzCYL1RoUp2bjt0rADT+cIO51Kj7+7nyZp6uzcvEREuMyCAj25IvhYsyl1xlZNF0YADZuXY5qdcS4d9/2q9y6+hKNRsloaTT16kUiayQ38gFDGxMY7ElyUiYDP1/5yc85b/3/9xfwN0ot+0DnRuFEhvET4Mb01+DGQ+X8PrhRvw9ufP8muFHJFbgoNKTp9fg5upCsFWGZIkNKAjcu7rzJzMBVrUFulZFuMBDq6k58ZhZmq41Ibx8eJ+cHN3JkFPfx5UFiEiq5nAgPTx4niW5NkIsbT5NScNWo8XN24WlSCu4OGgKcXXmckIyLRk0BTw/uxCbgqFJS0t+Pq6/eoJLLqVW4AKcfiV1ysxJFOCJ52dQvVpDLT6LRmcyUDvUnR2vkZVIa3i5OlA0N4NhtEZTZrUZZtl+8i9lipWaxAiSl5fA0NhkPZwdaVSzOhhPCM6F9jVLcePyG6KR0fNydaV+jFD/vFRfzltWKk5iSybXHb9ColQztWJvfdl0UUQwhPrSuWYLFG0+JMVT1Yrg5ObBxv2ixDuhUg6cvEzl15SkKuYxxXzXm9KWnXLwpeD9TBjfj5PnHnLvyDIVcxoTBzXnwKJZdh2+J+/eqjaebEzMWijFV/ZqR9OpUldGTt5Gckk2AvzsLZnRk8x+XOXJcdCQGDWhA2ZKhDB+5ifR0LSEhXiyY14VTJx+ycuVp8Vk2L8OQIU1Y9O1+Tp+U0smHNKZZy7JMn7CdKxefIVfIGDGuJY2alua72Xs5LoVQfjGwAV171+DQ7hssl7g1VWoWYdK8TuRk65nYfz3PH8fj4Khm8rddqFyzCNcvPGPO6C2Cs1PIj9k/9sE3wJ0/T9zn23F/YDSYKVIiiBk/9MHLx5UXj+KY+vVaUhIy8fB2YeqK3hQvF4bVamXD0qP2tnft5mUYtaArGgeVIBN/e4Cd0s6wXuvyjFjQxb4jv3PxKbMHrCErXYuXnxtTfvuCYnnk23cvPWPOgNVkpGTj7u3CpF++oHS1t1wam83G7l9PsnLmLqwWKxElgpm8uj9B73RYtFl6vh+1kdM7BemxatMyjF7xOa6ezu+tG2aTmU0L9rN1sfgcgwr6Me63fh8FQrn1/G40iweutJNZKzYqzbDvP/vHnjZWq5WTWy6wdtp2kt6Ibqx/mA89JrSlUc9a/78GNrklk8mIKBXKnbMPeXE3+r8McG5JG5Wy/0CGn5GSxYX9Yi1q2qf2J8+1WKz8sVR0b9p/3eij8RYJ0SkcWC+iTvpOfJ9XA3Bm7w0e3xL+M71GvR+5cG7/Le5cfIZao+LLia3zHdPlGPh51m4AOvevT3DE299BVrqWX+cKknD3bxoSnOc3cnDrFR7cjMLRSc03eQz6Ht99zS7JcXzI1DY4Sz45Ny49t4+mRsxoj6M0Alu1/Bhxb1Lx8Xdj4CghWX8TlcIqydDvyyGNCCngjclk4dvpIievao0iNG9THqvVxsI5+8j+fx2cv1c5FgsqlHnAjeO/Bdwk67Xvgxt9NiqZErlMYQc3uWMpj1xwo3EiTafLx7lRyRU4/3/kvXV4FPm2tn23pTvuSoIEl+Du7u4Ed3e3ECC4u7s7DO7O4O4SJ+7e/v1RRUMgMMze+5z9nm/WXHMNdFV193R3VT2/tR6RKb8mgWekYzRCHmtB3i2VSPGwsCY8JRkbMyVGg4RktZrc1rZEpKSiN4jGfV/AjWN2cPMmJhYzmYy8NnZ8ELs1bhZWfIpLwEalxFFlTmBcAnbmKpxUFryPicNGpSSXrQ2vImOwMFNQxNmZRyERKGQyqubLbQI3jYoV5PwLAdzUL5af22+CydLpKZPHg/iUdMLik3GxsaSIuwtXXwYik0roWKUkh+48F7oqxfIRFpNEUHQiDlYWNChVkL2iaV/HGiW5/SKIiIRU3BysaVK+CJtPCaOkNjVK8CkslheBUVgoFQxrV521h2+TnqmhuLcbtUrlZ8VeYQzVpo4POq2eQxefAjCqay3uPQvmrtj1mTqwIScuvuDpGwEozRzRlKNnn/LweQhmChn+o5tx/c+PXLj+GokExgyojzpLywKxFd28YUma1SvBmCkHSEnNEqIXprdhzYYr3LknqJYmjmmKi5M1o8ftNamn5s3pwIH9dzkkZsd07lyZrl2rMmPqYR49DDIZ+JWv6M2kUXt5/TIcpVLOtNntKFU2D37jD/Dw7iekMgljJregQdOS7Nl8wxRa17BFaUZOaU5EWAJTh+0iJioZOwdLZq/oSqFiubhw4jErZgky8JLl8+G3rAtWNuYc332HDWJMQsWahZm8qBPmFkoe3XrPnJF7yMzQ4OXtzKwNvXDzdECj1rJk4kFuiGOvToPq0GO0EASYkZbFglF7uC+CtW6jGuI7vIHp4nl275+smXYIvc5AoVK58dvU1yRzNRqNnN51i/V+QtcnfwlP/Lb0w+UbAm1WuprlY/eYJOB12lVgxKKuPyQxB7/5zOxe6/n8KVpQU/m1pe2QBjneXKJCYpnffxNvHwjdyQa+VRmywPeXrro6rY79i0+xd8Ef6HV6rOwtGTTfl/q/COL8WT299opNk/eZQJKThz1dJrWiUc9a/7KM/P9qOX+xC4j7fU5GTqVRa3ksjp3L/oZH0Zc6v+sWWo2OgqXz/FINBXDrj0eEvo/EytaC5r1zDssE2LXwJDqNjtI1ClOmRpEftqszNWwVYxM6DMkebAnCKHej2N3pOKTeDzYGe1ZeIC4yGTcvBzoOzk5y3jT/FEnxaeQu4Er7/l/fY0xEEluXCNeznqMa4iwSqTUaHUumHxUWcc1KUamm8H7T07JY7i+MrFp2rkQpcWT15H4gf4iqqTHTW2FprUKvM7BwxjHUah2ly+ejRQehM7tz0zU+fYjGxtac0VOEiIZjB+/x+EGQybn8d+qfdUb8UN+Npf5NcPNFCp7TWOoruNHlOJZyUFqQ8AO4kWMpNSNJnYWbhRXR6QK4+UIo/gJuPqemYKtUYdAZSdWoyWNjR3hSMgYj2cGNkwuvo2ORSaQUcnDkTYzAs/GytuVDXDxWZmY4m1sRGJ+InUqFnUpFcEIS9hbm2Jup+CQCHVdrK95ExWKtNCO/gwNPQiNQymVUzOPJjfdBSCTQqFghzj8Xxk0NSxTk+stPaETlVGRCChGJgizc28mBm6+FzkiHyj4cvP1cGC+VLMD7sFjC4pJxsbWiZtG8HLoh3CS71inD5ccfiE5Mw9PZljolC7BdlH53rlOaJ+/DeR8Wi42FksGtq7HywA1BQl4oF+UKebL+sLDi8G1cjui4FK7cF+TmE3rV4/yt1zx9+xmVUo7f4CbsPv6AN5+isDQ3Y9aoZuw8dJcX7yKEqIVxLTlx9im3HghKqCkjmhASFs8u0ROjS5sKVCydl7FTDwpS8ULuzJjUwhS9YGYmx39KK4wGA5OmHESr1VOmdB78/Vqzbu1lzp8Xui+DBtejYYMSTBi7j7dvIlCZK/Cf3Y48eZwYM3gHIcFxWFurmL2oE165HZk4fDdvX31GqVIwfW57ylX0ZtWC05w+IhBmffvUoMegOrx5EY7fqD2kJmeSK7cjc1Z1wy2XPXs3XmPnGiGXpk7Tkoye2QaZTMqGBac5JvJ7mneqyGCRA3Pm4H3WzBKIvSUrejNtZTesbc1JTkhn1pAdvH4UjEwuZWRAexq0E0zxYj4n4t9/K0FiiOfYxZ2pKZIp9To9m+f8wfEtohlayzKMXtwFpTg60Gp0rJ12mHMiubNWq7KMWuybLT8nMiSOWb3WE/wmQhhb+bfL0ZX4yqF7rBi7C3WGBicPe6ZsHkCxitlb+l/qxrEHLB+5k4zUTCxtzBmxrDu1/kIWHPQyjMUDN/FRVOhUa1meYcu64+Bq98vjvq/g1+Fsmbqf+2L6vIWNOZ3Ht6T10Ib/0bDL/0sllQrfpdFg/Is9f13PbrwhIzULBzc7Cv1mkKdeb+DUFoEn0+IXaigQOm57l5wGoPXAej819gt8Fc4V0euqz7Q2Oe5zdONVYiMScfawp+3AH193z/LzxEcn457HifbfAZigNxEc2yqM1Ab7t8l2vjy584GLRx4ikUgYNbe9CSwbjUZW+B0lM11NsbJ5aCHKtgH2rr9C6KcY7BwsGfyNh86X0ZS7pz19RjYEID01i6UiH6d5+wom1dSBHbd49+ozllZKxs5ohVQq4fmTEA6K15lRk5rj4GhF0KcYNovjqj4D63Dh5swcP5/v6x8NcLITirO+cyg2FxyK5V85N7LvpOD/Crj5MpaSfNO5cVBaEJ+RgRFJdnAj+wJurIlOT/sB3LiZW/E5NQU7pQqdzkiaRpMN3BR1dOKNCG6KOX4BNxIKOjjyLlbg2eSysuZTfAI2SiUOSnOCExKxNzfHRmFGSEISjhYWWCvMCIpPxMHCHCcLC95FC12cvHZ2PAuPQiWXU87Lg1sfQpBKJDQsWsAEbpr4FOLSi4/o9AYq5fciJCaR6OQ0PB1s8bSz4c67EBQyGe0rlWD/LeHi3bhMIZ5/iiQyMRUPBxsqFvDi6G1hhdWzfjlO331DfEoG+dwcqFTIi90XhBt3z0blufXsE4ERCThYW9CveSWW77uORqenUvE8FPRwZKtIGO7bqjJvA6O48ywYuUzK5H4NOHL+qQnMzBjahA17hURwW2sVs0Y2Y+3OG3wIisHaSkXAuJbsPPgnj18KQGXm2OY8fBLMUdHRdED3GuTJ5cDEGUcEqXjpPIwf2Qj/gBO8+xCFhYUZc/3bER2VzKIlZ4R4hmoFmTiuGQsXnOb27fdChMP4ppQtk5fRI3YRGhKPtY05cxd0xMpSxahB24mJTsHJ2Zp5S32xsDBj9MDthIn7BSzpTP6CbsyZfJjbV98ICrIJTWnRvgJ3b7xj7qRDqNVaipTwZNZyX6xszFkVcJIzh0VDwT416DW8Pjqtnnnj93NLjHToO7oR7XvXwGg0sm3pOQ5uEoBIvZZlGDm7rUkp5ddvKxEh8Vhaq5i2pgelxYva++dh+PffSmJsKvbO1szY2JvCYthgekom84fv5OFVoavTY1xTOn/T1UmKT2XOgK28vPcJiURC78ktaD+4Xjbg8ujaa+YP2kpaUgb2zjZM2dzvBwm4Rq1lk98hTm65BkDZ2kWZsL5fjiopdaaG9ZP3c1aU9xarmJ8Jm/rj9ovRkl6n5+CyM+yeK/AWrB0sGbakB7XaV/pbXZuUhDR2zT7KqU2XMegNyOQymvevi+/k1n8pP///e0lE4uy/C3DunBTGTFWalcmR0JtT3T//jJjwBGwcrKj1F+Z+t04+JuRtBJY25rQemHNYJsC2OYJsulbr8hTMIXwzNiKRA6tFufSUltkACkDwu0jTomDwrLamBQEIIGvV9CMY9AaqNfahYp2vozh1lpZV048C0LxrlWzS7wtHH/H49gfMlHJGB7QzfT7vX4VzUARLw6a1xEZUMj668zHbaOpLt3TDsnPERCXjnsuefiMFPs6HNxHsFq8dQ8c3xcXNlvS0LBbNOoHRCI2alaJ67SJo1Drm+h9Dq9FTuVpBGn9DfP6r+kcDHI1Rj43U+ufgRvZ74Mbub4CbmN8ENxbfgJuotFQE4z4B3MhEcBORlvoDuAlLSsZoRIhciBMSi7/EL3whEb+LjcNcLsfd0prA+ERslErsleaEJCbjaGGOpdyM0KRknCwtsJQpCElIwsnSAjtzFe9j47EzV+Fla8uLz4KKqnQuN+58CkUmlVC/SAHTWKqpTyEuPv+IzmCgasE8fIyIJTY1gzxOdjhbWXLvQxhKuYzWFYqz/7YAbpqXK8qDd6HEJKeT29mOkl5u/PGncGPt07ACx26+ICk9i0KeThT3cuXAVeG4fs0qcfH+W0Kjk3C2s6Rnowos23cdnd5AzdL5cbG1ZO854UI2pEN1HrwM5eGrUJQKGVP7N2Tn8ft8CovD1krF9CFNWLHtKuFRSTjZWzJjeFOWbLhEaEQCDnYWBIxtyZod13n9PhJzlYK5k1pz/spLzl8VxlSjB9bHXGnGjLknhHiJqoUY3Lc2k6YfJiQ0HltbcxYGdOTlizDWiAm+jRr6MHhgXfz8jvDsaSgKhQw/vzZ4etozYuhOYmNScHa2Zv7iLmRlahg9ZAfJSRl4ejkwf7kvmRkaRg0QDPycXW2Yt9wXB0drpgzfzYsnISgUMibObkuNesU4e+wRK+ee/MrDWdARgICx+/jz6lskEgmDJzWjZedKpCZnMGP4bl6LzzF2TntqNymJRqNj2ZTDXBNHT12H1qPrUAFovHwQxKwhO0hNysDV055Zm/qQu4Bg+nX73AsWjdkrmAcWccd/Ux9ccgmZNJEhcfj32UzoB8GTZ+yyrtT4RiIb9Poz/n02EROegIW1iomre1Kx3teRgtFo5PCai2yfK2R1FS6bl2lbBuD0nTdJTHg8c/ps4N3jYOG9j2uO7/jmOZJ8Q95GMK/PBoLffEYikdBpdBO6T271S6fbsPeRLBqwkXdiNlHlZmUYubLX3+ra6HV6Tm++ws7ZR0kVE66rtSxP3zmdyFXA7bef559QBuO/DnD0egN3TwvXhap/oYL6tk5sEM/bbtV/2UHT6w3sXSyY3LUeUO+nTtZPb73j4ZVXyORSekxqkeM+W+acQJ2poVgFb2q1ym4caTQaWTP1EAa9gaqNS1KhTrFs28/svcubxyGYWyoZOD276mr3yotEhsbj6GpLz29IwnHRyWxaIHSeug9vgKfI19GotSyZJoClWo19qN5AyItLS8lk2ZfRVJfKJtXU3RvvOH/iCRKJhLEiH0edpWXhjGPo9QZq1CtG3SYC4X/N0vNERyXj5mHHYFE+vmX9FYIDY7Gzt2TM5OZIJPqfft7f138d4Pj7+zNzZvZ2k6urK1FRUT895vr164wZM4ZXr17h4eHBhAkTGDRo0N9+bXPZLzo334ylfg1urIj7CaH4XwE3ZlI55jIzkn8BblxFcGOvNEej1ZOu1ZLXxo7QHMBNMUdn3sTEIZdK8baz512cAG7cLK0IShBGUTYKJaGJAqBRSeWEJSXjYmWJUiInNDEZZytLbJRmfIwVRlS5rG14+TkaSzMFJdxduRsYhlwqpW5hby6I4KZZycKcf/ZeuMEXzsur0GgS0jPxdnHATqXi0afPmJvJaVGuKAfvCMqf1hWLc+tlIPGpmeRzdaCwmyNnHghxC30bVeTg1WekZqoplseVAq4OHL8luvu2rMLJWy+JiEvB3dGGznVLs3z/dfQGI/UrFMJCoeDoledIJDCySy2u3v/A8/cRWKgUTO3fkI0HbhMamYijnSVTBjRk0aZLRMel4uZsw9RBjZi/5hyRMSm4Olkzc0xzFq+/xKfgWGysVMyb0poDxx5y865ASJ48sgnpaWrmii3pxvVL4NuhEqMn7iM6JgVnJ2sWzenItWtv2LlbGJW1b1eBzh0rM3HCft6/F7o7swPaY64yY/TwXUJkg5cDC5Z04XNoPDMmHyIrU0uhIu7MWdyZz2EJ+I3bT2pqFrnzOjF3uS8yqZRxA7YR9DEGC0sl/ks6U7JsHvZsusbO9UJr/YvHTUa6mhkjdvPmWRgKMzkT57Wnev3iRH1OZPrgHYQFxWJprcJvRVdKVfAmLSWT2cN38/x+oDB6mt2WBq2Fm8O1k09YMvGgSSk1Y0Mv7J2sMRqNHNl0ja0LBP5O+VpFmLyqmym879WDQGb130JKQjqOrrbM2NKPgiW9TOfq7bPPWDxyF1kZGjzyOjNjW39yF/x6o/+eb9OwSxWGzu/8g3z48fXXzO+/iZSEdKzsLBi/tg+VcghHNBqNXNhzm7UT9qLO1GDvYsP49X0pW+fnHA2j0cipTVfYNHU/6kwNlrYWDF7Ulfpd/h7X5um1V6wbt5vgV0Jobb4SXgxa3I3StYr9xZH/rEqKFSTxtjl03X63nt14Q0J0MtYOlpSq+XsE47cPA3l6463QTetb55f73jj2gOA3YvdmUM7dG73ewKYZRwBo1rPmDwR4EMwrr594jFQqYfCsdj/8ni4dvs/L+4Eozc0YOCP7eCs2MomtC4XrUc9xTUwcGoD3L8I4KnZ9hs1sY5J+G41GVs04RnpqFoVLetKm59c4hl1rLhPyURhNDfmGxLxm3iniolPwyO1AnxFClyYxPo2ls04A0LZrFVPW1JbVlwgNisPB0Yrhk5ohkUi4fukVl84+F3iJfq2xsFTy4N4njh4UeDvjpjTH3t6SoMDPv/rIs9V/HeAAFC9enEuXLpn+LpP9fHUUFBRE06ZN6d+/P7t37+b27dsMGTIEZ2dn2rVr97deN1mjxlJp9QtwI0EuEQIxbURQIv8rKfgPhOKvnJt/Fdzks7Yn8BtwE5kmJIGrNSK4sbUnNDEpB3DjYurceNva8yEuHkuFAmdzS4ITkrBTqbBSKAlLSsHZ0hKlVMrn5BRcra1QICU8KRlXayvMFQo+xQkjKjcrK15HxmClNKOoqwv3g8KRy6TULpiPiy8/AtC8VBHOPnmHwWikVpF8PA+OJCkji4JujpjLFTwJisBSaUaTMoU5dEfgmbSrXIIrTz+SlJ5FAXdH8jrac+GxABr6NqrI3stPSM/SUMrbHXd7G07+KYxchrSqxuGrT4lJTMPLxY421Uuw4sANjEZoVrUYeq2eUzdfIZVIGNe9Dievv+JtUDTWFkqm9GvAyl3XiYpLwc3JmvF96jNv3QXik9LJ7W7P+H71mb3yDHEJaXi62TFtZFPmrjhLWEQiDnYWzJvShs27bvLwaQgKuQz/CS0IDokzhWa2a1mOJvVLMGrCPhIT0025UkeOPuDYcWGs1qdXTRrUL87YMXsIDY3Hzs6CefM7kZGWxbhRewTScWE35i7sxIsnocybeVzg6pTPi//cDrx8HsbsyYdQq3UUK+HJrMWdSU3OYNzw3URHJOHgaEXAyq7kze/C6vmnOSWOn7r0rUnPwXWJjkhi2pCdhAfHYWWtwn9lN0qUzcPHNxFMH7KDxLg0nFxtCVjfk7wFXImJSMJv4HZCPkZjbqlk2oqulK1WEKPRyKGN19i2WAjgq9qgBOOXdEZlboZOq2fNjKOcEyMZWvSoxsBpLU1dkKvHH7F03F50Gj0FSngyY2s/nNzsAOFCu3/VBXaKF+gyNQozeW2vbOqmmPAEZvZaT+CXpPGAjjTrWSPbTcBoNHJ41Xm2BQjy2QIlczNt+6Acx0xZ6WpWj9vNpf2CIq9snWKMW9f3lwGM8ZGJLBm8hUeXhN9zmTrFGbu+H85/wzU47nMCGyft5fph4XOycbSi54z2NOld+29nI/0TKlZ0aXb5SR7Y79SVAwLXo0brir9N0t6/9AwAdTtWwvUXrro6rY6dC0RC8PBGWNv9qMgDOL/3DoGvwrGyNcd3zI+qKJ1Wz5pphwBo1r06BXy8sm1PSUxns0g87ja6sakjCsLvfvX0I2SmqSlaNg/Nu1U1bdNqdCybfEgwJG1Wisr1vgLoyyeecP/6O+QKGaPntDf9/l4/DeHwdkHlNdK/DbbieXj93AuunnmOVCZlwpz2qCzMhPyo2SdITkwnXwFXeg0ROEEPbn8wRTSM8WuFrZ0FMVHJrFgofK6de1SjeCkvEhPTWSQGcbZqV55KVQsSHp7A4AHbfvqZf1//TwAcuVyOm9vvtV3Xr19P7ty5Wb58OQBFixbl4cOHLF68+KcAR61Wo1arTX9PSRGQv0Ii/wpupOakar8HNwqy9Hps5YL53s8cinPyufkKbqyJzhCAyv8EuMlna09wgmDy9y24Ke7owmsR3OSzteND/FdwE5KYhL25OZYyBZ+TUnCxskSOhM/JqbhbWyFDwuekFNxsrFDJ5ATHJ+JoaYGzuQVvImOxVikp7OzIw+BwzOQyaubPy+VXgqFfi1JFOCOCmzpFvXkc+JmUTDVFPJxRIOVFSBRWKjMalizIkT+Fm0HHqj5cePSB5Iwsing642ZjzZVnH5FLpfRrXJGdFx+RqdZStmAuHCwsOH//HTKphKGtq7H3wiOBj+PuQJNKRVl1SDj52tT2ITk5k2sPPwoxBz3qcuj8Ez6Fx2Nnbc6kPvVZsu0KcYlpeLnZM6pHbWavPktyahb5czsxskdtZiw9SVJKJvm8HJk4qBEzF58iKjYFV2drAia0YuXGy7x8KxCO50xpzcPHwew7LJy4vXyrUrFcPkZP2kdampr83i7Mn9WerVuvc/6iaBQ4rAHlyuZl1MjdxMSk4OJiw8KFnQkLi2e2OHMuXSYPs+a259ql16xYJHB1atQpyiS/Vty6+oZFs/9ArzdQoUoBps1pR3hIPFNH7CY5MQMPLwfmruyGo7MV8yYf4ubl10gkEoGH07Eige+jmDZkJwmxqTi72RKwtgd58rvw+M5HZo8WFFF5C7oSsK4nTq62ggx84HbiY1JwdLFh1oZeeBdxR6/Ts272H5wWjcVa96pOv0nCyCc9NYu5w3by+OZ7JBIJA6e3pFUvQVJrNBrZs+wce5YL7qVVGvkwYUU3k6uqJkvLsnF7uSaCwZa9azJgRptsN/uXdz8S0HejSSY+bcsASlTOzrfJSM1i6cjt3PpDGEU09K3KsIVdMVP9aA4X9j6SgJ7rCHkbgVQqoceU1nQc3eSX3Iybxx6wYuQ2UhPSMVMp6De7Ey0G1vttPodOq+PE2ovsCjhKZloWUqmE5gPq0316W2wcrH7rOf6JFfNvAhx1pobbYjxG3U5V/mJvoYJehXP37FMkEgkdR/0IRr6t87tvExkUi52z9U9jGdJTMtk5X7iJdx3XDFvHH7/v41uuEfYhGltHK7qPb/bD9m3zT5GSkE6eQm607ptdoXXj9DPuX3mDXCFj5NwO2cawBzdcJfhdFDb2lgz6ZmyVEJPChnmCXLzbsPrkEcfLWRkaFk89gtFopH7LMlQReTzxMSmsEjOoOvetSRGx83rm6EPu3XwvjMcD2mGmVJCUmM4SsaPTqlNFKlQtgF5vYMHM46SlZlGkeC669a2J0Whk8ZyTJCakk9fbmf5D66HV6pkz8zhZmZpffu7f1v8TAOfDhw94eHigVCqpVKkSc+fOxds7ZzfJP//8k4YNG2Z7rFGjRmzZsgWtVotC8eNFa968eT+MwQCyDAbkSEyRDN+CG4XEjEwxFTzOFJwpMaWCmxyKDT/GL8gk8h/AzRe1lKPSgjgTuLH5bXDjYm752+CmmKNzNnDzMT4BSzMznFXmhCQm4WBujrlUwefkVNysrZAaJUSmpOJuY43UgAB0bKxRSKUEJyThbGWJo8rcRC4u4OTIoxBBOVXNOw+XxSiGlqWLcOrxW4xGqFssPw8/hpGapaG4pyvojbwMF4z66vvk59g9YbzUqVopzj54S2qmmhK5XbG3MOfGi0AUchl9G1Vgx7mHZGl1VCzihblcweXHH5DLpAxrU40dZx6QlJZJQU8n6pQuwLojwsinU73SfI5K4s5zQeo9sWc9dp18QGhUIk52lozvWY8Fmy+QmJKJt6cjgzvXwH/FGdIy1BTN78aATlWZtvgP0tLVFM7vysg+dZi28ATxiel4utszc3xzFqw4xwfRjXiBXzsuXnnFidNPARjSrw4FvV0YO/kAWVlaShTLxaxprVm28jy3b38QWrDjm5EvrzOjRu0mKVH0vVnUmWdPQlm88BQGvZGq1Qsxza81Rw/dZ4voIdO0ZRlGjGvCyaMPWSvamtdpWILx01vy8kkoM8fvJyNdQ4HCbgSs6IqZUs7U4bt5/igYhULGhNntqNmgOM8fBuE/cg8ZaWryFnAhYG1PnFxtuHLqKUtEw71SFb3xW94VS2sVT+9+YvbwXWSkqclTwJVZG3rh4mEnuBaP2sP9awJ3Z8CUFrTuJZiYxUYk4dd3C8HvIlGaK5i0shuVRc6MJkvLsgn7TeCl/cC69J7c3AQKEmJSmNV3E++eCBEQQwI60LTb1zY5wJldt1g35QA6rR7vEp7M2D4IF8/sHZOwD1HM7rmO0PeRyBUyBs/tTNNeNXMcGV09dI8Vo3eSla7G3tWWyVsGULJazrlTICR/rx2/mwu7hI5dgdJ5mLh5ELmLePz0mO/r5e13rBq53TSOKlqxAMNW9Py3fV3+/17JcamkJ2cA/zrAuXPyERmpWbh4OVI8h6iDnGq/OHqu3qocXgV/vijPSM1i9yLhpu87ttlPbQR2Lz5NcnwaXgVdad7rR/l4bEQie5YKXdG+U1v9kHL/4t4nzu0TFhbD5nRArvgK/lMS01k3U+DEdB5SjzyFvr7fT68j2LdW4BENmdEKOxFYGY1GVsw4RlpKFgWL56J9n6/+PluWnSMiNB4nV1sGTWxm2n+J3zHSUjIpWMwDXzGDKjwkjg3i9an3sPrkK+iK0Whk6aw/SExIJ4+3M33F9PADu26b3Ion+bdGLpdx9OB97ouZVFNmtkGpVLB+zSU+vI/C6m9EjvzXAU6lSpXYuXMnhQoVIjo6moCAAKpWrcqrV69wdPzxhxsVFYWrq2u2x1xdXdHpdMTFxeHu7v7DMZMnT2bMmDGmv6ekpODlJaDM78EN34GbeHUmMokMI9IfgzMN2YMzszsU/whuHLKBm6+E4n+3c1PMyZnXsdk5NwqplLwiuLEyM8NRJBE7mJujkiqISBHAjcQIkSmpeNhYY9QbiUhJM4Gb0MRkXKwtsTNTCW7D5iq8He15EhqBSiGnSj4vrr4JRCKB5iWLcvKRoHypX7wAd9+HkK7WUtLLDbVGx/uIOGwtVNQqmo/j9wRTLd/qpTl57zVpWRpK5XXHUmHG7VfBmMll9GlYkW1n76PR6alWPC8Sg5EbzwIxk8sY1qYaW07eJSVDTbG8rlQumodNJwRpdvfG5XkfHMODV6EozeRM6lWPzUfuEhGbjJujNaO61WbOhvOkpmdRKK8LfdtWYcby02SqtZQqkovurSsybdEfZGZp8SmSi4G+1Zky7wTJKZl453Zi2qimzF58iuCweOxsLVg0ox2Hjz/iwpVXSCQwdngjHO0smTj9EFqtnnJl8jB1fHPmLTjFo8cCyPCb1gpbGwvGjBZypQoUcGX+gk5cu/yaNWKoXINGPowd35RtG69xUOyMdO5Wld4Da7N7yw12iwqGVu0rMHh0I25fe8OCaUfRavWUKp+XGYs6o1FrmTBgOx/fRWJhqcRvcWfKVPTm1qVXLJh8GK1GR4myeZixoivWNuYc2XGLTeKIqVZjH8bOaY+ZmZxrp5+xZPIhdFo9PhXyMX1Vd6xtzUmMS2XGgG18eBGOmVLOhCVdqNZIIAt+ev2ZGX23EB+dgr2zNTM396WgjxC7kJyQxuz+W3n1QODwDJvTgcZdvq6gg15/ZkavjcRGJGJla8HUjX0oXa2QabtOq2ej32FObhO4AzValGXM8u4/OMneO/+cBYM2k5GahaObHVO3DaRYhR8l4JosLesn7+fMduH5StcswoSN/X85knr/OIj5fdbx+WO0QD4e25xuU1r/9pgjNTGdLdP2c3brNUAYR/UN6ETDHjV/u/Pz75bRaCQxOpnAFyEEvwwj6EUo8ZGJZKVlkZGaRWZ6FpmpWagslXgV9iB3kVzCf4vmIn+pvFj+hDD7v1HvHwkEbs9C7qgsf+5B9Ks6Lcq8G3Wv8VufecjbCG6IHK8uY3/spHxbh1afJzEmBY98LjTpUfOnz/eHqOIbOCs7OPlSG2ceIytDIBbXa59draXO0rBiwn4AGnepQonvHIs3BvxBcnw6eQq50mHQ1w6SVqNj6cQD6HUGqjYoQc2mX92SLxx5yP1rb5ErZIyZ+3U09ejOB06KI+Yxs9piZSOAjJMH7vP4z4/C+T+3PXKFDJ1Wz4LpR1FnaSldIR9tfIWMrlNHHnLvltDRmRTQDqVKwZuX4ewUTT6HjmmMh6cDH99HsVkEXwOHNSCftwv3737isMjFGTG6EafPT/nl5/+l/usAp0mTJqY/+/j4UKVKFfLnz8+OHTuygZJv6/vVl1Fk0f+MyKdUKlEqf7TRVprAjbkJ3JhJlGTqtdiKmVAyiQwJUtSGr+BGGFX9CG7kYir4z8BNQmbmL6Xg/9JYKhu4ETg3CqmUPDZfwY2D0pzQpGQcLSxQIiPyC7gxQFRqmgncRKWk4WFrjRQB3LhaW2GjMONDTDz2Firy2tvzJDQSlUJO5bxeXHsjeN60KFmEk48FcNPQpyC33wSTodFSKo87mRlaPkTFYW9pTvXCeTgp5kx1rVGa43++IkOtpYy3B2YSKXffhqBSyOndoAKbz94TFFA+3mg0Ou69FhRPQ1tXZ+Mfd0jP1OCT350y+T3Ydkr44fdtUYlnbz/z+G045koFE3vVZ/3BW0THp+LpYsuQjtWZve4cGZkaShR0x7dpOfyWn0aj1VGhZB7aNSjFtEV/oNHoKOeTm57tqzB53nHS0tUUKeDKhMEN8Zt3gs9RSTg7WrHArx079tzhxp33yGRSpoxtisQI02YJ5lfVqxZk9NCG+H0Tmhkwqx0GnYEJ4/ehVuso4eNJQEB7jh95yA4x4LJthwr0H1iXlUvOcvbkUwAGDK1Hu86VWbv0HH+IMswe/WvRtXeNbO7E1eoUZdLstsTHpjB56C4iwxOwc7AkYGU3Chb14PTB+6yeewqj0UjVukWZOK8DCjMZGxed4ehOoQPWpltV+o8XxjJHt99k0wJhNl6zsQ9jF3TEzExOeFAs0/tsISo8ARt7S/w39DLJSx9ce8O84bvJTFeTp5ArM7f0xVXkonwOisWv5wYiguOwtFExdX0fylT/Cl7uXnzBgqE7yMrQkMvbBf/tA/D0djFtT01MZ+6AzTy9+Q6AnpNb0mlEox/4NvuWnmHX/D8wGo0Ur1yAqVsG5ghYokLjmNNzHR+ehiCRSOgyrhldJ7b8aWyCwWDg0PKz7Jh1BL1Oj1MuByZtGYhP9R9N2XIqo9HIjSP3WTdulykQs3Hv2vSd3REbx3+dLPu7rx38MoxHl17w+PJzPjwK/C2TvJT4VGJC43h08bnpMaWFkqZ969JudDNcvP6eE/N/ot49FLrGhcv/fm7UtxX8KpwXt98hlUlp1PPnxnvf1t5FwnlTrUVZvEt4/XS/2IhEjop5dH1mtM0R9BqNRtZPF1RPVRqXpFydHwnkj6694dbpp0hlwiLgexC2d/l5PgfF4uBi84Nj8f2rb7h87JHgazO/YzZzvAPrrxD4NhIbewuGzfoa1RAVnsCGeYLiq+eohuQVOz6pyRksnS6QoFt2qUzZqsIIOCwoli3LhC5N31GN8BJVVns2XeP9q89YWasYN1PIwQoJjGWjmIfXZ1h9vAu6kp6WxbwZxzDojdRpUJwGTUuSmalh7oxjaLV6qtYoRMu25YiPT2OhODJr1aYclatkH0H/qv7rAOf7srS0xMfHhw8fPuS43c3N7QeFVUxMDHK5PMeOz68qVavB1tyWJK0GgWSsJOMbcCP9FtyYWRGbKYAbo1GK+jtwo5AoSDNlSwlAxUF8nmwmfpa2hKcK4MZKZkbiD+DGgcCkhGxS8F+OpWKzc26+gJtPCQlYfw9uJDIiU9Jwt7bCKIIbT1sb9DoDUSlp5LK1QQKEJyXjbmONlcKMjzHx2FuYk8felqdhkZgr5FTK48X1tyK4KfW1c9OkZCGuvw4kU6OjdB4PUtOzCIxOwNHagsoFvDj1SAhf7FazDEduvyBLo6N8AU/QG3nwQQjR7NWgPJtP30NnMFC3dAFS07J4+C4clZmcIa2rsf7YbYGPU8iTwp7O7DorjDgGtanK3WfBPP8QgaW5GRN71WfVnuvEJaWTx8OB/m2qMHv9ObLUOsoW86J1XR/8V55Fq9NTvZw3TWoWY8bSU2h1eqqW86ZD07JMmnPU1MkZ2a8uU+YcJzo2BXdXW+ZPb8vaTVe5/yhIcDSe0orEhDSWrDwvBIDWLc7APrWYNOUgnwJjsLZWMX9OR+JiUwkIEFK9K1T0ZsaMNmzfcoMjomNxrz416dilMvNnHefGlTdIpWL0QmMfFs46zpXzYiL62Ca0aFuOgztus1U05WvSuizDJzUjJDCGqUN3kRCfhnsue+as6Y6HpwO7119h9zph1dq0fQWGTmmOwWBg0eTDXD0jyu3HNqZdz+oYjUY2LTjNUZFQ2Kp7VQZMaoZUKuXNkxD8B24jJTED99yOzN7Sx2Trfnb/XVZPP4pBb6BUlQJMW9fTtNp79SCQWf22kJKYjounPbO2DzS1zb8kgW+aJeTUlK5eiCnr+2RryYd/jMa/xzo+B8agslAyYW0vqjTOntWTmZbFkhFf+TbN+9RmYEDHHG8yDy+/ZEH/TaQmpmNtb8nETf0pX6/ET68X8VFJLOy7wWTrX6N1BUauyjnOIaeKCY1j9egd3DvzFACvwh6MXN0Hn+o/H4P9u5WVoebPk494cPYJjy+/MGVWfSmpVIJHATfy+eQmX4ncuOZxxsLGHHMrlenf9KQMQt9+JvTtZ8LeRRD8KoyY0DiOrTrLyfUXaDW0MX3ndvlfjYh4++ALwMnZlPGv6uQm4Zyp0qzsbxHBQ95GcOOYQNDvOj5nGfeX2jHnOOpMLcUrF/hpYvjt0095evMdCqWc/jPb/7Bdnalh7bTDALTqU5N8xXJl2/7xZTiHxTTwoXPaZ5Ofp6dmsXqaAEha965BkdJffW0+vvpsikwZ6t8Ge1GBptcbWDL5MJkZGkqUy0ubnsKY2Wg0sjrgD+JjUsmV14k+onRbp9WzcOoR1FlaylbOT4vOguHlq6eh7BcXaiOmtMDZ1RaNRsf8aUfQqHWUq5yf1p0rCSqtxWeJikjC1d2OEROaIpFIWLv8PGGh8Tg5WzN2cnMMBiPz5/xBUlIG+Qu4MHBwPbLUGb/8/L+t/+cAjlqt5s2bN9SokXO2R5UqVTh58mS2xy5cuED58uVz5N/8qsxlqp+DG/EfU+cmMx25RAZGGWq9HielNTGZqcjEzk3ad8GZOYIbiy/gRsyWUmeKDsXCMULn5tfgJiQxiZ8Riv8OuInOAdwAhCel4G5jjaVcwceYeBwszfGyteVZWBTmZgoq5M7F9XdBSCUSmpcqkg3cXHsVSJZWR9m8HiSlZhIUk4izjSXlvXNx5rGw4u5esyyHbz0nS6ujUqHcaNU6ngZGYKkyo3vdsmw6fVeQd5ctSEJiOk8+RmChVDC4ZRXWHL2FWqOjYtHc5HGxZ/9FwVRvWPvqXHvwgdeBgjpqfM+6LN91jcSUDPJ7OtKrZSVmrzuHRqujUsm8NKxahFmrz6HXG6hbuRA1y+fHf9lp9HoDtasUoknt4kyedxy1RkdZn9wM6l6DibOOkJCYTu5cDsyZ0oolqy7w7GU4KqWCuTPaEhgYw5qNwoWjVfMy+HaoxNgJ+wgLS8De3pJFCzrx8UM0ixYKnZaaNYswcVJzVq+4wDkRXHzJlZox6SAP7wUil0uZ4t+GilUKMHPiIe7d+SAQpv1aUbtBcTavvMjh3cL4qlOv6vQeUpdXT0PxG7WX9LQs8hV0Zc6q7tg5WLJm3ilOicqFroPq0G1QHbIyNcwevZfHdz4ik0sZPast9VuUEVrYUw9z7ZTwvvqMbUz7vgJv5e7lV8wfJfjYFCrpxcyNvbFztMJoNLJr2Xn2rRbUkPXblWfEnK+OqNf+eMySMXvQafQUKpWbGVv6mWzm9To9a6cf5oyYadO0WzUGz26frWX/+Pob5vbfTHpKJi65HPDfNYh8xTyznc+RwbHM7LGW4NefkStkDF3oS5PuP15HDAYD+xafZrfY4SlYJi/Ttg/+pSLm4aUXLOy3geS4VJQWZgxZ1I1GPXLm8uT0eqc3XWHLtANkpmWhMJPTeUILOo5r8W+nYOdUep2eJ1decmXvLW4dv09W+leBhdLcDJ+aRSlbryQlaxQhT3Gv33JCLv4NF8loNPLo0nMOLDjBs+uvObL8NB8eBzJt/+j/FfNBnVbHqz+FBXCxSr+/mv9SKfFpXNwrAPeWA+v/1jG75p/42r3x+Xn35sPTEC4dEM7JAbM65Pj7yEpXs8FPUEW1H9IA9zw/dsD2LDtHRHAsjm62dB3TJNs2vU7P8gn7MegNVG9aiqqNstscbJrzB7GRSbjldqTHmEamxzVqHUsmCKOp6o19so2mju24xcuHQagszBgz7ysZ+cqpZ1w/90JQR83rYDIX3LXuCh9efcbKxpzRs4QuTVpqJgumHcFgMFKvWSlqNRQWC1tXXyLwQzS2dhYmt+ILp59x5fxLpDIJk/xbY2ml4srFl5w79QyJBCb5tcLG1oI9u27z5FEwKpWCqX6tkcmlrFt28edf1Hf1Xwc448aNo0WLFuTOnZuYmBgCAgJISUmhZ8+egMCf+fz5Mzt37gRg0KBBrF69mjFjxtC/f3/+/PNPtmzZwr59+/72a6doNcjNVKikStJ1Wmy+ATcyqZwsvc40lpJJZGAUJONC5yYVqUSKUmpGqlaTDdw4mlkRm5mBvZl5DvELMqzlQiq4q/nX+IVvx1Ju5tZEpKXkCG6MRrJxbr4FN184N78Fbuxs0GsMQhfHzgajET5/A24+xSbgaGmBp60Nz8OjsDBTUM4rFzffBSOVSGhW8iu4aVa6CFeefyBLp6e8dy7ikzMIFsFNuXy5OPfkPRKJAG4O3nyGWqunSpE8ZGZoeB4UiZXKjK51yrLp9D0MRiONyhcmKjaF54GRWKrMGNSisgButHqqlsiLq50Vh68IN99RnWpx7tZr3ofGYmulYlz3uizZcYXktCwK5XHBt0lZZq87h1anp0a5/FQvk5+5a89jMBppXLMY5Yp5ErBKSOpuVLMYNSsVYPqCP9Dq9FQul49eHSozYeYRklMyyZ/XmZkTWjJvyWlev4vE0sKMBTPb8/R5KFtEaXiXDpVo1rgko8ftJSoqGRdnGxYv7MzDh0GsWim0aBs3LsnwEQ1ZOO8kN669FRyLJzajarVCTB6zl1fPw1GpFMyY256ixXMxZfReXjwNxcxMzvS57SlfKT/LAv7g/B9PAeg/sgHtu1Xl3s33BEw8gEato3jp3Mxa7otSpWDh5ENcP/8ym4FfcmI6fkN38u5FOEpzBdOX+lK+eiEy0tUEDN/Nkz9F0BPQjnqiqdiZfXdZ4y/IrCvUKsKUld1QWQgy8BVTDnFJHJ11HdGAriMbIpFIBPn4ustsmy+0vqs08mHCyu6mC2V6aibzBm3j0XWBpNx3WivaDqiT7cZwcut1Uzu/WAVvpm0dgP13N9KnN94yp+8GUhPTsXexYfr2wTlGLqQmpbNwwGYeXBQUfE161mTw/C45KqpAuJnumH2Ug0sFcqm3T26m7BiCV6EfuX45VURgNMsGb+H5DTGtukohRq3tQ+4iuf7iyL9fYe8iOLP5Mlf23TKNvwDcvV2o2a4y5RqWoliVQv82qJJIJJRvUIryDUpx+8QDFvZaw/MbbxhZfRqr787F2v5/Vvn1+u4HMlIysXW2Jv833YnfrZObLqPO0FCgVB5K1fzr0eKHp8HcOiGMe7pPbvXT/YxGI+unHQCgTvtKPw1f3bvsLHERSbh6OdJxeKMftn98GcaRDcJiadjcjlh+R6o9svEqn16GY2VrweBZ2ZXD96+85vzB+4Kp3sJOJkUiwJ5VFwl+H4WtgyVD/b965QS9j2KHOD4aOKk57l5CRyvqcyJr5ooKr0F1KFxCWFA8ux9ocjEeNaMVzq62GI1GlgecJDoyCXdPB4ZOEBRmd2++59g+kbvj1wpHJ2vCQuJYvUTg+nXvW4viJb0ID0tguTgK9+1ZnVJl8/L8WSg7tgru4cNHNSJ3Hie2b7/BmTNfR6V/Vf91gBMeHk6XLl2Ii4vD2dmZypUrc/fuXfLkEX64kZGRhIaGmvbPly8fZ86cYfTo0axZswYPDw9Wrlz5tz1whJKgkqpI12mwkVsQn5WJBClyiZzM78CNzCgnwwRu0pBKpJhLlaRoNTgrv4IbJzNrYjLTsfsmFdzT0paw1GTkEhnWcpUJ3HwJzsw2lrKwIiI1RTTxM/yvgxsLmTxHcFM+twBuZFIJTX0Kc0rk3DQvU4TLzwRwU8Hbk5ikNEJjk3C1taJUHnfOP32PVCKhR62y7Lv+VCANF81LaloWL4OjsDZX4lurNJvO3MVohKYVixAelcSLoCisLZT0b1aJ1UduodHpqV4yH3YWKo5fF8Y0ozvX5tT1l3wMi8PexoIxXWuzaNtlUjPUFPN2pX390gSsP49eb6BOxYKUK5ab+RuEE7lFXR+K5nNh3hphhtyifknK++RmxuJT6PUGalUpSMfm5Rjvf0Tk4LgxfWwz/Of9wcfAGGysVSya3YGbt9+z54BAcO7TvTo1qhVi9Ji9xCekkcvDnsWLOnP50iu2iES6tm3L07tPLWZOP8KD+0KXZuqM1pTw8WLc8F18+hCNlbWKgEWdyOXpwPhhu/j4LgoLSyWzF3emcDEP5kwRohekUgmjpragUcsyXDr9jCUzj2PQG6hUoxBT5nXAaDQyY9huHt/9hFwuY1xAW2o3KUlMZBJTBmwjPDgOa1tzZq/tSZGSXiTFp+E3cDsfXn1GZWHGtBVdKVe9kNCdWXGBfeIorFGHCgyf1RaZXEZ6ahZzhu7kya33SGVSRgS0o1GnSoCw0lw34yinxc5M67616DetlWl1GB2egH/PDaLKyowJq3pQtfHX1ahep2fD9K9k4nodKjFisW+2G7TRaOTk1musn3IAg95A4bJ5mb5jME7uX71AvlTQq3BmdV9DZFAsZioFw5Z0o6FvtR/2+1LRoXHM672ON/cEf6cW/esxYF5nzFR/3fEwGAycWHuRbTMOos7QoLQwo+/sTrQYVP8/SiLWanTcOfGAUxsv8ezaK9PjNo7W1O5YhbpdqlO0csG/Her5u1WtVQVW3g5gWsv5RAbGsHbUdibuGPY/8lpf6sF54QZXvn7Jv/1ZqjM1nFgvdADaj2zyW5/LjoDjANRuX5G8RX8OTG+dfMyrux9RmivoMz3nLKmQtxEcXS90OQfN6fBD8Ktep2fF+H0Y9AZqtihD5YY+2baHB8awe5kQfDnAr3W2sM3UpAxWTBHGWq1716BExa/8pFePgjm86RoAw2e3M6mmtBodi0Vjzoq1i9CovZAVp9cbWDzlMBlpaoqVzk3nfgJPKSUpg0WiVLxJu/JUry+oIs+feMzNS6+QyaRMntseSysVcTEpLBHzp1p3rkTlGoXQqHXMmXaErEwtpcvlpXOPamg0Oub4HSUzU4NP6dx0712TpKR05sw6jsFgpEEjHxo1KcmjR0HsFq8lv1v/dYCzf//+X27fvn37D4/VqlWLx48f/9uvbf4tuFFnIUGCmVRBhl4rZkulC90cFGTodV/BDVIspCqStepsqeDOSmuiM9KxNVORnKXGYAQvSztCU5OQS2TYKL6Cm9iMbzs3CV9TwcVsKa3OQJpG85fg5qvPjUAotv8G3KgkciJSUn8b3JjL5ATGJeJkaUGubJ0bDxO4aebzlVDcokwRLj77gFqnp2J+T6IT0giNS8LNzgofL3cuPvtgAjd7rz1Fq9dTo1heEpMzeR0ajY2Fkk41S7Pp7D2MRmhZpRifwuJ5HSJs69dUADdanZ5apfNjaWbG6dtvkEokjPWtzZFLzwiOSMDJzpJRvrWYv+WSQD4u6E6rWiWYu+E8eoORBlWLUNzblSVbhBt0+8al8XK1Y/FG4ULTvmkZini7MWuZMD5qULMoLer7MGHmEYGQXMSDSSMaM232MYJD47G3s2BxQEfOnn/OkRMCB2hI/zqUKZWbMeP2kpycSb68ziyY15Hjxx+xT1RBde9RjfbtKzJt0gGePwtDpVLgH9CO3LkdGTtkJ2Gh8djZWzJ/mS+2tuaMHbyDsJB4bO0tmLfMl1xejkwftZenD4JQKGRMntOOanWKcnzfXdaJ6qd6zUoxZnorMtLVTB+6i3cvw1GZmzF9aRfKVS1AaGAMUwZsJy46GSdXW+Zu7EVubxeiwhOY1m8rn0PisbG3ZNaGnhT28UKv07Pa/xjnxPGW77D6dBshZEMlxKQwvc9mAl9HoLIwY8rq7lSoLXhjZGWomT9sJ/cuvRLk436ts3l0fHwRhl/PDSTGpGDvYsPM7QMoWPJr/k56aibzB2zh4VXBu6fXlFZ0GJY94Vun1bF20n7OiBlR9TpWZuTS7jl2Y24ce8CSYdtQZ2hwze3E9F1DKFDyx7yfL3X37FMWDdhIWmI6lrYWjF7Thxqtf5059KUiAqNZ3H8jr+4IeWylahVl9Lp+uOdz+Ysjf78SY5I5seYcZ7dcMXVrpFIJlZqVpUnfupRvWOp/jROTp5gnU3aPZHQtPy7vvUW9bjUo36DUXx/4L9aD80L3tnwODtR/VRf33CI5LhXX3E7U/IugVIBnt97y8PJLZHIZ3Se1/Ol+WRlqNvsL4KL90EY58noMBgOrJu5DrxOIxZVzeP9HN17l4wuhOzPou+6MXm9g+fj9aNU6ytYsTP3vVFXrZh4nISYFT29neo77OtbKSMtiyYQDGAxG6rcpR7WGX3lmu1dfEgjHdhaMnNXWdH4d2naTl4+DMbcwY/zcDsjkMqFLM/M4cTEpeOZ1YqD4GqFBsaxdJFx/eg2tR+HiuQRvG79jpCRnUqCwG32HC6PADSsvEvgxBlt7Cyb6t0Ymk7J+5UU+vo/CxtacKf6tkUglLJhzkvi4NHLndmTEqEbEx6cxd+4fQkZVo5LcuPnz7+zb+q8DnP9mpek02Fvam8CNUmpGugncZCBFikIijK8cRXAjQYKFTAA3TsofwY2NQkWqWoPeaMTT0pbQ1CRkEhm2ChXxWZm4mFsSl5GB4ZuxlFQiJZcIbmyVKvRittS3DsU/AzfeIrixFKXg34Mbt78BboJ+Am5uvQ8RwU3hb8BNUS4+ey+CGy+iElIIi0vG3c6a4l6uXHougJvu34CbmsXzEZeYztuwGGwtVXSoXpLNZ4T2ZauqxXkfEsPb0FhsLVX0aVKRVUduotMbqFu2IAqJlLN/vkEmlTDOtw4Hzj8hNCoRZ3srhneuybzNF8nI0lK6cC6aVC3KvI0XMRiNNKlRDO9cTqzYIXQBfFuUx95KxYqtAkHPt1UFPN3smLvqrOB+XK8E9aoVYeKso2SptZTx8WLMoAZM8j/C5whBPbV4TicOHb3P6XPCSnL0sIYU9HZhzLh9pKerKVzIjXlzO7J7122OHRXGNgMH1qVxk5JMHLuPd28F2fbcBR1xsLdkzJCdREcl4+Jqw4LlXQVi8aAdREcm4exqw/wVXbG1s2TysF28eRGOylzBzCVdKFU+L7s3XmOXSDZs41uZAaMbkRCbxpRB2wkNjBU6NKu7U6SkF2+fhzF9yA5SkzPxyufM3I29cHazI/BtJNP6byMxLhUXDzvmbO6DZz5n1Fla5o/aw93Lr5FKJQyZ0ZpmvoKcOzwwhmm9NhEdnoidoxUzt/SlkGjwlRibin+fTbx/FoqZUsGEld2o1uTrDe/+5VfMG7yNrAwNeYt4MHPHAFy+uSFEh8Yzo/taQkT/nPGre/1A1kyOTyWg9wZe3BEMBPtMb0P74Y1+WJHr9Qa2zzrKoZXCqrdM7aJM3jLwpwZ6ep2e7bOOmEZShct7M2X7ENxysM//voxGI2e3XmXDxL1kpasxt1LRb25nmvat8x/r2kQFx3B46SnObbuKJksLgIO7PU361KFJn7q4/CIA9H+yilYuSLMBDTi5/gKXd9/8HwM4Ye8jCXoZhkwuo3wDn78+4JvSaXUcXCZ8r22HNfpLd2i93sDGKcLIqUnPmnh4u/503/3LzxIdGo9zLns65DB2Aji35w6v7n1CZaFkUEDHH7Z/Doxhtzi6GTCjzQ9j2BNbr/PqQSDmlkpGzOuY7bd+6+xzropRDmMWdUb5DcjfOPckkaHxuHjYMWj6V5D2/H4ghzaLI6CZbXBwFgjH716Gs2uNsPgbPLmFaWR19shD7lx5g1wuY+J8ofukUWuZN+Uw6iwtZSp507674JS8f9tNnj8KRmWuYLJoN3Hz6htOitfDCdOFcdXNa285LrqrT5jWCidnG/btucOD+4GYmcmZ5t9G8PKaeoikxAy8vV3oP6A2U6f99KvIVv9ogGMtNydBnQVIUMmUAuD5BtyYSZSk6bQ4Ki2JFcGNldyCJE0WTuJjIMFFaU2UCG7SNVp0BqNpLCWTSLE3MycuMwNnlSXxGZnojUa8bRz4lJiABAmeljaEpSRja6bEqIdUEdyEJSZh+B7cOAmp4F+ypT7ExX9j4ieEZX4LbiTfqqW0X8EN342lvu/cWCrNKOvpbgI3TX0Kc/KxoIJqWaYoF0RwU6mAF1HxIrixt6ZYLhcuP/+ITCqhe82y7Ln2BJ3eQG0fb2LiU3kbFoudpYr21XzYclboCrStXoJXn6J5Hx6LnZU5vRuXZ9WRm+j1BhpUKAQGuHD/HTKZlPG+ddh75iHhMYKvzZAO1Zm3+QJZah3li3lRt0JBFmy5iNEIrer64O5kw9o9wkncs20lzGRS1u0W4H+v9pWxt7Fg0TqhZd2mcWkql8vH5ICjaLR6KpXNx7A+tZngd5io6GTcXG1ZFNCB3XvvcOHyK6RSCRNGN8Hd1Zbxkw4ILdYSnsye2Y7Nm65xWjT+GzGyITVrFGbsyN0EBcZiY2vOgsVdUMhljB6yk4T4NHJ5ObBweVcyMtRMGrmHhDjhsQUruyGXy5gwaDtBH2OwslExZ0VXChXzYMPScxzbK4zHegyqg2+/WkSGJzJ5wDaiI5JwdLZm7oZeJnfiWaP2kJWpobCPJ7PX9sTGzoIXD4KYOXQn6alZ5C3kRsCm3ji62JCalIH/wG28fhwi5FMt8zWt/N4+DWFG3y2kJGbgkceJgB39cRcJuuGBMUzvvoGoMKET5L+1H0XLfeUinNl9mzVTDmIwGClTszBTN/TJxjF48yiIWT3XkxSXioOrLTN2DKLQdzyLkHcRzPBdTVRIHOaWSiZt7E+lRj+uhlMT05jXbxOPrwijm/bDG9Hbr+1Pb2zxUUnM67mWF7cFQnzrIQ3pF9Dpt7xt4iOTWD5kM/fPCd0Fn+qFGbdpAG55/zNdm6CXYRxYeIJrB+9g0BsAKFwhPx3GtqBqy/L/qwqmn1XdztU4uf4Cd08/RqvR/bYn0N+p64eF33vZesX/tqz+6sG7RIfEYedsQ+McTPW+r0v77vDpRRiWNuZ0n/zz7k3Yh0gOrxJG3YPmdv7BjwkgITqZrbMF070ek1r8YEhpMBhYMWE/GrWWMjULU79D9u5S6IcototxJf2nt8b1G3PDpLhUVoky7g6D6mZLA79z8SXnDz0wcXK+nGupSRksnHAAo9FIo3blqS6e2xnpahZMPIheZ6BGwxI0aCUsLEIDY9ggdml6j2hAwaKCmeWWlRcJfB+Frb0l42e2RSqV8uJJiCklfPikZnjmcSQyIpGlcwVxUMduVahQpQCREYksEeXfHX2rUKlqAV48D2ObmI01fFRDvPO7sG3rdZ49C8Xc3Ay/Ga1R/g0O2X//rPgvVqJajUyuwlwEN19SwYVujpJUrRZHM0tiM9MBCdZyCxI1WSLgER5zUdoQlZGGtUJJukaL1mAwjaWkSHEwsyA2MwMnlSWJWT+CGy8rW8JSkrExU4JBQopaLaSCi+CmuJMLr2JjgOzgJr+dPe+/ZEupLL5xKDbjc3KKycQvKlVQSH1RS3na2QASkxT8C6H4e3Dz7VhK4Nz8CG4qF/AiMj6F0C/gxsOZKy8+IZNK6FGrHLuvPkanN1DHJz/RcSm8FQFMu6o+bDkngJt2NUry4kMEHz7H4WBtQc9G5Vl1+AZ6g5FGFQuj0xq48lBwLx7ftQ47Tz4gMi4FD2dbBratytzNF1FrdFTyyUON0t4s2iqModrWL4WjjQUb9gkz274dqmDQGdiyX8ie6delGuZmCpZvFsh8nVqWo2SRXEybK0i4q1cqQP+u1Rk77RCxcank8rBj8ewObNp2g6s3BGLwtIktsLFSMWnKQdRqHWVK52GmfxtWrrjA5UsCABo7rinlyuZl9IjdhIcl4OBgycKlvmjUOsYO20lKcib58rswf5kvcTEpTB61l9QU8bGVXYX9BmwjIiwBB0cr5q3ujldeR5bN/oMLfwgqssHjmtC6S2WCPkQxZZCQH+Xu5cC8Db1wy2XPzQsvWTDxIDqdnrJVCjB9uS/mFkruXnnNvDH70Kh1lCiXlxlre2BlY05sZBLT+mwh9GM0VjbmzFjfixIVBJBy/+ob5g7biTpTS0EfT2Zt6YudKDV9+ySYGb02kZKYjltuR2bvHGjysDEYDOxYcIqD4sqwQadKjJjfOZtS6ubJxywevgNNlhbvEp747xyMs0d2Ls3DK6+Y23cDGalZuOVxwn/PMPLm4Bwc/OYzM7uuJjIoFqWFGWNW9aLWL0YST6+/YX7vdSTGJGNhrWL0mr6/NcIAuHHkHitHbCc1IQ2FUkHvmR1oM7zRf6RrE/Yugp2zDnH94J+mx8o1KEnnia0oWbPY/xi35l+polUK4uBmR0JUEs+uvaJ8w/9sF8doNHL9kABwanX4vWiFL6XXG9gvpnq3Hd44G/k2p8pIzWJ7gABIfMc3x/YnYMpoNLJ6/F6Bw9LAh6pNS+e43/pph0hPyaRgqdy07Fv7h+3n9v7Ji7sfUZqbMXJB52zfq16nZ/HoPWjVOsrXLkLjLpWzvf7KaUdISUgnXxF3fIc3MG1LiE1lxVQB+LTrW5OSohHgF7fi+OgUcuVxZODk5qZj1s49SURoPM5utozwa41EIkGj1jJ/0iGTJLxNd+Gzv3vjHcdF879x/q1xdLYmJTmT+dMEH7D6zUpRv2kpdDo98/yOkZ6mpmiJXPQaWEeIXRAfK1bCk94Da5OclCHwbvRG6jcoQeOmpXj4IJA9e4Rr9pgxjfH0dGDt+nO//O6+rX80wEEcN6Xq1NgpLIjLygAkmEvNSdFqcDATeDggwVZhSYI6EwczC+JEcOOqtCEyIw0ruZJMrf4HcOOksiQmIx0nlQXJWVnoDEbyWdvzKTEBkJDbypbQlGSszZRIDRKS1Gq8rG35nJwightnE7gp4eTCKxHcFLB34F1sHBYKBa4WQiq4kC1lRnhyCq5WX+MXPGysMXwPbhKTcbOxwuIbtdTPwE2zbzs3ZYty4ekXcJObyPhkE7gp6uHMlZeByKVSutcqawI3dUsWIDI2mXfhsdhbmdO2agm2iuCmY82SPH73mU8R8TjaWNC9QTkTuGlcqQjqLC3XHn9CIZcxoVtdth2/S5Ro2te/TRXmbb4gKKtK5aNSidws2S6AlQ6NymClMmPzIVGu2bkameka9hwXXndI95oY9EZWb7sGQPd2lSiQx5kZC08KhOTqheneoTJjph4kITGdPF6OLJjZjtUbrnD7zw8oFDJmTGmFFJg6/TBarZ6KFbyZNqUlixee4eZNods0eUoLChd2Z/TwXYKiytWGRUt9SUxIZ+q4/WSkqylc1IO5S7sQ/CkGv3H7ycjQUKR4LgKWdCElKYOJQ3YSF5OCq7st89b0wNnVhrlTDnNLHBuN8WtNgxalef0sFL+hu0hLzSJfIVfmrOuJg5M1Z488YNWsE0KGVcMSjJ/XATMzORePP2L5NMGvplKdokxe2gWlSkHYpxim9t5MbGQSjq62BGztazL8unj4AcsnC2qmcjULM3VND8zF1eq9S6+YN2Q76iwtBUt6MWv7ABPw0ai1LBuzl2siX6nb2Cb4jmpsuogbjUYOr7nIVpHMWamhDxPX9cb8O4faPzZfEcjEBiMlKhdk+o5BOd54/jzzlIUDN5GZpsY1txMzdg/9qbTXaDRycNkZtvsLoYP5SngxbdcwPH9hw/+lMlIzWTtmJxd3C5LjAmXyMmHLIPL8goj6uxUVHMOegKNc3HUdg0EwMq3RrhKdJ7Sm4E/UOf/tkkqlVGlRntObLnH/7JP/OMAJfB5K6NsIFGZyqjYv+7eOvXHkHuEfIrGyt6R5v5xzob6tg8vPkBidjHs+Z1r8JEcK4Orh+zy79Q4zlYLB8zrnCDjvnn/OzZOPkcqkjFra7QcTyejwBDaLv/1eE5tn684AHFx7mQ/Pw7CyMWfkwuyvcfHwA/688BK5QsbYxZ1Nhn5Go5Hlkw+RkpiOdxF3uo/6Oja7cOQhty+8RCaXMn5RJ9M5fPX0My798USIkpnfEWtboduzacl5At8JXZqxAe2QSqXERiezxF94z218K1NRFCMsmXWCuJgUcuV2YJiopNq67ipvReO/ybPaIpfLWLfiAu/eRGBtrWLKzNZIpVLmz/mDuNhUvHI7MHJMY2JjU028m+YtylC3XnH2H7zHgYP3/vL7+1L/aIDzBdzYKiyIy8oEJFjJLEjSqHEwsyROBDd2CiGywd7MgngRBLmpbIhIT8VSrkSt06PR602cGwkSnFWWRGek46iyIDlLjdZgwNvGnk+JgklfXms7QpKTsFKYITdKSVRn4WVtS1RKKnqDkWJOzrwSx1JfwI1MIqGgvQNvY+Mwl8txt7QiMD4Re3MVVnIzwsXgTJlEQmSyAG4w8I2Jn4SwxGTcrK2wkpv9RAqeM6H4Z+DGw96Goh5OJnDTo1ZZdv0S3Ajz1k61SvHwTRiBkQnfgJubAm+mclEy0tXceCpkUk3sVpctx+4SnZBKbjd7eresxNzNF9Fo9VQv403ZIp4s33kNgM5Ny2EmlbL9qHASDO1Wk8TEdPb/Icx+R/SuQ0aGhi1iZ6dP56p4utkxa8kpgWBcqyidWpVn7JSDJCVn4J3XmXkz2rJ01XnuPwzCzEzO7OmtUWdpmTlHCLqsVq0gE8c3Y27AH9y790mIY/Brg5eXA6OH7yI+Lo1cuexZuMyXiPAE/CYcJCtLi0/p3Mxe2Ik3L8OZOVHoApUql5eZCzoSFZHE5GG7SEpIxyuvE/NWd8faRoX/mH08+vOjQDKe24FqdYvy+O4nZo3aS1amhqKlvJi1ujvWNuYc2nrD5DTapH0Fhk0THHq/dSeu16oMowPaIZPLePcsFL/+W0lJzMDT25mArf1wzWUvAJCN19i6QGiR121dltELOpm6L+f2/cmqycLYqXztIkxZ19t00UxLzmB2v808F2XnIxd2oUHHSqZzUK/Ts3bKAc7sFH1J+tZmwKz22W4Cep2e9VMPcFK0tW/QpSrDF3f9Qe5sNBrZv+Q0O+cKniUlqxdm6vacQRAIQYdLBm3mtvjbaNCtOsOW9vjL1T0IRnPze60lMjAGqVRC5wkt6Tql9b89KkqMTmJ3wFHObrmMTqsHoEqLcvT074h3yb8vif7fLq/CQjctKTblP/7cZ0TeXJUW5f5WTIROq2PXXKEb03ZoIyxtfp1lFBkcy5E1gtqy/+yOP5XVpyals9HvIABdxjTFPQeeVnpKJqsnChYm7QbXx7t4du8mg8HAsrF7yUxTU6x8Plr0zh7r8PFlOHuWCx2LwbPa4eRmZ9oWERLHejG4svuoRuT/xgzw1J4/eXD9LQozOeOXdDEBn/CgWNaJo6IeIxpQWAT+EWHxrJotPFeXAbUpUS4vALcuveLkAeFaOn5OOxydrdHr9MybfJiU5AwKFHGnj9g1OrLnT+7eeCfkR81tj7mFGXduvOOwKLIYM6UFbu523Lz6hqNi7MK4qS1xdbNj945bPLgfiFIpZ7p/W+QKGbNmHSM5OZMCBVwZOrQ+T5+FsFm8Bvxu/aMBTqpejYPCnvjvwI29mYUJ3NibCd44guw7O7ixkJuh0xlRi+AmLDUZkOBqbk1Uehr2SnNSszRoDQbyiWMpwdDPjmAR3CglcuIzM/G0tiE6JQ2dwSiEZYrgxsfJlZfRMUglEgo5OPE2NhaVXE4uKxs+xSdgp1JhrVASliiAGzOJ1BSWKTVK+JycgoetNTKJlNDEJNxsrLBWKL+a+NnZ8iwsEgszBRVye3LjXZAAbr7xuWlZtqhJLfUDuMkljKW+dG52XXmMzmCgfqkCfI4RwI2DtQVtqnzt3HSqXZqHr0MJjEzAydaSbvXLmsBNs6rFSEvN4sZTIXdqQve6bD76JzEJaeRxt6dn84rM23xRUFaVy49PAQ9W7RZmtl1blAc97DohgKgRPWoTHZPModOC4m5Mv3okJKazQ2xzD+hWAyc7SwKWnhYk6vVK0LpJKcZOPUhKahaFCrgSML01C5ac5fHTEMHUb2Y7EhPSmLdAAER16xRj1IiGzPI/xqNHwSiVcmbNaoejoxVjRu4WguXyOrFwqS8f30Uxc+ohtBo95Sp64z+vA08eBBIw9YjQBapagOlz2hP8KYYpI3aTlpJF/kJuzF3dDYVCxtThu3n5JASlSoH/0i6UrZSfO1deM2/CQbRaYfzkt7QLSnMFW5ed56DoIdGpXy16jRAuQtuXnefAxmsAtO1Vnb5iJMPjW++ZPXQnWRkaYfS0qQ92jlYYDAa2zDvF0S3Cc7UfUJveE5oilUoxGo3sXX7eJFtt0LEiI+Z9BT5xkUlM776e4LcRmFspmbaxL2W/8R3JSMtiXv/NJqXUgFntaP3dajk9JYO5/Tbx6MqrX5KJszLULB22jRvHBLDSsn9dBszp+FPAEfo2glm+KwkTQziHLO5O0z61/3Lko9cbOLT0FDtnHUWv0+Pi5ciErYP/bTfirAw1R1ec4cDCE2SmZQHCKKqnf0eKVPz7Znb/rbIQwUNGSuZ/9HkzUjO5Ii5KmvWr87eOPbfjBp8/RmPrZE2boQ3/cv/NfofQqnWUrlWUKj8ZOYHgWJwUm4pXQTfa/eR5t8w+RnxUMrm8Xeg69sf08VM7bvHs9nuU5maMXZa9u6NR61gyeg96nYFqTUpSp0050za9Ts+iMfvITFdToqI37cSQS4CQD1FsFn2n+oxvaurAajU6Fo4/gDpTS6lK3rTvK4AprVbH/AkHyEhXU6JsXnwHCp9v1OdEloldmg69qlO+mhBIumPdFV49C8XCUsnU+UJ0y+vnYWxdLdADBo1pTIHC7kRGJLI4QPDRadu5EtVrFyE8LIHFX7g4XatQtUYhHj0IYsc24foyckxjvPO7sHrVBd68jsDKSsUM/zakpmYxe84fGAxG6tQuys1rP/1astU/GuDYyM1N4MZaZkmiJitbl8bBzIrYrAzszMxJysrC+A24MZeZYdBLyNRryfUNuPEwF7bbmanI0OjQGPQmzg1I8LaxJygpEQu5AnOpnNiMTHJZ2RCTmo7WYKCoozOvRYfiks6uvIgSwE1RR2dex8SgksvxsrbhY1wCNkoltmYqQhOTcba0RCmREZ6cgruNFTKjxEQilovgxtXaCluFkvdf4hfsxPgFMwWV8nhy7a3oUFyyCH98B26ytDoqF/QiKu4bzk0uZy6LnJvutcqw2wRuCvI5Jukn4KaUCdw421nStd5XcNOiWnGSkzO5KYZqTuxRj42H7xCbmEZedwe6N6vAvM0XBV5PhYIUy+fKmr3CidGjVUW0ah37RTAzuncdwj8ncuSswFMZP7ABkVHJ7Dkmjql61sLK3Ix5KwTiXMvGpWhSpwRjpx4iLV1NscLuzJzSijkLT/HsRRjm5mYsmN2eyIgkFi05IxgDNvRh6OB6+E0/wrNnoahUCubM7YClhZKxo/aQkpxJ/gIuLFjShZfPwpjjdxSdzkCV6oWYNrstf954x3z/4+j1BqrXLsLkWW15+zIcv9F7yUjXUNTHk4AVXTHoDUwavIP3ryOwtFIxe2VXipfKzeVTT1nid0xwNK1fjAnzOiCXS1kd8AenxRVS3zGN6dC7Bnq9gTWzTnBWfLz3mEZ06FcLiUTCzbPPWTh2HzqtntJVCzB9TQ8srFTotHqWTzrI5WPCaKnflOa061cbEG70a6cd5ow4H+8yoiHdx371FQl5F8n07uuJjUjE3sWG2bsGkf+b1WtcZBIzuq0l8JVgNDhhbW+qNimd7fyMCY/Hr8sqgt9EoLQwY8K6vjla38dFJDKz62o+PA0RHIwXdaVJz5wDDgFuHn/AkkGbyUzLwsnDnul7hlMkhxDOH17ncwIL+qw3mfbVbFeJkat7Y2X3e1ENOZXBYODS7pts9ztA3OcEQIgf6Dffl1K1iv/Lz/vfqq8A5/ft9H+nruy/Q0ZqFp4F3ShZs+hvH5eVrmbPvOMAdJ3YCou/SKJ+dvMtt08KaqRBc3MeOQG8fRTI6e2iAimHbiLA01vvOLtL6EyOWOz7g2P058AYts4RuiZ9p7bEI1/2DtDupWcJfheJraMVw+ZmV03tW32Jt09CsLRWMX5JFxMw0qi1zB+9F41aR/mahWnZo6rpmF2rLvHh1Wesbc0ZO7+jiSO2Y9Ul3r8UXIknLhAk4TqtnvmTDpGemkWRkl70FJO/H9z+wAExvmWMXys8vBxIScpg7pTDghN8wxI0a1sOjUZHwNQjpKVmUbRELvoOqYdarWX2tMNkZGjwKeVFnwF1iI1JYe7s4xiN0KRZaRo2LsnVq685Jl5zJk1ujouLDWMn7CMxMR3vfM4MHVyfWf6//BpN9Y8GOAnqLGQWKmzkliSos7DLAdzYKlQkq7MwggncqGQKMErI0GnJZWFDuAhucpnb8jk9BRszJWqtHrVeRz4b+2/AjQNBSQmYyxVYysyIzcjAw9KauLQMtHoDRRydTPELJZ1deR4VjRQJxRydeRUTg1ImI4+1He/j4rBRKnFUmhOcmIyThQXmMjlhSUJAptwoJTxJIBqr5DKC4pNwtbbEXimkgttbqPB2sOdxaATmZgoxODMQqURCi1JfwU2LMkW+jqUKehEVn0pIXBLu9taU8HTlkqiW6lGr3G+Cm9I8eBVCUFQiLnZW+NYtnQ3cJCVncOtZkNi5+QbceDjQvWl55m25iF5voF6lQhTycmLtPkEN1adtZdLT1BwUwczYPvUIConl+AXB9nvioIaEhCew/4Q4pupTB4VMyiKxDd2ueVnqVivMuGkHycjU4FPcE78JzZk59wSv3kRgaWHGwjkdCQqKZdnyc8JMuFlp+vWpxeRJB3n9+jOWlkrmzesouBKP3kN6mprCRdyZv7gzD+5+YsHsExj0RmrVLcakGa24cv4lS+eeFGzNG/swbmpLnj4MYua4/cKoqnxeZi7pQmaGmslDdhL8KQYbWwvmrulOwaIenDp4n9VzhJVQg5ZlGDWjFUYjplwpiUTCCL9WNGlfQTDzmnSIG2efI5FIGO7fmiYdBQLtmX13WT3jGEajkeqNfRi/WGhnZ2VqmDdsF/evvkEqkzJ6QUfqtxVMwDRZWhaM2MWdc8LzDQloR/Pu1U3n1ct7n5jZZyNpyZl4FXBl9q5B2XgFIW8jmOa7mriIJOycrPHfNZjCZfJmOzffPwlmRtfVJMak4OBqy8y9wyhY6scRzfsnwfj7riIhKhlbRyum7xxCiaqFftgPBFC2c/ZR9i8WPreSNYowdcdQ7Fxsctz/23pw/hmLxKgGlaWSoct60KBbjX+L5Pvq9jvWjNrGx6fBALjmcaJPQBdqdazyv5Yo/p+uLx2zLxL2/0QZDAaOrRZGrc0H/D2jxCOrzpEQnYxbXmea9v1150er0bFmwl4AmvauTd5iOXOptBody0fvwmg0Ur9TFUpW+7F7l5GWxbJRuwBo1rMGJb/7Ter1BpaM3i0kblcvRLMe1bNtf373I4fXC5zC4fM6moz5AF4/CjZFogyb3Q6XXF+J+FsWnCH4XRR2jlaMWfAVxDy69Z5DotnoyNntcHYTgmcf3nrPYTE7avSsNjiLI7Dtqy/x9nkYVtYqJs0Xks5jo5NZOP0oAC06VqRG/eIYDEYW+R8nNjoFz9yOjJzSHIlEwoYVF/nwNhIbW3OmBrRDoZCxZN4ZAj/GYGdvyZSZbTEYjcz2F8dQBV0ZPrIhISFxLF4kjM+7+FahSpWCrFt/mRcvwrG0UOLv1wal8tfy/m/rHw1wQIKt3JJ4dRa2CnMSRHDjqLQmJjMNG4U5qRoNBiO4mdsSkZaCUipHhoxUrQYPCxvC01IACZ4WtoSnpWCtMEOnM5Cp1wk+NyLnpoCNA5+SElDJ5NjIlUSnp+NmaUVCeiYavZ7CDk68jYsDvoIbCRJKOLvwMjoGM5mMfLb2vIuNw8rMDCeVJUEJiThaWGClMCMkMQkXK0tUEpkpCdzcTEFQXCLOVpY4mFvwNjIWW3MV+R0deBQSgblCTpW8XlzNAdw0L12ES6axlBfR8WmExCbhbmdNCS9XLj37mF0tZTBQr2QBE7ixtzLPcSwVFJWIs52lAG6O3PoB3CgVMiZ0q8fGIwK4yZfLkW5NyjFvyyVBNl65MPlzObL+gMihaVuZtDQ1h0RwM65ffT58iubkpedIJDB5aGM+BcVy8KSwIhjdvx5Gg5Gloptox1blqF6xAOP9DpGZqaW0jxdTxzXDb/Zx3r6PxNpKxaK5HXn7JoKVqwU5eetWZenZvTqTJu7n3bsorKxULFjYCa1Gz6Rx+8nM1FDcx5M58zty6/pbls47JQRwNvZh7OQWnP3jCSvFk7hJqzKMGN+U+7c+MGfyIWFUVa0g0+Z3IDkxnYmDdwgKKidr5q/rQR5vFw5uvcHWFcJ7adm5EoMmNkWr0TN33D7uXX+HTC7kxtRqXJKsTA1zRu7h4c33yBUyJizsRI3Ggn/IwQ1X2SYaBDbtXIkh/m2QyaSkJmfg328rrx8Fo1QpmLyqO5XqCWnHackZzOy3hZf3PiE3kzFxZQ+qf5Npc/vMMxYM34FWraNYBW/8t/bPFkb5/M57ZvXaQHpKJp4FXJm9Zyhu32Xx3DnzhAUDN6PO1JK3WC5m7xueo3HajWMPWDxkK5osLXmKeDBz/3Dc8uTsV5OenMH8vutNMu62wxvTb3bHv/RC0Wl1bPc/zCHRFyd/qTxM2TUUz4K/F9WQU8VHJrJl8l4u7RFuLJa2FnSZ1JrWwxr/lkvy/8sVHyF0oRx/I8Dyd+vPk48Jfx+JlZ0FjX7RmfvhvUQmcmCpMKrp7d/hL2XrR1ZfIPRtBLZO1vSc+vNIhv3LzhD8+jO2Ttb0n/VjUCbA5plHiQlPwNXLMUdX4yPrL/PmUbCg2Fvimw20pSZlsHjUboxGIw06VqTaN+7e6alZLBqzF4PBSO2WZajd8mtH8+7l1/whOv2OWdDRFKSZEJPCookCV6hpp0pUayB0BuOik1k0RcjEat6pEtXqCY/fv/mew2KXZvTMNrjlshd4N1NE3k1hdwaMEkZyh3be5v7tD4JXzfwOWFgquXrx5Ve/mxmtcXG15dypp5w79QypVMJk/9Y4OVuzdtVFXr/6jKWVEr+ZbdHp9fjPOEpWlpYyZfLQu3dNrt94y6Ejok/O+KY4OFgyavzOn34339c/GuAI4CYTG4U5SWphVOWktCY6Mw0ruYp0rRa90Yi7uS2f01JQSOUoUJCiUeNuYcPnL+DG0pbw1BQsFWYYDJCh05HH2o7AJBHc2AojKqVMhr3CnMj0NFwtrEjN0KDW6ynk4Mi7eBHcuLjxPDIKCRJKurjyIioahVRKATsH3sTEYmVmhrulFR/jBHKxjcKM4MQknC0tsJSbERwvABorMzM+xQnybxcLS15HxmCjUlLY2ZEHwZ9RKeRUzZeHK28+IZFAq9JFOf5QSEluVrowl198JMtk4pdGSGwibnbWlMztxoVnH5BJJfSsXU7g3ORAKG73jc9N59qlefDtWKpuGVYeuSl41VQvQUJSugncTOxRnw2HbhObmIZ3Lke6NSnPXLFz06ByYfK5O7DhoHAS929flcSkDI6cfyp0avo34M2HSE5eeiGcSEMb8+FTNIdOCWOrsQPro1HrWL1FICt2aVOBimXyMtHvCFlqLeVK52HS6CZM9T/Kh0/R2NiYs2ReJ54+DWGduJrq0L4iXTpVYsL4/Xz8GI2trTkLF3UhLSWTaZMPkZWlpXSZPMye24HLF16wQvSOaNaqLCPGNeHYgXtsWCn67nSsyKBRDblx6TULph8VRlV1izIpoB2xUclMHLSdmKhkXD3sWLCuJ2657Nm++hL7RY+Jzv1r0XNoPTIzNPgP38XzB0GYKeVMW+pLxZqFSU/NYsbgHbwSgcq0lV0pX6MwRqORbYvPckjk4nQaVIeeYxqb3Imn9thI8PsorGzM8d/ch+LlBdVOfFQy03tuIOhNBBbWKmZs7kvJKgVN59PpXbdYM+UQRqORKo1KMnF1j2xt+evHH7J4xE50GgH8zNgxKJvhntFo5Nj6S2zyO4zRaKR8veJM3jzghyweo9HI3kWn2DVPaO9XbFiSiZv6/5Q8GvY+Ev9OKwj/EImZSsHoNX2o26lqjvt+W9EhcczrsYY398WohoH1GTC/y78MQnRaHcdXn2f37MNkpGYikUho3LsOvQM6/6+EVP5vVExYPAAuXv8Zw0Gj0cgBsePWYmD9vxwxfVs7Zh9FnaGhaMX81Gr3a8l/RFAMexcJrzMgoONP87QCX4Wzf5mwOBk6v0uOBPZHV1+bRlOjl3XDwiq7GjDoTQS7lgjPMWhmu2wml0ajkdVTDhIbkYRHXicGz8zuZrzO/xhRYQm4etozbFZb0+Px0cksmyyAmDa9a1ChlsB10+sNLJx4kOSEdPIVdmPg5GbC4zo9CyYeJDkxA+/CbgwYL7gSx0Yls1hMIm/ZpTLVxIXNjnVXePVU5N0sEIjXLx6HsF28Lg4Z1wTvgq6EhcSxfL6wGOjSqzoVqxQg8GM0q5YIPL0e/WpRtnw+rl99w1HR4G/ilBa4e9gREHCC0NB4HB2tmDqtFeHhCSxcLHxOnTpWonq1QswIOM7rdxE5fjc51T8a4MSrs7C1sSFFrcYouhFHZaZhIVeSpdOjMxhM4EYukWEuNSNJnYW7hRCGCRJyW9oRmpqMhVyB1CAhVasht5UdwUlJgISCto58SIzHTCrFQWlBZGoaLhaWpGdpydBpKWjvyPt44aJQysWNZyK4KeUidHHkUimFHJx4HR2DhUKBu6UNH+PisVWpcFBZEBifgKOFBTYKJYHxglmfrUrJx9gEHCzMcbOy4lVEDNYqJUVdnbkfFI5SLqO6dx4uvxbATesyxTj+QAQ3pQpz9eUnsrQ6ynt7EpckgBtXWytKf5Mt1bN2OXZfeWLyuYmKS+atCG46VPdh05lvOjeiWsrJ1hLfb8FNjRIkJH4FN5N61Gf9T8BNwyqFyevmwKbDAudjQMdqxMencVQcQ00a2JBXbyM4dVkAN1OHNeHthygOi5yc8YMbkJGuYa0oDe/WvhJlSngxeeZR1GodFcvlY9zwRkz2O8ynoFjs7SxYMr8z9+8HsnGT6HrcuQpt25Rj3Nh9BAXFYm9vyeLFXYiPS2P6lENoNDrKV/RmZkA7zvzxhLVigF2bDhUZPLIB+3feZtt64bk6da9Kn8F1uXz2OUtmCjLuek1KMtavFZ/D4pk0eAfxsal45nFk3tqeOLvasHHxWY6J6eF9RjagY5+apCZnMn3IDt4+D8PCUsnM1d3xKZ+PpIQ0pvXbxqc3EVhYKZm5vhclyuUVuDP+xzgj+lf0ndCU9v1rAxAZGs+UHhuJCo3HwcWGgO39yVdE6FR8Doplard1RIclYO9sQ8CugXiLLXyj0ciepWfZI5KNm3StytC5HbMRJo9tuMzGGcKFs2rTUkxY0zsb+NHrDWycfpATYiJ7s161GDK/8w8dFk2WlmXDt3P1sPD+2w1rSB//9j9Ib7/UvXNPmd9nPRkpmTh7OjBj3wgKlvlrmfW9s09Z2Hf916iGdf2o0eb3ohpyqtd/vmfZ4I2EvAoHBJ7N0BW9/08RiH+nYkKFEbvLL5LZ/049v/mWdw8DMVMpaD3krwnCX+rTi1Au7BI6ZAPm+f5ylGg0Glk9bg+aLC2laxWlbsfKOe6n1+lZNmIHep2Bqs3KUKNVuR/2SUvOYPnY3YCgCCz1Hflco9ayeOQudBo9lRuW+MHQ79LhB9w49VTowq76asMAcPXEYy4fe4RUKmH8Ul8ToNfrDSwaf4CUxAzyF/Og19ivMQ0HNlzl2d1PQpTKsq85brvXXeHFIyGKYeqSLpgpFei0euZNPEhKUgYFi3nQT0wiv3fzvYl3M3q6wLtJjE9j7tTDGPTCdatxqzJkZmqYPeUwmRkaSpXNQ4++tUhPy2Lm1MNoNDoqVM5Pl+7VCAmOY7GoyOzkW4Wq1Qpx5PB9rl19g0wmZcaMNpiZyfGbKeRTlS6dm359arHv0D1u3H6P/Cfnek71jwY4lnIF6VotBsBFaUNkZioqmTBi0hr0uJsLXRqZRIqVTEWCWsiRikhL5Su4SUIlU6CQyEnWZOFpZUtochLfghuFRIqryorw1FSczC3IVOtI12rIb+fAx8QfwU1pV+HPMpFc/DIqGpVcTm4bW97FxGOjVOJiYcHHOAHE2KtUfBIBjYO5Be9j47A3V+FpY8uLz1FYKc0o4ebC3cAwzOQyahbMx6WXwqq0TZniHH8oOL02KVWIa68CydToKJcvF4kpGQTFJOJia0U571ycffxOADd1yrHn6hO0ej21S3x1KBbATUk2ifELHWuW4vHbMJPPTbf6ZVh1+Na/Bm7cHdl0SOjcDOxYndj4VI6J4GbywEY8fxPOmSsvBQO+4U149TaCo2eFzs6EIY1ITc1knRja2KNjFUoWzcWUWcfQaHRUqeDN6KENmOR3iKDgOOztLVm+oDO3br1ni8ju79G9Gs2blmbs2L2EhgirjMVLfImMSMR/+hG0Gj2VqxTAb2Zbjh9+wKa1gqKgo28V+g6uw67N19ktJvB271eTbn1qcvbYY1bOF8ZXjVuVYcTk5gR/imHykJ0kJ6aTN78L89cJjsMrZp3g3FEx92pyc1p2rkRSfBpTBm4j8F0U1rbmzNnQi0LFPYmPSWFyny2EfYrB1sGSgE19KFDMA61Gx5IJB7h+WuDoDJ/dliZiMGbQ20im9txIYmwqbrkdmbtzgMmd+NOrcKZ1X09SXBoeeZ0I2DUId3GspNcbWDv1EGd2C9+N76jGdPuGbGwwGNg6+zhH1gkjwZxk4OpMDQsGbeHOaWHM2HdGO9oPa/jDTSkpLpVZ3dbw+t5HZHIZw5Z0pUmPnEcWX/xtts0QOkolqhZi+u7hf8m30esN7Jx1hP0LBfVHoXLeTN099F92JM5IzWTb9AP8sfY8RqMRWydr+szpQqNetf/P8mx+VYEvhGDkXAX+9RHet7VXJAg36lkTOxfb3zrGaDSybpww4qnZtiLFKv0aRF49dI/HV16hUMoZvqTbT8HQodUX+PAsBCtbC4Yu6JLjfuunHSIuIgmPfM70nvLjmGvHwtMEvv6MjYMlw+dnJzFHBMexzk9YBHQd3ZjCpXJn27ZK7Kx0Hlrf1FUFYdT87E8h5HPSMl+TJPz5/UD2iAG5Q6e3wlMkMT+688HUBR7p34Zc4rm8beVFXj8NxdJaxZRFnTAzkxMVkchCP4F307JTRWo2KI5eZ2Du1CMkxKWRO58TwycJXaHl808THBiLg6MVk2e1RSKVsDDgDyLCE3FxtWGSXyuysjTMnH6EzEwNpUrnpk/fWjx7Fsp6sRM0eHA9ihXPxYyZxwgLS8DJyZrpU1rx5Fkom0VS98B+tbl+4Rdf6Df1jwY4mVodRrkMF5UNkRmpKKUKjAZQm8BNKlKkYtJ4Bi7mVkSnC/EMua3sCU1JRCmTYy5TkJiVRS5LG8JTUjAioZCdI+8T4pFLJHhY2BCakoyDyhydVgjR9LazJzgpEaNRGEt9ATdl3Nx5GhGJVCLwb55HCuDG286BN9GxWCnN8LC25l1MHHYqFc7mFryPicfOXIWLlSVvo+OwVanIY2/HszDB26aUhxt3PoWikMmoUzAfF0zgphjHH74SbrAlC3HrdTAZGi1l8nqQmq4mMDoBZxtLKub35PSjt0gk0EsENxqdkC2VkJTOm7AY7KzM6VijFBtPCxLsDjVL8vT9Zz5+FsBNj4blWHlIIBS3rFacxMSMb8ZS9UzgJl8uR7o3Lc+czSK4qVqEfG4ObBTBzaBO1YmJTeXYxS/gpiHPX4dx5qrgHDx9RFNevP7MsXPi2GpoI5KTMlgvBjL26lwVnyIeTJkpxDFUrZSfUYMbMHHaQYJD43F0sGLZgs5cu/aG7aI3S+9eNWjcsCRjx+wlPDwBZ2drFi/xJSQoltn+xwTn4xqFmDqjDQf33GG7ePHo2qs6PfrWZNv6qxzYJXSe+g6pS6fu1Ti+/x7rxLZty44VGDy2Ce9ff2bqMMGsr2BRD+au7o6llZLF045w9cxzIT3cvzUNW5UlLjqZSf22Eh4ch72jFfM29SFvQVeiPycyqfdmosIScHKzZd7WvqZcqbnDd3H/2lvkChnjF3empsidefMkBL8+m0lLziRvYXfm7OhvSil+eT+QGb03kpGahXfxXATsHIS9mFmjydKycPhObp8VANPQuR1o9g3ZWKfVs2z0Lq4cFpVbU1v/EJiZHJ+Kf7c1vHkQKHh2rO1DzdblfzhXw95H4tdpJZHBsVjamDNt5xDK1MpZTaPJ0rBixHYu7RVlxX3rMHhRt7/kYCRGJzO/11qeXhO6mS0HNWDAAt9/OXLg3pnHrBy2hVhxbNOoZ236L+z20xys/+uVkpBm6lAVq5Iz0fvv1Mvb73h67TVyhYyOY5r/9QFi3Tz2gBe3BfO9fgGdfrlvSkIaG6YIgc++45qTK3/OeVPBbyPYs1AYYQ2a1wnHb/xovtSds0+5fOie4GC+sscPkQ2Pb7zl6AbhRj56iW+2JHCdVs/CkbsE2Xel/HQcUt+0TavRMX/EbmFbhXz4Dv+67cX9QHavEO72Q/3bmJzDkxLSWDheMMVs0KYc9VsLxojxMSksnCyA/mYdK1K7icDvuXPlNUd2CufL2FltcPd0EJRQEw6SlpJJ4eK56C+aBW5fd4XnYvdn+sJOmFuYceLQA65eeIlUJmFqQDscHK3Yu+MWd26+F3zB5rTH2sacWTOOEhoaj5OzNdP825CQmM6sWceEDnb94rRuU459B+5y67Zw3Ey/Nqg1OmbNFyTiTRv60PRvhKz+owGOzmjEQ2VDREYqZlI5UqRk6LUmcCNBgv03UQsxGekYkZDHyo6QlETMpHKsZCriszKEsVVqKkYjJnAjk0jwtBQM/eyUKox6SFaryWdrR1hSMnqjER9nVxPn5gu4kQAlXVx5FhGFmUxGAXtHXkXFYGmmwMvGlrfRsdiolLhbW/M2KhZblRJPWxteRgqjqPwO9jwJi8RcoaCspwe3P4agkElpUCQ/Z58LCcetyxTjxKPXQjqrT0HuvA0mTa2hVB53MjM1fIiMw9HagsoFc3Pq4RsB3NQuz95rAripXiwvSSmZvAyJxtZSRaeapdh4SgA37WuU5PmHSD58jsPRxoJejSuw4uB1DEYjzasWIzlFkIJ/6dxsOPwV3PRoWoG5my+YOjffgpuBHXMCN+GcufoKmVTC9JFNef7qK7iZNKwxSYnpJnDTu0tVihf6Cm6qVS7AiEH1mDDtICGh8Tg5WrF0fmcuXX7FblH+3L9vberVLcaY0buJiEjCxcWGJUt9+fg+ijmzTqDXG6hVpyiTprZg745b7BYVCb3618K3Z3XWr7jIMdEoa/CohrTpVImDO2+zZZXQ0ejQvSp9h9fn1dNQpo/cQ0a6mmKlvAhY0Q2FUs6c8Qe4c+WN0LKe055ajX2ICk9gUr+tRH1OxNnNlvmb+5ArjxPhQbFM7rOFuKhk3LwcmL9NMOrLSMti1uAdPLv7SeDorOlhmtE/vvmeWYO2oc7UUrRsHmZu6Yu1aKJ2/8pr5g7ahjpLS4mKAmH4S1s8PTWT2X038+zOB4FsvKon1ZuVNp1bmelZzOm3mUdXXwsqrGXdqP9d6z8iKIbpnVbyOTAGKzsL/HcNpcQ3nJ4v9fTGGwJ6rCMtOQO3PE7MOjCC3IV/jGcAAaTM9F3Jm3sfkcqkDFnUjRYD6v3lteDl7XfM6baahKgkVJZKRq/tS+2Ofy8O4EulxKeyZtQ2roqxIO7eLoxc25+y9f5eOOT/tXr9p5Dh5VnY4z/CKdotmvM17Fnrt0NEszLUbJoqAJaOo5vh+hfHbfY7RHJ8GnmKeNB+ROMc9xFGU9vRanRUbOBDvQ4/jrASY1NYOU5QYLUb0oBi39kOJCeksWS0MLpq1qM6lb8LCt274jzvnoRgZWPO+OXZ/XC2LzrDh5fhWNtZMGFZV9PYNik+jQUi4bhem3I0EFWOBoOBJZMOER+Tgpe3M0OmtTT9f8wX+Tjehd0YKDoNR4YnsMRPNELsXpWqdQXezfrFZ/nwJgIbWwumLRD8bu5ce8tBEQiNmd6S3HmdePU8jPUiyOo/tD4+pXPz8N4ntm+6BsCwMY0pXNSDA3v/5Ob1d8jlUvxmtsXSUsmYMXtMIZpjxjTh0eNgtopd8+FDG+Cd34XhY/eQkpJJoYJujBzWkFu3X/7yO/22/tEAx0UEN3KJDAVy0nQaE7gRCMdWghux0oKEzEyMRkRwk4RcIsNOYU5MZjquFlZEp6Vj+AbcSIG8VkJauI2ZErlRSnxWJrltbPmckorWaKCEswsvRLVUWTd3nkREAlDK1Y1nEVHIpVKKODrzIjIac4WCvHb2vI6KwcrMDC8bW16LgCaPvT3PI6KwNFNQ2MmRRyERqORyKubx5MZ7wbivYdGCnHkmhgiWKcbJR28wGqFhiYLcex9KapYGHy83NGod7yLisLcyp3rhvPwhcnN61S7P/htPhWiEInlIS1PzMjgKGwslvrVKs0Hs3LSr4cOrwEjeizLxXo3Ls+LgdfQGI82qFCUtTW0y8ZvUoz4bD98hJkGQgvdsVoE5my6g0xuoX7kw3h6OJkLxwI7ViI37Cm6mDGrEs1dhJnDjN6oZz16G/xLcFCvoztRZAripXrkAwwfWY/yUg4SFJ+DsZM2yBZ05f/4Fe/YJPJdBA+pQq2YRxozeQ2RkEu7udixe0oU3ryOYFyDIvuvWL86ESc3ZufUG+8QTv/+QerTvUpnVi8+Z1AQjxjeledty7N1ygx0iD6drv5p0H1CbZw+D8Ru1B3WWllLl8zFzWRekUimzR+/lwS0hGmLq4s5Url2EsKBYJvfbSlxMCh65HZm3qTeuHvYEvYtkSt+tJMWn4ZXfhXlb+wqhmckZTO+7lXfPQjG3VDJzY298KnoDcOfCS+aNEPgA5WoWZtrary6+1048YrFoMlaxbjEmr+uFSuTMJMWlMr37Oj6+CMfcSon/1gGUrPoVmCTFpTKj21rePw1BaW7G1M39qVAvu6fL+yfBTO+yiuS4VFy8HAk4MILchX4ca1za/yfLhm9Hr9NTtEJ+ZuwZ+tOb56fnIczouJzY8ASs7CyYumsYZev82kvGaDTyx7qLbJi4F71OT+4iHkzfN4LcRf61uIU/Tz1ixeBNJEQlIZVKaDuqGT1mdPgtd+T/6/XFH8inWpG/2POv6+Xtdzy58gqZXEancb/fvdm/6CQxYfG4eDnSYfSPxnrf1tMbb7iw5zYSiYSRK3r+tFN3dO1F3j0OxtLGnBFLfxxhGY1Glo/eTXJ8GvmK5aLb+GY/bF8xfh8J0Sl4FXSl3/TW2bY///MD+1cJwoNhcztkk33fv/LaZLI5ZmEnnD3sABHETDhAfHQKXt4uDJ3x9TkPbrrOw5vvMVPKmbzMF5WFcN7uWnuZFw+DsvFuNGotc8YdID01i6KlvOgzUuA5XT7zjNNHHiKRSJgQ0BYXdzs+h8azSDT+a+tbmZr1i5OYkEbA1CPCQq9eMdp2rkR0VBLzZoreNi1K07RlGR4/CmKLCHiGjmhIseK5WLH8nMnMb+bMtiQlpRMwV+zUNC5J0yYlWbT8HO8/RGFjY86saa259zAQv7l//PJ7/bb+0QAnMiMVhaUF5lIzUrRq3MytTeBGSAgX3IiT1Wr0RqMJ3MgkUhyVFkRnpONsbkmCmBD+BdxIQDT3SxTciqVy4tIz8LS2ISYtDY1BL4RoRsWYwM1jsXNT1s2dJ58jkUullHBx5dnnKJRyGQUdHHgRGY2FQoG3gz0vPkdjaaYgv6MDT8OFbk1xNxceBH1GKZdROZ8X198Jxn1Nihfi9FMB3LQqXZRTj99gMBqpVzw/Dz+GkSFLzLkAAQAASURBVJypprinC0a9kbefY7GzUFGnmDfH7gncnF51ynHgxjOyNDoqF86NOkvH86BIrMyVdKtblvUn/8RohNZVS/A2KIa3oUKoZp8mFVh+SMiWalK5KFmZWq4/+YSZXMbknvXZdOQO0Qmp5HV3oFfziswVTfzqVSxEIU8n1h0QRkQDOlYjLj7tK7gZ3PgvwU1iYjobRHDTx7caRQu4MW32MQHcVCnI8AF1GT9VADcuztYsW9CFc+eem8DNkMH1qF61IGNG7yEqKhkPDzuWLO3Ky+dhzBcdNRs08mHshKZs23iNg3uE4waPaEDrDhVZsfA0Z088QSKB0ZNb0Kh5KXasu8JekYfTc3AdfPvU5NGfH/EfKwRelqtSgBmLO2M0GvEfuYcndz+hVCmYsdyXslUKEPwhmsn9t5IYn0bu/C7M29QbR2cb3r8MZ2q/raQlZ+Jd1J05m/tg52BFYlwqU3tvJuhtJNZ2Fsze0pfCJQVr9svHHrF0wgEMegPVGvswYVlX0+z+9K7brJkmKJlqty7H2CW+Jnfi6PAEpvqu5XNgDLaOVgTsHkyBb3KeosPimdp5FZ8/xWDjYMnM3UMo8l120qOrr5jdaz1Z6Wry+3gxe/8IHFyz8yu+xC7smHMcgFptKjB2bR/MVDnb5v95+jHz+wjP6VnQjZkHR/9lnpQ6U8PK4du4tEf4ndXuUJlRa/ti/p3q5XcqLSmddWN2cHGX8JvLXTQX47cMofBvGAj+/6GMRiN/nhTAfOm6Jf7t59oy7QAgcG9+Jv3/voJfh3NQVDgNWuD7S1CZmZbFsuE7AGjWpzbFKub8PQW+DGOHqNYbGNARJ3f7H/Y5vf0G9y+9RKGUM35Nrx9M/87svs2f518Inc7VPU0LBRAWAwuGC546DTtVolbLrxlbsZFJLBkvdKNa9apO5fpfwfrhTdd5eOOdAGJWdjWRkZ/d+8QuUaU5ZHor8okuxnevvTHxbkbN/Mq7WbfgDB/fRGBjZ8GUhYILedCHaFYECOM43341qVC1IFmZGmZPPEhGupripbzoO7w+ep2BOdOOEh+XilceR0ZPbo5Wo2fmlCOkJGdSsLA7w0Y3Jjo6mTkzj2MwGGnY2IfmLctw7uxz/vhDuD5OntICB0crRozaRUpKJoULuTFieEOOn3rC2QuCaMRvUksys7TMXXL6p99pTvWPBjhSpFjLVCRpsnBRWRGRJvBrvhj62ZipSFMLCeFfwI0ECa4qayLSU4WcqUwNGr2BgrZfwU1BW0c+JCRgIVdgJVcSnZaGh5U1CRmZZOn1FHV05k1MLHwHbsq5e/A4PAKpREJJVzeehEeikEkp6uzMs89RmCvkFHJy4pkIaIq4OPMoTOjWlPFw589AgWdT3TsPV94GIpFAM5/CnHoihmWWLsqZp+/QG4zUKerN08AIEjOyKOLhjBwpz8OisDFXUr9kAY78KbQBe9Yux+GbL8jUaKlY0AuDVs+TT5+xUpnRs145E7hpVaU4geFxvBZHVgOaVWLZwevo9QYaVSyCXqvnyqOPKMTOzeajfxIVL2RL9WpZibmbLqDV6albsSBF8rqYTPz6t69KYmK6SS1l6txceWkaS+XUufkCbvr6VqPIN+CmRtWCDO9fl3EiuHF1sWHp/M6cPfucvfsFkDJsSH2qVinAmNF7iY5OJlcue5b8f+y9dVRc6bbu/Svc3T1EiLu7u7u7K3E8ECzE3d3dPR13F+IQAiS4u5V8f7yVStKR7t7n3LPv/faZY2QMSK21gKolzzvnI0sH8vxpLAtDhTlfuw5VmT6rA5vXXuGIcgQ1aXo7uvSoxdKQU1w8IzwfZvl0pVX7KmxdfVnV2h09tTV9hjTi/s33BM7eT0mJjHpNyuET1heZTI7flN2EP4pGR1eL+asHU7V2KSLfxOM1dhvZmfmULm9LyMYRGJvq8+pJNH7jtpOfW0T5ao4EbhyhSgT3Gr6Jz1EpmFoYELJjrMqy/fSu26yZJ1rSbXrVZlpoH1Xb+9C6y2wNFTe3zkMbM2F+TxUZNuZ9At4D15KWmIWVgxnBeyeqZv4gDPy8B6wmLSETK3szgvZPxvFPIOPKofssmbINmVROjWYV8N0+AT3D7wGFTCpj9aw9nFN+hn2mtmfEvJ4/JeUqFAqOrbnARs/9KBQKarSohPfOSd957/yskmNTCei/gsin0aipqzEmpD89prT/rdrmV/Xo0nOWjt1A6ud0JBIJvWd0Zph/n//nPW3+ScW8/kxcRCKaWhrU6/ij2/Q/qVvHH/H6XgTauloM9vrRQ+ZnJZfLWTF1GzKpjPqdatCwy48Kp29ry7zDJMWmYuVozsh5vX66TXFhCWHjtyAtkdGgQzXaDPjRWiDmXQKbAgQJd6RPd0r9KWg15n0CG/3FtTbSs+t3bt5yuZwlM/aQnpyNYxlrJgR8lX3LpDIWuu8hOyOfMpXtGTn3axfr5cOP7FBmzE2c151SbqLzmZ6cTdis/SreTbteYmSV8CmdRV6HAeg2qAHNlL46F48/4dyXLk1IbyxtjMnLKSRwzgGKikqoVb80g8Y0Fx2okNN8jEzG1Ewf7wV90NBQZ+OqP3jxNAZdPS3mLeiLrp4WSxecJuKdMPibF9ILBQoCfI+SlVVA2XI2TJvRnndvE1iuzNcaOqwJ9eqVJmTBKSI/JGNioof/vB68ehPP6vWCID1uVHPcytowbvpOCgpKqFLZnjt//PbjVdV/NMAx1tQls7gQC219EvNE9tSXEZWBphZFJSJqwdnAlJhs4Wljr2fE59wcTLV1yS8qoUgmpYyxGREZAty4mVjwLi0NbXUNTDR1SMjNxVrfgOyiIvKlJbiZWfA+JRWFAmp8A25q29nz+FOc6OLY2vL4UwKaampUtbbhyed4tDXUqWhpyZNPCehoaFDF1ooHMaJbU8fRnluRMWioqdG8rAt/vP4AQJcq5TmlBDddqpXn/LP3SGVymrq58Co2kfS8AsrZWKCvocmTj/EY6mjTvno5Dt0JB2Bos5ocu/OSvKJiapdxQB0J9yPi0NPWZHjr2qw/fVfwaupVIDo+nfCPiRjr6zC+a32WHbiBVCanTZ1yIFdw6YGQ93kMacmWY3dJSM3G0dqEMT3qE7RRgJsWdcpSubStKltqZM/65OQUcvgLeBnXlvA3cSq1lO+07wnFHpPbf0coHjWwERW+GUv9XXDToH4ZprvvITk5G3sHU5YsGcTTx9EsWnBKZSnuPrM961de4rjSy2HqrA507FKDxUEnuXw+HDV1CXP9utO8TSU2Lr/I0b1ihDd+Rjt6DKjPnatvCPY4hFQqo1HLCniG9Ka4UIrv5F28fhaLnoE2QWuGUrG6E+9efsZ77DZycwopV9me4PXDMTTW4/n9D/hPFPlRVeqUwn/dMPT0tUn8lI7n0I0kfk7Hys6EkB1jsFcGAR5cd4VtSpPBbsMbM9anqypXaufis6pWeb/JbRg2u6Pqgf/uaQy+Q9aRk5mPUzkbgvdMxMLWRHUtvX3yEb9Ba8nJyMOpnC3BB6Z89zrAkbWX2OQnjMWa96zLzNXDfxgLFOQWEjJyAw8vhSORSJgQNoCuv0hzlkllrJ21m9ObBXGz48gWTFoy+C8DL59df03I4NVkpeZgbGGI165JVG/+z2MRiguL2ey5l+Orxc3arowNszdPoNJPnG3//163lBEoNdtU/UdeNX+ukmIpW3xE16L39I6Y2/3YMflZndt2ndf3ItE10GHSkiG/BapPrr3m9NZrAMxYPfwHgP2ltgUdI+ZtPKZWRkxbNvSHYxYXlbBw4jaKC0uo1aIiXUc1//71whLCJu2guKiEWs3K021Us+9eP7LhKo+uvUVLWxOvdcO/6zjtWnaBlw8/omugjefKIarualZ6Hgum70Uuk9OyW03a9hbWBTKpjNCZ+8lIzcWlnA0TfQXvpqiwhKAZe5UjKCdGzxQ8o8g38axWZkINntCC2o3KIpfLWTTvGHGxaVhaGzM3qBfq6mqcOHCfK8p7mldIb8wtDLn+xytViOYsH8HFOXXsscrMzzugB1bWxixecIb3XwDP/J7k5RUzb95RSkpkNGxUlsGDG3Ho8AMuX3ktJOI+3QEJ/iGi49O6RUV6dauF1/xjxMVnYmNlhNeMTmxY/suP97v6jwY4GUUFWJqak5IvHIzt9USmlJ6GFjIZFMpkOCkJxd963nyJYsiXSnE1NiUyIx0JUN7UkrepqWipqWOlo8/n7Gws9fQpKCkmt7iYMqZmRKWlI1dAdRsbnirBTR07ex59igOgtr09j2LjUZdIqG5ry6NPcWioqVHVxoZHMXFoqatTzd6W+9Gf0FRXp76zIzfei/Tvlm6lufQqAoBu1SpwUpkE3rGqGxefv6dEJqdROWci4lNJycmntLU5Jro6PIz8jJ62Jp1qunHg9gsABjetwYl7r8gpKKKGqx266urcfh2DjpYGI9vWZcOpu2L0VKc8CSnZvIhKwFBPm/FdG7D8wHXRjalZBi11Dc7eFifv3CEt2X7yAQmp2ThYmzCuZyOCNp6nuEQEZ1Yra8uKXQLcDO9ej/z8Yg6cFT42c8e04fW7BJXPjd+0jrz8RgruMbk92VkFrNsu9v8zuGncoCyTx7Rkts9vwM2k1jSoV4YZ0wW4cXAwY/GSgTx9/JFFSjl35641mOLejrXLL3Ly6CMkEnCf04l2HauxMPAEVy++RF1dDc+AHjRpWYH1S85z/IC4+U+e25Euvetw8/JrQj0PieyWdpWZHdCTgoJifCbs5N3LzxgY6hC8fhhulR14/SwGn/E7BPm4uhOBa4ehb6jDo5vvCJyym+IiKTUblcV31WB0dLX4/DEFjyEbSUvKws7ZnNCdY7GyE4ngO5eeZ79SNjpgSmuGuIvQSrlcznr/Y5zaLrpmIzw6f6fieH77PQEjN1GQV4RbDWcCd47/rkPy+NprAkdspKigGLeaLszfPfE7pZBcLmdLwFFVQnOPca0YE9jnh45MZko2vv1WEvE0Gi0dTTw2j6XhT7KnQKQ0Bw9dw+M/BBAaE9KfnpN/DOH8thQKBac2/MG6WbuRy+SUqeGC375pWDv/PQLrt/UxPJbQIauIfvUJgK4T2jIqdCC6+v98vPX/eikUCq4dFITqxt1/b6j3V3V8zQUSopIxszGmz/ROf70DkJaYyRZlqvcw315YOfzagycvK5/lU7YD0HlUC6r/Itfq6Y03HFO6nbsvH4qJxY+GfjtCThL16jNGZgbMWD7kh/N5U+AxPr6Jx9jcgBnLBn/3+utHH9m+UIxbJszviYvbV/7Zw2tvOLBOgHb30D7YuXy1ZFg0ax9pSVk4uFoyOaCH6nzfvvwiL7/wa5YPVI3B1oSc4sPbBIxN9fBa3B9NTQ1ysvIJmrmf4iIpdZuUY8AYAbwObL/F3etv0dRUx3dRP4xN9Ql/GsOGZUoC8dQ2VK3lwsfIJBYrY2L6DWlIkxYVePniE2uXi67SyPEtqFnHleNHH3HhvFB/+szrjrmFIbNn7SM1NQcnJ3M8PLrw9FkMGzdfA2Di+Fa4udkyZeYesrIKKFfGmtnu7dm66xb3H4mk8UDfHkhl0l9+vn+u/2iAY6KlS1pBAYpvwI2OuiZqCjVypMU46BsTm50JSJRdHJEArpBLyCspxsXIhKiMDCRABVNL3qSmoCFRx07fkJjMLMx1dZHKZGQXCVl4bEYWUrmCqtY2PItPVIGbh8rOTV17Bx7Giq9rO9jzIOYzGmpq1LK340H0ZzTV1KjtZM+dqFg01NRoXMqJa0qeTdvyZTn/UiikulYtz6mnAty0r1yWq+GRFMvk1C/jSExSOolZuZSyNMXKQJ9772PR1dKge52K7LspbOwHNqnOmQdvyM4vooqzDcbaOtx4KVRPo9vVY8Ppu0jlctrWKkdaRi5PIuLQ19FiUreGLD94XUjIq5XGUEeHkzfFKGnu4JbsOfOYuOQs7K2MGd+rEUEbL1BUIqNRDVdqlXdk2U5Bvh3StQ4lxTIOKE365oxpzfsoEb8gpOAdeP0+kSNnnqqk4Lk5hSoTv5EDG1GxnK1KLSUIxS2Z432Q2E+Cc/N3wM2SpQN58ugruOnSrSaTp7X9DtzM8OxMm3ZVWTj/OFcvvUJdXQ3voF40aubG2sXnOHnwIRIJTPPqQofuNbl+8SULfI4gl8lp1bEqM+d1Jz+vCM9xO1Sz8JD1wyhTwY7wRx/xnbiTwoJiqtQuxfw1Q9DV0+beldcEu+9FWiKjbvPyeC8XBl7R7xPxGraRjFQl0XjHGMytjVEoFGwOOaUiK47y7Kwy95NJZSyfs58/Dj/8aa7UvUvhhIzfJtKVG5fDb8uY78zHbpx4zKLJ25GWyKjZvAI+W8Z895CXSWUsc9/JH8r3eZRfz5+mgcd/TMa71zISPqZgZGaA/74pv+RFJH9Ow7fnUqJff0ZbTwuPLeP/ciQhLZGyZsYuziq7PS37N8R97agfAhD/qhQKBcdXn2ez515KikowsTJm1ubx1O3wXxvL/L9cT6+8JPZNHLoGOjTu+a8DnPTETJXvzXD/Pn+bC7V25i7ysvIpV7MUXce3/u22G3wOkvw5HRtnC0b5/3w0lZOZx5JJ2wDoOKwp9X4iS3505RVHN4jFwvTlg3/gkN08/ZTTOwS3a9bywd9JwnMy81gweQdymZxmXWvQrv9XVVZKfCaLZuwDoPPghjT9Rpm4b80fPL75Hm0dTbxWDlZdh3cvv+aw8tp2D+ql8rs5f/QRF5XGgHPD+mFpY4xcLmeh9xES4zKwdTBldkhv1NTUeHw3kh1rxbUxaW4n3CrZk5qcTbCHWIg1a1OJHgPqk5NdQIDHIYoKS6hRpxTDx7YgNSWHQJ8jSKVymrasQN+BDXjxPJZ1yrysMeNbUrNWKVauuEB4+Cf09bWZP78X2dkFBAYdVwUXd+tag5BFZ4j4IBzi5/v24Na9SPYcEhSAOdPao6YmYcz0Xb/9jL+t/2iAk1VUjEJHGwc9YdinpaaBlpoGWUVFwtNGGaJZytCUj1mZ6GloooE6GUWFOBkKQ79vwY2aRE1ENGRkYKytgwQJGYUFuBibkJiVS4lMTmUrK14m/ghu6js4cD9GdHHqOzlyL/oTahIJdR3tuRv1CXWJhHoujtz6EIOaRELzMqW4/EaMotpXLMu5cAFuulQtz5ln70T2UaUy3HwTTaFURh1Xe+LTsonLyMHR3BgHE2NuvY1GW0Od3vWqsPuGMFnr16gaFx6/JzOvkIqOVlgZ6nP1uSAGj+tQnw2n74lohuplyMkt5OE70f2Z0qMRKw7doKhERuMqpbAw0uPYtXDUJBLmDGnF/vNPiE3MwMbckEl9GhO48QJFxVIaVitFgyouLNkmbhaDOtdGDQm7T4nRz6xRrYiOTeX4heeqbKn3H5I5pMyWmjOxHXm5Rar4heH9G1LZzQ7Pb8DN1AmtvwM3XwjF34KbhvUF5+YLuFm6bBCPH/49cBM2/zjXlODGJ7gXDZu6sWbhWU4dFttN9+lKu641uHYhnDDfo8hlctp0rs50v27k5RTiOXYbH94lYmyqz4JNwylV1oZn9z8wb/IuigpLqNmgDH4rBqGjq8XNC+GEzdqPTCqnUdvKzF3UD00tDSJffcZ7xGayM/JxrWBH8LbRmJgbIJfLWTvvGGeUJOiJ/j3oMrQRIMYBi6bt5uaZZ6ipqzFzyUBa9vzqQXP12CMWu4tuR4N2VfBYM/w7ku/ZXbdYPWefMFTrVotZq75XohQVFBM6ZhP3zj8XUvEVQ2nT/0ceQ8TzGHz7LCczJQdrJwuCj7jjUObnBOEPL2Lw7bWUtIRMzKyNmX94+l86E2el5hA0cCUvbr5FIpEwMrAvfWZ0+sd8m8yUbBaNXMvD888AqNuhBjM3jcPU2uQfHef/b3VspRh5th3aDH0jvX/5OFv9DpKfU0i5Wq60GdLkb+1z5/QTbp14hJq6Gu5rRv7S0Rrg/vnnXNx9C4lEwsw1I38KoBQKBatm7iE1IRN7VyvGzu/zwzbpyVksmSrykLqMbEb9PwGghJhUls8WIKXPxNbUblHxu+MvnblPFcUwJbSf6jwsKZYSMmUXOZn5lK3swBjvrqr9Hl5/y97V4h45NaiXincTH5PKYg/Rveo2pCFNlb42Ea/jWKPssgyd3JqaDYTZ4b6N13moVFj5LBmAoZEuifEZhHoLUUH77jXp0EOZBu5xiIz0PEqVsWKGb1fkcgUL/I8TH5eBta0J3oE9kcnlBPocIT0tFxdXS2Z5diElJYf5fiJ6pmXrSvTuW5fz515w4oRYsHp4dsHC0pAp7rvIzinEzc2W6dPacfDoQ/64+ho1NQkB3t3JzikgbLmIuhnQuy61a7gwduYuCv5BkOt/NMCRyRU463+Vfeura5NeVICtniFxOSKKwdXQjKisdLTVNdFV0yK1IB8HAyPis7NRKMRY6k1qChJl5lREWjqGWlroqGuQlJeLo5ExKTn5FEilVLS05E1SMgqF4NyowI2jI/ejhUFWQ2cn7n6MRQI0dHbk9gfxdWNXZ65HRiMBWpcrzaXXwqyvYyU3zoULhVSnKm6cf/5eKKQqlOb++1hh3OdsR2pWPp/SsrAzNaKMpTnXXkWhqa5O/0bV2HlNnHi96lfmytMI0nPycbO3xNHMhEtPBHdmfKcGbDp9T3RnqrhSXCzl3utYdLQ0mNarCSsP3RAqq0rO2Jsbc/CyGB3NGtSCI5eeER2fjqWpAVP7NyNo4wUKi6TUr+JMs5quLNgskP6AjrXQ0dRg62HBV3Ef3oK4+AwOnxXga+6EdkTHpqpSwWdPaENhQbEK3Azr14BqFe3x8D9KcbGURvXL4D6xDbO9hc+NpYXo3Fy8+FUKPmlCKxrVL8uMGXsEodjB9JvOzSnVWOqvwI2Ghho+wb2p37gcq8POcvqIcjvfbrTtUp0r516wyO+oUBJ0rYG7T1dysgrwHLeNj++TMDHTZ8GmEbiUsebJnUj8p+6iuEhKncbl8FV2aK6dec6iuQeRy+Q071yNWUpy8JunMfiO2kJeTiFuVR0J3Cq8bGQyOSs8D3FJ2Z2ZFtqHdsoU8eLCEoInbOfB5VdoaKnjuWYYDdt9vVGf3X2b1Z4HUSgUtOxZm+lLBqmUVACH11xiS6AgT3Yc2oSJof2+e7jkZefjP2gN4Xcj0NLRxGvzWOq3/xrK+aWeXHtN4JA1FOQqFVWH3H9YDX+px5fDCRy0moLcQpwr2BN0dCZWjr8eR4BQ1szrtZTE6BR0DXTw2DGR+v8CCfbFzTeEDl5JWnwGWjqajA0bTJcJP7ot/6dVXEQC95XXZ/fJP/eR+Tv19kEkl5TRCpOW/jju+VnlZuaxZoYAGn3cO1C6itMvt81Oz2W5u9i2x8TWVGn0cyPCK4fuc0MJmOasH/2DWZ9cLmfxlB1kpubgUsGOUX8K0iwplhI6cTv5OYVUrF2KoX+SjB/ddI17l16qrjn9b/g/2xae5a3SC8drzVfeTdLndBbNEiT6TgMb0LKbUFoVFhQTNG0P+blFVKzhzKhZIqIhJyuf4Bn7KCmWUq+ZG31HCbfvh7fes1tpUTHFpyuly9tSVFhC4OwD5GQVUK6SPZOU3jjrl57nTbgYl/st6oeOrhbbN1zl4d1ItLU18F/QByNjPZYvPMNr5VjdP7QP6upq+PscITMzn9JlrJgxu+N3pOJhw5vQoEEZgkJOEhUlInHmz+vB8/BPbNwq6AWTx7XC2cmcsdN2UlQkpV5tV0YMasTsgCMkJmdj94v7w8/qPxrg2OkbE5OdiRpqmGjpklKQj7WuAYlKt+JSSnCjqaaOsaYOSXl52Oobkpybi0yhoLypBW9ThRqqnIkF79PS0NPQxEhLh7icbGwNDMnOLyK/pAQ3cwsiU9KQK4Ra6tE34OZe9CckSGjs4sTtKGF13rSUCzciowFoXtaVq++jAGhbviwXlTybTpXdOPtCgJsOlctxMTwCqVxOM7dSPImKU3nb5OUXE63Mk6pkZ8UfLyLRUFNjUJPq7FKCm251KnL7VTSpOfmUsTWnrLU5Zx++RV1NwoRODdh89j6FJVIaVXJBAwlXw6PR1lRneu+mrDpyk/yiEmqXd6S0jTl7L4pjzhjQnJNXw4n8lIqFiT4zBjUnaONFCopKqFPZiVZ1yxG6Scx3+7SrgZGeDhuVKeFThjQjNTWHA6dFp2b2uDbEJ2Sy95jo7MwYJ2SKKzeJtuqQPvWpWcURj3kC3DSoW5rpE9sw1+cQ0TGpWJgbsGzhAP744yW7lCZ+E8a3pHGjciop+BdC8bMnMSwMPfVLzs0XcLMg4BjX/3j9HbhZFXaGs0cfI5HATL9utOlcnctnn7N4nnDrbN+9JtO8u5CdkY/H2G1ERyZjamFA2KYROLla8fDmO+a771XdnLyXDkRLS4PLJ56w1OuwSiExLbAn6upqvHz0Eb/RWyjIK6Zy7VL4bxyBvqEO0hIZS2bt59qpp6ipqzFrcX9afLkx5hcxf/QWnt56j5a2Jn6bR1LrG1fgoxuvsGn+cQA6D2vMhMDeqgeOQqFgx4KTHFgh5u39prZjmGfX7x70GcnZ+PRbwYfwT+gZ6hCwZzJVGv74QLl25AGLJwiVSvWm5fHdNemXgZkXdt5g+ZRtyGVyqjWtgN/eKRiY/F4p9fDCc0KGrCY/pxDbUlb4H56OS0WH3+7z55LL5ewPO8FO/4PI5QqcKtjjvWcapX7zMP1PqoNLRJegXsca2P+LCesymZxV7kKy3WZw47+dz7Vuzh5S4zOwK23NII/uv9xOoVCwcsYuMpKycCxnwzDvnyuz4qOSWT17DwCDZnfGrabLD9scWn2Rp9ffiliE9T+OOLcEnyDieSyGJnp4rB3+3aLg5YMolUJx3Lwe39kr3Dz7nGNblX43i/phowTuxUUlBCu7OuWqOjLWq8vXv2neMT6+S8TUwgCv5cJxWyaTEzrngHIEZcasYMF1i49NI8xDOBh37F2HNl1riGOEnCLybQLGJnr4LuyHlrYm544/4cwRcQ+bG9gTOwczbl17w15lHpW7Z2dKl7Ph9PHHnFFaYXjO646dvSkLQ0/z/l0Chka6+Af1Jje3ED+/I9+Rivfuu8vVa8rcKb8eFBZJCQgVeXwd21Wlc4dqzPA6QHJKDk4OZvjO6cyardd49vITerpazJvdhSM7pv3u1FDVfzTA+ZydhZqeLhY6BiTl52Kpo09aQT4KhfCxicpMR0OijoW2yJ+y0tMnI7+AErkcN1ML3qamAhIqmFnyNiUVbXV1zHX1+JSdhZWePoXFUrKLiihjZkZ0WjolcjnVbWx5GhePBKjn4PBTcNPM1YUbEdEAtCpXmsvvlKOo8mW5oAQ3HSqVU3Vu2lYsw5WXkUhlchqVdeZVbCKZ+YVUsLNEJpURkZSKuYEeNZ3sOP/sPepqEgY3rcHu60+QKxR0qlmex+8/k5SZi4uVKZUdrDl57zVqEgFutp9/SEFRCXXLO6KvpcWlR+/R1FDHvXdT1h69RV5BMTXK2lPJ2ZqdZ0V3ZXr/Zly4/Yb3sSmYGukxc0hLQjddJL+wmBrlHejQsCLB688L/5xWVbEyNWDtHrGCmzCwCbm5hew9IcDMzDGtSc/IY9cRMYudNrolGhIJi9YLxc/AXnWpU90Zj3kiFbxebVdmTm6Lh+8hoqJTlPELA7hy+RU7dykjH8a2oFmT8t/73CwZyItnMYSFnPwO3Kxb8fPOzW/BzbzutOlUjT/OCHCjUCjo2LMWUzw7k5WRz9zRW4mNSsHM0pCwzSNwdLHk/vW3BE3fS0mJjAYtKuC1RJACLxx5xArfo6KF3KcOU/y7o6amxov7H5g3dhuF+cVUa1AG//XD0dHToqRYSti0Pdy+EI66hhoeKwbTWNm6zsspZN7wjbx6GIWuvjb+28ZQtf7XB8q+FRfYuUiQH/tOas1wjy7f5Uqt9z7EKWWm1wjv7vSd8n0AYmJsKl69lhP/MRkTS0OCD7pT+psb+Zc6sfEy6+aKNn7THrWZtW7UD/4hIG7ku0OOs1vJzWjZrwHT1/5822/r5PpLrJu5C7lcQdUm5fHZOxXjnxBFf1cZSZmEDV/Dkz+EqrDNkKZMXjXyP5JI/LNK/pTKpZ3KZPs53f/l45zZdJnIp9EYmOgxKqj/39rnzqnH/LH3trBi2DDmt1yqi3tuc+vEY9Q11JmzYfRPty0uKiFk9EYRh1C/LP3dO/ywzcv7kewMOw3AhOB+OLt9D+hun3vOiS3i/Zi5fDCW3yjAMlJyCJ24XXRfu9ei0+BGqtc+fUhmmXLM1Htscxq0+eojtD7wJBEv4zAy1cN71WBVV+fknrtcPSVGy55LB2Ku5PjsXP0HT+6IXCrf5YMwNNalIL+IAPe95OYUUr6qI+Pnii7N8X33+OOMGB97hfbBysaY1y8+sVoZhDl0XAvqNirLx8gkFs4XXkA9+9ejVbsqhD+LZfVSscgZMbYFdRuU4dCB+1y6INRWvv7dMTc3YLr7btLScnF2tsDDowt370Wo8v2mTWmLq6sVE6btJDe3iEoV7Jg2sTXL1/1B+Os4DPS1CfbrwZWbbzmuFJP4zuyE4T/wqfqPBjhfZOHxeUL2nVVYhFSuUIEbCRJsdA35lJONuY4e+YXFQhZuYs47JbipZG7F6+QUNNXUsDMw4mNmBma6uihkkFlQSCkTExIysymWy6libc3LhEQUCqjr4MD9mM9IkNDI+Su4aV66FNfffwSgVTnXn4Kb9hXLculVBAoFtCpfmptvowWJ2NWRD/GppOUWUNbaHC01dV7EJmKip0PDMk6cVuZJDW1Wi93XnyCTK2hfvRyvohOJS8/GwdyYWq72HLv9EokEJnRqwK5Lj8ktLKZmGXusDA04c+8N6mpqTO/dhI0n7pKdX0TV0rbULufA5pMCgEzp04SrDyJ4HZWEsYEOHsNbEbr5Ejn5RVQpa0f35lUIXHcOuUJBlxaVcbY1Y+WOawCM6dcIWYmMHV/GVKNakpdXxFal7f3kEc3R19FiwUoxm+3brTaNapdmtt8hCgpLqFPThTnT2uGhTAU3M9VnWVh/btx4q8qWGje2BS2ai/iFhIRM7OxMWLpMmPiFhYjOTacu1Zni3o71qy5x4siPhOJvx1INmnwPbmb5d6d1x+/BTadetZns0ek7cGNhZUTY5pHYO5tz9+obgmfsQyqV0bhNJTzChOnW2YMPWKX0rOk8oD4TfLqgpqbG0zsRBIzbLsh+jcrit04YiBUXSQmZvJP7l1+joaWOz5ph1GslOAA5mXn4DNnA++exGBjpMn/nOCooV6kKhYIdC89wYJXoqA2d3YkB09qprhRBFt7F5cMPkEgkTA7rT8eh3/MkPkUk4NlrOanxGVg7mRN6eDp23/jkfPk5uxecVOX6dB3bkvGh/X86kpBJZayctp3zStl//1ldGD6v12/HQjKZnI1z9nB8rfg72g5tytRVI/5xntTLW28JGriC9IQMtHW1mLJqJG2HNf9Hx/j/ex1afAppiYxqzSr+y9L4tIRMtvsLj5bhAX0w/Rvjh8zkbJZPESTg3u4dqVT/x3iPL/UpIpG1c0WEwnCf7pSt7vLT7bbOP0rki1iMzPSZu3H0Dyn2WWm5LBi/Vcize9el7YDvYzwSYlJZNlP8nN7jW1Gv9VeQIpPJCZuyU+V3MzW0r+ocLsgrInDCdgpyi6hc15Vh3ySBXzryiHMH7gufmiUDsVICpldPotmkBCGjZ3WgSh3BQbt16SUHNguANT2gJ65uNigUCpb4HSPmg+gU+y7pj5aWBs8eRLFxuVId5d6W6nVdSUvJIXDOQaRSOY1aVKD/iCZkZ+Uzb+5BCgtKqF7LhTGTWpOcmMV878NCBdqqIv2HNOThgyg2fQnMnNiaGjVdCFtwmrdvEzA01CEoqDfJydmELBAAsXu3mnRoXxVv/yMqJ/n5vj04czGcMxdeCDAzpwvpmfks3yi4R2OGNMXG2phRs7b98vP+c/1HAxw7PWOloZ82BcXC88bVUIAbkOCob0JMdhYm2jpIpTLypCW4GpsRmZbGF3DzKjkZDYkaLsamRKSnYaytjTYaJOYL/k1qbj75Sv7N26QUZHKFUgoehwSJ4NkoOTffgpuW5Vy5/E6MpdqUL8PF1wLctKlQhsuvPyCTK2hWzoUHkZ8oLJFSy9meuNQskrLzcLE0xVhHm8cf4zHU0aJ5eVdOKCMXhjWrxd4bT4VjcJUyfIhPIyYlExtTQxqXd+HgDaGkGt+xAfuuPBVKqlI2OFuacvzWS9QkEqb3acrW0/fJzC2goos1jSqXYv1R5dinZyPuPv/Ii4h4DPW08RzRhrCtl8nKLaSiqzV92lRn/tpzQmLepCJuzlYs2SIujJG966Olrsa6veKBNmlYM2RSORt2i87O+CFNMDXSI3jZGRQK6NW5Ji0almOWzyEKCkqoVd0Zjxkd8Zp3hMgPyZgqwc2dO19XDWNGNad1y0rMmL6H+HgRv7Bk6SDevIojVOlQ3KFTdaZOb8+mNZc5fkg5EvPoTJv2VVkUeOI7tVSDJuVYs/CsqqX7O3CTmZ6Hx5htKnCzcMtI7JzMuXvlNcEz9yOVymjargpzQvugoanO6b13WRMobMm7DWnIOM/OSCQSHt98z/wJ2ykuklK7mRu+a4aqbNcDx+/g0fW3aGlr4LdhBLWaigdPVnouXoPWEfVKJBkH755AmcpiXKNQKNgYcIzjSrnmaN/u9Br31XumuKiEsAlbuXNWrPZmrx5G8x51vruWIl/E4t13BVmpOTi52RJy2P0H11e5XM66ufs4tVmplvPqxsBZnX8KWArziwgdvpZ7Z5+hpiZh8rJhdBrV4rfXc35OAQuGr+X+2WfifJrfl76/OP6v6otKauOc3cikMpwrOuC9dxoulX7sQv0nV1pCBmeV1+3Av2nG97NaO2OnUEDVcqXjqJ/7HX1bCoWCFVO3kZWaQ6lKDgz5xbgJBB8mbMxGivKLqd60PL2mtPvpdnfPPeO4UhE1c9WI7zovIM7bpdN2kpaQiX1pKyb9KQW8uLCE4HFbycsuoGLtUgyb+320xK4l53h+JwIdPS18NoxQqZ8UCgXLPQ/xKTIZc2sjvFYNUY20Il99ZvU8YSA4eGobajURI9705GxC3Pcik8pp2qEq3YeJTlDMh2SWKNPGew1rrArRPLD1BrcuvUJDQx3fJQMwtzIiMT6DYI9DyGVyWneqRo8B9SkukjJ/zgFBFi5txWz/7ijkCoJ9jpIYn4mNnQk+wb0okcqY53lIcGzKWjPDszNxn9MJClCO4DtWo3uv2hw69IBLl4Rfmd+8Hugb6jB78g4KCoqpUd2ZieNbsXn7De49FPLv4Hk9iYlNY7Xycxg/sjlOjmaMm7UbmUxO66YV6NS6MuPm7iG/oPivThNV/UcDnLi8bAwNjZDJFBTKpJQyNCUqS4AbF0NTPmYKWbhEDlnFRTgbmfAxQ3jiVLaw5mVSEmpIKGNqzru0VPQ1tTDU0CEuW/BvcguLyC0uxs3cnI+p6UhlcmrY2vLscwIKBdRzcuDux09IgKauLipw07xsKa4owU2rcqW58iYShQJaurly420UUrmchqWdeB6dIAIyHW1Iz87nc0Y2DmZG2BgacD/yE7pamrSv6sbhu1+N+w7cfk6xVEaTCqVISM0iMiENSyN92lYty+4rgjsztkN9Dt94QUZuAeUdrajgYMWhawJVT+vdhN3nH5KWnU85R0ta1SzH6kMCgIzuWp9nbz7z5M1n9HS08BndliU7rpCRnU9ZJ0sGd6qD/+qzyGRy2jQsT/Vy9izYKMZMg7vVwVBXm1Xbr4nfYWBjtDU0WLZJnPAj+zfEzsqEgMWiw9K1fTXat6jIDK+D5BcUU72qI96zOuEz/yjvIxIxMdZjaWg/HjyMUvksjBzelHZtK6tSwa2tjVmyZCDv3sYTNP84cplwKHaf2Z4t6746FE+f25E2HaqyJOgkVy68VIGbP6ulZvp1o3XHairOjUKhoONfgJs7l18TPGsfMqmcZh2qMiekN+oa6pzac5e1QQLc9BrZhFGzOiCRSHh04x3zJ+wQHJ2WFfBSmoAVFhQzf9x2nt4SMtJ5m0ZSo5FY2Wak5OA1cC3R7xIwtTQkdO9EVXtdLpezxusQZ3eL0d2k4D50Hva1M1NUUEzQqE08uvIKDS0NvDeP/kE18up+JH4DVpGXXUDZas4EHZyKsfn346CSYilLJm7l2pEHf2ngl52Wi1/fZby5H4mWjiae2yfSsHPNn277pdLiM/DtuYQPz2PQ0tFk9uZxNO1V77f7/LkK8gpZPn4TV/eL96J5v4ZM3zD2f0dSP6l9occoKSqhYv2yVG/xr0Uz3Dz6gFvHH/4tBdSXurTnFndOP0FDU53Zm8b+dlS5PfAYkc9jMTTVZ9a6UT/tEiZ/TmOJ0henx/jW1Gv3oyT8yNo/VFEMXhtHo/enEck638N8ePkZIzP9H3g39/94xYHV4h43LawfTt84ex/fdpMbp5+hrqGG56ohmFqKayYrPY/AiTuFT03z8vSfKK6TkmIpwe57SU/JwbmMNe6BPZFIJORmFzB/2m4K8oupVteVke5ibPzg5nt2rBL3z4menahY3YnCgmICZu4nOyufchXtmKrk9KwKO8Pbl3EYGOkwb7FICF+3/CJPH31ER1eTgLC+GBrpEjLvGJHvEzE20SNgQR9kMjm+XofIyy2iYiV7pk5vx8OHUWzaKBYxEya2ompVR+Z4HFDl+fn5dufKtTfs+yL/nt4BPT0tZngfRCZX0KZFRTq3r8qkufvIyi7ArYw10ye0xjPkOAn/SzL++6WtpoEGamSVFOFkYMLHLAFeShuZE5khohZ01TRILcjH0dCYuCyhnPoCbiRIqGhhxauUZHQ0NLDS0SM6MwtLPX2kUhmZhYWUNjUjLiObQqmMqjbWvEpIRiZXUMfRnsexQhbeuJQzt5WE4qZlXLgR8RXo3Hj/EbkcmpRx4V5kLMUyOXVLOfA+PoWsgiIq2FmRV1BMdGoGNsYGuFqYcVMp/+5eqyL7b4mOzOCmNTh696VQOpVzIiungDefUzA10KVrnQpsuyi4MyPb1uHU3VekZuVRxt6C2mXs2fOHUElM7dmEQ5efkZSRSylbM7o0qMTSfdcAGNqxDu8/JnP/ZQy62pr4jWnL8l3XSMnIw9XBnDE9G+C36gwlUhnN65alfhVngtcpiaoda2JtZsAypUfJiD4NMDHUY9E60UId0qsepZ0smLdQxCR0bF2Fbu2qM8NrP7l5RVSp5MC8uV3xCzzGm7cJGBnqsCS0H0+fxbBO2TYdOqQRnTpWY+aMvcTGpn1NBY9IJMhfgJs27aowfVYHtm28xqF9YkQ2bXYH2nWqztKQU/zxxc0zsCeNmrmxZtE5FbiZ4fs9ofgLuJnyZ3BjbcTCzQLc3L78ihCl5Lt5h6rM/gm46T2qKSNnigiBh9ffMn/CDmEd36YSnssHoamlQWF+Ef5jtvL87gd09LQI2DKKqvWEh0x6UhYeA9YoV4nGLNg/EYfS1oBona+YvY9LB++jpiZh2qIBtO331ZOjIK+QgKHreX77Pdq6mvhtH0/NZt8boz268orAYWspKiihSoOy+O+djP6fnGwL84sIHraOh3+8RF1DnVnrRtKi98/BR/KnNLy7Lyb2XTwGpvrMP+hOpQY/V7x8qejXn/HptpiUz2mYWBkRcGj63yaqfqm4iAQC+iwl+tUn1DXUGRs2iO5TOvzHq6R+VonRyZzdLB6cwwP7/0vvUVZqDqunC2Jxv1mdKV3N+a9/bkwK62aLRO6hPj0pXfXX+zy+8oojq8X9Zcbq4Vj8xBFZJpWxYNxmcjPzKVvdmZF+PX/YJvxuBNtDxbU4IbgvrpW+J6lf2H+X8/vuIpFImLt62Hfdn/joFBa5C8+WrsOb0LzbV6+mlw+i2BwqxjVjfbpSqXYp1e8U6r6H5PhM7JzNmb1kgAqYrQ85xeunMegb6uC7SvjgyGRyFnoeIi4mDStbEzwX9UddQ524mDTCPL+Sijv2riMk6vNPEPU+ERMzfXwX9UdbR5MTB+5z8ZTolHqF9MbOwYyLZ55zTLnAm+PXjVJlrNm38zbXLgvTVr/gXlhYGuHrdYhPselYWhriH9iLpMQsggIFYbhDx2r06FGblasu8ex5LLq6WgTN78Wnz2ksWiFUVYP7N6BubVcmzthNTm4hFd1smTGpDQGLT/MxNhVzM32CvbqzZts1nr/+jL6eFv4zu3B069Rffvbf1n80wNFT1yKruAgHfSOVoV8ZI3MiMr5ELWiTkJcrlFM5eUjlCiqaW6rATRVLa8KTk9BUU8NB35gP6emY6uiiKZGQkJ+Hk7Exabl55JWUUMHKksikdEpkcmra2/L8UwIyuYL6zg7cj4pFroBGrk7c+SC+buzqzL3IWKQyOQ1dnXgeE09BiZSaTnZ8SskkLbeAMlZmIFPwISkdC0M9KtlZc+XVBzTV1elTryp7vnjbNKzKqYevySsqpparPSXFMsJjEjHU1aZvw6psOidO5MEta3Lp0XsS03NwsTGjaaVSbDsnRjSTujfk+I1w4lKzcLA0pm/zaizaI1B6/zY1iEvI4NYzYQboO6Yda/bdVGVNTezbGL+VZ4TvTQ1XWtQpy/xV51AooEfbarg6mBOmBDODe9TFzsqYUKX9ff9utalS3g7vkOPIZHLaNq9I3661mO55gOwccUEEeHZlfuhJXr6Ow8BAm8Uh/Xj1Ko7Va4T8fGD/BnTvWpNZs/YRE5OKhYUhS5YMJOZjCoH+x1R+DTPndGTX1hsc2C3GbVNmtqdj15osCz3NpbMvBLgJ6Enj5uVZv+Q8pw49VPncfJGCf1FLdexZ62+DmxYdqzEruNffBjeN2lbGY7mQbRfkFeE3agsvH0Sha6BN4NbRqptlSkImnv3XEPcxBUs7Exbsn4SdMrJBJpWx2H03144/FmOnFUNo3v3rDTgvuwC/QWt4rSQjz98zicr1vwcNt888JXT0RqQlMuq0roz31nE/BBzmZeXj138Vr5TZQr47J1K79c9X/NGvP+PdfTGp8RlY2JsRfGzmX6qent94Q0Df5eRl5eNQzpbgE7OwcbH67T5/rgfnnxI6eBV5WfmY2ZjgvW8aVRr/3OH2fwt2Bx5BWiKjRqsq/1LEBcC6WbvITM7GuaI9Az27/+X2MpmcJeM2k59TSKUGZent/uuk8MyUbBZP2AJA55HNafALW4BdYSd5ff8DeoY6eG4a8wNPKz0pi9BxW4QpZ++6tB/U6LvXI19+Yq234A8NmdWRmk2/pqgX5hcROGYredmFVKjlwmifbqrX0pKyCJm8C7lMTotuNeky5Otxty4+x/O7kejoaeG3bhgGSlXh2QP3OXtAdD/nLOqHvdLdeNeaP3igDN30XTYQEzN98nILCXDfQ15OIRWrOzHBQ7xXh3be5rrSad1nYT+sbIx59ugj65W5VqOmtKZWvdK8fRXHCqXL8uCRTWjcvAL3bkewTdmVmTS9HVWrO7Npw1Ue3PuAlpYGAcG90dRSx2f6YfLyiqhc2YGpU9ty8tRTTpx6InIEPbqgq6vFDA+Rv9ekYTmGDWqEZ8ARYpWhx0G+Pdi2/w53H0WhpaVBiHcPrt55z5nLYtwVMLML+YX/O6L6W5VRVIC9uSXxygTxssYWvE9PRUOijqWOPnE52Vjp6pOVX0SRTEZ5MwteJwvPm6pW1rxISkJdIqG0sRnvUtMw0tbGUFOTT1nZ2BkakldYTFZhEWXNzfmclk2BVEpVW2veJqRQIpdT29GepzHxSOUK6rs48jgmDqlcTn0XR57GxFMklVHH2Z638cnkFBVT2d6a1Kw8ErNycTY3QV9TS0UiruPiwPnnQiHVv8FXcNOzXmUuPnsvyMDONuioa3AnIgY9bU0GN6vBxrOiU9G3SVVuhX/kc2oWDhbGtKtVjo0nxWtjO9fn4v13xCZlYGNmyJC2tVm0+woKBfRsXpWsrAKuPhJBmj6j27Hp8B0+J2dhZ2nM9MHN8Vt1RiUN79y0En4rzogMqxaVqVLOjmClUVi/zrUo42xJ4PKz4tgda1CvugseQceQSuW0aOTGkN71mO51gMysfMqVsSbItwehi8/w7EUsenpaLAruy4cPSSxfKS7avn3q0rdPHWbP2s/HqBTMzQ1YvGQAcXEZBPgdRSqV07xlBeZ6dmHvzlvs3SHGExPd29K5ey1WLjzLhdNidePhL+IXNq24pIpfUJn4XXyp8rnp0EOopbIz8n8Kbu5cfv2PwM2Da28InLhTgJt2VfBYNvAruBm5mZcPP6JnoEPQjjFUqCFWtclxGcztt5rE2DSsHEwJ2z8ZGychPZWWyFg0dSc3Tj1FXUONuauH0aTz14dATkYe3v1XEfE8FgNjXYL2TflBMnv1yAMWTRSky8ZdazJ3/egfHhBZaTl491pG5PNY9I10mX9g6i8JoW8ffsCn1xJy0vNwKm9H8PFZv7XcB7h28C6Lx2ykpFhKpQbl8D/kjpH531dKKRQKDi09zRbPvSgUCio1dMNnvzvmP0mM/t8S9eF5DH/sFny2EfP7/UvHuHPqMVcP3EVNTcLMDb8fM32pQ8vO8OLWW3T0tZm1Ycwvx1lyuZwlE7eSkZyNc3k7xgT1/el2jy6/5IDSm8V92VDsSn0PimVSGQvGi+O4lLdj8sKB33WqcjLzCR63leKiEuq0rEi/KW1UrykUCpbP2a8aCXuv+0pyFyKAXWSk5uDiZsvU4K+k+WunnqrcxmeG9cNZOc569SSadUrTvmHubanbTACpGxfCvyaE+/egbCV7kSflfYTYqBTMLQ3xVsYzPLj1nq2rxIJvwuwOVKnhTMLnL1wcBa06VKXXoAakJmfj73GQkmIZDZqWY/CoZkRHpRDqf0woS7vXpEuPWly6EM6BL1lUcztRuow1nh4H+Pw5HSsrI+b59yT85WdWrRHjudEjm1OjhjNTZu4hIzOf0q5WeM7uxNotV3n4JBodbU1C/Hpy/8lHDhwX0wQv9w5kZRewdof4GycNbw4SmB5w6Ddnyvf1Hw1wLHT0SM3PR66AMsbmvE9PRYIEBwMjYrIyMdPRpaBYSr60hDIm5rxPTUOChGpWNjxPEm7EFcwteZWUgp6mJhY6enzMyMBSXx+5VEF6fgGlTE1Jzcknt7iYClaWfEzJoEAqpZqdDa/jkiiWyanlaEd4XCKFUhm1HO14E5dEfnEJ1R1siU3NJCO/EDcbCwoKivmUnoWtiSFWBvo8iorDQFuLJm6lOP34DRIJDGxYnX03n4mTsVZ5br3+SGZeIeXtLTHX1+NaeBQ6mhoMb1mbjWfuCZl2g0o8j4wnJikDa1MDujeqzJqj4kE/vF1tbj2PIjIuFQtjfUZ3rk/YzsvI5Ao6N6qIQibnwl3hl+M9qg27Tj0kOj4dKzMDZg9vif/qs+TmF1G9vD192tXAZ+lp0YlpXIH6VV0IWC6cgru3q0bVCvbMWyTGUJ1bV6F5/XLMnX9EmPbVLcPowU2Y4bWftPQ8XF0sCZ3Xi0XLz/PoSTQ6OpqEBfYhPi6DxUuFwqpnj9oMHtiQObP3ExmZhImpHouXDCQ1JYd53ocpKZHRuKkbHt5dObj3LjuVN5dxU1rTvXcd1iw5z9kTT1BTkzDHrxvNWlVk25rLHFG6Ak/z7Ey7rjW4+ccrwnyOCMvxbjWY6tWZnKwCPMZ+w7lRgpt71958D25CeqOursbpvb8AN1ffEDjpR3CTn1uI38gtvHokwE3wzjGUr/4NuOm7msRPadg4mRN2YDJW9uKhXVIsZcHE7dw5/wINTXW81o+gwTe8g6y0XLz6rlRl7IQcnELpyt8TbC/sucVy910oFApa92vA9BVDf1CdpMZn4NVzKbHvEjC2MCT4yHTKVP25d8zjKy+ZP2AlhXlFVKhbmvmHZ3yXZfXnUigUHF52ls3eIpSxcfc6zNk6/h/FLhQXFrNs3EYu7xXKug4jWzJ51ch/rLb6Tyq5XM6qyZuRyxU07V3/H48BQYymVkzeCkDv6Z1wq+36l/u8vh/JjkBBuJ24eDB2rta/3Pbg8vM8/OOlKsvsZ+dEYmwqYeO3CAHA8GY07V77h222h5wg/G4EugY6eG8eg47e1+PI5XIWT9tFYkwa1o5mzF7xvTHh8S3XuX5SLB481w7H3EZwRhQKBesCjvH6cTT6hjr4rB2q6nh+eB3PcmXid7/xLWjcvgoAqUlZBE/bg7RERpP2VeirzI368DaeJb5fScUtO1cHYOfaK9y79hZNLQ38lg3E3NKQ2I8phHoJp+IOPWrRuXcd8nKL8Juxj+ysAspVsGOaV2eKiqTMm3uQ9NRcnF0tmevXnZzsAnznHiA/v5gq1Z2Y6N6OVy8/s1QZ2DtgUENatq7EqpUXefxY3IcDg3qTl19EQKDoZrduVYm+feoyL/g4H6KSMTXRI8S/F5euvOLoScH79J7dibyCYhYr1Y/D+zfE2dGciZ77kMsVdGpdhdrVnJjgLb7/u/XXrK7/wxUaGkqdOnUwNDTEysqK7t278+7du9/uc+3aNSQSyQ//3r59+49+dk5RCSVyOWWMzYlIF8ooVyMzYrIyMdLSBhnkFBfjamxKdEYGCgUqcANQ1dKGV0kpaKur42hoxMeMDEx1dNCRqJOUm4uDkRG5hcVkFhRS1sKchMwccouLqWRtRXRyOgUlUqra2RCZnEZecQlV7ayJSckgu7CYirZWpGTnkpyTRykLU9TkEqJSMrA01MfVzIxHUXHoamrQrkpZTj8WuVODG9Vg/63nyOQK2lYry7OoeFKy83C1NsPJzIRr4cK9eHSbumw+dx+5QkHHOuX5EJfG+7hUzI30GNCsBmuPCXAzoFUNnr7/zJuYJEwMdJnUozGLd18RKeF1y2Ggo82Ja0JZ5TWyDYcuPCUiNgUzYz28RrchaN15snMLqVjahqHd6uG3XMnBqVeWVg3KMn/lGWRyBR1bVKJBTVf8l5xGJlfQrnlFOrWshEeQ0temZimmjGrBbN+DwvzJ0YyFgb1Zue4S9x58QFtbg9CA3mSk5xIaJgBT1y41GDm8Cd5eh3j3LgEjI10WLx5IVkYevp6HhBlgw7J4+3Xn2KGHbN0g2q+jxregV796rF9xiZNf5OFeXWjZrgo7N1zjgLLDM2l2Bzr2rMWdq28I9Tqsil9w9+kq4hfGbSc6MlnpcyPAzYMb71RS8GYdqorOjboaZw/cV6mleo/8U+dGCW4at/8e3PiO2MyrRx/RN9QhZNfYn4IbW2cLFh6aogI3xUVC7XHn/As0tTXw3Tz6O3CTmZKDR+/lRL36jKmlEQuPuv8Abk5uucqyaTtVD4cZq4b9AG4SolOY1TGM2HcJWNiZsvjMnF+Cm5vHHuLXaymFeUXUalWZBafm/hbcyOVyNszZowI3PSa3w3vP5H8EbtLi05nZMoDLe2+hpq7GpOXDcV//44jif+v7Or/1Kq/viYf++MVD//H+CoWC1e47VKOpIb4/cl7+XDkZeSwYsU6Mc/o2oO3gX0c4PL/1lp3BwlJh4sKBlKr043izuLCE4BEbyMnIo1wNF8YF/9jhuX3mKYfXim7HjOVDcCjzPaDas/Q8Dy6/QktbE59No74Lnn1xN4LNweJaHuPTjSr1vuapndlzl/P7Bd/NY+Vg7JWZUZlpucyfuIOiwhJqN3NjiLtQexUXlRA0dbcqIXxGcG8kEgmZ6XkETNtDUUEJNRuWYeR0sf318990dOZ1w62KA9lZ+fi57yU/r4gqNZ2ZNLejiFzwPULsR9Hl8V/SHy1tDZYEnSTirUj+nq+MgAnwPkxifCa2dibMC+5Nelou83zE4rBR43KMGN2MkyeecPy4MGT19OqKtbUx3r6Hyc0tomIFO2bN6MC2Xbe4dScCTU11gvx6EhefwYp14j0ePawJri6W+IQeF536xm50bV8Nj+Bj5BcUU6OyI6P6N2Ru6DHy8oup4mb3y3Pgz/VvBzjXr19n0qRJ3Lt3j0uXLiGVSmnbti15eXl/ue+7d+9ISEhQ/Stb9td+CD+rIpkUVyMzFbgpZ2xOVKYgF+tINEkvFJlTcVk5yOQKqlhaq8BNDStbXiQmoaGmRhlT0d0x1NbGVFuXz1nZWBvoI5MqSM3Nx9nUhKz8QrIKCylraU5iZg7ZRcVUsLYkPjOLrMIiKlhbkpKVR1peAWUszcgvKCY+MwcHU2MMtbR5m5CCqZ4ule2suRMRg6a6Ol1qVODog1cADGxYjcN3wpHK5DSv5EpkfKrK26aygzWXnkWgriZhfPt6bDl/X8jEq5chOT2Hl9GJGOlpM7xNbVYfuyXGQ02r8OFTCi8+iJTw6X2bsmj3FYpKZDSp7oqDuTEHL4ox2OxhrTh17ZXK98ZvXDtCN1wkPSufss6WjO/XGN9lpykqltKgRim6tqzCvCWnkUrltGrkRpvGFfBbeFKc3A3L0btjDebMP0pBQQk1qzoxY0Ib5s47TEJiFva2JiwO7MuGzde4ceu96oIpKiwmKETIvNu3q8K4MS3w9TnCy5efMTDQIWxhfwryi/Gae5DCwhJq13XFN6AHZ44/YaMyFG7oqKb0G9yQLWsvqwh27h6dadupGns2X2evssMzfkY7uvaty70b71RhdC07VBXZUrkiODPqXSKm5sKh2N7ZnMd3IghUmvg1aVtZpZY6f+ghq/yPA9BzRBNGzvrKufkylmrcvgpzlwpwk5cjwM3rx9EYGOkSsmscbtUEePgzuAk7OBlLWxNACW7GbuX+pZdoaWsyb+sY6rb6yp/ISMlmbq/lRL+Jx8zamLCj7jiX//5GcmTNRdYqzfl6jG/N5EUDf1CmxL6LZ1bHMBJjUrEtZcnic3NxLPdzh9uz264RPHQN0hIZTXvWJeDQ9B+s8b+tkmIpC0eu55iSPDp2wUDGLxr8t2z9v1TEk49MbuDNu4cfMDQzIPScF90mtf9fMvFfVGZKNlu8hM/LMP++WNib/eNjXD1wlxtH7gtn7Y1/PZpSKBQsn7yVpNhUbF2tmLJ82C8/p/SkLBaM3iQ6BgMa0m5w459ut977ABHPYzAy08dn27gffoe4qGSWTBPE4J7jW9G48/f8nXsXw9mrHG1NDetHmW8WACnxGYRMFCGaLXvUpuuIpqrXwh98YL3SHXz47I7UVo6ZpCUyQqbuJjkuAztnc+YsGYC6upoAg/NP8O7FZwyNdfFbPQQdPS2kJTKCZ+4TJGQnczwX9kddXY2IN/EsVfpl9R7emFadqyOTygj2OETC53Ss7UzwWdgPTU0Ntq25zINbEWhpazBvUT/MLQ3Zs/Um1y8L41K/0D7Y2Jqwask5wp+J0f/8sH5oaWng532IzAwRw+Dh3ZVnz2JYpfTOGjW6GQ0alGF+0HExqrI0Yn5AL67fesduZe7fbPcOGBnp4htyXKWY6taxOh5BR8nOKaR8GRtmTmiDT9gJElOycbA1xc+9I35LTpGQnI29jQm+037Nv/pz/duXLOfPn//u+23btmFlZcXjx49p2rTpL/YSZWVlhYmJyV/+jKKiIoqKilTfZ2dnA+BkYMKHDCELdzMR/BttdXVMtXSJy8nBRt+A1Nx8imUyKllYEZ6cBEBNazuexicgASpZWPIiMQldTU3s9Ax5n5qKma4uOmqaxGZlYW9kREmJjJTcPFxMTcjJLyI9v4DSFmZk5heSmie+zisoJjE7FyczE9QUasSkp2NtZICtgQGPosUoqm4pBy6+EECld51K7L/zAoC+9atw8sEbCkukNCjnRGJ6Dh+TM7A2MaB+GUeO3FEa97Wvz/aLj0SCd0UXCoukPFYmgY/r1IDlh24gkyvoVL8CqRm5PHz7CV1tTWb2b86SPdeEm3FFJyo527BR6XszY1Bzrj2I4Pn7OAz0tPGf0IHFWy6TnJ6Ls50Z0wY3w2vJKfILiqlZyZEBnWvhEXqM4hIZTeqUoUe76swJUgZj1inN0N71me57UKijKtjjMbU9nv5Hif2cjrWlEYuD+7Jjz23+uCrY/AHe3VGTSPAJEDydli0qMmVSGwICjvHsWQx6elosCOsLCgWec/YLH4aazgQE9eKP8y9Ys1w8LAcOa8TgEU3Ytfk6B3eLi3Hq7I506FqDAztusXPDNQDGTGtDjwH1eXQnkqA5B5BKZTRvV5lZ/t0pzC/Ge7xIBRfBmSNwLGXJ03sfCJi6m5JiKQ1bVWTugr6oa6hz8egjVipvSt2GNGT07A5Kn5t333FuvoCbL5yb14+jMTDWJWTnOMpWEavU34KbwhKCxm7h4ZXXQkK+fSw1Gn81ZktPysKj93I+RSRhbmtC2BF37P9k0Ld/2Vm2Bx8HoP+Mjgzz7PbDwybq5Sc8eywlKzUH5/J2hBybgbnNz6/Po6vPs8FDgKWOI5ozefmw38qEC3ILCRy4kseXwlHXUGfmxjG0GtDol9v/rO6cfETokFUU5RfhXNGBgKOzsCv981DP/63va9Pc3eRk5FG6mgvdJv3cT+Z3lRiTwqpp2wEY5NWdcrX+ejR1etMVbp14JEap2yf+MsZDJpWxYPRGMpKycKlgz+TFg34KhC7tv8PZHTcEUXf96B84Xvm5hQSO2EBBbiGV6pVmhHf3717/FJnEQmXIZreRzWjV+2tyelFhMYFjt5KVlotrJXumLPhq5pccl0HwpJ3CCqJzdXqPba7ab0PwScIfRKGrr4XfuuEYGouw0uM7bnPpqEgC91w6EFtHASjXh50m/NFH9PS1mbdyMIbGuqSn5oiOTmEJdRqXZcRUwQdat+Q8zx5EoaunRcDSgZiY6nPx1DMO7RL37pl+3XCrZM+Ny6/ZqTQInDK7I1VrOHP0wH3OKZVV3vN74uRigb/vET5EJmNqps/8kD6kpuUQ4K8cQ7WuxIABDVi5+hKPlZSB4MBexMVnsHCZoAwM7Fuf+nVdmTB9t+julLdj+qQ2+C44QazS7C/YuzvLNl3m1fsEDA10WODVnXW7bxL+Lh4DPW0WzO3GwXOP/vLc+VL/9g7OnysrKwsAM7O/XiHUqFEDW1tbWrVqxdWrV3+5XWhoKMbGxqp/jo4Cdcdmi7RwN1ML3qWnoiFRw0bXiLicHCx09cgvLKFAKsXNzILXqckA1LS25Ul8vPj5NqKLo6mmRmljU96npmKorY25jh6xGVlY6eujJVEjITsHe2MjZFIFSdm5OJkaUyKTk5Cdg6OpMRI5fMrIwsbIEGNtLSKSUzHT06WsuRmPosUoqoWbKxdfRCCRQN96VTlwV4CbHrUrceHJe/KKiqnpak9+QTHv4lMwM9CjTeWyHLnzEoCxbeuz+/IT8gqLqV3WAR0Nde68ikZHU4NJXRuy6sgt0dWpWZaSEik3nwtF1NyBLVm5/wY5+UVUK2tHw8ouKnAzsU9jHr/+xAOlNHz+xA6s2HmNuOQs7K2MmTOqFb7Lz5CTV0TlcraM7tMA74UnKCySUre6C4N61MUz5LhwIK7uwthBTZgdcJis7ALKl7HBb1Zn/IKOK+MW9FkS0peDRx5y9sIL1NQk+M7tgoG+Nj5+ypZpo7LMmtGekJCTPHwQhY6OJiGhfdHR1mTurP3k5RZRuYoD80P6cPPaW5YvFHPkPgPqM3xMcw7susPurcq4iOnt6NyzFsf23WOrMsV3xMSW9B7ckGcPPxIwa5/g8LSqyJz5PSkqkuIzaSfvX8VhZKLHgk3DcS5txYuHH/GfIoIz6zUvj+ci4VB8+cQTlvuI+IUugxqoTPye3o5Q+dw0aFNJNZYqzBdqKVXn5h+Am8AxX8GN/45x34GbtMRM5vRcxqeIJCztTVl49Edws2fxaRW4GerZjeFe3X94gEQ8j2Fu18VkpeZQuqoTC0/P/im4USgU7A07oQI3faZ3ZOrK4b8FN1mpOcztEMrjS+Fo62kRcHj6PwI3CoWCI8vPENB7CUX5RdRuW43lN+b/28FNanw6V/ff5sL2qzy9Es7niASKCor+esf/4Xp27RWXdglgMHXNqB9Gkn9VMqmMBcPWkp9dQIV6ZRgwp+tf7vPhRQwbPETHaFRgX8rV/HVi/M6QE7y49Q5dA228d0z4QckH8CH8E6tmiZypwXO6ULvl9+ovhULB0mk7iXmXgJm1MZ4bRn3nZ5OXU0Dg6M3CcbheaUb7dv9u3xVzDxDx4hNGpvr4bhiJjnJkWlhQTOCE7WSl5eFa0Q73sK/A5+z+e5zec1fpVDwA57JiFPbwxjs2Kzkuo+d0pEZDwXU6ue8ep78oqRb0wbm0FcVFJcyfvo/UpGwcS1ngsaAv6upqnDr0gFMHldsG9qJUWWtePY9lpVKaPmBkE5q3rcz7twksCvwaw9Chaw0e3I1kg7KrPXZSa+o2KMOWTde4c+s9mlrqBAT2QldXC2/vQ+TmFlKxoj0zZ3Xk2InHnDgpFFOeczujq6eNz/yj3ymmfIOO8zk+AxsrI4J8urN++3UePYtBV0eTUO8enP4jnD9uvkVdXY3A2V25evc9F268Rl1NQuCsrpy8+oqDZ5/85fnzpf7tHZxvS6FQMGPGDBo3bkzlyr82j7K1tWXjxo3UqlWLoqIidu3aRatWrbh27dpPuz6enp7MmDFD9X12djaOjo4oFFDB1JK3aSmoAc6GpnzISMdEWweFVMm/MTElKj0dhQKqW9vwJD4BCRJq29rxOC4edYmEypZWPItPRFdTE0dDY94kpWCiq4Oxjg6RKWlYGeijq6bBh/R0bIwM0FJXJzIlHRtDA4w0tXmdkIy5vh4OxoY8jhHuw9UcbLn2RnBmOlRx49hDMYrqX78ah++GiziB6uW5+SqK7IIiKjlaoymR8DRWyL+71anI9j+U3jat63D05gvhSuxig7WxAWcfvEVDXY2p3Ruz9tgdikqkNKrsgr6WBqfuvEZDXY05A1ux7shtMnIKKO9sRYd65Vm4Q+lV07UeHz6lcuPxB7Q01fGf0IH1+28RoyQY+4xvz7wVZ8jMLsCtlBVThjTHQzlDrV7RgbEDGjNr/hFy84uoVtGBaaNaMGveYUEgdrYg0LMb8xec4l1kkjDtC+7HmXPPOa6UHHrM7IS1lRGz5+6nqEhK3TqueM3twuJFZ7lzWznrDeqNqYke06fuJie7gPIV7AgO68fDex9YFCTyprr2rM2YSa04fvABW9eJv230pFb06FuXs0cfs16ZtzJodFP6j2jCq2ex+LnvobhISv2mbngG96akRMa8qbt58/wTBka6hG4YTqmyNrx6GoPfpJ3KlVU5vJcMQFNTg2tnnrFUSfrr1L8eE7xF3tPTOxH4j9smjt2qIp5KKXhhQTH+Y7by8kGUSi31BdykJGQKtdSvwM3ozTy69gZtHU0Cdoyj2jcpymmJmczttZy4D8lY2Zux4Kg7ts4W3107uxeeYrcyVmG4T4+fZvS8fRSFT+/l5Gbl41arFMFHpmOgXIn++fre5n+IA0uEBHWYb08GzOn62/FQ8qc0vLos5NO7eAzNDAg6NvMfkVtlUhlr3LdzeoNQc3Qe25pJK0b844f0f0dlpmTx9PJLnl97xfNrL/n8PuGn25lYGlG/S22mrBn9txRG/yeruLCYlZM2A9BlfBsq1PtnNACA3SHHeXM/Ej0jXTx2TPzL9z4vu4DgoWsoKZZSv1MNevymY3T/wgsOLBNgYPrK4TiW/RG05mTkETh8HcWFJdRpXZkBM38ccexfcZ7bZ56hoamOz5Yx34FzuVzOEvc9fIpMwsLWBK/1I74DP0c2XOXqMWG34LVuuEqtqFAoWOF5iMiXwj3cb8NwFfB5+fAjawOOAzB0ejvqK8fFsR+SWTBTEGnb965D96ECyD+5E8l6ZTzDSPe21G9eAYVCwTL/47x9Ie47/isGo2+ow5P7H1i7SHRNRkxqRcPm5UmMzyRg9gGxEGxenqHjWpCanM282QcoKpJSp0EZxkxuzceoZIKVatD2navTs19dzp99/lUxNacTZd1smTt3P3GfM7C2NiZgfi+ePI1h7TplpMKo5lSv7szkGbvJyiqgXBlrPGd3ZPm6SzwLF4GZof69uHr7HSfOP0ciAZ8ZnYiNT1dF8swc15qM7Hw2K003p49pzaekDA6cefzLc+Fn9X8VwJk8eTIvXrzg1q1bv93Ozc0NN7evq9AGDRrw6dMnFi9e/FOAo62tjbb2j6i+nIk5b9NSkABllWng+ppa6Eo0SCzMw8nImPjsbEoUcqpaWfMsPhEJEurY2fPoszDpq2ljy6PP8Wiqq+NmZsHz+EQMtLRwMDTiVWIypro6WOjq8SYxBTM9Xcx09XidmIyZni52hoY8/ZSAkY425a0suPMhFl1NDRqWcubiSzGK6lGjIofuCyfivvWqcPT+S6RyOa0ql+bphziRO2VjjoW+HjfefERXS5P+jaqx+YKQMQ9qVoPzD96SlpNPOXsL3OwsOXIrHDWJBPceTdh46h55hcXULGePvbkxh64+Q00iYc7Almw7dZ/kjFxK2ZnTt2V1QraIh0T/tjVIz8zj4h2BtP0ndGD3yQdExAiCccDkTgStPU9Kei6lHMyZPbo1nguOk5VTQIUyNkwd0YI5QUdV38+Z2Ja5AUdISsnGyd6MBT49WLD0LC/fCF+bJcF9uXHrHfsPi79pxpR2lC5lyYxZe8nPL6Z6dSfm+XZnzZo/uHr1DRoaagQE9MTW1oTpU3eTkZ6Ha2krQhb24+XzWEK+JHt3rsak6e04d/Ip65S5LINHNaXv4Ib8cfY5K5W5KX2GNGTI2Oa8exWHz9TdFBWWUKt+abwX9EEulzN/+j7CH0WjZ6BN8LqhlC5vy7uXn/GdsIPCgmJq1C+N73KRCn7r4ksWzT0kfn6fOkz0FQ/4F/c/EDBOxC/UbVEBr5WD0dTSoKiwhPljt/H87gd0DbQJ2jFGxblJTczEQykFt3Ey/9fBjYMZC49Ox9rpa8teoVCwO+wUexaL92CUX0/6TG3/wzX06l4Evn1XkJ9TSMV6ZQg8OO2nowSFQsH6OXs4vk6cQ2NDB9Bryo/H+7biIhPx6LiA5E9pWDqYE3JqNk7l7X+7z7dVkFtIYP9lPLrwHIlEwpiwwfRy7/g/zrf5/D6eg4tO8seu65QUS1X/L5FIKFOzFIam+qR8SiPlUxqF+UVkpmRzfusVstNy8D86+9/KD9ofdoLP7xMwszVlRODfC8L8tsJvvWV/mOgQTFs1Ahtny99ur1AoWDZpC3GRSVg6mDFz7ehf/v2JMSksGi/AV9cxLWn6p/gQUOZAjd9MYkwqNs4WzPmJo/GDS+HsUoZoTlrQnwp/UnbtX3mRuxcEMd9n0yhMLY1Urz28+lqVED7evwfVGn4FgIfWX+XayaeoqavhvXoI1kreUlJcBkGTxciqaadq9BsvIkhyMvMJmLiT/NwiKtdyUd0bPn1MIXjWPhGt0LUGvUcIovWBLTe4evYF6hpq+Czuj72zOZ9jUgmee1B493SsSt/hjcnLLWLejH1kZeRTupwNc+b3oKioBL85B0hLzcG5lAVe83uQnV2A72yhmKpaw4mpszoQ/uITy5cIsDR4aCNatq7E4sVnea7k5gSH9CEzK4+gEKW5X/uq9OpZGw+/w8TEpmFhYUBIQC+On37G2YvhqKlJmOfRlaTUHFZvEVOX8cObYWqizzS/A4DwPivlZMHUecrvu9bGxsqI2QvEOH9krwY8PP7rc+jb+r8G4EyZMoWTJ09y48YNHBx+b+71s6pfvz67d+/+R/u8T09DXVeH8qaWvE1NRUddAzMtXT5nZ2Ojb0B6QQGFSv7Nq8Rk0bmxs+fh5zgkQH17B+7HfkZdIqGatQ2PP8WjraFOWXNznsUlYKClhYuxCc/iEjHU1sLJ1IRnnwWgKWdhzv2Pn9HV1KSWox3X3n1EU12d1uXLcPqZUIP1rlWZg/cEuOlRuxJnnrylWCqjkZszUfHpJGTm4GRhgouVGX88j0BTXZ1hzWqySQluejeswu3wjyRm5OBsZUrdck7suSzae1O6N2LH+Udk5RVSycWGqqVs2aE09ZvVvzn7Lz4lLiULe0tjRnaqQ+CmiyIcs2llJEg4qVRP+Yxpy9GLz3kZkYChvg5B0zqzcOMl4pOysLM2xmdiO3wXnyItM4/SThbMndgWj+BjpGWITo3f9E54hxwnLjETW2tjFs3rxfK1f/DkeSy6uposDuzLk6fRbN0lQO+kcS2pVtmR6TP3kJMj2qNBAb3YvOka584+FzNjn26ULm3N9Km7SEnOxsnJnLAlA4h8l0CAMiSuRZtKuM/pxJUL4axQroz6DGrAkFFNuX7pFUsCTogOT986jJrSmqiIJLwm7yI/r4iqtVzwW9wfiZqEoBn7eXI3Eh1dLQJXD8GtsgMf3sbjPXabUC7ULsW8lYPR0tbk3pXXYnUmk9OmRy1VKvjrJ9HMG7tNdHqalcd71RA0tTQoLpISNGE7T29HoKuvTdC2rz436UlZePRfQ3x0KjaOQgr+HaF43FYVuJm/czxVv7nx/h1ws3PBSfYpOy2j/XvTe/L3qeEA4bff49tvBYV5RVRrUh7/vZPR/UnSr1wuZ+XU7ZzbLub8k5cNpcuYVr+9NqPCY/HqspCMpCwcytoQenouVk4Wv93n28pIzsK3axjvH0ehraeNx87JNOr24wPw/2S9f/yB/WHHuXXkPgqFkLa6VnWmRsvKVG1eiapNK2Jg8lWBo1AoyMnIJfzGGwL7LuXOiYckRCX920Zp7x5+YN+C4wBMXDoM/Z905X5XWak5LBi2FrlcQZshTWjet8Ff7nNs7UVuHnuIuoY63jsnYWT+c0VdYX4R8wevJTdTdA1HB/b56XY7Qo7z6PIr4cS9Y8J3iieAz5FJhE3cJhx/hzb5wczv9rnn7FosOkSTgvvgVv2re/KnyCQWTBaKwvYDGtB56Fdi870/XrF9sQAGE/y6UVVpklmQV8T88dvJSs+jdEU7pof2QSKRCPLw9L3Ex6ZhbW+K90rhUp6TlY//lF0q076p88R4+NYfr9iu9LWZOLcT1eu5qhRTuTmFVKjqiLtPV6GY8jlC9IdkzMwNlIopTQK9DhH5TkQuzFd65XjN3E9SYhZ2DqbMC+5NUlIW83yOIJXKadaiAkNHNOXAgfucPycoAj6+3TE21mXilJ2qhea0KW1Zue4yj5/GoKOtSah/b16/TWDjl2t/bEssLAyY5LFX5UrftH5ZxnnsFTzMumXo2rYqE7z3qXiabZtWZKL/AaG4bV6J9k3/vgnnvx3gKBQKpkyZwrFjx7h27RqlSv161vq7evr0Kba2P1dr/KokQCUzK16lpKChpoadviEfMzIx19WlSColt7iYcmbmRKSmIVdATVtbHinBTQMHR+7FfAKgjr1IBtdQU6O6rS0PYj6jraFORStLHsYIDk1FGyvuR39GV1OD6nY23IyIQUtdnSalnbn0OhI1iYTOVdw4/liEYvatU4UjDwR/plN1N66ER5JfVEKtUvakZeUTnZKBjYkh1Z1tOfXoDepqEka1qsOWiw+QKxR0ql2e8A8JxCqDNNvWKMvmcwL4TOzSkMNXX5CalUdpO3OaVi3F+uOiNTi1dxNO33rNx/g0rEwNmNSzEYGbLyKVyWldtxw2ZoZsPiralXNHtuLK3Xc8fhWLno4modO7sHL7NaLj0rE0MyBwWifmrzhLYko2jnam+Ll3wnfhSZJScnCwNSV4bjfmLxKW3BZmBiwJ6MPG7Te4+1C4WC7w70XkhyTWbhJIf+TQJjSuX5ZpM4RZVJky1oQG9WbP7jscPy7CLufM6USVKo7MnLqbBKW8ceHSgcTFpjHP4xAlxTIaNXVjjk9Xbl9/y+Ivo6petRk9qRX3b74nzFfZou1WgwkzOxD7MQXPCTvIzS6gQlVH5i8fiKamOqFzD3Jf6SIasHIQlWo4Ex2RhOeYbeImU82JgNVD0NHV4tHNdwQrQ/Kad67GtMCeqKmp8T78E76jtlKYX0yNhmXxWSOypUqKRSr4o+vv0NbVJGDLSCrWcgFEtpTHgDXERaVgZW/Kgv0TVVJwaYmMBRO38+Dyq78GN/ZmhB1x/y24GRvYh54TvpqYfalvwU3NFhXx2z3pp9wHmUzOsklbuLT7FmpqEqavHfVbqS/Am/uR+HRfRG5mPq5VnQg5OedvpUx/qYSPyXh1CiEuIhFjC0MCT8z9lzxb/tWKehHDprm7eHThuer/6nepRb853ancqPwv95NIJBiZGdKoe12cKzkQ9TyG6Fef/i0ApyC3kAXDViGTymjauz5N/mGul0KhYMm4jaTGZ+BQzpZJS/9aVv7yzns2e4tV+7jQAVT4xWemUChYPnUHUS8/YWJpiM+OCT8d5d04/oiDykiA6SuG4fony4O87AIChq8X7sj1SjM+6HuQ9PF1HIuViqouw5vSrv9XgJablU/AaKWzch1XJgZ+Nez7+CaeMPc9YgQ9qAGdlU7FMpmchTP3EfU2AVMLA+atFyMrhULBuuBTPL/3AV09LeatHYqJmYFSMbVfFcPgt3wQWloaRLyJZ5G38MDpOqA+nfrWFdvOPUhcbBpWNsbMWyyAzPql53lwWyim/Jf0x8rGmC1rL3P7+js0NdXxX9AXG1sTQgOO8/rlZwwMdQhaKBZvPh4HVaP9OZ6duXP7PZuV9+JJk1pTrZoTM2bvJTk5GwcHMwL8enLi9FNOnX0m0sA9uiCVyQlaLKw7enSpSdNG5Rg/a7dKITt2SBOm+B4QmVOlrZkxthXuAYfIzC6gnKs1k4Y3Y0rAIZVIpXf76gz32vmX59KX+rcDnEmTJrF3715OnDiBoaEhiYlChm1sbIyurmh1e3p6EhcXx86d4g9bvnw5Li4uVKpUieLiYnbv3s2RI0c4cuTIP/rZFcxEjpQECaWNzHifJtyINSRqJBXm4WJsSlxGNiUyOdWsbXimVE41cHDkbowIyWzs7MztKJEGXs/RgTsfY9FQU6O2vT13omLRVFentpMDNyOj0VRXp6GLM1fefkBdTUKbCmU4+0J4/nSvXpFjjwTPpmetSpx49BqZXEHrymV4EPFJ8GwcrJFJ5byLS8HMQJemFVw4dCcciQTGtK7LjsuPBFG4ahk+J2USEZ+KuaEevRpVYe1JAWBGta/LhftviU/LxsHSmC4NKrLikDJpu0t9bj6J4k208L2ZMaA5QZsuUlQspVG1UlQqZcPKfWLbaYOa8eTVJ249iUJLU4PgaV3YtP827z4mY2KkS8jMrixYe5FP8RnYWBoRPKsrgcvP8ik+A2tLQ8K8uxO28jxvIxMxNtJlSUAf9hy8x5Ubb9HQUCPIpzvJyTksXSU4MAP61qN9m8pMn7GH1NQcnJ0tWLSgHydPPGH/fmVulHt76jcowyz3PcTGpmFpZcSipQNJT8vFe/YBCgtLqFO/NF4BPXjyIIpQPzGqate5OhNntOfpg48EeSpl3+2rMNWzMwlx6XhM2ElWZj5lK9gRrOzGLPY5wq0/XqOpqc685YOoVteVz9GpeI7ZSnZmPuUq2xO0bhh6+to8vRvJ/Mm7heS7XWVmhfZBXV2NqDfxeI/YTH5uIZXrlMJv3TC0tDWRSWWEue/h/uXX4sa0aSRV6go/jcy0XDz6i2ypL/EL1o4CoMikMsIm7+DuhXA0tTWYt23sd+AmPSnre3Bz1B2bn3BuvoCbcUF96TG+9Q/XTfjt9/j0XU5RfjE1W1Zi3u5JP/WhEfb6m7i8/w5q6mrM3TyO5n3q/7Ddt/XkyksC+i6nMK+IivXLEnhs5nddjr+qD89j8O4cSnpiJtbOFoSe9cKh3N/3zfivVEZyFjt893Nuy2XkcgVq6mq0GNCIfnO6U6ryz32AflUulRyJeh5DzKvPNOz6P9t5AtgwexdxEYlY2Jsxdc2vx0S/qsPLznL/7DM0tTXx2jXpp529bys9KZPgoWuQSWU071Ofrj85777U0bWXuHbkgejybJuA5U8k61GvPrNk6nYAek9uS/Oedb97XS6Xs2jydj5HCuWg9+bvfZAyU3PwH7lJLDyauDHO/2tquUwqY8HkncRFiQgUnw1fnYoz03LxH7uNwvxiqjUozXi/7qr9ti8+x73Lr4UJ37rhqo7ryd13OHvgviqGoVQ5GzHSDTvNs/sf0NHVwn/VEEzMDUhLySFgqlBM1WpYhnGz2qNQKFiz8AzPHn5EV0+L+csHYWpuwNmjjzm2T9hdzPbvjlsley6eec4BpYpquldnKlVzZNfWG1y99EqVMWVrb4Ln7P18/pSOpZUR84N7ExOTRmioCDru1q0mXbvVYn7Qcd4qs/9Cg/rwLDyWtZsEj3HC6Ba4uloxYfouioqk1K/jyqghjXH3OUBKWi7Ojub4zepMwJLTxMalY2VuSNCcrgStOkeMcoE8f0Zn/FacISktBydbU2aOaol76BHyCkt+ey59W/92gLNu3ToAmjdv/t3/b9u2jeHDhwOQkJBAbGys6rXi4mJmzZpFXFwcurq6VKpUiTNnztCx49/XxwO8SUlGTVeXimZWvE4RbsTGWtp8ys7GzsCQjLwC8qVSKlla8iYpGYUC6tjbq8BNE2dnbkWJ36tpKRdufIgWoMfFmesRH1GTSGhS2pkr76JQk0hoVdaVC6+EEqpz5fKcfCYM+nrUqMgJZeemc7XynH/6TiR+u7nw9lMyqTn5lLE2x0hbm3vvYzHU0aZTzQrsvi7GTaNa1WXvtWcUFktpUN6JvPwiwqMF2XhIq5qsPCbGOwNa1OBueDRRCelYmRgwqHVNFu8ViHxgm5q8jEzgWUQcBrraeAxtRdi2P8gvLKZmBQea1ChN2FalMVPPBsTGpXPxtpLtPrUj+04/5sW7eAz1tQmb3Y2VW6/wISYFcxN9Qud2Z9G6S0RGp2Bmoscin16s3nKN569EeNpi/96cPv9cNaP1m9OF4mIpC5acES7HXWrSt0cdZszaS0JiFnZ2Jixa0I/Ll1+xdavSm2ZCK1q3qsScmftUUsZFSwdQWFCC5wxhdFW1hhPzQnrzOvwz8z3FqKp5m0q4e3TiTfgn/GftFx2e5uWZNa87acnZeE7YSXpqDi6lrQhZPQQ9A21WBp5Uzb69F/enVsMyJMZl4DF6KxlpuZQub0vw+hHoG+rw8nE0AZN2CsJkywrMVYbhxUYm4TV8E7lZBZSv7kTAxhHo6Gkhk8lZPGs/t8+Ho6Glju/64VRXgpSczDy8Bq4lNiIRcxtjFuyfrCIFy2RyFk3bxa0zz9DQUsdv82hqNPnKU8tIycaj9+/BzZ5Fp9mzSBkAGNjnvwZupDIWjtnItUP3UNdQx3PbBJr8hCPxbd0/94zA/isoKZZSs1Vl5h2Yhs4/SPJ+ceM1fj0WkZ9dgGsVJ4JPe2Bu98/9Wv5pFReVcHzlWfYEHyE/uwCApn0aMDp0ELa/cd39XTlXFN2GmNef/tt+z79bd04+4uzmy0gkEmZvm/hb48WfVfitd2z1OwjAxCWDfxuKCSAtkRIydC3piZk4V7Bn+uqRvwRUT6+/YYufsOofF9yPKt/wyr5Udnou84euFedo8wqM+Imh4M6wU9y/KBYCvlvHfserKS4StgrJn9OxL2WJ57rvSembgk7w+PpbtHU08ds8GhMLQ+V+UoIn7iA5LgNbZ3O8Vg9VkZEvHn7IYaUUe8aCPpSvLgDvwxvv2LhASR6e2Z76LSsCcGLvXZViam5YX1zdbEQS+LQ9pCZn4+RqidfCfqhrqHN0zx3OHn2MRCLBI7g3pcpa8/RBFKuVKtFh41vQtHUlXjyNYbmSVzhweGNat6/KlUsvVQ7uU2d1oHpNF5YuOsfTJzHo6moRvKAvUpkcH+9DYoFY15VJk9uwZdt1btx8J/iO/j3JySskKEwAoK6dqtO+bRWmzN4rOu2uVvjM7kTwsrNERCVjYqzHAp8erN91gycvP6Gro8kC7x5sP3yPx+Gx4nuP7qzadZ23H5IwNtQhcEZn/NecIzk9FycbU/6uUPzfDnC+zKZ/V9u3b//u+zlz5jBnzpz/hp8uoaqFNeFJyWiqqWGjb0BURgYWunoUF8vILiqirJk5H9MyKJHLqWlry+NPYkTVyNmJm1ExSJDQ3LUU1yNFAnjLMq5ceRcFQGu30lx8EwlAhwplORv+HoBuVStw4qkAN12rVeDM03fIFQraVirDzTcfKSiRUsfVgYT0bOIysnEwM8bJzISrLz+go6lB34ZV2XpZ8GWGNqvJsTsvySkoolopW3TVNbj2KgpdLU3GdqjPyqM3BUhoWJn3Mcm8iU3GxECXsZ3rEbbnCnKFgm5NKpOcmsO9lzHoaGngM6INy3ZfJSu3kAqlrOnapDKBG0QnpX/7mhQWFHP88gvRhpzQnvPX3vDwhZCKL5jdjc37bn/1MfDswdod13n5Lh4DfW0W+fRi+7473HsUhbaWBmF+vbh9L5LDJwQ7fq57B/T1tPGcd1iMidpUZuTQxsyas5+Y2DQsLQ1ZHNafhw+jWKOUMg4b1piuXWvgPfcgb17HYWioQ9jiAeLm4L6H7KwCyle0IzCsH1ERSfjN3k9xsZT6jcsyx68bUe8T8Zm2V0Ue9gjuRVZmHh4Td5KUkIm9kzkL1g3D0FiXDYvOce7II9TUJMwN6U395uVJTcrCc/RWUpOycHK1JHjDCAyNdXn/8jN+47ZTVFBC7Sbl8FRKvuNjUvEctpGs9DzKVLIncMso9Ax0BFfF6zDXlDbv3quHqgzB8rIL8B68no9v4jG1NFIGZ34FN8tm7OH6iSdoaKrjvWEktVtUVJ3lWWm5ePVZyaeIJCzsTFjwE3Czd8kZdoUJB9bR/r1/OZb6O+BGWiJlwcj133ApJtKo6492+N/WnVOPCR60Snj/dK2Nx86J/0hBdPf0Y4L6L6ekqIQqTSoQcHTWP+r8/Kv18tYbFo9aR1yEUESVreXKhKXDqdLkvxbWWZhXCIC65v+s2istIYOlYzcA0Mu9IzVa/FrN+rNKT8wkZMgqYXbXvyEdRrb4y302eR8g/PY79Ax18N0z5Zdmj4kxKYSO3KAy8+sy5sdjS0ukhIzaqCIVe24a+4MFwZUjDziwQtzP3JcMwq2Gi+o1hULBaq+DvHoQhZ6hDvO2jcXQ5Cv36Ozu25xQLqpmLhtEmcoOX/fzOazKhfPfNBIjJd/nxf0PrPITURMDJrWieRdhHhj9PpHQGUIx1bZnbXqNFKPb+zfeslEJTka6t6VBiwoiHsLnCO9fxWForIv/SqGYunPtLRuXCYHEGPe21G/qRkxUCoFzD6o60QNGNuFTTCoBcw8ilcpp2rICQ8c05+XzWBYrM656D6hPx6412LfnDufOKP1v/LphbWPMtGm7SEvLxcXFAh+fbpy/EM4+Zdd81owOWFsbM9FddGrq1CrFxLEt8Qo4SnRsGhbmBoT692Lr3jvceSiCOUO9e/DHrbecu/IKdTUJ82d14c7jKE5fFgtc/+mdOXfzDTcfCYVuyMyurD9wm/fRyZga6RIyvQtH10z6y/MK/i8AOP/OqqwEN2oSCaVNzXibmoqRtjZaEg0SCnJwMjYmKTuHAqmUylZWhCckoVBAfUdH7kTFIkFCM1cXFbhpVdaVK28FuGlXviwX3kQA0KmSm2oU1aVKeU4/FyTiDpXLcSk8ghKZjKblXHj2MZ7sgiIqO1hTUFjMh6R0LA31qeZoy9knQtY9pGkNtl4W+LVvgypcevKe9Jx83OwtcTA15tzDt2hqqDOxc0PWnriNVC6nTc1ypGXm8kRp6je1Z2MW7lVGLtQph0QOlx9FoKGuhs+INqw5cJOUjDxK2ZsztFNt/NacEwTjZpUxM9Rl3X7REZozqg2Pnsdw7UEEmhrqhMzswsGTj1UoPMyzB7sO3+PRc+FzsNi3F8fOPuXq7XdoaqgT7N2dt+8S2LFXtEynTWiNo50pM72EnLFp43JMGd8aL59DIkvKRI9FYf159zaBpUpmf+8+dRkwsAH+vkd59lSsOkIX9cfAQJvpE3aQnpaLaxkrgpcMICEuA+8Z+ygsKKFG7VL4BPXmc3QanlN2C0JwDWf8FvWjML8Yj4k7iYtNw9rWhAXrhmFqbsD21X9wXJlDNT2gB03bVSEzLRfPMdtI+JyOraMZoZtGYmKmT/T7RHxGb6Ugr4gqdUrhs3IwWloaJMdn4Dl0I+nJObi42RC8bTQGRrooFArWzjvGxUMPBHhaPoj6rYV0tCCvCL9hG4XPhpk+ofsm4qD0qlEoFKz2OMDlIw9RU1fDY+1w6repojrHczLy8Oq3kui3SofiIz9KwfcvO8vOUKF0GeXX86eE4pd3voKbWq0qMW/3ZLR0fgQg0hIpocPXqQzafHZPpkGnmr+9Dm8df0jIEDGeaNa7HnO2jkdD8+/fmq7uv03Y8DXIZXIadK2N956paOn8/eiGf6WKCorY5rOfo8vPoFAoMLMxYWTIQNoMbfaPnJV/VS9viXvE/2SquVwuZ/GodWSn5VC6mgvD/6FqSiaVETJkNemJWThXtGfa6hF/Odq6tPcWx5X5Q7M3jv2l63VBbiEBg9aQnZ5L2RouTF065KfHXu99kGc3RSin/+5JP5CK3z75yPIZQozSd0pbWvb+nlt0fPM1Lh0QcQqea4fj+E1Mw9Nb71mjzH8aOqsjTTpVV712aP1VLikXPp6rBuOk3C8+Jo2gybtEllSHqgxWmvBlpuUyb8IO1f1h8jxhnBn1LoEFsw+I0XnPWirF1LYVl74ZiQ/EztGMiDfxLPAWdhMde9Wm56AGZKTl4jt9L3m5RVSq7sR0n65kZebjO3M/OTmFlK9kz2zfbsTHZeDncUjIxpu6MXpCS65eec2WjdcAmDilDbXruuLjfYiPUSmYmekTEtKXt+8SWKbkNQ0d0oiGDcsxZeZu0jNEPuA8z66sXPcHj7942/j34vqd9xw5LaYNPjM68jkxk817hfx72phWZOcVsmmfeKa4j2pJXHKWyuvGZ2J7Lt9/z52nSiqEexc2H73385PpJ/UfDXBeJSWjpqtDRQsrXiYnoauhgbmWHtGZmdgYGJBfVExOcTFu5uZ8TElHKpNT086Ox7FxgIRGLk7c/BANQPPSpVTgpo1bGS4qwU37CmW58FJ0btpVFF/L5Apalnfl9rtoCkuk1CnlwMekdFKUoygddXUex8ZjrKdDswqlOHJXOBGPaF6b7VcfCRJxrfI8fP+ZxMxcnK1Mqe5sy6GbL1CTSJjSpREbz9yjsERKo0ouqCHhVng02prqzOzbjGUHrgteTZVS2JgYsvv8Y5EnNaw1O04+IE6ZBD6pT2N815wRvJ665SjvbMXibcLrYPLApsR8TufMtVeoSST4T+3IxetvuPkwEi1NdULndufkhefcvK/83rM7V2+948wl5RhqVmdSUnJYoyStjR7ahGqVHJg2Z69ohdZ0Yc70DswPOk74y8/o62uzMLQfCXEZhCgjGTp2rMaYMc1ZEHyS+3cj0dLSIGhBH6ytjZgxcSfJSdk4OJqxYNlAMtPz8HDfQ25OIZWqOuK/sC8pydl4Tt5FTlYBbpXsmb9sALISGV6TdxHzIRlzS0MWrBuGlY0x+7dcV+W8TPLqTJuuNcjJKsBr3DY+fUzB0saYBZtHYm5lRFx0Kl6jtorjVnXEf90wtHU0SU/JwWvYJpLjM7EvZUHI9jEYmeqjUCjYHHqaM0rTr5mLB9CkYzVAOKQGjNrM68cfhcHfngk4lxOkU4VCwYZ5Rzm/TyQzz1k1lEYdqqnO77zsArz7ryLq5WdMLAxZcHjaD6nJh1dfVJn4Dffp8VMp+Ov7kfj0XfFN5+bX4CZk2Dpun3yEprYmfnunULddtR+2+7ZuHLlP6LC1ImuoXwNmbx73jzxqzm25wvIJm0Tw56AmzNw8/v+4x82b+xEsGrGGT2+FVUS74S0Yv3TYf1vHqLiwmLf3xf2j8n+xE/RP6sTq8zy+9EIEVe6c/I89eLb5HST8lrITs++vx4tvH31gxZTtAAyc242GXWr9dDu5XM6SSdv4+OozJpaG+O2c+NPz79TWa5zeKnIK564fhUuF7y0FUuLSmT98AyVFUuq3q8owz+8NBx9cfsXmwOMAjPHr8V0X9POHJELGbxPnaY9a9P8mPfzWuRdsUxrzjffrruq65mYX4D92GzmZ+ZSt4sCMsL6oqakJc77Ju1RxCz4rhGIqLSUbv0m7KMgvpno9V6b4CNBz7sgjDm0XAGB6QA8q13QhOSETP6V7ca0GZZg8p6MIy5y5n6T4TOydzPBfJNLe/eceJD4uA2tbEwIW9qOwsATvWfvIyS7ArYIdHvO68+Z1HAuVcveeferQrUctli07z8OHH9HR0SQouA/5BcUEzD+uCtAcNKABnvOO8DE6FXMzAxYE9ubE2Wec+UI1mNuFpJRsVm9R8nKGN8PYSI8ZyjTw/t1q4+Jozoz5ImR0QNfaWJgb4rlYLLYmDGxCSlYeRy4K0vK8SR04ePEZVx9F/PKc+nP9RwMcgOpWtjxLSkBTTQ1HAxMi0tIw09VFXSEhKb8AFxMTkrLzBBfH2oo3CclI5QrqOjrwIPozCgU0KuXErchoAFqUdeXKuw8ogJblXLny5gMyuYLm5Upx6300JTI5jUo7ER6TSE5hMZUdrMnMLeBzejb2pkbYGhly6100etqadKlRnj03ngEwokVtdt94glQmp2Xl0nyMTyM6OQMbU0NaVinNjouiqzOpS0N2XHxEbkERNcrYY21syLGb4airqTG7fwvWHr1FbkER1cvaU8XFhg3HRUdi5sDmHLvygg+f07A01Wf20BbMW3OOwiIp9au60LiGK4HrRNdkWPd6FBdJVaZLnhPa8uzlJ+E4qa7G/JlduP3gAxeuCQfK+bO78vJNPAdPiN9x7pT2IFeweKVoE/frWYfmjcsxdfY+cnOLqFzRnnne3Vi85BwPH4kLLDS4D/l5Rfj7i0iGFi0qMM29HSuWXuDaFeF94x/UC1dXK2ZN2cXnT+lY2xgTtmIQxUVSPKbtISsjnzJuNgQt6U9udiGek3aSnpZLqbLWBK0YhJqaBK+pu4l4E4+xiR4L1g3DztGMk/vusX2lGIeNmt6OLv3qUZBfhO/Er5lToZtGYm1nSnJ8Jl4jt5CRmkMpNxsCN45AT1+b7Iw8vIdvIi46FWsHU0J3jMVUObvfs+IiR5Xz+WkhvWnZXXQ8SoqlBI3bxvM7EcIDZ88ESlf62hLfFnqKE1uV4XpLBtKs69dOSUFeIb4DVxPxPBYjMwNCD037wQTt5OYrbPYXN5chHl1/auL37nEUPn0E6bdG8wrM2z3pl+BmwYj1AtxoaTBv/1TqtKn6w3bf1tUDd1k4ar3w7BjYiJkbfxwn/K6OLD/DhtlC5dJ5bGsmrxr539I9+VXJpDJ2+h9k/wJBTjezNWX6hnHU7/zzB/O/Ws+vv6akWIqptTH2Zf5nFFTvH31gs5dwlx67cAjOFf+ZVcfNow84pDTcm7Hh152YL5WWmEngwFWUFJVQv1MNhvwpFuHb2rPwFLdOPhbk3F2TsHT4kVf15Ppr1nmKANYRvj1o0KH6d68X5hURMHwDGcnZuFSwY/aa4d+dKx/fxLNg4nYxFh/QgG6jmqley8nMw3/kZqGirOWCe1h/Vffo3fNYFs8U71vXYY3pojTmKymWEjxlF5+ikjG3NmbeumHo6Gohl8tZ5n2EN89iMTDSIWD9MIxM9SnML8Z/8i5Sk7JwLGWJ9xIxzn5yN5JVyjHS4AktaNmpGnm5hfi57xX3rjLWeC/og0RNjYV+R3inHGEFLhsoTEfnHeV1uFBHBS/tj76+NnPd9xD/OQNrG2MCF/YlLTUHP+/DlBTLaNi4HOMmtOLAgfucOS2AhZd3VywsDJk0dSd5+UVUreLIzOntWbH2Dx49iUZHW5OQgF6Ev45j43Yxvps8tiUmpvpM89oveDntq9GgjisTvfYjlcpp3qAcHVpWZqLPPhHA3KAcLRq6MXn+QUFkbl0Ve1tjfFYIztDkgc14+SGBqw+FHcrfrf/rohr+J6u6tQ3PkhJQk0gob2ZJRFoaBlpamGjpEJ+Tg62BAQWFJSIk09ycuLRsCqUyqtna8Co+EalcTh1Hex5/jEMmV9DI1Yk7H2KQKcTX9z98okQmp0EpR57HJJBfXEINJztiUzJJzc2ntJUZanIJkYlpWBjqUdnemlvvhNqqb72qKnAzuEl1jtwNp7BYSv1yTmTlFvLmcwqm+rr0qFtJBW7GdKjH4RsvSM/Jp7yjFVWdbTh2U6isZvVrxtbT90nLzqecoyUta5RRgZtJvRtz8/EHXn1IxEhfB68RbQjeeImc/CKqlLWjW/PKBG+4IEI4W1fD3EiPTQeVY6XhLUhMyuLIuadIJOA9pQPvPyRx+IxwHPaa2oHEpCy27BErkMmjWmBuos/8haeQyxV0aluFXl1rMsvrIBkZeZQuZUmIfy/Wr7/CjZtCyjjfvydamhr4+BwW3Jn6ZfDw7MK2zddV82Iv325UqeqIz5wDRClJxmErBqGpqc7cqUpinosFocsHUVIiw3PyLpISsrB3MiN01WB09TQJmnuQV89i0TfQIWTNUJxKWfLHqWesVZIAB45tTp/hjSkuKiFg6h7evviEobEuIRtH4OBiQUZqDl4jN5OckIlDKUuCN4/E0FiXvJxCfEZtIfp9IubWRoRsH6tSUBzZfI09K4X53Xi/brTrJ1rmMqmMsCm7eHT1Ddq6Wszf/jVUE2DfigscUiYeTw7tS5s+X1vtRQXFBAxdz5tHHzEw0SPk4BRcKnyvJDq38yZrPcQDof+Mjgya1fmH6yPiWTRePZeRn1NI1cZuzPtFardMKiNs1AZuHn8oHkL7/ia4GSlSotsObfqPwI1CoWB30BEVuOkzswtTVv9o4PbfWRlJmcxpM5+9IcJCoNWgJmwKX/LfDm4Ajq0Q51uTXvX/R0z+MlOyCei7lJKiEhp0rU2X8T/yr35XUeGxLB67EYBe0zr8JZm8uKiEwEGrSI3PwMnNjjmbxv3ys7tx7CF7wsQDfsqyIVSs96N0/HNkEiEjNwreT5969JnyvfOxXC5n0ZTtfAj/hLG5Af47JqD3jaorPTkb/+EbKMgromqDMkwM7qN630uKpQSO3UrcxxSsHEzx3ThKBfCT4zIIUPpX1W5WnrHeXQDl2HjeMZ7diURHT4uAjSMwV9oc7Fr5B9fOPEddQw2v5YNwKGUpzAg9DhLxOh5jUz0C1gzB0FiX6IgkgmbtF39Xp2oMGtdCFaD5MTIJM3MD5i8fiL6BDltWXeL21TdihLWoH/ZO5mzfcJXrf4hFp29IbxycLFgUcpKXLz6hb6BN8OL+qKmp4TXnANlZBZRzs8XTpyu3br5j00bRWZ8wsTU1a7rg5XtIJQef79+TQ8cecfqc8B3z9ehCYWEJoUuU0Tfda9Ggbmk8Ao9S9P+x95dhVa7d+wZ60o00kgJ2Ynd3J2BgdxcG3SHY3YGt2N3dYrcgIiXdXXN/uKcTXbpca73/3zr2Po61x5fX+TJhiuuZ8xn3GNd1XsWltGhszeihrVjkf4yc3ELq1TRl+tj2LA46Rm5eEfVqmjJhaGsWhpwQB+qGVnRrVwuf9eeRSGBI94YoKiuw/5w4UC8c1/m319f39Z+e4DxPTEReTRVbo8o8T0hERUEBCy1t3qeIwEwlFIjNy8KyUiWRBl5URC0jQ76kZZBfUkoDk8p8+JpCUVkZTSxMeRmXSFFZGU0tzXgblywaGgsTolMyyCwopFZlQ3LzConLENMaQw0NHkbGoq2mQrvqVpwIf4u8nByj2jYi9Lr4jzmkZT0uPf8oYhaqVEZZTp6Hn2LQUFFmVKfGrD8ldpkjOzfm2tMIEtNzsDTSoVODqmw6JQ2NHNyOI9df8DUtG0tjHew7NiQoVNxUx/RuxoeoJB69iUFNRQmvyT1YGnqNtKw8qlsaMn5Ac5xXnKasrJzubWpRr7opfuvEJGe8XSvkJbDzsHid+RO7kpWZz85D4vHciV2QlEtYvUWstcYOa02d6iY4uQmxW8e2NZkwph3zFx8kKTkbczNdQgIc2H/wPucuCJiUm0t/jA21mTt3L3l5RdjaWuLpNZAjhx9x6IDYxc5b0JtWbWrgufiQ7LSyZOUIKlVSZ8GM3STEiWlO0GpHFBXlWTRtN7HRqRgaa7Nk/WiRHeV2hMd3I1BRUcJvtSPVaplw//o7WULvgBEtGTW9M2WlZQQtPMTzh4JZ4b9xDNY1KpOTVYDbxB3EfxGgrsAdE9A10KIwvxivyTuIeBWHtq4GgbsmYVpF2LrP7b/PtkBxQhnj1IsBY8W+vby8nFWLDnL3/AsUlRXw2jaBes0r6KpHNl2Vwccmew2iz6gKwFhJcSmBk7bx4u5H1DRV8T8wk6p/4H9cPfyANU5ChzBkejfGuAz46b3x6VUMLoNWkJddQN2W1fE5MOvXnBupW+rWsUdCc7Pvr9dSN488FM1NuYSe4zoyZ924v92cSCQSdnkekgHoxvoOZbjzz9lY/5f15t4H/ByWk5aQgZqmKk7bptHBofW/8lofn3zi8QXRtNvN7/evvMb3VVZaRqDjalJi0zCrXplFO6b/o3/LrNQcvO1XUphXRMNOdZngP/S3z5dIJKyfv5t3DyPR1FHH+9CvydcgGuzlM3YCMGRmd7qP+Dl/LCczDy/HdeRm5VOrqQ1zV47+6e+/0/8E9869QFFZEc9dU37gPhUVFOM7fivJ8RmY2RjhvmWCzPL9LWPq1QNBEffZORldQzF1zc8txHvSDjJScrCqaYLzmpGy1ejhzde5dOSx0OOscqRqHXG4uHg0nIObReMw22cQjVqJZm3bsvPcv/5OTD7XjMTUQp+0lBw8Z+0hP7eI+k2smOs9EID1Ied4cj9SMK5WO2JkosOZo+EckQYEz/ccQP1GVTh/6hkHd0tjDlz60qipNTs2X+eGtOHxCrTDxFSXhU77iY8X05yAJfZ8+pRM0LdV1eCmDBzYBHfPo0RECA1kUIA9Dx5HsU06qZk1tSvm5nrMcNpHSWkZ7VvXwNGhJbNcDpKZlU91GyNcZvfCOeg4X5OzMTfRwcupD+5LT4nHlXVwndmTRcEnyMjKp7qVIVOGt2V24BEB+mtSlab1LXGVTnKm2LUmv7D4t9fY9/WfnuAANKtsxvOERBTk5Kilb8D7lFS0lJUxUFUjNisLY01NKIeU3Hys9XTJyM0nq7CImoYGJGRkk1NUTN3KRnxJyySnqJh6JsbEp2WRWVBITWMDsnILSczOpYqeDspy8kQmp2OgqU4tIwMeRsaiqqRI7wY1OREubOJj2jVm781nlEsk9G5Uk8cfY0nJzqdqZX3MdSpx+200yooKTO7enE1n7guAUut6PI+Il9m/7do2kDU3k/q04Gr4R6Kk4L6JfVsSsueq+L6O9cnOKeDaYyEw9prckw2H7vA1JRtzYx3mOLbHc+05iktKad3Ihi4tahK4UayV7Ho2wsxQm9U7pPlNw9ugpqLEmh1STc2INhjpa7FktWiGhvRrTPuW1VnsfYTCohKaN7Fm/oxuuHkdkyG9lwUO5eKlVxwOE0BCp3k9qVXThEWLDpKZmU/16pXx87fj8sXXbJN+UEyZ3oXuPeuzxPcE4Q9FwGbAsmGYmOni7nSAqIgkdPU0WLJmJNraanjNP0jk+69U0lUnaN0oDI21WbfkDLcuv0FRUQHPZcOo29CS5w+jCFx0WIZHn7Kwlwjk8zwm+zDyXjuKmvUthAh4yk4+f0hE10CLwB0TMKxcSZCIZ+7mTXg0GlqqBOycKBMfXjvxlHUewlnhMLUzw2YIsq9EImGT93GuHBGiYdcNY3+we5/ZfZvt/mJHPXpRHwZ95yQpKytn2cxdPLryWsAB90z7wSECcOtkOMtnCnJrvwkdmehj99MNIfpdPC4DV5CbmU+tZjb4HZ7zS45JWVk5y6duk1nB3fbMpOUfVgN/rDsnHrNkrKDbdh/d/h83N9td98uam6nLRjPCZdC/1txIJBJOrDuPU0cv0hIysKxtxrpHS/615gZglxRX32lE2//ZYv5PaqfHQZ5ff4OqhgpeYU7/iFZcWlKK/4g1JH1JxcTGCLe9M/9S/3Rq8xUuhN4SN/9d0/90BZeWmImP43qKCopp1rUe473tfvn6QRO3EP9JBMV6hk77aX16fu8djkgnnfNXjaJOs6qyr5WXl7Ni/j4+PP+Clo46Prsm/yBKPrDmkky877ZxLFY1xdqtrLSM4Dn7+Pz+K7oGWvhsG4+Glnh/3Dr3gl3LhQh3qscAmncSGqpn9yJZ6y0OS8OndqL7YOEqPLnvPsf3imn4wgA76jSsQkF+EV6z9pL8NQszS308VgxHWVmRsN13OXs0XGYHr17blEd3I1j/nR28c8/6hD/8xOoQMQV0HNeO7n1sOXfqGQe+NTyL+2DbyIrgoNO8eRWHhqYKgcEO5OYV4e4uhMet21RnytTOrFl7iYePPqGiokiArx3JKdmESFeRQ4c0p0O7mizyPEJObiF1apmyaG4PPJacEmwbAy0C3QaxdPNl3kUmUklLjSCXQazYelVq/1YjYNEAAjdeJOZrBsYGWrjP6IXbqtNk5xZSp2plRvRtitcGYXIZ0Kk+8oryrNp387fX2Pf1n25wmlQ2JTxeJIM3lCaDqygoYFVJh4jUdHRUVdFWVCE2MxsTLU3KyyQk5+ZhqVuJvIIi0vLysdHXJSu/kNS8fKoa6JFfUCRraBSQ43NaBsbamlTW0uJVXBLaqiq0tLbg2tsoFOXlsW9WT5YM7timIYfvvaSkrIwOdayJSkwnNi0LUz1tGlmZcuHpBxTk5ZjRuzWbzz0QdOFG1fmamsWbL0lU0lBlfPdmrDkqErGHdW7Ii4h43nxOpJKmKnPt2rMk9Kr4vmY10FZT5eS3yIWJ3dl75jFRUg2Oy4SueK09J8Iwa5oxtGcjPFedpaysnB7tatO0niVLNohmx6FvE6paGLBknXhjO/RrQoNaZniHnKKsXEKPTnUZ3LsRCz3CyM0ton4dM9wX9cUn6BTvP35FW1uN5YFDCQ//zLbt4uKdNqUzrVpWZ/GigyQnZ2NhoceS4KE8eviJ1StE0zRiZGvsHJqzeuk5bn3T4QTZU72mCX4uR2TTnKDVjhibVMLfJYxXz76IN/TakVhYGbB97WXOHXsinEv+Q2jauhofXsXhPWcfJcWltO5cm3lSh8OmJWe5evq5+MBbPgzb5jYUF5fiO3MP71/EollJjcDt4zG11BdcmgUHeHL7IypqSvhuG0+1ukL0+ODKG5YvPCiajNFtGLuwQvsSuvQcp3fdFmLjFSNo1b3CEXXt2GPWuwqB3tCZ3Rg+u2IUX15ezmqnfdw6JaziHjumUL/Vj8GIDy++JHjKNjE5GdmWaUHDfmoOEqKScBm0QuZWCQibi7rWz82NRCJhzZxdXD14T2YFb933926pe6efEDhKuJ26OrZl7oa/v1aSSCRsXbyXw8vE6XLGqrEMnvPPuFf/pIoLiwkZu471s3cI+NzQ1qx7GPSPsrD+ad0/Hc7j8yK7aLSXw7/2Ot/q1pEHsn/PBdumYVXX4i++48fauGAvL2+/R11LFe+weX/Jy3l8+SWbFouE8PF+DjTtWv+XzyvML8J7xDrpCssE520/ry8lEgnrFx3g6Y13qKgr47VnBnp/oF0/u/We9dI17MgFfeg0+MfV2e6Qs9w6/Uy8X7ZNxMymQoB/7Xg4e6ROzRn+djTpUFv2upt8T/Lo+juUVRTx2jpORhF/+zSaZQtFgzpwbFv6jRSNcPTHRPzn7JVRzEdJnVT3r739LkCzB+171hcT4kWHiXwn1lV+G8SE+cbFV2z/tsp26knrjrWIeP+VABeRa9etb0OGj2/Hp4+J+LkeobxMQpee9Rk9qQOPH3xitXTiO3JcO3r0sWXb5uvc/Jbb5zcE7UrquDgfJie7kFq1THBzG8DhI484fVbocNxd+6OqpoS7r9BAdmxXk9GOrXH2PkpiUhZmpjoEeAxixcYrvHwr+GbBnoPZd+wRdx4Jo0mA8wCOnHvKvSeCVB/kPJAdRx/w8kMCmuoqBDj1I2jrJeKTszAzqsT8sZ1xWXOaomKhA7WtacaGw7/Pqfxj/acbnKcJgl3Rwsycp9+SwY2MeZ2YLEsGj0xLR1dNjUoqqsRkZGKsqYEKCsRn5WBaSQt5OTnisrIxq6SNqrwCn9MyMdLSwEBdnXdfU9BRV6WOsSGPomJRUVSge93qnH0uLOPDW9my/67AuQ9pXo/zTz6QX1RCUxtzcvKL+JCQgp6mOt0bVOfoXZFJNa1nK3ZefCT0OLUsoUzCw/exqKkoMbN/a1YduSUyO1rWJjUjl8fSry0a0ZmQPdcoKCqhZd0q1LE0Zs8ZafbU6M5cuPNOaHA0VfGe2puATRdJz8qnehVDpg5ti/uKM2KS09iGvh3q4r3yDGXlEnp2rEPbplXxXi593Kku3drVxjXgOMUlZbRpXo1JI9uyyOMI6VKNjZ/HIJauPM/T58LWHeJnT1RUisx+6Di8Fb172eLifIiYmDSMjLQJWTqciI+JBAeIaIW+/RsxbmIHtm+6zvnTYqTv4j2Ihk2sCPE5QfjDT6ioKuG/fDhWNkYs8z7JozsRqKgo4rtyBNVqmnBo123CQqV2Rbd+tO9Wl+jIJNxn7JaFZDoHO6CgqMCe9Vc5deABcnJyLPAfQsuOtcVJzukgzx98QlVdGb/NY7GSUkjXehzlzoVXKCop4LlhDHUaWwHw8kEkgTP3iJv8kKZM9RwgazIOb7jCoXXiQ2yGvx2dB1WwYx5cfsXyefsA6DemHWMWV2hmJBIJmz2OcPngfWEV3zyBJt85QABe3PlAwITNlJWW02lIc2YtH/lTc5ESl47zwBVkJGVhVceMwKNzf3mil0gkbHbez4VdN5GXl8N5x9S/5Nw8OPeMAEeB/u80tBXzN0/6R5qbTU67ObJS3AxmrR3PgBm/D+r8f6mcjFyce/pzZc8t5BXkmbp8DK7756Km+etVyv9F5WXns1aa2m03r++/Hs8Q/SaWZRMFZNVufl/a2/2eMP3HOr3lCme2CBjg4p3TsPoLUfLn17EEjhbNbTfHttjN/lnQDtI4g8nbiHgWjbaeJt4HZv3yGjyy9iLn94iDgPPmiVRr8CMp+suHrwRM3Cq93psx4g8J4uf33ZO912aHDKN+ywptz+uHn1i5UAiHh0zpRG/Hiond0W03ObP3noAgrhgh08XFR6fgM3WXAHp2qcNEZ/H+TEvOxnPqLhGg2dSaeQFiYvrhdRxLFh9GIpHQa0hT7Me3E5ENIed4dPujaJ5WO2JqocerZ19YJl2VDxzekoHDW5KYkInn3P0CedHchjmufUlJzsbd6SAF+cXYNq7CPJe+fIpIws/9KOVlErr1rM/oCe05eTycw984Nov7UquOGe5uYXz9momJiQ7+AfbcvfdRdticMb0rNWuasNgjjLw8YQJZNL83fiFn+BAhSPQhPnYcPPGYq7el8FfnATx4+pnjF6SxDfP68PJ9PCcuifRwr7l9uPEogusPPqKoIE+AUz92HnvAO+k9yGtGb7w2nicju4AaVYyw696QgO0CJ2DX5fcr8O/rP93gALQ0t+BRbBwAzUzNeSpNBq9rYMTrxGTUlZSoUqkSH5JT0VFTxVhDk8jUdPTU1TBQ1yAyRfy5sqYmb7+mUElNlZpGBjyNSUBNWYk2NlW48f4zCvJyDG5SV5Yv5di6IYfvv6RcIqGnbQ3uvYsmI6+A2mZGqCkr8uxzApqqyji0qk/oVaHHmditGWG3Xgg9jlVlTHS0ufo8EkUFeeYPbs+ao3cpKimjXX1rVBQUuPpE8GlcR3ZlzcFbZOUVUr+qCZ2bVGfdYTHlmWrXhufv4nj46guqKor4Te/NitBrfE3JxsxYh4Xju+C+4rSY5NQ2Y9yQFrguPUlxcSltmlbFrldjXJeckAWlOQ5qzmLfo+TlF2Nb1xynad1Y7HWUhMRMzEx0CPG1Y8v2G9y5F4GSkgKB3oPJyS4gSErB7Ne3ESMdW+PhcYSPHxPR0VEnJGQYqcnZ+HiI4LeOnWsza24PwvY/4JB0vDtnYW/adazFumXnuXn1LYqK8ngtsad2PTM2Lj/P9YuvhNgu2IF6DS05dyycHdKwuolzutNzYBMS4zJwnRpKTlYBteqb47lSjIaP7b7LfulKbLprXzr3bSh0Mh7HuHfljdidrx9NLVtLYfkOPsvFMLGDd145gsZtBW3148tYvCfvpKS4lFbd6zE3yF7WZJzbe5edUsroeJd+9BlVoTd4cfejzKLaZUgzpn6XewOCynpqu7DHOq0eRZveDX+4xj88jcbbcR3FhSW07GmL07qxPzUXmSnZOA9aTnJsGmZVjQk6Ph8t3V+fyPcEHOf4evFhM2/DBNr/AYP/x3py5RX+w9dQWiI4Nwu3TflHzc2GeaEcXytO03M2TKTf1J85Pf9XlRybyrx2Hry69Q51bTWCLrgzZF7ff13su91lPylxaZhWNWaU9787vcnJyMXHfrlwxnWux4SA4f/o+1/cesdGqYZrnI89Lf+Cc5SelImn/Texei3mrP1zPs52rzDunX0m3lP7ZvyENQCxZt3uK9a7UwIcfnJMZabk4D1qg9CPtajK3BUjf3i98OtvWecqSMsj5vb8QaAfF5WM76TtlBaX0aaXLeNdKnRQt8+9YHuQeI9Ocu1H215CSJ+ZlovHhB1kZwg7+OIVI1BQkKcgrwivqaGkfM3C3NoQz7WChZUYn4H3zD1CnNymOjPdRWr40d13ZfTiRYF21LG1JOZzCt7zDwheTafaTJ7Xg5zsAjzm7pM5QD2CHSgqLMFt/gFZOrjXEgcy0nNxW3CQgoJiGjW1Yp5zX+7djWC9dBI0fmIHOnWpQ0DASd6//4qWtipBSxz4EpNKiHTiY2/XnB7d6uPseYTklBwszPXw9xrM+q3XuP9IgPsCvQbz4OlnDh4XB2aX2T1Jz8pn0x5xj5k1rhPFpWVs3icezx7XmaS0HA6eEfc1t+k9uPbwoyz2x39OX1btu0FcUiaVDbSZPaI9nhvPyXAlTer+/diT/3SD08TEhAcxAoXexsKShzEigqG5mRlPpI1OfWNjXiQkoqakRA19fV4lJKGpokx1QwNeJiSioaxMHWMj0dAoKdLSypw7EV9QUpCnV50anHshpjVDmzWQraLsmtfjVPhbWRxDRFyK4NkY6mJtqMudd0JnM65TU1ky+LB2tlx5GkFKVh5VTfRpZGPGiXuCjzN/SHs2n7ov7N/VTKlqqs8JqXvK2bEz2049IDkjFxszfYZ2acTSUCH6Hd6zManpuVx+8AFFBXl8pvVm+9H7RMWmYqCjgfeMXvisOS+b5Mwb2xmXJSfIyy+mYR1zpo5ox+KAY6KZqWPOzLEdWeRzVIjFrI3wXtgPr8CTREWnoKerwTJ/B8KOhXP+GyfBpT8qSop4SceenTrWZsa0LgQGnOLF8xjU1ZUJWuJAaWkZbs6HKSwsoWlzGxa79ufyhZds3SB+j4nTO9O7fyNCt9zg7Anh3lrsNZCmLaqyb9tNTh1+jJwcLPQZSLM21bl99S1rpR9UQ8e2xX50GzLScnGdtov0lByqVDXCb/0o1NRVuHzyKVukjIsxs7rSb1hLsS4JPseVE0+RV5DHZcVwGrYUu/1Dm65z7Bv63N+ONj3EGD72UzIe47dRkFuEbatqOK92lOkVbp56yjo3YdceOrMb9tMqkrY/PP+Cz/itlBSV0qpHA+YtH/HD5OXoxiscXCUmXzOWDP0JXPblQwIew1ZTkFeEbduauG6b/BNELyczD9fBK4mPTMLIXI+g4/PRNfp1uGXY6nPsWyI0QNOXjfzL4MxXd97j47CKkuJS2gxoyqIdf59TI5FI2LxwDyfXX0BOTo55mybTZ9KfZxT9v1bUyy/MbuXKl7dx6JvqsvKWH427/HqN8n9Zr++847RU2zZ385Rfirn/r6qstIyAEauJj0jEyNIAl72z/xE3KCEqCf8Ra8TazqEVDr9w331fhflFeDmsIjk2DfPqlfHYP+uHzKfv6/S26xxbL26+ThvGU7dl9Z+e8/bxJ5ZO3wHAgMmdGTj5x1T6ooJifMdtIjEmDRMrQzx2TPmB5xP1Nr7isGDXnJFOFZOkzLRcvMZuISczn5oNLVmwylH2XnsT/pml88VUZ8DYtgyUUocLC4rxmbqLrzFpGJvrVkSulJYROG8/n94lUElPA59NY9DSUScnKx/P6aFkpOViU7MyrsuHo6CowK1Lr9m2QlwDE+f3oG3XugLaN2efsKfXN2eR32DKysrxXXiImM+pGBhp4bdyBMoqivi6hPElKgU9A00CVoxAIpHg5nRQNEFVjfAKsONTZBKBUo5N774NGebYig3rr3Dvrjhs+vnZUVpWjofXMQFabVeT8WPb4xVwgshPyejqqBPsZ8/p8y84c0GQ7D0X9SM1I5e124QWc/Lo9ujraxEklSsM7d+EqlaGBEqNKUP7NcFAX5PVoeLAOHVEW76mZsvI+J4zenL40nPZNsFzSg98tl4gr6AY2xpmtLK1YvH607+95r6v/3SD8y08s7WFBfeiRaZUBytr7n0WjU5LC3MexcShJC9PM3MzHn+JR1lBgSbmpjyMjkVJQYFWVhbcjfyCorw83WpX59KbSOTkYFDDuhx/IsIzhzVvwJGHr5FIoLdtTa6/+kRuYTGNrEzJyi0kKjkDI20NWlQz5/yzD8jLyTGlWwu2XHhIuURC32a1efkpgZjkTEz0tOnRuAZ7rojud9bAthy48oy07HyqmRnQrp41oedFJz3foSNHr70kJjGDyvpaTB3YmoBtF8UKq00dNFWVOXpFjAzdJ3Xn1NWXvPoo8qQC5vYjePNlEpKzMDPWwX1mT9yXniQ9M59qVoYsnNKNxUHHSc8UzYz7nF64Bh4nMTkLMxMdgjwGEbL6Aq/fxaOpqcIyf3tu3fnAoaOiYVs4txcWZnq4ukszTppas3hhH9asucSdOx+FPdzPDm0tNZwXCgpn7TpmePkO5tH9SFZKrdv2w1sy1LE1xw89ZL8UhjVrQW86dK3LycOP2LNFqulZ0ItOPerz9OEngt1EDESvQU0YN7OrsHFPCyUhJh1jUx0CNo5Bq5I696+/Y6V0NDx4dBuGTeoIwKEtNzghFezNDxhCqy5iHXR2/31CV4g39iSXvvSwFzv/5PgMXEdvJjs9j+r1zfHcPFb2oRt+4x1L5+5FIpHQd3RbxiysGKV/+fgVj5EbKcgromHbGjivH/PDzeji/rts8xEn2bGu/ekzpv0P13fil1Rch6wiOz2Pmo2t8NrzM8OmMK8IT4c1RL2ORddIm6ATThhZ6POrOrv9uizteayXHQP+wk78ITwKz8HLKSoopnlPW1x2z/hHhOJdXoc5tlo0l3M3TaLXhL9vD/2n9fz6a+a19yAtIYMqdcxZcy8Am7/IUPq/qLzsfIJHrwWg5/jONOr87zVU36ZhT6+8QkVdBZ+jC9D5LoPpryo7LQf3AcvITsulRmNr5m/6fQhnWVk5IRM28/HJZ7T1NPE9Mv9PdToPL75ko1SfM9Z9EB2H/DwVTIhKxmfkekqKSmnRowGT/X6cdJWVlRM8fafAI1RSw3fvdCrpV7xeSkIGnqM2iWa/TQ3mhFRo0AoLivEev5WE6FSMLfTw2j4JVSkSIS4qGZ/vJq+T3MTE5Vs6+PvnMWhWUsNvm3BOSiQS1vmcJPz2R1RUlfDZOAZTS30ZXiImKgUDI2181o1GXUOFl+GfWeoqDjj9h7Vg8KjWFOQX4Tl3H4nxGZiY6+G9cgTKKkos9znJy6dfUNdQxm+VI/qGWqwIPM3zJ9HC1blsGDq6Gni7hvElOhV9Ay0Clg0jIzMft8WHRJxCcxvmzOvJoUMPOXFC3EecXfpRuXIlnF0PizVUXXOcF/VhxdqLMtZNkK8dL9/EsW23dBIztSuVdNTw/5YZ2KshLZta4xZ8QhxYW9egR8e6uISckLFv2jarhs/ac8Lk0t0WfV0NNh8Wn6VzR3ci/G0st5+KiAaf6b1Yvvc6yem5WJnoMaxnYwJDr/z1hfpd/acbnHKJ0N/cjxZTnA5WVtyUkok7V7XhTtQX5ICONtbcjoxGXk6OTtWtuSn9c4+a1bj67hMAAxrU4rQ0PNOucX2OPharqIGN6nD6yTshHK5lzcvor6TnFVDDxAA1BSVexSSiraZC78a1CLsndDZTu7dk15VwikvL6FDXmpT0HN7HpqCjqcaIDg3ZdEY4pMb3bM6lhx+IS8nCzECbIe3rs+6YuMlP6teSO88rksEXjuiM/7ZLFJWU0bahDXVsjGXI63kjO/Hw5RfuPf+MirIigXP7sXH/bT7FpKKvo0GgUz/8V58nISkLU+NK+Mzvi+ey03xNysKssg4Bi/vjt/wsn7+koq+nwTJvO7aF3ubB4yhUVBQJ9rbjY0QSm7bfEL/fxI40bmjJIudDZOcUUruWKd6egwjddZvz5wRbwd1jIFZWBix2OkBaai5W1gYEBDvw8V0CAV6CRdKzry2TZnThyoWXbFwlViZjp3Sk7+AmXLvwig1Lxalh1OQODHBozvvXcfg4HaSkpIy2Xeowy6UvxUWleM/Zx6cPiejoaRC0eSwGxtq8fPyZQCmDotuAxkxa0As5OTnOHX5EqPS1prj0pcsAMZ6/ff4l671PADBsWmcGjxfNRmZqDq6jt5D6NQuLakb47ZwkY3C8eRyF/+QdQnw4oDHTfAfLPnCT49NxG7FBepqsguf2ST80J7dPP2XNAnFDsJveFYc/sD/SEjNxGbKCtMRMrGqb4n9ozk9i4ZLiUnxHb+Dd40+Cl3NsPmZVf+3cuX74PmvnhgIw1KkPwxf+3sL8+XUsrv1DyM8pxLZDbdz3z/7Tk/uv6kDwCQ4EieZy5upx9Br/7zU3D88+wbVXAPnZBdRvX5uVt/0wsjT8117v+1o/eweJ0SlUtjJk6oox/+prnVx/kdObLgndyu6ZVG1o9be/t7iwGG+HVcRHJmJkoY/3kfm/ZCJ9X9s9DnH39BMp+HHOn15bkS9jCJogMqZ6jGrL0Pk/i8ez0nLwGLaGrLRcqttWwWXLjxouiUTCZvcw7p//Zgefivl3MQt52QV4jtpEWlIWVWqa4L5lvOx6LCsrJ3jmbj48E24qv9ApMjt4RkoOHuO2yaY6i1aK9ZNEImFLwGnuX5auqDeOxaKqWKcd2HiNC1KbuPPyYdRsYEF5eTkhLkd4/TQadU0V/DaOwbByJaIjkvCZu184lzrVZsqi3pSVluO/+DAf3wrgaMDakejoarBtzWVuXHotXbUPxaa6MTs3XePqBen6PcAOm+qVWeJ3kpfPYlDXUCFw+TAUFeVxWXiQrKwCatSsjIfPIK5de8O2rTcAmD69C02bWuPsGkZKSg6WFvr4+w5h78EHXLzyWuRDuQ0gJ7eQEKlOcoR9C5o0qoKLv9Batm1RjeGDm7PIv2KiP9GxLQsDj8km/qOGtMB52UmKS8po36wabZtWJWirmNiN7NeM/KISjn+b5Ezpwe4zj4mMTUW/kgazRrTHd/tFSsvK6dTk58nen9V/usGpb2TM0ziBW29bpQq3pM1Nl2o2XIuQxi7UqMaVD6KJ6Vm7Ohel4Zl969bk7CuxfhrUsA7Hnwmb98CGdTj99K00PLM6t95GkV9cQlNrM76m58jCM631dbn/8QuqSooMa2Mr496M69yUsDsvyC0spnFVM5QVFHj8MU6EZ/ZswZoTd5BIwK59A158jOdDbAp6WupM7NOCFQdvAGDfyZbo+HQevY1BXVUJ93HdWLLzitDR1DCjW4uarNgtRoQTBrUkKTWbC7el1OFZfTh87hkv3sWjqS6SwVdtE8ngejrqBDsPJGT9JaK+pKKnq0GIx2BWb7nGq3fxaGqosMzbnlPnnnPxqghS83EZQHZ2AUtXiWZjmF1zenatzyLnQ6Sm5lDFUp/AAHtOn37GQanwbb5TLxo1qoLrokMyRsOSpcNJ+pqJ5+LDIvG7fU3mLuzDo3uRLPMXIZGDhrZg+Ji2PL4XyTJps9HfoRmOEzsQ8zkFj9n7KCwopmFzGxb7DwGJhMBFh3j1RHzoBEhPWpHvEvCevUcIBjvWYq634KzcufSa9T7i5w6b0omBUmrps3sRhDgdEJkww1owep5oNvJyCvEYv01Awkx1CAidTCU9YUP9/C4B73FbxR6+U22cVlSMwzPTcnAbsYG0xCwsqhvju2cqat8FED658ZaQ6TtFk+fYhvEeP1qlczLzcHNYzdfoVEysDAgIm/tTJk9ZWTnLpm7n6bU3qKgr43d4DtZ1fy0UfXzpBUsniziEfpO6MM7b/k/fUwBxEV9x6RtMbkYetZtXwzts3l/eDL+v42vPs9NduF8mBo2g//Qef/Ed/3s9OPMEnyHLxAptUHOWXHD/U+3R/3Vd2HGNy7uFUHvx7lloaP99i/Y/rUfnn7HJSTSoEwKH02bA72F831d5eTnLJm3hzb2PaFRSx+/EAvSloMo/q5ObLnN0jbgZOm2aSL3WP6d+AyTHpuE1bI2MlD1r+cifpkKF+UV4Oa4nPioZIwt9fPbP/CmQ8+iGK5zeKaa1i9aN/cFBWFJciv/k7UR/+IqukTY+oVPQlAqXJRIJGz2P8uDya5RUFPHaPlGWP1WQV4TXhO0kxqZjUkUf7y3jZFOd4ztvc2qPmDwsWDqUes2sAbh8/Al7pNq+ae79adm5jmi+Qs5x5/JrAeJbPRLrGpVJScrCfcZu8nIKqdPQksVL7JGXl2NVwCnC71Wwbsws9Tm2/z5HpTl4Tp4DaNzChhNhjzi0R2gQ57n0pUkLGzauucTt698cpYJ14+Z8mK8JmZiY6hCwxIG3bxNYKl2729s3p1//xnh4HeVzdIqIXAhy4Prt9+w9KH292T3Q09fEI+AEZWXldOtUh0H9GrPAS9jD69Y0Ye7UriwKOEZKWi5WFvq4zuqJa/AJUtNzsbbQZ/7krjiHnCQnr4j6NU0ZObAp7qsFX61Hm9pYmumxKUw6yRnZkevhkTx9H4e6qjJuE7rhv/MyeYXFNKllTu82tX577X1f/+kG51NqGqXlEpqZm/EwOhak4ZnXpc1N1+pVuSxtaHrXqcH5NyJTqm/dmpyVhmf2rV+Tsy8+IJFAz7o1uPY6kqLSMtpUq8KbmEQy8gupZWoI5RCRmIqepjotq1pw6UUECvJyjOvUVJYM7tC6AVefRZCanU8NUwNsDHW5+kyIiGcPaMO6k3cpLSune5MaZGTmycIz59q1Y+n+67LwTMokXHks1Oke43uw5sAt0rLyqGZhwKjeTQjYekmMCDs3QE1Zkf1nBAnZZXJ37jz+xJ3wTygrKRK0sD+7jz7gxbs4NNVVCHEdwpa9d3gpbX6WuQ9mf9hDWUrsEo/BPH7ymYNHxe+zSJoM7h14UpYMPnpEa1zcw4iNTcfIUJvgoKE8uB/B5k1ihztpcie6dKmLl9sRIqQi4+DlwykqKsHV6SD5+cU0aGSJq/cg3r+Nx9+twhI5ZXY3PryJlyXpdupRn2lOvUhNzsZ1xh6ys/KpUdcMr2XDUFJSYKXPSR7e/ICyiiI+a0ZStZYJCTFpuEtdD/WbWuOydBgKigo8f/CJ4AUHxWrLoTmj54j1TMTrOPymh4oU7B71me4tmo3iolL8pu4i8nU82noaBOyeIqMXf/2SitvITeRmF1CnqTVum8ahKE2Nzs8txGv0ZuI+JWNoqkvAvumyVGIQYYF+47aI8L5+jZkZMvyHG4K4Gawj+m08ukbaBB6Zh35lnR+ue4lEwsZF+7l5/LGwyO6eTu3v+CDf15v7H/FzXCc0F/Ytmf6LG9D3lRybhnPvYDKSsqhqWwW/EwtQ1/r77qMLO6+zcb64EY90H4LDgv5/8R3/ez048wRfO9HctLdvhfvBef96SOe3evcwgjVS19QoLwfq/YuhmlEvvxDouEZMSMZ2xN7pnwEEd3qGcfPIQ+EIPDj7Lx1T904/YeNC4fgb62VHJ4dWv3xeTmYe7g6rSfuaSZVaprjvmvbTCrOsrJzgKdt4Hx6Fpo46/odm/2QHv3H8Mdv9xLRvss8Q2n0XWVJeXs6qBft5fucjqurK+IZOwfi7qIfD669wds9dIexdPYq6zQRQs7SkjMCZu4l4HUclfQ38d05CRxqtcvPsc7ZKNXwTnfvQXpob9+TuR1ZLU8MdJnWg73DhTDsaeoeT35qTADtsm9uQm12Ax/TdpCZlY25lgPdqR1RUldi98RqXpa5Q1yB7atUz58al12yWJoZPmNWVLr0bcPv6OzauFJqdcVM60b2PLWH7H3AiTPrZ6zGA+raW+Hod4+OHRCpVUiNo6TBSUnPx9jomksY712HipE4ELz3Li5exQvMYYM+nqGRWS7VQYxzb0LhhFRZ7HqGgoITGtpbMmNQZZ7+jJKVkY26qi/ei/vgsP0N0bBqG+poEOA/Ab+15ouPSMdLXwndBf7zXnCMpLQdLU13mj++M84rT5BeW0KSuJV1a12TJdukkp09T4lOyuPJI3L88J/dg1WHp/cvcgN5t6rBww/9fg/O3qqCklPrGxrxNEPlSLS3NuR8Vg0QC7W2suPlR2ujUrMqltxFIgO61qnHpTQTlEgldalXl+rsoSsrKaFfdiidRceQUFdPAojIpWXkkZOZgqV+JytqaPPkcj4aKMn0b1uLoA7G+mtC5GbuuhQt7daOavIr6Smyq4N60q2XNsbviebMHtGXL2YcUFJXQopYlmspKXHv2CSVFBRYN68TKQzcpKCqheW1LrI30OHJdjPncxnZj75nHxCVlYmKgzayh7fHacIGS0jI6NatOXZvKrN8v9qkzRrQnNj6DM9cFF8d3Tm8u33zHnW8R984DOXHhuXispECQ60Cu3f7AuauvUZCXw3thPxK+ZrLx2xpqfAdqVDPG1VvEK7RqUZW5M7rj7XuCDx8E+yZkyVA+RyWzTHqacHBogb19c5YEnOL5sy/iDbd0GOpqyrjM209mRh5Vqxvju8SBrwkZeC44SFFRKc1bV8PJrR9xMWl4zN0vAuhaVsXJawC5OQW4ztxDSlIW5lUM8F/tiLqGCjtXX+bKKcEccQ0ZSv0mVqSn5uA6eSeZ6XlUrW2C95qRqKgqEfkmHt8Zu0UT070eM6TW7rjPKXhM2E5BXjG2LauyaPlwFBTkBQNn/n5e3I9ETUMFvx0TMbcRK4/M1BzcR20iIyUbq1om+Oys2PUXF5XgP2k7H1/EoK2rQcD+6Ria6squ17jIJLxGbqCooJjGHWuzcP2PbqjSklICJ2zh7cNPaGirERA2FxOrn1cte4JOykIJF26aQNMu9X75/oh6HYOn/UoBW+vegAWbJ/2WW5Odnotb/xBS4tIwr2FC4OlFP02Ofld3Tz5m1VSB/B88pzejPH+Gu/1f1R+bG5e9s/+ePig8HDp3Fv/7P1ZyTApeA4Nl0Qgj3Ab/zz/rL18rNhX3AcHk5xTQoH1tZq//vW7mj3Vm61UOLxc387kbJ9KwY93fPv/NgwiCxm0U08xxHRn2JyLk4sISfB3XE/M+AX0THfzDfkYSSCQSNroc5P75FyipKOK9ZwaWf8i4en7nA8tn7wZg4OTODJryo+h4Z9Bprh0LR0FRHrfN46lWv4L1c+XII3ZJgXhTvAbSVtqoSCQS1rgdIfzmBwHM3DYBUysD8Xr3I2Wsm/6j2shW0R9fx+E/e5+MdTNmrnD6XT/7gm1S8N+kBb3o2KuBYGfNO0B0ZDK6Bpr4S1k3Z448Zr/UoDDLpS8t29fkefhn2TR6wNDm2I9qzctnX1jifVzgMgY3YdiYNly9+Epmupg8sysdu9RhxdJzPH4k4Kf+SxxQUJDH1eWwcFU1qsKChb3Zsu06129IeThegykoKsEnSBpm3L0+A/s1YoF7mCwt3HNxP7yXnibycwq6ldQJ8RzMmu3XZYfeYLdBbNxzi1fvxUQ/yHkgy7dfJfJLCvo6GnjN7o3HmrOkZeZR1cKAsYNa4LH+LGXlEnq1rU0lbTUOXXoGgPO4ruy5EE7013SM9bQY1785QXsFpPbv1n+6wbHR0yM+I4f8klJpvlQyJeXlNLc0Jzw6jtJyCa2tLbn76QulEgltbarwIDKGkrJyWttY8uJLgiyO4Vu+VDUjfRQl8kQkpqKvqY6tuQk3335GSUGB4a1s2XNTxMCP6diEw3dfUlhSSuualqRn5fE+PgVdTTWGtKrHzsuiE5/WtxWHrj8nM7eA2pZG1LU05vidN8jJwaJhHdl88p74WhVjOthWZespseaZO7QDl+69593nJHS01HAd3w2fTRfILyymcW1zerauxZKt4lQwvE8TVBQV2H1CCIAXTe7Kh09JnLkq3E4+8/oS/vwLZ6+Ix95O/fgYmcS+ow8BWDCjBwpycoSslK6hhjSjc/vaLHI/LAvP9FjcnxWrLhD+RBqe6W9PXl4hvlJVf7du9Zg4qSMb1l7m1o334g0XYIepmS6uTgdkI9bA5cPJyyvCZe5+ITyuZ4ab/xAy0/Nwm7WXbGkyuEewA+Vl5XjPOyAT9QWtH0UlXQ2O773H4Z2isZvrOYCWHWuRl1uIx/RQIeqz0MN/w1g0tFRJiEnDY8ouwZZoYcOipUNRUJAnLSkLt3HbyErPo1pdMzw2jEFZRVEIOb2Oc+f8SzEd2TiGGg3Eh2pBXhGeY7bIhIwBe6bKRuVlZeUsm7OHZ7c/iJPmnqmyUTkITY3bsLVkp+dRo2EV3LdP+kHTUl5ezso5u3l0+RXKqkr47J+JzS9WTic2X2H/UnHDmrF0BB3+xOKdEJWE24Bl5GbmU7dVddz3zvythqaooBhvu5XEvE/AwFSXoNOL/pGA9dWdd7IpQ89xnZiydNS/Zs3+n5sbgN274fp12LPnf3rt/JwCPPqLCZdNgyo475n9r2VoZafn4tZ3Calx6VjUMsXriNM/0kHdOxXOeqnuarTnELo5tv3t82M/fsXLYSXFhSW06NWQmb+ITQBxrYZM3carex9R11LD7/CcXwZohq29+EM6eL0/gCuj3sThN26zbJo5yfvHRvHEthsc2Shu+nOWDv8hHTz8xjtWLRJrULspnRkwviJcc8+qi1z+RhJfO0rGuvn0NgHfaWJa265XA6a490NOTo6EL6l4TtlFYX4xjVpVY36AHfLy8jy9F8ly96MADBrZmsGj24hkdPejvAz/jLqGCv7rR1PZTJf7N9+zXgr9Gzm5I70HN+VzZBI+Cw5RUlJGuy51mDKvB18+p+AtXdO3bl+TGfN78iz8M8sCxVRjyNAW2A9vyc5tN7l04RXyCnK4ew/CxFQX58WHyMjIw8bGCG+fwZw49ZQj36btC/qgr6+Jq9dRkffXvCrTJnfGxfsYcQkZGBtqE+wzhNVbr/HsVQxqakoEew3h8Omn3HoocCQBzgM4efklt6Vgv6BFA9hz4hFP38SirqaM//y+LN1xldjEDCobaLNwfFfc152lsKiUFvWr0LSuJesOic/lmUPbce1pJK8+fUVLXYX5wzsSEHqFktIyOjT89bT5V/WfbnAKCkvIKCiguoE+CZnZ5BYXU9/EmE9JaRSUlNLQ3IR3X5MpKCmlsYUpEYmpYkJjVpnYtCzS8gqoYaxPcXEpMWmZmFTSwqySNs++JKChoky3OtU48+w9cnIwrkOTH/KlLj/7SFZ+IXUtjFFXUuZxRBzqKkpM6NqMjafFOFPkS0WSkJaNhaEO3RvXYKfUITV3SHsOX30uy5ca2rkRK/bfAGBsn+a8j0ri4esvqCor4jW5J8E7rpCRnU+NKoaMG9AC7/XnxOSoXR1qW1dm1S6hyZk8rA2lJWWEHpGCoCZ3Iyklm93fHk/tRmFhMeu2S58/uj1WFvp4BZ0U1OIudRk2pAUL3Q6RmpqLlaU+gT5DCN1zhytX34gcFI+BaGqo4OoidVA1t2HBwt4c3H+fk8efCHu7W3/q1jPH2yWMTxFJ6OhqELRyBIqKCrjO3U9qcjYWVfTxWzaM0pIy3GbvIzkxC/Mq+vitGoGysgKBrmG8eREjknTXjsTIRIfr51+yWSo+Hju7K90HNqa4uBS/ufv59O4rOnoaBGwei66BJhmpObhP2kFmWi42tU3wWDcKZWVFcrMLcJ+wneT4DEyr6OO3fYIM1b5v9SXO7b8vBYENp5GUgSOSwXcQ8SoWbT0N/PdMlY3aJRIJmzyPcPvMcxlVtWbDCgdPblY+7sPXkRyXjpmNET57p6OmUSEYlkgkbPU8wtXDDwRleccU6v3CYnv9yEM2Scmuo90G0ndCp5+eA4Jb4jpgKelJWVjXNcfn8LzfWpfLSssIHL2eN/c/oqmjTsCphRhZGvzp8/9Yn1/H4jVomZho9GvCnA3/bMrwT+rZtVey5qadXcu/19x8+QJPnsDTp3BInN45eFA8fvJEfP1vVFlZGUEjVxP18gu6xpXwO7X4H63v/kkVFRTjNWipzPIedNb1H2mLXt/9QNAYEanRc2wHRjj/nFf2fWUkZeE+eDk56XnUaGKN667pv7SfSyQStrgd5s7JJygqKeC1bwY29X4mKF8Le8iOb6wbfwfa9vsx1DQpJg2PEevJzymkXstqLFg75odG8dbpp2zxEWursc59f2DdfHgRg/+UnWLaMrAJ41wqpkznDjzggFRDM8t/CM07i6YoMTYdj4nbRSBnCxsWLB2KvLw8Gak5uE3aKQ46dUxxXzsSJWVFIt7E4zdvH6WlZXToWZ9JUlr5lmUXuHnxNYqKCnisHE7VWia8eR5DoJRI3HNAY0ZO7khyYhZus/eRn1dEvUaWLPIZRHpaLq7zDpCbU0id+ua4+Azi86dkvF2OCJdSlzpMntmVk8fD2S/lg81z6oVtQ0vcXA8TF5eOkZE2gUEO3H8QyWZpoObUyZ1o0MCCRe6HZZEL7ov64hdyhncfv6KtpUqInx2HToZzTQry83ceyOMXXypAfnN7C5DfRakrd3Yvrj+K4No3kN/8foSefMS7T4Kq7z2zN75bLpCZU0Ata2MGdWlAwA6xphreozHRSenceRGFipICrmO7EnzgGnmFxTSuYU6Hxj8Hrv5Z/afDNhNzcrE0NqKouJRUaexCRm4B6fkF1DDSJzk7lwxpplRGTgHJOXlUNdCjpKSUuIwsTHW00VVV41FUHDrqqjS2NOXc8w8oKSgwpFld9twSo7Zx7Zuy9+YzSsvL6WZbnZefv/I1MwdLQx1qmRpy7N5rFBXkmdGrFetO3aVcIqFfizq8/5LEx7gU9LXVGdmlMcH7hU5lfK9m3Hr+ich4oTCfPrAN3lsvUC6R0L9dXUqKSrl4X1yI3lN6sunwXeKTszA1rITT6E4sXnZSpLbaWtGzTW0WBZ8Qqa09GmJZWQevFeKEP2FoazTVlfHeKCY9k0a0xdhAi8XSDx67fk1o27wqsxbup6iolBZNbZg9pQuL3MOIiU3H0ECLkAAHLlx4SdgRqT3cqRdVbYyYPWsP2dkF1KxpgpfXIC5ffMXObUIkOH1WN9p3rE2g13Fhf1RTJnD5MPQNtHCetZeY6FQMDLUIWuWIiooSLrP2Ev0pGX1DLQLXjkS7khqr/E7x4Ju+ZuUIrKoZ8/TBJ5a7i7/7gBEtGTq+vexE9S0802/DGEwt9MnPK8Jzyi6+xqRT2VwXv83j0NBUpbioBN9poUR/SETXUIuAnZPQkVpRz+2/L0sGn+4ziPZ9GgLS6crCAzy99UGaDD4Z8++w8AfXXuJM6B1BSV49isbtK0R0xYUl+IzZRPS7BHSNtPE/MFOmBfhWR9df5vgmad7O2jG06P5zkvezm+9Y/o0fMqULw536/PI9kZ9TgMeQFXz9nIKJtSEBJxf+ds0kkUhYM3sXD848RUlFCe+w+f8I+Z8ck4pb3yByM/Oo27omrvvm/CMuyz+pL29j8R68VCYodt035+9NbqysKv78rfFKSYEm3910/2JuLpFI2DBnJw9OPxH/TscX/WtOrbLSMgJHruHNvQ9oVFIn8IzLP2o4o9/E4mW3QoAh+zZm9m/AfCAcSu5DlpMYnYKJjRF+YfN/EgF/qyNrLnBCeq0u2DgB23Y/C0bDr71h+SxpyOb0bgz8w9opMzUHt+FrSU/Kwqq2KV6hU39wGL64+5Glc/YIUfyYdjjMqMAZxEUl4zlms1jztq/J/GXDZY3R3QuvWO8hJi6Os7vRc6hoijLTcnEfv00arFkZz41jUFZRElPfybtIjE2nsoUevpvHoq6hQkJsGh7TQynIL6Zhi6o4SSc6h3fc4sQ3LY7/YBq1qEr0p2Q85+2nuKiUFu1qMNu1LzlZBbjO2ktaSg6W1oZ4LxtGYWEJrnP3yQ52vkuHkpaag6vTAQoKimnYuAoL3ftz++Z71q2WOkrHt6dbj/p4uB/h/XshCwgOGcbn6JQKkN+QZvTqacusBftITsnB0kKPQJ8hrN1yjYfhwgW7xMeO++FRhJ0SB3SXOb1ITs9hy16pXXx8Z3Lyi9h2UJp1NbELsYlZHPnW/MzsycW777gvden6zenLij3XZZEMU+xb47L2jAh0blkTZRVFTl15irycHC5ju7HhxF2hwTEzoEOjqvjsuvSn1+If6z89wdFVV0VLSZnYzCwqa2miJJEnPlPELlAOCVk5mOtooyiRJ1qaKaWnrsb7xFR01dWoY2zAo6g4VJUU6VG3Bueef0BODka2bsi+288BGNaqAScevqGguITm1SxIy84jMjENAy11utarxrF7Qmczq08btp5/KEjE9awpKCzmiVREPKN/a1YcuilYA23r8eVrOk8/xqGhqsyi4Z0ICr0i7N+2NlQx0uPARbEGcxnXlWNXX/LxSzK62mp4Te2J97rzZOUWUrtqZcYObIHbitNCk9OyBh2bV8NvtYioH9jdlga1zPBfJR4P7tWQ5o2s8FhykrKycrq0q8WwgU1Z5HGE7JxCatWojMfivgQsPcPb9wloaaoS4m/Py5exbJKeFCZP7EjrVtVxcT5MUlIWZua6BAY58PzpF1Yuq8iXGji4KZvWXObmtbcyN4BNVWOCPI/x9rXIlwpcNQJ9Qy2CPY7x5nkMGpoqBKxxxNhEh92brnPh5FMR3xBoT71GVYh4l4DfvP2UlpbRvns9pkhPVFuXnufm+ZfSE5Uj1euaiWnLrL1EvhWQLv+t49Ez1JLmSx3k1aMooa3ZNoHKFmK0fv/ya9ZLBYaOs7vRd2QF3n174GmuH3+CgqI87pvH/TCduXToAbu/6QC8B9PhO4FkWVk5ITN28fpBJOpaIhm8cpUfb1Q3jj1im7dgaEzysaPrLwSdUa9i8Ru1ntKSMtoPasqUwKG/vGGVlpTiP2o9kc+/UMlAi4ATC38SKP+xdvsd48LOG+LfOnQ69dvW/O3zv6/stBxc+gSSGp9OlTrm+Bxf+I/cVv+kslKz8egfTH52AfXa1vrbzU1cXBzXXV2JU5A2Xd8amW//q6gIe/f+9mdIJBK2LNzDqQ0XxboldCZ1Wv7aVfT/WhKJhDUzt3P/VDhKKkr4HF+Idf2/T35NjknFrf9ScjPzqdOyOi6hv57EfKviwmJ8hq0W14y+FgHHnNAx+vVq8uLeO2z3Fg3EJH+HX7Ju3oVH4Td2I2Wl5XQY2JQJ3kN++HphXhHeozYS/ykZIzM9/PbPlK15ASJfx+IzYauMRDzFt4L6nZ6UhfuoTVIelQVum8bJVnYvH0SyZO5eMUUZ2gLHOUJDU5BXhNfkncRHp2JkqoPftgloaKlRLP2M+AbyC9g6Dl0DLTJSc3Gbskvo+GqZ4LFqBMrKilw6+ZQdq8XhZ/KCXnTq1UBMaWbtESC/Bha4BtlTUlKGx7z9xEanYmisTaB0IuS58CBfPlcc7MrKynGZf4CM9DxsqhnjHWTP29dxLJFG2fQb0JgRo1qzbNk5Hj0SjUpAoD15+UV4+x4Xn+Gd6zB2TDtcvY8S/SUVA31NQvwdOHTsMReuSLWVzv2JiU9n4y4pT2xcBzQ0VFi6QTQZjoObY2ykzbIt4ncbPaQlysqKbD4ocCVzxnQiIiaF81KXrs+M3oSeesSHaHFPWjiuC96bLwgNaV1L6lQzYedZcRieP6IDh649IyYpk8p6Wgzt2pBVR27/6bX4q/pPNzhVKunwPjmVSqqqmGpp8TElDT11NYw0NWR/NtPW5u3XZLRVVahjbEh4dDxqSoq0r27F1bdRKMjLYd+0HocfCErxqDaNOHD3uUgDb1iT228+yyIYNJSVeBYlIhiGtbFl5xUhVJzSowUHrz+TRTBUrqQlc0852bVnVdhtikvLaG9rg6K8HNeeRqKkqIDb6K6s2H+D7Lwi6lc1oVPjaqyXRjDMcGhH+OsYHr+OQU1FCf+ZfVm24yqJqdlYVNZl4fguuC0/TX5BMY3rWjCyfzPcQk5RUlpGu+bV6N+tAW7BJykpLaNjqxrY9WnEYp+jQknfwJJZEzuz2KtCSb/EewgbN1/j/kMpvttnCGlpuQQvFTfvIYObMmhgEzw9jxIVlYyengbBwcNIiM/A3+e4cHj0asC4iR04cuABx6WJ4gvd+9OoqTVrl53n/u2PKCsr4rt0KFWsDdm47Dx3b7xHSUkB72XDsK5mzNmjj9kvnQTNculL6461SIzLwHPGHqGjaWbNgoAhyMvLc2TXHVmSr1PAEBq3riYShl2P8Ox+pNDCbB6LmZWBsHoGnKrIl9o4hqp1TAF49zSa4Dn7xIfjsIoPR4Dj225wTNrgzVs6nKYdK9wyj66+YbVUB2A/vSsDJlToAES+VBh3zz4TXI+dU37S1Ly484HlM3cBMHBKFwZP/xm8lxiTirvDKikmvyYLNv464FIikbB69i6eXHklbONH/5yJ863Obb/G/qATAMxcPZY2A36fR/V9FeYX4TkwhNj3CRiY6xFwxvkvwxr/1youKsFnyDK+RiVhYmOM97GFf+mWiouLY+bMmVhaWtI5MJAq5eVs/9UTHz4ER8c//TnfmpsjK4RGYtb6if9qGvke3yOc335NNJx7Z9Gg3d93Z2Wn5+I2YKkIuaxths/R+X+5mgwau5EXt96hrqVKwAmnP00Hv3f2GavnCD2P3aweDJnxc9zGlw8JeA5fS1F+MY071WHBhvE/XKulJWUETNrGh2fRYs17cCYG39nV46OS8Ri5iYLcIuq3rMaitaNlIvy87AI8xmwmKTYdkyoG+IZOlvGoIt/E4z15J6XFZbTqXo+ZfoJHVVJcit+M3Xx8GYuWjjr+OyZiULmSmPo6h/H8gXTqu2UcplUMyM8rwmN6KF9j06lspovfxjFoaKry8NYHVvkI+rfd2LYMHtWa7Mx83GbuITUpG0trQ3xXjkBRSYEAlyO8fx2PViU1AteORE9fkwD3o7Lg4ICVI9DQUsXV6SAJ8RlUNtUhcPkwEhIy8XQ7IvQ6HWoyc053tm27yeVLgmPj6TUILW01GVi1aRNrnOb1wj/kDK/exKGhoUKIvwO37n1kf5hUWzm7J3LycoSsFSLpYYOaUbeWGZ7LTgtYbOd6tGpqg9fKM5SXS+jbpT51apgQLG12Rg1sThkS9pyS6nwmdOPSgw+Ev41FXVUJr6m9WLLzilhTWRnTs20dVkpRJxMHtOT2q8+8jU6ikqYq0wa1IeTADbHdaP1jzt7v6j/d4DyPT0RVUZH6xsY8i/2KupISdU2MeBYn/tzIzIRHn+NQUVSgQzVrbnwQmVL9bWtz6qmA+o1oYcuBe9LAzGb1OPn4rbCJ16jC56/pJGTkYKFfiZqmBtx4E4WSggKTurZg83lxEQ1rZ8u1Z5EkZeZibaxHq1pVOHJbNEsL7Duw5dQDcvKLaGBjQm0LI47eEA4pl5Fd2H7qIckZgvLo2KMJS3aK0e+wHo3JzM7n4j2xpvKd0YsdR+8TGSOU7L6zeuO9+hzpWflUq2LI/PGdcQ0+QW5+EQ1qmzFtZHsWBxyXAZtmjevIIt9jZGTlU83aEM8FffFZcuq7CAZ7jp54wjlpBIOXS39UVRTx8hEnhU4dazNlUmdCQs7KIhgCgxwoKy3D3eWwcEK1rMq8Bb24fvkNW9YLYeCUWV3p3K0e+3be5txJEcHg7DOIeraWHNp1h9NHwoXY2ncQDZpYcf/me9ZJCceOkzrQe3BTsjLycPsOje4pPVFdO/Oc7Ssq3A2dpA6K7csucOPsCzFtWeNIjXqiqQjbcoPTUubEgqVDadhK7IHjolLwnrSDosISmneqzczvYH03Tz1li+8JAMY596XLkAr2yIdnX37Ilxrn8qN19+iGK5zeIRq1hWvHYPuHyUj0u3h8R2+gpLiUtv0bM9nP/qepTE5GLh72q0hPzMKqthmee2f8gK3/vvYGnuDSntvCnho6g5pNbP7sbQPA44svWCu9YY1wGUifiX8fxFdeXk7I2PW8fRCBpo6GWKFY/P0Vyj8piUTCmmlbeXVbZEv5nVpMJYPfi5+3b9+OpaUl69evRyKd1JRLJEwG4r79G/8NYbBEImHroormZvb6fzdH6/iac+z1FxOSmWsn0Hbg7zPCvq/CvEK8hqyQicQDTi78bcMpkUhYNWsn976tJg/NpXoj618+98Wd9zKQX/eRbZng87M7LjkuDTf71eRk5FGriTUeO6f+JKJfNX8v4dfeoKKmhPee6VhUr2im0pOycHPcQGZqDlXrmeO1swKMWVxYgt/kHUS9TUDHQBP/PVNla96EL6l4jhMRKvVb2MgiVMrLy1m+6BDP7kaIIN1t47GoaiT0coFnuCU1EbivGUn1umZiojNvv0gBl+r49Ay0ePcylsCFh8T7vK8t4+d0o7CgGM95+4n5nIKBsTYB60ahqa3GSv/TPLorDQReMRwLKwNWLTnDw7sRsoOdmYUePq5hREoRGkErRlBUXIrr4kPk5xdj29ASF7cBnDgeziEpV8xpQW+qVTNmscshAfurXhkvjwGs3XSFu/e/ZQIO4VN0Muu3SqftY9tjaamHZ/Apoa3sVJfuneqyOOAYxcWltG5qg12/xiwOOi7LJezRqS7u0hDm3h3qYm2hz5o9NwCYNqwtH2OTuSq1f3tN68W6w7f5mpqNubEOYwY0J2DXZSGV6NSAmORMHrwRGlKnoR0JPnCd4tIyOjasitE/OAj9pxsceTk52llX4W6UiFpoV7UKt6WxC51r2HDtfRTycnL0b1CbMy/fA+DQpD5hjwRxeGjz+hx5+FpcAPWrc+99NNkFRdQzN6akpIz30jTwLvWqcvLRW+TkYHqPlmw+/4DS8nJ6NKpBRGwKn76mYVhJg8Ft6rH1nGh8ZvRvzZHrL0nKyMWqsh69mtVkyymxv51j154zd94QFZ+GoY4Gcx3a47/1ImVl5XRtURMTPS32n5PuS8d35eLtdzx9K5TsS+b1Z/n2a8R+zaCyoTY+s3rjuew0Kem5WJnr4zazJ65LKgBNHnN7477kJPFfM6lsVIlgjyGs2XiF56/EzwvxtePxk2gZFGr+rO7YWBni7Bom7IgNq7B4YR+2bLnGjW8AKp/B6Otp4rzgoHA91TLBw3sQL599YWmAgPYNGdoCu2EtuXD6Obu3SlNt5/ekbcdaXD7znJ0bhB5p6vyetO9al7cvY2VCvR4DGjFqSicKC4rxmr2P+C9pGJlUwm/dKDQ0VXl6P5IVHmKdNHh0G4aMEe6QE7vvckzqrpofYEeTNmKNcPXEE3ZKV2hT3PrTQaqtSU/JxmPcVrIz8qlpa4HL2pGycf7LB5Esmy9N/x7b7od8qYToFLzGSnUAHWoxd9mIH5qT68d+5Hq0H/CjwDL1awbuQ9eIMMGW1Vi04eepTHFhCd4j1hP7MREDU138wub8MMr/vi6E3mSvdBIza9UYWv4hvPCPFfk8Gn/HtYLyPKodoz3+mc15p/tB7hx/hJKyIt7HFvwjzc4/rZPrL3Bx13VBxz40nyp1fv9acXFxTJ48WdbYfF/lwH0bG9i0SehvKlcGo5/DIKFichO2/LvmZtq/Byw8v+MaG52EXXq0tz19J//9zK7iwmJ8hq6WNpzqBJxe9KdxHSBt3NwOVjTEu6Zh2/7Xk6KI59H4jFhHSVEprfs0Ys7Kn91xmak5uNqtEpOjGib4HpiFmuaPIvotXke5GvZQOJu2TKR2k4pmKiczHzfHjSTFpmNqZYjfnqloSMXbZaVlLJm1mxf3IsRaOXSKzPKdnpyN25itZKTmYFPbFK/N41BWURJNjP8pbp59IZqYdaNlTqr9G65xep8wETgF2dG4TXWxunYJ4+n9SFTVlPFdPxqzKgZERybhMaMiVHOe9yDKyyQELD7Mu5exUvPDKIwqV2L72stcOfsCeQU53JbYU6eBBTs2XuPiWUF2d/MfTO165oT4neJZeDSqakr4LxuGhoYyzgsOkpGeR9VqRvgE2HHz1ns2fMvpm9iRNm1qsNjlMImJWZiZ6hIUYM+BsEecvfBSlglYUFhC0ArxGWc3oAmtWlRlse8xiopLadnUhjHDWrHQ7yi5eUXUq2nK9DEdWBhwTPZ4rH0rnENOUFxSSuvGNnRsWQ3/zYLTM7RXY0rKyzlyWQiQXSd15+DFp0TEpKBXSZ25Izrgu+2ikEo0qYaCkjwXH4nD+SLHzqw6epu8wmIaVTPFSF+Lbecf/e1r+z/d4HSrUY0r7wWluFedGjJKcf96tWQgvyGN6nL0idDJ2DWux9HHb5BIoI9tLS69iKCwpJSW1Sz5nJROYlYuVQx0MNXR4nGkoA8Pbd2A0BtCEzOpS3P23ngm9Dg1LCgvKefZJ7GymtSzJWukMQvDOzfiwesvfEpIw6CSBuN7NWP5YXGTH9WjKW8+JfLsQzwaasq4j+uO//ZLAppU24J2Da1ZvV+6L3VoS1RMKle/Kdnn9GP38Ye8ifiKtqYqwQv6s3TLZaLj0jDU0yRo8QACVl/gS1w6hvqaLHEbzPKNl3kfkUglLTWWedtx+Phjrt/+gKKiPP4eg0hOzmaVNFl6jGNr2rWuwWLXw1I7oiE+3oM4ceIJR49Ix5SL+1K7timuiw+JN5yZLv5LHIiPTcfH9Uc3wKN7EawKFoLnYaPb0N+uGeH3I1npL24a9qNaM3BYC2KjU/GaK4R6zdtUZ7ZLP8rLylniHMb7l7Foaqvhv2E0+kbafHqfgL9Ui9OhZ30mOvUE4M6l12yRTn/Gze9B5/6NAEEpXukSJq6FCe0ZOFY0Q99TTk2rGOC9dbxsnP/lw1f8JopE4tY9GzDFq4I0nJWei+eoTWSl5VK1njlum8fLIH8g1k4r5ogb1aApP3M98rLz8Ri2ltSEDCyqV8b7F/lS5eXlLJ++gzcPItDQVsM/bC6GZj/bcAHCr7xi9exd4rpb2I/e43/trPpWyTGpeAz6lkRdlznrxv8jx9PFXTc4tFQ0sfO2TPlHK5R/Wh8eR7JJCg2cFDKKZj0a/ulz4+LiuH79Ovfu3aO8vPzPf2hgIEyZIlZT0dFg/rMVXyKRsHnB7h8nN/9ic3PtwB1WTd0KgN28Pji6/v2Gs7SklMBR63l69TWqGir4n1j4lyC/Q8vPyCjFc9ePp/UfHE7fKjYiEXe7ivWo87bJP+l58nIK8Bi2hrjIJAzNdAkIm/PT5Gj/ivOclE4W5q0cSfNuFXldhQXFeI/bQvT7BPSMtQnYPx1dKZ5AIpGw2vkQ9y++klGKv3FwcrML8Bi3jcSYNCpb6uO3ayIa2qIpOrD+Kqf33BNNTLADTdqJg86ZAw/Yu05Myae69aVjn4ZIJBLWB5zi9iXhjPJc5UjNeuYkxmfgNjWU3OwCatU3x23ZUOQV5FjmfVw6pVHCd5UjVlWNOBR6hyN7xQFxnlt/WrStQdi++zJK8ZzFfWjZtgZrl1+o0CUG2mNmrofzQumqykSHwJBhvH4dR4j0M3PIkGYMHNQEN48jMkpxyJKhXLnx9rsDaQ/09TTxCpRqKzvUxm5gUxZ6V1CK503twiL/Y6SmV1CKnaWUYitzfZwmdWXx0gpK8Yj+TfFYe1aIhtvUwtJMj61HxevNdezAjScRMkqx87hu+O8SlOKmtSyoYWXEoavPAXAa2oEd5x+Tlp1PdXMDmta24NCN57+9Nv9Y/+kG59LbCAD61qvFmVdiQjOwQW1OSjOlBtrW4eSzdyIks34NLr38KKB+Nax48TmezPxC6pgZUVpSRoRUONzSxpLLLyJRkJdjQudmbLssTQNvY8vFpx9Jz8mnppkh1ga6XH0hdDZzBrZj9bFblJaX07NpTZJTc2SU4vn27Qnee5WysnJ6tqhFSXGpjFLsPaEnK/feEKsmCwMcezYhYKsY89l1s0VJQZ4D0kmO+9Qe3HjwkTtPRCR90IL+7Ax7IAM0hbgOZtPu2zJA01L3IewNe8CD8ChUlBUJ8hjEw/AoDh8XuiHneb1RVVHEd4kUCtWjAcPsWuDmeVRmR1wS4MCjB59klOIpUzrTvn0tfDyPERmRJEasS4dRVFiC2wJBKbZtJNwAEe+/4ud2lPIyCV17NWDc1E7i/5NSijv3rM/4mV1JT83BbVYFpdgt2AEFRXnWBZ7hwY33Ykqw2hFLGyOSEjLwmL6b/LwiGjSzlrkb3jyNJmThIRF4Obwl9hOFFubzh6/4z9hDWWk57fvYMn6RyMgpKy0jcOYeIl/HU0lfA79dE2Uj79TETDzGbJZRihetGSnTARQVFOM7fquIbjDXw3f3VJkOAODzu3h8pVyP9v0bM9HrxxtVaUkp/uM28/lNHLpG2vgdmv1Lh1Oo/4kKSvGe6VjVMfvl9f/5dSwBo9aJ8fmw1ozxHPLL532rvKx8PAYvJz0xE6u65nj8w3ypFzffsGqauBE7ug2mq+Pvk8j/X6ogr5CgkSL1up1dS4bM+/PU6+3bt1OlShU6d+7M0KFD//R5cnJytGrd+tsDUPlZn1JaUsrS8es5ulLcZGZvmPSvNjd3Tz4mZNwGce1O7sqk4N+Tpr+vsjIRwXBfumbyOTKP2i1+b8E9veUqO7+J2gOH0WNU+18+LyUuHbfBK8hKy6WarSVe+2b+1IgXFRTj7bieiOdfqKSvSeCReT814ie3XWevlNs01d+erg4tZV8rLSkjaOpO3j6OQrOSGv57p1PZUkyeJBIJ2wJOcfnwI5EJtW40tq0FOqGwoBivCduJepeAroEWAaGT0JM2RWf332eP1IU0xb0/HfuJg86t8y/Z4Cca8xHTO9PfUVwHoWuvcC7ssSAhL7GncetqZKTl4jp1F2kpOVSpaoTf+lGoqimzcdl5rktzo9xDHKjb0JJzx5+wY52Ytkya043u/Rpy8cxztkobqYkzutCrfyNCt97k7Lc1vedA6tla4OEaxqfIZHT1NAheNoyEhAx8vI//wBXzCzjJ6zdxaGqqELzEgdfv4lm/WXweTxzbnnp1zVnsdYTCohKaN7Fm+sROLPQ+QkpaLlUs9PFc0A/PpaeJTcjA2FAL/0X98V59Vjw20MJrXh88Vp0hNUNM/GeNbo/LylOCbdPAirZNqrJsl3i9sf2bExmfxs0nAlLrMak7Kw7eID07n5qWRnRuXp1NJ0RTN31QG07cfUtsciam+tr0blWbLdLtxswBbX57jX5f/+kGBwSZ+MKbj0iAHrWrc+HVR8olErrVrsbVt5EySvHTqARyioqxtTAhLSuP+IwcLPQqYVpJiyef41FXUWJgk7ocvi/0M5O7tmDH1ceiaWlUgzfRicSkZGKqp02nejaESXU2cwe2Y/OZ++QXldC8pgWV1FW5JhUYO4/ozIqDN8TXaltS3cyAQ1eeA4JSvOfMY1lS+DzHjnhvPC9ASE2r0aCaGWv3Slc7w9uRkJjFqauvkJeTw2dOb27c+ygDNAUuHsCZK69kj4NcBnLnQQRnLokRptfCfqSm5rJ+q7RRGdeB2jUq4+p9VNjDm9kwZ3pXApec5u3beLS0VAkOdCA2Jo1g6Wli8OCm2Nk3Y8XSczx5/BlVNSUCgoeiqaWKq9MB0tNysa5qhM8Se9JScnBfcEAQiVvYMN+1L0lfs/CYs4/CghIaNrNmvucAigqL8Zizj6SETEwt9PBb7YiqmjIHt93k/NFw4VgJsqNe4yrkZBXgMS2U9JQcrKoZ47nKEWVlReI+p+AzfbfInepcm6luAt6VmpiF58Qd5OcWUq+ZNU7BDsjLi5C9dZ7HCL/5XiQFb5uAqdTZlJdTiOeYLaQkZGJe1Qiv7RNRkYpZy8vLWT5vL2/DP6OhrYbv7inofec2Sf2a+QPXw2nNj1wPiUTCmgX7eHbzHaoaKvgemEXlX1h/z+++xaGVwgI6Z/VoGv7J6iAtMRNP+5Xk5xRSv01N5q7//SSmtKQUvxFriH4Th15lHfyOL/iJPPu7io9MxNdhJWWlZXSwb/mvUooBtizYTXzEVwzN9Zm3ecqf/m7fVlK/ndoA8vLybN26FfNfTGy+VUFuAZ4DgrkcehN5BXmctk37VzU3jy8+J3DEasrLyuk6sj0z1/79aZpEImHt7J1cP3QfBUUFPA7M/ktK8dWDd1k3X0wXhy3oh93sXr98XmZKNi6DVwhuUzVjQSnW/pH38426LWB/qvgfnvODpgbgathDNrmL6enIhX0ZMLFiulheXs6K+ft4dPUNyipKeO2cjHVtU9nXD6+/IhP3z106jNY9BDqhpLiUgOm7efskGk1tNQJCJ8nevzfPPpcF5g6f0YUB0qy5p3cjWLr4MBKJhD7DWjByplj/Hdt9l4PSwMqZ7v1p36M+eTmFuE/fTUJMOsamOgRsHINWJXX2bb3JqUPisLvAZxDN29bg9rW3rJVOjYeOaYPdyNbcu/WBldIYCHvHVjiMbM2xw4/YFyqm+7OcetG2Qy38vU/w6mUs6hoqBIUMo7CoFDfXMIqLS2nRsirznXqxYtUFHkhNHwF+dqSk5bJkufhsGDKwCV071WGhx2EReFzDhMXzeuEaeJyY+HSMDLQIchtE8IaLvI9MopK2GsGug1mx7SofPiWho61G4OKBLNl8mZivotlxm94D99Vnyc4tpE7Vytj1bITv5ouUSyQM6tyAMomEUzcFKd9tQje2nX5IQkoW5kaVGNq9EUv3i/9ejt0a8/B9LB9ik9HTUmdUjyasOS5+f8fOjXjw/u9xp+A/zsFpaWXOvU8xlJaX08amCg8/xVBUWkZLawtexXwlt6gYW/PKfE3PJik7F2sDXVQVFHiZ8BU9DTWa25hz7NEbFOXlGdO2CZsvC1HX6A6NCbv3koLiElpUtyC/oITXMUlUUldleLuGrDwmcNyTe7ck7OYL0rLzqWFuSLMaFmyQdrCLh3di+5kHsvFcz+Y18ZOCkGY5tONmeCSvP31FW0MFz0k98N18kZz8IupXN2VQpwYsWnYCALvuDdHRUiNQyrKZN74z8QkZHD3/TAZkeh+RyLFzgtnjPrcXCV8z2b5fMA3mTO6CloYKC9wOi/yqvo3o2bUuM+fvqxCsufRn05br3L0nBGv+vkMoL5fg5XWM0tJyOnSoxbTpXdm98xaXLwq6pqf3YKytDXGet4/YL2kYGmkRuHwYZWXluM3fT1ZGPtVqVMYjwI6C/GLc5+wjIz0P6+rGeIYMRV4OAp3DiHz/lUq6GgSsHYWOrgbXzr4gVHoimra4N2271hVo9Ln7ZERjv42j0dRWIyM1B4/JO8nJKqBmAwsWLxuGgoI8eTmFeE3aQWpiFhY2RnhuGCMT5x7acI0LBx+KgMTVjrLdfGlJGYHTdvL5XQK6hlr4757yQ4bUjoBTMpCf57aJVPkOOV+QV4jXqA2kfc3Eoroxnjun/HTaPbjyHJf23RXumK2TqG5bhT/W0+tvWDtfWJYdF/Wj2/Bfn3QK84rwdlhFcmwa5tUr43lg9p+Kj7/VpoX7eHbtDaoaKvgdd/qtRuOPlZedj9fgpeSk51KzWVUWbJ/+r9F7AV7ceMOZzeK9snDXjF8C7uLi4oiIiCAlJeUvmxuAgwcPYm//5yGj6YkZuPcNIuLpZ1TVVXA/NI8WfX69uvm/qPBLL/AeslwAC4e0wGnrlL/9byqRSNi0cB/ndwh7v/OuabT4C93V3VPhLJsisrMGTO3GWK9fT/tyMvNwHbySuIhEDM30CDo2/yeidVlZOUun7+ThpZcoqyrhu3/WT9fz/QsvWDFX0KIHTOrEiPkVzZREImGD+xGuH5dGMGwZT73mFXTbs3vuyiIYJnkMkEH+ysrKWb7goOxw4r1tvKwpenzzPUsXHBQRE8NbMkrqhHz37Au+s/aIqWrP+kxz74+cnBxXTj1jizRiZuzsbvRxaE5RYQnec/bx6b0AhgZuGouBsTYnDz1kz2Zx856+sBedezXg2aMogt2PSeF+jRg3owsvnkYT4HFU6Aj72DJxRheuXHzFxm9cm0kd6DOgMcuCz3D/XgRKygr4BdqhrqHMnNl7yMsrol49czw8BrJ9x00uXRYOKi+PgSAnh6efMH107VQHx6GtmLP4gIx94+c+kMCV52RyhKXeQ9i09xZPXsagpqpEiNsgdobd48kr8Tho8UDW77slwH1aqvjO7YvvhguyvKkpQ9vgvPq0LBbIrLIOaw+K+57TqE4cv/WKiNgU9LTVmTKoNb67LlEukdC3dR3i07IJ/xCLhqoy0wa2IuSwcE/1bVmbN7HJhEfE/fZa/b7+0w1OVGo6uSXlNDA1JjolnayCIuqYGJGWk09STh7WBrooSuT5lJyOgaY6NYwMuPQqAjUlRfo1qs3uW0JbM7FTM3Zee4xEAgOa1eHWmyjScvKpaWpAZW0tTj16i4qSAtN7tWTFMSFidWhny4M30cQkC4+/Xdv6BO0TE5IZA1tz5u4bviRmYKynxcS+LfHYLI1B6NqIpJRsbj0VmVC+03qzcu8NktJyqGKiy8yhbVm47ISY5DSrRuuGNiwKOQEI214lDVW8t4jx58wxHZGUS9i4W1x4M8d1RFNNBT/pSHikXQsa1bNk5oJ9FJeU0bZVdSaOaccCl8MkfM3E1ESHJb52nD77nJOnxPjUzaUfJpV1mDVzt3jD1TfH2aUfF8+/YO9uKQjKqRdNm9sQ5H2cVy9iBcNm+XC0tNRYPHsvcTHpGFWuhN/yYaIhmHeA2OhUDIy08V81AnUNZdYEnq7YZa8cgamFHi8ef2aFpxDnDhnThv7DWyKRSFjpeYxXUjS638YxGFbWEbv76btJjMvAxFIP742jUVVTFo3K7L1Evf+KroEmvtvGo6UjJhXXTjwldLn47zDVcyCtuokMp2+JxN9Aft47JmH8XQNwJvQ2R6Vj4XnLR9CgdQVluKysnOBpO4l6HYeOgRZ++2b+tHa6fvQRoYHCZjptyfBfgvyi38bjP2YT5WXldHZoyUjnX4dUlpeXEzJxMx+ffkZbTxPfI/P/0p59dts1Tm++IiZiO6dRraHVb5//x9dbOn4jMe/iMTDTw/vogn+NdQNQVFDEismbAOgzuRuNOtf/6Tnbt2+XTW3k5OSQk5P7paj4WykoKNCq1a8DIwFiP8Tj2iuAxOgUdAy18TvtTK3mP5Ok/6/q0YVn+NitkJGfnXfP+ttwRIlEwjbXg5xYLwSg8zdPov2QFr/9nvArrwgcs4HysnK6j2rH1JARv5wUFeQW4uGwmqjXsegaabPk5M+NsEQiYb006FVBUR6PXVN/imB4dus9gZO3CxH70JZM9hnyw+uFBp/h7O4KMGbzLhWTp2vHw1nvLlZow2d3Z/CkTrLX3eh9nJvSQ4b7xjHUbSqEyq8ffyZgplhFd+hjy3SvgcjJyfH5w1c8p+6iqKCExm2qsyBY5Dndu/qWFZ4VJoWhEzuIz41Fh3j1JBp1TRUCNo7BrIo+186/ZEOIaIRGTenIgGEt+fAmHp+FIoKhbefazHbpS+THRLwWHpJFMMx17suj+5Ey08Ug++YMH92GrZuuySIYPLwHYW6hz5zZe0hPz8PaxpCAQHuOHQ8nTBbB0BsjI23mLNovm7bPmtqVhR6HiYlLx8hQixBfO9Zuu0b4iy+oqSoR7DWYI2efcfN+RQTDmWuvufFA+njhAA6cfUL4KymCZH5/Vu6+zpeEdIz1tVg8sRuua86QX1hC0zoWtGpoRYA0THPykNbcfR3Ns4/xaKqp4DSiEwF7L8swKPIK8lx/LlZYc+zaseqYQKR0aGBDZn4hzz7Fo/EXh7Hv6z+9okrOycdKT5fikjISMnMw19VGTUGRyOQ0DDTVsdLV5WmMiF3oXKsql15FIC8nx8g2jdhzWzQ3o9s15uCdFxSVltGutjVfktL5kpJJZR0tWtWw4pTUPTWnb1vWn75PSWkZXRpWIyUzl1efE9FSU2Fqn1YsOyTWSQ6dbHkblchLaQbH4uGdCdh5mZLSMjo3rY5hJQ2OXBFqdI9JPdh39gmRManoVVLHfXIPvNadE2KvGqaM7NcMj5Uikr5721q0bFCFgLXiBm3fpzE1rI0IWCN93K8JDeta4BEsIhe6d6zD4D6NWOwZJsRmtU1xc+pN0NKzvJfiu4P97HnxIkaG/J42tQtNm1jj5hpGcnI2FhZ6+PnZ8fzZF1ZKG4ORo9vQq09Dtm+8xo2rQjDnFWhHFStDQnxP8vZVnGh4VgxHV0+T5T4nefXsi8htWT0CAyNtDu+6w7ljT5CTk8M50I5a9c2JiUqWgfzadqvLBGnY3Z71V7n+zfa9YgTWNSoLgN7CQ3x8FYdWJTV8N41FR09TrJ+8jvH0zkdhRd0yTgbye/kgkpWLBaZ/8MQO9BtdMR05uuU65/YJUeLitaOoYVsBVnt09Q0bPcQH7uhFfeg8uMIqDrDd9xgPL4n8KM/QqRhb/nhDeP0gghWzdonXndaNfuM7/nQdpydl4Tl0Nfk5BdRvXYO5a8b86apiu8dh7p5+gpKyIl4H5/wl6+bVnfesnyfWEmO87f5UUPpndTD4JPdOPhawssPz0TfR/etv+n+ovb5HSIhMRN9Ul0nBP/Np/riSkkgkf9ncbN68+U9XU08uv2BOG3cSo1MwrWrMqrv+/2pz8+DsE3yGLKekqIQ2A5vhfnDe39ZBSSQSdnqFcWSVuOHOWjOWbiN/r4N6dfcDvsPXiPylQc2Yu278LydFxYUl+Diu4/1jkfodeOxnjpJEImGH7zHOhd6S5ktNpFnXHxvQN48+4TNmE6XFpbTubcuc5Y4/vN7h9Zc5tE7cLGcGOdDxO4fh/UuvWD5/v5Rg3JZRThVTn90rLnBW6n5asHw4TTsIgnLkm3i8Ju+kqLCEZh1qsWCpmOLGR6fiNnEHudmF1GlcBY81Arj37MEnghYeFM3XgMZMdOqJRCJhhddxHn4jp68ZSdVaJjy8/ZFlXuLA1X9ocxwndSTmcwruc/YJynEzaxb7DSYhLh3XefvJzy+mQaMquPoO5u3rOHylGsQuPeoxdXY3Du67T9ghKaNmUR/qN7Bg8eKDfP2aiYmJDsHBw7h6/S3bd4oD6/RpXahT15wFbhWZgG4L++IVdJIP0rXTMn979h19xI17H0Xz4jqQu4+jOHVJ4Eg85vXm6etYTl0WcgWPOb24+uADN6RyBv/5fdl14oEsgsFzek98N1VEMAzo3KACX9K9EV++i2BYPLozyw5eJ69ARDBUMdHj5N03yMvJMc+uHRtO3yO3sJjG1cxQV1Pm9uvPqCgp4DLsR+PF7+o/3eAYaKpTWUODD4mp6KipUt3AgKcxCagrK9G2ahVuvI9CUV4euyb1CHsorOFj2jVm962nYlrTpA5XX0SQlV9IPQtjlOTlePFFNC32reoTelUIcmf0bs2eK0/ILSiiYVVTDLTUufFCdKlO9h1YfuimGOU1qoacBG5IO1jPMd1Zuu8aOflF2FY3pb2tDesPSwmRwztw79lnwt/EoK6qRMCsvizdfkWMCE0EyM91mYikb1zXAsf+zXAJEeC+Di2q07dzPVyDTgrXUqsa2PVuxGJfAfJraluFWZM64+pzjMRkAfIL8BjE1l23uPsgEiUlBQK8h5CRkceSEKnGZlBTBvZvjK/vCSIjk9DRVScwyIHkpGz8vI4LsXD3eowZ355Tx8I5vF+KLHftR6Mm1mxdd4Xb32zkwQ5UsTZk5/qr3Lj0GgUFeTxDHLCuZsyNi6/YIRXgTVvQk9Yda5GemoP7jD3k5hRS29aChf4C5Hfp+BP2S0fDszwG0Li1EFBuX3qO+1ffipv8htGYWwtk/uHN17kY9lisgVY5UkPquIj9lIzfVBGy17ZXAyY4V8Qc3D3/gh3SoLtJHgNo1b3iAzvqbTxB03YK/sfQlgyb9aMe48yuWxyXTnacVo/+wfoKkPA5Wca6ad2nERN9fl4LFBUU4+O4TqZ38Nw7/U/XTRd33+LIatFozt84gXqtf0/TTfySgt9wIdTtYNeCYQv7/fb5f6zHF58T6nUYgJlrxlOr+d/PkPlf6svbWA4vEyfe2esnoVHpZwF2RETE31pJAaxcuZLo6GgmTJjw09fKy8vZH3gM114B5KTnUqt5NVbdDcCsmskvftL/Td0/HY6v/QrBPhrcHLf9c/6RyHuP/zEOLRXX6oyVo+k76fc3inePIvG0W0FRQTHNe9iyePvUH9Lrv1VJcSkBYzfy/NZ71DRVCDgyF+tfBL3uX36WsLVicjR7+UjaD/wRDBn5MgavkRsoKiimSac6LN44/ofJ1Lm9d9kZJP7+413703tkxSHj2Z2PBM0IlXGlpvpU8KiObLnOQSlba6bfYDr0bQiI97X7+G1CZ9fUGte1I1FUUiDlayauE7aTkSoy6Hw2jkFVXZl3L2Lwmb2XkpIy2nSty1xvMenZuOQc16SHKLdlw6jfxIpXT6PxX3xIcMB61mfagl4kfc3CZeYesrMKqFHHFK+lQ8lMz8N5zj6xkq9ZGZ+lQ/kSnYL7okMi9LJNdRa49uPMqafskAJMp83sSrsOtXBzDeNzVAr6+pqELB3Gi5cxrFkr1lkjHVvTsUMtFrqKgM2q1ob4ew0mePUFnr2MQV1NmaV+9ly68Y5TF6QHZqc+fIpJleUOOk3pRmJqNnuOSZuqyd14F5XM6WtCR+M1qzenb7wm/LW4B/nO7svS0OskpuVgWVmXcQNb4Lf1gkgKb12bMjk4f/89CvJyuIzpyoYTd4XpxtKIFnWrsPuSMMTMGNyG3VefkpFbQE1zQ6qaG3Dusfi+aX1b43vo8m+v2+/rP93gNDSpzMNoEbXQvroVNz6IhmagbR1OSkF+o1o1ZN9doU8Z2qI+xx+9EeO02tZExKfIQH61TA25/lqA/CZ3a86mc+IicezQiMtPPpKUmYuVsS6ta1Xh8E0pyM+uA5tO3Ce3oAjbqqbUszLm8LXnALiO6sq2Uw9kF8voXk0J2lEB8svOKeTC3XcoyMvhN6MPoccfEvElBV1tdfxm98F7zTmZsn3BxC64LDlRwTAY3YHFgcdlYL+5Ezvj7HeM9Iw8bKoY4LmwH4HLzsq6/BA/Oy5dfcPxb2uoRX2ppKWGh9dRMWZtU4OpkzuxetVFHn/DggfYo6iogJvzIcHDaVwFp0V9eHgvkvUrxYfc2Mkd6dqjPifDHnP0gPRN5d4f28ZWnDv2hMPfVloe/WnU3IZXz77ITkSDHVsxYFhLCvMF6yY5IRNTSz28VzuioqrE0/uRrJZC9oZN6kDPweLD9OTeexwPFT93fqAddRtbAUJguGu5sL5O9RhAC2nIXlZ6Hp4TtguceuMqLFhekV3z/lk0IbP3yk6MA78jEacnZeE1ZjOF+cU0bFuDWUt+jEcIv/aGjW7i5j/Gpf9PrJu87Hy8HdeL9PBGViza+PPJWSKRsGp2KB+efEZTR13qqvr1uunNgwjWzNkFwEiXgXQe+nuabkFuId72K8lKzaFawyrM3zzpH9nBv0YlsWTUWiQSCb0mdKbXhL8PAvxfK9T7MOVl5bQe0IzWA5r98jnVq1f/6ff4tqb6vhQUFLCzs/vl5CY3Mw+vQSHsdD9AebmEXhO6sPyGD7pGlf7vfpk/1N2Tj/EbupLSEiHSdv0nCejA3sDj7As8AcCUEEf6T/2Zev19vQ//hOvAZeTnFGLbvvafpsmXlpQSNGEzDy8KPY33gVm/hESGrb3IniWi+Zzka0+v0T9Ojr58+IrbsLXkZRdQr2U13LdP/qFRv3LkEetcxPvFYUZX7KdXcH7ePfmM78RtgrXTswHzlg6TvVfO7L3H9m/4h4W96T1CrBqT4tJxHbtVhGTWNcN7y1hU1ZTJTM/FdcIOkhMyMauij/+WcWhqqxH1IRGPaaEUFhTTuFU1Fgc7oKCoQOj6q5w+9FBMhvyH0KJ9TSLeJeA5tyJfaoH3IDLS83CesZvUZJEvFbDakaKiUpzn7CUlKRtzS30CV44gPTUX1/kHyM8ron5DS9z9BnPrxnvWrhKfmY6j29BvQGO8vY7x5o0wdCwJHkpMbDpBwWfEwbtfY4YMbsoC18N8TcwSUgI/ezZuv8Gd+xEoKykQ4DmIp69j2BMmPnfnT+tGXmEx63beAGDyyHYoKsmzPlQ0VVNHtiM7v5B936jEk7vy4NVnrj8Skxzvmb3ZFHaHz/FpGOpqMtuxPT5bLojooUY2mFXW4dAVcR9dMLIToRfDSUjNxsJIhz6t67DhpNCeTujTnDMP3/I1PRtLIx1a17Pi8C0B0p3SpxVbLz+isKTst9fu9/WfbnCufhAgv4G2tTn9XNjEhzVrwKGHogEZ3qIBhx68koH87r6Plk1rykrKeRefgq6GGj1ta3L0gWDlzOzVii3nHwqQX+MaRMWnEhGfir6WOsPaN5QlhU/v35rjt16TlJFDFWNdBrSpy7qjUqX8kHZcuv+ejzFChLVoRCd8N1+UCbZsTPXYeVJ01YvHd+Xm4wgevoxGVUWRoPn9WBN6k8+xaRjoauI/rx++q86RmJKNuYkuXnP74Ln0NEkpOViY6uKzoB++y88SHZuGgZ4mwZ5D2L77Ng8eS4PWvIcQEZHERimHYtrETjSoZ4GL22FycgqpU9sUV+d+HD78kHPnBJTK3X0g5uZ6uC46RFpqLlbWBnj5DiE6KpkAT6mwrm9DRoxuw4M7H9koffOOm9KJLj3qE34/krVSkeCoyR3o1seW+Jg0fJwOiNNT59pMmttd6Fdcw4h4E4+2jjr+60dTSVeD6Mgk/Ofvp6y0nE69bRkzS3yYP7j+ji1Sh8K4+T3o2EfQi98+jWb5IvHhOXBsW/pJc6SKi0rxnbJTsDIs9PDcPA4Vqfg3KTYNnwnbKC4qoVnnOj+wbgrzi/Aet4XUr5lYVDPGddOPrJvodwk/aAyGzv7RRlxWWkbQpK3EfPyKgYkOXnum/xKZf2jlea4feShcMLunY2rz63VTakI6/o5rKS0po03/pji6/D4Zurxc2Ic/v4pFx0gbr79IE/9jFeYX4euwkpyMPGo2q8qM1eP+9vf+r/X51RduH3mAnJwc4/yH/+nzzM3NmTVrluyxgoICW7duZevWrShI86Z+t5aKevmFGc0Wy0Iz522ZyvytU/8y+uH/pa4fvCtrbjoNa43z7ln/qLk5EHKKPX5CMzIpaDiDZ/X87fM/Pv2M64Bl5GcX0KBtLXzD5v1SN1VWWkbw5G3cO/NMcGb2zcS27c/hmSe3XmO7jyAsj3EdwJA/RIokRKfg6rBGNPMNq+C9Zxqq6hWvd/vMM1bO34dEIqH/uPaMda6YJH56E4fnmC0U5ovwzMVrR8umPlePP5Hlww2d3gWHaaLJTkvKwnn0FpmJwG+7yJfKzS7AfeJO4j6nYGhSicAdE9E10CIhJg23KTtFindDS5kD80joHQ5KIaQz3frRqVcDYj6n4DZzj0BRNLHCbYkD+fnFuM3ay9e4DIxNdQhaN1IAC+fuk+kNl6xxpLiolMXz9pGZmU/1mpXxCxnK82dfCA48LRqXQU0YNaYtS4JOEx7+GVVVJQKDHMjLL8LHryJfauKEDjh7HpHlSy0LdODg0UeyfCkv5/7EJ2aycaf4u08e3R5dHQ1CpPlSwwY0xdJMl2CpMWXEgGZoa6uxYZ/Qj053bMeXxAxOXxeTHI9pPTl08Rlvo0SsgsvEbvhvv0xeQTGNaprRpJ4lW06K+94s+7acuf+WqAQBqR3Zoykrw8RKbWinhjx4H0PU13SMdDTp26oOOy6JhmpCz+YcvPOcnIIi6ln+fq3+ff3/RIOzYcMGrK2tUVVVpUmTJty+/ftArZs3b9KkSRNUVVWxsbFh06ZN//NrOzSpR9hj0ZzYN63H0cevRY5UgxpcfhkhoHxVLYhLyyI+IwdzvUpY6+tx78MXVJUUGdW+EduvCfvfpK7NOXDzObmFxTSpZoaynDwPP8SipqzEjH6tWXlU/Ie0b2/Li4/xfIhNRldLjWn9WxG8V4xQHTo1JDo+TYap9p7Qk6CdV4RDqpoJvVvXIWSneO64AS1IS8+TXWi+M/tw4tJLnr4RWR/BiwawcfdNPkYJW1+wyyBWbrkqexziPpjNoTd59ioGNTUlgj0Hc/XGO06dk6bALuxHWVk5AVLR8eD+TejXuyFuHkfEycBUB39fO+7d/ch26fh0xsxuNG9hg5/XcaI/p6Cnp0HAkqHk5xfhvvAQhYUlNGluw5yFvfj0MZHAbw1Pv4YMG9OGz5FJBLiEiZVWH1scJ3YgOzMf99l7hduprhmLfAcjLy/P9pUXuX9dsG68Vo3A1FKf9NQcPGfsJj+3iHqNrZgnzZWJeBPPEidx4u5p10zGukn4kobP1FBhE+9Sh4nOgpcikUhY7XKYt0+i0dBSxWf7BFlqeF5OIV7jtpKZmotNHVOc11V8qJaXl7Nszl4iXsairauB967JMpEyQGZKDt6jN1KQW0j9VtWZtfRnweY2ryOEXxVIeq+9M34ZeHn/3DNC/cU0a3rw8F+mMoOUUjt8jUhermPOwi2T/tJtc3Dpae6cEBwdz4Nz/pFjSiKRsGb6Nj69iKaSoTaeh+f/pUPr/6K+raba27fEqq6FDNwXF/ez40JNrcKy/G1dNWHCBKKjo7l+/fov11Ll5eUcW32WWS1dSPiUhHEVQ1bd8aP3xL+vB/hf6vz2aywZLVhFXR3bsWjXzH+Utr5/yQl2eQmr9Xi/odjN7f3b50c8j8alfwh5WfnUa10D3yPzfpkMXlZWzrJpO7h9IhwlZUU8dk+nSeefbebnd99mo4vIWxvu1Ifh839MsU+OS8fFbrUsGdz/wEwZhRjgweVXBM8MFe/b4a2Y8t3qKTYyCbeRm8jNLqBuMxs8toxHWUU0fncvvGLFQvG6A8a2ZYwU6JmVnofr2G2yBPDA0Eno6GuKSfDUUFl4ZuD2CRiZ6pCSmIXzpB1kpOViXaMyPutGo6quzPlj4WxbIT2Yze5GH/tmJH3NxGXGbrIy86lRxxTvFcMpL5fgOW8/nyOT0dPXZMl6EcvgufAgnyKS0NHVIHiNI0rKiiyeu4+UJJEWHrh8OFGRSfh4HBONS7e6TJ/VjTVrLnHz5nsUFeXx8R2CsrIiru5HKCoqpWWLqsyb0wMPv+O8e/9VBB4HOHDp2luOnBTrn0XzelFcVsYyaTMzfHBzatWojPdykSfVp2t9WjS2xnvlWVm+VM1qlWX5UiMHNKNMImH/GSG/WDShC1cefp8v1ZOQ0KtkZOdTs4oRvdrVYeWBGwCM7dOMB+9ieB2VSCUNVaYObMPSQ8Ih1adlbaJT0nkdLb42oksjNpwRU50RnRpx/ukHUrPzqWaiT7Oafz889v/rLqpDhw4xd+5cNmzYQJs2bdi8eTO9evVVWg/fAAEAAElEQVTi7du3WFr+/It8/vyZ3r17M2nSJPbu3cvdu3eZPn06hoaGDBnye1DZH6t//VqcevaOcomEnvVqcOVlJIUlpbSuZsn7uBTScguoUdkAFXkFHsclo6OuSuc6VdlzU0S5T+vekg0X7ov8jJb1uPUqiqTMXGyM9bC1NGHX5XAU5OVwGtyeNcfvyNTgpSWl3HvzBRUlRZyHdyZozxXxtYZV0dFUI+zKc+Tl5PCe2JNNR+7K8jqm27VlwYoTlJVL6NmmNhbGOvhtFGsVp3Gdef8piYu3xdrKf34/zl59xb0nUSgrK7LEeSBHzzzl/rfHroO4dP0NF6+LlFe/xQOIiU1ns7Srnzm5C9ZV9Jk+d4+YmrSqztSJHfELPMmHD1/R1lZjSYADMTFphEinLfb2zRkwoDErlp7nifSE4b/EAU0tVeZNCyU9LRcrG0M8/AaTnpaL+4KDFBaU0KiZNbMX9SY9NRf3OfvJzyumQRMr5rr1o6SkDG+nAyTECq6Ez8oRqKopc+bwI45JSZ9OvoOo26gKhQXF+MzeKxsve64WJ63UpCx8pu+mqKCERq2rMcNzAHJycuRk5eM1eQfZGWJMvXjFCJnG4MC6K1w78RR5BXnc1o/Gspo4NZSVlrFkZihfPiaiZ6SN987JP8D6doec5e75FygqK+CxfSKmVoayrxUXleA3YQtJsWmYWhvisWPyT2P/83tuc3yzaGAXrB//Szv45zdxBE/eJlZjEzvR5xfCY6gI0Pz45DNaehp4H5rzAwL/VxV++SW7paftmavHUrfVP0u9vrjrBlf23UZeQR73A3MwNP/7zdH/Wvk5Bdw4KNaO9gsG/OSSsrOzw9bWloKCAlJSUtiyZYvseyUSCVOmTKFHjx6Ym5v/cmrzNSqJpePX8+qWWFs369kQ5z2z0dbX+ld/r6OrzrJ5obBK953SjZlrxv0jK/jegOPsDRBN8Dhfe4Yu+HPYIUDkiy849wshNzOfuq2q43d0/i+vl7KyclbO3CmbHrrunErzXzj7rhy+zxongS0YMr0bo//g7Ev9momz3WqhH7MxIuDQrB8chE9vvSdgyg4xiR3UlJlLhsp+/4ToVFyGbxAgwXrm+OycJJsyht98z5I5Ihm8u31zJkut3bnZBbiN20pMZBL6xpVYsnsyBpUriTDWGbt5++wLmtqqBG6fgLm1IRmpuThPqlhXBW4eh1YlNa6ff8kaX9FQ249ty9AJ7UlLyWHx1FBZeKb/mpEoKSniMW8/717FoamtStC6URgYaeO9+DCvpe7RoNUjqKSjwYJZe4iLTcfIWJslK0eQnJyNm4vg2rRsVY0Fi/uwbesNzp55LuIx3AZgZKTNXKd95OUVUb++OW4u/Qlcdpanz7+gpqZMSIA9T59/Yec+8d6YPbULujoauAQcE4njPRrQvlV15nmHyUKV+3Spx3y/IzKtZrsW1XFZdlJMkLo2wNhQm2XSA/Ysx/a8jEzk5hPh6PWa2pPVB2/xNTUbC2Mdhvdugs/2iwI828mW6OQMHr0Tzqs5Du1ZevCGeN2GVckvLeGB9GsTejVn9Yk74jVb1eVBRAxxaVmY6WlT39qEHVcf//UbQFr/X29wVqxYwYQJE5g4cSIAq1at4uLFi2zcuJGgoKCfnr9p0yYsLS1ZtWoVALVr1yY8PJxly5b9aYNTVFREUVGR7HF2djYAdyO+UFAmoYW1Be9ik8gsKKSOqRFFRaV8TsnAWFuT2pUNOfX0HcqKCgxv1ZBNl8TOcnK35uy6Hi70OHWsiU/J4mOCWEUNbF6XVSfEFGrOgHaEXgonK6+QelaVqWVuxJbTD0Qmx8gurD16m6y8QupaV6ZdAxsCdopO2cmxI+fvvOV9dBI6Wmp4TOiOx/pzQjRc25zebevgFCzGryP7NUNZUZGdR8XfbdHkbkR9SeXERSEe85rTm9fvEzh+QUxmPOf2JiYunV1SXLfT9O6oqSjh5iN+nv3AJnTrVIfpc/eQnVNIrRomeCzux/YdN7l7V7Bu/HwGI5FI8PSUJti2q8nkKZ05uP8+58+KN6Gb50BsqhrhvvAQnz+JE0zA0mHIycnhueAg6am5VLExxDPQjtKSMjznHyA1ORvzKvp4hjigqChPsPtR3jyPQUNTFb/VjujqaxJ+N4IN0r36mJld6NirgZicuB3lwzdn1PrRaOuoU5hfjPe03aQlZ2NZ1Qi3VY4oKinI7OBxUSkYVK6E9+axsrH4zTPP2SPVCc3wHUyjthU3+a3+Jwm//g4VVSW8tk/E8Ls042tHH8scHnNDhv/A5pBIJKxbdIC3jz6hoa2G9+5pP9nBX979wLqFIr9q5KJ+tOv/s2MpKy0H7xHrKMwromH7WkwJ/HPy7vENl7iy/65o0kJnYGL969ykb5X0JZUlYzcK3cz4jvQa1/G3z/9jxUcmsmHeLgDG+g7FtsPvwXH/V/Xm3gdKS8owsTFGo7IKk1v86JIKCwsjLCzsT7+/rKyMyMjIn5qb8vJyzmy6zNbFeyjMK0JVQ4XJS0fTd0q3f6RH+qclkUjYF3CM3T7i72zv1I+JQb+2Zv/Z94f6HOH/w95fR1W1tu3/8EdaCQURBUFRwcDCxkKxUOzAbkVUVERFutvu7u7A7u4WWxAFFOnuWO8f13SpW7Z77/u57+f5vuP+nWPssQcy53It1zXnPK7zPGJvmHgITwocxtC5vwc33zo32Wk5NGhjQuCRuVTQLP/LcaWlpaxw2sHFfXdQUFTAbfMU2tqY/3LclUP3WDJjmwDhkzoz2W/IT+8/NTEDN9vlxH9MolqNyoQcnIXODxymiLuR+E/cSHFhCe17NWXu0lHyzUfi5zTcRqwmJSED43r6BO6aKjcSfHr7PQFTtwnfmj7mzAoWbuV5OQX42G0h6tUXKlXWIHSHHVUNdcR9wGnvT8ngtevrk5WRi7v9Vj5/TEZPvxIhGyeiravBnSuvWehxWJj+2bZi4uwepKfl4Dp9O/FxIkU8ZM1Y1DXV8Hc+wNNvpqbLR2FkrEuQ12Ee3o1CVU2ZwEUjMKiug8vs3d+7OctGkZtbiKvzPjHmamqEl99A9u+7x4EDgpbgNKcX9err4+i0S4yzTKsS4CcyAm9KXmRBPoP4GJPCyg1CxDBhdHvqmlRljvdBiotL6dKxPv17mjPb9yB5+UW0alqTkYNaMSfgMHn5RbRoXINBNs2YF3qU4pJSuratS1Oz6vivESKFcQPakJiew6kbL1FUKIenXQ+2hN/n45dU9HQ0sB/SDr/NIh/Ruk098ouLufI4Ughrhlux7NANcguKaFnPEA11VU7cfYWykiLT+rZl9YnbFJeW0tXclMiEFCLjU6iipU7npnXYdf3J37oGvtX/6YiqsLCQR48e0aPHz+qSHj16cPv27TLPuXPnzi/HW1tb8/DhQ4qKiso8JyQkhIoVK8r/MzIS6pjU3DzqV6tCQUERMakZGFTSxEBLi8cfhTS8Z+O6hD9+TblyYGfVms0SchzWrgmnH70hPSefhkZVqaimxr13saipKDHV2oJV4QIxj+3WgguP3hGXnIGhbkX6WZix4YQAIY6DO3L4yjM+J2VQXbci43u2ImyHQMaje7bgY1wqN54IOV3ANBsW7bhMUlo2xgY6TB/aAc/lJ8TCs6hLq0Y15C3EcYPaoK6mwpodohMzc7wVpaUyVm+TRkjjO6OprsZCyQdj9JA2mDcywiPgqPC6sTBh0piOePod4fOXNKrqaRHkO4hz5yPk3gouzr0xMqyMu9sBsjLzqV9fH1e3vly7+prNG64CMH1mdyzambBy8Vke3f+AmpoyAQuGUVlXk0DPw3yQLMYDFw1HrbwKIZ5HJNO+CgQuG4WmVnl2rLsitzb3WjiMmrX1+PDuqzydt3u/ZgyXRk07Vl3k5oXveTDVa+oKz5f5++VtZ79141DXVBOeGAHHeXo7ErUKKviun0DlquLm+ubpJxbPE63tQZMssRnx3Rr+9K5bHN8imVUtHfWTHPz1o2iWOu8R62NmD7oO+TnJ+fDai1zYf1c8FDZM+sW19eunZAInrBOxEP1bMsr51wdSSXEJwRPWkxCTjH6tKrhvnfqnXIynV1+x0W0vAFOCR9DM6vdgo7CgiMBRK8lKzca0eS2mLx7z2+P/WMVFxYSOXUl+TgFNLBtgO/efKa7+JxVx/RUAjTrW/1OVlI2NDTNnzmTq1KllEopNTH5WeH16FYtLjwBWztgkPlMnMzY8X0zfqT3+4+Bmo8suObgZ7z/sH4ObLV4H5ODGPmzkX4Kbd4+jce0TRlZqDvVb1SHo6LzfgJudnNt5UxhdbphMhzJA+NUj91k4fYsgYI/pyLSQ4T+9//TkLNyGiPwpveo6hB76OSvt9aNofMatF9LtLma4rB4nH8ulfM3AdfhqEj+nUb12FYL3TKei5OP04kE0vnZbKCwoxqJbQ5wXj0BRUYGC/CL8pm3n1eNPaFQsT/A2Owxr6wnDQZcD3LvyGhVVJXzXjqN+0xrkZOfjOW070e++oq2rQeimiejpV+Lhrffye0+3vuY4uPchJzsfD4edchPRsLXj0K6sQZjXUe7dfIeKqhL+S0dS16w6i4LCuXn1DcrKiviFDcW0vj7ergd4LZGFw5aNREFRAZe5e+UhxAEhQzl58ilbv0m/p3fFwqIOzvP3kZSURQ2jyoQGDWXbzlucuyiM/Xzd+5OdU8CC5aK7bzugJW1b12G+/+Hv4ZnD2uIceJis7Hwa1TNg2rhOuIQclf88aXh73BaFU1BYTNtmtejesQGB60Q3ZnAPc5SUFNh3VlilzJ/QjSNXnss3406jrAjafpGCohI6NK2FdqUKnLgt5N/zRnRmbfhtMnLyMatZlTqGupy4+wqFcuWY0b8968/cE1OUBsZkFuQT8ekrWhVU6dOmgRzczOj1555Uf6z/0w5OcnIyJSUlVK36M2moatWqfP36tcxzvn79WubxxcXFJCcno6//q0zTzc2NOXPmyH/OzMzEyMiIaloa6GtqcvXNBzTVVOlQx5iD9yNQUlBgdDtzNlwS3JqJnVqy89pjikpK6NKoDq9jE4lNFi2zNiZGbL34EIVy5ZjTryMrj9+kuLSUHs3rEpuQLp8pTuvTFr/tAoSM7NqMF1HxRHyIR6uCKvNHWuG1/owALC1NqaxZgZWnbggezJSe7Dn93evGZ2pPPJefJCungEam+ozu24pZ/ocoKSmle/v6tG1qzGzp5jjEphlmJtVwlGbwg3qZ09rcGAeXPXIUP7R/S2bM201GZh71TKri4dybxSvOEfEyDvUKKoT6D+H9+wRWrhbvfdIESzq0r8u8uXv48iWdatUqEhBoS1RkAgskCecg21YMGNSS/btvczpcOCa7+w3EtF41Vi06K3Ywqkr4LxxOVf1KrFtylrvX36KsoojvouHoG2pz4eRT9ki8nlnufWjWujYpSVn4zNxFbk4BTVvVYpa3aD2fP/ZYTvab7TeQxpKB17al57lz6ZXgkqwaQzVDcRMN33mb03sFIdVlyQjqmAk306Qv6fhP2UZRYTFtupox0fX7g+HJzXes9hKjm7HONnSUEsXFeWkETN5EcWEJba2bMNb5Z57D/QsRbAk4Boh08BadzX76fV52Pr5jhGLKtGlN5qws28dmk/dBnt14g5q6Kj67Z/ypQV9ibIowZiuV0W1kewZM/71iBmD9/N28e/QBTR0NPPfM/Mek2V2Bh3n7IAqNSurM3+ZQppz4P1UvbgqBQOMODTA1NUVBQeEnkPNH0nDLli2xt7enpKTkl99lpmSxw/cAJ9adp7SkFNXyKkwKGUX/GT3/o+7LIEDiUvsNXNgpHmbTFo9l4Kzfc2Z+LJlMxgbXvRyRvK2mLx5D/+m/j4p480CopXIycjGzMCHwyLxfYhXgO7g5u0MkiDuvm0ynQa1/Oe768YcsmCbAjfWoDsz8g49NZmo2HsNWEvMunsrVKhJy2PEn76e3Tz/hOXoteTkFmHeoi+eGSfIxbnpyFm4jVxP/KZlqRpUJ2euAdhUxJnz7LAbvSZsoyCuiZad6uK0cg5KyIoUFxQTO2MGzO5GUV1chYNMkatXXF5/H+yjXzzwXxn8rRtOkdW1hADpjJ28j4tCqVIGQjRMxqFGZiEcfCZgjRA4dujfEyXcABflFeM7aTeRb4VwcunYcevqVWBoYzvWLL1FSUsArbChNmtdkxYLTXJIM+jyDBtOkeU383A/x9NFHypdXIXjJCDS1yjN75k5SUrKpVbsKIQuHc/36G9asFurZ8RM60r1HY5zm7uHzlzSqVavIwgXDOXriMUfCH1GuHLjN642KqhKuvsIRuVf3xvTu2YRZ7vvIyS2kaUNDZkyyYo7fQVLTczExroLz9O44Bx2R/zxrYhecw4TKtmn96tjaNMNlcbjoxrRvQPWqleSBzo6jO3HtcaQ8/Nl1QjeCt18U3jb1DKlnrMemk6LzNHtoJ7afe0RyRg51DCpj0agmm8+KZ+z0/u3YdvGhsFKprY+SqgI3Iz5SXkWZEZ3MWXdevMaIDubsufX0ry8Gqf7PR1TALzdzmUz22x1LWceX9effSlVVFdUygvHaGBty6tUHlBQVGNyiIdslZ+KJnVqy7ZogZQ1u3YhzT96RlVdAk5rVQCYjIkagymHtmrD0uFA+OfRux7bzD8nOL6RZHQMqa1Rg39WnKCspMn+oFQv3XhFmfc1MUCxXjkuP3qOkqID3eGsW7LoiSMR19OnS3BTvdZIR13BLHr+M5a6kkAqe1YfFWy/zJTGD6noVcbPrwdyQI/KFOGGQBTO894lOTKs6DLFpxjTXvRQWFtOuZW3GDGmDg8teIRevb8C86d1x9ztC7Oc09KpoEuI7mP2H7nPxyisUFRXw8xxIaUkpAUHHxcXSswkjhlsQGnKCly8/o66uSlDwUPLzC/F2PyhcODvUxX5aV25ee8PmtaI9Os2xB2071OXogfucOPJQBMb5DaSemQEnDz/k6F6xeJ19B2LWxIgXTz6xTAq2Gza+Az0HtKAgvwj/2XtI+pqBobEunktGoKysRMTDaFb4HQNgxJTOdJNSwM8fechBCSA5BQ3GrJngsjy8/pYNkjvohHm9sJBcUPNzC/CdsoW05CxqNzDAZdn3lvjn6CSCp20TLsEDWzJ8xnfAkJ9bgN/EjaQlZVGrgQHOK8b8dEOPeRdP6LStYuwzpgP9JnX+Ze0unrWNj68+o62nhc+ushVTF/fd4ehacaObt3Yixg3KDtAsLCgiYPRKMlKEvHvW8vF/ufu/vO82JzdckjsVV6tZ5bfH/7Fe3HzDvtBjAMxaPQk9o18zsv6TFf8hAYAaDQSHZsOGDdjZ2cnvI39URE2aNAlra2siIyMxMTHB0NCQ4qJiwtecY6ffQbLTcwBoP6AVUxaOxaBOtTL/3n9n5eXkEzRiOffPPEFBUYE566fQY1znv31+SUkpqxy3cXqzUDvOWDaOvvbdfnvOy7vv8RwopOCN2tUl4PCcP+3cLJ+9Q965cV43GSvbX92Pb4Q/InTKJtFdHdEOx6Wjf7oWstJycB+2kg8v49CuokXoodk/cdQiI2LxHLVG5KNZmOCzdYo8siQjNRu3kWuIjUxEV78Sofumy8fDkS/i8Bi7gbzsApq2rYPn2vGoqCpRXFRCqNNuHl57K3LjNkykvnkNEfUQEM75Iw9RUCjH/IXDaGVZj8KCIvxn7/7uRrx+PMYmVXkbEYf3jJ0U5BfRumNdXEKGUFxcio/TXl4/j0VDqzwha8ZiWLMyaxad4fwJMaJ3DRpMq3YmbFx5kVPHhMWGi/cAWrczJdTvGHdvvUdFRYmAhcOoWq0iTrN2kfA1g+qGOoQtGsHjxx9ZIhmk2tq2ZuDAlsx32y9PBl8YNpyLV16xY4+UOj69O1WrVmSe5wERkdO+LqOGWeDovo+MzDzqm1TDZVZP5gcekatovZ1s8Fh4goTkLAz1tXGdbo3bonDSMnIxNa7CpKFtcVl8nMKiYjo0r425mSGhkl3J5MFteRH1lVvPolFVUcJtYncW7blCenYeDYyr0q6pMSslZbAIz3zB52QxsbBuU4/V4eJ929m04eCN56Rm5VK3ui7VdLU4/egtyoqKTOjWknVSBFL/1mZcfBFJSlbeX1wN3+v/FODo6uqiqKj4S7cmMTHxly7Nt6pWrVqZxyspKVG58j8jNIY/eYOiqhrj2jVn+3UBaEa2NefgneeCW1O/Fm9jE/mcmolR5YqYVddj/63nKCsqMt26LUuOCp7NCEtzLj9+z9e0LGrqaWPZsDYrjokvdv7Qzqw7LlpyDY2r0dykOov3XwXAfXQ3tp26Lw8cs+tngcsKIQkc3LUppcWlHL0sHCV9p9pw4PRjXkbGo6muRrBTP4LWnCMhOQsjfW08pvfEJfgI6Zl51KtTlblTuuHkfZD0zDxMa+vhNsMa14CjxCdkUL1aJYLcB7B87SWevYijQnkVQn2H8OjxR7bvFovOaUYPatXUZfrM7cLHxrwms2dZs2vnLS5dkgCQ3yB0dTWYNX07GRl5mNathptnP6LeJxDqdwyZDPoNaslA29bcv/2e9VKmyqTpXWnfqT6P731gtZTnMm6qFZ26NyQ+LhX/efsoLhZy8PEOXeVOoW9fSPyalaPR1CpPfGyq3L24Y49GjHEQipaIB9Gs/BaaN9WKLlIi8Kf3CYQ47hZpu4NaMsROjLdKS0tZNHcfH6T5vPeG8ZSXlCM5mXn4TdpIdkYu9ZvXxDHsu5+NCNDcTdSLOCpW1sBn6xT5eQDZGbn4j19PXrYI0JwWNPQXsLF/+Vluhj8Wyd/bpqFbhtPv+2efWCG5CY+Y14cOv3ETXuu8W04q9to98y9jEWLefmH5jC3itV3706oMsujvKicjl7AJq0W3aFRHOg/9vb/Of6L061Ql+XMqX6K+0rBdPSZNmkR6ejrz5s2jc+fOZRr1fSMUFxYUcXbLZfaFHePz+3gAajepydQl48qMefhPVGZKFp79wnhzPxLV8ip47HXE4h/kWBUXFbNw0nquHryLgkI5HFdPpOf4zr8958Xtd3gOWkxedj5NOgopeFmE4r8Lbm6efEzolI1ifDOsLbOXjS0D3KwgKiKWipU1CDnkiKHJ93t89KvPuI9YTXZGHmYta+G33R41ae1mpefgPnINH9/Eo6OnReg+B3kUSvSbeDzGbSAnKx+zFsb4bJiIqpqyGD857+POhZdCZbluPI1b1xZdrtBTnNonvGvmBA+ho3VjioqKCZq7l8e3I1Etr0zg2nGYmlUn6k08HtO2C+fh1rXxWDQcgMD5+3kmxb8ErRxNLZOqbF19ifADYow/16c/HbuYsXPzNQ5JHl+zXfvQqVtDload+snFvVYdPebN3i0nGS9YMoI3b+MJDgoXyqY+5owb3xE3j4O8eSNc5BeEDuPBo2jWb74KgN2ETjSob4CT2z4RydCyNtMmW+HktZ/k1Gxq1dDFx7kPHgvCvyeDu/TDf8UZYr6IcE3v2b3xXn5KniflON4Kt6Xh5OYX0aJhDbq2q4//OjH2GtGrOYmpWVy89xYlRQXcJ3ZnzZGbJKZlU8tAB5v2DVi0T7y38TatufosiihJGm5r1YSlUmTRqK7NOff4nfTsrETD2tU4fFvI2SdZt2LDxfvCpsXclEcfPpOYkU0tPW1e/3Z1f6//Uw6OiooKLVq04MKFn50JL1y4QLt2Zd8o27Zt+8vx58+fp2XLligr/3M56kiLpuy/81wok5rU5dabaNJz82loqIeCDF7GJVKxghp9WzRg/y3hjzPLph1rT9+hqKSErk1N+JKUwevYRCpplGds1xasOi44OPZ9LDh1+xVxSRkYVNZieJemLD0gugr2/dtx63k0LyXJnPu47vhtOEdBYTHtmtaiWb3qrN4vQNLsUZ158e6z3FQp1Kkf2w7dlQedhc7rz8J15/n0ORW9ypoEzetH0PIzfPqcSpXKGoS4DmDJ2ou8eiekg2Hegwk//YzzlwVBzN+jP9nZ+SxYJnYLI4a2oZuVGZ7eh+RzXl/vgdy4/obtUqqt42xrmjSpQYDvUWI+paBbRZOAEFtysvPxdjlAQUExLdvUZrpjD6IjEwj2+i4Htx3VlpiPyQS6HhBW5L2aMGJiR3Gu0x4y0nMxqa8vl4PvWX+Va2cjRNzC4hEY1KhMTnY+PjN3kpmei2nD6swLEmTCr3GpBDruFq7D1o0YPVPsYjNSc/C13yp3LZ0Z8F1uumv5eW6dixDKp3XjqSrxAUpKSlkwa6d81+i1YdJPIZh7l53j5ikp22bjJKoafucRfMuY+vwhEb3qOnhssvtFMXX/QgTbg44B4BA2ErMfSMnfKiMli4DRqynML6JV98aMcSs7Ywrgwu6bnN5yRXRiNk/9y05MYX4hwWMEYblppwaM9hj42+PLqtWOW0n4mERV4yo4rPjP+92UVcYNBRfq44tY+Z/VqiXGlImJiWVKxXOz8ji05ATjTGawePJaPr+Pp5JeRZzW27PmUdj/GrhJjEnGqbMPb+5HoqmtTtg5z38EbgryCvEbtpyrB++ipKyI2w6HvwQ3T6++wmPgIvKy8zHvbPZbtdQyxx/Azfo/ATcnHhEyeQMlxaV0sW2D04pxP40ov4GbyOcC3IQdnk3Net+pBJ/exuM6fBVZ6bnUa1YT/51T5RuFrPRc3Eau5cMrEWIbus+B6pLzeExkAu5j1pOZlku9pkb4b5lMeXVVSktLWep2kOunnolrc/UYmrU3FVEVS85xTDIQdQwYRNf+zUWnZ/4BedSC/6qxmJnX5OP7BNzst8n9b3yWC5VliNuh7zl4y0ZSv5EhezZfZ79kIDrTtTfdbJpyYNdtdm6Sxo2ze9Czrzlrlp3j7DcllO9AGjYxws15Hx+iEtHRUWfBkpHExaXi7yf52nQ1Y9q0rvj4HeV5RCzqFVRZEDqct5FfWSbRBkYPb0s7CxOcvQ6Sk1uIeWMj5s3sgYv/Yb58zcCgWkUC3QcQsOw0UR+T0KlUgRC3gYStPc/76ER0KlUgYF5fgteeI+5rOvpVtHCb2gPvlSIZvKGJPkN6mhO4QSSD9+vciFLguJQM7jKhG1tP3ycuMQODKhUZYd2cJd+ih7qY8/xDPC8/JlBRXY2x1i1ZLiWDD+7YmPvvYviUmEY1bU06NK7N4dvCsmVSj9ZsvfKQohJhqhuZkEpsSgYG2pq0rf+rsvTP6v98RDVnzhzGjBlDy5Ytadu2LRs2bCAmJoapU6cCgj/z+fNnduwQO9ipU6eyatUq5syZg52dHXfu3GHz5s3s3bv3H//dPRqacjkiipyCQloYVychPYuYlAwMtLVoaFCVg3ciUFZUZHLXViw/Kb6UiV1aceDGczJzC2hirI+uegUOPn6OipIicwZ2JHTfFbEI2jbkQ1wKz6RMqTm2nfDZfIZSmYy+7RqSl1vA5YdiTOVn14slO6+QlpmLaY0qjOzZgnmLhLzTtoc55VWU2C35DnjYW3PnSTRXJbATMq8/+088lKe8hrkNYNvBuz+kwA7i6OknXL39DiUlBYLcB/Au8itbdkngyaE7+tUqMd1xB8XFpVh2qMuksZYEBh/n7buvaGmVJyhwCDExyXI5+NChbbCxacrKZed49EDIwQOCbVFXV2XO9B2kJGdR01gXT/9BZGbm4uW8n9zcQpo2r8lMZxuyMvLwmbOXnOwCzJoYMdujL6UlpYS4HyLmQxKVq2jK5eDXz79gpzTqmuHRl6atalFSUkro/P3ERCVSWU8T3xWjUVVTJjenAL/pO8hMy8G0YXXmhtiioKBAcVEJQTN3yr0vPFePlYONqyeesHelaLnOChyCWQtj+frYvuAU9y+/QkVVGe+Nk9DR+56KfOv0M3YtEYBwRsjQnxRTADsXnODh5ZeoqCnjtXUKlXR/lhR/+ZBImL2QetuMs/zF2RUkw79JG4SMtk5VXDb+uYdNVETMD07F/WnV/a87MRtc9xIdEUvFKpq4bJ3+j3kzN4/eF5JwhXK4bpuBulaFvz7pf1jfUsBNTU3lYyfjhkI08OLWGzmv5ptI4eXLl9SsWZMNGzYweuRoXt15x8Nzzziz6SJZaWIUVdlAm8FOfek9pVuZI5r/VEU9/YjXgAUkf05F11CHkFPu1DQrO/OqrMrJzMN3yBKe33iDankVvPY5/mUH7sH5Z/iPXElhfhEtujbCZ5/jn5r4LZ25TailFMoxf4MdnQf/yrm5Ef6IEDvRubEa0oa5qyb8DG7Sc38FN/UN5L//9C4et+GrJP5ZDQJ3TZP74GRn5OIxei1RL+KopKtByF4HjKSuT9yHJFxHrSM9RXhRBWyzQ11TjdLSUlZ5H+XS0UcoKCrgumwUrTs3AGDXqovysbWDd3+sB7cUnR6PQ9y6+BJlZUW8l4+maevaxH5Mws1+G5npudRtWJ2AVWNQUVVmgdcRbl15LbpCS0bQuLkxB3feZsf6qwBMmd2DPoNbEn7oAZukeIgJ9lYMGNqaTWsuc/ywGNE7e/ajpUUd3Jz38fZNPFoVy7NgyUjS03Px9pIc4jvUZe48GwJDwnn4SNxnQ4Js+fI1nQVLxb1n8IAWWHdvhKPLXjIy82hQVx9P5964Bx/jY2wKVSprEOo5iEXrLvBS2uCGuA9i1far8p+DnPuzZMsVPsQmo6utjteMXvitOUNKeg4mNaowflAbPFaeoriklG4W9dDV0WDzMcl5fowVh64848Nn0Z2Z3N+C4J0X5cngX1IyefQuDnU1Fab0s2DpkRvCZ651A95/SeadZILbq019Nl8Q3a/x3Vqy5+ZT8guLaW1iSEpuLpFfU9DVrIB5ners/v8nDs6wYcNISUnB39+f+Ph4GjVqxOnTp6lZU6C0+Ph4YmJi5MfXqlWL06dP4+TkxOrVqzEwMGDFihX/2AMHICYpjYTMbIyraKNdoTyXXkSiqaZK32YN2HBB8EIcrC1Yd+4uJaUyereoz6N3scSlZGBYuSKdG9ZilTRHnDekE6uO3SKvoIhW9YyorF6ebTdfoqSogOfobizae5ncgiJa1TeioXFVwnaKh7b7uG7sO/eYD59T0K2kzvxxXXFZGk5BUQntm9WmfdPazFsowM7kwW3Jzy+S22W7T7PmxZvPnLwUgYJCOfzm9OH+k4+cuih+9p3bh/cfEtlzWBC5XGb2RElRgTDp4hg2qBVWHerL5eD1TKvhPq8PW7df5/qNt3I5uKJCOflF1669KZPtOnPsyEPCpbmym2c/6phUxd/jEJHvvlKpUgUCFg5DWVkJd6c9JH7NwMBQB69gWwACXA4IXxv9ivgsHIaKqhLrFp/hgbQr8lsqQjXfvfzMIk9B7B04ui29pLiFzUvO8uCGUCj4rBhNZT0t0TGZt4+P7xPQqaKJ9+ox8hb3usBwIu5/oLy6Kr7rJ1BRR8iz30fEsXT+9wDN7kO+2/tfOfaIg2vFDWr2wuGYNjGS/+7T23gWzRb+JAMmd8Z6+M+s/hsnHrN/uVCpOS4ehUmTn/2c8rLz8Ru7hpzMPMxa12FayPAy1+fOkOM8vfYaNXVVvHc5oFGxbACRk5lH0JhVosvTowkjXX/vVAxw+8QjTqwXwG7+5qlU/kHu/ncqJyOXVY5bARjq3I+G7ev9o/P/ldq0aRP29vZyf5sRI0Zgbm7O19hEonjBu1vPOK8bDuXhTXyE/LzS0lLsJtuxa3o4SkXfH+aGdfUZNn8AXUZ1/F8xI/yx7p1+TNDI5eTnFFDTzJCgk67/iLuUnpSJ14BFvHscTQWt8vgfnkvjDr//Dm4ef0jI+DUUF5Vg0bsZHjscyvzcxUXFLLTfzLWjD4SqZ0PZhOJrRx8QNlU4cncdasGcleN/BTdDl8vBTeihX8GN69BVpCdnUbthdYJ2TZOv8ZzMPDzHrBOGmTrqhOx1oGZdwYX68jEZ11FrSUvKwriePiE77dGsWEFwa/yOc2b/PdFxWjiM9j0aAbBv/RX2rBH33CmuvekzwkJ0eryPcO3Mc9EdXjqSlu1NiY9Lxc1uG2kp2dSuV42gtWMpr67CEv/jXD0nVJ2eYUNpYVGH4wfus2mFpGCdZsXgUW05e+Ipq6TYlxHjOzBifAd2brkuz99zdLbBsnMDPN0O8EIKFw5bNIKCwmLcXIUZaqvWtXF168vCxWfk1hyBfoPJyikgIOwEpaUybKybYDuwFbPm7yUlNYfaxlXw8+iHz4IT8pidMO/BrNlxncfSBjjUfSDbDt6Wb4iDnPuzdu9N+TTAf3YfQjaeJz4pE6Nq2kwf0RGPVacoKCymvXkt6tXSY9V+MV6aObwj5x++5fVH4WDsYNuR4F0XBde0uQn5xSXciBABmQ4D27P86A3hxm9eh6SsbJ5Fx6NZXpXBlo1Zd1Y8b0d2Muf4g1dyzmsJ8CImgYoV1OjQsBZHH7zkn4gY/88BDsD06dOZPn16mb/btm3bL3/WqVMnHj9+/D/+e9/GJ1NFR5t2dWqw9/YzlBQUmNCpJavPCNAysUtL9t16Rm5BEa1NjCgqLOG5FKY5rksLwvYLQt/U3m05cj2CpIwcalXToYu5CQv2iN+5jLBi2+n7JKRlY1xNh6FW5ritEc7Ak/tZ8CIynvsvhGtx4PTehG2+QFpmLnVrVsFuoAUzg4RCqmeHBjQ2NWBuiPCqmWTbFlUlRdbtEott1gQrigpLWLdTWnwTraigpoKnlD8zdmhbmpgZMnX2zh/k4B1w8zlM7OdU9KpoEuw7mCtXX7N3n0DnznNtqF1Lj1kzd5CenouJSVXc3fvx6EE0a6XAS7upXWjfsR6b117m1nUBinxDbammX4kwv2O8fiEkkIGLh6OppcayoBM8f/yJCuoq+C8ZSSUddU4fecjRPdLf6T8Q0wYGJCdk4ue4m8KCYlp1rMvkOcKJ9OyRhxyRWszzAodQVwr1277sPPevvkFFVQnvVWPQlWTfp/bc4dSeO3LFVE1TsQNMT84iYOo2CguKadmpPhNdvjusvn8eyzLJBdV2WlesBnwfGWRn5BIweRP5uYU0bV+XyZ4/g4no159Z4ijAz6CpXenyh12vTCZj2ewdfHrzBZ2qFfHYYl9mxs+9c8/Zt0Twk5xWjPvpwfDH11s+cyufIxOoYqjD/I32f6n2Sf6cypKpmwAYMtuGln+j2/PH2ua9n9T4NKqbVmO05z/fXPzT+pYC/k1QIJPJ2LNnD3v27Pn5wHTpvz+UDBmZhemYVq+HuVUj2g9sQ7v+LeXxDP+bdWzVWdbNFe68zbo0wmu/ExqVfg0G/bP6+ikJj74LiHv/lYq6mgSFz8e0mfFvz7l84A4L7TZQWlKK5aDWuGy2L9NioKhQZEvdPvlEjLy22NO+T/Nfjrty+D4Lp20WfLYR7Zi9bOwvYymPYSuJfB6Llo4AN8YNfgA3b+NxHfYd3ITsmyH3hcrJysdr3HrePo1Bs1IFQvc6YCyNtOJjUnAZtZaUhExq1q1KyC57tLTVhfWD/3H5tT4nbCidJe7dwU3X2L5M8P8mzOnJwHEdKC0tZaX/cS6GC1K328LhtOlUn8T4dFzstpKcmEmN2lUIXjceDa3yrAo9xYUTT8WxIbZYWNbj7PHHrFkojfUndmTkREuunH/BUklNOniEBeOndObA7jvs2CyNqmZ1p4dNU/y8DvP40UfUyisTEjYMRSUFnOfsFp1u8xr4+Axk9dpLXP4m+PAZSCngHSiNrjo3YNyo9ji57SMhKROj6toE+wwiZPlZXrz5goa6Kgt9BrPj0F3uPPqAqooSoe4DOHzmsdz8NWh+f3aF3+fp6zjUy6sQ6NSXRVsvEROfRjVdTeZMsMJ79Wly8wtpYWaEhbkxi3aI55rdwLbcfxMrV085jejMgj2Xhay8YU0qVFDlxO1XKCkq4DjEktXht8gvKsaiQU2KS0u5Lzn8j+7WgjXS83Zwu8ZcehFFanYu9Qx00Sivyq23n6igqox1s7rsvysoIlO7tcFxxW+Xu7z+nwA4/1elqqTI0DaNWX9RdDimdG3N5kv3RXutRX1uv/4kdyZuUF2PHZcfoaSgwOx+HVhy6DqlMhn92zbkxYd43sYloaNZAbtebfDZKnbvE21ac+t5NG9iBD9nzrBOuK89JdJV2zZAQ1WFLVfuSiTiXmwPv09UnOjkeNpZ47Y0XCik6lVnRO+WzPA9IAhXHRvQzrwWM7xF92Fwr2Y0rmeAg7vk39LLHItmtZjqvIvi4lKs2tdj2ICWzHTeQ3pGLia19XCf15sVay/KXS+D/YYQG5fCkmVi5zFmVDusOjfAw+MgHz8mU7myBoFBQ0j4mkGg31GhqurdFNthbbhw5jn7dkmuwm59aNjYiL3bbnL5nEgC9wwegmGNyhzZc5ezx5+ItO6gIRib6PH80UdWSaZ9Y6da0bFbQ+Fb4bSHlKQsatSugmuoLYqKCkQ8jGaVpK4aPb0Llj0FT+LS8cc/KabqSd2W5/eiWBtwHIBxc6zlAZpFhcUEOewgKT6d6rWq4Lr8u2IqLSkLf7vNFBYU0bqLGePmfwc+paWlLJy1k8/RSehV18Z1zbifbPOz0nLwH7+e/NwCzDvWY6LngF/W3PENl7l27KFIHt5iX2YMQ0JMCgslANLPrkuZu+dvdWbbNa4dlhxltzugVbls6fi3KikpZcGkdWSlZmPSzJjxfra/Pb6sen3vPeFSTs2s1ZP/ozlM3+r9+/dycPNj9ejRA2NjY9TU1JAVQ25aHhmpmRw6t/+n4xQUFFh3dQktOzT/j/rY/K5KSkpZN3cHx1eLa6znBCtmrZ70j3Klol/E4tFvISnxaegZVSb4pAtGdX+fYH5m21WWzxSme91Hd8Bp9aQyx5GF+UUEjlvL/fPPUVZVwnP7dNpY/wp+Lx+8xyIHIQXvMao9s5eO+UUK7jZ0BR9exKGlI8ZSfwZu6jQyJHivA1o/gpux63j96CMaFSsQvGc6taRzE+JScR25luT4DIzq6BGycyqVKmsgk8lYFxDOiV23KVeuHE6htnSVNiWHt95gi9RNGTurO0PtOolOT/AJzhyWVFQhtnTo1pDkhExc7LbKnYtDN06gonYFNiw9x8lDDyhXrhzOfgPp2NWMy2eesyxIssUYacG4qVbcvPqGMH8hrugzsAVTZnYj/MgjNq4RneCJ9lb0H9yKoIBj3L0TiYqKEoHBtmholcfJaRdZmfk0MDMgIGAwm7Zc4/QZke3n4daPCuqqzPc4KHeVn2ZnxRz3A3yOT0e/WkXCAmxZuv4ij5+L2J0F3oM5fOYpVyRqQoBLP85df82lW29RUlLAf24fjl54xt2nQqEb4NSb1XuvExWbjG4ldVyn9MB37VkycwpobKpPzw4NCNosrvlRvVrw7nMSdyI+oqqixLxRVizZf5Wc/EKa162OYTVtDlx5hkK5cswa3IH1p++SnV+IeR0DNNRVuPD4PSpKikzo2Yp1Z+4ik0HvlvW5HxXL1/QsalaphH7lilx5EYWqkiID2jSSB17bWjRm07WHf+NKEfVfDXDGW7Zg8xXxjzWynTlH7r6QujWGZOYW8PZLEtoa5RnQykwuB5/dvyMbT98TGVX1jCivpMStlx9RVVZk/tDOhOy6RHFJKT1a1qWwoIhrT6NQUVLEZ4I1odsviQCyutXp3KwO7qtEJ8dxRGcevYz5QQ4ukPSXxAyqV62E65TuzAv+7kswaUhbHLz2CdOmZrUY0a8l09z2UlBYTOtmxkwY1o4ZrnuFC7FpNZxnWuMfeoJoKXwtxHcwJ88849TZ5ygolMPbtR/l1ZSZN28PJSWldO5Un3FjO7J2zUV5Onhg0BBUlJVwcttFbm4hTcxrMMupJ69exLE0TACUkePa09W6MTevvmHreoH0Heb2pFnLWjy4HclGSUU1eVZ3Wrc35evnNAKc94u/07oRIyeLm88yv2PyAE2/laNR11Aj4UsagXOEYsrSujGjporgvDfPYljuLUZ4w+w701nyp0mISyVo5i5Kikvp1LspQ+2t5N/7+oDjvHgQTQUNNXw2TJD7fhQVFhNov0UKydRj/ooxPz0Idi85y/1LL1FRVcZr02Qq/WDVX1paygKHbXz9lExVo8q4rZ/0S2bQy3uRbJQ8iez8bWnY5mdzORAy7+CJ68hOz6Vuc2MmB/w5APn4Mo61zsIKf4LvEMzKeL0/1qGlp3kmjb3ctk8vs3v0uyopLmH5dMEd6jbakmZWjf7R+f9qfUsB/xHkKCoqsnnz5jLjFTZv7v6L102rjn+fvPvvrpzMXELHrOTeaXGjnhwyEtu5ff8R2Hpx6y0+Q5aQnZ5LTbPqBIfPR/cHg7yy6vDKs2yQDB/72nVl+uLRZXb48nMK8B+zmsdXXqGipozP7hllZkud33ubZY5SNtToDsxa8vPrpSdn4T50BdGvPlNJV5OQg44/gZuPb77gNny1HNyE7HX4uXPzA7gJ2TMNk0biu034nIrLyLUCfNSqQujuqWhX0RSqqOAThO+UiMNBQ+gujbKP7bjFpgWiCzrKoSsjpnURYCjsFCf33xednoDBdO7VREQt2G0hPla4EYdunIB2ZQ02r7zAkd1itOTk3Z8uvZpw7cJLFvpKQGZwS6bM7sHdm+8J9jpMaYmMHr2bMmNeL86ceMKqJQJcjRrXgaGj2rIw5CTXr4osKd+AwVSpqoXT7N2kp4kOeUjIUHbvucPRY8LXZv48G6pW02Ku237yC4po3bIWc2b2YL73IT7FplBFV5NFAbas23aNuw+lTo3nIM5ff83ZK0JE4junD3cefeDUZWEE6D2rNxdvv+Xa/UhUlBXxd+zDtmP3eS2FZXpN60XgxnPyScLg7ub4bziLTAaDrJqQnJXLlUfCldhlTBe5G3+j2tVobGLAtrPimeowqD3bLz4SsvEaehjqVeLEvVcoKSgwpXcb1p0VodTdmpryJj6JmOR09CtpUt9Qj7NP36GkqMCwDk3ZfkNMawa0MuPE0zcUFv9/aeJ/q/beeiqIU41MePrhMwnp2dTS06FWFR1uvIpGRUmRqT0sWCmFfo21as7pe69JTM+mVjUd2tWvyf5rIsrdZVgXVh+9RWZuAY1r62Nex4DdF8QX4z62G1tP3CM+RcTD2/Vvi996acF0aYJCOTh0QYpVmNqLI+efEvHuC5rqqoTO6Ufo2vN8SczAoGpFvGf0wmvxCVLScqhdQxfX6T3wCAsnOTUbY6PKeDna4L/oJDGfU6miq0mwx0C27LjJvYcCqAR7DyIqKpF1mwQAmT6lC40bVcfT65Dg4dTTx8W5N2dOP+PIEbFQXVz7UquWHn7eh/kan46+QSV8/AeRmpKFr6u0q7Csx7jJnYl695UwyZemv20r+gxsQczHZILdD4kdX19zBo20kCumMjNEMN0c7wGUK1eOg1tvcOW0mIl7LByGvqEO+bmF+DvuJiMtF5MGBsyRFFCpiZkEztotgjK7NGDsLOFPk59biP+07fKMqdkhtvIHyZl9dzm1W7Sx5y8diVGd7/EFGwOP8+phNBU01fDeNPknw7M7556zR+puzQwbhknj75wcgL1Lz8pJxd7b7H8x4UtLzCR4klCadBrYiv52Xcpck5u8DvL2UTQalSrgvnXqn3JD8nMLCBon1FUtuzdm8KzfJ0QDRD3/xA7/Q+J7XzwGQ9Pf7/zLquOrz/Hh+Sc0tdWZsmD0Pz7/Xy1DQ0Pmzp0r//l3id/w1+GZ/5v1OfIrjh28uHf6CSpqynjum83Qef3+Ebi5c/Ixbn3CyE7PxczClEUXPH8LbmQyGVt9D8nBzRDHXjgsGVMmuMnOyMV98FIeX3mFmroqAQccywQ3J7ZcZcnMbYL/Mc7yF3CTlpSJ6+BlREueTqF/6Nx8ePUZl6Er/xTceI5Z+zO4ka6xhLhU5g9fS0JcGgY1dQndPRUdPS1kMhmbwk5xbJvYfM4KHIy1reDRndh9h/UhYgM53N6KUZLdxMZFZzguAZbZfgPo1q8ZaSkic+rzpxT0DCoRtmkiunpabFtziYOSMmqGa2+s+zXj5uXXhHodlt/LHObb8PBuFIEeh4T3TDcznNz6cOHMc5ZJ4Grw8DaMmWTJ0kVnuHhBdLW9fAdS01iXeXP3CmO/WlVYsHA4h48+ZJ8UyTB7ljW1aunh7HGA3NxCmjWtgetcGzz8jxL5IREdbXUWB9qydd9trt1+h7KSIoHu/bn5IEoey+M2sycv3n3hiPSzu0NP7kV84vzNNygqKuA7y4YD5x7z7O1nNCqo4jPDhrBtF0lMzaamgQ5j+rYmcNN5MTloW5+ScjLO3BF5h86jrVgXfoeUzFzqGlWhbaNacnBj38+Cg9efC1M/fR3MjKtx4p5wLLazacPG8w8oLC6hQwNjPqdnyEnEresacfbpOxTKlWNkR3N23hQbgl7N6nLpZRR5hUW0qlW2B1hZ9V8NcLLyCmlSoxrFRSW8/pyEtnp5bJrV48BtMetz7N2BNaduU1xSSndzU2IT0nkTm4i2RnnGdWvJymNi8U/r05aTP8jBR3VtxhLJ68a+f1vuPv9IRFQ8WuqqeE3sjt/6M+QXFtOmUU3aNTZm+S4xXpk+rCMfY1M4d+s1iooKBDn2ZW/4Q56//YJGBVXCnPuzfMtl3kcnol2xAiEuA1i64TLvPghCWaj7QDbvvsnDZ58EocxzILfvRXI4XHj8uM/tjYqyIgFh4SJsrVdTBvRpRmBQOJ9iUtDV1STQbzCvX39huUSSHT+hI5aW9Vi+5CzPn8VSQV2VwBBbVJSV8HY5QHp6LnVMq+Li3Z+M9By85++nIL+I5q1rM3VWDzIlxVRuTgENzWsw07U3paUyFngd4VNUIjq6mvgsHoGqmjL3rr1l6wrB7Znm0pumkm/FEu8jRL0RbqHey0ehVl6FwsJiAh13k5KYiVEdPeaFDUVBQQGZTMZS94N8eBNPpcoaeK0ZKycbv3wYzRof0e0ZM8eaNl2/OwpfPHSfE9sEf8l52WgMa38HPnFRCSyUeDX9JljS7Q8xDI+uvGL3ItHFmrlgBLUb/vzQLSkuIcRuAylf06lRT5/ZS8eU+XC7duQ+4RsFEdJ53WSq1fhz0um6+buJefMFnWqVcF4/5S95N0WFxSycvJ7iohLa9mlOj7GWvz2+rEr+nMp23wMATAoeSaUqWn9xxr+3Ro4cCYCOjs7fAi2GhoZ07tz5T0HQ/0Y9vhTBrHYexLz+TGUDbRZf9sVysMVfn/hDndp0Gf9hyyjML6KNjTkhp1z+1MUaxChsheN29i0SI5SJfrZMDhxW5ppLT87Cpd8iXt2LFCOhI3PKTKY/vPo8q+cLvtNA+67MXPSzQ3FqYgYug5bx6a1wKF5wxOknKXhkRCyuQ1cKtVQTozLBzZvHnwS42TtdDm6+xqYwf/gaEc1grEvY3mnoVqsoBzdHJG7LzIBB9BomJOyn9t1jTaAYZQ+168RYR7Hx2bL0nJy/5+gzAOuBLUlPycZl8hZio5OpUq0iYRsnUNWgErs2XGXfFnE/mD7fhr62rblz7a3YqJXI6GrThNkefXn6MBpf1wNC9WRVH1efgVy9+JLFIcLPbMCQVkxx6Mqq5ec5e1qMnNy9+lO3vgFz5+4hMTETIyMdFiwcwekzz9khdaIcpnWlUSND5nnsJzu7gEZm1fFy7YdPcDiv38VTUas8CwNs2Xf8IReuieeFn0s/nr36zIET4n7vPK0HcQnp7A0XoGPelO68jk7gxOUIFMqVw9uhJ6euv+TBCxFy6etgw7JdV/ksGclOGdKOgI1nBTG4pQmVKlbg6LUIypWDeaOs2H72AQmpWRhX06Fbq3psOCl4lBN7teLMg7fEp2ZSQ68SbRsac+imeKZO7tWGHVcfC6Biakh2USGv4hKppK6GVWMTjj0QsSsjLc3ZfesppTIZ3ZuYcjcylsz8AhobVSW/tPhP1/4f6796RFVdW5OGBnrsuyVk3nZdW7PkhLhgJnVtxYEbz0RHpmY1qmlpsPvKE1SUFJk7yFIuB+9j0YCYr2k8ef8ZdTUV5g+3wnvzGcGzsWiArETGuXtvxQK068XSXddISsuhVvXK2A1si2PYESEd79QQ/cqaeK0QD8p5E7ryOuorZ65Lad9OfTh39RU3H4jk1hCXAZy48Jzr94RcPNh1AHcffuD4WdEJ8pzTm6ysfJatkVwnx3bEvLER0xx3kJtbiHmTGjg6dGf9xivcfyCNofwHU5BfhK/vEUpKSrGyasDo0e05fOC+/OL09B6AUQ1d/NwPyvOk/MOGShfYQZISMjGsoYNHwCAAgtwOyhVT3mFDUVFRYsvKC1I0gxI+i4ejq6fFp6hEwtwOykPs+gwVIGL/5utcPxeBkpIinktHoiepfdYFneD10xjUNdXwWTUGdcnH4/Cma1w/9Ux0gFaOQc9AGOclf80gaPoO4Y/TqwnDp3eVr4PIiFhWuonR0UhHayy6fx+75OUUEGC3mbzsAhq1qYOd989eMYlxqYRNF07FNmM70G3orw+v7cHHeX7rHeXVVfHaNrVMz5G4yK8sc9wOwNDZvcrkPnyrq4fucWbbNUGc3mRPJb2/Bhp7Qo4RHRGLVmUNHFdN/Jd4KOvm7SAvOx8zC1N6TrT66xP+zVWxoiCO5+Xl/Z+Clr9TMpmMY6vOst55J6UlpdRvbYLPoblULsPI8Xev8WNoZo+xlsxePfGX0eePVVRYzILJ67l+RIxgZi0fh82ffFfJX9JwG7iY2HdfqVRFk+DDc6j9h86kTCZjz+JT7AwV72G4Uy/GuQ/4af0kfUnDfajIltI1qETY4dkY/BDs+vbpJzxHrSE7I496zWoS+Ee11Nh1P4MbaSwVH5OCy4i1cq5c2J6pVK76K7iZ4TcQm+Hiuju9/x6rpA7ykImWjHeyBmD7yosc3CoAywzPfvQa0oqMtBxc7bfJrSnCNk5A31CHPZuusUvK1LOfY03/YW24f+s9ga4HxH3RujFzvfvz4lkMPvP3U1RYQlvLurj7D+Lm9TcsCBQbyN79mzPNsTvrVl/ixHHJydi9L42bGuE0ezfx8eno61di4aKRXLn6io2Sad/kSZ1o3boOjs57yMjIo55pNfw8BxK48CTPX8YJAnHAEMLPP+PUBaGY9Z7bh6iYJHYelgI57bqSkZ3H1gOiWzVrghXxyZkcPCM6Im5Tu3PtUSQ3H39ARVkJ3xk2rDl4k0/xaVStrMnMkZ3w23BGqHmb1qJmdR22nBRcVafhndl/5SlxUo5i/46NWHZYMu7r3oJrL6OFt42OJl2am7L1vFD9TujRin03n5KVV0DTWvqUUyzHk/df0FBToVfz+uy5+RSAER3N2X/3OcWlpXQ2q82z2HhSc/Kop69LQWkJr+IS/nT9/7H+qwFO32ZmbLouRkwO1m1Ze+6OXA7+LOoLMUnpGOho0cPcVO68OG9wJ9aE3yEnv5AWpoYYVa7EuvA7Qko9tjuL94nYhaYmBrQ1q4HPRtEJcRndhfCrEbz9lIi2Znm8J1vjvvIkufmFNG9gSF/LRswKFuODYb2ao61ZngXrpWTq8VYkJWex57hYKG4OPYn7ksbuI5L828Ga/PxCVm0Su/+p4zpRq4Yu05x2UlJSSrfODRg2qBXOHgeI/5qBgX4l/DwHcO78Cw5LYyjX+X0w0K/EzJk7yMoUoyrn+b15cP8DG9aJ17Wf3pXWFnXYsv4Kt2+8E9lRIbZU0dNicdAJXr2IQ0NTDf+Fw9HUKs/aRWfkabq+i0dQSUedq+ci2C+1lOd49ad+I0OyMvPwm72b3JwCGrc0ZqqLyN+5d/0N2yUJ5nT3PjRqbgyIm9iZA+IG7rJoONWNRafj8c13bF0kVA1TPfvRqJUweyssKCZw+nbSkoWsdM6C77vZzLQcAuy3UFgggv1GSTdEkBRK8/cS8+4rlatWxG3tBJSUvz9cCguKCLbbRFaa8PCw9/+VL3Pv3HMOrBCjLacV4zAqYyxUWFBE6GRhNd+4XV3GeQz40zWbGJsi97sZ4dwX8z/kWpVV7598ZN9CsZuftWIC2lUr/sUZv1bEzddcPyTCQmeumvwfz2Uqq34EOEVFRf+Ssef/RhXmF7Jq1lbObhVj4G6jLZm99p+RsYsKi1k6bROX9ogd/WiPgYz2GPhbYJqXnU/AqJU8uvQCJWVFXDZPxfJPCOpfohNxG7CEhJhkdA20CTk295cAWJlMxtaAo/L1O869PyPm9P7pmK+fknGzXc7XmBQRnHlkNvo1v3ceXz+KxnP0WnKz8jFrWQv/nVPlPjdZ6cLn5v3z2F/AzZdPybhIhGLD2oJz8w3cbAw5yVEJrMz0HyQPxD217zu4GTS+AxPnibHt9pUX2bfxKgDTXPvQZ1gbMtJycLPfxsf3CWjrahC2SWRO7dtyne2S79Zkxx4MGtWOh3ci8XfeL3zCujXE2XcAryLi8JwrXINbtzPBI2Awd2+9J9hXCDCsezdl5tyebN5wlSOHxH17jnNvmresxby5e4iLS0VPT4vFi0dy6/Y7VkuWFGNHt6eTZX0c5+8hNS2HOrWqEOw3mNClp3n09BPlyysT5j+EC9dfc+y0NHZy7EVCSiabpLXiML4TJTKZXGE7dXRHsvML2XFMPC/mTerKw9dxXLoreC4+Dr3YcvyenGA8Z6wV/hvPkZtfRCuzGpiZ6rP+qKBpOAxpz4k7L4mOT6WqtgbDujVjyUExgbDt3JQnH+KI/JyMrlYF+liYsVGSf4/u2pzwB69Iz8nHzEiPihpqXHsVjZqKEgPbNGKHFJM0tF0Tjj58SWFxCe3q1uR9YjIJGcLKRVlFkYi4BLQr/LpB/LP6rwY4my89AGUVxnduwYHbz8nOL6RF7eooyMrxKOoz6qoqTOnRmuC9YsFPsm7NqXuviU/NxKhKJfq2McNvuyDOzrHtxP5LT+SodlLvNjivELuekdYtiE/K5NqjKDEnnd6bpbuu8jU5E8OqlZg7xorZISLptZ15Lazb18dBGgUMtjbHpEYVHP3EzxNs26JfpSKzvIRKZMzgNtQ3qco0592ia9S1Eb27N8Zh3m4ys/Ixq6eP8yxrlq2+wLOIWNQrqBDsO5iPH5NYtkIaQ43tQIf2dfHyPCRciXU18Q8YTGJCJkH+x+SKqUFDWnH14kv2Sm1eJ5femDUy5Oj+e5w/JTH+AwdjWKMy58KfcGy/BMD8B1HbtCpRb+NZ4idUTbbj2tPFpokw7XM5wJeYVPQMKuGxcDjKykrERicR5nJAdHSGtsbGVtyoXzz6yFpJvTDeqQetLIX3x9fYVEKd9ojZ+JBW9B753ZtmY1A4b5/GoKFVHu/132MYSkpKCZu5g8S4NPRr6uK87GdOQfjW61w7/hhFJQXc1k34yegPYJPvEd4++YhGpQp4bLT7yeUYxM520QzhFdPPrguW/VuWuQ63Bx4l8lkMWjoauGy0+9MdemlpKYvsN5KTkUuD1nUY7T6gzON+rKLCYhZPkeTBg9vQ8TeKrD8rmUzGVk+h0LOZ1IU6Tf++k+i/s74BHICMjAx0df93M6/+TiXGJOM/dAnvHn1AQaEck0NHMXh273/UMcvJyMV/xAqeXnmJgqICjqsm/KU7cXpiJl5DlvDucTSqFVTw2TuLFl3LdmP++Ooz7oOXkPo1A4PaeoQcnftT4CWItbbGZS8nt4qHl52/LYP/ENoaF5WAm+1ykr+ko29chZCDs+QRCgAv7kXhPXYdeTmi++m33Z4KUvcyIzUb91Fr+fDyM1o66gTvnkYdabT7OToJ19Hr5GqpHzk3G4JPyDk3vwM3k+eLTdL2lRfkQbz2823oP6qtHNx8ePtVJH9vnIChsS77t95g6zdzPoeu2I5tz6N7Ufg57xc8w871cQkYyJuXn/Gcu5eC/CJatKmNd7AtD+99INDriBhfWTdi9nwbtm2+zn4ppsFxTk/adTBl7tw9clXq4sUjefAomhWrxCZu+DALrK0bM3v+XpKTszGuUZmwAFsWrzrP/UfRqKkqE+o7mNsPojhwXBpDOViTnVfI6m3iM04e2R41NWUWbRCd+wm2bZGVK8emAwKgzBhjybuYRM7eEJMBr2k92Xv2MW+iRRL4/AldCdx8nuzcApqYGtCqSU1WHRRAaUp/C648jeJdbBKVtSow1qY1i/dfRSaD/u0b8u5LEi8/JlBJXY0hnZqy9pToHg3v1JQLz96TlJlDnWo66OtqcfF5JCpKigxr14Rt1wS4GdimIaefvSWvsIgWtarzJSOTuNRMDHW00NYsz+NPX9BUVaFr/Rrc+8218GP9VwOc4tJSbMzr8vTDZ76kZmKkW5FWdQxZf/YeCuXKMXdAR5YeuUFxaSk9W9TjS3IGzz8Ic6JZAzrgtVnsbIZ3MefNpwQxpiqvgvuYbnhvOENhcQkdzWtTt7ou/lInx31iN05ef0nEe8GrCZrZB/+1Z0lOz6G2kS6OYzozK+Ag+QXFtG5ak2E2zZnqLtK/rdrWxcaqEfYuuykqLsGyjSlD+7Zg2vzdZOcU0MSsOo72XfEJOk5MrCAZB3oN5MSZZ5w+Jymm3PujqqKEj2QFbtW5AWNGt2fjxqvcuxeFiooS/gGDUVNVZt7s3eRkF9CwsSGznHoS9T6BRcECXNiOsKB7zyY8eRDN+pXiAp0yszstWtfmdUQcKyXp95gpnWjXuT7paTn4zd1HQUERLduZMMFBRChsX3WRR7cjUVVTxmep8MXJyc7H33E3udkFNGxek6muYteY9DWD4NkihsGyZ2NsJ4ssqfy8QgKmbxdW702McPD93kK/eOQhJyX5qPPSkej/cCPfvfQsj6+LID6vDRPRrPTdSO/1o2g2SQngkz0H0LBV7Z/WztVjDzkh3fydV43/5QFRUlxC2BTR3TFpUoPJvmV7xTy89ILDqwRIdlo5Hl2DPx9hHFtznmfXhQLKeaP9b0cV32rfgnCiX8RSUVcTh6Vj//L4surBuae8uPUWFTVlRnkM+pde499RSkpKqKurk5OT8/8kwHlyOYLgUSvISM5CU0cDt10zadm96T96jcTYFLwHLyY6IhY1dVU898z6S3fi+OhE3Acs4ktUAlo6GgQcnkP9Vr/GfgC8uheJ97AVZGfkYmxWneAjc9D5Q0evpLiExTO3cfmgyGuauWgUNuN+5mx9fP0F96ErSEvKxMi0GiEHZ/1kefDk5lv8JmykIK8Q8w518dliJw+RFangIlvqm0PxN5+b2KhEXEetIzUxEyMTCdxUKQPcBAySj6V+AjcTOjLZuRcA21ZcYL9kHzHVpTcDRrf7FdxsmkCN2nrs33aDLZK317hpXRg+0ZLH9z7gO3cfhQXFWFjWwy14CG9ffcF9zh7ycgtp1rIWvqFDefwwmgBP4VfWuZsZzu792LXjJnulXL8Zjj3oZNWAeXP3EP0hSYCbJSN5FhErt+WwHdyKAf2a4zh/DwmJmRhV12FB0FBWbrjMrbtCUh7iM4hnL+PYdUgaQ03tRimwdKPU/RliQWUdDULXiGfNyAGtUNdQY8WOqwDYD29PQmoWxyUOjru9NceuRhDx/guaFVRxm9SN4K0XycjOx6x2Vaxam7J0n/j3m9CnFfffxvIy+isVNdSY3K8ti/ZfFRFHberxOTWTp1Ff0CyvyqjuLVh9QmyCB7ZrxI03n4hPy6JGlUqYGOpy9sk7lBQUGGnZjO1XBVDr07I+l19FkZVfQNMa+mTk5xOdlEZVLQ2q61bkblQs5ZWVaGliyMFHL35zNfxc/9Uk48Y1q6IIPPv0FU01VUZ3bMaGc2LxzOzTnu0XHglHxVr61NTT5uyDtygqlMNtRFcW7rtCQVEx7RoaU1mzAidvC4a43wRrVhy4TmpmLqZGugzv2oyQreLCGdunFUmpOZy9JVjoQTN6s+3oXd59TERbqzxBjn0JWH2WxJRsalbXwd3eGo8Fx0nPzKNu7ao4Te6Ke+gx0jJErL2rQw98F57gc3w61fS0CHDtz+btN+RoP9hnEFEfElm7UbTKp022oklDQ7x8DpOZmUdd02o4z7Xh0qWX7P9m7je/NyYmVQnyP0ZcbCpV9LTw9R9EdnY+Pq4iY6qVRR0mTetC/Oc0Aj2FNLK7TRMGDmtNSnIW/vPFjqdd5/qMnNSJ4qISgl0PkhCfjoGRDq5BQ1BUVOD6uQgOSEQ+J98B1KmvLwIsPQ4RG52Erp4WnotHoqysRGFhMUGOu0hLzqZWvWo4BQ2Ry4aXexySk4o9JEt1gA+vv7DSQ4z9Rs3qTmurBvLv/v6ll+xdIXm5hA2Te20ApKdkETx1qwBSfZvRf1Knn9ZNXGQCK+buBmD47J607varVHrXwpO8uPueChpquG+aUqYaKj0pk8XTRdBln0lWtLUx/9O1+vFVHFt8xGeZEjyC6nXKDqP9sT5ExMj5G9MXj/mXSMGlpaVsk7qF/aZbU9ng97Lk/3RpaAhy7du3b/9P38ePJZPJ2LfgOG69gslIzsK0eW1W3wv+x+Dm/eNoHC19iY6IRbtqRRZd8PxLcBP57BNOXQP5EpVA1Zq6LL3k9afg5uHFF7gNXEJ2Ri5mreuw8NT8X8BNYX4RQRPXc/ngPRSVFJi/btIv4CbyeQwug5eSlpRJ7YaGLDjq9BO4uX/pJT7j1lOQV0iLTvXx3TpFDm5SEzKYP3QVH9/Eo11Fi7D9M+Tg5tO7r8wfvobUxEyM6+mzYM80ObhZG3D8J7XUX4GbrcvPfwc3rr8HNwe232SLFNcydqoVIyd34sn9D/jM3SvATce6eIbaEvk2Hg8nAW7MWxjjt3AYz558wv+bgqqLGa5eA9iz6xY7pcy+6TO70bV7Q+Y77yMqKhFtbXUWLR7J6zfxLJKMPAcNaIGtbWvmuO2TUwgWhgxlw7brXL35VnT9PQfwOuorm7+NoSZ2Fp2adeIeNrx/S4wMtQlbK8CNbe/mVKtaUQ5uJgy2IKegkANnBQdn/qRunLvzhsev46igpoL7lB4slOKC6taogk3HhnJwM6pHc17+sIGfNqA9Sw9eo7iklC7N6pCRm8+Dd7Goq6kwoWcr1p68LST0rRvw5OMXYpPT0dfWpEltfc4+EQqpMZ2bs/PaY0plMqzN63L7fQzpufk0qF6FQlkJ7xNSqKxRnrrVdbkbFYuKogId69fi8psPKPyDbuh/NcBpUduIM0/eoahQjlm927Ms/CYyGdi2b8ydlx+JTUpHX0eLgW0bsuGUAABOgzux6/xDktJzqK2vQ2+LBqyV1FRzhnXm1K1XvItJQkerAi5juuK97ozotjSvg1mtaqw9IBa+0xgrnr39/D1Tyqkf2w7f5eV7kRYeOq8/izdeJCommcqV1Ame358l6y8S+TFJKKjcBrBp9y25sVOI5yBu34/i0PFviikb1FSU8AsRibQ2PRozqH8LQsJO8iE6CW1tdQL8BvHxYxKLpETvESPb0qWLGZs2XJH73/gHDUFDszwBHodITMikupEO7r4DKSwoxmf+frIy86hnZoDj/N4UFZUQMP8AqcnZ1KhVBWffASgolGPj8vM8exhN+Qoq+C4ZgaZWeT68+8piyb9m8Lj2dO4lbuT7Nl7j9uXXKCsr4rVsJNq64oG2LugEb5/HoVGxPF4rx6BWQfAZjm+/xdUTT1FUUsB9xWiqSCTkrIxcAqZtlzsVj5BCNwG+xqSw0FH4x/Qd35EuA7+PjkpKSlkwcwfJ8ekY1tHDceGIn8YLBXmFBE/ZRF5OAU3amTLauc8v6+rJ9ddyF+KZi0dj8IMi61vJZDIWO2wlLTGTmvUNsPuN301RYTEL7TZQVCCiGGwmdv7TY3/8HMumb6akuIR2fVvQyfafKXe+1d2Tj4l8+pHyGmoMc/7zoM+/U3FxcVy5cqXM8Mu/U5s3byYhQRAM+/bty+bNm/9H7+ffUdnpOfjZLmGLx17BvRjfmaXXfKlm/Ot3/ru6Hf6Qud0DSf2ajnFDQ5Zf8/1Ld+InV14yzzqYtMQMajeuwdJLXhj+gUfzra4cuofPiJUU5BXSqlsjgo/MQfMP7sl52fl4j1zJ7dNPUVZVwnv7dKz+4MT98n4UrkOWk5maQ71mxoQenv1Tztqt088ImLyJooJi2lo3xnuLnTzrKik+nfnDVhEbmSCUVgdnUEN6vx9ef2H+yLXybKnQ3VOppKspZUsd4cRO0YV1DBosV0sd33W7bHCz7DwHvjkHu/ZhwKjfg5vNEs9v7FQrRtl15sn9D3jPEeCmTYe6eITaEvnuK26OktNwC2P8Fw0n4lkMvu7CJqNj5/q4+vRn3947bJf4QVOnd6VHzya4zN/P+/ciwmbR4pG8j0xgwaJTyGTQr28zRgy3YI7rPuI+p1GtakUWhwxj846bXJBcjH3d+vExLoX128VnmjKmIzo6GoSsElYjQ3o3p75pNYKlnwdYN6W2cRUWbRKdndH9W4EC7JQifuaM68L1px+4F/GJ8qrKeE7pwbLdV0lKy6Z29coM6taURbvFpnhIlyZ8TEzj3iuhtJoxuCNLD12noKiEjk1qUYyM268+oaasxKRerVl98jYlpTK6NxPeNh8SUqmipU5bs5qcePiacuVgbOfm7Lz+hOLSUqwa1eZJzBdSsnMxqVYZZWVFXn1OpGJ5VRrX1Of6u48oKSrQpZEJ5169B2Bk67+/cfivHlFtv/wQRVU1ZvZqx+bz98kvLMaiXg1Ki2U8fB9HBVVlZvVvj/8OaUba2Zxn7z/z+pNwJp492BLX9SfFIuvclJT0HK4+FjybAPteLNh2SR6gOdamFbPCRK7SkO5NqaShxuItYgG62nXn2ZvPnL8p5H7Bc/ty5soLbj0UiqlglwGcvPCca3cFGApy7c/9xx85evoJ5cqB15w+5OUWskQadUwY3Z7m5jWZPnsnOTlCYug005qdu25x89Y7kTHlK5K6v2VMtW1rwsSJnbhwLoKD+0QXa55rH0zrVmP5wtNESBJx/7ChVFBXJcD9IB8/JKFTWQOfEFuUVRRZGhjO6whBNPZdPJwK6qpcOPGUY9Icer7/IGrW1iMzPRf/2XuEnNyiDhMdewBw//pbdkoz8Ble/agnKTrOHX4oJxW7LhqOvpHoIrx89JFNYVLshUsfGrcWY6TS0lIWzdnL15gUqhpqM3/pSDm3pjC/iOBp28jOFIoOuz9ELexbcY4n19+iWl4Fzw2T5JyBb7XB55DcxMxl7cRfHGHTEjNZMHUzMpkwQvvjA+JbhW+8zIMLESirKuG6aUqZgYffak9YOJHPPqGpo47Tmkl/i89xetNl3j78QAWt8sxYNu5fUk3JZDL2BItokH7Tramo+6/Lwjdv3syUKVMoLS1FQUGBGTNmYGlpSX5+Pnl5eX/5/7S0NM6fPy9/vdLSUuzt7bG2tv4/U1S9uR9J0KjlJHxMQllFienLxtPbrttfn/hDyWQyDi8/wyb3fchkMlp0b4zHzhmo/0nu2Le6uPcWS6dvpriohKaWDfDZO+tPzwnfeJm1LnuRyWR0HtyauWsm/mLwmJWWg9eIlbx5KGW27XL4RS7+6MorAiaupyCviEYWJvju/B6MCXDl6EMWzd4l+F79muO8fIyclB//KRm3kWtIiE1Fz1Cb0L0OcjJy5Is43MduICs9F9NGhgTtmIJmpQqUlpaywvMw5w4+kDsUfzPxO7LtBhvDxCZiyCRLJs4VhOJNi89yWOqeTHPtUzbnRgI3B3d8Bzdj7AW4efogGh8J3LTuYIpnmC0f3ifIwU1j8xr4LxzGy+ex+LgeoKhQeIC5+w3k4P57bJW6Rnb2VvTqY47L/H28fRuPllZ5Fi4aQfTHJEK+ZUn1asroUe2Z47aPmFgRl7M4ZBjb997h/GVh0ufj0peElCxWb7kKwPjh7ahuoI3fEvHc6W/dFPNGhngvFq/Zp2tjGtQ1IHitGH0NtWmOWnllNh4U4zLHMZ149DaWW08+oKqsiIddD1YduMHXlCxqVNNmeK/mhGwXYZn9OjYiMSOHm1Ke1KwhHVl55Cb5hcW0NauJiqoSFyVXYvs+Fqw5dYfiklI6N6lNXHom776IIM0uzUzYd1OIecZ0as6em08pKimhYwNj3iYIEnHNKtpUVFfjYfRnNFRVaGVixIVXkSgqlMO6cV1ORrwBwKZJPXY+ePrba+PH+q8GOADD2zfl0rMoEtKzMdbTpo2JESvDbwlJ31Arlh66Tn5RMe3MjNFQVWH/o6eCeT6uO6G7L4lwTSlA01+ysvYY351DF54SGZuMTsUKeE7qgeuycHFsoxr0bNsAh0BJltynJRrlVQnaKxbknAldSE7JZtdRQdB1dehJQlIG2w9KI6Rp3SkpLmWpFJQ4eVRH6tbWw372TtEmbV+XUbYWePgdJjZOXDT+XgO5dfs9O3ZJnabZPTExqcocp92kpGRTs6Yubu79ePc2niWLxE1j5Oh2WHUx4+SxR5yUQjXdfQdQo6Yuu7Zc59Y1kTvlHWKLrp4W4Qfucy78qfB5CB5CdSMd3r78zHKJszN6SmfaWTWgpLiEUJcDfP2cRrXq2rgtEBLzLzEphLkKUnGfYa2xlroq719+ZrW/ICaPmdmNFh3qApCWnEWIo3AqtuzdlP7j2su/0/1rLnP/ymtUVJXwXDv+J27Nev+jvI+IRUtbHfc143+60T+99Y7dkvPozJChP/l4AFw79pDTO24KPs/q8b+090tLS1nosEXelZkaPKzMNRf9Mo5N3t8cjYdSq+GfP6DfPvog9zOZuXRcmdEOf6y0hAy2So7JE/xsqfwbXs/v6tGF57x79AHV8ioMcrT5l14DvudIlZaWAuLfacWKFaxY8TcDZf6kSkpKiIyM/F8HODKZjGMrz7DRVfDBqtXSw3OPI3Vblj0a+rMqLipmtdMOTm8Wu+U+U7oyffGY33KrZDIZexeeYLu/2CxZDmqN88ayR6AymYwdwcfZu0hsAvrZdWFq6PBfFHDJ8Wl42C7n05svaFSqQNABR+o1r/XTMTdOPGbBdDG2bdW1IR6b7H4C5ef23mH5fAHSug9tg+PCEXLwHxuZgNvINaR8zcDAWJfQfQ5Ukdbk6yef8Bq/kZysfOqZ1yBwmx0aWuUpKSllqdtBkQquUI65C4bRpb/IxDqw8Spbl4hRzIipVoyRDD7XLzjNMSkyxsGjL32HW5Ceko3rlK18jExEW1eDBZsmYlSrCvu3fufcjLG3YvQUAW68nfYIZVR7U7zChhIdmYibpPBsZF6DwMUjeP0iDm8XAW7adayLh/8gDh+4z2ZJWj7RrjN9+jfH1WU/r19/QVNTjYWLRhATm0qQ1FHvad2YCeM7MtdtP59ihCPx4pDh7D54jzMXIgQB2KUv6Vl5LN8gNn1jbC0wqV0F70Unhdq3ayPaNK+F1+JwYcTXyQzzRkYErhadnIE9mqKjXYG1+wTgcxhhycsPCVx9IFyIPaZYs+Hobbnvzbh+rQjadlHwatrWJ6ewgGtPxYZ99tBOrD5+W6iH6xpSUas8Zx68QUlRAfs+Fqw7fVdwThvVIiU3j5cxgmxs3aIuu288BWCUZTMO3ImgoLiEtnVrEJOWwefUTKpra1FNW4O7kbGoKSvRvn5Nzr54T7ly0Nu8PsefvQagV+O6nH75z0bT/9UAp23dGmRk5/Hi01e0KqgyoWtLAnaLRe/Qtx37rzwlKUOMono0N8Vvu0D7LiOs2HH2odyZeIx1S+ZJiqnxvVsT8yVVrpgKdujD0p1X+ZqShWHVSswZ3RnHkMMUFgnFVM/29ZnqtR+ZTCim6tXSY4aXUKyMGdQG4+o6TJfcSIf3b0mzRkZMmbuLkpJSunSsz5C+zZnlslcuKXSdY8Pm7de5/zAaVVUlgnwGk5qSzQLJiM52cCt6dG/EggWn5BdfYOAQ4X/jdVh4OrQzZfykTrx4HsvqpeJGMmGKFW3amXL35jt2SKqEGfN6YdbYkIgnn1gn3XAmzuhKC4s6pKdm4++8T7gMd6rHKDvBY9m+6hKP70ahqqaM97KRaFasIHcqzsnKx8y8BvZS8GVmWg6Bs3ZRVFhMG6sGDLPvDEgEXqc9pCQIk7/ZEh8H4Mmt9+yU3rOD/yBMGn53vbx89CGnJcLx/BWj0av+/cGflpTJgpk7kMlk9BhmQdc/mPl9+ZjE8nnC6GzorB4079SAP9aRNRd5fOUVquWVcdv0nXfwYxUWFLHAXrTwW/doQl+7P/eTKcwvlAckdh7Shk6D2/zpsT/WRve95GTkYtLMmN52Xf/6hD+pPSFihNh7Sje09f65tPxbvX//Xg5ufqxGjRpRrVo11NTUKF++/G//n5+fj5ub2y9RDSYmfx1P8e+szNRsFtut445kntZhUGvmrLf/R2GZAJkpWQSMXMnz668pV64cU8JGMnCG9W87bSXFJaycvZ0zkmLGdrYNE/1ty5TslxSXsHLuLs7uEOOSMW79Genc55fX/xyVgLvtMhJiUqhcrRJBh2Zj/Idg1/N777B87i5KS2VY9m/BvJXjftoYHNt0lfW+otPXe2wHpgcOkb+n6NdfcB+1hvTkbGqYViNkzzT5xiDifhQ+k7aQl1OAWQtj/LdMRl1TjZLiEhbN389VKdxy/uLhdJIiWPauvcwOqesyekY3Rjl0pbS0lLUhJzkhdZ5neffHxrY1aZKJX8yHJHSqaBK2aQJGxlXYt+W6XC3141jKZ85ewTFsZ4JX2FDRuZGEFo2aGhG0eASvX8bhNf8AhYXFWLQ3xTNgMEcOPWCjFE0zfpIlAwa1wNVlP69efZaDmy/x6QQGHxdjzO6NmDypM/Pc9vNRis9ZEjacg8ceckoSg7jP601OXiGL14rPOmJgK8zq6+O5IJySklJ6dDKjo4UpngvDKS4upWv7eli0qI3/ytOi+9K1MdX1K7FSMpG1H9qeD/EpXLgrPNk87HqwJfwen+LTqFZZk4kDLAjeflGY2rauCwrluHj/PUqKCjgN68S6E3fJyi2gSW199KtoceKuUGFN7duWTefuk19UTJv6NcgpKpKnhPdtY8YOSSE1vENTjj14KQz+TAxJzMnhY1IaVStqYFxVm5vvPqGqpEjXxiacfCa6NX2bNZCDG+tGppx99R6ZDGwa1eXvbo3+qwFOA0M9dlx/gZKCAvMGdGLRwaticViY8S4midcxwmFxRr/2uG8UnY3R3ZsTERXPU7liqjue605RVFxC5+Z1qG1QGd91wovFfWI3Tt94ybN34tigWb0JXHeOpNRsjKvrMGd8F2b5HySvoIiWjWswql9L7N32iLTvVnUY3KsZ9i67KSgspk0zY8YNtWCW2z7SM3Ixra2Hy0xrFi4/x7tI4WQc5D2IW3fes++QJM+eY4NeFU2mOmwjP7+Ili1qMcXOimNHH3H+nDCI8vIeQBU9LeY57SY5KYsaNSrj6tmP1JSsn8hzw8e0Iy4mhVDfYwD0G9ySXv2akZyYSZDrQaEg6NGIIaPbUVJcQpDrQZITMjGsqct8PzEOu3XpFQek+fQcv4HUrltNkIT9jvExUvhReCwegbKykuDCzN9P4pd0DGpUZl7o9xv59qXneHY3ivLqKniuGiOXfackZLBg9m5kMhnWQ1vTw/Y7SIl5/5UVrkJqP2JWD1r8AFBKSkSIZlpiJjXr6TMtcMhP66SosJhQ+83kZefTsE0dxpTBu/nwIpZtQQIQ2AcO++Uh8a12h50g+mUcFXU1mbNq/G8faLtDw4l9F49O1Yo4LPl7CqiXd97JvVNmLh9fZqji36l3D6N4cfMNSsqKDHH69fP+kzI1NUVBQeEnkKOoqMiZM2f+UfdFV1f3l3yp/83uTcTN14SNW01iTDLKKkrYLxxD32k9/vH47+OrOHwGL+HrxyTKa6jhum0aFr1/Tez+sfKy8wkau5oH58UDcOqCUfSf2r3MY/NzCwidvJG7Z0RHdcbi0diM7/TLcZHPY/Actpz0pCwMaukRfHj2L+7ZRzdcZoO3ILf3HNWeGQu+d2ZkMhl7lp5l1xJxvxs0xYrJXt8VjG+fxeA5eh3ZGbnUaWRI0K6pVJQcmJ/cfIfflK0U5BfRtK0JvhsnoFZBlaLCYsKc9nDr/AsUlRRwWTKSjr2aIJPJ2LniAnvXCSAxbnYPhttbCY5OYDinpTGWo+8Aeg5qSUpSFq52wqG4chVNwjZNxNBYl90br7Lj22tM78LISZ14fO87obh1e1O8Fghw4+r4vXNTFrjxCpTAjeQTNn6iJYOGtMLN9QAvX35GQ0ONBQtH8DUhg4AgAW66d2uI3eTOOLvv58PHJCrraLAkdDiHwx9z/JQUrzDHhoKiEhaskgjD/VrQtLERnmECzHTpUI9ulvXxWHBcPHcsTOnUrh4+y0Rnx6ZzQ2rX1GXpdvE5Jw6y4HNyBqclabjrxG7sPP2A6M8pVNHWwH5Ie4K3X5A/w1RVlThxWxw7e6glG0/ek+dJ1TaszNFbL1AoV46pfdqx9fwDcguKaGliiEwBHr4V1I6BbRux/Zrgg9q2bczJx29E4KaxAZkFBUR+FSTietWrcO1NNMqKilib1+X4EwFofgQ33cxMuPgmilKZjA4mNbn4LvK318qP9V8NcLZefIiiihqO/Tqw+cw9svMLaVbHAINKWqw/fRclBQU8RnYjdM9l4ejYqBaVtdTZfe6RpJjqyYr910jNzMXEUJcR3Zsze6HYyYzp3ZLM7AJOXHuJQrlyBMzozb6Tj3gV9RVNdTVCnPoRsu488UmZVK9aCS+HXrgvOEZKWg61jCrjNr0nbiHHSEzOwshAGy+n3oStOEdktCAZB3sM5OiJJ1ySbLr9PfqTmZnHQkl2OGqYBZ061GO+634SEjIxMKiEl0d/XryIY43kbjzFvgstWtRixdKzvIyIo4K6Kn5BQ1BWVsTN4zBpqTnUqqPHXHfB8fFzPSAu+KZGTJ3dQ8QluB4Ux5no4eQpwgO3rLrI80cfKV9BBZ/Fw1HXVCPuYzKLvcS/zaAx7egkJYGf2HePK6efoaCogMeiEVSWvGZ2r77Eo5vvUVVTxnPFKDSkXKjbF15wUGoFzw62pYaJUBOVFJcQOmuXICk2MGCa73fH4fy8QkKmb6cgr5Cm7UwZOfu7mR/AgVUXeHJD8G7c102QRzt8qx2h4bx/FoNGpQq4rJnwywihML+IsKmCD9G2V1N6je1Y5np7/SCKg8vFw8Bx2djfqpo+vIjh4DIBqmcsHftba/5vVVJSytp5gjxtPc7yT9U0f6eOrhTvs5Nt278MdPyrMjQ0ZMOGDdjZ2SGTyShXrty/BE4mTZqEtbU1kZGRmJiY/K+Bm+KiYnYFHmZfqPCEMqhTFY89szH9wxjn79TdU48JHb+WvOx89Gvp4XvICWOz33+OlPg0vG2XEvn0E6rlVXDdOo12fcoGRFlp2fgMX8mr+1GoqCnjumkK7Xo3++W457fe4jt6NblZ+dRpbETgfke0f/B5kslk7Fxwkr1LxToYPK0bk7y/Gw3KZDI2+h/lqGSgN9a5N8NnfQd7Efei8JkgzCvrN69JwHZ7uXvxvUuvCHLYQVGhEAB4rh2HqpoyBflFBM3YyYNrAlh7rhpDmy5myGQyNi86w2FJcTnJuRdDJlqKSAr/Y5w78ohy5coxN3Aw3fo1k1LBRbaUblUtFkgmfrs2XGHnevF+Jzh0ZfhESx7di5JLwdt0qItnmC1R3zg3OQU0/jaWKgPcHD38UA5uxk3oyCDbVri5HeDFizg0NNRYuGg4ScmZ+AceF4arXRtiP6UL8z0PEBWdhI62OktCh3Hk5BOOnhA0AFcnG4pLS1mwStzHB/dtTqtmxriHCjBj1a4uNl0b4xZ2jMKiEjq2NqFHJzM8lwpwY92xAfVNqrJ4q3hfY/u3JjkjR/4ccp3YnYMXBX2ickV1HIZ2JGjHBQqKSujQtBYVtcpz7IYAMLNsLdly5gGpWbnUNdSlUR19DlwXTvn2fS3Ycfkh2fmFNK1tgLKaErdef0RNRYmhlk3Zell0OAdaNORCRCRZeQU0qlGVIlkJb74koV1Bjaa1DLj0MgolBQVsmtfj2GMR09CnWX0556Zrg9pcfR9NcWkpbWvX4GHcZwr+QdjmfzXAARhhac6tiGhikzPQ19Giv0VD/HaKtuBc205sO/NArpjq194M93Vi1OM41JLz997yRiIce4zvjuuKcLm1dYv6RsxddAyAmSMtiY5N5uxNSR4+uw+Hzz7l8ctYKqgpE+rcj3W7rvP6/Ve0NNQIcRnAup3XiXgjAtBC3Qdy9NQTrt1+h5KSAoFu/Yn+mMQGqVU9a2pXahpVxn7mdnEBtqrNxLEdWb/xCk+efkJNTZkA38Hk5hbg7yecNrt2a8iQIa04c+oZ4d84Np79MKpRmaVhp3j9UrRXfYOHiPPdD/EpOpnKupp4Bg1BSUmR5SEn5aRi74XDUCuvwvULLzm0U8zB5/oMoEatKuTnFhIg5VE1al5TTip+/SyGDVIg3eQ5PWnUwhiAB9ffsldyE53lN5BaEhfmy6dkFs8XXZgB4ztgafOdTb998VlePIimvIYq7qvGoPqD6d56nyN8fBuPdhVNXFaO/amr8fzOe3YtFu/BIdhWrur4Vk+uv+GQBAhnLxlNlTIe9lsDjvDpzRe09bRwXDq2zB19fm4Bi6ZvEf/2w9qW+dD5ViUlpSybsZWS4hLa921B+35lGwT+sc7vuM77x9FU0CrPBL+hf+ucsiolPo1rB4VJ18CZvf7l1/mxJk2axKdPnwgICKB///7/cviloaHh/2rX5kvUV0LHruLNfbFr7D7GkunLxqOu9XsS8B9LJpNxYPEptnoLnlkTywZ47p5JxR8USGVVVEQM3kOWkvw5lYq6mvgfdPpT4JoQk4LX0GXEvI1Ho2IFfPfOpFFb01+Ou3XqCaFTNlJUUEzjdnXx3TX9p89TUlLKGrf9nJbGW+Pc+jFs1vfxWUlJKStd9nFOspaY6jf4JyuFB1deEThlK4UFRTRpa4LP5slysv7NM88Jk7ys2vVohMvy0aioKpGfW4jv1G08uyM8sbzXjqN5h7qUlpayLvgkJ6SAzKnufeg/pj0lxSUs8T7CpROiSzUvaAhd+piT9DUDF7stwjhUvyJhmyZSrbo2O9ZdZrc0Wp80qztDx3Xg0d0ofObupaiwBAvLeniEDPnb4ObYke/gZuyEjgwZ1gY31wO8iIhDXV2VBQuHk5SchV/AMUpKSunaxYyp9gLcREYlol2pAktCh3Hs9FM5uHF27ImsHIStkIKYezfDomVt3EOOUVRcQqe2pvSzbopLyFEKC4tp37IONl0a4bn0pAiNblePxvUNWCiJV0b0bkFWXgHHrwrA4jKxK0euPpO76c8cYUnIjosUFBZj0agmepU1OXztOeXKwSxbS3ZdeExKZi51DCrTvL4Re68IifkUGwv2XHlCZm4BjYyroaWpxrUXgrQ8qnNzNl8WE4R+rcy49iqatJw86levgoJiOZ7FfEWrvCqtTI04F/EeRYVy9G5eXw5uepvX5/SLt5TKZHSuV4sbUZ8oKimhdS1DnsbHk1dUTCvj6kT99qr5Xv/VAKeNqRGlxaXcfxdLBVVl5gzsiPd20RYc3tmcZ5FfePUpgYrqaswd1hnXtScplcno36ERBflFXLgv5pmB9jYs2XlFnjE1ZVA7ZoQcEllVlg2pWU0b54XHAHAca0V8QgaHzz0FwGeWDQ+efuLcNdES9J/bl/tPPnLyohgh+c7tQ0xcKlukscOcqd2ppFUBV5/D8sDM3j0aM8/9AIlJWRhV18HDpS+Xr7zi0GEhC3Sd3wcDg0rMdtxFenquIBjP6cXbN/GsWCrZsE+wxKKdKaeOP+Z0uFBnufkNxMBQh307bnHz6huUlBTwDhmCTmUNzoU/4fSRR2LXETAIA0MdPn1IZIm/+Jy249rTsVtDZDIZy/yPiWDNKpq4LxyGkrIi6ak5BM3dR3FxCR26N2LgmHYAJH5JZ+F84btiM6wNXfoJIFBYUETQzF3kZudj1sKYSfO/W8bfv/yKg9IM3Cl0KNVrVZH/7urxR5zdd1cQg5ePQbvK9wdKRmo2C2bsEKBjSGu62/7McclIyWbRTJEPZTO2I+3L8Kl5fO0VR9eLG4rT8nE/SWZ/rG0BR/kcmUBl/UpMDR1e5jHf6sT6i3IFlMOSMb899lvlZOax1UeAvzEeA/+lOIZvdX7HNYqLSjBrW/cfE2d/VzVrCgfkoqKif9tr/qdKJpNxYcc1Vs/eRl52PuoVK+C4ZjKdh7b7x6+Vn5PPkqmbuCYZtPW268L0xWNQUv797ffe2acEj1tDfk4BRnX1CTg8B/1aZcvPI5/H4DV0OWkJGegaaBN4aDbGDX5NXT617Rqr5wvH77a9muK2ccpPDtyFBUUsmrGdGyceU65cOWaEDcfmh45kUWExC2ft4MZJASxmLxpJ96Hfr5sbJ5+ywHEnxUUltO5ihvu68ahKERUXDj9gmcsBSktldO7bjLmLhqOkrEhOVh7edlt59egj5dVV8Nswkcata1NSUsoq32OcPSTGTzN8B2AztDXFRSWEuR7gxrcxVshQLHs25uvnNFzttvL1cxpVpVTwqgaV2Lr6Evul0fhkxx7Yjm3P/VvvhV9XYQltO9XDI8SWd6++4DFnj1wtFbh4BC8iYvF1Pfhz5+YHzs2Y8R0YMrQ1rq77fwI3ySkC3BQXCzPV6dO6Mt/j4A/gZjjhZ55zJFxwVJwde6KkrEjwstNC6m1jTvs2JriGSJ2aNiYM7GmOa9gxCgqLadu8Fn26N8ZzyUnR2bGoS/PGNQjbJDbnw3o1p6iklCOXBGBxntCVEzde8upDAhU11HAc1YmwnZJIpoERRvraHLgsRmSOQyzZe/kJienZ1NLXoW2jmuy8JN7npF6tOXDzOek5+TQw0qOKtgaXnkeirKjIaKsWbLn8AJkMejWvx513n0jJyqWugS7l1ZR5/PELmmoqtKtfkzPP3lGuHPRt0YCjErjp1bQu5169o6RURse6xtz9GEdBcQktahrwKiGR3MIiGhtUJTLh/8ui+lvVtl4NVp+RHtJDu7Dk8HWR8l2/Brqa6uy/9BRFBQV8x1uzYPdlsvNExlS7hsa4rhHKBOdRVpy7/ZqXH76ipa6K/9ReeK0+TXZuAY1N9RnesznT/PYLbo9VY0xr6DLLX8y07Ya1R01ZiTU7xc7CYVxnFBUUWLFFXDxTx1hSTU8L+7li7DDQphlWHeoxzWkX2TkFNGpQHcep3Viz8TLPImKpUEGFQJ+BxMens1gCLqNGtqNjh7qEhZ3k3buvaGmVx99/MHm5BYJUXFRC+w51GTmmPa9exLFKUhFNmGJFqzZ1eHT/A9uki9lhbi8aNDLk/esvrAz75lTcmVbtTYX78Lx9wgSrVS0mSGGWx/fc5eqZCOFTs2AYOrqaIiLBZT/JCRlUN9bFyV+0vosKiwl22k1WRh6mDatj7/6d+7Eh+CQfXn+hoo46bstGyeWnSV/SWTRPkLL7jetAxx+6Op+jk+S8m+GzutNMUmCBlDPlvJeUhAwM6+jhEPSzD41MJmP53F2kJmRgZFoNuzKciLPScljssA2APhM60bp72db4EbfecWyd6AI5rRj/i//Ij5UYl8I2SSEzyX/o3w5n3L/oBBlJWRiaVqPftLK5GX+3bkiBfdbjOv+PXueP9S1qISMj49/6uv/uSv2aznKHTXIicaMO9XHdPgO936S7/1nFRyfiN3QZ0S9iUVRSZNqi0fS1/2sp+fG1F1jnspvSUhnmnczw2j3jT4nMDy+9IGj8WvKyCzBuUJ2Ag46/dBplMhm7Fpxg90Jx3+o1piMzFo78adyal5NPwMQNPJFGRM6rxmPZv8UPvy8gwG4TT66/FVlXq8bRQSL/Apw/cI/l8/cJMnLfZjgvGy2/TsN33GStxN/rYduaWcHC7DMzLQfPSZt5HxGHhlZ5AjZPor55DdGhcT/EZalD4xQ0hG4DmlNYWEzIvH3cufIaJSVF3BcNp11XM77EpOBit5WkrxnoG+kQtnECVapVZMPScxyRuj/2c3syaGRbbl97Q5DrQYqLS2nfuT5uwUN4/SIOz7l7yc8rokmzmgQsHs7zJzH4eRwUHR4J3Bzaf48tkhR87ISODBnaWnRuXkjgZsFwklOy5Z0bq84NmOHQjfkeB3kflSAHNyfPPedwuBS3MMsaZWVFgiRw079nUyzbmuISfEx0alrVYbBNM1zDjpGXX0Trpsb072mO55ITorPT2oQ25jUJlcCNrbU5KJTjoGTqN29sF07fekVEZDxa6qrMHtWZsF2XyckvpHm96pjUqMKeiwLAzBjUkQPXnvE1NYuaVbXp0KQWOy6K9zneuhXH7rwQI6vquhjoVeTCU0FEHtO1OVuvPKBUJqOHuSmPo7+QmJlD7ao6aGmo8SAqjgoqylia1ebkUzF+6t+iIUcfvwTAurEpF15HUVRSSts6RjyK+UJeURHmRvq8T04lq6CQBtWqEJueQVpu/l9eP9/qvxrgrDlxB5RUmNa7LUdvRvA1NQujKpXo364hnpvE7HnusE4cvPyEmIQ0qupoMn1Ae+YsPwaAbZemFBYUc+qm6L4EOvRh/aHbfPqSShVtDbymWOO86JjI9ahnwJh+rbD32iccIC3q0r1dPexcxU3MpksjLFubYOcsFFLdLRvQp1tjpjrvIjevkKYNDXGY2Bm/sBN8ik1Bt7IG/h79uXD5JUelXYCHcx8qalVgqsM2CguLadO6DuPHduDY0UdcOP9CRDV4D6Cyrgbz5+yRk4rnu/clIz0Hf4/DFBeX0rFzfYaPaUdCfDoh3keErLGvOb0HNCczPZcASSJp0bEuIyZaIpPJWOJ/nDhp5u0WPARFJUVePvnERgkwTXayplFzsYPfteYST+5GoVpeGa+lI+VJ4JsWnpab+XksH4WKpNS4fvoZp/bcEV2YRSPQrSYelCXFJYQ67hL+GY0NmeT6HRAVFhQT4rBdnoMzyvFn3s3pXbe4cy4CJRVFXFaPkxOVv9WZXbe4c/a5uJGvnSA3FvxWMpmMVc67SfmaTvU6VZns9zMx+Vvl5xSwRMqj6jm2Iy3LcD3+sdbO20Vedj4N2pj8LUM/EPlHR1dK/87BI/6yM/C7io9OJPJJNAoK5Wj7N0djf7cqVaoE/L8NcK4dvMPKmVvITMlCSVmRMT62DJ3X718iaz+88JyQcWvITstBu2pFPHbNpHGHer89p6S4hHUuewiXbCB6jrNk5rJxf/qdnt99k2WOOygtKcXcsj5eO6b/4odTUlLKKufdnJFGTqPm9WG0S9+fRqkZKdn4jF7D2ycfUaugitfWKT8pBTPTcvAes463Tz+hVkEFr02TaW753Sfn+JZrrPMVJPuewy2YESLsH2QyGfvXXGb7YnE/HTChI3YefVFQUCA1MRP38Rv59D4BLe0KBG21w6RhddElcjnAjbNiYzR/wTAsezWhIL+IQKc9PLj5DmUVJbyWjqS1ZT1io5NwtdtKSlIWhsa6hG2cgLauBmsWniZcysOb4dKbvkNbc/3iS0I9j1BSIoIzXQIGEvE0Bm/n/RTkF9GsVS38FgzjycNoAjylDaBlPTz8B7F/zx22bRFme+MnWTJwcCtcXfb/QCj+eSzVxcoMh+ldfwI3i0OGcer8c7khq/Msa1RUleTgpl/Ppli2qysHN+1a1mZIn+ZycNOqaU2G9G6G+5KTorPTsg7tW9YheMM5Mdbq3hRFZUX2nhHPhDljO3Pu3lueS3EMc8ZYsXD3FXLyCjE3NcCsjj47zwkgP31Qew7fiOBzslAHd25uwjYpCXy8dUtOPXhNcmYuJvqVqamvwzkpcmFslxZsv/KIklIZ3ZqYEBGTwNf0LIyraFOlkrpc/t21sQnhEol4YKuGHH0iwE33RiZcefdBPoqKiE8kp7CQxobV+JieTkZ+PnX1dEnMziY9L596err/34jq71RxaSl9WtYjPkXkaGioqTBviCUem8QMdLBlY+KTMrjz8pNwBZ7YE/8t58nNL6JlfSM6NKnN3CXHAHAc2Yknr+PkBkohjn1ZvuMqMV/S0NPRwNfBBvdF4aRl5GJqXAWniV1w8jtIVnY+Zqb6zBzXidk+h0jPzMO0lh7zpnbHf9FJYj+noaerib9LP/YcusfNO+8l6+6BJCRmslQy95s4pgMWrevg7LKPxMRMDKtr4+HWl5cvP7NWSqqdYt+FZs2NWbPqAs+fiY6PX9AQ1FSV8XbZT0pyFkY1KzPPvS9FhSX4ux8iMyOPug30mTG3F6WlMsK8j5IQn4G+oTbOfgNRUCjH4V23uXnpFUpKiniFDaOSjgbpKdkEO+8XPjU9GjFglAi/vHf9DXu/kYR9BmIskYRvnI0gfJfYac0LsaWqJOH+8imZZe6i4zV0qhUtOn7vwuxcdp5Xjz5SQUMNt5VjUFH9vpw3Bx0n6kUcWtrquKz82Vvk07t4Nkg344lu/TBpZPTTuoh9/5UNkk/NePf+1PnD7wGuHr7PtWMPxQ147aQyJeEg+DnxH5OoUl0Hu4Df82Jun3jE7ZOPUVRSZPaKCX87sXtHwGEK84to0rE+Fr/h9vydunVM3NAad2zwL0U7/K6+dXDS09P/ra/776iM5ExWzdrCNclvqk5TY5y3TKN2k38eLCqTyTiw6CTbfA9SWiqjfqs6eO2d9Zdk7ez0HILHreHRJZG1MzlwGEMce5XJ6ZLJZOxecIJdocKeostQC5xWjv/FwK8gr5Aw+03cPv2UcuXK4RA2gj5/AM4JsSl4jlhFXGQCmtrq+O+eTv0fCNRJX9LwGLWG2PcJaFaqQMDOadRrVvP7+1h6lt3LxGh/kF1nJnv2l8eobAk7xSHpeh81qzujHAUROeFzGu7jNvDlUwqVq2oRtNWOmqZVKcgvInj2bu5fE10i96UjadvVjPzcQvwcd4mNkZoyPitG07ytCR/fJ+Bmv420lGyMTfQI2TCBitoVWBlyUhqhl8PRoy+9BrbgyrkIFvgcpbRERpeejZnnM4Cnjz/i47yfwsJiWlrUwSfElof3PxDoJW32rBrg7juAPbtus0Mac02060y/Ac1/koIvWDicxKSfOTffxlI/g5sIObiZN8sa5R/ATd8eTejUrq4YS0ngZmi/FriGfgc3Q/u0wG3xCQqLiunQojaWbUwJWi85GHdtgpqaMrtPi9d3Gm3F5QfvePZOcDnnje3Cwj2XycotoKmpAY3rVmfHWXG9T+3flvDbr/icLMKiu7euy+YzAhyO7d6CMw/fipFVVW1MjKpw+tEbFBXKMa5rC7Zde0RxaSldGtXhzZckvqRlYlS5Ivq6Wtx+J1yOe5rX4+gjAWgGtDLj2JNXyGTQxaw2NyI/UlBcQkvj6rxNTCYrvwAzfT2+ZGaSlpuHia4OaXl5pOTkUVtXh4zszN9eRz/WfzXAaWBUBbMaVVly6LpwBB7VjcUHrpOTX0gz0+qY1axGoJQW7jW+B5vD7/IlKQODKhWZadsBx4VHBM+mY0Mqa6mzVMr9cJ3UnRsPI7n9NBoVZSVC5/Rn/d5bvI1OpJJmeULn9WfJhot8kGIYAuf1ZdmmK7z7IOTewa792XvkPrcfiPDLIPcBvHrzha3fjPpm9KCqnhZTZm4TNuHt6jJ6RDvWb7zC02cxlC+vgr/fYPLzi/D/Fqpp1YAhQ1px+eJLjhwUi9rFvS9GNSqzftVFnj8R5/mG2FJBXZWlISd5/yYerYrl8QoagoqqEjs3XOXhnUhUVZXwXjAMDU01Xjz5xCbJl2Lq3J7Ub2woRlDuh0hJysKoli5OfkI6mhifzkI3AVb6Dm+DVW8xTvr8MZmlnmIsM9SuE22kzKjCgiKCZ+0SXZiWteSGXgCPb7zjgEREnh1q+1OI5t3zLwjfJm5Gc5eOQvcHc7zCgiIWzNhBYUERzTvV/yVnqriohIUO2yjIK8K8Yz0G2nf5Zd2kfE1ntavwJho5tw/1mhuXub5eP4gifIP0HleMQ12rfJnHgej0rHEWo8ghs3th/Bvzvx8r9l28XBY+OXhEmQ/Df1L3ToudX7v+rf5Hr1NW/b84opLJZNw4fI9VjltJT8xAQVGBkW4DGeE28Bew8HcqOz2HhXYbuHtS/Dv2nNAZh6VjyzTi+7E+R37F23YZce/jUa2gwvyN9nT4k/T5woIils3azuUDAowNn2PDOM+Bv3z3GSlZ+I5ezesHH1BWUcJl/SQ69G3x0zHRrz/jNWIVKV8zqFJdm8C9M6hR97vBZVxUAh4j15D4OQ1d/UoE7ZkuJ+KXlpay3veo/FobM7cXIyQlVUlJKWt8jnJ6j9i02Ln3ZZAUjhsXnYTb2A0kf82gqqE2IdunoF+jMnk5Bfg57ODZvQ8iAHflaFp0qEtOVj5eDjt49eQTauVV8F89liatavH+1Wc8pu0gMz2XOvWqEbx+PBqaaizxO84FiSM0x2cA3fuYc+HUM5b4S1LtPuY4efbl0f0P+EluxG3ameIVPIS7t98T7HNUHpzp4tmfndtvsnuHuMbs7K3o3a8ZLvP38eZNvARuRhD/NZ3A4HA5uJlm3wVnD0EorlRRgJuT5yLkY6l5Uucm+IfOzR/BzbD+LXEJOUpefhEtmwhw475EgJt2zWvTycKU4PWic9OvS2MqqKuy+5Toxswe3Zmrj9/z5K2wKHEe24VFe6+QmVNA4zr6mNerzrYz4jlg19eC0/ffEpuYjkFlLXq1rc/G02JMPaprcy48fc9XKSyzvnFVTj18g0K5cozr1pId1x5TXFJKp4a1iUxMITYlAwNtTWpU1ebm24+oKinSq1k9jjwU4KZfiwaEP31NqUxGp/q1uR0dS15RMc1rGhCZnCo6NFV1ScrNITknl9q62mQXFpKUnYOxTiWyigqIz8r+7bX0Y/1XA5zRVi3wlwLFZvTvwLGbL4lNTKeajiYTe7Zi3mqxO5rcpw0vo77y8HUs5VWVCZzSC/+N58nMKaBhnWoMsmqKQ4jgeoy0aYGKkiI7jgv0627fg2evpRgGhXIEOPXh/PXXXLv3XiiinPtx9c57zn8jGc/ry/sPiWzfL24Mzg49qKCmQpBk1DewTzN6dDFjrtt+kpOzqWGkg9s8G65df8PBb/43zr2pbqDNHKfdpKXlUKt2FebOsyH6QxJLvuVOjWpH+471uHbpFYekKAVnj77UqKnLmfAnnPlGNPYfRFX9Sjy49Z7d0ux5plsfaptWJS0lmyDXg5SWlGLVszF9bMVDcc+Gq/Kdlsei4ZSvoCoCN+ftIzszj7qNqmPnLJxxCwuKCJ6zRw5ixv4AYjaFniLq1RfRhVn6nS+QlpTFornCer7XCIufeDepCRksdRbgY5BdZ1p3MfvpO98edpIPrz6jpaPO3CWjfumS7F16hvfPhSR87opxv/z+22gqOz0X06Y1Ge5UtsqouKiY5Y7COLDbiHa06NKw7EUo1f7FJ0mKS6VqDV1Gzv/7mU97Q8VNu22f5tRrWfuvT/hNFRcV8+aeyHtp1uX3o7R/pb6NqLKysuSRDf+Xlfw5lZUzN3PnhHjo1DQzxHnztH+ZWB359CMBI1bw9Vt0w5Ix2Ez6FSD/sZ5ceUng2NVkp+VQxVAH3/2zMWladucoMzUb/9GreXHnPQqKCsxYNKpMj5sv0Yl4DVvB5/8fe28ZF+Xatn3/6e5GCQVbsbsbu7u7A8UCpcTuZXd397K7u0VA6a6hmQHm/XCcDrKsta7rup/7eX/Xs39RmGOCmTnPczv2fYvPCRia6OO7dzxVGpQttubNg2D8h2wiKz0Hp3J2zD84UeUwDBD0MhzfIZuRJWdSorQ1Cw6Mx6ak6ELlKwpY5XmQ6yfFBXVcQA86DxVkZIU8n+Weh7h9TnSNJi3oQTspHPPzhxi8h20jLTkTh9LWLNg1Eis7UzLTc/AZs4sPLyNEZt3GIbjVKY0sNYu5Y3cR/D4GQyNd5m8cQoWqjrx/GcHcCXvIzsyjbKUSLNg4GD19HRbPPc7tK++EQWBAd5q7V+HCiWesWSRxj7rWYPKcjjy8+4lAyeerfpOyeM/vwd2bH1kSeJrCAiUt21TG06sTO3fc5rAE0kaPa4F7+6p4Tj9IcHAcRsa6LFvWj6joVJVD8Ve1lKfXET6Hicy/lYv6cPriK5VaynNSWzS1NX4Jbnp3rqkCNzWrONK7kwA3efJ86lcvRfP6ZVi4+bLE7ayMsZEee88JwDK5f1Nuvwjl+UcRpOk5RIAbWWYulUrbUquSIzvOCwAzqlM9Lj8LJjw+FVtzIzo0qMAWCdz0a16NG69DiElOp6SlCVVc7Tn7+D1qajC0VU323nqOPL+ARhWcCUtKJTwxDVtTQ1xKWHL7g/C26VCzPMefCHDTqUZ5zr8OEiTics48jYgiR66gqoMtYSlpoltjbUGaPJcECdDk5hcQl5FJSVMTcpUF4vdmpnz+7VEl6r8a4Cw7coOCQjXa1ylPqiybh+/FKMpncGv8dvyJPL+AptVcKGFpSsB20YL1HdGWPee+miQZMHdEG6avOEVuXj51KjvRtn55xvoL0mu/DjWxMNYnUPIUmTi4GXl5CrZJ1tnTRrZCoShgw66bAEwY2gxzUwPmBAq/mJ6datK4XhnGeewlK1tOlUolmTi6BZu331SRiuf7dCc+Pp1lktS5b596NGlcjjVrLvH+fTQGBjr4+3enIL8Q/3nHyc1VULNWKYaOaEL4l0SWLxIxAL0H1Kdx8wp8+hjLOmlePmR0M2rWKU1cTBqLfU6gVEKHHjVp3aEqBfkFLPI6RkpSBo6lrZjiLWb6zx+EcEDympg8r7NqBLXzj8t8fB2JgZEuXsv6qvg125Zd5POHWAFilvdRgZg7F19zVrJdn7G8r4p3U1hYyIoZh0hNysC5rC1j5hVlSYkMqgOkp2ZRulIJhswsblD37NYHTmwRhOlpKwd8F7UQ9CKMQ2sEl2Xi4r5YSsGd39bNE094cPEVmloaTFs75Ke2+sfWXibsQzQmFoa/DNIEiAtLVPnjjF7U76fjrr9WVHAsNw6L92jAnK5/6z6/quDnX8jLkWNkbojjDxQ4/2597eAolUrS09NVgOf/dBUWFnJh6zW2eR0gOz0HTS0N+s7qSt/ZXX/baflRKZVK/tx1i/Uee1DkKbBxsmTegcl/yyfn7NZrbPAU+U0V6rjgc3Ay5jamP1wbFRKHT58/iPmcgL6RHt67xv4QOAc9/4JP/3XIkjKwdrAg8PDkYl0ZgHsXXrJk3A4UeflUquuC7+5xxSJNnt38QODo7eRmyynj5kDA3rGYWgiFYF6u8JV6dFUAiekr+6sCa3Nz5CwYv5un0ohpxsp+NJGIyB9ehOMzcgeZ6TmUrmDPgp0jMbUwJC0lE++RO/j8IRZDEz0CtwyjnJsDyYnpeI3eSXhIAibmBizcPBSX8va8fPQZvyn7yc2RU7mGE/5rB4p8vVmHeXgrSJCPF/WiYYsKnDz4UOWy3rl3bcZ7tuP2tfcs9hOjpMbNKzAnoBvXLr1lxaKzKJXQpr0bHrM6sGXTdVW3W6SCV8Zz+gFCQxMwMdFj2fL+hIUnsmjJOZVD8YgRTfH0OsyXsCThc7OkL6fOveDkuRcqKbiGpjqL1lwUY6V21WhYz7UYuOnVqWgsVbOKI30618JrRVHnpkWDsizYdIlCpZJOzSpjYmLAnrNiczu5fxPuvvrMsw+R6OtqM2NIC1YevKkCN/WqOLHtnAAwIzrU5erzYMLiUrAxM6JTo4pskYBPn2bVuP3uC9HJ6ZS0MKZmuZKcfPgONTUY0rIm++68QJ5fQIPyTkSnphOWIFyJyzlYc/P9ZzQ11OlUqwLHn4hxa8fq5bnw9hP5hYU0KuPEy6hYMvPkVClhQ5QsneSsbFyszMnKlxOXnklJMxPylYXEyNKxMzGiUF1JrCyDEiZGKOR5vz2uvtZ/NcCRZedRpYwTtVxLMn+vIPXNHdSKzacfkJiWRSk7c/q1rMGUlQJwjOhcl9DIJG5LgZoLJnRk5d6bwqzP2oQZw1rgsfA4uXn51KrsSPeWVRk19wAFhUraNalIvapOjJ69X3yx21SlTlUnRs7YJ7I/mlWkXYtKjPXcT06OgmqVHRg3tAmBy84TFpGMhbkB/nM6c+tuEEelXdOc6R2wMDNg/MTdArjUcGbEsCZcvvyGM6dFi9zLuzN2dmb4zj1GdHQq1jbGeM3rQm6uAn+vY+TmKKhWw4nho5uTLsthvtcxQSBuVIa+gxshz8sncPYRMtNzKVvRnrHTRKjdns03ePX0C7p62sxb2gc9fR2S4tNZMueY6Kz0qEXLjtUAeHTrI8d3SaBufndspV3gvctvVf4Wnot7YSkBjvioFNZ4i1FWr9HNqNWkiJh5Ytstnt0OQkdXi9l/DCzmd3N6x21h2Kerxaw/inNyZCmZrPDYD0DHIY2o+xeyb16OnBWTd4ugwC41adr1+/FAakI6G6TRVL/pHSj1E4O2mM/x7F8qun+jF/TBxOLXXidbvQ+hyFNQrWlFGnau+cu139bBJWLXWLd9tX/JdO6v9e6+yHmp1KDc/0h3RUdHBx0dHfLy8pDJZP8rAOfz63DWTd7B23viby1fxxWPzWMo9QOe1d+p3Kxc1nns4cpeMaap064aM7aN+a0xo0Kez4bpe7mw8yYALfs2YOq6YWjr/jh09c29TwQMWk9GahbWDhYEHJ78Qxn4wz9fsWjUFvJyFLi6OeJ/YOJ3+WXndt1mo9dh0flzd2PWxuHFcqVunHzKCg+R81a9SbliobOZsmz8R27n7aNQtHW08No4lLqtBMjKTM/Bd8R23j8LEwKCjUOpKR27L+4F4z9OjH4rVHciYNtwDI31SIqX4TViB5GhCZhaGLJw+3BKlbMjPiaVOaN2EhORjIW1EYu2DsextDWP73xi/rSDKOT51Kjvis+qfgD4TTvIs4ehaOto4rOsL7UbluHwrrvskCIZeg1uwIiJrbj25xuWB4rjpkXbysyY24U/z79kteTH1aFLDSZOc2fjuiucPik6e5M92tK4aXmmTzvAly+iK7N8eT8+hcSxdPkFIRJxd2Po0CZ4zjkkna8NWbGoDyfPvuDUeQFuZk5pB+oUBzd1XfFafLpILdWxOnO+IRT36lBDBW4a1ihNi4ZlCdxYBG5MTfVV4GZiv8bce/2lGLhZdegWssxcKpayoYGbM1vOim79sA51uPEqlM+xKVibGtKlcSU2nxe39WlalfsfwohKkmFvbkStCo6ceCCAyqAWNTl49xV5CpEnFS/LVCWGV3KyURn3dalVkWNfwU2N8lx6F0x+QSH1XR15FRNHem4eleytic/MIikzm1KWZuQpC4iRQIy6GkSkpmNrbIiGpjqRaTJsjQ0pQEm07P9xcP5WmRvpMaZ9PWZuEu3L4e3q8DwoitehMRjq6eA9pDXeG86LELFqpSnnYM3sP0THY/awVtx6GsLTdyJGfvHUTqzYcY3oBBl2VsbMHduWmUtOIcvIpXxpGyYOasokn8NkZctxq1CCsYOaMNXnCLL0HMqWtmHa6FbMX3meiOgUrCyN8J/ZieNnnnPzbhCamuoEeHdFJsthmST/7t+7Hg3rl2Ge73GiolOxtjZmrldnwsISWSUplwYPbkS9eq4c2HuPB/eC0dLWwG9+D4xN9Aj0OUFkRDJW1kZ4BXRHTV2NZQGniY9Nw66EGTN9uqKursbmVZcI/hCLkYkecxf3Qltbk8d3P3FIchX1mNcZx1JWQtE0+wiy1CxcytkybpYYQSXEprFMIgl3GVCfhi3FyTAuKkXFu+k5vAm1pRNhvqKAxR4HyMrIpUJ1JwZ/4zr86XUku5aLTscYny44lS0y5Qt9F8WOxeKzGTWvazHDPqVSydrZh0lNSMehjA0j5nb97ruwZ8lZIoPjMbM2ZsKiH4dkbphzkIzULFyqONBnivsP1yiVStZO34ciL5/qzSrQone9H677Wm/ufuTu6afCfn9J/7/NoYkPT+L6IdG96T/7+7/nX6nPryMAcdH/nypTU1Pi4+P/j/NwMtOy2O13lLMbL1FYqETXQIfhgf3oNK7NvxxnEfY+igUD1xHxIRp1dTWG+PWk9/SOvwWHKfFpzB+wlvcPQ1BTU2OYfy96e7T/6Wd/ef9d/vAQ3jLla5XGd/+EH2aDnd56nc3eArjUalkJr21j0DfSVd2uVCrZtfA0R9YKXqH7wIZMXNy3WBfy5NYbbPEXBPymXWowfdVAFRcpJV7G3MGb+fIhBn0jXfx2jKJKXTHOS0lMZ+6QrXz5GIuBkS4BO0ZSUTLuvHfpDYs9DpCvKKBGo7LMWz8YXX1tYsKT8Bqxg/joVCxsjFm8cyQlS1kRFZbEnFE7SIyTYVPCjMVbh2PnYM6dK29ZMvsY+fkF1GtWHq9lfchXFOAzdT9vngt+jv+q/lSt5cyezTfYv00ongaOasrAUU25eOYFa5acR6mEth2rMXV2B86eeMZ6iSDdtWdtxk5uzZqVf3LhnPCEmTajPXXquTJt2n4iwpOxsDBk+Yr+vH0XxYpVAqh06lCNAQMaMG32QSIiU7C0NGTlor4cPvmEc38KH5pZU9uRX1jIsj/Ee9+1XTXq13HBa7HwuWlUx5Xu7aszZ/FJMQ2o6vyNWkqAm2b1y6jATcdmlSRwIzpME/s25sGbMJ6+Lw5u0jJzqOBsQ4OqpVTgZki72tx69ZnQmGSsTA3o1qQKm86LjWavpm48CIogIjENWzMj6lR0UoGbwS1qcPj+K5E7VdaBpMxsVeSCWyk7rr4V6d+daxeBm/bVynH5XTDy/ALqupTkfVwC6bl5lLezIik7m/iMTBzNTcmnkMhUGbZGhmhqahCekoa1kQHa2pqEp6ZhY2iAmroaMekZlDQx/n8jqr9T3v1bsmj/NQFg3EphbWrAzvOPUFODgJHurDtyh4TUTJztzBnZqR4TFktqntbV0NJQ54DEVp83pi1X7gXx6HU4OtqCVLzpwF2CwxIxNdZjwfROrNh6lbCoZCzNDQmY1om1228QFBqPiZEeC2Z15tjZ59x9JFJe58/uwuewJDbvlJyKxwin4rGT95Cbp6BWDWdGDGnMgYMPePAwBC0tDfx9uqGhoY6vzwkhEa/rwqDBjXj+7ItK2jh5alvKlrPj5NHH3L4uIh7mzu+BmZkBh/fe49F9AYJ8FvbE0EiXm5ffcu646BbN8u+GjZ0pCXEylvmIE2Cn3nVo1lZ4v+zZcJ23z8PRN9DBe3lftHW0yFcUsGjGYRXvZuR0AQoU8nwWTz9IVkYu5as6MGRqG9Vnsn/tFT6+jMDASJdZK/upfDRysvJYOnU/BfmFNGrnhnufInOx3Bw5SybtJV9eQL3WlWk/sLgZ281Tz7h34ZVQPP0x+LsohrePQji5WZCBpywf8MPd992zz7hz+hkamupM+2PoT2W7N44+4sXND2jrajFp5aBfApbCwkK2eIlxpvvQZv+oi3B8zQUhDW5e6d+KZPi2EiOTALB1tvrNyn+9TExM/o8CnMLCQi7vvsV274PIEsXOr3GPuoxZOuhf8rUBARQu7b7Fhml7ycuRY25ryqxd46jWtOJv7xv07DMB/f4gKSYVAxN95uwaR+3Wbj9cW1BQyA6/4xyXMokad62F54bi3Zav67bMO8JpidDuPrARE5f1L/YdVcjzWT1tH9clnt6gmR3p51Gk0CosLGTnorMckxSXXUY0ZbRvNxVYi/qcwNxBm4iPTMHMypjAvWMoXVF0kGIjkvEesoXY8GTMrIxYsGsUpSqILLbLx56wxvsYhYVKGrlXYcbyfmjraPIlKBbvkTtITcrE3tGChTtGYFPCjNCPMXiP2UVaShYlnS1ZtHU4VrYmXD79nNV+IiqjqXsVZgQKZ/a5k/YR9C4afQMdAtcOpKKbA9vXXuWo5KY+fGJL+gxpxOmjT1gvbfw6da/FhOnuHD/0kC1Sh6d3//oMG9OMFUvPc/lPYbI6Y3ZHqtVwYprHfqKiUrCyMmL5iv48exHGmq9ApUsN+vSui8esQ0THpGJtZcTyRX3Yf+QRf14V1hyzPdqTK1eogjN7dKxB7RrOeEvxC03qlqGre1XmLJHATTVnurcvAjdf1VJfOTcdm1XC1MSgCNz0+x24cWbrV3DjXps7b76owE2Ppm5sPCfATY/GbjwKiiQ8IRUbU0PqV3Lm+IM3AAxuWZMj91+TK8+ntmtJUrJy+BSbhLmhHtVdS3JFciXuWruSCty0q1aWqx9CyMsvoHapkgQlJAsSsa0lstxc4tIzcTAzAQ2ISJFhY2SAno4WX5JTsTI0QE9Xi7CUNCwN9NHQ0iBalo6tkQEFiv83ovpbtefSM+JTM3GyMaNX06pMW3cagAndG3H/VRivgmMw0NMmYHQ7fDdeIDtXTvVyJWjXsCLjAgWpeEinOigLlew9I04c3mPa8vJ9FJfuCFJxoEcnbtwL4uYDKWbBszP3noRy4fpblVNxeGQK2/ZLHZGxrbAwNWCUjzgptGtdhY7uVZkXcJLomFRsrI2ZO6sTL16Gs3O3AC5TJrWhTBlbfH2OExubhq2tCbPndCIlOZOFknKgbTs32nWoxvu3UWxeK8ZxYya1omLlkrx+Ec5Oycxv4vR2uJS1JSo8mdULREek77BG1G5YRgAWr6Oky7JxLW/HaA/RXXl6L5jD28VrmerXFXtJ0bR77RU+vIpQ8W60pBPu7jWXhd+NsS6zVxSBmNePQjksBeFNDuyhIjQCbAk8Q3RYEpZ2Jkz+Jj0cYMfCM0SGxGNmZcyUpX2L3ZYUm8aGuULy3X+qO65VioOI3Kw8Vk7Zi1KppHWfetRt871ZX3pKJutnidFU7yntcKnyYyCSkZrJZm/hwtzfsyP2P3Gd/Vo3jjzg0/Mv6BvpMti72y/XfluypAz+lGI6+nj+e0GY31Z8hAA41g7/2oX/75SenlCShYSE0LjxjzO7/lP17l4Qm2bsIeiJcM1wKG/PhNXDqNHyx4aMf6eyM3L4Y9JObkgigJqtqjBz+xhM/0ba+pUDd1kzaReKPAWO5ezxOzyFEq62P1ybnZHLklFbeHTpNQADZnVi4KzO3wHm3Kw8Fo/ZxsM/XwEw3Kc7vSYVTyXPyshhwYitvLj9EXUNdaYsH0CbfvVVtyvk+az2PMD1E2IzM2xOJ3qNb1UsNNNnyGbSU7Kwd7YkcO9Y7JzEd+TzhxjmDt1KamIGtg7mLNgzGnvptpM7b7NloeiOt+1Vm0nze6Choc6HlxH4jNlJZnoupcrZErh1OOZWRrx/Gc688XvIysjFpbwdCzYNxdTCkNMHHrJRMhZt260mk+d1Jj0tmzkT9vAlOB4jEz0WrR+MSzk71i+9wNljEvF5ujtd+9blyL77bJOATM9+9Rg5sSUHdt9ltySaGDCkEQOGNWLxgjPcvP4BdQ015nh3pkKlEnhM3U9sbBo2NiYsX9GPBw9DWC+BwB7da9G9Wy2mzjxIbJwMWxsTli/sza4D97lyQ4hGvDw7kJ6Vy2rJ7bxX55rUqOrI3CVnVPELnVq7qRyK61Z3pktbYeInVxTQqJYLjWqVVvncdG5eGWNjfRWh+K/gxvMH4OYr52ZIu9rcfRtGaEwylibFwU33RlV4ElwEbhpVKcXR+xK4aVGDow9ekyNXUMulBLKcPD7FJGFmoEetMiW59DoYdbXi4KatW1muf/wswE3pEoQkJZOanUMZGwsy5HIxijI1QkNLnS/JqVgbGWCoq0NoUgoWBvoY6GnzJSUVCwN9dHW0iEyTYW1oQKE6xGZk/O5QU9V/NcB5HRqLsbExXgNa4rX5vIihr1MOM3091t+4Kzo5o9qx49RDwmOFn83soa3wWH5SsNmrOtOqXlnG+IpdeP+OtbA0NSTgK6l4UFMKCwrZJIGXqcNboAas3ib50gxohL2NCaOm7RWtzrZutG5WkUkzDiBLz6Gcqw0e41tx8Ogj7j8SnZqAed2Q5+WzYNEZER3v7kb7dlU5ePAB9+8Ho6Wlga9fN/T1tZnndZS0tGxcXK2Z7NEWWVo2gT6SyVWLCnTtWZvUlEwW+pygsEBJK/cquHeqJgy15hwlJ1uOWw0nBo9uDsDujdd5/ypSdGkW90ZbW5PkhHSWeYtRU8c+dWjSRnBbnt4L5qjkG+ERUMS7eXonSBWa57Ggp8rvJj01i6XTD4kk8F61i+VM3bv0hj8PP0JNTQ3P5f2KkSGf3HjP2d2C3zN9VX9MLYq6L1/dijNlOZSp6kjvCd87/O5ceJrYsEQs7U0Z8xMy8Bafo6QmpONYzo5+09r/9Pu0a/5JZEkZOJa3p8ektj9dByDPlbPTT3QE+3p2+kfRCmc3XyEvR06ZGqWo3vzX6qy/W4WFhURGRpJRmIZC8+/vkP5Jbd++nVevxIV4xIgRFBYW/suZVL+q6JA4tnsf4O4JsenQM9RlkE9Pukxw/5ek31/r07PPLB66keiQONQ11Bnq25Ne0zv8diSlkOezefYBzm4Rx3299tWYuW3sT20D4iKS8Ou3lrD30WjrajF9/TCadq/z3brk2DT8Bq4n+FU4WjqazNgwnCZ/kZYnxqTiO3ADX95Ho6uvw9zto6jZvKjTlJWRw4IxO3hxOwgNTXWmLO1XLHrh+e0g5n8lG1dxIGD3aFUcyZvHofiP2klWRi6lytsRuGsU5tbGKJVKdq+6xGHJxqH7iCaMnNUBNTU1XtwPIWDSXnKz5VSo5oj/pqEYmejx/H4I/lP3kZejoGJ1JwLWDcLASJeDW2+ye51437oNbMBoT3cS49OZM343UeHJmFsYsmjDYBycrVgZcJor50UY5OQ5HWnXtQZ7tt5kn3S+6T+0EYNHNWXnlpsckjo8Q0c1pVf/+gT6neLeXbEJ9fbtSmkXazym7ichQQQVL1/Rnxu3PrJlq9iA9e1Tj/bt3Jg68yDxCenY25mybEFvtu29w/VbH9HQUGfezI4kp2Xxx1bxPvTtVpvKFeyZu1SkgjerX5b2LSszZ6ng4NSrLuIX5q06p3Iorl+jFIu3XVH53BgY6KjAzaT+Tbj36ivnRgvPwc1Z/Qtwc+9dGCHRSVgY69OjWRG46dawMs9Co1TgpknV0hy+K4D1oOY1OPbwLdl5CmqWLkFGnpygmETMDPSoU86BP199Ql1NjW51isBNG7cy3Pr0mVxFPrVKleBzciopWTm4WpmTnZ9PdFo69iZG6OhoEZqUgqWhPsZ6uoQkJmOmr4eJgS6hySlY6OthoKtNeKro4qhpQFxmJg4mJnz55RFXVP/VAAfAd2gb1h6/I+ynHazo2cSNiSsEqXh01wYEhydy+3ko2loaLJzYkRV7bxCbmE5JaxNmDGnB1EUnyMlTUKuyI73aVGOE1wEBlBqVp0ktF0ZKduvtm1eicR1XRnruIz+/kKb1ytCjQw0mzDpARmYuFcraMWV0S9ZuukZQcBzGRroEeHflzbtodkgOpFMntKa0sxVTp+1HJsvB1dWGyZPa8OJFODu2S3L3Sa0pW9aOTeuvqhLCffy7o6Wlid+coyTGp1PCwZxpsztSWKhkse8pUpIycSplyaSZggewccWffAmOx9TcgNkLeqChqc7ju584IgGJaT5dsHcwp6CgkKVex5ClZlG6nC2jpRFUSlIGy71E16Rjn7o0kkiIqUkZrPjqgzOgPg2k3yuVSlZ7HyM5XkaJUpaMnVukjEqOl7FmjnisHqOaUrV+ET8kIy2L1TMEuOwyvAk1v3FWBfjzwAOe3vyAlo4mnt/Yxn+tt49COLP9pnhvVw784QXn1d0grh4SLsoea4b8VGXz+U0kF6WO2sTlA357IT29+SqJUSlYlTSn6/g2v1z7bSnk+ZzfJk6YPzOB+1dq+/bt3Mw9BUCthjVYunQp3bt3Jycnh9zc3N/++7s1MpmMx48fq55PqVQyZswY2rZt+x8Lz0xPzmD/ghOc3XSZfEUB6upqtB3anMF+vf525MWPqrCwkGOrLrDL7xgF+QVYljDHa88EKv1Fdv2jSopJIXDQej48EmGdA2Z3YaBX15+Cojf3PhE4dCOypAzMbEzwOzCRcj8gkH9+G4nvgHUkRqdiYmmE797xVPzLqDL0bSS+AzeQHCfDzMoY/33jKVPVUXV7SryMeYM38fldNLr62nhvHk6tb8DP9RNPWel5QJCNG5Vl7pbhKrLxgytvWTRpHwp5PpVrl8J3qyANFxQUst73JBcPiwvrYI+29B3XAjU1Ne5cesPSGYfJVxRQvYErPmsHoauvzb1r71g84zAKRQE1G5Zh3qr+6OhqsX31ZY5J4oQBY5szcGxzYqJSmDNuD/GxaVjbmrB40xCsbU1ZNO84d66+R11DjRm+XWnuXoWta6+qLDCGjW1O38EN2bDmMqckZdSYSa3o1K0mfnOP8/hRqNgcBohcPY+p+0lOzsTBwZzlK/pz8c/X7NwtzsODBzakRYuKTJ11kKSkTBxKmLNkQS82bb/JrXsCJPnN7kJUfCobJZrBgB51Ketqg8/yc8LluGE52jStgPey08gVBTSoWZp2LSrjs/o8+QWFNKtbhjpVnVTgplsrN3T1tNkn+dxM6t+Euy8/F0nBBzdn1WFBKK7gbEP9v4Cbr2MpAW6qsukruGlUheehUYTFC3DT2K0I3AxoXp3jj96SlSenRukSZMrlfIxOxMxAVwVu1NSEcd/xpwLctK7iyu3gMOFt41yCsJQ0kjKFn01uYQFRqTJsTQzR09UiJCkFCwM9zPT1CE5MxlRPF3MjPUKSUjDT08NQT4ew1DQs9fXQ1FInNiMDOyMjsnKzfnfYqeq/GuCM7lSX+6+/8O5LHCYGungPasXMdSLfo1kNF8qWtGLmGjG2mjmkJXeehfLkbQS6OposmtKZVbtvEBmXiq2lEfPGueO94iypsmxcnazwGNaCafOPIcsQJOIpI1owe8FJklIycSphjtfkdqzZco3gzwmYGOsRMKsz12995MxFsQOZN7MT6upqzJeUMu3butHBvSp/rLvMh48xGBrq4O/TjfT0HAIDxWy6TdsqdOhQjdu3PnLsiLiYzJzdkRIlzdm/6w5PH31GR0cT3wU9MTDQYc/Wm7x4+kWYai3siZ6eNtcuvOailC4+e353LCyNSIwv4t107lOHxhIwObT1Fq+eCCWV19I+aOtoCam21zHSUrJwLmPDKE/hE6NUKlnpdYy05Eycy9oyckaRf8zFw494cOUdmloazF7VXxWLICThh8lIy8a1cgkGTytO7N0w7zgpCek4uFozbHbxUU1cRDJbA8RrHjqr43cp4fJcBWumC1VVm371qdnse/6EQp7PuhliTfshTajwE58ZpVLJJi8pg6dbLdwa/tqOPzMti0PLRet+8Nzu33EqflX3zzwjJU6Gua0JDbv+Z8z4oqKiGDt2rOrnwsJCPD098fT0/I88/s+qoKCAkJCQfxvgZGfkcHLtRY6tPEeWLBuA2u7VGLlowL+sjvpaSdEpLBu5mZc3RSBg4261mbxu+G9VUiAI5AsGbyA1QYaBiT4zt42hXrtqP11/fuctNsw8QEF+Aa5VHfHdP/GH6fUPLr5kydjtIoSzjC0BBydh9xfe1JNr71g0ehs5WXk4lrUjYN94bL4xw4wMiWfuwI0kRKVgamlEwJ4xlHET4EepVHJs03V2SBYSTTtXZ/rKItB+6fAj/pB4NfVbV2LWGqFmlOfls3T6Qe5dEhyWCf7daC/531w4/Ih1/qdRKpU0aluZGUv7oK2tyaWTT1kjcWsata7MrCW9UFdXZ92Cs5yXgMhoz3Z0H9SAsNAE5ozfQ0pSBiUcLVi8cQgmpvoEzDzM47uiez1nQQ/qNy3P2uUXOXdCcCTHebSlc49arF56gQtnRD7TZM92tHKvwtzZR3jxPBwdHU0CFvTC3NIQD499pKVmU6qUFUuW9uXUmefsPyA6PiOGNaFhw7JMnXmQlNQsnB0tWBTQkzWbrvHgsVDXBnh3ISQ8kW37BDgb3Ls+zk4W+K88R0GhktZNKtCsYTnmLhfXmsZ1XGndpAK+awS4aVm/LNUrObBku6AS9JDiF75yPif3b8LtF6EqE7/pg5oLtVSWkILXruTIdgncDG1fm9uvvxSNpZq5/RTcNHIrxZF7ReDm5KN3KnCTrVDwMToRU31d6pRzVIGbbnUqc+LpW5RKaFXFlTsh4eTIFdRwsiciNY3EzCxKW5qj+EoiNjHCQE+bkMRkzPX1sDDQ51NiMiZ6uliaGKiAjomBrjSi0kNLW4OY9AxsjQzJVeaTnJ39myOvqP6rAY6Rni47Lj5EXU2NgBHurDl8m4TUTErZmzOyc33GLzoqIhtaVsVIT0dF6vIe1Za7z0K5+/wz2loaLPLowu4Tj3gXHIuRgQ6LPDuzce9tgkLjMTbUZcGMzuw6/ICX76LQ09ViwewuXL/zkfNXpMTwGZ3IyMhlhRS7MHRAQ6q7OTJlxgFkshzKuNgwZXwrrl1/z6mv8u/ZnbCyMmL6tAOkpWZTurQ1U6a0JTo6leWLxcWzV9+6NGpSjhfPvrBH4shMmt6OUi7WPH0Uyn5phDR1dgccna2I+JKoMsQaMLIp1euUVvndfOXdjJJUTa+ffmG/xNuZNLcTJZ3F3P347ns8fxCCjq4WXsv7qmTcZ/bd5+kdkSEza1kfVSck6nMCWySuz5Bp7rh+4+B7etddXtz9hI6uFjNXFe+K3Dn3kpunn0s+HANUicUgLtArp+1X5VB1GdHsu8/+wKoLRIUI1dRI3++DNAGOr79MZHAcplZGDP2B8upr3Tv7nNd3g9DW1WKE3689bwCOrr5IZmoWjuXtadmv4W/Xf1sXpCDWtkOa/lvjlm8rODiYwsLC736vo6ODoaEhurq66OnpoaurW+z//+TfrKwsxo0bh1KpVD2+hoYGrq7/umIrL0fO2U2XObz0NLIkMZcv7ebEqCUDqNnqx8Tdf1L3zzxl5bjtZKRkoqOvzfgVg2g7pOlvu2ZKpZKTGy6z1esQhQWFlKpUknkHJlPCxeaH6/MV+WyafYhzO24C0LR7HTzWDvnOD0mpVHJiwxW2+R1HqVRSvWkFvHeMwfAv2VMX9txh/ZzDFBYUUrVROeZuH1VszdvHofgP20qmLJsSpayYv2+cilNTWFjIFv9TnN4pzhfdRzdnhJfIjlIqlRzacI09KwRZt02vOkxe0AMNTQ2yM3MJGL+HVw9CRH7byv40cq8isqi23GT3anFua9+nDuPndUFDQ53ju++yVVJFtu1ek8k+XSksFF3hW3++ETELPl1w716TT++j8Z64j3RZNqVcbVi4fpCwqPA4wKunYcJdfVkfqtcuzcqFZ7ksjaqmzu5Im/ZVWbbgDNcuCd7j9Dkdadi0PHNmHOLtmyj09LRZsKQ3unpaeHjsIyM9F1dXG5Ys7cPBQw85elyKMxjdnBo1SzFlpjgvl3a2YmFAD5b/cYknz8OE6/y8rrz5GKMyah0xoBE2NsbMXy3k5O1aVKJhbRd8VkhjqnplaNagHL5/XBAZhA3LU7mcPct2SpydttVQqqlx+JIAZlMHNuP602BefRLgZtqg5qw8dFOYzpa2pVZFB3ZeEJvb4e2LpOB/JRR3a1SFZyFFY6lGbqU4ek9wbgY2r84JCdxULyXAzYeohO/ATfc6lTkugZuWlV25J4Gbak52RMhkJGZmUcrSjHwKiUhJw9bYEEM9bYKlUZS1sQEf45Mw0dXB2sSAT4nJGOvqYGagx+eUVMz0ddHV1iQqPR0bIwPylAWk5OTgYm5O2C+PwKL6XwM4YWFhzJ8/n+vXrxMXF4e9vT0DBw7E29sbbe2f72iHDh3K7t27i/2ubt26PHz48B+/hjVHb4OGNuO7N+TBmzBeSF+a+aPb47/5ogjJLGNP9+ZujA4Q5NF+7WpiqKvN1mPCunvG8FaERiRy8rI4oPwmd+DFm0jOXZPAi0dHPoXGc+i05F0zyZ3cvHxWS2F6I/o3oqyLDWOm7BHqp1qlGdy3Aes3X+P9107N3K7ExslYsUqcDAb0b0C9uq5s3nRdlWLr598NdTU15vueIDtbTuUqJRkxqhnJSRks9BU7JPeOVWnboSrJiRks8T8lODxdatCybRWRAeN1jLxcBdVql6L/iCaA8Lt59zKiGO9GlprF0jliB9e6c3WV303Q2yh2SeqCsbM74FhakGy/BMWyfbkUBjmzHc6SvDtfUcBSz0PiORu40n14Eek0/FMcOyVvipFenXBwKSLspiSks85bjK36TGhFuWrFXV/P7b7Lm4ch6OprM23lgO9kwF/eR3FsvVA0TFjctxin52vFhiVyYIUgNo4O6P3TBHB5roKt88Rr6TXZvdgu+UclS8rg1EbxHg3z7fmPJMpx4Ym8vPEONTU12g1r/rfv97sqU6YM6urqxUCOhobGf6S78m1pamoyZswYCgoK0NDQYPPmzf/S4+flyPlzx3UOLjlNSmwqACXL2jHIpxdNe9X7tz18stJz2DRjH5f3iIu8a3VnZu8aj8NfzPJ+dt9VE7Zz56S4KDbvXZ+pa4eha/Bj88a0pAwWDNnIm/ufUFNTY8jcbvTx+H70KLqJB7i0X3QFOgxtyrhFfYoppQoLC9kZeIpjG8S5pXWfekxa1r8YEL599jnLpwobg3LVnfDfPQYTqRslz1WwbOo+7l4QPKlR87rQfZT4nhUUFLLJ/xTnJPPNPuNaMMRTvM7UpAx8R+0g+G00egba+GwcSrX6rhQWFrJt6QVO7hbnyr5jmjN4iuDB7VxzmcMSybfnsMaM8GhLXq6CBZ6HeHI3GE1NDWYu7EGTtlV49fQLvh4HyMmWC9fitQMBNWZP2EvQu2j09LWZv6o/5auUZKHPCe7cEEThGfO60Lh5BebPO86920GCPOzTleq1SzHD4wCfgmIxMNRh0dK+FCqVeE4/SFZWHuXL27FwUW927r7DmbMCWEya0JoKFezxmHmQjMxcypaxZb5PVxatuMiL1xHo6mix0Lcbj1+Gc1Difo0b2hRjYz0W/iHJyVu7UbOqIz4rxZiqZcNy1K9VGv+1FygoVNKmUQXKuVizcrfE2Wlfg1xFASevi2uLx6BmXHn0idfBMRjq6+AxoCkrD94kIzuPSqVsqFmhpCp+YXiHulx/GcIXlc9N5W/ATeVi4KZhlW/BTQ1OSGOp6qXsyVEo+BBdBG4uvf4e3LSo5ML90HCyJXATLUsnMSMLZ0szCtWUhCcLybehvo4AN3q62Bob8iE+ERNdHWxMjQhKTMJYVwdLIwNCk1Mw09PFQFebSJkgF+ejJCUnB0cTE2LTUn57HH6t/zWA8/HjR5Flsnkzrq6uvH37llGjRpGVlcXy5ct/eV93d3d27typ+vlXgOhXVVBQSOs6ZbAyNmD9EXHi8B/pzt7zTwiNSsbCxIC5I9swc9UZoaAqX5LuLdwYMe+AivRV1tma0d5CYTOiVwPMjPXwXnIKgJF9G2JrZcwoKWOob5da1KziyEiPvWLuWtuF/j3q4LPwNNGxadhaG+Pt2YFbdz9yXApk8/LsiJmpvsrMr0Z1J4YObsT9+8EcOSLakDNmdKBECXNWr7hIaEgCpqb6zPUT2TSLA06TlppFKRdrJk5zp6CgkMX+p5ClZlPa1ZrxkhJqy+rLfAlJwMzcgFkB3dHQUOfl488c3inel6lzO2PvYI5SqWSV3ymSEtIp6WzJhDliNJSdlcfimSJcs3Gbyrh3F2THvFwFi6cfQiHPp07TcnTqX6TeOLD+KsFvRHr4tMW9VRemfEUByz2FmVftZuXpMKDoPkqlkrVzjgi34or29JtcnL8SH5XCzkXCZG+EdxfVzvTbz3zNdMEraNihGg3bV/vue6FUKtkw+yDyXAXVGpenec/vCZ5f69Smq8RHJGFhZ0qvyT/2xim2fsNlcrPycK3qRP2ONX67/tu6dVR83m5NymPzl7/r36mSJUuyZcsWRo4cCYCamtq/DD5+VSNGjKBt27aEhITg6ur6jx8/My2Ls5uvcPKPi6QlCJm5jbMVA7170Gpg45+6Sv+TenX7AytGbSE+Igk1NTV6erRniG/Pv9Ut+/w2gsCB64gOiUdTS4NRC/rSZVzrn3Z8Ql5HEDBwPQmRyegb6TJz88gfjrDSUzIJHLaJ1/c+oa6uxuj5vekyukWxx83NymPZpF3cl8DJX2XgSqWS45uus32BGLnXb+vGzHVFlgkZadkEjBIGfppaGkxfNYBmncX3U56nYKnHAe5JXZUx8zrTRYpliAlPZu7wbcRGJGNsZsD87cMpW8WBfEUBq+ce55o0Eho9qwPdhjYSyeaBZ7h4TLoQT21L7xFNhEng5P28exEuRuYr+1GrYRke3g4icNYRFPJ8qtYqhd/KfuTkyPGauI+w0ASMTPRYsGYATi7W+M48zNOHgkvjNb87Neu64DPrCM8ef0ZLS4O583tQvqI906fsJ+xLIiYmeixe3o/MzFzmzj1Gbq4CNzcH/AN6sHHzdS5dfiO8cKa2w9HJgulzDpGVLadSBXt8vboQsOQsb95Ho6+nzWL/Htx+GMxRKWtq0sgWaGqps3i9kPh3c69GpfL2+K8+LzaGjStQq5oTgeuFr037ZpVwdrDgj30C9A3sVAtZdh5nbr5FTQ2mD27BhXvvefc5DiN9HaYOaMqKg7fIzBHZUlXLlWD3n2ITPbJjPa5IDsXWpoZ0blSJLRdEA6B7o8o8CY4iIjFNBW6O3S/q3Bx/9IbsPAXVS9l/N5b6Cm661a5UDNw8+BxBtlxBVUdbomXpJGRk4WRhilJNSZgEbkwM9fiUkCTAjYkRH+ITMdLRVoEbIx1trIwNCElKwVRPFwM9AW6sDAwoUFOSlJ1NSRNjknKzyVIofnssfq3/NYDj7u6Ou3vRBaF06dIEBQWxcePG3wIcHR0dbG1/LK/8UeXl5ZGXV6QMSU8XfhjOduYMbF2T8csE8XV4p7rEJMi48jAIDQ11FkzswMYjdwmPScHKzJB5Y9oyZ+UZMrJyqehiy4geDRjrcxC5QuSDdG9dlVGz9yFXFNCwlgs92lVn3OwDZOfIqVqxJKMGNGbuolPEJciwtzXB26M9R089VSWE+3t1QSbLZqlk5jegTz3q13Vh8dJzhEvumN5zOpOUmMHSJWKU1KNHbRo3KceN6+85J+VHzZ7bGUtLI/buuM3LZ2Ho6mkxd353dHS02LfjNq+k33kH9kBbR5M719+r/G5mBHTD3NJQdGl8TqBUKnHvWoOmkjrq/NEnPLz5Ucy7l/RW8WU2LDxLbGQK1namTPHtqjqxbl9+kYjQBMwsDfH4Rt794UW4SmUxKaA7Vt/EIhzecI2Qt9EYmugxdXHvYifyq8ce8/DKWzS1NPD8xoQMJPAz6xC52XIq13Wh/aDvxz/ndt4i6EUYBsZ6jFvw43Tv+xde8uSqeI4JS38eYJmaIOPQStHlGebT46e79K+VJcvmtNS56zuj0z8mCN86Jk5SzXr92jzwX6kRI0Yw03MmKWkpNLZ0Z9iwYf/x5wABpv4psEmJS+PEmvOc23yV7IwcAGycLOnt2Rn34S3+I6O6vBw5u3yPcmKtOPZsna3w3DqGKo1+zaf6Wpf23madxx7kuQqsSpozd+/EX/oTXTv8gDVTxXr70tb4HZiIYzn779aFfYzBf+A6YsOS0DfUZc62UdRuVVzmnhyXht/gjYS8jkRTWxOPVQNp0aMIlBfkF7DJ9zjnJJFAlxFNGSX5ZoHYFMwbvJnIkHj0jXTx2TqCqg3KAMKdOGDMTt48+oymtgYzVhRFLwS/jcJn5A7SkjOxLWlO4M4RlHC2IjdbzkKPAzy5HYS6hjoegT1o1bUGcnk+y+Yc5c5lMSqaNK8L7XrWJjU5k7njdhMaFCdMAtcOpFJ1J65ffM0y35MUFhRSv2l5vBb1JCU5i9kT9hAblYq5pSGL1g7CytYYL48DvH0ZgY6uFn5LelO+Ugm8ph3gzatIdHW18F/ci5JOlnhM3kd0VAoWFoYsXdmPuDgZvr4nUCgKqFWrFPN8urJqzSVu3PwgPGxmdsTC0pAZ3kfIzVVQzc2ROTM64LPgNB8+xWJoqMNS/15cvPGWM5JUf/q41uQq8lkpqeZ6dapJaSdLAteK7Kn2zStRuXwJFm6UpN8tq2Bva8L6A6JjOKRbXRJSMrlw9z3qampMH9Kc07ffEhSWgLGBLlP6N2X5wRtk5cip6mpPJVc79l6SwE2nelx++onw+FRszAzp2KAiWy+KjVHPJm48DIogUjLxq1fRqQjcNBOEYgFuSpCtkP8U3Jx49k6MpSq5cF8CN24OtsSkZ6jADepqhCWnYmVkgKmhHkEJSZjq6WJrasSHOAFu7MyNCUoQ4Mba2JCQpBRMdHUx0tMmQibD0kAfpToqcJOSm0uWQkFFSyvC/9ZR+X8ZB0cmk2Fu/j2p7q918+ZNrK2tMTU1pWnTpixYsABr6597jixatAh/f//vfu8ztA2+Wy+SJ8+nXmUn6pR3YNJSIXme0q8Jb4NjuflEmO8tmtKJnSce8ilMJIIHTunE0i2XiYkXzsXzJrizYO1FYhPSsbcxwXuSOys2X+VLZDLmZgb4Te/IweOPePj0M9rampKZXyJbJJb9pDEtcHa0ZPzUveTkyKlaxYFhgxtz8c/XXLn6DnV1NeZ6d8bQUBePufvIyMilfHk7Ro1uTlRUCqu+hmgObECt2qV59TyMfRLHZrJnOxydLHn9Ipx9X7k4nu1wcLIkPjaN1YGCA9NnSENq1nURhOD5p0UauLMl4ySicFhIPFukmfnwqW1wKS9a9rf/fMPVMy9QV1dj5uJeGEpqpMc3P6qiGKYt7KmScOdk5bHMU5ByW3SpUUwSHvwmioPrBQiYENAdc2tj1W0J0als8hPE4UHT2qnMxL7W9eNPeHbrI1o6mkxZ1u+7UUVCVAq7ForuzvC5Xb+zsAfIycxlk2S+13NSWxzK/HwssWfhabIzcilT3ZkW30hrf1ZntlwjS5aNYzn7fxTJACI1PPRVOBqaGjT8H0j6BrC2tSYlLYWs5Bw+PgqhYv3fq4T+p0qpVPLm7kfObb7C3ROPyFcUAOBUqSR9ZnShWe/6PzVb/Kf18UkoK0ZvIeJjDADthjdj9OL+6Bv9PP39a+Vm5bHecy+XpaiG2m3cmLl1DMYWPyYh5yvy2eZzjFObxHe8dusqzNo66jseDcCjy69ZMnob2Zm52Dlb4rtvIs7li3/nQ99G4jtoI8mxaRibG+KzawyV6hQBq5ysPJZM3M2jK29RU1NjlG9Xuo0sGm+GvInEZ+hWUhPTsbA1Yf6eMZSSniMpTsa8YdsIC4pFz1AH383DVCrG53c/EThxDzlZckpXsGf+9hGYWxmRnpqF77jdfHwVKXh4q/pTp1l5srPymD91Py8ehqKpqcGsJb1p3KYy8TFpeI3dRXR4MqbmBizcNITS5ew4e/Qx65dcQKlU0rK9G9N8uhITncqcCXtISsjA1t6UResHYWCoy8xJ+wj+KMZNgSv64eBkwczJ+/gk/W7B8r6YmRviMWkv8XEybGxNWLayP6GhCQQGniI/v5AGDcowa05Hliw7z717wULm7d0ZHT1tZs07hlyeT+0azkyf4o6X/wlCPidgbKTL0oCenLz4kj+vi5ymWZPcSZZls2Wf+D4M7FEXGysjFm8QnZwubariUsqaxVvEiLxrazfMzQzYKOUTDu9en8jENC7f/4iGuhozhrbk+PVXfIpIxNRIj0n9mrBs/3WycxVUL1uCss7W7L8iukajOtfjwqOPRCXKsJNSwbddFOOyXk3duP8hnKgkGXbmRtSp4MiJh0L5NLB5DY49fCPIwaXtyZIXgZva5RyKwE2dSpx4+mNwE5vxY3BjJoEbE10d7EyKwE0JCxNVF8fa2JCQZAFuTAx0CE9Lw0JfHzUNNRKysihhbExqXi5ZCjmuFuYExcf+9rj8Wv/XAJzQ0FDWrl3LihUrfrmuXbt29OrVCycnJ758+cK8efNo0aIFz549Q0fnxzvoOXPmMG3aNNXP6enpODg4sPX0Q6ISZNhbGjO1T1MmLjlGQaGStvXL41LCksmLBdiZNqg5nyMSOXfzrSAkT+7A5TsfuPtMkIwXTO/MqcuvePD8iyCazejCtTsfuXL7gyohPDwymR0HxSx62thWWJobMsJnl2DVN69I5/bVWLrqoiqB1md2Z8LDk/hjnTgQhg9rQlU3RzZuvMaHDzEYGuoyz6crykIl831Pkp0tx62qA0OGNiE1NYuFkjKhbYeqtHZ3Q5aWzWLfk6I92t6N1u2rkp9fwCLv42Rm5FKhSkkGjxUnvjNHHvPwVpDo0izqha6eNvI8BYtnH0Wel0/tRmXoKo2NEuPS+CPgFAB9RzWjcg1nANJSMlVRDF0GNaBW46Kd8NZF54iNSMba3pTxvkWScHlePitmHBRjrvZuNJW4PfB1NHWY7IxcytdwoseY4hyUtKQMNvsJef8AD3dKlv4e8G6ae4Tc7Dwq1nHBfeCPyb2H11wkMToVG0cL+k79cVI4QERQDJeki9qYBX1+y/vIy5FzUmpX953xezv/v9Z9icNVvUUlTCx/nW31r5aZmZBS56Ngt98RFl30+j+e+J2ZlsWVvbc5v/UqER+iVb+vWL8sfWd1oU676v+x15SXI2fv/OMcX3ORwkIlZjYmeGwcSd1fKJ2+rbB3USwYsp6IjzGoq6sxaG53+nr+/LNNS0xnwbBNvLn3CYD+MzoycHbnHybWH117iZ3zT6JUKnFrWBbvHWO+yzR7ePk1S8buJDc7D4cyNvjvm1BsJJsUm4bfsC2Evo1CW0eLmWsH0/CbzcSTG+9ZOG4XudlySlWwx3/XaFUnNSwolnnDt5EUK8PMyoj5O0fiIjkX3zz7ghWzjpCvKKBqfVfmrR+MgZEuCTFpzB21g8jPiRia6BGwcQgVqjuRlpLFvPG7CX4Xja6eNj5rBlCjvithIfF4j91NcmIG1nYmLNo8DHtHcw5su8VuqbvbqXcdxs9oR8jHOOZO2Y8sLRvHUlYsWjcQJTB93G4iwpIwMdNn0ar+mJobMn3CXjGCMtVnkeSGPnXiHlJSsijpYM7Slf15+TKcZUvFuKhZ8wpM9WiLf8Apnj0PE87wvt1Q5Bfi7XdcAKC6rkwc15KZPscIlzatSwJ6sv/4I27cDRKmflPbEx6Twu6jotM6vG8DDA11WL5FgNme7WtgZ2vC8m3i517tqqOrp8X242ITOKpXA0Kikrj+WACsWcNacujyc0KjkjE30WdC70Ys3XednDwFNcuXpFRJCw5dEyPAMV0acPbBO6KT0ilhaUzrOuXYLoGbPs2qcefdZ6KT07E3N6JmeUdOPhQJ34Na1ODoAwFuarqUICNX+NyY6utSq2xJLr8O/jHn5tvOTUYGib/o3Jjo6lDCzJj3X8GNuQA3hto/Azd6qGsWgZs0eS6Zcjku5uZ8SU8l/weCiJ/Vfxzg+Pn5/bBb8m09efKEWrWKDKliYmJwd3enV69eKh7Az6pPn6KcoMqVK1OrVi2cnJw4f/483bt3/+F9vob8/bUevglDT9+AhWM7sHjnVVJk2bg6WDKqW31GBxwWs9HGFSnvbK1KCB/duyEUwtbDElgZ3oKMjFy2HxI/Tx/VkoKCQtZKioixg5tQwsaUEVN3i/Zkqyq0bV6JGfOOkpyShZODBdMmtuHPK2+5eFkQk31mdxJt1eknkcvzqVO7NH171+PevU8cOyq+tDNmdsDW1pQ/Vv1JaEg8JiZ6eM3rKjKlAs+QkpyJo7MlEzzaolQqWR54hqTEDEo6WjBxurhw791ykw9vojAw1GH2/O5oamrwOTiOrZLiYeSUNrhIhODtqy8TJnnjTAvojpqaGoWFhSzzOkZmRi7lqpSkvwQ6lEol6/xOkZaciZOrDcOnF40iH9/8oPLImLakNwbf7JL3rb5E+Kd4TC0MmRDQo9gI58bJZzy9+RFNbQ2mLe//Hd9ik+9xMtKyKV2pBD3GtPz+s770mgd/vkZDU53JS7/v7gDERyZzfIMAlKPn9/5lqveehcIhukGH6lSuX+an677W1QP3kCVlYONoSdMev+/2/LWeXBbt73rtq//j+/7d+pr2jbaSF9ffcnTFWfrM6PLrO/0HSiHP5+mll1w7cJeH554hzxUzdl0DHVr0a0SHUa3+I2Gi39a7B59YOXYbUZ/EbrBF3waMWz4Q498Eo4KUHr77Fhs89yHPVWBuY8KsHeOo1rTCT+/z8elnAodsJCkmFX0jXaZvGE7DH3Cw8nLkrJm2l+sS36r9kCaMX9y3WLdKqVRyfMNVdgSeEmqqJuXx2jqyWBco9F0UvkM2kxwnw8TCEN8do6hQs+g9vHjgAeu8j1JYIDxuvDcNU/lAvXoQwvyxu8jKyMXB1Zr5O0ZiU1Lw707suM22xWIs26RDVaYv6YO2jibhwfHMHb2TpDgZlrYmBG4ZhlMZG+JjUvEas4vosCSMTfWZv3EI5SqX5P2rCHwm7iMzPQfH0lYs2DQECysjNq34k1OSd03/kU0ZPLY5r56F4Tf9kCAZV7An8I8BZGbkMHvyfuLjZFhaG7N4zQC0tDTwGL+buJg0LCyNWLJmADk5cmZO2U9Geg6lSluxdEU/bt0OYq0khmjbtgpjx7Vk7rzjvHkbha6uFoH+PUhOy2LRcgGAmjcpz8ihTfD0PkJ0bBpWFoYsCejJ9gP3uPsoBE1NdXymd+RdcKxKTDJ2cBNQgzWS6rF/l9oYGumyZvdN8XOnmhSqwZ7T4nw+vl9j3oTGcvtZKJoa6swe0Yq9F54SFpOCpakBY3o2ZPG+6+TJ86ldwYGStqYcvSHOCWO7NuDUvXfEJqdT0sqEZjVc2XlJcJz6NKvKrbehxKZkUNLCmGplS3L6URG4OfKgKH4hNTuX4NgkzAx0qeFakitvQlQOxSpwU9mF+6ER5Hzl3KR/C24oBm4+SeDG3lSAG0NtCdwkiP/bmhoRnJSMia5OEbjR00NdU10CN0bIJHBT2tyMsAwBbmrY2RHx26NU1H8c4EycOJG+ffv+co2zs7Pq/zExMTRv3pz69euzZcuWf/x8dnZ2ODk5ERwc/I/vCzBrcEsuPwzitRTLEDi+PfO3XCI1PRtXR0vG9GrAOL/DyBUFNK7pQtuGFRg+e5/IBGlemXrVSjHccw9KJXRsWYUmdcowYvoeVcZIjw41mDbvCKmybFycrfAY05K9hx7w7GU4ujpaBHh3IS5exur1krJmUCOquTkSuPCMCNG0MmbO7E4kJMhYKtmV9+hZm0aNynL75gfOnBKy8VnenbG0MuLw/vs8eRiKtrYmc+d3R09PmxOHHvFICtv0DuyOnr42Lx5/5rBkojXVuxO2JczIzZGzaM4xFPJ86jYuS5e+4kL86HYQpw+Ik45nYA/MpPb78d33eC354Mxc1EtlpHft9AvuXXmHhqY6nkt6qyTh6alZrJaCN7sNa0zVekUS4Q8vwjm+9SYAkxb0xMS8SLWUlpTBpq/dmanuOLgWl9s+uvqWW6efo66uxtRl/b4z9MvNlrPRW0RrdB/bCqfy33MdAHb4H0eRl49bw7I0+AH5+GsFvwzj7plnqKmpMdi760/Xfa2CgkKOS+7W3Sa0/cejlSxZNu8eiO937bb/vvz5Z/UV4NTqWIWIU2ls9zpIYmQyY1cM/o+Ng75WviKf9w+DuXnoHreOPSQjJVN1W6nKjnQc04oW/RthYPz96ObfqdysXHb5HePU+ssolUrMbU2ZvHbY3yZ8Z6Xn8Mfkndw8JgBIzVZVmLllNKbfjFK/LaVSybntN9nsdYh8RQEly9jis3f8D/k2idEpBAzZSPDLcNQ11Bm3qC+dhjcrtkaep2DtjINcPSKOx/aDGzNuQe9i3/nH196xaNxOcrPlOLja4L97TDEZ+O6l5zmyQfBDWvWszeTFfVQ8phunn7NypjDjq1y7FD6bh2Fkqi/k4wvPcforj2dII0Z7iW7V22dh+E/YQ6YsBwcXaxZsHYaVnano0IzZSXJCBtZ2pizYNBSH0lY8ufuJwOlCPVnezYH56waip6/Dct+TXLsgfFjGebaja7963L/5kYVex1AoCqhWqxS+y/sQG5OK19QDpKZkUcLBnMVrBpCdI2fGuH2kJGdiX8KMxav7Ex+fzrw5R8nJkVOhYgkWLOnNuXMv2C6pt7p1r8WAAQ2YOfswn4LjMDDQYfHC3nwJT2TFH4If4966Mv1718NjzmHiE9OxszVhsW8P1u+8yaPnX9DW0sB/dhcePf/CyT9fAjB5eHPSs3PZeUR0Zob2rAcaamw6KN67YT3qkZ6Ty7FL0vpBTXn6PpJ7L8XjzRrekh1nHhMVn4aVmSEju9dnyV6RmdigijOW5oacuC0I0OO6NuTY7TfEp2bgYGVCk+ou7L0qRlb9W1Tn2qsQ4qTb3FzsOfP4PWpqMLCZCM7MUxRQx9WB5CwRnGluqEd1lxJcfSvATZdvTPxaVnblXqgkBXe0I1KWTlKmpJaiSC31befGztRYNYr6ObjRVYEbDS0N4rMysTc2QibPI0Mux8XcjLCMNPILC6lgacnzqKjfHqdf6z8OcCwtLbG0/HsKj+joaJo3b07NmjXZuXPnv9R6Tk5OJjIyEju730s4/1qdm1RCX1uLQ5cESPAd7c7pG295/UmAnYWTOrF061ViE9MpYW3CnFGtmbXsNGkZOZRxtmLKkGZ4Bh4nLT2HMqWsmTq8Of4rz6t4OLMntWXXwfu8eheFnp4WAbM68+Z9NLsOSN2eSW2wtjJm7OTd5OXlU7tmKQb0qc+Zcy+4cVOEYc6b2wV9PW28Zh8mMzOXChXsGTWqObGxaSyXZNR9B9SnTl0XPryLZufmmwBM8GhDqdLWBAfFsk3itIyZ3AaXMrbI0rJZ6nsSpRLada1BE8m4b/OqS0R8ScTc0ojpElE4NTmTlZLJX9cB9anVUHQrQj/GsPsP0e0YM6s9JaQTaEJMGhsXCJ7LgAmtcK1YdCLfGHCa1MQMHEpbM+Qb0768XAUrvnJyutaggURoVt3P94TozlS0p+eYFsVuy87MZd0cCbyMbqEyK/u2jqy9REJUClYlzOjv8eOx0/vHodw69VSoRAL7/JIAvGfBKQCa96qLc4USP133tR6ef050SDyGZga4D2ny2/V/refX31FYUEjJsnbYOv863+rfKVNTUwBKVrKlWbXW7PE7ypmNl/n4OIRBPj2p0676v+ycrFQqifoUy/Orr3l+7Q2vbr5XEYYBzO3MaN6nAS37N8KlmvN/zKH523py6RVrJ+9SZW61HtSYMUsGYGT2YwuAv9bHp6EsHr6J2M8JqGuoM8yvJz2ntPvpeSs3O4+10/ZxTfJEadipBtPWDfuhY/bbh8EEDttEWmIGxuYGeG0bQ7W/OHOnJWYwf8QW3j8ORV1djTHze9FpeHFfntM7brHF7wSFhUqqNSqL9+bhqs6OPFfBiukHuC1Jn/tPacvAae6oqakJc78tN9khbaIat3fDc0U/tHW0kOcpWD7jMHcuCvAxak5Hug8X3+P7V9+xxPMQ8rx8KlRzxG/DYIzNDHj7PAy/SVKHxsWaBZuGYmVrwo0Lr1g+7wQF+YXUaliGucv7ghr4ex7i8d1PaGio4+nXjRbt3bh89iWrAoXRacNm5Zkd2IPgj7HM9TxIVmYeLmVsWLh6APFxaXhNPyS6NC7WLFrZj+BPcQT4ig549ZrO+M/vwYEDDzh4UHwWAwc1pFOn6kyfeZCwsCRMTPRYurgPL99Esl4K3u3asTqdO1Zn6pxDJKdk4VDCjAU+3Vmx8Qov30aiq6PFAq+uXL37kQvXJbXTmNZEx6dx4LRkUti/ERk5cvZLtgFj+jUkNjmD09dEyrjHkBbcefGZx29FUPOs4a3YevIBMYky7CyNGdK5Dkv3XRcb5mqlMTLS5fRd8VwTujXi0M2XJKZl4WhtSgM3Z/ZdE9eyQa1qcul5EPFpmThbm1HO2ZqzTz4IcNO8BofuvUKeX0C9so4kZGQR+jUVvLS9Ctx0rl2RE09Ft6f1NyZ+34Ib4XOjJCIlDRtjQ0wMdFXgxtbUiI/xxTk334IbY52fg5v0n4CbD8lJf+tY/Vr/axycmJgYmjVrhqOjI8uXLycxMVF127cKqfLly7No0SK6detGZmYmfn5+9OjRAzs7O8LCwvDy8sLS0pJu3f5+WOHX6tbEjamrJEfZDrXJzy/k0J/iC+Izxp3rD4O4//IL2lqaLPTozJ5TT3j7KRZDfR0WTOvMzqMPeBMUg4G+NoGenTlx8SV3n4hYh4AZnXn3MYa90jx25kR39HS1mL/0HEoldGjrRuvmFVm47DwRkSlYWhriPaMjX74ksEEKcxs1oimVKpZg8+brfPwYi6GhLnPndUFNDRYEnCI7K49KlUsybHhTsjJzWeh3koKCQpq1rEi7TtXJyZazcN4J8vMLadi0HJ2615QIxGdIScrEwdmSsdL46MGtj1w4Li7wM+d3x8TMQEQo+J1ClppFqbI2DJc8LOR5CpbOOUp+fgENWlRQScILCwtZ6X2M7Mw8yld1oPfIoov5vUtvuHnuJerqakxb0ltlAAiwd9WfRH9JxMLGmLG+XYt9Rg+vvOX2WUFgnrr0++7MvhUXSIpNw9bJggHTvwcvMWGJHJU8b8YE9Pyh0kmpVLJlngBJbfo3/GmYJsCHJ6E8ufoWdQ11Bs7u/NN139YpKUW4w4jm6ElW9/+k3t4LAqBGi8q/Wfnv1dcOTnp6OgNX9sDFzYklQ9bz6dln5nVZSukqjjTuWQ/H8iVwLF8Ce1fbHyqY5HkKooJi+PI2krC3EXx+E8Hn1+Ekx6QWW2dsYUTd9tVpOaAxVZtV+keeQP+kUuNlbJqxj5vSsWjjaMmktcOo3ebvdcMKCgo5uuo8ewJPUpBfgLWDBXN2jadi3Z+bFEaHxjN/8AbC3kejrqHOcN8e9JjY5ofA7fzOW2yYI7hnpSuXxGfPeGz/knT+5UM0foOE87CBsR5ztowo5r6dryhgs1+RUqpt33pMXNRHdbykJWcyf+R23j/7gqaWBpMX96F1L6G0KsgvYIPfKS4cEBf/rsMaM8pbmPtlyLIJGLebt0/E/aYv7UMziRt3/tAjNswXo9q6zSswe0VfdPW0uX/tPYtnHRagp6ojAesHYWSiz4m991UihWbtqjB9fndycxT4Tj3Au1cR6OhoMXdpb+o0Ksvx/Q/YIo3K23SqxlSvTjx/8pmAOUfJy8unclUHApb1JfhTLD6zjpCbo6B8xRIsWNGXp48/s2ThWQoKCmnQqCxec7uwect1zkgmqaNHN6dps/JMnb6fmJg0LCwMWba4DzfvBrFrn+TZ07MOzZtWYOrsQ8jScyjlZEmAdxcWrr7I+0+x6Otps2huN05dfsV1iYMze6I770NiOSF1ciYNbUZMUjpHL0peOoOa8CkyiT/viC6K57CWXHkUxIuP0ejpaDFzeCs2Hr1LfEoGJa1N6N++Fkv2XaegoJDmNV3R1tHk3H2hrBrfvSEHrr0gOT2b0nbm1KzgwMEb4nmHtKnFuScfSJJlUcrGDBcHKy4+C0JdTY2BzWtw4O5LFAUF1C/nSJwsk8/xKVga6VPJ2Zbr70LRUFejU80KnFSBmzLcDv5CriKf6k72hKemkZwl4hcUykIiUmXYGBtirK+jUkvZGBsSFJ+EsY42dt9wbmxMDFXgxtTwe3BjZ2RIulz+HbgpbyHAjRIlNUv8L46o/m5dvnyZkJCQH5qJfet2GhQUhEwmPC80NDR48+YNe/bsIS0tDTs7O5o3b87hw4cxMvrnxEv/LX+SnaugZgUH2jWowEh/4WczsGMtDHS12XpUmFp5DmtBbIKMw+dF62/uBHe+RCRx6IyYt3pNbEdSSqaKOT9lZAtMjfWY7iMumt3aV6dZg7JM8z5Mmiwb19LWTBnbkj+vvOXK9XcS76aLZBd+GoWigHr1XOjVsw6PH4dy5PBXv5v22NqasnXzDT6+F0Rjr3ldUNdQY/WyC8TFpGFrZ8JUKVNqw6pLREemYGllhMccIUs+f+IpD29LBOLAHujqapGSlMGqAOGP0WNgfarXEZEEf554xiNp7cyFPVWjpt1rrxIekoCpuQGTfbupTtpn9z/g1cNQdPS08FzcW8WTkaVksc5XdIF6jW5G+WpFXZagVxGclJRdEwN7YPQNjyArPUdl6Nd9VHPKuBUHHp/fR3N6h7jvhMBeKk+Pb2uLzzHy5flUb1r+p2On26ee8vHZF3QNdBg859egZf8SoThr1a/Bb9PCAcI/RPP6zkfU1dXoOLLFb9f/qL6mYVeo83PZ8X+ivgKctLQ0AOp3qsX2dys5vvo857dcFUDlTdGpRUNTA7vS1mhqaZKTmUN2Ri65mbko5Pk/fHwtbU0qNSxHjVZu1GhZBdfqzv+jJObCwkIu77nNVq9DZKZmoa6uRrdJ7gye1x1dg78HNBOjU1g6cjOv73wEoEn3OkxeM/SXXZ+7Z56xcuIusjNyMLUywmvn2B/Gd8jzFGycc4iLUtZc06618Fgz5DsQfv/iS5ZP3E1OVh72pazw2zMOh2+iRzJl2Swcu5MXd4JQU1Nj6OyOxdLAo0Lj8Rm6ldjwJAyN9Zi7ZbhKBp6dmcuiSft4euujUFl5d6Kb1J2Jj07FZ+QOIkLi0TfUxWfjYKrWc0WpVLL3jysc3CT4Je69ajPRpwsamhqcP/KY9QtE16Ves/LMXtpH5EqtusRRaSTepX89xsxoR0pSJl4T9xIemoChkS4BqwdQsaoD29de5cgeATR6DKjPqCmtuXnlHUsDTlNQUEjt+q7MW9iTp49CWeh7EoWigOq1nPFf1Jsrl9+wdrUYL7VqXZmpnu6sXHmRa1eFymmqhztVqjgw2WM/SUkZ2NqasGxJX06fe8GRE5I3z6BGVK3qiIfke1OhrB1enu3xW3aWkC+JGBvpsmhudw6cesLdx4KDM29qBx6/CuPcNTE6mj6qNR++xHP2upBhTx/egmcfo7jx6BMa6mrMHNGKs3fe8SY4Fn1dbWYOb8m6w7dJTM3C2c6cHq2rsWz/dSFCqVOOAgr585EI8ZzYvRG7Lz8lNSMH1xIWuJWx58gtwccZ1rYWpx6+JyUjGxc7c5zszLn8QjzngGY12H/3BfkFhTSs4ExkUhrhSWlYGRtQwdGam+8/o6muTsea5Tn5TESTtHErw80gkQpe3dmesBQRnFna0gy5UsQv2JgYYqinwycpZsHG2JCgBAFubM2M+ZjwV7WUDsbFCMXqKnCToVCQIc8rBm7KWVjyMUWAm3KWljyN+V8cUf3dGjp0KEOHDv3tum/Bjp6eHpcuXfqPvYaI2FRsrC3wHtGGGStPCeld+ZL0bFmN4XP3U6hU0qFpJapXcGDYrL0A9OtYExcHS0bMED/36VgTt3L2DJ++V5Uz0q55JSZ7HyY9I5dyrjZMGNGM3Qfv8/J1JHp6WvjN7kxsnIw1Umdh+ODGuFUuyZJl54mMTMHS0ohZnh1IScliiRS70KVLDRo1LsezJ184LO20ps9qj42tCZfOv+KmFDQ3x68bBoa63Lr6jkvnXgrpol9XjE30iPiSyOaV4v0bNqElLuVshXFfwGlkadmULmvLkPGCoBsTkczmZWK3NXRya0pJJ9TXT75wQjr5eAR0x1TiykR9SWSHZOE+0rMdJZyLdqAbAiTCcRkb+k8sSvRWyPNZPfuoUDJ0qk69lsWTsXcsPktynAx7Z0sG/CWHqrCwkPVeRygsKKRRh2rFQgK/1pNr73h0+Q0amuqMC+z9w92zPE/BjvmC39NrYtsfSse/1ocnoTy9Jro3/aZ3+Om6b+v8dnERqNe+OtYlf+1y/KNSyPMJeSVcH8rV+ddjDf5OfR1Rfd1QAFjYmTF6yUD6zurK1b23CXnxhcigGCI+RpOTmasi6f61DEz0KVXZAefKjpSq7ECpyo64VHdG728Ci3+3Ql+Hs27Kbt4/FNwl1+rOTF03/B+Rle+efsqqiTvITM1C10CH8csH0mZg45+OzxTyfLb7FknAK9Z1xXvnWCy+8Xj6WokxqSwYtomPz76gpqbGsHnd6DWpbbHHViqVHFx1kb1LxTmgaqNyeG8dWQxcxXxJxHfoZqJCE9DR02bm2sE0cC/qTL1+GELg6B1kpGVj62CB/65Rqly2pDgZviO38/l9jIhDWT1ANR4OeReFz6idpCZmYGFjwvztwylVzo58RQFr/U5x+YTY3A2c2JL+0jlj74Zr7JfUT+49ajFpbmeUSlgx7wRXz74EYPiU1vQa1pjIsCS8J+4lIU6GhZURC9cNwsHZilWBZ7h0Rlo7oSW9hzTk7PGnrF/5J0olNGtdiRnzunDt0htWLREk4IZNyjHHtyvHjj5mp8Sv6dKtJiPHNCdw/mkePAhBQ0Od2bM7UtLRgqnTRVixk5Mlixb2Yu+B+5z/U4zfJo1tiaOjJTPmiU5RtSoOTJ/UBq+Fp4iISsHcVJ+Fc7uz/dA9Hr8IExwcz05cufuRa/fERmbW2DY8eRfB5bsfUVdTY9boVtx6Hsq955/R0tRgzujWHLn8kg9f4jE20GH6kJasOnCT1PRsXEpa0LFpZZYfuC5EKQ0qkJGbx+1Xn9HUUGdij8bsuPgYWVYu5RysKOtkxfE7AkQNb1ub4/ffkJaVS9kSlthZmXD1VQia6ur0b1aN/XdekF9YSOMKznxOTCUqWYatqSFlSlhy68MXNNXVaV+jCNy0dSvL9aBQ5PkF1HQuQWhyCqnZUip4gUgFtzE2xEBXW5UEbmWkrxpRfWvi9y24MdLXISJNpgI3CVlZxcZSpf/SufkW3ASlJqGp/vfH1//XyMT/N0pdQ50FEzqw/cQDPkvOxX7j2uG37oL4sjlYMmlAU6YEHiMrRy6ATM/6TPY7QmZ2HpXL2TNmQGNmL5RCNEua4zm2Ndv23+PdxxgMDXTwn9mZN++i2XNQdIOmT2yLlaURY6fsITdPQa0azvTvXY8rV99ySVJRec/phKGhLrNmHiItTeRMjR3XktTULBZLPi4dO1encZPyREUks04yBhw6shkVK5ckIU7Gmq/8nCGNqFrDGYWigCXzTpCXl0+NuqXp1k+YxZ07+oTH94JFRlRgD7S1NSnIL2DZ3OPk5shxq1WKbgOFJDw7K4/lc48J878etajbVHAECgoKWS5JyKs3cKVDvyIjurt/vuH2+VciM2qpUFx8raObbxAWFIuxuQFjfIqrdd4+CuWCZAs/ZUmf77ozV48+5v3TL+jqazPa9/vxpEKez2Yf0f3pMrJ5sR3vt3V22w3iI5KxsDWlx/jWP1zztQ4sLere/DXc8EeVlyPnqmQN0HHUv9a9CXsXhSJPgaGZAfY/kL7/J+trB+dbgPO1jM0N6T6lvepnpVJJUnQKUcGxoFSia6CLvpEeeoa66BnpYmhq8D/Co/ldZaXnsCfgOGc2XaGwoBBdAx0Gze1Ot4lt/7bTcVZ6Dptm7Vd525StUYrZO8ZSwvXn5qIJkcksHL6Zj08/A8JDaei8bj8kZ7++F8TCkVtIS8zA0FSf2ZtHUqtl8fFjblYeK6bs4e45Md7oPKIZo/x6FBvRvn4QTOCo7WSkZWNpZ4rfrtG4fJPlduXoY/6YLQjD5ao74bd9JKaSxcCXDzH4jNxOUqwMUwtD/LYNp5yUNP745gcWTdlPbrYc53K2BGwdjpWdKTlZeSz0OMDTO8JReaJvV9r1rkNBfoFwJ5bMQgeMbc7A8S3Jy1GwYIaIXlDXUGeqbxfadKnBxzdRzJuyn3RZNiWdLFi4fjCmZgbMn32EB7eCUFdXY4pXR9p2rs7e7bdV3l2de9Ri/DR3jh9+xJZ1AkS6d6zGFM92bNtyQxUwPHBwQ3r2qYu391FevYxAW1sTX79u6BvoMN3zIFnZeZQra0vg/J6s23yNG7cEMJkx1R0jIz3m+B1HkV9A3VqlGTeyGTMDjhMTJ8PK0oiFXl1Zu/Mmr95HoaujScDMzpy+/Iq7T0LR1FTHe6I71x8Fc+uxAFXe49pw4c57nryNQFtLk7lj27L73GNCIpIwNdLDY1Azlu+9TnpWLuWcrGlVvxyrDgmQ1rVJFeLSMnjwLgxtTQ0m9GjE1vOPRDSDsw1O9uaceSDGXSPc63D4zivSs/Oo4GiNpZkhN94IRVa/ptXYd+cFBYVKmlYqTXBcEtEp6dibGVHKzoLbH8PQ1FCnXbVynH4uwI171bJc/RCKoqCA2qVLEpyYRGp2Li7WFmTnK4hOS8fOxBBdXW1Ck1Iw19fD0lCfTwkiT8rKxLBY/MJXKbihvhaRMhkW+voqKbi9UXFwE/4V3Fha8jH5e3DjZGbGl98fxsB/OcCZ2LsREbGpKsfIgAntOX75JS8/RqGvq8VCj05sOXSPT1+EuV/A1I5s3n+HoNB4TIz08J/WkUNnnvLklSCIzZ/RmVfvolRZJLMmuaOro0XgsuK8m+Vr/iQsPAkzMwO8ZnQkOiaVVWtEZ2XwwIZUdXNk//77vHgRjq6uFvN8uqKpqcHShWdJTcnCuZQl4ya2QqEoYKHfSXJzFFSr4UTvAfVVUQyZGbmUr1SCQVKm1O5N1wkJisPYRA9P366oq6sR8SVRJQkfMakVzlLe09Fdd/nwKhJ9Qx2mz++uGiNsXXaBhJg0bEqYMXpG0cXu5K67BL2OxMBIt5hbsSwli/WSMV/v0c0oU7no5BsREq8y9Bs7r4vKBBAEn+DraMq9bz3c/iLDzkjLVlnOD5jWDit7s+8+27M7bhEdmoCZlTH9p7f/7naArPRsDq0WXarBczr/0ok4+FW44N6oq9F32o8f76/16OJLsmTZWDtYUL15pd/f4QcVExoPgFP5Ev/jgOFXAOevpaamhlVJC6z+ha7U/0QplUpuHnnIltn7SYkTr79xt9qMWToQq5K/Nw/9Wm/uBbFs9Bbiw0VUQy+P9gye2/2XbsmPLr1m+bjtZKRmYWiiz/QNw6n/kwiQ01uus8XnqCqE02f3uO/AcnxkMgFDN/P5XZRw017cF/cBxX2bLuy7x4a5RynIL6RsVUd8d4zC3EZ8foWFhexZdoHD0vHVuEM1pq/qrwqkfXrrIwsn7SUnMw8HF2sCdozA1kF8jhcOPWS93ykKCwqp1sCVuesGYWCkR0piBr5jdxEidXtmr+xHveYVhGvxjEM8vi2AyQTvTnToXZe0lCx8J+0j6G2UMPxb1oe6Tcrx9H4IATOEgqpspRLMl+Td3pP38+ZFOFraGngt6Em9JuVYv+JPzkigadDIJgwY1pidm29wSNr49O5fn2Gjm7FqxUUuSQTosRNa0bptZWZ4HuTTpzj09bVZsKAXOXkKZs4+jFyeT1U3B+Z5d2Xp6os8fCyAydxZnciTF+Cz4JQAAg3LMqhfA6b7HCUpJRN7WxMCZnVh6cbLBIXGY6ivw/xZndl/6jFPXoWjraWBz9T2nLn+locvRWdn3gR3jl15yUuJY+M9ti1bjt8nPDYVCxMDJvVvzJLd18jKkVPJxZZG1Uuz9qgA1T1bVOVLfApPP0aio63J+G6N2Hz2AVm5ctxK22FrZcT5Rx9QV1NjePs6HLzxgsxcOZWdbTE01OHW289oaWjQt2lV9t1+QaFSSYsqLryPSiA2LYOS5saUtDblblAYWhoatKlahjMvPgDQvlpZLr0PIb+gkLouDnyIT0SWk0sZawvS5XLi0jOwNzFCS1uDz0kpWBjoYfZtKrixvuDZ6OpgYahP6Fdwo6dFlCwdSwN9UEcFbmSKPJUU/EfgpqylhQrc2BgZEpyY8LeP5/9qgFPFxZ6pK8SufEyvhuTmKth7RoCTOaPb8jE0npNXRNCZz6T2vPsUoyKQzZ3cjriEdLZLO3SP0S0x0Ndh4SrROenRsQaN65XBc+4RUlKzKOVkyeQxLbl28z3nLorH9J7REUMDHWZ7STbgVR0Z0L8B795FsUtK8500qQ2OjhYcO/KYJ4+FC7K3T1d0dLTYuv4awRJomeUjEnoP7LrD25cR6OlrM9tPAKOXT79wbK84KXjM7YyFlREKRT5L550gL09BjbouKkl48IcY9kpt5vGzO2JjbwrAkztBqh3a9Pk90JfAQOTnBPZIaqpRszpgZWuien+3LDxLWnImjq429JvQSvX7wsJC1sw5Sr68gNrNytOsc3Fvl5PbbhL+KQ5jcwOGe3X67nPbs+wc6SlZOJa1pesPksLTEjPYLwVlDpnTuZjXzrd1bP0VMlKzcCxnR6u+DX645msdlj7Xpj3q/C3uDcB1SSbavPe/HgCZEClUA9a/CfH8T9RfOTj/f6ngF2Fs9NzLu/vCQK+Eqy0TVg2m5l8iDX5V8jwFexec5Ogq4Z5r42TJjC2jqfID7szXUsjz2TX/JMfXic1JmerOeO8a+x1BGERHZs20vdw4Ls4vzXvUYcqqQd95Lb2+94mFo7chS87E1NKIuTtGF3MmLsgvYLPfSc7uEueHJp1rMG1Ff3SkDmdujpwVHvtVgZl9J7Vm0PQipde5fffZ6CcMP6vULc28TUMxMhEy8D2rL6viU1p1q8nkwB5oaWsSEZrAvNE7SYhJw8TcAP+NQyjn5kBaciY+E/fw6W002jqazF7ShwYtKxITmcLc8buJiUjByESPgHWDqODmwNXzr1jpf4qCgkJq1nNh3rI+ZGfLmTNhL5+D49E30MF/RV8quDmwxO8kN64I3syEae506FaTNcsuckHKtho5vgXdetYh0P8kd6WO0vSZHahRy5mpU/cREZ4ssqaW9CEqOpVFS0TAZb16Lnh6tMN/0WlevYkUvMd53YiJTWP1Rqkr1KoyXTpWZ9q8I8gycijlaIm3R3sC11zgS2QyJsZ6BM7szJaDd3n9IRo9XS38PTqy/9xTXkidHd9J7dl95jEfQuMw1Ndhzug2rDt0h5hEGTYWRozt3ZDFu66Rk6egerkSVKvgwMaT4hw9oG0N3oTF8SokBn0dLcZ0bcCG0/fIledTo2xJTI11ufRU8GqGt6vLvuvPyM5TULWUHVq6mtz/EI6Olga9Gldl7+3nKJXQumoZXobHkiDLxNHSFGszQx4ER6CtoU7rqmU491JwzNpVK8eld8HkFxZSz8WBt3EJZOTmUc7WkrTcXOLSMylhZoy6hhphKWlYGupjoqdLiMS/sTDWV0UumBmKVHBTPV30dbWISk/HysCAQnWRLSUcinPIUigobW5OuORzU8HSig/JiSpw8yk1GU11NawNDYnOTMdCT4/Iv3lc/1cDHP/NF8lTFNCgaila1S3HMG8RitmzTTXKOlkxfLb4eXC3ujjYmjJ8xh4ABnStQwVXW4ZP2yPcgptVpE3TiqoDoqyLDeOGNWX/0Ycqvxu/OZ1JSslkxR/iZDiwb31q1XBm3forhHw16pvdiZwcOQskaWTLlhVp616F4E9xbJOki+MmtqJUaWueP/3Cka9cnDkdsbQyJuh9DHu3SaTbae7YlzQnIz2HZb4iOdy9S3UaNBNjpf1bbxH8IQYjEz08/buirq5OXq6CZV7HKMgvpFGrirTsKFxPM2TZrJJIwt0GNsCttuAxFBQUssr7OAp5PjUblaFN96L4gcc3P3Bd8qbxWNSr2Gjqwv4HvH8Whp6BDhPnFzf0S4hOZf9q8R6N9O78XYp38OsIzkscoAmBvb5TVQHsXXaO7IxcXN0caN33x7lNaYnpnJS4EoPndPmlgifyUyz3zggFRp+pf697k56SyZNL4iLTovevwdOvKiEiGQBrh/95gPMjDs7/zZWWIGOn3zEu7bqFUqlER1+bvjM703NqexUh/u9U6JsIlo/eqiJQtx3chDGL+/9Qzv214sITWTRiC0HPRLO886gWjJzf64fPGxkcR+CwTYR/jEFDU51RAb3oMqrFd3ybM9tvssX3OIUFhbi6OeCzcwxWJYq6Txlp2SwaJ8jEAINndqDvpCJlVkq8DP+R2/n0KgJNLQ2mLOlDKykotqCgkO2LznFSIuW36lGLyQtEiKg8T8Gq2Ue5ee4lAAMmtWLAJBES+q3Hjb2jBfO3DsPe0YKYiGS8x+4iNlKAGP91g6hYzYng99HMm7CXtJQsbOxNCdw4mJJOlhzdc5dta8RGqLl7Fab7dSUhVsacSfuIj0nDzNyABX8MxN7BHJ8Zh3j26DMaGurM9O1CwyblCZx3grvSKGnKjPY0bVkRr1mHefkiXARp+nbF0dmSyZP2kpCQjpWVEUuX9ePlqwjWrBWk4xbNKzJ2THNm+xzjU0g8BvraLPTvyev3UWzbLTonPTrXpEnDskybd4TsHDnlXW2ZMbENPsvPEhWbhqW5If4zOvLHjht8lDo5/tM6svXofd6HxGGgp43PpHZsPnKP0Egxhpo1sjUr9t4gMTWTktYmDO9en0U7rpCnKKB2JUfKOluz/axQ+A3tUJtHHyN4HxaPkb4OIzvVY93Je0LSXcEJbV0Nrr0IQVNDneHt6rD7ylNyFfnUdC1BoTo8/hSJrrYmPRu5sfeWOGe1rV6Wp6FRJGVk42xthpmxHk8+R6GrqUFLtyJw06F6OS6+/URBoZIGro68jokjI09OBXsrkrOyic/IoqSZCWhARKpI+TbU1SE0KQUzfT1MDXVVYZkm+rp8SUnFXF8XXR0totPTsTI0oIBCkrNzimVLuViY8UWWQoFSSXlLSxW4KVMM3BgQk5WOma4e2VlFnlm/q/9qgBOVIKOErRVeo1oze4UI0azgYsvo3g2Y4HeU7FwFNSo5MLhbHSbOO0xWtpwq5Uswok8DvJecJjE5E8cS5kwb3Yo9hx/w6l0U+nra+M3oRNCnOHbulYz0xreihJ0ZE6btE5EKlUsyZGAjHjwM4cQpocyaNaMjFhaGLAg8TXy8DDs7U6ZMdScvL5+F86W8lEZl6di5OumybJbOF1ycDl1q0KBxOXJy5CzxFzLxJi0q0Lq9IBquX3qRpIR07B3MGSsRdT+8ieSwlFM1xasTFlbCpGz3uqtEfE7EzNKQSXM7q06cGxefJyUxg5LOlgydUpTefWbvfT68jEDPQIcpkrsxSN40X71zhjYqpppKipOxQ8rNGjqjHdYlio+XNvmdIC9HhGW2+kuKt1KpZOM8wQFq1rUmbg2+dxCODI7jz33ifR/t3/OnnZOj60Sqd5mqTjTs8Gt34BMbrqBUKqnfvhrOFX/vewNw/+wz8hUFgmhbqeTv7/CT+iqttizx98cs/2p9O6JSKpX/Kxyav1PyPAVnNl5h/6JTZKcLL53mfeozIrDvPxpH5SvyObziPPsXn6YgvwATCyOmrhtGg06/zgm7c/opqyfvJis9B0MTfTzWDf2hKzHAnTPPWDlpFzlZeZhZG+O9fcx3ztd5OXLWzjzINcm9uEXPOkxeVtSVAYgIjsN/2FZiwhLR1ddmxh/FycQhbyLxG7GN5DgZRqb6zNs6gip1RecnJyuPpR4HeHhVyH6HTG9Hn/ECYMlSspg/YTfvnoYJl+/5PWjTU2Sd3Tz/ihVzjpKvKKB8VQd8NwzG1NyQj68j8Z24B1lqNrYlzJi/cQgOpax4ei+YwOmHyM2R41LOloD1gzGzMGDzyj85KRmF9hjYgJFTWhP8IZZ5Uw8gS8vG3sGchX8MRM9AmxkT9/DpQyy6elr4LOpFhcol8fY8yMvnAsjM8e1K5WqOeE7dT7A0ggpY0BN9Q12mTtlHWlo2Dg7mLF7Sh+s3PrBth+CzdO5Unb596uEx6xCRUSmYmuizNLAX125/4NBxoZ4a2r8BFSrYM8P/GHnyfKpVdmD88GbMXnSKhKQM7KyN8Z3WkcUbL/ElMhlTYz18p3bgj723CI1IwsRIl7kT2rFm700i41KxNDVg+vCWLNl5jdT0bEqVsKBfuxos3HEFRX4BDauWwtbahL1fU8A71+PmqxCCo5IwMdRlaPu6/HHiLvkFhTSqUop8Crn1WhCVh7Wtxc7LT5DnF1C3nCNZ+Qpeh8ZioKNNl/oVVeCmfc3y3P8UTmpmDi42FhgaaPP8Swx62po0rVhaBW7aVy/HhTefKFQqaVTWiedRsWTlyalob018ZiZJmdk4mpuQj5Lo1HRsjAzQ09bic7IYURnq6/A5ORVzfT0MdXUISxUKKW1tDaLT07E2NEBBISk5OTiYGJOcKzo3LuZmfJGlUqBUFuvclLGwIDg1GS11dSwN9YnJysBcV4+sAgXZ+f8/SBP/v6E01NVZMKkDB88/411ILEYGOiyY0pGN++8SEp6ImYk+fpPbs3nfXYJC4zE21MXPowPHL7zg4VcXy+kd+fAplj3SOGLGhDaYGOnhMeeQKmfKvVVlNm+/yafgOIyNdJk7q5Mw21suORN3r0W9ui5cvvyGGzdEiq333M4YGOiwesVFIiNE+u10ifeyeukFkpMycHC0YMwkMfrZuu4qURFCEj55ZgfU1NS4deUdNy4J4vJM/27o6WuTmyNnuZRJ1aKdG40lk793L8I5uU/8DVN9u2IiKTUe3PjAdcm/ZnpgD5V/TUx4ErvXSJEOM9sXSwPfvfISibFp2DqYM2hq22Lv+aaAU+Rk5lG+uhMdBxbvbDy+/p4Hl4TqaWJgz+8usDdOPOXDszB09bUZObfrDz/TXYuEL0d9dzeq/CRCIS0xnXOShfqg2Z1/eSHPSMviuuQa2318m5+u+2vdPydOME26/XvBmAVS7ormfyAx+3f1FeDI5XJyc3PR0/t92OT/yVIqldw69oidPkeICxO+WWVqlGLcsoFUavDPgkHD3kexfMxWgl+EAdCgYw0mrxmKmY3JT++TlyNni/dhzksBuRVquzB722hsfjA+zFfksyPgJCckD6Qq9cswZ9toFU/mayVEpRA4fAvBryNQ11BnpE83uo4u3t15dPUtSyftITsjF+uS5vjtGEWpb4D23QuvWD51H3m5ChxcrfHbMQp7ideTFCfDb9QOQt9Fo6WtieeKvqo08OiwRHxG7iAmPBkDI1281w2ieoMyIgtr2y12SorL+i0rMnOZIPo/uP6exbOOkJeroExFe/zXD8bc0ogrZ16w2v8UBfmFVK/nwtwVfdHS1mSx93FuXRZOuKOmtqHnoIY8fRDCfMm7pkwFOwJXDyA3T8G0sbuIikjB2ESPwBX9sLEzwXPiXkIkIOO3uBf2JczxmLSXqMgUTEz0WLSsLzm5CqZP2092tpyyZW1ZuKg3h48+4ogUazOgfwNat6rElBkHiE9Ix9rKiKWBvThy6hnnLwnuzoRRzbG0MsJrwUny8wupV6s0g3vXY8Z8YeTqWMKc2RPb4r/mPDHxMizNDZk3uT3Ltl0lIjYVC1MDZo9tw/Kd14hLSsfW0phJg5qycNtl0rPyKOtkTefmlVm86yoFhUqa13LFwFCXo9dfAjCuR0MuPPxAWFwKFsb69GtTk7Un7oi11V2R5eTyLDgKXS1NBrepyfbLT4Tcu5IzKdk5vIuIx0hPh3a1y7P/jnjMjrUqcPvDF2TZuZS1t0RbW4OX4bEY6GjRoLwzF1+LkW6H6uU4/yYIpRIal3PmSUQ0OXIFVUrYEp2eTnJWNs4WpuQpC4iRZWBrbIi2piZhKWlYGOijr6dFWEoa5vp66OtoE56WhqWBPhpaasRkZGBjaIicAlJycnA0MSExN5tshULKlkr5HtxYFgc3sd+Am9yCfMqaWfB3heL/1QBnQp9GyNJzOXBOIGjvMW15FxzLqavCZdJ3UjvefYrl2AVxsZo7uR1JKVlslvxuJo9ogYWZAZ5+x0RUQxs3WjQuj+/C0yQkZlDC3pRpE1rz7EUYh45JGVIe7bC0MGLWnMPIZDm4lLZm1IhmREen8IcEGIYObUyFCiW4f+8T56SZ80yvTpiY6nPp/Cvu3BR+CLN9u6Knp83j+8GcOyE6fB/fUwABAABJREFUQTPmdcHYRI/kpAzWSq6kfYc2okIV0UXYue4qUeHJWFgZMX6mAEy5OXJW+ohgv9adq1O3ieAdZMhyWDtfkHm7D2lEBUllUVhYyKq5J8jLVVCtngvtehVdxD+8COesRAKcPL9HMfXT4xsfuPfnG9Q11Jkc2KNYdyUvV85GHxHO2XVEU5zKFXemzs3OY8ci0bXqO7kNFrbfX4g+PP3M/QuvUFdXY6jXzzOUjq2/TF6OgjLVnKjd6tfmeZf33yMvR06pSiWp/IOO0Y8qJzOX59fFbrlBx3+WGv7XUpcudMpC5W9W/vtlZGSkcrWVyWT/VwGct/eC2DrnIB8lTyBzW1OG+vWk9aDG/4jfVJBfwLE//mRv4AkU8nwMzQyYsGIQzXvV+yXQ/fIuikUjixLHe09tx2CvLj9USSXFprJo1FbePQwBoNektgz17vqdiuvl3SAWj9mOLDkTY3MD5mwZSbVGRZwfpVLJ4XVX2LP0PEqlksp1XfDeMhxTKS9LqVRyaN0V9kgd0ZpNyzNn/RDVaO3T60j8R+8kJSEdEwsDfLcMp0J1J/F+Pv3C/PG7SU/NxqakGf5bhuNUxoZ8RQHrA07z5zHR1eg6uCEjZ7ZHQ0Od0/sfsGmJeC21G5XFSzL2O7DlJnvWC3PS5u3dmBbQDXluPnMn7ePV0y9oamow3a8rLdq5cf3ia5b7Cz+bGnVLM29Jb+Jj05jjcYCUpEysbU1YtLq/CMgct5uYqFRMTfVZuLIfWtqaTJm4h6TEDKxtjFm6oh8RESkEBAgvnKrVHPHz686WrTe4IMm+x41tQbWqTkyZcYDUtGwcSpizKKAnW3bf5tZdQYz2nNyWQqUS/2VnxSircXk6u1fFc/5xsrLllC1tw5RRLfBZcZbElEzsbUyYNb4tCzZeIi4xHRtLI2aMasWiLZdJSsvC0c6M0X0aErjlEtm5Ciq72tGyXlmW7xXS73YNK5CvVHLmjghvntirMcdvvyIqUYaNmSHdmlVl3cm7KJXQtnY5YtPSefU5Fn0dLQa0qsG2S48pKFTSrGppolLT+RSdhLGeDq1rluXwPTEW71q3EldfB5ORK6diSWsK1JS8iYzHSFeb2q4OXH4jQjTbVy/PuVeii9OsQikefIkkV5FPVQc7wlJTScvOxcXKnEyFnLiMTOxNjIRAJTUNK0N9dHS0iEgVkm9dHaGQsjI0QE0D4jIysTUyJKcwn7TcXJxMTYjPziInPx9XC3NCZSkUKpWSQ/FfOjca6ljo66nATbYEbpyMTQhOivvbx/t/NcBpWK0U4yXb/d7u1XFxsGToLMG7GdS1Lg62ZgzzFLybvp1rifHUtD0UFBTSomE5OraqwuzAE6SkitDMyaNacPbiK27d+yQC2GZ2Qi4vYOEyATQ6d6hG4wZlOXL0Ec+eh6Gjo8lcr86oq6uxcMEZcnLkuLk50LdffZKTM1khAZRefepSs1YpYqNTWb9K7KqGjGxK2fJ2pKVmsWKBIEp361OX6rVLCW+b+WfIkOXgWt6O/iObAvDyyRdOHRJtcA+fLhhJJ8Ld664RHZGMpbUxY2YUuQFvXlo0mho0vijA8sKhR7yVJNpTA4s4NAp5Pmu8xQipVbeaVG9YBAhyc+RslBRV3YY3plSF4lk8RzdcIy4iGQtbEwZMLe558/X25DgZNg7mdBvZ/LvblUolOwLFZ9mmXwMcy/44uiMtKYOzUhDqwBmdfnlRKyws5JzkY9P5L5yJX9Wza29R5CmwK2WF098caf2s1CVuUOE/SND9l59LXR1jY2NkMhkymayYo/j/VoW9i2S3/3HunxUAXtdAh97TO9JjsvvfNuv7WqFvIlg1fruqa1O3XTWmrB32S+8jpVLJ2a032OpzBEVePmbWxnhuHEHNFj9WxT278Y6lYwVo0TfSZfq6Yd+NQJVKJcfWX2GXFNhaunJJfHaMKdYJys3OY9U3sQodBjdijF+RmisvV87qmYe5KY24uwxvwqi5XVQg6s6FV6zwFGolp7I2+G8bgY00vrt++jmrpNFTOTcHfDcPxczSiKzMXBZ5HODZ3WDU1dUYPacjXQY2EDlUyy6o/K/a9azNRG9B/l8TcJo/pc1Vr6GNGDalNcmJGcybvJ8vIfHo6Wvjs7wv1euU5ujee2z7Q/DemretwnTfLnx4G4XvzMNkZebhXNqKhav6I5Pl4DlJ5ErZ2pmwaNUA0mXZzJx+kIyMXJycLVm8rC/PnoWxYsUFEXrbsAyzZnVk6fIL3L0nkY492mFfwoypMw+QlS2njIsNAfO6smLdZZ48D0NLU4N5MzsSkyBj4y5plOVelYZ1XZkZeII8eT5VK5ZkZP9GeC05RVp6Ds4lLfAY2RK/Py6QLIGZSUOa4r/hIumZubg4WDKoSx0CNv1JnqKAWpUcqVXZgdUHpPyrFlVIyczhxjMhI5/cqzH7rz4jPjWTEpYmtGtQgY2nxQaxc4OKBMcm817qzvRuVpWtfz4SJobVXQlJSOFzXArmhno0rlKaYw+EH06P+pW58CKI7DwFVRxtyC0o4FNsEiZ6OlQvXYJr70NRV1OjXfVyKnDTvEJp7n4OR55fQA1He0KSU5Dl5OJqbU5aXh6JmVmUNDWhkEKi0tKxNTJEQ0udyDQZVgb6aGppECVLx8ZQkIjjM7OwMzYiK1+OLC8PJ1NT4rIzyc3Pl4jDSSjhh50bbQ0NzPR1icvOxFJPn4x8uQA3JiZEZKb99Fj9Uf1XA5wFmy+RnplL+VI2jOrVgEn+R8nOkVO1QgmGdq/LFL8jZGblUbGMHaP7NSJwzQViE9KxszFhxrg2HD/3nEfPvqCtrYnfjE7ExslYu0WQgUcObky5MrbM8T0uAJCjBeNHteBTcJxqLjx+bEucnCzZueMWHz/GYmCgw+w5nVBXV2PZ4nOiw+NqzbCRTSnIL2Tx/NPk5MipUtWB3gPqo1QqWbPkPKkpWTiVtmLEOOG1cvHkc57cD0FLW4OZ/t3Q0tIgOyuPlQGnAGjfvSa1pW7E2+fhnNovRlNTfLtgKIGep3c/cfXMC9TU1Jg2v7tqNJUYm6Yy9Bs2rS0233Bojm+/TXhwPCbmBoya07HYe31k43XiIlOwsjNlwOTio564iGSOSPEUY3y6ofcXuXZSbBrHN4nbR3h3QVv3eyLnk6tvefswBG1dLQZ4/tyE79SWa+Rly3F1c6ROm1+rbF7c/EDsl0QMjPVo3vPvJ4B/m/z97/JYvvIwsmTZ/9bj/N0yMTFBJpP9ryupIoJi2Bd4gtvHH6NUKlFXV8N9eHMGeXfD/BeA5Eclz1NwcMkZDq88T0F+AYam+oxdMoBW/Rv+8vNJS8pg1cSdPJLGGHXauDFt3VBMrb4P1iwoKGTf0rMcWilUWC5VHPDaNpoSLsWDYbMzc1k5ZS/3zgvg0qp3PSYu6VuMbxMfmUzAiG18fh+NppYG4+b3pP3AIpl4Ymwa80dtJ/h1JBqa6owP6KG6XalUcmjDNfZIx2jtZuWZtWYgBka6KJVK9v1xhQOSh0yD1pWZIXVhEmLS8B23m7BPcejoaTF7eV/qtagoCQ+OcveK6EgOm9KG3iOakJsjZ+GMw8LjRl2NcbM70KlPXRGwOXkfSfHpmFsYMv+PgZQuaytSwg+LLnb3/vUYNaUN9259ZLHfSRTyAipXdcB/aR8+h8TjM/so2Vl5lHKxZuGKfoSExDPfV3h4la9oz4LFvbl48TVbt4jNx9dEcB+/E7x8FYGWlgbzvLugrqHODO8jQhpexYHZ0zsQsPQs7z/GoKerRYB3V168jWT/cbHpG9CjLmVdbfBaLDiP9WqUonfnmsxafIKsbDnlXWwE2Fl5loysXFwcLRnVpwE+6y6QnSOnkqsdXVq5MX/LJTE+qlaKsqWs2XhUAMP+7jUIjU3hwVsBrib1bszOC49JycjG2dacpjVc2HpOvJYeTd14+TmGkJgkTA316NqwEtsuifevXa1yvI6MJ1JyIa5bwZFTj8Xn06uBG2efvSdHnk/1Uvak5ubyJSEFcwM9KjnacOPDZzTU1WhbtawK3LSo5MKt4C/kFxTy/7H31tFtXtu690+SbVlmZjuOYyeO45DDzMzM0DAzMzYMTZqmDTachhpmZmY2MzOIpe+P940TN9B0n32+c+/dZ47R0VZekmXBu5415wNVfL14k5xCrlpDKVcnUpUFpOcXUMzBFrVeT1JOHu621iBFADTWViCFhBxhdKU16knLL8DT1oZsrZpctZri9nbE5+Wi1uv/Am4+79yYyWTYWchJLsjDUWFBjk6NWq+jmK2dCG6MlHJw+l8V1ffUi9BEbG1sWDi2NVsP3OFdZAq21ubMH9OKHYfu8krMnZo/oTXnr7/hym0hDG7ehNbEJ2Xx6w4BqIwaUB8vdzuGjd+NRqOjSogv3TpW5c/jj7l7PxxTUxlzprXFaDSyeMlxdDoDtWuVpHWrCrx4EcteUQ01YWILXF1tOXrkIQ9FSfiM2e0wMzNh746bvH4Rh4WFWaEk/MLpZ9y69g4TE2FcZSY3ITEuk99EFdIPIxpRzE+YxW9ee47khCxcPewYLPJiVEoNq+cewWg00rR9CFVqCzyGgnw168Tohva9ahBUoVjha7Zx8QmUBRpKV/Ch9SeGfgnRaYW+NkNmtMHmE7fVuIhUDooXo6Gz230GYLYsPoZWraN8zQBqtyr/2fu0c+Up1CotQVX8qC3yBz4tg8HAjqVCF6vtwPo4fcE5FgTfmxNbhOfRY2KrvwUfZ0Wjt0bdanzTI+ev9fSa4CdRqdG3x1/fUz5ipyvq1ffbk/9Xys7OjpiYmP8xJVV8WBJ7fjzKlT9uYxDHcnU6VqXPrI4U+45g07/W63thrBmxlZh3wmipVptKjFzT95tdG4CHF1+yatR2MpOzMZWbMHB+Z9oNafTFz0xGcjbLhm7h2U1B3dSyX12GLe72GRCPDU1i4YDfiA1NxsRUxtCFXWjVr6gz8tNb71kybDs5mfnYOVkzc9MAgj+Rib95HMXCwdvITM3Bxt6Smb/2L/SJ0qi1/DT9IJePCiP19j/UYdCMNshk0s+UUp0H1+eHSc2RSqW8fxnHvOE7yUzLxd7Jinkb+1Ey2IusjHwWjN3N66cCaJiwsBMNWpUnIy2XOaN2E/ZG9MRZ1oUa9Uvz7GEk8yfuJz9PhbevE4vW98bB0ZofZx7ixkXBQG7IuKZ06lWD44ceFLoT16xbiunzO3DvThhL5x9Fq9VTtoIPC5Z25fat96xcfgqD3kjV6iWYOac9u3fd4sABAQh07VaNLl2qMmnqfsLCkrGwMGPRgk4kp+aybLXY3anmz6hhDZk+/zCR0WlYW5mzZF5Hzl99zbGzwmFkaL+6WFsrmLf6pMBPrFWKxnVLM3XpUTQaHRWCvOjergozV51AqdZSJsCdbq1DmL3+NBqtjkpB3jSoUZIlWy5gMBppXK0kjvaWbDsmPM8f2lblcWg8T97HIzczYXSX2vx2/A45BWoCvJyoHOTD7yLZuEejCtx6HU10SiZONhY0rxrI9gvCz9pUD+J+eCyJGbm421tTroQ7Jx4K15uutcrx5/1XaHR6KpfwIjkvj5i0LFxsLPFzc+T6uyhMpFIal/Pn1HPhs9q4jD9X3kegMxioWtyLF4nJFGi0lHZ3JjEvj8wCJb4O9hRoNaTk5eNpZ40OI0k5ebjZWKHHSEqu4ESsNGrJEBVSmRpVobdNbG4OGr2eUs5OvM0QuHOBn3RuSjg6EJqVjlwmw0YhJ6UgHyeFBdk6NZq/gBsvaxvepf2vD85317TBTYmKTeePDzybEc2JTchk95/CB3PK8Kao1TrWbhYDMHvVxtfbkcETdqLTGahTPYB2LSrw08aLRESlYm9nwfQJLYmMSmWjuJkOH9SAEn4urF57tjCKYeKEFuTnq1ny4wkMBiNNm5Wlfv3SREelsUn0ohg8rAHFfJ0Je5/Ezg95TROa4+pmR0pSNhtEEmCfQfUoUdINg8HIygVHUSm1lK1YrNCt+OHtME6LbeSJc9sXetjs+PkiCTEZOLnYMGTix7HQ9rXnSEnMws3Tnn6jP7r73rrwijuXXgtqi/kdCrkPRqORn+f+KTgZ1wqgwSe+NkajkV/m/YlOo6dyvUBqNiu66T+7HcqtM8+RyqQMm9/xsw0k4nU8F0WH0sGz239xg7l+7BERr+KwsDany8ivuxGf2HaN/BwlPqXcqdHicyD1aWWl5XJHPGU371Pnm2s/raSoVJKiUpGZyChT458RX79UfmUF3lPky+89s/zX6p+Y/f07K+pVLPtXnODawbuFwKZW28r0ntWh8DX4J5Wfo2T7vIOc3HwZo9GIvYstI1f3oU77b5O+VQVqts49VAiEfQI9mLZ5MH7BXw5gfXztNSuGbyMzJQdzSzljV/ehQaeqn627cfwxa8bvQpmvxtHdjplbBlO60sfYCKPRyOHfLrP9R8EiIqCcN7O3DCpiYnnh4D3WTT+ATqPHN9CduVsG4SaOtTJSclgw7HfePRXIyiPnd6BlT8GBPCs9jwXDd/DmSTQyEymjF3Simcibu33xFcsn/4FapcW3pBvzN/bDxcOO2MhU5ozcSWJsBlbW5sz5qTflqhQnJiKF2SN3kZyQha29BfPX9SawnDdXz79k5ZwjaLV6ypT3Yd6aHkilUmaO2c3zx9GYmEiZPL8D9ZqUYfuvl9m3Q+hqtGofwqhJLTh59DEb1giAp3a9QKbNacfRIw/Z/JvwPjRpVpaxE5rx00/nOX9OGMUMHdqQuvVKMXb8HuITMrG3s2Dpkq5FEsGbNQ6mZ7fqTJh5gMSkbBwdLFk6rxN7jtznys13QujliKbk5KtYsVHgQLZtWo5yQV7MWnlcCOys5Eez+kHMWnMCjVZP5bI+tKgfxLwNZ9DrDdQK8aNCkBcrfhd+Z5t6ZTBKJOw/L1w/hnWuxZUnYbyJSsZSYcbIzrX5+chN8lUagou7UbKYC3svCmv7NqvE+cehJGbk4GpvRYMK/uy6LOxNneuU5cqrCFKz8/F2ssXfy4mzT94jlUjoVrscB+68QKc3UKOkD9EZWcRn5uBuZ42nky13wmIwkUlpFOzPmRcCubhJsD8X34ZjMBqpXsKbp3GJKLU6gj1dic3OJkupooSTA9kqFWn5BXjb26Iy6ASgY2uDyqATujV2NuRp1WSpVPjY2ZKmVpKv0VDC0YHo7Cy0BgOBzk68+QTcvP0E3IRnZWAuM8FKYUqqMh9nhQVZWjUagw5fWzuiPwE3cfk5WMo+zxz8Wv1HA5y29YMpV9KDvqK/TbdWlQjyd6f/xB0YjdCmcTlqVS7B0Kl7UGt0VClfjB7tqrB8/Vli4zNxdrJm6uhm3L4fzp+ipfr0CS2xspQzcdp+tFo9NaqVoEPbEG7dfs/JU0I21LQprbC1UbB06YlCSfioUU3QavUsXXwcjUZH5ap+tO9YGY1axzIxZK52vUAaNy+LwWBk1eITFOSrKR3sSVdRjXR0/z1ePonBXGHKpLntkEol5OeqWLNI7MZ0r0b5ysJF9dWTaI7uEdRBn46mXj6O4oTI0xk7rwPmFuKIJFfFxkUCybfLwHr4lvzIz7h26hlPxLiHUfM7FAEhN88858nN95iamTB8XlGAotcb+G2+wMtp1acWvqU+581sWXQUo9FI3bYhBIb4fvZzvU5fmNXTeUQTbBysPlsDggLmg+9Nt7Et/paYemn/bXRaPSVDfPH7Rrr4X+vZdeE0VbJScSy+YjD4T6p4sLC5x75LRK3UFBll/HfUB4Bz7949atSo8VkQ7r+73j2MYP/y44UcG4BqLSvQZ1YnAir6/uPHMxqN3Dr+iF8m7SI9MQuAJr1qM2RJj69+Nj5U6NMolg/dQux7gcTYflhjfpjT8YuvuV6nZ9ey4/yx9ixGoxHf0h7M3DYU74Cin2GtRsfWhX9ybLOwUZetEcD0TQOx/2TMpSpQs2bSPq6LXktNulZj5OIuhb9Xr9Oz9cfj/CnmLNVsXo5Ja3oVdkLDXsYxf+h20hKzsbJVMOPnvoX8t6j3Scwbup3kuEwhaHNDn8LAzMPbb7BtpfD8K9cpybTVPbC0MufFw0jmj91DXo5SkIH/0g9vP2eePYhk4fi95OWq8PBxYNGGvrh7O3Bw5y22iAKJWg1LM3VhJ7KzCpg9bi9R4SlYWMqZu6IbwRV9WL34BOdOCV2TvoPr0bN/bXZuuc4eMQW9dfsQRoxrxtZPohe6dq9On/61WbDgKPfuhgvE4MktCSjpxuhxu0lPz8PNzZZlP3bl3KVX7N4vdMQ7d6hM00ZlGDdtPxmZ+Xi627F4Tgd+3naVB0+iBAfj8a14F5nM3j8FUnXvTtVwcbJm0frTgkFendJUqVCMeetOozcYqVO5BNUq+rJo4zmhU1O9JMW8HPl5n9Dt7dYshPScfC7cE9K7R/eoy/GbLwmPT8fWypyh7Wuy9tB11BodISU9cXWy5fB1AbANbF2NY7dfCgDG2ZYqpX3Yd+2p8Lj1ynP26Xsy85QUd7XH09mWyy/CMZFK6VKrLH/cfi48v6DivEtKJTk7D08HG5xtrXgQEYfcREbdID/OvhTATdOyAZx/Eyp00Px9eBgTj1qnp7y3G+EZmeSq1AQ4O5JeUEBGgZJijnbkaTWk5RfgZWdDvk7o1njb2ZKtVZGtUuHrYEdyQT4FWi0Bjo5EZIvGfS7OvE4Xui6CQ3EqYMTPwZ7wrAwUJiZYmpuSpizA1dKKdHUBWoOe4rb2ROVlAkY8P4AbU1P0OtU3v8ef1n80wBnZqy6zfzot8HD8XBnWoxazV54gPTMfXy8Hxg5owMad1wiPSsXORsHMsS25cusdpy8Jlv2zJ7QSMp7WCHb/XTtUplplP9ZvvEhUTDr29pZMHd+SzMx8Vq4W1nTpXJWQir5cu/aWC+eFx5k2vQ2WlnJ+33qN0PdJWNsomDRVGKH8vvkqUZGp2DtYFqaEnzjykCcPI5HLTZg8WxhXxUWns/0Xocs0ZFxT3ERuzOafzpOWnIO7lwM/jBIk5Rq1lrXzBeDQtN3H0ZRGrWWtaOjXrGMlKlb/2BrfsfYc6Sk5ePg40n3YR5Jvfq6KzUuE8VD34Q3xKPbRxVVVoGbTYgEUdR3WoMjPAM7/cY/INwlY2VrQe/znxOJH197w5Po7TExl9J/a+rOfA1w+/ICEyFRsHa1oP+Rz8vGHunTgLtlpubj6OFK/499Lty+KF8lmvb+/ewMUqny+5YALEBcXR2hoKAEBAd8EEU6e9rh4O5ISm871I/dp0qv2P3o+/7RSU4VT1qpVq1izZg2bNm1i4MCB/9bfYTQaeXzpJYfWnubxJUFCLJFIqN2+Mt2ntMW/gu+/9LgpcelsmLiLu2LnzaOEK2PW9vvbmAy9Ts/Bn86ya+lx9Do9Dm62TPplACFfuV9KXDpLh2zh9X3hvW7Rtw7DFnf7DAilJmSyZMgW3jwUzAC7jGpKv2ltiqipEqJSWThoK1GiCeDQeR1p/cnYKicznyUjdvD0lrAx9RjblN7jmxcC9E/JxN4lXJi3eQAeYtDt/StvWDp+D8p8De4+jizY/ANefi7otHp+WXScMyKAaN2jOsNmtEZmIuPSiaesmXMEnU5PYDlv5q3rjZ2jFZdOPmXN3KPodHqCKvgwd21PrGwUbFh+mhPi47TrVo2hE5sTFZ7C7HF7SU/NxcHJikU/9cLDy4E5k//goQhQxk5tRZOW5Vi99NRHwDOwLt1612TF0pNcFj17hgxvSLMW5Zg8eR9vXidgZmbCnLntsbQyZ+z4PeTnq/H1dWLJoi7s3PcxNHNgvzqUDfZi3DQhEdzfz4XZU1qzbP1ZXr1LxFxuyoJpbbl2N5STFwWAMaxPHQzAqs3CQahD8wp4ezqw6BehU968bhDFfRxZsU24zrZtEIzCQs6WP4WD4g/tq/IuOpVbzyIxkUkZ16s++y48JjYlCyc7S/q2rMKqA1fR6Q1UL1MMC4Wc03eFuIXBbaqx/9ozsvKUlHB3ILCYK4dvCs+rZ4OKHHvwmlylmlKeztham3PjjRCx0LFGMPtuPcNohAbBfjyLTSI9rwBfJ3usLMx4Ep2AwtSE6qWKcf6VEDzbpKw/514L/10nwJc7UbFo9Xoq+njwLjWVfI2WUi5OJOXmkq1S4+fkQIZaSWaBkmL2dmSpVYIqysGOdFU+uWoNfo72xOflotLpCHB0JDxLlH+7OBWCm1KOQvwCGCnuYE9EdiYWJiaYy00EcGNhRZq6AJ1Bj6+tXSG48bCyIT4/BytTU/QYKNBrvvl9/rT+owHOvhOPePJayJ1aMK4Vx84/5/ajCMHfZkIbHj2P4bB4sZw5pgVarY5VvwgnlT5dqlO+jBdT5hwiO0eJv58Lg/vX5f7DCA4fE06j0ya2xNZWwfSZBwsl4QP61yU9PY81Iijq3qMGwcFevHkdz949Yrjk+GY4OVnz4mkMh/YLX54J01pja2dBQlwGm0WS4MCRjfDycUSvN7BqwTFhRFTVj5YdBGnyk/sRnPnzw2iqXaFke9/ma8RGpmHvZMXgSR+Bxf7N14iLEm4fNOGjmurNk2hO7hO6OqPndygkHAPsXneejJRcPH2d6Dy4fpHX94+Nl0lLzMbVy54uw4qGTRbkqdgp+gD1GtesCGcHBF7Ntg/Bov3q4P4XcARCB+iPnwQyZafhjb+aVG00Gjm2WWgftx3U8G9DFyNexhL5Kg5TMxPqdqj8zbV/rbDnQvK3f/liX12zdetWhgwZgsFgQCqVfhNESCQSWg1uyLbZBzi0/hQVmwWiVqtRKpWoVKp/679zc3MJCwsr/N0Gg4GhQ4fSrFmzf0snR6PWcuWPOxxZd6aQUySVSWnYvSbdJrXGJ/BfU5zptDqObrzA7h+PosxTYWIqo8u4lvSY0vZvO15xYUmsHLGNtw+EkMza7SoxZnWfr3Z7bp9+wuoxO8jLKsDC2pxxa/pSt/3nn5HH196wbPh2cjLysLRRMGl9P6o3K1dkzf1Lr1gxRnAJtne2ZsavAwiu9vFQEfE6ngWDt5Icm4G5hRkTVvWkjshBMxgM7F13gT1iTErleqWY9lNvLG0UGI1Gjmy7ztZlAuG5XDU/Zq7vg429JbnZShaP28Ozu+FIJBIGT21J+74CQXnPxsvsEg9JtZsEM/nHzpjJTdjz2xV2/SJ8f+o0LcOkhZ0wGo0smLSfu9ffIZFIGDK+KR161uDx/QgWTT1AQb6GYn7OLPqpFyamMiaO2EHYuyTk5qbMXNiR8iG+zJl6gAd3w5HKJIydJLgTz5p2gMePopDJpEye1pqy5bwZO2YXsbEZWFubs3hxF7JyCgpzpYLLeDF3dnvWbrjAjduCemrC6KbY21syefYhgWAc7MWE0c2Yu+w4kTECB2fxjPYcPv2Eq3eE+0wa1oTohAz2HxezrzpWw8RUxtrfhc5b5+YVUFiY8YvYqenZujI5BWr2nxW6biO61+bOiygev4lDbipjXO/6bD1xj5TMPDycbOjcqDxrDlzDYDTSIMQftU7PpcehmMikDGlTnR0XH5GnVBPo7YyXix0n779BIoE+jSpx4PZzQRFVzBUTMxPuhcZibmpCmypB7Bdl4U3K+3M/Io6sAhX+ro6YmEp5EZeMldyMED9PLr8JRyIRxlLnXgvf8XqlinMzPBqdwUDlYp68TE5GqdUR5OZCbFY2uWo1AS6OJOfnka1SU9zBnjRlATlqNX6O9iTl55Kv1eLv5EBMTjZqkWfzPiMdg9FIkIszrz6AGycn3qWnIZGAj52dAG5MTZGbyshQKXGzsiJFWYDeqC8ylnK3siahIAdrUzO06FHptRS3sf9fkvH31K6j95GayJk0qDEFBRo27hJ5Lv3rY2utYOycAwB0aVOJKhV8GTvzD/Ly1ZQp5U6/7jU5cuIx90UV1azJrSko0LB0leBJ0aFtCNUq+3HsxGPuP4jA1FTGjOltMDWVsWLFKXJzVAQEuNG3b22USg1LF5/AoDfSsHEZ6jcMoiBfzfLFx4WIhdblqV4rQEjtXnQctUpL+Uq+tO0kdCKO/XGP189jsbA0Y/wsQfqsLFCzVhwptelShbLieCcyNIkDoovxyOmtC6XiUWHJHBB5PiOmt8HaVrhdp9Wzbq7gkdO4fQgVPunqRL5N5LiYcTV8TrsicQyJMekc3iy01AfPbFsEFAEc2HCRrLQ8PIs706pP0SBBgGvHHhPxKh4La3O6j/mywd6N44+Ij0jB2t6SVv3rfvV9fnbjHdFvEzC3lNOs1+e/6691RXSUrdqs3GdREd8qvU5fuHF/DeDExcUVghsQNqpBgwaxdetWgK8CEI1GA/dgk/PS734+/47S6/WEhYX9lwBOemIWZ3+/yonfLpKZLHB7zC3lNO9fnw6jmuLm+6+npL+4+Zb143cS/SYegDI1AhjzU398g779fA0GAye2XGHbvMOolRosrBWMWN6DRt1qfJHnpVZq2Dz3ECdFi4GSFX2ZvnnwZ0GZer2BfatPs3f1mUI11cwtg4sAdIPBwN41Z9mzRgDnpSoWY9amgUXI8ddPPGH1pH2olRrcfByZu3VQ4QhXma9m5cR93BYN9DoOrMuAaa2RyaRoNTrWzznCBTE3rnm3qoyY0x5TMxPio9KYO3wH8VFpmFuYMXVld6o3KC0QkOf+yRWxk9J1QF36j20iRLHMPcr5YyIHpH9tBoxtQnZmAXPG7+W9aB44dWFH6jQuw/kTT1m7+AR6vYFylXyZu6IbmRl5TByxk+REgbOzaGUPXNxsmDhqF6HvEgWrjIWdKBnozoQxuwkPS0ahMGPuwo44OFoxevRO0tPzcHGxYemybrx8Fc+an84K5OEa/kwY15z5S47z7EVsoZgjX6lh9iIhNLNmtRIM6leHKfMPk5QiGPQtmtGeTXtu8Oh5jJAAPrYF959GcfqK0DUa0bcuyRl5HDwmdKYGdqlBRm4BO8X/H9KlJmFx6Vy6L/BfxvWpz+lbr3kTmYyFuRlje9Zjw+GbZOUpKe7hSLMapfjpkHDNbVEjkJSsfB6+E4DQwFbV2HruPiqNjnJ+7thYmXPhSSgyqYQ+jSux9/pTVFodISU8URt0PI6Ix0JuSrOKpThwR+hWtQwpxfV3keSqhFgFjdHAm4RUbBVygnxcufY+EqkUGpX5CG7qB/pxLTQSg9FIteJePElIRK3TU9bDlYj0DKGL4+pEXG4OeWoN/k4OJOTlCdwaJwfi87JRanWUdHYkIiuzkGfzNj0NA0bKuLrwKq0ouJFKwNPOhqicLKzMzDAxkZCpVuJuZU2yMg+90UBxO3uicoXOjZuVFYkFudiYyVEbtKgNOjytbIj6X5Lx95XBaKRl3SDqVfVnwORdaHV66lT1p12T8kxedITsHCUBxV0Y1qcOew7f4/nrOBQKU2ZPbE1sXAa/br0KwLAB9fD1cWTuoqOFkvBhA+sLa0Sy25BB9Snu68yxY48KQzOniYDn1w0XiY8TXIhHjxM2800bLpGUkIWrmy3DxA3+6IH7vHwWi8LCjIkzBTl5fEw628XT1eAxTXEVL5K/b7hEUnwmLm62DBCJwnq9gbXzjqHXGajZsDS1RRdjg8HAugXH0On0VK8fSO0mH1vzf+64SVRoMjZ2Fgya8jGHyWg0smH+nxj0Bmo1K0ulOkVHMlt+PIFWo6NCzQBqNi1KLE6Jz+TIFuG1GzSz3WdJzTqtvrC703l4I2y/cJo2GAzsXytsEB2GNMTC6uueKMe3iAGC3WpgZWvx1XUf/q4rh0TL/K5fzrH6WsW+T0Sj0qKwMsfd78ubdmho6Bc9be7cufPdv8fExASFQoG5ufm//O8v3ZaXl0f37t2LPD+ZTIa/v/8/eh1A+Kw9uvCcM9uucvf0Ewx64TGdPOxpP7IZLQbUx+ofgMe/VmZyNptn7efSPgFg2zpaM3BRV5r0qv23/KrkmHRWj9rOsxuCTLZi/dJMWP/DV2MeIl/HsXTIFqJFk79OI5rQf1aHzz63mak5LB+xnadiVlTzXrUYtqhLkS5STmY+K0bv5OFVgavVul9tBs/pUJhhpdcb2LH8FAdF24SQuqWY9nPfQqCdFJvO/CG/E/UuERMzGaMXdqJpF4HUnJWex+JRu3j5MBKpVMLg6W1o10+Qwj+/H8GiMbvJzVbi7G7LvF/64RfoLiilxu3h9ZNopDIpo2a2oWWXquTmKFk8cT9P70cglUoYMb01rbtWJSYyldlj95AUn4mNrQXzVvcgqLw3uzdfY9emq4DgcTNhTltC3yQyZ8of5OYo8fBy4Mc1PTAYYezQ30lMyMLWzoKFy7thbWPOmBE7SErKxs7egh+XdUOp0jJu7O6PI6ilXTl/4RXbxJDRFs3L0a9vbabMPkhYeIqQGj63E29DE/lVtOH4EJo5fvZBsrIL8HS3Y96Utqz69QJvwpKEkMxJbTh+4Tk3HoQhk0qYNKQJT97Fc/a6oPoa278+byKSOXdL6KiM6V2fOy+iuPciGhOZlIn9GrD//BOiEjKws1YwvEtt1h64Rr5SQ2AxF2qUL87Go8JntGO9sryLS+NlZBIWclP6t6jCpjP30Or0VA30BqmEGy8jMTWR0athRXZefSwkepfyIaOggPcJaVgrzGhQ1p8j9wRw27ZKEOdfhgrOw95u5KhVRKVl4WilwM/NkdthMchkEuoH+nFeBDcNAv24/F7oWNYs4cP92Hi0ej3lvdx5n5KKUqujtJszUVlZFGiFcVVMdrbArXF2JCYnC5VORykXZ8Iy0z/ybNIE4nARcOMogBuZVIK7jTUxOdnYyOUgNZKlVuFhZU2iMg+D0YCfnT2RIrhxtbQiqSAPW7kcpV6LxqDDw8qGhIIc4PtNT/+jAY6nqy0TBzZi3farxCZk4uxgxbQRzTh8+gkPnkYJ897xrQiLTGX7XoH1P25IY5wcrRg2bhcarZ6qlYrTsU0IZy+84Lpo8DdriiDN/HHpCdRqHZVCfOnQvjJxcRn89qvokzO4Pr6+Tjx6EMkxcYw0eWprrK0VPLwXzinx1DRphsDPiYtJZ/uvQrt0yOgmuLnbCWTjhccLR1MtOgh5OK+exnBM9JwYO7NtoWrqxP57vHsZh4WVnJGf+NScO/KI10+iMVeYMXLmR/O71MQs9oqKrkFTWhbGNwBcOf6EVw+jkCtMGTqzaOL387th3Bb5RUNnfx6FsHPFKbRqHeVq+FOtyec8h0uH7pMUnY6dkzUdBtX/4nv34OIrot8lorAyp82Ael99j9MSM7kr+pi0+ULy+F8r9Gk0aQmZmFvKqfIP0qgBUmKFYEwPP5evbrIBAQFIpdIiIEIqlbJu3To8PT2/Ckgy4rOZ3mI5WqWe/nO70Gt6+3/03L63cnJyGDp0KHq9HplMxm+//faPujeJkSlc2nuTs79fJzUuvfD2oOoBtBnSiLqdq33R/fd7S6fVcXzTJXb/eJT87AIkEgkt+tfjh/ld/pZEbDQaObvzBptnH6AgV4XcwoyB8zrTemD9L75fRqORE1uvsHnuoUKTv4k//0DlL5j8Pbv5jmUjtpOZkoNcYcaYFT1o+BfvpNDnMSwaso2UuAzM5KaM/iQMEwTws3TUzsIwzc5DG9Jf7MwAPL0dyo+jdpGbVYC9szWzN/ajtNiZjXiTwPzhO0iJz8TCypzpP/WisuhIfu7QA9aLMQqlynkx5+e+ODhbExshKqXiMoSohlU9CKnhT2JcBnNG7SI2Mg2FhRnTl3ejap2SPH0QycLJ+8nLVeHuac+i9b1x9bBn1YLjXBDl59361aL/iEbcvPqGZfOPotXoCSzjyYIV3UiIz2TO1ANkZxXg7mHHj6t7kpNdwJiRO8nJVuLpac+SFd0JDU1iyZITaLV6gst6MX9+R3bsvMWxE8I1sWf3GjRtGsyYSXtJSs4W1FMLhFypP44IZOFuHatQtbIf42f/gVKppWQJV6aMasr8NaeIic/A1lrB/Elt2H7oNk9fxWFmKmPW6Jacvfmam48Er5gpQ5py9cF7bj+NRCaTMmlAI07deMWL0ETM5SZM6teQLUfvkpiWg7O9FQM7VGflvitCjlVJD0r5urLtlHBY6tmkIvfexhEWn4atpTndG1Xk11N30BuM1C1bnGylmqcRCZibmdC1Xnl+v/wIg9FInTLFicnIIiolE3tLBdVL+XDsgQC+2lcrw+mnb1Hr9FTw9SA5N4+EzBxcbazwcLLhfmQcZjIpNUv5cvGtwBdrWLoEl94J/13Lvxh3omLQG42EeHvwMjEZjV5PsIcroenpqHQ6Srs6E5GZKQIaJ8Kz0tHqDZR2deZdehr6D6OoL4Cbko6OvMtIw1QqxdnaktjcbOzkcnQSA3kaDZ7WArfGiJHiIriRSMDZwopkZR52Zubk6zVoxc5NQkEOEnFsFfPNb/rH+o8GOPPHtubh82hOiNEMs8e0JDU9j193iqOqH+rj4mTNwHE70BuMNKwTSPOGZdi49SrhkanY2iiYNr4FiUnZrBNPXAP61iHA35Udu27y7l0iVlZypkxqidFoZKkIeEJCfOnQoTJ5eSpWLhMUQG3bh1CpSnHy81SsXirc1q5TZSpU8hU4NotPoNHoCKnqR8t2ggz7xKEHvHoqqKbGicBEo9ayesExIXahTQUq1xRO30nxmfy+XuTujGuGo4ug4shKz2Or6I7cd1RjnD/xB9m8/DSqAg1BIcVo1O6j9Ds/V8UW0WW5x4hGRXKo9HoDm0Rn5RY9qn+mjAp7GcdlEdANmtnuM/Cj1ejYJyaudx7eCHOLL/vPHPhZ4EK16lfnm12Zc7tvYdAbCK4eQLFSHl9d96HunnkKQKWGZb5oKPitShODMR3d7b+6xsvLi02bNjFo0CCAv+XgfChvb2/GrRvEqiGb2bXwCIFVSlDpHwKw76mBAwfSrFkzwsLC8Pf3/y5wk5ORx/XD97i09xav74YW3m7tYEXjnrVo/kP9vx0ZfU89uvySXyfvKfS0Cajoy6g1fQmsXOJv7il0bdaO/Z0nYuekdJUSTNo44DMjvg+VlZrDmnE7C03+qjQOZuL6z03+PvDA9qw8hcFgxDfQg+mbBhZx0jYajZzde4eNcwSg5F7MiVmbB+L3ict12Ms4Fg7ZSkpcJnKFGeNWdKd+25DC+x/feYtNi45j0BsoWc6b2b/2x0mMK7l17gUrJu9HrdTiUcyRub/2x8ffFb3ewLaVZzjyu6BQqtu8LBOWdEFubsqTu+EsmrCX/FwVbp72LPilLz5+Lrx+FsP8sXvJzszHydWGBet741fKnQsnnrJmoaDmDCrvzdxVPYQU77F7ePpA6BiNnNKSVh0rcXj/PTavv4DRCDXqlmT6/I48fhDB4jl/otHoCCjlzuKV3Xj9OoHF8wWfmZKl3Fm8rCtXrrzmlw0XBbl47ZJMmtySlavPcOPmeyQSGDmiMUGlPRk9aQ/Z2Uo8PexZMr8zO/ff5sIVYeMfPrA+bm62TF1wGK1OT0g5H4b2q8v0JcdISc/FxcmauRNasXbbFd5HJGOhMGPu+FbsPv6AZ2/iMTM1YdaIphy88JTn7xKQm5kwbXBTdp16QHhsGtYWcib0bcD6P26Qnp2Pl6sd3ZpVZNnuy4JsvJwv9naW7L8k8DcHtKrG+UfviU3JwtHGgg51y/Lb6TsYjdC0UkmiU7N4G5eClUJOu1pl+P2ycH1sXCGA1/HJxGfk4GprRZlibpx+IoDfTjWCOfrwNTqDgWr+XkSmZZGcIyin7K0VPI5OwNxERmV/b668i0AigQalS3BJBDp1Any5ERGFEahSzJMncYnoDAbKe7nxOiUVjV5PGXdX3qelodHrCXJz4V16KjqDgTJuLrxKTcEIlHF14WVqCkaMBH0CbvwdHHifIRj3OVgqiM/Lwd7cHA168rUavKxtiM0XujG+dnZE5WYilYCjhQUpyjzszc3J1arRGfVFwI2jhQXJmRl/+33/UP/RAMdaYcY0EUz0aFeFMiXdGTx5N1qdnpqV/WjfrDzLfz5HfGIWLk7WTBzehMfPYgpPCVPHt8DO1oKxk/cKMQvBXnTrVJW37xLZtVvs+IxphrOzDfv23uHN6wQsLeVMntIKqVTCxp8vkpqai4enPYNFEu6v6y+SmiLc9sGZ+PihB7x6HouFhRnjpwnqqqSELLZ9IBuPaoybhx0Ae7deJy46DQdHK4aK6eFGo5GfF59ApdQQHFKMFp0+5iNtWnmGvBwlJQLdadfz40jmye0wbpwVgjpHzm5X5IS7d8NFMlMFYnGHH4pyXy4deUj4q3gsrc3p/ZegTYDtS08IaeDtQggo97n8+uLB+yTHZmDvbE2rvl9WDL26H87r++GYmJnQYUjDL64BYfM5K+aGtez3dY7Op3VPNP6q/jc+OV+qjKQsABy/YjT4oQYOHMixY8c4ceIEs2fP/m6VUtM+dXl56x3ndlxnbuc1jF7Xn6Z96nyRM/JfKS8vr78FNpnJ2dw/94w7Jx7x4NwzdFo9AFKphIoNg2ncqza121fGzPy/LmtPjExh0/R9hQGmto7W/DC/M0371C3sbnytDAYDZ36/zpa5B1HmqTEzN6XfrA60H9b4q/e9d/45a8buICs1F1MzEwbO60S7L0R1ZCRns3zk74UGf0171GD44m6F1gogmGlumHGAi2LwY7UmwUxa27sIKL90+AHrph1Ao9biXsyJ2ZsGFEaZaNRafp51uJBT07B9CGN+FECKwWBg34ZL7BaJxhVrBjB9XS+sbS3Iz1WxdOI+Ht4Q1Fe9Rjai54iGSKVSTh24z4YfT2DQGwiqWIw5a3th52DJ9XMvWDFLyOjyL+3B/HW9cHC2ZsfGy+wVJer1mgYzaV57sjILmDJsB9ERqZgrTJm5pAuVqpfglzXnOHZQuD6261yFYeOacvLoY35Zew6DwUjVGv7MWtCRixdesl68rVoNf2bMbsfu3bc48IfQ8WjXLoS+/eowa+5hXryIEziM09qgsDBj3NR9qFRaSga4MX9mO1ZvuMD9R5FC12V8C9RaHXOXC/zFejVL0qlNCJMWHCYnT0UxLwemjmzG4vVniEvKws5GwZxxrdiw+zqh0alYKsyYNao5Ww7dISwmFWtLOVMHNWHjgZvEpWTjaGvJqJ51WLXrCrkFagJ8nGlWK5CVe68IEQpVSmKQGDlx6xVSiYSh7Wty+PpzkjPz8HC0oVHlADafEf7GNjWCeB6VSFRyJvZWCppVKcWuK8JnvFWVQO6FxZKak4+Xow2+ro5ceiGM0dpXK8ORB6+E5O9SxXidmEp6XgHFnOyQy00KycVli7lxIzQKiUTg3HwAN3VL+nItPAqA6sW9eRAdh95opKK3B8+TktAZDJTzcONVSgo6g4Fgdxdep6agNxoJdnPhhQhuyrm58jwlWQA3Ls68FsFNCQcHwjIzkMtk2Fqak5ifi6NCQYFBi1KnxdvGlpi8bARwY090biYmUgl25gpSlfk4mCvI1qrQG/V4WdkSX5CNVAL25goy1AU4KayI+ua3/mP9RwOc5b9dICdPRUk/VwZ3r82GHVeJjE3Hwc6CaSObcfNeGKcuvEAigZnjW4IRlqwSc6VaCJkle/bf4eXreCwszJg+qTU6nZ6lywQ3zAb1S9OwQRARESn8Ls6OR45qjIuLDXfvhHHujNA5mjytNQqFGQ/uhXP2pOCVM2lGGxQKMxLjM9kmjqYGjWqMq7sdRqORdUtOFhr6te4skI0jQ5M5IJ7WRk5rVUggvnb2BQ9vhWJqKmPsnI9g5dn9CC6ffIpEImHMnI85NlqNjo2ivLt1z+r4BX48jcZFpnJM9KwYNrsosViZr2aHaBHfY3Rj7ByLjgye3Q7lsSj77jf58zgFnVbPH2JnpsuIxkWCOj+tw78IF/TGXap9ls78aT2+8orU+ExsHCyp3Sbkq+s+VHpSFuEvYpFIJFRpUu5v1/+1slJyALB3+fpz+lAeHsIG9k/Bycg1/chJz+POycesHrqZM9uuMHRZL0pX++c8mX9Ser2BiGfR3D/3jHunn/DuYUSRn/uV86FRj1o06FoDR4+vd7D+SeVl5bN/5UmO/nIerUaHVCal3bDG9J7e/rv4OwmRKawbt5On1wWuTZnqAYxf3w8v/y9nbKkK1GyZe4iTYlq4b2kPpvw6CL8yn4O9h5dfsXL0DrLT8zC3kDNyaTca/4WzFReRwuLBW4l6l4hUKqHf1NZ0Ht6o8Pun1ejYvOgYJ34XQHiVhkFMXtsbazsB/KQmZrFo+A7eP49FKpUwYForOg6sJ4gI8tWsnnaAm2cFKXG7frUZPK0VMhMZCTHpzBuxk9jwFMzkJkxc0oW6Lcqh1+n5dcUpjophuA1almf8AoFL9GlgZvX6gUxb0gWpTMLy2Ue4fEboYnUfUId+wxsS/j6ZOeP2kpGeh6OzNQvW9MCrmBMLZhzkznUBUA0Z04QOXauy7dcrHBCd2lu2rcjoCc3Zsf0G+0TFaMvWFRgxqgmr15zhkigNHzSoPo0aBzFh8l6iotKwtJCzcEFHUlJzWbBMIDFXCfFl/JhmzF96gjfvBbLy/OlteRuezHaRl9W2eXlqVi3B5IWHUal1lA5wY2S/+sxaeZz0zHzcXWyYOrwZyzZfJD45CwdbC6YPb8qaHVeIT8nG0c6Sif0bsmrXFdKy8vFwtmVAx2os3X5RIAUHeFA52Id1B4T3r13dYJKzcrnzSuDnDO9Qi10XHpGZq6SYqz1Vy/iw86LQnelctxy33kSRkJ6Di60ltcoWZ+/1pwB0qBHMlVfhZOYrKe5ij5OtFTfeCNLzdlWDOHRf4N80CPLjYXQ8OUo1/q6OGCRG3iWlYacwJ8DDidvhMcikEmoFFOPyO+H7WreUL9fCogCo6efDncgYjEAlHw8eJyRiMBqp4OnOs6QkDEYj5TxceZ6chBEo6/4B0EDZT8CN4HOTilQCvnb2hGeK3jYKM5Lz83C2sCBXp0al1+Fja0d0bhYfOjfRuZmYSqVYy+WkqfJxNLcgS1uA3mgoAm5szeVkapQ4mStIy/44+v67+o8GOE9exWJpacXcsS15/OKjJHzG6BYYjEaW/yyMSrp3qErFsj4sWnGS1PQ8vDzsGTG4AWERKWzfLWz2o4c1xt3Nlo2/XiImNh1HByvGjm6KTqdn2dKT6HQGatYMoGnTsuTmKlmzUlBbdexclbLlvMnPV7NGHPu061yFshV8hNDMJScLVVOt2gub9KUzz3l0NxxTMxnjRLKxwWDgpx+FL3/N+oHUbhgECOOk31YKkvRug+riXVxQfWi1On4WVVatulal1Cdmdsd23SY2IhU7Ryv6jC7qDLxl6Un0OgNV6wcWzvg/1OHNV8lIycHNx5E2fYp2X4xGIzvE0NEWvWoWOrB+WpcOf+zetOj9ZbVTfEQKd0Un047DGn1xzYe6sE+4sDbsUv27xk0vRK8Rv7Le2DlZ/+36v5ZeJ3QxTMz+/mv1rzoGyxVmzN4/lj9WnmD/8uO8uRfGuPrzqd+lOh1GNycgpPjfdjW+p7QaHaGPI3lx8x0vb73l5e33FOQoi6wpGVKcqi0qULt9FYp/xen3X/3dp7ZcZvfSo+Rm5ANQsUEZhi/v9V1xDXqdnj83XmTXkmOF5og/zOlI2yENv8qNev8kiuXDtxIXlgxAh6GN+GF2x88+Nzqtnh1Lj3NogwCy/cp4Mf23gXj5Fx113Tj5hDWT9qLMU2PvbM20Df0p90kafWpiFktG/M6bR1EA9BzbjF7jmxU+v5f3I1g8cidZ6XlY21kwfV1vKop+VUmxGSwYsYPIt4mYmMoYNb8DzUSi8adkYkcXG+Zs6EPJYC+hozPlDx7cFD7jfUc1pseQ+mg1OpbPOMSV0wKI6dC7BoMmNCc3R8mCift59SxGCIWc0Zrm7Stx9/o7fpx5GLVKS3F/Fxas6YmpmYzJI3fy7nUCpmYyps5pT/XaJVm64ChXxYiG/oPr0aVnDVYuP8VFUf3V74c6dOhchdlzDhVKwydOakHJku6MHreb1NRcHB2tWLK4Cw8eR/GbKOpo3CCIvr1qMXnWQeISMrGxNmfxnA6cv/aG42IHtm/XGnh7OTBjqTBWq1LBl+7tKjN12Z/k5avx83Fi9A8NmP/zGdKz8vFwsWXcDw1YsvkC6Vn5eLrYMrxHHX7ceoHcAjUlvBzp2KQCS7ZdFIi/wT74ejmx5bhg49GjaQivo5N4GibwaIa2r8nmk/fIV2ko5e1MgI8zB64Jz61no4qce/SOtJwCvJxsCfZz5/Ad4TXpWqccpx6/JU+loZSHE+ZyU+6HxSI3kdEspFQhuGlS1p+bodEUaLQEebiQo1UTm5GNk5UFnk623I+Kw1QmpYqfN9dChVFUvZJFwc3tSIHJUrmYJw/j4jECFb3ceZKQiBEo7+nK0yTB9LKcuxvPUkSg4+bCCxHcBLoIeVIyiQQvW1sisgT5t7nchNSCfFwtLcnUKtHo9RSztSNKBDfFRKBjKpVhJTclQ12As8KSdHU+Bgx4WtkQX5CNiVSClZkZ2RoVzgoL0jV5X/z+fq3+owEOwJgfGmBro2CMKAnv1KoiVSv6Mm2hoKLyL+7MwF61uHrzHReuvEYqlTBjUitkUilLVgjApVaNAJo3CebZ8xgOieOriRNaYGOjYMfvNwgLS8baxpzxE5ojkQijqfS0PLy8HfhBTPrevOESqck5uHvYMWCoYFh35vgTnj4SUsc/jKayMvL59UNEw+D6eBUTgMKpww958zwWC0s5Iz5RO+34+SKZaXl4FnOk64CPY5rDO24RG5mKvaMV/cd8BDFpydnsFb0wBkxsXuhwDPDkdij3Lr9BZiJl0LSixnvpydkc2nxVuN+UlkU6OwAPrrzhzaMo5OamdB/Z+LP3Qa/T88d6YdPoNKzRV7s3xzZfwWg0UrVxMN4BX0+7zs3K547Ip2ncrcZX131aL24Jo4Zytb9t0vd39T1NmQ8A518JtZTJpPSc2o5mfery+/xDXNh1g6sH73L14F2s7CwoXzeIig3LUKFBGTz8XL7q+2M0GinIUZKVlkvsuwSiX8UR9Vr4J/ZtAlqNrsh6C2tzytULonrLilRtXuFvR3H/tIxGI7dPPGLrnAPEi0DDJ9CDIT92p3KTct/V7Yp4EcuasTsKE8Mr1A1kzNq+eBT/sqpNp9Xxx9qz7F0lAHdHNzsmbuhPSL2gz9YmRqexbPg23j0WHrvND/UYNLcoCNKotWxZeIwTYsc2uFoJpv/Sv0in8dntUJaMFLo/VjYKJq3tTTVR0Wg0Gjm56za/LRLUjn6lPZj9az/cvIXv+dM7YSwZu5uczALsnayY+XNfylTyBeDkvrv8+uMJ9DoDJct6MefnPji62JAYm8Hc0buICU9Bbm7KpMWdqdM0WIhwmLCP1x/iHaa1opWolJozdg+J8ZlYWpkza3lXQqqV4Oj+e/wq5keFVPNj1tIupKXmMnHEfpITs7C2UbBgeTe8fR2ZOm4PL5/HCqBlRmtq1C7JzKl/8ORxNFKZhAmTWlKpih/jx+0hIiIFc3NT5s3viJmZCWPGC+opH29HlvzYmYNHHnHkuND56NqpCo3qBzF26j4yMvNxc7Fh0ZwO/L7/DjfuhiKRwLihjdHo9Cz6SThENq4TSIOapZi2TOD7lA30pE+nasxcfYK8AjX+xZwZ2LUG8385Q16BmhLeTvRqW4UFm86h1ugoG+BBg2oBrNh5CaMRGlUtibmFKfsuCOOkgW2rc/15OO9jU7G2kPNDq2psPHYbtVZPRX8PHOwtOXH3NRIJ9GtamcO3XpBToKaEuwM+bg6cfvQWiQS6163AkXsvUWl1lPd1R6PX8zQqEUu5KXWD/Tj2SACLLSqW4tKrMMF52MeN5Lx8ErNzcbO1xsHGgqexiShMTSjn486t8GgkEoFQ/GEsVcvPh1siuKnq68W9WMHaopK3Bw/jBX5bRS93HicmCEDHw41nYhcn2NWFFykC56aUKAs3lUhxs7EmOjsLG7kZUhMp6coC3KysSFPnozUI8u/IHEEh5SOmgstlJpibyshUK3FRWJKqzsOIsZBzYyqVYmFmQo5WhYvCgjRNHog/L9o//nr9RwOcmiF+tGlcljkrTgjybi8Hhvepy8nzz7nzMAJTExmzJrQiN1fFanF00qtLdcoEerB5+zWBaGyrYNLYZqhUWpavOIXRCC1blKd6tRK8f5/Eng/mfWOb4eBgxd07YZw/+6JwNGVubsrjh5GFqqmJ04VxVWpKDptEUnD/oQ3wECWsG1efJTdbiV+AK516Cxt3emou2z6sHdEQZ/Fi+v5VPCdENdXomW0xEzsLKYlZ7BMzXgZNbFEExGxdeQZlgYbA8t5FiMV6vYHNSwS+UuueNfAuUXTD2L32PGqllqBKvtRuUXS8YzQa2SV2rNr0q/PFsdLVo49IjE7DxsHyi744ALmZ+ZwXHYb/rntz7cgDtBodxct4UeI7oxaefwA4tf61DCmj8fvli3Z2dsB/LfPJ0cOeib8Npt3wJuxbdpwnV16Rl1XAreMPuSUaloHgOWNpY4GlrQILawWqAjU56blkp+UVdp2+VLZO1gTXKkVwrVKUrR2IX1nvvzVJ/Ffr6dXXbJ9/qNAJ2s7Zhn6zO9Ksb93v+p1qpYZ9K09ycN059Do9ljYKBi/qSrPetb8KjGJDE1kxYjvvRTBUu20IY1b2/qIa68qRB6yfsg9lngorWwXjVvemVquKRdYkRqexZPh2Qp8LNmRdRjSm35RWhc/faDRy6NfL/C6OsP2CPJj124BCjxy1SsuG2R/5NvVaV2Dcsq6YK8w+Eo2XnMSgNxBQ1ovZG/ri7G6HVqPj1x9PcFr8rtdvVZ5xizohNzflxcNIFk3YS3ZmAY4u1sxb14eAMp5EhSUzd/RukhOyBAXVyu6EVC/Bk/sRLJz8B/l5glJqwU+98PRx5JeVZwqVmS07hDBySktePotl/rQD5Oep8fByYNGq7shkUsYO/Z242AwsreTMWdwZLx9Hxo3aRVRkKgqFGXMWdBQsMUbtIDU1F3t7S35c0pWExExmzT0sqKfKeDFnVjvW/3qJayLHaeSQhpTwc2HctP0UKDWUKO7M3GltWLHhAs9fxwnX64kteReewp4/hefapXUIJYq7MHvVccEXR8yVmrHqBBqtjvKBnnRoVp45YmhmhUBPmtcNYtHm8+j1BmqU86VMgDs/7RXGlu3qB5NVoOLEDYFjM7xTLY7dellIIO7eOISf/7yF3mCgZnAxkEq4+DgUE6mUfs0qs/fqEwrUWoJ8XLGxNufS8zBMpFK616vA/lvP0Or1VPH3Ij2vgPDkDGwt5FQp6c3pp8Jr0KZSaU4/f4dOb6CSnydR6Zmk5RXgZW+DQmHGqwSBf1PKw5m7kbHIpBKq+nlzM0IwIK35CbipVtybuzHCZ7WSjwcP4xIwYqSStwePEj4HNx8IxRIJ+DsJCim5TIaTpSWxOdnYmcsxSI1kqpR4WAveNjpR/h3xCbiJzctGIZNhaiolW6PC1cKKZFUufAJuzGQyzE2k5GpVuFhYkqYWwI2TwpL4zP8dUX1XTRvZjHNXX3PtbigymZTZ41qRlpHHz1uFzX9wnzoU93Fi+nzRE6eEC/161uTV63j2iWZwE0c3w97OkjU/nSMxKRtXVxuGD22IVqtn+fKT6PUG6tULpEGDoCKjqc5dq1Em2AtlgaZwNNWmQyXKh/hiNBpZv+I0BflqAst40r6r0H5+cCuUq+cE+fX4WW0xES+cv646Q0G+mpJlPGkttqr1egPrFwuE3gYty1Ghml/h371pxWnUKi1lK/nSsPVHMu2rx1FcPfkMieRzYvGFww+IfJuIla2CXn8ZW8WGp3BeJFEOnNb6sw3l9rkXhL2MQ2Epp/Pwz0nBBoOBA78IAK3jkAZfVU5d+OMuaqUGvzJefwtCrhwRnk/jrtW/6+Sfm5VfmEFUpnrA36z+cn2QP2tU2r9d++8MtfSv4MvsfWPQ6/SEPo7kydXXPL3yild3QtGqtajy1ajy1aQnZn7x/nKFGR4lXCkW5EXxYC98g7woFuSFm6/zv53A/Nd69yiC7fMO8UQ0WZNbmNFxZDO6Tmj13Vlej6+8Yv3E3SRGCjETtdtWYviyHl9NDDcYDBzfcoVtC46gUWmxsrVg5LIe1O9U9bO/Nz9Xycbpf3DpkPB5Cqpagikb+uPqXXTEevPUU9ZM2ktBrgobe0smru1N1UYf5eR52QWsnrSPO+J4tXHnKoz6sQtykYSdHJfBwuE7CH8Vj1Qq4Yepreg0qF6hMvLnOX9y4YgAfBq1D2H0QgHAZGXksXjMHl4+ikIikdB/fDO6DKqLRCLhzKEH/Lz4OHqdgYAgD+au642Tqy33rr9j2bSDFOSrcfd2YMH63ngXd+bMn49Yv0S4ZpUp78OcVd0xMzNh3qT93L8pqOMGjWlC5941uHD6OWvEtUFlvZi/XJSBT/mDrKwCXFxtWLyyBzq9gdHDfyc9LQ9HRysWL+tGbp6KsWN2kZ+vxtvbgaXLunHj5ns2ip5hdWqXZPSoJixYcpznLwWC8fRJrTACk+ccRKczUKGcN+NHNGHO8hNERqdhaWHGountOXv1FWevisnlvWojkUpYskHgBTavH0RwoCdzfzotEHQrl6BmSHEW/HIGvcFI7RA/KgR5s2SrcC1qVjMQWxsFm/8UDlW9WlbmbUwyD97EYmoiY1SXWuw894i07Hw8nWxpVSuIDcduCRlWlQJIzcvnSVgCclMZfZpUZsfFh2h0eioFeKIHbr+NRm4qo3Ptcuy58UR4TqV9iUzJIC4jB2drCwJ9XLnwIgyJBNpWCuL4kzcYjEZqBPjwKjGFbKWKEs4O6CRG3ienYW9hjreTHQ+j4zGVSalQzIPbkTFIJFDd15vbIuemWnEv7sbEYgQqfwXclPNwLQQ3Qa7OvEpNQSqBYg72hGakY25igp25OfG5OTgoFKiNOvLUGrxsBJCiNxqLgBsvGxti87KxMDVFKoUcjRo3SyuSlEXBjVwmw9REQp5OjauFFalq4eeOCgvS1fnYmX3d8+yv9R8NcLJyClgrmsAN7FELf19nRk/fh1KlpUKwN13bVeb0+RfcuR+OmamMmZNao9cbWLJKkIQ2bVSGurVL8fBRJCfEsM3JE1tiaSln+/brREakYmdnwZixgpro1w2XCkdT/QcK46Ltm66SlJCFi6sNg8TN//ql19y9GYqJiZQJMwQfDGWBhvUiEGrfvRolgwSS6v2b77l+4RVSmZRxM9sU8i/OHH5I6Kt4LKzkDP4kKfzJ3XBuXnglmHfN+Oh5YzAY+E3s0DTrVBn/Mh+5DgV5KnauFTpYPUc2LiRBfqhdawRn0eqNyxAktss/lMFgKHRsbT+w3hdN++5ffEXM+yQsrM1p3ffL2U9Go5EzIt+pVf+639x40xIzeX1PVAx0+PvcKRBGGwCuPk5/66fytfpArk37CpD4tP47UrtlJjICq/oTWNWfHlPaotfpyc8uID9HWfjvghwlcgszbB2tsXG0xsbR6r89wPNLFfUqjp2L/yzsNJmYymg5oAE9prTBwdXuux4jIzmbTTP/4OphAXw4utsxfFkParep9NX7JMWksXbsTp6KJn8hDYIY/1O/IqndH+rd4yiWDt9GUnQaUqmEnhNa0n1c8yIdJY1ay9ZFxzi+XRhJBVUuzrRf+hd5vLCXcSwetp2kmHRMzGQMn9eRFr1qFn6GH914x7Kxe8jNKsDGwZJpP/UuDMtMTcxi4cidhL6IQyqTMmhqS9r3F5RzEW8TmT9yJykJWVhYyZm6ojtV6wei1+nZtPIMx/YIG3PdZmWZsLAjcnNTDu+8xZbV5zAajZSt5Mvs1T2wtDZn05pzHP5APm5elglz2pGVWcD0kbuICE3GTG7ClAUdqN2gNLu2XGP3NoFYW69REJNnt+P+3TCWzj+KWq0joJQbC5d3IzIylfmzj6BUavAt7sTiZd149TKOZcuE0b7gcdOJPftuc1gEbx3aV6JTxypMmnGAqA/AZW5H3oen8IuY8F6/dil6dqvGxHmHSE3LxdHBkoXT2vH7gTvcexIlGPYNb0JEbDoHTgqjrR5tK2NlrWC5mDPVukEwXh72LBPBTIs6QTg6WrF+n/A+dm5cgVylij/ERPAhHWty/Xk4ryOTsTA3ZUSn2vx2/DY5BWr8PByoWdaP304IfJy2NYN4m5DKu9hUrMzN6FK/PNvO3xdAVBlf0vILeB2bgqXcjNbVSrP7uvA7GpXz53lMEiliUKaXsy3X30ZiIpXSIqQURx8LwK1uYHEeRMdRoNES6O5EjkZDfFYOztaWONlY8CwuCYWpCYGeLtyPjkMmkVCpmCd3ogRAU7W4F/di4kRw84F/Y6Sil3shuCnr7srz5GQkEsGJ+HVqKqYyKR621kRkZWBpaoalmSlJ+Xk4WViQr9dQoNOKHZosDFAIbiQY8bCxLsyTMkiM5Gm1uFtak6gUpOIelkIkg7nMBJkMCnSaIuDGwdyCDHUBtmZyclR/f339UP/RAGfVrxcoUGoIDvSgZ/sq7Dtyn5dvE7BQmDFjXAuSU7JZv0ngowzqV4fixZxYv/EicfGZODlZMXpYY/LyVaxcJZB427UNIaSiL6GhSYW5UmPGNsPOzoKHDyIKVVOTprZCLjfl9cs4joonw3FTW2FhKScnW8kGkWPTvV9tfEVH3J2/XSE5MRtXd1v6ihwdlVLDz0sF0NOhR3VKiJ4zWel5/C5KR/uPaoyDSJjVafVsFGXxrbtVo/gnieCXjz8l9GU8Cks5/cYVjUY4tPkamam5eBRzpHWvonyWsJdx3Dj9HIlEQt8Jnwdm3jrznMg3CVhYm3/VtO/Qr8Jr3LJ3LSxtvnxqf3EnlLiwZBSWcur/TT7UrZNPMBqNBFUt8cWN60sV9lxo25b4gnT9e8vFWxgjJkel/e3a/woH53tLZiITQcw/J0z/d1X0m3h2LznKjT8fYDQakUgkNOpRkz4zOuD2l9iDr5Veb+Dsjutsm3+Y/BwlUqmENoMb0ndG+69+foxGI6d3XGfL3EMo89XILcwYPK8zrX6o9xlY1usNHFh/jj0rT6HXGXDxdGDyL/0J/otSLT4ihSUjfif8pcBh6DKiMX0nt8LE9ONI6uy+u2ycexitWoeLlz0zNv5AqfJCQrzBYODgr1fYsUpI9C5ZzpuZG/riIgblPr8Xzo9jdpOdkY+NvQXT1vaiokhUvn7mOatnHhK8b3wcmftLX3xKuJCbrWTJ5P08viO41vYZ2YieQxug0+lZM+8o548Ko/DmHSsxckZrtBo98yfu454oJ+8ztD69Btfn/esE5k3cT0Z6HnYOlsxf1R2/ADeWzjvKFZEk3L1vLfoNqc/Rgw/47WfB9+aDDPzK5desXX0Gg95IhYrFmLugIydPPmWL6GBet24gEyY2Z9Was1wXjQ2HDmlASIgvYybtIS09DydHK5bM78y5yy85eFQAKp3aVqJu7ZKMn3WAvHw1Pp4OzJ7UilW/XuRNWBJyMxPmTGjF5dvvuHhTALEj+9YjOTOP3/YLB6Te7aqgMxrYuF8AaT1aViJPrWHXCYE/+UP7aryJSubOcwEsje5RlyPXXhCVmIGtlTmD2lVn/ZEbqDQ6gou7EeDjzK4LwvPr3qgCt19HE50iSL/b1CzDtvPC4zYJCeB9UjqR4uipYYWAwiypVpUCufk2iqwCFX4uDlhbybkbFoupTErjcgEcfyz4NzUO9ud6aCRqnZ5y3m4k5uaSkpuPh601CnMzXiemYi03w9fFgcexCZhKpZT1dON+dBwSiQBo7scIn9cQb/dCcFPe040niYkABLsLJGKpBPwcHXmbLoyinG0sicrOwsbMDBMTGSkF+bhaWpGlVaLS6/C1syUqNwsjUPwDuJGAm5U1CflC5ILGqEOl0xZxJRaATi4WJiYgNaLUa3GzsCKlENwoyNQUYGcmJ1en/Ac+xv/hAOf5mwSsra2ZNaYlkTFpbNsneNeMHdIIFycbxk3bh1KppVwZLzq3q8yTZzGFQZpTxrXA2tqclavPkJKag7u7HUMG1Uer1bNiudDhqVcvkHr1AoUxlKhkat+xMsFlvdFq9axZKnB2mjQvSxUxZG/LhotkZebj4+tEdzEEL+xdIkf3CyOxUVNboRB9NvZsvkZyYhYubrb0GVq/8O/asvY8ebkqSgS606rrR6fUE/vvEhOego2dBX0+IfqqCjT8Lpr99RjWoIi8OzUxiyPbhFPNgCmtPrOn/yALr9+2IsU/kZODmLmzVnjc9gPqfdb5AXj7OIpX9yMwMZXR/htOw2dEX6H6Hat8M5YB4KZISPweafiHCi8EOD7ffZ+/loefoKRJiEj+27X/Dg7O/00V8zaBPcuOce3QvUKuUp32Veg9o/0/MgF89yiCnyfvLSQRB1Qoxpg1fQj4RgJ5cmw6a8ft5Mk1YZMoU92fiev64/GFOI2k6DRWjtnBK7EDWKdNCKNX9Pzss3v58AN+nnEAZb76iyMpVYGan2ce4tJhYXOr2qgMk9b0LIxcyMtRsmrSfu6K0ujm3aoxfF57zOSmQjjsjltsXirwbUoEeTB7Q19cvRzQ6w3sWneBP8RYhIo1/Zm+uifWtgpiI1KZN3Y38VFpyBWmTF7cmdpNgsnOzGfRxP28eBQlRDhMbE77XjVIScpm7ri9RIYJHZqJ8zpQv2kwNy69ZsXcP1GrdfiWcGHBmh6YK8yYNnY3L58JxOExU1rStGV5fll7nuNi96V1+xBGjG3Grh032Ct2gxo3CWbcpBb88stFTolux506V6FHz5rMmHWIV6/jMTWVMWVSK+zsLRg3eS/5BRp8fRxZOKcjW3fd4IoIgIYPrI+7uy2T5h5Eo9UTHOjB2CGNmLfqFHGJmYI78eQ27P7zHg+eRSOTSZk6vAl3n0Vz8bbwGKP61CU0JpWzN4XPwrDutXkdmcy1h2FIJRJG96zLpQfveRGWiNzMhLE967H91H2SM3JxsbeiR7MQ1h68jk5voGqQD3bWFhy5IQC+AS2rcPL+G5Iz83C1t6Je+RLsuCi8Nm2ql+Z+WByJmbm42FpSuZR3YdxCh+plOP8sVFBOeTojkUl4Gp2IwsyE2qWLc/qZGP1RviQX3oSh0xsIKeZBeEYGWQVCqrdRCmGp6dhZmONmZ83zhCTMTWSUcnXmcVwCJlIJZb3ceRAXj0QC5TzdeByfiEQCwe6uPEtKQiqBkq7OvExJwVQqxdveltCMdBQmJthbKUSejXDtzVAKPJtUVT4ag57idnZE5mYWgpvInExkEglOlgqSCnKxk5tToNegMejwFOXfYCwcUVmZmqJDj0avKwQ3EozYmSvI1CixNzMnR1cAGPGwsOGjnei36z8a4ACM+qEBLk7WDJm4C53OQJ3q/jRvWIbDxx/z7GUcCnNTpk9oiVqjY/kagT/TukV5qlb24+GjSE6fERD4lIktUSjM2LXrJuHhKdjYKBgtZkht23KV5KRs3NxsGSB2Mf7YfZuoSGGENUxUMT1/Es3ZE08BGDetFWZmJuj1BtYtEQFTkzJUFVvXMZGphS3lkVNboRB5K6+fxXDxuNDyHPXJyCorI5/dYuxC/zFNCsM0AQ5vv056Sg5uXva061uU4Ltn/QXUKi1lKvtS8y+xCq8fRfHw2lukMim9x34eiHn3wkui3iWK3Zsvxykc2yqQ9xp0qIyj25f9Y/KyC7h9Wnhdmv9NWGZedgGv7gubU82/kEC/VfHhAigpFvj3bsdfK59AT0xMZaQlZBL7PhHvku5fXfvpiOpDJ+P/xQp9GsUfK09y89jDQmBTq21les9oh1/w94PJ7PRcti84wrldNzEajVhYK+g7sx1tBjX8qizeaDRyZucNtsw9REGeCrnClP4zO9DuC3Jxo9HI5UP32TD9D5R5KhRW5oz4sSuNulQr8t4o89X8MutgoXFf2er+TFnft0hQZkxoEj8O/53o90mC/83kVnQe/vF3hr+OZ/HInSRGCyOrEfM60KK74KGjUmpYP/sIl0XRQcN2IYwRCcN5OUqWTdpfaN7XaUAdfhjfDJmJjHvX37Js6gEK8tQ4u9kyb31vSgR6EBmaxPyxe0mKz8TCUs705V2pUrskb17EMm/CPrIy8nFwtGLu6h6UKuPJ/u03CrPtqtT0Z/rizqSn5TJl9G5RVSVnzo9dKBXkwZxpB7h/R+CHDB7ZmLYdK7F86QmuXBJGKb371qJL92rMn3eE+/cFN90RIxtTrbo/Y8ftIi4+EysrOQvndSI5NYcpsw6i1xsoX9abaRNasmTNaZ69jMPERMq08S3JLVAxZ5lg4Ferqj+9OldlyuIjZGQV4OZsw5zxrViz7TLvI5Ixl5swe0xLDl94xsMXgtR9yuDGXL7/nrvPhM7MhP4NuXDvHU/exmNqImNivwb8cf4JEfHpWFvIGdmtDhuO3CQ7T0UxN3ta1CrNT4euYzRCw0oBqLQ6zj14h0wqZVDrquy/+pSsfBW+rvaULeHOH9eFvaFznXJcfB5GRl4B3k62BHg5c+qR0F3qUrMsxx68FjoyxdzJ1aiJSMrARiGnop8H518IW3mLCqU4+/K9EI5ZwpuXiclCCKaLA3laLYkZuThbW2JjKedNcipWZmb4ONrxLCEJuUxGSXcnHscLQCfQzYWnCUmYSCUEuDrxIjkZE5mU4o72vElNRS6T4WpjTXhmJlZmpliYmxGfm4OjQoHGoCdXo8Hb1oaE/Fx0Rj1+9g5E5GRgBHzt7IjMEbxt7BRyUkTjvlydCq1BXwTcuFhYkqzMw9rMDLVBi86ox83SihRVLhLARm5OlkaJg9ycbK0AbhzNLUjK+t8R1XdV1Qq+tGlSlq17bhEeJUQvTBrRlPiETDb9Lmy8wwbWx8Pdjp9+uSCQiF1sGD6oAQUFalau/jiaKl/eh6jIVHbvEjoNo0Y3wd7eUhhDiSeccZNaoLAwIzoqjb2iWd7wcU2xsbVAo9Hxk8ixadkuhGCxjX3m6GPevYrHwlLO0AkCl8doNPLLitPo9Qaq1y1FddGPRq838MsS4TGatg+h9Cfjlh3rzpOfq6JEaXeadfw44klPyeGgmCI+YGKLQqUVCOThD4qOAZNbfp4ptVro3jTtUgUPX6ciPzMajRzYIMy323wlTiE9KZsbovdQ2wFfdxq+fvwxGpWWYqXcCSj/7U3x6fU3GPQGvAPccPNx+ubaTys5RhgruRX7vjHJl8rSRkH5uqV5dOklt08+ptuEz80MP9QHgKPRaFCpVCgU30eo/b+hjEYjL2+9Y9/Kkzy6+KLw9hqtQ+gzoz0lyn05af1L9WEctX3hEfKyCgBo1K0GA+d3/qbJY2JUKj+N31XItQmqVoKJ6/p/MZohNzOfn6ft57rYnQ2qWoLJ6/vhVqzo5yf8VRxLR/xOXHiKwMkZ15zuY5sVAVgXD93n55mHUCs12DvbMG1DX8pV/zjaunD4AT/POoxGrcPVy56ZG/oRUFboYCVEp7No1E4i3yYilUkZPK11YVhmTHgKC0buJD46HTO5CeMWdaJB6woYjUb+2HKN39ddwGg0Ehziy6zVPbBztOLOlTcsn3EIZYEGdy975q3rTbESLlw89Yy1i46j1egoUcqNeat7YudgWSRTql23qgwd14wXz2JYMP0gebkq3DzsWLSqOwoLOeNH7CQiLBm53ISpc9pTrqIP0ybt54UoDZ8wuSWVqhRnwvi9hInrZsxsh6OTFaPH7hKIyC42LFnchdt3w9gsyuob1ivNgL61mb7gSCF5eMGM9jx8Ec1ekWvVtnl5albzZ8L8QyhVWvx9nRk/pBEL158mITkbOxsFs8a04Nf9t3gfmYJCbsqMEc3Ye+ohr8OTMJebMHVQU/acfkhojOBePL5PAzYduU1yRi7O9pYMaF+d1fuvotLoKO3rQqUgn8LQzHa1yxCZnMWz8ATkpiYMbFWVbecfoFRrCfJxwc3JhuOiLLxng4ocvf+aXKWaAA8nnOwsCx2JO9Uoy+G7L4W4hQBvYrOyic/IwcnaAn93J66+iUQqkdC0fACnXwhdnDqlfLkfHYdKqyPIw4XkvDzS8grwsLNGZiIjLDUDW4U5rtaWvE5KwcLUFB9nO54nJmMmk+Ln7MiLJOG/fZ3seZ2Sglwmw9Pelvfp6ViYmmJvqSA6OwtbczkyEynJ+Xm4WFiSp9NQoNVSzE5wIjYYDUXATTFbW6JysjCTybCWm5KmKsBJYUGmRjTus7YlLj8bCUacLCxJVeVjJ5eTr9egN+pxtxTUVDKJBAtTU3K0SpzkFmRq8wEjDnJhVGVr9mURypfqPxrgTB/dnHdhyew5JJDDJg5vgq2NBbMXHxMyo8r70LZFBZ4+j+HP48KJavK45lhayvlp3XlSUnJwc7NlyKD66PUGVqw4hU5noHp1fxo2DEKj0bFyuTCGatq8LJWr+GEwGFm77BRarZ4q1UvQQPS/OLD7NrHR6dg7WDJwhEA2zkzPY7voLtp/eAMcRS7NjYuveXIvAlMzE4Z9QiA+f/QxYW8SsLQ2Z8An3jZhbxI4e0S4eA+f2rrIBXnnTxdQK7WUruBD7WZFU793ilbq1RsFESSG+n2oZ3fCeHYnDBMzGT2+4Gvz7HYo757GYCY3pf1XwMupXTfR6wyUqeqH/zeM4i4dEN6f71FEPbosnB4rfSEQ8WulKlCTlZoL8Nmm9k+rZptKPLr0kjsnH30T4FhbWyORSDAajWRnZ/8/AXD0egN3Tj7m8PozvL4rcECkUgn1u1Sn24TW+H7BEfhb9eLWe36dvo9wkQDuG+TJqBW9CK75dQWdXm/g+ObL/P7jUdQFGuQKU/pOb0/7oY2+2Ol5ePkVa8bvJiM5G5mJlF6TWtF1VNMiRGKj0cjRrVfZ9uNxdBo9jq62TPm5L+VqfFTbqZQaNs45zHkxaqBCrZJMWdcHe2fhO6tRa/l1wTHO7BM+y5XrBTJlzcfR1/2rb1gxcT95OUrsHK2Y/lMvyolj69sXX7Fy2kGU+Wpc3O2Yvb43/mU8USk1rJn7J9dEp+FWXasybForTExk7Nt8lR0/C9eO8lWKM3Nld6xszNm67gIHxMNVzfqBTFnYEbVax/RRu3j5JAapVMLwic1p27UqZ44/Yd1y4SAVFOzF3GVdSUvNYcrYvaSn5WJnb8nC5V2xtlEwduTOQmn43AUdsXewYvSonaSk5GBnZ8HixV1Iz8xjwqS9qNU6/P1dWTivI7v33+GE2AXv3rkqDeuXZszUfaRn5OPkaMWPczpw4PgjLojjxYE9a+HiYsOMJUfR6w1UKudD3y7VmbH8GFk5SjxcbZkyrClLN18oBDvThzXl533XiUnIxMbKnMkDG7Hhj5skpubgYGvBqB51WbPnKjn5Koq529OxcQWW77mCXhxDebjasuuccNDr1bQSd9/EEBafhpVCTq+mIfx2+i46vYEqpbyQmci49FSQfvdsVJH9N56h0uoo5+uGRCbl9jtBOdWmShB/3Bbet7pBxXmVkEJabj4e9ja42ltxJywGE5mUhsElOPNC6Ng1DCrBtbBIdHoDFbzdicjIIFupxtfJHpVeR3xmFk6WFliZy3mfmo613AwXO2veJKdiYWqKp70Nb1JSsTA1wc3OmndpaShMTXG2sSQ8MwMrMzMszc2Iy8nBQWGOXmokXVmAh5U16Solar2O4vZ2haqoEg4OhGcL4Mbbxpbo3GwUJjLkpiZkqJWCvFslGPcVghsJOJhbkKbKx15uTq5OhQEDbiK4MZFKMTeRkadT4WRuQaZGADf2cgVZWiW2ZmbkqLP+7tJRWP/RAEcmk/Lj2tPoDUYa1Qmkfq1SHDz6kBev4lAoTJkyrgVqjZbla4ROTesW5akcUpxnz2IKk20njW+BQmHGwYP3efs2EUtLOePGC4Z++/bcJiY6HTt7C4aJIODMiSe8fB6LucKUsZNbIJFIiI9NZ9+H+INxTQsjFrasv0hergr/Um607iSogVRKDb+JqqRu/WvjLvrj5OUo+V00yuszvGEhj8ZoNPLbslMYjUbqtShH8Ccqp8j3SVwQgy8HTynaoQl7FcfNsy+QSCT0+wt52Gg0skvk7LToXr2QFPlpHRTDR5t1r/ZFV2CNWssZkYjd7htp4AmRKbx+EIFUKqHhJ8nLX6tHokS0UoPPjdq+VqlxQnibhbXim8Gd31M1WlVk/bgdvLkfTsy7BHy+EvAplUqxsbEhOzub7Oxs3Ny+blr4f3rlZxdwbtd1jm68QHK00AkzNTOhaZ86dBnXEvevmOx9rZJj0tk67yDX/xQ2FStbC3pPb0ubgQ2+6YkT8z6RNWN38OaBYANWrlZJxq3p+0WujSpfzZYFRzi1QyCaevm7Mml9P0pV9C2yLjM1h9UT9vJQDHKs3jSYcSt7FlEDRr9PYskIYSQlkUjoNb4Z3Uc3LQRUCdFp/DhqF+Gv4pFIJPQe15TuIxsVpsrv23CJPesvYjQaCazgw4x1vXF2t0OvN7Dn54vsE6NaylYpzow1PbFztCI5IZMF4/YQ/iYRmYmUEdNb06prNVRKDStnHubaOYHf0bZ7NYZMaoFGo2P+xP3cvS50Aj7ELsREpjF3wj6SErKwsJQzc0lnKlb1Y/PPFzkoqrDqNynDpJlteXg/nCXzjqJSaSnm68Sild1JTc1l9Igd5GQrcXG14cdl3UhLyy2UgXt5ObBkaVfu3gtnw0YhRLNqFT8mT2zBirVnuftAGF2NHtYYb28HxkwVeI/Fizkxd1obftp8mcfPhRHT5JFNScvK58f1wvWvSd3SNKhViik/HkGl1hFYwpXBPWszd/1pMrML8HCxZWz/+izfepG0rHxcHa0Z3bseK3ZcJitXiZerHf3aVmHZ70L0Qhk/N+pULsGqvcLr3bhKAAYJ/Hld8C0b2Lo6p+6+ISE9BydbS9rVLsNvp4TQzPrl/EjPV/I8NA5zUxO61C/P7qtPhO5MSR8ylUrexSZhKTelSYWSHLwjdDablg/gTngMOUo1fi72yOWmPI5KwNzUhJqlinHupTCiahLsz8W34RiMRqoU9+JlYjIFGi0lXZ1IVxaQll+Au601UomEqIxMHCwVWCvkhKWlY2Mux8FKwfu0dKzMzLC3Nic8IwMbuRxrCznRWVnYmptjYiIlKS8PF0tLCgwaclWC5Ds5Pw+twYCfgz3h2Rl8Cm4APK0F+belqSkymUTwtrG0IlmUf38ANzKJBBu5GRnqAhzNFWRpCzCKPJwUVS6mUimmMin5OjXO5pZkiMZ+dnJzsrVK7Mzk5OmFUdX31v8owPH19SU6OrrIbVOnTmXp0qVfvY/RaGT+/Pls2rSJzMxMqlWrxoYNGyhT5vtP7B9q96G7RInZU+OGNiYuPoPNO4RW6fAB9XF3tWX9rxdJSMzC2cmaYYMaoFJpWbFa4OK0almekBBfEhIy2b5NGGkNHdoQZ2droqNS2SdyZEaNaYqNjYKM9Dw2iy7BPwyuj6ubmCu14gxajZ5K1fyoL3Z0nj+K4uKpZ8KXf1orZCbCxXLv1uukJefg6mFH134f4xD2/HaV7MwCfPycaf0JsfjulTe8eBSFmdyEQROKhl9uW3kGo9FIneZlKV2x6NhghwhgGrStiG/Jopvvi3vhvHoYiamZCd2+4GsT+SaBx9ffIZVK6Di4wRdf+9tnn5OVloujqy01mn099+maqJ4oX6fUN0cSAClx6aTEpiOVSQn+B142ueLow9bxX5OHf1qO7vbUaB3CnZOP2TxzPwsPTfjqWltbW7Kzs/9blVT/nRUXmsSJTRc5v/sGBbkqAKwdLGk1oCFthzX+qg/N10qVr+bg+rMc/OksGpUWqVRC87516Tuz/TejMzRqLQfXnWP/mtNoNTosrMwZOK8TLfrW+WI0w5tHkawavYP4CCEcsO3A+vwws32RkEyAR1ffsGr8bjJTczGTmzJ4Tnta9f1oHGg0Grl46D4bZh0uHElNWdebCp94NN0+/5LVk/eTn6vCxsGSKat7UkkcKedmFbBi0n4eXBPGaK171WDIjDaYmpmQm61k+eSPfJt2fWoyaHJLTExlPLsfwY+T9pGdWYCtgyWzVvWgbOXipCRmsWD8PsLeJAigZ1prWnWpQlJ8JnPH7yUqPAVTMxMmzG5Hw5bleHArlB9nHqIgXyOY+q3pgbOrbZFMqd4D69J7QB0O/3GfzWLKd0iV4sxZ1Im7d8JZuewkWq2ekqXcWbSkC3fuhrFWtI0oV86bOXM7sHf/nUIZeOtWFejdqybT5x7mvTi6mjW1DXn5aqbOPYxeL3jcjBvRhAUrTxIelYpCYcr8yW25/SiCP88+BaBH+yp4edgza8Ux9AYjVSv40rZJOWasOoFSrSXA15n+naoz/5cz5Cs1+Hk50rtdVRZuPieAoeKutKpbhiW/X0IvRi/4+Tjxy2GBYtChXlli07J48DYWE5mUIe1qsO/SUzJyC/B0sqF+iD9bzorGh1UDeZeQSlhCOlYKOW1rBLFDTASvX7YE4SnpxKRlYWdpTo1SxfjzvkAsb105kIuvwlFqtJT2dEat1/M6PgVrczPK+bpz6Y3AJWwc7M/5N0JHtKa/Dw+i49Ho9QR7uhCTlU22Sk0xezsKdFpS8/JxtbFCKpMQlZmFo4UCc7kpkRlZ2CnMUchNiMnKxl6hwNRURlxODo4WCnQYSSsowMPamkyNkgKdlmK2dsTlZqMzGvB3cCBMBDcfgI5UAi6WVsTn52BjJkcv0ZOr1RSRf3ta2xCXny24EpuakFUYuSB0ZlwtLUlR5SKXypDKQKnXFIIbCUaszeTkaJVit0cAN07m39/t/h/v4CxYsIDBgwcX/r+V1bc3meXLl7N69Wp+//13SpYsyaJFi2jSpAnv3r3D2vqfyWEPn3iMVCZn4oimWFnKmbngCGq1jkoVitG2ZQVevIrjiDiXnzSuOVaWcn7ddJmEhCycnKwZOqSBkBe15ixqtY7yFXxo2ao8BoOR1SvPCOOqGv7Ua1AagI3rzpOfpyaglDvtxIDMK+df8uRBJGZmJoyeJHR0tFo965cJIKpFh0oEBgut/bjoNA7vEkDTsIktkIsW8bFRqRzfL7S+h0xqUShT1Wn1bBGBSse+tXD+ZMN5di+chzfeIzOR0v8vsvBXj6J4eO0dUpn0M1M/gL2ia3LzblVx/ALoOLJZOAHValH+i5lTAKd2Ch2r5j1rFD7fL9UHXkT99n/vZ/NKHIuUKOuN4m+UVp+WKl/YnM0tv3+2+60atLAb988+4/7ZZzy6/JJKDYO/uM7Ozo6YmJj/q5RUep2eu6efcGLz5UJzPgCfUh50GNmUht1rftWo8WtlMBi4uP8OOxb9SXpiFgBla5Zk2NLulCj7bc7Vy7uhrJuwm5j3gsS1apOyjF7ZC2dPh8/WatRa9qw8xaENFzAYjDh52DFhbV8q1g0suk6lZfvSExwVJc3FSrkzbUM/fD8hoBfkqfh55kGuiB3QirVLMvmnjyMpnVbP9hWnOSKmcAdV8mWa2JkBCH0Zx+LRu0iOy8RMbsLohZ1o3EHw74l8n8TC0btIjMlAbm7KmAUdaNimIkajkT933WLzqrMY9Ab8S3sw56deuLjb8fJxFIsm7icrIx9bewsB9FTy5cXjKBZO/oPsrAKBTLyqB6WCPTmy9y6bfzovAJGQYsxe1hW1RseEYb8THpqMqZmMSTPbUqdhadatPMOpYwJXrlW7EEaOb8r+PXfYsV3oftWuU5IpM9qyd+9t9onBmo0bl2HkqCasXH2Gm2LG2+CB9alevQSjJ+4hOSUHO1sLFs/ryMMn0WwTPa4a1y9N105VmDzvEClpuTjYW7JgWjv2HX3AzfsCoXn0Dw3IKVCx/FfBm6t5/SDKB3kxe+1J9AYjVcoVo2mdQOb+fBqtTk+FQE+a1C5d6E5cpYwPFUp7sXKXQKZuWiMQmamUPeeErny/VlW49yaaN9ECf2dwmxpsOS3kSpX0ciawuAu7Lwlru9Yrz43XkSSk5+BoY0G98iXYfU14rVpWDuRBRBwp2Xm421lTysuZ00+EDlr7qmU4+fQtWr2eir4epOTlEZeRg5OVBb5uDtwMjUYqhfqlS3BBBDd1S/lyMyxaSP728eBtaioFGi0Bzo6k5eeTqVThbW+LyqAjKScPV2srjBKIy87B2coCoxQScnNxsbJEh4Hk/DzcrKzI1WnIE4nDyco81Ho9JewdiMjKwICRAEdHQrPSASPF7e2JyP5AIlaQWJCHvbk5KoMWlU4rZkiJ4MbKhvj8HORSGWamUnK06iKuxK6WlqSq8jCXmWCQGFDpdbgoLElX5yEFLM3MyNOpcJAryNEJgMhWLicr5/uvl//jAMfa2vq72/NGo5G1a9cyc+ZMOnbsCMCOHTtwdXVl7969DB069Iv3U6vVqNXqwv/PyRFSnw0GI80bBVGneoAwmnodL4ymxjZHo9GxfPUZjEZo3iSYapX9ePsukUOi7HPCuGZYWZpz7txzHj+KwszMhAkTBIBy6sRjXr2IQ6EwY4yYP/XwXjhXLwpZVuOmtEQmk5KXq+I30a+mR//ahXEMR/ffJSYyFVs7C34Y0ajwb/911Vl0Oj1VagVQo97HvKRNK8+i1xmoVrcUlWt97FycOfyA+Kg0bB0s6fIJD8ZoNLJVlK237FYNj094J0ajkZ3iCKxp58p4FCsKUF4/ihK4N6YyOg/5vDuTnpTNVVEB0nFI/S++H9HvEnl5LxypTErznjW/uAYg6k0CUW8TMDGVUaNF+a+u+1Cv7gkXgr/6lfxdqQo0AP94Y/5aeQW40WZII47+cp5N0/bxy+0FXxyt/HeY/f13VXJMGhf33uL09qukxQutaYlEQtXm5Wk7tDGVGgX/S0qwZzfesmnWgUKZvquPEwPndaJO+8rffLz8nAK2LfiTU6IYwM7ZmuE/dqfuV+4X+iyGVWN2EP1OAEINO1dl+OKun40kI98ksHz0TqLeCpk8rfvVZtCs9kXMEMNexrF05A7iI1ORyqT0mdiCriM+poSnJmSxdOxuXotBmh0H1eMHsftiNBo5e+A+GxccQ6vR4ebtwMz1fQqNNa+eesra2UdQK7W4etoze31vSpT2QK3Ssm7BUS6JKstGbSowZk575OamnDr4gF/EENwSpdyYs7YXrh52nDr8gA3LBA6Nf6A781b3wM7BirWLT3BWBCzN21Vk1NRWRIQmM3fqH2Sk5WFnb8n85V3xLubEzEn7efwgEokEho5qQusOIaxafrowMLNL92r0+6EuK1ac4uoVgSfTt29tWretyPSZB3nzNgFTUxnTprTGzt6C0ZP2kJenxsvTnsVzO7Hv8H3OXBDGNb26ViekQrGPHjdeDsye0IrVmy/x+n0iZqYyZoxtwYNn0Zy8JNynT8dqmMlNWPKbcB1tVqc0pUq4svi3cxiNUK+KP6X93Vm+XeicN6lRCntbCzYdEQ6KXZtUJC49i5v3Iz+LXrCzUtC7WWV+OX4brU5PxQBP7GwUHLstAPu+TSpx4v4bMnKF0Mxy/h4cui0GAdcM5uKLMLILVPi62ONqZ8WVVxGYSKW0rRbEnw9eCY7EJX14n5wu8m+ELKkHkXGYyaTUKFWMS2+FLk6DQD8uvxdGr1WLe/EkPhGNXk8ZNxeis7LIU2vwc7QnQ60kU6nCy86GfJ2WjHwlHjZWFBi0ZOar8LCxJlenIUetxsvWhnSVkgKtluL2dsTkZaMzGAhwcCQ0Mx3jX8CNr72gkDKTyrAyFxRSjgoL8nQqNAZd4SgKjLhbWRNfkIPCxASJFPK0H1yJRXBjIYAbCxNTtEYdOoMeV4UAfmQSCeYmMvJ1ahzNFWSLJGMbMzPydUocTb+fRvA/DnCWLVvGwoUL8fb2pkuXLkyePBkzsy87q0ZGRpKUlETTph87DnK5nHr16nH79u2vApwlS5Ywf/78z253sLdgzOCGxCdmFhlNubnasmnbNWLjM3B0sGLkkEbodHpWrjqNwWCkUcMgqlfzJyurgI0i16Rf/zp4eTkIYygx5+mHQXVxcbFBrdayXvSLad+5CiVFv5gdm6+SmZGPl48jXXp9zJXavVm4aA8c3RgbUc5978Z7HtwKxdRUxnCx0wPw8FYoD268x8REVsSxOD9PVSgL7zWsIZafdDRuXXglmPpZmNHzLyOmZ3fDeX5P8KXp+QXy8B/i39uoQ6Uvcm9O7LyJTqunTBU/Av/CZ/hQZ8WU72qNg4vIa/9aN08KQCmkfukveuj8td48FC4AQf8Q4HyIVjCV//u+Dr2mtePivltEvY5j4+Q9jFzd57ON9/90gJOfo+Tm0Qdc3HuL56JpGoCtozXN+9el5YAG/7LqLPptAtvmH+aemP5saaOg+8RWtBvS6JvJ70ajkRvHH/HrjD/ISBZet2a9ajNoXies7S0/W6/V6Ni/9iz7fxK6HnZO1oxe0YOaLSoUWWcwGDi27Rrbl5xAq9Zh52TN+FU9i3jbGI1Gjm27ztYlAtnY2cOOqev7UqbKxxiU+5dfs3LSfnKzCrC0NmfCiu7UbCp08FRKDRvm/slFsetTvVEQE5d3w8pGIXRbV5zmmNihrVjTn2kru2Njb0lyQiYLx+0l7E0CUpmUIZNa0K5XDXQ6PesWHuf0IeHQVa9ZMOPnd8DERMb6JSc5+eH2psFMmNMOlUrLtJE7C8nEg8Y0oWPP6ly9+IpVi06g0ejw9XNm4cru6PQGxgzZTmxMOuYKU6bP7UCZsl5MnbiPly/ikMokjBnXnFp1SjJ50j5ev47HxETKxEktKVnKndFjd5GUlI2NtTkLF3QiPjGLSTMOoNcbCA7yZMaU1qxcd45HT6OFQ9/wxphbmDFlwSF0OgPlgrwYNag+c1edJD4pCxsrc+ZObM2Bk4+4+yRSuM+ABoTHZfDnMWFU1LtdFQwSIz/tugpAh8blMDEzYeMBoTvUpWkFMnOVhe7EgzvW4PbLKF6EJyI3lTGyax1+P/OA9Ox83B1taFO7DD8fvYnRCHXK+aHSabn8NAwTmZR+TSuz79rTwq6Om6M1Jx+8QSKBrnXKc/TBK1QaHUHeLshkUu6GCongzSuV4rCYCF4vyI/H0fEi/8YBqYmEF3HJWJqZUs7XnavvIjEC9QOLF4Kbmv4+3I2KRW80UsHLnbfJqah0Okq6OBKXm0u+RgA6qQUF5KjV+NjZkqEpIFetwcfeljRlAflaLb72dsTn5aLR6ynh6EBEdgYGo5GSjo68zxDAjb+jA6FZ6Ugk4C0qpBQmJpiZmpCuKsDVwpJ0TQF6ox5va1tiRXDjamlFYkEuViam6CQGVDotbhbWhcZ9zhYWpKrzsDI1Q2nQYDAaCsGNiVSKqVSCUq/ByVxBljYfCWBlZkqBXoW9qQWZBf+XyMTHjh1LSEgI9vb23L9/n+nTpxMZGcmWLVu+uD5JjG53dS0q9XR1df2My/NpTZ8+nQkTPnIhcnJy8Pb2Zuro5lhbmTNHVE1VLOdD25YVCA1PZv8hQQ0xblQTrK3N2bvvDhGRqdjYKBg5XNj4N/5ykdwcFSVKuNBZHDlt3HCR/Dw1JUu50U503P1j920S4jNxdLKmn+gHEx6axAlRgj160kd59tafL6JSaild1osmrSsAoNXq2CSOmtr3rI6nOPb5YMkO0LZHNbw+kWof2n6D7Ix8PH2daNn543hHrzewU+wate9Xu4ipn9FoZI/4sxbdqxW20z9U1LtE7l9+g0QiocvQz7s3apWmkDj8Nd8brUbHZTFxvXnPb6d83zknqAxqtfx7PxudVkeMeDr3/4dmfR9O52ql5h/d71tl42DFxF8GsqDnek5svoStkzW9Z7QvAnL+/3Az/qelUWl4ePEl1w7d5fbJx4XgTyKRUK5OIM361qFO+yqYmf9r8Q6p8RnsXnacC3tuYTAYkcqktPqhHr2ntcX2bxyXE6NS2TB1Lw8vCSdoTz8XxqzuQ/mvpL+Hv4xl9dhdRLwSnFvrtg1hxJLun3Gt0hKzWD1xD09EAm7VRmUYt7IH9s42hWuy0nJZPWkfD0SVXo1mZRm/onuhcZ9Oq2fHqjMcEg34AoK9mLa+d2F3ND4qlcWjdwsScKlA3O88uB5SqZSMlBwWj9/L68fCNazb0Pr0Gd0EmUzKk7vhLJm8n5ysAmztLZi+ojsVqpUgMz2PRRP38+pJtJBBNboxXQfUISergNlT9/BczKbqN6Ih3X+oQ2RYCvMm7iM5MRsLSzkzFneiUg3/IrEL1WoFMH1+B0LfJTJ/5mFyc5Q4u9qwYGlXTM1MGDX8dxJFMvKc+R1wcrZh1MgdJCVlY21tztx5HTEajYweKxCMPTzs+HFRFy5dfc0O8brQoF4gA/vVZeaCP4mISkVhbsrcaW0IjUpl1W/C6LtB7VJ0aFWRSQuFDEB3Fxtmj2vF2u2XeReejNzMhJmjmnP25htuPhJIymP61udNZDLnbgldpEGdahCRmMGlK0JHZWiXWjx6E8uD1wJheXT3Ovx5/QWRCRnYWMoZ0r4Gvxy7Tb5SQwkPR6oFFyuMXmhVvTQRKRm8jk5GITelZ8MQdlx6KHR1SnggMZFy9WUEJjIpXWqX48Cd5+j0BiqX8CJLqSQ0LgUruRm1yxTn6EPh89OsfADX3kaiFOXeuVo1McnZ2FuYU9zNgdvhMcikEmr4+3D1fSQAdUr6cl1MBK9czJOncYnoDAaCPVwITc8QgI6zIzE52Si1Ovwc7UnIz0Gp1VHC0YHY3GzUej3+jo5EZmeiMxgo6eTIu0xBGFDS0Yn3GWkYMVLC0YGwrAxkUgmuVpbE5GZjZWoGUshSq3C3siJFlYfBaCgCbj5429iYmaEy6NDqdbhbWheGaTopFKSr87Exk5OnU2HEiIsIbkylUmRSUBu0heBGCliYylDq1dibWZCjLeCf9In/7QBn3rx5X+yWfFoPHjygcuXKjB8/vvC2cuXKYW9vT+fOnVm2bBmOjl/mbgCfnYT/zihNLpcjl38+fihfxptT557z5HkMcrkJk8c2Q28wsmLNGcFYr3Yp6tQsSVxcBjt2CaeAEcMaCtELDyO5ePEVEglMmNACExMZDx9EcOWSMIYaP0kYQ8XFZrBfJBsPH9sEC0s5RqORn1cKRLy6DUtTsUpxAF49i+XSaSHOYcSkFkilwt904sB94mPSsXe0oscno6azRx4RE5GKjZ0FPT4ZB6Wn5HBE9OMZMK5pEY7LtVPPiA1PwcpWQcf+H0nKAE/vhPFSJA93/cL46bDIJ6jZLBjP4p+f3K8ee0xOZj4unvZUb/Jl3sn9i6/IycjHwdWGSvUCv7gGICUug4iXcUilEqp+5bE+rbiw5EKCqetXeD9fKwsbobulzFP9o/v9XdVsU4nBP3Zn0/R97F5ylOg38Uz8dVAhP+j/FDdjjVrL40svuX7kPndOPS4kDAN4l3Sncc9aNOxWExfvf/a6flq5WfkcXHuGo79dKgRNtdqE0H9Wh28aIn54foc3nGff6tNoVFrh8zm2Od3Gtvhit0ej1rJ/7VkOrD+HXmfAxsGSkUu6U7fd5xlV144/5ufpB8jLLkBubsqgOe1p1adoAvnj6+9YOX4Pmak5mMpNGDSzHW36fVyTmpDFkjG7eCMClLb9ajNwWmvMxI7gjTPPWTNdkHnbOVoxbW1PyoveOC8fRfHjuL1kpuViYSVn8rKuVG8YhNFo5OD2G2wXrRoCgjyYtaYnrh72vHsRx8IJ+0hLycHCSs60pV2pWqckEaFJzJuwj+SELBQWZkxb3JnqdUtx+9pbls0+gkqpxcPbgfmruuPibsfiWYe5IY6VuvSqwYDhDTl/+hk/rTiDXm8gMMiD+Uu7EhmRyoJ5R8jPU+PmbsfipV1ITctjzOidH4HMj115+TqO1WvPCV2aMl7Mmd2OTduucV4EpL26VadenUDGTt1HWnoeDvaWLJ7TgZMXXnDyvHCY6dGhCkGBHkxacBi1RkepEq6MHtiABetOk5giyL5njG7BtkN3eB2WhJmpCdOGNuHUjVc8fCmAl/H9GnDp/nsev4nDRCZlfJ8GHLv2gnfRKViYmzKqe122nrhLalY+LvZW9GxeibWHbhSOobxc7dhzUejydG9YgdtvhOgFO0tz2tUOZuv5exiNUDu4OKl5+byJSkFhZkq7GkHsu/VU6PgEFSciOZ24jBwcrBSUL+7BGdGRuHWl0pwRE8Er+noQl5VNSm4+rrZWONpY8Cg6ATOZlErFvbgRFo0RqBtQrBDcVC/uzf3oOAxiF+dFcjI6g4EgNxfep6eh1Rso5epEeGY6Wr2Bks5OhGdloDMYKOXsxLv0NAwYCXR24m3G5+CmuIM94VkZmMqkOFgoSMjPxVZujsaop0CrxdPaujBm4QO4kUrAXmFByifyb73RgIelNUkqwZXYXmFOhqYAOzNzsnVKwIiLwoJ0dR5ymQwjBjQGPc7mCjK1+ZhIJJiZSFAZNIXgRiYBuen3Q5x/O8AZNWoU3bt3/+YaX1/fL95evbrg5hkWFvZFgPOBq5OUlIS7+8eLYkpKymddne+p9IxcNm69CsDAPnXwdLdn/6F7vA9LxspKzpgRjTEajaz+6SxarZ5KIb40aRyMWq3lp7XiyKl9JQJLe6BWa1n3ocvSsTIBJd0wGo1sWHMWrUZP5Wp+1BXJxhfPPOfV81jk5qYMEf1qDAYjG8VMq2ZtKxaGaWZn5rN7kwAs+o/4OGrKz1OxU3Qc7T2sQaG0HGD3L5dQK7UEVfChZsOPcmmdVs9u0Xyv84C6WP0lt+dT8rDTX1yFUxOzuCJya77UvTEajYWBg2361fmqnPeCmMLesGOVb0p+74rdm6CqJb6poPlQEWIekG8Zzy8qZ75VH6IfPt3Y/13VaXRzFJZyNkzcxY2jD4h+G8+Yn/pTtlap/9ERVXJMGo8uvuDhxZc8ufqKghxl4c+cPB2o27Eq9TtXo2RI8f+Sy3JBropjv13k8M/nycsW1GrBNQIYOL8zpauU+Nv7P772mo3T9hMbKnRvK9QNZNTyXnj5f/n7/u5xFGvG7yrk2tRqVZGRS7sV6caAoGD6ZeZBrook9oBy3kxe1xfvTx5Xq9Gxc8VpDokp1z4Bbkz7uS/FS38kG9+9+IrVU/4oHEmNX9aNWs3LFt5/67JTHNspHDaCqxRn2pqeOLraCt46O26xZeUZDHoDvgGuzFrXG09fJ5QFalbPPsINkefStH0Io2a1xUxuyvmjj1m/6DharR4fP2fmrOmJl68T1y+8YuW8P1GrtLh7OTBvdQ+K+TmzZ8s1dv52VXjtqhRn5pIuqFQaJgz7nbB3SZiYSBk3rTWNmpdl68bLHBR9euo3CmLSzDZcOPeCdWvPYdAbKVPWi/mLOnHrZihr1woHtLJlvZk7rwOHjzxk735h9NywQRDDhjZg0bKTPH0ujMMmjG6Gk5M1Y6buRanU4uvjyNxpbfll+1XuPxEiJMYMbogBmL1CcCuuHlKcLm0qMX3pUXLyVHi62TF5aBOWbb5IfLIwtpoxvBlbDt8mNDoVC3NTpgxqwq5TDwiLScPC3IwJfRqw5dgdEtNysLexYEinmqw7eF1QVv1/7L1lYFR3u/X9G5e4e0KAYMHd3d2tXkqFlgLFpYVCgVJ3oUYp7k5xd3cnhAhxH5f9fvjvDMFaep/7nOd53vtcX2gnO5PMZGbP2utaEhVEh0aV+WLlPqHXqVMBFAo2HBYhfS92aciGo5fIKTR5qhcW7BCse+cGlbmUkklydgH+Rj1taldk6UGxbu1UuxInbqeSW2wmMtCX2FB/dl++hUqpoGudKmw8ewVJ4oFG8NggfzRaFZfSs/DSaqgcGcLh23dRKqFxhVj23xbguVn5WA4lCb1avbgoTqWmIQG1osK5kJGJS5KoHhHK5ewsXJJE1bAQruRky43goVzKzkJCompICFfysgHktVQOCgXE+vuTVJiPXqXGS68h01xCkMFIsdOGzeUkxve+zqYU3GiUSry0WnKtsv3bbsHNfXCjUijw0WnlVGID+XIqcYhetIMLHY4Dl+T2gBuNUolaKWF3OwjUGil0mNEoFKhVEla382/PG6Xzbwc4wcHBBAf/a2FpZ84I1FwWvJSd+Ph4wsPD2bFjB3XqiLWF3W5n3759zJs37x//vG/n76HEZKNKpXD696pHWno+v5UyNcPbEhTozdY/z3P2rGB4xowWguFFiw57nFQvyRkuS+U1VHCIj6cp/MDeq5w8dhuNVsVbstjYVGLlZzm875mXWhAqu5B2bDrLjSv3MHrpPMJigD/m78VUYqVC5XA69Li/qlm14CCF+Sai4oIeWEGl3M5mm7zjHyb/zNLZtf409+7m4RfoRc+HSjMvnkzi4skk1BrVY9mbDb+LUL4ajcp7ygLLzpVTd7h9OR2dXkMnOXb+4SkuMHvyRNoP+OtMm9NysFfD9n/P3gCk3BQfgHFPyJ35qyldjRRkF+F0OFFr/r1vi64vtyGuWjQfPPM1d6+mM67THFr2bYgzSOQ5/E+sqPIyC7h05AYXD1/n9K6L3L2W/sDXgyL8adGnIS37NqRqwwr/GCQ+PFaTjQ0/7WbV19soyisBoFzVKF6a3o+GHWv8LWjKSs1l/nsrOSgHbPqH+PDqzIG06d/wsd9rs9hZ9Mlm1ny/E7dbwi/Imzc/HEyLx/SRnd5/lc/eWUxuRiFKlZLBIzsyZFSnB5jO1NtZfPT2H9w4L0IGuz7blOHv9kYvrzPtNie/ztvE+gXifJFQI5rJXz9HhMweZqblM/ftRVyTv3/Aq615Qa5VMJVY+Xzqag7JAKZ1t1qMmtkXvVFLSlI2s8Ys4e6tLNRqFW9M7kbXAQ1xOl18M2cjm5YLvUnTNlUZ+0FfDEYtv327k2XymqluowpMntsfrVbN7MmrOCDXJvQc2IDXxnTi+pV7vD9pBfl5Jvz8jUz/cADxFcN4b6KoXQB47uUWDH2+OfN/2M0aWcfTvkN1Ro3tzIIFB1gl11SUOqU+++J+YeZzzzSlQ4fqjJmwjJS0PIxGLTOm9OJeZiFT3l+Nyy1Rp2Yso95oz8xPhQ1cr9MwbWw3zl1OZcVGce7q2bEmdWrEMunDtdgdLqolRPDSoKa89+VmCootRIT4MmZYWz79bRcZOcUE+hl558W2fLV0P5m5xQT5efHmkOZ8sWQfhSVWokP9GNipLp8s2YPD6aJWxUgSK4bzw3o5i6tFdZKzCjhzQ9Q2vNS1AYt3nabEaqdCRCCV48IeqF7Yc+kW2YUmwv29qVUx0tMr1bNBNXZdvEmJ1U7F8CCMRi1HbtxFo1LSoWYCG86I81qrqvEcu5OKxe6gcngwJU47yVkFBBgNRAb6cupuOhqVkjpxkRy6LQBN0zLgpn5cFCdS08TfPDqSU+ni/VwzSvRKASSGh3IxOwsJqB5W+t+CuSkFNxUDA7mel4taqSDMx5vkogK8tVrUagW5VjOhRi9y7RacbhexvvdXUVE+vqSYCtEqVeg0KgrsFkIM9x1SETK40SiV6DVKihwWgvRe5Mn28BC9gTy7CS+1BpvbgRs3wTK40aqUKBVuHJLLA260SgVKpRun5CJY/6jW7knzf0yDc+TIEY4ePUqbNm3w8/PjxIkTjBkzhp49exIbe/8DtEqVKsydO5c+ffqgUCgYPXo0c+bMISEhgYSEBObMmYPRaGTo0KH//Hc4cRud3siEUWId9OlX20SCce04unSsQX6+iR/ni6u3F55rTmSEP3eSslmxXFzljBzZAS8vHakpuSyXr3xGjOyA0ajDYrbzw1fCxjjomaZEyQ6pRb8ekIXFgfQd3AgAU4mNX2XQ8+zwVvgHij/g3aRsNss6nVfHdPYEh+VmF7NGFiO+POrBFdTCb8UJvnHrKiSWybZx2J0skUXHA4e3wvCQJXqFHCbWoW/9R9gbc4nVk8Da7wmN4FuXiN+nZY86TxQEH9l2HpfTTbkqkcT9xVrC5XJzUbZ8P0lf8fBkpeQCwoXzTyckOhCjjx5zsZXUG5mUqxb1j+/j7yaxcQLfH/2A32et4c8Fe9m/5jipDmGfvXD8CrfOJ1O+Ruy/pZPKXGzhzuU0ki6mcPnYDS4dvcE9OfOldJRKBVUaVqB++5rUa1+dSnXj/8ugBkQq9Obf9rHii60U5oh06KiKYTwzvget+jV8Ym9U6ditDlZ/t51ln2/BZhFZOD1eacNzE3s+MYTx3MFrfDV+CelJ4qTdum8DXp814BGtjdVs45fZ69kkh2pGxYcw7svnqFImpbu0AfzH99dis9jx8Tcy6qPBNOt8P6spLSmbuW8v4tYl8QHTd1hLXhzf1VNEe3TXJT6duIKSQgvefgbGfTSIRjKTmnQ9g9lvLyItORe1RsWrE7vRfahI6D648xKfTVuN2WQjMMSHaZ8NoVrtOHKzi5kzfrlHb/PsG20YMrwVFpOd6WOWcvyg3E31bFOGjWxPTnYxE99YyO0bmajVSt6c0JWufeqxffM5vpRT1MtXDGXGR4Nwu9yMevU3ku/koNWqGTe1Bw0aV2DalJWcPC6ErS8Oa0mffvX5YNZ6jsrvyxdfakGXLrWYOGUF167dQ61WMu6dLoRHBDBizCKKiiyEhvgwe3o/duy9zPJS3V376vTpUZdxM1aSnVtCoL+RmZN6sWLTKfYdEaF2rz3bHJVGxftfbBLrngYVad+yClM+3YDN7qRK+TCe69uQ97/dSonZRmxEAK/0b8rcX3dSYrYRFxHA0G71+XDBLmx2J9XKh9GyfkU+XbpHMDV1K2AwaFm8Q4Dn5zrV59ClO9xKz8VLr+XZTvX49c/j2J0uapWPxM9Hz+bjV+TqhbqsO36JYouN8uGBRIb48eeZ6ygU0L9JDdaduIzd6aJGbDgWl4Nzyffw0mloVCmOzfKKqmPNBHZdvYXT5aZWbDiphUXklJgJ8/XGx6jjYnomRq2GyhEhHEtORamA+nHRHE66iwQ0KBfFiRTB3NSPieRkWjoSEnWiIjiTcQ8JqBkRxvmsTCSgRngoF7IEuKksr6UUCijnH8DN/Dy0KhUBXnpSS4rw0+lwKdwU2GxEePuQYRE6mzg/f+6WFAASkd4+pJmKMKrVKJQKih02woxeZFkFuClNJdapVKhVYHLaCNZ7ebJvgvQG8uxmfDRaTC4bpdk2BQ4TBpUKF06cktsDbnQqJeDEJbnx1+rJLyz4y3NI2fk/BnB0Oh3Lly/n/fffx2azERcXx/Dhw5kwYcIDx127du0BCn/ChAlYLBZGjBjhCfrbvn37P87AKZ1nBzWmQnwIW7df4PTZZGH3frsTCoWC73/cTVGxlQrlQ+nfr4FsU9+G0+mmadMEmjWvJIL6Pt8mqhcalqeFHOK1aMEBsrOKCY/0Z/Bzwgp953YWa1eIFc2IMZ09wuIlv+yjIM9EdFwQPcuE9P30xXbcLjdNWlWhtqzTAVj8wx5sVgdVasbQtG1Vz+03r6RzYPtFIS58KL9mx7rTZKUXEBDsQ9dBjR74WtLVe5zYdxWlUkH/4Y+Kg7evPIGp2Ep0+RAatHlUN1NSaOaA3GHT5S+Ewwc2CoauZRkm6nFz+2IqpiILRh89FWo8ucKh7HgATvSj+Sd/NwqFgnJVo7h8/BZJl1P/WwAOgH+IL6O+epHuw9uyeO561m1IATsk30hhRNP3iKwQRtUGFYiIDyWyQigR8WFElAtBa3hI0CtJFOYWk5dRSF5GAXkZBeTcy+fu1XTuXE71pAk/8hgTo0lsnEDtVtWo3braY11H/+qYi61s+mUPq7/d7gE2EeVCeGZiD9r0b/SX60jxkCSObj3H/OkruScDlRpNEnjjwyGUf0LFQ0mhmV9mruXPxWIFFBTux1vzhtD4McGRF4/f4rMxi7knPzfdX2jOsKm9HogGKMwr4cuJyzmyTQhTazVNYOznzzwgtt+97hTfvLtGbhE3MvbjwTSUwYvD7mTBp1tZI7MplWrGMOXLZzyvyV3rT/P1jHXYrA5CIvyY8vlQqtSKxeV08dtXO1gl58rUqFeOyZ8MJjDYh8tn7/LBuGXkZQuNzsQ5A2jUqjJ3k7J5f+wyUpNz0OrUjJkmwvsunE5m1sQVFBaY8Q/04t15A6laI5ofv9rBavkipVmrykx4rzfXr6Z7xMRBwT68/+EAfHwNvD3id+4m56LXa5gwpQeVK0cwatQikm5no9WqmTipOzExgbz19h9kZRfh62tg5oy+ZGYXMXbyMhwOF5UTwpk+uSff/7qP/YcFABv2XHMqVwpn9LTlmC124mKCmDamK1/8vJuL19LRqFVMeqsTl27cY/VWca7o16UOUZEBvPelqLxpXLscbZtVZvrXIuOmZuVIuraqzsz528T/V4qkTcMEPvxtp7Bh1yxHbGSgJ8Cvd6vqZOQXs/eoWBm90qMxaw9eIjO/+JF04ubVy1Fic7Dvwm00ahVDWtdmyYGzAsCUC0ejUXHgchIalYpejaqx6uhFUYZZKZaU/ALS8ooI9DJQNSaUXZdEhk/HWpXYdvG6SHQuH83lzGyKrTbKBfnjQuJGVi5+Bj1Rgb6cTk1Ho1RSIyqM48mpKBRQL/Y+uKlXBtzUjo7gzD0BbmqUATeJYQLcgESlkCCu5eWgViiI9PUlqSAfo0aNQachw1RCkMGAyW3H6nDKAX1CZ1MW3IR5eZNuLsZbo8WJC6tTBPtlyKnFIpW4BINaDQo3FpeDEIO3h9kJ0OkokPukip1WBLjRU+AwYVSrcUgOJNwEyOBGAB47EhJ+Wj3FTgte6ie7LB+e/2MAp27duhw9evRvjyttIC4dhULBjBkzmDFjxn/5d4iJDuTZQY2F3fsnuWn72WZERwZw+vQddu6SRcRjOqNWq/jzz/NcuJCCXq/hrZEdUCgU7N19mdOn7qDRqhg5WgCjlORc1sidNG+O7oROp0GSJL7/fDtul0TTlpWp31joD9Lu5rJumTj29TGd0MhszJnjtzl+8DoqlZJXRt0HK6l3cvhTXkG9MqbjA1f8f8j6mladaxBfJn3YYXey7Afx+Aa92spDs5fOivmCvWnepeYDmTgg2JT1C8SJt8/LLR97lb93w2lsVgdxlcIfuBouO8X5Js4clAvjZHfYk+a8fEKs3rji317xl06mXLfwrzA4AOWqRXP5+C1uX0ihTf9Gf/8N/4WpUCOW95aMpOaaWPr024POV41WpSH9Vibpcqv5f3WCIvwpVy2aSnXjSWxaiaoNKuDt/+8DNKVTUmhm/fxdrPt+J8X5JkAAm0HvdKX94CZPte67cyWNH6et4Iy8lgwM82P4+/1p3e/x6yiAQ1vO8t3k+1bxbi+04KWpvfF6SFdmtzpY+PFm1szfgyRJhEQGMObTodRp8SAzeGr/VT57Zwl5WUWoNSpenNidPq+08rzezSVWvpu+ll3ye69Go/JM+PwZD9uZmZrH3NFLuHZOrBB6v9icl2VWx2Z18MOcjfy5UrAY9ZonMP6jQfgFeFGQW8LcCcs5J7MlfZ9vxsujO6FSK9m4/Bg/fLQFl9P9gN7m8J4rfDx9LWaTjeAwX2Z8OoSKVSLYuOoE33/ypyf3ZvrHgzB66Xh33DJOHhV5Ks+81ILnXmnF1o1n+PpTcWzlqpHMmDuA9PR8Jr+xgKJCC8EhPsyaMwCH08WINxdQkG8mMNCLWbP6U1Bk5u0xi7FY7MTEBDJ7Zn927r3MgkUCRLRoWonXh7dm5rxNXLl+D41axcQxXTDb7EyatUasqWrE8vqLLT02cG8vHdPf6c667Wc5eEL8rm8815K8IjNfLBDnp57tahAZ7s/sH4TWsXWDilRNiGDuL8L52ap+BWIjA/liidAsdmteFZvbzVKZqXmxewOOXr7LlWThxHqtVxN+23qCIrON2FB/mtQo50kn7tKwCjfSc7iRnoO3Xkvv5tVZuPc0bkmiaZVYckwWzqdkYNCq6Vinsqd6oU318pxNuUdeiYWoQF/CA3w4eD0ZlVJB2+oV+VPulWpeOY4TyWlYHU6qRASTZ7aSWVxCqI8X3kYdlzKEFic+OJDTqfdQq5QkRoZyMjUNhUJobk6VgpuocM7K4CYxIpQLWeIcUiU0mEvZWaiUCuICAriel4tOpSLIaORuUSG+Oh0KFeRYzIR5eZFvt2Bzu4jz8ye5uACQiJXBjUqhINBgJNNSgp9Wj9ltx+F2Eunl60ktDvUSLI63RoNdcuB0uwg1iOwbJeCj1cqpxMYy7eB6ChxmvDVarG4BeAK0BoocZrzUauySYHh8NTpKnGa81VpMlv+Hgv7+T86Usd3QatR8+vM2wdTEhzCwbwPsdidffC3WS7161qVqlUiKiy38JAOB555vTliYHxaznR/l6oUhzzQlMipAAJmvtuN0umnUtCKN5eC9Iweuc+ZkEhqtitfKAJafv96J0+mmQdOKNJCPdbvd/PyF+Pk9BjQgugzoWPDNTtwuEepXvQyYuHYhhWNy+vCzZTQ8ALvWnyH7XiGBIT50Gfig9iUzLZ/9W4Sgd8Dw1o88Ryf2XiEjJQ8ffyNt+zzqQgHYKe/pOw1+chnmiT2XxXqqcgTRj2l0LjtXTwlbZGLDp8+zKZE/XP/VuoVqjSqyZcE+jm8/z7D3+/9L9/FPJyxCdCTp/TWsuPANZ/ZcIuX6PdKTski/lcm9pCxy0vIfAfkgrO2BEf4EhvkTGO5HULg/URXDiU+MJq5qNL7/htqJv5rcjALW/7CTTb/uw1wsBMpRFcMYMrbbUzE2AEV5JfwxbwObF+zH7XKj0arp80Z7Bo/uitHn8UnU2Wl5fD91BUf+FK/ZqAqhjP70Wao3fvS1cu1MMp++s4iUG+KE32FgI16b0fcBEGSz2vlt7ibWywL5mIqhTPjqeSpWv88aXTt3l3mjF3MvOVe0iI/swOC32nvA95Gdl/hs4gpKiix4+xp4Z95AmsiVK2l3cpgzZgm3r95DoVAwdERbhrzRFpVKyeWzycwZu4ycrCL0Bi3vzOpLy041sFkdfDFzPTs3CBajRcdE3nm/Dzq9ht+/28WSX8TvWrNeOaZ+OACjt/6B8L7WHasz5t2eZGUUMPHtRaSl5KHTqRk3rSfNWlfh28+3sUGuTmjTIZGxk7uzc/tFvvpcOKAqV4lg5pwBnD2bzMcfiZVWhQqhzPqgP/sPXuPH+XtwuyXq1I5jyqQefPfTbnbtFeB0UL+GdGiXyJhJy8nMLsLXR8/Mqb05fPIWy9eJn9mpTSKd2iYyduZqikusRIT5MfXtzny9YC9Xb2Wi1aiYOKITB07eYvdRAQheHdSM7MISvl8mLrYGdK6DpIDvlot1Y//2tTHZbCzcJM5Fz3atx5W7WZy4ItrN3+jblLUHLpCaXYift57nOjXghw1HsDlcVI8PJybcn2V7z4r7blmT/ZeSyMgvJsjHQJu6CSzcI0BSh9oJXE7PIjW3EH8vPQ0rxbJOrl7oWrcye68mYbIJ/Y1areRkUhp6tYpGlePYfkms4NpWq8C+G0k43W5qxURwJy+fAouV6ABfJCXcyskjwGggxNvIxXuZGNRq4kMDOZuegVqpoHJYCGfTM1AqoEpEKGczxH8nhAZzKUsAmnKBAVzNyUGrUhLm682tgjy8NFqMWjXpJcUEGQxYJSclNjuRPj5kWopxShLl/Py5I4ObGD8/UkoK0CiVeOu0ZFtNBOoNFDosskNKgBsFEkFGUaDpq9VhdltxS24PuBHt4Co5ldhIgQxuAnU6Ch1mfDU6zG7hqvLX6ClyWPDWaLDJgMdHo8PksuCjvg+Cnnb+owFOudggzpy7y7adFwVT83Yn1GoVfyw6RGpqHoGBXrz8khAM//rLPgoKzMTFBXsybxYvOkR2djHhEf4MGiKEtccO3+TE0Vuo1Upef1sEEjocLubLDqV+gxsTESkC8i6cTubw3qsoVQqGj7ofXrjnzwvcvCYEx0PL5Mlcu5jKwR2XRO7F2w+G8P0ha3jada/9QB6Oy+lihRw53//llmh1D9J76xYcwO1yU6dpgidNtexsli3uHQc0eIT5AUi9lcm1M8koVUpaP8aGWzrHdggRXuNONZ54TOlcPyscA5Ue6sd60kiShMUkkqr/SUVD2WncpRZqjYrkq+kkX00nrso/Fyv/0ylrEzd462na49Hnz+V04XK6Hrldo9P8W/Q6/3RSb2aw+pvt7Fx6GIdduBniqkQyZFx3WvSu/1SMm8PuZNOve1n8ySZK5B6wZt3r8MqM/kSUe3xwoMvlZuOve1n44UYsJhsqtZL+b3Zg6Jiuj1jF7VYHf3y6hTU/7sbtlggI9WXUR4Np9JBg/eaFFD4a9QcpN4U+qfvzzRk2tafnde52u1k1fy8LPxNJ4aGR/oz//Bmqy+tiu024pDbIkQyVa8Uy+YuhnpXUgW0X+HzqaiwmG36BXkz4aBB1myV4Khd+lu83Jj6Ed78YSmz5UDJS85k1dim35Lycl0d3pN/zzTCVWJk+egnHD4kPyd5DGjN8VEcKC8xMeP13rlwQkQovv9We/s824ejBG8ybsRaz2U5ouB8zPhxAaLgfk8cs4axsZ3/x1dYMGtqEH7/fxVpZ69e6bVXGTujGkiVHWCJn1zRtmsCEid2Y//NeNm8RQtuuXWrxwvPNeO+DtVy6ki7s2W91ICTEl5Hjl2C22ImODGDm1F78uvQwB46K33vYM82JCPdjwgdrcDhdVKsUwZsvtGLW11u4l1WEn4+BaSO78Pu6Y5y/lo5apWTCq+3Ze/Imh06LzJs3Brfg4u0M9p0UeqDXBjTl9NVUjl8S2TEjBjZny9Er3EjJwajX8Ea/Zvyy+Rj5xRaigv3o0rSaJ8CvafU4UCrYcvwqSoWC5zrUY92RixSYrMSE+JEYH8GKgwJM926SyN7Lt8mX2Zny4UFsOysAWO+G1dh09hoOl4uaseEUWKzcyMrF16AjMTaMvVcFQ9c+sQI75HTiRuVjOJeWgcXhICE0iHybhewiM+E+3mg1Kq5ni6LMUD9vLmVmYVCriQny52JmFlqVknLBAVzKzEKjUhIb6M/VnBx0KhXhvj7czMvDqNHga9Rxt6gQP50OhVJBttlMqJc3hQ4LVpeTWD8/7pYUIAHl/AK4UyyawqN9fUktKUSvUqFVq8i3WQgxGMmxmZCQiPT25Z65CKUC/PUG8mxmAnR6ipxmOdtGgBuNUoFWpcDstBGk9/K0g/vrNBQ5hWW8xCXAjZ9GrKB8NTosMuDx0Wgxuyz4qsVtCiS8/4EJ5D8a4NjtTj77WtCdPbrWJrFqFGnp+SySBbNvvNYOby89167dY6OsH3l7VEfUahWpKbmsktdQI0a2R6fTYLc7+V4WFvcd1IjoGHGiW7/qBOmpeQQEejH4+WaAsIXP/1Ic26V3XeLKixO73eZggQxWBr3YHL8yOonf5BC+dt1rEZ9wfwV1+exdTh66gVKlZMhrrR94jPv/vMC9u3n4Bng9wt4UF5r5c4WgZPu90pKHJz05h5P7rqFQKOj6BG3NLvlKsH6rKp4enofHYXdyorSNucNfA5yCnGKy5HVTwlMG9tnMdg/LYfwXAY63n5F6bRM5tu08B9afJK5Kz3/pfv7JlLWJPynLSaVWPRUb8t85kiRx6ehN1n6/g8Obznie62oNKzBgVBcada75VAJlSZI4tPkMv76/hvQkASrKVYvi9Q8GUbvlo9qu0rl5IYWvxi3mhrz+qdagPG9/PPSxIPTKqSQ+H7uElJuCtWnTpz6vz+yHb5n3kcvpYuUPu1n02VZcTjeBob6M+WQI9Vvf17PlZBTy6bhlnD0sPphbdK3JyNn98ZGFzqlJ2Xw4ejG3Lgv3St9hLXnxnc5otGphD/9kqyeVOLFeOSZ9OpjgMD/hoHpvLQdlwN+qcw1GzeiD0UvHiYPXmTd5FSVFFhHqN28QtRuV586tLGaOW0ba3Vy0OjWjpvakfbdaXLmQyswJol7B20fP5Nn9qNe4Ast+P8SC+UJQW712LO/O7k9BgYk3X/mVjPQCDAYtk6b3okbtWKZOWsGpk4IxfXFYS/r2b8CHczdyUBYuDx7cmAEDGzF95lrOnr2LQgGvv9aWevXiGTl2CRmZhXh765g5rQ/JKblMmrEat1uido0Y3nmrA7O/2MrVGxliTfV2JzKyi5n1hejZa9U4ge4dajDhw7WUmGxEh/sz7rUOfPzLLlLu5eNt1DH5jY78seE4V25notWoGfdyW9bvvcjFm2L1Nea51qzdc57rd7PRa9W8PbQlC7acICO3mEBfIy92b8A3aw5itTupHBNCrcrR/LRJSCO6Nq5CcnYBF+9koNOoeLZ9PRbtPo3V4aRqbCgBvka2nLoq0omb12L9yctY7A4SIoLxMerYfyUJtUpJ9/pVWHfqstAIVYzhVk4eWUUmQn29iQr25fBNAbxaVon3gJvmCXEcSUoRQX1RYSQXFFAkl2ZaXU7u5hcS4m1Er9NwQ24ED/AycC07B6NWQ6ivF9dycjBoNIT4enEzLw8vrRZfg447hQX46XWoNUrulRQTbDBidTspsdoEW2Mtwel2Uc5fABoJiPcPIKkoH4UCUbNgKsJLo0FSSBQ5bIQbvcmQw/oivHy4Zy4SBZpaNQV2C8EGg8chVQpu9EoVCqUbq8tBsOygEgWaakqcVgK0BorldnAftY4SpwU/rQ6zDHi81CK92E8jblMiYVArsVjvR1r83fxHA5zV606RkppHQIAXw19qhSRJfP3NDhwOF3XrxNG2TVXcbomvvhS9Ju3aVaN27TiRb/PVDpxONw0bV6BJU7FaWrvyOOmp+QQGefOM3PRdWGBm8a+CUn7p9bYYZffSvh0XuX45HYNRy3NlVkMbV54gK6OQ4FBf+pQBFWeP3ebssdtoNCqefaheYZFcn9ChVx0iy4SxSZLECrn2offzzR5pS9667BhWs534KhHUbV6Jh6fUOVWvZaVHtDml979Hbvtu1+/JZZgXj93CUmIjINSXhFp/LRq+dUHYaqMqhD6ip3jSWM33e8a0hqcXoD08LXo34Ni28+xcepjB73T9t9vFH55SgON2uykpKfmXhfL/XWO3Oti75jjrf9zl6YoCaNSpJgNGdaF6k6dvbL92+g4/vbeSi/KVfECoL89P7kXHoc2eyPqYiiz88dFGNv66D7dbwsvXwMvTetP52WaPACqrxc6iT7aw9qc9HtZm5NyBjzTVpyVl8+k7i7ki90Q171qLkXMHPgCADm49z1dTV1FcYEZn0PDG9D50HNDAA0B3rTvFN9PXYjXb8Q3wYuxHA2kog6N7KXnMfWcJNy4Kh9WAV1rxwqgOqNQqkq5n8MHYpaTdyUGtVvHq+C70GNIYt1vij+92sWT+PiRJonL1aKZ9OpiQcD/2br/IZ+8LYXJouB/vfTKYhKqRbFlzim8/3oLT6SaufAjTPxlMYLA3s6etZv9usS7q3rceb4zuxImjN/nw/fVYLHbCI/2ZOW8gKpWSt17/nbTUPPQGDZOm9KRSlQjGjF7MzZuZaDQq3hnbharVonh79B+kpuVjMGiZNqUnSrWSt95ZhNlsJzLCn9nT+7Lxz/Os3iDOBZ3bV6dvz7qMm7GazGzByrw/sQd/7rvM1t1inTO4V33KxQYzad46nE43NSpH8lz/xrz75SYKi62Eh/jyzstt+ez33dzLLsLfx8DYl9rxw8qDpGYV4uulY/SzrflxzWEycotFxk3fJny96iAlFhux4QF0a16Nz1fsxy1JNE6Mw8/HwPLdZwEY2r4OBy/fITkzH1+jjr4tavDbjhOirLNyDBank4NX7qBRqRjQvAbLD5/H6XZTJz4Sk93Bqdtp6DVq2tWqyFo5nbhNYnlOJKUJ0XCwP1qdhtPJ6ejVKupViGb3NcHitKlSnj3XbwsXVLkoLtzL9KQQZ5lMFFisRPn74sDN3YJCgryMaDUq7uSLRnCjXkNSfj6+eh1GnZbkggL89Ho0aiXpxcUEeRlxSi5yzGbCvbwpsFuxOp3E+flx11SIW3JTPiCA20UC3MT5iY4ptVJBoNHAPXMxfjodVpcDm0vobNJlnU2poFinUqFRKyh2WAkxeJFrFyLiEIMX2bYSjGo1TsmJy+3ygBu1AvQaFWaXjUCd0VOg6a3WYnZZ8dfqMcmAx6hWY3Xb8NPoMbvkgD+VAofkIEDz/4BN/P+GEXUMGt58tS0+3nr2H7jG8RMCRLw9Ugh4t2w5y9Wr9zAatbz2utC2HDl8gxPHxXEjZLFxXm4Ji38T++Bhr7fxAJlFv+zHVGKjfEIYHbqKk63d7uQ3OaRv4PPNCJD1EqYSqyfP4rnXWnvawiVJYqGs9enSrz7hZTqgLp+9y+nDN1GplQx5SENz8sB17lzPwGDU0mPog9k0ToeLjfL6qc+LLR5hD5wOFztl2rrLkMezN1fPJJOZkofBS0ejDomPPQbg9D7RY1S/ddW/vdIvbYWOr/r0TiZVGZu82+X+l+3OzXvU5ad3V5CRnMOOpYfp8vyjrNa/c4xGI2q1GqfTSWFh4f81ACcrJZctv+9n6+/7PY4orV5D24GN6f16e8r9g79N+u0sFsxex/714rWkM2joN6IjA0Z2euI6UZIk9q07yfzpq8nPEsW4LXvV47VZ/QkMfbS9/vyRG3w5fhnpd4T7qm3f+rz+/oPdVG63m81/HOKXORuxWewYffSMmNmPtn3vl3NaTDZ+mLme7XLOS0L1aCZ8MZTo8kIrZS6x8t3M9R6hcc1G5Znw6RCC5Cyrg9sv8vnUVZhLbPj4GXhn7gAay+GeO9af5psPNmCzOggO82Pqp4OpWiuWogIzH01ZxUl59dRtQANem9AVlVLBj5/9yZrFIjyvTqPyTJ7dH4OXjs8/2ODR2zRrU5Vx03tRWGBm9PDfSLqVhUql5M2xnenaqy6LFxxgoazZqV03jnc/6MfVK/eYPWsdphIboWG+zJozAKvNwYg3FpCfb8I/wMjM9/thtTt5c+TvlJTYCA315YOZ/Th/MZVvftyF2y1Rq0YMk8Z24/PvdnBM7oF75YUWVKwQyqipyz1rqvfGdue7hfs4czEFlVLB28PakF9kYe63Iiy1XbPKNG1QkSmfbsDucFGlQhjP92nEzO+3UiwzO68NasbHC3ZRWGIlIsSXYX2b8OnivcImHh5Av/a1+GTpXhxOFzUqRFCjUiTfrRWrw86NqpBXYuHP49dQKRW83LUhqw9dILfI7Anw+00O8GtfJ4GbmbnczszDx6Cjc/3KLD54FoAW1cpxKzOPtLwiArz01KkQxaYz4tzWuXYldl++hc3polpkCMUOO9cysvEz6EiIDObgzWQUCmhZ+X6vVJMKsRy/m4rT7aZGZBi3cvMw2x2UDw4g12qhwGIl0s8Hq8tJelExYT5euBRu0oqKCPYy4lbCvZJiQr28sLqdZJvNRPh4U+CwYnY4iPH15Z6pBKfbLVrAi/IA6QFwE+PrR3JxAVqVCm+dhmyL0NkUOaw4JdcD7eBhRm8yLMUYNRokhRuz0/5AO3iQXqywvDUabC47btyEyPZwjVKBRiVhddkJ0hsplGsY9Cq1XMOgp8RlRgno1Cpsbjv+GgF41AoFajkDx1eto9Bc9PiTzWPmPxrgOJwuGjWoSLvWVbFY7Hz7vdDJDBrYiNiYIIqKLPz8014AXnyxBUFB3thtTr7/RtbTDGxItLxv//XHPVgsdqpUi6S9nJlx9042G9eKN87rozp6rlQ3rTpBZnoBQSE+9C0TuLd2yRGKCs1ExwV5eqgATh+5xeWzd9Hq1Awa9uCH7hLZHdWuRx3CH7JIr5JPbF0GNXoktfjwjovkZBTiH+RNq8e4mo7tvkxBbgkBwT40bFP1ka8D7JfXdo07Vkf3F91Epw+Ik8DDzpXHTelqIabMCu7vpqzV12q24+33r72s9V46Bo3pwvypK/jt/TU07lyLgMd8oP67RqFQ4OfnR25uLoWFhURHP94O/T8xLpeb07svsenXvZzYfh63W6yhQqMD6fFKGzo91wLfwKcXLhdkF7Hk081sXrAPl9ONQqGg3aDGvDClNyGRj5a0ls7d6/f4bvJyzh0SK5KoCqG8OXcwdR6zwjIVW/h1zga2/FHGJj534CNr0Oz0fD4ft5Qz8tqlVtMExnwy5IFIgWvn7vLR6CWkJ+egUCgY+HobnhnV0ZNtc/1CCvPGLCFdFho/M7IDg2SxsN3m4OePtrBxiWA8q9WJY9KngwmJ8MdqsfPd3E1sl0FR3aYVmfjhQPwCvLh+KY0Pxi0jK70AnV7DyGk9ad+jNvm5JcyZvJLzMss06MXmvDCiHXk5Jbz3zgKuXhROmhffaMugF5tz+kQSc6atprjYSkCgF+/O6U/5imHMnLqKQ3K/Vq9+9XltZHvWrj7Jzz8KliuxejQzZvXl+InbfP6ZSGsvXz6UWbP6cfT4Lb75TmRqVasWxXvTerFo2RE2bD4LQOcO1XlmUBMmv7+apOQcdDo1U8Z2I7fAxOQP1goRco0YRrzUmvc/30xKej5Gg5b3Rndl5+Fr7DggWKZn+zTE20fP+1+LtVXz+hVoXr8C7361CafLTY1KkfRoU52ZP27D7nBRNT6Mri2rMffXHeLrFSNoWDOOT5fuBaB13YroDWoWbxfP99AOdTlxPZXrKWKF9VKXBizYcRKzzUFCVDAVo4M9AX59m1fnwJU7ZBaUEOLrRcMqsaw4LPQ3XepU5ujNFPJKzEQG+BAbFsCuS7dQKhR0qVOZLeeu4ZYk6pWPIjmvgGy5eiHY14sTd9LQqJQ0KB/j6ZVqnhDHATmduF5sJOfTM3C43FQND+FOQYFo+A4KINtsothmJybAl0K7lUKrjShfXwqdNorN4r/zbKIRPNbfj3tmUaBZ3j+AO0UFuCQ3FQMDuVkowE28DG5KV1EpJYV4aTSoVArybRa5F8qEG7cH3CiQCJZzbny0Wmxu4ZAKN3p7CjT9dSLbxk8rVk3C/i3AjU6lRKFwYXe7POBGpVCgUSqwuR0E6vQUO82oFArUSrC7HR5wo1UqUSicuHHjoxarqv8nbOL/N4xGrWLMW4Kp+aNUMBzux9DBAnT8+ss+ioosxMeH0Fsuzly54hj30gsICvbmmWeFnubalXS2bRZvkjdGdfR0SP309S7cLokmLStRu145AEqKrSyRWZrnX2uNXmZpCvNNrF4krtaef72tR3chSRJ/yAF93QY0ICj0fuT8tQsp97U3D7E31y6kcP74bVRqJb1l3U/ZWS+HnXUb2tjTmVN2tsvanHZ96z0QJFg6brfbk33TsvuTc20Kcoq5LQeiPRXAkSP5nxTF/7hRa1QoVUrcLjc2s/2JgXBPMz2Ht2Xn0iPcvpjC12MX8e7CEf+tYt6yAOf/xOSk57Nz2RG2/r6fzLv383Nqt6xC92FtaNK19j/SAJmLraz9YServtnmEX43aF+dl6b1oXz1J68nzSVWln62hXU/7cHpcKHVaxg8ujP93mj/iDAe4PiuS3w9aTk59woA6PJMU4ZN7fXAWlOSJHauOsEPM9ZgLrai02t4aXIPerzQ3MPyuZwuln23iyVfC3diSIQ/4z4bQs1GIsbB7Xaz5tcD/P7ZnzgdLkIi/Bn/yWBqNBQN4ml3cpj7zlJuXRFanP7DWvKCHL6ZkpTN7LFLuXMjE6VSwbMj2jF4eCsUCgWbVhznx4+24HC4iIgJ5N1PB1O+cgRXLqTwwYQV5GQVYTBqGfd+H5q3rcaFM8l8MGklBXkmvH31TJrVj/pNKrBqyVF++U4wKpWrRfLe3AE4HS5Gvb6AO7ezBRs9rgttO1Tn04+2sFNOT+7SrRYjRnbg9wUHWCkzVs2bV2Lc+K78/Ot+Nm4SFy8dO1Rn+Cutmf3RJk6fFSzEay+3pnpiFG+NX0JBoZmgQC9mTe3NzgNXWb1JuI26tqsunFKzVlNYZCE02If3xnRl/pJDnLuSikql5J1X2nH1ThYLNwjnU//OtfHzMzD3J6FNbN2gIlUqhjP7Z6E9bFY7nsrxYXzyh3Cztm2QgJ+vgZ/WyyGkbWpyN7uAPeduioyb7o1Zd/gSGXnFBPoY6de6BvO3HMPpdlMvIQq9XsOWE0JcPLhNbdYfv0yxxUZ8aACx4QFsOiVAWL8mNdh8+ioWu4NKEcFodWpPOnH7mglsOisu4FpWKcfplHvyiioAhQoupot28CpRoRy6lQwKGdzcEuCmUblojieneuoWLmVniS6p0GDuFBRgdTqpEBxAWokozYwPDCDdVIzV6SQ+IIDUkiIBaAIDuFOUj0uSBKDJz5MbwYO4WZALSJQLEDobjVKJv0HumNLqcChcFDvsRHh5c0/OsykFN0oF+OsM5JR2TLmEQ0rk3RSjVIC3Vkehw0KgTl/G/m0kz26SV1V2XJKbIL2BQocJjUKFQuHG4XZ6wI1GqUShECyNv0aHyWVGr1LixoGEhI9ai8VlwUutxWz9XwbnqeaZwU2Ijgrk7t1cVq4Wb7K3RrRHr9dw82Ymm+Q3+ci3BfuSk1PMUnmt8+rr7TAYtUiSxI9fy+LfTtWpJttLz5xM4tjhG6hUSoa/ed/xtOL3gxQXWoiND6FDt9qe25cvOIjZZKNi5QhatL/fH3Xq8E2uyr1VA15q8cDvv1RuLm7XvTYRMQ+yN6VhY6271SLkoWTiW5fTuXw6GbVGRdfHrJ/ysos4Ka+VOj0kTC6dK6fukJtZiJevnrp/IRA9L6eTxleNfKpOqXvymuHvrORlR6FQYPTRU1JgprjARNBDLej/ZNQaNWO/e4m3287m8KYzfD9pKW98OOS/DeSUOqn+JxvFLSVWDm06w67lhzm776pHNOztZ6TD0KZ0fan1P2LQQFQzbPxlDyu/2UZRnrDsJ9SO45Xp/ajV4smvD0mS2LP6OL/MWufJtGnYoTpvfDCQ8MfovvKzi/hxxhr2yb1oEXHBjPpoMLWaPaghy80o5KvJKzguFz1WrhPHuM+f8aybQOhxPh67lGtnhb6oZffavDWrr0dInJdVxCcTlnNGXh8161SDUbP7eb6+e+MZvpmxDovZjq+/kbEfDqChXCC7Z8s5vnpffC0gyJuJ8wZSu1EFrGY7X85azx45mqFpm6q8M7MPXj561i8/xvzPtuF0uogpF8x7nwwmplwwa5ce5acvd+ByuYlPCGP6R4PwD/Ji7vS17N0hHl+n7rUZOa4LF8/f5YP31lJcZCEwyJvpc/oTGubHmLf/4NrVeyhVCka81YF2HRJ5//21nJDzd559rhm9+9R/QEw8fFhrmjZNYNT4JaSm5aPXa3h3Yg/MVgdjJi/H7nBRsXwo0yZ057vf9nJMjnd47YWWBAf5MHbmahxOF1UqhvHWS22Y++2fpGYU4GXUMvWtLqzZeY7j5wRoevPZVtxOy2HlqrMADOlaD6vTxfcrBDvXt10t7C4Xv8hgZmCH2qTlFbF6r3geX+nVmL1nb3IjNQeDTsOw7o1YsO0kxXLGTfNa8czfIvfg1alIZkExJy+lodOoGNiqNkv2nxUOqHLhqNRK9l4S7eB9G1dn9dGLON1uasdHUGCxci0lB2+dloYJMWyR04k71Ehg3/Xb8ooqlFyrhYz8YgK9DIT7+3AyOQ21Skm9clEecNM4Poajd4TmsH5cFCflXqkaEWFczs7G6XZTJSyYG3m5ovm7TGlmQlAQNwvycEvSQ43gQVzPyxWN4IGBHnAT4+/HnaJ8dCo1Rp2GLIuJIIOBEqcNu8tJpLevp0AzUgY3GqUSg0ZNvt1CsN5InkNoZkrBjVqpRKdSUeywEqQ3UiCLjAN1BvLtZo/VW5LTiwsdZvRKNS5JpBKXghutUoUbJ27JLYMbiyfgDyS8VVosLiveai126X9t4k89A/uKdOJvv9+Jy+WmceMKNG0ibJzffrMDSYLWbapSS+5e+u2nfVitDhKrR9NWBiGHD1znwrkUtFo1w14X4l+3W/L0TXXvU49ouZ8mN7vYE+r38pvtUKlLqxeK2ChfRb0woq3n6lKSJBb/KK5WuvZvQGAZgJB8K4uje68KOv2htVVmWj4H5Su1fi8/qiPZskycJJp2SCTwMc6nvevP4HZLVK0b98AHQtk5sl0EWzVsl/hYBqh0Lp8QJ73qDf++WNHlcns0F8H/EKRExIVwoyCZ9KSsf6QRedxUqBHLqC+f5/O3FrBh/m5UahWvfjDwvwXk/E8VbjodTs7svcK+Ncc5uPE0VtN9YXb1Jgl0fKYZLfs0eGDd9zRjtzrY8vt+ln+51fO3i64YxnMTe9KiV72/1EPdvJDC91OWc/mE+JCNjA/htZn9afgYp50kSWxfdpSfP1hHSaEFpVJB7+FteG5c1wfiCyRJYveak/wwfQ0lRRbUWhXPju5M/4dY0a1LjzJ/9gZsFgdePnrenNmXNr3u91Yd232ZzyevpDDPhE6v4bVpPek8UAQPWkw2vp+9kR2loX8N4hn/0SBCwv1EqN+8zWyVs6FqNohn4ryBBIX4ip6pd5Zy93Y2SpWSl0d1oN/zzbBZHcybtpo9f4r3VIt21Xhnem+USgXz3l3LHjlZuXWn6oyZ2oO83JIH9DZvjO5I9771WL38OD/LbE6VapFMn9OfrMwiRrz6K3l5Jnx8Dbz3fh+CQ3wY+dZCUuR8nPETulG+fChvj/qDtHQhJp4yqQc6vZoRY/6gpMRGWKgvs97ry4HD11kol2o2b5LAsOebM+OjjSTdzUGnVTN5TBduJ+fwwZdi5dSyUQI9OtVg0rx1FJcI8fCENzrw1cL93E7JQa9TM+m1jmzYe5FTss37rWdaceJKCofOCFv4q/2bceZaKscuJqNUKHitfzP2nLnB5aRMtGoVb/RvxtKdp8nMLyHI18jgDnX5YeNRoceJDyc63J/Fu8XFat/m1Tl+I5WU7AJ8jTq6NqrKwr2nRHJxtXLcKyrmZkouBq2aLnWrsFxeUTWvWo5rGdlkFZkI8TFSISKYXZdvoVBAp5qV2HbphlhRlYvkZm4eBWYrkf6+6LVqLt3LwqjVkBAezNE7KSgU0CAumqN3UpCAhuWiOJ4is9zREZxOFzrEGpFhXMjMEEWZ4aJAUwJRt5CbI/dKhXD1gdJMAW7KBwZwqzAPtVJBqLc3KcWFeGm0KJQK8qwWwry8yLWZcEluon3uF2iGe4umcL1KjUoFxQ4rocb7ScRhXl5kWYvRKVUolGB22QiR2RqQ8NPpKXBY8NVqPW6oQBncGFUa7G6RShyg01HsNKNXqXFIAsj4abSYXGa81BoccsCfl0qD1W3FR6PF5raiBLT/4Dz8Hw1wAA4fucGJk0loNCrefF0wLfv3X+P8eQFaXpWLJ69fu8c2OVzs9TfboVAocDpd/CSLf/sPaUSIvD7at+sSN2Rh8jMv32ddFv28D5vNSWKtGBq3vH/FufSX/dhtTqrVivGE/QGcOXabK+dS0OrU9H+x+QO/92o5XbhJmyrExD+YHbL+j0NiB9604gOJxiCElHvkALEuTyjFLBVRtntCsJ8kSZ44+yYd/9r2fVkWH1ZrUP4vjwMozC3G7ZZQKhX4PQXbU3aiKoRx41wyaTf/PUnAHYc2w+V08eWohaz9bgcqlZJh7/f/t4Oc/06A43K5uXDoGvvWnODQxtOe0kuAiPgQ2g9uStuBjZ+YPfNXY7c6+HPxQVZ8sdWzJgqPC+aZ8d1p+zdBf/nZRSz8cCPblhxGkiT0Rh1DxnSm96ttH7uOSr2dxVcTlnFB7kGqUD2aUR8NfiRGIC9TsDbHdgpWI6FGDO98NpRyle/3nuVlFfHl5JUc3yPWD7WaVGTsx4MJifQHhBvrl3mb2SSLe+OrRDDp86HEyivT21fvMfedpaQmZYvQvxFtGfy60OKkJGUzZ9wykq5noFAoGDy8Fc++IYDVni3n+HLmBqwWO4EhPkz5aCDV65Yj5U4OsyYsJ/lWFkqVkuGjOtBnaBPSU/KYOWEFd2QQM3xUB3oPbsSJo7f4cPpaSmS9zbTZ/UmoEsGHM9ezR2ZzOnSpyejxXdm186KnRqZcfAgz5/QnNTWPN0f8jslkIyTEh5mz+pObV8Kbby/EbLYTFibExOcupvLNDwIsJVaNZOqEHvzw6172ydqoIf0b0qRRRUZNXU5hkYXgQG9mTOjB6i1n2H1IsBrP9GlITHQgkz4UTqlqCREMG9yUWd9uI7fARHCAF+OHd+D7ZQdISsvFqNcwflh7lmw9zfXkLHQaFaOebc3q3ee4mZKDXqtm5JCW/PHnSdJzivDz1jO8V2O+X3+EEouNuLAA2tRL4BtZXNyiZnkcbpcn4+bZ9nXZcOwy+SUWwgN8aFg1liX7zwLQuV5lziSnC9bF20CDhFhWywWanetU5uCNOxRbbMQF++PrpefIzbuoVUraJJZn60XxnLSoHMeJ5HSRaxMWRLHd7gntC/X35mzaPTRKJdXl6gUQLqrjZaoXStOJa0WFcy4jw8PoXCitXggN4VJOtmgEDw3hSq4ANwmBAtwoFBDj58ftwnx0KhU+Bi3ppmL8dXqskhOLw0mUj4+HrSltBC9NIs4oU8NgdjpknY0AN6FGI9nWEgxqDU7JKZKK9cJBpUDCW6uj2GEhQKv32L8DdDqKHCKB2CL3TgXotJQ4LRjVGmzu0qRiDWaX5QGWxqhSY3Pb8NXosLotqBUKFLix82gu2JPmPxrg2O1OvpMt1gP6NSQqKgCbzcGPsnB38ODGhIX5IUkSP8g1CG3bJ1JV7iratO40aSl5+Ad4MegZ0TflcLhY8ONeAPo/0wR/2cmRlpLHnzKt/pIMkAAy0vPZulaOEh/R7oEP0CUye9OlX32CyjAtOZmF7N4kND8DHmJoTMVW/lwlhM19HwJFAPs2n8VishFVLphajR9lVZKupHP7SjpqrYqWZVZoZefujUzS7+Sg0amp1+rJ6wer2eYpJKxWpkvrSZOXKRgAvyCfp65oKJ1SzU7Kv6nqAKDL8y1xO918PXYRq77eRu69Al56ry+hZaz4/9UpBTinTp0iNTX1vyw0NhVZOLP3Mse3n+fEjgseVgVEI3eLXvVp3a8h1RpV/JfAms1iZ+sfB1j51TZyMwoACI4MYOjYbnQc2vQvrfV2m4MNP+9l6RdbMRdbAWjdpz4vv9vnscJju9XByu92svzbHThsTnQGLc+N60rvYa0eAFCSJLFr9Ql+fH8dJYVm1BoVz4zpzIAyrA3A/s1n+ebdNRQXmNFo1bw0viu9Xrqvx7l1OZ157ywh5ZbI6On7cgteeKcLWp0aSZLYsPgIv3y8FYfdSVCoLxM+HkRNWYuze9NZvpq5HqvFjn+gFxPmDqRu04rYbQ6+nbuZLTKjU6tBPJPmDSQgyJsDOy/x2cz1olwzyJsp8wZSo04cR/dfY957ooohINCLqR8OILFWLEt/P8jv8/ciSVC1ehTvzu6P0+Vm9OsLuHUjE5VKyetvd6Bbrzr88O0u1ssXKs1bVmbCpO5s2nSWn2QbfWJiFNNn9GHHzkv89Iu4z5o1Ypg2pSe/LznMxi1nAejUvjrPD23K9LnruX4zE41axbi3O6FQKXjn3RU4nC4qVQhjwshOfPLDDq7cyECtVjL2tfakZxV5nFJtmlSiVZNKTPpEFGZWiA1m+KCmzP1pG/lFFkICvRn1fGu+XLyPrLwSAnwNvDWkJd+vOkh2vokgPy+G92vCN6sOUGSyER3qR5/WNfl85X6cLje1K0YSFxnEb3+K57ln80Sup2Vz5W4Weo2aZzvU44/dp7DanVSKDiE8yId1xwQg7N+sBtvOXafIYiMm2J/YEH/+PCuLsxtWY8u5a9idLqpFhWJxOTmfkoGXVkO9itFsvyRAd9vECuy7LtKJa0SHcTe/ULig/H3QaFRczczGW6slNsifM6n3UCsVJEaFcVJmburGRJQBNxGcy7j3KLgJC+FSdranNPNKbjYKBcT7B3IjPxeNUkmwt5G7xYX4aLWo1ApyLGZCjEby7VYcbhcxvvfZmmgZ3KgUCvz0BrIsQmdT4rThlFxEePmQKWffBBsM5NhMInjPbZeTir3IlZOK9Wo1JqeVIJ2BQmcpm6MTwX1qPSaXAC3+WgFuvNU6LKVJxWo1FpfVA2QUSOiUSuxuu+c2jUKJhFPocVRPNrQ8PP/RAGft2lPcyygkKMibZ+TMmVUrj5OZWUhIiA+DZIbj0IHrnC9dQ73aGgCTycYiuRzv+WEtPbbwretPcy9NZOH0G3KfIVn80z7cLomGzRKoUSahd/lvB3A6XdRuWJ5a9e+DgAun7nDxdDIajYoBLz6ovdmw5ChOp4vEunFUrfXgVezOdaewmGzEVAil3mOybbbJfTildPvDs3fjWQAatq76xFbw0tC+Wk0q/mWw3u3LabhdbgLDfAmN+vsSzJJCkWr7r5RAlhZkXjl+6x9/719Nt5db43K6+W7iEvasOsbBjafo9Wo7Br3TFZ+/6HZyuVxYLBasVutf/nvypACjP//8M7/++ivz589n2LBhT/37ud1ubl9M5dz+K5zYcYGLR27gdNy/wvH2N9K8Zz1a9W1IzWaV/uXQQKvJxpaF+1n59TYPaAqJCmDQqC50HNrskTThsiNJEkf+PMfP76/1aKwSasXy2qwBJD5hdXl6/1W+nbLSY/2u37oqb84ZSHjsg+AyKy2frycv5+ReoRmrWD2adz4bSnyZEMDiAjPfvreGfbIovkJiFOM+GexhdtxuN2t/O8CCT4WQODDUh7HzBnmyoQrySvh86mqOyz+jYavKvDN3AH4BXljNdr778L5LquxKKv1uLrPHLePWNcHoDBneimdeb4Pb7eaHT7eyVnZdVa8Tx5S5A/AP9OK373axTI6bqFYzhmkfDkBv1DJz8koOy46obr3r8saYTlw8n8Ls99ZQVGjB39/Iu7P7ERMXzMSxSzl/Tmg7XhzWkn4DGvLF53+yU2a2unStxWuvteHrb3eyU9Yo9ehWm+efa86seRs5e15ocF4b1pqa1WN4a/wS8vJN+PkamDm1N8fPJLFolVi1t2ySwOC+DZjy4Toys4vx8dYzfUw3Nu6+wN4jgtkodUpN/+p+YWb7ZlV49+st2B1OKpULZXC3esz+aTtmq4O4yECe7VafjxfuxmJzEB8VRK82Nfh48R4cThfVy4dTp0o0X60W59+2dStic7lZd1AwLi90rs/209dJzy3C39tAr2aJ/LLtOG5JokGlaOySm70Xb6NWKunfogarj17E7nSRGBOGUqXk4FWRf9OtfmVPgF+DCtEk5xaQWVRCsLeRcuGB7LuWhEIhwM3OK+K80zA+mvPpmVgcDiqEBFLssJGWV0yQ0YCvUc/ljCwMGjVxwQGe6oUq4aGcTrsHSFSPDONchlhRJYbf75WqHBLMpWwBaMoHBXItLweNQkm4rw+3C/IwqNUY9RrSTcUEGPTYJRfFf9kI7kuqqRCNUoVBqyLPZiZYbvmW5LybTFlE7KfTyQ4pPUWyQyrUYCTXVoJGqUSlBIvL7hERg4SPVoPJacFPY/C4qny1alG5oNFjdgkg46VWyXk3IqlYCWiUSpyS03ObVqHEjdNzfIl0n4n+u/mPBjgrVh8HVLz+ahsMBi05OcUsWSKo6VdfbYNer8HhcPGTzOgMGNyIMDnzYsXiwxQWmImJDaJLj9oAWCx2Fsug55mXW2CQtQF3k7LZLa+3nn+9jefnZ90rYPuGswA8JwOn0ln2swjo69CrLsFh951TFrONLbJep/8LDzI0kiSxaak48fQc+mgvVPKNTK6evYtSpXzs+kmSJPbLNtBW8mN63JRaeP9KXAxw56p4o5Z/Sk2Mwyai/7V68bJMTU3lxo0bJCQk/C2zUbtFFZQqJSk3Msi4m0O4XLrpdDqfCmj83b9eLYu4fOIGeTn5HJ27mSkfjcE/3Bu9rw6bzfrI8U6n86kec9lxu9289tprdOrU6YmP1+Vyk3wljfOHrnH+wDXOH7rmqTsonaiKYTTsWJMGHWpQo2klj9X5X5niAhMbft7D+vm7POLh0JggBo/uQvvBTR67Uio7N87d5acZq7kgi80Dw/x4cUov2g1o+Fh9Tl5mIfNnrvWIiAPDfHltRl9adK/zwOvZ7XazZdFhfp0rqhs0OjXPjulMv1fbPADiTuy9wheTVpKXVYRSpWTQiLYMebO95znJvlfApxOWc04uo2zSPpFRs/vjFyjA65nDN/lk0grysovRaNW8MqELPYY2QaFQkHQ9g7njl3H3drbomXq9DUNfa4NKpeTgzkt8Nn0t5hIbfgFGxs/uT/1mCWRnFjJ70kqunBcAZMALzXhpRDuKi6xMGbmIs7JmrfeghrwyqiNpKbmMf2shqXfz0GhUvDWuC5171GblkqP88oOooqhUJYLpc/pTUGBmxKu/kZ1VhNGoZfK0XlSsFMbYdxZz7VoGSqWCN99sT9PmlZgweQXXrok6iJFvdqBGzRhGjltM+r0CjEYt0yb2wGS2M2riUuwOF/FxwUyf1JOfFx/ggLwqfG5AY6pUCuedGauwWB3ERAYw6a3OfPXbbq7eyhRMzivtuXgrw+OU6tuxFsFB3sz6QTA7zeuWp37NOD6Yvw2XW6JetRia1o5nzq87cEsS9avGkFgpgs/K2MANBg0Lt4kLgwFtanEpOZNLd4Qe58UuDVi69wxFZhvRwX40rBrLgrIZN1m53M7Iw0unpVujKiw7dA5JgiaVY7lXUExSVj5eOg2tqpf3BPi1TizPSTnALzbIDy+jjhNJqWhUSppWivOAm5aVynHo9t1H0omj/H1xSxJJufn4G/QE+Bi4kpWNUaMmKtCfCxmZqFVKKgQHcDEzE7VSQXxwIJeys1ArFcQGBHAtNweNSkmErze38gWg8dPrSZFrGCSVdL8002HB7nIR7etLSsmjjeDhXt6km4swqDUolBJFdhuhRi+yrWIVVQpuNEoFeo1KdkgZyZcdUiF6I7k2E3qVGjfC/h2sN1Ag27/1ahUWlw1/jYFipwxkNOI2X40ek8uCAjColCLvRk4vVisUKHHjklz4arRY3GZ0SjUuyYECCaNKid1tw0f99Gn1/9EAx2ZzULtWHG3bCMHwzz/vxWp1UK1aFG3aits2rDtFWlo+gYFeDJYdRznZRayWxcLD3miLWj6hrlt+nPw8ExFRAXTucd86/cf8faL3pHUVEqrc1wOs+P0gTqeLWvXjqV6G1bl+KY1Th2+iVCkZ+JBzatvaU5QUW4mKC6JR6wcBxrljt0lNysZg1NK2jGCydHbITrFGbaoS8BiNy/XzKWSk5KEzaJ6YfWO3OblwTOhqaj+GISo7SVcE/Vqu6tP1OjnsDgA0WjW//PILr776Km63yFBp3749FStW/EsQklJyD6vVQuXEFbgkJ1arFZfr6fe1/2ickJ38dIdqtVr0ej0Gg+GBf+12O5cvX37gWJfLxc2bN4mOjsbldJGZksvNs8lcO53E9dN3uHEu+QGBMIDRR09i4wTqtUukYYcaRJZ/egfakyYvs5C1P+xk0697PXbviPgQBr7dmfaDmvwtaMpOy+P3uRvYtUqAca1eQ5/X2jLo7U4YvB49QbmcLjb9fpCFn2zGXGxFqVTQ48WWPDe+K14+D2Y4pd7K5MuJy7koO4Cq1Y9nzMeDH3DemYoszJ+90RPaF1MhlLGfDKZyGcZzz4YzfDtjLaZiKzqDhlen9KDLoEYoFAocdicLv9rB6l8PIEkSMRVCmfzpYOIrRyBJEptXHOPHj7ZgtzkJDPFh4ocDqdWwPHabgx8/2sIG+fyQWCeOyfMGEhzmy6mjt5g3dRWFBWa8vPWMe78PTVtX4cqFVD6YtIKcrGL0Bg1jpvWkdcfq7N15ic/mbMRqcRAS5su7s/sTFx/C7PfWsm+3eN2U6m327rnC559uwWF3ERUdyMzZ/SkqtvD6679RkG/Gx1fP9PdEYeeIt34nL8+Er4+e997tjdnq4M0xi7BY7ESE+/HBe33Ztf8qi1cIhqlJwwq8/nIrZn66iZtJ2WjUKsa/1ZG8QjNT561HkqBezVheHNiEGZ9vIiu3GF9vPdNGdmHpltOcungXpULBW8+15HZ6Lj/Kzqj+neqgUiv5/I+9AHRpXhUfbz1fLZPzu5pVRVLCb5vE33Bgu9okZeax59xNlAoFw3o0YvPRq6TlFOLnpWdQu9r8uu2E6LiKCyM8yIfVh4RWsH/zGuy5fJvsQhPBvkYaV41j+SFx0dmxdiVOJ6WRXWQixNeLarFhbJZXVF3qVGbnpZvYnS6qRoZQ4nRwOT0LH52WajFh7L2ehAS0qRzPnhsCnJZNJ04ICSLHbCbfbCHM1xuFSsFtGej4GvVcL1O9cDUnB4NaTaifN9dzczGo1QT7eHErX/RK+Ri0JBcV4qvVoVIpyTCVEGQ0YnbZMdscRPmIlOGHSzNL+6ZUCgUBBiMZlhJ8tTpsbgc2p9OTTlwKfjKtIqlYpZIwOW2ePBuRbSMqGbzUGqxuBxJuD7jRKJWolRI2t50ArZEih5xArBZAxk+rp8RpQaUArRIcksMDbjQKJeDCjRtfjRar24JBqcEh2VEgYVApcEh2vNRaiv836O/pRqGAt95sj0Kh4OrVdHbIzqM33xK3FRdbWCTnxbw4rBUGuerg95/3C7FwzWiathAf8kWFFlbI5XQvDG+FRs6OSbqZyX6ZGi7L0uRmF/HnOnGV+szw+4WaAMvlgL42XWoQHn1fm+ByuVkn99v0ff7RuPrNsjuqXa+6npWZ53udLnbJP69j//qPfT4OyEV6jdolPtFNc+1sMjaLHf9g7wfEm4+bUgYn/imLK0sZHKurhFdfnYTb7QYEs7Rjxw527NjxVPdjfQKDqdPpHgs0/um/Op2Om2dSOL71Avn3ilEp1ChRoVSoiC4fQVxCNBGxYUTHhxMVH05EuVD0XjqUSiVKlQKlSolSqeDm9ds0blXf8zgBlAolaz/Zxx/jd5CZnPPAuql0DN46qjasSK3mlanVogoJteP+bX1Vd66ksfaHXexeddTz9yhXLYrBo7vQome9v/05pmILq77dwZofdmG3CsDatn9DXpjUk9Dox68pLx6/xXdTV5IkZ8kk1Ipl5NyBj4iIHXYnq37YzdKvt+OwOdEbtbw0qQfdH3ovnDpwjS8mrSDnXiEKhYJeLzbnxfFdPcngxYVmvp2+ln1ydlXlWrGM/2QQUbLYOjUpm3njlnFT7pnqOqgRwycKt1ZJkYUvZqzzdEk1aF6JsbP74x/oJVZS45dzS37dD3ypBS+81Q4UChb+sJslP+9HkiQqVo5g2kcDCY8KYP2K48z/fBtOp5vouCDenTeQ6LggfvhyO2tkkFSnfjyTZ/ahpMTG26/+xp2kbFQqJSNGd6RLj9rM/363pyyzcZOKTJrWkz27L/P118JaXr58KDNn9ePsubt88ZUQHceXC2Hm+33Zve8Kvy48gCRBnVqxTHinK9/8uIuDMkszdEAjmjSswOhpy8krMBPgZ+T9iT3YuucyW3aL56B351rUrxXH+DlrsFgdxEUFMmZ4ez75ZSd30/Mx6jVMfL0j63ed59TlFJQKBW8ObcnZG2nsPyXYj5d6NeJmWg5bDgvx98s9G3HudjonrojjX+3TlO0nr3IrLddjA/9920mKzDYig3xpWz+BHzeL81/zGvGYbHZ2nb2JWqlkSJs6rDpyAZPNTrmwAGJC/dl4UvycXg0T2XH+BiabnfjQAAL8jOy9chuVUkHn2pXZfO4qkgT1y0eRlJtPTomZUF9vwgK8OZqUglqpoHHFWA+4aVoxliN3UnBLEjUjw7mZm4vZ7qBckD8FNhv5JgthPl5ICkjOLyDQoEerU5epXtBwp0B0Sek0Gu4WFuKv16NUQ4aphGCjEavLSZHVQoSPNzlWM3a3izg/P5I9pZn3wY1gcQrRKlUYdWpyPI3gVlySy9MIDhIhcpift0aDAydWl5MQOfivVDCcbzfjp9FRLGtqgvV6ChwmdCoVKFw4JJcH3GiUIoHY4XZ6wI1GqUCJC6fk9oAbnVKFS3IgyjU1WN0WjEotdsmGAjd6lQKn5MBLrcXmtqBX/m/Z5lNNh/Y1qJQQLrJs5DVUhw7VqSJ/IC9ZdJjiYivx5UPo1EWkEyffyWG7DASGlxEFr1x8GFOJjfgKobTucL+1+I/5YtXUon01yifcv8JcvegIDoeLxFqx1JRDAAHS7+ZyWO6SeTj35tjeq2Sk5ePjZ6BdGYYIoCC3hCO7xFVd18GNHnmspw/doCC3BL9AL+o/YbV0TP7+5p2f7Iy6JFt6azyFSPXeHZHNEFXh8Vbzh0ddujYoyHzgQ790XnjhBapUqfJE4FGUY+aTNxagUqj5cNU4yleN8Xxdp9P9yxUOj52XBPC6e+0eRzaf4dDmM9w8m0xhso3zybc4z9NpgarqmnLJcgiR7aCgqr4p1w6leL6u0aoplxhN5brxVKpbjkp1yhFTKeIfi7D/aiRJ4tTuS6z5YSen99xnlKo2KM/g0V1p2LHG3/6t7TYHWxYeYOnnf3rcWtUbV2T4jH5Uqv34Vvj87CJ+nbOBnTLL4u1n5KXJPeg0pMkjj+/K6Tt8NXE5d64J8FC/dRXemj2AsDKCb3OJlZ/nbvJ0qIXHBvHORwOpUUbnc/rgdT6fvJKcjEKUKiVD32zHYNnpJEkSf648wY8fbsJmceDjZ2DUrH40k2tILp9N5sOJK8hKL0ClVvLSqI6eC429W8/z1awNmE02fP2NjJ/djwbNK5GXU8y8aas9q6eufevxxrguOJ1u5k5dzT7Z+dSiXTXGTOuJ1WpnwshFXJSzeQY915QXX23D8aM3+bCMIPm92f2IjA58QG/z7PPNGPxMU777biebZb1R69ZVGfNOZxYsPMgaOVW9WbMExozqxNc/7GKPnHfVu3sd+vWuz+QZIplYq1ExflRnUMAYWUxcoVwIk0Z15utf93Lusmgvf+ul1tjsTqZ9skEAgZpxDOhel2mfb6SoxEpokDfjhrXj6yX7uXtPgJ2xL7Vj+fYzXLuThVajYvQzrVi//xJX72Si1ah4a3ALVu+9QFK6ADNv9GvGgj9PkFsoxMYD29b22MATy4VRLiqIP3YKDVTPJolcSL4n1lB6LX2a12DxvjNyjk0kbqXE/suiJLN3o0TWHruE0+2mVlwEJuf9jqkWVeM9AX6tqsVz4k6aAEjB/ijVSs6nZmDQqEmMDuPAzWQkoEWZdOIGcVGcSb0nsmzCQ0iW04njAv0psFopsFqJ8PXG6nZyr7iYUG8vHLi5V1JCiJcXdslFpqmEUG8vTC47JRY7UT6+5FjM2OQW8BS5VypeDvAr7ZW6U1yAQgHh3t6kmYowajQolVBgsxJSZhX1cCN4rs2En1aHyS3C/EIMwh6uUoCXRkORw4K/1uDR4QTp9RQ4hK3bLtmQJMkDbvQqIQp2Sm4PuNEpVUjYcSPJ4MaMXqnBKbM03ho1NrcVL5VOtoRLaJXgkpyy48qCQanGSvFfnovKzn80wBkh59YcPnzDYwt/eZhgUzIzC1knN2UPf62t54S7YP5e3G6Jpi0qkVhDJLPm5ZawTk7+ffG1Np4k41vXMzi05woKBTz7yn2WpqjAzGb5imvIsJYPfHisXXQESZJo0DyBcg+l+a6TGaIu/Rs8kP0BsHPdaVxON5VrxjxiDQfYLWsaWnWr/dhk4vQ7OaTezkalVj62eLN0rsjNw9XKCKIfNw67kzxZjBr2hCv3h8foI1YXenxQKpUPgByVSsUHH3zwt1qc85tSOLbtPGe23qR5u0eB3r9zFAoFcVUiiasSyeCx3SjOL+HysVvcu5NNZkoumXdzyLybS3ZqHnabA7fLjdvlxuV0I0kSBm8ddWOaUs/YEIfaTGxUHAlVKhJZPpTI8qFElAshKDLg3wpmyo6lxMquFUfZ8PMeTweYUqmgafc69H2jA9Ua/H12kdvtZu+aEyyct4nMlFwAYhLCeHFKL5p0rvVYYOR0uNj0+wEWfbYVU5EFhUJBpyFNeHFSd/weqoMwl1hZ+PEWNiwQqyLfQC9en9GX1r3qPnDfpw9c58spK8lKyweg5wvNeWl8Fw8TaTXb+fXjLZ7+tci4IMZ/MoQqtQVLVJhv4st313guEmo3rsDYDwcQHOaHy+Vm2U97WfzDHtwuNxHRgUz6eBCVq0eL3JuPNrJVfj9XrxvHxA8HEBLmx9kTScybuoq83BL0Bi2jpvSgbdea3LmZxaxJK0hNzkWlUvLK2x3oM6QRF87eZfa01eTnmTB66Rj/bk8aN6/EH7/sZ7HMJCfWjObdWf3Izi5mxPBfyc4uxmjUMnFqT6pUjWTC+KVcuiSqHIa90pouXWoy/f21nDkrPnhfeL45HTvUYNK7q7h+UzivRr/ZgZiYQN4ct5jCIguBAV7MmtqLA8dvsXSNOK+1aFyRZ/o35t2PNnAvqwgvo5Z3R3Vl77EbbN0rQFrvjrVIqBDG5E824HS5qVYxnOf6NGTWj9soKrESFuTDyGda8cWSfWTnl+DvY+Dtoa34YfUhMvOK8fcx8MaA5ny/9hB5RWZC/L14tmt9vl0r2sArRAbRtGY8360Xf8OWNctjl1xsOnoZhQKeaVeXrSevklNkJtjXSKvaFVm4RwCf1tXLk5Sbzx1ZY9O+diVWHhHrq+ZVy3EjK5eMAhHMVzU2jO0XhWasU80Edl69hdPlpnp0GFkmE5n5JQR6GYgI8OVEchpqlYL68dEecNMkPoYjcoBf7ehwLmRm4XQ/mE4cH+hPpsWEyW4nxt+PPJuFErudaD9fcq2ieiHGz49MSzE2l4tyfv6kFBfiLFOUWVq9UApuYv1Er5RIKtaRYS7BT6vD6nZgdjgJL7OKelwjeKC8ahKlmQLcaJQKtColJqcoyCxwlNq/tRQ6zPhotB43lL/GQJHDjFGtup9tI4Mbg0qNU8628dNqMbvMGFVa7G6b0NeoVdjcNrxVOqxuK2oFqBRu3LgxqjXY3VaMKjUuycY/ORv+RwMctVqF0+livmzH7te/AaFyls3vv+7HYXdRu04cDRoJK+i1K+kc3HcVhQJeevW+WHjp7wex2ZxUSYyicfP7OTaL5Sbvlu0TKVeGxVi37ChWi52KlSOo37Si5/biQjPbZSDS7/kHBcS3rqZz/kQSSpWSHg/l10iSxJ+yDbVz/0dbvc0lVo7IV4ptez+qzQE8uSDVG5R/You32+3myuk7AFT9G4CTnZ6PJEno9Br8gp6uw6jUkaW065g/fz6vvPKK+H+lkh9//PGpLNT93+zIsW3n2bHsMM9N6vlU6cn/rvEJ8KZR51pPdawkSf+tFRB/NWm3Mtn46162LznksWsbvHR0frY5vV5t99gE4YdHkiSObb/AwnkbSbostFZB4X48O747HQY1fuIq68zBa/zw3mruXheVHAk1YxjxwQCq1C33yLGHt53nu3dXk5shMoLa9WvA8Hd7PQCCTEUWfpqzkW3yBUZ4TCBj5g2kZuP776urZ+/yyfhlpMmMYvdnmjBsQjf08sr51KHrfDZ5FXnZxag1Kl4c04k+LwhmJjujkI8mr+SCDOzbdKvFW9N64uWtJ/lWFnMnLOfOzSwUCgWDXmnJc6+3QaFUsOTnffwhdz7FVQhl2ryBxMaHsHPLOb6aswmbzUlwqC9T5/anao1oUbnwvah2KVc+hPfmDsDXz8DUccs4JWuNevatz+tvd2Dn9guefJuY2EDe/6A/xSVW3nj9N3JzS/Dy0jF1Wi+Cg70ZMXIhGRmF6PUaJk/sjp+/kRGjF5JfYMbPz8DMaX24czeHd6aswOVyU7liGFPGd+f73/ZyRM6werZ/I6pViWT09BVYrA6iwv2Z/HZnflh0gAtX04RQ+YXWZBWUMG++nOrepBL1a8Ux7UvRKVWtQjj9O9Xhg5+3Y7EJp9Qz3erx8R+7MFsdxIYHMKBjbT5Zshubw0Wl2BBa1avI5yuEfrFhtViCA7xZKHdM9W1Zg4t3M7iWko1eo2Zo+7os3nMaq91Jxcgg4iODWClrbHo3TuTA1SRyis2E+nlRs1wk647LjrI6lTlQmnET5I+/r4GD1+6gUipoV6Mif8pAp1H5aC5lZlNstRET6IdareRieiZGrYbKkSEcSRKApnEZcFNPTicGEdp3KTMLlyRRJSyYm/m5OFxuKgYHkVxU4KlbuFtUiMPtpnxQAHcKRfVChYBAbhXI1QtleqVKqxcUCoj09uVucSEGtRqtRkmO1UyQwUiB3SJWUWWSisO9RGlm2TC/hxvBc2wl6FUqULixuuyeRnAFEr46DcVOC/5aPSVymJ+fRqQS+2i0WGXA46vRUeIUGTg2txUFEj4aNRaXxQNkFEgY1Eockt1zm1apALmiwahSY3db8VJpcEpWVADK/83BeerZsvkcqal5+PkZGCwDh6TbWeyQg+xeea2N54PoN7kaoX2nGpQrL/b1OVlFbJG1LS++2tpz7O0bmRzaK8DQM2XYG7PJxvrl4mQ8+OUHW7y3rDqJzeqgQuVwajV8EEBskGn3Fh0SH6leuHTqDml3ctAbtbSUG8vLztFdl7FZHUTFB1OpxuNBwom9AuA8SVwMkJ6UTXGBGa1OQ/m/EQ7npBcAIiPlaT/IS4FVcYGJl19+mQ8++IA7d+6wYsUK+vXr91T3Ub1JApXqlOP6mTv8NmstY758/qm+7396/qfBjdPh5Oi282xdeIBTuy95bo8qH0qPYW3oMKQJXr5/3+ElSRKn911h4YcbuS6zAl6+BgaO7EjPYW08oOHhyUzJ5aeZ6zi0Vax3fQO9eGlSDwGGHmKostPz+f691RyRNXHhsUG8NWcA9R5arR7bdZmvywCgni8058VxXTDI+jOH3cmSb3ayQgYaQWF+jJk7gHqybs5mdfDrp1vZIHfAxZQPYeIng6kgv7YP77rM59PXUFxowWDU8ua0nrTvUUckIa85yQ/ztmCzOggI8mb87H7UbVKR/NwSPnp3DaePiRVlx551eHNCVxQKBV/O2cgWOfOqXuMKTJjZB41GxczJKzm0T4ha23WuwdsTupKSnMukMUvIzChEp1MzemI3WrapytdfbGOLvH5q2rwSE6f0YPfuy3zz9XacTjdxccHMnNWPGzczeWvUH9hsTiIj/Zk1ox/nL6cyY+4GXC43FSuEMmNKL5avPckGOfOmXauqPDuoMe9+uJ7klFy0WjUT3+pEdn4JUz5chyRB3eoxvDykGR98tYV7WUV4G3VMHdmFTXsvcuCkrKfp1wi7y82HPwmw06ZhAlUTIpg1f5twRlWLoWGtcsz9dSduSaJulWhqV4vm48XiQrNZzXKEBfsyf4P4u3RvWo3MghI2H7mCUqHghc712XziimBSfIx0b1KN37afEPedEI2kgm1nrqNSKhjQvCbrTlzGYndQISyIAF8DO87fQKlQ0LNhVTaduYbDJTJubG4XZ5PvodeoaZQQyzYZ3LSuWp5Dt5OxO11UDg8m32LlbkEhQV4Ggv28OJ2SjkappFZ0uCeduEFcFCfk6oU60RGckdOJa0aGcV5OJ64aFsKVnGxPOvG13BzcSFQKDua6XL2QEBjEjXyRTlwxKJCbBQLcxMrVC6W9UmmmIny1OlwKF0V2mxALW4qR5FVUuqc000impQQfjQYHLiwu5wON4IFyI7iXWqQOuyW3B9yoFaDXqDA5rQToDBQ7BZvjoxYFm36ypgYkvDUaYQlXaz1AxksjLOE+ah0WlxUVEhoVOCWHDG7ur7FAwqBSYZdseKs0OCQrGgUoFU5c/1vV8HRjsdhZuFBQv88/3xxvmUH49Wdx1dCyVRWqyCe7C2fvcur4bVQqJc+VqUZYvugwDoeL6rVjqVMmzG6ZbBdv0S6RuPL3k2K3rj1FSZGF6LggmpYBE06Hi42yqLDPc00f+AA0lVjZu1VcjXQf9OjaZacMsFp2rvmIuBjgoAzWWnZ5/MrAbnNwSdYI1Gv55ELM0tC++KoRf+uiKZYzbUrttk8zoVGBKJUiCr8gp5iQkBDu3LmDVvv0wU4KhYKX3+3L5H6fs23xQarUj6fLcy3+/hv/fzpptzL5c9FBdiw7TEG22F0rFArqt0uk1/C21G1T7am1SReO3GDhvI1clAWoOoOWnsNa039E+yc2jVtMNlZ8u4PVP+7GYXOiVCnp/nxznh3b9ZGcJZfTxYYFB1j4yRasZjsqtZL+r7VlyKiOD7TVF+Wb+HHWenbLr/uocsGM/nAg1RveT8u+dTmdTycuJ0kW/LbpWYc33uvl6ZG6eSmNjyau8IT69RjamJfHdUFv0GI12/nx4y2euoWExCgmfzSIyNggTMVWvpq1nn3bBPiq27gC4+f0JyDIm7PHbzNv2mryckvQ6TW8NbEbHXvWIe1uLh9MWsntG5liXT28FUNebklyUjazpqwiLUVYwF8f3ZHufeqxbfM5vvp0Kw67i8ioAKbP6Y+Pr4F33l7E1Svpokl8WCv6DWjId9/uZLMc7dCiZWXGju3C0mVHWbZCnEvq14tn0oTu/LbooCe8r03LKrw6rBVzP93CuYuponfqhZZUqRzB21OXUVRsJTjQm/cn9GTDzvP8uUcA4l4da9GwbjnGz1mD2WInKtyf8a914Ks/9nEzORutRsW4V9px8Mxt9p2QreQ9G1BktvHtMnE+7NG6OlqNim+Xi//v2qwaCo2Cn+WOqb6ta5BRUMLqfeJ890KXBuy/kMTt9Fz0WjUvdK7PH7tOY7LaiQsLoG6laH7fKdaDHepW4lZWLjfv5WLQaujZpBrLD50XIKp8FCU2OydupqJTq+hUt7LHBt64Ygy3c/LJLCohyNtA+Ygg9l4TNRFtq1Vg17VbAtzFRnI9J5diq42oAF+UKgVXM3Pw0WmJDfTnZEo6KqWC6lHhHnBTV65ekJCoHRXBWTnAr3p4KBfl6oXEsFAuZWchqheCuZon90oFBnE9/371ws2CPFRKBWHe3twtLsSoVqPRqD29UsVOGw6X01OUSRlwo1Yq8NHqyLGaHyzNlBvBFXLNQv5jGsHz7Ca0SiUqlWBzRJifGQVgVGkwu6z4a0WHFEgY1WrZEq7D4rKglFkau9uOj1qPRbaEq5RiBeWtKnVNqXEhVlZaVSmro8EhWdAplYCwi+tVT2+o+I8GOOvWniQ/30RkpD/d5EbsSxdTOXLoBkqVgpdk5kWSJH77aS8AnbvXJkJOXc3NLmaLvFJ67uX7WprU5FyPc2rwS/dXTQ6HkzVyBPyA55s9cOV6cOclcrKKCAjypmWnB0W+ezafw2ZxEFs+hOplBMkgtAX75Q6b9o9ZP1nNdk7JAWHNOj1ePHzldLK4Eg3xITYh7LHHAB6XS/lqf59rYyqyADxx3fW40eo1hMYEkZGcQ8qNjH+5xqB2yyo8P7knv89Zz3cTl1JeFun+p4y52MrBTafZueww5+XMIoCAUF86DG5K5+eaExn/dMJvgItHb7L4082cPSBeRxqdmm4vtGTgyI4EhPg+9nvcbje7Vp9gwYcbPQnVtZom8PrMfpR7jKvuyqkkvpm6ktuyc6la/XjenjuQuDJOPUmS2LfpLD/MXEdhrgmlUkGfYS15dnQnjybN6XCx4sc9LPl2Jy6nG98AL956vw8tZJOAy+Vm9a/7+ePrnTgdLgKCfXhnTj/qy033Ny6nMW/iClLv5KBQKOj/YnOeH9kejUbN1fMpzJu8knup+ajUSl58qz39XmiGJMEfP+5h8U/7kCSxkpr64QDiyoeyd/tFvpi9EYvZjl+AkYmz+lKvUQW2bTrL1x9vxW53eizg8RVD+ezDTfwpp5Q3bpbAxHd7cfNGBhPGLqWgwIyPj54p7/WmXHww48Yu4YoMeIYNa03XbrX4YM4GTsjrtMGDGtOndz2mz17HhUsCyLzyQksa1I9n9MRlZGQVYTRomTa+Gxk5xYybvhKXW6JqpQjGjujAZz/u5NL1e6iUCka+3AaL3cHUj4UtvE5iDEP7NGD611vILzQT6Gdkwqsd+Hn1YW4kCyv5mBfasPvkDU5cvOvplDp/M53D58TvN6x3Y87cTOOk7JR6pVdj9py9yfWUbHQaFcN7NmHJrjPkFpkJ9vOiV4tEftp6DJdbom7FKLy9dKwptYG3qMmei7fILjIR5GOgWWI8yw6K57FtjQpcScsmPb+IAC899RJiWH9KgJt2NSpw7FYKxVY7ccH+GA1ajt8uk3FzVbBSzRLiOH4nFbvLRUJYMHkWMzlFZkK8jXjrdVySA/zKhQRyNl08Z9UiQj3gplZUuAfclE0nrhYW4gE3lcuAmwqBgVzPz0WpgMgy1Qu+cvWCr06HQ3JTYLMS7uVFts2E+wm9UjqlCo1aSYHdSrDhfm9UmNGLLFsxaoUCvUYj590YHmkEN6hUuBVOHG4XQXojhXLejVapxOq2E6DVU+Iyi54olUpYwjWCzVEpQKsSlvBScKNTKpEUYgXlpRIMj1HW6CiQ0CjBJTnwUWmwSxb0MqujQEKrVGKRHozJ+Kv5jwY4q1efBFQMe6U1Go1wUfwyX9CknTrXJEZOTT1zMokLZ++i0ap4pkz9wYpFh3HYXSTWjKF2/XKe21f+cQhJgkbNK1GhjOB399YL5GQVERTiQ9uuD2o11smppt0GNkBbhh2RJMlzJdmlf4NHGJjDOy9hMdkIjwkksd6jbpWT+69htzkJjwmkfNXH27rPHhZUbO2mCX+5Orklay3+uwAOQEzFMDKSc0i9mflf6mkaNLoLN84mc3jLWWa9+ANfbJtEcMSjdQD/fxmX08WZ/VfZteIohzefxmYRFu1Stqbzcy1o1LHGX1YpPDwPAxu1RkXHIU0YPLrLY6sVSufSidv8OGMNN84JJ1B4XBCvTOtN0841H3l9FeWb+O3DTfy5VAB/bz8jL03qTuchjR9glrLvFfDte2s8Tr+4SmGMmjuQqmXyo5JvZPDphOXcuChep806VuetmX3xlzVg6ck5fDp5FZfPiNVasw6JjHy/D34BXrjdblYvOMjvX+/E6XQRHOrLuDn9qd2oAi6Xm+W/7Gfhd7twOd2ERvozed5AqtaMISeriI/eXcM5GVR07l2XN8Z1QalU8s28zWyUa1Nq1Ilj8ux+ePno+fSDDWyTLer1G1dg0ozemEpsjH79d25eF4F8z7/SisHPNmXV8mP88pMwNlSoGMqMD/qTlVV0P9/GR8/Uab0IDPRixFu/c09eaU0Y142ICH/eGL2QnJwSvIxapk3sicVq563xS7DZnERF+jNzSm/WbDnDpu1yJkzravTqWptJc9aSnVuCj7eed0d3Zeehq2zbJ5773h1rUbVSBJM+3oDD6SKhXAjDBzVj3s87yCkwEeBr4J2X2vHTmiMkp+dh0GkY/WxrVuw8w82UHHQaFSOHtGT5rrMkZwhn1et9m/H7nyfIKTQR5GtkaMd6/LjxKDaHk4pRQdSuFM3PW8Vqv33dBO4VFHPqwm00ahWDW9dmxaHzWOwOyocHEhsWwPoT4nft1bAauy7eothiIzrIj6hgX3ZcuIFCAd3qVGHrhetCQBwTRoHV6sm4qSpn3AC0qVKePddvIwG1YyK4npODye4gLtAPq9NFUm4+gUYDft56LmdmYVCriQny5/w9EdqXEBbCuYwMFAqoEhbChSzB5FUKDuaynE5cMSiIa3k5qBQKonx9uZWfh06lwt9LT0pxIT46HQqlRLbFTLDRSKHdht3tJNrHjzTz/eqFUnATYhS9Ul5qDW6FG5PTRpjRm+yyvVK2ElGaqULOuzGSby+1hD/UCC5JnqRirVIFuLG7HZ5GcLVCgVIpiWwbuRFcq1SgULhwSW55LWXGoFJ7WsKNKnHf3ioNdkkUaaqUkmB11GrsMqvj5j7wcePEW/XX4aJl5z8a4NhsDhITo2kl9ymdPJHE+XMpaLQqnpPrESRJ4vefRS5Nt151PYWa+XklbC7NsSmjpcnJKmKnfPIaVAYMSZLEatnB0Wdo4wdAzLWLqVw9n4JGo6LbgIYP/I43L6dz6+o9NFr1I9ZwgN0bRXFmu551HrtqOCpHsTftWP2J4OW8nOJau4zg+XFTKgx93BX4w1MaDmd4zMrsryaucgQndl3ixrm7HoBTUFDwj+4DhDB57LcvcbfDHFJvZvJOl3nMXjmamIRHHWb/r47L5ebikRsc3HiKgxtPP9A7FVUhjPaDGtNuYGNCo5++O0uSJM4dus6yz7d6EqtLgc3AkZ0esGU/POlJ2fw6dwOH5BgFg7eOoaM60/Pllo8kHrvdbnasPM6vczZSlC8SkjsMaMjLU3p6AEnpcVuXHuWXeZuxlNhQa1QMfrMdA19v61mTupwuVv28j0Vf7cDpcOHtZ2DEe71p3aM2CoUCSZLYsvw4P320GZvFgcFLxxtTe9C+t3BiZWcU8um0VZyVAyybtU9k1PTe+Pobycks4uOpqzgnr3BbdarOyGk98fY1cOzAdT6dsZbCAjMGo5a3p/SgbZeapKXkMWfKKm7K67HBLzXn+VfbkHEvn6nvLOH2zSwBYoa3YvDzzTl66AYffbAeU4kNf38jk9/vQ+WqkcyasZaDMvvasXMN3h7TiU0bz/LjjyLBuEKFUGa835crV9N57/012GxOIsL9mDmjL9dvZTJy3GIcDhexMYHMnNab7bsvs3ilWF01rBfPyNfaMe/rP7lwRQiFX3uhJSHBPoyevhK73UlcdCAT3+zEN7/vvc/kvNSGrPwSZn+/TTwfDSvSokFFpn65CbvDSfmYYF7s05iPFuyiqMRKSIA3bwxqxlfLDpBfZPZ0Sn27+iCFJVbCAn14pnM9j1MqPiKQ1vUS+HrtQVHrUC0WvV7Dyv1y917Lmhy6coe03CJ8jTp6NEnkj72nxRqqQiROJPZcvIVaqaRXo2qsO3EZp8tNYkwoLiSO3kxBo1LSoVYCG2UbeKOKMVzLyiHfZCHcz4cgPyPH5Iybpgnl2H1dvC4alY/hZEoaTrebquEhpBUWUWS1Eenni0vh5nZuPn4GPb4GHdeyczBqNIT7e3M5KwutSkl0gD9XsrPRKJVE+ftxLTcHrUpJmK83N/Jz0avV+Ov13C0SXVJqjRzmZzBgdtux2J0PVC/E+vmTUlq94FNavaDEW6sl22rCX6fH5LThdLsI9/Ih66FeKWHvduJ0uTyN4AokfLQ6Ch1iVWV6qBHcoFTjkAT7UgputEolbgSQKQU3epUKN6I5XIAbC0aVBifCSWVQqrG7bXjLDim1QgEKJyDhrVLhKOOaUgFKpQRIeCmVmNympz6f/UcDHIDhw1t7ToK/yfUIPXvV87ipTh67zeWLqeh0aoY818zzfauXHsVuF86pemV2/+uWHcPpdFO9TiyJtWI8t589kUTyrSz0Bi1dHqpJ2CiLjlt2qk7AQ46jbXLHTdN21fB9SLNQkFvCmSMCnLTpXvuRx+Z2uzkhixcbPTGZ2MH1C0L1n/gXzii7zUm2LByOeqi9/N85NZtVZtV3Ozm99wpBrf5rTdtePgZmrxzNlP5fkHYrk3HdP+LdBW9QvUnC33/z/6Xjcrq4eOQGBzac4tDmMw+AGt9AL1r1aUC7gY2pXDf+HwmZJUni2I4LLP9yG1dPiQ/zpwU2hXklLP1iG5sWHsDldKNUKug4qDHPT+j22BXWzQspfPvuKq6eFkxKucoRvPlBf6o3etCWnnw9g6+mruLyqTsAVK0bx6i5A4grA1KTrt3j80krPKxNw9ZVePuDfgTJlSq5WUV8MW01Jw8IsFazYXnemdOfsCjBQO378zxfz1xPiZxm/PrEbnTuWx+FQsHRvVf5bPpaigrMIgF4Ujc69q6L0+nix8/+9KybK1QOZ8rcAUTHBbNvxyW+mL0Bs8mOr5+BCe/3oUGzBPbvusxnczZiNtvxD/Bi8sw+1Kwdx2/z9yHoKaAAAQAASURBVLBMDu+sVj2aabP6YjLZePO130iVtTkjRnagXYdEPv54C3tlt2P79om8PaoTC/84yEo5oVzobbrxx7IjrN0gLr6aNa7I2yM68Ok32zkmu6IG92tIqxaVGfPeCrJzivH20vHu2O5cuJrGdwvFxVzjevEM7dOQ6Z+JZGJvLx1T3+rCht0XOHRa3M9zvRuiVCs8tQtNa8fTuE48M37Yisvlplr5MLq1SmTubzuxO1wkxIbQrWUiHy3ajdPlpmq5UJrWiuezFXs9TqnQAB9+3SLOh92bVCMpK48j10Rz93Md6rHywHmKLTaignypWzmaP/aKx9m+VgLXM7NJzi4QNvBaCaw6KnRSTavEcScnn7T8IvwMOuqUj/IkFbepVp7Dt+9idTipGBaEQ3JxMS0TL62GxOgw9t0QScXNE+I4KNvA68ZEcPFeFnaXi4ohgWSZzRRarUT4+uCQ3NwtKCTQoEenU3MrLw9fnQ5vo45b+Xl4a7X4GHQkFeTjrdVg1Gu4K9ctKJWl6cQGLG45zM/bm2ybCYfbTayvH3dLBEMT6+fnATfh3j6km4owqNWoVAry7RaCZcDypF4pX60Ok9OGGzeheiO5dpOnNLPEaRU6HVlE7C83gnupNVhdgn0J0OkodgpGxl5qCddoMbnMDwAZb5VGuKbkrJzSIk2HZMdHLRgcjVKJxP06Bodku++aUihQKlwocGNQKnFKNgyqp79o/o8GOHXqxFFHtqceOnCd69fuoTdoGPyMqGSQJImFvwjQ071PPQJl8FFUaGbjGgE8hr7Y3PNBUlJsZbOcnTPw+WZlfxRr5Y6rDj1q410mer4gz8Q+WUPT4yEBsd3mYK98Ndyp96PdUQf+vIDb5SahehRR5R619l4/n0pRvgkvHz3VHmPDBbhxIRWn3YVfkBeRj7mP0slKzUWSJPRGLf7Bf2/7VshZQJL76RXvADWaJKDRqclKyyPYJX7OvwpwAMJigvh08wTeHfwVN84mM77nJ/Qc3oaXpvZB/w/Zpf9TU1Jo5sTOixzbdp6Tuy56SklBrHSadK1Ni571qNOq6j/unXI5XRzcdIblX23z2L21eg2dhjal/4gOT0wfBtEsvuG3/Sz/ZodnJVm/TTWGTe35WJavuMDEgo82s3WxyHoyeOkYOroTvV9u9UA2k93mYNl3u1j5wx6cDhcGLx0vjOtC92ebenRrToeLlfP3suRboaXx9jXw2rSetJNZGUmS2Lv5HN99sIGSQgtanZoXx3Si13NNUSqVmIqtfDtnI7tlR1LlGtGMnzOA6HLBWC12fv5sG5tk63mFKhFMmjeAmHIhpKXkMnfyKm7IerTegxsxbFRHJLfEl3M3sUU+LyTWjmXSrL74B3rxzSdb2VCak1M7lqkz+4ICJoxexPkzYo3Xe0ADXn2zPQf2XeWzT7aIeoZQX6bP7Iu3j563R/5BUmmC8Yh2tGxVhXdnrOasHAg4dHATevWqy/tzN3BOvmB58dlmtGxembFTl5OSli9cUaM74wbenrIMu91JbFQg747txm8rjnDohLhYGtqnARXjQxn3wWpsdiexkYG8M7wdn/++h6SUXLQaFWOHtePIuST2HBfr7UFd66JQKvh0oVjxt2tUiZgIfz76XQSoNq8dT2xUoKdTqk29ingZtfy8STBKPZolkpFfzMYjItPmhc712XZKFGb6GnX0a1mThbtOiXVSXDh+fgbWHxNrqL5Na7D74k3BwPh7kxgXzjp5RdW5TiUO3UimyGIjMsCXiEAf9lwRAuKONRPYfukmbkmidlwEdwsKyS0xE+xtJMzfm2N3UlGrFDSIj/GAm8blYjiWLJxS1SPDuJGbi9XppHxQAFlmE8U2O1F+PphcDtLlAD8nEmlFRQQZDbgVkF4syjedCjeZJhOhRi9MTjsmq41IHx+yrSbsbpcHxLgRAX7JcjpxjK8fKSWFcvWCgQxzMb5aLTbJhcVhJ8x4n60prV74y14pu0msqpTSI6WZvnL7t69Gj8kp7N9+Wo1s/77fCO6r0WB2WfBWa7FL4jajSi1cUxqtHNwHaoUCp+SUwY1FdE3J+hqjSoGzjLBYo1QBTpFmrACXZMeg0mD637LNp5u3R3UEwO2WWPCruHLp278BAXKb9fEjt7h6OR29XsMgGfQArFtxHIvZToWEMBo1u88GbF5zErPJTlz5EBo0vX97Wkouxw+KE0Hvh1KGt609hcPuJCExisoPWbgP775CSbGVkHA/ajUqz8OzT3ZWte72+OyVE3JKad3mlR4b7gd4cm2q1fvrK/50OUMkslzwUzEDpcdI0j8DOHqjluqNKnJm/1UKMgQV+V8BOAD+wT7MWzuWH6YuY/uSw6yfv5sjW87y7MSetBvQ6N9Wc/DvGofdybXTSZw7eI1zB65y6dhNXM77oYd+QSJvp2XPetRqUeVfKtO0mKxsX3qEtT/u9gT0Gbz1dH+xJX1ea/tE8TAIULRz5XEWfbaVnHsFgNBlvfJub+q0eNSF53K52b78GAvmbfKso1r3qsuwqT0JDvd/4NjzR2/y1dTVpCWJFvFG7arx5vt9CYm8f9yty+l8PnkFt2RBcuN21Rg5sy+BMutakFfCN++v55BsM09IjGLcvIHEyllUF04m8fGUVWTdK0CpVDDk1dYMebUNao2K29fu8eGkldy9LX5+3+ea8uLbHdBq1ezecp6vP9yE2WTDx8/A2Om9adKqCil3cpg9ZRVJsktq0ItiJZWZUcCY1xZwo3RV9XwzXhjemovn7zJ7+lry80wYDFremdSNpi0r88O3O1kvM7Z16pVj6nu9uHgxjQkTlmEy2QgM9OK96X1Qa1S88dbvZGcXYzBomTi+KyGhvowY/QfZOSL4b8r47kgSjBi7CIvFQWiIDzOn9GL3oWssXyfXOtQvz7BnmjPri80kp+aJ9OI3OnL3Xj7vf7FZHFMnnr5d6vDul5soLLYSHODFhFc78NOqw1y/k4VapWT08204fOEOh84IZueFng1JzS7gtw1yh1THOmQWFLPoT/HYhnSsy/W0bHafFZ1SL3VryK4zN0m6J/Q6pU6pEosozGycGMev2wVL1bJ6PNklZg5cSkKjUjGgRQ1WHrmA3emiUmQwPkYdO8+L++3RoCqbz963gdslNyeT0tCpVTSvWs6TcdOsUhynU9Ix2x3EBwfgVkhcTM/CS6uhUmQIh5MEiGwcH81RT8ZNJKfT7uGWJKqFh3IjN1dk2QQFcM9UjNnhINbfj1w5wC/K15d8mwWTw0GUrw95Ngtmp4NoX18yTSWCofH3425xAdJDAX6l4EaBRKSvWEXpVSp0GrXIu9EbKXCIvJuyvVJhXqJ6waBSgfLJvVJGlRoHTlxu9yOlmWaX1VOaKVrC1ZhdVnw0Oswu2f6tVmNxWfHVCKu3YGlU2N12z21qhQIFwjXlo1aLygWVBqdkQ4kbnVIh28XVsmtKjRuH+JpCwo1LDgu0/m9Vw9NOcLA4IR7Yd5U7Sdl4eesYOEhk4UiSxOIFsrWxTz0CZBus2WRj/UrxZhtShr1xOFyefJv+zzb1pBkDbFp5AkmSaNgsgegyIWput5s/5RNaj4ENHwEOuzYIfU37nnUeyQrJyy7mskzxt+j8aPYNiFh6gHqP+dApnetyq3FpouuTJkfOGvkrcWnZ0RmE5sJitj/V8WWnUccanNl/9f9j76/Do7q7tn38nD0+cRciBAgBgktwd7dSd0NKCy20pVDq7t7ebWmBllJKKe7u7u4h7p7J6N6/Pz57JgkESu/3+b738/zeZx1Hj4axJJOZ2WuvdV3nxdUTQvPz72hwri+Ln4nnvniYHqM68Pmz88nLKOKTp+ey6LO1DHukJ91GtLvt3+2/uirLq7h49BpnD13mxO4LnDlwySsS9lRcUhSdBrai48CWNGnf4N+mGxfmlLBizjbWzN9JRamYuvgH+zLisV6MeKzXDdbtmqUoCnvWnmDeB6tIv5QLiNfDA88Poc+YDnX+TKcPXuG7V//i0qkMAOIbRzLpzbG0vG5NWFpUyY/vrmSTOukICvNj0muj6TqoOibCYXfy29ebWfz9NmS3jF+ghYmzR3q1NgC7Npziq9eXUVpUiVYnce/EPtz5RC90ei0Ou5N5X23ir3m7URSFqJhgnn93HM1axyHLMn/9soefP9+A0+kmKNSX6W+OpV2XRlgr7Xz21go2q9q65m3iefGtsYRHBrBpzXG+fG81tiqncEm9MYZ2nRqya9tZPnprpYhuCDDzwisjad+pEb//spt5P25HllWg31t3YDDpvBZwgPse7Mp9D3Rl3tyd/K7myzVvEcMrr4xm7/5LfPnVRpxONzExwbzx2hhOncnkzQ9+E+C/GKG32bLzHPNV4XbrFrFMe3oAn32/mUMqu+iBcZ1o3qweU1/9g4pKO6HBvrzy7BAWrTrMLs8kZ2QHoiIDePGj5bjdMk0aRPDIuE689+NGCj1i4of78NPy/VzJKMSo1/LMfT1Ztes0Z64ISvKkcV3ZcPACZ1NFYvbEsV1ZtusUabnFWIx6Hh/RiXnrD1NSUUV4oC/DuyXz/Zp9uGWFlglRhAT5sHinOJEb3aU5ey5cI7u4HH+zkYHtG7Ng5zEAUhJjKSiv5NDlTEx6Lf1aN2bZ4Ro28MJicksrCLKYSIoJZ9MZdbXfrAHbL17FLSu0qBdBVnk5BRVWwvx8CPQ1exk3LepFsi81AwVIqR/DgXTxem5VL4rj2cId1SwyjPOFBbhkmcTQEK6WFuOUZRJUgJ9LlkkIDhRfq0TiqyXFyCg0DA7msgrwq9ncxPoLOrFO0hBstpBVWYav3oBbI1PqsBGu5kd56MQ5VWIVFWQyk2+rxE+vx644ccluL524Zq6Up1FR1IanxKlawj2hmXoLZS6rsHrrJWxuOwF6AfiTUDBpJeyynQC9kSpZuKbElMbpDc00aCRkVH2NTotdtmHW6nEqdsHCkUQDI5obGyZJjxsHWmT0Ks3YpNWK9ZSkxcr/TnBuu2RZ4RcVgz7mjg74qnEBx46kcvZ0JgaDjnH3VpOD1yw/Qnm5jZi4YLr2rAaPbdtwisL8coJDfeldI8vJVuVg/XLRqIy4bnpz8vA1stOLsPgY6TGgea3rigsqOLxXsCTqEhfv33oWRVFIbF7vBvAfQGW5jQsnxZuwTdebi4cvnxYfqo2Sb00JLi0UL6rbJQN7aLOe+/2T6nNHR35+exm52WIV8386walZ7fsk88PeN1j103b++GItmZdz+dfLf/Cvl/+gaYcGdB/Rju4j2hFW7/biJf5plZdUknY+m9SzmZw/msr5w1dJO599w6QrINSPll0b06prEu36JBNV//9M93TxeBrLftjCjuWHvQGe9RqEM3p8H/qO63RTQB+IxubYrgvMe38V59UDpH+QD3c/M4ChD3TDYLrR1ZCfXcJP765k2zLRwFv8TNz/7CCGP9S91jRRlmU2/nmIOe+torxE/L2H3NOJR14cim8NB96pQ1f5fNafZKiTle6DWzLxlZEEqa/HsuJKvn1nJdtUi3X9xpFMe3ccjZqJVdnlc1l8+NKfpKqN2cAx7Rj/wlAsPkYK88r4+JWlHFHfb516NeHZ10YREOTD+dOZvDvzT7IzipAkDfc90Yt7Hu2Ow+Hmw9eWeQ0FLdvVZ8ZbY/DzN/P1x+tYrjofm7WIYeabYzCZ9Mx+YREH1O/Rf3BLnpk+mFMn03nnzeWUlVbh52fixVkjSGoSxcyX/uCo6vYae0cHHn64O998u5k168TBvmvXRJ6bOpCf5u1ipQpP7NYlkWcm9OOTbzay94A4gN8xsh0D+yXzwhtLyMopxWTUM+OZQeQVlTPjnaXIskLzpGieeqQX73+73ruCmv5kf85cyeHDHzcD0K9LEh1axfHy56twON2qmLgjH87bQmmFjdBAHybd3Y1vFu8mv7gCfx8TT93VjR9W7COvuIJAXzOPj+zE9yv3UlopxMVje7bkm+V7cbrcJMWGkdwwih/XipVVn9aNyC+vZIsnMLNPG5bsPUmFzUFsaABN4yP4Y49Y7Q9q05hDV0QaeIivmZYNoll5RGiV+rdsxJ6LaVTYHcQGB+Dna2Lv5TS0koYeTRLYcl5MnTo1iOV4Vg5Wh5P4kECcisyFvAL8TUbqBflzJEMwblrGRHEgPeMGxk2repEczxEnZMkq4wYEwO9cYYHXBn6+6NYAPw+dWNJAhK8f6RWCTmzUa8lXgzLLXTacbjdRapaUWEWJ5sYTvVDsqCLYaKLUZUVBqZErpcFHr7tJrlQlZp0Ot+LEqcjXhWYqOGSnN3pBpxGX1ZUI7laqE8FrZk1ZtBIO2S4iGhRPHIMbUPDRakVzo9XjVhzoUNBq3Cgq98atOLBotbgVGwbN7Z/c/T/f4OzaIaY3Fh8jY2rEHPw2bzcAg4e39k5vnE63N+F33H3VeoCaDqlRd3X0JokDbFl7gsoKG9GxwbTrVFtE6REQ9xzU4oYDzPZ1J5DdMkktYoipQxuzb4s4O+ncN7nO3+vkgSvIbpno+BDCbzKZsFbYyLom3nANmt3aGeVtcG4zdsHTCJUW3H4wmqf8Ai30Gt2B3+amisf4L2xwAEwWI3dMHsCQh3qwYeFudq44zJn9lzl78ApnD17h+9mLCY8NIaFpPeo3q0dCs3rEJUUTEOyL2deEycdQp2PN7ZaxWx0U55VSkF1CQVYxRTkl5GcVk3Yhm7Tz2RTl1v27hMcEk9QugeadEmnVLYn4JtH/x7Rjt8vNnrXHWfbDVs4cqA7/bJbSkDsm9aPjgBZ/C/k7ffAK895fxUkV7meyGBj9RG/GTuiDj9+NCAC7zcFfP2xj0VebsFc5RM7UXR156IWhNzTH1y7k8NXsJZxSHUoJTaJ4+q2xNK2hF7NW2Jj78TpvhlRQmB9PvTaarjVOCPZuPsOXry2luKACSdIw7ome3DupLwaDDrdbZvHPO/n16824XG4Cg32Y8tpoOqui+12bTvP5G8spL63CaNLz5PTBDLmjPYqi8Me8Xcz9ejNut0x4ZAAvvjWW5m3iuXQ+m3dm/klmmmh67n+iJ3c/0p2crBJmT/+dS+fFgW7cfZ15ZEJvLpzL5q1X/iI/twyDQcfT0wbRb1ALFszfza/zhVuocVIkr7w+hsKiCiaM/5mCgnJMJj3PvzCUJk2jmfb8Qs5fEFbjxx7pSd++ycx6bSlnzgkOzqMPdqdr50Seq6G3mf70QIwmHU+/9DtVNieR4QG89vww/lxzlI07RAMwtF8LenZO5Pl3/qK8wkZIkA8vPTWIX1cc5MhpMd19/K4uWG0O3lFjGHq0b0i7FvG89t06MdlJiGBUnxa8P3czNoeL+lHB3NG/NR8t3Ibd4SIhOpjBXZvxyeLtuN0yTePDad04hq89mVKtGiCjsESd1NzVqzW7zlwlo6AUP7OREV2S+XX7ETHVqR+J3qBj/bELSBoNozsls/rIeaocThLCgwj0N7Pl9GUkjYbBbZJYd+ICLlnYwEvtdk6rAuIW8VHe5qZHUgK7LqXiVhSa1wsnvbSMkiobEf6+GHVazubkq4ybII5kZiFpoHl05A3NzQ2Mm/AwzhTkC4BfuGh0ABqHhHChqDbAT6OBmABBJzZIWvxMRrIqywkwGHFq3JQ6bIJbY6tAQakF84uwCGqxRacDSbkheiFUjV4wSlq06qoqpIYOp65cqSCDWQ3N1CLjvC40UwRpuhWZQIPhpongZsmAU00EN6vgPk8iuEGS0NQQFgvxsAGXYkOv0SDh8nJvajY3Jo2Ejf/l4NxWybLCr/NFIzNmbHv81A/ss6czOXY4Fa1W4s57q7U3WzecoiC/nJBQP/rWmNIcO3iVq5fyMJn1DBlTLQZWFIWV6jpr+LgOtQ4mleU2dqkwwIF1APo2q+LHvnW4o2xWh9c91blP3e6o4+oBqXXnm09vPJTXkMiAv21cSgpFo3K7uVKeg1lRftnf3LLuGjOhL4vnrwCgIL/w33qMvyuLn4lRT/Zl1JN9KcwuYdeqI+xcfpjT+y+Rl15IXnoh+1U+SM3SaDSYfYyYfIy43TJOmxOH3emdjPxdhdULIi4pmsRWcSS1TSCpbQLBETdO4f7dKsotZf3CPaz7ZTd5mUUAaHUSPUa2Y+TjvUlqU/9vH+PSyXTmfbCaQ2q6uM6gZej93bjr6f516nMURWHb8iP8/N5Kr9uuWbsEJrw+hsSWsbVuW1Vp57cvN7L0px24XTJGs54Hnh3IyOumO/s2n+Hr15Z616MDx3XgsReHemnEpcWVfPf2SrapU5TYhuFMe+cOktTvl5VWyEez/uSMKsTt0qcpz7w6msBgHyorbHz3/ho2qmvgRk2jefHdO4hNCKMgr4wPX/nLmwDevW8zprw8Al8/E8t+38+PX4gVUWi4PzPeGkOLNvFs23Saz95dhdUq3FPPzx5JSpdG/Pn7fuZ8uwW3W6ZebDCz3xxLcKgvL72wiKOqO2zo8NZMmtyfVauP8a/vxG1jY4N57fWx5OeXMWHiz5SV2/D3MzFr5kj0Bi0TnplHcYkVX18js18cjs3uukFvs2PfJRYsESdk7VrFMenR3rz31XouXMlFK2l46pFeuGWFF98Vk5xmiVE8eV833v1uA9n5ZVhMel4Y35/1u86y55h4Lh4c2ZEqh5NPVDFxn5RE6tcL4d2fNwHQsXkczRpF8cECIS7umBxHXHQwX/8lpuR92iWiaOC3zeJ5H9erFSdSszmXnodep+X+fm29TqnoYD/aN43zOqV6t2hAamEJV9JzMBl0DG3XhL/2n0ZWFNokRFNqt3HkahYmnZZezRt608C7NI7jbE4+RZVVhPv7Eh7ow94raUgSdEusz/aL4ndLSYjheFaOEA2HBlFqs5NbXEGIjxlfs5Ezuflexs3x7By0kobGKuMGxOTG09w0rdHceKY4oAL8igTAr54K8DNotQRZBO/GV29Ao9VQYLMSZrFQ6qzC6a6dJRWtNjeeFPA8WwX+BiM22YHL7SbC4uPl3QSbLBSqlnCn4sQuuwkx+VDstYTrKHdVEWAweS3hIjSzCh+dDoc3INNEheqacnmDNEVzY5EMXoeUj5oI7gnS9CSCuxSnNxG8GtwnGh+X4sCiNeBUbBg1EnihfhpknDWaGy3g+N+wzdutA/svc+VyHhaLgTE1+DOL1LPFvgObE66ufxRFYYmaBzXqOhjfctVt0X9Ya/xqjNXPncrgyoUcjEY9/a9bM+3YeAqH3UVcg7AbxMXZ6UVcPC3YFNdTjQGO77+M0+EiPDqQ+JuQhz36nOYdbhQneypDxdTXryN9/PryaEI86cx/V5EqJLGsqJKy4kr8g24/sgEgrnEUfUZ1Zs+cxRQXFVNZVvWPoYH/pEKiAhn5RB9GPtGH8uJKrp7JIPVsJlfPZJJ6NpOMS7lUllqRZQVFUbBW2LBW2Op8LJOPkZDIQEKjAgmJCiQ0Koh6DcOJbxJNbOOoOicf/6clyzLHd11g9byd7Ft/3CtK9g/2ZehD3Rn6UHdCrhP01lWXT2ew4JO17FXjPSStxIC7OnHv1IE31SidOXSV799cxnl1pRIaFcijLw2/IfFbURR2rjnO92+v9OZHde6fzIRXRhFer/qxi/LK+O6tFexURfSRscE889ZY2tQQ7u/ecIqv3lhOSaGY2ox9tAf3T+6LwahHlmVWLTrAnE/XYa9yYvExMmHGMPqPbINGo+H00Wt8OGsJOZnFaDQa7ny0O/dP7I1er2P3lrN8+lb1RGfi9MEMGtWW0hIrrz73O/tVXVunHklMmz0Co0nPZ++t9hLNm7eK5aU3xmA06XnlxT/Yt1vNM+rbjKkvDuXKpVxmPraIwsIKTCY9U6cNpku3RD74YDXb1Dy4Xr2a8uxzg1i67DBz5+9EUSCpcSSvzB7Fzt0X+G6OCv5rEM5rM0ewduMpL9+mdctYpj89kM+/38yBo6kA3DWqPR3bN+C51xZTUlZFgL+ZV6YOYcOus6zbJhrYwb2S6dSuAS9+sJwqu5PoiACee6QPXyzYzrWsIgx6HdMf6cPG/Rc4cEr8nR8ZlUJ6bilzPDELfVpSZrMzZ6X4Wcb0aklOSTl/bDkGwH3923L0chanVT3OI0NSWLr7JPmllQT6mhnZpRnzNx3GJcu0qB+Jv5+JZfvESeCYzslsO3uVwnIroX4W2jeK8drAezdvyImMbArKrYT4mmkaG8HaE+Lv1L9FI3ZcTMXmdNEwPBgXMiczczHrdbSMi2L7RfEcdU2MZ/eVa2IKEx3B5cIirA4ncUEBWGUXqcUlBJlN+NZg3ETUYNzEBQdxOj8PraQhPiiIswX56CQNsUGBnC8qQK+RiPT343JxEQatlkCLibTyUnwNBnQ6DbnWCoJNZirdTmwOF9G+fuRUlYlpjV8AmdfRiQ2ShEmvo9heRbDJRKmzCgWFSIsPefYKNIB/jeiFSpe4PkSF+ekkDUatBqvbfkOuVLnLin+NaY6f3kCFy6rmU9lrhWb6aA3YvYngYgXlozVi/9tEcBmjSiz2NDcmjeRtfPQSKLixaCXcig2zpENRBC/HpXHd9PPr+vqPNTjbtm2jd+/edV534MABOnS4MRUb4OGHH2bevHm1LuvYsSP79u37xz/DH6oIb+To9virB89rqQXsVuFad97XxXvbowevcvWyOqUZWT1xyckqYb/K2BgxrvbPvFqlmPYYkFyr8QHYvPIYAP1qCCQ9tVN1f7Ts0KDOyYqH6dG+e1KdawxblcNLHW52XbRDzcpQnSq3sod7yuUS0wmd/vb6Z4uvicj4EHKuFZJ6NouWXf45e+bJ2Xfy1pzncMlOvnxxATO+ffwfP8a/U35BPrTsmkTLrrXF2YqiYK9yYC23UVVho6pSgOcMRj0Gs17836jHaDH8XwvTLMguYfPifaz/bS/Zqfney5ulNGTog93oNqxtnRqZ60s0NuvYu140FZKkodeodtz37GCib8I9yr5WwNz3V7FDnTaaLAbufKofox/v5Y1O8FT65Ty+fW0pR9UDfmRcCBNfGUlKn2be28iyzPrFB5nz/moqy21IWomxj/Xg3sn9vI9XXFDOt2+vZKeKVohrGM5z795BUgsxtcnLLuHTV/7iqAqvbJXSgOfeHENEdBBOp4tfv93K4p93IssK4dGBvPD2WJq3rY+tysFX7y1nnQrvTGwazYy3xxITH8rRA1f44NWlFBVUoDdoeWLKAEaM68C1q/m8Pfsvrl0RNNp7HurGA4/15Py5LN55dSm5OaXoDVomPjOAISPaCCrxj9uQ3Qpx8SG8+sYY4XSaOJf09CK0WokJE/vQr19z3nlvJfvUwM5hQ1vz2CM9+OzrjWzdIaYS/fsk88QjPXj/s3Uc8jQyYzrQr08znn/9T7JySjEadLwweSDlVjvT31iC2y2T2CCc6eP78emcLZy9JKYQkx7sSUWVg9mfrQKgfYs4RvVvyWvfrKG80k5YsC9TH+jFt3/uJj2nBJNRx9T7erFs+0nOXhVi4onjurLl8EVOXclBq5UYP6oz6w+e51KmIBc/PrwTi7efILe4ggAfE/f0a8PP6w9ic7pIiAyidaN6zN0kVva9WzUiq7SMnWdS0Wu13NGtBUv2n8TudNMoMoQQfwtrj4nPwGEdmrDp5CWqnC4ahAfjYzaw83wqkgQDWjRm3ekLIkcqPprUkhIKVQFxeIAv+66mI0nQqUGc1waeUj+Gw2mZIvU7Moy00lIqHQ7qBfhjc7sE48ZixmDQckVl3PhbjFwsKsSi1xPkY+ZycREWvZ4Ai5ErJcX46PX4GAykl5XibzQiaSHXKgB+VbKTEruTSB9f8myVuBXBu0lXG5p6fv5kVpai0UCI2VKLTlzutBFuqRYOR6jNjU6SMGolyq6LXgg2WSh2WNWUcBd22U2w0ayKiMFcR66Uj05c5smVqhWaqRU2cS0KBp0Gpzc0s3YiuNmbCC7iGKqFxbIqNrZhlrTI6nUC6iemO27FjkXSISs2VePjREO1o/Tv6j/W4HTp0oXs7Oxal82ePZtNmzbRvn37W9530KBB/Pzzz95//5Mwxpp16WIuvr5+jL2zujFZrPJquvZIIr7GgX+Jqr0ZeN2UZvWSQ8iyQpuUBsTVOBCUlVrZvlE0KsPG1m58sjOKOHXkGhqNht51WLx3bhAf3t2vEx6DOMgeUtH5HXo0rvP3unAiHbdLJiQigPAa9trry2P9rouhc325HJ4G5/ZfMglNosm5VsjVf7PBiYyuzkvauGQPnQa0otfouhvf/xul0WgwWYxiivVfuFL6p+V0uNi/4SQbFu7h8NYzyCpryOJnou8dHRn8YDcSmv59nAaIVdTCz9ezRxWvajQaeo5sy71TBxHbqO7pYFlxJQu/2MCq+btwOd1enc0D04d4rdqeslbYWPjVJpb9vBOX043eoOOuiX0YN6F3LbrxtYs5fDH7Ly/UL7FFDFPeuoOGqjZMURS2rjzGd++spLy0CkkrMe6xHtz7lNDaKIrCxuVH+e79VVgr7BhNeh57diDD7u6IJEmkXsrlw5l/clnVx/Qb3pqJLw7Fx8/E+dOZfDB7CRnXCsVE56GuPDChNxqNhjlfbvJGr8QlhPKSmhm1dsVRvv10PXa7i6BgH154dRRt2ifw58J9/PSvrbjdMtH1gpj91ljCIvx5Zdaf7PeYBvonM/W5wezafYHPPl2HzeYkLMyP2a+MQm/QMfGpuWTnlGIw6Jjy9ACSk+sx5fnfSE0rRKuVeGp8H5Kb1uPpFxaSkyuEwy9MHYRGq2Hyiwux2YXe5vUXhrN0/THWqunx/bo3YWi/Fsx4fxlFJVb8fU3MnDyIVdtOs0MNx7xjUGsiwgOY/cVqZEWheWIUYwe05u05G6mschAZ4sfEu7rz5aLt5BdX4u9jYtJd3fhRFRP7+xh5clRn5qw+QFG5lRB/C/f0b8cPq/dhc7iIjwiie6sGfLtKfM52bBKHTq/lrz3is/KO7i3ZfuYKuSUVBFiM9GvTmN92HRO3TYylyFrFvovpGLQSg9o1YcWRMyIbq340BZVWTqTn4GPQk5IYy9pTognqkZTAgWvpVDldJIQG4ULmVFYuFoOeJtFh7FZt4J0TYtmr2sBbx0ZxMicXlyzTOCyEjPIyKh1OYgL9KHM6KCy3Eubjg1ujkF5WRrDZjEarIaOsjCCzCSTIqign2GTGhUyetZJQHwsVLjtVdhfRfn7k2YQ93MO1qQb4ia+jff3JrCxDL2kxG3TVQZkuG25ZVpsi0dyEqdELZp0ONzJWt8NLJxawPhMlDiu+Oh12xV4jesGKXiMhaaiVKyUypEQj482VQsGo06ihmSIR3BOa6Vbc3tBMkyQoxqguK+cNieBub+PjUuxYJLGC0mkkNCrUzyRphPZGbW4MGgED1CJjlG5PCgD/wQbHYDAQGVm9GnE6naxYsYLJkyf/7dmv0Wisdd+/K7vdjt1eLUwqK6vWhQwb0YbAQLE+KcgvY7M6mr+zBvcmLTWfg3svodHA6DurV1kOu4t16mh6xJ21D7xb1pzAYXfRoHEkSc1rH2y2qJqB1h0bEHbdgTI3q5iLZ7KQJA1d+zbj+spOKyQnoxidXkur68ivnjqnag6atom7NdvmmtC23M4Ex+0WL6qa9ve/q4Sm9di7/iRnj1xl5GM9b/t+ntLr9fj4+FBZWYlLtvPZc78SEhlIi//BJOJ/t2RZ5uyhq2z76yA7VhyhrKjanda8UyMG3N2Z7sPb3ha8UFEUTu2/zKIvN3BYZSVpNBp6jmjLPVMHEneTOAu7zcGKn3ey6OuNVJaJ9VzbHkk8NnPEDflkiqKwdfkR5ry3miKVtpzSuykTXh1FVFw1FdlW5WDh15tZMmc7bpeMyWLgwakDGPFgN6+IPz+7hK9eX8YBlcrdoEkUz741lkbJ4nsW5JbyxRvLOaBOXpu2imP622OpFx8qMqbm72bul5twOlz4B1p4ZvYIuvVLxu1y89uP2/n1+2243TKh4f48/8YYWndIIDO9iPdn/8X502ISOmRMO8Y/OxC3y807s/9iu5qJ1b5jQ55/ZQSSJNVySXlWUtdSC5jw+E/k55WhN2h56un+9BvQnG++3uxNAW/brj4zZ45g996LXgt4VGQAr706mqycUiZMmY/V6iAk2JfXZo0kPbOYydMX4HC6iY4M5PWZI9i446yXb9O+VTyTHu3F+9+s59ylXCRJw4QHemA265n+9hJcLpmGcaE8/WgfPp27havphSIc85HenLyUzVcLBNx0SI9mxMeE8Ma/1gsYXlI9+ndpwttz1mN3ukmoF8LYvi35ZOE20bxEBjG8ezKf/blTZFTFhNK5ZQO+XCr0NylN4ggMMPHLZjGpGdG5GWcz8rmQKcI57+rZisV7TlLlcFI/PIhG9UL5c5/4PB7cNolDVzLJK624ITCzV7MEjqZlU2K1ERHgS2xoAFvOVaeBbzl/BVlRaBETQUZJGUXWKsL8fAj2M3M4PQudJNE6Joq9qQLg16F+PQ6mi797y3qRnM7NwyXLNAoNIa28BLvLRXxQIHlVlVidTur5+1PisFFhdRDl50uJ04bV5qSenz+FNis2l4sYf3+yrOW4Fbfg2lSUoAD1AwJJVQF+nuZG0kCoxYcsa5kqHIYyhxAOe6Y1NenEgSYThfZKYfmW7ciKTLhJiIwlwMdgVF1TRio80QtGE6VOKyZJh1tx4VLk6lwpSYOkEa4pT/SCXtKg1ci4FLe3uTFqhZZGhGbqbwjNNGiFXdxPp8ch104EN2q1uBQHPpJWCIslCXAhIWOQFBRcWCSt2txoUbCjV11XLm6frfbfRoOzYsUKCgoKePjhh//2ttu2bSM8PJzAwEB69uzJ22+/TXj4zdOR3333XV5//fUbLtfrtdxRgx689I+DuFwyLVrH0ax5tS5mmSoU7tS9MdE1yK67tpyhrLSKsAh/OnarPU3ZoGZEDRp1ow7BQy7uU8f0Zr/6Id60dVyd6ylPXk6TVnE3zXnyrKcSm9/a+u0RAF8PW6urjOqKwG5z/s0tq6t976b89tk6Dmw+jcPuvCGP6HYqICCAyspKGneIJeNoGa8+8C1vLXyKZh3qbu7+/6kURSH1XBbb/jrItqWHyMso8l4XHBFAvzs70v/uzsQ0vHkC/PWPd3DLGRZ9tZEzB8XrSNJK9BrZljsn9ye+cd1hrG63zJa/DvLLx2u9AuIGzaJ5dOYI2vVocsPtL53K4NvXl3mnMdHxoTz58gg6XtewH9pxnq9fXUqO+nt17pfMxFdGEhYVCKg5VH8cZM5Ha73rwHsn9WXcYz3QqeG4m1Yc5Tt1paXXa3ngqX6MfVg0RzmZxXzyylJOqEGYHbo35tnXRhEc6kd2RhEfvPIXZ46LM/bu/ZJ5ZuYw/PzNbFh5jG8+WkuV1YGvn4mpLw+ne59mnD2VwbuvLiUnqwStVuKRCb25497OnDqRxjuvLqOwoByDQcekqQMYPLw1SxYf5Ed1mlOvXhCzXx+D2aJnyjO/cumSgAI+8EA37hiXwldfb2S9OvHt1KkhL0wbym+L9/GHGsPQqkUsL00fyq9/7PPawjt3aMDkJ/vy4TcbOHpSnNTcMyaFDm3q86yqt/FXwzK3H7jEyk1iStenSxL9ezRl1icrKK+0C3jfE/2Yu/wApy+JzKmJ93TnYnoB3ywSzcnwnsn4+5n5YJ6wjXdpWZ9GCeF8sECIjTsmx1G/XghfqmLinq0bYjLpmbdO/PwjujQjNb+Y9YeERfu+fu1YffAsBaWVBPmaGdghiV+2H0FRoF3DaNwa2HjiIpJGw5jOzVl1+JxofMKCCA308QZmDm7ThI2nLgrQX1QobhQOpmZi0Ep0qpEG3rlhHEfSs7C5xBTHJrs4l1uAv9FATHAgh9IzkTTQOi6ag+mZKEC72CgOZ4otQ3JUOGfy85AVIRq+VFKES5ZpGBzMtbISnLJM/aBA0ssF4yYhMIhrZSW4FdnLtbmecROvNjcaFKL8hCXcqNVi1uvIq1KzpNx2nC43kRbR0HgAfrm2cvRaCZNOosRhJdBoptQpmpdws4VCewU6SYNekqh02Qg2miirGb3gsuKjM9wQvSB4M07cinJDrpRM3blSFq0Ou2yvEZqpoJUU3IobPzU08/pEcLfi9DY3BkmLokL99JIMaiyDrNgxanTI2DBoNEgasZ7Sa/4HNjhz5sxh4MCBxMbG3vJ2gwcPZty4ccTHx3P16lVmz55Nnz59OHz4MEZj3Qf8l156ieeee87777KyMmJjY+nTL5lQ1e1TWWlnlTqNqemcKi+rYuMaFTR1Z22OzWrV5j14VNtakLPLF3K4fD4HnU5L7+tEwlcv5JB2JR+9QUeXOhxQ+9Uz6k49bzxwAJxQ9/J1kY29318lvDa8Req3y+mmrEhQZYPC/p5tY1GbqaqbCGvrqqQ28YREBFCYW8rRnefp2O/GldvfVUBAAFlZWdwxpQ9bvj/NiT0XeXHs50x+7y4G3tv17x/gf1gpisKV0xnsWnWUXauOkqFyW0AEl3YZ0preYzrQunvSbROYXU4325YfZsm3m0k9Lz6w9UYdA+7qxB0T+noF4XX9LPs3nmbuB6u4pgathkUH8uD0IfQe3f4GsF9xfjnzP1nH+j8OeGM97nmqH6Me7YHBWP1RU5BTyr/eXsEutdEPiwpk4isj6dyvGnmQfiWPz19Zymm1SWrSKpapb40lXl2bXT+1ady8HtPeuoP4huEoisLavw7x/YeiSTGZDYx/fjCDVIfjhhVH+ebDNVRZHVh8jEyeMZQ+g1tSUW7jnZlL2KG6G1u0ieeFN0YTEubHwnm7mPeD0M9ERAUy843RNG4azW/zdvHLTzuQZYXYuBBefnMMoeH+vPryEvZ6BMZ9mvLs9CEcPnyVjz5cQ2WlnYAAMzNnjSQyMoApz/3KlSv5SJKGRx/pQf9+zXn17WXeyIW7xqYwcngbXnt3BWcvZKPRwCP3daND+wSmzl5EXkE5ZpPg2xQUVzL9jT9xywqJCeFMm9CPL+du49R5YSd/8t5uSDotL320AllRSE6M4sHRKbw3ZxOFJZX4+ZiY/mhffl93WMD6JA0T7uzG0QsZrNgpnpd7B7clu6icuauEuWJcn1Zkl5Tzu+qMuqdfW06m5nDyxBW0koYHB3Vg7cFzZBeV4Ws2clev1vyy5RB2p5uGUcEkxobx245jAAxo05izWXmkFZRgNugY3LYJf+47KXQ0DaIptdk5eCUDo05LnxaNWK06pTo0iCG1qJi88kqCLWYaRAWzXU0D75WUwDY1U6plTCRXi4sps9mJ9PfFqNNxJicPs15HQlgwhzPE89SqXiSHM4UNvHW9KI7lCJhf86hwTuXleZ1SZ1WnVOPQUC4U18G4CQ7mUh0Avxh/f66Vl2DQSvibjGRby/FTAX4lDhvhZgv5dpElFe3jT3aVcFCFWSzk2yqx6PTIGleddOJCu4dn48YuO70APw3gZ9DfEL0QaBAiYovWgN3jmlJzpYT7Slzm482VEhybmsTi2qGZgm3jq9VeJyxW0Emg4MJHkrxUYg/UTye50aBg1miQFYegGSs2jJIGjdoAaTUKzv+kBue1116rc1pSsw4ePFhLZ5ORkcH69ev5448//vbx77rrLu/XzZs3p3379sTHx7N69WrGjBlT532MRmOdzc8T4/t4v16z/AjWSjtx9UNJqWGtXrfyGHabkwaNwmnVNt57eerlPE4dTUPSahhUQ3QMsEkVXXbqmXRDQOa2teJDPaV7Y3x8TbWuq7LaOXFATa7tdWODoyiK9/qbracE20asnhregm1TonJttDoJ/6Cb02s9ZVF/Vmvl7TMIJEmiy+BWrJy7g91rjv9bDU5gYKD4vlWVvPbLRD56eh571hzns+cWcPbQVR5/dQy+AX//8/93LpfTzZmDlzm46RS71xyvJRbWGXR06NOM3mNSSOnf3DtJu52yVthYv3AvS3/YRn5WMSCapCH3d2XMk71vaU0/deAKP7+7kjNq8KZvgIW7Jvdj+EPdMJpq/wxOh4vl83ax8MtNXmdZr+FteOylYYTWgFC6XW5W/LKbXz7fQFWlA0krMfLBrjwwZYB3Gul0uPjzp5389s1mXE43JouBh58dyLB7OqHVSiiKwoZlh/n+w7W1pzYPdUWr04pwzTeWc1AV4ie3iWfam2OIjg2mpLiSL95eyW41sLJ5m3ief2M0kdFBnDxyjfdVVo1WK/HA+F7c+WBXigsreGnKAo6pjVbPfmL1VFXl4MUpCziuOsf6D2rB09MGc/VKHhMen0Nebhl6vZaJk/sxaEgrvv9+K0vVnLrmzWN4efYozpzNZMJTc7FaHQQF+TB71ggkrcT4p+dRVFyJxWJgxnND8PE1MfHZXykpteLna+Ll54dRUFzB0zMW4nS5ia0XxCvThrFo5WEv36Z/j6YM7decme8vp7CkEl8fIzMnD2Lz3gts3C2agqG9kmnWOIpZn6/C6RLwvsfu6MzH87ZSWFqJv6+Jqff3Yv7qg1zNFKTip+7uwardpzl3TcQ0TBjdhTUHznI5sxCDTssTIzrx546T5BSV42cxcn//tszdeAir3Um9UH96tGzIj+uFnrFjkzicisyaw+fRaOCOri1Zd+w8ZVV2ogL9aF4/kiX7xVSrb8tGHEvLpqC8kmAfM8lxEaw5LprbPskN2XMljSqHk/jQQIwGHQdTM9FrJVIaxrJVtYF3ahDLoYwsnG43iWEhFFdVkVNc4rWBn87Nw6TTUj80mGNZgjmUHBVRZ3PTPELA/BQUmoSFcq4OgF/D4CBvcxMXGMDVsmJ0koYQiw8ZFWX46PVotRoKbVZCzBbKVEt4ZI24hSgfP7KrytBqNPgbjRTaVVeUbEOWZcLNvl5LeDWd2IDVbacmnVgnaTCorqma0Qv+Bh2V7ir8dEasHteUTofVXYWfzoC9Rq6Uvc5cKac3V8ogCWZO3aGZIGlEIrhZ0uBS7CrUr1qXI2IZhDXcqK6nTJIE2JHQoNUoSMiY/pMrqsmTJ3P33Xff8jb169ev9e+ff/6ZkJAQRowY8Y+/X1RUFPHx8Vy8ePEf39dzVul2ySxTyaN33N3RqzORZYWV6ofSyHG1oxQ82pvO3ZMIqTEBcbvcbFXPTPtfx7BRFIUdqkOq56Ab7d/H9l8R+/eYYGLrcK5kXSukuKACvUFHUqu6J13pl/NQFIXgcL9bsm08mUD+gT5/C3sDvE3EPyUT9xjehpVzd7BjxREenTWCwJDbIyF7KiCgOlHc7GNi1o9PsOjz9fzywSrW/7aHA5tOMfGtO+k2vM3/NefSf0UV5pRwaMtpDm4+w9EdZ7GWV0/GDCY9Hfom021YGzr0a/6PbeV5mUWs/Hkn6xbu8cYxBIX5MeqxXgx5oOstG8ILx9P45eM1HNomDoJGk55Rj/Xkjgl9brifoijs33yGH95e6QVGJjaPYfwrI29Ipj99OJWvX1vqZS81bRPP5NdH06BpdRN+9lgaX7y6lFR1WtS+e2MmvzrKm/ydm1XM568t8xKHr5/abF17gq/fWUVFWRV6g46HJ/dj1P2d0Wol9u04z2dvraC4sAKdTssD43sx7qFuyLLCT19v5o95ArgXHRvMi2+OoUlyPfbuvMDHb6+grLQKk1nPU88NYsDQVhzYe4kP3qq+/Jnpg+k7oAWLf9/ndUnVqxfEy6+NFiuuKb9yXp2c3XlnRx58qBtzftrOXyrluUWLGGbPHMmmbWf4/ic1xiE+lNdnjWLn3ovM+UW4vho1CGf2C8NYtPwQqzeKz5iuKY149L6uvPPFWi6l5gtX1EM90Rt0THtL6G0SYkN49vG+fD5/GxdTRWDn0w/0ID23hA/mCH5Nr5RE2reI49Vv1uJ0uWkYE8K9w9rz6YKtlFXaCQvy5Ykxnfnmr90UlVkJ8jPz2IhOfL9qryAZB/hwd7+2XjFxXHggvdsl8u3qvWL60qgegf5mftsmpjzDOzXlWGo21/JLsBj1jOjUjMV7TuKSZZJjIzAZdWw4LtZQIzo0Y92JC8JxFRaEj8XIjvOpaCUN/VoksuH0RWRFoWVsBLkVlaTmluBvMtIgIphdl4T1u3vjeHZeFs1o65gozucVUOVUbeBuJ6nFJQSbTfhaTJzNE7yb6GB/TuWKKVbD0BBO5eWh0UBSaKhKKlZIDA3xNjcNgoK4WKwybgIDuFxajF4rEWIxk1ZeikWvR6/TkmOtIMhookpxYnW6iPTx9TY0NXk3ERZxuUmrRavVUOpUU8LVIMwws+Dd6DQazLqb04lNWi2Kxo1DdnnpxFoNmHQSVW67mOZ4ohd0kldYXCVXIQEGSVJzpQzY1CmNJ1fKV82Vqg7NrGbb1BmaqYqHzWrjY6gxnTFqxHTHqDqqzJIWBc/3Ew2QQSNj5T8oMg4NDSU09O9Fq55SFIWff/6ZBx98EL3+n2s0CgsLSU9PJyqqbv3A7dSeXRfIyy0jINBC3wHVjceh/ZfJySrB189E7xqOJofDxSZ1bTX4OkjfsUOpFBdW4B9gof11kL0r53PIySzGaNKT0u1GB9SRPaJJa9c1sc6D9VlVPJzYvF4tDk/NylSdUTE3sfZ6yl4lMqKMt0D016yIOKE9ykn7Z9C95JQGJLaKE1EBP27n4ReH/aP712xwQEyF7nl2MM06NODLFxaSeSWPd578kcat4xn5eC+6DW/7b2l9/r+u0sIKTuy5wIndFzi++zzpF3NrXe8f7Eu73k3pPLAV7fs2w+xjuskj3bzOHr7Ksh+3sWvNcWS3GOPWaxDO2PF96Du2wy3t4lfPZfHrJ+u8biqtTmLAnR25b+ogQuqIArl8JpMf3l7JcbXZCArz4+Hpg+k3tn2thrm4oJyfPljDJnWd6xdo4dHnBzPgjmrwZWWFjXmfrmfVwv0oioJ/kA/jXxpK72ECoeDh2vz82XqqrA4MRh0PTOrLmAfF1KaksIIv317JblX4m9gsmmlvjqF+owislXb+9ck6r/07vmE4L7wxhkZNokhLLeCDV/7i4lnRfPQf1ppJ0wchaSW++HANq9Rk8EaNI3npjdFERAXyry83sWTRfu/ls14fja+/iVkvLuKgOl3t3acZU6cP5uiRVKZN+43KSjt+/iZefHEYCQ3CmfbCQs55Ajjv6sRd41L48PN17FLf//16N2P84z359OtN7FaBnYP7t+DecSm8+clqzqvC4cfu7UbDBuE8M3sRFZV2ggIszJ46hM17zrNqs2iAenVuzODeycz6dCWl5TYC/c3MGD+A39ce5uhZEeXy2NhOlFTa+XCugPP1aNeQZo2ieOuHDWKN1TCSvp0a894vm3G5ZRJjQ+nXMakWmbhDs3ivmLhDUiyhwT7MVQMyB6ckkZZfwmY1duGuXq1YfvAMZVY7kYG+pDSJY+EuoSvq3iyBtIISTmXkYtLrGNAm0Zsp1S6hHrkVFZxMz8Fi0NMxMZZ1qlOqa+N4jmVkU2F3UC/IH5NBx9H0bAxaidb1o73NTaf6sRxIy0BWFJpGhnGttIRKh5PYQH+sbhfXVN6N2aTnUqGwfof6+3C+sACjVktkgB/nCgvQayWi/P24WFyIQdIS7uvDlZJijFotARYTaWWCcaPXSaKhMZmwyW5K7DYifXzIt1UiI6s2cNHQRKmMG61GQ4DJRJ6tAj+DAYfiosrtJNxSLTIWdGLRvGg0MlZ33XRiX70em2wHRSFIL+jEBq2EpDY8HjqxXqNBKyk45eroBU8j41Lc1blSkg5ZJRb76sQKypMrJaF42TY3Dc1UXN7mxiQJ7o0ncwoUMcGp0dwIa7gLLW70GhkNMoZ/cB77H9fgbNmyhatXr/LYY4/VeX2TJk149913GT16NBUVFbz22muMHTuWqKgoUlNTmTlzJqGhoYwePfrf/hk8uTFDRrSppRVYqQb/DRjaClONg8Pe7ecpL60iNNyfttfFL2xV4WTd+zW7IcHbQy5u3zWxzuwfz5lpuy5104c9DU7TWwRj3i7bxuYB990GIwUgSg0Jzb72zxocjUbD3U8P4M3Hf2Tl3B11TgJuVZ4V1fVxDa26JfHNllks+mI9i7/ewIVj1/hw8jx+fH0pQx7sxpCHuhMc/p+xcsuyTPqFHM4dSeX80VTOHrpCqhqk6CmNRkPj1vF06JtM+z7JNGoV928FaDpsTnauOsrKeTu9oD2AVl0bM/qJXnTo0+yWE7q0izks/GID21ccRVEUNBoNfUa3496pg+p8DRXmljL/k/Vs/FMEyOoNOkY/2oO7JvXxrjFBTDJXLdjLL59voFKdTg0c14FHpg8hIFi4FhVFYc/G03z79koKVadVv1FtefyFIQSoYMiM1AI+e3Upp9TU++S28Tz7+hhvfMmO9Sf5+t1VlBZb0eok7nmiJ3c/1hOdXsupo9f46NWlZKtAvzH3debhSX3QG3SsWnKI71Wbt1+AmSkvDaN732ZcvpjDu68sJU09URh7TycemdCbvJxSpoyfyyV1ujRqXAeemNSXM6czmfbsAgoLKjAYdEyeMoB+A5rz4w/bWKIKhJs1q8fLs0dyNTWf8RN/przchp+fiRkvDCM0zI+JU38hK7sEvV7L5Al9adYkmikv/E5mdgkGvZYpE/sRERHAUy8upLS8igA/My9PG8q5yznMeOcvFAWSG0cx5fE+fDJnM2cv5iBJGqG30Uq8+MFyZEWhScMIHhvXmQ9/2kxuYTkWk55pj/Rl1c7THFGbnYdGpJBbXM63i0WzMrhbM8xmPZ/9vgOAXu0aERRg4ZulggDft30iaDTMW69OurslczWvmDUHziFpNNzXrw3rD18gt6QCf4uIXfht+zExqYmLwN/XxPKDooEZ2aEZ285cocRqIzzAh+T4SJYfFiu3vi0acfBKBqVVwikVozqlAPomN2TrhSu4ZYVm0eHkV1aSkV9GoMVEveAA9qdmoNFASnwM+64JXVPbuGiOZWXjVhSSwkNJKy3F6nQSE+hPhctOZlkZoT4WkOBaSQkBRiNGg57UkhL8jAbMRh3XykrwNxgw6HRklJfhbzSCh3FjMVPldlJstxPh40u+zYpbcRPjVx2xEOMXQIbKu4nw8SXbWo5Rq0WvlSi2VxFiMlPiFFlSHjqxBoUAo1l1TemxuR3IiuylE0uAbx104gC9iTJXFRadFqfiwK0oNaIXhMi3ZvSCQZKQFRcK1dELNXOlzDfJlVJU7c31oZk6b2imSAQ3S1pkbOjQoFMbF726nrJIEjI29Cq5WIfivY1OAw7+B4D+PDVnzhy6dOlC06Z1Rw6cP3/ee3DTarWcPHmS+fPnU1JSQlRUFL1792bRokX4+f2z1Yenrl7O4/jRa0haDcNHV8cs5GaXcEA9oxpW43KoXk8NGN661kHJbnN69/t9Bt+Y8O05w6zL/p2TWUzmtUIkrUTLlLoFxOdOiAanSaubNzieBqRe/K0bHLtNTHBuBwIHEBUnHi8nrRBZlm9rreWpTgOaE58UxbXz2fz1/VYefH7obd/XM8GpK1HcYNLzwAvDGP5IT9Yu2MXquTsozCllwcdr+P3zdSS1qU+zlIYkd2xIs/YN8A++vZiJf1JlRRWkXcgRWVMXskk9m8WF42l1irHrN4mmVbfGtOzamBadEvH7h3TnmpWTVsiaX3ez/ve9XrG43qij96j2jHqsJwm3EJiDyIFa+MV6dqw85g367D60Nfc9O4j4OsjWNqudJT9u58/vt2FTE+J7DmvNIy8MIaKGsxBEMOY3ry/zrqMSm9dj0qujayXW52WV8O3bK9i3RbxfouNCmPzaKNqoU0+X082Sebv49dstOB0uTGYDj04d4OXalBRV8vW7K9m5QZw0JDSOYPqbY2nYJAqH3cmPn2/mz1/2oCgK4ZEBTH99NK3aJ1BcWMGnb/3pJRK3SWnA9FdHEhzqx1+/72fON5txOt0Eh/gyffYI2qU0YP2a43z96XpsVU78A8xMe2k4HTs34pd5O1ngYeTEhfDya6MxmfW1VlLjxqXw8CPdmf/rHn5fJGCkSUlRvDJrBIePXeOVt5fhdLqJCPfn9ZdHcSW1gEnTFuBwuIiMCOC1GSM4eDyVD7/dgKJAk0aRvPjMQH74bTe71dTvkQNb0b1TI55/5y9Kyqrw8zUx86lBbNxzjk17hE5lSM9kWjWrx8zPVuFwuoiLCmLiPd35bMF2cgpELMPU+3uxbNtJTl8RAMAnxnTh0Pl0DuwVnzsPDmnP6Wu5bD0mTsQeHNSeg+czOHMtF60k8fDg9qw+UC0mvqdPa+ZvPiws5OGBtGgYzfyt4rOzV4sGZBSXsuf8NQw6LSNTmvHXgdO43DJJ9cIwm3Q1MqUas+7kRXFddBhOxc0h1SnVJam+1ynVMSGWE9kiMDMmyB9JJ3EqW1CLm0SGsf9axg028Fb1IjmZk6s2OiGklpZgc7mIDQqgyFZFhc1BlJ8fFS4HuZUVhPv6YHU7ya2sJMzig9XlpKDKSoSvDyUOGzaVcZNbVYFLhfaleRg3NQB+0b7+ZFSWopM0+BtN5FZV4KcX05pKl50IS7W2xtPc6CQJk05LqdMqsqJUV1SoyYcih0gB12nFNMcD8PPQiYWwWKydBJ3YKOjEWr03jsFfr//b6AUNMiatRli8b5Ir5fTmStnRaRS0uL3WcLdirxGa6cmcktFrAFxqc2PHoNFVW8Nxq82NaHLM/+A88D/e4Pz222+3vL5myrLZbGb9+vX/pd9/uTql6dqjCWE1IGXrVx1DUaB1u/rE1HCZ5OeWcVQdRQ8c3rrWYx3eewlrpZ2wiACaXaeRyckoJu1KPpJWIqX7jespj3i4SYuYG8THINZi19S1xvXRDjUrP6cEoBb6vs5Sn9bbla1ExARhshiwWR2kXcylftLtrwQlSeK+ZwfxzoSfWfzNJroPbf23B2BPXb+iqqsCw/y4Z+pgxj01gN2rj7JizjbOHLzi/e/Pr0VIYGxiJDGNIgiLDiKsXhBh0UGERgdh9jGi02vRGXTo9Vq0Oi22KgdVFTYvtbiy3EZhtgjOzM8qpiCzmNyMolo8mpplNBtIbBVHk3YJNGlbn+SURgTehlvtVuV2uTm45QxrF+zh4JYz3vdGaFQgQx7oyuB7u/xt2vu189n89sUGdq6qbmw6D2zBfVMH0rCORHm3y82GPw/y62cbvDybJm3ieXLW8FqhmCDcUXM+WM02ldLtG2DmkWmDGXhnivdEwOV0s2z+bn79ehP2KidancS4x3py94TeGNVm++LpTD57bSmX1QapbZdGPDN7JJFqI7Vjwym+fmcVpcWVSFqJex7vwd1P9ESv13HxbBYfvPIXaWrq+IARbZjw3CB8/Ezs2XaOz95eSWmJFb1ey6OT+zHq7o4UF1Xw8nMLOaQ6FDt1S+S5mcPR67W889pStm0SJyat28bz4isjccsK06b+yqmTYuoxaEgrnnqmPwcOXOHjj4RLys/PxAsvDKNRYgQvzPiDU6fFbUeNbMtDD3bn639tZsNm0Zx1SmnItCkD+emXXaxRIZ8d2zdg6qS+fP79FvYeEp8Nwwa0ZNiAlsx6fwWZOWK68+wTfSmvsvP8238hq86ppx/uxadzt3I5rQCtVmLyAz3Iyi/lne83ANClTQN6pSTy6rdrsTtcxEQE8sTYzny+cIcQF/sYeequ7sxdc5DM/FJMBh0Tx3Zl0ZZjZBaUYjbqeXx4JxZsOkJhmZUAHxP39m/LzxsOUmV3EhsWQLcWCXyvJoN3aBwLWlhxQDyPozs3Z9uZKxRVWAn2NdOlaX3+2Ct+7y5N4kkvKuFcTj5mg47uTRNYdUw0aZ0axXIxv5CCCivBPmYSIoLZWiMwc+elVGRFTHGyy8spKqsi1MdCkI+ZoxnZ6LQSzaLDvTbwtrHRHMkUk9UW0RGczBWBmY3DQrms2sAbBAeRXl6Gw+0mPjCALGs5DrebuIAAsirKcckycYGCXyMrMvGBgVwrv5FxE6s2NxoNhFt8ybKWYdbp0Go1FHmmNY4qZGQv4wYUQsxmL8BPRhZBmSYLJaprKshopshRiUWnxY0Thyx7AX4SYNLqbkInFiJimyzcUL56HTbZ5o1Z0KBgviF6QUGrEfZvn1vkSnlCMw0aDRpvaKbmhtBMD5VYp6lhDa/R3IgGyOOeklVGDli5fVTJf7zB+U9WZYWNzeoHysgaIZlut8x6FcY3eGTtDKkt606gKMJCGnldE7F9o/jA6t7vxrXAwd2qq6N1HL51ZCp5WB0trhNneirtUh5ul4xvgLmWM+X6Ks4XoZjBdQQi1iy9uopzOm5PsKXVaWnSpj7Hdl/g1IHL/6jBAeg2tDWdB7Zg7/qTfPzcAj5bOe2GFV5ddbMVVV2l02vpOao9PUe1J/taAaf3X+L0gcuc3n+Z9Is53v/+qysiNoS4xpHENY4iNjGSxFZxxCdF3baN++8qJ62Q9b/vZeOi/RTWSCNv0yOJ4Q91J6Vv8t9+r0unMvj9y43sWXfC29h0GdSSe6cMqLOx8QiIf/pgNemXRGZZZGwwDz8/hB5DW9XSiDnsLpb+vIPfv92CzaomiN/ZgYefG+xdRwGcPpLKV68tI1Vt1Ju3q8/kV0d589RsVQ5+/XYLf83bhSwr+AWYGf/iUPqqWpziwgq+fmclu9SGo36jcKa9NZbEptG4nG5+/X4rv/24A7dbJijEl6kvj6BTjyQqK+x8/MZyNqiNV0JiBC++MZqERhHs3n6OT99dRVlpFQaDjvFT+jNsdDvOnMrgvdeXkZNdiqTV8PDjvbjzvs7s23ORj95fTXm5DYvFwNRpg+nWI4lvv9nECjW4Mzm5HrNeHsnV1AKenPgzZWVV+FiMPD99MPHxoUyZvoDUtEIkScPjD/ege5fGzHh1CZeu5Amr+P3d6NAugakvLyYnTxCNn5vQD61OyzOzF2F3uIgM8+flqUNYsvYoW9QpzaBezejZqTEvfbyS8kobQQEWZozvz+9rj3DkjFjNPDSqI063m7d/FM1Op5b16dyqPm/8sB6XW6ZhTAij+7bik9+3i0yqUH/uHtCWb5ftVp1QAYzq2YLvVuzF4XLTICqYzi3q881Kkd/XvnEMfj4mftsmnuuhKU05lZHL1dwiTHodo7s05899J3G43CRGhhIa6MPKQ2qyebsm7Dh/lbIqOxEBvtSPCGb9STFF798ikR0Xr3qFxlqdxKFrmegkiU4NY72BmR0TYjialY3d5SYhNAirw8nF/EL8TUbCA3w5npWDTtLQNCqCI5lZN9jAa6aBNw0L5WxhgWoDD+FCsZiONwoK5lJJkeqUCuZyHTbw6xk3GZWlGCQtPkY9uVUVBBiMVMlOqpwuIix+5NmqXVMegJ+/6oryNxipdNmRkb10YhGUaaTUacVfb8Qqe4TFHjqx0ObYZSdBRhGUKXEjnVhSGxm7bPcC/LSAXisCMmtHL4iVlUXnmercbq6UBgVXda6UCu6TwNu4GCWQcajcG7vaANnRApK3uZHR4Mb0D8wk/083OFs3ncZW5SS+figt21RbwI8evEp+bhl+fia61gCZKYrCptVCY9N3SO0VlN3mZL8aodCjfzLXl8e22r5r3RTeU6oN9WYNzpVzKtumSdQt3ULFBaLBCQq79TrGozVy2G+/G07ukMCx3Rc4ffAqwx7odtv3A6E5mfzOnZzcd5nLpzL49eM1PDxj+N/e71YrqltVVHwoUfGh9LuzEyBEvuePppKXXkh+VjF5mcXkZxZRmF2C3SaSwMV/LtxON0azAbOvCYufCbOPEYufmeAIfzH9iQ4iVJ0ARSeE/VuC4L8rW5WDvetOsOnPAxzdcd7blPgH+9BvXEcG39eFmAY3h1t66syhq/z+1UYObjnjvazr4FbcO2XADfRh730Op/LzB6s5paZp+wVauPfp/gy5t3MtjZqiKOzfcpbv31lJtio+b9omnomvjKwFmSwtrmTuJ+tZp2rd/AMtPP7CEPrVgGAe3nORL99YTk6msLP3GtySCS8OJTDEVzik1hznm/dWU15ahVYncdejYmpjMOi4ejGXj15dyiV1LdS9XzJPzxhKQJAPp46l8cGrS8nNKkGjgXEPdOWB8b1wu2Q+fXcVa9WmpGFiBDNeH01MbAi//ryTX9W8qsjoQF56dRSNEiP55suNLFfF0o2Tonj51VG43TKTn5rHZTW49p57O3P//V1qraQaJ0Yy++WRnD2fzfhn5mOzOQkJ9uWVl0ZQWl7F+KnzqbQ6CAyw8MqLw8nOK2XyjN9UUnEAr04fxrptZ/hr7TEAUtrU57G7u/LuN+u4mi7iG555pBflVgczPlouNDmJUTxyRyc+mLPJq7d57pG+rNtzloOnxMrp3iHtsDqcfLJgGwA92zUkvl4wH/wqxMbtmsTQIjGajxeJ69slxdCgXihfqfqbbi0SMBh1/LpZrJ2Gd27GxawCDl7KQCdJ3NOnDcv2n6bUaiPU30K35ARv7EKnpDgKy63sOX8NvVbL0PZNWHnkLC5Zplm9cFwo7LuUhk4r0ad5Q9afEo1O6/goMkvLyCuqJNBsIiE8mJ2XhVOqW2K8N1OqZb1IrhQUUeFwEB3ghyLBxYJCfI0GIgN8OZEtGp3GEWG1bOCe5qZZjTTwpuFhnC0UE8HaNvDq5iY+MJCrZcVoNBDt62HcaPE3Gci2luNvMOLETbG9inCLD/m2CpVx40d2VW2An1GrRadFZEmp+VGgeJsbYfnWUXEdwC9IpRNbtDocshNZEdbxihp0YqdSg06sAa0ETsXpbW4MkgY0LmQUfOqIXjBrtepURwiFdYBWkpFRbsiV8gD/RK6UplaulE6d7ojmRkHBjVGjrdXceG6jxY1eUpscDVTiqPNzq676f7rBWafyaoaPaV+raVivXt5nUItaH+hXLuSSdjUfvUFL9+t0NIf3XabK6iAsIoAm1xGEHQ4Xxw9W01Svr/ycUnIyi5G0Es1uIiC+qmboJNxicmKrclBVKf74f2fH9jiNHP+ATJycIgTVJ/de+sc6HBD03cnv3sl7k+ay6KuNWPxM3PlU/1ve53ZWVLdTASG+pPwbHJ7/myXLMif2XmLznwfYveY4VTWYQ226JzHo3s50GtDib11iiqJwZMc5/vhmMydU4bokiYypuyb1I/4mr6GrZ7OY+/FaDqi6GINRx6hHejBuQu8bpo5Xz2fzwzurOKrq1ILD/XjshaH0HlFt13e7ZdYvOcTcT9ZRrtrVB45tz6PTBnnT5UuKKvn+wzVsUd9zYZEBTH55BB1V0GVhXhlfvr2SfaptvWFSJM+9MYaGTaJwu9ws/GkHv/5rGy6XG78AM0+9MJReA5vjdLj54fMNLFkgbMoR0YE8/9ooWrSJ5+zpTN5/bRlZGUWi6bmvMw8+0YuiwgqmPT2f0yfEOqnvwOY8PW0w+XllTBr/M6mqgH/cXR155PGebNlyhi+/2IDN5iQw0MKMl4YTFx/C8y8u4rRKEx81si2PPNSdf/20nVUqgbht63hmTBvC4mWH+GOpWJG3aFaPGc8O5tc/97Nms0BJdElpyJMPdOeDbzZw+oJo3h6+szMN6ocy9Y3FWKschAT5MGvyIP7ccJxdh1RNTr+WJDUM56VPV+BwuoXe5u7ufLFwB1n5pSIs8/7erNl9huMXMgU4cERHLmYWMHe1aELH9m5JUUUVP68RML9R3VuQU1zOH9vE73Bn71Ycv5rNuTN56CSJ+/u3ZeUBQSYO9DExrHMyC7YfxSXLNI0JJzjQwtIDYsI9tF0T9l5Mo7DcSpCPmZSkWJYeEtd1TYrnQm4BeWWVBJiNNI+P9DY3PZokcCBVZErFBwei1UscSc9Cr5VoGx/tbW46JcRy8FqG0NVEhJJVXk6Z3U6Enw9IGi4WFOFrMBAWYOF0Xh56rUR8SBCn8vKQNNAwNIQzBfmAQuOwEG9z47GBazQQHxjI5dIitJKGSD8/0dBIWvzMRjIry/AzGEBSKLRZCTWbKXZU4VbkWjbwKLW5kTQQZDKTb6vEV6/HoTipcrvVaAaxigoxiVWUWavDjRub2+Fl3AiejYFylxU/nQmrWwX4GQ1UuKowaXXVwuJb0InFY4tGxker905pakYvOGvYv2tqb0T0gmhg3IrqwFI1M9W5UtpaoZlaZPSSgAIaNBIyDswaSdXeSIADnUYIjD0WcQ0yBm5/Mv7/dIOTfq0QX18/+g2sPvCVl1WxR6WjDrqOY+MJz0zpkoivX+2z9j3bxEGha5+mN0xYzh5Px25zEhTqS0LijVj98yqxNKFxhJcYfH15OCOxDW5u//YcEDUaDRbfW2cSeVYHxQUVXvfM31Vy+wR8/E0U5pZy6sAVWnaq2+11q+o5oi3pF3NY8Ok6fn53JeXFVh6dNeKm3/+/qsH571qKonDxRDrbVxxhx4ojFGSXeK+LjAuh79gO9L0jxetiu1W5nG52rDrKn99t4arq2tLptfQd24E7J/Uluv5NUsHTCvnl0/VsU51Uklai/9j23PfMAMKuC2stKazgl8/Ws+6PA8iygk6vZfQj3bl7Ym0X1YVTGXz9xnIuqDqV+o0jeeqVkTRX0+09MQvff7iG8tIqNBoNI+7txENP98fiY0RRFNYtPcyPn6ynstyGTqflnid7ctejIqbh2pU8Pnp1KRdUanenHklMmTWc4FA/Lp7L5sNXl3LNo8MZ3poJzw3CaNIx/8ft/DZ3J7JbITTcnxdeGUnrdvXZsuEUn3+0FmulHYuPkWemDaLPgOasWnGUb7/ahMPhIjDIwgsvDad5ixg++mgNm1VXZJs28bw0cwTnzmfz5AThkvKxGJk+bTD1E8KY8vxCrqSKxPEH7+3CoP4teO29FZxW/0Z3jm7P0IEtmf3+Ci6n5nst4EmJkTzzyh+UllXh62PkpacHcfpCNrM/WglAq6YxPHZ3V97/YSPp2cUY9FqmPtybi2n5vP+j4Nt0b9eQ7u0b8ep3Qm8THRbAk+O68PUfO8krqsDHbGDyXT34ffMRrmYVoddpGT+6M+sOnONiRgE6rcTjwzqy5sB5ruUWY9TreGRIB/7YcZzCMiuBvmbGdG/BL5sPi5VVZDDNEiKZv1VMuno0TyC7tJxdZ0Uy+MiOzVh+8Iy4bUQwIQEW1h0X0+3BrZPYevayaGBCAvH1MbLr4jUkCXo3bcjm85eFPCAmkqyyMgpKrARZzEQH+7HvmnBKdapfd2Bmw9Bg8iorKbPbCff1QZEUrhQV428y4Gs2cbGwELNOR6ifDxcKCzFqtYT7+3ChqLYN3KDVEuxjJrWsBLNOh8WoJ7OiDH+DEVmjUFAlGpoylx2n00WUrx/ZVjGhqedb7aDyMG6MWi0GnUSxo0pMYNRpTJhZpIRLgJ/BQMkNAD/BuNFpNBh1Ela3jQC9mQovwE9PpUtQh6vkmiLi2nRiX5VOXPMys6RGL6h0Ygm80Qu+Oh3OW0YveLg3zjpypezeXCkdipdcrNeI5PHq5kYLNbKnqi3iCjo02P93gnP71atfci1R7/ZNZ3A63TRoFE7DGm4SRVHYoe7+r19BuV1u9u8Qb9IudRCIj6nixdYpDeo8kJ9TDwJJt8iOys4Qo/uo2Lqx+oDX3WI06/+2YfFYqJ0OF+UlVu8Z9a3KYNLTbUhr1v++j61LD/9bDQ7A/dOGYPY18eOby/jzu82UFVfyzPt31akj+ScanP8ppSgKqWez2L7yKNtXHCanhvXeN8BM92Ft6HtHCs3aJ9xW42mtsLFh0X6W/riNPHXFY7IYGHRPZ0Y/3uumgvP87BJ+/2oT6xcfwO0S3JweQ1vxwLMDb1h/OexOVszfzcJvtnhpxd0GteDR54fUCs8sK65k3ucbWavGNZh9jDz4TH+G39vJ+/dNv5LPl28t54Q61WyQFMmUV0eR1EII87PSi/jijeUcU4X3Sc1jePa1UdRPjMDtcvP7Tzv49fttOJ1ufP1MTHx+CH2HtMTtlvn1h+38NkfV4QT7MHXWcDr1SCL9WgEfvL6c82pT0at/Mk9PH4xGo+Hd15ayRdXPNWsRw4xXRmLxMfL67CXs8qyWUxrw4kvDyC8oZ8L4n8nMLEaSNDz8SA/Gju3AnJ+3s0SFgiYlRTF71khOn81k/NPzsNmcBAVamPXCcFxumfFTf/E2LTOeHYIbmQnPL8Ba5RAsm2nDOHMxm+lv/omiQGKDcJ6f2J9vf9nBkVNqfMPwdiQ1iuT595dSZXcSEerH80/0Y+6y/Zy8IOIGHhvThQq7w6u36dginm5tG/D2nA04nG7io4K4Z3A7vvhjJxVVdsICfXh4WAr/WingfSH+Fu4f2J4fVu+n0uYgIsiPEd2a8eO6AzhdbhpFh9CyUTRz1ospT+dm8Thkt1dMfEfXFmw5fdk7qemenMBiVUzcMTGWvIpKDlwWsQt9Wyay5vg5YeyIjyK/spJTmbn4GPS0SYj2OqW6NBKZUp4myI3CqWwRtZAUEeYNzEypH8OBdPG52iI6gjN5+UI0HBJEjrWCyioHUf6+VMluMsvKCLGYQdKQVlpKgMmIXq8lrawUf4MRg07rtYFrtJBdWU6QyYQDF4U2K+EWH4odNhyym3p+fmRby1BQajFuotXmRqvREGCsZtw4VddUmFmEY1YzbirQSxIGrYYKl40gg5lStXkJNhkpcVq9AD+77BKMG5eqqdFLVLlt+OlNWN1Vwg2l06qXCRKxh05sk+1eYrEGAfVzKg6VTmzz6mc80QtO2SamNFRHL8i4vLlSgnvjuGWulKdxEQJjoe0xaTSqsFhbLTDWONCiePk3OsTKyvgPNgf/zzc4Q68TEW9YI0aw/YbUDsK8dC6b7MxijEYdna5bM505kU5ZqRW/ADPN61gxeT6oW9/E/n3e0+DcxB0lyzI56SKQMCouuM7bgFhRAV43yq3KYNQREOJDaWElBTmlt9XgAPQe1Y71v+9j1+pjTHxjbK0V3j+pseP74Bdo4fPnF7Jh0T4qSq1M++z+WlMA+Pc1OP/dyu2WOXv4KnvXn2TvuhNkqxM5EH+vjgNa0GN4Gzr0bnbb1v3cjCJWzN3J+t/3etO9A0N9GfFID4Y90BW/wLr/pkX5Zfzx7RbW/LYPp0MwJdr1SOLh6YNpdF2TrSgK21cfZ+7Ha8lVm+xGyfV4cuZwWtR4PbvdMusWH2TeZ+u966g+w1vz2PTBBKvuRIfdyaIft/PHnB04nW6MJj33TejDmAe7otNrcbtlli3Yy/yvN2O3OTGa9Dz4VF9G3SdoxKmXcvn49WXeqU1K10SmvDyC0HB/0q7m8+Fr1dd179uMp2cMxT/AzMq/DvH9Fxux2134+pl4evpgeg9ozolj13j/jeXk5ZYhaTXc/3B37n2wGydOpPHe2ysoLKhAp5N4/MnejBrbgaVLD/HjD1txuWTCw/2Z9fJIgoJ9eHbaAs6rfJxxYzvwwP1d+W7ONu9Kqk2rOF6aNpQVa4/zy6K9ACQ1iuDlF4azYv0x/lguph0tm8UwTW1k9h5WnVP9WjCgVzNmfbCCvEKROfX8+P6cvZrHa1+sAaB9izjuHNKGt/+1nqJSK74WI88/2pfl209xWBUX3zekHVVOFx/9IsIxu7VuQFKDcN6dv0lMRRpG0bV1Ah8v2oZbVmgaH07H5Pp8/tdOFAVaNYwioV4I368RzqjuLRJwyTJLdomGZWy3Fuy/lE5afglmg55RXZL5c68QEzeKDCE80NfLuxnctjF7L6VTXFlFmJ+FprER3kypns0acPhaBuU2B1GBfoT4W9h56RoaDfRMasC2C1eEGDgmgmslpZRW2QjzteBvNnEsUzilWtSL4EC6sIS3i43msOqUaq4GZroVhYahwaSXl2F3uYgLCCDfZsVqcxLl50eZ0yaSyX18qXDaKaiy17KBR/n5kW+rwCnLgmtTKRqa+IBA0ipK4LrmJkxNBjfrdGglDcWO6xk3vuTbxZQnSM2SEhMVJza3mxCjD8XqKirQaKDMacVPb6RKtgmAn0onNkgSkuTGITsJ0JuocFeh1YBB0mCXHbXoxHpJUyedWARk6lU6sXBmCfu35qbRCxZJI8B9avSCh4kjIWPSSLfMlfKIhhUc3uZG3MbDvxGPo0VBwo1B0uD83wnO7VX9BuEk1UDFZ6YXcu50JpJWQ58BtfUanulNSvfGmK7LA9qnrrRSujW+YQphszo4f0plLtTR4MiyzCV1X5/UvO74hZKCCpwOF5KkIewWDiqHXRysbpfkGxYVSGlhJdlphbWQ+beqFp0aEhoVSEF2CduWH2bAdQGk/6QG3NUJ3wAL7076mT3rTnC2+5s8MH0oA+7u5LUVexoch8OBzWbDZPqvF/T+f1XlJVaO7TrPwa1nOLDpdK2YC71RR/tezegxog0d+zW/aTL89aUoCueOXhPE4rUnahCLwxj9WC/6jetwQ1aUp0oKK1jywzZWzt/tTYVvntKAh54bRPM6XpunDl7lx/dWcf6EOEiGRPjz0LOD6Du6bS391ekjqXz71kouq9OR+o0jmThreC2e05G9l/j67RVkqtOqDt0b89TM4V7r9+Vz2Xz2xnIunlbfKx0SmPLqKKJjg3E53Sz4aRu//bgDl0tMbSZMH0y/oa2QZYXFv+xm3ndbcTrEdU+9MITeA5tTVFjBy9N+56CqQ2rTPoFpLw8nKNiXOd9uYdGCPSgKREUHMuPVUSQmRfHTj9v44/d9KArExAYz65VRhIT68fKsPzioTpy6dWvMtOlDOHjoKjNm/YHV6sDfz8QLzw+lXr0gnp6+gKupBd6V1JCBrXjro1UcP6VaxYe24Y5R7XjnszWcVoXR94zuQPcujXnh7b/IyS/DYNDx7ON9sDldTH19MW63TFx0MNMn9OOHP/Zw/Kx4nu4b0Z7gIB9mfLoSt1umYWwoj4/rwqe/bvOKi6fc15M1e85y7Ly4z8MjUriWW8wPy4UIekT3ZFyKzLfLhBNqQIck3Cj8rCaBD+3UhLyySpbuFiv6u3q1Yt/5NFJzizHqtdzduw2Ld5+gwuYgMtCXDk3i+G3nMQC6JMWRV17JblVMPLxDU5YfOYPLLdM4KhSDXsv2c1eRNBr6tWzEpjOXvMC+Moedk5mCY9M6PpqtF0TTVzNTqmFYMOU2O5cLiggwm4gI8OVIpkhET46K4LDqlGoTE8XRbCEmTo7wCIghMTSEy8VFuBWFBsEiAdylyNQPCCS9vAy3IhMfKFg2siJTPzCI1PJqp9Q11QYeFxDgbW4iff3IrCxDL2nxMejIt1XibzBS5XZgc7nrYNyUi7gFvV4kgxtM3qwoD8BPpwGTXkuFq4pAg2heQCFQb6LMacWi0+K6DuAnYhDcuBTZSycW2hY3bkX20omNkg53DTqxXa7CpNXj8jqkNKqjSnfT6AVPc3N99EJduVLCGaXUiGdwYlDXU57bVFvEFbW5ERZxDa7/1eDcbt1xd8daK4Atak5U2w4NCK6R46QoCntUkWO33jcCCQ/vFePTlDocUudOZiC7ZcIiA26wlQPkZpZQZXWg12u9dNbrq6hAHBgDgn1vaQfWaj0ZWreXtprQJJpLpzK5fCaTrtelnt+sJEli5CM9mPPOCn75eC09hre5oeH7J9VlUEveXTiZT55bQPa1Ar548XdW/LSdx2ePol2vpvj5+aHRaFAUhdLS0v/WDY7b5ebC8TSObD/H4e1nOX/0GrJczXHyDbCQ0rcZnQa0oH3vZrfd1IAQg+9YdZQVc3dyUW04AFp3bczox3vSvnfTm4q+Swor+OvH7az8Zbd3jZnUOo6HnhtE6zpiQTKu5PHzR+vYo2rOTBYD457oxZjHetT6WxfklvLzx+vY4uHe+Ju4/+n+DLu7o/d1Wphfxg8frmWbSvgOCfdjwovD6NY/GY1Gg63KwYLvtrLklz3IbhkfPxOPPzuQQWPaodFouHQum0/eWMZlVWTfqUcSz8wcRkiYPxnXCvno9WWcVSegHbo0Yuqs4YSG+7Nt02m+/HAt5WVV6A1aHpvYl1F3ppCRXsiU8XO5qDYWA4e2YtKUARQVVTDlqXlcUL/PkGGtmTi5H6dOZTDjpUWUFFsxGHRMmtSXvv2S+eqbTaxbL6YXLVrEMGvGCI4cv8YbT8/HZncSFOTDrOeHoaDw5JT5lJRaMZv1PP/MICw+Ria+sICycptYUz0ziMKSSp55eRFOl5t6kYHMmjKYP9ccZbMajNm7c2OG9W/Jq5+vobCkEovZwItP9mPnkSv8ulolrndtQssmMbzyzRohLo4M4vGxnfni9x3kF6t6m7u788fmY1zOLESnlRg/ugtbjl7kTGoukkbDw0NS2HnqKhfS89FKEg8Nbs/6w+fJyBf8m/v6tuH37ccpr7ITFuBD37aJzN1yCEWBlvUjMZsNrFAnNcM7NGXXuWsUVYgVVcekWJYcVAXUjeO4WlBMVm45vkYD7RrGeMXEnRPjOJWVS5nNToS/L6H+FvZcSUOjgc4N49h9VbjA2sREcT6/QID9AgNwaWTO5xfgYzAQFejH8WwBLGwSEeZtbmrawGs6pWoGZt6ODbwm46aevz/pFaXoJQk/o5EcNRnchUyJo4pQsw+Fqli4JuMmVGXcmLQ6FI1MhctOqMlCscq4CTaKr01aLWhc2NyOWgA/X52BclcV/nqDmOag4K8C/CxqfIKCQoDBgNVt9ZKIBehP0InNkgGnKiKuphML+J8WBb2kIONWmxtbregFgzd6QVdH9IKCgoxRI12XKyWpzihPPIOMQZ3geJobo0ZMcLSgNjhi3aVBQf+/Gpzbr+41mhVFUdiqNjjXT2/SrhaQkVaIXq+lQ5faTUxhfjlXL+Wi0WhoU8dZ8GkVn5/cpm53VKrKZYltEHZTLsztWr89BxWPnuLvKrF5DBv/PMhF1TVyuzXi4e6snL+TvIxilvxrC/dNHfSP7n99Ne/YkH9tncmq+Tv57dP1pJ7P5uX7v6Vdzybc+VR//P39KS0tpaSkhIiIG0Xa/6lyOd1cOpnOib0XObn3EqcPXqnlfAKIaxxJu55N6NivOckpDW+L/VOz8rNLWP3LbtYt3OudAOmNOnqNbMvox3qRcIvJW12NTaPm9bh/ykBS6hDDF+WVseDLjaxbfBDZLSNJGgbdmcJ9zwwguAak0GF38tfcXSxSqcYajYaBY9vz0LMDCFRp0W6Xm5WL9jP/y01YK+1IkoZhd3fioaf7eTVvR/Zd5ss3l3v1Zd36JzPxxaGEhPnhsDtZ8ON2/pi3G9kt4xdgZtL0IfQe3AJFgaUL9/Hz15ux211YfIxMeG4gA4a3przMxjuv/MU2VVPTKCmSF14ZSVz9MFb8dYgfvt6Mw+HCz9/Msy8MoVuvJqxZdYxvv9qEzebEz9/MtOeHkNKpIT/N2c7ixUJfktAgjJdnjcQty0yaPJ+0dOGmeeC+rtwxtgNffLvJC+5r1yaeGdOGsnz1MX79Q7i4GjUIZ/bzw9iw/Qy//inWPE0aRTLjmUH88td+Nu0UjUyPjoncNyaFd75eS2pGEVqtxKQHeqBoNEx/bylut0yD2FCefrAHXyzYwZV0AfObdE93ruUU8+HczeK5bNOAdsmxvP79OlxumfpRwdw9uC1fLt5JudVOSIAPj4/syPcr9lFULmB9Dw9NYe66Q5RUVBHkZ+aevm34ecNBrHYn0cF+9GnXmDnrD4p8qvqRRAT78tuOYwAMbJvI+ewCjqfnYNRrGdGhGUsPnMHpFiuqQH8zaz1i4jZJbDt7BavDSb0gf8ICfdl2vjp2YduFq7hkmcYRoVQ4HZzKysNi0NO0Xri3uemUEMt+VW/TNDKMtLJSKuwOIv18QavhYkEhPgYD4QEWTuXloZM0NAgL4WSeYDA1CQ/1NjdJN00Dr25u6gfVtoGnlpdg0EoEmIxkVYpkcDRQZLcKEJ+zCrciksFzVRt4pI8vubZydJIGH4OeopqMG6WacQNiClPitKqNiA1FUQgxmil1WdFqNBgkLVVuO4EGE5Vu0fD46PRqMng1wM9PrxMiYq0BuywaGYtOi122eS+TUDBqwaU4sKjCYuGQEtobH60k7N8eOjGKN5bBpLqnqqMX8BKHPc4oi3qdEA+r7ilVg+MVGEtigmPUSGiwo0VQjkWTJVxUOkDCrdrIb6/+n25watbFc9lkpBVhNOro0iOp1nW7VYdUm5QG+FznTjqiCogTm0Z583Nq1mk1P6pZ6/gbrgO4qkLP6ifeiMf3VIl6YAu6RTo4gE5tcFyu24P3NVI1P5dOZdy2kwqE2Pixl0bw7lPzWPztFvrdkXIDrv+flt6gY/Tjvek3NoWFX6xn5dydHN5+jsPbz+ESkg5OHDhH48aN/yOp4bIsk5VawMXjaVw8kcbFE+lcOpnubRw85RtgoXW3xrTr2YR2vZoSFv03ROk6yu2WObT1LOsW7uXA5tPeKVBYdCBD7+/KwHs63zIpvjC3lL9+3M6ahftqNTb3TRlAxz7Nbnj+rBU2lszZwZI527GrGWUd+zTlkemDiU+sLbTfs/E0P3ywhlxVzNy0dRzjZw7zCoQBzh5P46u3VnhJxEktYpj88ggSVe5OSVElP3y8ls2rhEYlNMKfp2YOo3MvccJx5kQ6n76xnDTVlt29bzOeenEoQSG+ZKYV8vGbK7zvq7YdG/DsyyMIjwzgwN5LfPLOSooKKpC0Gu59qBv3PtKdkuJKZk5byGFVC9cupQHTVVLxqy8vYY8a29C6TTwzZo3AWuXg6cnzuXRJvDdHjmzLk+N7s3bdSb77fgtOp5uQEF9mvTQcH18TE6f+QnpGkYD0Pdid/n2SefODld6V1Ighrbn7jhTe+3wtx1Wi8eghbRg6oAWvfLySaxnCbjzhwZ6EBPsw5fU/qLI5CQ32ZebkQazYfJIt+8TPOKBbE7q1b8isz1dRWeUgOMDC9Ef78uvqQ5y+nCMs3yM7kVdSwWe/bQcE36ZhXJhXb9O8QSQ92jbiw9+34XbLJMaE0qttIl/+tRu3LJMUG0a7JjF8rcL72jaKITjQwi+bhVZoQLvGpBeVsun4JbSShju7t2L1kXOUWm2E+VvokBjnJRN3Tooju7Scg6qYuH+rRFYdE2LiFrERlNrtHE3LwqTT0jExrjp2oUEsp3PyKFenOP4+Rg6lZaLTaGgbX499qlOqXVw0x7JzcMkyjcJCyKkop7zSIZxSWtUpZTQS4GPifIEIzIwK8OdcQQE6SUNsUCDniwqQNBAXEMjF4kK0koZof38ulxahlyTCfC2klpVg1OrwNRpq2cALbFZCTGbKXDacbtHQeJPBffzJrvLocCzk2QSRWCPJlDtthJgsFHkYN2YLRfZqxk25S7iqytVpTbDqsDJJOty4cNQA+Gk1oJfqBvjZZDu+OiM2t000MjqP1duoam8EbM+tyN7mxqxyb2rSiT0AP70GNV5BwShJtejEBo2EpNKJ9erqyZMr5Y1eoKbAGMCpTn5q8G/QCg2OBq9FXIeChIJBA47/JRn/89qu5kR16tb4Bqv2PtUh1bln0g338wiI23RseMN1iqJwQf2Quz66wVMZaqhffMObQ9vKSqwAfysE9ohTbVbHbTUsDZpGozfoKCmsIO1ibp0ZRDer7sNas2LuTk4fvMK7k+byweJn/m3Bcc3yC/LhyVfHMOyh7iz+ZjPbVxxGyhWP+8GzP7Pii8M0T2lIYqtYGrWIpWHzGHz8biRD/7vldLgoyC4h/VIuaRdzSLuYQ/pF8bW1/MZ8Kb9AC807NqJl50a07JJI/SZR/5gP5Km8zGI2LNrH+kX7a9nFW3ZuxIiHu9Opf/Nbriiz0wr5819b2bDkIC6VUH2rxsZhd7Fm4T5+/3YzpWqeVZPWcTz2wlCad6gNnLxyLpvv31vF8f3i9R4S4c9j0wfTqwbVuKSokp8/X896NYXb18/EI1MHMmhse7RaCVmW2bDsKHNUIbJGo2H4XSneqU6V1c7cb7aw/HeRKh4U4svkGUPp1qcZbrfMkgV7mfvtFhx2F2aLgSem9GfI6HZYrY5a0L6YuBBefHUUSc2i2b75DJ9/uIbychsGg44nJ/djxJh2HDxwhY/eW0VRUSU6ncSjT/Ri7LgU1q49zjdfb8Jud+Hvb+b554eS3Lweb769gr1qsnenjg15ftoQtu48x7c/bMXpdBMa6ssrM0Rz9MQz8ygtq8JiNvD8MwPx9Tcx8fkF3jXVC5MH4XS5eWrmQmx2F6HBvrw8ZTDb91/kq/nbAGjbPJZH7urC+99vJC2rGJ1W4qn7u1NYZmX2l6sBaJVUjzsGteGDuZspLqvC38fI1Pt7sXjzMc5cESunx0Z15EJmAT+uEHqbkT2a41JkvlaTv/u0S8Ro0PH9KnF9v3aJ2N1uFmwRz+XILslcyCpg45ELaCUNd/dqw7qj58kvq8TfbGRIShMW7TkuhMkx4fiajaw+IqZRw9o3Ycf5VEqtNsL9fWgSE87Ko+qkqkkCRzOyKKuyE+7vQ3RIANsuCI1T7yYN2H7xquDYRIZSVFXFhTxBI44NCuDANXUlWcMp1So6klN5eaLRCQ0iq7LaKWWT3aSVlhJoMqHXa7laUoyf0YCPUc+VkmJ89Hp8jUZSS0uw6HVYTAbSyqvTwLMqy/E3GnEhGpowi4VSpw2n01W7oanBuIn08SW7qgy9JOFj0FFotxJgMFIp24Rk4XrGjf3mjJsAo4EylxVfnZEqt7ByewB+BklCwY1TcXqbG72kQatC/TwAP71GgyQJEbEH4GdUrd4KCmatDodsw0fl3ng0LzXpxEaVTaNBQS+BG6eXTmxSgzE9sQo1oxc8dOK6oheMEoDD29zoEY+j12jQapxoVQ2OVm2axGTofzU4/6gURWGXqrHpfp3GpqSokguqCLhjtxshfSePiBVUK5XvUbOyM4qpKLehN+io36ju1YqH3Bp1iwmIXXVH/Z3WxcO2cTndWCvs+PjdWq9iNOlp0zWRA1vPsnfj6X/U4Gg0GqZ/eh9PD/2Y88fS+PGtZUx6847bvv/fVXT9MKZ8cDfjXxtNxw6bOXGmEI1e9oqbt6nOE4B6CWGExwYTHB5AUJgfweH+BIX5ozfo0EgaJK0GSZKE5sNqx1puw1pho7KsioqyKgqySyjIKiE/u5jivPJa+Wc1y2DU0yC5Ho1bxZHYKo7EFrHEJkb82w0NCG3N3g0n2fDHfo7uvFBNLA7yod8dHRh4dyfibjHdA7h6Lps/v9/KtpXHvKLj5PYJ3DWpD+17NrmhsXG7ZbYsO8KvX2wgL6tEPIf1Q3l42mC6Dmxe6/ZF+eXM/3wDG/46jKIoGIw6xj7agzsf74nJYvA+3prFB5j3xUYq1Caw34g2PP7cIO+k6drlPL58awWn1PdLg6RIpswe6XUOHtxzkS/fWUWu2tj1H9aaJ58biH+AhfTUAj5+Y7lXa9MmpQHPvjyciKhAjh1O5eO3VpCbIzACo+5M4dGJfXA4XLzz2lK2qquqxKQoZrw6kojIAL75ciNL1Qy6uPgQZs4eRVi4H2+8vpRd6jSnbbv6vPjiMNLSC3l8/E8UFlag12sZ/0Rv+vZtxgefrmP3XqEZ6dKxEdOmDOSPpYf4fYlYaSU2VFdSO87y62IhWm6UEMasqUNYvOYoqzeJCUf7VvGMv78bH/+wmbOXxLr6gTEdiYsNYdq7f2GzuwgL9uWFJ/uzcM1hDp8Wk6u7BrclONCHV75eg6woNI4P494h7fjst+0Ul1fh72Piqbu7s2D9YVKzq/k2m49U620eGtyBfefSvP9+YGB7dpy6zJXsIgw6LQ/0b8eyvacoUPOmRnZJZsH2YzjdgnfTqF4oC3eJKVyv5AZczS/mTGYeJr2OQW2TWHHkDG5ZoUl0GFqdxPZzV9FKGvq1aMSmM5dxyTJJUaHYZTdH07Iw6rR0aBDDFlVM3KF+PU7m5FGlpnxrJA2nc/Iw63Q0igz1OqXaxkZxJFNMC2/mlIoJ8KfYbqO40kaErw+VbifZlSL12+mWyVW/tsku8q2VhFkslLvsVKhp4AV2Ky7ZTT2/6ibmeht4lrVMhfZZyK2qwEevR9bIlDlthJqr108exo1WA756AyWOSvz1JipUQJ+nudFpwKjTUumqzbgJMOiFzkYnVkwiLVzobDywvpoAP5NWWLcV6gb4GdWATF+VROyZ6ojG53o6MV46sWhuVH2Noq6VbhK9UL16qhm9oABujBoNNZsbgyQhqRqc6uZGTHD0Ggn7/6Q08f8OdeVSLtmZxRgMOjp0qc12ObjnovhwSook5LqwxNzsEnKzSwSBuI4JjccdlZAYcVPtRW6msH9HxNx8lWFT1wZ/Z/82mQ2YfQxUVTooLar42wYHoFP/ZA5sPcu+Tae4+6m+f3v7mhUZF8Lzn93Hq4/8wMp5u2jStj59Rrf/R4/xd2WyGIlrUI8TZ47yyOwhpDTryYUTaVw6kc7FE+nkZxWTeTWfTHWd8V9ReqOOegnhxCVGEJcYSVzjSGIbRRDT8OZ/x39SiqJw6WQGGxfvZ+uyI1SUWr3XteqSyKB7O9NlYMtbTsQUReHkgSv8+a+tHFSbc4D2PZO4a2LfOl1RiqKwZ8Mp5n26nnQ1WiAkwp97J/djwNgOtX43u83J0nm7+OP7bVSpa64eg1vy6LRBRNQQy585lsbX76zg8llxgGnYJIpJM4eTrEaf2KocLPxhO0vm7cblEtbwByf1ZdR9gotTUlzJvz5exxZVhBwRFcgzM4fTvksj3C6ZP+bvZv6/hEPK4mPgyakDGTSyDTabk68/WcfyxQe995v+8nBata3Pof2X+eidVRQWlCNJGu55oCv3P9qdq1fymfjET6SpTq5RY9rzxITenDqVwcyZf1BYKGzhjz3ei1Gj2jH/l90sXCQ0NHGxIbw8cwRWm5MnnppLXn45er2WCY/1onOnRrz81jLOqHEqY0a0Zdzo9rz7WfVKauSgVowa0oY3P1/DZRX698hdXUhsEM6zby6hvMKGv6+JlyYN5MCpNN78ai0AHVrEcffwdrz3w0byiiowG/U890gfdh27wu8bxJRlcLemxEUH8/r360WzExfGqL4t+ez37VTaHIQH+fLw8BS+X7GX4vIqAnxMPDqsI3PXHfLqb+4f0JZ5Gw97xcPDuyQzd9MhXG6ZRlEhNE2IYO4WcVLRtVk8ZTYH649dQNJoGNUpmY3HL4ppTIAPLROivGTibkn1uZhXQE5pBX4mA+0bxbJOFRN3ahTH2Zw8SqpshPpaiA72Z+clEbvQI7E+O6+kCtdTVDjpJaWU2eyE+ljwtRg5kZ2DXpJIigzjSGY2IlMqkmM5IjCzeWQ4p/PzvE6pKyXFuGSZ+kGBZFSU4pRF0nd2Zbmwe/v7k10lwjNj/EWz4laU2mngAYGkq06pGL8AMtRkcI8N3KjVYtBKFNmtYr3ktiHLMuEWwbUR0xoLBfYKjJKEVkKNW7BQ4rSq1xspcVbWYNw4CdJbKHNZ0QA+ei1Wtw0/vdFLLPbT6bC6BdTPoYjLfG4F8NPqcSg2L8fGpTjx1elxylUqY+Z6OrFYQWk1GiR1vSTcU9XRC3qVZ/PPoxc0gMPb3BglSbWICw2OsIp7mpv/neD8W7VbPUC079QQ83VTkgO7xVi6LoeUZ3rTuGk0ZsuNjpiLKpMjsVndQlCHw0VhnhAQ1+Ww8pTdVg3w+7sKCPalqrKI4oIKom+Dftuxr1hdnD+eTn5WyQ3k2r+rlL7J3P10f37/ciNfzPiD0KjAfxsAeLPyWMWtVZW069WUdr2qp2wlBeVcPZtFYW4pxXllFOWVUZxfRkl+OU6nG9kti/9kGVkW4DkfPzMWP5Ez5eNnJiQyQM2YCiQsOoiAEN//T3Q+GVfy2L78CNtWHCFDbTBAaGv63ZFCvztSiL6Jk85TbrfMvk2nWfyvrZxXdSiSpKHroBaMG9+HxDpYSoqicGDrWX75fAOX1dekX6CFO8f3Zvj9XWo1zrIss231ceZ9Vj3dSWoZw5MzhtGsRl5bYX4ZP3+2gU3qWsjHz8RDk/sx9M4U7xpt/47zfPPuKnLVx+nYI4lJLw0jIjoQRVHYvOY43320jrJSK5KkYdQ9nXhwQm/MFiNXLuby6ZsruKBaz9t1asjUWcMJjwzg5LE0Pn57JVkZ4uRg6Ki2PDG5HxpJwxcfrWWlmhcVExvMC7NH0rhJFIsW7mP+zztwuWSCg32Y/uIwWreNZ86c7fypColjY4OZ9bKA/E2dtoBzqoZo6JBWjH+iN38uO8T83/Ygywox9YJ4ZcYIcvLKeOKZeVRU2PH1NfLilMEYTXomTK+xknpqIIoGJr70G1U2J0EBFmZNHczRU+nMeG8ZAE0TI3n64V58Pm87Zy+LSc5DozsSGGjmhY+W43LLxEUH8dS9Pfhq4U7ScsTaatLd3TlxMZPv/hT5UEO6NiUw0MJ784XYuHXjaDo2r89HC7filhUSY0Lp0y6Rz5fswi3LNKoXQucW9fl6pbDMN0+IpH5ksBfe16NFAyocDpbvFyv8sV1asOt8Kjklwv00oG1jlu4/LVK8YyLQGSQ2nryERgPD2jRh4+lLVDldxIUEEORvYctZobHp27wR2y5cweWWSYwIweZ2czwjB5NOS6v4aHZcSRWvmfoxHE7PEjTisGCKbVVcLSom0Gwi0MfMyZxcdFqJxPBgb3MjksGFUyo5PIzTNcTE5+sQEzcICuJKWTHCKRXM1bKiG5xScf4B3uYm0tfXG55pVm3gAQYjNtlJhcuuNjRiWiNs4BVIGvA1GIWwWC/owi5Z9trAxSpKT+kNjBuzyrjRoJUU7LIDf72JSlVnY9IKnY2/3ohNFlA/k6QV4Zkq1K8mwM9DJ9ZpAHVK46sVdGKzJKYtN9KJbbegE9tUfo3jtqIXaoqGDRoFcKFHXCdcVA70iAgIPRqVZAw6DUiATiNh5/Y0pvC/DQ4Ae1VaadfrNDZut8yRA+IN2b7LjQ3OmePiAJN8k/yoVFWk2OAmqx+PO0pv0OEfaLnpz6eoItPbWYWERweSk15EdlohyXWsza6v4DB/WnRswIl9l1m9YA8PPz/kb+9zfd3/3GAunkjn8PZzzLrvWya9eQeD7+38jx/nZnUrmnFgqB9tut+ojfrvUnmZxexcfYzty49w8WS1vVtv1NF5QAsG3NWR1l0be7k/N6uqSjsb/jzI8rk7yVYnEHqDjv5j2zP2iV51NkaKonBk1wV++WyDl2Vj9jEw6qHujH28xw3apWP7LjPnwzVcUpug0MgAHnluIL2GtvK+9hwOF8t+2cPC77d6JzsDRrXl0akDveuo/JxSvn1/NXvUTKuwyAAmvjiEzr2FcysrvYgv313lFegnNIpg6uwRNGkeg9PpZv6/tvL7z7twu2V8/UyMf3Yg/Ye1wm538e2n61m2+ACKAqFhfjw3czjtOzXk9Ml0PnhrBVmqI2vk2PY8PqkvRUUVPDflV06r661uPZJ4dtpgioormTRpLlfVOIdhw9swYUIfduw8zxdfbaSqyoGvr5Hnpg6madNoZr62hBOqnm5A32QmPt6bn3/bzfLVxwBolhTFzOnDWL3pBL+pa6pGCWHMenYof609yooNYkLVOjmGpx/tzec/beX4WfF4Ywe3oW3LOJ5/fznllTb8fEy8OL4/Ww9cYO4K4bjq07ExnVon8Mo3a7DZXYQH+zL5nh7MWbaP1OwidFqJieO6se/MNVbtE8/7uL6tKams4rvlHr6N4HR9t1Lobfq0aYSsUZi/UTSEQ1KakFlUxsr9Z9Bo4M4erdhx9iqZhWWYDXrGdG3O4r0nsDvdxIUG0ig6hCX7hPO0d4uGnMvOJyu7DItBT8/kBqxQ4X2t46MpsFZyLC0bk15Hx0axbDorThw7JMRwPi+f0io7YX4+hPpb2JeajkYDHeNj2XdNjV2IieJMfh52l5u4oAAqXU6uFhUTYDbibzFyJi8fg5opdTK32il1ug4beOOQEC4U3eiUEjZw0dzE+geQWl6CpIEIXz/S1YbGYtCRY63A32DAobgpdVQRZval0C7CMyN9fMmziWlNmMVCvr0Co6RF0kK500awUaR9e6Y5xWp4plGrodJlq4NxU+Vl3LhqMG70NcMzVcaNTqNBQoRn1g3w02GXqzBIWmQvwE84pDzaGy0gSagNjPT3dGJ1dVVNJxaTlprRCx6A382iFzQ41cmRmORocHgFyzqEnkg0NxpVaPy/E5zbrrzcUi5fzEWjERlTNevSuWwqymxYfIw0Sb4xefmc+oHXtGXdAmJPFk58o7oFxCWqsDMw2OeWEwNJPfh59BW3qtiGEZzYf4Vrqjvrdmrkw905se8yaxbu4+7J/f4x10arlXj5+0f5dPpCdqw8yhczFnH1XBZPzh71X7LS+Z9GM86+VsDutSfYteaYd8oC4u/Ytntjeo5oS+eBLW9rhZifXcKKebtY9/t+KsqEncw3wMzQ+7ow8qFuBF23NgXR2BzdfZEFX27kjDplNJr1jHigK2Mf6+nVannq2sVc5ny0loMqsNLsY+TOJ3oy6sGu3teCoigc2HGef32whiw1ObxJy1gmzhjqdVA5nS6WLdjHgu+2YqtyIGklRt/fmfvVqYzL6WbJgj38+v02HHYXeoOOex/vwZ0PdkOn13LuVAafvrWSVHW61aVXEya/OISQUD8xtXlrBVmqZm3gsNZMmNIfvV7HD19vZvFCsUoKC/dj+szhtGmfwLo1x/nmy01UVTmwWAxMnjKAvv2bs2zZYX74XoiDAwMtTJs+hJYtY/nok7VsVR2TLVvEMnPGcM5eyOaxST9RUWHHbDbw7OQBNE6M4LlZf3AlVby/7x3XkaEDW/L2Z2s4ra6pRg1pzYhBrWqtpB68oxPNm9bjuTf/pMQjQp7Qn8tpBbz00QoAmjaMZPw93fhk3hauZak28bu7k11Y5o1c6NA8jn6dknj3541YbU7CgnwZf0cXfli+j+zCMowGHRPHdGHV3jNczChAK2l4ZGhHdp9K5cw1obd5cGB7dpy+wuUswcN5oH87Vh84S25JBb4mA3f0aMVvO49ic7iIDvajfeNYft0hpnUpibFU2B1sPnkZSaNhREoz1p24QJXDSb1gf+LCAllzXLyW+jRvyIGr6ZTbHEQE+BIV7O8VE/dKSmDn5Wu4ZJnE8BDKnXbO5OTjY9DTKDyEfddujF1IjgrnUmERNpeLmEB/Kl0O0kpKCTKbMBv1XFAzpcL9fTlXUIBeK1Ev0J9zqlMqPiCIC0WFSBqIqRGYGeXnz9WyYvSSRJDFQnpFKWadDpNBS461HH+DAScyJQ4bYWYLhXYrMnKtNHBPc6PVaPAzGii0V6rTGDsOd20beJDRTLFDAPrcOLHLspdxowF8vIwbQR+uybgR3BkHsuJh3IjgS1kRKeBegJ9Gh5uaAD9bbYCfVoNLcXgZN3qNBOoKyiwJfc2t6cRqvpSk8bqnhDNKWLlvHb2goAM1ekGsqQweDY5Gi4QDnUaLFjdaNGg1qJMcCRu3h0GB/21w2L9b7IObNo8h4LopyhHVIdWqfX20utpn2LYqB1cviQ/iJs1vbH5sVod3xB/XoO4Gx+NcqcteXrP+Cd8mIUlMi1JVkNntVMe+zYiMDSYnvYgtSw8z5N+YvpjMBmZ89SD1m0Qx/8M1rJy7k7QLOcz89uHbjoG4Wf13D9yUZZlLJzM4sPk0+zad5vKpaq6QRqMhOaUBPYe3odvQ1re0d3tKURROH7zKyl92s3v9Se/fvV79UEY90p1+Y9tjqmMl6pnYLPhyE2dV/pLBqGPYfZ0Z92TvG753fnYJv3y1ic3LjiDLClqdxJA7U7h3Ut9at712OY9/fbCaI3vEWXdQqC+PPTuIPsOqJzvH9l/hm/dWkaY29c1ax/H0y8NJUAXS505l8NlbK7xYhFbtE5gyazj14kKosjr44YuNLF+0H0WBgCALTz0/hB79mmGzOWtPbcL9eXbGUDp0bsSFc9l88OZyrqlOxP6DWzJpygAcDhezX1rMPpVg3KJlLC/OHI5Wp+WlGYs4fDgVgI4dGzL9+aFkZBbx+PifyMsrQ5I0PPJQd0aNbMd3c7axcs0xAJomRTHrhWEcP5XBk1PmY7e7RL7U9KHYHC7GT/+V8gobPhYDLz49CJcsM+mlhVTZnAT6m3l5yhBOXczi+beXCE1f/TCmPdGPfy3azZHTYkpxx6DWgo3zyXKq7E5Cg3yZ/mgffll1iFOXxPv5weEdsLvcvPPTRgDaNo2hR7tGvDd/Mw6Xm5jwAO4d2I5vlu2m3Gon2M/Cw0M7MGfNQUoqhP7mgQHtmLvxEOVVdkL9LYzs2pz5alhmXFgg7ZvE8tNmoW1q3ygGSafxxiyM6NCUvRfTyVM1Nb1aNvTqbVrHR1HucLDnYhparYYBLRJZd+qiWF9Fh1PhdNQSE2+9KBqdDvVjOJ2bS6XDSVSAHya9juOZOei1Esk3iV1oGhHG5eJC7G43sQEBlDhtZJaXE2qxoEiQWlJCgMmI0SBcUz56A35GA1dLi7HodPiYDVwrE64ps0FPRkUpfnqRNZVrrSDIZMImOymx2wi3CFCfW5GJ8vUnWxUZe5obDQoh19nAy5xVAtSnTms8zY1Wo8GiF6uoAINI9vY4qUqdVvQaCa0Gqtx2/n/s/Xd4U3e2vg/fW724914wYGMDpjfTTYckJCSkEkiAhEACCZA+c6acyWQmlfTQEgIhQAgl9N57770b495tdWm/f3y2hA2mZMr3nN97Zl0Xl21JW5IlYS2t9Tz3E6wzUH1Xxo3Q2ZjUOhwK48as1WDzWDGpdDhku8/qLQB+QqPjA/jJNwF+OpUGuRaB2C07MCqxDN7pyu104pvkYRUokxYvnbh29IIQGGsVfs7N6AWPj3zs0+BIYoKjldSocKNGhVqSUSP5JlQa/sPBue/yamza16OxOaKg2esD+J0/k4fH7SE03J/wyNvjE3KUrKHAYPMd108VZUqDE3L3BkCjNFdO573V48lp0QBcOJl732wbtVrFg8M7M+0vy/hl+hZ6DWn7D1m+JUniyVf6kJQazQfj53B013nG9Pobw18fSPYtItbfUv8bAzdrKq0c2XWe/ZtOsW/jKcqKKn3nqVQSzTs2ovOATDr2bebLYrpX2awOtiw7zPLZO7mkaE8AmndI4eGRXWl3B1qxLMsc2HaWuV9s4KyyNtXpNQx4sgOPje5+2+1XlVtYMH0Ly37c7cuiyuqdwYjX+hKXfDNxvKKshh+/3shKBfyn0ah5eFgnnnyxhw+lUFJYybSP17B1jXAFBQabGTWxL9lK81NdZWXWVxtZ8csBZFkmINDEC6/1pdcgYS8/sPsCn7+/goI88dxmD2jOi6/1JTDIxOEDl/n0/RXkKx8U+j3QghfH90an1/LDjK38NHsHHrcsQjXfGEinLo3ZtvUMUz5eTWWFFa1WzXOjujHksXZs336WKZ+uoarKhl6v4YUXezJgQGYdIXFMTBDvvvUgGp2al16dzbWcUiQJnnysA0MfacOUbzawebuYTLRpmcTkV/qw4NcDLF4pJhtNGkfz1vh+/Lz8ICsUl1SLjDjGj+zJF7M2+4IyH+zdnC7tGvL2x8sorbBgMmiZPDqb4+fy+O9v1ojrb5rAQ9nNeX/mBsqrrPiZ9Lw2rDvLtp3wRS483b81lTY7n8zbIp7D5sk0Sgzng3mbfHqa9k0TmfLLdtwemcZx4bTPSODL5TvF+UlRNIgNZUatsEyPJPPLLnHfH2qfzqErN7hWXI5Bq+GBtuks3X8Sh8tNckQw0aEBLDsoJl69mzdk/6VcyixWQsxGMhIiWXVcWf03TuRYbj6VNjsR/mYig/xviokbJ7H9ohATN4kKJ7+qmrzKKkLMRkL8TBxWYheaxUT5YhdaxEZzJF80fGmR4ZwvLcHl8ZAYFESBpRqry0WUvx+VTjvlNaJBsXlc5NdyShVaaggzGbG4nXUDMx1uovz8KLJV45E9dRLAa9vAI81+5Fmr0KpVGDUaSu0WAvV6atyKDdxgpthRywbu8AqHZWpcdkJrJYcH6/VUOMVkxulx4ZQ9tzBuVHUYNwLWp8LmsfkYNxKCe+Pw2DGr9dg9QkSsU0TEJo0Oh8d6C8BPrQD8BOFYjQeN5MGDB0O9dGIPINdDJxaREEJX40FWIH/3G70gNDeiIRJfNUi40EhqhYEjmj4VkgIArN/lWl/9n25wHA4XRw5dAaDdLe4pt8vjW0Fltkq67VgvxOxOAmIvCC3mLuGYXg1DfQLl2uXVSnhXFHerhhlx6I1aykuquXI239fw3Kv6Pd6ehVM3k3e1hCUzt/L42N/mqKpdHfs045Olr/L+2B/IuVDAlDfmM++LdTw+rje9Hm2LVvfbXnb/GyY4ToeLM4evcnj7WQ7vOMu5I9fqxDAYzXpadU2lXXYG7bIz7mtS463rlwpZ9dMe1i/aT7USVKk3aOnxUCsefDbrjrRij8fD7vUnmf/NJi4oGU56g5YBT3bg0dHd69CHQUwVl83dxc/Tt1Kj2Lmbtknm+Un9aFJLR+Z0ulgxfy9zv9nks3136tmEUZP7E6Ok2TudLn79SayjrBYHKpXEgMfaMvzlXvgHGJFlmS1rjzP14zWUKqDK7IGZonkJNlNRbmHqp2vZuMrrngrklbcG0bZTQ2qqbUz520pW/XoIgPDIAF59U0xtLpzL58P3lnNJ0bd1z07nlUn9kFQSf/vLMjYo8RIpDSN5690HCI8I4IO/r2DDBjFlaNw4irffeRAkGP/qj5xTSOL9+jZj7JhsVq87zrTvtwqYX4gfb08eiMGg5cVX55BfWIlarWLUs13o1KEh776/lAuKe+/xwW3o0yODP3y0nMsK5bj2SqqswoLRoGXiqF7kl1Ty+t+X4pFlGsSHMX54N76Zv4Mzl8WqfPhgEXXx+69WIsvQODGCZwa1YcpPWympqMFk0DH+yS4s3X6CU95jBrbjfG4R368SzcqDnTOotjmYsVL83KdtY2wuF7M3CL3NwPZNyC2t4Nfd4nF5rGtzdp+7xrWicvRaNY91zmTR3uNY7E6igvxo2SCWn3eL56p9o3iKamrYeU7kS/Vr0ZhVR8+KVVNkKBqdmm3nriBJ0DM9hc3nLuH2yKRGhVPtdHAsNx+jVkOzhGi2XbwCQNvEWI7k5uF0e0gKDaLG5eR8cQn+eh1Rgf4cvpGHSoL06EiO5IvYheYxURwrEMLiJuFhnCkpRoY6mVKJgYHkVt90R3mdUvGKU8oly8QHBJBTLRqXhIBAchR3VG2nVKTZjxsWwbXx0+kotFbjp9Xiwk21S1lb+WzgQmR80wZuwV+rw+K2I8s3beAqwKzTUuWy4q8x+FxRXsaNCLt04ZTdBGnFtEcrgVqFwrgxYHVbBRBPJSt5UQLgp1MBuPEgKwA/az0AP3stgJ+ECrfPNu6uRSfWShJqPD7ycF06sQp80Qu16cS1oxdq04k9t0QvIDQ4igjZ29xoJQ0SbmWSI6NGJaZEqBSNz/3V/+kG5/SJ69htToJDzDS4hVNz6Xw+NqsTP38DCQ3Cbzv2kvKHscEdGCUFueUARN7FleSwe+3fd38avBOeyjLLXS8H4pN783Yp7N96hoPbz953g2M06xn51iA+mjSPHz9fR7ue6fd9bH2VnBbDl6sms2LODn75dhMFOaV8/tYC5n+5jsfH9qLnkLb3rfX5n9Dg2Cx2Th+6ysl9Fzmx7xJnDl/18Yi8FdsgnDbdm9A+O4Om7VN+U+PmdLjYvf4Eq37azVElywwgKj6EQcM60efRdvjfYfLndrnZuvIoC77dzDXljV5v1DLwqY48OqobwWF1Gxunw8WahfuZ9+1mn7A9OTWKEa/1pW3XVN+UT5Zldm86zYxP1vh0Ng1So3jxjYF1gmIP7b7AN39fSc5lMaVMax7PuHcG0UhpxHKvlfDl31b6RMRxiWG88tZAWrRrgCzLbFh1lKmfrKWywookweAn2jN8TE+MJh37dp1nyt9XUVwoJmKDHmnNyLHZ6PUa5ny3jbmzhPg4INDI+En96Zadzr69F/n4g5WUFFejUkk88XRHhg3voti/F/pWT0893YlnnunEmrXH+fpbEfPg729g0mv9yMiI409//ZX9ygeerI6NmDi+DytWH+OHn3bi9sjERAXx+zcGcTW3lBcnzRHrp0ATb0/oR2m5hZfe+gm7w0VIsJl3x/fn+Jlc30qqQUIYk1/oxcxFe9h/TKwPB/VoSoeWSfzu8xVU1dgJ9DPw+sherNh+kt1Hxf14oFsGsVHB/HHqatwemZS4UJ7o15rPF26jotpGoNnAi490Yu76g1wvqkCnUTPqwQ6s2XeWizdKUKtUPNe/DesPn+dKQRlajZphvVqxQtHbmA06HuuayfwdR3zNTKeMJOZsE81li2QBrlx1WEyuBrVJY/vZK5RbbISYjbRIjmHZYTHF6dgogYvFpRQUV+Ov15GZFOMjE3dMSeD4jXyq7A4i/c0E+5vYq4iJOyTFs1shE2fGRXGmqBiby0VsYAAuPJxTYhciA80cLyhArZJoHBHma27SIwX7RkamSXgYp71i4pBQztUTu3CnTKmEwEByFEt4tJ8/12sq0KgkAvRGwbXRaJElmXKHhVCjiXLH7WngIQYTxXYxrVFJMtUuG8F6Uy1hsYFyZ42S/C2LuAWt0ReuGaAwbswaHbZajJuaehk3FgxqIRj2IPsAfkaVBjeKNVytrgPw866n3LITYz0AP51KUuB+whoumhMvnVhwa26jE0ugpjad2IVBJVGXTiyuRyPJtejE+KziEk50kgZwoZW0SpOjVdZUosnRoBZW9f9McO6vjiq7+NbtGty2yjl5VPyHa9IsDpXq9pbRG/6XknqHBueGmOBE3gXVb79Pvk1gsHij86607lWtOjcWDc6Oczw6uvt9HQPQc3Artq86yt6Np/ho8jw+XfTP0Yl1Bi2PjO7BgGeyWD13Fwu/2UTh9TK+eGchM95bRvveTenYuymtuqbiF3hnF9m/e0XlsDm5cjaPCyeuc/HEdc4fz+HiydzbRN1BYX606JxKy86NaZHVmIi7WPvvVFfP57P+l/1sXHzQF8GhUkm07dGEAU91pHXX1Ds6quw2J+sXHWDRzK3k5wiLtNnfwIPDsnhoeOfbVp1ut4dNyw8z98uNvoliVFwww17pTfda+hmA8ydzmfbRao4fEGvZoBAzz77ci76PtPHdn/zcMqZ/vIadCvU7KMTM86/2odcDLVCpVNhtThbM2s7PP+zE6RAi4ief78Jjwzuj02m4cb2UL/62kkMKDTm5YQSvvvsAaU3jqCi38PmHq9iorLpiYoN57Z1BZLZK4uL5Aj58bxkXFf1Ol+5pvDK5P3q9hikfr2aFl2AcH8Ibbz9ASsMIpk/bzKJFQkcSExPEW28/QHRMMH/48xL27BFvuq1aJvLmG4M4f6GAkS99T3mFBb1ew9gXetKhXQp//ttyjijOt9490nnhua5Mm72ddVvE79+qeQKTXurN9z/vZv028SbfNjORl4Z34/PvN3NY0dY80KsZ3Tul8rspKykuq0av0zDxuZ5cyS/l3c9WANC0UTTDHmrHx7M3U1BShV6r5pWnu7H/5DWWLRTU4b4dU4mJDOIvs9Yhy9AkKZK+HVOZ8ss27A4XMWEBPJHdkm+X76HG5iAs0MzjPVvw/br9gocT5MegjunM3ngQp8tNYkQQbdISfHqblg1iMBq1PmfUgNZpHLlyg9zSSgxaDf1bp/LrQQHvS40OR6dTs/HURSQJ+mU2ZtOZS9icLhJCAvE3G9h+4QpI0D1VkIk9skxadDhlNiunC4rw0+loGBHC7iu3i4nTI8O5UlFOjcNJlL8fbsnDxdJS/HQ6QvxNnCoqQqtSkRQSzKmiQkCmcXior7lpVLu5CQ3hYvntzU2i0txIEkT7+fsCMwMMevIsVZg1WlDJSr6UkXKnFY/HQ5TJn0KlofGmgaslCbNWR5nXBu6245Q9hBnMPmFxkF5HhdOCn0aLXbbjkmWCtUYqXVbUEhg0Kqxum88GfifGjV89jBuTWqPkSwkwn4SMTu2NZdDcnNIoGVLegMybAD8ZtcKv8dKJjYqGRuhrhHvKoJLug06sTHBuAfh5XVSiWbkZvSDhuq250Uk6hZmjUZohjSI0Viv35f7q/3aDozhMWrW/XWNz2huxUI9Dyu32+HJykhvVTyguKhBvxuFRt+tzvOV0Cj+/Rnv3p8G77igprLzr5bzVplsqU9+D4/suUV5Sfd/rEkmSGP/XR3mp30dcOnWDjyfP483Pnv6nSL0gBMgPj+rOgGc6sXrubpZ+t5WCnFK2LD3IlqUHUWtUZLRtQFrLRJLTY2nQJIbYBhG+N9Z/1YqqpspG7qVCrnv/XSgk52IBORcK6hVwR8QGk9GuARltGtC0XYN/mFpcU2ll64ojrPtlfx1XVUhEAH0fb0e/oe3v2ixVltWwYu5uls3Z6ROmBwSbefi5LjzwTMfb7N4ej4cda0/w41cbfUC/kHB/nnypJ32HtKkzaSrMK2fW5+vZtOIIICaAjzzbmaEju/p0NjaLg4WztrNw1g4cdhcqtYqHnmzP0y/2wC9A3Pbe7ef45sNV5CmNVOsOKYx7ayCx8aG4XG5+nr2TH6dtwW53odWpeWZUNx4d1gm1WsXmdSf4+tO1VJQrPJyh7RjxYg/UahWzZ27lpx92+qY2L0/sR/fsdI4dvcaH768gXyEYP/JoW54f3Z1r14oZM+Z7H8zPa/8+dPgqv//jYsrLLWi1akY9340BAzL5dsZNIXFKgwj+660HuHKthJHjZlFVbcNo1PLa2D7Ex4cw/p353MivEK6kp7Jo0yKJN95bzPW8ctQqiVFPdaZhcgSv/Xkh5ZVWjAYtk17oRX5JFZP+uhiPLJMYG8LE53sy/ZddHD8ndFZD+7UkKiKQdz5fgcvtIS4yiDGPZfHNLzu4XliBVqPmpcey2H8mh9XLhW38oS4ZqLRqPv15GwAdMxJJjg3j44Xi58yUaFKTIvly2U7l5xjiwgN9fJusjCRceFi4U6ydHmiXzrGcPK5cvYFOo+bh9hn8euAUVoeLmGB/GsdFsHi/WGd1SUviXEEJ+QVVmHRastKSfHqblonR3Kis4uqNAsw6Lc0SotmskIk7piRwODcPq9NJTKA/Wo2aI3cQEx/KvYEMNAoPJaeqHKvTRXSAH3aPm6vl5QTq9ZgMOs6VlmDQaAjzN3GutAStSkVMQADny0rQqCSiAgK4WF6KRiUR6e9fxyl1taocg1qNSa8lz1JFgE6PCzclNgshBiMVTitul2hovAng3jRwCZkQJQ3cqNEgI1PlshGqN9aC9glhsbCBq6h2WW+3gbusQpuDE4fHQ6BWnK+WQKeSfNobq8eKBBiUzKlbGTcOz03GjVoClSTjriUiNiixDDcBfg4f40YjSUhKQOatAD8vnO8mwM/la26805nb6cQuhU58E+AnXFTOO9KJpTqTG9HcaNAqayqtsqbSIGYN/xEZ31ddvlCASqWnRT0am/OKyDO1Hnt4UUGFsLlq1UTdYUJToayTvNOX+kqtFpOhe9m/YxKE7qGkoBKbxeFD5N+p4pLDSW0ez9ljOWxYfOA3TXFCwgN46/Nh/NfzM9i28iihkYG88LsH7/v4u5XeoGPwyG489HxXzhy+ys7VR9m38RQ5Fwo4tvsCxxTXC4hYhMTUKMJjgpH0YjVUXl7B9pVH0Om1SCoJtTeCQSVhsziwVIsIBmu1nZoqG6UFFRTnV1CcV05JQUW9WVLeCgg2k9I0joZN40jJiKVJ6+R/aELjLZfTzaHtZ9m49BB71p/AYRdiXrVGRbseTej9aFvadm9yV+F13rUSls7awdpf9vmmfZFxwTw8ogt9H2t32+tAlmV2bTjFj19u4Mo5MWH0DzTy2KhuPPB0xzorwepKKwtmbGXp3JtC456DWjBifG8iooN817dlzXFmfrqW4gLRXDdvk8zYtwaSpDT2BXnlfPPhanZvFcyTsIgAXpzYjy69BEDy1LEcPn9/hc9xmNkmiQlvDyI2IZTCggq++GA1e3cJJ2NSg3AmvvMAaRmxnDuTx0d/Xc5lpUHL6prKhNf7YzDq6kQtREYF8vqbA2naPJ6fftrNj3NEMxQSYmby5AE0z0zgq282smq1iBRokBzO2289gMvtYcz42eQosMChQ9ry9OMdmfrdFlauE1OktMZRvDtpIDv2XeBvX67B7fYQGR7A7ycO4MylQsa9Ow+Xy0NEmD+/mzCAPYcvM/m9RcBNl9SMX3b7VlL9u6bTuV0Kv/98BRXVNvxMeiaN6Mn2w5dYsP6IeA7aNaJVejx/nr4Gu9NNdFgAo4d0YtrSXdworkSvVfPiI1lsPHSOE5eUaIe+rTmbW8zcDWKtNLhLU3JLK1iwRVzn4KymXMgrZsW+00gSPNY1k51nrpJTfFNvs3jvCWrsDsIDzHRITWT+LtH4tGoQg8XlYvMpYQkf0DKV9ScvYHO6iAsJJDLYj3UnxfPXo0kDdl2+hs3pIjY4AH+jnt2XriFJ0LlRkk9vkxEdwfWKSioUMXGwn9EnJm5eS0ycWUtj0zgslCuV5djdbmIDAqhw2LhRVUWoyYRH8pBTWUGg3oBWreJqRTl+Oh16nZocJVNKp1WRW11JgE6PrBJOqRDFKVVmtxJuMlFqv5kAXjtfyuuaijCbKbAJYbFBo6LMIZxQ1S47HoSwuNQhGDhBesNtNnBvGriYzOgU7Y0OmzKZCdDqqXYLmrCMC5fsIVCnU3Q2Qr9Sm3Ej9C/uehk3tVPATWoNbiWWQausoLzNjU6l9rmnbgf4qZBx+sjDPoExdh/jpn46MVDbGXVXOrGkrL80dZqcm82NXqyplCYHdEiB7wGD7/Rns079n25wPB6Z+MQQwm5xmdRU28i9Jv7wNapHh5KrfDqMjg+54zqhSsHvB9xl9XLT/n13MmNAsJmAYDOVZTVcv1JMwzsIm2tXv8fbcfZYDmt+3seQUd1+E5m3ZVYjJn7wOB+89hNLvttGaFQAQ0Z1v+/j71WSJNGkVRJNWiUx6t2HyLtazOHtZ7l4MpdLp3O5fDoPu9XBeSWOwe0Rb+4ej5s/vzgNjeq3cXpqV3C4P7ENIohrEEFcivjaID2GsOigf5peLMsy549fZ9PSg2xZfpiKkpsrxcTGkfR+tC09H2pdL7um9nWcOnSVJd9tY/eGm0niKekxPDq6O136NbstcFOWZfZtOcOcLzZwUWnMTX56HhnRmcHPdq7D23E4XKxcsJefpm6mShE0N2uTzOjJ/WiccZOCfP70Db7520pOKROniJggXpjUjyyFfO1wuPhlzk7mz9yO3e5EpVbxyFMdeHp0d0xmPdVVNr77agOrFh9EliEg0MjoCX3oPSgTj0fm14X7+e7bTVgtDjQaFU8914XHh2Uhe2RmfruJn3/ajcctExhk4uXX+tItO50Tx3L48O8rfSycAYNaMGZcNoWFVbzy8mzOKU1dt25pTHi1LznXSxk95jtu3BBriMcebcfwYZ1ZvOwQ383ejtvtISzMj7cnDcTPz8C4ST+Sk1uGJMFTj3XgoQGZ/P2LtRw4KhqUHlmpjH62C198t5ldB8RUomv7Rox4vAMfT9/IibPisX+4Xws6t23Iu58up7isRqyknu9BblEl73y6HIDU5AhGP9aJKXO3kpNfjlqt4qWhWVzJK+XD2ZsA6NAskXbNknhv1nqcLjex4YEMG9CGb5buorzair9Jz+gHOvDTpiPklVRi0Gl4bkA7luw8QV6p+PnZ3q1ZtPM4xZUW/I16hnRpzrztR7A6nEQH+9Mp/abepnliNAa9hmUHxAquf6tU9l3KobjKgr9BR1ZaEssVeF/LpBiKLRYOXMlFp1bRJS3Zp7fJjI/iRmUVp/OL8NfraBwT7mtuOiTHc+BaLi6PhwZhwVQ67FwoLvWJiQ/dyEOShID4qJdMHB3J8UKxnqwdu5AYHEheTTV2t4tYf39KbVYqHC4i/cxUOO1UWe1Ems1UOG1U20SmVKndisPlJtpPMGtudUrV/j7K7E+epRKNSsJfp6fYVoOfVosTFzUuO2EG801hscFEqaMajSSh12ipdFrrtYFrJAmtSo3FbSeo1vl+Wh01bitm9c1VlLe5MaiEy0kwbrRKUKYWtywmMrcybmqngJvVWlyyFbWkQqWsmW4F+KmR0SgE4voBfoogWJKQawH8vHTi2roanSSLxgQxMbqVTqxBJITfpBPLaCQVEm50khZw+5obnaRHwo1G0iHhAckPKXgqku3+wa7/pxscqN8hdV5xSEXGBNVr8b6uCDDjlMlKfVVZLt48Au4ywdEob1Su++DbxDcI5+TBGnIuFd5Xg9NtYAum/XU5uVeKObrnIi06/rb4hB4PtaKksJKZ769gxl9XICHx8Miu/5YIg+jEMKJrxUq43R7yrhZz9Vy+L35h45tT8XjcJDeNxKj1vxm/4JaVCAYdRrOIXzCa9Zj8DYREBBAaGUhYdBBhUYGERgVi8rs3XO+3lCzLXDyZy/ZVx9i++qiPMgwQGGqm+wMt6Tm4NY2axd31sXM53exaf4LFM7f5qMMg1o2PPNeVFp0a3na8LMvs2XSaed9s4rziojKadAx+NouHR3TBP/Dm6srj8bBl1THmfLWRPGVqkdAgnJET+9GultC4pLCSH77cyPplh5FlGb1By+MjuzLk2SyfVmz/zvN8/eEqbig6oKYtE3nlrYEkNYwUU591J/j24zWUKeu03oNaMHpCbwKDTFy+WMhnf1vJKe8KuGkcr70ziMTkcE6duM7H76/gmsK16Z6dzrjX+mIw6vjmqw0s+WW/gPmF+zPxjYG0ap3EokX7+W6mcD35+Rl4ZXxvunZNY/acncz/eQ8ej0xERABvvTGQyMgg3vz9Qh+RuFvnVF59pTer1h7nux934HJ5CA/1493XB2G1Oxk1cQ4VlVb0Og0TXsgmKiqQV363gOLSanRaNS8/34OQYBPj/7iQKmUi88aYPlzNK2XS+2IllRQbwsSRPZm5aDdHzojn6OFezWmQEM47n6/A7nQTGerP+Ke68t2yvVzIKUYlSYx4sB03SiuZsmArAF1bNKBhQhh/m7sRWYbUhAh6tWnMF0t24nC5iY8IYmDHdGau2Yvd6SY2LIBerRszc+1+kbAdHUrTlOg6fButTs0ve8S0akCrVI7l5JNzrULR26Sx7NApXG4PyeHBhAaaWX1MrKF6N2vE7ktXqbI5iAgwkxAe7GtuujZOYs+VHEEcDglEo1Vz4FouGkmibVKcT0xcm0wcFxSAw3NTTBwd5MfR/HwkSQiIjxeK2IWmkRGcUMTEtcnEKcEhXCovxaNobK5WleORPb7sKA9Cb3O1duxCPU6paD9/ci2VqCWJIIOBAmsVZq0WWfJQ4bQK8rCS8B1h9KNIyZcK0RsoddSIAEvcWN12paHxQv3q2sAdHichegNVPhu4WtHeiHBMCRk/rUbobNQiUFMwbtTYPLZa3Js7M27cslNZT1l9jJvaKygvwE/oclwKwE9SAH5iPVU/wE+Ih28C/EBVD524bvSC1/4tJjh1oxckZZIjXFNqhLBY62tuxFdUYUjBM5G0TcB2f1IN+E+DQ7OWt8csXFI+CTa8Q8TC/SSAW6rFOsR8lzdU7xuG1y5+t0psGMnJg1c4d/w6PQa1uOfljWY92YNbs2LubuZ+vp7MDim/uTkZMqobpQWVLPluG9P/upyjuy/w2geP/yYL9D9SarVKTFhqARIn/i2IkpISXv3kMdLT0/+tt3+v8ng8nD9+nV1rT9zW1OgNWtr3yiB7cCtadUm9J/unvKSa1Qv2svKnPZQoui2tTkP24FYMHtGZxHpceh6Ph53rTzL/281cUppxg0nHoCc78OjIrnXAkbIss2/7WWZ9tp7Lyus6OMyPZ8f1os/gVr5pkM3qYNHsnSz8fgc2xS3WY0Bznn+1j4/zlHe9lG8/WcOercJRExLmz+hX+9CjXzMkSeL61RK+/GAVhxVAZlxiKOPfHkRm6yQcdhezpm7m5x934XJ5MJl0PP9STwY90ga7zcnXU9ax9BcB8wsOMTN+cn86d0vj+LEcPvr7SnKVpqzfgEzGjMumssLKxIlzOaFEMLRr14BJkwdQWWVl3CuzuXhJrLb69G7KuLHZ7Nx9gXf+tBiLxYHRqGP8S9m0zEzkj39d5hMSd+3UmPEvZfPjwr0sWSWEyw2Tw3nntYFs2nGGD74V4t7E2BDemTCA1VtO8PH0I4DIknr1+Z58O38nB0+IqdeAbhl0aZfC7z9fSXmVIBdPHN6D/ady+OgHMaXplJlMj3aN+MvM9VhsDoIDTLzyRBfmrDnAxdwS1CqJ5x9oz6lrBcxULN+DOqbjkeDLpUJf06VZMoEBRr5ZISIZOqYnYjLqmLVerPF6tkih3Gpn8W4hHh7cIYNDV3K5WlQu9DYdMvh1/2msDuGiapoYxeL94rIdGydwvayC/Zeuo9eo6dE0hTUnziHLkB4bQY3Tyf4r19GqVXRqmMgWBd7XIj6aq+XllFZYCTIaiAsOrCUmjmVfjmj2MqIiuFhW6tPYuCUP50tEoxMeYOZkUSFqlURKaGi9zU3t2IWGoaFcKC/hVjFxcpD4/l5OqTxLFSaNBkkFpXar0qRY8VA3MDPcKPKlNCoJg1qtQPsMVLm8aeDCKSWgfmpBJNYYqKllA69yWdCpVMi4RdyCYgNXS6BTSyJLSqPH6hZNi04jCZ2NYgMXUxdhDTdrtMp66nbGjUGlxa1A+nSSB4/s8QmM6wL8ZDy4lcmN7S4AP2ctgJ+krJ7EBEdSnFES7nroxN7oBRVqZYKjVsB9QoMjhMRiXaWr29yoE5CCv0PS1B+JdLf6P9/gpNcTTuiLWEipn0BcpOgRwiPrB7jJsuwTEN/NOuyd7lSW39sd1bxdA1Yt2MvRvRfveVlvPT6mJ+t+2c+JA5fZt/k07Xv+tsZAkiRGv/sAMYmhTHtvOfs2n2bcwE94/ZMnaVFPNte/swIDAykpKfkfi2twOlwc23ORXetOsHfjSUoKbn6K0Bu0tOmeRpcBmbTr0QSj+e5cI4Bzx3NYNmcXW1ccwaW8VoJC/RjwZAceeKZTvU2k2+Vm25rjLJi6hauKPdxo1vPgMx15eHjn24jYJw5d4fvP1nFSEdOb/PQMfb4rg5/u5NPveDweNq86xvefr/fpbJpkxvPC5P6+CBKb1cGCWTtYOFu4o9RqFYOf7MDTo7th9jPgsLuY73VPOd1odWqeGNGFocOz0Ok0HD10hc/+vpLrytq3Y5fGvDy5P+ERARzYe5EpH6yiQBEL9+7fnDHje6PVqvnq83UsXXzAlzv12uT+tG2XwvLlh5g2dTM2mxOjUcdLY7Pp27cZvyw+wPeztuF0ugkMNPLahH5kZibw4ZQ1bNshpg9N02N5941BnDqbx8iXZ1FdY8do0PLKmGxSG0Ux+Q+/cPmaePMc+lBrHuiXyV8/X8Opc6KRfKB3cx7s25z3v1rLxatKVMNDbWmREc/rHywV4mK9lokje3I1r4y3PhERDI2TInhxaBafzdsmIhhUEqMe6UhplYW/zBQRDC1TY+nTqQkfzt1Mjc1BaKCZFwZ3ZNaafdworvRZwDccPM/ZnCJUksQzfVqz/3wO205dFqu1Hq3Yc+4aF85cRa2SeLJHS9YfPU9eWRVGnZZHOzfjlz2CbxMRaKZD4wTmK0LjlskxOGQ360+IsMwBLdPYfPoSNXYRs9AgKoTVipi4S2oih6/nU2WzE+pnIiE0yNfcdGmUyK4rObg8HpJDg7G7XZzIK8Co0dAoOox9ObnIQJv4GA4oZOLUiFCuVgoxcZS/H048XC4rw1+vI8Bo4GxJMTq1iuhAf86UFqOWJBKCgjhXqjQ0IcG+5iYxOIjLlWLVGKtEMKgliQg/MznVIlPKTxEWiwmNcEqFGIxU+oTFfhQqDY03MFMCAvUGiu01mDVaXLITq9tBaC1icYhBT7nT4ksDt7odt9jANVS7LJjUOuxybRu4FYNaaF7csuxrbnQqCSQ3blnGT7GBezU6MjImjXBP1ce4Map1iohY2LhBxqAkhHsZN96VUf0AP5VPYHwngJ+wiLtuAfj9djqx4NzIaCSNuC6lyUGTjhQ8A0l97+Do+ur/dIMTFGwmShFU1i5vFk7SHRocL6MjrB6CMdx0RwFo7/IJ3vuGdD/278wOwul1+Wz+fTujwqICeWh4ZxZO28L3H62mTbe0e4Y63lqSJDFoWBYZbRvw/vg55Fwo5J1h0xg6pgdPT+jzm6F9/2j9T9CMi26Uc2DbGQ5uPcuhneewVtt95xnNetp0SyWrX/P7bmpsVgdbVxxl1fw9nKu1hmrcPJ4Hh3WiS//Mem35DoeLDUsPsXBGXXv44GezeOiZTrfxcs6fymX2FxvYr7yp6/QaHnqqI0NHdsW/libs6P7LzPhkjS/1PiImiJET+tC1b1MkSUKWZbatP8n0Ket8rsAWbZMZ+8YAEpXp2oHdF/jyg1XkKSGXbTo2ZNwb/YmJC6GywsLnH6xi3Uoh8A0J9WPcpH507p5GVZWND99bxjov6C8qkAlvDKBt+xSOHL7Kxx+sJM9LMB6QyZix2VTX2Hjj9XkcVmIoMlsk8MYbA3F7ZCa9Po/jyuqpQ4cUJr/Wn/OXCnl+zHeUlFajVqt4flhnBg1owZfTNrFuk3AEiZDMgew7fIUxk3/E4XQTEmTi7QkDqLLYefGNudRYHPiZ9bz+Um8sNicv/34+NruLoAAj74zrx9FzN5j89yUANEoMZ/yI7kxfuIujZ2+upBolRfL2FyuwO1yEB5uZ8HR35q45wKlLolF9un9rbC4378/eIB7nxjF0btGAD+dv9ulvHs9uydTle6i22gn2NzKsT2t+WH+A8hrBw3miZwvmbjpMldVOqL+JQR3Tmbv1sFhhhQXSqlEcs7cKvU3L5BjUGhW/HhD29gGtUtl3+TpFlTX46XV0TU9mhaK3aRYficXlYteFa6hVEtkZDVl/+gIeWcD7LE4Hh3JuoFOraJMcz7ZLijs1PoazhUXUOJxE+vthMGg4eiMfjUpFRnQEBxQxcUuFTOwTE1dVYHe5iA3wp8rp5HplJcFGA2qNxBVFQGzW6bhcXoZRoyHQpOdyRRkGtYYAk4hgMGg0mHU6rldXYtZq0WpUSkimHqfsotRuJcxoosxhwS2LhqZACcn0OqVAJkxxSonATIkKp5VgvUj4FtMaYQNXAX46DZW3pYGbqFS0NzqNhNVtvw8buE6JYNDiUng2ZrVWWU8Jno1oVrzk4tsZN6Y7Mm4cPsaNd2XkhfPJOHyMG60kmhORHeUF+InrMqpEk6OXxARHDUqD40Gr8mpwhLBYL3knOPeiE0vKeaCWxCQHXQekoK+RVP/4xuD/dIOTmh5Tr67BawFPrAfwB/g+6YbfAcHvdaXA3Sc4QQq3xBu6ebcKCvEjOTWKy2fzObLnAt0HtrjnMQCPvdCd1fP3cvV8ASt+3MVDwzvf13G3VnJaNJ//+ipT//tX1szfy4JvNrFp6SEeHtmVfo+3v683+H+m/l/QjGuqbJw8cJmjuy9wcNsZrp6rG1gaHO5Px14ZdOzTlOYdGt43I+jq+QJWz9/DhiUHfQRhjVZN1wGZPDisE6mZ9Y9erTV21izcz6Lvt/sQAQHBZh4ensWgJzv4LNreunKhgB+/3siO9eLNW6VW0XdwK55+qWedZvzapUJmTlnHXmXVZDLrGTqyC4880wmdXqxNL53P55sPV3NMYUVFRgcx+rW+dO4pEsEL8yv49pO17Nws3iBDw/15aVI/OvdsAsC6lUeZ/uUGKsotSBIMfLg1z4/pidlPz5aNp/h6yjrKy2qQJHjo0bY8/0IPZGQ+/3QNy5YqBOOIACa+PoA2bZNZseIIU7/dhNXqwGDQMnp0dx54sBUrVx3l22mbfNOcsWOy6dEjjakzt/LrCrFmSogP4d03HsBmc/LC+B/IV8B/w57oyKC+zfnw63XsPSimDx3bNGD86J7MWriHNZvF49gsLZZJY3oxe9FeNu4Ub/qtmyXwwtNdmDJrMyfPi+nOI30yad0sgXemLKey2obZqGPiiJ4cOJXD378XjUv7Zon06ZTG32ZtoMpiJ8Cs55UnurF42zFOKq6op/q0orTGyheLBP+mS2YDEqKC+fhnocdplhxFi9RYvvh1p2gy4sLJbBjDtytFSnhGUhQJkUF8v1GsqLLSErHLbpbuE7/PoDZNOHz5BtdLhd5mYJs0fj14GqfbTVJYMJHBfqxUwjKzM1I4cC1XgP1MRtLiIlh7SrimOjVM4FiugPdF+JsJDzSz87JobrIaJLDr8jVkIC0yjLyaavJLqwk2GQg2mziSl49aJZEeHclhpbmpLSZODQ/jQlkpLo+HhKBACq3VWC0uIs1+VDsdFNRUE2YyYZNd5NVUE2Iw4kBEMIQaTVjcToptFsJNJiqdNiwOh1gz2WrwUDdTKrqWayrK7CecUioJo1ZLqcNCgE5PjduuRDDcDMwM0YsIBr1ahUrlweK2E6w3UqU4pQK1BiqdFoxq4aRyejy+NHC1BPpaEQzCBi4rNnBbLRu4jF6lxu6x+2zgKmQ0SgSDn1qLU7bewrgRLJzajBvNLYwbg9J4CH6NsHYbVSqFbXMngJ/zNoCfmLw4lebqTnRirZjo3EInVqFSbOMqNJIKFRIqSY2EDIb+SIEfIkn/uKEE/o83OA3rcUiVl9ZgqXEgSRATX7/GpkJZKQWF1p8hVbtpkuU7Uxe9jJyK0hqsFvs9IxvadU/j8tl8Nq84et8Njn+giWcm9OHb//6VGX9fScOmcWS0TrqvY28tg1HHhL8+RqvOjfnmj0spyitn2l+W8dMX63ng2SweHJZFUNidHUL/TOl04oV++fLlf9l1VpVbOH3oCsf3XeLYnotcOHG9TvyCSiWR2iKBNt3SaN01lUbN4u6bg2OtsbN99THWLtznS/QGQSoe8EQHeg9pc8cpXHlJNct+3MXyeXt80Q2hkQEMea4L/euxh+deLWbut5vZvPKoL3+s+4DmDBub7UMMAJSVVDP3282sWnQAj9uDSq1iwJA2PDPmZhBneVkNs7/ZxOolB/F4ZHR6DY+P6Mxjz3ZGb9DicLhYNHc382Zuw253oVJLDH68PcNeEO6pa1eK+eKj1T6IZlKDcF59axDpzeIozK/g/T8tZZ+CA0hICmPiWwPJaBbP/n2X+PSjVRQqHx4GPtCCF17KprrKxptvzPcFZDZtFscbbwxEp9Pw9rsLOaA0JpnN43nz9YGUlNUwetwP5CqgzSEPtea5YZ2Zu3Av834RYZ7RUYG8O2kglTU2Rr42m4pKKzqtmpee605a4ygm/XkRufnlogka0p62LZN4629LyCusFKulJzsTHRXEa+8totpix8+kZ/LoXpy+lM87U4RLKi05ktFDs/jsp61cvVGKSpIY+UgHqix2/jx9LQAZDaJ4ODuTKQu2UFkjmp2xQzrz85YjPv3NiP7tOHLpBj+uF03fw12aUlBRzez1InKhX9tUSqotLNgmpmSDOqRzsaCElQfOIEnwaFZztp+5TF5ZFQadhsHtMliy7yQ2p+DbpCdE8ss+RW/TKIHcikr2XMxBq1bRq3kj1p44h9sj0ygqFFmCnRevolJBt8YN2HzuEjLQJDqcMpuNE3mFGLUaMmIi2XlZ6JDaJMZy+Eaeb11V6bBzsaSUQIOeEH8jx/LzUUmQGhler5g4NTyMc6VKBEOQiGBwy0JLc72mEresRDBYqnDJHuL8A7hhqcKjfO91RNUWE9d2SkWa/ci3VikRDFoKbdU+p1S1y1aPU6oGlQRmrVhF+SuWbbdH9tnAVYBJo6PaZRXQP08tG7jr5orJKXsI0ol8Ke+qprYN3CvAdclO/BWdjVbR7cjIPhFxXcaNEsGgUisp4IJxAx4MSgRDXcaNF84HHhw+xo13OiPWRV7GDYDT19zUBfh56cS1AX5eOrHzLnRilXB4KV8BMD2F5P97JOkfyy6sXf+nG5whT3S47TQvqCw8MhBdPdMXu83pY5r43wJY85ZWd/OJcTndUP/F8A80ERhsoqLMQu7VEhreIXPIW9kPtmTB1C0c2H6OsuKq25D8d6oHh3Xi5IHLbF99jPdemcMXS8YTeof12v1UlwGZtM9OZ8OiAyyavpUbV4uZ98UGFk3bQtseTejUpxnteja5bcJQu9xuNzabDavVes+v69atY+1a8abw7rvvEhERwciRI3/TfXY53Vw9n8/ZI9c4ffgqZw5f5bqitapdMYlhNGvfgFZdGtMyq/Ed4xLqK1mWOXPkGut+2c/WlUew1gixrkqton2PJgx8qgMtsxrdsUm6ca2ERd9tZ8PSg77XWGxiKEOe70r24Fa3vR7zckqZN20zG5Yf8bGUsnplMGxcNkm1okcsNXYWzd7Joh92+gTEHXuk8fyEPsQr4ZpOp4vlP+/jx2lbqVEE8l16ZTD61T5EKmvcA7sv8PVHq30IhWYtE3n5jQEkNYzAbnPWERHr9RqGjerGI0+0R5Iklizcx3dTN2OzOtFq1Tz5bBaPP9MJm83JB+8vZ51CMI6KDmLi6/1p2SqpztRGp9MwalQ3Bj/chg0bT/Ll1xuoqbGj02kYPbIbgwa2ZM68XfykOKfCw/x5c+IAQkP9mPDWfC4oouP+vZvxwogufD9vF7+uEU1BSlI4v5s4gJ0HLjHunfkK78af343vz9EzNxj/Xwtwe2SiIwJ5++W+bNh5lm/mi+lKRqNoxj7dhS/mbuW0sm4a2q8liXGhvP35ct9K6tVnujNv7SGOK6ngj/duiVqn4s/fidd1enIkA7LS+eyXbVjsTkIDTDw3sB3frzlAcUUNRr2W5/u3Y/Gu49woEXqcZ3u3Zvm+0+QrzcuT3VuyeO8JyqqtBJoMPNAhnQU7j4qU8dAAMpNjmLdT/M5tUmKxuFw+vc3AVmlsPnWJaruDyAAzjWLDWXVMTHE6NUrgVH4RZRYrgUY9aTERbPLB++I5nJuP1SmSwE06LQeu5aJWSbRKiPGJiZvHRHG6qAiH2018UAA1bieXSssI0OsJ8jNyqqgIjUqiQWiIr7lpEhHO6RLxf7RxqLfRkWkUGsr5esTEtWMXEgODuFYtvo/zD6iTKZVbT6aU+z6dUjcDM22E6A1UKtOaECU8Uwh95TumgftpxGTGawO3uC232MC9OhsNbllEMPgpjBu9SkQ1SMiYFMaNdz3lneq4ZdcdGTce2eFj3Ih1k9OXCyXjQS+p7wLwEyJi/S104psAP7kWwA8kPEp4pguNj04s7N9eMXFtOrFKGQpIfhPAPPZf5tb9tzY47733HitXruTIkSPodLp6BaLXrl1j3LhxbNq0CaPRyFNPPcVHH33k+8ReX9ntdiZPnsy8efOwWq1kZ2fz9ddfExd3u2D4blVfBINXSxB1B8hbdZXVd6zRfPt9vH79OufOncPmqMSgC6ijx6mvYpPCqSi7Kvg292hw4htEkNo8jrPHrrNl5VEevs91kyRJvPb+Y+RcLOTKuXz+Ov5H/jbnRbQ6DS6X674bjfq+Bra0UOaXy9ljVyjLqWDvD4v4bJYbGRcGswadSQ0qGZfbid1+8zin03lf9/3WkmWZF198kb59+9b7fHs8HkryK8m9UsTl03lcOnODS6dvcO18gU/MW7tik8Jo2q4BzTuk0Kx9CuH1aLLuVQW5ZWz69RAblx4kV8lnAohJDKXvY+3o9XDrOyaKy7LMyUNXWfrDDnZtOOWb+KU2j+Oxkd3okJ1+m26q4EYZ86dtYd2vh3wE5rZdGjNsXHYdlo3L6Wb14gPM/Xazbw3aOCOWURP70rxNsu/29+04z7RP13BdcYOlpEbx0uT+NFMQCvm5ZXz76Vp2e91ToX7CPaVodQ7sucgXH632fTho16kh4yb1IzommIvnC/j07ys5q/B5MprH8dqbg0hMCmP7tjN8/ulaykrFqurhIW15blQ3KiosvD75ptamadM4Jr8+AJNJz3/9cTG794gJUFpaNG+9PgiX28O4iXO4oGjnevVI55WXerFu00ne/tMiHE43gQFGJr/Sl8jIAMa/u4BrXsDfQ20YPKAFf/9qLUdOCg1Pz6xUhj/ekSkzNvoSwHt1TuPRga14f+o6X5jmMw+1o0FCKK9/tJQaq4MAPwOTn88W4L7vNwKCZdO3cxP+NmsDlTVi2jPhya4s33mKI+fFm/+QHs3xIPPhvM0AtGocS8vUeD5ZuA23R6ZBdAh92qcybfUeHC43MSH+9O/QhFkbRORCXFggXZo34PtNB/DIMo1jw0mJCWWOorfp0DgBm8vFioNivTaoTRN2X7jq49t0SW/A8sPivKbxkdjcLrafu4JKBb0yGrHxzEVcHg8p4SGggj2Xc1CrJDo1TPTxbZrFRJJbUUleZRWBRgPRwf43xcQJsRy47nVNifRvu9tNbKBodK6WlxNo0GPW6zhbUoJerSY6yJ/TJUWoJEgKCuZcaTEgMqXqa24SAgNF7AIysQEBXKsuRyVBmMnM9ZpKdCo1Jp2GAms1flodbtwiU8pgotzpzZQy+xqasFpOKZNGQ4XTomhnbHUCMyXAX6ej0mXBT6PH6hb6GG9gplqS0NQiElt8NnB1PTZwDTaPFZNKh0MB85nUKhwem7J2svumLa46EQxqkFzUZtwYlGaoNuPGpDBuvC4ojXKel3HjwVEL4KdS9DWe+wT4uRW9Tm06sbsWwO9WOrFOCd68SSeWAv6EZHq83r+T/2j9Wxsch8PBY489RseOHZk5c+Zt57vdbgYOHEh4eDg7duygpKSE4cOHI8syX3zxxR2v99VXX2X58uXMnz+f0NBQJk2axKBBgzh48CBq9T831spXRttRdwjJrFGEpiY/w22fxGfOnMkLL7yAx+MBJDLiBvg+id+p4pPDOHX4KhfO5NK6c/I9GwpNWDHXy4/y0QdnuVC4B7vddt8NSXV1DXk5RWy67OLLJZPxyC5crrvfv3+q7h1+DoBWq8VoNGIwGG77arPZOHLkSJ3Lu91uVi7eREpcOmVFVZQUVJKfU8KNq8XkXyuto4GqXSY/A6mZ8aS1TBT/WiQQEFz/mvFeVVVhYefa42xceogT+2+uzfQGLZ37NaPPo21pVk/GmbdcTjc71h1n8awdnD+R6zu9TZfGPDaqG83aJt92bF5OKQtmbmXDr4dxKXDI1lmNGDY2m7RakSIej4cd60/yw5cbyVWYTTEJIYx4pTddemf4rvfS+XymfbqWw0o2VFCImRFjs+nzYEvUahU2m1O4p+bsxOlw+9ZRz4zujtlPT3FhJVM/X89WJZsqLNyfsRP7ktUtDZvNyfSvNvLLgj143DIms55RL/Vk4EOtKC2t5o+/X8SObaJhSkgIZdKbA2mSHlvHIaXXaxg5shsPDW7Nlq1n+OKr9VRV2dBq1Qx/tjOPPtKWhUsO8P2c7bhcHgICjEx8uQ9N0mL44/u/cuioWJO0a53M6xP6snbTKf7w0XIB+Avx451X+1NZY2P06z/63FSvjs7GZNQx7nfzRVSDQctrI3tic7l5+U8LcThdhASaePPF3mw/dJE/fiWs281TYxg+uD2fzNnC9QIR3TDykY5U1tj449Q1AKQ3iGRIrxZ8tmAb5dVWzEYd44Z0Zvnuk5y6IqY/T/VuRW5JJTNWikiG3m0ao9Gq+Gb5bgA6ZSTiZ9IzY4243c4ZScgqiblbhd6od8vG5JZVsOqQWFE90qEp205fobCiGpNOS9+WjVl26LQA7UUEExpgZqUiJu7VNIUDV3Mps9gIMhpomhjl09u0S47jbFEx5RYbQSYDSeHBvuYmq0ECe69eF/C9kCBsHhenC4owaTUkhYVw4HouMjKt4mM4dEM0umkR4VwoK8GpaGxKbTZyq6oIMxmRVXC5vAyzTou/Ts+l8jIMGg3BZgMXK0rRqdWEmo1K7IKaIKOBa1UVGNRq/Aw6cmsqMWq1aFQShdYaAnV6bLKLcoeVMIOZModF6HBqiYlvdUqVKE4ptyygfiF6U60IhpuBmWqVjMVtI1BrpFpxSgXqxHrKoNbgkh24ZNnX3GglCY1axu5x1GMDt2NW67F7bvJsnLJDSQP3Mms8ynpK2MAFrM/ps3G7Zcc9GDdqpckR5wl9jQS4MN7CuKkL8PPawIWupn6An5jiaJQJjlZS+6IW7k4n1iMFfYpk6FXv38p/piT5biKRf1HNmjWLV1999bYJzurVqxk0aBA5OTnExIjpxfz58xkxYgSFhYUEBNz+qbeiooLw8HDmzJnD44+Lbu/GjRvEx8ezatUq+vbte9sxdrsdu/2mA6ayspL4+HgqKipuu40v/raSFYsO8NTIrgwf0+O267p4No+xT31LSJg/89ZO9p1+/fp1EhMTlebmZmV16oafv+GOjUd1dQ12mw2Zf/vTcM/S6XR3bDR+61dLpZPLp/PJOVdMYU45tho3KkmNStKgljSolH9qSY0kqVCpVWh1ajQaNWqtGq1WjVqtoqyqhOXHPoM6j49E9/jRGDT1r+jUGhWRsSEkpkaR0iSG5CYxNGgSTWRcyD81+rTW2Nmz8RRbVx7h4PZzvomQJEk075BC9uBWZPVpeleYYEVZDWsW7mfFvD0UK9ZonV5DzwdbMvjZLBJvSbUHuH6lmPnTt7Bp5VHfKqpF+xSefTmb9BaJvsvJsszBXRf4/vP1XFT4OIHBZp4e04MBQ9r4mDwlRVXM/mYTaxWYn1ar5qEn2vPUyG6Y/Q3IssyOTaeZNmUdhfm13FOT+5PYIByXy83ShfuZM2MrVosDlUriocfaMXx0N0xmPft2X+Dzj1b7rN9dejRh7IQ+hIb5sWrFEaZ9u4maajtqtYrHn+zAM892prCoko8/WsUxxV3WrFk8r78xAKNJz5TP1rJjp3CENWoUyZuvCw3O+x+t5KQyGerUviETx/fh0NFrfPbNBqpr7Bj0Wl4a1Z12rZN479PVHD8tGslunRoz9rnufLdgl09I3KRRFG+M7cPiNUdYtl44u1JTIpk4Ops5S/ezbb+YGnVokcQzg9vx4XcbuJJbiiTBsw+2IzDQxNcLduB0CXDfhKe78ePqA5y8KITDQ3u3RG/Q8MMqAdpLTYhgcPemfLVkJ1UWO4FmA6Me6MC8TUfILRb5U8/1b8umoxc4nyvgf0/2aMnec9c4f0P8/ET3Fmw9dZmc4nK0ajWPd23OikNnKKu24m/UMaB1E37ZcxyX20NieDBJUcFsOSWa2azURK6VlnOtpAKdordZ49XbRIai0qg4k1+EJEG31AZsO38ZtyzTMCIEh8fD1bJytCoVbRJjbyaBx0ZxplgkgUcH+KFSq7heUYlerSYlIoSThYXIQPOYSI4VCL1Nk/AwzpWW4JZlkoIDybNUY3O5iDL7UeV0UON0EGoy4pDdVDrsBBkMeCSP+F5vwImHaqfDF7tgdbsIMxqpcNpwetxEmgSxWEa+a6ZUmUNYuyUV2NxOQvTGWgngZsocNUjIBOq1VLts+GnF5EXmplNKBZi0KuweB35a0bwI7Y0Wq9vmSwMX7imvDVwFkohWEDZw5TQlbsHb3NTW2RjVki8NXLinPIrV28u4ETZuuRbjRsbja27qMm4UDY5CKb4J8JNQScoEpxbAT8Ll4+fcG+CHMsHx3BngJwUgBX+LpGtzx7+Zt1ZlZSWBgYH1vn/fWv+jGpzdu3fTtGlTX3MD0LdvX+x2OwcPHqRHj9sbjIMHD+J0OunTp4/vtJiYGJo2bcquXbvqbXDef/99/vSnP93XfSpVEp5D7iAAdStvMLeuDc6fP39bcwOwc9fW+7rd2qXX6+/aPJQW1pB3tRz/AD+692+J0Wj8TQ3IxZP5TH9vJW4nNGnRgHemPEtMfPg/Hap5p5JlmZKCSi6fucHl03lcPZ9PaWEVZcWVlBVVUVlmweP2YLd6sHPr6kpN07DenChej2hyJNokDiKtSWOCw/0JCfcnONyfqPgQohPCiE4MJSIm6LY4g3+0LNU29m89w441x9m/5Qx22837l9Q4ih4PtqTHgy3vudq6dCaPX+fsYvOKI74JU3CYH4Oe7MCAJ9oTFHL76+3yuXwWzNjKtrXHfeLn1lmNeOrFHmS0TKxz2VNHrvH95+s5rohxTWY9Q57N4uFhnW6GZlodLPpxFz/X0uJ07Z3ByFd6+1ayF8/l8+0na2u5pwJ54dW+ZPVIQ5Ikjh+5xhcfruKKol9q0jSWVyb3p2FqNMVFVXz8txVs2yScVRGRAbwyqT8dshpxPaeESa/O5ZgS/dA4NZpJbwwgKTmcRb/s5/vvt+FwuOo4pLZsPc0XX66nssqGWq3i2WeyeHxoe1asPsrU70Rwp8mk45Ux2XRol8KUrzewZYeYCqWnRvPOpAGcOJvH8xNmY7E6MBl1vPpiNrExwUz4w8/kFVT4hMRZbVP4r49XcO2GaFqeeqgdbTITeefj5RSVVqNRq3jpqS7o9Bpe+5tYe4UFmZn8fC9W7TjJ1hWicenSKoUe7Rrx1+/WU2Wx42/SM/7JbqzYfZLDXtt4t2Zo9Wr+NlfA/jKSI+neshGfL94hVlChAQzp3pzv1uyj2uYgxN/E0G7NmbPpkO/nwVkZ/Lj1MDaHi6ggP7o1T2Hu9iNiRRUTRnx4EPMVvU1WWiKFVTVsOXUJtUpiYKsmrDtxHqvDSWSgHw2jQ1mp6G2yGidyOr+IkhoLAQYdGXFRvrDMdslxnCoopMruINxsIszf7Gtu2iXHsfeaWPE1iQrnWnkF1Q4HYWYTer2ak4WFaNUqGoSF+pqb2mLiJuHhnC4Vr6mU4BCuVJTVIyb2J99ajcvjIcbPn3xrDW7ZTax/APlWISyO8QvgRj2xC16nlIRMmMlEga0KvVqNTiPVzZRye4gwmClxeLU3JsoUp5Ra5aHaZSNIb6Ra0d4EaYVlXK9WIUlu7B6HLzBTQsasEZRiryvKa/m+1QZuqtcGrsbhqa2zEespt+zy2cB1koSEu47AuH7GjXQL40Yc541XkHHdzrjBG9PwjwL81LUAfvXRiSMVOnHjO/7d/Gfrf7TByc/PJzKy7ifW4OBgdDod+fn5dzxGp9MRHFxXIxMZGXnHY95++20mTpzo+9k7wamvyrwNTtjdGxyNpm4z0KiREI/e2uQ8/+zLdMtue8dmQ6/X88aI7ykvsfLeNyNp37XJPRuNmiobI3r9nepKG08PfoLuAzPvevlbq00baNwolfdensPlE0W89fR03vj4SZq3T/lN13O/JUkSYVGBhEUF0rZ7k9vOdzpcVJbV4HS4cDk9uF1uXC43LqcbvUGLwaSjuLSI3BvXaJKRRkLCbyda/paqLKthz8ZT7Fx3gsM7z9dZecUmhdF1YCbdBmbWSxm+9ffateEUK+fv4XitNVbD9BgeGpZF1wHN6xWynz56jQUztrJnyxnfae27p/HUC91JbVb3dXv+9A1mf7WR/dvFhEOr0/DgE+0Z+nwXH2fJ7XKzbvkRZn+7mdLiKgCaNItj9Gt9yVAs6hXlFn74dhOrlxzyuaeGPpvFY89mYTBoKSutZsZXG1mvcGsCAo2MHJtN30EtkGWZpQv38/20zVgsDlRqiYcfa8fwkd3QaNX8NGcnc2bvwOlwYzBoGTGyGw8PacO1ayWMf2U2Z5RpU6vWSUya1B+dTsMf/3sJO3eK9UjDlAjemDwQs5+BN3+/kMPK6qllZgJvThzAxStFPD9uFqVlNajVKkY81YkBfZvz6bcb2L5HXEfz9FjeeKUf67ae4v2v1uLxyERHBPDOK/05dTGfl34ngjPDQvx4Z1w/jpzJ5dX3fkGWISE6mNdH92LhusNsVSY5HVsk80ifTD6ctYmCkiq0GjVjhmaRV1LJn6aJlVRGgyge6ZXJ5z9vo6zKismgZdyjnVm99wzHL4nfeWiPFpRbbDepxM2TiQoN4POlQsSc2SCaRvHhfLNKWMCbJ0cTHxnEjPWioWrbKB6dXu1rZno1b8jV4nI2HLuASpIY3D6d9ScuUGm1E2wy0L5xAr8eEivFzIRoqp0Odpy/6uPbePU2DcKCUWvU7Lp0DZUKOjcUYZle23ep1aqsobQ0jApl7zWRBN4mPkYJy4RG4SHk11RTVFFDqMmITqfhTHERerWauOBAThQVwi1i4tTQMM4qYuLaZOIGwSFcqiy9TUycFBjEVZ+Y+PbYBUmCMKOZfKtoaPQaFSV20dBYPXZqXO46TqkIo5kSe7XilNJR7qwREQoeK26PsIZXuixIgJ9GR5XLIoTDsuDeeG3gWpWEWhKrqECdN4JBpIHb66SBCxu4o14buOMWG7gHDzdt4AaVClnJo9KqUPg3wj2ll8TqSFJEvyJE806MG2/OlMPX3IipjOMWgB9CT6Osqe4M8EPR8MhovG4pSaespRSAnzoFKeQ7JPXtTuZ/Zf3mBuePf/zjPach+/fvp02b+xs51bcy8Fpdf0vd7Ri9Xo9ef3+clnIFuudl1Nx+O/UfFxcXx7Rp03jxxRdxu91Ikor02P707vIoTzzb7a632bFrCzYuP8LRvVfo2D3jnvfR7G/g4eGdmfPFBr77eDXtu6f9Zg5Ny06N+GzxK/z5pdlcu1DAm89MZdDTHXlucv9/eV7TvUqr09zT1RUVH0rTzLR/y+3LssyVs/ns33qGfVtOc/rQ1Tp28dikMDr1aUrXAc1JSY+952sz/3opq3/ex7rFBylXGmaVWkXnPk15aFgnmrRIqJe/dHj3RRbM3MpRJepAkiQ6987g8VHdbhOgXzlfwJxvNrFT0b+o1Cr6PNSSp1/s4cMPeAXEM79Yz1VFgBsVG8xz47Lp1kcIhF0uN8sX7ufH6VupVhg9XXtlMGp8LyKjg3C53Cyev5fZM7ZiqbEjSdDvwZaMfKknAYEmzp3JY8oHqzh/Vrxhp6XHMuH1/jRsHMXJE9f59KNVXFGE163bJvPqpP6Ehvrx45yd/PSTcFyZzXofjXjT5tM+rY1Go2LY01k88Xh7Vq87wTczNgsOjl7LmFHd6dk9na+mb2LNBmFzTkoI5Z1JAykpr2HkhB8oq7Cg0ah4/sksOndoxF+mrOL0BfEhqE+3dIYNac+nMzdy8LhomLq0a8jwxzrw8cxNPrbNgO4Z9MpK5c/frKZQmeSMebwzNpebNz5ZhkeWiYsM4uUnu/Ddr3s5e1U8zk/2bYVKq+JPM4VLqnFCOEN6ZvLV4h1U1NjwN+l54cGO/LLtOFfyBdl4eL+27D+Xw7aTohl+tGszzueVsHC7aCof6pjB2fxilu8XqeCPdmrG7gvXyCmuQKtWM6RjU1YcOkOV1U6w2UDXpg1YfOAksgxNYiLQ6zU386SaN2TPpRwqrXZCTEbSEyLr6G3OFZX4XFMNo8LYWiss8/D1G9hdQiQsaSSO3shHq1KRXhveFxfN0fx8PLKgDBdaayiushJmNiGpJC6UlmLSagn1M3K6pAiNJBEfGMRZRUzcICSkTuyCt7lJVMTEIBMfEOhrbqJqxS4EGkTsglGjQaOSKLbVEKTXY3E7qHY5CTfenNCEG/18EQwhegMl9moMag0yHmpcdTOlvK4praRGLclKYKaBGsUp5a/VKZRiIQh2yzJBOp2ivRHJ37fawCV+qw1cXccGrkZCpSR9m9QSbtmGUVL71lNq7+rqnowbF8bbGDeSIgT21GLcSArj5l4APy+dGOU8GbWkFQA/bSuxllIF3fXv6L+ifnOD8/LLL/PEE0/c9TJJSUn3dV1RUVHs3bu3zmllZWU4nc7bJju1j3E4HJSVldWZ4hQWFtKpU6f7ut27laVGERHfoWHQK3A3Rz1C1pEjR9K3b18uXLjAyf1FLP/xmO+N5W7VpU9TNi4/wtY1xxg9uf990YYfea4L6xYfpCC3jGl/X8mEPz9yz2NurdikcD5dOI4Zf1vJ6gV7WTF3N/u2nOH51/vTpX/zf9vK6n9DVVVYOLr7Iod2nGP/1jM+PYy3GjSJoVPvDDr3a0ZCw8h7NjUup5u9m0+z5pf9HNxx3ueGCo0IoM+QNvQf2s7XeNQut8vNjg0nWfjddi4oehK1RkX2Ay157LkuPhu3t3IuFzF36ma2rjnha+p7DGjO0y/2IDbxJvPm7MlcZny2zrdq8gsw8vSorgx6rB06nQZZltm74xzTpqy76Z5qHMWYiX1prnCSjhy8wlefrPFFlzRKi+blyf1pkhFLdZWNLz9Zw3KFl2P20zNyTE8GPNgSq9XBZ5+sYcWyQ8gyBAYaeenl3mT3zuD06Ru8+85Crl4VTU/Hjg2Z8Go/kOB3f1jEnj0iiqRRo0jemCxSvt/5wyL2HxK/R/Omcbw5cQAFhZWMenkWBUXiU/rjj7TliUfbM33OdlasEw1BckIY777Wn9MXChj9+hxsdhd+Zj2Tx/QW6d2/m0dVtQ2DXsMrI3qgN2h4+U8LsVgdgm0zKlsEZ/59CR5ZJj4qmNeG9+DHVQc4eEqsZvplNaFlkzj+NG0NFpuTQD8D45/qyq/bTvpcUo90b45Or+GvcwTsLz0pkl5tU/liyU7sThfhQWae7t2a79fuo7zGhp9RzzO9WrFg21FKqyyYDTqe6N6Cn3ceo8JiI9Bk4KGO6SzYeQybU6yoOqYl+izgGXER+Jn1LFVSwbObpnAit4D8/GoMWg09MhqwWsmTSosOxyPJbD9/BUmC7mkN2HpO6G1SwkNwS7IvLLNdcjy7FL5N05hIrpSXUVUtNDIBJoMP3pcRHcnhPAHvaxoVwaniIjyyTIOQYG5UV2F1uYj098PmcXKtsoJAvR6dRsPlijJMWg3+Rj2X6hETB5uMXK2qQK/WEGjQcb2mAqNGg06jJt9SJdxRkocSm4VgvYFqlx2by60IiEWTEmX2o1DR4YQaTBTbq9GpVOjUUj2ZUrc7pcwaHTa3A49c2ykFOrUai9tGgEZwbyRk/LVaLG4rRpUWp6xob25JAwdvGnj9NnCTWoPbZwMX2huvDVyrUoMvRFOZ4PyDjBvv6snb3Gi84uFaQmMNoMKNTnFY3XRI3Qng56UT1wL46bOFoFj6f/Mh+jc3OGFhYYSF/WO5ELdWx44dee+998jLyyM6Woyq1q1bh16vp3Xr1vUe07p1a7RaLevXr2fo0KEA5OXlceLECT744IN/+j55gy/vBN3zkl5razFqV1xcHHFxcejl0yz/8RjX6mGt3FqtsxrhH2ikrLiao/su0eo+kr8NRh2v/mUI7zw/kzUL95PZPuU3r6pAOIvG/2UIXQY0Z8o7v1CYW8bfXv2Jn77cyNOv9KJzv2b/f9Ho2G1Ozh69xuGd5zm88zznb4H66Q1aMjuk0LZ7E9p2TyPyDpiAWyv3SjFrftnPhqWHfNMagNadGzHg8fa0755Wrx7IZnWw/tdDLP5hpy/dW2/Q0m9IGx4d0ZnwqKA6l8+5UsRPU7ewdc1NPU6XPhk8M6Znncy061eLmfXVRrYrkx2tTsPgJ9rz+HNd8Fe4RFcuFDJ1yloOKe6pwGATI8b0pO9Dwj1VWFDB9C83sHWDuI6AQCPPv9STvoNaoFJJbFx7nKlfbvClhffoncGYV3oTHGJm25YzfP3FekqUx6Jv/+a88FJPdDoNX321gaVLRLZUUJCJl1/pTbduaaxec5xvp26ixmJHq1XzzNOdeGJoe9ZuOMHX08XaS6fTMPq5rgzo25zpP2xnyXJhgY6JCuLtSQNAgpde/5Eb+RVIkrB/DxnUik+nb2TXAfF7tm6ewGujs/np1/2s3CSmPqkpkbz+Qm/mrzrIuh1iJZiZFsuYp7rw9fxtHDsrms6B3TLo2DKZP01dQ3mVyJua8HQ3jl/M46/frQdEltTArhlMmb+NihpBMh73aGdW7TntW0k92j0Ti8PJZ4u2A9C+SQIpcWFMWbJNpITHhdM2LZ6pq/bgkWUaxoTSqnEcMzaIINIm8REkRYXwwxbx+7dtGIcMLN4rxNJ9WzTmZG4BJ/IK0WnU9G+ZysojZ3G63SSEBhEV4scqJU+qW1oSR3PzKbPYCDTqSY+NZNNZ8Vi1TYrjdGERVXY7oWYj0YEBPjJxh+R49uVcF/cvLIQiq4VLpWUEGvSE+ps4qsD70qMiffC+jIhwThaLv4UNQ0O4XFmGyyMgfSVWKxWWGiLMZmrcDvJrqgkxGnHKLvJqqnxi4gJLNcEGAw7ZRZGthlCDkSqXnQqHgwiT301KcS0ycW2nVITJTKGtCo1KhVGjodRhUVZFdqxuD6F6s4+B43NKqVXKtKauUypIcUrp1Wo8skgIrx2YqVersHlsvnBMCRmTRoX9jmngWhxK3IJOJd9iA1eBMokxqSQlKFODR5nSeDk2XsaNTpngqHGjVclwT8aNIBnfyrjRShJqyaUA+ZQ1lSTVAvi5fhvAzzgUKeCPSNL/O2XMv/WWrl27RmlpKdeuXcPtdvvsvg0bNsTPz48+ffqQnp7OsGHD+PDDDyktLWXy5MmMHj3ap47Ozc0lOzub2bNn065dOwIDAxk5ciSTJk0iNDSUkJAQJk+eTLNmzejV65+zmbldHp+t22Sqn8PjTQC/U4PjrQQlqyfnchFut+euUxmtVkOXPk1ZtXA/m1Ycua8GB6BFhxSeeLE7877dzOd/WEJio0iS75CAfq9q2akR366cyOLvtrF01g6uXSjg/QlziWsQzoPDsug6IJPAO6zt/jdWRWkNpw9f4eSBK5w8eIXzJ67fxsGJbxBBy6xGtOmWSvP2Kb7n9l5lqbGzc90J1i85WEdbExzmT59HWtNnSJs6BOHaVVpcxcoFe1mxYC8VZRYAAoJMPPhUBx54osNtgZk5V4qYN20rW1Yf8zU2nXo04ekxPUipReIuKarix+lbWLP0EB63B0mSyB7QnGdf6ukD9ZWX1jBn2hZWKVMXrVbN4Cfb8+RzXTD7GbDbnMyfvZP5s3ditzlRqSQGDm7N8Be6ExBo5KqXUqzwaeITQnl5Uj9atUkmL6+cd9/8mX1KGGxsXAivTepHi1ZJ7N17kc+mrKVAybPq3acpL72UjdXq4M23f+agMp1JS4vm9UmCd/P2HxZxQDm9aXosb7zWn4pKK6PH/0CuklH14IAWjBzWmXmL9zF/6X5kGSLDA3jn1f5UWeyMev1HKiqtaDVqXhzWhSaNonnj/SXk5pcLjs3D7YWQ+NPl5BcJSvHzj3UiJiqQyR8uodpiV+IWenD2ahHvfrESgMaJ4Yx8uANfLdzB1bwyVJLEsw+0pcbu5M/fieDMJkmRPNStKV8t3kGlxY6fUc+YwR1ZvP0EF2+UoJIkhvVpzYlr+czdJJqVBzumU1RVwxzl536tUymqsTB/u5jM9G+TypXiMp8F/OH2Tdl19ip55VUYtBoebJfOrwdPYXO6iA7yJy0ugqUHRZPaLiWOvMpq9l66jkatIjsjhfWnL+D2yKREhCKpqFdvkxoZRoXN5gvLTIuJYM81kQreKi6aY/kFwh4eHESVy87F0lL89TrC/M0cLyxAJUHjcNHcyMhkREZwslhMtRuFhHK+TCSBJwcHc63qJqU4VxEWx/oLSrFbIRPn1SMmvvX7vFqU4gJbFRqVhJ9OR7G9GrNGh1N2Ckqx3lSroRFOKbUEZq2GCmcN/lrRnDjluk4ps1atQPv0PkqxNzBTr1YBLlyyx+eU0kgSGpUHp+z0NTwaSaR030wD99q6a6+n6rOBO2vZwEGlaGiMCuPG28h46cK19TVexo03U+pujBudSoVKyZm6CfATTY5WCeHUSlrAhc7HuLkV4KdC5W1uzC8j+b3yLwP43W/9W23iI0aM4Icffrjt9M2bN9O9e3dANEFjx469DfTn1cxcuXKF5OTkOsfYbDZef/11fvrppzqgvzsJh2+tO9nMbFYHD3V9H4Bft72NwXh7k1NTbeORbspldrxb72VAiJEf7fweVouDrxaMrfNmVF+dOnKNicOmotWqmbVmMqF3AMPddjsuN28/P5Pj+y8THObPRz++QEziPzdhq6608usPO1g6awfVlTfBhhltkkUWU68Mou4QY/E/UVUVFi6czOX88eu+r/nKVKR2BYf7k9k+hZZZjWiZ1eg3Qf3cbg9Hdl9g47LD7Fp/0tfgqlQSbbo0pt9j7WjbNdVnxb61Lp65wZI5u9i6+pgP/hgZG8yQ4Z3pM7jVba+jqxcLmT9ja52JTcceaTz9Yo86epyqSisLf9jB0vl7ffepfZfGPDeuF8mNxJrXbnOyZN4eFvywA4tCV87q0YRR43sRExeCLMvs3HqGqZ9voCCvHICmmfGMfa0vDVOjsVoc/DhrO4sX7MXl8qDTaXh6RGcefbIDKpXEwgV7+fGHHdjtLrRaNU881ZEnn+5EdY2db77ewKZN4k02MjKQ1yb2o1WrJH5dfogZM7disznR6TSMfK4rDw9uzep1x/lmxs2pzajhXRjUP5NZP+3i5yWiiQkP8+fNV/sRGGjivU9X+dK/+2c35fmnOjNz/g5WK2GaKUnhvP1KP7bvPc/sxXvxeGQiw/x5e1w/Dp26zuwle/HIMjERgbz5Ym/W7DjNqm3i2KaNohn1aCe+nL+d89fE9GFonxZERwTy9cIdOJxuwoPNvPx4V35af4jTCstmaK8WSCqJ+RsFm8a7kpq6fDc2h4vQABPP9mvDD+sPUFJpwajXMrx3a5bsPkl+WRV6rZqnerZi+f7TFFZUY9BpeLxLJkv2naTCYiPAqGdgmyYs3H0cp9tNfGggTRIiWavoa1onx1LlcHA2T9i8+2emsunsJawOJxEBZlKiQtl1UayaOqYkcCq/kHKrYN+kRIZwIEdMrTokxXMkN0/YvgP90ek0XCktQ62SaB4bxaFcMZVqFhPJ6eJCnG4PcUEBVLuclFmt+Ot1BBqN5FRWoFWrSAwO4nyZWIc2Dg3lXKlobmqTiX+rmNjb3EjIhJvMFNlq0KpUmHVaKp02/LRaXLhweFwE12LZeMXEIBOkN1DptGFUq5ElFy7ZXSdTypsG7nVKuWX3LU4pjZIVVTcw0+axYVCLSYtwTwlhsUFJ/ha6GQ0On/PpZhr4rTZwrZLm7bWBe63a3sZHxu2zgeuVNG+vvkZSODgyDl9zIxogVy0buJdx4/QxbjR4HVIyGh/AT1KaJu9ayksnvhvA749IprvLWn5L/Rab+P8TDs7/trrTA2S1OBjsbV62v4Ohnk/0siwzuMtfsVkdfLd0PLHx9X9SB/jd2Nkc2HmeF1/vz8PP3FsfNGn4NE4eusqQEZ0ZPan/ff8+VRVW3hoxnUtn8oiICeKjuWPq1Xv81qqpsrFx6UHWLtzPJUUf4q3ktGgyWifRMCOOxs3iSGgY8S+zZtdXsixTXlJNfk4p1y4UcPX8zX8lBfUHcManRJDRJomM1smkt0oiOuG3cXBkWeb8yVy2rDjC1lXHKC2q8p0XlxxO9kMtyb6LRdzt9rB3yxmWzt3FsVqTniaZCTw8rBNZ2em3PWaXzubx0/St7KxFNW7fNZVnXupBo/RY3+VsVgdL5u1h4Q87fdEKTZrHM3J8b5opFnKPR2bTmmPM+noTRUrGU6Mm0bwwoY9PZ3P5QgHfTFnHEUWrExYRwAuv9KJbdjoA2zaf5tvP11Os/O4dshox9tU+RMcEc/xYDp99soYrSjhti5aJTJjYj7j4ENasOcbUbzdRVWVDpZJ4+JE2PPdcVwoKK/nok9WcOiX0Kc2axfH6xAGoNSo+nLKGQ0cUenF6LG9OHEBVtY33P13FNSVFvX/vZrw0sjtLVx9h1vxduN0eggNNvP5yX/z89Lz32WryFV3OU4Pb0btbE/729VqfuLhv13SGPtCaD2ds4JRy2oBuGfTvns7709eTW1AuJjKD2xEZ6s+Un7aK5HB/IxOH9WDD/rNsPSimVJ1bNKBzqwZ89vM2aqwOAs0Gxj3WmSXbj/vAfUN7ZlJtc7Jyj7DOt02NIy05kjkbDiLLkBIdQpfMFOZsOIjL4yE+PJDuLRoyd8thMRkJD6Jtajy/7DmOLEN6XARRIQFsPK64uVITKbdaOZVbKCIXWqax/dwVypW1U/tGCaw9qTjJ4qOodNi5XCyalG6pIk/K4+XbyB6ulpbfprfJiIngWkUFlTY7wUYjof4mzheLhqRFXDSH80Sjkx4ZwdnSYvF7BAZQ4bBTYRfsGr1OTX5NNXq1mgg/P3IqhSA4NjCAK5ViopYYFMiVynK8ZOJrVRVIyMQFBnK9WqweI81+5FvEVCbIYKDYZlHcUWqqnHYCdHocshOHx0WYwUSpMqGpLSYOMwjrt0YloVersbqF08mb8F03U0qL1W3HX6PDJnunNaK50UqgVsmi4fE5pURgplN21ml4jCoNTtmBWa3BqVCKha3beVsauAjFrG0Dd/oExm7ZcYsNXExwdJJKkIiVpO/aKyi94qLyMm5EA1TXRXUnxo1WklDfxrhRKbephVrNjU6xf6uVJkcA/KYgGbLr/fv4j9Z/Gpx71J0eIEuNnYe7/w2AZdvfuePK4rnBn3Ejp5SPpj/nw9nXVz9/t43vPltPpx5N+K8pT93zfu3bdpb/Gjcbg1HHnPWv4x94/zlIZcVVvP7MVHKvlhDfIJy//zD6vrOq7qcKrpeye8Mpdm84wYn9l+voV0DA6pLTYoiOD/FZwsOiAgmNDMRo1qHVadHpNegNWjRaNW63B6fDpVjD3dhtTqrKLVSU1lBRWk1FaQ3lJdUUXC8j/3ophblld10LRsWH0LhZHA0z4mjULI6GGbF3zcK6W12/XMSWlUfZsuIIuYoAF8A/0Ej3gZlkP9SKxs3i7tgsVVVYWLP4ICsW7KVAiS9QqVV06Z3Bw8Oy6lCHvXXmWA7zZ26rYw3Pyk7nydF1HVQOh4vVSw4yb+Y2H9IgKSWCEeOy6dA11XefDu+7xIwvNnBBsWCHRwbw/LhsuvdthkoliVDN6VtZ9auwhWt1aoY+3YmhwzphNOq4drWYrz5Zy6EDojGLigli7IQ+dOzcmIpyC9O+3cTa1ULMGxho5MWxvejdtynXr5cy5dO1HFEalYYNI5k0uT/JyRHMX7CHH3/ahdPpxmTS8cKoHgzon8mylYeZ9t1WbHZBLx41vCuD+mfyw7xdLFi8H49HJiTYzOvj+xITHcRfp6zmjNKcdOvUmFdG9mDhykMsWCb0PdERAbwzvj9Xrpfw5Q9bboqLX+iF1eFiyvebsdqd+Jv1TBqZTV5xJdN/Ec1SZKg/r4/sxcrtJ9m0TzQGbZsm8Eh2cz6Zu4XC0mqx8nq0E1fyy1i2XWh5WjSKpU+HVL5cskPENpj0vDi4E79sPcalPBG2+Uyf1py+XsC+M0KgPKBdGjUOJ1uOiYape/MGuJB9LqoezVKotNs5cFHwZfq3SuVsXjEX80sUC3gGm05dpKzGir9BR7eMFFYcOS20PNHh6PUajuaI5z87I4U9l3OotjsI9TPRMDKUPZfF/ejQIJ7j+QXiPLOJqEA/TuYJKF/H5Hj2KnqbBqHBlNvtlFgs+Ol0RAf7c65YBGG2iI3iSH4+MtAkIpxzJcVi3RQUSJG1BovLSbjJhEv2UGazEaDXo9WqKLZaMGk1+Bl0FFpqMKg1+Bn0FFlrfGTiEpsFkyImLncIpoxHkqlxOQjWG6hxO3B6XCItXBETR5r9KFK0N2FGMyX2GtSShJ9WQ7XLroD6HLhlTx2nVLDeIKY1KjUyHtyyu06mlJ9Wh9Vt8zmlvORiq9vmiyfw4PE5pcSqBjy4FaeUOE2lTGT8NBqcHnGsSgH+GRUCsjcN3GsDF41PfTZwhUSsOKXElKbudEYrqerYwIWLyqVMWxTxsAIYvBPjpi7AT4iG7wzwC1IAfq3q/Rv5z9T/Z0B//5vrbl1faLg/N3JKKS6susul8OX9HDt4BbfLfc8JR9sujWmQGsWls/ks+mEHI8b3uevla1dwmD9//W4Uk5/5lpxLRYx/7Cte//tQmrdrcN/XcbeKjAth8IjODB7RmYrSGo7sPs/549c5f+I6F07ewFJt4+zRa5xVGCX/jpIkidDIAOIbRJDQKJJE5V9Cw8h/uJkBxSZ+voBd60+wY91Jrpy7yVPSG7S079GE7gMzadOlMdp6uDXeunQ2j+Xz97JpxRFfM+YfaKT/kLYMeqI9EbdMerzk4Z+/284xpZGQJImufTJ4YnQ3kmtxdpxOF+uWHWbezO0UKROr6Nhgnh3Tk259m/o0XhfP5TPziw0cVNxIJrOOJ0Z0YfAT7dEbtDidbhYv2M/c77b5Yke69mzCyHHZRMcEU1NjZ9qXG1iycB8ulwetTs2Tw7IY+nRHtFoNK5cfZsa0LVQpq8sBg1ow8oXuGI065szewU8/7cbpdKPXaxgxoitDHm3LuXP5vDRuFpeUSU+H9im8Or4vdoeL196cx3ElAyqzWTyvv9afykorL746h6s5orns3SOdcS/0YM3Gk/zXB8twON34mfW8+kI2CfGhTP7vRVxWLjswuylPPdKOL77fzO5D4jFt3SyBl0d0Z+bC3T4iccv0OF58qjPfzNvOkTNimtSzfWP6d03n799voLC0GrVaxehHOmJzunj7yxWCiRMVzOghHZn+6x6u5Ckk4wFtqbDY+PtPAtzXPCWa7q0a8dmiHdidLsICzTzbtw0/rN9PcaUFg07D8D5tWLHvNNeLK9CoVTzdoxXrj53neon4+Ymumaw5co6iyhqMOi2PdGjKkn0nqbE7CPEzKhbwE8gyNI4OI8jPyPLDYkrUvUkDTuYXUFhYg1GroXNaMusUC3hGTATVTgd7LuegUUt0Skn0WcDTIsMos9o4mVeIUaOhSWwEu6+JJqhlXDTHCwpwuj3EBwVi8zg5V1yMUaslNjjA19xkREZwUoH3pSt8G28S+LWqCgHp8/enxG6hwuoi0mymymWn0FJDiNGI1e2iyFpDqNGE1W2nxGYhzGiiwmnD4nAQbvKj1F6DW/YQZfanoB4xcZRZiIlVEvjrROyCSa3BI7mpdtkI1pt8lGKvU0otSZi0GoVrczNTKkRvoEpxSmnVAtoXoBFcHK9TylrLKSUjyMV3CszUqdR48JKL1Tg9Nowq4W66OdVx3MEGrrqDDVzGqJLq2MDFWsldqwG6Od256aLiFsaN8y6MG8nXrNVm3Ijr190C8ItBCpmBpLk/Lem/s/4zwanVAbpcbgZ2/AsACze8QUBg/W+aH/9pKeuWHeaZF7oz7MXbacvecrvcPNXrQyrKavjL18/SJqvRPe/bro2n+POrc9Fq1Xy7ZDyxv1FPk3ulmD+89AO5V4qRJInHX+jO0+Oy76gN+VeUx+PhxtUSLp/JoyivnKK8corzKyjKq6CsqBKb1YnT4cRuc/miBryl1WnQaNXo9BoCgswEhpgJCBZfA0PMhMcEERUXQlR8CGFRQej0/5qe3O32cO5YDrs3nWbX+hN1JjVqjYqWHRvS44EWdOyZflfGkN3mZPu6E6xYsJczSswAQHLjKB56uiM9BmTeNgl0uz3s3HiKn2+xhvcckMnQ5+taw11ONxtXHWXujK0UKOLa0HB/nhzZlX6DW6HVisejIK+cH77dzKbVx5BlAaIcOKQNT43sSlCwGVmW2b39HNO/3ECusu5p2DiKMa/2oXnLRDwemY1rjzPjm00+mneHrEaMndCH6NhgLpwv4PNP13DqpGgGGqREMGFiPzKaxnHkyFU+/WQN1xXdU9t2DZgwoS9BQSZmfr+NJUsP+OziL4/tRbeuaUqG1A4cDhdGo44Xn+9Gv97NmPXTzjpTm8mv9CEhIYz3p6zixBnxWLVvncykl3qzZsspZv2827emenNcX5wuNx9OXU9FlRWdVs2LT3chLiaE979dS2mFBY1axQtPZBEe5s9H322k2mLHZNAy4dnu3Ciq5Iflwq0UFxnE+Ke6MmfVAY6dV5xUndNJSQzn618EcTgsyMzYIVnMXX+IC7nFSBI83bs1RZU1rNknyMDtmySQmhjBnA0HBRMmKpierRrxgxKUGR3iT582qfy45TBOt5voYH96ZKYwf+dR3B6Z5IhgmiZGs0yxfDdPjMZg0LD3gnit9chowNn8YnLLKtGpVfTJbMzqE+dEPENoECEBJg5dE/e/a2oSB67mUuNwEupnIi40kCPXxYSnY3I8hxS+TUyQPzqthsuK3iYzNpqDueI6mkZHcK6kGLvbTUyAPw48FNXUYNJqifD343J5GZIEjcNCOVMqtFF14H0hoVyoEOutpKBgrlaV4QHiFV2NjEy8fyC5FvF9bRpxrJ84vT4xcZGtGrUkEWjQUe6wYtRokJGxe+qPXfAGYla5rBjVGjySC7fs9ultvE6pGrcVg1qLS3Yi47nFKSXhkp34afTY3F6nlFrkR/mcUl7Lt6NOYKZB0dmY1Vpcsk2IeVUiUuFWG/hNq7frFhu4y3eejMtnAxeQPqfSAMlIuH3RDXUZNy5lLeZl3Ci04jsybiQfpVgwbiQ0kkaJfFAYN5pUpOAZSOr6MS//ivrPiuoedbcHaFDWX3A63MxeNsHnPrm1Fv24i2mfrqVzdjq//+Du6adf/nU5Kxbso9eDLZn83/dm1ciyzLtjZnFo1wXSWyby4fej7ouLU7usNXa+/esK1i0+AEBaZjxvfPgE0f8LhMFulxunw41ao0KjVf8/VdXbLA4O777Ank2n2bf1TB1bt1anoXXnRnTqnUGH7k3wD7r7ejDnUhGrF+1n/a+HqKoQ0wyNRk1Wr3QGPd6epq2Tbvvd7DYn65cdZtHsneTl3LSGD3i0DY8My6qjm3K73GxafZy5M7b6bOTBoX488VwXBjzS2ocrqCi3MP/77SxfuN8nXu7WO4MRY3sSEyee7wtn85j6xQaOKjqboGAzz43pQZ+BmajVKs6dyeOrT9dy6oSYpMTGh/DS+D6079SQ6iobs77bxrKlwnllNOoY/nxXHn6kDVXVNqZN3cTatccBCAkxM+5lYf3eu+8SUz5fS2Gh0P707pXB2DHZFJVU88Enqzh3QWhU2rRKYvKEfhSXVPP3Kat9Kd+9e6Tz8gs92bDtNFN/2Ibd4cJk1PHyyB40bRLDX79Yw+nzYtLWvWNjxjzbhe8X7mbNFtEINE6O4PUxfVi19SSL1h4BIDkulNdf6MWvm46zZru4XEbDaMY80Zlvft7hy416oFsGmWlxfDp3i89JNf7Jruw8fpkth8RkrFOzJNo1TeTrpTuxO1yE+JsY/WBHftp4iGuFImxzWJ82nLiaz/5zN1dSVqeLTUfFFKlL02S0OjUblJ+zmiQiqSW2nxbPU4+mKRRX13Dsqrhfg1qnceBKLnnlVeg1avq3TGPV0TOiKQn2JyUqlG3nxLEdUuK5UlZOXoW4bKeGiWxSIhfSYyIot9nIrRBNUeuEm3lSzWIiuVpRToWitwkLMHGuSDQkLeOiOaTobdIiwrlUXord7SbKzw+77KbUasVPpyXIZCCnqhKNJJEQFMSl8jLR3ISGcKG8FG8q+MUKISZODhKp4CCTGBjEtXuIiSOUfCmtSoWfXkuFw4ZZq0WW3NjcTt+ERka+LXah3GlBp1KhVYvmJ1Bn8GlvgnVGKp2ieTFoJBweJ/4aPZZaTimL24pBrUbGhUxtpxRoVDIe3D6nlFdT48GNSaPDobinNJJbrKe8NnCVGhDBl0aVSgRmKkwcrw1cnKeulQZenw3ccYsN3F2HQKxXJjk3beCgVi4jGDdeG7iXbXOTcaNBwA1VSGKaozBuJCTUkkYwbnQdkYK+RFL966QR9dV/Gpx71N0eoKG9P6Si3MLUeS+R1DCi3uMP7r7AOy/PIS4xjJmLX7nrbZ04dIXJz83E5Kdn/qY3fW9Md6v83DLGDvkCS42dERP68MSou5OQ71TbVh/j8z8soabKhtGsZ9ii1p7sAAAfgUlEQVQrvRjwePv7tkP/f71kWebKuXwO7jzPoZ3nOXHgSp3YBZOfnjZdUunUK4O23VLvCHf0ls3iYPv6E6xZfICTh676To+ICWLAo23p+3AbguuJ+Kgst7B8wV6WzdtLhULK9g808uAT7XnwybrWcLfLzcZVx/hp5jZfYxMYbGbo8CwGPdrW57ayWhws/mk3v/y4y+eMymyTxKhXetM4XWh2SoqqmDV1M+tWHUWWQatTM+SJDjz+bBZms57Skmq+n7aZtSvF+Uajjqef68wjQ9uj0ajYsO4E077d5OPddO/ZhDFjexES6sfq1UeZPn0zVZU2JAkeeKAlI0d1x+Fw8dU3G9m8RaxLoqICeW1CP5o3j2fOT7uYt3AvbrcHPz89417IpnuXVGbO2c4vvwrRbWiImUkv9yEpMYy/fb6Go8r6qnVmApPH9WH73otM/0lMfvzMeia+0IugQCPvf72WwuIqVCqJpwe3o1ObFN77Zg3XbggN1NABrchqncxfp60nv7gSlSQxfHA7oiMC+fTHLVhsTvxMel4b1p2DZ66zcrvipEqJ5ol+LZmyYBuFZYJk/MLgjpzLLWL9fuFaatckgdZN4pm+Yq8I2wz255k+rfh+3f6bLqk+bVix9xQ5xRVoVCqe7tmSTScvcbVQTEke75LJllOXyC2tRKtW82inZqw+fJayGit+eh0D2qSxeP9JnG43scEBpMWFs+GkaLbaNoij2GLhUpEgIvdq2ohNZy/icLmJDfInLNCPI4oWp3OjRA7k5GJ1uojy9yPYbOR0gVgjdWoQz55rQm+TEhZCmc1GicWCWacjNtifs7fobQBSw8O4WFaK0+MhNsCfSqfdF4qpU6sptNRg1GgIMhu4UV2FVqUi0t/M9epK1JJElL8/16srUUkQ5edHnqUKtSSJvChrNRqVigC9nlK7BYNag06josppx1+nwykLd1SowUS5s0Y0NEY/ihQxcbjBRKnj5vqpxiUiEmweOzIeQvUmKlximhOgNVDjsmHSaHDLDjx4ajmlwKxRQjTv0ymlV+jDdwrMNClEYmH5vumG8uDCqEx1hG3cqaSBq/DgFLZxxSKully1bOAunw3cO90RDZBojkRzU8sGrly3sIDXZty4fwPjRkItKZsBwwNIge8jSfW7iv+V9Z8G5x51twdoxMOfk3e9jI+nP0fTFvVnHpUUVfJUv49RqSQWbXn7rm+MHo+H4f0/oSi/gtffG0L2oBb3dR/XLT3EJ79fhEqt4o+fP0O7rqn3/fvVroLcMj54YwGnlDfkoFA/Hh6excAnO2D+fxzJ8O8uWZYpyC3j2L5LHNt3iUM7L1BWXFcnFRkbTIeeTWjfowlNWyfdVVPjvc6zx6+z/tdDbF51FIuiW1GpVbTr0pj+j7WlTVbjeqdsOVeK+HXuHtYvO+zT5ETEBDFkWBZ9B7fCUIu15HK62bj6GPNmbCVPESYHBpl49NksHnisrQ886RUZ//TddsqVxqNhahTPv9yLVu0bIEkSVouDhT/tZuHc3b7b7dE7g+cVJo7D4WLJwn38NGsHFgVsmd2nKaPGZhMW7s+li4V8MWUtx5WVW3xCCC9P6EvrNslculTIlE/XcFJZVaWkRPDqa/1IS4th1eqjTJuxmepqOyqVxJBH2jLi2c5cuFTIh1NW+5xQXTs3ZsLY3uTklvLBlDXkKtb0fr2aMnZkDzZsF1Mbm92J0aBl7HPdad0ikfe/WMMxJRG8XcskXh3Vk0Wrj/DLKsGNiY0K4q2xfTl8+jrf/7Ibt0cmLNiPN1/szbFzucxZJtZPMRGBTHoum5XbT7Jxr2hSWqbF8tSANkyZt5XrBcLV8+zAdqCGH1buxyPLJEQF8/ygdkxbvofc4grUahXPD2jHudxithwRzUaX5skkRAUzd5OgOKfEhNK9RYpvJRUZ5MeA9k34cesh7E434QFm+rZJZf6OozjdYhLTMS2JRXuP+8TCMeEBbFKamQ4N4ymxWDmXX+yzgG89d1kRDxtpGh/FlnOK9igxltyKSvIqxRSnbXIc2y+JvwPNYiLJq6yiuMaCWaelUVQYhxXbd6v4GI7m5QsQX1AAdo+LwhrRqMSHBvkandphmWnhYZwvK/FxbAotNdhcLsLNJqweJ1UOB8EGA7JKptxuw1+rR62RKLPb8NPp0KglKhwipVtS4XNEOWU3VrdTgfqJhPBwkxANg0yUyY9Cu9DeeJ1SakmQh6ucNiXQUli/vVELYlUl1lYaSUKrUuHwOAnU6bEo05wArZ4aJe1bktx4ZDeBWq/2BgxqNc5bGh6TWoPD4/AFZt6MVnDcEpgpKY2MDpesMHFwIQI2Bbm4bhr4b7GBqwG7Mily+cI0we1rbvQqQSLW1F5T+WzgKkVXcyvjxmsH1yhRDLUAfuZRSH6TkaTftmn4R+s/Dc496m4P0MTR33PyyDXefm8I3fs0veN1PPvApxTcKOcvXzxD205319bMm76FH77cSHLjSL7+edx9rWVkWebT/1rMuqWHMBh1fPj9KBplxN7zuPrK7XKzbvFBFkzb4nP1mP0NPPBUR/o91va+qb3/28rj8ZBzqYjTh69xfP8ljh+4TFFeXcu43qClWdtkWmU1olVWIxJSIu7r8S8uqGDj8iNsWHaYnMs3adRRscH0faQ1fQa3rpdVJMsyR/ZdYsmcXexTAjABUtKieXREZ7r2zqgjNnc4hHj451k7fAyawGAzjz3biQcea+eb2LhdHjasOsqP07dSqMRKxMSHMHxMD7r2ykClknC7PKxZcYQ5M7b6dDTpTeN4cUJvmjSNEzqcHeeZ+sV6biivg9QmMYx9tQ/pTeNuW0cZDFqefjaLR4e2x+VyM/uHHfzyyz7fqmrEiC48/EgbruWU8OmUtZxQpi2NGkUy6dX+xMYGM/37rSxdIXgwwcFmXh3Xmzatkvj2u60sW3UEEFybya/0JT4uuM7UpmWzBF4f14f9R6/w9Q/Crm00aHn5uR6kJIXxly9Wk6NMaAb3yeTBPpl8OGODL0cqu2NjHh/Umo++38jZywIuN6BrBj07NK4jJB75cAdUaolpi4WeJyLEj1ee7MrPG49wVNHfDMpKJyYykBkrxAQqJiyAEf3bMmPVfgrKqtAozc7es9c4clHR7HRoQo3NwWbFJdU5IxmDQcu6I+J10SE1AaNBy6YT4vystETsLjf7FddU78xGXCws4WJhqZICnsamUxepsjkIMhlo3yiBNSfEdWXERuCQPZwrEI1Pj7QUtl+4gsMtpjgBZiOn8sVj0DklkT1XcnB5PCQEByKr4Fq5sG03j43ioNLo1NbbRPv741bJFFRXY1CriQkK5GJZqU9MfEoJy2wcGsY5RW+THBzM1apyEXMRICB9Lo+HKLMfJXYrDo+bKLMfZQ6L7/sim0gI9wqIZWSizQHkW2+mgnvFxJFmM0U2EYwZoNNT4bRh1GgAt+De6ExUuOqKiSUgQKelxu0lCgttjVdMDDJmjRabwrXxJoDXdkqBWDHV55S6GZhZe2XlJRJLqCTRyIgpjR29wqWRkNGpxJTGqBZEYg0SGmVKc7sNXPKtoG61gYvpjKOWi+rONnBv4rgaWWmWbqaA35txIyH5v4tkfva2v4P/zvpPg3OPutsD9P7vFrFl7QlGje/NY8PuzK7xCo0fG57FqHu4naoqLAzr+zE2q+O+xcYgPtX/17jZHNp9geBQPz6dO4aof6IZcTndbFl5lJ+nbyGnVoREWmY83QZk0qVfs/sGDP5PVGlRFRdP3+DM0WucOZrD2WM51CgBkd5Sa1SkNounWdtkWnRsSHqrxHoTu+srS42dXRtPsWnFEQ7vuejj0OgNWjr1TKfPw63JbJdcb3SFzepg8+pjLJu3h8vnhL5EkiTadW3MI890onnb5DqNlc3qYPWSgyycvZMShTETFGLm0WFiYuNtbDweme0bTzF76mZfZlRImB9Pj+pGv4daotGoRa7UzvPM+Goj164IYWdMbDDPj+1Jlx5NkCSJSxcK+PaL9Rw+cEVcR6gfI8f0oFe/5gCsXX2MmdM2U14u6Mpdu6Xx4rhsIiIC2Lb1DF9/vZFiZRrWpWsq48b1IiDAyI8/7WbBz3twuTwYDFqef64rDz/Umj37LvLpV+soLhaN1oA+zRgzugenztzg4y/XUaj8zg/0z2T0iK6s3XSS6XO2Y3eIJualEd1o2yqZD75exyElDLNV03ifuPjHJQLaFxbix1sv9SG3qJKvfhRNkJ9Jz6SRPamssfHVPHGdAX4GJj3Xk3PXipi7Uoie46OCmPB0d+auOcCh06Kp6Nm2ER0yk5gyfxvVVqG/efmxzmw6dIF9p8X9yG7diIToEH5Ysx+3RyY+IojHujdnxpp9IqLBoGN4nzYs3X2C3JJKNGoVz/RsyeaTl7hcIFZSQ7s0Z8eZq1wrLkejUvFop2ZsPH6BwsoajDoND7RNZ9mh01gdTkL9jLRvnMjKIwIhkBEbgUqj4th1sSbKzkhh35XrVNrsBBr1NIuPZvsF8Ty3TIjhWnk5xTUWTFotTWMj2XdVaSDjozlXXEK1Q+RJBZmNXCgRGpm6epswLleUY3O5iPQz40amyCKuL9zfxJWKclQSpATfJBPXhvfV0dsEBnFZgffV1tvE+weSo+ht7kdMHGDQUXGLmDhYZ/RNaMIMZkoVMXGIQU+lU8QqqCQPTtlVJ3ZBZEqJoEtJ8iggPzHNkZDx0wqQn1c47M2UEqso4ZRCcUo5PDafU0pCxqxW45TttwVmitwoda2cKaGlMSo2cKGluZkGDu5aNnAhPvY2MOBBd6sNHBm14qLSIKY8Im/qdhv4rYwbMcnRAJ67MG50SEEfIxn63va38N9d/2lw7lEVFRUEBQWRk5Nz2wM0+9vNLJm/h4GPtGHU+N53vI7Na4/z+XvLaZgWzYfTnrvnbX732TpWLNhH604Nefej+6c61lTb+P1Ls7hyvpBmbZL405f/fLfs8XjYt/kMq37eJ7Qk3peAJDH69f70G9run76Nf2WdOnSFj95aSIWykqldOqOWlLQY0lsmkNE6idRm8XVWP/dbF0/f4J0xs3Dab2p0mmQm0H1gczr1TL/rOs9uc/LSo1/6VkY6g4aeA1owaGg7YhJuF3a73R5efmYq+coUJTTcn4ef7ECvQS1u00dN/XQta34VKxj/ACMPP9WRAYNb1bncgh93Me97kW3kH2hk6DOd6PdAS7SKc+70yeu8M3EeHo+MRqvmoUfa8OiTHXyr1e+mb2GpIkiPiwth9Es9aanwnZYuOcDMmVsBoad54cUetG2bAsDv/7CIwwrvpl3bBox5sQcR4YFs2nqajz5bA0B0ZCCvvNSLFs0T2LnnAn/5cIXv9PEvZdOiWQIz5u7gl2UHAchsGserL2QT4G9k+IRZVNXY0es0PP9kJx7snclH09azQcmM6tGxMeOGd2f11hNM/3k3AC2bxPH66Gw27T3H9F/Eaa3T43nj+V589+se1uwSx/bPasLoIZ148S8LKCqrRq/T8MoTXTAadfxphkgAT0+O5O3hvXhr6gquF1ag02mYMKQLBeXV/LBWPF692zSmV5tGvDFdxDikxoUxbnBnJk5djtPtJirEnzce7c7bc1ZjdbgICzAx+eGu/GHBemwON5GBfowb0Ik//rwet0cmKSKYRzs148Pl28R9T46lQVQIP+8VQu6h7Zux7+p1LheVYdJpGNGlNV9tEYHFTWMiiA4OYN3pC8LR1bYF8w8dw+nx0CAsmPjgQLZeuIJaknisZVPmHRXX2TI2iiKLhesVlQQYdLRLjGP9BTFVGpDWmJXnxZSoTUwMx4sKsbldJAQG4pI85FZWEmTQkxAYxLHCArRqNZnRkezPy0UtSbSJiWVvvlh1to2JZV++WDG2jormUJGYdLWMiOZwsfg+IzSCk2UFqCWJBoHBXKgoEaGbRiMF1ioCtQZcKhdWl4NoUwD5tgpkoIFfMFct4gNAsl8IVy2laCQxral0/f/au/+YqOswDuDvA+4HEp0g4d2FwkV1zjAjLD2mkrr4EYjlQvQPwpUtTfAXWzFrQ91Y4ErasjKbu9VsYQU4my49Fj8i1BHeyp9kgQgCYzhAQuH48fTHyc2Du+PuvDu583ltt+n3+/l8eZ57jo/Pfe/7PQcwQzQNvSOGZvtx/+nouNMNAYAgiRi3hm7jUaE/+kcMv79ySSC69D0QCgwXIw/TMIJFgegdMjRaUqEQd0YHEejrjzujhiYq0FeEAbqDR3z9MTBquAYo0M8P+tFBBPpNw+BoHwQARD4wfE+OnwSDI32GZkUwdv2O4UxPgI8EI2Q42+R794xPgK/f3cZHghH0G76L5u7HWobmxvDNx0T98BP4wReGj9L8YLiN3NjcCEQADUAkEMEHd+Aj8IMfhu6euTG8ATPcRUXwgwiGj6kkhmt6BBL4YAgQSCGYvs8l33Fji1u3bmHWrFno6emBVGr9C20fygantbXV5v/WgTHGGGNTS0tLC8LCwqyOeSgbnNHRUbS1tSEwMNDptymPdZfmzg55A2/PD/D+HDk/z+ftOXJ+ns9VORIR+vr6oFAozF4ucK+H8puMfXx8Ju387tejjz7qtS9cwPvzA7w/R87P83l7jpyf53NFjpN9NDXGPfd1McYYY4y5ETc4jDHGGPM63OA4mVgsRl5eHsRi69+K66m8PT/A+3Pk/Dyft+fI+Xm+qZDjQ3mRMWOMMca8G5/BYYwxxpjX4QaHMcYYY16HGxzGGGOMeR1ucBhjjDHmdbjBYYwxxpjX4QbHTvn5+YiNjcW0adMwffp0s2OuX7+OlStXIiAgACEhIdiyZQv0er3V4w4ODiI7OxshISEICAhAamoqWltbXZCBfSorKyEQCMw+6urqLM5bv379hPGLFi1yY+S2i4iImBBrbm6u1TlEhF27dkGhUMDf3x8vvfQSLl686KaI7XPt2jW89dZbUCqV8Pf3R2RkJPLy8iZ9TU7lGn7xxRdQKpWQSCSIiYnBb7/9ZnV8VVUVYmJiIJFI8MQTT+DAgQNuitR+H330EV544QUEBgYiNDQUr776KhoaGqzOsfR7euXKFTdFbbtdu3ZNiFMmk1md40n1A8yvKQKBAJs3bzY7fqrXr7q6GitXroRCoYBAIMDRo0dN9ju6HpaUlGDu3LkQi8WYO3cuysrKnBo3Nzh20uv1SEtLw6ZNm8zuHxkZQXJyMvr7+1FTU4Pi4mKUlJQgJyfH6nG3bduGsrIyFBcXo6amBv/99x9SUlIwMjLiijRsFhsbi/b2dpPHhg0bEBERgQULFlidm5iYaDLvxIkTborafnv27DGJ9cMPP7Q6fu/evdi3bx/279+Puro6yGQyvPzyy+jr63NTxLa7cuUKRkdH8dVXX+HixYsoKirCgQMHsHPnzknnTsUaHjlyBNu2bcMHH3wAnU6HJUuWICkpCdevXzc7vqmpCa+88gqWLFkCnU6HnTt3YsuWLSgpKXFz5LapqqrC5s2bcebMGWi1WgwPDyM+Ph79/f2Tzm1oaDCp11NPPeWGiO33zDPPmMR5/vx5i2M9rX4AUFdXZ5KfVqsFAKSlpVmdN1Xr19/fj/nz52P//v1m9zuyHp4+fRrp6enIyMjAn3/+iYyMDKxZswZnz551XuDEHKLRaEgqlU7YfuLECfLx8aEbN24Yt33//fckFoupt7fX7LF6enpIKBRScXGxcduNGzfIx8eHfvnlF6fHfj/0ej2FhobSnj17rI7LzMykVatWuSeo+xQeHk5FRUU2jx8dHSWZTEYFBQXGbQMDAySVSunAgQMuiND59u7dS0ql0uqYqVrDF198kTZu3Giybc6cOZSbm2t2/HvvvUdz5swx2fbOO+/QokWLXBajM3V2dhIAqqqqsjimoqKCAFB3d7f7AnNQXl4ezZ8/3+bxnl4/IqKtW7dSZGQkjY6Omt3vSfUDQGVlZca/O7oerlmzhhITE022JSQk0Nq1a50WK5/BcbLTp08jKioKCoXCuC0hIQGDg4Oor683O6e+vh5DQ0OIj483blMoFIiKikJtba3LY7bHsWPH0NXVhfXr1086trKyEqGhoXj66afx9ttvo7Oz0/UBOqiwsBAzZszAc889h/z8fKsf3zQ1NaGjo8OkXmKxGHFxcVOuXpb09vYiODh40nFTrYZ6vR719fUmzz0AxMfHW3zuT58+PWF8QkIC/vjjDwwNDbksVmfp7e0FAJvqFR0dDblcjhUrVqCiosLVoTns6tWrUCgUUCqVWLt2LRobGy2O9fT66fV6HD58GG+++SYEAoHVsZ5Sv3s5uh5aqqsz11BucJyso6MDM2fONNkWFBQEkUiEjo4Oi3NEIhGCgoJMts+cOdPinAfl0KFDSEhIwKxZs6yOS0pKwnfffYdff/0Vn3zyCerq6rB8+XIMDg66KVLbbd26FcXFxaioqEBWVhY+/fRTvPvuuxbHj9VkfJ2nYr3M+ffff/HZZ59h48aNVsdNxRp2dXVhZGTErufe3O/kzJkzMTw8jK6uLpfF6gxEhB07dmDx4sWIioqyOE4ul+PgwYMoKSlBaWkpVCoVVqxYgerqajdGa5uFCxfi22+/xcmTJ/H111+jo6MDsbGxuHnzptnxnlw/ADh69Ch6enqsvin0pPqN5+h6aKmuzlxD/Zx2JA+2a9cu7N692+qYurq6Sa85GWOuSyeiSbt3Z8yxlSM5t7a24uTJk/jhhx8mPX56errxz1FRUViwYAHCw8Nx/PhxrF692vHAbWRPftu3bzdue/bZZxEUFITXX3/deFbHkvG1cWW9zHGkhm1tbUhMTERaWho2bNhgde6DrqE19j735sab2z7VZGVl4a+//kJNTY3VcSqVCiqVyvh3tVqNlpYWfPzxx1i6dKmrw7RLUlKS8c/z5s2DWq1GZGQkvvnmG+zYscPsHE+tH2B4U5iUlGRyVn88T6qfJY6sh65eQ7nBgWERWbt2rdUxERERNh1LJpNNuEiqu7sbQ0NDE7rVe+fo9Xp0d3ebnMXp7OxEbGysTT/XXo7krNFoMGPGDKSmptr98+RyOcLDw3H16lW75zrifmo6dqfQP//8Y7bBGbvjo6OjA3K53Li9s7PTYo1dwd4c29rasGzZMqjVahw8eNDun+fuGpoTEhICX1/fCe/yrD33MpnM7Hg/Pz+rDeyDlp2djWPHjqG6uhphYWF2z1+0aBEOHz7sgsicKyAgAPPmzbP4uvLU+gFAc3MzysvLUVpaavdcT6mfo+uhpbo6cw3lBgeGRTMkJMQpx1Kr1cjPz0d7e7ux2KdOnYJYLEZMTIzZOTExMRAKhdBqtVizZg0AoL29HRcuXMDevXudEtd49uZMRNBoNHjjjTcgFArt/nk3b95ES0uLyS+AK91PTXU6HQBYjFWpVEImk0Gr1SI6OhqA4XP2qqoqFBYWOhawA+zJ8caNG1i2bBliYmKg0Wjg42P/p9PurqE5IpEIMTEx0Gq1eO2114zbtVotVq1aZXaOWq3Gzz//bLLt1KlTWLBggUOvZVcjImRnZ6OsrAyVlZVQKpUOHUen0z3QWtlqcHAQly9fxpIlS8zu97T63Uuj0SA0NBTJycl2z/WU+jm6HqrVami1WpMz6KdOnXLum3qnXa78kGhubiadTke7d++mRx55hHQ6Hel0Ourr6yMiouHhYYqKiqIVK1bQuXPnqLy8nMLCwigrK8t4jNbWVlKpVHT27Fnjto0bN1JYWBiVl5fTuXPnaPny5TR//nwaHh52e47mlJeXEwC6dOmS2f0qlYpKS0uJiKivr49ycnKotraWmpqaqKKigtRqNT3++ON069Ytd4Y9qdraWtq3bx/pdDpqbGykI0eOkEKhoNTUVJNx9+ZHRFRQUEBSqZRKS0vp/PnztG7dOpLL5VMuPyLDHXlPPvkkLV++nFpbW6m9vd34uJen1LC4uJiEQiEdOnSILl26RNu2baOAgAC6du0aERHl5uZSRkaGcXxjYyNNmzaNtm/fTpcuXaJDhw6RUCikn3766UGlYNWmTZtIKpVSZWWlSa1u375tHDM+x6KiIiorK6O///6bLly4QLm5uQSASkpKHkQKVuXk5FBlZSU1NjbSmTNnKCUlhQIDA72mfmNGRkZo9uzZ9P7770/Y52n16+vrM/5bB8C4ZjY3NxORbethRkaGyZ2Ov//+O/n6+lJBQQFdvnyZCgoKyM/Pj86cOeO0uLnBsVNmZiYBmPCoqKgwjmlubqbk5GTy9/en4OBgysrKooGBAeP+pqamCXPu3LlDWVlZFBwcTP7+/pSSkkLXr193Y2bWrVu3jmJjYy3uB0AajYaIiG7fvk3x8fH02GOPkVAopNmzZ1NmZuaUymdMfX09LVy4kKRSKUkkElKpVJSXl0f9/f0m4+7Nj8hwa2ReXh7JZDISi8W0dOlSOn/+vJujt41GozH7mh3//saTavj5559TeHg4iUQiev75501uoc7MzKS4uDiT8ZWVlRQdHU0ikYgiIiLoyy+/dHPEtrNUq3tff+NzLCwspMjISJJIJBQUFESLFy+m48ePuz94G6Snp5NcLiehUEgKhYJWr15NFy9eNO739PqNOXnyJAGghoaGCfs8rX5jt7GPf2RmZhKRbethXFyccfyYH3/8kVQqFQmFQpozZ47TGzoB0d2rtRhjjDHGvATfJs4YY4wxr8MNDmOMMca8Djc4jDHGGPM63OAwxhhjzOtwg8MYY4wxr8MNDmOMMca8Djc4jDHGGPM63OAwxhhjzOtwg8MYY4wxr8MNDmOMMca8Djc4jDHGGPM6/wOyPjBhbXYJJgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'convergence of 2x2 steepest-descent')" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "θ = 0.9 # chosen to make a nice-looking plot\n", + "Q = [cos(θ) sin(θ); -sin(θ) cos(θ)] # 2x2 rotation by θ\n", + "A = Q * diagm([10,1]) * Q' # a 2x2 matrix with eigenvalues 10,1\n", + "b = A * [1,1] # right-hand side for solution (1,1)\n", + "x1 = range(-11,11,length=100)\n", + "contour(x1', x1, [dot([x1,x2], A*[x1,x2]) - 2*(x1*b[1]+x2*b[2]) for x1 in x1, x2 in x1], levels=range(1,2000,length=100))\n", + "plot(1,1, \"r*\")\n", + "x1s = Float64[]\n", + "x2s = Float64[]\n", + "for i = 0:20\n", + " x, = SD(A, b, [-10.,-10.], maxiters=i)\n", + " push!(x1s, x[1])\n", + " push!(x2s, x[2])\n", + "end\n", + "plot(x2s, x1s, \"k.-\")\n", + "\n", + "title(\"convergence of 2x2 steepest-descent\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The solution \"zig-zags\" down the long, narrow valley defined by the quadratic function `f`. This is a common problem of steepest-descent algorithms: they tend to go towards the center of valleys (down the \"steep\" direction), rather than *along* the valleys towards the solution.\n", + "\n", + "To fix this problem, basically we need to implement some kind of \"memory\": it has to \"remember\" that it just \"zigged\" in order to avoid \"zagging\" back where it came from. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## From steepest-descent to conjugate-gradient\n", + "\n", + "The most famous way to improve steepest descent with \"memory\" is the [conjugate-gradient algorithm](https://en.wikipedia.org/wiki/Conjugate_gradient_method). I won't explain it here ([Shewchuk's article](http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf) is a good introduction to its relationship to steepest descent), but the implementation ends up being *almost identical* to steepest descent. However, instead of setting the line-search direction equal to the downhill direction `r`, the line-search direction is instead a linear combination of `r` with the *previous* search direction:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CG (generic function with 2 methods)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function CG(A, b, x=zero(b); tol=1e-8, maxiters=1000)\n", + " bnorm = norm(b)\n", + " r = b - A*x # initial residual\n", + " rnorm = [norm(r)] # return the array of residual norms\n", + " d = copy(r) # initial direction is just steepest-descent\n", + " Ad = zero(r) # allocate space for Ad\n", + " for i = 1:maxiters\n", + " mul!(Ad, A, d) # store matvec A*r in-place in Ar\n", + " α = dot(d, r) / dot(d, Ad)\n", + " x .= x .+ α .* d # in Julia 0.6, this \"fuses\" into a single in-place update\n", + " r .= r .- α .* Ad # update the residual (without computing A*x again)\n", + " push!(rnorm, norm(r))\n", + " d .= r .+ d .* (rnorm[end]/rnorm[end-1])^2 # conjugate direction update\n", + " rnorm[end] ≤ tol*bnorm && break # converged\n", + " end\n", + " return x, rnorm\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(188, 8.466451041549937e-9)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(100,100); A = A'*A # a random SPD matrix\n", + "b = rand(100)\n", + "x, rnorm = CG(A, b)\n", + "length(rnorm), rnorm[end]/norm(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After some initial slow progress, the conjugate-gradient algorithm quickly zooms straight to the solution:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHFCAYAAAAe+pb9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8PElEQVR4nO3deXxTVfo/8M9N0iRturd039h3CpRdQRZFQRbBBR1HQHEbV0Rm1K8/RRgVxwV1xhF1XNBxwwXQAWQTBBSRfd+htIXu+96myfn9kdzbpGtS2qZtPu/XixftzU1ybm6aPPc5zzlHEkIIEBEREbkhlasbQEREROQqDISIiIjIbTEQIiIiIrfFQIiIiIjcFgMhIiIiclsMhIiIiMhtMRAiIiIit8VAiIiIiNwWAyEiIiJyWwyEiFrQ3LlzERcX5+pmKL788ku89dZbrm5Gi7l48SIkScKKFSuUbS+88AIkSWrR5y0tLcULL7yAX375pUWfh4iaHwMhohb03HPPYfXq1a5uhqKjB0J1uffee/H777+36HOUlpZi8eLFDISI2iGNqxtA1JF17drV1U1oF4xGIyRJgkbT/B9JUVFRiIqKavbHpbqVlZVBr9e3eBaOqLkwI0Ru49SpU7jjjjsQGhoKnU6HmJgYzJ49GxUVFco+x44dw/Tp0xEQEAC9Xo+BAwfi008/tXucX375BZIk4auvvsKzzz6LiIgI+Pr64tprr8Xp06ft9q3ZNVZX141MkiS88MILdtt++OEHDBgwADqdDl26dMHbb79dZ1fPv//9b4wZMwYhISEwGAzo378/Xn31VRiNRmWfsWPHYt26dUhKSoIkSco/WWVlJV588UX06tULOp0OnTp1wt13342srCyHXl8hBF5++WXExsZCr9djyJAh2Lx5M8aOHYuxY8fWev3++9//4sknn0RkZCR0Oh3OnTuHrKwsPPTQQ+jTpw+8vb0REhKC8ePHY+fOnbWeLzU1Fbfddht8fHzg5+eHWbNmIT09vdZ+9XWNrVy5EiNHjoTBYIC3tzeuv/56HDx40G6fuXPnwtvbG+fOncPkyZPh7e2N6OhoPPnkk8r75uLFi+jUqRMAYPHixcrrOnfu3AZfr/z8fDz55JPo0qULdDodQkJCMHnyZJw6dUrZJzc3Fw899BAiIyOh1WrRpUsXPPvss3bvWcDy3nnkkUfw3//+F71794aXlxfi4+Oxdu1aZZ81a9ZAkiT8/PPPtdqyfPlySJKEI0eOKNv27duHadOmITAwEHq9HoMGDcI333xjd78VK1ZAkiRs2rQJ99xzDzp16gQvLy9UVFQ4/H4AgMLCQixcuBCdO3eGVqtFZGQk5s+fj5KSEqePU+bI33t6ejoeeOABREVFQavVonPnzli8eDGqqqoaOHPU4QgiN3Do0CHh7e0t4uLixHvvvSd+/vln8fnnn4vbbrtNFBYWCiGEOHXqlPDx8RFdu3YVn332mVi3bp244447BADxj3/8Q3msbdu2CQAiLi5O3HnnnWLdunXiq6++EjExMaJ79+6iqqpK2XfOnDkiNjZW+T0xMVEAEJ988kmtNgIQixYtUn7/6aefhEqlEmPHjhWrV68W3377rRg+fLiIi4sTNf90n3jiCbF8+XKxYcMGsXXrVvHmm2+K4OBgcffddyv7HD9+XFx11VUiLCxM/P7778o/IYQwmUzihhtuEAaDQSxevFhs3rxZfPjhhyIyMlL06dNHlJaWNvoaP/PMMwKAuP/++8WGDRvEf/7zHxETEyPCw8PFNddcU+v1i4yMFLfccov48ccfxdq1a0VOTo44deqU+Mtf/iK+/vpr8csvv4i1a9eKefPmCZVKJbZt26Y8Rmlpqejdu7fw8/MT//rXv8TGjRvFY489JmJiYmq9vosWLar1er300ktCkiRxzz33iLVr14pVq1aJkSNHCoPBII4fP253/rRarejdu7d4/fXXxZYtW8Tzzz8vJEkSixcvFkIIUV5eLjZs2CAAiHnz5imv67lz5+p9rQoLC0Xfvn2FwWAQS5YsERs3bhTff/+9ePzxx8XWrVuFEEKUlZWJAQMGCIPBIF5//XWxadMm8dxzzwmNRiMmT55s93jy+3HYsGHim2++EevXrxdjx44VGo1GnD9/XgghhNFoFCEhIeLOO++s1Z5hw4aJwYMHK79v3bpVaLVaMXr0aLFy5UqxYcMGMXfu3Fqv7SeffKKcy/vvv1/89NNP4rvvvhNVVVUOvx9KSkrEwIEDRXBwsFi2bJnYsmWLePvtt4Wfn58YP368MJvNTh2nEI79vaelpYno6GgRGxsr3n//fbFlyxbx97//Xeh0OjF37tx6zx11PAyEyC2MHz9e+Pv7i8zMzHr3uf3224VOpxPJycl22ydNmiS8vLxEfn6+EKL6i7zml9E333wjACjBhRBXFggNHTpUREdHi4qKCmVbUVGRCAoKqvXFbstkMgmj0Sg+++wzoVarRW5urnLbjTfeaNce2VdffSUAiO+//95u+969ewUA8e6779b7fEIIkZubK3Q6nZg1a5bd9t9//10AqDMQGjNmTIOPKYQQVVVVwmg0igkTJogZM2Yo25cvXy4AiB9++MFu//vuu6/RQCg5OVloNBrx6KOP2t23qKhIhIWFidtuu03ZNmfOHAFAfPPNN3b7Tp48WfTs2VP5PSsrq9b5a8iSJUsEALF58+Z693nvvffqfO5//OMfAoDYtGmTsg2ACA0NVb7khRAiPT1dqFQqsXTpUmXbggULhKenp/JeFkKIEydOCADiX//6l7KtV69eYtCgQcJoNNo995QpU0R4eLgwmUxCiOpAaPbs2Xb7OfN+WLp0qVCpVGLv3r12+3733XcCgFi/fr3Tx+nI3/sDDzwgvL29RVJSkt32119/XQCwC4ipY2PXGHV4paWl2L59O2677TalC6MuW7duxYQJExAdHW23fe7cuSgtLa1VcDtt2jS73wcMGAAASEpKuuI2l5SUYN++fbjpppug1WqV7d7e3pg6dWqt/Q8ePIhp06YhKCgIarUaHh4emD17NkwmE86cOdPo861duxb+/v6YOnUqqqqqlH8DBw5EWFiYUgRsNpvtbjeZTACA3bt3o6KiArfddpvd444YMaLeUXM333xzndvfe+89DB48GHq9HhqNBh4eHvj5559x8uRJZZ9t27bBx8en1jn405/+1Oixbty4EVVVVZg9e7bdsej1elxzzTW1Cp4lSar1mg8YMOCKzvNPP/2EHj164Nprr613n61bt8JgMOCWW26x2y53udXs4ho3bhx8fHyU30NDQxESEmLXznvuuQdlZWVYuXKlsu2TTz6BTqdTXrtz587h1KlTuPPOOwHA7jWaPHky0tLSanUB1zyXzrwf1q5di379+mHgwIF2z3X99ddDkqRa56Ox43T0733t2rUYN24cIiIi7J530qRJAIDt27fXe1/qWBgIUYeXl5cHk8nUaMFsTk4OwsPDa22PiIhQbrcVFBRk97tOpwNgKRa9Unl5eRBCIDQ0tNZtNbclJydj9OjRuHz5Mt5++23s3LkTe/fuxb///W+H25ORkYH8/HxotVp4eHjY/UtPT0d2djYAYMmSJXa3ycXg8mvjSHtldb3Wy5Ytw1/+8hcMHz4c33//PXbv3o29e/fihhtusDuOnJycOh83LCzMoWMFgKFDh9Y61pUrVyrHKvPy8oJer7fbptPpUF5e3uhz1ScrK8uh92NYWFit+qaQkBBoNJpG349yO21ft759+2Lo0KH45JNPAAAmkwmff/45pk+fjsDAQADVr8/ChQtrvT4PPfQQANR6jWqeS2feDxkZGThy5Eit5/Lx8YEQotZzNXacjv69Z2Rk4H//+1+t5+3bt2+dx0gdF0eNUYcXGBgItVqNS5cuNbhfUFAQ0tLSam1PTU0FAAQHB19xW+Qv1JrFrjW/1AICAiBJkvKlZKtmQfCaNWtQUlKCVatWITY2Vtl+6NAhh9sVHByMoKAgbNiwoc7b5Svw+++/H1OmTFG2y8Gf/OVUX3vrygrVVcD8+eefY+zYsVi+fLnd9qKiIrvfg4KCsGfPnjqfqzHyefzuu+/sXq/W1KlTJ4fej3/88QeEEHavVWZmJqqqqpr8frz77rvx0EMP4eTJk7hw4QLS0tJw9913K7fLj/vMM89g5syZdT5Gz5497X6veS6deT8EBwfD09MTH3/8cZ3P5exxOvr3HhwcjAEDBuCll16q83b5Aog6PgZC1OF5enrimmuuwbfffouXXnqp3g/WCRMmYPXq1UhNTbX7EPzss8/g5eWFESNGXHFbQkNDodfr7UbnAJbRYbYMBgOGDBmCNWvW4PXXX1e6x4qLi2uNkJG/hOSgBLCM4PrPf/5T6/lrZghkU6ZMwddffw2TyYThw4fX2/6IiIg6vyCGDx8OnU6HlStX2n157t69G0lJSQ5PKilJkt1xAMCRI0fw+++/23VZjhs3Dt988w1+/PFHu+6xL7/8stHnuP7666HRaHD+/Pl6u+ec5Ww2cNKkSXj++eexdetWjB8/vs59JkyYgG+++QZr1qzBjBkzlO2fffaZcntT3HHHHViwYAFWrFiBCxcuIDIyEhMnTlRu79mzJ7p3747Dhw/j5ZdfbtJzOPN+mDJlCl5++WUEBQWhc+fOTXo+W47+vU+ZMgXr169H165dERAQcMXPS+0XAyFyC8uWLcPVV1+N4cOH4+mnn0a3bt2QkZGBH3/8Ee+//z58fHywaNEipW7g+eefR2BgIL744gusW7cOr776Kvz8/K64HZIk4c9//jM+/vhjdO3aFfHx8dizZ0+dX+BLlizBjTfeiOuvvx6PP/44TCYTXnvtNXh7eyM3N1fZ77rrroNWq8Udd9yBv/3tbygvL8fy5cuRl5dX6zH79++PVatWYfny5UhISIBKpcKQIUNw++2344svvsDkyZPx+OOPY9iwYfDw8MClS5ewbds2TJ8+3e7LuKbAwEAsWLAAS5cuRUBAAGbMmIFLly5h8eLFCA8Ph0rlWC/8lClT8Pe//x2LFi3CNddcg9OnT2PJkiXo3Lmz3ZDm2bNn480338Ts2bPx0ksvoXv37li/fj02btzY6HPExcVhyZIlePbZZ3HhwgXccMMNCAgIQEZGBvbs2QODwYDFixc71F6Zj48PYmNj8cMPP2DChAkIDAxEcHBwvQHg/PnzsXLlSkyfPh1PP/00hg0bhrKyMmzfvh1TpkzBuHHjMHv2bPz73//GnDlzcPHiRfTv3x+//vorXn75ZUyePLnB+qKG+Pv7Y8aMGVixYgXy8/OxcOHCWufn/fffx6RJk3D99ddj7ty5iIyMRG5uLk6ePIkDBw7g22+/bfA5nHk/zJ8/H99//z3GjBmDJ554AgMGDIDZbEZycjI2bdqEJ598ssHgvC6O/L0vWbIEmzdvxqhRo/DYY4+hZ8+eKC8vx8WLF7F+/Xq89957nH/KXbi2Vpuo9Zw4cULceuutIigoSGi1WhETEyPmzp0rysvLlX2OHj0qpk6dKvz8/IRWqxXx8fG1RnjJo56+/fZbu+11jQibM2eOiIuLs9uvoKBA3HvvvSI0NFQYDAYxdepUcfHixTpHHa1evVr0799fae8rr7wiHnvsMREQEGC33//+9z8RHx8v9Hq9iIyMFH/961/FTz/9JADYDTvPzc0Vt9xyi/D39xeSJNmNpjIajeL1119XHsfb21v06tVLPPDAA+Ls2bONvr5ms1m8+OKLIioqSmi1WjFgwACxdu1aER8fbzfiq77XTwghKioqxMKFC0VkZKTQ6/Vi8ODBYs2aNbVG3wkhxKVLl8TNN98svL29hY+Pj7j55pvFrl27HBo+L4QQa9asEePGjRO+vr5Cp9OJ2NhYccstt4gtW7Yo+8yZM0cYDIZa963rMbds2SIGDRokdDqdACDmzJnT4OuVl5cnHn/8cRETEyM8PDxESEiIuPHGG8WpU6eUfXJycsSDDz4owsPDhUajEbGxseKZZ56xe88KYRlN9fDDD9d6jtjY2DrbsWnTJgFAABBnzpyps32HDx8Wt912mwgJCREeHh4iLCxMjB8/Xrz33nvKPvKosZojvoRw/P0ghBDFxcXi//2//yd69uwptFqt8PPzE/379xdPPPGESE9Pb9JxOvL3npWVJR577DHRuXNn4eHhIQIDA0VCQoJ49tlnRXFxcZ2vC3U8khBCuCD+InILM2bMQEpKCvbt29csj2c0GjFw4EBERkZi06ZNzfKYLSkxMRG9evXCokWL8H//93+ubg65GN8P1Baxa4yoBSQnJ2PXrl3Ytm0b7rrrriY/zrx583DdddchPDwc6enpeO+993Dy5Em8/fbbzdja5nH48GF89dVXGDVqFHx9fXH69Gm8+uqr8PX1xbx581zdPGplfD9Qe8FAiKgFfPzxx3jrrbcwfvx4LFq0qMmPU1RUhIULFyIrKwseHh4YPHgw1q9f3+T6kJZkMBiwb98+fPTRR8jPz4efnx/Gjh2Ll156qd4h9NRx8f1A7QW7xoiIiMhtcUJFIiIiclsMhIiIiMhtMRAiIiIit8Vi6UaYzWakpqbCx8enziUBiIiIqO0RQqCoqAgRERENTurKQKgRqamptVYjJyIiovYhJSWlwVnCGQg1Ql5sMiUlBb6+vi5uDRERETmisLAQ0dHRyvd4fRgINULuDvP19WUgRERE1M40VtbCYmkiIiJyWwyEiIiIyG0xECIiIiK3xUCIiIiI3BYDISIiInJbDISIiIjIbTEQIiIiIrfFQIiIiIjcFgMhIiIiclsMhIiIiMhtMRAiIiIit8VAiIiIiNwWAyEiog6srNLk6iYQtWkMhIiIOqiv9ySj76IN2HAszdVNIWqzGAgREXVQO89mwyyA3RdyXd0UojaLgRARUQd1Ka8UAJBVVOHilhC1XQyEiIha2Tf7UrDxeHqLP09KXhkAILOovMWfi6i9YiBERNSKsooq8LfvjmD+14dgNosWe56SiirkllQCADKZESKqFwMhIqJWJGdnyowmFFdWtdjzXLJmgwAgs7ACQrRc0EXUnjEQIiJqRfmlRuXnApufm5tcHwRYg66Klgu6iNozBkJERK1I7q4C7IOi5paSW2r3O7vHiOrGQIiIqBXll9oEQmWVDex5ZWy7xgBL91hrEkLgm30pOHa5oFWfl8hZDISIiFpRbkl1FqhFM0J5NTNCzo0c++S3RPx4OLXJz3/0cgH+9t0RLPz2cJMfg6g1aFzdACIid5JnlxFqya4xS0bIR69BUXmVU3MJpeaXYfH/TsBDLeHa3iHw0jr/VZGUYwnELueXNbInkWsxI0RE1IpsA6GC0pbsGrMEIgOj/QE4VyMk1xcZTQJHLjWtayuj0JKBKiqvQmWVuUmPQdQaGAgRNaOzGUV49KuDOJdZ5OqmUBuVV9ryXWMFZUYUlltGiQ2OCQAAZBY63jWWVlC97/6kvCa1IcPm+WwLxInaGgZCRM1o5d4U/O9wKr7Zd8nVTaE2Kq+k5bvG5GxQkEGLuGAvAM5lhFILqruzDjQxEEq3Kc7OLuaINWq7GAgRNSP5ar8l54eh9s2uRqiF3idyfVBUgCdCfPQAnAuE0vJtMkLJeU2ajJEZIWovGAgRNaOicssXW1EFAyGqm21GqKCFhs/LGaGoQC+E+uoAONs1Vp0Ryi814kJ2idNtsH2+nBJmhKjtYiBE1IwKrYFQYRln8aXaKqpMKKk0Kb+3VEZInkMoKsATnawZocLyKpQbTQ3dTZFqzQhpVBIA5+uEhBBItw2EipkRspVbUtmi68yRcxgIETWjImuBqpwZIrJVM/Bp6Rqh6AAv+Oo10GksH/WODqGXM0JXdw8G4HydkCXoqh4plsOuMcXZjCIMfWkL/vb9EVc3hawYCBE1IzkjJAdERLbyagyXLyg1tshiqLY1QpIkIUTuHnNgUsWySpNS6zZlQAQA4ECyc4FQRo1uuBwWSytOZxTBZBY46ORrSi2HgRBRM5K7xAoZCFEd5KLhCD9Ld1WlyYwyB7urHHU2owgXcyw1PdGBlhFjSsG0A8tsyNkgg1aNsT07AQDOZBSjwInsVe1AiBkhWam1a9SZCS6pZTEQImomQojqYml2jVEd5K6xyABPeKglu23N4WByHm59/3dUVJnRN8IXcUEGAECIj5wRciQQsgQx4f6eCPbWIS7IS3lsR2VYAy7JcojsGrNRZg2ECsurUFHVvEEwNQ0DIaJmUlJpglz/WFFl5occ1SJnhAK8tPDz1AJovkDodHoR7vzwD+SXGjEw2h+fzxsOtbXYuToQKsfuCzl44cfjWH80DUXlRiWAN5osNT2p1iUxwq1Zq8GxlgkZG6sTem/7eXy48wKA6oxQ52BLIMZRY9VsM4DZzJS1CVxrjKiZ1MwCFZVXQeetdlFrqKVtPpGB59Ycwxu3xeOqbsEO3UdeeT7QoEWAlweyiyvsVqO/Ep/vTkJppQlD4wKw4u5hMOiqP95DfC1Bzd6LeVjx20WUVJqwYtdFJVAymQVCfXXY9MQ1SkYows8TAJAQG4BVBy5jfwMZoZTcUrzy0ykAlroiORDqE+6LC1kl7BqzUWozajCrqAKR/p4ubA0BzAgRNZuaQ+ZZMN2x/e9wKtILy7H2iOMrtMsrz/t7aeHv5QGgeUaOmcwCPx1LBwA8NK6bXRAEAJ2sGaE9ibkoqTShW4g3ugQbYDILmKxpzIzCCuw4k6XUCIX7W4KnBGtG6FByPqqsWaMTqYXYcCxNefyDKfnKzweS85BuDab6RPgCsHz5l1UyQwoAZZXVnwvZrBNqE5gRIpcrN5pw8/JdSIgNwJLp/VzdnCarnRFinVBHJhckn80odvg+1Rkhj2btGtt7MRfZxRXw1WtwVdfa2Sm5awywLLvxxb3DEeqrR1pBGSRIeG/7eazYdRE7zmQpdURyRqh7iA98dBoUVVThdEYReob6YO4ne5BZVIFVD43C4JgAHErOVx5/f1IeMqyP0bWTN7RqFSpNZuSUVCBK6+XQ8RSUGXE+q1hZJ60jscsIcTRdm8CMELnc8dRCHE8txKoDl13dlCtSWEfXmDs5drkA3+2/1CLDwdsaIQQSsyyB0JmMIoePOdcaCNlnhBrvNlq5Nxnf7E2p9/b1Ry3ZmYl9w6DV1P5Yl7tfJAl4+/ZBCLV2lYX7eSLMT48JvUMAADvO1s4IqVUSBsb4A7DUCe1JzFWCpV9OZQIADqZUd5vtT8pTZpUO89UjyNsS8DnTPfbUd0cw891d2Hsx1+H7AJaLqkU/HMOOM1lO3a812dYIceRY28CMELmcPMdIcYVl5lu9R/usq6nZNVbYQpPltVULvz2MU+lF6BXmg36Rfq5uTovKLq5EUUX1VAlZRRVKHU5D5Pl5Ar208Pe0BEKNrUt39FIBnvr+KABgYIw/eoT6AADMZgGVSrLrFruxf3idj9E91Af/N7kXogO8lEkSbQ2NC4ROo0JGYYUS5IT7VdeuJMQGYOfZbOxPysPJ9CJl+85z2XhkfHccTy1Uth1PLVAGDYRaA6G0gnKn1hs7lV6oHPvQuECH77fzbDY+/T0Juy/kYkyPTg7frzXZdhFyMdq2gRkhcjnbobXt+QqprmJpd5Kca5nN+HJ+WSN7tn9yt5jsjIPdY/I6YwEGj+qMUCOB0Ps7zis/f7E7CQCQnFOK4Ut/xqS3d+KDHReQVWTtFmugaPv+MV0xqZ5ASe+hxvAuQQAAObkV4V8d2Ml1Qnsv5mGDNegCgMMp+dh9IQeVVWb4e3mgk48ORpOl7kglAcHeWgQaLN1yjn7pCyGUgu0U6wzZjpKLtM9nFaOyytzI3q5Rs1iaXI+BkIv8ejYbL649oUyF785sCwbb8xVSzUkUa3aVdWTFFVXKB3yeG8wZI3eLyc5kFNWzpz15ZukALy38vKw1Qg10jSXnlCrdXgDw/YHLKKmowsvrTyKrqAIn0wrxjw2W0Vr1dYs5aoxNpsjP0wNe2uoOg4HR/pAkS5CbW1KJQIMWnYMNMAvg3V/OAQAGRftjSGx1TU+wtw4atQrBBmvXmIPvi/xSIyqsQYw8Q7aj5O63KrOoFay2FWUMhNocBkIu8s+fz+LDXxOxvQ33ZbcW2w/I9jyvhjvXCNl+oLvD5HmJNb5kz2Y2nhEymszKeyLApmusoYzQh79egFkAo7sHo0uwAcUVVfh/a45hw/F0qFUSZg6OhHUEPG4aGNnEo7Gw7UqS5xCS+eg90NPaJQcAN/QLwzXW/XdfsNTxDIoJUDJHAJQ6JLlGyNGuMdvFWp29ULS9kDqd7lhw2trsaoTa8YVfR8JAyEXkfvqdZ7Jd3BLXs/3watcZITcePp9p8+XlThmhgdH+ACzLWjRGDnhUEuDrWd01Vt/SFTnFFfhmn6VA+i9ju+JPw2MAAKsPWgYV3DEsGstuG4hNT4zB5/OG11n744zuId4IswYvEXXMbWMb5EzpH47RNZ5vYLS/MvkiAIRa1zdztmtMHnoPWLpbnSm+t5240dEsXWsr5fD5NoeBkIvIHyK7zmcr83i4K9vRJE39YCgoNeLPH/6hfHG4gpwRkocqu1PXmO2VbW4zTRDYlsndLhP7hgKwZIQa+8KWu8X8PD2gVknwb2T4/PcHLqHcaMaAKD+M7BKEWxOiofewfGT76DR44toeAIBuIT5XHAQBgCRJyudSXZP8yYFQkEGLYZ0DMaJLkLJMCADER/ujX4Sf0j1XMyPk6Kgx24xQaaXJqSLr7KLqfdtqIGTbNVZSaUJJhftcMLVVDIRcZECUP3z1GhSWV+HIpXxXN8elbK/impoR2n42C7+ey8bHvyY2V7OcJmeAIgM8rb+7TyBku5hnR88Imc0CidmWQOja3qFQSZasTmP1HtWF0pbAoLHh83K3+cxBkZAkCX5eHrhtSDQA4PFruyPIW1fn/a7E/Ot64ObBUbjn6s61bpvcPxy3D43GSzP6Q6NWwaDTYJB1np9uId7w8/SAVqNCfJRlxKAcCAU72TWWVmC/YGtKnuN1QrafH44WsLe2movstucseEfBQMhF1CoJo6wTn+0867rusdLKqiv64jKbBRasPISnvz/S5PljbOuCmlojlG6d+6Tmh2hrkofLy90K7tQ1ZpcR6uCBUFphOSqqzNCoJHQJNiDWurBpY3VCtoXSQHUgVG40o7zGl2NZpQl7Ey1z84y2qd35fzf2wfrHRmNeHYFKc4j098Qbt8Ura4TZ0nuo8crNA3BDvzBl27XW+YdGWkecAcCfR8SiSyeDMjeR3DWWU88X/q9nszHxze04drkAQPXfskwejegI26DiYk5Jrde1LZAHFcjZNAZCrsdAyIVG97AEQr+6KBASQmDmu7tw9T+2Kh9CzjqTWYRVBy/j670puOTElZusymRWviCAphcPpuZbAqCCMqNdH3xrkjNAUS4KhCqrzHjwv/uVhS9bk21GqKN3jV20ZoNigrygUavQLcQbQONdMfIcQnIg5K3TKGt91awT+iMxB5UmMyL9PdHFJijRalToE+ELSZLQFtxzVWe886dBWHh9T2Xb9IGR2PrkWPSNsGSGgqwZsOySShxOycf0d37F/w5XL0vy8W+JOJNRrHRrp1vfS3KgkOJgIFRRZVJGbuo0KggBnHOgiF32v8Op+Ou3h1t0sWSTWSgj4qICLLNsc+SY6zEQcqHR3SxXegeS81Dsgn7io5cLcCq9CCWVJjz85YF6izYbsvei/YyyzsorNcI2kdTUqyPbAks5KGqKsxlFTf4gLHRx19jB5DxsOJ6Od7ada9XnBewD2LySjt0leMEaCMkBSo9QORBq+Eu3euV5SyZIkqR6R47JWeLR3YPbTNBTF41ahSkDIuBnPY66yDVClVVm3L1iLw5fKsAHOyzButkscMC6mKs8ykvOCA2I8gfg+Mgx+fXVqCTEW+/rTJ3QaxtP49v9l/DL6ZYbyWvbLRYd6Hwg9MOhy3hm1REYTW1zjqT2ioGQC8UEeSE2yAtVZoHd53Na/fltJ0ZLyinFX7897HT31n6bKfAPNLA6dX1s64OAphdLp9kUWKY3sXvs55MZuO7NHXhj05km3V/uGpMLTWvOK9TS5IkM80uNrV6AaTtqrLiiqkWvql1NzgjFBcmBkGVY+bnMhr90t1u/YDt3qs7w+CmTKtpn0eQlIkZ3b5uzIzvDS6uBp3W2eDlYOZ5agIIyIy5klyhB4GnrUiXy3688o7SjXWNyoXSQtxY9w3yUx3SE0WRW/n5O2MyS3dxsC6WjrBdMWQ6WAwghsOR/J/DVnpQ2vYRIe8RAyMWuts4E++u5K+seO3Ip36kuISGEEgjdN7oztGoVNp3IwBd/JDv1vLYZoSYFQtYPgU7KSKumfYna1hWkFjRtZuM9iZagbsuJDKfvW1FlUlLethmh1lx367JN12RqK8/uXDOT52xWqK3OAlwXuVBaDmi6h1i+dE+kFtZbk3I6vQh7LuZCrZJw8+AoZbuSEbLJxqYVlOFsZjFUEnBVt6Baj9UeyVmhYG8dwnz1MAtgb2Iu9idVX0jllxpxMadUuYAY1tlSiO3opIrZ1ouqIIMOPayB0BkH5xK6nFemjN49kdbygZCnh1oZXepoRigpp1SZo8uReavIcQyEXEyexOy7/ZeUK01nfb0nGdPe+Q1/X3vC4fucyyzGhewSaNUqPDahO/52g6WP/52t5xwORFLzy3A5vwxy5v5kWpHT9TnyF2iXYAM01noJZxZnBCxXc5k2HyZNzQjJQ6IvZJc4XfBrWw8U7utpbVd1PUBrsA0AL7ViIFRlMisf0HJdhzOv35FL+ej3wkb88+ezLdK+5ib/nXa2ZoR6hfkgKsATJZUmbDxuubi4kFWMsa9tw+sbTwMAvvzDsjTGdb1DldFUQHUhse3IUblbbECUP/yt9UTt3bieIQg0aPHB7ASM6yVPxJhTqztdznR46zToHe4LwPI5U+VAV5CcTQ720SmTPzo6cizJJuvUkhmhUqPlc8JLq1Yu/hwNhGwXtnWm9okax0DIxSb0CsHQuAAUV1Th4S8POD3KocpkVmpC1h9Nd3hOIjkbdFW3IPjoPXDXyFiE+uqQXlju8Crw+6wfYv0i/BDup4fJLHA4xbmi62ybjJB81ehsnVBWUYVdnVFaEzNCSTnVH4YHncxuyYGQt04DH71GCQ5bcy6hSy7KCOWUVEIIy0SBMda6hzwnCqZ/P29Zq8pVgwacUVJRpXxpyhkhlU2W57v9lwAAb2w6g4s5pXhn2zl8/Gui8jd154gYu8ebMcgyG/SHOxORbH3/ycPmxzTD3EBtxd9v6oc9/zcBg2MCMMI6wmx3YnUg5Ku3LOchB0JhfnqE+uihVatQZRYOjQaVP0uCvbVK3dbl/DKHavWSbWYKv5xfVqursrnII8Y8tWp08nZuoskDSfnKzwyEmhcDIRfTqFX45x2DEGjQ4nhqIV5cd8Kp7pS1R9KUL8CCMiMOpTj2Bb7xhCUQkofC6jRq3De6CwDgve3nHboCk+uDhsQFKDPKOts9Jg+pDfbWIdjJDwZZzQ/JphRLC2G/NpGzxyHXB/nqNVCpJHjrLB/sTRk59seFHDzw331Ovw62wc/lJozgAywTU9776V78cMixYBioHjFmew6dyQjJ5y+zyPnzdiK18IqXqTE7MaHp7gs5MJkFYgK97FZnvyXBEgj9ei4bv5zOxPpj1euDLVl7AkUVVYgN8sJVXe2Dm8n9w3BVtyBUVJmxZO1xvL/9PNYdsdz3mp4hV3JYbY5Gbfm6kYfaH08txHnrDN03WQPCXdZayTBfPVQqSelmdmTxVdvPEn8vrTKztSNZIduLIKDlusfKbbrGgp3MCNl+Jp13YAJPchwDoTYg3M8Ty26LBwB8vjsZj3x50KG5fYQQWP6LZWVqnXU2V0dGPBy7XIBjlwuhkiwTwsn+NDwGgQYtknJKsc5mocf6yPVBQ2IDMdg6sdoBJ0eO5dhcxSmBUJFzV2NyBkhec6kpXWOZRRUoN1YHf86OgJMzP77Wmg9fveX/wiaMxHtzyxlsPJ7h1CzZQgi7Vd+bmhH64fBlbDmZiX/8dMrhD9qsYsvrbZvVcyYQktua2YRC+fv/uw9zP9nj0BIXdSkqN2LyP3diyr92OjQSx3Y0l63oQC+M6BIIIYCHvzgAIYAb+obhRpvV3v80LAYqlf0IMEmSsHhaX2hUEraczMTSnywLqD4wpovdkhYdSYivHl06GZQsbpdOBiVLJI+qCrOudSaPrLpkUydUUWXCuiNpdoXHQPUFlDyBo9y1dtKBoCapRkF2S3WPyRkhL5uMUFZxRaN/a6WVVThlU+9UVFHVpL8XqhsDoTZibM8QvDC1DzQqCeuOpuH6t3bg230pDRaRbj2VidMZRfDWafC3G3oBaDgQKiw34pWfTmHGu78BAK7qFmw3O62XVoN7rooDALz989laHzQ1H+tUuuXDYkhcAAbH+AOwXLU0ZW2gINuMUIlzf+By4COP3mlKsbR8Rai1XrUeTilwKCsmkzM/PtYUv/y/sxkhk1ng6CVL9+KFLMdrxnJLKu0CuctNDITk4Da1oBwXcxwbrSNnhEJ8dMocOU4FQtbzVVppcmoaiZKKKlzKK4MQ1ZkEZ728/hROpRfh2OVC7LMp/C8oNdZZK7fjbP2juW5JsMz6XGL9u3lsQne8dusADIkNQJivHrdaZ4WuqVuID+aNrp4g8ZlJvfDM5N5NOp72YoTNBIxDYgOUv12ZvOZZdB0ZoTc2ncHDXx7Av7ba15TJdWpB1rorORByJLsjz1U0yPo51lIZoVKjTdeYNSNUWWVGUSPv+yOXCmAyC4T56pXJLtk91nwYCLUhc6/qjNUPXYWunQzILKrAX787gtGvbsV/dlxQghIhBPYn5eKp747gsa8OArDUHUyNt1x5Hr1cYJdqTS8oxzf7UjBvxV4M+fsWvLf9PIwmgXE9O+HVWwbUasNdI+MQ7K3FhawSPLv6aJ1BTU5xBT7fnQSzsNSEhPrq0de6xlBeqVEZVeMIuV8/yKBFsI+1RsjpjJAlEJK754rKq5yel0nuFhvaOQA+eg3KjCa7K7DGVHeN2WeEnA2ELmQVK1+k57Mc/6Cr2R3Y1LmU9tlMh/CbgyMZ5fdbiI8egdbJ85ypEUqzaavtMPzG2AZ78og/Z+w8m4Wv9lSPktxsHS2YmF2CUa/8jHs/3We3/6W8UlzIKoFaJWFk19qjuSb1C4OX1jJMfGKfUPSJ8IWXVoNvHhiJXU+PV16busyf0AMPj+uK9+9KwAPXdHX6WNob25moE2IDEBfkpaxRBtTOCMkXKpVVZqUOq2aXaJZNsTQA9JEDoUayO0IIZYj+JGupQEtlhMoq5WJpDfQeavhYu9BtJySty8HkfACWQK1rJ0v9EwOh5sNAqI3pH+WHtY+OxlM39EKIjw4ZhRV4af1JjHltG/6+9gQmLNuOm5f/jpX7UlBSaUKfcF/cP7oLQnz06Bdp+cPffiYLG4+n47pl2zFi6c/423dH8POpTFSazOgR6o0PZw/BJ3cPs6txkPl5euBfdwyGWiVh1cHLWLHrIgrKjDibUYT3t5/H9Hd+RcKLW/DqBstomOGdLXN9aDUqDIi0zCT7w6HUWo9bHzmdHeStc7p4UCZnhLp18lY+WGpO09+YJGsg1DnYoKyf5EydkBzwyF1j1Rkh57rGDqXkKz9fyCpxOLt2Od/yQR5h/QJJLyx3KqNleYwyu3orRwMhOUXfqQkZoXKjSbmSt30sR9hOtPdHYq5TmciiciOe+u4IAMuoLwDYfDIdQgh89vtFlFSasPNstl1gJhdzD4z2r3MCQYNOg4fGdkWkvyf+ajPTskol1eoSq8lTq8Zfr++F6/uGNbhfRzGiRiCkUavQzfoFDwDh1vexPB/QL6czUVBmxNZTmcp760RaIQpsJqKszghZ3oN9Iiyfh6fSCxscRJJVXIHSShNUEjCxj+X1P5dZ3CJzYdkOnweAUPnvtZHufPmzaHBMgDKT+dlG5q0ix2lc3QCqzVOrxl/GdsU9V8dhzcHL+NfWc7iUV4aPrAuKenqoceOAcMwaGo0hsQHKzLNje4Tg2OVCvLbxFDKsVxgqCegf5Y9xPTvhxv7h6F4jBV2XkV2D8MykXnhx3Uks/t8JLP5f7WH5vcJ8cFW3YNw/pouy7ZaEKOxLysPbP59FTKAXbk6IqnW/muqsEXK6WNoS9IT76RHur0dRRjHSCsrRLaTxY5XJ3UBxQQYEe+uw40wWDiTlYfbIOIfuL9cIXWnX2GGbYdQFZUbkllQ6tLjmZWtWJT7aH1nFGTCaBDKKKupcRbw+cjbIW6dBcUUVdp23FAarG/kSVzJCvjolQGjqApvOBEK288tkF1cgMbsEXWy+TBuycm8KUgvKER3oic/vHY5Rr2xFSm4ZjlwqwPfWjANguaiQu7Tqqw+y9cj47nhkfHeHj8FddfLR4dnJvVFUUaVkOHqG+ShdUvIUA2O6d0K3EG+cyyzGJ78l4tjl6kyNEMCei7m4rk8ozGahvOfkLqe4IAM8PdQoM5qQmF2iBBA1yaP1wv08ERvkBX8vD+SXGnE2oxj9rBd3zcW2awywTL56LrNYuZCpixBCGcU6ONYfF7Mt+zIj1HwYCLVhOo0as4bGYMagKHyzLwV7L+ZiVNcg3DggQhmVZGtsz054Z9s5JQiad3VnPDq+W5PmIpl3dWecSCtUhv16adUYGO2Pyf3DMbFvKEJ89LXuM2toNM5nFeM/OxPxt++PIMDggfG9QmvtJyutrFKKI4OuYNSYfDUV5qdHuJ8nzmQU23W3OELOCMUGGZTC8/1OZIRqdo35yMXSTmaEak4/cCG7xLFAyDpKLCrAE+F+nkjOLcXlvDInAyHL8d48OBKrDlxGQZkRx1MLlKUO6iOP9urkrYPB+r50NBCqWdTtTNdYzaUX9iTmOhwIycXwfxoWi2BvHa7uFoytpzLx1PdH7GYE/8UaCJnMQpn0tCPM9twW3GdzEQXArk5IzgipVRLmX9sdj3x5EB/tTFQCieGdA/FHYi52X8jBdX1CkV9mVLI+chekWiWhZ5gPDqXk42RaYb2BkNztFhvkBUmS0CfcF7vO5+BEamGzB0JlNsXSQPXs0g2t03gprwzZxZXwUEvoG+EHjcry+XQus2nzzlFt7BprB7QaFf48IhZv3z4Is4bG1BkEAZaUfUygF7y0avzrjkF4bkqfJk/IJkkS3rg1Hgeeuw6nX7wBJ5bcgC/vG4E/j4itMwiS7/PMpN6YOSgSJrPAY18dUq626iJng3QaFQxadXWNkBMTKprMlswHYFn1Xf4AdaZgWgihfBjGBXlhYIw/1CoJKbllePcXx9btao5i6XKjSSlAl9exuuBgnZAcUET6eyrBj7Mjx/ZaM0IjugRhhLUG5rdzjRchy+uMhfjqnK4RqtlGZ9Zdkr885Od0pk7ItuYCAK7rYwnY5bqwcT0twc7OM1moMplx5FI+CsqM8NFrEB/VvF+OZNEzzBKoaNUqu3qqyf3C0TPUB0UVVTCZBQZG++POEbEALNMZANUXT/5eHvBQV3+tyd1jtsXPlVVmfL0nGU99dwSZheXKiLHYIEs9klxbdDy1aQtRN6SsskZGyBoINTTdhfye7BHqA72HGl2tAV12cYVd1yA1HQOhDkSjVuGnx0fj96cnYGp8xBU/niRJCDRoodOoHb6PSiXhH7dYRsoUV1Th0a8O1DvyLdtm3g9JkpSMUF5ppcP1LdnFFUr3TbC3Tql7cmYIfV6pEUXlVZAkS3Gmr95DqfF4dcNpvLf9fKOPUWv4vKfzGaGTaYUwmgSCDFplxnFHR47JhcORAV6IsAZCzowcKyw3KusyJcQFKEu/NFYnJIRQCj07eesRIAdCJY4tL3IlXWNyIDTN+l7/w8FAKK2gDOmF5VBJwABrUDOhV/WcPWqVhJdm9IefpwcKy6twKCVfeQ+M6d5JmQ+HmtfgmAAEGrQY1S3IbqFZlUrC49dWdzfeOiQKI6y1iXKdkDKrdI3sac2C6R8OXca413/B06uOYuW+FPx93UllMsWYQMvFR19rreXRy80fCCldYx7VXWNAwzPBy4Xc8tp23jqNcsF3Lot1Qs2Bf9EdjEGnURZydBUPtQpv3zEIfp4eOHypAK9vOl3nfrb1QQAQ4KWFSrL0/TvbtRLqo4NaJSHcX84I2X/BVpnMyCwqR15JZa3Zu+URY+G+euitH1APXtMVC67rAQB45adTePiLAw2O4pK7U6q7xpzPCB22FkoPiPJDF+usxY6OHJODngh/ffVVphOB0IGkPAhhuSoO8dHjKmsgtOdiboOznRdVVCnLiHTy0SHQmoGsNJkdGrknn78469W4M5Mqyl1jU+MjoFZJuJxf5tBK5Yes2aCeYZZRXYBlbpuB0f4AgGt7hyDC31OpBfrHhlPYeDwD6hpfyNS8/L202PX0eHw8Z2it227oG4bR3YPRJdiAqfERdnMR7bmYi+wahdIy24zQ7gs5ePzrQ7icX6YETP87nKpMvSBnhOSV64+lFipzS5nNoslTUtiqr2usoYyQPLQ/KrC6m1vu5mOdUPNgIEQtItLfUxme/8GOC7j/s321Vue2HTEGWK7E5bWXshysE7KtDwKqawtsR40l55Ri/BvbMeylnzHo75vRd9FGPPzlAWWEllwfFGP9IJQ9NqE7nryuByQJWHc0Ddct246HvtiPHw+n1hoNJtcIVXeNycPn688I1cyYHLbOHxQf7Y8uwZYPOkcyQmWVJiVwjPL3QqQ1GHRmdul9NpNjAkDXTgZE+nuissqMNQfrn2Vazgb56DTw1Kot/6zBpCMLr8oBqxyENDaMWFZcUYU8a7dAj1BvpZZj78XGs0LyeZe7xWSPT+iO+Gh/PGENgMdaZ3aW51aaOyqu1nw31Lz0Huo6R9ipVBL+O284ti4cq1xsKEt1XMixW2fMVq8wH0iSpcv1yW8OA7Asa/LrU+Nw4wDLlCNyFlJeHqZzsAG+eg0qq8w4be2W+mDnBVz1ylanZlyvi7wWo6c1AI8KsDxnQ6M85YyQ3D4AHELfzFgsTS3m+r5hmH9td/zz57PYdCIDW05m4O6rOuOv1/eE3kNda7grYMkOZRdXYPOJDPQJ94XJLLDq4GXsOpeNxJxSZBaWo5OPDtEBXrimRydlIjK5S0z+Xy6Wzi6uwOyP/1A+TABLXdG6I2lYdyQN1/UJRbT1w0hOPdt6dEJ3XNsnFG9sOo0tJzOx/mg61h9Nh95DhbtGxOKBa7oiyKCtLpauMXy+sKwKB5Pz8OPhVKTkluJSXhlySyqRX2ZEuJ8eqx+6SqmHkEeMxUf7Kxmh5NxSGE1mu7qHmuQrVYNWDV9PDSL9LcfjaI1QWkEZVlpnsZZX/JYkCXdfFYcX153EO9vO4eaEqFptyCgsx4vrLCMK5WHAgKVm53J+GXJLK2sFlzXJbYyP9seaQ6kOd43JmR9/Lw/46D0wonMgDqfkY/3RdMwYVD1a0WwWyCutRF6pEdGBntBp1Ep9kBx8ycb1CsE4my6yMT2qR4cFe+swn9mgNmVElyB8+Ucytp3KxHBrUBRcIyPkpdWgc5ABF7JLlEzQC1P7Qu+hxhPX9sBPR9Mgj6yX36uSJCE+2h87z2bjUEo++kX6YbV10Mj6o2mYPjCyyW0us0566mW9WOjkrYNWrUKlyYz0wnIlMLJVdyBk+XxwdNJTaphbBEJr167Fk08+CbPZjKeeegr33nuvq5vkNuZf2wM39g/HaxtPY9OJDHz0ayJ2nMnC9X3D8P0ByzBl21FR1/cNw6n0Iry15SyOXS7ExZySWlc9aQXlOHKpAOuOpimF4zUzQkUVVfhmXwr++3sSLuaUIirAE6v+MgpB3jqcTi/CR78m4sfDl5VJ9ADLiLG69A73xYdzhuJ4agHWHUnDhmPpuJBdgv/sTMRnvydBrZKUqfPlAEheRPJMRhFmvLurzsdNyinFJ78l4smJPZGSW6pkf+Kj/OHv6QEvrRqllSYk55YqV4B1UQqlAzwhSZJd15gQwq7eArAUgf7r53MY06MTJvULw7wV+5BVVIGeoT6YMqC6tuzO4bF4b/sFXMorw6oDlzBraPWCodvPZOHRLw+gsLwKWrUKj0+oDhICDB64nF/W6DIxQgikWdsuByUFZUaUG01KF2V95CUX5K6FW4dE4YOdF7D5RAbOZhShe6gPVvyWiJd/OqXUqA3rHIjP5w3Hkcv5AKDMhl6fEB89Bsf440ByPp69sZeS5aO2YVTXIHhp1biQXYIL1klca9YIAUDvCF/l9uen9lFKB7qFeGPGoCh8f+ASArw8lEwTYHk/7jybjcMp+bi2d6hSP7fvYl6df1OOKlMyQpb3t8ranZ+UYxnlWTMQMpuF0jVmGwjJ0wtwmY3m0eEDoaqqKixYsADbtm2Dr68vBg8ejJkzZyIwMNDVTXMb3UN98MHsIdh6KgN/++4ozmYW42ymZTSWl1atjNABgPnXdoevpweWrj+JLSctQUqAlwdmj4xDrzAfhPrpkV1UgWOphXh/+3mlDkUOgAw6DXz1GhSWV+Fv1gnzAg1afHbPMIRYPzz6RPjijdviMXdUHB78fL+SUYlrJHvRN8IPfSP88Nfre2L7mSy8ufmM0p2lkizzL8lZJflLs8p6uTl9YASGxAUiOsATwd46HLtcgKdXHcWnuy7i/jFdlDqq0d2DlQxR52ADjqcW4kJWSYOBUHV9kJwVsxxnaaUJBWVGu5GDFVUmPPrVQVzIKsGG4+lY9OMxGE0Cwd46fDR3iDL8HbB8WD8wpgteWm/JCs0cbMkKpRWUKUFQfJQfXr813m5+Krl7M6eRQKiwrEqZRbtXmC+0GhUqq8zIKqpQZhSuj5wRirJmv7qF+OD6PmHYcDwdy385jz+PjMWStSeUq31Jsowqe+F/x1FuNMNHr1G6Hxvy7p0JuJBdjFFd6587iFwj2FuH/84bjmdXH1VGVnXyqR0IDYkNwLojaRjToxOmDgi3u+2J67pjX1IuJtSY5kOuEzp8KV9ZVgWwvKcvZFf/PRZXVGFPYg4OJOWjk48OA6L80CfCt94BJqU1Ro0BljKCpJzSOmuQsoorUFFlhkqq/vsGbAIhJ6aboPp1+EBoz5496Nu3LyIjLenMyZMnY+PGjbjjjjtc3DL3M75XKDY9EYCX1p1EXmklpgwIx8S+YXbTAUiShHlXd8bAaH+8vvE0BsX444FrutaayXdi3zBMHRCOx78+hJPphXbdHA+P64bVBy8j0KBFmK8eD1zTtc75ZfpH+eHHR67Cwm8P41R6EYZ2diw4liQJY3uG4JoenXAirRB6DzWiA+yXCIgLMqB3uC/0Hir8vxv71FpAs0+4Lz7YeQEXskrw3JpjymzcT1nXjAOALp28rYFQMYD652OSa4HkESh6DzWCvXXILq7Apbwyu0Dog+2W5ww0aKHXqJBaUA6tRoX/zE6oMy1/54gYvL/jPFJyy/DWljOYf20PLPz2sBIEffeXUbW6zAKtV9yNZYTkKQ4CDVrL2kveOlzOL0OmQ4GQ5b7RNgWkD43rig3H0/HD4VTsuZgLs7AEoK/fGo///p6EJWtP4Ms/LEtqDIz2b3S2Z8CSaQzzq3u6CHK9hNgArH30anzxRzL2JeXh2j61/07uHB6LcD89RnfvVCuTExXghe1/HVfrPgOiLTVnZzOLsb7GAtR7E3PRtZM3PvktES+tO6lc7Mgi/T2xZcE1dsGOTCmW9rAPhIC65xKSs0ER/p52f2e2GSGzWTj0Xqb6tflAaMeOHXjttdewf/9+pKWlYfXq1bjpppvs9nn33Xfx2muvIS0tDX379sVbb72F0aNHAwBSU1OVIAgAoqKicPnylRW8UdMFGrR447b4RvdLiA3AV/ePaHCf7qE+WPvo1cgtrbRLiT9wTVeH12sK8tbhk7uHNSndLUmWCc7qotVYpjKoj0ol4cExXfG3749gjTUIumlghN0EbvJcQo2NHJMLhGNtMlpxQV7ILq7A/w6nKo+ZlFOCd7ZZMnGLpvbB5P7h2HoqE5H+nvVOHOel1eCRcd3wwv9O4N/bzmPNwVRczi+D3kOFZbMG1lm7JA+hz7WZS+hgch52nMnGnSNilHNlOyM4YJmH6HJ+GbIcGDl2SZlAsvqYB0T5Y3T3YOw8m41LeWUI89VjybR+8FCrMGdUHFYfvKwMia5ZH0Ttl8Z6fueMiqvzdq1GhRv6hdd5W31CfPSI9PfE5fwyZSHrkV2C8PuFHOy5mItJ/cPxjw2nUGUWiA70xLC4IOSWVOC3czm4nF+GE2mFtS5+ACgTyMqjFYHq93Bdgxvqqg8CLLWUkmSpd8wpqawzE0aOa/OjxkpKShAfH4933nmnzttXrlyJ+fPn49lnn8XBgwcxevRoTJo0CcnJliu/uuYyaWr/LrU9KpVUZ12As1zxnrhpUKSyyrZWrcKTE3va3S4XTP+RmIuMelLgp9IL8UdiLtQqya6+Rw4E/7PzAo5cykdJRRWe+v4IKqrMuKpbEKbFR8BDrcL1fcManT13zqg4/OPm/vDRaZT0/bOTe9fbXScPof/xUCre334e878+iBnv7sKbW87gzx/+oUwCJy8LIqf8Q6wf5o7UPVyyLkkg1wjJHhrbTfn51VsGKPUgapWEl2f0h3zhXHPEGFFN8dHVfxc+eg3uG9MZgKVOaNWBSyg3WtZu3PHXcXjjtnh8cvcwDLUONqhv4enqrrHqr96GpruoLxDSqFXK5159nw3kuDYfCE2aNAkvvvgiZs6cWefty5Ytw7x583Dvvfeid+/eeOuttxAdHY3ly5cDACIjI+0yQJcuXUJ4eP1XBxUVFSgsLLT7R9QStBqVMi/N/WO61OoOGtU1GL56DZJySjH57Z3YUWO1bQD4dFcSAMtq57Y1BNf1CcXU+AiYBbDw28O4efku7L6QC51Ghb9P7+dU4CdJEmYNjcHGJ8bg5sFRuH9MF/zZOrNvXUZ1C4beQ4XL+WVY+tMprDmUCkmyDLE/lV6Eez7di9LKKqVQWl4oVp6xPLPQku6/kFVc76SMKbm1M0IAMKJLIP4+vS/euDVemZRS1j/KD0tn9scdw2K4TAY1Kt5maZmruwVjaFwgVJIlOPlgxwUAwJ9HxNr9Lcl1Z4nZdWdxq2eWrs4IRTYwAaocCNXVVRzqK184MBC6Um0+EGpIZWUl9u/fj4kTJ9ptnzhxInbtsozUGTZsGI4dO4bLly+jqKgI69evx/XXX1/vYy5duhR+fn7Kv+jo6BY9BnJvdwyLwa6nx+PJiT1q3dbJR4cfHrkavcN9kVNSiTmf7MF3NguCFpQalTl+6uoWeGFqHwQatDiTUYxT6UXo5KPDF/cOd3g9rpoi/D3xxm3x+L/JvRsMpBJiA/DHM9fi5Rn9MaprEK7tHYIfH74a3/5lJHz1GuxPysPUf/2qFMPXzgiV4+2fz2L8G9ux8NsjMNeowSgsN6LAOl1BZI2MkCRJuGtkXL0L/s4aGoOlM/s3OB0BEWCZ0kE2pkcn+Og90Ns6U3VaQTm8tGrMGGQ/lL6zsjRO7YxQlcmMSpP98HnAflLFmu/1ukaMyUKtFw4ZDs69RfVr158G2dnZMJlMCA21L5ALDQ1Feno6AECj0eCNN97AuHHjMGjQIPz1r39FUFBQvY/5zDPPoKCgQPmXkpLSosdAFOHvWW9g0TnYgNUPjcKtCVEQAvjrd4fxrXXOn2/2paDMaEKvMB8Mr6PQO8hbhxdv6ge1SsLAaH/875GrMSSudUZL+nl54E/DY/DlfSPw4Zyh6B/lh15hvvjk7mHw0WlwPqsEZzIsV83hciBkvcI9nV6E/+y0XHF/f+AS/m/1UZjNAmWVJpzPKsZ2a81GgJdHvevuEV2p/pF+0GpUUElQsotDbf5+pg+MrDWlQmdrd3ZdXWNlNjO02xZSh/npoZIss7HXXHC6vq4xAMooWEe6xsqNJvzr57PKBJFkr0N8itT8EqlZ+Dpt2jRMmzbNocfS6XTQ6Vh4Rm2H3kONV28ZAL2HGv/dnYS/fX8Eb2w6o3xozhkVV28gNbl/OEZ0CUKAl0ebqI1LiA3AzqfGYe2RNKw5eBnFFVXKumZy15g8JUG4nx4ZheX4em8KtpzMqLUYb12j3Iiai0GnwUdzhqDCaFa6r4bGBWLFrosAgD+PiKl1H3mAQ2J2Sa3RXHK3mCRZFpqWeahVCPPVI7WgHJfyy5QAp9xoUrI9DXWNOZIRWn3wMt6wTvfx4Zwhje7vbtp1IBQcHAy1Wq1kf2SZmZm1skRE7ZkkSVgyvS9UEvDp70lIt14FRgd64qZGZroNrDHbrqv5e2nx5xGxteqMao58efGmfigsN2LBN4eVIMhbp4Gfpwf8vTzwoIMjA4maqmYt2egewejayYA+1jnFaor094SHWkJFlRlpheVKAAVUF0p7eahrXZREBngitaAcl/PKMDjGUnAtz5XlrdMgoI71I52ZS2iPdUHimhknsmjXgZBWq0VCQgI2b96MGTNmKNs3b96M6dOnu7BlRM1PkiQsnt4Pfx4Ri4oqM3z1Hgjz09vNX9SeyV1jgGXh2fG9QiBJEnqF+aK4ogpdgg0INGjbRGaL3JOv3gM/Pzm23ts1ahVigww4l1mMC1nFdoGQ3DVmWygti/T3xF7k2c0lZFsoXdd7XskIOVAsLU+x0dDah+6szQdCxcXFOHfunPJ7YmIiDh06hMDAQMTExGDBggW46667MGTIEIwcORIffPABkpOT8eCDD7qw1UQtp3sHXfgzyKCDTqNCRZUZ86/trnz4ywWqRO1B52BLIJSYXWKXUSqtsfK8LbmbV84CAZbFogEgJtCz1v5AdVdyY11jGYXlSoBVVF7l6GG4lTYfCO3btw/jxlXP/LlgwQIAwJw5c7BixQrMmjULOTk5WLJkCdLS0tCvXz+sX78esbH1D+8lorZHrZLw2q3xyCwsx7ieIY3fgagN6lLPyDFl6Hwd6+jJk6FezKm+T7J1ioi6CqWB6q6x7OIKVJnM0NQzEnLfxTzlZwZCdWvzgdDYsWPrnUtE9tBDD+Ghhx5qpRYRUUuZFh/R+E5EbZgyhL7GyLHSGguu2pInT020CZ7koKi+QCjIoIVaJcFkFsgurqx3KZh9SbnKz2VGE4wmM6ePqIGvBhERUTOR5+mqOali9fIatQOhztaJGFMLypXM0dlMy1D3biF1d4WrVJIy91ZDQ+htM0IAs0J1YSBERETUTOSM0KW8MlRUVc8d1FDXWKBBC3/ryLDE7BKUVlYps6f3CK1/AtTG5hIqqajCiTTL6ghyvTULpmtjIERERNRMgr218NFpIASQlFNd/Fy9zljtQAioDqASs0twLtOSTQoyaBHUwFqKoXJGqJ71+Q6n5MNkFojw0yvZI2aEamMgRERE1EwkSVJmmLYtmG6oawywX6dMnnW9ewPZIKDxuYT2WrvFEuIClVmwC5kRqoWBEBERUTOqLpiurhMqU4bP1z1GqYtN8CTXB/VoZKqM6tml6w6E9lzMAQAMiQ2Aj97yvMwI1cZAiIiIqBnJc1/ZFirLXWP6OmqEAPvRZmfljFBIwxmh6hqh2l1j6QXl+P28JRCSF40FGAjVhYEQERFRMxrb0zKR4q7z2Si3domVGS0BSL1dY0pGqBhnMiwZocYmT1W6xuqoEVp18BLMwpIN6hxsgK81I1RYxq6xmhgIERERNaOeoT4I99Oj3GjG7xcsWZmyBmaWBoC4IAMkCSgsr1Jmgm6sa0wugK5ZIySEwHf7LgEAbhsSDQDMCDWAgRAREVEzkiQJ43pZZkffdioTQOOjxvQeakT4VS+nEeytbXTBZDkjlFNSicoqs7L9QHIeLmSXwNNDjckDwgFAyQhx+HxtDISIiIiambxMzNZTmcgvrVQWPg1uYDi83D0GAN3rmUjRVoCXBzzUlgmCsmxWlv/Wmg2a3D8c3jpLAMRi6foxECIiImpmV3ULglatwqW8Mjz61UHklRrRI9Qb43vVv46eXDANND50HrBknqoXX7V0j5VVmrD2SBoA4NYhUcq+StdYBTNCNTEQIiIiamZeWg2GdwkEAOw8mw0AWDytX4PrfHWxC4QazwgB1UPo5TqhE2kFKK6oQoiPDsPiApX9fD2ZEaoPAyEiIqIWYJv9mRofgZFdgxrcv3On6ixQj0aGzstCawyhT823BERxQQaoVJKyn4/OOqEiR43VwkCIiIioBUzoFQq1SoJBq8b/Te7V6P5NywjZd42lFVhGnIX7269Gzxqh+tU9xSURERFdkZggL3x9/wj46j0QbjMirD5RAZ7484gYGLSaRkeMyUKU2aUtGaG0AktAFOZXMxCSl9hgIFQTAyEiIqIWMtSmTqcxkiThxZv6O/X4oT7ypIrWjJC1ayyiRuDlw+Hz9WLXGBERUTtVb9dYjYyQrzUjVFFltptziBgIERERtVuh9XSN1eyK89ZXdwAxK2SPgRAREVE7JS+8WlBmRFG5UZlYsWaxtFolKZMrsk7IHgMhIiKidspXr4Hew/JVfvRSAYQAtGoVguootmadUN0YCBEREbVTkiQpdUKHLuUDsIwYkySp1r4cQl83BkJERETtmDxy7FByPoDahdKy6hXomRGyxUCIiIioHZPnEjqUkg+g/kBIXoGeNUL2GAgRERG1Y3LXWGaRXChd9+SNyqSKXGbDDgMhIiKidkweQi+LqLdrjDVCdWEgRERE1I7JGSFZWD3LeVTXCDEQssVAiIiIqB0L8bEPhOovlubw+bowECIiImrHanWN1VMj5OvJjFBdGAgRERG1YyE2XWM6jQoBXh517iePGiuqYEbIFgMhIiKidsxbp1GWzwivZzJFoLprrLCMGSFbDISIiIjaOXkuoZqLrdrihIp1YyBERETUzsmzS9dXKA1w+Hx9GAgRERG1c3LBdM1V5235cvh8nTSubgARERFdmduGRONyfhmmxkfUu4+cEao0mVFuNEHvoW6t5rVpDISIiIjauVHdgjGqW3CD+xi0GkgSIARQWG5kIGTFrjEiIiI3oFJJCPDSAgBySypd3Jq2g4EQERGRmwizzjmUVlDu4pa0HQyEiIiI3IQ8qiydgZCCgRAREZGbCPNjRqgmBkJERERuojojVObilrQdDISIiIjcRJh15mlmhKoxECIiInITrBGqjYEQERGRmwj1ZSBUEwMhIiIiNyEXSxdVVHHxVSsGQkRERG7CW6dRltrIKGRWCGAgRERE5FbCOYTeDgMhIiIiN8KRY/YYCBEREbmRcBZM22EgRERE5EY4u7Q9BkJERERuhLNL22MgRERE5EbkjFB6YYWLW9I2MBAiIiJyI+HWYmlmhCwYCBEREbkROSOUV2pEudHk4ta4HgMhIiIiN+Kr18BLqwbAkWMAAyEiIiK3IkkSR47ZYCBERETkZpSRY4WsE2IgRERE5GbCfDm7tEzTlDvt2bMHv/zyCzIzM2E2m+1uW7ZsWbM0jIiIiFpGpL8lI5SSW+rilrie04HQyy+/jP/3//4fevbsidDQUEiSpNxm+zMRERG1TZ07GQAAF7JKXNwS13M6EHr77bfx8ccfY+7cuS3QHCIiImppXYK9AQAXshkIOV0jpFKpcNVVV7VEW4iIiKgVyBmhrKIKFJUbXdwa13I6EHriiSfw73//uyXaQkRERK3AV++BYG8dACDRzbNCTneNLVy4EDfeeCO6du2KPn36wMPDw+72VatWNVvjmkNKSgruuusuZGZmQqPR4LnnnsOtt97q6mYRERG5VJdgA7KLK5CYXYIBUf6ubo7LOB0IPfroo9i2bRvGjRuHoKCgNl8grdFo8NZbb2HgwIHIzMzE4MGDMXnyZBgMBlc3jYiIyGW6dDJgz8Vcty+YdjoQ+uyzz/D999/jxhtvbIn2NLvw8HCEh4cDAEJCQhAYGIjc3FwGQkRE5NY6B1tHjrl515jTNUKBgYHo2rVrszVgx44dmDp1KiIiIiBJEtasWVNrn3fffRedO3eGXq9HQkICdu7c2aTn2rdvH8xmM6Kjo6+w1URERO1bl06WkWOJ2cUubolrOR0IvfDCC1i0aBFKS5tnEqaSkhLEx8fjnXfeqfP2lStXYv78+Xj22Wdx8OBBjB49GpMmTUJycrKyT0JCAvr161frX2pqqrJPTk4OZs+ejQ8++KBZ2k1ERNSeyRmhxKwSCCFc3BrXkYSTRz9o0CCcP38eQgjExcXVKpY+cOBA0xsjSVi9ejVuuukmZdvw4cMxePBgLF++XNnWu3dv3HTTTVi6dKlDj1tRUYHrrrsO9913H+66665G962oqFB+LywsRHR0NAoKCuDr6+vcAREREbVRlVVm9H5+A0xmgT/+bwJCffWublKzKiwshJ+fX6Pf307XCNkGKS2tsrIS+/fvx9NPP223feLEidi1a5dDjyGEwNy5czF+/PhGgyAAWLp0KRYvXtyk9hIREbUXWo0K0QGeuJhTivNZxR0uEHKUU4FQVVUVAOCee+5plTqb7OxsmEwmhIaG2m0PDQ1Fenq6Q4/x22+/YeXKlRgwYIBSf/Tf//4X/fv3r3P/Z555BgsWLFB+lzNCREREHU3nYAMu5pQiMbsEo7oGu7o5LuFUIKTRaPD6669jzpw5LdWeOtUcoi+EcHjY/tVXX11rYdiG6HQ66HQ6p9pHRETUHnXp5I1tp7OQ6MZD6J0ulp4wYQJ++eWXFmhKbcHBwVCr1bWyP5mZmbWyREREROQcDqFvQo3QpEmT8Mwzz+DYsWNISEioNR/PtGnTmq1xWq0WCQkJ2Lx5M2bMmKFs37x5M6ZPn95sz0NEROSOuljXHHPnZTacDoT+8pe/AACWLVtW6zZJkmAymZx6vOLiYpw7d075PTExEYcOHUJgYCBiYmKwYMEC3HXXXRgyZAhGjhyJDz74AMnJyXjwwQedbToRERHZkDNCKbmlqDKZoVE73VHU7jkdCDlTb+OIffv2Ydy4ccrvcqHynDlzsGLFCsyaNQs5OTlYsmQJ0tLS0K9fP6xfvx6xsbHN2g4iIiJ3E+qjh4dagtEkkFFUgUh/T1c3qdU5PY+Qu3F0HgIiIqL2aOxr23AxpxQr7x+B4V2CXN2cZuPo93eTcmDbt2/H1KlT0a1bN3Tv3h3Tpk1r8rIXRERE5DpRAV4AgEt5ZS5uiWs4HQh9/vnnuPbaa+Hl5YXHHnsMjzzyCDw9PTFhwgR8+eWXLdFGIiIiaiFRAZbuMHcNhJyuEXrppZfw6quv4oknnlC2Pf7441i2bBn+/ve/409/+lOzNpCIiIhaTnUg1DxriLY3TmeELly4gKlTp9baPm3aNCQmJjZLo4iIiKh1sGvMSdHR0fj5559rbf/555+5FAUREVE7I2eEUtw0I+R019iTTz6Jxx57DIcOHcKoUaMgSRJ+/fVXrFixAm+//XZLtJGIiIhaiJwRSisorzWXkBAClSYzdBq1q5rX4po0oWJYWBjeeOMNfPPNNwCA3r17Y+XKlZztmYiIqJ0J8dEpcwmlF5YrgREA3PfZfhxKycPWhWPhq/dwYStbjtOBEADMmDHDbskLIiIiap9UKgmR/p64mFOKS3llSiAkhMCv57JQbjQjMasE8dH+rm1oC2lSIAQAlZWVyMzMrDXTdExMzBU3ioiIiFpPVICXEgjJSipNKDearT9XuappLc7pQOjs2bO45557sGvXLrvtQogmrTVGRERErlXXEPrsogrl59KKjvvd7nQgNHfuXGg0Gqxduxbh4eGQJKkl2kVEREStpK5JFbOLqwMhZoRsHDp0CPv370evXr1aoj1ERETUyqID5bmEqjNCWbYZocqOmxFyeh6hPn36IDs7uyXaQkRERC7QaEaoouNmhJwOhP7xj3/gb3/7G3755Rfk5OSgsLDQ7h8RERG1LzXnEgKArOJK5faOnBFyumvs2muvBQBMmDDBbjuLpYmIiNqnTt46aNUqVJrMSCsoR3SgF2uE6rNt27aWaAcRERG5iEolITLAE4nZJbiUV2YJhDhqrG7XXHNNS7SDiIiIXCjKGgil5JZiZNcgt8kIOV0jRERERB1PbJClTigptwQAkG1bI9SBM0IMhIiIiAhxQQYAQFKOZQi97fB5ZoSIiIioQ4u1CYRKKqpQZqzOAnXkUWMMhIiIiAhx1q6xizkldvVBAOcRIiIiog4uOtALkgQUlVfhTEax3W0dOSPk0KixQYMGObym2IEDB66oQURERNT69B5qhPvqkVpQjn1JuQAAL60apZUmlHbgGiGHAqGbbrqphZtBRERErhYbZEBqQTn2X8wDAMQEeuFUehFKOvCoMYcCoUWLFrV0O4iIiMjF4oK98PuFHBy5XADAMqT+VHoRyowmmMwCapVjvUPtCWuEiIiICED1yLHKKrPd7wDsRpF1JE7PLG0ymfDmm2/im2++QXJyMiorK+1uz83NbbbGERERUeuRR47JogI8oZIAswBKK6rgrXM6bGjznM4ILV68GMuWLcNtt92GgoICLFiwADNnzoRKpcILL7zQAk0kIiKi1mCbAQKAYG8dDFpL8FPSQUeOOR0IffHFF/jPf/6DhQsXQqPR4I477sCHH36I559/Hrt3726JNhIREVEriK2REQr21sFLpwbQcecScjoQSk9PR//+/QEA3t7eKCiwFFRNmTIF69ata97WERERUavx0moQ4qNTfu/kU50R6qhzCTkdCEVFRSEtLQ0A0K1bN2zatAkAsHfvXuh0uobuSkRERG1cnE33WLC3tjoj1EHnEnI6EJoxYwZ+/vlnAMDjjz+O5557Dt27d8fs2bNxzz33NHsDiYiIqPXI3WM6jQreOg285IxQB51LyOny71deeUX5+ZZbbkFUVBR27dqFbt26Ydq0ac3aOCIiImpdccGWjFCwtw6SJMGgtWSEOurs0lc8Dm7EiBEYMWJEc7SFiIiIXKyLNRAK99MDALx0HbtGyOlA6LPPPmvw9tmzZze5MURERORa43uH4MFrumJC7xAAUDJCHbVGyOlA6PHHH7f73Wg0orS0FFqtFl5eXgyEiIiI2jGdRo2nJ/VSfu/oNUJOF0vn5eXZ/SsuLsbp06dx9dVX46uvvmqJNhIREZGLGDhqrHHdu3fHK6+8UitbRERERO0bM0IOUqvVSE1Nba6HIyIiojaANUI1/Pjjj3a/CyGQlpaGd955B1dddVWzNYyIiIhcj6PGarjpppvsfpckCZ06dcL48ePxxhtvNFe7iIiIqA1QFl3toGuNOR0Imc3mlmgHERERtUHyEhsdNSPUbDVCRERE1PEoGSF3rhFasGCBww+4bNmyJjeGiIiI2hYveYmNDjpqzKFA6ODBg3a/79+/HyaTCT179gQAnDlzBmq1GgkJCc3fQiIiInIZg44ZIWzbtk35edmyZfDx8cGnn36KgIAAAJZJFu+++26MHj26ZVpJRERELlG96KoJQghIkuTiFjUvp2uE3njjDSxdulQJggAgICAAL774IkeNERERdTDy8HmTWaCiquMNmHI6ECosLERGRkat7ZmZmSgqKmqWRhEREVHb4OmhVn7uiCPHnA6EZsyYgbvvvhvfffcdLl26hEuXLuG7777DvHnzMHPmzJZoIxEREbmIWiUpwVBHnEvI6XmE3nvvPSxcuBB//vOfYTQaLQ+i0WDevHl47bXXmr2BRERE5FoGnRplRlOHzAg5HQh5eXnh3XffxWuvvYbz589DCIFu3brBYDC0RPuIiIjIxSwLr1Z2yJFjTgdCMoPBgAEDBjRnW4iIiKgN6shzCTkUCM2cORMrVqyAr69vo3VAq1atapaGERERUdvQkecScigQ8vPzU+YN8PPza9EGERERUduiZITcNRD65JNP6vyZiIiIOr7qFeg7XteY08Pny8rKUFpaqvyelJSEt956C5s2bWrWhhEREVHbUL0CfcfLCDkdCE2fPh2fffYZACA/Px/Dhg3DG2+8genTp2P58uXN3kAiIiJyLWaEbBw4cEBZU+y7775DWFgYkpKS8Nlnn+Gf//xnszeQiIiIXIsZIRulpaXw8fEBAGzatAkzZ86ESqXCiBEjkJSU1OwNJCIiItfy8/QAAKQVlLu4Jc3P6UCoW7duWLNmDVJSUrBx40ZMnDgRgGWtMV9f32ZvIBEREblWQoxlofXdF3IghHBxa5qX04HQ888/j4ULFyIuLg7Dhg3DyJEjAViyQ4MGDWr2BhIREZFrDYoJgKeHGtnFlTid0bEWWHc6ELrllluQnJyMffv2YePGjcr2CRMm4M0332zWxhEREZHraTUqDO8SCAD49Wy2i1vTvJwOhAAgLCwMPj4+2Lx5M8rKygAAQ4cORa9evZq1cURERNQ2XN0tGADw2zk3D4RycnIwYcIE9OjRA5MnT0ZaWhoA4N5778WTTz7Z7A1sLqWlpYiNjcXChQtd3RQiIqJ25yprIPRHYi4qq8wubk3zcToQeuKJJ+Dh4YHk5GR4eXkp22fNmoUNGzY0a+Oa00svvYThw4e7uhlERETtUs9QHwR7a1FaacKhlHxXN6fZOB0Ibdq0Cf/4xz8QFRVlt7179+5tdvj82bNncerUKUyePNnVTSEiImqXVCoJo7paskK/dqDuMacDoZKSErtMkCw7Oxs6nc7pBuzYsQNTp05FREQEJEnCmjVrau3z7rvvonPnztDr9UhISMDOnTudeo6FCxdi6dKlTreNiIiIqnXEOiGnA6ExY8YoS2wAgCRJMJvNeO211zBu3DinG1BSUoL4+Hi88847dd6+cuVKzJ8/H88++ywOHjyI0aNHY9KkSUhOTlb2SUhIQL9+/Wr9S01NxQ8//IAePXqgR48eTreNiIiIqo3sGgQAOJSSjypTx6gTcmj1eVuvvfYaxo4di3379qGyshJ/+9vfcPz4ceTm5uK3335zugGTJk3CpEmT6r192bJlmDdvHu69914AwFtvvYWNGzdi+fLlSpZn//799d5/9+7d+Prrr/Htt9+iuLgYRqMRvr6+eP755+vcv6KiAhUVFcrvhYWFTh8TERFRRxTupwcAmMwC+WVGBHs73xPU1jidEerTpw+OHDmCYcOG4brrrkNJSQlmzpyJgwcPomvXrs3auMrKSuzfv1+ZvVo2ceJE7Nq1y6HHWLp0KVJSUnDx4kW8/vrruO++++oNguT9/fz8lH/R0dFXdAxEREQdhUatgq/ekkPJL610cWuah1MZIaPRiIkTJ+L999/H4sWLW6pNiuzsbJhMJoSGhtptDw0NRXp6eos85zPPPIMFCxYovxcWFjIYIiIisgo0aFFYXoW8UqOrm9IsnAqEPDw8cOzYMUiS1FLtqVPN5xNCNKkNc+fObXQfnU7XpKJvIiIid+DvpQVySpFX0jEyQk53jc2ePRsfffRRS7SlluDgYKjV6lrZn8zMzFpZIiIiImp5AV6Wlejz3LFrDLDU7Xz44YfYvHkzhgwZAoPBYHf7smXLmq1xWq0WCQkJ2Lx5M2bMmKFs37x5M6ZPn95sz0NERESOCfDSAoB7do0BwLFjxzB48GAAwJkzZ+xua0p3VXFxMc6dO6f8npiYiEOHDiEwMBAxMTFYsGAB7rrrLgwZMgQjR47EBx98gOTkZDz44INOPxcRERFdmQCDHAi5aUZo27ZtzdqAffv22c0/JBcqz5kzBytWrMCsWbOQk5ODJUuWIC0tDf369cP69esRGxvbrO0gIiKixildYx2kRsjpQKi5jR07FkKIBvd56KGH8NBDD7VSi4iIiKg+/h2sa8zpYmkiIiJyX4HWrrGOMo8QAyEiIiJymL8yaowZISIiInIzyqixDlIjxECIiIiIHKZ0jZUZG63xbQ8YCBEREZHD5K4xk1mgsLzKxa25cgyEiIiIyGE6jRpeWjWAjtE9xkCIiIiInFI9uzQDISIiInIzAQZL91h+Bxg5xkCIiIiInCJnhHLZNUZERETuhl1jRERE5Lbk9cbYNUZERERux58ZISIiInJXygr0DISIiIjI3QQY5GU22DVGREREbobF0kREROS2GAgRERGR25InVMwrbf8LrzIQIiIiIqfIGaHKKjPKjCYXt+bKMBAiIiIip3hp1dCqLSFEXjufS4iBEBERETlFkqTq7rF2vswGAyEiIiJyWkcpmGYgRERERE7z96oumG7PGAgRERGR04IMOgBAVlGFi1tyZRgIERERkdOiA70AACm5pS5uyZVhIEREREROiwuyBEKJ2SUubsmVYSBERERETosNMgAAknIYCBEREZGb6RxsCYQu5ZXBaDK7uDVNx0CIiIiInBbio4PeQ4Uqs8DlvDJXN6fJGAgRERGR01QqCXHW7rGL7bh7jIEQERERNUmstWD6YjsumGYgRERERE1SnRFqv0PoGQgRERFRk8QF1z9yrLydrErPQIiIiIiaROkaq5ER+v18Dvot2oj/7LjgimY5hYEQERERNYncNZaSW4oqmyH0ey/mosossOdirqua5jAGQkRERNQkYb566DTWIfT51UPoc4ot648Vlbf9BVkZCBEREVGTqFRSnd1jOSWVAIDCsiqXtMsZDISIiIioyeLqWGojp9gaCDEjRERERB2ZPHLMdvHVXCUjxECIiIiIOjC5ayzJrmvMWiNUUQWzWbikXY5iIERERERNVrNrzGwWSkZICKC4sm3XCTEQIiIioiYL99MDANIKyiGEQH6ZEbZJoKJyBkJERETUQYVZA6HSShOKKqqUofOytl4nxECIiIiImsxLq4GfpwcAIL2gHNnWEWMyBkJERETUodl2j8n1QbJCdo0RERFRRyZ3j6UXlCkjxmRtPSOkcXUDiIiIqH2zzQjVHC3f1idVZCBEREREVyTM1xOApUZIo5bsbmvro8YYCBEREdEVkTNC6YXl8PRQAwA8PdQoM5rafNcYa4SIiIjoilTXCJUrC67KS2+09a4xBkJERER0RWxrhOR5hLrIgVAbX4GeXWNERER0ReSMUEGZEZVVZgBAXLBlDTJmhIiIiKhD89F7wFtnya2UGU0AqtcgYyBEREREHZ6cFQIASQJig9pH1xgDISIiIrpi4TaBUKCXFgFelmU3ipgRIiIioo4uzNcmEDJo4Wtdf6ywvApCiPru5nIMhIiIiOiK2WaEgry18NFbaoZMZoHSSpOrmtUoBkJERER0xcL8PJWfg7x18PRQQ6OyzDLdlgumGQgRERHRFbPLCBm0kCSpunusDRdMMxAiIiKiKxZmFwjpAAC+1u4xZoSIiIioQ7MbNeatBQAlI9SWR44xECIiIqIr5ufpAb2HJawINlgCIblgml1jRERE1KFJkqTMJh0ZYCmc9tXLQ+jbbkbILdYaS0xMxD333IOMjAyo1Wrs3r0bBoPB1c0iIiLqUF6/NR7HUwvQP9IPgE0gVMZAyKXmzp2LF198EaNHj0Zubi50Op2rm0RERNTh9Iv0Qz9rEAQAvp5ysXTb7Rrr8IHQ8ePH4eHhgdGjRwMAAgMDXdwiIiIi99AeMkIurxHasWMHpk6dioiICEiShDVr1tTa591330Xnzp2h1+uRkJCAnTt3Ovz4Z8+ehbe3N6ZNm4bBgwfj5ZdfbsbWExERUX3kYukiZoTqV1JSgvj4eNx99924+eaba92+cuVKzJ8/H++++y6uuuoqvP/++5g0aRJOnDiBmJgYAEBCQgIqKipq3XfTpk0wGo3YuXMnDh06hJCQENxwww0YOnQorrvuuhY/NiIiIndWvd5Y280IuTwQmjRpEiZNmlTv7cuWLcO8efNw7733AgDeeustbNy4EcuXL8fSpUsBAPv376/3/lFRURg6dCiio6MBAJMnT8ahQ4fqDYQqKirsgqrCwkKnj4mIiIjYNXbFKisrsX//fkycONFu+8SJE7Fr1y6HHmPo0KHIyMhAXl4ezGYzduzYgd69e9e7/9KlS+Hn56f8kwMoIiIico7tCvRtVZsOhLKzs2EymRAaGmq3PTQ0FOnp6Q49hkajwcsvv4wxY8ZgwIAB6N69O6ZMmVLv/s888wwKCgqUfykpKVd0DERERO5KGTXWhjNCLu8ac4QkSXa/CyFqbWtIY91vtnQ6HYfXExERNQPbCRWd/e5uLW06IxQcHAy1Wl0r+5OZmVkrS0RERERtizxqzGgSKDeaXdyaurXpQEir1SIhIQGbN2+2275582aMGjXKRa0iIiIiR3jrNMr6YxmF5S5uTd1c3jVWXFyMc+fOKb8nJibi0KFDCAwMRExMDBYsWIC77roLQ4YMwciRI/HBBx8gOTkZDz74oAtbTURERI2RJAkR/p64kFWCy/lliAtue8tbuTwQ2rdvH8aNG6f8vmDBAgDAnDlzsGLFCsyaNQs5OTlYsmQJ0tLS0K9fP6xfvx6xsbGuajIRERE5KFIOhPLKXN2UOrk8EBo7diyEEA3u89BDD+Ghhx5qpRYRERFRc4myrkR/Kb9tBkJtukaIiIiI2rdIf0sg1FYzQgyEiIiIqMVEWjNCl/NLXdySujEQIiIiohYT6e8FALjMrjEiIiJyN3JGKC2/HCZzwzXBrsBAiIiIiFpMqI8OapWEKrNAZlHbm0uIgRARERG1GI1ahTBfPYC2WTDNQIiIiIhaVHXBNAMhIiIicjNR1iH0l5gRIiIiInfDjBARERG5rbY8qSIDISIiImpRzAgRERGR27LNCDW2vmhrYyBERERELSrCGgiVGU3IKzW6uDX2GAgRERFRi9J7qBHsrQPQ9uqEGAgRERFRi2uri68yECIiIqIWFxXQNucSYiBERERELa5bJ28AwKn0Ihe3xB4DISIiImpx/SL9AADHLhe4uCX2GAgRERFRi+sX6QsAOJtZjHKjycWtqcZAiIiIiFpcmK8eQQYtTGbRprrHGAgRERFRi5MkCX3bYPcYAyEiIiJqFf0iLN1jx1MZCBEREZGbqS6YLnRxS6oxECIiIqJW0d8aCJ1OL0JlldnFrbFgIEREREStIirAE756DSpNZpzJaBsF0wyEiIiIqFVIkqR0j7WVOiEGQkRERNRq2lqdEAMhIiIiajV9rSPHjraRIfQMhIiIiKjV9I2oLpg2m4WLW8NAiIiIiFpRXJAXtBoVyowmJOeWuro5DISIiIio9WjUKnQPsaxEf7oNjBxjIEREREStqmeoDwBL95irMRAiIiKiVtUzjIEQERERuSk5EDqV7voh9AyEiIiIqFX1CrMMob+YU4pyo8mlbWEgRERERK0q1FcHX70GJrPA+axil7aFgRARERG1KkmSlKyQq+uEGAgRERFRq2srBdMMhIiIiKjVVRdMMxAiIiIiN9PLGgidcfGkigyEiIiIqNV1t06qmFZQjoJSo8vawUCIiIiIWp2fpwci/PQAXLvUhsZlz0xERERurWeYD4oqqpBbUuGyNjAQIiIiIpd450+D4aVVQ5Ikl7WBgRARERG5hEHn+jCENUJERETkthgIERERkdtiIERERERui4EQERERuS0GQkREROS2GAgRERGR22IgRERERG6LgRARERG5LQZCRERE5LYYCBEREZHbYiBEREREbouBEBEREbktBkJERETktly/7GsbJ4QAABQWFrq4JUREROQo+Xtb/h6vDwOhRhQVFQEAoqOjXdwSIiIiclZRURH8/PzqvV0SjYVKbs5sNiM1NRU+Pj6QJKnZHrewsBDR0dFISUmBr69vsz1uW+Zux8zj7djc7XgB9ztmHm/7JoRAUVERIiIioFLVXwnEjFAjVCoVoqKiWuzxfX19O8Qbzhnudsw83o7N3Y4XcL9j5vG2Xw1lgmQsliYiIiK3xUCIiIiI3BYDIRfR6XRYtGgRdDqdq5vSatztmHm8HZu7HS/gfsfM43UPLJYmIiIit8WMEBEREbktBkJERETkthgIERERkdtiIERERERui4GQi7z77rvo3Lkz9Ho9EhISsHPnTlc3qVksXboUQ4cOhY+PD0JCQnDTTTfh9OnTdvvMnTsXkiTZ/RsxYoSLWnxlXnjhhVrHEhYWptwuhMALL7yAiIgIeHp6YuzYsTh+/LgLW3xl4uLiah2vJEl4+OGHAXSMc7tjxw5MnToVERERkCQJa9assbvdkXNaUVGBRx99FMHBwTAYDJg2bRouXbrUikfhuIaO12g04qmnnkL//v1hMBgQERGB2bNnIzU11e4xxo4dW+u833777a18JI5p7Pw68h5uT+cXaPyY6/qbliQJr732mrJPezrHzmIg5AIrV67E/Pnz8eyzz+LgwYMYPXo0Jk2ahOTkZFc37Ypt374dDz/8MHbv3o3NmzejqqoKEydORElJid1+N9xwA9LS0pR/69evd1GLr1zfvn3tjuXo0aPKba+++iqWLVuGd955B3v37kVYWBiuu+46ZQ279mbv3r12x7p582YAwK233qrs097PbUlJCeLj4/HOO+/Uebsj53T+/PlYvXo1vv76a/z6668oLi7GlClTYDKZWuswHNbQ8ZaWluLAgQN47rnncODAAaxatQpnzpzBtGnTau1733332Z33999/vzWa77TGzi/Q+Hu4PZ1foPFjtj3WtLQ0fPzxx5AkCTfffLPdfu3lHDtNUKsbNmyYePDBB+229erVSzz99NMualHLyczMFADE9u3blW1z5swR06dPd12jmtGiRYtEfHx8nbeZzWYRFhYmXnnlFWVbeXm58PPzE++9914rtbBlPf7446Jr167CbDYLITrWuRVCCABi9erVyu+OnNP8/Hzh4eEhvv76a2Wfy5cvC5VKJTZs2NBqbW+Kmsdblz179ggAIikpSdl2zTXXiMcff7xlG9cC6jrext7D7fn8CuHYOZ4+fboYP3683bb2eo4dwYxQK6usrMT+/fsxceJEu+0TJ07Erl27XNSqllNQUAAACAwMtNv+yy+/ICQkBD169MB9992HzMxMVzSvWZw9exYRERHo3Lkzbr/9dly4cAEAkJiYiPT0dLtzrdPpcM0113SIc11ZWYnPP/8c99xzj92CxB3p3NbkyDndv38/jEaj3T4RERHo169fhzjvBQUFkCQJ/v7+dtu/+OILBAcHo2/fvli4cGG7zXoCDb+HO/r5zcjIwLp16zBv3rxat3Wkc2yLi662suzsbJhMJoSGhtptDw0NRXp6uota1TKEEFiwYAGuvvpq9OvXT9k+adIk3HrrrYiNjUViYiKee+45jB8/Hvv37293M5oOHz4cn332GXr06IGMjAy8+OKLGDVqFI4fP66cz7rOdVJSkiua26zWrFmD/Px8zJ07V9nWkc5tXRw5p+np6dBqtQgICKi1T3v/Gy8vL8fTTz+NP/3pT3aLct55553o3LkzwsLCcOzYMTzzzDM4fPiw0nXanjT2Hu7I5xcAPv30U/j4+GDmzJl22zvSOa6JgZCL2F5BA5agoea29u6RRx7BkSNH8Ouvv9ptnzVrlvJzv379MGTIEMTGxmLdunW1/vjaukmTJik/9+/fHyNHjkTXrl3x6aefKgWWHfVcf/TRR5g0aRIiIiKUbR3p3DakKee0vZ93o9GI22+/HWazGe+++67dbffdd5/yc79+/dC9e3cMGTIEBw4cwODBg1u7qVekqe/h9n5+ZR9//DHuvPNO6PV6u+0d6RzXxK6xVhYcHAy1Wl3ryiEzM7PWVWZ79uijj+LHH3/Etm3bEBUV1eC+4eHhiI2NxdmzZ1updS3HYDCgf//+OHv2rDJ6rCOe66SkJGzZsgX33ntvg/t1pHMLwKFzGhYWhsrKSuTl5dW7T3tjNBpx2223ITExEZs3b7bLBtVl8ODB8PDw6BDnveZ7uCOeX9nOnTtx+vTpRv+ugY51jhkItTKtVouEhIRa6cTNmzdj1KhRLmpV8xFC4JFHHsGqVauwdetWdO7cudH75OTkICUlBeHh4a3QwpZVUVGBkydPIjw8XEkj257ryspKbN++vd2f608++QQhISG48cYbG9yvI51bAA6d04SEBHh4eNjtk5aWhmPHjrXL8y4HQWfPnsWWLVsQFBTU6H2OHz8Oo9HYIc57zfdwRzu/tj766CMkJCQgPj6+0X070jnmqDEX+Prrr4WHh4f46KOPxIkTJ8T8+fOFwWAQFy9edHXTrthf/vIX4efnJ3755ReRlpam/CstLRVCCFFUVCSefPJJsWvXLpGYmCi2bdsmRo4cKSIjI0VhYaGLW++8J598Uvzyyy/iwoULYvfu3WLKlCnCx8dHOZevvPKK8PPzE6tWrRJHjx4Vd9xxhwgPD2+XxyozmUwiJiZGPPXUU3bbO8q5LSoqEgcPHhQHDx4UAMSyZcvEwYMHlVFSjpzTBx98UERFRYktW7aIAwcOiPHjx4v4+HhRVVXlqsOqV0PHazQaxbRp00RUVJQ4dOiQ3d90RUWFEEKIc+fOicWLF4u9e/eKxMREsW7dOtGrVy8xaNCgdne8jr6H29P5FaLx97QQQhQUFAgvLy+xfPnyWvdvb+fYWQyEXOTf//63iI2NFVqtVgwePNhueHl7BqDOf5988okQQojS0lIxceJE0alTJ+Hh4SFiYmLEnDlzRHJysmsb3kSzZs0S4eHhwsPDQ0RERIiZM2eK48ePK7ebzWaxaNEiERYWJnQ6nRgzZow4evSoC1t85TZu3CgAiNOnT9tt7yjndtu2bXW+h+fMmSOEcOyclpWViUceeUQEBgYKT09PMWXKlDb7OjR0vImJifX+TW/btk0IIURycrIYM2aMCAwMFFqtVnTt2lU89thjIicnx7UHVo+GjtfR93B7Or9CNP6eFkKI999/X3h6eor8/Pxa929v59hZkhBCtGjKiYiIiKiNYo0QERERuS0GQkREROS2GAgRERGR22IgRERERG6LgRARERG5LQZCRERE5LYYCBEREZHbYiBERC41duxYzJ8/39XNsCNJEtasWePqZhBRK+CEikTkUrm5ufDw8ICPjw/i4uIwf/78VguMXnjhBaxZswaHDh2y256eno6AgADodLpWaQcRuY7G1Q0gIvcWGBjY7I9ZWVkJrVbb5PvLq8wTUcfHrjEicim5a2zs2LFISkrCE088AUmSIEmSss+uXbswZswYeHp6Ijo6Go899hhKSkqU2+Pi4vDiiy9i7ty58PPzw3333QcAeOqpp9CjRw94eXmhS5cueO6552A0GgEAK1aswOLFi3H48GHl+VasWAGgdtfY0aNHMX78eHh6eiIoKAj3338/iouLldvnzp2Lm266Ca+//jrCw8MRFBSEhx9+WHkuAHj33XfRvXt36PV6hIaG4pZbbmmJl5OInMRAiIjahFWrViEqKgpLlixBWloa0tLSAFiCkOuvvx4zZ87EkSNHsHLlSvz666945JFH7O7/2muvoV+/fti/fz+ee+45AICPjw9WrFiBEydO4O2338Z//vMfvPnmmwCAWbNm4cknn0Tfvn2V55s1a1atdpWWluKGG25AQEAA9u7di2+//RZbtmyp9fzbtm3D+fPnsW3bNnz66adYsWKFEljt27cPjz32GJYsWYLTp09jw4YNGDNmTHO/hETUFK5d85WI3N0111wjHn/8cSGEELGxseLNN9+0u/2uu+4S999/v922nTt3CpVKJcrKypT73XTTTY0+16uvvioSEhKU3xctWiTi4+Nr7QdArF69WgghxAcffCACAgJEcXGxcvu6deuESqUS6enpQggh5syZI2JjY0VVVZWyz6233ipmzZolhBDi+++/F76+vqKwsLDRNhJR62KNEBG1afv378e5c+fwxRdfKNuEEDCbzUhMTETv3r0BAEOGDKl13++++w5vvfUWzp07h+LiYlRVVcHX19ep5z958iTi4+NhMBiUbVdddRXMZjNOnz6N0NBQAEDfvn2hVquVfcLDw3H06FEAwHXXXYfY2Fh06dIFN9xwA2644QbMmDEDXl5eTrWFiJofu8aIqE0zm8144IEHcOjQIeXf4cOHcfbsWXTt2lXZzzZQAYDdu3fj9ttvx6RJk7B27VocPHgQzz77LCorK516fiGEXb2SLdvtHh4etW4zm80ALF10Bw4cwFdffYXw8HA8//zziI+PR35+vlNtIaLmx4wQEbUZWq0WJpPJbtvgwYNx/PhxdOvWzanH+u233xAbG4tnn31W2ZaUlNTo89XUp08ffPrppygpKVGCrd9++w0qlQo9evRwuD0ajQbXXnstrr32WixatAj+/v7YunUrZs6c6cRREVFzY0aIiNqMuLg47NixA5cvX0Z2djYAy8iv33//HQ8//DAOHTqEs2fP4scff8Sjjz7a4GN169YNycnJ+Prrr3H+/Hn885//xOrVq2s9X2JiIg4dOoTs7GxUVFTUepw777wTer0ec+bMwbFjx7Bt2zY8+uijuOuuu5RuscasXbsW//znP3Ho0CEkJSXhs88+g9lsRs+ePR18ZYiopTAQIqI2Y8mSJbh48SK6du2KTp06AQAGDBiA7du34+zZsxg9ejQGDRqE5557DuHh4Q0+1vTp0/HEE0/gkUcewcCBA7Fr1y5lNJns5ptvxg033IBx48ahU6dO+Oqrr2o9jpeXFzZu3Ijc3FwMHToUt9xyCyZMmIB33nnH4ePy9/fHqlWrMH78ePTu3RvvvfcevvrqK/Tt29fhxyCilsGZpYmIiMhtMSNEREREbouBEBEREbktBkJERETkthgIERERkdtiIERERERui4EQERERuS0GQkREROS2GAgRERGR22IgRERERG6LgRARERG5LQZCRERE5LYYCBEREZHb+v9iMDpS1DU3UwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 24.0, 'iterations')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(rnorm)\n", + "title(\"conjugate-gradient convergence\")\n", + "ylabel(\"residual norm\")\n", + "xlabel(\"iterations\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In our 2x2 problem, you can see that it actually converges in **two steps**:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZxV9fr93/t0TTdT1NDd3d0ogkUJKqIiAgYiAnYrJgoWBqXS3d3d3TWdp8/+/P7Yew4zMoRe7/X+7ves14sXM/vsOjF7r/M861lLEkIIAggggAACCCCAAP6HoPmnTyCAAAIIIIAAAgjg70aA4AQQQAABBBBAAP9zCBCcAAIIIIAAAgjgfw4BghNAAAEEEEAAAfzPIUBwAggggAACCCCA/zkECE4AAQQQQAABBPA/hwDBCSCAAAIIIIAA/ucQIDgBBBBAAAEEEMD/HAIEJ4AAAggggAAC+J9DgOAEEEAAfxqZmZncf//9REdHI0kSvXr1KnE9n8/Hhx9+SKdOnUhISMBisVC5cmVefPFFsrOz/9Kxd+/ezZNPPkn16tUJCgoiJiaGdu3asWbNmr/+hP4DGDRoEKVLl/6nT8OPX375hY8//vifPo1/G86dO4ckSXz//ff+ZRMnTkSSpH/rce12OxMnTmTdunX/1uMEcGcECE4AAQTwp/Haa68xd+5cPvroI7Zu3cq7775b4noOh4OJEyeSnJzMxx9/zJIlS3j00Uf5+uuvadq0KQ6H408fe8aMGezYsYNHHnmE+fPnM23aNIxGI23btmX69On/6lP7t2H8+PHMnTv3nz4NP/7XCU5JGDp0KFu3bv23HsNutzNp0qQAwfkvgO6fPoEAAvj/AXa7HYvF8k+fxn8NDh06RLly5XjooYduu57ZbObs2bNERET4l7Vq1YqkpCTuu+8+fvvtNx5++OE/deznn3+e999/v9iyLl26UKdOHV599VUGDBjwp/b3n0K5cuX+6VP4/wIejwdJktDp/v7bU0JCAgkJCX/7fgP470SgghPA34pjx47xwAMPEBMTg9FoJCkpiQEDBuByufzrHDp0iJ49exIWFobJZKJWrVr88MMPxfazbt06JElixowZjBs3jlKlShEcHEy7du04fvy4f72RI0ditVrJzc296Vz69etHTEwMHo/Hv2zWrFk0btwYq9WKzWajY8eO7N27t9h2gwYNwmazcfDgQTp06EBQUBBt27YFIDs7myFDhhAeHo7NZqNr166cOXMGSZKYOHFisf2cPHmSBx98kOjoaIxGI5UrV+bzzz//S8+zEMuWLaNt27aEhIT42z1vvfVWsXV27dpFjx49CA8Px2QyUbt2bWbPnl3S23UTMjMzGT58OPHx8RgMBsqWLcu4ceP8719h2X/VqlUcPXoUSZKQJOmW31a1Wm0xclOIBg0aAHDx4kX/smHDhmEymdi9e7d/mSzLtG3blpiYGK5evQpAdHR0icepW7dusf3dDv/pzync3KIqqYVSiJI+T/Pnz6dGjRoYjUbKli3L5MmTS2y5fP7557Ro0YLo6GisVivVq1fn3XffLfZ30KpVKxYvXsz58+f972HR/bjdbl5//XUqVaqE0WgkKiqKwYMHk5aWdlevrxCCN998k+TkZEwmE/Xq1WPlypW0atWKVq1a3fT6/fjjj4wePZr4+HiMRiOnTp0iLS2N4cOHU6VKFWw2G9HR0bRp04aNGzfedLwrV67Qt29fgoKCCAkJoV+/fly7du2m9W7Vovoz14VTp07RpUsXbDYbiYmJjB49utjfR1RUFACTJk3yv66DBg26q9ctgL8ZIoAA/ibs27dP2Gw2Ubp0aTFlyhSxevVq8dNPP4m+ffuK3NxcIYQQx44dE0FBQaJcuXJi+vTpYvHixeKBBx4QgHjnnXf8+1q7dq0AROnSpcVDDz0kFi9eLGbMmCGSkpJESkqK8Hq9Qggh9u/fLwAxderUYueSlZUljEajGDVqlH/ZG2+8ISRJEo888ohYtGiR+P3330Xjxo2F1WoVhw8f9q83cOBAodfrRenSpcVbb70lVq9eLZYvXy58Pp9o1qyZMJlM4u233xYrVqwQkyZNEikpKQIQEyZM8O/j8OHDIiQkRFSvXl1Mnz5drFixQowePVpoNBoxceLEP/08hRBi2rRpQpIk0apVK/HLL7+IVatWiS+++EIMHz7cv86aNWuEwWAQzZs3F7NmzRLLli0TgwYNEoD47rvvbvv+ORwOUaNGDWG1WsX7778vVqxYIcaPHy90Op3o0qWLEEIIp9Mptm7dKmrXri3Kli0rtm7dKrZu3SpycnLu9PEohu+++04AYv78+cWOX6tWLVG2bFmRlZUlhBDilVdeERqNRqxYseK2+/N4PKJ8+fKidu3adzz2P/E5FUL5XCUnJ/t/P3v27C3flz9+npYuXSo0Go1o1aqVmDt3rpgzZ45o2LChKF26tPjjZfzZZ58VX375pVi2bJlYs2aN+Oijj0RkZKQYPHiwf53Dhw+Lpk2bitjYWP97uHXrViGEED6fT3Tq1ElYrVYxadIksXLlSjFt2jQRHx8vqlSpIux2+x1f47FjxwpAPPbYY2LZsmVi6tSpIikpScTFxYmWLVve9PrFx8eLPn36iAULFohFixaJjIwMcezYMfHEE0+ImTNninXr1olFixaJIUOGCI1GI9auXevfh91uF5UrVxYhISHi008/FcuXLxcjRowQSUlJN72+EyZMuOn1+jPXBYPBICpXrizef/99sWrVKvHKK68ISZLEpEmThBDK38eyZcsEIIYMGeJ/XU+dOnXH1yyAvx8BghPA34Y2bdqI0NBQkZqaest17r//fmE0GsWFCxeKLe/cubOwWCwiOztbCHHjwld4Yy3E7NmzBeC/GAshRJ06dUSTJk2KrffFF18IQBw8eFAIIcSFCxeETqcTTz/9dLH18vLyRGxsrOjbt69/2cCBAwUgvv3222LrLl68WADiyy+/LLb8rbfeuumG1LFjR5GQkHDTjf+pp54SJpNJZGZm/qnnmZeXJ4KDg0WzZs2ELMviVqhUqZKoXbu28Hg8xZZ369ZNxMXFCZ/Pd8ttp0yZIgAxe/bsYsvfeecdARQjGS1bthRVq1a95b5uh0uXLomYmBhRr169m87n5MmTIjg4WPTq1UusWrVKaDQa8fLLL99xn+PGjROAmDdv3h3X/ac+p/8Kwalfv75ITEwULpfLvywvL09ERETcdMMuCp/PJzwej5g+fbrQarX+z50QQnTt2rXY+RRixowZAhC//fZbseU7d+4UgPjiiy9ueTwhhMjMzBRGo1H069ev2PKtW7cKoESC06JFi9vuUwghvF6v8Hg8om3btqJ3797+5V9++eVNZFkIIR599NE7Epy/cl34499Hly5dRMWKFf2/p6Wl3fT+BfDPINCiCuBvgd1uZ/369fTt29dfoi0Ja9asoW3btiQmJhZbPmjQIOx2+00CwB49ehT7vUaNGgCcP3/ev2zw4MFs2bKlWEvgu+++o379+lSrVg2A5cuX4/V6GTBgAF6v1//PZDLRsmXLElss9957b7Hf169fD0Dfvn2LLX/ggQeK/e50Olm9ejW9e/fGYrEUO16XLl1wOp1s27btTz3PLVu2kJuby/Dhw285BXLq1CmOHTvm18X88bhXr14tse1ViDVr1mC1WunTp0+x5YXl9dWrV99y27tFZmYmXbp0QQjBrFmz0GiKX4LKly/P1KlTmTdvHt26daN58+Y3tWr+iGnTpvHGG28wevRoevbsedt1/8nP6V9FQUEBu3btolevXhgMBv9ym81G9+7db1p/79699OjRg4iICLRaLXq9ngEDBuDz+Thx4sQdj7do0SJCQ0Pp3r17sc9QrVq1iI2N9f+tyLJc7HGfzwfAtm3bcLlcN/2dNGrU6JZTZH/8WyvElClTqFOnDiaTCZ1Oh16vZ/Xq1Rw9etS/ztq1awkKCrrpPXjwwQfv+Fz/7HVBkqSbXvMaNWr8Le9zAH8/AgQngL8FWVlZ+Hy+Owr4MjIyiIuLu2l5qVKl/I8XxR/1G0ajEaDY9M1DDz2E0Wj0axmOHDnCzp07GTx4sH+d69evA1C/fn30en2xf7NmzSI9Pb3YcSwWC8HBwTedu06nIzw8vNjymJiYm9bzer18+umnNx2rS5cuADcd707Ps1D7cLvXt/A5jhkz5qbjDh8+vMTj/vG8Y2NjbyJQ0dHR6HS6m96bP4usrCzat2/P5cuXWblyJWXLli1xva5duxITE4PT6WTUqFFotdpb7vO7777j8ccf57HHHuO99967q3P4pz6nfxVZWVkIIW76nMHNn70LFy7QvHlzLl++zOTJk9m4cSM7d+70a7/u5nyuX79OdnY2BoPhps/RtWvX/J+hV199tdhjhSLqwtfmbs63ECW91h9++CFPPPEEDRs25LfffmPbtm3s3LmTTp06FXseGRkZJe43Njb2rp4r/LnrgslkKrbMaDTidDrveKwA/vMITFEF8LcgPDwcrVbLpUuXbrteRESEXyxaFFeuXAEgMjLyTx87LCyMnj17Mn36dF5//XW+++47TCZTscpK4X5//fVXkpOT77jPkqokEREReL1eMjMzi5GcP4oZw8LC0Gq19O/fnyeffLLE/ZcpU+aunlshCqsNt3t9C5/j2LFjueeee0pcp2LFirfcPiIigu3btyOEKPb8U1NT8Xq9f+m9KURWVhbt2rXj7NmzrF692l/hKAnDhg0jLy+PqlWrMmLECJo3b05YWNhN63333XcMHTqUgQMHMmXKlLvyN/knP6d/ROGNsqiwGW4mT2FhYUiS5L8ZF8UfP3vz5s2joKCA33//vdjnfN++fXd9XpGRkURERLBs2bISHw8KCgLgscceo1u3bv7lhaSukOzd6nxLquKU9N799NNPtGrVii+//LLY8ry8vGK/R0REsGPHjhKPdSf82etCAP9/IVDBCeBvgdlspmXLlsyZM+e2VYK2bduyZs0a/42iENOnT8disdCoUaO/dPzBgwdz5coVlixZwk8//UTv3r0JDQ31P96xY0d0Oh2nT5+mXr16Jf67E1q2bAkoExdFMXPmzGK/WywWWrduzd69e6lRo0aJxyppsuh2aNKkCSEhIUyZMgUhRInrVKxYkZSUFPbv33/L51h4cyoJbdu2JT8/n3nz5hVbXugtUzhJ9mdRSG7OnDnDihUrqF279i3XnTZtGj/99BOfffYZCxYsIDs7u1glrhDff/89Q4cO5eGHH2batGl3bd72T39OiyImJgaTycSBAweKLZ8/f36x361WK/Xq1WPevHm43W7/8vz8fBYtWlRs3cLXoZBsgDLRNHXq1JuObzQaS6zodOvWjYyMDHw+X4mfoUKSXKpUqWLLq1evDkDDhg0xGo03/Z1s27btT7VyJEkq9jwADhw4cFN7sHXr1uTl5bFgwYJiy3/55Zc7HuPvuC78EX9n9S6Afw2BCk4Afxs+/PBDmjVrRsOGDXnxxRcpX748169fZ8GCBXz11VcEBQUxYcIEFi1aROvWrXnllVcIDw/n559/ZvHixbz77ruEhIT8pWN36NCBhIQEhg8fzrVr1266KZYuXZpXX32VcePGcebMGTp16kRYWBjXr19nx44dWK1WJk2adNtjdOrUiaZNmzJ69Ghyc3OpW7cuW7du9ROAonqSyZMn06xZM5o3b84TTzxB6dKlycvL49SpUyxcuPBPu+7abDY++OADhg4dSrt27Xj00UeJiYnh1KlT7N+/n88++wyAr776is6dO9OxY0cGDRpEfHw8mZmZHD16lD179jBnzpxbHmPAgAF8/vnnDBw4kHPnzlG9enU2bdrEm2++SZcuXWjXrt2fOmdQLvKFI7cff/wxXq+3mP4oKirK39o4ePAgI0aMYODAgf7375tvvqFPnz58/PHHjBw5EoA5c+YwZMgQatWqxeOPP37Tt/fatWvfdGMsin/yc1oUkiTx8MMP8+2331KuXDlq1qzJjh07Srwxv/rqq3Tt2pWOHTvyzDPP4PP5eO+997DZbGRmZvrXa9++PQaDgQceeIDnn38ep9PJl19+SVZW1k37rF69Or///jtffvkldevWRaPRUK9ePe6//35+/vlnunTpwjPPPEODBg3Q6/VcunSJtWvX0rNnT3r37n3L5xUeHs6oUaN46623CAsLo3fv3ly6dIlJkyYRFxd3k+7qVujWrRuvvfYaEyZMoGXLlhw/fpxXX32VMmXK4PV6/esNGDCAjz76iAEDBvDGG2+QkpLCkiVLWL58+R2P8XdcF/6IoKAgkpOTmT9/Pm3btiU8PJzIyMj/Khfr/zP4RyXOAfzP4ciRI+K+++4TERERwmAwiKSkJDFo0CDhdDr96xw8eFB0795dhISECIPBIGrWrHnTJEnhdMWcOXOKLb/d5MlLL70kAJGYmHjLaaF58+aJ1q1bi+DgYGE0GkVycrLo06ePWLVqlX+dgQMHCqvVWuL2mZmZYvDgwSI0NFRYLBbRvn17sW3bNgGIyZMn33SujzzyiIiPjxd6vV5ERUWJJk2aiNdff/0vP88lS5aIli1bCqvVKiwWi6hSpUqxsWUhlNH5vn37iujoaKHX60VsbKxo06aNmDJlSonPqSgyMjLEsGHDRFxcnNDpdCI5OVmMHTu22PsnxN1PURU+j1v9GzhwoBBCiPz8fFGpUiVRpUoVUVBQUGwfTz75pNDr9WL79u1CiBvTLLf6d/bs2Tue1z/xOR04cKAoXbp0sfVycnLE0KFDRUxMjLBaraJ79+7i3LlzJU7hzJ07V1SvXt1/vm+//bYYMWKECAsLK7bewoULRc2aNYXJZBLx8fHiueeeE0uXLhVAsfHqzMxM0adPHxEaGiokSSo2XeTxeMT777/v34/NZhOVKlUSjz/+uDh58uQdX19ZlsXrr78uEhIShMFgEDVq1BCLFi0SNWvWLDYBdavXTwghXC6XGDNmjIiPjxcmk0nUqVNHzJs376ZpNCGUybx7771X2Gw2ERQUJO69916xZcuWuxoTF+Jfuy6UtM9Vq1aJ2rVrC6PRWOxzHsB/FpIQt6h3BxBAAHeFX375hYceeojNmzfTpEmTf/p0AvgvRe/evbl48SK7du36W/bn8XioVasW8fHxrFix4m/Z578TZ8+epVKlSkyYMIGXXnrpnz6dAP4PINCiCiCAP4EZM2Zw+fJlqlevjkajYdu2bbz33nu0aNEiQG4CKBEXLlxgy5YtrF27lv79+//l/QwZMoT27dsTFxfHtWvXmDJlCkePHmXy5Ml/49n+Pdi/fz8zZsygSZMmBAcHc/z4cd59912Cg4MZMmTIP316AfwfQYDgBBDAn0BQUBAzZ87k9ddfp6CggLi4OAYNGsTrr7/+T59aAP+l+Pbbb/n4449p06YNEyZM+Mv7ycvLY8yYMaSlpaHX66lTpw5Lliz5S9qofzesViu7du3im2++ITs7m5CQEFq1asUbb7xxy1HxAAL4uxFoUQUQQAABBBBAAP9zCIyJBxBAAAEEEEAA/3MIEJwAAggggAACCOB/DgGCE0AAAQQQQAAB/M/h/6TIWJZlrly5QlBQ0F07oAYQQAABBBBAAP8shBDk5eVRqlSpO5pG/p8kOFeuXLkpJTiAAAIIIIAAAvj/AxcvXrxjaO7/SYJTmMdz8eLFmxKj/2kI4URkvwDuDQgkfMKHQOAVPnwIlN8EPgFeZGQ0eIUPgQ6P8CIw4BY+BHo8yAi0eGSQ0eBDQgZkDHiEAIw4ZRkJA24hA1o8KOvKaPEJgYQRhyyj8a+jwSMkfEhIGHDJMlrJiNPnRUKLW0jIaNCixyl70UsG7D4ZAchCh0eAQWPC7nOjRYdLFgg06DUGHD4PekmP3SsjkDBqDNh9HgwaAwUeLwIJk9ZMnseFUWPA4fUhAJvOTLbLhUbSAhIeIROkNZPldgISVq2JHLcbs1aPyyfjlWXCDFbSnXZAIsxgIctpR6/RoUWL3eMl1GAm2+lEFhBjtnHNng9IxJiDuF6QhwYNkSYrqfYCDFotVo2BTKcTm8GIVkCuy0Wo0YTHKyhwu4k0m7G7fDg8HqKsVuxuNwVuD5EWCx6PTK7LRbjJhAYNGXY7NoOBMKOJS9m56LVayoaGcyJVyU6qVSqWfZeUIMEacTEcv5qG2yeTFBaCx+vjam4+FoOOKjHR7D6vZCk1KZvInrNXcPl8JIaFYNPpOXYtHY0k0a5yedYcOYXPJygXE45Vp+fgRSUosWutiqw/fIYCp4foYCt1ysazfO8JABqUT8Dl8XHgrBJK2btRVXYeu8iVjFyMOi33t6rNwi2Hycp3EGwxcn+rWsxYtZd8h5vwIDMPtK3NT8t3kVvgIthqZEjXRvyyfDepmfkYDToe79WYNdtPcOSMci4PdKqLy+3h99VKdlPtivF0b1WNT39cR3aeE5vZwMiBrdm57zwrNh9TzrFGMv261OHjb9Zw+Vo2Wq2GIf2aEB0RxMdTV1NgdxNkNfLcsPZkZdv54vv1uN1ewsMsPP9UJ3Ky7Xzy1WrsdjdWm5Fnh7cnNjKYtz9awuUrWUgS9Lu3Aff1rs/0HzexcPE+AJKTInludBf0eg0ffrCUEyeU96tVq8o8PqwN16/l8MG7i7l0UYlZ6NSlJoOHtCQ/z8HkD5ZxcK+S2VS9VhIjxnQiKjqE5Yv28f3X63Da3RiMOh5+pCVde9dBCMG8mduZ9f0mvF4fJrOB/o+2pFOvumg0Evt2nWHK+8u5fkWJa2jYogKPPtOBiKhghBBsW3eMbz9eQUaaEmLZoEUFHnmmA9FxoQDk5zqY9c0Glvy6E+GT0em19HiwEfcMaIbFeiMS49Cus0z/dCWnDyufubBIG/0ea0WbHrXR6m4kwgsh2L3pBLO/XMPpo8q6JouRrg80pNtDTQgOs5ZwXRQc2HaahdM3sXfzSf/yclXi6da/CY3bV0NvuPPtLPN6DpuXHWDj4v2cPnTRv1zSSFStX5bGHavToE0VwqP/9SiO/5+wa+1RPnp+Bs4CF1HxYbz42UBKV7w54f1usGnZAT56fhYh4TamLB+Dwai/q+1G9f2c8yev8cKHD9KgdeVbrpebm0tiYuJtc/UK8X9yTDw3N5eQkBBycnL+qwiOkHMRWcPAswuBBp/wIANe4UVG4ENWf1eIjk9I6jItHuFDYMAlfIABNz5Ah1sWyGjxAgINXqHFi6SsKysExi18SOhxCaEQIaFBRgIMOGUZjWTEJfuQ0PnXEUKPWwh0kgmHz4MGPU6hkBUJHW7Zh14yke/zokGLW1ZIkV4yqkSmkPhI6CQDTtmDUWMiz+OBIsvMWjM5bjcgYZCMFPg8WLQm8jzKMovGTI5KeFyyD58QhOgsZLgcSGgwaozkezwE6UzkqIQnwmAj1VmABg1WnZFctwubzojD48UjC6JMNq4XKIQmzhzElYI8JCSiTDZS7fkYtXrMGj3ZLichBhMer0yBx0OU2UqOw4lH9hFvC+Z6Xj5eWZAYFMLV3Dx8sqB0SCiXcnLwCuXnKzl5eHwySSEhZOTbsXs8xNmCcLu9ZDochJlNBOtNXMjKwajVUiEygkNXUwFokJjAjnOXkIAapWI5k5ZJvttNXHAQwQYjJ66no5UkmpcvzfrjZwGonRjHtax8ruXkEWQy0KBMImsOnQagSUoS51OzuZKVi8Wgp2ONCizYcQRZCKonxWLS69h1SknhvqdhNbYdPc/VrDwsRj33N6vF7PX7sLs8xIYF0aluRX5etQevLFMhIZJGFZP5aeVuhIDqZWJpUCmR75fsRBaCyskxdKhfkSm/bcbt9ZEYHcrgbg34fNYmsnLt2CxGRj/UivlrD7H/xGUA+nerj9mg55tftyALQUpyFE892IJPfljPmYsKcXu0X1PCg8x89O0a3G4v0RFBjH+mM+u3nuS3xXsBqFapFC8M78D0WdtYteGo8rrWLs3o4R34ceZWFi9XyFT1KvGMe64rm7ac5Otv1+Px+IiMtDHuue6Ehph5480FnDmbprw2very6NBWrFp5mC++WIXT6cFmMzHy2Y60aFGJWb9s5YfvNuLzyYSHWxnzQjfqNyzLyqUH+PzjFdgLXBiNOoYOb0uPe+qRdj2HD99axN6dyntYtUYiY17uTnxiBKdPXOPDV+dz6rhCoOo3Kc+Isd2Ijg0hN9vO1x8tZ+WifQBERgfz5PNdaKLePK5eyuSLtxezc6NCWGPjwxg+thsNmlcAlFb+8rm7+X7yCnKy7AA0bl2ZR5/rTKnEG2Gxl86m8c37S9m2Rnn9zBYDfYa04J5BzTFZDDeub0Kwd/NJpn+8guP7LwBgshjoObAZ9z7SgqBQy03XRJ/Xx6ZlB5nz1VpOH1bee0mSaNy+Kr2HtKRqvdJ3lBnY851sXLSPtfN2c2DrKX9YrUYjUbNJCs271aZxx+qERthuu5//dZw/cY1JQ6Zx9Xw6JouB1354nGoNy/3p/fi8Pga3fIu0q9k8+05fOtzX4K62e3f0DNYu2Mug0Z3oN6zNLdf7M/fvAMH5LyE4wpeGyBoC3mMquXGr1RmV5KBUK7xCxgf4hFD/16iVHL1aYSkkN0p1RfjJjYRHaPChQRZ63IIi5MbgJydeoRAhWSUwheRGgx6HEEpVSdbhBbSSCafPg1Yy4JCVx2ShVH50kpECnxetpMfhkxFo0GHAKXsxaEzke72AhAYdbuHDpDGT63EjoQG0eISMRWsm2+1CQqMQMNmHVWsi1+PCT3i8Hqy6G8uCdBayXA4MGh0+WYPLJxNqsJDpr9YolRuDRockNDh9XsINFtIdDkAixhTE1YI8QCLaZOO6PR+DRodZoyfH7SLEYMLl8eL0+Ygx20grsOMTggRbMJdyc5GA0sFhnMvKAiTKhYRzOjMTCYmU8AhOZmQAUDE8kuNp6UhIVIyI5GR6OkJASngEFzOzlUpLSAj5DjfZDifhFjPBeiPns7IxaLVUi4lm70WlctKodCI7zl1EFlA5JorMPDupeQUEm4xUjolix1mFlLSqUIbtpy7i9HhJDA8hympl7znlG3TXWhVZd+gMdreH+LBgKsRGsu7QGQDaVS/PyStpXEjPwWTQcV+j6vy6+SBOt5fEyBCaVkxm9gaFCNQpH090sI3lu44r29ZJwefxsW6fsq+eTatSUOBk9Z5TynGbVMGg0TJv/UEAmtcqS/UycUz9fQs+WVA+MZKB3Rrw8U/ryMyxYzUbGDOwDau3HmfzHmWf3VtXo27lRN6bugq700N4iIWXn+zE6o3HWLrusPIa1S7D0Aea8sGUlRw7pVSEHuxdn1aNK/DaB4u5dCULrUZiaP/mNKpTltfeXcjZ8+lIEvTv15heXWvz3uRlbNuhkMGmjVN4bmQn1m84xpdTFAIVFmrhuTFdqVwpjg8/WMqmTQpxqFUrmRde7IbX6+OdNxZy+JDyfjRrUZFnR3dGFoLJ7y5h8wblNatcNZ7nX+5BfGI4yxbu46vJK7Db3RiNOgYPa0PP++rj88nM+GYDs37YjM8nYws28cToTrTtXAOA9SsO8eX7S8nOLECSJLr3rc+g4W2x2kx4PF5+/X4TM6aux+3yotNpuW9wM+4f2hKjSfm2ffzQJT5/YwEnDimkIrFMFMNe7ErdJin+a1Zetp2fv1jNohnb8HllNFoNne+rz0NPtiUssvi366N7z/P9B0s5sF15z4wmPd0fbsK9Q1uWSCxcTg8r5+zgt282cO1Chn+bDn0b0Gtwc0olR960TVEIITi04wwrZm1j4+L9uBw3Utir1C1Dy551aN61FmFRd64C/FXIskxWah5Z6bnYc50U5Dmw5zkpyHPidnnQaCQ0Gg0arQaNVsJoMhAWFURYdDDh0cEEh9vQav+zc0B52QW8Mex79m85SUiEjU+XjCFKreT9Gcyesobv3l1CtfpleG/Wk3e1zS+freLHySvo0Kc+z7513y3XCxCcO+C/jeAI70VE1mDwXVAIiXAprSXhUkgHXpWg+PwVHOV/CR8CGR1uIRAY8BQjN3qU2o/GT268QotXKNUZj5CRMOIUMqDDoxIYr0pgCgmQRjLikH3KfmQNMho0GHDJXnSSiQLZh4QGrwwyElrJiN3nRS8ZKfD5EEhI6PHIPowaM3leDxq1ZeYTqJUbNzqpsOIEZrUyoywDnwCb1kyOx4kGDaDD5ZMJ0pnJ9ijkxKJRiI5FayTfrbxWYQYrGc4CJCSlleV2YdUZcHq8eIUgymjjur0AkNSf89FJWmw6I1kuJ0F6Ix6vjNPnJdpsI91egCwgwRbCxZwcQCI5KJTzOdlIQNngcM5kZXITuQmL4GSmcqGuFB7FsbQ0JCSqRkZxODUNCagWHcOhq9eRgMpRUZxOy8TjkykdFkqe3Ummw0mY2UyU2cLJtAx0Gg11E0ux/Zxyw2yYnMCBC1dxepU2lEWn48R1Zb1WFcqw+rByc66VFEdWrp0LGTmY9TraVinHkn3HEQJqJsfhdcscuXQdrUaid4NqLNtzjAKXh7iwIBpXSGbulkMA1E9JxKLVsfGwUlno2bgqpy+lc/j8dTSSxID2ddm47wxnrmai12l5tGtDVuw4xunLGei0Gh7v0YQNe05x6Mw1JAkGdW3ApavZrN6hEIOOjStRPiGSr+ZsxicLyiVE8FifJnzy43qupOZg0OsYNbA15y5mMGvJHgBqV0ngsX5N+fDrVZy+kI5GI/HoA81IKhXO258tI7/ARbDNxLgRnUnLyOPTqWtwe3xERQYxcUw3LlzKZPKXq3C5vISHWRn/XDckSeKNdxeSnpGPXq9l+KNtaN2yEh98tJTNarukQf2yPP9cV86dTePttxaSkZGPTqfhkUda0ue+BqxacYjPJq/A4XBjsRh46pkOtO9Yna2bTvDR24vJzraj02no/0gL+j3UhOysAj58axE7typEsEr1BJ4b34P4xAhOHLnCB6/O59xppZLXrE1lnnyuC+GRNlKv5fDZ24vYrlZlkspG8ez4nlSpoWgOD+05xyevLeDCGaXaVLN+GZ4a153EMlEA5GQV8P3kFSz7fTdCCCxWIw8Pb0uPBxqh0yttJq/Hx+KZ2/jp89Xk5ziU59+yIkOf70Ji2ehi17ZzJ67xw4fL2Lb6CAA6vZauDzam37DWN5EggIJcB4t/3srcbzeQnZEPQHCYhR4DmtGtf1NCwm9uXxVF5vUcVszZwcrZ27lyLt2/PL5sFO37NKBVzzrEFKk+/atwOz1cPpPKhVPXuXDiGlfOpZF+NZu0K1mkX83G55X/8r41Wg2RcaGUq5pASo1EyldPJKVGIqElvG5/J1xON6N6T+bM4ctUrluad2Y9dVftv6K4fjmTQc3fRKOR+GXHxDu+bwDLZm9n8rjfaNC6MpO+HnzL9f7M/fv/pAbnvwnCc1yp3MipN5EbGS0+PCpB8SIj4RWFbSrwIdSWk1A1Nwq5ccpKJUf5/YYuxiNr8VGc3DiErJAPobSLPLLGv04hubGr7alCLQ/oipEbRUsjq0TGoJIbpT0loUEIDV4hY1DJjU5SqjECMEgKuTFolO1Awqgx+dtOBV6FIFlVcmPQ6HF6BT4hE6y3kOW2o0GDTtKT63ETrLOQ6VKqOaF6CxnOAvQaHRq0ZLtdhBnMZDoVQlRIbiR13ev2Aiw6A7IMWS4nkSYLmQ4HsoB4azCX83IBiSSbQmhAItkWwvmcbDRAoi2UM1mZaCUN8dZgzmRmoddoibcFcTIzA52kITk4lONp6egkDeXDIjiikpvq0TEcVMlNzdhY9l++hoREtdhoTl5Px60SHYfLw8m0DIJNRpJCQ9mutqialy3NxlPnQECN+FiuZedxKSOHULOJyrHRfnLTplJZdp2+RJ7TTWyIjZSYSBbvVSoH7auXZ/+Zq6TlFhBsNtK+Rgq/bzuoEJ/Scdj0Bj+56d2oKgdPX2X3tUwMOi3929ZlweZDpOfaCbYY6d+uHj8u30We3UVkiJX+7evwzaLt5NldRIRYebRbI6bO20pmrp0gi5ERfZsze/leTl/KQKvV8OR9zTh86ipfzNoEQMcmlahVoRSvfLIEt8dLqegQnnukLd//uo0Dx5Uq1MM965OSHMVzb/yO3eEmPNTC+BFd2L7nLC//uBGAqhXieOHJjkyftZXVGxWdTuN6ZXn28bZM/WEjq9YpbZZ6tUvzwrOdWbx0H9N/2YIQkJQYzitje1KQ5+SxYd+Rnp6HTqfh0aGt6NGtDt9/v4E5s7cr6yZF8NK4HsTEhPDGpHlsWK8cq3qNRF54qTvBwWY+fHsRyxbtB6B02SheGN+TcikxrF5+kC8+XE5+nhO9Qcugx1pzz/0N8flkvv18NXN+3IzsE4SEWXj6ha40b1sFWZZZOGcH33yyEofdjV6v5f5HWtBvcDP0eh15OXamfbSC5XN3AxAabuWxMZ1p3aUGkiTh88ks+20X33+ygjyVtLTpVoshozoSEXXjJrJr43G+emsxl9R2XOmUGB59oSt1mt6o7ABcv5zFj5NXsGbeHoQQaDQS7e6px0NPtyO6VNhN18GczALmf7+RBT9soiDPCUB0fBj3PtqSDn3qY7IYb9qmED6fzJ4Nx1j6y1a2rzqM7FNIhdlqpEX32rS/rwFV6pX5lydm87LtnDp4kZP7L3DiwAXOHrnCtQvpyPKtawQarYbQSBvWIDOWIBOWIBPWIDMGow5ZFgghkH0ysk/gtLvISssjKy2X7PR8ZJ9M6qVMUi9lslVtlQLEJkXQqEN1mnauSeV6Zf72Ko/RZGDcl4MZ0e19ju4+xzdvLGDYpHv+1D5i4sMpW6UUZ45cYceaI7TvU/+O2xRW8nJUYvt3IFDB+QcrOMK9F5H1KIhctT3kRqDFrZIcLx6V7BSSHIUUeAQq2ZHwIiGjU0mOUrm5QW4UXY0iNFbbU+jwFQqMhSIedgkfElpcskKEBDq8QqCRTNhlLxqVNAk0yLJWoU0q8dFJBpw+r9qeUoiSXjKT7/OglXS4fUpVSC+ZKPB5MGiM2H2qzgblZ5PGRL7PXWyZWWsiV9XjmDVG8r1uzFojuW6FBBVWbvQaHV6fhEeWCdVbSVfJS7DOTLbbgUVrxOHz4ZUFEUYr6Q6lWhNpsJHqKMCg0aGXdOS53YQZzOS6XXhlQZwliKv5SqsqwRrCpbwc/88Xc3PQShqizVau5edj1GoJ1Zu5XlCARacnSGcktaAAm8GARasn1a78HKwzcTUvD4teT6TJwsUcRVdTOiSME2mKbqRadDQHryjfzOvEl2LPxSsKAYqL4fT1DBweL/EhwWgkiYtZSgWmelwMO88qrYTm5ZPZdeYSTq+P0hFhmLU6jl1NQ6uRaF+lPKsOnsInC6rGRyNkwdHLymM96lRh2Z7jOD1eSkeFUSYqjHWHlXZCp1oVOHk5nTMqmXmoRW3mbj5Irkpeejasyo+rduPx+ihXKoJmVcrw44pdCAE1ysZRJyWe6ct2KvqbcnE0r16Wr+dtxeeTKZ8QSd+2tfhs5kbyVfIz8sGWfD9/O2dUsvPU/c05fymD+WuUNlaT2mXp1bo6b3+9kiy1bTV2WAcOHLnMr2olp1bVBJ4a2IrJ09Zw6JhCgPp2r0v75pV4tUhL6rGBLahbPZlJby/wLxsyoDltW1bmzfcWcUBtJ3XpUJ3hj7dh9pwd/KwSnoSEcF5+qQdmo54331zgFxJ3616bJ55oy5HDl3j3rUWkp+Wh1WoY+EgL+j3QiKOHL/POa/O5diUbSYL7HmjMwEdbYi9w8cl7S9i0ViFDFSrH8dz4niSXieL44cu8P2k+F1Ri0apDNYY/15mQUAuXL2Tw0WvzObhHESZXqZnIyJd7kFw2GiEEaxbv5+v3l5GTVQBA53vr8cgz7QkKUTQvJ49c5rPXF3D8oPJcS6fE8NS4HlSrW9p/rbp0No2p7yxmx3qFDIeEWxkwoj0d761XTECcl21n1pQ1LPhxCx63F4BmnaozYGRHEssVr+4AZKbl8utX61gyYysuhweAxHLR9H2iDa261/ZXjUpCVloey2ZsZdmMraRezvIvr1KvDJ0eaETzrrVuS4xuByEEV8+nc3DbKQ5uPcXR3ee4ci6txHVtIWaSUmJJSoklvmw0UfFhRJUKJapUGOHRwcVen7uFz+sjJyOfy2fTFFJ14CKnDl7k0ulUit6yw6KCaN27Hh0faExSSuxfeq63wrYVh5g0dBoAL381mKada/6p7X+evIKfJq+gcYdqvDJl0B3XP7r3PKP6fk50fBg/rBt7y/UCLao74L+B4AjXRkT2UyAcqrDXrYqFi5IbHR6V9CgTUho8QkZGUieZNOo/kIXBr8Hxt6lUcuNWiYtPaJFBFSMLNBhxCa8iHi6ctFLXUao7PrSSEYdPnZ6SFX2ORjLgkGX0kkJGJLV15UNSqjo+j0p8fICEFiMO2YtRY6JAJTISykSTWWsiz6vobBBKJciiNZHjcSMVio19XqxaE9mq2NiiNZHndWLWGsl3exHgJzcaNBg1egq8HkL0ZjJdirA40mglzaFUa4J1FrJcTqw6Ay6vD7dP9guIQaKUJZgr+bnFftZJWsKNFj+JMWl0ZDkdhBhMCJ8g1+0mwmTG7ZHJd7uJtlixezz+n90eHzlOF5EWC8InFAGxyYRVa+Bybi5mvY7EoBBOpmWilSSqx8aw/7IqHE2MZ/f5ywgBlWOjuJKdR47DSaTNQpTZwrFripi4RUoZ1h1TSEntpFJcycglNTefIJORukmlWH9UaSW1rFSGY5dSSVUrNS0qlmHxbnXqqHwi+Q4nRy8pxKdfk5os2nGEPIebqBArHWtVYObafchCUC05hjLRESzarrQfWtUsh1ZIrNmrtFW6Na5Cgd3FOvX3ns2r4XP7WLxFqZK0q1+BpKhQvl+4A4AaKaXo2bIaH/24jgKHm8hQK6MHtObHBTs5elppYw3t0wSdpOHrmZuRhaB8chSjH2nDF9PXc/iEokl6uHcDalVJ4PXJS8nJdWCzGHnxqY7k5Tn5+KtVuD0+oiODmDCmG2fPp/PplNX+NtUrL3SnIN/FWx8sJjfXgcViYPTTHalWNZ433lzIocMKCejUsTpPDW/H+vXH+OzTlTidHoKCTYwZ05UGDcry3bT1zJm1HYCExHDGvtyTsuWimf7Nemb/vBVZFkTHBPP8+J7UrJ3M1o3H+eitxWRnFaDVanjokeY8MKAZPlnmp6nrmTN9M7IsCAu38vSLXWnaujI+r4/ff9nK9Clrcbu8mMwGHnmqLd37NkCj0XD1Uiafvr6QPWqbK6lsFCPG96RanWQACvKc/PDpShbN2o4sK+2oAU+1o/v9Df035YI8J798uYb5P27G55XR6jT07N+UB59ogzXI5L+euZweFkzfzOyv1pKfq1SAajYqx+DnulCxxs2WHIXEZvHPW3C7FCJUvlo89w9vR+MOVW/rb3Js7zkWfr+JDYv34nX7ALCFWGh7bz06P9CY5L84/ZNxLYfd64+yf/MJDmw9RfrV7JvWiUuOJKVmEik1EilXLYHkCnGERf3n/NTs+U72bz7B5iX72bbyEAXqaw3Q5p56DHqxO1ElVMj+Kr55cwG/TllDVKlQvl77Eiaz4c4bqTi+/wIje3+CLcTM7D2v3vE1ung6lcc6vY8t2Myc3ZNuuV6A4NwB/zTBEY4liJznAA+ykPDhUVpIKpkpJDdu4UbRxnjUyo6qgxEoehokZCR8Qq+OfReSGyMuIQN6XHLRySiNKkYunJ5SqjMOuVBgLCHQAHqcQkYrmbD7fIoQWBURK8RJRi8po94addRbRuPX3hjU/0EC9LhloVZpXGjQ4pUlvAI/uVEqPYrOxqIt1N5okYUGjyxj05nJcrmUBphGj93nJUhnIkttRSltKaV9JcsCtywTbrCSpgqLIwxW0tVWlQ4dBR4PYQYzWeoYeKz5hrA4zhLM1fxctJKWMIOZdIcdq06PFi05LhdhRjMujweH10usxUam3Ynb5yPBFkxqXgEeWSY5JJTLJUxKJYeEkpqXj9PrJSE4mHynixyHiyirBT1arubmYzUYSAgO5kSqQlrqxJdi13mlOlMvKZ59F6/ilWXKR0Vgd7i4mpOPzWigWlwM288oY69FxcRJ4SGEmc0cuKAQhK41K7HqwElcXh9losKICwli63FloqVb3UrsOHGBtFw7IRYTnWtX5NdNB5SKT1IM8aHBrNqraE461qlAalY++06r7aG2ddhx+AInL6ej1Wh4tFtDVu087tfbDOvZlDU7T3D0nKLPebRnI46cusbm/QrpurdtTawmAz8u3AlArYrx9GlXi/e/XUVOvpNgm4kXH23P8vVH2bBTuWF3aVWV1g1SeOvzZWSrROalpzpx+lwa381SqiwpZaMZN6ITM3/fyfK1ChFrpLakvv5+A2vU1lHj+mUZM6ITs3/fwezflHOokBLLK2N7cPZMKu9/uJS8PCcWi4FRIzvRoH5ZPvpwGevUllbt2sm88GJ37AUu3nxtPqdVIXO3HrV5fHhbUq/n8vakeZxSqzztO9fgyZEdQJKY8tFyli9WWlXJZaN4/pWepFSM4+Sxq7w/cZ5fa9O6Y3WGj+lEcKiFc6eu88GkeZw4orz+dRqW45mXuxNbKgyf18fcn7fy4xdrcDk96A06HnysJX0GKe0qIQTrlhzg6/eWkKW2A1p1rsGjYzoTEa1cD2VZZuXcPXz/0XK/FqZBy4o8+kJXElS9TuF6axfs5fsPlpF+LQeA0hVjeeS5LtRrUfGmm1pJxKZS7WQeGtGeuiWsXwiP28vGRfuY/90GTqgTWACV6iTTfUBzmnapgdF09zdfALfLw+GdZ9iz7hi71h3lnFrpK4ROr6Vi7WRqNE6haoOyVKiRRFAJI+z/FDxuL7vXHWX5zK1sW6G0jg1GPb0fbcV9T7bDGmT+l4/hcrp5rPVbpF7OYsCYLjwwosNdb+t2ebm3xji8Hh/frR9L7B20T1fOZzCk3TuYLAbm7n/9lusFCM4d8E8SHGGficidAAhkAT68+JDwqiSmKLkRKrkBHW7hVUmO2p5CUqestOrkkyIoLmw9SRhwykLV9RQfEZcK9TWqx80NgbHGL1jWSCYcPh9aSam0CCR86PAK1NFwtzohVYT4yD6lSuP1qKJjpaqjVG5cxTxuCgmP4nGj6GzMGjO5XmWZs9DjRmsmy12E8AgfwXqLX0dj1ZrJcbuw6owUuJWJs6LkJkRtVVl1RpweHx5ZEG2ycU0dAy8kNxo0RBgtpDnsmHV6dGjJc7sIN5rJd3lw+XzEWYNIy8/HJwRJQaFcyM4GJMqGhHEmMwsJifJh4ZzKVLxNbjUpVSEignMZWaqAOIysPAe5LhcxNis6ScOVnDysBj1lQsM4fDUVCWhYOpFtZxUCUyexFCeupFHg9lAqJJgQk4FjV9PRaiRaVyjLmiOnEUIRE6dnF3BZHftuVakMS/cp4tP65RLIznVw6loGeq2W3g2qsGDnEVweH2VjwikfHcHKfQqZaV8rhWsZeRw+dw2NJPFwmzqs3HWCa1l5WE0GBravxy8r95BT4CQ8yMLAjnX9epvIECtDujZk6rytZOU5CLGZeKpPc35atJOL17Mx6rU8/UALNu85y7YD5wDo27E24UFmps5WRsArlolmWN9mfPTdWi5ezUKv0zJyUGtycux8M2uz8pqWiea5x9sz9ZfN7Nyn7KdHhxr07FCD1z9cwrmLGWg0EkMfbk79msm8+s7CG22qwS1p3jiF199ZyNHjShXo3l51Gdy/Gd98u4H5C5S2V8WKcYwf15OsjHzeeGMB16/noNVqGPxIC/r2bcjSxfv48jNFoBwSYmb0C11p3CSFBb/v5uvPVuF2ewkOMTPyuS40b12ZA3vP896r87l+LQdJgj4PNmbgo62QNBIzvt3AjO82+rU2z4ztRtPWlfF6fMz+YRM/T12P1+vDFmTisVGd6NC9FpIkcfLoFT6eOI/Tx5TnUbN+GUaM70l8snJzuXIhg09fm8/ebYomK6F0JE+O60HtRjfGgY8fvMiXry/g+AGlWpVQJorHXuxK/RYVi13L9m87xdS3FnFaJVlRcaH0H9mBNj3r3KQLycks4Nev17Jw+mZcTqUVVal2Mg8/04E6zSvcktjkZhWw5OctLPx+I5mpuQDoDFpa9ahD94HNqVAzqeQL7S2Qn2Nn55ojbFtxkJ1rj+DId/kfkySJCjWTqNOyEtUbl6dy3TJ/qmLxT+LE/gtMfXUuh7Yr72toZBD9x3Sh04ON7+j2eyesm7+bd57+EaPZwLcbxhEec/ceQSN6fMzJQ5d46bP+NO9y+xZX6pUsBrZ8C71Bx4LDb95yvYDI+L8UIv9rRP77APiEjIysGvZ5VCM+j9qmKonc6NSWkwYvqKJhtT2FDh8yQq3cSKqBH6qWpugUFejV0XAjdllGo1Z0bhAg0FBIbhQDP9DgFQpZ0WLA4XOjk4zY1QkpxcBPEREXeBXi41RJkUFjpMDnUv5Xzfr0GiP5PhdmjYkcVWdj0BjJ9bqKe9yo5MakMeDweZHxEaK3kOF0oJU0aDGQ43YToldGwwvHwNOcdnSSFoOkI9vtJNRgIcvhRFB8DDzKZONqQR5GjQ6TxkCaw06o0YTd5cUhu1QdTj5CQHJQCOdzcpCAMsFhnFXHwMuHKITmj5NSlSOiOJqqTkpFRXP4eqo6KRXNIZW0VI2O5sT1dLyyoHxEOGl5BeQ6XcQE2TBLWg5fTcWkVwz7CslN0zLJbDtzHlmGqnHRZObZOXY1nSCTkRqlYvxi4lYVy7D79GXyXW7iQoMoFxXuJzeda1Zgx4mLZOY7CLdZaFYpmTlbFH1L4wpJ2B1uVu47iUaSeKBFLVbtPkFaTgHBFiP9WtTkp1V7lBHxqFA61KnA1wu24pMFlZKiaVIlmU/mbFS8c8rF0axaGT74ZR0+n0yFpCjuaVGDyT+vw+70EBsRxJP3NeerXzdzOTUHo0HHqP6t2LbvHHNULU3XllWpXSmBlz5YgNPlJSYiiJeGd2TOwt1s2a2047q1rU7HFpV5+Z0FpGbkYTToGDOsPVqNxFMvzsTp8hARbmXCmG5cvJTFU2N+VtpUUUFMeKEHmZn5PPb0DxQUuLDZjLwwqgvJiRE8O+oXTp9Rqif9+jZkYP9m/DpnBz/8sBFZFsTFhTLu5R6Uigvj1Vd+Z7M6Fl63Xhmef6k7Gglefm4WO9QWUb2GZRnzUneCgs1M+3wVc37eihAQWyqU58b3pHqtJM6eus57E+ZxWq30NG9Xhaee70JomFXxvJk4j1MqCWvUoiIjXupGRFQwLqeHn6es5dfpm5F9MrZgM4+O6kiHXnWQJAm328ucbzYwc9p6PG4vBqOO+x9tRZ/BzTGoEzLZGfl8/9Fylv+2C1D8bB58si09H25SbIrmwqnrfPPuEnasVapXFpuJfsNa03NgM/+YeSHycx38Pm09877biKNAIRMVayXRf2TH2xKbi6euM3faOlb/tgu3SyFE4dHBdBvYjM4PNvlTnjXZGXlsXrKfzUv3c2DLyWKTTWHRwdRrVZk6LStRu3lFQsL///TCqVAziXd/HcG2FQf55o0FXD6TyqcvzmL/5hOMmdz/T09BFUXLHnWY/90Gju05z9xp6xkyrsddb1u+egInD13i1KHLdyQ4haTY5/X95XP9IwIE5z8AIYRCbAqmAkXJjax62Ej48KptqqLCYj1u4UERC8sK6UEUmXbSqMRIFRgLpYLjkAsno1QNjtqeUqo5CrlxyDIaqVCUfMOdGAw4ZF8RAz8dLqEQKgk9TtlTbELKq5IsvWTE7nUXMfDToJMM2H1uTJobgmGl6uNWPW7c6jIDBV4vVq3Z72dj1JjUykxxj5sMpwODRo/XJ2GXvYQZLGSo1ZpgnYV0px2z1oDHJ1Pg8xBptJJqVx6PVsmNVtIQpDORai8gSK8Y9eW4nUSbbaTZCxACEm0hXFDHwEsHhXJOHQMvHXSD3JQJDuNUpjI1lRwcwsnMDLSSRNmQcI6lpqOVNKSEhXOkBHJTKzaOfZevIiFRIzaGo9dSFaITGU5mnoNUez4RVgvhZjN7Ll5Bp9HQICmBLacUIWnjskkcuHBV8a0JDSbUZGLLyQtoJIkOVcuz8uBJhQQlxODzyGw+fh6dVkOP2pVZtOsYHp+P8rERxATbWLhTuVH1rF+FHccucC07nyCzkT6NqzNz3V5cHh9lYsNpkJLItCWKXqZBxUQig218q/7eoV4FhCzznfp796ZVET6ZKb9vUR5vWJG4sCDe/WE1AHUqJ9C+QQXemLYCl9tLXFQwzzzYkikzN3H+ijJW/kz/lly4nMUbXywHoH71JAb0asDbX6zgamoOBr2WZ4e2xe32MmrSr3i9MomlwpgwqiuLVxxk3tJ9ANStmcRzT3bk2x83sVJtUzWuX5YxT3dkxpzt/DZfmSyqUqkUr4ztwYEDFxk2/HucTg+hoRZefL4bZctE8dJLs9m/T2mPtG1bhWdGduLE8as8NmQaGenKWPiQx1pz730N2L7lJB++tYjsbDt6g5ahT7SlV5/6nD+Tyrhnf+HMKYU4dexWiydGdsBo0jPrh038+NU6PB4fwSFmnnqhKy3bV8Xj8fLjV2uZ8c0GfD6ZoBAzw8d0oXXn6kiSxMHd5/h44jwuq34xLTpU44kXuxKmkoD9O8/w6avzuaSOTddpUp6nXu7hN+vz+WSWztrOD5NXkJ+rTDC17VGbR0Z3Ijz6xjfk3KwCfvp0JYt/2YbsU/Q4Xe5vxINPtbuJcDgKXMz7fiO/T13v1+SUqxrPgFGdqN+q0i2JzeGdZ/h1yhq2rTzkX1auWgL3DG1F82617vpGnZdtZ8uy/WxYuJd9m074J6sAkirE0rhjDRp3rE5KjcR/ucLx3wJJkmjcsQb121Rl4Q8b+PaNBWxYuJf8XAfjpw75y4JrSZLoO7wdrw79hjVzdzHoxW53PblVaBtw7VLmHdf1qe/RXxFl3woBgvNvhhA+pSXlmA2ATyi1FsWwT1YrMD58QsKLV3EdVis2CrlRppyKRi+4S4hecJcQvSChU1taheJhZR3Hbd2JFe2Nw+dRyIiqz1Fckb3FJqQK21M61Z34jwZ+TtnrN/DTqGTMJfuwaC1ku5VoBVlocPp82HRmctyKx42EXnUfthTzuMlyKVNReW6lEhSuams0aDBpjWS5nQTrzeS6XAgo5nETYbByrSAPs9aAJKS7HgNPsoVwLicbnaS0s85lZ2PQ6Ig0WTmXlY1FpyfMZOZsdjZmnZ4Ik4VTGZmYdDpiLTZOpGdg0GopExzK4aupaCWJqtHR/jHwOvFx7Ll4VSE9pWI5eiUVt0+mTERYsZHwMuFhbD2t3FxbVyjD+uNnEQKqlYohK8/Okcup2IwGGpROYPl+pbXUomJpjl1KJS3PTqjFRJOUZOZuV4zvmlZMJi27gC3Hz6PXarmvSXXmbTmMw+0hKSqU+uUS+GGl8k2+SeVkdJKG2esVnci9zatz6kIaS48cRSNJDOpUn80HznDiYhparYbHezRmw+5THD6r6G0e69WYgyeu8OMWZQKnX4faIMO7360BoFH1ZDo2qcRrXy7D7nATFW7jxaHt+XHeDvYfVfRHA3o3JDE6hOfenIvb7SUuOpjxI7owd+k+Vqnj3q0aV2Bwv8a8PXkZx04pmqOB/RrTqkkFXpzwG+cvZihmfgNb0LJpBV5+dS7HVGHy/X0a8FC/RnwxZQ3LVyjVrFq1khj3Yg9OnrzGY49+Q06OA5NJz4hnOtCmTRV++G4js37Z6h8LHzu+J4lJEXz24TIWquPYZctH8+KEXiSXjuL3mdv4bspaPB4fIaEWRr7YlaYtK3H5YibvT5zHkQNKla5R8wo881J3wiNtnD5xjQ8mzuW06lTctE1lnnqhK+GRQRTkO/lu8koWzVZIZURUEE+93J3GrRSn4rwcO1M/WMYK9VzCImw8/kJXWnaq7icYR/ee5/PXFvgjE8pWjmP4yz2oWqe0/xrmcXtZ9PMWfvlstZ+sNGpbhSHPdyHhD743bpeXpTO3MfOzVX7tTnKFGPo/24kmHaqVSGxkWWbHqiPM+XI1R3YrmixJkmjUviq9H21NtQZl70rE63Z52LHqMKt/28GutUfxem5UAlJqJNK8W22adKpBfNmbp7n+l6DTa+k9tDVJKbG8NvQb9qw/xtj7P+fVHx7/yxqieq0qExRqITM1lwNbTlK7ecU7bwRExintrJIE23+E066YMRrNdxftcDf4txKcDRs28N5777F7926uXr3K3Llz6dWrl/9xIQSTJk3i66+/Jisri4YNG/L5559TtWrV2+73t99+Y/z48Zw+fZpy5crxxhtv0Lt373/nU/lLEMKtiImdSxFQYq6UTGGulE/V1BSSG2+x6AUPSt6UWxX0KnELmiI+OEo1pmj0QqE7sU9IN6anZBmNZMIle4u4E2tuuBOjuBPrJKWFpYyGa/Aho5NM5KsTUoVVGg16nD7PTQZ+biGrlRu36nsjIxCYNYrZnl6jx+mVkRGqjsaJTtLh8Ul4hY9gnZksjxK3YJAMJXrcpDuVMW8hNOR53IQXqeZEquRGJ2mxaJX2U4jBTIHbg0eWiTUHca3g5jHweEsw53Oy0UpaokwWLubmYNHpsGgNXM7LI9hgVATBeXmEmUwIAVfy8ogwK9NRl3NyCTeb0aHhfHY2IUYjNr2BE+kZWPR64m3BHLqSik6j8bsRS0CDxHh2nLuMBNQsFcuptAwK3B7iQ4IxarQcuHgNo05Lg+QE1h1TbgJNyydz4NxV8l1uSoUGExtkY+0RpW3TtWZFVh88pYiJo8OIDQpi6R6FYPSsX4WNh8+SVaC0qNpULceMdfsAqJ+SgEGjZe5m5Rt0n2Y12HfqMqevZKDXaXmkY33mbzzE9ax8bGYjQ7s0YPqynWTlOQi1mXmse2O+XbidjJwCgq1GnurTnJ8X71L0NgYdIx9oyZrtJ9h1RLmZ9+9eH42AV79YBkDtygk81LUeb09ZQXpWgX8EfM+BC7z16zZAcSV+pG8T3v5sGWcvKqPkwwe2JCEmhKfHziQv30lwkInxo7qRnW3niWd/xunyEBlh45UXupOb4/C3pIJsJsaO6UpsTDBPP/MTF1StzoCHm9L3voZ8990Gfp2jEIjy5WN4eXxPtFoNzz79E8dUUtClWy2eeKodVy5l8eSQb7igVkruvb8hjzzempxsOy+O+Il9u88B0LBpCqNe6kZomJWFc3Yy9ZOVuJweLFYDT4zuTPtuNfF5ZX6Ztt6vtQkOsfDkC11oqZKEXZtPMvnV+aSpwt7O99ZjyMgO2ILNioh46QGmvLOYnExlNLxr3wYMfkZ5HCA7M5/vPljOit8VEmsLNjHwmQ507tfQ/+1cCMH2NUeZ9vYiLqvPqWylOB59qTu1Gpcvdq3z+WTWzt/Djx8t949sxyVH0H9kR1p0q1XiN36f18f6BXuZ+dlKLqqibJ1BS7t76nPPY61JLB9zp0ssQgiO7j7L6l93smHhHr/xIEDpinG06FmHlt3rUKqIMPr/Cuq2rMxbM5/klQFfcWzPOZ7r8wlv/DyciNg/n7OlN+ho3q0WS37awtp5u++e4KjHyriec8d1C7VZf6fu6d9KcAoKCqhZsyaDBw/m3nvvvenxd999lw8//JDvv/+eChUq8Prrr9O+fXuOHz9+yyCtrVu30q9fP1577TV69+7N3Llz6du3L5s2baJhw4b/zqfzpyCEA5H1FLg3KgJdNU/Kq1ZwSs6V8qkanOLkxl3oaSMLxaOGwugFxbhPGREvmitVGL1wQ4PjE4qQWINRITfqqPcNd2JJISuyp4g7sRavLBCARo1eKOpOjNDhLmbgV2j4pxj45f7BwM+gGviZNEby1EqPRWsi1+PEpDGS71FGvoNUcqOTdMiyRIHPo2pvlJHvYJ2ZTJcdi9aI3evDJ3xEGm2kORThcJhBCcE0aw0IGbJdLiJNVtLtBQiVxFwuMgZ+KS8HraQlwmjhUl4eFp0Bo6TlekE+YUYTbo9MhstBjMVGvsNFntdNKVsQGXY7Lp+PhKBgMvId/umobLuTLLeDuKAgXC4PV3LyiLRYMEhaTqVnYjUYiA8KYv/la2gliVql4tipkptGpZV8KVlAldgoUrPzuVKQS4TVTGJoKJtOnkeSoG3F8qw9ekppQ8VHY3d42HvuCia9jjZVyrFENe+rXzaB7DwH205cwKDT0qt+FeZtP4LH5yMlLpL40GB+U/U3PRpU4ei5a5y+qvjdDGhbl982HCC7wElksIX7mtfku6U7cHl8JMeE0alBJT77fZOir0mMokO9inw0Yx1en0y5+Ajua1OLT35Z79fbDO/bnC9nbeJaei5mo57RA9qweusxtu0/B0C/znUoFRXC2PcX4PXJlEmIYMzQtnw5fQNHTl5FkmBw3yaUTohg5ITZOJweIsKsTBjVjV37zvHZVKUiVLlCHC8/24VZv+9k4VKl6lS3VjIvPtuFOb/vYM5c5aZe2JLas+ccr742D7fbS0S4jXEvdSc6MphRz/7EcbVy0vueejz2WGs2rj/O5A+XYre7sdlMjHquM81aVGLu7B18M2UNHo+P8Agbz7/cg7oNyrJ+1WEmv7uE/DwnRpOeYc90oEvP2mSm5zNuxM/sVsW+NeuVZvQrPYmJC+Xc6VTenzCXkyqBatKqEiNe6k5YhI28XAdfv7eUlQuULK24hDCeeaUXtRqWBeDa5Sw+e20+u1SH5aRy0TwzoRdVayuj4bIss+K33XzzwVI/GWjfuy6PjO5UrM108XQqX72xgN2qI3JYpI0Bz3ak/b31i5EVIQQ71x7l23cXc/6EQlLCo4N58Ol2dOzbsEQfG7fLy+rfdjL7i1X+GAZrsImuDzel5+AWdyVizUrLZeXs7ayYuY3LZ2/400TGhdK6dz3a3FOP0pVK3XE//+uoXLcM7//+DOMe/ILzx6/yyoApfDBv5F9qV7XuVY8lP21h87IDPPNOv7tqJYXHKC3ODFUgfjsUarTuVMGZ/9OWuzhbBf+xKSpJkopVcIQQlCpVipEjR/LCCy8A4HK5iImJ4Z133uHxxx8vcT/9+vUjNzeXpUuX+pd16tSJsLAwZsyYUeI2LpcLl+uGWr4wjfTfNUUl5DxE1mPg2c3NoZkl5Uqhkpw75UoVGvoV5kppVeICYMSj6mtujl4onJ4qHr1AEY8c1CiFQnKjjIbfcCd2yj70agtKGfVWprkKDfz0qhD4lgZ+khG716OOgSvLjJIRu6rHKQzUVDQ3TkxaA3Y1buHOHjcKudFIGqyqdidEbyJfrdbEmG9MTRX62hRNAzfr9OhLGAOPswaRnm/HI8skBYVwOScXWUCZ0DDOZWchBJQPi+BsRiaymiN1LjMTrywoFxbO5awcXD4fyaGh5BQ4yXG6iLZZ0fsnpQwkh4Rw9FoaGkmiQVIC284plY0GauyCy+ujTEQYyIJzGdmY9DoalUn0e9o0LZ/M0YvXybI7iQqyUikukk3HFJ1OxxoV2HXyhpi4acVkFu1S9DbNKpUmI6eAY5fS0Gk0PNiyNou2HlbITIiVbg0q8/NKJSyzclI0NUuXYtbafQA0rppMTIiN+ZuUKk+7ehUINhmZq+ZJtapTnjIxYfywSBm3rlMpgfYNKzD55w243F4SokN48v7mfP7zBr+4eMzgNuw7fJkl65UWWptGFejaqipvfLqU7FwHQTYT457qxP7Dl5g5XyEotaomMOqxdnwydTW71dHhe7rW5t6utXn13UWcOHVdaVM90IRO7arx2tsLOVJo+ndvffrf35hPP1/FqtXKMevXK8PYF7qzb995PvxgqVLhCTbx/HPdqF07mc8mr2D5MsVRtlr1BMaO74lep+W9NxawS81YatysAqPHdkOn0/D5B8tYtUx5TSpWLsWLk3oRnxjBhlWH+eTtxeTlODAYdQx5qh09+jZACMFvP21h+pcKUbIFm3nyuRtam23rjvHJ6wvITMtDkiR6PtiIQU+1w2Qx4PPJzP95Kz98thKXw6M4GT/Wir5DWqDXK99jzx6/yqcT53FU1RGVqRjLk6/0LNaOKshz8Mtnq5g/XfG90em19B7cnH7DivvegOJz8u07izmgkjRbiJn7Hm9Nj4HNSvwW7nK6WTZjG79OWeNvWQSHW+k9tBXdBzTDGnz7sWafT2bvhmMs+2Ur21Ye9IuFzVYjTbvUpM299anROOXflt8khCAnPZ+0K1mkXckkOz0fe54DR74Le74TR74Tj9uLTq9Fp9ehN2jR6rRYbCYiS4URFR9GdHw4kaXCioWQ/idw7UIGz/b4kOz0PHo+0pJhr95ccLgTfD6ZvjVewp7n5NPFoylf/WZ/oz8iL9tO3zqvALDoxDu3JUUblx7gzRE/UbVead6fMfyW6/Vt8gpztr723z1FdfbsWa5du0aHDjfm6o1GIy1btmTLli23JDhbt27l2WefLbasY8eOfPzxx7c81ltvvcWkSbc2Dvo7IXwZamjmEYqGZiqi4RvkxiNuVHBkUDU4N8jN7XKlCkXDhSPiSvSCKh4uFr2g8YuRC6enbrgT69Uxco0akOlDWxi9IBlwFXMn9inaG29xd2Kdmu5d1MBPg151IjYXM/Cz+7xYtRayPcoyLTrsPg82ncXvZ2PSGsj1OJXMKL/HjUJu9BodQpYo8HoIM1j8jsURBitpjnyMGh0ILTlulzLurQqLi3rcxJhsXMnP9aeBp9oLCDWacLi85PiUqam0gsIx8BAuZCttq1tmSkVEcUydlKoSGeWPXagSFcXRa8q3yqKZUmXDw8jIt5OmEh2jRsvRa2lYDHoqREX6yU2zsslsPnUeBNRKiONCejZZdgcRNgulw0L95KZj1RTWHj6NxyeTEhuJQdKw6dh51Zm4Mkt2H8ft9ZESF0F0kNVPbno3qMrmw+dIyy0gxGKiV8MqzFiz109mUuIi+WG5QiLa1k7B7fL4yU2/1rU4dTGV+ZsOKRWVzg3Yf+Iyq48r3/QHd2vAmQvpfnJzX7ta6DQav96mcc3StKlXgVe/WIrTpYiLxzzSjqkzNnH8bCoaSeKJh5qjEfDiW3PxyYIUdQR8yvQN7D2kvEb396xH8/rlGTPxV9LS8zAZ9Tz/VEfMJj3DRv1Efr6LkGAzLz/XDSHLPP70D+TmObHZjIwd3ZVSsaHFWlKPDG5B7551+WrKGhYuVJPGqycwblxPcnMcDH/8Wy5eyESjkXiof1MeHtCM3TvP8N4bC8nOKsBo1PH40+3p1qsORw5c4u1J87h+NRuNRuKBgc146JHmOB0e3n1lLquXKiQppXIcz0/qTVKZKC5fzOD9CXM5sl8luM0qMPLl7kREBZOXY+eLtxezdomyXXxyBKMm9fZXZc6euMbHE+f6nYir1yvDiFd6+vOlHAUufv5iNXN/UCaszBYD/Ue0p8dDjf03HFmWWfX7br57f6lfO9OwTWUee6n7TcGWVy9k8P37S9mgppTrDTp6DmpG3yfa+N2Ri8LldLPkpy38OmWNf9Q7IiaEex9vTecHG9+xmpCTmc/yGVtZ8tNmrl+8IVatWDuZzg82oUWPOpitf01AWxLysu1cPHmVCyeuceGE8v+Vs2mkXcnCq7oz/6uIiA2hcr2yVG1YjqoNylO2avzfKq79I2KTIhjz8cO8/PCXzP92PU271KR6o/J33rAItFoNVeqVYdfaoxzaceauCI7ecOM5edze2z7HrPQ8gBIzygqRnZlPVvrdRzn8YwTn2jWl9BsTU7zPGhMTw/nz52+7XUnbFO6vJIwdO5ZRo0b5fy+s4PzdEL5riMyB4DvLnwvNLKzg6FQhsd5v2OeUb2hwKCIaLiQuShtKnZ76Q/SCu1j0guwnN1rJoAqENfhkDTKoj/n8guEbE1LCr73RSwYcqjuxRs2cMmnM5PsU0uKTtbiFjFlrIc/rRCtpcfskfELGqjWT7XGhlbT4ZAmX8BGkGvRp0KCRtBR4PX7TPpCwaS1kqsJih9eLTxQ38AvRm0l32ot43HiLedzEqORGJ2kJ1pu4bi8gWG/C45PJdqlTUwVKeGZSkDI1ddMYeGgEpzIybiI3FcMj/eSmaGDmrTOlYjhxLQ2PLFMuIpysfAdp9gKibFZCTEb2XbqKXquhbkI8m08qn/+m5ZLYdeYSbp9MuahwJBn2nLuCUaelZYUyrDigtCEalkvkYlo2p7LzCDIZaFmpLPNUd+HGFZLIzLWz5fgFRUzcuDpztxxSIhmiw6iRFMuPq5SR7DY1y5NX4GThVmXbh9vWYevBc5xRW1aPdWvI3A0HuZKei8Wo54leTZmxfA9XM3KxmPSMuK85c1bu5+zlDAx6LSPub8HG3WfYcUh5PgO610f2Cd78WpmKalA9mXva1eT1T5eSnecgNMjMuOEdWbH+CKs3Ky22ji2r0LVVNca9PZ/0zHzMJj1jn+pEZlYBI8fPwuuVSYoPZ8Lz3Vm77ig/z1Hcg6tUKsX457uxZNkBfpq5FVCM+ya+1IP9+y/y+hvzcbm8REYG8fJLPQgNsTDi6R85cyYVSYIHH2zCgIHNWLxwL1O+WI3H7SMi0sbYl3tSpWo8U79YzW+qU3GZctGMm9SbhMQIfvxmA798p4yRx8SF8uKEXlStmciB3ed4d8Jc0q7notFI3D+4OQ8NbYFWq2Hh7B1MnbxC1eEYGTa6Ex161EaSJLavP87Hr84jKz0fjUbingFN6f9EG4wmPW63lxlfrWX2txvweWWsQSaGjupEx3vq+ieDtq89yuevzSftqqKBaNqhGo+P7UZUER3GqcOX+GLSfI7uVd6n+DKRPD6uB/VbVip2fcvPdTDjs1Us+GETXo8PSZJo07sOA57tRHT8ze65ToebpT9vYc6Xa8hKU4hNdHwYfYe3o33fhhiMt779CCE4tucci6dvYsOivXhUU0BbiJk299Sn04NNKFP5X29BuRxuTh28yLHdZzm+5xzH95wj9fKtJ34kSSIsOliJYYgJxmIzYbYpGVNmmwm9QYfP68Pj9uH1ePG6veTnOki/nEXq5SzSLmfiKHCRcS2HTYv2smmRQqZNFiPVGpaj40NNadypxr+F7NRtVZmO9zdi+cxtfDj6Z75cNfZP612q1i/LrrVHObzzDL2GtLzj+kWn3twu723JbFbanQnO2WO3vs+XhH98iuqP6nghxB0V8392G6PRiNH49zH8kiC85xCZg0C+chO5KRqaqYiH/xiaKeEVGrwINVdKVgXBRcmNvkj0gupKLLRqPagwV6oweqGog/GN6AWF3Bix++Qi+hqlBeWQfUXcibVqdIOSDF7g82LQmLB7lVFvIRSn40Jyo5V0uLyKYNqkxijcMPVT3ImzPUUN/IRKXpzoJUUn5JJveNxI6ph4tttFsN5Mtkp4wot53OjJdjkJNZhL9LiJNNr8U1NaNGQ6HUSaLGQ7nXhlQbw1mEu5ig6npDFwCYnSwWGczshEJ2lIVMfAdZKGpOAQTqRloNdoKRMSypHUNLSSRMXwCH8aeFFyU6dUHHsuKWLi6nExnLiahtsnUzYijAKXm1NpmYSYTSSFhLD9zEUkoGVKGdYdP4sE1EkqxcX0bNLz7IRbzVSKjWLlQcVbpUP1FLYcO0eBy0NCeAhlIsL8sQvd6lZi27HzZOQ7CLOZaVu1HDPW7wOgQYVEND5YtF2p6jzQshabD53lYloOZqOewR3q+837IkOsPNi2NtMWbsPh8pAQFULf1rX44tdNONWW04BO9fl81kby7C6iwqw83a8FX/+6hcupOZiMOsYMaMOqLcfZrpr5PdStHmFBFsZ9sNBv5vd0/1Z8NG2VXzj89KBWaCSJ0a8pI+DJCeGMH9mF2fN2sXK9ct6tmlTg8QEteO+T5ew9oLRe+vSsS9976vP2+4vZq7auenWrzeABzZgyZQ3L1RHkBvXL8uLz3di16wxjX5iljIWHWRg7tgcVK8by+sS5bFI1KI0al+e5F7uRm+Pgmce/9zsS9+pTn0eHtyUjI4/Rw3/giFpFadepOk+O6YzBoGPapyv59UfFWTkuIYznJ/WmSo1E0q7n8OGk+ezZXqjDKcPoib2IiQslL9fBV+8uYdVC5f1KLBPJ6FfvoZIae3Bk3wU+euV3Lqr6kyZtKvPkuB5+J+KM1FymvLmQTcuV5xoTH8bwl3vQoNUN0pKXbeeHj5azZMY2hBCYrQYefLIdPQc2K3Zj8np8LJmxlZ8nryA3yw5A7WYVGDq2G2VLIBlul5elv2xh1merbhCbhDD6Pdme9vc1uO2ot8ftZePCvcz7Zh0n1akyUKagug1sTosedf4lEaqzwMXhnac5sPkE+zed4NTBCyUmfkfFh5FUIY6kCrEkVYgjvmw00fHhhMeG/EueMkIICnIdnDt6hSM7T3N4+2mO7DxNfo6DXWuPsGvtEaLiw+g2qCWdHmpC8N/sy/PoK73Zvf4Y185nsPSnzfR+tPWf2r6Kmk928uDF26+oQlOkXei9g79NoRN2WNStCc7Jw5fv6riF+McITmysEgx27do14uJuZIekpqbeVKH543Z/rNbcaZt/N4TnGCLrEZDTSyQ3JYdmSniEKJIrhT80U8aAu0hoZlHR8I1cKU2REfEb5EaJXpDV85BUl2G9miv1x+gFDUL12NGp5EbxqVHaW4XJ4De7EwuMqhOxXjJgVxO/jRoT+V4XRr9g+EYyuFlrJF/1wlEM/FSdjVcRFoeoHjc6SQtCR77HU8zjJlRvIc1px6TV4/NBgc9NhNHqb0VFG29Ua6w6I2mOAkIMZuxuLw7ZXSw8M9EawoVcpf2UbFPIjVZS9DmFY+BR6hi4WacjxGjiXHY2Vr2eEL2Zs5nKz2FGM6cyMjHrdMRZgziWmo5Bq6VcWDgHLl9Hg0TNuFj2quSmXoKSKQVQo1Qsp9VJqYTQYHRoOHT5Oma9jtoJpVivkptWFcqw/eQFnF4fZSLDMOt0bD1xAZ1GQ6caFVi27zg+WVAjKRafW2bTsXPoNBp6N6jKwl2KM3G52AiSwkP4TU0C716/MofPXONcahYmg47+beoyc+0+8h0uYsOD6N6gMl8v2IZPlqmSHEO9Cgl8+quSxl2/UiKVk6L5aMZ6ABpWTaJOSgLvfr9ayacqF0f35lV5+5tVOFweSkWF8PQDLfj8lw1cViepnn+kHTv2n+MXVUvTuUUVWtQrx0vvzFMCN0OtjB/RmRUbjrJ0jaKPadW4AgP6NOSNj5Zw5rzi2jxsUEuqpMQx4oUZpGfkYzbref6ZzkSGWxn+zI9kZOZjNhsY80xHUsrG8OzoXzh3Lh2NRmLQgObce089vvh8FUuWKELkWrWSeWlcD65fy+HxId+Qej0XvV7Lo8Na0+ueeqxadpBPP1iG0+khOMTMmJe607hZBVYvP8in7y3FXuDCYjUy4rnOtOlYnQtn03j75d/9pn2detZm2KhOmC0G1i47yGdvLyI/z6nocJ5uT49+SobUjo0nmDxpHhmq1uaeAU0YMLwtRpMep93ND5+uZN7PWxFCEBZhY/hL3WnWviqSJCHLMktm7eC7D5dhz3eh0Wq4Z1AzHnqyrZ8YyLLMyt928e17S8lVAzhbdavFkBe6+qdeQLkZ71hzlGlvLeTSGYVIJaXEMHRsN+qro+hF4fX4WDlnBzM+WU7alWwAYhLD6fdke9r1qX9bYpCTmc+Snzaz6IeNZF5XSJHeqKNVz7p07d+Mimo77s9ClmVO7r/ArtWH2bvxGMf3nCs2Pg6K2V+lOqWpWKc0FeuUIaVG0h31QH8VkiRhC7FQrVF5qjUqD08r53j++FXWz9vF0h83k3Y5i+/emMfPHyym7X0N6f98N8Ki/h6tqDXYzEPPdmLy8zP5bcoaug5ohsF492PZhbYAaZez8Li9dyR7niItvTtFaVw5r0zqlUq+daTDsSIxHXeDf4zglClThtjYWFauXEnt2rUBcLvdrF+/nnfeeeeW2zVu3JiVK1cW0+GsWLGCJk2a/NvPuSQI9z5E1tAiieAubiSC6/BS6Ep8N6GZQs2VKhqaWSgaLpyiupEr5VOFxJKf3NyIXiiMZ1CiF9T2lK9QX6MQkj9GLxQd/xbo1eiFQndiHU5/MrjiTlyUyOgkAwU+F+YigmG9ZCDf6y5m4GcqNPDTmsj1FjHwczkwagy4vDJe4SPMYCXDqXjY2HRmMlxOgnQm8j1uZFGCx41dqdYgINvlJMpkJd1hV1Kf/5AGfiE3B42kIc5s40JuNiatlhC9mUu5udj0ygTVlSJj4Nfy84kwW/B5BVfz8vyBmZdzlZFwA1rOZmYRbDQSbjRz7Ho6Jp2OsmFh7L+sxBvUiY/zk5uGyQnsOn8ZnxBUjo0iLTufjAIHEVYLpYKD2HpaMexrU7Eca46cQgionRRHanY+565nEWQy0qhcIov3qP4vVcpy/GIq17LzCbGYaF21LL9uveFMXGB3se7gGbQaiQdb1GbRtiPkFDiJDrXRuW5Fvl26A1kIapaNo0xMONMWK2PR7eqkAIIfVT3OvS1rkJFdwI9LFV+Vvm1rkZ/v4qvflKmGrs2rEhlk4e1vVwFQr2oSnZtU5rUvluJweRS9zeC2fDVjEyfPKWGeT/VXUrRffn+BkjZesRRPD2rFB1+t5sSZ62g0EsP6tyAxLpRnxs0iv8BFeKiFic9359TpNJ55cSY+n0xyYgSvjuvJth2nef3tBciyoHRSBJPG9+bUyesMe1Ix7gsPt/LySz2ICLPx9NPTOXsmDUmC/v2b8eBDTfj91518O1VxXi4VH8b4ib2Jjw/j3dcXsFqthtSqk8wLr/TEYjHy7qR5fiFx1RqJvDCxFzGxISyYvYOpn6zE7VLiGZ59uQdNWlUiN8fOR2Pns17NDqpQNZ7nX72HxNKRFOQ7+eq9payYp7QM45MjGP3qPVSppcQR7N9xho8nzOWqaprWrkdtHn++i1/3cv7kdSa/8rtfRFyxRgIjJt1D2Uo3vkCeOXqFzybM9bejklNiGD6hFzUa3ohqADh/4hpfvb6Avao7c0iElf4jO9KpX8Ob2ieyLLNu/h5++nAZV9WbVERsCA+O6ED7vg1vexO8dPo6v3+9ltW/7rzhWBwTTPdBLej8UJO/5Cycl1XA7nVH2Ln6MLvXHiEno7hmIyo+jJpNK1KzWQWqN04hOiH8PxaWWRI0Gg1lKsdTpnI8Dz7bhfXzdjH/m3WcPniRpT9uYuPCPQwZ35sOD/zrsQsAbfs04OePlpF+NZtVc3bQ5eGmd71tWHQwRpMel9ND2pUsSpW+/fh94eg3cJPL9R9RaEUQf4t9CiH+uwhOfn4+p06d8v9+9uxZ9u3bR3h4OElJSYwcOZI333yTlJQUUlJSePPNN7FYLDz44IP+bQYMGEB8fDxvvfUWAM888wwtWrTgnXfeoWfPnsyfP59Vq1axadOmf+dTKRHCtQWRPRyEvYRE8FuTG7coFAvj97RRhMa6m0Izi+dK3SAuhbEKYFBDMxXfGqlIrpRXKBWhwugFRV+jOhAXRi9ISvSCMg2lxDL4hBavEP7ohT+6Ezvk4u7EGkmPU/beMPBTjQHtPh82rYUcj1MVFuvJ+4OBn1VrJsvlwKo1keNW9ldo4KeVtOglPTluF2EGC5lqNaeQ3GgkDTat6bYeN4nWEC6q5CbOHMTF3FyMWh3BOiNX8hVfG0mWSC0oINJsweHykOlxUsoWRJbDgcPrJSEomPQ8ZSQ8KTiEjAI7do+HxOBgcu0urrscxNhsyF7B+awcwsxmQo1Gjl5Pw6TTkRIRzu7zV9Qx8ES2ni2clIrn4IVr/uqM7JXVKo6eBskJrD6s/O20qlSGPacvk+d0Ex8WTKmQIFapLaoedSqzav9JHG4vyZGhlI0OZ/4ORUPTrW5l9py8xNWsPILMRno1rMqstfvwyjJVk2MoHR3G9JUKWelUryKZ2Xbmb1IqJgM61mXn4Qscu5DqN+9btf04Jy+mo9dpebJPM1ZvO87h09fQaiSeuK8Z+4/dmILq17EOFoOO16co/jZ1qyZxX4davPbZUnLynIQGm3l5eCcWrjjARjU8s1fHmjSrV57nX59LTp6DkGAzE57tyoHDl3jpjXkAVKtUirHPdObbnzb5gzLbtKjE8KGt+eSLVWzcotyQ27WuwtNPtOP77zcyf6FCGGrVSuLlsT3Yu/c8L7/0Kw6Hm9AwC+PG9aRc2WgmvPwrO9SJoNZtqjByTGeuXMrkiUemceVSFhqtxIAhLbn/4SacPnGNMa/8yJVLivD4wcHNeWhQc/JyHbwyagY7Nin6qLqNyjF6Qk8iIoPYvfUUH6iVGY1Ww0NDW3D/4Bbo9Fr27zjDBxPmknolG0mS6PVQYwY93Q6jSY+9wMU3Hy5jsWroFxUbwohXelJf9SJxu73M/nods75eh9fjw2wxMGhUR7re38g/UVSQ5+SnT1awQE0lN1sNPDyiAz36Ny02yp2XbefHj5ez+OetyD4ZnUFLr0HNuX9425uqGoUj4t+/s4iz6kh7aKSNvsPb0fXhphhuc0M7tuccc75YxdblBykc5E2pkUivoa1o3q32n24DZafnsXXZfjYt2sv+TceLtZ3MNhN1Wlaibusq1GxWkbjkyH+U0NwOBpOe9vc3pl2/Rhzadoop4+dw5tAlJo/+mfXzdvHCl48QehuNyt1Ab9DRZ1hbpkz4jdmfr6TjA43vevJMkiRikyI4f+IaV8+n35ngOBSCo9VpSrQMKER+rsPv2XSrCs71y1lkpeejvc1+/oh/K8HZtWsXrVvf6PEVCn0HDhzI999/z/PPP4/D4WD48OF+o78VK1YU88C5cOFCMdbapEkTZs6cycsvv8z48eMpV64cs2bN+o974AjnKkT2M4BHTfQunJZSKjiF5KbkRPCSQjM1RUIzbyY3xXOltP7JKGV6ShEIa9R21Y3sKUV7Uzx6QYtLKMcsNOkrjF64ob25Eb1g0BjJ9xYKi0t2J3bLPsxaxcBPJ+lwy0ochU1rJsfjRCdp8ckaHLKPYL2ZLPcNA78ct0sNzyxu4GfU6PHKUODzEGG0ku4orNYo5Mao0aNBQ7bLSYTRQobDjigyBl44En4xLwe9Rkuw3syV/HyC9EYkGdIddqLMVnIdLlw+H/G2YFLz8vHKSgL4hZxsZAHlQsM5m5nlD8k8k5GpTPaER3A+UwnMLBsWxvXcAiU2ISQYt9vLucxswsxmwo0mDl1JxajTUi0uxk9uik5K1YyP5WJGDll2B9FBVuJDgtlw/CySBB2rpLDq0Ckl0Ts+Gpfbx64zlzHqtHSuVZGFO44iC0HtMqXwenysO6xUau5rXIOF249gd3lIjAyhbtkEfl59Q0ycm+9gyfZjSvWiXT3W7znFhdRsTAYdj3ZtxMxVe0jPKSDEZuKxbo2ZNn8b2fkOwoMtDL+nKVN/30JalmLm9+xDrflx4U7OXlbMAEf1b8XWvWfZuFshC3071SY2PIiXP1yoZFaVjeGph1vwwderOH9ZiWUY9WhbcvOcvPDG78iyoFL5GF4Y3pGvftjA9j3K1Ng9XWvTo2MNXn5tLucuqAZ/Q1tTu3oiz74wg0uXs9DrtTz1eFsa1C3Ni2NncVxtDz38UBMe6NeIKVPWsEidkipsSV25nMXjQ78hPS0Pg0HHkyPa07lrTeb9uoupn6/C65WJignmpQm9qFI9kV9/2cp3U9bi8ynLx07qTbWaSezcohCYrMwCJZ7h6fb06NsAj9vLl+8tYd5MRZSckBzB86/dS8Wq8TgdbqZ+uIz5vygmhrHxYYx+7R6qq1qHvdtO89GE30lVWz5d+zbgkWc7YrUpI9tH9p7n4/G/c1FNHG/YujJPju9BVFyocp0Sgk3LDvLVGwvIUFs/zTpV57GXuvvXAcV0b8kv2/jx4+XkZSs6myYdqjFkbLebpqgAju4+y7dvL/KHO1qDTfQZ1paeg1vccqJJCMHONUeY88Uq/3YADdtXo8+wtlS9S8fiQuRk5LNp0R42LtjDwa0nkeUbjielK5WiXtuq1G9blSr1y9325vrfCEmSqN44hU+WvcD8aeuY/s5C9m08zjMd32H8d49RvsafCxn9Izo+2JifPlzC9YuZHNl55k9NVEXGhXL+xDUyU/PuuG5+jvJZsthMt13vnPp3GhETcst1D+5SrgNlK8XCkbs7138rwWnVqhW3s9mRJImJEycyceLEW66zbt26m5b16dOHPn36/A1n+NcgHAsQOS8APjUR3KO2m9zqtNTtEsGVtG6lclN0IkoqMTTzj7lShaGZSjVHITcO2efPlZL85KmwzSTfIDfSjdFw0OEqFr1wQ3ujBGoq4995XqXiU1h5Ksmd2KRREr0Nmht6HKtKbgwaPQ6P4lgcrLOQ5bb7k8EVP5sbBn5BOhOZLjtWnYkCjwefoJiBX4heSfu26Yw4vD48Pg8xRao1heRGK2kIN1i5kp+HVWdAI7Sk2+1Emi3kOVy4ZR8JtmCu5OYpvjYhYZxV08BTwsI5qaaBVwqP5JiaBl4lKooj15VJqapR0Ry+diMw8/j1dHyyoGJUJJcyc5TqTmgIbreXMxlZhJpNxAYFsfuCkinVMDnBPynVpGwSe85dxuX1US4qHOET7Dt/FZNeR/PypVmuTko1rZDMyctppOXZCbeZqZscz3x1Uqpd9fIcuXhdqdSYDHSpU4k5Gw8gC0GdsvGYtVoWbFUqK/e3rMUWVUxsMeoZ1L4eP63cQ57dRUxYEH1a1mDqgi1KqnipCLo0rMzHM9fj9clUSo6mW5MqvD99DW6PjzLxEfTvUo+Pf1xLboGLyFAro/q3ZtqcLf5JqlGD2nDgyGU+XayQik4tqtCibjnGvjOPArsSy/DKyC7MW7qfNerkVNe21ejZoSbj3pzH1euKT85zT3bAbDTw5OhfsDvcRIRbmTS2J1ev5TD82R9xubzERAczcVxPcrIdDHvyB/LyFEfjl8b2IKFUGCOf+YlTqjfOQw814eH+zfh19na++2Y9sk+QlBTByxN7ExkVxMSxv7JVbc80bVGRUWO74fX4eOnZX9izQ/G8ad66MiNf7IrRqOfL95cyb5ZSYUkuG8XYN+6lTPkYTh+/ytsv/8YFVcPSvW8Dho5oj8ls4PjBS7w77lcun1cm87reV5+hozpithhvqtrExIcx6tV7qNlAMfRzFLj4/uPlLPxZEQiHRth4Ylx3mheJYbh6IYMvJs1j1wbldY1LimD4hF7U+0Mq+IFtp/hy0nzOqSGepSvG8fj4HtRqknLTte/S6et8+/Yiti5X2nJ6o46eg1rQ98m2BIWWHAPg88lsWryP2Z+t5MwRpU2r02tpfU897n28DckV4krcriQ4CpxsW36Qdb/vZPe6I8UqNSk1kmjWvTZNu9b+n4lj0Oq03DOsLXVbVebVwV9x5Wwao3t8wMQfn6B280p33sEtYDIbaNi+Oqt/3cHmJfv/FMEpJLCFxny3Q+FkVHj07atOhYn05arcejJuv1pdrV6vDPx+V6f6z09R/f8GYZ+ByJ0ICGQh8OH7QyK4t4REcCU0s1DQK9DiQXUj9odmatXoBoNq8ldIbgp/1+JWKy+yUKITUKszWkkZJy+aK6X414giuVIGf66ULDT4hIxOJTd/jF5wyV5/9IJWUrKvBAJjCe7ERo0ShmnSGsnzKMvMqjuxWWsk160sU9yJ7UV0NrLfwE9Cg0mjVw36LEUM/BSPG52kxSjpyXIqU1PZTieyoJjHTawpSPG40egwaw2kOQoIM5opcHlw+VyUsgZxLT8PIaB0cCjnsrK5yeMmPIKTGarHTRFyUzUyisPXbz8GXjMulsNXrysViuhILmfkku92Ex+iiAOPXU/DZjRQITKCLaeUPnKrlDKsP3EWBNROjONieg4Z+XYibRYqREey6pDSuulcswLrDp5WWllRYURaLaw6oDx2T8NqrNh7XJmiigihRmIsszcqfikdalfg3JUM9l3JwKjX0r9NXWav20+eKibu1qAyXy/chk8WVC8TS/WysXzxu9LqbVq9DPHhwXz+q/J723opxIbZ+PCndQA0q1WWmhVK8ebUFUp1qVws/TrU5u2pK8grcBEZZuPFoe34ds42jqptrCcfbonD4WL8B4repkbleJ7s35J3v1zBmfPp6HQanhnSBrNRz4iXZiohnDEhvPpCD9ZvOsHPs5UqR42qCYwb05WZc7YzTx2zrV+nNGPHdGXu/D38/IuiCapUKY4J43tx8vg1hg37joICFyEhZsa+1IMKKbFMGPcrO9RKQrv21XhmVCfOnL7OsEEzSVMFxo8/3Z4e99Rl944zvDtpvt/zZvioTnTqXosLZ9N5a9yvnFXDM3v2a8CQp9qhN2iZM30T33++Bq9XcTceNaEX9Zum4PX4+PGL1cyYtgHZJxMRFcSzk3pTr6lCKPZtP82Hr9yo2nTr15AhKvEB2L35BJ+8Mtf/ePvedXn0+S4EhSpaHK/Hx+/fbuDnTxUNkE6vpd+w1vR9vHUxQWnalWymvbWQDYsVkXVQqIUBz3ak8wONbtLZZKXl8fPHy1j6i9K60mgk2vdtyEPPdipWCSoKj9vLmt92MueLVX63YbPVSJeHm9JraCsib7HdHyHLMge2nGTFjC1sWbIfl8Ptf6x8jURa9qxHs261iS2h0vS/guRKpZi87AXeHvYtu9ce4dWBX/Hm7KepXK/sX95nsy41FYKzdD+PTex91/oes00lOPnOO66b6R/9vr1I+szR2xMcIQQH1C8WVeuWuavzhADB+VMQBdMQee8CRRPBhZojJRUhNx4/ubl1IrjmxkQUGmQ/uSkamlkYvXAj0VsRGEvcyJVSyE3RXCmvrEXxKS6eKwUafGoLSqua9N0+ekERGgskDJKJPK+7uDsxRvI87uLuxBoj+R6X4ntT6E6sNZHtcSixDOqyEJXc6CUdoBj4FfW4CTdYSXMUYNLqET6JPG9hMrjSqiokN1pJQ5jBwjW70n7yyYrIOMZsI7UEj5uywWGcUT1uygUr5EaDRNnQcE5mZKBR08CPpykj4eXCwv1j4JUiIv1j4DVibpCbuvGl2H1R0djULhXHocvX8MqCitGRXM/NJ9vhJCbIRojByN4LVzFotTQsncD640rJtXlKaXadvoTT46VsVDhmrZatJy+g02roWD2FZXtPKNWYMqXIyXOy6/RlTHodPepV5vdth5QpquQ4TFotS3cfR5Lg/ma1WLnrOJn5DiKCLHRvVIXvl+9UyUwc5WLD+WbxjSRwt8fLjJUKWbi/bW3OX8lkzhrlxjeoWwNOnU1lxnbl8f5d65OTa+eLmQr56dq8CqVLRTDp86XKJFVKHAN6NODtKSvJyC4g2Gbi5eGdWLrmEOu3KxWp3p1q0ahWGca89psiHA6zMnFUVzZtO8WcBYouqEHt0jzzWFs++nwlu/cpFa/7etXlnu51mPTWfI4eUyoOAx9qQvcutXjz7YXsUcWzPXvU4dEhLfnhh03+LKmqVeMZ/0ovrl/LYdjQb0hTW1JPj+xAh041mDNjG999vRbZJyiVEMb41+6ldNkovv1yDbN+VEhTmXLRvPTaPSSVjmTJ3N1M+XA5bpeXkDALYyb0okHTFFKv5fDeK79zQM2eatKqEiNf7kFImJWLZ9N496VfOal+Y23VuTpPvtSdoGAzTrubbz5axkK1lfXHqk1ejoOp7y5m5e+7/Y+PmNSbOk1vVFoO7z7Hp+N/4/xJJTahZqNyPDWpd7FQTLfLy+/T1jPzi1W4HB40GokuDzam/7MdCf5DGKPT7uK3r9fy21dr/d/YG7WvxqAXupFcIbbE66Tb5WHl7O3M+nQlaVeUXKqgUAs9h7Skx6AWdx34mHopk1Wzt7Fy5lZ/pANAXOkoWt9Tn1a965GYUvI5/C/CFmLhle8fZ+KAL9m7/hivPPwFX6wZR1Spmz2I7gZ1WlTCbDWSfjWbUwcvUaHm3bW9LFalhXQ3FZxCY8fbjX4DnFLHv8tViS/x8asXMki7moNOr6VSzbv3sAsQnLuAEAKRPxkKvgCKkhtZdR9GzZGS/FqbQpJzd4ngkmryJ5T2VImhmVpVo6O4CxdORpWcK6VRtTueEqMXCk36DEVaULIsKe47kol8r6dYlUaLkXyvu4g7sYSEvmR3Ym9xd2KjxkCu11XMnThIHQk3aw24vD68QibCaCXVccPAL8NpJ0hvosDtxSvLxQz8ok02rhbkYdToMGj0pDvshBvN5LnceGS5mMdNcpCSDF7ocXMmKwuNpCHRGsyZrCwMGi2x1iBOZ2Vi1OqINls5raaBx1isnEzPwKjTkWAN5uj1NPQaDeXDIzh45TpaSUPNuFj2qOSmQaKSIyUBtRPiOHIlFZfPR/nIcAocbk6mZhBiNlIuIqJIplQ51hw57Z+USssu4GxWJkEmIw3LJrBEDchsW7Uc+89cISPfQWSQhYYpScxRM6RaVyvHhetZHLyWicmgo1/Tmsxevw+Xx0dKqUiqJsX4nYnb10khL991Q0zcoS47Dp/n+MU0dFoNT/RqwqKNRzh3NROjQccz9zXnt9UHOHtZqQKNfLAVyzYf5cCJK2gkiWF9m3LuYgZf/LIBgK4tq1K1XBzjPlioZFIlRTJyYCs+/mYNZy9m+PU2OTkOxr41FyGgaoU4xgxrz6fT1rBX9dfo37cRzRuUY8y42VxLzcVk1PPcMx2JCLMyfORPZOfYlfiG57sRbDMx/KnppKfnYTLpGf1sJ2pUT2Lsi7M5dEjxpbnvvgYMGdqSub/tYppKYhISw3ll0j2Eh1sZ//wsdhYKjNtXZeRzXcjJsTNq2A8cUy++3XrX5fER7XG5vLz2whw2r1W8eOo2KseYCb0Ij7SxfsUhPnlzIfl5TkxmA0+M6UTHnnUQQjD/l21887FCiGzBZp56qRutOtcA4PDe87w/7leuqk693fo1YMioTv6qzZZVh/ls0nyy0pXR8e4PNWLQyI7+dkFBnoNv31vKkhlKlSs4zMpjL3WjTc86xXQtuzcc58uJc/0TK9Xql2HYhF433VhkWWb1bzv5/p3F/ptUhZpJDBnXgxq3aGd43F5Wzt7OzE9W+IlNeEwwfYa1pdODTe7Kbdjn9bF95UGWTN/EnnVH/RIHS5CJVr3r0f7+xlSsXfq/ViT874bBqOeVbx/n+d4fcfLABT58ZjpvzHr6L01XGUx6qjYox661Rzh18OJdExz+xEtfSExjEm5NwhwFLr8Gp0L1hBLX2aW2iyvXSvpTPkgBgnMHCCEj8t4E+3RASQRXQjNlfMhFEsGlP5kIrlVDM29MRN2cCK7439wY+5b8k1aSPzTzRq6Up0iulFv2+smNVtL7R8NBr5r6Fbagikcv5P8hekFCj8Pn9ZMbjep+7PmDO7EQGlxyEXdi6UYcgyIiVqamLFozWS4nNp2JXLdCeMINNlIdSvK3UaMY+IUZzGQ4lFZVoYGfhES40cp1ewE2vRGfT5DndhFjtnFdJT+JNqVao5CbEDUZvIjHjVZHhMHChZxcrHoDVp2ei7k5hBiNGNBxKSeXUJMJo6TlQnYOISYTVo2eM5mZBBkMRJitxcbA9126ikaSqF0qjp0quWlUOpFtqpi4ZnwsZ69nkudyEx8ajEWnY+8FxY24cZkkVh9WbqotK5Zh75nik1KrDymP9ahTmRV7T+Dy+igfG0FMsJUlqpnfvQ2rsfbAabLyHUSFWGlbrTw/rlK+4TeunAwyzN+ikJmH2tRmy8FznLuWhVGv47FuN8TEYUFmhnZrxNS5W5UR8jAbQ7s34ss5m8jJdxIZauXpfs2ZMnsz1zLysFmMPDewDXOW7eXwKeU1eOqhFly5lsN7U5Ux8VYNU+jcvArj3ltAfoGLiDArrzzThQXLD/j1Nt3b16BLm6q8+NrvpKbnYTbrGTeyC/YCN08/PxO320t8qVBeG9eLnbvP8ua7i5BlQfly0Uwa14udO8/wypTVeL0yiYnhTHylN9mZBQwb9i3ZWXasViP/j723DrOy3tf/X6tjujtg6O7u7g7FQkVRARUkBQQEBFHs2rai0t3d3dLNANOdq5/n98fnWWtmYADde5/fOee7z+e6vMC11iQza93P+33f92vipF7UrRvDuzNWc1iBULbvWIOx47tz81oaU99a7DEYjx7XlW696rF/9yU+nreBokIb3j5Gxk7pRev21Tl3KpH501eRmZ6PVqvm+VEdGTCsOVaLnQ9nrma7UsxXtWYUk+YOJComiKz0fBa+s5pTh8VasWGLSoyd2Z/gMF/sNge/frmTlT8fQJZlgsP8GPfuABq0ECIiL6eIb+auZ4+yRoquEMKbcwaU4Ucd3HqOr95d4zF9dhnUmBcn9igzjUlPyuHbues4qETaA0J8GDGlN+371n9ALJw9dI3v5qzlhiIOw2OCGD6pJ216P/hYUPpvlh1lyWclJPHAMF+GjOpM92EtHpmmcp+MpGy2/H6IrX8cJCu1hDxdt2UVujzZnBY96v//zm/6n3qMXgYmfv08ozvN48z+K6z9bjf9R3b8p95XheqRnNh9kVuX/nqBnrtH6K8Yt5Nui9Vk1CNo7lf+vIvkkgiJ8H/outMNfW30Fynm7vN/AucRR5ZdyPnTwbICKC1uXKKzxiNuBGNKktWKyNH+DSK4sqKSdfcRwR8FzdTfx5XSYpWEWJJlYT52c6W0qhIIpqSII53He6PD6hI9x2oMCnpBrKDc6AWnLCnixipo4U4ZF6XbiXXYnGKidX87sVV2lmonFqmpfLsdP52ZHJsQPAF6LzKU1BSyikKHXVlFKQV+yrRGq9ZgVuvJtBQTYDBRYLPhlGQivXxJLhDTmlhv97RGCJo7eXkYNBoClI4bH70BHRpSCwsJNJlwOiXSi4sI8/LCYnOSaSsmwtuHIpuNdJuVcG9v7HYnKUUFhHp5oZJUJGbn4m8y4q83loqBB3HqjphoNI6N9oib5hViOHErSRh0w0PILbRwPTsbf7ORysFB7L0sVlTdailJKZdMjahQnA7Jk5TqVqcq609cRJahcUI0BcVWD3ZhSIvarDx4DpvDRZXIYOKDA1i2T7wQ9m1ekwu3Urmh+G9e6NqEJTvPkFtoIdTfm6Ht63rMxAlRQXRvUp2PF+/F5ZKoWTGcjg0q88Gvu3C5JKpXCKNv21rM/3EHVpuTmHB/XhvSmo9/2UVGdiE+XkamvNSZVVvPcvK88Be9NKQFRp2WqR+sRZJkalaJEP023+zg+u0MtFo1b47oKKZCU5did7iIiQpg1sQ+bNh8ltWKt6Z5kwTGjerMV9/uYs9+Bd/QqRavvtSer77e6QFltmldlbfGdmf9+lP89OM+JEkmISGUGTP7U1Ro49WXfiI1JRedTsNrYzrTo1e9MiupmLggps8eSFR0IF98uIX1qxTieK1oprzbn+BQX377bg+/fy/ed1RsIFPmDKRy9Ugun7/H/KkrSbmXjUql4okXWvP0S+3Q6jQc2HGBT99d6wFrjhjXjd5Dm6BSqbh+KZkP3l5OouLf6dy3ASMn9sBbiWMf3HaeL95dS26WwDQMfKENT4/u6PHRZKbm8dW7azi8XXwPouKDeX3OwDKdNg67k9U/7OMPBcKp1qjp+1wrnnqjywPwzKRbGfwwdy2HlY4eL18jT77eld7PtS4Xq+BySexZfYLfPt5MqmKUDgzzZchrnen+1OOFjSzL/HnwKmu/383Rbec8KSi/IG+6PNmCbk+3fGwM+V85BblFpNzKICsll8zUXLJScshMyaUgpwi71YHd5sBuEX/KsuzBMrjRDH6B3sRUiaBCjWjiqkX8U4Tuf/ZEJ4Tx8qyBfD5xMT/OXUu91lWpUKP86cejTrzSkeSO+f+V41IEzl+Ja3u6bR4hcC6dEmvlGg3KL3O02xycVWC2jdtU+cufJ/yfwHnokWU7ct4EsG5GRogbGVnhSMm4KIFlupQJjlhTaR4ibh5OBHcqvTOUEjdloZkqHFJJNPyh0EylZbg8rpQwM+OZ0uiUThyUqY5VcpVBL9id4usyqgV6Qa/WU+QQUyCj0k5sVBsocj7YTmxxCmq6r7KK0qm0SmrKWaad2FdnLsWScuKU5QcL/IoKlQI/FXl2G6HGEh9O6QK/KLMviXm56NQaAvQmkguFoNHIatJKddzkOOxEevuQVSx6beL8/EnNK8Dukoj39yclNx+7JFEhIIC03AIsTidx/v7kFFoosNmJ9PXB6ZRIzCkdA0/DqNVSPSyYowows03FePZdu40KaBwXxZXkDApsdqID/PDS6jhxKwmdRkOHahXZelZMFZpXiuVmahbp+UUEeJloGB/FuuMiKdWlbmX+vJVCWl4hAV4mOtWuxB97zgDQolocFoudHaevoVGreLpDAzYcvkR2QTHBvmYGtqrDDxuP4XC6qB4bSqOq0XyxssRMHFnKTNy5SRX8zSa+WCqaizs1rUJsqD/v/7gTgCa14ujUpAozv9iE3eEkPiqQ0cPa8vGPu0hOz8Ns1DHllS4cOnGTrXvF596zQy3aN6/CpDmryS+0iqK+cb3Yd/gaKzeI6HqLxgm89nxbFny6lXMXxORg+LAWtG9djQlTl5F4JwutVs2YVzrRsF4c4ycs5uatDNRqFS+PaEe3rrWZP289R46IKUm3bnUY83pntm05x9df7MDhcBEe4c87s/oTHu7HO5OWcUyZqHTsUos3JvQgO6uAN176kRuKf2XoMy147uV25GQVMenVXzmn+Hs696zLqIk90Bu0LPlxH798sxvJJREa7sfE2QOo3SCeokIrn767lu3rhFCrVD2Sie8NJLZiKC6ni2U/7uO3r3fhckoEBHnz+ox+NG8v2oHzcor4avY69ilQzrhKYYx9byBVFbihJElsWXaMH97fRHGhFY1WzeCX2vHkqI5lTMTnj93k8+kruaN8PbUaV+C1WQOoUK1saqmowMriz7ay9sd9OB0u1Bo1PZ9uwbA3u+Ef9GDRniRJHNx0lkULN3FXed/+wT4MGd2JHk+1xPCYFYLd6mD3quOs/X43ty6WTA7qtKhMj2db07x73b/Vrvu4Y7c5uHn+LjfP3yPxSjKJl5O5cyWF7LS8x7/xXzwqlYqI+BAq14ujZa/6NOlUG+O/EQBa3un+TCuO7TjP0W3n+OrtZSxYPfZvr+4qVBOm3sQrf53xZFe4YG5K/cOOpchGpsJAi4p/uAH8vBL/rl5qKln6nDt+C5vVQVCoL/FVwikoeHw83X3+T+CUc2TZhpz7Oth2K2shp2dyU1bcSLgAl4xYV3kmOEKEPChuHkYEV3E/EfxR0EzReyO4UhaXSFg5JTERUqn+OldKVarUrwS94GZIKYZhl02IHIcDN3qhwGnHrDFSoBiLPe3EWqOnsdhHYyLbZsGo1mNVUlPudmI1akwaAzk2K746E/k2wZIKNfiQWlyIGjU+WlHg56szUuxw4pCkMriFKC9f7hWIRuIQgxf3Cgowa/XoVRoyiosIMgpBU+C0E+XtS0ZBEQ5JooKfmPJIMlQOCOJ6ZhagokpQENcyxFVo9eBgrqZnIslQNTiYW5mi76ZSUCBp+YUU2uxE+/nidEqeGHiotxen76Wi02hoHBPFfkXctKkUz+HriTglmRoRoeQVWriamYmvyUC96AgPMLNLrcocvHybYruD+JAAQr292PnndVQqkZTacvIKxXYHcSEBVAkLZsVBsWro06QGZ68ncTcjD2+jniFt6vLHzlNiqhMVTIOEKL5dL3wZ7eoloFOp+G2rWGENaleX5LRcVihm4ud7NeHKzTR2Hhbj4Bf6NuVOcg4/rRUm3cFd6mHS6Zj33TYAWtSrQJeW1ZnxyQaKrQ4iQ/2Y/HJn/vH7fi5dF8mp0c+1Q5ZkJs8VZHB3v81n3+3ijEIGf25oc5rWr8DYKUvJzCrEy6xn6oReIMmMGruIomI7wUHezJraj/x8C6+O/oWiIhsBAV68M7UvXl4GXnv1F1KUCc2Y17vQoUMNPv5wMzuV6UbzlpWZOKUXdxOzeOX578lIyxedN2O70L13ffZsv8An72/EUmzHz9/MhHf60qR5JY7sv8rCWWvIz7NgMusZM6knHXvUITM9nxljV3FWeXJu07kmb0ztjbePiYtn77BgygpSk3JQqVQMeaE1T7/aHp1OS1JiJh+8vYLLCmepZaeajJneF/9AsU46uP0CX8xaI6Y2GjWDR7Rh2Gsd0SvFd8mJmXw6dQV/Kle0VevG8sbcgVSoWiJa8rKL+GH+BravEER3vyAvRkzpTcf+Dcu8AEqSxPblx/j5/Q3kKoTmRu2rM2Jq33INxLIsc2rfZX6ev57rCnPL28/M4Fc70ueFNo+dYORk5LP+x71s/GU/+dni4xlMejoNaUqfF9sR+zfi4o86qYmZXDh6nSunb3Pl5E1unr9XBhlQ+gSE+hIcGUBwhD9BEQEERwbgF+SNwahHb9SiN+o9YstSaKW40Or5Mys1l8TLydy+lERuRgHJt9JJvpXO3tXHMZj1NO5UizZ9GtGk83+N2FGpVIya/wQn91zi/JHrXDh6Q+Af/sYJUlZChXnFfwm9AJCfKwr5fAMfbRZ3J6OCwnwfMK+7j93m5ILyO1SnafmJsMM7xYVS0/bV/raA+z+Bc9+RpSLRTmw/rGARHIqYUQjgCIBkibiRlT9ViuFYp5TtuduI9VglgVoQ76kk7v1wIrgbmqlVxEkJWFMIIKeHK6VCg0MRN+6PpfNwpbQeangJV0q0E6s9wgkMaoFe0KsNFCnoBb3KQJHLXga9oFUZKFRMxHl24Y/RqwxKO7GJXIe4zUuZ5nhpjOTbhTByixutSoNGpSXfYSew1DQn2OBNanEherUWHRpy7ivwizL7kqQU+IWbfEgqyEev1uKtNZBaVIS/wYjD4STPaSXCy4eMwiJR2ufrT6ISCa8UEMj18jpugkO4WA4NvE54OOeSUgFBA7+SmoFTkqgSEkxqTr7w1Sgx8KvpWfgYDCQEBXD4xh3cwEx3UqpJhWiu3Msg32oj0t+XMC8v9l++jVqlonvdqmxVmFJ1YyOwWO0cv34Pg1ZD70bVWXP0Ai5JlPmpJBU7zl5DrVIxrE09Nh69RF6RlYhAH9rVrsRPW8SLWosacRg0WpbuFuLliQ71uHAjhfO3UtFo1LzSpzlbDl/mZlLWg2ZivZaxw9qybvd5Lt1KQ6NR88awtpw8n8i+E8IX9FTvRpgNemZ9tgmAhrViebpPY2Z/tomsnCL8fExMf70Huw5e9vCkurWrQb+u9ZgyZzVpGfmYTDqmje1Jfp6FNycvweF0ERcTxOxp/di5+yK/KnHvOrWimT6pNxs2nmHR7+K2GjWimDm9HydP3uKTj7ditzuJiPBnxsz+GA06xrz6M7dvZaLWqBjxcnsGDWnCmuXH+fbLnbhcElExgbwzR6ykPn1/E5vWiklS7XqxTJnVH78AL775aAurF4tEU6VqEbw9dyBRsUEc2XeFhTPXkJ9XjMGoY9SknnTpXQ/JJfH7N7v5/ds9YqIT6c/EuQOp1SAeWZbZuOwo3364GZvFgdnbwGtv96Zjr3qoVCoK8ix8PXcduxUPT1ylMMbNG0SVWmLt4HK6WP3TfhZ9ug27zYnBpOO5sd3o82xLTwutLMvsWHmC7+et90Axuz3RlBcm9vREyN3n0qnbfDNjFVeV6vuoiiGMnNGfxu1rlPu8eOV0Ij/NW8fZQ0KQm7wM9H+pPQNebv9YbtOdqyms/scudq446qGCh0YF0vuFtnR9quUDn9vfPRlJ2Zw9cMXzX/rdrAce4xfkTaW6ccRXiySuWiSxVSOIqRKBl8+/hzmVk57PrUv3OLP3MvvXnSDldiYH1p3iwLpTmL2N9BvZkQGvdcbb71/7Wu8/IZEBdBrSlC2/HWT9j3v+tsDx9jOh1qiRXBJ5WYV/Kbqfp4jhx2E0blx8dDIK4PKZRGxWB/5B3sSXI6olSeLILmHmb9ah/J/NR53/EziljizlI+e8DI5TpcSNCqdb5Cjsbodcsp4qIYLLChvqQXGj8kxytJ4SPvfK6VFEcPfqyR0NB/1DoJkqJY5eAs0s3W3jXkG5xY3WU+rn5krZxWRGQS9oVDqKJYfw2diFH0eFFovLibfWRJ7diho1KnQUOZ2edmIxzTGQZ7eJ3hubEEb+OjNZVhH5trvA5nIqHTdi1RSoF2sns1aP0ylT4HIQavQmrVgYh93iRo2aQIOZ1KJCvHUGZAmyLBZCzV7kFltwSJJITeXm8qiOm+qBIVzKyECFiuqlxU1IqEfc1AsP54wSA68fGeEBZtaLDOdicjoOl0SVkCAyCovJKbYQ5uONr97A2bupGLVaGsVFesRNuyoVOHQ1EYdLolpECHa7kzN3UjDpdbStWoFNClOqTbUKXLmXTnqeWFG1qBrHysPCD9GpTiVuJmVxKz0Hs0HHkBZ1WLznDA6ni5pxYUQF+bFkt1iH9G9Zi6uJGVxMTEOrUfNyr2as2XeOlKx8fMwGXunTgh/WHSGnwEKwvxcv92nuMROHBHgxanBrvlq6n4wc0WQ8/rmO/LrmKNfvZKDXaXhreAdO/HmHHYeEJ2ZQt3pUjQtlyvzV2B0uKsYGM/GVLnz+424uXk1BrVYxang7An1NvDltKTa7k+hI4bdZv/kMazeeAaB1i8qMGdmRjz/bypHjYkIxoE9Dnn6iGQs+3MQx5ba+fRow4oW2fPvtbk8rcdOmCUye0pszp27zwfyNWCx2wZ2a2Z+EhFDmTF/F/j3i+9y2Qw3GTu5JbnYhb7z8EzevifK/J59rxTMvtiUtNZdxL/7IVeUKdMCwZjw/qiPIMl8u2Mg6pdCvUtUIJr83iJj4YFKTcljw9gouKhyo9j3qMPrt3nj5GMnOLODjd1ZxXDFK1mtakXGzBxKqvJgc33eFT6evIis9H7VaxaAX2/DU6E6eqc3tq6l8NHkZ15SpSf0WlXl9zkDCYwI9z11JtzL4fNoKzh4WAjS+Sjhj5g7y0J/dJzezgB/nrWe7Ep03eRt46s1u9Bneutyr93s30vj5/Q0cVICkWr2G3s+1ZsjozvgHPTr6e/7IdZZ/uY1jCr0doGqDeAa+0okWPeo+0LXzV4/L6eLisRsc2fonR7ee5d71tDL3a7RqKteNo1qjilRtUIFqDSsQ/l+MZwgI9SUgtAYN2tbg+en9uf7nHfavO8n+dSdJuZXBHws3su773Tw9sTe9R7T/y2iEv3J6P9+WLb8d5OCmM2Sn5REY5vf4N1KOWq3GL8ibnPR8crMK/prAUaZv/sGPFjg33eV9NR8ucNzlfXWbJZT773PtfBJZ6fmYzHrqNkt44P7Hnf8TOMqRpWzk7BfBeQEZDS7ZpqAX3O3ETsU34ypH3KAkoWQkBbXgTkSVMRgrcW+7EuV2yRok8DQXlyWCu6PhKkqo3yXiRiSjhEh5EJppoFhJTbmNxXrVo7hSAr2gQg1osEkuRdyIhJRTUuOUJY+40ao0OF2Ciu6rE+3EaoU1Vego207sqzUp7cRiOlS6nVilRMYzLRZ8dSYK7XacklymwC/C5ENSoZjWmDUlJuNCmwO7SzQSJ+WLGGsF3wBuKR03lfzEtEalTG6uZWWhAir5B3E5IxOtSk1F/wAup2egVamoEhjE+dR01ECt0DDOJqWhQkXDyAhOKuKmSUwUx2+Lq5K6UeFcSc3A6nRRMSgAq83B9fQs/E1GKgQFcPDaHVQqBDBTSUo1rhBNYlo2GQXFBPt4UT08hK1nxYter/rV2P3nDc+KKirQtyQp1awWu85cJ7fISpi/N22rV+BXJSnVtnZFCoqsbD9xFY1axXOdG7P5yCVSswvw8zIyvFsjflh/lCKrnZhQfwa0qcOnS/fhcLqoGhtK92bV+PDXXTg9ZuLazP9hu2gyjg7ihX7N+OinneTkWwj0MzP5pc78tPwIl2+Kyc7Y4e1JTs1l3ldbAWjdpBKDezRg+oJ1ZGYX4uNtZMa4npw6e4cvvtsFQNMGFRjzYnsWfLqFcxeTUKnghadb0bJpJcZNWkJScg56vZbxr3cloUIIY978jZSUXPR6LePe7Ea9urFMGL+YK1dSUKng2eda88QTzfjh2z2sVF6469aLZeo7/cjOKuS1F38g+V4OWq2akWM603dgI/buvMjH8zaIlVSAmUkz+tGoaQL7dlzg4znrKS6y4eNnYvw7fWnWpip3bmXw3pTl3FI8JwOeas7zigjZveksn89dT3GhDbO3gdFv96ZDz7oAHN51kU9mriYvpxidXssLb3ah71MCmlhUaOX79zexRVklRVcIYdx7g6iuwDWdDhfLv93DH1/uwOlw4e1r4qUpveg8sJHnxcBhd7Liuz0s/nwHDrsTg1HHsNc7M+DFtmVSLi6niw2LDrJo4SaK8kVBW+chTXh+Uu9yO0pyMwv47aPNbP79kKfYr+OgJjw1rjth0YEPPN7zPCrLnNh1kaWfbeGCUqKoUqlo1q0OA1/tRI3Gfw/H4D7WIhvHdpzj8OazHN9xjkIFJwGg1qipXDeWuq2qUadVVWo2ScD0GDTAf+VRqVRUrhtH5bpxDJ/aj0MbT/Pr/HXcuZLCN1OXsm/tCcZ++iwxlf89K7mKNaOp1rACl0/e4tCmM/R6vu3fentvPxM56fkU5Vke+1iXSyI7w91t8+jyvitnxRr2URMcdzqqfqkup9LngAK4bdymqkfw/53zfwIHkF3pyDnDwXldERU2pcvGVkrcqHHITmWiI5USNyrBkQIktMoKyy1uDDhwInpwZDFlkcoW9rlXWg8Swd29N+UTwa0uFzwEmlnoBmoqxmKdykCxS3ClihSUghuQ6RY3GpX4eC5ZwqQW4kanpKwkZMGVst+HXtC50QtaJEmFRXIqLCkrKlSYNQZy7cJn4+7FcYsbrUqDXiUi4YEGM1nFYhUVYfIluSgfFSpCjN6kFBXipTV4KOFhZm/SCx9d4FfRN4Dr2dloVWpifPy4np2NXqMhwuzD9SzRdxPh5c11pe8m0suHy+mZGDQa4v0DOJ+SjlatpkZoCKfc4ia6RNw0iYvmROI9JBlqR4ZxJyOXfKvNEwM/cycFg1ZDswoxHnHTvlpFjl69g8XhpEJIAD4GPQeu3EarVtO7QTXWH7+ES5KpFx+BwyFx6HIiOo2Gwc1rs+qQSEpVjQohJsCXFQeE/2Zgy9qcvHKXxPRcvIx6nuvUiF+3nqDIaicuLICujarwxYoDglVVJYqacWF8tlT01bStn0BUkC+fLRb/37FxZeLCA3lfIYG3qFuBVvUqMOuLTThdEpXjQnh5cAsWfLuDzJwi/HyMTH2tG6s3n+bo6dsADB/UjKhwfybMXond4SI+Johpb3Tn+0UHPDypYQOb0KZpJca9vZQMxW8zbUIvHA4Xo8b9htXqICzUl9nT+3P3bjaj3xAYhvBwP96dMYCCfAuvjPyRvDwLPr5GpkzpQ6VKYUwc9wfnlQnH0GHNeeHFtmzf8iefL9yC3e4kNMyX6XMGUrFSWJmUlHsl5etn5vP5G9mwUklP1YlhytyBhIT5sm3dab54fyM2qwO/AC8mzOpP45aVKS6y8emsNezcIKYbNerFMnHuIMKjA7AU2/h2wSY2K++vYtVwJs4bQnzlMEAYJxdOWU6a4tPp92wLnnuzq4e4fOtyCgsnLfVU2DfrWIPRs/oTVOrq/NKp23z29gpPh0iD1lUYPXsgEbFlYYXnj93kq+krPEmZSrWieW32QKqX0whrtdhZ/d1uln+1A0uhKHJrqhT7xVd7eI2+yyVxaNMZln62lRtKl5FWr6XLE83oP7Ij0QlhD33bhx1LoZVj28+xf91Jju845wE3gvB/NO5Um6Zd69CwfQ28fP+9q59/11Gr1bTq3ZDmPeqz5df9/DBrJReP3WBU+zlM+e4lmnev92/5OM261ubyyVuc3HPpbwscjdKhIz0Cq+Q+mSm5OO0utDoNQeEPnxQV5ltIVH4uqzcsPx2Vm1XIVcWLdj8+BMR6au9m8bvVRumL+rvnP17gyK5k5OznwJX4gLgR+ASHYgp2ixz3mgql2E+FC7e4UdqIyxE3oPWIG6cs2E4uSjpt7GXETWkiuOjIeZAIXuLlKYFmivh3aWOxTklS6dVGCp0iNaVCi11JTeU7bKW4UgiulMOGQa33iCGzxkheeegFezFGtR6LU5QeutELGpUGLRoKHHYC9GYylQ6cIL1ALxg1OiSXikKngxBjSYdNuMmH5KJ8tCoNPloD6cVF+OuNFNud2CVXmQK/eB9/bnsK/Py5mZODRqUmysuXWzm5GDVagkxmbufl4q3X463Rcyc3D1+DAbNGS2Jurui40ei4lZ2Dj8FAoMHE1fQsTDotsX7+nEtOQ6tWUzs8jOOJQtw0L0MDj+ZMYjIOl0TVsGDyi6ylYuDB7Lt8G4CuNSuz4/w1JAnqxUWQU2Dh3J00vI162laryBqFKdW2ZkVuJGeSlJ2Pr8lA13pVWLz3DFCSlNp19gYatYpnOzZkzcEL5BZaCA/woUeT6vxj3WEkWaZhlWhiQ/z4TjEX92hWHbvNxe9bhM9kWNcGJKfmsmSrWO8826sxqel5/LRW+E2Gdq2PWqXiAyU51a5JZVrWq8C0jzYIBlVMEGOfa89H3+3kTrIoBJz8Wleu3Uznvc8EPbxV4wSeG9Kcdz/cwN2kHPGY17vhdEi8MWkJdoeL2JhA3n1b+G1+W3IYgAb14pg2sRdLlx1l+Uox2WjUsAJTp/Rm65ZzfPfdbtGDUymMWe8OICMtn1dH/EB2dhFmLwOTpvSiUZOKfPLBJrZsEN+7Js0rMWl6H4qKbIwd+TPXlAbkJ59rybMj2pGanMObY3/ghvKEPHR4K54d2Q67zcmC6avYpaSZ6jWuwMTZAwkK8eHK+XvMn7yclLuCJv7ky+0Y9lJbNFoNV87d5f3Jy0m+k4VKpWLg8FY8q0x77DYHv3y6ndVK701YVABvzRtM7cZCbDgdLpZ+s4vFX+3E5ZTw9jPx6vS+tO9T0kFjKbLx84ebWf/rQWRZxi/Ii5en9n2g0yY3q5Af31vnWUd5+5kZPrEn3YY9SI92F/v98v4GTw9N5bqxjJjWlzrNy7+6BiFs9q87yR8fbebuNfH9M5oN9Hi2FQNf7fS31iUgJlIndp5n5/IjHNt2Dru1RNRExAfTslcDmnWrS/XGCf/WNc9/9dFo1PR8vi2NO9fi4zd+5fTeS8we/g1vfvwMXYa1/Jfff4O2Nfj5vXWcPXDlL5uFPcf9M/N4fUNKooh9h8UEPvL7f/l0IrIsEx4bROBDJj0n919BlmUqVo8sI9zd5+KpRDJS8jB7G2jc9u/137jPf7TAkZ13kLNGg5RcrrgR0Ex3K7Fb3KhwyHIpcaNW/pNxySLWLUr9nJQQwd1+mpKVk1u4gF6IG4+vRvThlFDDRe9NWSK4Fqsy3UFhRz0amilK/dTKVEjCDc20lcuVEiwp4ccxqY0UOGwCx+BGL2gFesFLY/Tc5kYv6NVaZGWaUxq9EKBQwr20BiwOF05JIsxUkopy990YNTqPyTjE6EWWpRhJ5r4CPyFuSgr88jBqdPjrjdzNE/FwvVpNckEBQSYzslMmrbCIUC8v7A6X5+9Oh+TpuFHLKu7k5BFgMuKrN3A1PRMvvZ5YPz/O3E1Bq1ZTPzrCI25aVozjkEIDbxAbyY3ULM8Ux9dg4MSte+g0GtpVreBJSrWpGs+FO2lkF1kI8/OmWniwZw3Vu1F19p6/QYHFTnSQH7VjwjyTml6Nq3P+Rgp3MnLxNuoZ2qYuv+04hV2JfVePCuWnTeJFrHvTauQXWFizX4x2X+jRhOMX7nD+pjAXjxnUiq0HL3MlMR2dVsObT7Zl84GLXLiR6jETH//zNgdOCb/L8P5NwQXvfS2SU60aVqR3+9pMX7iegkIroUE+TH+jB3+sPsaRk2JK8+ygZtSoEsHYaUspKrYTGuzDu5P7snvvJZatFhONFk0TeOPVTnzy+TaP32bIgMYMHdiEOfPWcUbxsgx7ojlDhzTh44+2sHev+F516VqbN97owoZ1Z/j2m51ILpn4CiHMnDMQjUrFm6/8wvWrqahU8NxL7XjymZYcPXiND2avpbDAio+viUkz+9GkeSVlJbWO4iKxqpo4qz+Nmlfi+uUU5k5eRvLdbNQaNc+MbMfQ4a1RqWDZj/v45UshQEIj/Jj43mBqNYjD5ZJY8t0eFiniJCTcj/HvDaJuY5EOuX4hiQ8nLydR8Yx0G9SYlyb3xKwkbG5dSWHhxJKpTfPONRk9awCBpVZIJ/Ze5vOpK0o4VAMbMeLt3mVSKpIksWXxEX6av8FDc+72RDOGT+5VrjH0/LEbfDtzFdeUq+nQ6ECGT+pF274NHtqQ63JJ7Ft7ksUfl0TFvf1M9HmxPX1HtMP3MQbU0keWZa6eTmTnssPsWXWM/Owiz30RFUJo3achrfs0pFKd2P/1Dcah0UHMWfo6n45bxLY/DvHR678gSTLdnm71L73fhNrR+AV5k5dVyOWTt6j9CFF6/1GrxfdUkqTHPBKSlV6biMdwvy4qmJKa93nASp9jiieuSbvyoaHucssWnWr+07UB/9kCJ2cEeGWXETd22aZ01dhLiRt3t41aMRiXFjcqJUUlpi54DMZucaNXxI3Ws3ISwkWIE4fsQo1b3OixyYIZJaYzJckorQeaqfNAM5HF56X7S9BMtyEZ9Ao006gWnTgok577uVJ6lZ5Cp70MesGkMZDvcJuIH0QvWJ0uXLLkETdq1HhpDWTbLPjpTORabcgo7cSFZduJfXRG7E4XBS474WYBx7y/nTjW2487ebkYlL6b0gV+aYWi78bqdJJlsRDp7UNesU3QvX39yCosEr02fv5kFBRhcTiI9fcjr9BGvs1GpK8PDoeLOzl5BHuZ8dLquZyagVmvIyEoiOOJSahVKprHxXBIoYG3Sojj+M272JUpTrHFzuXkDHxNBupEhbPjnALMrFOFPecFMLNyeBDeOj37Lt5Go1bRv0kt1h27iMPlomZMGD56A1tOXhXG19b12HL8imdS075OAj8qSanWtSqAJLP6gBAzz3VtxOFzt7h2LxODTsNr/VuxdNtpUrLy8fUyMHpQa35YfZiMnCL8fUy8/kQbvltxiNSsAny9DIx/riOL1h7zmIknvNCJQydusueYEGhP9WlEaIAP0z5YKwCbVSIY/Vw73v9iK4lJ2ej1WqaM7kp6ej5vz1klgJo1opgwuiuffrXDw5N6ZmhzOratxvgpS7mXpPht3uhGfEwQo17/lfT0fIxGHZMm9KRihRDeeP03EhUY56hRnenUqSYfzN/IXgWV0KFTTcaO786Zk7dZMGcdhQVW/PzNvD2zH3Xrx/Pj1ztZ9puYEFWrGcW0OQPxD/TiiwWbWL9cfC9r1Y9lyhwxnVm37CjffrQVh8NFSJgfk+cOpFb9OLIyCvhw2kpOK8bI1l1q8vr0vvj4mkhPyWXB5OWcP3UbgDZdazNmel98/Ey4XBLLv9/Lb1/swOWU8A/y5o3ZA2im9N64nC5WfL+X3z7bjtPhwsffzGvv9KWtkrACEf3+ds5adq0RU7iw6ABenzuYBq3LFp9dP3+PL95exhVFIFasGcXouYPL7RhJu5vFj++tY59i1DZ5G3jy9a70faHtQ0v63MLmj482ecy93v5mBrzSkT4vtvtbqaS8rAJ2LD3C1t8OcOdqiuf2gFBf2g9sSvtBTf6fEDX3H41Ww9hPn8MnwJuVX27jy4l/EF89kmoN/3lwplqtpmbTBA5tOsvNC/f+lsCx28SU7HG9NgB3lCln9GNo7WeVjqmajcsHY9ptTo67BY7ye1DmfruTvcrktF2vuo/9vB52/qMFDlIGMvqHiButYjAuETci/q32JKGcqDxmYYeM0nNTWtwYlIi4aPYV4qZ0NNyF6LRxoVYZsEki9u0GawrPTmlxU4oIrpT6uYngj4Jm6lQ6BecghIzgSok+G9FirKfIWZYrpUaDxeX0oBdUqNCpheARxuFSkXAFvVBgF+LFLW6Ez0ZLvt1GoMFMZrFYVbnRC1qVxmMcDjSYyFfaiaO8fElS2oljvIS40ajUhJq8uJufh5dOh16lJa2oiCCTGavNSY5DCJrMomLskot4P3+ScvNxSjKVAgNJzM7BKclUCQriVma2+HtwMHcyc7G5XFQMDCCjoIhCm50Yfz9sNid3snMJ8jITYDJyLlmko2pFhHHohpKUqVKBPVcEDbxhXBS3UrPIKbYS4edDuI83B68kolGr6FGnGptOXxbrowpR5OQVcyYpBS+Dni51K7PysJjUtKoWT0ZuEUdv38Go0zK0VQlTqlp0CBVCA1my+wwgklKXbqVx5W4Geq2Gkb2bsWTHaTLzigj0MfNCjyZ8s/oQRRZhLh7WuQGf/LYHq91JhaggnurWgIW/7KLY6iA2PICRg1qw8Kdd5OQXCzPxiM78sPwwV2+JSc/4ER25ci2VT1cLo3DXtjXo1LIaE+esorDIRmiQDzPH92LNxtNs3yuER++udejXrR5TZqwkKSUXk1HH5HE90Gs1jBr3G8XFdkJDfJjzzgDu3Mni9bG/Ybc7iY4KYNbMAaSm5DLqNdF5ExTkzYyZ/fHzNTHmtV9IvJ2JRqPm1dGd6NWnPot+3McfvxwERPvwtNkDUKtVTByziHPKi32/IU14aXQnMtPyGTfiR65dEi+qQ4e34rmR7bFYbMyZtIwDSu9Gs7ZVeWtGP3z9zJw4eI0Ppq4kL6cIg1HHq5N60rW/4Dzt3fInn727lqICKyazntfe7k0nZaWUei+bDyYt46LS1tqySy3GzOyHnzJxuXsjnYUTl3JFmZ407VCd1+cM8kxtZFlm/6azfDVzNXlZRcKv83xrnh3XtUzvjKXIxqKFm1irtDibvA08N74HvZ5t9UBayVpsY+kX21n5j104bE5UKhXdhjXn2Qk98Q8uPxklyzKHNp1h0YINJF4R37d/RthIksSZ/ZfZuugAhzad8fTTGEw6WvSoT8ehzanfpto/nbD633JUKhUjZg4k7U4mB9afYs7wb/h85zQCQh9t3H3UEeDRs55V4V89RfnCXOz9F+L6NxWkQ8VHGIeLC61cUeoHHmYePnP4GpYiG0FhvlQtB555dPclCvMsBIX5Uu9vRt9Ln/9ogSP8MDalfbg8caP1THDsskv5U3hb3OLGKauVyYwo8SstbiySu41YSU8p5X4SGlzu3psy4kaLTZYV0SREkUYRN24iuFwuEbzEWCzLalyyrHhu7odm6ilyOkpBM9XIsgar5MJLW5KakmU1dknyiBuNSgOosLgcpdALYqWVVy56oRiDWocsQZHLUaadOMRQsopSy2rRTmzyIr3owXbiSLMvd/LzMWi0+GgNpBYWKn03EjkOqxA0hcU4XBLxfv7ccRf4BQZxPUMU+FUPDuGSEgOvGRLKhdR0VECtsDAupaQjyVAzLJRraZk4JBH9Ts0poEAROpIkcT0jGz+TkRhfX07eTkKrVtOiYix7FNRCm8rxHL9+V0xnwoKQXTJnEt0x8Hg2nBIv+O1rVOT87VQyC4oJ8fWifoVI1hwVHTE9G1bj5NV7pOUWEuBtonv9Kh6mVMsa8TgcLracuIJapeK5zo3YfOQyaTkF+HubeKZzQ75ffxir3UnFyCC6Na7GJ0v2iu6cKlE0rR7Hh4t2IcvQtFYcjarHMO/7HUJw1YihU9MqvPvVZuwOF5XjQnhpkDATZ+UW4e9rYvpr3Viy7gQnz4lk2CtPt8Go0zLlPVHeV6tqJONGduLDL7dx6WoKGrWKMS91IDTIhzET/8BicRAe5sfc6f04dOQGPy3ajyxD3doxvDOlD8tK+W2aNU1g8sRerFlzkl9+Fm3KtWpHM2NGfy5fSmbKhKUUK4LnnXcHEB0dyNTxSzh1XPxb9BvUmJdHd+LS+Xu8N30V2VmFmM16xr3dmzYda3Bo72U+nLmGokIbvn4mJiqG4SsXknhvynJSk3LQajW8+EZn+j/ZDJdT4oePt7L8Z9H0XKFKGFPeH0JsxVAsxTa+nreBbcpUpVqdGCbOH0xkTBCyLLN99Um+nrMOS7Edk5eB16b1oaPik5EkiXW/HuKnDzdhtznx8jEyclofOpUq48vOyOfL6as4pKAT4qqE8eb8IVSrV9a0eWTbeb56ZwUZytqqTa96vPxO/wdMoLIss2/9ab6fvYbMFPHYOs0rMXLWwIe+YMmyzPGdF1i0YD3XFRHm5Wti4Kud6DPirwubwrxitv0hulpSbmV4bq9cN45uT7ei3cDG/2ONwv9VR6VSMe6z4SReTubutVTee/EfzF897p8WdzGVRI/M/bH5xx13qu5xfUayLHPzolvgPNxwfv7YTVxOifDYIMJjgsp9zEElHdWic61y16A7lN+pTn0b/Eteq/9ogSN6bnSKuNF4xI1dtoOHBO6GZmpKTW7cXTYKRwoNouPYoKyY3OJGj10uW+4nouFK740kecSNGh0Wt7FYEt4bNXqsrtJEcA0OpffGQwRXGSlwOZX7hE9MpxTyiQI/sYIS0EwXZo2ZfKcQLQ6XGqcsC2im3YZOpcUhybjkEnGjU4nVm0uW8NN5kWUtRqNSo5ZFJLw0esGvPPSC0Zs0RbwE6M0KKNOI3eHCIjnKtBO7xY1GpSbQ4EVSQQHeOj0aWUWWpVjpu7Fhd7mI8/Xnbm4essxDC/xqhoRwIe3BAr96ERGcuZeCChX1IsP5MylVrFMiwriSkoHdJVElNJiMgiJyii2E+3pjUmu5kJyOWa+jdkQ4+6/eBqBTtQR2X7qBJEH9uEiSM/NJzy8kyNtMjchQD4ahV/1q7PrzOha7k4SwQIJ9vNh+5hoqFQxpXodNxy9TaLUTFxpA7ZgwluwR++feTWtwKTGNG8lZGPVahnduzG/bTnqSUp0bVubLVUIwNK0RR1xoAF+vEpOMbs2qYdRq+XaVKMfr1742KknFV0vFi3XvtrUI9jOz4HuRnGrdMIF2jSoz/eON2B1OKsYE8+bwdnz4zXbupYoJzPTXu3PsdCJrt4rPr1u7GvTuUodJs1aSmV2Ir4+RWRP7cPFyMtO+2oEsQ706MUwe24NvvtvN3gOiO6df7wY882Rz5s1fzykFgfD0Uy0YNKAxHyzYyCGlUK5v3wa8PLIDS34/xG+/iq+rVu1o3pk1gIz0fF574XvS08RKa+yknrTvXJMVfxzhh68Vb07FEN6ZN5jwSH+++3QbK5RVVemU1Oo/DvP9p9txOl2ERwXw9rzBVK0ZReq9HOZPXsZlJZ3Va2gTXhrXDYNRx7WLScyftIyk25mo1SqGjmjLU690QKvTkJ9TxGcz13BQESY1G8Yzfv5gwpV4dVpSDh9NWuppI27YugpvzB3kAQ3Ksszutaf45t21FOQWo9GqeeK1jgx9rWMZ82hGSi7fzFjFoS1ilB8eE8SouYNo1O7Bkf/Ni0l8PX0F55XodlhMIC9N70+L7nUeugI6f/Q6P81Zw0XFI2XyMtDv5Q70H9nxL5fz3bp4j3Xf72bXiqPYiu2AIIN3GNSUbs+0plKdv0iw/n/0mH2MvPPrq7zReR7nDl9jy6ID9PybKSj3cSfV7t346wLHzdwCHmCT3X/S72VTlC/QIG4xVd45rQBtHza9cTpcHFEYci261Hrg/uz0fE4o8fFO/Ro8cP/S7/c+8vMsff6jBY7ouXGLG4dH3LgnNyXiRotdmayUL26U9JQibqylxI2YypSOhiu9N5KIfQsiuB6LVMKckpTmYVspIrgo9ZM8jcUeIrjrQSJ4kcvpIYKrUCNJGuyyJMzDZaCZsgeaaVDrKVZSVl4KNNOg1mN1ibmUW9zo1FpckgqLy0Wg3otMqxAv3srayk9nIk9BL4QYhLhRq9R4awxkWSz4643k2+y4ZJlIsy/JSjtxpFmgF9ztxOlFRQQaTFgcDoqcTqK8fUnJL0CSoaJfADezc1ChonJAENeyRYHf/e3EbnFTq0yBX4m4aRAZ4YmBN4yO5PSdZDFZiArnamomFqeThOBAiix2bufkEuRlItLXl2O37qJVq2lbuYKHBt66SjxnbyVTYLUTF+RPoNnEgcvCY9O7QQ02HL/oaSO22R0cu3YXg07DwKa1WX7gT5wuiXoVIvHSadl07DIqFTzVvgFbj10mM18wpfq1qM33G47gkmQaVI4iLtSfHzaI5FPvljXJL7CyfOcZQGAXLl5P5fgFMXUZObAlpy/e5dh5ZQozuBXXb6fz8y6xHnuqVyNMeh1zvhIpqBYNKtK3Qy2mLVhHYbGNsGAfpr/eg5+WHOLU+bvifT7ThpAAL8ZNX47d7iQ+JoiZE3qzaOlhdimG4H496zOob0OmzVzJjVsKZHNUZ6pXjeT1NxaRkpqH0ahj8sSexMeF8PqYX7l7NxudTsObb3ajZavKvDtjFccU30vf/g15ZVQntm/+ky8+2oLD4SIyOoCZ7w0mNMyX2W+v4ICy2+/QtRZvTOpJUYGVia/+ygVlVTVgWDNeHNMJm8XB7IlLOag0pbbqWIOx0/vg7WNi//bzfDxzDcUKTfzNmf1o1akmkiSx8pcD/PTJNpxOF8FhfkycN5g6itfg9OHrLJy8nKz0fDRaNc+M6cygF9ug0ajFVGflCb6Zsw5LkQ2DScdLk3vR48lmHpGRmZrH51NXcEzxFyXUjGLcgqFUrF5yxSxJEhsXHeSn9zdgKbSh0aoZ8FJ7hr3ZFeN9HKiC3GJ+/WADmxYdRJJkDEYdg0d1YtArHR/KjLp9KZmf563l6Dbxs6E36ug1vA2DR3d56AqrzPOqJHFs2zlWfb2dPw9e9dweXz2SPiM60GFQ0/9yTtP/phNTOYJn3+7LN28vZeVX2+n2bOt/amrhXm/l5xQ95pElxz3JMxh1j53gXFIuRCrWiCoXvuo+x5Wf3YYPIX+f2HeF/JxiAoK9PenB0mfH2lNILonq9WKJvg/Seedm+v8JnL96HLIdI7rHiBsdNlkSXhwUArik9qSnJI+4KZnKlBDBdVg9cW+VUryn83TaCHFjUPwxQjRJSkOwvZS4EaV+rpLGYkXcPJwILqCZYqqjwiXLiufGVgaaaVIi4SaNgUJHCTQz127FrDF4PDrCRFxciisle8SNGjV6tZ48u60MesG9ltKrtWjRkmuzEWz0IrO4CFkRNMmFou8m1OhNcmEBXlo9Kln96HZi/0BuZGU/IG6qBARzJSMLjUpN5YBALpUq8LuQmo5WpaJGSChnk1JRo6JeqXbiJjFRHLudJP4eF83JxCRcslym4yY6wBeDWsv5pDTMeh0NYiLZdVG86HapWYk9F27icEnUjArFanNyJjEFs15Hx5qVWKusodrVrMi1pAyScwrw9zLSsVYlTwy8fe0EUrPy+fN6MgadhqfbN2DJ7jMU2xwkRATRuHI0P2wUYqZLoyoUF9s9SakXezXl0JlbXFaSUa8Pbs2a3ee4lZSFyaBj7FPtWLrlFDfvZWE0aBn/XEfW7jjL+WspaDRqxj3Xnj8vJbHtgBAGT/ZqSESwL9M+WIdLkqldNZJXn2nDe59tIck9yXmzJ5evpjDnJ/Fk06JxAq8Mb8t7H2zgynVRAvjma52IjQpk9Fu/kZdnISDAi3enifK9MW8swmp1EBHhz5xZA0lNzWX0KOG3CQnxYeasARj0WkaN/JnkpBwMBi1jx/egTbtqfL5wM5sVpEGL1lWYOK0P6Wn5jH7hB5LuZqPVqnl1bFd69W/ImeO3mDdtJXk5xZi9DLz1Tl9adajOtUvJzJ20jBRlJfXy2C70GdoUh93JF++tZ4PSVly9bgyT5w8hLNKfnMxCPpy2gpPKFWqLjjUYO6s/Pn5m7HYniz7dzsqf9iPLMtEVQpj4wVAqKy2uuVmFfDp1BUcUf0+NBnG8tWAokUoaRZZldq05xTez1lCYb0Gr1/D0610YqFDJ3SfxaiqfTVrKRSWxVq1BHK/PH+qBJrqPJElsX3aUH99b50klteldnxen9SU0qvyivoykbBZ9sJGdy44gSTJqjZpuT7Vg2LgeBIX7P/rJFFHGt33pYdZ8s4Okm4KQrtaoadGzHn1ebE/tFlX+Sw3DsixTkFNE8s10MlNyKMguIj+7kIKcIvJzirBb7Kg1atQaNRqtGrVajdnHSGhMEGExQeLP2ODHvtD/V5yuw1ry24L1JN9K58iWs7TsWf9vvw+zMoFx2JzYbY6/lDxKSxKT79DowMf+21xSmFE1yulPcp97NzNIup2JVqehfqvyJzi714n1U9te9R5Yx8my7Cm+7Da48QNvu/b3w4/8HO8//9ECR5T4ORQPTmlxo8Pm+VMQwB0IoeIGX7oQKSeXx2MjpjIPipuSwj4RI5dFY7ECyyyWXFAKqCkMwi60KhNFklO0DSseGncrsc5jLNZjcQnzsKocIrjNKdqWBRHcJuCZCmvKoDaS77SVC8301prIU7hS3hoTOTbLA1ypTGsROrUWZDVFTgdBBi8yLW4KuBA3Jo0el0um0GUnzORNqtJ34xY3WpUGP72JtOIi/PRGbA4nFqedKC9fkgse0k6siJsE/0CuZWd5yvyuZWZh0GiI8vblamYWBq2WKKXAz6jVEuvrz/mUdHQaNdWCgzlzLwW1SkxxjivipmzHTRR/3knF5nRRNSyY3EILSQX5BHmZiQvw5+DVRNQqFV1rVWbr2atiRZQQw+20bNLziwj2MVM3JoINJxTDbcPq7L94k7xiG1FBvtSMDGPVISFQ+jevydELd0hVPDX9mtXkl20ncEkyjapE4282eZhSwzrW59Tlux5z8WsDWrJs2xlSsvLx8zYyemArvllxiJz8Yg924fPF+8jOKybY34s3n27HV3/sIyUjHx8vA1Ne6sIf605wwS12nu/ArcQMPvlBmIm7tatBx+ZVmTRnNYXFNiJCfZkxrhd/rDzG/iPihf7JAU1o3SSBsZOXkJ1ThJ+vidlT+3H7TiZvTVmKyyVRpXI4s6f3Z+OmM/ym8KQaNohn6pQ+bFh/mp9/3ocsQ+3aMbwzoz/n/7zDgvkbsFochIX7MXP2QPz9zbw16lcuX0xGpYLhL7XjiWdasnfHBT6atwGb1UFImC/T5w6iSvVIFv+0n1+/2Y0sQ0KVcKbOH0xkdAAbVhznmw8343C4CIvw5+35g6lWK5rkO1nMnbCUG0pPzpDnW/PsqI5odRpOHb7OB1OWk5NViN6gZeTEnvQY3BiVSsXdm+m8P34pN5QivR5Dm/DSxJ4YzWJCcnTXRT55ewW5WYVodRqeeaMLA0e09VylZ6fn8/m0lRzZIYRw5drRvPXBE2WAl3abk2Vfbmep0mps8jLw/ORe9Hym5QMehuvn7/Ll28u5rCS6YquE89rsQdRtWTZx5T5FBRaWf76N1d/u8vTOtOpVn+cm9yG60uML+nIz8lnz7U42/LTX0zDs5Wuix3Nt6DOiPSEPEVT/yinIKeTKqdtcPX2bxItJJN/OIOVmuicW/6+cgDA/6rSoQqPOtWjate7firz/s8fkbaTX821Z8vFmVn657Z8SOKXbmy2Ftr8kcNLvKQInKuCxj72kRL+rPyL67Z7e1G5SEXM5bdJFBRaPyO9Yzvrp3PFbpNzJxuRloE23suV+BXkWdiiJv796/qMFjgun4sFxlDIU6xTvjaB5l4gbTUkLsSc95b7vfnGjx6qU+wlxo8IpaRXYg8GDXCiSnKLTRhICSC5lLBbiRpT0gUrx5QgcQ6HLgV5l8JiHZVl05xgfQwR3d9u4k1ReGpOH/l0CzTST6xCGYbPaSK7d+hCulB6HS8YuucpwpQJ0XmRYivHRiYI+hyQRYfIhWUEvhJt8SC7Mx6DRYVRrybIUE2w0k2ux4ZCk+9qJA7mZk427nfhGdg46lYYoH19u5IgW4iCDmds5oszPX2/gVo4o7fPV6UsV+Jm5lpGFl15HlI8P51PS0Ws0VAsJ5uSdZNQqFU3ioks6birEcfhGovCPREdwKz2bfKuNmEA/vDQ6TicmY9RpaZUQx5YzYgTfoUYCx6/dpdBmp0JIACHeXuw6dwO1SsWAprXYcOIiNoeLGtGheOsNbD8jgJlPta3P+sMXyC+2ERPiT9MqMfyyTXTFdG1UlfSsAnaevIZGrealXk1Zs+8cadkFBPiYeLFnM/6x6hCFFhuxYf4M7VSfjxbtxuZwUTk2hIEd6jD/xx3Y7E4qx4bwdM+GzP92G0UWO1Fh/rzxTDs+/nEXqRn5+HgZmT6qG6s2nebY2dsAjHyqNWaDjinz1uCSZOpUj+KNER2Y/+lmrt/KQKfVMGF0F9SoGDtlqSgBjAtmzrR+LF99grUbxJNRh7bVGTWyAx9/soVDSnx08MDGPP1UCxZ+uJn9+4Uvx+23+e3XAyxRrtTqN4xn2jv9uH0znbfH/kFubjE+vibentmPeg3j+ebTbaxZJqYtDZpUZMqs/qjVKma8tZhjB4QA69a3Pq+N744kScyfupI9W8XqpVnbqoyf2R8fXxN7Nv/JZ7PXUVxkwy/AzIS5g2jUsjJOh4ufPt3Gsh/2IcsycZVCmbLgCeIrhyHLMpuWHeNbRVz5+pt5c85AmncUUEBrsZ1v31vP5qVi8hZfJZwJHz7hWTfJssyedaf5auZqCvMsaHUannq9C4NHtitzZXvp5C0+nrCEu4p5tGmnmoyaM4iQyLIvSoV5xfy6YCMbFx0QSSovA0+/1Z0+z5fFNnie/5wuNv92kN8+2EBeluAL1W5emRem96Nag4dfpbtP+r0sVny5nS2L9nuEUUSFEPqP7EjnJ1r823AJsiyTeCmZswcuc+nYDa6culXGqHz/CY4MIDQ6EJ9Ab3wCvPAN9MLH3wujlwHJJeFySuJPSaIor5j0u9mk3ckk7U4W+dmF5KTlsXf1cfauPo5ao6Z2iyq06deIzk+1/Kf7WP7K6TOiAyu+2MbFYze4czXlb9PVNRo1BpMOm8WBtciGX9DjhVnqHTEBD3uIGdh9igqsHnhmeQ3Y7nNI4Y41Lif6DbB/85/YbU5iEkLLRThsUn5X2veq67lAcJ/NK45jsziIqxQKlx756XrOf7TAkTw9Nw8TN4IAXlrcOClb1OfGMpSIG5GiKmkjFuLEiUrx5bhQe8RNCVBTkoSXR61MddxEcJXH76PypKb0aiPFTgcqxdfjlGUMirgpvYLSq/QUueweaKYgggtzspsIrlI6c0pDM1WK4Ml32JXUlBBBflqzwpUyUuRwlOFKqVHjpTGSZbXgrzeRa7UiyRBRymcTYvT2gDIlCfJsNsLN3qQWFiHL3NdOHMDNnGzUKjXRXn6inVirJcBgJDEvF1+9AYNKS3J+AYEmE2oZkvILCDabQZJJzisgxMuMRlJzJyeXQJMJL52OaxnZ+Bj0RHj7cC4pDb1GQ62IMI54xE2sKPADmleI4XRiMjani2rhIRQW27iSkYmfyUjNiFCP/6ZH3SpsP3sdpyRRKyYMh93F8ev3MOq09GpYnVVHziHL0LxqLDm5Fo4n3vXEwJcowMxaceGE+Xmzcr948X2yfT0On0skMS0HL6OeF3s04ceNRymy2IkLD6BPi5oiKeWSqFcliibVYvlokZhWtKhbgVoVw3lfaSJuWa8CTWrFMfurLQIHUS2KgZ3rM+uzTRRb7ESH+zNhRCc+/WEXt5U11tQx3Tn9511WbzkDiElOj461mDhzBdm5xQT4mXl3ch+OHLvJH8vFk1KrZpUYPbIj7y/cxJk/hddnxHNtaNu6KuMnLiExMROdTsNbY7tRq0Y0b77xG7dvi36b19/oSps2VZk5fSUnjglT6+ChTXnxpXasXXmCb7/ageSSSagcxoz3BqHXa5kwahEXlGTPk8+15NmX2nHrehqzJy4jNTkXvUHL6Ik96NqnPok305kzcRl3bmWg1qh5cUwnBj7dAofdyedz1rFR6cOp3TCeSfMGExzmS1pyDu9PWuYBaHYf1JiRE3tgNOkpyC3m03dWcXC7mLrUb1GJt+YNJkjxQVw+c4cPxi8mOVG8gPR/vjXD3+rmeYHMzSrki+krObhF/HtXqhXFuAVPUKFayYuatdjGzws2sk5ZewWE+PDKzAG0LtWPA0IA7F17im9nrSInowCAtn0bMGJav3Lhie5k1PezVnkixVEJoYx4ZwBNu9R+7Kri7rVUln22hV3Lj+ByinK4qg3iGfJGd5p1q/tvaRhOvpnG6T2XOLP/Mn8euEJeZsEDj4lKCKNK/Xgq1o4hulIYERVCiYgPeai36K+c4gIrN/68w5l9lzi86Qw3z9/l7P7LnN1/maWfbOa5qf1oP7jpQwsQ/5UTGOZHnZZVOLXnEsd3nP/bAgeEgRdAU46gLe/cviymjrGVH24aBjh35DqSSyIiLvih056stDwuKGnGVvdNX9xnu4Iu6Tyg0QM/Z9kZBZ7fpx5Dm5a5z+FwsvYPMfnt9UQzflz/yE/Xc/6jBY5DdmDwTHDuFzeisE9WiN2i2bh0UZ8KSRbem0eJG7dfB3QecVMsORV2lEILl4T52O3HcYub0sgFt7/GoDZSpLQSi7WWSjCmXLYyRHCtSk+x5MSsMZNrt6FWuncsLpeY0tgFUkGSREy8LDRTS5HT4eFKiVWVkRy75T6ulFcZrlSe3UaQwYsMJRIeoUxrNCoNfjojGfehF6K9fLlbDnohzsef27m56NViQnM3Lw8fvQGDWkNKYSHBJjNOp0SmpZhwb2+KbXYKbHaifH0pLBalfVG+vhRZ7WRaLET4+uByStzLzSfYy4xZo+VaehbeBj2x/n6cupuMVq2mUUwUh66LF7O2lSuw/+otZBkaxkZyOy2H7GILEX4+hHl7cfjaHbRqNd3qVGHT6ctCWFSOIzEtm+ScAgK8TLSsGufpuOlarwrnbqaQklNAgLeJbvWqemLgrWtVoLjYzq4z19Gq1bzQrTEr95wju6CYsABvBrauzVerD+JySdSvHEXNuHC+WC6SUF2aVsVLr+P71WLiMaBDHVxOie9Wiv8f1LkeOo2aT37ZDUC3VtWpXjGcWZ9tFGKnejRP9WnErI83kJtvITjQmxlv9mDR8qMcP5voMRMH+3sxYcYK7A4XCfEhvPNWT779eR+HlFTO00Ob0aF1Nd6avITklFzMZj3TJvbGqNcyasyvFBRYCQr05t1ZAygusvHaaz+L25R+Gy+zoYzf5q2JPWnRqgofzF3HLuVJr2PXWrw5sSc3rqQye+oKEQH3MjDxnb60aFOVretO8/n7G3HYXUREBTDt/cFUqhrBrs1/8smcddisDoJCfHh73mBq1Y8rs5JSqVQMHdGGZ15pj0ar4dDOi3w0fSWFBVbM3gbenNmfNl1rA2KMvmDiUjJT89DqNDz3ZhcGDG+FWq3G5XSx9Jvd/P7FDiSXRHC4H28tGEq95iVdHkd2XODTKcvJzSpEo1UzbExnhigJLPc5feAqn01aSupdIZA6D27CS9P74uNf0lgMkHQznS+nLue0MgWLqhjKqPcGU79V+QbPxCspfDdzJSd3izWBb6AXT73Vkx7Pti53ylP2bZNZvHATe1cfR1a4RfXaVOOJN3tQt3XVf8lfY7c5OH/4Gse3/cmxbedIui8JZDDpqdmsErVaVKFawwpUrh//wPfi33HMPkZqt6xC7ZZVeGZKX1ITMzi4/hSrvtpO+t0sPnjlB1Z+sY0XZgykYcea/3ZPUaOOtTi15xInd51n4Gud/9bbSpLkEZx/FdVwW1nHxld7tJg6o5jF67cqf80JsH/Tn8iyTI2G8YRE+j9w/90b6Vw8lYhaoy53PbV15QmcDhfV68WSUL2sp2zvlnNkpRcQEOxN63KSVw87/9ECR/KU+AlxIyvipoQArsUmoaSsVAqmQTEYe5qLS8SNRXb33iiFgIppGOW2EnFjwOISjcVOSaywVJ5klBA3GpXWI4DEfaKVuMgp7rMqqSk3SLP0CkqsvZzlEsHd4kan0mJzocS/zWTbRTGfJKmxSC4PV0pFSXuxv1504JRwpYowanTIClcq1FjiswlX1lJ6tRajWke21UKw0UyOxYpLlon19iPxPvSCVqUm3ORNYq4o8zOpdaQWFhJkMuNwOsm0FBPh7UO+0k4c5+dPen4BVpeLigEBpOTmY3W6SAgMJDW3gGKHk4qBAWQVFgujsJ8vdruLu/nCS+NrMHBRaSquHhLC0Zt3USHEzd4rypVIpThO3UzC4nBSKSwIXDJn76Ri0utoXSWejaeEMbdz7cqcuHqX3GIr0YG+VAoPZqOCYRjUrBbbT10j32IjJtiPurERLFXMxX2b1+T8jRRupmbjZdTzbKeG/Lz5OFa7kyrRwTSpGsvXa8SVS+dGVVDJ8PtWIYye7d6IG3cy2fHnFVQqeHVQK05duMPR83dQq1SMeqI1568me5qIXxzYnMICK5/8JMROj7Y1aVAjmmkL1uFwuqhSMYyxL3Tg/S9FM7HRoGXaGz24diOduYqZuFXTSrz8dGtmvb+em7dF4/HEN7vjbTYwZvzvFBfbiYzwZ86MAZw9c4cvv96BJMlUqxbBrBn92bf3Ct98vdNz28xZA7l6OZnJby3BYrETHu7HzDmD8PY2MPZVgVxQa1S8olDAN6w+xdcfb8XlkoivGMKM+YMJCfXjk7nr2ax0ZzRrXYXxM/thMOr4fN4GNiimxXpNKjJl7kD8A705sOMCH81YTXFh2ZWUw+Hku/c3suY38T2vWjuaKQuGEh4diMvp4o+vd7HkG8HDiooLYtLCJz1G4rR72SwYv8RTU9+2Z11GKSZkEIVq/5i91nMVG1cljPEfPkmlWtGe56SiAivfz1nLlsVCoIZGBfD6/CE0bFt25G+3OVj+5Q6WfLENp92FzqDlyde7MvCVDuWuUQpyivjtw41s+HkfkktCq9PQd0R7nnizG95+j45837p4j8ULN7F/3UmPsGnWrS5PjO3+L7XvWottHN9+jr2rj3Ny53kP3BNAq9NQo2kl6rapRt1W1ajasMLf4yv9m054XAgDR3el5wvtWPuPnSz9eDM3z99l2uBPaNChJm//OPKx37+/cxp3qsW305dz7tA1rEW2v5U2c9icnr/rjY//XhUVWDwrqgqPKO4DOHNACJx6jxA4+zaeAaBNz/Kbh7cpP/eN21Yl8L5CQ5fT5VlP9XqyWZn7ZFlm1S/igq7vsOZ/iyr+Hy1wnLITGf1DxI0Om5sfBaXEjUYRNwB6HKXEjdrzPkrEjWgsllCpDB5xU+ySUHl6axQcgyyVEjc6j7gBHVZJ8ogbban7tCo9FsnuIYKrUHsal93iRqvSYnPJggiuiBtBBBcGZF9F3OjVOuxOGWcZaKYaLVoKHfYyXKnAUlwpq8OFQ5LKiBs3V8qs1YOsIt9uI8xUAtWM9fYnMS8XgWHwFegFjQZ/nYmkggL8DEZwQVaxhQhvH3IsFqwKYiElrwCHS6JSYCC3s3NwSTJVg4O5kZGFS5KpFhLCjfQsnJJM9dAQbmdmY3W6qBQcSEZekRA6/r44XRK3snIINJsI9/bm1J1kdBoNTeKiPOKmY7UE9l66iUuSqRsTQUZuISm5BQR6magRGcp2hTHVt0F1tp6+KlZZkSGY9Tr2XriJVq1mcIs6rDp4DrtTYBgCvUxsOi5i4E+3b8CW41fIzCsixM+LPs1q8O26I0iyTNPqsQR6mfh9uxAzwzo14PKtNE5fTUKjUTN6YCu2HrzE1TsZGPRaxj3VjuVbT3NDWTFNeK4jK7ed4dKNVNFE/EJHDhy7zoGTYv0z8olWOOwO3vtCxMLbNK1Mvy51mTJvDXkFFkKCvHl3fG+WrTnBnkPiyW3YwCa0aJjAm1OWkJNbTGCAF3Om9ePc+Xu89+N6pfMmlumTevPzr/vZuEkYozt3qsmYUZ35+qudbFE6Wzp3rsWbY7uxdPFhFiklevUbxDFtRn9u3khj0hu/kZ9nwd/fzLQ5A6lWPZKP3tvANoVP07ZjDca93ZuCfAtvvfQTVy8J4/Gzr7TnieGtyUzLY+roRVy5IHwDw15sw9Mj2yNJEt8s2MQaxeNTo14sUxYMISTMj5S72bw3YQnXlLcZ+Fwrhr/RGZ1OS0ZKLu9PWMoFRbx07t+QV6f2xqS8AO1ae4ovZ66huNCKycvA6Fn96dC35Cr1zyPXWTh+CenJuQLA+VJbnhnbrUzc9uS+y3w6cYmnsK/3c60YPqnXA2bNc0eu89mkJdy7IZJKjdpV59U5g4iMLxupBfHCsfGX/Sz6YIPHANy8e11GvNOfyAqPrtu/fTmZ3xas44CSegFo2as+w97qRULtB9tn/8qx2xyc2nWBvauOc3jzGaxFJaImIMyPxp1r06RLbeq3rfHfkmZ62DGaDQwd24Puz7Vh8cKNbPh+N6d2XWDaoE+Yu3Lsv+1zja4UTlC4P1mpudy8cI8aTRL+8tsWF4rCPpVK9Ze8Qu7ixpDIgDIss/tP6p0sEq+molarqPeQbpvkxEwunUpErVbRqhzyt8PuZMcqIXC6DHowHXVg2wUyU/PwC/SiVbfaZe47ffgGN6+kYjDp6DmkCTLOB97+Yec/WuBInij4w8SNMAYLcSP4UU5ZpKKEuJFQYcQiuzziRoUGm5KIkmQtIuMkVk8aD1DTzYVSYt+lxE0JT0pEyh1KK3GR046u1H0alQ6r5PCIGzUahYklY1LEjV5dYjb20pjIs1swagwU3EcEN2kMFNlF341b3OhKQTODDF6kW9xlfiaybGJVlW+zI8l40Av3c6VsDhd2yVmm78YtbtTKtOZefj5eOj16lYb0IsGSKrY6sDidxPr6kZyfj1OWqRQQyM2sHGQZqgUHczk9ExVQMzSUCyminbh2WBjnk9MAFXUjwrmQkiaYSeGh3EzLEk3DIUFkFBSRa7ES6eeDXqXhUkoG3gY91UKDOXRdeEc6Va3EjgvCENuiUiyX7qZ7pjMh3l4cvJKIVq2md4NqrDt2CUmWaVIphpyCYk7fSsZs0NGnYQ2W7jsj1lfV4igstHHwwm30Wg3PdmzI4l2nRQw8MogGCVH8uElMGno0rUZmbhFbjl1Go1Yxsm8LNh+8xO0UMeV5fUgbflp7hPTsQgJ8zYwZ2pqvlhwgK6+IID8vxj7Tji9/30dqpkhWTX6pC7+sPMKVW+nodRomj+zC0VO32L5fOPWG9WtMhaggJs9djcPpolqlMCa80oUPv9zG5eupaLVqJozqihoV495eisPpolLFUGZN6cuixYfYukMYC3v3qMdzw1rw7tw1nDt3D5UKXhrRnk4dajBl8jIuXkxCrVYxcmQHuveow3uz13JIuTIcMKgxL7/SgTUrj/Pdl2LCU7lqBDPfG4Qsy4x79ReuXU5BrVbx4msdGTSsGaeP3WLe1BXk51nw8TMxZc5AGjZL4OTh68yfupL8vGK8fU1Mmj2AJq2qkJGax9wJS7msPLEPGt6K4aM7odVpOLD9PB+9s4riQhs+fibemjOQZkph3uGdF/lo6goK8yyYvAy8Pqsf7XrWA8RV8BczVrNHia3XaBDHhA+fJDxGJIfsNie/LNzMasWkHB4bxFsfPEGtUv0fRQVWvp+9hi1LBP09PDaIcQuHUbtp2Re3gtxifnxvHVsUL0JAiA+vvDuQ1r3ql7sq+fPQVb6euozbSrorvnokL787iPqty4cbus+962n8/sF69qwSqyiVSkWrPg14clxPKtaMfuTblndkWebS8ZvsXHKIvauPe4QWQGhMEG37N6Z1v0ZUqhv7X+Jt+Xce30BvRs4dSucnWjCp74dcPnGT6YM/Yc6KsZ6Y9r9yVCoVMVXCyUrN5d6NtL8lcLLTBAXeL8j7L7UhX1Ri39UbPdpQfkQxDtdqmvDQteBuZXpar2Xlcsngh3dcIDerkMBQH5rcV0QpyzKrlNby3sOaPTChWfbjPgC6D2yMj5+Z/Pz8x31pnvMfLXDEBMeoiBsDdpygmIZLxI3ag1hwSBqFI6XDKUvgETcGbLITlbLSKmksBtBjkUuLG52nsM+lpKy0irgpzZNyoxr0KiPFTrvw2ThdSouxFpvkwqQ2k+cQUxrhE0J029iVSLhS3GfWmMh3WDFrjOTZxRrLW2t6KBHcqNFjd0k4JRdBBm/SLUWKidhArs1KgN5ElkV4c9ziRqNS46M1kmkpJsBgoqAcrlS0lx+Jebno1BoC9EZSCgvwNxhxOmVy7Ap6oaAYhyRR0T+Amzk5AFQNDOZKqQK/i+nltBOHh3MmKRUVKhpERXLqbjIqoEFUBH/eSxVIgYhQbmRkY3E4qRgcSLHFTmK+4E1F+HhzMlFMcVomxHrETcfqCRy6fBur00XViBBwyZy5LTAMnWomsOaoEnmsncDFO2mk5hYS5GOmdbV4lu4X04buDaty6VYadzJy8TEZGNy6Dr9sPYFTkmhYOZpALxMr9ojJxtOdG3D0/G2uKx02r/Vrwc8bjpOdX0xogDcv9mrK54v3UWy1Ex8RyFPdG/Lhz7uw2BwkRAfxbO8mvP/ddgqLbcSEB/D602358PsdpGcV4u9rYtpr3Vi08ijnLotJ0LgRHUnPKOC9z8Ukp23zygzp3Ygpc1aRkVWIn4+J2ZP7cuzkLX5fJl6A27Sowmsj2jF3wQbOK6Jl9CsdqVcrhtfH/kZqah5eZgNT3+5DYICZUa/9QmZmAd7eRqZP70tkZACvv/Yribcz0ek1jH2rO23bV+fDeevZqVS4d+5ehzcmdOfS+STmTltJXm4xvn4mps4eSL1G8Sz75SA/f70LSZKpVC2C6e8PITTclz++36tEw5XbFwwlPCqAEwevseDtFeTnFuPtY2T8nIE0a1cNu93JV/M2sO6PkonO5AVDCY3wx2538sMHm1intB9XrhXF5IVPEhkrEieXTieyYNxiUu8J4viwUR154tUOnheXW5eSWTBuMbcVdlO3oU15eVofz9QH4NS+K3wycbFnatNneGuen9yrDGdKlmUObDzD19NXeEzE3Z9qwfNT+pTbKJyRnMP3s1axb62Y/vkEePHspN50f7rlI1/4Uu9k8seHG9ix9AiSSzx7terdgKcn9ia++qNXGOWdtDtZ7Fh6iJ1LDpOs9OIABIb70bZ/Y9r0b0y1RhX/V8I0K9aOYd6at5jc50MuHrvBO0M/Zc7yN/8tBYbRCWGc2Xf5AR/S405OunjhDyxHYJR33A3Vj+q1ATisFD4261y+90WWZXauET9rHfs3LPcxm5aI9VPXQU0e8HpdOJXI1XP30Om19Hyi7Hrq2oUkzhy9gVqjpv8zLR7zFT14/qMFTtnJTWlxI7hScinEgtss7F45gRFrGXFTkogSjcXu1VOJuNGo9J7CPpesxYlKiYLby/CknJJazJEUf43gSgmxokKANI1KSV9pkKZBbVSK+0r8OCa1kQKHVcExCCFj1hjJc1iEyFEMw74KEdysNVBsdyABgXohbjzQTIfbRCymOW5xo1dr0au05NishBi9yLQUI8uU4UpFmYWh2KTVYVRpySguJthkptDiwOpyEufrx93c/AfQC9WD3CypsuKmTmgYf5ZuJ04S7cQNoyI5qYibxjFRno6bhjGRnL2bglMWQicpK59ci9VT4HchOR1vg57akWHsvSSubLrXrsL2P6/hkmQaxkeRmlNAck4+AV4mGsRFsuGE8Nj0aVSDvedvkG+xERfiT6WwINYeEcJnSMs67Dp1jWw3Dbx2Aj8pNPBO9SuTW2BhhxIDf7lXU1bv/ZO0nEKCfM08160JX604gNXupHJMCD2aVefDRbtxuSQaVI+mVZ2KzP9BMKWa1IqjbcOKzP56Cy6XRN2qUQzuWo+Zn26k2OogLiqQccM78ME/tpGcloe32cA7b/Rg656L7DooDKrPDGxK1YQwxr+zHKvNQVxMEDMn9OLn3w6xT1lTPT20Ge1bVePNiYtJS8/Hy8vArKl9cdhdjHnzNywWO5GR/sx9dxA3b6bz5sxV2GxOYmODmD1nEGmpeYwa+ZPHYDxzzkCCg30Y99qvXL2cUsZvs2bZcb79YjuSS6ZS1XBmzBuMj6+JOZOXc0BpH+7Sux6jJ/bA4XAyc9xijioV7936NWDUxB5otBoWfb2LP/6xR4ie6pFM+/AJwqMDSE3K4b3xi7l6XqykBj/fmufGdEar05B0O5N54xZ7um0GDG/F8LFd0em1gg7+7R4WfboNySURFh3AxIVPUkMhdkuSxKof9vHLws047S78grx4c94QmnWq6XnusRTZ+H7uWjYpXp/w2CDGfvgkde4DC2al5vHl1GUcVqLtMZXCeP39J6jV9MEre7vNwep/7GTxx1uwWeyo1Sq6P9OKZyf1fmSXS15WAYs/2sSGH/d4UjhNu9Thmcl9/jZKweWSOLHjPBt/3MPx7ec8nh2DWU+r3g3p+ERz6rau9m9JWv13n0p1Ynlv9Tim9FvI+cPXmPfiP5i5eMy/LNiiPUypvwfNzE5TBM5fAHa6XBKXlJ6kGg8hfgPkZRd68B7Nu9Qu9zEXT94mJTELo1lfLnrh3q0Mzh6+jkqlouuQJg/cv+onMb3p2Lc+/vdF25f+IKY37brXIey+WoS/cv6jBY5NdqHDqKylBBMKJRrOA+JGg4QWl7uxuFxxo1Eai9VKA3JZcWN1CX+OU1Zi3+jLiJvSqSmd0oFjUBspcDo9/hqHIm7yHbYyIE29ShT2mTUm8pTiPoPSd+OtNXuST0a1gQKnDV+FNSUSUuLv3loj+XbxuEC9NxlW0USsUsr8yoNmmjTCZ1PgsBNeqswvqhRXKtjgzb2CAnx0epAg124lwsuHjMIinJL8CPRCibipFhTMpfQM1ECN4BDOpaShBmqFhpVpJ3ZPbprERHPs9j3c7cTHbgueUMOYKC4lpWFxOKkcGkSRxcbNvGyCvEzE+vtz5LrAMHSuUcnTcdO6ajwXElPJKbYSFehLTIA/u87dQKWCQc1qs/646LipFROGSadj19kbaNQqhrWpz+oD5yi2OagcFUzliGCW7DkDwOA2dTh9JYkbyVmYDTpG9GzCjxuPUWSxEx8eSI+m1fl0yV7hx6kZR9XoYD5fIn7ZuzavRqCPic8Xi//v1aYmwX5mPvxRlPN1bl6VOpUjmfnpJoF1qBnDkz0b8s5H6ykotBIR6su0Md35+pd9XLiaIlZQr3YhP8/CO/PXIsvQqF4cr4/owNwPN3L1eprw8bzRFV9vI2PG/47FYicqMoD3Zg7g8JEbfPe9iKjXqxfL9Kn9WLPqOL8pL95NmlTk7al92L71HN98JRhR1WpEMnP2QFKTcxn14g/kZBfh62di2uwB1KgZzQez17FTiVB36labNyb1JCMtnzee/4E7CvLhtQnd6dG/Ibeup/Hu+KWk3MtGp9cyelIPuvVrSF5OEe9PWcEppXunx6DGvDKxO3qDjsO7L7Fw6goKC6x4+5qY8N4gmrYVq5s9G8/y2TursBTb8fU389a8wTRpJ+7LTM3jg/GLPRyptj3rMmb2AA90MiMll4Xjl3BW+ZhNO9bgjfcGExBSgjg4f+wmC8f97jF49n6uFS9M6f3A1GbbkiN8N3sNRfmiI2fIqM4MHdO5XH/F6f2X+WrKUg9osUaTBF57bwgJtR7ulbEW2Vj9jx0s/3wrxQXCv1GvTTWGT+33t83DOel5bF10gE2/7CNdSX4B1G1djc7DWtCyV4N/Wy/O/6RTpX48c1eOZUKvBRzd+ifbFx+iy7CW/9L7dE9g3A3Uf/WkJIpuoNCYxxcrXj93l6J8C2Yf4yPJ4Ac3/4kkyVSsGUV4bPldOduUioXW3euU+Rl2nw3K80CjNlUJuy9ifu9WBkeUi5V+z5b9vt2+nsZBpfxy8POtH/s1lXf+owWO7PHcGLBKoqDPnZ5ygzXdaylJFj01bqCmW9yo0WORSpf6qRVvj5KacrnQqAxYlemMe92lRo9VcnhaiUunpoTwcWBQmyhQIuFOGYHzVBvJd9jKgDS1lBT35TrsYs6j0lPscnigmSpU6NSiF8dNBC8p87OVQwQXZX5Ol4RDciomYndTsZcHmlmezybK7EtSQR46tQZfrYnUokICDCZsDuGtifb2IylfTGvKoBcCg7iWJZ4cqwaItZRWpSYhIFD8Xa0mwT+Qi2kZ6DRqEgKCOJ+SjlatpnrI/e3EQtw0j4/l8C0R/W5RIZZjN+8K03BUOHezcskpFlMcL62eM3dSMOm0tEiIZctZIW661K7MgUu3sNidVI0IRq/WcPTqHfRaDf0a12Dl4fNIskzzKrHk5Fs4cfseRr2WoS3rsnjXaZySRKPK0Rg0WjYrjKnnuzZh06GLnknNE+3r8fXqQ4JHVSmSGrHhHmBmz5Y1kB0yv20SI+BnejYmOTWXJVtEid6IAc25l5zNL2tE2d2zfZvgckh85E5KtatJg2rRTP1gLU6nRM0qEbz6TBvmfrqZlPR8fLyNvDu+N7v3X2b9NrEm69utLt071uKtqcvIzCoUzcTT+nH5Sgrvf7gRWYb6dWOZOrEXP/ywl63Kjr53r/qMeKENH36wiQOKt2bIkKY8+1wrvvxsO1vcpuOutRn7Vne2bxE8KadTomKlUGbOG4xGrWbsKz9z/YpIT40c05l+Q5pwdP9V3n9ntSCJh/gwbf5gatSJERHw2euw2RyERfgz/YOhVK4eyZVz95gzfgkZqXkYjDrGTOtDp971cDpcfP/RFlYoV43V6sQw5YOhhEUGYLM6+Me8DWxWigNrNYxn0sInCFZecI7svMhHk5dRkFuM0azntRn9ytC/9286y2eKV8dg0jFyel+6DW3qud9udbBo4WZWfitWaCGR/oz9cNgD0duUxEw+m7TEk1ypUjeWNz8cRoX7orMAWam5fDdzFXvXCANnQIgvI2b0p/3AJg+dJLhcEtv+OMii+es8vo2E2jG8OGMgDdrVKPdtHnaunr7N2n/sZN/q4zjswvzpE+BFl6da0v25Np5pxP/Lp1qjijw7pS8/zFzJP6YsoXGnWgSE/rU1UXnHoBTc2Sz2v/V2d68JcRvzmE4bwFMrULdF5UeuLfcpzcFte5ffrFxcaPWkp7oMafrA/UUFVk96qu9zrR643402adq+OnH3tWYv/of4PWnVuSYVqvxzP0f/0QLHgQsDpgfEjU1GKfdTK2ZhYeB9QNx44t4aHG4cg9KBo8aIxeVSVlBOVKUmQip02MqIG10ZcWNTIuEFTgWkKcnI4JnSGDVGChVOlEahintpzOQ6bIjiPi1Wl9MjbtQq0W5jcTk84qakzM+Bv95M9iOI4KFGH1KLRJmfr85EhqUYf72RArtd+GzMviQp4ibC7EtSYQFGjQ69SkumpZhQkxe5FsGVivf153ZOLqCikn8Q17OyUKGiUkAg17Ky0KhUVPAN4GpmFnqNhmhvX65lZmHUaon08uZqRiYmnZZILz+upAkMQ5y/v6eduEZoiKeduHFstEfctK4Yx/5riaiApvHRnLub6pni2G1OrqZm4m82UiMilF0XxNV5r/rV2HrmKk6XRP34SPLyLVzNyMTHZKBDrQSWHxIThi51K3PxdhpJ2fmi46Z+FU/HTcd6lUjNKuBk4j0MOg0vdG3Cb9tOUWixUSEikHZ1K/LVaiFmOjSojE6tZvF2Ydgb3qMxF6+ncuLSXTRqFWOeaMPuY9f482oyWo2at55tz85DVzh5Udw/bngHTp27y64j4oVxxJAWyC6J974U/pr2zavQvV0tpsxdQ2Gxjahwf2aM68l3v+7nhNJ5M+qF9oQF+zB28lKsNgfxsUHMntaPpSuOsVFJQPXqXpfhT7Xk3dlrOX/hnvDgvNaJZk0TeGvcH9y4kY5Op2HsuG40aZLA5AlLuHBOPO7lVzrQd0BDvv5sO+tXie9Rmw7VGf92b65dSmH21BXk5Rbj529m6pyB1Kkfx+/f72XRtyKmXrNeLNPmDcbXz8Q3Czez+g/hC2rYLIHJcwfh42di4/LjfPP+RhwOF1GxQUz76AkqVA4nKz2feROWcl4Zzfd/ugUvjOuKTqfl3q0M3hv7B7eupKJSqXhiZDueGtURjVaD3ebkxw82sVaJqlaqGcWkj4d5QIDFhVa+eXct25U4euXa0Uz8+CmiK5akmm5cuMcHb/xG4lWxdug8uAkjZ/Qvk76RJIn1P+/np3nrsVns6A06np3Yk34j2j2w0nE5Xaz/aS+/vr8BS6EVtVpFr+fb8uyk3o9M9JzYdYHvZyz3GI/DYoMY/nY/2g5o/JcNvk6HkwPrTrH2Hzu5dPyG5/ZqjSvS64V2tO7b6F8q2/vfeAaM6sK+NSe4diaRZZ9sZuR7T/zT78sNTLUW2x7zyLLHXdr4KNK3+5zeJ9brDdo83HCenZ7PuSNiEvkwgbNv41msxXaiK4ZQs1H8A/dvX3kCS5GNmIRQGtzHpsrOKGCHYk4ePKJNmfsSb6SzT/HjDRvZvsx9RxWQ7185/+0CJz4+nsTExAduf+211/jyyy8fuH3Pnj20b9/+gdsvXbpEtWqPTgc8ePT3iRsdNlkuI27cfhpJSTupHhA37lI/NU5Zi1gYGbFILrQqIxaXQwgORQChgDRLYJklySg1OmySyyNutCrBlyqNVzBpTBQ4xRpJjQ6Ly4WX1kyu3YpGpUGW1dgll0fcaFUaJFmFTXZ32xSjUalRy6K9OKAUINOnDBHchgyEGoS40ao0mDR6sq0WggxCJJX22Qhopg8phQV46/TIkoo8m41ILx/SCgUFvCxXSogbNSri/QK4np2NXqMhwuzDjewczDodgQaTB73gpzNwKzsXP6MBX52Rm1nZ+BoMBJnMXE3PxEuvI9bPn7P3UtFp1NSOCOfobdFr06piHAcUcdO6UjxHrt/BKUnUiQonJSefzIJiwny9ifT14fBVUeDXvU4VNig9Nq2qxnMtKYP0vCJC/bypFxfBumPCY9O/aU32nL1BbpGV6CA/6sdHsnSPmFQMaFGLE1fucjcjDz8vI8Pa1eeHjcdwOF3UrRRJhbAAflaSU4Pa1SUxOdsjZkYNas2WAxe5fjcTs1HHuKfasWj9Ce6k5uBtNjBxeEd+XnWEW0lZmE163n65C8s2nuLcFSF+Jr3cmdPn77Blj/g8n+rXhJhwf96evwaXS6JO9SjGvNCeuR9vIvFulgBovtWLu3ezmPGeWFM1bhDPW2O6sOCjzZw+ewe1WsWrL7WnYd24EjOxl4EZ0/thMuoYNeoXcnOK8Q8w8+67AzEadIwa+RPpafl4eRuY+k4/qlaNYMrYxZw9LQTVcy+148lnWrBxzSm++kj021SqEs6M+YPx9jExa8JSjuwTV5u9Bzdm5NiuFOZbmPTqL5xX6MZPvNCaZ1/pgMPuZOE7q9mxTlx1tuhQnbfeHYCXj5Gzx24yb8IScrOLMHsbGPfuAFoppsndG87w2YzVWIvt+Ad5M+H9ITRQ4rBJtzOY/+YfXFei46KRuLsn3n3l7B3ef/N3UhKzUKlUDHm1A0+/0cVjpHS5JFb+YxeLFm7G6XDhH+zNG/OfoNl9XoXkWxl8PP4Pj9+hdrNKvPnBk0RWeDD6fe3sHT6b8Lsn5lu1QTyj33+SSo+Ibt+6eI/vZ67k5C4x8vcJ8GLYWz3p+Xzbv4wfKC6wsvmXvaz+egeZySIAoNNraTugMX1e7kiV+vF/6f38v3g0Wg3Dpw9g6sCP2fjTXp6e1Aevf7IfR2/6+xMcp8NF8i1h5I5OeDQ/zFJk88Ba6z+E+A2wf+MZJEmmav24h6Ic3Mm/LoMfnBi6nC7PRUG/51o9cP/aRQdxOlzUqB9HTcW/5j7u6U2LDtWpWLWkhDApMYsF01Y98usrff7bBc7x48dxuVye/z9//jydO3dm8ODBj3y7K1eu4OtbYqYKCXnwieBxxyZJ6DBhx4mbHyWai1WlxI1aETfuxmKnZzojDL9ucaNRxI1Yd5WImxKiOLIWh1y+uFEp6SrhuVFAmpJ4j1oMFDkdIg3lFFMaWdZilSQxubFb0aq0OCUZlyzhrYgbnVqLQ7nNTxE3WpUGWdZgcbk8RHCVYjzOtdsI0JvIVtZXIQZvUosLPUTwPJuNEKMX6YoPJ8pc4rMJ0JtJKy7E32DEYnNidbmI9vblXn4+givlTkWpSPAN5EZ2NlqVhihvH27lCkHjrzNxJzcPP4MRo1pDUn4+QWYzGhmS8vIJ8fJCI6s8jcQGtYbb2TkEmEwEGoxcVkr7KgYGeNqJG8dGceCaeCFsV0Up8JOhcXw0V+6lU2CzUyE4AL1aw5lEkY5qU7UCG5QCvy61K3PkciIFVjvxIQFE+vuw/ew1VCoY2qIu645cxGJ3UDUqhHBfbzYeE/vkZzo0YPOxy2TlFxMR6EvXhlX5Zp1I47StWxEkmbUKDXxEr6bsO3WDa4qYGTO4NT+vPUZGTiHB/l6MHtKaz/7YR05+MeFBPox5sg0f/7KbrNwiQgK9mfhCRz77ZS/3UnPx8TIwbVR3lq8/wanzymTnpU6kZxTw/lfbAOjcpjp9Otdh4qyV5OYVExLkzdy3+7Fu01k2blXWVD3rMbB3Aya+vZy7SdmYTHremdwHFfD62N9EoV+kP+/NHsyVy8lMWyjglQkJocyeM4hrV1KZP3cdVquDqOhAZr83CJdTYvSIH0hNycNk0jN5Rj8aN0vgswWb2bRWIQx3qsFbU/uQmZbPG89/z10lafX65F506V2Py+fuMXviUjLT8zF7GZgwqz8t2lcn5V42s8ct5uYV0dcxfEwnBj/fGlmWWfL9Xn79fDuSJBNfOYzpHw8jKi4Yu83BP+Zt9BSM1WlSkUkfDPWYNHevO83n76zEUmTHN8DMuPlDaNpBrHAkSWLFP/bw68dbcDklQiP9Gf/Rk9QuFetNvZPFh2N/54KSVmnRrQ5j5g0pY6SUJIl1P+7j5/nrsVkdGM16Xni7Dz2fbfXARKW40MqiBRtY970oGvT2M/HC9P50HdbiodOX3Ix8fnlvLVt/F3wqrU5DnxEdePKtHn+5CTgnPY+1/9jJhh/2eGCWAaG+9HyhHT2fb/svrWP+XzoN2tcgtmoEd66kcGTLWToObf5PvR+HTXC9/g736valJJwOF97+5sd6cE7tvYzT7iIyPqRcAe0+O1eKi6/2pfqcSp9r5+5x5exdtDoNnQY0euD+Q9svkHovG98AMx3uay4uyLOwXpm+3j+9uX09jb2K/+6pVzuUue+XL3YgKwm/v3L+2wXO/cJk/vz5JCQk0LZt20e+XWhoKP7+/n/pY9hsNmy2knGfO0evUtJTZcUNZcSNe+XkETel496KcHEopmH3RMgtbjQqHRYlWSXLGpyyhNZDAi+JhAvhI6FXxE1p87BYQZWIGzVqXJIGhywpnhsrerUOm1NCArw1ZnJsVgxqPVaX6Lbx03qRZVXK/FzglCSPuFGr1BhUevIddgINZrKUvpsQgw9pxYWYNHokFwoR3IdUBZop1lJ56NRavDV6Mu+DZsb5iL6b0uJGhWgtvpmTg0GjIchk5k5+Hr4GAwa0pBQIlpTkkkkvKiLc2xur3UG2RaAXiq0OMi1WIn19sDtcJBcUEObjjU5WcTMrhwCTkRAvb86npGPSaakRFsqRG2KK065yBfZcFlctbSrHc+z6XWxOFzUiQykssnE1Owd/s5G6sRFsU/w3fRtWZ+spUeBXIzoUrUrNYcV/M6hZbZbv/xOnJNG4cjSSQ2L/+VtoNWqe69iQpXvOUmS1UyUqmFrx4fyiJKf6tarFraRM/ryRgk6rYVT/VizZdoq07AKC/LwY2bcZny/ZL8zGkYEM69aQ93/agdXmpEpcKE92q8/cb7ZisTmoFBvCS4NaMPerreQVWIkI8WXyyM4KUyobs0nPjDd7sGPfZXbsF4LtucHNSIgNZvzMFdjtTipXCGXaWz35/JudnDwjpiqjX+pAQoUQxrz1O/kFVsJCfZk7UzQTf/0PEc2uWyeGd6b3Z+XyYyxWWndbtqzC5Cm9WLXiOD8r6YeGjSowbWY//jx9h/nvrsFqcRAR6c+77w/Fz9/ExNGCJ6VSwQuvdmDI0y04fug686etpKjQRnCoD+8sGErVmlFsWXOSL+aL1VNMfDAzFj5JTHwwxw9c5f0pKyjMt+AX4MWU94dQr2lFCvIsfDhtBUf3KG3TfRswampvjCa9KPV783euX0wuWUmN7oRGo8ZqsfPN7LVsdfOpmlRk4sInCQ4XL+RZaXl8MG6xx0jcpmddxswdhLeyGpJlme3Lj/HNjFVYimyYvA28OmsAnQaVvcpNvp3BR+N+54LC3qrbojJvfjisXDPnka1/8tXbS8lIEpOTdgMa8/KsgQSElJ+YcdidrPtuF79/uMFjIG7VpwEvTB/w2II/90m7k8XyTzez9fcDnpbcqEphDBrTlY5Dm/+Xgif/Nx6VSkXrfo34/f317Ftz4p8WOBal/PDvRM6vnhEXcZXrxj42xXVkuxL77lLroY9NvJrKtT/votGqadu3/Oj3xt+FebhVtzplTPQgfgdWfC/Wyr2eauFZu7nPhj8OYymyEV8l3GPgd58/lJqHlp1qklCtxHd27WIS+7ad/1sptf92gVP62O12fvvtN8aNG/fYL6J+/fpYrVZq1KjBtGnTyl1buc+8efOYNWvWgx8PJ3pMD4gbp6wu5afhMeJGpbCmRMS8RNzoPeJGktW4ZBmtykiRy4FOZaTI5QTUyMp9IgruQK82UOxyIxf0WFwuzBoz+U6xgrK7VLhkWfHcCCFTrETIvTRmcuxWTBqDx6PjqzWTZSvGqNFjcUi4ZDziRqvSoFZpKXQ6yhDBg/TepBUX4qU1YHO6sLvKEsEjTMJzY9Lo0Cnx8DCTN+lFRSWrqNwcSqCZOWhUGiLNPh4Mg1mrI7mggCCTGZdTJtNaTKSPDwUWG4V2O7F+fmQWFGNxOKgQEEBGfjFFdjvxAf7kFFnIt9qI9ffDYnWQVFRMmI83Rq2WqxmZ+BkNgjGl9No0i49hT6l24j2XbiBJ0DA+ijtpOWQWFhPu50NsoB/7Lt5CrVLRt2EN1h+/iEuSaVwpmqy8Im6l5+BjNNCjflUWK6iFjnUqcS8tl2vJmXgZ9TzRpi6/bj+J0yU6bvy9jKzeJyY1z3drzJ5T17idmoO3ycArfZvz7erDFBTbiAsPYFC7Onz4625hNq4aRZv6CbyvxMCb1YmnRZ145n6zFZck06R2HN1b1eCdTzZidziplhDGyCEtmf3pJrJziwkJ9OadN3ryw+KDnL14D41GzYRXOpOXV8yMBYJU17xRRV55tg0z5q4tWVNN6k1+noUJU5fhdEpUrxbBrKn9+GPxYdYphsMe3erw8kvtWfhhiZn4yWHNeeqpFnz0wSZ27xRrMXd537I/DvPTt3sAqNcwnumzB5CWmsfoF34gQ1lfTZnVn8bNK7H05wP8/PUuZBlq1o1h+vtD8PY1lkEutGhXjfGz+mMy6/nj2z0s+moXsixTrXY0Uxc+QUiYHzevpDD7zT88yapRU3vTVTEEH9pxgY/eXkFRgRVffzMTFgyhkTKqv3M9jXlv/M7tq8KLM2x0R54c1cnjgTmy8wIfT1xKfk4xBpOOV2f0p8vgxp7nq4LcIj6dtIyDm8Wasmbjioz/+KkyokWSJDYtOsj3c9Zis9gxeRl4cVpfuj/14CQmJyOfr99exv71YsIVHhvE6PefpGH78s3AsixzbNs5vp2+jCSle6Zy3ThGzh1CrWblt9Def5JvpbP0403sWHwYl1NM16s1qsjgN7rRvEe9//IyPlmWyU7NJeVWBtmpuWSl5JKdlkt2ai4WRayVPkZvAxHxoURUDCWiQihRFcPwC/H5b+nXad1XCJxTuy5QlFf8T62pLEojsemfEDhV6sU98nEul8QxJZnU9CG9NgC7VonftUbtqj8Q3QYoyCtmj7IK7vnUg0Lu3LGbXP3zLnqDlt5Pl+2vsRTZWK2sroa+3LbMz9Otq6nsUyoRnr5vevPTp9sBaN2lJkq36GPP/yiBs2bNGnJzcxk+fPhDHxMREcG3335Lw4YNsdlsLFq0iI4dO7Jnzx7atGlT7ttMmTKFcePGef4/Pz+fmJgYRNxbJKA8zCm5LC0c9J61VLHLhVolhAyoPaZhWVkvaVUmLC57KXGjQlI6bUqTwN2xb6ek8piHC50iEl7kEsIEWfhvxORGrKCsTlHmZ1YmN0a1WF25y/xy7aLMz+3RET4cC2alvVhG5RE3erVONBW7nB4iOKgI0HmRYSnGV2ek0O7AKclliOBuDIObCJ5vFz6bpHwhfkqLm1hvBZqp0RKkN3MvPx8/gxEVkFFcTLiXNwUWu8KV8iM9vxCrS7Ck7mXnYndJVA0OJjEzF5vLRZWQYO5l5WJxOqkcHER6XqEQOgH+2B1OErNzCfH2ws9g4HxSOma9jjoRYRy4dhuAztVK2olbVorjXGIKBVY7FUMD8dLpOH7jHgathm51qrDmqHgSaF+zIpfuppOWV0iIrxfNK8ex7IBY4/RrWpNjl+6QmlNAkI+Z7o2q8aMyqelQrxIFBVZ2nbyORq1mZO9mrNh9hozcIsICvHmqcwM+X7ofu9NF7YQImteM5+PfxRVPx8aViQjy4/M/xBSkd9taBHob+VgBZvZsW5OKUUHM/nIzsgwtG1Ske+saTP1gLVabk4S4EN4a0Yn5X27hbnIOXmY9s8b3Yd+hK6xXVlADezWgQ6uqvDllqVhTBfvw3jv92bv/Cr8vFaPj9m2qMXpkR+Yv2MDJU7dRqeDll9rTvm11JoxfzPXraYIOPr4HDRrEM2HsH1y+lIxGo+b1sV3p1KUWC+auY7cCy+w7sBGvvN6ZA3sus3DOOmw2J9GxQcxaMISQUF/mvr2C/TuEOOo5sCGvvtWd/NxiJo78mYtn76JSqQSK4YXWWIrsvDt2MUeU6UyPQY15ZVIP9HotO9ad5rN312C3OQmLCmDaR09SuUYUToeLnz/ZysofRYKqRv04Ji98ghCFuL1j9Um+mLEKm8VBQLA3Ez8a5oFk2m1Ofpi/gXXKE3NCzSgmf/oU0RVLpiGnD1xl4bjfyUrNQ6NV8+xbPRj4SocyBuH0pGw+Gb+4TIpl7MJhD3gcZFlm+5IjfDdrJYW5xag1aga80pGn3uqJ0Vy+gffutVS+mbrU47MJCPXl+Wn96fRE878kSu5eS2XJwo3sXnHUU/RXr211nhzfkzot/zWY5sOOw+7kxtlErp9N5PaFe9y+eI9bF+9RmPP3ItL3n4BQP1r2aUjr/k2o3arq/2+9O/HVo4ipEs7dq6mcPXCFFj3LN+c+6hTlWQAw+/x1/MNlxVPzOIFz4egN8nOK8PYzU7Nx+VUALqeLnUryqePAB7EKAFuWHMVmdVChWgQ1y+nRWfGdeC7r1L/hAwJp/R9HKMizEBUXROv7qOOLvtoJQOsutcokp04ducGpIzfQajU8MaINMz565JfpOf+jBM4PP/xA9+7diYx8MA7pPlWrVqVq1RJjVPPmzbl79y4ffvjhQwWOwWDAYHhQDdtlCS1GpcOmJObtVEr4BCTTJcSNVCJuVGiwKTFyWRbTHDG5saNVGShWBJBLwkMJL3Y5PeJGXYpDJTpwHBjVRgpdgiclKSsokyJudKoS5IJJY/KU+RUqfTfu9mIvrWgsFt02JnJsFry1RnJtQgQFKOLG3VTskCRCDN6kWwpRUVL25683kWu1Isl4xI0aNYEGM+nFRfjpjVgdTmyuB4ngt3Jz0KhURJp9uZOXh1mrw0ujJ1WhgFudTgrtdmJ8/cjIL8LmcpEQEMidnByckky14GCuK1ypWmGhXE7NFLiFsFCupmXilCRqhIVyOz0bi9NJlZAg0hX0QrS/LyoJbqRn4282Eh/gz9Fb99Cq1bSpHO8RNx2UdmKb00XNqFCsNifn76bhY9TTqko8644LH02PBlU5dOk2ecU24kICSAgNZL1iLn6yTT22Hr9CbqGFmBB/GleO5ved4iq7f8taXLyZytV7mZgNOl7q2ZQfNh6lyGKnYmQQnRtW4ZMl+5BlaFs/gVA/bw8NfEjnUFAD1wABAABJREFUehQUWvl9k3iCeaF/M5JTc/l1nRBOzw9oRlGhjS8WCfHTv0tdKkYGMvOTDUiSTJO68Qzr25i3319DXr6FsBAf3n2rDz8tPsjRU7dE4unF9gQHeDPu7WViTZUQyrtv9+W7n/axW0lXPP1Ec7p1rs34iYtJvJOF0ahj6pTeBAf5MHrUL2RlFeLvL8zEer2W0SN/IiOjAB9fEzNm9Sc6Joi3Ri3iiiJ4Ro/rSo8+Dfj1uz38obCnGjevxJRZ/SkqtDJuxE/cuCqwEKMm9KDHgIZcPn+Pd8cvISujAC9vI5PmDKRp6yok3kjn3bF/kJSYhU6n4bW3e9F9QCPsdidfzFnLhqUi5t2oZWUmvT8EHz8z2en5zBu3mPMKS2rA8FY8P64bWp0Gq8XOV7PWeCCY9VpUYsKHTxKojN3v3cxg/hu/ccNtNH6hDcMn9PAYje02J798sJFV3woBGp0QysRPn6FynRLTryzLbF92lH/MXEVxgRWDUcfzU/rQ+/nWD4iPlMRMPp/whyfpklA7hjcXPvXQ0j1LoZU/Fm5k9Tc7cDpc6PRa+o3syBPjenj6eR51km6k8fuC9exZcRRJEsV8jTvV4snxvajRtNJj3vrvnaJ8CxePXOXC4WtcOHyNKydvlmumVWvUhMUGERgeQGC4H0Hh/gSG+2P2NT0gtIryikm5lU7yzXRSbqWTcS+bnPQ8Nny/iw3f78I/xJeWfRrS8YkW1Gz+cFjkv+tUbVCBu1dTuXXx3j8lcNLuiaqMkPs6Yx52cjMKSFTasms2efS/1/6NigG/W52HxsOP77pEVloevoFeNO304JTHYXd6zMP9X2jzwL/HzUvJHN97GbVaxcARZa0mRYVWVvwgxM+Tr5YV/1fO3+PQzouo1SqeGdXRc7skSfz4ifAP9hzSmPCox/f8uM//GIGTmJjIjh07WLXqrzuk3adZs2b89ttv/8RH1ZUjbjRlxI3KI25EEWBpceNmRWmUtZRWZaRIcqFC7REwYs3kRF869q2QwLXKVMeoNlHoEuZhl6TGqfCkCpxW9Go9RQ7h1TEqHTheGlH0h+c2u6CEO5RuG8Uw7KM1kWMTIshfZybLWiSaih0uXLLsETcalQaz2kCOzUqgwUym0lTsFjdalQYfnYFMSzGBBhMFNjsOSSLG24879xHBdWo1IQYv7uXn46s3oJZVZCrTmlyrFavTSQX/AO7l/H/svXWUVNe2xvsrb3c3urHG3d3d3YkBIbi7a4AgCXGCQyC4uxPc3aG7aXcrl/fH2l10Y0nOPffde995c4wzDqm9S7tq7W/N+UkmZquNSG8fnqakiJGErx8PEkRbvXxAAHdiEwAZFYLEv202KB8UwIPYRMxWG2UC/XmZkkau0UQRHy9ytAaSsnPxd3XB09GR2zEJOKqUVAkL5tQDwXNoUaYYx+8+w2K1USUimLjULOIzsvFxdaZMsB+Hb0rZSNXLcOjGI/RGM6VC/HBRqzl1Rxj49alfie1n76AzmigZ5keIlzu7zoueab8mlTlx7Qlxqdl4uTrRq3FFftx9AZPZQsXiwUSG+PHLbgFmOtQvS062nh0nxDhjcJfaXH8Qw9V70SjkMkb1bciZK0+5Jv33mE8bcfVWtD0d/KvedcnM1LLsN2Hw16ZxWaqXD2fC/F0YjWaKF/Zn/OCmfP3dYZ69TMZBo2L6mNbEvE5jxvw9ANSsVoThXzZi7sL9PHgUh1IpZ8zwFoQGeTJsxHoyM3X4+Lgyb05n4uMyGDVyIwaDmfBwH+bN78qzJ4l2MnFYmDdzFnQlJ1vP0C9Wk5oiAZ55nSleIojZk7ZxQVJEdelVk8+/asSDOzHMmfAHmela3D2dmL6oO2UqhHFs3y1WzN+HyWgmLMKXmUt7EhzmzYWTD1g8ZQc6rREffzemLe1JZJkQkTM15nce3RGdnl5fNqT3lw2Ry+XcufKChWN+Jz0lB0dnDWPmd6G2pGKKeZ7E/OEbeSWFCfYe1pTu+RbeE7uus3LaDvRaQTQes7gH1Rq9GQ9FP03g6+EbeCGBn1Z9ajFgavsChmcZKdl8O2GL3Y24RKVwxizvU6D7A2J8sPe306xbsAeDzoTaQUWfsa3p9GXj916MbDYbZ3Zd5dfp20lNyAAEMPlyXneC/0JJAxD/Kpnfl+zn+JaL9o5NjZYV6DWuzb9NEWW1Wnl+O4prx+9x7dgdHlx+Zn+uvHL1ciaycmEiyoQSUTqE8FIhhBYPRO3wr0nNjXojt8894vzuq/y57zoZyVkc+O0UB347RY3WFRk4rwfB/43+POGlRF7Xy/uv/6X7J8UIF3e/kPcrl96uuxfFehBRKhj394yT8spisXJeCqut26bCB887JHHqmnSpViAMNq/OHbxDakImnr6u75WPb5PG0XValiOokE+BY3s3XCA7U0dIhC8N3kodX/edGEE1alOBsHy/jbNH7vHsYRxOzhp6DmgAWPi79b8G4KxZswY/Pz9at279j+978+ZNAgMD//rEt0pvBad84CYvUFNIvy12ubdClmcEqMRgs0kkZHE/BQ7o84EbOQp7kKYMNTqr5b3gRoHo6uSBGwUSvwbs4MZBriHbJEZLQl1lLABu1DIN2SYTbipH0o0C3DjKHcgyGnFTOZKmF+e5Kx1JM2hxUTqQLcUw5IEblVyJCiWZRgM+Ds4kSWZ+gY4C3KjlShzkKtL1enwdnUnVarHaKJAIHubiTnRmBg4KBe5KR+JzcvBycMRospBtNBLi5kZidg4mq5Winl48T0kDPpIrFRjIrdfvRi9UDgniZnQcNpuIXrgbm4DRYqV0gB9xaSJ6IczTHTkyHick4+agoaS/L+efRCGXyWheppjdnbheZDj3ohNJz9UR5u1OoJsrZ+6/RCGX0bl6GXZdvo/ZYqVq0RBytUauPhUGfj3rVGDTiRuYrVaqRYaiQMbxG09RyGV81qIa20/dISNHR4ivOy2qleCHXeex2aBhxaI4KJVsPSZ2UJ+1qcbtR7HcfByLUiFnVJ8G7Dlxl6fRyThqVEz8rAmb9l3laVQyTg4qJg9szraDN7jzOA6VUsHEL5ty+fpLjp8Xu/wvetbGWaNmxjci1btm5cL061KdyfN2kZyag5eHE/OmdOTw0bvslfghHdtWon3LcoyesJWExExh+jetI+lpOYwZ/zsmk4VixfyZM6szJ47dZ9Wq04BwJp4ytT379tzgN2kxq1w1gmkzOnL96gsWzdmL0WimULgPs7/uhlwhZ+TANbyU/HFGTGhNs9blObjzOisXHRTS8MgAZizpgbePSwF/mxr1Ixk/uxOOTmrWf3+CzdLzlasSweTF3fHwcubO1ZfMH/s7GWm5IlxzYVeq1o3EZrOxbdUZ1i4XkQrhxQOYuqI3weFi0T29/xbfTt2OLteIp48LE5b1orwUlaDXGvh+xi6OS12dstULM35ZbzvR2Gazcfj3S/w8cycGvQk3L2dGLer5jvz70rG7rBi3hYyUbJQqBX3HtKLz4MbvjExeP0tk2eiNPLgiZOLlahVjxDe9P0gIjn4Sz8pxm7jzp/g+B4b78OW8HlRv/m6S89uVGp/BpkX7OLLxvJ1jU61ZOfpOakexCuF/ef+/KrPJzM1T9zmz8wpXDt8mMyW7wPHACF/K1IqkVI1ilKlZnJDiAf9WXo/aQU3VpuWo2rQcw5b35/bZh5zefpkTv1/g0oGbXDt6h75TOtJ9TJv/lrFbhBRI+upB7L90/ySpg/MhafbbdUeKUSlX6+Mcq3uXnpGRko2LuxMV6rxfHp4cl861U6JL3eKtXCiQgjGlDkzbfrXfAUBxUamclQw9uw0syIvNydLZQzV7D2lUALTfvvqCGxeeoVQq6P3lG+6NyWRm3crjgAjH9fBy/r8Xtmm1WlmzZg39+/dHqSz4kiZNmkRsbCzr168HYPny5YSHh1O6dGk7KXnHjh3s2LHjX3hmpd2gTyih3mRNvQ1uhJeNBG6sYoSlQIPemh/cKO1BmnmKKnV+TxuLFTt52JoP3MiUGM02LICD3EECN2/ypNQyDTlmEy5KJzKNYgSlkmnINZtxUzmRbtTajfuyTXlOxeI8kRiuFyBIimvwkcCNRq4Cm5wcs0lyKhY8nABHV+JyBYlYjpwso4EAJxcScsTxPHAjQ0awsxsxWWIU5SBXkqTNxdfJmRydEb3ZTLi7B9GZGVhtUNzLhydSaGYZXz/uJSa9A24qBgZyUwI3VYKDuPaeXKnqhUK4FhWLxWajQkggT+NT0BpNFPPzJkdrICErBx8XJ4LdXLny4jVKhZxGkYXt4KZpmaJceBSF1miieKAPGrmCK88E/6Zt5ZJ2A78GpQvzKj6NqOQM3J0caFulJOuOiQteowpFSUzN5kFUIg4qJZ80r8r6w9fQGUyUKuRP+cKB/LZPXKQ71itLfFImp+8/s3vcHDp3n+evU3FyUDOmT0NW7bxIQkoWXu5OjO3XiO82niYhJRsvdycmDWjGyg1niI4THjjTh7Vky56r3LovyMPjv2zG81fJ/LZPGAa2b1ae2tUKM3bGdrQ6I4VCvZk1ri0//naaK9df5lNK+TFs7GZycgwEBXqwYHZnzp19wuq1YvxVu3Yxxo9pxU8/nuSwZPLXsVMVvviiAd8uO8xRScrZvmNlBg9pwpaNF1gnKSeq1SzK5FkdefkskVmTtpGZrsXTy5kZC7tRvGQgKxcdZJ+kUqrXpDRjZrTHqDcxedhGbkmqot4D6tNnYAO0OQZmDt/EFSlnqmOfmnwxqjlyhZxdG/7k128OY7VYKRwZwLRlvQkM9SI3R8/SSdu5IBEqG7evyNAZHXBwVGM0mPll/j4OSAGb5aoXZsKy3vaR1KvH8cwftoGYZ0nI5TJ6DWtKj6FviMbZGVq+nbiV89JCXrFOccYu610g5FCbo+eXmTs5IvmEhEcGMu67fu/Y4lvMFnb+dIINi/djMpgF4Xh6R1r2fVcmDgJ4bVl2kO0rj2I2WdA4qug+shVdhjRD7fBxVVNuppZt3x5m14/H7WOhSo1K03diO0pW/fup1e8rs8nM7bMPObvzCuf3Xi/AoXF0caBCg1JUaVKWKk3KEhD+zy09/tVSqpRUblyWyo3L0nVkK36Z9DtXj95hzcztPL35irE/D/i3R0gESd2H/JEVf7dsNps9gyrwb3xONpuNaxLnqvwHQEtenZCIw3ValX8n8DKvDmz4E6vVRrmaRQkt+m4X8NaFZzy/H4vGQUXrXu+Si7f+JFSWVepFUqRUQarJzrXnycnSE1bErwD3xmq1suobYUbasksVAvPJ3PdtuUL863Q8fVzo9BZZ+e/U/wqAc/z4caKjo/nss8/eORYfH090dLT9v41GI2PHjiU2NhZHR0dKly7NgQMHaNWq1T9+XpPNhjJf5+ZdcOOA3moWhnp5fjdWJRYJpHwY3AjDvjfgJi+HSnR19FarHdwoZUp0Zpt9BJVjEfyavNRvMcYy46J0JNOoRzgVq9CazbirnEgzapEjRyFTkWs2SWZ+opvjonAg06jHQ+1oBzw+akEodlSoMVvAYDHbQzPfkIiFgspqtZFrNhHk7EaclAieB24UMjl+Ds7EZotRFBZI00mJ4DlaTBYrRTyF3w1ACW8fHiW9C24KhmYGcOt1wjudm/y5UvmjF6oVCuFWVBwmi5UyQf7Ep2eRlqsjxNMNF6WaOzGJOKpVVA8P4dhdwb9pXSGSY7efYrJYqVAokOxcA/cSU3B1UNOoTFF2XBKjptaVSnDtSQxJmbkEeLhSKzKMzadE96V9zdLcfhpLVFIG7s4O9KhfgVX7LmOxWqleMgxvFye2nBDnftqqGpfuvOJRVBIOaiUjutdn3d7LJKUJj5shXeuwfNMZsnL0hAZ4MLBzLRb+epTsXANhQZ4M61WfhT8dJS1Ti7+3K5O+bMa3q0/x6rUw+Js5sjUHT97jjNSm/rJfPdydHZg8ZxcWq42KZUMZNagJcxbt59mLJDQaJdPHt0Wba2DclK2YzVbKlApmxuT2rF79Jnaha5dq9OhWnRkzdnL7ljD5GzKkCQ0blmLy+C3cuR2DXC7jq2FNadW6Aovn7eWkRCbu3L06A4Y05sThu6yQHIWLFg9g1uLuaDQqpgzfxK2rghTZf3BDen5al6jnScwc/Tvxsek4OKoZN7sjdRqVIvpFErNGbCY2OhW1Rsnwae1p0rYCeq2RFbN2cEoCGY3aVGD49PY4OKqJeprInOEbiX2VglKlYPCUtrTsJiTaia/TmDd8I0/vivFBz68a03t4UxQKuch/2naVH2fuwqA34e3vxvjlvSmXL9jy3uXnLBqxgeS4DJQqBf3Ht6bTgAYFwMiDay9YPHwDCdHC/K/TwIb0G9f6HQAS/SSeb4avtytgKjUoyYglvfELeT/H4NqJe6wcv5mEqBRABGIOXtiDgDCf956fV0a9iX2/nWLLNwfIloBHqWpF+GxGZ8rU+tc5KTabjWe3XnF885+c2napQKfG08+dOh2qUKddFUrXKo5K/T9/qQmLDGLuzjEcXH2K78ds4Pyea8Q+S2DRwUm4fWS0808rz0naqDdhNplRqv7+e09NyCArLRe5XEZY5F9PJV49iiMhOhW1g4qKdT9sdKvLNXBOUkE27vJu4CWAQW/kkAT62336fj7rtp8Fz6x59+q4eRb0UYqPTuX4LuFO3mtokwLHMtNz2S3xdvpKv7e8Onf0Hk/vx+LopC7QvcnK0LJZer5+Qxp/kFz/sfqf/9YBzZo1s6fOvl1r164t8N/jx49n/Pjx/5bnFWnhCkkJ9SYl/P3gRlYA3BisZpQyR3KtZhQylT0lXCiqbHZwo5IJqXceuDFYrXYgk588rJFrJHDjSKaU+q2UCf6Oq9KJDKMOufQ69RbLG3AjkyO3KdGZzUIBpRfnOSjUZJkMeKqd7IDHS+1Msj5HimGwYLLa8HcU7sN5nZ1EbS6uKo2UMWUh2NmNWAnchDoLcKOSK/BU58+YsqA1mQhxdSMhKweL1VYgNDN/InjpfOCmjK/fW6GZichlMsoF+NtDM6uEBNtzpWpFhHHhhQA3tSPCuPQiWsi9w4J4Ep9CjsFIEV8vzCYrj/OiFwL8OPNQdC3aVCjBwRuPsdps1CoWRlRiOnHp2fi4OlEpIpi9V0VrtnONMhy/8ZQsnYEIfy+K+/uw+4K4ePduWJFj156QnJlLgKcrLSpH8ovUqWlSuRharZFDlx+ikMsY3KE2e8/cIyYpAw8XR77qXJsftp4jK9dAoUBPereswtdrTmAwmilVJIAODcsy98fDGE0WyhQLpEfLSsxYfgCdwUSxQr4M6VOPed8dIjVdGPzNGNmaXzae5+6jWFRKBZOHtyA6JpVFa0QXpWn9knRrV4Vx07aRlJyNp4cT86d34sq1F6zdKLo9eUqpeQv2cktyKx4+tBmVKxVi5IiNvH4tTP6mTe9AYIA7w75aR1xsOk7OGqbO6EDRov6MGbqBRw9ihXpqbAuat67A6h9Psm2TWCzrNCzBuGntSU7IZPyX64iLScPBUcWE2Z2o1aAEF04/YtE0wasJCPZk1tKehBf159LpRyyavB1trgHfAHemL+9FsZJBxMekMXvkJl4+SUChlDNwbCva9aqBTCbjzME7LJc4M76B7kxZ3ptIiex75fRDFo/dQk6mDjdPJ8Yt6UmVemLXq8s18P30nZyQFujK9SIZ+01PuwLEYrGy5bujbF5+BKvVRlC4DxO+60fx8m+Iv2aThc3LD7P1u6NYrTb8QrwYs6w35WoWHB1YLFZ2/XSC9Yv2YTKYcXZzZOCsLjTtUeO9I5PUhAx+mrKVc3vEa/MJ8mTwgh7UalXhoyMWm83GmZ1XWT1rh72bEBYZyKfTO1OjZfl/eTyTHJvGyS0XOP77n0Q/irPf7u7jSp32VajfuTplav+/p1z6p9Xqs4YUKhXC3N7f8fL+a2b1XMGCfeP/bb4++TtCuhw9rp5/Hzzl8XZCigb8rbiLS1JntULdyI/65pw/cAu91khQuC+lq71fPXV69w2y0nPxC/Gkxnsk5M/ux3Lz/BOh6Pv8XQC05ceTWC1WKtctTsmKBdVc21adQac1UqRkELWavOGwGY1m1kgE4q6f1SuguNr40ylysvVEFPenWT6zwfu33k0++FD9rwA4/1NlkvohVhRYbFbyQjft4EamRid1ZUxWBVY7SHk/uLHahCmgSpbnRixyqLB3dfI6N3pUMjVas7ifWq4h12LESeFEhtGALI+/Y7HYwY1CpsBqlWO0Wu3gRilTYrXK0FstIiBTJ8CNWqYix2SUAI0gDHuqhNmfq8qBHIMZi+0NuJEjx0PtSLIuFw+1I7lGQSLOi2EAGSHO7kRnZaJRKHFVakjW5uLr6Ey2zojeYibczYMoKWMq0suHx6lil5kf3JTy8eVBYhJKmYziXt7cTxBBmcW98oVm+vlyOzYBhUxG+aAArkWJsVSN8FA7uKlXJJyzT16Jjk7hUG6+ihOKqCA/0rJ0JGRm4+fqTKiHOxefRqNUyGle9k30QuPSRbj1Io60HB0h3u5E+HgWcCfec+k+eqOZ0mH+eDo4cOzmE+QyGZ80rcKOs3fI0hqICPCiSrEQ1h0RI6tOdcvyNDqJey8T0KiVDO1Uh3X7r5KamUuQjxt9m1dh2YZTInW8SCCNqxWze9zUrhBB5RKhLPzlKDYb1KtSlJrlw5n57SEsFitVy4bRpXkFpi7ei1ZnpHCYD2MHNuHr748SHZuGi7OGOePacfTUfQ5L7eq+3WpQsXQooyZtIVdrJCzEi3nTO7Fpy0WOSCYSPbtVp3Xz8owZ9zvRMak4OamZPrUDTo5qhg5ZT1aWDj8/N+bO60pWppbhX60nJ0dPQIA7cxd2w2qxMmzAapISs3B1dWD6vC5ElhRk4ovSOKnXJ3XoN6AB1y8+Y/6UHWhzDfgHujPzm55EFPVj829nWPeDIEmXrxLB1K+74eruyO+/nmb998LfpmzlcKYs6YGHlzM3Ljxj/rgt5GTp8PR2YfKSHpStEoHZZGHN0sPslBRaFWoUYcI3PfDwcsFisbLp22P8LklQI8uFMvm7PvgFCZVK1JME5g1ZT8xzMZLqN7oFXSWCMkBqQiaLRmzgjmTs17hzVb6a0xmnfBeyuJfJLBq+nsdSfESjTlX4am7Xd3KhYl8ksXTEeh5I7sZVGpVmxDe98ZGk6vnLarVyZOOfrJq5ndwsHXKFnA4DG9NnfFucXD8+Vnlw+Rm/TP2DR9fE8/gEedJ3Unua9Kj50XDFD5XVauXWmYfs+/k4lw7etKut1A4qarauRJNetancuMy/9Nj/E1W6RjEW7p/AyMZzuHfhCb9N3crgxX3+LY+tUitRaZSYDGZys/8ZwHl+TwCcPB7PX9XFw6KDWbNF+Y+ed1SyfmiaL/w1f9lsNnavlrg1/eu+F5zmdW/qtS6P/1tdxrioN92b3sOaFjiWmpTFPmmz029E0wLdzgNbL5MQm46Xryud+r5JE495mcx+KfR24NiW9tcT8yqFGaN//+h7zV//0QBHkIUVCE6/Br3V+h5wI8ck5VLJpBypN+BGjcFizgdusMu+1XKN3YDPJgEf0bkpqIxSydRo84GbvC6NwfoG3ChlSkwWGWabzQ5uVDIlZqsMk9VqBzcKmQIFCrQWE95qZ5IkcOOhciLNoMVd5UCmwYjVBgESiVghU+Cq1JCq1+GlcSJDr8Nqg1Bnd2IkcBPkJKTgTkoVKpmcVJ2WACcXUrU6TBYrhd09eZEmnIojvX14nCLATQkvMZZSyOQU9fTiYVIyKrmccHdPHiWloFEoCHPz4KEUmhnh4cG9uETUCgUlfH24GR2PUi6nYkggF1+K3J16RcI5J4EbkSsVhdlqo1JYEFGJ6aRpdYR6ueOmVnPjVRyOKiX1S0RwUIpeaFUhknP3XpJjMFIs0Bs3BwfOP3qFUiGnW61ybDsr3ImrFQ/FqDdz4WEUaqWCfo0rs+n4DfQmM2XCAwj1cmf7abF76t+8CmduPCMqMR03Jw2D2tXkxx0XyNUbKRbqQ8vqJflmwykBZspHEBnmy7ebBM+lTb3SeLo48p3kgdOxSXl8PJxZ9Isg1jWrU5KqpUOZumQfFouViqVD+bRrTaYt2ktahhY/H1dmj2vLbxvPc+1WlFBffdkUtVLB+OnbRe5U6RAmjWnFkuWHuXErCrlcxqihzSha2I/hIzeQkaHF19eV+XO7EvUqhelTt2MyWYiMDGDuvK5cufScZUsE2CpVOphZ87rw5GE886bvRKczEhzqxdzFPVCrFIz6ci0vniaiUisYM7ktDZuVYdfvl/l1hehqlK4QxvRF3XBwUDF/0jbOSmOttt2q8eXoFphMZuaN3cJ5yQ+nTfdqfDmuFQqlnG1rzrFG6qBElg1h6tJe+Aa4k5Gaw/xRm7krjb26flGf/iOaolAqyEjNYdHo37l5QYzw2vapxRcT29jJkSd2Xee7qdsx6MRIasKK3gXiFq6cfMA3ozeRlZaLo7OGofO60iifLX2e/PvHadvRa404uzkydEE3Grzl/mq1Wtm3+gxr5u3GoDPh6OLAoNmdadaz1nsvODFP41kxaiP3LonXXax8IUYs6/tBqXhexb9KZvWsHZyT0sUdnDV0G9mSTl81LaDs+ruVk5HL0U3nObDqJK+lMEeAMrWK07R3Hep2qPovZy79T1ehksFMWjOYaZ2XsveXE6KzUzL4r+/4N8omAUDFPyRP54WXFiv/cT8bEE7YT6Wua41mHyaXRz2O597l58gVcpp8YDx189wTXj2Kx8FJTfPu75KLX79I4pykwOr6VvglwKbvjmG1WKlSL/Kd7s3GlccxGsyUqliIqvXe8ISyM3X2EVTfrwqOoH5ZcgirxUqNBiWoKI2IbTYbPy4+iMX8fyiq4X+y3oAb9XvBDfnAjQjJtNjBTd74CGR2RZXSDm4c0JpFf0gcs9nHUhq5hhxJGaWU8qbygxsrCkxWqx3cqOQqDGYbFpsNNwncqOUqjGYbZpsVT5ULyTotKrkSrDL0VjPeGheSdLmSt43ww/FUO5KqEzycAAdX4nKyUMkVOMjVpBv0+Do4kyxlTIW6uBOTlYlcJsffwYXY7GxcVWqQjP2CXdxIyBajqKIeXjxLTRPgxsvbDm6Ke3rzODkVpVxOITePAongz1JScVap8Hdy4VlKGs5qNYEuLjxKSsFJpSLcw4O7sYlolApKBfhxNSoWuUxGrfAwzj15BUDD4oU5/fgF2KBm4TDuRSeQYzBS1N8bm9nGg9hkXB00VI0I5shtcZHoUKUUh68/xmC2UL5QICazhRsvYnFUq+hQtRRbztzCZoNG5YrwOjGDZ3GpuDio6V6/PGuPXMVitVGzZCGUMhmHrz5GLpMxsG0Ndp+5Q2J6Dv6eLvRqWpkVW89hMluoFBlC+SJBrNwqlANt6pZGKZezZo/YmfRrW5WU1Bw27hPkvwFda5GSmsOqrcICvU/7qrg4qFnwwxEAGtcuQdPakUycvwud3kTRcF8mDW3Bwm8P8exlMo4OKmaOa8uTp4ms3ig6GY3rl+TzvnWYPGMHr6JScHRUM3OKIPSOHrsZg8FM0aL+zJvTmaNH7rFaUkjUqVOcCRPbsmXTBTZvFK+nYaNSjJvYhoN7b/LjtwKwVKhUiGnzuhAXk8aM8VtJT8vF08uZmYu6U7R4ACvm7+eQlBjcon1Fhk5oTUZaDlOGbuDZo3jhkTOxNa06VSHhdTozR27i1dNElEoFQya3oWXnKui1RhZP2c6ZQwJQNutYmaFT2qLWqHh8N4a5wzeRkpCJo5OaMQu62iXgj25FM2/YBlISMtE4qhgxtwsN2wlZq0Fv4qfZuzm8ReRQVapbnHFLe9lb5CajmbWL3njbFCkTwsSV/QpIu3MytXw7YQvn9t8CREDm2BV98HvLpyPpdRpLR27g9nkhka9YrwQjl/Z5L9fGZDTzx7eH2bL0ICajGQdnDf0ntafdgEYfHflos/VsWXqAXT8cw2Q0I5fLaNanDv0mdyhAfv679fppArt/OMrRTecwaAUh2cnVgSa96tD684Z2KfT/9arWvDw121Ti4v4brJq6lTk7Rv/1nf6iTEYzZpNQpzm4/H1QabVa7Sq6MjX/2n/orDSyLF8nEo+3ohLy14ENYhxdo2mZ93YKAXb+msetqYGrx7uA9Y8fRTe1RpPSFC5ZkDwc9TSRU5Krcb9RzQsci36exFFJifjpmBYFwPyWVafJztRRqKgfzfJlVV0594Sr55+iVCoYMLqF/faLpx9x/dJzlMq/Dxr/owGOFbBJvBj5O+BGYQ/dBBWmD4AbwcvBHsOgkTuQawc38nfATbZJCtCUqdFbzZIDsQGFTIFZ8sBxUTqSYdShlqvQmYR7cZ5a6k3kgg0PlRhBaeQqzFYbJqtF8Gh0uciR46zQkGHU46V2IkUneDgBDiJyQS1XopIpyTIa8Hd0IVFSUIU6C3CjkCnwVjsRlyMCNI0mMzqzmTBXd6IzRGcnP7gp7uXN49RU5DIZhd28eJqShkahIMDZhRdpabio1XhqHAokgr9My8DDwQEPjQPPU9Jwc9Dg7+TMQ3tophc3Y+JRKRRUCQniz2dS+z+yMKceitZ7/lypsiH+pGfriE3LwsfFicgAH07df4FMBh2rlGbvFRG9UKNYGEkZ2bxMSsfdyYEmZYuy5azYnbSpWpLbT2OJTc3C29WJVlVLsvqQACBNKxcnNS2HS8/iUCsVDGpXk/UHr5ClNRAe4EXL6iVYseWMkIVXLoqXsyPr9gkw07d1VWLi0zhz7TkyGQzvVZ+rd6K4eOul3ePm8s0ozl59hkwGI/o35HVsGpt3ivv3bFeFQkFeTF20V8RHlC/EgF61mTxvF0kp2Xh5ODF/aif2H3oTmNm7a3Xq14lkxLjNpKTm4O3lwsI5XbhzO5offjqBzQbVqxVh8sQ2/PzzKQ5JhN0uXavxSf+6fLP4AKdPCtPD3v1q06dvHX5eeYw90oLVok15ho9txcWzj1k0ew9Go5nCRf2YvbgHDo5qJg/byJ3rkgPyyGZ07FmDx/dimTXmd9JSc3D3cGLa4u6UrRTOnWsvmTtmC1kZWjy9XZj6TQ9KVyxEQmw6s0ds5MVjwbf5ckJr2kht9qM7r7Fy1h5MRjMhEb5M+64PYUX8sNlsHNpymR/n7MFsshAc4cO07/tRqJjwPol7lcK8oet5IeVQ9R5eUCWV+DqNBUPW2cdN7T+tx2eT2xWQxN6/+oJFQ9eRFJsuXIvHtn5H/m2z2Ti5/Qo/TN4qzP0c1XwxvSOtP3nXHA3gyc1XLB2xzi4vrtqkDEMX9/6oXNhqtXLyj0usnrWDtIRMACo2KMmAOd0oXObD6eLvK5vNxq3TD9j5/RGuSKMPEL4ubQc2plH3mv/IXff/Sg2Y252rR25z5chtrp+4S+XGZf9Lj6fXvsk9/Cdds9fPEslOz0XjqKJI2Y936gDOSF26+h3enxUFglt2YodYQ1rlGwHlr5eP4rguGfN1+PzdDMj46FROSJuUHvkM+PJq47dHRXZUszIUK1MQ+K5dJjquNRuXokzlcPvtCa/T2CuNrb4Y3cI+2jSZzPyy5BAAHfrUJLiQ+O7rdUZ+kpRWHXrW4Oj1D77lAvUfDXDygxuD1YxCpkFrtfBxcKNBZxEAxvRWDING7kiu2Sg5FYtjGju4cSBbkn3LZaoC4EYpEzlYFptNkoLr0MjV5Jqs2AA3pQA3jgoNOUYzNrCrpfJcic1WK94SuFHI5DjIBcnYW+NMsmTc5y+BGweFCplNTo7JSKDTG5JxiDSWUskVuCkdSdTm4u3gSK7BhEHi2bySeDbFPLx5mpqKDBlFPb14kiq6NaEu7jxPS8NJpcJLI6WDOzjgJFfyOkOkg6tQ8DojC19nJ9RyBVHpGXg7OeKq0vAsOQ13Bw3+ri7ci0/EUaWiTIAfl17EIJfJqFc03A5uGpcowpmHL4RpX3gw0UnpJGdrCfJ0I9DNhQtPBP+mbcWS7Lr0Jnrh8etk4jOy8XN3oUrhEHZeEJyUbrXLcermU1KzdYT4uFOzRCE2Hhe/pE61y3D3eTzPYlNxdlDzeatq/LL3IgajmTIRAVQsGsxPO0Wno0P9smRn6dh16i4yGQzpVpcLN19wUyIDj/ukEbuP3+Hhc8HXmTywGTsO3+Lu4zjUKgWTBzfn7MUnnL4keEHDPmlIbq7BngbevEEpWtQvxZgZ28nJNRAW7MXsie346bczXL72QhCFv2xCUIA7I8f/jk5nJLyQD/Nndmbnzqvs3C3eU9vWFfjs03rMnr2bG9dfCaXU0KY0aFCCCWN/58H9WJRKOaPGtqJuvUhmTt7GFYmH8vngRnTrVYPf1/3JOsmbpnrtYkya1ZGU5GwmfLWeuJg0HJ3UTJrXmep1inPy0B2WzhaAJLyIH7OW9SIg2JMD267yw8L9WMxWipYMYsaKXvj6u3Pn6kvmjdlMZroWDy9npi7tRZnK4ZiMZn5esJ8DUvelRqOSjF3YDWdXBwx6E9/P3GV3Ja7drAyjpGMAF47e45uxW9Dm6HHzcmbCst5UqvtGSXTx6F2Wjt5MTpYOFzdHRn3Tk1r5vGUsZgtbvj3K5uWHsVptBBbyYcLK/kS+1ZbPSMlm5YTf+fPALQBKVI5g7Hf9CS78rq+NQWdkw9d72fmDSDx393bhy/k9aNCp6keJwI+vv+DHiVvsPJvACF8Gzu3+jwnEFouVczuvsHXpAV7cfaNYrd6yAp2GNKd8/ZL/I7lO/29VcNEA2g1qws6VR9j89d7/MsDRZoksKZVa+Y/UY3clT6PiFSP+8n6vHsbx6mEcSpWCWi0rfPC8U7uuoc3WE1jIh4p13y8j3yGNiWq1KPfeoNct358Q46f6kUSWLwi8nt57zfnDd5HJZPQd2azAsXvXXnLxxAPkCjmfji7Y2Vm9/Cgmk4UK1YtQpc6b39/e3y/z+lUKHl7O9BzwBmxtXXuexPgMfP3d6dynFl+N/eBbLlD/0QDHYLXiLHP6MLixCcM/hQRuVDIRhPkG3MjE/SzmAuBG3B+JPGywe9oI8rASo5QxlWE0oJIp0VtsWJHhohDgxkHKjrL72Ji0OCmEgZ8w7hPgxlGhQW8WhOG8sZRSpkAlU5JjMuKjcSZJAjd+GpEh5aRUY7HY0FlMBOXLmAp2EoRijUKJk1y4Fvs5OpOh02GyWkXGVHo6IKOouwA3cmREeHjxLE10a/wdXXiVnoGrWoOzUklsVhY+Tk7IrJCQnYO/iwsWs43E3BwCXV2xWKzEZYpEcKVNRlRaBt7OTrg5aHiSlIqrRkMRL0+uvYqVQjNDOCOFZjYtWZQT959hs0GtomE8iE4kU2cgwtcTZ5WKGy8F/6Zp2WL2XKmWFSO5/DhamPv5eFDEz4tD16RoggYV2XvhATk6A8WCfCge5MP2s6IT0qdxJU5df0Zcahbebk70bFSBH3b9icVipWbpQvi5u7LxsAANn7Suyv2n8Vx/KPx3RvdpyM7jt3kek4Kzo5qJnzVh1bYLRMen4+7iwKSBzfjl9z95+ToVFycNM4a1YvOuK9x++Fooo4a24Na9GPYelboynapRPNyPCbN3YjJbKF0iiPFDm7NgyQEeP0u0y8CzsnRMmr4dq9VGpQqFmDy2Nd+uPMZ5aREd8HkDGjUsyZjRm3n5MhkHBxVTp7UnJNiLYYPXER+XgYuLAzPndCI4xItRX63jxTMhMx8/rT01ahdj8Zy9nJC8cDr1qM6AoU24fe0Vcyf+QW6OAf8gD2Z904NChX1Z8/1xtkgZUDXqRTJhroh4WDl/nz1aoX7zMoya1RGNg4p9Wy7x09cHsJitFCsVxPQVvfEN8CA9JZt5Izdz//orZDIZfYY2podECE58ncbcoRt4dj8WuVxG/9Et6DqwATKZDIvZwtolh9gugbFSlcOZ+G0few6VyWhmzcJ97JJ8fCIrhDHp+/4FuifJcel8PXSdPf27UacqDJnfrQDZGODqifssG7mB9OQsFEo5vce2ptvQZu8l4N67+JRlI9bZgzEbdKrGl/O74+Hz4ZFDRko2a2bv4MgGMYZ0dNHQY3RrOn7V9B8pgYwGE8c3/8kfyw4QLz2/xklNs9516fBVM0KK/fe5/f5vq45Dm7Nz5RHuX3xKemImnv/CWC+vkiWjPp+gvxe1kFfXT4l1qmL9kn957vE/BGm4auPSuL4l184rm83G3jUS16//+32VEl+ncVoadXXJJ9HOq7hXKRzfKTYLvYY3e+f4Wqmr0rBdRXuHFERn8ZevDwDQoksVQvMB+ztXX3L2yF3kchkDx7W0g+e0lGw2/STA1ifDmuIs/a7iYtLYtl6M2QaNbv5OMvnH6j8a4Mh5u3OTF7opxyZxZxQyR7QFwE0egHkX3ChkSgwWsEqme1qLEQe5I1kmkTEFCow2q8S5ERlTOsnZ2FnhSKZJgJYsCdy4KB3JMOlwVgpysEgHdybVoMNZqSFXciXOG0up5UpkNjlaswlfSfIt5N/OJGhzcVU5oDNZML0l/w52ypcOjpI0vY4AJxdScnOx2GwUdvfiRZpwH87r3ChlckJd3XmRnoaTUoWn2pGYzCw8HRxRymQk5uQS4OKC0WgmXacn2M2NXL2RTJ2BUA93cnQGe36UyWAhLieHADcXVHIFL1PS8XJyJMDFhduvRdxC+eBAzj+NQiYToZnH7olOQoMShbnyJBqdyUyJIF8sJiv3Xyfh6qihdtFC7JNypTpWK82xW0/INZgoHuSDt5MTp+++QCmX07tBRbadvo3eZKZcRCBezo4cvPIIuUy4E+8+e5fULC3BPu60ql6C73eKH1uzqpGYTBb2nrsnOjWd63Di0hMeRyXh5KBibN9GrNp5kfjkLLzdnRndtwHL150iJSOXAB9XxnzamCW/HicpNQcfTxemDmnOd6tP8TImVQRkjm7LnkO3OH9VjLVGftEYs8nCrCXCrbhujaJ82qMWE2fsICExEw93J+ZP78iVay9Zt0l6jY1LM+DT+sycvYsHD+NQqRRMHN+G0BAvhg1dT2pqDl5ezsyb3w2Dzsjwr9aRna0nINCD+V93w2gwM2zAGlJTsvH0cmbOou4EBnkwccQm7t2KRq6QMXRMS9p0rMyBnddYueggVouN0uVDmb6oOw6OKuZO+IM/pVFX90/q0P+rxuRm65k1YhO3JWLwJ8Oa0P3zepjNFr6dtZtDUgemYavyjJRAz+O7McwZtpHUxCycXDRMWNyDag2E98eN809YOGoz2Rla3Dydmbi8FxUlZ9f05GwWjtjInUuC39Dxs3p8NqG13ewsKTad+V+ttY+kOg1owCcT2hTYRV88ckd0djK1OLpoGDq/G406FQwi1GuNrJ6zi32STL9QZCBjV35C0bLvjor0uQbWzNvFnl+Egsw7wINhS3pT4yNqGIvFyqG1Z1g7dxc5GVoAGnevyWczO+Md4PHB+71dBp2RA6tPsX35QVLjMwARl9BhcDPaDWqCm9e/zxPm/0r5hXhTvFIET2685NKhm7T8pMG//FgJ0ZITcaGP+xPlL7PJzC0pe6xKo9IfPdditnBSGjs1eQ8hOK/uXHhK1GNBHG72gfN2/nIKi9lKhdrFiXxPUOemb4ULeLWGJd8hD9++9Iwb55+gVCnoM7ygcur0gds8vSe8bfrk88SxWKz89PV+AFp2qUrhfF4/a1YcQ5troFjpYJp1eBMB8eOSQ5iMZipVL0KdxqXIzi7ojP2x+o8GOEabGWeZC1qrGRlK9O+AGwcJ3DigtRglcCMAjJx3wY3eIswA1fL3gxtTPnCjlr+RiYv4BZEEnmfw56wUgEfkSQkHYjcpHVxELhiwIcNbLcCNRq7CZgW91Sy5Egtw460WXRw3tQNao+kd+XeQkxuxOdk4q9RglZFpNBDs7EZ8ThY2GwXATVF3wblRyRUEOrvyKjMDF7UaZ7mauOxsfJ2cMJutpOh1BLu5ka3Vk20wEu7pQWqWjhyjkcJeniRn55JjEP/OzNWTptUR5umO0WwhJj0TPxdn3NQaHsYn46pRE+nvy+UXMSjkMhoWL2wHN81KF+X0/RfCtC8skLRsLTGpmXi7OFEuJIAjknNx15pl2Xf1AQaThfLhgchtMi49jkajUtCzbgU2n7iJ2WqlZslCmE0Wztx5gUqp4IsW1dl49Lro6oT4UC0yhFWS502n+mWJjkvn+iPRaRnZvR5bD9/gdVImnm5OjOhRjxWbzpCRrSPE34Mvu9Ri4a/HyNEaKBzqw6CutZjz3WGyc/UUCvZiVP+GLPjuMMlpOfh4uTBrZBt+2nCWe4/jUKuVTBvZigeP4tiyS/CBOraqSOO6kYye/AeZWTqCAz1YMKMTW7df4eBR0VXp06MmLZqUYfSYzcTGpePq6sCcWZ3R64yMHLFRjK7CfZi/oBsP7r1m0YL9mEwWSpQKYs78rjx5GMfc6TvR60yER/gyd0l3TEYLw79YQ9zrNJycNUyb34UKlcP5edkRdkrxCo1blmPk1LZkpucyZZggE6tUCkZMbUfTNhWIfpHEjOGbiJdGWOPnd6Fmw5Kkp+QwZ/RmHtyMQiaT8dmo5nT5pA4ymYzju2/w7YxdmIxmQgv7Mn1lX0IifLHZbOxYdYY1Sw5htdooVjaEqSv72iXg96+9ZMGwDaQmZuHorGHU192o2+oNiLh66gGLR2wkO0OLi5sjo5f2omazNyMKo8HEb3P32HfCxcqHMfH7/gS95TL77E40i4asIeZpIgDtBzTksykd3usufO/iU74Zvpb4l8kANO9dhwGzu+DyETXSo2svWDl2I89uixFS4TKhDFnci9I1Pm7Pn78MOiMHV5/mj6X7SUsUfB2fIE86D29By08a/Nsdff+vVc02lXhy4yUX9t34LwGcxGghtPB/z7jnQ/Xo2ku0OXrcvV0oWv7j/JsbZx6RnpSFm5czVRu/61eTV3tWi+9sk67V3vvdykjJtjttdxvS5J3jUU8TOLVHkIf7vkUettlsrFkiuQ93r05gvvdq0JtYt0yM07sNbIBnvm7k4R1XefE4ARdXB/rlAz4P78RwTCIqfzWxtb3bdOnsY66cf4JSqeCr8a3+8aj0PxrgKGQacq1mEcMggRurTYHlPeBGjgKDVUjL86IW3gduVG91buQI/xyzzSqNpfRo5GpyzML8z0kCN84KRzKkEZSz0oEskw5XpRPpBilyQeFEmkGPq8qRTOk2L7ULSfpcyZXYitFqxc/BlYRckQ7uoXIiWafFQ+1IlsGAxWazgxsZMvwdXYnLycZNrcFksqI1mwh1ced1llj88oObwu5ePE9LR6NQ4O3oRExWJh4aB1TIScoV3RqtwUS2wUC4hwdJWbnoTCaKensRl5Ytkr99vIlNz0RrMhPp60N8ehbZBiOFvT3J1BlIzdUS7OGG0ibjeXIank6OhHm4c/1VLGqlgpoRYZy4L3bhLcsW5/idZ5itVqoXCeVVYhpJWbkEergS7u3B6fsvUMhldKlRjp0X72K2WqlRPIyMLB2PY5NxcVDTqUYZNhy/js0GjaXohftRiThqVHzarAqrD1wWoKhoEIV8Pdgs5Uj1b1GVK/eieCR1akZ1r88vOy6SmplLoI8bX3SoweK1J9DqTZSI8Kdrk/LMkQz8ykUG0blJBaYvP4jRZKZ0sUA+6VSd6Uv3kZNrIDzEiwmDm7Nw5RGiY9NwdXFg7vh27D96h+NnRBdkUP96hAV6MmbKNoxGMyWKBzBjYjuWrzzKlWsiMXzkkGYUjfBl2MgNZGbqCAhwZ8Hcrty7+5rlEn+kYsVCzJjZkX17brL619MA1KlbnIlT23N4/y1+lKTdlapGMH1uZ54/SWTWxD/IztbjH+jB3G964OfvzuxxW7kk+d70G9SAXp/X4+nDOGaM+p20lGzcPZ2ZsaQHpSuEce3Pp8wfvxWtNMKa+W1vIooF8OxhHLOGbyQ5IRNnVwcmLepOlTrFsZgtrFp8iN1Si7p6w5KM+1pwavRaI8sm/cHZg2J817RzFYbO6ohaoxLt+fV/8uu8vVjMVkKL+jH1h/6ESfbzFouVjUsPsUUK+CtWLpQpP35SYCT1+kUSC79aa/cm6TSo0TudHavVyo4fjrP+632YTRa8/N0ZvaIvlRu8MTPLK73WwNp5u9nzi1Ck+AR5MnJ5v4/u2HMytayZtYODa89is9lwdnOk/5SOtP6s/t/2nDHqjRxac4Yt3+wnTQrl9A/zoce4tjTpVfvfZnD3f72qt6zAutk7uPvnY2w227/MO7JHLRT6+5EUl44IUnelBqX+MpfryGbB9WvQseoHuTqxL5K4JG102n7yflfi7T+fxKA3EVkhjAq13wXKG5YdwWazUatZGYq+RR4+d+gOj29Ho3FU0eOrgsTjXevOkxSfgW+gOx3717Hfnp2pZd13wv6i75AmuEujNYvZwsp5+wBo2q4iJSVjTr3OyPfSmKtT75qEShlylrfCWj9W/9EAJ9dqwQlHKVE8D9yA/D3gJg8AydEUADdK+5hJgBud9X3gxoaTXHRuHOQasiV/HCeFI9lvgRsnhUgMF90aAWRcFI6kGw24qRzJkG7zVDuTLKWDG8wWzPnAjRw5ripHu7dNml6HzYYd3MiR4+PgTEJuDh5qB3RGM3qLRSikMjORAYXdBLiRIaOQqycv09JxVCpxU2uIy87G29ERixnRrXF1I0OrQ2syUcTTi9j0TAwWC5E+PrxKScdosVLKz5fnyakiHNPfj5fJaehMZiL9fIjPzCZLbyDcywOj0Ux0Zg5+rs74ODlx53UCjioVlUODOPtIjDNalY3k8O3HwhQvMpx7UQmka/WE+3ri5eTIpScxqBQKOlUvzbYLt4WqqUwRXsalEpWcgaeLI80rFGfjCaEMaFu9FPdfxvMyIR13Zwd61q/AL3svYbHaqF0mHAelgn1/3kcmg8Hta3Hgz4dEJ6Tj4eLIkC61+e73c+RoDRQN9aFTo/Is/O04ZouVKqXDqF+pCPN/PorVZqNu5SLULB/BnJWHsFht1KpUmFb1SjJtyT6MRjNlIoP4sk89pi3aS2p6Ln4+rswZ145VG85x7XYUCoWcCcOaY9CZmD5/j1AnVC3MsEGNmTl3N08kDs6MSe2xWa2MGf87BoOZYsX8mT+nC3v33GCjJPlu2rQMI0e24IeVxzgoyZy7dKvG5wMb8tuPJ9mxVRB4W7SpwIhxLTl97D5L5+/DbLZSonQwsxZ1w2yyMmbAGp4/SUClVjB2RgcaNCvDueP3WTx9FwaDiUJF/Ji9vBf+gR7s3nRR+FtYbZSuWIhpS3vi4eXM+WP3WDxFeNEEF/Jm5nd9CY3wJTtDy4LRv3NTIjb3/LIhfYY1QS6XExeVypwh63j1OAGlSsGgKe1oLbkZ63VGvpuynZOS8qNemwqMXNAVR8npNS0pi0XDN3A7zxunfx2+mNqhgErq9O7rfDthC7pcA26ezoxZ3odqjQsCkdSEDBYPXWeXf9dqVZ7hi3u/N9H5wdXnfDNkjZ1r07x3HQbO6YKz2/u7NjabjdM7rvDLlK2kJ4lwwSY9a/H5zM54+v09fojFbOHIhnNsWriHlFgpoTrUm57j2tK0T93/FfEJ/5sqtHggMpkMXY6ejKSsf5mH8/yu8OyK+JsqNpvNxvl94rtaq/W76dz5Ky0p0w6GWvR5vyoKhOzbZrNRrXFpwt7DpUpPzma/FJ3Qa2SLd8Dckzsx/CmRh/vlk2qD6GquWSyUTl0HNLBnuInXl8VWief26egWaPJ1MNd9d5ysDC3hRf1p0/2NH8/+P67y/FE8Lq4OfJ6PqLzh51MkJWTiH+hBb4lwrNcZGf3F6g9/QG/Vf/Q3XHRuJHBjVWBBgBtdAXDz5hzZB8FNnqeNEUe5E5kmSfZtE8ooR6lzkx/cOModyDbpcVE6ki7xaxwVGrLNBtyUjnZwkwd+3FXCzyYP3KTotbgoNehMZsw2m5QnlYNcJsdF7kC6XoePgxMpWi02SSH1OlvIvz3VjiRpc/HSOJJtMGG0WCjkmhegKYGb9DQUMjnBzu5EZWTgolLjqFSSmJuLn7MzeoOZbIORQu4eJGVlo7dYKObtzavUdMwWK6X9/HiSmILZaqNsgD+PEpIwW22UC/TncXyyADqBfrxKSSfXaKKYrzcZOTpSckQXx1Gh5GG8lAge4MefT4WJXbNSxTh0S1xQGpcuwpUnMeQYjEQG+qCSybn5Ig5HtYqWFYrzx59iZ9+yYiQ3n8WSmJFDoKcrNYuH8ccZKfG2XnnO3X5BQno2fh4utKlekp+lMVTzqpFkZms5eeclSoWcYZ3rsvnwdZLScwjwdqV/y6osXS/cicsXD6ZexcIsWSvk142rF6dosDdL1wqORZsGpQn182Txr2IH06p+acoWC2TmsgNYrTZqVS5M5xYVmTRvlxhjhfkweXgLFn17hKcvk3B0UDF7Qjvu3otlw1Yhr2zTohxd21dh7OStxCcIDs6C2Z158iSB71YKRU71akWYNKENP/xwnGNHhVqsT9/adOtWjdkzdnLl8nN7plTL1uWZP2MX588ILsDnXzakW++abFx9jo2/iXZ3vUYlGTetPdGvUpg+ajNpKTl4eDkzc0kPSpQJ5vfVZ1n7vXAMrla7GBPnd0GtUfLtnL12Xk2z9pUYOrUtKpWCTT+dZIN0fqWaRZm0uAeu7o5EPUtk1pD1xEen4SD529SR/G2un3vCwpGbhJuxrytTvutLaUmCGh+dytzB63jxMA65Qs4Xk9rQ4dO69gX83uXnLBiyjrSkLByc1IxY1IMG7d54cBh0Rn6ZtYuDUpRF2RpFGf9dv3f8Qy4dvcOykRvISstF46jmy7ldad7rXdM+k9HMxkX72Pat6Jr5BHowYllfqjb5sFIn7kUiK8du4oaU6hxaPIBhS/tSrvbHwxTzymq1cm7XVdbN2UHsMzEy8wn2oue4tjTvV+//BzYfKLVGhU+wJ8mv00iISv6XAI5ea+D1k3iAvzRlzKunt6JIiEpB46SmapMPj5wAjm25iMVspWSVCCI+YEqYnpzFcckFuPOgd4nDANt/OiG6NxULUbXhu6Tmdd8IANOoQyUKFS8IkPau/5OE12l4+7vR+S1Z+doVR9FrjZQoH0qD1m9GwS8ex3Nwm3hNgye3sXcfU5OzWfe9WBM/Hd7U7kP1/HG8feQ9dGJrO7F4wy+niZZGu3+n/qO/6XqrDU0BcKORwI0jWovhLXAjfGs+BG70VlM+cKPEZBX+NY5yRzKNBiklXPBrHOUO5JgNuCid7PwaR7mGHHNeErgAMk5ykUuV50ScF7mQkhe5YBSuxHngRilT4ChXk2HU4+vgQpJWeNvkgRuVXIGr0oEUnRYfBycydIY3CqmM9ALgRilXEODoSkxmJm4aDSqZnGStlkAXV7K0BrQmE4U9PXmdnonJaqWEjw9Pk1Kw2qCcvz/34pOw2aBCUAB3YxOw2qBScCB3XydgttooHxzA44Rk9GYLpQJ8iU/LJkOnJ9zbE5vFxvPkNLydnSjk6cGV56Ij0zAygsO3xSikZfninL77HL3ZQtnQAPR6E/cTknBz1NCgVGF2ScqpjtXLcObOc9JzdIT7eVIyyNeeK9WvcWUOXHpIWraWMD8P6pYuzJqDguPSqW5ZnsUkcfdFAg5S9MKqPZfIzNETHuhFx7plWLrhFBarjToVClM8zIeVvwuVUKfG5VEp5PyyTTLsa1sVs8nCT7+LHVPvdlVwddSw+GcxHmnVqAzVK4QzacFuTGYL5UuFMOST+kxfuJf4xEw83Z1YMK0T+w7esvNrPu1dm6qVwhkxfjOZmTqCAj1YNLcrhw/fZfMWAYBatSzPwC8aMHfObq5LMvBRo1tSvXoRxozYxLOnouMzZUYHSpYKZtywjTy8H4tKpWDc1HbUqV+CJXP3cVwy2OvetxafftmIK+efMH/KDgx6E4UK+zJneS+8fFz4ZuZujkndoI69ajBgZHO0OXqmDl7P7asvkclkfDGqOZ361cJoMLNw/FbOSCqsDn1qMWCM8MO4fOohX4/bii7XgH+wJzO+70tEZKDg2/x2ljWLD2K12ihRIYypK/viLV2Irp15xNcjN5GTqcPD24VJK/vagzJtNhu7fzvDqnl7sVqshBULYMpPnxTY3ca+SGL+l2t48SAWmUxGj+HN6D2qRYFRkEFn5LfZb4jERcqGMvHHzwh5T/Lyi/uvWTJkNS+kEVfjbjUYvKDHB7k2FrOFnd8fZcPCvRj1JlQaJT3HtqHLsOZ/a4xks9m4fuIea2Zs49ltQZh293alx/i2tPm8IWqHfx5W+E/LYrYQ+yyBV/df8+rBa5JiUslKzSYrJYestBwyU7Oxmi04uTnh7O6Is5sTLh5O+IX5UL5eSSo0KIWb94cVZP/d5RviRfLrNJJfp1Hy/aa/H61XD2KxWm14+LriFfD3ANLZPQL4V29a7qO+ORaLlcMS8G7Zp84Hz9uz+ixGg4nICoUo+x7DwLSkLLv5X9/R73Zv7lx6xo1zEnn4Lel3RmoOW34Um7b+o1sUcB9+cu81x3eJTtTAiW3sj2uz2fhh/n6sVhv1mpelfNU3WVirlh5Gm2OgeOlgWnSuYn+fK+btw2qxUrdJaapJMvKnj+LZ+fulD77v99V/NMABOVbJr0aAG4sd3ChkSvvoKS8BPA/ciHgFaz5wY/4wuDGJdPAsyQPHQQIyrkon0iRwo5GrybG8DW4cyDIZ8VA7kZYvciHFoMNNJTg1NsDfwY343GxUciUalGQaDfjlM+4LdnbjdXYmarkSZ4WaNL0OP0dnUnJ1QiHl5skLCdxEuHryIj0dtVyJj8aJ2KwsPB0csFohVa8jxNWN1Gyt6NZ4efEyLR2L1UYpX18eJghUXSEwgNuvEwAZlYIDuRkjdjNVQoK4ER2HzQaVQ4O48zoBk9VKuaAAXialiegEP29ytAYSsnLwd3PBz8mJm1FxOKiU1CocZk8Eb1uxJEduPcFksVClcDDJ6blEp2Tg7epElcLB7LsmKXZql+PQ1cdk6wwUD/YhyN2VI9ff5EptO3OHHJ2B4iG+lA7zZ/Nx8ePs27QSF+6+5EVcGq5OGga1q8UP28+jM5goFeFP/fJFWPG76Gi0ql0KR7WKNbvF7uTT9tWIT8zkyJ+iCzKkVz2ev0rmyDnxmob0qUdKSja/7BJgp0/Havh7uzLrm/1i5Fa9GN3bVWb8rB2CPBzgwdzJ7fl1zVkuXhUeN6OHNsPb05nRE7dgMJiJLBbAnOkdWb3mLEelNPBP+tWhRfNyjBm9mRcvknBwUDF9egcCAtwZNngtSYlZeHg4MXdhN1ycNYwYuIb4uAxcXR2YtbAb4YV9mTxyE7dvRCFXyBg2thWtO1Ri95bL/LT0sPg71ijClAVdsJitTPpqPXdvRCFXyPlqXEvadq3G61cpzBi2kdjoVByd1Exc2I3q9SNJTcpi1oiNPLkXi0IpZ+jUdrTsXBWbzcYfv55m7TJhHFa2agRTVvTG3dMZvc7IiinbOb3vFgDNu1blqxkdUWuU2Gw2tv5wkvVLD2Oz2YisEMaU7/vZJeDaHD0rxm/hrAS+GrSvxIivuxe4mJzZe4MV435Hl2vA3duFcd/2pfJbct2oR3Es/HI1r6SAyU6DGtN/crt3wIfFYmXn90dZv3AvJqMZd28Xhi3pTZ22HzZke3YnmmXD1vL8jiARV6hfkuFL+xBU+F3g9L56fjeaVVO2cEPKInNydaDzsBZ0Gtbiv82cz2azEf8yibvnH3P3/COe3XrF68fxmIzmv7yvNltPSmzB2/b/cgKZTEaR8mFUbFiaGq0rUeZvdq3+XZWXG6XN1v1L939wRaxRxSqE/y0Oj8Vi5dR2sXbU61jlo+deOnKHhOhUXDycqNvu/d+l7Awt+9aKtanrkCbvfQ1bVx7DoDdRqnIEleoVTCC3Wq38tlCSd3evTsBbJpMbvz1GbraeIqWCaJzPfdhqtfLDnL3YbDYata1AyQpvulcn99/m3o1XaBxVDBj7Ztx18/JzTh28g0wmY+iUtnaTzP3br/L4fixOzhoGS+dbzFaWz92L1WKjdsOSnLz50Y/KXv/RAEd0bmT5xlJ54Eb1HnDj8A64UUiGfXlARilTYrDasAEOHwA3uWYTrkpH0gwiVFMtV6O1mOzgRobM7pvjqXYiVQI37ionUg16KU9Kj00y7ouXXImVKMgyGQlwFLfledvEZmfioFChlitJN+jxd3QhKTcXq40C4Cbc1YOXGRk4KJR4qByIz8nBx9EJg9lMttFImJs7iVk5GC1WIr29eZqSis0GZfz8uBcv0sErBgZy83U8MmRUCQ7impQIXi00hKuvxC62WqEQrkfFYrHZqBwaxMPYJHQmM6UD/UjKzCElR0uIpzsuShX3YpNw0aipFBbEqQfCe6R9pZIcuPFI8GMiC/EiLpUEafRUMtCXo7eEOV7POhXY9ec9If0OD8RJoeTsXTFq+rRpVTYev47eaKZ84UACPFzZfU4AgwFtqnPo4kNikzPxcXemf/MqfLv1LCazhaolQykR5s/PO0RnpnuziqRn5LLznBglDO9Vj+t3o7kguROP/7wJZy4/4+LNl4I/M6Ap1+9EcUwCO8M/bUhOjp6lv4gRTftm5alTtQjjZm5HpzcRWdSfKSNb8fWyQzx4HI9arWTmxLakp2uZOmunGEFVLcz4kS1YuOgA12+ILs2YUS0oWSKYEcM3kJSUhaenM/MXdEWnNTJiyAZycvSEhHoxf1F30lJyGD5oLdlZOgKCPJi/pCdKlZyRA9cQEyUCOKfO60LFqhH8sOQQeyTPmlYdKzFkfCsSYtOZNmITcTFCVTVlYTeq1CrK7SsvmDNGhGL6Bboz89s+FC4ewNMHscwatpGUpCzcPJyYurQX5apGYNCbWD5tB6f3S47SPWswaFIblCoFSXHpzB68jucP4lAo5Qya0o42vWsKvkSugW/GbeFPqRPUokd1BkvAByD6aQJzB60h5lkiCqWcAdM60O6TNyMro8HEr7N32fkIZaoXYeL3n+Cdb/dts9k4svkCP039A4POhKevG2O+7Uflhu8SiRNjUlny1WruXhT8nhotyjNiaV88/dzeuwYZdEY2fb2X7SuFHNfFw4mB87rT9AMZVW9Xanw66+bs5OiGc9hsNlRqJW0HNqbH2La4f8RL51+tlNg0rhy+xa3TD7h7/rGdtJy/HJw1hJcKIbx0CIGF/XD3ccPNywU3b1fcfVxQKBVos3TkZGrJlf738l4MN0/d59X91zy7FcWzW1FsW3aQai3K88X8nv+2jKi/KptNZEj9qwTjPLO+crWL/8WZom6eeUhqQgauns5Ua/pxg8FdP4t1onW/ugU6J/lr7+ozaLP1hEcGUrP5u4+XFJvOQYmk3G/cu6qkM/tu8eRODI7OGnq9FZoZ9TSBQ5LqauDktgXI0Md23eDxnRgcndR8Pral/facLB2/LjkIQK+BDfGV7AyMRrOdWNy2ezWKlxZ/35SkLPuI+7OhTfD2Fb+bHZsv8uxxAi5uDnw+rAlzln70o7LXfzTAsQBq+1jK4S1wI4O/ADcGq8UOblQyFXqr1Q5uskwGnBSOZJoEv0ZjBzeCPCxDjkquegvcyNHINGS/BW7cVOI+Hvl4OH4aMZZyUKjAKiPHbCoAboIc3YjNycRRoRLgx2AQrsXZ2diQFQA3hVw8eJWRiZNShbNCLXg2Ts7kGk3kmoyEu3sQm5GF2WqjpI8vj5JEt6acfwB34hLeBTchwVyLFing1cNCuPzyNTKgZngol17FiIiAQiHciorDaLFSPiSA6OQMMnR6Cvt4IrPKeJyQgoeTAyX9fTn36BVymYy2FUuwV+rONCxVhDsvRSJ4IV8Pgj3dOXVf+Nr0qF2ereduY7ZYqV48DKPeyJXnMTiolfRtWJm1R66KYyXCUMvlHL36BIVcxuD2tdh6/CYpmbmE+LrTsW5Zlm85i9Vmo0ElEb2w6aBoJ3/RoQb3nsZz+a4g/47/pDEHTt/j7pM4NGolUwY1Y/sh4U6sUSuZMawl+47d4fLNVygUciZ91Zz7j+PYLVnif9q9JsF+7kyatwuLxUqVCoUY+nlDps3dTfTrNNxcHZg/vRM3bkWxRjJ4a9msLJ/2qc2kqdt59iwRBwcVM6Z1wNFBzYjhAsiEhnqxYGF3Hj+M4+v5+zCZLJQuE8Ls+V24fSOKhbN3YzIKafjsRd1JTshk6pgtZKTn4uPnxtxvehAY5MmssVu5fF4s3l8Mb0qXPjW5eyOKWWMFiPEP9GD2it6EF/Hj8M7rfCepl0qUC2XG8l54ertw/vh9Fk/ehkFnIqywLzNX9iUo1Ju0pCxmD9vA4zuvUSjlDJ7SjtY9qgPCDXXukPVkpuXi5unMlO/62MdOcVEpzBm0lldPBNF48MyOtOr5xu/j/MHbLB2zGV2uAW9/dyb/+AmlqkTYjye+TmP+oNU8kaTX3Yc1o++YlgVGUrnZOr4b97vdFr9Sg5KM/a4/nr4FAYvNZuPU9iusHL8JbbYeR2cNX87vTrNetT94sbx38SnLhq0l9rngydTtUIWvvu75t0jEeq2B7csP8sfyg/asqPqdq/PpzC4ERrzrlvyvltVq5emNV1w6eJMrh27y7FZUgeNKlYLIKkUoUyeSktWKElE2FL9Q779UAn2o0hIyuHX6AdeO3eH0H5e4cvg2147dpfUXDekzpRMevu8Hiv+2skn//y/gG6vVyt0LEsCp8/c6T8elcXLDztU+OoZ8fOMV9y8/R6lS0Pazd+MUQHxXd/92GoCeI5u/92+wecURzEYL5WsVo3ytgsopg97E2sUCjHT9siGeb+Vb/bpAjJlqNS1j/w2CCM1cs1RIxnsPbYJXPjC/9ttjZKTlEhrhS6f+b0jR29acIzYqFU8fF/rnk4v/sOgg2lwDJcuG0LqL6GjFxqSxQSIuDxrZHM9/4NP0Hw1w3oylBKH4bXBjKABuNGgtlg+CG51VyL7fC25kGrRvgRulTInOYpIiF7TIkaOSqckxm0R2VB64kaTiHmpH0vVvwE2CVoAbm0WGzmImMJ8rcZCjG3G52Tgr1chscrJNRjGqyhLH88CNQiZM/qIyM3FWqXGQKUnRaglwdiFTr0dnNlPYw5OotAysNijt68f9RNGtKe8fwG0J3FQKCuJGTBwyZFQLCeaKBG5qhIVy6WUMMqB2RCH+fCEWx1oRYVx9GYPZYqNyWDBP45PJNhiJ9PdBpzcRk5aJj6szEZ4eXHoWg1Ihp2XZ4nZw06J8cS4+jCJLZ6BYoA/uDhouPhap391qluX3M7ew2mzUL1OYpNRsHr9OxsVRQ/e65Vh9+ApWm42G5YuQnWvg/ONo1EoFX7WvxdqDV8jM1VM02IdGlYqxcpsAEq1rl8JkMLP7tIheGNajHqevPOPuUwFeJn/elI17r/IsOhlXZw1TBrXg1y1/8iImBVdnDTOHtWLttovcfxKPg0bJzFFtOHr6AacuPEEmg1EDGmMyWpi3XBD7mtQrSff2lRk75Q9S03Lx93Vj4azO7Nl/kz37RW+2T4+aNG9cmlFjNguCsYcTC+Z2JTExkxnTdgggUzqYOXO7cOzIPX6SiHx16kUyaWo79u+6wc8rj2GzQc06xZk8qyM3r75k/vSdGPQmChfzZ+6SHsjkMsYOWsuzR/GoNUrGz+5I3UalOHHwNktn7cFstlCiTAgzl/bE3dOJ35YdYdta8bnVb1GW0bNEN2XLqjOsXSG8MSrVKsqUJT1xdnXg6f1YZg1ZT2piFq7ujkxZ0Zvy0uJ5+I/LfD9zN2aThcIlg5j+Y3/8g4W/zbUzj/h6hCAae/m5MfWHfpSsFA4IHsjaRQfY/pPgCpSrWZSJK/sXWLCvnLjP4uEbyMnU4uLuxLhv+76jknpyK4qFX64m/lUycoWc/hPb0WVIk3cuHNkZuawct5kzkkdRyaqFGffDZwR9AGjocw2snbuLPT+fwGaz4R3owdAlvanZ6uMKGhBA6uzOK/w6ZQvJr4UyqlSNogyc35OS1f46oPHv1st7MZzYfJ5TWy+SEpduv10mk1GiahGqNCtL2bolKVG1CJp/4Cz7V+UV4EGjHrVo1KMWvSa2Z9XkLVzcf4N9P5/gzz3Xmb1jNMUqRfz1A/2L9V/p4Ly8/5qcDGEEWfRvpIFnZ+Ry4aD4PTftUeuj5+78Sfx+63eo8kFTx71rzpKTqSO0qD+1W1V45/jrF0kck4i+/ce1euf4njXnSIrLwCfQnY6fFZSWXzn1kOsSL+fzCQXvu+G7Y2Sm5RJaxI/2fd68j8f3XnNAIjsPndoOlUrAjdevUtiySozRBo5t+SZG5fQj/jz1EIVCzogp7ZDL5VitNlbM34fRYKZitcI0bVP+/zf6+7uls1pwkTm9B9yoCoAbtVxDrmTKJ/+H4EYtOSDngRs5cuGbYzULTo1ei0KmQIGKXLMZL7UzKXqRBO6sdCTdqMczHw/HVwI3jgoRuaB/C9wEOoq8KReVGqsVct8CNxESuFHKZAQ6uRKTlYWrWoPCJiNNJyTfKbm5GCwWinl68zw17c0oKuE94CYwiJsxonNTNSSYq/nAzWUJ3NQpXIjzzwW4qVO4EBeeRYkuTngId2MSxIgqyJ+0LC0JmdkEuLvg7+LCtZexOKiUNCpZhP03BKelTcWSnLzzFJ3RTKlQPxQ2GdfzEsGrlWbT6VsAtKhUnCdRybxKSsfTxZH21Uux+rC4ALWqVoLo+HTuv0rESaNiUNua/LznAjqDiTIRAVQoGsyvu8XOqnuTCsTEpXNJ6tSM7dOQHVL0gpuzhomfNeWHzWeJTcrE28OZSQOasvS3k8QnZ+Hj6czUIS359reTvHqdiquLA3PGtGXjjstcvxONUiln6ohWPHuexKYdQpbdtV1l6lQryujJf5CTayCikA/zpnfk51WnOfunAETDBzelRPEAho/aKAjGQR58Pb87V688Z6UEWmrVLsbkye1Y89sZdm4T77tDpyoM+qoxq344wU5p4WnbqTJDRjbn4J4bfP+NUPpUqV6EqfM6k5SQybSRm0lKyMTd04lZ3/SkRJlgNv5yig0/nxZ/z8alGD+7EzabjfnjtnL+uBjX9f6yIX2+bIjJZOGbqTs4Lpl4tetZg0HjW6FQKjh3+C7fTNqGQW8itLAvM3/oR1AhHyxmC7/M389eiQhZt2U5Ri/shoOTGpvNxvZfTrNm0UFsNhslKhZi6g/97ETjzLQcvh66nptSt6nTwIZ8NvGNasNisbLxm4Ns+VaAreLlw5j882f450v2ttls7P3tNKtm7cRssuAX7MXEnz+jZJU35Mi8uvPnYxYNXk1KXDpyhZzeY9vQY1TLD3rU3P3zCUuHrbGb/DXrXZuB87p/1OQvr17ci+bHsZu4c178FvxCvRkwrwd1O348s+rvVmp8Bqe2XuDE73/y4s6bTConVwcqNS5LjdYVqdqsHB5/U6b+X62QYoHM3DaKW2cesHLEOmIexzG22TxWnJ3535ZmnpWWA/C3/h5v1xUp5LZcnRJ/y6PoxB+XMOpNhJcK/qi5X9yrZM5LG5vOg98NuwTIzdKxU8qU6jG82XuT59ctOiBciRuXpmTlgiAxPTmbLT+K0dAnY1sViEMwGsz8PG8vAB361yEon0Pz84dxHJCIv4OntLW7g1vMFr6dvRubzUbD1uUpX038dqxWKyvmiDy6SjWL0qCFGKPlZOv4boFwOO7StxYRxQT37NDu69y+9gqNg4oRk9r84+/5fzTAeV/nxoYKo9X2fnCDCuMHwI1G7vAecKNGlx/cyOSSp47Z3rlRyBQobEq0FjPekreNTPLIyTQa8NI4kap7A24StTk4KdUYzVaMFqvkRCzAixhR5eCq0mC2WNGZzYS6CG8bkBHh6sHLjHSUMjn+ji68zsrGQ+OAzQKZBgMhrm4k5uRgslop7uXN0+RUQEZZP3/uJiQiAyr4B3DrrbEUIDg30YI1KMZSwgsiP7ipVyScc09fgQ1qFwnj2ovXGC1WKoQGEpuSSUqOllAvd9zUGu5EJ+CkVlG3eLhdFt6hSikOX3+MwWyhUkQwuToDD+NTcHXU0LJ8JFvO3AKgXbVSXH8cQ3xaNv4eLjQuX4x1x0TeSuc6Zbn9NI7ncam4OzvwSfMqfL/zvODYlAgl1MeDTVKu1Odtq3PjQQy3pbHT+H6NWbv7Eq+TMvF2d2Zsv4Z8s/YkqRm5BPt7MLJfA+b/eJT0TC0hAR6MH9CEBSsPk5iSja+XCzNGteH7Nad49CwRRwcVc8a349S5xxw8Lvgjg/rXIzTAk/HTtmE0WShbKpgpY1uz8JuD3L4bg0qlYMr4NjhqVIwZ9zt6vYnixQKYP7cLO3dc4/ffBShr27YigwY1YvHC/Zw9LS6GAwc3ol2HSiyYuYtz0m1ffNWILj1qsOank/yxUdy3ZbuKDBvXkrs3opg9/g+0uQZCwryZs6IXPn5uLJ6xixMHxFita//afDa0CZnpWmYO38Tje69RqRSMnNmBxm0qkJWhZfaITdy78Qq5Qs7gia1p26MGNpuNTd+fYONKsSutUrc4E78RHZ3sDC0LRmzipuRR029kc3p81QiZTCZ4OhP/4LQEllp0r87gmW/4Nk/vxDB30GqSYtPROKoZtbgH9fNJwAX4WcfNs+L71LZ/Xb6Y3qHAaCA3S8eyURv584B4jlqtyjNyaV9cPQpe8MwmMxsX72frskPYbDaCIvyY8PPnRH6gu6DPNbB69g72StEMPkGejFzRnyp/IQsGyE7PZd2cHRxYdRKr1YbaQUX30a3pMrLVP0qrfl9ZLFauHb3DodWnuHzoFlbJRE2pUlC9ZUUa9axFtZYV/kfNACvUL8WKMzOY0WUpd88/Zl7v7/j23Kz/FuflvOgKr38QfZFXlyWA87G4jbyy2WwcXCcJFfq/P10+r3b8cFxsPBqVJuIDwG7P6jPkZGoJLepP/fbvEpAfXn/J+YO3kctlfDqxzTvH1y87jC7HQLGyITRsX7CTuOO3M8RFpeLl50rPfGniecRiq9VGvZblqJhPsbX390s8fxiPi5sjg/J1i47svsFdCbAMn9rO/r5/XXaUtJRsgsO86T2gAQBJCZms+lYoTT8Z3IjAEE9sNhsbpLy4v1P/0QBHazHiJHN6D7hxJNdseBfc2D4AbmSOZJsMOCucyDAJ8rBKpkZnMeOmFOTgPHBjsFoKgBuZTYnWYhGp37pc5MhFHpWUBJ6ik/Kk1C4kanNwUWrQvwfc+Esmf25qDUaTRRj3uQhvGzu4ycxALZfjo3EmLjsbLwdHTCYrORKJOC4rC7PNRglvHx4lpSBDRlk/vwLgJq9zUyEgkFuvxb8rBwdxXSIUVw0N4cpLQSiuHRFmBzcNikbYgzLrFg3n0rMozFYbVQoF8zw+VfBvfL1QIuNBbBKuDhqqhgdz9I640HWpVoY9Vx5gtghH4qT0bF5K3Zn6JQuzTfK86Va7HKduPSM1S0uorwfVioXw+ylxserdqBJnbz3ntUQg7t6wPN/vPI/FaqN+hSI4qVTsOnP3Ta7U5Sc8fpWEi5OGMX0a8OPW8ySn5xLk685X3euw4NejZOcaKBrmy4CuNZm14iC5OiPFwn0Z0rseM5fuJyNLR2iQJ5OHtLC7E7u7OTJvQnv+2H2Vc5eeIZfLGPtVM7DamLFAGPjVrlGUIQMaMmXmTl68SsbZSc3cGZ1JTspk7lxxTpXKEUyb0o7vv3/jcfPZZ/Vo164SUyZu5c7tGJRKOeMntaVqtcJMGvU79+6I28ZNaUedBiVYNGs3p44J5c0ngxrQs38djh+8w7I5e7FYrJSpGMaMxT2QyWDK0A3cuS7AyrCJrWnVqQqvniUyfdhGkuIycHV3ZMbyXpSpFM7rVylMH7KeuOhUnFw0TF7Skyq1i2E0mFg29Q2ZuEO/2nwxvhUKhZyY50nMHLSGuKhUHJzUjF3cg9qS901yfAZzBq3l6T3B0/lyWnta93lDxD258xorJmzFaDARFO7DtF8/Jzxfzs3jW1HMG7ia5DgBfkYs6kHDt1QrT29HM3/gKhKiUlCqFHwxoxPtPm/wzsUnISqFhYNW2VO8m/WuzeB53T94wX1w5TlLBv9GnGTy17J/Pb6Y1QXnv+gSWK1Wjm/+k1VTt5KZItrydTtWZcC8HviH/f2co/dVUkwqR9ad4fDaM3YTQICS1YvSpHcd6nWu/r8qk8rZ3Ympm4bxVY1pRD+KY8XQ1UxYM/jfmnJutVrtpGnvfxiUmZqQYf8+VGtW7i/OhvuXnxH9OB6Nk5rGXat/8Lz05CyOSb5XXYc2fe85OZladv0quje9RrZ4p3tjs9lYNVd0YJp2q17gdwHw4mEcRyTxwMCp7QuMYJPi0tkqycK/mNCmQLDsiT03eXAzCgcnNV+MfwNikhMyWS9tXj4f1dzubZOanM2qpUcA6D+0CQEh4jO+eeUFh/cIBeuo6e3ROAgn8uXz9qHNNVKybAjtJWPAowdus+MfSMX/owGO8r2dmzfgJi9O4W1wI5RPwrBPI3Mg21wQ3CjfAjcKmQKQFwA3SpkCbEr0FgveaheSdcKB2EGhIctkfAfcJOmE943WaMZkfQNuZMjwcxDgx11yJTZaC4KbcFcPXmVm4KBQ4KlyJD4nB29HJ/QGM1qTiXB3D2IyM7HYbJT09uVhUrIEbt50bvKPpcr5B3A7NgGFTEb5wACux8ShkMmoGBTE1VeCUFwjPJQ/X4g2d35wU79YBOefvsRqhRqFQ3kQnSj4NwE+mIwWnian4ensSNlgf049eIFcJqNT1TLsvnwPi9VGvVIRvExI5XVqFn7uLlQtHMKeS+IC3bt+RQ5dfkhGrp4igd6UDPFl53lx4f+0WRUOXXpEYnoOQd5utKlRih+k0MyWNUqi1Ro4fOkRCrmMkT0asPP4LaLi0/F0dWREr/os23CarBw9RUK86dumKnN/PIzBaKZcZBBdm1Vk+jIRvVChZAi921Zh6uK9aHVGihf2Z8SnDZm5ZD9Jqdn4+bgyd3w7flh9mtv3X6NWKZg+tg1R0amsWid8dFo1K0v3jlUZPWELiUlZeHu5sHBOF65ff8Uv0kLWpHFphn7VhHlz93D1qohnGDOmFVWqRDBq+EZevUzGyVnDrLmdCQ7yZOTgdUS/SsHZRcPM+V0pWjyAKaM2c/uGGL2NmdKWxi3Ksvm3s6yXxk8NmpVhzPT2pKVmM234JqKlx8xTSt249Jy5Y35Hm2MgKMyLOSv7EVzIm9tXXzBn5GahoAryYPb3/Qgv6k96Sjazh27g0e0YFEo5Q6a1p2U3sXBdP/eEBSM2kputxy/Yk5k/fUJECbEQ37/2knlfrSc9JRs3L2emrOxLuRpit2gxW/ht/l57Cni1RqUYt6KPfcRgs9k4tOkCP07fjtloITjCl6m/fk54iSD7OmCz2di/5iy/zNyB2WjGP9SbSb98TmTF8HfWjFPbL/Pd2E1oc/Q4uzkyYmlf6nV4v7zXaDCxccEetn93RJj8BXky6rtPqPwXYYogODDfjVrP/Yti1BYWGcSQpf2o8DeSpj9WT66/YMeKQ5zdecXerXH1cqFp7zq0+LTB/2tqpX+lPPzcmbxhCOOaz+fU1ou0+rwh5er+1z6P/JUan4HVYkUul+H1D03+Lkodv8jKEXi/ZQr5vjog+SjV71j1g27WALt+PonJYCayUjhla74/d2zXr6cF96aYP3Xbvsvj+vPQHR5cf4nGQUXf0S0LHLPZbPw8Zw82m426rcpRpmrBDuQv8/Zh0JsoUyWCBm0r2G/PTM9lleRm3GtwI3zzqQ5/XLAPndZIqYqFaN7pTTfpx68PkJutp1jpYNr3EmIAndbAcgl8te1WjbJSoOfRfbe4fuk5KrWC0dPbo1DISUrM5MflRz/4Wb2v/qMBjs5iQ/VfADdqmQPZZmMBcKOQqdBbzPbUb6VMgdUmx2TLD26U2GxyDBYL3hoJ3MjkaGRqsk1GfKRujgjLFODGTaUh9z3gxsfBmURtLh4aR3INJkxWi1BF5QM3UZlC/u2m0pCQm4uvozNavQmt2USEhyevMtKx2aCUjy8PEt8FN+X8/LkTl4BcJqOMrz934hJRyuWU9vPj5ut4lHI55QICuB4di0Imo2pYCBelEVX9IuF2cNOweGFOP34BNqhTtBA3XsQK/k2wH9m5BmJSM/F1daaonzfnHr1CKZfToUopdl66K9yByxblXlQ8SZm5BHu5USrYn4PXHiGTQf+Gldl57i45eiOlwvwJ8nTjwGVxbEDL6uw4fZe0bC3hAV40KF+YX/eJXVHnBuWIjkvn2sMY1EoFo3s2YP2+KySkZuPv5cqXXWqxeI3IlSpdJIAODcsy76cjmC1WalaIoFG14sz67hAWi1VEL9QtxbQlezGaLFQsHcqnXWsyZeEeMrN1FArxYtrI1iz69jBPXybh7KRm3uSOXLj0jG2SSqd3txrUrVnUbuAXEuzJornd2LPnOtt2CC5Nt67V6NalOhMnbOXx43g0GiXTZ3QkMMCdYV+tIzkpC29vF+Yv6o4MGD5oLakp2fj4ujL/m544u2gY9eVaol4k4+SkZvqCrpSrVIjl8/ZxWArX69qvFp8NacLzx/FMG7GJ9NQcfPzdmLOiN4WLBXB09w1WzNmDxWyldMVCzFjeCzcPJ47tucGKmbsF+bhcKDNW9MHTx4WXTxKY+eU6kuIzcHFzYMqKPlSoUUTwXTZc4Jd5otVduko4U1f2s+/6jvxxhZXTdmA2WYgoEciMXz6182Uy03JY8NU6e+RCz+HN6DO6hX0HatAZ+X7qNo5JsRM1m5djzLLeOLu98YXR5epZMWazXSVVs0U5Ri3v985ISp9r4IdJv3NUktiWql6ECT99USC7Kn89vxvN4i9/49UDMbZt3L0mg7/u+ZfcDl2OnvXzdrH7ByEb1zip6TOpAx2HNP+XHYgtFiuXD95kx4pD3Pvzsf32cnVL0OrzRtRuX/n/FRPAf0eVqR1Ji08bcHDVSfb8cOzfCnBe3BUbspDigX875yuvTv4hugr1Olb9izMFkMoz92v7WYMPnpeVlsN+CQj1GPGuIR8I076d0tiz75hW73RvjAYzv80XAKLToIYF7A8Azh+6w51Lz1FrlHz+1ujq2tnH/Hn0nvC2mtGhwPP/tvgQWem5hBfzp0O/N+qoP0/c58LJhyiUcoZPe9MNunDyAeeP3UeukDNqRnv761z7/QkSYtPxC3DnM0lNlZyYxU9Sp6ffoIaEhftgs9lYtmA/2lwDxUsFceraBz+2AvUfDXBs8F8CNzlvgxtUGCyW94IbT5UzyQXAjRUfjQtJuhwUMgUqmYocswlf6TYRpulMsk6Lu8qBbKMRs9VmBzdy5HhrnEjWaqXIBSMmq9XuZ5Mf3DgqlTgrNCTlavFzciZbZ0RvNlPEw5Pn6UIhUcrHjweJSciQUcbXj3sJiciBMr5+3I1PRCGTUcpH/FulkFPCx5c7cQmoFHJK+/lzMyYOpVxOxZBALr2KQS6TUadwIc4+eQVA48jCnHwoWrj1i0dw+Wk0BrOFCmGBJKXnEJ+RTaCHKyEeblx6Go1KoaBtpRLsuCg6MC0rRnLlSTRpkiNxuI8Hx289RS6T0b9RZbaevoXeaKZikSBcNBpO3HyKUi5nYOsabDx6nWytgchQXyoWCWLdIQEU+javwq1Hr7n3IgFHjYrRPerz0/YLpGdpKRToSd9WVVn423GMJgtVSofRoFJhFv5yDKvNRpOakZQtEsiCn45gs0GzOiWpUiqEmcuFlLJu1aK0a1aOifN3odObKFksgLGDmjJj0V5i4zPwdHfi6+md2LHnBkclc7YhAxpSuJAvoyduRaczUrxYAHOnd2TVb2c4fkKc8+XAhtSpXZyRIzcQ+zodNzdH5i/oisVsZeTQDWRn6wkN82Lh4p7ExaYxc9J2tLkGwiN8mfdND3Ky9YwcsIaU5Gy8fVyZu1TIwGeM3sK1i2Jc9tXYlrTtWpXL554wb+IfGPQmIor5M/fbPnj7urL++xNslmSbDVqWZfTsTqhUCtavPM5miehYv0VZRs/pjMZBxdWzj1kwWpjoBRfyZuaP/QmJ8MVssvDj7N0c3CIAiAjL7IRao8RisbJ64X52ShERtVuUZeySHnbOyYsHscwe8BuJMSLKYeyy3tRu+Yb7kBSbxtwBv/H0TgxyuYz+E9rQ9auCxmfRT+KZ+/mvxDxNQK6Q8/m0jnQc1OidC8nLB69Z8MWvRD+JRyaT0WtMa3qNbf3ei6DFYmX7t4fZsGAPZpMFdx9Xhi/rS+02ld459+26dPAmK0evt6uj6rSvwqCve+EX8vdTqfOXyWjm5JYL/LFkH6+figBIhVJBg2416Dy8JUX+htLnf2O1H9yUg6tOcmHvNZKiU/D7L47r8ipPAl+sQvg/ul/8q2QeXBGRJw06/bX98YG1Z8TGoEZRin3kb7Bn1Wl0uQYKlw6herP3e+RsXn4YvdZIZIVC1Gld4Z3je9eeJSE6FS8/N7p+WZCgrNcZWSURezsPbFCAaG80mPhx9m4A2verbe+mAty+/Jxju64jk8kYPqujHXjnZOn4XvK26fppPcIlonBOlo6V88XzdP2kDoWlEdm9m1F2X62RU9vh5KzJN5oyUKJMMJ171xSf2e4bXL/8ArVayfBxrfh5/Qc/tgL1Hw5w/hrcOHwE3LgonUg3GpAhR44SgzU/uFFitSGBGxeS9bmoZEosNjnGAuBGjkqmIvc94CZFp8Nd7UCW3ojFZiPYyY3XOVkoZHI81SIp3NvBiUy9HrPVRririFwAmT1bykmpwlGuIkWrJdDZlfRcHQaLhaKeXjxLEwtpGR8/7uUDN/cTk5DLZJTy8eVeQhJKuZxIbx/uJSShUSoo6uXNvfhENEoFJXx8uP06HrVCQdlAf65GiS5OzYgwzuWBmxJFOPlApIA3jCzM+cevRBhlRDAxiRkkZecS6uWOj4sT114I5VTzcsXZJY2e2lUpyZl7L+yycF8XZ85Ipn1961di88mbmMwWapQIw2qxcf7eS9RKBQNbVWfNwatoDSbKFQ6kcKAXW0/eAuCLNjU4e+MZTyU11PBu9fhu81mytQaKh/nSsWE5Fv52TPBzKhehdOFAvlkrLt7tG5XF19OV5etOA9ClRUWCfd1Y+KNon7ZqWJqalQozZcEeTGYLlcuFMahPXSbO2UlKWg4Bfu4smNKBX9ed4+KV58IUcFRLHFRKJk7fhtlspVKFQkwZ34bFSw5y5eoL4bUzthWFI3wZMXwDaWm5+Pu78/XX3YmOTmXerN0YjWZKlQ5mzoKu3Lz6kq/n7MFstlKuYhizFnTj6eN4Zk3chjbXQKEIH+Yt7YVSqWDcoLU8e5yAxkHF5HmdqVEvkgM7rrJyocjJqlyjCFO+7oZao2TJ1B2ckPgzPQbUp99XjTCbrSyatI1TB/LdPlTIqfdvvsiP8/ZhtdooV60wU1f0xtXDiewMLfOGb+T2xWfIZDI+G9+Kzp8LsmVulo6FIzZxTcrE6j28Kb2GN7XvBs/tv8U3ozdh0JsILOTD9FUF+Ta3/3zC/MFryJK8cyb++AkV3/IlOb37GitGb0KvNeAd4M7Enz+nTPWCMus8IujPU//AqDfhHeDB+J8+p/wHPE4SolNY8uVv3JNM/mq1qcjwpX3/0rslNT6dH8Zu5Ly0qw8I92Xo0r5UbfbXZNX3lUFn5PDaM2xfdoCkmFQAXDycaP1FI9p92RSfYK+/eIT/3RVeKoQKDUpx6/QD9v1ygs/ndv+3PO5zKd7inwK/k9tE96ZC/ZJ/OZ4y6k0ckMjF7Qe8PycKBK9mzypJFfWeMEwQsu9Dm0RH8bMp7d45JzMthy3fiTXpkwmt7WGzebXtp1MkxabjG+hBt0ENCxzb/usbYnHvfIZ/RoOJ72bsAqBV92qUrPjms1q9/AhpydkEF/Km58AG9tt/W37UfnvvQeJ2g97EMmk01rx9RSpLBOWj+25x7eIzVGoFY2Z0QKGQEx+Xzi/fCbLxZ4MbERL29wH/fzTAMVptuP4FuMn6m+DG+F5wY30DbuRKLBY5RusbcKOUKVDKlALc5MuO8lIJcOOhdiRDr8dqg2And17niLBMD1W+PKn3gRsXd6IzM3BWqVDLVKTqdAS5uJKao8NosVDU05tnaWLhex+4UchkRHr7cD8hCbVCQREPLx4kJOOgVBLh4cGDhCQcVSqKenlxJ1YAndIB/lyPiUMll1MtLIQ/n4rFonHkG3DTpGQRTj94gcVqo0aRMJ7GJpOWqyPC1xMXtZpbr+JxUqtoXLooe68IuXHn6mU4cvMxuQYTpUL9cVaquPgoCo1KQa+6Fdl44roAIWULk5Gt486LeBw1Kj5vXo1V+y9hMFmoGhmKt6sTe87dEwTijnXYd+4+0QnpeLk58VWn2izbcBqdwUS5YkE0rFKUxVJoZovaJfH3dOXHLYIfk5cr9dsfYmH5tHMNZFYb3609DUD3NpWJCPFm5jeik1O/RjG6tK7E2Bnbyc7RExHmw6wJbVny7VHu3n+NWq1k1qR2pKTk8PWSA9hsUL9OJMMHN2bGzJ08eBhnN/Bz0KgYNXITubkGChf2Y8HCbly59Jzl34iE7pq1ijFlRgcO7r3Jj5LnTL1GJZkwtT0Xzj1m0azdmM1WylYIY+bX3chIy2XsiLUkxmXg7unEnGW9KF4qiNUrj7N1jXi/zdpVZMTktuh1RqZ8uZ47114KkvHUtrTsVIWsDC2zRmzk/o0o0Zae3p7mHatgsVj5af4+9myQ0ss7VmbYzA6o1EpiXyUzY+AaYl+m4OisZsLSXlRvJFyB416lMHPAamKeJ6FxUDFmSQ/qthIXeqvVysalh/ldknhXrl+CCd+9GSfZbDZ2rzrNqrl7sFqsFCkTwrRVXxTYmZqMZn6duYN9q0Xrv3ydSCb8+Ok7xn25WVqWj9rAuT1CUVe1SRnGrPwUj/e4A9tsNk5svcQPeSZ/LhoGf93rL92IrVYrB347xeoZ29Bm6ZAr5HQe3oI+kzr8S+oofa6efT+fYMe3h0hPzATAK8CdTsNb0vqLRv9tkQ3/E9X6i0bcOv2Ay4du/lsAjs1m4+FVsU79kw6OIIKL73ijbjX+4mw49vsFMlOy8QvxovZHksN3/Hic3CwdhSIDqf2ezgzA2gUir6lqo1KUew8/Z/2Sg+Rm6SlSJoTGnQuOzuJepbBN6rYOmNK2wPctLirFnjc1YGIbu08NwJafTxMblYqXryuf5ksZv331BQclO4oRMzraU8RvXHxmD9kdMb29XY237seTvI5KxcvHlYGjmgNCNZU3mur/pRhNWa02lszZi15nomyFMDp0q0ZOzv/vg/O36l8eS30E3IguzV+DG4VMgUKmJNdsLgBuRJhmQXAT5ORmBzfuKgdS9Tp8HZxJ04k8qUKS/BtkhLm4E52ViYtKjRIF6TodwS5uJOfkYrJYKeblzdNUAW5K5wM3eSZ+SrmcYp5ePExMRqNQEO7uyaOkFJxUKkLd3HiUlIKzWkUhdw/uxSXiqFJR3NebGzFxqBUKKoUEcuF5NHKZjAbFIjj5UCwaTUsW5eSDZ1itUKdYIe5GJYiOTIAPCpuMezGJuDpqqF2sEPslQ79utcqy/+ojdEYTFcKDsFmsXHv2Gke1iu51yrP++DVsNmhaqTixSRk8jE7CxVFD/yaV+XnvRcwWK3XKRqCSyzhyRRCIh3epy5ajN0lIzSbA25VPW1djyfqTGE0WqpUOo2LxEL7dJHZYnZuUR26D9XvECGVQt9rEJ2ay76QYmw3v14CExAy2S2ZdX/SojUal4OsfxAW4dZOyNKhRjAmzd6DTmygdGciEYS2Y8/V+nr1IwsVZw/zpnbhzL4bfJIJx21YV6N2jBmMnbCUqKkU4GM/tSlpart3Ar1y5UGbP6cy+3TdYLZFrW7Qqz8jRLVi36gxbNooFt33nKgwe0Yy926/ayXl1G5ZkwowOPH+SwPRRm8nK1BEU6sW8b3vj619QBt53UAN6D2gg3I2/Wk/0C4lkvKQHlWsVJS4mlWmD1xEbJZRSU5f2olLNouhyDSwcu4Urkhy9/8hmdB8o1Eh3r7xgzpD1ZGdo8QvyYOYvnxIhdV9uX3zG3K/WkZOpwzvAnZm/fErRMkIWq83Rs2TkRi5KarG3/W30OiPfjt/CqV1iMW3cuSrDFnYvYEKXEp/B/AG/8vCa4IT1GNmCPu8ZNT29HcX8L34h/mUyCqWcT6d2otNX7xr8gTBr+270Bs5Kz1uqelHG/fQ5geG+H117Yp7Es2zIajuJOLJKYUZ89ylFyv69BOr8ZdAZOfDrCbZ+s5+MpCwA/MN86Dq6Nc371/s/w6/5J1WyurigxzyOx2gw/Zdl7DFP4klLyEClUVEiXxjkX9Xtc4+Jf5WMk6vjR7PGQFgL/PGdcPztMrTZB3k+6clZ7P5FgI++E9q+93t378pz/jwkZN+fT2n/zvEXD2I5vFnwDAfN6FjgMWw2Gz/O2iW8aOoWp07LcgWOfT9zNyajmYq1ilG/TQX7sainiWyT1pvBU9vZgY9eZ2R5Xlena1XKSUTl3Bw9y2ftBqBt9+qUk1zE792MYucm8dpGTGmLi6sjVquNb2bvsbsYd+olRlM7t17m7q1oHJ3UjJ3aDrlcRlbW388J+48GOLkWAy5y1/eAGycyTfoPc27+AbhRy1WYLbJ3OjcKmQqt2WRXQOWBm1S9Dk+1I+n2zo0YSyllClxVGtL0OnwdnUnVarHaoJCrB68yMpAhUsNjsjJxValR2ORkGPQC3GTnYrJaifTy4XFqCiDAzf08cOPjywMJ3BT18OJRUgoOSiVhbh48SU7FWa0m2NWVJ8mpuGjUhLi68TAhGWe1iiLeXtyOTUCjVFA+MJDLL16jkMmoVyycU48E56Z56WIcu/tUdCeKR3DjRSw5BiMlg/wwmyw8ThSxDNUKh3Lkpljwe9Quz65L9zCaLVQrGkqu1sgDCQR1ql6a9cfEBaV11RI8jk7ieXwaHi6O9KxfgZ/2XBQ8mcrF0OqMnL79CpVSwfDOdVl34CqpmbmE+XvQvXFFlqw7KTpAlYoQFuDFL1LOVN82VUlLz+HgWdFJGtW/IXcexHLykgjrHD+wKbfvx3DkjDg+8vNGpKXl8ttmoczq2aEqJYv6M3neLsxmK1UrhjP0swZMnrWT2PgMvDyd+XpWF46duMc26eLYt2dNmjYqzchRm0hKysLHx5VFC7vz4H4sy5aKLk2egd9vv5xm905xv159atH3kzos/foAx6Tk788GNaRb75qs/vEk26TFpH2Xqnw5shlX/3zK/MnbMRjMFC8VxJxlvVCpFUwbsYmbl18gV8gZOaUtzdtX4vmjeKYN3UBacjbevq7M+b4vhSMDeXg7mpnDNpCZri2glEpJzGTm4PU8fxiHWqNk7MJu1JXMvI7vus6KKdsxmyxElgtl+k+f4CW5Cx/eepmV03ZgMVuJrBAmjkmW7/FRKcz6fBVRTxJQaZQMX9CNJl3ecB2SYtOY/fkqnksS8gHTO9Lu04LeIncuPGHBwN/ISMnGxd2Rsd998g6vwWazcXDtWX6ashWT0YxfqDdTfhv4QW+bu38+YdGgVSTHpqFQKug7sR1dR7Z8r8laXlnMFravOMSG+bsxGUw4OGv4bGZX2gxs/NH7va+MeiOHVp9my+J9dnlzYIQfPSe2p3HPWihV/99d3n2CPXH1ciE7LYfoh7EU/Ye8mbfr9hmxqSpdo9g/AoSH14uNSaOu1XFw/njX7fSuqyRGp+Lh60rz3h9OA9+64jB6rYHIiuHUavnumNJms7FK4sc071mTQm/Jvm02Gz/P2iW4gK0rUDZfrALAhSP3uHbmMUq1gq9mdizwOzm97xY3zj9BpVYyZNYbYrHVauXbGbswmyzUaFSS2k3fKAE3fH+C+Jg0fPzd+TxfV2fV0iMkxWcSEOzJZyPFmEuvM7JkpjAAbNq2AjXqiXHvvu1XuXX1JRqNkrHSaOrViyTWSG7kg4Y3JTDYk5TkLAZ/uuqjn3P++v/uL+BvlFr2ns6NwolM40fAjemvwY2HyvldcKN+F9z4/k1wo5IrcFFoSNfr8XN0IUUrwjJFhpQEblzceZ2Viatag9wqI8NgINTVnYSsbMxWG5HePjxOKQhu5Mgo6ePLg6RkVHI5ER6ePE4W3ZogFzeeJqfiqlHj5+zC0+RU3B00BDi78jgxBReNmkKeHtyJS8RRpaS0vx9XX71GJZdTp2ghTj8Su+QWpYpxRPKyaViiMJefRKMzmSkb6k+u1sjL5HS8XZwoHxrAsdsiKLNHrfJsv3gXs8VK7RKFSE7P5WlcCh7ODrSpXJINJ4RnQsdaZbjx+DXRyRn4uDvTsVYZftorLuata5QkKTWLa49fo1ErGd65Lr/uuiiiGEJ8aFu7FEs3nhJjqJolcHNyYON+0WId1KUWT18mcerKUxRyGRO+aMrpS0+5eFPwfqYNbcHJ8485d+UZCrmMSUNb8uBRHLsO3xL371MXTzcnZi0WY6qGtSPp06U6Y6duIyU1hwB/dxbN6szmPy5z5LjoSAwZ1IjypUMZOXoTGRlaQkK8WLSgG6dOPmTVqtPis2xZjmHDmrHk6/2cPimlkw9rSovW5Zk5aTtXLj5DrpAxakJrmjQvyzdz93JcCqH8bHAjuvetxaHdN/hO4tZUq12MKQu6kJujZ/LA9Tx/nICDo5qpX3ejau1iXL/wjHljtwjOThE/5v7QD98Ad/48cZ+vJ/yB0WCmWKkgZn3fDy8fV148imf6l2tJTczCw9uF6Sv7UrJCGFarlQ3Lj9rb3nVblmPMou5oHFSCTPz1AXZKO8MGbSsyalE3+478zsWnzB20huwMLV5+bkz79TNK5JNv3730jHmDVpOZmoO7twtTfv6MsjXecGlsNhu7fznJqtm7sFqsRJQKZurqgQS91WHRZuv5dsxGTu8UpMfqzcsxduWnuHo6v7NumE1mNi3az9al4nMMKuzHhF8HfBAI5dXzu9EsHbzKTmat3KQsI7795B972litVk5uucDaGdtJfi26sf5hPvSa1J4mvev8fxrY5JVMJiOiTCh3zj7kxd3o/zLAuSVtVMr/Axl+Zmo2F/aLtah5v7ofPddisfLHctG96fhlkw/GWyRGp3JgvYg66T/5XV4NwJm9N3h8S/jP9BnzbuTCuf23uHPxGWqNis8nty1wTJdr4Kc5uwHoOrAhwRFvfgfZGVp+mS9Iwj2/akxwvt/Iwa1XeHAzCkcnNV/lM+h7fDeGXZLj+LDp7XCWfHJuXHpuH02NmtURR2kE9v+w95fhUSXY+j58l6Uq7kqCBHd3d3d3d3cPAYK7u7tD4+407i5x4q7l9X7Ym4JAoOmZOWd+59/vmmuu6S5Lpip7173XetbzbFl1kcjwBFzc7Rg8VlhZDw+JZ4to6Nd3eD28czmj0xlY4C/k5FWskp/GLUpjNJpYNOckaf//Ds7vVbrBgAL5N3Bj+R+Bmzh1xo9wo05DIZEjlcjMcPNlLOXwBW6UViRmZmbR3CikMqxlyq9J4BnpmEyQy1ZY75ZKpHhZ2RKekoydhRKTUUKyRkNOW3siUlIxGEXjvi9w45wVbt7ExGIhk5HbzoEPYrfGw8qGT3EJ2KmUOKssCYxLwMFShYvKivcxcdiplOSwt+NVZAxWFgoKubryKCQChUxGlTw5zXDTsEh+zr8Q4KZekbzcfhOMWm+gdC4v4lPSCYtPxs3OmkKeblx9GYhMKqFD5RIcuvNc6KoUyUNYTBJB0Yk42VhRv2R+9oqmfR2ql+D2iyAiElLxcLKlcblCbD4ljJJaVy/Gp7BYXgRGYaVUMKxtNdYevk16ppaivh7ULJmXFXuFMVTr2sXR6wwcuvgUgFFda3LvWTB3xa7P1IENOHHxBU/fCKA0c0QTjp59ysPnIVgoZPiPbsr1Pz9y4fprJBIYM6AeGrWOBWIrulmDEjStW4wxUw6QkqoWohemt2bNhivcuSdsLU0c0wQ3F1tGj9tr3p6aN6c9B/bf5ZCYHdOpUyW6dq3CjKmHefQwyGzgV66CL5NG7eX1y3CUSjnTZrelZJlc+I0/wMO7n5DKJIyZ3Jz6TUqwZ/MNc2hdg+alGDmlGRFhCUwdtouYqGQcnKyZvaIrBYrk4MKJx6yYJayBlyiXB79lnbGxs+T47jtsEGMSKtQoyORFHbG0UvLo1nvmjNxDZoYWH19XZm3ohYe3E1qNjiUTD3JDHHt1HFSbHqOFIMCMNDULRu3hvghr3UY1oMvw+uaT59m9f7Jm2iEMeiMFSubEb1Nf85qryWTi9K5brPcTuj55i3njt6Ufbt8IaNXpGpaP3WNeAa/dtjwjFnX9IYk5+M1nZvdaz+dP0cI2lV8b2gypn+2XS1RILPP7b+LtA6E7Wb9LFYYs6PJLV129Ts/+xafYu+APDHoDNo7WDJrfhXq/COL8WT299opNk/eZIcnFy5HOk1rSsGfNf3mN/P9quX6xC4j7fU1GdqXV6Hgsjp3L/IZH0Zc6v+sWOq2e/KVy/XIbCuDWH48IfR+Jjb0VzXpnH5YJsGvhSfRaPaWqF6R09UI/3K/J1LJVjE1oPyRrsCUIo9yNYnenw5C6P9gY7Fl5gbjIZDx8nOgwOKvIedP8UyTFp5Eznzvt+n/9HWMikti6RDif9RzVAFdRSK3V6lky/ahwEde0JBVrCL9vepqa5f7CyKpFp4qUFEdWT+4H8oe4NTVmekusbVUY9EYWzjiGRqOnVLk8NG8vdGZ3brrGpw/R2NlbMnqKENFw7OA9Hj8IMjuX/079s46IH+q7sdS/CTdfVsGzG0t9hRt9tmMpJ6UVCT/AjRxrqQVJGjUeVjZEpwtw80VQ/AVuPqemYK9UYdSbSNVqyGXnQHhSMkYTWeHGxY3X0bHIJFIKODnzJkbQ2fjY2vMhLh4bCwtcLW0IjE/EQaXCQaUiOCEJRytLHC1UfBJBx93WhjdRsdgqLcjr5MST0AiUchkVcnlz430QEgk0LFKA88+FcVODYvm5/vITWnFzKjIhhYhEYS3c18WJm6+Fzkj7SsU5ePu5MF4qkY/3YbGExSXjZm9DjcK5OXRD+JLsWrs0lx9/IDoxDW9Xe2qXyMd2cfW7U+1SPHkfzvuwWOyslAxuVZWVB24IK+QFclC2gDfrDwtXHF0alSU6LoUr94V18wm96nL+1muevv2MSinHb3Bjdh9/wJtPUVhbWjBrVFN2HrrLi3cRQtTCuBacOPuUWw+ETagpIxoTEhbPLtETo3Pr8lQolZuxUw8Kq+IFPJkxqbk5esHCQo7/lJaYjEYmTTmITmegdKlc+Pu1Yt3ay5w/L3RfBg2uS4P6xZgwdh9v30SgslTgP7stuXK5MGbwDkKC47C1VTF7UUd8cjozcfhu3r76jFKlYPrcdpSt4MuqBac5fUQQzHbpU50eg2rz5kU4fqP2kJqcSY6czsxZ1Q2PHI7s3XiNnWuEXJraTUowemZrZDIpGxac5pio72nWsQKDRQ3MmYP3WTNLEPaWqODLtJXdsLW3JDkhnVlDdvD6UTAyuZSRAe2o31YwxYv5nIh//60EiSGeYxd3ooYopjToDWye8wfHt4hmaC1KM3pxZ5Ti6ECn1bN22mHOieLOmi3LMGpxlyz5OZEhcczqtZ7gNxHC2Mq/bbauxFcO3WPF2F1oMrS4eDkyZfMAilTI2tL/UjeOPWD5yJ1kpGZibWfJiGXdqfkXa8FBL8NYPHATH8UNnaotyjFsWXec3B1++bzvK/h1OFum7ue+mD5vZWdJp/EtaDW0wX807PL/UkmlwmdpMpr+4pG/rmc33pCRqsbJw4ECvxnkaTAYObVF0Mk0/8U2FAgdt71LTgPQamDdnxr7Bb4K54roddVnWutsH3N041ViIxJx9XKkzcAff+6e5eeJj07GM5cL7b4DmKA3ERzbKozUBvu3znK8PLnzgYtHHiKRSBg1t50Zlk0mEyv8jpKZrqFImVw0F9e2Afauv0LopxgcnKwZ/I2HzpfRlKe3I31GNgAgPVXNUlGP06xdefPW1IEdt3j36jPWNkrGzmiJVCrh+ZMQDornmVGTmuHkbEPQpxg2i+OqPgNrc+HmzGzfn+/rHw04WQXF6u8cii0Fh2L5V82N7LtV8H8Fbr6MpSTfdG6clFbEZ2RgQpIVbmRf4MaW6PS0H+DGw9KGz6kpOChV6PUm0rTaLHBT2NmFNyLcFHH+AjcS8js58y5W0NnksLHlU3wCdkolTkpLghMScbS0xE5hQUhCEs5WVtgqLAiKT8TJyhIXKyveRQtdnNwODjwLj0Ill1PWx4tbH0KQSiQ0KJzPDDeNixfg0ouP6A1GKub1ISQmkejkNLyd7PF2sOPOuxAUMhntKhZj/y3h5N2odAGef4okMjEVLyc7KuTz4eht4QqrZ72ynL77hviUDPJ4OFGxgA+7Lwhf3D0bluPWs08ERiTgZGtFv2YVWb7vOlq9gYpFc5Hfy5mtomC4b8tKvA2M4s6zYOQyKZP71efI+admmJkxtDEb9gqJ4Pa2KmaNbMranTf4EBSDrY2KgHEt2HnwTx6/FEBl5thmPHwSzFHR0XRA9+rkyuHExBlHhFXxUrkYP7Ih/gEnePchCisrC+b6tyU6KplFS84I8QxV8zNxXFMWLjjN7dvvhQiH8U0oUzo3o0fsIjQkHls7S+Yu6ICNtYpRg7YTE52Ci6st85Z2wcrKgtEDtxMmPi5gSSfy5vdgzuTD3L76Rtggm9CE5u3Kc/fGO+ZOOoRGo6NQMW9mLe+CjZ0lqwJOcuawaCjYpzq9htdDrzMwb/x+bomRDn1HN6Rd7+qYTCa2LT3HwU0CiNRtUZqRs9uYN6X8+m0lIiQea1sV09b0oJR4Unv/PAz//ltJjE3F0dWWGRt7U1AMG0xPyWT+8J08vCp0dXqMa0Knb7o6SfGpzBmwlZf3PiGRSOg9uTntBtfNAi6Prr1m/qCtpCVl4Ohqx5TN/X5YAddqdGzyO8TJLdcAKFOrMBPW98t2S0qTqWX95P2cFdd7i1TIy4RN/fH4xWjJoDdwcNkZds8VdAu2TtYMW9KDmu0q/q2uTUpCGrtmH+XUpssYDUZkchnN+tehy+RWf7l+/v/1kojC2X8XcO6cFMZMlZuWzlbQm13dP/+MmPAE7JxsqPkX5n63Tj4m5G0E1naWtBqYfVgmwLY5wtp0zVblyJ9N+GZsRCIHVovr0lNaZAEUgOB3keaLgsGz2pgvCECArFXTj2A0GKnaqDgVan8dxWnUOlZNPwpAs66Vs6x+Xzj6iMe3P2ChlDM6oK35/Xn/KpyDIiwNm9YCO3GT8dGdj1lGU1+6pRuWnSMmKhnPHI70GynocT68iWC3eO4YOr4Jbh72pKepWTTrBCYTNGxakmq1CqHV6Jnrfwyd1kClqvlp9I3w+a/qHw04WpMBO6ntz+FG9ntw4/A34CbmN+HG6hu4iUpLRTDuE+BGJsJNRFrqD3ATlpSMyYQQuRAnJBZ/iV/4IiJ+FxuHpVyOp7UtgfGJ2CmVOCotCUlMxtnKEmu5BaFJybhYW2EtUxCSkISLtRUOlirex8bjYKnCx96eF5+FLapSOTy48ykUmVRCvUL5zGOpJsULcPH5R/RGI1Xy5+JjRCyxqRnkcnHA1caaex/CUMpltCpflP23BbhpVrYwD96FEpOcTk5XB0r4ePDHn8IXa58G5Tl28wVJ6WoKeLtQ1MedA1eF5/VrWpGL998SGp2Eq4M1PRuWZ9m+6+gNRmqUyoubvTV7zwknsiHtq/HgZSgPX4WiVMiY2r8BO4/f51NYHPY2KqYPacyKbVcJj0rCxdGaGcObsGTDJUIjEnBysCJgbAvW7LjO6/eRWKoUzJ3UivNXXnL+qjCmGj2wHpZKC2bMPSHES1QpwOC+tZg0/TAhofHY21uyMKADL1+EsUZM8G3YoDiDB9bBz+8Iz56GolDI8PNrjbe3IyOG7iQ2JgVXV1vmL+6MOlPL6CE7SE7KwNvHifnLu5CZoWXUAMHAz9XdjnnLu+DkbMuU4bt58SQEhULGxNltqF63CGePPWLl3JNfdTgLOgAQMHYff159i0QiYfCkprToVJHU5AxmDN/Na/E1xs5pR63GJdBq9Sybcphr4uip69C6dB0qgMbLB0HMGrKD1KQM3L0dmbWpDznzCaZft8+9YNGYvYJ5YCFP/Df1wS2HkEkTGRKHf5/NhH4QPHnGLutK9W9WZINef8a/zyZiwhOwslUxcXVPKtT9OlIwmUwcXnOR7XOFrK6CZXIzbcsAXL7zJokJj2dOnw28exws/O7jmtFlfLNsRb4hbyOY12cDwW8+I5FI6Di6Md0nt/yl023Y+0gWDdjIOzGbqFLT0oxc2etvdW0MegOnN19h5+yjpIoJ11VblKPvnI7kyOfx26/zTyij6V8HHIPByN3Twnmhyl9sQX1bJzaIx223ar/soBkMRvYuFkzuWg2o+1Mn66e33vHwyitkcik9JjXP9jFb5pxAk6mlSHlfarbMahxpMplYM/UQRoORKo1KUL52kSz3n9l7lzePQ7C0VjJwetatq90rLxIZGo+zuz09vxEJx0Uns2mB0HnqPrw+3qJeR6vRsWSaAEs1GxWnWn0hLy4tJZNlX0ZTnSuZt6bu3njH+RNPkEgkjBX1OBq1joUzjmEwGKletwh1GguC/zVLzxMdlYyHlwODxfXxLeuvEBwYi4OjNWMmN0MiMfz0/f6+/uuA4+/vz8yZWdtN7u7uREVF/fQ5169fZ8yYMbx69QovLy8mTJjAoEGD/vbPtpT9onPzzVjq13BjQ9xPBMX/CtxYSOVYyixI/gXcuItw46i0RKszkK7TkdvOgdBs4KaIsytvYuKQS6X4OjjyLk6AGw9rG4IShFGUnUJJaKIANCqpnLCkZNxsrFFK5IQmJuNqY42d0oKPscKIKoetHS8/R2NtoaCYpzt3A8OQS6XUKejLBRFumpYoyPln74Uv+IK5eRUaTUJ6Jr5uTjioVDz69BlLCznNyxbm4B1h86dVhaLcehlIfGomedydKOjhzJkHQtxC34YVOHj1GamZGorkciefuxPHb4nuvi0qc/LWSyLiUvB0tqNTnVIs338dg9FEvfIFsFIoOHrlORIJjOxck6v3P/D8fQRWKgVT+zdg44HbhEYm4uxgzZQBDVi06RLRcal4uNoxdVBD5q85R2RMCu4utswc04zF6y/xKTgWOxsV86a04sCxh9y8KwiSJ49sTHqahrliS7pRvWJ0aV+R0RP3ER2TgquLLYvmdODatTfs3C2Mytq1LU+nDpWYOGE/798L3Z3ZAe2wVFkwevguIbLBx4kFSzrzOTSeGZMPoc7UUaCQJ3MWd+JzWAJ+4/aTmqomZ24X5i7vgkwqZdyAbQR9jMHKWon/kk6UKJOLPZuusXO90Fr/4nGTka5hxojdvHkWhsJCzsR57ahWryhRnxOZPngHYUGxWNuq8FvRlZLlfUlLyWT28N08vx8ojJ5mt6F+K+HL4drJJyyZeNC8KTVjQy8cXWwxmUwc2XSNrQsE/U65moWYvKqbObzv1YNAZvXfQkpCOs7u9szY0o/8JXzMx+rts89YPHIX6gwtXrldmbGtPznzf/2i/15v06BzZYbO7/TD+vDj66+Z338TKQnp2DhYMX5tHypmE45oMpm4sOc2ayfsRZOpxdHNjvHr+1Km9s81GiaTiVObrrBp6n40mVqs7a0YvKgr9Tr/Pa3N02uvWDduN8GvhNDaPMV8GLS4G6VqFvmLZ/6zKilWWIm3z6br9rv17MYbEqKTsXWypmSN3xMYv30YyNMbb4VuWt/av3zsjWMPCH4jdm8GZd+9MRiMbJpxBICmPWv8IIAHwbzy+onHSKUSBs9q+8Pf06XD93l5PxClpQUDZ2Qdb8VGJrF1oXA+6jmusVlDA/D+RRhHxa7PsJmtzavfJpOJVTOOkZ6qpmAJb1r3/BrHsGvNZUI+CqOpId+ImNfMO0VcdApeOZ3oM0Lo0iTGp7F01gkA2nStbM6a2rL6EqFBcTg52zB8UlMkEgnXL73i0tnngi7RrxVW1koe3PvE0YOCbmfclGY4OloTFPj5V295lvqvAw5A0aJFuXTpkvnfZbKfXx0FBQXRpEkT+vfvz+7du7l9+zZDhgzB1dWVtm3b/q2fm6zVYK20+QXcSJBLhEBMOxFK5H+1Cv6DoPir5uZfhZs8to4EfgM3kWlCErhGK8KNvSOhiUnZwI2buXPja+/Ih7h4rBUKXC2tCU5IwkGlwkahJCwpBVdra5RSKZ+TU3C3tUGBlPCkZNxtbbBUKPgUJ4yoPGxseB0Zg43SgsLubtwPCkcuk1Irfx4uvvwIQLOShTj75B1Gk4mahfLwPDiSpAw1+T2csZQreBIUgbXSgsalC3LojqAzaVupGFeefiQpXU0+T2dyOzty4bEADX0bVmDv5Sekq7WU9PXE09GOk38KI5chLaty+OpTYhLT8HFzoHW1Yqw4cAOTCZpWKYJBZ+DUzVdIJRLGda/NyeuveBsUja2Vkin96rNy13Wi4lLwcLFlfJ96zFt3gfikdHJ6OjK+Xz1mrzxDXEIa3h4OTBvZhLkrzhIWkYiTgxXzprRm866bPHwagkIuw39Cc4JD4syhmW1blKVxvWKMmrCPxMR0c67UkaMPOHZcGKv16VWD+vWKMnbMHkJD43FwsGLe/I5kpKkZN2qPIDou6MHchR158SSUeTOPC1qdcrnxn9uel8/DmD35EBqNniLFvJm1uBOpyRmMG76b6IgknJxtCFjZldx53Vg9/zSnxPFT57416Dm4DtERSUwbspPw4DhsbFX4r+xGsTK5+PgmgulDdpAYl4aLuz0B63uSO587MRFJ+A3cTsjHaCytlUxb0ZUyVfNjMpk4tPEa2xYLAXxV6hdj/JJOqCwt0OsMrJlxlHNiJEPzHlUZOK2FuQty9fgjlo7bi15rIF8xb2Zs7YeLhwMgnGj3r7rATvEEXbp6QSav7ZVluykmPIGZvdYT+CVpPKADTXtWz/IlYDKZOLzqPNsChPXZfCVyMm37oGzHTOp0DavH7ebSfmEjr0ztIoxb1/eXAYzxkYksGbyFR5eEv+fStYsydn0/XP+Ga3Dc5wQ2TtrL9cPC+2TnbEPPGe1o3LvW385G+idUrOjS7PaTPLDfqSsHBK1H9VYVflukvX/pGQDqdKiI+y9cdfU6PTsXiILg4Q2xdfhxIw/g/N47BL4Kx8beki5jftyK0usMrJl2CICm3auRr7hPlvtTEtPZLAqPu41uZO6IgvB3v3r6ETLTNBQuk4tm3aqY79Np9SybfEgwJG1akkp1vwL05RNPuH/9HXKFjNFz2pn//l4/DeHwdmHLa6R/a+zF4/D6uRdcPfMcqUzKhDntUFlZCPlRs0+QnJhOnnzu9BoiaIIe3P5gjmgY49cSewcrYqKSWbFQeF879ahK0ZI+JCams0gM4mzZthwVq+QnPDyBwQO2/fQ9/77+nwAcuVyOh8fvtV3Xr19Pzpw5Wb58OQCFCxfm4cOHLF68+KeAo9Fo0Gg05n9PSRHIXyGRf4UbqSWpuu/hRoHaYMBeLpjv/cyhODufm69wY0t0hgAq/xNwk8fekeAEweTvW7gp6uzGaxFu8tg78CH+K9yEJCbhaGmJtUzB56QU3GyskSPhc3IqnrY2yJDwOSkFDzsbVDI5wfGJOFtb4WppxZvIWGxVSgq6OvMwOBwLuYwaeXNz+ZVg6Ne8ZCHOiHBTu7AvjwM/k5KpoZCXKwqkvAiJwkZlQYMS+Tnyp/Bl0KFKcS48+kByhppC3q542Nly5dlH5FIp/RpVYOfFR2RqdJTJnwMnKyvO33+HTCphaKuq7L3wSNDjeDrRuGJhVh0SDr7WtYqTnJzJtYcfhZiDHnU4dP4Jn8LjcbC1ZFKfeizZdoW4xDR8PBwZ1aMWs1efJTlVTd6cLozsUYsZS0+SlJJJHh9nJg5qyMzFp4iKTcHd1ZaACS1ZufEyL98KguM5U1rx8HEw+w4LB26vLlWoUDYPoyftIy1NQ15fN+bPasfWrdc5f1E0ChxWn7JlcjNq5G5iYlJwc7Nj4cJOhIXFM1ucOZcqnYtZc9tx7dJrViwStDrVaxdmkl9Lbl19w6LZf2AwGClfOR/T5rQlPCSeqSN2k5yYgZePE3NXdsPZ1YZ5kw9x8/JrJBKJoMPpUIHA91FMG7KThNhUXD3sCVjbg1x53Xh85yOzRwsbUbnzuxOwricu7vbCGvjA7cTHpODsZsesDb3wLeSJQW9g3ew/OC0ai7XqVY1+k4SRT3qqmrnDdvL45nskEgkDp7egZS9hpdZkMrFn2Tn2LBfcSys3LM6EFd3MrqpatY5l4/ZyTYTBFr1rMGBG6yxf9i/vfiSg70bzmvi0LQMoVimr3iYjVc3Skdu59YcwimjQpQrDFnbFQvWjOVzY+0gCeq4j5G0EUqmEHlNa0WF0419qM24ee8CKkdtITUjHQqWg3+yONB9Y97f1HHqdnhNrL7Ir4CiZaWqkUgnNBtSj+/Q22DnZ/NZr/BMr5t8EHE2mlttiPEadjpX/4tFCBb0K5+7Zp0gkEjqM+hFGvq3zu28TGRSLg6vtT2MZ0lMy2Tlf+BLvOq4p9s4/ft7Ht1wj7EM09s42dB/f9If7t80/RUpCOrkKeNCqb9YNrRunn3H/yhvkChkj57bPMoY9uOEqwe+isHO0ZtA3Y6uEmBQ2zBPWxbsNq0cucbysztCyeOoRTCYT9VqUprKo44mPSWGVmEHVqW8NComd1zNHH3Lv5nthPB7QFgulgqTEdJaIHZ2WHStQvko+DAYjC2YeJy1VTaGiOejWtwYmk4nFc06SmJBObl9X+g+ti05nYM7M46gztb9837+t/ycA58OHD3h5eaFUKqlYsSJz587F1zd7N8k///yTBg0aZLmtYcOGbNmyBZ1Oh0Lx40lr3rx5P4zBANRGI3Ik5kiGb+FGIbEgU0wFjzMHZ0rMqeBmh2Ljj/ELMon8B7j5si3lrLQizgw3dr8NN26W1r8NN0WcXbPAzcf4BKwtLHBVWRKSmISTpSWWUgWfk1PxsLVBapIQmZKKp50tUiMC6NjZopBKCU5IwtXGGmeVpVlcnM/FmUchwuZUVd9cXBajGFqUKsSpx28xmaBOkbw8/BhGqlpLUW93MJh4GS4Y9dUrnpdj94TxUseqJTn74C2pmRqK5XTH0cqSGy8CUchl9G1Ynh3nHqLW6alQyAdLuYLLjz8gl0kZ1roqO848ICktk/zeLtQulY91R4SRT8e6pfgclcSd58Kq98Seddl18gGhUYm4OFgzvmddFmy+QGJKJr7ezgzuVB3/FWdIy9BQOK8HAzpWYdriP0hL11Awrzsj+9Rm2sITxCem4+3pyMzxzViw4hwfRDfiBX5tuXjlFSdOPwVgSL/a5Pd1Y+zkA6jVOooVycGsaa1YtvI8t29/EFqw45uSJ7cro0btJilR9L1Z1IlnT0JZvPAURoOJKtUKMM2vFUcP3WeL6CHTpEVpRoxrzMmjD1kr2prXblCM8dNb8PJJKDPH7ycjXUu+gh4ErOiKhVLO1OG7ef4oGIVCxoTZbalRvyjPHwbhP3IPGWkacudzI2BtT1zc7bhy6ilLRMO9khV88VveFWtbFU/vfmL28F1kpGnIlc+dWRt64eblILgWj9rD/WuCdmfAlOa06iWYmMVGJOHXdwvB7yJRWiqYtLIblUTNjFatY9mE/WZ4aTewDr0nNzNDQUJMCrP6buLdEyECYkhAe5p0+9omBziz6xbrphxArzPgW8ybGdsH4eadtWMS9iGK2T3XEfo+ErlCxuC5nWjSq0a2I6Orh+6xYvRO1OkaHN3tmbxlACWqZp87BULy99rxu7mwS+jY5SuVi4mbB5GzkNdPn/N9vbz9jlUjt5vHUYUr5GPYip7/tq/L/9crOS6V9OQM4F8HnDsnH5GRqsbNx5mi2UQdZFf7xdFztZZl8cn/84vyjFQ1uxcJX/pdxjb9qY3A7sWnSY5Pwye/O816/bg+HhuRyJ6lQle079SWP6Tcv7j3iXP7hAuLYXPaI1d8hf+UxHTWzRQ0MZ2G1CVXga+/76fXEexbK+iIhsxoiYMIViaTiRUzjpGWoiZ/0Ry06/PV32fLsnNEhMbj4m7PoIlNzY9f4neMtJRM8hfxoouYQRUeEscG8fzUe1g98uR3x2QysXTWHyQmpJPL15W+Ynr4gV23zW7Fk/xbIZfLOHrwPvfFTKopM1ujVCpYv+YSH95HYfM3Ikf+64BTsWJFdu7cSYECBYiOjiYgIIAqVarw6tUrnJ1//MONiorC3d09y23u7u7o9Xri4uLw9PT84TmTJ09mzJgx5n9PSUnBx0egzO/hhu/gJl6TiUwiw4T0x+BMY9bgzKwOxT/CjVMWuPkqKP53OzdFXFx5HZtVc6OQSsktwo2NhQXOoojYydISlVRBRIoANxITRKak4mVni8lgIiIlzQw3oYnJuNla42ChEtyGLVX4OjvyJDQClUJO5Tw+XH0TiEQCzUoU5uQjYfOlXtF83H0fQrpGRwkfDzRaPe8j4rC3UlGzcB6O3xNMtbpUK8XJe69JU2spmdsTa4UFt18FYyGX0adBBbadvY9Wb6Bq0dxIjCZuPAvEQi5jWOuqbDl5l5QMDUVyu1OpcC42nRBWs7s3Ksf74BgevApFaSFnUq+6bD5yl4jYZDycbRnVrRZzNpwnNV1Ngdxu9G1TmRnLT5Op0VGyUA66t6rAtEV/kKnWUbxQDgZ2qcaUeSdITsnEN6cL00Y1YfbiUwSHxeNgb8WiGW05fPwRF668QiKBscMb4uxgzcTph9DpDJQtnYup45sxb8EpHj0WIMNvWkvs7awYM1rIlcqXz535Czpy7fJr1oihcvUbFmfs+CZs23iNg2JnpFO3KvQeWIvdW26wW9xgaNmuPINHN+T2tTcsmHYUnc5AyXK5mbGoE1qNjgkDtvPxXSRW1kr8FneidAVfbl16xYLJh9Fp9RQrk4sZK7pia2fJkR232CSOmGo2Ks7YOe2wsJBz7fQzlkw+hF5noHj5PExf1R1be0sS41KZMWAbH16EY6GUM2FJZ6o2FMSCn15/ZkbfLcRHp+DoasvMzX3JX1yIXUhOSGN2/628eiBoeIbNaU+jzl+voINef2ZGr43ERiRiY2/F1I19KFW1gPl+vc7ARr/DnNwmaAeqNy/DmOXdf3CSvXf+OQsGbSYjVY2zhwNTtw2kSPkfV8C1ah3rJ+/nzHbh9UrVKMSEjf1/OZJ6/ziI+X3W8fljtCA+HtuMblNa/faYIzUxnS3T9nN26zVAGEf1DehIgx41frvz8++WyWQiMTqZwBchBL8MI+hFKPGRiajT1GSkqslMV5OZqkZlrcSnoBc5C+UQ/rdwDvKWzI31TwSz/xv1/pEg4PYu4InK+uceRL+q0+Kad8Pu1X/rPQ95G8ENUePVeeyPnZRv69Dq8yTGpOCVx43GPWr89PX+ELf4Bs7KCidfauPMY6gzBGFx3XZZt7U0ai0rJuwHoFHnyhT7zrF4Y8AfJMenk6uAO+0Hfe0g6bR6lk48gEFvpEr9YtRo8tUt+cKRh9y/9ha5QsaYuV9HU4/ufOCkOGIeM6sNNnYCZJw8cJ/Hf34Ujv+57ZArZOh1BhZMP4pGraNU+Ty07iJkdJ068pB7t4SOzqSAtihVCt68DGenaPI5dEwjvLyd+Pg+is0ifA0cVp88vm7cv/uJw6IWZ8Tohpw+P+WX7/+X+q8DTuPGjc3/XLx4cSpXrkzevHnZsWNHFij5tr6/+jKJKvqfCfmUSiVK5Y822koz3Fia4cZCoiTToMNezISSSWRIkKIxfoUbYVT1I9zIxVTwn8FNQmbmL1fB/6WxVBa4ETQ3CqmUXHZf4cZJaUloUjLOVlYokRH5BW6MEJWaZoabqJQ0vOxtkSLAjbutDXYKCz7ExONopSK3oyNPQiNRKeRUyu3DtTeC503zEoU4+ViAmwbF83P7TTAZWh0lc3mSmaHjQ1QcjtaWVCuYi5NizlTX6qU4/ucrMjQ6Svt6YSGRcvdtCCqFnN71y7P57D1hA6q4L1qtnnuvhY2noa2qsfGPO6Rnaime15PSeb3Ydkr4w+/bvCLP3n7m8dtwLJUKJvaqx/qDt4iOT8XbzZ4hHaoxe905MjK1FMvvSZcmZfFbfhqtTk/5ErloW78k0xb9gVarp2zxnPRsV5nJ846Tlq6hUD53JgxugN+8E3yOSsLV2YYFfm3ZsecON+68RyaTMmVsEyQmmDZLML+qViU/o4c2wO+b0MyAWW0x6o1MGL8PjUZPseLeBAS04/iRh+wQAy7btC9P/4F1WLnkLGdPPgVgwNC6tO1UibVLz/GHuIbZo39NuvaunsWduGrtwkya3Yb42BQmD91FZHgCDk7WBKzsRv7CXpw+eJ/Vc09hMpmoUqcwE+e1R2EhY+OiMxzdKXTAWnerQv/xwljm6PabbFogzMZrNCrO2AUdsLCQEx4Uy/Q+W4gKT8DO0Rr/Db3M66UPrr1h3vDdZKZryFXAnZlb+uIualE+B8Xi13MDEcFxWNupmLq+D6WrfYWXuxdfsGDoDtQZWnL4uuG/fQDevm7m+1MT05k7YDNPb74DoOfkFnQc0fAHvc2+pWfYNf8PTCYTRSvlY+qWgdkCS1RoHHN6ruPD0xAkEgmdxzWl68QWP41NMBqNHFp+lh2zjmDQG3DJ4cSkLQMpXu1HU7bsymQycePIfdaN22UOxGzUuxZ9Z3fAzvlfF8v+7s8OfhnGo0sveHz5OR8eBf6WSV5KfCoxoXE8uvjcfJvSSkmTvnVoO7opbj5/z4n5P1HvHgpd44Llfj836tsKfhXOi9vvkMqkNOz5c+O9b2vvIuG4qdq8DL7FfH76uNiIRI6KeXR9ZrTJFnpNJhPrpwtbT5UblaBs7R8F5I+uveHW6adIZcJFwPcQtnf5eT4HxeLkZveDY/H9q2+4fOyR4Gszv0MWc7wD668Q+DYSO0crhs36GtUQFZ7AhnnCxlfPUQ3ILXZ8UpMzWDpdEEG36FyJMlWEEXBYUCxblgldmr6jGuIjblnt2XSN968+Y2OrYtxMIQcrJDCWjWIeXp9h9fDN7056mpp5M45hNJioXb8o9ZuUIDNTy9wZx9DpDFSpXoAWbcoSH5/GQnFk1rJ1WSpVzjqC/lX91wHn+7K2tqZ48eJ8+PAh2/s9PDx+2LCKiYlBLpdn2/H5VaXqtNhb2pOk0yKIjJVkfAM30m/hxsKG2EwBbkwmKZrv4EYhUZBmzpYSQMVJfJ0sJn7W9oSnCnBjI7Mg8Qe4cSIwKSHLKvgvx1KxWTU3X+DmU0ICtt/DjURGZEoanrY2mES48ba3w6A3EpWSRg57OyRAeFIynna22Cgs+BgTj6OVJbkc7XkaFomlQk7FXD5cfyvCTcmvnZvGJQpw/XUgmVo9pXJ5kZquJjA6AWdbKyrl8+HUIyF8sVuN0hy5/QK1Vk+5fN5gMPHggxCi2at+OTafvofeaKROqXykpql5+C4clYWcIa2qsv7YbUGPU8Cbgt6u7DorjDgGta7C3WfBPP8QgbWlBRN71WPVnuvEJaWTy8uJ/q0rM3v9OdQaPWWK+NCqTnH8V55FpzdQrawvjWsUYcbSU+j0BqqU9aV9kzJMmnPU3MkZ2a8OU+YcJzo2BU93e+ZPb8PaTVe5/yhIcDSe0pLEhDSWrDwvBIDWKcrAPjWZNOUgnwJjsLVVMX9OB+JiUwkIEFK9y1fwZcaM1mzfcoMjomNxrz416NC5EvNnHefGlTdIpWL0QqPiLJx1nCvnxUT0sY1p3qYsB3fcZqtoyte4VRmGT2pKSGAMU4fuIiE+Dc8cjsxZ0x0vbyd2r7/C7nXCVWuTduUZOqUZRqORRZMPc/WMuG4/thFte1bDZDKxacFpjoqCwpbdqzBgUlOkUilvnoTgP3AbKYkZeOZ0ZvaWPmZb97P777J6+lGMBiMlK+dj2rqe5qu9Vw8CmdVvCymJ6bh5OzJr+0Bz2/xLEvimWUJOTalqBZiyvk+Wlnz4x2j8e6zjc2AMKislE9b2onKjrFk9mWlqloz4qrdp1qcWAwM6ZPsl8/DySxb030RqYjq2jtZM3NSfcnWL/fR8ER+VxMK+G8y2/tVblWfkquzjHLKrmNA4Vo/ewb0zTwHwKejFyNV9KF7t52Owf7fUGRr+PPmIB2ef8PjyC3Nm1ZeSSiV45fMgT/Gc5CmWE/dcrljZWWJpozL/Nz0pg9C3nwl9+5mwdxEEvwojJjSOY6vOcnL9BVoObUTfuZ3/VyMi3j74AjjZmzL+VZ3cJBwzlZuW+S0heMjbCG4cEwT6Xcdnv8b9pXbMOY4mU0fRSvl+mhh++/RTnt58h0Ipp//Mdj/cr8nUsnbaYQBa9qlBniI5stz/8WU4h8U08KFz2mVZP09PVbN6mgAkrXpXp1Cpr742H199NkemDPVvjaO4gWYwGFky+TCZGVqKlc1N657CmNlkMrE64A/iY1LJkduFPuLqtl5nYOHUI2jUOspUykvzToLh5aunoewXL9RGTGmOq7s9Wq2e+dOOoNXoKVspL606VRS2tBafJSoiCXdPB0ZMaIJEImHt8vOEhcbj4mrL2MnNMBpNzJ/zB0lJGeTN58bAwXVRazJ++f5/W//PAY5Go+HNmzdUr559tkflypU5efJkltsuXLhAuXLlstXf/KosZaqfw434H3PnJjMduUQGJhkagwEXpS0xmanIxM5N2nfBmdnCjdUXuBGzpTSZokOx8Byhc/NruAlJTOJnguK/AzfR2cANQHhSCp52tljLFXyMicfJ2hIfe3uehUVhaaGgfM4cXH8XhFQioVnJQlng5tqrQNQ6PWVye5GUmklQTCKudtaU883BmcfCFXf3GmU4fOs5ap2eigVyotPoeRoYgbXKgu51yrDp9F1hvbtMfhIS03nyMQIrpYLBLSqz5ugtNFo9FQrnJJebI/svCqZ6w9pV49qDD7wOFLajxvesw/Jd10hMySCvtzO9WlRk9rpzaHV6KpbITYMqhZi1+hwGg5E6lQpQo1xe/JedxmAwUqtyARrXKsrkecfRaPWUKZ6TQd2rM3HWERIS08mZw4k5U1qyZNUFnr0MR6VUMHdGGwIDY1izUThxtGxWmi7tKzJ2wj7CwhJwdLRm0YKOfPwQzaKFQqelRo1CTJzUjNUrLnBOhIsvuVIzJh3k4b1A5HIpU/xbU6FyPmZOPMS9Ox8EwbRfS2rVL8rmlRc5vFsYX3XsVY3eQ+rw6mkofqP2kp6mJk9+d+as6o6DkzVr5p3ilLi50HVQbboNqo06U8vs0Xt5fOcjMrmU0bPaUK95aaGFPfUw104Jv1efsY1o11fQrdy9/Ir5owQfmwIlfJi5sTcOzjaYTCZ2LTvPvtXCNmS9tuUYMeerI+q1Px6zZMwe9FoDBUrmZMaWfmabeYPewNrphzkjZto06VaVwbPbZWnZP77+hrn9N5OekolbDif8dw0iTxHvLMdzZHAsM3usJfj1Z+QKGUMXdqFx9x/PI0ajkX2LT7Nb7PDkL52badsH/3Ij5uGlFyzst4HkuFSUVhYMWdSNhj2y1/Jk9/NOb7rClmkHyExTo7CQ02lCczqMa/5vp2BnVwa9gSdXXnJl7y1uHb+POv3rgoXS0oLiNQpTpm4JSlQvRK6iPr/lhFz0Gy2SyWTi0aXnHFhwgmfXX3Nk+Wk+PA5k2v7R/yvmg3qdnld/ChfARSr+/tX8l0qJT+PiXgHcWwys91vP2TX/xNfuTfGfd28+PA3h0gHhmBwwq322fx/qdA0b/IStqHZD6uOZ68cO2J5l54gIjsXZw56uYxpnuc+gN7B8wn6MBiPVmpSkSsOsNgeb5vxBbGQSHjmd6TGmofl2rUbPkgnCaKpao+JZRlPHdtzi5cMgVFYWjJn3VYx85dQzrp97IWxHzWtvNhfcte4KH159xsbOktGzhC5NWmomC6YdwWg0UbdpSWo2EC4Wtq6+ROCHaOwdrMxuxRdOP+PK+ZdIZRIm+bfC2kbFlYsvOXfqGRIJTPJriZ29FXt23ebJo2BUKgVT/Vohk0tZt+zizz+o7+q/Djjjxo2jefPm5MyZk5iYGAICAkhJSaFnz56AoJ/5/PkzO3fuBGDQoEGsXr2aMWPG0L9/f/7880+2bNnCvn37/vbPTtFpkVuoUEmVpOt12H0DNzKpHLVBbx5LySQyMAkr40LnJhWpRIpSakGqTpsFbpwtbIjNzMDRwjKb+AUZtnIhFdzd8mv8wrdjKQ9LWyLSUrKFG5OJLJqbb+Hmi+bmt+DGwQ6D1ih0cRzsMJng8zdw8yk2AWdrK7zt7XgeHoWVhYKyPjm4+S4YqURC0xJf4aZpqUJcef4Btd5AOd8cxCdnECzCTdk8OTj35D0SiQA3B28+Q6MzULlQLjIztDwPisRGZUHX2mXYdPoeRpOJhuUKEhWbwvPASKxVFgxqXkmAG52BKsVy4+5gw+ErwpfvqI41OXfrNe9DY7G3UTGuex2W7LhCcpqaArnc6NK4DLPXnUOnN1C9bF6qlc7L3LXnMZpMNKpRhLJFvAlYJSR1N6xRhBoV8zF9wR/o9AYqlc1Dr/aVmDDzCMkpmeTN7crMCS2Yt+Q0r99FYm1lwYKZ7Xj6PJQt4mp45/YVadqoBKPH7SUqKhk3VzsWL+zEw4dBrFoptGgbNSrB8BENWDjvJDeuvRUciyc2pUrVAkwes5dXz8NRqRTMmNuOwkVzMGX0Xl48DcXCQs70ue0oVzEvywL+4PwfTwHoP7I+7bpV4d7N9wRMPIBWo6doqZzMWt4FpUrBwsmHuH7+ZRYDv+TEdPyG7uTdi3CUlgqmL+1CuWoFyEjXEDB8N0/+FKEnoC11RVOxM/vussZfWLMuX7MQU1Z2Q2UlrIGvmHKIS+LorOuI+nQd2QCJRCKsj6+7zLb5Quu7csPiTFjZ3XyiTE/NZN6gbTy6LoiU+05rSZsBtbN8MZzcet3czi9S3pdpWwfg+N0X6dMbb5nTdwOpiek4utkxffvgbCMXUpPSWThgMw8uCht8jXvWYPD8ztluVIHwZbpj9lEOLhXEpb7FczJlxxB8Cvyo9cuuIgKjWTZ4C89viGnVlQswam0fchbK8RfP/PsV9i6CM5svc2XfLfP4C8DT140abStRtkFJilQu8G9DlUQioVz9kpSrX5LbJx6wsNcant94w8hq01h9dy62jv+zm1+v734gIyUTe1db8n7TnfjdOrnpMpoMLflK5qJkjb8eLX54GsytE8K4p/vklj99nMlkYv20AwDUblfxp+Gre5edJS4iCXcfZzoMb/jD/R9fhnFkg3CxNGxuB6y/E9Ue2XiVTy/DsbG3YvCsrJvD96+85vzB+4Kp3sKO5o1EgD2rLhL8Pgp7J2uG+n/1ygl6H8UOcXw0cFIzPH2EjlbU50TWzBU3vAbVpmAx4YLi2f1As4vxqBktcXW3x2QysTzgJNGRSXh6OzF0grBhdvfme47tE7U7fi1xdrElLCSO1UsErV/3vjUpWsKH8LAElouj8C49q1GyTG6ePwtlx1bBPXz4qIbkzOXC9u03OHPm66j0r+q/Djjh4eF07tyZuLg4XF1dqVSpEnfv3iVXLuEPNzIyktDQUPPj8+TJw5kzZxg9ejRr1qzBy8uLlStX/m0PHKEkqKQq0vVa7ORWxKszkSBFLpGT+R3cyExyMsxwk4ZUIsVSqiRFp8VV+RVuXCxsiclMx+GbVHBva3vCUpORS2TYylVmuPkSnJllLGVlQ0RqimjiZ/xfhxsrmTxbuCmXU4AbmVRCk+IFOSVqbpqVLsTlZwLclPf1JiYpjdDYJNztbSiZy5PzT98jlUjoUbMM+64/FUTDhXOTmqbmZXAUtpZKutQsxaYzdzGZoEmFQoRHJfEiKApbKyX9m1Zk9ZFbaPUGqpXIg4OViuPXhTHN6E61OHX9JR/D4nC0s2JM11os2naZ1AwNRXzdaVevFAHrz2MwGKldIT9li+Rk/gbhQG5epziF87gxb40wQ25erwTliudkxuJTGAxGalbOT4dmZRnvf0TU4HgwfWxT/Of9wcfAGOxsVSya3Z6bt9+z54AgcO7TvRrVqxZg9Ji9xCekkcPLkcWLOnH50iu2iEK6Nm3K0btPTWZOP8KD+0KXZuqMVhQr7sO44bv49CEaG1sVAYs6ksPbifHDdvHxXRRW1kpmL+5EwSJezJkiRC9IpRJGTW1OwxaluXT6GUtmHsdoMFKxegGmzGuPyWRixrDdPL77CblcxriANtRqXIKYyCSmDNhGeHActvaWzF7bk0IlfEiKT8Nv4HY+vPqMysqCaSu6UrZaAaE7s+IC+8RRWMP25Rk+qw0yuYz0VDVzhu7kya33SGVSRgS0pWHHioBwpbluxlFOi52ZVn1r0m9aS/PVYXR4Av49N4hbVhZMWNWDKo2+Xo0a9AY2TP8qJq7bviIjFnfJ8gVtMpk4ufUa66ccwGgwUrBMbqbvGIyL51cvkC8V9CqcWd3XEBkUi4VKwbAl3WjQpeoPj/tS0aFxzOu9jjf3BH+n5v3rMmBeJyxUf93xMBqNnFh7kW0zDqLJ0KK0sqDv7I40H1TvPyoi1mn13DnxgFMbL/Hs2ivz7XbOttTqUJk6natRuFL+vx3q+btVtWV5Vt4OYFqL+UQGxrB21HYm7hj2P/KzvtSD88IXXLl6Jf72e6nJ1HJivdABaDey8W+9LzsCjgNQq10Fchf+OZjeOvmYV3c/orRU0Gd69llSIW8jOLpe6HIOmtP+h+BXg97AivH7MBqM1GhemkoNime5Pzwwht3LhODLAX6tsoRtpiZlsGKKMNZq1bs6xSp81Se9ehTM4U3XABg+u615a0qn1bNYNOasUKsQDdsJWXEGg5HFUw6TkaahSKmcdOon6JRSkjJYJK6KN25bjmr1hK3I8ycec/PSK2QyKZPntsPaRkVcTApLxPypVp0qUql6AbQaPXOmHUGdqaNU2dx06lEVrVbPHL+jZGZqKV4qJ9171yApKZ05s45jNJqo37A4DRuX4NGjIHaL55Lfrf864Ozfv/+X92/fvv2H22rWrMnjx4//7Z9t+S3caNRIkGAhVZBh0InZUulCNwcFGQb9V7hBipVURbJOkyUV3FVpS3RGOvYWKpLVGowm8LF2IDQ1CblEhp3iK9zEZnzbuUn4mgouZkvp9EbStNq/hJuvPjeCoNjxG7hRSeREpKT+NtxYyuQExiXiYm1FjiydGy8z3DQt/lVQ3Lx0IS4++4BGb6BCXm+iE9IIjUvCw8GG4j6eXHz2wQw3e689RWcwUL1IbhKTM3kdGo2dlZKONUqx6ew9TCZoUbkIn8LieR0i3NeviQA3Or2BmqXyYm1hwenbb5BKJIztUosjl54RHJGAi4M1o7rUZP6WS4L4OL8nLWsWY+6G8xiMJupXKURRX3eWbBG+oNs1KoWPuwOLNwonmnZNSlPI14NZy4TxUf0ahWlerzgTZh4RBMmFvJg0ohHTZh8jODQeRwcrFgd04Oz55xw5IWiAhvSvTemSORkzbi/JyZnkye3KgnkdOH78EfvELajuParSrl0Fpk06wPNnYahUCvwD2pIzpzNjh+wkLDQeB0dr5i/rgr29JWMH7yAsJB57RyvmLetCDh9npo/ay9MHQSgUMibPaUvV2oU5vu8u68Ttp7pNSzJmeksy0jVMH7qLdy/DUVlaMH1pZ8pWyUdoYAxTBmwnLjoZF3d75m7sRU5fN6LCE5jWbyufQ+Kxc7Rm1oaeFCzug0FvYLX/Mc6J460uw+rRbYSQDZUQk8L0PpsJfB2BysqCKau7U76W4I2hztAwf9hO7l16JayP+7XK4tHx8UUYfj03kBiTgqObHTO3DyB/ia/5O+mpmcwfsIWHVwXvnl5TWtJ+WNaEb71Oz9pJ+zkjZkTV7VCJkUu7Z9uNuXHsAUuGbUOTocU9pwvTdw0hX4kf836+1N2zT1k0YCNpielY21sxek0fqrf6debQl4oIjGZx/428uiPksZWsWZjR6/rhmcftL575+5UYk8yJNec4u+WKuVsjlUqo2LQMjfvWoVyDkv9rmphcRbyZsnsko2v6cXnvLep2q065+iX/+on/Yj04L3Rvy2XjQP1XdXHPLZLjUnHP6UKNvwhKBXh26y0PL79EJpfRfVKLnz5OnaFhs78AF+2GNsxW12M0Glk1cR8GvSAsrpTN739041U+vhC6M4O+684YDEaWj9+PTqOnTI2C1Ptuq2rdzOMkxKTg7etKz3Ffx1oZaWqWTDiA0WiiXuuyVG3wVWe2e/UlQXDsYMXIWW3Mx9ehbTd5+TgYSysLxs9tj0wuE7o0M48TF5OCd24XBoo/IzQolrWLhPNPr6F1KVg0h+Bt43eMlORM8hX0oO9wYRS4YeVFAj/GYO9oxUT/VshkUtavvMjH91HY2Vsyxb8VEqmEBXNOEh+XRs6czowY1ZD4+DTmzv1DyKhqWIIbN3/+mX1b/3XA+W9Wml6Lo7WjGW6UUgvSzXCTgRQpCokwvnIW4UaCBCuZADcuyh/hxk6hIlWjxWAy4W1tT2hqEjKJDHuFinh1Jm6W1sRlZGD8ZiwllUjJIcKNvVKFQcyW+tah+Gdw4yvCjbW4Cv493Hj8DbgJ+gnc3HofIsJNwW/gpjAXn70X4caHqIQUwuKS8XSwpaiPO5eeC3DT/Ru4qVE0D3GJ6bwNi8HeWkX7aiXYfEZoX7asUpT3ITG8DY3F3lpFn8YVWHXkJnqDkTpl8qOQSDn75xtkUgnjutTmwPknhEYl4upow/BONZi3+SIZah2lCuagcZXCzNt4EaPJROPqRfDN4cKKHUIXoEvzcjjaqFixVRDodWlZHm8PB+auOiu4H9ctRt2qhZg46yhqjY7SxX0YM6g+k/yP8DlC2J5aPKcjh47e5/Q54Upy9LAG5Pd1Y8y4faSnayhYwIN5czuwe9dtjh0VxjYDB9ahUeMSTBy7j3dvhbXtuQs64ORozZghO4mOSsbN3Y4Fy7sKwuJBO4iOTMLV3Y75K7pi72DN5GG7ePMiHJWlgplLOlOyXG52b7zGLlFs2LpLJQaMbkhCbBpTBm0nNDBW6NCs7k6hEj68fR7G9CE7SE3OxCePK3M39sLVw4HAt5FM67+NxLhU3LwcmLO5D955XNGodcwftYe7l18jlUoYMqMVTbsI69zhgTFM67WJ6PBEHJxtmLmlLwVEg6/E2FT8+2zi/bNQLJQKJqzsRtXGX7/w7l9+xbzB21BnaMldyIuZOwbg9s0XQnRoPDO6ryVE9M8Zv7rXD2LN5PhUAnpv4MUdwUCwz/TWtBve8IcrcoPByPZZRzm0UrjqLV2rMJO3DPypgZ5Bb2D7rCPmkVTBcr5M2T4Ej2zs878vk8nE2a1X2TBxL+p0DZY2KvrN7USTvrX/Y12bqOAYDi89xbltV9GqdQA4eTrSuE9tGvepg9svAkD/J6twpfw0HVCfk+svcHn3zf8xwAl7H0nQyzBkchnl6hf/6yd8U3qdnoPLhM+1zbCGf+kObTAY2ThFGDk17lkDL1/3nz52//KzRIfG45rDkfbZjJ0Azu25w6t7n1BZKRkU0OGH+z8HxrBbHN0MmNH6hzHsia3XefUgEEtrJSPmdcjyt37r7HOuilEOYxZ1QvkN5G+ce5LI0HjcvBwYNP0rpD2/H8ihzeIIaGZrnFwFwfG7l+HsWiNc/A2e3Nw8sjp75CF3rrxBLpcxcb7QfdJqdMybchiNWkfpir606y44Je/fdpPnj4JRWSqYLNpN3Lz6hpPi+XDCdGFcdfPaW46L7uoTprXExdWOfXvu8OB+IBYWcqb5txa8vKYeIikxA19fN/oPqMXUaT/9KLLUPxpwbOWWJGjUgASVTCkAzzdwYyFRkqbX4ay0JlaEGxu5FUlaNS7ibSDBTWlLlAg36VodeqPJPJaSSaQ4WlgSl5mBq8qa+IxMDCYTvnZOfEpMQIIEb2s7wlKSsbdQYjJAqgg3YYlJGL+HGxchFfxLttSHuPhvTPyEsMxv4Uby7baU7ivc8N1Y6vvOjbXSgjLenma4aVK8ICcfC1tQLUoX5oIINxXz+RAVL8KNoy1Fcrhx+flHZFIJ3WuUYc+1J+gNRmoV9yUmPpW3YbE4WKtoV7U4W84KXYE21Yrx6lM078NjcbCxpHejcqw6chODwUj98gXACBfuv0MmkzK+S232nnlIeIzgazOkfTXmbb6AWqOnXBEf6pTPz4ItFzGZoGWd4ni62LF2j3AQ92xTEQuZlHW7Bfzv1a4SjnZWLFontKxbNypFpbJ5mBxwFK3OQMUyeRjWpxYT/A4TFZ2Mh7s9iwLas3vvHS5cfoVUKmHC6MZ4utszftIBocVazJvZM9uyedM1TovGfyNGNqBG9YKMHbmboMBY7OwtWbC4Mwq5jNFDdpIQn0YOHycWLu9KRoaGSSP3kBAn3LZgZTfkchkTBm0n6GMMNnYq5qzoSoEiXmxYeo5je4XxWI9BtenSryaR4YlMHrCN6IgknF1tmbuhl9mdeNaoPagztRQs7s3stT2xc7DixYMgZg7dSXqqmtwFPAjY1BtnNztSkzLwH7iN149DhHyqZV3MV35vn4Ywo+8WUhIz8MrlQsCO/niKAt3wwBimd99AVJjQCfLf2o/CZb9qEc7svs2aKQcxGk2UrlGQqRv6ZNEYvHkUxKye60mKS8XJ3Z4ZOwZR4DudRci7CGZ0WU1USByW1kombexPxYY/Xg2nJqYxr98mHl8RRjfthjekt1+bn36xxUclMa/nWl7cFgTxrYY0oF9Ax9/ytomPTGL5kM3cPyd0F4pXK8i4TQPwyP2f6doEvQzjwMITXDt4B6PBCEDB8nlpP7Y5VVqU+1/dYPpZ1elUlZPrL3D39GN0Wv1vewL9nbp+WPh7L1O36N9eq7968C7RIXE4uNrRKBtTve/r0r47fHoRhrWdJd0n/7x7E/YhksOrhFH3oLmdfvBjAkiITmbrbMF0r8ek5j8YUhqNRlZM2I9Wo6N0jYLUa5+1uxT6IYrtYlxJ/+mtcP/G3DApLpVV4hp3+0F1sqSB37n4kvOHHpg1OV+OtdSkDBZOOIDJZKJh23JUE4/tjHQNCyYexKA3Ur1BMeq3FC4sQgNj2CB2aXqPqE/+woKZ5ZaVFwl8H4W9ozXjZ7ZBKpXy4kmIOSV8+KSmeOdyJjIikaVzheWgDt0qU75yPiIjElkirn936FKZilXy8eJ5GNvEbKzhoxrgm9eNbVuv8+xZKJaWFvjNaIXyb2jI/vtHxX+xEjUaZHIVliLcfEkFF7o5SlJ1OpwtrInNTAck2MqtSNSqReARbnNT2hGVkYatQkm6VofOaDSPpaRIcbKwIjYzAxeVNYnqH+HGx8aesJRk7CyUYJSQotEIqeAi3BR1ceNVbAyQFW7yOjjy/ku2lMrqG4diCz4np5hN/KJShQ2pL9tS3g52gMS8Cv5FUPw93Hw7lhI0Nz/CTaV8PkTGpxD6BW68XLny4hMyqYQeNcuy++pj9AYjtYvnJTouhbciwLStUpwt5wS4aVu9BC8+RPDhcxxOtlb0bFiOVYdvYDCaaFihIHqdkSsPBffi8V1rs/PkAyLjUvBytWdgmyrM3XwRjVZPxeK5qF7Kl0VbhTFUm3olcbazYsM+YWbbt31ljHojW/YL2TP9OlfF0kLB8s2CmK9ji7KUKJSDaXOFFe5qFfPRv2s1xk47RGxcKjm8HFg8uz2btt3g6g1BGDxtYnPsbFRMmnIQjUZP6VK5mOnfmpUrLnD5kgBAY8c1oWyZ3IwesZvwsAScnKxZuLQLWo2escN2kpKcSZ68bsxf1oW4mBQmj9pLaop428quwuMGbCMiLAEnZxvmre6OT25nls3+gwt/CFtkg8c1plXnSgR9iGLKICE/ytPHiXkbeuGRw5GbF16yYOJB9HoDZSrnY/ryLlhaKbl75TXzxuxDq9FTrGxuZqztgY2dJbGRSUzrs4XQj9HY2FkyY30vipUXIOX+1TfMHbYTTaaO/MW9mbWlLw7iqunbJ8HM6LWJlMR0PHI6M3vnQLOHjdFoZMeCUxwUrwzrd6zIiPmdsmxK3Tz5mMXDd6BV6/At5o3/zsG4emXV0jy88oq5fTeQkarGI5cL/nuGkTsb5+DgN5+Z2XU1kUGxKK0sGLOqFzV/MZJ4ev0N83uvIzEmGStbFaPX9P2tEQbAjSP3WDliO6kJaSiUCnrPbE/r4Q3/I12bsHcR7Jx1iOsH/zTfVrZ+CTpNbEmJGkX+x7Q1/0oVrpwfJw8HEqKSeHbtFeUa/Ge7OCaTieuHBMCp2f73ohW+lMFgZL+Y6t1meKMs4tvsKiNVzfYAAUi6jG+G/U9gymQysXr8XkHDUr84VZqUyvZx66cdIj0lk/wlc9Kib60f7j+3909e3P2I0tKCkQs6ZflcDXoDi0fvQafRU65WIRp1rpTl56+cdoSUhHTyFPKky/D65vsSYlNZMVUAn7Z9a1BCNAL84lYcH51CjlzODJzczPyctXNPEhEaj6uHPSP8WiGRSNBqdMyfdMi8Et66u/De373xjuOi+d84/1Y4u9qSkpzJ/GmCD1i9piWp16Qker2BeX7HSE/TULhYDnoNrC3ELoi3FSnmTe+BtUhOyhB0NwYT9eoXo1GTkjx8EMiePcI5e8yYRnh7O7F2/blffnbf1j8acBDHTal6DQ4KK+LUGYAES6klKTotThaCDgck2CusSdBk4mRhRZwIN+5KOyIz0rCRK8nUGX6AGxeVNTEZ6biorEhWq9EbTeSxdeRTYgIgIaeNPaEpydhaKJEaJSRpNPjY2vM5OUWEG1cz3BRzceOVCDf5HJ14FxuHlUKBu5WQCi5kS1kQnpyCu83X+AUvO1uM38NNYjIedjZYfbMt9TO4afpt56ZMYS48/QI3OYmMTzbDTWEvV668DEQuldK9Zhkz3NQpkY/I2GTehcfiaGNJmyrF2CrCTYcaJXj87jOfIuJxtrOie/2yZrhpVLEQGrWOa48/oZDLmNCtDtuO3yVKNO3r37oy8zZfEDarSuahYrGcLNkuwEr7hqWxUVmw+ZC4rtmpKpnpWvYcF37ukO41MBpMrN52DYDubSuSL5crMxaeFATJ1QrSvX0lxkw9SEJiOrl8nFkwsy2rN1zh9p8fUChkzJjSEikwdfphdDoDFcr7Mm1KCxYvPMPNm0K3afKU5hQs6Mno4buEjSp3OxYt7UJiQjpTx+0nI11DwcJezF3ameBPMfiN209GhpZCRXMQsKQzKUkZTByyk7iYFNw97Zm3pgeu7nbMnXKYW+LYaIxfK+o3L8XrZ6H4Dd1FWqqaPAXcmbOuJ04utpw98oBVs04IGVYNijF+XnssLORcPP6I5dMEv5qKtQszeWlnlCoFYZ9imNp7M7GRSTi72xOwta/Z8Ovi4QcsnyxsM5WtUZCpa3pgKV6t3rv0inlDtqNR68hfwodZ2weYwUer0bFszF6uiXqlbmMb02VUI/NJ3GQycXjNRbaKYs6KDYozcV1vLL9zqP1j8xVBTGw0UaxSfqbvGJTtF8+fZ56ycOAmMtM0uOd0YcbuoT9d7TWZTBxcdobt/kLoYJ5iPkzbNQzvX9jwf6mM1EzWjtnJxd3CynG+0rmZsGUQuX4hRP3digqOYU/AUS7uuo7RKBiZVm9bkU4TWpH/J9s5/+2SSqVUbl6O05sucf/sk/844AQ+DyX0bQQKCzlVmpX5W8+9ceQe4R8isXG0plm/7HOhvq2Dy8+QGJ2MZx5Xmv8kRwrg6uH7PLv1DguVgsHzOmULnHfPP+fmycdIZVJGLe32g4lkdHgCm8W//V4Tm2XpzgAcXHuZD8/DsLGzZOTCrD/j4uEH/HnhJXKFjLGLO5kN/UwmE8snHyIlMR3fQp50H/V1bHbhyENuX3iJTC5l/KKO5mP46ulnXPrjiRAlM78DtvZCt2fTkvMEvhO6NGMD2iKVSomNTmaJv/A7t+5SiQriMsKSWSeIi0khR04nhombVFvXXeWtaPw3eVYb5HIZ61Zc4N2bCGxtVUyZ2QqpVMr8OX8QF5uKT04nRo5pRGxsqll306x5aerULcr+g/c4cPDeX35+X+ofDThf4MZeYUWcOhOQYCOzIkmrwcnCmjgRbhwUQmSDo4UV8SIEeajsiEhPxVquRKM3oDUYzJobCRJcVdZEZ6TjrLIiWa1BZzTia+fIp0TBpC+3rQMhyUnYKCyQm6QkatT42NoTlZKKwWiiiIsrr8Sx1Be4kUkk5Hd04m1sHJZyOZ7WNgTGJ+JoqcJGbkG4GJwpk0iITBbgBiPfmPhJCEtMxsPWBhu5xU9WwbMXFP8Mbrwc7Sjs5WKGmx41y7Drl3AjzFs71izJwzdhBEYmfAM3NwXdTKXCZKRruPFUyKSa2K0OW47dJTohlZwejvRuUZG5my+i1RmoVtqXMoW8Wb7zGgCdmpTFQipl+1HhIBjarQaJiens/0OY/Y7oXZuMDC1bxM5On05V8PZwYNaSU4LAuGZhOrYsx9gpB0lKzsA3tyvzZrRh6arz3H8YhIWFnNnTW6FR65g5Rwi6rFo1PxPHN2VuwB/cu/dJiGPwa42PjxOjh+8iPi6NHDkcWbisCxHhCfhNOIharaN4qZzMXtiRNy/DmTlR6AKVLJubmQs6EBWRxORhu0hKSMcntwvzVnfH1k6F/5h9PPrzoyAyntueqnUK8/juJ2aN2os6U0vhkj7MWt0dWztLDm29YXYabdyuPMOmCQ6937oT121ZmtEBbZHJZbx7Fopf/62kJGbg7etKwNZ+uOdwFABk4zW2LhBa5HValWH0go7m7su5fX+yarIwdipXqxBT1vU2nzTTkjOY3W8zz8W185ELO1O/Q0XzMWjQG1g75QBndoq+JH1rMWBWuyxfAga9gfVTD3BStLWv37kKwxd3/WHd2WQysX/JaXbOFTxLSlQryNTt2UMQCEGHSwZt5rb4t1G/WzWGLe3xl1f3IBjNze+1lsjAGKRSCZ0mtKDrlFb/9qgoMTqJ3QFHObvlMnqdAYDKzcvS078DviX+/kr0/3b5FBS6aUmxKf/x1z4j6uYqNy/7t2Ii9Do9u+YK3Zg2QxtibffrLKPI4FiOrBG2LfvP7vDTtfrUpHQ2+h0EoPOYJnhmo9NKT8lk9UTBwqTt4Hr4Fs3q3WQ0Glk2di+ZaRqKlMtD895ZYx0+vgxnz3KhYzF4VltcPBzM90WExLFeDK7sPqoheb8xAzy1508eXH+LwkLO+CWdzeATHhTLOnFU1GNEfQqK4B8RFs+q2cJrdR5Qi2JlcwNw69IrTh4QzqXj57TF2dUWg97AvMmHSUnOIF8hT/qIXaMje/7k7o13Qn7U3HZYWllw58Y7DotLFmOmNMfD04GbV99wVIxdGDe1Be4eDuzecYsH9wNRKuVM92+DXCFj1qxjJCdnki+fO0OH1uPpsxA2i+eA361/NOCkGjQ4KRyJ/w5uHC2szHDjaCF44whr31nhxkpugV5vQiPCTVhqMiDB3dKWqPQ0HJWWpKq16IxG8ohjKcHQz4FgEW6UEjnxmZl429oRnZKG3mgSwjJFuCnu4s7L6BikEgkFnFx4GxuLSi4nh40dn+ITcFCpsFUoCUsU4MZCIjWHZUpNEj4np+Blb4tMIiU0MQkPOxtsFcqvJn4O9jwLi8TKQkH5nN7ceBckwM03PjctyhQ2b0v9ADc5hLHUl87NriuP0RuN1CuZj88xAtw42VrRuvLXzk3HWqV4+DqUwMgEXOyt6VavjBlumlYpQlqqmhtPhdypCd3rsPnon8QkpJHL05GezSowb/NFYbOqbF6K5/Ni1W5hZtu1eTkwwK4TAkSN6FGL6JhkDp0WNu7G9KtLQmI6O8Q294Bu1XFxsCZg6WlhRb1uMVo1LsnYqQdJSVVTIJ87AdNbsWDJWR4/DRFM/Wa2JTEhjXkLBCCqU7sIo0Y0YJb/MR49CkaplDNrVlucnW0YM3K3ECyX24WFS7vw8V0UM6ceQqc1ULaCL/7z2vPkQSABU48IXaAq+Zg+px3Bn2KYMmI3aSlq8hbwYO7qbigUMqYO383LJyEoVQr8l3amTMW83LnymnkTDqLTCeMnv6WdUVoq2LrsPAdFD4mO/WrSa4RwEtq+7DwHNl4DoE2vavQVIxke33rP7KE7UWdohdHTpj44ONtgNBrZMu8UR7cIr9VuQC16T2iCVCrFZDKxd/l589pq/Q4VGDHvK/jERSYxvft6gt9GYGmjZNrGvpT5xnckI03NvP6bzZtSA2a1pdV3V8vpKRnM7beJR1de/VJMrM7QsHTYNm4cE2ClRf86DJjT4afAEfo2glldVhImhnAOWdydJn1q/eXIx2AwcmjpKXbOOopBb8DNx5kJWwf/227E6gwNR1ec4cDCE2SmqQFhFNXTvwOFKvx9M7v/VlmJ8JCRkvkffd2M1EyuiBclTfvV/lvPPbfjBp8/RmPvYkvroQ3+8vGb/Q6h0+gpVbMwlX8ycgLBsTgpNhWf/B60/cnrbpl9jPioZHL4utF17I/p46d23OLZ7fcoLS0Yuyxrd0er0bNk9B4MeiNVG5egduuy5vsMegOLxuwjM11DsQq+tBVDLgFCPkSxWfSd6jO+ibkDq9PqWTj+AJpMHSUr+tKurwBTOp2e+RMOkJGuoViZ3HQZKLy/UZ8TWSZ2adr3qka5qkIg6Y51V3j1LBQrayVT5wvRLa+fh7F1tSAPGDSmEfkKehIZkcjiAMFHp02nilSrVYjwsAQWf9HidK1MleoFePQgiB3bhPPLyDGN8M3rxupVF3jzOgIbGxUz/FuTmqpm9pw/MBpN1K5VmJvXfvqxZKl/NODYyS3NcGMrsyZRq87SpXGysCFWnYGDhSVJajWmb+DGUmaB0SAh06Ajxzdw42Up3O9goSJDq0drNJg1NyDB186RoKRErOQKLKVyYjMyyWFjR0xqOjqjkcLOrrwWHYpLuLrzIkqAm8LOrryOiUEll+Nja8fHuATslErsLVSEJibjam2NUiIjPDkFTzsbZCaJWUQsF+HG3dYGe4WS91/iFxzE+AULBRVzeXPtrehQXKIQf3wHN2qdnkr5fYiK+0Zzk8OVy6LmpnvN0uw2w01+Psck/QRuSprhxtXBmq51v8JN86pFSU7O5KYYqjmxR102Hr5DbGIauT2d6N60PPM2XxR0PeXzUySPO2v2CgdGj5YV0Gn07BdhZnTv2oR/TuTIWUGnMn5gfSKjktlzTBxT9ayJjaUF81YIwrkWjUrSuHYxxk49RFq6hiIFPZk5pSVzFp7i2YswLC0tWDC7HZERSSxackYwBmxQnKGD6+I3/QjPnoWiUimYM7c91lZKxo7aQ0pyJnnzubFgSWdePgtjjt9R9HojlasVYNrsNvx54x3z/Y9jMBipVqsQk2e14e3LcPxG7yUjXUvh4t4ErOiK0WBk0uAdvH8dgbWNitkru1K0ZE4un3rKEr9jgqNpvSJMmNceuVzK6oA/OC1eIfUd04j2vatjMBhZM+sEZ8Xbe49pSPt+NZFIJNw8+5yFY/eh1xkoVSUf09f0wMpGhV5nYPmkg1w+JoyW+k1pRtt+tQDhi37ttMOcEefjnUc0oPvYr74iIe8imd59PbERiTi62TF71yDyfnP1GheZxIxuawl8JRgNTljbmyqNS2U5PmPC4/HrvIrgNxEorSyYsK5vttb3cRGJzOy6mg9PQwQH40Vdadwz+4BDgJvHH7Bk0GYy09S4eDkyfc9wCmUTwvnDz/mcwII+682mfTXaVmTk6t7YOPxeVEN2ZTQaubT7Jtv9DhD3OQEQ4gf6ze9CyZpF/+XX/W/VV8D5fTv936kr+++QkarGO78HJWoU/u3nqdM17Jl3HICuE1ti9RdJ1M9uvuX2SWEbadDc7EdOAG8fBXJ6u7iBlE03EeDprXec3SV0Jkcs7vKDY/TnwBi2zhG6Jn2ntsArT9YO0O6lZwl+F4m9sw3D5mbdmtq3+hJvn4Rgbati/JLOZjDSanTMH70XrUZPuRoFadGjivk5u1Zd4sOrz9jaWzJ2fgezRmzHqku8fym4Ek9cIKyE63UG5k86RHqqmkIlfOgpJn8/uP2BA2J8yxi/lnj5OJGSlMHcKYcFJ/gGxWjapixarZ6AqUdIS1VTuFgO+g6pi0ajY/a0w2RkaCle0oc+A2oTG5PC3NnHMZmgcdNSNGhUgqtXX3NMPOdMmtwMNzc7xk7YR2JiOr55XBk6uB6z/H/5MZrrHw04CRo1MisVdnJrEjRqHLKBG3uFimSNGhOY4UYlU4BJQoZeRw4rO8JFuMlhac/n9BTsLJRodAY0Bj157By/gRsngpISsJQrsJZZEJuRgZe1LXFpGegMRgo5u5jjF0q4uvM8KhopEoo4u/IqJgalTEYuWwfex8Vhp1TirLQkODEZFysrLGVywpKEgEy5SUp4kiA0VsllBMUn4W5rjaNSSAV3tFLh6+TI49AILC0UYnBmIFKJhOYlv8JN89KFvo6l8vsQFZ9KSFwSno62FPN255K4LdWjZtnfhJtSPHgVQlBUIm4ONnSpUyoL3CQlZ3DrWZDYufkGbryc6N6kHPO2XMRgMFK3YgEK+Liwdp+wDdWnTSXS0zQcFGFmbJ+6BIXEcvyCYPs9cVADQsIT2H9CHFP1qY1CJmWR2IZu26wMdaoWZNy0g2Rkaile1Bu/Cc2YOfcEr95EYG1lwcI5HQgKimXZ8nPCTLhpKfr1qcnkSQd5/foz1tZK5s3rILgSj95DepqGgoU8mb+4Ew/ufmLB7BMYDSZq1inCpBktuXL+JUvnnhRszRsVZ9zUFjx9GMTMcfuFUVW53Mxc0pnMDA2Th+wk+FMMdvZWzF3TnfyFvTh18D6r5whXQvVblGbUjJaYTJhzpSQSCSP8WtK4XXnBzGvSIW6cfY5EImG4fysadxAEtGf23WX1jGOYTCaqNSrO+MVCO1udqWXesF3cv/oGqUzK6AUdqNdGMAHTqnUsGLGLO+eE1xsS0JZm3auZj6uX9z4xs89G0pIz8cnnzuxdg7LoCkLeRjCty2riIpJwcLHFf9dgCpbOneXYfP8kmBldV5MYk4KTuz0z9w4jf8kfRzTvnwTj32UVCVHJ2DvbMH3nEIpVKfDD40CAsp2zj7J/sfC+laheiKk7huLgZpft47+tB+efsUiMalBZKxm6rAf1u1X/t0S+r26/Y82obXx8GgyAey4X+gR0pmaHyv9rieL/6frSMfuywv6fKKPRyLHVwqi12YC/Z5R4ZNU5EqKT8cjtSpO+v+786LR61kzYC0CT3rXIXSR7LZVOq2f56F2YTCbqdaxMiao/du8y0tQsG7ULgKY9q1Piu79Jg8HIktG7hcTtagVo2qNalvuf3/3I4fWCpnD4vA5mYz6A14+CzZEow2a3xS3HVyH+lgVnCH4XhYOzDWMWfIWYR7fec0g0Gx05uy2uHkLw7MNb7zksZkeNntUaV3EEtn31Jd4+D8PGVsWk+ULSeWx0MgunHwWgeYcKVK9XFKPRxCL/48RGp+Cd05mRU5ohkUjYsOIiH95GYmdvydSAtigUMpbMO0PgxxgcHK2ZMrMNRpOJ2f7iGCq/O8NHNiAkJI7Fi4TxeeculalcOT/r1l/mxYtwrK2U+Pu1Rqn89Xr/t/WPBhyQYC+3Jl6jxl5hSYIIN85KW2Iy07BTWJKq1WI0gYelPRFpKSilcmTISNVp8bKyIzwtBZDgbWVPeFoKtgoL9HojmQa94HMjam7y2TnxKSkBlUyOnVxJdHo6HtY2JKRnojUYKOjkwtu4OOAr3EiQUMzVjZfRMVjIZOSxd+RdbBw2Fha4qKwJSkjE2coKG4UFIYlJuNlYo5LIzEnglhYKguIScbWxxsnSireRsdhbqsjr7MSjkAgsFXIq5/bhajZw06xUIS6Zx1I+RMenERKbhKeDLcV83Ln07GPWbSmjkbol8pnhxtHGMtuxVFBUIq4O1gLcHLn1A9woFTImdKvLxiMC3OTJ4Uy3xmWZt+WSsDZeqSB5cziz/oCooWlTibQ0DYdEuBnXrx4fPkVz8tJzJBKYPLQRn4JiOXhSuCIY3b8uJqOJpaKbaIeWZalWIR/j/Q6RmamjVHEfpo5rit/s47x9H4mtjYpFczvw9k0EK1cL6+StWpahZ/dqTJq4n3fvorCxUbFgYUd0WgOTxu0nM1NL0eLezJnfgVvX37J03ikhgLNRccZObs7ZP56wUjyIG7cszYjxTbh/6wNzJh8SRlVV8zNtfnuSE9OZOHiHsEHlYsv8dT3I5evGwa032LpC+F1adKrIoIlN0GkNzB23j3vX3yGTC7kxNRuVQJ2pZc7IPTy8+R65QsaEhR2p3kjwDzm44SrbRIPAJp0qMsS/NTKZlNTkDPz7beX1o2CUKgWTV3WnYl0h7TgtOYOZ/bbw8t4n5BYyJq7sQbVvMm1un3nGguE70Gn0FCnvi//W/lnCKJ/fec+sXhtIT8nEO587s/cMxeO7LJ47Z56wYOBmNJk6chfJwex9w7M1Trtx7AGLh2xFq9aRq5AXM/cPxyNX9n416ckZzO+73rzG3WZ4I/rN7vCXXih6nZ7t/oc5JPri5C2Ziym7huKd//eiGrKr+MhEtkzey6U9wheLtb0VnSe1otWwRr/lkvz/csVHCF0o598IsPzd+vPkY8LfR2LjYEXDX3TmfvhdIhM5sFQY1fT2b/+Xa+tHVl8g9G0E9i629Jz680iG/cvOEPz6M/YutvSf9WNQJsDmmUeJCU/A3cc5W1fjI+sv8+ZRsLCxt6RLFmhLTcpg8ajdmEwm6neoQNVv3L3TU9UsGrMXo9FErRalqdXia0fz7uXX/CE6/Y5Z0MEcpJkQk8KiiYJWqEnHilStL3QG46KTWTRFyMRq1rEiVesKt9+/+Z7DYpdm9MzWeORwFHQ3U0TdTUFPBowSRnKHdt7m/u0PglfN/PZYWSu5evHlV7+bGa1wc7fn3KmnnDv1DKlUwmT/Vri42rJ21UVev/qMtY0Sv5lt0BsM+M84ilqto3TpXPTuXYPrN95y6IjokzO+CU5O1owav/Onn8339Y8GHAFuMrFTWJKkEUZVLkpbojPTsJGrSNfpMJhMeFra8zktBYVUjgIFKVoNnlZ2fP4CN9b2hKemYK2wwGiEDL2eXLYOBCaJcGMvjKiUMhmOCksi09Nwt7IhNUOLxmCggJMz7+JFuHHz4HlkFBIklHBz50VUNAqplHwOTryJicXGwgJPaxs+xgniYjuFBcGJSbhaW2EttyA4XgAaGwsLPsUJ699uVta8jozBTqWkoKszD4I/o1LIqZInF1fefEIigZalCnP8oZCS3LRUQS6/+IjabOKXRkhsIh4OtpTI6cGFZx+QSSX0rFVW0NxkIyhu+43PTadapXjw7ViqTmlWHrkpeNVUK0ZCUroZbib2qMeGQ7eJTUzDN4cz3RqXY67YualfqSB5PJ3YcFA4iPu3q0JiUgZHzj8VOjX96/PmQyQnL70QDqShjfjwKZpDp4Sx1diB9dBq9KzeIogVO7cuT4XSuZnodwS1RkfZUrmYNLoxU/2P8uFTNHZ2liyZ15GnT0NYJ15NtW9Xgc4dKzJh/H4+fozG3t6ShYs6k5aSybTJh1CrdZQqnYvZc9tz+cILVojeEU1blmHEuMYcO3CPDStF350OFRg0qgE3Lr1mwfSjwqiqTmEmBbQlNiqZiYO2ExOVjLuXAwvW9cQjhyPbV19iv+gx0al/TXoOrUtmhhb/4bt4/iAIC6WcaUu7UKFGQdJT1cwYvINXIqhMW9mVctULYjKZ2Lb4LIdELU7HQbXpOaaR2Z14ao+NBL+PwsbOEv/NfShaTtjaiY9KZnrPDQS9icDKVsWMzX0pUTm/+Xg6vesWa6YcwmQyUblhCSau7pGlLX/9+EMWj9iJXivAz4wdg7IY7plMJo6tv8Qmv8OYTCbK1S3K5M0DfsjiMZlM7F10il3zhPZ+hQYlmLip/0/Fo2HvI/HvuILwD5FYqBSMXtOHOh2rZPvYbys6JI55Pdbw5r4Y1TCwHgPmd/6XIUSv03N89Xl2zz5MRmomEomERr1r0zug0/9KSOX/RsWExQPg5vOfMRw0mUwcEDtuzQfW+8sR07e1Y/ZRNBlaClfIS822v175jwiKYe8i4ecMCOjw0zytwFfh7F8mXJwMnd85WwH7o6uvzaOp0cu6YWWTdRsw6E0Eu5YIrzFoZtssJpcmk4nVUw4SG5GEV24XBs/M6ma8zv8YUWEJuHs7MmxWG/Pt8dHJLJssQEzr3tUpX1PQuhkMRhZOPEhyQjp5CnowcHJT4Xa9gQUTD5KcmIFvQQ8GjBdciWOjklksJpG36FyJquKFzY51V3j1VNTdLBCE1y8eh7BdPC8OGdcY3/zuhIXEsXy+cDHQuVc1KlTOR+DHaFYtEXR6PfrVpEy5PFy/+oajosHfxCnN8fRyICDgBKGh8Tg72zB1WkvCwxNYuFh4nzp2qEi1qgWYEXCc1+8isv1ssqt/NODEa9TY29mRotFgEt2IozLTsJIrUesN6I1GM9zIJTIspRYkadR4WglhmCAhp7UDoanJWMkVSI0SUnVacto4EJyUBEjIb+/Mh8R4LKRSnJRWRKam4WZlTbpaR4ZeR35HZ97HCyeFkm4ePBPhpqSb0MWRS6UUcHLhdXQMVgoFntZ2fIyLx16lwkllRWB8As5WVtgplATGC2Z99iolH2MTcLKyxMPGhlcRMdiqlBR2d+V+UDhKuYxqvrm4/FqAm1ali3D8gQg3JQty9eUn1Do95Xy9iUsS4Mbd3oZS32RL9axVlt1Xnph9bqLiknkrwk37asXZdOabzo24LeVib02Xb+GmejESEr/CzaQe9Vj/E7hpULkguT2c2HRY0HwM6FCV+Pg0jopjqEkDG/DqbQSnLgtwM3VYY95+iOKwqMkZP7g+Gela1oqr4d3aVaR0MR8mzzyKRqOnQtk8jBvekMl+h/kUFIujgxVL5nfi/v1ANm4SXY87VaZN67KMG7uPoKBYHB2tWby4M/FxaUyfcgitVk+5Cr7MDGjLmT+esFYMsGvdvgKDR9Zn/87bbFsvvFbH7lXoM7gOl88+Z8lMYY27buMSjPVryeeweCYN3kF8bCreuZyZt7Ynru52bFx8lmNienifkfXp0KcGqcmZTB+yg7fPw7CyVjJzdXeKl8tDUkIa0/pt49ObCKxslMxc34tiZXML2hn/Y5wR/Sv6TmhCu/61AIgMjWdKj41Ehcbj5GZHwPb+5CkkdCo+B8Uytds6osMScHS1I2DXQHzFFr7JZGLP0rPsEcXGjbtWYejcDlkEk8c2XGbjDOHEWaVJSSas6Z0FfgwGIxunH+SEmMjetFdNhszv9EOHRavWsWz4dq4eFn7/tsMa0Me/3Q+rt1/q3rmnzO+znoyUTFy9nZixbwT5S//1mvW9s09Z2Hf916iGdf2o3vr3ohqyq9d/vmfZ4I2EvAoHBJ3N0BW9/08JiH+nYkKFEbvbL5LZ/049v/mWdw8DsVApaDXkrwXCX+rTi1Au7BI6ZAPmdfnlKNFkMrF63B60ah2lahamTodK2T7OoDewbMQODHojVZqWpnrLsj88Ji05g+VjdwPCRmDJ78TnWo2OxSN3odcaqNSg2A+GfpcOP+DGqadCF3bVVxsGgKsnHnP52COkUgnjl3YxA73BYGTR+AOkJGaQt4gXvcZ+jWk4sOEqz+5+EqJUln3Ncdu97govHglRDFOXdMZCqUCvMzBv4kFSkjLIX8SLfmIS+b2b7826m9HTBd1NYnwac6cexmgQzluNWpYmM1PL7CmHyczQUrJMLnr0rUl6mpqZUw+j1eopXykvnbtXJSQ4jsXiRmbHLpWpUrUARw7f59rVN8hkUmbMaI2FhRy/mUI+ValSOenXpyb7Dt3jxu33yH9yrGdX/2jAsZYrSNfpMAJuSjsiM1NRyYQRk85owNNS6NLIJFJsZCoSNEKOVERaKl/hJgmVTIFCIidZq8bbxp7Q5CS+hRuFRIq7yobw1FRcLK3I1OhJ12nJ6+DEx8Qf4aaUu/DPMlFc/DIqGpVcTk47e97FxGOnVOJmZcXHOAFiHFUqPolA42RpxfvYOBwtVXjb2fPicxQ2SguKebhxNzAMC7mMGvnzcOmlcFXaunRRjj8UnF4blyzAtVeBZGr1lM2Tg8SUDIJiEnGzt6Gsbw7OPn4nwE3tsuy5+gSdwUCtYl8digW4KcEmMX6hQ42SPH4bZva56VavNKsO3/rX4MbTmU2HhM7NwA7ViI1P5ZgIN5MHNuT5m3DOXHkpGPANb8yrtxEcPSt0diYMaUhqaibrxNDGHh0qU6JwDqbMOoZWq6dyeV9GD63PJL9DBAXH4ehozfIFnbh16z1bRHV/j+5VadakFGPH7iU0RLjKWLykC5ERifhPP4JOa6BS5Xz4zWzD8cMP2LRW2Cjo0KUyfQfXZtfm6+wWE3i796tBtz41OHvsMSvnC+OrRi1LM2JyM4I/xTB5yE6SE9PJndeN+esEx+EVs05w7qiYezW5GS06VSQpPo0pA7cR+C4KW3tL5mzoRYGi3sTHpDC5zxbCPsVg72RNwKY+5CvihU6rZ8mEA1w/LWh0hs9uQ2MxGDPobSRTe24kMTYVj5zOzN05wOxO/OlVONO6rycpLg2v3C4E7BqEpzhWMhiMrJ16iDO7hc+my6hGdPtGbGw0Gtk6+zhH1gkjwezWwDWZWhYM2sKd08KYse+MtrQb1uCHL6WkuFRmdVvD63sfkcllDFvSlcY9sh9ZfPG32TZD6CgVq1KA6buH/6XexmAwsnPWEfYvFLY/CpT1Zeruof+yI3FGaibbph/gj7XnMZlM2LvY0mdOZxr2qvV/Vmfzqwp8IQQj58j3r4/wvq29okC4Yc8aOLjZ/9ZzTCYT68YJI54abSpQpOKvIfLqoXs8vvIKhVLO8CXdfgpDh1Zf4MOzEGzsrRi6oHO2j1s/7RBxEUl45XGl95Qfx1w7Fp4m8PVn7JysGT4/q4g5IjiOdX7CRUDX0Y0oWDJnlvtWiZ2VTkPrmbuqIIyan/0phHxOWtbFvBL+/H4ge8SA3KHTW+Itipgf3flg7gKP9G9NDvFY3rbyIq+fhmJtq2LKoo5YWMiJikhkoZ+gu2nRsQI16hfFoDcyd+oREuLSyJnHheGThK7Q8vmnCQ6MxcnZhsmz2iCRSlgY8AcR4Ym4udsxya8larWWmdOPkJmppWSpnPTpW5Nnz0JZL3aCBg+uS5GiOZgx8xhhYQm4uNgyfUpLnjwLZbMo6h7YrxbXL/ziA/2m/tGAk6nTY5LLcFPZEZmRilKqwGQEjRluUpEiFZPGM3CztCE6XYhnyGnjSGhKIkqZHEuZgkS1mhzWdoSnpGBCQgEHZ94nxCOXSPCysiM0JRknlSV6nRCi6evgSHBSIiaTMJb6AjelPTx5GhGJVCLob55HCnDj6+DEm+hYbJQWeNna8i4mDgeVCldLK97HxONgqcLNxpq30XHYq1TkcnTgWZjgbVPSy4M7n0JRyGTUzp+HC2a4KcLxh6+EL9gSBbj1OpgMrY7Sub1ITdcQGJ2Aq501FfJ6c/rRWyQS6CXCjVYvZEslJKXzJiwGBxtLOlQvycbTwgp2+xolePr+Mx8/C3DTo0FZVh4SBMUtqhYlMTHjm7FUXTPc5MnhTPcm5ZizWYSbKoXI4+HERhFuBnWsRkxsKscufoGbBjx/HcaZq4Jz8PQRTXjx+jPHzoljq6ENSU7KYL0YyNirUxWKF/JiykwhjqFKxbyMGlyfidMOEhwaj7OTDcsWdOLatTdsF71ZeveqTqMGJRg7Zi/h4Qm4utqyeEkXQoJime1/THA+rl6AqTNac3DPHbaLJ4+uvarRo28Ntq2/yoFdQuep75A6dOxeleP777FObNu26FCewWMb8/71Z6YOE8z68hf2Yu7q7ljbKFk87QhXzzwX0sP9W9GgZRniopOZ1G8r4cFxODrbMG9TH3Lndyf6cyKTem8mKiwBFw975m3ta86Vmjt8F/evvUWukDF+cSdqiNqZN09C8OuzmbTkTHIX9GTOjv7mlOKX9wOZ0XsjGalqfIvmIGDnIBzFzBqtWsfC4Tu5fVYApqFz29P0G7GxXmdg2ehdXDksbm5NbfVDYGZyfCr+3dbw5kGg4Nmxtg81WpX74VgNex+JX8eVRAbHYm1nybSdQyhdM/ttGq1ay4oR27m0V1wr7lubwYu6/aUGIzE6mfm91vL0mtDNbDGoPgMWdPmXIwfunXnMymFbiBXHNg171qL/wm4/zcH6v14pCWnmDlWRytkLvf9Ovbz9jqfXXiNXyOgwptlfP0Gsm8ce8OK2YL7XL6DjLx+bkpDGhilC4HOXcc3IkTf7vKngtxHsWSiMsAbN64jzN340X+rO2adcPnRPcDBf2eOHyIbHN95ydIPwRT56SZcsSeB6nYGFI3cJa98V89JhSD3zfTqtnvkjdgv3lc9Dl+Ff73txP5DdK4Rv+6H+rc3O4UkJaSwcL5hi1m9dlnqtBGPE+JgUFk4WoL9phwrUaizoe+5cec2RncLxMnZWazy9nYRNqAkHSUvJpGDRHPQXzQK3r7vCc7H7M31hRyytLDhx6AFXL7xEKpMwNaAtTs427N1xizs33wu+YHPaYWtnyawZRwkNjcfF1ZZp/q1JSExn1qxjQge7XlFatS7LvgN3uXVbeN5Mv9ZotHpmzRdWxJs0KE6TvxGy+o8GHL3JhJfKjoiMVCykcqRIyTDozHAjQYLjN1ELMRnpmJCQy8aBkJRELKRybGQq4tUZwtgqNRWTCTPcyCQSvK0FQz8HpQqTAZI1GvLYOxCWlIzBZKK4q7tZc/MFbiRACTd3nkVEYSGTkc/RmVdRMVhbKPCxs+dtdCx2KiWetra8jYrFXqXE296Ol5HCKCqvkyNPwiKxVCgo4+3F7Y8hKGRS6hfKy9nnQsJxq9JFOPHotZDOWjw/d94Gk6bRUjKXJ5mZWj5ExuFsa0Wl/Dk59fCNADe1yrH3mgA31YrkJiklk5ch0dhbq+hYoyQbTwlw0656CZ5/iOTD5zic7azo1ag8Kw5ex2gy0axKEZJThFXwL52bDYe/wk2PJuWZu/mCuXPzLdwM7JAd3IRz5uorZFIJ00c24fmrr3AzaVgjkhLTzXDTu3MVihb4CjdVK+VjxKC6TJh2kJDQeFycbVg6vxOXLr9it7j+3L9vLerWKcKY0buJiEjCzc2OJUu78PF9FHNmncBgMFKzdmEmTW3O3h232C1uJPTqX5MuPauxfsVFjolGWYNHNaB1x4oc3HmbLauEjkb77lXoO7wer56GMn3kHjLSNRQp6UPAim4olHLmjD/AnStvhJb1nHbUbFScqPAEJvXbStTnRFw97Jm/uQ85crkQHhTL5D5biItKxsPHifnbBKO+jDQ1swbv4NndT4JGZ00P84z+8c33zBq0DU2mjsJlcjFzS19sRRO1+1deM3fQNjRqHcUqCILhL23x9NRMZvfdzLM7HwSx8aqeVGtaynxsZaarmdNvM4+uvha2sJZ1o953rf+IoBimd1zJ58AYbBys8N81lGLfaHq+1NMbbwjosY605Aw8crkw68AIchb8MZ4BBEiZ2WUlb+59RCqTMmRRN5oPqPuX54KXt98xp9tqEqKSUFkrGb22L7U6/L04gC+VEp/KmlHbuCrGgnj6ujFybX/K1P174ZD/1+r1n0KGl3dBr/+Ipmi3aM7XoGfN3w4RVWdo2DRVAJYOo5vi/hfP2+x3iOT4NHIV8qLdiEbZPkYYTW1Hp9VToX5x6rb/cYSVGJvCynHCBlbbIfUp8p3tQHJCGktGC6Orpj2qUem7oNC9K87z7kkINnaWjF+e1Q9n+6IzfHgZjq2DFROWdTWPbZPi01ggCo7rti5LfXHL0Wg0smTSIeJjUvDxdWXItBbm/x/zRT2Ob0EPBopOw5HhCSzxE40Qu1ehSh1Bd7N+8Vk+vInAzt6KaQsEv5s7195yUAShMdNbkDO3C6+eh7FehKz+Q+tRvFROHt77xPZN1wAYNqYRBQt7cWDvn9y8/g65XIrfzDZYWysZM2aPOURzzJjGPHoczFaxaz58aH1887oxfOweUlIyKZDfg5HDGnDr9stffqbf1j8acNxEuJFLZCiQk6bXmuFGEBzbCG7ESisSMjMxmRDhJgm5RIaDwpKYzHTcrWyITkvH+A3cSIHcNkJauJ2FErlJSrw6k5x29nxOSUVnMlLM1Y0X4rZUGQ9PnkREAlDS3YNnEVHIpVIKObvyIjIaS4WC3A6OvI6KwcbCAh87e16LQJPL0ZHnEVFYWygo6OLMo5AIVHI5FXJ5c+O9YNzXoHB+zjwTQwRLF+HkozeYTNCgWH7uvQ8lVa2luI8HWo2edxFxONpYUq1gbv4QtTm9apVj/42nQjRCoVykpWl4GRyFnZWSLjVLsUHs3LStXpxXgZG8F9fEezUqx4qD1zEYTTStXJi0NI3ZxG9Sj3psPHyHmARhFbxn0/LM2XQBvcFIvUoF8fVyNguKB3aoSmzcV7iZMqghz16FmeHGb1RTnr0M/yXcFMnvydRZAtxUq5SP4QPrMn7KQcLCE3B1sWXZgk6cP/+CPfsEncugAbWpWaMQY0bvITIyCU9PBxYv6cyb1xHMCxDWvuvUK8qESc3YufUG+8QDv/+QurTrXInVi8+ZtwlGjG9CszZl2bvlBjtEHU7XfjXoPqAWzx4G4zdqDxq1jpLl8jBzWWekUimzR+/lwS0hGmLq4k5UqlWIsKBYJvfbSlxMCl45nZm3qTfuXo4EvYtkSt+tJMWn4ZPXjXlb+wqhmckZTO+7lXfPQrG0VjJzY2+KV/AF4M6Fl8wbIegBytYoyLS1X118r514xGLRZKxCnSJMXtcLlaiZSYpLZXr3dXx8EY6ljRL/rQMoUeUrmCTFpTKj21rePw1BaWnB1M39KV83q6fL+yfBTO+8iuS4VNx8nAk4MIKcBX4ca1za/yfLhm/HoDdQuHxeZuwZ+tMvz0/PQ5jRYTmx4QnYOFgxddcwytT+tZeMyWTij3UX2TBxLwa9gZyFvJi+bwQ5C/1rcQt/nnrEisGbSIhKQiqV0GZUU3rMaP9b7sj/1+uLP1DxqoX+4pF/XS9vv+PJlVfI5DI6jvv97s3+RSeJCYvHzceZ9qN/NNb7tp7eeMOFPbeRSCSMXNHzp526o2sv8u5xMNZ2loxY+uMIy2QysXz0bpLj08hTJAfdxjf94f4V4/eREJ2CT353+k1vleX+539+YP8qYfFg2Nz2Wda+7195bTbZHLOwI65eDoAIMRMOEB+dgo+vG0NnfH3Ng5uu8/DmeyyUciYv64LKSjhud629zIuHQVl0N1qNjjnjDpCeqqZwSR/6jBR0TpfPPOP0kYdIJBImBLTBzdOBz6HxLBKN/9p0qUSNekVJTEgjYOoR4UKvbhHadKpIdFQS82aK3jbNS9GkRWkePwpiiwg8Q0c0oEjRHKxYfs5s5jdzZhuSktIJmCt2ahqVoEnjEixafo73H6Kws7Nk1rRW3HsYiN/cP375uX5b/2jAicxIRWFthaXUgtT7+SgAAQAASURBVBSdBg9LWzPcCAnhghtxskaDwWQyw41MIsVZaUV0RjqultYkiAnhX+BGAqK5X6LgViyVE5eegbetHTFpaWiNBiFEMyrGDDePxc5NGQ9PnnyORC6VUszNnWefo1DKZeR3cuJFZDRWCgW+To68+ByNtYWCvM5OPA0XujVFPdx4EPQZpVxGpTw+XH8nGPc1LlqA008FuGlZqjCnHr/BaDJRt2heHn4MIzlTQ1FvN0wGE28/x+JgpaJ2EV+O3RO0Ob1ql+XAjWeotXoqFcyJRq3neVAkNpZKutUpw/qTf2IyQasqxXgbFMPbUCFUs0/j8iw/JGRLNa5UGHWmjutPPmEhlzG5Zz02HblDdEIquT2d6NWsAnNFE7+6FQpQwNuFdQeEEdGADlWJi0/7CjeDG/0l3CQmprNBhJs+XapSOJ8H02YfE+Cmcn6GD6jD+KkC3Li52rJsQWfOnXtuhpshg+tSrUp+xozeQ1RUMl5eDixZ2pWXz8OYLzpq1m9YnLETmrBt4zUO7hGeN3hEfVq1r8CKhac5e+IJEgmMntychs1KsmPdFfaKOpyeg2vTpU8NHv35Ef+xQuBl2cr5mLG4EyaTCf+Re3hy9xNKlYIZy7tQpnI+gj9EM7n/VhLj08iZ1415m3rj7GrH+5fhTO23lbTkTHwLezJncx8cnGxIjEtlau/NBL2NxNbBitlb+lKwhGDNfvnYI5ZOOIDRYKRqo+JMWNbVPLs/ves2a6YJm0y1WpVl7JIuZnfi6PAEpnZZy+fAGOydbQjYPZh83+Q8RYfFM7XTKj5/isHOyZqZu4dQ6LvspEdXXzG713rU6RryFvdh9v4ROLln1Vd8iV3YMec4ADVbl2fs2j5YqLK3zf/z9GPm9xFe0zu/BzMPjv7LPClNppaVw7dxaY/wd1arfSVGre2L5XdbL79TaUnprBuzg4u7hL+5nIVzMH7LEAr+hoHg/xfKZDLx50kB5kvVKfZvv9aWaQcAQXvzs9X/7yv4dTgHxQ2nQQu6/BIqM9PULBu+A4CmfWpRpEL2n1PgyzB2iNt6AwM64OLp+MNjTm+/wf1LL1Eo5Yxf0+sH078zu2/z5/kXQqdzdU/zhQIIFwMLhgueOg06VqRmi68ZW7GRSSwZL3SjWvaqRqV6X2H98KbrPLzxToCYlV3NYuRn9z6xS9zSHDK9JXlEF+O7196YdTejZn7V3axbcIaPbyKwc7BiykLBhTzoQzQrAoRxXJd+NShfJT/qTC2zJx4kI11D0ZI+9B1eD4PeyJxpR4mPS8UnlzOjJzdDpzUwc8oRUpIzyV/Qk2GjGxEdncycmccxGk00aFScZi1Kc+7sc/74Qzg/Tp7SHCdnG0aM2kVKSiYFC3gwYngDjp96wtkLwtKI36QWZKp1zF1y+qefaXb1jwYcKVJsZSqStGrcVDZEpAn6mi+GfnYWKtI0QkL4F7iRIMFdZUtEeqqQM5WpRWswkt/+K9zkt3fmQ0ICVnIFNnIl0WlpeNnYkpCRidpgoLCzK29iYuE7uCnr6cXj8AikEgkl3D14Eh6JQialsKsrzz5HYamQU8DFhWci0BRyc+VRmNCtKe3lyZ+Bgs6mmm8urrwNRCKBpsULcuqJGJZZqjBnnr7DYDRRu7AvTwMjSMxQU8jLFTlSnodFYWeppF6JfBz5U2gD9qxVlsM3X5Cp1VEhvw9GnYEnnz5jo7KgZ92yZrhpWbkogeFxvBZHVgOaVmTZwesYDEYaViiEQWfgyqOP/P/Ye+uouNJt3ftXuLt7iLu7u7u7uxHHA8FC3N3d3dNxdyEOIUCCu1vJ98dbqYSOdPc+555977fPHCNjQGqtBVQted45H9FUdm62HLtHQqrIlhrRrT7Bmy9RLJXRql5ZKrhYqUz8xvZpRHp6rkotpercXH2lGkv9rHPzFdyMHtSYCt+Bm6aNyjJ1bCtmK8GNtZURyxYO4Pz5l+w7IEDKlEltaNSwDDNn7CMxMRN7e1OWLhvEi2cxLAoR5nztO1ZjxuyObFl3laPKEdTkGe3p2rM2y4JPc+ms8HyY7d2N1h2qsm3NFVVrd8y0NvQd2pgHtz4QMOcAxcUy6jcth3doP2QyOb5T9xD2OAodXS0WrBlCtTqliHgbh+e47WRl5FG6gi3Bm0ZibKrP66dR+I7fQV5OIRWqOxKwaaQqEdxzxGa+RCZjamFA8M5xKsv2M7vvsHa+aEm37V2H6SF9VW3vw+uvsC1E3Ny6DGvCxAW9VGTY6A/xeA1aR2pCJlYOZgTtm6Sa+YMw8PMauIbU+Ays7M0IPDAFxz+BjKuHH7B06nZkUjk1m1fEZ8dE9AxLAgqZVMaa2Xs5r/wM+07rwMj5vX5KylUoFBxfe5FNHgdQKBTUbFkZr12TS3jv/KySYlLwH7CSiGdRqKmrMTZ4AD2ndvit2uZX9fjyC5aN20jKlzQkEgl9ZnZhuF/f/+c9bf5JRb/5Qmx4AppaGtTv9KPb9D+p2yce8+Z+ONq6Wgzx/NFD5mcll8tZOW07MqmMBp1r0qjrjwqn72vr/CMkxqRg5WjOqPm9f7pNUUExoRO2Ii2W0bBjddoO/NFaIPp9PJv9BQl3lHcPSv0paDX6Qzyb/MS1NsqjWwk3b7lcztKZe0lLysKxjDUT/b/JvmVSGYvc9pKVnkeZKvaMmveti/Xq0Sd2KjPmJs3vQanyovOZlpRF6OwDKt5N+95iZBX/OY3FnkcA6D64Ic2VvjqXTjzl/NcuTXAfLG2Myc0uIGDuQQoLi6ndoDSDx7YQHajgM3yKSMLUTB+vhX3R0FBn0+o/ePksGl09LeYv7IeunhbLFp4h/L0w+Jsf3BsFCvx9jpGZmU/ZcjZMn9mB9+/iWaHM1xo2vCn165cmeOFpIj4mYWKih9/8nrx+G8eaDYIgPX50C8qXtWH8jF3k5xdTtYo9d//47cerqv9ogGOsqUtGUQEW2vok5Irsqa8jKgNNLQqLRdSCs4Ep0VnC08Zez4gvOdmYauuSV1hMoUxKGWMzwtMFuClvYsH71FS01TUw0dQhPicHa30DsgoLyZMWU97Mgg/JKSgUUPM7cFPHzp4nn2NFF8fWlief49FUU6OatQ1Pv8ShraFOJUtLnn6OR0dDg6q2VjyMFt2auo723I6IRkNNjRZlXfjjzUcAulatwGkluOlavQIXnn9AKpPTrLwLr2MSSMvNp5yNBfoamjz9FIehjjYdapTj8N0wAIY1r8Xxu6/ILSyiThkH1JHwIDwWPW1NRrSpw4Yz9wSvpn5FouLSCPuUgLG+DhO6NWD5wZtIZXLa1i0HcgWXHwp5n/vQVmw9fo/4lCwcrU0Y27MBgZsEuGlZtyxVStuqsqVG9WpAdnYBR76Cl/HtCHsbq1JL+UwvSSh2n9KhBKF49KDGVPxuLPV3wU3DBmWY4baXpKQs7B1MWbp0MM+eRLF44WmVpbjbrA5sWHWZE0ovh2mzO9Kpa02WBJ7iyoUw1NQlzPPtQYu2ldm04hLH9okR3oSZ7ek5sAF3r70lyP0wUqmMxq0q4hHch6ICKT5TdvPmeQx6BtoErh1GpRpOvH/1Ba9x28nJLqBcFXuCNozA0FiPFw8+4jdJ5EdVrVsKv/XD0dPXJuFzGh7DNpHwJQ0rOxOCd47FXhkEeGj9VbYrTQa7j2jCOO9uqlypXUvOqVrl/ae0ZficTqoH/vtn0fgMXU92Rh5O5WwI2jsJC1sT1bX07uknfAevIzs9F6dytgQdnFridYCj6y6z2VcYi7XoVY9Za0b8MBbIzykgeNRGHl0OQyKRMDF0IN1+keYsk8pYN3sPZ7YI4manUS2ZvHTIXwZePr/xhuAha8hMycbYwhDP3ZOp0eKfxyIUFRSxxWMfJ9aIm7VdGRvmbJlI5Z842/7/vW4rI1Bqta32j7xq/lzFRVK2eouuRZ8ZnTC3+7Fj8rM6v/0Gb+5HoGugw+SlQ38LVJ9ef8OZbdcBmLlmxA8A+2ttDzxO9Ls4TK2MmL582A/HLCosZtGk7RQVFFO7ZSW6jW5R8vWCYkIn76SosJjazSvQfXTzEq8f3XiNx9ffoaWtief6ESU6TruXX+TVo0/oGmjjsWqoqruamZbLwhn7kMvktOpei3Z9hHWBTCojZNYB0lNycClnwyQfwbspLCgmcOY+5QjKiTGzBM8o4m0ca5SZUEMmtqRO47LI5XIWzz9ObEwqltbGzAvsjbq6GicPPuCq8p7mGdwHcwtDbvzxWhWiOdtbcHFOH3+iMvPz8u+JlbUxSxae5cNXwLOgF7m5Rcyff4ziYhmNGpdlyJDGHD7ykCtX3wiJuHcPQIJfsOj4tGlZid7da+O54DixcRnYWBnhObMzG1f88uMtUf/RACe9MB9LU3OS84SDsb2eyJTS09BCJoMCmQwnJaH4e8+br1EMeVIprsamRKSnIQEqmFryLiUFLTV1rHT0+ZKVhaWePvnFReQUFVHG1IzI1DTkCqhhY8MzJbipa2fP48+xANSxt+dxTBzqEgk1bG15/DkWDTU1qtnY8Dg6Fi11darb2/Ig6jOa6uo0cHbk5geR/t2qfGkuvw4HoHv1ipxSJoF3qlaeSy8+UCyT07icM+FxKSRn51Ha2hwTXR0eRXxBT1uTzrXKc/DOSwCGNKvJyfuvyc4vpKarHbrq6tx5E42Olgaj2tVj4+l7YvRUtwLxyVm8jIzHUE+bCd0asuLgDdGNqVUGLXUNzt0RJ++8oa3Yceoh8SlZOFibML5XYwI3XaCoWARnVi9ry8rdAtyM6FGfvLwiDp4TPjbzxrblzft4lc+N7/ROvPpOCu4+pQNZmfms3yH2/zO4adKwLFPGtmKO92/AzeQ2NKxfhpkzBLhxcDBjydJBPHvyicVKOXeXbjWZ6taedSsucerYYyQScJvbmfadqrMo4CTXLr1CXV0ND/+eNG1VkQ1LL3DioLj5T5nXia596nLryhtCPA6L7Jb2VZjj34v8/CK8J+7i/asvGBjqELRhOOWrOPDmeTTeE3YK8nENJwLWDUffUIfHt94TMHUPRYVSajUui8/qIejoavHlUzLuQzeRmpiJnbM5IbvGYWUnEsF3LbvAAaVsdODUNgx1E6GVcrmcDX7HOb1DdM1GuncpoeJ4cecD/qM2k59bSPmazgTsmlCiQ/Lk+hsCRm6iML+I8rVcWLBnUgmlkFwuZ6v/MVVCc8/xrRkb0PeHjkxGchY+/VcR/iwKLR1N3LeMo9FPsqdApDQHDVvLkz8EEBobPIBeU34M4fy+FAoFpzf+wfrZe5DL5JSp6YLv/ulYO/89Auv39SkshpChq4l6/RmAbhPbMTpkELr6/3y89f96KRQKrh8ShOomPX5vqPdXdWLtReIjkzCzMabvjM5/vQOQmpDBVmWq93Cf3lg5/NqDJzczjxVTdwDQZXRLavwi1+rZzbccV7qdu60YhonFj4Z+O4NPEfn6C0ZmBsxcMfSH83lzwHE+vY3D2NyAmcuHlHj9zeNP7Fgkxi0TF/TCpfw3/tmj6285uF6AdreQvti5fLNkWDx7P6mJmTi4WjLFv6fqfN+x4hKvvvJrVgxSjcHWBp/m47t4jE318FwyAE1NDbIz8wicdYCiQin1mpZj4FgBvA7uuM29G+/Q1FTHZ3F/jE31CXsWzcblSgLxtLZUq+3Cp4hElihjYvoPbUTTlhV59fIz61aIrtKoCS2pVdeVE8cec/GCUH96z++BuYUhc2bvJyUlGycnc9zdu/LseTSbtlwHYNKE1pQvb8vUWXvJzMynXBlr5rh1YNvu2zx4LJLGA3x6IpVJf/n5/rn+owGOiZYuqfn5KL4DNzrqmqgp1MiWFuGgb0xMVgYgUXZxRAK4Qi4ht7gIFyMTItPTkQAVTS15m5KMhkQdO31DojMyMdfVRSqTkVUoZOEx6ZlI5QqqWdvwPC5BBW4eKTs39ewdeBQjvq7jYM/D6C9oqKlR296Oh1Ff0FRTo46TPXcjY9BQU6NJKSeuK3k27SqU5cIroZDqVq0Cp58JcNOhSlmuhUVQJJPToIwj0YlpJGTmUMrSFCsDfe5/iEFXS4MedSux/5awsR/UtAZnH74lK6+Qqs42GGvrcPOVUD2NaV+fjWfuIZXLaVe7HKnpOTwNj0VfR4vJ3Rux4tANISGvXhpDHR1O3RKjpHlDWrH37BNikzKxtzJmQu/GBG66SGGxjMY1XaldwZHluwT5dmi3uhQXyTioNOmbO7YNHyJF/IKQgnfkzYcEjp59ppKC52QXqEz8Rg1qTKVytiq1lCAUt2Ku1yFiPgvOzd8BN0uXDeLp42/gpmv3WkyZ3q4EuJnp0YW27auxaMEJrl1+jbq6Gl6BvWncvDzrlpzn1KFHSCQw3bMrHXvU4salVyz0PopcJqd1p2rMmt+DvNxCPMbvVM3CgzcMp0xFO8Ief8Jn0i4K8ouoWqcUC9YORVdPm/tX3xDktg9psYx6LSrgtUIYeEV9SMBz+CbSU5RE451jMbc2RqFQsCX4tIqsONqji8rcTyaVsWLuAf448uinuVL3L4cRPGG7SFduUg7frWNLmI/dPPmExVN2IC2WUatFRby3ji3xkJdJZSx328Ufyvd5tG+vn6aBx31Kwqv3cuI/JWNkZoDf/qm/5EUkfUnFp9cyot58QVtPC/etE/5yJCEtlrJ25m7OKbs9rQY0wm3d6B8CEP+qFAoFJ9ZcYIvHPooLizGxMmb2lgnU6/hfG8v8v1zPrr4i5m0sugY6NOn1rwOctIQMle/NCL++f5sLtW7WbnIz8yhXqxTdJrT57bYbvQ+R9CUNG2cLRvv9fDSVnZHL0snbAeg0vBn1fyJLfnz1Ncc2isXCjBVDfuCQ3TrzjDM7Bbdr9oohJSTh2Rm5LJyyE7lMTvNuNWk/4JsqKzkug8Uz9wPQZUgjmn2nTNy/9g+e3PqAto4mnquGqK7De1fecER5bbsF9lb53Vw49phLSmPAeaH9sbQxRi6Xs8jrKAmx6dg6mDInuA9qamo8uRfBznXi2pg8rzPlK9uTkpRFkLtYiDVvW5meAxuQnZWPv/thCguKqVm3FCPGtSQlOZsA76NIpXKatapIv0ENefkihvXKvKyxE1pRq3YpVq28SFjYZ/T1tVmwoDdZWfkEBJ5QBRd371aT4MVnCf8oHOIX+PTk9v0I9h4WFIC50zugpiZh7Izdv/2Mv6//aICTWViEQkcbBz1h2KelpoGWmgaZhYXC00YZolnK0JRPmRnoaWiigTrphQU4GQpDv+/BjZpETUQ0pKdjrK2DBAnpBfm4GJuQkJlDsUxOFSsrXiX8CG4aODjwIFp0cRo4OXI/6jNqEgn1HO25F/kZdYmE+i6O3P4YjZpEQosypbjyVoyiOlQqy/kwAW66VqvA2efvRfZR5TLcehtFgVRGXVd74lKziE3PxtHcGAcTY26/i0JbQ50+9auy56YwWevfuDoXn3wgI7eASo5WWBnqc+2FIAaP79iAjWfui2iGGmXIzing0XvR/ZnaszErD9+ksFhGk6qlsDDS4/j1MNQkEuYObc2BC0+JSUjHxtyQyX2bELDpIoVFUhpVL0XDqi4s3S5uFoO71EENCXtOi9HP7NGtiYpJ4cTFF6psqQ8fkziszJaaO6k9uTmFqviFEQMaUaW8HR7fgZtpE9uUADdfCcXfg5tGDQTn5iu4WbZ8ME8e/T1wE7rgBNeV4MY7qDeNmpVn7aJznD4itpvh3Y323Wpy/WIYoT7HkMvktO1Sgxm+3cnNLsBj3HY+vk/A2FSfhZtHUKqsDc8ffGT+lN0UFhRTq2EZfFcORkdXi1sXwwidfQCZVE7jdlWYt7g/mloaRLz+gtfILWSl5+Fa0Y6g7WMwMTdALpezbv5xzipJ0JP8etJ1WGNAjAMWT9/DrbPPUVNXY9bSQbTq9c2D5trxxyxxE92Ohu2r4r52RAmS77ndt1kzd78wVOtem9mrSypRCvOLCBm7mfsXXgip+MphtB3wI48h/EU0Pn1XkJGcjbWTBUFH3XAo83OC8MeX0fj0XkZqfAZm1sYsODLjL52JM1OyCRy0ipe33iGRSBgV0I++Mzv/Y75NRnIWi0et49GF5wDU61iTWZvHY2pt8o+O8/+3Or5KjDzbDWuOvpHev3ycbb6HyMsuoFxtV9oObfq39rl75im3Tz5GTV0Nt7WjfuloDfDgwgsu7bmNRCJh1tpRPwVQCoWC1bP2khKfgb2rFeMW9P1hm7SkTJZOE3lIXUc1p8GfAFB8dAor5giQ0ndSG+q0rFTi+Mtm7VdFMUwN6a86D4uLpARP3U12Rh5lqzgw1qubar9HN96xb424R04L7K3i3cRFp7DEXXSvug9tRDOlr034m1jWKrssw6a0oVZDYXa4f9MNHikVVt5LB2JopEtCXDohXkJU0KFHLTr2VKaBux8mPS2XUmWsmOnTDblcwUK/E8TFpmNta4JXQC9kcjkB3kdJS83BxdWS2R5dSU7OZoGviJ5p1aYyffrV48L5l5w8KRas7h5dsbA0ZKrbbrKyCyhf3pYZ09tz6Ngj/rj2BjU1Cf5ePcjKzid0hYi6GdinHnVqujBu1m7y/0GQ6380wJHJFTjrf5N966trk1aYj62eIbHZIorB1dCMyMw0tNU10VXTIiU/DwcDI+KyslAoxFjqbUoyEmXmVHhqGoZaWuioa5CYm4OjkTHJ2XnkS6VUsrTkbWISCoXg3KjAjaMjD6KEQVYjZyfufYpBAjRyduTOR/F1E1dnbkREIQHalCvN5TfCrK9T5fKcDxMKqc5Vy3PhxQehkKpYmgcfYoRxn7MdKZl5fE7NxM7UiDKW5lx/HYmmujoDGldn13Vx4vVuUIWrz8JJy86jvL0ljmYmXH4quDMTOjdk85n7ojtT1ZWiIin338Sgo6XB9N5NWXX4plBZVXbG3tyYQ1fE6Gj24JYcvfycqLg0LE0NmDagOYGbLlJQKKVBVWea13Jl4RaB9Ad2qo2Opgbbjgi+ituIlsTGpXPknABf8ya2JyomRZUKPmdiWwryi1TgZnj/hlSvZI+73zGKiqQ0blAGt0ltmeMlfG4sLUTn5tKlb1LwyRNb07hBWWbO3CsIxQ6m33VuTqvGUn8FbjQ01PAO6kODJuVYE3qOM0eV2/l0p13XGlw9/5LFvseEkqBbTdy8u5GdmY/H+O18+pCIiZk+CzePxKWMNU/vRuA3bTdFhVLqNimHj7JDc/3sCxbPO4RcJqdFl+rMVpKD3z6Lxmf0VnKzCyhfzZGAbcLLRiaTs9LjMJeV3ZnpIX1pr0wRLyooJmjiDh5eeY2Gljoea4fTqP23G/W5PXdY43EIhUJBq151mLF0sEpJBXBk7WW2BgjyZKdhTZkU0r/EwyU3Kw+/wWsJuxeOlo4mnlvG0aDDt1DOr/X0+hsChq4lP0epqDrs9sNq+Gs9uRJGwOA15OcU4FzRnsBjs7By/PU4AoSyZn7vZSREJaNroIP7zkk0+BdIsC9vvSVkyCpS49LR0tFkXOgQuk780W35P61iw+N5oLw+e0z5uY/M36l3DyO4rIxWmLzsx3HPzyonI5e1MwXQ6OvWkdJVnX65bVZaDivcxLY9J7WhauOfGxFePfyAm0rANHfDmB/M+uRyOUum7iQjJRuXinaM/lOQZnGRlJBJO8jLLqBSnVIM+5Nk/Njm69y//Ep1zel/x//Zvugc75ReOJ5rv/FuEr+ksXi2INF3HtSQVt2F0qogv4jA6XvJyymkUk1nRs8WEQ3ZmXkEzdxPcZGU+s3L02+0cPt+dPsDe5QWFVO9u1G6gi2FBcUEzDlIdmY+5SrbM1npjbNh2QXeholxue/i/ujoarFj4zUe3YtAW1sDv4V9MTLWY8Wis7xRjtX9Qvqirq6Gn/dRMjLyKF3GiplzOpUgFQ8f0ZSGDcsQGHyKyEgRibNgfk9ehH1m0zZBL5gyvjXOTuaMm76LwkIp9eu4MnJwY+b4HyUhKQu7X9wfflb/0QDHTt+Y6KwM1FDDREuX5Pw8rHUNSFC6FZdSghtNNXWMNXVIzM3FVt+QpJwcZAoFFUwteJci1FDlTCz4kJqKnoYmRlo6xGZnYWtgSFZeIXnFxZQ3tyAiORW5QqilHn8Hbu5HfUaChCYuTtyJFFbnzUq5cDMiCoAWZV259iESgHYVynJJybPpXKU8514KcNOxSjkuhYUjlctpXr4UTyNjVd42uXlFRCnzpCrbWfHHywg01NQY3LQGu5XgpnvdStx5HUVKdh5lbM0pa23OuUfvUFeTMLFzQ7ace0BBsZTGlV3QQMK1sCi0NdWZ0acZq4/eIq+wmDoVHCltY86+S+KYMwe24NS1MCI+p2Bhos/MwS0I3HSJ/MJi6lZxonW9coRsFvPdvu1rYqSnwyZlSvjUoc1JScnm4BnRqZkzvi1x8RnsOy46OzPHC5niqs2irTq0bwNqVXXEfb4ANw3rlWbGpLbM8z5MVHQKFuYGLF80kD/+eMVupYnfxAmtaNK4nEoK/pVQ/PxpNItCTv+Sc/MV3Cz0P86NP96UADerQ89y7tgTJBKY5dudtl1qcOXcC5bMF26dHXrUYrpXV7LS83Aft52oiCRMLQwI3TwSJ1crHt16zwK3faqbk9eyQWhpaXDl5FOWeR5RKSSmB/RCXV2NV48/4TtmK/m5RVSpUwq/TSPRN9RBWixj6ewDXD/9DDV1NWYvGUDLrzfGvEIWjNnKs9sf0NLWxHfLKGp/5wp8bNNVNi84AUCX4U2YGNBH9cBRKBTsXHiKgyvFvL3/tPYM9+hW4kGfnpSFd/+VfAz7jJ6hDv57p1C10Y8PlOtHH7JkolCp1GhWAZ/dk38ZmHlx101WTN2OXCanerOK+O6bioHJ75VSjy6+IHjoGvKyC7AtZYXfkRm4VHL47T5/LrlczoHQk+zyO4RcrsCpoj1ee6dT6jcP0/+kOrRUdAnqd6qJ/b+YsC6TyVntJiTbbYc0+dv5XOvn7iUlLh270tYMdu/xy+0UCgWrZu4mPTETx3I2DPf6uTIrLjKJNXP2AjB4ThfK13L5YZvDay7x7MY7EYuw4ccR59agk4S/iMHQRA/3dSNKLApePYxUKRTHz+9Zwl7h1rkXHN+m9LtZ3B8bJXAvKiwmSNnVKVfNkXGeXb/9TfOP8+l9AqYWBniuEI7bMpmckLkHlSMoM2YHCa5bXEwqoe7CwbhTn7q07VZTHCP4NBHv4jE20cNnUX+0tDU5f+IpZ4+Ke9i8gF7YOZhx+/pb9inzqNw8ulC6nA1nTjzhrNIKw2N+D+zsTVkUcoYP7+MxNNLFL7APOTkF+PoeLUEq3rf/HteuK3OnfHtSUCjFP0Tk8XVqX40uHasz0/MgScnZODmY4TO3C2u3Xef5q8/o6Woxf05Xju6c/rtTQ1X/0QDnS1Ymanq6WOgYkJiXg6WOPqn5eSgUwscmMiMNDYk6Ftoif8pKT5/0vHyK5XLKm1rwLiUFkFDRzJJ3ySloq6tjrqvH56xMrPT0KSiSklVYSBkzM6JS0yiWy6lhY8uz2DgkQH0Hh5+Cm+auLtwMjwKgdbnSXHmvHEVVKMtFJbjpWLmcqnPTrlIZrr6KQCqT07isM69jEsjIK6CinSUyqYzwxBTMDfSo5WTHhecfUFeTMKRZTfbceIpcoaBzrQo8+fCFxIwcXKxMqeJgzan7b1CTCHCz48Ij8guLqVfBEX0tLS4//oCmhjpufZqx7thtcvOLqFnWnsrO1uw6J7orMwY05+Kdt3yIScbUSI9ZQ1sRsvkSeQVF1KzgQMdGlQjacEH457SuhpWpAev2ihXcxEFNyckpYN9JAWZmjW1DWnouu4+KWez0Ma3QkEhYvEEofgb1rkfdGs64zxep4PXruDJrSjvcfQ4TGZWsjF8YyNUrr9m1Wxn5MK4lzZtWKOlzs3QQL59HExp8qgS4Wb/y552b34Kb+T1o27k6f5wV4EahUNCpV22menQhMz2PeWO2EROZjJmlIaFbRuLoYsmDG+8InLGP4mIZDVtWxHOpIAVePPqYlT7HRAu5b12m+vVATU2Nlw8+Mn/cdgryiqjesAx+G0ago6dFcZGU0Ol7uXMxDHUNNdxXDqGJsnWdm13A/BGbeP0oEl19bfy2j6Vag28PlP0rL7JrsSA/9pvchhHuXUvkSm3wOsxpZabXSK8e9JtaMgAxISYFz94riPuUhImlIUGH3Cj93Y38a53cdIX180Qbv1nPOsxeP/oH/xAQN/I9wSfYo+RmtOrfkBnrfr7t93Vqw2XWz9qNXK6gWtMKeO+bhvFPiKK/q/TEDEJHrOXpH0JV2HZoM6asHvUfSST+WSV9TuHyLmWy/dwe//Jxzm6+QsSzKAxM9BgdOOBv7XP39BP+2HdHWDFsHPtbLtWlvXe4ffIJ6hrqzN045qfbFhUWEzxmk4hDaFCWAW4df9jm1YMIdoWeAWBiUH+cy5cEdHfOv+DkVvF+zFoxBMvvFGDpydmETNohuq89atN5SGPVa58/JrFcOWbqM64FDdt+8xHaEHCK8FexGJnq4bV6iKqrc2rvPa6dFqNlj2WDMFdyfHat+YOnd0Uulc+KwRga65KfV4i/2z5ysguoUM2RCfNEl+bE/vv8cVaMjz1D+mJlY8ybl59ZowzCHDa+JfUal+VTRCKLFggvoF4D6tO6fVXCnsewZplY5Iwc15J6Dctw+OADLl8Uaisfvx6Ymxsww20Pqak5ODtb4O7elXv3w1X5ftOntsPV1YqJ03eRk1NI5Yp2TJ/UhhXr/yDsTSwG+toE+fbk6q13nFCKSXxmdcbwH/hU/UcDnK+y8LhcIfvOLChEKleowI0ECTa6hnzOzsJcR4+8giIhCzcx570S3FQ2t+JNUjKaamrYGRjxKSMdM11dFDLIyC+glIkJ8RlZFMnlVLW25lV8AgoF1HNw4EH0FyRIaOz8Ddy0KF2KGx8+AdC6nOtPwU2HSmW5/DochQJaVyjNrXdRgkTs6sjHuBRSc/Ipa22Olpo6L2MSMNHToVEZJ84o86SGNa/NnhtPkckVdKhRjtdRCcSmZeFgbkxtV3uO33mFRAITOzdk9+Un5BQUUauMPVaGBpy9/xZ1NTVm9GnKppP3yMorpFppW+qUc2DLKQFApvZtyrWH4byJTMTYQAf3Ea0J2XKZ7LxCqpa1o0eLqgSsP49coaBryyo425qxaud1AMb2b4ysWMbOr2Oq0a3IzS1km9L2fsrIFujraLFwlZjN9uteh8Z1SjPH9zD5BcXUreXC3OntcVemgpuZ6rM8dAA3b75TZUuNH9eSli1E/EJ8fAZ2diYsWy5M/EKDReemc9caTHVrz4bVlzl59EdC8fdjqYZNS4Kb2X49aNOpJLjp3LsOU9w7lwA3FlZGhG4Zhb2zOfeuvSVo5n6kUhlN2lbGPVSYbp079JDVSs+aLgMbMNG7K2pqajy7G47/+B2C7Ne4LL7rhYFYUaGU4Cm7eHDlDRpa6nivHU791oIDkJ2Ri/fQjXx4EYOBkS4Ldo2nonKVqlAo2LnoLAdXi47asDmdGTi9vepKEWTh3Vw58hCJRMKU0AF0GlaSJ/E5PB6P3itIiUvH2smckCMzsPvOJ+frz9mz8JQq16fbuFZMCBnw05GETCpj1fQdXFDK/gfM7sqI+b1/OxaSyeRsmruXE+vE39FuWDOmrR75j/OkXt1+R+CglaTFp6Otq8XU1aNoN7zFPzrG/9/r8JLTSItlVG9e6V+WxqfGZ7DDT3i0jPDvi+nfGD9kJGWxYqogAfdx60TlBj/Ge3ytz+EJrJsnIhRGePegbA2Xn263bcExIl7GYGSmz7xNY35Isc9MzWHhhG1Cnt2nHu0GlozxiI9OYfks8XP6TGhN/TbfQIpMJid06i6V3820kH6qczg/t5CAiTvIzymkSj1Xhn+XBH756GPOH3wgfGqWDsJKCZheP41isxKEjJndkap1BQft9uVXHNwiANYM/164lrdBoVCw1Pc40R9Fp9hn6QC0tDR4/jCSTSuU6ii3dtSo50pqcjYBcw8hlcpp3LIiA0Y2JSszj/nzDlGQX0yN2i6MndyGpIRMFngdESrQ1pUYMLQRjx5GsvlrYOakNtSs5ULowjO8exePoaEOgYF9SErKInihAIg9uteiY4dqePkdVTnJL/DpydlLYZy9+FKAmbldScvIY8UmwT0aO7QZNtbGjJ69/Zef95/rPxrg2OkZKw39tMkvEp43roYC3IAER30TorMyMdHWQSqVkSstxtXYjIjUVL6Cm9dJSWhI1HAxNiU8LRVjbW200SAhT/BvUnLyyFPyb94lJiOTK5RS8FgkSATPRsm5+R7ctCrnypX3YizVtkIZLr0R4KZtxTJcefMRmVxB83IuPIz4TEGxlNrO9sSmZJKYlYuLpSnGOto8+RSHoY4WLSq4clIZuTC8eW323XwmHIOrluFjXCrRyRnYmBrSpIILh24KJdWETg3Zf/WZUFKVssHZ0pQTt1+hJpEwo28ztp15QEZOPpVcrGlcpRQbjinHPr0ac+/FJ16Gx2Gop43HyLaEbrtCZk4BlVyt6du2BgvWnRcS86aVKO9sxdKt4sIY1acBWupqrN8nHmiThzdHJpWzcY/o7EwY2hRTIz2Clp9FoYDeXWrRslE5ZnsfJj+/mNo1nHGf2QnP+UeJ+JiEqRLc3L37bdUwdnQL2rSqzMwZe4mLE/ELS5cN5u3rWEKUDsUdO9dg2owObF57hROHlSMx9y607VCNxQEnS6ilGjYtx9pF51Qt3d+Bm4y0XNzHbleBm0VbR2HnZM69q28ImnUAqVRGs/ZVmRvSFw1Ndc7su8faAGFL3n1oI8Z7dEEikfDk1gcWTNxBUaGUOs3L47N2mMp2PWDCTh7feIeWtga+G0dSu5l48GSm5eA5eD2Rr0WScdCeiZSpIsY1CoWCTf7HOaGUa47x6UHv8d+8Z4oKiwmduI2758Rqb86a4bToWbfEtRTxMgavfivJTMnGqbwtwUfcfnB9lcvlrJ+3n9NblGo5z+4Mmt3lp4ClIK+QkBHruH/uOWpqEqYsH07n0S1/ez3nZeezcMQ6Hpx7Ls6nBf3o94vj/6q+qqQ2zd2DTCrDuZIDXvum41L5xy7Uf3KlxqdzTnndDvqbZnw/q3UzdwkFVG1XOo3+ud/R96VQKFg5bTuZKdmUquzA0F+Mm0DwYULHbqIwr4gazSrQe2r7n2537/xzTigVUbNWjyzReQFx3i6bvovU+AzsS1sx+U8p4EUFxQSN30ZuVj6V6pRi+LyS0RK7l57nxd1wdPS08N44UqV+UigUrPA4zOeIJMytjfBcPVQ10op4/YU184WB4JBpbandVIx405KyCHbbh0wqp1nHavQYLjpB0R+TWKpMG+89vIkqRPPgtpvcvvwaDQ11fJYOxNzKiIS4dILcDyOXyWnTuTo9BzagqFDKgrkHBVm4tBVz/HqgkCsI8j5GQlwGNnYmeAf1plgqY77HYcGxKWvNTI8uxH5JI9BfOYLvVJ0evetw+PBDLl8WfmW+83uib6jDnCk7yc8vomYNZyZNaM2WHTe5/0jIv4Pm9yI6JpU1ys9hwqgWODmaMX72HmQyOW2aVaRzmyqMn7eXvPyivzpNVPUfDXBic7MwNDRCJlNQIJNSytCUyEwBblwMTfmUIWThEjlkFhXibGTCp3ThiVPFwppXiYmoIaGMqTnvU1PQ19TCUEOH2CzBv8kpKCSnqIjy5uZ8SklDKpNT09aW51/iUSigvpMD9z59RgI0c3VRgZsWZUtxVQluWpcrzdW3ESgU0Kq8KzffRSKVy2lU2okXUfEiINPRhrSsPL6kZ+FgZoSNoQEPIj6jq6VJh2rlOXLvm3HfwTsvKJLKaFqxFPEpmUTEp2JppE+7amXZc1VwZ8Z1bMCRmy9Jz8mngqMVFR2sOHxdoOrpfZqy58IjUrPyKOdoSeta5VhzWACQMd0a8PztF56+/YKejhbeY9qxdOdV0rPyKOtkyZDOdfFbcw6ZTE7bRhWoUc6ehZvEmGlI97oY6mqzesd18TsMaoK2hgbLN4sTftSARthZmeC/RHRYunWoToeWlZjpeYi8/CJqVHPEa3ZnvBcc40N4AibGeiwL6c/DR5Eqn4VRI5rRvl0VVSq4tbUxS5cO4v27OAIXnEAuEw7FbrM6sHX9N4fiGfM60bZjNZYGnuLqxVcqcPNntdQs3+606VRdxblRKBR0+gtwc/fKG4Jm70cmldO8YzXmBvdBXUOd03vvsS5QgJveo5oyenZHJBIJj2++Z8HEnYKj06oinkoTsIL8IhaM38Gz20JGOn/zKGo2Fivb9ORsPAetI+p9PKaWhoTsm6Rqr8vlctZ6HubcHjG6mxzUly7Dv3VmCvOLCBy9mcdXX6OhpYHXljE/qEZeP4jAd+BqcrPyKVvdmcBD0zA2LzkOKi6SsnTSNq4fffiXBn5ZqTn49lvO2wcRaOlo4rFjEo261Prptl8rNS4dn15L+fgiGi0dTeZsGU+z3vV/u8+fKz+3gBUTNnPtgHgvWvRvxIyN4/53JPWT2h9ynOLCYio1KEuNlv9aNMOtYw+5feLR31JAfa3Le29z98xTNDTVmbN53G9HlTsCjhPxIgZDU31mrx/90y5h0pdUlip9cXpOaEP99j9Kwo+u+0MVxeC5aQx6fxqRrPc5wsdXXzAy0/+Bd/Pgj9ccXCPucdND++P0nbP3ie23uHnmOeoaanisHoqppbhmMtNyCZi0S/jUtKjAgEniOikukhLkto+05Gycy1jjFtALiURCTlY+C6bvIT+viOr1XBnlJsbGD299YOdqcf+c5NGZSjWcKMgvwn/WAbIy8yhXyY5pSk7P6tCzvHsVi4GRDvOXiITw9Ssu8ezxJ3R0NfEP7YehkS7B848T8SEBYxM9/Bf2RSaT4+N5mNycQipVtmfajPY8ehTJ5k1iETNxUmuqVXNkrvtBVZ6fr08Prl5/y/6v8u8ZHdHT02Km1yFkcgVtW1aiS4dqTJ63n8ysfMqXsWbGxDZ4BJ8g/n9Jxn+/tNU00ECNzOJCnAxM+JQpwEtpI3Mi0kXUgq6aBin5eTgaGhObKZRTX8GNBAmVLKx4nZyEjoYGVjp6RGVkYqmnj1QqI6OggNKmZsSmZ1EglVHNxprX8UnI5ArqOtrzJEbIwpuUcuaOklDcrIwLN8O/AZ2bHz4hl0PTMi7cj4ihSCanXikHPsQlk5lfSEU7K3Lzi4hKScfG2ABXCzNuKeXfPWpX4sBt0ZEZ0qwmx+69Ekqnck5kZufz9ksypga6dKtbke2XBHdmVLu6nL73mpTMXMrYW1CnjD17/xAqiWm9mnL4ynMS03MoZWtG14aVWbb/OgDDOtXlw6ckHryKRldbE9+x7Vix+zrJ6bm4OpgztldDfFefpVgqo0W9sjSo6kzQeiVRtVMtrM0MWK70KBnZtyEmhnosXi9aqEN716e0kwXzF4mYhE5tqtK9fQ1meh4gJ7eQqpUdmD+vG74Bx3n7Lh4jQx2WhvTn2fNo1ivbpsOGNqZzp+rMmrmPmJjUb6ng4QkE+glw07Z9VWbM7sj2Tdc5vF+MyKbP6Uj7zjVYFnyaP766eQb0onHz8qxdfF4Fbmb6lCQUfwU3U/8MbqyNWLRFgJs7V14TrJR8t+hYjTk/ATd9Rjdj1CwRIfDoxjsWTNwprOPbVsZjxWA0tTQoyCvEb+w2Xtz7iI6eFv5bR1OtvvCQSUvMxH3gWuUq0ZiFBybhUNoaEK3zlXP2c/nQA9TUJExfPJB2/b95cuTnFuA/bAMv7nxAW1cT3x0TqNW8pDHa46uvCRi+jsL8Yqo2LIvfvino/8nJtiCvkKDh63n0xyvUNdSZvX4ULfv8HHwkfU7Fq8cSYt7HYWCqz4JDblRu+HPFy9eKevMF7+5LSP6SiomVEf6HZ/xtourXig2Px7/vMqJef0ZdQ51xoYPpMbXjf7xK6meVEJXEuS3iwTkiYMC/9B5lpmSzZoYgFvef3YXS1Z3/+udGJ7N+jkjkHubdi9LVfr3Pk6uvObpG3F9mrhmBxU8ckWVSGQvHbyEnI4+yNZwZ5dvrh23C7oWzI0RcixOD+uFauSRJ/eKBe1zYfw+JRMK8NcNLdH/iopJZ7CY8W7qNaEqL7t+8ml49jGRLiBjXjPPuRuU6pVS/U4jbXpLiMrBzNmfO0oEqYLYh+DRvnkWjb6iDz2rhgyOTyVnkcZjY6FSsbE3wWDwAdQ11YqNTCfX4Riru1KeukKgvOEnkhwRMzPTxWTwAbR1NTh58wKXTolPqGdwHOwczLp19wXHlAm+ub3dKlbFm/647XL8iTFt9g3pjYWmEj+dhPsekYWlpiF9AbxITMgkMEIThjp2q07NnHVatvszzFzHo6moRuKA3n7+ksnilUFUNGdCQenVcmTRzD9k5BVQqb8vMyW3xX3KGTzEpmJvpE+TZg7Xbr/PizRf09bTwm9WVY9um/fKz/77+owGOnroWmUWFOOgbqQz9yhiZE57+NWpBm/jcHKGcys5FKldQydxSBW6qWloTlpSIppoaDvrGfExLw1RHF02JhPi8XJyMjUnNySW3uJiKVpZEJKZRLJNTy96WF5/jkckVNHB24EFkDHIFNHZ14u5H8XUTV2fuR8Qglclp5OrEi+g48oul1HKy43NyBqk5+ZSxMgOZgo+JaVgY6lHZzpqrrz+iqa5O3/rV2PvV26ZRNU4/ekNuYRG1Xe0pLpIRFp2Aoa42/RpVY/N5cSIPaVWLy48/kJCWjYuNGc0ql2L7eTGimdyjESduhhGbkomDpTH9WlRn8V6B0ge0rUlsfDq3nwszQJ+x7Vm7/5Yqa2pSvyb4rjorfG9qutKyblkWrD6PQgE921XH1cGcUCWYGdKzHnZWxoQo7e8HdK9D1Qp2eAWfQCaT065FJfp1q80Mj4NkZYsLwt+jGwtCTvHqTSwGBtosCe7P69exrFkr5OeDBjSkR7dazJ69n+joFCwsDFm6dBDRn5IJ8Duu8muYNbcTu7fd5OAeMW6bOqsDnbrVYnnIGS6feynAjX8vmrSowIalFzh9+JHK5+arFPyrWqpTr9p/G9y07FSd2UG9/za4adyuCu4rhGw7P7cQ39FbefUwEl0DbQK2jVHdLJPjM/AYsJbYT8lY2pmw8MBk7JSRDTKpjCVue7h+4okYO60cSose327AuVn5+A5eyxslGXnB3slUaVASNNw5+4yQMZuQFsuo26YKXtvG/xBwmJuZh++A1bxWZgv57JpEnTY/X/FHvfmCV48lpMSlY2FvRtDxWX+penpx8y3+/VaQm5mHQzlbgk7OxsbF6rf7/LkeXnhGyJDV5GbmYWZjgtf+6VRt8nOH2/8t2BNwFGmxjJqtq/5LERcA62fvJiMpC+dK9gzy6PGX28tkcpaO30JedgGVG5alj9uvk8IzkrNYMnErAF1GtaDhL2wBdoee4s2Dj+gZ6uCxeewPPK20xExCxm8Vppx96tFhcOMSr0e8+sw6L8EfGjq7E7WafUtRL8grJGDsNnKzCqhY24Ux3t1Vr6UmZhI8ZTdymZyW3WvRdei3425bcp4X9yLQ0dPCd/1wDJSqwnMHH3DuoOh+zl3cH3ulu/HutX/wUBm66bN8ECZm+uTmFODvtpfc7AIq1XBiort4rw7vusMNpdO696L+WNkY8/zxJzYoc61GT21D7fqlefc6lpVKl+Uho5rSpEVF7t8JZ7uyKzN5Rnuq1XBm88ZrPLz/ES0tDfyD+qCppY73jCPk5hZSpYoD06a149TpZ5w8/VTkCLp3RVdXi5nuIn+vaaNyDB/cGA//o8QoQ48DfXqy/cBd7j2OREtLg2Cvnly7+4GzV8S4y39WV/IK/ndE9bcqvTAfe3NL4pQJ4mWNLfiQloKGRB1LHX1is7Ow0tUnM6+QQpmMCmYWvEkSnjfVrKx5mZiIukRCaWMz3qekYqStjaGmJp8zs7AzNCS3oIjMgkLKmpvzJTWLfKmUarbWvItPplgup46jPc+i45DKFTRwceRJdCxSuZwGLo48i46jUCqjrrM97+KSyC4sooq9NSmZuSRk5uBsboK+ppaKRFzXxYELL4RCakDDb+CmV/0qXHr+QZCBnW3QUdfgbng0etqaDGlek03nRKeiX9Nq3A77xJeUTBwsjGlfuxybTonXxnVpwKUH74lJTMfGzJCh7eqweM9VFAro1aIamZn5XHssgjS9x7Rn85G7fEnKxM7SmBlDWuC7+qxKGt6lWWV8V54VGVYtq1C1nB1BSqOw/l1qU8bZkoAV58SxO9Wkfg0X3AOPI5XKadm4PEP71GeG50EyMvMoV8aaQJ+ehCw5y/OXMejpabE4qB8fPyayYpW4aPv1rUe/vnWZM/sAnyKTMTc3YMnSgcTGpuPvewypVE6LVhWZ59GVfbtus2+nGE9McmtHlx61WbXoHBfPiNWNu5+IX9i88rIqfkFl4nfplcrnpmNPoZbKSs/7Kbi5e+XNPwI3D6+/JWDSLgFu2lfFffmgb+Bm1BZePfqEnoEOgTvHUrGmWNUmxaYzr/8aEmJSsXIwJfTAFGychPRUWixj8bRd3Dz9DHUNNeatGU7TLt8eAtnpuXgNWE34ixgMjHUJ3D/1B8nstaMPWTxJkC6bdKvFvA1jfnhAZKZm49V7OREvYtA30mXBwWm/JIS+e/QR795LyU7LxamCHUEnZv/Wch/g+qF7LBm7ieIiKZUblsPvsBtG5n9fKaVQKDi87AxbPfahUCio3Kg83gfcMP9JYvT/lqiPL6L5Y4/gs41c0P9fOsbd00+4dvAeamoSZm38/Zjpax1efpaXt9+ho6/N7I1jfznOksvlLJ20jfSkLJwr2DE2sN9Pt3t85RUHld4sbsuHYVeqJCiWSWUsnCCO41LBjimLBpXoVGVn5BE0fhtFhcXUbVWJ/lPbql5TKBSsmHtANRL2Wv+N5C5EALtJT8nGpbwt04K+keavn36mchufFdofZ+U46/XTKNYrTfuGu7WjXnMBpG5eDPuWEO7Xk7KV7UWelNdRYiKTMbc0xEsZz/Dw9ge2rRYLvolzOlK1pjPxX75ycRS07liN3oMbkpKUhZ/7IYqLZDRsVo4ho5sTFZlMiN9xoSztUYuuPWtz+WIYB79mUc3rTOky1ni4H+TLlzSsrIyY79eLsFdfWL1WjOfGjGpBzZrOTJ21l/SMPEq7WuExpzPrtl7j0dModLQ1CfbtxYOnnzh4QkwTPN06kpmVz7qd4m+cPKIFSGCG/+HfnCkl6z8a4Fjo6JGSl4dcAWWMzfmQloIECQ4GRkRnZmCmo0t+kZQ8aTFlTMz5kJKKBAnVrWx4kSjciCuaW/I6MRk9TU0sdPT4lJ6Opb4+cqmCtLx8SpmakpKdR05RERWtLPmUnE6+VEp1OxvexCZSJJNT29GOsNgECqQyajva8TY2kbyiYmo42BKTkkF6XgHlbSzIzy/ic1omtiaGWBno8zgyFgNtLZqWL8WZJ2+RSGBQoxrsv/VcnIy1K3D7zScycguoYG+Jub4e18Mi0dHUYESrOmw6e1/ItBtW5kVEHNGJ6VibGtCjcRXWHhMP+hHt63D7RSQRsSlYGOszpksDQnddQSZX0KVxJRQyORfvCb8cr9Ft2X36EVFxaViZGTBnRCv81pwjJ6+QGhXs6du+Jt7LzohOTJOKNKjmgv8K4RTco311qlW0Z/5iMYbq0qYqLRqUY96Co8K0r14ZxgxpykzPA6Sm5eLqYknI/N4sXnGBx0+j0NHRJDSgL3Gx6SxZJhRWvXrWYcigRsydc4CIiERMTPVYsnQQKcnZzPc6QnGxjCbNyuPu1Y1D++6xS3lzGT+1DT361GXt0gucO/kUNTUJc32707x1JbavvcJRpSvwdI8utO9Wk1t/vCbU+6iwHO9ek2meXcjOzMd93HecGyW4uX/9bUlwE9wHdXU1zuz7Bbi59paAyT+Cm7ycAnxHbeX1YwFugnaNpUKN78BNvzUkfE7Fxsmc0INTsLIXD+3iIikLJ+3g7oWXaGiq47lhJA2/4x1kpubg2W+VKmMn+NBUSlcpSbC9uPc2K9x2o1AoaNO/ITNWDvtBdZISl45nr2XEvI/H2MKQoKMzKFPt594xT66+YsHAVRTkFlKxXmkWHJlZIsvqz6VQKDiy/BxbvEQoY5MedZm7bcI/il0oKihi+fhNXNknlHUdR7ViyupR/1ht9Z9Ucrmc1VO2IJcraNanwT8eA4IYTa2csg2APjM6U76O61/u8+ZBBDsDBOF20pIh2Lla/3LbQysu8OiPV6oss5+dEwkxKYRO2CoEACOa06xHnR+22RF8krB74ega6OC1ZSw6et+OI5fLWTJ9NwnRqVg7mjFnZUljwhNbb3DjlFg8eKwbgbmN4IwoFArW+x/nzZMo9A118F43TNXx/PgmjhXKxO/+E1rSpENVAFISMwmavhdpsYymHarST5kb9fFdHEt9vpGKW3WpAcCudVe5f/0dmloa+C4fhLmlITGfkgnxFE7FHXvWpkufuuTmFOI7cz9ZmfmUq2jHdM8uFBZKmT/vEGkpOTi7WjLPtwfZWfn4zDtIXl4RVWs4McmtPa9ffWGZMrB34OBGtGpTmdWrLvHkibgPBwT2ITevEP8A0c1u07oy/frWY37QCT5GJmFqokewX28uX33NsVOC9+k1pzO5+UUsUaofRwxohLOjOZM89iOXK+jcpip1qjsx0Ut8/3frr1ld/4crJCSEunXrYmhoiJWVFT169OD9+/e/3ef69etIJJIf/r179+4f/ezswmKK5XLKGJsTniaUUa5GZkRnZmCkpQ0yyC4qwtXYlKj0dBQKVOAGoJqlDa8Tk9FWV8fR0IhP6emY6uigI1EnMScHByMjcgqKyMgvoKyFOfEZ2eQUFVHZ2oqopDTyi6VUs7MhIimV3KJiqtlZE52cTlZBEZVsrUjOyiEpO5dSFqaoySVEJqdjaaiPq5kZjyNj0dXUoH3Vspx5InKnhjSuyYHbL5DJFbSrXpbnkXEkZ+Xiam2Gk5kJ18OEe/GYtvXYcv4BcoWCTnUr8DE2lQ+xKZgb6TGweU3WHRfgZmDrmjz78IW30YmYGOgyuWcTluy5KlLC65XDQEebk9eFsspzVFsOX3xGeEwyZsZ6eI5pS+D6C2TlFFCptA3DutfHd4WSg1O/LK0blmXBqrPI5Ao6taxMw1qu+C09g0yuoH2LSnRuVRn3QKWvTa1STB3dkjk+h4T5k6MZiwL6sGr9Ze4//Ii2tgYh/n1IT8shJFQApm5dazJqRFO8PA/z/n08Rka6LFkyiMz0XHw8DgszwEZl8fLtwfHDj9i2UbRfR09oSe/+9dmw8jKnvsrDPbvSqn1Vdm28zkFlh2fynI506lWbu9feEuJ5RBW/4ObdTcQvjN9BVESS0udGgJuHN9+rpODNO1YTnRt1Nc4dfKBSS/UZ9afOjRLcNOlQEtz4jNzC68ef0DfUIXj3uJ+CG1tnCxYdnqoCN0WFQu1x98JLNLU18NkypgS4yUjOxr3PCiJff8HU0ohFx9x+ADentl5j+fRdqofDzNXDfwA38VHJzO4USsz7eCzsTFlydu4vwc2t44/w7b2MgtxCareuwsLT834LbuRyORvn7lWBm55T2uO1d8o/AjepcWnMauXPlX23UVNXY/KKEbht+HFE8b9Vsi5su8ab++KhP2HJsH+8v0KhYI3bTtVoaqjPj5yXP1d2ei4LR64X45x+DWk35NcRDi9uv2NXkLBUmLRoEKUq/zjeLCooJmjkRrLTcylX04XxQT92eO6cfcaRdaLbMXPFUBzKlARUe5dd4OGV12hpa+K9eXSJ4NmX98LZEiSu5bHe3ala/1ue2tm997hwQPDd3FcNwV6ZGZWRmsOCSTspLCimTvPyDHUTaq+iwmICp+1RJYTPDOqDRCIhIy0X/+l7KcwvplajMoyaIba/ceG7js787pSv6kBWZh6+bvvIyy2kai1nJs/rJCIXfI4S80l0efyWDkBLW4OlgacIfyeSvxcoI2D8vY6QEJeBrZ0J84P6kJaaw3xvsThs3KQcI8c059TJp5w4IQxZPTy7YW1tjJfPEXJyCqlU0Y7ZMzuyffdtbt8NR1NTnUDfXsTGpbNyvXiPxwxviquLJd4hJ0Snvkl5unWojnvQcfLyi6hZxZHRAxoxL+Q4uXlFVC1v98tz4M/1bwc4N27cYPLkydy/f5/Lly8jlUpp164dubm5f7nv+/fviY+PV/0rW/bXfgg/q0KZFFcjMxW4KWdsTmSGIBfrSDRJKxCZU7GZ2cjkCqpaWqvATU0rW14mJKKhpkYZU9HdMdTWxlRbly+ZWVgb6COTKkjJycPZ1ITMvAIyCwooa2lOQkY2WYVFVLS2JC4jk8yCQipaW5KcmUtqbj5lLM3Iyy8iLiMbB1NjDLW0eRefjKmeLlXsrLkbHo2mujpda1bk2MPXAAxqVJ0jd8OQyuS0qOxKRFyKytumioM1l5+Ho64mYUKH+my98EDIxGuUISktm1dRCRjpaTOibR3WHL8txkPNqvLxczIvP4qU8Bn9mrF4z1UKi2U0reGKg7kxhy6JMdic4a05ff21yvfGd3x7QjZeIi0zj7LOlkzo3wSf5WcoLJLSsGYpurWqyvylZ5BK5bRuXJ62TSriu+iUOLkblaNPp5rMXXCM/PxialVzYubEtsybf4T4hEzsbU1YEtCPjVuuc/P2B9UFU1hQRGCwkHl3aF+V8WNb4uN9lFevvmBgoEPoogHk5xXhOe8QBQXF1Knnio9/T86eeMomZSjcsNHN6D+kEVvXXVER7Nzcu9Cuc3X2brnBPmWHZ8LM9nTrV4/7N9+rwuhadawmsqVyRHBm5PsETM2FQ7G9szlP7oYToDTxa9quikotdeHwI1b7nQCg18imjJr9jXPzdSzVpENV5i0T4CY3W4CbN0+iMDDSJXj3eMpXF+Dhz+Am9NAULG1NACW4GbeNB5dfoaWtyfxtY6nX+ht/Ij05i3m9VxD1Ng4za2NCj7nhXKHkjeTo2kusU5rz9ZzQhimLB/2gTIl5H8fsTqEkRKdgW8qSJefn4Vju5w6357ZfJ2jYWqTFMpr1qof/4Rk/WON/X8VFUhaN2sBxJXl03MJBTFg85G/Z+n+t8KefmNLQi/ePPmJoZkDIeU+6T+7wv2Tiv6iM5Cy2egqfl+F+/bCwN/vHx7h28B43jz4Qztqb/no0pVAoWDFlG4kxKdi6WjF1xfBffk5piZksHLNZdAwGNqL9kCY/3W6D10HCX0RjZKaP9/bxP/wOsZFJLJ0uiMG9JrSmSZeS/J37l8LYpxxtTQvtT5nvFgDJcekETxIhmq161qHbyGaq18IefmSD0h18xJxO1FGOmaTFMoKn7SEpNh07Z3PmLh2IurqaAIMLTvL+5RcMjXXxXTMUHT0tpMUygmbtFyRkJ3M8Fg1AXV2N8LdxLFP6ZfUZ0YTWXWogk8oIcj9M/Jc0rO1M8F7UH01NDbavvcLD2+FoaWswf3F/zC0N2bvtFjeuCONS35C+2NiasHrpecKei9H/gtD+aGlp4Ot1mIx0EcPg7tWN58+jWa30zho9pjkNG5ZhQeAJMaqyNGKBf29u3H7PHmXu3xy3jhgZ6eITfEKlmOreqQbugcfIyi6gQhkbZk1si3foSRKSs3CwNcXXrRO+S08Tn5SFvY0JPtN/zb/6c/3blywXLlwo8f327duxsrLiyZMnNGvW7Bd7ibKyssLExOQvf0ZhYSGFhYWq77OysgBwMjDhY7qQhZc3EfwbbXV1TLV0ic3OxkbfgJScPIpkMipbWBGWlAhALWs7nsXFIwEqW1jyMiERXU1N7PQM+ZCSgpmuLjpqmsRkZmJvZERxsYzknFxcTE3IziskLS+f0hZmZOQVkJIrvs7NLyIhKwcnMxPUFGpEp6VhbWSArYEBj6PEKKpeKQcuvRRApU/dyhy4+xKAfg2qcurhWwqKpTQs50RCWjafktKxNjGgQRlHjt5VGvd1aMCOS49FgnclFwoKpTxRJoGP79yQFYdvIpMr6NygIinpOTx69xldbU1mDWjB0r3XhZtxJScqO9uwSel7M3NwC64/DOfFh1gM9LTxm9iRJVuvkJSWg7OdGdOHNMdz6Wny8ouoVdmRgV1q4x5ynKJiGU3rlqFn+xrMDVQGY9YtzbA+DZjhc0iooyra4z6tAx5+x4j5koa1pRFLgvqxc+8d/rgm2Pz+Xj1Qk0jw9hc8nVYtKzF1clv8/Y/z/Hk0enpaLAztBwoFHnMPCB+GWs74B/bmjwsvWbtCPCwHDW/MkJFN2b3lBof2iItx2pxOdOxWk4M7b7Nr43UAxk5vS8+BDXh8N4LAuQeRSmW0aF+F2X49KMgrwmuCSAUXwZkjcSxlybP7H/GftofiIimNWldi3sJ+qGuoc+nYY1Ypb0rdhzZizJyOSp+b9yU4N1/BzVfOzZsnURgY6xK8azxlq4pV6m/BTUExgeO28ujqGyEh3zGOmk2+GbOlJWbi3mcFn8MTMbc1IfSoG/Z/Mug7sPwcO4JOADBgZieGe3T/4WET+eozHj2XkZmSjXMFO4KPz8Tc5ufX57E1F9joLsBSp5EtmLJi+G9lwvk5BQQMWsWTy2Goa6gza9NYWg9s/Mvtf1Z3Tz0mZOhqCvMKca7kgP+x2diV/nmo5/9Wydo8bw/Z6bmUru5C98k/95P5XSVEJ7N6+g4ABnv2oFztvx5Nndl8ldsnH4tR6o5Jv4zxkEllLByzifTETFwq2jNlyeCfAqHLB+5ybudNQdTdMOYHjldeTgEBIzeSn1NA5fqlGenVo8TrnyMSWaQM2ew+qjmt+3xLTi8sKCJg3DYyU3NwrWzP1IXfzPySYtMJmrxLWEF0qUGfcS1U+20MOkXYw0h09bXwXT8CQ2MRVnpi5x0uHxNJ4B7LBmHrKADlhtAzhD3+hJ6+NvNXDcHQWJe0lGzR0Skopm6TsoycJvhA65de4PnDSHT1tPBfNggTU30unX7O4d3i3j3LtzvlK9tz88obdikNAqfO6US1ms4cO/iA80plldeCXji5WODnc5SPEUmYmumzILgvKanZ+Pspx1BtKjNwYENWrbnMEyVlICigN7Fx6SxaLigDg/o1oEE9VybO2CO6OxXsmDG5LT4LTxKjNPsL8urB8s1XeP0hHkMDHRZ69mD9nluEvY/DQE+bhfO6c+j84788d77Wv72D8+fKzMwEwMzsr1cINWvWxNbWltatW3Pt2rVfbhcSEoKxsbHqn6OjQN0xWSItvLypBe/TUtCQqGGja0RsdjYWunrkFRSTL5VS3syCNylJANSytuVpXJz4+Taii6OppkZpY1M+pKRgqK2NuY4eMemZWOnroyVRIz4rG3tjI2RSBYlZOTiZGlMskxOflY2jqTESOXxOz8TGyBBjbS3Ck1Iw09OlrLkZj6PEKKpleVcuvQxHIoF+9atx8J4ANz3rVObi0w/kFhZRy9WevPwi3sclY2agR9sqZTl69xUA49o1YM+Vp+QWFFGnrAM6GurcfR2FjqYGk7s1YvXR26KrU6ssxcVSbr0Qiqh5g1qx6sBNsvMKqV7WjkZVXFTgZlLfJjx585mHSmn4gkkdWbnrOrFJmdhbGTN3dGt8VpwlO7eQKuVsGdO3IV6LTlJQKKVeDRcG96yHR/AJ4UBcw4Vxg5syx/8ImVn5VChjg+/sLvgGnlDGLeizNLgfh44+4tzFl6ipSfCZ1xUDfW28fZUt08ZlmT2zA8HBp3j0MBIdHU2CQ/qho63JvNkHyM0ppEpVBxYE9+XW9XesWCTmyH0HNmDE2BYc3H2XPduUcREz2tOlV22O77/PNmWK78hJregzpBHPH33Cf/Z+weFpXYm5C3pRWCjFe/IuPryOxchEj4WbR+Bc2oqXjz7hN1UEZ9ZvUQGPxcKh+MrJp6zwFvELXQc3VJn4PbsTrvK5adi2smosVZAn1FKqzs0/ADcBY7+BG7+d40uAm9SEDOb2Ws7n8EQs7U1ZdOxHcLN3yRkVuBnm0Z0Rnj1+eICEv4hmXrclZKZkU7qaE4vOzPkpuFEoFOwLPakCN31ndGLaqhG/BTeZKdnM6xjCk8thaOtp4X9kxj8CNwqFgqMrzuLfZymFeYXUaVedFTcX/NvBTUpcGtcO3OHijms8uxrGl/B4CvML/3rH/+F6fv01l3cLYDBt7egfRpJ/VTKpjIXD15GXlU/F+mUYOLfbX+7z8WU0G91Fx2h0QD/K1fp1Yvyu4JO8vP0eXQNtvHZO/EHJB/Ax7DOrZ4ucqSFzu1KnVUn1l0KhYNn0XUS/j8fM2hiPjaNL+NnkZucTMGaLcByuX5oxPj1K7Lty3kHCX37GyFQfn42j0FGOTAvyiwiYuIPM1FxcK9nhFvoN+Jw7cJ8ze+8pnYoH4lxWjMIe3XzPFiXHZczcTtRsJLhOp/bf58xXJdXCvjiXtqKosJgFM/aTkpiFYykL3Bf2Q11djdOHH3L6kHLbgN6UKmvN6xcxrFJK0weOakqLdlX48C6exQHfYhg6dqvJw3sRbFR2tcdNbkO9hmXYuvk6d29/QFNLHf+A3ujqauHldZicnAIqVbJn1uxOHD/5hJOnhGLKY14XdPW08V5wrIRiyifwBF/i0rGxMiLQuwcbdtzg8fNodHU0CfHqyZk/wvjj1jvU1dUImNONa/c+cPHmG9TVJATM7sapa685dO7pX54/X+vf3sH5vhQKBTNnzqRJkyZUqfJr8yhbW1s2bdpE7dq1KSwsZPfu3bRu3Zrr16//tOvj4eHBzJkzVd9nZWXh6OiIQgEVTS15l5qMGuBsaMrH9DRMtHVQSJX8GxNTItPSUCighrUNT+PikSChjq0dT2LjUJdIqGJpxfO4BHQ1NXE0NOZtYjImujoY6+gQkZyKlYE+umoafExLw8bIAC11dSKS07AxNMBIU5s38UmY6+vhYGzIk2jhPlzdwZbrbwVnpmPV8hx/JEZRAxpU58i9MBEnUKMCt15HkpVfSGVHazQlEp7FCPl397qV2PGH0tumTV2O3XopXIldbLA2NuDcw3doqKsxrUcT1h2/S2GxlMZVXNDX0uD03TdoqKsxd1Br1h+9Q3p2PhWcrehYvwKLdiq9arrV5+PnFG4++YiWpjp+Ezuy4cBtopUEY+8JHZi/8iwZWfmUL2XF1KEtcFfOUGtUcmDcwCbMXnCUnLxCqldyYProlsyef0QQiJ0tCPDozoKFp3kfkShM+4L6c/b8C04oJYfuszpjbWXEnHkHKCyUUq+uK57zurJk8Tnu3lHOegP7YGqix4xpe8jOyqdCRTuCQvvz6P5HFgeKvKluveowdnJrThx6yLb14m8bM7k1PfvV49yxJ2xQ5q0MHtOMASOb8vp5DL5ueykqlNKgWXk8gvpQXCxj/rQ9vH3xGQMjXUI2jqBUWRteP4vGd/Iu5cqqHF5LB6KpqcH1s89ZpiT9dR5Qn4leIu/p2d1w/MZvF8duXQkPpRS8IL8Iv7HbePUwUqWW+gpukuMzhFrqV+BmzBYeX3+Lto4m/jvHU/27FOXUhAzm9V5B7MckrOzNWHjMDVtnixLXzp5Fp9mjjFUY4d3zpxk97x5H4t1nBTmZeZSvXYqgozMwUK5E/3x9b/c7zMGlQoI63KcXA+d2++14KOlzKp5dF/H5fRyGZgYEHp/1j8itMqmMtW47OLNRqDm6jGvD5JUj//FD+r+jMpIzeXblFS+uv+bF9Vd8+RD/0+1MLI1o0LUOU9eO+VsKo/+TVVRQxKrJWwDoOqEtFev/MxoAwJ7gE7x9EIGekS7uOyf95Xufm5VP0LC1FBdJadC5Jj1/0zF6cPElB5cLMDBj1Qgcy/4IWrPTcwkYsZ6igmLqtqnCwFk/jjgOrLzAnbPP0dBUx3vr2BLgXC6Xs9RtL58jErGwNcFzw8gS4OfoxmtcOy7sFjzXj1CpFRUKBSs9DhPxSriH+24coQI+rx59Yp3/CQCGzWhPA+W4OOZjEgtnCSJthz516TFMAPmndyPYoIxnGOXWjgYtKqJQKFjud4J3L8V9x2/lEPQNdXj64CPrFouuycjJrWnUogIJcRn4zzkoFoItKjBsfEtSkrKYP+cghYVS6jYsw9gpbfgUmUSQUg3aoUsNevWvx4VzL74ppuZ2pmx5W+bNO0Dsl3SsrY3xX9Cbp8+iWbdeGakwugU1ajgzZeYeMjPzKVfGGo85nVix/jLPw0RgZohfb67dec/JCy+QSMB7Zmdi4tJUkTyzxrchPSuPLUrTzRlj2/A5MZ2DZ5/88lz4Wf1fBXCmTJnCy5cvuX379m+3K1++POXLf1uFNmzYkM+fP7NkyZKfAhxtbW20tX9E9eVMzHmXmowEKKtMA9fX1EJXokFCQS5ORsbEZWVRrJBTzcqa53EJSJBQ186ex1+ESV8tG1sef4lDU12d8mYWvIhLwEBLCwdDI14nJGGqq4OFrh5vE5Ix09PFTFePNwlJmOnpYmdoyLPP8RjpaFPByoK7H2PQ1dSgUSlnLr0So6ieNStx+IFwIu5XvyrHHrxCKpfTukppnn2MFblTNuZY6Otx8+0ndLU0GdC4OlsuChnz4OY1ufDwHanZeZSzt6C8nSVHb4ehJpHg1rMpm07fJ7egiFrl7LE3N+bwteeoSSTMHdSK7acfkJSeQyk7c/q1qkHwVvGQGNCuJmkZuVy6K5C238SO7Dn1kPBoQTD2n9KZwHUXSE7LoZSDOXPGtMFj4Qkys/OpWMaGaSNbMjfwmOr7uZPaMc//KInJWTjZm7HQuycLl53j1Vvha7M0qB83b7/nwBHxN82c2p7SpSyZOXsfeXlF1KjhxHyfHqxd+wfXrr1FQ0MNf/9e2NqaMGPaHtLTcnEtbUXwov68ehFD8Ndk7y7VmTyjPedPPWO9MpdlyOhm9BvSiD/OvWCVMjel79BGDB3XgvevY/GetofCgmJqNyiN18K+yOVyFszYT9jjKPQMtAlaP4zSFWx5/+oLPhN3UpBfRM0GpfFZIVLBb196xeJ5h8XP71uXST7iAf/ywUf8x4v4hXotK+K5agiaWhoUFhSzYNx2Xtz7iK6BNoE7x6o4NykJGbgrpeA2Tub/OrhxMGPRsRlYO31r2SsUCvaEnmbvEvEejPbtRd9pHX64hl7fD8en30rysguoVL8MAYem/3SUoFAo2DB3LyfWi3NoXMhAek/98XjfV2xEAu6dFpL0ORVLB3OCT8/BqYL9b/f5vvJzCggYsJzHF18gkUgYGzqE3m6d/sf5Nl8+xHFo8Sn+2H2D4iKp6v8lEgllapXC0FSf5M+pJH9OpSCvkIzkLC5su0pWajZ+x+b8W/lBB0JP8uVDPGa2powM+HtBmN9X2O13HAgVHYLpq0di42z52+0VCgXLJ28lNiIRSwczZq0b88u/PyE6mcUTBPjqNrYVzf4UHwLKHKgJW0iITsHG2YK5P3E0fng5jN3KEM3JCwdQ8U/KrgOrLnHvoiDme28ejamlkeq1R9feqBLCJ/j1pHqjbwDw8IZrXD/1DDV1NbzWDMVayVtKjE0ncIoYWTXrXJ3+E0QESXZGHv6TdpGXU0iV2i6qe8PnT8kEzd4vohW61aTPSEG0Prj1JtfOvURdQw3vJQOwdzbnS3QKQfMOCe+eTtXoN6IJuTmFzJ+5n8z0PEqXs2Hugp4UFhbjO/cgqSnZOJeywHNBT7Ky8vGZIxRT1Wo6MW12R8JefmbFUgGWhgxrTKs2lVmy5BwvlNycoOC+ZGTmEhisNPfrUI3everg7nuE6JhULCwMCPbvzYkzzzl3KQw1NQnz3buRmJLNmq1i6jJhRHNMTfSZ7nsQEN5npZwsmDZf+X23OthYGTFnoRjnj+rdkEcnfn0OfV//1wCcqVOncurUKW7evImDw+/NvX5WDRo0YM+ePf9onw9pqajr6lDB1JJ3KSnoqGtgpqXLl6wsbPQNSMvPp0DJv3mdkCQ6N3b2PPoSiwRoYO/Ag5gvqEskVLe24cnnOLQ11Clrbs7z2HgMtLRwMTbheWwChtpaOJma8PyLADTlLMx58OkLupqa1Ha04/r7T2iqq9OmQhnOPBdqsD61q3DovgA3PetU5uzTdxRJZTQu70xkXBrxGdk4WZjgYmXGHy/C0VRXZ3jzWmxWgps+japyJ+wTCenZOFuZUq+cE3uviPbe1B6N2XnhMZm5BVR2saFaKVt2Kk39Zg9owYFLz4hNzsTe0phRnesSsPmSCMdsVgUJEk4p1VPeY9tx7NILXoXHY6ivQ+D0LizadJm4xEzsrI3xntQenyWnSc3IpbSTBfMmtcM96Dip6aJT4zujM17BJ4hNyMDW2pjF83uzYt0fPH0Rg66uJksC+vH0WRTbdgvQO3l8K6pXcWTGrL1kZ4v2aKB/b7Zsvs75cy/EzNi7O6VLWzNj2m6Sk7JwcjIndOlAIt7H468MiWvZtjJucztz9WIYK5Uro76DGzJ0dDNuXH7NUv+TosPTry6jp7YhMjwRzym7ycstpFptF3yXDECiJiFw5gGe3otAR1eLgDVDKV/FgY/v4vAat10oF+qUYv6qIWhpa3L/6huxOpPJaduztioV/M3TKOaP2y46Pc0r4LV6KJpaGhQVSgmcuINnd8LR1dcmcPs3n5u0xEzcB6wlLioFG0chBS9BKB6/TQVuFuyaQLXvbrx/B9zsWniK/cpOyxi/PvSZUjI1HCDszgd8+q+kILeQ6k0r4LdvCro/SfqVy+WsmraD8zvEnH/K8mF0Hdv6t9dmZFgMnl0XkZ6YiUNZG0LOzMPKyeK3+3xf6UmZ+HQL5cOTSLT1tHHfNYXG3X98AP6frA9PPnIg9AS3jz5AoRDSVtdqztRsVYVqLSpTrVklDEy+KXAUCgXZ6TmE3XxLQL9l3D35iPjIxH/bKO39o4/sX3gCgEnLhqP/k67c7yozJZuFw9chlytoO7QpLfo1/Mt9jq+7xK3jj1DXUMdr12SMzH+uqCvIK2TBkHXkZIiu4ZiAvj/dbmfwCR5feS2cuHdOLKF4AvgSkUjopO3C8XdY0x/M/O6cf8HuJaJDNDmoL+VrfHNP/hyRyMIpQlHYYWBDugz7Rmy+/8drdiwRwGCib3eqKU0y83MLWTBhB5lpuZSuZMeMkL5IJBJBHp6xj7iYVKztTfFaJVzKszPz8Ju6W2XaN22+GA/f/uM1O5S+NpPmdaZGfVeVYionu4CK1Rxx8+4mFFPeR4n6mISZuYFSMaVJgOdhIt6LyIUFSq8cz1kHSEzIxM7BlPlBfUhMzGS+91GkUjnNW1Zk2MhmHDz4gAvnBUXA26cHxsa6TJq6S7XQnD61HavWX+HJs2h0tDUJ8evDm3fxbPp67Y9rhYWFAZPd96lc6Zs1KMt4932Ch1mvDN3aVWOi134VT7Nds0pM8jsoFLctKtOh2d834fy3AxyFQsHUqVM5fvw4169fp1SpX89af1fPnj3D1vbnao1flQSobGbF6+RkNNTUsNM35FN6Bua6uhRKpeQUFVHOzJzwlFTkCqhla8tjJbhp6ODI/ejPANS1F8ngGmpq1LC15WH0F7Q11KlkZcmjaMGhqWRjxYOoL+hqalDDzoZb4dFoqavTtLQzl99EoCaR0KVqeU48EaGY/epW5ehDwZ/pXKM8V8MiyCsspnYpe1Iz84hKTsfGxJAazracfvwWdTUJo1vXZeulh8gVCjrXqUDYx3hilEGa7WqWZct5AXwmdW3EkWsvScnMpbSdOc2qlWLDCdEanNanKWduv+FTXCpWpgZM7tWYgC2XkMrktKlXDhszQ7YcE+3KeaNac/Xee568jkFPR5OQGV1ZteM6UbFpWJoZEDC9MwtWniMhOQtHO1N83Trjs+gUicnZONiaEjSvOwsWC0tuCzMDlvr3ZdOOm9x7JFwsF/r1JuJjIus2C6Q/alhTmjQoy/SZwiyqTBlrQgL7sHfPXU6cEGGXc+d2pmpVR2ZN20O8Ut64aNkgYmNSme9+mOIiGY2blWeudzfu3HjHkq+jqt51GDO5NQ9ufSDUR9mi7V6TibM6EvMpGY+JO8nJyqdiNUcWrBiEpqY6IfMO8UDpIuq/ajCVazoTFZ6Ix9jt4iZT3Qn/NUPR0dXi8a33BClD8lp0qc70gF6oqanxIewzPqO3UZBXRM1GZfFeK7KliotEKvjjG+/R1tXEf+soKtV2AUS2lPvAtcRGJmNlb8rCA5NUUnBpsYyFk3bw8MrrvwY39maEHnX7LbgZF9CXXhO/mZh9re/BTa2WlfDdM/mn3AeZTM7yyVu5vOc2amoSZqwb/VupL8DbBxF491hMTkYertWcCD4192+lTH+t+E9JeHYOJjY8AWMLQwJOzvuXPFv+1Yp8Gc3mebt5fPGF6v8adK1N/7k9qNK4wi/3k0gkGJkZ0rhHPZwrOxD5Ipqo15//LQAnP6eAhcNXI5PKaNanAU3/Ya6XQqFg6fhNpMSl41DOlsnL/lpW/uruB7Z4iVX7+JCBVPzFZ6ZQKFgxbSeRrz5jYmmI986JPx3l3TzxmEPKSIAZK4fj+ifLg9ysfPxHbBDuyPVLMyGwJEj69CaWJUpFVdcRzWg/4BtAy8nMw3+M0lm5riuTAr4Z9n16G0eo214xgh7ckC5Kp2KZTM6iWfuJfBePqYUB8zeIkZVCoWB90Gle3P+Irp4W89cNw8TMQKmYOqCKYfBdMRgtLQ3C38ax2Et44HQb2IDO/eqJbecdIjYmFSsbY+YvEUBmw7ILPLwjFFN+SwdgZWPM1nVXuHPjPZqa6vgt7IeNrQkh/id48+oLBoY6BC4Sizdv90Oq0f5cjy7cvfOBLcp78eTJbahe3YmZc/aRlJSFg4MZ/r69OHnmGafPPRdp4O5dkcrkBC4R1h09u9aiWeNyTJi9R6WQHTe0KVN9DorMqdLWzBzXGjf/w2Rk5VPO1ZrJI5oz1f+wSqTSp0MNRnju+stz6Wv92wHO5MmT2bdvHydPnsTQ0JCEBCHDNjY2RldXtLo9PDyIjY1l1y7xh61YsQIXFxcqV65MUVERe/bs4ejRoxw9evQf/eyKZiJHSoKE0kZmfEgVbsQaEjUSC3JxMTYlNj2LYpmc6tY2PFcqpxo6OHIvWoRkNnF25k6kSAOv7+jA3U8xaKipUcfenruRMWiqq1PHyYFbEVFoqqvTyMWZq+8+oq4moW3FMpx7KTx/etSoxPHHgmfTq3ZlTj5+g0yuoE2VMjwM/yx4Ng7WyKRy3scmY2agS7OKLhy+G4ZEAmPb1GPnlceCKFytDF8SMwiPS8HcUI/ejauy7pQAMKM71OPig3fEpWbhYGlM14aVWHlYmbTdtQG3nkbyNkr43swc2ILAzZcoLJLSuHopKpeyYdV+se30wc15+vozt59GoqWpQdD0rmw+cIf3n5IwMdIleFY3Fq67xOe4dGwsjQia3Y2AFef4HJeOtaUhoV49CF11gXcRCRgb6bLUvy97D93n6s13aGioEejdg6SkbJatFhyYgf3q06FtFWbM3EtKSjbOzhYsXtifUyefcuCAMjfKrQMNGpZhttteYmJSsbQyYvGyQaSl5uA15yAFBcXUbVAaT/+ePH0YSYivGFW171KDSTM78OzhJwI9lLLvDlWZ5tGF+Ng03CfuIjMjj7IV7QhSdmOWeB/l9h9v0NRUZ/6KwVSv58qXqBQ8xm4jKyOPclXsCVw/HD19bZ7di2DBlD1C8t2+CrND+qKurkbk2zi8Rm4hL6eAKnVL4bt+OFramsikMkLd9vLgyhtxY9o8iqr1hJ9GRmoO7gNEttTX+AVrRwFQZFIZoVN2cu9iGJraGszfPq4EuElLzCwJbo65YfMTzs1XcDM+sB89J7T54boJu/MB734rKMwrolaryszfM/mnPjTCXn8zVw7cRU1djXlbxtOib4Mftvu+nl59hX+/FRTkFlKpQVkCjs8q0eX4q/r4IhqvLiGkJWRg7WxByDlPHMr9fd+M/0qlJ2Wy0+cA57deQS5XoKauRsuBjek/twelqvzcB+hX5VLZkcgX0US//kKjbv+znSeAjXN2ExuegIW9GdPW/npM9Ks6svwcD849R1NbE8/dk3/a2fu+0hIzCBq2FplURou+Dej2k/Puax1bd5nrRx+KLs/2iVj+RLIe+foLS6ftAKDPlHa06FWvxOtyuZzFU3bwJUIoB722lPRBykjJxm/UZrHwaFqe8X7fUstlUhkLp+wiNlJEoHhv/OZUnJGag9+47RTkFVG9YWkm+PZQ7bdjyXnuX3kjTPjWj1B1XE/tucu5gw9UMQylytmIkW7oGZ4/+IiOrhZ+q4diYm5AanI2/tOEYqp2ozKMn90BhULB2kVnef7oE7p6WixYMRhTcwPOHXvC8f3C7mKOXw/KV7bn0tkXHFSqqGZ4dqFydUd2b7vJtcuvVRlTtvYmeMw5wJfPaVhaGbEgqA/R0amEhIig4+7da9Gte20WBJ7gnTL7LySwL8/DYli3WfAYJ45piaurFRNn7KawUEqDuq6MHtoEN++DJKfm4Oxoju/sLvgvPUNMbBpW5oYEzu1G4OrzRCsXyAtmdsF35VkSU7NxsjVl1uhWuIUcJbeg+Lfn0vf1bwc469evB6BFixYl/n/79u2MGDECgPj4eGJiYlSvFRUVMXv2bGJjY9HV1aVy5cqcPXuWTp3+vj4e4G1yEmq6ulQys+JNsnAjNtbS5nNWFnYGhqTn5pMnlVLZ0pK3iUkoFFDX3l4Fbpo6O3M7UvxezUq5cPNjlAA9Ls7cCP+EmkRC09LOXH0fiZpEQuuyrlx8LZRQXapU4NRzYdDXs2YlTio7N12qV+DCs/ci8bu8C+8+J5GSnUcZa3OMtLW5/yEGQx1tOteqyJ4bYtw0unU99l1/TkGRlIYVnMjNKyQsSpCNh7auxarjYrwzsGVN7oVFERmfhpWJAYPb1GLJPoHIB7WtxauIeJ6Hx2Kgq437sNaEbv+DvIIialV0oGnN0oRuUxoz9WpITGwal+4o2e7TOrH/zBNevo/DUF+b0DndWbXtKh+jkzE30SdkXg8Wr79MRFQyZiZ6LPbuzZqt13nxWoSnLfHrw5kLL1QzWt+5XSkqkrJw6Vnhcty1Fv161mXm7H3EJ2RiZ2fC4oX9uXLlNdu2Kb1pJramTevKzJ21XyVlXLxsIAX5xXjMFEZX1Wo6MT+4D2/CvrDAQ4yqWrStjJt7Z96GfcZv9gHR4WlRgdnze5CalIXHxF2kpWTjUtqK4DVD0TPQZlXAKdXs22vJAGo3KkNCbDruY7aRnppD6Qq2BG0Yib6hDq+eROE/eZcgTLaqyDxlGF5MRCKeIzaTk5lPhRpO+G8aiY6eFjKZnCWzD3DnQhgaWur4bBhBDSVIyc7IxXPQOmLCEzC3MWbhgSkqUrBMJmfx9N3cPvscDS11fLeMoWbTbzy19OQs3Pv8HtzsXXyGvYuVAYABff9r4EYqY9HYTVw/fB91DXU8tk+k6U84Et/Xg/PPCRiwkuIiKbVaV2H+weno/IMk75c33+DbczF5Wfm4VnUi6Iw75nb/3K/ln1ZRYTEnVp1jb9BR8rLyAWjWtyFjQgZj+xvX3d+VcyXRbYh+8/m/7ff8u3X31GPObbmCRCJhzvZJvzVe/FmF3X7PNt9DAExaOuS3oZgA0mIpwcPWkZaQgXNFe2asGfVLQPXsxlu2+gqr/vFB/an6Ha/sa2Wl5bBg2DpxjraoyMifGAruCj3Ng0tiIeCzbVwJXk1RobBVSPqShn0pSzzWlySlbw48yZMb79DW0cR3yxhMLAyV+0kJmrSTpNh0bJ3N8VwzTEVGvnTkEUeUUuyZC/tSoYYAvI9uvmfTQiV5eFYHGrSqBMDJffdUiql5of1wLW8jksCn7yUlKQsnV0s8F/VHXUOdY3vvcu7YEyQSCe5BfShV1ppnDyNZo1SJDp/QkmZtKvPyWTQrlLzCQSOa0KZDNa5efqVycJ82uyM1armwbPF5nj2NRldXi6CF/ZDK5Hh7HRYLxHquTJ7Slq3bb3Dz1nvBd/TrRXZuAYGhAgB161yDDu2qMnXOPtFpd7XCe05ngpafIzwyCRNjPRZ692TD7ps8ffUZXR1NFnr1ZMeR+zwJixHfu/dg9e4bvPuYiLGhDgEzu+C39jxJaTk42Zjyd4Xi/3aA83U2/bvasWNHie/nzp3L3Llz/xt+uoRqFtaEJSahqaaGjb4BkenpWOjqUVQkI6uwkLJm5nxKTadYLqeWrS1PPosRVWNnJ25FRiNBQgvXUtyIEAngrcq4cvV9JABtypfm0tsIADpWLMu5sA8AdK9WkZPPBLjpVr0iZ5+9R65Q0K5yGW69/UR+sZS6rg7Ep2URm56Fg5kxTmYmXHv1ER1NDfo1qsa2K4IvM6x5LY7ffUV2fiHVS9miq67B9deR6GppMq5jA1YduyVAQqMqfIhO4m1MEiYGuozrUp/QvVeRKxR0b1qFpJRs7r+KRkdLA++RbVm+5xqZOQVULGVNt6ZVCNgoOikDOtSiIL+IE1deijbkxA5cuP6WRy+FVHzhnO5s2X/nm4+BR0/W7bzBq/dxGOhrs9i7Nzv23+X+40i0tTQI9e3NnfsRHDkp2PHz3Dqir6eNx/wjYkzUtgqjhjVh9twDRMekYmlpyJLQATx6FMlapZRx+PAmdOtWE695h3j7JhZDQx1ClwwUNwe3vWRl5lOhkh0Bof2JDE/Ed84BioqkNGhSlrm+3Yn8kID39H0q8rB7UG8yM3Jxn7SLxPgM7J3MWbh+OIbGumxcfJ7zRx+jpiZhXnAfGrSoQEpiJh5jtpGSmImTqyVBG0diaKzLh1df8B2/g8L8Yuo0LYeHUvIdF52Cx/BNZKblUqayPQFbR6NnoCO4Kp5HuK60efdaM0xlCJablY/XkA18ehuHqaWRMjjzG7hZPnMvN04+RUNTHa+No6jTspLqLM9MzcGz7yo+hydiYWfCwp+Am31Lz7I7VDiwjvHr88ux1N8BN9JiKQtHbfiOSzGJxt1+tMP/vu6efkLQ4NXC+6dbHdx3TfpHCqJ7Z54QOGAFxYXFVG1aEf9js/9R5+dfrVe337Jk9Hpiw4UiqmxtVyYuG0HVpv+1sM6C3AIA1DX/Z9VeqfHpLBu3EYDebp2o2fLXatafVVpCBsFDVwuzuwGN6Diq5V/us9nrIGF33qNnqIPP3qm/NHtMiE4mZNRGlZlf17E/HltaLCV49CYVqdhj87gfLAiuHn3IwZXifua2dDDla7qoXlMoFKzxPMTrh5HoGeowf/s4DE2+cY/O7bnDSeWiatbywZSp4vBtP+8jqlw4v82jMFLyfV4++MhqXxE1MXBya1p0FeaBUR8SCJkpFFPtetWh9ygxun1w8x2blOBklFs7GrasKOIhvI/y4XUshsa6+K0Siqm719+xabkQSIx1a0eDZuWJjkwmYN4hVSd64KimfI5OwX/eIaRSOc1aVWTY2Ba8ehHDEmXGVZ+BDejUrSb7997l/Fml/41vd6xtjJk+fTepqTm4uFjg7d2dCxfD2K/sms+e2RFra2MmuYlOTd3apZg0rhWe/seIiknFwtyAEL/ebNt3l7uPRDBniFdP/rj9jvNXX6OuJmHB7K7cfRLJmStiges3owvnb73l1mOh0A2e1Y0NB+/wISoJUyNdgmd05djayX95XsH/BQDn31lVlOBGTSKhtKkZ71JSMNLWRkuiQXx+Nk7GxiRmZZMvlVLFyoqw+EQUCmjg6MjdyBgkSGju6qICN63LunL1nQA37SuU5eLbcAA6Vy6vGkV1rVqBMy8EibhjlXJcDgunWCajWTkXnn+KIyu/kCoO1uQXFPExMQ1LQ32qO9py7qmQdQ9tVpNtVwR+7dewKpeffiAtO4/y9pY4mBpz/tE7NDXUmdSlEetO3kEql9O2VjlSM3J4qjT1m9arCYv2KSMX6pZDIocrj8PRUFfDe2Rb1h68RXJ6LqXszRnWuQ6+a88LgnHzKpgZ6rL+gOgIzR3dlscvorn+MBxNDXWCZ3Xl0KknKhQe6tGT3Ufu8/iF8DlY4tOb4+eece3OezQ11Any6sG79/Hs3CdaptMntsHRzpRZnkLO2KxJOaZOaIOn92GRJWWix+LQAbx/F88yJbO/T996DBzUED+fYzx/JlYdIYsHYGCgzYyJO0lLzcG1jBVBSwcSH5uO18z9FOQXU7NOKbwD+/AlKhWPqXsEIbimM76L+1OQV4T7pF3ExqRibWvCwvXDMTU3YMeaPzihzKGa4d+TZu2rkpGag8fY7cR/ScPW0YyQzaMwMdMn6kMC3mO2kZ9bSNW6pfBeNQQtLQ2S4tLxGLaJtKRsXMrbELR9DAZGuigUCtbNP86lww8FeFoxmAZthHQ0P7cQ3+GbhM+GmT4h+yfhoPSqUSgUrHE/yJWjj1BTV8N93QgatK2qOsez03Px7L+KqHdKh+KjP0rBDyw/x64QoXQZ7dvrp4TiV3e/gZvarSszf88UtHR+BCDSYikhI9arDNq890yhYedav70Ob594RPBQMZ5o3qc+c7dNQEPz79+arh24Q+iItchlchp2q4PX3mlo6fz96IZ/pQrzC9nufYBjK86iUCgwszFhVPAg2g5r/o+clX9Vr26Le8T/ZKq5XC5nyej1ZKVmU7q6CyP+oWpKJpURPHQNaQmZOFeyZ/qakX852rq87zYnlPlDczaN+6XrdX5OAf6D15KVlkPZmi5MWzb0p8fe4HWI57dEKKffnsk/kIrfPf3EiplCjNJvajta9SnJLTqx5TqXD4o4BY91I3D8Lqbh2e0PrFXmPw2b3YmmnWuoXju84RqXlQsfj9VDcFLuFxedSuCU3SJLqmM1hihN+DJSc5g/cafq/jBlvjDOjHwfz8I5B8XovFdtlWJq+8rL343EB2HnaEb42zgWegm7iU6969BrcEPSU3PwmbGP3JxCKtdwYoZ3NzIz8vCZdYDs7AIqVLZnjk934mLT8XU/LGTjzcozZmIrrl19w9ZN1wGYNLUtdeq54u11mE+RyZiZ6RMc3I937+NZruQ1DRvamEaNyjF11h7S0kU+4HyPbqxa/wdPvnrb+PXmxt0PHD0jpg3eMzvxJSGDLfuE/Hv62NZk5Raweb94priNbkVsUqbK68Z7UgeuPPjA3WdKKoRbV7Ycu//zk+kn9R8NcF4nJqGmq0MlCyteJSWiq6GBuZYeURkZ2BgYkFdYRHZREeXNzfmUnIZUJqeWnR1PYmIBCY1dnLj1MQqAFqVLqcBN2/JluKQENx0qluXiK9G5aV9JfC2TK2hVwZU776MoKJZSt5QDnxLTSFaOonTU1XkSE4exng7NK5bi6D3hRDyyRR12XHssSMS1K/DowxcSMnJwtjKlhrMth2+9RE0iYWrXxmw6e5+CYimNK7ughoTbYVFoa6ozq19zlh+8IXg1VUthY2LIngtPRJ7U8DbsPPWQWGUS+OS+TfBZe1bweuqVo4KzFUu2C6+DKYOaEf0ljbPXX6MmkeA3rROXbrzl1qMItDTVCZnXg1MXX3DrgfJ7jx5cu/2es5eVY6jZXUhOzmatkrQ2ZlhTqld2YPrcfaIVWsuFuTM6siDwBGGvvqCvr82ikP7Ex6YTrIxk6NSpOmPHtmBh0Cke3ItAS0uDwIV9sbY2YuakXSQlZuHgaMbC5YPISMvF3W0vOdkFVK7miN+ifiQnZeExZTfZmfmUr2zPguUDkRXL8Jyym+iPSZhbGrJw/XCsbIw5sPWGKudlsmcX2narSXZmPp7jt/P5UzKWNsYs3DIKcysjYqNS8By9TRy3miN+64ejraNJWnI2nsM3kxSXgX0pC4J3jMXIVB+FQsGWkDOcVZp+zVoykKadqgPCIdV/9BbePPkkDP72TsS5nCCdKhQKNs4/xoX9Ipl57uphNO5YXXV+52bl4zVgNZGvvmBiYcjCI9N/SE0+suaSysRvhHfPn0rB3zyIwLvfyu86N78GN8HD13Pn1GM0tTXx3TeVeu2r/7Dd93Xz6ANChq8TWUP9GzJny/h/5FFzfutVVkzcLII/Bzdl1pYJ/8c9bt4+CGfxyLV8fiesItqPaMmEZcP/2zpGRQVFvHsg7h9V/oudoH9SJ9dc4MnllyKocteUf+zBs933EGG3lZ2Y/X89Xnz3+CMrp+4AYNC87jTqWvun28nlcpZO3s6n118wsTTEd9ekn55/p7dd58w2kVM4b8NoXCqWtBRIjk1jwYiNFBdKadC+GsM9ShoOPrzymi0BJwAY69uzRBf0y8dEgidsF+dpz9oM+C49/Pb5l2xXGvNN8O2h6rrmZOXjN2472Rl5lK3qwMzQfqipqQlzvim7VXEL3iuFYio1OQvfybvJzyuiRn1XpnoL0HP+6GMO7xAAYIZ/T6rUciEpPgNfpXtx7YZlmDK3kwjLnHWAxLgM7J3M8Fss0t795h0iLjYda1sT/Bf1p6CgGK/Z+8nOyqd8RTvc5/fg7ZtYFinl7r361qV7z9osX36BR48+oaOjSWBQX/Lyi/BfcEIVoDl4YEM85h/lU1QK5mYGLAzow8lzzzn7lWowryuJyVms2ark5YxojrGRHjOVaeADutfBxdGcmQtEyOjAbnWwMDfEY4lYbE0c1JTkzFyOXhKk5fmTO3Lo0nOuPQ7/5Tn15/qPBjgANaxseZ4Yj6aaGo4GJoSnpmKmq4u6QkJiXj4uJiYkZuUKLo61FW/jk5DKFdRzdOBh1BcUCmhcyonbEVEAtCzrytX3H1EArcq5cvXtR2RyBS3KleL2hyiKZXIal3YiLDqB7IIiqjhYk5GTz5e0LOxNjbA1MuT2+yj0tDXpWrMCe28+B2BkyzrsufkUqUxOqyql+RSXSlRSOjamhrSqWpqdl0RXZ3LXRuy89Jic/EJqlrHH2tiQ47fCUFdTY86Alqw7dpuc/EJqlLWnqosNG0+IjsSsQS04fvUlH7+kYmmqz5xhLZm/9jwFhVIaVHOhSU1XAtaLrsnwHvUpKpSqTJc8Jrbj+avPwnFSXY0Fs7py5+FHLl4XDpQL5nTj1ds4Dp0Uv+O8qR1ArmDJKtEm7t+rLi2alGPanP3k5BRSpZI98726s2TpeR49FhdYSFBf8nIL8fMTkQwtW1Zkult7Vi67yPWrwvvGL7A3rq5WzJ66my+f07C2MSZ05WCKCqW4T99LZnoeZcrbELh0ADlZBXhM3kVaag6lyloTuHIwamoSPKftIfxtHMYmeixcPxw7RzNO7b/PjlViHDZ6Rnu69q9Pfl4hPpO+ZU6FbB6FtZ0pSXEZeI7aSnpKNqXK2xCwaSR6+tpkpefiNWIzsVEpWDuYErJzHKbK2f3elZc4ppzPTw/uQ6seouNRXCQlcPx2XtwNFx44eydSuvK3lvj2kNOc3KYM11s6iObdvnVK8nML8Bm0hvAXMRiZGRByePoPJmintlxli5+4uQx17/ZTE7/3TyLx7itIvzVbVGT+nsm/BDcLR24Q4EZLg/kHplG3bbUftvu+rh28x6LRG4Rnx6DGzNr04zjhd3V0xVk2zhEqly7j2jBl9aj/lu7Jr0omlbHL7xAHFgpyupmtKTM2jqdBl58/mP/VenHjDcVFUkytjbEv8z+joPrw+CNbPIW79LhFQ3Gu9M+sOm4de8hhpeHezI2/7sR8rdSEDAIGraa4sJgGnWsy9E+xCN/X3kWnuX3qiSDn7p6MpcOPvKqnN96w3kMEsI706UnDjjVKvF6QW4j/iI2kJ2XhUtGOOWtHlDhXPr2NY+GkHWIsPrAh3Uc3V72WnZGL36gtQkVZ2wW30AGq7tH7FzEsmSXet27Dm9BVacxXXCQlaOpuPkcmYW5tzPz1w9HR1UIul7Pc6yhvn8dgYKSD/4bhGJnqU5BXhN+U3aQkZuJYyhKvpWKc/fReBKuVY6QhE1vSqnN1cnMK8HXbJ+5dZazxWtgXiZoai3yP8l45wgpYPkiYjs4/xpswoY4KWjYAfX1t5rntJe5LOtY2xgQs6kdqSja+XkcoLpLRqEk5xk9szcGDDzh7RgALT69uWFgYMnnaLnLzCqlW1ZFZMzqwct0fPH4ahY62JsH+vQl7E8umHWJ8N2VcK0xM9ZnueUDwcjpUp2FdVyZ5HkAqldOiYTk6tqrCJO/9IoC5YTlaNirPlAWHBJG5TTXsbY3xXik4Q1MGNefVx3iuPRJ2KH+3/q+LavifrBrWNjxPjEdNIqGCmSXhqakYaGlhoqVDXHY2tgYG5BcUi5BMc3NiU7MokMqobmvD67gEpHI5dR3tefIpFplcQWNXJ+5+jEamEF8/+PiZYpmchqUceREdT15RMTWd7IhJziAlJ4/SVmaoySVEJKRiYahHFXtrbr8Xaqt+9aupwM2QpjU4ei+MgiIpDco5kZlTwNsvyZjq69KzXmUVuBnbsT5Hbr4kLTuPCo5WVHO24fgtobKa3b852848IDUrj3KOlrSqWUYFbib3acKtJx95/TEBI30dPEe2JWjTZbLzCqla1o7uLaoQtPGiCOFsUx1zIz02H1KOlUa0JCExk6PnnyGRgNfUjnz4mMiRs8Jx2HNaRxISM9m6V6xApoxuibmJPgsWnUYuV9C5XVV6d6vFbM9DpKfnUrqUJcF+vdmw4So3bwkp4wK/XmhpauDtfURwZxqUwd2jK9u33FDNiz19ulO1miPecw8SqSQZh64cjKamOvOmKYl5LhaErBhMcbEMjym7SYzPxN7JjJDVQ9DV0yRw3iFeP49B30CH4LXDcCplyR+nn7NOSQIcNK4FfUc0oaiwGP9pe3n38jOGxroEbxqJg4sF6SnZeI7aQlJ8Bg6lLAnaMgpDY11yswvwHr2VqA8JmFsbEbxjnEpBcXTLdfauEuZ3E3y7076/aJnLpDJCp+7m8bW3aOtqsWDHt1BNgP0rL3JYmXg8JaQfbft+a7UX5hfhP2wDbx9/wsBEj+BDU3GpWFJJdH7XLda5iwfCgJmdGDy7yw/XR/jzKDx7LScvu4BqTcoz/xep3TKpjNDRG7l14pF4CO3/m+BmlEiJbjes2T8CNwqFgj2BR1Xgpu+srkxd86OB239npSdmMLftAvYFCwuB1oObsjls6X87uAE4vlKcb017N/gfMfnLSM7Cv98yiguLaditDl0n/Mi/+l1FhsWwZNwmAHpP7/iXZPKiwmICBq8mJS4dp/J2zN08/pef3c3jj9gbKh7wU5cPpVL9H6XjXyISCR61SfB++tan79SSzsdyuZzFU3fwMewzxuYG+O2ciN53qq60pCz8RmwkP7eQag3LMCmor+p9Ly6SEjBuG7GfkrFyMMVn02gVwE+KTcdf6V9Vp3kFxnl1BZRj4/nHeX43Ah09Lfw3jcRcaXOwe9UfXD/7AnUNNTxXDMahlKUwI3Q/RPibOIxN9fBfOxRDY12iwhMJnH1A/F2dqzN4fEtVgOaniETMzA1YsGIQ+gY6bF19mTvX3ooR1uL+2DuZs2PjNW78IRadPsH/H3t/GR1lunXhwlfcQ4yEKElwd3d3T4IEd7cgcXfcXYKH4O7uBHcSQogRd7f6ftxFBRqa7t7v7nG+cfZZY+zRXTtVVANP1bPutea8pg1mFgYs8z/F65exaGiq4Ld8BPLy8jgvCSU7q4CatYxxch3Indsf2LZVTNZnzOxO06aWOLuFyezg3p5DCTsezpnzgjvm5jiAwsISAlZIo28GN6NNy2o4+hyjqLiUVk2tGDu8DUt8j5GTW0j9WibMHN+RpQHHyM0ron4tEyYNb8vi4BPiQN3Ykh4dauO14TwSCQzr2RhFZQUOnBMH6sUTuv72+vq+/qcnOM8TE5FXU6WRYRWeJySioqCAuZY271NEYKYSCsTmZWFRqZJIAy8qorZhZb6kZZBfUkpD4yp8+JpCUVkZzcxNeBmXSFFZGc0tTHkblywaGnNjolMyyCwopHaVyuTmFRKXIaY1lTU0eBgZi7aaCh1qWHIi/C3ycnKMad+EkOviL3NY6/pcev5RxCxUrYKynDwPP8WgoaLMmC5N2XBK7DJHd23KtacRJKbnYGGoQ5eG1dh8ShoaObQDR66/4GtaNhZGOth2bkxAiLipjuvbgg9RSTx6E4OaihIeU3uxLOQaaVl51LCozMRBLXFceZqysnJ6tqtN/Rom+KwXk5yJNm2Ql8Cuw+J9Fk7uTlZmPrtCxeP5k7shKZewZqtYa40f0Za6NYxxcBFit87tazFpXAcWLj1EUnI2Zqa6BPvZceDQfc5dEDApF6eBGFXWZv78feTlFdGokQXuHoM5cvgRoQfFLnbBor60aVcT96WhstNK4KpRVKqkzqJZe0iIE9OcgDX2KCrKs2TGHmKjU6lspE3ghrEiO8rlCI/vRqCiooTPGnuq1zbm/vV3soTeQaNaM2ZmV8pKywhYHMrzh4JZ4btpHFY1q5CTVYDL5J3EfxGgLv+dk9A10KIwvxiPqTuJeBWHtq4G/runYFJV2LrPHbjPdn9xQhnn0IdB48W+vby8nNVLDnH3/AsUlRXw2D6J+i0r6KpHNl+Vwcemegyh35gKwFhJcSn+U7bz4u5H1DRV8T04m2p/4H9cPfyAtQ5ChzBsZg/GOQ366bPx6VUMTkNWkpddQL3WNfA6OOfXnBupW+rWsUdCc7P/r9dSN488FM1NuYTeEzozb/2Ev92cSCQSdruHygB0472HM9Lx52ys/2a9ufcBH7sVpCVkoKapisP2GXSya/uvvNfHJ594fEE07TYLB/wr7/F9lZWW4W+/hpTYNExrVGHJzpn/6M8yKzUHT9tVFOYV0bhLPSb5Dv/t8yUSCRsW7uHdw0g0ddTxDP01+RpEg71i1i4Ahs3uSc9RP+eP5WTm4WG/ntysfGo3t2b+qrE//ffv8j3BvXMvUFRWxH33tB+4T0UFxXhP3EZyfAam1oa4bp0ks3x/y5h69UBQxL12TUW3spi65ucW4jllJxkpOVjWMsZx7WjZavTwlutcOvJY6HFW21OtrjhcXDwazqEtonGY6zWEJm1Es7Z9+XnuX38nJp9rR2Nirk9aSg7uc/aSn1tEg2aWzPccDMCG4HM8uR8pGFdr7DE01uHM0XCOSAOCF7oPokGTqpw/9YxDe6QxB079adLcip1brnND2vB4+NtgbKLLYocDxMeLaY5foC2fPiUT8G1VNbQ5gwc3w9X9KBERQgMZ4GfLg8dRbJdOauZM746ZmR6zHPZTUlpGx7Y1sbdrzRynQ2Rm5VPD2hCnuX1wDDjO1+RszIx18HDoh+uyU+JxFR2cZ/dmSdAJMrLyqWFZmWkj2zPX/4gA/TWrRvMGFjhLJznTbNqSX1j822vs+/qfnuAAtKhiyvOERBTk5Kitb8D7lFS0lJUxUFUjNisLI01NKIeU3Hys9HTJyM0nq7CIWpUNSMjIJqeomHpVDPmSlklOUTH1jY2IT8sis6CQWkYGZOUWkpidS1U9HZTl5IlMTsdAU53ahgY8jIxFVUmRvg1rcSJc2MTHdWjKvpvPKJdI6NukFo8/xpKSnU+1KvqY6VTi9ttolBUVmNqzJZvP3BcApbb1eR4RL7N/27RvKGtupvRrxdXwj0RJwX2T+7cmeO9V8brODcjOKeDaYyEw9pjam42hd/iako2ZkQ7z7Dvivu4cxSWltG1iTbdWtfDfJNZKNr2bYFpZmzU7pflNI9uhpqLE2p1STc2odhjqaxG4RjRDwwY0pWPrGiz1PEJhUQktm1mxcFYPXDyOyZDey/2Hc/HSKw6HCSChw4Le1K5lzJIlh8jMzKdGjSr4+Npw+eJrtku/KKbN7EbP3g0I9D5B+EMRsOm3fATGprq4OhwkKiIJXT0NAteORltbDY+Fh4h8/5VKuuoErB9DZSNt1gee4dblNygqKuC+fAT1Glvw/GEU/ksOy/Do0xb3EYF87sdkX0ae68ZQq4G5EAFP28XnD4noGmjhv3MSlatUEiTi2Xt4Ex6NhpYqfrsmy8SH1048Zb2bcFbYTe/KiFmC7CuRSNjseZwrR4Ro2Hnj+B/s3mf23GaHr9hRj13SjyHfOUnKyspZPns3j668FnDAvTN+cIgA3DoZzorZgtw6YFJnJnvZ/HRDiH4Xj9PgleRm5lO7hTU+h+f9kmNSVlbOiunbZVZwl72zaf2H1cAf686JxwSOF3TbnmM7/uPmZofzAVlzM335WEY5DfnXmhuJRMKJ9edx6OxBWkIGFnVMWf8o8F9rbgB2S3H1XUa1/48t5v+kdrkd4vn1N6hqqOAR5vCPaMWlJaX4jlpL0pdUjK0Ncdk3+y/1T6e2XOFCyC1x8989809XcGmJmXjZb6CooJgW3esz0dPml+8fMHkr8Z9EUKx7yIyf1qfn993hiHTSuXD1GOq2qCb7WXl5OSsX7ufD8y9o6ajjtXvqD6Lkg2svycT7LpvGY1lLrN3KSssImrefz++/omughdf2iWhoic/HrXMv2L1CiHCnuw2iZRehoXp2L5J1nuKwNHJ6F3oOFa7Ck/vvc3yfmIYv9rOhbuOqFOQX4TFnH8lfszC10Mdt5UiUlRUJ23OXs0fDZXbwGnVMeHQ3gg3f2cG79m5A+MNPrAkWU0D7CR3o2a8R50494+C3hmdpPxo1sSQo4DRvXsWhoamCf5AduXlFuLoK4XHbdjWYNr0ra9dd4uGjT6ioKOLnbUNySjbB0lXk8GEt6dShFkvcj5CTW0jd2iYsmd8Lt8BTgm1joIW/yxCWbbnMu8hEKmmpEeA0hJXbrkrt32r4LRmE/6aLxHzNwMhAC9dZfXBZfZrs3ELqVqvCqP7N8dgoTC6DujRAXlGe1ftv/vYa+77+pxucZlVMCI8XyeCNpcngKgoKWFbSISI1HR1VVbQVVYjNzMZYS5PyMgnJuXlY6FYir6CItLx8rPV1ycovJDUvn2oGeuQXFMkaGgXk+JyWgZG2JlW0tHgVl4S2qgqtrcy59jYKRXl5bFvUlyWD27drzOF7LykpK6NTXSuiEtOJTcvCRE+bJpYmXHj6AQV5OWb1bcuWcw8EXbhJDb6mZvHmSxKVNFSZ2LMFa4+KROwRXRvzIiKeN58TqaSpynybjgSGXBWva1ETbTVVTn6LXJjck31nHhMl1eA4TeqOx7pzIgyzlinDezfBffVZysrK6dWhDs3rWxC4UTQ7dv2bUc3cgMD14oNtN6AZDWub4hl8irJyCb261GNo3yYsdgsjN7eIBnVNcV3SH6+AU7z/+BVtbTVW+A8nPPwz23eIi3fGtK60aV2DpUsOkZycjbm5HoFBw3n08BNrVoqmadTottjYtWTNsnPc+qbDCbClRi1jfJyOyKY5AWvsMTKuhK9TGK+efREf6HWjMbc0YMe6y5w79kQ4l3yH0bxtdT68isNz3n5Kiktp27UOC6QOh82BZ7l6+rn4wlsxgkYtrSkuLsV79l7ev4hFs5Ia/jsmYmKhL7g0iw7y5PZHVNSU8N4+ker1hOjxwZU3rFh8SDQZY9sxfnGF9iVk2TlO774txMYrR9GmZ4Uj6tqxx2xwFgK94bN7MHJuxSi+vLycNQ77uXVKWMXddk6jQZsfgxEfXnxJ0LTtYnIyuj0zAkb81BwkRCXhNGSlzK3iFzYfda2fmxuJRMLaebu5euiezAretv/v3VL3Tj/Bf4xwO3W3b8/8jX9/rSSRSNi2dB+Hl4vT5azV4xk6759xr/5JFRcWEzx+PRvm7hTwueFtWf8w4B9lYf3Tun86nMfnRXbRWA+7f+19vtWtIw9kf56Lts/Asp75X7zix9q0aB8vb79HXUsVz7AFf8nLeXz5JZuXioTwiT52NO/e4JfPK8wvwnPUeukKyxjH7T+vLyUSCRuWHOTpjXeoqCvjsXcWen+gXT+79Z4N0jXs6EX96DL0x9XZnuCz3Dr9THxetk/G1LpCgH/teDh7pU7NWb42NOtUR/a+m71P8uj6O5RVFPHYNkFGEX/7NJrli0WDOnh8ewaMFo1w9MdEfOftk1HMx0idVPevvf0uQLMXHXs3EBPiJYeJfCfWVT4bxYT5xsVX7Pi2ynboTdvOtYl4/xU/J5Fr16N/Y0ZO7MCnj4n4OB+hvExCt94NGDulE48ffGKNdOI7ekIHevVrxPYt17n5LbfPZxjaldRxcjxMTnYhtWsb4+IyiMNHHnH6rNDhuDoPRFVNCVdvoYHs3KEWY+3b4uh5lMSkLExNdPBzG8LKTVd4+VbwzYLch7L/2CPuPBJGEz/HQRw595R7TwSpPsBxMDuPPuDlhwQ01VXwcxhAwLZLxCdnYWpYiYXju+K09jRFxUIH2qiWKRsP/z6n8o/1P93gPE0Q7IpWpmY8/ZYMbmjE68RkWTJ4ZFo6umpqVFJRJSYjEyNNDVRQID4rB5NKWsjLyRGXlY1pJW1U5RX4nJaJoZYGBurqvPuago66KnWNKvMoKhYVRQV61qvB2efCMj6yTSMO3BU492Et63P+yQfyi0pobm1GTn4RHxJS0NNUp2fDGhy9KzKpZvRuw66Lj4Qep7YFlEl4+D4WNRUlZg9sy+ojt0RmR+s6pGbk8lj6syWjuhK89xoFRSW0rleVuhZG7D0jzZ4a25ULd94JDY6mKp7T++K3+SLpWfnUqFqZ6cPb47ryjJjkNLWmf6d6eK46Q1m5hN6d69K+eTU8V0gfd6lHjw51cPY7TnFJGe1aVmfK6PYscTtCulRj4+M2hGWrzvP0ubB1B/vYEhWVIrMf2o9sQ98+jXByDCUmJg1DQ22Cl40k4mMiQX4iWqH/wCZMmNyJHZuvc/60GOk7eQ6hcTNLgr1OEP7wEyqqSviuGImltSHLPU/y6E4EKiqKeK8aRfVaxoTuvk1YiNSu6DKAjj3qER2ZhOusPbKQTMcgOxQUFdi74SqnDj5ATk6ORb7DaN25jjjJORzi+YNPqKor47NlPJZSCuk6t6PcufAKRSUF3DeOo25TSwBePojEf/ZecZMf1pzp7oNkTcbhjVcIXS++xGb52tB1SAU75sHlV6xYsB+AAeM6MG5phWZGIpGwxe0Ilw/dF1bxLZNo9p0DBODFnQ/4TdpCWWk5XYa1ZM6K0T81Fylx6TgOXklGUhaWdU3xPzr/lyd6iUTCFscDXNh9E3l5ORx3Tv9Lzs2Dc8/wsxfo/y7D27Bwy5R/pLnZ7LCHI6vEzWDOuokMmvX7oM7/S+Vk5OLY25cre28hryDP9BXjcD4wHzXNX69S/huVl53POmlqt82C/v96PEP0m1iWTxaQVZuF/elo83vC9B/r9NYrnNkqYIBLd83A8i9EyZ9fx+I/VjS3PezbYzP3Z0E7SOMMpm4n4lk02nqaeB6c88tr8Mi6i5zfKw4CjlsmU73hj6ToLx++4jd5m/R6b8GoPySIn99/T/ZZmxs8ggatK7Q9rx9+YtViIRweNq0Lfe0rJnZHt9/kzL57AoK4cpRMFxcfnYLX9N0C6NmtLpMdxeczLTkb9+m7RYBmcysW+ImJ6YfXcQQuPYxEIqHPsObYTuwgIhuCz/Ho9kfRPK2xx8Rcj1fPvrBcuiofPLI1g0e2JjEhE/f5BwTyoqU185z7k5KcjavDIQryi2nUtCoLnPrzKSIJH9ejlJdJ6NG7AWMndeTk8XAOf+PYLO1P7bqmuLqE8fVrJsbGOvj62XL33kfZYXPWzO7UqmXMUrcw8vKECWTJwr74BJ/hQ4Qg0Qd72XDoxGOu3pbCXx0H8eDpZ45fkMY2LOjHy/fxnLgk0sM95vfjxqMIrj/4iKKCPH4OA9h17AHvpPcgj1l98dh0nozsAmpWNcSmZ2P8dgicgE2336/Av6//6QYHoLWZOY9i4wBoYWLGU2kyeD0DQ14nJqOupETVSpX4kJyKjpoqRhqaRKamo6euhoG6BpEp4t+raGry9msKldRUqWVowNOYBNSUlWhnXZUb7z+jIC/H0Gb1ZPlS9m0bc/j+S8olEno3qsm9d9Fk5BVQx9QQNWVFnn1OQFNVGbs2DQi5KvQ4k3u0IOzWC6HHsayCsY42V59Hoqggz8KhHVl79C5FJWV0aGCFioICV58IPo3z6O6sPXSLrLxCGlQzpmuzGqw/LKY8023a8fxdHA9ffUFVRRGfmX1ZGXKNrynZmBrpsHhiN1xXnhaTnDqmTBjWCudlJykuLqVd82rY9GmKc+AJWVCa/ZCWLPU+Sl5+MY3qmeEwowdLPY6SkJiJqbEOwd42bN1xgzv3IlBSUsDfcyg52QUESCmYA/o3YbR9W9zcjvDxYyI6OuoEB48gNTkbLzcR/Na5ax3mzO9F2IEHhErHu/MW96VD59qsX36em1ffoqgoj0egLXXqm7JpxXmuX3wlxHZBdtRvbMG5Y+HslIbVTZ7Xk96Dm5EYl4Hz9BBysgqo3cAM91ViNHxsz10OSFdiM53707V/Y6GTcTvGvStvxO58w1hqN7IQlu+gs1wMEzt4x1WjaNpe0FY/vozFc+ouSopLadOzPvMDbGVNxrl9d9klpYxOdBpAvzEVeoMXdz/KLKrdhrVg+ne5NyCorKd2CHusw5oxtOvb+Idr/MPTaDzt11NcWELr3o1wWD/+p+YiMyUbxyErSI5Nw7SaEQHHF6Kl++sT+V6/4xzfIL5sFmycRMc/YPD/WE+uvMJ35FpKSwTnZvH2af+oudm4IITj68Rpet7GyQyY/jOn579VybGpLOjgxqtb71DXViPggivDFvT/18W+O5wOkBKXhkk1I8Z4/rvTm5yMXLxsVwhnXNf6TPIb+Y9e/+LWOzZJNVwTvGxp/Reco/SkTNxtv4nVazNv3Z/zcXZ4hHHv7DPxmdo/6yesAYg16w5vsd6d5mf3k2MqMyUHzzEbhX6sVTXmrxz9w/uFX3/LemdBWh41v/cPAv24qGS8p+ygtLiMdn0aMdGpQgd1+9wLdgSIz+gU5wG07yOE9JlpubhN2kl2hrCDL105CgUFeQryivCYHkLK1yzMrCrjvk6wsBLjM/CcvVeIk9vVYLarSA0/uueujF68xN+Guo0siPmcgufCg4JX06UOUxf0Iie7ALf5+2UOULcgO4oKS3BZeFCWDu4RaEdGei4uiw5RUFBMk+aWLHDsz727EWyQToImTu5El2518fM7yfv3X9HSViUg0I4vMakESyc+tjYt6dWjAY7uR0hOycHcTA9fj6Fs2HaN+48EuM/fYygPnn7m0HFxYHaa25v0rHw27xX3mDkTulBcWsaW/eLx3AldSUrL4dAZcV9zmdmLaw8/ymJ/fOf1Z/X+G8QlZVLFQJu5ozrivumcDFfSrN7fjz35n25wmhkb8yBGoNDbmVvwMEZEMLQ0NeWJtNFpYGTEi4RE1JSUqKmvz6uEJDRVlKlR2YCXCYloKCtT18hQNDRKirS2NONOxBeUFOTpU7cm516Iac3wFg1lqyiblvU5Ff5WFscQEZcieDaVdbGqrMudd0JnM6FLc1ky+IgOjbjyNIKUrDyqGevTxNqUE/cEH2fhsI5sOXVf2L+rm1DNRJ8TUveUo31Xtp96QHJGLtam+gzv1oRlIUL0O7J3U1LTc7n84AOKCvJ4zejLjqP3iYpNxUBHA89ZffBae142yVkwvitOgSfIyy+mcV0zpo/qwFK/Y6KZqWvG7PGdWeJ1VIjFrAzxXDwAD/+TREWnoKerwXJfO8KOhXP+GyfBaSAqSop4SMeeXTrXYdaMbvj7neLF8xjU1ZUJCLSjtLQMF8fDFBaW0LylNUudB3L5wku2bRS/j8kzu9J3YBNCtt7g7Anh3lrqMZjmraqxf/tNTh1+jJwcLPYaTIt2Nbh99S3rpF9Uw8e3x3ZsOzLScnGesZv0lByqVjPEZ8MY1NRVuHzyKVuljItxc7ozYERrsS4JOseVE0+RV5DHaeVIGrcWu/3Qzdc59g197mtDu15iDB/7KRm3idspyC2iUZvqOK6xl+kVbp56ynoXYdcePrsHtjMqkrY/PP+C18RtlBSV0qZXQxasGPXD5OXopiscWi0mX7MCh/8ELvvyIQG3EWsoyCuiUftaOG+f+hNELyczD+ehq4iPTMLQTI+A4wvRNfx1uGXYmnPsDxQaoJnLR/9lcOarO+/xsltNSXEp7QY1Z8nOv8+pkUgkbFm8l5MbLiAnJ8eCzVPpN+XPM4r+rxX18gtz2zjz5W0c+ia6rLrlQ9Nuv16j/Dfr9Z13nJZq2+ZvmfZLMfd/q8pKy/AbtYb4iEQMLQxw2jf3H3GDEqKS8B21Vqzt7Npg9wv33fdVmF+Eh91qkmPTMKtRBbcDc37IfPq+Tm+/zrEN4ubrsHEi9VrX+Ok5bx9/YtnMnQAMmtqVwVN/TKUvKijGe8JmEmPSMLasjNvOaT/wfKLexlccFmxaMtqhYpKUmZaLx/it5GTmU6uxBYtW28s+a2/CP7NsoZjqDBrfnsFS6nBhQTFe03fzNSYNIzPdisiV0jL8Fxzg07sEKulp4LV5HFo66uRk5eM+M4SMtFysa1XBecVIFBQVuHXpNdtXimtg8sJetO9eT0D75u0X9vQGZizxGUpZWTnei0OJ+ZyKgaEWPqtGoayiiLdTGF+iUtAz0MRv5SgkEgkuDodEE1TNEA8/Gz5FJuEv5dj07d+YEfZt2LjhCvfuisOmj48NpWXluHkcE6DVDrWYOL4jHn4niPyUjK6OOkE+tpw+/4IzFwTJ3n3JAFIzclm3XWgxp47tiL6+FgFSucLwgc2oZlkZf6kxZfiAZhjoa7ImRBwYp49qz9fUbBkZ331Wbw5fei7bJrhP64XXtgvkFRTTqKYpbRpZsnTD6d9ec9/X/3SD8y08s625OfeiRaZUJ0sr7n0WjU5rczMexcShJC9PCzNTHn+JR1lBgWZmJjyMjkVJQYE2lubcjfyCorw8PerU4NKbSOTkYEjjehx/IsIzR7RsyJGHr5FIoG+jWlx/9YncwmKaWJqQlVtIVHIGhtoatKpuxvlnH5CXk2Naj1ZsvfCQcomE/i3q8PJTAjHJmRjradOraU32XhHd75zB7Tl45Rlp2flUNzWgQ30rQs6LTnqhXWeOXntJTGIGVfS1mD64LX7bL4oVVru6aKoqc/SKGBm6TunJqasvefVR5En5zR9A0JbLJCRnYWqkg+vs3rguO0l6Zj7VLSuzeFoPlgYcJz1TNDOu8/rg7H+cxOQsTI11CHAbQvCaC7x+F4+mpgrLfW25decDoUdFw7Z4fh/MTfVwdpVmnDS3Yunifqxde4k7dz4Ke7iPDdpaajguFhTOOnVN8fAeyqP7kaySWrdtR7ZmuH1bjoc+5IAUhjVnUV86da/HycOP2LtVqulZ1IcuvRrw9OEnglxEDESfIc2YMLu7sHHPCCEhJh0jEx38No1Dq5I696+/Y5V0NDx0bDtGTOkMQOjWG5yQCvYW+g2jTTexDjp74D4hK8UHe4pTf3rZip1/cnwGzmO3kJ2eR40GZrhvGS/70g2/8Y5l8/chkUjoP7Y94xZXjNK/fPyK2+hNFOQV0bh9TRw3jPvhZnTxwF22e4mT7HjngfQb1/GH6zvxSyrOw1aTnZ5HraaWeOz9mWFTmFeEu91aol7HomuoTcAJBwzN9flVnd1xXZb2PN7DhkF/YSf+EB6F+9AVFBUU07J3I5z2zPpHhOLdHoc5tkY0l/M3T6HPpL9vD/2n9fz6axZ0dCMtIYOqdc1Ye88P67/IUPpvVF52PkFj1wHQe2JXmnT99xqqb9Owp1deoaKugtfRReh8l8H0V5WdloProOVkp+VSs6kVCzf/PoSzrKyc4Elb+PjkM9p6mngfWfinOp2HF1+ySarPGe86hM7Dfp4KJkQl4zV6AyVFpbTq1ZCpPj9OusrKygmauUvgESqp4b1vJpX0K94vJSED9zGbRbPfribzgis0aIUFxXhO3EZCdCpG5np47JiCqhSJEBeVjNd3k9cpLmLi8i0d/P3zGDQrqeGzXTgnJRIJ671OEn77IyqqSnhtGoeJhb4MLxETlYKBoTZe68eirqHCy/DPLHMWB5yBI1oxdExbCvKLcJ+/n8T4DIzN9PBcNQplFSVWeJ3k5dMvqGso47PaHv3KWqz0P83zJ9HC1bl8BDq6Gng6h/ElOhV9Ay38lo8gIzMfl6WhIk6hpTXzFvQmNPQhJ06I+4ij0wCqVKmEo/NhsYaqZ4bjkn6sXHdRxroJ8Lbh5Zs4tu+RTmKmd6eSjhq+3zID+zSmdXMrXIJOiANr25r06lwPp+ATMvZN+xbV8Vp3TphcejZCX1eDLYfFd+n8sV0IfxvL7aciosFrZh9W7LtOcnoulsZ6jOjdFP+QK399oX5X/9MNTrlE6G/uR4spTidLS25KycRdq1lzJ+oLckBnaytuR0YjLydHlxpW3JT+e69a1bn67hMAgxrW5rQ0PNOmaQOOPharqMFN6nL6yTshHK5txcvor6TnFVDT2AA1BSVexSSiraZC36a1CbsndDbTe7Zm95VwikvL6FTPipT0HN7HpqCjqcaoTo3ZfEY4pCb2bsmlhx+IS8nC1ECbYR0bsP6YuMlPGdCaO88rksEXj+qK7/ZLFJWU0b6xNXWtjWTI6wWju/Dw5RfuPf+MirIi/vMHsOnAbT7FpKKvo4G/wwB815wnISkLE6NKeC3sj/vy03xNysK0ig5+Swfis+Isn7+koq+nwXJPG7aH3ObB4yhUVBQJ8rThY0QSm3fcEL+/yZ1p2tiCJY6hZOcUUqe2CZ7uQwjZfZvz5wRbwdVtMJaWBix1OEhaai6WVgb4Bdnx8V0Cfh6CRdK7fyOmzOrGlQsv2bRarEzGT+tM/6HNuHbhFRuXiVPDmKmdGGTXkvev4/ByOERJSRntu9VljlN/iotK8Zy3n08fEtHR0yBgy3gMjLR5+fgz/lIGRY9BTZmyqA9ycnKcO/yIEOl7TXPqT7dBYjx/+/xLNnieAGDEjK4MnSiajczUHJzHbiX1axbm1Q3x2TVFxuB48zgK36k7hfhwUFNmeA+VfeEmx6fjMmqj9DRZFfcdU35oTm6ffsraReKGYDOzO3Z/YH+kJWbiNGwlaYmZWNYxwTd03k9i4ZLiUrzHbuTd40+Cl3NsIabVfu3cuX74PuvmhwAw3KEfIxf/3sL8+XUszgODyc8ppFGnOrgemPunJ/df1cGgExwMEM3l7DUT6DPx32tuHp59gnMfP/KzC2jQsQ6rbvtgaFH5X3u/72vD3J0kRqdQxbIy01eO+1ff6+SGi5zefEnoVvbMplpjy7/92uLCYjztVhMfmYihuT6eRxb+kon0fe1wC+Xu6SdS8OO8P722Il/GEDBJZEz1GtOe4Qt/Fo9npeXgNmItWWm51GhUFaetP2q4JBIJW1zDuH/+mx18OmbfxSzkZRfgPmYzaUlZVK1ljOvWibLrsaysnKDZe/jwTLipfEKmyezgGSk5uE3YLpvqLFkl1k8SiYStfqe5f1m6ot40HvNqYp12cNM1Lkht4o4rRlCroTnl5eUEOx3h9dNo1DVV8Nk0jspVKhEdkYTX/APCudSlDtOW9KWstBzfpYf5+FYAR/3WjUZHV4Ptay9z49Jr6ap9ONY1jNi1+RpXL0jX7342WNeoQqDPSV4+i0FdQwX/FSNQVJTHafEhsrIKqFmrCm5eQ7h27Q3bt90AYObMbjRvboWjcxgpKTlYmOvj6z2MfYcecPHKa5EP5TKInNxCgqU6yVG2rWjWpCpOvkJr2b5VdUYObckS34qJ/mT79iz2Pyab+I8Z1grH5ScpLimjY4vqtG9ejYBtYmI3ekAL8otKOP5tkjOtF3vOPCYyNhX9ShrMGdUR7x0XKS0rp0uznyd7f1b/0w1OA0MjnsYJ3Hr7qlW5JW1uulW35lqENHahZnWufBBNTO86NbgoDc/sX68WZ1+J9dOQxnU5/kzYvAc3rsvpp2+l4Zk1uPU2ivziEppbmfI1PUcWnmmlr8v9j19QVVJkRLtGMu7NhK7NCbvzgtzCYppWM0VZQYHHH+NEeGbvVqw9cQeJBGw6NuTFx3g+xKagp6XO5H6tWHnoBgC2XRoRHZ/Oo7cxqKsq4TqhB4G7rggdTU1TerSqxco9YkQ4aUhrklKzuXBbSh2e04/D557x4l08muoiGXz1dpEMrqejTpDjYII3XCLqSyp6uhoEuw1lzdZrvHoXj6aGCss9bTl17jkXr4ogNS+nQWRnF7BstWg2Rti0pHf3BixxDCU1NYeqFvr4+9ly+vQzDkmFbwsd+tCkSVWcl4TKGA2By0aS9DUT96WHReJ3x1rMX9yPR/ciWe4rQiKHDG/FyHHteXwvkuXSZmOgXQvsJ3ci5nMKbnP3U1hQTOOW1iz1HQYSCf5LQnn1RHzp+ElPWpHvEvCcu1cIBjvXZr6n4KzcufSaDV7i1x0xrQuDpdTSZ/ciCHY4KDJhRrRi7ALRbOTlFOI2cbuAhJno4BcylUp6wob6+V0CnhO2iT18lzo4rKwYh2em5eAyaiNpiVmY1zDCe+901L4LIHxy4y3BM3eJJs++HRPdfrRK52Tm4WK3hq/RqRhbGuAXNv+nTJ6ysnKWT9/B02tvUFFXxufwPKzq/Voo+vjSC5ZNFXEIA6Z0Y4Kn7Z9+pgDiIr7i1D+I3Iw86rSsjmfYgr+8GX5fx9edZ5ercL9MDhjFwJm9/uIV/3k9OPMEr2HLxQptSEsCL7j+qfbov10Xdl7j8h4h1F66Zw4a2n/fov1P69H5Z2x2EA3qJP+RtBv0exjf91VeXs7yKVt5c+8jGpXU8TmxCH0pqPLP6uTmyxxdK26GDpsnU7/tz6nfAMmxaXiMWCsjZc9ZMfqnqVBhfhEe9huIj0rG0FwfrwOzfwrkPLrxCqd3iWntkvXjf3AQlhSX4jt1B9EfvqJrqI1XyDQ0pcJliUTCJvejPLj8GiUVRTx2TJblTxXkFeExaQeJsekYV9XHc+sE2VTn+K7bnNorJg+Llg2nfgsrAC4ff8JeqbZvhutAWnetK5qv4HPcufxagPjWjMaqZhVSkrJwnbWHvJxC6ja2YGmgLfLycqz2O0X4vQrWjamFPscO3OeoNAfPwX0QTVtZcyLsEaF7hQZxgVN/mrWyZtPaS9y+/s1RKlg3Lo6H+ZqQibGJDn6Bdrx9m8Ay6drd1rYlAwY2xc3jKJ+jU0TkQoAd12+/Z98h6fvN7YWeviZuficoKyunR5e6DBnQlEUewh5er5Yx86d3Z4nfMVLScrE018d5Tm+cg06Qmp6Llbk+C6d2xzH4JDl5RTSoZcLowc1xXSP4ar3a1cHCVI/NYdJJzujOXA+P5On7ONRVlXGZ1APfXZfJKyymWW0z+rar/dtr7/v6n25wPqWmUVouoYWZKQ+jY0Eannld2tx0r1GNy9KGpm/dmpx/IzKl+terxVlpeGb/BrU4++IDEgn0rleTa68jKSoto131qryJSSQjv5DaJpWhHCISU9HTVKd1NXMuvYhAQV6OCV2ay5LB7do25OqzCFKz86lpYoB1ZV2uPhMi4rmD2rH+5F1Ky8rp2awmGZl5svDM+TYdWHbguiw8kzIJVx4LdbrbxF6sPXiLtKw8qpsbMKZvM/y2XRIjwq4NUVNW5MAZQUJ2mtqTO48/cSf8E8pKigQsHsieow948S4OTXUVgp2HsXXfHV5Km5/lrkM5EPZQlhIb6DaUx08+c+io+P0skSaDe/qflCWDjx3VFifXMGJj0zGsrE1QwHAe3I9gy2axw50ytQvdutXDw+UIEVKRcdCKkRQVleDscIj8/GIaNrHA2XMI79/G4+tSYYmcNrcHH97Ey5J0u/RqwAyHPqQmZ+M8ay/ZWfnUrGeKx/IRKCkpsMrrJA9vfkBZRRGvtaOpVtuYhJg0XKWuhwbNrXBaNgIFRQWeP/hE0KJDYrVl15Kx88R6JuJ1HD4zQ0QKdq8GzPQUzUZxUSk+03cT+ToebT0N/PZMk9GLv35JxWX0ZnKzC6jb3AqXzRNQlKZG5+cW4jF2C3Gfkqlsoovf/pmyVGIQYYE+E7aK8L4BTZkdPPKHG4K4Gawn+m08uoba+B9ZgH4VnR+ue4lEwqYlB7h5/LGwyO6ZSZ3v+CDf15v7H/GxXy80F7atmfmLG9D3lRybhmPfIDKSsqjWqCo+JxahrvX33UcXdl1n00JxIx7tOgy7RQP/4hX/eT048wRvG9HcdLRtg+uhBf96SOe3evcwgrVS19QYDzvq/4uhmlEvv+Bvv1ZMSMZ3xtbhnwEEd7mHcfPIQ+EIPDT3Lx1T904/YdNi4fgb72FDF7s2v3xeTmYernZrSPuaSdXaJrjunvHTCrOsrJygadt5Hx6Fpo46vqFzf7KD3zj+mB0+Yto31WsYHb6LLCkvL2f1ogM8v/MRVXVlvEOmYfRd1MPhDVc4u/euEPauGUO9FgKoWVpShv/sPUS8jqOSvga+u6agI41WuXn2OdukGr7Jjv3oKM2Ne3L3I2ukqeF2UzrRf6Rwph0NucPJb82Jnw2NWlqTm12A28w9pCZlY2ZpgOcae1RUldiz6RqXpa5Q5wBbatc348al12yRJoZPmtOdbn0bcvv6OzatEpqdCdO60LNfI8IOPOBEmPS7120QDRpZ4O1xjI8fEqlUSY2AZSNISc3F0+OYSBrvWpfJU7oQtOwsL17GCs2jny2fopJZI9VCjbNvR9PGVVnqfoSCghKaNrJg1pSuOPocJSklGzMTXTyXDMRrxRmiY9OorK+Jn+MgfNadJzouHUN9LbwXDcRz7TmS0nKwMNFl4cSuOK48TX5hCc3qWdCtbS0Cd0gnOf2aE5+SxZVH4v7lPrUXqw9L719mBvRtV5fFG/8/Dc7fqoKSUhoYGfE2QeRLtbYw435UDBIJdLS25OZHaaNTqxqX3kYgAXrWrs6lNxGUSyR0q12N6++iKCkro0MNS55ExZFTVExD8yqkZOWRkJmDhX4lqmhr8uRzPBoqyvRvXJujD8T6alLXFuy+Fi7s1U1q8SrqK7GpgnvTobYVx+6K580d1J6tZx9SUFRCq9oWaCorce3ZJ5QUFVgyogurQm9SUFRCyzoWWBnqceS6GPO5jO/BvjOPiUvKxNhAmznDO+Kx8QIlpWV0aVGDetZV2HBA7FNnjepIbHwGZ64LLo73vL5cvvmOO98i7h0Hc+LCc/FYSYEA58Fcu/2Bc1dfoyAvh+fiASR8zWTTtzXUxE7UrG6Es6eIV2jTqhrzZ/XE0/sEHz4I9k1w4HA+RyWzXHqasLNrha1tSwL9TvH82RfxgVs2AnU1ZZwWHCAzI49qNYzwDrTja0IG7osOUVRUSsu21XFwGUBcTBpu8w+IALrW1XDwGERuTgHOs/eSkpSFWVUDfNfYo66hwq41l7lySjBHnIOH06CZJempOThP3UVmeh7V6hjjuXY0KqpKRL6Jx3vWHtHE9KzPLKm1O+5zCm6TdlCQV0yj1tVYsmIkCgrygoGz8AAv7keipqGCz87JmFmLlUdmag6uYzaTkZKNZW1jvHZV7PqLi0rwnbKDjy9i0NbVwO/ATCqb6Mqu17jIJDxGb6SooJimneuweMOPbqjSklL8J23l7cNPaGir4Rc2H2PLn1ctewNOykIJF2+eRPNu9X/5+Yh6HYO77SoBW+vZkEVbpvyWW5OdnovLwGBS4tIwq2mM/+klP02Ofld3Tz5m9XSB/B86ry9j3H+Gu/236o/NjdO+uX9PHxQeDl27in/+h5Uck4LH4CBZNMIol6H/8a/1l+8Vm4rroCDycwpo2LEOczf8Xjfzxzqz7SqHV4ib+fxNk2ncud5vn//mQQQBEzaJaeaEzoz4ExFycWEJ3vYbiHmfgL6xDr5hPyMJJBIJm5wOcf/8C5RUFPHcOwuLP2RcPb/zgRVz9wAweGpXhkz7UXS8K+A0146Fo6Aoj8uWiVRvUMH6uXLkEbulQLxpHoNpL21UJBIJa12OEH7zgwBmbp+EiaWBeL/7kTLWzcAx7WSr6I+v4/Cdu1/Guhk3Xzj9rp99wXYp+G/Koj507tNQsLMWHCQ6MhldA018paybM0cec0BqUJjj1J/WHWvxPPyzbBo9aHhLbMe05eWzLwR6Hhe4jKHNGDGuHVcvvpKZLqbO7k7nbnVZuewcjx8J+KlvoB0KCvI4Ox0WrqomVVm0uC9bt1/n+g0pD8djKAVFJXgFSMOMezZg8IAmLHINk6WFuy8dgOey00R+TkG3kjrB7kNZu+O67NAb5DKETXtv8eq9mOgHOA5mxY6rRH5JQV9HA4+5fXFbe5a0zDyqmRswfkgr3DacpaxcQp/2daikrUbopWcAOE7ozt4L4UR/TcdIT4sJA1sSsE9Aav9u/U83ONZ6esRn5JBfUirNl0qmpLyclhZmhEfHUVouoa2VBXc/faFUIqG9dVUeRMZQUlZOW2sLXnxJkMUxfMuXqm6oj6JEnojEVPQ11WlkZszNt59RUlBgZJtG7L0pYuDHdW7G4bsvKSwppW0tC9Kz8ngfn4KuphrD2tRn12XRic/o34bQ68/JzC2gjoUh9SyMOH7nDXJysGREZ7acvCd+VtWITo2qse2UWPPMH96JS/fe8+5zEjpaajhP7IHX5gvkFxbTtI4ZvdvWJnCbOBWM7NcMFUUF9pwQAuAlU7vz4VMSZ64Kt5PXgv6EP//C2SvisafDAD5GJrH/6EMAFs3qhYKcHMGrpGuoYS3o2rEOS1wPy8Iz3ZYOZOXqC4Q/kYZn+tqSl1eIt1TV36NHfSZP6czGdZe5deO9+MD52WBiqouzw0HZiNV/xUjy8opwmn9ACI/rm+LiO4zM9Dxc5uwjW5oM7hZkR3lZOZ4LDspEfQEbxlBJV4Pj++5xeJdo7Oa7D6J159rk5RbiNjNEiPrM9fDdOB4NLVUSYtJwm7ZbsCVaWbNk2XAUFORJS8rCZcJ2stLzqF7PFLeN41BWURRCTo/j3Dn/UkxHNo2jZkPxpVqQV4T7uK0yIaPf3umyUXlZWTnL5+3l2e0P4qS5d7psVA5CU+MyYh3Z6XnUbFwV1x1TftC0lJeXs2reHh5dfoWyqhJeB2Zj/YuV04ktVziwTNywZi0bRac/sXgnRCXhMmg5uZn51GtTA9d9s3+roSkqKMbTZhUx7xMwMNEl4PSSfyRgfXXnnWzK0HtCF6YtG/OvWbP/4+YGiNu4kevXrxO3ceN/9N75OQW4DRQTLuuGVXHcO/dfy9DKTs/FpX8gqXHpmNc2weOIwz/SQd07Fc4Gqe5qrPsweti3/+3zYz9+xcNuFcWFJbTq05jZv4hNAHGtBk/fzqt7H1HXUsPn8LxfBmiGrbv4Qzp4/T+AK6PexOEzYYtsmjnF88dG8cT2GxzZJG7685aN/CEdPPzGO1YvEWtQm2ldGTSxIlxz7+qLXP5GEl83Rsa6+fQ2Ae8ZYlrboU9DprkOQE5OjoQvqbhP201hfjFN2lRnoZ8N8vLyPL0XyQrXowAMGd2WoWPbiWR016O8DP+MuoYKvhvGUsVUl/s337NBCv0bPbUzfYc253NkEl6LQikpKaNDt7pMW9CLL59T8JSu6dt2rMWshb15Fv6Z5f5iqjFseCtsR7Zm1/abXLrwCnkFOVw9h2Bsoovj0lAyMvKwtjbE02soJ0495ci3afuifujra+LscVTk/bWsxoypXXHyPEZcQgZGlbUJ8hrGmm3XePYqBjU1JYI8hnH49FNuPRQ4Ej/HQZy8/JLbUrBfwJJB7D3xiKdvYlFXU8Z3YX+W7bxKbGIGVQy0WTyxO67rz1JYVEqrBlVpXs+C9aHie3n28A5cexrJq09f0VJXYeHIzviFXKGktIxOjX89bf5V/U83OAWFJWQUFFDDQJ+EzGxyi4tpYGzEp6Q0CkpKaWxmzLuvyRSUlNLU3ISIxFQxoTGtQmxaFml5BdQ00qe4uJSYtEyMK2lhWkmbZ18S0FBRpkfd6px59h45OZjQqdkP+VKXn30kK7+QeuZGqCsp8zgiDnUVJSZ1b8Gm02KcKfKlIklIy8a8sg49m9Zkl9QhNX9YRw5ffS7LlxretQkrD9wAYHy/lryPSuLh6y+oKiviMbU3QTuvkJGdT82qlZkwqBWeG86JyVGHutSxqsLq3UKTM3VEO0pLygg5IgVBTe1BUko2e749nt6DwsJi1u+QPn9sRyzN9fEIOCmoxd3qMWJYKxa7hJKamoulhT7+XsMI2XuHK1ffiBwUt8Foaqjg7CR1ULW0ZtHivhw6cJ+Tx58Ie7vLQOrVN8PTKYxPEUno6GoQsGoUiooKOM8/QGpyNuZV9fFZPoLSkjJc5u4nOTELs6r6+KwehbKyAv7OYbx5ESOSdNeNxtBYh+vnX7JFKj4eP7c7PQc3pbi4FJ/5B/j07is6ehr4bRmProEmGak5uE7ZSWZaLtZ1jHFbPwZlZUVyswtwnbSD5PgMTKrq47NjkgzVvn/NJc4duC8FgY2kiZSBI5LBdxLxKhZtPQ18906XjdolEgmb3Y9w+8xzGVW1VuMKB09uVj6uI9eTHJeOqbUhXvtmoqZRIRiWSCRscz/C1cMPBGV55zTq/8Jie/3IQzZLya5jXQbTf1KXn54DglviPGgZ6UlZWNUzw+vwgt9al8tKy/Afu4E39z+iqaOO36nFGFoY/Onz/1ifX8fiMWS5mGgMaMa8jf9syvBP6tm1V7LmpoNN67/X3Hz5Ak+esMPdHYtdu+gKVN21ix3u7vDkifj536iysjICRq8h6uUXdI0q4XNq6T9a3/2TKiooxmPIMpnlPeCs8z/SFr2++4GAcSJSo/f4Toxy/Dmv7PvKSMrCdegKctLzqNnMCufdM39pP5dIJGx1Ocydk09QVFLAY/8srOv/TFC+FvaQnd9YN752tB/wY6hpUkwabqM2kJ9TSP3W1Vm0btwPjeKt00/Z6iXWVuMd+//AuvnwIgbfabvEtGVwMyY4VUyZzh18wEGphmaO7zBadhVNUWJsOm6Td4hAzlbWLFo2HHl5eTJSc3CZskscdOqa4LpuNErKikS8icdnwX5KS8vo1LsBU6S08q3LL3Dz4msUFRVwWzWSarWNefM8Bn8pkbj3oKaMntqZ5MQsXObuJz+viPpNLFjiNYT0tFycFxwkN6eQug3McPIawudPyXg6HREupW51mTq7OyePh3NAygdb4NCHRo0tcHE+TFxcOoaG2vgH2HH/QSRbpIGa06d2oWFDc5a4HpZFLrgu6Y9P8BneffyKtpYqwT42hJ4M55oU5OfrOJjHL75UgPzm9xUgv4tSV+7cPlx/FMG1byC/hQMIOfmId58EVd9zdl+8t14gM6eA2lZGDOnWEL+dYk01sldTopPSufMiChUlBZzHdyfo4DXyCotpWtOMTk1/Dlz9s/qfbnASc3Ixq6RNUXEpqdLYhYzcAtLzC6hpqE9ydi4Z0kypjJwCknPyqGagR0lJKXEZWZjoaKOrqsbbBEEsbmphwq33YlozrEU9Qh8I7s2Ejs3Zd/MZpeXl9GhUg5efv/I1MweLyjrUNqnM1RdCZzOrTxs2nLpLuUTCgFZ1ef8liY9xKehrqzO6W1PWSR1SE/u04NbzT0TGC4X5zMHtCAy5TLlEwsAO9SgpKuXifXEhek7rzebDd4lPzsKkciUcxnbBbc0ZkdrayJLe7ergu+GCSG3t1RiLKjqs2i5OPZOGt0VTXZm1O6T6mFHtMTLQwl8qGLYZ0Iz2Lavh6HGEoqJSWjW3Zu60brh4HiUmNp3KBloE+9lx4cJLwo5I7eEOfahmbcjSpaFkZxdQq5YxHh5DuHzxFbu2C5HgzDk96Ni5DsE+p4T9UU0Z/xUj0DfQwn3RIWKiUzGorEXAantUVJTwcDhE9Kdk9Ctr4b9uNNqV1Fjrf4YH3/Q1q0ZhWd2Ipw8+scJVfGkOGtWa4RM7yk5U38IzfTaOw8Rcn/y8Ityn7eZrTDpVzHTx2TIBDU1ViotK8J4RQvSHRHQra+G3awo6UivquQP3ZcngM72G0LFfY0A6XVl8kKe3PkiTwadi9h0W/tC6S5wJuSMoyWvG0LRjhYiuuLAEr3GbiX6XgK6hNr4HZ8u0AN/q6IbLHN8szdtZN45WPX9O8n528x0rvvFDpnVjpEO/X34m8nMKcBu2kq+fUzC2qozfycW/XTNJJBLWzt3NgzNPUVJRwjNs4T9C/ifHpOLSP4DczDzqta2F8/55/4jL8k/qy9tYPIcukwmKnffP+3uTG0tL4po3Z4qPD9+m4+XANB8f4po3B0vLv/wlJBIJG+ft4sHpJ+LP6fiSf82pVVZahv/otby59wGNSur4n3H6Rw1n9JtYPGxWCjBk/6bM/Q2YD4RDyXXYChKjUzC2NsQnbOFPIuBvdWTtBU5Ir9VFmybRqMPPgtHwa29YMUcasjmzB4P/sHbKTM3BZeQ60pOysKxjgkfI9B8chi/ufmTZvL1CFD+uA3azKnAGcVHJuI/bIta8HWuxcPlIWWN098IrNriJiYv93B70Hi6aosy0XFwnbpcGa1bBfdM4lFWUxNR36m4SY9OpYq6H95bxqGuokBCbhtvMEAryi2ncqhoO0olO2K7bnPimxfEdSpNW1Yj+lIz7ggMUF5XSqkNN5jr3JyerAOc5+0hLycHCqjKey0dQWFiC8/z9soOd97LhpKXm4OxwkIKCYho3rcpi14Hcvvme9WukjtKJHenRqwHeXsd5/17IAoKCR/A5OqUC5DesBX16N2KJaxjJKTlYmOvh7zWMdVuv8TBcuGADvWy4Hx5F2ClxQHea14fk9By27pPaxSd2JSe/iO2HpFlXk7sRm5jFkW/Nz+zeXLz7jvtSl67PvP6s3HtdFskwzbYtnlsuiEDn1rVQVlHk1O03yMvJ4TS+BxtP3BUaHFMDOjWphtfuS396Lf6x/qcbHF11VbSUlInNzKKKliZKEnniM0XsAuWQkJWDmY42ihJ5oqWZUnrqarxPTEVXXY26RgY8iopDVUmRXvVqcu75B+TkYHTbxuy//RyAEW0acuLhGwqKS2hZ3Zy07DwiE9Mw0FKne/3qHLsndDZz+rVj2/mHgkRc34qCwmKeSEXEswa2ZWXoTcEaaF+fL1/TefoxDg1VZZaM7EJAyBVh/25kTVVDPQ5eFGswpwndOXb1JR+/JKOrrYbH9N54rj9PVm4hdapVYfzgVrisPC00Oa1r0rlldXzWiIj6wT0b0bC2Kb6rxeOhfRrTsoklboEnKSsrp1uH2owY3JwlbkfIzimkds0quC3tj9+yM7x9n4CWpirBvra8fBnLZulJYerkzrRtUwMnx8MkJWVhaqaLf4Adz59+YdXyinypwUObs3ntZW5eeytzA1hXMyLA/RhvX4t8Kf/Vo9CvrEWQ2zHePI9BQ1MFv7X2GBnrsGfzdS6cfCriG/xtqd+kKhHvEvBZcIDS0jI69qzPNOmJatuy89w8/1J6orKnRj1TMW2Zs4/ItwLS5bttInqVtaT5Uod49ShKaGu2T6KKuRit37/8mg1SgaH93B70H12Bd9/hf5rrx5+goCiP65YJP0xnLoU+YM83HYDnUDp9J5AsKysneNZuXj+IRF1LJINXqfrjjerGsUds9xQMjSleNnT/haAz6lUsPmM2UFpSRschzZnmP/yXN6zSklJ8x2wg8vkXKhlo4Xdi8U8C5T/WHp9jXNh1Q/xZh8ykQftav33+95WdloNTP39S49OpWtcMr+OL/5Hb6p9UVmo2bgODyM8uoH772n+/uQHYt49QOTn+uPovAyLl5WHfvt++XCKRsHXxXk5tvCjWLSGzqdv6166i/2tJJBLWzt7B/VPhKKko4XV8MVYN/j75NTkmFZeBy8jNzKdu6xo4hfx6EvOtiguL8RqxRlwz+lr4HXNAx/DXq8mL++6ww1M0EFN87X7JunkXHoXP+E2UlZbTaXBzJnkO++HnhXlFeI7ZRPynZAxN9fA5MFu25gWIfB2L16RtMhLxNO8K6nd6UhauYzZLeVTmuGyeIFvZvXwQSeD8fWKKMrwV9vOEhqYgrwiPqbuIj07F0EQHn+2T0NBSo1j6HfEN5Oe3bQK6BlpkpObiMm230PHVNsZt9SiUlRW5dPIpO9eIw8/URX3o0qehmNLM2StAfg3NcQ6wpaSkDLcFB4iNTqWykTb+0omQ++JDfPlccbArKyvHaeFBMtLzsK5uhGeALW9fxxEojbIZMKgpo8a0Zfnyczx6JBoVP39b8vKL8PQ+Lr7Du9Zl/LgOOHseJfpLKgb6mgT72hF67DEXrki1lY4DiYlPZ9NuKU9sQic0NFRYtlE0GfZDW2JkqM3yreL3NnZYa5SVFdlySBzG543rQkRMCuelLl2vWX0JOfWID9HinrR4Qjc8t1wQGtJ6FtStbsyus+IwvHBUJ0KvPSMmKZMqeloM796Y1Udu/+m1+Kv6n25wqlbS4X1yKpVUVTHR0uJjShp66moYamrI/t1UW5u3X5PRVlWhrlFlwqPjUVNSpGMNS66+jUJBXg7b5vU5LJ3WjGnXhIN3n4s08Ma1uP3msyyCQUNZiWdRIoJhRLtG7LoihIrTerXi0PVnsgiGKpW0ZO4pB5uOrA67TXFpGR0bWaMoL8e1p5EoKSrgMrY7Kw/cIDuviAbVjOnStDobpBEMs+w6EP46hsevY1BTUcJ3dn+W77xKYmo25lV0WTyxGy4rTpNfUEzTeuaMHtgCl+BTlJSW0aFldQb2aIhL0ElKSsvo3KYmNv2asNTrqFDSN7RgzuSuLPWoUNIHeg5j05Zr3H8oxXd7DSMtLZegZeLmPWxoc4YMboa7+1GiopLR09MgKGgECfEZ+HodFw6PPg2ZMLkTRw4+4Lg0UXyx60CaNLdi3fLz3L/9EWVlRbyXDaeqVWU2LT/P3RvvUVJSwHP5CKyqG3H26GMOSCdBc5z607ZzbRLjMnCftVfoaFpYschvGPLy8hzZfUeW5OvgN4ymbauLhGHnIzy7Hym0MFvGY2ppIKyefqcq8qU2jaNaXRMA3j2NJmjefvHlOKLiyxHg+PYbHJM2eAuWjaR55wq3zKOrb1gj1QHYzuzOoEkVOgCRLxXG3bPPBNdj17SfNDUv7nxgxezdAAye1o2hM38G7yXGpOJqt1qKya/Fok2/DriUSCSsmbubJ1deCdv40T9n4nyrczuucSDgBACz14yn3aDf51F9X4X5RbgPDib2fQIGZnr4nXH8y7DG/7SKi0rwGracr1FJGFsb4Xls8T9yS71s0ABP1Z8DRxWA6mfOgL39n772W3NzZKXQSMzZMPlfTSPf632E8zuuiYZz3xwadvj77qzs9FxcBi0TIZd1TPE6uvAvV5MB4zfx4tY71LVU8Tvh8Kfp4PfOPmPNPKHnsZnTi2Gzfo7b+PIhAfeR6yjKL6Zpl7os2jjxh2u1tKQMvynb+fAsWqx5D83G4Du7enxUMm6jN1OQW0SD1tVZsm6sTISfl12A27gtJMWmY1zVAO+QqTIeVeSbeDyn7qK0uIw2Pesz20fwqEqKS/GZtYePL2PR0lHHd+dkDKpUElNfxzCeP5BOfbdOwKSqAfl5RbjNDOFrbDpVTHXx2TQODU1VHt76wGovQf+2Gd+eoWPakp2Zj8vsvaQmZWNhVRnvVaNQVFLAz+kI71/Ho1VJDf91o9HT18TP9agsONhv1Sg0tFRxdjhEQnwGVUx08F8xgoSETNxdjgi9TqdazJ7Xk+3bb3L5kuDYuHsMQUtbTQZWbd7MCocFffANPsOrN3FoaKgQ7GvHrXsfORAm1VbO7Y2cvBzB64RIesSQFtSrbYr78tMCFtu1Pm2aW+Ox6gzl5RL6d2tA3ZrGBEmbnTGDW1KGhL2npDqfST249OAD4W9jUVdVwmN6HwJ3XRFrKksjerevyyop6mTyoNbcfvWZt9FJVNJUZcaQdgQfvCG2G21/zNn7Xf1PNzjP4xNRVVSkgZERz2K/oq6kRD1jQ57FiX9vYmrMo89xqCgq0Km6FTc+iEypgY3qcOqpgPqNatWIg/ekgZkt6nPy8VthE69Zlc9f00nIyMFcvxK1TAy48SYKJQUFpnRvxZbz4iIa0aER155FkpSZi5WRHm1qV+XIbdEsLbLtxNZTD8jJL6KhtTF1zA05ekM4pJxGd2PHqYckZwjKo32vZgTuEqPfEb2akpmdz8V7Yk3lPasPO4/eJzJGKNm95/TFc8050rPyqV61MgsndsU56AS5+UU0rGPKjNEdWep3XAZsmjOhM0u8j5GRlU91q8q4L+qPV+Cp7yIYbDl64gnnpBEMHk4DUVVRxMNLnBS6dK7DtCldCQ4+K4tg8A+wo6y0DFenw8IJ1boaCxb14frlN2zdIFZk0+Z0p2uP+uzfdZtzJ0UEg6PXEOo3siB09x1OHwkXYmvvITRsZsn9m+9ZLyUc20/pRN+hzcnKyMPlOzS6u/REde3Mc3asrHA3dJE6KHYsv8CNsy/EtGWtPTXri6YibOsNTkuZE4uWDadxG7EHjotKwXPKTooKS2jZpQ6zv4P13Tz1lK3eJwCY4NifbsMq2CMfnn35IV9qgtOP1t2jG69weqdo1BavG0ejP0xGot/F4z12IyXFpbQf2JSpPrY/TWVyMnJxs11NemIWlnVMcd836wds/fe1z/8El/beFvbUkFnUamb9Zx8bAB5ffME66Q1rlNNg+k3++yC+8vJygsdv4O2DCDR1NMQKxfzvr1D+SUkkEtbO2Mar2yJbyufUUioZ/H3xc0xMDH369CG3oIAaiKYG6T+3AGZGf94ESiQSti2paG7mbvh3c7SOrz3HPl8xIZm9bhLtB/8+I+z7KswrxGPYSplI3O/k4t82nBKJhNVzdnHv22oydD41mlj98rkv7ryXgfx6jm7PJK+f3XHJcWm42K4hJyOP2s2scNs1/ScR/eqF+wi/9gYVNSU8987EvEZFM5WelIWL/UYyU3OoVt8Mj10VYMziwhJ8pu4k6m0COgaa+O6dLlvzJnxJxX2CiFBp0MpaFqFSXl7OiiWhPLsbIYJ0t0/EvJqh0Mv5n+GW1ETgunY0NeqZionOggMiBVyq49Mz0OLdy1j8F4eKz3n/Rkyc14PCgmLcFxwg5nMKBkba+K0fg6a2Gqt8T/PorjQQeOVIzC0NWB14hod3I2QHO1NzPbycw4iUIjQCVo6iqLgU56Wh5OcX06ixBU4ugzhxPJxQKVfMYVFfqlc3YqlTqID91aiCh9sg1m2+wt373zIBh/EpOpkN26TT9vEdsbDQwz3olNBWdqlHzy71WOp3jOLiUto2t8ZmQFOWBhyX5RL26lIPV2kIc99O9bAy12ft3hsAzBjRno+xyVyV2r89ZvRh/eHbfE3NxsxIh3GDWuK3+7KQSnRpSExyJg/eCA2pw/DOBB28TnFpGZ0bV8PwHxyE/r6k/v+FJS8nRwerqlx5/wlFeXk6VKvKxXeRKMrL07WmNWdfitiEgQ3rcCRcrJLsmjUg9KFoQIa3bMCRh6/FBdCgBvfeR5NdUER9MyNKSsp4L00D71a/GiE3xA16Zq/WbDn/gNLycno1qUlEbAqfvqZRuZIGQ9vVZ+URYROcNbAtR66/JCkjF8sqevRpUYvgg+Lim2fTkTN33hAVn0ZlHQ3m23XEdeNZysrK6d6qFsZ6WqzeL26OThO7c/H2O56+FUr2wAUDWbHjGrFfM6hSWRuvOX1xW36alPRcLM30cZndm6V+x2WAJrf5fXENPEn810yqGFYiyG0Yazdd4fkr8esFe9vw+Em0DAq1cE5PrC0rM3veXmFHbFyVpYv7sXXrNW58A1B5DUVfT5O5M0OE66m2MW6eQ3j57AvL/AS0b9jwVtiMaM2F08/Zs02aaruwN+071+bymefs2ih0QdMX9qZj93q8fRkrE+r1GtSEMdO6UFhQjMfc/cR/ScPQuBI+68egoanK0/uRrHQT66ShY9sxbJxwh5zYc5djUnfVQj8bmrUTa4SrJ56wS7pCm+YykE5SbU16SjZuE7aRnZFPrUbmOK0bLRvnv3wQyfKF0vTv8R1+yJdKiE7BY7xUB9CpNvOXj/qhObl+7EeuR8dBPwosU79m4Dp8rQgTbF2dJRt/nsoUF5bgOWoDsR8TMTDRxSds3g+j/O/rQshN9kknMXNWj6P1H8IL/1iRz6PxtV8nKM9jOjDW7Z/ZnHe5HuLO8UcoKSvieWzRP9Ls/NM6ueECF3dfF3Ts0IVUrfv33ysjI4M+ffqQkJBAvZo1uZ2ZSZ6xMZFdu1L92jXMkpLA8OcwSPh5cjN3w2QGzPj3gIXnd15jk4OwS4/1tKX/1L+f2VVcWIzX8DXShlMdv9NL/jSuA6SNm8uhioZ49wwadfz1pCjieTReo9ZTUlRK235NmLfqZ3dcZmoOzjarxeSopjHeB+egpvmjiH6rx1Guhj0Uzqatk6nTrKKZysnMx8V+E0mx6ZhYVsZn73Q0pOLtstIyAufs4cW9CLFWDpkms3ynJ2fjMm4bGak5WNcxwWPLBJRVlEQT43uKm2dfiCZm/ViZk+rAxmuc3i9MBA4BNjRtV0Osrp3CeHo/ElU1Zbw3jMW0qgHRkUm4zaoI1VzgOYTyMgl+Sw/z7mWs1PwwBsMqldi25hJXzr5AXkEOl0Bb6jY0Z8fGq1w8K8juLr5DqVPfjADPEzwLj0ZVTQnf5SPQ0FBm3uy9ZKTnUa26IV5+Nty89Z6N33L6JnemXbuazF+4n8TELExNdAnws+Vg2CPOXngpywQsKCwhYKVUWzmoGW1aVWOO0yGKiktp3dyacSPaMMc1lNy8IurXMmHmuE7M8wqTPR5v24b5fkcoLimlbVNrOreujuMqce0P79OUkvJyjlwWAmTnKT05dPEpETEp6FVSZ/6oTrhtPS+kEs2qo6Akz8Vb4nC+xL4rq4/eJq+wmCbVTTDU12L7+Qd/+9r+n25wetSszpX3glLcp25NTr96D8DA+rVlZOJhTepx9Ilobmya1ufo4zdIJNCvUW0uvYigsKSU1tUt+JyUTmJWLlUNdDDR0eLyi0jUlJUY3rYhmy+Kv5Ap3Vqy78YzocepaU55STnPPomV1ZTerVkWKhqYkV2b8OD1Fz4lpGFQSYOJfVrgLRVWjenVnDefEnn2IR4NNWVcJ/TEZ9tFAU2qY06HxlZ4bRaTiRl27YmKSeXqNyX7vAHsOf6QNxFf0dZUJWjRQJZtvUx0XBqV9TQJWDoIvzUX+BKXTmV9TQJdhrJi02XeRyRSSUuN5Z42HD7+mOu3P6CoKI+v2xCSk7NZLU2WHmfflg5tazJn/j6pHbEyXp5DOHHiCUePSMeUS/tTp44JC+fuEx84U118A+2Ij03Hy/lHN8CjexGsDhKW5hFj2zHQpgXh9yNZ5Ss+OLZj2jJ4RCtio1PxmC+Eei3b1WCu0wDKy8oJdAzj/ctYNLXV8N04Fn1DbT69T8BXqsXp1LsBkx16A3Dn0mu2Sqc/Exb2ouvAJoCgFK9yChPXwqSODB4vmqHvKacmVQ3w3DZRNs7/8uErPpNFInHb3g2Z5lFBGs5Kz8V9zGay0nKpVt8Mly0TZZA/EGunlfPEjWrItJ+5HnnZ+biNWEdqQgbmNarg+Yt8qfLyclbM3MmbBxFoaKvhGzafyqY/23ABwq+8Ys3c3eK6WzyAvhN/7az6VskxqbgN+ZZEXY956yf+I8fTxd03CF0mmtgFW6f9oxXKP60PjyPZLIUGTgkeQ4tejf/2awsLCxk8eDBv377FxMSE81euoGtoiK6yMmZyciCRQHExqPy8wpFIJGxZtIejq8S1+283N9cO3mH19G0A2Czoh73z3284S0tK8R+zgadXX6OqoYLvicV/CfILXXFGRimev2Eibf/gcPpWsRGJuNpUrEcdt0/9Sc+Tl1OA24i1xEUmUdlUF7+weT9Njg6sPM9J6WRhwarRtOxRkddVWFCM54StRL9PQM9IG78DM9GV4gkkEglrHEO5f/GVjFL8jYOTm12A24TtJMakUcVCH5/dk9HQFk3RwQ1XOb33nmhiguxo1kEcdM4cfMC+9WJKPt2lP537NUYikbDB7xS3LwlnlPtqe2rVNyMxPgOX6SHkZhdQu4EZLsuHI68gR7DbMemURgnv1fZYVjMkNOQOR/aJA+ICl4G0al+TsP33ZZTieUv70bp9TdYsO1+hS/S3xdRMD4f5+8SqylgH/+ARvH4dR7D0O3PYsBYMHtKMpU6HZZTi4MDhXLnx9rsDaS/09TRZ4BQqdDmd6mAzuDmzHQ/IKMULpnfDwesoqekVlOIlgeIQbGmmj8OU7jgEHpdRikcNbI5DsIAJ9mxXGwtTPYJ3iYZrvn0nbjyJkFGKHSf0wHe3oBQ3r21OTUtDNp+QygaGd2Ln+cekZedTw8yA5nXM2Xru4W+vzT/W//SK6tLbCAD616/NGWlzM7hhHU5KM6UGN6rLyWfvREhmg5pcevlRQP1qWvLiczyZ+YXUNTWktKSMCKlwuLW1BZdfRKIgL8ekri3YflmaBt6uEReffiQ9J59appWxMtCVuafmDe7AmmO3KC0vp3fzWiSn5sgoxQttOxK07yplZeX0blWbkuJSGaXYc1JvVu27IVZN5gbY926G3zYx5rPp0QglBXkOnhPKd9fpvbjx4CN3nohI+oBFA9kV9kAGaAp2HsrmPbdlgKZlrsPYF/aAB+FRqCgrEuA2hIfhURw+LnRDjgv6oqqiiHegFArVqyEjbFrh4n5UZkcM9LPj0YNPMkrxtGld6dixNl7ux4iMSBIj1mUjKCoswWWRoBQ3aiLcABHvv+LjcpTyMgnd+zRkwvQu4v+TUoq79m7AxNndSU/NwWVOBaXYJcgOBUV51vuf4cGN92JKsMYeC2tDkhIycJu5h/y8Ihq2sJK5G948jSZ4cagIvBzZGtvJQgvz+cNXfGftpay0nI79GjFxicjIKSstw3/2XiJfx1NJXwOf3ZNlI+/UxEzcxm2RUYqXrB0t0wEUFRTjPXGbiG4w08N7z3SZDgDg87t4vKVcj44DmzLZ48cbVWlJKb4TtvD5TRy6htr4hM79pcMpxPdEBaV470ws65r+8vr//DoWvzHrxfh8RFvGuQ/75fO+VV5WPm5DV5CemIllPTPc/mG+1Iubb1g9Q9yI7V2G0t3+90nk/5cqyCskYLRIve5g05phC36fev19lZeXM27cOG7duoW2tjbnz5/H3NxcNDPfmjk5uV82N6UlpSybuKGiudk45V9tbu6efEzwhI3i2p3anSlBvydNf19lZSKC4b50zeR1ZAF1Wv3egnt661V2fRO1+4+g15iOv3xeSlw6LkNXkpWWS/VGFnjsn/1TI15UUIyn/QYinn+hkr4m/kcW/NSIn9x+nX1SbtN0X1u627WW/ay0pIyA6bt4+zgKzUpq+O6bSRULMXmSSCRs9zvF5cOPRCbU+rE0aivQCYUFxXhM2kHUuwR0DbTwC5mCnrQpOnvgPnulLqRprgPpPEAcdG6df8lGH9GYj5rZlYH2QkcVsu4K58IeCxJyoC1N21YnIy0X5+m7SUvJoWo1Q3w2jEFVTZlNy89zXZob5RpsR73GFpw7/oSd68XNf8q8HvQc0JiLZ56zTdpITZ7VjT4DmxCy7SZnv63p3QdTv5E5bs5hfIpMRldPg6DlI0hIyMDL8/gPXDEfv5O8fhOHpqYKQYF2vH4Xz4Yt4vt48viO1K9nxlKPIxQWldCymRUzJ3dhsecRUtJyqWquj/uiAbgvO01sQgZGlbXwXTIQzzVnxWMDLTwW9MNt9RlSM8TEf87YjjitOiXYNg0tad+sGst3i/cbP7AlkfFp3HwiILVuU3qy8tAN0rPzqWVhSNeWNWTNzcwh7Thx9y2xyZmY6GvTt00dWXMze1C7316j39f/dIMDgkx84c1HJECvOjW48Ooj5RIJPepU5+rbSBml+GlUAjlFxTQyNyYtK4/4jBzM9SphUkmLJ5/jUVdRYnCzehy+L9ZXU7u3YufVx6JpaVKTN9GJxKRkYqKnTZf61oRJdTbzB3dgy5n75BeV0LKWOZXUVbkmFRg7jurKykM3xM/qWFDD1IDQK88BQSnee+axLCl8gX1nPDeJMV+n5tVpWN2Udfukq52RHUhIzOLU1VfIy8nhNa8vN+59lAGa/JcO4syVV7LHAU6DufMggjOXxAjTY/EAUlNz2bBN2qhM6ESdmlVw9jwq7OEtrJk3szv+gad5+zYeLS1VgvztiI1JI0h6mhg6tDk2ti1YuewcTx5/RlVNCb+g4WhqqeLscJD0tFysqhniFWhLWkoOrosOCiJxK2sWOvcn6WsWbvP2U1hQQuMWVix0H0RRYTFu8/aTlJCJibkePmvsUVVT5tD2m5w/Gi4cKwE21G9alZysAtxmhJCekoNldSPcV9ujrKxI3OcUvGbuEblTXesw3UXAu1ITs3CfvJP83ELqt7DCIcgOeXkRsrfe/RjhN9+LpODtkzCROpvycgpxH7eVlIRMzKoZ4rFjMipSMWt5eTkrFuzjbfhnNLTV8N4zDb3v3CapXzN/4Ho4rP2R6yGRSFi7aD/Pbr5DVUMF74NzqPIL6+/5PbcIXSUsoPPWjKXxn6wO0hIzcbddRX5OIQ3a1WL+ht9PYkpLSvEZtZboN3HoVdHB5/iin8izv6v4yES87VZRVlpGJ9vW/yqlGGDroj3ER3ylspk+C7ZM+0dTpkWLFnH48GGUlJQ4fvw4DRv+bLv/VRXkFuA+KIjLITeRV5DHYfuMf1Vz8/jic/xHraG8rJzuozsye93fn6ZJJBLWzd3F9dD7KCgq4HZw7l9Siq8eusv6hWK6OGLRAGzm9vnl8zJTsnEaulJwm6obCUqx9o+8n2/UbQH7U8X38LwfNDUAV8MestlVTE9HL+7PoMkV08Xy8nJWLtzPo6tvUFZRwmPXVKzqmMh+fnjDFZm4f/6yEbTtJf4OS4pL8Zu5h7dPotHUVsMvZIrs83vz7HNZYO7IWd0YJM2ae3o3gmVLDyORSOg3ohWjZ4v137E9dzkkDayc7TqQjr0akJdTiOvMPSTEpGNkooPfpnFoVVJn/7abnAoVh91FXkNo2b4mt6+9ZZ10ajx8XDtsRrfl3q0PrJLGQNjat8FudFuOHX7E/hDhSprj0If2nWrj63mCVy9jUddQISB4BIVFpbg4h1FcXEqr1tVY6NCHlasv8EBq+vDzsSElLZfAFeK7YdjgZnTvUpfFbodF4HFNY5Yu6IOz/3Fi4tMxNNAiwGUIQRsv8j4yiUraagQ5D2Xl9qt8+JSEjrYa/ksHE7jlMjFfRbPjMrMXrmvOkp1bSN1qVbDp3QTvLRcpl0gY0rUhZRIJp24KUr7LpB5sP/2QhJQszAwrMbxnE5YdEH9f9j2a8vB9LB9ik9HTUmdMr2asPS5+//Zdm/Dg/d/jTsH/eIPT2tKMe59iKC0vp511VR5+iqGotIzWVua8ivlKblExjcyq8DU9m6TsXKwMdFFVUOBdQgp6Gmq0tDbj6muh3xnXvhk7r4k1zNhOTQm795KC4hJa1TAnv6CE1zFJVFJXZWSHxrJOdGrf1oTdfEFadj41zSrToqY5h68LwfLSkV3YceaBbDzXu2Ut1odJL3K7DtwMj+T1p69oa6jgPqUXPlsukpNfRIMaJgzp0hBf6ZrKpmdjdLTU2HZYCn6a2JX4hAyOnn8mAzK9j0jk2DmBx3ad34eEr5nsOCCYBvOmdkNLQwW/ZWdEflX/JvTuXo8lrmEVgjWngWzeep2794Rgzdd7GOXlEjw8jlFaWk6nTrWZMbM7e3bd5vJFQdd09xyKlVVlPB0PE/sljcqGWvivGEFZWTkuCw+QlZFP9ZpVcPOzoSC/GNd5+8lIz8OqhhHuwcORlwN/xzAi33+lkq4GfuvGoKOrwbWzLwiRnohmLO1L++71BBp9/n4Z0dhn01g0tdXISM3BbeoucrIKqNXQnKXLR6CgIE9eTiEeU3aSmpiFubUh7hvHycS5oRuvceHQQxGQuMZetpsvLSnDf8YuPr9LQLeyFr57pv2QIbXT75QM5Oe+fTJVv0POF+QV4jFmI2lfMzGvYYT7rmk/nXYPrTrHpf13hTtm2xRqNKrKH+vp9TesWygsy/ZLBtBj5K9POoV5RXjarSY5Ng2zGlVwPzj3T8XH32rz4v08u/YGVQ0VfI47/Faj8cfKy87HY+gyctJzqdWiGot2zPzX6L0AL2684cwW4eRYvHvWPwLcrVy5klWrVgGwe/duunb9e+Lp9MQMHDp78PjCc1TVVfA+sYTe/2ICevilF3gOWyGAhcNa4bBt2t/+M5VIJGxevJ/zO4W933H3DFr9he7q7qlwlk8T2VmDpvdgvMevp305mXk4D11FXEQilU31CDi28CeidVlZOctm7uLhpZcoqyrhfWDOT9fz/QsvWDl/r3i/KV0YtbCimZJIJGx0PcL149IIhq0Tqd+ygm57du9dWQTDFLdBMshfWVk5KxYdkh1OPLdPlDVFj2++Z9miQyJiYmRrxkidkO+efcF7zl4xVe3dgBmuA5GTk+PKqWdslUbMjJ/bg352LSkqLMFz3n4+vRfAUP/N4zEw0uZk6EP2bhE375mL+9C1T0OePYoiyPWYFO7XhAmzuvHiaTR+bkeFjrBfIybP6saVi6/Y9I1rM6UT/QY1ZcWys9y/F4GSsgI+/jaoayjjuPQQeXlF1K9vhpvbYHbsvMmly8JB5eE2GOTkcPcRpo/uXepiP7wNi90q2Dc+roPxX3VOJkdY5jmMzftu8eRlDGqqSgS7DGFX2D2evBKPA5YOZsP+WwLcp6WK9/z+eG+8IMubmja8He4bzspigUyr6LDnrLg/OozpwvFbr4iITUFPW51pQ9oSsPcK5RIJ/dvWJT4tm/APsWioKjNjcBtWHr0lfta6Dm9ik3kcEffba/X7+p9ucKJS08ktLqahiRHRKelkFRRR19iQtJx8knLysDLQRVEiz6fkdAw01alpaMCjT3GoKSkyoEkdjj16A8DkLi3Yde0xEgkMalGXW2+iSMvJp5aJAVW0tbj95jMqSgrM7NOa9adE42DXoREP3kQTkyw8/jbtG7BROp6bNbgtZ+6+4UtiBkZ6Wkzu35rAPWJ6MqJ7E5JSsrn1VGRCec/oy6p9N0hKy6GqsS6zh7fHfd0ZMclpUZ22ja0J2irGnWMGt6SShiob9woh8+xxnZGUS9i0R/p4Qmc01VRYtl6EuI22aUWT+ha4eB+nuKSM9m1qMHlcB5w9jpHwNRMTYx0CvW04ffY5J0+J8amL0wCMq+jg7HRYfOAamOHoNICL51+wb48UBOXQh+YtrVnmd4pXL2IFw2bFSLS01HBfHEpcTDqGVSrhs2IEikoKeC0KJTY6FQNDbXxXj0JdQ5n1QWcrdtmrRmFirseLx59Z6S7EucPGtWPgyNZIJBJWuR/jlRSN7rNpHJWr6Ijd/cw9JMZlYGyhh+emsaiqKYtGZe4+ot5/RddAE+/tE9HSEZOKayeeErJCCPGmuw+mTQ+R4fQtkfgbyM9z5xSMvmsAzoTc5qh0LLxgxSgatq2gDJeVlRM0YxdRr+PQMdDCZ//sn9ZO148+IsRf2ExnBI78Jcgv+m08vuM2U15WTle71ox2/HVIZXl5OcGTt/Dx6We09TTxPrLwL+3ZZ7df4/SWK2IitmsG1Rtb/vb5f3y/ZRM3EfMuHgNTPTyPLvrXWDcARQVFrJy6GYB+U3vQpGuDv3hFRYWGhuLg4ABAcHAwo0aN+luvi/0Qz7y2LkQ8/YxOZW2WXfOgVb9f61L+G/XowjM8hlaQnx33zPnbcESJRMJ250Oc2CA+4wu3TKHjsFa/fU34lVf4j9tIeVk5Pcd0YHrwqF9OigpyC3GzW0PU61h0DbUJPPlzIyyRSNggDXpVUJTHbff0nyIYnt16j//UHULEPrw1U72G/fB+IUFnOLunAozZslvF5Ona8XA2uIoV2si5PRk6pYvsfTd5Huem9JDhumkc9ZoLofLrx5/xmy1W0Z36NWKmx2Dk5OT4/OEr7tN3U1RQQtN2NVgUJPKc7l19y0r3CpPC8MmdxPfGklBePYlGXVMFv03jMK2qz7XzL9kYLBqhMdM6M2hEaz68icdrsYhgaN+1DnOd+hP5MRGPxaGyCIb5jv15dD9SZroYYtuSkWPbsW3zNVkEg5vnEMzM9Vmy+BDp6XlYWVfGz9+WY8fDCZNFMPTF0FAbp28w1hbWzJneHUePI8TEpWNYWYtgbxvWbb9G+IsvqKkqEeQxlCNnn3HzfkUEw5lrr7nxQPp48SAOnn1C+CspgmThQFbtuc6XhHSM9LVYOrkH7hvPk19YQvO65rRpbMm6Q+IeM3VYW+6+jubZx3g01VRwGNWFgP1XZRgUeQV5rj8XK6x5Nh1YfUwgUjo1tCYzv5Bnn+LR+IvD2Pf1P93gJOfkY6mnS3FJGQmZOZjpaqOmoEhkchoGmupY6uryNEbELnStXY1LryKQl5NjdLsm7L0tYHpjOzTl0J0XFJWW0aGOFV+S0vmSkkkVHS3a1LTk1KO3yMnBvP7t2XD6PiWlZXRrXJ2UzFxefU5ES02F6f3asDxUrJPsujTibVQiL6UZHEtHdsVv12VKSsvo2rwGlStpcOSKUKO7TenF/rNPiIxJRa+SOq5Te+Gx/pwQe9U0YfSAFritEpH0PdvXpnXDqvitEzdo235NqWlliN9a6eMBzWhczxy3IBG50LNzXYb2a8JS9zAhNqtjgotDXwKWneW9FN8d5GPLixcxMuT3jOndaN7MChfnMJKTszE318PHx4bnz76wStoYjB7bjj79GrNj0zVuXBWCOQ9/G6paVibY+yRvX8WJhmflSHT1NFnhdZJXz76I3JY1ozAw1Obw7jucO/YEOTk5HP1tqN3AjJioZBnIr32PekySht3t3XCV699s3ytHYVWzigDoLQ7l46s4tCqp4b15PDp6mmL95HGMp3c+Civq1gkykN/LB5GsWipC9oZO7sSAsRXTkaNbr3NuvxAlLl03hpqNKsBqj66+YZOb+MIdu6QfXYdWWMUBdngf4+ElkR/lHjIdI4sfbwivH0Swcs5u8b4zejBgYuefruP0pCzch68hP6eABm1rMn/tuD9dVexwO8zd009QUlbE49C8v2TdvLrzng0LxFpinKfNnwpK/6wOBZ3k3snHAlZ2eCH6xrp//aL/Q+3zPkJCZCL6JrpMCfpzPs0f68aNG4wdOxaAOXPmsGjRor/1uieXXzCvnSuJ0SmYVDNi9V1farf8OSbjv1UPzj7Ba9gKSopKaDe4Ba6HFvxtHZREImGXRxhHVosb7py14+kx+vc6qFd3P+A9cq3IXxrSgvnrJ/5yUlRcWIKX/XrePxap3/7HfuYoSSQSdnof41zILWm+1GRadP+xAX3z6BNe4zZTWlxK276NmLfC/of3O7zhMqHrxXRudoAdnb9zGN6/9IoVCw9ICcbtGeNQMfXZs/ICZ6Xup0UrRtK8kyAoR76Jx2PqLooKS2jRqTaLlokpbnx0Ki6Td5KbXUjdplVxWyuAe88efCJg8SHRfA1qymSH3kgkElZ6HOfhN3L62tFUq23Mw9sfWe4hDlwDh7fEfkpnYj6n4Dpvv6Act7Biqc9QEuLScV5wgPz8Yho2qYqz91Devo7DW6pB7NarPtPn9uDQ/vuEhUoZNUv60aChOUuXHuLr10yMjXUIChrB1etv2bFLNBMzZ3Sjbj0zFrlUZAK6LO6PR8BJPkjXTst9bdl/9BE37n0UzYvzYO4+juLUJYEjcVvQl6evYzl1WcgV3Ob14eqDD9yQyhl8F/Zn94kHsggG95m98d5cEcEwqGvDCnxJzyZ8+S6CYenYriw/dJ28AhHBUNVYj5N3BcF4gU0HNp6+R25hMU2rm6Kupszt12JQ4DTiR+PF7+p/usEx0FSnioYGHxJT0VFTpYaBAU9jElBXVqJ9tarceB+Forw8Ns3qE/bwFQDjOjRlz62nYlrTrC5XX0SQlV9IfXMjlOTlePFFNC22bRoQclUIcmf1bcveK0/ILSiicTUTDLTUufFCdKkOtp1YEXpTjPKaVEdOAjekHaz7uJ4s23+NnPwiGtUwoWMjazYclhIiR3bi3rPPhL+JQV1VCb85/Vm244oYERoLkJ/zchFJ37SeOfYDW+AULMB9nVrVoH/X+jgHnBSupTY1senbhKXeAuTXvFFV5kzpirPXMRKTBcjPz20I23bf4u6DSJSUFPDzHEZGRh6BwVKNzZDmDB7YFG/vE0RGJqGjq45/gB3JSdn4eBwXYuGe9Rk3sSOnjoVz+IAUWe48gCbNrNi2/gq3v9nIg+yoalWZXRuucuPSaxQU5HEPtsOquhE3Lr5ip1SAN2NRb9p2rk16ag6us/aSm1NInUbmLPYVIL9Lx59wQDoanuM2iKZthYByx7Jz3L/6VtzkN47FzEog8w9vuc7FsMdiDbTanppSx0Xsp2R8pouQvfZ9GjLJsSLm4O75F+yUBt1NcRtEm54VX9hRb+MJmLFL8D+Gt2bEnB/1GGd23+K4dLLjsGbsD9ZXgITPyTLWTdt+TZjs9fNaoKigGC/79TK9g/u+mX+6brq45xZH1ohGc+GmSdRv+3uabuKXFHxGCqFuJ5tWjFg84LfP/2M9vvicEI/DAMxeO5HaLf9+hsx/Ul/exnJ4uTjxzt0wBY1Kfy/J/PXr1wwePJji4mKGDh3KqlWr/lLLUl5ezgH/Yzj38SMnPZfaLauz+q4fptWNf/u6/0vdPx2Ot+1KwT4a2hKXA/P+kch7r+8xQpeJa3XWqrH0n/L7G8W7R5G426ykqKCYlr0asXTH9B/S679VSXEpfuM38fzWe9Q0VfA7Mh+rXwS9HlhxlrB1YnI0d8VoOg7+EQwZ+TIGj9EbKSooplmXuizdNPGHydS5fXfZFSD++yc6D6Tv6IpDxrM7HwmYFSLjSk33quBRHdl6nUNSttZsn6F06t8YEJ9r14nbhc6uuRXO60ajqKRAytdMnCftICNVZNB5bRqHqroy717E4DV3HyUlZbTrXo/5nmLSsynwHNekhyiX5SNo0MySV0+j8V0qnEldejdgxqI+JH3Nwmn2XrKzCqhZ1wSPZcPJTM/Dcd5+sZKvVQWvZcP5Ep2C65JQEXrZrgaLnAdw5tRTdkoBpjNmd6dDp9q4OIfxOSoFfX1NgpeN4MXLGNauE+us0fZt6dypNoudRcBmNavK+HoMJWjNBZ69jEFdTZllPrZcuvGOUxekB2aHfnyKSZXlDjpM60FiajZ7j0mbqqk9eBeVzOlrQkfjMacvp2+8Jvy1uAd5z+3PspDrJKblYFFFlwmDW+Gz7YJICm9bhzI5OH//PQrycjiN687GE3eF6cbCkFb1qrLnkjDEzBrajj1Xn5KRW0Ats8pUMzPg3GPxuhn92+Idevm31+339T/d4DQ2rsLDaBG10LGGJTc+iIZmcKO6nJSC/Ma0acz+u0KfMrxVA44/eiPGaXWsiIhPkYH8aptU5vprAfKb2qMlm8+Ji8S+UxMuP/lIUmYulka6tK1dlcM3pSA/m05sPnGf3IIiGlUzob6lEYevPQfAeUx3tp96ILtYxvZpTsDOCpBfdk4hF+6+Q0FeDp9Z/Qg5/pCILynoaqvjM7cfnmvPyZTtiyZ3wynwRAXDYGwnlvofl4H95k/uiqPPMdIz8rCuaoD74gH4Lz8r6/KDfWy4dPUNx7+toZb0p5KWGm4eR8WYtV1Npk/twprVF3n8DQvuZ4uiogIujqGCh9O0Kg5L+vHwXiQbVokvufFTO9O9VwNOhj3m6EHph8p1II2aWnLu2BMOf1tpuQ2kSUtrXj37IjsRDbVvw6ARrSnMF6yb5IRMTCz08Fxjj4qqEk/vR7JGCtkbMaUTvYeKL9OT++5xPET8ugv9bajX1BIQAsPdK4RuabrbIFpJQ/ay0vNwn7RD4NSbVmXRiorsmvfPogmeu092Yhz8HYk4PSkLj3FbKMwvpnH7mswJ/DEeIfzaGza5iJv/OKeBP7Fu8rLz8bTfINLDm1iyZNPPJ2eJRMLquSF8ePIZTR11qavq1+umNw8iWDtvNwCjnQbTdfjvaboFuYV42q4iKzWH6o2rsnDLlH8k1P0alUTgmHVIJBL6TOpKn0n/nh7lW4V4Hqa8rJy2g1rQdlCLv34BEBcXR58+fcjKyqJdu3bs27cPBYXfr3tyM/PwGBLMLteDlJdL6DOpGytueKFrWOm/8dv4Zd09+Rif4asoLREibed/kIAOsM//OPv9TwAwLdiegdN/pl5/X+/DP+E8eDn5OYU06ljnT9PkS0tKCZi0hYcXhZ7G8+CcX0Iiw9ZdZG+gaD6neNvSZ+yPk6MvH77iMmIdedkF1G9dHdcdU39o1K8cecR6J/F5sZvVHduZFZyfd08+4z15u2Dt9G7IgmUjZJ+VM/vuseMb/mFxX/qOElEmSXHpOI/fJkIy65niuXU8qmrKZKbn4jxpJ8kJmZhW1cd36wQ0tdWI+pCI24wQCguKadqmOkuD7FBQVCBkw1VOhz4UkyHfYbTqWIuIdwm4z6/Il1rkOYSM9DwcZ+0hNVnkS/mtsaeoqBTHeftIScrGzEIf/1WjSE/NxXnhQfLzimjQ2AJXn6HcuvGedavFd6b92HYMGNQUT49jvHkjDB2BQcOJiU0nIEjoJAcNaMqwoc1Z5HyYr4lZQkrgY8umHTe4cz8CZSUF/NyH8PR1DHvDxPfuwhk9yCssZv2uGwBMHd0BRSV5NoSIpmr66A5k5xey/xuVeGp3Hrz6zPVHYpLjObsvm8Pu8Dk+jcq6msy174jX1gsieqiJNaZVdAi9Iu6ji0Z3IeRiOAmp2Zgb6tCvbV02nhTyjEn9WnLm4Vu+pmdjYahD2/qWHL4ldKnT+rVh2+VHFJaU/fba/b7+pxucqx+ikJeTY3CjOpx+LmziI1o0lIH8RrZqSOiDVzKQ39330bJpTVlJOe/iU9DVUKN3o1ocfSBYObP7tGHr+YcC5Ne0JlHxqUTEp6Kvpc6Ijo1lSeEzB7bl+K3XJGXkUNVIl0Ht6rH+qFREPKwDl+6/52OMEGEtGdUF7y0XZYItaxM9dp0UXfXSid25+TiChy+jUVVRJGDhANaG3ORzbBoGupr4LhiA9+pzJKZkY2asi8f8frgvO01SSg7mJrp4LRqA94qzRMemYaCnSZD7MHbsuc2Dx9KgNc9hREQksUnKoZgxuQsN65vj5HKYnJxC6tYxwdlxAIcPP+TcOQGlcnUdjJmZHs5LQklLzcXSygAP72FERyXj5y4V1vVvzKix7Xhw5yObpB/eCdO60K1XA8LvR7JOKhIcM7UTPfo1Ij4mDS+Hg+L01LUOU+b3FPoV5zAi3sSjraOO74axVNLVIDoyCd+FBygrLadL30aMmyO+zB9cf8dWqUNhwsJedO4n6MVvn0azYon48hw8vj0DpDlSxUWleE/bJVgZ5nq4b5mAilT8mxSbhtek7RQXldCia90fWDeF+UV4TthK6tdMzKsb4bz5R9ZN9LuEHzQGw+f+aCMuKy0jYMo2Yj5+xcBYB4+9M3+JzA9ddZ7rRx4KF8yemZhY/3rdlJqQjq/9OkpLymg3sDn2Tr9Phi4vF/bhz69i0THUxuMv0sT/WIX5RXjbrSInI49aLaoxa82Ev/3a/7Q+v/rC7SMPkJOTY4LvyL/1mqysLPr27UtcXBy1a9fm1KlTqKn9Pt076uUXZrVYKgvNXLB1Ogu3Tf9H0Q//tK4fuitrbrqMaIvjnjn/qLk5GHyKvT5CMzIlYCRD5/T+7fM/Pv2M86Dl5GcX0LB9bbzDFvxSN1VWWkbQ1O3cO/NMcGb2z6ZR+5/DM09uu8YOL0FYHuc8iGF/iBRJiE7B2W6taOYbV8Vz7wxU1Sve7/aZZ6xauB+JRMLACR0Z71gxSfz0Jg73cVspzBfhmUvXjZVNfa4efyLLhxs+sxt2M0STnZaUhePYrTITgc8OkS+Vm12A6+RdxH1OobJxJfx3TkbXQIuEmDRcpu0SKd6NLWQOzCMhdzgkhZDOdhlAlz4NifmcgsvsvQJF0cwSl0A78vOLcZmzj69xGRiZ6BCwfrQAFs7fL9MbBq61p7iolKUL9pOZmU+NWlXwCR7O82dfCPI/LRqXIc0YM649gQGnCQ//jKqqEv4BduTlF+HlU5EvNXlSJxzdj8jypZb723Ho6CNZvpSH40DiEzPZtEv8t08d2xFdHQ2CpflSIwY1x8JUl6BN4vGoQS3Q1lZj434BQZ1p34EviRmcvi4mOW4zehN68Rlvo0SsgtPkHvjuuExeQTFNapnSrL4FW0+K+94c2/acuf+WqAQBqR3dqzmrwsRKbXiXxjx4H0PU13QMdTTp36YuOy+JhmpS75YcuvOcnIIi6lv8fq3+ff3/RYOzceNGrKysUFVVpVmzZty+/ftArZs3b9KsWTNUVVWxtrZm8+bN//F72zWrT9hj0ZzYNq/P0cevRY5Uw5pcfhkhoHzVzIlLyyI+IwczvUpY6etx78MXVJUUGdOxCTuuCfvflO4tOXjzObmFxTSrboqynDwPP8SipqzErAFtWXVU/EXadmzEi4/xfIhNRldLjRkD2xC0T4xQ7bo0Jjo+TYap9pzUm4BdV4RDqroxfdvWlUGTJgxqRVp6nuxC857djxOXXvL0jcj6CFoyiE17bvIxStj6gpyGsGrrVdnjYNehbAm5ybNXMaipKRHkPpSrN95x6pw0BXbxAMrKyvGTciiGDmzGgL6NcXE7Ik4GJjr4ettw7+5HdkjHp7Nm96BlK2t8PI4T/TkFPT0N/AKHk59fhOviUAoLS2jW0pp5i/vw6WMi/t8angGNGTGuHZ8jk/BzChMrrX6NsJ/ciezMfFzn7hNup3qmLPEeiry8PDtWXeT+dcG68Vg9ChMLfdJTc3CftYf83CLqN7VkgTRXJuJNPIEO4sTd26aFjHWT8CUNr+khwiberS6THQUvRSKRsMbpMG+fRKOhpYrXjkmy1PC8nEI8JmwjMzUX67omOK6v+FItLy9n+bx9RLyMRVtXA8/dU2UiZYDMlBw8x26iILeQBm1qMGfZz4LN7R5HCL8qkPQe+2b9MvDy/rlnhPiKadbMoJG/TGUGKaV25FqRvFzXjMVbp/yl2+bQstPcOSE4Ou6H5v0jx5REImHtzO18ehFNpcrauB9e+JcOrf9GfVtNdbRt/bfIyEVFRQwZMoRXr15RpUoVzp8/j57er2GIIP5ej605y5zWTiR8SsKoamVW3/Gh7+S/rwf4T+r8jmsEjhWsou72HViye/Y/Sls/EHiC3R7Caj3RZzg28/v+9vkRz6NxGhhMXlY+9dvWxPvIgl8mg5eVlbN8xk5unwhHSVkRtz0zadb1Z5v5+T232eQk8tZGOvRj5MIfU+yT49JxslkjSwb3PThbRiEGeHD5FUGzQ8TndmQbpn23eoqNTMJl9GZyswuo18Iat60TUVYRjd/dC69YuVi876Dx7RknBXpmpefhPH67LAHcP2QKOvqaYhI8PUQWnum/YxKGJjqkJGbhOGUnGWm5WNWsgtf6saiqK3P+WDjbV0oPZnN70M+2BUlfM3GatYeszHxq1jXBc+VIyssluC84wOfIZPT0NQncIGIZ3Bcf4lNEEjq6GgSttUdJWZGl8/eTkiTSwv1XjCQqMgkvNwHM69ajHjPn9GDt2kvcvPkeRUV5vLyHoaysiLOrEBC3blWNBfN64eZznHfvv4rAYz87Ll17y5GTYv2zZEEfisvKWC5tZkb8LGZ7AAEAAElEQVQObUntmlXwXCHypPp1b0CrplZ4rjory5eqVb2KLF9q9KAWlEkkHDgj5BdLJnXjysPv86V6ExxylYzsfGpVNaRPh7qsOngDgPH9WvDgXQyvoxKppKHK9MHtWBYq8qX6ta5DdEo6r6PFz0Z1a8LGM2KqM6pLE84//UBqdj7VjfVpUevvh8f+P97ghIaGMn/+fFxcXHj27BkdOnSgT58+xMTE/PL5nz9/pm/fvnTo0IFnz57h7OzM3LlzOXr06D9+74ENanPq2TvKJRJ616/JlZeRFJaU0ra6Be/jUkjLLaBmFQNU5BV4G5eMjroqXetW48yTd8jLyTGjZ2u2XHoo8jNa1+fWqyiSMnOxNtKjkYUxZx+JvaHD0I6sPX5HpgYvLSnl3psvqCgp4jiyK4H7hIq8U+Nq6GiqcebuW+Tl5PCc3JvNR+7K8jpm2rTHc9M5ysol9G5XB3MjHbaGiXWLw4SuvP+UxMXbYm3lu3AAZ6++4t6TKJSVFQl0HMzRM0+5/+2x8xAuXX/Dxesi5dVn6SBiYtPZIu3qZ0/thlVVfVw8xRqqXZsaTJ/cGf+g03z48BVtbTUC/eyIiUkjWDptsbVtyaBBTVmz8iJPpCcM30A7NLVUcV0cSnpaLpbWlXHzGUp6Wi6uiw5RWFBCkxZWzF3Sl/TUXFznHSA/r5iGzSyZ7zKAkpIyPB0OkhAruBJeq0ahqqbMmcOPOCYlfTp4D6Fek6oUFhTjNXefbLzsvkactFKTsvCauYeighKatK3OLPdByMnJkZOVj8fUnWRniDH10pWjZBqDg+uvcO3EU+QV5HHZMBaL6uLUUFZaRuDsEL58TETPUBvPXVN/gPXtCT7L3fMvUFRWwG3HZEwsK8t+VlxUgs+krSTFpmFiVRm3nVN/Gvuf33ub41tEA7tow8Rf2sE/v4kjaOp2sRqb3IV+vxAeQ0WA5scnn9HS08AzdN4PCPxfVfjll+yRnrZnrxlPvTb/LPX64u4bXNl/G3kFeVwPzqOy2d9vjv7Tys8p4MYh8TmwXfT76RSIZmXChAlcv34dTU1Nzp8/j6Wl5Z8+/2tUEou6erJpwW6KC0to0bsxG8ODqNms2p++5r9RR1efZdX0rQLiN60Hi3bO+KUG5lclkUjY63uMEOnf5QRvW4Yv+j3sMPLFFxwHBJObmU+9NjXwObrwl9dLWVk5q2bvkk0PnXdNp+UvnH1XDt9nrYPAFgyb2YOxf3D2pX7NxNFmjdCPWRviFzrnBwfh01vv8Zu2U0xihzRnduBwWXOeEJ2K08iNAiRY3wyvXVNkU8bwm+8JnCeSwXvatmSq1Nqdm12Ay4RtxEQmoW9UicA9UzGoUkmEsc7aw9tnX9DUVsV/xyTMrCqTkZqL45SKdZX/lgloVVLj+vmXrPUWDbXt+PYMn9SRtJQclk4PkYVn+q4djZKSIp6LDvHuVRya2qoErB+DgaE23k5hvJa6RwPWjKKSjgZOCw4QF5uOoZE2gatGkZycjYuT4Nq0blOdRUv7sX3bDc6eeS7iMVwGYWiozRKnUPLyimjQwAwXp4H4Lz/L0+dfUFNTJtjPlqfPv7Brv/hszJ3eDV0dDXxXnhWJ470a0rFNDZwDTshClft1q49T0AmZVrNDqxp4rTsnJkjdG2JUWZvNodJNg31HXkYmcvOJcPR6TO/NmkO3+JqajbmRDiP7NiNgz1UBnu3SiOjkDB69E86reXYdWR56Q7xv42rkl5bwQPqzSX1asu7kXfGeberxICKGuLQsTPW0aWBlzM6rj//6AyCt/8cbnJUrVzJp0iQmT55MnTp1WL16Nebm5mzatOmXz9+8eTMWFhasXr2aOnXqMHnyZCZOnMjy5cv/9D2KiorIzs7+4X8AdyO+UFBSSisrc97FJpFZUEhdE0OKikr5nJKBkbYmdapU5s6HaJQVFRjZpjF7bwr31NQeLdl9PVzocepaEZ+SxccEsYoa3LIeuy+LDnfeoA6EXAonK6+Q+pZVqG1myIk7b0Qmx+hurDt6m6y8QupZVaFDQ2u2nZCKb+07c/7OW95HJ6GjpYbbpJ54bBLWu6Z1zOjbvi4BW6WCsgEtUFZUZNdRsU9dMrUHUV9SOXFRiMc85vXl9fsEjl8Qkxn3+X2JiUtntxTX7TCzJ2oqSgSuFO4K28HN6NGlLkvdjpCdU0jtmsa4LR3Ajp03uXtXsG58vIYikUhwd5cm2HaoxdRpXTl04D7nz4oPoYv7YKyrGeLjepTPn8QJxm/ZCOTk5HBfdIj01FyqWlfG3d+G0pIy3BceJDU5G7Oq+rgH26GoKM9KrxO8eR6DhqYqPmvs0dXXJPxuBBule/Vxs7vRuU9DMTlxOcqHb86oDWPR1lGnML8Yzxl7SEvOxqKaIS6r7VFUUpDZweOiUjCoUgnPLeNlY/GbZ56zV6oTmuU9lCbtK27y23xPEn79HSqqSnjsmEzl79KMrx19LHN4zA8e+QObQyKRsH7JQd4++oSGthqee2b8ZAd/efcD6xeL/KrRSwbQYeDPjqWstBw8R62nMK+Ixh1rM81/+J9e98c3XuLKgbuiSQuZhbHVr3OTvlXSl9T/H3t/GVbVuvb/wx9pJZRUUBQUULGwEFvswBbsFgsVUZEGabC7O7G7u7s7EAWR7s75vLiGU12yXGvt+973/j3H/p/HsV6wGGM6J/MaY3yv8/wGYWPWCN7MuA70GNvht8f/sWI/xLPaZSsAYwIG06j9743j/rfq5a23FBeVYFizMrWb/TXocHNzY8+ePSgpKXHo0CGsrKzKPK60tJRjq88ysdFsnl8TBoszVjsSfNITLV3N/+VP8b1kMhk7gw6yzlX4wNjP7s30FWWrl/7s/G3+B9gZLDp844MGM8S1bNuAb/X+ySfce4eTnZZD3RZmBB2aTQXNX8d1paWlLHfZzoWI2ygoKuCxaSIte1r9ctzlA3dZPG2rAOHjOzDBf9BPncrUxAw87JcR9ymJKtV1Cd0/A50fOEzP73wgYNwGigtLaN2jEbOXDJeDu8TYNDyGriIlIQOT2oYE7ZwsNxJ8cus9gZO3Ct8aOytmhAi38rycAvwcNxP56iuVdDUI2+5I5Wo64j7gsuenZPCadQzJysjFc9IWYj8lY2BYidAN49DW0+D25dcs8DooTP/smzNuZlfS03Jwn7qNuC8iRTx09SjUNdUIct/Pk2+mpsuGY2yiR5jfYR7ciURVTZmghUMxqqqD5+w937s5S4eTm1uIu2uEGHM1MsbHvz97I+6yb5+gJbjM6kHtOoa4ukeIcZZ5ZQL9RUbgDcmLLNhvAJ+iU1ixXogYxo5ojYVZZbxDj1BcXErHtnXo290K16BD5OUX0bxRDYYNaM7c0MPk5RfRtEF1BvRsjPeS4xSXlNKppQWNLKuyaKvYfI3u14LE9BxOXn+JokI5vB27svnYPT59TcVAR4NJg1oRvOUcJSWldGtRm/ziYi4/+iCENUNsWXrgOrkFRTSrXQ0NdVUuPRa/m9K7JauO36K4tJROVuZ8SEjhQ1wK+lrqdGhUi0N3X/yta+Bb/UcBTmFhIQ8fPqRr15/VJV27duXWrVtlnnP79u1fju/WrRsPHjygqKiozHNCQ0OpWLGi/D9jY9HCTs3No04VfQoKiohOzcCokiZGWlo8+iSk4d0bWHDs0WvKlQNHW2s2SchxcKuGnHr4hvScfOoZV6aimhp338WgpqLE5G7fvW5GdW7K+Yfv+JKcQTW9ivSxsWT9cQFCnAe25eDlp8QmZVBVryJjujcnfLtYPCO6N+XTl1SuPxZyusApPVm4/RJJadmYGOkw1aEN3sukhWdjQfP61eUtxNEDWqCupsLq7aITM32MLaWlMlZtlUZIYzqgqa7GglXfvW6s6hvjFSh53diYMX5kW7z9DxH7NY3KBloEzxvA2XPP5d4Kbq69MK6mi6fHPrIy86lTxxB3j95cvfKaTeuvADB1ehdsWpmxYtEZHt77iJqaMoHzB6Orp0mQ90E+ShbjQQuHoFZehVDvQ5JpXwWClg5HU6s829dellub+ywYTI2aBnx8Fy9P5+3SpzFDpFHT9pUXuHH+ex5M1Rp6wvNl7l5529l/7WjUNdWEJ0bgUZ7c+oBaBRXmrRuLbmVxc33z5DOL5ojW9oDx7eg59Ls1/KmdNzm6WYwZZy8Z/pMc/PXDKJa47hbrY3pXOg36Ocn54JoLnN97RzwU1o//xbU1/nMyQWPXiliIvs0Y7vrrbrukuISQsetIiE7G0FQfzy2T/5SL8eTKKzZ47AFgYshQGtv+HmwUFhQRNHwFWanZmDcxZeqikb89/o9VXFRM2KgV5OcU0LBdXexn/zPF1f+knl8TuXH1/2RM92MtX75cvhnavHkzXbqUTbb9/CoGt66BrJi2UXym9pasf7aI3pO7/iOy9T8tmUzGBredbPcXY6UxAYOZEFq278yfnb/ZZx97wkWHYVL4MBxm/75z8+5RFO524WSl5lCneS2CD8/5DbjZwdkdN4TR5foJtCkDhF85dI8FUzcLAvbItkwJHfLT+09PzsJjkMifMqiqQ9iBn7PSXj+Mwm/0OiHd7miJ26rR8rFcSnwG7kNWkRibRtWa+oTsnkpFycfpxf0o5jluprCgGJvO9XBdNBRFRQUK8ovwn7KNV48+o1GxPCFbHalW00AYDrrt4+7l16ioKjFvzWjqNKpOTnY+3lO2EfUuHm09DcI2jsPAsBIPbr6X33s697bCydOOnOx8vJx2yE1Ew9eMRltXg3Cfw9y98Q4VVSUClgzDwrIqC4OPcePKG5SVFfEPd8C8jiG+7vt4LZGFw5cOQ0FRAbfZe+QhxIGhDpw48YQt36TfUzthY1ML17kRJCVlUd1Yl7BgB7buuMnZC8LYb55nX7JzCpi/TIgm7Ps1o6V1LeYGHPwenjm4Ja5BB8nKzqd+bSOmjG6PW+hh+c/jh7TGY+ExCgqLadnYlC5t6xK09qyYVnS1QklJgYgzYrM/d2xnDl1+Jt+Muwy3JXjbBQqKSmjTyBTtShU4fkvIv+cM7cCaY7fIyMnHskZlalXT4/gdMbGY1rc1607fFVOUuiZkFuTz/HM8WhVUsWtRl53XBEl5Wo+Wf+tagP8wwElOTqakpITKlX8mDVWuXJn4+Pgyz4mPjy/z+OLiYpKTk8s8x8PDg4yMDPl/MTExAFTR0sBQU5OnMfFoqqnSppYJF1+KNPERrazYLnndjGvfjB1XH1FUUkLH+rV4HZNITLJombUwM+bEfTGymtWnLSuO3qC4tJSuTSyISUiXzxSn2H33uhnWqTEvIuN4/jEOrQqqzB1mS+DmcwKwNDNHV7MCBy9K0r2J3dl96rvXjd/k7nKvm/rmhozo3RzvxScoKSmlS+s6tGxkQtBy0YkZ1LMxlmZVCJKkwQN6WGFtZfITinfo2wx3vwNkZOZR26wyXq69WLT8LM9ffkG9ggphAYN4/z6BFasEgBo/th1tWlvg63OAr1/TqVKlIoFB9kR+SGC+JOEcYN+cfgOasW/3bU4dE47Jnv79Ma9dhdVLzoodjKoSAQuGUNmwEhuWnePOtbcoqygyb+EQDKtpc/7EE3ZLvJ4ZnnY0tq5JSlIWftN3kptTQKPmpszwFa3nc0ceycl+M/3700Ay8Nq65By3L74SXJKVI6lSTdxEj+24xak9gpDqtngotSyFm2nS13QCJm6lqLCYFp0sGef+/cHw+MY7VvmIdv8o1560lRLFxXlpBE7YSHFhCS27NWSU6888h3vnn7M58Agg0sGbdrD86fd52fnMGykUU+aNajBrRdk+Nht99/P0+hvU1FXx2zXtTw36EmNShDFbqYzOw1rTb+rvFTMA6+bu4t3Dj2jqaOC9e/o/Js3uDDrI2/uRaFRSZ+5Wp789SvnfqBc3hECgQZvfB3cePHiQmTNnAhASEsLIkb+CuMyULFZO38TERnN4cukFquVVmLp0LAsu+mFo+vfJjf9KFRcVs3D8Gg4sEd3JKYtGMcyj/z8CN+vd97BvkeDMTV00kgF/Eqfwrd7cj5SPpSxtzAg56vpLrAJ8BzdntosEcde1E2g/wPqX464dfcD8KQLcdBvehul/8LHJTM3Ga/AKot/FoVulIqEHnX/yfnr75DPeI9aQl1OAVRsLvNePl49x05Oz8Bi2irjPyVQx1iV0jxPa+qKT9vZpNL7jN1KQV0Sz9rXxWDESJWVFCguKCZq2nae3P1BeXYXAjeMxrWMoPo/vYa6dfiaM/5aPoKF1TWEAOm0Hb59/QatSBUI3jMOoui7PH34icJYQObTpUg+Xef0oyC/Ce8YuPrwVzsVha0ZjYFiJpcHHuXbhJUpKCviEO9CwSQ1WLDjFRcmgzzt4IA2b1CDQ5yBPHn6ifHkVQhYPRVOrPK6zdpOSko1pTX1CFwzh2rU3rF4l1LNjxralS9cGuLrtJfZrGlWqVGTB/CEcPv6IQ8ceUq4ceMzpJbx4wkVGYI8uDejVvSFz5h0gJ7eQRvWqMW28La5BB0lNz8XMRB/XqV1wDzss/3nGuI54LDpGdm4BjepUxb5nY3yWnxTdmNZ1qVq5EhsPSxv1Ee25+uiDPPzZfWxnQrdfEN42tatR28SAPZJ6aqZDe7adfUhyRg61jHSxqV+DiCtPxFrt24qtFx4IK5WahiipKnD3neCvDm1vxeZLYiIytI0Vu28++ctr4Vv9P5Em/scLWCaT/faiLuv4sv7/t1JVVUW1jGC8FibVOPnqI0qKCgxsWo9t174Dmq1XBSlroHV9zj5+R1ZeAQ1rVAGZjOfRAlUObtWQJUfFPNKpVyu2nntAdn4hjWsZoatRgYgrT1BWUmSugy0L9lwWZn2NzVAsV46LD9+jpKiA75huzN95WZCIaxnSsYk5vmslI64h7Xj0MoY7kkIqZIYdi7Zc4mtiBlUNKuLh2JXZoYfkC3HsABum+UaITkzzWgzq2Zgp7nsoLCymVbOajBzUAie3PUIuXseIOVO74Ol/iJjYNAz0NQmdN5C9B+5x4fIrFBUV8PfuT2lJKYHBR8XF0r0hQ4fYEBZ6nJcvY1FXVyU4xIH8/EJ8PfcLF842Fkya0okbV9+waY1oj05x7krLNhYc3neP44ceiMA4//7UtjTixMEHHN4jWq+u8/pj2dCYF48/s1QKths8pg3d+zWlIL+IgJm7SYrPoJqJHt6Lh6KsrMTzB1Es9z8CwNCJHegspYCfO/SA/RJAcgkeiGVjwWV5cO0t6yV30LFzemAjuaDm5xYwb+Jm0pKzqFnXCLel31visVFJhEzZKlyC+zdjyLTvgCE/twD/cRtIS8rCtK4RrstH/nRDj34XR9iULWLsM7INfcZ3+GXtLpqxlU+vYtE20MJvZ9mKqQsRtzm8Rtzo5qwZh0ndsgM0CwuKCByxgowUIe+esWzMXz4gL0Xc4sT6i3Kn4io19H97/B/rxY03RIQdAWDGqvEYGP+akfXvrLiPCQBUr/vnKdjXr19n+PDhyGQypkyZgru7+0+/Ly4q5tjqs+zw3092eg4Arfs1Z+KCURjVqlLWS/6vVl5OPsFDl3Hv9GMUFBWYtW4iXUd3+Nvnl5SUstJ5K6c2CbXjtKWj6T2p82/PeXnnPd79hRS8fisLAg/O+tPOzbKZ2+WdG9e1E7C1/9X9+Pqxh4RN3Ci6q0Nb4bxkxE/XQlZaDp6DV/Dx5Re09bUIOzDzJ47ah+cxeA9fLfLRbMzw2zJRHlmSkZqNx7DVxHxIRM+wEmERU+Xj4Q8vvuA1aj152QU0alkL7zVjUFFVoriohDCXXTy4+lbkxq0fRx2r6iLqIfAY5w49QEGhHHMXDKZ5u9oUFhQRMHPXdzfidWMwMavM2+df8J22g4L8IqzbWuAWOoji4lL8XPbw+lkMGlrlCV09imo1dFm98DTnjosRvXvwQJq3MmPDigucPCIsNtx8+2Hdypww/yPcufkeFRUlAhcMpnKVirjM2ElCfAZVq+kQvnAojx59YrFkkGpvb03//s2Y67FXngy+IHwIFy6/YvtuKXV8ahcqV67IHO99IiKntQXDB9vg7BlBRmYedcyq4DajO3ODDslVtL4uPfFacJyE5CyqGWrjPrUbHguPkZaRi7mJPuMdWuK26CiFRcW0aVITK8tqhEl2JRMGtuRFZDw3n0ahqqKEx7guLNx9mfTsPOqaVKZVIxNWSMpgEZ75gthkMbHo1qI2q46J9+3YswX7rz8jNSsXi6p6VNHT4tTDtygrKjK2czPWnhdgqq+1JRdefCAlK+8vrobv9R8FOHp6eigqKv7SrUlMTPylS/OtqlSpUubxSkpK6Or+M0LjscdvUFRVY3SrJmy7JgDNsJZW7L/9THBr6pjyNiaR2NRMjHUrYlnVgL03n6GsqMjUbi1ZfFiovYa2s+LSo/fEp2VRw0CbdvVqsvyI+GLnOnRg7VHRkqtnUoUmZlVZtPcKAJ4jOrP15D154JhjHxvclgtJ4MBOjSgtLuXwJeEoOW9yT/adesTLD3FoqqsR4tKH4NVnSUjOwthQG6+p3XELOUR6Zh61a1Vm9sTOuPjuJz0zD/OaBnhM64Z74GHiEjKoWqUSwZ79WLbmIk9ffKFCeRXC5g3i4aNPbNslZVZN64ppDT2mTt8mfGysajBzRjd27rjJxYsSAPIfgJ6eBjOmbiMjIw9ziyp4ePch8n0CYf5HkMmgz4Bm9Le35t6t96yTMlXGT+1E6/Z1eHT3I6ukPJfRk21p36UecV9SCZgTQXGxkIOPceokdwp9+0Li16wYgaZWeeJiUuXuxW271mekk1C0PL8fxYpvoXmTbekoJQJ/fp9AqPMukbY7oBmDHMV4q7S0lIWzI/gozed914+hvKQcycnMw3/8BrIzcqnTpAbO4d/9bESA5i4iX3yhoq4Gflsmys8DyM7IJWDMOvKyRYDmlGCHX8DG3mVnuHHskUj+3joFvTKcft8//cxyyU146Bw72vzGTXiN6y45qdhn1/S/jEWIfvuVZdM2i9d270vzMsiiv6ucjFzCx64S3aLhbeng8Ht/nX9HGdaqTHJsKl8j46nXqvYvv3/9+jV9+/aloKCAvn37smLFCvn3UFhQxKVd14kIP0Ls+zgAajasweTFo/9RzMP/pDJTsvDuE86bex9QLa+C1x5nbP5B1ENxUTELxq/jyv47KCiUw3nVOLqP6fDbc17ceof3gEXkZefTsK2QgpdFKP674ObGiUeETdwgxjeDWzJz6agywM1yIp/HUFFXg9ADzlQz+36Pj3oVi+fQVWRn5GHZzBT/bZNQk9ZuVnoOnsNW8+lNHDoGWoRFOMmjUKLexOE1ej05WflYNjXBb/04VNWUxfjJNYLb518KleXaMTSwrim6XGEnORkhvGtmhQyibbcGFBUVEzx7D49ufUC1vDJBa0ZjblmVyDdxeE3ZJpyHrWvitXAIAEFz9/JUin8JXjECU7PKbFl1kWP7pLwlv7607WjJjk1XOSB5fM10t6N953osCT/5k4u7aS0D5szcJScZz188lDdv4wgJFl2YXnZWjB7TFg+v/bx5I1zk54cN5v7DKNZtugKA49j21K1jhItHhIhkaFaTKRNscfHZS3JqNqbV9fBztcNr/rHvyeBufQhYfproryJc03dmL3yXnZTnSTmPscVjyTFy84toWq86nVrVIUDKOBzaowmJqVlcuPsWJUUFPMd1YfWhGySmZWNqpEPP1nVZGCHe25ie1lx5GkmkJA23t23IkkPi2Tm8UxPOPnonPTsrUa9mFQ7eEnL28d2as/7CPWHTYmXOw4+xJGZkY2qgzevfru7v9R8dUamoqNC0aVPOn//ZmfD8+fO0alX2jbJly5a/HH/u3DmaNWuGsvI/l6MOs2nE3tvPhDKpoQU330SRnptPvWoGKMjg5ZdEKlZQo3fTuuy9KfxxZvRsxZpTtykqKaFTIzO+JmXwOiaRShrlGdWpKSuPCg7OJDsbTt56xZekDIx0tRjSsRFL9omuwqS+rbj5LIqXkmTOc3QX/NefpaCwmFaNTGlcuyqrJLb6zOEdePEuVm6qFObSh60H7siDzsLm9GXB2nN8jk3FQFeT4Dl9CF52ms+xqejrahDq3o/Fay7w6p2QDob7DuTYqaecuyQIYgFefcnOzmf+UrFbGOrQgs62lnj7HpDPeef59uf6tTdsk1JtnWd2o2HD6gTOO0z05xT09DUJDLUnJzsfX7d9FBQU06xFTaY6dyXqQwIhPt/l4PbDWxL9KZkg933CirxHQ4aOayvOddlNRnouZnUM5XLw3euucPXMcxG3sGgoRtV1ycnOx2/6DjLTczGvV5U5wYJMGP8llSDnXcJ1uFt9RkwXu9iM1BzmTdoidy2dHvhdbrpz2Tlunn0ulE9rx1BZ4gOUlJQyf8YO+a7RZ/34n0Iw9yw9y42TUrbNhvFUrvadR/AtYyr2YyIGVXXw2uj4i2Lq3vnnbAs+AoBT+DAsrX8lyGakZBE4YpVQ73RpwEiPPyeLnt91g1ObL4tOzKbJf9mJKcwvJGSkICw3al+XEV79f3t8WbXKeQsJn5KobKKP0/J/v99NWWVST3ChPr2I+eV3X79+pXv37qSlpWFjY8Pu3btRVFQkNyuPA4uPM9psGosmrCH2fRyVDCrism4Sqx+G/5+Bm8ToZFw6+PHm3gc0tdUJP+v9j8BNQV4h/oOXcWX/HZSUFfHY7vSX4ObJlVd49V9IXnY+Vh0sf6uWWur8A7hZ9yfg5vhDQiesp6S4lI72LXBZPvqnEeU3cPPhmQA34QdnUqP2d8fnz2/jcB+ykqz0XGo3rkHAjsnyjUJWei4ew9bw8ZUIsQ2LcKKq5Dwe/SEBz5HryEzLpXYjYwI2T6C8uiqlpaUs8djPtZNPxbW5aiSNW5uLqIrFZzkiGYg6Bw6gU98motMzd588aiFg5SgsrWrw6X0CHpO2yv1v/JYJlWWox4HvOXhLh1GnfjV2b7rGXslAdLp7Lzr3bMS+nbfYsVFwZ6bM7Er33lasXnqWM9+UUPP6U6+hMR6uEXyMTERHR535i4fx5UsqAf6Sr00nS6ZM6YSf/2GePY9BvYIq88OG8PZDPEsl2sCIIS1pZWOGq89+cnILsWpgzJzpXXELOMjX+AyMqlQkyLMfgUtPEfkpCZ1KFQj16E/4mnO8j0pEp1IFAuf0JmTNWb7Ep2Oor4XH5K74rhDJ4PXMDBnU3Yqg9SIZvE+H+pQCR6VkcLexndly6h5fEjMw0q/I0G5NWPwteqijFc8+xvHyUwIV1dUY1a0Zy6Rk8IFtG3DvXTSfE9Oooq1JmwY1OXhLkIjHd7Vmy+UHFJUIU90PCanEpGRgpK1Jyzq/Kkv/rP7jI6pZs2YxcuRImjVrRsuWLVm/fj3R0dFMnjwZEPyZ2NhYtm8XO9jJkyezcuVKZs2ahaOjI7dv32bTpk3s2bPnH//bXeuZc+l5JDkFhTQ1qUpCehbRKRkYaWtRz6gy+28/R1lRkQmdmrPshPhSxnVszr7rz8jMLaChiSF66hXY/+gZKkqKzOrflrCIy2IRtKzHxy8pPJUypWbZt8dv02lKZTJ6t6pHXm4Blx6IMZW/Yw8W77hMWmYu5tX1Gda9KXMWCgWEfVcryqsosUvyHfCa1I3bj6O4IoGd0Dl92Xv8gTzlNdyjH1v33/khBXYAh0895sqtdygpKRDs2Y93H+LZvFMCT05dMKxSianO2ykuLqVdGwvGj2pHUMhR3r6LR0urPMFBg4iOTpbLwR0cWtCzZyNWLD3Lw/tCDh4YYo+6uiqzpm4nJTmLGiZ6eAcMIDMzFx/XveTmFtKoSQ2mu/YkKyMPv1l7yMkuwLKhMTO9elNaUkqo5wGiPyahq68pl4NfO/eCHdKoa5pXbxo1N6WkpJSwuXuJjkxE10CTectHoKqmTG5OAf5Tt5OZloN5varMDrVHQUGB4qISgqfvkHtfeK8aJQcbV44/Zs8K0XKdETQIy6Ym8vWxbf5J7l16hYqqMr4bxqNj8D0V+eapp+xcLADhtFCHnxRTADvmH+fBpZeoqCnjs2UilfR+Vt18/ZhI+CQh9e45ut0vzq4gGf6NXy9ktLUq47bhzz1sIp9H/+BU3JfmXf66E7PefQ9Rz2OoqK+J25ap/5g3c+PwPSEJVyiH+9ZpqGtV+OuT/g31zffmxc03lJSUyJ2IMzMz6dmzJ9HR0Zibm3Ng3wHe3onkwdmnnN54gaw0MYrSNdJmoEtvek3sXOaI5t9VkU8+4dNvPsmxqehV0yH0pCc1LP98zPbHysnMY96gxTy7/gbV8ir4RDj/ZQfu/rmnBAxbQWF+EU071ccvwvlPTfyWTN8q1FIK5Zi73pEOA3/l3Fw/9pBQR9G5sR3Ugtkrx/4MbtJzfwU3dYzkv//8Lg6PISsl/ll1gnZOkfvgZGfk4jViDZEvvlBJT4PQPU4YS12fLx+TcB++lvQU4UUVuNURdU01SktLWel7mIuHH6KgqID70uFYdxDcrJ0rL8jH1k6+fek2sJno9Hgd4OaFlygrK+K7bASNrGsS8ykJj0lbyUzPxaJeVQJXjkRFVZn5Poe4efm16AotHkqDJibs33GL7euuADBxZlfsBjbj2IH7bJTiIcZOsqWfgzUbV1/i6EExonf17kMzm1p4uEbw9k0cWhXLM3/xMNLTc/H1kRzi21gwe05PgkKP8eChuM+GBtvzNT6d+UvEvWdgv6Z061IfZ7c9ZGTmUdfCEG/XXniGHOFTTAr6uhqEeQ9g4drzvJQ2uKGeA1i57Yr852DXvizefJmPMcnoaavjM60H/qtPk5Keg1l1fcYMaIHXipMUl5TS2aY2ejoabDoiOc+PtOXA5ad8jBXdmQl9bQj5IRn8a0omD999QV1NhYl9bFhy6LrwmbOuy/uvybyTTHB7tKjDpvOi+zWmczN233hCfmEx1mbVSMnN5UN8CnqaFbCqVZVd///EwRk8eDApKSkEBAQQFxdH/fr1OXXqFDVqCJQWFxf3kyeOqakpp06dwsXFhVWrVmFkZMTy5csZOPDXnJ6/quikNBIyszHR10a7QnkuvviAppoqvRvXZf15wQtx6mbD2rN3KCmV0atpHR6+i+FLSgbVdCvSoZ4pK6U54pxB7Vl55CZ5BUU0r22Mrnp5tt54iZKiAt4jOrNwzyVyC4poXseYeiaVCd8hHtqeozsTcfYRH2NT0KukztzRnXBbcoyCohJaN65J60Y1mbNAgJ0JA1uSn18kt8v2nNKNF29iOXHxOQoK5fCfZce9x584eUH8PG+2He8/JrL7oDAidJveHSVFBcKli2PwgObYtqnD1Jk7yMzKp7Z5FTzn2LFl2zWuXX8rl4MrKpSTX3StWpszwbEDRw494Jg0V/bw7kMts8oEeB3gw7t4KlWqQOCCwSgrK+HpspvE+AyMqungE2IPQKDbPuFrY1gRvwWDUVFVYu2i09yXdkX+S0So5ruXsSz0FsTe/iNa0kOKW9i0+Az3rwuFgt/yEegaaImOyZwIPr1PQEdfE99VI+Ut7rVBx3h+7yPl1VWZt24sFXWEPPv98y8smfs9QLPLoO/2/pePPGT/GnGDmrlgCOYNv5vHfX4bx8KZQsLbb0IHug35mdV//fgj9i4TKjXnRcMxa/izMVVedj7+o1aTk5mHpXUtpoQOKXN97gg9ypOrQp7su9MJjYplA4iczDyCR64UXZ6uDRnm/tdeMLeOP+T4OgHs5m6ajO4Pcve/UzkZuax03gKAg2sf6rX+dTT0f1VWHeujoKjAq1tvcWwwm6rmVdAxqsTmC2t58eEpWuoVaaPdDUfzORQVFsvPq2ZhyOC5/eg4vO3/iRnhj3X31COChy0jP6eAGpbVCD7h/o+4S+lJmfj0W8i7R1FU0CpPwMHZNGjz++/gxtEHhI5ZTXFRCTa9GuO13anMz11cVMyCSZu4evi+UPWsL5tQfPXwfcInC0fuTg42zFox5ldw47BMDm7CDvwKbtwdVpKenEXNelUJ3jlFvsZzMvPwHrlWGGbqqBO6x4kaFoIL9fVTMu7D15CWlIVJbUNCd0xCs2IFwa3xP8rpvXdFx2nBYFp3rQ9AxLrL7F4t7rkT3XthN9RGdHp8D3H19DPRHV4yjGatzYn7koqH41bSUrKpWbsKwWtGUV5dhcUBR7lyVqg6vcMdaGpTi6P77rFxuaRgnWLLwOEtOXP8CSul2JehY9owdEwbdmy+Js/fc3btSbsOdfH22McLKVw4fOFQCgqL8XAXZqjNrWvi7tGbBYtOy605gvwHkpVTQGD4cUpLZfTs1hD7/s2ZMXcPKak51DTRx9+rD37zj8tjdsJ9B7J6+zUeSRvgMM/+bN1/S74hDnbty5o9N+TTgICZdoRuOEdcUibGVbSZOrQtXitPUlBYTGsrU2qbGrByrxgvTR/SlnMP3vL6k3AwdrJvS8jOC4Jr2sSM/OISrj8XAZlO/Vuz7PB14cZvVYukrGyeRsWhWV6Vge0asPaMeN4Oa2/F0fuv5JzXEuBFdAIVK6jRpp4ph+8Li5W/W/9xgAMwdepUpk6dWubvtm7d+sv/a9++PY8ePfof/7tv45LR19GmVa3q7Ln1FCUFBca2b8aq0wK0jOvYjIibT8ktKMLazJiiwhKeSWGaozs2JXyvIPRN7tWSQ9eek5SRg2kVHTpamTF/t/id21Bbtp66R0JaNiZVdHCwtcJjtVA5TOhjw4sPcdx7IVyLg6b2InzTedIyc7GooY9jfxumBx+gpKSU7m3q0sDciNmhwnp8vH1LVJUUWbtTLLYZY20pKixh7Q5p8Y2zpYKaCt5S/swoh5Y0tKzG5Jk7fpCDt8HD7yAxsakY6GsSMm8gl6+8Zk+EQOeus3tS09SAGdO3k56ei5lZZTw9+/DwfhRrpMBLx8kdad22NpvWXOLmNQGK5oXZU8WwEuH+R3j9QkgggxYNQVNLjaXBx3n26DMV1FUIWDyMSjrqnDr0gMO7pX8zoD/mdY1ITsjE33kXhQXFNG9rwYRZwon0zKEHHJJazHOCBmEhhfptW3qOe1feoKKqhO/KkehJsu+Tu29zcvdtuWKqhrnYAaYnZxE4eSuFBcU0a1+HcW7fHVbfP4thqeSCaj+lE7b9vo8MsjNyCZywkfzcQhq1tmCC989gIup1LIudBfgZMLkTHf+w65XJZCyduZ3Pb76iU7kiXpsnlZnxc/fsMyIkXyKX5aN/ejD88fWWTd9C7IcE9KvpMHfDpL/0S0mOTWXx5I0ADJrZk2Z/o9vzx9rqu5fUuDSqmldhhPc/31z8b1b1OlXxjnAhZNhSYt7EEv36Cy+5TzzRKKJInZxmxNwXvD1dI22sbOvTun8LWvVt9pe5U/+OOrLyDGtnC3fexh3r47PXBY1Kfy8YFEQIqlfv+Xx5H09FPU2Cj83FvLHJb8+5tO82CxzXU1pSSrsB1rhtmlSmxUBRociWunXisRh5bZ5Ea7smvxx3+eA9FkzZJPhsQ1sxc+moX8ZSXoNX8OFZDFo6AtyY1P0B3LyNw33wd3ATGjFN7guVk5WPz+h1vH0SjWalCoTtccJEGmnFRafgNnwNKQmZ1LCoTOjOSWhpqwvrh4Cj8mt9VrgDHSTu3f6NV9m2VPD/xs7qTv/RbSgtLWVFwFEuHBOkbo8FQ2jRvg6Jcem4OW4hOTGT6jX1CVk7Bg2t8qwMO8n540/EsaH22LSrzZmjj1i9QBrrj2vLsHHtuHzuBUskNenAoTaMmdiBfbtus32TNKqa0YWuPRvh73OQRw8/oVZemdDwwSgqKeA6a5fodFtVx8+vP6vWXOTSN8GHX39KAd8gaXTVoS6jh7fGxSOChKRMjKtqE+I3gNBlZ3jx5isa6qos8BvI9gN3uP3wI6oqSoR59uPg6Udy89fguX3ZeeweT15/Qb28CkEuvVm45SLRcWlU0dNk1lhbfFedIje/kKaWxthYmbBwu3iuOfZvyb03MXL1lMvQDszffUnIyuvVoEIFVY7feoWSogLOg9qx6thN8ouKsalbg+LSUu5JDv8jOjdltfS8HdiqARdfRJKanUttIz00yqty8+1nKqgq062xBXvvCIrI5M4tcF7+2+Uur/8nAM5/qlSVFHFo0YB1F0SHY2InazZdvCfaa03rcOv1Z7kzcd2qBmy/9BAlBQVm9mnD4gPXKJXJ6NuyHi8+xvH2SxI6mhVw7NECvy1i9z6upzU3n0XxJlrwc2YNbo/nmpMiXbVlXTRUVdh8+Y5EIu7BtmP3iPwiOjnejt3wWCJJ9WpXZWivZkybt08QrtrWpZWVKdN8RfdhYI/GNKhthJOn5N/SwwqbxqZMdt1JcXEptq1rM7hfM6a77iY9IxezmgZ4zunF8jUX5K6XIf6DiPmSwuKlYucxcngrbDvUxctrP58+JaOrq0FQ8CAS4jMI8j8sVFW9GmE/uAXnTz8jYqfkKuxhR70GxuzZeoNLZ0USuHfIIKpV1+XQ7jucOfpYpHUHD8LEzIBnDz+xUjLtGzXZlrad6wnfCpfdpCRlUb2mPu5h9igqKvD8QRQrJXXViKkdaddd8CQuHn30k2KqttRteXY3kjWBRwEYPaubPECzqLCYYKftJMWlU9VUH/dl3xVTaUlZBDhuorCgCOuOloye+x34lJaWsmDGDmKjkjCoqo376tE/2eZnpeUQMGYd+bkFWLWtzTjvfr+suaPrL3H1yAORPLx5UpkxDAnRKSyQAEgfx45l7p6/1emtV7l6UHKU3eaElm7Z0vFvVVJSyvzxa8lKzcassQlj/O1/e3xZ9frue45JOTUzVk34t+Yw/d1qO9CGHR9XEfnkEwtWLCD+bDQK5RTo22AITeo1w6pDPRrZ1qeqWZV/q4/N76qkpJS1s7dzdJW4xrqPtWXGqvH/KFcq6kUMXn0WkBKXhoGxLiEn3DC2+H2C+emtV1g2XZjudRnRBpdV48scRxbmFxE0eg33zj1DWVUJ721TadHtV/B7af9dFjoJKXjX4a2ZuWTkL1JwD4flfHzxBS0dMZb6M3BTq341QvY4ofUjuBm1ltcPP6FRsQIhu6diKp2b8CUV92FrSI7LwLiWAaE7JlNJVwOZTMbawGMc33mLcuXK4RJmTydpU3Jwy3U2S92UUTO64ODYXnR6Qo5z+qCkogq1p03neiQnZOLmuEXuXBy2YSwVtSuwfslZThy4T7ly5XD170/bTpZcOv2MpcGSLcYwG0ZPtuXGlTeEBwhxhV3/pkyc3pljhx6yYbXoBI+bZEvfgc0JDjzCndsfUFFRIijEHg2t8ri47CQrM5+6lkYEBg5k4+arnDotsv28PPpQQV2VuV775a7yUxxtmeW5j9i4dAyrVCQ80J4l6y7w6JmI3ZnvO5CDp59wWaImBLr14ey111y8+RYlJQUCZttx+PxT7jwRCt1Al16s2nONyJhk9Cqp4z6xK/PWnCEzp4AG5oZ0b1OX4E3imh/eoynvYpO4/fwTqipKzBluy+K9V8jJL6SJRVWqVdFm3+WnKJQrx4yBbVh36g7Z+YVY1TJCQ12F84/eo6KkyNjuzVl7+g4yGfRqVod7kTHEp2dRQ78ShroVufwiElUlRfq1qC8PvLa3acDGqw/+xpUi6r8a4Ixp15RNl8Ufa1grKw7deSF1a6qRmVvA269JaGuUp19zS7kcfGbftmw4dVdkVNU2prySEjdffkJVWZG5Dh0I3XmR4pJSujazoLCgiKtPIlFRUsRvbDfCtl0UAWQWVenQuBaeK0Unx3loBx6+jP5BDi6Q9NfEDKpWroT7xC7MkdK/G9WpyvhBLXHyiRCmTY1NGdqnGVM89lBQWIx1YxPGDm7FNPc9woXYvAqu07sREHacKCl8LXTeQE6cfsrJM89QUCiHr3sfyqspM2fObkpKSunQvg6jR7VlzeoL8nTwoOBBqCgr4eKxk9zcQhpaVWeGS3devfjCknABUIaNbk2nbg24ceUNW9YJpO80uzuNm5ly/9YHNkgqqgkzumDd2pz42DQCXfeKf7NbfYZNEDefpf5H5AGa/itGoK6hRsLXNIJmCcVUu24NGD5ZBOe9eRrNMl8xwhs8qQMdJH+ahC+pBE/fSUlxKe17NcJhkq38e18XeJQX96OooKGG3/qxct+PosJigiZtlkIyDZi7fORPD4Jdi89w7+JLVFSV8dk4gUo/uNmWlpYy32kr8Z+TqWysi8e68b9kBr28+4ENUi6QY4A99VqY/bImCwuKCBm3luz0XCyamDAh8M8ByKeXX1jjKqzwx84bhGUZr/fHOrDkFE+lsZfHtqlldo9+VyXFJSybKrhDnUe0o7Ft/X90/r+z9Krqsu/oXg6eFcB/0+ZNjBkz5j/7pqTKycwlbOQK7p4SN+oJocOwn937H4GtFzff4jdoMdnpudSwrErIsbno/WCQV1YdXHGG9ZLhY2/HTkxdNKLMDl9+TgEBI1fx6PIrVNSU8ds1rcxsqXN7brHUWcqGGtGGGYt/fr305Cw8HZYT9SqWSnqahO53/gncfHrzFY8hq+TgJnSP08+dmx/ATejuKZjVFx3ahNhU3IatEeDDVJ+wXZPR1tcUqqiQ4xzbIRGHgwfRRRplH9l+k43zRRd0uFMnhk7pKMBQ+ElO7L0nOj2BA+nQo6GIWnDcTFyMcCMO2zAWbV0NNq04z6FdYrTk4tuXjj0acvX8SxbMk4DMwGZMnNmVOzfeE+JzkNISGV17NWLanB6cPv6YlYsFuBo+ug0Ow1uyIPQE166ILKl5gQPRr6yFy8xdpKeJDnloqAO7dt/m8BHhazN3Tk8qV9Fitsde8guKsG5myqzpXZnre4DPMSno62myMNCetVuvcueB1KnxHsC5a685c1mISObNsuP2w4+cvCSMAH1n9OLCrbdcvfcBFWVFApzt2HrkHq+lsEyfKT0I2nBWPkkY2MWKgPVnkMlggG1DkrNyufxQOA+7jewod+OvX7MKDcyM2HpGPFOdBrRm24WHQjZe3YBqBpU4fvcVSgoKTOzVgrVnRCh150bmvIlLIjo5HcNKmtSpZsCZJ+9QUlRgcJtGbJP86Po1t+T4kzcUFv9/aeJ/q/bcfCKIU/XNePIxloT0bEwNdDDV1+H6qyhUlBSZ3NWGFVLo1yjbJpy6+5rE9GxMq+jQqk4N9l4VUe5ugzuy6vBNMnMLaFDTEKtaRuw6L74Yz1Gd2XL8LnEpIh7esW9L/NdJC6ZjQxTKwYHzUqzC5B4cOveE5+++oqmuStisPoStOcfXxAyMKlfEd1oPfBYdJyUth5rV9XCf2hWv8GMkp2ZjYqyLj3NPAhaeIDo2FX09TUK8+rN5+w3uPhBAJcR3AJGRiazdKADI1IkdaVC/Kt5SLEPt2oa4ufbi9KmnHDokFqqbe29MTQ3w9z1IfFw6hkaV8AsYQGpKFvPcpV1Fu9qMntCByHfxhEu+NH3tm2PXvynRn5IJ8Twgdny9rRgwzEaumMrMEMF0s3z7Ua5cOfZvuc7lU2Im7rVgMIbVdMjPLSTAeRcZabmY1TVilqSASk3MJGjGLhGU2bEuo2YIf5r83EICpmyTZ0zNDLWXP0hOR9zh5C7Rxp67ZBjGtb7HF2wIOsqrB1FU0FTDd+OEnwzPbp99xm6puzU9fDBmDX4OdNyz5IycVOy7ddIvJnxpiZmEjBdKk/b9m9PXsWOZa3Kjz37ePoxCo1IFPLdM/lNuSH5uAcGjhbqqWZcGDJzx+4RogMhnn9kecEB874tGUs389zv/suroqrN8fPYZTW11Js4f8Y/P/3fWkSNHmDZtGgABAQH/z4Cb2A/xOLfx4e6px6ioKeMdMROHOX3+Ebi5feIRHnbhkiGfOQvPe/8W3MhkMrbMOyAHN4Oce+C0eGSZ4CY7IxfPgUt4dPkVauqqBO5zLhPcHN98hcXTtwr+x+h2v4CbtKRM3AcuJUrydAr7Q+fm46tY3BxW/Cm48R655mdwI11jCV9SmTtkDQlf0jCqoUfYrsnoGGghk8nYGH6SI1vF5nNG0EC62Qse3fFdt1kXKjaQQybZMlyym9iw8DRHJcAy078fnfs0Ji1FZE7Ffk7BwKgS4RvHoWegxdbVF9kvKaOmufeiW5/G3Lj0mjCfg/J7mdPcnjy4E0mQ1wHhPdPZEhcPO86ffsZSCVwNHNKCkePbsWThaS6cF11tn3n9qWGix5zZe4Sxn6k+8xcM4eDhB0RIkQwzZ3TD1NQAV6995OYW0rhRddxn98Qr4DAfPiaio63OoiB7tkTc4uqtdygrKRLk2Zcb9yPlsTwe07vz4t1XDkk/ezp15+7zz5y78QZFRQXmzejJvrOPePo2Fo0KqvhN60n41gskpmZTw0iHkb2tCdp4TkwOWtahpJyM07dF3qHrCFvWHrtNSmYuFsb6tKxvKgc3k/rYsP/aM2HqZ6iDpUkVjt8VjsWOPVuw4dx9CotLaFPXhNj0DDmJ2NrCmDNP3qFQrhzD2lqx44bYEPRobMHFl5HkFRbR3LRsD7Cy6r8a4GTlFdKwehWKi0p4HZuEtnp5ejauzb5bYtbn3KsNq0/eoriklC5W5sQkpPMmJhFtjfKM7tyMFUfE4p9i15ITP8jBh3dqzGLJ62ZS35bcefaJ55FxaKmr4jOuC/7rTpNfWEyL+jVo1cCEZTvFeGXq4LZ8iknh7M3XKCoqEOzcmz3HHvDs7Vc0KqgS7tqXZZsv8T4qEe2KFQh168eS9Zd491EQysI8+7Np1w0ePP0sCGXe/bl19wMHjwmPH8/ZvVBRViQw/JgIW+vRiH52jQkKPsbn6BT09DQJ8h/I69dfWSaRZMeMbUu7drVZtvgMz57GUEFdlaBQe1SUlfB120d6ei61zCvj5tuXjPQcfOfupSC/iCbWNZk8oyuZkmIqN6eAelbVme7ei9JSGfN9DvE5MhEdPU38Fg1FVU2Zu1ffsmW54PZMcetFI8m3YrHvISLfCLdQ32XDUSuvQmFhMUHOu0hJzMS4lgFzwh1QUFBAJpOxxHM/H9/EUUlXA5/Vo+Rk45cPoljtJ7o9I2d1o0Wn747CFw7c4/hWwV9yXTqCajW/A58vkQkskHg1fca2o/MfYhgeXn7FroWiizV9/lBq1vtZCVNSXEKo43pS4tOpXtuQmUtGlvlwu3roHsc2CCKk69oJVKn+56TTtXN3Ef3mKzpVKuG6buJf8m6KCotZMGEdxUUltLRrQtdR7X57fFmVHJvKtnn7ABgfMoxK+lp/ccb/Xd26dYuhQ4cik8lwdHTE29v7P/2WAHh08TkzWnkR/ToWXSNtFl2aR7uBNn994g91cuMlAgYvpTC/iBY9rQg96fanLtYgRmHLnbcRsVCMUMb52zMhaHCZay49OQu3Pgt5dfeDGAkdmlVmMv3BVedYNVdEkfSf1InpC392KE5NzMBtwFI+vxUOxfMPufwkBf/wPAZ3hxVCLdXQuExw8+bRZwFu9kyVg5v4mBTmDlktohlM9AjfMwW9KhXl4OaQxG2ZHjiAHoOFhP1kxF1WB4lRtoNje0Y5i43P5iVn5fw9Z79+dOvfjPSUbNwmbCYmKhn9KhUJ3zCWykaV2Ln+ChGbxf1g6tye9La35vbVt2KjViKjU8+GzPTqzZMHUcxz3ydUT7Z1cPfrz5ULL1kUKvzM+g1qzkSnTqxcdo4zp8TIydOnLxZ1jJg9ezeJiZkYG+swf8FQTp1+xnapE+U0pRP161djjtdesrMLqG9ZFR/3PviFHOP1uzgqapVnQaA9EUcfcP6qeF74u/Xh6atY9h0X93vXKV35kpDOnmMCdMyZ2IXXUQkcv/QchXLl8HXqzslrL7n/QoRcznPqydKdV4iVjGQnDmpF4IYzghjczIxKFStw+OpzypWDOcNt2XbmPgmpWZhU0aFz89qsPyF4lON6NOf0/bfEpWZS3aASLeuZcOCGeKZO6NGC7VceCaBiXo3sokIRZK2uhm0DM47cF7Erw9pZsevmE0plMro0NOfOhxgy8wtoYFyZ/NLvQoG/qv/qEVVVbU3qGRkQcVPIvB07WbP4uLhgxndqzr7rT0VHpkYVqmhpsOvyY1SUFJk9oJ1cDm5nU5fo+DQev49FXU2FuUNs8d10WvBsbOoiK5Fx9u5bsQAde7Bk51WS0nIwraqLY/+WOIcfEtLx9vUw1NXEZ7l4UM4Z24nXkfGcvialfbvYcfbKK27cF8mtoW79OH7+GdfuCrl4iHs/7jz4yNEzohPkPasXWVn5LF0tuU6OaotVA2OmOG8nN7cQq4bVcXbqwroNl7l3XxpDBQykIL+IefMOUVJSiq1tXUaMaM3BfffkF6e3bz+Mq+vh77lfnicVEO4gXWD7SUrIpFp1HbwCBwAQ7LFfrpjyDXdARUWJzSvOS9EMSvgtGoKegRafIxMJ99gvD7GzcxAgYu+ma1w7+xwlJUW8lwzDQFL7rA0+zusn0ahrquG3ciTqko/HwY1XuXbyqegArRiJgZEwzkuOzyB46nbhj9OjIUOmdpKvgw/PY1jhIUZHw5y7YdPl+9glL6eAQMdN5GUXUL9FLRx9f/aKSfySSvhU4VTcc1QbOjv8+vDaFnKUZzffUV5dFZ+tk8v0HPnyIZ6lztsAcJjZo0zuw7e6cuAup7deFcTpjZOoZPDXQGN36BGinsegpauB88px/xIPZe2c7eRl52NpY073cbZ/fcL/Ub19+5bevXuTn5+PnZ0dq1ev/o/xbL6VTCbjyMozrHPdQWlJKXWszfA7MBvdMowcf/ca2/wPyHOluo5qx8xV434Zff5YRYXFzJ+wjmuHxAhmxrLR9PyT7yr5axoe/RcR8y6eSvqahBycRc0/dCZlMhm7F51kR5h4D0NcejDas99Pf9+kr2l4OohsKT2jSoQfnInRD8Gub598xnv4arIz8qjduAZBf1RLjVr7M7iRxlJx0Sm4DV0j58qF756MbuVfwc00//70HCKuu1N777JS6iAPGteOMS7dANi24gL7twjAMs27Dz0GNScjLQf3SVvl1hThG8ZiWE2H3RuvslPK1Js0qxt9B7fg3s33BLnvE/fFbg2Y7duXF0+j8Zu7l6LCElq2s8AzYAA3rr1hfpDYQPbq24Qpzl1Yu+oix49KTsaevWnQyBiXmbuIi0vH0LASCxYO4/KVV2yQTPsmjG+PtXUtnF13k5GRR23zKvh79ydowQmevfwiCMSBgzh27iknzwvFrO9sOyKjk9hxUArkdOxERnYeW/aJbtWMsbbEJWey/7ToiHhM7sLVhx+48egjKspKzJvWk9X7b/A5Lo3KuppMH9Ye//WnhZq3kSk1quqw+YTgqroM6cDey0/4IuUo9m1bn6UHJeO+Lk25+jJKeNvoaNKxiTlbzgnV79iuzYm48YSsvAIamRpSTrEcj99/RUNNhR5N6rD7xhMAhra1Yu+dZxSXltLBsiZPY+JIzcmjtqEeBaUlvPqS8Kfr/4/1Xw1weje2ZOM1MWJy6taSNWdvy+XgTyO/Ep2UjpGOFl2tzOXOi3MGtmf1sdvk5BfS1LwaxrqVWHvstpBSj+rCoggRu9DIzIiWltXx2yA6IW4jOnLsynPefk5EW7M8vhO64bniBLn5hTSpW43e7eozI0SMDwb3aIK2Znnmr5OSqcfYkpScxe6jYqF4OHXny9c0dh2S5N9O3cjPL2TlRrH7nzy6PabV9ZjisoOSklI6d6jL4AHNcfXaR1x8BkaGlfD37sfZcy84KI2h3OfaYWRYienTt5OVKUZVrnN7cf/eR9avFa87aWonrG1qsXndZW5dfyeyo0Lt0TfQYlHwcV69+IKGphoBC4agqVWeNQtPy9N05y0aSiUdda6cfc5eqaU8y6cvdepXIyszD/+Zu8jNKaBBMxMmu4ksp7vX3rBNkmBO9bSjfhMTQNzETu8TN3C3hUOoaiI6HY9uvGPLQqFqmOzdh/rNRSZVYUExQVO3kZYsZKWz5n/fzWam5RA4aTOFBSLYb7h0QwRJoTR3D9Hv4tGtXBGPNWNRUv7+cCksKCLEcSNZacLDY1LAr3yZu2efsW+5GG25LB+NcRljocKCIsImCKv5Bq0sGO3V70/XbGJMitzvZqhrb6z+kGtVVr1//ImIBWI3P2P5WLQrV/yLM36t5zdec+2ACAudvnLC3062/ndXfHw83bt3JzU1FWtrayIiIlBS+s/e1grzC1k5YwtntogxcOcR7Zi55p+RsYsKi1kyZSMXd4sd/Qiv/ozw+n0uVV52PoHDV/Dw4guUlBVx2zSZdn9CUP8alYhHv8UkRCejZ6RN6JHZvwTAymQytgQelq/f0Z59GTqr10/HxH9OxsN+GfHRKSI489BMDGt87zy+fhiF94g15GblY9nMlIAdk+U+N1npwufm/bOYX8DN18/JuEmE4mo1BefmG7jZEHqCwxJYmR4wQB6IezLiO7gZMKYN4+aIse22FReI2HAFgCnudtgNbkFGWg4ek7by6X0C2noahG8UmVMRm6+xTfLdmuDclQHDW/Hg9gcCXPcKn7DO9XCd149Xz7/gPVu4Blu3MsMrcCB3br4nZJ4QYHTr1Yjps7uzaf0VDh0Q9+1Zrr1o0syUObN38+VLKgYGWixaNIybt96xSrKkGDWiNe3b1cF57m5S03KoZapPiP9Awpac4uGTz5Qvr0x4wCDOX3vNkVPS2Mm5BwkpmWyU1orTmPaUyGRyhe3kEW3Jzi9k+xHxvJgzvhMPXn/h4h3Bc/Fz6sHmo3flBONZo2wJ2HCW3PwimltWx9LckHWHBU3DaVBrjt9+SVRcKpW1NRjcuTGL94sJhH2HRjz++IUPscnoaVXAzsaSDZL8e0SnJhy7/4r0nHwsjQ2oqKHG1VdRqKko0b9FfbZLMUkOrRpy+MFLCotLaGVRg/eJySRkCCsXZRVFnn9JQLvCrxvEP6v/aoCz6eJ9UFZhTIem7Lv1jOz8QprWrIqCrBwPI2NRV1VhYldrQvaIBT++mzUn774mLjUTY/1K9G5hif82QZydZd+evRcfy1Ht+F4tcF0udj3DujUlLimTqw8jxZx0ai+W7LxCfHIm1SpXYvZIW2aGiqTXVlamdGtdBydpFDCwmxVm1fVx9hc/j7VviaF+RWb4CCLlyIEtqGNWmSmuu0TXqFN9enVpgNOcXWRm5WNZ2xDXGd1Yuuo8T5/HoF5BhZB5A/n0KYmly6Ux1Kg2tGltgY/3AeFKrKdJQOBAEhMyCQ44IldMDRjUnCsXXrJHavO6uPXCsn41Du+9y7mTEuM/aCDVquty9thjjuyVAFjAAGqaVybybRyL/YWqyX50azr2bChM+9z28TU6FQOjSngtGIKyshIxUUmEu+0THR0Ha3raixv1i4efWCOpF8a4dKV5O+H9ER+TSpjLbjEbH9ScXsO+e9NsCD7G2yfRaGiVx3fd9xiGkpJSwqdvJ/FLGoY19HBd+jOn4NiWa1w9+ghFJQU81o79yegPYOO8Q7x9/AmNShXw2uD4k8sxiJ3twmnCK6aPY0fa9W1W5jrcFnSYD0+j0dLRwG2D45/u0EtLS1k4aQM5GbnUta7FCM9+ZR73YxUVFrNooiQPHtiCtr9RZP1ZyWQytngLhV7P8R2p1ejvO4n+OysrK4tevXrx6dMnatWqxfHjx1FX//ty639HJUYnE+CwmHcPP6KgUI4JYcMZOLPXP+oo5WTkEjB0OU8uv0RBUQHnlWP/0p04PTETn0GLefcoCtUKKvjtmUHTTmW7MX96FYvnwMWkxmdgVNOA0MOzfwq8BLHWVrvt4cQW8fByDLBn4B9CW79EJuBhv4zkr+kYmugTun+GPEIB4MXdSHxHrSUvR3Q//bdNooLUvcxIzcZz+Bo+voxFS0edkF1TqCWNdmOjknAfsVaulvqRc7M+5Licc/M7cDNhrtgkbVtxXh7EO2luT/oObykHNx/fxovk7w1jqWaix94t19nyzZzPqRP2o1rz8G4k/q57Bc+wQx3cAvvz5mUs3rP3UJBfRNMWNfENsefB3Y8E+RwS46tu9Zk5tydbN11jrxTT4DyrO63amDN79m65KnXRomHcfxjF8pViEzdksA3dujVg5tw9JCdnY1Jdl/BAexatPMe9h1GoqSoTNm8gt+5Hsu+oNIZy6kZ2XiGrtorPOGFYa9TUlFm4XnTux9q3RFauHBv3CYAybWQ73kUncua6mAz4TOnOnjOPeBMlksDnju1E0KZzZOcW0NDciOYNa7ByvwBKE/vacPlJJO9iktDVqsContYs2nsFmQz6tq7Hu69JvPyUQCV1NQa1b8Sak6J7NKR9I84/fU9SZg61quhgqKfFhWcfUFFSZHCrhmy9KsBN/xb1OPX0LXmFRTQ1rcrXjEy+pGZSTUcLbc3yPPr8FU1VFTrVqc7d31wLP9Z/NcApLi2lp5UFTz7G8jU1E2O9ijSvVY11Z+6iUK4cs/u1Zcmh6xSXltK9aW2+Jmfw7KMwJ5rRrw0+m8TOZkhHK958ThBjqvIqeI7sjO/60xQWl9DWqiYWVfUIkDo5nuM6c+LaS56/F7ya4Ol2BKw5Q3J6DjWN9XAe2YEZgfvJLyjGulENBvdswmTP3ULu3dKCnrb1meS2i6LiEtq1MMehd1OmzN1Fdk4BDS2r4jypE37BR4mOESTjIJ/+HD/9lFNnJcWUZ19UVZTwk6zAbTvUZeSI1mzYcIW7dyNRUVEiIHAgaqrKzJm5i5zsAuo1qMYMl+5Evk9gYYgAF/ZDbejSvSGP70exboW4QCdO70JT65q8fv6FFZL0e+TE9rTqUIf0tBz8Z0dQUFBEs1ZmjHUSEQrbVl7g4a0PqKop47dE+OLkZOcT4LyL3OwC6jWpwWR3sWtMis8gZKaIYWjXvQH2E0SWVH5eIYFTtwmr94bGOM373kK/cOgBJyT5qOuSYRj+cCPfteQMj66JID6f9ePQrPTdSO/1wyg2SgngE7z7Ua95zZ/WzpUjDzgu3fxdV4755QFRUlxC+ETR3TFrWJ0J88r2inlw8QUHVwqQ7LJiDHpGfz7COLL6HE+vCQWU64ZJvx1VfKuI+ceIehFDRT1NnJaM+svjy6r7Z5/w4uZbVNSUGe414F96jf/tKioqwt7enkePHqGvr8+ZM2cwMDD46xP/jfX40nNChi8nIzkLTR0NPHZOp1mXRv/oNRJjUvAduIio5zGoqavivXvGX7oTx0Ul4tlvIV8jE9DS0SDw4CzqNP819gPg1d0P+A5eTnZGLiaWVQk5NAudP3T0SopLWDR9K5f2i7ym6QuH03P0z5ytT6+/4umwnLSkTIzNqxC6f8ZPlgePb7zFf+wGCvIKsWpjgd9mR3mIrEgFF9lS3xyKv/ncxEQm4j58LamJmRibSeBGvwxwEzhAPpb6CdyMbcsEV5GgvnX5efZK9hGT3XrRb0SrX8HNxrFUr2nA3q3X2Sx5e42e0pEh49rx6O5H5s2OoLCgGJt2tfEIGcTbV1/xnLWbvNxCGjczZV6YA48eRBHoLfzKOnS2xNWzDzu332CPlOs3zbkr7W3rMmf2bqI+Jglws3gYT5/HyG057Ac2p1+fJjjP3U1CYibGVXWYH+zAivWXuHlHSMpD/Qbw9OUXdh6QxlCTO1MKLNkgdX8G2aCro0HYavGsGdavOeoaaizffgWASUNak5CaxVGJg+M5qRtHrjzn+fuvaFZQxWN8Z0K2XCAjOx/LmpWxtTZnSYT4+421a869tzG8jIqnooYaE/q0ZOHeKyLiqEVtYlMzeRL5Fc3yqgzv0pRVx8UmuH+r+lx/85m4tCyq61fCrJoeZx6/Q0lBgWHtGrPtigBqds3qcOlVJFn5BTSqbkhGfj5RSWlU1tKgql5F7kTGUF5ZiWZm1dj/8MVvroaf678a4DSoURlF4OnneDTVVBnRtjHhB68AMN2uNdvOPxSOiqaG1DDQZv3JOygqlMNjaCcWRFymoKiYVvVM0NWswN4Lj1EoVw7/sd1Yvu8aqZm5mBvrMaRTY2YtPgLAKLvmJKXmcOamYKEHT+vF1sN3ePcpEW2t8gQ79yZw1RkSU7KpUVUHz0ndcA0+SHpmHhY1K+MyoROz/Q+QliFi7d2duuITfozYuHSqGGgR6N6XTduuy9F+iN8AIj8msmaDaJVPmWBLw3rVmO68g8zMPCzMq+A6uycXL75k7zdzv7m9MDOrjLf7Pr7EpKJvoMW8gAFkZ+fj5y4ypprb1GL8lI7ExaYR5C2kkV16NqT/YGtSkrMImCt2PK061GHY+PYUF5UQ4r6fhLh0jIx1cA8ehKKiAtfOPmefRORzmdePWnUMRYCl1wFiopLQM9DCe9EwlJWVKCwsJth5J2nJ2ZjWroJL8CDKlSsnxkheB+SkYi/JUh3g4+uvrPASY7/hM7pgbVtX/t3fu/iSPcslL5fwwXKvDYD0lCxCJm8RQKp3Y/qOb//TuvnyIYHls3cBMGRmd6w7/yqV3rngBC/uvKeChhqeGyeWqYZKT8pk0VQRdGk33paWPa3+dK1+evWFzX7is0wMGUrVWmWH0f5YH59Hy/kbUxeN/JdIwaWlpWyVuoV9pnZD1+j3suT/i/pGJD579iwVKlTgxIkTmJn9tUT+3/l+9i44xlafCEpLZZg3qYnP3plUMflngOv9oyh8By4mNT4d7coVCTw85y8N/D48/Yx3/0WkJWZQuYYeIUdcqfaHUdO3enDhBYGjVlOQV4ildS38985A8w8Gg4X5RYRN3MCtU09QVFJgzqpx2P7BrPLDs2i8hgjCcM161QjeO/2nKJJ7F18SNHETRQXFNG1fB5+NE+RxEKkJGbgPXU3MhwSRKB4xlerS+/38Ll4evyAcikXEiUwmY03gUY7vEIBhRtDAnwjFZYGbLcvOsU/i6Ex270W/4X8ObvZtu8FmKa5l1GRbhk1oz+N7H/GbvUeAm7YWeIfZ8+FtHF4uAtxYNTXBf8Fgnj7+TMA3BVVHS9x9+rF75012SJl9U6d3plOXerjOiSAyMhFtbXUWLhrG6zdxLJSMPAf0a4q9vTUz5+6RUwgWhDqwfus1rtx4K7r+3v14HRnPpm9jqHEdRHTDSmmT3bcZxtW0CV4hpY/3akKVyhVZuFHqSA20IaegkH1nBAdn7vjOnL39hkevv1BBTQXPiV1ZIMUFWVTXp2fbeszfKSYXw7s24eUPG/gp/VqzeP9ViktK6di4Fhm5+dx/F4O6mgpjuzdn5fGbQkJvXZfHn74Sk5yOobYmDWsacvzBaxTKlWNkhyZsv/qIUpmMblYW3HofTXpuPnWr6lMoK+F9Qgq6GuWxqKrHtXefUFFUoG0dU86+eo/CP+iG/r8xSP8PVdOaxpx+/A5FhXLM6NWapcduIJOBfesG3H75iZikdAx1tOjfsh7rTwoA4DKwPTvPPSApPYeahjr0sqnLGklNNWtwB07efMW76CR0tCrgNrITvmtPi25Lk1pYmlZhzT6x8F1G2vL0bez3TCmXPmw9eIeX70VaeNicvizacIHI6GR0K6kTMrcvi9dd4MOnJKGg8ujHxl035cZOod4DuHUvkgNHvymmeqKmooR/qEik7dm1AQP6NiU0/AQfo5LQ1lYn0H8Anz4lsVBK9B46rCUdO1qycf1luf9NQPAgNDTLE+h1gMSETKoa6+A5rz+FBcX4zd1LVmYetS2NcJ7bi6KiEgLn7iM1OZvqpvq4zuuHgkI5Niw7x9MHUZSvoMK8xUPR1CrPx3fxLJL8awaObk2HHmKXGrHhKrcuvUZZWRGfpcPQ1hNqkbXBx3n77AsaFcvjs2IkahXEDfPotptcOS5uxp7LR6AvkZCzMnIJnLJN7lQ8VArdBIiPTmGBs/CP6T2mLR37fx8dlZSUMn/6dpLj0qlWywDnBUN/Gi8U5BUSMnEjeTkFNGxlzghXu1/W1eNrr+UuxNMXjcCo5q8POplMxiKnLaQlZlKjjhGOv/G7KSosZoHjeooKRBRDz3Ed/vTYHz/H0qmbKCkuoVXvprS3/2fKnW9158QjPjz5RHkNNQa7/nnQ5/9l+fr6sm3bNhQVFdm3bx/W1v987Pa/VdnpOfjbL2az1x7BvRjTgSVX5/1jcHPr2ANmdwkiNT4dk3rVWHZ13l+Cm8eXXzKnWwhpiRnUbFCdJRd9/hTcXD5wF7+hKyjIK6R55/qEHJr1C7jJy87Hd9gKbp16grKqEr7bpv4Cbl7ei8R90DIyU3Oo3diEsIMzfwI3N089JXDCRooKimnZrQG+mx3l4CYpLp25g1cS8yFBKK32T5ODm4+vvzJ32Bp5tlTYrslU0tOUsqUOcXyH6MI6B38HN0d33iob3Cz9Dm6muNv9JbjZJPH8Rk22ZbhjBx7f+4jvLAFuWrSxwCvMng/v4vFwlpyGm5oQsHAIz59GM89T2GS07VAHd7++ROy5zTaJHzR5aie6dm+I29y9vH8vImwWLhrG+w8JzF94EpkM+vRuzNAhNsxyj+BLbBpVKldkUehgNm2/wXnJxXieRx8+fUlh3TbxmSaObIuOjgahK4XVyKBeTahjXoUQ6ed+3RpR00RfDm5G9G0OCrBDiviZNboj15585O7zz5RXVcZ7YleW7rpCUlo2NavqMqBzIxbuEpviQR0b8ikxjbuvhNJq2sC2LDlwjYKiEto2NKUYGbdefUZNWYnxPaxZdeIWJaUyujQW3jYfE1LR11KnpWUNjj94TblyMKpDE3Zce0xxaSm29WvyOPorKdm5mFXRRVlZkVexiVQsr0qDGoZce/cJJUUFOtY34+yr9wAMs/77XdH/6g7OtksPUFRVY3qPVmw6d4/8wmJsalentFjGg/dfqKCqzIy+rQnYLs1IO1jx9H0srz8LZ+KZA9vhvu6EWGQdGpGSnsOVR4JnEzipB/O3XpQHaI7q2ZwZ4SJXaVCXRlTSUGPRZrEA3R278PRNLOduCLlfyOzenL78gpsPhGIqxK0fJ84/4+odAYaC3fty79EnDp96TLly4DPLjrzcQhZLo46xI1rTxKoGU2fuICdHSAxdpndjx86b3Lj5TmRMzRNJ3d8yplq2NGPcuPacP/uc/RGiBTrH3Q5ziyosW3CK55JEPCDcgQrqqgR67ufTxyR0dDXwC7VHWUWRJUHHeP1cEI3nLRpCBXVVzh9/whFpDj03YAA1ahqQmZ5LwMzdQk5uU4txzl0BuHftLTukGfg0nz7UlhQdZw8+kJOK3RcOwdBYdBFePvzExnAp9sLNjgbWYoxUWlrKwll7iI9OoXI1beYuGSbn1hTmFxEyZSvZmULR4fiHqIWI5Wd5fO0tquVV8F4/Xs4Z+Fbr/Q7ITczc1oz7xRE2LTGT+ZM3IZMJI7Q/PiC+1bENl7h//jnKqkq4b5xYZuDht9odfowPTz+jqaOOy+rxf4vPcWrjJd4++EgFrfJMWzr6X1IVyWQydoeIaJA+U7tRUe8/Lwtft24dQUFBAKxdu5ZevXr9xRn/vnpz7wPBw5eR8CkJZRUlpi4dQy/Hzn994g8lk8k4uOw0Gz0jkMlkNO3SAK8d01D/k9yxb3Vhz02WTN1EcVEJjdrVxW/PjD8959iGS6xx24NMJqPDQGtmrx73i8FjVloOPkNX8OaBlNm20+kXufjDy68IHLeOgrwi6tuYMW/H92BMgMuHH7Bw5k7B9+rTBNdlI+Wk/LjPyXgMW01CTCoG1bQJ2+MkJyN/ePEFz1HryUrPxbx+NYK3T0SzUgVKS0tZ7n2Qs/vvyx2Kv5n4Hdp6nQ3hYhMxaHw7xs0WhOKNi85wUOqeTHG3K5tzI4Gb/du/g5uRkwS4eXI/Cj8J3Fi3Mcc73J6P7xPk4KaBVXUCFgzm5bMY/Nz3UVQoPMA8/fuzf+9dtkgjMcdJtvSws8JtbgRv38ahpVWeBQuHEvUpidBvWVI9GjFieGtmeUQQHSPichaFDmbbntucuyRM+vzcepOQksWqzVcAGDOkFVWNtPFfLJ47fbs1wqp+NXwXide069SAuhZGhKwRnR2Hnk1QK6/Mhv2i++U8sj0P38Zw8/FHVJUV8XLsysp914lPyaJ6FW2G9GhC6DYRltmnbX0SM3K4IeVJzRjUlhWHbpBfWExLyxqoqCpxQXIlnmRnw+qTtykuKaVDw5p8Sc/k3VcRpNmxsRkRN4SYZ2T7Juy+8YSikhLa1jXhbYIgEdfQ16aiuhoPomLRUFWhuZkx5199QFGhHN0aWHDi+RsAejaszY77T357bfxY/9UAB2BI60ZcfBpJQno2JgbatDAzZsWxm0LS52DLkgPXyC8qppWlCRqqKux9+EQwz0d3IWzXRRGuKQVoBkhW1l5junDg/BM+xCSjU7EC3uO74r70mDi2fnW6t6yLU5AkS7ZrhkZ5VYL3iAU5a2xHklOy2XlYEHTdnbqTkJTBtv3SCGlKF0qKS1kiBSVOGN4Wi5oGTJq5Q7RJW1sw3N4GL/+DxHwRF02AT39u3nrP9p1Sp2lmd8zMKjPLZRcpKdnUqKGHh2cf3r2NY/FCcdMYNqIVth0tOXHkISekUE3Pef2oXkOPnZuvcfOqyJ3yDbVHz0CLY/vucfbYE+HzEDKIqsY6vH0ZyzKJszNiYgda2dalpLiEMLd9xMemUaWqNh7zhcT8a3QK4e6CVGw32JpuUlfl/ctYVgUIYvLI6Z1p2sYCgLTkLEKdhVNxu16N6Du6tfw73bv6Evcuv0ZFVQnvNWN+4tasCzjM++cxaGmr47l6zE83+ic337FLch6dHurwk48HwNUjDzi1/Ybg86wa8wt3obS0lAVOm+Vdmckhg8tcc1Evv7DR95ujsQOmf/DN+bHePvwo9zOZvmR0mdEOf6y0hAy2SI7JY/3t0f0Nr+d39fD8M949/IhqeRUGOPf8l17jf7OOHz8uz6zz9fVlwoQJ/5H3IZPJOLLiNBvcBR+siqkB3rudsWhWNu/lz6q4qJhVLts5tUnslu0mdmLqopG/5VbJZDL2LDjOtgCxWWo3wBrXDWWPQGUyGdtDjrJnodgE9HHsyOSwIb8o4JLj0vCyX8bnN1/RqFSB4H3O1G5i+tMx148/Yv5UMbZt3qkeXhsdfwLlZ/fcZtlcAdK6OLTAecFQOfiP+ZCAx7DVpMRnYGSiR1iEE/rSmnz9+DM+YzaQk5VPbavqBG11REOrPCUlpSzx2C9SwRXKMXv+YDr2FZlY+zZcYctiwTMZOtmWkZLB57r5pzgiRcY4efWm9xAb0lOycZ+4hU8fEtHW02D+xnEYm+qzd8t3zs3ISbaMmCjAja/LbqGMam2OT7gDUR8S8ZAUnvWtqhO0aCivX3zB102Am1ZtLfAKGMDBfffYJEnLxzl2wK5vE9zd9vL69Vc0NdVYsHAo0TGpBEsd9e7dGjB2TFtme+zlc7RwJF4UOoRd++9y+vxzQQB26016Vh7L1otN30h7G8xq6uO78IRQ+3aqT4smpvgsOiaM+NpbYlXfmKBVopPTv2sjdLQrsCZCAD6noe14+TGBK/eFC7HXxG6sP3xL7nszuk9zgrdeELyalnXIKSzg6hOxYZ/p0J5VR28J9bBFNSpqlef0/TcoKSowyc6GtafuCM5pfVNScvN4GS3Ixt2aWrDr+hMAhrdrzL7bzykoLqGlRXWi0zKITc2kqrYWVbQ1uPMhBjVlJVrXqcGZF+8pVw56WdXh6NPXAPRoYMGpl2//9Nooq/6rAU5Li+pkZOfx4nM8WhVUGdupGYG7xKJ36t2KvZefkJQhRlFdm5jjv02gfbehtmw/80DuTDyyWzPmSIqpMb2sif6aKldMhTjZsWTHFeJTsqhWuRKzRnTAOfQghUVCMdW9dR0m++xFJhOKqdqmBkzzEYqVkQNaYFJVh6mSG+mQvs1oXN+YibN3UlJSSse2dRjUuwkz3PbIJYXus3qyads17j2IQlVViWC/gaSmZDNfMqKzH9icrl3qM3/+SfnFFxQ0SPjf+BwUng6tzBkzvj0vnsWwaom4kYydaEuLVubcufGO7ZIqYdqcHlg2qMbzx59ZK91wxk3rRFObWqSnZhPgGiFchtvXZrij4LFsW3mRR3ciUVVTxnfpMDQrVpA7Fedk5WNpVZ1JUvBlZloOQTN2UlRYTAvbugye1AGQCLwuu0lJECZ/MyU+DsDjm+/ZIb1np4ABmNX77np56fADTkmE47nLR2BQ9fuDPy0pk/nTtyOTyeg62IZOfzDz+/opiWVzhNGZw4yuNGlflz/WodUXeHT5FarllfHYOFFOqvyxCguKmD9JtPCtuzakt+Of+8kU5hfKAxI7DGpB+4Et/vTYH2uD5x5yMnIxa2xCL8dOf33Cn9TuUDFC7DWxM9oG/1xa/r9Zd+/eZfDgwZSWljJu3DjmzZv3H3kfmanZLHJcy23JPK3NAGtmrZv0j8IyATJTsggctoJn115Trlw5JoYPo/+0br/ttJUUl7Bi5jZOS4oZ+5k9GRdgX6Zkv6S4hBWzd3JmuxiXjPToyzBXu19ePzYyAU/7pSREp6BbpRLBB2Zi8odg13N7brNs9k5KS2W069uUOStG/7QxOLLxCuvmiU5fr1FtmBo0SP6eol5/xXP4atKTs6luXoXQ3VPkG4Pn9yLxG7+ZvJwCLJuaELB5AuqaapQUl7Bw7l6uSOGWcxcNob0UwbJnzSW2S12XEdM6M9ypE6WlpawJPcFxqfM8w7cvPe2tSZNM/KI/JqGjr0n4xrEYm+gTsfmaXC3141jKb9YewTFsZYZPuIPo3EhCi/qNjAleNJTXL7/gM3cfhYXF2LQ2xztwIIcO3GeDFE0zZnw7+g1oirvbXl69ipWDm69x6QSFHBVjzC71mTC+A3M89vJJis9ZHD6E/UcecFISg3jO6UVOXiGL1ojPOrR/cyzrGOI9/xglJaV0bW9JWxtzvBcco7i4lE6ta2PTtCYBK06J7kunBlQ1rMQKyUR2kkNrPsalcP6O8GTzcuzK5mN3+RyXRhVdTcb1syFk2wVhamttAQrluHDvPUqKCrgMbs/a43fIyi2gYU1DDPW1OH5HqLAm927JxrP3yC8qpkWd6uQUFclTwnu3sGS7pJAa0qYRR+6/FAZ/ZtVIzMnhU1IalStqYFJZmxvvPqOqpEinBmaceCq6Nb0b15WDm271zTnz6j0yGfSsb8HfzNr87wY4dasZsP3aC5QUFJjTrz0L918Ri8PGknfRSbyOFg6L0/q0xnOD6GyM6NKE55FxPJErprrgvfYkRcUldGhSi5pGusxbK4henuM6c+r6S56+E8cGz+hF0NqzJKVmY1JVh1ljOjIjYD95BUU0a1Cd4X2aMcljt0j7bl6LgT0aM8ltFwWFxbRobMJoBxtmeESQnpGLeU0D3KZ3Y8Gys7z7IJyMg30HcPP2eyIOSPLsWT0x0NdkstNW8vOLaNbUlImOthw5/JBzZ4VBlI9vP/QNtJjjsovkpCyqV9fF3bsPqSlZP5HnhoxsxZfoFMLmHQGgz8Bm9OjTmOTETILd9wsFQdf6DBrRipLiEoLd95OckEm1GnrM9RfjsJsXX7FPmk/P8u9PTYsqgiTsf4RPH4QfhdeioSgrKwkuzNy9JH5Nx6i6LnPCvt/Ity05y9M7kZRXV8F75Ui57DslIYP5M3chk8no5mBNV/vvICX6fTzL3YXUfuiMrjT9AaCUlIgQzbTETGrUNmRK0KCf1klRYTFhkzaRl51PvRa1GFkG7+bjixi2BgtAMClo8C8PiW+1K/w4US+/UFFPk1krx/z2gbYr7Bgx7+LQqVwRp8V/TwH18vY7uXfK9GVjygxV/Dv17kEkL268QUlZkUEuv37e/8t6//49dnZ25OXl0b17d9auXfsfMfJ7fuM14aNXkRidjLKKEpMWjKT3lK7/+L18evUFv4GLif+URHkNNdy3TsGm16+J3T9WXnY+waNWcf+ceABOnj+cvpO7lHlsfm4BYRM2cOe06KhOWzSCnmPa/3Lch2fReA9eRnpSFkamBoQcnPmLe/bh9ZdY7yvI7d2Ht2ba/O+dGZlMxu4lZ9i5WNzvBky0ZYLPdwXj26fReI9YS3ZGLrXqVyN452QqSg7Mj2+8w3/iFgryi2jU0ox5G8aiVkGVosJiwl12c/PcCxSVFHBbPIy2PRoik8nYsfw8e9YKIDF6ZleGTLIVHJ2gY5ySxljO8/rRfUAzUpKycHcUDsW6+pqEbxxHNRM9dm24wvZvrzG1I8PGt+fR3e+EYuvW5vjMF+DG3fl756YscOMTJIEbySdszLh2DBjUHA/3fbx8GYuGhhrzFwwlPiGDwGABbrp0rofjhA64eu7l46ckdHU0WBw2hIPHHnH0pBSvMKsnBUUlzF8pNmr2fZrSqIEx3uECzHRsU5vO7ergNf+oeO7YmNO+VW38lorOTs8O9ahZQ48l28TnHDfAhtjkDE5J0nD3cZ3Zceo+UbEp6GtrMGlQa0K2nZc/w1RVlTh+Sxw706EdG07cledJ1aymy+GbL1AoV47Jdq3Ycu4+uQVFNDOrhkwBHrwV1I7+Leuz7argg9q3bMCJR29E4KaJEZkFBXyIFyTi2lX1ufomCmVFRbpZWXD0sQA0P4KbzpZmXHgTSalMRhuzGlx49+G318qP9V8NcLZceICiihrOfdqw6fRdsvMLaVzLCKNKWqw7dQclBQW8hnUmbPcl4ehY3xRdLXV2nX0oKaa6s3zvVVIzczGrpsfQLk2YuUDsZEb2akZmdgHHr75EoVw5Aqf1IuLEQ15FxqOprkaoSx9C154jLimTqpUr4ePUA8/5R0hJy8HUWBePqd3xCD1CYnIWxkba+Lj0Inz5WT5ECZJxiFd/Dh9/zEXJpjvAqy+ZmXkskGSHwwfb0L5Nbea67yUhIRMjo0r4ePXlxYsvrJbcjSdO6kjTpqYsX3KGl8+/UEFdFf/gQSgrK+LhdZC01BxMaxkw21NwfPzd94kLvpExk2d2FXEJ7vvFcWYGuHiL8MDNKy/w7OEnyldQwW/RENQ11fjyKZlFPuJvM2BkK9pLSeDHI+5y+dRTFBQV8Fo4FF3Ja2bXqos8vPEeVTVlvJcPR0PKhbp1/gX7pVbwzBB7qpsJNVFJcQlhM3YKkmJdI6bM++44nJ9XSOjUbRTkFdKolTnDZn438wPYt/I8j68L3o3n2rHyaIdvtT3sGO+fRqNRqQJuq8f+MkIozC8ifLLgQ7Ts0Ygeo9qWud5e349k/zLxMHBeOuq3qqaPL6LZv1SA6mlLRv3Wmv9blZSUsmaOIE93G93uT6XCf6cOS2qM9vYt/zLQ8d9ZiYmJ9OjRg+TkZJo2bcr+/ftRVi47n+vfVcVFxewMOkhEmPCEMqpVGa/dMzH/wxjn79Sdk48IG7OGvOx8DE0NmHfABRPLPx9RAqTEpeFrv4QPTz6jWl4F9y1TaGVXNiDKSsvGb8gKXt2LREVNGfeNE2nVq/Evxz27+ZZ5I1aRm5VPrQbGBO11RvsHnyeZTMaO+SfYs0Ssg4FTOjPe97vRoEwmY0PAYQ5LBnqjXHsxZMZ3sPf8biR+Y4V5ZZ0mNQjcNknuXnz34iuCnbZTVCgEAN5rRqOqpkxBfhHB03Zw/6oA1t4rR9KioyUymYxNC09zUFJcjnftwaBx7UQkRcARzh56SLly5ZgdNJDOfRpLqeAiW0qvshbzJRO/nesvs2OdeL9jnToxZFw7Ht6NlEvBW7SxwDvcnshvnJucAhp8G0uVAW4OH3wgBzejx7ZlgH1zPDz28eLFFzQ01FiwcAhJyZkEBB0Vhqud6jFpYkfmeu8jMioJHW11FocN5tCJxxw+LmgA7i49KS4tZb6kjhrYuwnNG5vgGSbAjG0rC3p2aoBH+BEKi0poa21G1/aWeC8R4KZb27rUMavMoi3ifY3qa01yRo78OeQ+rgv7Lwj6hG5FdZwc2hK8/TwFRSW0aWRKRa3yHLkuAMwM+3ZsPn2f1KxcLKrpUb+WIfuuCaf8Sb1t2H7pAdn5hTSqaYSymhI3X39CTUUJh3aN2HJJdDj729Tj/PMPZOUVUL96ZYpkJbz5moR2BTUamRpx8WUkSgoK9GxSmyOPREyDXeM6cs5Np7o1ufI+iuLSUlrWrM6DL7EU/IOwzf9qgAMwtJ0VN59HEZOcgaGOFn1t6uG/Q7QFZ9u3Z+vp+3LFVJ/WlniuFaMeZ4d2nLv7ljcS4dhrTBfclx+TW1s3rWPM7IVHAJg+rB1RMcmcuSHJw2facfDMEx69jKGCmjJhrn1Yu/Mar9/Ho6WhRqhbP9buuMbzNyIALcyzP4dPPubqrXcoKSkQ5NGXqE9JrJda1TMmd6KGsS6Tpm8TF2Dzmowb1ZZ1Gy7z+Mln1NSUCZw3kNzcAgL8hdNmp871GDSoOadPPuXYN46Ndx+Mq+uyJPwkr1+K9uq8kEHifM8DfI5KRldPE+/gQSgpKbIs9IScVOy7YDBq5VW4dv4lByQ552y/flQ31Sc/t5BAKY+qfpMaclLx66fRrJcC6SbM6k79piYA3L/2lj2Sm+gM//6YSlyYr5+TWTRXdGH6jWlDu57f2fTbFp3hxf0oymuo4rlyJKo/mO6t8zvEp7dxaOtr4rZi1E9djWe337NzkXgPTiH2clXHt3p87Q0HJEA4c/EI9Mt42G8JPMTnN1/RNtDCecmoMnf0+bkFLJy6WfztB7cs86HzrUpKSlk6bQslxSW07t2U1n3KNgj8Y53bfo33j6KooFWesf4Of+ucsiolLo2r+4VJV//pPf7l1/mfVk5ODnZ2dkRGRmJqasrJkyfR0PhroPe/WV8j4wkbtZI398SuscvIdkxdOgZ1rd+TgP9YMpmMfYtOssVX8MwatquL967pVPxBgVRWRT6PxnfQEpJjU6mop0nAfpc/Ba4J0Sn4OCwl+m0cGhUrMG/PdOq3NP/luJsnHxM2cQNFBcU0aGXBvJ1Tf/o8JSWlrPbYyylpvDXaow+DZ3wfn5WUlLLCLYKzkrXEZP+BP1kp3L/8iqCJWygsKKJhSzP8Nk2Qk/VvnH5GuORl1aprfdyWjUBFVYn83ELmTd7K09vCE8t3zWiatLGgtLSUtSEnOC4FZE72tKPvyNaUFJew2PcQF4+LLtWc4EF0tLMiKT4DN8fNwjjUsCLhG8dRpao229deYpc0Wh8/owsOo9vw8E4kfrP3UFRYgk272niFDvrb4ObIoe/gZtTYtgwa3AIP9328eP4FdXVV5i8YQlJyFv6BRygpKaVTR0smTxLg5kNkItqVKrA4bDBHTj2RgxtX5+7IykH4cimIuVdjbJrVxDP0CEXFJbRvaU6fbo1wCz1MYWExrZvVomfH+ngvOSFCo1vVpkEdIxZI4pWhvZqSlVfA0SsCsLiN68ShK0/lbvrTh7YjdPsFCgqLsalfAwNdTQ5efUa5cjDDvh07zz8iJTOXWka6NKljzJ7LQmI+sacNuy8/JjO3gPomVdDSVOPqC0FaHt6hCZsuiQlCn+aWXH0VRVpOHnWq6qOgWI6n0fFolVelubkxZ5+/R1GhHL2a1JGDm15WdTj14i2lMhkdaptyPfIzRSUlWJtW40lcHHlFxTQ3qUrkb6+a7/VfDXBamBtTWlzKvXcxVFBVZlb/tvhuE23BIR2sePrhK68+J1BRXY3ZgzvgvuYEpTIZfdvUpyC/iPP3xDwzaFJPFu+4LM+YmjigFdNCD4isqnb1qFFFG9cFRwBwHmVLXEIGB88+AcBvRk/uP/nM2auiJRgwuzf3Hn/ixAUxQpo3247oL6lslsYOsyZ3oZJWBdz9DsoDM3t1bcAcz30kJmVhXFUHL7feXLr8igMHhSzQfa4dRkaVmOm8k/T0XEEwntWDt2/iWL5EsmEf2w6bVuacPPqIU8eEOsvDvz9G1XSI2H6TG1feoKSkgG/oIHR0NTh77DGnDj0Uu47AARhV0+Hzx0QWB4jPaT+6NW0710Mmk7E04IgI1tTXxHPBYJSUFUlPzSF4dgTFxSW06VKf/iNbAZD4NZ0Fc4XvSs/BLejYRwCBwoIigqfvJDc7H8umJoyf+109c+/SK/ZLM3CXMAeqmurLf3fl6EPORNwRxOBlI9HW//5AyUjNZv607QJ0DLKmi/3PHJeMlGwWThf5UD1HtaV1GT41j66+4vA6cUNxWTb6J8nsj7U18DCxHxLQNazE5LAhZR7zrY6vuyBXQDktHvnbY79VTmYeW/wE+Bvp1f9fimP4Vue2X6W4qATLlhb/mDj7v1XFxcU4ODhw//59dHV1OXPmDJUr/7X3z/9WyWQyzm+/yqqZW8nLzke9YgWcV0+gg0Orf/xa+Tn5LJ68kauSQVsvx45MXTQSJeXf337vnnlCyOjV5OcUYGxhSODBWRiali0///AsGh+HZaQlZKBnpE3QgZmY1P01dfnk1qusmiscv1v2aITHhok/OXAXFhSxcNo2rh9/RLly5ZgWPoSeP3QkiwqLWTBjO9dPCGAxc+Ewujh8v26un3jCfOcdFBeVYN3REs+1Y1CVIirOH7zPUrd9lJbK6NC7MbMXDkFJWZGcrDx8Hbfw6uEnyqur4L9+HA2sa1JSUsrKeUc4c0CMn6bN60dPB2uKi0oId9/H9W9jrFAH2nVvQHxsGu6OW4iPTaOylApe2agSW1ZdZK80Gp/g3BX7Ua25d/O98OsqLKFl+9p4hdrz7tVXvGbtlqulghYN5cXzGOa57/+5c/MD52bkmDYMcrDG3X3vT+AmOUWAm+JiYaY6dUon5nrt/wHcDOHY6WccOiY4Kq7O3VFSViRk6Skh9e5pResWZriHSp2aFmb0726Fe/gRCgqLadnEFLsuDfBefEJ0dmwsaNKgOuEbxeZ8cI8mFJWUcuiiACyuYztx/PpLXn1MoKKGGs7D2xO+QxLJ1DXG2FCbfZfEiMx5UDv2XHpMYno2poY6tKxfgx0Xxfsc38OafTeekZ6TT11jA/S1Nbj47APKioqMsG3K5kv3kcmgR5Pa3H73mZSsXCyM9CivpsyjT1/RVFOhVZ0anH76jnLloHfTuhyWwE2PRhacffWOklIZbS1MuPPpCwXFJTStYcSrhERyC4toYFSZDwn/XxbV36qWtauz6rT0kHboyOKD10TKd53q6Gmqs/fiExQVFJg3phvzd10iO09kTLWqZ4L7aqFMcB1uy9lbr3n5MR4tdVUCJvfAZ9UpsnMLaGBuyJDuTZjiv1dwe2wbYF5djxkBYqbtOLg1aspKrN4hdhZOozugqKDA8s3i4pk8sh1VDLSYNFuMHfr3bIxtm9pMcdlJdk4B9etWxXlyZ1ZvuMTT5zFUqKBCkF9/4uLSWSQBl+HDWtG2jQXh4Sd49y4eLa3yBAQMJC+3QJCKi0po3caCYSNb8+rFF1ZKKqKxE21p3qIWD+99ZKt0MTvN7kHd+tV4//orK8K/ORV3oHlrc+E+PCdCmGA1N2WsFGZ5dPcdrpx+Lnxq5g9GR09TRCS47SU5IYOqJnq4BIjWd1FhMSEuu8jKyMO8XlUmeX7nfqwPOcHH11+pqKOOx9Lhcvlp0td0Fs4RpOw+o9vQ9oeuTmxUkpx3M2RGFxpLCiyQcqZc95CSkEG1WgY4Bf/sQyOTyVg2eyepCRkYm1fBsQwn4qy0HBY5bQXAbmx7rLuUbY3//OY7jqwVXSCX5WN+8R/5sRK/pLBVUsiMD3D42+GMexceJyMpi2rmVegzpWxuxt+t61JgX7fRHf5Hr/OvlkwmY/LkyZw6dYry5ctz4sQJLCws/vrE/6VKjU9nmdNGOZG4fps6uG+bhsFv0t3/rOKiEvF3WErUixgUlRSZsnAEvSf9tZT86JrzrHXbRWmpDKv2lvjsmvanROYHF18QPGYNedkFmNStSuB+5186jTKZjJ3zj7Nrgbhv9RjZlmkLhv00bs3LySdw3HoeSyMi15VjaNe36Q+/LyDQcSOPr70VWVcrR9NGIv8CnNt3l2Vzhdlhu96NcV06Qn6dHtt+gzUSf6+rvTUzQoTZZ2ZaDt7jN/H++Rc0tMoTuGk8dayqiw6N5wEuSR0al+BBdO7XhMLCYkLnRHD78muUlBTxXDiEVp0s+RqdgpvjFpLiMzA01iF8w1j0q1Rk/ZKzHJK6P5Nmd2fAsJbcuvqGYPf9FBeX0rpDHTxCBvH6xRe8Z+8hP6+Iho1rELhoCM8eR+PvtV90eCRwc2DvXTZLUvBRY9syyMFadG5eSOBm/hCSU7LlnRvbDnWZ5tSZuV77eR+ZIAc3J84+4+AxKW5hRjeUlRUJlsBN3+6NaNfSHLeQI6JT07wWA3s2xj38CHn5RVg3MqFvdyu8Fx8XnR1rM1pY1SBMAjf23axAoRz7JVO/OaM6curmK55/iENLXZWZwzsQvvMSOfmFNKldFbPq+uy+IADMtAFt2Xf1KfGpWdSorE2bhqZsvyDe55huzTly+4UYWVXVw8igIuefCCLyyE5N2HL5PqUyGV2tzHkU9ZXEzBxqVtZBS0ON+5FfqKCiTDvLmpx4IsZPfZvW4/CjlwB0a2DO+deRFJWU0rKWMQ+jv5JXVISVsSHvk1PJKiikbhV9YtIzSMvN/8vr51v9VwOc1cdvg5IKU3q15PCN58SnZmGsX4m+rerhvVHMnmcPbs/+S4+JTkijso4mU/u1ZtayIwDYd2xEYUExJ2+I7kuQkx3rDtzi89dU9LU18JnYDdeFR0SuR20jRvZpziSfCOEAaWNBl1a1cXQXN7GeHevTztoMR1ehkOrSri52nRsw2XUnuXmFNKpXDadxHfAPP87nmBT0dDUI8OrL+UsvOSztArxc7aioVYHJTlspLCymhXUtxoxqw5HDDzl/7oWIavDth66eBnNn7ZaTiud69iYjPYcAr4MUF5fStkMdhoxsRUJcOqG+h4SssbcVvfo1ITM9l0BJImnT1oKh49ohk8lYHHCUL9LM2yNkEIpKirx8/JkNEmCa4NKN+k1EhtHO1Rd5fCcS1fLK+CwZJk8C37jglNzMz2vZcFQkpca1U085ufu26MIsHIpeFdGdKCkuIcx5p/DPaFCN8e7fAVFhQTGhTtvkOTjDnX/m3ZzaeZPbZ5+jpKKI26rRcqLytzq98ya3zzwTN/I1Y+XGgt9KJpOx0nUXKfHpVK1VmQn+PxOTv1V+TgGLpTyq7qPa0qwM1+Mfa82cneRl51O3hdnfMvQDkX90eIX0dw4Z+pedgd9VXFQiHx5HoaBQjpZ/czT2v10BAQFs2rQJBQUFIiIisLH510wK/5W6uv82K6ZvJjMlCyVlRUb62eMwp8+/RNZ+cP4ZoaNXk52Wg3blinjtnE6DNrV/e05JcQlr3XZzTLKB6D66HdOXjv7T7/Tcrhssdd5OaUkpVu3q4LN96i9+OCUlpax03cVpaeQ0fI4dI9x6/zRKzUjJxm/Eat4+/oRaBVV8tkz8SSmYmZaD78i1vH3yGbUKKvhsnECTdt99co5uvsraeYJk332IDdNChf2DTCZj7+pLbFsk7qf9xrbF0as3CgoKpCZm4jlmA5/fJ6ClXYHgLY6Y1asqukRu+7h+RmyM5s4fTLseDSnILyLIZTf3b7xDWUUJnyXDsG5Xm5ioJNwdt5CSlEU1Ez3CN4xFW0+D1QtOcUzKw5vm1oveDtZcu/CSMO9DlJSI4Ey3wP48fxKNr+teCvKLaNzcFP/5g3n8IIpAb2kD2K42XgED2Lv7Nls3C7O9MePb0X9gc9zd9v5AKP55LNXR1hKnqZ1+AjeLQgdz8twzuSGr64xuqKgqycFNn+6NaNfKQg5uWjWrySC7JnJw07xRDQb1aozn4hOis9OsFq2b1SJk/Vkx1urSCEVlRfacFs+EWaM6cPbuW55JcQyzRtqyYNdlcvIKsTI3wrKWITvOCiA/dUBrDl5/TmyyUAd3aGLGVikJfEy3Zpy8/5rkzFzMDHWpYajDWSlyYVTHpmy7/JCSUhmdG5rxPDqB+PQsTPS10a+kLpd/d2pgxjGJRNy/eT0OPxbgpkt9My6/+ygfRT2PSySnsJAG1arwKT2djPx8LAz0SMzOJj0vn9oGev/fiOrvVHFpKXbNahOXInI0NNRUmDOoHV4bxQx0YLsGxCVlcPvlZ+EKPK47AZvPkZtfRLM6xrRpWJPZUgyD87D2PH79RW6gFOrcm2XbrxD9NQ0DHQ3mOfXEc+Ex0jJyMTfRx2VcR1z895OVnY+luSHTR7dnpt8B0jPzMDc1YM7kLgQsPEFMbBoGepoEuPVh94G73Lj9XrLu7k9CYiZLJHO/cSPbYGNdC1e3CBITM6lWVRsvj968fBnLGimpduKkjjRuYsLqled59lR0fPyDB6Gmqoyv215SkrMwrqHLHM/eFBWWEOB5gMyMPCzqGjJtdg9KS2WE+x4mIS4Dw2rauPr3R0GhHAd33uLGxVcoKSniEz6YSjoapKdkE+K6V/jUdK1Pv+Ei/PLutTfs+UYS9uuPiUQSvn7mOcd2ip3WnFB7KksS7q+fk1nqKTpeDpNtadr2+05+x9JzvHr4iQoaanisGImK6vflvCn4KJEvvqClrY7bip+9RT6/i2O9dDMe59EHs/rGP62LmPfxrJd8asZ49qXWH34PcOXgPa4eeSBuwGvGlykJB8HPifuUhH5VHRwDf8+LuXX8IbdOPEJRSZGZy8f+7cTu7YEHKcwvomHbOtj8htvzd+rmEXFDa9C27r8U7fA/rU2bNskl4KtWraJPn/8b9+SM5ExWztjMVclvqlYjE1w3T6Fmw38eLCqTydi38ARb5+2ntFRGnea18Nkz4y/J2tnpOYSMXs3DiyJrZ0LQYAY59yiT0yWTydg1/zg7w4Q9RUcHG1xWjPnFwK8gr5DwSRu5deoJ5cqVwyl8KHZ/AM4JMSl4D13Jlw8JaGqrE7BrKnV+IFAnfU3Da/hqYt4noFmpAoE7plC7cY3v72PJGXYtFaP9AY4dmODdVx6jsjn8JAek6334jC4MdxZE5ITYNDxHr+fr5xR0K2sRvMWRGuaVKcgvImTmLu5dFV0izyXDaNnJkvzcQvydd4qNkZoyfstH0KSlGZ/eJ+AxaStpKdmYmBkQun4sFbUrsCL0hDRCL4ezV2969G/K5bPPme93mNISGR27N2COXz+ePPqEn+teCguLaWZTC79Qex7c+0iQj7TZs62L57x+7N55i+3SmGucYwf69GvykxR8/oIhJCb9zLn5Npb6Gdw8l4ObOTO6ofwDuOndtSHtW1mIsZQEbhz6NMU97Du4cbBrisei4xQWFdOmaU3atTAneJ3kYNypIWpqyuw6JV7fZYQtl+6/4+k7weWcM6ojC3ZfIiu3gEbmRjSwqMr2M+J6n9y3JcduvSI2WYRFd7G2YNNpAQ5HdWnK6QdvxciqsjZmxvqcevgGRYVyjO7UlK1XH1JcWkrH+rV48zWJr2mZGOtWxFBPi1vvhMtxd6vaHH4oAE2/5pYcefwKmQw6Wtbk+odPFBSX0MykKm8Tk8nKL8DS0ICvmZmk5eZhpqdDWl4eKTl51NTTISM787fX0Y/1Xw1w6hrrY1m9MosPXBOOwMM7s2jfNXLyC2lsXhXLGlUIktLCfcZ0ZdOxO3xNysBIvyLT7dvgvOCQ4Nm0rYeuljpLpFAz9/FduP7gA7eeRKGirETYrL6s23OTt1GJVNIsT9icvixef4GPUgxD0JzeLN14mXcfhdw7xL0vew7d49Z9EX4Z7NmPV2++suWbUd+0rlQ20GLi9K3CJryVBSOGtmLdhss8eRpN+fIqBPgPJD+/iIBvoZq2dRk0qDmXLrzk0H6xqN08e2NcXZd1Ky/w7LE4b16oPRXUVVkSeoL3b+LQqlgen+BBqKgqsWP9FR7c/oCqqhK+8wejoanGi8ef2Sj5Ukye3Z06DaqJEZTnAVKSsjA21cPFX0hHE+PSWeAhwErvIS2w7SXGSbGfklniLcYyDo7taSFlRhUWFBEyY6fowjQzlRt6ATy6/o59EhF5Zpj9TyGad8694NhWcTOavWQ4ej+Y4xUWFDF/2nYKC4po0r7OLzlTxUUlLHDaSkFeEVZta9N/Usdf1k1KfDqr3IU30bDZdtRuYlLm+np9P5Jj66X3uHw06lrlyzwORKdntasYRQ6a2QOT35j//Vgx7+LksvAJIUPLfBj+k7p7Suz8WvVt/j96nX+lTp06xaRJkwDw9PRk8uTJ//Z/UyaTcf3gXVY6byE9MQMFRQWGefRnqEf/X8DC36ns9BwWOK7nzgnxd+w+tgNOS0aVacT3Y8V+iMfXfilf3sehWkGFuRsm0eZP0ucLC4pYOmMbl/YJMDZkVk9Ge/f/5bvPSMli3ohVvL7/EWUVJdzWjadN76Y/HRP1OhafoStJic9Av6o2QXumUd3iu8Hll8gEvIatJjE2DT3DSgTv/p4dVVpayrp5h+XX2sjZPRgqKalKSkpZ7XeYU7vFpsXRszcDpHDcL1FJeIxaT3J8BpWraRO6bSKG1XXJyynA32k7T+9+FAG4K0bQtI0FOVn5+Dht59Xjz6iVVyFg1SgaNjfl/atYvKZsJzM9l1q1qxCybgwammos9j/KeYkjNMuvH13srDh/8imLAySptp0VLt69eXjvI/6SG3GLVub4hAzizq33hPgdlgdnunn3Zce2G+zaLq4xx0m29OrTGLe5Ebx5EyeBm6HExacTFHJMDm6mTOqIq5cgFFeqKMDNibPP5WOpOVLnJuSHzs0fwc3gvs1wCz1MXn4RzRoKcOO5WICbVk1q0t7GnJB1onPTp2MDKqirsuuk6MbMHNGBK4/e8/itsChxHdWRhXsuk5lTQINahljVrsrW0+I54NjbhlP33hKTmI6RrhY9WtZhwykxph7eqQnnn7wnXgrLrGNSmZMP3qBQrhyjOzdj+9VHFJeU0r5eTT4kphCTkoGRtibVK2tz4+0nVJUU6dG4NoceCHDTp2ldjj15TalMRvs6NbkVFUNeUTFNahjxITlVdGgq65GUm0NyTi419bTJLiwkKTsHE51KZBUVEJeV/dtr6cf6rwY4I2ybEiClpU7r24YjN14Sk5hOFR1NxnVvzpxVYnc0wa4FLyPjefA6hvKqygRN7EHAhnNk5hRQr1YVBtg2wilUcD2G9WyKipIi248K9Os5qStPX0sxDArlCHSx49y111y9+14oolz7cOX2e859IxnP6c37j4ls2ytuDK5OXamgpkKwZNTX364xXTtaMttjL8nJ2VQ31sFjTk+uXnvD/m/+N669qGqkzSyXXaSl5WBaU5/Zc3oS9TGJxd9yp4a3onXb2ly9+IoDUpSCq1dvqtfQ4/Sxx5z+RjQOGEBlw0rcv/meXdLsebqHHTXNK5OWkk2w+35KS0qx7d4AO3vxUNy9/op8p+W1cAjlK6iKwM05EWRn5mFRvyqOrsIZt7CgiJBZu+UgZtQPIGZj2EkiX30VXZgl3/kCaUlZLJwtrOd7DLX5iXeTmpDBElcBPgY4dsC6o+VP3/m28BN8fBWLlo46sxcP/6VLsmfJad4/E5Lw2ctH//L7b6Op7PRczBvVYIhL2Sqj4qJiljkL48DOQ1vRtGO9shehVP8/9t4yLqq2bfv+090tEgoGBnZ3g93d3YqYgICI3afd3d3d3R0IKCDdHTPAvB+O5SCneV7x3M/7u5/9EzBrgplZx9qOfd/i4LIzJEQmY2VvTt/pf9612L9QLNr12lenXM3Sv7/DLypfns+HhyLvpVrzX4/S/tP15MkTevToQUFBAQMHDlTGMfw3KzEqmdUTtnL/tLjoOFQoybStY/5lYnXIizDm9vmL2K/RDcsH0HbY9wD57/X8+lsCB64lMyULi5Km+B+cjHOVH3eO0pMzCei/ljf3g1FVU2X80n4/9LiJ/hzP7F5/EfUpHn0jXfx2j6Vy/eI8ptf3g5kzaANZ6Tk4lLNh7v7xSodhgKAX4fgN2khaUia2pS2Zt28sViVFFypfXsCKqfu5dlxcUMcEdKPjYEFGlsvyWTr1ALfOiK7RhHndcJeSvz+9j8Z7yBZSkzKxK23JvB3DsbAxJjM9B99RO3j/IkJk1q0fhGvt0qSlZOEzegfB76LRN9Bm7vpBuFSx592LCHzG7SI7M4+yFW2Zt34gOrpaLPQ5yq3Lb4VBYEBXmrlV5tyxp6xaIHGPOldn4qz2PLjzkUDJ56te47J4z+3GnRsfWBR4ksICBS1aV2KqVwe2b7vFQQmkjRzTHLe2VZjquZ/g4FgMDLVZsqQPkVEpSofir2qpqV6H+BQmMv+WL+jFyfMvlWqpqRPaoK6p9ktw07NjDSW4qVHZnp4dBLjJk+VTr1opmtUrw/yNlyRuZyUMDXTYfUYAlol9m3DreSjPPoggzamDBLhJy8ylYmlrala0Z9tZAWBGdKjLpafBhMelYG1qQLv6LmySwE2fZlW5/iqE6KR0SpobUdm5BKcfvUNFBQa3rMHum8+Q5RfQ0MWRsMQUwhNSsTbWx8nWnFvvhbdNuxrlOfpYgJsO1ctz9lWQIBGXc+RJRCQ5MjlV7KwJS04V3RpLM1JlucRLgCY3v4DYjExKGhuRqygQfzcx5tNvzypR/6sBzpJD1ykoVKFt7fKkpGXz4J0YRfkObIX/tgvI8gtoUtUJW3NjAraKFqzfsDbsOvPVJEkPn2Gt8Vx2gty8fGpXcqBNvfKMniNIr33a1cDMUJdAyVNk/MCm5OXJ2SJZZ08Z3hK5vIB1O24AMG5wU0yN9ZgVKPxiuneoQaO6ZRjjsZusbBmVK5Zk/MjmbNx6Q0kqnuvblbi4dJZIUufeverSuFE5Vq26yLt3UejpaTFnTlcK8guZM/soublyatQsxeBhjQn/nMDSBSIGoGe/ejRq5sLHDzGskeblg0Y2pUbt0sRGp7LQ9xgKBbTrVoNW7apQkF/AAq8jJCdmYF/agkneYqb/7H4I+ySviYmzOypHUNv/usSHV1/QM9DGa0lvJb9my5LzfHofI0DM0l5KEHP7/CtOS7br05b2VvJuCgsLWTbtACmJGTiWtWbU7KIsKZFBtY/0lCxKV7Rl0PTiBnVPb77n2CZBmJ6yvN93UQtBz8M4sEpwWcYv7I25FNz5bd049pj751+irqHGlNWDfmqrf2T1JcLeR2Fkpv/LIE2A2LAEpT/OyAV9fjru+ntFBsdw/aB4j/rN6vxH9/lVBT/7TF6ODANTfex/oMD5b9WnT59o164d2dnZtGrVis2bN/9XjfwKCws5t/kqW7z2kZ2eg7qGGr1ndKb3zM6/7bT8qBQKBRd23GStxy7keXKsHMyZvW/iH/nknN58lXVTRX6TS20nfPdPxNTK+IfHRobE4tvrL6I/xaNroIP3jtE/BM5Bzz7j23cNaYkZWNqZEXhwYrGuDMDdcy9YNGYb8rx8KtZxwm/nmGKRJk9vvCdw5FZys2WUcbUjYPdojM2EQjAvV/hKPbwigITn8r7KwNrcHBnzxu7kiTRimra8D40lIvL75+H4Dt9GZnoOpV1KMG/7cIzN9ElNzsR7+DY+vY9B30iHwE1DKOdqR1JCOl4jtxMeEo+RqR7zNw7GqXwJXjz8hP+kveTmyKhU3YE5q/uLfL0ZB3lwM0iQjxf0oEFzF47vf6B0We/YsxZjp7pz6+o7FvqLUVKjZi7MCujC1YtvWLbgNAoFtG7riseMdmzacE3Z7Rap4JWY6rmP0NB4jIx0WLK0L2HhCSxYdEbpUDxsWBOmeh3kc1ii8LlZ1JsTZ55z/MxzpRRcTV2VBavOi7GSe1Ua1HUuBm56dCgaS9WobE+vjjXxWlbUuWlevyzzNlykUKGgQ9NKGBnpseu02NxO7NuYOy8/8fT9F3S1NZk2qDnL999Qgpu6lR3YckYAmGHt6nDlWTBhsclYmRjQoWEFNknAp1fTqtx6+5mopHRKmhlSo1xJjj94i4oKDGpRgz23nyPLL6B+eQeiUtIJixeuxOXsLLnx7hPqaqp0qOnC0cdi3Nq+WnnOvflIfmEhDcs48CIyhsw8GZVtrYhMSycpKxsnC1Oy8mXEpmdS0sSIfEUh0Wnp2BgZUKiqICYtA1sjA+SyvN+eV1/rfzXAScvOo3IZB2o6l2TubkHq8xnQko0n75OQmkUpG1P6tKjOpOUCcAzrWIfQL4nckgI1541rz/LdN4RZn6UR04Y0x2P+UXLz8qlZyZ6uLaowwmcfBYUK3BtXoG4VB0bO3Cu+2K2rULuKA8On7RHZH00r4N68IqOn7iUnR07VSnaMGdyYwCVnCYtIwsxUjzmzOnLzThCHpV3TLM92mJnoMXb8TgFcqjsybEhjLl16zamTokXu5d0RGxsT/HyOEBWVgqWVIV6zO5GbK2eO1xFyc+RUre7A0JHNSE/LYa7XEUEgbliG3gMbIsvLJ3DmITLTcylboQSjp4hQu10br/PyyWe0dTSZvbgXOrpaJMals2jWEdFZ6VaTFu2rAvDw5geO7pBA3dyuWEu7wLuX3ij9LaYu7IG5BDjiIpNZ5S1GWT1GNqVm4yJi5rEtN3l6KwgtbQ1m/tW/mN/NyW23hGGftgYz/irOyUlLzmSZx14A2g9qSJ2/kX3zcmQsm7hTBAV2qkGTzt+PB1Li01knjab6eLaj1E8M2qI/xbF3sej+jZzXCyOzX3udbPY+gDxPTtUmFWjQscYvj/229i8Su8Y6bav+S6Zzf6+390TOS8X65f6Y//PvVkJCAm5ubsTHx1O1alWOHj2KpubPg0f/3fr0Kpw1E7fx5q74X8vXdsZj4yhK/YBn9SeVm5XLGo9dXN4txjS13asybcuo3xozymX5rPPczbntNwBo0bs+k9cMQVP7x//767sfCRiwloyULCztzAg4OPGHMvAHF16yYMQm8nLkOLvaM2ff+O/yy87suMV6r4Oi8+fmyoz1Q4vlSl0//oRlHiLnrVrjcsVCZzPTspkzfCtvHoaiqaWB1/rB1GkpQFZmeg5+w7by7mmYEBCsH0wN6dx9fjeYOWPE6NelmgMBW4aib6hDYlwaXsO28SU0HmMzfeZvHUqpcjbERacwa8R2oiOSMLM0YMHmodiXtuTR7Y/MnbIfuSyf6vWc8V3RBwD/Kft5+iAUTS11fJf0plaDMhzccYdtUiRDj4H1GTa+JVcvvGZpoDhvmrepxDSfTlw4+4KVkh9Xu07VGT/FjfVrLnPyuOjsTfRoQ6Mm5fGcso/Pn0VXZunSPnwMiWXx0nNCJOLmyuDBjZk664C0XuuzbEEvjp9+zomzAtxMn+QOqhQHN3Wc8Vp4skgt1b4as74hFPdoV10JbhpUL03zBmUJXF8EboyNdZXgZnyfRtx99bkYuFlx4CZpmblUKGVFfVdHNp0W3foh7Wpz/WUon2KSsTTWp1Ojimw8K27r1aQK996HEZmYRglTA2q62HPsvgAqA5rXYP+dl+TJRZ5UXFqmMjG8ooOV0rivU80KHPkKbqqX5+LbYPILCqnnbM/L6FjSc/OoWMKSuMwsEjOzKWVuQp6igGgJxKiqQERKOtaG+qipq/IlNQ1rQ30KUBCV9v84OH9UpgY6jGpbl+kbRPtyqHttngVF8io0Gn0dLbwHtcJ73VkRIla1NOXsLJn5l+h4zBzSkptPQnjyVsTIL5zcgWXbrhIVn4aNhSE+o9swfdEJ0jJyKV/aivEDmjDB9yBZ2TJcXWwZPaAxk30PkZaeQ9nSVkwZ2ZK5y88SEZWMhbkBc6Z34OipZ9y4E4S6uioB3p1JS8thiST/7tuzLg3qlWG231Eio1KwtDTEx6sjYWEJrJCUSwMHNqRuXWf27b7L/bvBaGiq4T+3G4ZGOgT6HuNLRBIWlgZ4BXRFRVWFJQEniYtJxcbWhOm+nVFVVWHjiosEv4/BwEgHn4U90NRU59GdjxyQXEU9ZnfEvpSFUDTNPERaShZO5awZM0OMoOJjUlkikYQ79atHgxZiMYyNTFbybroPbUwtaSHMlxew0GMfWRm5uFRzYOA3rsMfX31hx1LR6Rjl2wmHskWmfKFvI9m2UHw2I2Z3LmbYp1AoWD3zICnx6diVsWKYT+fvvgu7Fp3mS3AcJpaGjFvw45DMdbP2k5GShVNlO3pNcvvhMQqFgtWee5Dn5VOtqQvNe/5aAfT6zgfunHwi7PcX9f3jzkVceCLXDojuTd+Z3/8//0p9ehUBiIv+/4nKzs6mQ4cOBAcH4+DgwLlz5zAw+DUY/FcrMzWLnf6HOb3+IoWFCrT1tBga2IcOY1r/y3EWYe8imdd/DRHvo1BVVWGQf3d6erb/LThMjktlbr/VvHsQgoqKCkPm9KCnR9uffvaX9t7hLw/hLVO+Zmn89o77YTbYyc3X2OgtgEvNFhXx2jIKXQNt5e0KhYId809yaLXgFbr1b8D4hb2LdSGPb77OpjmCgN+kU3U8V/RXcpGS49LwGbiRz++j0TXQxn/bCCrXEeO85IR0fAZt5vOHGPQMtAnYNpwKknHn3YuvWeixj3x5AdUblmX22oFo62oSHZ6I17BtxEWlYGZlyMLtwylZyoLIsERmjdhGQmwaVrYmLNw8FBs7U25ffsOimUfIzy+gbtPyeC3pRb68AN/Je3n9TPBz5qzoS5WajuzaeJ29W4Tiqf+IJvQf0YTzp56zatFZFApo074qk2e24/Sxp6yVCNKdu9di9MRWrFp+gXNnhCfMlGltqV3XmSlT9hIRnoSZmT5Ll/XlzdtIlq0QQKVDu6r061efKTP3E/ElGXNzfZYv6M3B4485c0H40MyY7E5+YSFL/hLvfWf3qtSr7YTXQuFz07C2M13bVmPWwuNiGlDF8Ru1lAA3TeuVUYKb9k0rSuBGdJjG927E/ddhPHlXHNykZubg4mhF/SqllOBmkHstbr78RGh0EhbGenRpXJkNZ8VGs0cTV+4HRRCRkIq1iQG1Kzgowc3A5tU5eO+lyJ0qa0diZrYycsG1lA1X3oj07461isBN26rluPQ2GFl+AXWcSvIuNp703DzK21iQmJ1NXEYm9qbG5FPIl5Q0rA30UVdXIzw5FUsDPTQ11QlPScVKXw8VVRWi0zMoaWT4/0ZUf1LefVuwYO9VAWBcS2FprMf2sw9RUYGA4W6sOXSb+JRMHG1MGd6hLuMWSmqeVlXRUFNln8RWnz2qDZfvBvHwVThamoJUvGHfHYLDEjA21GGeZweWbb5CWGQS5qb6BEzpwOqt1wkKjcPIQId5Mzpy5PQz7jwUKa9zZ3biU1giG7dLTsWjhFPx6Im7yM2TU7O6I8MGNWLf/vvcfxCChoYac3y7oKamip/vMSERr+PEgIENefb0s1LaOHFyG8qWs+H44UfcuiYiHnzmdsPERI+Du+/y8J4AQb7zu6NvoM2NS284c1R0i2bM6YKVjTHxsWks8RULYIeetWnaRni/7Fp3jTfPwtHV08J7aW80tTTIlxewYNpBJe9muKcABXJZPgs995OVkUv5KnYMmtxa+ZnsXX2ZDy8i0DPQZsbyPkofjZysPBZP3ktBfiEN3V1x61VkLpabI2PRhN3kywqo26oSbfsXN2O7ceIpd8+9FIqnvwZ+F8Xw5mEIxzcKMvCkpf1+uPu+c/opt08+RU1dlSl/Df6pbPf64Yc8v/EeTW0NJiwf8EvAUlhYyCYvMc50G9z0H3URjq46J6TBzSr+W5EM31bCl0QArB0tfnPkv1/5+fn07t2bhw8fYmpqyoULF7Cxsfn9Hf9hFRYWcmnnTbZ67yctQez8GnWrw6jFA/4lXxsQQOHizpusm7KbvBwZptbGzNgxhqpNKvz2vkFPPxHQ5y8So1PQM9Jl1o4x1Grl+sNjCwoK2eZ/lKNSJlGjzjWZuq54t+XrcZtmH+KkRGh369+Q8Uv6FvuOymX5rJyyh2sST2/A9Pb08ShSaBUWFrJ9wWmOSIrLTsOaMNKvixKsRX6Kx2fABuK+JGNiYUjg7lGUriA6SDERSXgP2kRMeBImFgbM2zGCUi4ii+3Skces8j5CYaGChm6Vmba0D5pa6nwOisF7+DZSEjMpYW/G/G3DsLI1IfRDNN6jdpCanEVJR3MWbB6KhbURl04+Y6W/iMpo4laZaYHCmd1nwh6C3kahq6dF4Or+VHC1Y+vqKxyW3NSHjm9Br0ENOXn4MWuljV+HrjUZ5+nG0QMP2CR1eHr2rceQUU1Ztvgsly4Ik9VpM9tTtboDUzz2EhmZjIWFAUuX9eXp8zBWfQUqnarTq2cdPGYcICo6BUsLA5Yu6MXeQw+5cEVYc8z0aEuuTK4MzuzWvjq1qjviLcUvNK5Ths5uVZi1SAI3VR3p2rYI3HxVS33l3LRvWhFjI70icNPnd+DGkc1fwY1bLW6//qwEN92auLL+jAA33Rq58jDoC+HxKVgZ61OvoiNH778GYGCLGhy694pcWT61nEuSnJXDx5hETPV1qOZcksuSK3HnWhWV4Ma9almuvA8hL7+AWqVKEhSfJEjE1uak5eYSm56JnYkRqEFEchpWBnroaGnwOSkFC309dLQ1CEtOxVxPFzUNNaLS0rE20KNA/v9GVH9Uuy4+JS4lEwcrE3o0qcKUNScBGNe1IfdehvEyOBo9HU0CRrrjt/4c2bkyqpWzxb1BBcYEClLxoA61URQq2H1KLBzeo9rw4l0kF28LUnGgRweu3w3ixn0pZmFqR+4+DuXctTdKp+LwL8ls2St1REa3xMxYjxG+YlFwb1WZ9m5VmB1wnKjoFKwsDfGZ0YHnL8LZvlMAl0kTWlOmjDV+vkeJiUnF2tqImbM6kJyUyXxJOdDG3RX3dlV59yaSjavFOG7UhJZUqFSSV8/D2S6Z+Y33dMeprDWR4UmsnCc6Ir2HNKRWgzICsHgdJj0tG+fyNoz0EN2VJ3eDObhVvJbJ/p0pISmadq6+zPuXEUrejYa04O5cdUn43RhqM3NZEYh59TCUg1IQ3sTAbkpCI8CmwFNEhSVibmPExG/SwwG2zT/Fl5A4TCwMmbS4d7HbEmNSWecjJN99J7vhXLk4iMjNymP5pN0oFApa9apLndbfm/WlJ2eydoYYTfWc5I5T5R8DkYyUTDZ6CxfmvlPbU+InrrNf6/qh+3x89hldA20Genf55bHfVlpiBhekmI5eU/9zQZhxEQLgWNr9axf+Py2FQsH48eM5ffo02tranDp1ivLly//+jv+w3t4NYsO0XQQ9Fq4ZduVLMG7lEKq3+LEh459UdkYOf03YznVJBFCjZWWmbx2F8R+krV/ed4dVE3Ygz5NjX64E/gcnYets/cNjszNyWTRiEw8vvgKg34wO9J/R8TvAnJuVx8JRW3hw4SUAQ3270mNC8VTyrIwc5g3bzPNbH1BVU2XS0n607lNPebtcls/Kqfu4dkxsZobM6kCPsS2LhWb6DtpIenIWJRzNCdw9GhsH8R359D4an8GbSUnIwNrOlHm7RlJCuu349ltsmi+642161GLC3G6oqany/kUEvqO2k5meS6ly1gRuHoqphQHvXoQze+wusjJycSpvw7wNgzE20+fkvgesl4xF23SpwcTZHUlPzWbWuF18Do7DwEiHBWsH4lTOhrWLz3H6iER89nSjc+86HNpzjy0SkOnepy7Dx7dg38477JREE/0GNaTfkIYsnHeKG9feo6qmwizvjrhUtMVj8l5iYlKxsjJi6bI+3H8QwloJBHbrWpOuXWoyefp+YmLTsLYyYun8nuzYd4/L14VoxGtqO9KzclkpuZ336FiD6lXs8Vl0Shm/0KGVq9KhuE41Rzq1ESZ+MnkBDWs60bBmaaXPTcdmlTA01FUSiv8Obqb+ANx85dwMcq/FnTdhhEYnYW5UHNx0bViZx8FF4KZh5VIcvieBm+bVOXz/FTkyOTWdbEnLyeNjdCImejrULFOSi6+CUVUpDm7auJbl2odPAtyUtiUkMYmU7BzKWJmRIZOJUZSxAWoaqnxOSsHSQA99bS1CE5Mx09NFT0eTz8kpmOnpoq2lwZfUNCz19ShUhZiMjN+dasr6Xw1wXoXGYGhoiFe/FnhtPCti6GuXw0RXh7XX74hOzgh3tp14QHiM8LOZObglHkuPCzZ7FUda1i3LKD+xC+/bvibmxvoEfCUVD2hCYUEhGyTwMnloc1SAlVskX5p+DSlhZcSIKbtFq7ONK62aVmDCtH2kpedQztkKj7Et2X/4Ifceik5NwOwuyPLymbfglIiOd3OlrXsV9u+/z717wWhoqOHn3wVdXU1mex0mNTUbJ2dLJnq0IS01m0BfyeSquQudu9ciJTmT+b7HKCxQ0NKtMm4dqgpDrVmHycmW4VrdgYEjmwGwc/013r38Iro0C3uiqalOUnw6S7zFqKl9r9o0bi24LU/uBnNY8o3wCCji3Ty5HaQMzfOY113pd5OeksVizwMiCbxHrWI5U3cvvubCwYeoqKgwdWmfYmTIx9ffcXqn4Pd4ruiLsVlR9+WrW3FmWg5lqtjTc9z3Dr/b558kJiwB8xLGjPoJGXiT72FS4tOxL2dDnyltf/p92jH3OGmJGdiXL0G3CW1+ehyALFfGdn/REew9tcM/ilY4vfEyeTkyylQvRbVmv1Zn/WkVFhaSGJkEgIWd2W+O/vdq/vz5bNy4ERUVFfbt20eDBg3+o48fFRLLVu993DkmNh06+toM8O1Op3Fu/5L0+2t9fPqJhYPXExUSi6qaKoP9utPDs91vR1JyWT4bZ+7j9CZx3tdtW5XpW0b/1DYgNiIR/z6rCXsXhaa2Bp5rh9Cka+3vjkuKScW//1qCX4ajoaXOtHVDafw3aXlCdAp+/dfx+V0U2rpa+GwdQY1mRZ2mrIwc5o3axvNbQaipqzJpcZ9i0QvPbgUx9yvZuLIdATtHKuNIXj8KZc6I7WRl5FKqvA2BO0ZgammIQqFg54qLHJRsHLoOa8zwGe1QUVHh+b0QAibsJjdbhktVe+ZsGIyBkQ7P7oUwZ/Ie8nLkVKjmQMCaAegZaLN/8w12rhHvW5f+9Rk51Y2EuHRmjd1JZHgSpmb6LFg3EDtHC5YHnOTyWREGOXFWe9w7V2fX5hvskdabvoMbMnBEE7ZvusEBqcMzeEQTevStR6D/Ce7eEZtQb7/OlHayxGPyXuLjRVDx0mV9uX7zA5s2iw1Y7151aevuyuTp+4mLT6eEjTFL5vVky+7bXLv5ATU1VWZPb09SahZ/bRbvQ+8utajkUgKfxSIVvGm9srRtUYlZiwUHp241Eb8we8UZpUNxveqlWLjlstLnRk9PSwluJvRtzN2XXzk3Gkwd2IyVvwA3d9+GERKViJmhLt2aFoGbLg0q8TQ0UgluGlcpzcE7AlgPaFadIw/ekJ0np0ZpWzLyZARFJ2Cip0PtcnZcePkRVRUVutQuAjetXctw8+MncuX51Cxly6ekFJKzcnC2MCU7P5+o1HRKGBmgpaVBaGIy5vq6GOpoE5KQhImuDkZ62oQmJWOmq4OetibhKaKLo6IGsZmZ2BkZ8fmXZ1xR/a8GOAB+g1uz+uhtYT9tZ0H3xq6MXyZIxSM71yc4PIFbz0LR1FBj/vj2LNt9nZiEdEpaGjFtUHMmLzhGTp6cmpXs6dG6KsO89gmg1LA8jWs6MVyyW2/brCKNajszfOoe8vMLaVK3DN3aVWfcjH1kZObiUtaGSSNbsHrDVYKCYzE00CbAuzOv30axTXIgnTyuFaUdLZg8ZS9paTk4O1sxcUJrnj8PZ9tWSe4+oRVly9qwYe0VZUK475yuaGio4z/rMAlx6djamTJlZnsKCxUs9DtBcmImDqXMmTBd8ADWL7vA5+A4jE31mDmvG2rqqjy685FDEpCY4tuJEnamFBQUstjrCGkpWZQuZ81IaQSVnJjBUi/RNWnfqw4NJRJiSmIGy7764PSrR33p7wqFgpXeR0iKS8O2lDmjfYqUUUlxaayaJR6r24gmVKlXxA/JSM1i5TQBLjsNbUyNxsW7ABf23efJjfdoaKkz9Rvb+K/15mEIp7beEO/t8v4/vOC8vBPElQPCRdlj1aCfqmw+vf7CeamjNn5pv99eSE9uvEJCZDIWJU3pPLb1L4/9tuSyfM5uEQvmz0zg/tXKl4uU3m+zif7TtXPnTnx8fAD466+/6NLlzztXv6v0pAz2zjvG6Q2XyJcXoKqqQpvBzRjo3+OPIy9+VIWFhRxZcY4d/kcoyC/A3NYUr13jqFj/9/ERidHJBA5Yy/uHIqyz38xO9Pfq/FNQ9PruRwIHryctMQMTKyP8942n3A8I5J/efMGv3xoSolIwMjfAb/dYKvxtVBn65gt+/deRFJuGiYUhc/aMpUwVe+XtyXFpzB64gU9vo9DW1cR741BqfgN+rh17wvKp+wTZuGFZfDYNVZKN719+w4IJe5DL8qlUqxR+mwVpuKCgkLV+xzl/UFxYB3q0ofeY5qioqHD74msWTztIvryAavWd8V09AG1dTe5efcvCaQeRywuo0aAMs1f0RUtbg60rL3FEEif0G92M/qObER2ZzKwxu4iLScXS2oiFGwZhaW3MgtlHuX3lHapqKkzz60wzt8psXn1FaYExZHQzeg9swLpVlzghKaNGTWhJhy418Pc5yqOHoWJzGCBy9Twm7yUpKRM7O1OWLuvL+Quv2L5TrMMD+zegefMKTJ6xn8TETOxsTVk0rwcbtt7g5l0BkvxndiIyLoX1Es2gX7c6lHW2wnfpGeFy3KAcrZu44L3kJDJ5AfVrlMa9eSV8V54lv6CQpnXKULuKgxLcdGnpiraOJnskn5sJfRtz58WnIin4wGasOCgIxS6OVtT7G7j5OpYS4KYKG76Cm4aVeRYaSVicADeNXIvATb9m1Tj68A1ZeTKql7YlUybjQ1QCJnraSnCjoiKM+44+EeCmVWVnbgWHCW8bR1vCklNJzBR+NrmFBUSmpGFtpI+OtgYhicmY6elgoqtDcEISxjramBroEJKYjImODvo6WoSlpGKuq4O6hioxGRnYGBiQlZv1u9NOWf+rAc7IDnW49+ozbz/HYqSnjfeAlkxfI/I9mlZ3omxJC6avEmOr6YNacPtpKI/fRKCtpc6CSR1ZsfM6X2JTsDY3YPYYN7yXnSYlLRtnBws8hjRnytwjpGUIEvGkYc2ZOe84icmZONia4jXRnVWbrhL8KR4jQx0CZnTk2s0PnDovdiCzp3dAVVWFuZJSpm0bV9q5VeGvNZd4/yEafX0t5vh2IT09h8BAMZtu3aYy7dpV5dbNDxw5JHav02e2x7akKXt33ObJw09oaanjN687enpa7Np8g+dPPgtTrfnd0dHR5Oq5V5yX0sVnzu2KmbkBCXFFvJuOvWrTSAImBzbf5OVjoaTyWtwLTS0NIdX2OkJqchaOZawYMVX4xCgUCpZ7HSE1KRPHstYMn1bkH3P+4EPuX36LuoYaM1f0VcYiCEn4QTJSs3GuZMvAKcWJvetmHyU5Ph07Z0uGzCw+qomNSGJzgHjNg2e0/y4lXJYrZ5WnUFW17lOPGk2/50/IZfmsmSaOaTuoMS4/8ZlRKBRs8JIyeLrUxLXBr+34M1OzOLBUtO4H+nT9jlPxq7p36inJsWmYWhvRoPN/zoxPVVUVXQMdsjNyyE7PweQnUuV/py5dusTw4cMBmD59OuPHj/+PPG52Rg7HV5/nyPIzZKVlA1DLrSrDF/T7l9VRXysxKpklwzfy4oYIBGzUpRYT1wz9rUoKBIF83sB1pMSnoWeky/Qto6jrXvWnx5/dfpN10/dRkF+AcxV7/PaO/2F6/f3zL1g0eqsI4SxjTcD+Cdj8jTf1+OpbFozcQk5WHvZlbQjYMxarb8wwv4TE4dN/PfGRyRibGxCwaxRlXAX4USgUHNlwjW2ShUSTjtXwXF4E2i8efMhfEq+mXquKzFgl1IyyvHwWe+7n7kXBYRk3pwttJf+bcwcfsmbOSRQKBQ3bVGLa4l5oaqpz8fgTVkncmoatKjFjUQ9UVVVZM+80ZyUgMnKqO10H1CcsNJ5ZY3eRnJiBrb0ZC9cPwshYl4DpB3l0R3SvZ83rRr0m5Vm99DxnjgmO5BiPNnTsVpOVi89x7pTIZ5o41Z2WbpXxmXmI58/C0dJSJ2BeD0zN9fHw2ENqSjalSlmwaHFvTpx6xt59ouMzbEhjGjQoy+Tp+0lOycLR3owFAd1ZteEq9x8JdW2AdydCwhPYskeAs4E96+HoYMac5WcoKFTQqrELTRuUw2epuNY0qu1Mq8Yu+K0S4KZFvbJUq2jHoq2CStBNil/4yvmc2Lcxt56HKk38PAc0E2qpLCEFr1XRnq0SuBnctha3Xn0uGks1df0puGnoWopDd4vAzfGHb5XgJlsu50NUAsa62tQuZ68EN11qV+LYkzcoFNCysjO3Q8LJkcmp7lCCiJRUEjKzKG1uivwridjIAD0dTUISkjDV1cFMT5ePCUkY6WhjbqSnBDpGetrSiEoHDU01otMzsDbQJ1eRT1J29m/OvKL6Xw1wDHS02Xb+AaoqKgQMc2PVwVvEp2RSqoQpwzvWY+yCwyKyoUUVDHS0lKQu7xFtuPM0lDvPPqGpocYCj07sPPaQt8ExGOhpsWBqR9bvvkVQaByG+trMm9aRHQfv8+JtJDraGsyb2Ylrtz9w9rKUGD6tAxkZuSyTYhcG92tANVd7Jk3bR1paDmWcrJg0tiVXr73jxFf598wOWFgY4DllH6kp2ZQubcmkSW2Iikph6UJx8ezRuw4NG5fj+dPP7JI4MhM83SnlZMmTh6HslUZIk2e2w97RgojPCUpDrH7Dm1Ctdmml381X3s0ISdX06sln9kq8nQk+HSjpKObuR3fe5dn9ELS0NfBa2lsp4z615x5PbosMmRlLeik7IZGf4tkkcX0GTXHD+RsH35M77vD8zke0tDWYvqJ4V+T2mRfcOPlM8uHop0wsBgGMlk/Zq8yh6jSs6Xef/b4V54gMEaqp4X7fB2kCHF17iS/BsRhbGDD4B8qrr3X39DNe3QlCU1uDYf6/9rwBOLzyPJkpWdiXL0GLPv9sPHNOCmJtM6jJvzVu+VHpGgqAk5We8x99XIBnz57RrVs38vPz6devHwsWLPi3HzMvR8bpDZc4uPgkaYliLl/a1YERi/pRo+WPibv/pO6desLyMVvJSM5ES1eTscsG0GZQk992zRQKBcfXXWKz1wEKCwopVbEks/dNxNbpx2no+fJ8Nsw8wJltNwBo0rU2HqsHfeeHpFAoOLbuMlv8j6JQKKjWxAXvbaPQ/1v21Lldt1k76yCFBYVUaVgOn60jih3z5lEoc4ZsJjMtG9tSFszdM0bJqSksLGTTnBOc3C7Wi64jmzHMS2RHKRQKDqy7yq5lgqzbukdtJs7rhpq6GtmZuQSM3cXL+yEiv215Xxq6VRZZVJtusHOlWNva9qrN2NmdUFNT5ejOO2yWVJFtutZgom9nCgtFV/jmhdciZsG3E25da/DxXRTe4/eQnpZNKWcr5q8dICwqPPbx8kmYcFdf0otqtUqzfP5pLkmjqskz29O6bRWWzDvF1YuC9+g5qz0NmpRn1rQDvHkdiY6OJvMW9URbRwMPjz1kpOfi7GzFosW92H/gAYePSnEGI5tRvUYpJk0X63JpRwvmB3Rj6V8XefwsTLjOz+7M6w/RSqPWYf0aYmVlyNyVQk7u3rwiDWo54btMGlPVLUPT+uXw++ucyCBsUJ5K5UqwZLvE2WlTFYWKCgcvCmA2uX9Trj0J5uVHAW6mDGjG8gM3hOlsaWtqVrBj+zmxuR3atkgK/ndCcZeGlXkaUjSWauhaisN3Beemf7NqHJPATbVSAty8j4z/Dtx0rV2JoxK4aVHJmbsSuKnqYENEWhoJmVmUMjchn0IiklOxNtRHX0eTYGkUZWmox4e4RIy0tbA00uNjQhKG2lqY6OnwKTkFE11ttDXViUxPx8pAjzxFAck5OTiZmhL2yzOwqP7HAE5YWBhz587l2rVrxMbGUqJECfr374+3t/cvfTAGDx7Mzp07i/2tTp06PHjw4B+/hlWHb4GaJmO7NuD+6zCeS1+auSPbMmfjeRGSWaYEXZu5MjJAkEf7uNdAX1uTzUeEdfe0oS0JjUjg+CVxQvlPbMfz1184c1UCLx7t+Rgax4GTknfNBDdy8/JZKYXpDevbkLJOVoyatEuon2qWZmDv+qzdeJV3Xzs1Pp2JiU1j2QqxGPTrW5+6dZzZuOGaMsXWf04XVFVUmOt3jOxsGZUql2TYiKYkJWYw30/skNzaV6FNuyokJWSwaM4JweHpVJ0WbSqLDBivI+TlyqlaqxR9hzUGhN/N2xcRxXg3aSlZLJ4ldnCtOlZT+t0EvYlkh6QuGD2zHfalBcn2c1AMW5dKYZDT3XGU5N358gIWTz0gnrO+M12HNlJ+NuEfY9kueVMM9+qAnVMRYTc5Pp013mJs1WtcS8pVLe76embnHV4/CEFbV5Mpy/t9JwP+/C6SI2uFomHcwt7FOD1fKyYsgX3LBLFxZEDPnyaAy3LlbJ4tXkuPiW7Fdsk/qrTEDE6sF+/REL/u/0iiHBuewIvrb1FRUcF9SLM/vt+flp6RLolRyaTGp/1HHzcsLIx27dqRmZlJ8+bN2bZt27/ls5OXI+PCtmvsX3SS5JgUAEqWtWGAbw+a9Kj7b3v4ZKXnsGHaHi7tEhd552qOzNwxFruyv1d5ZaXnsGLcVm4fFxfFZj3rMXn1ELT/Fub6tVITM5g3aD2v731ERUWFQT5d6OXx/ehRdBP3cXGv6Aq0G9yEMQt6FVNKFRYWsj3wBEfWibWlVa+6TFjStxgQvnX6GUsnCxuDctUcmLNzFEZSN0qWK2fJ5D3cOScIyyNmd6LrCPE9KygoZMOcE5yRzDd7jWnOoKnidaYkZuA3YhvBb6LQ0dPEd/1gqtZzprCwkC2Lz3F8p1gre49qxsBJgge3fdUlDkok3+5DGjHMow15uXLmTT3A4zvBqKurMX1+Nxq3qczLJ5/x89hHTrZMuBav7g+oMHPcboLeRqGjq8ncFX0pX7kk832Pcfu6IApPm92JRs1cmDv7KHdvBQnysG9nqtUqxTSPfXwMikFPX4sFi3tTqFAw1XM/WVl5lC9vw/wFPdm+8zanTgtgMWFcK1xcSuAxfT8ZmbmULWPNXN/OLFh2nuevItDW0mC+XxcevQhnv8T9GjO4CYaGOsz/S5KTt3KlRhV7fJeLMVWLBuWoV7M0c1afo6BQQeuGLpRzsmT5Tomz07Y6ufICjl8T1xaPAU25/PAjr4Kj0dfVwqNfE5bvv0FGdh4VS1lRw6WkMn5haLs6XHsRwmelz02lb8BNpWLgpkHlb8FNdY5JY6lqpUqQI5fzPqoI3Fx89T24aV7RiXuh4WRL4CYqLZ2EjCwczU0oVFEQniQk3/q6WgLc6GhjbajP+7gEjLS1sDI2ICghEUNtLcwN9AhNSsZERxs9bU2+pAlycT4KknNysDcyIiY1+bfn4df6HwM4Hz58EFkmGzfi7OzMmzdvGDFiBFlZWSxduvSX93Vzc2P79u3K3/9VY7CCgkJa1S6DhaEeaw+JhWPOcDd2n31MaGQSZkZ6+AxvzfQVp4SCqnxJujZ3ZdjsfUrSV1lHS0Z6C4XNsB71MTHUwXvRCQCG926AtYUhI6SMod6dalKjsj3DPXaLuWstJ/p2q43v/JNExaRibWmI99R23LzzgaNSIJvX1PaYGOsqzfyqV3Ng8MCG3LsXzKFDog05bVo7bG1NWbnsPKEh8Rgb6+LjL7JpFgacJDUli1JOloyf4kZBQSEL55wgLSWb0s6WjJWUUJtWXuJzSDwmpnrMCOiKmpoqLx594uB28b5M9ulICTtTFAoFK/xPkBifTklHc8bNEqOh7Kw8Fk4X4ZqNWlfCrasgO+blylnoeQC5LJ/aTcrRoW+RemPf2isEvxbp4VMW9lRemPLlBSydKsy8ajUtT7t+RfdRKBSsnnVIuBVXKEGficX5K3GRyWxfIEz2hnl3Uu5Mv/3MV3kKXkGDdlVp0Lbqd98LhULBupn7keXKqdqoPM26f0/w/FonNlwhLiIRMxtjekz8sTdOsePXXSI3Kw/nKg7Ua1/9t8d/WzcPi8/btXF5rP72f/0nyqVOGcLfRfLo/HNqu/97oZ1fKykpCTc3N2JjY3F1deXYsWP/8vmamZrF6Y2XOf7XeSUIs3K0oL93N1r2b/RTV+l/Ui9vvWfZiE3ERSSioqJCd4+2DPLr/kfdsk9vIgjsv4aokDjUNdQYMa83nca0+mnHJ+RVBAH91xL/JQldA22mbxz+wxFWenImgUM28OruR1RVVRg5tyedRjYv9ri5WXksmbCDexI4+bsMXKFQcHTDNbbOEyP3em1cmb6myDIhIzWbgBHCwE9dQw3PFf1o2lF8P2V5chZ77OOu1FUZNbsjnaRYhujwJHyGbiEmIglDEz3mbh1K2cp25MsLWOlzlKvSSGjkjHZ0GdxQJJsHnuL8EelCPLkNPYc1FiaBE/fy9nm4GJkv70PNBmV4cCuIwBmHkMvyqVKzFP7L+5CTI8Nr/B7CQuMxMNJh3qp+ODhZ4jf9IE8eCC6N19yu1KjjhO+MQzx99AkNDTV85najfIUSeE7aS9jnBIyMdFi4tA+Zmbn4+BwhN1eOq6sdcwK6sX7jNS5eei28cCa7Y+9ghuesA2Rly6joUgI/r04ELDrN63dR6OposnBON249COawlDU1YXhz1DVUWbhWSPy7uFWlYvkSzFl5VmwMG7lQs6oDgWuFr03bphVxtDPjrz0C9PXvUJO07DxO3XiDigp4DmzOubvvePspFgNdLSb3a8Ky/TfJzBHZUlXK2bLzgthED29fl8uSQ7GlsT4dG1Zk0znRAOjasBKPgyOJSEhVgpsj94o6N0cfviY7T061UiW+G0t9BTddalUsBm7uf4ogWyanir01UWnpxGdk4WBmjEJFQZgEboz0dfgYnyjAjZEB7+MSMNDSVIIbAy1NLAz1CElMxlhHGz0dAW4s9PQoUFGQmJ1NSSNDEnOzyZLLf3sufq3/MYDj5uaGm1vRBaF06dIEBQWxfv363wIcLS0trK1/LK/8UeXl5ZGXV6SdT08XfhiONqb0b1WDsUsE8XVohzpEx6dx+UEQamqqzBvfjvWH7hAenYyFiT6zR7Vh1vJTZGTlUsHJmmHd6jPadz8yucgH6dqqCiNm7kEmL6BBTSe6uVdjzMx9ZOfIqFKhJCP6NcJnwQli49MoYW2Et0dbDp94okwIn+PVibS0bBZLZn79etWlXh0nFi4+Q7jkjuk9qyOJCRksXiRGSd261aJR43Jcv/aOM1J+1EyfjpibG7B72y1ePA1DW0cDn7ld0dLSYM+2W7yU/uYd2A1NLXVuX3un9LuZFtAFU3N90aXxPYZCocCtc3WaSOqos4cf8+DGBzHvXtRTyZdZN/80MV+SsbQxZpJfZ+XCunXpeSJC4zEx18fjG3n3++fhSpXFhICuWHwTi3Bw3VVC3kShb6TD5IU9iy3kV4484sHlN6hrqDH1GxMykMDPjAPkZsuoVMeJtgO+H/+c2X6ToOdh6BnqMGbej9O97517weMr4jnGLf55gGVKfBoHlosuzxDfbj/dpX+trLRsTkqdu97TOvxjgvDNI2KRatrj1+aB/2o17FKbC9uvc/fkY8auHPxvd0JycnLo0KEDQUFB2NnZce7cOYyM/lwt9rWSY1M5tuosZzZeITtDjM+sHMzpObUjbkOb/0dGdXk5Mnb4HebYanHuWTtaMHXzKCo3/DWf6mtd3H2LNR67kOXKsShpis/u8b/0J7p68D6rJovjS5S2xH/feOzLlfjuuLAP0czpv4aYsER09bWZtWUEtVoWl7knxabiP3A9Ia++oK6pjseK/jTvVgTKC/IL2OB3lDOSSKDTsCaMkHyzQGwKZg/cyJeQOHQNtPHdPIwq9csAwp04YNR2Xj/8hLqmGtOWFUUvBL+JxHf4NlKTMrEuaUrg9mHYOlqQmy1jvsc+Ht8KQlVNFY/AbrTsXB2ZLJ8lsw5z+5IYFU2Y3Qn37rVIScrEZ8xOQoNihUng6v5UrObAtfOvWOJ3nMKCQuo1KY/Xgu4kJ2Uxc9wuYiJTMDXXZ8HqAVhYG+LlsY83LyLQ0tbAf1FPyle0xWvKPl6//IK2tgZzFvagpIM5HhP3EBWZjJmZPouX9yE2Ng0/v2PI5QXUrFmK2b6dWbHqItdvvBceNtPbY2auzzTvQ+Tmyqnqas+sae3wnXeS9x9j0NfXYvGcHpy//oZTklTfc0wrcuX5LJdUcz061KC0gzmBq0X2VNtmFalU3pb56yXpd4vKlLA2Yu0+0TEc1KUO8cmZnLvzDlUVFTwHNePkrTcEhcVjqKfNpL5NWLr/Olk5Mqo4l6Cisw27L0rgpkNdLj35SHhcClYm+rSvX4HN58XGqHtjVx4ERfBFMvGrW8GhCNw0FYRiAW5syZbLfgpujj19K8ZSFZ24J4EbVztrotMzlOAGVRXCklKwMNDDWF+HoPhEjHW0sTY24H2sADc2poYExQtwY2moT0hiMkba2hjoaBKRloa5ni4KVZTgJjk3lyy5nArmFoT/0Vn5fxkHJy0tDVPT70l1f68bN25gaWmJsbExTZo0Yd68eVha/txzZMGCBcyZM+e7v/sObo3f5vPkyfKpW8mB2uXtmLBYSJ4n9WnMm+AYbjwW5nsLJnVg+7EHfAwTieCBkzqweNMlouOEc/HscW7MW32emPh0SlgZ4T3BjWUbr/D5SxKmJnr4e7Zn/9GHPHjyCU1NdcnML4FNEst+wqjmONqbM3bybnJyZFSpbMeQgY04f+EVl6+8RVVVBR/vjujra+Phs4eMjFzKl7dhxMhmREYms+JriGb/+tSsVZqXz8LYI3FsJk51x97BnFfPw9nzlYsz1R07B3PiYlJZGSg4ML0GNaBGHSdBCJ57UqSBO5ozRiIKh4XEsUmamQ+d3Bqn8qJlf+vCa66ceo6qqgrTF/ZAX1IjPbrxQRnFMGV+d6WEOycrjyVTBSm3eafqxSThwa8j2b9WgIBxAV0xtTRU3hYflcIGf0EcHjDFXWkm9rWuHX3M05sf0NBSZ9KSPt9doOMjk9kxX3R3hvp0/s7CHiAnM5cNkvle9wltsCvz87HErvknyc7IpUw1R5p/I639WZ3adJWstGzsy5X4R5EMIFLDQ1+Go6auRoP/UtJ31eaV0DXQISk6hQ8PQ6hQ7/cqoZ9VQUEBffv25f79+xgbG3P+/Hlsbf8830qhUPD6zgfObLzMnWMPlQovh4ol6TWtE0171vup2eI/rQ+PQ1k2chMRH6IBcB/alJEL+6Jr8PP096+Vm5XH2qm7uSRFNdRq7cr0zaMwNPsxCTlfns8W3yOc2CC+47VaVWbG5hHf8WgAHl56xaKRW8jOzMXG0Ry/PeNxLF/8Ox/65gt+A9aTFJOKoak+vjtGUbF2EbDKycpj0fidPLz8BhUVFUb4dabL8KLxZsjrL/gO3kxKQjpm1kbM3TWKUtJzJMamMXvIFsKCYtDR18Jv4xClivHZnY8Ejt9FTpaM0i4lmLt1GKYWBqSnZOE3ZicfXn4RPLwVfandtDzZWXnMnbyX5w9CUVdXY8ainjRqXYm46FS8Ru8gKjwJY1M95m8YROlyNpw+/Ii1i86hUCho0daVKb6diY5KYda4XSTGZ2BdwpgFawegp6/N9Al7CP4gxk2By/pg52DG9Il7+Cj9bd7S3piY6uMxYTdxsWlYWRuxZHlfQkPjCQw8QX5+IfXrl2HGrPYsWnKWu3eDhczbuyNaOprMmH0EmSyfWtUd8ZzkhtecY4R8isfQQJvFAd05fv4FF66JnKYZE9xISstm0x7xfejfrQ5WFgYsXCc6OZ1aV8GplCULN4kReedWrpia6LFeyicc2rUeXxJSuXTvA2qqKkwb3IKj117yMSIBYwMdJvRpzJK918jOlVOtrC1lHS3Ze1l0jUZ0rMu5hx+ITEjDRkoF33JejMt6NHHl3vtwIhPTsDE1oLaLPcceCOVT/2bVOfLgtSAHly5BlqwI3NQqZ1cEbmpX5NiTH4ObmIwfgxsTCdwYaWthY1QEbmzNjJRdHEtDfUKSBLgx0tMiPDUVM11dVNRUiM/KwtbQkJS8XLLkMpzNTAmKi/ntefm1/q8BOKGhoaxevZply5b98jh3d3d69OiBg4MDnz9/Zvbs2TRv3pynT5+ipfXjHfSsWbOYMmWK8vf09HTs7OzYfPIBkfFplDA3ZHKvJoxfdISCQgVt6pXHydaciQsF2JkyoBmfIhI4c+ONICRPbMel2++581SQjOd5duTEpZfcf/ZZEM2mdeLq7Q9cvvVemRAe/iWJbfvFLHrK6JaYm+ozzHeHYNU3q0DHtlVZvOK8MoHWd2ZHwsMT+WuNOBGGDmlMFVd71q+/yvv30ejrazPbtzOKQgVz/Y6TnS3DtYodgwY3JiUli/mSMqFNuyq0cnMlLTWbhX7HRXu0rSut2lYhP7+ABd5HyczIxaVySQaOFgvfqUOPeHAzSHRpFvRAW0cTWZ6chTMPI8vLp1bDMnSWxkYJsan8FXACgN4jmlKpuiMAqcmZyiiGTgPqU7NR0U5484IzxEQkYVnCmLF+RZJwWV4+y6btF2Outq40kbg98HU0dZDsjFzKV3eg26jiHJTUxAw2+gt5fz8PN0qW/h7wbvA5RG52HhVqO+HW/8fk3oOrzpMQlYKVvRm9J/84KRwgIiiai9JFbdS8Xr/tduTlyDgutat7T/u9nf/f657E4arWvCJG5v+dOANNLQ3qtKvO9QN32el/iAXnvf6lLo5CoWDSpEmcOHECTU1NTp48ScWKf+bXk5maxeXdtzi7+QoR76OUf69Qryy9Z3Sitnu1/1hOVl6OjN1zj3J01XkKCxWYWBnhsX44dX6hdPq2wt5GMm/QWiI+RKOqqsIAn670nvrzzzY1IZ15Qzbw+u5HAPpOa0//mR1/mFh/ePVFts89jkKhwLVBWby3jfou0+zBpVcsGr2d3Ow87MpYMWfPuGIj2cSYVPyHbCL0TSSaWhpMXz2QBt9sJh5ff8f8MTvIzZZRyqUEc3aMVHZSw4JimD10C4kxaZhYGDB3+3CcJOfiG6efs2zGIfLlBVSp58zstQPRM9AmPjoVnxHb+PIpAX0jHQLWD8KlmgOpyVnMHruT4LdRaOto4ruqH9XrORMWEof36J0kJWRgaWPEgo1DKGFvyr4tN9kpdXc79KzN2GnuhHyIxWfSXtJSs7EvZcGCNf1RAJ5jdhIRloiRiS4LVvTF2FQfz3G7xQjKWJcFkhv65PG7SE7OoqSdKYuX9+XFi3CWLBbjoqbNXJjs0YY5ASd4+ixMOMP7dUGeX4i3/1EBgOo4M35MC6b7HiFc2rQuCujO3qMPuX4nSJj6TW5LeHQyOw+LTuvQ3vXR19di6SYBZru3rY6NtRFLt4jfe7hXQ1tHg61HxSZwRI/6hEQmcu2RAFgzhrTgwKVnhEYmYWqky7ieDVm85xo5eXJqlC9JqZJmHLgqRoCjOtXn9P23RCWmY2tuSKva5dgqgZteTaty++0nopLSKWFqQI3y9hx/IBK+BzSvzuH7AtzUcLIlI1f43BjralOzbEkuvQr+Mefm285NRgYJv+jcGGlrYWtiyLuv4MZUgBt9zZ+BGx1U1YvATaosl0yZDCdTUz6np5BfWPhH5yf8FwCOv7//D7sl39bjx4+pWbPIkCo6Oho3Nzd69OihlJH+rHr1KsoJqlSpEjVr1sTBwYGzZ8/StWvXH95HS0vrh+DnweswdHT1mD+6HQu3XyE5LRtnO3NGdKnHyICDYjbaqALlHS2VCeEjezaAQth8UAIrQ5uTkZHL1gPid88RLSgoKGS1pIgYPbAxtlbGDJu8U7QnW1amTbOKTJt9mKTkLBzszJgyvjUXLr/h/CVBTPad2UG0VT2PI5PlU7tWaXr3rMvdux85clh8aadNb4e1tTF/rbhAaEgcRkY6eM3uLDKlAk+RnJSJvaM54zzaoFAoWBp4isSEDEramzHeU1y4d2+6wfvXkejpazFzblfU1dX4FBzLZknxMHxSa5wkQvDWlZcIk7xxpgR0RUVFhcLCQpZ4HSEzI5dylUvSVwIdCoWCNf4nSE3KxMHZiqGeRaPIRzfeKz0ypizqid43u+Q9Ky8S/jEOYzN9xgV0KzbCuX78KU9ufEBdU40pS/t+x7fY4HeUjNRsSle0pduoFt9/1hdfcf/CK9TUVZm4+PvuDkDclySOrhOAcuTcnr9M9d41XzhE129XjUr1yvz0uK91Zd9d0hIzsLI3p0m333d7/l6PL4n2d922/xluzM9qoG937p16wvNrbzi87DS9pnX6/Z3+VosXL2bt2rWoqKiwZ88eGjdu/Mvj5bJ8nlx8wdV9d3hw5imyXDFj19bTonmfhrQb0fI/Eib6bb29/5Hlo7cQ+VHsBpv3rs+Ypf0x/E0wKkjp4Ttvsm7qHmS5ckytjJixbQxVm7j89D4fnnwicNB6EqNT0DXQxnPdUBr8gIOVlyNj1ZTdXJP4Vm0HNWbswt7FulUKhYKj666wLfCEUFM1Lo/X5uHFukChbyPxG7SRpNg0jMz08ds2ApcaRe/h+X33WeN9mMIC4XHjvWGI0gfq5f0Q5o7eQVZGLnbOlszdNhyrkoJ/d2zbLbYsFGPZxu2q4LmoF5pa6oQHx+EzcjuJsWmYWxsRuGkIDmWsiItOwWvUDqLCEjE01mXu+kGUq1SSdy8j8B2/h8z0HOxLWzBvwyDMLAzYsOwCJyTvmr7DmzBwdDNePg3D3/OAIBm7lCDwr35kZuQwc+Je4mLTMLc0ZOGqfmhoqOExdiex0amYmRuwaFU/cnJkTJ+0l4z0HEqVtmDxsj7cvBXEakkM0aZNZUaPaYHP7KO8fhOJtrYGgXO6kZSaxYKlAgA1a1ye4YMbM9X7EFExqViY6bMooDtb993lzsMQ1NVV8fVsz9vgGKWYZPTAxqACqyTVY99OtdA30GbVzhvi9w41KFSBXSfFej62TyNeh8Zw62ko6mqqzBzWkt3nnhAWnYy5sR6jujdg4Z5r5MnyqeViR0lrYw5fF2vC6M71OXH3LTFJ6ZS0MKJpdWe2XxQcp15Nq3DzTSgxyRmUNDOkatmSnHxYBG4O3S+KX0jJziU4JhETPW2qO5fk8usQpUOxEtxUcuJeaAQ5Xzk36d+CG4qBm48SuClhLMCNvqYEbuLFz9bGBgQnJmGkrVUEbnR0UFVXlcCNAWkSuCltakJYhgA31W1siPjtWSrqPw5wxo8fT+/evX95jKOjo/Ln6OhomjVrRr169di0adM/fj4bGxscHBwIDg7+x/cFmDGwBZceBPFKimUIHNuWuZsukpKejbO9OaN61GeM/0Fk8gIa1XCiTQMXhs7cIzJBmlWibtVSDJ26C4UC2reoTOPaZRjmuUuZMdKtXXWmzD5ESlo2To4WeIxqwe4D93n6IhxtLQ0CvDsRG5fGyrWSsmZAQ6q62hM4/5QI0bQwZNbMDsTHp7FYsivv1r0WDRuW5daN95w6IWTjM7w7Ym5hwMG993j8IBRNTXV85nZFR0eTYwce8lAK2/QO7IqOribPH33ioGSiNdm7A9a2JuTmyFgw6whyWT51GpWlU29xIX54K4iT+8SiMzWwGyZS+/3ozru8knxwpi/ooTTSu3ryOXcvv0VNXZWpi3oqJeHpKVmslII3uwxpRJW6RaZ975+Hc3TzDQAmzOuOkWmRaik1MYMNX7szk92wcy4ut3145Q03Tz5DVVWFyUv6fGfol5stY723iNboOrolDuW/5zoAbJtzFHlePq4NylL/B+TjrxX8Iow7p56ioqLCQO/OPz3uaxUUFHJUcrfuMq7NPx6tZKVl8/a++H7XavPvy59/VbZlbBi5qB+rJ2xjq9d+Er4kMXrZwD9+zXv37mXmzJkALF++nB49fiybz5fn8+5BMDcO3OXmkQdkJGcqbytVyZ72o1rSvG9D9Ay/H938O5WblcsO/yOcWHsJhUKBqbUxE1cP+WPCd1Z6Dn9N3M6NIwKA1GhZmembRmL8zSj121IoFJzZeoONXgfIlxdQsow1vrvH/pBvkxCVTMCg9QS/CEdVTZUxC3rTYWjTYsfI8uSsnrafK4fE+dh2YCPGzOtZ7Dv/6OpbFozZTm62DDtnK+bsHFVMBr5z8VkOrRP8kJbdazFxYS8lj+n6yWcsny7M+CrVKoXvxiEYGOsK+fj8M5z8yuMZ1JCRXqJb9eZpGHPG7SIzLQc7J0vmbR6ChY2x6NCM2k5SfAaWNsbM2zAYu9IWPL7zkUBPoZ4s72rH3DX90dHVYqnfca6eEz4sY6a607lPXe7d+MB8ryPI5QVUrVkKv6W9iIlOwWvyPlKSs7C1M2Xhqn5k58iYNmYPyUmZlLA1YeHKvsTFpTN71mFycmS4VLBl3qKenDnznK2SeqtL15r061ef6TMP8jE4Fj09LRbO78nn8ASW/SX4MW6tKtG3Z108Zh0kLiEdG2sjFvp1Y+32Gzx89hlNDTXmzOzEw2efOX7hBQAThzYjPTuX7YdEZ2Zw97qgpsKG/eK9G9KtLuk5uRy5KB0/oAlP3n3h7gvxeDOGtmDbqUdExqViYaLP8K71WLRbZCbWr+yIuak+x24JAvSYzg04cus1cSkZ2FkY0biaE7uviJFV3+bVuPoyhFjpNlenEpx69A4VFejfVARn5skLqO1sR1KWCM401dehmpMtV94IcNPpGxO/FpWcuRsqScHtbfiSlk5ipqSWokgt9W3nxsbYUDmK+jm40VaCGzUNNeKyMilhaECaLI8MmQwnUxPCMlLJLyzExdycZ5GRvz1Pv9Z/HOCYm5tjbv5nCo+oqCiaNWtGjRo12L59+7/Uek5KSuLLly//UlBfx8YV0dXU4MBFARL8Rrpx8vobXn0UYGf+hA4s3nyFmIR0bC2NmDWiFTOWnCQ1I4cyjhZMGtSUqYFHSU3PoUwpSyYPbcac5WeVPJyZE9qwY/89Xr6NREdHg4AZHXn9Lood+6Ruz4TWWFoYMnriTvLy8qlVoxT9etXj1JnnXL8hwjBn+3RCV0cTr5kHyczMxcWlBCNGNCMmJpWlkoy6d7961K7jxPu3UWzfeAOAcR6tKVXakuCgGLZInJZRE1vjVMaatNRsFvsdR6EA987VaSwZ921ccZGIzwmYmhvgKRGFU5IyWS6Z/HXuV4+aDUS3IvRDNDv/Et2OUTPaYistoPHRqayfJ3gu/ca1xLlC0UK+PuAkKQkZ2JW2ZNA3pn15uXKWfeXkdK5OfYnQrLyf3zHRnalQgu6jmhe7LTszlzWzJPAysrnSrOzbOrT6IvGRyVjYmtDX48djp3ePQrl54olQiQT2+iUBeNe8EwA061EHR5ff80oenH1GVEgc+iZ6uA36dTfjR/Xs2lsKCwopWdYGa8df51v9J6r9qFakJWWwy/8wp9Zf4sOjEAb4dqe2e7Vfvi9Xr15lyJAhAEyZMoXJkycrb1MoFER+jOHZlVc8u/qalzfeKQnDAKY2JjTrVZ8WfRviVNXxP+rQ/LUeX3zJ6ok7lJlbrQY0YtSifhiY/NgC4O/14UkoC4duIOZTPKpqqgzx7073Se4/Xbdys/NYPWUPVyVPlAYdqjNlzZAfOma/eRBM4JANpCZkYGiqh9eWUVT9mzN3akIGc4dt4t2jUFRVVRg1twcdhhb35Tm57Sab/I9RWKigasOyeG8cquzsyHLlLPPcxy1J+tx3Uhv6T3FDRUVFmPttusE2aRPVqK0rU5f1QVNLA1menKXTDnL7vAAfI2a1p+tQ8T2+d+Uti6YeQJaXj0tVe/zXDcTQRI83z8LwnyB1aJwsmbdhMBbWRlw/95Kls49RkF9IzQZl8FnaG1RgztQDPLrzETU1Vab6d6F5W1cunX7BikBhdNqgaXlmBnYj+EMMPlP3k5WZh1MZK+av7EdcbCpengdEl8bJkgXL+xD8MZYAP9EBr1bDkTlzu7Fv33327xefRf8BDejQoRqe0/cTFpaIkZEOixf24sXrL6yVgnc7t69Gx/bVmDzrAEnJWdjZmjDPtyvL1l/mxZsvaGtpMM+rM1fufODcNUntNKoVUXGp7DspmRT2bUhGjoy9km3AqD4NiEnK4ORVkTLuMag5t59/4tEbEdQ8Y2hLNh+/T3RCGjbmhgzqWJvFe66JDXPV0hgYaHPyjniucV0acuDGCxJSs7C3NKa+qyN7ropr2YCWNbj4LIi41EwcLU0o52jJ6cfvBbhpVp0Dd18iyy+gbll74jOyCP2aCl66hBLcdKxVgWNPRLen1Tcmft+CG+FzoyAiORUrQ32M9LSV4Mba2IAPccU5N9+CG0Otn4Ob9J+Am/dJiX90rn6t/zEOTnR0NE2bNsXe3p6lS5eSkJCgvO1bhVT58uVZsGABXbp0ITMzE39/f7p164aNjQ1hYWF4eXlhbm7+L1m+d2nsyuQVkqNsu1rk5xdy4IL4gviOcuPagyDuvfiMpoY68z06suvEY958jEFfV4t5Uzqy/fB9XgdFo6erSeDUjhw7/4I7j0WsQ8C0jrz9EM1uaR47fbwbOtoazF18BoUC2rVxpVWzCsxfcpaIL8mYm+vjPa09nz/Hs04KcxsxrAkVK9iyceM1PnyIQV9fG5/ZnVBRgXkBJ8jOyqNipZIMGdqErMxc5vsfp6CgkKYtKuDeoRo52TLmzz5Gfn4hDZqUo0PXGhKB+BTJiZnYOZozWhof3b/5gXNHxQV++tyuGJnoiQgF/xOkpWRRqqwVQyUPC1menMWzDpOfX0D95i5KSXhhYSHLvY+QnZlH+Sp29BxedDG/e/E1N868QFVVhSmLeioNAAF2r7hA1OcEzKwMGe3Xudhn9ODyG26dFgTmyYu/787sWXaOxJhUrB3M6Of5PXiJDkvgsOR5Myqg+w+VTgqFgk2zBUhq3bfBT8M0Ad4/DuXxlTeoqqnSf2bHnx73bZ2QUoTbDWuGjmR1/0/qzd0gAKo3r/SbI/8zpaKiQn/vbji5OrBo0Fo+Pv3E7E6LKV3Znkbd62Jf3hb78raUcLZW7vxfvnxJly5dkMvl9OjRgzEDxnN13x3C3kTw6XUEn16FkxSdUux5DM0MqNO2Gi36NaJK04r/yBPon1RKXBobpu3hhnQuWtmbM2H1EGq1/rNuWEFBIYdXnGVX4HEK8guwtDNj1o6xVKjj/NP7RIXGMXfgOsLeRaGqpspQv250G9/6h8Dt7PabrJsluGelK5XEd9dYrP+WdP75fRT+A4TzsJ6hDrM2DSvmvp0vL2Cjf5FSqk3vuoxf0Et5vqQmZTJ3+FbePf2MuoYaExf2olUPobQqyC9gnf8Jzu0TF//OQxoxwluY+2WkZRMwZidvHov7eS7uRVOJG3f2wEPWzRWj2jrNXJi5rDfaOprcu/qOhTMOCtBTxZ6AtQMwMNLl2O57SpFCU/fKeM7tSm6OHL/J+3j7MgItLQ18FvekdsOyHN17n03SqLx1h6pM9urAs8efCJh1mLy8fCpVsSNgSW+CP8bgO+MQuTlyylewZd6y3jx59IlF809TUFBI/YZl8fLpxMZN1zglmaSOHNmMJk3LM9lzL9HRqZiZ6bNkYS9u3Alixx7Js6d7bZo1cWHyzAOkpedQysGcAO9OzF95nncfY9DV0WSBTxdOXHrJNYmDM3O8G+9CYjgmdXImDG5KdGI6h89LXjoDGvPxSyIXbosuytQhLbj8MIjnH6LQ0dJg+tCWrD98h7jkDEpaGtG3bU0W7blGQUEhzWo4o6mlzpl7Qlk1tmsD9l19TlJ6NqVtTKnhYsf+6+J5B7WuyZnH70lMy6KUlQlOdhacfxqEqooK/ZtVZ9+dF8gLCqhXzp7YtEw+xSVjbqBLRUdrrr0NRU1VhQ41XDiuBDdluBX8mVx5PtUcShCekkpSlohfkCsKiUhJw8pQH0NdLaVayspQn6C4RAy1NLH5hnNjZaSvBDfG+t+DGxsDfdJlsu/ATXkzAW4UKKhh+z84ovrTunTpEiEhIYSEhFCyZMlitykUCuXPQUFBpKUJzws1NTVev37Nrl27SE1NxcbGhmbNmnHw4EEMDP458XLOpgtk58qp4WKHe30Xhs8Rfjb929dET1uTzYeFqdXUIc2JiU/j4FnR+vMZ58bniEQOnBLzVq/x7iQmZyqZ85OGN8fYUAdPX3HR7NK2Gk3rl2WK90FS07JxLm3JpNEtuHD5DZevvZV4N50ku/CTyOUF1K3rRI/utXn0KJRDB7/63bTF2tqYzRuv8+GdIBp7ze6EqpoKK5ecIzY6FWsbIyZLmVLrVlwk6ksy5hYGeMwSsuSzx57w4JZEIA7shra2BsmJGawIEP4Y3frXo1ptEUlw4dhTHkrHTp/fXTlq2rn6CuEh8Rib6jHRr4ty0T699z4vH4SipaPB1IU9lTyZtOQs1viJLlCPkU0pX7WoyxL0MoLjkrJrfGA3DL7hEWSl5ygN/bqOaEYZ1+LA49O7KE5uE/cdF9hD6enxbW3yPUK+LJ9qTcr/dOx068QTPjz9jLaeFgNn/Rq07F0kFGct+9T/bVo4QPj7KF7d/oCqqgrthzf/7fE/qq9p2C61fy47/m9UvQ412fp2OUdXnuXspisCqLwuWlrU1NWwKW1JriKbEx/3klOQhamqJcnHFIw9Puu7x9PQVKdig3JUb+lK9RaVca7m+B8jDP+oCgsLubTrFpu9DpCZkoWqqgpdJrgxcHZXtPX+DGgmRCWzePhGXt3+AEDjrrWZuGrwL7s+d049Zfn4HWRn5GBsYYDX9tE/jO+Q5clZP+sA56WsuSada+KxatB3IPze+RcsHb+TnKw8SpSywH/XGOy+iR7JTMtm/ujtPL8dhIqKCoNnti+WBh4ZGofv4M3EhCeib6iDz6ahShl4dmYuCybs4cnND0Jl5d2BLlJ3Ji4qBd/h24gIiUNXXxvf9QOpUtcZhULB7r8us3+D4Je49ajFeN9OqKmrcfbQI9bOE12Xuk3LM3NxL5ErteIih6WReKe+dRk1zZ3kxEy8xu8mPDQefQNtAlb2o0IVO7auvsKhXQJodOtXjxGTWnHj8lsWB5ykoKCQWvWcmT2/O08ehjLf7zhyeQHVajoyZ0FPLl96zeqVYrzUslUlJk91Y/ny81y9IlROkz3cqFzZjokee0lMzMDa2ogli3pz8sxzDh2TvHkGNKRKFXs8JN8bl7I2eE1ti/+S04R8TsDQQJsFPl3Zd+Ixdx4JDs7sye149DKMM1fF6MhzRCvef47j9DUhw/Yc2pynHyK5/vAjaqoqTB/WktO33/I6OAZdbU2mD23BmoO3SEjJwtHGlG6tqrJk7zUhQqldjgIKufBQhHiO79qQnZeekJKRg7OtGa5lSnDopuDjDGlTkxMP3pGckY2TjSkONqZcei6es1/T6uy985z8gkIauDjyJTGV8MRULAz1cLG35Ma7T6irqtK+RnmOPxXRJK1dy3AjSKSCV3MsQViyCM4sbW6CTCHiF6yM9NHX0eKjFLNgZahPULwAN9YmhnyI/7taSgvDYoRiVSW4yZDLyZDlFQM35czM+ZAswE05c3OeRP8Pjqj+tAYPHszgwYN/e9y3YEdHR4eLFy/+x15DREwKVpZmeA9rzbTlJ4T0rnxJureoylCfvRQqFLRrUpFqLnYMmbEbgD7ta+BkZ86waeL3Xu1r4FquBEM9dytzRtybVWSi90HSM3Ip52zFuGFN2bn/Hi9efUFHRwP/mR2JiU1jldRZGDqwEa6VSrJoyVm+fEnG3NyAGVPbkZycxSIpdqFTp+o0bFSOp48/c1DaaXnOaIuVtREXz77khhQ0N8u/C3r62ty88paLZ14I6aJ/ZwyNdIj4nMDG5eL9GzKuBU7lrIVxX8BJ0lKzKV3WmkFjBUE3OiKJjUvEbmvwxFaUkhbUV48/c0xafDwCumIscWUiPyewTbJwHz7VHVvHoh3ougCJcFzGir7jixK95bJ8Vs48LJQMHapRt0Vxpc22hadJik2jhKM5/f6WQ1VYWMhar0MUFhTSsF3VYiGBX+vx1bc8vPQaNXVVxgT2/OHuWZYnZ9tcwe/pMb7ND6XjX+v941CeXBXdmz6e7X563Ld1dqu4CNRtWw3Lkv88pVsuyyfkpXB9KFf75x2D/1aZ2ZgwclF/es/ozJXdtwh5/pkvQdFEfIgiJzOXz0FhPC64Rg5Z6GGIq0oDVFXU0DPSpVQlOxwr2VOqkh2lKtnjVM0RnT8EFv9uhb4KZ82knbx7ILhLztUcmbxm6D8iK985+YQV47eRmZKFtp4WY5f2p3X/Rj8dn8ll+Wz1K5KAV6jjjPf20Zh94/H0tRKiU5g3ZAMfnn5GRUWFIbO70GNCm2KPrVAo2L/iPLsXizWgSsNyeG8eXgxcRX9OwG/wRiJD49HS0WT66oHUdyvqTL16EELgyG1kpGZjbWfGnB0jlLlsibFp+A3fyqd30SIOZWU/5Xg45G0kviO2k5KQgZmVEXO3DqVUORvy5QWs9j/BpWNic9d/fAv6SmvG7nVX2Supn9y61WSCT0cUClg2+xhXTr8AYOikVvQY0ogvYYl4j99NfGwaZhYGzF8zADtHC1YEnuLiKenYcS3oOagBp48+Ye3yCygU0LRVRabN7sTVi69ZsUiQgBs0Lscsv84cOfyI7RK/plOXGgwf1YzAuSe5fz8ENTVVZs5sT0l7MyZ7irBiBwdzFszvwe599zh7QYzfJoxugb29OdNmi05R1cp2eE5ojdf8E0REJmNqrMt8n65sPXCXR8/DBAdnagcu3/nA1btiIzNjdGsev43g0p0PqKqoMGNkS24+C+Xus09oqKsxa2QrDl16wfvPcRjqaeE5qAUr9t0gJT0bp5JmtG9SiaX7rglRSn0XMnLzuPXyE+pqqozv1oht5x+RlpVLOTsLyjpYcPS2AFFD29Ti6L3XpGblUtbWHBsLI668DEFdVZW+Tauy9/Zz8gsLaeTiyKeEFCKT0rA21qeMrTk3339GXVWVttWLwE0b17JcCwpFll9ADUdbQpOSScmWUsELRCq4laE+etqayiRwCwNd5YjqWxO/b8GNga4WEalpSnATn5VVbCxV+m+dm2/BTVBKIuqqfz6+/r9GJv4/Uapqqswb146tx+7zSXIu9h/jjv+ac+LLZmfOhH5NmBR4hKwcmQAy3esx0f8Qmdl5VCpXglH9GjFzvhSiWdKUqaNbsWXvXd5+iEZfT4s50zvy+m0Uu/aLbpDn+DZYmBswetIucvPk1KzuSN+edbl85Q0XJRWV96wO6OtrM2P6AVJTRc7U6DEtSEnJYqHk49K+YzUaNS5PZEQSayRjwMHDm1KhUkniY9NY9ZWfM6ghVao7IpcXsGj2MfLy8qlepzRd+gizuDOHH/PobrDIiArshqamOgX5BSzxOUpujgzXmqXo0l9IwrOz8ljqc0SY/3WrSZ0mgiNQUFDIUklCXq2+M+36FBnR3bnwmltnX4rMqMVCcfG1Dm+8TlhQDIameozyLa7WefMwlHOSLfykRb2+685cOfyId08+o62ryUi/78eTclk+G31F96fT8GbFdrzf1ukt14mLSMLM2phuY1v98JivtW9xUffm7+GGP6q8HBlXJGuA9iP+te5N2NtI5Hly9E30KPED6fv/qTI01afrpLbK3xUKBZGh0XTq2pGs1+lYWVhxfP8pnMqURsdAG31jvf8Kj+Z3lZWew66Ao5zacJnCgkK09bQY4NOVLuPb/LHTcVZ6Dhtm7FV625StXoqZ20Zj6/xzc9H4L0nMH7qRD08+AcJDafDsLj8kZ7+6G8T84ZtITchA31iXmRuHU7NF8fFjblYeyybt4s4ZMd7oOKwpI/y7FRvRvrofTOCIrWSkZmNuY4z/jpE4fZPldvnwI/6aKQjD5ao54L91OMaSxcDn99H4Dt9KYkwaxmb6+G8ZSjkpafzRjfcsmLSX3GwZjuWsCdg8FAsbY3Ky8pjvsY8nt4Wj8ni/zrj3rE1BfoFwJ5bMQvuNbkb/sS3Iy5Ezb5qIXlBVU2WyXydad6rOh9eRzJ60l/S0bEo6mDF/7UCMTfSYO/MQ928GoaqqwiSv9rTpWI3dW28pvbs6dqvJ2CluHD34kE1rBIh0a1+VSVPd2bLpujJguP/ABnTvVQdv78O8fBGBpqY6fv5d0NXTwnPqfrKy8yhX1prAud1Zs/Eq128KYDJtshsGBjrM8j+KPL+AOjVLM2Z4U6YHHCU6Ng0LcwPme3Vm9fYbvHwXibaWOgHTO3Ly0kvuPA5FXV0V7/FuXHsYzM1HAlR5j2nNudvvePwmAk0NdXxGt2HnmUeERCRibKCDx4CmLN19jfSsXMo5WNKyXjlWHBAgrXPjysSmZnD/bRia6mqM69aQzWcfimgGRyscSphy6r4Ydw1zq83B2y9Jz87Dxd4ScxN9rr8Wiqw+Taqy5/ZzCgoVNKlYmuDYRKKS0ylhYkApGzNufQhDXU0V96rlOPlMgBu3KmW58j4UeUEBtUqXJDghkZTsXJwszcjOlxOVmo6NkT7a2pqEJiZjqquDub4uH+NFnpSFkX6x+IWvUnB9XQ2+pKVhpqurlIKXMCgObsK/ghtzcz4kfQ9uHExM+Pz70xj4Xw5wxvdsSERMitIxMmBcW45eesGLD5Hoamsw36MDmw7c5eNnYe4XMLk9G/feJig0DiMDHeZMac+BU094/FIQxOZO68jLt5HKLJIZE9zQ1tIgcElx3s3SVRcIC0/ExEQPr2ntiYpOYcUq0VkZ2L8BVVzt2bv3Hs+fh6OtrcFs386oq6uxeP5pUpKzcCxlzpjxLZHLC5jvf5zcHDlVqzvQs189ZRRDZkYu5SvaMkDKlNq54RohQbEYGukw1a8zqqoqRHxOUErCh01oiaOU93R4xx3ev/yCrr4WnnO7KscIm5ecIz46FStbE0ZOK7rYHd9xh6BXX9Az0C7mVpyWnMVayZiv58imlKlUtPhGhMQpDf1Gz+6kNAEEwSf4Oppy610X17/JsDNSs5WW8/2muGNRwuS7z/b0tptEhcZjYmFIX8+2390OkJWezYGVoks1cFbHXzoRB78MF9wbVRV6T/nx4/29Hp5/QVZaNpZ2ZlRr9mc+MH+v6NA4ABzK2/6PAIaflUKhYMqsyTx//QxDQ0MuX71M5cqVf3/H/+LruXHoAZtm7iU5Voy0G3WpxajF/bEo+Xvz0K/1+m4QS0ZuIi5cRDX08GjLQJ+uv3RLfnjxFUvHbCUjJQt9I1081w2l3k8iQE5uusYm38PKEE7fnWO+A8txX5IIGLyRT28jhZv2wt649Svu23Ruz13W+RymIL+QslXs8ds2AlMr4RJdWFjIriXnOCidX43aVcVzRV9lIO2Tmx+YP2E3OZl52DlZErBtGNZ2ort47sAD1vqfoLCgkKr1nfFZMwA9Ax2SEzLwG72DEKnbM3N5H+o2cxGuxdMO8OiWACbjvDvQrmcdUpOz8Juwh6A3kcLwb0kv6jQux5N7IQRMEwqqshVtmSvJu70n7uX183A0NNXwmteduo3LsXbZBU5JoGnA8Mb0G9KI7Ruvc0Da+PTsW48hI5uyYtl5LkoE6NHjWtKqTSWmTd3Px4+x6OpqMm9eD3Ly5EyfeRCZLJ8qrnbM9u7M4pXnefBIABOfGR3IkxXgO++EAAINyjKgT308fQ+TmJxJCWsjAmZ0YvH6SwSFxqGvq8XcGR3Ze+IRj1+Go6mhhu/ktpy69oYHL0RnZ/Y4N45cfsELiWPjPboNm47eIzwmBTMjPSb0bcSinVfJypFR0cmahtVKs/qwANXdm1fhc1wyTz58QUtTnbFdGrLx9H2ycmW4lrbB2sKAsw/fo6qiwtC2tdl//TmZuTIqOVqjr6/FzTef0FBTo3eTKuy59ZxChYLmlZ14FxlPTGoGJU0NKWlpzJ2gMDTU1GhdpQynnr8HoG3Vslx8F0J+QSF1nOx4H5dAWk4uZSzNSJfJiE3PoISRARqaanxKTMZMTweTb1PBDXUFz0ZbCzN9XUK/ghsdDSLT0jHX0wVVlOAmTZ6nlIL/CNyUNTdTghsrA32CE+L/+Hz+Xw1wKjuVYPIysSsf1aMBublydp8S4GTWyDZ8CI3j+GURdOY7oS1vP0YrCWQ+E92JjU9nq7RD9xjZAj1dLeavEJ2Tbu2r06huGab6HCI5JYtSDuZMHNWCqzfecea8eEzvae3R19NippdkA17Fnn596/P2bSQ7pDTfCRNaY29vxpFDj3j8SLgge/t2RktLg81rrxIsgZYZviKhd9+O27x5EYGOriYz/QUwevHkM0d2i0XBw6cjZhYGyOX5LJ59jLw8OdXrOCkl4cHvo9kttZnHzmyPVQljAB7fDlLu0DzndkNXAgNfPsWzS1JTjZjRDgvrIiv+TfNPk5qUib2zFX3GtVT+vbCwkFWzDpMvK6BW0/I07Vjc2+X4lhuEf4zF0FSPoV4dvvvcdi05Q3pyFvZlren8g6Tw1IQM9kpBmYNmdSzmtfNtHVl7mYyULOzL2dCyd/0fHvO1Dkqfa5Nutf+IewNwTZKJNuv5rwdAxn8RqgHL34R4/p8shULBlClTOHLkCJqampw4ceJ/FNwEPw9j/dTdvL0nDPRsna0Zt2IgNVr++WuS5cnZPe84h1cI91wrB3OmbRpJ5R9wZ76WXJbPjrnHObpGbE7KVHPEe8fo7wjCIDoyq6bs5vpRsb4061abSSsGfOe19OruR+aP3EJaUibG5gb4bBtZzJm4IL+Ajf7HOb1DrA+NO1ZnyrK+aEkdztwcGcs89ioDM3tPaMUAzyKl15k991jvLww/K9cpzewNgzEwEjLwXSsvKeNTWnapwcTAbmhoqhMRGs/skduJj07FyFSPOesHUc7VjtSkTHzH7+Ljmyg0tdSZuagX9VtUIPpLMj5jdxIdkYyBkQ4Bawbg4mrHlbMvWT7nBAUFhdSo68TsJb3IzpYxa9xuPgXHoaunxZxlvXFxtWOR/3GuXxa8mXFT3GjXpQarlpznnJRtNXxsc7p0r03gnOPckTpKntPbUb2mI5Mn7yEiPElkTS3qRWRUCgsWiYDLunWdmOrhzpwFJ3n5+ovgPc7uQnRMKivXS12hlpXo1L4aU2YfIi0jh1L25nh7tCVw1Tk+f0nCyFCHwOkd2bT/Dq/eR6GjrcEcj/bsPfOE51Jnx29CW3aeesT70Fj0dbWYNbI1aw7cJjohDSszA0b3bMDCHVfJyZNTrZwtVV3sWH9crNH92lTndVgsL0Oi0dXSYFTn+qw7eZdcWT7Vy5bE2FCbi08Er2aoex32XHtKdp6cKqVs0NBW5977cLQ01OjRqAq7bz1DoYBWVcrwIjyG+LRM7M2NsTTR535wBJpqqrSqUoYzLwTHzL1qOS6+DSa/sJC6Tna8iY0nIzePctbmpObmEpueia2JIapqKoQlp2Kur4uRjjYhEv/GzFBXGblgoi9SwY11tNHV1iAyPR0LPT0KVUW2lHAoziFLLqe0qSnhks+Ni7kF75MSlODmY0oS6qoqWOrrE5WZjpmODl/+8Lz+Xw1w5mw8T568gPpVStGyTjmGeItQzO6tq1LWwYKhM8XvA7vUwc7amKHTdgHQr3NtXJytGTpll3ALblqB1k0qKE+Isk5WjBnShL2HHyj9bvxndSQxOZNlf4nFsH/vetSs7siatZcJ+WrUN7MDOTky5knSyBYtKtDGrTLBH2PZIkkXx4xvSanSljx78plDX7k4s9pjbmFI0Ltodm+RSLdT3ChR0pSM9ByW+InkcLdO1ajfVIyV9m6+SfD7aAyMdJg6pzOqqqrk5cpZ4nWEgvxCGrasQIv2wvU0Iy2bFRJJuEv/+rjWEjyGgoJCVngfRS7Lp0bDMrTuWhQ/8OjGe65J3jQeC3oUG02d23ufd0/D0NHTYvzc4oZ+8VEp7F0p3qPh3h2/S/EOfhXBWYkDNC6wx3eqKoDdS86QnZGLs6sdrXr/OLcpNSGd4xJXYuCsTr9U8Hz5GMPdU0KB0Wvyn3Vv0pMzeXxRXGSa9/w1ePpVxUckAWBp938PwFm+fDmrVq0CYOfOnTRr9p9PNv+TSo1PY7v/ES7uuIlCoUBLV5Pe0zvSfXJbJSH+Tyr0dQRLR25WEqjbDGzMqIV9fyjn/lqx4QksGLaJoKeiWd5xRHOGz+3xw+f9EhxL4JANhH+IRk1dlREBPeg0ovl3fJtTW2+wye8ohQWFOLva4bt9FBa2Rd2njNRsFowRZGKAgdPb0XtCkTIrOS6NOcO38vFlBOoaakxa1IuWUlBsQUEhWxec4bhEym/ZrSYT54kQUVmenBUzD3PjzAsA+k1oSb8JIiT0W4+bEvZmzN08hBL2ZkRHJOE9egcxXwSImbNmABWqOhD8LorZ43aTmpyFVQljAtcPpKSDOYd33WHLKrERauZWGU//zsTHpDFrwh7iolMxMdVj3l/9KWFniu+0Azx9+Ak1NVWm+3WiQePyBM4+xh1plDRpWluatKiA14yDvHgeLoI0/Tpj72jOxAm7iY9Px8LCgMVL+vDiZQSrVgvScfNmFRg9qhkzfY/wMSQOPV1N5s/pzqt3kWzZKTon3TrWoHGDskyZfYjsHBnlna2ZNr41vktPExmTirmpPnOmteevbdf5IHVy5kxpz+bD93gXEouejia+E9zZeOguoV/EGGrG8FYs232dhJRMSloaMbRrPRZsu0yevIBaFe0p62jJ1tNC4Te4XS0efojgXVgcBrpaDO9QlzXH7wpJt4sDmtpqXH0egrqaKkPda7Pz8hNy5fnUcLalUBUeffyCtqY63Ru6svumWLPaVCvLk9BIEjOycbQ0wcRQh8efItFWV6OFaxG4aVetHOfffKSgUEF9Z3teRceSkSfDpYQFSVnZxGVkUdLECNQgIkWkfOtraxGamIyJrg7G+trKsEwjXW0+J6dgqquNtpYGUenpWOjrUUAhSdk5xbKlnMxM+JyWTIFCQXlzcyW4KVMM3OgRnZWOibYO2VlFnlm/q//VACcyPg1bawu8RrRi5jIRouniZM3InvUZ53+Y7Fw51SvaMbBLbcbPPkhWtozK5W0Z1qs+3otOkpCUib2tKVNGtmTXwfu8fBuJro4m/tM6EPQxlu27JSO9sS2xtTFh3JQ9IlKhUkkG9W/I/QchHDshlFkzprXHzEyfeYEniYtLw8bGmEmT3cjLy2f+XCkvpWFZ2nesRnpaNovnCi5Ou07Vqd+oHDk5MhbNETLxxs1daNVWEA3XLj5PYnw6JexMGS0Rdd+//sJBKadqklcHzCyESdnONVeI+JSAibk+E3w6KhfO9QvPkpyQQUlHcwZPKkrvPrX7Hu9fRKCjp8Ukyd0YJG+ar945gxsWU00lxqaxTcrNGjzNHUvb4uOlDf7HyMsRYZkt/5birVAoWD9bcICadq6Ba/3vHYS/BMdyYY9430fO6f7TzsnhNSLVu0wVBxq0+7U78LF1l1EoFNRrWxXHCn+Wp3Tv9FPy5QWCaFux5O/v8JP6Kq02t/3zMct/sw4cOMDUqVMBWLJkyW9NPf8bJcuTc2r9ZfYuOEF2uvDSadarHsMCe/+jcVS+PJ+Dy86yd+FJCvILMDIzYPKaIdTv8OucsNsnn7By4k6y0nPQN9LFY83gH7oSA9w+9ZTlE3aQk5WHiaUh3ltHfed8nZcjY/X0/VyV3Iubd6/NxCVFXRmAiOBY5gzZTHRYAtq6mkz7qziZOOT1F/yHbSEpNg0DY11mbx5G5Tqi85OTlcdij308uCJkv4M83ek1VgCstOQs5o7bydsnYcLle243WncXWWc3zr5k2azD5MsLKF/FDr91AzE21efDqy/4jd9FWko21rYmzF0/CLtSFjy5G0yg5wFyc2Q4lbMmYO1ATMz02Lj8Asclo9Bu/eszfFIrgt/HMHvyPtJSsylhZ8r8v/qjo6fJtPG7+Pg+Bm0dDXwX9MClUkm8p+7nxTMBZGb5daZSVXumTt5LsDSCCpjXHV19bSZP2kNqajZ2dqYsXNSLa9ffs2Wb4LN07FCN3r3q4jHjAF8ikzE20mVxYA+u3nrPgaNCPTW4b31cXEowbc4R8mT5VK1kx9ihTZm54ATxiRnYWBriN6U9C9df5POXJIwNdfCb3I6/dt8kNCIRIwNtfMa5s2r3Db7EpmBurIfn0BYs2n6VlPRsStma0ce9OvO3XUaeX0CDKqWwtjRi99cU8I51ufEyhODIRIz0tRnctg5/HbtDfkEhDSuXIp9Cbr4SROUhbWqy/dJjZPkF1ClnT1a+nFehMehpadKpXgUluGlbozz3PoaTkpmDk5UZ+nqaPPscjY6mOk0qlFaCm7bVynHu9UcKFQoalnXgWWQMWXkyKpSwJC4zk8TMbOxNjchHQVRKOlYGeuhoavApSYyo9HW1+JSUgqmuDvraWoSlCIWUpqYaUenpWOrrIaeQ5Jwc7IwMScoVnRsnUxM+p6VQoFAU69yUMTMjOCUJDVVVzPV1ic7KwFRbh6wCOdn5/z9IE/+/odRUVZk3oR37zz7lbUgMBnpazJvUnvV77xASnoCJkS7+E9uycc8dgkLjMNTXxt+jHUfPPefBVxdLz/a8/xjDLmkcMW1ca4wMdPCYdUCZM+XWshIbt97gY3Ashgba+MzoIMz2lkrOxF1rUreOE5cuveb6dZFi6+3TET09LVYuO8+XCJF+6ynxXlYuPkdSYgZ29maMmiBGP5vXXCEyQkjCJ05vh4qKCjcvv+X6RUFcnj6nCzq6muTmyFgqZVI1d3elkWTy9/Z5OMf3iP9hsl9njCSlxv3r77km+dd4BnZT+tdEhyeyc5UU6TC9bbE08J3LL5IQk4q1nSkDJrcp9p5vCDhBTmYe5as50L5/8c7Go2vvuH9RqJ7GB3b/jnNy/dgT3j8NQ1tXk+E+nX/4me5YIHw56rm5UvknEQqpCemckSzUB8zs+EtuS0ZqFtck19iuY1v/9Li/170zYoFp3OXfC8YskHJX1P8Didn/bt24cYNBgwYBMHHiRDw9Pf+PPr9CoeDmkYds9z1EbJjwzSpTvRRjlvSnYv1/Fgwa9i6SpaM2E/w8DID67aszcdVgTKx+nnaelyNjk/dBzkoBuS61nJi5ZSRWPxgf5svz2RZwnGOSB1LlemWYtWWkkifzteIjkwkcuongVxGoqqky3LcLnUcW7+48vPKGxRN2kZ2Ri2VJU/y3jaDUN0D7zrmXLJ28h7xcOXbOlvhvG0EJideTGJuG/4hthL6NQkNTnanLeivTwKPCEvAdvo3o8CT0DLTxXjOAavXLiCysLTfZLiku67WowPQlguh//9o7Fs44RF6unDIVSjBn7UBMzQ24fOo5K+ecoCC/kGp1nfBZ1hsNTXUWeh/l5iXhhDticmu6D2jAk/shzJW8a8q42BC4sh+5eXKmjN5BZEQyhkY6BC7rg5WNEVPH7yZEAjL+C3tQwtYUjwm7ifySjJGRDguW9CYnV47nlL1kZ8soW9aa+Qt6cvDwQw5JsTb9+tanVcuKTJq2j7j4dCwtDFgc2INDJ55y9qLg7owb0QxzCwO85h0nP7+QujVLM7BnXabNFUau9ramzBzfhjmrzhIdl4a5qT6zJ7ZlyZYrRMSkYGasx8zRrVm6/SqxielYmxsyYUAT5m+5RHpWHmUdLOnYrBILd1yhoFBBs5rO6Olrc/jaCwDGdGvAuQfvCYtNxsxQlz6ta7D62G1xbDVn0nJyeRocibaGOgNb12DrpcdC7l3RkeTsHN5GxGGgo4V7rfLsvS0es31NF269/0xadi5lS5ijqanGi/AY9LQ0qF/ekfOvxEi36whISwABAABJREFUXbVynH0dhEIBjco58jgiihyZnMq21kSlp5OUlY2jmTF5igKi0zKwNtRHU12dsORUzPR00dXRICw5FVNdHXS1NAlPTcVcTxc1DRWiMzKw0tdHRgHJOTnYGxmRkJtNtlwuZUslfw9uzIuDm5hvwE1uQT5lTcz4U6H4//yq+T9Y43o1JC09l31nBIL2HtWGt8ExnLgiXCb9Jrjz9mMMR86Ji5XPRHcSk7PYKPndTBzWHDMTPab6HxFRDa1dad6oPH7zTxKfkIFtCWOmjGvF0+dhHDgiZUh5uGNuZsCMWQdJS8vBqbQlI4Y1JSoqmb8kwDB4cCNcXGy5d/cjZ6SZ83SvDhgZ63Lx7Etu3xB+CDP9OqOjo8mje8GcOSY6QdNmd8LQSIekxAxWS66kvQc3xKWy6CJsX3OFyPAkzCwMGDtdAKbcHBnLfUWwX6uO1ajTWPAOMtJyWD1XkHm7DmqIi6SyKCwsZIXPMfJy5VSt64R7j6KL+Pvn4ZyWSIAT53Yrpn56dP09dy+8RlVNlYmB3Yp1V/JyZaz3FeGcnYc1waFccWfq3Ow8ti0QXaveE1tjZv39hej9k0/cO/cSVVUVBnv9PEPpyNpL5OXIKVPVgVotf22ed2nvXfJyZJSqWJJKP+gY/ahyMnN5dk3sluu3/2ep4X8vVelCpyhU/ObI/269fv2azp07I5PJ6NatG8uXL/8/Snp+czeIzbP280HyBDK1Nmawf3daDWj0j/hNBfkFHPnrArsDjyGX5aNvose4ZQNo1qPuL/+fz28jWTC8KHG852R3Bnp1+qFKKjEmhQUjNvP2QQgAPSa0YbB35+9UXC/uBLFw1FbSkjIxNNVj1qbhVG1YxPlRKBQcXHOZXYvPolAoqFTHCe9NQzGW8rIUCgUH1lxml9QRrdGkPLPWDlKO1j6++sKckdtJjk/HyEwPv01DcanmIN7PJ5+ZO3Yn6SnZWJU0Yc6moTiUsSJfXsDagJNcOCK6Gp0HNmD49Laoqalycu99NiwSr6VWw7J4ScZ++zbdYNdaYU7arK0rUwK6IMvNx2fCHl4++Yy6uhqe/p1p7u7KtfOvWDpH+NlUr1Oa2Yt6EheTyiyPfSQnZmJpbcSClX1FQOaYnURHpmBsrMv85X3Q0FRn0vhdJCZkYGllyOJlfYiISCYgQHjhVKlqj79/VzZtvs45SfY9ZnRzqlZxYNK0faSkZmNna8qCgO5s2nmLm3cEMXrqxDYUKhTMWXJajLIalaejWxWmzj1KVraMsqWtmDSiOb7LTpOQnEkJKyNmjG3DvPUXiU1Ix8rcgGkjWrJg0yUSU7OwtzFhZK8GBG66SHaunErONrSoW5alu4X0272BC/kKBadui/Dm8T0acfTWSyIT0rAy0adL0yqsOX4HhQLa1CpHTGo6Lz/FoKulQb+W1dly8REFhQqaVilNZEo6H6MSMdTRolWNshy8K8binetU5MqrYDJyZVQoaUmBioLXX+Iw0NaklrMdl16LEM221cpz5qXo4jR1KcX9z1/IledTxc6GsJQUUrNzcbIwJVMuIzYjkxJGBkKgkpKKhb4uWloaRKQIybe2llBIWejroaIGsRmZWBvok1OYT2puLg7GRsRlZ5GTn4+zmSmhackUKhSSQ/HfOjdqqpjp6ijBTbYEbhwMjQhOjP3j8/1/NcBpULUUYyXb/Z5u1XCyM2fwDMG7GdC5DnbWJgyZKng3vTvWFOOpKbsoKCikeYNytG9ZmZmBx0hOEaGZE0c05/T5l9y8+1EEsE3vgExWwPwlAmh0bFeVRvXLcujwQ54+C0NLSx0fr46oqqowf94pcnJkuLra0btPPZKSMlkmAZQevepQo2YpYqJSWLtC7KoGDW9C2fI2pKZksWyeIEp36VWHarVKCW+buafISMvBubwNfYc3AeDF48+cOCDa4B6+nTCQFsKda64SFZGEuaUho6YVuQFvXFw0mhowtijA8tyBh7yRJNqTA4s4NHJZPqu8xQipZZcaVGtQBAhyc2SslxRVXYY2opRL8Syew+uuEhuRhJm1Ef0mF/e8+Xp7UmwaVnamdBn+PedDoVCwLVB8lq371Me+7I+jO1ITMzgtBaH2n9bhlxe1wsJCzkg+Nh3/xpn4VT29+gZ5nhybUhY4/OFI62elKnGDCv9Bgu5/ur58+YK7uztpaWk0bNiQPXv2oKb2Z5Lrf7fC3n5h55yj3DstALy2nhY9PdvTbaLbH5v1fa3Q1xGsGLtV2bWp416VSauH/NL7SKFQcHrzdTb7HkKel4+JpSFT1w+jRvMfq+KeXn/L4tECtOgaaOO5Zsh3I1CFQsGRtZfZIQW2lq5UEt9to4p1gnKz81jxTaxCu4ENGeVfpObKy5WxcvpBbkgj7k5DGzPCp5MSRN0+95JlU4VayaGsFXO2DMNKGt9dO/mMFdLoqZyrHX4bB2NibkBWZi4LPPbx9E4wqqoqjJzVnk7964scqiXnlP5X7t1rMd5bkP9XBZzkgrS56jG4IUMmtSIpIYPZE/fyOSQOHV1NfJf2plrt0hzefZctfwneW7M2lfH068T7N5H4TT9IVmYejqUtmL+iL2lpOUydIHKlrG2MWLCiH+lp2Uz33E9GRi4OjuYsXNKbp0/DWLbsnAi9bVCGGTPas3jpOe7clUjHHu6UsDVh8vR9ZGXLKONkRcDszixbc4nHz8LQUFdj9vT2RMensX6HNMpyq0KDOs5MDzxGniyfKhVKMrxvQ7wWnSA1PQfHkmZ4DG+B/1/nSJLAzIRBTZiz7jzpmbk42ZkzoFNtAjZcIE9eQM2K9tSsZMfKfVL+VfPKJGfmcP2pkJFP7NGIvVeeEpeSia25Ee71XVh/UmwQO9avQHBMEu+k7kzPplXYfOGhMDGs5kxIfDKfYpMx1dehUeXSHLkv/HC61avEuedBZOfJqWxvRW5BAR9jEjHS0aJaaVuuvgtFVUUF92rllOCmmUtp7nwKR5ZfQHX7EoQkJZOWk4uzpSmpeXkkZGZR0tiIQgqJTE3H2kAfNQ1VvqSmYaGni7qGGpFp6VjpCxJxXGYWNoYGZOXLSMvLw8HYmNjsTHLz8yXicCIK+GHnRlNNDRNdbWKzMzHX0SUjXybAjZEREZmpPz1Xf1T/qwHOvI0XSc/MpXwpK0b0qM+EOYfJzpFRxcWWwV3rMMn/EJlZeVQoY8PIPg0JXHWOmPh0bKyMmDamNUfPPOPh089oaqrjP60DMbFprN4kyMDDBzaiXBlrZvkdFQDI3oyxI5rzMThWORceO7oFDg7mbN92kw8fYtDT02LmrA6oqqqwZOEZ0eFxtmTI8CYU5BeycO5JcnJkVK5iR89+9VAoFKxadJaU5CwcSlswbIzwWjl//BmP74WgoanG9Dld0NBQIzsrj+UBJwBo27UGtaRuxJtn4ZzYK0ZTk/w6oS+Bnid3PnLl1HNUVFSYMrercjSVEJOqNPQbMqUNVt9waI5uvUV4cBxGpnqMmNW+2Ht9aP01Yr8kY2FjTL+JxUc9sRFJHJLiKUb5dkHnb3LtxJhUjm4Qtw/z7oSm9vdEzsdX3vDmQQia2hr0m/pzE74Tm66Sly3D2dWe2q1/rbJ5fuM9MZ8T0DPUoVn3P08A/zb5+9/tcnzlYWSlZf9bj/OvVmpqKu7u7kRFReHi4sLJkyfR1v7vm/VFBEWzJ/AYt44+QqFQoKqqgtvQZgzw7oLpLwDJj0qWJ2f/olMcXH6WgvwC9I11Gb2oHy37Nvjl55OamMGK8dt5KI0xard2ZcqawRhbfB+sWVBQyJ7FpzmwXKiwnCrb4bVlJLZOxYNhszNzWT5pN3fPCuDSsmddxi/qXYxvE/cliYBhW/j0Lgp1DTXGzO1O2/5FMvGEmFTmjthK8KsvqKmrMjagm/J2hULBgXVX2SWdo7WalmfGqv7oGWijUCjY89dl9kkeMvVbVWKa1IWJj07Fb8xOwj7GoqWjwcyl/x97fx0d1dn2f6CfkWQycTeSEJIAIQQL7q7B3aG4u7u7FUppC4XiTnF3dydYlLjrJONz/tibQArU3uc9v3PW815rdS062XtnMrLv731dX+lOjUZBovDgIDcvCB3J78Y2o+vAeqgLtCyZvF/wuJFKGD4tlDbdqgsBm2N2kZacg6OTNQvX98avlLuQEr5f6GJ37FmDwWObcevaG5bN+x2d1kBwBW/mr+hGZHgyc6YdJF+loYS/K0tW9yA8PJmFcwUPr8AgTxYv68qZM8/Z/Iuw+fiYCD5n3hGePvuAmZmM2TPbIZVJmTzzgCANL+fNtImhLFhxgrA3CSgtzFgwsz1PXsay+7Cw6evVqTqlAtyYsUzgPNYIKUHXtpWZuuwIqnwtgf5uAthZc4JclRp/H2cGd6vFnB9Ok1+gpWyAB+2alGfhL+eE8VHFEpQq4cqmgwIw7NkihIjEDO68FMDV6K512Xb6Phm5+fi6O1I/xJ/NJ4Xn0ql+eZ5GJhCekIa9tZL2tcuy5Zzw+rWsUprnscnEii7E1cv4cPS+8P50qVWeE4/CKNDqqVTCk0y1mqiUDBytlJT1cePK60hkUgnNK5QqBDeNyvpz7X0UeoORqr5evE5OIVejpbSbM6kF+aSr8inuaIfGYCApJw8POxuQIgAaG2uQQkKOMLrSmQykqfIpZmdLtk5DrkZDCQd74vNy0RgMfwA3X3ZuzGUy7C0VJOfn4aS0JEevQWPQU9zOXgQ3Jko7Ov+fiurv1Iv3idjZ2rJwbGt+PXCHt1Ep2NlYMH9MKNsP3eWVmDs1f0Jrzl9/zZXbQhjcvAmtiU/K4qftAlAZNaABXh72DBu/C61WT9UQX7p1rMbvxx9z934EZmYy5kxri8lkYvHS4+j1RurULkXr0Iq8eBHLHlENNWFiS9zc7Dh65CEPRUn4jNntMDeXs2f7TcJexGFpaV4oCb9w+hm3rr1FLhfGVeYKOYlxmfwsqpC+G9GY4n7CLH7zunMkJ2Th5mnPYJEXoy7QsmbuEUwmE83ah1C1jsBjyFdpWC9GN7TvVZOgisULX7NNi09QkK+lTEUfWn9m6JcQk1boazNkRhtsP3NbjYtM5aB4Mxo6u90XAGbL4mPoNHoq1CpJndAKX7xPO1adQqPWEVTVjzoif+DzMhqNbF8mdLHaDmyA81ecY0HwvTmxRXgePSaG/iX4OCsavTXuVvNPPXL+WE+vCX4SlRv/z7OjfMROV/Srv29P/p8qjUZD+/btefXqFR4eHpw5cwZHx/9dsnN8eBK7lxzlyv7bGMWxXN2O1egzqyPF/0aw6R8r7F44a0f8yoe3wmipdpvKjFzb90+7NgAPL75k9ahtZCZnY6aQM3B+Z9oNafzVz0xGcjbLh27h2U1B3dSqXz2GLe72BRCPfZ/EwgE/E/s+GbmZjKELuxDar6gz8tNb71g6bBs5mSrsnW2Y+csAgj+Tib9+HM3CwVvJTM3B1sGKmT/1L/SJ0mp0fD/9IJePCiP19t/VZdCMNshk0i+UUp0HN+C7SS2QSqW8exnHvOE7yEzLxcHZmnmb+lEq2IusDBULxu4i7KkAGiYs7ETD0ApkpOUyZ9Quwl+LnjjLu1CzQRmePYxi/sR9qPLUePs6s2hDbxydbFgy8xA3LgoGckPGNaNTr5ocP/Sg0J24Vr3STJ/fgXt3wlk2/yg6nYFyFX1YsKwrt2+9Y9WKUxgNJqrV8GfmnPbs2nmLAwcEINC1W3W6dKnGpKn7CA9PxtLSnEULOpGcmsvyNWJ3p3oAo4Y1Yvr8w0TFpGFjbcHSeR05fzWMY2eFzcjQfvWwsVEyb81JgZ9YuzRN6pVh6rKjaLV6KgZ50b1dVWauPkGBRkfZkh50ax3C7A2n0er0VA7ypmHNUizdcgGjyUST6qVwcrBi6zHheX7XthqP38fz5F08CnM5o7vU4efjd8jJ11DSy5kqQT78JpKNezSuyK2wGGJSMnG2taRFtUC2XRB+1qZGEPcjYknMyMXDwYby/h6ceCjcb7rWLs/v91+h1Ruo4u9Fcl4eH9KycLW1ws/dietvo5FLpTQpH8Cp58JntUnZAK68i0RvNFKthBcvEpPJ1+oo4+FCYl4emfkF+Do6kK/TkpKnopi9DXpMJOXk4W5rjQETKbmCE3GBSUeGqJDK1KoLvW1ic3PQGgyUdnHmTYbAnQv8rHPj7+TI+6x0FDIZtkoFKfkqnJWWZOs1aP8AbrxsbHmb9n8+OH+7pg1uRnRsOvs/8mxGtCA2IZNdvwsfzCnDm6HR6Fm3WQzA7FUHX28nBk/YgV5vpG6NkrRrWZHvN10kMjoVB3tLpk9oRVR0KpvExXT4oIb4+7myZt3ZwiiGiRNaolJpWLrkBEajiWbNy9GgQRliotP4RfSiGDysIcV9XQh/l8SOj3lNE1rg5m5PSlI2G0USYJ9B9fEv5Y7RaGLVgqOoC3SUq1S80K344e1wTott5Ilz2xd62Gz/4SIJHzJwdrVlyMRPY6Ft686RkpiFezEH+o3+5O5768Ir7lwKE9QW8zsUch9MJhM/zP1dcDKuXZKGn/namEwmfpz3O3qtgSr1A6nVvOii/+z2e26deY5UJmXY/I5fLCCRYfFcFB1KB89u/9UF5vqxR0S+isPSxoIuI7/tRnxi6zVUOQX4lPagZssvgdTnlZWWyx1xl92iT90/PfbzSopOJSk6FZlcRtma/4z4+rXyKyfwnqJe/t09y3+mjEYj/fr149q1a9jY2HDmzBmKFy/+1yf+y4p+Fcu+lSe4dvBuIbCp3bYKvWd1KHwN/kmpcgrYNu8gJzdfxmQy4eBqx8g1fajb/s9J3+p8Db/OPVQIhH0CPZm2eTB+wV8PYH18LYyVw7eSmZKDhZWCsWv60LBTtS+Ou3H8MWvH76RApcHJw56ZWwZTpvKn2AiTycThny+zbYlgEVGyvDeztwwqYmJ54eA91k8/gF5rwDfQg7lbBuEujrUyUnJYMOw33j4VyMoj53egVU/BgTwrPY8Fw7fz+kkMMrmU0Qs60Vzkzd2++IoVk/ejUevwLeXO/E39cPW0JzYqlTkjd5AYm4G1jQVzvu9N+aol+BCZwuyRO0lOyMLOwZL563sTWN6bq+dfsmrOEXQ6A2Ur+DBvbQ+kUikzx+zi+eMY5HIpk+d3oH7Tsmz76TJ7twtdjdD2IYya1JKTRx+zca0AeOrUD2TanHYcPfKQzT8L70PT5uUYO6E5339/nvPnhFHM0KGNqFe/NGPH7yY+IRMHe0uWLe1aJBG8eZNgenarwYSZB0hMysbJ0Ypl8zqx+8h9rtx8K4RejmhGjkrNyk0CB7Jts/KUD/Ji1qrjQmBnZT+aNwhi1toTaHUGqpTzoWWDIOZtPIPBYKR2iB8Vg7xY+ZvwO9vUL4tJImHfeeH+Maxzba48Ced1dDJWSnNGdq7DD0duolJrCS7hTqniruy5KBzbt3llzj9+T2JGDm4O1jSsGMDOy8La1LluOa68iiQ1W4W3sx0BXs6cffIOqURCtzrlOXDnBXqDkZqlfIjJyCI+MwcPexuKOdtxJ/wDcpmUxsEBnHkhkIubBgdw8U0ERpOJGv7ePI1LpECnJ7iYG7HZ2WQVqPF3diRbrSZNlY+3gx1qo14AOna2qI16oVtjb0ueTkOWWo2PvR1pmgJUWi3+To7EZGehMxoJdHHm9Wfg5s1n4CYiKwMLmRxrpRmpBSpclJZk6TRojXp87eyJ+QzcxKlysJJ9mTn4rfqvBjhtGwRTvpQnfUV/m26hlQkK8KD/xO2YTNCmSXlqV/Fn6NTdaLR6qlYoTo92VVmx4Syx8Zm4ONswdXRzbt+P4HfRUn36hFZYWymYOG0fOp2BmtX96dA2hFu333HylJANNW1KKHa2SpYtO1EoCR81qik6nYFli4+j1eqpUs2P9h2roNXoWS6GzNWpH0iTFuUwGk2sXnyCfJWGMsHF6CqqkY7uu8fLJx+wUJoxaW47pFIJqlw1axeJ3Zju1alQRbipvnoSw9Hdgjro89HUy8fRnBB5OmPndcDCUhyR5KrZtEgg+XYZWB/fUp9s66+desYTMe5h1PwORUDIzTPPeXLzHWbmcobPKwpQDAYjP88XeDmhfWrjW/pL3syWRUcxmUzUaxtCYIjvFz836A2FWT2dRzTF1tH6i2NAUMB89L3pNrblXxJTL+27jV5noFSIL35/ki7+x3p2XdhNlapcAstvGAz+kyoRLCzusW8T0RRoi4wy/jdrypQp7N+/H7lczpEjR6hQ4c8B4b+ttw8j2bfieCHHBqB6q4r0mdWJkpV8//H1TCYTt44/4sdJO0lPzAKgaa86DFna45ufjY/1/mk0K4ZuIfadQGJsP6wJ383p+NXX3KA3sHP5cfavO4vJZMK3jCcztw7Fu2TRz7BOq+fXhb9zbLOwUJerWZLpvwzE4bMxlzpfw9pJe7kuei017VqdkYu7FP5eg97Ar0uO87uYs1SrRXkmre1V2AkNfxnH/KHbSEvMxtpOyYwf+hby36LfJTFv6DaS4zKFoM2NfQoDMw9vu8HWVcLzr1K3FNPW9MDK2oIXD6OYP3Y3eTkFggz8x354+7nw7EEUC8fvIS9XjaePI4s29sXD25GDO26xRRRI1G5UhqkLO5Gdlc/scXuIjkjB0krB3JXdCK7kw5rFJzh3Suia9B1cn57967Bjy3V2iynorduHMGJcc379LHqha/ca9OlfhwULjnLvboRADJ7cipKl3Bk9bhfp6Xm4u9uxfElXzl16xa59Qke8c4cqNGtclnHT9pGRqaKYhz2L53Tgh61XefAkWnAwHh/K26hk9vwukKp7d6qOq7MNizacFgzy6pahasXizFt/GoPRRN0q/lSv5MuiTeeETk2NUhT3cuKHvUK3t1vzENJzVFy4J6R3j+5Rj+M3XxIRn46dtQVD29di3aHraLR6QkoVw83ZjsPXBcA2sHV1jt1+KQAYFzuqlvFh77WnwnXrV+Ds03dk5hVQws2BYi52XH4RgVwqpUvtcuy//Vx4fkEleJuUSnJ2HsUcbXGxs+ZBZBwKuYx6QX6cfSmAm2blSnL+9Xuhgxbgw8MP8Wj0Bip4uxORkUmuWkNJFyfS8/PJyC+guJM9eTotaap8vOxtUemFbo23vR3ZOjXZajW+jvYk56vI1+ko6eREZLZo3OfqQli60HURHIpTARN+jg5EZGWglMuxsjAjrSAfNytr0jX56IwGStg5EJ2XCZgo9hHcmJlh0Kv/9Hv8ef1XA5yRveox+/vTAg/Hz41hPWoze9UJ0jNV+Ho5MnZAQzbtuEZEdCr2tkpmjm3FlVtvOX1JsOyfPSFUyHhaK9j9d+1QhepV/Niw6SLRH9JxcLBi6vhWZGaqWLVGOKZL52qEVPLl2rU3XDgvXGfa9DZYWSn47ddrvH+XhI2tkklThRHKb5uvEh2VioOjVWFK+IkjD3nyMAqFQs7k2cK4Ki4mnW0/Cl2mIeOa4S5yYzZ/f5605Bw8vBz5bpQgKddqdKybLwCHZu0+jaa0Gh3rREO/5h0rU6nGp9b49nXnSE/JwdPHie7DPpF8VblqNi8VxkPdhzfCs/gnF1d1voZfFgugqOuwhkV+BnB+/z2iXidgbWdJ7/FfEosfXXvNk+tvkZvJ6D+19Rc/B7h8+AEJUanYOVnTfsi3DecuHbhLdloubj5ONOj419Lti+JNsnnvv9+9AQpVPn/mgPtPyrmYA67eTqTEpnP9yH2a9qrzH7nun9X333/P6tWrAdi2bRtNmjT5izP+WZlMJh5fesmhdad5fEmQEEskEuq0r0L3KW0JqOj7r66bEpfOxok7uSt23jz93Rizrt9fxmQY9AYOfn+WncuOY9AbcHS3Y9KPAwj5xnkpceksG7KFsPvCe92yb12GLe72BRBKTchk6ZAtvH4omAF2GdWMftPaFFFTJUSnsnDQr0SLJoBD53Wk9Wdjq5xMFUtHbOfpLWFh6jG2Gb3HtygE6J+Tib39XZm3eQCeYtDt/SuvWTZ+NwUqLR4+TizY/B1efq7odQZ+XHScMyKAaN2jBsNmtEYml3HpxFPWzjmCXm8gsLw389b3xt7Jmksnn7J27lH0egNBFX2Yu64n1rZKNq44zQnxOu26VWfoxBZER6Qwe9we0lNzcXS2ZtH3vfD0cmTO5P08FAHK2KmhNG1VnjXLTn0CPAPr0a13LVYuO8ll0bNnyPBGNG9ZnsmT9/I6LAFzczlz5rbHytqCseN3o1Jp8PV1ZumiLuzY+yk0c2C/upQL9mLcNCERPMDPldlTWrN8w1levU3EQmHGgmltuXb3PScvCgBjWJ+6GIHVm4WNUIcWFfEu5siiH4VOeYt6QZTwcWLlVuE+27ZhMEpLBVt+FzaK37WvxtuYVG49i0IukzKuVwP2XnhMbEoWzvZW9G1VldUHrqI3GKlRtjiWSgWn7wpxC4PbVGfftWdk5RXg7+FIYHE3Dt8UnlfPhpU49iCM3AINpYu5YGdjwY3XQsRCx5rB7L31DJMJGgb78Sw2ifS8fHydHbC2NOdJTAJKMzk1Shfn/CsheLZpuQDOhQn/rlvSlzvRsegMBir5ePI2NRWVVkdpV2eScnPJVmvwc3YkQ1NAZn4BxR3sydKoBVWUoz3pahW5Gi1+Tg7E5+Wi1usp6eRERJYo/3Z1LgQ3pZ2E+AUwUcLRgcjsTCzlciwUcgHcWFqTpslHbzTga2dfCG48rW2JV+VgbWaGASP5Bu2ffp8/r/9qgLP3xCOehAm5UwvGhXLs/HNuP4oU/G0mtOHR8w8cFm+WM8e0RKfTs/pHYafSp0sNKpT1YsqcQ2TnFBDg58rg/vW4/zCSw8eE3ei0ia2ws1MyfebBQkn4gP71SE/PY60Iirr3qElwsBevw+LZs1sMlxzfHGdnG148/cChfcKXZ8K01tjZW5IQl8FmkSQ4cGRjvHycMBiMrF5wTBgRVfOjVQdBmvzkfiRnfv84mmpXKNneu/kasVFpODhbM3jSJ2Cxb/M14qKFxwdN+KSmev0khpN7ha7O6PkdCgnHALvWnycjJZdivs50HtygyOu7f9Nl0hKzcfNyoMuwomGT+Xlqdog+QL3GNS/C2QFhRLL1Y7Bov7p4/AEcgdAB2v+9QKbsNLzJN5OqTSYTxzYL7eO2gxr9Zehi5MtYol7FYWYup16HKn967B8r/LmQ/B1Q4T8zzpFIJIQObsS2OQc59uP5vyTG/k/r0KFDjB8/HoClS5fSu3fv/9i1tRodV/bf4cj6M4WcIqlMSqPuteg2qTU+gf9OcabX6Tm66QK7lhylIE+N3ExGl3Gt6DGl7V92vOLCk1g1YitvHgghmXXaVWbMmj7f7PbcPv2ENWO2k5eVj6WNBePW9qVe+y8/I4+vvWb58G3kZORhZatk0oZ+1Ghevsgx9y+9YuUYwSXYwcWGGT8NILj6p01FZFg8Cwb/SnJsBhaW5kxY3ZO6IgfNaDSyZ/0FdosxKVXql2ba972xslViMpk4svU6vy4XCM/lq/sxc0MfbB2syM0uYPG43Ty7G4FEImHw1Fa07ysQlHdvusxOcZNUp2kwk5d0xlwhZ/fPV9j5o/D9qdusLJMWdsJkMrFg0j7uXn+LRCJhyPhmdOhZk8f3I1k09QD5Ki3F/VxY9H0v5GYyJo7YTvjbJBQWZsxc2JEKIb7MmXqAB3cjkMokjJ0kuBPPmnaAx4+ikcmkTJ7WmnLlvRk7ZiexsRnY2FiweHEXsnLyC3Olgst6MXd2e9ZtvMCN24J6asLoZjg4WDF59iGBYBzsxYTRzZm7/DhRHwQOzuIZ7Tl8+glX7wjnTBrWlJiEDPYdF7OvOlZHbiZj3W9C561zi4ooLc35UezU9GxdhZx8DfvOCl23Ed3rcOdFNI9fx6EwkzGudwN+PXGPlMw8PJ1t6dy4AmsPXMNoMtEwJACN3sClx++Ry6QMaVOD7RcfkVegIdDbBS9Xe07ef41EAn0aV+bA7eeCIqq4G3JzOffex2JhJqdN1SD2ibLwphUCuB8ZR1a+mgA3J+RmUl7EJWOtMCfErxiXX0cgkQhjqXNhgn1B/dIluBkRg95opErxYrxMTqZApyfI3ZXYrGxyNRpKujqRrMojW62hhKMDaQX55Gg0+Dk5kKTKRaXTEeDsyIecbDQiz+ZdRjpGk4kgVxdefQQ3zs68TU9DIgEfe3sB3JiZoTCTkaEuwN3ampSCfAwmQ5GxlIe1DQn5OdiYmaPDgNqgo4Stw/+RjP9O7Tx6H6lcwaRBTcjP17Jpp8hz6d8AOxslY+ccAKBLm8pUrejL2Jn7yVNpKFvag37da3HkxGPuiyqqWZNbk5+vZdlqwZOiQ9sQqlfx49iJx9x/EImZmYwZ09tgZiZj5cpT5OaoKVnSnb5961BQoGXZ4hMYDSYaNSlLg0ZB5Ks0rFh8XIhYaF2BGrVLCqndi46jUeuoUNmXtp2ETsSx/fcIex6LpZU542cJ0ueCfA3rxJFSmy5VKSeOd6LeJ3FAdDEeOb11oVQ8OjyZAyLPZ8T0NtjYCY/rdQbWzxU8cpq0D6HiZ12dqDeJHBczrobPaVckjiHxQzqHNwst9cEz2xYBRQAHNl4kKy2PYiVcCO1TNEgQ4Nqxx0S+isfSxoLuY75usHfj+CPiI1OwcbAitH+9b77Pz268JeZNAhZWCpr3+vJ3/bGuiI6y1ZqX/yIq4s/KoDcULtz/KYAD0PK7huxafJT3j6N4fS+coBp/z4/nn9aNGzfo3bs3JpOJESNGMHXq1P/IddMTszj721VO/HyRzGQhCNPCSkGL/g3oMKoZ7r7/PiX9xc03bBi/g5jX8QCUrVmSMd/3xzfoz92jjUYjJ7ZcYeu8w2gKtFjaKBmxogeNu9X8KoDUFGjZPPcQJ0WLgVKVfJm+efAXQZkGg5G9a06zZ82ZQjXVzC2DiwB0o9HInrVn2b1WAOelKxVn1i8Di5Djr594wppJe9EUaHH3cWLur4MKR7gFKg2rJu7ltmig13FgPQZMa41MJkWn1bNhzhEuiLlxLbpVY8Sc9piZy4mPTmPu8O3ER6dhYWnO1FXdqdGwjEBAnvs7V8ROStcB9eg/tqkQxTL3KOePiRyQ/nUYMLYp2Zn5zBm/h3eieeDUhR2p26Qs5088Zd3iExgMRspX9mXuym5kZuQxccQOkhMFzs6iVT1wdbdl4qidvH+bKFhlLOxEqUAPJozZRUR4MkqlOXMXdsTRyZrRo3eQnp6Hq6sty5Z34+WreNZ+f1YgD9cMYMK4FsxfepxnL2ILxRyqAi2zFwmhmbWq+zOoX12mzD9MUopg0LdoRnt+2X2DR88/CAngY1ty/2k0p68IXaMRfeuRnJHHwWNCZ2pgl5pk5OazQ/z/IV1qER6XzqX7Av9lXJ8GnL4VxuuoZCwtzBnbsz4bD98kK6+AEp5ONK9Zmu8PCffcljUDSclS8fCtAIQGhlbn13P3UWv1lPfzwNbaggtP3iOTSujTpDJ7rj9FrdMT4l8MjVHP48h4LBVmNK9UmgN3hG5Vq5DSXH8bRa5aiFXQmoy8TkjFTqkgyMeNa++ikEqhcdlP4KZBoB/X3kdhNJmoXsKLJwmJaPQGynm6EZmeIXRx3JyJy80hT6MlwNmRhLw8gVvj7Eh8XjYFOj2lXJyIzMos5Nm8SU/DiImybq68SisKbqQSKGZvS3ROFtbm5sjlEjI1BXhY25BckIfBZKSEvQPRuULnxt3amsT8XGzNFWiMOjRGPcWsbYn+P5Lx3yujyUSrekHUrxbAgMk70ekN1K0WQLumFZi86AjZOQWULOHKsD512X34Hs/D4lAqzZg9sTWxcRn89OtVAIYNqI+vjxNzFx0tlIQPG9hAOEYkuw0Z1IASvi4cO/aoMDRzmgh4ftp4kfg4wYV49DhhMf9l4yWSErJwc7djmLjAHz1wn5fPYlFamjNxpiAnj/+QzjZxdzV4TDPcxJvkbxsvkRSfiau7HQNEorDBYGTdvGMY9EZqNSpDHdHF2Gg0sn7BMfR6AzUaBFKn6afW/O/bbxL9Phlbe0sGTfmUw2Qymdg4/3eMBiO1m5ejct2iI5ktS06g0+qpWKsktZoVJRanxGdyZIvw2g2a2e6LpGa9zlDY3ek8vDF2X9lNG41G9q0TFogOQxphaf1t6fLxLWKAYLeaWNtZfvO4j3/XlUOiZX7Xr+dYfati3yWiVetQWlvg4ffvF+0/lp2zDQ271eT8jutsX3CYpSen/Ovwzm9VWFgYbdu2LVROrV+//n/UKTIYjDy68JwzW69y9/QTjAbBx8fZ04H2I5vTckADrP8BePxjZSZns3nWPi7tFQC2nZMNAxd1pWmvOn/52iR/SGfNqG08uyHIZCs1KMOEDd99M+YhKiyOZUO2ECOa/HUa0ZT+szp88bnNTM1hxYhtPBWzolr0qs2wRV2KdJFyMlWsHL2Dh1cFrlbrfnUYPKdDYYaVwWBk+4pTHBRtE0LqlWbaD30LgXZSbDrzh/xG9NtE5OYyRi/sRLMuAqk5Kz2PxaN28vJhFFKphMHT29Cun9Dxe34/kkVjdpGbXYCLhx3zfuyHX6CHoJQat5uwJzFIZVJGzWxDqy7VyM0pYPHEfTy9H4lUKmHE9Na07lqND1GpzB67m6T4TGztLJm3pgdBFbzZtfkaO3+5CggeNxPmtOX960TmTNlPbk4Bnl6OLFnbA6MJxg79jcSELOzsLVm4ohs2thaMGbGdpKRs7B0sWbK8GwVqHePG7vo0glrWlfMXXrFVDBlt2aI8/frWYcrsg4RHpAip4XM78eZ9Ij+JNhwfQzPHzz5IVnY+xTzsmTelLat/usDr8CQhJHNSG45feM6NB+HIpBImDWnKk7fxnL0uqL7G9m/A68hkzt0SOipjejfgzoto7r2IQS6TMrFfQ/adf0J0Qgb2NkqGd6nDugPXUBVoCSzuSs0KJdh0VPiMdqxfjrdxabyMSsJSYUb/llX55cw9dHoD1QK9QSrhxssozOQyejWqxI6rj4VE79I+ZOTn8y4hDRulOQ3LBXDkngBu21YN4vzL94LzsLc7ORo10WlZOFkr8XN34nb4B2QyCQ0C/TgvgpuGgX5cfid0LGv5+3A/Nh6dwUAFLw/epaRSoNNTxt2F6Kws8nXCuOpDdrbArXFx4kNOFmq9ntKuLoRnpn/i2aQJxOEi4MZJADcyqQQPWxs+5GRjq1CA1ESWRo2ntQ2JBXkYTUb87B2IEsGNm5U1Sfl52CkUFBh0aI16PK1tScjPAf6+6el/NcAp5mbHxIGNWb/tKrEJmbg4WjNtRHMOn37Cg6fRwrx3fCjhUals2yOw/scNaYKzkzXDxu1EqzNQrXIJOrYJ4eyFF1wXDf5mTRGkmUuWnUCj0VM5xJcO7asQF5fBzz+JPjmDG+Dr68yjB1EcE8dIk6e2xsZGycN7EZwSd02TZgj8nLgP6Wz7SWiXDhndFHcPe4FsvPB44WiqZQchD+fV0w8cEz0nxs5sW6iaOrHvHm9fxmFprWDkZz415448IuxJDBZKc0bO/GR+l5qYxR5R0TVoSqvC+AaAK8ef8OphNAqlGUNnFk38fn43nNsiv2jo7C+jEHasPIVOo6d8zQCqN/2S53Dp0H2SYtKxd7ahw6AGX33vHlx8RczbRJTWFrQZUP+b73FaYiZ3RR+TNl9JHv9jvX8aQ1pCJhZWCqr+gzRqgJRYIRjT08/1Pw5Auk5szbWDd3l65RV7lx+n1/T2/7Frx8fH06JFC7KysqhZsyZ79uz510Z+iVEpXNpzk7O/XSc1Lr3w8aAaJWkzpDH1Olf/qvvv3y29Ts/xXy6xa8lRVNn5SCQSWvavz3fzu/wlidhkMnF2xw02zz5Afq4ahaU5A+d1pvXABl99v0wmEyd+vcLmuYcKTf4m/vAdVb5i8vfs5luWj9hGZkoOCqU5Y1b2oNEfvJPeP//AoiFbSYnLwFxhxujPwjBBAD/LRu0oDNPsPLQR/cXODMDT2+9ZMmonuVn5OLjYMHtTP8qIndnI1wnMH76dlPhMLK0tmP59L6qIjuTnDj1ggxijULq8F3N+6Iujiw2xkaJSKi5DiGpY3YOQmgEkxmUwZ9ROYqPSUFqaM31FN6rVLcXTB1EsnLyPvFw1HsUcWLShN26eDqxecJwLovy8W7/a9B/RmJtXX7N8/lF0WgOBZYuxYGU3EuIzmTP1ANlZ+Xh42rNkTU9ysvMZM3IHOdkFFCvmwNKV3Xn/PomlS0+g0xkILufF/Pkd2b7jFsdOCPfEnt1r0qxZMGMm7SEpOVtQTy0QcqX2HxHIwt06VqVaFT/Gz95PQYGOUv5uTBnVjPlrT/EhPgM7GyXzJ7Vh26HbPH0Vh7mZjFmjW3H2Zhg3HwleMVOGNOPqg3fcfhqFTCZl0oDGnLrxihfvE7FQyJnUrxFbjt4lMS0HFwdrBnaowaq9V4Qcq1KelPZ1Y+spYbPUs2kl7r2JIzw+DTsrC7o3rsRPp+5gMJqoV64E2QUankYmYGEup2v9Cvx2+RFGk4m6ZUvwISOL6JRMHKyU1Cjtw7EHAvhqX70sp5++QaM3UNHXk+TcPBIyc3CztcbT2Zb7UXGYy6TUKu3LxTcCX6xRGX8uvRX+XTugOHeiP2AwmQjx9uRlYjJag4FgTzfep6ej1usp4+ZCZGamCGicichKR2cwUsbNhbfpaRg+jqK+Am5KOTnxNiMNM6kUFxsrYnOzsVco0EuM5Gm1FLMRuDUmTJQQwY1EAi6W1iQX5GFvboHKoEUndm4S8nOQiGOrD3/6Tf9U/9UAZ/7Y1jx8HsMJMZph9phWpKbn8dMOcVT1XQNcnW0YOG47BqOJRnUDadGoLJt+vUpEVCp2tkqmjW9JYlI268Ud14C+dSkZ4Mb2nTd5+zYRa2sFUya1wmQysUwEPCEhvnToUIW8PDWrlgsKoLbtQ6hctQSqPDVrlgmPtetUhYqVfQWOzeITaLV6Qqr50aqdIMM+cegBr54KqqlxIjDRanSsWXBMiF1oU5EqtQIASIrP5LcNIndnXHOcXAUVR1Z6Hr+K7sh9RzXB5TN/kM0rTqPO1xIUUpzG7T5Jv1W5araILss9RjQukkNlMBj5RXRWbtmjxhfKqPCXcVwWAd2gme2+AD86rZ69YuJ65+GNsbD8uv/MgR8ELlRov7p/2pU5t+sWRoOR4BolKV7a85vHfay7Z54CULlR2a8aCv5ZpYnBmE4eDn9x5D8v71IejPq+H6uHbGbnwiMEVvWn8j8EYF+r7OxsWrVqRWxsLKVLl+bEiRMolf9M/ZWTkcf1w/e4tOcWYXffFz5u42hNk561afFdg78cGf2denT5JT9N3l3oaVOyki+j1vYlsIr/X5wpdG3Wjf2NJ2LnpExVfyZtGvCFEd/HykrNYe24HYUmf1WbBDNxw5cmfx95YLtXncJoNOEb6Mn0XwYWcdI2mUyc3XOHTXMEoORR3JlZmwfi95nLdfjLOBYO+ZWUuEwUSnPGrexOg7Yhhecf33GLXxYdx2gwUqq8N7N/6o+zGFdy69wLVk7eh6ZAh2dxJ+b+1B+fADcMBiNbV53hyG+CQqlei3JMWNoFhYUZT+5GsGjCHlS5atyLObDgx774+LkS9uwD88fuITtThbObLQs29MavtAcXTjxl7UJBzRlUwZu5q3sIKd5jd/P0gdAxGjmlFaEdK3N43z02b7iAyQQ165Vi+vyOPH4QyeI5v6PV6ilZ2oPFq7oRFpbA4vmCz0yp0h4sXt6VK1fC+HHjRUEuXqcUkya3YtWaM9y4+Q6JBEaOaEJQmWKMnrSb7OwCink6sHR+Z3bsu82FK8LCP3xgA9zd7Zi64DA6vYGQ8j4M7VeP6UuPkZKei6uzDXMnhLJu6xXeRSZjqTRn7vhQdh1/wLPX8ZibyZk1ohkHLzzl+dsEFOZypg1uxs5TD4iITcPGUsGEvg3ZsP8G6dkqvNzs6da8Est3XRZk4+V9cbC3Yt8lgb85ILQ65x+9IzYlCydbSzrUK8fPp+9gMkGzyqWISc3iTVwK1koF7WqX5bfLwv2xScWShMUnE5+Rg5udNWWLu3P6iQB+O9UM5ujDMPRGI9UDvIhKyyI5R1BOOdgoeRyTgIVcRpUAb668jUQigYZl/LkkAp26JX25ERmNCahavBhP4hLRG41U8HInLCUVrcFAWQ833qWloTUYCHJ35W16KnqjkbLurrxKTcEElHVz5WVqCiZMBH0GbgIcHXmXIRj3OVopic/LwcHCAi0GVDotXja2xKqEboyvvT3RuZlIJeBkaUlKQR4OFhbk6jToTYYi4MbJ0pLkzIy//L5/rP9qgGOjNGeaCCZ6tKtK2VIeDJ68C53eQK0qfrRvXoEVP5wjPjELV2cbJg5vyuNnHwp3CVPHt8TezpKxk/cIMQvBXnTrVI03bxPZuUvs+IxpjouLLXv33OF1WAJWVgomTwlFKpWw6YeLpKbm4lnMgcEiCfenDRdJTREe++hMfPzQA149j8XS0pzx0wR1VVJCFls/ko1HNcHd0x6APb9eJy4mDUcna4aK6eEmk4kfFp9AXaAlOKQ4LTt9ykf6ZdUZ8nIK8A/0oF3PTyOZJ7fDuXFWCOocObtdkR3uno0XyUwViMUdvivKfbl05CERr+KxsrGg9x+CNgG2LTshpIG3C6Fk+S/l1xcP3ic5NgMHFxtC+35dMfTqfgRh9yOQm8vpMKTRV48BYfE5K+aGter3bY7O53VPNP6q8Rc+OV+rjKQsAJy+YTT4P61mferx8tZbzm2/ztzOaxm9vj/N+tT916Okj7lSz58/x83NjTNnzuDk9GVw5NcqMzmb++eecefEIx6ce4ZeZwBAKpVQqVEwTXrVoU77Kphb/M9l7YlRKfwyfW9hgKmdkw3fze9Msz71Crsb3yqj0ciZ366zZe5BCvI0mFuY0W9WB9oPa/LNc++df87asdvJSs3FzFzOwHmdaPeVqI6M5GxWjPyt0OCvWY+aDF/crdBaAQQzzY0zDnBRDH6s3jSYSet6FwHllw4/YP20A2g1OjyKOzP7lwGFUSZajY4fZh0u5NQ0ah/CmCUCSDEajezdeIldItG4Uq2STF/fCxs7S1S5apZN3MvDG4L6qtfIxvQc0QipVMqpA/fZuOQERoORoErFmbOuF/aOVlw/94KVs4SMroAynsxf3wtHFxu2b7rMHlGiXr9ZMJPmtScrM58pw7YTE5mKhdKMmUu7ULmGPz+uPcexg8L9sV3nqgwb14yTRx/z47pzGI0mqtUMYNaCjly88JIN4mPVawYwY3Y7du26xYH9QsejXbsQ+vary6y5h3nxIk7gME5rg9LSnHFT96JW6yhV0p35M9uxZuMF7j+KErou41ui0emZu0LgL9avVYpObUKYtOAwOXlqins5MnVkcxZvOENcUhb2tkrmjAtl467rvI9JxUppzqxRLdhy6A7hH1KxsVIwdVBTNh24SVxKNk52VozqWZfVO6+Qm6+hpI8LzWsHsmrPFSFCoWopjBITJ269QiqRMLR9LQ5ff05yZh6eTrY0rlKSzWeEv7FNzSCeRycSnZyJg7WS5lVLs/OK8BkPrRrIvfBYUnNUeDnZ4uvmxKUXwhitffWyHHnwSkj+Ll2csMRU0vPyKe5sj0IhLyQXlyvuzo330UgkAufmI7ipV8qXaxHRANQo4c2DmDgMJhOVvD15npSE3mikvKc7r1JS0BuNBHu4EpaagsFkItjdlRciuCnv7sbzlGQB3Li6ECaCG39HR8IzM1DIZNhZWZCoysVJqSTfqKNAr8Pb1o4PedkI4MaBmNxM5FIJ9hZKUgtUOFooydapMZgMeFnbEZ+fjVQCDhZKMjT5OCutif7Tb/2n+q8GOCt+vkBOnppSfm4M7l6HjduvEhWbjqO9JdNGNufmvXBOXXiBRAIzx7cCEyxdLeZKtRQyS3bvu8PLsHgsLc2ZPqk1er2BZcsFN8yGDcrQqGEQkZEp/CbOjkeOaoKrqy1374Rz7ozQOZo8rTVKpTkP7kVw9qTglTNpRhuUSnMS4zPZKo6mBo1qgpuHPSaTifVLTxYa+rXuLJCNo94nc0DcrY2cFlpIIL529gUPb73HzEzG2DmfwMqz+5FcPvkUiUTCmDmfcmx0Wj2bRHl365418Av8tBuNi0rlmOhZMWx2UWJxgUrDdtEivsfoJtg7FR0ZPLv9nsei7Lvf5C/jFPQ6A/vFzkyXEU2KBHV+Xod/FG7oTbpU/yKd+fN6fOUVqfGZ2DpaUadNyDeP+1jpSVlEvIhFIpFQtWn5vzz+j5WVkgOAg+u3n9P/tEau7UdOeh53Tj5mzdDNnNl6haHLe1GmesA/uo7RaGTAgAFcunQJa2trTp8+TYkSJb55vMFgJPJZDPfPPePe6Se8fRhZ5Od+5X1o3KM2DbvWxMnzP9PBystSsW/VSY7+eB6dVo9UJqXdsCb0nt7+b/F3EqJSWD9uB0+vC1ybsjVKMn5DP7wC3L96vDpfw5a5hzgppoX7lvFkyk+D8Cv7Zffp4eVXrBq9nez0PCwsFYxc1o0mf+BsxUWmsHjwr0S/TUQqldBvams6D29c+P3TafVsXnSME78JILxqoyAmr+uNjb0AflITs1g0fDvvnscilUoYMC2UjgPrCyIClYY10w5w86wgJW7Xrw6Dp4Uik8tI+JDOvBE7iI1IwVwhZ+LSLtRrWR6D3sBPK09xVAzDbdiqAuMXCFyizwMzazQIZNrSLkhlElbMPsLlM0IXq/uAuvQb3oiId8nMGbeHjPQ8nFxsWLC2B17FnVkw4yB3rguAasiYpnToWo2tP13hgOjU3qptJUZPaMH2bTfYKypGW7WuyIhRTVmz9gyXRGn4oEENaNwkiAmT9xAdnYaVpYKFCzqSkprLguUCiblqiC/jxzRn/rITvH4nkJXnT2/Lm4hktom8rLYtKlCrmj+TFx5GrdFTpqQ7I/s1YNaq46RnqvBwtWXq8OYs33yR+OQsHO0smT68GWu3XyE+JRsneysm9m/E6p1XSMtS4elix4CO1Vm27aJACi7pSZVgH9YfEN6/dvWCSc7K5c4rgZ8zvENtdl54RGZuAcXdHKhW1ocdF4XuTOd65bn1OpqE9Bxc7ayoXa4Ee64/BaBDzWCuvIogU1VACVcHnO2sufFakJ63qxbEofsC/6ZhkB8PY+LJKdAQ4OaEUWLibVIa9koLSno6czviAzKphNoli3P5rfB9rVfal2vh0QDU8vPhTtQHTEBlH08eJyRiNJmoWMyDZ0lJGE0mynu68Tw5CRNQzuMjoIFyn4EbwecmFakEfO0diMgUvW2U5iSr8nCxtCRXr0Ft0ONjZ09MbhYfOzcxuZmYSaXYKBSkqVU4WViSpcvHYDIWATd2FgoytQU4WyhJy/40+v6r+q8GOE9exWJlZc3csa14/OKTJHzG6JYYTSZW/CCMSrp3qEalcj4sWnmS1PQ8vDwdGDG4IeGRKWzbJSz2o4c1wcPdjk0/XeJDbDpOjtaMHd0Mvd7A8mUn0euN1KpVkmbNypGbW8DaVYLaqmPnapQr741KpWGtOPZp17kq5Sr6CKGZS08WqqZC2wuL9KUzz3l0NwIzcxnjRLKx0Wjk+yXCl79Wg0DqNAoChHHSz6sESXq3QfXwLiGoPnQ6PT+IKqvQrtUo/ZmZ3bGdt4mNTMXeyZo+o4s6A29ZdhKD3ki1BoGFM/6PdXjzVTJScnD3caJNn6LdF5PJxHYxdLRlr1qFDqyf16XDn7o3LXt/Xe0UH5nCXdHJtOOwxl895mNd2CvcWBt1qfG3xk0vRK8Rv3Le2Dvb/OXxfyyDXuhiyM3/975WCqU5s/eNZf+qE+xbcZzX98IZ12A+DbrUoMPoFpQMKfGXXQ2AGTNmsHv3buRyOYcOHSIkpCgA1Gn1vH8cxYubb3l56w0vb78jP6egyDGlQkpQrWVF6rSvSolvOP3+m9Jp9Zzacpldy46Sm6ECoFLDsgxf0etvxTUY9AZ+33SRnUuPFZojfjenI22HNPomN+rdk2hWDP+VuPBkADoMbcx3szt+8bnR6wxsX3acQxsFkO1X1ovpPw/EK6DoqOvGySesnbSHgjwNDi42TNvYn/KfpdGnJmaxdMRvvH4UDUDPsc3pNb554fN7eT+SxSN3kJWeh429JdPX96aS6FeVFJvBghHbiXqTiNxMxqj5HWguEo0/JxM7udoyZ2MfSgV7CR2dKft5cFP4jPcd1YQeQxqg0+pZMeMQV04LIKZD75oMmtCC3JwCFkzcx6tnH4RQyBmtadG+Mnevv2XJzMNo1DpKBLiyYG1PzMxlTB65g7dhCZiZy5g6pz016pRi2YKjXBUjGvoPrk+XnjVZteIUF0X1V7/v6tKhc1VmzzlUKA2fOKklpUp5MHrcLlJTc3Fysmbp4i48eBzNz6Koo0nDIPr2qs3kWQeJS8jE1saCxXM6cP7aa46LHdi+XWvi7eXIjGXCWK1qRV+6t6vC1OW/k6fS4OfjzOjvGjL/hzOkZ6nwdLVj3HcNWbr5AulZKoq52jG8R12W/HqB3HwN/l5OdGxakaVbLwrE32AffL2c2XJcsPHo0SyEsJgknoYLPJqh7Wux+eQ9VGotpb1dKOnjwoFrwnPr2bgS5x69JS0nHy9nO4L9PDh8R3hNutYtz6nHb8hTaynt6YyFwoz74bEo5DKah5QuBDdNywVw830M+VodQZ6u5Og0xGZk42xtSTFnO+5Hx2Emk1LVz5tr74VRVP1SRcHN7SiByVKleDEexsVjAip5efAkIRETUKGYG0+TBNPL8h7uPEsRgY67Ky9EcBPoKuRJySQSvOzsiMwS5N8WCjmp+SrcrKzI1BWgNRgobmdPtAhuiotAx0wqw1phRoYmHxelFekaFUaMFLO2JT4/G7lUgrW5OdlaNS5KS9K1eV/9/n6r/qsBDsCY7xpiZ6tkjCgJ7xRaiWqVfJm2UFBRBZRwYWCv2ly9+ZYLV8KQSiXMmBSKTCpl6UoBuNSuWZIWTYN59vwDh8Tx1cQJLbG1VbL9txuEhydjY2vB+AktkEiE0VR6Wh5e3o58JyZ9b954idTkHDw87RkwVDCsO3P8CU8fCanjH0dTWRkqfvoY0TC4AV7FBaBw6vBDXj+PxdJKwYjP1E7bf7hIZloexYo70XXApzHN4e23iI1KxcHJmv5jPoGYtORs9oheGAMmtih0OAZ4cvs99y6/RiaXMmhaUeO99ORsDm2+Kpw3pVWRzg7Agyuvef0oGoWFGd1HfmkcZ9Ab2L9BWDQ6DWv8ze7Nsc1XMJlMVGsSjHfJr+/EAXKzVNwR+TRNutX85nGf14tbwqihfJ3/mUnf/6JNDQAymZSeU9vRvE89fpt/iAs7b3D14F2uHryLtb0lFeoFUalRWSo2LIunn+sXvj8bN25k+fLlAPzw/Q8EB1Tk7uknxLyKIzpM+C/2TQI6rb7IeZY2FpSvH0SNVpWo1qLif3wUZzKZuH3iEb/OOUC8CDR8Aj0ZsqQ7VZqW/1ujuMgXsawdu70wMbxivUDGrOuLZ4mvq9r0Oj37151lz2oBuDu52zNxY39C6gd9cWxiTBrLh2/l7WPh2m2+q8+guUVBkFajY8vCY5wQO7bB1f2Z/mP/Ip3GZ7ffs3Sk0P2xtlUyaV1vqouKRpPJxMmdt/l5kaB29Cvjyeyf+uHuLXzPn94JZ+nYXeRk5uPgbM3MH/pStrIvACf33uWnJScw6I2UKufFnB/64ORqS2JsBnNH7+RDRAoKCzMmLe5M3WbBQoTDhL2EfYx3mBZKqKiUmjN2N4nxmVhZWzBrRVdCqvtzdN89fhLzo0Kq+zFrWRfSUnOZOGIfyYlZ2NgqWbCiG96+Tkwdt5uXz2MF0DKjNTXrlGLm1P08eRyDVCZhwqRWVK7qx/hxu4mMTMHCwox58ztibi5nzHhBPeXj7cTSJZ05eOQRR44LnY+unarSuEEQY6fuJSNThburLYvmdOC3fXe4cfc9EgmMG9oErd7Aou+FTWSTuoE0rFWaacsFvk+5wGL06VSdmWtOkJevIaC4CwO71mT+j2fIy9fg7+1Mr7ZVWfDLOTRaPeVKetKweklW7riEyQSNq5XCwtKMvReEcdLAtjW4/jyCd7Gp2Fgq+C60OpuO3UajM1ApwBNHBytO3A1DIoF+zapw+NYLcvI1+Hs44uPuyOlHb5BIoHu9ihy59xK1Tk8FXw+0BgNPoxOxUphRL9iPY48EsNiyUmkuvQoXnId93EnOU5GYnYu7nQ2OtpY8jU1EaSanvI8HtyJikEgEQvHHsVRtPx9uieCmmq8X92IFa4vK3p48jBf4bZW8PHicmCAAHU93noldnGA3V16kCJyb0qIs3Ewixd3WhpjsLGwV5kjlUtIL8nG3tiZNo0JnFOTfUTmCQspHTAVXyORYmMnI1BTgqrQiVZOHCVMh58ZMKsXSXE6OTo2r0pI0bR6IPy/aP/52/VcDnFohfrRpUo45K08I8m4vR4b3qcfJ88+58zASM7mMWRNCyc1Vs0YcnfTqUoOygZ5s3nZNIBrbKZk0tjlqtY4VK09hMkGrlhWoUd2fd++S2P3RvG9scxwdrbl7J5zzZ18UjqYsLMx4/DCqUDU1cbowrkpNyeEXkRTcf2hDPEUJ66Y1Z8nNLsCvpBudegsLd3pqLls/HjuiES7izfTdq3hOiGqq0TPbYi52FlISs9grZrwMmtiyCIj5ddUZCvK1BFbwLkIsNhiMbF4q8JVa96yJt3/RBWPXuvNoCnQEVfalTsui4x2TycROsWPVpl/dr46Vrh59RGJMGraOVl/1xQHIzVRxXnQY/qvuzbUjD9Bp9ZQo64X/34xaeP4R4NT+dxlSJtPfly/+J8rJ04GJPw+m3fCm7F1+nCdXXpGXlc+t4w+5JRqWgeA5Y2VriZWdkkRNNKdeC2C+pHlFjky8yZGJN796fTtnG4Jrlya4dmnK1QnEr5z3X5ok/tt6ejWMbfMPFTpB27vY0m92R5r3rfe3fqemQMveVSc5uP4cBr0BK1slgxd1pXnvOt8ERrHvE1k5YhvvRDBUp20IY1b1/qoa68qRB2yYspeCPDXWdkrGrelN7dBKRY5JjElj6fBtvH8u2JB1GdGEflNCC5+/yWTi0E+X+U0cYfsFeTLr5wGFHjkatY6Nsz/xbeq3rsi45V2xUJp/IhovPYnRYKRkOS9mb+yLi4c9Oq2en5ac4LT4XW8QWoFxizqhsDDjxcMoFk3YQ3ZmPk6uNsxb34eSZYsRHZ7M3NG7SE7IEhRUq7oTUsOfJ/cjWTh5P6o8QSm14PteFPNx4sdVZwqVma06hDBySitePotl/rQDqPI0eHo5smh1d2QyKWOH/kZcbAZW1grmLO6Ml48T40btJDoqFaXSnDkLOgqWGKO2k5qai4ODFUuWdiUhMZNZcw8L6qmyXsyZ1Y4NP13imshxGjmkEf5+roybto/8Ai3+JVyYO60NKzde4HlYnHC/ntiKtxEp7P5deK5dWofgX8KV2auPC744Yq7UjNUn0Or0VAgsRofmFZgjhmZWDCxGi3pBLNp8HoPBSM3yvpQt6cH3e4SxZbsGwWTlqzlxQ+DYDO9Um2O3XhYSiLs3CeGH329hMBqpFVwcpBIuPn6PXCqlX/Mq7Ln6hHyNjiAfN2xtLLj0PBy5VEr3+hXZd+sZOoOBqgFepOflE5GcgZ2lgqqlvDn9VHgN2lQuw+nnb9EbjFT2K0Z0eiZpefl4OdiiVJrzKkHg35T2dOFuVCwyqYRqft7cjBQMSGt9Bm6ql/Dm7gfhs1rZx5OHcQmYMFHZ25NHCV+Cm4+EYokEApwFhZRCJsPZyorYnGzsLRQYpSYy1QV42gjeNnpR/h35GbiJzctGKZNhZiYlW6vGzdKaZHUufAZuzGUyLORScnVqXC2tSNMI4MZZaUV85v+NqP5WTRvZnHNXw7h29z0ymZTZ40JJy8jjh1+FxX9wn7qU8HFm+nzRE8fflX49a/EqLJ69ohncxNHNcbC3Yu3350hMysbNzZbhQxuh0xlYseIkBoOR+vUDadgwqMhoqnPX6pQN9qIgX1s4mmrToTIVQnwxmUxsWHmafJWGwLLFaN9VaD8/uPWeq+cE+fX4WW2RizfOn1afIV+loVTZYrQWW9UGg5ENiwVCb8NW5alY3a/w7/5l5Wk0ah3lKvvSqPUnMu2rx9FcPfkMieRLYvGFww+IepOItZ2SXn8YW8VGpHBeJFEOnNb6iwXl9rkXhL+MQ2mloPPwL0nBRqORAz8KAK3jkIbfVE5d2H8XTYEWv7JefwlCrhwRnk+TrjX+1s4/N0tVmEFU9l8a6X2UP2vVun91/r+tgIq+zN47BoPewPvHUTy5GsbTK694dec9Oo0OtUqDWqUhIv4dD7XC6+wlC8BXInQNFEpzPP3dKB7kRYlgL3yDvCge5IW7r8v/qmsywNtHkWybd4gnosmawtKcjiOb03VC6N/O8np85RUbJu4iMUoI86vTtjLDl/f4ZmK40Wjk+JYrbF1wBK1ah7WdJSOX96BBp2pf/L2q3AI2Td/PpUPC5ymomj9TNvbHzbvoiPXmqaesnbSH/Fw1tg5WTFzXm2qNP8nJ87LzWTNpL3fE8WqTzlUZtaQLCpGEnRyXwcLh24l4FY9UKuG7qaF0GlS/UBn5w5zfuXBEAD6N24cweqEAYLIy8lg8ZjcvH0UjkUjoP745XQbVQyKRcObQA35YfByD3kjJIE/mru+Ns5sd966/Zfm0g+SrNHh4O7JgQ2+8S7hw5vdHbFgq3LPKVvBhzurumJvLmTdpH/dvCuq4QWOa0rl3TS6cfs5a8digcl7MXyHKwKfsJysrH1c3Wxav6oHeYGT08N9IT8vDycmaxcu7kZunZuyYnahUGry9HVm2vBs3br5jk+gZVrdOKUaPasqCpcd5/lIgGE+fFIoJmDznIHq9kYrlvRk/oilzVpwgKiYNK0tzFk1vz9mrrzh7VUwu71UHiVTC0o0CL7BFgyCCA4sx9/vTAkG3ij+1Qkqw4MczGIwm6oT4UTHIm6W/Ct+R5rUCsbNVsvl3YVPVq1UV3nxI5sHrWMzkMkZ1qc2Oc49Iy1ZRzNmO0NpBbDx2S8iwqlyS1DwVT8ITUJjJ6NO0CtsvPkSrN1C5ZDEMwO03MSjMZHSuU57dN54Iz6mML1EpGcRl5OBiY0mgjxsXXoQjkUDbykEcf/Iao8lEzZI+vEpMIbtAjb+LI3qJiXfJaThYWuDtbM/DmHjMZFIqFvfkdtQHJBKo4evNbZFzU72EF3c/xGICqnwD3JT3dCsEN0FuLrxKTUEqgeKODrzPSMdCLsfewoL43BwclUo0Jj15Gi1etgJIMZhMRcCNl60tsXnZWJqZIZVCjlaDu5U1SQVFwY1CJsNMLiFPr8HN0ppUjfBzJ6Ul6RoV9ubf9jz7Y/1XA5ysnHzWiSZwA3vUJsDXhdHT91Kg1lEx2Juu7apw+vwL7tyPwNxMxsxJrTEYjCxdLUhCmzUuS706pXn4KIoTYtjm5ImtsLJSsG3bdaIiU7G3t2TMWEFN9NPGS4Wjqf4DhXHRtl+ukpSQhaubLYPExf/6pTDu3nyPXC5lwgzBB6MgX8sGEQi1716dUkGCyuL+zXdcv/AKqUzKuJltCvkXZw4/5P2reCytFQz+LCn8yd0Ibl54JZh3zfjkeWM0GvlZ7NA071SFgLKfuA75eWp2rBM6WD1HNikkQX6snWsFZ9EaTcoSJLbLP5bRaCx0bG0/sP5XTfvuX3zFh3dJWNpY0Lrv17OfTCYTZ0S+U2j/en+68KYlZhJ2T1QMdPjr3CkQRhsAbj7Of+mn8q36SK5NS8z8V+f/T0smlxFYLYDAagH0mNIWg96AKjsfVU4Bz5++oFv/Thi1BurVbMAvG7bg6OaArZP1/9cCPD+v6Fdx7Fj8e2GnSW4mo9WAhvSY0gZHN/u/dY2M5Gx+mbmfq4cF8OHkYc/w5T2o06byN89J+pDGurE7eCqa/IU0DGL89/2KpHZ/rLePo1k2fCtJMWlIpRJ6TmhF93EtinSUtBodvy46xvFtwkgqqEoJpv3Yv8j1wl/GsXjYNpI+pCM3lzF8Xkda9qpV+Bl+dOMty8fuJjcrH1tHK6Z937swLDM1MYuFI3fw/kUcUpmUQVNb0b6/oJyLfJPI/JE7SEnIwtJawdSV3anWIBCD3sAvq85wbLewMNdrXo4JCzuisDDj8I5bbFlzDpPJRLnKvsxe0wMrGwt+WXuOwx/Jxy3KMWFOO7Iy85k+cieR75MxV8iZsqADdRqWYeeWa+zaKhBr6zcOYvLsdty/G86y+UfRaPSULO3OwhXdiIpKZf7sIxQUaPEt4czi5d149TKO5cuF0b7gcdOJ3Xtvc1gEbx3aV6ZTx6pMmnGA6I/AZW5H3kWk8KOY8N6gTml6dqvOxHmHSE3LxcnRioXT2vHbgTvcexItGPYNb0pkbDoHTgqjrR5tq2Bto2SFmDPVumEwXp4OLBfBTMu6QTg5WbNhr/A+dm5SkdwCNfvFRPAhHWtx/XkEYVHJWFqYMaJTHX4+fpucfA1+no7UKufHzycEPk7bWkG8SUjlbWwq1hbmdGlQga3n7wsgqqwvaap8wmJTsFKY07p6GXZdF35H4/IBPP+QRIoYlOnlYsf1N1HIpVJahpTm6GMBuNULLMGDmDjytToCPZzJ0WqJz8rBxcYKZ1tLnsUloTSTE1jMlfsxccgkEioXL8adaAHQVCvhxb0PcSK4+ci/MVHJy6MQ3JTzcON5cjISieBEHJaaiplMiqedDZFZGViZmWNlbkaSKg9nS0tUBi35ep3YocnCCIXgRoIJT1ubwjwpo8REnk6Hh5UNiQWCVNzTSohksJDJkckgX68tAm4cLSzJ0ORjZ64gR/3376//1QBn9U8XyC/QEhzoSc/2Vdl75D4v3yRgqTRnxriWJKdks+EXgY8yqF9dShR3ZsOmi8TFZ+LsbM3oYU3IU6lZtVog8bZrG0JIJV/ev08qzJUaM7Y59vaWPHwQWaiamjQ1FIXCjLCXcRwVd4bjpoZiaaUgJ7uAjSLHpnu/OviKjrg7fr5CcmI2bh529BU5OuoCLT8sE0BPhx418Bc9Z7LS8/hNlI72H9UER5Ewq9cZ2CTK4lt3q06JzxLBLx9/yvuX8SitFPQbVzQa4dDma2Sm5uJZ3InWvYryWcJfxnHj9HMkEgl9J3wZmHnrzHOiXidgaWPxTdO+Qz8Jr3Gr3rWxsv36rv3FnffEhSejtFLQ4C/yoW6dfILJZCKomv9XF66vVfhzoW3r/xXp+t8tV29hjJgcnfavr/GfLJlchq2TDSptHkPHDyQ7J5tq1apx+sJJrKz+vYvw/6RiXseza+lRbvz+AJPJhEQioXGPWvSZ0QH3P8QefKsMBiNnt19n6/zDqHIKkEoltBnciL4z2n/z82MymTi9/Tpb5h6iQKVBYWnO4HmdCf2u/hdg2WAwcmDDOXavOoVBb8S1mCOTf+xP8B+UavGRKSwd8RsRLwUOQ5cRTeg7ORS52aeR1Nm9d9k09zA6jR5XLwdmbPqO0hWEhHij0cjBn66wfbWQ6F2qvDczN/bFVQzKfX4vgiVjdpGdocLWwZJp63pRSSQqXz/znDUzDwneNz5OzP2xLz7+ruRmF7B08j4e3xFca/uMbEzPoQ3R6w2snXeU80eFUXiLjpUZOaM1Oq2B+RP3ck+Uk/cZ2oBegxvwLiyBeRP3kZGeh72jFfNXd8evpDvL5h3likgS7t63Nv2GNODowQf8/IPge/NRBn7lchjr1pzBaDBRsVJx5i7oyMmTT9kiOpjXqxfIhIktWL32LNdFY8OhQxoSEuLLmEm7SUvPw9nJmqXzO3Pu8ksOHhWASqe2lalXpxTjZx0gT6XBp5gjsyeFsvqni7wOT0JhLmfOhFAu337LxZsCiB3Ztz7JmXn8vE/YIPVuVxW9ycimfQJI69GqMnkaLTtPCPzJ79pX53V0MneeC2BpdI96HLn2gujEDOysLRjUrgYbjtxArdUTXMKdkj4u7LwgPL/ujStyOyyGmBRB+t2mVlm2nheu2zSkJO+S0okSR0+NKpYszJIKrRzIzTfRZOWr8XN1xMZawd3wWMxkUpqUL8nxx4J/U5PgAK6/j0KjN1De253E3FxSclV42tmgtDAnLDEVG4U5vq6OPI5NwEwqpVwxd+7HxCGRCIDm/gfh8xri7VEIbioUc+dJYiIAwR4CiVgqAT8nJ96kC6MoF1srorOzsDU3Ry6XkZKvws3KmixdAWqDHl97O6JzszABJT6CGwm4W9uQoBIiF7QmPWq9rogrsQB0crGUy0FqosCgw93SmpRCcKMkU5uPvbmCXH3BP/Ax/i8HOM9fJ2BjY8OsMa2I+pDG1r2Cd83YIY1xdbZl3LS9FBToKF/Wi87tqvDk2YfCIM0p41piY2PBqjVnSEnNwcPDniGDGqDTGVi5Qujw1K8fSP36gcIYSlQyte9YheBy3uh0BtYuEzg7TVuUo6oYsrdl40WyMlX4+DrTXQzBC3+byNF9wkhs1NRQlKLPxu7N10hOzMLV3Y4+QxsU/l1b1p0nL1eNf6AHoV0/OaWe2HeXDxEp2Npb0uczoq86X8tvotlfj2ENi8i7UxOzOLJV2NUMmBL6hT39R1l4g7aVKPGZnBzEzJ11wnXbD6j/RecH4M3jaF7dj0RuJqP9nzgNnxF9hRp0rPqnsQwAN0VC4t+Rhn+siEKA4/O3z/ljefoJSpqEyOR/fY3/dOXm5hIaGkpMTAwBAQGcPPn/Btx8eJPA7uXHuHboXiFXqW77qvSe0f4fmQC+fRTJD5P3FJKIS1Yszpi1fSj5JwnkybHprBu3gyfXhEWibI0AJq7vj+dX4jSSYtJYNWY7r8QOYN02IYxe2fOLz+7lww/4YcYBClSar46k1Pkafph5iEuHhcWtWuOyTFrbszByIS+ngNWT9nFXlEa36Fad4fPaY64wE8Jht99i8zKBb+Mf5MnsjX1x83LEYDCyc/0F9ouxCJVqBTB9TU9s7JTERqYyb+wu4qPTUCjNmLy4M3WaBpOdqWLRxH28eBQtRDhMbEH7XjVJScpm7rg9RIULHZqJ8zrQoFkwNy6FsXLu72g0enz9XVmwtgcWSnOmjd3Fy2cCcXjMlFY0a1WBH9ed57jYfWndPoQRY5uzc/sN9ojdoCZNgxk3qSU//niRU6LbcafOVenRsxYzZh3iVVg8ZmYypkwKxd7BknGT96DK1+Lr48TCOR35decNrogAaPjABnh42DFp7kG0OgPBgZ6MHdKYeatPEZeYKbgTT27Drt/v8eBZDDKZlKnDm3L3WQwXbwvXGNWnHu8/pHL2pvBZGNa9DmFRyVx7GI5UImF0z3pcevCOF+GJKMzljO1Zn22n7pOckYurgzU9moew7uB19AYj1YJ8sLex5MgNAfANaFWVk/dfk5yZh5uDNfUr+LP9ovDatKlRhvvhcSRm5uJqZ0WV0t6FcQsdapTl/LP3gnKqmAsSmYSnMYkozeXUKVOC08/E6I8KpbjwOhy9wUhIcU8iMjLIyhdSvU1SCE9Nx97SAnd7G54nJGEhl1HazYXHcQnIpRLKeXnwIC4eiQTKF3PncXwiEgkEe7jxLCkJqQRKubnwMiUFM6kUbwc73meko5TLcbBWijwb4d6bUSDwbFLVKrRGAyXs7YnKzSwEN1E5mcgkEpytlCTl52KvsCDfoEVr1FNMlH+DqXBEZW1mhh4DWoO+ENxIMGFvoSRTW4CDuQU5+nzAhKelLZ/sRP+8/qsBDsCo7xri6mzDkIk70euN1K0RQItGZTl8/DHPXsahtDBj+oRWaLR6VqwV+DOtW1agWhU/Hj6K4vQZAYFPmdgKpdKcnTtvEhGRgq2tktFihtTWLVdJTsrG3d2OAWIXY/+u20RHCSOsYaKK6fmTGM6eeArAuGmhmJvLMRiMrF8qAqamZakmtq4/RKUWtpRHTg1FKfJWwp594OJxoeU56rORVVaGil1i7EL/MU0LwzQBDm+7TnpKDu5eDrTrW5Tgu3vDBTRqHWWr+FLrD7EKYY+ieXjtDVKZlN5jvwzEvHvhJdFvE8XuzdfjFI79KpD3GnaogpP71/1j8rLzuX1aeF1a/EVYZl52Pq/uC4tTrT+QQP+s4iMEUFI88K/djr9VPoHFkJvJSEvIJPZdIt6lPP76pP/F0ul0dO7cmSdPnuDq6srZs2dxcfl7XZL/VL1/Gs3+VSe5eexhIbCp3bYKvWe0wy/474PJ7PRcti04wrmdNzGZTFjaKOk7sx1tBjX6pizeZDJxZscNtsw9RH6eGoXSjP4zO9DuK3Jxk8nE5UP32Th9PwV5apTWFoxY0pXGXaoX6fAUqDT8OOtgoXFfuRoBTNnQt0hQ5of3SSwZ/hsx75IE/5vJoXQe/ul3RoTFs3jkDhJjhJHViHkdaNld8NBRF2jZMPsIl0XRQaN2IYwRCcN5OQUsn7Sv0Lyv04C6fDe+OTK5jHvX37B86gHy8zS4uNsxb0Nv/AM9iXqfxPyxe0iKz8TSSsH0FV2pWqcUr1/EMm/CXrIyVDg6WTN3TQ9Kly3Gvm03CrPtqtYKYPrizqSn5TJl9C5RVaVgzpIulA7yZM60A9y/I/BDBo9sQtuOlVmx7ARXLgmjlN59a9Ole3XmzzvC/fuCm+6IkU2oXiOAseN2EhefibW1goXzOpGcmsOUWQcxGIxUKOfNtAmtWLr2NM9exiGXS5k2vhW5+WrmLBcM/GpXC6BX52pMWXyEjKx83F1smTM+lLVbL/MuMhkLhZzZY1px+MIzHr4QpO5TBjfh8v133H0mdGYm9G/EhXtvefImHjO5jIn9GrL//BMi49OxsVQwsltdNh65SXaemuLuDrSsXYbvD13HZIJGlUui1uk59+AtMqmUQa2rse/qU7JUanzdHCjn78H+68La0LlueS4+DycjLx9vZztKerlw6pHQXepSqxzHHoQJHZniHuRqNUQmZWCrVFDJz5PzL4SlvGXF0px9+U4Ix/T35mVishCC6epInk5HYkYuLjZW2FopeJ2cirW5OT5O9jxLSEIhk1HKw5nH8QLQCXR35WlCEnKphJJuzrxITkYuk1LCyYHXqakoZDLcbG2IyMzE2twMSwtz4nNzcFIq0RoN5Gq1eNvZkqDKRW8y4OfgSGROBibA196eqBzB28ZeqSBFNO7L1avRGQ1FwI2rpRXJBXnYmJujMerQmwy4W1mTos5FAtgqLMjSFuCosCBbJ4AbJwtLkrL+b0T1t6paRV/aNC3Hr7tvEREtRC9MGtGM+IRMfvlNWHiHDWyAp4c93/94QSARu9oyfFBD8vM1rFrzaTRVoYIP0VGp7NopdBpGjW6Kg4OVMIYSdzjjJrVEaWlOTHQae0SzvOHjmmFrZ4lWq+d7kWPTql0IwWIb+8zRx7x9FY+llYKhEwQuj8lk4seVpzEYjNSoV5oaoh+NwWDkx6XCNZq1D6HMZ+OW7evPo8pV41/Gg+YdP4140lNyOCimiA+Y2LJQaQUCefijomPA5FZfZkqtEbo3zbpUxdPXucjPTCYTBzYK8+0234hTSE/K5oboPdR2wLedhq8ff4xWraN4aQ9KVvjzRfHp9dcYDUa8S7rj7uP8p8d+XskfhLGSe/F/DwCsbJVUqFeGR5decvvkY7pN+NLM8P9bZTKZGDRoEOfPn8fS0pKTJ0/i7//XkQb/qd/98tZb9q46yaOLLwofr9k6hD4z2uNf/u8nrX8cR21beIS8rHwAGnerycD5nf/U5DExOpXvx+8s5NoEVfdn4vr+X41myM1U8cO0fVwXu7NB1fyZvKEf7sWLfn4iXsWxbMRvxEWkCJyccS3oPrZ5EYB18dB9fph5CE2BFgcXW6Zt7Ev5Gp9GWxcOP+CHWYfRavS4eTkwc2M/SpYTOlgJMeksGrWDqDeJSGVSBk9rXRiW+SEihQUjdxAfk465Qs64RZ1o2LoiJpOJ/Vuu8dv6C5hMJoJDfJm1pgf2TtbcufKaFTMOUZCvxcPLgXnre1Pc35WLp56xbtFxdFo9/qXdmbemJ/aOVkUypdp1q8bQcc158ewDC6YfJC9XjbunPYtWd0dpqWD8iB1EhiejUMiZOqc95Sv5MG3SPl6I0vAJk1tRuWoJJozfQ7h43IyZ7XBytmb02J0CEdnVlqWLu3D7bjibRVl9o/plGNC3DtMXHCkkDy+Y0Z6HL2LYI3Kt2raoQK3qAUyYf4gCtY4AXxfGD2nMwg2nSUjOxt5WyawxLflp3y3eRaWgVJgxY0Rz9px6SFhEEhYKOVMHNWP36Ye8/yC4F4/v05BfjtwmOSMXFwcrBrSvwZp9V1Fr9ZTxdaVykE9haGa7OmWJSs7iWUQCCjM5A0OrsfX8Awo0OoJ8XHF3tuW4KAvv2bASR++HkVugoaSnM872VoWOxJ1qluPw3ZdC3EJJb2KzsonPyMHZxpIAD2euvo5CKpHQrEJJTr8Qujh1S/tyPyYOtU5PkKcryXl5pOXl42lvg0wuIzw1AzulBW42VoQlpWBpZoaPiz3PE5Mxl0nxc3HiRZLwb19nB8JSUlDIZBRzsONdejqWZmY4WCmJyc7CzkKBTC4lWZWHq6UVeXot+Todxe0FJ2KjyVgE3BS3syM6JwtzmQwbhRlp6nyclZZkakXjPhs74lTZSDDhbGlFqlqFvUKByqDFYDLgYSWoqWQSCZZmZuToCnBWWJKpUwEmHBXCqMrO/OsilK/VfzXAmT66BW/Dk9l9SCCHTRzeFDtbS2YvPiZkRlXwoW3Lijx9/oHfjws7qsnjWmBlpeD79edJScnB3d2OIYMaYDAYWbnyFHq9kRo1AmjUKAitVs+qFcIYqlmLclSp6ofRaGLd8lPodAaq1vCnoeh/cWDXbWJj0nFwtGLgCIFsnJmexzbRXbT/8IY4iVyaGxfDeHIvEjNzOcM+IxCfP/qY8NcJWNlYMOAzb5vw1wmcPSLcvIdPbV3khrzj+wtoCnSUqehDneZFU793iFbqNRoHESSG+n2sZ3fCeXYnHLm5jB5f8bV5dvs9b59+wFxhRvtvgJdTO29i0BspW82PgD8xirt0QHh//o4i6tFlYfdY+SuBiN8qdb6GrNRcgC8WtX9atdpU5tGll9w5+ej/KcCZPXs2O3bsQCaTcfDgQapW/Xtk6/9JGQxG7px8zOENZwi7K3BApFIJDbrUoNuE1vh+xRH4z+rFrXf8NH0vESIB3DeoGKNW9iK41rcVdAaDkeObL/PbkqNo8rUolGb0nd6e9kMbf7XT8/DyK9aO30VGcjYyuZRek0LpOqpZESKxyWTi6K9X2brkOHqtASc3O6b80JfyNT+p7dQFWjbNOcx5MWqgYu1STFnfBwcX4Tur1ej4acExzuwVPstV6gcyZe2n0df9q69ZOXEfeTkF2DtZM/37XpQXx9a3L75i1bSDFKg0uHrYM3tDbwLKFkNdoGXt3N+5JjoNh3atxrBpocjlMvZuvsr2H4R7R4WqJZi5qjvWthb8uv4CB8TNVa0GgUxZ2BGNRs/0UTt5+eQDUqmE4RNb0LZrNc4cf8L6FcJGKijYi7nLu5KWmsOUsXtIT8vF3sGKhSu6YmOrZOzIHYXS8LkLOuLgaM3oUTtIScnB3t6SxYu7kJ6Zx4RJe9Bo9AQEuLFwXkd27bvDCbEL3r1zNRo1KMOYqXtJz1Dh7GTNkjkdOHD8ERfE8eLAnrVxdbVlxtKjGAxGKpf3oW+XGsxYcYysnAI83eyYMqwZyzZfKAQ704c144e91/mQkImttQWTBzZm4/6bJKbm4Ghnyage9Vi7+yo5KjXFPRzo2KQiK3ZfwSCOoTzd7Nh5Ttjo9WpWmbuvPxAen4a1UkGvZiH8fPoueoORqqW9kMllXHoqSL97Nq7EvhvPUOv0lPd1RyKTcvutoJxqUzWI/beF961eUAleJaSQlqvC08EWNwdr7oR/QC6T0ijYnzMvhI5doyB/roVHoTcYqejtQWRGBtkFGnydHVAb9MRnZuFsZYm1hYJ3qenYKMxxtbfhdXIqlmZmFHOw5XVKKpZmctztbXiblobSzAwXWysiMjOwNjfHysKcuJwcHJUWGKQm0gvy8bS2IV1dgMagp4SDfaEqyt/RkYhsAdx429oRk5uNUi5DYSYnQ1MgyLvVgnFfIbiRgKOFJWlqFQ4KC3L1aowYcRfBjVwqxUIuI0+vxtnCkkytAG4cFEqydAXYmZuTo8n6q1tHYf1XAxyZTMqSdacxGE00rhtIg9qlOXj0IS9exaFUmjFlXEs0Wh0r1gqdmtYtK1AlpATPnn0oTLadNL4lSqU5Bw/e582bRKysFIwbLxj67d19mw8x6dg7WDJMBAFnTjzh5fNYLJRmjJ3cEolEQnxsOns/xh+Ma1YYsbBlw0XyctUElHandSdhgVIXaPlZVCV1618HD9EfJy+ngN9Eo7w+wxsV8mhMJhM/Lz+FyWSifsvyBH+mcop6l8QFMfhy8JSiHZrwV3HcPPsCiURCvz+Qh00mEztFzk7L7jUKSZGf10ExfLR59+pfdQXWanScEYnY7f4kDTwhKoWwB5FIpRIafZa8/K16JEpEKzf80qjtW5UaJ4S3Wdoo/zS48+9UzdBKbBi3ndf3I/jwNgGfvxHw+Z+un3/+mcWLFxf+u1WrVn9xxv+sVNn5nNt5naObLpAcI3TCzMzlNOtTly7jWuHxDZO9b1Xyh3R+nXeQ678Li4q1nSW9p7elzcCGf+qJ8+FdImvHbuf1A8EGrHztUoxb2/erXBu1SsOWBUc4tV0gmnoFuDFpQz9KV/Itclxmag5rJuzhoRjkWKNZMONW9SyiBox5l8TSEcJISiKR0Gt8c7qPblYIqBJi0lgyaicRr+KRSCT0HteM7iOFyIaPeVK7N1zEZDIRWNGHGet74+Jhj8FgZPcPF9krRrWUq1qCGWt7Yu9kTXJCJgvG7SbidSIyuZQR01sT2rU66gItq2Ye5to5gd/Rtnt1hkxqiVarZ/7Efdy9LnQCPsYufIhKY+6EvSQlZGFppWDm0s5UqubH5h8uclBUYTVoWpZJM9vy8H4ES+cdRa3WUdzXmUWrupOamsvoEdvJyS7A1c2WJcu7kZaWWygD9/JyZOmyrty9F8HGTUKIZrWqfkye2JKV685y94Ewuho9rAne3o6MmSrwHksUd2butDZ8v/kyj58LI6bJI5uRlqViyQbh/te0Xhka1i7NlCVHUGv0BPq7MbhnHeZuOE1mdj6ernaM7d+AFb9eJC1LhZuTDaN712fl9stk5Rbg5WZPv7ZVWf6bEL1Q1s+dulX8Wb1HeL2bVC2JUQK/Xxd8ywa2rsGpu69JSM/B2c6KdnXK8vMpITSzQXk/0lUFPH8fh4WZnC4NKrDr6hOhO1PKh8yCAt7GJmGlMKNpxVIcvCN0NptVKMmdiA/kFGjwc3VAoTDjcXQCFmZyapUuzrmXwoiqaXAAF99EYDSZqFrCi5eJyeRrdZRycya9IJ80VT4edjZIJRKiMzJxtFJio1QQnpaOrYUCR2sl79LSsTY3x8HGgoiMDGwVCmwsFcRkZWFnYYFcLiUpLw9XKyvyjVpy1YLkO1mVh85oxM/RgYjsDD4HNwDFbAT5t5WZGTKZRPC2sbImWZR/fwQ3MokEW4U5GZp8nCyUZOnyMYk8nBR1LmZSKWYyKSq9BhcLKzJEYz97hQXZugLszRXkGYRR1d+t/6cAx9fXl5iYmCKPTZ06lWXLln3zHJPJxPz58/nll1/IzMykevXqbNy4kbJl//6O/WPtOnSXaDF7atzQJsTFZ7B5u9AqHT6gAR5udmz46SIJiVm4ONswbFBD1GodK9cIXJzQVhUICfElISGTbVuFkdbQoY1wcbEhJjqVvSJHZtSYZtjaKslIz2Oz6BL83eAGuLmLuVIrz6DTGqhc3Y8GYkfn+aNoLp56Jnz5p4Uikws3yz2/XictOQc3T3u69vsUh7D756tkZ+bj4+dC68+IxXevvObFo2jMFXIGTSgafrl11RlMJhN1W5SjTKWiY4PtIoBp2LYSvqWKOga/uBfBq4dRmJnL6fYVX5uo1wk8vv4WqVRCx8ENv/ra3z77nKy0XJzc7KjZ/Nu5T9dE9USFuqX/dCQBkBKXTkpsOlKZlOB/4GWTK44+7Jz+nTz883LycKBm6xDunHzM5pn7WHhowv/4mv+kjh8/zogRIwCYO3cuAwcO/F/7XXHvkzjxy0XO77pBfq4aABtHK0IHNKLtsCbf9KH5VqlVGg5uOMvB78+iVeuQSiW06FuPvjPb/2l0hlaj4+D6c+xbexqdVo+ltQUD53WiZd+6X41meP0oitWjtxMfKYQDth3YgO9mti8Skgnw6OprVo/fRWZqLuYKMwbPaU9o30/GgSaTiYuH7rNx1uHCkdSU9b2p+JlH0+3zL1kzeR+qXDW2jlZMWdOTyuJIOTcrn5WT9vHgmjBGa92rJkNmtMHMXE5udgErJn/i27TrU4tBk1shN5Px7H4kSybtJTszHztHK2at7kG5KiVIScxiwfi9hL9OEEDPtNaEdqlKUnwmc8fvIToiBTNzORNmt6NRq/I8uPWeJTMPka/SCqZ+a3vg4mZXJFOq98B69B5Ql8P777NZTPkOqVqCOYs6cfdOBKuWn0SnM1CqtAeLlnbhzt1w1om2EeXLezNnbgf27LtTKANvHVqR3r1qMX3uYd6Jo6tZU9uQp9Iwde5hDAbB42bciKYsWHWSiOhUlEoz5k9uy+1Hkfx+9ikAPdpXxcvTgVkrj2EwmqhW0Ze2TcszY/UJCjQ6Svq60L9TDeb/eAZVgRY/Lyd6t6vGws3nBDBUwo3QemVZ+tslDGL0gp+PMz8eFigGHeqXIzYtiwdvYpHLpAxpV5O9l56SkZtPMWdbGoQEsOWsaHxYLZC3CamEJ6RjrVTQtmYQ28VE8Abl/IlISedDWhb2VhbULF2c3+8LxPLWVQK5+CqCAq2OMsVc0BgMhMWnYGNhTnlfDy69FriETYIDOP9a6IjWCvDhQUw8WoOB4GKufMjKJlutobiDPfl6Hal5KtxsrZHKJERnZuFkqcRCYUZURhb2SguUCjkfsrJxUCoxM5MRl5ODk6USPSbS8vPxtLEhU1tAvl5HcTt74nKz0ZuMBDg6Ei6Cm49ARyoBVytr4lU52JorMEgM5Oq0ReTfxWxsiVNlC67EZnKyCiMXhM6Mm5UVKepcFFIZUhkUGLSF4EaCCRtzBTm6ArHbI4AbZ4u/548F/z/QwVmwYAGDBw8u/H9r6z9fZFasWMGaNWv47bffKFWqFIsWLaJp06a8ffsWG5t/lh90+MRjpDIFE0c0w9pKwcwFR9Bo9FSuWJy2rSry4lUcR8S5/KRxLbC2UvDTL5dJSMjC2dmGoUMaCnlRa8+i0eipUNGHVqEVMBpNrFl1RhhX1QygfsMyAGxafx5VnoaSpT1oJwZkXjn/kicPojA3lzN6ktDR0ekMbFgugKiWHSoTGCy09uNi0ji8UwBNwya2RCFaxMdGp3J8n9D6HjKpZaFMVa8zsEUEKh371sblswXn2b0IHt54h0wupf8fZOGvHkXz8NpbpDLpF6Z+AHtE1+QW3arh9BXQcWSzsAOq3bLCVzOnAE7tEDpWLXrWLHy+X6uPvIgG7f96xPJKHIv4l/NG+RdKq89LrRIWZwurvz/b/bMatLAb988+4/7ZZzy6/JLKjYL/+qT/QN29e5fu3btjNBoZOHAgc+fO/Y//DoPewN3TTzix+XKhOR+AT2lPOoxsRqPutb5p1PitMhqNXNx3h+2Lfic9MQuAcrVKMWxZd/zL/Tnn6uXd96yfsIsP7wSJa7Wm5Ri9qhcuxRy/OFar0bF71SkObbyA0WjC2dOeCev6UqleYNHj1Dq2LTvBUVHSXLy0B9M29sP3MwJ6fp6aH2Ye5IrYAa1UpxSTv/80ktLrDGxbeZojYgp3UGVfpomdGYD3L+NYPHonyXGZmCvkjF7YiSYdBP+eqHdJLBy9k8QPGSgszBizoAON2lTCZDLx+85bbF59FqPBSEAZT+Z83wtXD3tePo5m0cR9ZGWosHOwFEBPZV9ePI5m4eT9ZGflC2Ti1T0oHVyMI3vusvn78wIQCSnO7OVd0Wj1TBj2GxHvkzEzlzFpZlvqNirD+lVnOHVM4MqFtgth5Phm7Nt9h+3bhO5XnbqlmDKjLXv23GavGKzZpElZRo5qyqo1Z7gpZrwNHtiAGjX8GT1xN8kpOdjbWbJ4XkcePolhq+hx1aRBGbp2qsrkeYdIScvF0cGKBdPasffoA27eFwjNo79rSE6+mhU/Cd5cLRoEUSHIi9nrTmIwmqhavjjN6gYy94fT6PQGKgYWo2mdMoXuxFXL+lCxjBerdgpk6mY1A5GZSdl9TujK9wutyr3XMbyOEfg7g9vUZMtpIVeqlJcLgSVc2XVJOLZr/QrcCIsiIT0HJ1tL6lfwZ9c14bVqVSWQB5FxpGTn4WFvQ2kvF04/ETpo7auV5eTTN+gMBir5epKSl0dcRg7O1pb4ujty830MUik0KOPPBRHc1Cvty83wGCH528eTN6mp5Gt1lHRxIk2lIrNAjbeDHWqjnqScPNxsrDFJIC47BxdrS0xSSMjNxdXaCj1GklV5uFtbk6vXkicSh5ML8tAYDPg7OBKZlYEREyWdnHiflQ6YKOHgQGT2RxKxksT8PBwsLFAbdaj1OjFDSgQ31rbEq3JQSGWYm0nJ0WmKuBK7WVmRqs7DQibHKDGiNuhxVVqRrslDCliZm5OnV+OoUJKjFwCRnUJBVk72n94TPq//5wDHxsYGd/dvZwp9XiaTiXXr1jFz5kw6duwIwPbt23Fzc2PPnj0MHTr0q+dpNBo0Gk3h/+fkCKnPRqOJFo2DqFujpDCaCosXRlNjW6DV6lmx5gwmE7RoGkz1Kn68eZvIIVH2OWFcc6ytLDh37jmPH0Vjbi5nwgQBoJw68ZhXL+JQKs0ZI+ZPPbwXwdWLQpbVuCmtkMmk5OWq+Vn0q+nRv05hHMPRfXf5EJWKnb0l341oXPi3/7T6LHq9gaq1S1Kz/qe8pF9WncWgN1K9Xmmq1P7UuThz+AHx0WnYOVrR5TMejMlk4ldRtt6qW3U8P+OdmEwmdogjsGadq+BZvChACXsULXBvzGR0HvJldyY9KZurogKk45AGX30/Yt4m8vJeBFKZlBY9a331GIDo1wlEv0lAbiajZssK3zzuY726J9wI/uhX8lelztcC/OOF+VvlVdKdNkMac/TH8/wybS8/3l7wvxZx8LHevXtH69atKSgooGXLlmzatOk/6kKc/CGNi3tucXrbVdLihda0RCKhWosKtB3ahMqNg//V73t24w2/zDpQKNN383Fm4LxO1G1f5U+vp8rJZ+uC3zkligHsXWwYvqQ79b5x3vtnH1g9ZjsxbwUg1KhzNYYv7vrFSDLqdQIrRu8g+o2QydO6Xx0GzWpfxAwx/GUcy0ZuJz4qFalMSp+JLek64lNKeGpCFsvG7iJMDNLsOKg+34ndF5PJxNkD99m04Bg6rR53b0dmbuhTaKx59dRT1s0+gqZAh1sxB2Zv6I1/GU80ah3rFxzlkqiybNymImPmtEdhYcapgw/4UQzB9S/tzpx1vXDztOfU4QdsXC5waAICPZi3pgf2jtasW3yCsyJgadGuEqOmhhL5Ppm5U/eTkZaHvYMV81d0xbu4MzMn7ePxgygkEhg6qimtO4SwesXpwsDMLt2r0++7eqxceYqrVwSeTN++dWjdthLTZx7k9ZsEzMxkTJvSGnsHS0ZP2k1engavYg4sntuJvYfvc+aCMK7p1bUGIRWLf/K48XJk9oRQ1my+RNi7RMzNZMwY25IHz2I4eUk4p0/H6pgr5Cz9WbiPNq9bhtL+biz++RwmE9SvGkCZAA9WbBM6501rlsbBzpJfjggbxa5NKxGXnsXN+1FfRC/YWyvp3bwKPx6/jU5voFLJYtjbKjl2WwD2fZtW5sT912TkCqGZ5QM8OXRbDAKuFczFF+Fk56vxdXXAzd6aK68ikUultK0exO8PXgmOxKV8eJecLvJvhCypB1FxmMuk1CxdnEtvhC5Ow0A/Lr8TRq/VSnjxJD4RrcFAWXdXYrKyyNNo8XNyIENTQGaBGi97W1R6HRmqAjxtrck36shUqfG0tSFXryVHo8HLzpZ0dQH5Oh0lHOz5kJeN3mikpKMT7zPTMf0B3Pg6CAopc6kMawtBIeWktCRPr0Zr1BeOosCEh7UN8fk5KOVyJFLI0310JRbBjaUAbizlZuhMevRGA25KAfzIJBIs5DJUeg1OFkqyRZKxrbk5Kn0BTmZ/n0bw/xzgLF++nIULF+Lt7U2XLl2YPHky5uZfd1aNiooiKSmJZs0+dRwUCgX169fn9u3b3wQ4S5cuZf78+V887uhgyZjBjYhPzCwymnJ3s+OXrdeIjc/AydGakUMao9cbWLX6NEajicaNgqhRPYCsrHw2iVyTfv3r4uXlKIyhxJyn7wbVw9XVFo1GxwbRL6Z956qUEv1itm++SmaGCi8fJ7r0+pQrtWuzcNMeOLoJtqKc+96Ndzy49R4zMxnDxU4PwMNb73lw4x1yuayIY7EqT10oC+81rBFWn3U0bl14JZj6WZrT8w8jpmd3I3h+T/Cl6fkV8vB+8e9t3KHyV7k3J3bcRK8zULaqH4F/4DN8rLNiynf1JsFF5LV/rJsnBaAU0qDMVz10/livHwo3gKB/CHA+RiuYKf5zX4de09pxce8tosPi2DR5NyPX9Plfiz1ITk6mRYsWpKenU6VKFQ4cOICZ2V+np/9VqXIKuHn0ARf33OK5aJoGYOdkQ4v+9Wg1oOG/Vp3FvElg6/zD3BPTn61slXSfGEq7IY3/NPndZDJx4/gjfpqxn4xkYSfXvFcdBs3rhI3Dl/4+Oq2efevOsu97oeth72zD6JU9qNWyYpHjjEYjx7ZeY9vSE+g0euydbRi/umcRbxuTycSxrdf5dalANnbxtGfqhr6UrfopBuX+5TBWTdpHblY+VjYWTFjZnVrNhA6eukDLxrm/c1Hs+tRoHMTEFd2wtlUK3daVpzkmdmgr1Qpg2qru2DpYkZyQycJxewh/nYBUJmXIpJa061UTvd7A+oXHOX1I2HTVbx7M+PkdkMtlbFh6kpMfH28WzIQ57VCrdUwbuaOQTDxoTFM69qzB1YuvWL3oBFqtHl8/Fxau6o7eYGTMkG3EfkjHQmnG9LkdKFvOi6kT9/LyRRxSmYQx41pQu24pJk/aS1hYPHK5lImTWlGqtAejx+4kKSkbWxsLFi7oRHxiFpNmHMBgMBIcVIwZU1qzav05Hj2NETZ9w5tgYWnOlAWH0OuNlA/yYtSgBsxdfZL4pCxsrS2YO7E1B04+4u6TKOGcAQ2JiMvg92PCqKh3u6oYJSa+33kVgA5NyiM3l7PpgNAd6tKsIpm5BYXuxIM71uT2y2heRCSiMJMxsmtdfjvzgPRsFR5OtrSpU5Yfjt7EZIK65f1Q63VcfhqOXCalX7Mq7L32tLCr4+5kw8kHr5FIoGvdChx98Aq1Vk+QtysymZS774VE8BaVS3NYTASvH+TH45h4kX/jiFQu4UVcMlbmZpT39eDq2yhMQIPAEoXgplaAD3ejYzGYTFT08uBNcipqvZ5Srk7E5eai0gpAJzU/nxyNBh97OzK0+eRqtPg42JFWkI9Kp8PXwZ74vFy0BgP+To5EZmdgNJko5eTEuwwB3AQ4OfI+Kx2JBLxFhZRSLsfcTE66Oh83SyvStfkYTAa8beyIFcGNm5U1ifm5WMvN0EuMqPU63C1tCo37XCwtSdXkYW1mToFRi9FkLAQ3cqkUM6mEAoMWZwslWToVEsDa3Ix8gxoHM0sy8///RCY+duxYQkJCcHBw4P79+0yfPp2oqCi2bNny1eOTxOh2N7eiUk83N7cvuDyf1/Tp05kw4RMXIicnB29vb6aOboGNtQVzRNVUpfI+tG1VkfcRyew7JKghxo1qio2NBXv23iEyKhVbWyUjhwsL/6YfL5Kbo8bf35XO4shp08aLqPI0lCrtTjvRcXf/rtskxGfi5GxDP9EPJuJ9EidECfboSZ/k2b/+cBF1gY4y5bxo2roiADqdnl/EUVP7njUoJo59PlqyA7TtUR2vz6Tah7bdIDtDRTFfZ1p1/jTeMRiM7BC7Ru371Sli6mcymdgt/qxl9+qF7fSPFf02kfuXXyORSOgy9MvujUatLSQOf8v3RqfVc1lMXG/R889Tvu+cE1QGtVv9tZ+NXqfng7g7D/iHZn0fd+eaAu0/Ou/PytbRmok/DmRBzw2c2HwJO2cbes9o/x8HOXl5eYSGhhIVFYWfnx+nTp36yzHvn5VWreXhxZdcO3SX2ycfF4I/iURC+bqBNO9bl7rtq2Ju8e/iHVLjM9i1/DgXdt/CaDQhlUkJ/a4+vae1xc7pz0fMidGpbJy6h4eXhB10MT9XxqzpQ4VvpL9HvIxlzdidRL4SnFvrtQ1hxNLuX3Ct0hKzWDNxN09EAm61xmUZt6oHDi62hcdkpeWyZtJeHogqvZrNyzF+ZfdC4z69zsD21Wc4JBrwlQz2YtqG3oXd0fjoVBaP3iVIwKUCcb/z4PpIpVIyUnJYPH4PYY+Fe1i3oQ3oM7opMpmUJ3cjWDp5HzlZ+dg5WDJ9ZXcqVvcnMz2PRRP38epJjJBBNboJXQfUJScrn9lTd/NczKbqN6IR3b+rS1R4CvMm7iU5MRtLKwUzFneics2AIrEL1WuXZPr8Drx/m8j8mYfJzSnAxc2WBcu6YmYuZ9Tw30gUychz5nfA2cWWUSO3k5SUjY2NBXPndcRkMjF6rEAw9vS0Z8miLly6GsZ28b7QsH4gA/vVY+aC34mMTkVpYcbcaW14H53K6p+F0XfDOqXpEFqJSQuFDEAPV1tmjwtl3bbLvI1IRmEuZ+aoFpy9+ZqbjwSS8pi+DXgdlcy5W0IXaVCnmkQmZnDpitBRGdqlNo9ex/IgTCAsj+5el9+vvyAqIQNbKwVD2tfkx2O3URVo8fd0onpw8cLohdAaZYhMySAsJhmlwoyejULYfumh0NXx90Qil3L1ZSRymZQudcpz4M5z9AYjVfy9yCoo4H1cCtYKc+qULcHRh8Lnp3mFklx7E0WBKPfO1Wn4kJyNg6UFJdwduR3xAZlUQs0AH66+iwKgbilfrouJ4FWKF+NpXCJ6o5FgT1fep2cIQMfFiQ852RTo9Pg5OZCgyqFAp8ffyZHY3Gw0BgMBTk5EZWeiNxop5ezE20xBGFDKyZl3GWmYMOHv5Eh4VgYyqQQ3ays+5GZjbWYOUsjSqPGwtiZFnYfRZCwCbj5629iam6M26tEZ9HhY2RSGaTorlaRrVNiaK8jTqzFhwlUEN2ZSKTIpaIy6QnAjBSzNZBQYNDiYW5Kjy+ef3EH/4wBn3rx5X+2WfF4PHjygSpUqjB8/vvCx8uXL4+DgQOfOnVm+fDlOTl/nbgBfLBIfLd+/VQqFAoXiy/FDhbLenDr3nCfPP6BQyJk8tjkGo4mVa88Ixnp1SlO3Vini4jLYvlPYBYwY1kiIXngYxcWLr5BIYMKElsjlMh4+iOTKJWEMNX6SMIaKi81gn0g2Hj62KZZWCkwmEz+sEoh49RqVoVLVEgC8ehbLpdNCnMOISS2RSoW/6cSB+8R/SMfByZoen42azh55xIfIVGztLenx2TgoPSWHI6Ifz4BxzYpwXK6dekZsRArWdko69v9EUgZ4eieclyJ5uOtXxk+HRT5BrebBFCvx5c796rHH5GSqcC3mQI2mX+ed3L/4ipwMFY5utlSuH/jVYwBS4jKIfBmHVCqh2jeu9XnFhScXEkzdvsH7+VZZ2grdrYI89T8676+qVpvKDF7SnV+m72XX0qPEvI5n4k+D/hE/6M9Kp9PRtWtXHj16hLOzM2fPnsXV9Z8plkDgpjy+9JLrR+5z59TjQsIwgHcpD5r0rE2jbrVw9f5nr+vnlZul4uC6Mxz9+VIhaKrdJoT+szr8pSGiVqPj8Mbz7F1zGq1aJ3w+x7ag29iWX+32aDU69q07y4EN5zDojdg6WjFyaXfqtfsyo+ra8cf8MP0Aedn5KCzMGDSnPaF9iiaQP77+llXjd5OZmoOZQs6gme1o0+/TMakJWSwds5PXIkBp268OA6e1xlzsCN4485y10wWZt72TNdPW9aSC6I3z8lE0S8btITMtF0trBZOXd6VGoyBMJhMHt91gm2jVUDLIk1lre+Lm6cDbF3EsnLCXtJQcLK0VTFvWlWp1SxH5Pol5E/aSnJCF0tKcaYs7U6NeaW5fe8Py2UdQF+jw9HZk/uruuHrYs3jWYW6IY6UuvWoyYHgjzp9+xvcrz2AwGAkM8mT+sq5ERaayYN4RVHka3D3sWbysC6lpeYwZveMTkFnSlZdhcaxZd07o0pT1Ys7sdvyy9RrnRUDaq1sN6tcNZOzUvaSl5+HoYMXiOR04eeEFJ88Lm5keHaoSFOjJpAWH0Wj1lPZ3Y/TAhixYf5rEFEH2PWN0S7YeukNYeBLmZnKmDW3KqRuvePhSAC/j+zXk0v13PH4dh1wmZXyfhhy79oK3MSlYWpgxqns9fj1xl9QsFa4O1vRsUZl1h24UjqG83OzZfVHo8nRvVJHbr4XoBXsrC9rVCebX8/cwmaBOcAlS81S8jk5BaW5Gu5pB7L31VOj4BJUgMjmduIwcHK2VVCjhyRnRkbh15TKcERPBK/l6EpeVTUquCjc7a5xsLXkUk4C5TErlEl7cCI/BBNQrWbwQ3NQo4c39mDiMYhfnRXIyeqORIHdX3qWnoTMYKe3mTERmOjqDkVIuzkRkZaA3Gint4szb9DSMmAh0ceZNxpfgpoSjAxFZGZjJpDhaKklQ5WKnsEBrMpCv01HMxqYwZuEjuJFKwEFpScpn8m+DyYinlQ1JasGV2EFpQYY2H3tzC7L1BYAJV6Ul6Zo8FDIZJoxojQZcLJRk6lTIJRLM5RLURm0huJFJQGH29yHOfxzgjBo1iu7du//pMb6+vl99vEYNwc0zPDz8qwDnI1cnKSkJD49PN8WUlJQvujp/p9Izctn061UABvapSzEPB/Yduse78GSsrRWMGdEEk8nEmu/PotMZqBziS9MmwWg0Or5fJ46c2lcmsIwnGo2O9R+7LB2rULKUOyaTiY1rz6LTGqhS3Y96Itn44pnnvHoei8LCjCGiX43RaGKTmGnVvG2lwjDN7EwVu34RgEX/Ef8f9t4yPqp7Xf/+jkvcXSFYgru7u2uV0lLcpUCxAqUtFepGKcXd3d3dLYSQEPdxWc+LtTIEa2n33uc8/88+96t2mEySycya63fdlzxZNRmKzCyREkcHDG7qspYDLP1uHxaTjQpVIqnX7Ild2m5zsFQK3+vxdiPcn+ntKSke9n8mVTjzcR4HJG3Ni9gbQRBchYMd32j4Us3JHqmFvVm3mn+qSzkpsTcVapX6UwdN8dyX+oCi48Ne6Jz5symufij5wf7vmu7D26Bz0/Dt2D84svEMSTdTGPHVm1Ss/2LW4VVHEAQGDx7Mjh070Ol0bN26lbi4V3eOpT/M4tzeK5zde5ULB69hLDC5/s0/zJdG3WrRpEdtylSL+ZdYJ2OhmU0/7mXdN7spyhfdagl14xg4swfla/518OD5Q9f5ftJKku+I7G2VRuUY9kl/wku/+P1+6/wDvhj9h0trU799VYZ+3PspNgZEB9N3U9ZwUBKxx1WKYPzC14ko8bg2q50ln25nrdRyHRkXzKRvXiem/BOx8cm91/h8wirXSmr0/N7Ub1PR9fW/zt/GpiXiYSOhZgyTvuiHX5CXmK3z+zF++WwHToeT6Lggpi4cQFi0Pyajhc+nreeIpHNp1aUaw6Z2Qq1RsXvjeb7+aDM2m4PI2AA+/KIf4dH+HN5zjc9mbMBithES7suMz/sSFRvAsl8OseTHg+JzVzOGKfN6YjZbGTN4MXdvpaFUyhk1qQPN21Tk1+/3s0bK6WnSvALjpnRkz64rLPxyF06HQHzFcGZ+1J1jR+/w5ZfiAa1ixQimz+jKuvVnWb5SXD03a1qBwe815aP5W7l4WVyHjRneGn9/D0ZMXI7JZCM60o/pkzrx3W8HOX1BrJAYMagZTmDap2JacZ1qMfTsWJ3JH2+koMhMWLA3499ryfyf95KSLq6tPni/Nb+sO86dpEz0WhUT3mnJH9vOcPdhFnqtmjGvNeWXTSd4nFWAj6eed7vXY+Gaw6KzKsyPlrXL8uWaQ6Jep2opkMnYfFwM6XuzbS02n7xGVr7BVb2weI/IurepWZZryekkZebhrdfStEppVhwV162tq5ThzP1HZBcaCfX1JDLQm/3X76GQy2hXtRxbLt5AEHiqETzSzxuVWsG11Azc1CrKhgZw/P5D5HKoUyqSw/dF8Fw/NpJjiaJerXpUGOcepSAAlcOCuZKWjkMQSAgJ5HpmBg5BoHxQADeyMqVG8ECuZWYgIFA+IIAbOZkA0loqC5kMIr29SczPRatQ4qZVkW4swk+np9BuweKwE+H5RGdTDG5UcjluajXZZsn+bTXh5Am4UchkeGjUUiqxjlwplThAK7aDizocGw7B6QI3KrkcpVzA6rThq9aTbzOikslQKgTMTvtfXjeK598OcPz9/fH3/2dhaRcuiKi5JHgpOTExMQQHB7Nnzx6qVhXXFlarlUOHDjF//vy//f2+/ekARQYL5coE06NzdVJSc/mtmKkZ1Aw/X3d27LzMxYsiwzN6lCgYXrr0uMtJ9ZaU4bJCWkP5B3i4msKPHLzJ2VP3UakVDJPExoYiM79I4X3932pIoORC2rP1InduPEbvpnEJiwH++OkghiIzpcoG07Ljk1XN2sVHyc81EBbl99QKKvl+JrukHf9A6XsWz75N53n8MAcvXzc6PVOaefVsIlfPJqJUKV7I3mz+XQzlq1g71lUWWHJunHvA/eupaLQqWkux889OYZ7RlSfSouefZ9qcl4K9arV4NQdS8l3xAzDqH+TOFK9G8jILsNvsKFX/3rdFu7ebElUhnI/6f83Dm6mMaz2XRt1q0Wd8R2ITIv4RgJg5cyaLFi1CLpezatUqateu/af3z0nP49qJO1w9fpvz+67y8FbqU//uF+JNw661aNStFuVrlfrbIPHZMRssbP55P2u/3kVBThEA0eXDeGt6d2q1qviXv3PGo2x++nANR6WATe8AD96d1YumPWq98GstJitLP9vG+u/34nQKePm5M/TjPjR8QR/Z+cM3+XzMMrLT8pEr5PQZ3oq+I1s/xXQ+up/BJyP+4M5lMWSw3YB6DJrWBa20zrRa7Cyav5VNi8XrRVzFcCZ//RohEnuYnpLLvBFLuSV9fc93m/CGVKtgKDLzxZR1HJMATJP2lRk5qxtavZrkxExmj17Ow3sZKJUK3p/cnnY9a2G3O/hm7ha2rhL1JvWalmfsR93Q6dX89u1eVkprpmq1SzF5Xg/UaiVzJq/liFSb0KlXTd4b3ZrbNx4zc9JqcnMMeHnrmf5xT2JKB/HhRLF2AeC1txvS7/UG/PTDftZLOp4WLRMYObYNixcfYa1UU1HslPr8yyeFma/1r0fLlgmMnrCS5JQc9Ho1Mz7ozOP0fD6YuQ6HU6BqpUhGvt+CWQtEG7hWo2Lq2PZcuv6I1VvEa1enVpWoWjGSSR9vwGpzUCEuhLd61+PDr7aRV2giJMCT0QObseC3faRlFeLrpWfMm81YuOIw6dmF+Hm5MbRvA75cfoj8IjPhgV70al2Nz5YfwGZ3ULl0KPGlg/lhk5TF1TCBpIw8LtwRaxvealeTZfvOU2S2UirEl7JRQU9VLxy4do/MfAPB3u5ULh3q6pXqVLMC+67epchspXSwH3q9mhN3HqJSyGlZKY7NF8TrWuPyMZx68AiT1UbZYH+K7FaSMvLw0esI9fXk3MNUVAo5VaNCOXZfBDT1SoCbGlFhnHmUIv7Nw0M5lyq+nyuFib1SAPHBgVzNzEAAEoKK/1tkborBTWlfX27nZKOUywjycCepIA93tRqlUka22Uig3o1sqwm700Gk55NVVJiHJ8mGfNRyBRqVgjyriQDdE4dUiARuVHI5WpWcApsJP60bOZI9PECrI8dqwE2pwuK04cSJvwRu1Ao5cpkTm+BwgRu1XIZc7sQuOPDXvnqX3v+aBufEiROcPHmSpk2b4uXlxZkzZxg9ejSdOnUiMvLJB2i5cuWYN28eXbt2RSaTMWrUKObOnUtcXBxxcXHMnTsXvV5Pv379/v7PcOY+Gq2eCSPFddCChbvEBOMqUbRtVZHcXAM//iSe3t54rQGhId48SMxk9SrxlDN8eEvc3DQ8Ss5mlXTyGTK8JXq9BpPRyg8LRRtj7/71CJMcUksXHZGExb506yN+KBmKLCySQM+AQY3x9hX/gA8TM9km6XTeHd3GFRyWnVnIekmM+PbIp1dQS74VL/B1mpQjvkS2jc1qZ7kkOu41qDG6ZyzRq6UwsZbdajzH3hiLzK4E1u4vaQTfsVz8eRp1rPpSQfCJXZdx2J1Elwsl6k/WEg6Hk6uS5ftl+opnJyM5GxBdOH93AsJ90XtoMRaaeXQnnegKYX/7Mf5q4uvE8f3Jj/h99np2Lj7I4fWnObz+NGGlg2jYpRaNutUktmLkK4GdX375xbUG/u677+jYseNT/24sNPHgegqJV5O5fuoO107e4bGU+VI8crmMcrVKUaNFJaq3SKBMtZh/GdSAmAq97bdDrP5yB/lZYjp0WOkg+o/vSOPutV7aG1U8VrONdd/tZuUX27GYxCycju805bWJnV4awnjp6C0Wjl9OaqJ40W7SrSaDZ/d8TmtjNlr4dc4mtkqhmmExAYz76jXKlUjpLm4A/3HmBiwmKx7eekZ+0of6bZ5kNaUkZjJvxFLuXRM/YLoNbMSb49u5imhP7rvGgomrKco34e6lY9wnvaktMamJt9OYM2IpKUnZKFUK3p3Yng79xITuo3uv8fnUdRgNFnwDPJj6eV8qVIkiO7OQueNXufQ2A95vSt9BjTEZrEwfvYLTR6VuqgH1GDi8BVmZhUx8fwn376SjVMoZOqEd7bpWZ/e2S3wlpajHlg5kxie9cTqcjHz3N5IeZKFWKxk3pSM165Ri6gdrOHtaFLa+ObARXbvX4KPZmzgpvS/ffKshbdtWZuIHq7l16zFKpZxxY9oSHOLDkNFLKSgwERjgwZzp3dlz8DqrinV3LRLo2rEa42asITO7CF9vPbMmdWb11nMcOiGG2r03oAEKlYKZX24V1z01S9OiUTk+WLAZi9VOudggXutWi5nf7qDIaCEyxId3etRj3qK9FBktRIX40K99DT5evA+L1U6F2CAa1SjNghUHRKamWil0OjXL9ojg+bXWNTh27QH3UrNx06oZ0Lo6i3aexmp3UDk2FC8PLdtO35CqF6qx8fQ1Ck0WYoN9CQ3wYueF28hk0KNuRTaeuY7V7qBiZDAmh41LSY9x06ioXSaKbdKKqlWlOPbdvIfd4aRyZDCP8gvIKjIS5OmOh17D1dR09GoVZUMCOJX0CLkMakSFczzxIQJQMzqMM8kic1MjIpSzKakICFQNC+FC2mMEoFJIEJcz0hGAisGBXMkQwU1ZaS0lk0G0tw93c3NQKxT4uGl5VFSAl0aDQ+Ykz2IhxN2DNJOos4ny8uZhUR4gEOruQYqhAL1SiUwuo9BmIUjvRoZZBDfFqcQahQKlAgx2C/5aN1f2jZ9WR47ViIdKjcFhoTjbJs9mQKdQ4MCOXXC6wI1GIQfsOAQn3motufl5f3oNKTn/awBHo9GwatUqZs6cicViISoqikGDBjFhwoSn7nfr1i3y85/43idMmIDJZGLIkCGuoL/du3f/7Qyc4hnQuw6lYgLYsfsK5y8miXbvEa2RyWR8/+N+CgrNlIoNpEf3mpJNfRd2u5N69eKo36CMGNT3xS6xeqFWLA2lEK+li4+QmVFIcKg3fV4TrdAP7mewYbW4ohkyuo1LWLz810Pk5RgIj/KjU4mQvp+/3I3T4aRu43JUkXQ6AMt+OIDFbKNcpQjqNSvvuv3ujVSO7L4qigufya/Zs/E8Gal5+Ph70K7306f9xJuPOXPoJnK5jB6DnhcH715zBkOhmfDYAGo2fV43U5Rv5IjUYdP2T4TDR7aIDF2jEkzUi+b+1UcYCkzoPbSUqvjyCoeS4wI44c/nn/zVyGQyosuHcf30PRKvP/qPABwA7wBPRi58kw6DmrFs3iZO77pEyt10Vn62hZWfbSG0VBDla5YiJCaQ0FKBhMQEERIdgLqERXnX7p0MHjwYgEFvDKZ8QFU2frebrMe5PLyZyoPrj1xpws/9jvHhxNeJo0rjClRpUuGFrqN/OsZCM1t/PcC6b3e7gE1IdAD9J3akaY/af2mTFwSBkzsu8dP0NTyWgErFunG8/3FfYl9S8VCUb+TXWRvYuUxcAfkFezFsfl/qvCA48urpe3w+ehmPpeemwxsNGDil81PRAPk5RXw1cRUndonC1Mr14hj7Rf+nxPb7N57jm2nrpRZxPWM/7UMtCbzYrHYWL9jBeolNKVMpgg++6u96Te7bdJ6vZ2zEYrYREOLFB1/0o1zlSBx2B78t3MNaKVemYvVoJn/WB19/D65ffMhH41aSkylqdCbO7UntxmV5mJjJzLEreZSUhVqjZPRUMbzvyvkkZk9cTX6eEW9fN6bN70X5iuH8uHAP66RDSv3GZZnwYRdu30x1iYn9/D2Y+XFPPDx1jBjyOw+TstFqVUz4oCNly4YwcuRSEu9nolYrmTipAxERvgwb8QcZmQV4euqYNaMb6ZkFjJ28EpvNQdm4YKZP7sT3iw5x+LgIwAa+1oCyZYIZNXUVRpOVqAg/po5ux5e/7OfqrVRUSgWThrXm2p3HrNshXiu6t61KWKgPH34lVt7UqRJNs/plmf61mHFTqWwo7RonMOunXeL/lwmlaa04Pv5tr2jDrhRNZKivK8CvS+ME0nILOXhSXBm907EOG45eIz238Ll04gYJ0RRZbBy6ch+VUkHfJlVYfuSiCGCig1GpFBy5nohKoaBz7QqsPXlVLMMsE0lybh4pOQX4uukoHxHIvmtihk+rymXYdfW2mOgcG8719EwKzRai/bxxIHAnIxsvnZYwX0/OP0pFJZdTMSyI00mPkMmgeuQTcFO9BLipEh7ChcciuKlYAtzEB4ngBgTKBPhxKycLpUxGqKcniXm56FVKdBoVaYYi/HQ6DE4rZptdCugTdTYlwU2QmzupxkLcVWrsODDbxWC/NCm1WEwlLkKnVILMiclhI0Dn7mJ2fDQa8qQ+qUK7GRHcaMmzGdArldgEGwJOfCRwIwIeKwICXmothXYTbspXd4j+rwGcatWqcfLkyb+8X3EDcfHIZDJmzJjBjBkz/uWfISLclwG964h275+lpu0B9QkP9eH8+Qfs3SeJiEe3QalUsHPnZa5cSUarVTFseEtkMhkH91/n/LkHqNQKho8SgVFyUjbrpU6aoaNao9GoEASB77/YjdMhUK9RWWrUEfUHKQ+z2bhSvO/g0a1RSWzMhdP3OX30NgqFnHdGPgErjx5ksVNaQb0zutVTJ/4/JH1N4zYViSmRPmyz2ln5g/j79X63sYtmL57VP4nsTYO2lZ7KxAGRTdm0WLzwdn270QtP+Qc3n8dithFVJvip03DJKcw1cOGoVBgnucNeNpelC2JCndJ/eeIvnnSpbuGfMDgA0RXCuX76HvevJNO0x5+ve/7VKVUxkg+XD8dYaOLUjosc2XCGM3suk3ovnVSp1fxFk+/I4ox5N04chCpL8WCNgTlrv33hff1CvImuEE6ZajHE1ytD+ZqlcPf+9wGa4inKN7Lpp31s/H4vhbkGQAQ2vce0o0Wfuq+07ntwI4Ufp67mgrSW9A3yYtDMHjTp/uJ1FMCx7Rf5bvITq3j7Nxry1pQuuD2jK7OabSz5dBvrfzqAIAgEhPowekE/qjZ8mhk8d/gmn49ZTk5GAUqVgjcndqDrO41dr3djkZnvpm9gn/Teq1g7lglf9HexnemPcpg3ajm3LokrhC5vNuBtidWxmG38MHcLO9eILEb1BnGM/6Q3Xj5u5GUXMW/CKi5JbEm31+vz9qjWKJRytqw6xQ+fbMdhdz6ltzl+4AafTt+A0WDBP8iTGQv6UrpcCFvWnuH7z3a6cm+mf9obvZuGaeNWcvakmKfS/62GvPZOY3ZsucDXC8T7li0fyox5PUlNzWXy+4spyDfhH+DB7Lk9sdkdDBm6mLxcI76+bsye3YO8AiMjRi/DZLISEeHLnFk92HvwOouXiiCiYb0yDB7UhFnzt3Lj9mNUSgUTR7fFaLEyafZ6cU1VMZLBbzZy2cDd3TRMH9OBjbsvcvSM+LO+/1ojcgqMfLlYvD51al6R0GBv5vwgah2b1CxN+bgQ5v0qOj8b1yhFZKgvXy4XNYvtG5TH4nSyQmJq3uxQk5PXH3IjSXRivde5Lr/tOEOB0UJkoDd1K0a70onb1irHndQs7qRm4a5V06VBAksOnscpCNQrF0mWwcTl5DR0aiWtqpZ1VS80TYjlYvJjcopMhPl6EuzjwdHbSSjkMpollGan1CvVoGwUZ5JSMNvslAvxJ8doJr2wiEAPN9z1Gq6liVqcGH9fzj96jFIhJz40kLOPUpDJRM3NuWJwExbMRQncxIcEciVDvIaUC/TnWmYGCrmMKB8fbudko1Eo8NPreViQj6dGg0wBWSYjQW5u5FpNWJwOory8SSrMAwQiJXCjkMnw1elJNxXhpdZidFqxOe2Eunm6UosD3UQWx12lwirYsDsdBOrE7Bs54KFWS6nE+hLt4FrybEbcVWrMThHw+Kh1FNiMuCmVWAWR4fFUaSiyG3FXqjGY/h8K+vvfnA/GtketUrLgl10iUxMTQK9uNbFa7Xz5tbhe6typGuXLhVJYaOJnCQi89noDgoK8MBmt/ChVL/TtX4/QMB8RyCzcjd3upHa90tSRgvdOHLnNhbOJqNQK3isBWH75ei92u5Oa9UpTU7qv0+nkly/F79+xZ03CS4COxd/sxekQQ/0SSoCJW1eSOSWlDw8ooeEB2LfpApmP8/EN8KBtr6e1L+kpuRzeLgp6ew5q8txzdObgDdKSc/Dw1tOs6/MuFIC90p6+dZ+Xl2GeOXBdXE+VDSH8BY3OJefmOdEWGV/r1fNsiqQP139at1Chdmm2Lz7E6d2XGTizxz96jL87eg8dTXvVpWmvupiKzFw4cI3k249JTcwg9V46jxMzyErJRRAEjM4Czpv348SOnyKEql6N8Q/1xTfIG99gL/yCvQkrHUxMfDhR5cPx/DfUTvzZZKflsemHvWxddAhjoShQDisdRN+x7V+JsQEoyCnij/mb2bb4ME6HE5VaSdf3W9BnVDv0Hi92mmWm5PD9lNWc2Cm+ZsNKBTJqwQAS6jz/Wrl1IYkFY5aSfEe84LfsVZv3ZnR7CgRZzFZ+m7eVTZJAPqJ0IBMWvk7phCes0a1LD5k/ahmPk7LFFvHhLekzrIULfJ/Ye43PJ66mqMCEu6eOMfN7UVeqXEl5kMXc0cu5f/MxMpmMfkOa0ff9ZigUcq5fTGLu2JVkZRSg1akZM7sbjVpXxGK28eWsTezdLLIYDVvFM2ZmVzRaFb9/t4/lv4o/a6Xq0Uz5uCd6d+1T4X1NWiUwelonMtLymDhiKSnJOWg0SsZN7UT9JuX49otdbJaqE5q2jGfs5A7s3X2VhV+IDqiy5UKYNbcnFy8m8ekn4kqrVKlAZn/Ug8NHb/HjTwdwOgWqVonig0kd+e7n/ew7KILT3t1r0bJ5PKMnrSI9swBPDy2zpnTh+Nl7rNoofs/WTeNp3SyesbPWUVhkJiTIiykj2vD14oPcvJeOWqVg4pDWHDl7j/0nRUDwbu/6ZOYX8f1K8bDVs01VBBl8t0pcN/ZoUQWDxcKSreK1aEC76tx4mMGZG2K7+fvd6rHhyBUeZebj5a7ltdY1+WHzCSw2BwkxwUQEe7Py4EXxsRtV4vC1RNJyC/Hz0NG0WhxLDoggqWWVOK6nZvAoOx9vNy21ykSyUapeaFetLAdvJmKwiPobpVLO2cQUtEoFtctGsfuauIJrVqEUh+4kYnc6qRwRwoOcXPJMZsJ9PBHkcC8rBx+9jgB3PVcfp6NTKokJ9OViahpKuYyyQQFcTE1DLoNyIYFcTBP/Oy7Qn2sZIqCJ9vXhZlYWaoWcIE937uXl4KZSo1crSS0qxE+nwyzYKbJYCfXwIN1UiF0QiPby5oEEbiK8vEguykMll+OuUZNpNuCr1ZFvM0kOKRHcyBDw04sFmp5qDUanGafgdIEbsR1cIaUS68mTwI2vRkO+zYinSoPRKbqqvFVaCmwm3FUqLBLg8VBpMDhMeCifgKBXnf9qgBMd6ceFSw/ZtfeqyNSMaI1SqeCPpcd49CgHX1833n5LFAwv+vUQeXlGoqL8XZk3y5YeIzOzkOAQb3r3FYW1p47f5czJeyiVcgaPEAMJbTYHP0kOpe596hASKgbkXTmfxPGDN5ErZAwa+SS88MDOK9y9JQqO+5XIk7l19RFH91wTcy9GPB3C94ek4WneocpTeTgOu4PVUuR8j7cbodY8Te9tXHwEp8NJ1XpxrjTVkrNNsri36lnzOeYH4NG9dG5dSEKukNPkBTbc4jm1RxTh1Wld8aX3KZ7bF0XHQJln+rFeNoIgYDKISdX/1IJdp21llCoFSTdTSbqZSlS5vy9W/ldG566lXsfnnz+H3UHa4zQaN22M7Z6ZKlWqsHf3Xnz9ff9jwYF/No/uprHum93sXXEcm1V0M0SVC6XvuA407FLjlRg3m9XO1kUHWfbZVoqkHrD6HaryzowehES/ODjQ4XCyZdFBlny8BZPBgkIpp8fQlvQb3e45q7jVbOOPBdtZ/+N+nE4Bn0BPRn7Sh9rPCNbvXknmk5F/kHxX1Cd1eL0BA6d0cr3OnU4na386yJLPxaTwwFBvxn/RnwRpXWy1iC6pzVIkQ9nKkUz+sp9rJXVk1xW+mLIOk8GCl68bEz7pTbX6ca7KhV+kx42ICWDal/2IjA0k7VEus8eu4J6Ul/P2qFZ0f70+hiIz00ct5/Qx8UOyS986DBrZivw8IxMG/86NK2KkwtvDWtBjQF1OHr3D/BkbMBqtBAZ7MePjngQGezF59HIuSnb2N99tQu9+dfnx+31skLR+TZqVZ+yE9ixffoLlUnZNvXpxTJjYnp9+Oci27aLQtl3byrzxen0+/GgD126kivbsYS0JCPBk+PjlGE1WwkN9mDWlM4tWHOfISfHnHti/ASHBXkz4aD02u4MKZUIY+kZjZn+9nccZBXh56Jg6vC2/bzzF5VupKBVyJrzbgoNn73LsvJh5836fhly9n8ahs6Ie6L2e9Th/8xGnr4nZMUN6NWD7yRvcSc5Cr1Xxfvf6/LrtFLmFJsL8vWhbr4IrwK9eQhTIZWw/fRO5TMZrLauz8cRV8gxmIgK8iI8JYfVREUx3qRvPwev3yZXYmdhgP3ZdFAFYl1oV2HrxFjaHg0qRweSZzNzJyMZTpyE+MoiDN0WGrkV8KfZI6cS1YyO4lJKGyWYjLtCPXIuJzAIjwR7uqFUKbmeKRZmBXu5cS89Ap1QS4efN1fQM1Ao50f4+XEvPQKWQE+nrzc2sLDQKBcGeHtzNyUGvUuGp1/CwIB8vjQaZXEam0Uigmzv5NhNmh51ILy8eFuUhANFePjwoFJvCwz09eVSUj1ahQK1UkGsxEaDTk2UxICAQ6u7JY2MBchl4a3XkWIz4aLQU2I1Sto0IblRyGWqFDKPdgp/WzdUO7q1RUWAXLeNFDhHceKnEFZSnSoNJAjweKjVGhwlPpXibDAH3v2EC+a8GOFarnc+/FunOju2qEF8+jJTUXJZKgtn332uOu5uWW7ces0XSj4wY2QqlUsGj5GzWSmuoIcNboNGosFrtfC8Ji7v1rk14hHih27T2DKmPcvDxdaPP6/UB0Rb+01fifdt2qUZUrHhht1psLJbASu83G+BVQifxmxTC17xDZWLinqygrl98yNljd5Ar5PR9r8lTv+PhnVd4/DAHTx+359ibwnwjO1eLlGz3dxrx7KQmZXH20C1kMhntXqKt2SedBGs0Lufq4Xl2bFY7Z4rbmFv+OcDJyyokQ1o3xb1iYJ/FaHWtMvX/EOC4e+mp3iyeU7suc2TTWaLKdfpHj/PvHrPFTLce3bh37x7R0dHs2LEDv4B/nkfzT0YQBK6dvMuG7/dwfOsF13NdoVYpeo5sS+02lV5JoCwIAse2XWDRzPWkJoqgIrpCGIM/6k2VRs9ru4rn7pVkFo5bxh1p/VOhZiwjPu33QhB641wiX4xdTvJdkbVp2rUGg2d1x7PE+8hhd7Dmh/0s/XwHDrsT30BPRn/WlxpNnujZstLyWTBuJRePix/MDdtVYvicHnhIQudHiZl8PGoZ966L7pVuAxvx5pg2qNRK0R7+2Q5XKnF89WgmLeiDf5CX6KD6cANHJcDfuE1FRs7oit5Nw5mjt5k/eS1FBSYx1G9+b6rUjuXBvQxmjVtJysNs1BolI6d0okX7yty48ohZE8R6BXcPLZPndKd6nVKs/P0Yi38SBbUJVSKZNqcHeXkGhr6ziLTUPHQ6NZOmd6ZilUimTFrNubMiY/rmwEZ061GTj+dt4agkXO7Tpw49e9Vm+qwNXLz4EJkMBr/XjOrVYxg+djlp6fm4u2uYNbUrScnZTJqxDqdToErFCMYMa8mcL3dw806auKYa0Zq0zEJmfyn27DWuE0eHlhWZ8PEGigwWwoO9GfdeSz79dR/Jj3Nx12uY/H4r/th8mhv301GrlIx7uxmbDl7l6l1x9TX6tSZsOHCZ2w8z0aqVjOjXiMXbz5CWXYivp543O9Tkm/VHMVvtlI0IoHLZcH7eKkoj2tUpR1JmHlcfpKFRKRjQojpL95/HbLNTPjIQH08928/dFNOJG1Rm09nrmKw24kL88dBrOHwjEaVCToca5dh47rqoESodwb2sHDIKDAR6uhPm78nxuyLwalQuxgVuGsRFcSIxWQzqCwsiKS+PAqk00+yw8zA3nwB3PVqNijtSI7iPm45bmVno1SoCPd24lZWFTqUiwNONuzk5uKnVeOo0PMjPw0urQamS87ioEH+dHrPTTpHZIrI15iLsTgfR3iKgEYAYbx8SC3KRyRBrFgwFuKlUCDKBApuFYL07aVJYX4ibB4+NBWKBplpJntWEv07nckgVgxutXIFM7sTssOEvOajEAk0lRXYzPmodhVI7uIdSQ5HdhJdag1ECPG5KMb3YSyXeJkdAp5RjMj+JtPir+a8GOOs2niP5UQ4+Pm4MeqsxgiDw9Td7sNkcVKsaRbOm5XE6BRZ+JfaaNG9egSpVosR8m4V7sNud1KpTirr1xNXShjWnSX2Ui6+fO/2lpu/8PCPLFomU8luDm6GX3EuH9lzl9vVUdHo1r5VYDW1Zc4aMtHz8Az3pWgJUXDx1n4un7qNSKRjwTL3CUqk+oWXnqoSWCGMTBIHVUu1Dl9frP9eWvGPlKcxGKzHlQqjWoAzPTrFzqnqjMs9pc4of/4DU9t28+8vLMK+euoepyIJPoCdxlf9cNHzvimirDSsV+Jye4mVjNj7pGVPr/nlFQcMuNTm16zJ7Vxynz5h2/3a7+N8du91Onz59OH36NL6+vuzcufOVe9v+HWM12zi4/jSbftzn6ooCqN26Ej1HtiWh7qvn7tw6/4CfP1zDVekk7xPoyeuTO9OqX/2Xsj6GAhN/fLKFLYsO4XQKuHnqeHtqF9oMqP8coDKbrCz9bDsbfj7gYm2Gz+v1XFN9SmImC8Ys44bUE9WgXWWGz+v1FAA6uuMyC6espTDPiEan4v3pXWnVs6aLMdu38RzfTN+A2WjF08eNsZ/0opYEjh4n5zBvzHLuXBUdVj3facwbI1uiUCpIvJ3GR2NXkPIgC6VSwbvj29Kxbx2cToE/vtvH8p8OIQgCZRPCmbqgDwHBXhzcfZXPZ4rC5MBgLz78rA9x5UPZvv4c3366HbvdSVRsANM/64Ovvztzpq7j8H5xXdShW3XeH9WaMyfv8vHMTZhMVoJDvZk1vxcKhZxhg38n5VEOWp2KSR90oky5EEaPWsbdu+moVArGjG1L+QphjBj1B49SctHp1Ez9oBNypZxhY5ZiNFoJDfFmzvRubNl5mXWbxWtBmxYJdOtUjXEz1pGeKbIyMyd2ZOeh6+zYL65z+nSuQXSkP5Pmb8Rud1KxbCiv9ajDtK+2kl9oJjjAkzFvN+Pz3/fzOLMAbw8dY99qzg9rjvIoIx9PNw2jBjThx/XHScsuFDNuutXl67VHKTJZiAz2oX2DCnyx+jBOQaBOfBReHjpW7b8IQL8WVTl6/QFJ6bl46jV0a1iR3/acEcs6y0Zgsts5euMBKoWCng0qsur4ZexOJ1VjQjFYbZy7n4JWpaR55dJskNKJm8bHciYxRRQN+3uj1qg4n5SKVqmgeqlw9t8SWZym5WI5cPu+6IKKDuPK43RXCnGGwUCeyUyYtyc2nDzMy8fPTY9apeBBrtgIrteqSMzNxVOrQa9Rk5SXh5dWi0opJ7WwED83PXbBQZbRSLCbO3lWM2a7nSgvLx4a8nEKTmJ9fLhfIIKbKC+xY0opl+Gr1/HYWIiXRoPZYcPiEHU2qZLOplhQrFEoUCllFNrMBOjcyLaKIuIAnRuZliL0SiV2wY7D6XCBG6UMtCoFRocFX43eVaDprlRjdJjxVmsxSIBHr1RidlrwUmkxOqSAP4UMm2DDR/X/gE38/w8j1jGoGPpuMzzctRw+covTZ0QQMWK4KODdvv0iN28+Rq9X895gUdty4vgdzpwW7zdEEhvnZBex7DdxHzxwcFMXkFn662EMRRZi44Jo2U682Fqtdn6TQvp6vV4fH0kvYSgyu/IsXnuviastXBAElkhan7bdaxBcogPq+sWHnD9+F4VSTt9nNDRnj9zmwe00dHo1Hfs9nU1jtznYIq2fur7Z8Ll1h93mYK9EW7ft+2L25uaFJNKTc9C5aajdMv6F9wE4f0jsMarRpPxfnvSLW6Fjyr+6k0lRwibvdDj/sd25Qcdq/DxtNWlJWexZcZy2rz/Pav1PjSAIDB06lK1bt6LVatmyZQtly/5r4YCvOhnJ2Wz//TA7fj/sckSptSqa9apDl8EtiP4bf5vU+xksnrORw5vE15JGp6L7kFb0HN76petEQRA4tPEsP01fR26GWIzbqHN13pvdA9/A59vrL5+4w1fjV5L6QHRfNetWg8Ezn+6mcjqdbPvjGL/O3YLFZEXvoWXIrO406/aknNNksPDDrE3slnJe4hLCmfBlP8JjxXRoY5GZ72ZtcgmNK9WOZcKCvvhJWVZHd1/liylrMRZZ8PDSMWZeT+pI4Z57Np3nm482YzHb8A/yYsqCPpSvHElBnpFPPljLWWn11L5nTd6b0A6FXMaPn+9k/TIxPK9q7Vgmz+mBzk3DFx9tdult6jctz7jpncnPMzJq0G8k3stAoZAzdGwb2nWuxrLFR1giaXaqVIti2kfduXnjMXNmb8RQZCEwyJPZc3tittgY8v5icnMNePvomTWzO2arnaHDf6eoyEJgoCcfzerO5auP+ObHfTidApUrRjBpbHu++G4Pp6QeuHfeaEjpUoGMnLLKtab6cGwHvltyiAtXk1HIZYwY2JTcAhPzvhXDUpvXL0u9mqX5YMFmrDYH5UoF8XrX2sz6fgeFErPzXu/6fLp4H/lFZkICPBnYrS4Llh0UbeLBPnRvUZnPVhzEZndQsVQIFcuE8t0GcXXYpnY5copM7Dx9C4VcxtvtarHu2BWyC4yuAL/fpAC/FlXjuJuezf30HDx0GtrUKMuyoxcBaFghmnvpOaTkFODjpqVqqTC2XhCvbW2qlGH/9XtY7A4qhAZQaLNyKy0TL52GuFB/jt5NQiaDRmWf9ErVLRXJ6YePsDudVAwN4l52DkarjVh/H7LNJvJMZkK9PDA77KQWFBLk4YZD5iSloAB/Nz1OOTwuKiTQzQ2z006m0UiIhzt5NjNGm40IT08eG4qwO51iC3hBDiA8BW4iPL1IKsxDrVDgrlGRaRJ1NgU2M3bB8VQ7eJDenTRTIXqVCkHmxGi3PtUO7qcVV1juKhUWhxUnTgIke7hKLkOlEDA7rPhp9eRLNQxahVKqYdBS5DAiBzRKBRanFW+VCHiUMhlKKQPHU6kh31jw4ovNC+a/GuDY7A5q1yxN8yblMZmsfPu9qJPp3as2kRF+FBSY+OXngwC8+WZD/PzcsVrsfP+NpKfpVYtwad++6McDmExWylUIpYWUmfHwQSZbNohvnMEjW7lOqlvXniE9NQ+/AA+6lQjc27D8BAX5RsKj/Fw9VADnT9zj+sWHqDVKeg98+kN3ueSOat6xKsHPWKTXShe2tr1rP5dafHzPVbLS8vH2c6fxC1xNp/ZfJy+7CB9/D2o1Lf/cvwMcltZ2dVoloPmTbqLzR8SLwLPOlRdN8WohIu7VmYqSVl+z0Yq71z97WWvdNPQe3Zafpqzmt5nrqdOmMj4v+ED9n5g5c+bw008/IZPJWL58OfXqvbx1/d8xDoeT8/uvsXXRQc7svozTKa6hAsN96fhOU1q/1hBP31cXLudlFrB8wTa2LT6Ew+5EJpPRvHcd3vigCwGhz5e0Fs/D24/5bvIqLh0TVyRhpQIZOq8PVV+wwjIUmlg0dzPb/yhhE5/X67k1aGZqLl+MW8EFae1SuV4coz/r+1SkwK1LD/lk1HJSk7KQyWT0GtyU/iNbubJtbl9JZv7o5aRKQuP+w1vSWxILWy02fvlkO1uWi4xnhapRTFrQh4AQb8wmK9/N28puCRRVq1eaiR/3wsvHjdvXUvho3EoyUvPQaFUMn9qJFh2rkJtdxNzJa7gssUy932zAG0Oak5NVxIdjFnPzquikefP9ZvR+swHnzyQyd+o6CgvN+Pi6MW1uD2JLBzFrylqOSf1anbvX4L3hLdiw7iy//CiyXPEJ4cyY3Y3TZ+7zxediWntsbCCzZ3fn5Ol7fPOdmKlVoUIYH07tzNKVJ9i87SIAbVom0L93XSbPXEdiUhYajZIPxrYnO8/A5I82iCLkihEMeasJM7/YRnJqLnqdmg9HtWPv8VvsOSKyTAO61sLdQ8vMr8W1VYMapWhQoxTTFm7F7nBSsUwoHZsmMOvHXVhtDsrHBNGuUQXmLdoj/nvpEGpVimLBioMANKlWGq1OybLd4vPdr2U1ztx+xO1kcYX1VtuaLN5zFqPFRlyYP6XD/V0Bft0aJHDkxgPS84oI8HSjVrlIVh8X9Tdtq5bl5N1kcoqMhPp4EBnkw75r95DLZLStWpbtl27hFASqx4aRlJNHplS94O/pxpkHKagUcmrGRrh6pRrERXFESieuHhnK5dQ0bA4n5YMDeJCXJzZ8+/mQaTRQaLES4eNJvtVMvtlCmKcn+XYLhUbxv3MsYiN4pLcXj41igWastw8PCvJwCE5K+/pyN18ENzESuCleRSUX5eOmUqFQyMi1mKReKANOnC5wI0PAX8q58VCrsThFh1Sw3t1VoOmtEbNtvNTiqkm0f4vgRqOQI5M5sDodLnCjkMlQyWVYnDZ8NVoK7UYUMhlKOVidNhe4UcvlyGR2nDjxUIqrqv8nbOL/fxiVUsHoYSJT80exYDjYi359RNCx6NdDFBSYiIkJoItUnLlm9Skep+bh5+9O/wGinubWjVR2bRPfJO+PbOXqkPr56304HQJ1G5WhSvVoAIoKzSyXWJrX32uCVmJp8nMNrFsqntZeH9zM5UIRBIE/pIC+9j1r4hf4JHL+1pXkJ9qbZ9ibW1eSuXz6PgqlnC6S7qfkbJLCztr3q+PqzCk5uyVtTvNu1Z8KEiwep9Ppyr5p1OHluTZ5WYXclwLRXgngSJH8L4vif9EoVQrkCjlOhxOL0frSQLhXmU6DmrF3xQnuX03m67FLmbZkyP+4mHfx4sVMmzYNgK+//pquXbv+x75XVmoue1eeYMfvh0l/+CQ/p0qjcnQY2JS67aq8kiOqeIyFZjb8sJe13+xyCb9rtkjgraldiU14+XrSWGRmxefb2fjzAew2B2qtij6j2tD9/RbPCeMBTu+7xteTVpH1OA+Atv3rMXBK56fWmoIgsHftGX6YsR5joRmNVsVbkzvS8Y0GLpbPYXew8rt9LP9adCcGhHgz7vO+VKotxjg4nU7WLzrC75/vxG5zEBDizfjP+lCxltggnvIgi3ljVnDvhqjF6TGwEW9I4ZvJiZnMGbuCB3fSkctlDBjSnD6DGiOTydi6+jQ/frIdm81BSIQv0xb0IbZsCDeuJPPRhNVkZRSg06sZN7MrDZpV4MqFJD6atIa8HAPunlomze5OjbqlWLv8JL9+JzIqZSuE8uG8nthtDkYOXsyD+5kiGz2uLc1aJrDgk+3sldKT27avzJDhLfl98RHWSIxVgwZlGDe+Hb8sOsyWreLhpVXLBAa904Q5n2zl/EWRhXjv7SYkxIcxbPxy8vKN+Pm6MXtKF/Yeucm6raLbqF3zBNEpNXsd+QUmAv09+HB0O35afoxLNx6hUMgZ805zbj7IYMlm0fnUo00VvLx0zPtZ1CY2qVmacqWDmfOLqD2sXyWGsjFBfPaH6GZtVjMOL08dP2+SQkibVuJhZh4HLt0VM2461GHj8Wuk5RTi66Gne5OK/LT9FHank+pxYWi1KrafEcXFfZpWYdPp6xSaLMQE+hAZ7MPWcyII6163ItvO38RktVEmxB+1RulKJ25RKY6tF8UDXKNy0ZxPfiytqHyQKeBqqtgOXi4skGP3kkAmgZt7IripHR3O6aRHrrqFa5kZYpdUoD8P8vIw2+2U8vchpUgszYzx9SHVUIjZbifGx4dHRQUioPH14UFBLg5BEAFNbo7UCO7H3bxsQCDaR9TZqORyvHVSx5Rag03moNBmJcTNncdSnk0xuJHLwFujI6u4Y8ohOqTEvJtC5DJwV2vIt5nw1WhL2L/15FgN0qrKikNw4qfVkW8zoJIpkMmc2Jx2F7hRyeXIZCJL463SYHAY0SrkOLEhIOChVGNymHBTqjGa/4/BeaXp36cu4WG+PHyYzZp14pts2JAWaLUq7t5NZ6v0Jh8+QmRfsrIKWSGtdd4d3BydXo0gCPz4tST+bZ1ABcleeuFsIqeO30GhkDNo6BPH0+rfj1KYbyIyJoCW7au4bl+1+ChGg4XSZUNo2OJJf9S543e5KfVW9Xyr4VM//wqpubh5hyqERDzN3hSHjTVpX5mAZ5KJ711P5fr5JJQqBe1esH7KySzgrLRWav2MMLl4bpx7QHZ6Pm6eWqr9iUD0spROGlM+9JU6pR5La4a/spKXHJlMht5DS1GekcI8A37PtKD/nVGqlIz97i1GNJvD8a0X+H7SCt7/uO//GMjZuXMn77zzDgATJ05k6NCh//bvYSoyc2zrBfatOs7FQzddomF3Lz0t+9Wj3VtN/haDBmI1w5ZfD7Dmm10U5IiW/bgqUbwzvTuVG7789SEIAgfWnebX2RtdmTa1Wibw/ke9CH6B7is3s4AfZ6znkNSLFhLlz8hP+lC5/tMasuy0fBZOXs1pqeixbNUoxn3R37VuAlGP8+nYFdy6KOqLGnWowrDZ3VxC4pyMAj6bsIoL0vqofuuKjJzT3fXv+7dc4JsZGzEZrXh66xn7cU9qSQWyB7ZfYuFM8d98/NyZOL8XVWqXwmy08tXsTRyQohnqNS3PmFldcfPQsmnVKX76fBd2u4OIaH8+/KwPEdH+bFhxkp+/2oPD4SQmLojpn/TG28+NedM3cHCP+Pu17lCF4ePacvXyQz76cAOFBSZ8/dyZPrcHgUFejB7xB7duPkaukDFkWEuat4xn5swNnJHydwa8Vp8uXWs8JSYeNLAJ9erFMXL8ch6l5KLVqpg2sSNGs43Rk1dhtTkoHRvI1Akd+O63g5yS4h3ee6MR/n4ejJ21DpvdQbnSQQx7qynzvt3Jo7Q83PRqpgxry/q9lzh9SQRNQwc05n5KFmvWXgSgb7vqmO0Ovl8tsnPdmlfG6nDwqwRmerWsQkpOAesOis/jO53rcPDiXe48ykKnUTGwQ20W7zpLoZRx06ByDD9tl3rwqpYmPa+Qs9dS0KgU9GpcheWHL4oOqOhgFEo5B6+J7eDd6iSw7uRV7E4nVWJCyDOZuZWchbtGTa24CLZL6cQtK8Zx6PZ9aUUVSLbZRFpuIb5uOoK9PTiblIJSIad6dJgL3NSJieDkA1FzWCMqjLNSr1TFkCCuZ2ZidzopF+TPnZxssfm7RGlmnJ8fd/NycArCM43gftzOyRYbwX19XeAmwtuLBwW5aBRK9BoVGSYDfjodRXYLVoedUHdPV4FmqARuVHI5OpWSXKsJf62eHJuomSkGN0q5HI1CQaHNjJ9WT54kMvbV6Mi1Gl1Wb0FKL863GdHKlTgEMZW4GNyo5Qqc2HEKTgncmFwBfyDgrlBjcphxV6qxCv9nE3/l6dVNTCf+9vu9OBxO6tQpRb26oo3z22/2IAjQpGl5KkvdS7/9fAiz2UZ8QjjNJBBy/MhtrlxKRq1WMnCwKP51OgVX31SHrtUJl/ppsjMLXaF+bw9tjkJZXL1QwBbpFPXGkGau06UgCCz7UTyttOtRE98SACHpXgYnD94U6fRn1lbpKbkclU5q3d9+XkeyfaV4kajXMh7fFzifDm66gNMpUL5a1FMfCCXnxG4x2KpW8/gXMkDFc/2MeNFLqPXXxYoOh9OlufD/myAlJCqAO3lJpCZm/C2NyIumVMVIRn71Ol8MW8zmn/ajUCp496Ne/3GQc+7cOXr06IHD4aB///7MnTv33/bYdpudCwdvcGj9aY5uOY/Z8ESYnVA3jlb969Ooa82n1n2vMlazje2/H2bVVztcf7vw0kG8NrETDTtX/1M91N0ryXz/wSqunxE/ZENjAnhvVg9qvcBpJwgCu1ee5JePNlKUb0Iul9FlUFNeG9fuqfgCQRDYv/4sP0xfT1GBCaVawYBRbejxDCu6Y8VJfpqzGYvJhpuHlqGzutG085PeqlP7r/PF5DXk5xjQaFW8N7UTbXqJwYMmg4Xv52xhT3HoX80Yxn/Sm4BgLzHUb/42dkjZUJVqxjBxfi/8AjzFnqkxK3h4PxO5Qs7bI1vS/fX6WMw25k9dx4Gd4nuqYfMKjJneBblcxvxpGzggJSs3aZ3A6Ckdyckuekpv8/6oVnToVp11q07zi8TmlKsQyvS5PchIL2DIu4vIyTHg4anjw5ld8Q/wYPiwJSRL+TjjJ7QnNjaQESP/ICVVFBN/MKkjGq2SIaP/oKjIQlCgJ7M/7MaR47dZIpVqNqgbx8DXGzDjky0kPsxCo1YyeXRb7idl8dFX4sqpUe04OrauyKT5GyksEsXDE95vycIlh7mfnIVWo2TSe63YfPAq5ySb97D+jTlzI5ljF0Rb+Ls96nPh1iNOXU1CLpPxXo/6HLhwh+uJ6aiVCt7vUZ8Ve8+TnluEn6eePi2r8cOWk6IeJyaY8GBvlu0XD6vdGiRw+s4jkjPz8NRraFe7PEsOnhOTiytE87igkLvJ2ejUStpWK8cqaUXVoHw0t9IyySgwEOChp1SIP/uu30Mmg9aVyrDr2h1xRRUdyt3sHPKMZkK9PdGqlVx7nIFerSIu2J+TD5KRyaBmVDgnHyQjALWiwzidLLHc4SGcTxV1iBVDg7iSniYWZQaLBZoCiHUL2VlSr1QAN58qzRTBTayvD/fyc1DKZQS6u5NcmI+bSo1MLiPHbCLIzY1siwGH4CTc40mBZrC72BSuVShRKKDQZiZQ/ySJOMjNjQxzIRq5ApkcjA4LARJbAwJeGi15NhOearXLDeUrgRu9QoXVKaYS+2g0FNqNaBVKbIIIZLxUagwOI25KFTYp4M9NocLsNOOhUmNxmpED6r9xHf6vBjgAx0/c4czZRFQqBUMHi0zL4cO3uHxZBC3vSsWTt289ZpcULjZ4aHNkMhl2u4OfJfFvj761CZDWR4f2XeOOJEzu//YT1mXpL4ewWOzEV46gTqMnJ84Vvx7GarFToXKEK+wP4MKp+9y4lIxao6THmw2e+rnXSenCdZuWIyLm6eyQTX8cE3fg9Uo/lWgMopDygBQg1vYlpZjFIsrmLwn2EwTBFWdft9Wf276vS+LDCjVj//R+APnZhTidAnK5DK9XYHtKTlipIO5cSiLl7suTgP/OtOpXH4fdwVcjl7Dhuz0oFHIGzuzxHwM5iYmJtG/fHoPBQPPmzV1Fmv/KOBxOrhy7xaH1Zzi25byr9BIgJCaAFn3q0axXnZdmz/zZWM02di47yuovd7jWRMFR/vQf34FmfxH0l5tZwJKPt7Br+XEEQUCr19B3dBu6vNvsheuoR/czWDhhJVekHqRSCeGM/KTPczECOekia3Nqr8hqxFWMYMzn/Ygu+6T3LCejgK8mr+H0AXH9ULluacZ+2oeAUG9AdGP9On8bWyVxb0y5ECZ90Y9IaWV6/+Zj5o1ZwaPETDH0b0gz+gwWtTjJiZnMHbeSxNtpyGQy+gxqzID3RWB1YPslvpq1GbPJim+ABx980ouEatEkP8hi9oRVJN3LQK6QM2hkS7r2q0tqcg6zJqzmgQRiBo1sSZc+tTlz8h4fT99AkaS3mTqnB3HlQvh41iYOSGxOy7aVGDW+Hfv2XnXVyETHBDBrbg8ePcph6JDfMRgsBAR4MGt2D7Jzihg6YglGo5WgIFFMfOnqI775QQRL8eVDmTKhIz8sOsghSRvVt0ct6tYuzcgpq8gvMOHv686MCR1Zt/0C+4+JrEb/rrWICPdl0seiU6pCXAgD+9Rj9re7yM4z4O/jxvhBLfl+5RESU7LRa1WMH9iC5TvOczspA41KwcgBTVi3/xJ3k7PQqpUM79uIP3aeJTWrAC93LYM61+H7TScoMlmICvKhafU4vpHExQ0rxWJzOlwZNwNaVGPzqevkFpkI9vGgVvlIlh++CECb6mW5kJQqsi7uOmrGRbJOKtBsU7UsR+88oNBkIcrfG083LSfuPkSpkNM0PpYdV8XnpGHZKM4kpYq5NkF+FFqtrtC+QG93LqY8RiWXkyBVL4DoojpdonqhOJ24clgwl9LSXIzOleLqhcAArmVlio3ggQHcyBbBTZyvCG5kMojw8uJ+fi4ahQIPnZpUQyHeGi1mwY7JZifMw8PF1hQ3ghcnEaeVqGEw2m2SzkYEN4F6PZnmInRKFXbBLiYVa0UHlQwBd7WGQpsJH7XWZf/20WgosIkJxCapd8pHo6bIbkKvVGFxFicVqzA6TE+xNHqFEovTgqdKg9lpQimTIcOJFcdLry3Pzn81wLFa7XwnWax7dq9FWJgPFouNHyXhbp8+dQgK8kIQBH6QahCatYinvNRVtHXjeVKSc/D2caN3f1EEarM5WPzjQQB69K+Lt+TkSEnOYadEq78lASSAtNRcdmyQosSHNH/qA3S5xN607V4DvxJMS1Z6Pvu3ipqfns8wNIZCMzvXisLmbs+AIoBD2y5iMlgIi/ancp3nWZXEG6ncv5GKUq2gUYkVWsl5eCed1AdZqDRKqjd++frBbLS4CgkrlOjSetnkpIsMgJefxytXNBRPsWYn+U+qDv7utH29EU67k6/HLmXt17vIfpzHWx92IzDi35tDk5WVRZs2bUhPT6dy5cqsX78etfrlou0/G0OBiQsHr3N692XO7LniYlVAbORu2LkGTbrXokLt0v8IrFlMVnb8cYQ1C3eRnZYHgH+oD/3GtqdVv3p/aq23Wmxs/uUgK77cgbHQDECTrjV4e1rXFwqPrWYba77by6pv92Cz2NHo1Lw2rh1dBjZ+CkAJgsC+dWf4ceZGivKNKFUK+o9uQ88SrA3A4W0X+WbaegrzjKjUSt4a347Obz3R49y7nsr8MctJvidm9HR7uyFvjGmLWqNEEAQ2LzvBr5/uwGa14xfoyYRPe1NJ0uLs33qRhbM2YTZZ8fZ1Y8K8XlSrVxqrxca387axXWJ0KteMYdL8Xvj4uXNk7zU+n7VJLNf0c+eD+b2oWDWKk4dvMf9DsYrBx9eNKR/3JL5yJCt+P8rvPx1EEKB8QhjT5vTA7nAyavBi7t1JR6GQM3hES9p3rsoP3+5jk3RQadCoLBMmdWDr1ov8LNno4+PDmD6jK3v2XuPnX8XHrFQxgqkfdOL35cfZsv0iAK1bJPB6v3pMn7eJ23fTUSkVjBvRGplCxphpq7HZHZQpFcSE4a357Ic93LiThlIpZ+x7LUjNKHA5pZrWLUPjumWY9JlYmFkq0p9Bvesx7+dd5BaYCPB1Z+TrTfhq2SEycorw8dQxrG8jvl97lMxcA35ebgzqXpdv1h6hwGAhPNCLrk0q8cWaw9gdTqqUDiUq1I/fdorPc6cG8dxOyeTGwwy0KiUDWlbnj/3nMFvtlAkPINjPg42nREDYo35Fdl26TYHJQoS/N5EB3uy8KImza1Vg+6VbWO0OKoQFYnLYuZychptaRfXS4ey+JoLuZvGlOHRbTCeuGB7Ew9x80QXl7YFKpeBmeibuajWRft5cePQYpVxGfFgQZyXmplpESAlwE8KltMfPg5ugAK5lZrpKM29kZyKTQYy3L3dys1HJ5fi763lYmI+HWo1CKSPLZCRAryfXasbmdBDh+YStCZfAjUImw0urI8Mk6myK7BbsgoMQNw/Spewbf52OLItBDN5zWqWkYjeypaRirVKJwW7GT6Mj317M5mjE4D6lFoNDBC3eahHcuCs1mIqTipVKTA6zC8jIENDI5VidVtdtKpkcAbuox1G8+rXxvxrgbNhwjsdp+fj5udNfypxZu+Y06en5BAR40FtiOI4duc3l4jXUu00AMBgsLJXK8V4f2MhlC9+x6TyPU8QsnO59nzAky34+hNMhUKt+HBVLJPSu+u0IdruDKrViqVzjCQi4cu4BV88noVIp6Pnm09qbzctPYrc7iK8WRfnKT59i9248h8lgIaJUINVfkG2zS+rDKabbn52DWy4CUKtJ+Ze2gheH9lWuW/pPg/XuX0/B6XDiG+RJYNhfl2AW5Yuptv+kBLK4IPPG6Xt/+2v/bNq/3QSH3cl3E5dzYO0pjm45R+d3m9N7TDs8/g3dTkajkU6dOnH79m0iIyPZvn07np6ef/2F0jidTu5ffcSlwzc4s+cKV0/cwW57csJx99bToFN1GnerRaX6Zf6WYLjkmA0Wti85zJqvd7lAU0CYD71HtqVVv/rPpQmXHEEQOLHzEr/M3ODSWMVVjuS92T2Jf8nq8vzhm3z7wRqX9btGk/IMnduL4MinwWVGSi5fT17F2YOiZqx0QjhjPu9HTIkQwMI8I99+uJ5Dkii+VHwY4z7r42J2nE4nG347wuIFopDYN9CDsfN7u7Kh8nKK+GLKOk5L36NW47KMmdcTLx83zEYr3338xCVVciWV+jCbOeNWcu+WyOj0HdSY/oOb4nQ6+WHBDjZIrquEqlF8MK8n3r5u/PbdPlZKcRMVKkUw9eOeaPVqZk1ew3HJEdW+SzXeH92aq5eTmfPhegryTXh765k2pzsRUf5MHLuCy5dEbcebAxvRvWctvvxiJ3slZqttu8q8915Tvv52L3sljVLH9lV4/bUGzJ6/hYuXRQ3OewObUCkhgmHjl5OTa8DLU8esKV04fSGRpWvFVXujunH06VaTDz7eSHpmIR7uWqaPbs+W/Vc4eEJkNoqdUtMXPinMbFG/HNO+3o7VZqdMdCB92ldnzs+7MZptRIX6MqB9DT5dsh+TxUZMmB+dm1bk02UHsNkdJMQGU7VcOAvXidffZtVKY3E42XhUZFzeaFOD3edvk5pdgLe7js714/l112mcgkDNMuFYBScHr95HKZfTo2FF1p28itXuID4iCLlCztGbYv5N+xplXQF+NUuFk5SdR3pBEf7ueqKDfTl0KxGZTAQ3e2+I151aMeFcTk3HZLNRKsCXQpuFlJxC/PQ6PPVarqdloFMpifL3cVUvlAsO5HzKY0AgITSIS2niiio++EmvVNkAf65lioAm1s+XWzlZqGRygj09uJ+Xg06pRK9VkWooxEenxSo4KPzTRnBPHhnyUckV6NQKcixG/KWWb0HKu0mXRMReGo3kkNJSIDmkAnV6si1FqORyFHIwOawuETEIeKhVGOwmvFQ6l6vKU60UKxdUWowOEci4KRVS3o2YVCwHVHI5dsHuuk0tk+PE7rp/kfCEif6r+a8GOKvXnQYUDH63KTqdmqysQpYvF6npd99tilarwmZz8LPE6PTsU5sgKfNi9bLj5OcZiYj0o23HKgCYTFaWSaCn/9sN0UnagIeJmeyX1luvD27q+v4Zj/PYvfkiAK9JwKl4Vv4iBvS17FwN/6AnH3gmo4Xtkl6nxxtPMzSCILB1hXjh6dTv+V6opDvp3Lz4ELlC/sL1kyAIHJZsoI2l3+lFU2zh/TNxMcCDm+IbNfYVNTE2ixj9r9b+/ZdllYblkCvkJN9JI+1hFsH/sHTzRdPp3WaUqRbNr9PXcuX4bdZ+vYudS47Qe0w72r/V5KW9SX81xVqbEydO4O3tzY4dOwgN/fOKCIfDSdKNFC4fu8XlI7e4fOyWq+6geMJKB1GrVSVqtqxIxXplXFbnfzKFeQY2/3KATT/tc4mHAyP86DOqLS361H3hSqnk3Ln0kJ9nrOOKJDb3DfLizQ8607xnrReu4HLS8/lp1gaXiNg3yJP3ZnSjYYeqT72enU4n25ceZ9E8sbpBpVEyYHQbur/b9CkQd+bgDb6ctIacjALkCjm9hzSj79AWruck83EeCyas4pJURlm3RTwj5/TAy1cErxeO3+WzSavJySxEpVbyzoS2dOxXF5lMRuLtNOaNX8nD+5liz9TgpvR7rykKhZyje6/x+fQNGIssePnoGT+nBzXqx5GZns+cSWu4cVkEID3fqM9bQ5pTWGDmg+FLuShp1rr0rsU7I1uRkpzN+GFLePQwB5VKwbBxbWnTsQprlp/k1x/EKooy5UKYPrcHeXlGhrz7G5kZBej1aiZP7UzpMkGMHbOMW7fSkMtlDB3agnoNyjBh8mpu3RLrIIYPbUnFShEMH7eM1Md56PVqpk7siMFoZeTEFVhtDmKi/Jk+qRO/LDvCEWlV+FrPOpQrE8yYGWsxmW1EhPowaVgbFv62n5v30kUm550WXL2X5nJKdWtVGX8/d2b/IDI7DarFUqNSFB/9tAuHU6B6hQjqVYlh7qI9OAWBGuUjiC8TwuclbOA6nYolu0SWumfTylxLSufaA1GP82bbmqw4eIECo4Vwfy9qlY9kccmMm4xs7qfl4KZR0752OVYeu4QgQN2ykTzOKyQxIxc3jYrGCbGuAL8m8bGclQL8Iv28cNNrOJP4CJVCTr0yUS5w06hMNMfuP3wunTjM2xOnIJCYnYu3TouPh44bGZnoVUrCfL25kpaOUiGnlL8PV9PTUcplxPj7ci0zA6VcRqSPD7eys1Ap5IR4unMvVwQ0XlotyVINg6AQnpRm2kxYHQ7CPT1JLnq+ETzYzZ1UYwE6pQqZXKDAaiFQ70amWVxFFYMblVyGVqWQHFJ6ciWHVIBWT7bFgFahxIlo//bX6siT7N9apQKTw4K3SkehXQIyKvE2T5UWg8OEDNAp5GLejZRerJTJkOPEITjwVKkxOY1o5Eocgg0ZAnqFHKvTgofy1a+3/9UAx2KxUaVyFM2aioLhX345iNlso0KFMJo2E2/bvPEcKSm5+Pq60UdyHGVlFrBOEgsPfL8ZSumCunHVaXJzDISE+dCm4xPr9B8/HRJ7T5qUI67cEz3A6t+PYrc7qFwjhoQSrM7taymcO34XuUJOr2ecU7s2nKOo0ExYlB+1mzwNMC6dus+jxEx0ejXNSggmi2eP5BSr3bQ8Pi/QuNy+nExacg4aneql2TdWi50rp0RdTZUXMEQlJ/GGSL9Gl3+1Xieb1Qbwjz6Q3b30lKsRw/VT9zi37xrt32r811/0N6ZcjVg+2TqeM3uusGjGOh7cSOHX6WtZMmcjVRqXp16HqtRuXRnfoFfLzREEgREjRrBx40Y0Gg2bN2+mQoUKT93HYXeQnpzN3YtJ3DqfyO3zD7hzKekpgTCA3kNLfJ04qjePp1bLioTGvroD7WWTk57Phh/2snXRQZfdOyQmgF4j2tCid92//BtlpuTw+7zN7FsrgnG1VkXX95rRe0RrdG7PX6Acdgdbfz/Kks+2YSw0I5fL6PhmI14b3w43j6cznB7dS+eriau4KjmAKtSIYfSnfZ5y3hkKTPw0Z4srtC+iVCBjP+tD2RKM54HNF/h2xgYMhWY0OhXvftCRtr1rI5PJsFntLFm4h3WLjiAIAhGlApm8oA8xZUMQBIFtq0/x4yfbsVrs+AZ4MPHjXlSuFYvVYuPHT7azWbo+xFeNYvL8XvgHeXLu5D3mT1lLfp4RN3ct42Z2pV6Tcty48oiPJq0mK6MQrU7F6KmdaNIqgYN7r/H53C2YTTYCgjyZNqcHUTEBzPlwA4f2ix++xXqbgwdu8MWC7disDsLCfZk1pwcFhSYGD/6NvFwjHp5apn8oFnYOGfY7OTkGPD20fDitC0azjaGjl2IyWQkJ9uKjD7ux7/BNlq0WGaa6tUox+O3GzFqwlbuJmaiUCsYPa0VOvpEp8zchCFC9UiRv9qrLjC+2kpFdiKe7lqnD27Ji+3nOXX2IXCZj2GuNuJ+azY+SM6pH66oolHK++OMgAG0blMfDXcvClVJ+V/3yCHL4bav4N+zVvAqJ6TkcuHQXuUzGwI612XbyJilZ+Xi5aendvAqLdp0RO66iggj282DdMVEr2KNBRQ5cv09mvgF/Tz11ykex6ph46GxVpQznE1PILDAQ4OlGhcggtkkrqrZVy7L32l2sdgflQwMostu4npqBh0ZNhYggDt5ORACalo3hwB0RnJZMJ44L8CPLaCTXaCLI0x2ZQsZ9Ceh46rXcLlG9cDMrC51SSaCXO7ezs9Eplfh7uHEvV+yV8tCpSSrIx1OtQaGQk2Yowk+vx+iwYrTYCPMQU4afLc0s7ptSyGT46PSkmYrwVGuwOG1Y7HZXOnEx+Ek3i0nFCoWAwW5x5dmI2TZiJYObUoXZaUPA6QI3KrkcpVzA4rTio9ZTYJMSiJUikPFSaymym1DIQC0Hm2BzgRuVTA44cOLEU6XG7DShk6uwCVZkCOgUMmyCFTelmsL/C/p7tZHJYNjQFshkMm7eTGWP5DwaOky8rbDQxFIpL+bNgY3RSVUHv/9yWBQLVwqnXkPxQ74g38RqqZzujUGNUUnZMYl30zksUcMlWZrszAJ2bhRPqf0HPf1hvEoK6GvatiLB4U+0CQ6Hk41Sv02315+Pq98muaOad67mWpm5vtbuYJ/0/Vr1qPHC5+OIVKRXu3n8S900ty4mYTFZ8fZ3f0q8+aIpZnBiXrG4spjB+aeMQ83mCVw/dY+Tuy792wEOiHb0Wq0qUb15AvtXn2Dl59tJuZvOmT1XOLNHvJBGlg0hslwoQRH+BEX6ERThR2CEH1o3DXK5HLlChlwhZ+E3X/Ldd98hk8mYPn4O1lQlG77fQ1pSFqn3M0hNzCA9KeupdVPx6Nw1lK9VmsoNylK5YTniqkT949XTs/PgRgobftjH/rUnXX+P6Aph9BnVloadqv/l9zEUmlj77R7W/7APq1kErM161OKNSZ0IDH/xmvLq6Xt8N2UNiVKWTFzlSIbP6/WciNhmtbP2h/2s+Ho3NosdrV7NW5M60uGZ98K5I7f4ctJqsh7nI5PJ6PxmA94c386VDF6Yb+Tb6Rs4JGVXla0cyfjPehMmia0fJWYyf9xK7ko9U+1612bQRNGtVVRg4ssZG11dUjUblGHsnB54+7qJK6nxq7gnve57vdWQN4Y1B5mMJT/sZ/kvhxEEgdJlQ5j6SS+Cw3zYtPo0P32xC7vdSXiUH9Pm9yI8yo8fvtrNegkkVa0Rw+RZXSkqsjDi3d94kJiJQiFnyKhWtO1YhZ++3+8qy6xTtzSTpnbiwP7rfP21aC2PjQ1k1uzuXLz0kC8XiqLjmOgAZs3sxv5DN1i05AiCAFUrRzJhTDu++XEfRyWWpl/P2tStVYpRU1eRk2fEx0vPzIkd2XHgOtv3i89BlzaVqVE5ivFz12My24gK82X0oBZ89uteHqbmoteqmDi4FZv2Xebc9WTkMhlD+zXi4p0UDp8T2Y+3OtfmbkoW24+L4u+3O9Xm0v1UztwQ7/9u13rsPnuTeynZLhv477vOUmC0EOrnSbMacfy4Tbz+NagYg8FiZd/Fuyjlcvo2rcraE1cwWKxEB/kQEejNlrPi9+lcK549l+9gsFiJCfTBx0vPwRv3UchltKlSlm2XbiIIUCM2jMTsXLKKjAR6uhPk487JxGSUchl1Ske6wE290pGceJCMUxCoFBrM3exsjFYb0X7e5Fks5BpMBHm4IcggKTcPX50WtUZZonpBxYM8sUtKo1LxMD8fb60WuRLSDEX46/WYHXYKzCZCPNzJMhuxOh1EeXmR5CrNfAJuRBYnH7VcgV6jJMvVCG7GIThcjeAgECCF+bmrVNiwY3bYCZCC/4oFw7lWI14qDYWSpsZfqyXPZkCjUIDMgU1wuMCNSi4mENucdhe4UcllyHFgF5wucKORK3AINsRyTRVmpwm9XI1VsCDDiVYhwy7YcFOqsThNaOX/V7b5StOyRUXKxAWLWTbSGqplywTKSR/Iy5cep7DQTExsAK3biunESQ+y2C0BgUElRMFrlh3HUGQhplQgTVo+aS3+4ydx1dSwRQVi456cMNctPYHN5iC+ciSVpBBAgNSH2RyXumSezb05dfAmaSm5eHjpaF6CIQLIyy7ixD7xVNeuT+3nftfzx+6Ql12El68bNV6yWjolfX2DNi93Rl2TLL0VX0Gk+viBmM0QVurFVvNnRykBmxd9qL/KNOhYnd/nbuLsvms8upv+t8IC/84oFHJa9q1Piz71eHjrMSe2XeDYtgvcvZjEw1uPeXjr8Z9+far1DleMIogtq63FoW9ucIgbL7yvSq0kOj6cstViKFMtmjJVo4koE/K3Rdh/NoIgcG7/Ndb/sJfzkr4KoHzNWPqMaketVhX/8m9ttdjYvuQIK77Y6XJrJdQpzaAZ3SlT5cWt8LmZBSyau5m9Esvi7qXnrckdad237nO/343zD1g4cRUPpOe2RpNyDJvTk6ASgm9jkZlf5m11dagFR/ox5pNeVCyh8zl/9DZfTF5DVlo+coWcfkOb00dyOgmCwM41Z/jx461YTDY8vHSMnN2d+lINyfWLSXw8cTUZqXkolHLeGtnKddA4uOMyC2dvxmiw4OmtZ/yc7tRsUIacrELmT13nWj2161ad98e1xW53Mm/KOg5JzqeGzSswemonzGYrE4Yv5aqUzdP7tXq8+W5TTp+8y8clBMkfzulOaLjvU3qbAa/Xp0//enz33V62SXqjJk3KM3pMGxYvOcp6KVW9fv04Ro9szdc/7OOAlHfVpUNVunepweQZYjKxWqVg/Mg2IIPRkpi4VHQAk0a24etFB7l0XWwvH/ZWEyxWO1M/2ywCgUpR9OxQjalfbKGgyEygnzvjBjbn6+WHefhYBDtj32rOqt0XuPUgA7VKwaj+jdl0+Bo3H6SjVikY1qch6w5eITFVBDPvd6/P4p1nyM4Xxca9mlVx2cDjo4OIDvPjj72iBqpT3XiuJD0W11BaNV0bVGTZoQtSjk0oTrnA4etiSWaX2vFsOHUNu9NJ5agQDPYnHVMNy8e4AvwaV4jhzIMUESD5eyNXyrn8KA2dSkl8eBBH7iYhAA1LpBPXjArjwqPHYpZNcABJUjpxlK83eWYzeWYzIZ7umJ12HhcWEujuhg0nj4uKCHBzwyo4SDcUEejuhsFhpchkJczDkyyTEYvUAp4s9UrFSAF+xb1SDwrzkMkg2N2dFEMBepUKuRzyLGYCSqyinm0Ez7YY8FJrMDjFML8AnWgPV8jATaWiwGbCW61z6XD8tFrybKKt2ypYEATBBW60ClEUbBecLnCjkSsQsOJEkMCNEa1chV1iadxVSixOM24KjWQJF1DLwSHYJceVCZ1ciZnCP70WlZz/aoAzRMqtOX78jssW/vZA8eSfnp7PRqkpe9B7zVwX3MU/HcTpFKjXsAzxFcVk1pzsIjZKyb9vvtfUlWR873Yaxw7cQCaDAe88YRQK8oxsk05cfQc2eurDY8PSEwiCQM0GcUQ/8wG9UWKI2vao+VT2B8Dejedx2J2UrRTxnDUcYL+kaWjcvsoLk4lTH2Tx6H4mCqX8hcWbxXNDah6uUEIQ/aKxWe3kSGLUoJec3J+dYi1LscPm705EXDC1W1fi1K7LbPhhL8M/6/+PHudVRyaTEVUulKhyofQZ257C3CKun7rH4weZpCdnk/4wi/SH2WQ+ysFqseF0OEk3PeSqUdRplXavTM2Yxnj4uOHp64anjzuBEX6ExgYSGhtISHQAfqE+/1YwU3JMRWb2rT7J5l8OuDrA5HIZ9TpUpdv7LalQ86+zi5xOJwfXn2HJ/K2kJ2cDEBEXxJsfdKZum8ovBEZ2m4Otvx9h6ec7MBSYkMlktO5blzcndcDrmToIY5GZJZ9uZ/NicVXk6evG4BndaNK52lOPff7Ibb76YA0ZKbkAdHqjAW+Nb+tiIs1GK4s+3e7qXwuN8mP8Z30pV0VkifJzDXw1bb3rkFClTinGftwT/yAvHA4nK38+yLIfDuB0OAkJ92XSp70pmxAu5t58soUd0vs5oVoUEz/uSUCQFxfPJDJ/ylpysovQ6tSM/KAjzdpV4sHdDGZPWs2jpGwUCjnvjGhJ1761uXLxIXOmriM3x4DeTcP4aZ2o06AMf/x6mGUSkxxfKZxps7uTmVnIkEGLyMwsRK9XM3FKJ8qVD2XC+BVcuyZWOQx8pwlt21Zi+swNXLgofvC+8XoDWrWsyKRpa7l9V3RejRrakogIX4aOW0Z+gQlfHzdmT+nMkdP3WLFevK41rFOa/j3qMO2TzTzOKMBNr2bayHYcPHWHHQdFkNalVWXiSgUx+bPN2B1OKpQO5rWutZj94y4KiswE+XkwvH9jvlx+iMzcIrw9dIzo15gf1h0jPacQbw8d7/dswPcbjpFTYCTA240B7Wrw7QaxDbxUqB/1KsXw3Sbxb9ioUixWwcHWk9eRyaB/82rsOHuTrAIj/p56GlcpzZIDIvBpkhBLYnYuDySNTYsqZVhzQmRdG5SP5k5GNml5YjBf+cggdl8VNWOtK8Wx9+Y97A4nCeFBZBgMpOcW4eumI8THkzNJKSgVMmrEhLvATd2YCE5IAX5VwoO5kp6B3fl0OnGMrzfpJgMGq5UIby9yLCaKrFbCvTzJNovVCxFeXqSbCrE4HER7eZNcmI+9RFFmcfVCMbiJ9BJ7pcSkYg1pxiK81BrMThtGm53gEquoFzWC+0qrJrE0UwQ3KrkMtUKOwS4WZObZiu3favJtRjxUapcbylulo8BmRK9UPMm2kcCNTqHELmXbeKnVGB1G9Ao1VqdF1NcoFVicFtwVGsxOM0oZKGROnDjRK1VYnWb0CiUOwcLfuRr+VwMcpVKB3e7gJ8mO3b1HTQKlLJvfFx3GZnVQpWoUNWuLVtBbN1I5eugmMhm89e4TsfCK349isdgpFx9GnQZPcmyWSU3ejVrEE12Cxdi48iRmk5XSZUOoUa+06/bCfCO7JSDS/fWnBcT3bqZy+UwicoWcjs/k1wiCwE7Jhtqmx/Ot3sYiMyekk2KzLs9rcwBXLkhCzdiXtng7nU5unH8AQPm/ADiZqbkIgoBGq8LL79U6jIodWf8U4AD0GNqKU7sus2flcV6b1OmV0pP/XePh407tNpVf+u8XL16kUaNGCAj06dOHZcuW/ctZN/9kUu6ls2XRQXYvP+Z6rnVuGtoMaEDnd5u/MEH42REEgVO7r7Bk/hYSr4taK79gLwaM70DL3nVeusq6cPQWP3y4joe3xUqOuEoRDPmoJ+WqRT933+O7LvPdtHVkp4kJx82712TQtM5PgSBDgYmf525hl3TACI7wZfT8XlSq8+R9dfPiQz4bv5IUiVHs0L8uAye0RyutnM8du83nk9eSk1mIUqXgzdGt6fqGyMxkpuXzyeQ1XJGAfdP2lRk2tRNu7lqS7mUwb8IqHtzNQCaT0fudRrw2uCkyuYzlvxziD6nzKapUIFPn9yIyJoC92y+xcO5WLBY7/oGeTJnXg/IVw8XKhe/Fapfo2AA+nNcTTy8dU8at5JykNerUrQaDR7Rk7+4rrnybiEhfZn7Ug8IiM+8P/o3s7CLc3DRMmdoZf393hgxfQlpaPlqtiskTO+DlrWfIqCXk5hnx8tIxa2pXHjzMYswHq3E4nJQtHcQH4zvw/W8HOSFlWA3oUZsK5UIZNX01JrONsGBvJo9oww9Lj3DlZoooVH6jCRl5Rcz/SUp1r1uGGpWjmPqV2ClVoVQwPVpX5aNfdmOyiE6p/u2r8+kf+zCabUQG+9CzVRU+W74fi81BmcgAGlcvzRerRf1irQqR+Pu4s0TqmOrWqCJXH6ZxKzkTrUpJvxbVWHbgPGarndKhfsSE+rFG0th0qRPPkZuJZBUaCfRyo1J0KBtPS46yqmU5Upxx4+eNt6eOo7ceoJDLaF6xNDsloFM7Npxr6ZkUmi1E+HqhVMq5mpqOXq2ibGgAJxJFQFOnBLipLqUTgxjady09A4cgUC7In7u52dgcTkr7+5FUkOeqW3hYkI/N6STWz4cH+WL1QikfX+7lSdULJXqliqsXZDIIdffkYWE+OqUStUpOltmIn05PntUkrqJKJBUHu4mlmSXD/J5tBM+yFKFVKEDmxOywuhrBZQh4alQU2k14q7UUSWF+XioxldhDpcYsAR5PlYYiu5iBY3GakSHgoVJicphcQEaGgE4pxyZYXbep5TKQKhr0CiVWpxk3hQq7YEYBIP+/HJxXnu3bLvHoUQ5eXjr6SMAh8X4Ge6Qgu3fea+o6Kf4mVSO0aF2R6FhxX5+VUcB2Sdvy5rtNXPe9fyedYwdFMNS/BHtjNFjYtEq8GPd5++kW7+1rz2Ix2yhVNpjKtZ4GEJsl2r1hy/jnqheunXtAyoMstHo1jaTG8pJzct91LGYbYTH+lKkY/sLn4cxBEeC8TFwMkJqYSWGeEbVGRexfCIezUvMAMSPlVfNWioFVYZ4BQRD+UU5LQt04ylSN5vaFB/w2ewOjv3r9bz/Gf2KSkpJo27YthYWFNGnShMWLF/+Pghu7zc7JXZfZseQI5/Zfc90eFhtIx4FNadm3Lm6ef93hJQgC5w/dYMnHW7gtsQJunjp6DW9Fp4FNXaDh2UlPzubnWRs5tkNc73r6uvHWpI4iGHqGocpMzeX7D9dxQtLEBUf6MWxuT6o/s1o9te86X5cAQJ3eaMCb49qik/RnNqud5d/sZbUENPyCvBg9ryfVJd2cxWxj0YIdbJY64CJiA5j4WR9KSa/t4/uu88X09RTmm9Dp1Qyd2okWHauKScjrz/LD/O1YzDZ8/NwZP6c71eqWJje7iE+mref8KVFb0qpTVYZOaIdMJuOruVvYLmVeVa9TigmzuqJSKZg1eQ3HDomi1uZtKjJiQjuSk7KZNHo56Wn5aDRKRk1sT6Om5fn6y11sl9ZP9RqUYeIHHdm//zrffL0bu91JVJQ/s2Z3587ddIaN/AOLxU5oqDezZ3Tn8vVHzJi3GYfDSelSgcz4oDOrNpxls5R507xxeQb0rsO0jzeRlJyNWq1k4rDWZOYW8cHHGxEEqJYQwdt96/PRwu08zijAXa9hyvC2bD14lSNnJT1N99pYHU4+/lkEO01rxVE+LoTZP+0SnVEVIqhVOZp5i/biFASqlQunSoVwPl0mHjTrV4omyN+TnzaLf5cO9SqQnlfEthM3kMtkvNGmBtvO3BCZFA89HepW4LfdZ8THjgtHUMCuC7dRyGX0bFCJjWeuY7LaKBXkh4+njj2X7yCXyehUqzxbL9zC5hAzbixOBxeTHqNVKakdF8kuCdw0KR/LsftJWO0Oygb7k2sy8zAvHz83Hf5ebpxPTkUll1M5PNiVTlwzKowzUvVC1fAQLkjpxJVCg7gspROXDwrgRlamK534VnYWTgTK+PtzW6peiPP1406umE5c2s+Xu3kiuImUqheKe6VSDAV4qjU4ZA4KrBZRLGwqRJBWUamu0kw96aYiPFQqbDgwOexPNYL7So3gbkoxddgpOF3gRikDrUqBwW7GR6Oj0C6yOR5KsWDTS9LUgIC7SiVawpVqF5BxU4mWcA+lBpPDjAIBlQLsgk0CN0/WWCCgUyiwChbcFSpsghmVDOQyO47/q2p4tTGZrCxZIlK/r7/eAHeJQVj0i3hqaNS4HOWki92Viw85d/o+CoWc10pUI6xaehybzUFClUiqlgizWynZxRs2jycq9klS7I4N5ygqMBEe5Ue9EmDCbnOwRRIVdn2t3lMf7oYiMwd3iKeRDr2f19fslQBWozaVnhMXAxyVwFqjti9eGVgtNq5JGoHqjV5eiFkc2hdTPuQvhcCFUqZNsd32VSYwzBe5XIzCz8sqxCfg1fNgikcmk/H2tG5M7v4Fu5YdpVyNGNq+1vCvv/A/ODk5ObRp04a0tDQSEhLYsGEDGs3fq0T4p5NyL52dS4+yZ+Vx8jLF3bVMJqNG83g6D2pGtaYVXhloXTlxhyXzt3BVEqBqdGo6DWxCjyEtXto0bjJYWP3tHtb9uB+bxY5cIafD6w0YMLbdczlLDruDzYuPsOSz7ZiNVhRKOT3ea0bfka2eaqsvyDXw4+xN7Jde92HR/oz6uBcJtZ6kZd+7nsqCiatIlAS/TTtV5f0PO7t6pO5eS+GTiatdoX4d+9Xh7XFt0erUmI1Wfvx0u6tuIS4+jMmf9CY00g9DoZmFszdxaJcIvqrVKcX4uT3w8XPn4un7zJ+6jpzsIjRaFcMmtqdVp6qkPMzmo0lruH8nXVxXD2pM37cbkZSYyewP1pKSLFrAB49qRYeu1dm17RILF+zAZnUQGubD9Lk98PDUMWbEUm7eSBWbxAc2pnvPWnz37V62SdEODRuVZezYtqxYeZKVq8VrSY3qMUya0IHflh51hfc1bVSOdwc2Zt6C7Vy6+kjsnXqjEeXKhjBiykoKCs34+7ozc0InNu+9zM4DIiDu3KoytapFM37ueowmK2HB3ox/ryUL/zjE3aRM1CoF495pztEL9zl0RrKSd6pJgdHCtyvF62HHJgmoVQq+XSX+f7v6FZCpZPwidUx1a1KRtLwi1h0Sr3dvtK3J4SuJ3E/NRqtW8kabGvyx7zwGs5WoIB+qlQnn973ierBltTLcy8jm7uNsdGoVnepWYNWxyyKIig2jyGLlzN1HaJQKWlcr67KB1ykdwf2sXNILivBz1xEb4sfBW2JNRLMKpdh3654I7iJDuZ2VTaHZQpiPJ3KFjJvpWXho1ET6enM2ORWFXEZCWLAL3FSTqhcEBKqEhXBRCvBLCA7kqlS9EB8UyLXMDMTqBX9u5ki9Ur5+3M59Ur1wNy8HhVxGkLs7Dwvz0SuVqFRKV69Uod2CzWF3FWVSAtwo5TI81BqyzManSzOlRnAZYs1C7gsawXOsBtRyOQqFyOaIYX5GZIBeocLoMOOtFjukQECvVEqWcA0mhwm5xNJYnVY8lFpMkiVcIRdXUO6KYteUEgfiykqtKGZ1VNgEExq5HBDt4lrFqxsq/qsBzsYNZ8nNNRAa6k17qRH72tVHnDh2B7lCxlsS8yIIAr/9fBCANh2qECKlrmZnFrJdWim99vYTLc2jpGyXc6rPW09WTTabnfVSBHzP1+s/dXI9uvcaWRkF+Pi506j10yLfA9suYTHZiIwNIKGEIBlEbcFhqcOmxQvWT2ajlXNSQFj91i8WD984nySeRAM8iIx7uTC32OUSW+Gvc20MBSaAl667XjRqrYrACD/SkrJIvpP2jwAOiE3Yr0/uxO9zN/HdxBXESiLd/40xm8107tyZmzdvEh4ezo4dO/D29v6Pfk9joZmjW8+zd+VxLkuZRQA+gZ607FOPNq81IDTm1YTfAFdP3mXZgm1cPCK+jlQaJe3faESv4a1e+jdyOp3sW3eGxR9vcSVUV64Xx+BZ3Yl+gavuxrlEvpmyhvuSc6lCjRhGzOtFVAmnniAIHNp6kR9mbSQ/24BcLqPrwEYMGNXapUmz2xys/vEAy7/di8PuxNPHjWEzu9JQMgk4HE7WLTrMH1/vxW5z4OPvwZi53akhNd3fuZ7C/ImrefQgC5lMRo83G/D68BaoVEpuXk5m/uQ1PH6Ui0Ip581hLej+Rn0EAf748QDLfj6EIIgrqSkf9yQqNpCDu6/y5ZwtmIxWvHz0TJzdjeq1S7Fr60W+/nQHVqvdZQGPKR3I5x9vZaeUUl6nfhwTp3Xm7p00JoxdQV6eEQ8PLR982IXoGH/GjV3ODQnwDBzYhHbtK/PR3M2ckdZpfXrXoWuX6kyfs5Er10Qg884bjahZI4ZRE1eSllGAXqdm6vj2pGUVMm76GhxOgfJlQhg7pCWf/7iXa7cfo5DLGP52U0xWG1M+FW3hVeMj6Ne1JtO/3k5uvhFfLz0T3m3JL+uOcydJtJKPfqMp+8/e4czVh65Oqct3Uzl+Sfz5Bnapw4W7KZyVnFLvdK7DgYt3uZ2ciUalYFCnuizfd4HsAiP+Xm50bhjPzztO4XAKVCsdhrubhvXFNvCGlThw9R6ZBQb8PHTUj49h5VHxeWxWsRQ3UjJJzS3Ax01L9bgINp0TwU3ziqU4dS+ZQrOVKH9v9Do1p++XyLi5KbJS9eOiOP3gEVaHg7ggf3JMRrIKjAS463HXargmBfhFB/hyMVV8ziqEBLrATeWwYBe4KZlOXCEowAVuypYAN6V8fbmdm41cBqElqhc8peoFT40Gm+Akz2Im2M2NTIsB50t6pTRyBSqlnDyrGX/dk96oIL0bGZZClDIZWpVKyrvRPdcIrlMocMrs2JwO/LR68qW8G7VcjtlpxUetpchhFHuiFArREq4S2RyFDNQK0RJeDG40cjmCTFxBuSlEhkcvaXRkCKjk4BBseChUWAUTWonVkSGglssxCU/HZPzZ/FcDnHXrzgIKBr7TBJVKdFH8+pNIk7ZuU4kIKTX1wtlErlx8iEqtoH+J+oPVS49jszqIrxRBlRrRrtvX/HEMQYDaDcpQqoTgd/+OK2RlFOAX4EGzdk9rNTZKqabte9VEXYIdEQTBdZJs26PmcwzM8b3XMBksBEf4El/9ebfK2cO3sFrsBEf4Elv+xbbui8dFKrZKvbg/XQvdk7QW/ymAAxBROoi0pCwe3U2nUr0/z9n5s+k9qi13LiZxfPtFZr/5A1/umoR/yPN1AP/JcTgcDBgwgKNHj+Ll5cWOHTsID3/xivBf/l52BxcO32Tf6pMc33Yei0m0aBezNW1ea0jtVhX/tErh2XkW2ChVClr1rUufUW1fWK1QPNfO3OfHGeu5c0l0AgVH+fHO1C7Ua1PpuddXQa6B3z7eys4VIvB399Lz1qQOtOlb5ylmKfNxHt9+uN7l9IsqE8TIeb0oXyI/KulOGgsmrOLOVfF1Wr9VAsNmdcNb0oClJmWxYPJarl8QV2v1W8YzfGZXvHzccDqdrFt8lN+/3ovd7sA/0JNxc3tQpXYpHA4nq349zJLv9uGwOwkM9Wby/F6UrxRBVkYBn0xbzyUJVLTpUo33x7VFLpfzzfxtbJFqUypWjWLynO64eWhZ8NFmdkkW9Rp1SjFpRhcMRRZGDf6du7fFQL7X32lMnwH1WLvqFL/+LBobSpUOZMZHPcjIKHiSb+OhZcrUzvj6ujFk2O88llZaE8a1JyTEm/dHLSErqwg3vZqpEzthMlsZNn45FoudsFBvZn3QhfXbL7B1t5QJ06QCndtVYdLcDWRmF+HhrmXaqHbsPXaTXYfE575Lq8qULxPCpE83Y7M7iIsOYFDv+sz/ZQ9ZeQZ8PHWMeas5P68/QVJqDjqNilEDmrB67wXuJmehUSkY3rcRq/ZdJClNdFYN7laf33eeISvfgJ+nnn6tqvPjlpNYbHZKh/lRpUw4v+wQV/stqsXxOK+Qc1fuo1Iq6NOkCquPXcZktREb7EtkkA+bzog/a+daFdh39R6FJgvhfl6E+Xuy58odZDJoX7UcO67cFgXEEUHkmc2ujJvyUsYNQNNysRy4fR8BqBIRwu2sLAxWG1G+XpjtDhKzc/HV6/By13I9PQOdUkmEnzeXH4uhfXFBAVxKS0Mmg3JBAVzJEJm8Mv7+XJfSiUv7+XErJwuFTEaYpyf3cnPQKBR4u2lJLszHQ6NBJhfINBnx1+vJt1qwOu2Ee3iRYnxSvVAMbgL0Yq+Um1KFU+bEYLcQpHcns2SvlKVILM1UIOXd6Mm1FlvCn2kEFwRXUrFargCcWJ02VyO4UiZDLhfEbBupEVwtlyGTOXAITmktZUSnULpawvUK8bHdFSqsglikqZALIqujVGKVWB0nT4CPEzvuij8PFy05/9UAx2KxER8fTmOpT+nsmUQuX0pGpVbwmlSPIAgCv/8iWnrbd67mKtTMzSliW3GOTQktTVZGAXuli1fvEmBIEATWSQ6Orv3qPAVibl19xM3LyahUCtr3rPXUz3j3eir3bj5GpVY+Zw0H2L9FLM5s3qnqC1cNJ6Uo9nqtEl4KXi5LKa5VSgieXzTFwtAXncCfneJwON0LVmZ/NlFlQziz75rrw/GfjlwuZ+y3b/Gw5Vwe3U1nTNv5zFkzioi45x1m/4kRBIExY8awbt061Go1GzduJCEh4a+/8G+Mw+Hk6ok7HN1yjqNbzj/VOxVWKogWvevQvFcdAsNfvTtLEAQuHbvNyi92uBKri4FNr+Gtn7JlPzupiZksmreZY1KMgs5dQ7+Rbej0dqPnEo+dTid71pxm0dwtFOSKCckte9bi7Q86uQBJ8f12rDjJr/O3YSqyoFQp6DO0Ob0GN3OtSR12B2t/OcTShXuw2xy4e+kY8mEXmnSsgkwmQxAEtq86zc+fbMNisqFz0/D+lI606CI6sTLT8lkwdS0XpQDL+i3iGTm9C57eerLSC/h0ylouSSvcxq0TGD61E+6eOk4duc2CGRvIzzOi06sZ8UFHmrWtREpyDnM/WMtdaT3W560GvP5uU9Ie5zJlzHLu380QQcygxvR5vQEnj93hk482YSiy4O2tZ/LMrpQtH8rsGRs4KrGvrdpUZMTo1mzdcpEffxQTjEuVCmTGzG7cuJnKhzPXY7HYCQn2YtaMbty+l87wccuw2RxERvgya2oXdu+/zrI14uqqVvUYhr/XnPlf7+TKDVEo/N4bjQjw92DU9DVYrXaiwn2ZOLQ13/x+8AmT81ZTMnKLmPP9LvH5qFWahjVLM+WrrVhtdmIj/Hmzax0+WbyPgiIzAT7uvN+7PgtXHiG3wOjqlPp23VHyi8wE+XrQv011l1MqJsSXJtXj+HrDUbHWoUIkWq2KNYel7r1GlTh24wEp2QV46jV0rBvPHwfPi2uoUqHYEThw9R5KuZzOtSuw8cx17A4n8RGBOBA4eTcZlUJOy8pxbJFs4LVLR3ArI4tcg4lgLw/8vPSckituFnoAAQAASURBVDJu6sVFs/+2+LqoHRvB2eQU7E4n5YMDSMkvoMBsIdTLE4fMyf3sXLx0Wjx1Gm5lZqFXqQj2dud6RgZqhZxwH29uZGaikssJ8/biVnYWaoWcIE937uRmo1Uq8dZqeVggdkkpVVKYn06H0WnFZLU/Vb0Q6eVNcnH1gkdx9YIcd7WaTLMBb40Wg92C3ekg2M2DjGd6pUR7tx27w+FqBJch4KHWkG8TV1WGZxrBdXIlNkFkX4rBjVoux4kIZIrBjVahwInYHC6CGxN6hQo7opNKJ1didVpwlxxSSpkMZHZAwF2hwFbCNaUA5HIBEHCTyzE4Da98PfuvBjgAgwY1cV0Ef5PqETp1ru5yU509dZ/rVx+h0Sjp+1p919etW3ESq1V0TlUvsfvfuPIUdruThKqRxFeOcN1+8UwiSfcy0OrUtH2mJmGLJDpu1DoBn2ccR7ukjpt6zSvg+YxmIS+7iAsnRHDStEOV5343p9PJGUm8WPulycQ2bl8RVf/xf+KMslrsZErC4bBn2sv/nVOpflnWfreX8wdv/GOhcfG4eeiYs2YUH/T4kpR76Yzr8AnTFr9PQt24v/7if3EWLFjAwoULAfj9999p0qTJv+VxHXYHV0/c4cjmcxzbduEpUOPp60bjrjVp3qsOZavF/K3nThAETu25wqqvdnHznPhh/qrAJj+niBVf7mLrkiM47E7kchmtetfh9QntX7jCunslmW+nreXmeZFJiS4bwtCPepBQ+2lbetLtNBZOWcv1cw8AKF8tipHzehJVAqQm3nrMF5NWu1ibWk3KMeKj7vhJidLZGQV8OXUdZ4+IYK1SrVjGzO1BUJjIQB3aeZmvZ22iSEozHjyxPW261UAmk3Hy4E0+n76BgjyjmAA8qT2tulTDbnfw4+c7XevmUmWD+WBeT8Kj/Dm05xpfztmM0WDF00vHhJldqVk/jsP7rvP53C0YjVa8fdyYPKsrlapE8dtPB1gphXdWSAhn6uxuGAwWhr73G48kbc6Q4S1p3jKeTz/dzkHJ7diiRTwjRrZmyR9HWSMllIt6m/b8sfIEGzaLh6/6dUozYkhLFnyzm1OSK6pP91o0bliW0R+uJjOrEHc3DdPGduDKzRS+WyIe5upUj6Ff11pM/1xMJnZ30zBlWFs277/CsfPi47zWpRZypcxVu1CvSgx1qsYw44cdOBxOKsQG0b5xPPN+24vV5iAuMoD2jeL5ZOl+7A4n5aMDqVc5hs9XH3Q5pQJ9PFi0XbwedqhbgcSMHE7cEpu7X2tZnTVHLlNoshDm50m1suH8cVD8PVtUjuN2eiZJmXmiDbxyHGtPijqpeuWieJCVS0puAV46DVVjw1xJxU0rxHL8/kPMNjulg/ywCQ6upqTjplYRHx7EoTtiUnGDuCiOSjbwahEhXH2cgdXhoHSALxlGI/lmMyGeHtgEJw/z8vHVadFolNzLycFTo8Fdr+Febg7uajUeOg2Jebm4q1XotSoeSnULcnlxOrEOk1MK83N3J9NiwOZ0EunpxcMikaGJ9PJygZtgdw9SDQXolEoUChm5VhP+EmB5Wa+Up1qDwW7BiZNArZ5sq8FVmllkN4s6HUlE7C01grspVZgdIvvio9FQaBcZGWuxJVylxuAwPgVk3BUq0TUlZeUUF2naBCseSpHBUcnlCDypY7AJlieuKZkMucyBDCc6uRy7YEGnePVD8381wKlaNYqqkj312JHb3L71GK1ORZ/+YiWDIAgs+VUEPR26VsdXAh8F+Ua2rBeBR783G7g+SIoKzWyTsnN6vV6/5Ldig9Rx1bJjFdxLRM/n5Rg4JGloOj4jILZabByUTsOtuzzfHXVk5xWcDidxCWGERT9v7b19+REFuQbcPLRUeIENF+DOlUfYrQ68/NwIfcFjFE/Go2wEQUCrV+Pt/9e2b5mUBSQ4X13xDlCxbhwqjZKMlBwe3U3/lxmXoAg/FmybwLQ+C7lzMYnxnT6j06CmvDWlK9q/yS696qxYsYLx48cD8Nlnn9GnT59/6fGK8o2c2XuVU7suc3bfVVcpKYgrnbrtqtCwU3WqNi7/t1OgHXYHR7deYNXCXS67t1qronW/evQY0vKl6cMgNotv/u0wq77Z41pJ1mhagYFTOr2Q5SvMM7D4k23sWCZmPencNPQb1Zoubzd+KpvJarGx8rt9rPnhAHabA52bhjfGtaXDgHou3Zrd5mDNTwdZ/q2opXH31PHe1E40l1gZQRA4uO0S3320maJ8E2qNkjdHt6bza/WQy+UYCs18O3cL+yVHUtmK4Yyf25PwaH/MJiu/fL6LrZL1vFS5ECbN70lEdAApydnMm7yWO5IerUuf2gwc2QrBKfDVvK1sl64L8VUimTS7G96+bnzz2Q42F+fkVIlkyqxuIIMJo5Zy+YLIVHbpWZN3h7bgyKGbfP7ZdrGeIdCT6bO64e6hZcTwP0gsTjAe0pxGjcsxbcY6LkqBgP361KVz52rMnLeZS9KB5c0B9WnUoCxjp6wiOSVXdEWNaoMTGPHBSqxWO5Fhvkwb257fVp/g2BnxsNSva01KxwQy7qN1WKx2IkN9GTOoOV/8foDE5GzUKgVjBzbnxKVEDpwW19u921VDJpexYIm44m9euwwRId588rsYoNqgSgyRYb6uTqmm1Uvjplfzy1aRUepYP5603EK2nBAzbd5oU4Nd58TCTE+9hu6NKrFk3zlxnRQVjJeXjk2nxDVUt3oV2X/1rsjAeLsTHxXMRmlF1aZqGY7dSaLAZCHUx5MQXw8O3BAFxK0qxbH72l2cgkCVqBAe5uWTXWTE311PkLc7px48QqmQUTMmwgVu6kRHcCpJdEolhAZxJzsbs91OrJ8PGUYDhRYrYV4eGBw2UqUAPzsCKQUF+Ol1OGWQWiiWb9plTtINBgL1bhjsVgxmC6EeHmSaDVidDheIcSIG+CVJ6cQRnl4kF+VL1Qs60oyFeKrVWAQHJpuVIP0Ttqa4euFPe6WsBnFVJReeK830lNq/PVVaDHbR/u2lVkn27yeN4J4qFUaHCXelGqsg3qZXKEXXlEotBfeBUibDLtglcGMSu6YkfY1eIcNeQliskisAu5hmLAOHYEWnUGH4v7LNV5sRI1sB4HQKLF4knly69aiJj9RmffrEPW5eT0WrVdFbAj0AG1efxmS0UiouiNr1n7AB29afxWiwEhUbQM16T25PSc7m9FHxQtDlmZThXRvOYbPaiYsPo+wzFu7j+29QVGgmINiLyrVjeXYOSc6qJu1fnL1yRkoprdagzAvD/QBXrk2F6n9+4k+VMkRCo/1fiRkovo8g/D2Ao9WrSahdmguHb3L2wPV/y0rJ29+D+RvG8sOUlexefpxNP+3nxPaLDJjYieY9a//bag4A9u/fzxtvvAHAyJEjGTNmzN9+DJv1/2PvraOjutu27WP2+EzcEyIECAGCBQnu7lbqRg1oaUuLtIUidXe921KkpRR3d3d3D3F3Gd/fH789QwJBej/P8z7fu977Wqtr0bFMksne176u8zxOBxePXefknouc3H2Bswev4HS4PPf7BgreTufBLWnWqcG/FW1RWW5h04L9LP/XNg+gz+hlYODTnRk2uvtdBd5Oh5Mtiw/x55frycssAoQu67lpQ0nsdLsLz+l0sWnhQeZ8ssazjuo6pAXPTh1MUJhftceeOnCFb6cuJf26SBFv06MRL70znOCIm4+7ei6Dr95axFVFkNy2RyNefnc4AcrUtaigjO/fWclexWYel1CLiZ88SLTCojp95DqfTVlCTmYRkqTikRe68sgL3dBo1Vy7mMnHby4m5Zr4+sOfaM/Tr/RCp9Owbd0pvvt4DRXlVrx9jUyYMZR2XRqQmpzHB1OWcF1xST30tFhJZWcV8droOVx2r6qe7MBTz3flzKkUPpixnMKCcoxGHa+/OYD2neP5+YctrFQmtoktazN1+hDOnEln8uS/KS+3EhBgZvqMYWi0asaOm0tubilGo443JvUnOMSHF8f/QW6eAP9NmTQQWYYXJ/xJZaWdkGBv3p0yhG17L7JwhRLr0KoOzz7Wkfe+XsuNtAJBLx7bm5TMQt75eq14TGIsw/slMu2bNRSXWgjyNzP5hV78umQfl5Jz0Kglxj/ZjX2nk9l7XEx2nhqcRFpuEbNXKRlSvRPJLirlzw3ie3ukdwsupeey7YTIlBo1IImtx69wPVPoddxOqbJKEZjZNiGG3zeJKVXnxrHkllWw++x1tGo1Izs1YfH+09gcTupHBOFt0rPllHjdQa0bsvbETRu4TXZx5Ho6eo2ajg1rexg3HerHcCw1gwqbndggf1wqmTMZOZh1WupHBLPvumgi28ZGcsDDuIngWHomLlmmUVgIl/PzBcsm0J/M8lIq7Hai/XzJVwB+tXx8KLRWUm63U8vHmwJrJRUOO5E+PmSXl4kJjZ8vKaVFyLcA/NzNjQqZCB+xijKo1ei1GsG7MZgosgveTdVcqVCziF4wqtUg3TlXyqTWYMeB0+W6LTSzwmnxhGaKlHANFU4L3lo9FU7F/q3RUOm04KMVVm8xpVFjc9k8t2lUKlQI15S3RiMiF9RaHLIVCRd6SaXYxTWKa0qDC7u4TyXjwqnAAi3/iWq43woKEgfE3TsvkHw9F7OXngcfEiwcWZaZP0exNg5rib9ig60ot7Jysfhje6TK9MZud3r4Ng883t5DMwZYs/gwsiyT1CGOyCoQNZfLxQblgDbowaTbGoetq4S+pufgxNtYIQW5pZxTRvyd+t7OvgGBpQdoWcNJx12XlFRjN9H1TpWnsEbuJi6tWnqj0FxUVtju6/FVq03vJhzfdYHNf+9n6PPd/ktrKneZvA28/u3TdB7amm9em0dOWgFfvjyHhV+vZ+CoLnQc3PK+v7c71alTpxg2bBh2u52RI0fy5Zdf3td7Ly+t5PLxG5w/cpVTey9x7tAVj0jYXdHx4bTt04w2fZrSoFWdf5tunJ9VxKpZO1g3bzdlxWLq4hPgxeBnuzL42a63WberlizL7Ft/irmfriH1SjYgPg9PTOpP9+Gta3xPZw9f4+cZy7hyJg2AmPphvPjeCJresiYsLijnt49Ws0WZdPgHe/PizGF06HszJsJmtfPXD1tZ/MsOXE4X3n4mxk4b4tHaAOzZdIbv31lBcUE5ao3Eo2O78+DzXdFo1disduZ+v4Vlc/ciyzLhkQFM+mgkjZpH43K5WPbHPmZ/swm73Yl/kBcT3xtBy/b1qCi38vX7q9iqaOsaJ8bwxvsjCAnzZcu6k3z38VoslXbhknp3OC3b1mXPjvN8/v5qEd3ga2Ty9CG0aluPv//Yy9zfduJyKUC/9x9AZ9B4LOAAjz3Zgcee6MDcObv5W8mXa9wkkunTh7H/4BW++34zdruTyMgA3p05nDPn0nnv078E+C9S6G227b7APEW43bxJFBNe7s3Xv2zliMIuemJkWxo3qsX4GYsoK7cSFODF9Nf6s3DNUfa4JzlDWhMe5ssbn6/E6XTRoE4oo0a25ePfNpPvFhM/3Z3fVx7kWlo+eq2aVx7rwpo9Zzl3TVCSXxzZgU2HL3E+WSRmjx3RgRV7zpCSXYhJr+W5wW2Zu/EoRWWVhPh5MahjAr+sO4DTJdM0NpxAfzOLd4sLuWHtG7Pv0g0yC0vxMerp06o+83efACApLoq80nKOXE3HoFXTs3l9VhytYgPPLyS7uAx/k4H4yBC2nFNW+43qsPPydZwumSa1QskoLSWvrIJgbzN+XkYP46ZJrTAOJKchA0m1IzmUKj7PzWqFczJTuKMahQVzMT8Ph8tFXFAg14sLsbtcxCoAP4fLRWyAn/i3QiS+XlSIC5m6AQFcVQB+VZubKB9BJ9ZIKgKMJjLKS/DS6nCqXBTbLIQo+VFuOnFWpVhF+RuM5FrK8dZqscp2HC6nh05cNVfK3ajISsNTZFcs4e7QTK2JEkeFsHprJSxOK75aAfiTkDGoJawuK75aPZUu4ZoSUxq7JzRTp5JwoehrNGqsLgtGtRa7bBUsHEk0MKK5sWCQtDixocaFVqEZG9RqsZ6S1FTwnwnOfZfLJfOHgkEf/kBrvJS4gBPHkjl/Nh2dTsPIR2+Sg9etPEZpqYXI6AA6dLkJHtux6Qz5uaUEBHnRrUqWk6XSxsaVolEZfMv05vTRG2SmFmAy6+ncu7oAtTCvjKP7BUuiJnHxwe1CoxLXuNZt4D+A8lILl06LP8LEDncWD189Kw6q9RLu7u4pzhcfqvslA7tps+7n/ZPq/kAbZn+wguvn0jl76CqN29xd/PxPqlX3BH7d/y5rft/Jom/Xk341m3+9vYh/vb2Ihq3r0GlwSzoNbklwrfuLl3BXamoq/fv3p6SkhM6dOzNv3rwaRd+lReWkXMwk+Xw6F48nc/HodVIuZt426fIN8qZph/o06xBPy+4JhNf+r+meLp9MYcWv29i18qgn66tWnRCGje5Oj5Ft7wjoA9HYnNhzibmfrOGicoL08Tfz8Cu9GfBER3SG210NuZlF/P7RanasEA28ydvA46/1ZdBTnapNE10uF5uXHGHWx2soLRKrt/6PtGXUGwPwquLAO3PkOt9MXUKaMlnp1K8pY6cPwV/5PJYUlvPTh6vZoVisa9cPY8JHI6nXSKzKrl7I4LO3lpCsNGZ9hrdk9OQBmMx68nNK+GL6co4pf29tuzbgtZlD8fU3c/FsOh9NWUJmWgGSpOKx57vyyDOdsNmcfDZzhcdQ0LRlbd58fzjePkZ++GIDKxXnY6MmkUx5bzgGg5ZpkxdySPkavfo15ZWJ/ThzOpUP31tJSXEl3t4G3pg6mPgG4Ux5axHHFbfXiAda8/TTnfjxp62s2yBO9h06xPH6+D78PncPqxV4Ysf2cbwypidf/riZ/YfECfyBIS3p0zOBye8uJSOrGINey5uv9CWnoJQ3P1yOyyXTOD6Cl0Z15ZOfNnpWUBNf6MW5a1l89ttWAHq2j6d1s2je/mYNNrtTERO34bO52ygusxDkZ+bFhzvy4+K95BaW4WM28NJDHfl11QFyCsvw8zLy3JC2/LJ6P8XlQlw8oktTfly5H7vDSXxUMAl1w/ltvVhZdW9ej9zScra5AzO7J7J0/2nKLDaignxpGBPKon1itd83sT5Hrok08EAvI03rRLD6mNAq9Wpaj32XUyiz2ogK8MXby8D+qymoJRWdG8Sy7aKYOrWtE8XJjCwqbHZiAv2wyy4u5eThY9BTy9+HY2mCcdM0MpxDqWm3MW6a1QrjZJYwYSQojBsQAL8L+XkeG/jFgrsD/Nx0YkkFoV7epJYJOrFeqyZXCcosdViwO52EK1lSYhUlmht39EKhrZIAvYFiRwUycpVcKRVmreYOuVLlGDUanLIdu+y6JTRTxuaye6IXNCpxW02J4E75ZiJ41awpk1rC5rKKiAbZHcfgBGTMarVobtRanLINDTJqlRNZ4d44ZRsmtRqnbEGnuv+Lu//nG5w9u8T0xmTWM7xKzMFfc/cC0G9Qc8/0xm53ehJ+Rz52Uw9Q1SE19KE2niRxgG3rT1FeZiEiKoCWbauLKN0C4i59m9x2gtm54RQup4v4JpFE1qCNObBNXJ2065FQ4/d1+tA1XE4XETGBhNxhMlFRZiHjhviDq9Po7s4oT4Nzn7EL7kaoOO/+g9Hc5e1nouuw1mz8ax/Lft7639rgABhMeh4Y15v+T3Vm04K97F51lHMHr3L+8DXOH77GL9MWExIVSGzDWtRuVIvYRrWIjo/AN8ALo5cBg1lXrXkpKiqiX79+pKen07BBQ3786hcuHrlBXkYhBVlF5GYUknJJhHAWZBfX+J5CIgOIbxlL47ZxNOsYT0yDiP/y5MrpcLJv/UlW/Lqdc8oJD6BRUl0eeLEnbXo3uSfk7+zha8z9ZA2nFbifwaRj2PPdGDGmO2bv2xEAVouNZb/uYOH3W7BW2kTO1ENteGrygNua4xuXsvh+2lLOKA6l2AbhvPz+CBpW0YtVlFmY88UGT4aUf7A3L80cRocqFwT7t57ju5nLKcwrQ5JUjHy+C4++2AOdToPT6WLx7N38+cNWHA4nfgFmXp05jHaK6H7PlrN88+5KSosr0Ru0vDCxH/0faIUsyyyau4c5P2zF6XQREubLG++PoHFiDFcuZvLhlCWkp4im5/Hnu/DwqE5kZRQxbeLfXLkoTnQjH2vHqDHduHQhk/enLyM3uwSdTsPLE/rSs28T5s/by5/zhFuofnwY098ZTn5BGWNGzyYvrxSDQcukyQNo0DCCCZMWcPGSsBo/O6oLPXokMHXmcs5dEBycZ57sRId2cbxeRW8z8eU+6A0aXn7rbyotdsJCfJk5aSBL1h1n8y7RAAzo2YQu7eKY9OEySsssBPqbeeulvvy56jDHzorp7nMPtafCYuNDJYahc6u6tGwSw8yfN4jJTmwoQ7s34ZM5W7HYHNQOD+CBXs35fMEOrDYHsREB9OvQiC8X78TpdNEwJoTm9SP5wZ0p1awOLmSWKpOah7o2Z8+566TlFeNt1DO4fQJ/7jwmpjq1w9DqNGw8cQlJpWJY2wTWHrtIpc1ObIg/fj5Gtp29iqRS0S8xng2nLuFwCRt4sdXKWUVA3CQm3NPcdI6PZc+VZJyyTONaIaQWl1BUaSHUxwu9Rs35rFyFcePPsfQMJBU0jgi7rbm5jXETEsy5vFwB8AsRjQ5A/cBALhVUB/ipVBDpK+jEOkmNt0FPRnkpvjo9dpWTYptFcGssZcjI1WB+oSZBLTZpNCDJt0UvBCnRC3pJjVpZVQVW0eHUlCvlrzMqoZlqXNhvCc0UQZpO2YWfTnfHRHCjpMOuJIIbFXCfOxFcJ0moqgiLhXhYh0O2oFWpkHB4uDdVmxuDSsLCfzg491Uul8yf80QjM3xEK7yVA/b5s+mcOJqMWi3x4KM3tTfbN50hL7eUwCBvelSZ0pw4fJ3rV3IwGLX0H35TDCzLMquVddagka2rnUzKSy3sUWCAfWoA9G1VxI89anBHWSpsHvdUu+41u6NOKiek5u3u3By4Ka+BYb73bFyK8kWjcr+5Uu6TWUFuyT0eWXMNH9ODTQv2s3/9SU7vv0yT/wHnk8nbwNAXejD0hR7kZxaxZ80xdq88ytmDV8hJzScnNZ+DCh+kaqlUKoxmPQazHpvdxs6UpeRZ09GrTARnNWdC7y/u+nWDa/kTHR9BXLNo4lvEEt8iloDQ26dw/24VZBezccE+Nvyxl5z0AgDUGonOQ1oy5LluxCfWvudrXDmdytxP13JESRfX6NQMeLwjD73cq0Z9jizL7Fh5jNkfr/a47Rq1jGXMO8OJaxpV7bGV5Vb++m4zy3/fhdPhQm/U8sRrfRhyy3TnwNZz/DBzuWc92mdka559Y4CHRlxcWM7PH6xmhzJFiaobwoQPHyBe+XoZKfl8PnUJ5xQhbvvuDXllxjD8AsyUl1n4+ZN1bFbWwPUaRvDGRw8QFRtMXk4Jn01f5kkA79SjEa++PRgvbwMr/j7Ib9+KFVFQiA9vvj+cJokx7Nhylq8/WkNFhXBPTZo2hKT29Vjy90Fm/bQNp9NFragApr03goAgL96avJDjijtswKDmvDiuF2vWnuBfP4vHRkUFMPOdEeTmljBm7GxKSi34eBuYOmUIWp2aMa/MpbCoAi8vPdPeGITF6rhNb7PrwBXmLxUXZC2bRfPiM934+PuNXLqWjVpS8dKorjhdMm98JCY5jeLCeeGxjnz08yYyc0swGbRMHt2LjXvOs++E+Fk8OaQNlTY7Xypi4u5JcdSuFchHs7cA0KZxNI3qhfPpfCEubpMQTXREAD8sE1Py7i3jkFXw11bxcx/ZtRmnkjO5kJqDVqPm8Z4tPE6piABvWjWM9jilujWpQ3J+EddSszDoNAxo2YBlB8/ikmUSYyMotlo4dj0Dg0ZN18Z1PWng7etHcz4rl4LySkJ8vAjxM7P/WgqSBB3jarPzsvjekmIjOZmRJUTDQf4UW6xkF5YRaDbiZdRzLjvXw7g5mZmFWlJRX2HcgJjcuJubhlWaG/cUBxSAX4EA+NVSAH46tRp/k+DdeGl1qNQq8iwVBJtMFNsrsTurZ0lFKM2NOwU8x1KGj06PxWXD4XQSajJ7eDcBBhP5iiXcLtuxupwEGswUeizhGkodlfjqDB5LuAjNrMSs0WDzBGQaKFNcUw5PkKZobkySzuOQMiuJ4O4gTXciuEO2exLBb4L7ROPjkG2Y1DrssgW9SgIP1E+FC3uV5kYN2P4Ttnm/dejgVa5dzcFk0jG8Cn9moXK12KNPY0KU9Y8syyxV8qCG3gLjW6m4LXoNbI53lbH6hTNpXLuUhV6vpdcta6Zdm89gszqIrhN8m7g4M7WAy2cFm+JWqjHAyYNXsdschET4EXMH8rBbn9O49e3iZHelKZj62jWkj99abk2IO535XhWmQBJLCsopKSzHx//+IxsAouuH0+ex9mz4cy+fj5vLj9un/mNo4D+pwHA/hjzfnSHPd6e0sJzr59JIPp/O9XPpJJ9PJ+1KNuXFFbhcMrIsU1Fmoby0klNl28izpaNWaWnh0xej2guDWU9gmB9B4X4EhvsRFO5PrbohxDSIIKp+eI2Tj/9quVwuTu65xNq5uzmw8aRHlOwT4MWApzox4KlOBN4i6K2prp5NY/6X69mvxHtIaoneD7Xl0fF97qhROnfkOr+8t4KLykolKNyPZ94adFvityzL7F53kl8+WO3Jj2rXK4Ex04cSUuvmaxfklPDz+6vYrYjow6ICeOX9ESRWEe7v3XSG799dSVG+mNqMeKYzj4/rgU6vxeVysWbhIWZ9tQFrpR2TWc+YNwfSa0giKpWKs8dv8NnUpWSlF6JSqXjwmU48PrYbWq2GvdvO89X7Nyc6Yyf2o+/QFhQXVTDj9b85qOja2naOZ8K0wegNWr7+eK2HaN64WRRvvTscvUHL9DcWcWCvkmfUoxHj3xjAtSvZTHl2Ifn5ZRgMWsZP6Ef7jnF8+uladih5cF27NuS11/uyfMVR5szbjSxDfP0wpk8byu69l/h5lgL+qxPCzCmDWb/5jIdv07xpFBNf7sM3v2zl0PFkAB4a2oo2rerw+szFFJVU4utjZPr4/mzac54NO0QD269rAm1b1uGNT1dSabUTEerL66O68+38ndzIKECn1TBxVHc2H7zEoTPi9zxqaBKp2cXMcscsdG9KicXKrNXivQzv2pSsolIWbTsBwGO9WnD8agZnFT3OqP5JLN97mtzicvy8jAxp34h5W47icLloUjsMH28DKw6Ii8Dh7RLYcf46+aUVBHmbaFUv0mMD79a4LqfSMskrrSDQy0jDqFDWnxK/p15N6rHrcjIWu4O6IQE4cHE6PRujVkPT6HB2XhY/ow5xMey9dkNMYSJCuZpfQIXNTrS/LxUuB8mFRfgbDXhVYdyEVmHcRAf4czY3B7WkIsbfn/N5uWgkFVH+flwsyEOrkgjz8eZqYQE6tRo/k4GU0mK8dDo0GhXZFWUEGIyUO+1YbA4ivLzJqiwR0xpvX9JvoRPrJAmDVkOhtZIAg4FieyUyMmEmMznWMlSAT5XohXKHuD9QgflpJBV6tYoKp/W2XKlSRwU+VaY53lodZY4KJZ/KWi0006zWYfUkgosVlFmtx3rPRHAXeoVY7G5uDCrJ0/hoJZBxYlJLOGULRkmDLAtejkPluOPx69b6X2twduzYQbdu3Wq879ChQ7RufXsqNsDTTz/N3Llzq93Wpk0bDhw48I/fwyJFhDdkWCt8lJPnjeQ89ipwrQcfa+957PHD17l+VZnSDLk5ccnKKOKgwtgYPLL6e16rUEw7906o1vgAbF19AoCeVQSS7tqtuD+atq5T42TFzfRo1Sm+xjWGpdLmoQ43uiXaoWqlKU6Vu9nD3eVwCN2GRnt//bPJy0BYTCBZN/JJPp9B0/b/fALz/MwRnNh9kawbefw4ZSGTvn/6H7/Gv1Pe/maadoinaYfq4mxZlrFW2qgotVBZZmH6O2+z6Y9raLVa/v5zET179kSn16I36f5bhNH3U3mZRWxdfICNf+0nMznXc3ujpLoMeLIjHQe2qFEjc2uJxmYD+zeKpkKSVHQd2pLHXutHxB24R5k38pjzyRp2KdNGg0nHgy/1ZNhzXT3RCe5KvZrDTzOXc1w54YdFBzJ2+hCSujfyPMblcrFx8WFmfbKW8lILklpixLOdeXRcT8/rFeaV8tMHq9mtoBWi64bw+kcPEN9ETG1yMov4avoyjivwymZJdXj9veGERvhjtzv486ftLJ69G5dLJiTCj8kfjKBxi9pYKm18//FKNijwzriGEbz5wQgiY4I4fugan85YTkFeGVqdmudf7c3gka25cT2XD6Yt48Y1QaN95KmOPPFsFy5eyODDGcvJzipGq1Mz9pXe9B+cKKjEv+3A5ZSJjglkxrvDhdNp7BxSUwtQqyXGjO1Oz56N+fDj1RxQAjsHDmjOs6M68/UPm9m+S0wlenVP4PlRnfnk6w0ccTcyw1vTs3sjJr2zhIysYvQ6DZPH9aG0wsrEd5fidLqIqxPCxNE9+WrWNs5fEVOIF5/sQlmljWlfrwGgVZNohvZqyswf11FabiU4wIvxT3TlpyV7Sc0qwqDXMP6xrqzYeZrz14WYeOzIDmw7epkz17JQqyVGD23HxsMXuZIuyMXPDWrL4p2nyC4sw9ds4JGeiczeeBiL3UFsmD/N69Vizhaxsu/WrB4ZxSXsPpeMVq3mgY5NWHrwNFa7k3phgQT6mFh/QhwDB7ZuwJbTV6i0O6gTEoDZqGP3xWQkCXo3qc+Gs5dEjlRMBMlFReQrAuIQXy8OXE9FkqBtnWiPDTypdiRHU9JF6ndYMCnFxZTbbNTy9cHidAjGjcmITqfmmsK48THpuVyQj0mrxd9s5GphASatFl+TnmtFhZi1Wsw6Haklxfjo9UhqyK4QAL9Kl50iq50wsxc5lnKcsuDdpCoNTS1vH9LLi1GpINBoqkYnLrVbCDHdFA6HKs2NRpLQqyVKboleCDCYKLRVKCnhDqwuJwF6oyIiBmMNuVJmjbjNnStVLTRTLWziamR0GhV2T2hm9URwoycRXMQx3BQWuxSxsQWjpMal3CegfmK645StmCQNLtmiaHzsqLjpKL1X/a81OO3btyczM7PabdOmTWPLli20atXqrs/t27cvs2fP9vy/TndngeTd6srlbLy8vBnx4M3GZLHCq+nQOZ6YKif+pYr2ps8tU5q1S4/gcskkJtUhusqJoKS4gp2bRaMycET1xiczrYAzx26gUqnoVoPFe/cmcfDudIvwGMRJ9oiCzm/dueYog0unUnE6XASG+hJSxV57a7mt3zUxdG4th83d4Nz/Rya2QQRZN/K5/m82OCYvA5N/eJqJg79g25JDtO6RQNdhNTe+/ydKpVJhMOkxmPR89dfv/P7HbwDMnj2b4Q8O/T/2Puw2Bwc3nWbTgn0c3X4Ol8IaMnkb6PFAG/o92ZHYhveO0wCxilrwzUb2KeJVlUpFlyEteHR8X6Lq1TwdLCksZ8G3m1gzbw8Ou9Ojs3liYn+PVdtdFWUWFny/hRWzd+OwO9HqNDw0tjsjx3SrRje+cTmLb6ct80D94ppE8ur7D1BX0YbJssz21Sf4+cPVlBZXIqklRj7bmUdfElobWZbZvPI4P3+yhooyK3qDlmdf68PAh9sgSRLJV7L5bMoSrir6mJ6DmjP2jQGYvQ1cPJvOp9OWknYjX0x0nurAE2OEe2/Wd1s80SvRsUG8pWRGrV91nJ++2ojV6sA/wMzkGUNJbBXLkgUH+P1f23E6XUTU8mfa+yMIDvVh+tQlHHSbBnolMP71fuzZe4mvv9qAxWInONibadOHotVpGPvSHDKzitHpNLz6cm8SEmrx6qS/SE7JR62WeGl0dxIa1uLlyQvIyhbC4cnj+6JSqxj3xgIsVqG3eWfyIJZvPMF6JT2+Z6cGDOjZhDc/WUFBUQU+XgamjOvLmh1n2aWEYz7QtzmhIb5M+3YtLlmmcVw4I3o354NZmymvtBEW6M3Yhzrx3cKd5BaW42M28OJDHflNERP7mPW8MLQds9YeoqC0gkAfE4/0asmvaw9gsTmICfWnU7M6/LRGHGfbNIhGo1WzbJ84Vj7QqSk7z10ju6gMX5Oenon1+WvPCfHYuCgKKio5cDkVnVqib8sGrDp2TmRj1Y4gr7yCU6lZmHVakuKiWH9GNEGd42M5dCOVSruD2CB/HLg4k5GNSaelQUQwexUbeLvYKPYrNvDmUeGczsrG4XJRPziQtNISym12Iv28KbHbyC+tINhsxqmSSS0pIcBoRKVWkVZSgr/RABJklJUSYDDiwEVORTlBZhNlDiuVVgcR3t7kWIQ93M21uQnwE/+O8PIhvbwEraTGqNPcDMp0WHC6XEpTJJqbYCV6wajR4MRFhdPmoRMLWJ+BIlsFXhoNVtlaJXqhAq1KQlJRLVdKZEiJRsaTK4WMXqNSQjNFIrg7NNMpOz2hmQZJUIxRXFb22xLBnZ7GxyFbMUliBaVRSagUqJ9BUgntjdLc6FQCBqjGhV5y3texDf4XGxydTkdY2M3ViN1uZ9WqVYwbN+6eV796vb7ac+9VVqsVq/WmMKmk5KYuZODgRPz8xPokL7eErcpo/sEq3JuU5FwO77+CSgXDHry5yrJZHWxQRtODH6x+4t227hQ2q4M69cOIb1z9ZLNN0Qw0b1OH4Fu0F9kZhVw+l4EkqejQoxG3VmZKPllphWi0aprdQn511wVFc9AwMfrubJsbgn9yPxMcp1N8qKra3+9VsQ1rsX/jac4fu86QZ7vc9/OqVsNWdXh4fD/++nIdX7/+J4Fhfv8jepx/UosWLfLwbT7++GMee+yx//Gv6XK5OH/kOjuWHWbXqmOUFNx0pzVuW4/eD7ej06AW9wUvlGWZMwevsvC7TRxVWEkqlYoug1vwyPg+RN+BPWS12Fg1ezcLf9hMeYkFgBad43l2yuDb8slkWWb7ymPM+ngtBQptOalbQ8bMGEp49E0qsqXSxoIftrJ01k6cDhcGk44nx/dm8JMdPSL+3Mwivn9nBYcUKnedBuG89v4I6iWIr5mXXcy3767kkDJ5bdgsmokfjKBWTJDImJq3lznfbcFuc+DjZ+KVaYPp2DMBp8PJX7/t5M9fduB0uggK8WHSu8Np3jqW9NQCPpm2jItnxSS0//CWjH6tD06Hkw+nLWOnkonVqk1dJk0fjCRJ1VxS7pXUjeQ8xjz3O7k5JWh1al56uRc9ezfmxx+2elLAW7SszZQpg9m7/7LHAh4e5svMGcPIyCpmzKvzqKiwERjgxcypQ0hNL2TcxPnY7E4iwvx4Z8pgNu867+HbtGoWw4vPdOWTHzdy4Uo2kqRizBOdMRq1TPxgKQ6Hi7rRQbz8THe+mrON66n5IhxzVDdOX8nk+/kCbtq/cyNiIgN5918bBQwvvha92jfgg1kbsdqdxNYKZESPpny5YIdoXsL8GdQpga+X7BYZVZFBtGtah++WC/1NUoNo/HwN/LFVTGoGt2vE+bRcLqWLcM6HujRj8b7TVNrs1A7xp16tIJYcEMfjfi3iOXItnZzistsCM7s2iuV4SiZFFRZCfb2ICvJl24WbaeDbLl7DJcs0iQwlraiEgopKgr3NBHgbOZqagUaSaB4Zzv5kAfBrXbsWh1PF771prTDOZufgcLmoFxRISmkRVoeDGH8/cirLqbDbqeXjQ5HNQlmFjXBvL4rsFiosdmp5+5BvqcDicBDp40NGRSlO2Sm4NmVFyEBtXz+SFYCfu7mRVBBkMpNRUaIIh6HEJoTD7mlNVTqxn8FAvrVcWL5dVlyyixCDEBlLgFmnV1xTesrc0Qt6A8X2CgySBqfswCG7buZKSSoklXBNuaMXtJIKtcqFQ3Z6mhu9WmhpRGim9rbQTJ1a2MW9NVpsruqJ4Hq1GodswyyphbBYkgAHEi50koyMA5OkVpobNTJWtIrrysH9s9X+f6PBWbVqFXl5eTz99NP3fOyOHTsICQnBz8+PLl268MEHHxAScud05I8++oh33nnnttu1WjUPVKEHL190GIfDRZPm0TRqfFMXs0IRCrftVJ+IKmTXPdvOUVJcSXCoD206Vp+mbFIyovoOvV2H4CYXd69henNQOYg3bB5d43rKnZfToFn0HXOe3OupuMZ3t367BcC3wtZqKr2yIrBa7Pd45M1q1a0hf329gUNbz2Kz2m/LI7rfeuS1flw+eYPDW88y44mfeH/BSzRqXXNz9z9dO3fu5IknngDgpZdeYvLkyf9jX0uWZZIvZLBj2WF2LD9CTlqB576AUF96PtiGXg+3I7LunRPgb329w9vOsfD7zZw7LD5Hklqi65AWPDiuFzH1aw5jdTpdbFt2mD++WO8RENdpFMEzUwbTsnOD2x5/5UwaP72zwjONiYgJ4oW3B9Pmlob9yK6L/DBjOVnK99WuZwJjpw8hONwPUHKoFh1m1ufrqSwXOVSPvtiDkc92RqOE425ZdZyflZWWVqvmiZd6MuJp0RxlpRfy5fTlnFKCMFt3qs9rM4cSEORNZloBn05fxrmT4oq9U88EXpkyEG8fI5tWn+DHz9dTWWHDy9vA+LcH0al7I86fSeOjGcvJyihCrZYYNaYbDzzajjOnUvhwxgry80rR6TS8OL43/QY1Z+niw/ymTHNq1fJn2jvDMZq0vPrKn1y5IqCATzzRkQdGJvH9D5vZqEx827aty+QJA/hr8QEWKTEMzZpE8dbEAfy56IDHFt6udR3GvdCDz37cxPHT4qLmkeFJtE6szWuK3sZHCcvceegKq7eIKV339vH06tyQqV+uorTcKuB9z/dkzspDnL0iMqfGPtKJy6l5/LhQNCeDuiTg423k07nCNt6+aW3qxYbw6XwhNm6TEE3tWoF8p4iJuzSvi8GgZe4G8f4Ht29Ecm4hG48Ii/ZjPVuy9vB58orL8fcy0qd1PH/sPIYsQ8u6EThVsPnUZSSViuHtGrPm6AXR+AT7E+Rn9gRm9ktswOYzlwXoLzwIJzKHk9PRqSXaVkkDb1c3mmOpGVgcYopjcTm4kJ2Hj15HZIAfR1LTkVTQPDqCw6npyEDLqHCOpostQ0J4COdyc3DJQjR8pagAh8tF3YAAbpQUYXe5qO3vR2qpYNzE+vlzo6QIp+zycG1uZdzEKM2NCplwb2EJ16vVGLUaciqVLCmnFbvDSZhJNDRugF+2pRStWsKgkSiyVeCnN1JsF81LiNFEvrUMjaRCK0mUOywE6A2UVI1ecFRg1uhui14QvBk7Tlm+LVfKRc25Uia1BqvLWiU0U0YtyThlJ95KaOatieBO2e5pbnSSGlmB+mklFyixDC7Zil6lwYUFnUqFpBLrKa3q/8IGZ9asWfTp04eoqKi7Pq5fv36MHDmSmJgYrl+/zrRp0+jevTtHjx5Fr6/5hP/WW29VI8qWlJQQFRVF954JBClun/JyK2uUaUxV51RpSSWb1ymgqQerc2zWKjbvfkNbVIOcXb2UxdWLWWg0arrdIhK+fimLlGu5aHUa2tfggDqoXFG37XL7iQPglLKXr4ls7Pn6CuG17l1Svx12JyUFgirrH3xvto1JaaYqyyz3fKy74hNjCAz1JT+7mOO7L9Km578XNqnRqpn62/NMf+wHTu27zBsjvmHcxw/R59EO937yf2OdPXuWoUOHYrPZGDZsGN98881/u9ZGlmWunU1jz5rj7FlznDSF2wIiuLR9/+Z0G96a5p3i75vA7LA72bHyKEt/2kryRXHA1uo19H6oLQ+M6eERhNf0Xg5uPsucT9dwQwlaDY7w48mJ/ek2rNVtYL/C3FLmfbmBjYsOeWI9HnmpJ0Of6YxOf/NQk5dVzL8+WMUepdEPDvdj7PQhtOt5E3mQei2Hb6Yv56zSJDVoFsX490cQo6zNbp3a1G9ciwnvP0BM3RBkWWb9siP88ploUgxGHaMn9aOv4nDctOo4P362jsoKGyaznnFvDqB7v6aUlVr4cMpSdinuxiaJMUx+dxiBwd4smLuHub8K/UxouB9T3h1G/YYR/DV3D3/8vguXSyYqOpC33xtOUIgPM95eyn63wLh7Q16b2J+jR6/z+WfrKC+34utrZMrUIYSF+fLq639y7VoukqTimVGd6dWzMTM+WOGJXHhoRBJDBiUy86NVnL+UiUoFox7rSOtWsYyftpCcvFKMBsG3ySssZ+K7S3C6ZOJiQ5gwpiffzdnBmYvCTv7Cox2RNGre+nwVLlkmIS6cJ4cl8fGsLeQXleNtNjDxmR78veGogPVJKsY82JHjl9JYtVv8XB7t14LMglLmrBHmipHdm5FZVMrfijPqkZ4tOJ2cxelT11BLKp7s25r1hy+QWVCCl1HPQ12b88e2I1jtTuqGBxAXFcxfu04A0DuxPuczckjJK8Ko09CvRQOWHDgtdDR1Iii2WDl8LQ29Rk33JvVYqzilWteJJLmgkJzScgJMRuqEB7BTSQPvGh/LDiVTqmlkGNcLCymxWAnz8UKv0XAuKwejVkNscABH08TPqVmtMI6mCxt481rhnMgSML/G4SGcycnxOKXOK06p+kFBXCqsgXETEMCVGgB+kT4+3CgtQqeW8DHoyawoxVsB+BXZLIQYTeRaRZZUhNmHzErhoAo2mci1lGPSaHGpHDXSifOtbp6NE6vL7gH4qQBvnfa26AU/nRARm9Q6rG7XlJIrJdxX4jazJ1dKcGyqEourh2YKto2XWn2LsFhGI4GMA7MkeajEbqifRnKiQsaoUuGSbYJmLFvQSypUSgOkVsnY/zc1ODNnzqxxWlK1Dh8+XE1nk5aWxsaNG1m0aNE9X/+hhx7y/Ltx48a0atWKmJgY1q5dy/Dhw2t8jl6vr7H5eX50d8+/1608RkW5lejaQSRVsVZvWH0Cq8VOnXohNGsR47k9+WoOZ46nIKlV9K0iOgbYoogu23aJvy0gc8d6cVBP6lQfs5eh2n2VFVZOHVKSa7ve3uDIsuy5/07rKcG2Eaunundh2xQpXBu1RsLH/870WneZlPdaUX7/DAJJkmjfrxmr5+xi77qT/3aDA2KCNPOPsXz+8lz2rTvJ16/P5/yR6zw3Yzhevvd+///VSk9Pp2/fvhQVFdGhQwfmz5+PWv3fE/HgsDs5d/gqh7ecYe+6k9XEwhqdhtbdG9FteBJJvRp7Jmn3UxVlFjYu2M/yX3eQm1EIiCap/+MdGP5Ct7ta088cusbsj1ZzTgne9PI18dC4ngx6qiN6Q/X3YLc5WDl3Dwu+20KF0gB3HZTIs28NJKgKhNLpcLLqj7388c0mKsttSGqJIU924IlXe3umkXabgyW/7+avH7fisDsxmHQ8/VofBj7SFrVaQpZlNq04yi+fra8+tXmqA2qNWoRrvruSw4oQPyExhgnvDSciKoCiwnK+/WA1e5XAysaJMUx6dxhhEf6cPnaDTxRWjVot8cTorjz4ZAcK88t469X5nFAarS49xeqpstLGG6/O56TiHOvVtwkvT+jH9Ws5jHluFjnZJWi1asaO60nf/s345ZftLFdy6ho3juTtaUM5dz6dMS/NoaLChr+/mWlTByOpJUa/PJeCwnJMJh1vvt4fs5eBsa/9SVFxBd5eBt6eNJC8wjJefnMBdoeTqFr+TJ8wkIWrj3r4Nr06N2RAz8ZM+WQl+UXleJn1TBnXl637L7F5r2gKBnRNoFH9cKZ+swa7Q8D7nn2gHV/M3U5+cTk+XgbGP96VeWsPcz1dkIpfergza/ae5cINEdMwZlh71h06z9X0fHQaNc8PbsuSXafJKijF26Tn8V4tmLP5CBVWO7WCfOjctC6/bRR6xjYNorHLLtYdvYhKBQ90aMqGExcpqbQS7udN49phLD0oplo9mtbjREomeaXlBJiNJESHsu6kaG67J9Rl37UUKm12YoL80Os0HE5OR6uWSKobxXbFBt62ThRH0jKwO53EBQdSWFlJVmGRxwZ+NjsHg0ZN7aAATmQI5lBCeGiNzU3jUAHzk5FpEBzEhRoAfnUD/D3NTbSfL9dLCtFIKgJNZtLKSjBrtajVKvItFQQaTZQolvCwKnEL4WZvMitLUKtU+Oj15FsVV5TLgsvlIsTo5bGE36QT66hwWqlKJ9ZIKnSKa6pq9IKPTkO5sxJvjZ4Kt2tKo6HCWYm3Roe1Sq6UtcZcKbsnV0onCWZOzaGZIKlEIrhRUuGQrQrU76YuR8QyCGu4XllPGSQJsCKhQq2SkXBh+N9cUY0bN+6e4YK1a9eu9v+zZ88mMDCQwYMH/+OvFx4eTkxMDJcvX/7Hz3VfVTodLlYo5NEHHm7j0Zm4XDKrlYPSkJHVoxTc2pt2neIJrDIBcTqcbFeuTHvdwrCRZZldikOqS9/b7d8nDl4T+/fIAKJqcK5k3MinMK8MrU5DfLOaJ12pV3OQZZmAEO+7sm3cmUA+fuZ7wt4ATxPxT8nEnQclsnrOLnatOsYzUwfjF3h/JOSaymg2MPW351n4zUb++HQNG//ax6EtZxj7/oN0HJT4P+ZcKi4upl+/fqSlpREfH8/KlSsxGv9rVu/8rCKObDvL4a3nOL7rPBWlNydjOoOW1j0S6DgwkdY9G/9jW3lOegGrZ+9mw4J9njgG/2Bvhj7blf5PdLhrQ3jpZAp/fLGOIzvESVBv0DL02S48MKb7bc+TZZmDW8/x6werPcDIuMaRjJ4+5LZk+rNHk/lh5nIPe6lhYgzj3hlGnYY3m/DzJ1L4dsZykpVpUatO9Rk3Y6gn+Ts7o5BvZq7wEIdvndpsX3+KHz5cQ1lJJVqdhqfH9WTo4+1QqyUO7LrI1++vojC/DI1GzROjuzLyqY64XDK//7CVRXMFcC8iKoA33htOg4Ra7N99iS8+WEVJcSUGo5aXXu9L7wHNOLT/Cp++f/P2Vyb2o0fvJiz++4DHJVWrlj9vzxwmVlyv/slFZXL24INtePKpjsz6fSfLFMpzkyaRTJsyhC07zvHL70qMQ0wQ70wdyu79l5n1h3B91asTwrTJA1m48ghrN4tjTIekejzzWAc+/HY9V5JzhSvqqS5odRomvC/0NrFRgbz2XA++mbeDy8kisPPlJzqTml3Ep7MEv6ZrUhytmkQz48f12B1O6kYG8ujAVnw1fzsl5VaC/b14fng7fly2l4KSCvy9jTw7uC2/rNkvSMa+Zh7u2cIjJo4O8aNbyzh+WrtfTF/q1cLPx8hfO8SUZ1DbhpxIzuRGbhEmvZbBbRuxeN9pHC4XCVGhGPQaNp0Ua6jBrRux4dQl4bgK9sds0rPrYjJqSUXPJnFsOnsZlyzTNCqU7LJykrOL8DHoqRMawJ4rwvrdqX4Mu6+KZrR5ZDgXc/KotCs2cKed5MIiAowGvEwGzucI3k1EgA9nssUUq25QIGdyclCpID4oSCEVy8QFBXqamzr+/lwuVBg3fr5cLS5Eq5YINBlJKS3GpNWi1ajJqijDX2+gUrZTYXcQZvbyNDRVeTehJnG7Qa1GrVZRbFdSwpUgzGCj4N1oVCqMmjvTiQ1qNbLKic3l8NCJ1SowaCQqnVYxzXFHL2gkj7C40lWJBOgkScmV0mFRpjTuXCkvJVfqZmjmTbZNjaGZinjYqDQ+uirTGb1KTHf0iqPKKKmRcX890QDpVC4q+F8UGQcFBREUdG/RqrtkWWb27Nk8+eSTaLX/XKORn59Pamoq4eE16wfup/btuUROdgm+fiZ69L7ZeBw5eJWsjCK8vA10q+JostkcbFHWVv1ugfSdOJJMYX4ZPr4mWt0C2bt2MYus9EL0Bi1JHW93QB3bJ5q0lh3iajxZn1fEw3GNa1Xj8FStdMUZFXkHa6+7rJUiI0p/F0R/1QqNFtqjrJT8+3q8uxKS6hDXLFpEBfy2k6ffGPiPnn9rSZLEI6/1o1HrOnw3eQHp13L48IXfqN88hiHPdaXjoBb/ttanprLZbAwfPpzTp08TFhbGhg0bCAyseaVztyrOL+PUvkuc2nuJk3svkno5u9r9PgFetOzWkHZ9mtGqRyOMZsMdXunOdf7odVb8toM9607icooxbq06IYwY3Z0eI1rf1S5+/UIGf365weOmUmskej/YhsfG9yWwhiiQq+fS+fWD1ZxUmg3/YG+entiPniNaVWuYC/NK+f3TdWxR1rnefiaemdSP3g/cBF+Wl1mY+9VG1iw4iCzL+PibGf3WALoNFAgFN9dm9tcbqaywodNreOLFHgx/UkxtivLL+O6D1exVhL9xjSKY8N5watcLpaLcyr++3OCxf8fUDWHyu8Op1yCclOQ8Pp2+jMvnRfPRa2BzXpzYF0kt8e1n61ijJIPXqx/GW+8OIzTcj399t4WlCw96bp/6zjC8fAxMfWMhh5XparfujRg/sR/HjyUzYcJflJdb8fYx8MYbA4mtE8KEyQu44A7gfKgtD41M4rNvNrBH+fvv2a0Ro5/rwlc/bGGvAuzs16sJj45M4r0v13JREQ4/+2hH6tYJ4ZVpCykrt+Lva2La+P5s3XeRNVtFA9S1XX36dUtg6lerKS614Odj5M3Rvfl7/VGOnxdRLs+OaEtRuZXP5gg4X+eWdWlUL5z3f90k1lh1w+jRtj4f/7EVh9NFXFQQPdvEVyMTt24U4xETt46PIijAzBwlILNfUjwpuUVsVWIXHurajJWHz1FSYSXMz4ukBtEs2CN0RZ0axZKSV8SZtGwMWg29E+M8mVItY2uRXVbG6dQsTDotbeKi2KA4pTrUj+FEWiZlVhu1/H0w6DQcT81Ep5ZoXjvC09y0rR3FoZQ0XLJMw7BgbhQXUW6zE+XnQ4XTwQ2Fd2M0aLmSL6zfQT5mLubnoVerCfP15kJ+Hlq1RLiPN5cL89FJakK8zFwrKkSvVuNrMpBSIhg3Wo0kGhqDAYvLSZHVQpjZTK6lHBcuxQYuGppwhXGjVqnwNRjIsZThrdNhkx1UOu2EmG6KjAWdWDQvKpWLCmfNdGIvrRaLywqyjL9W0Il1aglJaXjcdGKtSoVakrG7bkYvuBsZh+y8mSslaXApxGIvjVhBuXOlJGQP2+aOoZmyw9PcGCTBvXFnToEsJjhVmhthDXegxolW5UKFC90/uI79X9fgbNu2jevXr/Pss8/WeH+DBg346KOPGDZsGGVlZcycOZMRI0YQHh5OcnIyU6ZMISgoiGHDhv3b78GdG9N/cGI1rcBqJfiv94BmGKqcHPbvvEhpcSVBIT60uCV+YbsCJ+vUs9FtCd5ucnGrDnE1Zv+4r0xbtq+ZPuxucBreJRjzftk2Fje47z4YKQDhSkho5o1/1uCoVCoefrk37z33G6vn7KpxEvDvVLOO8fy4bSoLv93I4h82cenEDT4bN5ff3llO/yc70v+pTgSE/NfowC6Xi1GjRrFt2za8vLxYt27dbdPHOz0v9VIWF44lc/F4MuePXCNZCVJ0l0qlon7zGFr3SKBV9wTqNYv+twI0bRY7u9ccZ/Xc3R7QHkCzDvUZ9nxXWndvdNcJXcrlLBZ8u4mdq44jyzIqlYruw1ry6Pi+NX6G8rOLmfflRjYvEQGyWp2GYc905qEXu3vWmCAmmWvm7+ePbzZRrkyn+oxszaiJ/fENEK5FWZbZt/ksP32wmnzFadVzaAuem9wfXwUMmZacx9czlnNGSb1PaBHDa+8M98SX7Np4mh8+WkNxYQVqjcQjz3fh4We7oNGqOXP8Bp/PWE6mAvQb/lg7nn6xO1qdhjVLj/CLYvP29jXy6lsD6dSjEVcvZ/HR9OWkKBcKIx5py6gx3cjJKubV0XO4okyXho5szfMv9uDc2XQmvDaf/LwydDoN417tTc/ejfnt1x0sVQTCjRrV4u1pQ7ienMvosbMpLbXg7W3gzckDCQr2Zuz4P8jILEKrVTNuTA8aNYjg1cl/k55ZhE6r5tWxPQkN9eWlNxZQXFqJr7eRtycM4MLVLN78cBmyDAn1w3n1ue58OWsr5y9nIUkqobdRS7zx6UpcskyDuqE8O7Idn/2+lez8UkwGLRNG9WDN7rMcU5qdpwYnkV1Yyk+LRbPSr2MjjEYtX/+9C4CuLevh72vix+WCAN+jVRyoVMzdqEy6OyZwPaeQdYcuIKlUPNYzkY1HL5FdVIaPScQu/LXzhJjURIfi42Vg5WHRwAxp3Ygd565RVGEhxNdMQkwYK4+KlVuPJvU4fC2N4krhlIpUnFIAPRLqsv3SNZwumUYRIeSWl5OWW4KfyUCtAF8OJqehUkFSTCQHbghdU4voCE5kZOKUZeJDgkgpLqbCbifSz4cyh5X0khKCzCaQ4EZREb56PXqdluSiIrz1Oox6DTdKivDR6dBpNKSVluCj14ObcWMyUum0U2i1Emr2ItdSgVN2Eul9M2Ih0tuXNIV3E2r2IrOiFL1ajVYtUWitJNBgpMgusqTcdGIVMr56o+Ka0mJx2nDJLg+dWAK8aqAT+2oNlDgqMWnU2GUbTlmuEr0gRL5Voxd0koRLdiBzM3qhaq6U8Q65UrKivbk1NFPjCc0UieBGSY0LCxpUaJTGRausp0yShAsLWoVcrEH2PEajAhv/F4D+3DVr1izat29Pw4Y1Rw5cvHiR4mJBPVWr1Zw+fZp58+ZRVFREeHg43bp1Y+HChXh7/3urj+tXczh5/AaSWsWgYTdjFrIzizikXFENrHI73FxP9R7UvNpJyWqxe/b73fvdnvDtvsKsyf6dlV5I+o18JLVE06SaBcQXTokGp0GzOzc47gakVszdGxyrRUxw7gcCBxAeLV4vKyUfl8t1X2std7Xt3ZiY+HBuXMxk2S/beXLSgPt+7t1KZ9DyxOSBDBrVhfXz97B2zi7ys4qZ/8U6/v5mA/GJtWmUVJeENnVp1KoOPgH3FzPhrrfeeou//voLjUbD0qVLSUy8PfS0pKCMlEtZImvqUibJ5zO4dDKlRjF27QYRNOtYn6Yd6tOkbRze/5DuXLWyUvJZ9+deNv693yMW1+o1dBvaiqHPdiH2LgJzEDlQC77dyK7VJzxBn50GNOex1/oSUwPZ2lJhZelvO1nyyw4sSkJ8l4HNGTW5P6FVnIUggjF/fGeFZx0V17gWL84YVi2xPiejiJ8+WMWBbeLvJSI6kHEzh5KoTD0ddidL5+7hz5+2Ybc5MBh1PDO+t4drU1RQzg8frWb3JnHREFs/lInvjaBug3BsVju/fbOVJX/sQ5ZlQsJ8mfjOMJq1iqUwv4yv3l/iIRInJtVh4owhBAR5s+zvg8z6cSt2u5OAQC8mThtMy6Q6bFx3kh++2oil0o6Pr5EJbw2iTbt6/DF3N/PdjJzoQN6eOQyDUVttJTVyZBJPj+rEvD/38fdCASONjw9n+tTBHD1xg+kfrMBudxIa4sM7bw/lWnIeL06Yj83mICzUl5lvDubwyWQ++2kTsgwN6oXxxit9+PWvvexVUr+H9GlGp7b1mPThMopKKvH2MjDlpb5s3neBLfuETqV/lwSaNarFlK/XYLM7iA73Z+wjnfh6/k6y8kQsw/jHu7Jix2nOXhMAwOeHt+fIxVQO7RfHnSf7t+LsjWy2nxAXYk/2bcXhi2mcu5GNWpJ4ul8r1h66KSZ+pHtz5m09KizkIX40qRvBvO3i2Nm1SR3SCovZd/EGOo2aIUmNWHboLA6ni/hawRgNmiqZUvXZcPqyuC8iGLvs5IjilGofX9vjlGoTG8WpTBGYGenvg6SROJMpqMUNwoI5eCPtNht4s1phnM7KVhqdQJKLi7A4HET5+1JgqaTMYiPc25syh43s8jJCvMxUOO1kl5cTbDJT4bCTV1lBqJeZIpsFi8K4ya4sw6FA+1LcjJsqAL8ILx/SyovRSCp89AayK8vw1oppTbnDSqjpprbG3dxoJAmDRk2xvUJkRSmuqCCDmQKbSAHXqMU0xw3wc9OJhbBYrJ0EnVgv6MRqrSeOwUervWf0ggoXBrVKWLzvkCtl9+RKWdGoZNQ4PdZwp2ytEprpzpxyoVUBOJTmxopOpblpDcepNDeiyTH+g+vA//UG56+//rrr/VVTlo1GIxs3bvxv/forlSlNh84NCK4CKdu45gSyDM1b1iayisskN7uE48oous+g5tVe6+j+K1SUWwkO9aXRLRqZrLRCUq7lIqklkjrdvp5yi4cbNIm8TXwMYi12Q1lr3BrtULVys4oAqqHvayzlx3q/spXQSH8MJh2WChspl7OpHX//K0FJknjstb58OGY2i3/cQqcBze95Av4n5RfszSPj+zHypd7sXXucVbN2cO7wNc9/S34QIYFRcWFE1gslOMKf4Fr+BEf4ExThj9GsR6NVo9Fp0GrVqDVqfvzpRz799FMApoyfgbbMnyU/bCY3o5DcjELy0gvJTiuoxqOpWnqjjrhm0TRoGUuDFrVJSKqH33241e5WToeTw9vOsX7+Pg5vO+f52wgK96P/Ex3o92j7e6a937iYyV/fbmL3mpuNTbs+TXhsfB/q1pAo73Q42bTkMH9+vcnDs2mQGMMLUwdVC8UE4Y6a9eladiiUbi9fI6Mm9KPPg0meCwGH3cmKeXv584ctWCvtqDUSI5/twsNjuqFXmu3LZ9P5euZyrioNUov29Xhl2hDClEZq16Yz/PDhGooLy5HUEo8815mHn++CVqvh8vkMPp2+jBQldbz34ETGvN4Xs7eBfTsu8PUHqykuqkCrVfPMuJ4MfbgNhQVlvP36Ao4oDsW2HeN4fcogtFo1H85czo4t4sKkeYsY3pg+BKdLZsL4PzlzWkw9+vZvxkuv9OLQoWt88blwSXl7G5g8eSD14kKZ/OYizpwVjx06pAVPPdmJH/61lU1bRXPWNqkuE17tw+9/7GGdAvls06oO41/swTe/bGP/EXFsGNi7KQN7N2XqJ6tIzxLTndee70FppZVJHyzDpTinXn66K1/N2c7VlDzUaolxT3QmI7eYD3/ZBED7xDp0TYpjxk/rsdocRIb68fyIdnyzYJcQF5v1vPRQJ+asO0x6bjEGnYaxIzqwcNsJ0vOKMeq1PDeoLfO3HCO/pAJfs4FHe7Vg9qbDVFrtRAX70rFJLL8oyeCt60eBGlYdEj/HYe0as+PcNQrKKgjwMtK+YW0W7Rffd/sGMaQWFHEhKxejTkOnhrGsOSGatLb1oricm09eWQUBZiOxoQFsrxKYuftKMi5ZTHEyS0spKKkkyGzC32zkeFomGrVEo4gQjw28RVQEx9LFZLVJRCins0VgZv3gIK4qNvA6Af6klpZgczqJ8fMlo6IUm9NJtK8vGWWlOFwuov0Ev8Ylu4jx8+NG6e2MmyiluVGpIMTkRUZFCUaNBrVaRYF7WmOrxIXLw7gBmUCj0QPwc+ESQZkGE0WKa8pfb6TAVo5Jo8aJHZvL5QH4SYBBrbkDnViIiC0u4Yby0mqwuCyemAUVMsbbohdk1Cph/zbfJVfKHZqpU6lQeUIzVbeFZrqpxBpVFWt4leZGNEBu95RLYeRABfePKvlfb3D+N6u8zMJW5YAypEpIptPpYqMC4+s3pPpV+7YNp5BlYSENu6WJ2LlZHLA69bx9LXB4r+LqaB6NVw2ZSm5WR5NbxJnuSrmSg9PhwsvXWM2ZcmsV5opQzIAaAhGrllZZxdlt9yfYUmvUNEiszYm9lzhz6Oo/anAAOg5oTrs+Tdi/8TRfvD6fr1dPuG2F918tjVZNl6Gt6DK0FZk38jh78ApnD13l7MGrpF7O8vx3r8qyXOVEsTgZxJmTOPRHBof+mH3Hx4dGBRJdP4zo+uFExYUR1yyamPjw+7Zx3/P9pOSz8e/9bF54kPwqaeSJneMZ9FQnknok3PNrXTmTxt/fbWbfhlOexqZ936Y8+mrvGhsbt4D490/XknpFZJaFRQXw9KT+dB7QrJpGzGZ1sHz2Lv7+aRuWCiVB/MHWPP16P886CuDssWS+n7mCZKVRb9yyNuNmDPXkqVkqbfz50zaWzd2DyyXj7Wtk9BsD6KFocQrzy/jhw9XsURqO2vVCmPD+COIaRuCwO/nzl+389dsunE4X/oFejH97MG07x1NeZuWLd1eySWm8YuNCeePdYcTWC2Xvzgt89dEaSoor0ek0jH61FwOHteTcmTQ+fmcFWZnFSGoVTz/XlQcfa8eBfZf5/JO1lJZaMJl0jJ/Qj46d4/npxy2sUoI7ExJqMfXtIVxPzuOFsbMpKanEbNIzaWI/YmKCeHXifJJT8pEkFc893ZlO7evz5oylXLmWI6zij3ekdctYxr+9mKwcQTR+fUxP1Bo1r0xbiNXmICzYh7fH92fp+uNsU6Y0fbs2okvb+rz1xWpKyy34+5p4c3Qv/l5/jGPnxGrmqaFtsDudfPCb+Hy3bVqbds1q8+6vG3E4XdSNDGRYj2Z8+fdOkUkV5MPDvVvw04q9ihPKl6FdmvDzqv3YHE7qhAfQrkltflwt8vta1Y/E22zgrx3iZz0gqSFn0rK5nl2AQathWPvGLDlwGpvDSVxYEEF+ZlYfUZLNWzZg18XrlFRaCfX1onZoABtPiyl6ryZx7Lp83SM0VmskjtxIRyNJtK0b5QnMbBMbyfGMTKwOJ7FB/lTY7FzOzcfHoCfE14uTGVloJBUNw0M5lp5xmw28ahp4w+AgzufnKTbwQC4Viul4Pf8ArhQVKE6pAK7WYAO/lXGTVl6MTlJj1mvJrizDV6en0mWn0u4g1ORNjuWma8oN8PNRXFE+Oj3lDisuXB46sQjK1FNsr8BHq6fC5RYWu+nEQptjddnx14ugTInb6cSS0shYXVYPwE8NaNUiILN69IJYWZk07qnO/eZKqZBx3MyVUsB9EngaF70ELmwK98aqNEBW1IDkaW5cqHBi+Admkv+nG5ztW85iqbQTUzuIpok3LeDHD18nN7sEb28DHaqAzGRZZstaobHp0b/6CspqsXNQiVDo3CuBW8ttW23VoWYK7xnFhnqnBufaBYVt0yD8rm6hwjzR4PgH330d49Ya2az33w0ntI7lxN5LnD18nYFPdLzv54HQnIz78EFOH7jK1TNp/PnFOp5+c9A/eo1/UuExQYTHBNHzwbaAEPlePJ5MTmo+uRmF5KQXkpteQH5mEVaLHYfdicPuJLs0hVPFAmZWLyCRzg36YfIyYPI2EhDqI6Y/Ef4EKROgiNjgf0sQfK+yVNrYv+EUW5Yc4viui56mxCfATM+Rbej3WHsi69wZbumuc0eu8/f3mzm87Zzntg79mvHoq71vow97nnM0mdmfruWMkqbt7Wfi0Zd70f/RdtU0arIsc3DbeX75cDWZivi8YWIMY6cPqQaZLC4sZ86XG9mgaN18/Ew8N7k/PatAMI/uu8x3764kK13Y2bv2a8qYNwbgF+glHFLrTvLjx2spLa5ErZF46BkxtdHpNFy/nM3nM5ZzRVkLdeqZwMtvDsDX38yZEyl8OmM52RlFqFQw8okOPDG6K06Hi68+WsN6pSmpGxfKm+8MIzIqkD9n7+ZPJa8qLMKPt2YMpV5cGD9+t5mVili6fnw4b88YitPpYtxLc7mqBNc+8mg7Hn+8fbWVVP24MKa9PYTzFzMZ/co8LBY7gQFeTH9rMMWllYweP4/yCht+viamvzGIzJxixr35l0Iq9mXGxIFs2HGOZetPAJCUWJtnH+7ARz9u4HqqiG94ZVRXSitsvPn5SqHJiQtn1ANt+XTWFo/e5vVRPdiw7zyHz4iV06P9W1Jhs/Pl/B0AdGlZl5haAXz6pxAbt2wQSZO4CL5YKO5vGR9JnVpBfK/obzo2iUWn1/DnVrF2GtSuEZcz8jh8JQ2NJPFI90RWHDxLcYWFIB8THRNiPbELbeOjyS+tYN/FG2jVaga0asDqY+dxuFw0qhWCA5kDV1LQqCW6N67LxjOi0WkeE056cQk5BeX4GQ3EhgSw+6pwSnWMi/FkSjWtFca1vALKbDYifL2RJbicl4+XXkeYrxenMkWjUz80uJoN3N3cNKqSBt4wJJjz+WIiWN0GfrO5ifHz43pJISoVRHi5GTdqfAw6MitK8dHpseOk0FpJiMlMrqVMYdx4k1lZHeCnV6vRqBFZUkp+FMie5kZYvjWU3QLw81foxCa1BpvLjksW1vGyKnRiu1yFTqwCtQR22e5pbnSSClQOXMiYa4heMKrVylRHCIU1gFpy4UK+LVfKDfwTuVKqarlSGmW6I5obGRknepW6WnPjfowaJ1pJaXJUUI6txuNWTfX/dIOzQeHVDBreqlrTsFG5vXvfJtUO6NcuZZNyPRetTk2nW3Q0Rw9cpbLCRnCoLw1uIQjbbA5OHr5JU721crOKyUovRFJLNLqDgPi6kqETe5fJiaXSRmW5+OXfy47tdhrZ/gGZOCFJCKpP77/yj3U4IOi74z56kI9fnMPC7zdj8jbw4Eu9/tFr/LvlG+hF0j04POfPn6dDhw64cDJ48GCWLVv238a6uZ9yuVyc2n+FrUsOsXfdSSqrMIcSO8XT99F2tO3d5J4uMVmWObbrAot+3MopRbguSSJj6qEXexJzh8/Q9fMZzPliPYcUXYxOr2HoqM6MHNPttqnj9YuZ/PrhGo4rOrWAEG+enTyAboNv2vWdThcblx5hzpcbKFXs6n1GtOKZCX096fJFBeX88tk6til/c8Fhvox7ezBtFNBlfk4J332wmgOKbb1ufBivvzucug3CcTqcLPh9F3/+awcOhxNvXyMvTR5A1z6Nsduc/PrNJpbOFzbl0Ag/Js0cSpPEGM6fTeeTmSvISCsQTc9j7Xjy+a4U5Jcx4eV5nD0l1kk9+jTm5Qn9yM0p4cXRs0lWBPwjH2rDqOe6sG3bOb77dhMWix0/PxNvvjWI6JhAJr2xkLMKTXzokBaMeqoT//p9J2sUAnGL5jG8OaE/i1ccYdFysSJv0qgWb77Wjz+XHGTdVoGSaJ9Ulxee6MSnP27i7CXRvD39YDvq1A5i/LuLqai0EehvZuq4vizZdJI9RxRNTs+mxNcN4a2vVmGzO4Xe5uFOfLtgFxm5xSIs8/FurNt7jpOX0gU4cHAbLqfnMWetaEJHdGtKQVkls9cJmN/QTk3IKixl0Q7xPTzYrRknr2dy4VwOGkni8V4tWH1IkIn9zAYGtktg/s7jOFwuGkaGEOBnYvkhMeEe0LIB+y+nkF9agb/ZSFJ8FMuPiPs6xMdwKTuPnJJyfI16GseEeZqbzg1iOZQsMqViAvxQayWOpWagVUu0iInwNDdtY6M4fCNN6GpCg8goLaXEaiXU2wySist5BXjpdAT7mjibk4NWLRET6M+ZnBwkFdQNCuRcXi4gUz840NPcuG3gKhXE+PlxtbgAtaQizNtbNDSSGm+jnvTyErx1OpBk8i0VBBmNFNoqccquajbwcKW5kVTgbzCSaynHS6vFJtupdDqVaAaxigo0iFWUUa3BiROL0+Zh3AiejY5SRwXeGgMVTgXgp9dR5qjEoNbcFBbfhU4sXls0Mma11jOlqRq9YK9i/66qvRHRC6KBccqKA0vRzNzMlVJXC81U40IrCSigTiXhwoZRJSnaGwmwoVEJgbHbIq7ChY77Pyb/P93gpN7Ix8vLm559bp74Sksq2afQUfvewrFxh2cmtY/Dy7v6Vfu+HeKk0KF7w9smLOdPpmK12PEP8iI27nas/kWFWBpbP9RDDL613JyRqDp3tn+7T4gqlQqT190zidyrg8K8Mo975l6V0CoWs4+B/Oxizhy6RtO2Nbu97lZdBrcg9XIW87/awOyPVlNaWMEzUwf/H0vfvlNlZmbSr18/CgsLadu2LQsWLPg/0tzIsszlU6nsXHWMXauOkZdZ5LkvLDqQHiNa0+OBJI+L7W7lsDvZteY4S37exnXFtaXRqukxojUPvtiDiNp3SAVPyeePrzayQ3FSSWqJXiNa8dgrvQm+Jay1KL+MP77eyIZFh3C5ZDRaNcNGdeLhsdVdVJfOpPHDuyu5pOhUatcP46XpQ2ispNu7YxZ++WwdpcWVqFQqBj/alqde7oXJrEeWZTYsP8pvX26kvNSCRqPmkRe68NAzIqbhxrUcPp+xnEsKtbtt53henTqIgCBvLl/I5LMZy7nh1uEMas6Y1/uiN2iY99tO/pqzG5dTJijEh8nTh9C8ZW22bTrDN5+vp6Lcisms55UJfeneuzFrVh3np++3YLM58PM3MfmtQTRuEsnnn69jq+KKTEyM4a0pg7lwMZMXxgiXlNmkZ+KEftSODebVSQu4liwSx598tD19ezVh5serOKv8jh4c1ooBfZoy7ZNVXE3O9VjA4+PCeGX6IopLKvEy63nr5b6cvZTJtM9XA9CsYSTPPtyBT37dTGpmITqtmvFPd+NySi6f/Cb4Np1a1qVTq3rM+FnobSKCfXlhZHt+WLSbnIIyzEYd4x7qzN9bj3E9owCtRs3oYe3YcOgCl9Py0KglnhvYhnWHLnIjuxC9VsOo/q1ZtOsk+SUV+HkZGd6pCX9sPSpWVmEBNIoNY952Menq3DiWzOJS9pwXyeBD2jRi5eFz4rGhAQT6mthwUky3+zWPZ/v5q6KBCfTDy6xnz+UbSBJ0a1iXrRevCnlAZBgZJSXkFVXgbzISEeDNgRvCKdW2ds2BmXWDAsgpL6fEaiXEy4wsyVwrKMTHoMPLaOByfj5GjYYgbzOX8vPRq9WE+Ji5VFDdBq5TqwkwG0kuKcKo0WDSa0kvK8FHp8elksmrFA1NicOK3e4g3MubzAoxoanlddNB5Wbc6NVqdBqJQlulmMAo05hgo0gJlwBvnY6i2wB+gnGjUanQayQqnBZ8tUbKPAA/LeUOQR2udFUVEVenE3spdOKqtxklJXpBoRNL4Ile8NJosN81esHNvbHXkCtl9eRKaZA95GKtSiSP32xu1FAle+qmRVxGgwrrfyY4919deyZUE/Xu3HIOu91JnXoh1K3iJpFlmV3K7v/WFZTT4eTgLvFH2r4GAvEJRbzYPKlOjSfyC8pJIP4u2VGZaWJ0Hx51ZwaL292iN2rv2TC4LdR2m4PSogrPFfXdSmfQ0rF/czb+fYDty4/+Ww0OwOMT+mP0MvDbeytY8vNWSgrLeeWTh/7bNCv/tEpKSujfvz83btwgLi6O1atXYzL9z9GRZVkm+XwGO1cfZ+eqo2RVsd57+RrpNDCRHg8k0ahV7H01fhVlFjYtPMjy33aQo6x4DCYdfR9px7Dnut5RcJ6bWcTf329h4+JDOB2Cm9N5QDOeeK3Pbesvm9XOqnl7WfDjNg+tuGPfJjwzqX+18MySwnLmfrOZ9Upcg9Gs58lXejHo0bae32/qtVy+e38lp5SpZp34MF6dMZT4JkKYn5FawLfvruSEIryPbxzJazOHUjsuFKfDyd+/7+LPX3Zgtzvx8jYwdlJ/evRvitPp4s9fd/LXLEWHE2Bm/NRBtO0cT+qNPD59ZyUXlaaia68EXp7YD5VKxUczl7NN0c81ahLJm9OHYDLreWfaUva4V8tJdXjjrYHk5pUyZvRs0tMLkSQVT4/qzIgRrZk1eydLFShofHw406YO4ez5dEa/PBeLxY6/n4mpkwfhcLoYPf4PT9Py5mv9ceJizKT5VFTaBMtmwkDOXc5k4ntLkGWIqxPCpLG9+OmPXRw7o8Q3DGpJfL0wJn2ynEqrndAgbyY935M5Kw5y+pKIG3h2eHvKrDaP3qZNkxg6tqjDB7M2YbM7iQn355F+Lfl20W7KKq0E+5l5emAS/1ot4H2BPiYe79OKX9cepNxiI9Tfm8EdG/HbhkPYHU7qRQTStF4EszaKKU+7RjHYXE6PmPiBDk3YdvaqZ1LTKSGWxYqYuE1cFDll5Ry6KmIXejSNY93JC8LYERNObnk5Z9KzMeu0JMZGeJxS7euJTCl3E+RE5kymiFqIDw32BGYm1Y7kUKo4rjaJCOVcTq4QDQf6k1VRRnmljXAfLypdTtJLSgg0GUFSkVJcjK9Bj1arJqWkGB+dHp1G7bGBq9SQWV6Kv8GADQf5lgpCTGYKbRZsLie1vL3JrChBRq7GuIlQmhu1SoWv/ibjxq64poKNIhzzJuOmDK0koVOrKHNY8NcZKVaalwCDniJ7hQfgZ3U5BOPGoWhqtBKVTgveWgMVzkrhhtKoldsEidhNJ7a4rB5isQoB9bPLNoVObPHoZ9zRC3aXRUxpuBm94MLhyZUS3BvbXXOl3I2LEBgLbY9BpVKExeqbAmOVDTWyh3+jQays9P9gc/D/fIMz4BYR8aZ1YgTbs3/1IMwrFzLJTC9Er9fQ9pY107lTqZQUV+Dta6RxDSsm94G6+R3s3xfdDc4d3FEul4usVBFIGB4dUONjQKyoAI8b5W6l02vwDTRTnF9OXlbxfTU4AN2GtmTj3wfYs/YEY98dUW2F909qxOjuePuZ+GbSAjYtPEBZcQUTvn682hTg/0TZbDYeeOABTpw4QUhICBs2bPhHoMr7LafTxfmj19m/8TT7N5wiU5nIgfh9tendhM6DEmndrdF9W/ez0wpYNWc3G//e70n39gvyYvCozgx8ogPefjX/TgtyS1j00zbW/XUAu00wJVp2jufpif2od0uTLcsyO9eeZM4X68lWmux6CbV4YcogmlT5PDudLjYsPszcrzd61lHdBzXn2Yn9CFDciTarnYW/7WTRrF3Y7U70Bi2PjenO8Cc7oNGqcTpdrJi/n3k/bMVqsaM3aHnypR4MfUzQiJOvZPPFOys8U5ukDnG8+vZggkJ8SLmey2czb97XqUcjXn5zAD6+RlYvO8Iv327GanXg5W3g5Yn96Na7MadO3OCTd1eSk12CpFbx+NOdePTJjpw6lcLHH6wiP68MjUbiuRe6MXREa5YvP8Jvv27H4XAREuLD1LeH4B9g5rUJ87mo8HFGjmjNE4934OdZOzwrqcRm0bw1YQCr1p/kj4X7AYivF8rbkwexauMJFq0U046mjSKZoDQy+48qzqmeTejdtRFTP11FTr7InJo0uhfnr+cw89t1ALRqEs2D/RP54F8bKSiuwMukZ9IzPVi58wxHFXHxY/1bUml38PkfIhyzY/M6xNcJ4aN5W8RUpG44HZrH8sXCHThdMg1jQmiTUJtvlu1GlqFZ3XBiawXyyzrhjOrUJBaHy8XSPaJhGdGxCQevpJKSW4RRp2Vo+wSW7Bdi4nphgYT4eXl4N/1a1Gf/lVQKyysJ9jbRMCrUkynVpVEdjt5Io9RiI9zPm0AfE7uv3EClgi7xddhx6ZoQA0eGcqOomOJKC8FeJnyMBk6kC6dUk1qhHEoVlvCWUREcVZxSjZXATKcsUzcogNTSEqwOB9G+vuRaKqiw2An39qbEbhHJ5GYvyuxW8iqt1Wzg4d7e5FrKsLtcgmtTLhqaGF8/UsqK4JbmJlhJBjdqNKglFYW2Wxk3XuRaxZTHX8mSEhMVOxank0C9mUJlFeWn11Fir8Bbq6fSZREAP4VOrJMkJMmJzWXHV2ugzFmJWgU6SYXVZatGJ9ZKqhrpxCIgU6vQiYUzS9i/VXeMXjBJKgHuU6IX3EwcCRcGlXTXXCm3aFjG5mluxGPc/BvxOmpkJJzoJBX2/0xw7q9q1wkhvgoqPj01nwtn05HUKrr3rq7XcE9vkjrVx3BLHtABZaWV1LH+bVMIS4WNi2cU5kINDY7L5eKKsq+Pb1xz/EJRXhl2mwNJUhF8FweVzSpOVvdL8g0O96M4v5zMlPxqyPy7VZO2dQkK9yMvs4gdK4/S+5YA0n9SvR9qi5eviY9enM2+Dac43+k9npg4gN4Pt/23oHf/tGRZ5vnnn2fz5s2YzWbWrl1LnTp3DjH9p1VaVMGJPRc5vP0ch7acrRZzodVraNW1EZ0HJ9KmZ+M7JsPX9J4vHL8hiMXrT1UhFgcz7Nmu9BzZ+rasKHcV5Zex9NcdrJ6315MK3zipDk+93pfGNXw2zxy+zm8fr+HiKXGSDAz14anX+tJjWItq+quzx5L56f3VXFWmI7XrhzF26qBqPKdj+6/wwwerSFemVa071eelKYM81u+rFzL5+t2VXD6r/K20juXVGUOJiArAYXcy//cd/PXbLhwOMbUZM7EfPQc0w+WSWfzHXub+vB27Tdz30uT+dOvTmIL8Mt6e8DeHFR1SYqtYJrw9CP8AL2b9tI2F8/chyxAe4cebM4YSFx/O77/tYNHfB5BliIwKYOr0oQQGefP21EUcViZOHTvWZ8LE/hw+cp03py6iosKGj7eByZMGUKuWPy9PnM/15DzPSqp/n2a8//kaTp5RrOIDEnlgaEs+/HodZxVh9CPDWtOpfX0mf7CMrNwSdDoNrz3XHYvdwfh3FuN0uoiOCGDimJ78umgfJ8+Ln9Njg1sR4G/mza9W43S6qBsVxHMj2/PVnzs84uJXH+vCun3nOXFRPOfpwUncyC7k15VCBD24UwIO2cVPK4QTqnfreJzIzFaSwAe0bUBOSTnL94oV/UNdm3HgYgrJ2YXotWoe7pbI4r2nKLPYCPPzonWDaP7afQKA9vHR5JSWs1cREw9q3ZCVx87hcLqoHx6ETqtm54XrSCoVPZvWY8u5Kx5gX4nNyul0wbFpHhPB9kui6auaKVU3OIBSi5WreQX4Gg2E+npxLF0koieEh3JUcUolRoZzPFOIiRNC3QJiiAsK5GphAU5Zpk6ASAB3yC5q+/qRWlqCU3YR4ydYNi7ZRW0/f5JLbzqlbig28GhfX09zE+blTXp5CVpJjVmnIddSjo9OT6XThsXhrIFxUyriFrRakQyuM3iyotwAP40KDFo1ZY5K/HSieQEZP62BEnsFJo0axy0APxGD4MQhuzx0YqFtceKUXR46sV7S4KxCJ7a6KjGotTg8DimV4qjS3DF6wd3c3Bq9UFOulHBGyVXiGezolPWU+zE3LeKy0twIi7gKx380OPdbDzzcptoKYJuSE9WidR0CquQ4ybLMPkXk2LHb7UDCo/vF+DSpBofUhdNpuJwugsN8b7OVA2SnF1FZYUOrVXvorLdWQZ44MfoGeN11jaNWuzO07i9tNbZBBFfOpHP1XDodbkk9v1NJksSQUZ2Z9eEq/vhiPZ0HJd7W8P2Tat+3KR8tGMeXr88n80Ye377xN6t+38lz04bSsmvN8Mf/rnr77beZN28earWaxYsXVwuA/XfK6XBy6WQKx3Ze4OjO81w8fgOX6ybHycvXRFKPRrTt3YRW3Rrdd1MDQgy+a81xVs3ZzWWl4QBo3qE+w57rQqtuDe8o+i7KL2PZbztZ/cdezxozvnk0T73el+Y1xIKkXcth9ucb2KdozgwmHSOf78rwZztX+13nZRcz+4sNbHNzb3wMPP5yLwY+3MbzOc3PLeHXz9azQyF8B4Z4M+aNgXTslYBKpcJSaWP+z9tZ+sc+XE4XZm8Dz73Wh77DW6JSqbhyIZMv313BVUVk37ZzPK9MGUhgsA9pN/L5/J0VnFcmoK3b12P81EEEhfiwY8tZvvtsPaUllWh1ap4d24OhDyaRlprPq6PncFlpLPoMaMaLr/amoKCMV1+ayyXl6/Qf2Jyx43py5kwab761kKLCCnQ6DS++2IMePRP4/sctbNgophdNmkQy9c3BHDt5g3dfnofFasff38zUSQORkXnh1XkUFVdgNGqZ9EpfTGY9YyfPp6TUItZUr/Qlv6icV95eiN3hpFaYH1Nf7ceSdcfZqgRjdmtXn4G9mjLjm3XkF5VjMup444We7D52jT/XKsT1Dg1o2iCS6T+uE+LiMH+eG9GOb//eRW6hord5uBOLtp7gano+GrXE6GHt2Xb8MueSs5FUKp7un8TuM9e5lJqLWpJ4ql8rNh69SFqu4N881iORv3eepLTSSrCvmR4t4piz7QiyDE1rh2E06lilTGoGtW7Ings3KCgTK6o28VEsPawIqOtHcz2vkIzsUrz0OlrWjfSIidvFRXMmI5sSi5VQHy+CfEzsu5aCSgXt6kaz97pwgSVGhnMxN0+A/fx8cahcXMzNw6zTEe7nzclMASxsEBrsaW6q2sCrOqWqBmbejw28KuOmlo8PqWXFaCUJb72eLCUZ3IGLIlslQUYz+YpYuCrjJkhh3BjUGmSVizKHlSCDiUKFcROgF/82qNWgcmBx2qoB/Lw0OkodlfhodWKag4yPAvAzKfEJMjK+Oh0VzgoPiViA/gSd2CjpsCsi4pt0YgH/UyOjlWRcOJXmxlItekHniV7Q1BC9ICPjQq+SbsmVkhRnlDuewYVOmeC4mxu9Skxw1KA0OGLdpUJG+x8Nzv1XpyrNiizLbFcanFunNynX80hLyUerVdO6ffUmJj+3lOtXslGpVCTWcBV8VsHnJyTW7I5KVrgsUXWC78iFuV/rt/uk4tZT3KviGkeyeclhLiuukfutwU93YvW83eSkFbL0X9t4bHzff/T8W6txm7r8a/sU1szbzV9fbST5YiZvP/4TLbs04MGXetG4bd1/7Ni6V/300098+OGHAPzyyy/069fvH7+Gw+7kyulUTu2/zOn9Vzh7+Fo15xNAdP0wWnZpQJuejUlIqvuP2T+5mUWs/WMvGxbs90yAtHoNXYe0YNizXYm9y+StpsamXuNaPP5qH5JqEMMX5JQw/7vNbFh8GJfThSSp6PtgEo+90puAKpBCm9XOsjl7WKhQjVUqFX1GtOKp13rjp9CinQ4nqxceZN53W6gotyJJKgY+3JanXu7p0bwdO3CV795b6dGXdeyVwNg3BhAY7I3Namf+bztZNHcvLqcLb18jL07sT7d+TZBlWL7gALN/2IrV6sBk1jPm9T70HtSc0hILH05fxg5FU1MvPozJ04cQXTuYVcuO8OsPW7HZHHj7GHltcn86dm3AujUn+On7LVgsdrx9jEyY1J+ktnX5fdZOFi8W+pLYOsG8PXUITpeLF8fNIyVVuGmeeKwDD4xozbc/bfGA+1omxvDmhAGsXHuCPxcJF1e9OiFMmzSQTTvP8ecSseZpUC+MN1/pyx/LDrJlt2hkOreJ47HhSXz4w3qS0wpQqyVefKIzskrFxI+X43S6qBMVxMtPdubb+bu4lipgfi8+0okbWYV8NkcgDjom1qFlQhTv/LIBh9NF7fAAHu7Xgu8W76a0wkqgr5nnhrThl1UHKCgVsL6nByQxZ8MRisoq8fc28kiPRGZvOkyF1U5EgDfdW9Zn1sbDIp+qdhihAV78tesEAH1axHExM4+TqVnotWoGt27E8kPnsDvFisrPx8h6t5g4MZ4d569RYbNTy9+HYD8vdly8Gbuw49J1HC4X9UODKLPbOJORg0mnpWGtEE9z0zY2ioOK3qZhWDApJcWUWW2EeXuBWsXlvHzMOh0hvibO5OSgkVTUCQ7kdI5gMDUICfI0N/F3TAO/2dzU9q9uA08uLUKnlvA16MkoF8ngqKDAWiFAfPZKnLJIBs9WbOBhZi+yLaVoJBVmnZaCqowb+SbjBsQUpsheoTQiFmRZJlBvpNhRgVqlQiepqXRa8dMZKHeKhses0SrJ4DcBft5ajRARq3VYXaKRMWnUWF0Wz20SMno1OGQbJkVYLBxSQntjVkvC/u2mEyN7YhkMinvqZvQCHuKw2xllUu4T4mHFPaVocDwCY0lMcPQqCRVW1AjKsWiyhItKA0g4FRv5/dX/0w1O1bp8IZO0lAL0eg3tO8dXu2+v4pBKTKqD+RZ30jFFQBzXMNyTn1O1zir5UY2ax9x2H8B1BXpWO+52PL67ipQTm/9d0sEBNEqD43DcH7yvnqL5uXIm7b6dVCDExs++NZiPXprL4p+20fOBpNtw/f+0tDoNw57rRs8RSSz4diOr5+zm6M4LHN15gbDoQDoNTKRDv2bUbx79X3ZcrVy5knHjxgEwc+ZMnnnmmXs+x+VykZGcx+WTKVw+lcLlU6lcOZ3qaRzc5eVronnH+rTs0oCWXRsSHHEPonQN5XS6OLL9PBsW7OfQ1rOeKVBwhB8DHu9An0fa3TUpPj+7mGW/7WTdggPVGpvHXu1Nm+6Nbvv5VZRZWDprF0tn7cSqZJS16d6QURP7ERNXXWi/b/NZfv10HdmKmLlh82hGTxnoEQgDnD+Zwvfvr/KQiOObRDLu7cHEKdydooJyfv1iPVvXCI1KUKgPL00ZSDtlYnfuVCpfvbuSFMWW3alHI156YwD+gV6kp+TzxXurPH9XLdrU4bW3BxMS5suh/Vf48sPVFOSVIalVPPpURx4d1YmiwnKmTFjAUUUL1zKpDhMVUvGMt5eyT4ltaJ4Yw5tTB1NRaePlcfO4ckX8bQ4Z0oIXRndj/YbT/PzLNux2J4GBXkx9axBmLwNjx/9BalqBgPQ92Yle3RN479PVnpXU4P7NefiBJD7+Zj0nFaLxsP6JDOjdhOlfrOZGmrAbj3myC4EBZl59ZxGVFjtBAV5MGdeXVVtPs+2AeI+9OzagY6u6TP1mDeWVNgJ8TUx8pgd/rj3C2atZwvI9pC05RWV8/ddOQPBt6kYHe/Q2jeuE0blFPT77ewdOp4u4yCC6tojju2V7cbpcxEcF07JBJD8o8L4W9SIJ8DPxx1ahFerdsj6pBcVsOXkFtaTiwU7NWHvsAsUVFoJ9TLSOi/aQidvFR5NZXMphRUzcq1kca04IMXGTqFCKrVaOp2Rg0KhpExd9M3ahThRns3IoVaY4PmY9R1LS0ahUtIipxQHFKdUyOoITmVk4XC7qBQeSVVZKablNOKXUilNKr8fXbOBingjMDPf14UJeHhpJRZS/HxcL8pBUEO3rx+XCfNSSiggfH64WF6CVJIK9TCSXFKFXa/DS66rZwPMsFQQajJQ4LNidoqHxJIObfcisdOtwTORYBJFYJbkotVsINJgocDNujCYKrDcZN6UO4aoqVaY1AYrDyiBpcOLAVgXgp1aBVqoZ4GdxWfHS6LE4LaKR0bit3npFeyNge07Z5WlujAr3piqd2A3w06pQ4hVk9JJUjU6sU0lICp1Yq6ye3LlSnugFqgqMAezK5KcK/wa10OCo8FjENchIyOhUYPsPyfif104lJ6ptx/q3WbUPKA6pdl3ib3ueW0Cc2KbubffJsswl5SB3a3SDu9KUUL+YuneGtpUUVQDcUwjsFqdaKmz31bDUaRiBVqehKL+MlMvZNWYQ3ak6DWzOqjm7OXv4Gh+9OIdPF7/ybwuOq5a3v5kXZgxn4FOdWPzjVuEySsln8Y9bWPzjFoLC/WicVJe4ZlHUaxJF3caRmL1vJ0Pfqfbv38/DDz+My+XiueeeY/r06dXut9sc5GUWkXolm5TLWaRcziL1svh3Rent+VLefiYat6lH03b1aNo+jtoNwv/taVNOeiGbFh5g48KD1eziTdvVY/DTnWjbq/FdV5SZKfks+dd2Ni09jEMhVN+tsbFZHaxbcIC/f9pKsZJn1aB5NM9OHkDj1tWBk9cuZPLLx2s4eVB83gNDfXh2Yj+6VqEaFxWUM/ubjWxUUri9vA2MGt+HviNaoVZLuFwuNq04zixFiKxSqRj0UJJnqlNZYWXOj9tY+bdIFfcP9GLcmwPo2L0RTqeLpfP3M+enbdisDowmHc+/2ov+w1pSUWGrBu2LjA7kjRlDiW8Uwc6t5/jms3WUllrQ6TS8MK4ng4e35PCha3z+8RoKCsrRaCSeeb4rI0YmsX79SX78YQtWqwMfHyOTJg0goXEt3vtgFfuVZO+2beoyaUJ/tu++wE+/bsdudxIU5MX0N0Vz9PwrcykuqcRk1DHplT54+RgYO2m+Z001eVxf7A4nL01ZgMXqICjAi7df7cfOg5f5ft4OAFo0jmLUQ+355JfNpGQUolFLvPR4J/JLKpj23VoAmsXX4oG+iXw6ZyuFJZX4mPWMf7wri7ee4Nw1sXJ6dmgbLqXn8dsqobcZ0rkxDtnFD0ryd/eWceh1Gn5ZI+7v2TIOq9PJ/G3iZzmkfQKXMvLYfOwSaknFw10T2XD8Irkl5fgY9fRPasDCfSeFMDkyBC+jnrXHxDRqYKsG7LqYTHGFhRAfMw0iQ1h9XJlUNYjleFoGJZVWQnzMRAT6suOS0Dh1a1CHnZevC45NWBAFlZVcyhE04ih/Xw7dUFaSVZxSzSLCOJOTIxqdIH8yym86pSwuJynFxfgZDGi1aq4XFeKt12HWa7lWVIhZq8VLrye5uAiTVoPJoCOl9GYaeEZ5KT56PQ5EQxNsMlFst2C3O6o3NFUYN2FmLzIrS9BKEmadhnxrBb46PeUui5As3Mq4sd6ZceOr11HiqMBLo6fSKazcboCfTpKQcWKX7Z7mRiupUCtQPzfAT6tSIUlCROwG+OkVq7eMjFGtweayYFa4N27NS1U6sV5h06iQ0UrgxO6hExuUYEx3rELV6AU3nbim6AW9BGDzNDdaxOtoVSrUKjtqRYOjVpomMRn6jwbnH5Usy+xRNDadbtHYFBWUc0kRAbfpeDuk7/QxsYJqpvA9qlZmWiFlpRa0Og21693OvwE85Nbwu0xArIo76l5aFzfbxmF3UlFmxex9d0eS3qAlsUMch7afZ//ms/+owVGpVEz86jFeHvAFF0+k8Nv7K3jxvQfu+/n3qojawbz66cOMnjmMA5vPsH/DKQ5tPesRN+9QnCcAtWKDCYkKICDEF/9gbwJCfPAP9kGr06CSVEhqFZIkkZJ2g+defgyLxULLJm3pGDeYf81cRl5mEXkZReRmFlKYU1ot/6xq6fRa6iTUon6zaOKaRRPXJIqouND/0vrMZrGzf9NpNi06yPHdl24Si/3N9HygNX0ebkv0XaZ7ANcvZLLkl+3sWH3CIzpOaBXLQy92p1WXBrc1Nk6ni20rjvHnt5vIySgSP8PaQTw9oR8d+jSu9viC3FLmfbOJTcuOIssyOr2GEc905sHnumAw6Tyvt27xIeZ+u5kypQnsOTiR517v65k03biaw3fvr+KM8vdSJz6MV6cN8TgHD++7zHcfriFbaex6DWzOC6/3wcfXRGpyHl+8u9KjtUlMqsNrbw8iNNyPE0eT+eL9VWRniQiLoQ8m8czY7thsDj6cuZztyqoqLj6cN2cMITTMlx+/28xyJYMuOiaQKdOGEhzizbvvLGePMs1p0bI2b7wxkJTUfJ4b/Tv5+WVotWpGP9+NHj0a8elXG9i7X2hG2repx4RX+7Bo+RH+XipWWnF1lZXUrvP8uViIluvFBjN1fH8WrzvO2i1iwtGqWQyjH+/IF79u5fwVsa5+YngboqMCmfDRMixWB8EBXkx+oRcL1h3l6FkxuXqoXwsC/MxM/2EdLlmmfkwwj/Zvydd/7aSwtBIfs4GXHu7E/I1HSc68ybfZeuym3uapfq05cCHF8/9P9GnFrjNXuZZZgE6j5oleLVmx/wx5St7UkPYJzN95ArtT8G7q1QpiwR4xheuaUIfruYWcS8/BoNXQt0U8q46dw+mSaRARjFojsfPCddSSip5N6rHl3FUcLhfx4UFYXU6Op2Sg16hpXSeSbYqYuHXtWpzOyqFSSflWSSrOZuVg1GioFxbkcUq1iArnWLqYFt7JKRXp60Oh1UJhuYVQLzPlTjuZ5SL12+50ka382+JykFtRTrDJRKnDSpmSBp5nrcDhclLL+2YTc6sNPKOiRIH2mciuLMOs1eJSuSixWwgy3lw/uRk3ahV4aXUU2crx0RooUwB97uZGowK9Rk25ozrjxlenFTobjVgxibRwobNxw/qqAvwMamHdlqkZ4KdXAjK9FBKxe6ojGp9b6cR46MSiuVH0NbKyVrpD9MLN1VPV6AUZcKJXqaja3OgkCUnR4NxsbsQER6uSsP7flCb+/4e6diWbzPRCdDoNrdtXZ7sc3ndZHJziwwi8JSwxO7OI7MwiQSCuYULjdkfFxoXeUXuRnS7s36GRd15lWJS1wb3s3wajDqNZR2W5jeKCsns2OABteyVwaPt5Dmw5w8Mv9bjn46tWWHQgk75+jBmjfmX13D00aFGb7sP+a0LdW8tg0tN1SEu6DmmJtdLGmYNXuXQqhSunUrl8KpXcjELSr+eSrqwz7lRWZzkHcpdQ6SzBVxuCf15z/v52c42P1eo11IoNIToulOi4MKLrhxFVL5TIunf+Pf6TkmWZK6fT2Lz4INtXHKOsuMJzX7P2cfR9tB3t+zS960RMlmVOH7rGkn9t57DSnAO06hLPQ2N71OiKkmWZfZvOMPerjaQq0QKBoT48Oq4nvUe0rva9WS12ls/dw6JfdlCprLk692vKMxP6ElpFLH/uRAo/fLiKq+fFCaZug3BenDKIBCX6xFJpY8GvO1k6dy8Oh7CGP/liD4Y+Jrg4RYXl/OuLDWxTRMih4X68MmUQrdrXw+lwsWjeXub9SzikTGYdL4zvQ98hiVgsdn74cgMrFx/2PG/i24No1qI2Rw5e5fMP15CfV4okqXjkiQ48/kwnrl/LZezzv5OiOLmGDm/F82O6ceZMGlOmLCI/X9jCn32uK0OHtmTeH3tZsFBoaKKjAnl7ymAqLHaef2kOObmlaLVqxjzblXZt6/H2+ys4p8SpDB/cgpHDWvHR1zdXUkP6NmNo/0Te+2YdVxXo36iH2hNXJ4TX3ltKaZkFHy8Db73Yh0NnUnjv+/UAtG4SzcODWvLxr5vJKSjDqNfy+qju7Dlxjb83iSlLv44NiY4I4J1fNopmJzqYoT2a8vXfOym32Ajx9+LpQUn8smo/haWV+JoNPDOwDXM2HPHobx7v3YK5m496xMOD2icwZ8sRHE4X9cIDaRgbypxt4qKiQ6MYSiw2Np64hKRSMbRtAptPXhbTGF8zTWPDPWTijvG1uZyTR1ZxGd4GHa3qRbFBERO3rRfN+awciiotBHmZiAjwYfcVEbvQOa42u68lC9dTeAipRcWUWKwEmU14mfScysxCK0nEhwVzLD0TkSkVxoksEZjZOCyEs7k5HqfUtaJCHC4Xtf39SCsrxu4SSd+Z5aXC7u3jQ2alCM+M9BHNilOWq6eB+/qRqjilIr19SVOSwd02cL1ajU4tUWCtEOslpwWXy0WISXBtxLTGRJ61DL0koZZQ4hZMFNkrlPv1FNnLqzBu7PhrTZQ4KlABZq2aCqcFb63eQyz21miocAqon00Wt5nvBvBTa7HJFg/HxiHb8dJosbsqFcbMrXRisYJSq1RIynpJuKduRi9oFZ7NP49eUAE2T3OjlyTFIi40OMIq7m5u/jPB+bdqr3KCaNW2LsZbpiSH9oqxdE0OKff0pn7DCIym2x0xlxUmR1yjmoWgNpuD/BwhIK7JYeUuq+UmwO9e5RvgRWV5AYV5ZUTcB/22TQ+xurh4MpXcjKLbyLX3qqQeCTz8ci/+/m4z3765iKBwv38bAHiv0ht1tOzasJq7qiivlOvnM8jPLqYwp4SCnBIKc0soyi3FbnficrqwWCtZeuAnKp0l+JmDeLb/RIJDQjB5GzB7GwkM81UypvwIjvDHN9Drf4SsnHYth50rj7Fj1THSlAYDhLam5wNJ9HwgiYg7OOnc5XS6OLDlLIv/tZ2Lig5FklR06NuEkaO7E1cDS0mWZQ5tP88f32ziqvKZ9PYz8eDobgx6vH21xtnlcrFj7Unmfn1zuhPfNJIX3hxIoyp5bfm5Jcz+ehNblLWQ2dvAU+N6MuDBJM8a7eCui/z40Rqylddp0zmeF98aSGiEH7Iss3XdSX7+fAMlxRVIkoqhj7TlyTHdMJr0XLuczVfvreKSYj1v2bYu46cOIiTMl9MnUvjig9VkpImLgwFDW/D8uJ6oJBXffr6e1UpeVGRUAJOnDaF+g3AWLjjAvNm7cDhcBASYmfjGQJq3iGHWrJ0sUYTEUVEBTH1bQP7GT5jPBUVDNKB/M0Y/340lK44w7699uFwykbX8mf7mYLJySnj+lbmUlVnx8tLzxqv90Bu0jJlYZSX1Uh9kFYx96y8qLXb8fU1MHd+P42dSefPjFQA0jAvj5ae78s3cnZy/KiY5Tw1rg5+fkcmfr8ThdBEd4c9Lj3bm+wW7SckSa6sXH+7Eqcvp/LxE5EP179AQPz8TH88TYuPm9SNo07g2ny/YjtMlExcZRPeWcXyzdA9Ol4t6tQJp16Q2P6wWlvnGsWHUDgvwwPs6N6lDmc3GyoNihT+ifRP2XEwmq0i4n3q3qM/yg2dFindkKBqdxObTV1CpYGBiAzafvUKl3UF0oC/+Pia2nRcamx6N67Hj0jUcThdxoYFYnE5OpmVh0KhpFhPBrmvJ4jNTO5KjqRmCRhwcQKGlkusFhfgZDfiZjZzOykajlogLCfA0NyIZXDilEkKCOVtFTHyxBjFxHX9/rpUUIpxSAVwvKbjNKRXt4+tpbsK8vDzhmUbFBu6r02Nx2SlzWJWGRkxrhA28DEkFXjq9EBZrBV3Y4XJ5bOBiFaWl+DbGjVFh3KhQSzJWlw0frYFyRWdjUAudjY9Wj8UloH4GSS3CMxWoX1WAn5tOrFEBypTGSy3oxEZJTFtupxNb7kIntij8Gtt9RS9UFQ3rVDLgQIu4T7iobGgRERBaVArJGDQqkACNSsLK/WlM4T8NDgD7FVpph1s0Nk6ni2OHxB9kq/a3NzjnTooTTMId8qOSFZFinTusftzuKK1Og4/fncm5siIyvZ9VSEiEH1mpBWSm5JNQw9rs1goI9qFJmzqcOnCVtfP38fSk/vd8zq31+Ov9uHwqlaM7LzD1sZ948b0H6Pdou3/8Ov9O+QV5k9jpdm2Uu+x2O4MHDya3JJ2goCD2799PvXr/Mw1YTZWTXsjutSfYufIYl0/ftHdr9Rra9W5C74fa0LxD/XtyfyrLrWxacpiVc3aTqUwgtDoNvUa0YsTzXWtsjGRZ5tieS/zx9SYPy8Zo1jH0qU6MeK7zbdqlEweuMuuzdVxRmqCgMF9Gvd6HrgOaeT57NpuDFX/sY8Ev2z2Tnd5DW/DM+D6edVRuVjE/fbKWfUqmVXCYL2Pf6E+7bsK5lZFawHcfrfEI9GPrhTJ+2mAaNI7Ebncy71/b+Xv2HpxOF17eBka/1odeA5thtTr46auNrFh8CFmGoGBvXp8yiFZt63L2dCqfvr+KDMWRNWREK557sQcFBWW8/uqfnFXWWx07x/PahH4UFJbz4otzuK7EOQwclMiYMd3Ztfsi336/mcpKG15eel4f34+GDSOYMnMppxQ9Xe8eCYx9rhuz/9rLyrUnAGgUH86UiQNZu+UUfylrqnqxwUx9bQDL1h9n1SYxoWqeEMnLz3Tjm9+3c/K8eL0R/RJp0TSaSZ+spLTcgrfZwBuje7H90CXmrBKOq+5t6tO2eSzTf1yHxeogJMCLcY90ZtaKAyRnFqBRS4wd2ZED526w5oD4uY/s0Zyi8kp+Xunm2whO18+rhd6me2I9XCqZeZtFQ9g/qQHpBSWsPngOlQoe7NyMXeevk55fglGnZXiHxizefwqr3Ul0kB/1IgJZekA4T7s1qcuFzFwyMksw6bR0SajDKgXe1zwmgryKck6kZGLQamhTL4ot58WFY+vYSC7m5FJcaSXY20yQj4kDyamoVNAmJooDN5TYhchwzuXmYHU4ifb3pdxh53pBIb5GPT4mPedyctEpmVKns286pc7WYAOvHxjIpYLbnVLCBi6amygfX5JLi5BUEOrlTarS0Jh0GrIqyvDR6bDJToptlQQbvci3ivDMMLMXORYxrQk2mci1lqGX1EhqKLVbCNCLtG/3NKdQCc/Uq1WUOyw1MG4qPYwbRxXGjbZqeKbCuNGoVEiI8MyaAX4arK5KdJIalwfgJxxSbu2NGpAklAZGujedWFld3aQTi0lL1egFN8DvTtELKuzK5EhMclTYPIJlDUJPJJoblSI0/s8E574rJ7uYq5ezUalExlTVunIhk7ISCyazngYJtycvX1AOeA2b1iwgdmfhxNSrWUBcpAg7/QLMd50YSMrJz62vuFtF1Q3l1MFr3FDcWfdTQ57uxKkDV1m34AAPj+v5j7k2arXE2788w1cTF7Br9XG+fXMh1y9k8MK0of8tK51/t2RZZvTo0WzYsAGj0ciaNWv+jzQ3mTfy2Lv+FHvWnfBMWUD8Hlt0qk+XwS1o16fpfa0QczOLWDV3Dxv+PkhZiSAEe/kaGfBYe4Y81RH/W9amIL7v43svM/+7zZxTpox6o5bBT3RgxLNdPFotd924nM2sz9dzWAFWGs16Hny+C0Of7OD5LMiyzKFdF/nXp+vIUJLDGzSNYuybAzwOKrvdwYr5B5j/83YslTYktcSwx9vxuDKVcdidLJ2/jz9/2YHN6kCr0/Doc5158MmOaLRqLpxJ46v3V5OsTLfad23AuDf6ExjkLaY2768iQ9Gs9RnYnDGv9kKr1fDrD1tZvECskoJDvJk4ZRCJ/x97/x0eZbm27cP7Pb2k914IkJDQO4QeakBFETuKUkRQUAHrWs8qz3LpsqJYURBBFESK9N57770mhPSeTJ+5vz+ue4YEQnGV931/3/Nc28YGSWYmk0nIHHOex7Ef7ZNZs+ooX07fgNXqwGTS8eKk/mT1a87SpQf5doYwBwcFmZg8JZuWLeP58OPVbFYSky1bxPPWG/dx+lw+o8bPoqbGjtGo45UX+9O0SSSvvv0Ll66I/99PDO/E4AEteWfaKk4qa6qh2a25f2Creiuppx/uTPNmsbz6379S4TUhj+vHxZwS3vxwGQDNUqJ4/vFufPzDJq5eV2Lij3Unv7TKV7nQoXkCfTun8u7367HYnIQH+/H8w1359rc95JdWoddpeOGhrqzYfYrz10pQqySeHdyJnSeucOqq8Ns8PaA9205e4uJ1wcMZ0a8dK/edprCiBj+Djod7tOKn7YexOVzEhPjTvmk8P24T07qOTeKpsTvYePwiKkni/o7prDl2DqvDSWxIAAnhQaw6Kn6W+jRPYd/lXKptDiID/YgOCfCZiXulJrP94lVcHg9NIkKpdto5VVCMWaelcUQoe67eWruQER3BhdIybC4XcUEB1Loc5FRUEmw0YNRrOad0SkUE+HGmpAStWkVsUABnlKRUYmAw58pKUUkQV6cwM9o/gMtV5WhVKoJNJnJrKjFqNBh0agos1QTodDjxUOGwEW40UWq34MFTrw3cK27UkoS/XkepvVaZxthxuOvHwIP1RsodAtDnxond4/ExbiTA7GPcCPpwXcaN4M448Mhexo0ovvTIogXcB/CTNLipC/Cz1Qf4qSVcssPHuNFKKlBWUEaV8NfcmU6s9EupJF96SiSjRJT7ztULMhpQqhfEmkrn9eBIalQ40Ehq1LhRI6GWUCY5KmzcGwYF/lfgsHen2Ac3ax5H4E1TlENKQqpV+yTUmvqvsG1WB5cviF/Eac1vFT82i8M34k9o1LDA8SZXGoqX1z2/h2+TnCqmRVcUkNm9nE5Z6UTFh1CQW8amJQfJ/iemLwajjjc+f5qktGjmfLCK5bO3k3OugLe+GnnPNRD/7vOnP/2J77//HpVKxS+//EKnTv88dflOx+PxcOH4NfZtPMmeDSe5eOIGV0iSJDI6NqLnfW3oNrj1HePd3iPLMif3X2b53J3sXHvc932PTQpj6LPd6TusPYYGVqLeic286Rs4rfCXdHoNQ57swvCxvW/53MX5Fcz9fAMblx7C45FRa1RkP9KRJ8Zn1bvs1YtFfPP+Sg7tEq+6g8P8GPXKQPoMuTHZObL3El++t4IcRdSnt07gpT/cR7JikD5z4hrT/rbMh0Vo1T6ZSW/fR2xCKFaLg28/W89vC/YiyxAYbGLC1Gx69E3HZnPWn9pEBPDKG4Pp0KUx587k8/5//8ZVJYnYb1BLxk/qj8Ph4o9vLmSPQjBu0TKe19+6D7VGzZtvLODgwSsAdOqUwpSpg7mWV8bo52dRVFSFSiXx7DPdGfpAO76euYXlq44A0Cw1mrdfG8LRE9cYO2kOdrtL9EtNGYzN4eL5KT9SXWPDbNLx+ksDcXk8jH/zZ6w2J0EBRv4wKZsT568z9Z1FwtOXFM7kMX35ZsFODp0UU4qHB7YWbJyPf8NqdxIW7MeU5/owd8UBTlwQ/5+fvq8Ddpebv88S/rG2zeLo0a4x783ZiMPlJi4ikCcGtOPLpTupttgJ8TcxcnAHZq7aT0WN8N+M6N+O2esPUG21ExZg4oHM5sxRyjITwoNonxbPrI3C29S+cRwqjeSrWbi/QzN2n8+lSPHU9GqZ4vPbtE6MptrhYNf5HNRqif4tmrDmxHmxvoqJoMbpqGcm3nxeCJ0OSXGcLCyk1uEkOtAfg1bD0bwCtGoVGbepXWgWGc7F8lLsbjfxgYFUOG3kVVcTZjIhq+BKRQWBBj16nUhNmbU6/PU6LleWY9JoMBt1XK0SqSmjTsu1mkr8taJrqtBSQ7DBgM3jpMJuI8IkQH1u2UO0XwD5isnYK24kZEJvioFXOa0C1KdMa7ziRi1JmLRiFRWoE83e3iRVpdOCVlKhlsDqthOsM1BzR8aN8NmY1DocCuPGrNVg81gxqXQ4ZLsv6i0AfsKj4wP4yTcAfjqVBrkOgdgtOzAqtQze6cqtdOIb5GEVKJMWL524bvWCMBhrFX7OjeoFj4987PPgSGKCo5XUqHCjRoVaklEj+SZUGv6Xg3PPx+ux6dSAx+aIgmZvCOB3/kw+HreH0HB/wiNvrU/IVbqGAoPNt10/VZYrAifkzgJAo4grp/Pu7vHktGgALpzMu2e2jVqt4v5nujHjb8v49dst9B3W4Z+KfEuSxOMv9ScpNZr3J87l6K7zjOv7Hs9MHUzWTSbW//SZMWMG//3f/w0IqN+QIUP+rbdfW2XlyK7z7N90in0bT1FeXOX7mEol0bJLE7plt6LLgBa+Lqa7HZvVwZZlh1k+ZyeXFO8JQMvOKTw4qgcdb0MrlmWZA9vOMm/6Bs4qa1OdXkP2450ZPqbXLZ+/usLCgm+3sOzH3b4uqsx+GYx8ZQBxyTcaxyvLa/nxy42sVMB/Go2aB0d05fHne/tQCqVFVcz4aA1b14hUUGCwmdGvDiBLET811VZmf7GRFb8eQJZlAgJNjH1lAH2HiHj5gd0X+OzdFRTmixRUVnZLnn9lAIFBJg4fuMwn766gQHmhMPC+1jw/sR86vZYfvtvKT3N24HHLolTztcF07d6UbVvPMO2j1VRVWtFq1Tw7uifDhndk+/azTPtkDdXVNvR6DWOf70N2dqt6RuKYmCDefuN+NDo1L7w8h5zcMiQJHh/emUceas+0rzawebuYTLRvk8SUl/qz4LcDLF4pJhvNmkbzxsSB/LL8ICuUlFTrjDgmjurD9NmbfUWZ9/drSfeOjXnzo2WUVVowGbRMGZPF8XP5/PdXa8TtN0/ggayWvDtzAxXVVvxMel4Z0Ytl2074KheeHNSOKpudj3/eIr6HLZNpkhjO+z9v8vlpOjVPZNqv23F7ZJrGhdMpI4HPl+8UH0+KolFsKN/VKcv0SDK/7hL3/YFO6Ry6cp2ckgoMWg33dUhn6f6TOFxukiOCiQ4NYNlBMfHq17Ix+y/lUW6xEmI2kpEQyarjyuq/aSLH8gqostmJ8DcTGeR/w0zcNIntF4WZuFlUOAXVNeRXVRNiNhLiZ+KwUrvQIibKV7vQOjaaIwVC8KVFhnO+rBSXx0NiUBCFlhqsLhdR/n5UOe1U1AqBYvO4KKiTlCqy1BJmMmJxO+sXZjrcRPn5UWyrwSN76jWA142BR5r9yLdWo1WrMGo0lNktBOr11LqVGLjBTImjTgzc4TUOy9S67ITWaQ4P1uupdIrJjNPjwil7bmLcqOoxbgSsT4XNY/MxbiQE98bhsWNW67F7hIlYp5iITRodDo/1JoCfWgH4CcKxGg8ayYMHD4YG6cQeQG6ATiwqIYSvxoOsQP7utXpBeG6EIBJ/a5BwoZHUCgNHiD4VkgIAbDjl2tD5Hy1wHA4XRw5dAaDjTekpt8vjW0G1apt0y3W9ELPbGYi9ILSYO5Rjej0MDRmU6x6vV8K7orjTaZwRh96opaK0hitnC3yC525n4KOdWPjNZvKvlrJk5lYeHf/7ElV1T5f+Lfh46cu8O/4Hci8UMu21+fw8fR2PTuhH34c7oNX9Z3/sVqxYwQsvvADAH//4R8aOHfsv36bT4eLM4asc3n6WwzvOcu5ITr0aBqNZT9seqXTMyqBjVsY9TWq859qlIlb9tIf1i/ZToxRV6g1aej/Qlvufzrwtrdjj8bB7/Unmf7WJC0qHk96gJfvxzjw8plc9+jCIqeKyebv45dut1Cpx7ubtk3lu8kCa1fGROZ0uVszfy7yvNvli3137NGP0lEHEKG32TqeL334S6yirxYFKJZE9vAPPvNgX/wAjsiyzZe1xvvloDWUKqDJrcCshXoLNVFZY+OaTtWxc5U1PBfLSG0Po0LUxtTU2pr23klW/HQIgPDKAl18XU5sL5wr44J3lXFL8bb2y0nlp8kAklcR7f1vGBqVeIqVxJG+8fR/hEQG8/48VbNggpgxNm0bx5lv3gwQTX/6RcwpJfOCAFowfl8XqdceZ8f1WAfML8ePNKYMxGLQ8//JcCoqqUKtVjH66O107N+btd5dyQUnvPTq0Pf17Z/CnD5dzWaEc111JlVdaMBq0vDq6LwWlVUz9x1I8skyj+DAmPtOTr+bv4MxlsSp/ZqiouvjjFyuRZWiaGMFTQ9oz7aetlFbWYjLomPh4d5ZuP8Ep73UGd+R8XjHfrxJi5f5uGdTYHHy3Urzdv0NTbC4XczYIv83gTs3IK6vkt93icRneoyW7z+WQU1yBXqtmeLdWLNp7HIvdSVSQH20axfLLbvG96tQknuLaWnaeE/1SA1s3ZdXRs2LVFBmKRqdm27krSBL0SU9h87lLuD0yqVHh1DgdHMsrwKjV0CIhmm0XrwDQITGWI3n5ON0ekkKDqHU5OV9Sir9eR1SgP4ev56OSID06kiMFonahZUwUxwqFsbhZeBhnSkuQoV6nVGJgIHk1N9JR3qRUvJKUcsky8QEB5NYI4ZIQEEiuko6qm5SKNPtx3SK4Nn46HUXWGvy0Wly4qXEpaytfDFyYjG/EwC34a3VY3HZk+UYMXAWYdVqqXVb8NQZfKsrLuBFlly6cspsgrZj2aCVQq1AYNwasbqsA4qlkpS9KAPx0KgA3HmQF4GdtAOBnrwPwk1Dh9sXG3XXoxFpJQo3HRx6uTydWga96oS6duG71Ql06seem6gWEB0cxIXvFjVbSIOFWJjkyalRiSoRK8fjc2/kfLXBOn7iG3eYkOMRMo5s4NZfOF2CzOvHzN5DQKPyW615SfjE2ug2jpDCvAoDIO6SSHHZv/PvO3wbvhKeq3HLHy4F45d6yYwr7t57h4Paz9yxwjGY9o94YwoeTf+bHz9bRsU/6PV+3oZOcFsPnq6awYu4Ofv16E4W5ZXz2xgLmf76OR8f3pc+wDv9Sh9Xtzr59+3j00UfxeDw8++yz/OUvf/mnbsdmsXP60FVO7rvIiX2XOHP4qo9H5D2xjcJp36sZnbIyaN4p5XcJN6fDxe71J1j1026OKl1mAFHxIQwZ0ZX+D3fE/zaTP7fLzdaVR1nw9WZylCd6vVHL4Ce68PDongSH1Rc2ToeLNQv38/PXm33G9uTUKEa+MoAOPVJ9Uz5Zltm96TTffbzG57NplBrF868NrlcUe2j3Bb76x0pyL4spZVrLeCa8NYQmihDLyynl8/dW+kzEcYlhvPTGYFp3bIQsy2xYdZRvPl5LVaUVSYKhj3XimXF9MJp07Nt1nmn/WEVJkZiIDXmoHaPGZ6HXa5g7axvzZgvzcUCgkYmTB9EzK519ey/y0fsrKS2pQaWSeOzJLox4prsS/17oWz098WRXnnqqK2vWHufLr0XNg7+/gcmvDCQjI46//P039isveDK7NOHVif1ZsfoYP/y0E7dHJiYqiD++NoSreWU8P3muWD8Fmnhz0kDKKiy88MZP2B0uQoLNvD1xEMfP5PlWUo0Swpgyti8zF+1h/zGxPhzSuzmd2yTxh89WUF1rJ9DPwNRRfVmx/SS7j4r7cV/PDGKjgvnzN6txe2RS4kJ5bGA7Plu4jcoaG4FmA88/1JV56w9yrbgSnUbN6Ps7s2bfWS5eL0WtUvHsoPasP3yeK4XlaDVqRvRtywrFb2M26BjeoxXzdxzxiZmuGUnM3SbEZetkAa5cdVhMroa0T2P72StUWGyEmI20To5h2WExxenSJIGLJWUUltTgr9fRKinGRybukpLA8esFVNsdRPqbCfY3sVcxE3dOime3QiZuFRfFmeISbC4XsYEBuPBwTqldiAw0c7ywELVKomlEmE/cpEcK9o2MTLPwME57zcQhoZxroHbhdp1SCYGB5CqR8Gg/f67VVqJRSQTojYJro9EiSzIVDguhRhMVjlvbwEMMJkrsYlqjkmRqXDaC9aY6xmIDFc5apflbFnULWqOvXDNAYdyYNTpsdRg3tQ0ybiwY1MIw7EH2AfyMKg1ulGi4Wl0P4OddT7llJ8YGAH46laTA/UQ0XIgTL51YcGtuoRNLoKYundiFQSVRn04sbkcjyXXoxPii4hJOdJIGcKGVtIrI0SprKiFyNKhFVP1/Jzj3do4qu/h2HRvdsso5eVT8h2vWIg6V6lbJ6C3/S0m9jcC5LiY4kXdA9dvvkW8TGCye6Lwrrbudtt2aCoGz4xwPj+l1T9cB6DO0LdtXHWXvxlN8OOVnPln0r9GJdQYtD43pTfZTmayet4uFX22i6Fo5099ayHfvLKNTv+Z06dectj1S8Qu8fYrsXs+FCxcYPHgwFouFgQMH8s0339zTis5hc3LlbD4XTlzj4olrnD+ey8WTebeYuoPC/GjdLZU23ZrSOrMpEXeI9t/uXD1fwPpf97Nx8UFfBYdKJdGhdzOyn+hCux6pt01U2W1O1i86wKKZWynIFRFps7+B+0dk8sAz3W5ZdbrdHjYtP8y8zzf6JopRccGMeKkfver4ZwDOn8xjxoerOX5ArGWDQsw8/WJfBjzU3nd/CvLK+fajNexUqN9BIWaee7k/fe9rjUqlwm5zsmD2dn75YSdOhzARP/5cd4Y/0w2dTsP1a2VMf28lhxQacnLjCF5++z7SmsdRWWHhsw9WsVFZdcXEBvPKW0No1TaJi+cL+eCdZVxU/Dvde6Xx0pRB6PUapn20mhVegnF8CK+9eR8pjSP4dsZmFi0SPpKYmCDeePM+omOC+dNfl7Bnj3jSbdsmkddfG8L5C4WMeuF7Kiot6PUaxo/tQ+eOKfz1veUcUZJv/XqnM/bZHsyYs511W8TX37ZlApNf6Mf3v+xm/TbxJN+hVSIvPNOTz77fzGHFW3Nf3xb06prKH6atpKS8Br1Ow6vP9uFKQRlvf7oCgOZNohnxQEc+mrOZwtJq9Fo1Lz3Zk/0nc1i2UFCHB3RJJSYyiL/NXocsQ7OkSAZ0SWXar9uwO1zEhAXwWFYbvl6+h1qbg7BAM4/2ac336/YLHk6QH0O6pDNn40GcLjeJEUG0T0vw+W3aNIrBaNT6klHZ7dI4cuU6eWVVGLQaBrVL5beDAt6XGh2OTqdm46mLSBIMbNWUTWcuYXO6SAgJxN9sYPuFKyBBr1RBJvbIMmnR4ZTbrJwuLMZPp6NxRAi7r9xqJk6PDOdKZQW1DidR/n64JQ8Xy8rw0+kI8TdxqrgYrUpFUkgwp4qLAJmm4aE+cdOkrrgJDeFixa3iJlERN5IE0X7+vsLMAIOefEs1Zo0WVLLSL2WkwmnF4/EQZfKnSBE03jZwtSRh1uoo98bA3Xacsocwg9lnLA7S66h0WvDTaLHLdlyyTLDWSJXLiloCg0aF1W3zxcBvx7jxa4BxY1JrlH4pAeaTkNGpvbUMmhtTGqVDyluQeQPgJ6NW+DVeOrFR8dAIf41ITxlU0j3QiZUJzk0AP2+KSoiVG9ULEq5bxI1O0inMHI0ihjSK0Vit3Jd7O/+zBY6SMGnb6VaPzWlvxUIDCSm32+PryUlu0jChuLhQeArCo27153iP0yny/Brtnb8N3nVHaVHVHS/nPe17pvLNO3B83yUqSmvueV0iSRIT//4wLwz8kEunrvPRlJ95/dMn/+WiS4NRx4Oje5H9VFdWz9vN0llbKcwtY8vSg2xZehC1RkVGh0aktUkkOT2WRs1iiG0UcdfodN1TVFTEwIEDKSkpoW3btixcuBCttr5wrK22kXepiGvePxeKyL1YSO6FwgYN3BGxwWR0bERG+0Y079jon6YW11ZZ2briCOt+3V8vVRUSEcCARzsy8JFOdxRLVeW1rJi3m2Vzd/qM6QHBZh58tjv3PdXllri3x+Nhx9oT/PjFRh/QLyTcn8df6MOAYe3rTZqK8iuY/dl6Nq04AogJ4ENPd+ORUT18PhubxcHC2dtZOHsHDrsLlVrFA4934snne+MXID733u3n+OqDVeQrQqpd5xQmvDGY2PhQXC43v8zZyY8ztmC3u9Dq1Dw1uicPj+iKWq1i87oTfPnJWiorFB7OIx0Z+Xxv1GoVc2Zu5acfdvqmNi++OpBeWekcO5rDB++uoEAhGD/0cAeeG9OLnJwSxo373gfz88a/Dx2+yh//vJiKCgtarZrRz/UkO7sVX393w0ic0iiC/3rjPq7klDJqwmyqa2wYjVpeGd+f+PgQJr41n+sFlSKV9EQm7Vsn8do7i7mWX4FaJTH6iW40To7glb8upKLKitGgZfLYvhSUVjP574vxyDKJsSG8+lwfvv11F8fPCZ/VIwPbEBURyFufrcDl9hAXGcS44Zl89esOrhVVotWoeWF4JvvP5LJ6uYiNP9A9A5VWzSe/bAOgS0YiybFhfLRQvN0qJZrUpEg+X7ZTeTuGuPBAH98mMyMJFx4W7hRrp/s6pnMsN58rV6+j06h5sFMGvx04hdXhIibYn6ZxESzeL9ZZ3dOSOFdYSkFhNSadlsy0JJ/fpk1iNNerqrl6vRCzTkuLhGg2K2TiLikJHM7Lx+p0EhPoj1aj5shtzMSH8q4jA03CQ8mtrsDqdBEd4Ifd4+ZqRQWBej0mg45zZaUYNBrC/E2cKytFq1IRExDA+fJSNCqJqIAALlaUoVFJRPr710tKXa2uwKBWY9JrybdUE6DT48JNqc1CiMFIpdOK2yUEjbcB3NsGLiETorSBGzUaZGSqXTZC9cY60D5hLBYxcBU1LuutMXCXVXhzcOLweAjUio+rJdCpJJ/3xuqxIgEGpXPqZsaNw3ODcaOWQCXJuOuYiA1KLcMNgJ/Dx7jRSBKSUpB5M8DPC+e7AfBz+cSNdzpzK53YpdCJbwD8RIrKeVs6sVRvciPEjQatsqbSKmsqDWLW8L8m43s6ly8UolLpad2Ax+a8YvJMbSAeXlxYKWKuWjVRt5nQVCrrJO/0paGjVovpwt3i3zEJwvdQWliFzeLwIfJvd+KSw0ltGc/ZY7lsWHzgd01xQsIDeOOzEfzXc9+xbeVRQiMDGfuH++/5+nc6eoOOoaN68sBzPThz+Co7Vx9l38ZT5F4o5NjuCxxTUi8gahESU6MIjwkmKMyP4DB/gsL9CQr191UwqJUKBpvdyqgXR3Dx4kUiwqIZN/wNfv1yK2WFlZQUVFKSX0FpYWWDXVLeExBsJqV5HI2bx5GSEUuzdsn/1ITGe1xON4e2n2Xj0kPsWX8Ch12YedUaFR17N6Pfwx3o0KvZHY3X+TmlLJ29g7W/7vNN+yLjgnlwZHcGDO94y8+BLMvs2nCKHz/fwJVzYsLoH2hk+Oie3Pdkl3orwZoqKwu+28rSeTeMxn2GtGbkxH5ERAf5bm/LmuPM/GQtJYVCXLdsn8z4NwaTpAj7wvwKvvpgNbu3CuZJWEQAz786kO59BUDy1LFcPnt3hS9x2Kp9EpPeHEJsQihFhZVMf381e3eJJGNSo3Befes+0jJiOXcmnw//vpzLikDL7JHKpKmDMBh19aoWIqMCmfr6YJq3jOenn3bz41whhkJCzEyZkk3LVgl88dVGVq0WlQKNksN58437cLk9jJs4h1wFFvjIsA48+WgXvpm1hZXrxBQprWkUb08ezI59F3jv8zW43R4iwwP446vZnLlUxIS3f8bl8hAR5s8fJmWz5/BlpryzCLiRkvru192+ldSgHul065jCHz9bQWWNDT+Tnskj+7D98CUWrD8ivgcdm9A2PZ6/frsGu9NNdFgAY4Z1ZcbSXVwvqUKvVfP8Q5lsPHSOE5eUaocB7TibV8K8DWKtNLR7c/LKKlmwRdzm0MzmXMgvYcW+00gSDO/Rip1nrpJbcsNvs3jvCWrtDsIDzHROTWT+LiF82jaKweJysfmUiIRnt0ll/ckL2Jwu4kICiQz2Y91J8f3r3awRuy7nYHO6iA0OwN+oZ/elHCQJujVJ8vltMqIjuFZZRaViJg72M/rMxC3rmIlb1fHYNA0L5UpVBXa3m9iAACodNq5XVxNqMuGRPORWVRKoN6BVq7haWYGfTodepyZX6ZTSaVXk1VQRoNMjq0RSKkRJSpXbrYSbTJTZbzSA1+2X8qamIsxmCm3CWGzQqCh3iCRUjcuOB2EsLnMIBk6Q3nBLDNzbBi4mMzrFe6PDpkxmArR6atyCJizjwiV7CNTpFJ+N8K/UZdwI/4u7QcZN3RZwk1qDW6ll0CorKK+40anUvvTUrQA/FTJOH3nYZzDG7mPcNEwnBuomo+5IJ5aU9Zemnsi5IW70Yk2liBzQIQW+Awy93a/Neud/tMDxeGTiE0MIuyllUltjIy9H/OJr0oAPJU95dRgdH3LbKUO1gt8PuMPq5Ub8+85kxoBgMwHBZqrKa7l2pYTGtzE21z0DH+3I2WO5rPllH8NG9/xdZN42mU149f1Hef+Vn1gyaxuhUQEMG93rnq9/tyNJEs3aJtGsbRKj336A/KslHN5+losn87h0Oo/Lp/OxWx2cV+oY7nQ8sofDJcsptl1BqzLQVNOPxV/uvO3lg8P9iW0UQVyjCOJSxN+N0mMIiw76l+nFsixz/vg1Ni09yJblh6ksvbFSTGwaSb+HO9DngXYNsmvq3sapQ1dZMmsbuzfcaBJPSY/h4TG96D6wxS2Fm7Iss2/LGeZO38BFRZib/PQ8NLIbQ5/uVo+343C4WLlgLz99s5lqxdDcon0yY6YMpGnGDQry+dPX+eq9lZxSJk4RMUGMnTyQTIV87XC4+HXuTubP3I7d7kSlVvHQE515ckwvTGY9NdU2Zn2xgVWLDyLLEBBoZMyk/vQb0gqPR+a3hfuZ9fUmrBYHGo2KJ57tzqMjMpE9MjO/3sQvP+3G45YJDDLx4isD6JmVzoljuXzwj5U+Fk72kNaMm5BFUVE1L704h3OKqOvZM41JLw8g91oZY8bN4vp1sYYY/nBHnhnRjcXLDjFrznbcbg9hYX68OXkwfn4GJkz+kdy8ciQJnhjemQeyW/GP6Ws5cFQIlN6ZqYx5ujvTZ21m1wExlejRqQkjH+3MR99u5MRZ8dg/OLA13To05u1PllNSXitWUs/1Jq+4irc+WQ5AanIEY4Z3Zdq8reQWVKBWq3jhkUyu5JfxwZxNAHRukUjHFkm8M3s9Tpeb2PBARmS356ulu6ioseJv0jPmvs78tOkI+aVVGHQans3uyJKdJ8gvE28/3a8di3Yep6TKgr9Rz7DuLfl5+xGsDifRwf50Tb/ht2mZGI1Br2HZAbGCG9Q2lX2XcimptuBv0JGZlsRyBd7XJimGEouFA1fy0KlVdE9L9vltWsVHcb2qmtMFxfjrdTSNCfeJm87J8RzIycPl8dAoLJgqh50LJWU+M/Gh6/lIkjAQH/WSiaMjOV4k1pN1axcSgwPJr63B7nYR6+9Pmc1KpcNFpJ+ZSqedaqudSLOZSqeNGpvolCqzW3G43ET7CWbNzUmpuv+OMvuTb6lCo5Lw1+kpsdXip9XixEWty06YwXzDWGwwUeaoQSNJ6DVaqpzWBmPgGklCq1JjcdsJqvNxP62OWrcVs/rGKsorbgwqkXISjButUpSpxS2LiczNjJu6LeBmtRaXbEUtqVApa6abAX5qZDQKgbhhgJ9iCJYk5DoAPy+duK6vRifJQpggJkY304k1iIbwG3RiGY2kQsKNTtICbp+40Ul6JNxoJB0SHpD8kIK/QbLdHux68/kfLXCg4YTUeSUhFRkT1GDE+5piwIxTJisNnaoK8eQRcIcJjkZ5onLdA98mvlE4Jw/Wknup6J4ETs/BrZnx9+XkXSnh6J6LtO7y+wB3vR9oS2lRFTPfXcF3f1+BhMSDo3r8RyoMohPDiK5TK+F2e8i/WsLVcwWUF1VRXlxNRUk15SXVVJbU4HKJCga3282Wk4sptl1BrdLwWJ8JNElOx2jWY/I3EBIRQGhkIGHRQYRFBRIaFYjJ7+5wvd9zZFnm4sk8tq86xvbVR32UYYDAUDO97mtDn6HtaNIi7o6PncvpZtf6Eyyeuc1HHQaxbnzo2R607tr4luvLssyeTaf5+atNnFdSVEaTjqFPZ/LgyO74B95YXXk8HrasOsbcLzaSr0wtEhqFM+rVgXSsYzQuLarih883sn7ZYWRZRm/Q8uioHgx7OtPnFdu/8zxffrCK64oPqHmbRF56YzBJjSPF1GfdCb7+aA3lyjqt35DWjJnUj8AgE5cvFvHpeys55V0BN4/jlbeGkJgczqkT1/jo3RXkKFybXlnpTHhlAAajjq++2MCSX/cLmF+4P6++Npi27ZJYtGg/s2aK1JOfn4GXJvajR4805szdyfxf9uDxyEREBPDGa4OJjAzi9T8u9BGJe3ZL5eWX+rFq7XFm/bgDl8tDeKgfb08dgtXuZPSrc6mssqLXaZg0NouoqEBe+sMCSspq0GnVvPhcb0KCTUz880KqlYnMa+P6czW/jMnvipVUUmwIr47qw8xFuzlyRnyPHuzbkkYJ4bz12QrsTjeRof5MfKIHs5bt5UJuCSpJYuT9HbleVsW0BVsB6NG6EY0Twnhv3kZkGVITIujbvinTl+zE4XITHxHE4C7pzFyzF7vTTWxYAH3bNWXm2v2iYTs6lOYp0fX4Nlqdml/3iGlVdttUjuUWkJtTqfht0lh26BQut4fk8GBCA82sPibWUP1aNGH3patU2xxEBJhJCA/2iZseTZPYcyVXEIdDAtFo1RzIyUMjSXRIivOZieuSieOCAnB4bpiJo4P8OFpQgCQJA/HxIlG70DwyghOKmbgumTglOIRLFWV4FI/N1eoKPLLH1x3lQfhtrtatXWggKRXt50+epQq1JBFkMFBorcas1SJLHiqdVkEeVhq+I4x+FCv9UiF6A2WOWlFgiRur264IGi/Ur34M3OFxEqI3UO2LgasV740ox5SQ8dNqhM9GLQo1BeNGjc1jq8O9uT3jxi07lfWU1ce4qbuC8gL8hC/HpQD8JAXgJ9ZTDQP8hHn4BsAPVA3QietXL3jj32KCU796QVImOSI1pUYYi7U+cSP+RhWGFDwTSdsMbPdm1YD/FTi0aHNrzcIl5ZVg49tULNxLA7ilRqxDzHd4QvU+YXjj4nc6iY0jOXnwCueOX6P3kNZ3vbzRrCdraDtWzNvNvM/W06pzyu8WJ8NG96SssIols7bx7d+Xc3T3BV55/9HfFYH+Z45arRITltsAEr3nr3/9K6fX7UOlUvHrooUMHTr0P3q/vMfj8XD++DV2rT1xi6jRG7R06ptB1tC2tO2eelf2T0VpDasX7GXlT3soVXxbWp2GrKFtGTqyG4kNpPQ8Hg87159k/tebuaSIcYNJx5DHO/PwqB71wJGyLLNv+1lmf7qey8rPdXCYH09P6Ev/oW190yCb1cGiOTtZ+P0ObEparHd2S557ub+P85R/rYyvP17Dnq0iURMS5s+Yl/vTe2ALJEni2tVSPn9/FYcVQGZcYigT3xxCq3ZJOOwuZn+zmV9+3IXL5cFk0vHcC30Y8lB77DYnX05bx9JfBcwvOMTMxCmD6NYzjePHcvnwHyvJU0TZwOxWjJuQRVWllVdfnccJpYKhY8dGTJ6STVW1lQkvzeHiJbHa6t+vORPGZ7Fz9wXe+stiLBYHRqOOiS9k0aZVIn/++zKfkbhH16ZMfCGLHxfuZckqYVxunBzOW68MZtOOM7z/tTD3JsaG8NakbFZvOcFH3x4BRJfUy8/14ev5Ozl4Qky9sntm0L1jCn/8bCUV1YJc/Oozvdl/KpcPfxBTmq6tkundsQl/m7kei81BcICJlx7rztw1B7iYV4paJfHcfZ04lVPITCXyPaRLOh4JPl8qJpXdWyQTGGDkqxWikqFLeiImo47Z68Uar0/rFCqsdhbvFubhoZ0zOHQlj6vFFcJv0zmD3/afxuoQKarmiVEs3i8u26VpAtfKK9l/6Rp6jZrezVNYc+IcsgzpsRHUOp3sv3INrVpF18aJbFHgfa3jo7laUUFZpZUgo4G44MA6ZuJY9uUKsZcRFcHF8jKfx8YteThfKoROeICZk8VFqFUSKaGhDYqburULjUNDuVBRys1m4uQg8e+7JaXyLdWYNBokFZTZrYpIseKhfmFmuFH0S2lUEga1WoH2Gah2edvARVJKQP3UgkisMVBbJwZe7bKgU6mQcYu6BSUGrpZAp5ZEl5RGj9UtRItOIwmfjRIDF1MXEQ03a7TKeupWxo1BpcWtQPp0kgeP7PEZjOsD/GQ8uJXJje0OAD9nHYCfpKyexARHUpJREu4G6MTe6gUVamWCo1bAfcKDI4zEYl2lqy9u1AlIwbOQNA1XIt3p/I8XOOkNlBP6KhZSGn6CLVb8COGRDQPcZFn2GYjvFB32TneqKu6ejmrZsRGrFuzl6N6Ld72s9zw6rg/rft3PiQOX2bf5NJ36pN/zdUGsksa8fR8xiaHMeGc5+zafZsLgj5n68eO0bqCb6//kmTVrFn/6058AmD59+n9c3DgdLo7tuciudSfYu/EkpYU3XkXoDVra90qje3YrOvZuhtF8Z64RwLnjuSybu4utK47gUn5WgkL9yH68M/c91bVBEel2udm25jgLvtnCVSUebjTruf+pLjz4TLdbiNgnDl3h+0/XcVIx05v89DzyXA+GPtnV59/xeDxsXnWM7z9b7/PZNGsVz9gpg3wVJDargwWzd7BwjkhHqdUqhj7emSfH9MTsZ8BhdzHfm55yutHq1Dw2sjuPPJOJTqfh6KErfPqPlVxT1r5dujflxSmDCI8I4MDei0x7fxWFilm436CWjJvYD61WzRefrWPp4gO+3qlXpgyiQ8cUli8/xIxvNmOzOTEadbwwPosBA1rw6+IDfD97G06nm8BAI69MGkirVgl8MG0N23aI6UPz9Fjefm0Ip87mM+rF2dTU2jEatLw0LovUJlFM+dOvXM4RT56PPNCO+wa24u+freHUOSEk7+vXkvsHtOTdL9Zy8apS1fBAB1pnxDP1/aXCXKzX8uqoPlzNL+eNj0UFQ9OkCJ5/JJNPf94mKhhUEqMf6kJZtYW/zRQVDG1SY+nftRkfzNtMrc1BaKCZsUO7MHvNPq6XVPki4BsOnudsbjEqSeKp/u3Yfz6Xbacui9Va77bsOZfDhTNXUaskHu/dhvVHz5NfXo1Rp+Xhbi34dY/g20QEmuncNIH5itG4TXIMDtnN+hOiLDO7TRqbT1+i1i5qFhpFhbBaMRN3T03k8LUCqm12Qv1MJIQG+cRN9yaJ7LqSi8vjITk0GLvbxYn8QowaDU2iw9iXm4cMtI+P4YBCJk6NCOVqlTATR/n74cTD5fJy/PU6AowGzpaWoFOriA7050xZCWpJIiEoiHNliqAJCfaJm8TgIC5XiVVjrFLBoJYkIvzM5NaITik/xVgsJjQiKRViMFLlMxb7UaQIGm9hpgQE6g2U2Gsxa7S4ZCdWt4PQOsTiEIOeCqfF1wZudTtuioFrqHFZMKl12OW6MXArBrXwvLhl2SdudCoJJDduWcZPiYF7PToyMiaNSE81xLgxqnWKiVjEuEHGoDSEexk33pVRwwA/lc9gfDuAn4iIu24C+P1+OrHg3MhoJI24LUXkoElHCv4OSX334uiGzv9ogRMUbCZKMVTWPd4unKTbCBwvoyOsAYIx3EhHAWjv8Are+4R0L/HvVp1F0uvy2YJ7TkaFRQXywDPdWDhjC99/uJr2PdN+VzIJhMgZMiKTjA6NeHfiXHIvFPHWiBk8Mq43T07q/x+H9jV0Vq9e7YP3vfnmm4wfP/4/8nmKr1dwYNsZDm49y6Gd57DW2H0fM5r1tO+ZSubAlvcsamxWB1tXHGXV/D2cq7OGatoynvtHdKX7oFYNxvIdDhcblh5i4Xf14+FDn87kgae63sLLOX8qjznTN7BfeVLX6TU88EQXHhnVA/86nrCj+y/z3cdrfK33ETFBjJrUnx4DmiNJErIss239Sb6dts6XCmzdIZnxr2WTqEzXDuy+wOfvryJfKbls36UxE14bRExcCFWVFj57fxXrVgqDb0ioHxMmD6RbrzSqq2188M4y1nlBf1GBTHotmw6dUjhy+Cofvb+SfC/BOLsV48ZnUVNr47WpP3NYqaFo1TqB114bjNsjM3nqzxxXVk+dO6cw5ZVBnL9UxHPjZlFaVoNareK5Ed0Ykt2az2dsYt0mkQgSJZmD2Xf4CuOm/IjD6SYkyMSbk7Kptth5/rV51Foc+Jn1TH2hHxabkxf/OB+b3UVQgJG3Jgzk6LnrTPnHEgCaJIYzcWQvvl24i6Nnb6ykmiRF8ub0FdgdLsKDzUx6shfz1hzg1CUhVJ8c1A6by827czaIx7lpDN1aN+KD+Zt9/ptHs9rwzfI91FjtBPsbGdG/HT+sP0BFreDhPNanNfM2HabaaifU38SQLunM23pYrLDCAmnbJI45W4Xfpk1yDGqNit8OiHh7dttU9l2+RnFVLX56HT3Sk1mh+G1axEdicbnYdSEHtUoiK6Mx609fwCMLeJ/F6eBQ7nV0ahXtk+PZdklJp8bHcLaomFqHk0h/PwwGDUevF6BRqciIjuCAYiZuo5CJfWbi6krsLhexAf5UO51cq6oi2GhArZG4ohiIzTodlyvKMWo0BJr0XK4sx6DWEGASFQwGjQazTse1mirMWi1ajUopydTjlF2U2a2EGU2UOyy4ZSFoCpWSTG9SCmTClKSUKMyUqHRaCdaLhm8xrRExcBXgp9NQdUsbuIkqxXuj00hY3fZ7iIHrlAoGLS6FZ2NWa5X1lODZCLHiJRffyrgx3ZZx4/AxbrwrIy+cT8bhY9xoJSFORHeUF+AnbsuoEiJHL4kJjhoUgeNBq/J6cISxWC95Jzh3oxNLysdALYlJDrrOSEFfIqn++Y3B/2iBk5oe06CvwRsBT2wA8Af4XumG3wbB702lwJ0nOEEKt8RbunmnExTiR3JqFJfPFnBkzwV6DW591+sADB/bi9Xz93L1fCErftzFA890u6fr3XyS06L57LeX+ea/f2PN/L0s+GoTm5Ye4sFRPRj4aKd7eoL/d5wDBw4wfPhw3G43I0aM4J133vm33XZttY2TBy5zdPcFDm47w9Vz9QtLg8P96dI3gy79m9Oyc+N7ZgRdPV/I6vl72LDkoI8grNGq6ZHdivtHdCW1VcOjV2utnTUL97Po++0+REBAsJkHn8lkyOOdfRFt77lyoZAfv9zIjvXiyVulVjFgaFuefKFPPTGec6mImdPWsVdZNZnMeh4Z1Z2HnuqKTi/WppfOF/DVB6s5prCiIqODGPPKALr1EY3gRQWVfP3xWnZuFk+QoeH+vDB5IN36NANg3cqjfPv5BiorLEgSDH6wHc+N64PZT8+Wjaf4cto6KsprkSR44OEOPDe2NzIyn32yhmVLFYJxRACvTs2mfYdkVqw4wjdfb8JqdWAwaBkzphf33d+WlauO8vWMTb5pzvhxWfTuncY3M7fy2wqxZkqID+Ht1+7DZnMyduIPFCjgvxGPdWHIgJZ88OU69h4U04cu7RsxcUwfZi/cw5rN4nFskRbL5HF9mbNoLxt3iif9di0SGPtkd6bN3szJ82K681D/VrRrkcBb05ZTVWPDbNTx6sg+HDiVyz++F8KlU4tE+ndN473ZG6i22Akw63npsZ4s3naMk0oq6on+bSmrtTJ9keDfdG/ViISoYD76RfhxWiRH0To1lum/7RQiIy6cVo1j+HqlaAnPSIoiITKI7zeKFVVmWiJ22c3SfeLrGdK+GYcvX+damfDbDG6fxm8HT+N0u0kKCyYy2I+VSllmVkYKB3LyBNjPZCQtLoK1p0RqqmvjBI7lCXhfhL+Z8EAzOy8LcZPZKIFdl3OQgbTIMPJraygoqyHYZCDYbOJIfgFqlUR6dCSHFXFT10ycGh7GhfIyXB4PCUGBFFlrsFpcRJr9qHE6KKytIcxkwia7yK+tIcRgxIGoYAg1mrC4nZTYLISbTFQ5bVgcDrFmstXioX6nVHSd1FSU2U8kpVQSRq2WMoeFAJ2eWrddqWC4UZgZohcVDHq1CpXKg8VtJ1hvpFpJSgVqDVQ5LRjVIknl9Hh8beBqCfR1KhhEDFxWYuC2OjFwGb1Kjd1j98XAVcholAoGP7UWp2y9iXEjWDh1GTeamxg3BkV4CH6NiHYbVSqFbXM7gJ/zFoCfmLw4FXF1OzqxVkx0bqITq1ApsXEVGkmFCgmVpEZCBsMgpMAPkKR/DQb7P1rgNG4gIVVRVoul1oEkQUx8wx6bSmWlFBTacIdUXdEky7enLnoZOZVltVgt9rtWNnTslcblswVsXnH0ngWOf6CJpyb15+v//o3v/rGSxs3jyGiXdE/XvfkYjDom/X04bbs15as/L6U4v4IZf1vGT9PXc9/Tmdw/IpOgsNsnhP6Vc+3aNbZu3cqkSZOora2lb9++fPfdd/+S6bm6wsLpQ1c4vu8Sx/Zc5MKJa/XqF1QqidTWCbTvmUa7Hqk0aRF3zxwca62d7auPsXbhPl+jNwhScfZjnek3rP1tp3AVpTUs+3EXy3/e46tuCI0MYNiz3RnUQDw872oJ877ezOaVR339Y72yWzJifJYPMQBQXlrDvK83s2rRATxuDyq1iuxh7Xlq3I0izoryWuZ8tYnVSw7i8cjo9BoeHdmN4U93Q2/Q4nC4WDRvNz/P3Ibd7kKllhj6aCdGjBXpqZwrJUz/cLUPopnUKJyX3xhCeos4igoqefcvS9mn4AASksJ49Y3BZLSIZ/++S3zy4SqKlBcPg+9rzdgXsqiptvH6a/N9BZnNW8Tx2muD0ek0vPn2Qg4owqRVy3henzqY0vJaxkz4gTwFtDnsgXY8O6Ib8xbu5edfRZlndFQgb08eTFWtjVGvzKGyyopOq+aFZ3uR1jSKyX9dRF5BhRBBwzrRoU0Sb7y3hPyiKrFaerwb0VFBvPLOImosdvxMeqaM6cvpSwW8NU2kpNKSIxnzSCaf/rSVq9fLUEkSox7qTLXFzl+/XQtARqMoHsxqxbQFW6iqFWJn/LBu/LLliM9/M3JQR45cus6P64Xoe7B7cwora5izXlQuDOyQSmmNhQXbxJRsSOd0LhaWsvLAGSQJHs5syfYzl8kvr8ag0zC0YwZL9p3E5hR8m/SESH7dp/htmiSQV1nFnou5aNUq+rZswtoT53B7ZJpEhSJLsPPiVVQq6Nm0EZvPXUIGmkWHU26zcSK/CKNWQ0ZMJDsvCx9S+8RYDl/P962rqhx2LpaWEWjQE+Jv5FhBASoJUiPDGzQTp4aHca5MqWAIEhUMbll4aa7VVuGWlQoGSzUu2UOcfwDXLdV4lH97E1F1zcR1k1KRZj8KrNVKBYOWIluNLylV47I1kJSqRSWBWStWUf5KZNvtkX0xcBVg0uiocVkF9M9TJwbuurFicsoegnSiX8q7qqkbA/cacF2yE3/FZ6NVfDsyss9EXJ9xo1QwqNRKC7hg3IAHg1LBUJ9x44XzgQeHj3Hjnc6IdZGXcQPg9Imb+gA/L524LsDPSyd23oFOrBIJL+VvAExPIPn/EUn617sL/0cLnGGPdb7lfV5QWXhkILoGpi92m9PHNPG/CbDmPVrdjW+My+mGhi+Gf6CJwGATleUW8q6W0vg2nUPek3V/GxZ8s4UD289RXlJ9C5L/duf+EV05eeAy21cf452X5jJ9yURCb7Neu5fTPbsVnbLS2bDoAIu+3cr1qyX8PH0Di2ZsoUPvZnTt34KOfZrdMmGoe9xuNzabDZvNhtVqvePfa9euZfbs2T6xGB8fz6JFi9Dp7l3du5xurp4v4OyRHE4fvsqZw1e5pnit6p6YxDBadGpE2+5NaZPZ9LZ1CQ0dWZY5cySHdb/uZ+vKI1hrhVlXpVbRqXczBj/RmTaZTW4rkq7nlLJo1nY2LD3o+xmLTQxl2HM9yBra9pafx/zcMn6esZkNy4/4WEqZfTMYMSGLpDrVI5ZaO4vm7GTRDzt9BuIuvdN4blJ/4pVyTafTxfJf9vHjjK3UKgb57n0zGPNyfyKVNe6B3Rf48sPVPoRCizaJvPhaNkmNI7DbnPVMxHq9hhGje/LQY52QJIklC/cx65vN2KxOtFo1jz+dyaNPdcVmc/L+u8tZpxCMo6KDeHXqINq0Tao3tdHpNIwe3ZOhD7Znw8aTfP7lBmpr7eh0GsaM6smQwW2Y+/MuflKSU+Fh/rz+ajahoX5MemM+FxTT8aB+LRg7sjvf/7yL39YIUZCSFM4fXs1m54FLTHhrvsK78ecPEwdx9Mx1Jv7XAtwemeiIQN58cQAbdp7lq/liupLRJJrxT3Zn+rytnFbWTY8MbENiXChvfrbct5J6+ale/Lz2EMeVVvBH+7VBrVPx11lC7KQnR5Kdmc6nv27DYncSGmDi2cEd+X7NAUoqazHqtTw3qCOLdx3neqnw4zzdrx3L952mQBEvj/dqw+K9JyivsRJoMnBf53QW7DwqWsZDA2iVHMPPO8XX3D4lFovL5fPbDG6bxuZTl6ixO4gMMNMkNpxVx8QUp2uTBE4VFFNusRJo1JMWE8EmH7wvnsN5BVidogncpNNyICcPtUqibUKMz0zcMiaK08XFONxu4oMCqHU7uVRWToBeT5CfkVPFxWhUEo1CQ3zipllEOKdLxf/RpqFeoSPTJDSU8w2YievWLiQGBpFTI/4d5x9Qr1Mqr4FOKfc9JqVuFGbaCNEbqFKmNSFKeaYw+sq3bQP304jJjDcGbnFbboqBe302GtyyqGDwUxg3epWoapCQMSmMG+96yjvVccuu2zJuPLLDx7gR6yanrxdKxoNeUt8B4CdMxPqb6MQ3AH5yHYAfSHiU8kwXGh+dWMS/vWbiunRilfJCVfKbBObx/7a07n9U4LzzzjusXLmSI0eOoNPpqKiouOUyOTk5TJgwgU2bNmE0GnniiSf48MMP7/jkZbfbmTJlCj///DNWq5WsrCy+/PJL4uJuNQzf6TRUweD1EkTdBvJWU231XddovvU+Xrt2jXPnzmFzVGHQBdTz4zR0YpPCqSy/Kvg2dxE48Y0iSG0Zx9lj19iy8igP3uO6SZIkXnl3OLkXi7hyroC/T/yR9+Y+j1anweVyNSgq7kV4WK1WgtpaKfe7xtljVyjPrWTvD4v5dLYLGTcGsxq9SYOs8uD2uLDZblzP6XTe031v6Fy/fp2qqioCAm5dEXo8HkoLqsi7Uszl0/lcOnOdS6evk3O+0GfmrXtik8Jo3rERLTun0KJTCuENeLLudgrzytn02yE2Lj1IntLPBBCTGMqA4R3p+2C72zaKy7LMyUNXWfrDDnZtOOUTcakt4xg+qieds9Jv8U0VXi9n/owtrPvtkI/A3KF7U0ZMyKrHsnE53axefIB5X2/2rUGbZsQy+tUBtGyf7Pv8+3acZ8Yna7impMFSUqN4YcogWigIhYK8cr7+ZC27vempUD+RnlK8Ogf2XGT6h6t9Lw46dm3MhMkDiY4J5uL5Qj75x0rOKnyejJZxvPL6EBKTwti+7QyffbKW8jKxqnpwWAeeHd2TykoLU6fc8No0bx7HlKnZmEx6/uvPi9m9R0yA0tKieWPqEFxuDxNencsFxTvXt3c6L73Ql3WbTvLmXxbhcLoJDDAy5aUBREYGMPHtBeR4AX8PtGdodmv+8cVajpwUHp4+mak882gXpn230dcA3rdbGg8Pbsu736zzlWk+9UBHGiWEMvXDpdRaHQT4GZjyXJYA932/ERAsmwHdmvHe7A1U1Yppz6THe7B85ymOnBdP/sN6t8SDzAc/bwagbdNY2qTG8/HCbbg9Mo2iQ+jfKZUZq/fgcLmJCfFnUOdmzN4gKhfiwgLp3rIR3286gEeWaRobTkpMKHMVv03npgnYXC5WHBTrtSHtm7H7wlUf36Z7eiOWHxYfax4fic3tYvu5K6hU0DejCRvPXMTl8ZASHgIq2HM5F7VKomvjRB/fpkVMJHmVVeRXVRNoNBAd7H/DTJwQy4Fr3tSUaP+2u93EBgqhc7WigkCDHrNex9nSUvRqNdFB/pwuLUYlQVJQMOfKSgDRKdWQuEkIDBS1C8jEBgSQU1OBSoIwk5lrtVXoVGpMOg2F1hr8tDrcuEWnlMFEhdPbKWX2CZqwOkkpk0ZDpdOieGds9QozJcBfp6PKZcFPo8fqFv4Yb2GmWpLQ1CESW3wxcHUDMXANNo8Vk0qHQwHzmdQqHB6bsnay+6YtrnoVDGqQXNRl3BgUMVSXcWNSGDfeFJRG+ZiXcePBUQfgp1L8NZ57BPi5Fb9OXTqxuw7A72Y6sU4p3rxBJ5YC/oJkerTB35P/7PmPChyHw8Hw4cPp0qULM2fOvOXjbrebwYMHEx4ezo4dOygtLeWZZ55BlmWmT59+29t9+eWXWb58OfPnzyc0NJTJkyczZMgQDh48iFr9r421CpTRdtRtSjJrFaOpyc9wyyvxmTNnMnbsWDweDyCREZfteyV+uxOfHMapw1e5cCaPdt2S7yoqNGElXKs4yofvn+VC0R7s9nsXIzU1teTnFrPpsovPl0zBI7twue58//6lc/fycwC0Wi1GoxGDwXDL3zabjSNHjtS7vNvtZuXiTaTEpVNeXE1pYRUFuaVcv1pCQU5ZPQ9U3WPyM5DaKp60NoniT+sEAoIbXjPe7VRXWti59jgblx7ixP7LvvfrDVq6DWxB/4c70KKBjjPvcTnd7Fh3nMWzd3D+RJ7v/e27N2X46J606JB8y3Xzc8tYMHMrG347jEuBQ7bLbMKI8Vmk1akU8Xg87Fh/kh8+30iewmyKSQhh5Ev96N4vw3e7l84XMOOTtRxWuqGCQsyMHJ9F//vboFarsNmcIj01dydOh9u3jnpqTC/MfnpKiqr45rP1bFW6qcLC/Rn/6gAye6Zhszn59ouN/LpgDx63jMmsZ/QLfRj8QFvKymr48x8XsWObEEwJCaFMfn0wzdJj6yWk9HoNo0b15IGh7diy9QzTv1hPdbUNrVbNM0934+GHOrBwyQG+n7sdl8tDQICRV1/sT7O0GP787m8cOirWJB3bJTN10gDWbjrFnz5cLgB/IX689fIgqmptjJn6oy9N9fKYLExGHRP+MF9UNRi0vDKqDzaXmxf/shCH00VIoInXn+/H9kMX+fMXIrrdMjWGZ4Z24uO5W7hWKKobRj3UhapaG3/+Zg0A6Y0iGda3NZ8u2EZFjRWzUceEYd1Yvvskp66I6c8T/dqSV1rFdytFJUO/9k3RaFV8tXw3AF0zEvEz6flujfi83TKSkFUS87YKv1G/Nk3JK69k1SGxonqoc3O2nb5CUWUNJp2WAW2asuzQaQHaiwgmNMDMSsVM3Ld5Cgeu5lFusRFkNNA8Mcrnt+mYHMfZ4hIqLDaCTAaSwoN94iazUQJ7r14T8L2QIGweF6cLizFpNSSFhXDgWh4yMm3jYzh0XQjdtIhwLpSX4lQ8NmU2G3nV1YSZjMgquFxRjlmnxV+n51JFOQaNhmCzgYuVZejUakLNRqV2QU2Q0UBOdSUGtRo/g4682iqMWi0alUSRtZZAnR6b7KLCYSXMYKbcYRE+nDpm4puTUqVKUsotC6hfiN5Up4LhRmGmWiVjcdsI1BqpUZJSgTqxnjKoNbhkBy5Z9okbrSShUcvYPY4GYuB2zGo9ds8Nno1Tdiht4F5mjUdZT4kYuID1OX0xbrfsuAvjRq2IHPEx4a+RABfGmxg39QF+3hi48NU0DPATUxyNMsHRSmpf1cKd6cR6pKBPkAx9G/xd+a8cSb6TSeTfdGbPns3LL798ywRn9erVDBkyhNzcXGJixPRi/vz5jBw5kqKiogZfoVdWVhIeHs7cuXN59FGh9q5fv058fDyrVq1iwIABt1zHbrdjt99IwFRVVREfH09lZeUtn2P6eytZsegAT4zqwTPjet9yWxfP5jP+ia8JCfPn57VTfO+/du0aiYmJiri5cTK79sTP33Bb4VFTU4vdZkPmP/5tuOvR6XS3FRq/929LlZPLpwvIPVdCUW4Ftlo3KkmNStKgljSolD9qSY0kqVCpVWh1ajQaNWqtGq1WjVqtory6lOXHPoV6j49Er/gxGDQNr+jUGhWRsSEkpkaR0iyG5GYxNGoWTWRcyL80+rTW2tmz8RRbVx7h4PZzvomQJEm07JxC1tC2ZPZvfkeYYGV5LWsW7mfFz3soUaLROr2GPve3YejTmSTe1GoPcO1KCfO/3cKmlUd9q6jWnVJ4+sUs0lsn+i4nyzIHd13g+8/Wc1Hh4wQGm3lyXG+yh7X3MXlKi6uZ89Um1iowP61WzQOPdeKJUT0x+xuQZZkdm04zY9o6igrqpKemDCKxUTgul5ulC/cz97utWC0OVCqJB4Z35JkxPTGZ9ezbfYHPPlzti353792M8ZP6Exrmx6oVR5jx9SZqa+yo1SoefbwzTz3djaLiKj76cBXHlHRZixbxTH0tG6NJz7RP17Jjp0iENWkSyetThQfn3Q9XclKZDHXt1JhXJ/bn0NEcPv1qAzW1dgx6LS+M7kXHdkm888lqjp8WQrJn16aMf7YXsxbs8hmJmzWJ4rXx/Vm85gjL1otkV2pKJK+OyWLu0v1s2y+mRp1bJ/HU0I58MGsDV/LKkCR4+v6OBAaa+HLBDpwuAe6b9GRPflx9gJMXhXH4kX5t0Bs0/LBKgPZSEyIY2qs5XyzZSbXFTqDZwOj7OvPzpiPklYj+qWcHdWDT0QuczxPwv8d7t2HvuRzOXxdvP9arNVtPXSa3pAKtWs2jPVqy4tAZymus+Bt1ZLdrxq97juNye0gMDyYpKpgtp4SYzUxNJKesgpzSSnSK32aN128TGYpKo+JMQTGSBD1TG7Ht/GXcskzjiBAcHg9XyyvQqlS0T4y90QQeG8WZEtEEHh3gh0qt4lplFXq1mpSIEE4WFSEDLWMiOVYo/DbNwsM4V1aKW5ZJCg4k31KDzeUiyuxHtdNBrdNBqMmIQ3ZT5bATZDDgkTzi33oDTjzUOB2+2gWr20WY0Uil04bT4ybSJIjFMvIdO6XKHSLaLanA5nYSojfWaQA3U+6oRUImUK+lxmXDTysmLzI3klIqwKRVYfc48NMK8SK8N1qsbpuvDVykp7wxcBVIolpBxMCV9yl1C15xU9dnY1RLvjZwkZ7yKFFvL+NGxLjlOowbGY9P3NRn3CgeHIVSfAPgJ6GSlAlOHYCfhMvHz7k7wA9lguO5PcBPCkAK/hpJ1/62vzNvPlVVVQQGBjb4/H3z+b/qwdm9ezfNmzf3iRuAAQMGYLfbOXjwIL173yowDh48iNPppH///r73xcTE0Lx5c3bt2tWgwHn33Xf5y1/+ck/3qUxpeA65jQHUrTzB3Lw2OH/+/C3iBmDnrq339HnrHr1ef0fxUFZUS/7VCvwD/Og1qA1Go/F3CZCLJwv49p2VuJ3QrHUj3pr2NDHx4f9yqebtjizLlBZWcfnMdS6fzufq+QLKiqopLxGU4qpyCx63B7vVg52bV1dqmof140TJeoTIkWifOIS0Zk0JDvcnJNyf4HB/ouJDiE4IIzoxlIiYoFvqDP7ZY6mxsX/rGXasOc7+LWew227cv6SmUfS+vw29729z19XWpTP5/DZ3F5tXHPFNmILD/BjyeGeyH+tEUMitP2+XzxWw4LutbFt73Gd+bpfZhCee701Gm8R6lz11JIfvP1vPccWMazLrGfZ0Jg+O6HqjNNPqYNGPu/iljhenR78MRr3Uz7eSvXiugK8/XlsnPRXI2JcHkNk7DUmSOH4kh+kfrOKK4l9q1jyWl6YMonFqNCXF1Xz03gq2bRLJqojIAF6aPIjOmU24llvK5JfncUypfmiaGs3k17JJSg5n0a/7+f77bTgcrnoJqS1bTzP98/VUVdtQq1U8/VQmjz7SiRWrj/LNLFHcaTLpeGlcFp07pjDtyw1s2SGmQump0bw1OZsTZ/N5btIcLFYHJqOOl5/PIjYmmEl/+oX8wkqfkTizQwr/9dEKcq4L0fLEAx1p3yqRtz5aTnFZDRq1ihee6I5Or+GV98TaKyzIzJTn+rJqx0m2rhDCpXvbFHp3bMLfZ62n2mLH36Rn4uM9WbH7JIe9sfGeLdDq1bw3T8D+MpIj6dWmCZ8t3iFWUKEBDOvVkllr9lFjcxDib+KRni2Zu+mQ7+2hmRn8uPUwNoeLqCA/erZMYd72I2JFFRNGfHgQ8xW/TWZaIkXVtWw5dQm1SmJw22asO3Eeq8NJZKAfjaNDWan4bTKbJnK6oJjSWgsBBh0ZcVG+ssyOyXGcKiyi2u4g3GwizN/sEzcdk+PYmyNWfM2iwsmpqKTG4SDMbEKvV3OyqAitWkWjsFCfuKlrJm4WHs7pMvEzlRIcwpXK8gbMxP4UWGtweTzE+PlTYK3FLbuJ9Q+gwCqMxTF+AVxvoHbBm5SSkAkzmSi0VaNXq9FppPqdUm4PEQYzpQ6v98ZEuZKUUqs81LhsBOmN1CjemyCtiIzr1SokyY3d4/AVZkrImDWCUuxNRXkj3zfHwE0NxsDVODx1fTZiPeWWXb4YuE6SkHDXMxg3zLiRbmLciOt56xVkXLcybvDWNPyzAD91HYBfQ3TiSIVO3PS2vzf/1fN/VeAUFBQQGVn/FWtwcDA6nY6CgoLbXken0xEcXN8jExkZedvrvPnmm7z66qu+t70TnIZOuVfghN1Z4Gg09cVAkybCPHqzyHnu6RfpmdXhtmJDr9fz2sjvqSi18s5Xo+jUo9ldhUZttY2Rff9BTZWNJ4c+Rq/Bre54+ZtP+/bQtEkq77w4l8sninnjyW957aPHadkp5Xfdzr0eSZIIiwokLCqQDr2a3fJxp8NFVXktTocLl9OD2+XG5XLjcrrRG7QYTDpKyorJu55Ds4w0EhJ+P9Hy95yq8lr2bDzFznUnOLzzfL2VV2xSGD0Gt6Ln4FYNUoZv/rp2bTjFyvl7OF5njdU4PYYHRmTSI7tlg0b200dzWPDdVvZsOeN7X6deaTwxthepLer/3J4/fZ05X2xk/3Yx4dDqNNz/WCceea67j7PkdrlZt/wIc77eTFlJNQDNWsQx5pUBZCgR9coKCz98vYnVSw750lOPPJ3J8KczMRi0lJfV8N0XG1mvcGsCAo2MGp/FgCGtkWWZpQv38/2MzVgsDlRqiQeHd+SZUT3RaNX8NHcnc+fswOlwYzBoGTmqJw8Oa09OTikTX5rDGWXa1LZdEpMnD0Kn0/Dn/17Czp1iPdI4JYLXpgzG7Gfg9T8u5LCyemrTKoHXX83m4pVinpswm7LyWtRqFSOf6Er2gJZ88vUGtu8Rt9EyPZbXXhrIuq2nePeLtXg8MtERAbz10iBOXSzghT+I4sywED/emjCQI2fyePmdX5FlSIgOZuqYvixcd5ityiSnS+tkHurfig9mb6KwtBqtRs24RzLJL63iLzPESiqjURQP9W3FZ79so7zaismgZcLD3Vi99wzHL4mv+ZHeramw2G5QiVsmExUawGdLhYm5VaNomsSH89UqEQFvmRxNfGQQ360XgqpDk3h0erVPzPRt2ZirJRVsOHYBlSQxtFM6609coMpqJ9hkoFPTBH47JFaKrRKiqXE62HH+qo9v4/XbNAoLRq1Rs+tSDioVdGssyjK9se8yq1VZQ2lpHBXK3hzRBN4+PkYpy4Qm4SEU1NZQXFlLqMmITqfhTEkxerWauOBAThQXwU1m4tTQMM4qZuK6ZOJGwSFcqiq7xUycFBjEVZ+Z+NbaBUmCMKOZAqsQNHqNilK7EDRWj51al7teUirCaKbUXqMkpXRUOGtFhYLHitsjouFVLgsS4KfRUe2yCOOwLLg33hi4ViWhlsQqKlDnrWAQbeD2em3gIgbuaDAG7rgpBu7Bw40YuEGlQlb6qLQqFP6NSE/pJbE6khTTryjRvB3jxtsz5fCJGzGVcdwE8EP4aZQ11e0BfigeHhmNNy0l6ZS1lALwU6cghcxCUt+aZP53nt8tcP785z/fdRqyf/9+2re/t5FTQysDb9T195w7XUev16PX3xunpUKB7nkZNbd+noavFxcXx4wZM3j++edxu91Ikor02EH06/4wjz3d846fs0uP1mxcfoSje6/QpVfGXe+j2d/Ag890Y+70Dcz6aDWdeqX9bg5Nm65N+HTxS/z1hTnkXCjk9ae+YciTXXh2yqB/e1/T3Y5Wp7lrqisqPpTmrdL+I59flmWunC1g/9Yz7NtymtOHrtaLi8cmhdG1f3N6ZLckJT32rj+bBdfKWP3LPtYtPkiFIphVahXd+jfngRFdadY6oUH+0uHdF1kwcytHlaoDSZLo1i+DR0f3vMWAfuV8IXO/2sROxf+iUqvo/0Abnny+tw8/4DUQz5y+nquKATcqNphnJ2TRs78wCLtcbpYv3M+P326lRmH09OibweiJfYmMDsLlcrN4/l7mfLcVS60dSYKB97dh1At9CAg0ce5MPtPeX8X5s+IJOy09lklTB9G4aRQnT1zjkw9XcUUxXrfrkMzLkwcRGurHj3N38tNPInFlNut9NOJNm0/7vDYajYoRT2by2KOdWL3uBF99t1lwcPRaxo3uRZ9e6Xzx7SbWbBAx56SEUN6aPJjSilpGTfqB8koLGo2K5x7PpFvnJvxt2ipOXxAvgvr3TGfEsE58MnMjB48LwdS9Y2OeGd6Zj2Zu8rFtsntl0Dczlb9+tZoiZZIz7tFu2FxuXvt4GR5ZJi4yiBcf786s3/Zy9qp4nB8f0BaVVsVfZoqUVNOEcIb1acUXi3dQWWvD36Rn7P1d+HXbca4UCLLxMwM7sP9cLttOCjH8cI8WnM8vZeF2ISof6JLB2YISlu8XreAPd23B7gs55JZUolWrGdalOSsOnaHaaifYbKBH80YsPnASWYZmMRHo9ZobfVItG7PnUi5VVjshJiPpCZH1/Dbnikt9qanGUWFsrVOWefjadewuYRKWNBJHrxegValIrwvvi4vmaEEBHllQhoustZRUWwkzm5BUEhfKyjBptYT6GTldWoxGkogPDOKsYiZuFBJSr3bBK24SFTMxyMQHBPrETVSd2oVAg6hdMGo0aFQSJbZagvR6LG4HNS4n4cYbE5pwo5+vgiFEb6DUXoNBrUHGQ62rfqeUNzWlldSoJVkpzDRQqySl/LU6hVIsDMFuWSZIp1O8N6L5++YYuMTvjYGr68XA1UiolKZvk1rCLdswSmrfekrtXV3dlXHjwngL40ZSjMCeOowbSWHc3A3g56UTo3xMRi1pBcBP21aspVRBd/w9+u84v1vgvPjiizz22GN3vExSUtI93VZUVBR79+6t977y8nKcTuctk52613E4HJSXl9eb4hQVFdG1a9d7+rx3OpZaxUR8G8GgV+BujgaMrKNGjWLAgAFcuHCBk/uLWf7jMd8Ty51O9/7N2bj8CFvXHGPMlEH3RBt+6NnurFt8kMK8cmb8YyWT/vrQXa9z84lNCueThRP47r2VrF6wlxXzdrNvyxmemzqI7oNa/sdWVv8vnOpKC0d3X+TQjnPs33rG54fxnkbNYujaL4NuA1uQ0DjyrqLG5XSzd/Np1vy6n4M7zvvSUKERAfQf1p5Bj3T0CY+6x+1ys2PDSRbO2s4FxU+i1qjIuq8Nw5/t7otxe0/u5WLmfbOZrWtO+ER97+yWPPl8b2ITbzBvzp7M47tP1/lWTX4BRp4c3YMhwzui02mQZZm9O84xY9q6G+mpplGMe3UALRVO0pGDV/ji4zW+6pImadG8OGUQzTJiqam28fnHa1iu8HLMfnpGjetD9v1tsFodfPrxGlYsO4QsQ2CgkRde7EdWvwxOn77O228t5OpVIXq6dGnMpJcHggR/+NMi9uwRVSRNmkTy2hTR8v3Wnxax/5D4Olo2j+P1V7MpLKpi9IuzKSwWr9IffagDjz3ciW/nbmfFOiEIkhPCePuVQZy+UMiYqXOx2V34mfVMGddPtHf/4Weqa2wY9BpeGtkbvUHDi39ZiMXqEGyb0VmiOPMfS/DIMvFRwbzyTG9+XHWAg6fEamZgZjPaNIvjLzPWYLE5CfQzMPGJHvy27aQvJfVQr5bo9Br+PlfA/tKTIunbIZXpS3Zid7oIDzLzZL92fL92HxW1NvyMep7q25YF245SVm3BbNDxWK/W/LLzGJUWG4EmAw90SWfBzmPYnGJF1SUt0RcBz4iLwM+sZ6nSCp7VPIUTeYUUFNRg0GrondGI1UqfVFp0OB5JZvv5K0gS9EprxNZzwm+TEh6CW5J9ZZkdk+PZpfBtmsdEcqWinOoa4ZEJMBl88L6M6EgO5wt4X/OoCE6VFOORZRqFBHO9phqry0Wkvx82j5OcqkoC9Xp0Gg2XK8sxaTX4G/VcasBMHGwycrW6Er1aQ6BBx7XaSowaDTqNmgJLtUhHSR5KbRaC9QZqXHZsLrdiIBYiJcrsR5Hiwwk1mCix16BTqdCppQY6pW5NSpk1OmxuBx65blIKdGo1FreNAI3g3kjI+Gu1WNxWjCotTlnx3tzUBg7eNvCGY+AmtQa3LwYuvDfeGLhWpQZfiaYywfknGTfe1ZNX3Gi85uE6RmMNoMKNTklY3UhI3Q7g56UT1wH46bOEoVj6P/Mi+ncLnLCwMMLC/rleiJtPly5deOedd8jPzyc6Woyq1q1bh16vp127dg1ep127dmi1WtavX88jjzwCQH5+PidOnOD999//l++Tt/jydtA9L+m1rhej7omLiyMuLg69fJrlPx4jpwHWys2nXWYT/AONlJfUcHTfJdreQ/O3wajj5b8N463nZrJm4X5adUr53asqEMmiiX8bRvfslkx761eK8sp57+Wf+OnzjTz5Ul+6DWzx/xdCx25zcvZoDod3nufwzvOcvwnqpzdoadU5hQ69mtGhVxqRt8EE3HzyrpSw5tf9bFh6yDetAWjXrQnZj3aiU6+0Bv1ANquD9b8dYvEPO33t3nqDloHD2vPwyG6ERwXVu3zulWJ++mYLW9fc8ON075/BU+P61OtMu3a1hNlfbGS7MtnR6jQMfawTjz7bHX+FS3TlQhHfTFvLISU9FRhsYuS4Pgx4QKSnigor+fbzDWzdIG4jINDIcy/0YcCQ1qhUEhvXHuebzzf42sJ798tg3Ev9CA4xs23LGb6cvp5S5bEYMKglY1/og06n4YsvNrB0ieiWCgoy8eJL/ejZM43Va47z9TebqLXY0WrVPPVkVx57pBNrN5zgy2/F2kun0zDm2R5kD2jJtz9sZ8lyEYGOiQrizcnZIMELU3/kekElkiTi38OGtOWTbzey64D4Otu1TOCVMVn89Nt+Vm4SU5/UlEimju3H/FUHWbdDrARbpcUy7onufDl/G8fOCtE5uGcGXdok85dv1lBRLfqmJj3Zk+MX8/n7rPWA6JIa3CODafO3UVkrSMYTHu7Gqj2nfSuph3u1wuJw8umi7QB0apZASlwY05ZsEy3hceF0SIvnm1V78MgyjWNCads0ju82iCLSZvERJEWF8MMW8fV3aByHDCzeK8zSA1o35WReISfyi9Bp1Axqk8rKI2dxut0khAYRFeLHKqVPqmdaEkfzCii32Ag06kmPjWTTWfFYdUiK43RRMdV2O6FmI9GBAT4ycefkePblXhP3LyyEYquFS2XlBBr0hPqbOKrA+9KjIn3wvoyIcE6WiN+FjUNDuFxVjssjIH2lViuVlloizGZq3Q4KamsIMRpxyi7ya6t9ZuJCSw3BBgMO2UWxrZZQg5Fql51Kh4MIk98NSnEdMnHdpFSEyUyRrRqNSoVRo6HMYVFWRXasbg+herOPgeNLSqlVyrSmflIqSElK6dVqPLJoCK9bmKlXq7B5bL5yTAkZk0aF/bZt4FocSt2CTiXfFANXgTKJMakkpShTg0eZ0ng5Nl7GjU6Z4Khxo1XJcFfGjSAZ38y40UoSasmlAPmUNZUk1QH4uX4fwM/4CFLAn5Gk/3POmP/oZ8rJyaGsrIycnBzcbrcv7tu4cWP8/Pzo378/6enpjBgxgg8++ICysjKmTJnCmDFjfO7ovLw8srKymDNnDh07diQwMJBRo0YxefJkQkNDCQkJYcqUKbRo0YK+ff+1mJnb5fHFuk2mhjk83gbw2wkc70lQunpyLxfjdnvuOJXRajV079+cVQv3s2nFkXsSOACtO6fw2PO9+PnrzXz2pyUkNokk+TYN6Hc7bbo24euVr7J41jaWzt5BzoVC3p00j7hG4dw/IpMe2a0IvM3a7v/FU1lWy+nDVzh54AonD17h/Ilrt3Bw4htF0CazCe17ptKyU4rve3u3Y6m1s3PdCdYvOVjPWxMc5k//h9rRf1j7egThuqespJqVC/ayYsFeKsstAAQEmbj/ic7c91jnWwozc68U8/OMrWxZfcwnbLr2bsaT43qTUofEXVpczY/fbmHN0kN43B4kSSIruyVPv9DHB+qrKKtl7owtrFKmLlqtmqGPd+LxZ7tj9jNgtzmZP2cn8+fsxG5zolJJDB7ajmfG9iIg0MhVL6VY4dPEJ4Ty4uSBtG2fTH5+BW+//gv7lDLY2LgQXpk8kNZtk9i79yKfTltLodJn1a9/c154IQur1cHrb/7CQWU6k5YWzdTJgnfz5p8WcUB5f/P0WF57ZRCVVVbGTPyBPKWj6v7s1owa0Y2fF+9j/tL9yDJEhgfw1suDqLbYGT31RyqrrGg1ap4f0Z1mTaJ57d0l5BVUCI7Ng52EkfiT5RQUC0rxc8O7EhMVyJQPllBjsSt1C705e7WYt6evBKBpYjijHuzMFwt3cDW/HJUk8fR9Hai1O/nrLFGc2Swpkgd6NueLxTuostjxM+oZN7QLi7ef4OL1UlSSxIj+7TiRU8C8TUKs3N8lneLqWuYqbw9sl0pxrYX528VkZlD7VK6UlPsi4A92as6us1fJr6jGoNVwf8d0fjt4CpvTRXSQP2lxESw9KERqx5Q48qtq2HvpGhq1iqyMFNafvoDbI5MSEYqkokG/TWpkGJU2m68sMy0mgj05ohW8bVw0xwoKRTw8OIhql52LZWX463WE+Zs5XlSISoKm4ULcyMhkREZwskRMtZuEhHK+XDSBJwcHk1N9g1KcpxiLY/0FpditkInzGzAT3/zv/DqU4kJbNRqVhJ9OR4m9BrNGh1N2Ckqx3lRH0IiklFoCs1ZDpbMWf60QJ065flLKrFUr0D69j1LsLczUq1WAC5fs8SWlNJKERuXBKTt9gkcjiZbuG23g3lh33fVUQzFwZ50YOKgUD41RYdx4hYyXLlzXX+Nl3Hg7pe7EuNGpVKiUnqkbAD8hcrRKCadW0gIudD7Gzc0APxUqr7gxv4jk99K/DeB3r+c/GhMfOXIkP/zwwy3v37x5M7169QKECBo/fvwtoD+vZ+bKlSskJyfXu47NZmPq1Kn89NNP9UB/tzMO33xuFzOzWR080ONdAH7b9iYG460ip7bGxkM9lcvseLvBy4AwIz/c7R2sFgdfLBhf78mooXPqSA6vjvgGrVbN7DVTCL0NGO6Wz+Ny8+ZzMzm+/zLBYf58+ONYYhL/tQlbTZWV337YwdLZO6ipugE2zGifLLqY+mYQdZsai/8bp7rSwoWTeZw/fs33d4EyFal7gsP9adUphTaZTWiT2eR3Qf3cbg9Hdl9g47LD7Fp/0idwVSqJ9t2bMnB4Rzr0SPVFsW8+F89cZ8ncXWxdfcwHf4yMDWbYM93oP7TtLT9HVy8WMf+7rfUmNl16p/Hk873r+XGqq6ws/GEHS+fv9d2nTt2b8uyEviQ3EWteu83Jkp/3sOCHHVgUunJm72aMntiXmLgQZFlm59YzfPPZBgrzKwBo3iqe8a8MoHFqNFaLgx9nb2fxgr24XB50Og1PjuzGw493RqWSWLhgLz/+sAO73YVWq+axJ7rw+JNdqam189WXG9i0STzJRkYG8sqrA2nbNonflh/iu5lbsdmc6HQaRj3bgweHtmP1uuN89d2Nqc3oZ7ozZFArZv+0i1+WCBETHubP6y8PJDDQxDufrPK1fw/Kas5zT3Rj5vwdrFbKNFOSwnnzpYFs33ueOYv34vHIRIb58+aEgRw6dY05S/bikWViIgJ5/fl+rNlxmlXbxHWbN4lm9MNd+Xz+ds7niOnDI/1bEx0RyJcLd+BwugkPNvPioz34af0hTissm0f6tkZSSczfKNg03pXUN8t3Y3O4CA0w8fTA9vyw/gClVRaMei3P9GvHkt0nKSivRq9V80Sftizff5qiyhoMOg2Pdm/Fkn0nqbTYCDDqGdy+GQt3H8fpdhMfGkizhEjWKv6adsmxVDscnM0XMe9BrVLZdPYSVoeTiAAzKVGh7LooVk1dUhI4VVBEhVWwb1IiQziQK6ZWnZPiOZKXL2Lfgf7odBqulJWjVkm0jI3iUJ6YSrWIieR0SRFOt4e4oABqXE7KrVb89ToCjUZyqyrRqlUkBgdxvlysQ5uGhnKuTIibumTi32sm9oobCZlwk5liWy1alQqzTkuV04afVosLFw6Pi+A6LBuvmRhkgvQGqpw2jGo1suTCJbvrdUp528C9SSm37L4pKaVRuqLqF2baPDYMajFpEekpYSw2KM3fwjejweFLPt1oA785Bq5V2ry9MXBvVNsrfGTcvhi4Xmnz9vprJIWDI+PwiRshgFx1YuBexo3Tx7jR4E1IyWh8AD9JEU3etZSXTnwngN+fkUx3trX8nvN7YuL/Rzg4/6+d2z1AVouDoV7xsv0tDA28opdlmaHd/47N6mDW0onExjf8Sh3gD+PncGDneZ6fOogHn7q7P2jyMzM4eegqw0Z2Y8zkQff89VRXWnlj5LdcOpNPREwQH84b16Df4/ee2mobG5ceZO3C/VxS/CHek5wWTUa7JBpnxNG0RRwJjSP+bdHsho4sy1SU1lCQW0bOhUKunr/xp7SwssHrxKdEkNE+iYx2yaS3TSI64fdxcGRZ5vzJPLasOMLWVccoK672fSwuOZysB9qQdYeIuNvtYe+WMyydt4tjdSY9zVol8OCIrmRmpd/ymF06m89P325lZx2qcaceqTz1Qm+apMf6LmezOljy8x4W/rDTV63QrGU8oyb2o4USIfd4ZDatOcbsLzdRrHQ8NWkWzdhJ/X0+m8sXCvlq2jqOKF6dsIgAxr7Ul55Z6QBs23yarz9bT4nytXfObML4l/sTHRPM8WO5fPrxGq4o5bSt2yQy6dWBxMWHsGbNMb75ehPV1TZUKokHH2rPs8/2oLCoig8/Xs2pU8Kf0qJFHFNfzUatUfHBtDUcOqLQi9Njef3VbKprbLz7ySpylBb1Qf1a8MKoXixdfYTZ83fhdnsIDjQx9cUB+PnpeefT1RQovpwnhnakX89mvPflWp+5eECPdB65rx0ffLeBU8r7sntmMKhXOu9+u568wgoxkRnakchQf6b9tFU0h/sbeXVEbzbsP8vWg2JK1a11I7q1bcSnv2yj1uog0GxgwvBuLNl+3Afue6RPK2psTlbuEdH5DqlxpCVHMnfDQWQZUqJD6N4qhbkbDuLyeIgPD6RX68bM23JYTEbCg+iQGs+ve44jy5AeF0FUSAAbjytprtREKqxWTuUVicqFNmlsP3eFCmXt1KlJAmtPKkmy+CiqHHYulwiR0jNV9El5vHwb2cPVsopb/DYZMRHkVFZSZbMTbDQS6m/ifIkQJK3jojmcL4ROemQEZ8tKxNcRGEClw06lXbBr9Do1BbU16NVqIvz8yK0ShuDYwACuVImJWmJQIFeqKvCSiXOqK5GQiQsM5FqNWD1Gmv0osIipTJDBQInNoqSj1FQ77QTo9DhkJw6PizCDiTJlQlPXTBxmENFvjUpCr1ZjdYukk7fhu36nlBar246/RodN9k5rhLjRSqBWyULw+JJSojDTKTvrCR6jSoNTdmBWa3AqlGIR63be0gYuSjHrxsCdPoOxW3bcFAMXExydpBIkYqXpu+4KSq+kqLyMGyGA6qeobse40UoS6lsYNyrlc2qhjrjRKfFvtSJyBMBvGpIhq8Hfj//s+V+Bc5dzuwfIUmvnwV7vAbBs+1u3XVk8O/RTrueW8eG3z/pw9g2dX2ZtY9an6+nauxn/Ne2Ju96vfdvO8l8T5mAw6pi7fir+gffeg1ReUs3Up74h72op8Y3C+ccPY+65q+peTuG1MnZvOMXuDSc4sf9yPf8KCFhdcloM0fEhvkh4WFQgoZGBGM06tDotOr0GvUGLRqvG7fbgdLiUaLgbu81JdYWFyrJaKstqqCyrpaK0hsJr5RRcK6Mor/yOa8Go+BCatoijcUYcTVrE0Tgj9o5dWHc61y4Xs2XlUbasOEKeYsAF8A800mtwK7IeaEvTFnG3FUvVlRbWLD7IigV7KVTqC1RqFd37ZfDgiMx61GHvOXMsl/kzt9WLhmdmpfP4mPoJKofDxeolB/l55jYf0iApJYKRE7Lo3CPVd58O77vEd9M3cEGJYIdHBvDchCx6DWiBSiWJUs1vt7LqNxEL1+rUPPJkVx4Z0RWjUUfO1RK++Hgthw4IYRYVE8T4Sf3p0q0plRUWZny9ibWrhZk3MNDI8+P70m9Ac65dK2PaJ2s5ogiVxo0jmTxlEMnJEcxfsIcff9qF0+nGZNIxdnRvsge1YtnKw8yYtRWbXdCLRz/TgyGDWvHDz7tYsHg/Ho9MSLCZqRMHEBMdxN+nreaMIk56dm3KS6N6s3DlIRYsE/6e6IgA3po4iCvXSvn8hy03zMVj+2J1uJj2/Wasdif+Zj2TR2WRX1LFt78KsRQZ6s/UUX1Zuf0km/YJYdCheQIPZbXk43lbKCqrESuvh7typaCcZduFl6d1k1j6d07l8yU7RG2DSc/zQ7vy69ZjXMoXZZtP9W/H6WuF7DsjDMrZHdOodTjZckwIpl4tG+FC9qWoerdIocpu58BFwZcZ1DaVs/klXCwoVSLgGWw6dZHyWiv+Bh09M1JYceS08PJEh6PXaziaK77/WRkp7LmcS43dQaificaRoey5LO5H50bxHC8oFB8zm4gK9ONkvoDydUmOZ6/it2kUGkyF3U6pxYKfTkd0sD/nSkQRZuvYKI4UFCADzSLCOVdaItZNQYEUW2uxuJyEm0y4ZA/lNhsBej1arYoSqwWTVoOfQUeRpRaDWoOfQU+xtdZHJi61WTApZuIKh2DKeCSZWpeDYL2BWrcDp8cl2sIVM3Gk2Y9ixXsTZjRTaq9FLUn4aTXUuOwKqM+BW/bUS0oF6w1iWqNSI+PBLbvrdUr5aXVY3TZfUspLLra6bb56Ag8eX1JKrGrAg1tJSon3qZSJjJ9Gg9MjrqtSgH9GhYDsbQP3xsCF8GkoBq6QiJWklJjS1J/OaCVVvRi4SFG5lGmLYh5WAIO3Y9zUB/gJ0/DtAX5BCsCvbYO/I/+V8/8Z0N//y+dOqi803J/ruWWUFFXf4VL4+n6OHbyC2+W+64SjQ/emNEqN4tLZAhb9sIORE/vf8fJ1T3CYP3+fNZopT31N7qViJg7/gqn/eISWHRvd823c6UTGhTB0ZDeGjuxGZVktR3af5/zxa5w/cY0LJ69jqbFx9mgOZxVGyX/iSJJEaGQA8Y0iSGgSSaLyJ6Fx5D8tZkCJiZ8vZNf6E+xYd5Ir527wlPQGLZ16N6PX4Fa0794UbQPcGu+5dDaf5fP3smnFEZ8Y8w80MmhYB4Y81omImyY9XvLwL7O2c0wREpIk0aN/Bo+N6UlyHc6O0+li3bLD/DxzO8XKxCo6Npinx/Wh54DmPo/XxXMFzJy+gYNKGslk1vHYyO4MfawTeoMWp9PN4gX7mTdrm692pEefZoyakEV0TDC1tXZmfL6BJQv34XJ50OrUPD4ik0ee7IJWq2Hl8sN8N2ML1crqMntIa0aN7YXRqGPunB389NNunE43er2GkSN7MOzhDpw7V8ALE2ZzSZn0dO6UwssTB2B3uHjl9Z85rnRAtWoRz9RXBlFVZeX5l+dyNVeIy36905kwtjdrNp7kv95fhsPpxs+s5+WxWSTEhzLlvxdxWbns4KzmPPFQR6Z/v5ndh8Rj2q5FAi+O7MXMhbt9ROI26XE8/0Q3vvp5O0fOiGlSn05NGdQjnX98v4GishrUahVjHuqCzenizc9XCCZOVDBjhnXh29/2cCVfIRlnd6DSYuMfPwlwX8uUaHq1bcKni3Zgd7oICzTz9ID2/LB+PyVVFgw6Dc/0b8+Kfae5VlKJRq3iyd5tWX/sPNdKxduP9WjFmiPnKK6qxajT8lDn5izZd5Jau4MQP6MSAT+BLEPT6DCC/IwsPyymRL2aNeJkQSFFRbUYtRq6pSWzTomAZ8REUON0sOdyLhq1RNeURF8EPC0yjHKrjZP5RRg1GprFRrA7R4igNnHRHC8sxOn2EB8UiM3j5FxJCUatltjgAJ+4yYiM4KQC70tX+DbeJvCc6koB6fP3p9RuodLqItJsptplp8hSS4jRiNXtothaS6jRhNVtp9RmIcxootJpw+JwEG7yo8xei1v2EGX2p7ABM3GUWZiJVRL460TtgkmtwSO5qXHZCNabfJRib1JKLUmYtBqFa3OjUypEb6BaSUpp1QLaF6ARXBxvUspaJyklI8jFtyvM1KnUePCSi9U4PTaMKpFuujHVcdwmBq66TQxcxqiS6sXAxVrJXUcA3Zju3EhRcRPjxnkHxo3kE2t1GTfi9nU3AfxikEK+Q9Lcm5f0P3n+d4JTRwG6XG4Gd/kbAAs3vEZAYMNPmh/9ZSnrlh3mqbG9GPH8rbRl73G73DzR9wMqy2v525dP0z6zyV3v266Np/jry/PQatV8vWQisb/TT5N3pYQ/vfADeVdKkCSJR8f24skJWbf1hvw7jsfj4frVUi6fyac4v4Li/ApKCiopzq+kvLgKm9WJ0+HEbnP5qga8R6vToNGq0ek1BASZCQwxExAs/g4MMRMeE0RUXAhR8SGERQWh0/97NLnb7eHcsVx2bzrNrvUn6k1q1BoVbbo0pvd9renSJ/2OjCG7zcn2dSdYsWAvZ5SaAYDkplE88GQXeme3umUS6HZ72LnxFL/cFA3vk92KR56rHw13Od1sXHWUed9tpVAx14aG+/P4qB4MHNoWrVY8HoX5Ffzw9WY2rT6GLAsQ5eBh7XliVA+Cgs3Isszu7ef49vMN5CnrnsZNoxj3cn9atknE45HZuPY43321yUfz7pzZhPGT+hMdG8yF84V89skaTp0UYqBRSgSTXh1IRvM4jhy5yicfr+Ga4nvq0LERkyYNICjIxMzvt7Fk6QFfXPzF8X3p2SNN6ZDagcPhwmjU8fxzPRnYrwWzf9pZb2oz5aX+JCSE8e60VZw4Ix6rTu2SmfxCP9ZsOcXsX3b71lSvTxiA0+Xmg2/WU1ltRadV8/yT3YmLCeHdr9dSVmlBo1Yx9rFMwsP8+XDWRmosdkwGLZOe7sX14ip+WC7SSnGRQUx8ogdzVx3g2HklSdUtnZTEcL78VRCHw4LMjB+Wybz1h7iQV4IkwZP92lFcVcuafYIM3KlZAqmJEczdcFAwYaKC6dMxZ1ZRAAAleElEQVS2CT8oRZnRIf70b5/Kj1sO43S7iQ72p3erFObvPIrbI5McEUzzxGiWKZHvlonRGAwa9l4QP2u9MxpxtqCEvPIqdGoV/Vs1ZfWJc6KeITSIkAATh3LE/e+RmsSBq3nUOpyE+pmICw3kyDUx4emSHM8hhW8TE+SPTqvhsuK3aRUbzcE8cRvNoyM4V1qC3e0mJsAfBx6Ka2sxabVE+PtxuaIcSYKmYaGcKRPeqHrwvpBQLlSK9VZSUDBXq8vxAPGKr0ZGJt4/kDyL+HddGnGsn3h/Q2biYlsNakki0KCjwmHFqNEgI2P3NFy74C3ErHZZMao1eCQXbtnt89t4k1K1bisGtRaX7ETGc1NSSsIlO/HT6LG5vUkpteiP8iWlvJFvR73CTIPiszGrtbhkmzDzqkSlws0x8BtRb9dNMXCX72MyLl8MXED6nIoAkpFw+6ob6jNuXMpazMu4UWjFt2XcSD5KsWDcSGgkjVL5oDBuNKlIwd8hqRvGvPw7zv+uqO5y7vQADcn8G06HmznLJvnSJzefRT/uYsYna+mWlc4f379z++nnf1/OigX76Ht/G6b8991ZNbIs8/a42RzadYH0Nol88P3oe+Li1D3WWjtf/30F6xYfACCtVTyvffAY0f8PGIPdLjdOhxu1RoVGq/4/6qq3WRwc3n2BPZtOs2/rmXqxbq1OQ7tuTejaL4POvZrhH3Tn9WDupWJWL9rP+t8OUV0pphkajZrMvukMebQTzdsl3fK12W1O1i87zKI5O8nPvRENz364PQ+NyKznm3K73GxafZx53231xciDQ/147NnuZD/UzocrqKywMP/77SxfuN9nXu7ZL4OR4/sQEye+3xfO5vPN9A0cVXw2QcFmnh3Xm/6DW6FWqzh3Jp8vPlnLqRNikhIbH8ILE/vTqWtjaqptzJ61jWVLRfLKaNTxzHM9ePCh9lTX2JjxzSbWrj0OQEiImQkviuj33n2XmPbZWoqKhPenX98Mxo/Lori0hvc/XsW5C8Kj0r5tElMmDaSktIZ/TFvta/nu1zudF8f2YcO203zzwzbsDhcmo44XR/WmebMY/j59DafPi0lbry5NGfd0d75fuJs1W4QQaJocwdRx/Vm19SSL1h4BIDkulKlj+/LbpuOs2S4ul9E4mnGPdeOrX3b4eqPu65lBq7Q4Ppm3xZekmvh4D3Yev8yWQ2Iy1rVFEh2bJ/Ll0p3YHS5C/E2Mub8LP208RE6RKNsc0b89J64WsP/cjZWU1eli01ExRerePBmtTs0G5e3MZolIaontp8X3qXfzFEpqajl2VdyvIe3SOHAlj/yKavQaNYPapLHq6BkhSoL9SYkKZds5cd3OKfFcKa8gv1JctmvjRDYplQvpMRFU2GzkVQpR1C7hRp9Ui5hIrlZWUKn4bcICTJwrFoKkTVw0hxS/TVpEOJcqyrC73UT5+WGX3ZRZrfjptASZDORWV6GRJBKCgrhUUS7ETWgIFyrK8LaCX6wUZuLkINEKDjKJgUHk3MVMHKH0S2lVKvz0WiodNsxaLbLkxuZ2+iY0MvIttQsVTgs6lQqtWoifQJ3B570J1hmpcgrxYtBIODxO/DV6LHWSUha3FYNajYwLmbpJKdCoZDy4fUkpr6fGgxuTRodDSU9pJLdYT3lj4Co1IIovjSqVKMxUmDjeGLj4mLpOG3hDMXDHTTFwdz0CsV6Z5NyIgYNauYxg3Hhj4F62zQ3GjQYBN1QhiWmOwriRkFBLGsG40XVBCvocSfXvs0Y0dP5X4Nzl3OkBeqTfB1RWWPjm5xdIahzR4PUP7r7AWy/OJS4xjJmLX7rj5zpx6ApTnp2JyU/P/E2v+56Y7nQK8soZP2w6llo7Iyf157HRdyYh3+5sW32Mz/60hNpqG0aznhEv9SX70U73HIf+//qRZZkr5wo4uPM8h3ae58SBK/VqF0x+etp3T6Vr3ww69Ey9LdzRe2wWB9vXn2DN4gOcPHTV9/6ImCCyH+7AgAfbE9xAxUdVhYXlC/ay7Oe9VCqkbP9AI/c/1on7H68fDXe73GxcdYyfZm7zCZvAYDOPPJPJkIc7+NJWVouDxT/t5tcfd/mSUa3aJzH6pX40TReendLiamZ/s5l1q44iy6DVqRn2WGcefToTs1lPWWkN38/YzNqV4uNGo44nn+3GQ490QqNRsWHdCWZ8vcnHu+nVpxnjxvclJNSP1auP8u23m6musiFJcN99bRg1uhcOh4svvtrI5i1iXRIVFcgrkwbSsmU8c3/axc8L9+J2e/Dz0zNhbBa9uqcyc+52fv1NmG5DQ8xMfrE/SYlhvPfZGo4q66t2rRKYMqE/2/de5NufxOTHz6zn1bF9CQo08u6XaykqqUalknhyaEe6tk/hna/WkHNdeKAeyW5LZrtk/j5jPQUlVagkiWeGdiQ6IpBPftyCxebEz6TnlRG9OHjmGiu3K0mqlGgeG9iGaQu2UVQuSMZjh3bhXF4x6/eL1FLHZgm0axbPtyv2irLNYH+e6t+W79ftv5GS6t+eFXtPkVtSiUal4sk+bdh08hJXi8SU5NHurdhy6hJ5ZVVo1Woe7tqC1YfPUl5rxU+vI7t9Gov3n8TpdhMbHEBaXDgbTgqx1aFRHCUWC5eKBRG5b/MmbDp7EYfLTWyQP2GBfhxRvDjdmiRyIDcPq9NFlL8fwWYjpwvFGqlro3j25Ai/TUpYCOU2G6UWC2adjthgf87e5LcBSA0P42J5GU6Ph9gAf6qcdl8ppk6tpshSi1GjIchs4HpNNVqVikh/M9dqqlBLElH+/lyrqUIlQZSfH/mWatSSJPqirDVoVCoC9HrK7BYMag06jYpqpx1/nQ6nLNJRoQYTFc5aIWiMfhQrZuJwg4kyx431U61LVCTYPHZkPITqTVS6xDQnQGug1mXDpNHglh148NRJSoFZo5Ro3mNSSq/Qh29XmGlSiMQi8n0jDeXBhVGZ6ojYuFNpA1fhwSli40pEXC256sTAXb4YuHe6IwSQEEdC3NSJgSu3LSLgdRk37t/BuJFQS8pmwHAfUuC7SFLDqeJ/5/lfgXOXc6cHaOSDn5F/rZyPvn2W5q0b7jwqLa7iiYEfoVJJLNry5h2fGD0eD88M+pjigkqmvjOMrCGt7+k+rlt6iI//uAiVWsWfP3uKjj1S7/nrq3sK88p5/7UFnFKekINC/XjwmUwGP94Z8//hSob/9JFlmcK8co7tu8SxfZc4tPMC5SX1fVKRscF07tOMTr2b0bxd0h09Nd7bPHv8Gut/O8TmVUexKL4VlVpFx+5NGTS8A+0zmzY4Zcu9Usxv8/awftlhnycnIiaIYSMyGTC0LYY6rCWX083G1cf4+but5CvG5MAgEw8/ncl9wzv4wJNek/FPs7ZToQiPxqlRPPdiX9p2aoQkSVgtDhb+tJuF83b7Pm/vfhk8pzBxHA4XSxbu46fZO7AoYMus/s0ZPT6LsHB/Ll0sYvq0tRxXVm7xCSG8OGkA7donc+lSEdM+WcNJZVWVkhLBy68MJC0thlWrjzLju83U1NhRqSSGPdSBkU9348KlIj6YttqXhOrRrSmTxvcjN6+M96etIU+Jpg/s25zxo3qzYbuY2tjsTowGLeOf7UW71om8O30Nx5RG8I5tknh5dB8WrT7Cr6sENyY2Kog3xg/g8OlrfP/rbtwembBgP15/vh/HzuUxd5lYP8VEBDL52SxWbj/Jxr1CpLRJi+WJ7PZM+3kr1wpFqufpwR1BDT+s3I9HlkmICua5IR2ZsXwPeSWVqNUqnsvuyLm8ErYcEWKje8tkEqKCmbdJUJxTYkLp1TrFt5KKDPIju1Mzftx6CLvTTXiAmQHtU5m/4yhOt5jEdElLYtHe4z6zcEx4AJsUMdO5cTylFivnCkp8EfCt5y4r5mEjzeOj2HJO8R4lxpJXWUV+lZjidEiOY/sl8XugRUwk+VXVlNRaMOu0NIkK47AS+24bH8PR/AIB4gsKwO5xUVQrhEp8aJBP6NQty0wLD+N8eamPY1NkqcXmchFuNmH1OKl2OAg2GJBVMhV2G/5aPWqNRLndhp9Oh0YtUekQLd2SCl8iyim7sbqdCtRPNISHm4RpGGSiTH4U2YX3xpuUUkuCPFzttCmFliL67a1aEKsqsbbSSBJalQqHx0mgTo9FmeYEaPXUKm3fkuTGI7sJ1Hq9N2BQq3HeJHhMag0Oj8NXmHmjWsFxU2GmpAgZHS5ZYeLgQhRsCnJx/Tbw3xMDVwN2ZVLk8pVpgtsnbvQqQSLW1F1T+WLgKsVXczPjxhsH1yhVDHUAfubRSH5TkKTft2n4Z8//Cpy7nDs9QK+O+Z6TR3J4851h9Orf/La38fR9n1B4vYK/TX+KDl3v7K35+dst/PD5RpKbRvLlLxPuaS0jyzKf/Ndi1i09hMGo44PvR9MkI/au12vouF1u1i0+yIIZW3ypHrO/gfue6MLA4R3umdr7/9rxeDzkXirm9OEcju+/xPEDlynOrx8Z1xu0tOiQTNvMJrTNbEJCSsQ9Pf4lhZVsXH6EDcsOk3v5Bo06KjaYAQ+1o//Qdg2yimRZ5si+SyyZu4t9SgEmQEpaNA+P7EaPfhn1zOYOhzAP/zJ7h49BExhsZvjTXblveEffxMbt8rBh1VF+/HYrRUqtREx8CM+M602PvhmoVBJul4c1K44w97utPh9NevM4np/Uj2bN44QPZ8d5vpm+nuvKz0FqsxjGv9yf9OZxt6yjDAYtTz6dycOPdMLlcjPnhx38+us+36pq5MjuPPhQe3JyS/lk2lpOKNOWJk0imfzyIGJjg/n2+60sXSF4MMHBZl6e0I/2bZP4etZWlq06AgiuzZSXBhAfF1xvatOmRQJTJ/Rn/9ErfPmDiGsbDVpefLY3KUlh/G36anKVCc3Q/q24v38rPvhug69HKqtLUx4d0o4Pv9/I2csCLpfdI4M+nZvWMxKPerAzKrXEjMXCzxMR4sdLj/fgl41HOKr4b4ZkphMTGch3K8QEKiYsgJGDOvDdqv0UllejUcTO3rM5HLmoeHY6N6PW5mCzkpLqlpGMwaBl3RHxc9E5NQGjQcumE+LjmWmJ2F1u9iupqX6tmnCxqJSLRWVKC3gam05dpNrmIMhkoFOTBNacELeVERuBQ/ZwrlAIn95pKWy/cAWHW0xxAsxGThWIx6BbSiJ7ruTi8nhICA5EVkFOhYhtt4yN4qAidOr6baL9/XGrZAprajCo1cQEBXKxvMxnJj6llGU2DQ3jnOK3SQ4O5mp1hai5CBCQPpfHQ5TZj1K7FYfHTZTZj3KHxffvYptoCPcaiGVkos0BFFhvtIJ7zcSRZjPFNlGMGaDTU+m0YdRoALfg3uhMVLrqm4klIECnpdbtJQoLb43XTAwyZo0Wm8K18TaA101KgVgxNZSUulGYWXdl5SUSS6gkIWTElMaOXuHSSMjoVGJKY1QLIrEGCY0ypbk1Bi75VlA3x8DFdMZRJ0V1+xi4t3FcjayIpRst4Hdn3EhI/m8jmZ++5ffgf/L8r8C5y7nTA/TuHxaxZe0JRk/sx/ARt2fXeI3Gw5/JZPRd0k7VlRZGDPgIm9Vxz2ZjEK/q/2vCHA7tvkBwqB+fzBtH1L8gRlxON1tWHuWXb7eQW6dCIq1VPD2zW/3/2jvzqKiPbI9/G3pla0AC3S2rJGIURGxc4IkLGATX6Cjqmzg4RkeMuETfZBgzc9Cc8Yw6RjMvmnGJwyRjnmiCOCYaASNgjKIEe6ICriCLShCHTbaG7vv++EHHlqYFBKQ79Tmnz8H63aq+93d/Xd5f1a0qhET4dXqDwRfBfx7W4k7+fVz/oRjXfyjBjSslqGs9ILINS74FfPzc4DfKCyOCXsbQkR4GT+w2RH1dE85/k4czX/0bqqw7un1oRGIBgkOHIny2Ev6jvQweXdHYoEb611dw/FAWCm9y+SU8Hg+jxw/GnDeCMXyUl15g1digxtfJOfj80+/wqHWPGXtHa8xdxI3YtAU2Wi3h22/y8OnedN2ZUY5ONvjl0gmImBUAPt+SO1fqu1v4ePc3KL7LJXYqBjpgyVuhCJn0Kng8Hgpu/4g9H6ZB9f1dro0BNngzZhImRwwHAKR8fQUH9qWjqorbXXn8hCFYvjIMzs52OJt5HR999A0qWkfDQsb7YOXKybCzk+Dg/13A4SNZaGnRQiwWYMmvx2P2LCWyLt3Bzt2pqKjgAq2p4X6IWTYJedfv4/1dqShvtXlGpD+WLR6PlDO52P/Pb9Gk5oKYFYsnYNRIL2z7KBWXWw/DHOnrpksuPpjMbdrn5GiDuBXhuPewBrsPckGQjZUI698MRU1dI3Yf4tq0sxFj/a9DcbP4IT47wSU9u8nsseaXE/HZqe9xOZ8LKkJHvYKx/p74IPEsHjdw+Tex88bhzOXbuJTP6RGmfAXuckd8ciobGi3Bzdke8yYOx8enLnFHNIiFiA4PxLEL13DvUQ34lhZ4IzQA6bkFKPyRm5KKChmOc9eLUFxRBb6FBeYG++Gbq7dRXlMHiZCPGaOG4vjlfDSomzHARoIxgz1w4t/cFgLDBjrDgm+BK6XcNFHYMG9culuKmsYmSCUi+LnJ8e1tzs8B7goUV1Whoq4eVgIBfAe64FJRawDpJsfNikd4rObOk7K3luD2Iy5HRj/fxgmF1VVobGmBi401NCA8rOfae8nWCnerq2DBA7wdftqZ+MnN+/TybaT2KGzdvO/JfBs3WylKWvNtOpNMbCcWovqpZGIHoUQ3QuMktsZ/WpOJHcUi1DRzxypY8LRopha9Yxe4M6W4gy55PG3rRn7caA4PBBsBt5FfW+Jw25lS3FQUt1IKrSul1NpG3UopHgjWlpZopqZ2B2Zy50ZZPnHOFJdLI2ldBs7l0vx0GjigeWIZOJd83BbAAFoIn14GDoJl6yoqPrhRHu68qfbLwJ/e44YbyeED0BrZ40YInv374ImntOsLexsW4DyD6upq2Nvbo6SkpN0N+nRPOpITszBtTiCWrn6twzbSU67ifzd/iZeHyPGXfb9+5nf+/a+p+OrwJSiDX8a72zu/q2Pd40b8ccU/cPdWOfwCPbFp1/NHy1qtFpfSr+PkkUtcLknbI8DjYdlvIxERNfq5v6Mnybt8F9vjPkd165TMkwglAngPUWBogDuGKT3h4+emN/XTWe7k38eGmH+guemnHJ1X/d0xcdpwBIcONTqd19TYjBVzd+mmjIRiPkKnjsD0qNFQuLdP7NZotIh9Yy/KWkdRBrxki9kLx2Ly9BHt8qP27kzBqX9xUzC2dhLM/u8gTH19pJ7c4YPncSiBO9vIVipB1BvBiJgRAEHryrn83FJsWHcIWi2BL7DErDmBmLtwrG5q9e/7M3CsNSHd1dURy1aEIqB1f6djyd/jwIFMAFw+zW+WT8KoUd4AgD/GJ0HVut/N6FGDELN8EpxfkuJMZj62//UUAEDuIsWqFZMxYrg7vsu6jT/95Std+eoVYRjh546PPzuHL47nAAD8fV2x9jdhsLOVIHrNP1Bb1wSRkI8lC4Mx8zV/bN+XhtOtZ0ZNChqMldET8XXmNew/cgEAEPCqK367LAxnLt7E/i+4MuVQN7yzZDL+/q8snDrP1Y38r1ex7BfBWP6nw3hY+RgiIR+rFoRAIhFi08fcCeBDvVzw++jJiNv7FUrLqyEU8rHmFyH4seoxPknh7tdrgYMxOfAVvLOfO8bBx9UJK18fh3V7v0SzRgOZoy3emTsRv//n12hQt8DJzgr/M3s84g+noVGtgYvUBiunBmPjkTRotARPZwfMDfbDX748y+nuNRCDZI44cpFL5I4a44dLRaUofFgJKyEfi0OU2J3BHVjsq3CG3MEOqfm3uRVdo0Yg8fIVNGu1GOTkADcHKTJv34Ulj4d5Ab449APXZsBAGR7W16O0ugZ2YiFGe7gi7TY3qjR1yGCcuMWNEgUqFLj6sByNmha4S6Vo4Wlxr6YG9mIR3KX2uFL+IwSWlvCXuyD7wT1Y8ngIVAzExTJuqnOUYiAulXFTjEqZHJcfciNdAc5yqCq4v4cNcEZu5Y+w5PEwSOqA29WPuEM3JRL82FALqUCMFosWNLSoIbeyQ1ljNQjAIBsHFNVzLwBeNo4oqv8P+DxutKampREDhFao1nDB9kCJPcoaKsED4CAWoaa5HnYCCeo03O9XLrZFhboKAh6XjNxCLXAU2qK6mQu0pAIBGrRNsLWUoEHLBVG2lkI0UgNsLCVo1HI5QLZ8PtTaJtjyrdCkrQUPgNAC3D45fDGaNLVcsMJry9/hRnqsLcTQEDfaZNk64mNtyW8NfMTQoI7bi6Z1WosLbridj4nqwOfxYQluKo0Pbhm5LrjhCQFqhJAnhAUaYMHjg4/m1pEb7gWMW0VF4EMIbppKzOX08MSwQDPAk4Jnv6NX9rjpDDU1NXBzc0NVVRWkUuMb2v4sA5zS0tJOH+vAYDAYDAajf1FSUgJXV1ejMj/LAEer1eL+/fuwtbXt8WXKbdGlodEhc8Dc7QPM30Zmn+lj7jYy+0yf3rKRiFBbWwuFQmEwXeBJfpY7GVtYWDwz8nte7OzszPbBBczfPsD8bWT2mT7mbiOzz/TpDRufNTXVRt+s62IwGAwGg8HoQ1iAw2AwGAwGw+xgAU4PIxKJEB8fD5HI+K64poq52weYv43MPtPH3G1k9pk+/cHGn2WSMYPBYDAYDPOGjeAwGAwGg8EwO1iAw2AwGAwGw+xgAQ6DwWAwGAyzgwU4DAaDwWAwzA4W4DAYDAaDwTA7WIDTRTZv3ozg4GBYWVnB3t7eoExxcTFmzJgBa2trODk5YfXq1VCr1UbbbWpqwqpVq+Dk5ARra2vMnDkTpaWlvWBB18jIyACPxzP4yc7O7rDe4sWL28mPHTu2DzXvPJ6enu10jYuLM1qHiLBx40YoFApIJBJMnDgRubm5faRx17h79y7efPNNeHl5QSKRwNvbG/Hx8c98JvuzDz/66CN4eXlBLBZDqVTi22+/NSqfmZkJpVIJsViMQYMGYc+ePX2kadf585//jFGjRsHW1hbOzs54/fXXcePGDaN1OvqdXr9+vY+07jwbN25sp6dMJjNax5T8BxjuU3g8HlauXGlQvr/77+zZs5gxYwYUCgV4PB6OHTumd727/WFSUhKGDh0KkUiEoUOHIjk5uUf1ZgFOF1Gr1Zg3bx5WrFhh8LpGo8G0adNQV1eHc+fOITExEUlJSVi/fr3RdteuXYvk5GQkJibi3LlzePz4MaZPnw6NRtMbZnSa4OBgPHjwQO+zdOlSeHp6IjAw0GjdiIgIvXonT57sI627znvvvaen6x/+8Aej8tu2bcOOHTuwa9cuZGdnQyaT4bXXXkNtbW0fadx5rl+/Dq1Wi7179yI3Nxc7d+7Enj17sGHDhmfW7Y8+PHz4MNauXYt3330XKpUKISEhiIyMRHFxsUH5wsJCTJ06FSEhIVCpVNiwYQNWr16NpKSkPta8c2RmZmLlypXIyspCWloaWlpaEB4ejrq6umfWvXHjhp6/XnnllT7QuOsMGzZMT8+rV692KGtq/gOA7OxsPfvS0tIAAPPmzTNar7/6r66uDv7+/ti1a5fB693pDy9cuID58+dj0aJF+OGHH7Bo0SJERUXh4sWLPac4MbpFQkICSaXSduUnT54kCwsLunfvnq7s0KFDJBKJqLq62mBbVVVVJBAIKDExUVd27949srCwoFOnTvW47s+DWq0mZ2dneu+994zKRUdH06xZs/pGqefEw8ODdu7c2Wl5rVZLMpmMtmzZoitrbGwkqVRKe/bs6QUNe55t27aRl5eXUZn+6sPRo0dTTEyMXtmQIUMoLi7OoPw777xDQ4YM0Stbvnw5jR07ttd07EnKy8sJAGVmZnYok56eTgCosrKy7xTrJvHx8eTv799peVP3HxHRmjVryNvbm7RarcHrpuQ/AJScnKz7d3f7w6ioKIqIiNArmzJlCi1YsKDHdGUjOD3MhQsX4OvrC4VCoSubMmUKmpqakJOTY7BOTk4OmpubER4eritTKBTw9fXF+fPne13nrnD8+HFUVFRg8eLFz5TNyMiAs7MzBg8ejGXLlqG8vLz3FewmW7duxYABAzBixAhs3rzZ6PRNYWEhysrK9PwlEokwYcKEfuevjqiuroajo+Mz5fqbD9VqNXJycvTuPQCEh4d3eO8vXLjQTn7KlCn4/vvv0dzc3Gu69hTV1dUA0Cl/BQQEQC6XIywsDOnp6b2tWre5desWFAoFvLy8sGDBAhQUFHQoa+r+U6vVOHjwIJYsWQIej2dU1lT89yTd7Q878mtP9qEswOlhysrK4OLiolfm4OAAoVCIsrKyDusIhUI4ODjolbu4uHRY50Vx4MABTJkyBW5ubkblIiMj8dlnn+HMmTN4//33kZ2djdDQUDQ1NfWRpp1nzZo1SExMRHp6OmJjY/HBBx/grbfe6lC+zSdP+7k/+ssQd+7cwYcffoiYmBijcv3RhxUVFdBoNF2694Z+ky4uLmhpaUFFRUWv6doTEBHWrVuHcePGwdfXt0M5uVyOffv2ISkpCUePHoWPjw/CwsJw9uzZPtS2c4wZMwaffvopUlJSsH//fpSVlSE4OBiPHj0yKG/K/gOAY8eOoaqqyuhLoSn572m62x925Nee7EP5PdaSCbNx40Zs2rTJqEx2dvYzc07aMBSlE9Ezo/eeqNNZumNzaWkpUlJScOTIkWe2P3/+fN3fvr6+CAwMhIeHB06cOIE5c+Z0X/FO0hX73n77bV3Z8OHD4eDggLlz5+pGdTriad/0pr8M0R0f3r9/HxEREZg3bx6WLl1qtO6L9qExunrvDckbKu9vxMbG4sqVKzh37pxROR8fH/j4+Oj+HRQUhJKSEmzfvh3jx4/vbTW7RGRkpO5vPz8/BAUFwdvbG5988gnWrVtnsI6p+g/gXgojIyP1RvWfxpT81xHd6Q97uw9lAQ64TmTBggVGZTw9PTvVlkwma5ckVVlZiebm5nbR6pN11Go1Kisr9UZxysvLERwc3Knv7SrdsTkhIQEDBgzAzJkzu/x9crkcHh4euHXrVpfrdofn8WnbSqHbt28bDHDaVnyUlZVBLpfrysvLyzv0cW/QVRvv37+PSZMmISgoCPv27evy9/W1Dw3h5OQES0vLdm95xu69TCYzKM/n840GsC+aVatW4fjx4zh79ixcXV27XH/s2LE4ePBgL2jWs1hbW8PPz6/D58pU/QcARUVFOH36NI4ePdrluqbiv+72hx35tSf7UBbggOs0nZyceqStoKAgbN68GQ8ePNA5OzU1FSKRCEql0mAdpVIJgUCAtLQ0REVFAQAePHiAa9euYdu2bT2i19N01WYiQkJCAn71q19BIBB0+fsePXqEkpISvR9Ab/I8PlWpVADQoa5eXl6QyWRIS0tDQEAAAG6ePTMzE1u3bu2ewt2gKzbeu3cPkyZNglKpREJCAiwsuj473dc+NIRQKIRSqURaWhpmz56tK09LS8OsWbMM1gkKCsKXX36pV5aamorAwMBuPcu9DRFh1apVSE5ORkZGBry8vLrVjkqleqG+6ixNTU3Iz89HSEiIweum5r8nSUhIgLOzM6ZNm9bluqbiv+72h0FBQUhLS9MbQU9NTe3Zl/oeS1f+mVBUVEQqlYo2bdpENjY2pFKpSKVSUW1tLRERtbS0kK+vL4WFhdHly5fp9OnT5OrqSrGxsbo2SktLycfHhy5evKgri4mJIVdXVzp9+jRdvnyZQkNDyd/fn1paWvrcRkOcPn2aAFBeXp7B6z4+PnT06FEiIqqtraX169fT+fPnqbCwkNLT0ykoKIgGDhxINTU1fan2Mzl//jzt2LGDVCoVFRQU0OHDh0mhUNDMmTP15J60j4hoy5YtJJVK6ejRo3T16lVauHAhyeXyfmcfEbci7+WXX6bQ0FAqLS2lBw8e6D5PYio+TExMJIFAQAcOHKC8vDxau3YtWVtb0927d4mIKC4ujhYtWqSTLygoICsrK3r77bcpLy+PDhw4QAKBgL744osXZYJRVqxYQVKplDIyMvR8VV9fr5N52sadO3dScnIy3bx5k65du0ZxcXEEgJKSkl6ECUZZv349ZWRkUEFBAWVlZdH06dPJ1tbWbPzXhkajIXd3d/rd737X7pqp+a+2tlb3fx0AXZ9ZVFRERJ3rDxctWqS30vG7774jS0tL2rJlC+Xn59OWLVuIz+dTVlZWj+nNApwuEh0dTQDafdLT03UyRUVFNG3aNJJIJOTo6EixsbHU2Niou15YWNiuTkNDA8XGxpKjoyNJJBKaPn06FRcX96Flxlm4cCEFBwd3eB0AJSQkEBFRfX09hYeH00svvUQCgYDc3d0pOjq6X9nTRk5ODo0ZM4akUimJxWLy8fGh+Ph4qqur05N70j4ibmlkfHw8yWQyEolENH78eLp69Wofa985EhISDD6zT7/fmJIPd+/eTR4eHiQUCmnkyJF6S6ijo6NpwoQJevIZGRkUEBBAQqGQPD096W9/+1sfa9x5OvLVk8/f0zZu3bqVvL29SSwWk4ODA40bN45OnDjR98p3gvnz55NcLieBQEAKhYLmzJlDubm5uuum7r82UlJSCADduHGj3TVT81/bMvanP9HR0UTUuf5wwoQJOvk2Pv/8c/Lx8SGBQEBDhgzp8YCOR9SarcVgMBgMBoNhJrBl4gwGg8FgMMwOFuAwGAwGg8EwO1iAw2AwGAwGw+xgAQ6DwWAwGAyzgwU4DAaDwWAwzA4W4DAYDAaDwTA7WIDDYDAYDAbD7GABDoPBYDAYDLODBTgMBoPBYDDMDhbgMBgMBoPBMDtYgMNgMBgMBsPs+H8hF5DaNds+4AAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'convergence of 2x2 conjugate-gradient')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "θ = 0.9 # chosen to make a nice-looking plot\n", + "Q = [cos(θ) sin(θ); -sin(θ) cos(θ)] # 2x2 rotation by θ\n", + "A = Q * diagm([10,1]) * Q' # a 2x2 matrix with eigenvalues 10,1\n", + "b = A * [1,1] # right-hand side for solution (1,1)\n", + "x1 = range(-11,11,length=100)\n", + "contour(x1', x1, [dot([x1,x2], A*[x1,x2]) - 2*(x1*b[1]+x2*b[2]) for x1 in x1, x2 in x1], levels=range(1,2000,length=100))\n", + "plot(1,1, \"r*\")\n", + "x1s = Float64[]\n", + "x2s = Float64[]\n", + "for i = 0:2\n", + " x, = CG(A, b, [-10.,-10.], maxiters=i)\n", + " push!(x1s, x[1])\n", + " push!(x2s, x[2])\n", + "end\n", + "plot(x2s, x1s, \"k.-\")\n", + "\n", + "title(\"convergence of 2x2 conjugate-gradient\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## You don't have to write your own iterative solvers\n", + "\n", + "There are several packages out there with iterative solvers that you can use, e.g. the [IterativeSolvers](https://github.com/JuliaMath/IterativeSolvers.jl) package or [KrylovKit](https://github.com/Jutho/KrylovKit.jl):" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "import IterativeSolvers" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.4485355980665282e-8" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(100,100); A = A'*A # a random SPD matrix\n", + "b = rand(100)\n", + "x, ch = IterativeSolvers.cg(A, b, maxiter=300, log=true)\n", + "norm(A*x - b) / norm(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHFCAYAAAAXETaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9jklEQVR4nO3deXhU1fkH8O/sk31fISTs+xoW2bfKJog77oBoa6m1iP6q1ipCqdiqFK3iUlSkWkWtUqtUCLLKIjsCYSeQQDaSkD2Zycyc3x8z92Ymk2UmJMxk5vt5Hh7NzZ17z+TO8t73vOcchRBCgIiIiIig9HQDiIiIiLwFAyMiIiIiGwZGRERERDYMjIiIiIhsGBgRERER2TAwIiIiIrJhYERERERkw8CIiIiIyIaBEREREZENAyMiapOKiopw9913IzY2FgqFArfccounm+REoVDgxRdf9HQzAACVlZV48cUXsXXrVk83pVWsXr0aCoUCFy5ckLeNGzcO48aNa9Xzpqen48UXX3Q4L7Vtak83gIioOf70pz/h66+/xgcffIDOnTsjMjLS001ysnv3brRv397TzQBgDYwWL14MAK0eLHiLlStXtvo50tPTsXjxYowbNw4pKSmtfj5qfQyMiNqIyspKBAYGeroZXuPYsWPo3Lkz7rvvPk83pUE33HCDp5vg9Vrzdd2rV69WOS75Nnalkc85efIk7rnnHsTFxUGn06FDhw548MEHYTAY5H2OHTuGmTNnIiIiAnq9HgMGDMBHH33kcJytW7dCoVDg008/xXPPPYfExESEhobiF7/4BU6dOiXvt2DBAgQFBaG0tNSpLbNmzUJcXBxqamrkbWvXrsXw4cMRFBSE4OBgTJ48GYcOHXJ43Jw5cxAcHIyjR49i0qRJCAkJwcSJEwEAxcXFmDdvHiIjIxEcHIybbroJ58+fr7fb5syZM7j33nsRGxsLnU6Hnj174q233mrW85R8//33mDhxIsLCwhAYGIiePXti2bJlDvvs378fN998MyIjI6HX6zFw4EB8/vnn9V0uJ0VFRZg/fz7atWsHrVaLTp064bnnnpOv34ULF6BQKLBp0yacOHECCoUCCoWiyS6if/3rXxg+fDiCg4MRHByMAQMG4P3333fY54MPPkD//v2h1+sRGRmJW2+9FSdOnHDYR7o2Z8+exbRp0xAcHIykpCQ8+eSTDq8xwLkr7cUXX4RCoXBqW33dQAaDAU8++STi4+MRGBiIMWPG4MCBA0hJScGcOXPk/a5cuYL58+ejV69eCA4ORmxsLCZMmIAdO3bI+1y4cAExMTEAgMWLF8t/M/vjuPJaaYirr0np+R88eBB33HEHIiIi0LlzZwDW18zdd9+NlJQUBAQEICUlBffccw8uXrzodL49e/Zg5MiR0Ov1SExMxLPPPuvwHpPU15VmNBqxdOlS9OjRAzqdDjExMZg7dy6uXLnisF9KSgqmT5+O77//HoMGDUJAQAB69OiBDz74QN5n9erVuPPOOwEA48ePl/+uq1evdunvRl5KEPmQw4cPi+DgYJGSkiLeeecd8cMPP4iPP/5Y3HXXXaK0tFQIIcTJkydFSEiI6Ny5s1izZo347rvvxD333CMAiL/85S/ysbZs2SIAiJSUFHHfffeJ7777Tnz66aeiQ4cOomvXrsJkMgkhhDhy5IgAIP7xj384tOXq1atCp9OJhQsXytv+/Oc/C4VCIR566CHx7bffiq+++koMHz5cBAUFiePHj8v7zZ49W2g0GpGSkiKWLVsmfvjhB7FhwwZhNpvFqFGjhF6vFy+//LLYuHGjWLx4sejatasAIBYtWiQf4/jx4yIsLEz07dtXrFmzRmzcuFE8+eSTQqlUihdffNHt5ymEEKtWrRIKhUKMGzdO/Otf/xKbNm0SK1euFPPnz5f32bx5s9BqtWL06NFi7dq14vvvvxdz5swRAMSHH37Y6PWrqqoS/fr1E0FBQeLVV18VGzduFM8//7xQq9Vi2rRpQgghqqurxe7du8XAgQNFp06dxO7du8Xu3btFSUlJg8d9/vnnBQBx2223iS+++EJs3LhRLF++XDz//PPyPi+99JIAIO655x7x3XffiTVr1ohOnTqJsLAwcfr0aYdro9VqRc+ePcWrr74qNm3aJF544QWhUCjE4sWLHc5b95osWrRI1Pex++GHHwoAIiMjQ952zz33CKVSKZ555hmxceNGsWLFCpGUlCTCwsLE7Nmz5f1Onjwpfv3rX4vPPvtMbN26VXz77bdi3rx5QqlUii1btsh/s++//14AEPPmzZP/ZmfPnhVCuP5aqY87r0np+ScnJ4unn35apKWliXXr1gkhhPjiiy/ECy+8IL7++muxbds28dlnn4mxY8eKmJgYceXKFfkYx48fF4GBgaJXr17i008/Ff/5z3/E5MmTRYcOHZz+hmPHjhVjx451aOuUKVNEUFCQWLx4sUhLSxOrVq0S7dq1E7169RKVlZXyvsnJyaJ9+/aiV69eYs2aNWLDhg3izjvvFADEtm3bhBBC5Ofny6+bt956S/675ufnN/o3I+/GwIh8yoQJE0R4eHijH0x333230Ol0IjMz02H71KlTRWBgoCguLhZC1AYM0hey5PPPPxcAxO7du+VtgwYNEiNGjHDYb+XKlQKAOHr0qBBCiMzMTKFWq8Vvf/tbh/3KyspEfHy8uOuuu+Rts2fPFgDEBx984LDvd999JwCIt99+22H7smXLnL6EJk+eLNq3b+8UMDz22GNCr9eLoqIit55nWVmZCA0NFaNGjRIWi0U0pEePHmLgwIGipqbGYfv06dNFQkKCMJvNDT72nXfeEQDE559/7rD9L3/5iwAgNm7cKG8bO3as6N27d4PHkpw/f16oVCpx3333NbjP1atXRUBAgNPfIDMzU+h0OnHvvffK26RrU7eN06ZNE927d3fY1tzA6Pjx4wKAePrppx32+/TTTwUAh8CoLpPJJGpqasTEiRPFrbfeKm+/cuWKU3skrr5W6uPOa1J6/i+88EKDx7N/HuXl5SIoKEi8/vrr8vZZs2aJgIAAkZub67Bvjx49mgyMpL/fv//9b4dz7du3TwAQK1eulLclJycLvV4vLl68KG+rqqoSkZGR4le/+pW87YsvvhAA5CCU2j52pZHPqKysxLZt23DXXXfJ3Qb12bx5MyZOnIikpCSH7XPmzEFlZSV2797tsP3mm292+Llfv34A4JDinzt3Lnbt2uXQ9fThhx9iyJAh6NOnDwBgw4YNMJlMePDBB2EymeR/er0eY8eOrbcr6Pbbb3f4edu2bQCAu+66y2H7Pffc4/BzdXU1fvjhB9x6660IDAx0ON+0adNQXV2NPXv2uPU8d+3ahdLSUsyfP7/e7iAAOHv2LE6ePCnX/dQ9b05OTr3dc5LNmzcjKCgId9xxh8N2qcvnhx9+aPCxDUlLS4PZbMZvfvObBvfZvXs3qqqqHLqWACApKQkTJkxwOq9CocCMGTMctvXr16/ebp/maOg633HHHVCrnUtD33nnHQwaNAh6vR5qtRoajQY//PCDUzdgfZrzWnGlrXVfk/bqvq4BoLy8HE8//TS6dOkCtVoNtVqN4OBgVFRUODyPLVu2YOLEiYiLi5O3qVQqzJo1q8nn+u233yI8PBwzZsxweJ4DBgxAfHy803twwIAB6NChg/yzXq9Ht27dWuw6k3diYEQ+4+rVqzCbzU2OAiosLERCQoLT9sTERPn39qKiohx+1ul0AICqqip523333QedTifXFqSnp2Pfvn2YO3euvE9eXh4AYMiQIdBoNA7/1q5di4KCAofzBAYGIjQ01KntarXaaQSW/ZeEtJ/JZMLf//53p3NNmzYNAJzO19TzlGowGvv7Ss/xqaeecjrv/Pnz6z1v3XbHx8c7BV6xsbFQq9VO18YVrrRbOm5Dr4u65w0MDIRer3fYptPpUF1d7Xb7GmtP3euqVqudrtPy5cvx61//GsOGDcO///1v7NmzB/v27cOUKVMcXqONncvd10rdx7vymrRX39/53nvvxZtvvomHH34YGzZswN69e7Fv3z7ExMQ4PA/pNVJXfdvqysvLQ3FxMbRardNzzc3NbfI9AVivsyt/V2q7OCqNfEZkZCRUKhUuXbrU6H5RUVHIyclx2p6dnQ0AiI6OdvvcERERmDlzJtasWYOlS5fiww8/hF6vd7hrlo775ZdfIjk5uclj1peViYqKgslkQlFRkcMXUW5urlN7VCoVHnjggQYzJR07dnTpuUmkLFxjf1/pOT777LO47bbb6t2ne/fuDT4+KioKP/30E4QQDs8/Pz8fJpOpWdfGvt11s4T25wXQ4OuiOeetjxRMGQwGOfAEGg5S8/Ly0K5dO3m7yWRyCtI+/vhjjBs3Dm+//bbD9rKyMpfadK2vFVdfk/bqvrZLSkrw7bffYtGiRXjmmWfk7QaDAUVFRU7nq+/YjZ1PEh0djaioKHz//ff1/j4kJKTJY5DvY8aIfEZAQADGjh2LL774otE73IkTJ2Lz5s1yICRZs2YNAgMDmz3Eeu7cucjOzsb69evx8ccf49Zbb0V4eLj8+8mTJ0OtVuPcuXMYPHhwvf+aMnbsWADWkW32PvvsM4efAwMDMX78eBw6dAj9+vWr91z13Q03ZsSIEQgLC8M777wDIUS9+3Tv3h1du3bFkSNHGnyOjX35TJw4EeXl5Vi3bp3D9jVr1si/d9ekSZOgUqmcAgd7w4cPR0BAAD7++GOH7ZcuXZK7XluCNM/Nzz//7LD9v//9r8PPY8aMAeB8nb/88kuYTCaHbQqFwiHIko5ft0u4vkwncO2vFVdfk41RKBQQQjg9j1WrVsFsNjtsGz9+PH744Qc5OwkAZrPZ6fz1mT59OgoLC2E2m+t9no0F7Q1p6O9KbRczRuRTli9fjlGjRmHYsGF45pln0KVLF+Tl5eGbb77Bu+++i5CQECxatAjffvstxo8fjxdeeAGRkZH45JNP8N133+Gvf/0rwsLCmnXuSZMmoX379pg/fz5yc3MdutEA65fikiVL8Nxzz+H8+fOYMmUKIiIikJeXh7179yIoKEiegK8hU6ZMwciRI/Hkk0+itLQUqamp2L17txw4KJW19zqvv/46Ro0ahdGjR+PXv/41UlJSUFZWhrNnz+K///0vNm/e7NbzCw4OxmuvvYaHH34Yv/jFL/DII48gLi4OZ8+exZEjR/Dmm28CAN59911MnToVkydPxpw5c9CuXTsUFRXhxIkTOHjwIL744osGz/Hggw/irbfewuzZs3HhwgX07dsXP/74I1566SVMmzYNv/jFL9xqM2D9u//hD3/An/70J1RVVeGee+5BWFgY0tPTUVBQgMWLFyM8PBzPP/88/vCHP+DBBx/EPffcg8LCQixevBh6vR6LFi1y+7z1mTZtGiIjIzFv3jwsWbIEarUaq1evRlZWlsN+vXv3xj333IPXXnsNKpUKEyZMwPHjx/Haa68hLCzM4TpPnz4df/rTn7Bo0SKMHTsWp06dwpIlS9CxY0eHICokJATJycn4z3/+g4kTJyIyMhLR0dFISUm5pteKO6/JhoSGhmLMmDF45ZVX5DZt27YN77//vsPNBQD88Y9/xDfffIMJEybghRdeQGBgIN566y1UVFQ0eZ67774bn3zyCaZNm4bf/e53GDp0KDQaDS5duoQtW7Zg5syZuPXWW5s8jj2phvC9995DSEgI9Ho9Onbs6PaNB3kRDxd/E7W49PR0ceedd4qoqCih1WpFhw4dxJw5c0R1dbW8z9GjR8WMGTNEWFiY0Gq1on///k5DyaXRWl988YXD9oyMjAaHnv/hD38QAERSUlKDo6/WrVsnxo8fL0JDQ4VOpxPJycnijjvuEJs2bZL3mT17tggKCqr38UVFRWLu3LkiPDxcBAYGihtvvFHs2bNHAHAYvSO19aGHHhLt2rUTGo1GxMTEiBEjRoilS5c2+3muX79ejB07VgQFBcnDpu2nORDCOoXBXXfdJWJjY4VGoxHx8fFiwoQJ4p133qn3OdkrLCwUjz76qEhISBBqtVokJyeLZ5991uH6CeH6qDTJmjVrxJAhQ4RerxfBwcFi4MCBTs9t1apVol+/fkKr1YqwsDAxc+ZMh2kUhGj42tQ34gyA03D3vXv3ihEjRoigoCDRrl07sWjRIrFq1SqnEVXV1dVi4cKFIjY2Vuj1enHDDTeI3bt3i7CwMPHEE0/I+xkMBvHUU0+Jdu3aCb1eLwYNGiTWrVsnZs+eLZKTkx3OvWnTJjFw4ECh0+mcRre58lppiKuvSelvZD/8XnLp0iVx++23i4iICBESEiKmTJkijh07JpKTk51G4e3cuVPccMMNQqfTifj4ePF///d/4r333mtyVJoQQtTU1IhXX31V9O/fX34t9OjRQ/zqV78SZ86ckfdLTk4WN910k1M76zvmihUrRMeOHYVKpXJpWgrybgohGsiJE1Gb8a9//Qv33Xcfdu7ciREjRni6OQRr3Ux4eDj+/ve/47HHHmuRY+7atQsjR47EJ598gnvvvbdFjtla+JqktopdaURtzKefforLly+jb9++UCqV2LNnD1555RWMGTOGX0BeYs+ePXLNy/Dhw5t1jLS0NOzevRupqakICAjAkSNH8PLLL6Nr164NFrZ7Cl+T5EsYGBG1MSEhIfjss8+wdOlSVFRUICEhAXPmzMHSpUs93TSyuffee2E2m/Haa68hNTW1WccIDQ3Fxo0bsWLFCpSVlSE6OhpTp07FsmXLnKYK8DS+JsmXsCuNiIiIyMbvhutnZWVh3Lhx6NWrF/r169foCBkiIiLyL36XMcrJyUFeXh4GDBiA/Px8DBo0CKdOnUJQUJCnm0ZEREQe5nc1RgkJCfJ09LGxsYiMjERRUREDIyIiImp7gdH27dvxyiuv4MCBA8jJycHXX3+NW265xWGflStX4pVXXkFOTg569+6NFStWYPTo0U7H2r9/PywWS4PLBNTHYrEgOzsbISEhDS6kSURERN5FCIGysjIkJiY2OvFomwuMKioq0L9/f8ydO7feFZrXrl2LBQsWYOXKlRg5cqQ8C296errDKsmFhYV48MEHsWrVKrfOn52d7VYgRURERN4jKyur0UWl23SNkUKhcMoYDRs2DIMGDXJYF6lnz5645ZZbsGzZMgDWhQlvvPFGPPLII3jggQcaPYfBYIDBYJB/LikpQYcOHZCVleW08jkRERF5p9LSUiQlJaG4uLjRpZ/aXMaoMUajEQcOHHBYnRmwrmG1a9cuANZU2pw5czBhwoQmgyIAWLZsWb3rV4WGhjIwIiIiamOaKoPxqeH6BQUFMJvNiIuLc9geFxeH3NxcAMDOnTuxdu1arFu3DgMGDMCAAQNw9OjRBo/57LPPoqSkRP5Xd7FHIiIi8h0+lTGS1I0GhRDytlGjRsFisbh8LJ1OB51O16LtIyIiIu/kUxmj6OhoqFQqOTskyc/Pd8oiEREREdXlU4GRVqtFamoq0tLSHLanpaVxIUMiIiJqUpvrSisvL8fZs2flnzMyMnD48GFERkaiQ4cOWLhwIR544AEMHjwYw4cPx3vvvYfMzEw8+uijHmw1ERERtQVtLjDav38/xo8fL/+8cOFCAMDs2bOxevVqzJo1C4WFhViyZAlycnLQp08frF+/HsnJyZ5qMhEREbURbXoeI08oLS1FWFgYSkpKOFyfiIiojXD1+9unaoyIiIiIrgUDIyIiIiIbBkZERERENgyMiIiIiGwYGBERERHZMDAin1RlNHu6CURE1AYxMCKf8/OlYvRbvAHL0057uilERNTGMDAin3M4qxg1ZoF9GUWebopLKo0mPLJmPz7fn+XpphAR+T0GRuRzSqtqAADlBpOHW+KanzKKkJaeh39sP+/pphB5zH8OX8akv23D2fxyTzeF/BwDI/I5pdXWgKisusbDLXFNcaURAHDV9l8if/TN4WyczivH1lP5nm5KowwmM2sYfRwDI/I5UsaorPr6ZowMJjMqmpGlKqm0tre4sgZcoYf8lfR+9eZMrxAC017fgYmvbUWN2eLp5lArYWBEPqfEQ4HRbSt3YewrW9y+myypsrbTZBFe/aVA1JpKbRne8uv8vnVHabUJ565UILukGoXlzPD6KgZG5HOkD1ij2YLqmuuT8jaZLTieXYqCciOyS6rcemypXZdfcWXb6P4jamllche49wZGxXbd3RVG720nXRsGRuRzSqtqP7Cu14es/XmkrjxXlVQxMCKSagLLDN77HiiqqA2MKg2sM/JVDIzI59hnYNwtwLZYBPJKq90+p0Ng5GYw5hAYVTE9T/5HiNpuZO/OGNW+V9nt7bsYGJHPsc/YuPsh+9cNpzDspR/w45kC9855DcEYM0bk7yqMZlhs4w68OTCyHzlaya40n8XAiHyKEMIhY+Puh+zx7BIAwImcUrce59iV5t45Sx0CI2aMyP/Y30x4cybmqt2NSwWH7PssBkbkUyqNZpgttUPe3c3eSEFKqbuPs9vf3cd6KmNk4Sg48hJlDjcz3ps1tb9xqeR7x2cxMCKfUlKn8NndjFFxM4f6X8sHu32br17HwOjXnxzA0D9vQn4zaqrIt1UaTddtRCdQJ2PURrrSeFPhuxgYkU+pm61pbvbG3ZFl9h/s7nSl1ZgtqLRLyV/P4ut9F66i0mjGMVv3IREAGE0WTHh1G256Y8d1m3DUvvu7ok7W15tcrah9n1eyK81nqT3dAKKWVDcocSfzY7GI5nelVTUvY1Q3w3W9utJMZot895tXargu56S2Ia+0Grm2LGKl0YwgXet/TdR9n5YbTAgL0LT6ed11lfMY+QVmjMin1M30uBMYlRtN8sgYd4fcO2SM3Hisc2B0fTJGRRVGSMmA3BJ2pVEt+9dk3ddna6l7M+GtdUYOxdfsSvNZDIzIp9TN9LiVvam07w5ztyuteRM8tkTGqKQZjymwW84gv4yBEdWyfw26mzltrvoyRt7IsfiaXWm+ioER+ZRryRiVXMP8R/az9TbnnFq19a1Y7GZA9q+fMtF/yUasO3TZrccVlNd2nzFjRPbs69yaE3Q3R92Ca2+dy4hdaf6BgRH5FKkbK1CrAuDe8gL2QdW11Bi581jpnEkRAQCsd6QWNwpP92YUAgB+yihy+TFAncCINUZkxzFjdL2W1HF8z3jjyLQqoxnVNRb5ZxZf+y4GRuRTpAxMu3BroNHcjFG5weRWgOI4Ks39rrTkqCAAgEUAZW50I2QXV9v+697CtfYrg3O4Ptmz7y5yt0u5ueq+T69XF547rtap/2tOd196dqnXdhNSLQZG5FOkD/J2EdcWGAlhLcZ2VVmd4cYms6WRvWtJ7Y0J1slZLncKsC/bAiJ3AyP7jFFhhREGE+9+yco+Y3S9iq/rZqZauyvtP4cv47aVO91aF7FuYORujdHPl4ox7Y0d+L8vjrj1OLr+GBiRT5HuNGszRs0vhHbnbrnuHa6rd4XSOcMCNQi3DU92tQDbbBHysOrs4iq35py5Uu7YfXaljN1pZFV8DV3KzSW9T3W2WrvWzqq88cMZHMwsxvqjOS4/pu770t0ao3NXygEAZ/PL3XocXX8MjMinSLU+7SMCrT9fw9B5d+5a657H1Uke5cAoQIPwQC0A5zvThuSXVcsT4VUYzW5NLGnflQbArTtn8m2eyBhJ77Xm3NC4K7+sGueuVAAAsopcz7RK78vwQOsNjLs1RtJzvJ6z21PzMDAinyJnjGxdaUaTxeVuouZmjAwmM4wma9eZXqN0aIer5wwN0MgfuK5+GdXtPrvsRndaQZ2MUW4JM0ZkVVJlX2N0nYqvbYMkEsL1AFq3+Pqn87UDFTKLKl1+nBTQtLd9trib1ZI+T0qqjNdtRnFqHgZG5FOkgCQxTC9vczXz4xQYufg46fgKBZAYFuDQDlfPGRagQYSUMapwLWMkFV7X/ux+YNQh0ppZY8aIJNeSMSqqMOKxfx3EjjNX3Hqc9B6S3j/NqTFyNdjYc75Q/v8sNwKjYtv7UspqGU0W1LhYSwjUfp7UmAUqOKLNqzEwIp8i3eGGB2oRbFvKwNW7T+euNNe+FKQ7wWCtGmG2rI/rwZh1v7AAjfxYV+cyam7GSAghd6X1aRcKgIER1bqWGqO09Fx8+3MO3tl2zuXHCCFqAyOpK83NbMzDH+3H1Nd3yJnbxtgHRplFlS4HVEWVUmAUKG9zpzvNPgN9vWa4p+ZhYEQ+w2IRcjATGqBGiN4aGLkapEgfXHJ3mIsBinT8EL0aoXqNW48tdcgYuVd8XTcwcjVjVFJVA5OtNqlXAgMjqiWEuKYZ4KUZ1XOKXX89VdXULhqbaOtKc6fGqNJowqYTeTiZW9Zk15hUX6RQWDO8VTVmFLqYoZXel3GhOmhUCgDuLQtiH2RerzURqXkYGJHPsF/rLFSvsQuMXPsQku6U3S3crg2Mas/p6mMdiq8DrF1prt5NXrZ9+XSKDrL97FpgJHWjherVSLJ1peW6GRiZzBbWSfigqhozjHbdQ+4GRtJrN7e02uXXh/T+USkViA2x1Ri5EXBculr7um/qvSPVF/WMD0VCqPVcrtYZScXXEYFaBGqt7/NKN0am2ddrMTDybgyMyGdIH+JatRJ6jUruSnM3SEmKcG9kTKldlio0QOpKa/qxJrNF/gK4lq60wSkRDj83Rbqrjw7WIc725ZDnxuzXu88V4oZlm3HLyl0ocvFu21e0pWBw1Y7zmPr6DremYqj7he1ujZFUoFxpNLtxY2Hrita5n+UFHOuEmno9St1oN3SKkm8KXK0zkp5beKBG/mypcGMuI/uMkasjT8kzGBiRz5DuyKTurBC960GKxSLkwErOGLk4Ikc6foheY9eV1vRj7b84QvXq2uJrV7vSSmyBUXKk9WcXuy+kjJFjYOTaHf7n+7Pw4Ac/oaDcgCNZxbh/1U9+Uy/x5OdHMPqvW7x25fe6Pt5zESdySrHrXIHLj5ECI63K+tXgzmSlgOPAAVfX4Cu164oO1rtXFwg4BjZNZWKkwGh459rAKLPQ+vh//ZSJhz/a1+D1lV7nEUFaeTJWd+Yycqgxuk7TIFDzMDAinyHdkYUFWD9c3bn7tO+GS4qUCkDdrzGq7Upr+rHS3XiQVgW1Slk7XN+FQKPSaJK/BKSMUV5ZtUujZApsGYToEC3ibYFRpdHcZMHr5/uz8Psvf0aNWeDGXnGIDtYiPacU97//U5sJFppLCIH/HcvBpatVOJlb5unmNMlgMstdRPluZAOlBWSl6S4A97I39pmQnBLXMpiOXdHuDV4AgCy7rrSiRt47V8oMcn3R0JRIeURmZlElLBaBv244iU0n8rHheF69j5eCvohADQKblTGy60rzs0xrW8PAiAAAyzeewoy//+jxrpEDF69i2us78PBH+/HWlrPy3ZwrSu3mBALg1oesVHCqVSsRE6KzHc/Fom374ms3utLs64sAyMXXrmSMpOxQiE6NlKggaNVKCOHaXbpUbBoVpEOAVoVQWzDX2JppQgj8Y/t5AMBDIzvi3ftT8a9HbkBkkBbHLpfiPdvvfFWZwSSPQGoL9SGZhZVyoO9OYb30PogO1iLIlhVxpzvN/m/jasaoNuOqlruojGYLqmtcCzrsa4Qam+riTL41oE2JCkJYoEYOjLKuVuJEbqnc9gMXnRdkNpkt8vs8PLD2b+NqjZF15B0zRm0FAyOCEAIf7rqAo5dL8N8j2R5tyz+2n0d6Tik2ncjDKxtO4aY3dridkpe6s0LdKL62D1Lk7jA3h+uH6jXyOV0JqkrqBHJhtuLr0uoaeZROQ6R6osTwACiVCnneJlfqjOy70gDI3WmNTfJ4MrcMZ/LLoVUrseDGrlAqFegWF4Klt/QBAHy064JPZ43y7F6DbaE+RJrZGQDy3Kkxkt8HWvl16c6QffuMjasF/WXy+7Y2MAJcL8C270pr7NpIN1lSQFRbY1SF3edqh/AfuHjV6bH2gUx4gAZBbmaMqmssqDHXvqfbwmvInzEwIlwurpI/nNLS608jXw9GkwU/nrXWQ/xyTCd0iQ1GmcGEZf874dLjnTNGrnelSY8ND3A/nW/fFeBOUFVaJ2MkdaUJ0fRooNrASG/7r7XrI9uF7osrZbaMUbA1EIu3BVWNfZH957A1YB7fPUZ+jgAwuXc8OkUHobTahH/9lNnkuVvKgYtFTrN3tyb7v01bqKmS1uUC3MsYFdsVGEvX2dWMkdkiHPZ1P2OkgUqpkIMjV95/QgiHUWlFFQ239aItgEqOsgZEUoCUXVKFbadrJ6Q8nVfuMGUBUHvNQ/VqqFVKtzNGdT8P2kLW0Z8xMPIB6dmlOJjpfJfjqhM5tTUTe84XtsjCkQcuFrlcYyDZf7EI5QYTooO1eGZKD6yYNQAKhfVL+Se7SdkaImdg9FKNkS3AcaFWyCFjFCBlfVytMartCpAe61L3XZ3ASKNSyl8K9aXazRaBy7bFYqXAKMEWEEmB0eWrTf/NCyscM0bSEOmGvkAtFiFnEmcOaOfwO5VSgUfHdgYArPoxw+Xuj2ux/fQV3P72bjyx9nCrn0uS65Ax8v4vtfP2GSN3AiNbjVF4gEZ+XbrcpVxVA/v6/RyXA6ParmgAbk3MWlxZ45BZaixorZsxig7WIkCjghCQb8ikOcwOZjl+nkrXPCLIejMh1Ri5mtWq+1nSFoJrf8bAqI2rrjHj7vd24+739jR7hfT07FL5/00Wga2n3JvOv64tJ/Nx+9u7MW/1frcet8123jHdYqBUKtCnXRjuHdoBALDom+MOo2Pe3HwGI5b9gOfXHcOxyyUA7IfNu58xsg9S7DNGrozUsj+vOxmjuoERUJs1sk+1bz99BXM+3IsBSzZi5Mub8Yevj8lzGEnLE0j/vezCyDQp0xITImWMrAHSiZxSGExmWCwCezOK8P6PGTh/pRwHM6/icnEVgnVqTOgR63S8Wwa2Q0KYHlfKDPj3wUtNnv9afXnAeo6fzhddl0AMcAwu2sKXWt2MkavTDBRX2GWMbEG+qxmjut1DrmeMHAOj+uYfu1phxMLPD2NTnYx21lXHGsTGiq8vFlmDxeQo67xfCoVCHmghhPU5T+uTAAA4cKFOYFQhLSBrfc/UZoxce/0xY9S2MDBq445nl6C02gSjyYJ9F5yLBl1xIscaGElf0HU/fNxhMlvw0npr11d6TqlbaxFtOZUPABjfvfbL96lJ3REeqMHJ3DKs2HQGALDrXAFe3Xga2SXV+Oeei5j+9x/x+KeH5A+busP1XZlPxbHGqLYA1ODCEgOOo9KaDqrKDSZrMWc9gZF0N/v9sVwA1vqJhz/aj62nrsjn+XRvJr4/lgOgtitNCoxcqTGSlgOJCrIGREm26Qm+/TkHQ5ZuwoiXN+Oud3fjT9+mY8qKHXju62MArN1meo3K6XhatRIPj+4EAFix6YxDgJ5RUNGiwUul0SR39xrNFhzPLnHr8YezivHImv04bxc4uMK+K+1qI9013kAI4fD8qmssLs8pJGWMwgLdrzGSAiOFdVJolzPGpXZdaQDkIfv2oyT/8v1JfHXwMl7deMrhsVlFVbbH2jKtDQQcQghcLHTsSgNq328AMLxTFAanWKe+2F+nAFs6rjRAorbGyNWMkXU/ndr6lcvia+/GwKiNsy8U3JvRzMAo1xoYzRvVEYA1QHFncUR7/z54CWfyaz+Ut7u4mOSlq5U4nVcOpQIY0zVG3h4RpMWiGb0AAG9uOYsPfszA/33xMwBgcu84TO+XALVSgW+OZOPbn63dPWFOGaMa5JdV48/fpeNwVnG957cvhA7SqqG0fbi70p1mXzwq3WWbLcLhbvJqhRFv/HAGM9/aib4vbsDwlzfLdQ32gdEjtgDjo10XkFdajeVpp2E0W5CaHIH/PjYKv5/SHQDkRSilRTcTXQyMKo21o6uibaPvbh6QiEfHdkZ8qB6l1SbkllYjRKdG33ZhMJotOJVn7WqdOSCxwePeN6wDusYG40qZAQvWHoLRZMHi/x7H+Fe34vdf/txom7KKKvH21nMuLZ67+WQ+quwCrYMXi5t8jL2Pdl1AWnoevjjgXmbLvjC9uMq7M0YF5UaUVpugUNRmNhobcWhPrjEKcL/GSAoYO9oyMqXVJpdqcJwzRo41fsezS7B2fxYAaybM/rNJyhj1bRdma7+x3oELxZU18vHsg6Eku/8f0TlKnvriSFaJfJ680mqs2XMBABBj634O0roZGNmCP+l8xZVGWJoYYEGew8CojbMPjOre5bii3GCS76TuHdYBUUFalFWbmhVkVRnNWJ52GkDtXdm2Ot1yNWYLlv3vBB5Zs98h1S5136UmR8gzQEtuHdgej43vAgBY8m06LhdXoUNkIJbfNQBv3jsIK+621iJJoz5C65nH6A9fHcM/dmRg1ru75WyMPfuMkdKuANSVO2374tEAjQpqW1Rlf6e99LsTWJ52GkeyiiGEdU4VaT4c++c7rnsMUpMjYDBZ8OTnR7Du8GUAwKIZvdC3fRh+PbYzbuqXIO+fKNcY1S5v0NgdfoGt8FqvqS0gDdSq8czUHtj5zASs/eUN+HDuEOz74y/wzWMj8ea9A9EuPAADksIxonNUg8fVa1R4+/5BCNCosPNsISYu34oPd14AAKw/mtPgNBDHLpfg1pU78ZfvT+IPXx9t8PgSqdZJunOvbwRRYy4UWrtT3MlkAnW70rz7bl/KFrULD5AnK3V1ZnPpfRAeaF9j5F7GKCkyUH5tudKdVlYnYxQi1xjVQAiBJf9Nl2uXaswCGQW19VPSdezb3hoYWRoYuCAVXseF6hyyng4Zo87R6BITjFC9GlU1ZpzIKcXPl4ox882dOHa5FJFBWswbbb15DNRJEzy62JVma5N0Potwf6Fcun4YGLVhQggcsLtjTs8udWuNIQA4ZcsWxYXqEB2sk2tIpOyLqywWgb98fxJ5pQa0jwjA8rv6AwB2nSuU77xKq2vw0Op9eHfbeaSl5+H2t3fhbH4ZaswWbDhuDVbGdXeuYQGAJyd1wy22jIVCASy/q7+czp7eLxHP39RL3lf6QJfueAvKDdh0wtr9YjBZ8OtPDuDtrecc7vbq1vu42o0ghHCYJkChUDjVNlXXmOWur2em9sCO34/HC9N7yfVEnaKD5eMpFAo8NcmaFfrxbAGEAG7un4h+7cPl379yRz+M7BKFkV2i5C60lKggdIkNhsFkkecbqk+BrfA6KkgHhdTnYaNSKjCsUxTGd4+FXqOCQqHA9H6J2PnMBHw9fwTUqsY/LrrEhuCl26zD97OKqqBTK5EQpofJrnjb3q5zBbj7vT3yEiX/O5Yrd+vWp7S6BltsAfTCG7sBAA5kXnVrmQ6pADfLhSJ1ew5daV5eY3TeFjh0jglGbKg1w+Hq0PnajFFtV5q7NUYRgZrakY4uBUYN1RiZsOF4Ln7KKIJOrZRvtk7ZTbApXcdO0UFyQFXf9bloC4iTI4MctqfYsluxITp0jgmCUqlAarI1a/S7zw7j5jd3Ire0Gp1jgrBu/kj0iLcuuhzk5lpp0mdEdHDtrNltoVbNX6mb3oW8VVZRFQrKDdCqlIgM0iK3tBoHL17FmG4xTT/YJt02Iq2nbZX1Wwa2wxcHLuGzfVm4ZUA7DOsUBSEEjl0uxe7zBdibUYS8UgNqzBaoVQqM7hqDiT1i8ffNZ+Wuoaen9MDApAhEBWlRWGHEwYtX0Tk2GPev+gknc8sQoFEhJkSHzKJK3LpyF4DaD8exDbRdoVDgL3f0Q3JUELrFhci1AJKHRnWERViLhofYfid9wErfm3cPSYJCocCnezPxl+9P4s3NZ3DzgHZ4dloPp8DIevda1eTdsv3K4NL5QgM0uFpZIz9266krqDCa0S48AL8a0wkKhQIPjeqIOwe3R1ZRFXolhjocc3jnKIzqEo0fzxZAo1Lg/yZ3d/h9oFaNTx6+wWGbUmkNqB79+ABW7cjAg8NT5IkqJfll1Xh5/UkAtRkmV9UNohpy68D2uFBQiS2n8rFkZh8cyryKxf9Nx78PXsLsESkArN2Mb289i79tOgOzRWB4pygE6VTYdCIff998BivvS6332GnH82A0WdAlNhh3Dk7C4v+m40qZAZeuVjl0iTSk3GCSJ7e85EbGqMZscZga4GqlNZPh6t/kejtn68ruFBMkv69cHZkmj0qzzxi5WJ9Uu5aYFglhATh3pcKlkWn2XdGAXWBkMOG1jdYM9C/HdMKVMgMuFlbiVG4ZZljvu+TrmBQRiPAgDcoMpnoDI3lEWpTj62R012g8PKojRnSJkq9nanIEtpy6gowC6yzZ0/slYuktfRy6vN2dx8h+rrPwAA0qjWYUV9YgueEkLHkQAyMv4u6H7YFMa3dXn3ahSI4KwteHLmP/hSL3AiPbiDQpMBrZJRp3prbHFwcuYeHnR/DPeUPx0vqTcsalrmOXS/H21nMArN0zL93aFzP6WzM7o7tGY93hbPxwMh/L007jZG4ZYkJ0+GD2ELSLCMBDq/fJNT/RwVrcNTgJvesECfZ0ahWesGUK6vPw6E5yETAAh8niArUqLJzUDTHBOvRODMWqHedxobASn+7NRE09hdChLo5os18ZXLoTrDsyTcq+Tesb73B9Q/Qa9Ep07DaUPHdTTzz80X7cd0MHl770AWvNVf+kcBzJKsabm8/ggeEp+N/RHFytrIFKaZ32IL/MgGCdutG/47V64sZu8vHbRwTgz9+dwM+XSnAmrwyhARo8/ukh/GTrqr1lQCJevr0fLhZWYtOJfKw/mouTuaXynbk9qVtxRr9E6DUq9G4XhiNZxTiYeRVJkYEoLDcgPFALlbL+95CUNQCss39XGk3yKumNuVJmgBDWTKUQ1vm2qmrMLj3WE+wzRlIBtCs1RtU1ZlTXWLO71nmM3BuVJmVAIoO0Ls2NJanblRass/534/FcXCisRJBWhUfGdMK/bXVhUs2bxVI7h1FSZCAiA7XIKqqqtzhensOozntJrVLij9N7OWy7bVB7pKXnoVNMMOaP64yucSFOx5O6Cl2vMbIFfwEahAdqkV1S7fWZR3/mne9sP/TjmQK8/P0JrHloGCJtc2VISiprcPZKGXrEh8p3KkBtfcWgDhHoFBOMrw9dxr4L7tVcSF0XUmAEAItu7o29F4pwsbASE5dvgxCARqXAmK4xGNYpEl1ig6FWKnG10oj1R3Ow5eQVJIbrsfK+VIfsx9juMVh3OBurdpyHRVgDlU8fGYYusdYPmn89MgzfHM5Gl9hgDOwQ0eAXWnNJE7FVGM14ZHQneb6e+29Ixn3DOmDD8Tw8+vEBrDt0Wf67SvU+IS4Ou7dfGVwKeuy7AiqNJvxwwjrabnq/houX6+qZEIqdz0xweX/AmtV5enJ33LvqJ3y0+yI+2n3RaZ+uscF454FUdI4JrucILS86WIdx3WOw6UQ+XtlwCoezipFfZkCQVoUlM/vgtkHtoFAo0D0+BDf1TcB3R3Pw9x/O4q37BjkcJ7OwEjvOWOeauWWg9e+Y2iECR7KKceDiVVytMGLxt+m4f1gy/mSbjbuuusvLXLpahW71fOnVJX25J4YFIK+0GiaLQHFljdcGRtJQ/U4xQbDY0qWu1BhJAZA0yaJ0k1DmZvF1RKAGRpNrXWnWpTLq70q7YLtedw5OQqheg+62a3XaFhjllxlgNFugUiqQEKaX5xiqb8h+Qxmj+iSGB+A/j41qdB9pHiN3h+uH6tWICHKvi5KuP+98Z/sZk9mCF745hvNXKvCbTw5izbyhUCsV+GDnBazZfUEujh6QFI7PfzUcWtuQT6m+KDU5Al1irV90h7KuwmiyyPvUJ6uoEsezSzGwQ7jcX98rofYLIlinxopZA3DHO7thtgj0iA/B8rsGOHX5ANYJ/6przFApFdDUqUEZbRtdJg2+eO2u/nJQBFi7hO62zVPUWh4a1RHp2aX45ZhODtsVCgWm9ImXu6yca4xcyxiVVEl3grVvJTljVFUjj6JKigxAP1uBaGsa0SUaY7rFYPvpK1ApFRjbLQbd4kJgEQIRgVo8MDzZIZN2Pdw2qD02ncjHRtsw+25xwXj3gcHoGO1Y7/HbiV3w3dEcrD+Wg1O5ZegeX/ta+WSvNcgb0y1GnocmNTkCH+zMwH8OZ8vX75OfLmLuyBR0qifwu1in+yyrqNKlwEhaDiQuVAeDydqtdrXSKBe+exODySwXJHeJCZaHieeVNZ25sR+RplAo3B6uLwUk4YFa+Sahqa606hoLTHJXtONwfcCapZtj64KVXg+ZRZWoNJrkEWkJYXqoVUpE2OYYqq92p+4cRtcqWC6+tv59DSYzzl+pwPkrFaiqMWPmgESHz0MpIx2i1yDctvSPK6MwyTMYGHkBtUqJd+5Pxa1v7cTu84VY+m06zELg4z21SyyolAoczirGS+tP4MWbe6OsukYunB6UHIHYEB0iAq21LcezSzCwQ4TTeSoMJry15SxW7ciA0W7Iq06tlIsQJQM7RGDV7MG4VFSJu4YkQad2nr9GUt/cNoA1WzCwQzgOZRbjtxO6YHLveLf+Li3hyUndG/39b8Z3kWe9BZwLt5uqMZK7AXS1XWJSkHSpuEoebXdT38TrVpPy93sGYtfZAgztGImoYF3TD2hlE3rEIjxQg+LKGtzYKw5/mzWg3uCsR3wopvWNx/qjuXhj8xm8da81a2QwmfHFfms3yn3DagPpQcnhABwL50uqarBi0xm8cc9Ap+NfLHQOjFwhZYziw/QoqzahoNzgtSPTLtoWjw3WqRETopO7tPJcqPWRAgopa2pffO1KN799V5rUrZxb2niR++7z1vee0m5qgVC7wGhijzik2ALoqGAdooO1KCg34kxeOS7YugylebikwKjusiBVRrOcMavbldZcUraw0mBGldGMXyzfhst2U2WUV9dgzsiO8s+OXWnWvyvnMvJeDIy8RLe4ECyfNQC/+ucBuQtEoQD+MLUn7hzcHgcuXsW8j/Zj9a4L6BAZiMIKAyzCWsMhLQKamhyJTSfy8M/dF9GnXZh8x5JVVInP9mVi7b5LchFp+4gAuX9+QFJ4vSOOxjcwQswdb9w9EMezSzGpV9w1H6s13NApEqnJEXK3ZN0ao6a70hy7AayPtR7j3W21o8Om2w2xb21hARpM7Xv9ztcUvUaFD+cMQUZBBW4Z0A7KRrpMH5/YFeuP5mL90RycyStD17gQfH8sF0UVRsSH6jHRbubthLAA+XV868B2mDeqI6b//Uf89+ds/GZ8F4eMEwBk2rIG0qAAV0emSYFRXKhenu7AW+tDpJrBbnHBUCgUiLONSssvM8BiEY3+7aUv6nB5UWPrf2vMAtU1FgRoG745AuyLrzUArI+t25W2fOMpnMgtw5CUCJQbzHhzs3XS1vHdY+XAK9juJuOhUSkOj+8eH4KCs4U4lVuGrw5Zg+UBHcIB1E7hUDcTk2kLgEP0ajkouVbSqDSj2YK9F4pwubgKWpUScWE6ZBVVYWN6nkNgVFZV25UmB0ZeGlwTAyOvMrl3PBb8oitWbDoDrVqJ12cNkL/gJvaMw/xxnbFy6zks+TZdfsywjrXDGm4f1A6bTuThq0OXcaGwAtP7JeL747nYd6FIHpmVFBmA52/qhRt7xSG/zIB9F4rqzS61lKTIQJeLhz1BoVDgsQldMPfDfQjRqeXsl3S3XFZtwsXCCuw5X4jeiWHoER/iEERK9RwhdgurjuwajX/uuQiTRSBUr8a47rGNFpX7g4EdIlx6nfWID8XUPvH437FcvLH5LF67sz/+abtRuHtoklMA//rdA3AkqwQPDE+GRqWUM05/SzuNdx5wHN0mZYxGdInGf49k49JV1zJGUrYlPlQvr0XnreulSYMZ+ieFA7BmbRUK61I/RZVGeX28+pTYjSoDrBkclVIhLw7bWGAkhJADkohArTzDc0G5EQaTGTq1CllFlXhj81kAjotV3zW4PZbMrK0L6xoXDJ1aiX7twzC8k+OwrW5xIdh5thBfHryEvRlFUCsVeOCGZOt5bTVGdYNWeah+VGCLZW2leYwA4EfbJLY39o7D7yd3x9hXtmJvRhFKq2ucBmKEBmga7fIj78DAyMs8PqErusWFoHNMsNMd78Ibu+FMfjl+Ol+I/knhSE2OwP22DwUAmNo3Ae89kIonvziCg5nFOJhZLP9udNdo3DO0A37RM06uP4oL1btVEOyrxnWLwZ9m9kZsaO0QdikDdDy7FLe8tVP+IgzUqnBHans8Nbk7Dly8ir/bPuhHd42WHzu+eyyOL54MlVLhtUO6vdnjE7vif8dy8e3P2dhwPBdGk7XA9u4hzvVoqcmRSE2unbphwS+64X/HcvH98VxcKKiQu2GMJos8K/jIzlH475FseTmJpth3pclfal5aH3LkUjEAaxYYsC5MHBWkQ0G5AXml1Y0GRvYLyALWm4ZQvdo69UR1jdwtV59yg0muFYoI1EKvUUKrVsJosiCnuBop0UHYfc66EHRSZAC6xYYgp6Qas0ckY1ad6xoXqsfuZyciwDaXlr0ets9EaQLam/snyrVe0rWpGxhlyiPSWqa+CLD+XaXnJw0KGNQhAslRQegcE4RzVyqw43QBbuqXYJ3rrKq2K03KxHlrcE0MjLyOUqnAtAa6QdQqJf7x4OBGHz+pdzy+iw/F0//+GUazBVP7xGNa3wSvLBT1FgqFAg8MT3HYJt3pnbXNCZNoqy8pM5iwZvdFbDyeh9LqGpgtArcNaocHhyc7PL6pyRCpYT0TQuURakaTBWEBGjw0smOjX8ySbnEhGNUlGjvOFOB/x3Lx63GdAQCXi6tgEUCARiVnruouQNoQqT4lLlSP8CDvrQ+pMVtw3NaVJk0ICliLxgvKDcgvNaB3I/dBJ2xzmtmPipXm5GpqBJXULaTXKOXMUu/EUBzKLMaOswVIiQ7CznO2UYUD2jVZ+1d3ZK6kbrG8/fQc0mivugGHNH2BKyPS3BGkVcFossgz2A+ydelN7BmHc1fO44eTebipXwIMJotc0xmqVzNj1AYwMPJBHaIC8ekvb2h6R2pQqN1kbv2TwrHmoaEI0amx81wB/rjumNwtM6pLNF6+rR8zQy3sr3f0wx2p7dExOsjtLpDJveOx40wBvj9eGxhJ3SkdIgPlFdXLqk0oqaxxWoLGnhBCrpOJD9XXjijywi+1U7llMJosCNWrkWIXBMSF6nE8u7TROYXOXynHf2zzRE3vXxs9ubosSO2s17UBzaRe8TiUWYyNx3Nx/7AO2GXLGA1vZGmZptjPKTS6a7TDSFkpmLKvMRJCYIetq6u/XbDYEgK1ajkI06qV6J1oHXU6vnss3tt+HltPXYHZIuS/nbXAXM3i6zaAt7VE9egRH4KwAA2GpERgzUND5TXURneNwYYFY/C7iV1xZ2p7rLx/UKNTI1DzBOnUGN8jFinRQW4HnZN6x0GhAI5kFcvdZ1J3SoeoQARq1YgOtn6JNpU1Kq02yYvWWrvSvKtw9psj2dhpG1VpX19k/zeTBmfklVbjYmEFdp0tQHWN4/w7r/9wBhYBTOwRK3fDAWh0IdkaswVbTuYjt6RaXgsv3C4wmtzbOuBi97lCHMy8iitlBujUSgy6hprGYJ1a7k57dGxnh9/JmZiqGnmB1tN55fLyNGO6RaMlBdnVGfVtFyZ/DgxOiUCIXo2iCiMOZxXLI9JC9NbPEOlvxOH63osZI6J6RAXrsPe5idCqlE5fzHpN4zNwk2fFhugxJDkSey8U4ftjuXhoVEc5wycN124fEYiCciOyiirRp13D80tJS2mEBWig16hqv9TcyBiZzBb86dt0dI8Pxb3DWm7erlO5ZXj800PQqpT48enxOGILjOwDGwDyyLTP9mbh75vPwmwRCNGpMblPPGb0T0RMsA7f2Nayq/u6DgtwDoyEENh8Mh9/Xn8C569UoEd8iBykRAbVZt86xQSjS2wwzuaX48/fnQAADEmJbHB6D1e9c38qLhdXYWQXx0BHysSYLdZJI8MCNUhLt67BOKpLdItPyGk/2a7UjQZY64/GdovBtz/nYPPJPEzsaQ0QpWk8pHaWVptgtogWn9iWrh1vdYkaoFM7F39S2zC5j3XOrO+PWb8Y5cAoSgqMrN1pl5oYsm/fjQagWRmjHWcL8NHui1j0zbFm1ZXU2M05Zm/rKeuM6kazBe//mIGfL5UAcO4ykjJGuaXVMFsEIgKta4p9eeASZn+wF9P/vgNCAFN6xzsFiVJdjnRswJpdmvfRfpy/Yu2ePJlbho22AMQ+YwTUZo2kgSDX0o0mSYkOcgqKAOv7VZoLSZpsMs026/wvWmG6kCC7QKvuiMuJPa3TSvxwIt9hnTSgtrgd4OzX3oqBERH5nCm2wGjfxSJcKTPIcxh1sE1kKk0h0VRX2r4L1tFPKdG2SQQbGBLemJ22UUs1ZoH//pzj8uMA4MsDl9Bn0Qb84eujTgGStGgzAHy85yLO5FuLgPslOQY3qckR0KmV6J0Yik8fuQEH/ngjPv/VcDxwQzKigrSwCGv9y4IbuzqdX1rUedtpa71MjdmC1bsuAADmjkzBzbZ6pP/ZAtCIOvVak3o5TupaX0DTkuyvT15ptZxFkwKVlhRoN31B3e7B8d1joVYqcDK3DEeyrEGlFBipVUqE2LJNLVGAbbEIvLvtHPbbXqt07diVRkQ+p124dQmWny+V4Ja3dsqFx1JXmjRbsv3s10IIXCisREyIDsE6NSwWga8O2gqSbdNaSN0gJbY6lsYmTJTYz6z+1cFL8rw7dVUYTPhwZwaGd45GanIEzuaX4Y/rjsJgsuBfP2Uiu7gKb907CEE6NSoMJjloiwvVySPnEsP08pqAkm5xITiyaBJ06tpu4aEdIzG0YyQWzeiFnzKKEKBV1btwb2pyBEJ01nqZny8Vo9xgQnFlDaKCtPjjTb1w7HIJvjmSLc+TFlknY9S3XRjiQ/XILa1GiF6Nvo10W7aEyCAtLl2twtUKo7wO5ICkcKe/SUuQutISw/ROIybDA7UY0SUa209fwef7swA4LhsUEaRFmcGEwgojOrm+5ne99l4owrL/nUT3uBBseGLMtR2MADBjREQ+6taB7QBYh+qbLQIxITq0s3WhSSPTjl4uxYc7M7Bqx3lMfX0Hxr+6FXe/txs1Zgv2nC/E5eIqhOjVuNHWFSONShPCeVZ0g8l5QdErZQZ5OLdKqcChzGKct00KWtef15/AqxtP4653d+Mf28/j8U8Po7rGgl4JodBrlNh66gruW/UTjCZr22rMAkmRAXh2ak/5GP3r1BdJ9PXMCQRYsxcju0Q3WBCtUSkx2la0vPXUFaw/as0MTeodD5VSgX7tw9DLbgHqul1pSqUCk2zdaTd0imr1epraGrAabLJNInljK826LxVfD0yu/293U19rtkxaKsR+EtgOtgBdWtbkWkhdmllXKyGkCLUJJ3JK5WwaOWNgREQ+6cHhKfji0eH4eN4wfPbLG7BxwRh5mZwuscFQKICCcgMW/zcdS787IQcwxy6X4qNdF/DlQeuSEzP6J8oFw1q1Uq5jsZ8v59O9mej+x+/xtW2ZCsku29w9vRJCMcY2CejXhy47tfV4dgk+3WtdG9FsEfjz+hNIzylFRKAGH84dgk8fuQFhARoczirG6l0Zcjfa2G4xmN4vQa6ZaigwuhbjbEsD/XAyDxuPWwOjabYvfYVCgXvsCsojgpynPnhsQhfcMzQJ/ze58bmLWkKkLaP33vZz2G7rwmytwGhUl2iE6NS4dUC7en8/qVc81HaBYKjevjDd2qV77sq1B0ZSd3Cl0SyPgGtMjdmCe/6xB7e/vQsZLRCY+SK/DIy+/fZbdO/eHV27dsWqVas83RwiagUqpQJDUiIxqms0bugUJdefANZ11j6aOxS/HtcZU3rHY2SXKCy+uTf+eJM1+7I87TT+Z8uO3D6ovcNx645MK640Ytl666irz/c5BkbSUPpRXaNxm+04Xx28LA8nB6xdeIu/SYcQ1jX1XpjeS86s/OX2fogL1WNghwg8Z2vb65vOYIMtQBnbLRZqlRIrZg3A7YPa4556Zge/VuNsdUbHLpeisMKI8EANbrBbqmPmgEQE2ALHyCDnmbVjQ/RYdls/p8kZW4N0bU7nlcuTr3aNDW6Vc03pk4CfX5zUYGF3RJC1O01i35XWOcbapnMNZA/dYT+AIKek6dncLxZWoriyBiaLwEe2ejFy5Hc1RiaTCQsXLsSWLVsQGhqKQYMG4bbbbkNkZGTTDyYinzGmWwzGdHMs8LBYBNYfzZFHUXWMDnIYig1YsyKXi6vkwtm/bz4r36nvv1iECoMJQTo1hBD40Za1GNklGsM6RiJEp8bl4ir8lFEkj9D678852HuhCHqNEn+Y1hOJ4QEY2SUaJVU1GNqx9nPpjkHt8a+fMnE4qxgVRjM0KoV8jMEpkRic0jqfYbGhevRpF4pjl601Ozf2jJMzb4A1E7JkZm/sPFvgtLbZ9TY4JQKrd13A0I6RePLGbhjWyu1patTqTX3jsd2W3bPPGLVkYGRfJ5dTUl1vrZi9s7YifQD4fH8WnrixmzwtA1n5XcZo79696N27N9q1a4eQkBBMmzYNGzZs8HSziMgLKJUKLL2lL6QekNsHtXP68pPX5KqoQWZhJdbsvgDAutxIjVngpwzrDM8XCiuRXVINrUqJISkR0GtU8mi59Ueto9OEEPhb2mkAwG/GdZGX7ukeH+IQFEltWzKzN6TmDE6ORLDu+tzbju9eO6qrviWL7hychBV3D/T4ZKfT+yXi2OLJWPvLG1o9KHKFfXea/Wz6nWOtXWmZhZVOow1P55Xhrnd248BF10aZ2S+GLE0v0ZgzebXBWKXRjC9sxeFUq80FRtu3b8eMGTOQmJgIhUKBdevWOe2zcuVKdOzYEXq9HqmpqdixY4f8u+zsbLRrV9sn3L59e1y+7NznT0T+qVdiKF6Y3guju0bj3mHOI8ik7pqiCiP+vD4dNWaB0V2jcdsg6+fK9tPWLJE0Gm1Qcrg8ueC0ftag4vvjuTBbBA5mFiOjoAKBWhUeGtWxybb1ax+OB22j2m7qV/+aiq1BnqRQr8aILp4POBoTrFN7zfxjEUFaTOubAIUCDkXq8aF6BGpVMFmEPCu7ZPWuC9h7oQj/2J7R5PErjSYUlNcO+c9xJTCyrf/Y2Vbn9OHOCzA1MFeWv2pzgVFFRQX69++PN998s97fr127FgsWLMBzzz2HQ4cOYfTo0Zg6dSoyM62FjfVV7XvLm4iIvMOckR3xz3nD6l3MVJqr52+bTmPD8TwoFMCzU3vK3XLbT1+BxSLw+T7rnfgouzqTkZ2jEapX40qZAQcuXpWLtaf0jneYSbkxi2b0xv9+Nxr3Dm35eqKGDEgKx4pZA/DBnCHQqa9t5mp/89c7+uHHpyc4rOumUChqC7DzHbvTfr5UDKB2iZfG1J2gNNeFGiNpYewnbuyGiEBrt/CmE3lNPs6ftLnAaOrUqVi6dCluu+22en+/fPlyzJs3Dw8//DB69uyJFStWICkpCW+//TYAoF27dg4ZokuXLiEhoeE7L4PBgNLSUod/ROS/pIxRpdEMvcZa+NwrMRTDO1uHo58vqMDrP5zB0cslCNapMcuuIFqrVuJG26SH/zl8Gd/aJny8ZWD9I5vqo1Qq0DMh1KU5lFrSLQPbtVodky/Ta1RoZ+sitVdbZ1Q7Mqy6xoyTOdYaoNzS6ia7xrLqZJvsM0ZXygwORf6AdcSjVNfUJzEMM20j6n7K4OSQ9tpcYNQYo9GIAwcOYNKkSQ7bJ02ahF27dgEAhg4dimPHjuHy5csoKyvD+vXrMXny5AaPuWzZMoSFhcn/kpKSWvU5EJF36xRtvdNPiQrE1/NHyl8uoXqNXKj9+g9nAAC/ndAFMSGOI7Wkoe6f7s1EcWUNYkN0rT4jNHkfKTCyn9fqRE4pTHbBzOGsq40eQ8oYheit2UYpMDqYeRVD/rwJL3xzrM7+lTCYLNCqlUiKDERiuHViSi5o68inAqOCggKYzWbExTkOn4yLi0NurnV4q1qtxmuvvYbx48dj4MCB+L//+z9ERTXcZ/7ss8+ipKRE/peVxUI1In82o38iPv/VcHz3+Gj0THAcATSma+0ot+SoQMwZmeL0+FFdrfPfSN9/MwckciFRP1Q7l1FtYGS/Jh0AHGqiO03KGA2xZfKkDJM0Em7/BcfASiq87hwTDJVSIQ8kKHJj7T9/4FOBkaRuzZAQwmHbzTffjNOnT+Ps2bP45S9/2eixdDodQkNDHf4Rkf9SKRUY2jGy3pog++H/f5jWs956HJ1a5TD3za0D2zvtQ77PvitNqn09YqsvkrreDtumjWiINLnj4BTr7NvlBhPKqmuQnm0t+cgudqw5OmsLwrrY5naSauhaYs02X+JTgVF0dDRUKpWcHZLk5+c7ZZGIiFpa33ZheHB4Mn41phMmNTLj8s0DrGuv9U4MRc+E1p/4kLxPx+ggKBTWdfcKbV1ZUsboftvIw6OXS2C2NLzMR1aRNfDpHheCUFt3Wm5JNY7bAqPSamugJJEyRtKkl9Kkp0XsSnPgU4GRVqtFamoq0tLSHLanpaVhxIgRHmoVEfkL61xDffDstJ6NjnYd3z0WH84dgvceHMxRsX5Kr1HJS7mcyy9HucEkd6vdPqgdgrQqVBrNOGM3IWNdUsYoKTIQCWHWY53ILZPXZwMcC7KlyR3lwEiek6s2MErPLsUL/zmGgnLDNT/HtqrNBUbl5eU4fPgwDh8+DADIyMjA4cOH5eH4CxcuxKpVq/DBBx/gxIkTeOKJJ5CZmYlHH33Ug60mInI0vntsvaOVyH90irYVYBdU4OilEggBJIbpERuqR9/2YQAa7k4rqaxBmW3G9fYRAYgPsxZSb64z9F4KkoQQ8lB9uSvNFhhVGM2orrEugvz2tnNYs/si/nsku6WeZpvT5pYE2b9/P8aPHy//vHDhQgDA7NmzsXr1asyaNQuFhYVYsmQJcnJy0KdPH6xfvx7Jyc4TtREREXlK55hgbDt9BenZpSitsnZ59WsfDgAYkBSBPeeLcDirGHfXM2eVlC2KDtYiUKuWR5htOXXFYT+pziinpBoVRjPUSgWSo6yF3yF6NVRKBcwWgeLKGsSHqeS5kPx5pFqbC4zGjRtX7ySN9ubPn4/58+dfpxYRERG5r58tK/TPPRfliUP7JVm3DUgKBwDsPl+ILSfzkRwViE4xtQviSkuBtIsIBADEh1qzjyW2AEupACyiNjCSZrxOiQ6Sl25RKhWICNSgoNyIogoj4sP0yC+zdqFJ6//5ozbXlUZEROQLZvRPxNyRKVAogKu2IfP9bRkjaU6si4WVmLt6Hya8tg3/OVw7ObFUeJ1kq1NKsHWlSaTJOLOLrTVGZ/Ks9UVd7IIroLbOSBqZdkUOjPx3CD8DIyIiIg9QKRVYNKM31v5yODpFB6FdeICcKYoN1eNPM3tjYo9YuUh74/Ha+iH7wmsAco2RRBoVKdUYpedYR6r1qDMKsnYuIyPKDSZUGq21RmV+nDFqc11pREREvmRox0j88ORYmCwCGlVtvuKB4Sl4YHgK9mYU4a53d+OnjCJ5Xj6pkLqDLTCSaowAICpIi4G2jJPUlSbNbdSrzqSkEUHWLryrFUbkl9aOYJNqnvwRM0ZEREQeplAoHIIie/3ah0GrUqKg3IALhZWoMJiw74J1fbOhHa1dZvFhtSMceyWGol24NWDKLalGdY1ZDqTsF7MFaid5LKqokbvRAP/OGDEwIiIi8mJ6jUruYtubUYidZwtQYxbWgmzb2n3BOjVCbLOx904MQ0yIDmqlAiaLwM6zBTBZBEL1aqcpIuS5jCqNcuE1AJQZmDEiIiIiLyVlhn7KKMKWU/kArHNh2U8QmmgLenolhkKlVMh1R5tscxv1Sgx1mlA00m72a/uMUWmV/2aMWGNERETk5YZ2jAS2AD+dL5KXCRnXPcZhnydu7Iq09Hy58DoxPACXrlZh0wlrINUrIczpuA1ljMoNJqd1Rv0FAyMiIiIvNyg5AiqlQh5lptcocUOnKId9pvRJwJQ+CfLPUreZlAmqW18E2BVfVxqRX1ZbfG22CFQazfUuluzr2JVGRETk5YJ1avSxC2xGdo6GXqNq9DH2I9UA5xFpgP16aY7F14D/zmXEwIiIiKgNkOqMAGBcj9gm90+0K7TWqBTyGmn2GqoxAvx3ZBoDIyIiojZgaMfarrNx3WIa2dPKPjDqGhsiLwViL8IWGFXVmJFVVOnwO3+dy8j/Og+JiIjaoOGdo9AtLhidY4LlGa8bYz80v3c99UUAEKJTy8P6K2yzXieG6ZFdUu23GSMGRkRERG1AsE6NjU+MdXl/+/XT6iu8BqwTS0YEaeVuNLVSgaTIQGSXVLPGiIiIiHxHiF6DsADrqLOe9RReSyICNfL/RwfrEG77uZQZIyIiIvIlv5/SHccul2BISmSD+0gj0wAgNlSHEL01MCrz04wRAyMiIiIfdd+w5Cb3kUamAUBMsA4hemto4K81RuxKIyIi8mMRQY4Zo1BbxshfR6UxMCIiIvJjkXZdaTEher/PGLErjYiIyI/ZZ4xiQnTQqaw5E38dlcbAiIiIyI/Zj0qLDdFBCOsitcwYERERkd9xqDEK0aHSNtGjv45KY40RERGRH3OsMbIvvmbGiIiIiPxMZJ0aI5NZ6krzz4wRAyMiIiI/1j4iAFP7xCM2RAedWiWPSqswmmEyW6BW+VfnEgMjIiIiP6ZQKPD2/anyz9LM1wBQbjAh3K6rzR/4VxhIREREjdKqldBrrOGBP45MY2BEREREDuQCbD+sM2JgRERERA6kOiN/HJnGwIiIiIgcSHVG/jgyjYEREREROQgNkLrSmDEiIiIiP1e7kCwzRkREROTnQuXAiBkjIiIi8nO1y4IwY0RERER+LoQZIyIiIiIrqfi6zMCMEREREfk5zmNEREREZBOi4zxGRERERADsutJYY0RERET+LjTA2pVWzFFpRERE5O/CA7QAgJKqGgghPNya64uBERERETkID7R2pZktAmUG/+pOY2BEREREDvQaFfQaa4hQUulf3WkMjIiIiMhJRKC1O+1qpdHDLbm+GBgRERGRkzDbyLRiZoyIiIjI3zFjRERERGQjFWCX+NmQfQZGRERE5CRcyhhVMDAiIiIiPydljIqr2JVGREREfi4ikMXXRERERABqZ78uZvE1ERER+TupK+0qM0ZERETk76Tia45KIyIiIr8XIWeM2JVGREREfi7Mbh4ji0V4uDXXDwMjIiIiciIVXwsBlFb7T3caAyMiIiJyolUrEaRVAfCvIfsMjIiIiKhe4X64XhoDIyIiIqpX7ezXzBgRERGRn5MDI2aMiIiIyN9JXWmsMSIiIiK/Fx7gf7NfMzAiIiKiekVIs1+zK42IiIj8nT+ul8bAiIiIiOol1xhxVJrvysrKwrhx49CrVy/069cPX3zxhaebRERE5JWkGiN/GpWmdmfnzMzMZp0kPDwcoaGhzXpsS1Or1VixYgUGDBiA/Px8DBo0CNOmTUNQUJCnm0ZERORVIoKkwMh/MkZuBUYpKSlun0ChUGDRokV44YUX3H5sa0hISEBCQgIAIDY2FpGRkSgqKmJgREREVEdYAGe+bpTFYnH7n9lsdiso2r59O2bMmIHExEQoFAqsW7fOaZ+VK1eiY8eO0Ov1SE1NxY4dO9x5GrL9+/fDYrEgKSmpWY8nIiLyZRG24uuyahNMZouHW3N9uJUx6tixIxQKhdsnWbBgAR5//HGX9q2oqED//v0xd+5c3H777U6/X7t2LRYsWICVK1di5MiRePfddzF16lSkp6ejQ4cOAIDU1FQYDAanx27cuBGJiYkAgMLCQjz44INYtWqV28+HiIjIH4TZaowAoKSqBlHBOg+25vpQCCGEqztv27atWSdJSUlBcnKy249TKBT4+uuvccstt8jbhg0bhkGDBuHtt9+Wt/Xs2RO33HILli1b5tJxDQYDbrzxRjzyyCN44IEHmtzXPsgqLS1FUlISSkpKvKZuioiIqLX0XbQBZQYTfnhyLDrHBHu6Oc1WWlqKsLCwJr+/3coYjR079pobdi2MRiMOHDiAZ555xmH7pEmTsGvXLpeOIYTAnDlzMGHChCaDIgBYtmwZFi9e3Kz2EhERtXXhQRqUGUx+MzKtTQ3XLygogNlsRlxcnMP2uLg45ObmunSMnTt3Yu3atVi3bh0GDBiAAQMG4OjRow3u/+yzz6KkpET+l5WVdU3PgYiIqC0JD/Cv9dLcyhgtXLjQ5X2XL1/udmNcVbfOSQjhcu3TqFGjYLG4XkCm0+mg0/l+nyoREVF9IoOsgVFhuX9kjNwKjA4dOuTSfs0p0HZFdHQ0VCqVU3YoPz/fKYtERERE1y4mxJocuFLuPKjJF7kVGG3ZsqW12uESrVaL1NRUpKWl4dZbb5W3p6WlYebMmR5sGRERkW+SA6MyBkYeUV5ejrNnz8o/Z2Rk4PDhw4iMjESHDh2wcOFCPPDAAxg8eDCGDx+O9957D5mZmXj00Uc92GoiIiLfFBPMjJFb0tPTkZmZCaPRse/x5ptvbtbx9u/fj/Hjx8s/S3VNs2fPxurVqzFr1iwUFhZiyZIlyMnJQZ8+fbB+/fpmTQdAREREjWPGyEXnz5/HrbfeiqNHj0KhUECaDkmqLzKbzc067rhx49DU1Erz58/H/Pnzm3V8IiIicp0UGBX4SWDU7OH6v/vd79CxY0fk5eUhMDAQx48fx/bt2zF48GBs3bq1BZtIREREnsKMkYt2796NzZs3IyYmBkqlEkqlEqNGjcKyZcvw+OOPuzyCjYiIiLyXFBiVGUyorjFDr1F5uEWtq9kZI7PZjOBg69Tg0dHRyM7OBgAkJyfj1KlTLdM6IiIi8qgQnRo6tTVc8IesUbMzRn369MHPP/+MTp06YdiwYfjrX/8KrVaL9957D506dWrJNhIREZGHKBQKxITocOlqFa6UG5AUGejpJrWqZgdGf/zjH1FRUQEAWLp0KaZPn47Ro0cjKioKn332WYs1kIiIiDxLDoyYMWrY5MmT5f/v1KkT0tPTUVRUhIiIiFab+ZqIiIiuP3kuIwZGDVuyZEmjv3/hhReae2giIiLyIv40Mq3ZgdHXX3/t8HNNTQ0yMjKgVqvRuXNnBkZEREQ+wp/WS2t2YFTfcPzS0lLMmTPHYR0zIiIiatv8KWPU7OH69QkNDcWSJUvw/PPPt+RhiYiIyIP8qcaoRQMjACguLkZJSUlLH5aIiIg8xJ8yRs3uSnvjjTccfhZCICcnB//85z8xZcqUa24YEREReQf7GiMhhE+PPm92YPS3v/3N4WelUomYmBjMnj0bzz777DU3jIiIiLxDtK0rzWiyoLTahLAAjYdb1HqaHRhlZGS0ZDuIiIjIS+k1KoTq1SitNuFKmcGnA6MWrzEiIiIi3+MvdUZuZYwWLlzo8r7Lly93uzFERETknWJCdDh3pcLn5zJyKzCqO3fRgQMHYDab0b17dwDA6dOnoVKpkJqa2nItJCIiIo+LCdEDYMbIwZYtW+T/X758OUJCQvDRRx8hIiICAHD16lXMnTsXo0ePbtlWEhERkUdJcxkV+HjGqNk1Rq+99hqWLVsmB0UAEBERgaVLl+K1115rkcYRERGRd4gO0QLw/YxRswOj0tJS5OXlOW3Pz89HWVnZNTWKiIiIvIu/zH7d7MDo1ltvxdy5c/Hll1/i0qVLuHTpEr788kvMmzcPt912W0u2kYiIiDwsLtRaY5RTUuXhlrSuZs9j9M477+Cpp57C/fffj5qaGuvB1GrMmzcPr7zySos1kIiIiDwvJSoIAHCxsBIWi4BS6ZuzXzc7MAoMDMTKlSvxyiuv4Ny5cxBCoEuXLggKCmrJ9hEREZEXSAzXQ61UwGCyILe0GonhAZ5uUqtodmAkCQoKQr9+/VqiLUREROSl1ColOkQG4nxBBS4UVDAwAqwTPP7pT39CUFBQk5M9coJHIiIi35ISHYTzBRXIKKzAiC7Rnm5Oq3B7gkepnqjuZI/2fHnVXSIiIn+VHBUIwFpn5KuaPcGj/f8TERGR7+sYba0jziio8HBLWk+zh+tXVVWhsrI2Yrx48SJWrFiBjRs3tkjDiIiIyLtII9MuMDByNnPmTKxZswYAUFxcjKFDh+K1117DzJkz8fbbb7dYA4mIiMg7yEP2i6xD9n1RswOjgwcPymuiffnll4iPj8fFixexZs0avPHGGy3WQCIiIvIOieF6aFQKGE0W5JRWe7o5raLZgVFlZSVCQkIAABs3bsRtt90GpVKJG264ARcvXmyxBhIREZF3UKuUSIqwFmD7andaswOjLl26YN26dcjKysKGDRswadIkANa10kJDQ1usgUREROQ9UmwF2BcKGRg5eOGFF/DUU08hJSUFw4YNw/DhwwFYs0cDBw5ssQYSERGR9/D1Auxmz3x9xx13YNSoUcjJyUH//v3l7RMnTsStt97aIo0jIiIi75ISbe1KyyjwzbmMrmlJkPj4eMTHxztsGzp06DU1iIiIiLyXnDFiV5qzHTt24P7778fw4cNx+fJlAMA///lP/Pjjjy3SOCIiIvIu0iSPmYWVMPvgkP1mB0b//ve/MXnyZAQEBODQoUMwGAwAgLKyMrz00kst1kAiIiLyHglhtiH7ZgtySqo83ZwW1+zAaOnSpXjnnXfwj3/8AxqNRt4+YsQIHDx4sEUaR0RERN5FrVKiQ6S1zujcFd/rTmt2YHTq1CmMGTPGaXtoaCiKi4uvpU1ERETkxbrHW+cxPJVb6uGWtLxmB0YJCQk4e/as0/Yff/wRnTp1uqZGERERkffqGW+dr/BkTpmHW9Lymh0Y/epXv8Lvfvc7/PTTT1AoFMjOzsYnn3yCp556CvPnz2/JNhIREZEX6ZFgDYxO5NYGRv/6KRPL1p+AEG27ILvZw/V///vfo6SkBOPHj0d1dTXGjBkDnU6Hp556Co899lhLtpGIiIi8SA9bV9rZ/DLUmC0wmix44T/HYLIIzBqShE4xwR5uYfNd0zxGf/7zn/Hcc88hPT0dFosFvXr1QnBw2/1jEBERUdPaRwQgWKdGucGE81cqkFdaDZNt6H5hhRGdYjzcwGvQrK60mpoajB8/HqdPn0ZgYCAGDx6MoUOHMigiIiLyAwqFQs4ancwtxe7zhfLviiqMnmpWi2hWYKTRaHDs2DEoFIqWbg8RERG1AT0SrIHRiZwy7D5XGxhd9cfACAAefPBBvP/++y3ZFiIiImojethGph24WISjl0vk7YVtPDBqdo2R0WjEqlWrkJaWhsGDByMoKMjh98uXL7/mxhEREZF36mnLGO27cNVhe1vPGDU7MDp27BgGDRoEADh9+rTD79jFRkRE5Nu6xYU4/KxUABYBFFX6aWC0ZcuWlmwHERERtSEheg2SIgOQVWRdL21YxyjsPl/oXxmjzMzMZp0kPDwcoaGhzXosEREReace8aFyYDStbzx2ny9EUWWNh1t1bdwKjFJSUtw+gUKhwKJFi/DCCy+4/VgiIiLyXj0TQpGWnoeUqED0SgwD4Gc1RhaLpbXaQURERG3MlN7xeH/HedwztAMig7QA2v48Rm4FRh07dmxWYfWCBQvw+OOPu/04IiIi8l69EkNxfMkUAECJrQut3GCCwWSGTq3yZNOaza3AaPXq1c06SXO64IiIiKjtCNGroVIqYLYIFFfWIC7UDwKjsWPHtlY7iIiIqA1TKhWICNSgoNyIogoj4kL1nm5SszR75msiIiIiexGB1jqjtlyAzcCIiIiIWoRUgN2WlwVhYEREREQtQgqMrrbh2a8ZGBEREVGLiPCBIfsMjIiIiKhFRLLGiIiIiMhKzhi14WVBGBgRERFRi4gM0gBgxoiIiIgIkUE6AByV1iZVVlYiOTkZTz31lKebQkRE5BNYY9SG/fnPf8awYcM83QwiIiKfEWHrSiuqNEII4eHWNI9fBkZnzpzByZMnMW3aNE83hYiIyGdI8xgZTRZUGs0ebk3zeF1gtH37dsyYMQOJiYlQKBRYt26d0z4rV65Ex44dodfrkZqaih07drh1jqeeegrLli1roRYTERERAARoVNCpraFFW53LyOsCo4qKCvTv3x9vvvlmvb9fu3YtFixYgOeeew6HDh3C6NGjMXXqVGRmZsr7pKamok+fPk7/srOz8Z///AfdunVDt27drtdTIiIi8gsKhQJRbXz2a7WnG1DX1KlTMXXq1AZ/v3z5csybNw8PP/wwAGDFihXYsGED3n77bTkLdODAgQYfv2fPHnz22Wf44osvUF5ejpqaGoSGhuKFF16od3+DwQCDwSD/XFpa2pynRURE5BcigrTILqlusyPTvC5j1Bij0YgDBw5g0qRJDtsnTZqEXbt2uXSMZcuWISsrCxcuXMCrr76KRx55pMGgSNo/LCxM/peUlHRNz4GIiMiXyeulMTBqfQUFBTCbzYiLi3PYHhcXh9zc3FY557PPPouSkhL5X1ZWVquch4iIyBdEBLbt9dK8rivNFQqFwuFnIYTTNlfMmTOnyX10Oh10Op3bxyYiIvJHkW28xqhNZYyio6OhUqmcskP5+flOWSQiIiK6/qTAqLCcgVGr02q1SE1NRVpamsP2tLQ0jBgxwkOtIiIiIklsiLWXJb/M0MSe3snrutLKy8tx9uxZ+eeMjAwcPnwYkZGR6NChAxYuXIgHHngAgwcPxvDhw/Hee+8hMzMTjz76qAdbTURERAAQF6oHAOSVVnu4Jc3jdYHR/v37MX78ePnnhQsXAgBmz56N1atXY9asWSgsLMSSJUuQk5ODPn36YP369UhOTvZUk4mIiMgmNtSaMcorbZsZI4Voq4uZeEhpaSnCwsJQUlKC0NBQTzeHiIjIqxSUGzB46SYoFMDppVOhUXlH1Y6r39/e0VoiIiLyCZGBWqiVCghhDZLaGgZGRERE1GKUSoVcgN0Wu9MYGBEREVGLim3DBdgMjIiIiKhFxdkKsPMZGBEREZG/qx2yz640IiIi8nNteS4jBkZERETUouTi6zY4+zUDIyIiImpRUsaINUZERETk99iVRkRERGQjjUq7WlkDg8ns4da4h4ERERERtaiwAA20amuIkd/GRqYxMCIiIqIWpVDUzn6dX9a2utMYGBEREVGLa6tzGTEwIiIiohYn1Rm1tQJsBkZERETU4mJDmDEiIiIiAtB25zJiYEREREQtTu5KY/E1ERER+TsWXxMRERHZsPiaiIiIyCbGVnxdVm1ClbHtzH7NwIiIiIhaXKheDbVSAQC4Wmn0cGtcx8CIiIiIWpxCoUB4oAYAAyMiIiIihAdqAQAllTUebonrGBgRERFRq4iQM0YMjIiIiMjPSRkjdqURERGR35MyRsUMjIiIiMjf1WaM2JVGREREfi5czhgxMCIiIiI/F2HLGLErjYiIiPxeBOcxIiIiIrIKlzNG7EojIiIiP8eZr4mIiIhspBqjkqoaWCzCw61xDQMjIiIiahVSxsgigLJqk4db4xoGRkRERNQqdGoVArUqAG2nO42BEREREbWaiDa2LAgDIyIiImo1YQFta5JHBkZERETUaiKCbIFRFTNGRERE5Ofk9dIqmDEiIiIiPxchr5fGjBERERH5udria2aMiIiIyM9JxdcclUZERER+z37267aAgRERERG1GmlUGjNGRERE5Pc4Ko2IiIjIRupK46g0IiIi8nvhtuLrCqMZRpPFw61pGgMjIiIiajWhARooFNb/bwuzXzMwIiIiolajUira1HppDIyIiIioVcmTPFYwY0RERER+LjxQGrLPjBERERH5ufAA5/XShBAoq/a+QImBEREREbUqeci+3ezXf0s7jQFL0rD/QpGnmlUvBkZERETUquRJHu0yRvsuXIXZInD0comnmlUvBkZERETUqiJsNUbFdrNfS9mj8mqTR9rUEAZGRERE1KrCg5wzRlK9UbmRgRERERH5Ebn42q7GSAqSmDEiIiIiv1J3vbTqGjOqa6zLg5QbGBgRERGRH6k7j5H9DNjMGBEREZFfiQiqzRgJIRxqjcqYMSIiIiJ/Io1KqzELVBjNDoFRBQMjIiIi8icBGhW0KmvIUVxpRIl9VxoDIyIiIvInCoVCrjMqrqxxWDONNUZERETkdyLsZr9mjZGXycjIwPjx49GrVy/07dsXFRUVnm4SERGRT7MfmVZiN5+R0WSB0WTxVLOcqD3dAE+YM2cOli5ditGjR6OoqAg6nc7TTSIiIvJp9nMZXa0wOvyuwmCCVq31RLOc+F3G6Pjx49BoNBg9ejQAIDIyEmq1X8aHRERE101DNUaAdxVge11gtH37dsyYMQOJiYlQKBRYt26d0z4rV65Ex44dodfrkZqaih07drh8/DNnziA4OBg333wzBg0ahJdeeqkFW09ERET1CberMSqudMwYlXlRAbbXpUoqKirQv39/zJ07F7fffrvT79euXYsFCxZg5cqVGDlyJN59911MnToV6enp6NChAwAgNTUVBoPB6bEbN25ETU0NduzYgcOHDyM2NhZTpkzBkCFDcOONN7b6cyMiIvJXEXYZI/s10wDvyhh5XWA0depUTJ06tcHfL1++HPPmzcPDDz8MAFixYgU2bNiAt99+G8uWLQMAHDhwoMHHt2/fHkOGDEFSUhIAYNq0aTh8+HCDgZHBYHAIskpLS91+TkRERP4uop6MkValhNFsQbmhprGHXlde15XWGKPRiAMHDmDSpEkO2ydNmoRdu3a5dIwhQ4YgLy8PV69ehcViwfbt29GzZ88G91+2bBnCwsLkf1JARURERK6TR6VVGOW10tpFBAAAyg1mj7WrrjYVGBUUFMBsNiMuLs5he1xcHHJzc106hlqtxksvvYQxY8agX79+6Nq1K6ZPn97g/s8++yxKSkrkf1lZWdf0HIiIiPyRVGN0ubgKJosAALSXAiPWGF0bhULh8LMQwmlbY5rqrrOn0+k4nJ+IiOgaSTVGBeXWbjS9RonoYOv3K7vSmik6OhoqlcopO5Sfn++URSIiIiLvIWWMJBGBWgTrrPkZb8oYtanASKvVIjU1FWlpaQ7b09LSMGLECA+1ioiIiJoi1RhJwgI0CNZbAyNvWhbE67rSysvLcfbsWfnnjIwMHD58GJGRkejQoQMWLlyIBx54AIMHD8bw4cPx3nvvITMzE48++qgHW01ERESN0aiUCNGp5SDIPmNUwcCoYfv378f48ePlnxcuXAgAmD17NlavXo1Zs2ahsLAQS5YsQU5ODvr06YP169cjOTnZU00mIiIiF4QFamoDoyANQmwZI85j1Ihx48ZBCNHoPvPnz8f8+fOvU4uIiIioJUQEanHpahUAa81RkNbWlcYaIyIiIvI39nVG4XY1Rt6UMWJgRERERNdFhN3ItIhALUI4Ko2IiIj8VYR9xiiwNmPkTcXXDIyIiIjougirkzGSRqV503B9BkZERER0XThljHS1NUZNDby6XhgYERER0XVhX2MUHqiVu9KEACqN3rGQLAMjIiIiui7sR6VFBGoQoFFBaVvq1FtGpjEwIiIiouvCPmMUFqCBQqFw6E7zBgyMiIiI6LpIDA+ASqlA+4gAqFXWEMTbFpL1upmviYiIyDfFhOiw9pc3ICKoNnMUrFcDJd6TMWJgRERERNfN4JRIh5/lIftekjFiVxoRERF5TLDeWpDtLRkjBkZERETkMdKyIN4y+zUDIyIiIvKYIJ0KADNGRERERAjWWbvSWGNEREREfk+a/brcUOPhllgxMCIiIiKPCfGyeYwYGBEREZHH1GaMuFYaERER+bkgHbvSiIiIiADYdaVxVBoRERH5O2l5kLxSg4dbYsXAiIiIiDymW1wwFArgSpkB+WXVnm4OAyMiIiLynECtGp1jggEAx7NLPdwaBkZERETkYX0SQwEAxy+XeLglDIyIiIjIw3onhgEAjl1mxoiIiIj8XO921ozRsWxmjIiIiMjPSRmjS1erUFxp9GhbGBgRERGRR4UFaNAhMhAAkO7hAmwGRkRERORxvRO9ozuNgRERERF5XJ923lGAzcCIiIiIPI4ZIyIiIiIbqQA7o6ACFR5cN42BEREREXlcTIgO8aF6CAGcyPFcd5raY2cmIiIistM7MRSVRhOulHluQVkGRkREROQVVtw9AME6NRQKhcfawMCIiIiIvEKIXuPpJrDGiIiIiEjCwIiIiIjIhoERERERkQ0DIyIiIiIbBkZERERENgyMiIiIiGwYGBERERHZMDAiIiIismFgRERERGTDwIiIiIjIhoERERERkQ0DIyIiIiIbBkZERERENmpPN6CtEUIAAEpLSz3cEiIiInKV9L0tfY83hIGRm8rKygAASUlJHm4JERERuausrAxhYWEN/l4hmgqdyIHFYkF2djZCQkKgUCha7LilpaVISkpCVlYWQkNDW+y43s4fnzefM5+zL/PH583n3DaesxACZWVlSExMhFLZcCURM0ZuUiqVaN++fasdPzQ0tM28yFqSPz5vPmf/4I/PGfDP583n7P0ayxRJWHxNREREZMPAiIiIiMiGgZGX0Ol0WLRoEXQ6naebcl354/Pmc/YP/vicAf983nzOvoXF10REREQ2zBgRERER2TAwIiIiIrJhYERERERkw8CIiIiIyIaBkZdYuXIlOnbsCL1ej9TUVOzYscPTTWoxy5Ytw5AhQxASEoLY2FjccsstOHXqlMM+c+bMgUKhcPh3ww03eKjF1+7FF190ej7x8fHy74UQePHFF5GYmIiAgACMGzcOx48f92CLr11KSorTc1YoFPjNb34DwHeu8fbt2zFjxgwkJiZCoVBg3bp1Dr935doaDAb89re/RXR0NIKCgnDzzTfj0qVL1/FZuKex51xTU4Onn34affv2RVBQEBITE/Hggw8iOzvb4Rjjxo1zuv533333dX4mrmvqOrvyeval6wyg3ve3QqHAK6+8Iu/T1q5zfRgYeYG1a9diwYIFeO6553Do0CGMHj0aU6dORWZmpqeb1iK2bduG3/zmN9izZw/S0tJgMpkwadIkVFRUOOw3ZcoU5OTkyP/Wr1/voRa3jN69ezs8n6NHj8q/++tf/4rly5fjzTffxL59+xAfH48bb7xRXouvLdq3b5/D801LSwMA3HnnnfI+vnCNKyoq0L9/f7z55pv1/t6Va7tgwQJ8/fXX+Oyzz/Djjz+ivLwc06dPh9lsvl5Pwy2NPefKykocPHgQzz//PA4ePIivvvoKp0+fxs033+y07yOPPOJw/d99993r0fxmaeo6A02/nn3pOgNweK45OTn44IMPoFAocPvttzvs15auc70EedzQoUPFo48+6rCtR48e4plnnvFQi1pXfn6+ACC2bdsmb5s9e7aYOXOm5xrVwhYtWiT69+9f7+8sFouIj48XL7/8sryturpahIWFiXfeeec6tbD1/e53vxOdO3cWFotFCOF711gIIQCIr7/+Wv7ZlWtbXFwsNBqN+Oyzz+R9Ll++LJRKpfj++++vW9ubq+5zrs/evXsFAHHx4kV529ixY8Xvfve71m1cK6nvOTf1evaH6zxz5kwxYcIEh21t+TpLmDHyMKPRiAMHDmDSpEkO2ydNmoRdu3Z5qFWtq6SkBAAQGRnpsH3r1q2IjY1Ft27d8MgjjyA/P98TzWsxZ86cQWJiIjp27Ii7774b58+fBwBkZGQgNzfX4ZrrdDqMHTvWZ6650WjExx9/jIceeshhsWVfu8Z1uXJtDxw4gJqaGod9EhMT0adPH5+5/iUlJVAoFAgPD3fY/sknnyA6Ohq9e/fGU0891aYzpEDjr2dfv855eXn47rvvMG/ePKfftfXrzEVkPaygoABmsxlxcXEO2+Pi4pCbm+uhVrUeIQQWLlyIUaNGoU+fPvL2qVOn4s4770RycjIyMjLw/PPPY8KECThw4ECbnFl12LBhWLNmDbp164a8vDwsXboUI0aMwPHjx+XrWt81v3jxoiea2+LWrVuH4uJizJkzR97ma9e4Pq5c29zcXGi1WkRERDjt4wvv+erqajzzzDO49957HRYXve+++9CxY0fEx8fj2LFjePbZZ3HkyBG5y7Wtaer17OvX+aOPPkJISAhuu+02h+2+cJ0ZGHkJ+7tqwBpA1N3mCx577DH8/PPP+PHHHx22z5o1S/7/Pn36YPDgwUhOTsZ3333n9MZrC6ZOnSr/f9++fTF8+HB07twZH330kVyg6cvX/P3338fUqVORmJgob/O1a9yY5lxbX7j+NTU1uPvuu2GxWLBy5UqH3z3yyCPy//fp0wddu3bF4MGDcfDgQQwaNOh6N/WaNff17AvXGQA++OAD3HfffdDr9Q7bfeE6syvNw6Kjo6FSqZzuIPLz853uOtu63/72t/jmm2+wZcsWtG/fvtF9ExISkJycjDNnzlyn1rWuoKAg9O3bF2fOnJFHp/nqNb948SI2bdqEhx9+uNH9fO0aA3Dp2sbHx8NoNOLq1asN7tMW1dTU4K677kJGRgbS0tIcskX1GTRoEDQajc9c/7qvZ1+9zgCwY8cOnDp1qsn3ONA2rzMDIw/TarVITU11SjOmpaVhxIgRHmpVyxJC4LHHHsNXX32FzZs3o2PHjk0+prCwEFlZWUhISLgOLWx9BoMBJ06cQEJCgpxmtr/mRqMR27Zt84lr/uGHHyI2NhY33XRTo/v52jUG4NK1TU1NhUajcdgnJycHx44da7PXXwqKzpw5g02bNiEqKqrJxxw/fhw1NTU+c/3rvp598TpL3n//faSmpqJ///5N7tsmr7MHC7/J5rPPPhMajUa8//77Ij09XSxYsEAEBQWJCxcueLppLeLXv/61CAsLE1u3bhU5OTnyv8rKSiGEEGVlZeLJJ58Uu3btEhkZGWLLli1i+PDhol27dqK0tNTDrW+eJ598UmzdulWcP39e7NmzR0yfPl2EhITI1/Tll18WYWFh4quvvhJHjx4V99xzj0hISGizz1diNptFhw4dxNNPP+2w3ZeucVlZmTh06JA4dOiQACCWL18uDh06JI/AcuXaPvroo6J9+/Zi06ZN4uDBg2LChAmif//+wmQyeeppNaqx51xTUyNuvvlm0b59e3H48GGH97jBYBBCCHH27FmxePFisW/fPpGRkSG+++470aNHDzFw4MA2+ZxdfT370nWWlJSUiMDAQPH22287Pb4tXuf6MDDyEm+99ZZITk4WWq1WDBo0yGEoe1sHoN5/H374oRBCiMrKSjFp0iQRExMjNBqN6NChg5g9e7bIzMz0bMOvwaxZs0RCQoLQaDQiMTFR3HbbbeL48ePy7y0Wi1i0aJGIj48XOp1OjBkzRhw9etSDLW4ZGzZsEADEqVOnHLb70jXesmVLva/n2bNnCyFcu7ZVVVXiscceE5GRkSIgIEBMnz7dq/8WjT3njIyMBt/jW7ZsEUIIkZmZKcaMGSMiIyOFVqsVnTt3Fo8//rgoLCz07BNrRGPP2dXXsy9dZ8m7774rAgICRHFxsdPj2+J1ro9CCCFaNSVFRERE1EawxoiIiIjIhoERERERkQ0DIyIiIiIbBkZERERENgyMiIiIiGwYGBERERHZMDAiIiIismFgRERebdy4cViwYIGnm+FAoVBg3bp1nm4GEbUCTvBIRF6tqKgIGo0GISEhSElJwYIFC65boPTiiy9i3bp1OHz4sMP23NxcREREQKfTXZd2ENH1o/Z0A4iIGhMZGdnixzQajdBqtc1+fHx8fAu2hoi8CbvSiMirSV1p48aNw8WLF/HEE09AoVBAoVDI++zatQtjxoxBQEAAkpKS8Pjjj6OiokL+fUpKCpYuXYo5c+YgLCwMjzzyCADg6aefRrdu3RAYGIhOnTrh+eefR01NDQBg9erVWLx4MY4cOSKfb/Xq1QCcu9KOHj2KCRMmICAgAFFRUfjlL3+J8vJy+fdz5szBLbfcgldffRUJCQmIiorCb37zG/lcROQ9GBgRUZvw1VdfoX379liyZAlycnKQk5MDwBqUTJ48Gbfddht+/vlnrF27Fj/++CMee+wxh8e/8sor6NOnDw4cOIDnn38eABASEoLVq1cjPT0dr7/+Ov7xj3/gb3/7GwBg1qxZePLJJ9G7d2/5fLNmzXJqV2VlJaZMmYKIiAjs27cPX3zxBTZt2uR0/i1btuDcuXPYsmULPvroI6xevVoOtIjIe7ArjYjahMjISKhUKoSEhDh0Zb3yyiu499575bqjrl274o033sDYsWPx9ttvQ6/XAwAmTJiAp556yuGYf/zjH+X/T0lJwZNPPom1a9fi97//PQICAhAcHAy1Wt1o19knn3yCqqoqrFmzBkFBQQCAN998EzNmzMBf/vIXxMXFAQAiIiLw5ptvQqVSoUePHrjpppvwww8/yNkrIvIODIyIqE07cOAAzp49i08++UTeJoSAxWJBRkYGevbsCQAYPHiw02O//PJLrFixAmfPnkV5eTlMJhNCQ0PdOv+JEyfQv39/OSgCgJEjR8JiseDUqVNyYNS7d2+oVCp5n4SEBBw9etStcxFR62NgRERtmsViwa9+9Ss8/vjjTr/r0KGD/P/2gQsA7NmzB3fffTcWL16MyZMnIywsDJ999hlee+01t84vhHCod7Jnv12j0Tj9zmKxuHUuImp9DIyIqM3QarUwm80O2wYNGoTjx4+jS5cubh1r586dSE5OxnPPPSdvu3jxYpPnq6tXr1746KOPUFFRIQdfO3fuhFKpRLdu3dxqExF5HouviajNSElJwfbt23H58mUUFBQAsI4s2717N37zm9/g8OHDOHPmDL755hv89re/bfRYXbp0QWZmJj777DOcO3cOb7zxBr7++mun82VkZODw4cMoKCiAwWBwOs59990HvV6P2bNn49ixY9iyZQt++9vf4oEHHpC70Yio7WBgRERtxpIlS3DhwgV07twZMTExAIB+/fph27ZtOHPmDEaPHo2BAwfi+eefR0JCQqPHmjlzJp544gk89thjGDBgAHbt2iWPVpPcfvvtmDJlCsaPH4+YmBh8+umnTscJDAzEhg0bUFRUhCFDhuCOO+7AxIkT8eabb7bcEyei64YzXxMRERHZMGNEREREZMPAiIiIiMiGgRERERGRDQMjIiIiIhsGRkREREQ2DIyIiIiIbBgYEREREdkwMCIiIiKyYWBEREREZMPAiIiIiMiGgRERERGRDQMjIiIiIpv/BwcMMrTYdcw1AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'convergence of conjugate gradient')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(ch[:resnorm])\n", + "xlabel(\"iteration\")\n", + "ylabel(L\"\\Vert \\mathrm{residual} \\Vert\")\n", + "title(\"convergence of conjugate gradient\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Preconditioners\n", + "\n", + "Most iterative solvers are *greatly accelerated* if you can provide a *preconditioner* $P$: roughly, an *approximate inverse* of $A$ that is *easy to compute*. The preconditioner is applied at *every step* of the iteration in order to speed up convergence. (For example, you could solve $PAx = Pb$ instead of $Ax=b$; this is called a \"left\" preconditioner.)\n", + "\n", + "For example, let's consider a problem where the matrix $A = L + S$ is a sum of the symmetric-tridiagonal discrete Laplacian $L$ (from above) and a *small, sparse* perturbation $S$. As our preconditioner, we'll simply use $P = L^{-1}$, since this is a good approximation for $A$ and `L \\ b` is fast (linear time):" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "300×300 SparseMatrixCSC{Float64, Int64} with 916 stored entries:\n", + "⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠄⠀⠀⠀⠄⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠄⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠄⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠄⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠄⠀⠀⠀⠄⠀⠀⠠⠀⠀⠄⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀\n", + "⠐⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀\n", + "⠀⠀⠀⠐⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀\n", + "⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n = 300\n", + "L = SymTridiagonal(fill(2.0,n), fill(-1.0, n-1))\n", + "b = rand(n)\n", + "\n", + "S = sprand(n,n,0.001) * 0.1 # a small random, sparse perturbation\n", + "S = S'*S # needs to be symmetric positive-definite\n", + "\n", + "A = sparse(L + S)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our home-brewed `CG` function above does not accept a preconditioner, but the IterativeSolvers package `cg` function does, and it makes a *huge* difference in the convergence:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXeklEQVR4nO3deVxUVf8H8M+wDYKsLiyyiDuKkkImrrhLZi5Z1lMu5ZKPuaKZpj2a5YNpLvWYbZZoWVpu9StLqcCNLEVwRURF0YRIUhBUQDi/P04zMMPiDM4wM/B5v17zgrn3ztzv3Kb4dM655yiEEAJEREREpGZl6gKIiIiIzA0DEhEREZEWBiQiIiIiLQxIRERERFoYkIiIiIi0MCARERERaWFAIiIiItJiY+oCLFVJSQmuXbsGJycnKBQKU5dDREREOhBC4NatW/D29oaVVeXtRAxI1XTt2jX4+vqaugwiIiKqhitXrsDHx6fS/QxI1eTk5ARAXmBnZ2cTV0NERES6yM3Nha+vr/rveGUYkKpJ1a3m7OzMgERERGRh7jc8hoO0iYiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAcnC3L0L3Lpl6iqIiIhqNxtTF0BVu3cPeOst4OBBIC8POHIEKCwE2rcHuncHOncGWrcGHn4YsLY2dbVERES1g0IIIUxdhCXKzc2Fi4sLcnJy4OzsbJRz3LwJPPEE8Msv9z82JAT49FOgQwejlEJERFQr6Pr3my1IZmzqVBmOHB2BJUsADw8gNBRwcQEOHZKtSidOyFalhATZivTxx8CYMaaunIiIyLKxBamajN2CtG8fEB4OKBQyDIWFVX5sRgYwaRLw3Xfy+dy5wH//yy43IiIibbr+/eYgbTMkBDBtmvz9xRerDkcA4OUFfPMNsHChfL58OTB0KJCZadw6iYiIaisGJDN07hxw8iSgVAJLl+r2Gisr4I03gC++AOztge+/B9q0kdsyMoxbLxERUW3DgGSGYmPlz7AwwN1dv9c+8wxw+LActJ2TA/znP0DTpsCsWWxRIiIi0hUDkhlSBaTevav3+uBg4LffgM8/lyGrsBBYswbw9wdGjwa+/VZuIyIioooxIJkZIYC4OPl7dQMSIAdoP/usHOC9Z09pUPr8czk+qV074MsvZSsTERERaeJdbNVkrLvYTp8GgoKAevXkPEh2dgZ7a/z2mxyjtGULkJUlt6mC1IoVQOPGpceePStbsq5dAwICgK5dAR8feXfdn3/KCSzd3OS0AwEBhquRiIjImDgPkoVSda91727YcAQAjzwiH0uXAm+/LcNSaiqwaRPw9ddAz55y7NLJk8D//V/511tZASUl5bcHBsoJKpVKOUfTK68ATZoYtnYiIqKaxBakajJWC9KcOcCqlQJRb9zDKwttDfa+lfntN2DKFODYMc3tVlayi695cxmiDh2SXXTNmsm746ytZSvU0aNAcbHma93dgXffBUaNAs6cAfz8AFdXua+4GLhyRa4p17w5YGv8j0hERKSm69/vOh2Qhg8fjri4OPTt2xfbtm3T67VGmyjy7bdRsnI17sycD8dXphrufasghOzai42VgcbaWs7D1Lp16TG3bgE3bgC+vnLySpXsbODXX4GUFNm6tHWrnNUbkN2Ed+7Irri5c+U5fvwRuH5d7m/eXM7f1K5djXxMIiIiBiRdxMbGIi8vDxs3bjSfgPTWW8C8ecCQIfJ2MwtTWCjHM731lgxV1tblW5js7GQL1d27chmViAg5a3ifPrK7joiIyFg4k7YOevfuDScnJ1OXoWnAAPkzNhYoKjJtLdVgZwcsWABcuiS773JygDfflN11r7wiB3nn5clutl69gPx8YNs2ue5c27byuAMHTP0piIiorrPYgLR//34MGTIE3t7eUCgU2LVrV7lj1q1bh4CAANjb2yMkJAQHLOEvb3Aw0KiRTBGHD5u6mmpzdwc6d5YtRAsWyEV3ly2TA8FtbYGGDeW2gwdlgOrXD7CxkVMc9OwJzJgh9586BaSny25AIiKimmKxASk/Px/BwcFYu3Zthfu3bt2KmTNnYsGCBUhMTESPHj0QERGB9PT0Gq5UT1ZWMi0AwN69pq3FyKysgG7dZICKiQEuXgTGj5f73n0X6NsXaN9eTnDp6gpMmCBbnIiIiIzNYgNSREQE3nzzTYwYMaLC/atWrcL48eMxYcIEBAYGYs2aNfD19cX7779frfMVFBQgNzdX42E0qm62Wh6QtPn6AuvXA999BwweDLRqJRvTbG2B3Fzgk0+ALl2A8+dNXSkREdV2FhuQqlJYWIiEhAQMUAWNfwwYMADx8fHVes+oqCi4uLioH76+voYotWL9+8ufR4/KZFDHDB4sQ1JKipxKID9fzgbu6Sm73B5+WI5bYrcbEREZS60MSNevX0dxcTE8PDw0tnt4eCCzzIqtAwcOxJNPPondu3fDx8cHR44cqfQ958+fj5ycHPXjypUrRqsfTZoA3t7yvvmzZ413Hgthaysb1RIS5JIpN28CTz4p52Pq3VsO7vbwkF1wsbHy7jkiIqIHUatn0laUnbAHgBBCY9uePXt0fi+lUgmlUmmw2u6rdWu5zsfZs3K0M8HbWwagJUvkGKVz5+RD5ZNP5MPGRs7j9MYbcpA4ERGRvmplQGrYsCGsra01WosAICsrq1yrktlq00amAbYgaVAq5VIpc+bIO94KC+VElNbWwMaNchqB9HRg9Wq55ty0aXJ+pbw8eSnbtpUDv1WvISIiqkitDEh2dnYICQlBTEwMhg8frt4eExODoUOHmrAyPbRpI3+mpJi2DjPl5gaU+UcLQN71BsjZuidPBi5fBl59tfL3cHWVy6CoGusAedmVSrmkysSJgLMzcOKEHAPVrZtctJeIiGo/iw1IeXl5OF/mdqa0tDQkJSXB3d0dfn5+iIyMxOjRoxEaGoqwsDB89NFHSE9Px+TJk01YtR5U63ywBUlvgwbJrrcvvwQ2b5aL7yqVsvXo5Eng6lV53M2b8nHiROlrDx0q/f2NN+R8Tmlppdv695eL+3p61sQnISIiU7HYpUbi4uLQu3fvctvHjh2L6OhoAHKiyOXLlyMjIwNBQUFYvXo1evbsaZDzG22pEZXLl4GmTeUI5du35cAaMoiiIrmuXHa2XIg3NVWOiy8pkVMI3LsHfPVVaeOdlRXQvbtcc66oCPDxkd18jz9euggvERFZBq7FZmRGD0glJUD9+nK113PngJYtDX8OqlRxMXDkiPzHEBAAeHnJwDR0aGlwcnKSY51eeEEu4Hv9ulx8t6RETnhpVSvvESUismy6/v1ms4S5srKSMyUePy672RiQapS1tZyUsqzWreX6cqtXA1u3yn8sEybIyS2bN5fb7t2Txx47Brz3HkMSEZGl4n++zRkHapsdFxdg8WI5YeWKFUC9enLJvM2bZTgKCpKtSR98IAeN//QTJ7QkIrJEDEjmjAO1zZa1tZxq4OJF4JVXgEmTZJfcyZNAdHTpwrv9+8vHd98Bf/4p75YrKTFMDefPA599BqxcKRf9JSIiw2EXmzlr1Ur+TE01bR1UKU9PYNkyzW1jxgC9esng8uGHwM8/y4eKhwcwcCDQsSMQHAz8/be8M+74cTlwvHFjeSfek0/KbHz0qLyT7t492ajo6Qns2qV59x0gZxWfOFGOk3JwMPpHJyKq1ThIu5qMPkgbAH7/HXjkETlCWDVRD1mUtDRg1Srg//5P3pioUBiuy83aWs7L5OYG/PCDvMMOkGP7u3QBrlyRN0I+/bQMW46OclqD/fuBnTtlN2HLlnIuqCZNgHHj5MBzIqLajHexGVmNBKQbN+REPIBcYKx+feOch2pEcbF87N8vu8SOH5etQEVFwHPPARERsnXp/Hm5lMqpU3JMU0gIEBgoA9Fvv8muuoED5TQDqq/HpUtymZXNmzXnbVJxdQUaNJBdgpX9G9+yJTBkiAxyHTrImpo1M9bVICIyDQYkI6uRgAQAjRrJ+8ePHZN9MkRVEELO13TqlGw9OnIE2LABuHCh9JiWLWXA6tFDBqasLGDbNtniVJarK3D6tFwDj4iotmBAMrIaC0hdu8q/eFu3Ak89ZbzzUK1VUiJbrIqLZUtURbOA//23HEuVmwu0aCFD1ZkzcizU4MHyta1bAz17cnwTEVk2zoNUW7RsKQMSB2pTNVlZyWBTFXd3YPny0ueDBsmuvR9/lA8VR0e5ZAsA/PWXnOjd0xPIz5cDyF9/XQYsIiJLx4Bk7lQTRDIgUQ0KCpITYi5aBHTqJAdvHzkCpKfLn2WpvprHjgFffw2sXSunPSAismQMSOaOt/qTiUyZIh8qQgCJicAff8jnDRsCBQVyDJOdnZwcc88e4MUXgaQk2Wr16KOAMXugiYiMhWOQqqnGxiAlJsr/hW/YUPZpEJkpIYAFC4CoqNJtTk5yXbonn5RTHZw+LbvlXn1VduEREdU0DtI2shoLSHl5pZPT3LjB5ePJ7H39NRATI6czqGyVnIYN5ZQFnEaAiGqarn+/udSIuatfvzQUZWSYtBQiXTz5JPDRR/IuuB9+kFMK2NkBAwbIbriQEDlzRXi4XND3zh1TV0xEVB5bkKqpxlqQAHl7UEoKEBsr/6oQWbBr1+TsFZcvy+f+/vIOuieflKHq5El5512/fqUTYRIRGQpbkGoTDw/5888/TVsHkQF4e8sQ9L//Ab6+MiiNGiXvRwgKAp55Rj4PCJBjlc6fN9zyLEREumJAsgQMSFTLODkBU6fKxXgXLwbq1ZNBSKEAuneXk1Lm5soB3y1byskp27QBnn1WLoEyYQKwbp1c3JeIyBgYkCwBAxLVUg4Ocq6llBTg7bflEikHDsiutu3b5fglhQK4e1ce88UXcr25Tz4BXnoJaNcO2LWrfAvTvXtynbuzZ+XvRET64jxIloABiWo5X19g9uzS51ZWwIgR8pGfL7/6KSlygV9bW+DmTbl+3NmzwPDhciaMuXOBJ54Abt+WczAdP1763uPGAY88IluqFAq5cG+bNnLwOBFRRThIu5pqdJD2Rx/J2fcee0xOJkNEuHtXLm3yzjuld8I1awY0aSJboZRKwNpaBqaKuLvLFipPT+D554H27XU7b26ubPmy4f9eElkkDtKuTdiCRFSOvb0co5SeLscxNWgAXLwow5GtLRAXJ8cobdwI/OtfMgC1aycX7HV1lQv0fvmlXFKlRw85J2tqqpwdvCK7dslWKBcXeefdwoWyq+/YMeDWLWD3blkLEdUObEGqphptQTp8GAgLA/z8Su+NJiIN+fnAhg0y9EyZIgd0V6a4WAaoo0eBHTuA338v3efvLweAP/qobKVKTJTzOb3xxv1raNhQvm+7dg/6aYjIWDiTtpHVaEBKS5N9B0ql7EtQKIx7PqI65MYNOWbp1Cn5r5bqv4hDh8rWoStXSo+dNg2YMwfYtw/46SfZqHvwoAxn9erJfz09PGTo6trVNJ+HiKrGgGRkNRqQbt8GHB3l7zdvyjZ+IjKY27dlEPL2luOaVq8GSkrkPtWA7uefl+vKabt7V3bl2dsDffvKweFWVrLbb+FC/v8MkblhQDKyGg1IgJw4Ji9P3srTqpXxz0dUhyUkAG++KZdFiYyUg7J1kZMDTJ8ObNokn7/4onyfhg2NVysR6YcBychqPCC1aAFcuCBXAO3Rw/jnI6Jq++ADOQ5KCNma1LWrnI5gyhTZ0kREpsO72Gob1Z1sWVmmrYOI7mvyZDkOqUMH2VV38KCc52ngQHn3HBGZPwYkS8Fb/YksyrBhcjzSpUtyriZnZ9kA3KwZ8MILQEwMZ/kmMmcMSJaCAYnIIvn7y3FJBw/KnvKcHDkdwYABQLdu8r6LW7dk4zADE5H5YECyFAxIRBatfXt5j8W+fbILzsVFzr/00ENyELeHhxwMPniwnHSSiEyLAclSNGggf3IAA5HFsrKScy69/77sbnN3l3O/FhbK/UVFMhwNHgy89Vb5RXiJqOYwIFkKd3f5kwGJqFbo0EGGpP/8R87ofe8ecOaMnBoAAObNA5o2BZYtY9cbkSkwIFkKBiSiWqddOzkxZUiIXFg3MFBOEfDuu0D9+nJtt/nzgT59gM8/lzN93L0L/PyzXAKFiIyH61FbCgYkojpj2jRgwgRg82Zg1iy5AO+BA3KflVXpLN9hYXLcUsuWMkj5+ZmuZqLahi1IloIBiahOqVdPhqSkJBmSunQB7OxkOPL0BGxtgV9/la1JH3wgJ9j/4ANTV01Ue3Am7Wqq8Zm0s7NL1ysoLJT/dSSiOqWgALh2TU4d8McfwA8/yP8UbNoExMXJY55/HpgxAwgKkt12RKSJS40YWY0HpOJiwOafHtE//wQaNzb+OYnIIgghB3O/+mrpNjs7Oci7RQtgyBC57aef5IK7EREmKZPILDAgGVmNByQAcHOTs8qdPQu0bl0z5yQiixEXB/zvf8B335VOHVCRceOApUsBb++aqozIfHAtttqI45CIqArh4cD27UB+vlzi5JdfgBUrgE6dgI4dgWefBRQKIDpaDux+7z3OtURUGQYkS+LmJn8yIBFRFWxs5Dil3r2BOXOAhATg2DE5VcDBg/Lut9u3galTgbFj5e9EpIkByZKwBYmIHlDXrsChQ8DKlXIQ92efyW3JycCdOzJA3bwpj716Vd4lt2cPcOWKScsmqnGcB8mSMCARkQEoFEBkpOx6e+op4PhxuVacszNw44acW8nLS05MWVZEBLBoEeDkBDRpIudkunhRDom0tzfNZyEyFrYgWRIGJCIyoPBw2fU2dKi8UfbGDTmD9+3bMhxZW8vwExgof//hBzkfU7t2gKurDFQPPSTHM23ebOIPQ2RgbEGyJAxIRGRgPj7Arl1yPbicHKBXL+D332VY6tFDhiAAOHcOmD0bOHy4NEwBsuXo6lXguefk66dMMdlHITIoBiRLwoBEREYSGlr6e9eu5fe3agX83/+VPs/JkYvoOjjIBXffflsukeLgIAd+KxSar794US6XkpUl57wNCpJr0FlV0Y9RUiLPceOGHHjeoMGDfUYifdTZgHTlyhWMHj0aWVlZsLGxwWuvvYYnn3zS1GVVjQGJiMyEi0vp78uXy8n+N2yQM3mvXQs8+aQcs1RQIPdv315+SgE/P3lM//7AsGHyP22//AKcOQN8840cG6WiUMj3XrpULrVCZGx1dqLIjIwM/Pnnn3jooYeQlZWFTp06ISUlBY6Ojjq93iQTRX77rRws0Lkz8NtvNXNOIiIdFBXJ2byXLat82oBu3eT0A3/9Jbvqbt0q3de6NZCeLu+k06ZQlIarRo2Adetk11+7dnKwOJE+dP37XWdbkLy8vODl5QUAaNy4Mdzd3fH333/rHJBMgi1IRGSmbG2B116TC+zu2CEHdP/yiwxOzzwDvPyyvFNO5c4dYO9eIDZWTlyZkiK3t28v767r0QMYOBBwdJR3zR05AkyeDJw4IVunANntNmoUMGKEbHVKTJR33/n7y4HlERFcj46qz2xbkPbv348VK1YgISEBGRkZ2LlzJ4YNG6ZxzLp167BixQpkZGSgXbt2WLNmDXr06KH3uY4ePYpx48bh1KlTOr/GJC1IZ87I/2Vq0AC4fr1mzklEVE1378oxRPXrV31cdjbwySdAcDAwYED58Usqd+7IiS937ZJjnc6fr/p9e/SQ3X7Nm1erfKqlLL4FKT8/H8HBwXj++efxxBNPlNu/detWzJw5E+vWrUO3bt3w4YcfIiIiAmfOnIGfnx8AICQkBAUFBeVeu3fvXnj/swhRdnY2xowZg/Xr1xv3AxmCqgXpxg05erGq0Y1ERCam69xIDRoAc+fe/7h69eTyKO+9J58fOQJs2iRbqry9ZYvT338Dly/LEQkHDsiWpLFjZfeelxcQECAHnBPdj9m2IJWlUCjKtSA98sgj6NSpE95//331tsDAQAwbNgxRUVE6vW9BQQH69++PiRMnYvTo0fc9tmzYys3Nha+vb822IBUUlP4X58YNOREJERGVk5Ymu+T27tXcrlAAH3wATJpkmrrI9Gr1YrWFhYVISEjAgAEDNLYPGDAA8fHxOr2HEALjxo1Dnz597huOACAqKgouLi7qh6+vb7VqfyBKpWxXBmSbNBERVSggQC6REhsL/PvfQN++sjVJCGDGDCApSY6PIqqM2XaxVeX69esoLi6Gh4eHxnYPDw9kZmbq9B6HDh3C1q1b0aFDB+zatQsA8Nlnn6F92VGEZcyfPx+RkZHq56oWpBrn5iZvEVHN0kZERJUKD5cPQI5MGDQIiIkBOnaUA8uffFLOBH7xYum8Tt7ecikWNtLXbRYZkFQUWiP5hBDltlWme/fuKCkp0flcSqUSSqVSr/qMwt0d+OMPBiQiIj1ZWck75rp1Ay5dki1IX3xR8bGXLwMbN9ZkdWRuLDIgNWzYENbW1uVai7Kyssq1KtU6bm7yJwMSEZHevL1la1FhIXDypLx7rqBAzsNkZycHeS9dKgd/T5wIdO9u6orJVCwyINnZ2SEkJAQxMTEYPny4entMTAyGDh1qwspqgCogcS4kIqJqUSjkkM7QUM0lVlT+/BP4+GPg0UflcihKpZwq4KmnZHecpydvIq4LzDYg5eXl4XyZSS7S0tKQlJQEd3d3+Pn5ITIyEqNHj0ZoaCjCwsLw0UcfIT09HZMnTzZh1TWg7K3+RERkcFFRwP79cvLKuLjS7evWyZ+hofLuONX/r1LtZLYB6ejRo+jdu7f6uWqA9NixYxEdHY1Ro0YhOzsbS5YsQUZGBoKCgrB79274+/ubquSawS42IiKjatBAdr+dOAEkJ8vB23Fx8q64rCzg6FE5uPuHH+RkmF99JX/385OL9rJ1qXawiHmQzJFJZtIGgDffLJ3P/+OPa+68RESE48flIO/8fMDXV/4sO+Jh5Up5B1xZKSnA11/LLjpOUml6tXoepDqN67EREZlMcDCwbZtcNPfKFfmf4pYtgX/9S+6fPx/Yt0/+fvYs8OKLcoWo116Tr129Wk43AADFxXLR3tWrgbVrZfiaORMYMwb46afSBXrJNMy2i40qwS42IiKTGjQISE+Xa8IplcCQIXJR3Px84JtvgD595F1xycmlr2nWTN49FxkpW5MCAuQSKZVN3ffZZ8CUKaXLqlDNYwuSpWFAIiIyOXt74OmngeHDARsbeWfcZ58Bo0fLFqLkZLlt6FDZonT+vFzixNER+PVXOf9SZqacjHLIEOCRR+T7du8ul0hRKOSg8E8/NenHrNPYgmRp2MVGRGSWnJzk/EmTJgEZGUDv3kDDhqX7X3wRGDBATkDp6AgEBcklUOzs5P7CwtLfmzSR3XL//rc8dtSomv88dR0HaVeTyQZpp6bKUX5OTkBubs2dl4iIakxJiRzXtHWrfL5pk2ydogfHQdq1laqL7dYtrrRIRFRLWVkBmzfLcUgA8PLLwJ07pq2prmFAsjRlV0+8edNUVRARkZFZWwNr1gD+/qWze1PNYUCyNDY2gKpJkAO1iYhqNVtbOXUAALzxBrBkCXDtGnDmjBwkvnu3aeurzTgGqZpMNgYJAJo2lUtNHz5ceusDERHVSgUFQIcOwLlz8rm7u7zLLTtbTjOwbx//FOiDY5BqM97JRkRUZyiVQHy8nCagY0f5n/7sbDnVQEEBMGyY7IIjw2JAskScC4mIqE5p0EBOE3D4sOxmmzQJuHBBztKdmSn3XbwoZ+8mw+A8SJaIAYmIqE6ys5PzI6l88QUQGipn8P7mG7lt5Eg527eXl/zJxXOrh5fNErGLjYiIIMcmLVkif7eyko9t2+R65oMHy4V1t2/n/09XBwOSJWILEhER/eOVV4C4OHnvTkIC8MwzwKOPAvXryy65kSPl2m8JCaau1LKwi80SMSAREdE/FAqgVy/5u4+P7HYDgD/+AFaulF1vFy8CTz0FHDsGuLiYrlZLwhYkS6T6dufkmLYOIiIyW02aAKtWAUePyskmL14Epk3TPObbb+WacKpuOirFgGSJVLNpMyAREdF9uLkBW7bIlqbPPpNLmPTvD7RoAQwdCpw+DSxaBOzZY+pKzQsDkiVStSBxqREiItJBly7Ac8/J3597DvjpJzlNAAA89JD8OW6cbElSba/rGJAsEbvYiIhIT2++KSeXBIDgYDmw+9Il4NAhoHVrOZ/SokUyMO3cacJCzQQDkiViQCIiIj35+cmutunTgV9+kQO7/f0BBwc5U/e77wJduwJ5ecCIEXK+peJiU1dtOlyLrZpMuhbblSvym25rK+eZVyhq9vxERFQr3bsHzJ0LrF4tn48aJe+Kq02TTXItttpMNUi7qAi4e9ekpRARUe1hYyPvfNu8Wc7avXUr8PrrQF1sSmFAskT165fGeXazERGRgf3rX3JxXEAO3G7eXLYsnT4tW5kA4OBBIDAQmDHDdHUaE7vYqsmkXWyAvG/z5k0gORlo06bmz09ERLXeG2/Iwd2FhaXbrKzkHEsZGTIsWVnJkR/e3qarUx/sYqvtOFCbiIiM7LXXgOxsuZ7bo4/KbreSEhmI7t2Td8WVlMguudqGAclSMSAREVENqF9f3tX2/ffAnTtyCZP4eOC334B33pHHREfXvnFKDEiWigGJiIhqmJWV7EoLCwM6d5Z3udnbA2fOyIVxi4uBtLTaEZYYkCwVlxshIiITc3GRIQmQg7UHDQKaNZPhaepUYNYsy11X3cbUBVA1cbkRIiIyA//9L7BrF3DkSOm2o0flA5B/pjZsMEVlD4YtSJaKXWxERGQGvL2B5cvl77a2wFdfAStXArNny23R0cCvv5qsvGpjC5KlYkAiIiIzMXGiHMzdsiXw8MOl22/cAD79VIal+HjT1VcdbEGyVAxIRERkJhQKOblk2XAEyDmUANmC9OefNV/Xg2BAslQMSEREZOa8vICHHpK/x8aatBS9MSBZKt7FRkREFqBPH/nzl19MW4e+GJAsFe9iIyIiC1A2IP3+O3DqlGnr0RUDkqViFxsREVmAnj0Ba2vgwgXgkUeA9u2B0FA5oaQ5Y0CyVAxIRERkAZyc5MSRgBzMbWsLJCQAX3xh2rruhwHJUpUNSLVhTnciIqq1Fi4E+vUDYmKAxYvltrNnTVrSfXEeJEulGqRdXAzcvg04Opq0HCIioso8+qh8AKVDZ1NSTFaOTqoVkH7//XfExcUhKysLJSUlGvtWrVplkMLoPhwcZKducbH8tjEgERGRBWjTRv5MSZEdIAqFaeupjN4B6b///S8WLlyI1q1bw8PDA4oyn0xhrp+yNlIoZCtSdrYMSE2amLoiIiKi+2rRArCyAnJzgcxMOVeSOdI7IL3zzjv49NNPMW7cOCOUQ3opG5CIiIgsgFIJBATIu9pSUsw3IOk9SNvKygrdunUzRi2kLzc3+fPGDdPWQUREpIfWreVPcx6orXdAmjVrFt577z1j1EL6YkAiIiILVHYckrnSu4ttzpw5GDx4MJo3b462bdvC1tZWY/+OHTsMVhzdBwMSERFZIFULUq0KSNOmTUNsbCx69+6NBg0aWPTAbBsbGwQFBQEAQkNDsX79ehNXpCfVrf4cg0RERBZE1YKUnGzaOqqid0DatGkTtm/fjsGDBxujnhrl6uqKpKQkU5dRfWxBIiIiC9S+PWBjA1y6JFuRVC1K5kTvMUju7u5o3ry5MWohfTEgERGRBXJzA/r3l79v2WLaWiqjd0BavHgxFi1ahNu3bxujHrX9+/djyJAh8Pb2hkKhwK5du8ods27dOgQEBMDe3h4hISE4cOCAXufIzc1FSEgIunfvjn379hmo8hrEgERERBbqmWfkzy+/NM8Vs/TuYnv33Xdx4cIFeHh4oGnTpuUGaR87dswgheXn5yM4OBjPP/88nnjiiXL7t27dipkzZ2LdunXo1q0bPvzwQ0RERODMmTPw8/MDAISEhKCgoKDca/fu3Qtvb29cunQJ3t7eOHXqFAYPHoyTJ0/C2dm5wnoKCgo03is3N9cgn/OBMCAREZGFGjoUsLeXXWxJSUDHjqauSJPeAWnYsGFGKKO8iIgIREREVLp/1apVGD9+PCZMmAAAWLNmDfbs2YP3338fUVFRAICEhIQqz+Ht7Q0ACAoKQtu2bXHu3DmEhoZWeGxUVBRef/316nwU4+EgbSIislDOzsBjjwHbtgGrVwObNpm6Ik16BaR79+4BAF544QX4+voapSBdFBYWIiEhAfPmzdPYPmDAAMTHx+v0Hjdu3ICDgwOUSiWuXr2KM2fOoFmzZpUeP3/+fERGRqqf5+bmmvQaAGALEhERWbS5c2VA+vxzYM4coEMHU1dUSq8xSDY2Nnj77bdRXFxsrHp0cv36dRQXF8PDw0Nju4eHBzIzM3V6j+TkZISGhiI4OBiPPfYY3nnnHbi7u1d6vFKphLOzs8bD5BiQiIjIgj38MPDUU3IM0vz5pq5Gk96DtPv27Yu4uDgjlKI/7TmYhBA6z8vUtWtXnDx5EsePH0dSUlKNdR0alCog5ecDRUWmrYWIiKgali4FrK2B3buBEydMXU0pvccgRUREYP78+Th16hRCQkLg6Oiosf/xxx83WHGVadiwIaytrcu1FmVlZZVrVarVXFxKf795E2jUyGSlEBERVUeLFsATTwBffSXHIm3YYOqKJL0D0r///W8AcpC0NoVCUSPdb3Z2dggJCUFMTAyGDx+u3h4TE4OhQ4ca/fxmw9pajnLLzZXdbAxIRERkgSIjZUDavBn4738BLy9TV1SNLraSkpJKH4YMR3l5eUhKSlLPdJ2WloakpCSkp6cDACIjI7F+/Xp8+umnSE5OxqxZs5Ceno7JkycbrAaLwHFIRERk4R55BAgLk6NFtm41dTWS3i1INeXo0aPo3bu3+rnqDrKxY8ciOjoao0aNQnZ2NpYsWYKMjAwEBQVh9+7d8Pf3N1XJpuHmBly+zIBEREQWLTwc+PVX4Px5U1ciVSsg7du3D2+//TaSk5OhUCgQGBiIl19+GT169DBYYeHh4RD3mVpzypQpmDJlisHOaZE4FxIREdUCqvaNy5dNW4eK3l1sn3/+Ofr16wcHBwdMnz4dU6dORb169dC3b1988cUXxqiRqsIuNiIiqgXMLSDp3YK0dOlSLF++HLNmzVJvmzFjBlatWoU33ngD//rXvwxaIN0HAxIREdUC/6wShn+GGpuc3i1IFy9exJAhQ8ptf/zxx5GWlmaQokgPDEhERFQLqFqQcnLkw9T0Dki+vr74+eefy23/+eefTb/0Rl2kGoOUnW3SMoiIiB6EoyPQoIH83Ry62fTuYps9ezamT5+OpKQkdO3aFQqFAgcPHkR0dDTeeecdY9RIVQkMlD/375dztes4kzgREZG58feX/79/+bLp12Wr1kSRnp6eWLlyJb766isAQGBgILZu3Vq3Jmk0FwMHAvb2wIULwMmTpv9GERERVZO/P3DsmIW2IAHA8OHDNWawJhOqX1+GpG++AbZvZ0AiIiKLZU4DtfUeg6RSWFiIq1evIj09XeNBJjBihPy5Y4dp6yAiInoA5nSrv94tSKmpqXjhhRcQHx+vsV0IUWNrsZGWIUPkumynTgF//AE0aWLqioiIiPRm0QFp3LhxsLGxwXfffQcvLy8oOCjY9NzcAA8P4No14M8/GZCIiMgiWXRASkpKQkJCAtq0aWOMeqi6XFxkQDKHySOIiIiqoXFj+dMcZq7RewxS27Ztcf36dWPUQg/CxUX+ZEAiIiILZW0tf95nKdYaoXdAeuuttzB37lzExcUhOzsbubm5Gg8yEQYkIiKycFb/pBJzGM6sdxdbv379AAB9+/bV2M5B2ibGgERERBZOFZCEMP3cx3oHpNjYWGPUQQ+KAYmIiCycVZl+LYsLSL169TJGHfSgVGuyMSAREZGFUo1BAoCSEs3AVNNMeGoyKLYgERGRhSsbiEpKTFcHwIBUe6gC0s2bJi2DiIiouhiQyPDYgkRERBaOAYkMjwGJiIgsHAMSGR4DEhERWThzCkg63cXWsWNHnddcO3bs2AMVRNXEgERERBaubEAy9bSKOgWkYcOGGbkMemAMSEREZOEsrgVp0aJFxq6DHpQqIN25AxQVAba2pq2HiIhIT+YUkDgGqbZwdi79na1IRERkgRSK0tmzLS4gFRcX4+2330bnzp3h6ekJd3d3jQeZiI0NUL++/J0BiYiILJSqFcniAtLrr7+OVatW4amnnkJOTg4iIyMxYsQIWFlZYfHixUYokXTGySKJiMjCWWxA2rx5Mz7++GPMmTMHNjY2eOaZZ7B+/Xr85z//weHDh41RI+mKA7WJiMjCWWxAyszMRPv27QEA9evXR84/f4wfe+wxfP/994atjvTDgERERBbOYgOSj48PMjIyAAAtWrTA3r17AQBHjhyBUqk0bHWkHwYkIiKycBYbkIYPH46ff/4ZADBjxgy89tpraNmyJcaMGYMXXnjB4AWSHhiQiIjIwqkCkkVMFFnWsmXL1L+PHDkSPj4+iI+PR4sWLfD4448btDjSEwMSERFZOHNpQdI7IGnr0qULunTpYoha6EG5usqfDEhERGShLDYgbdq0qcr9Y8aMqXYx9IDYgkRERBbO2lr+tLiANGPGDI3nRUVFuH37Nuzs7ODg4MCAZEoMSEREZOEstgXpxo0b5balpqbi3//+N15++WWDFEXVNGQI0KYN4ONj6kqIiIiqxWIDUkVatmyJZcuW4bnnnsPZs2cN8ZZUHX5+8kFERGShzCUgGWyxWmtra1y7ds1Qb0dERER1kLkEJL1bkL799luN50IIZGRkYO3atejWrZvBCiMiIqK6x2ID0rBhwzSeKxQKNGrUCH369MHKlSsNVRcRERHVQRY7UWSJqSMdERER1Vrm0oJksDFIRERERA/KXAKSTi1IkZGROr/hqlWrql0MERER1W0WNVFkYmKixvOEhAQUFxejdevWAIBz587B2toaISEhhq+QiIiI6gyLakGKjY1V/75q1So4OTlh48aNcHNzAyAnj3z++efRo0cP41RJREREdYK5BCS9xyCtXLkSUVFR6nAEAG5ubnjzzTct7i621atXo127dmjbti2mT58OIYSpSyIiIqrTLDYg5ebm4s8//yy3PSsrC7du3TJIUTXhr7/+wtq1a5GQkICTJ08iISEBhw8fNnVZREREdZrFBqThw4fj+eefx7Zt23D16lVcvXoV27Ztw/jx4zFixAhj1Gg09+7dw927d1FUVISioiI0btzY1CURERHVaRYbkD744AMMHjwYzz33HPz9/eHv749nn30WERERWLduncEK279/P4YMGQJvb28oFArs2rWr3DHr1q1DQEAA7O3tERISggMHDuj8/o0aNcKcOXPg5+cHb29v9OvXD82bNzdY/URERKQ/i50o0sHBAevWrcOKFStw4cIFCCHQokULODo6GrSw/Px8BAcH4/nnn8cTTzxRbv/WrVsxc+ZMrFu3Dt26dcOHH36IiIgInDlzBn7/LNgaEhKCgoKCcq/du3cv6tWrh++++w6XLl1CvXr1EBERgf3796Nnz54V1lNQUKDxXrm5uQb6pERERKRiLi1IegckFUdHR3To0MGQtWiIiIhAREREpftXrVqF8ePHY8KECQCANWvWYM+ePXj//fcRFRUFQE5HUJmvv/4aLVq0gLu7OwBg8ODBOHz4cKUBKSoqCq+//np1Pw4RERHpwKIC0ogRIxAdHQ1nZ+f7jjPasWOHQQqrSmFhIRISEjBv3jyN7QMGDEB8fLxO7+Hr64v4+HjcvXsXtra2iIuLw6RJkyo9fv78+RoTZubm5sLX17d6H4CIiIgqZFETRbq4uEChUKh/N7Xr16+juLgYHh4eGts9PDyQmZmp03t06dIFjz76KDp27AgrKyv07dsXjz/+eKXHK5VKKJXKB6qbiIiIqmZRLUgbNmyo8HdTU4U2FSFEuW1VWbp0KZYuXWrosoiIiKiazCUg6X0X2507d3D79m3188uXL2PNmjXYu3evQQurSsOGDWFtbV2utSgrK6tcqxIRERFZDosNSEOHDsWmTZsAADdv3kTnzp2xcuVKDB06FO+//77BC6yInZ0dQkJCEBMTo7E9JiYGXbt2rZEaiIiIyPAsNiAdO3ZMvebatm3b4OnpicuXL2PTpk149913DVZYXl4ekpKSkJSUBABIS0tDUlIS0tPTAQCRkZFYv349Pv30UyQnJ2PWrFlIT0/H5MmTDVYDERER1SxzCUh63+Z/+/ZtODk5AZDzCY0YMQJWVlbo0qULLl++bLDCjh49it69e6ufq+4gGzt2LKKjozFq1ChkZ2djyZIlyMjIQFBQEHbv3g1/f3+D1UBEREQ1y2InimzRogV27dqF4cOHY8+ePZg1axYAOf7H2dnZYIWFh4ffd/HYKVOmYMqUKQY7JxEREZmWubQg6d3F9p///Adz5sxB06ZN0blzZ4SFhQGQrUkdO3Y0eIFERERUd1jUPEhljRw5Et27d0dGRgaCg4PV2/v27Yvhw4cbtDgiIiKqWyy2BQkAPD094eTkhJiYGNy5cwcA8PDDD6NNmzYGLY6IiIjqFosNSNnZ2ejbty9atWqFRx99FBkZGQCACRMmYPbs2QYvkIiIiOoOiw1Is2bNgq2tLdLT0+Hg4KDePmrUKPz4448GLY6IiIjqFnMJSHqPQdq7dy/27NkDHx8fje0tW7Y06G3+REREVPeYS0DSuwUpPz9fo+VI5fr161zMlYiIiB6IxQaknj17qpcaAeSCsSUlJVixYoXGxI5ERERE+rLYiSJXrFiB8PBwHD16FIWFhZg7dy5Onz6Nv//+G4cOHTJGjURERFRHWGwLUtu2bXHixAl07twZ/fv3R35+PkaMGIHExEQ0b97cGDUSERFRHWGRE0UWFRVhwIAB+PDDD/H6668bqyYiIiKqoyyyBcnW1hanTp2CQqEwVj1ERERUh1lkQAKAMWPG4JNPPjFGLURERFTHmUtA0nuQdmFhIdavX4+YmBiEhobC0dFRY/+qVasMVhwRERHVLRYbkE6dOoVOnToBAM6dO6exj11vRERE9CAsNiDFxsYaow4iIiIiswlIeo9BIiIiIjIWc5kokgGJiIiIzAZbkIiIiIi0mMtEkQxIREREZDbYgkRERESkhQGJiIiISAsDEhEREZEWBiQiIiIiLQxIRERERFoYkIiIiIi0cKJIIiIiIi1sQSIiIiLSwokiiYiIiLSwBYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFp4USRRERERFrYgkRERESkhRNFEhEREWlhCxIRERGRFgYkIiIiIi0MSERERERaGJCIiIiItDAgEREREWlhQCIiIiLSwokia9Dw4cPh5uaGkSNH6rWPiIiIahZbkGrQ9OnTsWnTJr33ERERUc3iRJE1qHfv3nByctJ7HxEREdUstiD9Y//+/RgyZAi8vb2hUCiwa9eucsesW7cOAQEBsLe3R0hICA4cOFDzhRIREZHRMSD9Iz8/H8HBwVi7dm2F+7du3YqZM2diwYIFSExMRI8ePRAREYH09HT1MSEhIQgKCir3uHbtWk19DCIiIjIAcwlINqY9PRAREYGIiIhK969atQrjx4/HhAkTAABr1qzBnj178P777yMqKgoAkJCQYPQ6CwoKUFBQoH6em5tr9HMSERHVNeYSkEzeglSVwsJCJCQkYMCAARrbBwwYgPj4+BqtJSoqCi4uLuqHr69vjZ6fiIioLmBA0sH169dRXFwMDw8Pje0eHh7IzMzU+X0GDhyIJ598Ert374aPjw+OHDmi076y5s+fj5ycHPXjypUr1ftQREREVClzCUgm72LThUKh0HguhCi3rSp79uyp1r6ylEollEqlzuckIiIi/XGiSB00bNgQ1tbW5VqLsrKyyrUqERERkeUzlxYksw5IdnZ2CAkJQUxMjMb2mJgYdO3a1URVERERkbGYy0SRJu9iy8vLw/nz59XP09LSkJSUBHd3d/j5+SEyMhKjR49GaGgowsLC8NFHHyE9PR2TJ082YdVERERkDObSgmTygHT06FH07t1b/TwyMhIAMHbsWERHR2PUqFHIzs7GkiVLkJGRgaCgIOzevRv+/v6mKpmIiIiMxFwCkkIIIUxbgmXKzc2Fi4sLcnJy4OzsbOpyiIiIaoWDB4EePYBWrYCUFMO/v65/v816DBIRERHVLebSgsSARERERGaDAYmIiIhICwMSERERkRYGJCIiIiItnEmbiIiISIu5TBTJgERERERmg11sRERERFoYkIiIiIi0MCARERERaWFAIiIiItLCgERERESkhQGJiIiISAsDEhEREZEWThRJREREpIUTRRIRERFpYRcbERERkRYGJCIiIiItDEhEREREWqzKJBMhTFiH6U5NREREpKlsQDJlKxIDEhEREZkNBiQiIiIiLQxIRERERFrKBiRTThbJgERERERmQzVRJMAWJCIiIiIA7GIjIiIiKocBiYiIiEgLAxIRERGRFgYkIiIiIi0KRenvDEhERERE/zCH9dgYkIiIiMisMCARERERaVEFJE4USURERPQP1WSRbEEiIiIi+ge72IiIiIi0MCARERERaWFAIiIiItLCgERERESkhQGJiIiISIs5BCQb052aiIgsTXFxMYqKikxdBtVyfn6Ag4OcB+nuXf1ea2trC2vVPAEPgAGJiIjuSwiBzMxM3Lx509SlUB0QFSXDkRBAWpr+r3d1dYWnpycUZRd20xMDEhER3ZcqHDVu3BgODg4P9IeH6H4KC4GiIsDXV7Yk6UoIgdu3byMrKwsA4OXlVe0aGJCIiKhKxcXF6nDUoEEDU5dDdYAqfyuVgL29fq+tV68eACArKwuNGzeudncbB2kTEVGVVGOOHPT5X3kiE1J9Vx9kvBwDEhER6YTdalRTVF81Iar7+gf/rtaJgDR8+HC4ublh5MiRFe6/ffs2/P39MWfOnBqujIiIiMxRnQhI06dPx6ZNmyrdv3TpUjzyyCM1WBEREZF5iI6Ohqurq/r54sWL8dBDD1X5mkuXLkGhUCApKckoNT1oC5Ih1ImA1Lt3bzg5OVW4LzU1FWfPnsWjjz5aw1URERGZnzlz5uDnn39WPx83bhyGDRumcYyvry8yMjIQFBRUw9XVHJMHpP3792PIkCHw9vaGQqHArl27yh2zbt06BAQEwN7eHiEhIThw4IDBzj9nzhxERUUZ7P2IiIjKEkLg3r17pi5DZ/Xr17/v3YrW1tbw9PSEjY1pb4Y35qSlJg9I+fn5CA4Oxtq1ayvcv3XrVsycORMLFixAYmIievTogYiICKSnp6uPCQkJQVBQULnHtWvXqjz3N998g1atWqFVq1b3rbOgoAC5ubkaDyKiukoIID+/5h/6dLmEh4dj+vTpmDt3Ltzd3eHp6YnFixdrHJOeno6hQ4eifv36cHZ2xlNPPYU///yz0vdUdS1t2bIFXbt2hb29Pdq1a4e4uDj1MXFxcVAoFNizZw9CQ0OhVCpx4MABCCGwfPlyNGvWDPXq1UNwcDC2bdum8f6nT5/G4MGD4ezsDCcnJ/To0QMXLlwAAJSUlGDJkiXw8fGBUqnEQw89hB9//LFcbTt27EDv3r3h4OCA4OBg/PrrrxrniI6Ohp+fHxwcHDB8+HBkZ2dr7C/bxbZ48WJs3LgR33zzDRQKBRQKBeLi4irsYtu3bx86d+4MpVIJLy8vzJs3TyMY6vLPIycnB5MmTUKvXo0RHu6MwYP74Pjx4+Vq+/TTT9GsWTMolUoIY/XDCTMCQOzcuVNjW+fOncXkyZM1trVp00bMmzdPr/eOjY0VTzzxhMa2efPmCR8fH+Hv7y8aNGggnJ2dxeuvv17h6xctWiQAlHvk5OToVQcRkaW5c+eOOHPmjLhz5456W16eEDKu1OwjL0/3unv16iWcnZ3F4sWLxblz58TGjRuFQqEQe/fuFUIIUVJSIjp27Ci6d+8ujh49Kg4fPiw6deokevXqVel7pqWlCQDCx8dHbNu2TZw5c0ZMmDBBODk5ievXrwsh5N8bAKJDhw5i79694vz58+L69evi1VdfFW3atBE//vijuHDhgtiwYYNQKpUiLi5OCCHE1atXhbu7uxgxYoQ4cuSISElJEZ9++qk4e/asEEKIVatWCWdnZ/Hll1+Ks2fPirlz5wpbW1tx7tw5jdratGkjvvvuO5GSkiJGjhwp/P39RVFRkRBCiMOHDwuFQiGioqJESkqKeOedd4Srq6twcXFRf8ZFixaJ4OBgIYQQt27dEk899ZQYNGiQyMjIEBkZGaKgoEB9rsTERHXtDg4OYsqUKSI5OVns3LlTNGzYUCxatEivfx7dunUTQ4YMEVu2HBHbt58TU6fOFg0aNBDZ2dnq2hwdHcXAgQPFsWPHxPHjx0VJSUm5f04VfWdVcnJydPr7bdYBqaCgQFhbW4sdO3ZoHDd9+nTRs2dPvd67ooBU1oYNG8Ts2bMr3X/37l2Rk5Ojfly5coUBiYjqBEsOSN27d9fY9vDDD4tXXnlFCCHE3r17hbW1tUhPT1fvP336tAAgfv/99wrfUxUMli1bpt5WVFQkfHx8xFtvvSWEKA1Iu3btKnO98oS9vb2Ij4/XeL/x48eLZ555RgghxPz580VAQIAoLCys8Nze3t5i6dKl5T7PlClTNGpbv359uc+TnJwshBDimWeeEYMGDdJ4j1GjRlUakIQQYuzYsWLo0KEVXgdVQHr11VdF69atNcLKe++9J+rXry+Ki4uFEPf/5/Hzzz8LZ2dncffuXXH6tBBHjghx86YQzZs3Fx9++KG6NltbW5GVlVXhNVIxREAy65m0r1+/juLiYnh4eGhs9/DwQGZmps7vM3DgQBw7dgz5+fnw8fHBzp078fDDD+tVi1KphFKp1Os1RES1lYMDkJdnmvPqo0OHDhrPvby81MtQJCcnw9fXF76+vur9bdu2haurK5KTk6v8OxEWFqb+3cbGBqGhoUhOTtY4JjQ0VP37mTNncPfuXfTv31/jmMLCQnTs2BEAkJSUhB49esDW1rbc+XJzc3Ht2jV069ZNY3u3bt00uqC0P7NqqY2srCy0adMGycnJGD58eLnPUrarrjqSk5MRFhamMf9Qt27dkJeXh6tXr8LPz69cbar6VP88EhISkJeXhwYNGqCkRO63sgLu3Lmj7mYEAH9/fzRq1OiB6tWFWQckFe0Jn4QQek0CtWfPnvseM27cOH3LIiKqsxQKwNHR1FXcn3bYUCgUKPnnr29lf0v0/RtT9r3LcixzgVTn/P7779GkSRON41T/861aIkOfc1RUa9nPrNpX9jMbQ0V1qM5VdntV/zxKSkrg5eWFuLg4nD8P3LkD+PsDzs7QmIbAsYa+eCYfpF2Vhg0bwtraulxrUVZWVrlWJSIiIn20bdsW6enpuHLlinrbmTNnkJOTg8DAwCpfe/jwYfXv9+7dQ0JCAtq0aVPluZRKJdLT09GiRQuNh6oFq0OHDjhw4ECFd2Y5OzvD29sbBw8e1NgeHx9/31q16yhbu/ZnqYidnR2Ki4vv+77x8fEaASw+Ph5OTk7lAmFlOnXqhMzMTNjY2MDfvwV8fVugWTN5jRo2bKjTexiSWQckOzs7hISEICYmRmN7TEwMunbtaqKqiIioNujXrx86dOiAZ599FseOHcPvv/+OMWPGoFevXhrdYxV57733sHPnTpw9exYvvfQSbty4gRdeeKHS452cnDBnzhzMmjULGzduxIULF5CYmIj33nsPGzduBABMnToVubm5ePrpp3H06FGkpqbis88+Q0pKCgDg5ZdfxltvvYWtW7ciJSUF8+bNQ1JSEmbMmKHzZ54+fTp+/PFHLF++HOfOncPatWvv273WtGlTnDhxAikpKbh+/XqFAW7KlCm4cuUKpk2bhrNnz+Kbb77BokWLEBkZCSsr3aJGv379EBYWhmHDhuHgwT24du0SfvstHgsXLsTRo0d1/oyGYvIutry8PJw/f179PC0tDUlJSXB3d4efnx8iIyMxevRohIaGIiwsDB999BHS09MxefJkE1ZNRESWTjX33rRp09CzZ09YWVlh0KBB+N///nff1y5btgxvvfUWEhMT0bx5c3zzzTf3beV444030LhxY0RFReHixYtwdXVFp06d8OqrrwIAGjRogF9++QUvv/wyevXqBWtrazz00EPqcUfTp09Hbm4uZs+ejaysLLRt2xbffvstWrZsqfNn7tKlC9avX49FixZh8eLF6NevHxYuXIg33nij0tdMnDgRcXFxCA0NRV5eHmJjY9G0aVONY5o0aYLdu3fj5ZdfRnBwMNzd3TF+/HgsXLhQ59oUCgV2796NBQsWYOHCF/D333/Bw8MT4eE9TdJrpBDG6pDUUVxcHHr37l1u+9ixYxEdHQ1AThS5fPly9aydq1evRs+ePWu4Uk25ublwcXFBTk4OnJ2dTVoLEZEx3b17F2lpaeoJe+uyS5cuISAgAImJifddjoOq7+xZeRNA8+aAm5v+r6/qO6vr32+TtyCFh4ffd9DYlClTMGXKlBqqiIiIiEyJa7ERERERmSGTtyARERFZiqZNmxpvaQtSYwsSERERkRliQCIiIiKzxBYkIiIion9UYyJzg2NAIiIiItLCgERERERmhYO0iYiIiMwQAxIREZGFUC2PAshZvRUKBZKSkqp8TXh4OGbOnGn02ozBlC1InAeJiIjIAvn6+iIjI0O9Bpxq6a4bN27A1dVVfdyOHTtga2troiqrxxwGaTMgERER/aOwsBB2dnamLkMn1tbW8PT0vO9x7u7uNVDN/RUVFekd1DgGiYiILIsQQH5+zT/0/IsZHh6OqVOnYurUqXB1dUWDBg2wcOFC9WzYTZs2xZtvvolx48bBxcUFEydOBADEx8ejZ8+eqFevHnx9fTF9+nTk5+er37egoABz586Fr68vlEolWrZsiU8++US9f9++fejcuTOUSiW8vLwwb9483Lt3T6Ou6dOnY+7cuXB3d4enpycWL16sUXtqaip69uwJe3t7tG3bFjExMRr7y3axXbp0Sb3wu5ubGxQKBcaNG6c+V9kuths3bmDMmDFwc3ODg4MDIiIikJqaqt4fHR0NV1dX7NmzB4GBgahfvz4GDRqEjIwMjfNv2LABgYGBsLe3R5s2bbBu3bpytX311VcIDw+Hvb09Pv/8c13/sZlFCxIEVUtOTo4AIHJyckxdChGRUd25c0ecOXNG3Llzp3RjXp4QMq7U7CMvT6/ae/XqJerXry9mzJghzp49Kz7//HPh4OAgPvroIyGEEP7+/sLZ2VmsWLFCpKamitTUVHHixAlRv359sXr1anHu3Dlx6NAh0bFjRzFu3Dj1+z711FPC19dX7NixQ1y4cEH89NNPYsuWLUIIIa5evSocHBzElClTRHJysti5c6do2LChWLRokUZdzs7OYvHixeLcuXNi48aNQqFQiL179wohhCguLhZBQUEiPDxcJCYmin379omOHTsKAGLnzp1CCCHS0tIEAJGYmCju3bsntm/fLgCIlJQUkZGRIW7evKk+14wZM9Tnfvzxx0VgYKDYv3+/SEpKEgMHDhQtWrQQhYWFQgghNmzYIGxtbUW/fv3EkSNHREJCgggMDBT/+te/1O/x0UcfCS8vL7F9+3Zx8eJFsX37duHu7i6io6M1amvatKn6mD/++EPnf24XLghx5IgQmZk6v0RDhd/Zf+j695sBqZoYkIiorrD0gBQYGChKSkrU21555RURGBgohJABadiwYRqvGT16tJg0aZLGtgMHDggrKytx584dkZKSIgCImJiYCs/56quvitatW2uc87333hP169cXxcXF6rq6d++u8bqHH35YvPLKK0IIIfbs2SOsra3FlStX1Pt/+OGHSgOSEELExsYKAOLGjRvlroEqIJ07d04AEIcOHVLvv379uqhXr5746quvhBAyIAEQ58+f16jfw8ND/dzX11d88cUXGud54403RFhYmEZta9asqfAa3c/FizIgZWRU6+UGCUgcg0RERPpzcADy8kxzXj116dIFijJ9NmFhYVi5ciWKi4sBAKGhoRrHJyQk4Pz589i8ebN6mxACJSUlSEtLw8mTJ2FtbY1evXpVeL7k5GSEhYVpnLNbt27Iy8vD1atX4efnBwDo0KGDxuu8vLyQlZWlfg8/Pz/4+Pho1P2gkpOTYWNjg0ceeUS9rUGDBmjdujWSk5PV2xwcHNC8efMKa/vrr79w5coVjB8/Xt0lCQD37t2Di4uLxvm0r60lYUAiIiL9KRSAo6OpqzAIR63PUVJSghdffBHTp08vd6yfnx/Onz9f5fsJITTCkWobAI3t2gOWFQoFSkpKNI7X3v+gKnpf1fb71aZ6rarGjz/+WCNoAXLgeFna11ZX5jBRJAMSERHVaocPHy73vGXLluX+mKt06tQJp0+fRosWLSrc3759e5SUlGDfvn3o169fuf1t27bF9u3bNUJHfHw8nJyc0KRJE51qbtu2LdLT03Ht2jV4e3sDAH799dcqX6O6+07VMlbZ+967dw+//fYbunbtCgDIzs7GuXPnEBgYqFNtHh4eaNKkCS5evIhnn31Wp9dYIt7FRkREtdqVK1cQGRmJlJQUfPnll/jf//6HGTNmVHr8K6+8gl9//RUvvfQSkpKSkJqaim+//RbTpk0DIO98Gzt2LF544QXs2rULaWlpiIuLw1dffQUAmDJlCq5cuYJp06bh7Nmz+Oabb7Bo0SJERkbCykq3P7v9+vVD69atMWbMGBw/fhwHDhzAggULqnyNv78/FAoFvvvuO/z111/Iq6ALtGXLlhg6dCgmTpyIgwcP4vjx43juuefQpEkTDB06VKfaAGDx4sWIiorCO++8g3PnzuHkyZPYsGEDVq1apfN7VEWhAHS8VEbDgERERLXamDFjcOfOHXTu3BkvvfQSpk2bhkmTJlV6fIcOHbBv3z6kpqaiR48e6NixI1577TV4eXmpj3n//fcxcuRITJkyBW3atMHEiRPV0wA0adIEu3fvxu+//47g4GBMnjwZ48ePx8KFC3Wu2crKCjt37kRBQQE6d+6MCRMmYOnSpVW+pkmTJnj99dcxb948eHh4YOrUqRUet2HDBoSEhOCxxx5DWFgYhBDYvXu3XnMUTZgwAevXr0d0dDTat2+PXr16ITo6GgEBATq/R1X8/YFOnYAyl7zGKURlHZJUpdzcXLi4uCAnJwfOzs6mLoeIyGju3r2LtLQ0BAQEwN7e3tTl6CU8PBwPPfQQ1qxZY+pSqAZV9Z3V9e83W5CIiIiItDAgEREREWnhXWxERFRrxcXFmboEslBsQSIiIiLSwoBEREQ64T09ZCkM8V1lQCIioiqpbv++ffu2iSsh0o3qu6rP1AXaOAaJiIiqZG1tDVdXV/VaXA4ODgZZ9oLI0IQQuH37NrKysuDq6lrpbOm6YEAiIqL78vT0BAB1SCIyZ66ururvbHUxIBER0X0pFAp4eXmhcePGKCoqMnU5RJWytbV9oJYjFQYkIiLSmbW1tUH++BCZOw7SJiIiItLCgERERESkhQGJiIiISAvHIFWTahKq3NxcE1dCREREulL93b7fZJIMSNV069YtAICvr6+JKyEiIiJ93bp1Cy4uLpXuVwjOHV8tJSUluHbtGpycnAw+YVpubi58fX1x5coVODs7G/S9axteK93xWumH10t3vFb64fXSnTGulRACt27dgre3N6ysKh9pxBakarKysoKPj49Rz+Hs7Mx/eXTEa6U7Xiv98HrpjtdKP7xeujP0taqq5UiFg7SJiIiItDAgEREREWlhQDJDSqUSixYtglKpNHUpZo/XSne8Vvrh9dIdr5V+eL10Z8prxUHaRERERFrYgkRERESkhQGJiIiISAsDEhEREZEWBiQiIiIiLQxIZmbdunUICAiAvb09QkJCcODAAVOXZHKLFy+GQqHQeHh6eqr3CyGwePFieHt7o169eggPD8fp06dNWHHN2r9/P4YMGQJvb28oFArs2rVLY78u16egoADTpk1Dw4YN4ejoiMcffxxXr16twU9RM+53rcaNG1fuu9alSxeNY+rKtYqKisLDDz8MJycnNG7cGMOGDUNKSorGMfxuSbpcK363Sr3//vvo0KGDevLHsLAw/PDDD+r95vK9YkAyI1u3bsXMmTOxYMECJCYmokePHoiIiEB6erqpSzO5du3aISMjQ/04efKket/y5cuxatUqrF27FkeOHIGnpyf69++vXi+vtsvPz0dwcDDWrl1b4X5drs/MmTOxc+dObNmyBQcPHkReXh4ee+wxFBcX19THqBH3u1YAMGjQII3v2u7duzX215VrtW/fPrz00ks4fPgwYmJicO/ePQwYMAD5+fnqY/jdknS5VgC/Wyo+Pj5YtmwZjh49iqNHj6JPnz4YOnSoOgSZzfdKkNno3LmzmDx5ssa2Nm3aiHnz5pmoIvOwaNEiERwcXOG+kpIS4enpKZYtW6bedvfuXeHi4iI++OCDGqrQfAAQO3fuVD/X5frcvHlT2Nraii1btqiP+eOPP4SVlZX48ccfa6z2mqZ9rYQQYuzYsWLo0KGVvqauXishhMjKyhIAxL59+4QQ/G5VRftaCcHv1v24ubmJ9evXm9X3ii1IZqKwsBAJCQkYMGCAxvYBAwYgPj7eRFWZj9TUVHh7eyMgIABPP/00Ll68CABIS0tDZmamxnVTKpXo1asXrxt0uz4JCQkoKirSOMbb2xtBQUF18hrGxcWhcePGaNWqFSZOnIisrCz1vrp8rXJycgAA7u7uAPjdqor2tVLhd6u84uJibNmyBfn5+QgLCzOr7xUDkpm4fv06iouL4eHhobHdw8MDmZmZJqrKPDzyyCPYtGkT9uzZg48//hiZmZno2rUrsrOz1deG161iulyfzMxM2NnZwc3NrdJj6oqIiAhs3rwZv/zyC1auXIkjR46gT58+KCgoAFB3r5UQApGRkejevTuCgoIA8LtVmYquFcDvlraTJ0+ifv36UCqVmDx5Mnbu3Im2bdua1ffKxmDvRAahUCg0ngshym2rayIiItS/t2/fHmFhYWjevDk2btyoHuTI61a16lyfungNR40apf49KCgIoaGh8Pf3x/fff48RI0ZU+rrafq2mTp2KEydO4ODBg+X28bulqbJrxe+WptatWyMpKQk3b97E9u3bMXbsWOzbt0+93xy+V2xBMhMNGzaEtbV1ufSblZVVLknXdY6Ojmjfvj1SU1PVd7PxulVMl+vj6emJwsJC3Lhxo9Jj6iovLy/4+/sjNTUVQN28VtOmTcO3336L2NhY+Pj4qLfzu1VeZdeqInX9u2VnZ4cWLVogNDQUUVFRCA4OxjvvvGNW3ysGJDNhZ2eHkJAQxMTEaGyPiYlB165dTVSVeSooKEBycjK8vLwQEBAAT09PjetWWFiIffv28boBOl2fkJAQ2NraahyTkZGBU6dO1flrmJ2djStXrsDLywtA3bpWQghMnToVO3bswC+//IKAgACN/fxulbrftapIXf5uVUQIgYKCAvP6XhlsuDc9sC1btghbW1vxySefiDNnzoiZM2cKR0dHcenSJVOXZlKzZ88WcXFx4uLFi+Lw4cPiscceE05OTurrsmzZMuHi4iJ27NghTp48KZ555hnh5eUlcnNzTVx5zbh165ZITEwUiYmJAoBYtWqVSExMFJcvXxZC6HZ9Jk+eLHx8fMRPP/0kjh07Jvr06SOCg4PFvXv3TPWxjKKqa3Xr1i0xe/ZsER8fL9LS0kRsbKwICwsTTZo0qZPX6t///rdwcXERcXFxIiMjQ/24ffu2+hh+t6T7XSt+tzTNnz9f7N+/X6SlpYkTJ06IV199VVhZWYm9e/cKIczne8WAZGbee+894e/vL+zs7ESnTp00bhOtq0aNGiW8vLyEra2t8Pb2FiNGjBCnT59W7y8pKRGLFi0Snp6eQqlUip49e4qTJ0+asOKaFRsbKwCUe4wdO1YIodv1uXPnjpg6dapwd3cX9erVE4899phIT083wacxrqqu1e3bt8WAAQNEo0aNhK2trfDz8xNjx44tdx3qyrWq6DoBEBs2bFAfw++WdL9rxe+WphdeeEH9d65Ro0aib9++6nAkhPl8rxRCCGG49igiIiIiy8cxSERERERaGJCIiIiItDAgEREREWlhQCIiIiLSwoBEREREpIUBiYiIiEgLAxIRERGRFgYkIiIiIi0MSERklsLDwzFz5kxTl6FBoVBg165dpi6DiGoAZ9ImIrP0999/w9bWFk5OTmjatClmzpxZY4Fp8eLF2LVrF5KSkjS2Z2Zmws3NDUqlskbqICLTsTF1AUREFXF3dzf4exYWFsLOzq7ar/f09DRgNURkztjFRkRmSdXFFh4ejsuXL2PWrFlQKBRQKBTqY+Lj49GzZ0/Uq1cPvr6+mD59OvLz89X7mzZtijfffBPjxo2Di4sLJk6cCAB45ZVX0KpVKzg4OKBZs2Z47bXXUFRUBACIjo7G66+/juPHj6vPFx0dDaB8F9vJkyfRp08f1KtXDw0aNMCkSZOQl5en3j9u3DgMGzYMb7/9Nry8vNCgQQO89NJL6nMBwLp169CyZUvY29vDw8MDI0eONMblJCI9MSARkVnbsWMHfHx8sGTJEmRkZCAjIwOADCcDBw7EiBEjcOLECWzduhUHDx7E1KlTNV6/YsUKBAUFISEhAa+99hoAwMnJCdHR0Thz5gzeeecdfPzxx1i9ejUAYNSoUZg9ezbatWunPt+oUaPK1XX79m0MGjQIbm5uOHLkCL7++mv89NNP5c4fGxuLCxcuIDY2Fhs3bkR0dLQ6cB09ehTTp0/HkiVLkJKSgh9//BE9e/Y09CUkouoQRERmqFevXmLGjBlCCCH8/f3F6tWrNfaPHj1aTJo0SWPbgQMHhJWVlbhz5476dcOGDbvvuZYvXy5CQkLUzxctWiSCg4PLHQdA7Ny5UwghxEcffSTc3NxEXl6eev/3338vrKysRGZmphBCiLFjxwp/f39x79499TFPPvmkGDVqlBBCiO3btwtnZ2eRm5t73xqJqGZxDBIRWaSEhAScP38emzdvVm8TQqCkpARpaWkIDAwEAISGhpZ77bZt27BmzRqcP38eeXl5uHfvHpydnfU6f3JyMoKDg+Ho6Kje1q1bN5SUlCAlJQUeHh4AgHbt2sHa2lp9jJeXF06ePAkA6N+/P/z9/dGsWTMMGjQIgwYNwvDhw+Hg4KBXLURkeOxiIyKLVFJSghdffBFJSUnqx/Hjx5GamormzZurjysbYADg8OHDePrppxEREYHvvvsOiYmJWLBgAQoLC/U6vxBCYzxUWWW329ralttXUlICQHb1HTt2DF9++SW8vLzwn//8B8HBwbh586ZetRCR4bEFiYjMnp2dHYqLizW2derUCadPn0aLFi30eq9Dhw7B398fCxYsUG+7fPnyfc+nrW3btti4cSPy8/PVIezQoUOwsrJCq1atdK7HxsYG/fr1Q79+/bBo0SK4urril19+wYgRI/T4VERkaGxBIiKz17RpU+zfvx9//PEHrl+/DkDeifbrr7/ipZdeQlJSElJTU/Htt99i2rRpVb5XixYtkJ6eji1btuDChQt49913sXPnznLnS0tLQ1JSEq5fv46CgoJy7/Pss8/C3t4eY8eOxalTpxAbG4tp06Zh9OjR6u61+/nuu+/w7rvvIikpCZcvX8amTZtQUlKC1q1b63hliMhYGJCIyOwtWbIEly5dQvPmzdGoUSMAQIcOHbBv3z6kpqaiR48e6NixI1577TV4eXlV+V5Dhw7FrFmzMHXqVDz00EOIj49X392m8sQTT2DQoEHo3bs3GjVqhC+//LLc+zg4OGDPnj34+++/8fDDD2PkyJHo27cv1q5dq/PncnV1xY4dO9CnTx8EBgbigw8+wJdffol27drp/B5EZBycSZuIiIhIC1uQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0vL/McaHbZY7GqoAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x, ch = IterativeSolvers.cg(A, b, maxiter=300, log=true)\n", + "x′, ch′ = IterativeSolvers.cg(A, b, Pl=ldlt(L), maxiter=300, log=true)\n", + "semilogy(ch[:resnorm], \"b-\")\n", + "semilogy(ch′[:resnorm], \"r-\")\n", + "xlabel(\"iterations\")\n", + "ylabel(\"residual norm\")\n", + "legend([\"no preconditioner\", \"preconditioner\"], loc=\"lower right\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "If you can find a good preconditioner, you can often speed things up by orders of magnitude. Unfortunately, finding preconditioners is hard and problem-dependent. There are some general \"recipes\" for things to try, but there are many problems (like the scalar-Helmholtz problem above) where good preconditioners are still an open research problem.\n", + "\n", + "What makes a good preconditioner matrix $P$ for a matrix $A$? For the \"ideal\" preconditioner $P = A^{-1}$, you would have $PA = I$, but of course this is impractical: if you could compute $A^{-1}$ quickly, you wouldn't need an iterative solver. So, what you want is for $PA$ to be \"like\" $I$ in some sense. The eigenvalues of $I$ are all 1, and it turns out that a good preconditioner makes $PA$ have eigenvalues that are mostly *clustered* together.\n", + "\n", + "Let's see how the eigenvalues of $A$ and $PA = L^{-1} A$ compare in this case." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG0CAYAAADXb+jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOQklEQVR4nO3de1xUdf4/8NcMwnBH0EQQRA0zCYUEL+AltA1zU1PbXdf1QhsqluQFUdfUcrXNpLxVaGqU1Vq2XejXd3VTKrxFGgrkBfMGhiO4KK3cVFDm8/tjYGIYLjPD3Of1fDx4OHPO4cx7DkO8+tyORAghQERERESQmrsAIiIiIkvBYERERERUj8GIiIiIqB6DEREREVE9BiMiIiKiegxGRERERPUYjIiIiIjqdTB3AdZGoVCguLgYHh4ekEgk5i6HiIiItCCEQGVlJfz9/SGVttwuxGCko+LiYgQGBpq7DCIiItLDlStXEBAQ0OJ+BiMdeXh4AFBeWE9PTzNXQ0RERNqoqKhAYGCg6u94SxiMdNTQfebp6clgREREZGXaGgbDwddERERE9RiMiIiIiOoxGBERERHV4xgjI1AoFKitrTV3GUQm5ejoCAcHB3OXQUTULgxGBlZbW4vCwkIoFApzl0Jkch07dkTXrl25xhcRWS0GIwMSQqCkpAQODg4IDAxsdQEpIlsihMCtW7dQWloKAPDz8zNzRURE+mEwMqB79+7h1q1b8Pf3h6urq7nLITIpFxcXAEBpaSm6dOnCbjUiskps0jCguro6AICTk5OZKyEyj4b/Ibh7966ZKyEi0g+DkRFwfAXZK372icjaMRgRERER1WMwIiIiIqrHYERERESWQS4HMjOV/5oJgxERERGZX1oaEBQEjBql/DctzSxlMBgRtSImJgYLFixo8bk232NOllQLEVGL5HJg9mygYXFkhQJISDBLyxHXMSLSwRdffAFHR0fV85iYGISHh2PTpk0tHmMtcnNzMWjQIAwZMgSHDx82dzlEZE8uXPgtFDWoqwMuXgQCAkxail22GE2cOBHe3t74wx/+YO5SWmQB3awmYW33lPPx8YGHh0e7j7FE8+bNQ3JyMn766ScIIcxdDhHZk969gaZ3i3BwAIKDTV6KXQajefPm4YMPPjB3GS0yRzdrjx491Fo9ACA8PByrVq0CoGwZmTdvHpYsWQIfHx907dpVta9BTEwMEhMTkZiYiI4dO6JTp05YsWKF2h/ZhmOSkpLQuXNnPPbYYwCUt5RISUlBr1694OLigrCwMHz22Weq71MoFFi3bh2Cg4Mhk8nQvXt3/OMf/1Dtr6mpwbx589ClSxc4Oztj2LBhyM7OVnvdtuqvrq7GjBkz4O7uDj8/P6xfv17jOjXumnr66adx8OBBbN68GRKJBBKJBJcvX9bovmqrNm3qa+v6aFt/Sz766CN4e3tj7ty5qKysREFBgdbfS0TUbgEBwPbtyjAEKP/dts3krUWAnQajkSNHWuz/0VtQN6uG999/H25ubjh27BhSUlKwevVqZGRkaBzToUMHHDt2DG+88QY2btyId955p9ljvv/+e2zbtg0AsGLFCrz33nvYunUrzpw5g4ULF2LatGk4ePAgAGDZsmVYt24dVq5cifz8fHz00Ufw9fVVnXPJkiX4/PPP8f777yMnJwfBwcEYPXo0fv31V63rX7x4MTIzM5Geno79+/fjwIEDOHHiRIvXY/PmzYiKisKsWbNQUlKCkpISBAYGahynTW1t1dfW9dGn/gbV1dV44YUXsG7dOgQEBMDLywt5eXltfh8RkUHFxwOXLyu7Sy5fVj43B2FlDh48KMaOHSv8/PwEAJGenq5xTGpqqujRo4eQyWRiwIAB4tChQxrHZGZmiqeeekrn1y8vLxcARHl5uca+27dvi/z8fHH79m2dz9vgu++EADS/MjP1PqVWgoKCxMaNG9W2hYWFiZdeekkIIcQjjzwihg0bprZ/4MCBYunSparnjzzyiOjbt69QKBSqbUuXLhV9+/ZVOyY8PFztPFVVVcLZ2VlkZWWpbY+PjxdTpkwRFRUVQiaTiR07djRbe1VVlXB0dBS7du1SbautrRX+/v4iJSVFq/orKyuFk5OT2L17t2p/WVmZcHFxEfPnz1erv7XnTbdpU1tb9bV1fXSpvznLli0TCQkJqudRUVFixYoVrX5PSwzxO0BEZAyt/f1uzOoGX1dXVyMsLAx//etf8dRTT2ns/+STT7BgwQJs2bIFQ4cOxbZt2zBmzBjk5+eje/fuZqhYNw3drI3HoJmpm1VD//791Z77+fmp7qbeYMiQIWq3hYiKisL69etRV1enuqloZGSk2vfk5+fjzp07qm61BrW1tXj44Ydx9uxZ1NTU4NFHH222rkuXLuHu3bsYOnSoapujoyMGDRqEs2fPalX/pUuXUFtbi6ioKNV+Hx8f9OnTp/mLoSVta2utvrauT3vqLygowPbt23H69GnVttDQULYYEZHdsrpgNGbMGIwZM6bF/Rs2bEB8fDxmzpwJANi0aRP27duHrVu3Yu3atTq/Xk1NDWpqalTPKyoqdC9aBw3drAkJygH5pupmlUqlGgNum94ItOlMK4lEAkXTWQRacHNzU3vecI49e/agW7duavtkMhlu3rzZ6vka6m56ny4hhNq21upv+t4NRdvaWquvrevT+HV0tXDhQpSVlSGg0QdMoVBovA4Rkb2wqTFGtbW1OHHiBGJjY9W2x8bGIisrS69zrl27Fl5eXqqv5saQGJo5ulnvu+8+lJSUqJ5XVFSgsLBQ5/McPXpU43nv3r1VrUXNCQkJgUwmQ1FREYKDg9W+AgMD0bt3b7i4uODbb79t9vuDg4Ph5OSEI0eOqLbdvXsXx48fR9++fbWqOzg4GI6Ojmr1/+9//8P58+db/T4nJyfU1dW1et721tbW9dG3/oyMDHz//ffIzc1FXl6e6istLQ1yuRxlZWVa1UdEZEusrsWoNTdu3EBdXZ3aoFwA8PX1xbVr11TPR48ejZycHFRXVyMgIADp6ekYOHBgs+dctmwZkpKSVM8rKipMEo4CAkw7GH/UqFHYuXMnxo0bB29vb6xcubLVMNOSK1euICkpCQkJCcjJycGbb77Z5uwoDw8PJCcnY+HChVAoFBg2bBgqKiqQlZUFd3d3xMXFYenSpViyZAmcnJwwdOhQXL9+HWfOnEF8fDzc3Nzw7LPPYvHixfDx8UH37t2RkpKCW7duIV7LVOnu7o74+HgsXrwYnTp1gq+vL5YvXw5p0+mjTfTo0QPHjh3D5cuX4e7uDh8fH7X9hqhNm+uja/337t3D/PnzsXjxYoSHh6vt8/T0BADk5eW12H1JRGSrbCoYNWir22Lfvn1an0smk6m6K2zZsmXLUFBQgLFjx8LLywtr1qzRq8VoxowZuH37NgYNGgQHBwc8//zzmD17dpvft2bNGnTp0gVr165FQUEBOnbsiAEDBuCFF14AAKxcuRIdOnTAiy++iOLiYvj5+WHOnDmq73/11VehUCgwffp0VFZWIjIyEvv27YO3t7fWtb/22muoqqrC+PHj4eHhgUWLFqG8vLzV70lOTkZcXBxCQkJw+/btZq+ZIWpr6/roWv+bb76JsrIyJCYmauwLDAyEq6srgxER2SWJMNbgChOQSCRIT0/HhAkTACi70lxdXfHpp59i4sSJquPmz5+PvLw8tanNukpNTUVqairq6upw/vx5lJeXq/7PusGdO3dQWFiInj17wtnZWe/XslbNrQJN9sXefweIyHJVVFTAy8ur2b/fjdnUGCMnJydERERorK2TkZGB6Ojodp177ty5yM/P11iYj4iIiGyH1XWlVVVV4eLFi6rnhYWFyMvLU43fSEpKwvTp0xEZGYmoqChs374dRUVFat0uRERERM2xumB0/PhxjBw5UvW8YWB0XFwcdu7cicmTJ6OsrAyrV69GSUkJQkNDsXfvXgQFBZmrZLtx4MABc5dARETULlYXjGJiYtpcs+W5557Dc889Z6KKiIiIyFbY1BgjY0pNTUVISEiL0/qJiIjI+jEYaYmDr4mIiGwfgxERERFRPQYjIiIionoMRlriGCMiIiLbx2CkJY4xIiIisn0MRkRERET1GIyIiIiI6jEYEdmpiRMnwtvbG3/4wx/MXQoRkcVgMCKyU/PmzcMHH3xg7jKIiCwKg5GWOCvN+sTExGDBggUaj7X9HnMyRR0jR46Eh4eHUV+DiMjaWN290sxl7ty5mDt3LioqKuDl5WXuckhHX3zxBRwdHVXPY2JiEB4ejk2bNrV6nKWLjo5GaGgotm/fbrTXyM3NxaBBgzBkyBAcPnzYaK9DRGQJGIxIL7W1tXBycjJ3GVrz8fEx6HGWQKFQ4OTJk5gxY0az+yMiIlBTU6Oxff/+/fD399f6debNm4fk5GSkpqZCCAGJRKJ3zURElo5daZZKLgcyM5X/mkBMTAwSExORmJiIjh07olOnTlixYgWEEGr7k5KS0LlzZzz22GMAACEEUlJS0KtXL7i4uCAsLAyfffaZ2rkVCgXWrVuH4OBgyGQydO/eHf/4xz8AADU1NZg3bx66dOkCZ2dnDBs2TGOtqJiYGMybNw9LliyBj48PunbtilWrVqkdU11djRkzZsDd3R1+fn5Yv369xjkauqaefvppHDx4EJs3b4ZEIoFEIsHly5c1jjNUbW1do7Zqb8nPP/+M6upqDBgwoNn9J06cwOnTpzW+dAlFH330Eby9vTF37lxUVlaioKBA6+8lIrJGDEaWKC0NCAoCRo1S/puWZpKXff/999GhQwccO3YMb7zxBjZu3Ih33nlHY//333+Pbdu2AQBWrFiB9957D1u3bsWZM2ewcOFCTJs2DQcPHlR937Jly7Bu3TqsXLkS+fn5+Oijj+Dr6wsAWLJkCT7//HO8//77yMnJQXBwMEaPHo1ff/1VozY3NzccO3YMKSkpWL16NTIyMlT7Fy9ejMzMTKSnp2P//v04cOAATpw40ez73Lx5M6KiojBr1iyUlJSgpKQEgYGBGscZqra2rpEutTeWk5ODDh06oH///m0eq4/q6mq88MILWLduHQICAuDl5YW8vDyjvBYRkcUQpJPy8nIBQJSXl2vsu337tsjPzxe3b9/W/wWuXBFCKhUC+O3LwUG53YgeeeQR0bdvX6FQKFTbli5dKvr27avaHx4ervY9VVVVwtnZWWRlZaltj4+PF1OmTBFCCFFRUSFkMpnYsWOHxmtWVVUJR0dHsWvXLtW22tpa4e/vL1JSUtRqGzZsmNr3Dhw4UCxdulQIIURlZaVwcnISu3fvVu0vKysTLi4uYv78+apzNDxu7nnT7Yaqra1rpE3tLVm4cKHo379/q8e0JjY2VnTu3Fm4uLiIbt26iR9//FFt/7Jly0RCQoLqeVRUlFixYkWr5zTI7wARkRG09ve7MY4x0lJqaipSU1NRV1dn3Be6cAFQKNS31dUBFy8CAQFGfekhQ4aojR+JiorC+vXrVe85MjJS7fj8/HzcuXNH1a3WoLa2Fg8//DAA4OzZs6ipqcGjjz6q8XqXLl3C3bt3MXToUNU2R0dHDBo0CGfPnlU7tmmriJ+fH0pLS1Xnqa2tRVRUlGq/j48P+vTpo/V7N1ZtbV2j9tSek5PTYjeaNvbt29fivoKCAmzfvh2nT59WbQsNDWWLERHZPAYjLZlsVlrv3oBUqh6OHByA4GDjvaaW3Nzc1J4r6mvcs2cPunXrprZPJpMBAFxcXFo8n6gfv9R0MK9oZoBv05liEolE9foN5zEkQ9XW1jUqKyvTu768vDyjLc64cOFClJWVIaBRGFcoFBrvgYjI1nCMkaUJCAC2b1eGIUD577ZtRm8tAoCjR49qPO/duzccGmppIiQkBDKZDEVFRQgODlb7ahiz07t3b7i4uODbb7/V+P7g4GA4OTnhyJEjqm13797F8ePH0bdvX63rDg4OhqOjo1r9//vf/3D+/PkWv8fJyanV1j9D1dbWNdKndkDZolVeXt6uFqOWZGRk4Pvvv0dubi7y8vJUX2lpaZDL5XqHOSIia8AWI0sUHw+MHq3sPgsONkkoAoArV64gKSkJCQkJyMnJwZtvvtnqDCkPDw8kJydj4cKFUCgUGDZsGCoqKpCVlQV3d3fExcXB2dkZS5cuxZIlS+Dk5IShQ4fi+vXrOHPmDOLj4/Hss89i8eLF8PHxQffu3ZGSkoJbt24hPj5e67rd3d0RHx+PxYsXo1OnTvD19cXy5cshlbac+3v06IFjx47h8uXLcHd3h4+Pj9rxbm5uBqlNm2uka+2AshsNABwcHNS6uxwdHdvVhXjv3j3Mnz8fixcvRnh4uNo+T09PAEBeXl6zXaNERLaAwchSBQSYLBA1mDFjBm7fvo1BgwbBwcEBzz//PGbPnt3q96xZswZdunTB2rVrUVBQgI4dO2LAgAF44YUXVMesXLkSHTp0wIsvvoji4mL4+flhzpw5AIBXX30VCoUC06dPR2VlJSIjI7Fv3z54e3vrVPtrr72GqqoqjB8/Hh4eHli0aBHKy8tbPD45ORlxcXEICQnB7du3UVhYiB49eqgdY6ja2rpGutYOKBddBJTjwhobMmQIfvjhB53qa+zNN99EWVkZEhMTNfYFBgbC1dWVwYiIbJpEGGOAhg1rGGNUXl6u+j/oBnfu3EFhYSF69uwJZ2dnM1Won5ZWgibShTX/DhCRecjlynlH7u5AYaFyW3S04dsGWvv73RhbjIiIiGxIc0GjZ0/zPa6qarmWkyeBtWs1J2NLJMCOHcqRJabGYERERGRmcjmQlaV83J4g0lLQsDZCAAkJyuG2Jh5VwmCkLZOtY2QmBw4cMHcJRERWTd9w8913ysnIHNiizkRL+GlgMNKSydYxIiIii6BL0GG4MTxzLeHHYERERHZD2/E3DDrmJZWabAk/DQxGRERk1bQJO1VVwLff2sb4G1sklQJ/+xvQsHxaVJR5QhHAYERERBasrdBjK4ONDa1p0OjRA7h82TyPq6sBN7fW95twLeM2cR0jHdnqOkZEhsDfAdJHS2N57Cn0SCTA7NnAo48aJohYUtCwFFzHyIyYNcle8bNPTbU1gNmWxvK0J9w07ToaOFD/x9Q+DEYG1HCz1dra2lbvKk9kq27dugVAec82si/NBSBrDz26Bp32hhuyDAxGBtShQwe4urri+vXrcHR0bPNGoES2QgiBW7duobS0FB07dlT9TwLZjtbG+lhbANJ2/I0+QYfaoeFD1ru3WfsBOcZIR231UdbW1qKwsBAKe+gUJ2qiY8eO6Nq1KyQSiblLIT01F4CsYaxPW2GnYQAwx99YqLQ0ZfOcQqH8YW7fbvD7gWg7xojBSEfaXFiFQoHa2loTV0ZkXo6OjmwpsiLWFIC0CT0MO1ZMLgeCgtQ/eA4Oyh+yAX+oHHxtYLrcEkQqlXJGDhFZBGsIQK2N5Wkp9LD7yoZcuKD5YTTX/UDAFiOdaZs4iYhMyVIDkDYDmM25mB9ZALYYERGRvqwtAGk7gJnsWECAckxRQoKypcjBwXz3AwFbjHTGFiMiMqXG0+DNHYBaG+vDVh9qN7lc2X1mpAFjbDEiIrIilrQOUHMBiGN9yOgCAiwiXTMYERGZWNPuMGsIQET2gsGIiMiImgtBO3aYtjuMAYhIewxGREQGZM4xQQxARO3HYEREpCdzdYkxABEZD4MREZGWzNEa1HQaPAMQkXExGBERNcPUrUHargNERMbFYEREVK8hDH37rXFbgyQSYNEi4E9/0m4hRCKb1vCL17u3RfxfAIMREdktU3WNNR0T1DgEMQCRXUtLUzaVKhTKX5Tt24H4eLOWxJWvdcSVr4msk6m6xjgmiEhLJrpHWgOufG1gqampSE1NRV1dnblLISItmaJrrLXWICJqxYULmr+UdXXK24KY8ZeILUY6YosRkeUydtcYW4OIDIgtRkREhtcQhozRNcbWICIjCghQ/tImJChbihwcgG3bzP5LxmBERFbHFGHoscfYGkRkdPHxwOjRyu4zC/mFYzAiIqtgjDDErjEiCxAQYFG/dAxGRGRxjDWDjF1jRNQWBiMisgjGmkHGrjEi0gWDERGZjaHDELvGiKyMha16DTAYEZGJGTMMsWuMyIpY4KrXANcx0hnXMSLSHcMQEakx8RpGANcxIiIzYxgiohZZ6KrXAIMRERmQIcMQZ5AR2bDevZW/5E1bjIKDzVdTPQYjImoXY4QhziAjsgNJScDGjRa16jXAYEREemAYIiK9NR50LZEAycnA/PkW88vPwdc64uBrsnevvw4sXcowRER6MMOg6wYcfE1EBtNwO46vvgJ27dLvHAxDRGTJg64bMBgRUbMMcW8yhiEiUnP8uOY2Cxl03YDBiIhUGIaIyCjkcuD//k/ZD9/Uq69a1H8oGIyICHI5sHkzsH49wxARGVhaGjBrVsv/cYmMNG09bWAwIrJTjWeWvfKK7oGIYYiIWtTwH5jq6tZDkYV1owF2Goz+/e9/Y9GiRVAoFFi6dClmzpxp7pKITKJxV9mOHfrNLJNIgEWLLGp2LRGZW8N/XADg5Ent1vGQSi1m7aLG7C4Y3bt3D0lJScjMzISnpycGDBiASZMmwcfHx9ylERlNe7vKeDsOIjvU0Orj7g4UFiq39eyp+VifQYlSKXD0KDBwoOHrbie7C0Y//vgjHnroIXTr1g0A8Pvf/x779u3DlClTzFuYth9AW39cVcVrYKDHZccLUVICHJL3xIH3lNsj0BM9UAgJgEL0hDuqUAV3tW2NH896tBD9+gG9Hu0J31uFgABQ0hPIMv/7s/rH/KzzelvyY21bffQhlSqDlAWGIsAKg9GhQ4fw2muv4cSJEygpKUF6ejomTJigdsyWLVvw2muvoaSkBA899BA2bdqE4cOHAwCKi4tVoQgAAgICcPXqVVO+BU2NVwElMgABoFP910MAnmu0XdLkcXPbVI+/BfAtgE1GL5mIbJ1EAmzZAowda9HNzlJzF6Cr6upqhIWF4a233mp2/yeffIIFCxZg+fLlyM3NxfDhwzFmzBgUFRUBAJpb6FsikWhsa1BTU4OKigq1L4OSyxmKyOAkOjzW5lgionZxcFAObJwzx6JDEWCFwWjMmDF4+eWXMWnSpGb3b9iwAfHx8Zg5cyb69u2LTZs2ITAwEFu3bgUAdOvWTa2FSC6Xw8/Pr8XXW7t2Lby8vFRfgYGBhn1Dza0CSkREZO2kUuCFF4DMTOUtP+LjzV2RVqwuGLWmtrYWJ06cQGxsrNr22NhYZNWPlh80aBBOnz6Nq1evorKyEnv37sXo0aNbPOeyZctQXl6u+rpy5Yphi+7dW/nhISIislYSCZCQAPzrX8CPPyrD0C+/AP/4BxATY/GtRI1Z3Rij1ty4cQN1dXXw9fVV2+7r64tr164BADp06ID169dj5MiRUCgUWLJkCTp16tTiOWUyGWQymfGKDghQDkJLSFDeL4aoDa2OCdLhMRFRmxoWLAsPVz7v0UPZ+tP0sQ1NV7WpYNSg6ZghIYTatvHjx2P8+PGmLqtl8fHA6NHKm+i5uTX/obOXx9XVvAYtPC47cRmffw7s+KYHekC5/TJafywBEPN0DzwSdBlduwKdInrwelvKY157Xm9Lf1xd3fzqrY1nk1nozLL2kIjmRiNbCYlEojYrrba2Fq6urvj0008xceJE1XHz589HXl4eDh48qPdrpaamIjU1FXV1dTh//jzKy8vh6enZ3rdA1Cp9V6fmIoxEROoqKirg5eXV5t9vmxrc4uTkhIiICGRkZKhtz8jIQHR0dLvOPXfuXOTn5yM7O7td5yHS1uuvA0FBwKhRym56bULRtGnKLv6iIuC11xiKiIh0ZXVdaVVVVbh48aLqeWFhIfLy8uDj44Pu3bsjKSkJ06dPR2RkJKKiorB9+3YUFRVhzpw5ZqyaSHtyOfDyy8qV8rUllSpvUL14sfHqIiKyB1YXjI4fP46RI0eqniclJQEA4uLisHPnTkyePBllZWVYvXo1SkpKEBoair179yIoKMhcJRO1SZ8uM97ElYjI8Kx6jJEpcYwRGcvrrwNLl+q2nNWcOcDy5QxDRETa0naMEYORjrS9sERtYZcZEZHpaPv32+q60ohsweuvA0uWsMuMiMjSMBgRmYhcDmRlAV99Bezapd33sMuMiMi0GIyIjEwuBzZvBtav134dInaZERGZB4ORlhoPvibSFrvMiIisCwdf64iDr0kbug6sZpcZEZFxcfA1kZno2krELjMiIsvBYERkILq0EvFeZkRElonBiKgddF2xeto0YPx4ICqKgYiIyBIxGBHpSZcVq9llRkRkHaTmLsBapKamIiQkBAMHDjR3KWRmcrlysPTixdqFojlzgF9+YSgiIrIGnJWmI85Ks28cWE1EZJ20/fvNFiMiLTRuJdImFLGViIjIOnGMEVEb2EpERGQ/GIyIWqDt9HuuWE1EZDsYjIiaoW0rEVesJiKyLRxjpCXOSrMP2o4lkkqBlBRg61aGIiIiW8JZaTrirDTbxVYiIiLbxXulEWlJl7FEHFhNRGTbGIzIrqWlAbNmsZWIiIiUGIzIbsnlwOzZbY8lYisREZH9MNjg6/fee89QpyIyOrlceXf71m7pwUUaiYjsj8GC0RdffIHMzEzV89u3b2Pq1KmGOj2Rwbz+OtC9O/CvfzW/nzPOiIjsl8GC0T//+U8sX74cP//8My5cuIDhw4cjJibGUKcnajdtpuL/6U9sJSIismftnq6flJSE8PBwhIeHw8nJCX/5y18ghMC7776Lhx9+2FB1ml1qaipSU1NRV1eH8+fPc7q+ldFmKr5UqgxFbCUiIrI92k7Xb3cw+n//7//h5MmTOHnyJH7++WcUFxdjyJAhGDFiBEJDQ/HEE0+05/QWh+sYWRdtp+I7OCiPiY83TV1ERGRaJgtGTd2+fRunT5/GyZMncfr0aWzcuNGQpzc7BiPrwQUbiYiogdkWeHRxccHAgQN56wwyq9deU4ai1nAqPhERNWWQYHTv3j2cO3cOp0+fVn2lp6cb4tREOsvOBpYubf0YthIREVFzdA5GBQUFOHXqlFoIOn/+PO7duwcnJyf07dsX/fr1M0atRG1qq/uMrURERNQanYLRtGnT8PHHH0MikcDV1RXV1dV44okn8OKLL6Jfv37o3bs3HBwcjFUrUYu0GWTNViIiImqLTusYffbZZ3jzzTdRVVWF4uJiJCYmYv/+/cjOzkZQUBBDEZlFWppywcaWQpFEwgUbiYhIOzoFo8WLF2PGjBlwdnaGu7s7Nm/ejO+//x6ZmZkICQnB119/baw6iZrV1v3OJBLg2DF2nRERkXZ0CkZr1qyBu7u72raIiAj8+OOPWLBgASZPnoy//OUvuH79ukGLJGqONvc7S0kBOEGSiIi0ZZBbgkgkEsyfPx/5+fmoqanBgw8+aIjTWpTU1FSEhIRwGQILoe39zpKTTVsXERFZN4Mv8AgAe/bssbkVrxtwgUfza2uNoj/9CVi/nuOJiIjoN2Zb+drWMRiZV3Y2MHhw69Pxeb8zIiJqStu/3wbpSiMyhddfbz0UOTgA27czFBERkf4YjMjiyeXKNYgWL245FM2ZA1y+zJvAEhFR+xj8XmlEhpSWBsya1fp0/HXrOB2fiIgMQ+9gdPv2bQgh4OrqCgD45ZdfkJ6ejpCQEMTGxhqsQLJf2q5RxImCRERkKHp3pT355JP44IMPAAA3b97E4MGDsX79ejz55JPYunWrwQok+8Q1ioiIyBz0DkY5OTkYPnw4AOWtQnx9ffHLL7/ggw8+wBtvvGGwAsn+NNzig2sUERGRqendlXbr1i14eHgAAPbv349JkyZBKpViyJAh+OWXXwxWINmXtrrPuEYREREZk94tRsHBwfjyyy9x5coV7Nu3TzWuqLS0lOv7kN42b265+0wqZSgiIiLj0jsYvfjii0hOTkaPHj0wePBgREVFAVC2Hj388MMGK5DsR3a2Mvg0h2sUERGRKbRr5etr166hpKQEYWFhkEqVGevHH3+Ep6enTd4vDeDK18Yglytbitavb74Ljd1nRETUXrwliJEwGBlWW+sU8RYfRERkCCa5Jcjhw4cxbdo0REVF4erVqwCADz/8EEeOHGnPaclOtDXQWipl9xkREZmW3sHo888/x+jRo+Hi4oLc3FzU1NQAACorK/HKK68YrEBLkZqaipCQEAzkwjkG0dY6RVIpcPQob/FBRESmpXdX2sMPP4yFCxdixowZ8PDwwE8//YRevXohLy8Pjz/+OK5du2boWi0Cu9Lar63uMwcHYNs2hiIiIjIco3elnTt3DiNGjNDY7unpiZs3b+p7WrJx2qxTxJvBEhGRuegdjPz8/HDx4kWN7UeOHEGvXr3aVRTZLq5TRERElkzvYJSQkID58+fj2LFjkEgkKC4uxq5du5CcnIznnnvOkDWSjeA6RUREZOn0viXIkiVLUF5ejpEjR+LOnTsYMWIEZDIZkpOTkZiYaMgayQa0Nq6I6xQREZGlaPc6Rrdu3UJ+fj4UCgVCQkLg7u5uqNosEgdf604uB4KCmu9C4zpFRERkCtr+/da7xWj16tUa277++mvV4xdffFHfU5ONaWlcEdcpIiIiS9Ou6fqN3b17F4WFhejQoQPuv/9+5OTkGKRAS8MWI91kZwODB2t2oTWsU8RloYiIyBSM3mKUm5vb7Is+/fTTmDhxor6nJRvS2riipCSGIiIisjwGv1fa6dOnMXbsWFy+fNmQp7UYbDHSDscVERGRJTHJvdKac/PmTZSXlxv6tGRlOK6IiIiskd5daW+88YbacyEESkpK8OGHH+Lxxx9vd2FkvVpar4jjioiIyNLpHYw2btyo9lwqleK+++5DXFwcli1b1u7CyDpxXBEREVkzvYNRYWGhIesgG9DafdCkUmD+fNPXREREpAuDjzEi+8VxRUREZO10ajFKSkrS+tgNGzboXAxZL44rIiIiW6BTMGpu7aLmSCQSvYoh68RxRUREZCsMvo6RreM6Ruq4XhEREVkDs61jZA0mTpwIb29v/OEPfzB3KVaP44qIiMiW6D0rrUF+fj6KiopQW1urtn38+PHtPbXRzJs3D8888wzef/99c5di1TiuiIiIbI3ewaigoAATJ07EqVOnIJFI0NAj1zC+qK6uzjAVGsHIkSNx4MABc5dh1TiuiIiIbJHeXWnz589Hz5498d///heurq44c+YMDh06hMjIyHaFjkOHDmHcuHHw9/eHRCLBl19+qXHMli1b0LNnTzg7OyMiIgKHDx/W+/VId1yviIiIbJXeLUY//PADvvvuO9x3332QSqWQSqUYNmwY1q5di3nz5mk9g62p6upqhIWF4a9//Sueeuopjf2ffPIJFixYgC1btmDo0KHYtm0bxowZg/z8fHTv3h0AEBERgZqaGo3v3b9/P/z9/fWqi37DcUVERGSr9A5GdXV1cHd3BwB07twZxcXF6NOnD4KCgnDu3Dm9CxozZgzGjBnT4v4NGzYgPj4eM2fOBABs2rQJ+/btw9atW7F27VoAwIkTJ/R+/aZqamrUQlZFRYXBzm2N5HKOKyIiItuld1daaGgoTp48CQAYPHgwUlJS8P3332P16tXo1auXwQpsrLa2FidOnEBsbKza9tjYWGRlZRnlNdeuXQsvLy/VV2BgoFFex1pkZXFcERER2S69g9GKFSugqO9Pefnll/HLL79g+PDh2Lt3L9544w2DFdjYjRs3UFdXB19fX7Xtvr6+uHbtmtbnGT16NP74xz9i7969CAgIQHZ2dovHLlu2DOXl5aqvK1eu6F2/tUtLA/78Z83tHFdERES2Qu+utNGjR6se9+rVC/n5+fj111/h7e1t9JWvm55fCKHTa+7bt0/rY2UyGWQymdbH26qWBlw7OADbtnFcERER2Qa9W4z++te/4ttvv0XjhbN9fHyMGoo6d+4MBwcHjdah0tJSjVYkMqyWBlx//DEQH2/6eoiIiIxB72BUVlaGJ554AgEBAVi0aJHes9B04eTkhIiICGRkZKhtz8jIQHR0tFFfOzU1FSEhIRhohwNpWhpw7eAAREWZvh4iIiJj0TsYffXVV7h27RpeeuklnDhxApGRkQgJCcErr7yCy5cv611QVVUV8vLykJeXBwAoLCxEXl4eioqKAABJSUl455138O677+Ls2bNYuHAhioqKMGfOHL1fUxtz585Ffn5+q+ORbFVLA64XLmQXGhER2RaD3URWLpfj448/xrvvvosLFy7g3r17ep3nwIEDGDlypMb2uLg47Ny5E4BygceUlBSUlJQgNDQUGzduxIgRI9pTvtbs7SayLa1wzRvEEhGRNdH277dBgtHdu3exZ88e/POf/8SePXvg4+ODq1evtve0FsmegpFcDgQFaY4tahhwzbFFRERkLbT9+613VxoAZGZmYtasWfD19UVcXBw8PDzwf//3fzY5pd0exxhduMAB10REZF/0bjEKCAhAWVkZRo8ejalTp2LcuHFwdnY2dH0Wx55ajF57DViyRH2bgwNw+TK70IiIyLpo+/db73WMXnzxRfzxj3+Et7e3vqcgC5adDfztb5rbX32VoYiIiGyX3l1ps2fPZiiyUWlpwODBzXejRUaavh4iIiJT0bvFCAC+/fZbfPvttygtLVXdHqTBu+++267CyDxaWuEaUHajBQebviYiIiJT0TsY/f3vf8fq1asRGRkJPz8/o98GxNxSU1ORmpqKuro6c5diVC0NuJZKeesPIiKyfXoPvvbz80NKSgqmT59u6Josmq0Pvm5uwLVUChw9CtjRhDwiIrIxRp+uX1tba/TbcJBpyeXND7het46hiIiI7IPewWjmzJn46KOPDFkLmVlWFgdcExGRfdN7jNGdO3ewfft2fPPNN+jfvz8cHR3V9m/YsKHdxZHpNNz6oykOuCYiInuidzA6efIkwsPDAQCnT59W22eLA7FtefB1SzPRGm79wQHXRERkLwx2E1l7YYuDrzMzgVGjNLf/61/AH/9o+nqIiIgMzST3Sjt8+DCmTZuG6Oho1U1jP/zwQxw5cqQ9pyUTO35cc5uDAxAVZfpaiIiIzEnvYPT5559j9OjRcHFxQU5ODmpqagAAlZWVeOWVVwxWIBlXSzPReOsPIiKyR3oHo5dffhlvv/02duzYoTbwOjo6Gjk5OQYpjoyvpQUdORONiIjskd7B6Ny5cxgxYoTGdk9PT9y8ebM9NZEJubsrF3BsjDPRiIjIXukdjPz8/HDx4kWN7UeOHEGvXr3aVRSZRloaMGSIeosRZ6IREZE90zsYJSQkYP78+Th27BgkEgmKi4uxa9cuJCcn47nnnjNkjRYhNTUVISEhGGgjS0A3TNFvHIqkUuCHH4D4ePPVRUREZE56r2O0ZMkSlJeXY+TIkbhz5w5GjBgBmUyG5ORkJCYmGrJGizB37lzMnTtXNd3P2jU3tkihAKqrzVMPERGRJdA7GAHAP/7xDyxfvhz5+flQKBQICQmBu7u7oWojI2ppij7HFhERkT1rVzACAFdXV0RyCpNV4RR9IiKi5ukdjJKSkprdLpFI4OzsjODgYDz55JPw8fHRuzgyDk7RJyIiap7ewSg3Nxc5OTmoq6tDnz59IITAhQsX4ODggAcffBBbtmzBokWLcOTIEYSEhBiyZmqnhin6TWejsRuNiIjsnd6z0p588kn87ne/Q3FxMU6cOIGcnBxcvXoVjz32GKZMmYKrV69ixIgRWLhwoSHrpXbiFH0iIqKW6X0T2W7duiEjI0OjNejMmTOIjY3F1atXkZOTg9jYWNy4ccMgxVoCa76JrFwOBAVpTtE/ehSwkVUIiIiImmX0m8iWl5ejtLRUY/v169dRUVEBAOjYsSNqa2v1fQmLYgvrGHGKPhERUeva1ZX2zDPPID09HXK5HFevXkV6ejri4+MxYcIEAMCPP/6IBx54wFC1mtXcuXORn5+P7Oxsc5eiN07RJyIiap3eXWlVVVVYuHAhPvjgA9y7dw8A0KFDB8TFxWHjxo1wc3NDXl4eACA8PNxQ9ZqdtXalNdeNBgCvvQYkJ5unJiIiIlPR9u+33sGoQVVVFQoKCiCEwP3332/zCzxaazDKzARGjWp+e0yMycshIiIyKW3/frd7gUd3d3f079+/vachI+MUfSIiorbpFIySkpKwZs0auLm5tbjAY4MNGza0qzAynLQ0zRvGcoo+ERGRJp2CUW5uLu7evat63BKJRNK+qshg5HLNUCSVAj/8wCn6RERETekUjDIzM5t9TJaLU/SJiIi0p/d0fQA4fPgwpk2bhujoaFy9ehUA8OGHH+LIkSMGKY7ar3dvZQtRYxxbRERE1Dy9g9Hnn3+O0aNHw8XFBTk5OaipqQEAVFZW4pVXXjFYgdQ++/YBjecdSqUcW0RERNQSvYPRyy+/jLfffhs7duyAo6Ojant0dDRycnIMUpwlscaVrxvGFzVdkGH0aPPUQ0REZOn0Dkbnzp3DiBEjNLZ7enri5s2b7anJIlnjytctjS+6eNE89RAREVk6vYORn58fLjbzF/bIkSPo1atXu4oiw+D4IiIiIt3oHYwSEhIwf/58HDt2DBKJBMXFxdi1axeSk5Px3HPPGbJGaoekJGUYArh2ERERUVv0Xvl6yZIlKC8vx8iRI3Hnzh2MGDECMpkMycnJSExMNGSNpIfGizpKJMr7oc2fz1BERETUmnbfK+3WrVvIz8+HQqFASEgI75VmAZq7YayDA3D5MoMRERHZJ5PdK83V1RWRkZHtPQ0ZUHODruvqlIOuGYyIiIha1q4FHskycdA1ERGRfhiMbFBAALBu3W/hiIOuiYiItMNgZIPS0oClS38beL12LRAfb+6qiIiILB+DkY1pWO26YYyREMCyZcrtRERE1DoGIxvT2sBrIiIiah2DkY3hwGsiIiL9MRjZIK52TUREpJ92r2NEloOrXRMREbUPW4y0lJqaipCQEAwcONDcpTSruUHXGzeatyYiIiJrw2Ckpblz5yI/Px/Z2dnmLqVZHHRNRETUfgxGNoKDromIiNqPwchGcLVrIiKi9mMwshFc7ZqIiKj9GIxsAFe7JiIiMgwGIxvAgddERESGwWBkAzjwmoiIyDAYjGxAQACwfTtXuyYiImovrnxtA+RyoFcv4IcfgOpqZUsRQxEREZHu2GJk5dLSgKAgYNQoYMgQ4NIlhiIiIiJ9MRhZsaaz0RQKICGBs9GIiIj0xWBkxTgbjYiIyLAYjKwYZ6MREREZFoORFeNsNCIiIsPirDQrFx8PjB6t7D7jbDQiIqL2YYuRlZPLlWONGIqIiIjaj8HIijWeqh8UpHxORERE+mMwslKcqk9ERGR4dheMrly5gpiYGISEhKB///749NNPzV2SXjhVn4iIyPDsbvB1hw4dsGnTJoSHh6O0tBQDBgzA73//e7i5uZm7NJ00TNVvHI44VZ+IiKh97K7FyM/PD+Hh4QCALl26wMfHB7/++qt5i9IDp+oTEREZnsUFo0OHDmHcuHHw9/eHRCLBl19+qXHMli1b0LNnTzg7OyMiIgKHDx/W67WOHz8OhUKBwMDAdlZteo1vHJuZCVy+rJy6T0RERPqzuGBUXV2NsLAwvPXWW83u/+STT7BgwQIsX74cubm5GD58OMaMGYOioiLVMREREQgNDdX4Ki4uVh1TVlaGGTNmYPv27a3WU1NTg4qKCrUvc+ONY4mIiIxDIoQQ5i6iJRKJBOnp6ZgwYYJq2+DBgzFgwABs3bpVta1v376YMGEC1q5dq9V5a2pq8Nhjj2HWrFmYPn16q8euWrUKf//73zW2l5eXw9PTU7s3YkByuTIUNR1bdPkywxEREVFLKioq4OXl1ebfb4trMWpNbW0tTpw4gdjYWLXtsbGxyMrK0uocQgg8/fTTGDVqVJuhCACWLVuG8vJy1deVK1f0qt1QOBuNiIjIeKxqVtqNGzdQV1cHX19fte2+vr64du2aVuf4/vvv8cknn6B///6q8Usffvgh+vXr1+zxMpkMMpmsXXUbEmejERERGY9VBaMGEolE7bkQQmNbS4YNGwZF0yYXK9IwGy0hQdlSxNloREREhmNVwahz585wcHDQaB0qLS3VaEUytNTUVKSmpqKurs6or6MN3jiWiIjIOKxqjJGTkxMiIiKQkZGhtj0jIwPR0dFGfe25c+ciPz8f2dnZRn0dbQUEADExDEVERESGZHEtRlVVVbjYaCRxYWEh8vLy4OPjg+7duyMpKQnTp09HZGQkoqKisH37dhQVFWHOnDlmrJqIiIhsgcUFo+PHj2PkyJGq50lJSQCAuLg47Ny5E5MnT0ZZWRlWr16NkpIShIaGYu/evQgKCjJXySYnlytnp/XuzRYjIiIiQ7LodYwsSeMxRufPnzfbOkZpacDs2cpZaVKpciA2V7wmIiJqnbbrGDEY6UjbC2sMXNyRiIhIPza5wKO94+KORERExsVgZEUaFndsjIs7EhERGQ6DkRVpWNzRwUH5nIs7EhERGZbFzUqzVJawwKNcDvTqBfzwA1BdzcUdiYiIDI2Dr3VkrsHXnI1GRESkPw6+tiFy+W+hCFD+m5Cg3E5ERESGw2BkBTgbjYiIyDQYjKwAZ6MRERGZBoORFeBsNCIiItPgrDQtmXtWWnw8MHq0svuMs9GIiIiMg7PSdGTOW4IQERGRfjgrjYiIiEhHDEZERERE9RiMiIiIiOoxGFkJuRzIzOSijkRERMbEYKSl1NRUhISEYODAgSZ/7bQ0ICgIGDVK+W9amslLICIisguclaYjU89Kk8uVYajxytcODsDly5yyT0REpC3OSrMRvB0IERGR6TAYWTjeDoSIiMh0GIwsHG8HQkREZDq8JYgV4O1AiIiITIPByEoEBDAQERERGRu70iwc1y8iIiIyHQYjLZljHSOuX0RERGRaXMdIR6Zax4jrFxERERkO1zGycly/iIiIyPQYjCwU1y8iIiIyPQYjC8X1i4iIiEyP0/UtGNcvIiIiMi0GIwvH9YuIiIhMh11pRERERPUYjIiIiIjqMRgRERER1WMwIiIiIqrHYKQlc9wShIiIiEyLtwTRkaluCUJERESGw1uC2AC5HMjMVP5LRERExsdgZKHS0pQ3kR01SvlvWpq5KyIiIrJ9DEYWSC4HZs/+7SayCgWQkMCWIyIiImNjMLJAFy78Fooa1NUpbw1CRERExsNgZIF69wakTX4yDg7K+6URERGR8TAYWaCAAGD7dmUYApT/btvGe6YREREZG28ia6Hi44HRo5XdZ8HBDEVERESmwGBkwQICGIiIiIhMiV1pRERERPUYjIiIiIjqMRhZIK54TUREZB4MRhaGK14TERGZD4ORllJTUxESEoKBAwca7TW44jUREZF5MRhpae7cucjPz0d2drbRXoMrXhMREZkXg5EF4YrXRERE5sVgZEG44jUREZF5cYFHC8MVr4mIiMyHwcgCccVrIiIi82BXGhEREVE9BiMiIiKiegxGRERERPUYjIiIiIjqMRgRERER1WMwIiIiIqrHYGRh5HIgM5P3RyMiIjIHBiMLkpYGBAUBo0Yp/01LM3dFRERE9oXByELI5cDs2b/dRFahABIS2HJERERkSgxGFuLChd9CUYO6OuWtQYiIiMg0GIwsRO/egLTJT8PBQXm/NCIiIjINBiMLERAAbN+uDEOA8t9t23jPNCIiIlPiTWQtSHw8MHq0svssOJihiIiIyNQYjCxMQAADERERkbnYXVdaZWUlBg4ciPDwcPTr1w87duwwd0lERERkIeyuxcjV1RUHDx6Eq6srbt26hdDQUEyaNAmdOnUya11yuXJmWu/ebDEiIiIyF7trMXJwcICrqysA4M6dO6irq4MQwqw1cWFHIiIiy2BxwejQoUMYN24c/P39IZFI8OWXX2ocs2XLFvTs2RPOzs6IiIjA4cOHdXqNmzdvIiwsDAEBAViyZAk6d+5soOp1x4UdiYiILIfFBaPq6mqEhYXhrbfeanb/J598ggULFmD58uXIzc3F8OHDMWbMGBQVFamOiYiIQGhoqMZXcXExAKBjx4746aefUFhYiI8++gj//e9/W6ynpqYGFRUVal+GxIUdiYiILIdEmLsfqRUSiQTp6emYMGGCatvgwYMxYMAAbN26VbWtb9++mDBhAtauXavzazz77LMYNWoU/vjHPza7f9WqVfj73/+usb28vByenp46v15Tcrmy+6xxOHJwAC5f5lgjIiIiQ6moqICXl1ebf78trsWoNbW1tThx4gRiY2PVtsfGxiIrK0urc/z3v/9VtfpUVFTg0KFD6NOnT4vHL1u2DOXl5aqvK1eu6P8GmsGFHYmIiCyHVc1Ku3HjBurq6uDr66u23dfXF9euXdPqHHK5HPHx8RBCQAiBxMRE9O/fv8XjZTIZZDJZu+puCxd2JCIisgxWFYwaSCQStedCCI1tLYmIiEBeXp4RqmofLuxIRERkflbVlda5c2c4ODhotA6VlpZqtCIZWmpqKkJCQjBw4ECjvg4RERGZj1UFIycnJ0RERCAjI0Nte0ZGBqKjo4362nPnzkV+fj6ys7ON+jpERERkPhbXlVZVVYWLjeaqFxYWIi8vDz4+PujevTuSkpIwffp0REZGIioqCtu3b0dRURHmzJljxqqJiIjIFlhcMDp+/DhGjhypep6UlAQAiIuLw86dOzF58mSUlZVh9erVKCkpQWhoKPbu3YugoCBzlUxEREQ2wqLXMbIkqampSE1NRV1dHc6fP2+wdYyIiIjI+LRdx4jBSEfaXlgiIiKyHDa5wCMRERGRMTEYEREREdVjMCIiIiKqx2CkJS7wSEREZPs4+FpHHHxNRERkfbT9+21x6xhZuoYcWVFRYeZKiIiISFsNf7fbag9iMNJRZWUlACAwMNDMlRAREZGuKisr4eXl1eJ+dqXpSKFQoLi4GB4eHpBIJAY7b0VFBQIDA3HlyhV20WmB10t7vFba47XSDa+X9nitdGOM6yWEQGVlJfz9/SGVtjzEmi1GOpJKpQgICDDa+T09PflLowNeL+3xWmmP10o3vF7a47XSjaGvV2stRQ04K42IiIioHoMRERERUT0GIwshk8nw0ksvQSaTmbsUq8DrpT1eK+3xWumG10t7vFa6Mef14uBrIiIionpsMSIiIiKqx2BEREREVI/BiIiIiKgegxERERFRPQYjC7Flyxb07NkTzs7OiIiIwOHDh81dktmtWrUKEolE7atr166q/UIIrFq1Cv7+/nBxcUFMTAzOnDljxopN59ChQxg3bhz8/f0hkUjw5Zdfqu3X5trU1NTg+eefR+fOneHm5obx48dDLpeb8F2YTlvX6+mnn9b4rA0ZMkTtGHu4XmvXrsXAgQPh4eGBLl26YMKECTh37pzaMfxs/Uab68XPltLWrVvRv39/1YKNUVFR+M9//qPab0mfKwYjC/DJJ59gwYIFWL58OXJzczF8+HCMGTMGRUVF5i7N7B566CGUlJSovk6dOqXal5KSgg0bNuCtt95CdnY2unbtiscee0x1PztbVl1djbCwMLz11lvN7tfm2ixYsADp6enYvXs3jhw5gqqqKowdOxZ1dXWmehsm09b1AoDHH39c7bO2d+9etf32cL0OHjyIuXPn4ujRo8jIyMC9e/cQGxuL6upq1TH8bP1Gm+sF8LMFAAEBAXj11Vdx/PhxHD9+HKNGjcKTTz6pCj8W9bkSZHaDBg0Sc+bMUdv24IMPir/97W9mqsgyvPTSSyIsLKzZfQqFQnTt2lW8+uqrqm137twRXl5e4u233zZRhZYBgEhPT1c91+ba3Lx5Uzg6Oordu3erjrl69aqQSqXi66+/Nlnt5tD0egkhRFxcnHjyySdb/B57vV6lpaUCgDh48KAQgp+ttjS9XkLws9Uab29v8c4771jc54otRmZWW1uLEydOIDY2Vm17bGwssrKyzFSV5bhw4QL8/f3Rs2dP/PnPf0ZBQQEAoLCwENeuXVO7bjKZDI888ojdXzdtrs2JEydw9+5dtWP8/f0RGhpqt9fvwIED6NKlCx544AHMmjULpaWlqn32er3Ky8sBAD4+PgD42WpL0+vVgJ8tdXV1ddi9ezeqq6sRFRVlcZ8rBiMzu3HjBurq6uDr66u23dfXF9euXTNTVZZh8ODB+OCDD7Bv3z7s2LED165dQ3R0NMrKylTXhtdNkzbX5tq1a3BycoK3t3eLx9iTMWPGYNeuXfjuu++wfv16ZGdnY9SoUaipqQFgn9dLCIGkpCQMGzYMoaGhAPjZak1z1wvgZ6uxU6dOwd3dHTKZDHPmzEF6ejpCQkIs7nPVwaBnI71JJBK150IIjW32ZsyYMarH/fr1Q1RUFO6//368//77qsGLvG4t0+fa2Ov1mzx5supxaGgoIiMjERQUhD179mDSpEktfp8tX6/ExEScPHkSR44c0djHz5amlq4XP1u/6dOnD/Ly8nDz5k18/vnniIuLw8GDB1X7LeVzxRYjM+vcuTMcHBw0Em9paalGerZ3bm5u6NevHy5cuKCancbrpkmba9O1a1fU1tbif//7X4vH2DM/Pz8EBQXhwoULAOzvej3//PP46quvkJmZiYCAANV2fraa19L1ao49f7acnJwQHByMyMhIrF27FmFhYdi8ebPFfa4YjMzMyckJERERyMjIUNuekZGB6OhoM1VlmWpqanD27Fn4+fmhZ8+e6Nq1q9p1q62txcGDB+3+umlzbSIiIuDo6Kh2TElJCU6fPm331w8AysrKcOXKFfj5+QGwn+slhEBiYiK++OILfPfdd+jZs6fafn621LV1vZpjr5+t5gghUFNTY3mfK4MO5Sa97N69Wzg6Ooq0tDSRn58vFixYINzc3MTly5fNXZpZLVq0SBw4cEAUFBSIo0ePirFjxwoPDw/VdXn11VeFl5eX+OKLL8SpU6fElClThJ+fn6ioqDBz5cZXWVkpcnNzRW5urgAgNmzYIHJzc8Uvv/wihNDu2syZM0cEBASIb775RuTk5IhRo0aJsLAwce/ePXO9LaNp7XpVVlaKRYsWiaysLFFYWCgyMzNFVFSU6Natm91dr2effVZ4eXmJAwcOiJKSEtXXrVu3VMfws/Wbtq4XP1u/WbZsmTh06JAoLCwUJ0+eFC+88IKQSqVi//79QgjL+lwxGFmI1NRUERQUJJycnMSAAQPUpnvaq8mTJws/Pz/h6Ogo/P39xaRJk8SZM2dU+xUKhXjppZdE165dhUwmEyNGjBCnTp0yY8Wmk5mZKQBofMXFxQkhtLs2t2/fFomJicLHx0e4uLiIsWPHiqKiIjO8G+Nr7XrdunVLxMbGivvuu084OjqK7t27i7i4OI1rYQ/Xq7lrBEC89957qmP42fpNW9eLn63fPPPMM6q/cffdd5949NFHVaFICMv6XEmEEMKwbVBERERE1oljjIiIiIjqMRgRERER1WMwIiIiIqrHYERERERUj8GIiIiIqB6DEREREVE9BiMiIiKiegxGRERERPUYjIiIiIjqMRgRERER1WMwIrIBMTExWLBggdnPoY1FixZh3LhxBjufEAKzZ8+Gj48PJBIJ8vLy9DqPqd6/MZiq9hUrVkAmk+Evf/mL0V+LyFw6mLsAImq/L774Ao6OjuYuQyt5eXmIjo422Pm+/vpr7Ny5EwcOHECvXr3QuXNnvc5jTdfQXJYsWQI/Pz8kJiZi9erVCA4ONndJRAbHFiMiG+Dj4wMPDw9zl6GVn376CQ8//LDBznfp0iX4+fkhOjoaXbt2RYcO+v3/njVdQ3Px9PTEM888A6lUilOnTpm7HCKjYDAisgGNu1JiYmIwb948LFmyBD4+PujatStWrVqldnx1dTVmzJgBd3d3+Pn5Yf369RrnFEIgJSUFvXr1gouLC8LCwvDZZ5+p9l+/fh1du3bFK6+8otp27NgxODk5Yf/+/c3WeeXKFZSVlSE8PBwAcPPmTYwbNw7R0dEoKSlp9ntqamowb948dOnSBc7Ozhg2bBiys7MBAE8//TSef/55FBUVQSKRoEePHs2eo6330vQaAkBlZSWmTp0KNzc3+Pn5YePGjRrHtHXetn4W27ZtQ7du3aBQKNRqGT9+POLi4gAoW8SGDRuGjh07olOnThg7diwuXbrU7Pts0KNHD2zatEltW3h4uOq1tbkeLbl37x5cXV1x+vRprY4nsjqCiKzeI488IubPn6967OnpKVatWiXOnz8v3n//fSGRSMT+/ftVxz/77LMiICBA7N+/X5w8eVKMHTtWuLu7q84hhBAvvPCCePDBB8XXX38tLl26JN577z0hk8nEgQMHVMfs2bNHODo6iuzsbFFZWSmCg4PVztHUV199Jby8vIRCoRAnT54UwcHBYtasWaKmpqbF75k3b57w9/cXe/fuFWfOnBFxcXHC29tblJWViZs3b4rVq1eLgIAAUVJSIkpLS5s9hzbvpfE1FEKImTNniqCgIPHNN9+IU6dOiYkTJwoPDw+drlFbP4uysjLh5OQkvvnmG9U5f/31V+Hk5CT27dsnhBDis88+E59//rk4f/68yM3NFePGjRP9+vUTdXV1LdYeFBQkNm7cqHYNwsLCxEsvvaT19Wjt5wFA/OlPf2rzWCJrxGBEZAOaBqNhw4ap7R84cKBYunSpEEKIyspK4eTkJHbv3q3aX1ZWJlxcXFTnqKqqEs7OziIrK0vtPPHx8WLKlClq25577jnxwAMPiKlTp4rQ0FBx+/btFutcvXq1GDFihNi1a5fo2LGjePvtt1t9X1VVVcLR0VHs2rVLta22tlb4+/uLlJQUIYQQGzduFEFBQa2eQ5v30vgaVlRUCEdHR/Hpp5+q9t+8eVO4urrqdI3a+lkIIcT48ePFM888o3q+bds20bVrV3Hv3r1m309paakAIE6dOtVs7UK0Hox0+dk2dfz4ceHk5CSeeOIJERISorE/PT1dLFiwoNVzEFk6Dr4mskH9+/dXe+7n54fS0lIAyjE5tbW1iIqKUu338fFBnz59VM/z8/Nx584dPPbYY2rnqa2t1Rgf9PrrryM0NBT/+te/cPz4cTg7O7dYV15eHk6dOoXExETs2bOnzUHYly5dwt27dzF06FDVNkdHRwwaNAhnz55t9Xv1eS8NCgoKcPfuXQwaNEi1zcvLS69r1NrPAgCmTp2K2bNnY8uWLZDJZNi1axf+/Oc/w8HBQXUNVq5ciaNHj+LGjRuqbreioiKEhoZqdQ0a0+d6AIBCoUBCQgISExMxePBgTJ06FbW1tXByclIdc/LkSYSFhelcE5ElYTAiskFNZ1dJJBLVH1QhRJvf33Dsnj170K1bN7V9MplM7XlBQQGKi4uhUCjwyy+/aASBxvLy8vDUU09h165duHnzZpt1NNQqkUg0tjfd1hJd3os2r6vreVv7WQDAuHHjoFAosGfPHgwcOBCHDx/Ghg0b1PYHBgZix44d8Pf3h0KhQGhoKGpra1t8z1KpVOPnfPfuXZ3qburNN9/E9evXsXr1ahQVFeHevXs4d+4c+vXrpzrm5MmTGD9+PMrLyzF16lRMnDgR8fHxLZ6TyBIxGBHZmeDgYDg6OuLo0aPo3r07AOB///sfzp8/j0ceeQQAEBISAplMhqKiItW25tTW1mLq1KmYPHkyHnzwQcTHx+PUqVPw9fXVOLayshKFhYV47rnnMHToUEyZMgVZWVl46KGHWq3VyckJR44cUa2dc/fuXRw/flzrdXu0fS+N3X///XB0dMSPP/6IwMBAAEBFRQUuXLig8zVqi4uLCyZNmoRdu3bh4sWLeOCBBxAREQEAKCsrw9mzZ7Ft2zYMHz4cAHDkyJE2z3nfffepDWavqKhAYWGh3nVfvXoVK1euxMcffww3Nzf07t0bMpkMp0+fVgtGP//8M2QyGR5//HGsWbMGv/vd77S+DkSWgsGIyM64u7sjPj4eixcvRqdOneDr64vly5dDKv1tkqqHhweSk5OxcOFCKBQKDBs2DBUVFcjKyoK7u7tqxtTy5ctRXl6ON954A+7u7vjPf/6D+Ph4/Pvf/9Z43by8PDg4OCAkJAQPP/wwzpw5g3HjxuHHH39sce0hNzc3PPvss1i8eDF8fHzQvXt3pKSk4NatW1q3RGj7Xpp+T1xcnOp1u3TpgpdeeglSqVTViqTPeVsydepUjBs3DmfOnMG0adNU2729vdGpUyds374dfn5+KCoqwt/+9rc2zzdq1Cjs3LkT48aNg7e3N1auXKnqmtOn7nnz5mHMmDF44oknAAAdOnRA37591Wam3bp1C8XFxZgyZQp27drVauAlsmQMRkR26LXXXkNVVRXGjx8PDw8PLFq0COXl5WrHrFmzBl26dMHatWtRUFCAjh07YsCAAXjhhRcAAAcOHMCmTZuQmZkJT09PAMCHH36I/v37Y+vWrXj22WfVzvfTTz/hwQcfVHXXrFu3DmfPnsWkSZPwzTffqI1VaezVV1+FQqHA9OnTUVlZicjISOzbtw/e3t5av9+23ktzNmzYgDlz5mDs2LHw9PTEkiVLcOXKFbUxVPqctzmjRo2Cj48Pzp07p7aqtFQqxe7duzFv3jyEhoaiT58+eOONNxATE9Pq+ZYtW4aCggKMHTsWXl5eWLNmjarFSNe6//3vf+O7777TGNPVr18/tWB0+vRpDBkyBFevXuVCmWTVJEKbAQdERHauuroa3bp1w/r16zluphnvvPMOrl+/jtjYWMyePRuHDh2Cm5ubucsi0hkXeCQiakZubi4+/vhjXLp0CTk5OZg6dSoA4MknnzRzZZbp1KlTCA0NRUREBGbPno2ZM2eauyQivbDFiIioGbm5uZg5cybOnTsHJycnREREYMOGDWqDjYnI9jAYEREREdVjVxoRERFRPQYjIiIionoMRkRERET1GIyIiIiI6jEYEREREdVjMCIiIiKqx2BEREREVI/BiIiIiKgegxERERFRPQYjIiIionr/H8BCDr+mfylyAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(sort!(eigvals(Matrix(A))), \"b.\")\n", + "semilogy(sort!(eigvals(Matrix(A),Matrix(L))), \"r.\")\n", + "xlabel(L\"index $k$ of eigenvalue $\\lambda_k$\")\n", + "ylabel(L\"eigenvalues $\\lambda_k$\")\n", + "legend([L\"unpreconditioned $A$\", L\"preconditioned $L^{-1} A$\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can see from the plot that $A$ has eigenvalues all over the map (from $10^{-3}$ to 10), but $L^{-1} A$ has eigenvalues that are mostly 1 (like $I$) with a handful of outliers." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Key points\n", + "\n", + "* Large matrix problems ($> 10^4 \\times 10^4$) almost have a matrix $A$ with a **special structure** that allows you to **multiply Ax quickly**. Most commonly, $A$ is **sparse** (mostly zero).\n", + "\n", + "* Many specialized methods are available to **take advantage** of this special structure in order to solve problems **much faster than the n³ time and n² memory of \"dense\" solvers**.\n", + "\n", + " - For sparse matrices, `A \\ b` can actually be solved *directly* by ordinary Gaussian elimination, cleverly re-ordering the unknowns so that the **LU factors remain sparse**. These \"sparse direct\" methods are easy to use and widely available.\n", + " \n", + " - For the very largest matrices, for eigenproblems, or non-sparse matrices with a fast Ax, the alternative is an **iterative method**: start with guess for the solution, and do some clever operations that rapidly improve the guess *using only matrix-times-vector*.\n", + " \n", + " - In many problems, you can speed up iterative solvers by orders of magnitude if you have an *approximate* solution for Ax=b, even a *very \"bad\" approximation* that only uses *part* of th matrix. Finding such **preconditioners** is often more of an art than a science.\n", + " \n", + "* Fully understanding the methods for large sparse problems goes far beyond the scope of 18.06. Better coverage is given in 18.335. But **it is important to know that such methods are out there**, even if you don't understand the detail, so that you **know where to begin looking if you encounter a huge matrix in practice**." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Determinants.ipynb b/notes/Determinants.ipynb new file mode 100644 index 00000000..2bb378fc --- /dev/null +++ b/notes/Determinants.ipynb @@ -0,0 +1,1835 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Determinants\n", + "\n", + "One of the first things that most students learn about in linear algebra is the [determinant](https://en.wikipedia.org/wiki/Determinant) of a matrix. Lots of useful formulas for 2×2 and 3×3 matrices can be expressed in terms of determinants, and determinants played a central role in linear algebra 100 years ago when most matrices were tiny.\n", + "\n", + "Nowadays, determinants are much less useful as a practical tool, although they still occasionally show up. Determinant-related formulas are also useful in proving theorems in linear algebra. The basic computational problem, however, is that the determinant formulas don't scale — for a big matrix, there is almost always a better way of computing something than using explicit determinants, cofactors, [Cramer's rule](https://en.wikipedia.org/wiki/Cramer's_rule), and other tricks useful for small matrices.\n", + "\n", + "Still, it is important to know what determinants are, and their basic properties. In 18.06, we mainly use determinants as a *conceptual* tool to help us understand eigenvalues via the [characteristic polynomial](https://en.wikipedia.org/wiki/Characteristic_polynomial) — although, again, this is not a practical *computational* tool for eigenvalues, which are nowadays computed by very different methods." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Explicit formulas, high-school version\n", + "\n", + "In high school, you may have learned some explicit formulas for determinants of small matrices.\n", + "\n", + "These formulas quickly become computational useless for larger matrices (although there is a there is still a theoretical formula we'll give at the end), but it is nice to see a few of them.\n", + "\n", + "The computer is much better at writing them down as the matrices get larger. We'll use the [Symbolics.jl package](https://github.com/JuliaSymbolics/Symbolics.jl) for symbolic algebra in Julia to write out some determinant formulas with symbols, not numbers:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using Symbolics, LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can easily define a $3 \\times 3$ matrix of symbolic variables in $a_{i,j}$ format and take its determinant:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "a_{1}ˏ_1 & a_{1}ˏ_2 & a_{1}ˏ_3 \\\\\n", + "a_{2}ˏ_1 & a_{2}ˏ_2 & a_{2}ˏ_3 \\\\\n", + "a_{3}ˏ_1 & a_{3}ˏ_2 & a_{3}ˏ_3 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " a[1, 1] a[1, 2] a[1, 3]\n", + " a[2, 1] a[2, 2] a[2, 3]\n", + " a[3, 1] a[3, 2] a[3, 3]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@variables a[1:3, 1:3]\n", + "A = collect(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_1 + a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_3 + a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_2 - a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_3 - a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_2\n", + "\\end{equation}\n" + ], + "text/plain": [ + "a[1, 2]*a[2, 3]*a[3, 1] + a[1, 1]*a[2, 2]*a[3, 3] + a[1, 3]*a[2, 1]*a[3, 2] - a[1, 3]*a[2, 2]*a[3, 1] - a[1, 2]*a[2, 1]*a[3, 3] - a[1, 1]*a[2, 3]*a[3, 2]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "expand(det(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "… but these $a_{i,j}$ variables can be a little hard to read. Let's define some more colorful symbols:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{cc}\n", + "a & b \\\\\n", + "🍎 & 🍌 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "2×2 Matrix{Num}:\n", + " a b\n", + " 🍎 🍌" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@variables a b c d 🍎 🍌 🍪 🥟 α β γ δ ♣ ♡ ♠ ♢\n", + "\n", + "A = [a b\n", + " 🍎 🍌]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is the determinant of a $2\\times 2$ matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "a 🍌 - b 🍎\n", + "\\end{equation}\n" + ], + "text/plain": [ + "a*🍌 - b*🍎" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "and here is $3 \\times 3$:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "a & b & c \\\\\n", + "🍎 & 🍌 & 🍪 \\\\\n", + "\\alpha & \\beta & \\gamma \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " a b c\n", + " 🍎 🍌 🍪\n", + " α β γ" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [a b c\n", + " 🍎 🍌 🍪\n", + " α β γ]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "a \\gamma 🍌 + c \\beta 🍎 + b \\alpha 🍪 - a \\beta 🍪 - b \\gamma 🍎 - c \\alpha 🍌\n", + "\\end{equation}\n" + ], + "text/plain": [ + "a*γ*🍌 + c*β*🍎 + b*α*🍪 - a*β*🍪 - b*γ*🍎 - c*α*🍌" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "expand(det(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that the terms in the determinant contain **exactly one value from each row and one from each column**.\n", + "\n", + "This pattern continues for $4\\times 4$, which is rapidly getting messier:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{cccc}\n", + "a & b & c & d \\\\\n", + "🍎 & 🍌 & 🍪 & 🥟 \\\\\n", + "\\alpha & \\beta & \\gamma & \\delta \\\\\n", + "\\clubsuit & \\heartsuit & \\spadesuit & \\diamondsuit \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "4×4 Matrix{Num}:\n", + " a b c d\n", + " 🍎 🍌 🍪 🥟\n", + " α β γ δ\n", + " ♣ ♡ ♠ ♢" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ a b c d\n", + " 🍎 🍌 🍪 🥟\n", + " α β γ δ\n", + " ♣ ♡ ♠ ♢]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "d \\alpha \\spadesuit 🍌 + c \\alpha \\heartsuit 🥟 + a \\gamma \\diamondsuit 🍌 + a \\beta \\spadesuit 🥟 + b \\alpha \\diamondsuit 🍪 + c \\beta \\diamondsuit 🍎 + d \\beta \\clubsuit 🍪 + b \\gamma \\clubsuit 🥟 + b \\delta \\spadesuit 🍎 + d \\gamma \\heartsuit 🍎 + c \\delta \\clubsuit 🍌 + a \\delta \\heartsuit 🍪 - c \\delta \\heartsuit 🍎 - d \\gamma \\clubsuit 🍌 - b \\alpha \\spadesuit 🥟 - b \\delta \\clubsuit 🍪 - d \\alpha \\heartsuit 🍪 - d \\beta \\spadesuit 🍎 - a \\beta \\diamondsuit 🍪 - a \\gamma \\heartsuit 🥟 - b \\gamma \\diamondsuit 🍎 - a \\delta \\spadesuit 🍌 - c \\alpha \\diamondsuit 🍌 - c \\beta \\clubsuit 🥟\n", + "\\end{equation}\n" + ], + "text/plain": [ + "d*α*♠*🍌 + c*α*♡*🥟 + a*γ*♢*🍌 + a*β*♠*🥟 + b*α*♢*🍪 + c*β*♢*🍎 + d*β*♣*🍪 + b*γ*♣*🥟 + b*δ*♠*🍎 + d*γ*♡*🍎 + c*δ*♣*🍌 + a*δ*♡*🍪 - c*δ*♡*🍎 - d*γ*♣*🍌 - b*α*♠*🥟 - b*δ*♣*🍪 - d*α*♡*🍪 - d*β*♠*🍎 - a*β*♢*🍪 - a*γ*♡*🥟 - b*γ*♢*🍎 - a*δ*♠*🍌 - c*α*♢*🍌 - c*β*♣*🥟" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "expand(det(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By $n=5$ these formulas have gotten ridiculous:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccccc}\n", + "a_{1}ˏ_1 & a_{1}ˏ_2 & a_{1}ˏ_3 & a_{1}ˏ_4 & a_{1}ˏ_5 \\\\\n", + "a_{2}ˏ_1 & a_{2}ˏ_2 & a_{2}ˏ_3 & a_{2}ˏ_4 & a_{2}ˏ_5 \\\\\n", + "a_{3}ˏ_1 & a_{3}ˏ_2 & a_{3}ˏ_3 & a_{3}ˏ_4 & a_{3}ˏ_5 \\\\\n", + "a_{4}ˏ_1 & a_{4}ˏ_2 & a_{4}ˏ_3 & a_{4}ˏ_4 & a_{4}ˏ_5 \\\\\n", + "a_{5}ˏ_1 & a_{5}ˏ_2 & a_{5}ˏ_3 & a_{5}ˏ_4 & a_{5}ˏ_5 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "5×5 Matrix{Num}:\n", + " a[1, 1] a[1, 2] a[1, 3] a[1, 4] a[1, 5]\n", + " a[2, 1] a[2, 2] a[2, 3] a[2, 4] a[2, 5]\n", + " a[3, 1] a[3, 2] a[3, 3] a[3, 4] a[3, 5]\n", + " a[4, 1] a[4, 2] a[4, 3] a[4, 4] a[4, 5]\n", + " a[5, 1] a[5, 2] a[5, 3] a[5, 4] a[5, 5]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@variables a[1:5,1:5]\n", + "A = collect(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_2 a_{4}ˏ_4 a_{5}ˏ_5 + a_{1}ˏ_2 a_{2}ˏ_4 a_{3}ˏ_5 a_{4}ˏ_3 a_{5}ˏ_1 + a_{1}ˏ_4 a_{2}ˏ_1 a_{3}ˏ_5 a_{4}ˏ_3 a_{5}ˏ_2 + a_{1}ˏ_3 a_{2}ˏ_4 a_{3}ˏ_2 a_{4}ˏ_5 a_{5}ˏ_1 + a_{1}ˏ_4 a_{2}ˏ_5 a_{3}ˏ_2 a_{4}ˏ_3 a_{5}ˏ_1 + a_{1}ˏ_5 a_{2}ˏ_4 a_{3}ˏ_1 a_{4}ˏ_3 a_{5}ˏ_2 + a_{1}ˏ_1 a_{2}ˏ_5 a_{3}ˏ_4 a_{4}ˏ_3 a_{5}ˏ_2 + a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_4 a_{4}ˏ_5 a_{5}ˏ_3 + a_{1}ˏ_4 a_{2}ˏ_2 a_{3}ˏ_1 a_{4}ˏ_3 a_{5}ˏ_5 + a_{1}ˏ_5 a_{2}ˏ_2 a_{3}ˏ_3 a_{4}ˏ_1 a_{5}ˏ_4 + a_{1}ˏ_4 a_{2}ˏ_2 a_{3}ˏ_5 a_{4}ˏ_1 a_{5}ˏ_3 + a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_3 a_{4}ˏ_4 a_{5}ˏ_5 + a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_4 a_{4}ˏ_5 a_{5}ˏ_2 + a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_5 a_{4}ˏ_1 a_{5}ˏ_4 + a_{1}ˏ_5 a_{2}ˏ_1 a_{3}ˏ_2 a_{4}ˏ_3 a_{5}ˏ_4 + a_{1}ˏ_2 a_{2}ˏ_5 a_{3}ˏ_1 a_{4}ˏ_3 a_{5}ˏ_4 + a_{1}ˏ_5 a_{2}ˏ_1 a_{3}ˏ_4 a_{4}ˏ_2 a_{5}ˏ_3 + a_{1}ˏ_5 a_{2}ˏ_1 a_{3}ˏ_3 a_{4}ˏ_4 a_{5}ˏ_2 + a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_3 a_{4}ˏ_5 a_{5}ˏ_4 + a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_5 a_{4}ˏ_4 a_{5}ˏ_3 + a_{1}ˏ_5 a_{2}ˏ_3 a_{3}ˏ_1 a_{4}ˏ_2 a_{5}ˏ_4 + a_{1}ˏ_1 a_{2}ˏ_4 a_{3}ˏ_3 a_{4}ˏ_5 a_{5}ˏ_2 + a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_1 a_{4}ˏ_5 a_{5}ˏ_4 + a_{1}ˏ_4 a_{2}ˏ_3 a_{3}ˏ_5 a_{4}ˏ_2 a_{5}ˏ_1 + a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_5 a_{4}ˏ_4 a_{5}ˏ_2 + a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_4 a_{4}ˏ_2 a_{5}ˏ_5 + a_{1}ˏ_2 a_{2}ˏ_4 a_{3}ˏ_1 a_{4}ˏ_5 a_{5}ˏ_3 + a_{1}ˏ_3 a_{2}ˏ_5 a_{3}ˏ_1 a_{4}ˏ_4 a_{5}ˏ_2 + a_{1}ˏ_1 a_{2}ˏ_5 a_{3}ˏ_3 a_{4}ˏ_2 a_{5}ˏ_4 + a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_4 a_{4}ˏ_1 a_{5}ˏ_5 + a_{1}ˏ_4 a_{2}ˏ_5 a_{3}ˏ_3 a_{4}ˏ_1 a_{5}ˏ_2 + a_{1}ˏ_5 a_{2}ˏ_4 a_{3}ˏ_2 a_{4}ˏ_1 a_{5}ˏ_3 + a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_1 a_{4}ˏ_4 a_{5}ˏ_5 + a_{1}ˏ_4 a_{2}ˏ_3 a_{3}ˏ_2 a_{4}ˏ_1 a_{5}ˏ_5 + a_{1}ˏ_4 a_{2}ˏ_1 a_{3}ˏ_2 a_{4}ˏ_5 a_{5}ˏ_3 + a_{1}ˏ_1 a_{2}ˏ_4 a_{3}ˏ_2 a_{4}ˏ_3 a_{5}ˏ_5 + a_{1}ˏ_3 a_{2}ˏ_4 a_{3}ˏ_1 a_{4}ˏ_2 a_{5}ˏ_5 + a_{1}ˏ_3 a_{2}ˏ_4 a_{3}ˏ_5 a_{4}ˏ_1 a_{5}ˏ_2 + a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_4 a_{4}ˏ_3 a_{5}ˏ_5 + a_{1}ˏ_5 a_{2}ˏ_2 a_{3}ˏ_4 a_{4}ˏ_3 a_{5}ˏ_1 + a_{1}ˏ_1 a_{2}ˏ_4 a_{3}ˏ_5 a_{4}ˏ_2 a_{5}ˏ_3 + a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_5 a_{4}ˏ_2 a_{5}ˏ_4 + a_{1}ˏ_4 a_{2}ˏ_3 a_{3}ˏ_1 a_{4}ˏ_5 a_{5}ˏ_2 + a_{1}ˏ_2 a_{2}ˏ_4 a_{3}ˏ_3 a_{4}ˏ_1 a_{5}ˏ_5 + a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_5 a_{4}ˏ_3 a_{5}ˏ_4 + a_{1}ˏ_4 a_{2}ˏ_5 a_{3}ˏ_1 a_{4}ˏ_2 a_{5}ˏ_3 + a_{1}ˏ_5 a_{2}ˏ_2 a_{3}ˏ_1 a_{4}ˏ_4 a_{5}ˏ_3 + a_{1}ˏ_5 a_{2}ˏ_3 a_{3}ˏ_2 a_{4}ˏ_4 a_{5}ˏ_1 + a_{1}ˏ_3 a_{2}ˏ_5 a_{3}ˏ_2 a_{4}ˏ_1 a_{5}ˏ_4 + a_{1}ˏ_2 a_{2}ˏ_5 a_{3}ˏ_4 a_{4}ˏ_1 a_{5}ˏ_3 + a_{1}ˏ_4 a_{2}ˏ_1 a_{3}ˏ_3 a_{4}ˏ_2 a_{5}ˏ_5 + a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_4 a_{4}ˏ_5 a_{5}ˏ_1 + a_{1}ˏ_2 a_{2}ˏ_5 a_{3}ˏ_3 a_{4}ˏ_4 a_{5}ˏ_1 + a_{1}ˏ_3 a_{2}ˏ_5 a_{3}ˏ_4 a_{4}ˏ_2 a_{5}ˏ_1 + a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_2 a_{4}ˏ_5 a_{5}ˏ_4 + a_{1}ˏ_4 a_{2}ˏ_2 a_{3}ˏ_3 a_{4}ˏ_5 a_{5}ˏ_1 + a_{1}ˏ_5 a_{2}ˏ_3 a_{3}ˏ_4 a_{4}ˏ_1 a_{5}ˏ_2 + a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_5 a_{4}ˏ_4 a_{5}ˏ_1 + a_{1}ˏ_1 a_{2}ˏ_5 a_{3}ˏ_2 a_{4}ˏ_4 a_{5}ˏ_3 + a_{1}ˏ_5 a_{2}ˏ_4 a_{3}ˏ_3 a_{4}ˏ_2 a_{5}ˏ_1 - a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_3 a_{4}ˏ_5 a_{5}ˏ_4 - a_{1}ˏ_4 a_{2}ˏ_2 a_{3}ˏ_5 a_{4}ˏ_3 a_{5}ˏ_1 - a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_4 a_{4}ˏ_5 a_{5}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_5 a_{3}ˏ_4 a_{4}ˏ_3 a_{5}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_5 a_{4}ˏ_3 a_{5}ˏ_4 - a_{1}ˏ_4 a_{2}ˏ_1 a_{3}ˏ_2 a_{4}ˏ_3 a_{5}ˏ_5 - a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_4 a_{4}ˏ_2 a_{5}ˏ_5 - a_{1}ˏ_5 a_{2}ˏ_2 a_{3}ˏ_3 a_{4}ˏ_4 a_{5}ˏ_1 - a_{1}ˏ_5 a_{2}ˏ_2 a_{3}ˏ_1 a_{4}ˏ_3 a_{5}ˏ_4 - a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_5 a_{4}ˏ_1 a_{5}ˏ_4 - a_{1}ˏ_4 a_{2}ˏ_1 a_{3}ˏ_5 a_{4}ˏ_2 a_{5}ˏ_3 - a_{1}ˏ_5 a_{2}ˏ_1 a_{3}ˏ_3 a_{4}ˏ_2 a_{5}ˏ_4 - a_{1}ˏ_4 a_{2}ˏ_2 a_{3}ˏ_3 a_{4}ˏ_1 a_{5}ˏ_5 - a_{1}ˏ_1 a_{2}ˏ_4 a_{3}ˏ_2 a_{4}ˏ_5 a_{5}ˏ_3 - a_{1}ˏ_1 a_{2}ˏ_5 a_{3}ˏ_4 a_{4}ˏ_2 a_{5}ˏ_3 - a_{1}ˏ_3 a_{2}ˏ_4 a_{3}ˏ_5 a_{4}ˏ_2 a_{5}ˏ_1 - a_{1}ˏ_5 a_{2}ˏ_3 a_{3}ˏ_1 a_{4}ˏ_4 a_{5}ˏ_2 - a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_4 a_{4}ˏ_5 a_{5}ˏ_2 - a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_3 a_{4}ˏ_4 a_{5}ˏ_5 - a_{1}ˏ_1 a_{2}ˏ_5 a_{3}ˏ_2 a_{4}ˏ_3 a_{5}ˏ_4 - a_{1}ˏ_3 a_{2}ˏ_4 a_{3}ˏ_2 a_{4}ˏ_1 a_{5}ˏ_5 - a_{1}ˏ_1 a_{2}ˏ_4 a_{3}ˏ_3 a_{4}ˏ_2 a_{5}ˏ_5 - a_{1}ˏ_5 a_{2}ˏ_3 a_{3}ˏ_2 a_{4}ˏ_1 a_{5}ˏ_4 - a_{1}ˏ_5 a_{2}ˏ_1 a_{3}ˏ_2 a_{4}ˏ_4 a_{5}ˏ_3 - a_{1}ˏ_5 a_{2}ˏ_4 a_{3}ˏ_2 a_{4}ˏ_3 a_{5}ˏ_1 - a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_2 a_{4}ˏ_4 a_{5}ˏ_5 - a_{1}ˏ_2 a_{2}ˏ_4 a_{3}ˏ_5 a_{4}ˏ_1 a_{5}ˏ_3 - a_{1}ˏ_4 a_{2}ˏ_5 a_{3}ˏ_3 a_{4}ˏ_2 a_{5}ˏ_1 - a_{1}ˏ_5 a_{2}ˏ_4 a_{3}ˏ_1 a_{4}ˏ_2 a_{5}ˏ_3 - a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_4 a_{4}ˏ_3 a_{5}ˏ_5 - a_{1}ˏ_4 a_{2}ˏ_5 a_{3}ˏ_1 a_{4}ˏ_3 a_{5}ˏ_2 - a_{1}ˏ_4 a_{2}ˏ_3 a_{3}ˏ_1 a_{4}ˏ_2 a_{5}ˏ_5 - a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_2 a_{4}ˏ_5 a_{5}ˏ_4 - a_{1}ˏ_5 a_{2}ˏ_4 a_{3}ˏ_3 a_{4}ˏ_1 a_{5}ˏ_2 - a_{1}ˏ_3 a_{2}ˏ_5 a_{3}ˏ_4 a_{4}ˏ_1 a_{5}ˏ_2 - a_{1}ˏ_3 a_{2}ˏ_5 a_{3}ˏ_2 a_{4}ˏ_4 a_{5}ˏ_1 - a_{1}ˏ_3 a_{2}ˏ_1 a_{3}ˏ_5 a_{4}ˏ_4 a_{5}ˏ_2 - a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_5 a_{4}ˏ_4 a_{5}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_5 a_{3}ˏ_1 a_{4}ˏ_4 a_{5}ˏ_3 - a_{1}ˏ_3 a_{2}ˏ_5 a_{3}ˏ_1 a_{4}ˏ_2 a_{5}ˏ_4 - a_{1}ˏ_4 a_{2}ˏ_3 a_{3}ˏ_5 a_{4}ˏ_1 a_{5}ˏ_2 - a_{1}ˏ_4 a_{2}ˏ_2 a_{3}ˏ_1 a_{4}ˏ_5 a_{5}ˏ_3 - a_{1}ˏ_4 a_{2}ˏ_5 a_{3}ˏ_2 a_{4}ˏ_1 a_{5}ˏ_3 - a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_1 a_{4}ˏ_5 a_{5}ˏ_4 - a_{1}ˏ_1 a_{2}ˏ_5 a_{3}ˏ_3 a_{4}ˏ_4 a_{5}ˏ_2 - a_{1}ˏ_4 a_{2}ˏ_3 a_{3}ˏ_2 a_{4}ˏ_5 a_{5}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_1 a_{3}ˏ_4 a_{4}ˏ_5 a_{5}ˏ_3 - a_{1}ˏ_3 a_{2}ˏ_4 a_{3}ˏ_1 a_{4}ˏ_5 a_{5}ˏ_2 - a_{1}ˏ_5 a_{2}ˏ_3 a_{3}ˏ_4 a_{4}ˏ_2 a_{5}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_4 a_{3}ˏ_1 a_{4}ˏ_3 a_{5}ˏ_5 - a_{1}ˏ_1 a_{2}ˏ_3 a_{3}ˏ_5 a_{4}ˏ_2 a_{5}ˏ_4 - a_{1}ˏ_5 a_{2}ˏ_2 a_{3}ˏ_4 a_{4}ˏ_1 a_{5}ˏ_3 - a_{1}ˏ_4 a_{2}ˏ_1 a_{3}ˏ_3 a_{4}ˏ_5 a_{5}ˏ_2 - a_{1}ˏ_1 a_{2}ˏ_4 a_{3}ˏ_5 a_{4}ˏ_3 a_{5}ˏ_2 - a_{1}ˏ_1 a_{2}ˏ_2 a_{3}ˏ_5 a_{4}ˏ_4 a_{5}ˏ_3 - a_{1}ˏ_2 a_{2}ˏ_4 a_{3}ˏ_3 a_{4}ˏ_5 a_{5}ˏ_1 - a_{1}ˏ_2 a_{2}ˏ_3 a_{3}ˏ_4 a_{4}ˏ_1 a_{5}ˏ_5 - a_{1}ˏ_5 a_{2}ˏ_1 a_{3}ˏ_4 a_{4}ˏ_3 a_{5}ˏ_2 - a_{1}ˏ_2 a_{2}ˏ_5 a_{3}ˏ_3 a_{4}ˏ_1 a_{5}ˏ_4 - a_{1}ˏ_3 a_{2}ˏ_2 a_{3}ˏ_1 a_{4}ˏ_4 a_{5}ˏ_5\n", + "\\end{equation}\n" + ], + "text/plain": [ + "a[1, 3]*a[2, 1]*a[3, 2]*a[4, 4]*a[5, 5] + a[1, 2]*a[2, 4]*a[3, 5]*a[4, 3]*a[5, 1] + a[1, 4]*a[2, 1]*a[3, 5]*a[4, 3]*a[5, 2] + a[1, 3]*a[2, 4]*a[3, 2]*a[4, 5]*a[5, 1] + a[1, 4]*a[2, 5]*a[3, 2]*a[4, 3]*a[5, 1] + a[1, 5]*a[2, 4]*a[3, 1]*a[4, 3]*a[5, 2] + a[1, 1]*a[2, 5]*a[3, 4]*a[4, 3]*a[5, 2] + a[1, 1]*a[2, 2]*a[3, 4]*a[4, 5]*a[5, 3] + a[1, 4]*a[2, 2]*a[3, 1]*a[4, 3]*a[5, 5] + a[1, 5]*a[2, 2]*a[3, 3]*a[4, 1]*a[5, 4] + a[1, 4]*a[2, 2]*a[3, 5]*a[4, 1]*a[5, 3] + a[1, 1]*a[2, 2]*a[3, 3]*a[4, 4]*a[5, 5] + a[1, 3]*a[2, 1]*a[3, 4]*a[4, 5]*a[5, 2] + a[1, 2]*a[2, 3]*a[3, 5]*a[4, 1]*a[5, 4] + a[1, 5]*a[2, 1]*a[3, 2]*a[4, 3]*a[5, 4] + a[1, 2]*a[2, 5]*a[3, 1]*a[4, 3]*a[5, 4] + a[1, 5]*a[2, 1]*a[3, 4]*a[4, 2]*a[5, 3] + a[1, 5]*a[2, 1]*a[3, 3]*a[4, 4]*a[5, 2] + a[1, 2]*a[2, 1]*a[3, 3]*a[4, 5]*a[5, 4] + a[1, 2]*a[2, 1]*a[3, 5]*a[4, 4]*a[5, 3] + a[1, 5]*a[2, 3]*a[3, 1]*a[4, 2]*a[5, 4] + a[1, 1]*a[2, 4]*a[3, 3]*a[4, 5]*a[5, 2] + a[1, 3]*a[2, 2]*a[3, 1]*a[4, 5]*a[5, 4] + a[1, 4]*a[2, 3]*a[3, 5]*a[4, 2]*a[5, 1] + a[1, 1]*a[2, 3]*a[3, 5]*a[4, 4]*a[5, 2] + a[1, 1]*a[2, 3]*a[3, 4]*a[4, 2]*a[5, 5] + a[1, 2]*a[2, 4]*a[3, 1]*a[4, 5]*a[5, 3] + a[1, 3]*a[2, 5]*a[3, 1]*a[4, 4]*a[5, 2] + a[1, 1]*a[2, 5]*a[3, 3]*a[4, 2]*a[5, 4] + a[1, 3]*a[2, 2]*a[3, 4]*a[4, 1]*a[5, 5] + a[1, 4]*a[2, 5]*a[3, 3]*a[4, 1]*a[5, 2] + a[1, 5]*a[2, 4]*a[3, 2]*a[4, 1]*a[5, 3] + a[1, 2]*a[2, 3]*a[3, 1]*a[4, 4]*a[5, 5] + a[1, 4]*a[2, 3]*a[3, 2]*a[4, 1]*a[5, 5] + a[1, 4]*a[2, 1]*a[3, 2]*a[4, 5]*a[5, 3] + a[1, 1]*a[2, 4]*a[3, 2]*a[4, 3]*a[5, 5] + a[1, 3]*a[2, 4]*a[3, 1]*a[4, 2]*a[5, 5] + a[1, 3]*a[2, 4]*a[3, 5]*a[4, 1]*a[5, 2] + a[1, 2]*a[2, 1]*a[3, 4]*a[4, 3]*a[5, 5] + a[1, 5]*a[2, 2]*a[3, 4]*a[4, 3]*a[5, 1] + a[1, 1]*a[2, 4]*a[3, 5]*a[4, 2]*a[5, 3] + a[1, 3]*a[2, 1]*a[3, 5]*a[4, 2]*a[5, 4] + a[1, 4]*a[2, 3]*a[3, 1]*a[4, 5]*a[5, 2] + a[1, 2]*a[2, 4]*a[3, 3]*a[4, 1]*a[5, 5] + a[1, 1]*a[2, 2]*a[3, 5]*a[4, 3]*a[5, 4] + a[1, 4]*a[2, 5]*a[3, 1]*a[4, 2]*a[5, 3] + a[1, 5]*a[2, 2]*a[3, 1]*a[4, 4]*a[5, 3] + a[1, 5]*a[2, 3]*a[3, 2]*a[4, 4]*a[5, 1] + a[1, 3]*a[2, 5]*a[3, 2]*a[4, 1]*a[5, 4] + a[1, 2]*a[2, 5]*a[3, 4]*a[4, 1]*a[5, 3] + a[1, 4]*a[2, 1]*a[3, 3]*a[4, 2]*a[5, 5] + a[1, 2]*a[2, 3]*a[3, 4]*a[4, 5]*a[5, 1] + a[1, 2]*a[2, 5]*a[3, 3]*a[4, 4]*a[5, 1] + a[1, 3]*a[2, 5]*a[3, 4]*a[4, 2]*a[5, 1] + a[1, 1]*a[2, 3]*a[3, 2]*a[4, 5]*a[5, 4] + a[1, 4]*a[2, 2]*a[3, 3]*a[4, 5]*a[5, 1] + a[1, 5]*a[2, 3]*a[3, 4]*a[4, 1]*a[5, 2] + a[1, 3]*a[2, 2]*a[3, 5]*a[4, 4]*a[5, 1] + a[1, 1]*a[2, 5]*a[3, 2]*a[4, 4]*a[5, 3] + a[1, 5]*a[2, 4]*a[3, 3]*a[4, 2]*a[5, 1] - a[1, 1]*a[2, 2]*a[3, 3]*a[4, 5]*a[5, 4] - a[1, 4]*a[2, 2]*a[3, 5]*a[4, 3]*a[5, 1] - a[1, 3]*a[2, 2]*a[3, 4]*a[4, 5]*a[5, 1] - a[1, 2]*a[2, 5]*a[3, 4]*a[4, 3]*a[5, 1] - a[1, 2]*a[2, 1]*a[3, 5]*a[4, 3]*a[5, 4] - a[1, 4]*a[2, 1]*a[3, 2]*a[4, 3]*a[5, 5] - a[1, 3]*a[2, 1]*a[3, 4]*a[4, 2]*a[5, 5] - a[1, 5]*a[2, 2]*a[3, 3]*a[4, 4]*a[5, 1] - a[1, 5]*a[2, 2]*a[3, 1]*a[4, 3]*a[5, 4] - a[1, 3]*a[2, 2]*a[3, 5]*a[4, 1]*a[5, 4] - a[1, 4]*a[2, 1]*a[3, 5]*a[4, 2]*a[5, 3] - a[1, 5]*a[2, 1]*a[3, 3]*a[4, 2]*a[5, 4] - a[1, 4]*a[2, 2]*a[3, 3]*a[4, 1]*a[5, 5] - a[1, 1]*a[2, 4]*a[3, 2]*a[4, 5]*a[5, 3] - a[1, 1]*a[2, 5]*a[3, 4]*a[4, 2]*a[5, 3] - a[1, 3]*a[2, 4]*a[3, 5]*a[4, 2]*a[5, 1] - a[1, 5]*a[2, 3]*a[3, 1]*a[4, 4]*a[5, 2] - a[1, 1]*a[2, 3]*a[3, 4]*a[4, 5]*a[5, 2] - a[1, 2]*a[2, 1]*a[3, 3]*a[4, 4]*a[5, 5] - a[1, 1]*a[2, 5]*a[3, 2]*a[4, 3]*a[5, 4] - a[1, 3]*a[2, 4]*a[3, 2]*a[4, 1]*a[5, 5] - a[1, 1]*a[2, 4]*a[3, 3]*a[4, 2]*a[5, 5] - a[1, 5]*a[2, 3]*a[3, 2]*a[4, 1]*a[5, 4] - a[1, 5]*a[2, 1]*a[3, 2]*a[4, 4]*a[5, 3] - a[1, 5]*a[2, 4]*a[3, 2]*a[4, 3]*a[5, 1] - a[1, 1]*a[2, 3]*a[3, 2]*a[4, 4]*a[5, 5] - a[1, 2]*a[2, 4]*a[3, 5]*a[4, 1]*a[5, 3] - a[1, 4]*a[2, 5]*a[3, 3]*a[4, 2]*a[5, 1] - a[1, 5]*a[2, 4]*a[3, 1]*a[4, 2]*a[5, 3] - a[1, 1]*a[2, 2]*a[3, 4]*a[4, 3]*a[5, 5] - a[1, 4]*a[2, 5]*a[3, 1]*a[4, 3]*a[5, 2] - a[1, 4]*a[2, 3]*a[3, 1]*a[4, 2]*a[5, 5] - a[1, 3]*a[2, 1]*a[3, 2]*a[4, 5]*a[5, 4] - a[1, 5]*a[2, 4]*a[3, 3]*a[4, 1]*a[5, 2] - a[1, 3]*a[2, 5]*a[3, 4]*a[4, 1]*a[5, 2] - a[1, 3]*a[2, 5]*a[3, 2]*a[4, 4]*a[5, 1] - a[1, 3]*a[2, 1]*a[3, 5]*a[4, 4]*a[5, 2] - a[1, 2]*a[2, 3]*a[3, 5]*a[4, 4]*a[5, 1] - a[1, 2]*a[2, 5]*a[3, 1]*a[4, 4]*a[5, 3] - a[1, 3]*a[2, 5]*a[3, 1]*a[4, 2]*a[5, 4] - a[1, 4]*a[2, 3]*a[3, 5]*a[4, 1]*a[5, 2] - a[1, 4]*a[2, 2]*a[3, 1]*a[4, 5]*a[5, 3] - a[1, 4]*a[2, 5]*a[3, 2]*a[4, 1]*a[5, 3] - a[1, 2]*a[2, 3]*a[3, 1]*a[4, 5]*a[5, 4] - a[1, 1]*a[2, 5]*a[3, 3]*a[4, 4]*a[5, 2] - a[1, 4]*a[2, 3]*a[3, 2]*a[4, 5]*a[5, 1] - a[1, 2]*a[2, 1]*a[3, 4]*a[4, 5]*a[5, 3] - a[1, 3]*a[2, 4]*a[3, 1]*a[4, 5]*a[5, 2] - a[1, 5]*a[2, 3]*a[3, 4]*a[4, 2]*a[5, 1] - a[1, 2]*a[2, 4]*a[3, 1]*a[4, 3]*a[5, 5] - a[1, 1]*a[2, 3]*a[3, 5]*a[4, 2]*a[5, 4] - a[1, 5]*a[2, 2]*a[3, 4]*a[4, 1]*a[5, 3] - a[1, 4]*a[2, 1]*a[3, 3]*a[4, 5]*a[5, 2] - a[1, 1]*a[2, 4]*a[3, 5]*a[4, 3]*a[5, 2] - a[1, 1]*a[2, 2]*a[3, 5]*a[4, 4]*a[5, 3] - a[1, 2]*a[2, 4]*a[3, 3]*a[4, 5]*a[5, 1] - a[1, 2]*a[2, 3]*a[3, 4]*a[4, 1]*a[5, 5] - a[1, 5]*a[2, 1]*a[3, 4]*a[4, 3]*a[5, 2] - a[1, 2]*a[2, 5]*a[3, 3]*a[4, 1]*a[5, 4] - a[1, 3]*a[2, 2]*a[3, 1]*a[4, 4]*a[5, 5]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "expand(det(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In fact, the number of terms in these formulas **increases faster than exponentially** with $n$, as we shall see. If we want to use determinants at all, we want a better way to think about them (and compute them) if possible." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{c}\n", + "a \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "1-element Vector{Num}:\n", + " a" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@variables a # make this back to an ordinary scalar variable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Expectation: Singular = Zero determinant\n", + "\n", + "The property that most students learn about determinants of 2×2 and 3×3 is this: **given a square matrix A, the determinant det(A) is some number that is zero if and only if the matrix is singular**.\n", + "\n", + "For example, the following matrix is not singular, and its determinant (`det(A)` in Julia) is nonzero:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2.0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [1 3\n", + " 2 4]\n", + "det(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(You may even remember the formula for the 2×2 determinant: $1 \\times 4 - 3 \\times 2 = -2$.\n", + "\n", + "But this matrix is singular (the second column is twice the first), and so its determinant is zero:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [1 2\n", + " 2 4]\n", + "det(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* By the way, many authors, including Strang's book, use the abbreviated notation $|A| = \\det A$. I won't use this notation here, mainly because I don't think the determinant is important enough anymore to deserve its own punctuation. Anyway, $|A|$ looks too much like an absolute value, even though the determinant can have any sign. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A lucky guess for the determinant\n", + "\n", + "In 18.06, we know have another way to check whether a matrix is zero: perform Gaussian elimination, and then **check whether any pivots (diagonal entries of U) are zero**.\n", + "\n", + "But this gives us an obvious way to construct a single determinant-like number: **just multiply the pivots together**, and the result will be zero if and only if the matrix is singular.\n", + "\n", + "In fact, this intuition turns out to be *almost* exactly the right guess:\n", + "\n", + "* The **determinant is ± the product of the pivots**, with a minus sign if elimination involved an *odd* number of row swaps and a plus sign if there were an *even* number of swaps (including zero swaps)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check it for a random matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.225997606151304" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = randn(5,5)\n", + "det(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " -0.767285 -0.229022 0.124838 0.427701 0.35248\n", + " 0.0 -0.749302 1.04241 2.72733 0.929833\n", + " 0.0 0.0 -0.567867 -2.57839 -1.36299\n", + " 0.0 0.0 0.0 7.0929 7.13283\n", + " 0.0 0.0 0.0 0.0 -1.82493" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L,U = lu(A, NoPivot()) # LU without row swaps\n", + "U" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.225997606151305" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prod(diag(U)) # the product of the diagonal elements of U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that this matches `det(A)` (up to roundoff errors in the last few digits)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This immediately gives you a hint of why the determinant is not such a useful computational tool as you might have thought:\n", + "\n", + "* The most efficient way to compute a determinant, in general, is to do Gaussian elimination and then multiply the pivots together.\n", + "\n", + "* Once you have done elimination, you *already* know whether the matrix is singular and you can *already* solve $Ax=b$ efficiently, so the determinant is mostly superfluous.\n", + "\n", + "We'll discuss some actual determinant applications later.\n", + "\n", + "Although we *could* use the \"product of the pivots\" as the definition of the determinant (at least for matrices), it is more typical to **build up the definition of the determinant from more basic properties**, and to get the product of the pivots as a *consequence*. We will do that now." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Defining properties of the determinant\n", + "\n", + "The following three properties are actually sufficient to *uniquely define* the determinant of any matrix, and are taken from [Strang's Introduction to Linear Algebra](http://math.mit.edu/~gs/linearalgebra/), section 5.1.\n", + "\n", + "Therefore, we don't *derive* these properties: they are [axioms](https://en.wikipedia.org/wiki/Axiom) that serve to define the determinant operation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. det(I) = 1\n", + "\n", + "It is clear that the identity matrix $I$ is not singular, and all its pivots are 1. A reasonable starting point for defining determinants, therefore, is to require:\n", + "\n", + "* $\\det I = 1$ for any $m \\times m$ identity matrix I (any $m$).\n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Diagonal{Int64, Vector{Int64}}:\n", + " 1 ⋅ ⋅ ⋅ ⋅\n", + " ⋅ 1 ⋅ ⋅ ⋅\n", + " ⋅ ⋅ 1 ⋅ ⋅\n", + " ⋅ ⋅ ⋅ 1 ⋅\n", + " ⋅ ⋅ ⋅ ⋅ 1" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I₅ = I(5) * 1" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(I₅)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Sign flips under row exchange\n", + "\n", + "The second key property is:\n", + "\n", + "* If you **swap two rows** in a matrix, the **determinant flips sign**.\n", + "\n", + "It's easy to see this for the high-school $2\\times 2$ matrix formula:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "a 🍌 - b 🍎\n", + "\\end{equation}\n" + ], + "text/plain": [ + "a*🍌 - b*🍎" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det([a b\n", + " 🍎 🍌])" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "b 🍎 - a 🍌\n", + "\\end{equation}\n" + ], + "text/plain": [ + "b*🍎 - a*🍌" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det([🍎 🍌\n", + " a b])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or for the identity matrix, where swapping the first two rows gives a determinant $-1$:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 0 1 0 0 0\n", + " 1 0 0 0 0\n", + " 0 0 1 0 0\n", + " 0 0 0 1 0\n", + " 0 0 0 0 1" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I₅_swapped = I₅[ [2,1,3,4,5], : ]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-1.0" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(I₅_swapped)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As another example, let's try it with a random $5 \\times 5$ matrix $A$:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 1 -2 -1 1 -1\n", + " 1 1 1 3 3\n", + " -1 2 -1 3 3\n", + " 2 -2 -1 2 1\n", + " -2 0 -2 -2 0" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(-3:3, 5,5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Swapping the first two rows gives the matrix $B$:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 1 1 1 3 3\n", + " 1 -2 -1 1 -1\n", + " -1 2 -1 3 3\n", + " 2 -2 -1 2 1\n", + " -2 0 -2 -2 0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = A[ [2,1,3,4,5], : ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hence the determinants are equal and opposite:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(24.0, -24.0)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A), det(B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(Up to roundoff errors, of course.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Linearity in any individual row\n", + "\n", + "The determinant will *not* be a linear operation on the whole matrix: $\\det(A+B) \\ne \\det A + \\det B$!! But, we *would* like it to be linear with respect to **operations on individual rows**.\n", + "\n", + "This means two things:\n", + "\n", + "### Scaling rows\n", + "\n", + "* If we **multiply a row by a scalar α**, then the **determinant multiplies by α**.\n", + "\n", + "This axiom actually makes a lot of sense if you think about the example of the identity matrix. Multiplying the first row of $I$ by $\\alpha$ leads to the matrix:\n", + "\n", + "$$\n", + "\\begin{pmatrix}\n", + "\\alpha & 0 & 0 & 0 & \\cdots \\\\\n", + " 0 & 1 & 0 & 0 & \\cdots \\\\\n", + " 0 & 0 & 1 & 0 & \\cdots \\\\\n", + " 0 & 0 & 0 & 1 & \\cdots \\\\\n", + " \\vdots & \\vdots & \\vdots & \\vdots & \\ddots \\\\\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "The determinant of this matrix is exactly $\\alpha$! As $\\alpha \\to 0$, this matrix becomes singular, and the determinant goes to zero at the same rate. It is also consistent with our \"product of the pivots\" intuitive guess above, because the pivots here are $(\\alpha, 1, 1, \\cdots)$.\n", + "\n", + "\n", + "We can also try this with our random matrix $A$ from above. Let's multiply the second row by 2:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 1 -2 -1 1 -1\n", + " 2 2 2 6 6\n", + " -1 2 -1 3 3\n", + " 2 -2 -1 2 1\n", + " -2 0 -2 -2 0" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C = copy(A)\n", + "C[2,:] = 2*A[2,:]\n", + "C" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(24.0, 48.0)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A), det(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the determinant doubles.\n", + "\n", + "As a consequence of this, if you multiply an *entire* $m\\times m$ matrix $A$ by $\\alpha$, we obtain:\n", + "\n", + "* $\\det(\\alpha A) = \\alpha^m \\det A$\n", + "\n", + "This is *not* an axiom, it is a *consequence* of the axiom above: we pick up a factor of $\\alpha$ for each row that we scale.\n", + "\n", + "For our $5 \\times 5$ matrix $A$, this means that $\\det(2A) = 2^5 \\det A = 32 \\det A$:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "32.0" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(2A) / det(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we think back to our high-school formulas, this is consistent — the determinant terms each had exactly **one factor from each row**. So, if we multiply any row by $\\alpha$, then the determinant multiples by $\\alpha$, and if we multiply *all* of the rows by $\\alpha$ then we get a factor of $\\alpha^m$. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding a row vector to a row\n", + "\n", + "There is a second property of linearity, corresponding to vector addition:\n", + "\n", + "* If we **add a row vector $r$** to a row of $A$, then the determinant becomes $\\det(A) + \\det(A')$, where $A'$ is the matrix with that row **replaced by** $r$ (with **other rows unchanged**).\n", + "\n", + "This is easier to explain with an example:\n", + "\n", + "$$\n", + "\\det \\begin{pmatrix} a + a' & b + b' \\\\ c & d \\end{pmatrix} =\n", + "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} +\n", + "\\det \\begin{pmatrix} a' & b' \\\\ c & d \\end{pmatrix} \\; .\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or, in terms of our matrix $A$ from above, let's add $(1,2,3,4,5)$ to the first row:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 1 -2 -1 1 -1\n", + " 1 1 1 3 3\n", + " -1 2 -1 3 3\n", + " 2 -2 -1 2 1\n", + " -2 0 -2 -2 0" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 1 2 3 4 5\n", + " 0 0 0 0 0\n", + " 0 0 0 0 0\n", + " 0 0 0 0 0\n", + " 0 0 0 0 0" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[1,0,0,0,0] * [1 2 3 4 5] # = column * row = outer product" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "54.0" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A + [1,0,0,0,0] * [1 2 3 4 5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This should be the same as $\\det A$ plus the determinant of $A$ with the first row replaced by $(1,2,3,4,5)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 1 2 3 4 5\n", + " 1 1 1 3 3\n", + " -1 2 -1 3 3\n", + " 2 -2 -1 2 1\n", + " -2 0 -2 -2 0" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A′ = copy(A)\n", + "A′[1,:] = [1,2,3,4,5] # replace first row\n", + "A′" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "54.0" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A) + det(A′)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, it matches (up to roundoff errors, of course)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Additional properties of determinants\n", + "\n", + "The following properties can be **derived from the above 3**, and are quite useful to know. Again, the numbering follows Strang, section 5.1:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. If two rows are equal, det = 0\n", + "\n", + "It's easy to see why this **follows from property 2**: if we swap two equal rows, the matrix doesn't change, but the determinant must flip sign. But this means:\n", + "\n", + "$$\\det A = -\\det A \\implies \\det A = 0$$\n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det([ 1 2 3 \n", + " 4 5 6\n", + " 1 2 3 ])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This property also makes sense if our expectation is that the determinant is zero for singular matrices: if two rows are equal, the matrix is singular." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Subtracting a multiple of one row from another doesn’t change det\n", + "\n", + "Suppose we take a matrix $A$, and subtract (or add) a multiple of one row from another. For example:\n", + "\n", + "$$\n", + "\\det \\begin{pmatrix} a & b \\\\ c - \\alpha a & d - \\alpha b \\end{pmatrix} =\n", + "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} -\n", + "\\alpha \\det \\begin{pmatrix} a & b \\\\ a & b \\end{pmatrix} =\n", + "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} + 0\n", + "$$\n", + "\n", + "Here, we applied axiom 3 (linearity), and then property 4 (repeated rows).\n", + "\n", + "The same thing happens for *any* size of matrix.\n", + "\n", + "But this is *precisely* the kind of operation that we perform during Gaussian elimination. It has the crucial implications:\n", + "\n", + "* **Elimination operations** on rows **don't change the determinant**.\n", + "\n", + "* **Gaussian elimination without row swaps doesn't change the determinant**.\n", + "\n", + "And, by axiom 2:\n", + "\n", + "* **Gaussian elimination with row swaps** gives the **same determinant** but with **flipped sign for each row swap**.\n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 1.0 -2.0 -1.0 1.0 -1.0\n", + " 0.0 3.0 2.0 2.0 4.0\n", + " 0.0 0.0 -2.0 4.0 2.0\n", + " 0.0 0.0 0.0 -2.0 2.22045e-16\n", + " 0.0 0.0 0.0 0.0 2.0" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L, U = lu(A, NoPivot()) # elimination without row swaps\n", + "U" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(24.0, 23.999999999999993)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A), det(U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. A matrix with a row of zeros has det = 0\n", + "\n", + "This is easy to see from axiom 3 (linearity): if we multiply the row of zeros by zero, it doesn't change the matrix but multiplies the determinant by zero, hence:\n", + "\n", + "$$\n", + "0 \\times \\det A = \\det A \\implies \\det A = 0\n", + "$$\n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det([1 2 3\n", + " 4 5 6\n", + " 0 0 0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. If A is triangular then det(A) is the product of the diagonal entries\n", + "\n", + "This is another incredibly useful property. To see this, suppose we have an upper-triangular matrix $U$. Then:\n", + "\n", + "1. Eliminate \"upward\" above the pivots to get a diagonal matrix $D$. This doesn't change the determinant by property 5.\n", + "\n", + "2. Pull out each diagonal element by axiom 3 (linearity) until you get the identity matrix $I$ whose determinant is 1 by axiom 1:\n", + "$$\n", + "\\det \\begin{pmatrix} \\alpha_1 & & & \\\\ & \\alpha_2 & & \\\\ & & \\alpha_3 & \\\\ & & & \\ddots \\end{pmatrix} =\n", + "\\alpha_1 \\det \\begin{pmatrix} 1 & & & \\\\ & \\alpha_2 & & \\\\ & & \\alpha_3 & \\\\ & & & \\ddots \\end{pmatrix} = \\cdots = \\alpha_1 \\alpha_2 \\alpha_3 \\cdots \\det I = \\alpha_1 \\alpha_2 \\alpha_3 \\cdots\n", + "$$\n", + "which is precisely the product of the diagonals.\n", + "\n", + "If we have a zero diagonal entry, we can't eliminate upward above it (we can't divide by the diagonal \"pivot\"). But in that case we end up with a row of zeros after eliminating above the *other* diagonals, and by property 6 we get a zero determinant. So it still matches the product of the diagonal entries.\n", + "\n", + "Similarly for a lower triangular matrix, except that we eliminate \"downward\".\n", + "\n", + "We already saw an example of this earlier, but let's do it again. We got our $U$ matrix from elimination on $A$:" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 1.0 -2.0 -1.0 1.0 -1.0\n", + " 0.0 3.0 2.0 2.0 4.0\n", + " 0.0 0.0 -2.0 4.0 2.0\n", + " 0.0 0.0 0.0 -2.0 2.22045e-16\n", + " 0.0 0.0 0.0 0.0 2.0" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Its diagonal entries are:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 1.0\n", + " 3.0\n", + " -2.0\n", + " -1.9999999999999998\n", + " 1.9999999999999996" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diag(U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The product of these is:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23.999999999999993" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prod(diag(U))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "which matches $\\det U$ (and $\\det A$):" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(23.999999999999993, 24.0)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(U), det(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we *do* need to compute the determinant, this gives us a very practical way to do it: **compute det(A) by taking the product of the pivots after elimination, with a sign flip for every row swap**, i.e.\n", + "\n", + "$$\n", + "\\boxed{\\det A = (-1)^\\mbox{# row swaps} \\times \\mbox{(product of pivots)} } \\, .\n", + "$$\n", + "\n", + "This is, in fact *exactly* what the Julia `det` function does, as you can check by looking at the source code:" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "det(A::AbstractMatrix{T}) where T in LinearAlgebra at /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/generic.jl:1544" + ], + "text/plain": [ + "det(A::AbstractMatrix{T}) where T in LinearAlgebra at /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/generic.jl:1544" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@which det(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "det(A::UpperTriangular) in LinearAlgebra at /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/triangular.jl:2637" + ], + "text/plain": [ + "det(A::UpperTriangular) in LinearAlgebra at /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/triangular.jl:2637" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@which det(UpperTriangular(U))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the source code, this calls `det(lufact(A))`, which calls:" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "ename": "LoadError", + "evalue": "UndefVarError: lufact not defined", + "output_type": "error", + "traceback": [ + "UndefVarError: lufact not defined", + "", + "Stacktrace:", + " [1] top-level scope", + " @ In[45]:1", + " [2] eval", + " @ ./boot.jl:368 [inlined]", + " [3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)", + " @ Base ./loading.jl:1428" + ] + } + ], + "source": [ + "@which det(lufact(A))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 8. det(A) = 0 if and only if A is singular\n", + "\n", + "This follows from property 7. Since the determinant is ± the product of the pivots, we get zero if and only if there is a zero pivot, corresponding to a singular matrix." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 9. det(AB) = det(A) det(B)\n", + "\n", + "This is an amazing property of determinants, and probably the least obvious.\n", + "\n", + "A nice way to show this (from Strang's book) is simply to check that $$\\det(AB)/\\det(B)$$ **satisfies axioms 1,2,3 for A**. If it does, then it must be $\\det A$, and we are done! Let's check:\n", + "\n", + "1. Identity: If $A=I$, then $\\det(AB)/\\det(B) = \\det(B)/\\det(B) = 1$. ✓\n", + "2. Swaps: If we swap two rows of $A$, we also swap the *same* two rows of $AB$, hence $\\det(AB)/\\det(B)$ flips sign. ✓\n", + "3. Linearity:\n", + " - Scaling a row of $A$ by $\\alpha$ scales a row of $AB$ by $\\alpha$, which scales $\\det(AB)/\\det(B)$ by $\\alpha$. ✓\n", + " - Adding a row of $A$ to a row of $A'$ (with other rows the same) adds the same rows of $AB$ and $A'B$, so it adds $\\det(AB)/\\det(B)$ and $\\det(A'B)/\\det(B)$. ✓\n", + "\n", + "Let's try it:" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Int64}:\n", + " 3 2 -2 -2 3\n", + " -3 3 2 -1 -3\n", + " -1 0 -3 -1 -3\n", + " -2 2 1 1 3\n", + " 0 3 0 1 1" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = rand(-3:3, 5,5)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(24.0, 700.0)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A), det(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(16799.999999999996, 16800.0)" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A*B), det(A)*det(B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matrix inverses\n", + "\n", + "This rule has important consequences for matrix inverses. First:\n", + "\n", + "$$\\det (A^{-1}) = 1 / \\det(A)$$\n", + "\n", + "Proof: $1 = \\det(I) = \\det(A A^{-1}) = \\det(A) \\det(A^{-1})$.\n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.04166666666666666, 0.041666666666666664)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(inv(A)), 1/det(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall from last lecture that $X A X^{-1}$ corresponds simply to a **change of basis** from $A$. (We will later call this a **similar matrix** to $A$). Now we know:\n", + "\n", + "$$\n", + "\\det(X A X^{-1}) = \\det(X) \\det(A) \\det(X^{-1}) = \\det(A) \\; .\n", + "$$\n", + "\n", + "That is, a **change of basis doesn't change the determinant**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 10. det(Aᵀ) = det(A)\n", + "\n", + "This is another non-obvious, but very important, property of determinants. It is relatively easy to see from properties 7 and 9, however.\n", + "\n", + "In particular, factorize $PA = LU$, or $A = P^T L U \\implies A^T = U^T L^T P$. Then, from property 9:\n", + "\n", + "$$\n", + "\\det(A^T) = \\det(U^T) \\det(L) \\det(P) = \\det(U^T) \\det(P) = \\det(P) \\times \\mbox{(product of pivots)} \\; ,\n", + "$$\n", + "\n", + "where we have used the fact that $\\det L^T = 1$ since $L^T$ is *upper* triangular and the diagonal entries of $L^T$ are all 1's, while $\\det U^T$ is the determinant of a *lower* triangular matrix with the pivots on the diagonal.\n", + "\n", + "But we also have that the permutation $P$ is formed by taking the identity matrix $I$ and swapping rows (for each rows wap during elimination), so\n", + "\n", + "$$\n", + "\\det P = (-1)^\\mbox{# row swaps}\n", + "$$\n", + "\n", + "So:\n", + "\n", + "$$\n", + "\\det(A^T) = (-1)^\\mbox{# row swaps} \\times \\mbox{(product of pivots)}\n", + "$$\n", + "\n", + "which is exactly the same as $\\det A$ from earlier." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(24.0, 23.99999999999999)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(A), det(A')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Useful applications of determinants\n", + "\n", + "Ignoring formulas (e.g. Cramer's rule, a formula for $A^{-1}$ — see Strang, section 5.3) that are mainly useful for tiny matrices, here are some examples of real usages of determinants **even for large matrices**:\n", + "\n", + "* Understanding **eigenvalues**: determinants will turn eigenvalues into polynomial roots, and since we know about polynomial roots, that tells us a lot about eigenvalues. (This is *not* how eigenvalues are *computed* in practice, however!)\n", + "\n", + " - There is also something called a [nonlinear eigenproblem](https://en.wikipedia.org/wiki/Nonlinear_eigenproblem), arising in many science and engineering problems, in which the determinant plays a basic conceptual role. Again, however, computational methods typically avoid computing determinants explicitly except for tiny matrices.\n", + "\n", + "* Proofs: Determinants show up in a lot of proofs in matrix theory, because they reduce matrices to numbers that have nice properties and are easy to reason about. One also often sees things like the [adjugate matrix](https://en.wikipedia.org/wiki/Adjugate_matrix) and the [Cayley–Hamilton theorem](https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem), both related to determinants.\n", + "\n", + " - That is, we often use determinants to help use understand and derive things in linear algebra, even if the final result doesn't require us to *compute* the determinant for any practical purpose.\n", + "\n", + "* [Jacobian factors](https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant): in multivariable calculus, a factor of $|\\det J|$ arises when you perform a *change of variables* in integration, where $J$ is a Jacobian matrix.\n", + "\n", + " - The reason a determinant arises here is that, more generally, **det(A) is the volume of a parallelepiped** (\"box\") whose edges are given by the columns of $A$.\n", + " \n", + " - Integration may sound like something that only happens in a few dimensions (= tiny matrices J), but extremely high dimensional (even infinite-dimensional) integrals appear in statistics, quantum field theory, bioinformatics, and other fields.\n", + "\n", + "* High-dimensional [Gaussian integrals](https://en.wikipedia.org/wiki/Gaussian_integral) often arise in **statistics** and related areas of science (e.g. [quantum field theory](https://en.wikipedia.org/wiki/Common_integrals_in_quantum_field_theory)), and the inverse of the square root of a determinant appears in the answer. Often, one wants the logarithm of the result, in which case what arises is the **log determinant** $\\log \\det A$, an important matrix function.\n", + "\n", + "This is no doubt an incomplete list. Nevertheless, although determinants are a much more marginal topic in modern linear algebra than they were in the 19th century, they have hardly disappeared." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A “Simple” But Horrible Formula\n", + "\n", + "You probably learned a neat formula for the determinant of a $2\\times2$ matrix at some point:\n", + "\n", + "$$\n", + "\\det \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} = ad - bc \\;\n", + "$$\n", + "\n", + "You might have even learned a formula for $3\\times3$ matrices. You might be hoping, therefore, that there would be an extension of this \"nice\" formula (which seems a lot easier than doing elimination to get pivots) to arbitrary matrices. There is!\n", + "\n", + "Here it is (see Strang, section 5.2):\n", + "\n", + "$$\n", + "\\det A = \\sum_{\\mbox{permutations }p} \\operatorname{sign}(p) \\times (\\mbox{product of diagonals of }A\\mbox{ with columns permuted by }p)\n", + "$$\n", + "\n", + "The important thing to know is that you have to consider **all permutations (re-orderings)** of $(1,2,3,\\ldots,n)$. (The [sign of the permutation](https://en.wikipedia.org/wiki/Parity_of_a_permutation) corresponds to the number of swaps it involves.) There are $n! = n (n-1)(n-2)\\cdots 1$ (*n factorial*) re-orderings.\n", + "\n", + "That means that this formula requires $\\sim n \\times n!$ scalar operations, which is **worse than exponential** in $n$. This is **far more expensive than elimination** ($\\sim n^3$), making this formula **computationally useless** for $n > 3$.\n", + "\n", + "(There is also *another* computationally useless formula involving [minors and cofactors](https://en.wikipedia.org/wiki/Minor_(linear_algebra)); see Strang, section 5.2.)\n", + "\n", + "The permutation formula is still sometimes useful *conceptually*, however." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/lectures/Diagonalization.ipynb b/notes/Diagonalization.ipynb similarity index 88% rename from lectures/Diagonalization.ipynb rename to notes/Diagonalization.ipynb index 335655fe..46da0e6d 100644 --- a/lectures/Diagonalization.ipynb +++ b/notes/Diagonalization.ipynb @@ -1,5 +1,14 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -52,18 +61,18 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 2.0\n", " 3.0" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -76,18 +85,18 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Int64,2}:\n", + "2×2 Matrix{Int64}:\n", " 1 1\n", " 1 2" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -106,18 +115,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 2.0\n", " -1.0" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -148,18 +157,18 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Int64,1}:\n", + "2-element Vector{Int64}:\n", " 1\n", " -2" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -170,40 +179,40 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Int64,2}:\n", - " 2 0\n", - " 0 3" + "2×2 Diagonal{Int64, Vector{Int64}}:\n", + " 2 ⋅\n", + " ⋅ 3" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Λ = diagm([2, 3])" + "Λ = Diagonal([2, 3])" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 1.0\n", " -2.0" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -214,18 +223,18 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 1.0\n", " -2.0" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -243,18 +252,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 1.0 1.0\n", " -2.0 4.0" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -272,18 +281,18 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Int64,2}:\n", + "2×2 Matrix{Int64}:\n", " 2 3\n", " 2 6" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -294,18 +303,18 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Int64,2}:\n", + "2×2 Matrix{Int64}:\n", " 2 3\n", " 2 6" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -323,18 +332,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 2.0 0.0\n", " 0.0 3.0" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -378,18 +387,18 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.729696 -0.206208\n", - " -0.428817 -0.442029" + "2×2 Matrix{Float64}:\n", + " 0.34504 1.3915\n", + " -0.486365 1.30546" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -400,16 +409,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.4109716876453626" + "1.1272143106064274" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -420,18 +429,18 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.91652 -0.0169923\n", - " 5.32278 3.08348 " + "2×2 Matrix{Float64}:\n", + " 3.08981 0.11279\n", + " -0.867718 1.91019" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -449,18 +458,18 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 2.0\n", - " 3.0" + "2-element Vector{Float64}:\n", + " 1.9999999999999991\n", + " 3.000000000000001" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -486,18 +495,18 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.12909\n", - " -2.18391" + "2-element Vector{ComplexF64}:\n", + " 1.1487471858694138 - 2.3331664678277177im\n", + " 1.1487471858694138 + 2.3331664678277177im" ] }, - "execution_count": 16, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -526,16 +535,16 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(6.0, 6.0)" + "(6.0, 5.999999999999999)" ] }, - "execution_count": 17, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -561,7 +570,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -570,7 +579,7 @@ "6.0" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -588,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -597,7 +606,7 @@ "6" ] }, - "execution_count": 19, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -615,7 +624,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -624,7 +633,7 @@ "6.0" ] }, - "execution_count": 20, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -642,16 +651,16 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-1.2627490150314136e76" + "1.6680449397144425e78" ] }, - "execution_count": 21, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -663,16 +672,16 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-1.262749015031198e76 + 7.852490979230262e59im" + "1.6680449397143506e78 - 1.3679861476883116e62im" ] }, - "execution_count": 22, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -692,36 +701,36 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(175.22975816989447, -1.0)" + "(180.11328949938405, 1.0)" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "logabsdet(Abig) # the log of the absolute value of the determinant" + "logabsdet(Abig) # the log of the absolute value of the determinant, and the sign" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "175.22975816989432" + "180.113289499384" ] }, - "execution_count": 24, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -739,16 +748,16 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Inf" + "-Inf" ] }, - "execution_count": 25, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -760,7 +769,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -769,13 +778,13 @@ "1.7976931348623157e308" ] }, - "execution_count": 26, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "realmax(Float64) # the problem is that there is a maximum value the computer can represent, beyond which it gives \"Inf\"" + "floatmax(Float64) # the problem is that there is a maximum value the computer can represent, beyond which it gives \"Inf\"" ] }, { @@ -787,16 +796,16 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(2950.855728378135, 1.0)" + "(2954.073853516206, -1.0)" ] }, - "execution_count": 27, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -807,16 +816,16 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2950.855728378134" + "2954.0738535162086" ] }, - "execution_count": 28, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -855,7 +864,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -864,13 +873,13 @@ "5" ] }, - "execution_count": 29, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "trace(A)" + "tr(A)" ] }, { @@ -882,7 +891,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -891,7 +900,7 @@ "5" ] }, - "execution_count": 30, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -902,7 +911,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -911,7 +920,7 @@ "5.0" ] }, - "execution_count": 31, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -929,36 +938,36 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.6034577642755576" + "4.625235324319982" ] }, - "execution_count": 32, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "trace(Abig)" + "tr(Abig)" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.6034577642752184 + 0.0im" + "4.625235324319927 + 1.2434497875801753e-14im" ] }, - "execution_count": 33, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -990,40 +999,41 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Int64,2}:\n", + "2×2 Matrix{Int64}:\n", " 1 1\n", " -2 4" ] }, - "execution_count": 34, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "A" + "A = [1 1\n", + " -2 4]" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 2.0\n", " 3.0" ] }, - "execution_count": 35, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -1041,18 +1051,18 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 16.0\n", " 81.0" ] }, - "execution_count": 36, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -1070,18 +1080,18 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 1.0 1.0\n", " 1.0 2.0" ] }, - "execution_count": 37, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -1100,18 +1110,18 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 1.0 1.0\n", " 1.0 2.0" ] }, - "execution_count": 38, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -1130,18 +1140,18 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.5 \n", - " 0.333333" + "2-element Vector{Float64}:\n", + " 0.33333333333333337\n", + " 0.4999999999999999" ] }, - "execution_count": 39, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1150,6 +1160,15 @@ "eigvals(inv(A))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that a **matrix is invertible if and only if its eigenvalues are all nonzero**.\n", + "\n", + "In fact an eigenvector of $A$ for $\\lambda = 0$ has another name we've already seen: it is a **nonzero** vector in the **nullspace** $N(A)$. Only matrices with $N(A) = \\{\\vec{0}\\}$ (remember, $\\vec{0}$ is not allowed as an eigenvector) are invertible." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1174,18 +1193,18 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.41421\n", - " 1.73205" + "2-element Vector{Float64}:\n", + " 1.4142135623730951\n", + " 1.7320508075688772" ] }, - "execution_count": 40, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1196,62 +1215,62 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.41421 0.0 \n", - " 0.0 1.73205" + "2×2 Diagonal{Float64, Vector{Float64}}:\n", + " 1.41421 ⋅ \n", + " ⋅ 1.73205" ] }, - "execution_count": 41, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diagm(sqrt.(eigvals(A))) # the diagonal matrix √Λ" + "Diagonal(sqrt.(eigvals(A))) # the diagonal matrix √Λ" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 1.09638 0.317837\n", - " -0.635674 2.04989 " + " -0.635674 2.04989" ] }, - "execution_count": 42, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Asqrt = X * diagm(sqrt.(eigvals(A))) / X # the √A matrix" + "Asqrt = X * Diagonal(sqrt.(eigvals(A))) / X # the √A matrix" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 1.0 1.0\n", " -2.0 4.0" ] }, - "execution_count": 43, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -1266,50 +1285,74 @@ "source": [ "Hooray, it squared to $A$ as desired!\n", "\n", - "Julia has a built-in function `sqrtm` to compute the matrix square root for you. (It is more general than our approach above, because it works even for non-diagonalizable matrices.)" + "Julia `sqrt` will compute the matrix square root for you if you give it a square-matrix argument. (It is more general than our approach above, because it works even for non-diagonalizable matrices.)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Complex{Float64},2}:\n", - " 1.09638+0.0im 0.317837+0.0im\n", - " -0.635674+0.0im 2.04989+0.0im" + "2×2 Matrix{Float64}:\n", + " 1.09638 0.317837\n", + " -0.635674 2.04989" ] }, - "execution_count": 44, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sqrtm(A)" + "sqrt(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's double-check that it is the same as we got from an explicit square root of the eigenvalues:" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "true" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sqrt(A) ≈ Asqrt" + ] } ], "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 1.8.0", "language": "julia", - "name": "julia-0.6" + "name": "julia-1.8" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "0.6.3" + "version": "1.8.1" } }, "nbformat": 4, diff --git a/lectures/Eigenvalue-Intro.ipynb b/notes/Eigenvalue-Intro.ipynb similarity index 100% rename from lectures/Eigenvalue-Intro.ipynb rename to notes/Eigenvalue-Intro.ipynb diff --git a/notes/Eigenvalue-Polynomials.ipynb b/notes/Eigenvalue-Polynomials.ipynb new file mode 100644 index 00000000..5ad54ac9 --- /dev/null +++ b/notes/Eigenvalue-Polynomials.ipynb @@ -0,0 +1,1420 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using Polynomials, PyPlot, LinearAlgebra\n", + "# force IJulia to display as LaTeX rather than HTML\n", + "Base.showable(::MIME\"text/html\", ::Polynomial) = false" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Eigenvalues: The Key Idea\n", + "\n", + "If we can find a solution $x \\ne 0$ to\n", + "\n", + "$$\n", + "Ax = \\lambda x\n", + "$$\n", + "\n", + "then, for this vector, the matrix $A$ **acts like a scalar**. $x$ is called an **eigenvector** of $A$, and $\\lambda$ is called an **eigenvalue**.\n", + "\n", + "In fact, for an $m \\times m$ matrix $A$, we typically find $m$ linearly independendent eigenvectors $x_1,x_2,\\ldots,x_m$ and $m$ corresponding eigenvalues $\\lambda_1, \\lambda_2, \\ldots, \\lambda_m$. Such a matrix is called **diagonalizable**. Most matrices are diagonalizable; we will deal with the rare \"defective\" (non-diagonalizable) case later.\n", + "\n", + "Given such a **basis of eigenvectors**, the key idea for using them is:\n", + "\n", + "1. Take any vector $x$ and expand it in this basis: $x = c_1 x_1 + \\cdots c_m x_n$, or $x = Xc$ or $c = X^{-1}x$ where $X$ is the matrix whose *columns are the eigenvectors*.\n", + "\n", + "2. For each eigenvector $x_k$, the matrix $A$ acts like a scalar $\\lambda_k$. Multiplication or division corresponds to multiplying/dividing $x_k$ by $\\lambda_k$. **Solve your problem for each eigenvector by treating A as the scalar λ**.\n", + "\n", + "3. Add up the solution to your problem (sum the basis of the eigenvectors). That is, multiply the new coefficients by $X$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The characteristic polynomial\n", + "\n", + "To *find* the eigenvalues, one approach is to realize that $Ax = \\lambda x$ means:\n", + "\n", + "$$\n", + "(A - \\lambda I) x = 0 \\, ,\n", + "$$\n", + "\n", + "so the matrix $A - \\lambda I$ is **singular for any eigenvalue λ**. This corresponds to the determinant being zero:\n", + "\n", + "$$\n", + "p(\\lambda) = \\det(A - \\lambda I) = 0\n", + "$$\n", + "\n", + "where $p(\\lambda)$ is the **characteristic polynomial of A: a polynomial of degree m** if $A$ is $m \\times m$. The **roots of this polynomial are the eigenvalues λ**.\n", + "\n", + "A polynomial of degree $m$ has at most $m$ roots (possibly complex), and typically has $m$ distinct roots. **This is why most matrices have $m$ distinct eigenvalues/eigenvectors**, and are therefore **diagonalizable**.\n", + "\n", + "For example, let's plot the $\\det(A - \\lambda I)$ for a 4×4 matrix $A$. The result is a *quartic* curve whose roots are the four eigenvalues (computed by the built-in `eigvals` function):" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Vector{Float64}:\n", + " 0.10000000000000009\n", + " 0.1999999999999999\n", + " 0.3999999999999998\n", + " 0.5000000000000001" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# some \"random\" matrix:\n", + "A = [ 0.325 -0.075 0.075 -0.075\n", + " 0.025 0.225 -0.025 -0.275\n", + " 0.15 -0.05 0.25 -0.05 \n", + " -0.1 -0.1 0.1 0.4 ]\n", + "\n", + "λ = eigvals(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(I admit it: $A$ was not chosen at random to have such special eigenvalues.)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHGCAYAAABke8+ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABc4klEQVR4nO3deVxUVf8H8M+wDJuCgooLCLiD5gKoYSqmiVuLlWlZaKWWqbk9/kqzsnp6onrKNrcWtdUlRcsWe8RU3BA3JBXXxF1EXNhUEDi/P053YARGBmbmzvJ5v17zmuFyZvhyGWY+c86552qEEAJEREREVCEntQsgIiIismYMS0REREQGMCwRERERGcCwRERERGQAwxIRERGRAQxLRERERAYwLBEREREZwLBEREREZADDEhEREZEBDEtENuDrr7+GRqPB7t271S7FaGlpaXjjjTdw8uRJszz+G2+8AY1GY9R9rl+/jjfeeAObNm0q9z1lX5ur3pqqzu9rzTQaDd544w2L35fIGAxLRGRWaWlpePPNN80WPkaPHo2kpCSj7nP9+nW8+eabFYalQYMGISkpCY0aNTJRhWRIUlISRo8erXYZRAa5qF0AEVmP69evw9PTU+0yqkSpNSAgAAEBASZ73Pr166N+/fomezwy7O6771a7BKI7Ys8SkRU4fPgwnnjiCfj7+8PNzQ1NmzbFiBEjUFBQoNcuNzcXL7zwAurVqwc/Pz888sgjOH/+vF6b5cuXIyYmBo0aNYKHhwdCQ0Mxffp05Ofn67V7+umnUatWLezfvx8xMTGoXbs2+vTpAwBISEjAQw89hICAALi7u6NFixZ4/vnnkZWVZVTtX3/9NR577DEAwL333guNRgONRoOvv/5ad//169ejT58+8Pb2hqenJ+655x78+eefej9DGXrau3cvhgwZgrp166J58+Z63ytrw4YN6NWrF/z8/ODh4YGmTZvi0UcfxfXr13Hy5EldGHrzzTd1NT399NMAKh+G++OPP9CnTx/4+PjA09MToaGhiIuLq+xPqvdYCQkJeOaZZ+Dr6wsvLy888MADOHHiRLn2ixYtQocOHeDu7g5fX188/PDDOHTokMGfMWrUKPj6+uL69evlvte7d2+0bdtW97VGo8GECRPw3XffITQ0FJ6enujQoQN+/fXXcvfdunUr+vTpg9q1a8PT0xPdunXDb7/9VuHvt2HDBowZMwZ+fn7w9vbGiBEjkJ+fj4yMDAwdOhR16tRBo0aNMG3aNNy6dUvvMW4fSrt06RLGjRuHsLAw1KpVCw0aNEDv3r2xZcsWg/uByJwYlohUlpqais6dO2PHjh146623sHbtWsTFxaGgoACFhYV6bUePHg1XV1csWbIE77//PjZt2oSnnnpKr82xY8cwcOBALFy4EH/88QcmT56MH3/8EQ888EC5n11YWIgHH3wQvXv3xs8//4w333wTAPD3338jKioK8+fPx7p16/D6668jOTkZ3bt313uzu1PtgwYNwjvvvAMAmDt3LpKSkpCUlIRBgwYBAL7//nvExMTA29sb33zzDX788Uf4+vqiX79+5QITADzyyCNo0aIFVqxYgQULFlS4P0+ePIlBgwZBq9Vi0aJF+OOPP/Duu+/Cy8sLhYWFaNSoEf744w8AMmgoNb322muV/o0WLlyIgQMHoqSkBAsWLMAvv/yCiRMn4uzZs5Xep6xRo0bByckJS5Yswccff4ydO3eiV69euHbtmq5NXFwcRo0ahbZt22LVqlX45JNP8NdffyEqKgrHjh2r9LEnTZqEq1evYsmSJXrb09LSsHHjRowfP15v+2+//YY5c+bgrbfeQnx8vC6UlQ1viYmJ6N27N7Kzs7Fw4UIsXboUtWvXxgMPPIDly5eXq2H06NHw8fHBsmXL8Oqrr2LJkiUYM2YMBg0ahA4dOmDlypUYOXIkPvzwQ3z22WcG99WVK1cAALNmzcJvv/2GxYsXo1mzZujVq1eFw6ZEFiGISFW9e/cWderUEZmZmZW2Wbx4sQAgxo0bp7f9/fffFwDEhQsXKrxfSUmJuHXrlkhMTBQARGpqqu57I0eOFADEokWLDNanPMapU6cEAPHzzz8bVfuKFSsEALFx40a97fn5+cLX11c88MADetuLi4tFhw4dRJcuXXTbZs2aJQCI119/vdzjK99TrFy5UgAQ+/btq7SmS5cuCQBi1qxZ5b6n7Ov09HQhhBC5ubnC29tbdO/eXZSUlFT6mBVRHuvhhx/W275t2zYBQLz99ttCCCGuXr0qPDw8xMCBA/XanT59Wri5uYnhw4dX+vsKIUR0dLTo2LGj3rYXXnhBeHt7i9zcXN02AMLf31/k5OTotmVkZAgnJycRFxen23b33XeLBg0a6N23qKhItGvXTgQEBOj2g/L7vfjii3o/e/DgwQKAmD17tt72jh07ivDwcL1tlf0dyv7cW7duiT59+pTbj3e6L5GpsGeJSEXXr19HYmIihg4dWqV5Mg8++KDe1+3btwcAnDp1SrftxIkTGD58OBo2bAhnZ2e4uroiOjoaACoc0nn00UfLbcvMzMTYsWMRGBgIFxcXuLq6IigoSO8xjK39dtu3b8eVK1cwcuRIFBUV6S4lJSXo378/du3aVW7osKJab9exY0dotVo899xz+Oabbyoc7jK2zpycHIwbN67aR6E9+eSTel9369YNQUFB2LhxIwA5yfnGjRu6oUBFYGAgevfuXWEvW1mTJk3Cvn37sG3bNgBATk4OvvvuO4wcORK1atXSa3vvvfeidu3auq/9/f3RoEED3XMoPz8fycnJGDJkiN59nZ2dERsbi7Nnz+LIkSN6j3n//ffrfR0aGgoAuh7EstvLPlcrs2DBAoSHh8Pd3V33/Pvzzz/vOCRJZC4MS0Qqunr1KoqLi6s8QdnPz0/vazc3NwDAjRs3AAB5eXno0aMHkpOT8fbbb2PTpk3YtWsXVq1apddO4enpCW9vb71tJSUliImJwapVq/DSSy/hzz//xM6dO7Fjxw69xzC29ttdvHgRADBkyBC4urrqXd577z0IIXRDMoqqHKHWvHlzrF+/Hg0aNMD48ePRvHlzNG/eHJ988km16rx06RIA1GgSecOGDSvcdvnyZQDQXVf0+zVu3Fj3/co89NBDCA4Oxty5cwHIuUT5+fnlhuCA8s8hQD6Pyv5dhRCV1lK2XoWvr6/e11qtttLtN2/eNPi7zJ49Gy+88AK6du2K+Ph47NixA7t27UL//v3LPX+JLIVHwxGpyNfXF87OzlWe+3InGzZswPnz57Fp0yZdbxIAvbkxZVXUU3LgwAGkpqbi66+/xsiRI3Xbjx8/btLa69WrBwD47LPPKj0iyt/f/471VqRHjx7o0aMHiouLsXv3bnz22WeYPHky/P398fjjjxtVp9JrVpO/UUZGRoXbWrRoAaA0wFy4cKFcu/Pnz+v2VWWcnJwwfvx4vPLKK/jwww8xb9489OnTB61btza61rp168LJyanSWgDcsZ6a+P7779GrVy/Mnz9fb3tubq7ZfibRnbBniUhFHh4eiI6OxooVKyo80sxYSphQepwUn3/+uckfo6q13977pbjnnntQp04dpKWlITIyssKL0kNRXc7Ozujatauux2Xv3r0Ga6pIt27d4OPjgwULFkAIUa06fvjhB72vt2/fjlOnTqFXr14AgKioKHh4eOD777/Xa3f27Fls2LBBd5SiIaNHj4ZWq8WTTz6JI0eOYMKECdWq1cvLC127dsWqVav09k9JSQm+//57BAQEoFWrVtV67KrQaDTlnnt//fWX0WtpEZkSe5aIVDZ79mx0794dXbt2xfTp09GiRQtcvHgRa9asweeff643v+ROunXrhrp162Ls2LGYNWsWXF1d8cMPPyA1NbXKj9GmTRs0b94c06dPhxACvr6++OWXX5CQkFCt2tu1awcA+OKLL1C7dm24u7sjJCQEfn5++OyzzzBy5EhcuXIFQ4YMQYMGDXDp0iWkpqbi0qVL5XoXqmLBggXYsGEDBg0ahKZNm+LmzZtYtGgRAOC+++4DANSuXRtBQUH4+eef0adPH/j6+qJevXoIDg4u93i1atXChx9+iNGjR+O+++7DmDFj4O/vj+PHjyM1NRVz5sy5Y027d+/G6NGj8dhjj+HMmTOYOXMmmjRpgnHjxgEA6tSpg9deew2vvPIKRowYgSeeeAKXL1/Gm2++CXd3d8yaNeuOP6NOnToYMWIE5s+fj6CgoAqPfqyquLg49O3bF/feey+mTZsGrVaLefPm4cCBA1i6dKlZVxC///778e9//xuzZs1CdHQ0jhw5grfeegshISEoKioy288lMoQ9S0Qq69ChA3bu3ImIiAjMmDED/fv3x8svvww3Nzeje1b8/Pzw22+/wdPTE0899RSeffZZ1KpVq8LDvSvj6uqKX375Ba1atcLzzz+PJ554ApmZmVi/fn21ag8JCcHHH3+M1NRU9OrVC507d8Yvv/wCAHjqqaewceNG5OXl4fnnn8d9992HSZMmYe/evVXqTalIx44dUVRUhFmzZmHAgAGIjY3FpUuXsGbNGsTExOjaLVy4EJ6ennjwwQfRuXNng6fNGDVqFH7//XcUFxdj9OjRuP/++/Hxxx+jadOmVapp4cKFKCwsxOOPP46JEyciMjISmzZt0pvTM2PGDHz11VdITU3F4MGDMWHCBLRt2xbbt29Hy5Ytq/Rzhg0bBgB44YUX4ORU/Zf36OhobNiwAV5eXnj66afx+OOPIzs7G2vWrNH9DHOZOXMm/vWvf2HhwoUYNGgQvvrqKyxYsADdu3c3688lMkQjqtuvTEREBn399dd45plnsGvXLkRGRpr95/3rX//C/PnzcebMmQonchNR9XAYjojIxu3YsQNHjx7FvHnz8PzzzzMoEZkYwxIRkY2LioqCp6cn7r//frz99ttql0NkdzgMR0RERGQAJ3gTERERGcCwRERERGQAwxIRERGRAZzgXUMlJSU4f/48ateubdaF2oiIiMh0hBDIzc1F48aN77guGcNSDZ0/fx6BgYFql0FERETVcObMmTueKJthqYaUU1GcOXOm3NnbiYiIyDrl5OQgMDCwSqeUYliqIWXozdvbm2GJiIjIxlRlCg0neBMREREZwLBEREREZADDEhEREZEBDEtEREREBjAsERERERnAsERERERkAMMSERERkQEMS0REREQGMCwRERERGcCwRERERGSA1YSlefPmISQkBO7u7oiIiMCWLVsMtk9MTERERATc3d3RrFkzLFiwoFyb+Ph4hIWFwc3NDWFhYVi9enWljxcXFweNRoPJkyfX9FchIiIiO2IVYWn58uWYPHkyZs6ciZSUFPTo0QMDBgzA6dOnK2yfnp6OgQMHokePHkhJScErr7yCiRMnIj4+XtcmKSkJw4YNQ2xsLFJTUxEbG4uhQ4ciOTm53OPt2rULX3zxBdq3b2+235GIiIhsk0YIIdQuomvXrggPD8f8+fN120JDQzF48GDExcWVa//yyy9jzZo1OHTokG7b2LFjkZqaiqSkJADAsGHDkJOTg7Vr1+ra9O/fH3Xr1sXSpUt12/Ly8hAeHo558+bh7bffRseOHfHxxx9XufacnBz4+PggOzvbtCfSLSkBLlwACguBkBDTPS4REZGtuHwZuHIFaNoUcHMz6UMb8/6tes9SYWEh9uzZg5iYGL3tMTEx2L59e4X3SUpKKte+X79+2L17N27dumWwze2POX78eAwaNAj33XdfleotKChATk6O3sUsvvgCCAgAJk0yz+MTERFZu1WrgFatgEceUbUM1cNSVlYWiouL4e/vr7fd398fGRkZFd4nIyOjwvZFRUXIysoy2KbsYy5btgx79+6tsPeqMnFxcfDx8dFdAgMDq3xfowQHy+uTJ83z+ERERNZOeQ9U3hNVonpYUmg0Gr2vhRDltt2p/e3bDT3mmTNnMGnSJHz//fdwd3evcp0zZsxAdna27nLmzJkq39coZcOS+iOlRERElmclYclF1Z8OoF69enB2di7Xi5SZmVmuZ0jRsGHDCtu7uLjAz8/PYBvlMffs2YPMzExERETovl9cXIzNmzdjzpw5KCgogLOzc7mf7ebmBjcTj5tWKChIXufmAlevAr6+5v+ZRERE1sRKwpLqPUtarRYRERFISEjQ256QkIBu3bpVeJ+oqKhy7detW4fIyEi4uroabKM8Zp8+fbB//37s27dPd4mMjMSTTz6Jffv2VRiULMrDA2jYUN7mUBwRETki5f1P5QOdVO9ZAoCpU6ciNjYWkZGRiIqKwhdffIHTp09j7NixAOTQ17lz5/Dtt98CkEe+zZkzB1OnTsWYMWOQlJSEhQsX6h3lNmnSJPTs2RPvvfceHnroIfz8889Yv349tm7dCgCoXbs22rVrp1eHl5cX/Pz8ym1XTXAwkJEBpKcD4eFqV0NERGQ5N28C58/L244+DAfIw/wvX76Mt956CxcuXEC7du3w+++/I+ifoagLFy7orbkUEhKC33//HVOmTMHcuXPRuHFjfPrpp3j00Ud1bbp164Zly5bh1VdfxWuvvYbmzZtj+fLl6Nq1q8V/v2oLDgZ27GDPEhEROR7lfd/LC/hnio1arGKdJVtmtnWWAGDGDODdd4EJE4DPPjPtYxMREVmzdeuAfv2Atm2BAwdM/vA2tc4SGaCM0bJniYiIHI2VzFcCGJasG9daIiIiR2UlR8IBDEvWTXmCpKdzrSUiInIs6enymmGJDGraVF7n58vz4xARETkK9ixRlbi7A40aydsciiMiIkfCsERVxkneRETkaG7ckOsMApzgTVVQdt4SERGRIzh1Sl7Xrg3UratuLWBYsn48Io6IiBxN2SE4jUbNSgAwLFk/hiUiInI0VjRfCWBYsn4MS0RE5GgYlsgoZSd4c60lIiJyBFa0ejfAsGT9AgPleO3168ClS2pXQ0REZH5WtCAlwLBk/dzcgMaN5W0OxRERkSPgMBwZjfOWiIjIUVy/DmRmytsMS1RlDEtEROQolDWWvL2BOnVULUXBsGQLuIo3ERE5irKTu61gjSWAYck2cBVvIiJyFFY2uRtgWLINHIYjIiJHYWWTuwGGJdtQNixxrSUiIrJnDEtULcpaSzdvlh4hQEREZI8YlqhatFogIEDe5rwlIiKyZ8r7nJWs3g0wLNkOzlsiIiJ7l5cHZGXJ20FB6tZSBsOSrWBYIiIie6essVSnjtWssQQwLNkOhiUiIrJ3VjhfCWBYsh1cmJKIiOxd2QUprQjDkq3gwpRERGTvrHBBSoBhyXYoT5xTp4CSElVLISIiMgsOw1GNBAQATk5AQQFw8aLa1RAREZkewxLViKsr11oiIiL7xrBENaZMeGNYIiIie5OTA1y+LG8zLFG1NW8ur//+W906iIiITE15b6tfH/D2VreW2zAs2RKGJSIislfKe5vyXmdFGJZsCcMSERHZK+W9rVkzdeuoAMOSLVGeQAxLRERkb9izRCahPIEyMoD8fHVrISIiMiWGJTIJX9/SEwvyiDgiIrInJ07Ia4YlqjHOWyIiIntTWAicPi1vMyxRjTEsERGRvVFO5eXpCTRsqHY15TAs2RqGJSIisjdlj4TTaNStpQIMS7aGYYmIiOyNFS8bADAs2R6GJSIisjdWfCQcwLBke5TUffIkUFSkailEREQmwbBEJtWkCaDVyqB09qza1RAREdWcFS8bADAs2R5nZyAkRN7mUBwREdk6IRiWyAw4b4mIiOxFRgZw/Trg5AQEBaldTYUYlmwRwxIREdkL5b0sMFBOM7FCDEu2iGGJiIjshZVP7gYYlmwTwxIREdkLhiUyC2X5gL//lhPjiIiIbBXDEpmFcjRcbi6QlaVuLURERDXBsERm4eEh11sCSg+3JCIiskVWvmwAwLBkuzhviYiIbF1uLnDpkrxtpeeFAxiWbBfDEhER2TrlPczPD/DxUbcWAxiWbBXDEhER2TobmK8EMCzZLoYlIiKydQxLZFYMS0REZOsYlsislIlwFy7Ic+oQERHZGoYlMitf39LJcOnp6tZCRERUHTawbADAsGS7NBoOxRERke26dQs4fVretuJlAwCGJdvGsERERLbq1CmguBhwdwcaNVK7GoMYlmwZwxIREdkq5b2rWTPAybrjiHVXR4YxLBERka2ykcndAMOSbWNYIiIiW8WwRBbRsqW8Tk+XE+WIiIhsxbFj8lp5L7NiDEu2rHFjwNMTKCoCTp5UuxoiIqKqO3pUXrdqpW4dVcCwZMucnEoTufKkIyIisnZFRaXDcAxLZHbKk4xhiYiIbMXJkzIwubsDAQFqV3NHDEu2jj1LRERka5T3rJYtrX7ZAMCKwtK8efMQEhICd3d3REREYMuWLQbbJyYmIiIiAu7u7mjWrBkWLFhQrk18fDzCwsLg5uaGsLAwrF69Wu/78+fPR/v27eHt7Q1vb29ERUVh7dq1Jv29zE7pWVImyhEREVk7G5rcDVhJWFq+fDkmT56MmTNnIiUlBT169MCAAQNwWlkG/Tbp6ekYOHAgevTogZSUFLzyyiuYOHEi4uPjdW2SkpIwbNgwxMbGIjU1FbGxsRg6dCiSk5N1bQICAvDuu+9i9+7d2L17N3r37o2HHnoIBw8eNPvvbDIchiMiIltjQ5O7AUAjhBBqF9G1a1eEh4dj/vz5um2hoaEYPHgw4uLiyrV/+eWXsWbNGhw6dEi3bezYsUhNTUVSUhIAYNiwYcjJydHrKerfvz/q1q2LpUuXVlqLr68v/vvf/2LUqFFVqj0nJwc+Pj7Izs6Gt7d3le5jUpcvA/Xqydv5+fLoOCIiImvWty+wfj2waBHwzDOqlGDM+7fqPUuFhYXYs2cPYmJi9LbHxMRg+/btFd4nKSmpXPt+/fph9+7duPXPekOVtansMYuLi7Fs2TLk5+cjKiqq0noLCgqQk5Ojd1GVnx/g6ytvHz+ubi1ERERVYWM9S6qHpaysLBQXF8Pf319vu7+/PzIyMiq8T0ZGRoXti4qKkJWVZbDN7Y+5f/9+1KpVC25ubhg7dixWr16NsLCwSuuNi4uDj4+P7hIYGFjl39VsOMmbiIhsxY0bgDLNhmHJOBqNRu9rIUS5bXdqf/v2qjxm69atsW/fPuzYsQMvvPACRo4cibS0tEp/7owZM5Cdna27nDlzxvAvZgmc5E1ERLZCWV+pTp3SaSRWzkXtAurVqwdnZ+dyPT6ZmZnleoYUDRs2rLC9i4sL/Pz8DLa5/TG1Wi1atGgBAIiMjMSuXbvwySef4PPPP6/wZ7u5ucHNza3qv6AlcJI3ERHZirLLBhjoFLEmqvcsabVaREREICEhQW97QkICunXrVuF9oqKiyrVft24dIiMj4erqarBNZY+pEEKgoKDA2F9DXQxLRERkK2xsvhJgBT1LADB16lTExsYiMjISUVFR+OKLL3D69GmMHTsWgBz6OnfuHL799lsA8si3OXPmYOrUqRgzZgySkpKwcOFCvaPcJk2ahJ49e+K9997DQw89hJ9//hnr16/H1q1bdW1eeeUVDBgwAIGBgcjNzcWyZcuwadMm/PHHH5bdATXFsERERLaCYal6hg0bhsuXL+Ott97ChQsX0K5dO/z+++8ICgoCAFy4cEFvzaWQkBD8/vvvmDJlCubOnYvGjRvj008/xaOPPqpr061bNyxbtgyvvvoqXnvtNTRv3hzLly9H165ddW0uXryI2NhYXLhwAT4+Pmjfvj3++OMP9O3b13K/vCn8M4yIrCzg6lWgbl116yEiIqqMDYYlq1hnyZapvs6SokkT4Px5IDkZ6NJFvTqIiIgM8fcHMjOBPXuA8HDVyrCpdZbIRDgUR0RE1u7aNRmUAJs51QnAsGQ/GJaIiMjaKUvcNGwI1K6tbi1GYFiyFwxLRERk7WxwvhLAsGQ/uIo3ERFZO4YlUlXZVbw5Z5+IiKyRMgzHsESqaNYMcHIC8vKASs6pR0REpCr2LJGqtFogJETe5lAcERFZGyH0T3ViQxiW7AnnLRERkbW6eBHIzZXng2veXO1qjMKwZE/KzlsiIiKyJsp7U3AwYG0npL8DhiV7wuUDiIjIWtnofCWAYcm+MCwREZG1Ylgiq6A8AY8fB4qL1a2FiIioLIYlsgqBgXIc+NYt4NQptashIiIqZaNHwgEMS/bFyQlo0ULe5iRvIiKyFsXFwN9/y9vsWSLVKU/Cw4fVrYOIiEhx+jRQUCDXBGzaVO1qjMawZG9CQ+X1oUPq1kFERKRIS5PXrVsDzs7q1lINDEv2hmGJiIisjfKepLxH2RiGJXvDsERERNaGYYmsSps28vrSJeDyZXVrISIiAhiWyMp4eZVOnmPvEhERqU0IhiWyQhyKIyIia3HxInDtmlzexgaXDQAYluxTWJi8ZlgiIiK1Ke9FISGAu7u6tVQTw5I9UnqWlEM1iYiI1GLjQ3AAw5J94jAcERFZC+W9SBn1sEEMS/ZICUunTwN5eerWQkREjk0Z5WDPElkVPz+gfn15+8gRdWshIiLHxmE4slociiMiIrVlZwMXLsjbyjqANohhyV4xLBERkdqU96DGjQEfH3VrqQGGJXulTKTjEXFERKQWOxiCAxiW7Bd7loiISG0MS2TVlCfm8eNAYaG6tRARkWNiWCKr1qQJULs2UFwsAxMREZGlMSyRVdNoSo884FAcERFZ2o0bwIkT8rYNL0gJMCzZN85bIiIitRw9CggB1K0LNGigdjU1wrBkz3hCXSIiUkvZITiNRt1aaohhyZ7xhLpERKQWO5mvBDAs2TflCXrkCFBSom4tRETkWBiWyCaEhABarZxkd+qU2tUQEZEjYVgim+DiArRqJW9z3hIREVlKUZGc4A0wLJEN4BFxRERkaenpckFkDw8gKEjtamqMYcneMSwREZGlKe85rVsDTrYfNWz/NyDDeEJdIiKyNOU9x8YXo1QwLNm7sj1LQqhbCxEROQY7mtwNMCzZv9atAWdn4No14Px5tashIiJHcOCAvG7bVt06TIRhyd65uZUeEbd/v7q1EBGR/SsuLh2Gu+sudWsxEYYlR6A8WRmWiIjI3I4fB27eBDw9gWbN1K7GJBiWHAHDEhERWYryXtO2rV0cCQcALjW5861bt5CRkYHr16+jfv368PX1NVVdZErt2slrhiUiIjI35b3GTobggGr0LOXl5eHzzz9Hr1694OPjg+DgYISFhaF+/foICgrCmDFjsGvXLnPUStWlPGEPHZKrqhIREZmLo4eljz76CMHBwfjyyy/Ru3dvrFq1Cvv27cORI0eQlJSEWbNmoaioCH379kX//v1x7Ngxc9VNxggJAby8gIICgH8TIiIyJyUsKaMadsCoYbjt27dj48aNuKuStNilSxc8++yzWLBgARYuXIjExES0bNnSJIVSDTg5ybHjnTvl4Zx2su4FERFZmfx84O+/5W076lkyKiytWLGiSu3c3Nwwbty4ahVEZnLXXTIs7d8PPPaY2tUQEZE9SkuTCyDXrw/4+6tdjcnYxzR1ujMeEUdEROZmh/OVgGocDTd69GhEREQgPDwcHTp0gLu7uznqIlNjWCIiInNjWJKOHj2KFStWIDc3Fy4uLmjTpg3Cw8MRHh6OiIgIdOzYEV5eXuaolWpCeeKeOCHHlPk3IiIiU1NOc+LoYWnz5s0AgGPHjmHPnj3Yu3cv9uzZgzVr1uDatWtwcnJCq1atkMaz3FuX+vWBBg2AzEzg4EGgSxe1KyIiInvDniV9LVu2RMuWLfH444/rtqWnp2P37t1ISUkxSXFkYnfdBfz5p3wyMywREZEpXboEXLwIaDR2cwJdRY1W8L5dSEgIQkJC8BiPtrJOZcMSERGRKSnvLc2a2d1UD5OEpaKiIhw5cgQHDhzQXVavXm2KhyZT4iRvIiIyFzsdggOqEZZOnDiB/fv36wWjo0ePoqioCFqtFqGhoZUuWkkqU/4uygQ8IiIiU7HDlbsVRoWlp556CkuXLoVGo4Gnpyfy8/MxaNAgvP7667jrrrvQsmVLODs7m6tWqqm2beVYcmamvDRooHZFRERkL+y4Z8moRSlXrlyJzz77DHl5eTh//jwmTJiAdevWYdeuXQgKCmJQsnaenkDz5vI2h+KIiMhUSkrkkdYAw9L//d//YcSIEXB3d0etWrXwySefYNu2bdi4cSPCwsLwxx9/mKtOMhWle5RhiYiITCU9Xa7h5+YG2OE5YY0KS//+979Rq1YtvW0RERHYuXMnJk+ejGHDhmH48OG4dOmSSYskE+IkbyIiMjXlPSU0FHAx6YH2VsEk54bTaDSYNGkS0tLSUFBQgDZt2pjiYckcGJaIiMjU7Hi+EmDidZaaNGmC+Ph4/Pbbb6Z8WDIl5Yl88KAcY3biuZSJiKiG7DwsmeWdctCgQeZ4WDKFFi3kmPL16/I8cURERDXFsER2xcUFCAuTt7neEhER1dTNm8CxY/I2w1Ll9u7di8LCQlM8FFmC8mT+6y916yAiItt3+DBQXAzUrQs0bqx2NWZhkrDUuXNnnDx5skaPMW/ePISEhMDd3R0RERHYsmWLwfaJiYmIiIiAu7s7mjVrhgULFpRrEx8fj7CwMLi5uSEsLKzcKVji4uLQuXNn1K5dGw0aNMDgwYNx5MiRGv0eNqFDB3m9b5+qZRARkR1ISZHXHTrIhY/tkEnCkhCiRvdfvnw5Jk+ejJkzZyIlJQU9evTAgAEDcPr06Qrbp6enY+DAgejRowdSUlLwyiuvYOLEiYiPj9e1SUpKwrBhwxAbG4vU1FTExsZi6NChSE5O1rVJTEzE+PHjsWPHDiQkJKCoqAgxMTHIz8+v0e9j9Tp1ktd796pbBxER2T7lvUR5b7FDGlHTpAPAyckJhw8fRqtWrap1/65duyI8PBzz58/XbQsNDcXgwYMRFxdXrv3LL7+MNWvW4NChQ7ptY8eORWpqKpKSkgAAw4YNQ05ODtauXatr079/f9StWxdLly6tsI5Lly6hQYMGSExMRM+ePatUe05ODnx8fJCdnQ1vb+8q3Ud1V68Cvr7y9uXLpbeJiIiM1b07sG0b8O23QGys2tVUmTHv36pP8C4sLMSePXsQExOjtz0mJgbbt2+v8D5JSUnl2vfr1w+7d+/GrVu3DLap7DEBIDs7GwDgayA8FBQUICcnR+9ic+rWBUJC5G0OxRERUXWVlACpqfJ2eLi6tZiR6mEpKysLxcXF8Pf319vu7++PjIyMCu+TkZFRYfuioiJkZWUZbFPZYwohMHXqVHTv3h3tDJwxOS4uDj4+PrpLYGDgHX9Hq6R0lypjzURERMY6fhzIywPc3YHWrdWuxmxUD0sKzW2TwoQQ5bbdqf3t2415zAkTJuCvv/6qdIhOMWPGDGRnZ+suZ86cMdjeajEsERFRTSnvIe3b2+VpThSq/2b16tWDs7NzuR6fzMzMcj1DioYNG1bY3sXFBX5+fgbbVPSYL774ItasWYPNmzcjICDAYL1ubm5wc3O74+9l9RiWiIioppT3EDue3A1YQc+SVqtFREQEEhIS9LYnJCSgW7duFd4nKiqqXPt169YhMjISrq6uBtuUfUwhBCZMmIBVq1Zhw4YNCFHm8TgC5Yl9+LBczZuIiMhYDnAkHGCisDRr1izUq1ev2vefOnUqvvrqKyxatAiHDh3ClClTcPr0aYwdOxaAHPoaMWKErv3YsWNx6tQpTJ06FYcOHcKiRYuwcOFCTJs2Tddm0qRJWLduHd577z0cPnwY7733HtavX4/Jkyfr2owfPx7ff/89lixZgtq1ayMjIwMZGRm4ceNGtX8Xm9GoEdCggZycx8UpiYjIWEI4TM8ShJWYO3euCAoKElqtVoSHh4vExETd90aOHCmio6P12m/atEl06tRJaLVaERwcLObPn1/uMVesWCFat24tXF1dRZs2bUR8fLze9wFUeFm8eHGV687OzhYARHZ2tlG/r1Xo318IQIh589SuhIiIbM2ZM/I9xNlZiOvX1a7GaMa8f5tknSVHZpPrLCleeQWIiwPGjAG++ELtaoiIyJb88gvw4INAu3alJ9K1ITa1zhKpiJO8iYiouhxlCA4MS45NeYLv3w/8s5gnERFRlTAsVc/Vq1exceNGfPTRR6Z8WDKXZs2A2rWBggKgzKljiIiI7shBjoQDarDOUnp6Ovbt26d3OXv2LIQQ8PLywpQpU0xZJ5mDkxPQsSOwZYv8hNC+vdoVERGRLbh8GVBOdt+xo6qlWILRPUvR0dGoU6cOmjdvjmeffRbr169Hw4YNce7cOSxcuBCnTp1Cbm6uOWolc1DO5cN5S0REVFXKeUWbNQPq1FGzEoswOiwlJSVh/PjxOHPmDK5evYpt27bh888/h0ajQZcuXWz3XGmOipO8iYjIWA40XwmoRlhKTk7Gli1bMH78eBw9etQcNZElKU/0ffvkApVERER3wrBkWKdOnbB582YMHToU/fr1w/jx45GZmWmO2sgSQkMBNzcgJwdIT1e7GiIisgUMS1UzfPhwHDx4EHXq1EHbtm1RUlKC4uJiU9ZGluDqKhcUA0qPbCAiIqpMfr48ryjAsFQVnp6e+M9//oPk5GTcf//96NOnDz744APHOLeaPeG8JSIiqqq//pLnhfP3l+cZdQAmWWepWbNm+Pnnn/HDDz9g8eLFaNasmSkeliyFR8QREVFVKe8VynuHA6j2OksV6du3L/766y989tlnpnxYMjf2LBERUVU52HwlwMiepdPKAlQGODs7Y/LkyQCAc+fOVasosrD27eUClRcvAvybERGRIQ60crfCqLDUuXNnjBkzBjt37qy0TXZ2Nr788ku0a9cOq1atqnGBZAGenqWTvHftUrcWIiKyXjduyDlLANCli7q1WJBRw3CHDh3CO++8g/79+8PV1RWRkZFo3Lgx3N3dcfXqVaSlpeHgwYOIjIzEf//7XwwYMMBcdZOpdeki/wF27gQGD1a7GiIiskb79gFFRXJytwMtQm1Uz5Kvry8++OADnD9/HvPnz0erVq2QlZWFY8eOAQCefPJJ7NmzB9u2bWNQsjXKJwQDvYZEROTglPeILl0AjUbdWiyoWhO83d3dERkZicGDB8PJST9vCSFw+vRpNG3a1CQFkoUoYWnXLrmSt5NJDpQkIiJ7UjYsOZBqvyOGhIQgKyur3PYrV64gJCSkRkWRCtq2BTw85ErePI0NERFVhGHJOEKICrfn5eXB3d292gWRSlxcgIgIeZtDcUREdLsrV4Djx+XtyEh1a7Ewo4fhpk6dCgDQaDR4/fXX4enpqftecXExkpOT0bFjR5MVSBbUpQuwdSuQnAyMGKF2NUREZE2UD9ItWwK+vurWYmFGh6WUfxajEkJg//790Gq1uu9ptVp06NAB06ZNM12FZDmc5E1ERJVx0CE4oBphaePGjQCAZ555Bp988gm8vb1NXhSpRPkHSE0Fbt4EOJxKREQKBw5L1Z6ztHjxYgYlexMcDNSrB9y6JQMTERERIE+cy7BUPVu2bMFTTz2FqKgo3alNvvvuO2zdutUkxZGFaTQciiMiovJOnQIuXZIHAzngvORqh6X4+Hj069cPHh4eSElJQUFBAQAgNzcX77zzjskKJAtjWCIiotsp7wkdOjjkFI1qh6W3334bCxYswJdffglXV1fd9m7dumGvcpI9sj0MS0REdDsHHoIDahCWjhw5gp49e5bb7u3tjWvXrtWkJlJT587y+uhR4OpVdWshIiLrwLBUPY0aNcJxZXGqMrZu3YpmzZrVqChSUb16gPL3271b3VqIiEh9RUXAnj3yNsOScZ5//nlMmjQJycnJ0Gg0OH/+PH744QdMmzYN48aNM2WNZGldu8prDsUREVFaGnD9OlC7NtCmjdrVqKJaJ9IFgJdeegnZ2dm49957cfPmTfTs2RNubm6YNm0aJkyYYMoaydK6dAGWLmVYIiKi0veCzp0d9iTr1Q5LAPCf//wHM2fORFpaGkpKShAWFoZatWqZqjZSi9LNmpws19bQaNSth4iI1OPg85UAI8OScl64qpg9e7bRxZCV6NQJcHYGLl4Ezp4FAgPVroiIiNTCsGRcWFLOC6fYs2cPiouL0bp1awDA0aNH4ezsjAjl7PVkmzw8gPbtgZQU+U/CsERE5Jjy84EDB+RthqWqUc4LB8ieo9q1a+Obb75B3bp1AQBXr17FM888gx49epi2SrK8Ll1kWEpOBh59VO1qiIhIDXv3AsXFQOPGQJMmalejmmrP1Prwww8RFxenC0oAULduXbz99tv48MMPTVIcqUg5Im77dnXrICIi9SjvAcp7goOqdljKycnBxYsXy23PzMxEbm5ujYoiK9C9u7zetQu4eVPdWoiISB3btslr5T3BQVU7LD388MN45plnsHLlSpw9exZnz57FypUrMWrUKDzyyCOmrJHU0KIF0KABUFhYuhgZERE5jpIShqV/VDssLViwAIMGDcJTTz2FoKAgBAUF4cknn8SAAQMwb948U9ZIatBogHvukbe3blW3FiIisrzDh4ErV+RBP506qV2Nqqodljw9PTFv3jxcvnwZKSkp2Lt3L65cuYJ58+bBy8vLlDWSWpRPEsonCyIichzKa3/XroCrq7q1qKxGi1ICgJeXF9q3b2+KWsjalA1LJSUOu3IrEZFDUkYVHHwIDqhBzxI5gE6dZPfrlSuyO5aIiByH0rOkTMlwYAxLVDlX19LDRTlviYjIcVy4APz9t5y/GhWldjWqY1giwzhviYjI8Siv+e3bAz4+6tZiBRiWyDAlLLFniYjIcXAITg/DEhl2992yG/bECdktS0RE9o+Tu/UwLJFhPj6yGxbgUBwRkSPIy5PnBgUYlv7BsER3xqE4IiLHsXOnPHluYKC8EMMSVQHDEhGR4+AQXDkMS3RnygS/fftk9ywREdkvhqVyGJbozgIDgaZNZbdscrLa1RARkbkUFQFJSfI2j4TTYViiquFQHBGR/du/X44geHsD7dqpXY3VYFiiqlE+YTAsERHZL+U1vls3wNlZ3VqsCMMSVY3Ss7Rjh+ymJSIi+8PFKCvEsERV07atXHMpL09O9CYiIvsiBLBli7zNsKSHYYmqxtkZ6NlT3t64Ud1aiIjI9I4cAc6fB9zc5NkbSIdhiaqud295/eef6tZBRESmt2GDvO7WDfDwULcWK8OwRFXXp4+83rIFKCxUtxYiIjItJSwpr/Wkw7BEVde2LVC/PnD9ulwOn4iI7ENJSekUC2UUgXQYlqjqnJyAe++Vt5VPIEREZPtSU4ErV4BatYDISLWrsToMS2Qc5RMHwxIRkf1QXtN79gRcXdWtxQoxLJFxlLCUlCSH44iIyPZxvpJBDEtknBYtgIAAOcFbWbyMiIhs161bwObN8jbnK1WIYYmMo9GUfvLgUBwRke3btUsuOOzrC7Rvr3Y1VolhiYzHeUtERPZDeS2/9155IA+Vw71CxlOOiNu9G8jOVrcWIiKqGc5XuiOGJTJeYCDQsqVclyMxUe1qiIioum7cALZvl7c5X6lSDEtUPRyKIyKyfdu3AwUFQOPGQKtWaldjtRiWqHo4yZuIyPYpr+G9e8sDeKhCVhOW5s2bh5CQELi7uyMiIgJbtmwx2D4xMRERERFwd3dHs2bNsGDBgnJt4uPjERYWBjc3N4SFhWH16tV639+8eTMeeOABNG7cGBqNBj/99JMpfyX71quXvN6/H8jMVLUUIiKqJs5XqhKrCEvLly/H5MmTMXPmTKSkpKBHjx4YMGAATp8+XWH79PR0DBw4ED169EBKSgpeeeUVTJw4EfHx8bo2SUlJGDZsGGJjY5GamorY2FgMHToUycnJujb5+fno0KED5syZY/bf0e7Ur196iOmmTaqWQkRE1ZCTI5cNAEoP3KEKaYQQQu0iunbtivDwcMyfP1+3LTQ0FIMHD0ZcXFy59i+//DLWrFmDQ4cO6baNHTsWqampSEpKAgAMGzYMOTk5WLt2ra5N//79UbduXSxdurTcY2o0GqxevRqDBw82qvacnBz4+PggOzsb3t7eRt3X5k2ZAnz8MfDcc8Dnn6tdDRERGePXX4EHHgCaNweOH1e7Gosz5v1b9Z6lwsJC7NmzBzExMXrbY2JisF2ZoX+bpKSkcu379euH3bt349atWwbbVPaYVA1Kt+26dYD6mZuIiIyxbp285hDcHakelrKyslBcXAx/f3+97f7+/sjIyKjwPhkZGRW2LyoqQlZWlsE2lT1mVRUUFCAnJ0fv4rDuvRdwcwNOngQOH1a7GiIiqiohgN9+k7cHDlS3FhugelhSaG6bhS+EKLftTu1v327sY1ZFXFwcfHx8dJfAwMAaPZ5N8/Iqnej9+++qlkJEREY4dgw4cQJwdWXPUhWoHpbq1asHZ2fncj0+mZmZ5XqGFA0bNqywvYuLC/z8/Ay2qewxq2rGjBnIzs7WXc6cOVOjx7N5yicShiUiItuhvGb37AnUqqVuLTZA9bCk1WoRERGBhIQEve0JCQno1q1bhfeJiooq137dunWIjIyEq6urwTaVPWZVubm5wdvbW+/i0AYMkNdbtsgjK4iIyPopYYlDcFWielgCgKlTp+Krr77CokWLcOjQIUyZMgWnT5/G2LFjAcjenBEjRujajx07FqdOncLUqVNx6NAhLFq0CAsXLsS0adN0bSZNmoR169bhvffew+HDh/Hee+9h/fr1mDx5sq5NXl4e9u3bh3379gGQSxLs27ev0iULqAItWwItWgC3bgF//ql2NUREdCf5+aWnqmJYqhphJebOnSuCgoKEVqsV4eHhIjExUfe9kSNHiujoaL32mzZtEp06dRJarVYEBweL+fPnl3vMFStWiNatWwtXV1fRpk0bER8fr/f9jRs3CgDlLiNHjqxy3dnZ2QKAyM7ONur3tSsTJwoBCDF6tNqVEBHRnaxZI1+zQ0KEKClRuxrVGPP+bRXrLNkyh15nSfG//wH9+wNNmgBnznDJfCIia/bCC8CCBcD48YADL8psU+sskR2IjgY8PIBz5+TpT4iIyDoJwflK1cCwRDXn7l566CmPiiMisl5pacDp03KNPGXpF7ojhiUyDS4hQERk/ZRTgN17L+DpqW4tNoRhiUxDWUJg+3bg6lV1ayEioopxCK5aGJbINIKDgbAwoLgYuG19KyIisgI5OXJNPKD0Ay5VCcMSmQ6H4oiIrNf69UBREdCqlVwfj6qMYYlMR/mksnYtUFKibi1ERKSPQ3DVxrBEptO9uzzHUGYmsGeP2tUQEZGipKR0cjeH4IzGsESmo9XKxSkB4KefVC2FiIjK2LkTOH9efqDt2VPtamwOwxKZ1iOPyOv4eLn4GRERqW/VKnl9//1ybTwyCsMSmdagQbKH6cgRufgZERGpSwj5ARYAHn1U3VpsFMMSmZa3N9C3r7yt/HMSEZF6UlOBEyfkaak4X6laGJbI9JRPLgxLRETqU16L+/cHvLzUrcVGMSyR6T34IODsDPz1F3D8uNrVEBE5NiUsKXNKyWgMS2R6fn7yvENA6aRCIiKyvEOH5MXVVU7upmphWCLz4FAcEZH6lNfg++4D6tRRtRRbxrBE5jF4MKDRyLU9zpxRuxoiIsfEo+BMgmGJzKNhQ+Cee+RtDsUREVneiRPAvn1yDulDD6ldjU1jWCLz4VAcEZF6lNfe6GigXj11a7FxDEtkPsqRF1u3AhkZ6tZCRORoeBScyTAskfk0bQp07ixXj+W54oiILOfsWSA5Wd5++GF1a7EDDEtkXmXPFUdERJahzBXt1g1o3FjdWuwAwxKZ12OPyesNG4ALF9SthYjIUfzwg7xWXoOpRhiWyLyaN5efbEpKgCVL1K6GiMj+HTkil21xdgaeeELtauwCwxKZX2ysvP72W3XrICJyBN99J6/79QP8/dWtxU4wLJH5DR0KaLXyXHGpqWpXQ0Rkv0pKSsPSiBHq1mJHGJbI/Hx9gQcekLeVf2IiIjK9LVuA06cBb295UnMyCYYlsgxlKO6HH4CiInVrISKyV8p0h8ceAzw81K3FjjAskWUMGAD4+cnFKf/8U+1qiIjsz40bwIoV8jaH4EyKYYksQ6sFHn9c3uZEbyIi0/v5ZyA3FwgKArp3V7sau8KwRJajfNJZvVr+QxMRkekoH0RjYwEnvr2bEvcmWU7nzkDr1rKrmCt6ExGZTkYGsG6dvK3MESWTYVgiy9FouOYSEZE5LF0KFBcDXbsCrVqpXY3dYVgiy3rqKXm9aZM8vJWIiGqOayuZFcMSWVZQENCrFyAEsHix2tUQEdm+vXuBlBTA1RUYNkztauwSwxJZ3nPPyesvvgBu3VK3FiIiWzdvnrweMkQu0UImx7BElvfII0CDBsD58/JQVyIiqp6rV0tPUj5unLq12DGGJbI8NzdgzBh5W/lERERExvv6a3mEcfv2wD33qF2N3WJYInU8/7xcB2TjRiAtTe1qiIhsT0lJ6QfO8ePlEcdkFgxLpI7AwNKTPLJ3iYjIeAkJwPHj8qS5w4erXY1dc1G7AHJg48cDP/0k11yKiwNq11a7InIUJSXAhQtAejpw8iRw9qyc+3HtWun17QcfODnJN6W6dYE6deS1vz8QEgIEB8sjPbVai/8q5MCUD5pPPw3UqqVqKfaOYYnU07u3XDzt6FHg+++BF15QuyKyR5mZwL598tDqffvk5cQJoLDQtD9HowGaNAHuugvo1Ano2FFeN2vGU0+Q6Z06Bfz6q7zN106zY1gi9Tg5yaM3Jk+Wn5DGjuWYO9XcmTNy0VPlcuJExe2cneVwcEgI0LQp4Osre4yUi5ubfvviYiA7W/Y6KT1Q58+X9k5dvy57qM6eBdauLb1fnTpAz57AvffKNcbat2d4opr7/HPZQ9qnD9CmjdrV2D2NEEKoXYQty8nJgY+PD7Kzs+Ht7a12Obbn2jX5afz6dSAxUb6pEBmjqAjYskUuQ/Hrr8Dff+t/X6MBWrYs7e3p2FG+uQQEAC4m+rwoBHDpkpw/kppa2ou1fz9w86Z+27p1gZgY4KGHgIEDAR8f09RAjqOgQAb9S5eAVauAhx9WuyKbZMz7N8NSDTEsmcBzzwFffgkMHQosX652NWQLCgtl783KlcBvv8leHoWTExAZKXtxevWSh1Or9b9ZVCSD06ZN8sjPLVuAvLzS77u4yBofflg+/+vVU6dOsi3ffy/PsxkQIHs2TRX6HQzDkgUxLJlAaqr8tO/sDBw7JodFiG4nBJCcLM+BtWwZcOVK6ff8/IAHHpBHWPbpo144upOiImDnTmDNGtkTdvhw6fdcXIABA+S5ve6/H3B3V69Osl5CABERMoT/+9/Aq6+qXZHNYliyIIYlE4mJkYfBvvAClxIgfZcvA4sWyd7HY8dKtzdqBDz+uOyV6dZNhm1bc/SoDE3Llsnzeyl8fIAnn5Rz+tq2Va8+sj5r18rhWy8vOcmbpzepNoYlC2JYMpHERDkc4eYmu5UbNVK7IlLbrl0yOC9bVjrvx9NTni4nNlb2INliQKpMWprsNfv+ezlJXBEdLZfZGDxYniiVHFuPHsDWrcC//gV88IHa1dg0hiULYlgyESGA7t2B7duBadOA//5X7YpIDcXFsqfl/fflkJuiUyfZy/L44/a/nkxJCbBhAzB/vtwXxcVye6NGwKRJ8qhRTgp3TJs3y/Cs1coPlY0bq12RTTPm/ZvHr5J10GiAmTPl7fnz5dALOY6CAuCrr4CwMODRR2VQ0mqBp54CkpKAPXuA0aPtPygBcoL6ffcB8fFySYLXXpOLX164AEyfLpc5ePll+TU5lnfekdfPPsugZGEMS2Q9BgyQE73z84FPP1W7GrKEGzeAjz6Sk/rHjJFzeOrUkcH59Gk5LHX33Y67/lZAAPDWW3JffP21DJM5ObLnLThY9jKdOaN2lWQJu3cD//ufHHp+6SW1q3E4DEtkPTQa4JVX5O1PPwVyc9Wth8zn5k3gs8+A5s2BqVNlL0mTJsDs2TIYvP227E0hSasFRo6U6zb9/LOc0F5YKBcmbNECmDBBLpBJ9isuTl4PH84jhlXAsETW5ZFHgNat5WKV8+erXQ2Z2q1b8g2+ZUtg4kQZkpo2Bb74Qq60PWUKzxFoiJOTXB5h27bSgyIKC4G5c+VpVaZMkad3IfuSliYXnwTkUCxZHMMSWRdn59IXg9mz5TAN2T4hgNWrgXbt5NDR2bOyJ2n+fLkcwJgxPAmtsXr2lAtdbtggD44oKAA+/lj2NP3nP3I4m+zDu+/K60cekUOxZHEMS2R9nnxSnsH94kW5tg7Ztu3b5Zv5I4/IOUn16wOffCJPDTJ2LENSTd17rzxK6n//k4sV5ubKhQpbtpST5ouK1K6QauL4cWDJEnlbmaZAFsewRNbH1RWYMUPefustOSRHtufkSeCxx+TpRrZvBzw85Jv48eNyCI4rVJuORiMXdt25U76xBgfLIc4xY+RBE3/+qXaFVF0vvyyXjxg4UIZhUgXDElmnUaOA0FC5hIAysZFsQ34+8Prr8u+3cqWcZzN6tAxJ//639Z6KxB44OQFPPCFPozJ7NuDrCxw8KJciePhhOS+MbMfWrXKukpOTPAKSVMOwRNbJxaV0YcpPPpG9FGTdhACWLgXatJGh6OZNOQE5JUUOp3JdGMtxc5OTvY8dA158Uc4F/OknGWBfeUX/ZL5knUpK5CrdgPywwdPeqIphiazXwIFA795y4irH6q1bWpr8Ww0fLidvBwfLRRU3bADat1e7Osfl6yuX4UhNlb1LhYWypzY0VP59eAIH67V8uRxWrVULePNNtatxeAxLZL00GnnuI41G9ljs3Kl2RXS7vDw5p6JDB2DTJjkv6a23ZHh65BHHXUzS2rRtC6xbJ3uXgoNloB0yRC4EW/bkxGQdbt4snbf58stAw4bq1kMMS2TlOnUCRoyQt//1L34SthbKUgChoXIuRVGRXP8nLU2ensPDQ+0K6XYaDfDQQ6V/I61WHkHXrh0wa1bpyYpJfZ9+Cpw6JZfXmDpV7WoIDEtkC95+W775bt0qPxmTus6cAQYPlj1HypDbmjVyZengYJWLoztSev8OHJBH0BUWyq/bt5fDpqSurCy5ThYgrz091a2HADAskS0ICCid6PjSS/wErJaiIrnoYWioDEcuLnIu2cGDwAMPqF0dGatlS+CPP4AffwQaNZLDcX36yNOqXLqkdnWOa9Ysef6/jh2B2Fi1q6F/MCyRbXjpJTluf/y4/BRMlrV3rzyh7ZQpcmmAe+4B9u3jJ19bp9HItbAOHQLGjZNff/utDMTffMNhb0vburX0NE+zZ8slA8gq8C9BtqF27dIXkfffB/bsUbceR3H9ugyqXbrIfV6njjyP2+bNPJTZnvj4yPPLbd8O3HWXXN/s6aflMB3XZrKMGzfk+nJCAM8+K1dmJ6vBsES2Y/BgYNgwuZrts8/KuRZkPuvXyzfO//5X7vOhQ2UPxJgx/MRrr+6+W4biuDi5wvr69XIC+Acf8LQp5vbGG/J0QI0aAR9+qHY1dBu+4pFt+ewzoF494K+/Sk8uSaZ15QrwzDNA376yVyEgQM5RWr6chzA7AldXeTLr/ftl78aNG8D//R/QtasceiXT27VLBlIAWLBA9uCSVWFYIttSv74MTIA8Sm7/fnXrsSdCyMm+oaHA11/L+SsTJnACt6Nq0UKeU27hQvnmvXcvEBkp1/+5cUPt6uxHQYH8cFJSIhd1ffBBtSuiCmiE4Ay+msjJyYGPjw+ys7PhzXNeWYYQ8jxXP/8MREaieGsStiS54MIF2YPdo4c8uwOVV1wMbNmC8vvq3Dk5wXfNGtkwNFSesb5bN1XrJSuRkSFPfrxihfy6ZUt5CpvoaAAGnldUTrl99ecbcH77TflBMC1N9pyTRRj1/i2sxNy5c0VwcLBwc3MT4eHhYvPmzQbbb9q0SYSHhws3NzcREhIi5s+fX67NypUrRWhoqNBqtSI0NFSsWrWqxj/3dtnZ2QKAyM7ONup+VEPnzglRp46Ix8MiwDtbyAQlLwEBQsTHq12g9YmPl/tGf1+ViPjn/yeEt7fc4OoqxKxZQty8qXa5ZI1++kmIxo1Ln0DPPSfiv82r4HnF/8GKVPg/iNMiHg8L8eOPapfncIx5/7aKsLRs2TLh6uoqvvzyS5GWliYmTZokvLy8xKlTpypsf+LECeHp6SkmTZok0tLSxJdffilcXV3FypUrdW22b98unJ2dxTvvvCMOHTok3nnnHeHi4iJ27NhR7Z9bEYYl9cS/uFFoUCyAYr0XH41GXvhiXSo+Xu6TsvsJEEKDYqFBsXyx7tpViP371S6VrN21a0I895wQgIjHw//8D5bwf/AODP8Ploj4lSVql+hwjHn/tophuK5duyI8PBzzlUPDAYSGhmLw4MGIi4sr1/7ll1/GmjVrcOjQId22sWPHIjU1FUlJSQCAYcOGIScnB2vXrtW16d+/P+rWrYulS5dW6+dWxNzDcPn5+ZV+z9nZGe7u7lVq6+TkBI8yp6Awpu3169dR2dNEo9HAs8w6O8a0vXHjBkpKSiqtw8vLq9K2xcVAWJgHzp3TACh//jGNRqBJE4GDB2+UGw4o+7g3b95EcXFxpTV4enpC88/5zQoKClBk4IggY9p6eHjA6Z8jygoLC3Hr1i2TtHV3d4fzP7+w0vaO+wolaFInDwdPAM7aisdO3Nzc4OLiAgC4desWCg0ciVi2bVFREQoKCiptq9Vq4erqanTb4uJi3DSwOKmrqyu0Wq3RbUtKSnDDwHwcY9q6uLjAzc0NACCEwPXr103S1pj/e3O+RmiTdiK4XyucLfJHRdNflf/BtLSbqF3b8q8Rhtre6f/e1K8R1Xm9suRrRFXaGvN/b67XCFOzqWG4goIC4ezsXG6IbOLEiaJnz54V3qdHjx5i4sSJettWrVolXFxcRGFhoRBCiMDAQDF79my9NrNnzxZNmzat9s8VQoibN2+K7Oxs3eXMmTNm7VkCUOll4MCBem09PT0rbRsdHa3Xtl69epW2jYyM1GsbFBRUaduwsDC9tmFhYZW2DQoK0msbGRlZadt69erptY2Ojr6tTXS5T2gVX26/n/5TfsiQIQb3cV5enq7tyJEjDbbNzMzUtR03bpzBtunp6bq206ZNM9j2wIEDurazZs0y2Hbnzp26tu+//36N95Vy+fXXX3WPu3jxYoM1/FhmOOHHH3802Hbx4sW6tr/++qvBtnPmzNG13bhxo8G277//vq7tzp07DbadNWuWru2BAwcMtp02bZqubXp6usG248aN07XNzMw02HbkyJG6tnl5eQbbDhkyRO85bKitOV8jNm6synNKiKCgkXqPa7nXiNKLp6enXtuBAwca3G9lmeY1wvj/Qcu+RlR82bhxo67tnDlzDLa1xGuEqRnTs6T60XBZWVkoLi6Gv7+/3nZ/f39kZGRUeJ+MjIwK2xcVFSErK8tgG+Uxq/NzASAuLg4+Pj66S2BgYNV+UTKxRiZuZ8+4r8j0LlyoWruiovrmLcQm8H/Q1qk+DHf+/Hk0adIE27dvR1RUlG77f/7zH3z33Xc4fPhwufu0atUKzzzzDGbMmKHbtm3bNnTv3h0XLlxAw4YNodVq8c033+CJJ57Qtfnhhx8watQo3Lx5s1o/F5DdrGW7DHNychAYGMhhuGq0rUkX++bNThg48M5ntv/99xvo2VP/ZzjUMFxhITa/sx0D42IqvY+ion2l4DCc8W3tfRguOdmjSotMr/0pG/0f8tF97YjDcNV5veIwnGQtw3AuZqnACPXq1YOzs3O53pzMzMxyvT6Khg0bVtjexcUFfn5+Btsoj1mdnwvIP7LyomYJZf9p1WrracS5v4xpW/aF2di2MTFyrcRz51Dh6as0EAgI1CAmxsPgIcxl30juxJi/vTFttVqt7g3YpG1Pn4b2xRcR88c6BOAkzqEJRIVzS+S+vNO+Uri6ulb5xcvFxUX3omjKts7OzlV+DhvT1snJySxtNRqNWdoC6r1G9Ohxp//BEgTgLPpO7g24fAIMGgTAcq8Rhhjzf2+K14iYGCCgUTHOXdBU63/QbK8RRrQ15v/eXK8RalJ9GE6r1SIiIgIJCQl62xMSEtCtkjVeoqKiyrVft24dIiMjdX+gytooj1mdn0vWw9kZ+OQTeVtz23xJDUoACHw8ar9jrvVy44Y8c3m7dsAff8BZ64JPhm4HNJry++qfrz/+mOvikHEM/g9qAECDj/3+DeeTfwP33y9PV3TypGWLtBLOlzPxidMUAMrrUyn+D9oIs82cMoJyCP/ChQtFWlqamDx5svDy8hInT54UQggxffp0ERsbq2uvLB0wZcoUkZaWJhYuXFhu6YBt27YJZ2dn8e6774pDhw6Jd999t9KlAyr7uVXBpQPUVdG6JYHumfJQeE9PIbZsUbtEyykpEWLNGiFCQkp3RkyMEEePCiEq2VeBPLybasbg8yo3V4iXXhLCxUV+w8NDiLffFuLGDbXLtpzLl4Vo314uteA3WgQ0vMX/QSthc+ssCSEXhwwKChJarVaEh4eLxMRE3fdGjhxZ7kiNTZs2iU6dOgmtViuCg4MrXJRyxYoVonXr1sLV1VW0adNGxFfwjDT0c6uCYUl9RUVCbNwoxJIl8roo/6YQ/frJV6LatYVITla7RPM7eFAGI+UVOCBAiJUrZYAqo9y+KlKlWrIzd3xeHTwoRK9epc/PkBCZEErsfG2ha9eEiIyUv3PDhkIcOcL/QStic+ss2TKe7sRKXb8u50hs2iTPa7VhA9Cpk9pVmd7ly/Js5fPny8VctFpgyhTg1VeBWrXUro6olBDA0qXypLznz8ttvXoBH30EdOyoZmXmkZsLDBgAbNsmT2GyaRPQtq3aVVEZxrx/qz5nicgsPD2BX36R5za7dk3ORv3pJ7WrMp0bN4APP5QnO50zRwalhx+W55Z6910GJbI+Go08UezRo8DrrwPu7jJAhIcDo0YBZ86oXaHpnDgBREXJoFSnDpCQwKBk4xiWyH7VqgX8/jvQpw+Qny/DxNtvV3zojq0oKpInuG3ZEpg2TQbBDh1kz9mqVUDz5mpXSGSYlxfw5pvAkSPAE0/I/8dFi+Rz+l//Av5ZK89mbdwIdO4MHDwoz5S7fr199pw5GIYlsm8+PsDatcCLL8qvX3sNGDZMhidbUlIC/Pij/HQ6Zow8XjswEFi4ENizB1Va8IbImjRtCixZAmzfDvTsCRQUALNnA82ayTCVna12hcYRApg7F+jbF7hyRQam3buBiAi1KyMTYFgi++fqCnz6KfDFF/L2ihVA9+7A/v1qV3ZnhYXA4sVAWJgMeUePyvkPH30kbz/7LI83JtsWFSWH49aulfMKc3PlPLygIGDmTCAzU+0K7+zaNTmUOGGCHBJ/6ikgMRFo3FjtyshEGJbIcYwZA/z5J1C/PrBvn5wr8fLL1tnLlJ8vA16LFjIQHTki5z688YacDzF5spzzQWQPNBqgf3/ZE7N8ORAaKnuW3nkHCA6WPcOnTqldZXnKpPU2beSHGo0GeP994NtvASMWySTrx6PhaohHw9mgc+eAiRPlHB9AfoKdO1e3wrCqDh4EPv9cvtgqwxANGwJTpwLPPw/wOUaOoKQEWLNGhqVdu+Q2Jye5uOXYsXJJbLV7VI8fB8aNk5O3ARmYFiwAoqPVrYuqzJj3b4alGmJYsmG//gqMHw+cPi2/7tdPhpK+fcsvSWxOeXnyjeHzz4HNm0u3N28uJ3E//TR7kcgxCSEPXnj3XTlRWhEcDDz3nBzusvTJzI8elb2+X30l51m5ucmlOv7v/+RtshkMSxbEsGTj8vPlZNLZs+VcA0DOD5o0CYiNNV9Xek4O8NtvwMqVcq6GckJWZ2fgwQflp+f77pOfpokIOHxYfqD4+ms5R0hx993AkCHAo4/KEGUOSmj76CP5f6vo2xeYN08Ol5PNYViyIIYlO3HihPy0uHCh7OkBgLp1ZW9TTIx8UQwIqP7jX78O7NwJbNkiL5s3y0+limbNgBEjgNGjgSZNava7ENmzGzfkkaFffSXXMSr7FtapkxwG695dXgycFP2O8vLkJO3//U9+oDl+XG7XaORw4OTJ8ihUS/ZCk0kxLFkQw5Kdyc6Wa758+mn5k36GhQFdu8o5TsHB8jogQL5YlpTInqniYrlOTHq6vJw4IbvtU1KAW7f0H69VK+Cxx+Sn4g4d+KJLZKzz54HVq2UP7ebN8v+wrJYtgbvuAkJC5AeSkBD5YcTVVfbiOjvL3ttLl+T/+6lT8vrgQbmkQdn/WS8vebDFiy/KxyWbx7BkQQxLdqq4GEhKAtatk5ddu8q/EBurcWO5kniPHvI0D2FhDEhEpnLxohwq27pV9t4eOFDzBWhDQkp7l/v04QEWdoZhyYIYlhzElStyZd7Dh/U/gSrnuFI+pTo7y4Uwy36SbdZMLlAXHMxwRGQpV68CycmyZ7dsT29GRmkvsHLx9ZX/n0qPcbNm8gMNV8S3awxLFsSwREREZHt4Il0iIiIiE2FYIiIiIjKAYYmIiIjIAIYlIiIiIgMYloiIiIgMYFgiIiIiMoBhiYiIiMgAhiUiIiIiAxiWiIiIiAxgWCIiIiIygGGJiIiIyACGJSIiIiIDGJaIiIiIDGBYIiIiIjLARe0CbJ0QAgCQk5OjciVERERUVcr7tvI+bgjDUg3l5uYCAAIDA1WuhIiIiIyVm5sLHx8fg200oiqRiipVUlKC8+fPo3bt2tBoNCZ97JycHAQGBuLMmTPw9vY26WPbG+6rquO+qjruq6rjvqo67ivjmGt/CSGQm5uLxo0bw8nJ8Kwk9izVkJOTEwICAsz6M7y9vfkPVUXcV1XHfVV13FdVx31VddxXxjHH/rpTj5KCE7yJiIiIDGBYIiIiIjKAYcmKubm5YdasWXBzc1O7FKvHfVV13FdVx31VddxXVcd9ZRxr2F+c4E1ERERkAHuWiIiIiAxgWCIiIiIygGGJiIiIyACGJSIiIiIDGJZUNm/ePISEhMDd3R0RERHYsmWLwfaJiYmIiIiAu7s7mjVrhgULFlioUvUZs68uXLiA4cOHo3Xr1nBycsLkyZMtV6gVMGZfrVq1Cn379kX9+vXh7e2NqKgo/O9//7NgteoyZl9t3boV99xzD/z8/ODh4YE2bdrgo48+smC16jL29Uqxbds2uLi4oGPHjuYt0IoYs682bdoEjUZT7nL48GELVqweY59XBQUFmDlzJoKCguDm5obmzZtj0aJF5i1SkGqWLVsmXF1dxZdffinS0tLEpEmThJeXlzh16lSF7U+cOCE8PT3FpEmTRFpamvjyyy+Fq6urWLlypYUrtzxj91V6erqYOHGi+Oabb0THjh3FpEmTLFuwiozdV5MmTRLvvfee2Llzpzh69KiYMWOGcHV1FXv37rVw5ZZn7L7au3evWLJkiThw4IBIT08X3333nfD09BSff/65hSu3PGP3leLatWuiWbNmIiYmRnTo0MEyxarM2H21ceNGAUAcOXJEXLhwQXcpKiqycOWWV53n1YMPPii6du0qEhISRHp6ukhOThbbtm0za50MSyrq0qWLGDt2rN62Nm3aiOnTp1fY/qWXXhJt2rTR2/b888+Lu+++22w1Wgtj91VZ0dHRDhWWarKvFGFhYeLNN980dWlWxxT76uGHHxZPPfWUqUuzOtXdV8OGDROvvvqqmDVrlsOEJWP3lRKWrl69aoHqrIux+2rt2rXCx8dHXL582RLl6XAYTiWFhYXYs2cPYmJi9LbHxMRg+/btFd4nKSmpXPt+/fph9+7duHXrltlqVVt19pWjMsW+KikpQW5uLnx9fc1RotUwxb5KSUnB9u3bER0dbY4SrUZ199XixYvx999/Y9asWeYu0WrU5HnVqVMnNGrUCH369MHGjRvNWaZVqM6+WrNmDSIjI/H++++jSZMmaNWqFaZNm4YbN26YtVaeSFclWVlZKC4uhr+/v952f39/ZGRkVHifjIyMCtsXFRUhKysLjRo1Mlu9aqrOvnJUpthXH374IfLz8zF06FBzlGg1arKvAgICcOnSJRQVFeGNN97A6NGjzVmq6qqzr44dO4bp06djy5YtcHFxnLea6uyrRo0a4YsvvkBERAQKCgrw3XffoU+fPti0aRN69uxpibJVUZ19deLECWzduhXu7u5YvXo1srKyMG7cOFy5csWs85Yc5xlspTQajd7XQohy2+7UvqLt9sjYfeXIqruvli5dijfeeAM///wzGjRoYK7yrEp19tWWLVuQl5eHHTt2YPr06WjRogWeeOIJc5ZpFaq6r4qLizF8+HC8+eabaNWqlaXKsyrGPK9at26N1q1b676OiorCmTNn8MEHH9h1WFIYs69KSkqg0Wjwww8/wMfHBwAwe/ZsDBkyBHPnzoWHh4dZamRYUkm9evXg7OxcLj1nZmaWS9mKhg0bVtjexcUFfn5+ZqtVbdXZV46qJvtq+fLlGDVqFFasWIH77rvPnGVahZrsq5CQEADAXXfdhYsXL+KNN96w67Bk7L7Kzc3F7t27kZKSggkTJgCQb3JCCLi4uGDdunXo3bu3RWq3NFO9Xt199934/vvvTV2eVanOvmrUqBGaNGmiC0oAEBoaCiEEzp49i5YtW5qlVs5ZUolWq0VERAQSEhL0tickJKBbt24V3icqKqpc+3Xr1iEyMhKurq5mq1Vt1dlXjqq6+2rp0qV4+umnsWTJEgwaNMjcZVoFUz2vhBAoKCgwdXlWxdh95e3tjf3792Pfvn26y9ixY9G6dWvs27cPXbt2tVTpFmeq51VKSordTq1QVGdf3XPPPTh//jzy8vJ0244ePQonJycEBASYr1iLTicnPcohkwsXLhRpaWli8uTJwsvLS5w8eVIIIcT06dNFbGysrr2ydMCUKVNEWlqaWLhwocMtHVDVfSWEECkpKSIlJUVERESI4cOHi5SUFHHw4EE1yrcoY/fVkiVLhIuLi5g7d67eYcvXrl1T61ewGGP31Zw5c8SaNWvE0aNHxdGjR8WiRYuEt7e3mDlzplq/gsVU53+wLEc6Gs7YffXRRx+J1atXi6NHj4oDBw6I6dOnCwAiPj5erV/BYozdV7m5uSIgIEAMGTJEHDx4UCQmJoqWLVuK0aNHm7VOhiWVzZ07VwQFBQmtVivCw8NFYmKi7nsjR44U0dHReu03bdokOnXqJLRarQgODhbz58+3cMXqMXZfASh3CQoKsmzRKjFmX0VHR1e4r0aOHGn5wlVgzL769NNPRdu2bYWnp6fw9vYWnTp1EvPmzRPFxcUqVG55xv4PluVIYUkI4/bVe++9J5o3by7c3d1F3bp1Rffu3cVvv/2mQtXqMPZ5dejQIXHfffcJDw8PERAQIKZOnSquX79u1ho1QvwzQ5iIiIiIyuGcJSIiIiIDGJaIiIiIDGBYIiIiIjKAYYmIiIjIAIYlIiIiIgMYloiIiIgMYFgiIiIiMoBhiYiIiMgAhiUiogq8+uqrcHNzw/Dhw9UuhYhUxhW8iYgqkJOTg++++w4TJkzAsWPH0KJFC7VLIiKVsGeJiKgC3t7eePbZZ+Hk5IT9+/erXQ4RqYhhiYioEkVFRfD09MSBAwfULoWIVMSwRERUiVdffRV5eXkMS0QOjnOWiIgqsGfPHnTr1g19+/ZFeno6Dh48qHZJRKQShiUiotuUlJSgS5cuiI6ORteuXfHkk08iPz8fWq1W7dKISAUchiMius1nn32GS5cu4a233sJdd92FoqIiHDlyRO2yiEglDEtERGWcO3cOr732GubNmwcvLy+0bNkSbm5unLdE5MAYloiIypg4cSIGDBiAQYMGAQBcXFwQGhrKsETkwFzULoCIyFr8+uuv2LBhAw4dOqS3/a677mJYInJgnOBNREREZACH4YiIiIgMYFgiIiIiMoBhiYiIiMgAhiUiIiIiAxiWiIiIiAxgWCIiIiIygGGJiIiIyACGJSIiIiIDGJaIiIiIDGBYIiIiIjKAYYmIiIjIAIYlIiIiIgP+H4ZTmG5/cz1tAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'characteristic polynomial')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ξ = range(0,0.6,length=100)\n", + "plot(ξ, [det(A - λ*I) for λ in ξ], \"r-\")\n", + "plot(ξ, 0ξ, \"k--\")\n", + "plot(λ, 0λ, \"bo\")\n", + "xlabel(L\"\\lambda\")\n", + "ylabel(L\"\\det(A - \\lambda I)\")\n", + "title(\"characteristic polynomial\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Eigenvalue example:\n", + "\n", + "For example, consider the matrix\n", + "\n", + "$$\n", + "A = \\begin{pmatrix} 1 & 1 \\\\ -2 & 4 \\end{pmatrix}\n", + "$$\n", + "\n", + "whose eigenvalues are $\\lambda = \\{2,3\\}$:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Int64}:\n", + " 1 1\n", + " -2 4" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 1 1\n", + " -2 4 ]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 2.0\n", + " 3.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The characteristic polynomial is\n", + "\n", + "$$\n", + "\\det(A - \\lambda I) = \\det \\begin{pmatrix} 1 - \\lambda & 1 \\\\ -2 & 4 - \\lambda \\end{pmatrix} = (1 - \\lambda)(4 - \\lambda) - (1)(-2) = \\lambda^2 - 5\\lambda + 6 = (\\lambda - 2) (\\lambda - 3)\n", + "$$\n", + "\n", + "where we have used high-school algebra to factor the polynomial. Hence its roots are $\\lambda = \\{2, 3\\}$, as computed above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Eigenvectors\n", + "\n", + "Once we have the eigenvalues, finding the eigenvectors is (in principle) easy: **the eigenvectors are just (a basis for) the nullspace**\n", + "\n", + "$$\n", + "N(A - \\lambda I)\n", + "$$\n", + "\n", + "when $\\lambda$ is an eigenvalue.\n", + "\n", + "For example, with the matrix above, let's take the eigenvalue $\\lambda_1 = 2$:\n", + "\n", + "$$\n", + "A - 2I = \\begin{pmatrix} -1 & 1 \\\\ -2 & 2 \\end{pmatrix}\n", + "$$\n", + "\n", + "We could go through Gaussian elimination to find the nullspace, but we can see by inspection that the second column is minus the first, hence $x_1 = (1, 1)$ is a basis for the nullspace:\n", + "\n", + "$$\n", + "(A - 2I) x_1 = \\begin{pmatrix} -1 & 1 \\\\ -2 & 2 \\end{pmatrix} \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} = \\begin{pmatrix} 0 \\\\ 0 \\end{pmatrix}\n", + "$$\n", + "\n", + "or\n", + "\n", + "$$\n", + "A x_1 = 2 x_1\n", + "$$\n", + "\n", + "as desired. $x_1 = (1, 1)$ is an eigenvector! Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Int64}:\n", + " 2\n", + " 2" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * [1, 1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the other eigenvalue, $\\lambda = 3$, we get:\n", + "\n", + "$$\n", + "A - 3I = \\begin{pmatrix} -2 & 1 \\\\ -2 & 1 \\end{pmatrix}\n", + "$$\n", + "\n", + "from which it is obvious that a basis for the nullspace is $x_2 = (1, 2)$. Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Int64}:\n", + " 3\n", + " 6" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * [1, 2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, $A x_2 = 3 x_2$!\n", + "\n", + "For more complicated cases, of course, we might have to go through elimination to find the nullspace. In practice, though, we alway just let the computer do it. The `eig` function in Julia will return the eigenvalues and eigenvectors:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}\n", + "values:\n", + "2-element Vector{Float64}:\n", + " 2.0\n", + " 3.0\n", + "vectors:\n", + "2×2 Matrix{Float64}:\n", + " -0.707107 -0.447214\n", + " -0.707107 -0.894427" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 2.0\n", + " 3.0" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " -0.707107 -0.447214\n", + " -0.707107 -0.894427" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The columns of `X` are indeed the eigenvectors from above, but they are scaled differently (they are normalized to unit length). If we divide each one by its first element, though, we should recover our scaling from above:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.0\n", + " 1.0" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X[:,1] / X[1,1] # first column, with first entry scaled to 1" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.0\n", + " 2.0" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X[:,2] / X[1,2] # second column, with second entry scaled to 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practice, computing eigenvalues by hand, especially by this method, is even more pointless than doing Gaussian elimination by hand, for reasons explained below, so I will **focus more on the properties of eigenvalues and how to use them than how to compute them.** The computer will give us their values." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matrix powers: A first look\n", + "\n", + "If you multiply an eigenvector by $A^n$, it just multiplies the vector by $\\lambda^n$. We will explore this more later, but for now let's try a couple of quick examples:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Int64}:\n", + " 32\n", + " 32" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A^5 * [1,1] # gives 2⁵ * [1,1] = [32, 32]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if we multiply some *other* vector $y$ by $A^n$? To understand what happens, we **expand *y* in the basis of eigenvectors**. A simple example is:\n", + "$$\n", + "A^n \\begin{pmatrix} 2 \\\\ 3 \\end{pmatrix} = A^n \\left[ \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} + \\begin{pmatrix} 1 \\\\ 2 \\end{pmatrix} \\right]\n", + "= 2^n \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} + 3^n \\begin{pmatrix} 1 \\\\ 2 \\end{pmatrix} \\approx 3^n \\begin{pmatrix} 1 \\\\ 2 \\end{pmatrix} \\mbox{ for } n \\gg 1.\n", + "$$\n", + "In this basis **each eigenvector is multiplied by λⁿ**. Furthermore the **term with the biggest |λ| grows fastest** so for large *n* the result is approximately in the corresponding eigenvector direction." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 5.15377520732012e47\n", + " 1.030755041464024e48" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = A^100.0 * [2,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 5.153775207320113e47\n", + " 1.0307550414640226e48" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2^100.0 * [1,1] + 3^100.0 * [1,2] # same, but computed with eigenvectors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is approximately a multiple of $(1,2)$, so the second component should be nearly double the first component:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y[2] / y[1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same reasoning shows that for *any* vector $z$ that is not a multiple of $(1,1)$, $A^{100}z$ will blow up proportional to $3^{100}$ and will be approximately parallel to $(1,2)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -1.1338305456104243e49\n", + " -2.26766109122085e49" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = A^100.0 * [17,-5]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.0000000000000013" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[2]/z[1] # approximately 2 since z is nearly parallel to (1,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Transpose: Same eigenvalues!\n", + "\n", + "One of the properties of determinant is that $\\det A^T = \\det A$. It follows that\n", + "$$\\det(A-\\lambda I) = \\det\\left[ (A -\\lambda I)^T \\right] = \\det (A^T - \\lambda I)$$\n", + "and therefore $A$ and $A^T$ have the **same eigenvalues!** (They have the **same characteristic polynomial**.)\n", + "\n", + "Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 2.0\n", + " 3.0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(A')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, same eigenvalues (2 and 3) as for $A$.\n", + "\n", + "However, $A$ and $A^T$ in general have **different eigenvectors**, because the **left and right nullspaces are not usually the same**. $N(A - \\lambda I) \\ne N(A^T - \\lambda I)$ in general. Here, the eigenvectors are:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 1.0 1.0\n", + " -0.5 -1.0" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y = eigvecs(A')\n", + "Y ./ Y[1,:]' # normalize so that the first components are 1, for easier comparison" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that these are different from the (1,1) and (1,2) that we got above.\n", + "\n", + "As you might guess, the eigenvectors of $A^T$ are sometimes called its **left eigenvectors**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Complex eigenvalues\n", + "\n", + "If we change the matrix to:\n", + "$$\n", + "\\begin{pmatrix} 1 & 3 \\\\ -2 & 4 \\end{pmatrix}\n", + "$$\n", + "we get a characteristic polynomial:\n", + "$$\n", + "\\det \\begin{pmatrix} 1 - \\lambda & 3 \\\\ -2 & 4 - \\lambda \\end{pmatrix} = (1 - \\lambda)(4 - \\lambda) - (3)(-2) = \\lambda^2 - 5\\lambda + 10\n", + "$$\n", + "whose roots, from the quadratic formula, are:\n", + "$$\n", + "\\lambda = \\frac{5 \\pm \\sqrt{5^2 - 40}}{2} = \\frac{5 \\pm \\sqrt{-15}}{2}\n", + "$$\n", + "which are complex! Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{ComplexF64}:\n", + " 2.5 - 1.9364916731037085im\n", + " 2.5 + 1.9364916731037085im" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals([1 3\n", + " -2 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.5 + 1.9364916731037085im" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(5 + sqrt(15)*im) / 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, it matches our formula.\n", + "\n", + "**Eigenvalues may be complex numbers, even for real matrices**. We can't avoid complex numbers for any longer in 18.06!\n", + "\n", + "(But, for real matrices, they are the [roots of a real polynomial](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem) and hence come in [complex conjugate pairs](https://en.wikipedia.org/wiki/Complex_conjugate).)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The perils of polynomial roots\n", + "\n", + "You might think that finding roots of polynomials is we must inevitably find eigenvalues. In fact, although we use the characteristic polynomial to *think* about eigenvalues, in practice they are not used to *compute* them except for tiny matrices.\n", + "\n", + "In fact, working with the characteristic polynomial is a computational disaster in general, because **roots of polynomials are exponentially sensitive to their coefficients**. Any tiny roundoff error leads to disaster.\n", + "\n", + "For example, consider the polynomial\n", + "\n", + "$$\n", + "w(x) = (x - 1) (x - 2) (x - 3) \\cdots (x - 10)\n", + "$$\n", + "whose roots are, obviously, ${1,2,\\ldots,10}$. What happens if we actually multiply this polynomial together and compute the roots from the coefficients?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$3.6288e6 - 1.062864e7\\cdot x + 1.2753576e7\\cdot x^{2} - 8.4095e6\\cdot x^{3} + 3.41693e6\\cdot x^{4} - 902055.0\\cdot x^{5} + 157773.0\\cdot x^{6} - 18150.0\\cdot x^{7} + 1320.0\\cdot x^{8} - 55.0\\cdot x^{9} + 1.0\\cdot x^{10}$" + ], + "text/plain": [ + "Polynomial(3.6288e6 - 1.062864e7*x + 1.2753576e7*x^2 - 8.4095e6*x^3 + 3.41693e6*x^4 - 902055.0*x^5 + 157773.0*x^6 - 18150.0*x^7 + 1320.0*x^8 - 55.0*x^9 + 1.0*x^10)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w = prod([Polynomial([-n, 1.0]) for n = 1:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Already, this seems hard: how do we find roots of a high-degree polynomial? More on this below.\n", + "\n", + "For the moment, we will just use a \"black box\" function `roots` provided by the Polynomials package to \"magically\" get the roots of $w$ from its coefficients:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10-element Vector{Float64}:\n", + " 1.0000000000000342\n", + " 1.999999999998515\n", + " 3.0000000000138605\n", + " 3.9999999999602096\n", + " 4.999999999950206\n", + " 6.0000000005467955\n", + " 6.999999998669565\n", + " 8.000000001559398\n", + " 8.999999999086734\n", + " 10.000000000214685" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "roots(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks good! The roots are what they should be.\n", + "\n", + "Howevever, suppose we make a *tiny error* in computing the coefficients. Let's multiply each coefficient by $1 + \\epsilon$, where $\\epsilon$ is a *random small number* of root-mean-square value $R$.\n", + "\n", + "The following code plots the roots in the [complex plane](https://en.wikipedia.org/wiki/Complex_plane) for 100 random perturbations, and lets us vary the magnitude $R$ of the pertubation:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLmElEQVR4nO3deZyNdf/H8fcxZt+MbcZgzCBbiCjZlVBJlkpREqVUGsPd5m4xSUSljermlvbIVpRkspV9b2GiGEyYhsHM2Gb9/v5wz/k5zeI6Y8acw+v5eJwH53u+13V9vtdxnfN2bcdmjDECAABAkcqVdQEAAADugNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCkxtas2aNYmNjdfz48Yu+7FmzZunKK6+Ur6+vbDabtm3bdt5pxowZo0aNGik3N7f0CyxCenq6nnrqKXXt2lVVqlSRzWZTbGxsgX2nT5+u6tWr6+TJk6VWj6usF8m5dSNJJ06cUExMjMLDw+Xj46NmzZpp5syZDn0uxjqUpA8//FA2m0179+6VVPT2ERsbK5vNpiNHjpRqTSWtsO2uONujqyjtz7GL9V7nLcdV6snbHvIe5cuXV7Vq1XT33Xfrjz/+KLHlOPuZURArnyMlYcOGDerWrZsCAwMVEBCg66+/XqtXry7WvAhNbmjNmjV68cUXL3poOnz4sAYMGKA6depo8eLFWrt2rerVq1fkNAcPHtTEiRM1ZswYlStXtv/cUlJSNHXqVGVkZKhXr15F9h04cKD8/f01ceLEUqnFldaL5Ny6kaQ+ffroo48+0ujRo/Xdd9/pmmuuUb9+/fT555/b+5T2OszTvXt3rV27VtWqVZNUdttHaSlsuyvO9uhKLrX3ydXMmDFDa9eu1Q8//KBhw4ZpwYIFateunY4dO1Yi83f2M6MgVj5HLtTGjRvVoUMHnT59Wp988ok++eQTnTlzRp07d9batWudn6FBqTl58mSpzPfVV181kkxCQkKpzL8wq1atMpLMrFmzLE/z1FNPmerVq5ucnJxSrMya3Nxck5uba4wx5vDhw0aSGT16dKH9X3vtNRMcHFwq76MrrRdjnFs33377rZFkPv/8c4f2Ll26mPDwcJOdnW1vK811WJiito/Ro0cbSebw4cMXrZ4LVdh2V5zt0RXk/Vsorc+xvPlfrPc6bzlW+5V2PTNmzDCSzMaNGx3aX3zxRSPJfPDBByWyHGc/T//Jmc+RC9GtWzcTGhrq8BmUlpZmKleubNq0aeP0/Mr+v7iXiLxdr1u2bNEdd9yhkJAQ1alTR5K0atUqde7cWYGBgfLz81ObNm307bffFjif8/WNjY3Vk08+KUmKioqy74JdsWKFDh8+rIceekg1a9aUt7e3qlSporZt2+qHH344b/3nW+7999+vdu3aSZLuuusu2Ww2derUqch5ZmZmavr06erfv7/D3pRDhw4pICBAd999t0P/b775Rp6ennr22WfPW29x5K0rq+655x6lpaWV+O7iwtaL5B7rZv78+QoICNCdd97p0D5o0CAdPHhQ69evt7dZXYfbt2+XzWbT7Nmz7W2bN2+WzWbTlVde6dD3tttuU4sWLezPzz08V9T2ca6///5b/fr1U3BwsEJDQzV48GClpqZaGv/vv/+ufv36KTQ0VN7e3oqIiNB9992njIwMex+r2/wff/yh/v37q2rVqvL29lbDhg01ZcoU++uFbXdFbY/F/RzI+wzbunWr+vTpo6CgIAUHB+vee+/V4cOHna793Hn+83OxqPfp/vvvV2RkZKH1WZn/uRITE887HitjkaRvv/1WzZo1k7e3t6KiovTaa68VuU4Lcr56fvrpJ9lsNn3xxRf5pv34449ls9m0ceNGp5fbsmVLSWf/7ZcEZz9P/8mZzxGr709BVq9erU6dOsnPz8/eFhgYqA4dOmjNmjU6dOiQc4WXSJSD/X8RtWrVMk8//bSJi4szX331lVmxYoXx9PQ0LVq0MLNmzTJfffWV6dq1q7HZbGbmzJkO87DSNzEx0Tz++ONGkpk3b55Zu3atWbt2rUlNTTXdunUzVapUMVOnTjUrVqwwX331lXnhhRfyLeefrCz3zz//NFOmTDGSzLhx48zatWvN9u3bi5zvjz/+aCSZRYsW5XvtxRdfNDabzWzatMkYY8zy5cuNj4+Pefzxxy2v8wth9X9GDRs2NH369CnRZRe1Xoxx/XVz3XXXmWuuuSZf+2+//WYkmf/85z8O7VbXYbVq1cxDDz1kf/7KK68YX19fI8kcOHDAGGNMVlaWCQoKMk899ZS9X97/rBMSEorcPoz5/+20fv365oUXXjBxcXFm0qRJxtvb2wwaNOi8NW7bts0EBASYyMhI8/7775ulS5eaTz/91PTt29ekpaUZY6xtT8YYs337dhMcHGyaNGliPv74Y7NkyRLzr3/9y5QrV87ExsYaYwrf7oraHov7OXDuZ9iTTz5pvv/+ezNp0iTj7+9vmjdvbjIzM52q/Z/zPPdzsaj3aeDAgaZWrVqF1ldYzefO35nxWB3LDz/8YDw8PEy7du3MvHnzzOzZs80111xjIiIinNrTZGX9Nm/e3LRt2zbfPK655poCt71zFbanafLkyUaSmTt3rkN7bm6uycrKsvQoTHH2NFn9HLH6/hTGy8vL3Hffffna+/XrZySZ77//3nLNxhhDaCoheRvECy+84NB+3XXXmapVq5r09HR7W3Z2tmncuLGpUaOGffemM30L260dEBBgYmJinK7d6nKXL19uJJnZs2dbmu+ECROMJJOUlJTvtZMnT5rw8HDTuXNns2HDBhMYGGgGDRrksD5Kk9WN/J577jGhoaEObbm5uebYsWP5DjmdPn3aHDt2LN9u5dTUVPsXqjFFrxdjXH/dXHHFFaZbt2752g8ePGj/Ej9XQeuwIPfee6+pXbu2/fmNN95ohgwZYkJCQsxHH31kjDFm9erVRpJZsmSJvd+5ockYa4fnJk6c6ND+6KOPGh8fn/Ou4xtuuMFUqFDBJCcnF9rH6vbUrVs3U6NGDXugyzNs2DDj4+Njjh49aowpfLsrrL24nwN562bEiBEO7Z999pmRZD799FN7m9XaC/tcNKbw96k4oamg+Vsdj9WxtGrVyoSHh5vTp0/b+6SlpZmKFSs6FZqsrN+8f9Nbt261t23YsMFIsm8Lhcmbdt26dSYrK8ukp6ebxYsXm7CwMNOhQ4d84Sfv35GVR2GHUosTmqx+jlh9fwrTrFkzU69ePYdTIbKyskzt2rULPDx4PhyeK2G33367/e8nT57U+vXrdccddyggIMDe7uHhoQEDBuivv/7Szp07ne5bmGuvvVYffvihxo4dq3Xr1ikrK+u89ZbEcgtz8OBB2Ww2Va5cOd9rfn5+Gjt2rJYuXarrr79eN998s6ZNm1bo7t4VK1Y4XBFS1KMkryCqWrWqkpOTlZ2dbW/7+++/FRISokcffdSh7yuvvKKQkJB8u87r1aun9u3b258XtV4k91g3Re2W/+drBa3DgnTu3Fl79uxRQkKCzpw5o1WrVummm27S9ddfr7i4OEnSDz/8IG9vb/uhqeK67bbbHJ43bdpUZ86cUXJycqHTnDp1SitXrlTfvn1VpUqVAvtY3Z7OnDmjpUuXqnfv3vLz81N2drb9ccstt+jMmTNat25dscZWnM+Bc91zzz0Oz/v27avy5ctr+fLlklSs2s/9XCwNRc2/qPFYHcvJkye1ceNG9enTRz4+PvZ5BQYGqkePHk7Ver71K0n9+vVT1apVHQ5BvfPOO6pSpYruuusuS8u57rrr5OnpqcDAQN10000KCQnR119/rfLlyzv0a9GihTZu3GjpER4e7tRYz+d8nyPO/Fs797Xs7GwZYyRJjz/+uHbt2qVhw4bpwIEDSkxM1NChQ7Vv3z5JcvpCnPLn7wJn5F3BI0nHjh2TMcahLU/eP76UlBSn+xZm1qxZGjt2rP773//q+eefV0BAgHr37q2JEycqLCyswGlKYrmFOX36tDw9PeXh4VHg63lX+thsNn344YeF9pOk+vXra9q0aZaWGxER4XyxhfDx8ZExRmfOnHH4ErwQ51svkmuvm0qVKhX4b+Lo0aOSpIoVKzq0W12HN954o6SzwSgqKkpZWVm64YYb9Pfff+ull16yv9a2bVv5+vpe8BjO5e3tLense1OYY8eOKScnRzVq1Ciyj5XtKTAwUNnZ2XrnnXf0zjvvFDiv4l6aXpzPgXP9s0/58uUd3vOUlBSnay9ofZSkouZf1HisjuXYsWPKzc0tcP1ZWadW68nj7e2thx9+WK+//rpeffVVZWVl6csvv9TIkSPt/1bP5+OPP1bDhg2Vnp6uWbNm6T//+Y/69eun7777zqFfQECAmjVrZmme/wxcF8LK54jV92fv3r2KiopyaF++fLk6deqkwYMH6/Dhwxo7dqzee+89SVLr1q31xBNPaMKECapevbpTdROaSti5yTkkJETlypUr8ESzgwcPSpJ9b4MzfQtTuXJlvfnmm3rzzTe1f/9+LViwQM8884ySk5O1ePHiAqcpieUWVU9mZqZOnjwpf39/h9e2bdumW2+9VW3bttXq1av1wQcf6LHHHit0XtWqVdODDz5YrDouxNGjR+Xt7e3wZR8WFmb/X8y5YmNjC7xPSVJSksPzotaL5PrrpkmTJvriiy+UnZ3t8CH666+/SpIaN27s0L+gdViQGjVqqF69evrhhx8UGRmpli1bqkKFCurcubMeffRRrV+/XuvWrdOLL75Y8oOyoGLFivLw8NBff/1VaB+r21NISIh971Nh7+0/vwSsKs7nwLmSkpIcvkiys7OVkpJiD5rFqd2ZE4Z9fHwcTqrPU1SILGr+RY3H6lh8fHxks9nybct583fG+dZvnkceeUSvvPKKPvjgA505c0bZ2dkaOnSo5eU0bNjQfvL39ddfr5ycHP33v//VnDlzdMcdd9j7rVy5Utdff72leSYkJBR4kn5xWPkcsfr+BAYG5tvDX79+ffvfn376acXExOiPP/5QYGCgatWqpYcfflj+/v4OF5VYQWgqRf7+/mrVqpXmzZun1157zf6/49zcXH366af2Lwln+1r5X3FERISGDRumpUuXFnkTL2eW66wGDRpIknbv3q2mTZva23fu3Klu3bqpdevW+vrrr3XnnXcqNjZW9957r4KDg4u1rNKyZ88eNWrUqETnWdh6kdxj3fTu3VvTpk3T3LlzHQ4VfPTRRwoPD1erVq0c+juzDm+88UZ9+eWXqlmzprp37y7p7F63iIgIvfDCC8rKyrLvkSqMle2jOHx9fdWxY0fNnj1bL7/8coH/mbC6PdlsNl1//fXaunWrmjZtKi8vrxKtNY/Vz4FzffbZZw5fJF9++aWys7PtV+f5+fmVSO2FvU+RkZFKTk7W33//rdDQUElnrzj9/vvvi7WcosbjzFiuvfZazZs3T6+++qr9EF16eroWLlxYYvWcq1q1arrzzjv17rvvKjMzUz169LigPcUTJ07U3Llz9cILL6hPnz72w1J5h+esKMnDc1Y+Rzw8PCy/P3kBsTDe3t72/9Dt379fs2bN0pAhQ5zfa+3UGVAoVGH34Mi7kqZVq1Zm9uzZ5uuvvzbdunUr8uq58/XNO3Hv4YcfNmvWrDEbN240x48fN82bNzevvvqqWbhwoVmxYoV59dVXjY+Pj+nfv3+RtTu7XKsngu/fvz/f1VQJCQmmRo0apn379ubUqVPGGGPi4+ONh4eHwxVRpWXRokVm9uzZ5oMPPjCSzJ133mlmz55tZs+ene/E7pycHBMcHGxGjhxZojUUtF6Mca9106VLFxMSEmKmTp1qli1bZoYMGZLvZFZjnF+Hc+fOtZ90unLlSnv7oEGDjCQTEhKS795W/zwRvKDtI+9E/MK203/OozB5V8/Vrl3bPvYvvvjC9OvXL9/Vc+fbnrZv325CQkLMtddea2bMmGGWL19uFixYYCZNmmSuv/56ez9nTgS/kM+Bf17dtWTJEvPGG2+YgIAAc9VVV5mMjAynay/q3kSFvU979uwxnp6eplOnTubbb781c+fONR07djRRUVGFnghe0PytjsfqWJYsWWLKlStn2rVrZ+bPn2/mzJljrrnmGlOzZs1iXT1X1PrNs379evv28MMPP5x3GcYUfvWcMcZMnDjRSDKffPKJpXmdj5XPjBUrVhgPDw/z4osv5pveyueI1fenML/++quJjY0133zzjYmLizOvvfaaqVy5smnZsqXDxRpWEZpKSFEb708//WRuuOEG4+/vb3x9fc11111nFi5cWOB8rPYdNWqUCQ8PN+XKlTOSzOLFi83QoUNN06ZNTVBQkPH19TX169c3o0ePtnRjQSvLdTY0GWNM+/btzS233GKMOXtVRJ06dczVV1+d70qIIUOGGG9v71K/YWetWrUsXxmydOlSI8ls3ry5xOs4d70Y437rJj093URHR5uwsDDj5eVlmjZtar744ot883R2HR47dsyUK1fO+Pv7O1yCnXeFUUG3Ligo8Pxz+1i+fLkx5sJDkzHG7Nixw9x5552mUqVKxsvLy0RERJj777/fnDlzxt7H6nackJBgBg8ebKpXr248PT1NlSpVTJs2bczYsWPtfZwJTWfOnCn250Deutm8ebPp0aOHCQgIMIGBgaZfv37m77//Llbt57uhY2Hv06JFi0yzZs2Mr6+vqV27tpk8eXKRV88VFZqsjMfKWIwxZsGCBaZp06b29/2VV15x+uaWVtdvnsjISNOwYcPzzj9PUaHp9OnTJiIiwlxxxRUlcvNIK58Zef9OC7qyzurniNX3pyA7d+40HTp0MBUrVjReXl6mbt265rnnnjMnTpwo1phtxhRwcgZQQvJ2ve7bt8/pE+7K2oABA7Rnz55i/0ZRUdx5vTijNNchSlZsbKxefPFFHT58uNjnMaJk/fLLL7rqqqs0ZcqUfFfromxwywGUqj59+uiaa67R+PHjy7oUp+zevVuzZs3ShAkTSmX+7rpenFHa6xC4VO3evVvLli3TQw89pGrVqun+++8v65LwP4QmlCqbzaZp06YpPDxcubm5ZV2OZfv379fkyZMv+H5AhXHX9eKM0l6HwKXqpZdeUpcuXXTixAnNnj3b4SdAULY4PAcAAGABe5oAAAAsIDQBAABYQGgCAACwgDuCl4Dc3FwdPHhQgYGBTv1cAAAAKDvGGKWnpys8PNzSj/cSmkrAwYMHVbNmzbIuAwAAFENiYmKRP8adh9BUAgIDAyWdXelBQUFlXA0AALAiLS1NNWvWtH+Pnw+hqQTkHZILCgoiNAEA4GasnlrDieAAAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFjgdqHp3XffVVRUlHx8fNSiRQv99NNPRfZfuXKlWrRoIR8fH9WuXVvvv/9+oX1nzpwpm82mXr16lXDVAADA3blVaJo1a5ZiYmL07LPPauvWrWrfvr1uvvlm7d+/v8D+CQkJuuWWW9S+fXtt3bpV//73vxUdHa25c+fm67tv3z498cQTat++fWkPAwAAuCGbMcaUdRFWtWrVSldffbXee+89e1vDhg3Vq1cvjR8/Pl//p59+WgsWLFB8fLy9bejQofr555+1du1ae1tOTo46duyoQYMG6aefftLx48f11VdfWa4rLS1NwcHBSk1NVVBQUPEGBwAALipnv7/dZk9TZmamNm/erK5duzq0d+3aVWvWrClwmrVr1+br361bN23atElZWVn2tjFjxqhKlSp64IEHSr5wAABwSShf1gVYdeTIEeXk5Cg0NNShPTQ0VElJSQVOk5SUVGD/7OxsHTlyRNWqVdPq1as1ffp0bdu2zXItGRkZysjIsD9PS0uzPhAAAOCW3GZPUx6bzebw3BiTr+18/fPa09PTde+992ratGmqXLmy5RrGjx+v4OBg+6NmzZpOjAAAALgjt9nTVLlyZXl4eOTbq5ScnJxvb1KesLCwAvuXL19elSpV0vbt27V371716NHD/npubq4kqXz58tq5c6fq1KmTb76jRo3SyJEj7c/T0tIITgAAXOLcJjR5eXmpRYsWiouLU+/eve3tcXFx6tmzZ4HTtG7dWgsXLnRoW7JkiVq2bClPT081aNBAv/76q8Przz33nNLT0/XWW28VGoS8vb3l7e19gSMCAADuxG1CkySNHDlSAwYMUMuWLdW6dWtNnTpV+/fv19ChQyWd3QN04MABffzxx5LOXik3efJkjRw5UkOGDNHatWs1ffp0ffHFF5IkHx8fNW7c2GEZFSpUkKR87QAA4PLmVqHprrvuUkpKisaMGaNDhw6pcePGWrRokWrVqiVJOnTokMM9m6KiorRo0SKNGDFCU6ZMUXh4uN5++23dfvvtZTUEAADgptzqPk2uivs0AQDgfi7Z+zQBAACUJUITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAqdD00cffaRvv/3W/vypp55ShQoV1KZNG+3bt69EiwMAAHAVToemcePGydfXV5K0du1aTZ48WRMnTlTlypU1YsSIEi8QAADAFZR3doLExETVrVtXkvTVV1/pjjvu0EMPPaS2bduqU6dOJV0fAACAS3B6T1NAQIBSUlIkSUuWLNGNN94oSfLx8dHp06dLtjoAAAAX4fSepi5duujBBx9U8+bNtWvXLnXv3l2StH37dkVGRpZ0fQAAAC7B6T1NU6ZMUevWrXX48GHNnTtXlSpVkiRt3rxZ/fr1K/ECAQAAXIHNGGOcmWD//v2qUaOGypVzzFvGGCUmJioiIqJEC3QHaWlpCg4OVmpqqoKCgsq6HAAAYIGz399O72mKiorSkSNH8rUfPXpUUVFRzs7Oae+++66ioqLk4+OjFi1a6Keffiqy/8qVK9WiRQv5+Piodu3aev/99x1enzZtmtq3b6+QkBCFhIToxhtv1IYNG0pzCAAAwA05HZoK2zF14sQJ+fj4XHBBRZk1a5ZiYmL07LPPauvWrWrfvr1uvvlm7d+/v8D+CQkJuuWWW9S+fXtt3bpV//73vxUdHa25c+fa+6xYsUL9+vXT8uXLtXbtWkVERKhr1646cOBAqY4FAAC4F8uH50aOHClJeuuttzRkyBD5+fnZX8vJydH69evl4eGh1atXl06lklq1aqWrr75a7733nr2tYcOG6tWrl8aPH5+v/9NPP60FCxYoPj7e3jZ06FD9/PPPWrt2bYHLyMnJUUhIiCZPnqz77rvPUl0cngMAwP04+/1t+eq5rVu3Sjq7p+nXX3+Vl5eX/TUvLy9dddVVeuKJJ4pRsjWZmZnavHmznnnmGYf2rl27as2aNQVOs3btWnXt2tWhrVu3bpo+fbqysrLk6emZb5pTp04pKytLFStWLLniAQCA27McmpYvXy5JGjRokN56662LvkflyJEjysnJUWhoqEN7aGiokpKSCpwmKSmpwP7Z2dk6cuSIqlWrlm+aZ555RtWrV7fff6ogGRkZysjIsD9PS0tzZigAAMANOX1O04wZM+yB6a+//rro5/7YbDaH58aYfG3n619QuyRNnDhRX3zxhebNm1fk+Vnjx49XcHCw/VGzZk1nhgAAANyQ06EpNzdXY8aMUXBwsGrVqqWIiAhVqFBBL730knJzc0ujRklS5cqV5eHhkW+vUnJycr69SXnCwsIK7F++fHn7/aXyvPbaaxo3bpyWLFmipk2bFlnLqFGjlJqaan8kJiYWY0QAAMCdOH1H8GeffVbTp0/XK6+8orZt28oYo9WrVys2NlZnzpzRyy+/XBp1ysvLSy1atFBcXJx69+5tb4+Li1PPnj0LnKZ169ZauHChQ9uSJUvUsmVLh/OZXn31VY0dO1bff/+9WrZsed5avL295e3tXcyRAAAAt2ScVK1aNfP111/na//qq69MeHi4s7NzysyZM42np6eZPn262bFjh4mJiTH+/v5m7969xhhjnnnmGTNgwAB7/z179hg/Pz8zYsQIs2PHDjN9+nTj6elp5syZY+8zYcIE4+XlZebMmWMOHTpkf6Snp1uuKzU11UgyqampJTdYAABQqpz9/nZ6T9PRo0fVoEGDfO0NGjTQ0aNHSyDGFe6uu+5SSkqKxowZo0OHDqlx48ZatGiRatWqJUk6dOiQwz2boqKitGjRIo0YMUJTpkxReHi43n77bd1+++32Pu+++64yMzN1xx13OCxr9OjRio2NLdXxAAAA9+H0z6i0atVKrVq10ttvv+3Q/vjjj2vjxo1at25diRboDrhPEwAA7qfU7tOUZ+LEierevbt++OEHtW7dWjabTWvWrFFiYqIWLVpUrKIBAABcndNXz3Xs2FG7du1S7969dfz4cR09elR9+vTRzp071b59+9KoEQAAoMw5fXgO+XF4DgAA91Pqh+ck6fjx45o+fbri4+Nls9nUqFEjDR48WMHBwcWZHQAAgMtz+vDcpk2bVKdOHb3xxhs6evSojhw5okmTJqlOnTrasmVLadQIAABQ5pw+PNe+fXvVrVtX06ZNU/nyZ3dUZWdn68EHH9SePXv0448/lkqhrozDcwAAuB9nv7+dDk2+vr7aunVrvns17dixQy1bttSpU6ecq/gSQGgCAMD9OPv97fThuaCgIIcbSOZJTExUYGCgs7MDAABwC06HprvuuksPPPCAZs2apcTERP3111+aOXOmHnzwQfXr1680agQAAChzTl8999prr8lms+m+++5Tdna2JMnT01OPPPKIXnnllRIvEAAAwBU4dU5TTk6OVq1apSZNmsjHx0e7d++WMUZ169aVn59fadbp0jinCQAA91Oq92ny8PBQt27dFB8fr4oVK6pJkybFLhQAAMCdOH1OU5MmTbRnz57SqAUAAMBlOR2aXn75ZT3xxBP65ptvdOjQIaWlpTk8AAAALkVO36epXLn/z1k2m83+d2OMbDabcnJySq46N8E5TQAAuJ9S/+255cuXF6swAAAAd+Z0aOrYsWNp1AEAAODSnD6nCQAA4HJEaAIAALCA0AQAAGCBpdC0YMECZWVllXYtAAAALstSaOrdu7eOHz8u6exdwZOTk0uzJgAAAJdjKTRVqVJF69atk/T/92MCAAC4nFi65cDQoUPVs2dP2Ww22Ww2hYWFFdr3cry5JQAAuPRZCk2xsbG6++679eeff+q2227TjBkzVKFChVIuDQAAwHVYvrllgwYN1KBBA40ePVp33nmn/Pz8SrMuAAAAl+L0b8/lOXz4sHbu3CmbzaZ69eqpSpUqJV2b2+C35wAAcD/Ofn87fZ+mU6dOafDgwQoPD1eHDh3Uvn17hYeH64EHHtCpU6eKVTQAAICrczo0jRgxQitXrtSCBQt0/PhxHT9+XF9//bVWrlypf/3rX6VRIwAAQJlz+vBc5cqVNWfOHHXq1Mmhffny5erbt68OHz5ckvW5BQ7PAQDgfi7K4bnQ0NB87VWrVuXwHAAAuGQ5HZpat26t0aNH68yZM/a206dP68UXX1Tr1q1LtDgAAABXYfmWA3neeust3XTTTapRo4auuuoq2Ww2bdu2TT4+Pvr+++9Lo0YAAIAyV6xbDpw+fVqffvqpfv/9dxlj1KhRI91zzz3y9fUtjRpdHuc0AQDgfpz9/nZ6T5Mk+fr6asiQIcWZFAAAwC05fU4TAADA5YjQBAAAYAGhCQAAwAJCEwAAgAVOh6batWsrJSUlX/vx48dVu3btEikKAADA1Tgdmvbu3aucnJx87RkZGTpw4ECJFAUAAOBqLN9yYMGCBfa/f//99woODrY/z8nJ0dKlSxUZGVmixQEAALgKy6GpV69e9r8PHDjQ4TVPT09FRkbq9ddfL7HCAAAAXInl0JSbmytJioqK0qZNm1SpUqVSKwoAAMDVOHVOU1ZWliIjIws8ERwAAOBS5lRo8vT01G+//SabzVZa9QAAALgkp6+eu++++zR9+vTSqAUAAMBlOf2DvZmZmfrvf/+ruLg4tWzZUv7+/g6vT5o0qcSKAwAAcBVOh6bffvtNV199tSRp165dDq9x2A4AAFyqnA5Ny5cvL406AAAAXBq/PQcAAGCB03uaJGnjxo2aPXu29u/fr8zMTIfX5s2bVyKFAQAAuBKn9zTNnDlTbdu21Y4dOzR//nxlZWVpx44dWrZsmcNPqwAAAFxKnA5N48aN0xtvvKFvvvlGXl5eeuuttxQfH6++ffsqIiKiNGoEAAAoc06Hpt27d6t79+6SJG9vb508eVI2m00jRozQ1KlTS7xAAAAAV+B0aKpYsaLS09MlSdWrV9dvv/0mSTp+/LhOnTpVstUBAAC4CKdPBG/fvr3i4uLUpEkT9e3bV8OHD9eyZcsUFxenzp07l0aNAAAAZc7pPU2TJ0/W3XffLUkaNWqUnnjiCf3999/q06fPRfl5lXfffVdRUVHy8fFRixYt9NNPPxXZf+XKlWrRooV8fHxUu3Ztvf/++/n6zJ07V40aNZK3t7caNWqk+fPnl1b5ztm0SbrhhrN/urtLZSyMw7UwDtfCOFwL4yh5xo3MnDnTeHp6mmnTppkdO3aY4cOHG39/f7Nv374C++/Zs8f4+fmZ4cOHmx07dphp06YZT09PM2fOHHufNWvWGA8PDzNu3DgTHx9vxo0bZ8qXL2/WrVtnua7U1FQjyaSmpl7wGM8lnTJStpFOleh8y8KlMhbG4VouhXHMmGGMlOX242jXzvxvDGcfgweXdUXF8/zzjuNo166sKyq+/98+MsyGDWVdTfGV5nbu7Pe37WxBzsnJydH8+fMVHx8vm82mhg0bqmfPnipfvli3fbKsVatWuvrqq/Xee+/Z2xo2bKhevXpp/Pjx+fo//fTTWrBggeLj4+1tQ4cO1c8//6y1a9dKku666y6lpaXpu+++s/e56aabFBISoi+++MJSXWlpaQoODlZqaqqCgoKKO7yz9u2TjhyRrWVzSbb/PYwkI7Npq1S5slSr1oUt42K5VMbCOFzLJTSOum1DtfuAt86OQXLXcdgia+r/34s8RuU9jLJ2J7rNOAIbVteJ0x765zgkI7PXfcaRf/uQJKOB3VP04ZSTbjyOkt8+nP7+djaV/frrr6Z27drGz8/PNG/e3DRv3tz4+/ubyMhI88svvzg7O8syMjKMh4eHmTdvnkN7dHS06dChQ4HTtG/f3kRHRzu0zZs3z5QvX95kZmYaY4ypWbOmmTRpkkOfSZMmmYiIiEJrOXPmjElNTbU/EhMTS25Pk/S/VJ1rJHPOI/dsynannYOXylgYh2u5RMYxQwMKGIP7jaOdlhYyjrNjGaz3yrpES57X80WOo52WlnWJ1hS6fZwdxwa1LOsKrblI27mze5qcPqfpwQcf1JVXXqm//vpLW7Zs0ZYtW5SYmKimTZvqoYcecj7mWXTkyBHl5OQoNDTUoT00NFRJSUkFTpOUlFRg/+zsbB05cqTIPoXNU5LGjx+v4OBg+6NmzZrFGVLBPv1Ukpcc/6ej/z33+t/rbuJSGQvjcC2XyDjmNx+r/GOQ3G0c6z3aq+BxSJJN3wYNuJjlFNu88BgVNY6z43QDhW4fkmTT6nveK6DdBbnodu50aPr55581fvx4hYSE2NtCQkL08ssva9u2bSVZW4FsNscVaIzJ13a+/v9sd3aeo0aNUmpqqv2RmJhouf7zuuceSZk6uxvSoaqz7ffcU3LLKm2XylgYh2u5RMbROzpC+ccguds4WrX2VMHjkCSj7nf4X8xyiq3PAxVV1DjOjtMNFLp9SJJR2+EtL3JBxeSi27nToal+/fr6+++/87UnJyerbt26JVJUQSpXriwPD498e4CSk5Pz7SnKExYWVmD/8uXLq1KlSkX2KWye0tmbegYFBTk8SpLZHK+8Y7f/a5Fk/tfuXi6VsTAO13IpjOP++6U6NTLk+KXgfuM4ewHzue9FnrPnNF2Ei6pLxJgxUoBfjgr+kjY6z4XaLiX/9iFJRgNvPaprrimjoorBFbfzYv2MSnR0tObMmaO//vpLf/31l+bMmaOYmBhNmDBBaWlp9kdJ8vLyUosWLRQXF+fQHhcXpzZt2hQ4TevWrfP1X7JkiVq2bClPT88i+xQ2z4uialWZsOqSzkjKkXTm7POqVcuupuK6VMbCOFzLJTKOP9ce0Yyg4ZKy5c7jMIkH1c5jjc6O4exjsPenytp7sIwrc076ziQ97/e6zh1HO481MonuNY7820emNlS8WR++d7qMC3OSK27nzp40ZbPZ7I9y5cqZcuXKFfi8XLlyzs76vPJuOTB9+nSzY8cOExMTY/z9/c3evXuNMcY888wzZsCAAfb+ebccGDFihNmxY4eZPn16vlsOrF692nh4eJhXXnnFxMfHm1deecU1bjlw5owxubln/56be/a5u7pUxsI4XAvjcC2Mw7UwDkuc/f52+h4By5cvL/nkZtFdd92llJQUjRkzRocOHVLjxo21aNEi1frfZYeHDh3S/v377f2joqK0aNEijRgxQlOmTFF4eLjefvtt3X777fY+bdq00cyZM/Xcc8/p+eefV506dTRr1iy1atXqoo/Pgbf3///dZnN87m4ulbEwDtfCOFwL43AtjKNUFOs+TXBUovdpAgAAF4Wz399On9MEAABwOSI0AQAAWEBoAgAAsIDQBAAAYIHToSk2Nlb79u0rjVoAAABcltOhaeHChapTp446d+6szz//XGfOnCmNugAAAFyK06Fp8+bN2rJli5o2baoRI0aoWrVqeuSRR7Rx48bSqA8AAMAlFOucpqZNm+qNN97QgQMH9MEHH+jAgQNq27atmjRporfeekupqaklXScAAECZuqATwXNzc5WZmamMjAwZY1SxYkW99957qlmzpmbNmlVSNQIAAJS5YoWmzZs3a9iwYapWrZpGjBih5s2bKz4+XitXrtTvv/+u0aNHKzo6uqRrBQAAKDNO/4xK06ZNFR8fr65du2rIkCHq0aOHPDw8HPocPnxYoaGhys3NLdFiXRU/owIAgPtx9vvb6R/svfPOOzV48GBVr1690D5VqlS5bAITAAC4PDh1eC4rK0szZszgRG8AAHDZcSo0eXp6KiMjQzabrbTqAQAAcElOnwj++OOPa8KECcrOzi6NegAAAFyS0+c0rV+/XkuXLtWSJUvUpEkT+fv7O7w+b968EisOAADAVTgdmipUqKDbb7+9NGoBAABwWU6HphkzZpRGHQAAAC7tgu4IDgAAcLlwek+TJM2ZM0dffvml9u/fr8zMTIfXtmzZUiKFAQAAuBKn9zS9/fbbGjRokKpWraqtW7fq2muvVaVKlbRnzx7dfPPNpVEjAABAmXM6NL377ruaOnWqJk+eLC8vLz311FOKi4tTdHQ0N70EAACXLKdD0/79+9WmTRtJkq+vr9LT0yVJAwYM0BdffFGy1QEAALgIp0NTWFiYUlJSJEm1atXSunXrJEkJCQly8rd/AQAA3IbToemGG27QwoULJUkPPPCARowYoS5duuiuu+5S7969S7xAAAAAV2AzTu4eys3NVW5ursqXP3vh3ZdffqlVq1apbt26Gjp0qLy8vEqlUFeWlpam4OBgpaamKigoqKzLAQAAFjj7/e10aEJ+hCYAANyPs9/fxbpP0/Hjx7VhwwYlJycrNzfX4bX77ruvOLMEAABwaU6HpoULF+qee+7RyZMnFRgYKJvNZn/NZrMRmgAAwCXJ6RPB//Wvf2nw4MFKT0/X8ePHdezYMfvj6NGjpVEjAABAmXM6NB04cEDR0dHy8/MrjXoAAABcktOhqVu3btq0aVNp1AIAAOCynD6nqXv37nryySe1Y8cONWnSRJ6eng6v33bbbSVWHAAAgKtw+pYD5coVvnPKZrMpJyfngotyN9xyAAAA91Pqtxz45y0GAAAALgdOn9MEAABwObK0p+ntt9/WQw89JB8fH7399ttF9o2Oji6RwgAAAFyJpXOaoqKitGnTJlWqVElRUVGFz8xm0549e0q0QHfAOU0AALifUjmnKSEhocC/AwAAXC44pwkAAMACp6+eGzlyZIHtNptNPj4+qlu3rnr27KmKFStecHEAAACuwun7NF1//fXasmWLcnJyVL9+fRlj9Mcff8jDw0MNGjTQzp07ZbPZtGrVKjVq1Ki06nYpnNMEAID7cfb72+nDcz179tSNN96ogwcPavPmzdqyZYsOHDigLl26qF+/fjpw4IA6dOigESNGFGsAAAAArsjpPU3Vq1dXXFxcvr1I27dvV9euXXXgwAFt2bJFXbt21ZEjR0q0WFfFniYAANxPqe9pSk1NVXJycr72w4cPKy0tTZJUoUIFZWZmOjtrAAAAl1Wsw3ODBw/W/Pnz9ddff+nAgQOaP3++HnjgAfXq1UuStGHDBtWrV6+kawUAACgzTh+eO3HihEaMGKGPP/5Y2dnZkqTy5ctr4MCBeuONN+Tv769t27ZJkpo1a1bS9bokDs8BAOB+nP3+djo05Tlx4oT27NkjY4zq1KmjgICA4szmkkBoAgDA/ZTKHcELEhAQoKZNmxZ3cgAAALdSrNC0ceNGzZ49W/v37893wve8efNKpDAAAABX4vSJ4DNnzlTbtm21Y8cOzZ8/X1lZWdqxY4eWLVum4ODg0qgRAACgzDkdmsaNG6c33nhD33zzjby8vPTWW28pPj5effv2VURERGnUCAAAUOacDk27d+9W9+7dJUne3t46efKkbDabRowYoalTp5Z4gQAAAK7A6dBUsWJFpaenSzp7d/DffvtNknT8+HGdOnWqZKsDAABwEU6fCN6+fXvFxcWpSZMm6tu3r4YPH65ly5YpLi5OnTt3Lo0aAQAAypzToWny5Mk6c+aMJGnUqFHy9PTUqlWr1KdPHz3//PMlXiAAAIArKNbhufDw8LMTlyunp556SgsWLNCkSZMUEhJS4gXmOXbsmAYMGKDg4GAFBwdrwIABOn78eJHTGGMUGxur8PBw+fr6qlOnTtq+fbv99aNHj+rxxx9X/fr15efnp4iICEVHRys1NbXUxgEAANxTsW9umZycrOTkZOXm5jq0l9YNL/v376+//vpLixcvliQ99NBDGjBggBYuXFjoNBMnTtSkSZP04Ycfql69eho7dqy6dOminTt3KjAwUAcPHtTBgwf12muvqVGjRtq3b5+GDh2qgwcPas6cOaUyDgAA4J6c/hmVzZs3a+DAgYqPj9c/J7XZbMrJySnRAiUpPj5ejRo10rp169SqVStJ0rp169S6dWv9/vvvql+/fr5pjDEKDw9XTEyMnn76aUlSRkaGQkNDNWHCBD388MMFLmv27Nm69957dfLkSZUvby1T8jMqAAC4H2e/v50+PDdo0CDVq1dPa9as0Z49e5SQkGB/7Nmzp1hFn8/atWsVHBxsD0ySdN111yk4OFhr1qwpcJqEhAQlJSWpa9eu9jZvb2917Nix0Gkk2VdcUYEpIyNDaWlpDg8AAHBpc/rwXEJCgubNm6e6deuWRj0FSkpKUtWqVfO1V61aVUlJSYVOI0mhoaEO7aGhodq3b1+B06SkpOill14qdC9UnvHjx+vFF1+0UjoAALhEOL2nqXPnzvr5559LZOGxsbGy2WxFPjZt2iTp7KG/fzLGFNh+rn++Xtg0aWlp6t69uxo1aqTRo0cXOc9Ro0YpNTXV/khMTDzfUAEAgJtzek/Tf//7Xw0cOFC//fabGjduLE9PT4fXb7vtNsvzGjZsmO6+++4i+0RGRuqXX37R33//ne+1w4cP59uTlCcsLEzS2T1O1apVs7cnJyfnmyY9PV033XSTAgICNH/+/Hxj+idvb295e3sX2QcAAFxanA5Na9as0apVq/Tdd9/le83ZE8ErV66sypUrn7df69atlZqaqg0bNujaa6+VJK1fv16pqalq06ZNgdNERUUpLCxMcXFxat68uSQpMzNTK1eu1IQJE+z90tLS1K1bN3l7e2vBggXy8fGxXD8AALh8OH14Ljo6WgMGDNChQ4eUm5vr8CiNK+ckqWHDhrrppps0ZMgQrVu3TuvWrdOQIUN06623Olw516BBA82fP1/S2QAXExOjcePGaf78+frtt990//33y8/PT/3795d0dg9T165ddfLkSU2fPl1paWlKSkpSUlJSqY0FAAC4J6f3NKWkpGjEiBGFHhYrLZ999pmio6PtV8Pddtttmjx5skOfnTt3OtyY8qmnntLp06f16KOP6tixY2rVqpWWLFmiwMBASWdvn7B+/XpJyndie0JCgiIjI0txRAAAwJ04fZ+mgQMHqn379nrwwQdLqya3w32aAABwP85+fzu9p6levXoaNWqUVq1apSZNmuQ7aTo6OtrZWQIAALg8p/c0RUVFFT4zm63UbnDpytjTBACA+yn1PU0JCQnFKgwAAMCdOX31HAAAwOXI0p6mkSNH6qWXXpK/v79GjhxZZN9JkyaVSGEAAACuxFJo2rp1q7Kysux/L8z5ftIEAADAXTl9Ijjy40RwAADcj7Pf35zTBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYIHbhKZjx45pwIABCg4OVnBwsAYMGKDjx48XOY0xRrGxsQoPD5evr686deqk7du3F9r35ptvls1m01dffVXyAwAAAG7NbUJT//79tW3bNi1evFiLFy/Wtm3bNGDAgCKnmThxoiZNmqTJkydr48aNCgsLU5cuXZSenp6v75tvvimbzVZa5QMAADdXvqwLsCI+Pl6LFy/WunXr1KpVK0nStGnT1Lp1a+3cuVP169fPN40xRm+++aaeffZZ9enTR5L00UcfKTQ0VJ9//rkefvhhe9+ff/5ZkyZN0saNG1WtWrWLMygAAOBW3GJP09q1axUcHGwPTJJ03XXXKTg4WGvWrClwmoSEBCUlJalr1672Nm9vb3Xs2NFhmlOnTqlfv36aPHmywsLCLNWTkZGhtLQ0hwcAALi0uUVoSkpKUtWqVfO1V61aVUlJSYVOI0mhoaEO7aGhoQ7TjBgxQm3atFHPnj0t1zN+/Hj7uVXBwcGqWbOm5WkBAIB7KtPQFBsbK5vNVuRj06ZNklTg+UbGmPOeh/TP18+dZsGCBVq2bJnefPNNp+oeNWqUUlNT7Y/ExESnpgcAAO6nTM9pGjZsmO6+++4i+0RGRuqXX37R33//ne+1w4cP59uTlCfvUFtSUpLDeUrJycn2aZYtW6bdu3erQoUKDtPefvvtat++vVasWFHgvL29veXt7V1k3QAA4NJSpqGpcuXKqly58nn7tW7dWqmpqdqwYYOuvfZaSdL69euVmpqqNm3aFDhNVFSUwsLCFBcXp+bNm0uSMjMztXLlSk2YMEGS9Mwzz+jBBx90mK5JkyZ644031KNHjwsZGgAAuMS4xdVzDRs21E033aQhQ4boP//5jyTpoYce0q233upw5VyDBg00fvx49e7dWzabTTExMRo3bpyuuOIKXXHFFRo3bpz8/PzUv39/SWf3RhV08ndERISioqIuzuAAAIBbcIvQJEmfffaZoqOj7VfD3XbbbZo8ebJDn507dyo1NdX+/KmnntLp06f16KOP6tixY2rVqpWWLFmiwMDAi1o7AABwfzZjjCnrItxdWlqagoODlZqaqqCgoLIuBwAAWODs97db3HIAAACgrBGaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYUL6sC7gUGGMkSWlpaWVcCQAAsCrvezvve/x8CE0lID09XZJUs2bNMq4EAAA4Kz09XcHBweftZzNW4xUKlZubq4MHDyowMFA2m62sy3FJaWlpqlmzphITExUUFFTW5Vz2eD9cC++Ha+H9cC2l+X4YY5Senq7w8HCVK3f+M5bY01QCypUrpxo1apR1GW4hKCiIDyEXwvvhWng/XAvvh2sprffDyh6mPJwIDgAAYAGhCQAAwAJCEy4Kb29vjR49Wt7e3mVdCsT74Wp4P1wL74drcaX3gxPBAQAALGBPEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNKHUjB8/Xtdcc40CAwNVtWpV9erVSzt37izrsvA/48ePl81mU0xMTFmXctk6cOCA7r33XlWqVEl+fn5q1qyZNm/eXNZlXbays7P13HPPKSoqSr6+vqpdu7bGjBmj3Nzcsi7tsvDjjz+qR48eCg8Pl81m01dffeXwujFGsbGxCg8Pl6+vrzp16qTt27df1BoJTSg1K1eu1GOPPaZ169YpLi5O2dnZ6tq1q06ePFnWpV32Nm7cqKlTp6pp06ZlXcpl69ixY2rbtq08PT313XffaceOHXr99ddVoUKFsi7tsjVhwgS9//77mjx5suLj4zVx4kS9+uqreuedd8q6tMvCyZMnddVVV2ny5MkFvj5x4kRNmjRJkydP1saNGxUWFqYuXbrYf//1YuCWA7hoDh8+rKpVq2rlypXq0KFDWZdz2Tpx4oSuvvpqvfvuuxo7dqyaNWumN998s6zLuuw888wzWr16tX766aeyLgX/c+uttyo0NFTTp0+3t91+++3y8/PTJ598UoaVXX5sNpvmz5+vXr16STq7lyk8PFwxMTF6+umnJUkZGRkKDQ3VhAkT9PDDD1+UutjThIsmNTVVklSxYsUyruTy9thjj6l79+668cYby7qUy9qCBQvUsmVL3XnnnapataqaN2+uadOmlXVZl7V27dpp6dKl2rVrlyTp559/1qpVq3TLLbeUcWVISEhQUlKSunbtam/z9vZWx44dtWbNmotWBz/Yi4vCGKORI0eqXbt2aty4cVmXc9maOXOmtmzZoo0bN5Z1KZe9PXv26L333tPIkSP173//Wxs2bFB0dLS8vb113333lXV5l6Wnn35aqampatCggTw8PJSTk6OXX35Z/fr1K+vSLntJSUmSpNDQUIf20NBQ7du376LVQWjCRTFs2DD98ssvWrVqVVmXctlKTEzU8OHDtWTJEvn4+JR1OZe93NxctWzZUuPGjZMkNW/eXNu3b9d7771HaCojs2bN0qeffqrPP/9cV155pbZt26aYmBiFh4dr4MCBZV0edPaw3bmMMfnaShOhCaXu8ccf14IFC/Tjjz+qRo0aZV3OZWvz5s1KTk5WixYt7G05OTn68ccfNXnyZGVkZMjDw6MMK7y8VKtWTY0aNXJoa9iwoebOnVtGFeHJJ5/UM888o7vvvluS1KRJE+3bt0/jx48nNJWxsLAwSWf3OFWrVs3enpycnG/vU2ninCaUGmOMhg0bpnnz5mnZsmWKiooq65Iua507d9avv/6qbdu22R8tW7bUPffco23bthGYLrK2bdvmuwXHrl27VKtWrTKqCKdOnVK5co5fix4eHtxywAVERUUpLCxMcXFx9rbMzEytXLlSbdq0uWh1sKcJpeaxxx7T559/rq+//lqBgYH2Y9LBwcHy9fUt4+ouP4GBgfnOJ/P391elSpU4z6wMjBgxQm3atNG4cePUt29fbdiwQVOnTtXUqVPLurTLVo8ePfTyyy8rIiJCV155pbZu3apJkyZp8ODBZV3aZeHEiRP6888/7c8TEhK0bds2VaxYUREREYqJidG4ceN0xRVX6IorrtC4cePk5+en/v37X7wiDVBKJBX4mDFjRlmXhv/p2LGjGT58eFmXcdlauHChady4sfH29jYNGjQwU6dOLeuSLmtpaWlm+PDhJiIiwvj4+JjatWubZ5991mRkZJR1aZeF5cuXF/idMXDgQGOMMbm5uWb06NEmLCzMeHt7mw4dOphff/31otbIfZoAAAAs4JwmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwCXs3fvXtlsNm3btq2sS7lgq1evVpMmTeTp6alevXqVdTkALgChCQD+4f777y+xgDNy5Eg1a9ZMCQkJ+vDDD0tknlZ9+OGHqlChwkVdJnApIzQBKDGZmZllXcIFycnJKfEfZ929e7duuOEG1ahRw3KAcff1CFyqCE0Aiq1Tp04aNmyYRo4cqcqVK6tLly6SpB07duiWW25RQECAQkNDNWDAAB05csQ+3eLFi9WuXTtVqFBBlSpV0q233qrdu3c7tezIyEi99NJL6t+/vwICAhQeHq533nnHoc+kSZPUpEkT+fv7q2bNmnr00Ud14sQJ++t5e2K++eYbNWrUSN7e3ho0aJA++ugjff3117LZbLLZbFqxYkWBNWRkZCg6OlpVq1aVj4+P2rVrp40bN0r6/0OMKSkpGjx4sGw2W6F7miIjIzV27Fjdf//9Cg4O1pAhQyRJc+fO1ZVXXilvb29FRkbq9ddfd5ju2LFjuu+++xQSEiI/Pz/dfPPN+uOPPyRJK1as0KBBg5SammofR2xsrCTp3Xff1RVXXCEfHx+FhobqjjvucGrdA5eti/pLdwAuKR07djQBAQHmySefNL///ruJj483Bw8eNJUrVzajRo0y8fHxZsuWLaZLly7m+uuvt083Z84cM3fuXLNr1y6zdetW06NHD9OkSROTk5NjjDEmISHBSDJbt24tdNm1atUygYGBZvz48Wbnzp3m7bffNh4eHmbJkiX2Pm+88YZZtmyZ2bNnj1m6dKmpX7++eeSRR+yvz5gxw3h6epo2bdqY1atXm99//90cP37c9O3b19x0003m0KFD5tChQ4X+YGt0dLQJDw83ixYtMtu3bzcDBw40ISEhJiUlxWRnZ5tDhw6ZoKAg8+abb5pDhw6ZU6dOFTqWoKAg8+qrr5o//vjD/PHHH2bTpk2mXLlyZsyYMWbnzp1mxowZxtfX1+EHr2+77TbTsGFD8+OPP5pt27aZbt26mbp165rMzEyTkZFh3nzzTRMUFGQfR3p6utm4caPx8PAwn3/+udm7d6/ZsmWLeeutt6y83cBlj9AEoNg6duxomjVr5tD2/PPPm65duzq0JSYmGklm586dBc4nOTnZSLL/YrnV0HTTTTc5tN11113m5ptvLnSaL7/80lSqVMn+fMaMGUaS2bZtm0O/gQMHmp49exY6H2OMOXHihPH09DSfffaZvS0zM9OEh4ebiRMn2tuCg4Mdgk5hY+nVq5dDW//+/U2XLl0c2p588knTqFEjY4wxu3btMpLM6tWr7a8fOXLE+Pr6mi+//NI+vuDgYId5zJ071wQFBZm0tLQiawKQH4fnAFyQli1bOjzfvHmzli9froCAAPujQYMGkmQ/BLd79271799ftWvXVlBQkKKioiRJ+/fvd2rZrVu3zvc8Pj7e/nz58uXq0qWLqlevrsDAQN13331KSUnRyZMn7X28vLzUtGlTp5abN4asrCy1bdvW3ubp6alrr73WoQar/rke4+PjHeYtSW3bttUff/yhnJwcxcfHq3z58mrVqpX99UqVKql+/fpFLr9Lly6qVauWateurQEDBuizzz7TqVOnnK4XuBwRmgBcEH9/f4fnubm56tGjh7Zt2+bw+OOPP9ShQwdJUo8ePZSSkqJp06Zp/fr1Wr9+vaSSOQHaZrNJkvbt26dbbrlFjRs31ty5c7V582ZNmTJFkpSVlWXv7+vra5/GGcYYh+Wd216c+f1zPRY0n7xl/vPvziw/MDBQW7Zs0RdffKFq1arphRde0FVXXaXjx487XTNwuSE0AShRV199tbZv367IyEjVrVvX4eHv76+UlBTFx8frueeeU+fOndWwYUMdO3asWMtat25dvud5e7U2bdqk7Oxsvf7667ruuutUr149HTx40NJ8vby8lJOTU2SfunXrysvLS6tWrbK3ZWVladOmTWrYsKGTI8mvUaNGDvOWpDVr1qhevXry8PBQo0aNlJ2dbQ+ckpSSkqJdu3bZl1/YOMqXL68bb7xREydO1C+//KK9e/dq2bJlF1wzcKkjNAEoUY899piOHj2qfv36acOGDdqzZ4+WLFmiwYMHKycnRyEhIapUqZKmTp2qP//8U8uWLdPIkSOLtazVq1dr4sSJ2rVrl6ZMmaLZs2dr+PDhkqQ6deooOztb77zzjvbs2aNPPvlE77//vqX5RkZG6pdfftHOnTt15MgRhz1Tefz9/fXII4/oySef1OLFi7Vjxw4NGTJEp06d0gMPPFCs8ZzrX//6l5YuXaqXXnpJu3bt0kcffaTJkyfriSeekCRdccUV6tmzp4YMGaJVq1bp559/1r333qvq1aurZ8+e9nGcOHFCS5cu1ZEjR3Tq1Cl98803evvtt7Vt2zbt27dPH3/8sXJzc1W/fv0Lrhm45JXlCVUA3FvHjh3N8OHD87Xv2rXL9O7d21SoUMH4+vqaBg0amJiYGJObm2uMMSYuLs40bNjQeHt7m6ZNm5oVK1YYSWb+/PnGGOsngr/44oumb9++xs/Pz4SGhpo333zToc+kSZNMtWrVjK+vr+nWrZv5+OOPjSRz7NgxY0zBJ0obc/bE9C5dupiAgAAjySxfvrzAGk6fPm0ef/xxU7lyZePt7W3atm1rNmzY4NDH6ongb7zxRr72OXPmmEaNGhlPT08TERFhXn31VYfXjx49agYMGGCCg4PtY9y1a5dDn6FDh5pKlSoZSWb06NHmp59+Mh07djQhISHG19fXNG3a1MyaNavI+gCcZTOmkAPjAODCIiMjFRMTo5iYmLIuBcBlgsNzAAAAFhCaAAAALODwHAAAgAXsaQIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACw4P8Am0dXqoAW7kUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqYAAAHHCAYAAABtO5r9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABTSUlEQVR4nO3dd3hUZd7G8XtIQhJCCCUQCDV0UBAERUCKImAHGwoaURRFV2kWZNWlqLCgi6igLIgo6yosIIrKIlGK0qRbIAJKixTpSWghJL/3D97MMqQwwZzkJHw/1zWX5pnnnKfMzJmb08ZjZiYAAACggBUr6A4AAAAAEsEUAAAALkEwBQAAgCsQTAEAAOAKBFMAAAC4AsEUAAAArkAwBQAAgCsQTAEAAOAKBFMAAAC4AsEUAAAArkAwBQAAgCu4OpguW7ZMQ4cO1ZEjR/K97enTp+uSSy5RaGioPB6P1q9ff95lhg8froYNGyo9Pd35DuYgOTlZzz77rDp16qTy5cvL4/Fo6NChWdadPHmyKleurGPHjjnWH7fMi5S7uZGko0ePqn///oqOjlZISIiaNGmiadOm+dTJjzmUpPfff18ej0fbt2+XlPPnY+jQofJ4PDpw4ICjfcpr2X3uLuTz6BZOb8fy67XOaMct/cn4PGQ8AgMDValSJd1zzz3asmVLnrWzfv163XTTTapWrZpCQ0NVtmxZtWzZUh9++KFfy+d2m7NkyRLdeOONKlOmjEJDQ1WnTh299NJLPnUWLFigXr16qX79+goLC1PlypXVpUsXrVmz5oLqSdIDDzzgM5/nPlasWJGrerkdU27q+rNddmruJWndunXq2rWroqOjVaJECdWvX1/Dhw/X8ePHfer5+97J7ZyuXLlSnTt3Vnh4uEqWLKlrrrlGS5cu9amzaNGiXL1Gf5Y/ffKX64PpsGHD8j2Y7t+/X7GxsapVq5bmzZun5cuXq27dujkus3v3bo0ePVrDhw9XsWIFO60HDx7UxIkTlZKSoq5du+ZYt2fPngoLC9Po0aMd6Yub5kXK3dxI0u23364PPvhAQ4YM0X//+19dccUV6t69uz766CNvHafnMMNNN92k5cuXq1KlSpIK7vPhlOw+dxfyeXSTovY6uc2UKVO0fPlyff3113riiSc0Z84cXX311Tp8+HCerP/IkSOqWrWqRowYoblz52rq1KmqUaOGYmNj9fLLL593+dxscz766CO1a9dOERERmjp1qubOnatBgwbJzHzqvfPOO9q+fbv69eunuXPn6o033tC+fft01VVXacGCBbmuJ0kvvviili9fnukRGRmpypUr64orrshVvdyOKTd1/dkuOzX3GzduVKtWrbR9+3aNHTtWX3zxhe655x4NHz5c3bt396nr73snN3O6atUqtW3bVidOnNC//vUv/etf/9LJkyfVoUMHLV++PNO4RowYkWm9l156aY5zkVu57dN5WR44duxYXqwmk1dffdUk2bZt2xxZf3aWLFlikmz69Ol+L/Pss89a5cqVLS0tzcGe+Sc9Pd3S09PNzGz//v0myYYMGZJt/ddee80iIiIceR3dNC9muZubL7/80iTZRx995FPesWNHi46OttOnT3vLnJzD7OT0+RgyZIhJsv379+dbf/6s7D53F/J5dIOM94JT27GM9efXa53Rjr/1nO7PlClTTJKtWrXKp3zYsGEmyd577z1H22/RooVVrVr1vPX83eb8/vvvFhYWZo899th51/nHH39kKktOTraoqCjr0KFDrutlZ9GiRSbJXnjhhQuql5sx+Vs3N9tlJ+b++eefN0n266+/+pQ/8sgjJskOHTp03nX4897Jbk47d+5sUVFRPt81SUlJFhkZaa1atfKWLVy40CTZjBkzztufP8vfPvkr17uwMg7TrF27VnfeeafKlCmjWrVqSTqzG7xDhw4KDw9XiRIl1KpVK3355ZdZrud8dYcOHapnnnlGkhQTE+PdBb1o0SLt379fjzzyiKpWrarg4GCVL19erVu31tdff33e/p+v3QceeEBXX321JOnuu++Wx+NR+/btc1znqVOnNHnyZPXo0cNnr+CePXtUsmRJ3XPPPT71v/jiCwUFBen5558/b38vRMZc+evee+9VUlJSlodC/ozs5kUqHHMze/ZslSxZUnfddZdP+YMPPqjdu3fr+++/95b5O4cbNmyQx+PRjBkzvGVr1qyRx+PRJZdc4lP31ltvVbNmzbx/n30oP6fPx9n++OMPde/eXREREYqKilKvXr2UmJjo1/h/+eUXde/eXVFRUQoODla1atV0//33KyUlxVvH38/8li1b1KNHD1WoUEHBwcFq0KCBxo8f730+u89dTp/HC90OZGzD1q1bp9tvv12lSpVSRESE7rvvPu3fvz/XfT97neduF3N6nR544AHVqFEj2/75s/6zJSQknHc8/oxFkr788ks1adJEwcHBiomJ0WuvvZbjnGblfP357rvv5PF49PHHH2dadurUqfJ4PFq1alWu223evLmkM+99J0VGRiowMPC89fzd5rz77rs6duyYBg0adN66FSpUyFRWsmRJNWzYUAkJCbmul53JkyfL4/GoV69eF1QvN2Pyt25utstOzH1QUJAkKSIiwqe8dOnSKlasmIoXL37edfjz3sluTpcuXar27durRIkS3rLw8HC1bdtWy5Yt0549e87bflb83TZkJc/7lNskm/Gv4erVq9ugQYMsLi7OPv30U1u0aJEFBQVZs2bNbPr06fbpp59ap06dzOPx2LRp03zW4U/dhIQEe/LJJ02SffLJJ7Z8+XJbvny5JSYmWufOna18+fI2ceJEW7RokX366af2t7/9LVM75/Kn3V9//dXGjx9vkmzEiBG2fPly27BhQ47r/fbbb02SzZ07N9Nzw4YNM4/HY6tXrzazM/+KCQkJsSeffNLvOf8z/NljambWoEEDu/322/O07Zzmxcz9c3PVVVfZFVdckan8559/Nkn2z3/+06fc3zmsVKmSPfLII96///73v1toaKhJsl27dpmZWWpqqpUqVcqeffZZb72MPUTbtm3L8fNh9r/Pab169exvf/ubxcXF2ZgxYyw4ONgefPDB8/Zx/fr1VrJkSatRo4ZNmDDBvvnmG/vwww+tW7dulpSUZGb+fZ7MzDZs2GARERHWqFEjmzp1qs2fP9+eeuopK1asmA0dOtTMsv/c5fR5vNDtwNnbsGeeeca++uorGzNmjIWFhVnTpk3t1KlTuer7ues8e7uY0+vUs2dPq169erb9y67PZ68/N+Pxdyxff/21BQQE2NVXX22ffPKJzZgxw6644gqrVq1arvaY+jO/TZs2tdatW2daxxVXXJHlZ+9s2e0xHTdunEmyWbNm+ZSnp6dbamqqX4+spKWlWWpqqu3bt8/Gjx9vgYGBNmHChPPOx9ly2uZce+21VrZsWZs3b55ddtllFhAQYOXLl7dHH33U+7nOyZEjRywiIsJuu+22PKsXGhpq11133QXXy82Y/K2b2+1yhrya+23btlnp0qXtzjvvtN9++82SkpLs888/t4iIiGy/u3L73slpTosXL273339/pvLu3bubJPvqq6/M7H97TCtUqGABAQEWHh5unTp1su+++y7Tsv5uG7Ljb5/8dcHB9G9/+5tP+VVXXWUVKlSw5ORkb9np06ft0ksvtSpVqnh3p+embnaHwEqWLGn9+/fPbdf9bje3u8BHjRplkmzv3r2Znjt27JhFR0dbhw4dbOXKlRYeHm4PPvigz3w4yd9geu+991pUVJRPWXp6uh0+fDjT4ekTJ07Y4cOHfQ6ZmJklJiZ6Q4tZzvNi5v65qVOnjnXu3DlT+e7du71B6WxZzWFW7rvvPqtZs6b37+uuu8569+5tZcqUsQ8++MDMzJYuXWqSbP78+d56ZwdTM/8O5Y8ePdqn/PHHH7eQkJDzzvG1115rpUuXtn379mVbx9/PU+fOna1KlSqZNvBPPPGEhYSEeA99Zfe5y678QrcDGXMzYMAAn/J///vfJsk+/PBDb5m/fc9uu2iW/et0IcE0q/X7Ox5/x9KiRQuLjo62EydOeOskJSVZ2bJlcxVM/ZnfjPf0unXrvGUrV640Sd7PQnYyll2xYoWlpqZacnKyzZs3zypWrGht27bNFDAz3kf+PLL6TD366KPe54sXL25vv/32eefiXDltc+rVq2chISEWHh5uI0aMsIULF9ro0aMtNDTUWrdufd7P7L333muBgYHef+j/2XrvvPOOSbKPP/74guvlZkz+1s3tdjlDXs59fHy81a9f3+c907dv32xfo9y+d3Ka0yZNmljdunV9To9LTU21mjVr+pzisHbtWuvXr5/Nnj3bvv32W3vvvfesQYMGFhAQYPPmzfNZp7/bhuz42yd/XXAw/eGHH7xlR48eNY/HY48//nim+hnhJD4+Ptd1s9ugZ3xpvvTSS7Z8+XKff4FnJzft5jaY9uvXzzweT6agluG9994zSRYWFmbdunXLtt7ZbfvzOHtjnh1/g+mAAQPM4/H4bMz37Nljkqxnz54+dTPeA8uXL/cpj4qKsssuu8z79/nmxczdc1OnTh27/vrrM5VnbABHjhzpU57VHGYl4wt169atduLECQsJCbFZs2bZ7bffbvfdd5+ZndmbHBwcbMePH8+0XG6C6S+//OJTPmHChBz/sWB25h8MAQEBPnt1z+Xv5+nEiRMWGBhoTz75ZKa9UnPnzvXZo57bYHoh2wGz/83NuV/MqampFhgYaA899JCZWa76ntV2MUNeBtOs1u/PePwdy9GjR61YsWL2xBNPZGqnZ8+euQqm55tfM7OTJ09ahQoV7OGHH/aWxcbGWvny5e3kyZM5tpPxeTj30aBBAzt8+HCm+klJSbZq1Sq/HikpKZmW37Fjh61atcq+/PJL69OnjxUrVsxeffXV887H2XLa5tSpUyfL7crYsWNNksXFxWW73hdeeMEk2VtvvZVj+/7WMzNr3ry5lStX7ryvQ071cjMmf+vmdrucIa/mftu2bVa7dm1r3bq1zZw50xYvXmyjR4+2UqVKWa9evbJsO7fvnZzmdPLkySbJHnvsMfv9999t586d9tBDD1lAQIBJyvGI0eHDh61KlSrWuHFjb1lutnPnPp8RxP9Mn7Jy/hNkspFxZbAkHT58WGbmU5YhOjpa0pmr43JbNzvTp0/Xyy+/rHfffVcvvviiSpYsqdtuu02jR49WxYoVs1wmL9rNzokTJxQUFKSAgIAsn8+4gtjj8ej999/Ptp4k1atXT5MmTfKr3WrVquW+s9kICQmRmenkyZMqWbJknqzzfPMiuXtuypUrl+V74tChQ5KksmXL+pT7O4fXXXedJOnrr79WTEyMUlNTde211+qPP/7w3prk66+/VuvWrRUaGvqnx3C24OBgSWdem+wcPnxYaWlpqlKlSo51/Pk8hYeH6/Tp03rrrbf01ltvZbmuC72t0IVsB852bp3AwECf1/zgwYO57ntW85GXclp/TuPxdyyHDx9Wenp6lvPnz5z6258MwcHBevTRR/WPf/xDr776qlJTU/Wf//xHAwcO9L5Xz2fq1Klq0KCBkpOTNX36dP3zn/9U9+7d9d///tenXsmSJdWkSRO/1pnV+X/VqlXzblduvPFGSdLgwYPVs2dPlS9f3q/15qRcuXLasmWLOnfu7FN+ww03qH///lq7dq1323G2YcOG6eWXX9Yrr7yiJ554Itv1+1tPkn788UetXr1a/fr1y/F1OF+93IzJ37q53S77Izf9fO6555SUlKT169crLCxMktS2bVtFRkaqV69euv/++9WuXTuf9eTmvXO+Oe3Vq5f279+vl19+We+8844kqWXLlnr66ac1atQoVa5cOdtxli5dWjfffLMmTJigEydOKDQ01O9tw/bt2xUTE+NTvnDhQrVv3/5P9SkrFxxMzz6huEyZMipWrFiWJ7ju3r1b0pmTfXNbNzuRkZEaO3asxo4dq507d2rOnDl67rnntG/fPs2bNy/LZfKi3Zz6c+rUKR07dsz7Rs2wfv163XzzzWrdurWWLl2q9957T3/5y1+yXVelSpX08MMPX1A//oxDhw4pODjYJ1BVrFgxy1t6DB06NMt7we3du9fn75zmRXL/3DRq1Egff/yxTp8+7fNF9dNPP0lSpltuZDWHWalSpYrq1q2rr7/+WjVq1FDz5s1VunRpdejQQY8//ri+//57rVixQsOGDcv7QfmhbNmyCggI0O+//55tHX8/T2XKlFFAQIBiY2OzfW3P3dj560K2A2fbu3evzwbz9OnTOnjwoDfMX0jfc3PRYUhIiM+FZBlyCuo5rT+n8fg7lpCQEHk8nkyf5Yz158b55jfDY489pr///e967733dPLkSZ0+fVp9+vTxu50GDRp4L3i65pprlJaWpnfffVczZ87UnXfe6a23ePFiXXPNNX6tc9u2bVlemHa2K6+8UhMmTNDWrVvzJJg2btw4y/tLZmyDs7rd3rBhw7zb47/+9a/ZrtvfehkmT54sSefd3p6vXm7G5G/d3G6X/ZGbfq5fv14NGzbM9J2WcUunn3/+OVMwPVdO7x1/5n7QoEHq37+/tmzZovDwcFWvXl2PPvqowsLCfC6YzUrGmDK2Jf5uG8LDwzNdjFivXr086VNWncyV7G4F0rJlS6tYsaLPoce0tDRr1KhRpnNM/a375ptvmiTbuHHjefvVtWtXK1++fI51/G03t4fyp06dmuVhtl9++cUqVKhgN9xwg506dcq6dOlikZGRduTIEb/Wmxf8PZTfsWNHa9q0aZ62nd28mBWOuck4jHHuYYjrr78+021JzHI3h48//rhFRkZa06ZNfW4HUq1aNevUqZNJspUrV/osc+6h/Jw+H9l9Ts9dR3auvfZaK1OmTI63/PH383TdddfZZZddluXh0bPl9lB+VvzZDpzvHMh//etf3jJ/+57TLZKye51GjhxpxYoV8zmtIiUlxWrXrp3tofys1u/vePwdi9PnmJ49vxl69OhhtWrVsqpVq1rXrl3P24ZZ9hc/HTp0yMqUKWMNGjTwOeftzx7KP1dsbKwVK1Ysx/Owz5XTNuerr74ySfbKK6/4lI8ZM8YkZbpoZfjw4Sad/1ZO/tbLcPLkSStbtqxdeeWVf7pebsbkb93cbpcz5NXcX3PNNVa+fHmfc+vNzCZOnGiSvBcl5iS7946/c3+uHTt2WERExHnPuT906JBVrlzZmjRp4lPu77bBiT5lJc+CacYVui1atLAZM2bYZ599Zp07d87xqvzz1c34Qnr00Udt2bJltmrVKjty5Ig1bdrUXn31Vfv8889t0aJF9uqrr1pISIj16NEjx77ntl1/g+nOnTtN8r0acNu2bValShVr06aN94s7Pj7eAgICfK60dsrcuXNtxowZ3nM477rrLpsxY4bNmDEj08VMaWlpFhERYQMHDszTPmQ1L2aFa246duxoZcqUsYkTJ9qCBQusd+/eJvlewGGW+zmcNWuW95y4xYsXe8sffPBBk2RlypTJdO/Xc0NlVp+PjIvP/mwwzbgqv2bNmt6xf/zxx9a9e/dMV+Wf7/O0YcMGK1OmjF155ZU2ZcoUW7hwoc2ZM8fGjBlj11xzjbdeboLpn9kOnHvV+Pz58+3111+3kiVLZto4+9v3nIJjdq/T1q1bLSgoyNq3b29ffvmlzZo1y9q1a2cxMTEXFEzPNx5/xzJ//nwrVqyYXX311TZ79mybOXOmXXHFFVa1atVcBVN/5jfD999/7/08fP311+dtwyz7YGpmNnr06GxDcG717t3bnnrqKZs+fbotWrTIZs6caXfffbdJsmeeecZbb9GiRRYQEGDDhg3LtA5/tzm33HKLBQcH20svvWRxcXE2cuRICwkJsZtvvtlnfa+99ppJsuuvv957p4ezH7mtd7Zp06aZJJs4cWKO8+JvPX/HlJu6/m6XzfJ+7j/77DPzeDx21VVX2fTp0+2bb76xV155xUqWLGkNGzb0eX/7+97JzZz+9NNPNnToUPviiy8sLi7OXnvtNYuMjLTmzZv7hOXu3bvboEGDbMaMGbZw4UKbOHGi1atXzwIDAzOdr+zvtuHP9slfeRZMzcy+++47u/baay0sLMxCQ0Ptqquuss8//zzL9fhbd/DgwRYdHW3FihUzSTZv3jzr06ePNW7c2EqVKmWhoaFWr149GzJkiF83N/en3Qu5MW2bNm3sxhtvNLMzJ2HXqlXLLr/88kxXufXu3duCg4Md/9GA6tWrZ3lhQFah5JtvvjFJtmbNmjzvx9nzYlb45iY5Odn69u1rFStWtOLFi1vjxo2zvFIyt3N4+PBhK1asmIWFhflctJOxVymr205lFSrP/XwsXLjQzP58MDUz27hxo911111Wrlw5K168uFWrVs0eeOABnxPy/f0cb9u2zXr16mWVK1e2oKAgK1++vLVq1cpefvllb53cBNOTJ09e8HYgY27WrFljt9xyi5UsWdLCw8Ote/fuWd6Q3J++57RdNMv+dZo7d641adLEQkNDrWbNmjZu3LgcL37KKZj6Mx5/xmJmNmfOHGvcuLH3df/73/+eZb/yYn4z1KhRwxo0aHDe9WfIKZieOHHCqlWrZnXq1Mnxgkp/vPfee9amTRuLjIy0wMBAK126tLVr1y5T6M14n2a1R87fbc7x48dt0KBBVrVqVQsMDLRq1arZ4MGDM10E065du2zXd/Zr5G+9s3Xs2NHCwsJ87rDyZ+r5O6bc1PV3u2yW93NvZrZgwQLr1KmTVaxY0UJDQ61u3br21FNP2YEDB3zq+fveyc2cbtq0ydq2bWtly5a14sWLW+3ate2FF16wo0eP+tQbOXKkNWnSxCIiIry3v7rtttsyHYnL4O+24c/0yV8esyxOIkSuzZo1S3fffbd27NiR6xN9C1psbKy2bt16wb9rm5PCPC+54eQcIm8NHTpUw4YN0/79+y/4vHLkrR9//FGXXXaZxo8fr8cff7yguwOgABX8j5cXEbfffruuuOIKjRw5sqC7kiu//fabpk+frlGjRjmy/sI6L7nh9BwCRdVvv/2mBQsW6JFHHlGlSpX0wAMPFHSXABQwgmke8Xg8mjRpkqKjo5Wenl7Q3fHbzp07NW7cOO/PPua1wjovueH0HAJF1UsvvaSOHTvq6NGjmjFjhs9PGgK4OHEoHwAAAK7AHlMAAAC4AsEUAAAArkAwBQAAgCtc8E+SInfS09O1e/duhYeH5+pnCwEAQMExMyUnJys6OjrLn4ZF3iKY5pPdu3eratWqBd0NAABwARISElSlSpWC7kaRRzDNJ+Hh4ZLOvLFLlSpVwL0BAAD+SEpKUtWqVb3f43AWwTSfZBy+L1WqFMEUAIBChtPw8gcnSwAAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXKFIBtO3335bMTExCgkJUbNmzfTdd9/lWH/x4sVq1qyZQkJCVLNmTU2YMCHbutOmTZPH41HXrl3zuNcAAAAXtyIXTKdPn67+/fvr+eef17p169SmTRvdcMMN2rlzZ5b1t23bphtvvFFt2rTRunXr9Ne//lV9+/bVrFmzMtXdsWOHnn76abVp08bpYQAAAFx0PGZmBd2JvNSiRQtdfvnleuedd7xlDRo0UNeuXTVy5MhM9QcNGqQ5c+YoPj7eW9anTx/98MMPWr58ubcsLS1N7dq104MPPqjvvvtOR44c0aeffup3v5KSkhQREaHExESVKlXqwgYHAADyFd/f+atI7TE9deqU1qxZo06dOvmUd+rUScuWLctymeXLl2eq37lzZ61evVqpqanesuHDh6t8+fJ66KGH8r7jAAAAUGBBdyAvHThwQGlpaYqKivIpj4qK0t69e7NcZu/evVnWP336tA4cOKBKlSpp6dKlmjx5stavX+93X1JSUpSSkuL9Oykpyf+BAAAAXISK1B7TDB6Px+dvM8tUdr76GeXJycm67777NGnSJEVGRvrdh5EjRyoiIsL7qFq1ai5GAAAAcPEpUntMIyMjFRAQkGnv6L59+zLtFc1QsWLFLOsHBgaqXLly2rBhg7Zv365bbrnF+3x6erokKTAwUJs2bVKtWrUyrXfw4MEaOHCg9++kpCTCKQAAQA6KVDAtXry4mjVrpri4ON12223e8ri4OHXp0iXLZVq2bKnPP//cp2z+/Plq3ry5goKCVL9+ff30008+z7/wwgtKTk7WG2+8kW3YDA4OVnBw8J8cEQAAwMWjSAVTSRo4cKBiY2PVvHlztWzZUhMnTtTOnTvVp08fSWf2ZO7atUtTp06VdOYK/HHjxmngwIHq3bu3li9frsmTJ+vjjz+WJIWEhOjSSy/1aaN06dKSlKkcAAAAF67IBdO7775bBw8e1PDhw7Vnzx5deumlmjt3rqpXry5J2rNnj889TWNiYjR37lwNGDBA48ePV3R0tN58803dcccdBTUEAACAi1KRu4+pW3EfNAAACh++v/NXkbwqHwAAAIUPwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALgCwRQAAACuQDAFAACAKxBMAQAA4AoEUwAAALiCI8H0gw8+0Jdffun9+9lnn1Xp0qXVqlUr7dixw4kmAQAAUMg5EkxHjBih0NBQSdLy5cs1btw4jR49WpGRkRowYIATTQIAAKCQC3RipQkJCapdu7Yk6dNPP9Wdd96pRx55RK1bt1b79u2daBIAAACFnCN7TEuWLKmDBw9KkubPn6/rrrtOkhQSEqITJ0440SQAAAAKOUf2mHbs2FEPP/ywmjZtqs2bN+umm26SJG3YsEE1atRwokkAAAAUco7sMR0/frxatmyp/fv3a9asWSpXrpwkac2aNerevbsTTQIAAKCQ85iZ5fVKd+7cqSpVqqhYMd/ca2ZKSEhQtWrV8rpJ10tKSlJERIQSExNVqlSpgu4OAADwA9/f+cuRPaYxMTE6cOBApvJDhw4pJibGiSZ9vP3224qJiVFISIiaNWum7777Lsf6ixcvVrNmzRQSEqKaNWtqwoQJPs9PmjRJbdq0UZkyZVSmTBldd911WrlypZNDAAAAuOg4Ekyz2wl79OhRhYSEONGk1/Tp09W/f389//zzWrdundq0aaMbbrhBO3fuzLL+tm3bdOONN6pNmzZat26d/vrXv6pv376aNWuWt86iRYvUvXt3LVy4UMuXL1e1atXUqVMn7dq1y9GxAAAAXEzy9FD+wIEDJUlvvPGGevfurRIlSnifS0tL0/fff6+AgAAtXbo0r5rMpEWLFrr88sv1zjvveMsaNGigrl27auTIkZnqDxo0SHPmzFF8fLy3rE+fPvrhhx+0fPnyLNtIS0tTmTJlNG7cON1///1+9YtDAQAAFD58f+evPL0qf926dZLO7DH96aefVLx4ce9zxYsX12WXXaann346L5v0cerUKa1Zs0bPPfecT3mnTp20bNmyLJdZvny5OnXq5FPWuXNnTZ48WampqQoKCsq0zPHjx5WamqqyZcvmXecBAAAucnkaTBcuXChJevDBB/XGG2/k+78sDhw4oLS0NEVFRfmUR0VFae/evVkus3fv3izrnz59WgcOHFClSpUyLfPcc8+pcuXK3vuzZiUlJUUpKSnev5OSknIzFAAAgIuOI+eYTpkyxRtKf//993w/F9Pj8fj8bWaZys5XP6tySRo9erQ+/vhjffLJJzmeLzty5EhFRER4H1WrVs3NEAAAAC46jgTT9PR0DR8+XBEREapevbqqVaum0qVL66WXXlJ6eroTTUqSIiMjFRAQkGnv6L59+zLtFc1QsWLFLOsHBgZ677+a4bXXXtOIESM0f/58NW7cOMe+DB48WImJid5HQkLCBYwIAADg4uHILz89//zzmjx5sv7+97+rdevWMjMtXbpUQ4cO1cmTJ/XKK6840ayKFy+uZs2aKS4uTrfddpu3PC4uTl26dMlymZYtW+rzzz/3KZs/f76aN2/uc37pq6++qpdffllfffWVmjdvft6+BAcHKzg4+AJHAgAAcBEyB1SqVMk+++yzTOWffvqpRUdHO9Gk17Rp0ywoKMgmT55sGzdutP79+1tYWJht377dzMyee+45i42N9dbfunWrlShRwgYMGGAbN260yZMnW1BQkM2cOdNbZ9SoUVa8eHGbOXOm7dmzx/tITk72u1+JiYkmyRITE/NusAAAwFF8f+cvR/aYHjp0SPXr189UXr9+fR06dMiJJr3uvvtuHTx4UMOHD9eePXt06aWXau7cuapevbokac+ePT73NI2JidHcuXM1YMAAjR8/XtHR0XrzzTd1xx13eOu8/fbbOnXqlO68806ftoYMGaKhQ4c6Oh4AAICLhSM/SdqiRQu1aNFCb775pk/5k08+qVWrVmnFihV53aTrcR80AAAKH76/85cje0xHjx6tm266SV9//bVatmwpj8ejZcuWKSEhQXPnznWiSQAAABRyjlyV365dO23evFm33Xabjhw5okOHDun222/Xpk2b1KZNGyeaBAAAQCHnyKF8ZMahAAAACh++v/OXI4fyJenIkSOaPHmy4uPj5fF41LBhQ/Xq1UsRERFONQkAAIBCzJFD+atXr1atWrX0+uuv69ChQzpw4IDGjBmjWrVqae3atU40CQAAgELOkUP5bdq0Ue3atTVp0iQFBp7ZKXv69Gk9/PDD2rp1q7799tu8btL1OBQAAEDhw/d3/nIkmIaGhmrdunWZ7mW6ceNGNW/eXMePH8/rJl2PNzYAAIUP39/5y5FD+aVKlfK5iX2GhIQEhYeHO9EkAAAACjlHgundd9+thx56SNOnT1dCQoJ+//13TZs2TQ8//LC6d+/uRJMAAAAo5By5Kv+1116Tx+PR/fffr9OnT0uSgoKC9Nhjj+nvf/+7E00CAACgkMvzc0zT0tK0ZMkSNWrUSCEhIfrtt99kZqpdu7ZKlCiRl00VKpyjAgBA4cP3d/7K8z2mAQEB6ty5s+Lj41W2bFk1atQor5sAAABAEeTIOaaNGjXS1q1bnVg1AAAAiihHgukrr7yip59+Wl988YX27NmjpKQknwcAAABwLkfuY1qs2P/yrsfj8f6/mcnj8SgtLS2vm3Q9zlEBAKDw4fs7fzlyVf7ChQudWC0AAACKMEeCabt27ZxYLQAAAIowR84xBQAAAHKLYAoAAABXIJgCAADAFfIsmM6ZM0epqal5tToAAABcZPIsmN522206cuSIpDO//rRv3768WjUAAAAuAnkWTMuXL68VK1ZI+t/9SgEAAAB/5dntovr06aMuXbrI4/HI4/GoYsWK2da9GG+wDwAAgJzlWTAdOnSo7rnnHv3666+69dZbNWXKFJUuXTqvVg8AAIAiLk9vsF+/fn3Vr19fQ4YM0V133aUSJUrk5eoBAABQhHnMzJxa+f79+7Vp0yZ5PB7VrVtX5cuXd6op1+O3dgEAKHz4/s5fjtzH9Pjx4+rVq5eio6PVtm1btWnTRtHR0XrooYd0/PhxJ5oEAABAIedIMB0wYIAWL16sOXPm6MiRIzpy5Ig+++wzLV68WE899ZQTTQIAAKCQc+RQfmRkpGbOnKn27dv7lC9cuFDdunXT/v3787pJ1+NQAAAAhQ/f3/nLsUP5UVFRmcorVKjAoXwAAABkyZFg2rJlSw0ZMkQnT570lp04cULDhg1Ty5YtnWgSAAAAhVye3i4qwxtvvKHrr79eVapU0WWXXSaPx6P169crJCREX331lRNNAgAAoJBz7HZRJ06c0IcffqhffvlFZqaGDRvq3nvvVWhoqBPNuR7nqAAAUPjw/Z2/HNljKkmhoaHq3bu3U6sHAABAEePIOaYAAABAbhFMAQAA4AoEUwAAALgCwRQAAACu4EgwrVmzpg4ePJip/MiRI6pZs6YTTQIAAKCQcySYbt++XWlpaZnKU1JStGvXLieaBAAAQCGXp7eLmjNnjvf/v/rqK0VERHj/TktL0zfffKMaNWrkZZMAAAAoIvI0mHbt2tX7/z179vR5LigoSDVq1NA//vGPvGwSAAAARUSeBtP09HRJUkxMjFavXq1y5crl5eoBAABQhOX5OaapqamqUaNGlhc/AQAAANnJ82AaFBSkn3/+WR6PJ69XDQAAgCLMkavy77//fk2ePNmJVQMAAKCIytNzTDOcOnVK7777ruLi4tS8eXOFhYX5PD9mzBgnmgUAAEAh5kgw/fnnn3X55ZdLkjZv3uzzHIf4AQAAkBVHgunChQudWC0AAACKMEfOMQUAAAByy5E9ppK0atUqzZgxQzt37tSpU6d8nvvkk0+cahYAAACFlCN7TKdNm6bWrVtr48aNmj17tlJTU7Vx40YtWLDA52dKAQAAgAyOBNMRI0bo9ddf1xdffKHixYvrjTfeUHx8vLp166Zq1ao50SQAAAAKOUeC6W+//aabbrpJkhQcHKxjx47J4/FowIABmjhxohNNAgAAoJBzJJiWLVtWycnJkqTKlSvr559/liQdOXJEx48fd6JJAAAAFHKOXPzUpk0bxcXFqVGjRurWrZv69eunBQsWKC4uTh06dHCiSQAAABRyjuwxHTdunO655x5J0uDBg/X000/rjz/+0O23354vP1X69ttvKyYmRiEhIWrWrJm+++67HOsvXrxYzZo1U0hIiGrWrKkJEyZkqjNr1iw1bNhQwcHBatiwoWbPnu1U93Nv9Wrp2mvP/LcwYxzuwjjchXG4C+Nwl6IyDkhWxEybNs2CgoJs0qRJtnHjRuvXr5+FhYXZjh07sqy/detWK1GihPXr1882btxokyZNsqCgIJs5c6a3zrJlyywgIMBGjBhh8fHxNmLECAsMDLQVK1b43a/ExESTZImJiX96jOeSjpt02qTjeb7u/MQ43KUojGPKFDPp1P+P46StXFnQPcq9lSvNAgLs/8dw5nHJJWYJCQXdM/8lJJjdfruZ5DsOySw2tvCMJSHhTH8L+zgyXH217zhKlCh8Y8jwv+3VyTwfg5Pf38jMsWB6+vRpmzFjhg0fPtxeeuklmzlzpqWmpjrVnNeVV15pffr08SmrX7++Pffcc1nWf/bZZ61+/fo+ZY8++qhdddVV3r+7detm119/vU+dzp072z333ON3v/L8jb19u9nq1SalmZT+/xvKdJPSzFavPvN8YcA43KUIjaNW5RNnjcG8Y+l50/5CM46edyRnMYb/jeXdUQcKuovn9e67lsMYzhrLuwXd05wVlXGYmdn27ed8xgvf+8rMstle/f8YXtiWZ59zgmn+ciSY/vTTT1azZk0rUaKENW3a1Jo2bWphYWFWo0YN+/HHH51o0szMUlJSLCAgwD755BOf8r59+1rbtm2zXKZNmzbWt29fn7JPPvnEAgMD7dSpU2ZmVrVqVRszZoxPnTFjxli1atWy7cvJkyctMTHR+0hISMjbN7b0//9CzPzFKx0/80dhwDjcpYiMY4picwx0K9W8oLt4XitX+hOE0ly9hyshIae+Z364dSxFZRwZrtY353lvnXb9GMwsh+3Vmc9OgirnSTME0/zlyDmmDz/8sC655BL9/vvvWrt2rdauXauEhAQ1btxYjzzyiBNNSpIOHDigtLQ0RUVF+ZRHRUVp7969WS6zd+/eLOufPn1aBw4cyLFOduuUpJEjRyoiIsL7qFq16oUMKXsffiipuCTPOU94zpR/+GHetucUxuEuRWQcs5u+rMxjyODR0nvfyc/uXJAzp8ZnN4YMxfTrr/nQmQu0ZUvu6rt1LEVlHBm+D2ijnN9bAa4fg6QctleS5NGvf52Szx1CXnAkmP7www8aOXKkypQp4y0rU6aMXnnlFa1fv96JJn14PL5vUjPLVHa++ueW53adgwcPVmJioveRkJDgd//9cu+9kk5JsnOesDPl996bt+05hXG4SxEZx219qynzGDKYWvdrnp/duSBt2vhXr3ZtZ/vxZ9Spk7v6bh1LURlHhhYtg5T95+MMt49BUg7bK0ky1X6sYz53CHnBkWBar149/fHHH5nK9+3bp9oOvtsjIyMVEBCQaU/mvn37Mu3xzFCxYsUs6wcGBqpcuXI51slundKZHxYoVaqUzyOv2Zp4nflAZnwoz/z/mfLCg3G4S1EYxwMPSLWqpCirgN3z5kO64ooC6FQuXXGF1LOnlFPAfvddqUqVfOxULlWpIr37rn913TyWojKODGf2xp/9GT+b+99XZ8u8vZIk07sv7iw0Y4Avx36StG/fvpo5c6Z+//13/f7775o5c6b69++vUaNGKSkpyfvIS8WLF1ezZs0UFxfnUx4XF6dWrVpluUzLli0z1Z8/f76aN2+uoKCgHOtkt858U6GCrGJlSSclpUk6eebvChUKtl+5xTjcpYiM49flBzSlVD9JqTozjhStLHuD3n/nRAH3zH/vvy+t/HyfAnRcZ8Zw5nGJ50clrNyrhx4q2P7546GHpIQE6fbrj+p/r0XG45Rib09WQoJcP5aMccTeniwpRYV1HBksYbeuDlims8dRQocLzfvKK9P2KkUJ5ZvpoUcCCrhjuFAeyzhunYeKFftf3s043H3u4fGMQ+FpaWl52vb06dMVGxurCRMmqGXLlpo4caImTZqkDRs2qHr16ho8eLB27dqlqVOnSpK2bdumSy+9VI8++qh69+6t5cuXq0+fPvr44491xx13SJKWLVumtm3b6pVXXlGXLl302Wef6YUXXtCSJUvUokULv/qVlJSkiIgIJSYm5u3e05QUqXhxyeM5c773qVNScHDerT+/MA53YRzuwjjchXG4i8PjcOz7G1ly5JefFi5c6MRq/XL33Xfr4MGDGj58uPbs2aNLL71Uc+fOVfXq1SVJe/bs0c6dO731Y2JiNHfuXA0YMEDjx49XdHS03nzzTW8olaRWrVpp2rRpeuGFF/Tiiy+qVq1amj59ut+h1FFnf/g8nsK5UZEYh9swDndhHO7CONylqIwDkhzaY4rM+BcXAACFD9/f+cuRc0wBAACA3CKYAgAAwBUIpgAAAHAFgikAAABcwZFgOnToUO3YscOJVQMAAKCIciSYfv7556pVq5Y6dOigjz76SCdPnnSiGQAAABQhjgTTNWvWaO3atWrcuLEGDBigSpUq6bHHHtOqVaucaA4AAABFgGPnmDZu3Fivv/66du3apffee0+7du1S69at1ahRI73xxhtKTEx0qmkAAAAUQo5f/JSenq5Tp04pJSVFZqayZcvqnXfeUdWqVTV9+nSnmwcAAEAh4VgwXbNmjZ544glVqlRJAwYMUNOmTRUfH6/Fixfrl19+0ZAhQ9S3b1+nmgcAAEAh48hPkjZu3Fjx8fHq1KmTevfurVtuuUUBAQE+dfbv36+oqCilp6fndfOuxE+aAQBQ+PD9nb8CnVjpXXfdpV69eqly5crZ1ilfvvxFE0oBAABwfnl+KD81NVVTpkzh4iYAAADkSp4H06CgIKWkpMjj8eT1qgEAAFCEOXLx05NPPqlRo0bp9OnTTqweAAAARZAj55h+//33+uabbzR//nw1atRIYWFhPs9/8sknTjQLAACAQsyRYFq6dGndcccdTqwaAAAARZQjwXTKlClOrBYAAABFmOO//AQAAAD4w5E9ppI0c+ZM/ec//9HOnTt16tQpn+fWrl3rVLMAAAAopBzZY/rmm2/qwQcfVIUKFbRu3TpdeeWVKleunLZu3aobbrjBiSYBAABQyDkSTN9++21NnDhR48aNU/HixfXss88qLi5Offv25cb7AAAAyJIjwXTnzp1q1aqVJCk0NFTJycmSpNjYWH388cdONAkAAIBCzpFgWrFiRR08eFCSVL16da1YsUKStG3bNpmZE00CAACgkHMkmF577bX6/PPPJUkPPfSQBgwYoI4dO+ruu+/Wbbfd5kSTAAAAKOQ85sAuzPT0dKWnpysw8MxF///5z3+0ZMkS1a5dW3369FHx4sXzuknXS0pKUkREhBITE1WqVKmC7g4AAPAD39/5y5Fgisx4YwMAUPjw/Z2/HLuP6ZEjR7Ry5Urt27dP6enpPs/df//9TjULAACAQsqRYPr555/r3nvv1bFjxxQeHi6Px+N9zuPxEEwBAACQiSMXPz311FPq1auXkpOTdeTIER0+fNj7OHTokBNNAgAAoJBzJJju2rVLffv2VYkSJZxYPQAAAIogR4Jp586dtXr1aidWDQAAgCLKkXNMb7rpJj3zzDPauHGjGjVqpKCgIJ/nb731VieaBQAAQCHmyO2iihXLfkesx+NRWlpaXjfpetxuAgCAwofv7/zlyB7Tc28PBQAAAJyPI+eYAgAAALmVZ3tM33zzTT3yyCMKCQnRm2++mWPdvn375lWzAAAAKCLy7BzTmJgYrV69WuXKlVNMTEz2DXo82rp1a140WahwjgoAAIUP39/5K8/2mG7bti3L/wcAAAD8wTmmAAAAcAVHrsofOHBgluUej0chISGqXbu2unTporJlyzrRPAAAAAohR+5jes0112jt2rVKS0tTvXr1ZGbasmWLAgICVL9+fW3atEkej0dLlixRw4YN87p5V+IcFQAACh++v/OXI4fyu3Tpouuuu067d+/WmjVrtHbtWu3atUsdO3ZU9+7dtWvXLrVt21YDBgxwonkAAAAUQo7sMa1cubLi4uIy7Q3dsGGDOnXqpF27dmnt2rXq1KmTDhw4kNfNuxL/4gIAoPDh+zt/ObLHNDExUfv27ctUvn//fiUlJUmSSpcurVOnTjnRPAAAAAohxw7l9+rVS7Nnz9bvv/+uXbt2afbs2XrooYfUtWtXSdLKlStVt25dJ5oHAABAIeTIofyjR49qwIABmjp1qk6fPi1JCgwMVM+ePfX6668rLCxM69evlyQ1adIkr5t3JQ4FAABQ+PD9nb8cCaYZjh49qq1bt8rMVKtWLZUsWdKpplyPNzYAAIUP39/5y5H7mGYoWbKkGjdu7GQTAAAAKCIcC6arVq3SjBkztHPnzkwXOX3yySdONQsAAIBCypGLn6ZNm6bWrVtr48aNmj17tlJTU7Vx40YtWLBAERERTjQJAACAQs6RYDpixAi9/vrr+uKLL1S8eHG98cYbio+PV7du3VStWjUnmgQAAEAh50gw/e2333TTTTdJkoKDg3Xs2DF5PB4NGDBAEydOdKJJAAAAFHKOBNOyZcsqOTlZ0plfgfr5558lSUeOHNHx48edaBIAAACFnCMXP7Vp00ZxcXFq1KiRunXrpn79+mnBggWKi4tThw4dnGgSAAAAhZwjwXTcuHE6efKkJGnw4MEKCgrSkiVLdPvtt+vFF190okkAAAAUco4dyo+Ojj7TQLFievbZZzVnzhyNGTNGZcqUcaJJSdLhw4cVGxuriIgIRUREKDY2VkeOHMlxGTPT0KFDFR0drdDQULVv314bNmzwPn/o0CE9+eSTqlevnkqUKKFq1aqpb9++SkxMdGwcAAAAFyNHb7C/b98+7du3T+np6T7lTt10v0ePHvr99981b948SdIjjzyi2NhYff7559kuM3r0aI0ZM0bvv/++6tatq5dfflkdO3bUpk2bFB4ert27d2v37t167bXX1LBhQ+3YsUN9+vTR7t27NXPmTEfGAQAAcDFy5CdJ16xZo549eyo+Pl7nrt7j8SgtLS2vm1R8fLwaNmyoFStWqEWLFpKkFStWqGXLlvrll19Ur169TMuYmaKjo9W/f38NGjRIkpSSkqKoqCiNGjVKjz76aJZtzZgxQ/fdd5+OHTumwED/sj0/aQYAQOHD93f+cuRQ/oMPPqi6detq2bJl2rp1q7Zt2+Z9bN261YkmtXz5ckVERHhDqSRdddVVioiI0LJly7JcZtu2bdq7d686derkLQsODla7du2yXUaS982ZUyhNSUlRUlKSzwMAAADZc+RQ/rZt2/TJJ5+odu3aTqw+S3v37lWFChUylVeoUEF79+7NdhlJioqK8imPiorSjh07slzm4MGDeumll7Ldm5ph5MiRGjZsmD9dBwAAgBzaY9qhQwf98MMPebKuoUOHyuPx5PhYvXq1pDOnCZzLzLIsP9u5z2e3TFJSkm666SY1bNhQQ4YMyXGdgwcPVmJioveRkJBwvqECAABc1BzZY/ruu++qZ8+e+vnnn3XppZcqKCjI5/lbb73V73U98cQTuueee3KsU6NGDf3444/6448/Mj23f//+THtEM1SsWFHSmT2nlSpV8pbv27cv0zLJycm6/vrrVbJkSc2ePTvTmM4VHBys4ODgHOsAAADgfxwJpsuWLdOSJUv03//+N9Nzub34KTIyUpGRkeet17JlSyUmJmrlypW68sorJUnff/+9EhMT1apVqyyXiYmJUcWKFRUXF6emTZtKkk6dOqXFixdr1KhR3npJSUnq3LmzgoODNWfOHIWEhPjdfwAAAPjHkUP5ffv2VWxsrPbs2aP09HSfhxNX5EtSgwYNdP3116t3795asWKFVqxYod69e+vmm2/2uSK/fv36mj17tqQzIbl///4aMWKEZs+erZ9//lkPPPCASpQooR49ekg6s6e0U6dOOnbsmCZPnqykpCTt3btXe/fudWwsAAAAFyNH9pgePHhQAwYMyPYQulP+/e9/q2/fvt6r7G+99VaNGzfOp86mTZt8bo7/7LPP6sSJE3r88cd1+PBhtWjRQvPnz1d4eLikM7e++v777yUp08Vc27ZtU40aNRwcEQAAwMXDkfuY9uzZU23atNHDDz+c16sutLgPGgAAhQ/f3/nLkT2mdevW1eDBg7VkyRI1atQo04VCffv2daJZAAAAFGKO7DGNiYnJvkGPx7Gb7LsZ/+ICAKDw4fs7fzl2g30AAAAgNxy5Kh8AAADIrTzbYzpw4EC99NJLCgsL08CBA3OsO2bMmLxqFgAAAEVEngXTdevWKTU11fv/2Tnfz4MCAADg4uTIxU/IjJOnAQAofPj+zl+cYwoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXIJgCAADAFQimAAAAcAWCKQAAAFyBYAoAAABXKFLB9PDhw4qNjVVERIQiIiIUGxurI0eO5LiMmWno0KGKjo5WaGio2rdvrw0bNmRb94YbbpDH49Gnn36a9wMAAAC4iBWpYNqjRw+tX79e8+bN07x587R+/XrFxsbmuMzo0aM1ZswYjRs3TqtWrVLFihXVsWNHJScnZ6o7duxYeTwep7oPAABwUQss6A7klfj4eM2bN08rVqxQixYtJEmTJk1Sy5YttWnTJtWrVy/TMmamsWPH6vnnn9ftt98uSfrggw8UFRWljz76SI8++qi37g8//KAxY8Zo1apVqlSpUv4MCgAA4CJSZPaYLl++XBEREd5QKklXXXWVIiIitGzZsiyX2bZtm/bu3atOnTp5y4KDg9WuXTufZY4fP67u3btr3Lhxqlixol/9SUlJUVJSks8DAAAA2SsywXTv3r2qUKFCpvIKFSpo79692S4jSVFRUT7lUVFRPssMGDBArVq1UpcuXfzuz8iRI73nukZERKhq1ap+LwsAAHAxcn0wHTp0qDweT46P1atXS1KW53+a2XnPCz33+bOXmTNnjhYsWKCxY8fmqt+DBw9WYmKi95GQkJCr5QEAAC42rj/H9IknntA999yTY50aNWroxx9/1B9//JHpuf3792faI5oh47D83r17fc4b3bdvn3eZBQsW6LffflPp0qV9lr3jjjvUpk0bLVq0KMt1BwcHKzg4OMd+AwAA4H9cH0wjIyMVGRl53notW7ZUYmKiVq5cqSuvvFKS9P333ysxMVGtWrXKcpmYmBhVrFhRcXFxatq0qSTp1KlTWrx4sUaNGiVJeu655/Twww/7LNeoUSO9/vrruuWWW/7M0AAAAHAW1wdTfzVo0EDXX3+9evfurX/+85+SpEceeUQ333yzzxX59evX18iRI3XbbbfJ4/Gof//+GjFihOrUqaM6depoxIgRKlGihHr06CHpzF7VrC54qlatmmJiYvJncAAAABeBIhNMJenf//63+vbt673K/tZbb9W4ceN86mzatEmJiYnev5999lmdOHFCjz/+uA4fPqwWLVpo/vz5Cg8Pz9e+AwAAXOw8ZmYF3YmLQVJSkiIiIpSYmKhSpUoVdHcAAIAf+P7OX66/Kh8AAAAXB4IpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcgmAIAAMAVCKYAAABwBYIpAAAAXIFgCgAAAFcILOgOXCzMTJKUlJRUwD0BAAD+yvjezvgeh7MIpvkkOTlZklS1atUC7gkAAMit5ORkRUREFHQ3ijyP8U+AfJGenq7du3crPDxcHo+noLvjSklJSapataoSEhJUqlSpgu7ORY/Xw114PdyF18NdnHw9zEzJycmKjo5WsWKcAek09pjmk2LFiqlKlSoF3Y1CoVSpUmzoXYTXw114PdyF18NdnHo92FOaf4j+AAAAcAWCKQAAAFyBYArXCA4O1pAhQxQcHFzQXYF4PdyG18NdeD3chdej6ODiJwAAALgCe0wBAADgCgRTAAAAuALBFAAAAK5AMAUAAIArEExRoEaOHKkrrrhC4eHhqlChgrp27apNmzYVdLfw/0aOHCmPx6P+/fsXdFcuWrt27dJ9992ncuXKqUSJEmrSpInWrFlT0N26aJ0+fVovvPCCYmJiFBoaqpo1a2r48OFKT08v6K5dFL799lvdcsstio6Olsfj0aeffurzvJlp6NChio6OVmhoqNq3b68NGzYUTGdxQQimKFCLFy/WX/7yF61YsUJxcXE6ffq0OnXqpGPHjhV01y56q1at0sSJE9W4ceOC7spF6/Dhw2rdurWCgoL03//+Vxs3btQ//vEPlS5duqC7dtEaNWqUJkyYoHHjxik+Pl6jR4/Wq6++qrfeequgu3ZROHbsmC677DKNGzcuy+dHjx6tMWPGaNy4cVq1apUqVqyojh07Kjk5OZ97igvF7aLgKvv371eFChW0ePFitW3btqC7c9E6evSoLr/8cr399tt6+eWX1aRJE40dO7agu3XRee6557R06VJ99913Bd0V/L+bb75ZUVFRmjx5srfsjjvuUIkSJfSvf/2rAHt28fF4PJo9e7a6du0q6cze0ujoaPXv31+DBg2SJKWkpCgqKkqjRo3So48+WoC9hb/YYwpXSUxMlCSVLVu2gHtycfvLX/6im266Sdddd11Bd+WiNmfOHDVv3lx33XWXKlSooKZNm2rSpEkF3a2L2tVXX61vvvlGmzdvliT98MMPWrJkiW688cYC7hm2bdumvXv3qlOnTt6y4OBgtWvXTsuWLSvAniE3Agu6A0AGM9PAgQN19dVX69JLLy3o7ly0pk2bprVr12rVqlUF3ZWL3tatW/XOO+9o4MCB+utf/6qVK1eqb9++Cg4O1v3331/Q3bsoDRo0SImJiapfv74CAgKUlpamV155Rd27dy/orl309u7dK0mKioryKY+KitKOHTsKoku4AARTuMYTTzyhH3/8UUuWLCnorly0EhIS1K9fP82fP18hISEF3Z2LXnp6upo3b64RI0ZIkpo2baoNGzbonXfeIZgWkOnTp+vDDz/URx99pEsuuUTr169X//79FR0drZ49exZ096Azh/jPZmaZyuBeBFO4wpNPPqk5c+bo22+/VZUqVQq6OxetNWvWaN++fWrWrJm3LC0tTd9++63GjRunlJQUBQQEFGAPLy6VKlVSw4YNfcoaNGigWbNmFVCP8Mwzz+i5557TPffcI0lq1KiRduzYoZEjRxJMC1jFihUlndlzWqlSJW/5vn37Mu1FhXtxjikKlJnpiSee0CeffKIFCxYoJiamoLt0UevQoYN++uknrV+/3vto3ry57r33Xq1fv55Qms9at26d6fZpmzdvVvXq1QuoRzh+/LiKFfP96gwICOB2US4QExOjihUrKi4uzlt26tQpLV68WK1atSrAniE32GOKAvWXv/xFH330kT777DOFh4d7zxGKiIhQaGhoAffu4hMeHp7p/N6wsDCVK1eO834LwIABA9SqVSuNGDFC3bp108qVKzVx4kRNnDixoLt20brlllv0yiuvqFq1arrkkku0bt06jRkzRr169Srorl0Ujh49ql9//dX797Zt27R+/XqVLVtW1apVU//+/TVixAjVqVNHderU0YgRI1SiRAn16NGjAHuN3OB2UShQ2Z33M2XKFD3wwAP52xlkqX379twuqgB98cUXGjx4sLZs2aKYmBgNHDhQvXv3LuhuXbSSk5P14osvavbs2dq3b5+io6PVvXt3/e1vf1Px4sULuntF3qJFi3TNNddkKu/Zs6fef/99mZmGDRumf/7znzp8+LBatGih8ePH8w/rQoRgCgAAAFfgHFMAAAC4AsEUAAAArkAwBQAAgCsQTAEAAOAKBFMAAAC4AsEUAAAArkAwBQAAgCsQTAEUWtu3b5fH49H69esLuit/2tKlS9WoUSMFBQWpa9euBd0dACgQBFMAuEAPPPBAnoXIgQMHqkmTJtq2bZvef//9PFmnv95//32VLl06X9sEgKwQTAHku1OnThV0F/6UtLQ0paen5+k6f/vtN1177bWqUqWK3yGxsM8jAJyLYArAce3bt9cTTzyhgQMHKjIyUh07dpQkbdy4UTfeeKNKliypqKgoxcbG6sCBA97l5s2bp6uvvlqlS5dWuXLldPPNN+u3337LVds1atTQSy+9pB49eqhkyZKKjo7WW2+95VNnzJgxatSokcLCwlS1alU9/vjjOnr0qPf5jD2KX3zxhRo2bKjg4GA9+OCD+uCDD/TZZ5/J4/HI4/Fo0aJFWfYhJSVFffv2VYUKFRQSEqKrr75aq1atkvS/0xEOHjyoXr16yePxZLvHtEaNGnr55Zf1wAMPKCIiQr1795YkzZo1S5dccomCg4NVo0YN/eMf//BZ7vDhw7r//vtVpkwZlShRQjfccIO2bNki6cxvjz/44INKTEz0jmPo0KGSpLffflt16tRRSEiIoqKidOedd+Zq7gEg1wwAHNauXTsrWbKkPfPMM/bLL79YfHy87d692yIjI23w4MEWHx9va9eutY4dO9o111zjXW7mzJk2a9Ys27x5s61bt85uueUWa9SokaWlpZmZ2bZt20ySrVu3Ltu2q1evbuHh4TZy5EjbtGmTvfnmmxYQEGDz58/31nn99ddtwYIFtnXrVvvmm2+sXr169thjj3mfnzJligUFBVmrVq1s6dKl9ssvv9iRI0esW7dudv3119uePXtsz549lpKSkmUf+vbta9HR0TZ37lzbsGGD9ezZ08qUKWMHDx6006dP2549e6xUqVI2duxY27Nnjx0/fjzbsZQqVcpeffVV27Jli23ZssVWr15txYoVs+HDh9umTZtsypQpFhoaalOmTPEud+utt1qDBg3s22+/tfXr11vnzp2tdu3adurUKUtJSbGxY8daqVKlvONITk62VatWWUBAgH300Ue2fft2W7t2rb3xxhv+vNwAcMEIpgAc165dO2vSpIlP2YsvvmidOnXyKUtISDBJtmnTpizXs2/fPpNkP/30k5n5H0yvv/56n7K7777bbrjhhmyX+c9//mPlypXz/j1lyhSTZOvXr/ep17NnT+vSpUu26zEzO3r0qAUFBdm///1vb9mpU6csOjraRo8e7S2LiIjwCZPZjaVr164+ZT169LCOHTv6lD3zzDPWsGFDMzPbvHmzSbKlS5d6nz9w4ICFhobaf/7zH+/4IiIifNYxa9YsK1WqlCUlJeXYJwDISxzKB5Avmjdv7vP3mjVrtHDhQpUsWdL7qF+/viR5D9f/9ttv6tGjh2rWrKlSpUopJiZGkrRz585ctd2yZctMf8fHx3v/XrhwoTp27KjKlSsrPDxc999/vw4ePKhjx4556xQvXlyNGzfOVbsZY0hNTVXr1q29ZUFBQbryyit9+uCvc+cxPj7eZ92S1Lp1a23ZskVpaWmKj49XYGCgWrRo4X2+XLlyqlevXo7td+zYUdWrV1fNmjUVGxurf//73zp+/Hiu+wsAuUEwBZAvwsLCfP5OT0/XLbfcovXr1/s8tmzZorZt20qSbrnlFh08eFCTJk3S999/r++//15S3lz04/F4JEk7duzQjTfeqEsvvVSzZs3SmjVrNH78eElSamqqt35oaKh3mdwwM5/2zi6/kPWdO49ZrSejzXP/Pzfth4eHa+3atfr4449VqVIl/e1vf9Nll12mI0eO5LrPAOAvgimAAnH55Zdrw4YNqlGjhmrXru3zCAsL08GDBxUfH68XXnhBHTp0UIMGDXT48OELamvFihWZ/s7YO7t69WqdPn1a//jHP3TVVVepbt262r17t1/rLV68uNLS0nKsU7t2bRUvXlxLlizxlqWmpmr16tVq0KBBLkeSWcOGDX3WLUnLli1T3bp1FRAQoIYNG+r06dPeUC9JBw8e1ObNm73tZzeOwMBAXXfddRo9erR+/PFHbd++XQsWLPjTfQaA7BBMARSIv/zlLzp06JC6d++ulStXauvWrZo/f7569eqltLQ0lSlTRuXKldPEiRP166+/asGCBRo4cOAFtbV06VKNHj1amzdv1vjx4zVjxgz169dPklSrVi2dPn1ab731lrZu3ap//etfmjBhgl/rrVGjhn788Udt2rRJBw4c8NnDmiEsLEyPPfaYnnnmGc2bN08bN25U7969dfz4cT300EMXNJ6zPfXUU/rmm2/00ksvafPmzfrggw80btw4Pf3005KkOnXqqEuXLurdu7eWLFmiH374Qffdd58qV66sLl26eMdx9OhRffPNNzpw4ICOHz+uL774Qm+++abWr1+vHTt2aOrUqUpPT1e9evX+dJ8BIFsFeYIrgItDu3btrF+/fpnKN2/ebLfddpuVLl3aQkNDrX79+ta/f39LT083M7O4uDhr0KCBBQcHW+PGjW3RokUmyWbPnm1m/l/8NGzYMOvWrZuVKFHCoqKibOzYsT51xowZY5UqVbLQ0FDr3LmzTZ061STZ4cOHzSzri4PMzlyM1bFjRytZsqRJsoULF2bZhxMnTtiTTz5pkZGRFhwcbK1bt7aVK1f61PH34qfXX389U/nMmTOtYcOGFhQUZNWqVbNXX33V5/lDhw5ZbGysRUREeMe4efNmnzp9+vSxcuXKmSQbMmSIfffdd9auXTsrU6aMhYaGWuPGjW369Ok59g8A/iyPWTYnIAFAEVCjRg31799f/fv3L+iuAADOg0P5AAAAcAWCKQAAAFyBQ/kAAABwBfaYAgAAwBUIpgAAAHAFgikAAABcgWAKAAAAVyCYAgAAwBUIpgAAAHAFgikAAABcgWAKAAAAVyCYAgAAwBX+D3eY/yIZIF4BAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMnElEQVR4nO3dd3xT9f7H8XdoS3dLWS0FSgvIEhAEZImoCLiQoaKgiKAorjJc8PMqiAqCiqg4Loio1wGyFJSLVJayZx1QQaFABWqZbVmd398fvY2EDk5KQ1J4PR+PPCDffM/J53uSnLx7VmzGGCMAAAAUq5y7CwAAACgLCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0lUGrV6/W6NGjdezYsQv+3DNnztTll18uf39/2Ww2xcfHn3OaMWPGqFGjRsrNzXV9gcVIT0/XM888oy5duqhKlSqy2WwaPXp0oX2nTZum6tWr68SJEy6rx1OWi+TcspGk48ePa+jQoYqMjJSfn5+aNWumGTNmOPS5EMtQkj7++GPZbDbt3r1bUvGfj9GjR8tms+nQoUMuram0FfW5K8nn0VO4ej12oV7r/OfxlHryPw/5N29vb1WrVk133323/vjjj1J7HmfXGYWxsh4pDVu2bFGPHj0UGRmpgIAANWjQQGPGjNHJkyednhehqQxavXq1XnzxxQsemg4ePKh+/fqpTp06WrRokdasWaN69eoVO83+/fs1YcIEjRkzRuXKufftdvjwYU2ZMkUZGRnq0aNHsX379++vwMBATZgwwSW1eNJykZxbNpLUq1cvffLJJxo1apT++9//qlWrVurTp4+++OILex9XL8N8t9xyi9asWaNq1apJct/nw1WK+tyV5PPoSS6218nTTJ8+XWvWrNEPP/ygxx9/XPPnz9fVV1+to0ePlsr8nV1nFMbKeuR8bdu2Te3atdPu3bs1adIkffvtt7r77rs1ZswY9enTx/kZGrjMiRMnXDLf1157zUgyiYmJLpl/UVauXGkkmZkzZ1qe5plnnjHVq1c3OTk5LqzMmtzcXJObm2uMMebgwYNGkhk1alSR/V9//XUTGhrqktfRk5aLMc4tm++++85IMl988YVDe+fOnU1kZKTJzs62t7lyGRaluM/HqFGjjCRz8ODBC1bP+Srqc1eSz6MnyH8vuGo9lj//C/Va5z+P1X6urmf69OlGktmwYYND+4svvmgkmY8++qhUnsfZ9enZnFmPnI/nnnvOSDJ//vmnQ/tDDz1kJJkjR444NT/3/4l7kcjf9Lp582bdcccdCgsLU506dSRJK1euVKdOnRQcHKyAgAC1a9dO3333XaHzOVff0aNH6+mnn5YkxcTE2DfBLl++XAcPHtRDDz2kmjVrytfXV1WqVFH79u31ww8/nLP+cz3v/fffr6uvvlqSdNddd8lms+naa68tdp6ZmZmaNm2a+vbt67A15cCBAwoKCtLdd9/t0P/bb7+Vj4+PnnvuuXPWWxL5y8qqe+65R2lpaaW+ubio5SKVjWUzb948BQUF6c4773RoHzBggPbv369169bZ26wuw61bt8pms2nWrFn2tk2bNslms+nyyy936HvbbbepRYsW9vtn7p4r7vNxpr///lt9+vRRaGiowsPDNXDgQKWmploa/++//64+ffooPDxcvr6+ioqK0n333aeMjAx7H6uf+T/++EN9+/ZV1apV5evrq4YNG+rdd9+1P17U5664z2NJ1wP567AtW7aoV69eCgkJUWhoqO69914dPHjQ6drPnOfZ68XiXqf7779f0dHRRdZnZf5nSkpKOud4rIxFkr777js1a9ZMvr6+iomJ0euvv17sMi3Muer56aefZLPZ9OWXXxaY9tNPP5XNZtOGDRucft6WLVtKynvvlwZn16dnc2Y9YvX1KYyPj48kKTQ01KG9QoUKKleunMqXL+9c4aUS5WD/K6JWrVrm2WefNXFxcebrr782y5cvNz4+PqZFixZm5syZ5uuvvzZdunQxNpvNzJgxw2EeVvomJSWZJ554wkgyc+fONWvWrDFr1qwxqamppmvXrqZKlSpmypQpZvny5ebrr782L7zwQoHnOZuV5/3zzz/Nu+++aySZsWPHmjVr1pitW7cWO98ff/zRSDILFy4s8NiLL75obDab2bhxozHGmGXLlhk/Pz/zxBNPWF7m58PqX0YNGzY0vXr1KtXnLm65GOP5y6ZNmzamVatWBdp/++03I8n8+9//dmi3ugyrVatmHnroIfv9V1991fj7+xtJZt++fcYYY7KyskxISIh55pln7P3y/7JOTEws9vNhzD+f0/r165sXXnjBxMXFmYkTJxpfX18zYMCAc9YYHx9vgoKCTHR0tPnggw/MkiVLzGeffWZ69+5t0tLSjDHWPk/GGLN161YTGhpqmjRpYj799FOzePFi8+STT5py5cqZ0aNHG2OK/twV93ks6XrgzHXY008/bb7//nszceJEExgYaJo3b24yMzOdqv3seZ65Xizuderfv7+pVatWkfUVVfOZ83dmPFbH8sMPPxgvLy9z9dVXm7lz55pZs2aZVq1amaioKKe2NFlZvs2bNzft27cvMI9WrVoV+tk7U1FbmiZPnmwkmTlz5ji05+bmmqysLEu3opRkS5PV9YjV16coiYmJpkKFCuaOO+4wO3fuNGlpaWbBggUmNDS0ROtUQlMpyf9AvPDCCw7tbdq0MVWrVjXp6en2tuzsbNO4cWNTo0YN++ZNZ/oWtVk7KCjIDB061OnarT7vsmXLjCQza9YsS/MdP368kWSSk5MLPHbixAkTGRlpOnXqZNavX2+Cg4PNgAEDHJaHK1n9kN9zzz0mPDzcoS03N9ccPXq0wC6nU6dOmaNHjxbYrJyammr/QjWm+OVijOcvm8suu8x07dq1QPv+/fvtX+JnKmwZFubee+81tWvXtt+/4YYbzKBBg0xYWJj55JNPjDHGrFq1ykgyixcvtvc7MzQZY2333IQJExzaH330UePn53fOZXz99debChUqmJSUlCL7WP08de3a1dSoUcMe6PI9/vjjxs/Pz77boKjPXVHtJV0P5C+bYcOGObR//vnnRpL57LPP7G1Way9qvWhM0a9TSUJTYfO3Oh6rY2ndurWJjIw0p06dsvdJS0szFStWdCo0WVm++e/pLVu22NvWr19vJNk/C0XJn3bt2rUmKyvLpKenm0WLFpmIiAhzzTXXFAg/+e8jK7eidqWWJDRZXY9YfX2Kk5CQYBo0aOAwltjY2BKtU9k9V8puv/12+/9PnDihdevW6Y477lBQUJC93cvLS/369dNff/2l7du3O923KFdddZU+/vhjvfzyy1q7dq2ysrLOWW9pPG9R9u/fL5vNpsqVKxd4LCAgQC+//LKWLFmi6667TjfddJOmTp1a5Obe5cuXO5wRUtytNM8gqlq1qlJSUpSdnW1v+/vvvxUWFqZHH33Uoe+rr76qsLCwApvO69Wrpw4dOtjvF7dcpLKxbIrbLH/2Y4Utw8J06tRJu3btUmJiok6fPq2VK1fqxhtv1HXXXae4uDhJ0g8//CBfX1/7rqmSuu222xzuN23aVKdPn1ZKSkqR05w8eVIrVqxQ7969VaVKlUL7WP08nT59WkuWLFHPnj0VEBCg7Oxs++3mm2/W6dOntXbt2hKNrSTrgTPdc889Dvd79+4tb29vLVu2TJJKVPuZ60VXKG7+xY3H6lhOnDihDRs2qFevXvLz87PPKzg4WN26dXOq1nMtX0nq06ePqlat6rAL6p133lGVKlV01113WXqeNm3ayMfHR8HBwbrxxhsVFhamb775Rt7e3g79WrRooQ0bNli6RUZGOjXWcznXesSZ99qZj2VnZ8sYI0navXu3unXrpkqVKmn27NlasWKFJkyYoI8//lgPPvig0zV7n7sLnJF/Bo8kHT16VMYYh7Z8+W++w4cPO923KDNnztTLL7+sDz/8UM8//7yCgoLUs2dPTZgwQREREYVOUxrPW5RTp07Jx8dHXl5ehT6ef6aPzWbTxx9/XGQ/Sapfv76mTp1q6XmjoqKcL7YIfn5+Msbo9OnTDl+C5+Ncy0Xy7GVTqVKlQt8TR44ckSRVrFjRod3qMrzhhhsk5QWjmJgYZWVl6frrr9fff/+tl156yf5Y+/bt5e/vf95jOJOvr6+kvNemKEePHlVOTo5q1KhRbB8rn6fg4GBlZ2frnXfe0TvvvFPovEp6anpJ1gNnOruPt7e3w2t++PBhp2svbHmUpuLmX9x4rI7l6NGjys3NLXT5WVmmVuvJ5+vrq4cfflhvvPGGXnvtNWVlZemrr77S8OHD7e/Vc/n000/VsGFDpaena+bMmfr3v/+tPn366L///a9Dv6CgIDVr1szSPM8OXOfDynrE6uuze/duxcTEOLQvW7ZM1157rUaMGKG0tDTFx8crMDBQknTNNdeocuXKGjhwoO677z517NjRct2EplJ2ZnIOCwtTuXLldODAgQL99u/fL0n2rQ3O9C1K5cqVNWnSJE2aNEl79+7V/PnzNWLECKWkpGjRokWFTlMaz1tcPZmZmTpx4oT9zZovPj5et956q9q3b69Vq1bpo48+0mOPPVbkvKpVq1aivwrO15EjR+Tr6+vwZR8REWH/K+ZMo0ePLvQ6JcnJyQ73i1sukucvmyZNmujLL79Udna2w0r0119/lSQ1btzYoX9hy7AwNWrUUL169fTDDz8oOjpaLVu2VIUKFdSpUyc9+uijWrdundauXasXX3yx9AdlQcWKFeXl5aW//vqryD5WP09hYWH2rU9FvbZnfwlYVZL1wJmSk5NVvXp1+/3s7GwdPnzYHjRLUrszBwz7+fk5HFSfr7gQWdz8ixuP1bH4+fnJZrMV+Cznz98Z51q++R555BG9+uqr+uijj3T69GllZ2dr8ODBlp+nYcOG9oO/r7vuOuXk5OjDDz/U7Nmzdccdd9j7rVixQtddd52leSYmJhZ6kH5JWFmPWH19goODC2zhr1+/vqS89WmjRo0KrGtbtWolSfrtt98ITZ4iMDBQrVu31ty5c/X666/b/zrOzc3VZ599Zv+ScLavlb+Ko6Ki9Pjjj2vJkiVatWpVqdTorAYNGkiSdu7cqaZNm9rbt2/frq5du6pt27b65ptvdOedd2r06NG69957C5zh4G67du1So0aNSnWeRS0XqWwsm549e2rq1KmaM2eOw66CTz75RJGRkWrdurVDf2eW4Q033KCvvvpKNWvW1C233CIpb6tbVFSUXnjhBWVlZdm3SBXFyuejJPz9/dWxY0fNmjVLr7zySqF/TFj9PNlsNl133XXasmWLmjZt6vwZPBZZXQ+c6fPPP3c4O/Grr75Sdna2/ey8gICAUqm9qNcpOjpaKSkp+vvvvxUeHi4p74zT77//vkTPU9x4nBnLVVddpblz5+q1116z76JLT0/XggULSq2eM1WrVk133nmn3nvvPWVmZqpbt27ntaV4woQJmjNnjl544QX16tXLfuZu/u45K0pz95yV9YiXl5fl1yc/IBZW82+//abjx487/OG2Zs0aSSp2y3GhnD4KCoUq6hoc+WfStG7d2syaNct88803pmvXrsWePXeuvvkH7j388MNm9erVZsOGDebYsWOmefPm5rXXXjMLFiwwy5cvN6+99prx8/Mzffv2LbZ2Z5/X6oHge/fuLXA2VWJioqlRo4bp0KGDOXnypDEm7yA9Ly8vhzOiXGXhwoVm1qxZ5qOPPjKSzJ133mlmzZplZs2aVeDA7pycHBMaGmqGDx9eqjUUtlyMKVvLpnPnziYsLMxMmTLFLF261AwaNKjAwazGOL8M58yZYz9Qc8WKFfb2AQMGGEkmLCyswLWtzj4QvLDPR/6B+EV9Ts+eR1Hyz56rXbu2fexffvml6dOnT4Gz5871edq6dasJCwszV111lZk+fbpZtmyZmT9/vpk4caK57rrr7P2cORD8fNYDZ5/dtXjxYvPmm2+aoKAgc8UVV5iMjAynay/u2kRFvU67du0yPj4+5tprrzXfffedmTNnjunYsaOJiYkp8kDwwuZvdTxWx7J48WJTrlw5c/XVV5t58+aZ2bNnm1atWpmaNWuW6Oy54pZvvnXr1tk/Dz/88MM5n8OYos+eM8aYCRMmGEnmP//5j6V5nYuVdcby5cuNl5eXefHFFwtMb2U9YvX1Kco333xjbDabadOmjZk5c6ZZsmSJeeWVV0xQUJBp1KhRocu9OISmUlLch/enn34y119/vQkMDDT+/v6mTZs2ZsGCBYXOx2rfkSNHmsjISFOuXDkjySxatMgMHjzYNG3a1ISEhBh/f39Tv359M2rUKEsXFrTyvM6GJmOM6dChg7n55puNMXlnRdSpU8dceeWVBc6EGDRokPH19XX5BTtr1apl+cyQJUuWGElm06ZNpV7HmcvFmLK3bNLT001sbKyJiIgw5cuXN02bNjVffvllgXk6uwyPHj1qypUrZwIDAx1Owc4/w6iwSxcUFnjO/nwsW7bMGHP+ockYY7Zt22buvPNOU6lSJVO+fHkTFRVl7r//fnP69Gl7H6uf48TERDNw4EBTvXp14+PjY6pUqWLatWtnXn75ZXsfZ0LT6dOnS7weyF82mzZtMt26dTNBQUEmODjY9OnTx/z9998lqv1cF3Qs6nVauHChadasmfH39ze1a9c2kydPLvbsueJCk5XxWBmLMcbMnz/fNG3a1P66v/rqq05f3NLq8s0XHR1tGjZseM755ysuNJ06dcpERUWZyy67rFQuHmllnZH/Pi3szDqr6xGrr09Rli5darp06WIiIiKMv7+/qVevnnnyySfNoUOHnB6zzZhCDs4ASkn+ptc9e/Y47McvC/r166ddu3ZZ3q3hjLK8XJzhymWI0jV69Gi9+OKLOnjwYImPY0Tp+uWXX3TFFVfo3XffLXC2LtyDSw7ApXr16qVWrVpp3Lhx7i7FKTt37tTMmTM1fvx4l8y/rC4XZ7h6GQIXq507d2rp0qV66KGHVK1aNd1///3uLgn/Q2iCS9lsNk2dOlWRkZHKzc11dzmW7d27V5MnTz7v6wEVpawuF2e4ehkCF6uXXnpJnTt31vHjxzVr1iwFBAS4uyT8D7vnAAAALGBLEwAAgAWEJgAAAAsITQAAABZwRfBSkJubq/379ys4ONipnwsAAADuY4xRenq6IiMj7VdJLw6hqRTs379fNWvWdHcZAACgBJKSkiz9pAqhqRQEBwdLylvoISEhbq4GAABYkZaWppo1a9q/x8+F0FQK8nfJhYSEEJoAAChjrB5aw4HgAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYUOZC03vvvaeYmBj5+fmpRYsW+umnn4rtv2LFCrVo0UJ+fn6qXbu2PvjggyL7zpgxQzabTT169CjlqgEAQFlXpkLTzJkzNXToUD333HPasmWLOnTooJtuukl79+4ttH9iYqJuvvlmdejQQVu2bNH//d//KTY2VnPmzCnQd8+ePXrqqafUoUMHVw8DAACUQTZjjHF3EVa1bt1aV155pd5//317W8OGDdWjRw+NGzeuQP9nn31W8+fPV0JCgr1t8ODB+vnnn7VmzRp7W05Ojjp27KgBAwbop59+0rFjx/T1119bristLU2hoaFKTU1VSEhIyQYHAAAuKGe/v8vMlqbMzExt2rRJXbp0cWjv0qWLVq9eXeg0a9asKdC/a9eu2rhxo7KysuxtY8aMUZUqVfTAAw+UfuEAAOCi4O3uAqw6dOiQcnJyFB4e7tAeHh6u5OTkQqdJTk4utH92drYOHTqkatWqadWqVZo2bZri4+Mt15KRkaGMjAz7/bS0NOsDAQAAZVKZ2dKUz2azOdw3xhRoO1f//Pb09HTde++9mjp1qipXrmy5hnHjxik0NNR+q1mzphMjAAAAZVGZ2dJUuXJleXl5FdiqlJKSUmBrUr6IiIhC+3t7e6tSpUraunWrdu/erW7dutkfz83NlSR5e3tr+/btqlOnToH5jhw5UsOHD7ffT0tLIzgBAHCRKzOhqXz58mrRooXi4uLUs2dPe3tcXJy6d+9e6DRt27bVggULHNoWL16sli1bysfHRw0aNNCvv/7q8Pi//vUvpaen66233ioyCPn6+srX1/c8RwQAAMqSMhOaJGn48OHq16+fWrZsqbZt22rKlCnau3evBg8eLClvC9C+ffv06aefSso7U27y5MkaPny4Bg0apDVr1mjatGn68ssvJUl+fn5q3Lixw3NUqFBBkgq0AwCAS1uZCk133XWXDh8+rDFjxujAgQNq3LixFi5cqFq1akmSDhw44HDNppiYGC1cuFDDhg3Tu+++q8jISL399tu6/fbb3TUEAABQRpWp6zR5Kq7TBABA2XPRXqcJAADAnQhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAAC5wOTZ988om+++47+/1nnnlGFSpUULt27bRnz55SLQ4AAMBTOB2axo4dK39/f0nSmjVrNHnyZE2YMEGVK1fWsGHDSr1AAAAAT+Dt7ARJSUmqW7euJOnrr7/WHXfcoYceekjt27fXtddeW9r1AQAAeASntzQFBQXp8OHDkqTFixfrhhtukCT5+fnp1KlTpVsdAACAh3B6S1Pnzp314IMPqnnz5tqxY4duueUWSdLWrVsVHR1d2vUBAAB4BKe3NL377rtq27atDh48qDlz5qhSpUqSpE2bNqlPnz6lXiAAAIAnsBljjDMT7N27VzVq1FC5co55yxijpKQkRUVFlWqBZUFaWppCQ0OVmpqqkJAQd5cDAAAscPb72+ktTTExMTp06FCB9iNHjigmJsbZ2TntvffeU0xMjPz8/NSiRQv99NNPxfZfsWKFWrRoIT8/P9WuXVsffPCBw+NTp05Vhw4dFBYWprCwMN1www1av369K4cAAADKIKdDU1Ebpo4fPy4/P7/zLqg4M2fO1NChQ/Xcc89py5Yt6tChg2666Sbt3bu30P6JiYm6+eab1aFDB23ZskX/93//p9jYWM2ZM8feZ/ny5erTp4+WLVumNWvWKCoqSl26dNG+fftcOhYAAFC2WN49N3z4cEnSW2+9pUGDBikgIMD+WE5OjtatWycvLy+tWrXKNZVKat26ta688kq9//779raGDRuqR48eGjduXIH+zz77rObPn6+EhAR72+DBg/Xzzz9rzZo1hT5HTk6OwsLCNHnyZN13332W6mL3HAAAZY+z39+Wz57bsmWLpLwtTb/++qvKly9vf6x8+fK64oor9NRTT5WgZGsyMzO1adMmjRgxwqG9S5cuWr16daHTrFmzRl26dHFo69q1q6ZNm6asrCz5+PgUmObkyZPKyspSxYoVS694AABQ5lkOTcuWLZMkDRgwQG+99dYF36Jy6NAh5eTkKDw83KE9PDxcycnJhU6TnJxcaP/s7GwdOnRI1apVKzDNiBEjVL16dfv1pwqTkZGhjIwM+/20tDRnhgIAAMogp49pmj59uj0w/fXXXxf82B+bzeZw3xhToO1c/Qtrl6QJEyboyy+/1Ny5c4s9PmvcuHEKDQ2132rWrOnMEAAAQBnkdGjKzc3VmDFjFBoaqlq1aikqKkoVKlTQSy+9pNzcXFfUKEmqXLmyvLy8CmxVSklJKbA1KV9ERESh/b29ve3Xl8r3+uuva+zYsVq8eLGaNm1abC0jR45Uamqq/ZaUlFSCEQEAgLLE6SuCP/fcc5o2bZpeffVVtW/fXsYYrVq1SqNHj9bp06f1yiuvuKJOlS9fXi1atFBcXJx69uxpb4+Li1P37t0LnaZt27ZasGCBQ9vixYvVsmVLh+OZXnvtNb388sv6/vvv1bJly3PW4uvrK19f3xKOBAAAlEnGSdWqVTPffPNNgfavv/7aREZGOjs7p8yYMcP4+PiYadOmmW3btpmhQ4eawMBAs3v3bmOMMSNGjDD9+vWz99+1a5cJCAgww4YNM9u2bTPTpk0zPj4+Zvbs2fY+48ePN+XLlzezZ882Bw4csN/S09Mt15WammokmdTU1NIbLAAAcClnv7+d3tJ05MgRNWjQoEB7gwYNdOTIkVKIcUW76667dPjwYY0ZM0YHDhxQ48aNtXDhQtWqVUuSdODAAYdrNsXExGjhwoUaNmyY3n33XUVGRurtt9/W7bffbu/z3nvvKTMzU3fccYfDc40aNUqjR4926XgAAEDZ4fTPqLRu3VqtW7fW22+/7dD+xBNPaMOGDVq7dm2pFlgWcJ0mAADKHpddpynfhAkTdMstt+iHH35Q27ZtZbPZtHr1aiUlJWnhwoUlKhoAAMDTOX32XMeOHbVjxw717NlTx44d05EjR9SrVy9t375dHTp0cEWNAAAAbuf07jkUxO45AADKHpfvnpOkY8eOadq0aUpISJDNZlOjRo00cOBAhYaGlmR2AAAAHs/p3XMbN25UnTp19Oabb+rIkSM6dOiQJk6cqDp16mjz5s2uqBEAAMDtnN4916FDB9WtW1dTp06Vt3fehqrs7Gw9+OCD2rVrl3788UeXFOrJ2D0HAEDZ4+z3t9Ohyd/fX1u2bClwraZt27apZcuWOnnypHMVXwQITQAAlD3Ofn87vXsuJCTE4QKS+ZKSkhQcHOzs7AAAAMoEp0PTXXfdpQceeEAzZ85UUlKS/vrrL82YMUMPPvig+vTp44oaAQAA3M7ps+def/112Ww23XfffcrOzpYk+fj46JFHHtGrr75a6gUCAAB4AqeOacrJydHKlSvVpEkT+fn5aefOnTLGqG7dugoICHBlnR6NY5oAACh7XHqdJi8vL3Xt2lUJCQmqWLGimjRpUuJCAQAAyhKnj2lq0qSJdu3a5YpaAAAAPJbToemVV17RU089pW+//VYHDhxQWlqaww0AAOBi5PR1msqV+ydn2Ww2+/+NMbLZbMrJySm96soIjmkCAKDscflvzy1btqxEhQEAAJRlToemjh07uqIOAAAAj+b0MU0AAACXIkITAACABYQmAAAACyyFpvnz5ysrK8vVtQAAAHgsS6GpZ8+eOnbsmKS8q4KnpKS4siYAAACPYyk0ValSRWvXrpX0z/WYAAAALiWWLjkwePBgde/eXTabTTabTREREUX2vRQvbgkAAC5+lkLT6NGjdffdd+vPP//UbbfdpunTp6tChQouLg0AAMBzWL64ZYMGDdSgQQONGjVKd955pwICAlxZFwAAgEdx+rfn8h08eFDbt2+XzWZTvXr1VKVKldKurczgt+cAACh7nP3+dvo6TSdPntTAgQMVGRmpa665Rh06dFBkZKQeeOABnTx5skRFAwAAeDqnQ9OwYcO0YsUKzZ8/X8eOHdOxY8f0zTffaMWKFXryySddUSMAAIDbOb17rnLlypo9e7auvfZah/Zly5apd+/eOnjwYGnWVyawew4AgLLnguyeCw8PL9BetWpVds8BAICLltOhqW3btho1apROnz5tbzt16pRefPFFtW3btlSLAwAA8BSWLzmQ76233tKNN96oGjVq6IorrpDNZlN8fLz8/Pz0/fffu6JGAAAAtyvRJQdOnTqlzz77TL///ruMMWrUqJHuuece+fv7u6JGj8cxTQAAlD3Ofn87vaVJkvz9/TVo0KCSTAoAAFAmOX1MEwAAwKWI0AQAAGABoQkAAMACQhMAAIAFToem2rVr6/DhwwXajx07ptq1a5dKUQAAAJ7G6dC0e/du5eTkFGjPyMjQvn37SqUoAAAAT2P5kgPz58+3///7779XaGio/X5OTo6WLFmi6OjoUi0OAADAU1gOTT169LD/v3///g6P+fj4KDo6Wm+88UapFQYAAOBJLIem3NxcSVJMTIw2btyoSpUquawoAAAAT+PUMU1ZWVmKjo4u9EBwAACAi5lTocnHx0e//fabbDabq+oBAADwSE6fPXffffdp2rRprqgFAADAYzn9g72ZmZn68MMPFRcXp5YtWyowMNDh8YkTJ5ZacQAAAJ7C6dD022+/6corr5Qk7dixw+ExdtsBAICLldOhadmyZa6oAwAAwKPx23MAAAAWOL2lSZI2bNigWbNmae/evcrMzHR4bO7cuaVSGAAAgCdxekvTjBkz1L59e23btk3z5s1TVlaWtm3bpqVLlzr8tAoAAMDFxOnQNHbsWL355pv69ttvVb58eb311ltKSEhQ7969FRUV5YoaAQAA3M7p0LRz507dcsstkiRfX1+dOHFCNptNw4YN05QpU0q9QAAAAE/gdGiqWLGi0tPTJUnVq1fXb7/9Jkk6duyYTp48WbrVAQAAeAinDwTv0KGD4uLi1KRJE/Xu3VtDhgzR0qVLFRcXp06dOrmiRgAAALdzekvT5MmTdffdd0uSRo4cqaeeekp///23evXqdUF+XuW9995TTEyM/Pz81KJFC/3000/F9l+xYoVatGghPz8/1a5dWx988EGBPnPmzFGjRo3k6+urRo0aad68ea4q3zkbN0rXX5/3b1nGODwL4/AsjMOzMA7P4mnjMGXIjBkzjI+Pj5k6darZtm2bGTJkiAkMDDR79uwptP+uXbtMQECAGTJkiNm2bZuZOnWq8fHxMbNnz7b3Wb16tfHy8jJjx441CQkJZuzYscbb29usXbvWcl2pqalGkklNTT3vMZ5JOmmkbCOdLNX5XmgX3zgyzfTp7q6m5P4ZR7YpW2uAPElJxrRpY84YQ9442rTJe8zTLVhgzJVXGuPvb4xUcBySMd7exnToYMwrrxgzc6ZnjGv9emOef96Y997L+zckxNjrzbtlGem08dZpY7PltXl5GVO3rjHR0cbUqmXMI494xliSkvLGcfXVxtSsaUy9ennL/J9xZPzv9s/4vLyMueIKY+66y5ghQ/KWhydZsMCYm24ypkqVot9XrVp5Xt3n4ur1lbPf3yUqITs728yaNcuMGTPGvPTSS2b27NkmKyurJLNyylVXXWUGDx7s0NagQQMzYsSIQvs/88wzpkGDBg5tDz/8sGnTpo39fu/evc2NN97o0Kdr167m7rvvtlxXqYam3buN2bjRSDlGyv3fmz3XSDnGbNyY93hZcFGPI28sdaqfuijGIeWUmXF8OP7QWfWffcs1H37o7iqL1q5dUXUXf7PZjFvH1b9/yeou6ubOsXz4YemNo39/943jTM6+rzyl7iJdwPWVy0PTr7/+amrXrm0CAgJM8+bNTfPmzU1gYKCJjo42v/zyi9MFW5WRkWG8vLzM3LlzHdpjY2PNNddcU+g0HTp0MLGxsQ5tc+fONd7e3iYzM9MYY0zNmjXNxIkTHfpMnDjRREVFFVnL6dOnTWpqqv2WlJRUeqFJ+l+yPvuLIddIJ41LorYrXPTjyBvLdPVzd4XWnGMcZWErYFJS/l/P5/5S8IStGWdbsOD8vqDLlXPPuNavL93A5M7XKO89VLo3d2+5Ken7yt11F+sCrq+cDU1OH9P04IMP6vLLL9dff/2lzZs3a/PmzUpKSlLTpk310EMPle6+wzMcOnRIOTk5Cg8Pd2gPDw9XcnJyodMkJycX2j87O1uHDh0qtk9R85SkcePGKTQ01H6rWbNmSYZUuM8+k1Re0tk/fmzLa//ss9J7Lle66MchSTZ9c+XLF7igEjrHOPIe82x//CFJXpb6/vmnS0spkYULz2/63Fz3jOsch42WmDvGkvceKl2rVpX+PJ1R0veVu+sulgevr5wOTT///LPGjRunsLAwe1tYWJheeeUVxcfHl2ZthbLZHBeiMaZA27n6n93u7DxHjhyp1NRU+y0pKcly/ed0zz2SMiWZsx4wee333FN6z+VKF/04JMmo+xNl5IKu5xiH1TDiTpddZr1v3bquq6Okbr75/KYvV8494+rQwTXzdcdYnHkPWdW+fenP0xklfV+5u+5iefD6yunQVL9+ff39998F2lNSUlTXhZ+CypUry8vLq8AWoJSUlAJbivJFREQU2t/b21uVKlUqtk9R85TyLuoZEhLicCtNZlOC8t4Y+W+YvP/ntZcdF+84JMmoTo0M3X+/e2oqiaLGIRmZwtZNHqZGDenDD6XCV6T/+PDDvL6e5tZbpXbtSjatzSZNmeKecbVqJfXvX7rzdNdr9M97qHT075+3fNypJO8rT6j7XDx1fVWin1GJjY3V7Nmz9ddff+mvv/7S7NmzNXToUI0fP15paWn2W2kqX768WrRoobi4OIf2uLg4tSviHdO2bdsC/RcvXqyWLVvKx8en2D5FzfOCqFpVJqK6pNOSciSdzrtftar7aiqJi3YcmZoeMkR/rjnk5sKcVGAc/3tNkva7ty4nPPCAlLQ+WW281uifMeTd2jQ/paSkvD6eatUqacECqWVLyd8/W1KGzh6HlCNvb+maa6SxY6WvvpL27nXvuD7+WFq/Xho1Snr/fen556V//lbM/t8tS1K2vHVKtv+Ny8srb4tSdHTe7ZFH5PbX6IEH8mp4//28ZRwVJdWrJ3mXyzljHFnKe22ylPeaSN7eUrNmUp8+0rBhecvj44/dNIiz5L+vbr5ZqhKWobxxFHxftW7tWXUXy1PXV84eNGWz2ey3cuXKmXLlyhV6v1y5cs7O+pzyLzkwbdo0s23bNjN06FATGBhodv/vSPoRI0aYfv3+OTA3/5IDw4YNM9u2bTPTpk0rcMmBVatWGS8vL/Pqq6+ahIQE8+qrr3rGJQdOnzYmNzfv/7m5effLIsbhWRiHZ2EcnoVxeJYLMA5nv7+dviL4smXLSj+5WXTXXXfp8OHDGjNmjA4cOKDGjRtr4cKFqlWrliTpwIED2rt3r71/TEyMFi5cqGHDhundd99VZGSk3n77bd1+++32Pu3atdOMGTP0r3/9S88//7zq1KmjmTNnqnXr1hd8fA58ff/5v83meL8sYRyehXF4FsbhWRiHZ/HAcdiMKQtHM3i2tLQ0hYaGKjU1tdSPbwIAAK7h7Pe308c0AQAAXIoITQAAABYQmgAAACwgNAEAAFjgdGgaPXq09uzZ44paAAAAPJbToWnBggWqU6eOOnXqpC+++EKnT592RV0AAAAexenQtGnTJm3evFlNmzbVsGHDVK1aNT3yyCPasGGDK+oDAADwCCU6pqlp06Z68803tW/fPn300Ufat2+f2rdvryZNmuitt95SampqadcJAADgVud1IHhubq4yMzOVkZEhY4wqVqyo999/XzVr1tTMmTNLq0YAAAC3K1Fo2rRpkx5//HFVq1ZNw4YNU/PmzZWQkKAVK1bo999/16hRoxQbG1vatQIAALiN0z+j0rRpUyUkJKhLly4aNGiQunXrJi8vL4c+Bw8eVHh4uHJzc0u1WE/Fz6gAAFD2OPv97fQP9t55550aOHCgqlevXmSfKlWqXDKBCQAAXBqc2j2XlZWl6dOnc6A3AAC45DgVmnx8fJSRkSGbzeaqegAAADyS0weCP/HEExo/fryys7NdUQ8AAIBHcvqYpnXr1mnJkiVavHixmjRposDAQIfH586dW2rFAQAAeAqnQ1OFChV0++23u6IWAAAAj+V0aJo+fbor6gAAAPBo53VFcAAAgEuF01uaJGn27Nn66quvtHfvXmVmZjo8tnnz5lIpDAAAwJM4vaXp7bff1oABA1S1alVt2bJFV111lSpVqqRdu3bppptuckWNAAAAbud0aHrvvfc0ZcoUTZ48WeXLl9czzzyjuLg4xcbGctFLAABw0XI6NO3du1ft2rWTJPn7+ys9PV2S1K9fP3355ZelWx0AAICHcDo0RURE6PDhw5KkWrVqae3atZKkxMREOfnbvwAAAGWG06Hp+uuv14IFCyRJDzzwgIYNG6bOnTvrrrvuUs+ePUu9QAAAAE9gM05uHsrNzVVubq68vfNOvPvqq6+0cuVK1a1bV4MHD1b58uVdUqgnS0tLU2hoqFJTUxUSEuLucgAAgAXOfn87HZpQEKEJAICyx9nv7xJdp+nYsWNav369UlJSlJub6/DYfffdV5JZAgAAeDSnQ9OCBQt0zz336MSJEwoODpbNZrM/ZrPZCE0AAOCi5PSB4E8++aQGDhyo9PR0HTt2TEePHrXfjhw54ooaAQAA3M7p0LRv3z7FxsYqICDAFfUAAAB4JKdDU9euXbVx40ZX1AIAAOCxnD6m6ZZbbtHTTz+tbdu2qUmTJvLx8XF4/Lbbbiu14gAAADyF05ccKFeu6I1TNptNOTk5511UWcMlBwAAKHtcfsmBsy8xAAAAcClw+pgmAACAS5GlLU1vv/22HnroIfn5+entt98utm9sbGypFAYAAOBJLB3TFBMTo40bN6pSpUqKiYkpemY2m3bt2lWqBZYFHNMEAEDZ45JjmhITEwv9PwAAwKWCY5oAAAAscPrsueHDhxfabrPZ5Ofnp7p166p79+6qWLHieRcHAADgKZy+TtN1112nzZs3KycnR/Xr15cxRn/88Ye8vLzUoEEDbd++XTabTStXrlSjRo1cVbdH4ZgmAADKHme/v53ePde9e3fdcMMN2r9/vzZt2qTNmzdr37596ty5s/r06aN9+/bpmmuu0bBhw0o0AAAAAE/k9Jam6tWrKy4ursBWpK1bt6pLly7at2+fNm/erC5duujQoUOlWqynYksTAABlj8u3NKWmpiolJaVA+8GDB5WWliZJqlChgjIzM52dNQAAgMcq0e65gQMHat68efrrr7+0b98+zZs3Tw888IB69OghSVq/fr3q1atX2rUCAAC4jdO7544fP65hw4bp008/VXZ2tiTJ29tb/fv315tvvqnAwEDFx8dLkpo1a1ba9Xokds8BAFD2OPv97XRoynf8+HHt2rVLxhjVqVNHQUFBJZnNRYHQBABA2eOSK4IXJigoSE2bNi3p5AAAAGVKiULThg0bNGvWLO3du7fAAd9z584tlcIAAAA8idMHgs+YMUPt27fXtm3bNG/ePGVlZWnbtm1aunSpQkNDXVEjAACA2zkdmsaOHas333xT3377rcqXL6+33npLCQkJ6t27t6KiolxRIwAAgNs5HZp27typW265RZLk6+urEydOyGazadiwYZoyZUqpFwgAAOAJnA5NFStWVHp6uqS8q4P/9ttvkqRjx47p5MmTpVsdAACAh3D6QPAOHTooLi5OTZo0Ue/evTVkyBAtXbpUcXFx6tSpkytqBAAAcDunQ9PkyZN1+vRpSdLIkSPl4+OjlStXqlevXnr++edLvUAAAABPUKLdc5GRkXkTlyunZ555RvPnz9fEiRMVFhZW6gXmO3r0qPr166fQ0FCFhoaqX79+OnbsWLHTGGM0evRoRUZGyt/fX9dee622bt1qf/zIkSN64oknVL9+fQUEBCgqKkqxsbFKTU112TgAAEDZVOKLW6akpCglJUW5ubkO7a664GXfvn31119/adGiRZKkhx56SP369dOCBQuKnGbChAmaOHGiPv74Y9WrV08vv/yyOnfurO3btys4OFj79+/X/v379frrr6tRo0bas2ePBg8erP3792v27NkuGQcAACibnP4ZlU2bNql///5KSEjQ2ZPabDbl5OSUaoGSlJCQoEaNGmnt2rVq3bq1JGnt2rVq27atfv/9d9WvX7/ANMYYRUZGaujQoXr22WclSRkZGQoPD9f48eP18MMPF/pcs2bN0r333qsTJ07I29tapuRnVAAAKHuc/f52evfcgAEDVK9ePa1evVq7du1SYmKi/bZr164SFX0ua9asUWhoqD0wSVKbNm0UGhqq1atXFzpNYmKikpOT1aVLF3ubr6+vOnbsWOQ0kuwLrrjAlJGRobS0NIcbAAC4uDm9ey4xMVFz585V3bp1XVFPoZKTk1W1atUC7VWrVlVycnKR00hSeHi4Q3t4eLj27NlT6DSHDx/WSy+9VORWqHzjxo3Tiy++aKV0AABwkXB6S1OnTp30888/l8qTjx49Wjabrdjbxo0bJeXt+jubMabQ9jOd/XhR06SlpemWW25Ro0aNNGrUqGLnOXLkSKWmptpvSUlJ5xoqAAAo45ze0vThhx+qf//++u2339S4cWP5+Pg4PH7bbbdZntfjjz+uu+++u9g+0dHR+uWXX/T3338XeOzgwYMFtiTli4iIkJS3xalatWr29pSUlALTpKen68Ybb1RQUJDmzZtXYExn8/X1la+vb7F9AADAxcXp0LR69WqtXLlS//3vfws85uyB4JUrV1blypXP2a9t27ZKTU3V+vXrddVVV0mS1q1bp9TUVLVr167QaWJiYhQREaG4uDg1b95ckpSZmakVK1Zo/Pjx9n5paWnq2rWrfH19NX/+fPn5+VmuHwAAXDqc3j0XGxurfv366cCBA8rNzXW4ueLMOUlq2LChbrzxRg0aNEhr167V2rVrNWjQIN16660OZ841aNBA8+bNk5QX4IYOHaqxY8dq3rx5+u2333T//fcrICBAffv2lZS3halLly46ceKEpk2bprS0NCUnJys5OdllYwEAAGWT01uaDh8+rGHDhhW5W8xVPv/8c8XGxtrPhrvttts0efJkhz7bt293uDDlM888o1OnTunRRx/V0aNH1bp1ay1evFjBwcGS8i6fsG7dOkkqcGB7YmKioqOjXTgiAABQljh9nab+/furQ4cOevDBB11VU5nDdZoAACh7nP3+dnpLU7169TRy5EitXLlSTZo0KXDQdGxsrLOzBAAA8HhOb2mKiYkpemY2m8sucOnJ2NIEAEDZ4/ItTYmJiSUqDAAAoCxz+uw5AACAS5GlLU3Dhw/XSy+9pMDAQA0fPrzYvhMnTiyVwgAAADyJpdC0ZcsWZWVl2f9flHP9pAkAAEBZ5fSB4CiIA8EBACh7nP3+5pgmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAAC8pMaDp69Kj69eun0NBQhYaGql+/fjp27Fix0xhjNHr0aEVGRsrf31/XXnuttm7dWmTfm266STabTV9//XXpDwAAAJRpZSY09e3bV/Hx8Vq0aJEWLVqk+Ph49evXr9hpJkyYoIkTJ2ry5MnasGGDIiIi1LlzZ6WnpxfoO2nSJNlsNleVDwAAyjhvdxdgRUJCghYtWqS1a9eqdevWkqSpU6eqbdu22r59u+rXr19gGmOMJk2apOeee069evWSJH3yyScKDw/XF198oYcfftje9+eff9bEiRO1YcMGVatW7cIMCgAAlCllYkvTmjVrFBoaag9MktSmTRuFhoZq9erVhU6TmJio5ORkdenSxd7m6+urjh07Okxz8uRJ9enTR5MnT1ZERISlejIyMpSWluZwAwAAF7cyEZqSk5NVtWrVAu1Vq1ZVcnJykdNIUnh4uEN7eHi4wzTDhg1Tu3bt1L17d8v1jBs3zn5sVWhoqGrWrGl5WgAAUDa5NTSNHj1aNput2NvGjRslqdDjjYwx5zwO6ezHz5xm/vz5Wrp0qSZNmuRU3SNHjlRqaqr9lpSU5NT0AACg7HHrMU2PP/647r777mL7REdH65dfftHff/9d4LGDBw8W2JKUL39XW3JyssNxSikpKfZpli5dqp07d6pChQoO095+++3q0KGDli9fXui8fX195evrW2zdAADg4uLW0FS5cmVVrlz5nP3atm2r1NRUrV+/XldddZUkad26dUpNTVW7du0KnSYmJkYRERGKi4tT8+bNJUmZmZlasWKFxo8fL0kaMWKEHnzwQYfpmjRpojfffFPdunU7n6EBAICLTJk4e65hw4a68cYbNWjQIP373/+WJD300EO69dZbHc6ca9CggcaNG6eePXvKZrNp6NChGjt2rC677DJddtllGjt2rAICAtS3b19JeVujCjv4OyoqSjExMRdmcAAAoEwoE6FJkj7//HPFxsbaz4a77bbbNHnyZIc+27dvV2pqqv3+M888o1OnTunRRx/V0aNH1bp1ay1evFjBwcEXtHYAAFD22Ywxxt1FlHVpaWkKDQ1VamqqQkJC3F0OAACwwNnv7zJxyQEAAAB3IzQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALDA290FXAyMMZKktLQ0N1cCAACsyv/ezv8ePxdCUylIT0+XJNWsWdPNlQAAAGelp6crNDT0nP1sxmq8QpFyc3O1f/9+BQcHy2azubscj5OWlqaaNWsqKSlJISEh7i7nksfr4Vl4PTwLr4dncfXrYYxRenq6IiMjVa7cuY9YYktTKShXrpxq1Kjh7jI8XkhICCshD8Lr4Vl4PTwLr4dnceXrYWULUz4OBAcAALCA0AQAAGABoQku5+vrq1GjRsnX19fdpUC8Hp6G18Oz8Hp4Fk97PTgQHAAAwAK2NAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhNcZty4cWrVqpWCg4NVtWpV9ejRQ9u3b3d3WfifcePGyWazaejQoe4u5ZK1b98+3XvvvapUqZICAgLUrFkzbdq0yd1lXZKys7P1r3/9SzExMfL391ft2rU1ZswY5ebmuru0S8KPP/6obt26KTIyUjabTV9//bXD48YYjR49WpGRkfL399e1116rrVu3XvA6CU1wmRUrVuixxx7T2rVrFRcXp+zsbHXp0kUnTpxwd2mXvA0bNmjKlClq2rSpu0u5ZB09elTt27eXj4+P/vvf/2rbtm164403VKFCBXeXdkkaP368PvjgA02ePFkJCQmaMGGCXnvtNb3zzjvuLu2ScOLECV1xxRWaPHlyoY9PmDBBEydO1OTJk7VhwwZFRESoc+fO9t9+vVC45AAumIMHD6pq1apasWKFrrnmGneXc8k6fvy4rrzySr333nt6+eWX1axZM02aNMndZV1yRowYoVWrVumnn35ydymQdOuttyo8PFzTpk2zt91+++0KCAjQf/7zHzdWdumx2WyaN2+eevToISlvK1NkZKSGDh2qZ599VpKUkZGh8PBwjR8/Xg8//PAFq40tTbhgUlNTJUkVK1Z0cyWXtscee0y33HKLbrjhBneXckmbP3++WrZsqTvvvFNVq1ZV8+bNNXXqVHeXdcm6+uqrtWTJEu3YsUOS9PPPP2vlypW6+eab3VwZEhMTlZycrC5dutjbfH191bFjR61evfqC1sIP9uKCMMZo+PDhuvrqq9W4cWN3l3PJmjFjhjZv3qwNGza4u5RL3q5du/T+++9r+PDh+r//+z+tX79esbGx8vX11X333efu8i45zz77rFJTU9WgQQN5eXkpJydHr7zyivr06ePu0i55ycnJkqTw8HCH9vDwcO3Zs+eC1kJowgXx+OOP65dfftHKlSvdXcolKykpSUOGDNHixYvl5+fn7nIuebm5uWrZsqXGjh0rSWrevLm2bt2q999/n9DkBjNnztRnn32mL774Qpdffrni4+M1dOhQRUZGqn///u4uD8rbbXcmY0yBNlcjNMHlnnjiCc2fP18//vijatSo4e5yLlmbNm1SSkqKWrRoYW/LycnRjz/+qMmTJysjI0NeXl5urPDSUq1aNTVq1MihrWHDhpozZ46bKrq0Pf300xoxYoTuvvtuSVKTJk20Z88ejRs3jtDkZhEREZLytjhVq1bN3p6SklJg65OrcUwTXMYYo8cff1xz587V0qVLFRMT4+6SLmmdOnXSr7/+qvj4ePutZcuWuueeexQfH09gusDat29f4BIcO3bsUK1atdxU0aXt5MmTKlfO8SvRy8uLSw54gJiYGEVERCguLs7elpmZqRUrVqhdu3YXtBa2NMFlHnvsMX3xxRf65ptvFBwcbN8vHRoaKn9/fzdXd+kJDg4ucDxZYGCgKlWqxHFmbjBs2DC1a9dOY8eOVe/evbV+/XpNmTJFU6ZMcXdpl6Ru3brplVdeUVRUlC6//HJt2bJFEydO1MCBA91d2iXh+PHj+vPPP+33ExMTFR8fr4oVKyoqKkpDhw7V2LFjddlll+myyy7T2LFjFRAQoL59+17YQg3gIpIKvU2fPt3dpeF/OnbsaIYMGeLuMi5ZCxYsMI0bNza+vr6mQYMGZsqUKe4u6ZKVlpZmhgwZYqKiooyfn5+pXbu2ee6550xGRoa7S7skLFu2rNDvi/79+xtjjMnNzTWjRo0yERERxtfX11xzzTXm119/veB1cp0mAAAACzimCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0ATA4+zevVs2m03x8fHuLuW8rVq1Sk2aNJGPj4969Ojh7nIAnAdCEwCc5f777y+1gDN8+HA1a9ZMiYmJ+vjjj0tlnlZ9/PHHqlChwgV9TuBiRmgCUGoyMzPdXcJ5ycnJKfUfaN25c6euv/561ahRw3KAKevLEbhYEZoAlNi1116rxx9/XMOHD1flypXVuXNnSdK2bdt08803KygoSOHh4erXr58OHTpkn27RokW6+uqrVaFCBVWqVEm33nqrdu7c6dRzR0dH66WXXlLfvn0VFBSkyMhIvfPOOw59Jk6cqCZNmigwMFA1a9bUo48+quPHj9sfz98S8+2336pRo0by9fXVgAED9Mknn+ibb76RzWaTzWbT8uXLC60hIyNDsbGxqlq1qvz8/HT11Vdrw4YNkv7ZxXj48GENHDhQNputyC1N0dHRevnll3X//fcrNDRUgwYNkiTNmTNHl19+uXx9fRUdHa033njDYbqjR4/qvvvuU1hYmAICAnTTTTfpjz/+kCQtX75cAwYMUGpqqn0co0ePliS99957uuyyy+Tn56fw8HDdcccdTi174JJ1wX/tDsBFo2PHjiYoKMg8/fTT5vfffzcJCQlm//79pnLlymbkyJEmISHBbN682XTu3Nlcd9119ulmz55t5syZY3bs2GG2bNliunXrZpo0aWJycnKMMcYkJiYaSWbLli1FPnetWrVMcHCwGTdunNm+fbt5++23jZeXl1m8eLG9z5tvvmmWLl1qdu3aZZYsWWLq169vHnnkEfvj06dPNz4+PqZdu3Zm1apV5vfffzfHjh0zvXv3NjfeeKM5cOCAOXDgQJE/2hobG2siIyPNwoULzdatW03//v1NWFiYOXz4sMnOzjYHDhwwISEhZtKkSebAgQPm5MmTRY4lJCTEvPbaa+aPP/4wf/zxh9m4caMpV66cGTNmjNm+fbuZPn268ff3d/jB69tuu800bNjQ/PjjjyY+Pt507drV1K1b12RmZpqMjAwzadIkExISYh9Henq62bBhg/Hy8jJffPGF2b17t9m8ebN56623rLzcwCWP0ASgxDp27GiaNWvm0Pb888+bLl26OLQlJSUZSWb79u2FziclJcVIsv9qudXQdOONNzq03XXXXeamm24qcpqvvvrKVKpUyX5/+vTpRpKJj4936Ne/f3/TvXv3IudjjDHHjx83Pj4+5vPPP7e3ZWZmmsjISDNhwgR7W2hoqEPQKWosPXr0cGjr27ev6dy5s0Pb008/bRo1amSMMWbHjh1Gklm1apX98UOHDhl/f3/z1Vdf2ccXGhrqMI85c+aYkJAQk5aWVmxNAApi9xyA89KyZUuH+5s2bdKyZcsUFBRkvzVo0ECS7Lvgdu7cqb59+6p27doKCQlRTEyMJGnv3r1OPXfbtm0L3E9ISLDfX7ZsmTp37qzq1asrODhY9913nw4fPqwTJ07Y+5QvX15NmzZ16nnzx5CVlaX27dvb23x8fHTVVVc51GDV2csxISHBYd6S1L59e/3xxx/KyclRQkKCvL291bp1a/vjlSpVUv369Yt9/s6dO6tWrVqqXbu2+vXrp88//1wnT550ul7gUkRoAnBeAgMDHe7n5uaqW7duio+Pd7j98ccfuuaaayRJ3bp10+HDhzV16lStW7dO69atk1Q6B0DbbDZJ0p49e3TzzTercePGmjNnjjZt2qR3331XkpSVlWXv7+/vb5/GGcYYh+c7s70k8zt7ORY2n/znPPv/zjx/cHCwNm/erC+//FLVqlXTCy+8oCuuuELHjh1zumbgUkNoAlCqrrzySm3dulXR0dGqW7euwy0wMFCHDx9WQkKC/vWvf6lTp05q2LChjh49WqLnWrt2bYH7+Vu1Nm7cqOzsbL3xxhtq06aN6tWrp/3791uab/ny5ZWTk1Nsn7p166p8+fJauXKlvS0rK0sbN25Uw4YNnRxJQY0aNXKYtyStXr1a9erVk5eXlxo1aqTs7Gx74JSkw4cPa8eOHfbnL2oc3t7euuGGGzRhwgT98ssv2r17t5YuXXreNQMXO0ITgFL12GOP6ciRI+rTp4/Wr1+vXbt2afHixRo4cKBycnIUFhamSpUqacqUKfrzzz+1dOlSDR8+vETPtWrVKk2YMEE7duzQu+++q1mzZmnIkCGSpDp16ig7O1vvvPOOdu3apf/85z/64IMPLM03Ojpav/zyi7Zv365Dhw45bJnKFxgYqEceeURPP/20Fi1apG3btmnQoEE6efKkHnjggRKN50xPPvmklixZopdeekk7duzQJ598osmTJ+upp56SJF122WXq3r27Bg0apJUrV+rnn3/Wvffeq+rVq6t79+72cRw/flxLlizRoUOHdPLkSX377bd6++23FR8frz179ujTTz9Vbm6u6tevf941Axc9dx5QBaBs69ixoxkyZEiB9h07dpiePXuaChUqGH9/f9OgQQMzdOhQk5uba4wxJi4uzjRs2ND4+vqapk2bmuXLlxtJZt68ecYY6weCv/jii6Z3794mICDAhIeHm0mTJjn0mThxoqlWrZrx9/c3Xbt2NZ9++qmRZI4ePWqMKfxAaWPyDkzv3LmzCQoKMpLMsmXLCq3h1KlT5oknnjCVK1c2vr6+pn379mb9+vUOfaweCP7mm28WaJ89e7Zp1KiR8fHxMVFRUea1115zePzIkSOmX79+JjQ01D7GHTt2OPQZPHiwqVSpkpFkRo0aZX766SfTsWNHExYWZvz9/U3Tpk3NzJkzi60PQB6bMUXsGAcADxYdHa2hQ4dq6NCh7i4FwCWC3XMAAAAWEJoAAAAsYPccAACABWxpAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALDg/wE6DlMlwDP7jQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHHCAYAAADwNpN1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABifElEQVR4nO3deVxU1f8/8NcwrLKMC4Iiq4KiiUuuSC5pgpWl9Sm3PmhKipW5tfptEW2hrNTKXCiytDJTW9T8WJRU7gtKlqLizigELgyuLDPn98f9zejINoNz78Dwej4e9zHMmTP3vs+dmXvfnHvPvSohhAARERERkQyc7B0AERERETkuJptEREREJBsmm0REREQkGyabRERERCQbJptEREREJBsmm0REREQkGyabRERERCQbJptEREREJBsmm0REREQkGyabRERERCQbJptEREREJJtanWxu27YNSUlJKCwsVHzZK1euxB133AEPDw+oVCpkZmZW+57Zs2ejXbt2MBgM8gdYhUuXLuGFF15AbGwsmjZtCpVKhaSkpArrpqamokWLFrhy5Yps8dSW9QJYt24A4PLly5g6dSoCAgLg7u6OTp064ZtvvjGro8Q6BIDPP/8cKpUKJ0+eBFD17yMpKQkqlQrnzp2TNSZbq+x3V5PfY20h93ZMqc/auJzaEo/x92CcnJ2d0bx5c4wYMQLZ2dk2W05mZibuv/9+BAcHw8PDA40bN0Z0dDS+/PJLi95v7TZny5YtuO+++9CoUSN4eHggIiICr7/+ulmdTZs2Ydy4cYiMjISnpydatGiBIUOGICMjo0b1AODxxx83W5+3Tjt27LCqnrVtsqauJdtludY9AOzbtw9Dhw5FQEAAGjRogMjISMyePRtXr141q2fpd8fadbpr1y7ExcXB29sbXl5euPvuu7F169ZK23U7LG1rdWp9sjlr1izFk82CggLEx8ejVatW2LhxI7Zv347WrVtX+Z6zZ89izpw5mD17Npyc7Ltaz58/j5SUFBQXF2Po0KFV1h0zZgw8PT0xZ84cWWKpTesFsG7dAMDDDz+ML774AjNnzsT//vc/dOvWDSNHjsTXX39tqiP3OjS6//77sX37djRv3hyA/X4fcqnsd1eT32Nt4mifU22zdOlSbN++Hb/++ismTZqEtWvX4q677sLFixdtMv/CwkIEBQXhrbfewoYNG7Bs2TKEhoYiPj4eb7zxRrXvt2ab8/XXX6Nv377QaDRYtmwZNmzYgBdffBFCCLN6ixYtwsmTJzFlyhRs2LABH3zwAfLz89GzZ09s2rTJ6noA8Oqrr2L79u3lJl9fX7Ro0QLdunWzqp61bbKmriXbZbnW/cGDB9GrVy+cPHkS8+fPx/r16zFixAjMnj0bI0eONKtr6XfHmnW6e/du9OnTB9euXcPy5cuxfPlyXL9+HQMGDMD27durbKO1rGlrtYQNXLlyxRazKefdd98VAMSJEydkmX9ltmzZIgCIlStXWvyeF154QbRo0ULo9XoZI7OMwWAQBoNBCCFEQUGBACBmzpxZaf333ntPaDQaWT7H2rRehLBu3fz0008CgPj666/NygcOHCgCAgJEWVmZqUzOdViZqn4fM2fOFABEQUGBYvHcrsp+dzX5PdYGxu+CXNsx4/yV+qyNy7G0ntzxLF26VAAQu3fvNiufNWuWACA+++wzWZffo0cPERQUVG09S7c5Wq1WeHp6iieffLLaef7777/lyi5duiT8/f3FgAEDrK5Xmd9//10AEK+88kqN6lnTJkvrWrNdlmPdv/zyywKAOHr0qFn5hAkTBABx4cKFaudhyXensnUaFxcn/P39zfY1RUVFwtfXV/Tq1avaZVvDFm01srqryXiIZO/evXjkkUfQqFEjtGrVCoDUBT1gwAB4e3ujQYMG6NWrF3766acK51Nd3aSkJDz//PMAgLCwMFN38u+//46CggJMmDABQUFBcHNzQ9OmTRETE4Nff/212virW+7jjz+Ou+66CwAwfPhwqFQq9OvXr8p5lpSUIDU1FaNGjTLrvcvNzYWXlxdGjBhhVn/9+vVwcXHByy+/XG28NWFcV5Z67LHHUFRUVOFhiNtR2XoB6sa6+f777+Hl5YVHH33UrHzs2LE4e/Ysdu7caSqzdB0eOHAAKpUKq1atMpVlZGRApVLhjjvuMKv74IMPokuXLqbnNx9Gr+r3cbN///0XI0eOhEajgb+/P8aNGwedTmdR+w8dOoSRI0fC398fbm5uCA4OxujRo1FcXGyqY+lvPjs7G6NGjYKfnx/c3NzQtm1bfPzxx6bXK/vdVfV7rOl2wLgN27dvHx5++GH4+PhAo9Hgv//9LwoKCqyO/eZ53rpdrOpzevzxxxEaGlppfJbM/2Y5OTnVtseStgDATz/9hE6dOsHNzQ1hYWF47733qlynFakuns2bN0OlUmHFihXl3rts2TKoVCrs3r3b6uV27doVgPTdl5Ovry+cnZ2rrWfpNufTTz/FlStX8OKLL1Zb18/Pr1yZl5cX2rVrh5ycHKvrVSY1NRUqlQrjxo2rUT1r2mRpXWu2y3KsexcXFwCARqMxK2/YsCGcnJzg6upa7Tws+e5Utk63bt2Kfv36oUGDBqYyb29v9OnTB9u2bUNubq6p3NLfe2Vs0VYTazNd43+tISEh4sUXXxRpaWnihx9+EL///rtwcXERXbp0EStXrhQ//PCDiI2NFSqVSnzzzTdm87Ckbk5OjnjmmWcEAPHdd9+J7du3i+3btwudTifi4uJE06ZNRUpKivj999/FDz/8IF577bVyy7mVJcs9evSo+PjjjwUA8dZbb4nt27eLAwcOVDnfP//8UwAQGzZsKPfarFmzhEqlEnv27BFCCJGeni7c3d3FM888Y/E6vx2W9GwKIUTbtm3Fww8/bNNlV7VehKj966Znz56iW7du5cr/+ecfAUAsWbLErNzSddi8eXMxYcIE0/O3335beHh4CADizJkzQgghSktLhY+Pj3jhhRdM9Yw9OSdOnKjy9yHEjd9pmzZtxGuvvSbS0tLE3LlzhZubmxg7dmy1MWZmZgovLy8RGhoqFi9eLH777Tfx5ZdfimHDhomioiIhhGW/JyGEOHDggNBoNCIqKkosW7ZM/PLLL+LZZ58VTk5OIikpSQhR+e+uqt9jTbcDN2/Dnn/+efHzzz+LuXPnCk9PT9G5c2dRUlJiVey3zvPm7WJVn9OYMWNESEhIpfFVFvPN87emPZa25ddffxVqtVrcdddd4rvvvhOrVq0S3bp1E8HBwVb1bFqyfjt37ixiYmLKzaNbt24V/vZuVlnP5oIFCwQAsWbNGrNyg8EgSktLLZoqotfrRWlpqcjPzxcff/yxcHZ2FosXL652fdysqm1O//79RePGjcXGjRtFx44dhVqtFk2bNhWJiYmm33VVCgsLhUajEQ899JDN6nl4eIh77rmnxvWsaZOlda3dLhvZat2fOHFCNGzYUDzyyCPi2LFjoqioSKxbt05oNJpK913WfneqWqeurq5i9OjR5cpHjhwpAIiff/5ZCGH5770qNWlrZWqcbL722mtm5T179hR+fn7i0qVLprKysjLRvn17ERgYaOrKtqZuZYefvLy8xNSpU60N3eLlpqenCwBi1apVFs33nXfeEQBEXl5eudeuXLkiAgICxIABA8SuXbuEt7e3GDt2rNn6kJOlyeZjjz0m/P39zcoMBoO4ePFiuUPD165dExcvXjQ7XCGEEDqdzpSICFH1ehGi9q+biIgIERcXV6787NmzpuTnZhWtw4r897//FS1btjQ9v+eee8T48eNFo0aNxBdffCGEEGLr1q0CgPjll19M9W5ONoWw7DD6nDlzzMqfeuop4e7uXu067t+/v2jYsKHIz8+vtI6lv6e4uDgRGBhYbqM9adIk4e7ubjoUU9nvrrLymm4HjOtm2rRpZuVfffWVACC+/PJLU5mlsVe2XRSi8s+pJslmRfO3tD2WtqVHjx4iICBAXLt2zVSnqKhING7c2Kpk05L1a/xO79u3z1S2a9cuAcD0W6iM8b07duwQpaWl4tKlS2Ljxo2iWbNmok+fPuWSRuP3yJKpot9UYmKi6XVXV1excOHCatfFrara5rRp00a4u7sLb29v8dZbb4n09HQxZ84c4eHhIWJiYqr9zT722GPC2dnZ9M/77dZbtGiRACBWrFhR43rWtMnSutZul41sue6zsrJEZGSk2Xdm8uTJlX5G1n53qlqnnTp1Eq1btzY7Na20tFS0bNnS7PQCS3/v1bG2rZWpcbL5119/mcouX74sVCqVeOqpp8rVNyYcWVlZVtetbCNt3BG+/vrrYvv27Wb/KVfGmuVam2xOmTJFqFSqcsmX0WeffSYACE9PTzFs2LBK6928bEummzfQlbE02Zw2bZpQqVRmG+jc3FwBQIwZM8asrvE7sH37drNyf39/0bFjR9Pz6taLELV73URERIhBgwaVKzdu1JKTk83KK1qHFTHuJI8fPy6uXbsm3N3dxZo1a8TDDz8s/vvf/wohpF5fNzc3cfXq1XLvsybZPHTokFn54sWLq/wHQAjpnwC1Wm3W+3orS39P165dE87OzuKZZ54p13u0YcMGs55va5PNmmwHhLixbm7d2ZaWlgpnZ2eRkJAghBBWxV7RdtHIlslmRfO3pD2WtuXy5cvCyclJTJo0qdxyxowZY1WyWd36FUKI69evCz8/P/HEE0+YyuLj40XTpk3F9evXq1yO8fdw69S2bVtx8eLFcvWLiorE7t27LZqKi4vLvf/UqVNi9+7d4qeffhITJ04UTk5O4t133612fdysqm1OREREhduV+fPnCwAiLS2t0vm+8sorAoD46KOPqly+pfWEEKJr166iSZMm1X4OVdWzpk2W1rV2u2xkq3V/4sQJER4eLmJiYsTq1avFH3/8IebMmSN8fHzEuHHjKly2td+dqtZpamqqACCefPJJodVqxenTp0VCQoJQq9UCgPjmm2+s2nYJIcrVMSaSNWlrZao/4aQSxhGxAHDx4kUIIczKjAICAgBIo8KsrVuZlStX4o033sCnn36KV199FV5eXnjooYcwZ84cNGvWrML32GK5lbl27RpcXFygVqsrfN04clalUuHzzz+vtB4AtGnTBp988olFyw0ODrY+2Eq4u7tDCIHr16/Dy8vLJvOsbr0AtXvdNGnSpMLvxIULFwAAjRs3Niu3dB3ec889AIBff/0VYWFhKC0tRf/+/fHvv/+aLrPx66+/IiYmBh4eHrfdhpu5ubkBkD6byly8eBF6vR6BgYFV1rHk9+Tt7Y2ysjJ89NFH+OijjyqcV00vkVOT7cDNbq3j7Oxs9pmfP3/e6tgrWh+2VNX8q2qPpW25ePEiDAZDhevPknVqaTxGbm5uSExMxPvvv493330XpaWl+PbbbzF9+nTTd7U6y5YtQ9u2bXHp0iWsXLkSS5YswciRI/G///3PrJ6Xlxc6depk0TwrOp8uODjYtF257777AAAzZszAmDFj0LRpU4vmW5UmTZogOzsbcXFxZuX33nsvpk6dir1795q2HTebNWsW3njjDbz55puYNGlSpfO3tB4A7N+/H3v27MGUKVOq/Byqq2dNmyyta+122RLWxPnSSy+hqKgImZmZ8PT0BAD06dMHvr6+GDduHEaPHo2+ffuazcea705163TcuHEoKCjAG2+8gUWLFgEAoqOj8dxzz+Gdd95BixYtrNp2nTx5EmFhYWavpaeno1+/fjVqa2VqnGzefNJto0aN4OTkZHZiqtHZs2cBSCfEWlu3Mr6+vpg/fz7mz5+P06dPY+3atXjppZeQn5+PjRs3VvgeWyy3qnhKSkpw5coV0wdilJmZicGDByMmJgZbt27FZ599hqeffrrSeTVv3hxPPPFEjeK4HRcuXICbm5tZktSsWbMKL0+RlJRU4bXK8vLyzJ5XtV6A2r9uoqKisGLFCpSVlZntfP7++28AQPv27c3qV7QOKxIYGIjWrVvj119/RWhoKLp27YqGDRtiwIABeOqpp7Bz507s2LEDs2bNsn2jLNC4cWOo1WpotdpK61j6e2rUqBHUajXi4+Mr/Wxv3dBZqibbgZvl5eWhRYsWpudlZWU4f/68KUGvSezWDMxzd3c3G2xlVFXyXdX8q2qPpW1xd3eHSqUq91s2zt8a1a1foyeffBJvv/02PvvsM1y/fh1lZWWYOHGixctp27ataVDQ3XffDb1ej08//RSrV6/GI488Yqr3xx9/4O6777ZonidOnKhw8NbNunfvjsWLF+P48eM2STY7dOhQ4TUqjdvgii4dN2vWLNP2+P/+7/8qnbel9YxSU1MBoNrtbXX1rGmTpXWt3S5bwpo4MzMz0a5du3L7NOPlif75559qE7CqvjuWrPsXX3wRU6dORXZ2Nry9vRESEoLExER4enqiS5cuEEJYvO0KCAgoNxCvTZs2NmuriVX9oKLyy1pER0eLZs2amR320+v1Iioqqtw5m5bW/fDDDwUAcfDgwWrjGjp0qGjatGmVdSxdrrWH0ZctW1bhIa5Dhw4JPz8/ce+994qSkhIxZMgQ4evrKwoLCy2ary1Yehh94MCBonPnzjZddmXrRYi6sW6MhxtuHXAyaNCgcpfYEMK6dfjUU08JX19f0blzZ7NLWwQHB4vY2FgBQOzatcvsPbceRq/q91HZ7/TWeVSmf//+olGjRlVevsbS39M999wjOnbsWOGhyZtZexi9IpZsB6o7p3D58uWmMktjr+pyP5V9TsnJycLJycnslIbi4mIRHh5e6WH0iuZvaXssbYvc52zevH6NRo0aJVq1aiWCgoLE0KFDq12GEJUPELpw4YJo1KiRaNu2rdl5bbd7GP1W8fHxwsnJqcrzmm9V1Tbn559/FgDEm2++aVY+d+5cAUBs3rzZrHz27NkCqP6yRJbWM7p+/bpo3Lix6N69+23Xs6ZNlta1drtsZKt1f/fdd4umTZuanasuhBApKSkCgGngXlUq++5Yuu5vderUKaHRaMzOYbf0914VW7TVyGbJpnFkao8ePcSqVavEjz/+KOLi4qocjV5dXeNOJjExUWzbtk3s3r1bFBYWis6dO4t3331XrFu3Tvz+++/i3XffFe7u7mLUqFFVxm7tci1NNk+fPi0A81FwJ06cEIGBgaJ3796mnXFWVpZQq9VmI4zlsmHDBrFq1SrTOZGPPvqoWLVqlVi1alW5AT96vV5oNBoxffp0m8ZQ0XoRom6tm4EDB4pGjRqJlJQUsWnTJjF+/HgBmA9yEML6dbhmzRrTOWZ//PGHqXzs2LECgGjUqFG5a5PemihW9PswDtC63WTTOBq9ZcuWpravWLFCjBw5stxo9Op+TwcOHBCNGjUS3bt3F0uXLhXp6eli7dq1Yu7cueLuu+821bMm2byd7cCto6V/+eUXMW/ePOHl5VVu42xp7FUlg5V9TsePHxcuLi6iX79+4qeffhJr1qwRffv2FWFhYTVKNqtrj6Vt+eWXX4STk5O46667xPfffy9Wr14tunXrJoKCgqxKNi1Zv0Y7d+40/R5+/fXXapchROXJphBCzJkzp9LE1lrjx48Xzz77rFi5cqX4/fffxerVq8Xw4cMFAPH888+b6v3+++9CrVaLWbNmlZuHpducBx54QLi5uYnXX39dpKWlieTkZOHu7i4GDx5sNr/33ntPABCDBg0yXeHg5snaejf75ptvBACRkpJS5XqxtJ6lbbKmrqXbZSFsv+5//PFHoVKpRM+ePcXKlSvFb7/9Jt58803h5eUl2rVrZ/b9tvS7Y806/fvvv0VSUpJYv369SEtLE++9957w9fUVXbt2NUsKLf29V8WatlbHZsmmEEJs3rxZ9O/fX3h6egoPDw/Rs2dPsW7dugrnY2ndGTNmiICAAOHk5CQAiI0bN4qJEyeKDh06CB8fH+Hh4SHatGkjZs6cadEFtS1ZrrXJphBC9O7dW9x3331CCOlE5VatWok777yz3Eiw8ePHCzc3N9kvVB8SElLhyfMVJRq//fabACAyMjJsHsfN60WIurduLl26JCZPniyaNWsmXF1dRYcOHSocIWjtOrx48aJwcnISnp6eZgNbjL0/FV1CqaJE8dbfR3p6uhDi9pNNIYQ4ePCgePTRR0WTJk2Eq6urCA4OFo8//rjZSeuW/o5PnDghxo0bJ1q0aCFcXFxE06ZNRa9evcQbb7xhqmNNsnn9+vUabweM6yYjI0M88MADwsvLS3h7e4uRI0dWeBFsS2KvarsoROWf04YNG0SnTp2Eh4eHaNmypViwYEGVA4SqSjYtaY8lbRFCiLVr14oOHTqYPve33367wrhssX6NQkNDRdu2baudv1FVyea1a9dEcHCwiIiIqHLQoSU+++wz0bt3b+Hr6yucnZ1Fw4YNRd++fcslssbvaUU9Z5Zuc65evSpefPFFERQUJJydnUVwcLCYMWNGuYEiffv2rXR+N39Glta72cCBA4Wnp6fZlUVup56lbbKmrqXbZSFsv+6FEGLTpk0iNjZWNGvWTHh4eIjWrVuLZ599Vpw7d86snqXfHWvW6eHDh0WfPn1E48aNhaurqwgPDxevvPKKuHz5crm6lv7eq2JpW6ujEqKCk/LIamvWrMHw4cNx6tQps/OU6oL4+HgcP35clnur1uX1Yg051yHZVlJSEmbNmoWCgoIan6dNtrV//3507NgRH3/8MZ566il7h0NENmb/m1U7iIcffhjdunVDcnKyvUOxyrFjx7By5Uq88847ssy/rq4Xa8i9Dokc1bFjx7Bp0yZMmDABzZs3x+OPP27vkIhIBkw2bUSlUuGTTz5BQEAADAaDvcOx2OnTp7FgwQLTLQFtra6uF2vIvQ6JHNXrr7+OgQMH4vLly1i1apXZLfiIyHHwMDoRERERyYY9m0REREQkGyabRERERCQbJptEREREJJsa366SKmcwGHD27Fl4e3tbdfs6IiIish8hBC5duoSAgIAKbxFKNcNkUwZnz55FUFCQvcMgIiKiGsjJyUFgYKC9w3AYTDZl4O3tDUD6svr4+Ng5GiIiIrJEUVERgoKCTPtxsg0mmzIwHjr38fFhsklERFTH8BQ42+IJCUREREQkGyabRERERCQbJptEREREJBsmm0REREQkGyabRERERCQbJptEREREJBsmm0REREQkGyabRERERCQbJptEREREJBsmm0REREQkGyabRERERCQbJptERFQnabVAerr0SES1F5NNIiKqc1JTgZAQoH9/6TE11d4REVFl6kWyuXDhQoSFhcHd3R1dunTB5s2bLXrf1q1b4ezsjE6dOskbIBERWUyrBSZMAAwG6bnBACQmsoeTqLZy+GRz5cqVmDp1Kl5++WXs27cPvXv3xr333ovTp09X+T6dTofRo0djwIABCkVKRESWyM6+kWga6fXA0aP2iYeIqubwyebcuXORkJCAJ554Am3btsX8+fMRFBSERYsWVfm+xMREjBo1CtHR0QpFSkREloiIAJxu2Xup1UB4uH3iIaKqOXSyWVJSgoyMDMTGxpqVx8bGYtu2bZW+b+nSpTh27Bhmzpwpd4hERGSlwEAgJUVKMAHpcckSqZyIah9newcgp3PnzkGv18Pf39+s3N/fH3l5eRW+Jzs7Gy+99BI2b94MZ2fLVk9xcTGKi4tNz4uKimoeNBERVSshAYiLkw6dh4cz0SSqzRy6Z9NIpVKZPRdClCsDAL1ej1GjRmHWrFlo3bq1xfNPTk6GRqMxTUFBQbcdMxERVS0wEOjXj4kmUW3n0Mmmr68v1Gp1uV7M/Pz8cr2dAHDp0iXs2bMHkyZNgrOzM5ydnTF79mz89ddfcHZ2xqZNmypczowZM6DT6UxTTk6OLO0hIiIiqmsc+jC6q6srunTpgrS0NDz00EOm8rS0NAwZMqRcfR8fH/z9999mZQsXLsSmTZuwevVqhIWFVbgcNzc3uLm52TZ4IiKqlFYrjUqPiGDPJlFt59DJJgBMnz4d8fHx6Nq1K6Kjo5GSkoLTp09j4sSJAKReyTNnzmDZsmVwcnJC+/btzd7v5+cHd3f3cuVERGQfqak3rrPp5CQNFkpIsHdURFQZh082hw8fjvPnz2P27NnIzc1F+/btsWHDBoSEhAAAcnNzq73mJhER1Q6VXdA9Lo49nES1lUoIIewdhKMpKiqCRqOBTqeDj4+PvcMhInIY6enSLSorKu/XT/FwyMFw/y0Phx4gREREjoUXdCeqe5hsEhFRncELuhPVPQ5/ziYRETkWXtCdqG5hsklERHVOYCCTTKK6gofRiYiIiEg2TDaJiIiISDZMNomIiIhINkw2iYiIiEg2TDaJiIiISDZMNomIiIhINkw2iYiIiEg2TDaJiIiISDZMNomIiIhINkw2iYiIiEg2TDaJiIiISDZMNomIHJhWC6SnS49ERPbAZJOIyEGlpgIhIUD//tJjaqq9IyKi+ojJJhGRA9JqgQkTAINBem4wAImJ7OEkIuUx2SQickDZ2TcSTSO9Hjh61D7xEFH9xWSTiMgBRUQATrds4dVqIDzcPvEQUf3FZJOIyAEFBgIpKVKCCUiPS5ZI5URESnK2dwBERCSPhAQgLk46dB4ezkSTiOyDySYRkQMLDGSSSUT2xcPoRERERCQbJptEREREJBsmm0REREQkGyabRERERCQbJptEREREJBsmm0REREQkGyabRERERCSbepFsLly4EGFhYXB3d0eXLl2wefPmSutu2bIFMTExaNKkCTw8PBAZGYl58+YpGC0RERGR43D4i7qvXLkSU6dOxcKFCxETE4MlS5bg3nvvxcGDBxEcHFyuvqenJyZNmoQOHTrA09MTW7ZsQWJiIjw9PTFhwgQ7tICIiIio7lIJIYS9g5BTjx49cOedd2LRokWmsrZt22Lo0KFITk62aB4PP/wwPD09sXz5covqFxUVQaPRQKfTwcfHp0ZxExHZilYLZGcDERG8mxBRVbj/lodDH0YvKSlBRkYGYmNjzcpjY2Oxbds2i+axb98+bNu2DX379pUjRCIiWaWmAiEhQP/+0mNqqr0jsg2tFkhPlx6JqHZz6GTz3Llz0Ov18Pf3Nyv39/dHXl5ele8NDAyEm5sbunbtiqeffhpPPPFEpXWLi4tRVFRkNhER2ZtWC0yYABgM0nODAUhMrPsJmqMm0ACTaHJMDp1sGqlUKrPnQohyZbfavHkz9uzZg8WLF2P+/PlYsWJFpXWTk5Oh0WhMU1BQkE3iJiK6HdnZNxJNI70eOHrUPvHYgqMm0IBjJ9FUvzl0sunr6wu1Wl2uFzM/P79cb+etwsLCEBUVhfHjx2PatGlISkqqtO6MGTOg0+lMU05Oji3CJyK6LRERgNMtW3m1GggPt088tuCICTTg2Ek0kUMnm66urujSpQvS0tLMytPS0tCrVy+L5yOEQHFxcaWvu7m5wcfHx2wiIrK3wEAgJUVKMAHpccmSuj1IyBETaMBxk2gioB5c+mj69OmIj49H165dER0djZSUFJw+fRoTJ04EIPVKnjlzBsuWLQMAfPzxxwgODkZkZCQA6bqb7733Hp555hm7tYGIqKYSEoC4OClpCQ+v24kmcCOBTkyUkjFHSKCBG0n0zQmnIyTRREA9SDaHDx+O8+fPY/bs2cjNzUX79u2xYcMGhISEAAByc3Nx+vRpU32DwYAZM2bgxIkTcHZ2RqtWrfD2228jMTHRXk0gIrotgYF1Pxm7maMl0IDjJtFEQD24zqY98DpdRERUE1qtYyXRdQ333/Jw+J5NIiKiusLReqGJAAcfIERERERE9sVkk4iIiIhkw2STiIiIiGTDZJOIiIiIZMNkk4iIiIhkw2STiIiIiGTDZJOIiIiIZMNkk4iIiIhkw2STiIiIiGTDZJOIiIiIZMNkk4iIiIhkw2STiIiIiGTDZJOIiKgW0GqB9HTpkciRMNkkIiKys9RUICQE6N9fekxNtXdERLbDZJOIiMiOtFpgwgTAYJCeGwxAYiJ7OMlxMNkkIiKyo+zsG4mmkV4PHD1qn3iIbI3JJhERkR1FRABOt+yN1WogPNw+8RDZGpNNIiIiOwoMBFJSpAQTkB6XLJHKiRyBs70DICIiqu8SEoC4OOnQeXg4E01yLEw2iYiIaoHAQCaZ5Jh4GJ2IiIiIZMNkk4iIiIhkw2STiMiB8a40RGRvTDaJiBwU70pDRLUBk00iIgfEu9IQUW3BZJOIyAHxrjREVFsw2SQickC8Kw0R1RZMNomIHBDvSkNEtQUv6k5E5KB4Vxoiqg3qRc/mwoULERYWBnd3d3Tp0gWbN2+utO53332HgQMHomnTpvDx8UF0dDR+/vlnBaMlIrKdwECgXz8mmkRkPw6fbK5cuRJTp07Fyy+/jH379qF379649957cfr06Qrr//nnnxg4cCA2bNiAjIwM3H333XjggQewb98+hSMnIiIiqvtUQghh7yDk1KNHD9x5551YtGiRqaxt27YYOnQokpOTLZrHHXfcgeHDh+O1116zqH5RURE0Gg10Oh18fHxqFDcREREpi/tveTh0z2ZJSQkyMjIQGxtrVh4bG4tt27ZZNA+DwYBLly6hcePGcoRIRERE5NAceoDQuXPnoNfr4e/vb1bu7++PvLw8i+bx/vvv48qVKxg2bFildYqLi1FcXGx6XlRUVLOAiYiIiByMQ/dsGqlUKrPnQohyZRVZsWIFkpKSsHLlSvj5+VVaLzk5GRqNxjQFBQXddsxEREREjsChk01fX1+o1epyvZj5+fnlejtvtXLlSiQkJODbb7/FPffcU2XdGTNmQKfTmaacnJzbjp2IiIjIETh0sunq6oouXbogLS3NrDwtLQ29evWq9H0rVqzA448/jq+//hr3339/tctxc3ODj4+P2URERERECiWbX3zxBX766SfT8xdeeAENGzZEr169cOrUKVmXPX36dHz66af47LPPkJWVhWnTpuH06dOYOHEiAKlXcvTo0ab6K1aswOjRo/H++++jZ8+eyMvLQ15eHnQ6naxxEhGRdbRaID1denQUjtgmIkWSzbfeegseHh4AgO3bt2PBggWYM2cOfH19MW3aNFmXPXz4cMyfPx+zZ89Gp06d8Oeff2LDhg0ICQkBAOTm5ppdc3PJkiUoKyvD008/jebNm5umKVOmyBonERFZLjUVCAkB+veXHlNT7R3R7XPENhEBCl1ns0GDBjh06BCCg4Px4osvIjc3F8uWLcOBAwfQr18/FBQUyB2ConidLiIi+Wi1UjJmMNwoU6uBkyfr7p2SHLFNdRH33/JQpGfTy8sL58+fBwD88ssvpgE37u7uuHbtmhIhEBGRg8jONk/KAECvl+4BX1c5YpuIjBS5zubAgQPxxBNPoHPnzjhy5Ihp0M2BAwcQGhqqRAhEROQgIiIAJ6fyvYDh4faL6XY5YpuIjBTp2fz4448RHR2NgoICrFmzBk2aNAEAZGRkYOTIkUqEQEREDiIwEEhJkZIxQHpcsqRuH252xDYRGSlyzubp06cRGBgIJyfz3FYIgZycHAQHB8sdgqJ4zgcRkfy0Wukwc3i44yRljtimuoT7b3kochg9LCwMubm55e7Cc+HCBYSFhUGv1ysRBhFRvaTVSucERkQ4VgITGOhY7QEcs01EihxGr6zz9PLly3B3d1ciBCKieomX0yEie5O1Z3P69OkApHuTv/baa2jQoIHpNb1ej507d6JTp05yhkBEVG9ptcCECTcGnRgMQGIiEBfH3jMiUo6syea+ffsASD2bf//9N1xdXU2vubq6omPHjnjuuefkDIGIqN6q6nI6TDaJSCmyJpvp6ekAgLFjx+KDDz7gybZERAri5XSIqDZQ5JzNpUuXmhJNrVaLM2fOKLFYIqJ6jZfTIaLaQJFk02AwYPbs2dBoNAgJCUFwcDAaNmyI119/HYZbj/EQEZHNJCRItzxMT5ceExLsHRER1TeKXPro5ZdfRmpqKt5++23ExMRACIGtW7ciKSkJ169fx5tvvqlEGERE9RIvp0NE9qTIRd0DAgKwePFiPPjgg2blP/74I5566imHO6zOi8ISERHVPdx/y0ORw+gXLlxAZGRkufLIyEhcuHBBiRCIiIiIyA4USTY7duyIBQsWlCtfsGABOnbsqEQIRERERGQHipyzOWfOHNx///349ddfER0dDZVKhW3btiEnJwcbNmxQIgQiIiIisgNFejb79u2LI0eO4KGHHkJhYSEuXLiAhx9+GIcPH0bv3r2VCIGIiIiI7ECRAUL1DU8wJiIiqnu4/5aHIofRAaCwsBCpqanIysqCSqVCu3btMG7cOGg0GqVCICIiIiKFKXIYfc+ePWjVqhXmzZuHCxcu4Ny5c5g7dy5atWqFvXv3KhECEREREdmBIofRe/fujfDwcHzyySdwdpY6U8vKyvDEE0/g+PHj+PPPP+UOQVHshiciIqp7uP+WhyLJpoeHB/bt21fuWpsHDx5E165dcfXqVblDUBS/rERU22i1QHY2EBHBuwkRVYb7b3kochjdx8cHp0+fLleek5MDb29vJUIgIqq3UlOBkBCgf3/pMTXV3hERUX2iSLI5fPhwJCQkYOXKlcjJyYFWq8U333yDJ554AiNHjlQiBCKiekmrBSZMAAwG6bnBACQmSuVEREpQZDT6e++9B5VKhdGjR6OsrAwA4OLigieffBJvv/22EiEQEdVL2dk3Ek0jvR44epSH04lIGbKfs6nX67FlyxZERUXB3d0dx44dgxAC4eHhaNCggZyLthue80FEtYVWKx06vznhVKuBkyfrdrLJc1BJDtx/y0P2w+hqtRpxcXHQ6XRo0KABoqKi0KFDB4dNNImIapPAQCAlRUowAelxyZK6naDxHFSiukWRczajoqJw/PhxJRZFRES3SEiQejLT06XHhAR7R1RzPAeVqO5RJNl888038dxzz2H9+vXIzc1FUVGR2URERPIKDAT69avbPZpA1eegElHtpMh1Np2cbuS0KpXK9LcQAiqVCnq9Xu4QFMVzPoiI5OGo56BS7cD9tzwUGY2enp6uxGKIiMjBGc9BTUyUejQd4RxUIkenSM+mvS1cuBDvvvsucnNzcccdd2D+/Pno3bt3hXVzc3Px7LPPIiMjA9nZ2Zg8eTLmz59v1fL4nxERkby0WunQeXg4E02yHe6/5aHIOZv2tHLlSkydOhUvv/wy9u3bh969e+Pee++t8I5GAFBcXIymTZvi5ZdfRseOHRWOloiILOEo56AS1QcO37PZo0cP3HnnnVi0aJGprG3bthg6dCiSk5OrfG+/fv3QqVMn9mwSERHVA9x/y8OhezZLSkqQkZGB2NhYs/LY2Fhs27bNZsspLi7mCHsiIiKiCsiWbK5duxalpaVyzd4i586dg16vh7+/v1m5v78/8vLybLac5ORkaDQa0xQUFGSzeRMRERHVZbIlmw899BAKCwsBSHcRys/Pl2tR1br5ckvAjUsu2cqMGTOg0+lMU05Ojs3mTURERFSXyZZsNm3aFDt27ABg++TOUr6+vlCr1eV6MfPz88v1dt4ONzc3+Pj4mE1EREREJGOyOXHiRAwZMgRqtRoqlQrNmjWDWq2ucJKLq6srunTpgrS0NLPytLQ09OrVS7blEhEREZFEtou6JyUlYcSIETh69CgefPBBLF26FA0bNpRrcZWaPn064uPj0bVrV0RHRyMlJQWnT5/GxIkTAUiHwM+cOYNly5aZ3pOZmQkAuHz5MgoKCpCZmQlXV1e0a9dO8fiJiIiI6jJZ7yAUGRmJyMhIzJw5E48++igaNGgg5+IqNHz4cJw/fx6zZ89Gbm4u2rdvjw0bNiAkJASAdBH3W6+52blzZ9PfGRkZ+PrrrxESEoKTJ08qGToRERFRnafodTYLCgpw+PBhqFQqtG7dGk2bNlVq0YridbqIiIjqHu6/5aHIdTavXr2KcePGISAgAH369EHv3r0REBCAhIQEXL16VYkQiIiIiMgOFEk2p02bhj/++ANr165FYWEhCgsL8eOPP+KPP/7As88+q0QIRERERGQHihxG9/X1xerVq9GvXz+z8vT0dAwbNgwFBQVyh6AodsMTERHVPdx/y0Oxw+gVXdfSz8+Ph9GJiIiIHJgiyWZ0dDRmzpyJ69evm8quXbuGWbNmITo6WokQiIiIiMgOZL30kdEHH3yAQYMGITAwEB07doRKpUJmZibc3d3x888/KxECEREREdmBYpc+unbtGr788kscOnQIQgi0a9cOjz32GDw8PJRYvKJ4zgcREVHdw/23PBTp2QQADw8PjB8/XqnFEREREVEtoMg5m0RERERUPzHZJCIiIiLZMNkkIiIiItkw2SQiIiIi2SiSbLZs2RLnz58vV15YWIiWLVsqEQIRERER2YEiyebJkyeh1+vLlRcXF+PMmTNKhEBEREREdiDrpY/Wrl1r+vvnn3+GRqMxPdfr9fjtt98QGhoqZwhEREREZEeyJptDhw41/T1mzBiz11xcXBAaGor3339fzhCIiIiIyI5kTTYNBgMAICwsDHv27EGTJk3kXBwRERER1TKyn7NZWlqK0NDQCgcIEREREZFjkz3ZdHFxwT///AOVSiX3ooiIiIiollFkNPro0aORmpqqxKKIiIiIqBaR9ZxNo5KSEnz66adIS0tD165d4enpafb63LlzlQiDiIiIiBSmSLL5zz//4M477wQAHDlyxOw1Hl4nIiIiclyKJJvp6elKLIaIiIiIahneG52IqB7QaoH0dOmRiEhJivRsAsDu3buxatUqnD59GiUlJWavfffdd0qFQURU76SmAhMmAAYD4OQEpKQACQn2joqI6gtFeja/+eYbxMTE4ODBg/j+++9RWlqKgwcPYtOmTWa3sCQiItvSam8kmoD0mJhY93s42VNLVHcokmy+9dZbmDdvHtavXw9XV1d88MEHyMrKwrBhwxAcHKxECERE9VJ29o1E00ivB44etU88tpCaCoSEAP37S4+8sh5R7aZIsnns2DHcf//9AAA3NzdcuXIFKpUK06ZNQ0pKihIhEBHVSxER0qHzm6nVQHi4feK5XY7aU0vkyBRJNhs3boxLly4BAFq0aIF//vkHAFBYWIirV68qEQIRUb0UGCido6lWS8/VamDJEqm8LnLEnloiR6fIAKHevXsjLS0NUVFRGDZsGKZMmYJNmzYhLS0NAwYMUCIEIqJ6KyEBiIuTErLw8LqbaAI3empvTjjrck8tUX2gSM/mggULMGLECADAjBkz8Nxzz+Hff//Fww8/rMhtLBcuXIiwsDC4u7ujS5cu2Lx5c5X1//jjD3Tp0gXu7u5o2bIlFi9eLHuMFtmzRzpJac8ee0dye9iO2sUR2uEIbQBkbUdgINCvn0KJpsztUKyn1hG+V47QBsBx2lFPqYQQwt5ByGnlypWIj4/HwoULERMTgyVLluDTTz/FwYMHKxycdOLECbRv3x7jx49HYmIitm7diqeeegorVqzAf/7zH4uWWVRUBI1GA51OBx8fH5u1RaW6BsAVQAmE8LDZfJXGdtQOu3cD3bsDgP7/lxjw6qsumD3bjkFVQ6sFtm0DMjKA1auB48eNr+hvqqWGSgV06gQMHiy10Xi2TlgYcPmy1Dtmy+REq5UO79483927gc2bgd69gebNpbjPnwf+/hvYvh24dAm4cAEoKwM8PQEhgAv5xdALA5wB+Ad5oKgIKC4GfH2lNly/DgQFAUOGAF26SO3Zswc4fBho00Z67cgRaZndulke+7Zt0t9XrwK7dknrLCQEuHJFml/r1tJr69dLI8DLygAvL6CwUOpl9PGR2lhWJsV7+fgZFBUKqDw8oG7SBHo94OoK9OkjfSbGuDduBE6dAvz8gHbtpM/s+HFpHsXFUpseeKDiz0qrrbyn1vh5XLkitcfdXSo/dkwqO38eKCqS1mFUFHDxovS5lJQApaXSZ+fsDBguXECrq5lQN2+Ov663hRDSvFxdpbY6OwPXrgENGgCjRwPt20vzbtJEauOJE9I6271b+m68+qq0nm79rljzPVu2TPruFxUBsbHAffdJbSwuBvbuBQ4elGK6ckVqD1AKJxjg7VKMUhcflJYCLi7SqQe+vtJ69/YGxo4F/P2BdeukGCtb70pavx74+GPgt9+A0lLz33jDhsDy5dL3yZbk2n/Xe0IhZWVlYtWqVWL27Nni9ddfF6tXrxalpaWyL7d79+5i4sSJZmWRkZHipZdeqrD+Cy+8ICIjI83KEhMTRc+ePS1epk6nEwCETqezPuBbnTwpxJ49AtALwCCkXZJBAHoh9uyRXq8L2I5aZcx/Lt0U/82TQXh5lNbKdnz6qRAq1a3x1mxycpLmZ6u4nJzM5ztmjG3ivJ1pzBhl16mckzWf1c2fR82min4Xtp+s/Q5++qmy61ylst1vpCZ69bLkszCIXr1su1yb7r/JBEos5O+//xYtW7YUDRo0EJ07dxadO3cWnp6eIjQ0VOzfv1+25RYXFwu1Wi2+++47s/LJkyeLPn36VPie3r17i8mTJ5uVfffdd8LZ2VmUlJRU+J7r168LnU5nmnJycmz3ZQUEcLWCH51BAFelJ3UB21Fr7NpV3UbcIF7Fq/YO00xOju2TIrVamu/txnVrYlObkrddu6yLvbZOKpVln1VdapM138GcHPvE5+R0+7+Rmli3zro4162z3bKZbMpDkXM2n3jiCdxxxx3QarXYu3cv9u7di5ycHHTo0AETJkyQbbnnzp2DXq+Hv7+/Wbm/vz/y8vIqfE9eXl6F9cvKynDu3LkK35OcnAyNRmOagoKCbNMAAPjyS0iHalW3vKCSyr/80nbLkhPbUWtIpyzfGv/NVPi+xVRlgrFQdra0W7ElW4xgrmhktK3jvB1bt1b+WkWx11ZCWPZZ1aU2AZZ/B7Oz5Y+lIgaDfUb5b9hgXf2NG+WJg2xHkWTzr7/+QnJyMho1amQqa9SoEd58801kZmbKvnyVynzHKoQoV1Zd/YrKjWbMmAGdTmeacnJybjPimzz2GIASALfuwYRU/thjtluWnNiOWqN37+pqCDw0rrESoVgsIgKo4idbI7YYwVzRNSxtHeftiImp/LWKYq+tVCrLPqu61CbA8u9gRIT8sVTEyck+o/zvu8+6+oMGyRMH2Y4iP8s2bdrg33//LVeen5+PcBm/yb6+vlCr1eV6MfPz88v1Xho1a9aswvrOzs5o0qRJhe9xc3ODj4+P2WRLIiMLUjJjTHCkv6XyuoPtqB26dQPGjAHKJ8xSmVcDfa0bJBQYCHzyie0SOVuNYK5oZPQnnxjXr32NGVP1ICFj7HUhOfvkE8s+q1s/j9rI+B225jsYGAh8+qm8cd1KpZLWpT0GCQ0eDPTqZVndXr1sP0iIbE+R0egbNmzACy+8gKSkJPTs2RMAsGPHDsyePRtvv/027rrrLlNdWydqPXr0QJcuXbBw4UJTWbt27TBkyBAkJyeXq//iiy9i3bp1OHjwoKnsySefRGZmJrZv327RMm0+mk2rBbp1gyrvOEyjn5u1lIY42nu4oDXYjlpl9/p/0f2BhrhxuV09Xm3wIWYfHlFr26HVSiO5jaPRjx3TV1hPBaBTZzUefBDo2lUanQsAoaHSKF1bX2uyopHRu3dLh7FjYqTRvdu3SyOV9+8vPxrdq0ExDP+ewwU0hgHOUKMU/ihAkU9zFJe4omlTaTT4tWvSiPOhQ6WR1KGh0rowjhgPDJTiiImxbjS6cdN25Yo0SrxrV2nely/faNe1a9JI5YpGo2s0QLNmgP7aNZTszcIlZ2/o3JtBdeUy1Ppi6P0D4Oruij59pFHOxriNo9GbNpVGcnfoAJw8KY26LymR2jR4cOWj0Ssb1W38PC5fltrj5iaVHz9+YzS6Tgfceae0TONo9NJSaVT3np2lUOefgcHZHa1Cy6DOzcFfV1oDGi+4ebjBze3GaPSrV6WrCcTHSyPbjaPRQ0OltqxbJ8XQujXw8svSd6Gm1zvVaqUR2GvWSOveOBp9zx5pne3bBxw4IMV09XIZikvLAKjhBMAbl1EKFUqdveHiqjYbja7RSP+c+PsDP/0kfZaVrXclrV8PLJp7FWnpAqVwN3utccMSfLHcg6PR6whFkk2nm/51Nh6KvvXQtPHQtl5f8c6jpoyXPlq8eDGio6ORkpKCTz75BAcOHEBISAhmzJiBM2fOYNmyZQBuXPooMTER48ePx/bt2zFx4kT7X/qouFi63oZKJZ3AVFJyYwtal7AdtYsjtMMR2gCwHVZITb1xy0onJ6kHLiHBpotwjM/DEdoAKNoOJpvyUOQOQunp6UospkLDhw/H+fPnMXv2bOTm5qJ9+/bYsGEDQkJCAAC5ubk4ffq0qX5YWBg2bNiAadOm4eOPP0ZAQAA+/PBDixNN2dz8w1Kp6uYGA2A7ahtHaIcjtAGQvR1V9QTalALtqOje6HFxNm6XI3yvHKENgOO0ox5z+Iu62wP/MyKi2kSRnkCFpKdLN5KpqLxfP8XDIQfD/bc86sCp4UREVFOV9QRqtfaNq6YqGnHOe6MT1W5MNomIHFhF1560xTVG7UXRe6MTkU0ocs4mERHZh7En8OaEs673BCYkSOdo1nRUNxEpiz2bREQOzFF7AgMDpXM063o7iOoDRZLNpKQknDp1SolFERHRLRISpGs+pqdLj3V1cBAR1U2KJJvr1q1Dq1atMGDAAHz99de4fv26EoslIqL/jz2BRGQviiSbGRkZ2Lt3Lzp06IBp06ahefPmePLJJ7F7924lFk9EREREdqLYOZsdOnTAvHnzcObMGXz22Wc4c+YMYmJiEBUVhQ8++AA6nU6pUIiIiIhIIYoPEDIYDCgpKUFxcTGEEGjcuDEWLVqEoKAgrFy5UulwiIiIiEhGiiWbGRkZmDRpEpo3b45p06ahc+fOyMrKwh9//IFDhw5h5syZmDx5slLhEBEREZECFLldZYcOHZCVlYXY2FiMHz8eDzzwANTG63D8fwUFBfD394fh1qsP10G83RUREVHdw/23PBS5qPujjz6KcePGoUWLFpXWadq0qUMkmkRERER0g+yH0UtLS7F06VIOACIiIiKqh2RPNl1cXFBcXAyVSiX3ooiIiIiollFkgNAzzzyDd955B2VlZUosjoiIiIhqCUXO2dy5cyd+++03/PLLL4iKioKnp6fZ6999950SYRARERGRwhRJNhs2bIj//Oc/SiyKiIiIiGoRRZLNpUuXKrEYIiIiIqplFL+DEBERERHVH4r0bALA6tWr8e233+L06dMoKSkxe23v3r1KhUFEREREClKkZ/PDDz/E2LFj4efnh3379qF79+5o0qQJjh8/jnvvvVeJEIiIiIjIDhRJNhcuXIiUlBQsWLAArq6ueOGFF5CWlobJkyfzYu9EREREDkyRZPP06dPo1asXAMDDwwOXLl0CAMTHx2PFihVKhEBEREREdqBIstmsWTOcP38eABASEoIdO3YAAE6cOAEhhBIhEBEREZEdKJJs9u/fH+vWrQMAJCQkYNq0aRg4cCCGDx+Ohx56SIkQiIiIiMgOVEKBrkWDwQCDwQBnZ2nw+7fffostW7YgPDwcEydOhKurq9whKKqoqAgajQY6nQ4+Pj72DoeIiIgswP23PBRJNusbflmJiIjqHu6/5aHYdTYLCwuxa9cu5Ofnw2AwmL02evRopcIgIiIiIgUpkmyuW7cOjz32GK5cuQJvb2+oVCrTayqViskmERERkYNSZIDQs88+i3HjxuHSpUsoLCzExYsXTdOFCxeUCIGIiIiI7ECRZPPMmTOYPHkyGjRooMTiTC5evIj4+HhoNBpoNBrEx8ejsLCwyvd89913iIuLg6+vL1QqFTIzMxWJlYiIiMgRKZJsxsXFYc+ePUosysyoUaOQmZmJjRs3YuPGjcjMzER8fHyV77ly5QpiYmLw9ttvKxQlERERkeNS5JzN+++/H88//zwOHjyIqKgouLi4mL3+4IMP2nyZWVlZ2LhxI3bs2IEePXoAAD755BNER0fj8OHDaNOmTYXvMyajJ0+etHlMRERERPWNIsnm+PHjAQCzZ88u95pKpYJer7f5Mrdv3w6NRmNKNAGgZ8+e0Gg02LZtW6XJZk0UFxejuLjY9LyoqMhm8yYiIiKqyxQ5jG68qHtFkxyJJgDk5eXBz8+vXLmfnx/y8vJsuqzk5GTTeaEajQZBQUE2nT8RERFRXaVIsmlLSUlJUKlUVU7G80NvvsSSkRCiwvLbMWPGDOh0OtOUk5Nj0/kTERER1VWyHUb/8MMPMWHCBLi7u+PDDz+ssu7kyZMtnu+kSZMwYsSIKuuEhoZi//79+Pfff8u9VlBQAH9/f4uXZwk3Nze4ubnZdJ5EREREjkC2ZHPevHl47LHH4O7ujnnz5lVaT6VSWZVs+vr6wtfXt9p60dHR0Ol02LVrF7p37w4A2LlzJ3Q6HXr16mXx8oiIiIio5mRLNk+cOFHh30pp27YtBg0ahPHjx2PJkiUAgAkTJmDw4MFmg4MiIyORnJyMhx56CABw4cIFnD59GmfPngUAHD58GADQrFkzNGvWTOFWEBFRRbRaIDsbiIgAAgPtHQ0RVaXOnbNpja+++gpRUVGIjY1FbGwsOnTogOXLl5vVOXz4MHQ6nen52rVr0blzZ9x///0AgBEjRqBz585YvHixorETEVHFUlOBkBCgf3/pMTXV3hERUVVUQggh90KmT59e8cJVKri7uyM8PBxDhgxB48aN5Q5FEUVFRdBoNNDpdPDx8bF3OEREDkOrlRJMg+FGmVoNnDzJHk66fdx/y0OR62zu27cPe/fuhV6vR5s2bSCEQHZ2NtRqNSIjI7Fw4UI8++yz2LJlC9q1a6dESEREVAdlZ5snmgCg1wNHjzLZJKqtFDmMPmTIENxzzz04e/YsMjIysHfvXpw5cwYDBw7EyJEjcebMGfTp0wfTpk1TIhwionpHqwXS06XHuiwiAnC6Zc+lVgPh4faJh4iqp8hh9BYtWiAtLa1cr+WBAwcQGxuLM2fOYO/evYiNjcW5c+fkDkd27IYnotokNRWYMEHqEXRyAlJSgIQEe0dVc6mpQGKi1KOpVgNLltTt9lDtwf23PBTp2dTpdMjPzy9XXlBQYLq1Y8OGDVFSUqJEOERE9YZWeyPRBKTHxMS63cOZkCCdo5meLj0y0SSq3RQ5Z3PIkCEYN24c3n//fXTr1g0qlQq7du3Cc889h6FDhwIAdu3ahdatWysRDhFRveGo5zgGBtbt+InqE0WSzSVLlmDatGkYMWIEysrKpAU7O2PMmDGmC75HRkbi008/VSIcIqJ6w3iO462jt3mOIxEpRZFzNo0uX76M48ePQwiBVq1awcvLS6lFK4rnfBBRbcJzHIksw/23PBRNNusLflmJqLbRaqVD5+HhPPxMVBnuv+WhyGF0ANi9ezdWrVqF06dPlxsI9N133ykVBhFRvcRzHInIXhQZjf7NN98gJiYGBw8exPfff4/S0lIcPHgQmzZtgkajUSIEIiIiIrIDRZLNt956C/PmzcP69evh6uqKDz74AFlZWRg2bBiCg4OVCIGIiIiI7ECRZPPYsWO4//77AQBubm64cuUKVCoVpk2bhpSUFCVCICIiIiI7UCTZbNy4MS5dugRAupvQP//8AwAoLCzE1atXlQiBiIiIiOxAkQFCvXv3RlpaGqKiojBs2DBMmTIFmzZtQlpaGgYMGKBECERERERkB4okmwsWLMD169cBADNmzICLiwu2bNmChx9+GK+++qoSIRARERGRHfA6mzLgdbqIiIjqHu6/5aHYdTYBID8/H/n5+TDccqPeDh06KBkGERERESlEkWQzIyMDY8aMQVZWFm7tSFWpVNDr9UqEQURUL2m1QHa2dJ90XtidiJSmSLI5duxYtG7dGqmpqfD394dKpVJisURE9V5qKjBhAmAwAE5OQEoK74tORMpS5JxNb29v7Nu3D+Hh4XIvqlbgOR9EVBtotUBIiJRoGqnVwMmT7OEkqgj33/JQ5DqbAwYMwF9//aXEooiI6P/LzjZPNAFArweOHrVPPERUPylyGP3TTz/FmDFj8M8//6B9+/ZwcXExe/3BBx9UIgwionolIkI6dH5rz2Y9OchERLWEIsnmtm3bsGXLFvzvf/8r9xoHCBERySMwUDpHMzFR6tFUq4ElS3gInYiUpchh9MmTJyM+Ph65ubkwGAxmExNNIiL5JCRI52imp0uPHBxEREpTpGfz/PnzmDZtGvz9/ZVYHBER3SQwkL2ZRGQ/ivRsPvzww0hPT1diUUREVE9otVKPrVZr70hsxxHbRKRIz2br1q0xY8YMbNmyBVFRUeUGCE2ePFmJMIiIyEE44vVDHbFNRIBC19kMCwurPACVCsePH5c7BEXxOl1ERPJxxOuHOmKb6iLuv+WhSM/miRMnlFgMERHVA1VdP7SuJmaO2CYiI0XO2SQiIrIV4/VDb1bXrx/qiG0iMpKtZ3P69Ol4/fXX4enpienTp1dZd+7cubLEcPHiRUyePBlr164FIF08/qOPPkLDhg0rrF9aWopXXnkFGzZswPHjx6HRaHDPPffg7bffRkBAgCwxEhGRdRzx+qGO2CYiI9mSzX379qG0tNT0d2VUKpVcIWDUqFHQarXYuHEjAGDChAmIj4/HunXrKqx/9epV7N27F6+++io6duyIixcvYurUqXjwwQexZ88e2eIkIiLrJCQAcXHSYebwcMdIyhyxTUSAQgOE7CErKwvt2rXDjh070KNHDwDAjh07EB0djUOHDqFNmzYWzWf37t3o3r07Tp06heDgYIvewxOMiYiI6h7uv+XhsOdsbt++HRqNxpRoAkDPnj2h0Wiwbds2i+ej0+mgUqkqPfQOAMXFxSgqKjKbiIiIiMiBk828vDz4+fmVK/fz80NeXp5F87h+/TpeeukljBo1qsr/cJKTk6HRaExTUFBQjeMmIiIiciR1LtlMSkqCSqWqcjKeX1nR+aBCCIvOEy0tLcWIESNgMBiwcOHCKuvOmDEDOp3ONOXk5NSscUREREQORpHrbNrSpEmTMGLEiCrrhIaGYv/+/fj333/LvVZQUFDtPdpLS0sxbNgwnDhxAps2bar2vA03Nze4ublVHzwRERFRPVPnkk1fX1/4+vpWWy86Oho6nQ67du1C9+7dAQA7d+6ETqdDr169Kn2fMdHMzs5Geno6mjRpYrPYiYiIiOqbOncY3VJt27bFoEGDMH78eOzYsQM7duzA+PHjMXjwYLOR6JGRkfj+++8BAGVlZXjkkUewZ88efPXVV9Dr9cjLy0NeXh5KSkrs1RQiIiKiOsthk00A+OqrrxAVFYXY2FjExsaiQ4cOWL58uVmdw4cPQ6fTAQC0Wi3Wrl0LrVaLTp06oXnz5qbJmhHsRES1hVYLpKdLj0RE9uCw19m0J16ni4hqg9RUYMIE6Z7bTk7SHWoSEuwdFVHtxf23PBy6Z5OIqL7Sam8kmoD0mJjIHk4iUh6TTSIiB5SdfSPRNNLrpVshEhEpickmEZEDioiQDp3fTK2W7rlNRKQkJptERA4oMFA6R1Otlp6r1cCSJVI5EZGS6tx1NomIyDIJCUBcnHToPDyciSYR2QeTTSIiBxYYyCSTiOyLh9GJiIiISDZMNomIiIhINkw2iYiIiEg2TDaJiIhqAd5alBwVk00iIiI7S00FQkKA/v2lx9RUe0dEZDtMNomIiOyItxYlR8dkk4iIyI54a1FydEw2iYiI7Ii3FiVHx2STiIjIjnhrUXJ0vIMQERGRnfHWouTImGwSERHVAry1KDkqHkYnIiIiItkw2SQiIiIi2TDZJCIiIiLZMNkkIiIiItkw2SQiIiIi2TDZJCIiIiLZMNkkIiIiItkw2SQiIiIi2TDZJCIiIiLZMNkkIiIiItkw2SQiIiIi2TDZJCIiIiLZMNkkIiKqJbRaID1deiRyFA6dbF68eBHx8fHQaDTQaDSIj49HYWFhle9JSkpCZGQkPD090ahRI9xzzz3YuXOnMgETEZFFHDEpS00FQkKA/v2lx9RUe0dEZBsOnWyOGjUKmZmZ2LhxIzZu3IjMzEzEx8dX+Z7WrVtjwYIF+Pvvv7FlyxaEhoYiNjYWBQUFCkVNRGRbjpaYOWJSptUCEyYABoP03GAAEhMd5zOj+k0lhBD2DkIOWVlZaNeuHXbs2IEePXoAAHbs2IHo6GgcOnQIbdq0sWg+RUVF0Gg0+PXXXzFgwACr3qPT6eDj41PjNhAR3a7U1BtJjJMTkJICJCTYO6qa02qlBNOYlAGAWg2cPAkEBtotrNuWni4lzxWV9+uneDj1Fvff8nDYns3t27dDo9GYEk0A6NmzJzQaDbZt22bRPEpKSpCSkgKNRoOOHTtWWq+4uBhFRUVmExGRvTlib1l2tnmiCQB6PXD0qH3isZWICOmfgZup1UB4uH3iIbIlh0028/Ly4OfnV67cz88PeXl5Vb53/fr18PLygru7O+bNm4e0tDT4+vpWWj85Odl0XqhGo0FQUNBtx09EdLscMTFz1KQsMFDqdVarpedqNbBkSd3urSUyqnPJZlJSElQqVZXTnj17AAAqlarc+4UQFZbf7O6770ZmZia2bduGQYMGYdiwYcjPz6+0/owZM6DT6UxTTk7O7TWSiMgGHDExc+SkLCFBOh0gPV16rMunOxDdzNneAVhr0qRJGDFiRJV1QkNDsX//fvz777/lXisoKIC/v3+V7/f09ER4eDjCw8PRs2dPREREIDU1FTNmzKiwvpubG9zc3CxvBBGRAoyJWWKi1KPpKIlZQgIQFyf10IaH1/323Cww0LHaQwTUwWTT19e3ykPaRtHR0dDpdNi1axe6d+8OANi5cyd0Oh169epl1TKFECguLq5RvERE9uSoiRmTMqK6o84dRrdU27ZtMWjQIIwfPx47duzAjh07MH78eAwePNhsJHpkZCS+//57AMCVK1fwf//3f9ixYwdOnTqFvXv34oknnoBWq8Wjjz5qr6YQEd2WwEBpRDOTMyKyB4dNNgHgq6++QlRUFGJjYxEbG4sOHTpg+fLlZnUOHz4MnU4HAFCr1Th06BD+85//oHXr1hg8eDAKCgqwefNm3HHHHfZoAhEREVGd5rDX2bQnXqeLiIio7uH+Wx4O3bNJRERERPbFZJOIiIiIZMNkk4iIiIhkw2STiIiIiGTDZJOIiIiIZMNkk4iIiIhkw2STiIiIiGTDZJOIyIFptUB6uvRIRGQPTDaJiBxUaioQEgL07y89pqbaOyIiqo+YbBIROSCtFpgwATAYpOcGA5CYyB5OIlIek00iIgeUnX0j0TTS64GjR+0TDxHVX0w2iYgcUEQE4HTLFl6tBsLD7RMPEdVfTDaJiBxQYCCQkiIlmID0uGSJVE5EpCRnewdARETySEgA4uKkQ+fh4Uw0icg+mGwSETmwwEAmmURkXzyMTkRERESyYbJJRERERLJhsklEREREsmGySURERESyYbJJRERERLJhsklEREREsmGySURERESyYbJJRERERLJhsklEREREsmGySURERESyYbJJRER1jlYLpKdLj0RUuzHZJCKiOiU1FQgJAfr3lx5TU+0dERFVhckmERHVGVotMGECYDBIzw0GIDGRPZxEtRmTTSIiqjOys28kmkZ6PXD0qH3iIaLqMdkkIqI6IyICcLplz6VWA+Hh9omHiKrn0MnmxYsXER8fD41GA41Gg/j4eBQWFlr8/sTERKhUKsyfP1+2GImIyHKBgUBKipRgAtLjkiVSORHVTg6dbI4aNQqZmZnYuHEjNm7ciMzMTMTHx1v03h9++AE7d+5EQECAzFESEZE1EhKAkyel0egnT0rPiaj2crZ3AHLJysrCxo0bsWPHDvTo0QMA8MknnyA6OhqHDx9GmzZtKn3vmTNnMGnSJPz888+4//77lQqZiIgsFBjI3kyiusJheza3b98OjUZjSjQBoGfPntBoNNi2bVul7zMYDIiPj8fzzz+PO+64w6JlFRcXo6ioyGwiIiIiIgdONvPy8uDn51eu3M/PD3l5eZW+75133oGzszMmT55s8bKSk5NN54VqNBoEBQXVKGYiIiIiR1Pnks2kpCSoVKoqpz179gAAVCpVufcLISosB4CMjAx88MEH+PzzzyutU5EZM2ZAp9OZppycnJo1joiILMa7CBHVDXXunM1JkyZhxIgRVdYJDQ3F/v378e+//5Z7raCgAP7+/hW+b/PmzcjPz0dwcLCpTK/X49lnn8X8+fNx8uTJCt/n5uYGNzc3yxtBRES3JTX1xsXdnZykEeocKERUO6mEEMLeQcghKysL7dq1w86dO9G9e3cAwM6dO9GzZ08cOnSowgFC58+fR25urllZXFwc4uPjMXbs2CoHFd2sqKgIGo0GOp0OPj4+t98YIiIy0Wql21TefHF3tVoamc5BQ3Q7uP+WR53r2bRU27ZtMWjQIIwfPx5LliwBAEyYMAGDBw82SxojIyORnJyMhx56CE2aNEGTJk3M5uPi4oJmzZpZnGgSEZG8qrqLEJNNotqnzp2zaY2vvvoKUVFRiI2NRWxsLDp06IDly5eb1Tl8+DB0Op2dIiQiImvxLkJEdYvD9mwCQOPGjfHll19WWae6swgqO0+TiIjsw3gXocREqUeTdxEiqt0cOtkkIiLHlJAAxMVJh87Dw5loEtVmTDaJiKhO4l2EiOoGhz5nk4iIiIjsi8kmEREREcmGySYRERERyYbJJhERERHJhskmEREREcmGySYRERERyYbJJhERERHJhskmEREREcmGySYRERERyYbJJhERERHJhskmEREREcmG90aXgRACAFBUVGTnSIiIiMhSxv22cT9OtsFkUwaXLl0CAAQFBdk5EiIiIrLWpUuXoNFo7B2Gw1AJpu82ZzAYcPbsWXh7e0OlUtk7nFqnqKgIQUFByMnJgY+Pj73Dqff4edQe/CxqF34etYdSn4UQApcuXUJAQACcnHimoa2wZ1MGTk5OCAwMtHcYtZ6Pjw834LUIP4/ag59F7cLPo/ZQ4rNgj6btMW0nIiIiItkw2SQiIiIi2TDZJMW5ublh5syZcHNzs3coBH4etQk/i9qFn0ftwc+ibuMAISIiIiKSDXs2iYiIiEg2TDaJiIiISDZMNomIiIhINkw2iYiIiEg2TDZJMcnJyejWrRu8vb3h5+eHoUOH4vDhw/YOiyB9NiqVClOnTrV3KPXWmTNn8N///hdNmjRBgwYN0KlTJ2RkZNg7rHqnrKwMr7zyCsLCwuDh4YGWLVti9uzZMBgM9g6tXvjzzz/xwAMPICAgACqVCj/88IPZ60IIJCUlISAgAB4eHujXrx8OHDhgn2DJYkw2STF//PEHnn76aezYsQNpaWkoKytDbGwsrly5Yu/Q6rXdu3cjJSUFHTp0sHco9dbFixcRExMDFxcX/O9//8PBgwfx/vvvo2HDhvYOrd555513sHjxYixYsABZWVmYM2cO3n33XXz00Uf2Dq1euHLlCjp27IgFCxZU+PqcOXMwd+5cLFiwALt370azZs0wcOBAXLp0SeFIyRq89BHZTUFBAfz8/PDHH3+gT58+9g6nXrp8+TLuvPNOLFy4EG+88QY6deqE+fPn2zuseuell17C1q1bsXnzZnuHUu8NHjwY/v7+SE1NNZX95z//QYMGDbB8+XI7Rlb/qFQqfP/99xg6dCgAqVczICAAU6dOxYsvvggAKC4uhr+/P9555x0kJibaMVqqCns2yW50Oh0AoHHjxnaOpP56+umncf/99+Oee+6xdyj12tq1a9G1a1c8+uij8PPzQ+fOnfHJJ5/YO6x66a677sJvv/2GI0eOAAD++usvbNmyBffdd5+dI6MTJ04gLy8PsbGxpjI3Nzf07dsX27Zts2NkVB1newdA9ZMQAtOnT8ddd92F9u3b2zuceumbb77B3r17sXv3bnuHUu8dP34cixYtwvTp0/F///d/2LVrFyZPngw3NzeMHj3a3uHVKy+++CJ0Oh0iIyOhVquh1+vx5ptvYuTIkfYOrd7Ly8sDAPj7+5uV+/v749SpU/YIiSzEZJPsYtKkSdi/fz+2bNli71DqpZycHEyZMgW//PIL3N3d7R1OvWcwGNC1a1e89dZbAIDOnTvjwIEDWLRoEZNNha1cuRJffvklvv76a9xxxx3IzMzE1KlTERAQgDFjxtg7PIJ0eP1mQohyZVS7MNkkxT3zzDNYu3Yt/vzzTwQGBto7nHopIyMD+fn56NKli6lMr9fjzz//xIIFC1BcXAy1Wm3HCOuX5s2bo127dmZlbdu2xZo1a+wUUf31/PPP46WXXsKIESMAAFFRUTh16hSSk5OZbNpZs2bNAEg9nM2bNzeV5+fnl+vtpNqF52ySYoQQmDRpEr777jts2rQJYWFh9g6p3howYAD+/vtvZGZmmqauXbviscceQ2ZmJhNNhcXExJS7DNiRI0cQEhJip4jqr6tXr8LJyXzXqFareemjWiAsLAzNmjVDWlqaqaykpAR//PEHevXqZcfIqDrs2STFPP300/j666/x448/wtvb23T+jUajgYeHh52jq1+8vb3LnSvr6emJJk2a8BxaO5g2bRp69eqFt956C8OGDcOuXbuQkpKClJQUe4dW7zzwwAN48803ERwcjDvuuAP79u3D3LlzMW7cOHuHVi9cvnwZR48eNT0/ceIEMjMz0bhxYwQHB2Pq1Kl46623EBERgYiICLz11lto0KABRo0aZceoqVqCSCEAKpyWLl1q79BICNG3b18xZcoUe4dRb61bt060b99euLm5icjISJGSkmLvkOqloqIiMWXKFBEcHCzc3d1Fy5YtxcsvvyyKi4vtHVq9kJ6eXuF+YsyYMUIIIQwGg5g5c6Zo1qyZcHNzE3369BF///23fYOmavE6m0REREQkG56zSURERESyYbJJRERERLJhsklEREREsmGySURERESyYbJJRERERLJhsklEREREsmGySURERESyYbJJRLXeyZMnoVKpkJmZae9QbtvWrVsRFRUFFxcXDB061N7hEBHJjskmEVE1Hn/8cZslhtOnT0enTp1w4sQJfP755zaZp6U+//xzNGzYUNFlEhEx2SQi2ZSUlNg7hNui1+thMBhsOs9jx46hf//+CAwMtDjxq+vrkYjqNyabRGQz/fr1w6RJkzB9+nT4+vpi4MCBAICDBw/ivvvug5eXF/z9/REfH49z586Z3rdx40bcddddaNiwIZo0aYLBgwfj2LFjVi07NDQUr7/+OkaNGgUvLy8EBATgo48+Mqszd+5cREVFwdPTE0FBQXjqqadw+fJl0+vGnr/169ejXbt2cHNzw9ixY/HFF1/gxx9/hEqlgkqlwu+//15hDMXFxZg8eTL8/Pzg7u6Ou+66C7t37wZw41SA8+fPY9y4cVCpVJX2bIaGhuKNN97A448/Do1Gg/HjxwMA1qxZgzvuuANubm4IDQ3F+++/b/a+ixcvYvTo0WjUqBEaNGiAe++9F9nZ2QCA33//HWPHjoVOpzO1IykpCQCwcOFCREREwN3dHf7+/njkkUesWvdERFWy983Zichx9O3bV3h5eYnnn39eHDp0SGRlZYmzZ88KX19fMWPGDJGVlSX27t0rBg4cKO6++27T+1avXi3WrFkjjhw5Ivbt2yceeOABERUVJfR6vRBCiBMnTggAYt++fZUuOyQkRHh7e4vk5GRx+PBh8eGHHwq1Wi1++eUXU5158+aJTZs2iePHj4vffvtNtGnTRjz55JOm15cuXSpcXFxEr169xNatW8WhQ4dEYWGhGDZsmBg0aJDIzc0Vubm5ori4uMIYJk+eLAICAsSGDRvEgQMHxJgxY0SjRo3E+fPnRVlZmcjNzRU+Pj5i/vz5Ijc3V1y9erXStvj4+Ih3331XZGdni+zsbLFnzx7h5OQkZs+eLQ4fPiyWLl0qPDw8xNKlS03ve/DBB0Xbtm3Fn3/+KTIzM0VcXJwIDw8XJSUlori4WMyfP1/4+PiY2nHp0iWxe/duoVarxddffy1Onjwp9u7dKz744ANLPm4iIosw2SQim+nbt6/o1KmTWdmrr74qYmNjzcpycnIEAHH48OEK55Ofny8AiL///lsIYXmyOWjQILOy4cOHi3vvvbfS93z77beiSZMmpudLly4VAERmZqZZvTFjxoghQ4ZUOh8hhLh8+bJwcXERX331lamspKREBAQEiDlz5pjKNBqNWYJYWVuGDh1qVjZq1CgxcOBAs7Lnn39etGvXTgghxJEjRwQAsXXrVtPr586dEx4eHuLbb781tU+j0ZjNY82aNcLHx0cUFRVVGRMRUU3xMDoR2VTXrl3NnmdkZCA9PR1eXl6mKTIyEgBMh8qPHTuGUaNGoWXLlvDx8UFYWBgA4PTp01YtOzo6utzzrKws0/P09HQMHDgQLVq0gLe3N0aPHo3z58/jypUrpjqurq7o0KGDVcs1tqG0tBQxMTGmMhcXF3Tv3t0sBkvduh6zsrLM5g0AMTExyM7Ohl6vR1ZWFpydndGjRw/T602aNEGbNm2qXP7AgQMREhKCli1bIj4+Hl999RWuXr1qdbxERJVhsklENuXp6Wn23GAw4IEHHkBmZqbZlJ2djT59+gAAHnjgAZw/fx6ffPIJdu7ciZ07dwKwzcAYlUoFADh16hTuu+8+tG/fHmvWrEFGRgY+/vhjAEBpaampvoeHh+k91hBCmC3v5vKazO/W9VjRfIzLvPVva5bv7e2NvXv3YsWKFWjevDlee+01dOzYEYWFhVbHTERUESabRCSrO++8EwcOHEBoaCjCw8PNJk9PT5w/fx5ZWVl45ZVXMGDAALRt2xYXL16s0bJ27NhR7rmxF3XPnj0oKyvD+++/j549e6J169Y4e/asRfN1dXWFXq+vsk54eDhcXV2xZcsWU1lpaSn27NmDtm3bWtmS8tq1a2c2bwDYtm0bWrduDbVajXbt2qGsrMyUqAPA+fPnceTIEdPyK2uHs7Mz7rnnHsyZMwf79+/HyZMnsWnTptuOmYgIYLJJRDJ7+umnceHCBYwcORK7du3C8ePH8csvv2DcuHHQ6/Vo1KgRmjRpgpSUFBw9ehSbNm3C9OnTa7SsrVu3Ys6cOThy5Ag+/vhjrFq1ClOmTAEAtGrVCmVlZfjoo49w/PhxLF++HIsXL7ZovqGhodi/fz8OHz6Mc+fOmfWEGnl6euLJJ5/E888/j40bN+LgwYMYP348rl69ioSEhBq152bPPvssfvvtN7z++us4cuQIvvjiCyxYsADPPfccACAiIgJDhgzB+PHjsWXLFvz111/473//ixYtWmDIkCGmdly+fBm//fYbzp07h6tXr2L9+vX48MMPkZmZiVOnTmHZsmUwGAxo06bNbcdMRASAo9GJyHb69u0rpkyZUq78yJEj4qGHHhINGzYUHh4eIjIyUkydOlUYDAYhhBBpaWmibdu2ws3NTXTo0EH8/vvvAoD4/vvvhRCWDxCaNWuWGDZsmGjQoIHw9/cX8+fPN6szd+5c0bx5c+Hh4SHi4uLEsmXLBABx8eJFIUTFA2iEkAYsDRw4UHh5eQkAIj09vcIYrl27Jp555hnh6+sr3NzcRExMjNi1a5dZHUsHCM2bN69c+erVq0W7du2Ei4uLCA4OFu+++67Z6xcuXBDx8fFCo9GY2njkyBGzOhMnThRNmjQRAMTMmTPF5s2bRd++fUWjRo2Eh4eH6NChg1i5cmWV8RERWUMlRCUn+hAR1SGhoaGYOnUqpk6dau9QiIjoJjyMTkRERESyYbJJRERERLLhYXQiIiIikg17NomIiIhINkw2iYiIiEg2TDaJiIiISDZMNomIiIhINkw2iYiIiEg2TDaJiIiISDZMNomIiIhINkw2iYiIiEg2TDaJiIiISDb/Dy2c9UUqvbgcAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrUUlEQVR4nO3deVxU1fsH8M+ACAiIKyiOLOaeouW+pWlqZVb6zbXQlFArc0tLf33LpQW31MqsVLJFMzW1tMwlRXPBXVqU1FwZFXEFRQVhzu+P+51xVpiLM8zcO5/36zUv5M6dO8+5w8w8nnvOczRCCAEiIiIiL+bj7gCIiIiI3I0JEREREXk9JkRERETk9ZgQERERkddjQkRERERejwkREREReT0mREREROT1mBARERGR12NCRERERF6PCRERERF5PSZERERE5PWYEHmYXbt2YdKkSbh+/XqJP/eyZcvw4IMPIjAwEBqNBqmpqUU+ZsqUKahfvz70er3rAyzEjRs38MYbb6BLly6oXLkyNBoNJk2aZHPfpKQkVKtWDTk5OS6Lx1POCyDv3ADAzZs3MWrUKERERCAgIACNGzfG999/b7ZPSZxDAPjqq6+g0Whw+vRpAIW/PyZNmgSNRoPLly+7NCZns/e+K8770VO4+nOspF5rw/N4SjyG94PhVqpUKVStWhV9+/bF8ePHnfY8cj8zbHHkc+R+vfjii2bnw/K2e/duWcdjQuRhdu3ahcmTJ5d4QnTp0iXExcXhgQcewPr165GSkoLatWsX+pjz589j+vTpmDJlCnx83PundOXKFcyfPx+5ubl49tlnC9134MCBCAoKwvTp010SiyedF0DeuQGAnj174uuvv8bEiRPx66+/olmzZujXrx++++474z6uPocG3bp1Q0pKCqpWrQrAfe8PV7H3vivO+9GTqO118jSLFi1CSkoKfvvtNwwfPhxr1qxB27Ztce3aNaccX+5nhi2OfI7cr7fffhspKSlWt0qVKqFatWpo1qyZvAMKKpacnByXHHfGjBkCgDh16pRLjm/Pjh07BACxbNkyhx/zxhtviGrVqomCggIXRuYYvV4v9Hq9EEKIS5cuCQBi4sSJdvefOXOmCA0Ndcnr6EnnRQh55+aXX34RAMR3331ntr1z584iIiJC5OfnG7e58hzaU9j7Y+LEiQKAuHTpUonFc7/sve+K8370BIa/BVd9jhmOX1KvteF5HN3P1fEsWrRIABD79u0z2z558mQBQHz55ZdOeR65n6eW5HyOONvWrVsFAPHf//5X9mPd/99XBTB0hx48eBDPPfccypcvjwceeAAAsGPHDnTq1AkhISEoU6YMWrdujV9++cXmcYrad9KkSRg3bhwAICYmxtjtt3XrVly6dAlDhgxB9erV4e/vj8qVK6NNmzb47bffioy/qOd98cUX0bZtWwBAnz59oNFo0KFDh0KPmZeXh6SkJPTv39+sF+TChQsIDg5G3759zfb/+eef4efnh7feeqvIeIvDcK4c9fzzzyM7O9vpXbj2zgugjHOzevVqBAcHo1evXmbbBw0ahPPnz2PPnj3GbY6ew8OHD0Oj0WDFihXGbQcOHIBGo8GDDz5otu/TTz+NJk2aGH83vWRW2PvD1MWLF9GvXz+EhoYiPDwcgwcPRlZWlkPt/+eff9CvXz+Eh4fD398fkZGRGDBgAHJzc437OPqeP378OPr374+wsDD4+/ujXr16+PTTT43323vfFfZ+LO7ngOEz7NChQ+jZsyfKli2L0NBQvPDCC7h06ZLs2E2Pafm5WNjr9OKLLyI6OtpufI4c31R6enqR7XGkLQDwyy+/oHHjxvD390dMTAxmzpxZ6Dm1pah4tm/fDo1Gg6VLl1o99ptvvoFGo8G+fftkP2/Tpk0BSH/7ziD389SSnM8RR18fRyUlJUGj0WDw4MHyH+yCBE11DNl/VFSUePPNN8WmTZvEjz/+KLZu3Sr8/PxEkyZNxLJly8SPP/4ounTpIjQajfj+++/NjuHIvunp6eK1114TAMSqVatESkqKSElJEVlZWaJr166icuXKYv78+WLr1q3ixx9/FO+8847V81hy5Hn//fdf8emnnwoA4oMPPhApKSni8OHDhR73999/FwDEunXrrO6bPHmy0Gg0Yv/+/UIIIZKTk0VAQIB47bXXHD7n98PR/9HUq1dP9OzZ06nPXdh5EcLzz03Lli1Fs2bNrLb//fffAoD44osvzLY7eg6rVq0qhgwZYvx96tSpIjAwUAAQ586dE0IIcffuXVG2bFnxxhtvGPcz/I/41KlThb4/hLj3Pq1Tp4545513xKZNm8SsWbOEv7+/GDRoUJExpqamiuDgYBEdHS0+//xzsXnzZrF48WLRu3dvkZ2dLYRw7P0khBCHDx8WoaGhomHDhuKbb74RGzduFK+//rrw8fERkyZNEkLYf98V9n4s7ueA6WfYuHHjxIYNG8SsWbNEUFCQeOihh0ReXp6s2C2Pafq5WNjrNHDgQBEVFWU3Pnsxmx5fTnscbctvv/0mfH19Rdu2bcWqVavEihUrRLNmzURkZKSsHiJHzu9DDz0k2rRpY3WMZs2a2XzvmbLXQzR37lwBQKxcudJsu16vF3fv3nXoZk9xeogc/Rxx9PVx1PXr10VgYKB47LHHZD9WCCGYEDnA8Mf+zjvvmG1v2bKlCAsLEzdu3DBuy8/PFw0aNBBardbY5ShnX3tdzcHBwWLUqFGyY3f0eZOTkwUAsWLFCoeOO23aNAFAZGRkWN2Xk5MjIiIiRKdOncTevXtFSEiIGDRokNn5cCVH38DPP/+8CA8PN9um1+vFtWvXrC4D3b59W1y7ds2qqzcrK8v4ZSlE4edFCM8/N7Vq1RJdu3a12n7+/HnjF7QpW+fQlhdeeEHUqFHD+Ptjjz0mEhISRPny5cXXX38thBBi586dAoDYuHGjcT/ThEgIxy6ZTZ8+3Wz7K6+8IgICAoo8xx07dhTlypUTmZmZdvdx9P3UtWtXodVqjcmawfDhw0VAQIC4evWqEML++87e9uJ+DhjOzejRo822L1myRAAQixcvNm5zNHZ7n4tC2H+dipMQ2Tq+o+1xtC0tWrQQERER4vbt28Z9srOzRYUKFWQlRI6cX8Pf9KFDh4zb9u7dKwAY3wv2GB67e/ducffuXXHjxg2xfv16UaVKFfHII49YJTaGvyNHbvYubxYnIXL0c8TR18dRn332mQAgli5dKutxBrxkJsN//vMf479zcnKwZ88ePPfccwgODjZu9/X1RVxcHHQ6HY4ePSp7X3uaN2+Or776Cu+99x52796Nu3fvFhmvM57XnvPnz0Oj0aBSpUpW95UpUwbvvfceNm/ejEcffRRPPPEEFixYYLcLduvWrYXOFDC9OXOmTVhYGDIzM5Gfn2/cdvHiRZQvXx6vvPKK2b5Tp05F+fLlrbqza9eujXbt2hl/L+y8AMo4N4V1lVveZ+sc2tKpUyecPHkSp06dwp07d7Bjxw48/vjjePTRR7Fp0yYAwG+//QZ/f3/j5aLievrpp81+j42NxZ07d5CZmWn3Mbdu3cK2bdvQu3dvVK5c2eY+jr6f7ty5g82bN6NHjx4oU6YM8vPzjbcnn3wSd+7ckT37xaA4nwOmnn/+ebPfe/fujVKlSiE5ORkAihW76eeiKxR2/MLa42hbcnJysG/fPvTs2RMBAQHGY4WEhKB79+6yYi3q/AJAv379EBYWZnZZ6JNPPkHlypXRp08fh56nZcuW8PPzQ0hICB5//HGUL18eP/30E0qVKmW2X5MmTbBv3z6HbhEREbLaWpSiPkfk/K2Z3pefnw8hhM3jJiUloWLFiujRo0exYi5V9C5kYJjpAgDXrl2DEMJsm4HhD+vKlSuy97Vn2bJleO+997Bw4UK8/fbbCA4ORo8ePTB9+nRUqVLF5mOc8bz23L59G35+fvD19bV5v2FGjEajwVdffWV3PwCoU6cOFixY4NDzRkZGyg/WjoCAAAghcOfOHbMvuPtR1HkBPPvcVKxY0ebfxNWrVwEAFSpUMNvu6Dl87LHHAEhJT0xMDO7evYuOHTvi4sWLePfdd433tWnTBoGBgffdBlP+/v4ApNfGnmvXrqGgoABarbbQfRx5P4WEhCA/Px+ffPIJPvnkE5vHKu707OJ8Dpiy3KdUqVJmr/mVK1dkx27rfDhTYccvrD2OtuXatWvQ6/U2z58j59TReAz8/f0xdOhQfPjhh5gxYwbu3r2L5cuXY8yYMca/1aJ88803qFevHm7cuIFly5bhiy++QL9+/fDrr7+a7RccHIzGjRs7dEzLZOp+OPI54ujrc/r0acTExJhtT05Othrn+ueff2L//v0YOXKkw+fREhMiGUwz3vLly8PHxwcXLlyw2u/8+fMAYOwlkLOvPZUqVcKcOXMwZ84cnD17FmvWrMH48eORmZmJ9evX23yMM563sHjy8vKQk5ODoKAgs/tSU1Px1FNPoU2bNti5cye+/PJLvPrqq3aPVbVqVbz00kvFiuN+XL16Ff7+/mZf5FWqVLH5v49JkybZrMORkZFh9nth5wXw/HPTsGFDLF26FPn5+WYfkH/99RcAoEGDBmb72zqHtmi1WtSuXRu//fYboqOj0bRpU5QrVw6dOnXCK6+8gj179mD37t2YPHmy8xvlgAoVKsDX1xc6nc7uPo6+n8qXL2/sNbL32lp+wDuqOJ8DpjIyMlCtWjXj7/n5+bhy5YoxiSxO7HIG3wYEBJgNUDcoLEEs7PiFtcfRtgQEBECj0Vi9lw3Hl6Oo82vw8ssvY+rUqfjyyy9x584d5OfnY9iwYQ4/T7169YwDqR999FEUFBRg4cKF+OGHH/Dcc88Z99u2bRseffRRh4556tQpmwPei8ORzxFHX5+QkBCrnvk6depY7ZuUlAQA9/V5yYSomIKCgtCiRQusWrUKM2fONP6vVq/XY/HixcYvALn7OvK/2cjISAwfPhybN2/Gzp07nRKjXHXr1gUAnDhxArGxscbtR48eRdeuXdGqVSv89NNP6NWrFyZNmoQXXngBoaGhxXouVzl58iTq16/v1GPaOy+AMs5Njx49sGDBAqxcudKs+/7rr79GREQEWrRoYba/nHP42GOPYfny5ahevTq6desGQOoti4yMxDvvvIO7d+8ae5LsceT9URyBgYFo3749VqxYgffff9/mfxQcfT9pNBo8+uijOHToEGJjY1G6dGmnxmrg6OeAqSVLlpjN4lu+fDny8/ON/9suU6aMU2K39zpFR0cjMzMTFy9eRHh4OABpZuaGDRuK9TyFtUdOW5o3b45Vq1ZhxowZxstmN27cwNq1a50Wj6mqVauiV69emDdvHvLy8tC9e/f76uGdPn06Vq5ciXfeeQc9e/Y0znA1XDJzhDMvmTnyOeLr6+vw62NI/uzJzc3F4sWL0bx5c6v/tMlSrJFHXsZejQnDjJMWLVqIFStWiJ9++kl07dq10FlmRe1rGAQ3dOhQsWvXLrFv3z5x/fp18dBDD4kZM2aItWvXiq1bt4oZM2aIgIAA0b9//0Jjl/u8jg6qPnv2rNWso1OnTgmtVivatWsnbt26JYQQIi0tTfj6+prNHHKVdevWiRUrVogvv/xSABC9evUSK1asECtWrLAaJF1QUCBCQ0PFmDFjnBqDrfMihLLOTefOnUX58uXF/PnzxZYtW0RCQoLVwFAh5J/DlStXGgdwbtu2zbh90KBBAoAoX768Ve0my0HVtt4fhkHt9t6nlsewxzDLrEaNGsa2L126VPTr189qlllR76fDhw+L8uXLi+bNm4tFixaJ5ORksWbNGjFr1izx6KOPGveTM6j6fj4HLGdBbdy4UcyePVsEBweLRo0aidzcXNmxF1Z7x97rdPLkSeHn5yc6dOggfvnlF7Fy5UrRvn17ERMTY3dQta3jO9oeR9uyceNG4ePjI9q2bStWr14tfvjhB9GsWTNRvXr1Ys0yK+z8GuzZs8f4fvjtt9+KfA4h7M8yE0KI6dOnCwDi22+/dehYRXHkM2Pr1q3C19dXTJ482erxjnyOOPr6FOX7778XAMT8+fPvq81MiBxQ2Btz+/btomPHjiIoKEgEBgaKli1birVr19o8jqP7TpgwQURERAgfHx8BQKxfv14MGzZMxMbGirJly4rAwEBRp04dMXHiRIeK4jnyvHITIiGEaNeunXjyySeFENLsgQceeEA8/PDDVjMGEhIShL+/v8uLTUZFRTk8g2Lz5s0CgDhw4IDT4zA9L0Io79zcuHFDjBgxQlSpUkWULl1axMbG2py1IfccXrt2Tfj4+IigoCCzaciGmTi2pu/bSmYs3x/JyclCiPtPiIQQ4siRI6JXr16iYsWKonTp0iIyMlK8+OKL4s6dO8Z9HH0fnzp1SgwePFhUq1ZN+Pn5icqVK4vWrVuL9957z7iPnITozp07xf4cMJybAwcOiO7du4vg4GAREhIi+vXrJy5evFis2IsqRmjvdVq3bp1o3LixCAwMFDVq1BBz584tdJZZYQmRI+1xpC1CCLFmzRoRGxtrfN2nTp0quzCjo+fXIDo6WtSrV6/I4xsUlhDdvn1bREZGilq1ajml8KEjnxmGv1NbM9Ac/Rxx9PUpTOfOnUVQUJDZjN/i0AhhZ7g2UREM3aFnzpwxu26uBHFxcTh58qTDlxrkUPJ5kcOV55Cca9KkSZg8eTIuXbpU7HGD5Fx//vknGjVqhE8//dRqViu5B6fdU7H17NkTzZo1Q2JiortDkeXEiRNYtmwZpk2b5pLjK/W8yOHqc0ikVidOnMCWLVswZMgQVK1aFS+++KK7Q6L/YUJExabRaLBgwQJERER4xKrujjp79izmzp173/Vu7FHqeZHD1eeQSK3effdddO7cGTdv3sSKFStQpkwZd4dE/8NLZkREROT12ENEREREXo8JEREREXk9JkRERETk9Vipugh6vR7nz59HSEiIrBL1RERE5D5CCNy4cQMRERHG6t2FYUJUhPPnz6N69eruDoOIiIiKIT09vdCFmw2YEBUhJCQEgHRCy5Yt6+ZoiIiIyBHZ2dmoXr268Xu8KEyIimC4TFa2bFkmRERERArj6HAXDqomIiIir8eEiIiIiLweEyIiIiLyekyIiIiIyOsxISIiIiKvx4SIiIiIvB4TIiIiIvJ6TIiIiIjI6zEhIiIiIq/HhIiIiIi8HhMiIiIi8npMiIiIPJBOByQnSz+JyPWYEBEReZikJCAqCujYUfqZlOTuiFyHiR95CiZEREQeRKcDhgwB9Hrpd70eGDpUnQmDNyV+5PmYEBEReZDjx+8lQwYFBcCKFepKirwp8SNlYEJERORBatUCfGx8Mo8Zo65eFHuJ37//uiceIiZEREQeRKsF5s8HfH2t71NTL4qtxM/XF6hZ0z3xEDEhIiLyMPHxwOnTwKxZ1veppRfFMvHz9QW++ELaTuQOGiGEcHcQniw7OxuhoaHIyspC2bJl3R0OEXkRnU66TGZ6acnXV0qW1JI46HRSglezpnraRJ5B7vc3e4iIiDyUN/SiaLVAhw7qahMpUyl3B0BERPbFxwNdu7IXhcjVmBAREXk4rZaJEJGr8ZIZERGRi7ASt3IwISIiIrdQe7LAStzKwoSIiIhKnNqTBVbiVh4mREREVKK8IVlgJW7lYUJEREQlyhuSBVbiVh4mREREVKK8IVnwhhpSasOEiIjIQ6l10LG3JAuGJViSk6Wf8fHujogKwzpEREQeKCnp3jgbHx8pgVDTF2p8PBAbC+zYAbRtCzRr5u6IXIM1pJSDPURERB5GpwMSEswHHQ8Zoq6eoqQkoGVLYMwY6afaZpkB6u3hUysmREREHmbXLsBy2W29HkhJcU88zuYNs8zUXlZAjZgQERFRiVL7LDNvSPjUiAkREZGHiYmxvT06ukTDcJngYNvbg4JKNg5XUXvCp1ZMiIiIPMzNm7a35+SUbByuovb2qT3hUyvFJUTz5s1DTEwMAgIC0KRJE2zfvr3Q/XNzc/HWW28hKioK/v7+eOCBB/Dll1+WULRERPKpvU6P2tun9oRPrRSVEC1btgyjRo3CW2+9hUOHDqFdu3Z44okncPbsWbuP6d27NzZv3oykpCQcPXoUS5cuRd26dUswaiIiedRep0erBeLizLe98IJ62mcv8bGXKJFn0AhhOZfBc7Vo0QIPP/wwPvvsM+O2evXq4dlnn0ViYqLV/uvXr0ffvn1x8uRJVKhQoVjPmZ2djdDQUGRlZaFs2bLFjp2ISC6dThp3UrOmepIFQGpXVJT5OBtfX6l4oRraOWsW8Prr1ttnzwZGjSrxcLyW3O9vxfQQ5eXl4cCBA+jSpYvZ9i5dumDXrl02H7NmzRo0bdoU06dPR7Vq1VC7dm2MHTsWt2/ftvs8ubm5yM7ONrsREbmDVgt06KCOJMHU2rXqHnTcrp3t7W3alGwcJI9iEqLLly+joKAA4eHhZtvDw8ORkZFh8zEnT57Ejh078Pfff2P16tWYM2cOfvjhB7z66qt2nycxMRGhoaHGW/Xq1Z3aDiIib/bii8Arr1hvV9MYombNgIEDzbcNHKjeatxqoZiEyECj0Zj9LoSw2mag1+uh0WiwZMkSNG/eHE8++SRmzZqFr776ym4v0YQJE5CVlWW8paenO70NRETeaN8+4Ouvrbf7+KhrjBQAfPUVsHevdJls717pd/JsilnLrFKlSvD19bXqDcrMzLTqNTKoWrUqqlWrhtDQUOO2evXqQQgBnU6HWrVqWT3G398f/v7+zg2eiKgYdDqppk2tWupIFuxNCn70UXWt02bQrBl7hZREMT1EpUuXRpMmTbBp0yaz7Zs2bULr1q1tPqZNmzY4f/48bpoM7T927Bh8fHygVcOnCxGplhqXfrA3tmbzZmDmzJKNhciSYhIiABgzZgwWLlyIL7/8EmlpaRg9ejTOnj2LYcOGAZAudw0YMMC4f//+/VGxYkUMGjQIR44cwe+//45x48Zh8ODBCAwMdFcziIgKpdalH5o1A7p2tX3fm28qv32kbIq5ZAYAffr0wZUrVzBlyhRcuHABDRo0wLp16xAVFQUAuHDhgllNouDgYGzatAmvvfYamjZtiooVK6J3795477333NUEIqIiFbb0g9I7txcuBGzNVdHr1dE+Ui5F1SFyB9YhIqKSpvY6PTNmAG+8Yb5NTe0jz6DaOkRERN5C7ZWqx42TkiLD8h1qa58pnQ5ITublQCVgD1ER2ENERO6i1krVBmpvX1LSvbFgPj5SkqvG2XSeSu73NxOiIjAhIiIiOXQ6YNcuoG9fwPQblpcFSxYvmRERqRAvvSiDoVxCnz7myRCgruVJ1IgJERGRh1NjTSI1siyXYElNy5OoERMiIiIPptaaRGrs8bJVLsFAzQPH1YIJERGRByusJpFSqbXHq1atezPnTGk0QEoKB1R7OiZEREQezNaXrJIvvdjr8Vq+XPm9RVotMGaM9XYhgJycko+H5GFCRETkwdRWk8hej1efPuroLQoLs96m5ATWm3DafRE47Z6IPIFaavbYqsJtSslT0+21bcYMYOxY98TkzTjtnohIhbRaoEMHZSYKpix7vCwpeXyUvUHVTZuWfCwkHxMiIiIqUfHxUi/Q8uXSgGNTSr68pLbxXt6GCRERkQdT4/R0QOop6tULWLBAPeOj1Dbey9twDFEROIaIiNzFW9bCUsv4KAO1tUepuJaZkzEhIiJ3sDVAV8kDjolKGgdVExGpgL3p6Skp7omHSO2YEBEReSB7VY/79lV+rR4iT8SEiIjIA2m1QM+e1tvVspYZkacp5e4AiIjI2syZwA8/2L7PUKtHqWOJdDpg1y7p361bK7cdpC5MiIiIPIxOB7zxhv37lVzbJikJSEiQ1vcyGDsWGDlSPYmRTgesXQtcuAB07w40a+buiMgRvGRGRORhjh83TxhMaTTKrW1jWNjVsm0zZ6pjHTNAakP16sArrwDvvgs0bw68+KK7oyJHMCEiIvIw9gZUA1IycfVqycbjLPaWtgDUMTZKpwNeesl6+9dfA/v2lXw8JA8TIiIiD2OoeGy5rIXB+PHKTBwKS/QAZa9jBkgJnz07d5ZcHFQ8TIiIiDxQfDywZ4/tpEivV2biYEj07CVFSh4bBUgJnz1t2pRcHFQ8TIiIiDxUs2bA9OnW2318lJs4dO0KLF0KfPYZMGyYutb90mqBhQuttw8cyIHVSsBZZkREHmzsWGnc0Jtv3huMLASwYYPy1jWztTbb4MHAjh1A27bqSBri46Wk7+efgYwMoFs3dbTLG3AtsyJwLTMicjc1rGtmqw0ajXRT0+K1Op00lqhWLeW8NmrFtcyIiFREpwOWL7e9rpmSxhHZmmEmxL1taphllpQkJX0dO6qnjIA3YUJEROShZswAIiOB11+3vk9pA5CLmmEGKC/JM2WosaSmBM/bMCEiIvJAM2dK1artDWp44QVlXZIxzDAzDKK2NXtOaUmeKVs9YEpO8LwREyIiIg+j00mDqAuzeLHyeh/i46VxT8uX206IEhOVleSZstUDpuQEzxsxISIi8jCFVXQ2UGrvg1YLVKpku31Kno1l2QOmhjIC3obT7omIPIyht6GwpEjJvQ+22qfk9hgYptz/+6/UFiZDysIeIiIiD2PZ2+DjI9WzMVySUXrvg632KflymSmtFujQQR1t8TZMiIiIPJBhvE1yMjB1KvDrr1KPikYjJQ9Kr9cTHy+1y9BTNH48p6mTe7EwYxFYmJGI3EkNRRlNGQoXBgcDLVuqp13keViYkYhIRdQ0ndu0cKFlMgQot12kDopLiObNm4eYmBgEBASgSZMm2L59u0OP27lzJ0qVKoXGjRu7NkAiIidSy3RuW4ULLSmxXaQeikqIli1bhlGjRuGtt97CoUOH0K5dOzzxxBM4e/ZsoY/LysrCgAED0KlTpxKKlIjIOdQynduRUgJKKzZJ6qKoMUQtWrTAww8/jM8++8y4rV69enj22WeRmJho93F9+/ZFrVq14Ovrix9//BGpqakOPyfHEBGRJ9DplD2d29ZYKEscQ0TOpNoxRHl5eThw4AC6dOlitr1Lly7YtWuX3cctWrQIJ06cwMSJEx16ntzcXGRnZ5vdiIjcTenTuW1NtbfEMUTkTopJiC5fvoyCggKEh4ebbQ8PD0dGRobNxxw/fhzjx4/HkiVLUKqUYzUoExMTERoaarxVr179vmMnIiLzUgK7d6tjbJQ9Op3UTqUtr+LNFJMQGWgsFsARQlhtA4CCggL0798fkydPRu3atR0+/oQJE5CVlWW8paen33fMREQkMfR0NWumjrFRtpjOpouKYn0lpVDM0h2VKlWCr6+vVW9QZmamVa8RANy4cQP79+/HoUOHMHz4cACAXq+HEAKlSpXCxo0b0bFjR6vH+fv7w9/f3zWNICK6D4YaPrVqKT9x0OmAGjWAlBQgJ0e5Y6Ms2ZpNN3SotKSHGtqnZorpISpdujSaNGmCTZs2mW3ftGkTWrdubbV/2bJl8ddffyE1NdV4GzZsGOrUqYPU1FS0aNGipEInIrovOh0wbpx6eh0s6xGdOKGeZEFNdaO8jWJ6iABgzJgxiIuLQ9OmTdGqVSvMnz8fZ8+exbBhwwBIl7vOnTuHb775Bj4+PmjQoIHZ48PCwhAQEGC1nYjIUyUlAQkJgOl8YCX3Oqi9B0WtC9d6A0UlRH369MGVK1cwZcoUXLhwAQ0aNMC6desQFRUFALhw4UKRNYmIiJTCkDzYKo5i6HVQWhJRWA+K0tpii2E23dChUrvUNDZK7RRVh8gdWIeIiNwlOVm6rGSLUmv2qG1tNnuUXjdKDVRbh4iIyNvYWrYDUHavg1oqbxdF6XWjvBETIiIiD6XVAnFx5tu6dpV6U+Lj3RKSU5jWIzK0RW11e9TWHm/AhIiIyEPpdMC335pv++0398TibKY9KDNnqmcGnWFGYGSkOtrjTZgQERF5KG+Ywj1jhpRAWM46U2LPyowZUiI0c+a9gfBKbo+3YUJEROShbI0hUtMUbp0OePNN6+1KTPpmzgTeeKPwGYHk2ZgQERF5KLUPQD5+3HYC4eOjrKTPXmJnoKYkVs0UVYeIiMjbxMdLA6nVOIXbVhFDAJg2TVnttHVp05Saklg1Yw8REZGHU+sUbsseMB8fYPp0YOxY98Yll73yCIDUtq5dSzYeKh4mRERE5DamU/DPnJEGWCuNIbGzlRRx/JByyE6Ivv76a/zyyy/G39944w2UK1cOrVu3xpkzZ5waHBERqZ8aesDi44HduwGNxnw7xw8ph+yE6IMPPkBgYCAAICUlBXPnzsX06dNRqVIljB492ukBEhERKUGzZsCCBeodBK92sgdVp6eno+b/0t0ff/wRzz33HIYMGYI2bdqgQ4cOzo6PiIgs6HTSQN5atfhl62nUPAhe7WT3EAUHB+PKlSsAgI0bN+Kxxx4DAAQEBOD27dvOjY6IiMwkJamnqrNaqeESoDeSnRB17twZL730El566SUcO3YM3bp1AwAcPnwY0dHRzo6PiEg2ta4jpdMBQ4aoo6qzmqn170/tZCdEn376KVq1aoVLly5h5cqVqFixIgDgwIED6Nevn9MDJCKSQ809KGpaysMyaVBLEmFYvkONf39qpxHCVp1Q+86ePQutVgsfi/mFQgikp6cjMjLSqQG6W3Z2NkJDQ5GVlYWyZcu6OxwiKoROJ30JmSYNvr7StG41XL5QS/uSku71dPn4AHFx0iK2ht/nz5fG4ijNzJnWZQOU+Pqohdzvb9k9RDExMbh8+bLV9qtXryImJkbu4YiInEZNPSiWdDpg1y4gIeFevRslzmKyddnv66+VfxlQTeuyeSvZs8zsdSjdvHkTAQEB9x0QEVFx2VoKQg11YJKSpETI8PGr0UjVnEeOVFYyBBS9zAVwL4lQUtvstUtp67J5M4cTojFjxgAANBoN3nnnHZQpU8Z4X0FBAfbs2YPGjRs7PUAiIkcZKgYPHSp9qSqxB8WSoUfF9P+iQgCzZkkJkdLYW7/MlBKTWHvtmjpV2X9/3sThhOjQoUMApB6iv/76C6VLlzbeV7p0aTRq1AhjlbYADRGpjtrqwNjredDrldeLAthOWl94AVi8WNlJrKFdppcDNRqgQgX3xkWOkz2oetCgQfjoo4+8ZoAxB1UTKZvSixjaGkgNSL0RZ84os02A1K6UFKm3q3VraZvSk1idTpphZvqtykHV7uPyQdWLFi0yHlin0+HcuXPyoyQiKgFqmIJva+FQjUbapuQv2Q0bgL59gT59pNdmwwblFzM8ftw8GQI4qFpJZCdEer0eU6ZMQWhoKKKiohAZGYly5crh3Xffhb6okXJERCVETUUM4+OlsShqoabXxtSBA9bblDgeylvJnmX21ltvISkpCVOnTkWbNm0ghMDOnTsxadIk3LlzB++//74r4iQikqWwKfhK64WwnNIthJRQdO2qvLYA6nptDOxNu09MVG6bvI3shOjrr7/GwoUL8fTTTxu3NWrUCNWqVcMrr7zChIiIPIKapuDv2mV9KUavl8bg9Orlnpjuh5peGwN7g9+bNSv5WKh4ZF8yu3r1KurWrWu1vW7durh69apTgiIiul8bNpgnET4+ypy9pEaGcVG+vtLvSp1ZZsqQ5JlSepLnbWQnRI0aNcLcuXOtts+dOxeNGjVySlBERPfDVu0eQLrEpES2FgHQaIBWrUo+FmeJj5dmXyUnSz+VuFSHKa0WmDbNvIr46NHujYnkkX3JbPr06ejWrRt+++03tGrVChqNBrt27UJ6ejrWrVvnihiJiGSxdflCqXV7DFWqTWk0wIIFymuLLfIKv3iuGTOkMUSG9hQUSGubzZql3LXZvI3sHqL27dvj2LFj6NGjB65fv46rV6+iZ8+eOHr0KNq1a+eKGImIZFHL5Qt7PV2Acnu7DNRQEsFg5kzgjTdsv05qmUHnDWQXZvQ2LMxIpEwzZ0r/Y9fr741RUdr/0pOTpYTB3n0dOpRoOE5jq9ikUgsY2iucaUnJr5dSyf3+ln3JDACuX7+OpKQkpKWlQaPRoH79+hg8eDBCQ0OLczgiIqdKSrqXDGk00tRnpSVDgP31sZS+YKiapt07slitEnsnvZHsS2b79+/HAw88gNmzZ+Pq1au4fPkyZs2ahQceeAAHDx50RYxERA6zLPonBDBhgjIvWai1SrVaLmkCttsCSK8ToI4ZdN5C9iWzdu3aoWbNmliwYAFKlZI6mPLz8/HSSy/h5MmT+P33310SqLvwkhmRsti7zKTkSxaGdb8AaWaZGr5ck5LMF3hV4iVNA9O2+PhIs8369lX+2mxKJ/f7W3ZCFBgYiEOHDlnVIjpy5AiaNm2KW7duyYvYwzEhIlIWe2M6ZswAxo51T0xkm06nnqRBTW1RC5cv7lq2bFmcPXvWant6ejpCQkLkHo6IyKm0Wtvrfo0fr8zLZmqm1Sp/QVcD07bodFKPJP/elEV2QtSnTx/Ex8dj2bJlSE9Ph06nw/fff4+XXnoJ/fr1c0WMRESyNG1qvY2rjlNJUFM5AW8jOyGaOXMmevbsiQEDBiA6OhpRUVF48cUX8dxzz2HatGmuiNHMvHnzEBMTg4CAADRp0gTbt2+3u++qVavQuXNnVK5cGWXLlkWrVq2wYcMGl8dIRO6lpkG7pByWA/pZg0hZZCVEBQUFSElJwcSJE3Ht2jWkpqbi0KFDuHr1KmbPng1/f39XxQkAWLZsGUaNGoW33noLhw4dQrt27fDEE0/YvIQHAL///js6d+6MdevW4cCBA3j00UfRvXt3HDp0yKVxEpF7cR0zcofCygmQ55M9qDogIABpaWmIsbW4jou1aNECDz/8MD777DPjtnr16uHZZ59FYmKiQ8d48MEH0adPH7zzzjsO7c9B1UTKYmtQtY8PcOYMEyJyLTUVnFQDlw+qbtiwIU6ePFms4O5HXl4eDhw4gC5dupht79KlC3bt2uXQMfR6PW7cuIEKFSrY3Sc3NxfZ2dlmNyJSjsLWMSNyJa0WiIsz3/bCC0yGlEJ2QvT+++9j7Nix+Pnnn3HhwoUSSx4uX76MgoIChIeHm20PDw9HRkaGQ8f48MMPkZOTg969e9vdJzExEaGhocZb9erV7ytuIipZHD9E7qLTAd9+a75t8WKOIVIK2QnR448/jj/++ANPP/00tFotypcvj/Lly6NcuXIoX768K2I0ozGU//wfIYTVNluWLl2KSZMmYdmyZQgLC7O734QJE5CVlWW8paen33fMRFRyDNWdfX2l31kpmEoKxxApm+y1zJKTk10RR5EqVaoEX19fq96gzMxMq14jS8uWLUN8fDxWrFiBxx57rNB9/f39XT44nIhcKz5eWg2ehfI8l04nJRC1aqnn9dm/33obeyeVQ3ZC1L59e1fEUaTSpUujSZMm2LRpE3r06GHcvmnTJjzzzDN2H7d06VIMHjwYS5cuRbdu3UoiVCLyAFqter5o1SYp6d70dB8fqUdPqct2GOh0UvFPS1On8u9QKWRfMnOnMWPGYOHChfjyyy+RlpaG0aNH4+zZsxg2bBgA6XLXgAEDjPsvXboUAwYMwIcffoiWLVsiIyMDGRkZyMrKclcTiIiKTQ0VkNVaq8feqve2ioSSZ1JUQtSnTx/MmTMHU6ZMQePGjfH7779j3bp1iIqKAgBcuHDBrCbRF198gfz8fLz66quoWrWq8TZy5Eh3NYGIqFjUUgFZreNsOJhf+WTXIfI2rENERO6mpvo2Oh0QGWldOFMNdaJMV703DOZX+qVAJXNJHaI1a9bg7t279x0cERHJp5ZeFZ0OsFU2Ti3/LY+Pl5LU5GTpJ5MhZXEoIerRoweuX78OAPD19UVmZqYrYyIiIhNquBxjuOTXp491AiSE8pI7e0xXvSdlcSghqly5Mnbv3g3A8bo/RER0fwyDqAFl11ayHEhtSWnJHamTQ9Puhw0bhmeeeQYajQYajQZVqlSxu29BQYHTgiMi8la2pqafPq3M2kr2ZmABykvuSL0cHlT9zz//4N9//8XTTz+NRYsWoVy5cjb3K6wmkBJxUDURlTQ1DaIG7C+4+/33QKtWymwTeT65398OF2asW7cu6tati4kTJ6JXr14oU6bMfQVKRES2FTaIWonJg2E5FcsZWL16uTsyonuKPe3+0qVLOHr0KDQaDWrXro3KlSs7OzaPwB4iIippaushMtDplHnJj5TJJdPuTd26dQuDBw9GREQEHnnkEbRr1w4RERGIj4/HrVu3ihU0ERHdo9YFajkDizyZ7IRo9OjR2LZtG9asWYPr16/j+vXr+Omnn7Bt2za8/vrrroiRiMjrsKYNUcmSfcmsUqVK+OGHH9ChQwez7cnJyejduzcuXbrkzPjcjpfMiIiIlKdELpmFh4dbbQ8LC+MlMyIiIlIk2QlRq1atMHHiRNy5c8e47fbt25g8eTJatWrl1OCIiIiISoLD0+4NPvroIzz++OPQarVo1KgRNBoNUlNTERAQgA0bNrgiRiIiIiKXKta0+9u3b2Px4sX4559/IIRA/fr18fzzzyMwMNAVMboVxxARKZNOJ9XzqVWLs5qIvJHLCjOaCgwMREJCQnEeSkTkcraWveAsLSIqjOwxREREnsxyIVG9XqqQrNO5Ny4i8mxMiIhIVQpb9kINdDqpNhETPCLnYkJERKoSHGx7e1BQycbhCklJ0pIeHTtKP5OS3B0RkXowISIiVbl50/b2nJySjcPZeCmQyLVkJ0Q1atTAlStXrLZfv34dNWrUcEpQRETFVauWNJDalK+vtKCokqn9UiCRu8lOiE6fPo2CggKr7bm5uTh37pxTgiIiKi61Loyq1kSPyFM4PO1+zZo1xn9v2LABoaGhxt8LCgqwefNmREdHOzU4IqLiiI8HunaVek9q1lR+MgTcS/SGDpV6htSS6BF5CocLM/pY/tfEhJ+fH6Kjo/Hhhx/iqaeeclpwnoCFGYnIk+h06kr0iFzFZYUZ9f+7eB0TE4P9+/ejYsWKxY+SiIiKRatlIkTkCrLGEN29exfR0dE2B1UTERERKZWshMjPzw9///03NBqNq+IhIiIvwkKT5ClkzzIbMGAAklgNjIiI7hMLTZInkb24a15eHhYuXIhNmzahadOmCLIo/zpr1iynBUdEROpkr9Bk164cI0XuITsh+vvvv/Hwww8DAI4dO2Z2Hy+lERGRIworNMmEiNxBdkKUnJzsijiIiMiLGApNmiZFaig0qdNJyV6tWkzslIZrmRERUYlTY0VxjolSNocLM5rat28fVqxYgbNnzyIvL8/svlWrVjktOE/AwoxERK6jlkKTOp2UBFn2eJ0+rex2KZnc72/ZPUTff/892rRpgyNHjmD16tW4e/cujhw5gi1btpgt50FERFQUrRbo0EH5SQMX31U+2QnRBx98gNmzZ+Pnn39G6dKl8dFHHyEtLQ29e/dGZGSkK2IkIvJarNOjDFx8V/lkJ0QnTpxAt27dAAD+/v7IycmBRqPB6NGjMX/+fKcHSETkrTgmRTnUOCbK28hOiCpUqIAbN24AAKpVq4a///4bAHD9+nXcunXLudEREXkpe3V62FPkueLjpTFDycnSz/h4d0dEcsiedt+uXTts2rQJDRs2RO/evTFy5Ehs2bIFmzZtQqdOnVwRIxGR12GdHmXi4rvKJbuHaO7cuejbty8AYMKECRg7diwuXryInj17lsiSHvPmzUNMTAwCAgLQpEkTbN++vdD9t23bhiZNmiAgIAA1atTA559/7vIYHbZ/v9QXvn+/uyMpPrbBc6ihHWpoA+CUdrh9TIoaXgs1tAFQRzsU0IZiTbt3l2XLliEuLg7z5s1DmzZt8MUXX2DhwoU4cuSIzQHdp06dQoMGDZCQkIChQ4di586deOWVV7B06VL85z//ceg5XTntXqO5DaA0gDwIEejUY5cUdbUBiI72xalT7o3HUYZLKps2Afn5AFBgcq8vfHyA2FhpXEPVqq4tFmevGN3PPwPz5gEZGcCtW8DNm0C5ckBurrStVCnpS75SJenL/2TabeTBB/4+ekTXDkSlSvceGxgIvPIK0Ls3sGuX1FOSmQn4+0u37t3vtTM4GMbXsXVrKSadTnocAMTESPcfOHBvyneTJtL2mzfNHx8TI32G798P5OQAt28D2dlA2bLSfY0bA9u3A9evAw8+CBw+DNzYexg5uivQh0egcvOaqFxZamNuLhAWBmRlSc/bpAkwYID0PIbzB0hxXrkC/PEHsHCh1DNkGJNiuAxjes5NH296/nU64JtvgH/+uTcOqVYtIDUVWLdOiunyZaB0aam97dsDd+4AO3YAZY/vR9S/G5HbqCXCendEzZr3zpvleV27FrhwQXoNmjWz/3dh+hoYHm+6X04OcOwY0K6d+XEM9u2TznXt2kBQkPXrbDgPOTnAb78BGb/sQ9C/h/BAyyrIeuRp42sN3Hvdo6Ol369dA06ckP7dtKnUlgsXpOdr10762zK8LhUr2o7f1vvLVtsMxwKkv+21a6X3cKVK916TnBzp/ipVgMj9K7FzZwFuaBvgcuX60OuB8uWl90atWkCNGsDq1dIxYmOBMmXM/7Z27QK2bgX+/huoXFna1qSJtO/evVI8TZtKf/uOfkYY2hUcfO/9cfasdA59fICnnpLeCzt2SH9T0udTPqQLU9JAq3LlpL/tUqWkWOfMKfp55ZD9/S2KIT8/X6xYsUJMmTJFvPvuu+KHH34Qd+/eLc6hZGnevLkYNmyY2ba6deuK8ePH29z/jTfeEHXr1jXbNnToUNGyZUuHnzMrK0sAEFlZWfIDtuX0aSH27xdAgQD0AhD/+1kgxP790v2eTrVtMGmHh7dh4UJhErPjNx8f6bHOjsXHx/r4rVsXL0Zn3zQaIQYOlH66/vn0xXqcITZ7MY4dK0R6uu1zrtHce5zp+S/e30hR8evNYh440HqfgQNt/11YvgYajbSP6X62jmNg67nsncfivg5yXzPL+C3fX/baVlJ/V8W5OfIZ4bx2md/8/Yv7KWSb3O9vyH2Cv/76S9SoUUOUKVNGPPTQQ+Khhx4SQUFBIjo6Wvz555+yA3ZUbm6u8PX1FatWrTLbPmLECPHII4/YfEy7du3EiBEjzLatWrVKlCpVSuTl5dl8zJ07d0RWVpbxlp6eLuuEFgkQwC0bf+B6AdySfvF0qm6D1I5o/OPuCO1KT7+/L3dfX/Mv1/uNxfKD0ddXiEWLSubD21tuPj73XjNb59zy/O/dW1IJoO3b2rWOfWH6+BQe5969Upv37nX/a2DrptHY/vtPTy/6dfLkW2GfEa5u18iRzvlsEkJ+QiR7DNFLL72EBx98EDqdDgcPHsTBgweRnp6O2NhYDBkyRO7hHHb58mUUFBQgPDzcbHt4eDgyMjJsPiYjI8Pm/vn5+bh8+bLNxyQmJiI0NNR4q169unMaYLB4MaTLM5YL4Wqk7YsXO/f5XEHVbQAADU7Dc4uHHD8ufXQUlzOLxdkb+Lt6tXOOTxK9/t5rZuucmyookC5T3M/fyP369dfCYzTQ6wuPc+dO6WcRQ0XdRgj7A9+Lep08WWGfEa5u108/ue7YRZGdEP3xxx9ITExE+fLljdvKly+P999/H6mpqc6MzSaNxvwLTAhhta2o/W1tN5gwYQKysrKMt/T09PuM2MLzzwPIA2D5KSCk7c8/79zncwVVtwEABKKjfUs4IMfVqgUU8idfJGcOzLU38LdHD+ccnyQ+PvdeM1vn3JSvL9C27f39jdyvJ54oPEYDH5/C42zTRvrZrp1z4nI2jcb+wPeiXidPVthnhKvb9cwzrjt2UWQ3q06dOrh48aLV9szMTNR04fSHSpUqwdfX16o3KDMz06oXyKBKlSo29y9VqhQqVqxo8zH+/v4oW7as2c3ZxIE0SF/Ehi9j6d/SdmVQZxtg/N2TB1ZrtcCCBcV7rLOLxdkrRvfii/cGuZYkW1+uPj7AwIEl9eVUvG4ZQ9z2Yhwz5t6/Lc+5aVJhOP/NmhX/b8RRhvNqec4HDpQG1Fr+XVju6+Mj7bNgwb39LI9jGFjdrJn0uyMxSVzfPabRSLHbK8Zo+Trdn5Lr7ivqM8K57TLn7+/8gdVyyJ5ltm7dOrzxxhuYNGkSWrZsCQDYvXs3pkyZgqlTp6Jt27bGfZ2dTLRo0QJNmjTBvHnzjNvq16+PZ555BomJiVb7v/nmm1i7di2OHDli3Pbyyy8jNTUVKSkpDj2nS2aZ6XRAs2bQZJyEcYZWlRrSFAqlFLBQZRuAaJzGqXR/RbTh3iyzAuTnC5hf/tPDx8cHsbG+xllmrlxA094CnT//DHz22b2ZYjk50sySO3ekGTx+fv+bZRaaC83Jf3FSxCAPfvBHLqKRjrAW0ci4FoibN6WZMy+/LM0yS0mRnu/SJWmGVEAA0K3bvXYGBUmF8QCgVat7M5wMb/voaOn+AwekWTEPPCDNuomOlmI0fXx0tLTfgQPSfbduSbPMQkKkx8XGSpd2rl8H6lW7jrR525DtXxk3w6IgMi4iLD8Dlf/TDhUjQ5CXJ83yycqSnvfhh4G4OOl5TGdApaTcm2U2f750icKQQJjOMrM1a8pyltm33wJHj0rrhUVHS/ukpgLr1wMVKgBXr0qzfM6ckXpicjOvY8esvQgNKkBk83DkpR5B5ZwzqDlzGKKbVLR5Xn/+WXqNu3WznmVmGpfpa2B4vOl+N29KP9u0sT/LbOdO6XjBwdavs+E83Dx9CVte+QEZAdEIqhuJGmeSkXVNjxOPvoQHGpYBcO91N51ldvKk9O8mTaSk7sIF6fnatJH+tgyvS8WKtuO39f6y1TbDsQDpb+qXX4C8PGkGYsWK0nPk5AC4lYMqG7+FtmIOUio9jax/M3H1dgAK6jRAuTB/XLwozbiLjpYuNeXnAw0aSOfG9G8rJUUqFnnkiDSLTaOR7m/YUJodVqWK1OacHMc/IwztCgq69/44e1a6pObrK/0tpKUBv2/Lx51cPaSZZQWQ+mGkz6py5Xw9apaZ7ITIx+S/MIbLTpaXoQyXsQoKCqwPcB8M0+4///xztGrVCvPnz8eCBQtw+PBhREVFYcKECTh37hy++eYbAPem3Q8dOhQJCQlISUnBsGHDPGPafW6u9Emu0UgXovPypPRYSdgGz6GGdqihDYDT2uHW1dPV8FqooQ2AOtrhpjbI/f6WXak6OTm5WIE5Q58+fXDlyhVMmTIFFy5cQIMGDbBu3TpERUUBAC5cuICzZ88a94+JicG6deswevRofPrpp4iIiMDHH3/scDLkUqZ/DBqN8v7AAbbBk6ihHWpoA+C0dri1UrUaXgs1tAFQRzsU0gZFFWZ0B1cWZiQissetPURUbIUVaaSSJff7W6Fj4ImI1I2rpytPUpKUxBqqgpfAalbkROwhKgJ7iIjInQobsEuegz16nsflY4iIiKjkcPV0ZXDrmC9yCl4yIyIit9HppCnhOp27I7k/9oqUurA8HzmZ7IRo0qRJOHPmjCtiISIiL6KmMTcc86V8sscQNWnSBH/88Qfat2+P+Ph49OzZEwEBAa6Kz+04hoiIyPnUOuaGY748h8tnmR04cAAHDx5EbGwsRo8ejapVq+Lll1/Gvn37ihUwERF5n8LG3CiZVitVBWcypDzFGkMUGxuL2bNn49y5c/jyyy9x7tw5tGnTBg0bNsRHH32ErKwsZ8dJREQqwjE35Gnua1C1Xq9HXl4ecnNzIYRAhQoV8Nlnn6F69epYtmyZs2IkIiKV4Zgb8jTFqkN04MABLFq0CEuXLoW/vz8GDBiAl156ybja/Ycffojp06fj4sWLTg+4pHEMERGR63DMDbmKyxd3jY2NRVpaGrp06YKEhAR0794dvoYU/38uXbqE8PBw6C0vECsQEyIiIiLlcXlhxl69emHw4MGoVq2a3X0qV66simSIiIiIvIOsMUR3797FokWLOGiaiMhN1FLIkMjTyEqI/Pz8kJubC41G46p4iIicQo2Jg5oKGRJ5GtmzzF577TVMmzYN+fn5roiHiOi+qTFx0OmAIUPu1e7R64GhQ9WV8BG5k+wxRHv27MHmzZuxceNGNGzYEEFBQWb3r1q1ymnBERHJZS9x6NpV2bOYuHgokWvJTojKlSuH//znP66IhYjovqk1cTAUMrRc6oKFDImcQ3ZCtGjRIlfEQUTkFMHBtrdbdGYrjqGQ4dChUoLHQoZEziU7ISIi8mQ3b9renpNTsnG4Qny8dOmPhQyJnK9YCdEPP/yA5cuX4+zZs8jLyzO77+DBg04JjIioONR+aUmrZSJE5AqyZ5l9/PHHGDRoEMLCwnDo0CE0b94cFStWxMmTJ/HEE0+4IkYiIodxjSwiKg7ZS3fUrVsXEydORL9+/RASEoI//vgDNWrUwDvvvIOrV69i7ty5rorVLbh0B5EycY0sIu8m9/tbdg/R2bNn0bp1awBAYGAgbty4AQCIi4vD0qVL5R6OiMgltFqgQwcmQ0TkGNkJUZUqVXDlyhUAQFRUFHbv3g0AOHXqFGR2NhERERF5BNkJUceOHbF27VoAQHx8PEaPHo3OnTujT58+6NGjh9MDJCIiInI12WOI9Ho99Ho9SpWSJqgtX74cO3bsQM2aNTFs2DCULl3aJYG6C8cQERERKY/c72/ZCZG3YUJERO6i00mVt2vV4lgoIrnkfn8Xqw7R9evXsXfvXmRmZkJvUSN/wIABxTkkERGZSEq6tyabj49USiA+3t1REamX7B6itWvX4vnnn0dOTg5CQkKg0WjuHUyjwdWrV50epDuxh4iISppOB0RFWReXPH1a2T1F7PGikuTyafevv/46Bg8ejBs3buD69eu4du2a8aa2ZIiIyB0KW6BWqZKSpCSvY0fpZ1KSuyMiMif7ktm5c+cwYsQIlClTxhXxEBF5PbUtP6LT3bv8B0g/hwwBQkKA1q3ZW0SeQXYPUdeuXbF//35XxEJERLC//AgAJCdLCYaS2Orx0uuBPn3YW0SeQ3YPUbdu3TBu3DgcOXIEDRs2hJ+fn9n9Tz/9tNOCIyLyVpYr22/YcG9ckdIGWdvq8TLQ64GhQ6W2sqeI3En2oGofH/udShqNBgUFBfcdlCfhoGoicjc1DLJOSpISH3tfEcnJ0lIrRM7i8kHVhsKMtm5qS4aIiDyBGgZZx8dLCdzy5YDJ5GQA0u9KHR9lSadT5mVNKkZCREREJctwycmUEgdZa7VAq1bW2y0TJKXiTDplc2gM0ccff4whQ4YgICAAH3/8caH7jhgxwimBWbp27RpGjBiBNWvWAJDGKn3yyScoV66czf3v3r2L//73v1i3bh1OnjyJ0NBQPPbYY5g6dSoiIiJcEiMRkSsYBlkbLjkZBlkr5XKZqePHAcuBGnq91NulxPYY2JpJx7FRyuLQGKKYmBjs378fFStWRExMjP2DaTQ4efKkUwM0eOKJJ6DT6TB//nwAwJAhQxAdHW1caNZSVlYWnnvuOSQkJKBRo0a4du0aRo0ahfz8fFmz5DiGiIg8hU53b5C1Ur9k1TAeypbkZKlnyNZ2jo1yD1WuZZaWlob69etj9+7daNGiBQBg9+7daNWqFf755x/UqVPHoePs27cPzZs3x5kzZxAZGenQY5gQESkTqyJ7LtMB1obeLqXMmLPHVqIHADNmAGPHuicmb+fyQdXukJKSgtDQUGMyBAAtW7ZEaGgodu3a5fBxsrKyoNFo7F5mA4Dc3FxkZ2eb3YhIWTiWw7MZBlgnJ0s/lZ4MAVLSPXWq9fbx4znAWilk1yEaM2aMze0ajQYBAQGoWbMmnnnmGVSoUOG+gzPIyMhAWFiY1fawsDBkZGQ4dIw7d+5g/Pjx6N+/f6GZYmJiIiZPnlzsWInIvTiWQxm0WvW9Hk2bWm8zzAZUW1vVSHZCdOjQIRw8eBAFBQWoU6cOhBA4fvw4fH19UbduXcybNw+vv/46duzYgfr16xd6rEmTJhWZfOzbtw8AzBaRNRBC2Nxu6e7du+jbty/0ej3mzZtX6L4TJkwwS/qys7NRvXr1Ip+DiDxDYVPU+aVErqS2JVe8jeyEyND7s2jRImNPS3Z2NuLj49G2bVskJCSgf//+GD16NDZs2FDosYYPH46+ffsWuk90dDT+/PNPXLx40eq+S5cuITw8vNDH3717F71798apU6ewZcuWIq8j+vv7w9/fv9B9iMhz8UuJ3EWrBeLigK+/vrfthReYiCuF7EHV1apVw6ZNm6x6fw4fPowuXbrg3LlzOHjwILp06YLLly87JUjDoOo9e/agefPmAIA9e/agZcuWhQ6qNiRDx48fR3JyMipXriz7uTmomkh5TAft+vhIYzvGjXN3VKR2ap1Bp1QuH1SdlZWFzMxMq+2XLl0yDkAuV64c8vLy5B7arnr16uHxxx9HQkICdu/ejd27dyMhIQFPPfWUWTJUt25drF69GgCQn5+P5557Dvv378eSJUtQUFCAjIwMZGRkODU2IvI88fFSEmToKRo/ngOryfXUUFHcm8lOiJ555hkMHjwYq1evhk6nw7lz57B69WrEx8fj2WefBQDs3bsXtWvXdmqgS5YsQcOGDdGlSxd06dIFsbGx+Pbbb832OXr0KLKysgAAOp0Oa9asgU6nQ+PGjVG1alXjTc7MNCJSHp0OePNN64HVnO1DrqSWiuLeSvYls5s3b2L06NH45ptvkJ+fDwAoVaoUBg4ciNmzZyMoKAipqakAgMaNGzs73hLHS2ZEysMieeQuaqyxpFQlVpjx5s2bOHnyJIQQeOCBBxAcHFycw3g8JkREyjNjBvDGG+bbOJaDSooaKoqrgdzvb9mzzAyCg4MRGxtb3IcTEbmETieNGbI0dSq/nDyNmqqJ63SAYTRG69bsiVSiYiVE+/btw4oVK3D27FmrAcqrVq1ySmBERMVha2ArYLtonlJYftkqPXkApEtLhgKaPj7S4rVKvbSUlAQkJNxbtFajAaZNk/7m1JDseQvZg6q///57tGnTBkeOHMHq1atx9+5dHDlyBFu2bEFoaKgrYiQicpitga0+Psod2JqUBERGAn36SLfISOXPmLNXTVyJg94NbTEdfCKEdMmWS8coi+yE6IMPPsDs2bPx888/o3Tp0vjoo4+QlpaG3r17O7xgKhGRq2i1Um+DaRF7IYAi6sR6JHtftkOGKDN5MFDT9HR7PZIGSk72vI3shOjEiRPo1q0bAKmqc05ODjQaDUaPHo358+c7PUAiIrm6drVOiJT4pWTvy1avV2byYKCm6em22mJJqcmet5GdEFWoUAE3btwAIFWt/vvvvwEA169fx61bt5wbHRFRMailB8Lel61Go8zkwcDQi+frK/1umJ6uxLE2hrYUlhQpNdnzNrITonbt2mHTpk0AgN69e2PkyJFISEhAv3790KlTJ6cHSEQkl1p6IOx92Sr1EqCp+HipDEJysvRTqQOqASn2M2eA5cuBzz6TeiMNr5mSkz1vI3uW2dy5c3Hnzh0A0srwfn5+2LFjB3r27Im3337b6QESEcllSCRM1zNLTFTml1J8PBAbC/xvGUejhATp0qAS22SqeJXwPI9WC2RnA6++em/m3NixwMiRyn+NvEWxCzN6CxZmJFKumTPvLeGh5Kndy5dLM8xsbe/Vq+TjcQY1TbsHuLCrJyqxwoyZmZnIzMyE3uJCPYs1EpEnsLeemRp6VZTO3rR7Jb82hY1bU2qbvI3shOjAgQMYOHAg0tLSYNm5pNFoUFBQ4LTgiIiKS01fUK1bW2/z8QFatSr5WJxBTa+NgWHcmmW79u1j1WqlkD2oetCgQahduzZ27dqFkydP4tSpU8bbyZMnXREjEZFsahlYDUgDqE3LCABAXJzykwdTSn1tDLRaqTq1pQkTlFfuwVvJTohOnTqF6dOno0WLFoiOjkZUVJTZjYjIE6hlaret4owA8O23yv2i1WqlteXUNhOrSRPrbUos9+CtZCdEnTp1wh9//OGKWIiInEoNU7vVWJwxKUlagNcwoHrqVGn8UHKycpM8QOr5suzJU3rPlzeRPcvs8uXLGDhwIJo3b44GDRrAz8/P7P6nn37aqQG6G2eZESmP2lZRt5y9BEiJxJkzymufrfb4+Eg9YEIoe8aZrUVeFyxQZlvUwOWzzHbt2oUdO3bg119/tbqPg6qJyN3UNp3bcOnPdFaWRiNtU1oyBNju8TL9XakzzuytO3f1qvtiInlk9xBFR0fjqaeewttvv43w8HBXxeUx2ENEpBxqrgWj0wEpKdK/o6OBmzeV2QNmr8fLUnKysmZnJSdLq9tbUmpPnhrI/f6WPYboypUrGD16tFckQ0SkLGpZw8wWrVYqwpidDbRsKX35RkVJPWJKYmuwuxrG3dhbd07JY728jeyEqGfPnkhOTnZFLERE90WN07lN2StoqLSByJaD3RcsUP5sQHvT7tX096d2sscQ1a5dGxMmTMCOHTvQsGFDq0HVI0aMcFpwRERyWK5hptQvV3vUVNBQq70Xc3y8NGbo33+l5EFpbTEYO1YaN2SYQae2vz+1kz2GKCYmxv7BNBrVFWfkGCIi5dHplP/laouax0ipiVr//pTG5bPMTp06VazAiIhKimnvg5qovQdMLdT696d2xV7clYiISp5aLi+pmZrqYHkThxKiMWPG4N1330VQUBDGjBlT6L6zZs1ySmBERGQbeyA8k04HfPQR8OGHyi8y6Y0cSogOHTqEu3fvGv9tj8Zy7iQREZEXMC0IaqDUIpPeSvagam/DQdVERK6l9EtMRRWbVFqRSbVweWFGIiIiZ0lKkpKJjh2ByEhgxgx3RySfvQV4AdYhUhImREREHk6nU/5K8LZYFpoUAnjjDWDmTPfGJZe9KtWANBtww4aSjYeKhwkREZEHM+1BUeJSHYWx17Py5pvKSv60WqCw+UZKrCbujZgQERF5KLUs1WFPrVrW65gBylz/a+RI220B1LOentoxISIi8lBqXqwWUNf6X1qt+ZpsppTYHm/EhIiIyEOpebFaw7iofv2kgdSGdiq5+rZh0dqxY9XRHm/DhIiIyENptUBcnPm2Tp3cE4szWY6LKl8eOHNGSpBOn1Z2IUOtVkrw1NIeb8I6REVgHSIichd79W2UXAGZC9RSSWEdIiIilbA3C0vJg6vVPi7KQK2lEtSMCRERkYcqqr6NEpMINY+LMlBzqQQ1U0xCdO3aNcTFxSE0NBShoaGIi4vD9evXHX780KFDodFoMGfOHJfFSETkTFqtdGnMVlKk1CTC0CbDbCy1DTpWe6kENVNMQtS/f3+kpqZi/fr1WL9+PVJTUxFnOdrQjh9//BF79uxBRESEi6MkInKu+HhpgO7YsepJIgyzsZKTgZQUoEYN9SQM3nJJUI0UkRClpaVh/fr1WLhwIVq1aoVWrVphwYIF+Pnnn3H06NFCH3vu3DkMHz4cS5YsgZ+fXwlFTETkPIaZS4YkQg0zl7Ra4MQJoGVLdV1a8oZLgmqliIQoJSUFoaGhaNGihXFby5YtERoail27dtl9nF6vR1xcHMaNG4cHH3zQoefKzc1Fdna22Y2IyBNotdKq6UrtGTKl1ktLar8kqGal3B2AIzIyMhAWFma1PSwsDBkZGXYfN23aNJQqVQojRoxw+LkSExMxefLkYsVJRESF0+mky0qXLtm/tKT05CE+HujaVWpLzZrKb4+3cGsP0aRJk6DRaAq97d+/HwCgsbFIjBDC5nYAOHDgAD766CN89dVXdvexZcKECcjKyjLe0tPTi9c4IiIyYzr7ql8/67W/1HRpSU29ed7CrT1Ew4cPR9++fQvdJzo6Gn/++ScuXrxodd+lS5cQHh5u83Hbt29HZmYmIiMjjdsKCgrw+uuvY86cOTh9+rTNx/n7+8Pf39/xRhARlQBDz0qtWsr8krV1icww1kYI6d+8tETu5NaEqFKlSqhUqVKR+7Vq1QpZWVnYu3cvmjdvDgDYs2cPsrKy0Lp1a5uPiYuLw2OPPWa2rWvXroiLi8OgQYPuP3giohKSlHQvmVBqlWpbs6/0evsrxBOVNMUs3fHEE0/g/Pnz+OKLLwAAQ4YMQVRUFNauXWvcp27dukhMTESPHj1sHiM6OhqjRo3CqFGjHH5eLt1BRO6klqUu7C1DYkqJ7SLPpdqlO5YsWYKGDRuiS5cu6NKlC2JjY/Htt9+a7XP06FFkZWW5KUIiIudTS10by9lXtopNKrFdpB6K6SFyF/YQEZE72epZ8fGRijUqsSdFp5OSnqAgqQaR0nu+yHOptoeIiMjbGAZST51qPtZGCGDDBvfFdT8Ms6+aNQOmTbvXU8R6PeRuiqhDRETkbUwHUlsOPBZCKmLYtatyE4ikJODNN++1LzFReQPFSV3YQ0RE5GEsp6gLId1MKXm8ja32TZig/CrVgNSG5GR1tMXbMCEiIvIwtgZSW1JyEUO1DBS3ZFp4Ui1rs3kTJkRERB7G1gKhppRcxFCnk5btsNW+fftKPh5nUevabN6ECRERkYfRaqUBx2pj6EHp08d2D5iSL5uptdfLmzAhIiLyQGPHAtOn2+5JUWLvg2UPii1KTiBs9eop+bKmN2JCRETkocaNk+oNzZplfZ/Skge1j4uyLDzJMgLKw4SIiMiDabVAr17K732w1YOi0agrgYiPlwpLLl8OfPedVBaBlIMJERGRh1u61LpStdKSB1tLd0ybBqSkSD1gKSnqqEO0YQPQt680Tqp6deCtt9wdETmKS3cUgUt3EJE7/fe/wPvvm29T8tIdM2eaF2QEpDpEPj5SwqTkpMjeAra9ekm9RlSyuHQHEZFKvPWWdTIESF+4Sho/ZKDT3UuGAPOCk0ocKG7J3jipFSuUXVLAWzAhIiLyQDNnAh98YPs+Hx9ljR8yKGpgtdIGiluqVcv+fTt3llwcVDxMiIiIPIyhJ8WeqVOVebmsqIKTShsobkmrBf7v/2zf16ZNycZC8jEhIiLyMIX1pGg0QIUKJRuPsxRWcFINs8wA6RJnr17m2wYOBJo1c0885DgOqi4CB1UTUUmzNzjXwNdXmt6t1ORhxgxg/HipfT4+wJgxwMiRym2PLfv2SZfJ2rRhMuQucr+/mRAVgQkREbnDzJlSYUZ7kpOBDh1KLByn0+mk8UI1a6orESLPIff7u1QJxERERDKNHQvs2QP88IP1fUofawNISRATIfIkHENEROSBdDpg1Srr7WoZa0PkadhDRETkgewNrF661HrQLhHdP/YQERF5IHurp7dq5Z54iNSOCRERkQfyptXTdTppkLiSq1SbUlt7vAUTIiIiD2VYPT05Wfqp5HW+7ElKkkoMdOwo/UxKcndE90dt7fEmnHZfBE67JyJyPp0O2LVLWhne9FtIyTWWbNWPUnJ7lI6LuxIRkUcz9KL06WOeDAHKXs/M1kB4JbfH2zAhIiJSALWMS9HpgCFDCq/CrdQaS/bWatu/v+RjIfmYEBEReTg1jUspbJ02pQ8c12qlhXctjR+v/ETWGzAhIiLyYJY9Kno9MHSocr9g7ZUTWL5cHQPHMzOtt/GymTIwISIi8mBqG5dir5xAr17K7Rky0OmAWbOst2s0QFBQycdD8jAhIiLyYPZ6VJQ6zgZQbzkBe5cDhQBatlT2pU5vwISIiMiDqbVAo1YLdOig/HaYsjeoGlD+pU5vwISIiMjDqbVHRW0sk1dLSr7U6Q2YEBERKYAae1TUyJC8Ll8ujR0ypfRLnWrH1e6JiDyUTieNS6lVS32JkKFSNQC0bq2u9mm10iDx7GzpMllBgXoudaoZEyIiIg+UlHRvur2Pj3QpRi2XypKSgISEe1WqNRpgwQL1tM8gPh7o2lW6TFazJpMhT8e1zIrAtcyIqKSpeU0snQ6IjLReskMt7SPPodq1zK5du4a4uDiEhoYiNDQUcXFxuH79epGPS0tLw9NPP43Q0FCEhISgZcuWOHv2rOsDJiIqJrXVHjJ1/Lh1MgSop32kXIpJiPr374/U1FSsX78e69evR2pqKuLi4gp9zIkTJ9C2bVvUrVsXW7duxR9//IG3334bAQEBJRQ1EZF8aqw9ZDBvnu3tamkfKZciLpmlpaWhfv362L17N1q0aAEA2L17N1q1aoV//vkHderUsfm4vn37ws/PD99++22xn5uXzIjIHZKSrAfkKn2Mzb59QPPm1tvVOoaI3EuVl8xSUlIQGhpqTIYAoGXLlggNDcUuwzQFC3q9Hr/88gtq166Nrl27IiwsDC1atMCPP/5Y6HPl5uYiOzvb7EZEVNLUWHto+3bb20eNUkf7LOl00uvHYozKoIiEKCMjA2FhYVbbw8LCkJGRYfMxmZmZuHnzJqZOnYrHH38cGzduRI8ePdCzZ09s27bN7nMlJiYaxymFhoaievXqTmsHEZEcaqs91K6d7e0ffaS+ZS2SkqSB8R07Sj/V1j41cmtCNGnSJGg0mkJv+/fvBwBoLCtcARBC2NwOSD1EAPDMM89g9OjRaNy4McaPH4+nnnoKn3/+ud2YJkyYgKysLOMtPT3dCS0lIqJmzYCBA623q21ZC51OKitgGBiv10slFNTSPrVyax2i4cOHo2/fvoXuEx0djT///BMXL160uu/SpUsIDw+3+bhKlSqhVKlSqF+/vtn2evXqYceOHXafz9/fH/7+/g5ET0REcn31FdCiBfDKK+bbDbPM1NAbtmuX9Uw6vR5ISZEKNpJncmtCVKlSJVSqVKnI/Vq1aoWsrCzs3bsXzf83Im/Pnj3IyspC69atbT6mdOnSaNasGY4ePWq2/dixY4iKirr/4ImIXEytlaq7dweGD7eus8RZZuROihhDVK9ePTz++ONISEjA7t27sXv3biQkJOCpp54ym2FWt25drF692vj7uHHjsGzZMixYsAD//vsv5s6di7Vr1+IVy/+aEBF5GDWPQdFqAcuqKS+8oJ6kLybG9vbo6BINg2RSREIEAEuWLEHDhg3RpUsXdOnSBbGxsVbT6Y8ePYqsrCzj7z169MDnn3+O6dOno2HDhli4cCFWrlyJtm3blnT4REQO0+nuLdsBqHOMzTffmG/79lv1tO/mTdvbc3JKNg6SRzFrmVWoUAGLFy8udB9bJZUGDx6MwYMHuyosIiKnK6xStRp6UdQ+xiY42Pb2oKCSjYPkUUwPERGRt+AXqrKxh0iZmBAREXmYU6dsbz99ukTDcJnWraXq1KY0GqBVK/fE42xqXnpFzZgQERFRidJqpaU6DEmDj4/0uxouBwJSO+bPl5Ig4N7SK2ppn1opYi0zd+JaZkRU0nQ6IDLSfJyNjw9w5oy6vlR1OmlcVM2a6mqXgdrb5+lUuZYZEZE3MfSgmPYwzJ+vzi9VNf+XXG1Lr6gdEyIiIg+kxsVdTam5zpIpLvCqHLxkVgReMiMici6dTkqCLCtVnz6trt6UpKR79aR8fKRePrUltp6Ml8yIiMijFVZnSS3UXlxTjZgQERFRifKGaenekPSpDRMiIiIqUd4wLd0bkj61YUJEREQlTu2Dxr0h6VMbDqouAgdVExFRcbEWkfvI/f5WzOKuRERESqPVMhFSCl4yIyLycKxlQ+R6TIiIiDyYtxQwJHI3JkRERB7KG2rZsPeLPAUTIiIiD6TTAcuXq7uWDXu/yJMwISIi8jCGROH1163vU0stG2/o/SJlYUJERORBLBMFU2qqZcNKzuRpOO2eiMiD2EoUAGD2bOC559SRDAH3KjlbLvCqht4vUib2EBEReRB7Sz6oKRkCWMmZPA8TIiIiD+JNiYLal+8gZeHSHUXg0h1E5A5c8oHo/nDpDiIiFeCSD0Qli5fMiIiIyOsxISIiIiKvx4SIiIiIvB4TIiIiIvJ6TIiIiIjI6zEhIiIiIq/HhIiIiIi8HhMiIiIi8npMiIiIiMjrMSEiIiIir8eEiIiIiLwe1zIrgmHt2+zsbDdHQkRERI4yfG87uoY9E6Ii3LhxAwBQvXp1N0dCREREct24cQOhoaFF7qcRjqZOXkqv1+P8+fMICQmBRqNxdzgeJzs7G9WrV0d6ejrKli3r7nC8Gl8Lz8HXwjPwdfAc7ngthBC4ceMGIiIi4ONT9Agh9hAVwcfHB1qt1t1heLyyZcvyA8dD8LXwHHwtPANfB89R0q+FIz1DBhxUTURERF6PCRERERF5PSZEdF/8/f0xceJE+Pv7uzsUr8fXwnPwtfAMfB08hxJeCw6qJiIiIq/HHiIiIiLyekyIiIiIyOsxISIiIiKvx4SIiIiIvB4TIiqWxMRENGvWDCEhIQgLC8Ozzz6Lo0ePujssr5eYmAiNRoNRo0a5OxSvdO7cObzwwguoWLEiypQpg8aNG+PAgQPuDsvr5Ofn47///S9iYmIQGBiIGjVqYMqUKdDr9e4OTfV+//13dO/eHREREdBoNPjxxx/N7hdCYNKkSYiIiEBgYCA6dOiAw4cPuydYC0yIqFi2bduGV199Fbt378amTZuQn5+PLl26ICcnx92hea19+/Zh/vz5iI2NdXcoXunatWto06YN/Pz88Ouvv+LIkSP48MMPUa5cOXeH5nWmTZuGzz//HHPnzkVaWhqmT5+OGTNm4JNPPnF3aKqXk5ODRo0aYe7cuTbvnz59OmbNmoW5c+di3759qFKlCjp37mxcN9SdOO2enOLSpUsICwvDtm3b8Mgjj7g7HK9z8+ZNPPzww5g3bx7ee+89NG7cGHPmzHF3WF5l/Pjx2LlzJ7Zv3+7uULzeU089hfDwcCQlJRm3/ec//0GZMmXw7bffujEy76LRaLB69Wo8++yzAKTeoYiICIwaNQpvvvkmACA3Nxfh4eGYNm0ahg4d6sZo2UNETpKVlQUAqFChgpsj8U6vvvoqunXrhscee8zdoXitNWvWoGnTpujVqxfCwsLw0EMPYcGCBe4Oyyu1bdsWmzdvxrFjxwAAf/zxB3bs2IEnn3zSzZF5t1OnTiEjIwNdunQxbvP390f79u2xa9cuN0Ym4eKudN+EEBgzZgzatm2LBg0auDscr/P999/j4MGD2Ldvn7tD8WonT57EZ599hjFjxuD//u//sHfvXowYMQL+/v4YMGCAu8PzKm+++SaysrJQt25d+Pr6oqCgAO+//z769evn7tC8WkZGBgAgPDzcbHt4eDjOnDnjjpDMMCGi+zZ8+HD8+eef2LFjh7tD8Trp6ekYOXIkNm7ciICAAHeH49X0ej2aNm2KDz74AADw0EMP4fDhw/jss8+YEJWwZcuWYfHixfjuu+/w4IMPIjU1FaNGjUJERAQGDhzo7vC8nkajMftdCGG1zR2YENF9ee2117BmzRr8/vvv0Gq17g7H6xw4cACZmZlo0qSJcVtBQQF+//13zJ07F7m5ufD19XVjhN6jatWqqF+/vtm2evXqYeXKlW6KyHuNGzcO48ePR9++fQEADRs2xJkzZ5CYmMiEyI2qVKkCQOopqlq1qnF7ZmamVa+RO3AMERWLEALDhw/HqlWrsGXLFsTExLg7JK/UqVMn/PXXX0hNTTXemjZtiueffx6pqalMhkpQmzZtrEpPHDt2DFFRUW6KyHvdunULPj7mX2++vr6cdu9mMTExqFKlCjZt2mTclpeXh23btqF169ZujEzCHiIqlldffRXfffcdfvrpJ4SEhBivDYeGhiIwMNDN0XmPkJAQq3FbQUFBqFixIsdzlbDRo0ejdevW+OCDD9C7d2/s3bsX8+fPx/z5890dmtfp3r073n//fURGRuLBBx/EoUOHMGvWLAwePNjdoanezZs38e+//xp/P3XqFFJTU1GhQgVERkZi1KhR+OCDD1CrVi3UqlULH3zwAcqUKYP+/fu7Mer/EUTFAMDmbdGiRe4Ozeu1b99ejBw50t1heKW1a9eKBg0aCH9/f1G3bl0xf/58d4fklbKzs8XIkSNFZGSkCAgIEDVq1BBvvfWWyM3NdXdoqpecnGzzu2HgwIFCCCH0er2YOHGiqFKlivD39xePPPKI+Ouvv9wb9P+wDhERERF5PY4hIiIiIq/HhIiIiIi8HhMiIiIi8npMiIiIiMjrMSEiIiIir8eEiIiIiLweEyIiIiLyekyIiKjEnT59GhqNBqmpqe4O5b7t3LkTDRs2hJ+fH5599ll3h0NExcSEiIi8zosvvui05GXMmDFo3LgxTp06ha+++sopx3TUV199hXLlypXocxKpFRMiInJYXl6eu0O4LwUFBU5f4PPEiRPo2LEjtFqtw8mJ0s8jkRoxISIiuzp06IDhw4djzJgxqFSpEjp37gwAOHLkCJ588kkEBwcjPDwccXFxuHz5svFx69evR9u2bVGuXDlUrFgRTz31FE6cOCHruaOjo/Huu++if//+CA4ORkREBD755BOzfWbNmoWGDRsiKCgI1atXxyuvvIKbN28a7zf0oPz888+oX78+/P39MWjQIHz99df46aefoNFooNFosHXrVpsx5ObmYsSIEQgLC0NAQADatm2Lffv2Abh32e/KlSsYPHgwNBqN3R6i6OhovPfee3jxxRcRGhqKhIQEAMDKlSvx4IMPwt/fH9HR0fjwww/NHnft2jUMGDAA5cuXR5kyZfDEE0/g+PHjAICtW7di0KBByMrKMrZj0qRJAIB58+ahVq1aCAgIQHh4OJ577jlZ557IK7l7MTUi8lzt27cXwcHBYty4ceKff/4RaWlp4vz586JSpUpiwoQJIi0tTRw8eFB07txZPProo8bH/fDDD2LlypXi2LFj4tChQ6J79+6iYcOGoqCgQAghxKlTpwQAcejQIbvPHRUVJUJCQkRiYqI4evSo+Pjjj4Wvr6/YuHGjcZ/Zs2eLLVu2iJMnT4rNmzeLOnXqiJdfftl4/6JFi4Sfn59o3bq12Llzp/jnn3/E9evXRe/evcXjjz8uLly4IC5cuGB30c8RI0aIiIgIsW7dOnH48GExcOBAUb58eXHlyhWRn58vLly4IMqWLSvmzJkjLly4IG7dumW3LWXLlhUzZswQx48fF8ePHxf79+8XPj4+YsqUKeLo0aNi0aJFIjAw0GyB5KefflrUq1dP/P777yI1NVV07dpV1KxZU+Tl5Ync3FwxZ84cUbZsWWM7bty4Ifbt2yd8fX3Fd999J06fPi0OHjwoPvroI0debiKvxoSIiOxq3769aNy4sdm2t99+W3Tp0sVsW3p6ugAgjh49avM4mZmZAoBxVWtHE6LHH3/cbFufPn3EE088Yfcxy5cvFxUrVjT+vmjRIgFApKammu03cOBA8cwzz9g9jhBC3Lx5U/j5+YklS5YYt+Xl5YmIiAgxffp047bQ0FCzJMZeW5599lmzbf379xedO3c22zZu3DhRv359IYQQx44dEwDEzp07jfdfvnxZBAYGiuXLlxvbFxoaanaMlStXirJly4rs7OxCYyIic7xkRkSFatq0qdnvBw4cQHJyMoKDg423unXrAoDxstiJEyfQv39/1KhRA2XLlkVMTAwA4OzZs7Keu1WrVla/p6WlGX9PTk5G586dUa1aNYSEhGDAgAG4cuUKcnJyjPuULl0asbGxsp7X0Ia7d++iTZs2xm1+fn5o3ry5WQyOsjyPaWlpZscGgDZt2uD48eMoKChAWloaSpUqhRYtWhjvr1ixIurUqVPo83fu3BlRUVGoUaMG4uLisGTJEty6dUt2vETehgkRERUqKCjI7He9Xo/u3bsjNTXV7Hb8+HE88sgjAIDu3bvjypUrWLBgAfbs2YM9e/YAcM5gYo1GAwA4c+YMnnzySTRo0AArV67EgQMH8OmnnwIA7t69a9w/MDDQ+Bg5hBBmz2e6vTjHszyPto5jeE7Lf8t5/pCQEBw8eBBLly5F1apV8c4776BRo0a4fv267JiJvAkTIiKS5eGHH8bhw4cRHR2NmjVrmt2CgoJw5coVpKWl4b///S86deqEevXq4dq1a8V6rt27d1v9buiN2r9/P/Lz8/Hhhx+iZcuWqF27Ns6fP+/QcUuXLo2CgoJC96lZsyZKly6NHTt2GLfdvXsX+/fvR7169WS2xFr9+vXNjg0Au3btQu3ateHr64v69esjPz/fmEwCwJUrV3Ds2DHj89trR6lSpfDYY49h+vTp+PPPP3H69Gls2bLlvmMmUjMmREQky6uvvoqrV6+iX79+2Lt3L06ePImNGzdi8ODBKCgoQPny5VGxYkXMnz8f//77L7Zs2YIxY8YU67l27tyJ6dOn49ixY/j000+xYsUKjBw5EgDwwAMPID8/H5988glOnjyJb7/9Fp9//rlDx42Ojsaff/6Jo0eP4vLly2Y9SgZBQUF4+eWXMW7cOKxfvx5HjhxBQkICbt26hfj4+GK1x9Trr7+OzZs3491338WxY8fw9ddfY+7cuRg7diwAoFatWnjmmWeQkJCAHTt24I8//sALL7yAatWq4ZlnnjG24+bNm9i8eTMuX76MW7du4eeff8bHH3+M1NRUnDlzBt988w30ej3q1Klz3zETqZo7BzARkWdr3769GDlypNX2Y8eOiR49eohy5cqJwMBAUbduXTFq1Cih1+uFEEJs2rRJ1KtXT/j7+4vY2FixdetWAUCsXr1aCOH4oOrJkyeL3r17izJlyojw8HAxZ84cs31mzZolqlatKgIDA0XXrl3FN998IwCIa9euCSFsDzoWQhrk3blzZxEcHCwAiOTkZJsx3L59W7z22muiUqVKwt/fX7Rp00bs3bvXbB9HB1XPnj3bavsPP/wg6tevL/z8/ERkZKSYMWOG2f1Xr14VcXFxIjQ01NjGY8eOme0zbNgwUbFiRQFATJw4UWzfvl20b99elC9fXgQGBorY2FixbNmyQuMjIiE0Qti5UE1E5EbR0dEYNWoURo0a5e5QiMgL8JIZEREReT0mREREROT1eMmMiIiIvB57iIiIiMjrMSEiIiIir8eEiIiIiLweEyIiIiLyekyIiIiIyOsxISIiIiKvx4SIiIiIvB4TIiIiIvJ6TIiIiIjI6/0/AbXbcYU2pX4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHHCAYAAADwNpN1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+rElEQVR4nO3deXgT1foH8G9SoC0tlKVsNZSC7AqKgGwiCELdd0BURKmIK5sscvUqolAWRVDcChVFBQFRryJXQCkoUKQsvSogoGwNiyxCy1qgOb8/5jdtlpk0KZ1JzvT7eZ480Mkkc87MJPPmzDnvsQkhBIiIiIiIDGAPdQGIiIiIyLoYbBIRERGRYRhsEhEREZFhGGwSERERkWEYbBIRERGRYRhsEhEREZFhGGwSERERkWEYbBIRERGRYRhsEhEREZFhGGwSERERkWEYbBIRERGRYcI62Fy7di3Gjh2LEydOmL7t+fPn44orrkB0dDRsNhuys7OLfc24cePQvHlzuFwu4wvox8mTJzFq1Cj07NkTNWrUgM1mw9ixYzXXTU9Px2WXXYbTp08bVp5w2S9AcPsGAE6dOoWhQ4ciISEBUVFRuPrqq/H55597rGPGPgSAjz76CDabDXv27AHg//MxduxY2Gw2HD161NAylTa9z11JPo/hwujvMbOOtbqdcCmP+nlQH+XKlUOdOnVw//33Y+fOnaW2nezsbNx6661ITExEdHQ0qlWrhg4dOuDTTz8N6PXBfuesXr0at9xyC6pWrYro6Gg0atQIr776qsc6K1aswIABA9C0aVPExMTgsssuw5133omNGzeWaD0AeOSRRzz2p/dj3bp1Qa0XbJ2CWTeQ72Wj9j0AbN68GXfddRcSEhJQsWJFNG3aFOPGjcOZM2c81gv03Al2n65fvx7JycmoVKkSYmNjccMNN2DNmjW69SqpkhxrPWEfbL7yyiumB5tHjhxBv379cPnll+P7779HZmYmGjdu7Pc1Bw4cwOTJkzFu3DjY7aHdrceOHUNaWhry8/Nx1113+V23f//+iImJweTJkw0pSzjtFyC4fQMA99xzDz7++GO8/PLL+O9//4u2bduib9++mDt3buE6Ru9D1a233orMzEzUqVMHQOg+H0bR+9yV5PMYTqx2nMLN7NmzkZmZiR9++AHPPPMMvvnmG1x33XU4fvx4qbz/iRMnULduXUyYMAFLlizBnDlzkJSUhH79+uG1114r9vXBfOfMnTsXXbp0QVxcHObMmYMlS5Zg9OjREEJ4rPfee+9hz549GDJkCJYsWYLp06fj8OHDaN++PVasWBH0egDw73//G5mZmT6P+Ph4XHbZZWjbtm1Q6wVbp2DWDeR72ah9v3XrVnTs2BF79uzBtGnTsHjxYtx///0YN24c+vbt67FuoOdOMPs0KysL119/Pc6ePYtPPvkEn3zyCc6dO4fu3bsjMzPTbx2DFeyx9kuUgtOnT5fG2/iYMmWKACB2795tyPvrWb16tQAg5s+fH/BrRo0aJS677DJRUFBgYMkC43K5hMvlEkIIceTIEQFAvPzyy7rrv/766yIuLs6Q4xhO+0WI4PbNd999JwCIuXPneizv0aOHSEhIEBcvXixcZuQ+1OPv8/Hyyy8LAOLIkSOmledS6X3uSvJ5DAfquWDU95j6/mYda3U7ga5ndHlmz54tAIisrCyP5a+88ooAID788ENDt9+uXTtRt27dYtcL9DvH6XSKmJgY8eSTTxb7nn///bfPspMnT4patWqJ7t27B72enpUrVwoA4sUXXyzResHUKdB1g/leNmLfv/DCCwKA+PPPPz2WP/744wKA+Oeff4p9j0DOHb19mpycLGrVquVxrcnLyxPx8fGiY8eOxW77UgV6TngLuqlJvUWyadMm3HfffahatSouv/xyAEoTdPfu3VGpUiVUrFgRHTt2xHfffaf5PsWtO3bsWIwcORIAUL9+/cJm25UrV+LIkSN4/PHHUbduXURGRqJGjRro1KkTfvjhh2LLX9x2H3nkEVx33XUAgD59+sBms6Fr165+3/P8+fNIT0/HAw884NF6d/DgQcTGxuL+++/3WH/x4sUoX748XnjhhWLLWxLqvgrUgw8+iLy8PM3bEJdCb78Acuybr776CrGxsejVq5fH8kcffRQHDhzAL7/8Urgs0H24ZcsW2Gw2LFy4sHDZxo0bYbPZcMUVV3ise8cdd6B169aFf7vfRvf3+XD3999/o2/fvoiLi0OtWrUwYMAA5ObmBlT/P/74A3379kWtWrUQGRmJxMREPPzww8jPzy9cJ9DP/M6dO/HAAw+gZs2aiIyMRLNmzfDOO+8UPq/3ufP3eSzp94D6HbZ582bcc889qFy5MuLi4vDQQw/hyJEjQZfd/T29vxf9HadHHnkESUlJuuUL5P3d5eTkFFufQOoCAN999x2uvvpqREZGon79+nj99df97lMtxZXn559/hs1mw7x583xeO2fOHNhsNmRlZQW93TZt2gBQzn0jxcfHo1y5csWuF+h3zqxZs3D69GmMHj262HVr1qzpsyw2NhbNmzdHTk5O0OvpSU9Ph81mw4ABA0q0XjB1CnTdYL6Xjdj35cuXBwDExcV5LK9SpQrsdjsqVKhQ7HsEcu7o7dM1a9aga9euqFixYuGySpUq4frrr8fatWtx8ODBwuWBft6DEeg54SPYqFb91VqvXj0xevRosXz5cvH111+LlStXivLly4vWrVuL+fPni6+//lr07NlT2Gw28fnnn/tExsWtm5OTI5599lkBQHz55ZciMzNTZGZmitzcXJGcnCxq1Kgh0tLSxMqVK8XXX38tXnrpJZ/teAtku3/++ad45513BAAxYcIEkZmZKbZs2eL3fX/66ScBQCxZssTnuVdeeUXYbDaxYcMGIYQQGRkZIioqSjz77LMB7/NLEUjLphBCNGvWTNxzzz2lum1/+0WI8N837du3F23btvVZ/vvvvwsA4oMPPvBYHug+rFOnjnj88ccL/544caKIjo4WAMT+/fuFEEJcuHBBVK5cWYwaNapwPbUlZ/fu3X4/H0IUfU6bNGkiXnrpJbF8+XIxdepUERkZKR599NFiy5idnS1iY2NFUlKSeP/998WPP/4oPv30U9G7d2+Rl5cnhAjs8ySEEFu2bBFxcXGiRYsWYs6cOWLZsmXiueeeE3a7XYwdO1YIof+58/d5LOn3gPt32MiRI8XSpUvF1KlTRUxMjGjVqpU4f/58UGX3fk/370V/x6l///6iXr16uuXTK7P7+wdTn0Dr8sMPP4iIiAhx3XXXiS+//FIsXLhQtG3bViQmJgbVshnI/m3VqpXo1KmTz3u0bdtW87PnTq9lc8aMGQKAWLRokcdyl8slLly4ENBDS0FBgbhw4YI4fPiweOedd0S5cuXE+++/X+z+cOfvO6dbt26iWrVq4vvvvxdXXXWViIiIEDVq1BCDBg0q/Fz7c+LECREXFyfuvvvuUlsvOjpa3HjjjSVeL5g6BbpusN/LqtLa97t37xZVqlQR9913n/jrr79EXl6e+Pbbb0VcXJzutSvYc8ffPq1QoYJ4+OGHfZb37dtXABBLly4VQgT+eQ9GoOeElhIHmy+99JLH8vbt24uaNWuKkydPFi67ePGiuPLKK4XD4Shsyg5mXb3bT7GxsWLo0KHBFj3g7WZkZAgAYuHChQG976RJkwQAcejQIZ/nTp8+LRISEkT37t3F+vXrRaVKlcSjjz7qsT+MFGiw+eCDD4patWp5LHO5XOL48eM+t4bPnj0rjh8/7nG7QgghcnNzCwMRIfzvFyHCf980atRIJCcn+yw/cOBAYfDjTmsfannooYdEgwYNCv++8cYbxcCBA0XVqlXFxx9/LIQQYs2aNQKAWLZsWeF67sGmEIHdRp88ebLH8qeeekpERUUVu4+7desmqlSpIg4fPqy7TqCfp+TkZOFwOHy+tJ955hkRFRVVeNtJ73Ont7yk3wPqvhk2bJjH8s8++0wAEJ9++mnhskDLrve9KIT+cSpJsKn1/oHWJ9C6tGvXTiQkJIizZ88WrpOXlyeqVasWVLAZyP5Vz+nNmzcXLlu/fr0AUPhZ0KO+dt26deLChQvi5MmT4vvvvxe1a9cW119/vU/QqJ5HgTy0PlODBg0qfL5ChQri3XffLXZfePP3ndOkSRMRFRUlKlWqJCZMmCAyMjLE5MmTRXR0tOjUqVOxn9kHH3xQlCtXrvDH+6Wu99577wkAYt68eSVeL5g6BbpusN/LqtLc99u2bRNNmzb1OGcGDx6se4yCPXf87dOrr75aNG7c2KNr2oULF0SDBg08uhcE+nkPRqDnhJYSB5v/+9//CpedOnVK2Gw28dRTT/msrwYc27ZtC3pdvS9p9UL46quviszMTI9fynqC2W6wweaQIUOEzWbzCb5UH374oQAgYmJiRO/evXXXc992IA/3L2g9gQabw4YNEzabzeML+uDBgwKA6N+/v8e66jmQmZnpsbxWrVriqquuKvy7uP0iRHjvm0aNGombbrrJZ7n6pZaamuqxXGsfalEvkrt27RJnz54VUVFRYtGiReKee+4RDz30kBBCafWNjIwUZ86c8XldMMHmH3/84bH8/fff9/sDQAjlR0BERIRH66u3QD9PZ8+eFeXKlRPPPvusT+vRkiVLPFq+gw02S/I9IETRvvG+2F64cEGUK1dOpKSkCCFEUGXX+l5UlWawqfX+gdQn0LqcOnVK2O128cwzz/hsp3///kEFm8XtXyGEOHfunKhZs6Z47LHHCpf169dP1KhRQ5w7d87vdtTPg/ejWbNm4vjx4z7r5+XliaysrIAe+fn5Pq/fu3evyMrKEt9995144oknhN1uF1OmTCl2f7jz953TqFEjze+VadOmCQBi+fLluu/74osvCgDi7bff9rv9QNcTQog2bdqI6tWrF3sc/K0XTJ0CXTfY72VVae373bt3i4YNG4pOnTqJL774QqxatUpMnjxZVK5cWQwYMEBz28GeO/72aXp6ugAgnnzySeF0OsW+fftESkqKiIiIEADE559/HtR3lxDCZx29oDnQc0JL8R1OdKgjYgHg+PHjEEJ4LFMlJCQAUEaFBbuunvnz5+O1117DrFmz8O9//xuxsbG4++67MXnyZNSuXVvzNaWxXT1nz55F+fLlERERofm8OnLWZrPho48+0l0PAJo0aYKZM2cGtN3ExMTgC6sjKioKQgicO3cOsbGxpfKexe0XILz3TfXq1TXPiX/++QcAUK1aNY/lge7DG2+8EQDwww8/oH79+rhw4QK6deuGv//+uzDNxg8//IBOnTohOjr6kuvgLjIyEoBybPQcP34cBQUFcDgcftcJ5PNUqVIlXLx4EW+//TbefvttzfcqaYqcknwPuPNep1y5ch7H/NixY0GXXWt/lCZ/7++vPoHW5fjx43C5XJr7L5B9Gmh5VJGRkRg0aBDeeOMNTJkyBRcuXMCCBQswfPjwwnO1OHPmzEGzZs1w8uRJzJ8/Hx988AH69u2L//73vx7rxcbG4uqrrw7oPbX60yUmJhZ+r9xyyy0AgDFjxqB///6oUaNGQO/rT/Xq1bFz504kJyd7LL/55psxdOhQbNq0qfC7w90rr7yC1157DePHj8czzzyj+/6BrgcAv/76KzZs2IAhQ4b4PQ7FrRdMnQJdN9jv5UAEU87nn38eeXl5yM7ORkxMDADg+uuvR3x8PAYMGICHH34YXbp08XifYM6d4vbpgAEDcOTIEbz22mt47733AAAdOnTAiBEjMGnSJFx22WVBfXft2bMH9evX93guIyPDZ6xKoOeEnhIHm+6dbqtWrQq73e7RMVV14MABAEqH2GDX1RMfH49p06Zh2rRp2LdvH7755hs8//zzOHz4ML7//nvN15TGdv2V5/z58zh9+nThyafKzs7Gbbfdhk6dOmHNmjX48MMP8fTTT+u+V506dfDYY4+VqByX4p9//kFkZKRHkFS7dm3N9BRjx47VzFV26NAhj7/97Rcg/PdNixYtMG/ePFy8eNHj4vPbb78BAK688kqP9bX2oRaHw4HGjRvjhx9+QFJSEtq0aYMqVaqge/fueOqpp/DLL79g3bp1eOWVV0q/UgGoVq0aIiIi4HQ6ddcJ9PNUtWpVREREoF+/frrH1vuLLlAl+R5wd+jQIVx22WWFf1+8eBHHjh0rDNBLUvZgBuZFRUV5DLZS+Qu+/b2/v/oEWpeoqCjYbDafz7L6/sEobv+qnnzySUycOBEffvghzp07h4sXL+KJJ54IeDvNmjUrHBR0ww03oKCgALNmzcIXX3yB++67r3C9VatW4YYbbgjoPXfv3q05eMvdtddei/fffx+7du0qlWCzZcuWmnkL1e9grdRxr7zySuH38b/+9S/d9w50PVV6ejoAFPt9W9x6wdQp0HWD/V4ORDDlzM7ORvPmzX2uaWoaoN9//90n2PTm79wJZN+PHj0aQ4cOxc6dO1GpUiXUq1cPgwYNQkxMDFq3bg0hRMDfXQkJCT4D8Zo0aeKzfqDnhK5gm0L10lp06NBB1K5d2+O2X0FBgWjRooVPn81A133rrbcEALF169Ziy3XXXXeJGjVq+F0n0O0Gext9zpw5mre4/vjjD1GzZk1x8803i/Pnz4s777xTxMfHixMnTgT0vqUh0NvoPXr0EK1atSrVbevtFyHk2Dfq7QbvASc33XSTT4oNIYLbh0899ZSIj48XrVq18kghkZiYKHr27CkAiPXr13u8xvs2ur/Ph97n1Ps99HTr1k1UrVrVb/qaQD9PN954o7jqqqs0b026C/Y2upZAvgeK61P4ySefFC4LtOz+0v3oHafU1FRht9s9ujTk5+eLhg0b6t5G13r/QOsTaF2M7rPpvn9VDzzwgLj88stF3bp1xV133VXsNoTQHyD0zz//iKpVq4pmzZp59Gu71Nvo3vr16yfsdrvffs3e/H3nLF26VAAQ48eP91g+depUAUD8/PPPHsvHjRsngOJT0AS6nurcuXOiWrVq4tprr73k9YKpU6DrBvu9rCqtfX/DDTeIGjVqePRVF0KItLQ0AaBw4J4/eudOoPve2969e0VcXJxHH/ZAP++BKGm53JVasKmOTG3Xrp1YuHCh+M9//iOSk5P9jkYvbl31IjNo0CCxdu1akZWVJU6cOCFatWolpkyZIr799luxcuVKMWXKFBEVFSUeeOABv2UPdruBBpv79u0TgOcouN27dwuHwyE6d+5ceDHetm2biIiI8BhhbJQlS5aIhQsXFvaJ7NWrl1i4cKFYuHChz4CfgoICERcXJ4YPH16qZdDaL0LItW969OghqlatKtLS0sSKFSvEwIEDBeA5yEGI4PfhokWLCvuYrVq1qnD5o48+KgCIqlWr+uQm9Q4UtT4f6gCtSw021dHoDRo0KKz7vHnzRN++fX1Goxf3edqyZYuoWrWquPbaa8Xs2bNFRkaG+Oabb8TUqVPFDTfcULheMMHmpXwPeI+WXrZsmXjzzTdFbGysz5dzoGX3FwzqHaddu3aJ8uXLi65du4rvvvtOLFq0SHTp0kXUr1+/RMFmcfUJtC7Lli0TdrtdXHfddeKrr74SX3zxhWjbtq2oW7duUMFmIPtX9csvvxR+Hn744YdityGEfrAphBCTJ0/WDWyDNXDgQPHcc8+J+fPni5UrV4ovvvhC9OnTRwAQI0eOLFxv5cqVIiIiQrzyyis+7xHod87tt98uIiMjxauvviqWL18uUlNTRVRUlLjttts83u/1118XAMRNN91UmOHA/RHseu4+//xzAUCkpaX53S+BrhdonYJZN9DvZSFKf9//5z//ETabTbRv317Mnz9f/Pjjj2L8+PEiNjZWNG/e3OP8DvTcCWaf/vbbb2Ls2LFi8eLFYvny5eL1118X8fHxok2bNh4BcKCf90AEeqz9KbVgUwghfv75Z9GtWzcRExMjoqOjRfv27cW3336r+T6BrjtmzBiRkJAg7Ha7ACC+//578cQTT4iWLVuKypUri+joaNGkSRPx8ssvB5RQO5DtBhtsCiFE586dxS233CKEUDoqX3755eKaa67xGQk2cOBAERkZaXii+nr16ml2ntcKNH788UcBQGzcuLHUy+G+X4SQb9+cPHlSDB48WNSuXVtUqFBBtGzZUnMkXrD78Pjx48Jut4uYmBiPgS1q649WCiWtQNH785GRkSGEuPRgUwghtm7dKnr16iWqV68uKlSoIBITE8Ujjzzi0Tk80M/x7t27xYABA8Rll10mypcvL2rUqCE6duwoXnvttcJ1ggk2z507V+LvAXXfbNy4Udx+++0iNjZWVKpUSfTt21czCXYgZff3vSiE/nFasmSJuPrqq0V0dLRo0KCBmDFjht8BQv6CzUDqE0hdhBDim2++ES1btiw87hMnTtQsV2nsX1VSUpJo1qxZse+v8hdsnj17ViQmJopGjRr5HXQYiA8//FB07txZxMfHi3LlyokqVaqILl26+ASy6nmq1XIW6HfOmTNnxOjRo0XdunVFuXLlRGJiohgzZozPgIwuXbrovp/7MQp0PXc9evQQMTExHplFLmW9QOsUzLqBfi8LUfr7XgghVqxYIXr27Clq164toqOjRePGjcVzzz0njh496rFeoOdOMPt0+/bt4vrrrxfVqlUTFSpUEA0bNhQvvviiOHXqlM+6gX7eixPosfbHJoRGpzwK2qJFi9CnTx/s3bvXo5+SDPr164ddu3YZMreqzPslGEbuQypdY8eOxSuvvIIjR46UuJ82la5ff/0VV111Fd555x089dRToS4OEZWy0E9WbRH33HMP2rZti9TU1FAXJSh//fUX5s+fj0mTJhny/rLul2AYvQ+JrOqvv/7CihUr8Pjjj6NOnTp45JFHQl0kIjIAg81SYrPZMHPmTCQkJMDlcoW6OAHbt28fZsyYUTglYGmTdb8Ew+h9SGRVr776Knr06IFTp05h4cKFHlPwEZF18DY6ERERERmGLZtEREREZBgGm0RERERkGAabRERERGSYEk9XSfpcLhcOHDiASpUqBTV9HREREYWOEAInT55EQkKC5hShVDIMNg1w4MAB1K1bN9TFICIiohLIycmBw+EIdTEsg8GmASpVqgRAOVkrV64c4tIQERFRIPLy8lC3bt3C6ziVDgabBlBvnVeuXJnBJhERkWTYBa50sUMCERERERmGwSYRERERGYbBJhEREREZhsEmERERERmGwSYRERERGYbBJhEREREZhsEmERERERmGwSYRERERGYbBJhEREREZhsEmERERERmGwSYRERERGYbBJhERhQ2nE8jIUP4lImtgsElERGEhPR2oVw/o1k35Nz091CUiotLAYJOIiELO6QQefxxwuZS/XS5g0CC2cBJZAYNNIiIKuZ07iwJNVUEB8OefoSkPEZUeBptERBRyjRoBdq8rUkQE0LBhaMpDRKWHwSYREYWcwwGkpSkBJqD8+8EHynIiklu5UBeAiIgIAFJSgORk5dZ5w4ZKoOl0KrfYGzVi4EkkK7ZsEhFR2HA4gK5dlX85Op3IGhhsEhFR2OHodCLrYLBJRERhh6PTiayDwSYREYUVpxM4cgSw2TyXc3Q6kZw4QIiIiMJGenrR7XObTXkIwdHpRDJjsElERGHBu5+mGmTOmwd06MBAk0hWvI1ORERhQa+fZo0aDDSJZMZgk4iIwgJnESKyJgabREQUFjiLEJE1sc8mERGFDa1ZhIhIbmzZJCKisKLOIgQAGRlM5E4kOwabREQUdjhVJZF1MNgkIqKwwqkqiayFwSYREYUVTlVJZC0MNomIKKxopUACgKws88tCRJeOwSYREYUVhwOYNMl3+ZgxvJVOJCMGm0REFHZat/ZdxlvpRHJink0iIgobTqfSZzM2VrmV7t53027nbEJEMmLLJhERhQX3dEft2wP9+gE2W9HzQgBLl4aufERUMjYhhAh1IawmLy8PcXFxyM3NReXKlUNdHCKisOd0KoGmd0sm4LksIgLYs4czC5ExeP02Bls2iYgo5LTSHblcTIFEZAUMNomIKOS00h3Z7b7LIiLYb5NINgw2iYgo5BwOIC1NCSYB5d+0NN9lH3zAW+hEsmGfTQOwzwcRUck4ncpt8oYNi4JKrWVERuD12xhMfURERGHD4fANKLWWEZE8eBudiIiIiAzDYJOIiMKW0wlkZHCaSiKZMdgkIpKUFQMx9zq5J3mvV0/5m4jkw2CTiEhCVgzEvOv02GNFeTZdLuDxx60VWBOVFQw2iYgk4nQCCxYAAwd6BmKDBskdiDmdSjDpXidvLheQmWluuYjo0jHYJCKShNry16ePMk+4O9ln1tGaQYiIrIHBJhGRBLxb/rzJPrOO1gxC3mw2oEMHc8pDRKWHwSYRkQSKa/lzuYClS80rjxGGD/ecLah//6IA1G4HZs5kvk0iGXEGIQNwBgIiKm1Op3IL3V/AGREB7NkjX0CWnl7UamuzAc89BwwZotSDsweRmXj9NgZbNomIJOA9d7jN5ruOjP02s7I8BzsJAbzxhlLXrCyl3l27MtAkkpmlg82ffvoJt99+OxISEmCz2fD1118X+5pVq1ahdevWiIqKQoMGDfD+++8bX1AiogCkpACpqUqgqXVPSrZ+m+npQPv2vnURAnj1VeDaa4FHHglJ0YioFFk62Dx9+jSuuuoqzJgxI6D1d+/ejVtuuQWdO3fG5s2b8a9//QuDBw/GokWLDC4pEVHxnE7g+ef1A80PPpCnBbC4AU+qjz9WWjjLAism6ScCgHKhLoCRbr75Ztx8880Br//+++8jMTER06ZNAwA0a9YMGzZswOuvv457773XoFISEQVGb5DQm28C990nT6AJBJfqaM0aoG1bY8sTau79Vu12pRtBSkqoS0VUOizdshmszMxM9OzZ02NZcnIyNmzYgAsXLui+Lj8/H3l5eR4PIqLSppUeKCJCvkATCCzVkapTJ2PLEkpWTdJP5I7BpptDhw6hVq1aHstq1aqFixcv4ujRo7qvS01NRVxcXOGjbt26RheViMog70FCst06d+ddFz0dO1q3VdPKSfqJ3DHY9GLzGuKpZobyXu5uzJgxyM3NLXzk5OQYWkYiKrtSUpT0RhkZyr8y32pV67JggfboegD45RdrtvBZPUk/kTtL99kMVu3atXHo0CGPZYcPH0a5cuVQvXp13ddFRkYiMjLS6OIRERWySoZkhwPo1QvIy9MOvtQWPhlbb/3x12fVbpe3xZpIC1s23XTo0AHLly/3WLZs2TK0adMG5cuXD1GpiIiKqLdeu3VT/k1PD3WJSkdKCrBunXYLpxVHo8fG+n8+OdmcchCZwdLB5qlTp5CdnY3s7GwASmqj7Oxs7Nu3D4By+/vhhx8uXP+JJ57A3r17MXz4cGzbtg0ffvgh0tPTMWLEiFAUn4jIg/etV5dL+dsqwVidOtrLn3/eerfST53Sf87lYn9NshZLB5sbNmxAq1at0KpVKwDA8OHD0apVK7z00ksAgIMHDxYGngBQv359LFmyBCtXrsTVV1+NV199FW+99RbTHhFRWNC69epyAe3aWaOFc+dO7e4BVgy+/I3GZ39NshrOjW4Azq1KREbwNz+6rPOiu9Orn90O7N0rd920pKcrKY4KCoqWqRkGZB74JTNev41h6ZZNIiIrUdMFabWIWSFVjl79hg8HDh603uw67pkF1q+3RoYBIi1s2TQAfxkRkZFefBEYP95zmRVaNlVZWcDixcCuXcDcuZ4tnZxdh4zE67cxmPqIiEgiTieQmuq7PDXVGoGm+7SNWtTZdZKTrVFfQDmmO3cq/TitUicid7yNTkQkEb38jFaYZae4ROcqK3QZUFk1lRWROwabREQS0cvPGBNjbjmM4C/RuTurjNbWSmXFOdHJihhsEhFJZMEC7eWnT5tbDiM0aqQ/baVK5vngvWkF1wUFwPTpoSkPkVEYbBIRScLpBKZO9V1ut1ujpc/hACZN8r/O119bZ3CQXq7NqVPZuknWwmCTiEgSereZ77vP/LIYZeRIYMoU/eet0lcTAJYu1T6eLheQmWl+eYiMwmCTiEgSei1hCxZYa3DJiBHAt99qP9epk7llMYraX1NPnz7WOZ5EDDaJiCThcAD9+mk/Z7XBJbfdBvTv77msf39rjLoHgLVr/Q+GEsJax5PKNgabRESScDqBTz7Rf94qKYGcTmU2nddeU2bWefNN5d+PPgp1yUpHejpw//3Fr2eV40nEpO5EZElWTJRdXGogKwwUck/qrs4WNHRoqEtVetTb54HM3WeVFE9EbNkkIsuxaqJsvT6bKiGUQSeyKgt5J/39YLDbi1I/WSnFExGDTSKyFCsHLA6H0tIXEaH87R6cAPL389PLO2mlW8laPxjsdmWQ1969wL59SheCPXusk+KJiMEmEVmK1QOW5GRg7lwlOJk3z/d2rMx11UrqrnYNUPtxyhpIq7x/MEREKLlFhVAGDQFA165s0SRrYZ9NIrIUteXIPeCUve+b06kEIj/+CMycqQQmdjswcaL16upNCODzz4HRo4v6cU6apKRHklVKivKj4c8/gawsYNSooh8NNptyjNmqSVbClk0ishStliOZ+76lpwOJiUrexbS0oqDE5QLGjFECL6vUdedO35ZaIYoCTUD5t7jE7zJwOJQfBaNHe9ZZ9q4QRFrYsklEluPectSwobzBl9MJDByoP3K5oABo00bp3yd7XQEgNlZp2XOvr3fLrer554G+feWsr5op4cgR7WNbUKDMINSrl/llIzICWzaJyJIcDvn7vmm19LlTb5lboa7p6UD79r6B5vPPa4/Ad7nk7Jvqnimhb1/99Xr3tk4WBSIGm0RkebIOLtEaMKOy2+W+Ze7OO4OAyuVS+qXee6/va2Tsm6qVKUHv+AK8nU7WwWCTiCxN5pybDocyWMQ9ILHZlMExe/dqDyKRMbD2l3vS5QIWLQL+9a+iFk5Z+6Zq1VMI/YBT5swCRO5sQgQyjwEFIy8vD3FxccjNzUXlypVDXRyiMsvpVAJM79Hae/bIFag4nUofPgDo0EG/7Fqz78gwqlnrOHlbsECpu8x9U/XOx9RUZbBXQYHn+jKeq7Lj9dsYbNkkIsuySs5Nh0MZLNKrl37gIXMye4dDuV0eyHoy903Vy5QwcqQSVI4YIX/rLZEWjkYnIsvasMF3mYx9/QLhL7CWIWBp00b/OZtNadW0AjUpv1on9dg4HEo6pyFD5G69JdLCYJOILMnpVHIYeps40ZoXcXUwkXvHKJtNnsBaKxk/UJTk3ArHLJBuDg6HNepK5I630YnIktau1U4bVK+e+WWh4jkcQL9+nsuSk5W5wmXod1ocf90cZBzURRQMBptERBagFVwLUTSwKNw5ncAnn3gu++GH0JTFCHrdHKZPlzdbAlGgGGwSkSXt2+e7zG63Tt8/ldoqduxYqEtyaawymEuP2k3AXUQE8MYbcg7qIgoGg00ispyy0l/TPYfoM8/4Pi/TwBq9YEyWPqfF0RqJPmyYb2u0lQJsIhWDTSKyHL0k4W3bml8Wo2j1AbTbixKE2+1yDazRSwskS/kDkZKipDjKyFD+HTLE2gG2N/ZNLbsYbBKR5ZSFlEdaAbXLBcyfr1zQ9WYYCmfuwVhmJlCpkpLM3UrBiXuu0LIQYKtknsmLLh1nEDIAZyAgCh292WimTFGSZluFVWZH8uZ0KoNm3nij6Bazmv5ItuA5UE6ntXNrynSu8vptDLZsEpGl6N1Cr1fPWrfwtFIFPfRQ+F28g5GeDiQmAq+/7tmXUQjrDZxxv6Us+8xIxbH64C8qHoNNIrIUrYEmdjvQp4+1buE5ncCcOZ7L5szxDMhk6iOn9kHVu9dmpeCkrN1StvrgLyoeg00ishStfnBCFAUxVkkvo5dX87XXlP/LFtDotUi7y8oypyxGcjqBgQM9B3Y9/rj856M/ZalvKmljsElEluM+0GTu3LKVXuaDD5SgTG+2mnCl1frlbcyY8K5DILR+JLhc8iTfLynvkfhW7X9L2hhsEpElqf3gOna05i28jh31n1u8WL4+ct6tX2oKJ3fhXgfyz+p9U0kfg00isrSlSz1bkux2a9zCcziU1kotUVFyBtjurV+//CJnHYrTsaNvIC1T8v2SkKnvMBmDwSYRWZbWoBMhgJYtQ1em0vTii9otgC+8oIxUl7GPnNr61batNfv5ORxKGic1kJYt+X6wZOs7TMYwJc/mxx9/jPj4eNx6660AgFGjRiEtLQ3NmzfHvHnzUK9ePaOLYCrm6SIKDxkZykXOm92uBDIy9xtzOpVBNRs3KlNzet82j4hQ+gGePi13/kar5qC0ar3cyZRfU8XrtzFMadmcMGECoqOjAQCZmZmYMWMGJk+ejPj4eAwbNsyMIhBRGaQ36ESGATP+uLcWjR6tjG72VlCgBJqy95Gzaj8/q9bLHfNrksqUYDMnJwcN/7+jzddff4377rsPjz/+OFJTU/Hzzz+bUQQiKoPUQSdaAaesFz2tOdFnztReNybGvHKRf/76LVq1TyPza5LKlGAzNjYWx44dAwAsW7YMN954IwAgKioKZ8+eNaMIRFRGpaQA69ZZ56KnNye6ltOnjS8PFc9fv0Ur92lkfk1SlTNjIz169MBjjz2GVq1aYceOHYV9N7ds2YKkpCQzikBEZZg62GTQIKVFMyICkK0Hj9pHMzZWCZzdA0w1kPbuGydjMG01Wi3RgwYBycnK33rPWSUgS0lRBuStXg1cd53yWaSyx5SWzXfeeQcdOnTAkSNHsGjRIlSvXh0AsHHjRvTt29eMIhBRGaem1RkxQrmov/66PC1J7q1f7dv7jjRPS7N+C5Kst5r99Vu0cp9G9XhNmaKcs8OHK//K8Hmj0mfKaPR9+/bB4XDA7nUfSwiBnJwcJCYmGl0EU3E0G1F4knF0rF6ZtUaaW3WEc3p6UQugbJkE/J1zgHznYyDcj5e3cK8fr9/GMKVls379+jh69KjP8n/++Qf169c3owhERFK2JOmVWWukuRVHOGdl+c4lLlMmAX/9Fq3Yp9G724C3cP+8kTFM6bOp13h66tQpREVFmVEEIqLC0bEy9W2UscylRW0h05vbXpagLCVF6Yfp3uqs9sFNTlZa+qzSIq3148hdWTl3yZOhwebw4cMBADabDS+99BIqVqxY+FxBQQF++eUXXH311UYWgYiokNqS5H5LNtxbktQyuw9uCvcylwZ/LWQyBixqSyagBNEDBypBtM2mpK6SpVtAcbR+HKnKyrlLvgwNNjdv3gxAadn87bffUKFChcLnKlSogKuuugojRowwsghERB6OH/dtKQt3Wi1jVqfXQibDDwR/nM6iQBNQ/h040Doj0B0OpT4ffOD73IwZ1gmqKTiGBpsZGRkAgEcffRTTp09nZ1siMp16u7JRI2DePGDUqKLnZEo1494ypse9ruFen+JotZDZ7UrO1LZt5a3r2rW+P3aEUAZ89eoVmjKVtm7dtIPN/09EQ2WQKQOEZs+eXRhoOp1O7N+/34zNFnr33XdRv359REVFoXXr1n5nLVq5ciVsNpvP448//jCxxERUGtxTBiUmegaaKqsMWLBacnCtwTNpaUqgabW6Wo3WuF+bDejQwfyyUHgwJdh0uVwYN24c4uLiUK9ePSQmJqJKlSp49dVX4fLXk7gUzJ8/H0OHDsULL7yAzZs3o3Pnzrj55puxb98+v6/bvn07Dh48WPho1KiRoeUkotLl3edP79a53S5f/z9vWVnaycFlGbGtR82NmpGh/JuSop8kXZa6duyoBF7u7HbrBGLp6Uo+TXd2u9IvVaYWaCpdpgSbL7zwAmbMmIGJEydi8+bN2LRpEyZMmIC3334b//73vw3d9tSpU5GSkoLHHnsMzZo1w7Rp01C3bl289957fl9Xs2ZN1K5du/ARof68JiIpFDcqVtW5s/FlMVJ6OtCunXwpnQLlnc5JxvRV7hwOJfDybrG1QiCmNahL7frAvpplmynB5scff4xZs2bhySefRMuWLXHVVVfhqaeewsyZM/HRRx8Ztt3z589j48aN6Nmzp8fynj17Yu3atX5f26pVK9SpUwfdu3cv7HuqJz8/H3l5eR4PIgottc9fcVatUm6xy3grVr24a7XayjZiO9AZgrSOq2x1VVtsFywA5s4tmrpSdlo/BFwupZ5UtpkSbP7zzz9o2rSpz/KmTZvin3/+MWy7R48eRUFBAWrVquWxvFatWjh06JDma+rUqYO0tDQsWrQIX375JZo0aYLu3bvjp59+0t1Oamoq4uLiCh9169Yt1XoQUfC8+/z5I4Rct2JVVhmxHUwfTCskQnc6genTgT59lIdV+p3Gxmovf+MN+T5bVLpMma6yXbt2aNeuHd566y2P5c8++yyysrKwbt06Q7Z74MABXHbZZVi7di06uHWIGT9+PD755JOAB/3cfvvtsNls+OabbzSfz8/PR35+fuHfeXl5qFu3Lqe7IgoDTiewcKEyN3NxMjKUW7ay0JoK0X3EtgxKOoVoVhawejVw3XVy1XX6dGDqVN8fCeE+jWMgMjKUHwx6z8nw2eJ0lcYwZQahyZMn49Zbb8UPP/yADh06wGazYe3atcjJycGSJUsM2258fDwiIiJ8WjEPHz7s09rpT/v27fHpp5/qPh8ZGYnIyMgSl5OIjONwKCllnnvOf35N2W7FAvoJ32UKvhYs0O+DqRd4yTBXundqJvdE7lpkmxVJi17LphUG4dGlMeU2epcuXbBjxw7cfffdOHHiBP755x/cc8892L59Ozob2Du/QoUKaN26NZYvX+6xfPny5ejYsWPA77N582bUqVOntItHRCGmjgq224HUVDkv9FojtmWg3jp/7jnf5/wF/jKMRvfuFvD66/p9a1Uy/tjxptc3c/hwOT9bVHpMadkEgISEBIwfP96szRUaPnw4+vXrhzZt2qBDhw5IS0vDvn378MQTTwAAxowZg/3792POnDkAgGnTpiEpKQlXXHEFzp8/j08//RSLFi3CokWLTC87EZWOnTu1L/SDBimtYi4X8PzzQLVq8gRr7gJJ+B5OipuK0l8fTH+j0cNhH2gFw6NH+8+MIFsfWy1Op9I9wJvNBgwZYn55KLyYFmyeOHEC6enp2LZtG2w2G5o3b44BAwYgLi7O0O326dMHx44dw7hx43Dw4EFceeWVWLJkCerVqwcAOHjwoEfOzfPnz2PEiBHYv38/oqOjccUVV+C7777DLbfcYmg5icg4erPRfPBBURAq02xCstMb2PTmm8B99/nf/1rHMpxaBfVGZNtsvj947Hal1W/IEPnPOb1j+txz8teNLp0pA4Q2bNiA5ORkREdH49prr4UQAhs2bMDZs2exbNkyXHPNNUYXwVTsYEwUfrz7zGld/AF5BjLIrKSDglTp6b79VMOlRVqvbqmpwJgxSpmtFGSqnE4lhZj7Z8pmA/btk6uOvH4bw5Rgs3PnzmjYsCFmzpyJcuWUxtSLFy/isccew65du/ymFZIRT1ai8KMVBHiT8eIoq0sNGJ1O5dZ5w4bhd7z06hbOZb5UDDbJH1OCzejoaGzevNkn1+bWrVvRpk0bnDlzxugimIonK1F4UUc9aw1GcSfjxVFmVg++rFo3LXppj0aMAKZMMb88JcXrtzFMGY1euXJlzbnIc3JyUKlSJTOKQERllL9Rz96EADIzjS8TKbynorQSK9dNi17ao6lTwytTAIWGKcFmnz59kJKSgvnz5yMnJwdOpxOff/45HnvsMfTt29eMIhBRGeRv1LOeY8eMKw8FLtDpK2VkxbqdOqW93OWSZ956Mo4po9Fff/112Gw2PPzww7h48SIAoHz58njyyScxceJEM4pARGWQ3ghZf6pXN6YsFDgZkraXhDqD0BtvKK3oVqpbo0bay8MpUwCFjuF9NgsKCrB69Wq0aNECUVFR+OuvvyCEQMOGDVGxYkUjNx0y7PNBFB4CGRTkLSen7Nz6DEeXOlI9XLkH0O7sdmDvXrnrBiiJ60eO9F0+ZYrSb1MWvH4bw/Db6BEREUhOTkZubi4qVqyIFi1aoGXLlpYNNIkofKjTOUZEeC6PiFDyOaozCAHK/2fNkvuiH463Z4Mtk7+k7bLy153D5VJaO2XmdAKjRmk/9/8pramMM6XPZosWLbBr1y4zNkVE5MF9Osf165V/J04EvvxSuZVpsylpan75BWjQILwCtWB4T5GYnh7qEpWsTGrSdney34otrjvHm2/Ke94B+jN0EalMSX20bNkyjB49Gq+++ipat26NmJgYj+et1lTNZnii8OR0At9+Czz9tG8+QJtN3j6C4Xjr+VLKFM5J20sikO4cMk8moFc/GVOJ8fptDFNaNm+66Sb873//wx133AGHw4GqVauiatWqqFKlCqpWrWpGEYiojEtPV5JOP/WUbyuMEJ5zWQ8aJFdLUzjeer6UMrm3Ru/ZI3egCeh351DJ3nKr1s+9RdpmA2bOlCvQJOOYMho9IyPDjM0QEWlS+8wFeh9HDYocDuW1O3cqt3fD9cIZjvOFX2qZHI7w3d8lkZICJCcr51VWVtHUlWrLrex1Veun5qnt0EH+OlHpMSXY7NKlixmbISIDyRB06Qk2BZIaFMmSgkdtWfK+9RzK4xSOZQoV989O167Ko29fa80wpNaRQSZpMaXPZlnDPh9kNbIEXXqCSYGkBkXJyeHXD7I44ThFYjiWyUyyf3aK43QCr72mfGaAotvnstaR129jMNg0AE9WspJwHHxSEnp5DlU2GzB/flHLjN5czzIP5CBz6X12MjOVGXdkvEvgLj0dGDjQt3uKjAODVLx+G8OUAUJEJK9wHHxSEikpSvLsBQuUW7veOTZnzgR69Sq6QFoxBQ+ZS++z0759eKWoKgl//aCFABYvNr9MFL4MCza/+eYbXLhwwai3JyKTaAVdgDLIQTYOhxJQvv++0vKyYIHy2LfP97af9wjistznkEpG77Mjc+YDVXH9oA8dMq8sFP4Mu40eERGBQ4cOoUaNGoiIiMDBgwdRs2ZNIzYVdtgMT1ajNRWdjLfSS6Ks9zmkS+OeM1SPjF0znE4llZheBLF+PdC2rbllKg28fhvDsJbNGjVqYN26dQAAIQRs7vesiEgqrVv7LpPxVjqgXCTVFs1AWpQcDiUQYKBJJeWvBVDWrhkOB/Dcc9rPJSfLGWiScQwLNp944gnceeediIiIgM1mQ+3atREREaH5IKLwZpX+i2pi9z59lEdiorx95sq6cJwH3lsg+V2HDZP3h8yQIb7fC3Y7MGtWaMpD4cuwPJtjx47F/fffjz///BN33HEHZs+ejSpVqhi1OSIykBVyJjqdviNnhVDqlJwsV13KOlnSCRXXr9FuVwI2WS1d6vl5Uo8FP0vkzZTUR6+88gpGjhyJihUrGr2psMA+H2RVMvdf1EtlpD7XtavcievLCplScfnL7yr7nO9adbPblYwP4XYcgsHrtzFMSX308ssvo2LFijhy5AhWr16NNWvW4MiRI2ZsmohKkcOhBJo7d4b37UstjRp5pjtSuc8WVK+e/ClprE6mVFxaGQ0mT7bGnO9ax8HlCs/jQKFnSrB55swZDBgwAAkJCbj++uvRuXNnJCQkICUlBWfOnDGjCERUCmQOyBwOJZeme8BptxfNfOKe8F3mlDRWJ1v/4ZQUJbBUA8yRI60x4Ezvx9uGDeaXhcKfKcHmsGHDsGrVKnzzzTc4ceIETpw4gf/85z9YtWoVntMbzkZEYUXt8yhzQJaS4plfc+9eZZlMrWVlnYz5T8tSRoORI+X6TiBzGDZAyN2iRYvwxRdfoKtbIrFbbrkF0dHR6N27N9577z0zikFEl2D6dN9RtWpAJtNFVE3s7k5tLfPuBxiurWVlXUqKMqhL1v7DVrBzp/4o+8xM388YlW2m3UavVauWz/KaNWvyNjqRBJxOYOpU3+V2uzUCMhlby8o6GVsLZUjXFCi92+hEWkwJNjt06ICXX34Z586dK1x29uxZvPLKK+jQoYMZRSCiS6CXwmX4cLku9v54962TefAGhR+Z+ztrcTiUwU7e7HaAl3XyZspt9OnTp+Omm26Cw+HAVVddBZvNhuzsbERFRWHp0qVmFIGILoHebWaZcwRqcTisEzxT+FCTu3v3d5Y9v2vVqp5/22zMs0naTAk2r7zySuzcuROffvop/vjjDwghcP/99+PBBx9EdHS0GUUgoktghaTuRKHibwCarJ8hdcCgt+Rk88tC4c+UYBMAoqOjMVDrzCQiKVhxUIbTCaxdq/y/Y0dr1InCjxUHoL32mu8AISE4OIi0mdJnk4isQR2UAcg50MF9gAbnSSezWG0AmtOp1IcoUKa1bBKRNcgyL7U393IDSv8y73nSBw4EWrYE2rYNTRnJuqx0Z8Bf2qOkJFOLQpJgyyYRBUxvoEO4t3B6lxvQvlgKAbRvzxZOMoaM6Zq0bNyo/9zp0+aVg+TBYJOIAibrTDt6qZu0yBJAU/izUl5NldMJjB6t/Zzs/VDJOKYEmw0aNMCxY8d8lp84cQINGjQwowhEVApkm5dapVVuf2QIoCm8WS2vpsrfD7dhw+RvtSVjmBJs7tmzBwUFBT7L8/PzsX//fjOKQESlQNaBDmq59QJO75lQZAigg2HFFrZwJmt3k0Do/XCz2ayXd5dKj6EDhL755pvC/y9duhRxcXGFfxcUFODHH39EEnsTE0lF1oEOarmnTwfefNMzXyhg3Ryisg7okpkV82qq1B9u3n2gJ02Sv25kHJsQemPKLp3dz32r8uXLIykpCW+88QZuu+02o4oQEnl5eYiLi0Nubi4qV64c6uIQlTqnU7mgNmok5wXG6fQNlrWWyc7pVG7heud33LPHOnUMR2VhvzudwPjxyg8zIazzQ4bXb2MYehvd5XLB5XKhXr16OHLkSOHfLpcL+fn52L59u+UCTSKrs0JfNK1RwVYZKexO1gFdsnM4gH79PJc99JC1zi1ACS7V5iordRWg0md4n80LFy4gKSlJc4AQEcnFyn3RrEjWAV2yczqBTz7xXPbpp9b6nPCHDAXD8GCzfPny+P3332Hz7oFPRNLhBUYusg7okl1Z+JzwhwwFw5TR6A8//DDSZbzXRkQeeIGRT0qK0lcwI0P5V/Y+dTIoC58T/pChYJgyXeX58+cxa9YsLF++HG3atEFMTIzH81OnTjWjGER0idS+aB9/XLTMin3RrMbh4DEykxqIWTXDgUrWzBRkPkNHo6tuuOEG/QLYbFixYoXRRTAVR7ORVZWFUbZEwdLLzmDFDAdWx+u3MUxp2czIyDBjM0RkMCvnDyQqCX95TNmiTKTg3OhEFLCy0BeNKFDMzkAUGFNaNgEgKysLCxcuxL59+3D+/HmP57788kuzikFEl6Cs9EUjCgRb+okCY0rL5ueff45OnTph69at+Oqrr3DhwgVs3boVK1as8JjCkojCH0c3EynY0k8UGFOCzQkTJuDNN9/E4sWLUaFCBUyfPh3btm1D7969kZiYaEYRiKgUWXG2HaJgMf0PUWBMGY0eExODLVu2ICkpCfHx8cjIyECLFi2wbds2dOvWDQcPHjS6CKbiaDYiorKDo86tg9dvY5jSslmtWjWcPHkSAHDZZZfh999/BwCcOHECZ86cMaMIREREhmBLP5F/pgwQ6ty5M5YvX44WLVqgd+/eGDJkCFasWIHly5eje/fuZhSBiEqZXm5BIiIid6a0bM6YMQP3338/AGDMmDEYMWIE/v77b9xzzz2mTGP57rvvon79+oiKikLr1q3x888/+11/1apVaN26NaKiotCgQQO8//77hpcxIBs2AN26Kf/KSvY6yF5+oFTqkJ6uJHfv1k351/TZaGU/DrKXH5C/DrKXH2AdSBqm9NkMpfnz56Nfv35499130alTJ3zwwQeYNWsWtm7dqjk4affu3bjyyisxcOBADBo0CGvWrMFTTz2FefPm4d577w1om0b1+bDZzgKoAOA8hIgutfc1k8x1SEkBPvzwPID/Hw2ACFxxBfD99+HRspeVBXz2GXDyJHDhgvLdffAgcOpUUXqWiAjAduEcCiBQ3i4QEV0RFSoAVasqo2qjooC6dYHevYGzZ5X3qFQJuPFGICZGacUEgMREwP2bw24H1q1TttWoEZCdDSxZAlx7LVCxInDsGFC9OlC/flG5rr1WWWfZMqByZaBHDyApCTh+HDh8GGjSBGjTBli+HPj5Z6BKFeD665Vlsx9dhYwt1dE46SJeXHA16tQB1q5VtgMo2+rYUfu4OJ3At98CGzcCsbFK3X79Vfm7dWvg4YeV9dRWW0B5b0B5z4MHldfXqQPcfrv/Y6/V+ut0AmsHfgh8/z06PtoUjg/HISsLeP994MABZR/FxyvvXaeO8vrYWGXfev+rvq/7drzL6/786dPAjh1A48ZFx1N9Xn1N/fqe7714MbBggVKW1q3d9uvgwcDbbyv/Tp9e+B56xyArSzmOnTsDbdv67h/3fe5eZr06e7+nuq/0Wtp99tH/H4P6va/F7ntHFJ6j3ueN+77RO6e8t+O+vnu91P9r1aW4faHu2+PHgXPnlPOj7SeDkfV2Jn6+bgwaj77H45hqvee33xbFdJdfrvQxdf9MNmgA/POP7/nh/l7+joe7rCxle/n5yiMyUin/kSPKIzISaNYMiN/wXzTImoe5jtHYfO4KnD6tfH/FxyvbyM9Xjss11yjbj4pS/q5VC3jwwaJzqbSwz6ZBhEkuXrwoFi5cKMaNGydeffVV8cUXX4gLFy4Yvt1rr71WPPHEEx7LmjZtKp5//nnN9UeNGiWaNm3qsWzQoEGiffv2AW8zNzdXABC5ubnBF9jbnj1CbNgggAIBuIRyiXcJoECIDRuU58Od7HXYs0eUi3Avu/fDJWbNCm0R+/fXKlfpP+x2IZKTtZ+z2cwpg+9xcGkeG5tN+ByXWbMC24Zal0DqpHfsZ81S9pe632ZNOipmvbhb2GxFZbWhQHRsedLPuVX88ejfv2g73uW12Tyf13u9Vj3tdiEuv1xr37jErH/vEaJmTWVBzZpi1r/3eNTL+xh4n5/9+3vuH5utqAzeddIql9Z7ej+vdyyUcrqX1aVZZvV17vtG65zy3o7WMfCuo3dZi9sX2uehS1xu/0t4fqcKYbe7NN+zpOeX93sFsr+D/z4q2fmvnkulqVSv31QIZmzkt99+Ew0aNBAVK1YUrVq1Eq1atRIxMTEiKSlJ/Prrr4ZtNz8/X0RERIgvv/zSY/ngwYPF9ddfr/mazp07i8GDB3ss+/LLL0W5cuXE+fPnNV9z7tw5kZubW/jIyckpvZMVEMAZjQ+jSwBnlD/CneR1GID3AvoyzMkJTfnWry/Zl3RZeEREFB2XnBxjtmG3+x77nBzfi7MdF4QNFzXeo+QX2pDtV1wQOXAIAYgcOHTqpTz0Ah294CWQR3HBk/dxD3ZbdrvyudJ6ndbxLul21Pcr+b7QPnciIkrvx18g5XPf36H4Plq/vvS+TxlsGsOUPpuPPfYYrrjiCjidTmzatAmbNm1CTk4OWrZsiccff9yw7R49ehQFBQWoVauWx/JatWrh0KFDmq85dOiQ5voXL17E0aNHNV+TmpqKuLi4wkfdunVLpwIA8OmnUG4727yesCnLP/209LZlFMnr8F3lfvAtu68//zS+LFqK6YJcpqmzuQDKLTgjuFy+x15rZhkXykEUdsFwV/y5FW4KUA5/4nIAwE401KmXQgjt5d77Jxh676nyPu7BbsvlAlav1n6d1vEu6XbU9yv5vtA+dwoKit9HgQqkfO77OxTfR2vWmL9NCo4pweb//vc/pKamomrVqoXLqlativHjxyM7O9vw7dtsnh9IIYTPsuLW11quGjNmDHJzcwsfOTk5l1hiNw8+COA8AO9vDqEsf/DB0tuWUSSvw633xcC37L5CNWtI586h2a4M3GdzUfutlTa73ffYa80sY7cDNs3zqJSiAhNF4CIaQokuGmEnbCjQXVfvq9Z7/wTDz9c3AN/jHuy27Hbguuu0X6d1vEu6HfX9Sr4vtM+diIji91GgAimf+/4OxfdRp07mb5OCY0qw2aRJE/z9998+yw8fPoyGBl6h4+PjERER4dOKefjwYZ/WS1Xt2rU11y9XrhyqV6+u+ZrIyEhUrlzZ41GaxMZtUL5U1C8W5f/KcjnIXIf0dKBchHvZfc2aFbpBQm3bAv37m7OtiAggOVn7udK6uBVP60eL77Gx2z1nc3E4lOMUCLUuNpv/etlsygwy3sdea2aZtDRg5r/3eQRmdhSgI9Zolt+9HHoiIpRjr27Hu7x2u+fzeq/X2k5EhDKIxJvdJvABBsFhVybjcNgPYiYeh83mWwebDZg50/f87N/fc//YbEUBjXedtMql9Z7uz3sfd/dt2W0CgHtTnWe51WPatq3yr3ugpXe83bej9SND/dd7P6vnhUf53NZT94V2sCdwOf6E53dqUf1nzvTcvyWhVT6tddz3d8m+j0r+g6t//9IfJESlz5TR6EuWLMGoUaMwduxYtG/fHgCwbt06jBs3DhMnTsR1111XuG5pB2rt2rVD69at8e677xYua968Oe68806kpqb6rD969Gh8++232Lp1a+GyJ598EtnZ2cjMzAxom6U+ms3pBNq2he3QLhSO5K7dQBnuFw7DoAMhex2cTqQ0zMCH+X0At1uGVzQ+j+9/jA6LKmRlAfPmKaPR8/OBTZuA/fuLRqPbRAEixDkANghbOZQT5xGBi6hQtSKqVa9QOBrd4QB69VJGvG7cqIxG79ZNGRmq/jbUG41++rSyTna2Mkq/TRtlVKs60jcpSXnPQ4eU59TR6FWqKKPC1dHoR44oI2JbtwZ++EG5pRkXB1zf4h+0fv0BzLY/ipURN6Lx2V/xQrlJqPP9bGTuqeMxErpDB/1RyYsXe9btt9+U/XXNNUC/fsp66owwAKB+9Dt0UEbtfvcdULs2cNttxY9G95hZxumE85o7kFmpJ9C9Ozqsnw7H3xuRNTMbaf+phQMHlFRSNWsCt96qjLD+809lH54+7fuv+r7u2/Eur/vzp04VraceT/V59TVJSZ7vvXgx8MUXSn1btwY6JB2E445rlLQFKSnKr7GcHDi/2eT3GGRlKbc7O3XyHI3uXm73faU+p1dn7/dU95XeLD6F24o5CNx6a+ExSFr9KfYcqIBjoyehesNqPueN+77RO6e8t+O+vnu91P9r1aW4fZGZWTQaPf9ILm79uA/aXv4Psro/jzWf7UHDk5sQm/YmGnaoofue6nkPKCPPGzb0/EwmJQEnTvieH+7v5e94uMvKUj4n584B588DFSoUjUY/ehSo4DqLppvnoWa1i0i6sRHmflkBm081xOmoqrhwsQLi45XP57lzRaPR//pLeZ/4eOV87NuXo9FlYUqwaXf7Wabeiva+Na3e2i4o0L8dUxJq6qP3338fHTp0QFpaGmbOnIktW7agXr16GDNmDPbv3485c+YAKEp9NGjQIAwcOBCZmZl44oknQp/6KD9f+ZTZbMpV/vx5JXeETGSvg+zlB0qtDunpwKBBSl8ttWUjJcWA8mqR/TjIXn5A/jrIXn6AdTAIg01jmDKDUEZGhhmb0dSnTx8cO3YM48aNw8GDB3HllVdiyZIlqFevHgDg4MGD2LdvX+H69evXx5IlSzBs2DC88847SEhIwFtvvRVwoGkY9w+gzRbyD2SJyF4H2csPlFodUlKU2+khmQ9a9uMge/kB+esge/kB1oGkYvmk7qHAX0ZERETy4fXbGKYMECIiIrIqpxPIyFD+JSJfDDaJiIhKKD1dGdTVrZvyb3p6qEtEFH4YbBJR0NiSQ6Sc/48/XpT03OVSBs7xc0HkicEmEQWFLTlECq1Zg9xn0yEihSnB5tixY7F3714zNkVEBmJLDlERrVmD3GfTISKFKcHmt99+i8svvxzdu3fH3Llzce7cOTM2S0SljC05REW0Zopyn02H3U2IFKYEmxs3bsSmTZvQsmVLDBs2DHXq1MGTTz6JrKwsMzZPRKWELTlEnlJSgD17lKByz56iyQ3Y3YSoiGl9Nlu2bIk333wT+/fvx4cffoj9+/ejU6dOaNGiBaZPn47c3FyzikJEJeRwFE3nqHroITlmHCUyisMBdO3q2aJZVrqbsPWWAmH6ACGXy4Xz588jPz8fQghUq1YN7733HurWrYv58+ebXRwiCoLTCXzyieeyTz/lhSbcMSAwV1npbsLWWwqUacHmxo0b8cwzz6BOnToYNmwYWrVqhW3btmHVqlX4448/8PLLL2Pw4MFmFYeISqCsXESthAGB+cpCd5Oy1HpLl86UYLNly5Zo3749du/ejfT0dOTk5GDixIlo6PbJe/jhh3HkyBEzikNEJVQWLqJWwoAgNIobOGQF/OFJwTAl2OzVqxf27NmD7777DnfddRci1E+gmxo1asDlfeYSUVgpCxdRK2FAEFruQb7V8IcnBcPwYPPChQuYPXs2BwARWYTe6FuZaPVhtGK/RgYEoaG2KAuh/C2ENVuUBw4sOr/4w5P8MTzYLF++PPLz82Gz2YzeFBGZSL2QysTpBEaOLOrDmJioBAFPPGHNfo1siQ4Nq7cop6crn50PPiiqZ2qqnD88yRw2IYy/ZEycOBF//PEHZs2ahXLlyhm9uZDLy8tDXFwccnNzUbly5VAXh6hUpacX9QO025VgRoaLTHq60hITyDdeRITSamuVoMzpVAKdhg2tU6dw5nQqP1rcA06rnFNadQMAmw3Yt0/++vH6bQxTgs27774bP/74I2JjY9GiRQvExMR4PP/ll18aXQRT8WQlq5L1Iqp3gfQnI0PJnUhUEunpSqt5QUFRi7IMP8qKk5Gh3AHQMmIEMGWKueUpbbx+G8OUZsYqVarg3nvvNWNTRGQgf7cHwznY1Cq3P+zXSJcqJQVITrZei7LaD1jr8/Tmm8CQIdapK5UeU4LN2bNnm7EZIjKY1oVGhsDM3wXSG/s1UmlxOKx3HjkcwKRJSt9nbzL88KTQMH0GISKSl6wDTrzLbbcrrU7e4xZHjJB3hD2FP6tkPGjdWv+5U6fMKwfJw7TROl988QUWLFiAffv24fz58x7Pbdq0yaxiENElkvX2oFa5nU4gM1N5vkMHeepC8pF1YJ2WRo2UH2paIz6sMuKeSpcpLZtvvfUWHn30UdSsWRObN2/Gtddei+rVq2PXrl24+eabzSgCEZUCtWUGUAbPyBacORye5XY4gF69lIdsdSF5WG0mJ4cD+Ne/tJ/r1MncspAcTAk23333XaSlpWHGjBmoUKECRo0aheXLl2Pw4MFM9k4kCc6xTVQyVsy7+dprwH33eS677z6gbdvQlIfCmynB5r59+9CxY0cAQHR0NE6ePAkA6NevH+bNm2dGEYjoElitZYbITFadyWnhQuDZZ4v+/vJL/gglbaYEm7Vr18axY8cAAPXq1cO6desAALt374YJaT6J6BLptcxMnx6a8hjFKgM4KLzIOrCuOK+/Drz9dtHfLpfyo5SfH/JmSrDZrVs3fPvttwCAlJQUDBs2DD169ECfPn1w9913m1EEIroEWi0zADB1qnUuLOwmQEZKSVEyHWRkWCPjgdMJjBrlu9zlKhp0R6QyZQYhl8sFl8tVOFXlggULsHr1ajRs2BBPPPEEKlSoYHQRTMUZCMiKRo5UWjK8yTbTjtMJrF2r/L9jx6JR6TLOjFSWOZ1Ki3ujRjxGoeBvJqEFC5RBdzLi9dsYpgSbZQ1PVrIipxNITPRMdyJbQOY9P7rNBsycCTRooH3hlC2QLiuslEZIVlrfB6qcHHm+E7zx+m0M0/JsnjhxAuvXr8fhw4fh8ur89fDDD5tVDCIqIYdDCcy853uW5aLidHoGmoDy/0GDlNt+Ms6MVBbpDVZLTg7fc7EstcJOmWL9OlLwTAk2v/32Wzz44IM4ffo0KlWqBJvbtB02m43BJpEkZE3oDigXe61WmIIC4PRppXVM1kC6LPGXRigcj5d3K+zEiUCbNvIHnnqfpzZtzC8LhT9TbqM3btwYt9xyCyZMmICKFSsavbmQYzM8WZXMLTR6t/3cuwI4nXIG0mWJTP1rtcqqkv32v17dpkxRpn2VFa/fxjBlNPr+/fsxePDgMhFoElmV7KO11W4A7vOh2+2eLZjeMwxR+JEpjZBWK6xK9jRBDofSSuvt+eflrRMZx5RgMzk5GRs2bDBjU0RkAKskdU9JAfbtU0bLLlgA7N0rb8tSWSZLGiG9lGEql0vuXLWHD/suk31mJDKGKbfR09PTMW7cODz66KNo0aIFypcv7/H8HXfcYXQRTMVmeLIavTQnHK1N5J97n00t4doFoDj+RqPfd58yu5CMeP02hikDhAYOHAgAGDdunM9zNpsNBQUFZhSDiEpo40bfZWVltLbM/VQp/IXz4CZ/9AYIAcAXXwBZWZwnnYqYchtdTequ9WCgSRTenE5g9Gjf5amp8l0g3TmdRbfT9boDyN5PlULLu/uJFll/tBXXReC778wrC4U/U4JNIpKX3iAHGVst1ADziSeUW4B9+iiPxETfQNIq/VQpdPQ+O2qQFs6Dm4rjcACTJuk/X7u2eWWh8GfYbfS33noLjz/+OKKiovDWW2/5XXfw4MFGFYOILpHagiF7wnPv2YPcCaE8V6lS0RSWsuVzpPCj99nJzFRyu8qeYmvECOD4cWDCBM/lNhtw222hKROFJ8MGCNWvXx8bNmxA9erVUb9+ff0C2GzYtWuXEUUIGXYwJqtJT/dNeB6uI4C1+Mt36E3Nf5icLE8+R1U49i8NxzKZSfbPTiBefx0YNUr50SZ7/lBev43BudENwJOVrEjmhOd6o+n1qEHl0qXyBArhOF94OJYpFLQ+O1YLwmX+fnDH67cxGGwagCcrUXgJpmVTpaZ1kuEiGo6z6oRjmUJNDTB//FEZYGe1INzpBNauVf6vdkeRDa/fxjAl9dHw4cM1l9tsNkRFRaFhw4a48847Ua1aNTOKQ0RljDrrTHEjg1XufVIdjvC/aIZj/9JLLZPVWv708m2qA8+Sk+Wup3efaJtNmbHLCkE0XTpTWjZvuOEGbNq0CQUFBWjSpAmEENi5cyciIiLQtGlTbN++HTabDatXr0bz5s2NLo7h+MuIKDw5ncDixcBTT3kOFLLZlBYmGW6XawnHVsRLKZPVbr8H0rIu8wQJevWz2ZQZu2QKonn9NoYpqY/uvPNO3HjjjThw4AA2btyITZs2Yf/+/ejRowf69u2L/fv34/rrr8ewYcPMKA4RlTFOp3IxP3gQaNIEmDy5aG5tu10JbDIzw3/6Qz3hOF94SctkxZRT/uZIB5RzULbsDu706ieE8rkiMqVl87LLLsPy5ct9Wi23bNmCnj17Yv/+/di0aRN69uyJo0ePGl0cw/GXEVH40Lp9abcD99wDLFrk2cI5a5Z8gaa7cOxfGmyZrDg1anEtm1OmKGmEZOVv6soFC4BevcwvU0nx+m0MU1o2c3NzcfjwYZ/lR44cQV5eHgCgSpUqOH/+vBnFIaIyQm8GF5dLmVLP++L42GNyt6A5HEpAFi6BJhB8mbRmppExr6s771Zeld2utLLLHGgCSv0mT9Z+bu9ec8tC4cm02+gDBgzAV199BafTif379+Orr75CSkoK7rrrLgDA+vXr0bhxYzOKQ0RlRHG3L7Xwtl9ohWOXgNKQkqJ00cjIANavV/7duxcYOTLUJSsd99+vvfz55+X+AUelw5TR6B988AGGDRuG+++/HxcvXlQ2XK4c+vfvjzfffBMA0LRpU8yaNcuM4hBRGaE1g0txjh0zrjwUmJQUZXR2uHUJuFQyZDYoqZ07tZeHOisChQdT82yeOnUKu3btghACl19+OWJjY83atKnY54MofLjP4BII2fqYEYWDrCzg2mt9l9vtSguuLMEmr9/GMOU2uio2NhYtW7bEVVddZdlAk4jCi3r7curUwNZPSjKyNOROzRJgxdusVq6bllOntJcPHy5PoEnGMeU2OgBkZWVh4cKF2Ldvn89AoC+//NKsYhBRGeRwAP/fg6dYp08bWxZSXGouzXBO+q5XN7XMsbFKcBaOZS+pRo2UvJre+WuHDAldmSh8mNKy+fnnn6NTp07YunUrvvrqK1y4cAFbt27FihUrEBcXZ0YRiKgMczqVgQrFkX3UsywuNZdmerqSSqhbN+Xf9HTjyhosvbpNmVJU5muvDc+yExnFlGBzwoQJePPNN7F48WJUqFAB06dPx7Zt29C7d28kJiYatt3jx4+jX79+iIuLQ1xcHPr164cTJ074fc0jjzwCm83m8Wjfvr1hZSQi4+mNSh8xwnqjnmWgN5XlwoXFB5zhnvRdr26jR2un4Hr8caW/o+x27vRNJSYE8NproSkPhRdTgs2//voLt956KwAgMjISp0+fhs1mw7Bhw5CWlmbYdh944AFkZ2fj+++/x/fff4/s7Gz069ev2NfddNNNOHjwYOFjyZIlhpWRiIynl7uxd29g7lxlUJCMMwfJSut4AEr/vuJa+/zNuR4OtOpmt2snPAeUurRrJ38Lp94x/eAD4PXXzS8PhRdTgs1q1arh5MmTAJTZhH7//XcAwIkTJ3DmzBlDtrlt2zZ8//33mDVrFjp06IAOHTpg5syZWLx4MbZv3+73tZGRkahdu3bho1q1aoaUkYjM4XAA3r8zL79cucj36aPkCFy6NDRlKw2yDUbRS3IOFN9SGe5J37XyhE6apB2IqYQIr9bZknA4gIEDtZ8bNUruutGlMyXY7Ny5M5YvXw4A6N27N4YMGYKBAweib9++6N69uyHbzMzMRFxcHNq1a1e4rH379oiLi8PatWv9vnblypWoWbMmGjdujIEDB2rOfuQuPz8feXl5Hg8iCh9OJ/DJJ57Lduwoam0Kt1uxwQjn/ov++MsS4K+lUoak7+4J3PfsUbpr6AXXqnBqnS0prWlGAeVzJnvd6NKYEmzOmDED9///9AJjxozBiBEj8Pfff+Oee+5BukHfjIcOHULNmjV9ltesWROHDh3Sfd3NN9+Mzz77DCtWrMAbb7yBrKwsdOvWDfn5+bqvSU1NLewXGhcXh7p165ZKHYjo0jmdym3y4hK7y3ix1+q/KFMfQIdDyWlakpZK9zqHI+9pOt0D0G+/VUZquwun1tmS6thRe7ndLn/d6BIJybz88ssCgN9HVlaWGD9+vGjcuLHP6xs2bChSU1MD3t6BAwdE+fLlxaJFi3TXOXfunMjNzS185OTkCAAiNze3RHUkotIxa5YQdrsQStuK/0dEhBA5OaEucXBWrNCui92u1F0Ws2Yp+189Dv7KnpPje0xlPHbB1FkWOTlC2Gy+5+PkyaEuWeByc3N5/TaAaXk2AeDw4cM4fPgwXF4/RVu2bBnwezzzzDOFraR6kpKS8Ouvv+Lvv//2ee7IkSOoVatWwNurU6cO6tWrh516c3FB6eMZGRkZ8HsSkfG8W/38sdvD71ZsIPSm41S7BSQny1GnYKan9DdASIa6qlq2BP71LyAhAbjtNrnKrkdrRDoAtG1rflkovJgSbG7cuBH9+/fHtm3bILzORJvNhoJA55EDEB8fj/j4+GLX69ChA3Jzc7F+/Xpc+/9zaP3yyy/Izc1FR722fg3Hjh1DTk4O6tSpE/BriCj09NIdeWvTBvjqKzkv9mr/Ra2gWrYALNB5w7UCbNluQT/yCPDxx0V/r1sHfPRRqEpTerSOjd0OxMSErkwUHkzps/noo4+icePGWLt2LXbt2oXdu3cXPnbt2mXINps1a4abbroJAwcOxLp167Bu3ToMHDgQt912G5o0aVK4XtOmTfHVV18BUOZuHzFiBDIzM7Fnzx6sXLkSt99+O+Lj43H33XcbUk4iMoZeKhZvmzcbXxYjpaQowUo4j9C+FN4j7WUYIORPVpZnoAkof8vSz9YfrSwDVkntRJfGlGBz9+7dmDx5Mtq1a4ekpCTUq1fP42GUzz77DC1atEDPnj3Rs2dPtGzZEp94DUndvn07cnNzAQARERH47bffcOedd6Jx48bo378/GjdujMzMTFSqVMmwchJR6dMKSnr29F1PxoFB3tq2lTsA0+M90n7kSCXo9B7tLVN+1J9/1l6+Zo255TBKSgqQmem5TAglLZKM2R6odNiE931tA9x1113o168f7r33XqM3FRby8vIQFxeH3NxcVK5cOdTFISrTnM6ivoCAErR434Lds0f+wAzwrKvs9XE6fY8VoIzinjlTrgDTXVaWMl2lt/XrrdO3ccECJX+t1vJevcwvTzB4/TaGKX02Z82ahf79++P333/HlVdeifLly3s8f8cdd5hRDCIqg7z7AqalKYNnCgrkagF0OpV+qI0a6Zc30H6PMtDrc6smQJdl8JO3tm2B/v09b6X372+dQBMAVqzQXn7smLnloPBhSrC5du1arF69Gv/97399ngt2gBAR0aUK9xyN3tLTiwYB2e1KwCxry16g9EbaA/INfgI8fyx89BHw9NPKrfNOnawVaDqdSsuzlqefBsqXt/65S75MuY2elJSE2267Df/+97+DSjskKzbDE4UnrVuz4X4bXcYyl5b09KJWaHey1b+4HwuBtFrLIiNDfyYhIPyPHa/fxjBlgNCxY8cwbNiwMhFoElH48pejMVwFU2bZ5kgvjjoQaMSIotH2MnV9ALRneXKfGlXW6Ub1FJcFItw/b2QMU4LNe+65BxkZGWZsiohIl9aFMNxTBOmVOSbGM7C0WtCicjiAKVOAvXvlHH3u78dCcYGojLTSH7kL988bGcOUPpuNGzfGmDFjsHr1arRo0cJngNDgwYPNKAYREYYPB6ZOVS7sMrSSqRdv90FNDz0EtG9fdFt24kTg+ed9gxZZB9FokXXwk78k9FaZDcmb+4xQWVnAmDHyDcij0mVKn8369evrF8BmMyyxe6iwzwdR+PHuNzd8ODBkiDwXPjWtUUxMUaCp0htIk5EBdO1qWhFJh3vfUzXgSkkpO/1xs7KA1auB664L/8FQvH4bw5Rgs6zhyUoUXrKyfAM0WS/qegMwbDbPeantduXWs2z1syq9HKh6gahVyJZJgddvYzDYNABPVqLwkZ6uzF6i9U0nY8ufXmuY94htmw3Yt4/BpgyslIzfnYwtt7x+G8OwPpvDhw/Hq6++ipiYGAwfPtzvulOnTjWqGERUhqkDMLQCTVkHKmj14XzsMaVFzJ0Q8vf9Kytk7Y9aHKv2SaXgGRZsbt68GRcuXCj8vx6bzWZUEYiojNObhcZul3uggvsAjB9+ACZM8F3HfcS6zPkbrZSD0p1V6+XO3+AoKlsMCzbdUx0x7RERhYLWxc5mA9atC/+BCsVxOIB584Dx432fs9t9R6yHe185LbL19wuUe9cO2ed690erFV7mH3lUcuyzaQD2+SAKH959Nq1ycXc6gcRE7S4CEyYAL74oV185ldriFxtrnUFd7rSOm9X718rUJ5XXb2OYktSdiChUkpOVi7lKCPkTZwNKQKbXVHDunHwzJQGeiemvvVbOOhRn7Vrf4yYEkJkZmvKYweFQBuKFe6BJxmGwSUSWpE7duHatNYOW2Fj95267Tb6Zkrxn09ES7nUg/6w2nSoFjsEmEVmOewtZ376eLZuANYKWU6e0l48YofRHdZ8yUIa+cnqDudylpoZ3HQLRsaPv+Wi3Ax06hKY8ZrHqdKoUGAabRGQpWvNNA0UtfTIEXoFo1Mg3aLHZlFmRAKVP6p498swnrjUHvDfZB3UBynk3c6bnD4G0NPnPR3+sOAc8BceUudGJiMyi1UKm9tPs00eOQQol5R18ypS/UR25rHcr3Qqt0Sr31FVWPh9VzLdJbNkkIkvRavEDlNYkK13YtQYIuVxy90VNSVGm2BwxwvMYyp4XVYv7oBmr92XUarW20o8HKh6DTSKyFIcDeO453+VWGBTkTu8CriZylzlwueUW4JdfgAULlMfeveHfDaCkykJfRrXVWqY+xFS6mGfTAMzTRRRaMs7JXBLp6Z4Jsx96CJgzR95k4VZN4u7OfeYgoGycpyoZ8m3y+m0MtmwSkeWoLSnuLX8uF7B0aejKZAT3QUCZmUWBJqD8O3CgPC2cZWEQiXcr5vTp1kzLpYf5NssuBptEZEnJyZ4XciGUYMZKwQtQdAHfvVvuZOH+BpFYgVYw/eab1kzLReSNwSYRWdLatb7LXC55gq+yxuqDSPSC6eeeY19Gsj4Gm0REFqCVLNxmkydZuMMB9OvnuezGG0NTFiPoBdNDhsiVD5WoJBhsEpElaQVfgDKymcKP0wl88onnsqVLgbp1rTFC29+IbPZlJKtjsElEluRwAJMm+S5//nnr9dsEtPNuCiFPn0d/01XKNNDJH3VA14IFwNy5Sr9ib1bPuUllE4NNIrKsNm18l1lp0Ik72fs8btig/5xMA52Ks3QpcP/9ymxW7nk1nU5g5EggMdHaOTepbGKwSUSWJXsApnI6ixKc67V4yZw42+lUWpwDWU/mVj+99E5TpijB5euvF7VOWzH1E5VdDDaJyLJkDsBU6elKa1efPsojMVFpAdMKQtzzbso02MTfLXRA+cGQnS1/q5/eiPTRo7Xrb9VWeCp7OIOQATgDAVF4kWHmEi1OpxJgaX1LyzhDkB6tGZ9UERHAPfcACxf6Lpdtph2tetps2scXkLOOsuP12xhs2SQiy5N1tK/WoB+VENa5zerdAq2y2ZRWv0WLfF8jY6ufVku73vG12eRrhSfSw5ZNA/CXEVHouc9BLesF21/LpiojQ2mxlb2uAJCVBbRr51lfu127xdNuV9JYyVhftaX98GGla4SWBQuAXr3MLRfx+m0UtmwSkeV4z0EtY/8+QAmkZs7UzhcKKC1jGzZYo64AcOqUb2DtcvkO8gKAiRPlDDSBopZ2vVywERHyJOMnCgSDTSKyFL0Rv7Lebk5JAfbtU1q6Bg0qCrzsdmUEt/vgEtnr2qiR9ixIkyYV3Xq225XR2yNHml++0qS2vE+a5Flnu523z8l6yoW6AEREpUlvxO+ff8p7AXc4lFuqvXoBl19eFGBOmODbEih7Xb3ZbEpeyvvvl3OQl5b09KIfRHY7MHmy0ioNKC2astePyBtbNonIUqySW1OLmo9SDTC1+nLKXFetAVEuV1HwLOMgL29aLe+jRgFHjxbdOpc5lyiRFgabRGQpVsitqSeQfJQy19XKPxRUWsdQCOCpp5TBYLLnEiXSwmCTiCxH1uTmxdEKxrxpzbctC60fChMnKgGaVVr6/B1DITiDEFkTg00isiSr3HZ1pwZjesGKestZZu4/FFJTlVvM3bopLX5WaOkr7hi6kzGXKJEWBptERBZhlVvODodSj9GjPfunDhxojZa+lBRg3Tr9lFYqqxxPIgabRESS8B5c4s5KfVMB4NtvfQcLCQFkZoamPKWtbVv/OVRl739L5I7BJhGRJPQGCPXuba2+qa+/rgyY0XLsmLllMVJKivLjQcvnn1vneBIx2CQikoTe4JIvvjC/LEYpLmH7U09Zo+8moLRUz5zpu9xu5wxCZC0MNomIJOFwAMOH+y63wsAgQAm+Ro/2v44Q1hmlrddSPXw4b5+TtTDYJCKSSO/e2stjYswthxG0krprscoobb28okOGhKY8REZhsElEJJFTp7SXnz5tbjmMEEgeUcA6o7StPAEBkTsGm0REEtELyLKyzC9LafMOvrRYbZS2VScgIHJnEyKQmxYUjLy8PMTFxSE3NxeVK1cOdXGIyGJefBEYP95zWUSEEqxYIQjLygIWLwb++ksZlV1QoNRv2DDlFrMV6kjhiddvY5QLdQGIiChw6enKzDre1H6Msgdi6elK8nb3ZpARI6wbZDqdSl/V2Fili0SjRtasJ5VtbNk0AH8ZEZERnE6gXj39pO6yt2zq1c9uB/bulbtuWrQCa7td6UrA2+mhweu3Mdhnk4hIEnqpcqzSj1GvflZJ7eTO6fQNNAGlrlZJ7USksnSwOX78eHTs2BEVK1ZElSpVAnqNEAJjx45FQkICoqOj0bVrV2zZssXYghIRBUBrcJDdrsyzbYWWsEaNtKdvtNutMfrc3dq1+mmerJLaiUhl6WDz/Pnz6NWrF5588smAXzN58mRMnToVM2bMQFZWFmrXro0ePXrg5MmTBpaUiKh4Wqly0tKUebat4OBB7eUTJ8rfahsMKwbXVLZZOth85ZVXMGzYMLRo0SKg9YUQmDZtGl544QXcc889uPLKK/Hxxx/jzJkzmDt3rsGlJSIqnlVT5aSnA+3aabf2WSWYdtexo3YrLqDsg6VLzS0PkZEsHWwGa/fu3Th06BB69uxZuCwyMhJdunTB2rVrdV+Xn5+PvLw8jwcRkZGsMrTT6QQWLNDuvwhYJ4G7N4dDmRddK6eolabkJAIYbHo4dOgQAKBWrVoey2vVqlX4nJbU1FTExcUVPurWrWtoOYmo7EpPV0Zsd+um/JueHuoSlZxalz599IPndu2sewtdbaWeOtX3OfbbJCuRLtgcO3YsbDab38eGDRsuaRs2r3sbQgifZe7GjBmD3NzcwkdOTs4lbZ+ISIvTCTz+eNGIbZlHLnvXRc/atdaYHUmPwwH06qU9R7oVW3SpbJIuqfszzzyD+++/3+86SUlJJXrv2rVrA1BaOOvUqVO4/PDhwz6tne4iIyMRGRlZom0SEQVKKzVQQQGwcKESsMjUAqiX5kjLmjXW7LepUgd+DRpUNFuSFVJZEamkCzbj4+MRHx9vyHvXr18ftWvXxvLly9GqVSsAyoj2VatWYdKkSYZsk4goUGpqIO9bzsOHK7PsyJQMXE3jFEjA2amT8eUJtZQUIDlZuXXesCEDTbIW6W6jB2Pfvn3Izs7Gvn37UFBQgOzsbGRnZ+PUqVOF6zRt2hRfffUVAOX2+dChQzFhwgR89dVX+P333/HII4+gYsWKeOCBB0JVDSIiAP5HKMt2S11tzfO+feytf39rt2q6cziArl0ZaJL1SNeyGYyXXnoJH3/8ceHfamtlRkYGunbtCgDYvn07cnNzC9cZNWoUzp49i6eeegrHjx9Hu3btsGzZMlSqVMnUshMRuVP7OPobhS7b/OgpKUDLltopj4YNA/r2BerUUdI8cc5wInlxbnQDcG5VIiptGRnKCHR/ZJ0fPT29qL+iym4H+vUD5sxRAlGbTUkVJEs3AZITr9/GsPRtdCIiq9CaqtKdzSbvoJKUFCAz07N+Lhfw8cdFLZ5CKLk4ZekmQERFGGwSEUnAe6pKb3a7MsBEVqdOFT9YSAglKCUiuTDYJCKShJWTgBfXcktE8uJHm4hIIlZNAu7dcqvVgmu3Ax06mFsuIrp0DDaJiCSjFZjJ2l/Tndpym5Gh/Dtrlmcd09LkryNRWcTR6AbgaDYiMoPTaf0k4GWhjhQ+eP02hqXzbBIRWZnDYf0ArCzUkcjqeBudiIiIiAzDYJOIiIiIDMNgk4iIwobTqQwQck/errWMiOTBPptERBQW0tOV+d9dLiXNUVqastx7GaesJJILR6MbgKPZiIiC43QC9ep5ziKk5hJ1Xybr/O8kB16/jcHb6EREFHI7d/pOV+ly+S6TfaYkorKIwSYREYWc1nSVdrv1ZkoiKosYbBIRUchpzYrUrx/g3tHLbrfGTElEZQ0HCBERUVhISQGSk5Xb5DExQPv2nsEmoDxPRHJhyyYREYUNhwPo2hU4dUq7Dyf7axLJh8EmERGFnY0bfZexvyaRnBhsEhFRWHE6gdGjfZenprK/JpGMGGwSEVFY0UqDBABt25pfFiK6dAw2iYgorGilQeItdCJ5MdgkIqKwopUGiSmPiOTF1EdERBRWnE6gQQMgMxM4fVpp0WSgSSQvtmwSEVHYSE9X5kjv1k3Js/nXXww0iWTHYJOIiMKC0wk8/njR4CCXCxg0SFlORPJisElERGFBaxR6QQETuRPJjsEmERGFBY5CJ7ImBptERBQWtEahT5yotHjyVjqRvDganYiIwkZKCpCcrNw6z8pSZhJyuZQWz7Q05XkikotNCCFCXQirycvLQ1xcHHJzc1G5cuVQF4eISDpOpzIq3b0PZ0QEsGcPR6eTcXj9NgZvoxMRUdjhYCEi62CwSUREYYeDhYisg8EmERGFHU5ZSWQdHCBERERhw+lUbqE3auQ5WIhTVhLJi8EmERGFhfT0ohmE3EefM8gkkhtvoxMRUchxqkoi62KwSUREIcfR50TWxWCTiIhCjqPPiayLwSYREYUcR58TWRcHCBERUVjg6HMia2KwSUREYcPhYJBJZDW8jU5EREREhmGwSURERESGYbBJRERERIZhsElEREREhmGwSURERESGYbBJRERERIZhsElEREREhmGwSURERESGYbBJRERERIZhsElEREREhmGwSURERESG4dzoBhBCAADy8vJCXBIiIiIKlHrdVq/jVDoYbBrg5MmTAIC6deuGuCREREQUrJMnTyIuLi7UxbAMm2D4XupcLhcOHDiASpUqwWazhbo4YSUvLw9169ZFTk4OKleuHOrilEk8BqHHYxB6PAbhIdyOgxACJ0+eREJCAux29jQsLWzZNIDdbofD4Qh1McJa5cqVw+KLpSzjMQg9HoPQ4zEID+F0HNiiWfoYthMRERGRYRhsEhEREZFhGGySqSIjI/Hyyy8jMjIy1EUps3gMQo/HIPR4DMIDj0PZwAFCRERERGQYtmwSERERkWEYbBIRERGRYRhsEhEREZFhGGwSERERkWEYbJLhUlNT0bZtW1SqVAk1a9bEXXfdhe3bt4e6WGVaamoqbDYbhg4dGuqilDn79+/HQw89hOrVq6NixYq4+uqrsXHjxlAXq8y4ePEiXnzxRdSvXx/R0dFo0KABxo0bB5fLFeqiWdZPP/2E22+/HQkJCbDZbPj66689nhdCYOzYsUhISEB0dDS6du2KLVu2hKawZAgGm2S4VatW4emnn8a6deuwfPlyXLx4ET179sTp06dDXbQyKSsrC2lpaWjZsmWoi1LmHD9+HJ06dUL58uXx3//+F1u3bsUbb7yBKlWqhLpoZcakSZPw/vvvY8aMGdi2bRsmT56MKVOm4O233w510Szr9OnTuOqqqzBjxgzN5ydPnoypU6dixowZyMrKQu3atdGjRw+cPHnS5JKSUZj6iEx35MgR1KxZE6tWrcL1118f6uKUKadOncI111yDd999F6+99hquvvpqTJs2LdTFKjOef/55rFmzBj///HOoi1Jm3XbbbahVqxbS09MLl917772oWLEiPvnkkxCWrGyw2Wz46quvcNdddwFQWjUTEhIwdOhQjB49GgCQn5+PWrVqYdKkSRg0aFAIS0ulhS2bZLrc3FwAQLVq1UJckrLn6aefxq233oobb7wx1EUpk7755hu0adMGvXr1Qs2aNdGqVSvMnDkz1MUqU6677jr8+OOP2LFjBwDgf//7H1avXo1bbrklxCUrm3bv3o1Dhw6hZ8+ehcsiIyPRpUsXrF27NoQlo9JULtQFoLJFCIHhw4fjuuuuw5VXXhnq4pQpn3/+OTZt2oSsrKxQF6XM2rVrF9577z0MHz4c//rXv7B+/XoMHjwYkZGRePjhh0NdvDJh9OjRyM3NRdOmTREREYGCggKMHz8effv2DXXRyqRDhw4BAGrVquWxvFatWti7d28oikQGYLBJpnrmmWfw66+/YvXq1aEuSpmSk5ODIUOGYNmyZYiKigp1ccosl8uFNm3aYMKECQCAVq1aYcuWLXjvvfcYbJpk/vz5+PTTTzF37lxcccUVyM7OxtChQ5GQkID+/fuHunhlls1m8/hbCOGzjOTFYJNM8+yzz+Kbb77BTz/9BIfDEerilCkbN27E4cOH0bp168JlBQUF+OmnnzBjxgzk5+cjIiIihCUsG+rUqYPmzZt7LGvWrBkWLVoUohKVPSNHjsTzzz+P+++/HwDQokUL7N27F6mpqQw2Q6B27doAlBbOOnXqFC4/fPiwT2snyYt9NslwQgg888wz+PLLL7FixQrUr18/1EUqc7p3747ffvsN2dnZhY82bdrgwQcfRHZ2NgNNk3Tq1Mkn7deOHTtQr169EJWo7Dlz5gzsds9LX0REBFMfhUj9+vVRu3ZtLF++vHDZ+fPnsWrVKnTs2DGEJaPSxJZNMtzTTz+NuXPn4j//+Q8qVapU2EcnLi4O0dHRIS5d2VCpUiWfPrIxMTGoXr06+86aaNiwYejYsSMmTJiA3r17Y/369UhLS0NaWlqoi1Zm3H777Rg/fjwSExNxxRVXYPPmzZg6dSoGDBgQ6qJZ1qlTp/Dnn38W/r17925kZ2ejWrVqSExMxNChQzFhwgQ0atQIjRo1woQJE1CxYkU88MADISw1lSpBZDAAmo/Zs2eHumhlWpcuXcSQIUNCXYwy59tvvxVXXnmliIyMFE2bNhVpaWmhLlKZkpeXJ4YMGSISExNFVFSUaNCggXjhhRdEfn5+qItmWRkZGZrXgP79+wshhHC5XOLll18WtWvXFpGRkeL6668Xv/32W2gLTaWKeTaJiIiIyDDss0lEREREhmGwSURERESGYbBJRERERIZhsElEREREhmGwSURERESGYbBJRERERIZhsElEREREhmGwSURhb8+ePbDZbMjOzg51US7ZmjVr0KJFC5QvXx533XVXqItDRGQ4BptERMV45JFHSi0wHD58OK6++mrs3r0bH330Uam8Z6A++ugjVKlSxdRtEhEx2CQiw5w/fz7URbgkBQUFcLlcpfqef/31F7p16waHwxFw4Cf7fiSiso3BJhGVmq5du+KZZ57B8OHDER8fjx49egAAtm7diltuuQWxsbGoVasW+vXrh6NHjxa+7vvvv8d1112HKlWqoHr16rjtttvw119/BbXtpKQkvPrqq3jggQcQGxuLhIQEvP322x7rTJ06FS1atEBMTAzq1q2Lp556CqdOnSp8Xm35W7x4MZo3b47IyEg8+uij+Pjjj/Gf//wHNpsNNpsNK1eu1CxDfn4+Bg8ejJo1ayIqKgrXXXcdsrKyABR1BTh27BgGDBgAm82m27KZlJSE1157DY888gji4uIwcOBAAMCiRYtwxRVXIDIyEklJSXjjjTc8Xnf8+HE8/PDDqFq1KipWrIibb74ZO3fuBACsXLkSjz76KHJzcwvrMXbsWADAu+++i0aNGiEqKgq1atXCfffdF9S+JyLyK9STsxORdXTp0kXExsaKkSNHij/++ENs27ZNHDhwQMTHx4sxY8aIbdu2iU2bNokePXqIG264ofB1X3zxhVi0aJHYsWOH2Lx5s7j99ttFixYtREFBgRBCiN27dwsAYvPmzbrbrlevnqhUqZJITU0V27dvF2+99ZaIiIgQy5YtK1znzTffFCtWrBC7du0SP/74o2jSpIl48sknC5+fPXu2KF++vOjYsaNYs2aN+OOPP8SJEydE7969xU033SQOHjwoDh48KPLz8zXLMHjwYJGQkCCWLFkitmzZIvr37y+qVq0qjh07Ji5evCgOHjwoKleuLKZNmyYOHjwozpw5o1uXypUriylTpoidO3eKnTt3ig0bNgi73S7GjRsntm/fLmbPni2io6PF7NmzC193xx13iGbNmomffvpJZGdni+TkZNGwYUNx/vx5kZ+fL6ZNmyYqV65cWI+TJ0+KrKwsERERIebOnSv27NkjNm3aJKZPnx7I4SYiCgiDTSIqNV26dBFXX321x7J///vfomfPnh7LcnJyBACxfft2zfc5fPiwACB+++03IUTgweZNN93ksaxPnz7i5ptv1n3NggULRPXq1Qv/nj17tgAgsrOzPdbr37+/uPPOO3XfRwghTp06JcqXLy8+++yzwmXnz58XCQkJYvLkyYXL4uLiPAJEvbrcddddHsseeOAB0aNHD49lI0eOFM2bNxdCCLFjxw4BQKxZs6bw+aNHj4ro6GixYMGCwvrFxcV5vMeiRYtE5cqVRV5ent8yERGVFG+jE1GpatOmjcffGzduREZGBmJjYwsfTZs2BYDCW+V//fUXHnjgATRo0ACVK1dG/fr1AQD79u0LatsdOnTw+Xvbtm2Ff2dkZKBHjx647LLLUKlSJTz88MM4duwYTp8+XbhOhQoV0LJly6C2q9bhwoUL6NSpU+Gy8uXL49prr/UoQ6C89+O2bds83hsAOnXqhJ07d6KgoADbtm1DuXLl0K5du8Lnq1evjiZNmvjdfo8ePVCvXj00aNAA/fr1w2effYYzZ84EXV4iIj0MNomoVMXExHj87XK5cPvttyM7O9vjsXPnTlx//fUAgNtvvx3Hjh3DzJkz8csvv+CXX34BUDoDY2w2GwBg7969uOWWW3DllVdi0aJF2LhxI9555x0AwIULFwrXj46OLnxNMIQQHttzX16S9/Pej1rvo27T+//BbL9SpUrYtGkT5s2bhzp16uCll17CVVddhRMnTgRdZiIiLQw2ichQ11xzDbZs2YKkpCQ0bNjQ4xETE4Njx45h27ZtePHFF9G9e3c0a9YMx48fL9G21q1b5/O32oq6YcMGXLx4EW+88Qbat2+Pxo0b48CBAwG9b4UKFVBQUOB3nYYNG6JChQpYvXp14bILFy5gw4YNaNasWZA18dW8eXOP9waAtWvXonHjxoiIiEDz5s1x8eLFwkAdAI4dO4YdO3YUbl+vHuXKlcONN96IyZMn49dff8WePXuwYsWKSy4zERHAYJOIDPb000/jn3/+Qd++fbF+/Xrs2rULy5Ytw4ABA1BQUICqVauievXqSEtLw59//okVK1Zg+PDhJdrWmjVrMHnyZOzYsQPvvPMOFi5ciCFDhgAALr/8cly8eBFvv/02du3ahU8++QTvv/9+QO+blJSEX3/9Fdu3b8fRo0c9WkJVMTExePLJJzFy5Eh8//332Lp1KwYOHIgzZ84gJSWlRPVx99xzz+HHH3/Eq6++ih07duDjjz/GjBkzMGLECABAo0aNcOedd2LgwIFYvXo1/ve//+Ghhx7CZZddhjvvvLOwHqdOncKPP/6Io0eP4syZM1i8eDHeeustZGdnY+/evZgzZw5cLheaNGlyyWUmIgLA0ehEVHq6dOkihgwZ4rN8x44d4u677xZVqlQR0dHRomnTpmLo0KHC5XIJIYRYvny5aNasmYiMjBQtW7YUK1euFADEV199JYQIfIDQK6+8Inr37i0qVqwoatWqJaZNm+axztSpU0WdOnVEdHS0SE5OFnPmzBEAxPHjx4UQ2gNohFAGLPXo0UPExsYKACIjI0OzDGfPnhXPPvusiI+PF5GRkaJTp05i/fr1HusEOkDozTff9Fn+xRdfiObNm4vy5cuLxMREMWXKFI/n//nnH9GvXz8RFxdXWMcdO3Z4rPPEE0+I6tWrCwDi5ZdfFj///LPo0qWLqFq1qoiOjhYtW7YU8+fP91s+IqJg2ITQ6ehDRCSRpKQkDB06FEOHDg11UYiIyA1voxMRERGRYRhsEhEREZFheBudiIiIiAzDlk0iIiIiMgyDTSIiIiIyDINNIiIiIjIMg00iIiIiMgyDTSIiIiIyDINNIiIiIjIMg00iIiIiMgyDTSIiIiIyDINNIiIiIjLM/wFzcFrA5ddfjAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACE+UlEQVR4nO3deXgT1foH8G8SoC1tKTu0llIQBBdQBGRTQRCrKO5sKqJWFJULWFnk6lVcoGyCC25Axe2KgMC9qCiiFJRNCtqrIrJIgQZBFqFsUqA5vz/mN2mWmWQmTZqZyffzPHmgk0nyzkySeXPmPefYhBACRERERDHMHu0AiIiIiKKNCRERERHFPCZEREREFPOYEBEREVHMY0JEREREMY8JEREREcU8JkREREQU85gQERERUcxjQkREREQxjwkRERERxTwmRERERBTzmBAZzNq1azFu3DgcPXq00l973rx5uPjii5GQkACbzYbCwsKgj3n++edx0UUXweVyRT7AAI4fP47Ro0fjuuuuQ7169WCz2TBu3DjFdfPy8nDeeefh5MmTEYvHKPsF0LdvAODEiRMYMWIE0tLSEB8fj8suuwwff/yx1zqVsQ8B4N1334XNZsOuXbsABP58jBs3DjabDYcOHYpoTOGm9rkL5fNoFJH+HqusYy2/jlHikT8P8q1KlSpITU1F//79sX379rC9jt7vDCVavkfCZfXq1ejVqxdq1aqFhIQENG/eHC+88ILu52FCZDBr167Fc889V+kJ0cGDBzFw4ECcf/75+PLLL7Fu3TpccMEFAR/zxx9/YPLkyXj++edht0f3rXT48GHMnDkTpaWluPXWWwOuO2jQICQmJmLy5MkRicVI+wXQt28A4Pbbb8d7772HZ599Fl988QXat2+PAQMG4KOPPnKvE+l9KLvxxhuxbt06pKamAoje5yNS1D53oXwejcRqx8lo5syZg3Xr1uHrr7/G0KFDsWTJElx55ZU4cuRIWJ5f73eGEi3fI+Hw0UcfoWvXrkhJScH777+PpUuXYsyYMQhp3npBITl58mREnnfKlCkCgCgqKorI86tZvXq1ACDmzZun+TGjR48W5513nigrK4tgZNq4XC7hcrmEEEIcPHhQABDPPvus6vpTp04VKSkpETmORtovQujbN59//rkAID766COv5T179hRpaWni3Llz7mWR3IdqAn0+nn32WQFAHDx4sNLiqSi1z10on0cjkN8Lkfoek5+/so61/Dpa14t0PHPmzBEAREFBgdfy5557TgAQ77zzTlheR+/3qS893yMV4XQ6RWJionjkkUfC8nzR//lqAnJz6A8//IA777wTtWrVwvnnnw9Aaqrr0aMHkpOTUb16dXTu3Bmff/654vMEW3fcuHEYNWoUAKBJkybuZtGVK1fi4MGDeOihh9CoUSPExcWhXr166NKlC77++uug8Qd73fvuuw9XXnklAKBfv36w2Wzo1q1bwOc8c+YM8vLycNddd3m1guzbtw9JSUno37+/1/qfffYZqlatiqeeeipovKGQ95VWd999N44dOxb2Jly1/QKYY98sXrwYSUlJ6NOnj9fy+++/H3/88Qe+//579zKt+3Dz5s2w2WxYsGCBe9mmTZtgs9lw8cUXe6178803o23btu6/PS+ZBfp8ePrzzz8xYMAApKSkoEGDBnjggQdQUlKiaft/++03DBgwAA0aNEBcXBwyMjJw7733orS01L2O1s/89u3bcdddd6F+/fqIi4vDhRdeiNdff919v9rnLtDnMdTvAfk77Mcff8Ttt9+OGjVqICUlBffccw8OHjyoO3bP5/T9Xgx0nO677z5kZmaqxqfl+T0VFxcH3R4t2wIAn3/+OS677DLExcWhSZMmmDp1asB9qiRYPN999x1sNhvmzp3r99j3338fNpsNBQUFul+3Xbt2AKT3fjjo/T71ped7ROvxUTJ79mycPHkSY8aMCTlWL2FJqyxOzv4bN24sxowZI5YvXy7+85//iJUrV4qqVauKtm3binnz5on//Oc/4rrrrhM2m018/PHHXs+hZd3i4mLxj3/8QwAQixYtEuvWrRPr1q0TJSUlIisrS9SrV0/MnDlTrFy5UvznP/8RzzzzjN/r+NLyujt27BCvv/66ACAmTJgg1q1bJzZv3hzweb/99lsBQCxdutTvvueee07YbDaxceNGIYQQ+fn5Ij4+XvzjH//QvM8rQusvmgsvvFDcfvvtYX3tQPtFCOPvm44dO4r27dv7Lf/ll18EAPH22297Lde6D1NTU8VDDz3k/nvixIkiISFBABB79+4VQghx9uxZUaNGDTF69Gj3evIv4qKiooCfDyHKP6ctWrQQzzzzjFi+fLmYNm2aiIuLE/fff3/QGAsLC0VSUpLIzMwUb731lvjmm2/Ehx9+KPr27SuOHTsmhND2eRJCiM2bN4uUlBTRqlUr8f7774uvvvpKPPHEE8Jut4tx48YJIdQ/d4E+j6F+D3h+h40aNUosW7ZMTJs2TSQmJoo2bdqIM2fO6Ird9zk9vxcDHadBgwaJxo0bq8anFrPn8+vZHq3b8vXXXwuHwyGuvPJKsWjRIrFgwQLRvn17kZGRoauFSMv+bdOmjejSpYvfc7Rv317xs+dJrYVoxowZAoBYuHCh13KXyyXOnj2r6aYmlBYird8jWo+Pmu7du4vatWuLL7/8Ulx66aXC4XCIevXqiYcfftj9vaAHEyIN5Df7M88847W8Y8eOon79+uL48ePuZefOnROXXHKJSE9Pdzc56llXrak5KSlJjBgxQnfsWl83Pz9fABALFizQ9LyTJk0SAMT+/fv97jt58qRIS0sTPXr0EBs2bBDJycni/vvv99ofkaT1A3z33XeLBg0aeC1zuVziyJEjfpeB/v77b3HkyBG/pt6SkhL3yVKIwPtFCOPvm+bNm4usrCy/5X/88Yf7BO1JaR8queeee0TTpk3df1977bVi8ODBolatWuK9994TQgixZs0aAUB89dVX7vU8EyIhtF0ymzx5stfyRx99VMTHxwfdx927dxc1a9YUBw4cUF1H6+cpKytLpKen+30pDx06VMTHx4u//vpLCKH+uVNbHur3gLxvHn/8ca/l//73vwUA8eGHH7qXaY1d7XtRCPXjFEpCpPT8WrdH67Z06NBBpKWlib///tu9zrFjx0Tt2rV1JURa9q/8nv7xxx/dyzZs2CAAuD8LauTHrl+/Xpw9e1YcP35cfPnll6Jhw4bi6quv9kts5PeRlpva5c1QEiKt3yNaj4+aFi1aiPj4eJGcnCwmTJgg8vPzxeTJk0VCQoLo0qWL7u9VXjLT4Y477nD//+TJk/j+++9x5513Iikpyb3c4XBg4MCBcDqd2Lp1q+511VxxxRV499138eKLL2L9+vU4e/Zs0HjD8bpq/vjjD9hsNtStW9fvvurVq+PFF1/EN998g2uuuQY33HADZs2apdoEu3LlSq+eE4Fu4expU79+fRw4cADnzp1zL/vzzz9Rq1YtPProo17rTpw4EbVq1fJrzr7gggtw1VVXuf8OtF8Ac+ybQE3lvvcp7UMlPXr0wM6dO1FUVITTp09j9erVuP7663HNNddg+fLlAICvv/4acXFx7stFobr55pu9/m7dujVOnz6NAwcOqD7m1KlTWLVqFfr27Yt69eoprqP183T69Gl88803uO2221C9enWcO3fOfevVqxdOnz6N9evXh7RtoXwPeLr77ru9/u7bty+qVKmC/Px8AAgpds/vxUgI9PyBtkfrtpw8eRIFBQW4/fbbER8f736u5ORk9O7dW1eswfYvAAwYMAD169f3uiz02muvoV69eujXr5+m1+nYsSOqVq2K5ORkXH/99ahVqxb++9//okqVKl7rtW3bFgUFBZpuaWlpurY1mGDfI3rea573nTt3zl0w7XK5cPr0afzzn//E2LFj0a1bN4waNQq5ublYs2YNvvnmG10xVwm+Csnkni4AcOTIEQghvJbJ5DfW4cOHda+rZt68eXjxxRcxe/Zs/Otf/0JSUhJuu+02TJ48GQ0bNlR8TDheV83ff/+NqlWrwuFwKN4v94ix2Wx49913VdcDgBYtWmDWrFmaXjcjI0N/sCri4+MhhMDp06e9TnAVEWy/AMbeN3Xq1FF8T/z1118AgNq1a3st17oPr732WgBS0tOkSROcPXsW3bt3x59//unuHvv111+jS5cuSEhIqPA2eIqLiwMgHRs1R44cQVlZGdLT0wOuo+XzlJycjHPnzuG1117Da6+9pvhcoXbPDuV7wJPvOlWqVPE65ocPH9Ydu9L+CKdAzx9oe7Ruy5EjR+ByuRT3n5Z9qjUeWVxcHB5++GG89NJLmDJlCs6ePYv58+cjJyfH/V4N5v3338eFF16I48ePY968eXj77bcxYMAAfPHFF17rJSUl4bLLLtP0nL7JVEVo+R7Renx27dqFJk2aeC3Pz89Ht27dUKdOHWzfvh1ZWVle999www0YMWIEfvjhB/d3jxZMiHTwzHhr1aoFu92Offv2+a33xx9/AIC7lUDPumrq1q2Ll19+GS+//DL27NmDJUuW4Mknn8SBAwfw5ZdfKj4mHK8bKJ4zZ87g5MmTSExM9LqvsLAQN910E7p06YI1a9bgnXfewWOPPab6XKmpqXjwwQdDiqMi/vrrL8TFxXmdyBs2bKjYXXPcuHGK43Ds37/f6+9A+wUw/r5p1aoV5s6di3Pnznl9Qf78888AgEsuucRrfaV9qCQ9PR0XXHABvv76a2RmZqJdu3aoWbMmevTogUcffRTff/891q9fj+eeey78G6VB7dq14XA44HQ6VdfR+nmqVauWu9VI7dj6fsFrFcr3gKf9+/fjvPPOc/997tw5HD582J1EhhK7nuLb+Ph4rwJ1WaAEMdDzB9oerdsSHx8Pm83m91mWn1+PYPtX9sgjj2DixIl45513cPr0aZw7dw5DhgzR/DoXXnihu5D6mmuuQVlZGWbPno1PPvkEd955p3u9VatW4ZprrtH0nEVFRYoF76HQ8j2i9fgkJyf7tcy3aNECgNT6q9TaKn+H6x32hAlRiBITE9GhQwcsWrQIU6dOdf+qdblc+PDDD90nAL3ravk1m5GRgaFDh+Kbb77BmjVrwhKjXi1btgQA/P7772jdurV7+datW5GVlYVOnTrhv//9L/r06YNx48bhnnvuQUpKSkivFSk7d+7ERRddFNbnVNsvgDn2zW233YZZs2Zh4cKFXs337733HtLS0tChQwev9fXsw2uvvRbz589Ho0aNcOONNwKQWssyMjLwzDPP4OzZs0F/zWn5fIQiISEBXbt2xYIFCzB+/HjFHwpaP082mw3XXHMNfvzxR7Ru3RrVqlULa6wyrd8Dnv7973979eKbP38+zp075+7FVr169bDErnacMjMzceDAAfz5559o0KABAKln5rJly0J6nUDbo2dbrrjiCixatAhTpkxxXzY7fvw4Pv3007DF4yk1NRV9+vTBG2+8gTNnzqB3794VauGdPHkyFi5ciGeeeQa33367OxGQL5lpEc5LZlq+RxwOh+bjIyd/vu644w7MnDkTX3zxBdq0aeNevnTpUgDSpUVddFUcxSi1MSbkHicdOnQQCxYsEP/9739FVlZWwF5mwdaVi+AefvhhsXbtWlFQUCCOHj0q2rRpI6ZMmSI+/fRTsXLlSjFlyhQRHx8v7rrrroCx631drUXVe/bs8et1VFRUJNLT08VVV10lTp06JYQQYsuWLcLhcHj1HIqUpUuXigULFoh33nlHABB9+vQRCxYsEAsWLPArki4rKxMpKSkiJycnrDEo7RchzLVvevbsKWrVqiVmzpwpVqxYIQYPHuxXGCqE/n24cOFCdwHnqlWr3Mvvv/9+AUDUqlXLb+wm36Jqpc+HXNSu9jn1fQ41ci+zpk2burd97ty5YsCAAX69zIJ9njZv3ixq1aolrrjiCjFnzhyRn58vlixZIqZNmyauueYa93p6iqor8j3g2wvqq6++EtOnTxdJSUni0ksvFaWlpbpjDzT2jtpx2rlzp6hataro1q2b+Pzzz8XChQtF165dRZMmTVSLqpWeX+v2aN2Wr776StjtdnHllVeKxYsXi08++US0b99eNGrUKKReZoH2r+z77793fx6+/vrroK8hhHovMyGEmDx5sgAgPvjgA03PFYyW74yVK1cKh8MhnnvuOb/Ha/ke0Xp8Aundu7eIi4sTL7zwgli+fLnIzc0V8fHx4qabbtK9zUyINAj0wfzuu+9E9+7dRWJiokhISBAdO3YUn376qeLzaF137NixIi0tTdjtdgFAfPnll2LIkCGidevWokaNGiIhIUG0aNFCPPvss5oGxdPyunoTIiGEuOqqq0SvXr2EEFLvgfPPP19cfvnlfj0GBg8eLOLi4iI+2GTjxo0196D45ptvBACxadOmsMfhuV+EMN++OX78uBg2bJho2LChqFatmmjdurWYO3eu33Pq3YdHjhwRdrtdJCYmenVDlnviKHXfV0pmfD8f+fn5QoiKJ0RCCPHrr7+KPn36iDp16ohq1aqJjIwMcd9994nTp0+719H6OS4qKhIPPPCAOO+880TVqlVFvXr1ROfOncWLL77oXkdPQnT69OmQvwfkfbNp0ybRu3dvkZSUJJKTk8WAAQPEn3/+GVLswQYjVDtOS5cuFZdddplISEgQTZs2FTNmzAjYyyxQQqRle7RsixBCLFmyRLRu3dp93CdOnKh7YEat+1eWmZkpLrzwwqDPLwuUEP39998iIyNDNG/ePCwDH2r5zpDfp0o90LR+j2g9PmpOnTolxowZIxo1aiSqVKkiMjIyxNixY70+s1rZhAhlfGsiuJtDd+/e7XXd3AwGDhyInTt3ar7UoIeZ94sekdyHFF7jxo3Dc889h4MHD4ZcN0jh9dNPP+HSSy/F66+/7terlaKD3e4pZLfffjvat2+P3NzcaIeiy++//4558+Zh0qRJEXl+s+4XPSK9D4ms6vfff8eKFSvw0EMPITU1Fffdd1+0Q6L/x4SIQmaz2TBr1iykpaUZYlZ3rfbs2YMZM2ZUeLwbNWbdL3pEeh8SWdULL7yAnj174sSJE1iwYAGqV68e7ZDo//GSGREREcU8thARERFRzGNCRERERDGPCRERERHFPNOMVJ2bm4tFixbht99+Q0JCAjp37oxJkya5h/BWs2rVKuTk5GDz5s1IS0vD6NGjdQ2R7nK58McffyA5OVnXEPVEREQUPUIIHD9+HGlpadqm8dA9clGUZGVliTlz5ohffvlFFBYWihtvvFFkZGSIEydOqD5m586donr16mL48OHi119/FbNmzRJVq1YVn3zyiebXLS4uVh2cijfeeOONN954M/atuLhY0/netL3MDh48iPr162PVqlW4+uqrFdcZM2YMlixZgi1btriXDRkyBP/73/+wbt06Ta9TUlKCmjVrori4GDVq1AhL7ERERBRZx44dQ6NGjXD06FFN80Wa5pKZr5KSEgDSLNVq1q1bh+uuu85rWVZWFvLy8nD27FlUrVrV7zGlpaVeszEfP34cAFCjRg0mRERERCajtdzFlEXVQgjk5OTgyiuvxCWXXKK63v79+90zKssaNGiAc+fO4dChQ4qPyc3NRUpKivvWqFGjsMZORERExmPKhGjo0KH46aefMHfu3KDr+maG8hVCtYxx7NixKCkpcd+Ki4srHjAREREZmukumf3jH//AkiVL8O233yI9PT3gug0bNsT+/fu9lh04cABVqlRBnTp1FB8TFxeHuLi4sMVLRERExmeaFiIhBIYOHYpFixZhxYoVaNKkSdDHdOrUCcuXL/da9tVXX6Fdu3aK9UNEREQUm0yTED322GP48MMP8dFHHyE5ORn79+/H/v378ffff7vXGTt2LO69917330OGDMHu3buRk5ODLVu24J133kFeXh5GjhwZjU0gIiIigzJNQvTmm2+ipKQE3bp1Q2pqqvs2b9489zr79u3Dnj173H83adIES5cuxcqVK3HZZZfhhRdewKuvvoo77rgjGptAREREBmXacYgqy7Fjx5CSkoKSkhJ2uyciIjIJvedv07QQEREREUUKEyIiIiKKeUyIiIiIKOYxISIiIqKYx4SIiIh0cTqB/HzpXyKrYEJERESa5eUBjRsD3btL/+blRTsiovBgQkRERJo4ncBDDwEul/S3ywU8/DBbisgamBAREZEm27eXJ0OysjJgx47oxEMUTkyIiIhIk+bNAbvPWcPhAJo1i048ROHEhIiIiDRJTwdmzpSSIED69+23peVEZlcl2gEQEZF5ZGcDWVnSZbJmzZgMkXUwISIiIl3S05kIkfXwkhkRERHFPCZERERUIRyokayACREREYXE6QRGjeJAjWQNTIiIiEi3vDwgIwOYOpUDNZI1MCEiIiJd5BGrhfC/r6wMeOWVyo+JqKKYEBERkS5KI1Z7mjaNrURkPkyIiIhIF6URqz25XJzOg8yHCREREeniO2K1L07nQWbEhIiIiHTLzgZ27ZK620+ezOk8yPw4UjUREYVETnqEANatA06e5HQeZF5sISIiopDk5ZWPQdSxI/D770yGyLyYEBERkW5y13uOQURWwYSIiIh0U+p6X1bG3mVkXkyIiIhIt02b/JexdxmZGRMiIiLSxekExozxX56byxoiMi8mREREpIvaSNXt21d+LEThwoSIiIh0URqpmpfLyOyYEBERkS7ySNWeSZHLBSxbFr2YiCqKCREREemWleU9270Q7HZP5saEiIiIdFu71jshAtjtnsyNCRERUQU4ndJ8XrHUMpKXBwwY4L88luqIYvG4Wx3nMiMiClFeXvlozXa7VFeTnR3tqCLLd4Rqmd0eO5O6+h73iROlKUwAoHPn2NgHVmSqFqJvv/0WvXv3RlpaGmw2G/7zn/8EXH/lypWw2Wx+t99++61yAiYiy4rVqSvUutx//LH1k0FA+biPHg306yfdMjKkhInMx1QJ0cmTJ3HppZdixowZuh63detW7Nu3z31r3rx5hCIkolgRq1NXJCUpL8/MjI3LSGoJoYzF5eZlqktmN9xwA2644Qbdj6tfvz5q1qwZ/oCIKGapJQaJiZUbR2U7cUJ5+fz5wLRp1r98KI/BFCgpkhNjXjozF1O1EIWqTZs2SE1NRY8ePZCfnx9w3dLSUhw7dszrRkTkSy0x2LTJ2q0kaongSy/FxuVDeQwmh0N9nVgqLrcSSydEqampmDlzJhYuXIhFixahRYsW6NGjB7799lvVx+Tm5iIlJcV9a9SoUSVGTERmoTRaMwA88gjQvbtUZGvFWhK1RDCWuuBnZwO7dkmJ75QpgM1Wfl8sFZdbjU0I37exOdhsNixevBi33nqrrsf17t0bNpsNS5YsUby/tLQUpaWl7r+PHTuGRo0aoaSkBDVq1KhIyERkMZ69jZQ4HNKJ00onR6dTSvYCXTICrLntMqdTqiVq3lzaPqcTWLdOuq9TJ2tusxkdO3YMKSkpms/flm4hUtKxY0ds375d9f64uDjUqFHD60ZEpCQ7G5g7V/1+K7aSpKcDOTmB17FyK0lenpQQerYCpqcDffpINytuc6yIuYToxx9/RGpqarTDICKL6NxZ+dIZYN1akr59vS8TebLbgfXrrVlQHatDLcQKU/UyO3HiBHZ4/NwqKipCYWEhateujYyMDIwdOxZ79+7F+++/DwB4+eWXkZmZiYsvvhhnzpzBhx9+iIULF2LhwoXR2gQishi5yPbhh6UWIZnDIQ3YJzdIW6XlQL5MqFZsMWkS0L595cZUWdSGWli3Dqhbt/wSGpmTqRKijRs34pprrnH/nfP/7baDBg3Cu+++i3379mHPnj3u+8+cOYORI0di7969SEhIwMUXX4zPP/8cvXr1qvTYici6srOlyU537JC63Z88CRQUAGPGWKsbekEBMHiwejIEAO3aVV48la15c6llzHf7+/e31nGOVaYtqq4seouyiIiUCo/NXmQcrIBcNmUKMHJk5cRU2ZxOaSTqQGdNsx9nK2FRNRFRJVEbmdlqo1irzV+m5MknrVtTs3174GQIMPdxjnVMiIiIQqDU20imNEaRmQusg01X4cnKCYHa2FOezHycYx0TIiIinYL1NvIdzdjhMHc3dC2JgMzKCYHScR00yDrHOdaZqqiaiMgItPQ28iy0btbMvCdJeRDCiROly2GBWoqsnBDI+yErS6oR8jyuL75o/uNMTIiIiHRTmuDTZivvbWSzSd3PR40y9wnSs5Dabgceewx47TX/9ebMkWa7t2pC4LsffHuSpadbc7tjDS+ZERHp5HvpRL6cJCdIQgCjRwNTp0YnvnBQuiz4+uvK627eDHTrZs2kgIMxxg4mREREIfCc4HPuXOXeR2PGmPfEqXRZUG798vXSS+bdzmACXR6Vexiq9TYkc2FCREQUovR0qWWkc2flRMHlMm+PK7Wecg895L+uEMArr1ROXJVNaT/Y7UC/flIPw4wM6abU25DMhQkREVGI5JYBQKoZ8mXmHldqPeWeflp5/enTrdlCkp4uHVs5KXI4pARQbhH0/D8vp5kbEyIiohD4jkNUu7Y0SrPnidPsPa6ys6VLQ9OmSf9mZ0vbozQSte/4Q1a5jJSXVz4Fi80GPPhg4MEZrTwOk9Vx6o4gOHUHEfkKNDUHYO4u2HL38ubNgWXLlHtXFRQAHTp4JwaeU1YE65VlFmrH2eVST4o4dYdxcOoOIqIICzY1h1l/Zvq2eg0e7N+7aupUoGNH/2RIbg2zUq8steN89dXK61uhVTCWcRwiIiKdlMYhstuBjRuBHj28W0aysspbXIx8olRKZHyVlZVfPpLZ7dLltPbtpb8DJYtG3n4lSscZAFat8v7bZgPmzQM6dTLfNlI5thAREekkFxx79ixzuaSxhzwTisGD/ec7M2ptjZb5ypSSA5cLOHmy/O+kJOXHJiZWLL5oUDrOSuTWMiZD5saEiIgoBFlZ/idK30tlQngnSA89ZNwu2mrdyz2LxCdODD5p7YkTys/vmTSZSVZWtCOgysKEiIgoBHpmgJd5FuMarbZGqZv9zJnA7t1Si9auXdJUJIEmrXU6gYMHgydNZrJ9e/CaMJtNulxG5sYaIiKiEKjNZ2azldcQeY5Ro8RotTVqE9J6xqe2jmfPMputfN+YvdBY7RKgpyeeMO/2UTm2EBERhUCpReXee71bgDyTITlZ8mTElhN59O1AJ3jfdQoKvHukyds9f77UsmTGLveyoqLA9zscwPDhlRMLRRYTIiKiEHnOZ7ZuHfDBB+otQjabNOKx2uUms8rL8++GD0jJUb165t++QKxyDEnCS2ZEVKk8B/6zwokkPV265ecHrilyuaSu6bt2mXvgRk++XfU9GbH1KxTyPHW+rX3sZm89bCEiokrjO/CfkXpZVZRSLy1PcoKg5ZKUWagVltvt1mk5SU8HZs3ybtmbNQvo08ca20flOHVHEJy6gyg8Ak13YZUTS16e1HOsrMy7wFq+tGLmWholSsfUbgfWry8fqNEqnE7rtOzFCk7dQUSGpDaC8bp10YknEjxrivbs8e6ybrVkCFDvqm+1ZAiwVsseKWMNERFVCrXuy337ArNnWyth8By5WO0EapVaKrVu+ERmwxYiIqoUgbovG2mAworQWiNltVoqq7aeFBQA06YBn31mzOlWKLxYQxQEa4iIKi4vTxqnJtC3zfz5UqGqWWmtkTJDLZVVWq8q4r77gPfe814mT9hrpdZMK2MNEREZitw1O9hPr/79zd1SEmiW91DWixartV6FoqDAPxkCjDfdCoUXEyIiiiitc36Z7WTjOWu9PIeXlpGo1brnb9wYuVi18h1XyGzHJFymTlW/z0jJK4UXEyIiiqhg4/N4MsvJxrMVJSNDuvXrJ90nJ0Vqoxinp0uzxvt68snoJx5Gb72qDE4n8Mkn6vdbZcBJ8seEiIgiyrdrtszhMMfcXr58W1E8J3AVQkr+5Dm8srKUi3HbtfN/XiMkHkrJqxmOSTgFatHkVB3WxoSIiCLOc3yeDRvKx+bxHQHYDCebYJcAy8qkObyWLVOvxTFq4qE0rpDWY+J5CVGPUB8XKUrHxjPJZUG1dTEhIqJKIXfNbt++vIu2Z6JklpNNsEuAdjuQmBi4FqciiUekhXJMQi3ENmIBd3o6MHCg9zKXCzh2zBjHhyKH3e6DYLd7ospn9G7feXnqk5qOHAn06iWd5H3Nnw/UrVu+XVaYDiLUYQSMOvyA0ynVhPmeGY0QG+nDbvdEZGpGbDXwlZ0NjB3rv9zhAIYPV25FstmkwmvP7bLCgIaBpmQJdCnMqAXc27crDxFhhNgospgQEVFUKNWOmKXbt9MJ5Ob6L8/NLU9ucnK8i8Y9i6+Nul2hUKu58U3+tDzOCHVUzZv7F/sDxoiNIstUCdG3336L3r17Iy0tDTabDf/5z3+CPmbVqlVo27Yt4uPj0bRpU7z11luRD5SIAlJrBVq71pitBr7UCqvbty/ftqlTAw9GacTtCoVSPZSW5M+odVTp6VKxv2dSZLMBjz8evZiMxGhF8OFkqoTo5MmTuPTSSzFjxgxN6xcVFaFXr1646qqr8OOPP+Kf//wnhg0bhoULF0Y4UiJSo9QK9NBDwJAh0mjVvoz4y1ytdcO3mDoQI25XqDwLsT/6yD8RVEv+jFpUn5UFfPwx8OabUjIHSAluRgYwZUp0Y4smM1zOrhBhUgDE4sWLA64zevRo0bJlS69lDz/8sOjYsaPm1ykpKREARElJSShhEpGPFSvk9oPgN4dDiNmzox2xstmzpfg849SzbUbdLj2Ki6VtLi72Xma3+2/vlCnRi1OP2bPL47fbhbDZzLst4aR0XB0O72NvNHrP36ZqIdJr3bp1uO6667yWZWVlYePGjTh79qziY0pLS3Hs2DGvGxGFz6ZN2tedMcM4rQa+lFo3tI7KbbdLrRBGFuzSiFprgZFH4lYjb2tBgX/rpdJlzzFjjLstkWLUIvhwsnRCtH//fjRo0MBrWYMGDXDu3DkcOnRI8TG5ublISUlx3xo1alQZoRLFBKdTOploVadO5GIJB99eYmqjcvtyuYx9Igl2aSRY8btRR+JW4rmtHTtqn3dvxw5r19P4MmoRfDhZOiECAJtPdwHx/+m+73LZ2LFjUVJS4r4VFxdHPEaiWKF1oldAKmTt1Cmy8USC76jcQ4b4r2PkE4mWnn5qrQULFkjrmeHk6XRK40L5bqsvtR5nX39t8XoaH0Ytgg8nSydEDRs2xP79+72WHThwAFWqVEEdlZ+ecXFxqFGjhteNiMJDzyWlWbPM+2XrOSr3m28CkyeXb7fDYeweS1oujagdx5wcKTlYtszYJ0+5VahfP+UkyPNYzZolFVJ7LrvtNmD8eOMPDxFuRi2CDxdLJ0SdOnXC8uXLvZZ99dVXaNeuHapWrRqlqIhil9KvzM6d/debONFaX7ajRgG7d0ujWLtcUo8lo7YqaGndCXRpUE4OsrKMefL0bQFT4nJJx0qOe+RI6fjl50sDTip1VDbqJcFws8JgompMlRCdOHEChYWFKCwsBCB1qy8sLMSePXsASJe77r33Xvf6Q4YMwe7du5GTk4MtW7bgnXfeQV5eHkaOHBmN8IkI3r8y162Txh7yNXasNX9tT5tm/MEZtV4akY/jtGn+zyEnB0Y8eWq9bDttGrBvX3mNkLwtJ04oF1rb7ca6JEj6mSoh2rhxI9q0aYM2bdoAAHJyctCmTRs888wzAIB9+/a5kyMAaNKkCZYuXYqVK1fisssuwwsvvIBXX30Vd9xxR1TiJyKJfHIpKlK+3+y/tpWKbdUuRb3ySuXGpoXWSyPp6UCfPsavF/KkNq2KL5cLuOIKqUYoI0Nq5VOrjwKASZOMlfiFU8wUj0d2FADz4zhERJHzxhvKY/TY7cYe3yQQ33Fs5PGG1MbnMfO2ypTGZDKyQYO8j0GfPsrjDSkdq9mzvbfXbhdi8uRob1HkqL2fzUDv+Zuz3QfB2e6JIiMvDxg8WPnyw+TJ0i9ys1Gawd1uB9avlwqsR42S6od85edLLWZm5nRKrXrNmhm7pUTpGDkcwIMPSpcGg5FnvQfMsb0Vobavdu0yxzZztnsiMjy5sNU3GbLbpR49ZkyGAOXLYi6XNL5NXh4wfLj/5RkjX17SQr6cAqjXCxnpkovapUuVkVj8GLk+KtzMMrdguDAhIqJKp1bY+vHHUo8ewFgnUa3U6kvkAmpA6sZt1O7oemmZ28po818pHSO7XSok16qgILwxGVFennnmFgwXJkREVOmaN/f/RW6zAZmZ0v+NdhLVIydHOSkqK5N61VllLBenU7rkGWgsHi2DPFY2pV50ntuhhVV7QcrUWnBtNnMn8MEwISKiSjd3rv+XrRBAhw7SJTOjnUS1kJO4qVOlmJUuwfTrJ61nhcstr7wSfFZ7o85/5ZmU5ubqax0CjLENkaTWgmuzGX8OvorQnRC99957+Pzzz91/jx49GjVr1kTnzp2xe/fusAZHRNYTaD4zIaRJQI14Eg1EbbA/35YiIcyR3CnxvITpdCqPP+Q7Fo+Rp/BIT5fiePJJ5cJ+mc1mvbqvYJRacAHjz8FXUboTogkTJiAhIQGANJv8jBkzMHnyZNStWxePG3k8eiIyhO3bA5+AXC71k6hR64qUflELATz9tP+6cnJn1G1R4nsJMztbuQUhJ8e71cvo818FGqTR4ZDq2fbssVbdlxbp6dK4Sr6sngjqHocoISFB7N69WwghxOjRo8XAgQOFEEL88ssvom7dunqfzvA4DhFReKmNxyPfbDYhnnrKf1wbI4+HorRNDoe0Hb7b53AIMWWKcbfFV7DjpWU8peJiIfLzjTfektK22e1CzJ/vH6tRtyGSPN+nZhhfypfe87fuFqKkpCQcPnwYgDQv2LXXXgsAiI+Px99//x3OXI2ILMi31cC3aV4IYMIEqbZDLjzOyjJ2XZFSS0hurnTzNWaMdDPqtvjSOtWFb+uQJ6PWTCkdt5kzpdG3fWP13QYztfBp4bs9TifQtq00hpbZOwBopTsh6tmzJx588EE8+OCD2LZtG2688UYAwObNm5EpdxEhIgrAs6j1+++Vk6KxY4HEROmEbIbxUHx7j7Vrp5xI1K1r/G3xpDaUgCe7XRpjyYy09PrzTRbM3AtSyZQp0vQk8vZcf3359nXsCPz+u/GS2UjQnRC9/vrr6NSpEw4ePIiFCxeiTp06AIBNmzZhwIABYQ+QiKwp2GSZZWXSl3H37sCAAeYobPVsRVArKL7ySuMWGitRakUZNMi/VcXMJ8xALVi+yc/TTxu7tVKvqVOB0aO9Jx1etsw626eH7qk79uzZg/T0dNh9PtFCCBQXFyMjIyOsAUYbp+4giqyCAmkSzWDkrxyXq7yw1ehN+Hl50smkrMw7ZrXlRuY7NYdZpuqoCKWpK9SYcfoVp1NqGdKSBZhx+/Sev6vofYEmTZpg3759qF+/vtfyv/76C02aNEFZWZnepySiGHbihLb1XC5g/nygXj3znISzs6X6J9/EQW25kaWn+/cgCzVup1O6FNq8ubG3XWv9lJFb+AJZu1ZbMuQ7nIJV6U6I1BqUTpw4gfj4+AoHRESxRb60FOzE43AAnToZ6wSq5cSuljhUJKEws7y88ktO8pQZRm0dC/TelJfHQjf8QAXzVqI5IcrJyQEA2Gw2PPPMM6hevbr7vrKyMnz//fe47LLLwh4gEVnbsmXafqXKtQ1GOXma6cRuFGpTeWRlGfOEK4/H4zvZsMMhTcNy8qR5WviUdO4s1eYF+vyZuWBeL80J0Y8//ghAaiH6+eefUa1aNfd91apVw6WXXoqR8qyMREQaqM2ZpEQe5dkIJ089J3azXB6qDIGm8jDqvhk50nsEdblFqH37aEdWcenpwOTJ/gmfp1hpHQJ0JET5+fkAgPvvvx+vvPIKC4yJqMK01mjIjHLy1HpiZyuSN6VLUGaovxk1SurpaKaaL61q1Qp8f6y0DgEhdLufM2eOOxlyOp3Yu3dv2IMiotigNmeSGodDGpso2gPiaZmjy4gzvUeb0afyUCKPQQQYc3DJinA6gQcfVL9/8mRrbW8wuhMil8uF559/HikpKWjcuDEyMjJQs2ZNvPDCC3Dp+alHRKSBnHg4HMA995SPTRTNAfG0nNiNOtN7tGkZCNEorDYAo68XX1S/b8qUwJfSrEj3OERjx45FXl4ennvuOXTp0gVCCKxZswbjxo3D4MGDMX78+EjFGhUch4gocvLzpZONGpsNWLIESEqSWoY6dvS/3LJrV+R/xarVASmNzSOvB/iPYVNZ8VLFFRQAHTp417dZ6fgFGoPIbgd27zb/duo9f+tuIXrvvfcwe/ZsPPLII2jdujUuvfRSPProo5g1axbefffdUGImohgVbFoIIYBbbpGmDjhxIjotLoFaCTxHOPZdb9mywK1IVpsLS2aF7crLk5Jv32TBSi1827erd2ZwuayznXroToj++usvtGzZ0m95y5Yt8ddff4UlKCLSz4wnIvnSU6CkSK69SUqq/CkvtNYBBep1pnR5yKqXYqywXb7H0pMZCsC12rhR/b5YGYjRl+6E6NJLL8WMGTP8ls+YMQOXXnppWIIiIn3MfCLKzpaa50eOLG9N8VVWJo35UtkFuVrrgIL1OvOdJd2KxdZW2S61no92u/ELwLUqKJDmL1MzaZI1tlMv3SNVT548GTfeeCO+/vprdOrUCTabDWvXrkVxcTGWLl0aiRiJKACzDXanJD1dKuIcPlwa8K5fP//ajWbNpMSiMqe80NpNXE93cjOOxaOFVbZL6Vja7cD69dYYeygvDxg8WP3+yZOlHyexSHcLUdeuXbFt2zbcdtttOHr0KP766y/cfvvt2Lp1K6666qpIxEhEAVipN1N6OtCnDzBrlnpLUKCZySMRj5ZWKT3dybV02Tcjq2yX78jp8vhRVkiGnE4pGVKrHXrzzdjrWeZJdy+zWMNeZmR0Sr1FbDZgzx5z/TL3ZaTZ1LXGonU9M852r4XZt0tpdnu7HZg7V5rmItrvw4oaNQqYOlX9/g0brJH4yfSev0NKiI4ePYq8vDxs2bIFNpsNF110ER544AGkpKSEFLSRMSEio1NKiKzSbdbKjJTwhZOZtyvQMBBmH2lcKdnzlZ8vtb5aRcS73W/cuBHnn38+pk+fjr/++guHDh3CtGnTcP755+OHH34IKWgiCp1S91krdps1Yy+6QCrz0l9lMvN2BRoGwqxF4jIt0+QkJlZOLEalOyF6/PHHcfPNN2PXrl1YtGgRFi9ejKKiItx0000YMWJEBEIkokCUpr+w2cxXuxGIWXvRWS2JszrfWjBfZq3NA4KP+QVIPTljWUgtRGPGjEGVKuUd1KpUqYLRo0djY6CBDYio0uiZHyzagiUNZu3ObdYkLtbJU4vMn+//OTJjkbgsWLJn5m0LF90JUY0aNbBnzx6/5cXFxUhOTg5LUESkndolswULrJE0mLEXnVmTOJJo6e1oRp7zyP3zn97zBJp928JBd0LUr18/ZGdnY968eSguLobT6cTHH3+MBx98EAMGDIhEjEQUQFKS8vKcHKnYesqUyo1HK61JQzi6c1f2pau1a82XxJE/M01Eq5Vc4zV+vNTxwkrbVlG6B2acOnUqbDYb7r33Xpw7dw4AULVqVTzyyCOYOHFi2AMkosCKitTvE0IakdZmM95ga1oH8pOb+n27c2v9NZuXV554RbqnkNMJvPIKMG2a/328JGFO6enWbTmx8raFQle3+7KyMqxevRqtWrVCfHw8fv/9dwgh0KxZM1SvXj2ScUYNu92T0c2fL43sHIgRu+ErdQMONJt4KN259b5GRcgjAKvNHm7mLttEZhTRbvcOhwNZWVkoKSlB9erV0apVK7Ru3bpSk6E33ngDTZo0QXx8PNq2bYvvvvtOdd2VK1fCZrP53X777bdKi5co0jp3Dl5EbcRu+HpGd5bX19udu7Lqj+TLf2o/Lz/+mMkQkdHpriFq1aoVdu7cGYlYgpo3bx5GjBiBp556Cj/++COuuuoq3HDDDYpF3p62bt2Kffv2uW/NmzevpIiJIi89XSr+DNSl1qizV0e6RqOyppMINMaLwwF06hTe16PKxeETYoPuhGj8+PEYOXIkPvvsM+zbtw/Hjh3zukXStGnTkJ2djQcffBAXXnghXn75ZTRq1AhvvvlmwMfVr18fDRs2dN8cav0OiUzKc8Z4pcTIyBP0KLX8+J6AQj0h6W2FUqLltdXGeGHvHfPj8AkxROhks9ncN7vd7r7Jf0dKaWmpcDgcYtGiRV7Lhw0bJq6++mrFx+Tn5wsAIjMzUzRs2FB0795drFixIuDrnD59WpSUlLhvxcXFAoAoKSkJ27YQRUJxsRB2uxBS+uN/y8+PdoTazJ5dvh12uxCDBnn/PXu2/ucsLpa2v7i4YrEEeu3Zs4VwOMrXHTlS/+uRsSh9phwOaXlxsRArVvAYG1lJSYmu87fuXmb5+flhT8q0OHToEMrKytCgQQOv5Q0aNMD+/fsVH5OamoqZM2eibdu2KC0txQcffIAePXpg5cqVuPrqqxUfk5ubi+eeey7s8RNFWqDLNmYZuVqpK/5775XfL3fNz8rS1+oSSm8atWEB1F47O1u6z6zzeJE/tRo0uSdhZfRcpMqjOyHq2rVrJOLQzOZTPSqE8Fsma9GiBVq0aOH+u1OnTiguLsbUqVNVE6KxY8ciJyfH/fexY8fQqFGjMEROFFnyFB5GvjwWzCuvBJ9vSalrfiRoHRbAl5n3P3mTL4V6vg/s9vJkCAg9SY8Gp1N6XzdvbvxYo0F3DVG01K1bFw6Hw6816MCBA36tRoF07NgR27dvV70/Li4ONWrU8LoRmUF6OvDEE8r3CWG8Xma+nE7gpZeCr1dZ4/noLchmrYn1KNWg5eSYc9BNvj+DM01CVK1aNbRt2xbLly/3Wr58+XJ07txZ8/P8+OOPSE1NDXd4RIYwfLhyF3wzDAqoNAUJIP3yjsb0CXoKsjlVh3X59oQcPrxyei6GE9+f2ui+ZBZNOTk5GDhwINq1a4dOnTph5syZ2LNnD4YMGQJAuty1d+9evP/++wCAl19+GZmZmbj44otx5swZfPjhh1i4cCEWLlwYzc0gihi5C77nAIE2GzBxovGbyNUuT8yeLf0/GrU5WuuCQr28RubgW4NWkZHTo4HvT200JURLlizBDTfcgKpVq0Y6noD69euHw4cP4/nnn8e+fftwySWXYOnSpWjcuDEAYN++fV5jEp05cwYjR47E3r17kZCQgIsvvhiff/45evXqFa1NIIo4+ST+5JPAv/8tJUZjxgC1ahm78DPYFB3R+uLWUpCtlMwZvdWAQme2Anq+P7XRNHWHXLtTr149OBwO7Nu3D/Xr16+M+KKOU3eQGT39tDR5oycjTt+hJJQpOowgL88/mTNyAkqxJRbfnxGZuqNevXpYv349gMC9uogo+qZM8U+GAOnX4SuvVH48eoUyRYcRWHFmdLIOvj+D09RCNG7cODz//POaEqGysrKwBGYUbCEiM3E6gYwM9a7fkZrYlIjIaPSevzXVEI0bNw79+/fHjh07cPPNN2POnDmoWbNmRWMlojBT66klYyElUezwHHeosBBYuhTo1Qu46aZoR2ZMmnuZtWzZEi1btsSzzz6LPn36VOoM90SkjVLxpCe7HUhMrNyYiKjyTZkidabw/YH05ptA587AmjXRicvIdI9D9Oyzz6J69eo4ePAgVq9ejTVr1uDgwYORiI2IdEpPl7rYq3G5gI4dOSgbkZVNnQqMHq3eWrx2LfDZZ5UbkxnoTohOnTqFBx54AGlpabj66qtx1VVXIS0tDdnZ2Th16lQkYiQiHdq1C3w/B2Ujsi6nU2oZCubLLyMfi9noTogef/xxrFq1CkuWLMHRo0dx9OhR/Pe//8WqVavwhNq8AURUaZSmnPBlhqkGPDmdUu8YJnFEgQWa5NnT9ddHPhaz0Z0QLVy4EHl5ebjhhhvcc3316tULs2bNwieffBKJGIlIB98pJ5SYaVA2s83BxOTN3Mx+/LT8IOrcmYXVSkK6ZKY0mWr9+vV5yYzIIOQxR7p2Vb4/N9dYPc3UTkJmm4PJbMkbebPC8fP9QWS3S5+ZOXOAxx4DPv2UBdVqdCdEnTp1wrPPPovTp0+7l/3999947rnn0KlTp7AGR0QV8+23yssPHKjcOAIJdBIKNAeT0ZgteSNvVjp+8g+ikSOlwmp5VOo2bdgyFIjuhOiVV17B2rVrkZ6ejh49euDaa69Fo0aNsHbtWrxihmFwiWJEoDGJXnrJGF/0wU5CSUnS5LSejHq5z0zJG/mz4vGbNq38O8DMCV5l0T3b/SWXXILt27fjww8/xG+//QYhBPr374+7774bCQkJkYiRiEKQlKR+nxDGGKAx0Elo2TIpWfJM6ow8szgn0DQ3qx0/znCvn+6ECAASEhIwePDgcMdCRGF04kTg+40wQKPaSSgx0bvlCJDWW7cOaN++8uNU4zkSsFy74TuBJk8+5mC149e8udS66vuDwqwJXmUIKSEiIuMLNmr16tVAamp0v/DVTkInTvjH7XIBJ09GJ04leXnlSZvdLm1HdjaQlSX9Cm/WzLwn01hlpeO3bJn33zabuRO8yqBpctdYxsldyczy8sqTDSWeJ/Jocjq9T0JOp1Rg7dtyZJSJaY0eH0WWb8ug0RQUSCPSx/r7U+/5W3dRNRGZh2dvE6WxSYxSaJmeDnTrVv5l7dt12GiXL6xYgEvaGL1rfl4e0KED35+hYEJEZHHp6UDLluo9zoz6RSknc/n50r/RbsXypDT4HeszrM/oXfPl+JQ+63x/Bqc7IWratCkOHz7st/zo0aNo2rRpWIIiovBwOoH584HBg9UTIiN/Ufq2HBmF0VuwKDKM3jKoNm2H3c73pxa6i6p37dqFMoWChNLSUuzduzcsQRFRxXkW/arhiTx0VirAJW2M3jVfKT67HVi/3li9M41Kc0K0ZMkS9/+XLVuGlJQU999lZWX45ptvkJmZGdbgiCg0vk37vux24OOPgU6deCKviPT02N5/Ri8uDjejd81Xi4/JkDaae5nZA8wWV7VqVWRmZuKll17CTRYbF5y9zMiM8vOlok8l8pekkWpyyHzUhh2IBb69Io3G6PFVFr3nb93d7ps0aYKNGzeiTp06IQdpJkyIyIyUuoUD0lgkkydLvc5i7dc9hQ+HHSAziGi3+7NnzyIzM1OxqJqIjENuOvdt2BUCePJJYOpUY3cdJmMzenExUSh0JURVq1bFL7/8ApvvbItEZDjZ2cDcuf7Ly8qAMWOM23WYjI/DDpAV6e52f++99yKPPyeJTKFzZ//Z4m02/rqniuGwA2RFurvdnzlzBrNnz8by5cvRrl07JPrMEDlt2rSwBUdE4SeEsbsOkzlw2AGyGt0J0S+//ILLL78cALBt2zav+3gpjchYtm9XHpDxoYeAWbOM2XWYzCPWhx0ga+HkrkGwlxmZWaDeZpMmSeOT8Nc9EVkRJ3clIjffWg+ZEMDYsUyGiIhkui+ZAUBBQQEWLFiAPXv24MyZM173LVq0KCyBEVF4ZGcDyclAv37ey+VCaiZEREQhtBB9/PHH6NKlC3799VcsXrwYZ8+exa+//ooVK1Z4TedBRMbRuTO7SRMRBaI7IZowYQKmT5+Ozz77DNWqVcMrr7yCLVu2oG/fvsjIyIhEjERUQewmTUQUmO6i6sTERGzevBmZmZmoW7cu8vPz0apVK2zZsgXdu3fHvn37IhVrVLComqyEcxwRUayIeFF17dq1cfz4cQDAeeedh19++QUAcPToUZw6dUrv0xFRJUpPB7p1YzJERORLd1H1VVddheXLl6NVq1bo27cvhg8fjhUrVmD58uXo0aNHJGIkIiIiiijdLUQzZsxA//79AQBjx47FyJEj8eeff+L222+vlCk93njjDTRp0gTx8fFo27Ytvvvuu4Drr1q1Cm3btkV8fDyaNm2Kt956K+IxarZxozS75saN0Y5EP7PGbta4AcYeLYw9Ohh7dJg59grS3UJUu3Zt9//tdjtGjx6N0aNHhzUoNfPmzcOIESPwxhtvoEuXLnj77bdxww034Ndff1Us6C4qKkKvXr0wePBgfPjhh1izZg0effRR1KtXD3fccUelxByIrf3FAJYD7c8ojiZsVNKA5G1gltinTQP+9S9AuqIrxy3dFxcHNGwIJCUBTZsCHTtKy0+fBnr3BlJTpdGemzf3v8zkdEr3JSUBRUXSsiZNyv/fubP074QJwIYNwF13AX37Au+/DyxfDiQkSH9v2ACsXg3UqSPFWFoKHDok9Qo77zygTRvptX7/LhWOo1OReFMNNO4mDbh4+LA0plBcnPS6550nTdTavn3o+8vpBNaulf5fvTqwbRtwwQVAYmL5tu7YUb6P2rcHCgqATz+V9le7dsCJEz77ZeFKFOXXxeFRO3CkZ7uA+1fer82bA/v2Ad995/36J06orx/sUqC87smT0n5PTZXiSE/3fh6g/NieyF2H5vnbkP7BB9LG6dyXwWLTE79u778P5OcD/x+70r696qqKvV8iwekEtk8Ifb9HLCaF46S03PnGEmzPF2j+xhLg+XZe7yv5s9W5s/b3sOJr+CzTGl+gz1fz5kDhcxsxJ/8RnO1TBU1vAa69FvjpJ2DTJqBBA+nxR48Cl18O/O9/wJ9/SsN6HD8ufWclJwP160vfb3//DRw4AMTHA1dcAaSkSH/Xrw/UqlUeY5063vsjakQIzp07JxYsWCCef/558cILL4hPPvlEnD17NpSn0uWKK64QQ4YM8VrWsmVL8eSTTyquP3r0aNGyZUuvZQ8//LDo2LGj5tcsKSkRAERJSYn+gJXs2iXExo0CKBOAS0inM5cAyoTYuFG636h27fKJ2/ix16snfOIN7Wa3CzF7dvnzzp4tLQv0GJutYq9ZkdugQaHtr9mz9cd9/vlq9/m+T9Tvl/evlv2qtr7vMVLaNrXnHjSo/D6bTQibzeUVox3nxOzkEUJs2qT5va4lNj3xa/b/3zFi0yYh6teXnrx+fTH7X7uE3e5SfG+G+n4Ju127xOyni9xxhrLfI0HtOHkvd4nZTxdJ+xnnpP2MMvd7qfw9Vf4+0/IeVrrfd5nn+1c9Pu/1lD+LLoXPasW/P7Xc5P0RTnrP39D7Aj///LNo2rSpqF69umjTpo1o06aNSExMFJmZmeKnn37SHbBWpaWlwuFwiEWLFnktHzZsmLj66qsVH3PVVVeJYcOGeS1btGiRqFKlijhz5oziY06fPi1KSkrct+LiYl07NChAAKdU3nSnpD8MSjlu48b+0kvh/cA6HEIUF0s3LSftaN82bNC3v4qLo5vEORz6Xt9u9z8O8jFS2raKHjMHzopinFe+IMi+DBablnVC4vmE/79Di5HuPkmH6/0SCcU4zy9OPfs9IjGpHKcNGxSW46ywBdnPvu9h3/e853tA7bWDfU7U4jP6zW4Pw/vfg96ESHcN0YMPPoiLL74YTqcTP/zwA3744QcUFxejdevWeOihh8LdgOV26NAhlJWVoUGDBl7LGzRogP379ys+Zv/+/Yrrnzt3DocOHVJ8TG5uLlJSUty3Ro0ahWcDZB9+CKAaAN+JcG3S8g8/DO/rhZVS3IBRY1+4MLzPJ4/svH27/9xgRrRmjb711SaCrSxlZfpe3+XyPw7yMfIVjmNWhirYgWZAlSpB3+tKr+cbm5Z1QvLhh1KMgHuHbkczuOAI8CD975dI2P7Pd/3i1LPfIxKTynFavVphOapABNnPnlwu//e853tA7bWDfU7U4jM6lysM7/8K0J0Q/e9//0Nubi5qeVwArFWrFsaPH4/CwsJwxqbIZvM+IQsh/JYFW19puWzs2LEoKSlx34qLiysYsY+77wZwBoDvO1pIy+++O7yvF1YO+McNGDX2cJeJySM7N2/uP+qzEXXpom/95s3l+rDocDj0vb7drn307XAcMwfOoRl2AN9/H/S9rvR6vrFpWSckd98txegZD7bDjrKAD9P7fomE5o9cC7vd+ztGz36PSEwqx+nKKxWW2wVsQfazJ7vd/z3v+R5Qe+1gnxO1+IzObo/u6Pm6d1eLFi3w559/+i0/cOAAmkVwS+rWrQuHw+HXGnTgwAG/ViBZw4YNFdevUqUK6tSpo/iYuLg41KhRw+sWbmLTFkhJhPzBl/4vLTcuKZf0jLv8byPGnpMD1KsXnufyHNlZbcJUX9FMLgYN0l8om54OzJqlP+7zz9eyVuCftPL+nTUr+H6V1585U/vo24GOmc0m7S/5PpvN80Qixe3AObxtewTp2Bs8OIXXU4qtUkYP//8NSbfvw0w8BIdd/kHovVoo75dISE8HZj61Bw6cA6B/v0csJoXj1L69wvKn9mAWHnLHb0OZOxG12bz3u90uPd7zPe/7HlB7bd/HeL5/A8XnuZ4yF5R/rEeezSbFG83Cat0jVS9duhSjR4/GuHHj0PH/u+SsX78ezz//PCZOnIgrr7zSvW64k4kOHTqgbdu2eOONN9zLLrroItxyyy3Izc31W3/MmDH49NNP8euvv7qXPfLIIygsLMS6des0vWZERqp2OoH27WHbvxPSZagzEA2bSl11ol5mH4TTCVujOpDiBswQ+7RpwL+eOoNTp/2/CeKqudAwtSqSkqRfJh06SMtLS4Ebb5R6IamN7CyP+pyYCOzaJS3LzCz/f6dO0r8TJkg9WPv3l3qVffBBeS+zPn2k3k5r10q9Lv7+W+q9JfcyS08HLmt2HH98/C222y+Ao05NJB0tRua5ImRk98DhszUBAFWrArt3A2lpwEMPVbyXmfzxSEgo3/6kpPJt3bGjfB/Jvcw+/1zqsde2rdSLKzER2LXpMPDkk8hMO4NdV96Dw8sKcOSwQOlDQ3HjgBTF/es5mva+fdKlHM/XP3lSfX0tvcx27JB6qm3cKMV7003lvW/k5wGAHesOInHIQJysl4lm912J9EWvAsXFut7rWmKLyOjh//8dg0aNpNl98/KA4mI4l/yAHSdTvfZtly7GSIbcnE44L78ZO2pfEfJ+j1BYisfJazmk/e5s0BY7uj+EZitmAn/8gR2vL0OzTtKvM/mz1amT9vew0v2+yzTFlx7g8/X3QTR7LAuFKVfjveShOPt7MZqe3Yrub9yBn/fVww8/SD8w//gDOHJE6v3688/A/v3lvT8dDqmXWd265Z/VQ4ekXrByL7ODB6Xn8e1l5rk/wkXv+Vt3QmT3aIOTLzv5XoaSL2OVlWlvOtRi3rx5GDhwIN566y106tQJM2fOxKxZs7B582Y0btwYY8eOxd69e/H+++8DkLrdX3LJJXj44YcxePBgrFu3DkOGDMHcuXM1d7uP2NQdpaVAtWpSWiwEcOaM9K4xA7PGbta4AcYeLYw9Ohh7dJg5dgV6z9+6xyHKz88PKbBw6NevHw4fPoznn38e+/btwyWXXIKlS5eicePGAIB9+/Zhz5497vWbNGmCpUuX4vHHH8frr7+OtLQ0vPrqq4YYg8jrTWazmetNZ9bYzRo3wNijhbFHB2OPDjPHHga6W4hiDSd3JSuJ6CCAREQGEvHJXYnInPLypNGtu3eX/q2EmXaIiEyDCRFRDHA6pWJreVwSl0ua4sPpjG5cRERGwYSIKAasXRuhQQCJiCyCCRGRxeXlAQMG+C8PyyCAREQWoTshGjduHHbv3h2JWIgozHwvlcns9ggMAkhEZGK6E6JPP/0U559/Pnr06IGPPvoIp0+fjkRcRBQGanN4ffwxkJUF5OezjoiICAghIdq0aRN++OEHtG7dGo8//jhSU1PxyCOPoKCgIBLxEVEFqM2FtHs3e5wREXkKqYaodevWmD59Ovbu3Yt33nkHe/fuRZcuXdCqVSu88sorKCkpCXecRBSC9HRg4EDvZbfdBowZwx5nVHFOJ1sZyToqVFTtcrlw5swZlJaWQgiB2rVr480330SjRo0wb968cMVIRCEqKJDmTvO0aBF7nFHFcVwrspqQEqJNmzZh6NChSE1NxeOPP442bdpgy5YtWLVqFX777Tc8++yzGDZsWLhjJSId8vKkyWp9kx+XS/kyGnuckVYc14qsSHdC1Lp1a3Ts2BFFRUXIy8tDcXExJk6ciGYe36b33nsvDh48GNZAiUg7+YSlNDGPwwFMmiT9K//NHmekh1KxPlsZyex0T+7ap08fPPDAAzjvvPNU16lXrx5cSl1biKhSqPUus9mAiROBkSOB/v2lE1izZkyGSB+5WN/zPcZWRjI7XS1EZ8+exZw5c1g0TWRwSr3LAKnFaMwY6XJaejrQrRuTIdIvPR2YOTN2WxmNXkxu9PiMSldCVLVqVZSWlsJms0UqHiIKA98TlieXS7qcNn8+vzApdNnZwK5d0ol31y7p71hg9GJyo8dnZDYhlKoM1E2cOBG//fYbZs+ejSpVdF9xM51jx44hJSUFJSUlqFGjRrTDIdLF6QQWLABycpTvt9ulxClWTmbh5nRKlyebN4+d1pFY5nRKSYbvpcJdu4xx/JXis9uB9euB9u2jF1e06D1/6y6q/v7777Fo0SJkZGQgKysLt99+u9eNiIwjPR3o00f58hlg/N5BRm765y/x2GP0YnKl+FwuoGNHvj+10J0Q1axZE3fccQeysrKQlpaGlJQUrxsRGYt8+UwtKTLSF7onIycc7HYem9RGfjdKMbla7SDfn9rovuY1Z86cSMRBRBHidAK//abcBR8w1he6TC3hyMoyxqWJQC0FRoiPIkP+cfHww9LxNloxuRyf0oTOfH8GZ/0iIKIYlpen/OUoM8oXum8tjtETDnY7j13Z2VJibtQhK7KzgdatpctkfH/qE9JI1Z988gn69u2Ljh074vLLL/e6EZEx+Lay+Jo+3Ri9g5QujRn90kSgbudGrnui4LQcP6MPWdG+vf9lcpcLWLYsejGZge6E6NVXX8X999+P+vXr48cff8QVV1yBOnXqYOfOnbjhhhsiESMRhUBtcEZZly7R/0JXuzQG+Cccjz8enRjVKHU7N3LdEwVnpeOXleV9mVwI1hEFozsheuONNzBz5kzMmDED1apVw+jRo7F8+XIMGzaMAzYSGUhSUuD7T56snDgCCXRpTE44Ro6U1pk61XgnKc+WAhZam5vVjt/27f51g0btQGEUuhOiPXv2oHPnzgCAhIQEHD9+HAAwcOBAzJ07N7zREVHITpxQv89mM8blJy2XxqZNK/9iN/JJyuhdsikwqx2/pCTpc+7JSJedjUh3QtSwYUMcPnwYANC4cWOsX78eAFBUVASdYzwSUQQ1b+7/hSh74onoXy4Dgk8BYaaTlNHrnigwKx2/vDypqNrzlGyUDhRGpjsh6t69Oz799FMAQHZ2Nh5//HH07NkT/fr1w2233Rb2AIkodFddpby8fv3KjSOQQFNAmOkkFevze5mdVY6fUmcKux2YPBnYtAn47LPoxWZ0uqfucLlccLlc7mk75s+fj9WrV6NZs2YYMmQIqlWrFpFAo4VTd5AZaelub5TpBoLJy/Mf9yXaPeMCcTqN2yWbgjP78cvPl4rCA+ncGVizpnLiiSa952/dCVGsYUJEZqM0n5GS/HypINgMzH6SIqosWj//n34K3HRT5cQULXrP3yENzHj06FFs2LABBw4cgMtnr997772hPCURhUmw7vaAcS87qUlPZyJEpEV6ujSZ89Spgdf78kvrJ0R66U6IPv30U9x99904efIkkpOTYfOo2rTZbEyIiKJs48bA95u1NoKItBk+HHjpJfXpegDg+usrLx6z0H3J7IILLkCvXr0wYcIEVK9ePVJxGQYvmZGZBGsut9uB9eulkWyJyLo8a+98sYZIme4Wor1792LYsGExkQwRmU2wy2UulzEGZCSiyPKdc62wULpMdv31vFSmRndClJWVhY0bN6Jp06aRiIeIKkAee8hMM9sTUWR41t6lpzMRCkZ3QnTjjTdi1KhR+PXXX9GqVStUrVrV6/6bb745bMERkT7p6cCkScDo0cr3P/44a4ciyemUWumaN+d+JuPh+zMw3TVEdt9R0jyfzGZDmdIFSxNjDRGZ0dNPA+PHey+z24Hdu43/RWjWL23PsZ/sdmmQPyOPl0SxJRbfn3rP37pHqpYHZlS6RTIZOnLkCAYOHIiUlBSkpKRg4MCBOHr0aMDH3HfffbDZbF63jh07RixGIqOoWdN72g6bTfoCNHqCYcTZxp1OacymQPOnWW1iUApOy/vCKPj+1EZ3QhQtd911FwoLC/Hll1/iyy+/RGFhIQYOHBj0cddffz327dvnvi1durQSoiWKnilTgFGjvOuI7HapwNLIlL60H3pIWh6tk4/WBM1Mc66Rfr7vPyMm7oHw/amNphqiV199FQ899BDi4+Px6quvBlx32LBhYQnM05YtW/Dll19i/fr16NChAwBg1qxZ6NSpE7Zu3YoWLVqoPjYuLg4NGzYMe0xERuR0AmPG+C+Xv/yM3EKk9KXtcgEPPggsX175Tf1qv6qzsvz3ozznmmf8LGC3Bt9LTRMnAk8+qe19YRR8f2qjKSGaPn067r77bsTHx2P69Omq69lstogkROvWrUNKSoo7GQKAjh07IiUlBWvXrg2YEK1cuRL169dHzZo10bVrV4wfPx71A8xsWVpaitLSUvffx44dC89GEFWCV15R7mFmtxv/y0+th9yyZeX/r8yTT6Bf1b6vLU8M6jvnmlFPkKSNUlLsmQzJjP6Dg+9PbTQlREVFRYr/ryz79+9XTGLq16+P/fv3qz7uhhtuQJ8+fdC4cWMUFRXhX//6F7p3745NmzYhLi5O8TG5ubl47rnnwhY7UWVxOqXRaZXcfrvxv/zS04Enngg+5UBlnXz0/qr2HffF6PubglNrtTRjawvfn8FFtYZo3LhxfkXPvreN/z8PgecUITIhhOJyWb9+/XDjjTfikksuQe/evfHFF19g27Zt+Pzzz1UfM3bsWJSUlLhvxcXFFd9Qokqwfbv6+EOLF5ujgHL4cOlkE0hlnXzkX9UOR/nravlVzemyrUNOij05HNLQFnrfF0aQni5N6GyGWKNB9zhEOTk5isttNhvi4+PRrFkz3HLLLahdu3bQ5xo6dCj69+8fcJ3MzEz89NNP+PPPP/3uO3jwIBo0aKAtcACpqalo3Lgxtm/frrpOXFycausRkZEptWjIjN6kL1Nq2r/nHuDDDyvW1B9qV349v6o9a01sNqm1a/hw4+9zUqd2qSk7G+jfn60tliN06tatm6hRo4ZITEwUl19+uWjTpo1ISkoSKSkpokOHDqJmzZqiVq1aYvPmzXqfWtWvv/4qAIjvv//evWz9+vUCgPjtt980P8+hQ4dEXFyceO+99zQ/pqSkRAAQJSUlumImqmzFxUKMHCmEzSaE1E7hfduwIdoRKisuFmLFCulfz2X5+eXLfP/WY/ZsIex2aR/Y7dLf4VZcXP4anrdIvR5Vroq8/yh69J6/dSdE06dPF7fffrvXC5SUlIg777xTvPzyy+LkyZPilltuEdddd53epw7o+uuvF61btxbr1q0T69atE61atRI33XST1zotWrQQixYtEkIIcfz4cfHEE0+ItWvXiqKiIpGfny86deokzjvvPHHs2DHNr8uEiMxg9mz1REi+5edHO0p/kU5WlBIVhyP8J7YVK9T3eyRej4iCi3hClJaWptj688svv4i0tDQhhBCbNm0SderU0fvUAR0+fFjcfffdIjk5WSQnJ4u7775bHDlyxGsdAGLOnDlCCCFOnTolrrvuOlGvXj1RtWpVkZGRIQYNGiT27Nmj63WZEJHRFRcHT4aMeFLWm6wotSQFo5aohDs5VGshkm/z54f39YgoOL3nb901RCUlJThw4AAuuugir+UHDx50d1GvWbMmzpw5U6FLeb5q166NDz/8MOA6wqOaMSEhAcs8++sSWdTatcELeY04h5mebu2hTjtQWeOvyLUmnl20PfXrBxw7Zv2pEojMTHcvs1tuuQUPPPAAFi9eDKfTib1792Lx4sXIzs7GrbfeCgDYsGEDLrjggnDHSkQKDh8OfL/dLhX3Go1aDx7fZKUi0w6E2lMsFNnZ0lxxI0f6b5cQnCqByOh0J0Rvv/02evTogf79+6Nx48bIyMhA//790aNHD7z11lsAgJYtW2L27NlhD5aI/NWpo36fw2HcOcy0JisVnXYgOxvYtUuaemHXrsi20qSnS1OnzJ3rfx+nSjAnM81ZppeVty0Uume7l504cQI7d+6EEALnn38+kpKSwh2bIXC2ezI6pxPIyPC+bGazAfPmAZ06GTMZ8uR0Bu6+7HRK80X5Xvbatcu422bGmKmcPEzDxo3lI1NbZYZ4edu+/hrIzZW+N6yybb70nr9DTohiBRMiMoP77gPee6/870GDgHffjVY04ZeXpzwWjJGZMWbyrlfzZfak1srbpqRSEqKCggIsWLAAe/bs8SueXrRokd6nMzQmRGR0sdIaEawlyYjMGHMsU/os+crPl0Z7Nhsrb5savedv3TVEH3/8Mbp06YJff/0VixcvxtmzZ/Hrr79ixYoVSElJCSloIgpdRWtszMKM0w4Eipn1G8aj9FnyZIY5y9QE2zYASEysnFiMSndCNGHCBEyfPh2fffYZqlWrhldeeQVbtmxB3759kZGREYkYiSgAeZZ4T2aY3d6KtCY5eXnSr/Xu3aV/8/IqJ77KYOZET6nno8xMc5YpCbRtspMnKycWo9KdEP3++++48cYbAUjzfp08eRI2mw2PP/44Zs6cGfYAiUg/K1QGGunEqiUWrUlORYYRMDqzJ3q+PR/tduCppyqnh2KkpacDKlORurGFSKfatWvj+PHjAIDzzjsPv/zyCwDg6NGjOHXqVHijI6KglGa5F8Lcl8yMdGLVEoueJMeqlzitkuhlZwMTJ5YP6JmbC/z+u3lbhjwNH+7fmuxp06bKi8WIdCdEV111FZYvXw4A6Nu3L4YPH47BgwdjwIAB6NGjR9gDJKLAtA5waAZOJzB/PjB4sPqJtTJbjrSe5PUkOVY6Xp6skug5ncCYMd7H/KGHgIKC6MYVDunpwKxZ6knRI49I42jFKt0J0YwZM9C/f38AwNixYzFy5Ej8+eefuP3225FntvZRIguozNGYI8XpBEaNklpg+vXzb/GST6yV3XKk9SSvJ8mxwvFSYpVET+mYu1xAhw7muwSoJDsb+P579ftHjwamTq28eIyE4xAFwW73ZBZm7eKdlye1CAX6JnI4gHXrgI4dK3d4AT1DGqiNOyQPhNe8ufdjzHq8ArHC2EuBuqdbaTiLUaPUEx+7XZqGxuzbWWkDMx44cAAHDhyAy+dd07p161CezrCYEBFFjpaxUeRRdJs2lVqGfEV67BQ9J3nfJCfUSWnNzAqJXqABDK0yVo/SCPeerLCdEU+INm3ahEGDBmHLli3wfajNZkNZWZm+iA2OCRFR5OTnKyc5nt58E2jRAkhKqvwWIpnaSV6t9Ue+LxYGzLSqggLpMpnnac5qx+/pp4Hx4/2X22zSZbX27Ss/pnCK+MCM999/Py644AKsXbsWO3fuRFFRkfu2c+fOkIImotikNIaSJ7sdePRRKWnq2BEYODA6tTdKAywGq2eySpFxJBhpSAU17dtLBchWq/XypNYPSgjr1EzpobuFKDk5GT/++COama1SLkRsISKKnEDN9nK3Z09yLdHJk9G9JKOl9YctRMrMdhlRbh1MTAROnFBuDTSrYJeszV5LFPEWoh49euB///tfSMEREXlSGkNJpvQlXVYmJUPRnsJDS+uPVXuTVYQZxypKT5fGIerY0RjjYoVTerrU6qrG5YqtFs0qeh8we/ZsDBo0CL/88gsuueQSVK1a1ev+m2++OWzBEZG1yV21g82xJDNKN26luJViy84GsrLMX2QcLoESSaPuG6fTuxeknMRlZRk3Zq2cTuCDDwKvs3Gj+YurtdKdEK1duxarV6/GF1984XefFYuqiShy5FaUYN3uAanWyCgtLHLcvr3PlGJLTzdGzEagNZE0kldeUR4Xa906oG5dc19C0zLh65NPAv37m3cb9dB9yWzYsGEYOHAg9u3bB5fL5XVjMkREemVlBS6sltntQOvWxinGzc6W6oGsMM9VZTHbZUSnE5g2zX+5zSYNIGr2S2hJScHXKSuTksJYEFJRdWFhIc4///xIxWQoLKomiiwtXe9lNpv0a90MxbiyQAMzqnXZN4OKxG+WsYq0vjfNWiyvdfvMWlwd8aLq22+/Hfn5+SEFR0TkS8uvVJlvHYcRWooCUeuab6TJa7Xy7Cpf0fiVhjEwIqXpSHz/Bsw7nILS9imJleJq3S1E48ePx8svv4wbb7wRrVq18iuqHjZsWFgDjDa2EBFFVqBfqXK9iVrhtZFH01Xrdh+NKUgqyrervBDWGrAwUGuX70jlEyd6T/4KmHv7tU6dY8bt03v+DqmXWVJSElatWoVVq1Z53Wez2SyXEBFRZMgnoaSk8kthnjzHHEpMVE4ijFaM63liVetRtXq1uXpaKXWV92Xk+IMJNi6SUk/BWrW0FdSbgbx9n30G7N8PtGsHrFoFTJ9uje3TQ3dCVFRUFIk4iCiGBJorCpBOTLm53gPhae3VFS2+J9aJE5Vbtg4dMldPKy09kYDA3bONWi+llOw99BCQnAx07lweq29PQasNp5CeDgwZUv73TTcBw4d7D0jpdJp/O4MSFFBJSYkAIEpKSqIdCpElFBcLYbfLF138bzabEE89Vb6O3S7E7Nnlj83Pl/41EqVtcjik7fDdPodDiClTpH/lv+XtMyKlbbPZlLdL6bjMnq18LI1gxQr196HdLsTIkeXbVFwsrW+0914kTZli3GOnhd7zt6YaopycHLzwwgtITExETk5OwHWnKfVRNDHWEBGFl5aeLUotKEauYVDbpmeeAZ5/Xnn9Zs3M08LgW0fz+OPA1Kn+640cCUyZUv630acvCTZ1BSBdzr33XmkAQ7NMNxIOU6YAo0d7LzPSsdMiIrPdX3PNNVi8eDFq1qyJa665Rv3JbDasWLFCX8QGx4SIKLwCzV8GWKeA2maTbkrzsZnppCLz7CoPKCcSvt2z1RJFIx1Lz2RPK7MeQ60CfUaNdOyCiUhRtWc3e3a5J6KKSE8HJk3y//UJlNfePPmkeWpsAP8aJ3mgSaWEwWi1T1r51tHk5Pi3Esnds+X1jDwytVzXlJUlFe936BB8tHSZmYvItVCbY9BuN8axixTd4xAREVXUgAH+o1PbbMD69cCoUeYazVgmj1w9cqT0t9IJ5eOPpfU8x/Qxq+HD/Y+hb7Jj1JGpfcdRmj9fezIEGCepixS18YmEAJYtq/x4KgsTIiKqdEq/QIWQEgrA3NNiTJumfHJ1OIBOncw5KKOS9HRg1qzgyY7RjqVSz7Jp07QNUCjLzY1+UhdJciLru0+EMMeAqKFiQkRElU7tF2i/fuWXYcwymrEntS7q8qUyQBoEz/NkbOYTjNZkx0jHUukYuVzAnXdqf4727cMbkxFlZwNz5/ovN+uo3FowISKiShfoF+ioUd49lcxEbaqH9eulE4zazOlmPsHIyQ5gjsuASsdIzyUweV0rXPYMpnPniu0rs2FCRERRkZ0NzJihfN+TT5rzRKNUMzNzptSioDZzuhUKVc10GTA9HRg40HvZ9ddLl8GCkS8LLltWvr0ZGeZN4IMxag1YpOieyyzWsNs9UfjJPXx++w149FHldczUvdeX0mzual3QfcfuMQqto0sbfawhX1rGHpJ5zqWXkyMVkgPKj58ypbyg3mqU3s9mEPHZ7qNl/Pjx6Ny5M6pXr46aNWtqeowQAuPGjUNaWhoSEhLQrVs3bN68ObKBElFAnq0JQ4cqr2P2Znmlmhl5zjZPDkf5SdZItLb4OJ1SDy21udmMSOtUJA6HdKkzP18aW2nKFOl4qj1+zBhztmpqYaQasEgyTUJ05swZ9OnTB4888ojmx0yePBnTpk3DjBkzUFBQgIYNG6Jnz544fvx4BCMlIjVKPXx8kwTAer148vKkyWl9Z4g34uUHpWOkVPgtJ01PPOH/HEaus1Er6Pdks0mjcaemlicC8rYoJbZA+RhMZGKRmkMkUubMmSNSUlKCrudyuUTDhg3FxIkT3ctOnz4tUlJSxFtvvaX59TiXGVH4BJo7yneuLLPNm6SmuNh/7i+7XYgNG6IdmTK1Y5SfX75OoPno5LnZjDyH2ezZ5XPJKb335OMlx+07p9edd2qfy81qzDSnm97zt2laiPQqKirC/v37cd1117mXxcXFoWvXrli7dq3q40pLS3Hs2DGvGxGFh5Zf54B0ihk82FgtC3rIrQkFBVILim+lpssFnDwZndiC0dILS+2y0fTpUu1QVpa2VqZo8RwuYMoU76JhoPx4uVzS+3DUKO9tWbwYeOqp8v1k1Na+cDNT8XwoLJsQ7d+/HwDQoEEDr+UNGjRw36ckNzcXKSkp7lujRo0iGidRLFHrbq9ECGlKBbPxPGlccYVUY+PLyD3LtPQsUkua7rxTvc7GaHVFcl3MyJHlydFHHykPGOqrrAy49lqptsgoA05GmtZLqWYW1YRo3LhxsNlsAW8bN26s0GvYfC72CiH8lnkaO3YsSkpK3Lfi4uIKvT4RecvK0j5NwuHDkY2lonxrZHxPGmoeesjYrQnBBlwMljQpfW0buVBeTo6Uxt1RIie0sVJsDJgjya0oTZO7RsrQoUPRv3//gOtkZmaG9NwNGzYEILUUpaamupcfOHDAr9XIU1xcHOLi4kJ6TSIKTm3iSCWPPQZUrWrMX995eeXJj90uJQhNm2rrwfT220C7dsbcLpnvZK6+srOl5Na3O7bTKY0j5WviROMnDr6T9PpOTCubNMn42xJuRp6oN1yi2kJUt25dtGzZMuAtPj4+pOdu0qQJGjZsiOXLl7uXnTlzBqtWrULnzp3DtQlEpJPaaM5Dhvj33jFqs7za5YOkJO2XA424XXp5tpDIrWVr1yonEe3aKT+H0Xqiya1jQ4b4J+52OzB5snXHGwokFgZpNE0N0Z49e1BYWIg9e/agrKwMhYWFKCwsxIkTJ9zrtGzZEosXLwYgXSobMWIEJkyYgMWLF+OXX37Bfffdh+rVq+Ouu+6K1mYQxTy10ZzffFOaDd6XEZvl1S4fnDzpvW2BGHG7QuVZNzVggPJ4S0otCUYt0p07F3jrLe+ESJ6CZdSo6MUVbUabqDfsItvpLXwGDRokAPjd8j36ggIQc+bMcf/tcrnEs88+Kxo2bCji4uLE1VdfLX7++Wddr8tu90SRUVwsdeX27L6r1J3biN2Z1bqdT55cfv/Ikf7d7Y2+XaFQ2hd2e/kyuRu+lscZYZ8oDZOgNPQAGZ/e8zen7giCU3cQVa68vPIaDrlZ3oi/RJ9+Ghg/3nuZPGUF4D+9g80m3VwuY2+XXmpTksyfD9Srpz7dg9rjoj1li1pcdrvUq8xKl4isTu/5O6pF1UREvtSKdY0kLw+YMMF/eVmZNKN9r17+l9SEAObN804StM4XVtn0xKVWbNupU+DHGrVIVykuIDYLqWONaWqIiMgalLqq+xbVGrk7s1xQrda2Pm2acnG1nCTI22XU+hm9cYVabGvUIt30dGDgQO9ld94Zm4XUsYaXzILgJTOi8HA6pdaTadPKu6oPHAh88IF313WjX0ZSu6Tiu87vv6tf+jPqDPEViSvUGdGNNpO60j6w26VC686djREjacNLZkRkOHl50hQInj+/XC7gvfe8/374YelymZFPOmqXVGQOB3DggLQdu3Ypn+wDDXIXzW2vSFzBxi0K9+MiRWkfuFxAv37mSdopNLxkRkQRFewSkyczdEX3vdRjt5d3M5cTpX79pFaGZcuUL/0ZdSRnLfOYWV2g+faMOi4WhQcTIiKKKLWJQJWY5eTrOR7L7t3Anj1Sryq5gzagfvI08kjORq3rqUzp6VLNkBozJO0UGl4yI6KICnaJSWa3m+vk63upp25d/1YwpctNagmi2kjOlc0MvfwibeRI5Ul5AfMk7aQfW4iIKKK0zHAvjwJs5toMrZebzHBZysi9/CpD+/bAoEH+y2OxxSyWMCEioojLzpZ66SiRC1Xbt6/cmMJN6+UmXpYyh3ffBTZsAKZPBz791MLTVZAbu90HwW73ROFRUABccYX/8k8/BW66qfLjiZSCAmD1auDKKwMneUbrbl4RRh1gkmIbu90TkSF5zMPsJSmpcuOIpLw8qUedPK7SxIlSbZBSomC07uah8t1mdksns2ILURBsISIKD6MORhguStsns2qioDaI4fr15r8E6qugAPjuO+Cqq6y3bVal9/zNGiIiqhRWr50JNLyAZxd8palKzEptEMMOHYwzFUk43HefdLn3iSekf++7L9oRUSSwhSgIthARhZeVamc8BWohko0c6T11idlbjQJts1Va/9Rq3954A+jd2/zbZ2VsISIiQ7Nal265xQfwbgHzZbcDL71UnjxYYdTjQEMqWGUAw+++U17+6KPGmpSXKo4JERFRiHxnhgeAdeukVqCnniqf0gPwHsVaZoWkITtbqhny3FZASpIOHDB3wgcAF1ygfp8Vkloqx4SIiCgE8hxtni0+gwcDHTsCOTnAhAne6ysVJxhtQEbAv8ZJqebJd1n79sCsWeWtYzabtL3ynG5mbkVJTAx8f1kZ8MorlRMLRRYTIiKiECgVFAtRvkypRQgov7xkxKJy3xav++7z/jsvz38dOdmR53ebP788IQLM34oSaLJX2UsvmXf7qByLqoNgUTURKdFSRO3L4ZAuqZ08abyici3bIycGgYZOyM+XkiVf+flS7ZgZDRkiJa+BzJ8P9OlTOfGQNhyYkYioEixb5t0CJNfQ+C6z26XLKnKLkFHHsAk0bIBM6X7fCWzVBtoMdunJqPLypMuBZH28ZEZEpJNcP+Sb/Eye7D3O0qxZUuuJGebB0nJpyG73X8du90521EYkP3myYvFFg2+dmBr5EiEvm5kbEyIiIp3UBiRs184/ATLLMANKA2cOGuT998yZ/kMLuFxSIblcS6SUWBmxeFwLtVazrl29/7ZKAXmsYw1REKwhIiJfgaYhAcw90anvwJlKA2kWFEijUXuePTxrifLypEJqz0uFRm4dU6N2nF0u5YJ5+X4rDEhpBRyYkYgowtSmIfn4Y+UeWGai1KLle/KfPz/wmEpyjzMzXCoMxPc42+3Agw+qJ0OANcaWilVsIQqCLUREpMaz9WTuXGD0aO/7zd5aoDSTfVYW0KiR/7pm39ZApk4Fxowp3w9qQyoA1t4PZsMWIiKiSiQEsG+fdML0ZebWAqWBJx9+GHjxReX1H3/cmkmA01meDAHSv3LvQUD6V+5haMSxpUg7drsnIgqBZ+uJ50CEnux2cxYTA8oFxWVlUiuRL5sNGD68cuKqbGoF9PPnA/XqlR9fK05YHGuYEBER6eTbeqJ2+WTSJPOeIOXeYp7JgO/fsieeMO92BqO0HxwOoFMn72226vbHEl4yIyLSSa07tudllMmTgZEjKzeucFIqHH/sMeV1L77Yf74zq1AroGcCZD0sqg6CRdVE5EutO7bvtBxOp7m74APlheMFBVItTaAzhlx4bdZeZYF4FtAD3sfVCsfZilhUTUQUYWqtBu3bl3dZV5sE1WzS06Uk4MknAydDgPkncg1EHo5g2bLgE+CSObGFKAi2EBGRGqVBC+XlagM3mrEFQW3C1kDrm3Ui10C0TIBr5uNsNZzclYiokqSnK5/41HpoeU6CaiZKhcVqzDpNhxZaJsA183GOdbxkRkQUZlaazwvwv0QYyMSJ1k0GmjcvH3NIjZmPc6wzTUI0fvx4dO7cGdWrV0fNmjU1Pea+++6DzWbzunXs2DGygRJRTHI6pUtFBQVSS8LEidbqmSRPxzFypH+y56ldu0oLyTCsdJxjmWkumZ05cwZ9+vRBp06dkKejau3666/HnDlz3H9Xq1YtEuERUQzzHKRRZrdL4xC1a2edAfvS04EpU6RBGJ98Evj3v/3X2bjRmvVDgJToKlXdzp1bPkijFY5zrDJNQvTcc88BAN59911dj4uLi0PDhg0jEBERkf8gjTKXS0oarFhg+/HHyskQIHXN79pV6nFnNVoHaSRzMs0ls1CtXLkS9evXxwUXXIDBgwfjwIEDAdcvLS3FsWPHvG5ERGrWrlUvtDXzXGZq5Lm91LhcQMeO1ux+zkEarc3SCdENN9yAf//731ixYgVeeuklFBQUoHv37igtLVV9TG5uLlJSUty3RkrTOhMRQTrp9++vfr8VC2y19LSy8nhEci1Vfr70b3a2tJ3z50s3K25zrIhqQjRu3Di/omff28aNG0N+/n79+uHGG2/EJZdcgt69e+OLL77Atm3b8Pnnn6s+ZuzYsSgpKXHfiouLQ359IrIu+VKZ2khuVm090NLTCrBm65hMHqxy+3Zg6lQgIwPo10+6ZWRYs3UsFkS1hmjo0KHoH+jnFYDMzMywvV5qaioaN26M7du3q64TFxeHuLi4sL0mEVmTWkvJm28CLVvGXoGtzeadHFqxdUymVEQvE0JqHcvKiq3jbwVRTYjq1q2LunXrVtrrHT58GMXFxUhNTa201yQia0pKUl7etq01C4plaj2tnngCmD5dahmyausYoF5E74mDM5qTaWqI9uzZg8LCQuzZswdlZWUoLCxEYWEhTpw44V6nZcuWWLx4MQDgxIkTGDlyJNatW4ddu3Zh5cqV6N27N+rWrYvbbrstWptBRBbh8dXj5eTJyo2jsqklgn37+tfWWJGWGiort45ZmWm63T/zzDN477333H+3adMGAJCfn49u/z/oxdatW1FSUgIAcDgc+Pnnn/H+++/j6NGjSE1NxTXXXIN58+YhOTm50uMnImtR64Jt9ROhWiK4a5fUMmb1VpFg05jY7dZtHbM6Tu4aBCd3JSI1eXlSvYjnZSKrtozI1CY4tdmAWbOsv/2A/3HPzQXkcleOSWQces/fTIiCYEJERIGozXhvZZ4JgadYmuk9Fo+72XC2eyKiSqQ2472VZWcDyclSN3NPsVRMHIvH3epMU1RNRETG0bmz/3hEsVBDRdbFhIiIiHRbtsz7b5uNxcRkbkyIiIhIF6VRuu12aTBCIrNiQkRERLoojcVj5ak6KDYwISIiIl3ksXh8FRRUfixE4cKEiIiIdElPByZN8l8+dixneyfzYkJERES6tW3rv4yXzcjMmBAREZFuSpfN2O2ezIwJERER6ZaeDsycKSVBgLVnuKfYwJGqiYgoJNnZUlf7HTuAxERp4lenk0kRmRNbiIiIKCROp9QFv6AA6NgR6N5dmvg1Ly/akRHpxxYiIiLSLS9PGpzRdzwil0ua+DUriy1FZC5sISIiIl3kkap9kyEZe5uRGTEhIiIiXZRGqvZkt7O3GZkPEyIiItJFbaRqWU4OL5eR+TAhIiIiXeQu90pJkcMBDB9e+TERVRQTIiIi0i07G9i9Gxg5kmMRkTXYhBAi2kEY2bFjx5CSkoKSkhLUqFEj2uEQERmO0ykVUTdrxmSIjEPv+Zvd7omIqELS05kIkfnxkhkRERHFPCZERESki9MJ5OdL/xJZBRMiIiLSLC9Pmp6D03SQ1TAhIiIiTXxHqJan6WBLEVkBEyIiItJEaYRqTtNBVsGEiIiINFEaodrh4DQdZA1MiIiISBN5hGoOxEhWxHGIiIhIs+xsICuLAzGS9TAhIiIiXTgQI1kRL5kRERFRzGNCRERERDGPCRERERHFPCZEREREFPOYEBEREVHMM0VCtGvXLmRnZ6NJkyZISEjA+eefj2effRZnzpwJ+DghBMaNG4e0tDQkJCSgW7du2Lx5cyVFTURERGZhioTot99+g8vlwttvv43Nmzdj+vTpeOutt/DPf/4z4OMmT56MadOmYcaMGSgoKEDDhg3Rs2dPHD9+vJIiJyIiIjOwCSFEtIMIxZQpU/Dmm29i586divcLIZCWloYRI0ZgzJgxAIDS0lI0aNAAkyZNwsMPP6zpdY4dO4aUlBSUlJSgRo0aYYufiIiIIkfv+dsULURKSkpKULt2bdX7i4qKsH//flx33XXuZXFxcejatSvWrl2r+rjS0lIcO3bM60ZERETWZsqE6Pfff8drr72GIUOGqK6zf/9+AECDBg28ljdo0MB9n5Lc3FykpKS4b40aNQpP0ERERGRYUU2Ixo0bB5vNFvC2ceNGr8f88ccfuP7669GnTx88+OCDQV/DZrN5/S2E8FvmaezYsSgpKXHfiouLQ9s4IiIiMo2ozmU2dOhQ9O/fP+A6mZmZ7v//8ccfuOaaa9CpUyfMnDkz4OMaNmwIQGopSk1NdS8/cOCAX6uRp7i4OMTFxbn/lkuseOmMiIjIPOTzttZS6agmRHXr1kXdunU1rbt3715cc801aNu2LebMmQO7PXDjVpMmTdCwYUMsX74cbdq0AQCcOXMGq1atwqRJkzTHKPdI46UzIiIi8zl+/DhSUlKCrmeK2e7/+OMPdOvWDRkZGZg6dSoOHjzovk9uCQKAli1bIjc3F7fddhtsNhtGjBiBCRMmoHnz5mjevDkmTJiA6tWr46677tL82mlpaSguLkZycnLAS22x5tixY2jUqBGKi4vZ+66ScJ9HB/d7dHC/R4eV9rsQAsePH0daWpqm9U2REH311VfYsWMHduzYgfT0dK/7PJvCtm7dipKSEvffo0ePxt9//41HH30UR44cQYcOHfDVV18hOTlZ82vb7Xa/16RyNWrUMP2Hxmy4z6OD+z06uN+jwyr7XUvLkMy04xBRdHF8psrHfR4d3O/Rwf0eHbG8303Z7Z6IiIgonJgQUUji4uLw7LPPevXIo8jiPo8O7vfo4H6Pjlje77xkRkRERDGPLUREREQU85gQERERUcxjQkREREQxjwkRERERxTwmRKRZbm4u2rdvj+TkZNSvXx+33nortm7dGu2wYk5ubq57JHaKrL179+Kee+5BnTp1UL16dVx22WXYtGlTtMOytHPnzuHpp59GkyZNkJCQgKZNm+L555+Hy+WKdmiW8u2336J3795IS0uDzWbDf/7zH6/7hRAYN24c0tLSkJCQgG7dumHz5s3RCbaSMCEizVatWoXHHnsM69evx/Lly3Hu3Dlcd911OHnyZLRDixkFBQWYOXMmWrduHe1QLO/IkSPo0qULqlatii+++AK//vorXnrpJdSsWTPaoVnapEmT8NZbb2HGjBnYsmULJk+ejClTpuC1116LdmiWcvLkSVx66aWYMWOG4v2TJ0/GtGnTMGPGDBQUFKBhw4bo2bOne35PK2K3ewrZwYMHUb9+faxatQpXX311tMOxvBMnTuDyyy/HG2+8gRdffBGXXXYZXn755WiHZVlPPvkk1qxZg++++y7aocSUm266CQ0aNEBeXp572R133IHq1avjgw8+iGJk1mWz2bB48WLceuutAKTWobS0NIwYMQJjxowBAJSWlqJBgwaYNGkSHn744ShGGzlsIaKQyfPG1a5dO8qRxIbHHnsMN954I6699tpohxITlixZgnbt2qFPnz6oX78+2rRpg1mzZkU7LMu78sor8c0332Dbtm0AgP/9739YvXo1evXqFeXIYkdRURH279+P6667zr0sLi4OXbt2xdq1a6MYWWSZYnJXMh4hBHJycnDllVfikksuiXY4lvfxxx/jhx9+QEFBQbRDiRk7d+7Em2++iZycHPzzn//Ehg0bMGzYMMTFxeHee++NdniWNWbMGJSUlKBly5ZwOBwoKyvD+PHjMWDAgGiHFjP2798PAGjQoIHX8gYNGmD37t3RCKlSMCGikAwdOhQ//fQTVq9eHe1QLK+4uBjDhw/HV199hfj4+GiHEzNcLhfatWuHCRMmAADatGmDzZs3480332RCFEHz5s3Dhx9+iI8++ggXX3wxCgsLMWLECKSlpWHQoEHRDi+m2Gw2r7+FEH7LrIQJEen2j3/8A0uWLMG3336L9PT0aIdjeZs2bcKBAwfQtm1b97KysjJ8++23mDFjBkpLS+FwOKIYoTWlpqbioosu8lp24YUXYuHChVGKKDaMGjUKTz75JPr37w8AaNWqFXbv3o3c3FwmRJWkYcOGAKSWotTUVPfyAwcO+LUaWQlriEgzIQSGDh2KRYsWYcWKFWjSpEm0Q4oJPXr0wM8//4zCwkL3rV27drj77rtRWFjIZChCunTp4jesxLZt29C4ceMoRRQbTp06Bbvd+9TkcDjY7b4SNWnSBA0bNsTy5cvdy86cOYNVq1ahc+fOUYwssthCRJo99thj+Oijj/Df//4XycnJ7uvMKSkpSEhIiHJ01pWcnOxXp5WYmIg6deqwfiuCHn/8cXTu3BkTJkxA3759sWHDBsycORMzZ86MdmiW1rt3b4wfPx4ZGRm4+OKL8eOPP2LatGl44IEHoh2apZw4cQI7duxw/11UVITCwkLUrl0bGRkZGDFiBCZMmIDmzZujefPmmDBhAqpXr4677rorilFHmCDSCIDibc6cOdEOLeZ07dpVDB8+PNphWN6nn34qLrnkEhEXFydatmwpZs6cGe2QLO/YsWNi+PDhIiMjQ8THx4umTZuKp556SpSWlkY7NEvJz89X/D4fNGiQEEIIl8slnn32WdGwYUMRFxcnrr76avHzzz9HN+gI4zhEREREFPNYQ0REREQxjwkRERERxTwmRERERBTzmBARERFRzGNCRERERDGPCRERERHFPCZEREREFPOYEBFRpdu1axdsNhsKCwujHUqFrVmzBq1atULVqlVx6623RjscIgoREyIiijn33Xdf2JKXnJwcXHbZZSgqKsK7774blufU6t1330XNmjUr9TWJrIoJERFpdubMmWiHUCFlZWVhnyT0999/R/fu3ZGenq45OTH7fiSyIiZERKSqW7duGDp0KHJyclC3bl307NkTAPDrr7+iV69eSEpKQoMGDTBw4EAcOnTI/bgvv/wSV155JWrWrIk6dergpptuwu+//67rtTMzM/HCCy/grrvuQlJSEtLS0vDaa695rTNt2jS0atUKiYmJaNSoER599FGcOHHCfb/cgvLZZ5/hoosuQlxcHO6//3689957+O9//wubzQabzYaVK1cqxlBaWophw4ahfv36iI+Px5VXXomCggIA5Zf9Dh8+jAceeAA2m021hSgzMxMvvvgi7rvvPqSkpGDw4MEAgIULF+Liiy9GXFwcMjMz8dJLL3k97siRI7j33ntRq1YtVK9eHTfccAO2b98OAFi5ciXuv/9+lJSUuLdj3LhxAIA33ngDzZs3R3x8PBo0aIA777xT174niknRnkyNiIyra9euIikpSYwaNUr89ttvYsuWLeKPP/4QdevWFWPHjhVbtmwRP/zwg+jZs6e45ppr3I/75JNPxMKFC8W2bdvEjz/+KHr37i1atWolysrKhBBCFBUVCQDixx9/VH3txo0bi+TkZJGbmyu2bt0qXn31VeFwOMRXX33lXmf69OlixYoVYufOneKbb74RLVq0EI888oj7/jlz5oiqVauKzp07izVr1ojffvtNHD16VPTt21dcf/31Yt++fWLfvn2qE4cOGzZMpKWliaVLl4rNmzeLQYMGiVq1aonDhw+Lc+fOiX379okaNWqIl19+Wezbt0+cOnVKdVtq1KghpkyZIrZv3y62b98uNm7cKOx2u3j++efF1q1bxZw5c0RCQoLXZMk333yzuPDCC8W3334rCgsLRVZWlmjWrJk4c+aMKC0tFS+//LKoUaOGezuOHz8uCgoKhMPhEB999JHYtWuX+OGHH8Qrr7yi5XATxTQmRESkqmvXruKyyy7zWvavf/1LXHfddV7LiouLBQCxdetWxec5cOCAAOCeLVtrQnT99dd7LevXr5+44YYbVB8zf/58UadOHfffc+bMEQBEYWGh13qDBg0St9xyi+rzCCHEiRMnRNWqVcW///1v97IzZ86ItLQ0MXnyZPeylJQUryRGbVtuvfVWr2V33XWX6Nmzp9eyUaNGiYsuukgIIcS2bdsEALFmzRr3/YcOHRIJCQli/vz57u1LSUnxeo6FCxeKGjVqiGPHjgWMiYi88ZIZEQXUrl07r783bdqE/Px8JCUluW8tW7YEAPdlsd9//x133XUXmjZtiho1aqBJkyYAgD179uh67U6dOvn9vWXLFvff+fn56NmzJ8477zwkJyfj3nvvxeHDh3Hy5En3OtWqVUPr1q11va68DWfPnkWXLl3cy6pWrYorrrjCKwatfPfjli1bvJ4bALp06YLt27ejrKwMW7ZsQZUqVdChQwf3/XXq1EGLFi0Cvn7Pnj3RuHFjNG3aFAMHDsS///1vnDp1Sne8RLGGCRERBZSYmOj1t8vlQu/evVFYWOh12759O66++moAQO/evXH48GHMmjUL33//Pb7//nsA4SkmttlsAIDdu3ejV69euOSSS7Bw4UJs2rQJr7/+OgDg7Nmz7vUTEhLcj9FDCOH1ep7LQ3k+3/2o9Dzya/r+X8/rJycn44cffsDcuXORmpqKZ555BpdeeimOHj2qO2aiWMKEiIh0ufzyy7F582ZkZmaiWbNmXrfExEQcPnwYW7ZswdNPP40ePXrgwgsvxJEjR0J6rfXr1/v9LbdGbdy4EefOncNLL72Ejh074oILLsAff/yh6XmrVauGsrKygOs0a9YM1apVw+rVq93Lzp49i40bN+LCCy/UuSX+LrroIq/nBoC1a9figgsugMPhwEUXXYRz5865k0kAOHz4MLZt2+Z+fbXtqFKlCq699lpMnjwZP/30E3bt2oUVK1ZUOGYiK2NCRES6PPbYY/jrr78wYMAAbNiwATt37sRXX32FBx54AGVlZahVqxbq1KmDmTNnYseOHVixYgVycnJCeq01a9Zg8uTJ2LZtG15//XUsWLAAw4cPBwCcf/75OHfuHF577TXs3LkTH3zwAd566y1Nz5uZmYmffvoJW7duxaFDh7xalGSJiYl45JFHMGrUKHz55Zf49ddfMXjwYJw6dQrZ2dkhbY+nJ554At988w1eeOEFbNu2De+99x5mzJiBkSNHAgCaN2+OW265BYMHD8bq1avxv//9D/fccw/OO+883HLLLe7tOHHiBL755hscOnQIp06dwmeffYZXX30VhYWF2L17N95//324XC60aNGiwjETWVo0C5iIyNi6du0qhg8f7rd827Zt4rbbbhM1a9YUCQkJomXLlmLEiBHC5XIJIYRYvny5uPDCC0VcXJxo3bq1WLlypQAgFi9eLITQXlT93HPPib59+4rq1auLBg0aiJdfftlrnWnTponU1FSRkJAgsrKyxPvvvy8AiCNHjgghlIuOhZCKvHv27CmSkpIEAJGfn68Yw99//y3+8Y9/iLp164q4uDjRpUsXsWHDBq91tBZVT58+3W/5J598Ii666CJRtWpVkZGRIaZMmeJ1/19//SUGDhwoUlJS3Nu4bds2r3WGDBki6tSpIwCIZ599Vnz33Xeia9euolatWiIhIUG0bt1azJs3L2B8RCSETQiVC9VERFGUmZmJESNGYMSIEdEOhYhiAC+ZERERUcxjQkREREQxj5fMiIiIKOaxhYiIiIhiHhMiIiIiinlMiIiIiCjmMSEiIiKimMeEiIiIiGIeEyIiIiKKeUyIiIiIKOYxISIiIqKYx4SIiIiIYt7/AZhxznAp8tOaAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAHHCAYAAADwNpN1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGwklEQVR4nO3dd3gU1foH8O/uAklIQuh1CQFBioJ4BaRIEcTYEPRK8wpBIqBYKILA1XsBG1UQxQZEFL1KsQL6E1EiIgQJIFcFlCAtC3jpvWfP749xsm1mdzbZ2ZnZfD/PkwcyO9k9M1vm3XPe8x6bEEKAiIiIiEgHdqMbQERERESxi8EmEREREemGwSYRERER6YbBJhERERHphsEmEREREemGwSYRERER6YbBJhERERHphsEmEREREemGwSYRERER6YbBJhERERHphsEmEREREenG1MHmunXrMGHCBJw4cSLqj71o0SJcc801SEhIgM1mw5YtW0L+zbPPPosmTZrA7Xbr38AgTp8+jaeeegq33norqlSpApvNhgkTJijum5WVhVq1auHs2bO6tccs5wUI79wAwJkzZzB8+HDUrFkT8fHxaN68ORYuXOizTzTOIQC88847sNls2LNnD4Dg748JEybAZrPhyJEjurYp0tTed0V5P5qF3p9j0Xqu5ccxS3vk94P8U6pUKdSoUQN9+vRBXl5exB5ny5YtuPPOO5GamoqEhARUrFgRbdq0wfvvv6/p78P9zPnhhx9wxx13oEKFCkhISECDBg3w3HPP+eyzatUqDBw4EI0aNUJiYiJq1aqF7t27Y9OmTUXaDwAGDBjgcz79f9avXx/WfuEeUzj7avlc1uvcA8BPP/2EHj16oGbNmihbtiwaNWqEZ599FufOnfPZT+trJ9xzumHDBqSnpyM5ORlJSUm4+eabsXbtWtXjKq5wnj81pg82J06cGPVg8/Dhw+jXrx+uuuoqfPXVV8jJycHVV18d9G8OHDiAqVOn4tlnn4XdbuxpPXr0KObMmYOLFy+iR48eQffNyMhAYmIipk6dqktbzHRegPDODQDce++9ePfddzF+/Hj83//9H1q2bIm+ffvigw8+KNxH73Mou/POO5GTk4MaNWoAMO79oRe1911R3o9mEmvPk9nMnz8fOTk5+Oabb/DYY49h6dKluOmmm3D8+PGI3P+JEydQu3ZtvPjii/jyyy+xYMECpKWloV+/fnj++edD/n04nzkffPABOnbsiJSUFCxYsABffvklxowZAyGEz35vvPEG9uzZg2HDhuHLL7/ErFmzcOjQIbRu3RqrVq0Kez8A+Ne//oWcnJyAn8qVK6NWrVpo2bJlWPuFe0zh7Kvlc1mvc79t2za0bdsWe/bswcsvv4zly5ejT58+ePbZZ9G3b1+ffbW+dsI5p7m5uejQoQPOnz+P9957D++99x4uXLiALl26ICcnJ+gxFkU4z19QIgLOnj0bibsJMG3aNAFA7N69W5f7V/PDDz8IAGLRokWa/+app54StWrVEgUFBTq2TBu32y3cbrcQQojDhw8LAGL8+PGq+0+fPl2kpKTo8jya6bwIEd65+eKLLwQA8cEHH/hs79q1q6hZs6a4cuVK4TY9z6GaYO+P8ePHCwDi8OHDUWtPcam974ryfjQD+bWg1+eYfP/Req7lx9G6n97tmT9/vgAgcnNzfbZPnDhRABBvv/22ro9/4403itq1a4fcT+tnjsvlEomJieKRRx4JeZ//+9//AradPn1aVKtWTXTp0iXs/dR89913AoB45plnirRfOMekdd9wPpf1OPdPP/20ACB27tzps33w4MECgDh27FjI+9Dy2lE7p+np6aJatWo+15pTp06JypUri7Zt24Z87HCEc15CCburSR4i2bx5M+677z5UqFABV111FQCpq7VLly5ITk5G2bJl0bZtW3zxxReK9xNq3wkTJmD06NEAgLp16xZ2J3/33Xc4fPgwBg8ejNq1ayMuLg5VqlRBu3bt8M0334Rsf6jHHTBgAG666SYAQO/evWGz2dCpU6eg93np0iVkZWXh/vvv9+m9O3jwIJKSktCnTx+f/ZcvX47SpUvj6aefDtneopDPlVb/+Mc/cOrUKcVhiOJQOy+ANc7Np59+iqSkJPTs2dNn+4MPPogDBw7gxx9/LNym9Rxu3boVNpsNS5YsKdy2adMm2Gw2XHPNNT773n333bjhhhsKf/ceRg/2/vD2v//9D3379kVKSgqqVauGgQMH4uTJk5qO/7fffkPfvn1RrVo1xMXFITU1Ff3798fFixcL99H6ns/Ly8P999+PqlWrIi4uDo0bN8Zrr71WeLva+y7Y+7GonwPyZ9hPP/2Ee++9F+XKlUNKSgoeeOABHD58OOy2e9+n/+disOdpwIABSEtLU22flvv3lp+fH/J4tBwLAHzxxRdo3rw54uLiULduXUyfPj3oOVUSqj1r1qyBzWbDhx9+GPC3CxYsgM1mQ25ubtiP26JFCwDSa19PlStXRqlSpULup/UzZ968eTh79izGjBkTct+qVasGbEtKSkKTJk2Qn58f9n5qsrKyYLPZMHDgwCLtF84xad03nM9lPc596dKlAQApKSk+28uXLw+73Y4yZcqEvA8trx21c7p27Vp06tQJZcuWLdyWnJyMDh06YN26dTh48GDhdq3vdzXhnJeQwo1O5W+tderUEWPGjBErV64Un332mfjuu+9E6dKlxQ033CAWLVokPvvsM3HrrbcKm80mFi5c6HMfWvbNz88Xjz/+uAAgPvnkE5GTkyNycnLEyZMnRXp6uqhSpYqYM2eO+O6778Rnn30m/v3vfwc8jj8tj7tz507x2muvCQDixRdfFDk5OWLr1q1B7/f7778XAMSXX34ZcNvEiROFzWYTGzduFEIIkZ2dLeLj48Xjjz+u+ZwXh5aeTSGEaNy4sbj33nsj+tjBzosQ5j83rVu3Fi1btgzY/uuvvwoA4q233vLZrvUc1qhRQwwePLjw98mTJ4uEhAQBQOzfv18IIcTly5dFuXLlxFNPPVW4n9yTs3v37qDvDyE879OGDRuKf//732LlypVixowZIi4uTjz44IMh27hlyxaRlJQk0tLSxJtvvim+/fZb8f7774tevXqJU6dOCSG0vZ+EEGLr1q0iJSVFNG3aVCxYsEB8/fXX4sknnxR2u11MmDBBCKH+vgv2fizq54D3Z9jo0aPFihUrxIwZM0RiYqK4/vrrxaVLl8Jqu/99en8uBnueMjIyRJ06dVTbp9Zm7/sP53i0Hss333wjHA6HuOmmm8Qnn3wilixZIlq2bClSU1PD6tnUcn6vv/560a5du4D7aNmypeJ7z5taz+bs2bMFAPHxxx/7bHe73eLy5cuafpQUFBSIy5cvi0OHDonXXntNlCpVSrz55pshz4e3YJ85nTt3FhUrVhRfffWVuO6664TD4RBVqlQRQ4YMKXxfB3PixAmRkpIi7rnnnojtl5CQIG655ZYi7xfOMWndN9zPZVmkzv3u3btF+fLlxX333Sf++OMPcerUKbFs2TKRkpKieu0K97UT7JyWKVNG9O/fP2B73759BQCxYsUKIYT293swxX1NeitysPnvf//bZ3vr1q1F1apVxenTpwu3XblyRVx77bXC6XQWdmWHs6/a8FNSUpIYPnx4uE3X/LjZ2dkCgFiyZImm+50yZYoAIP7888+A286ePStq1qwpunTpIjZs2CCSk5PFgw8+6HM+9KQ12PzHP/4hqlWr5rPN7XaL48ePBwwNnz9/Xhw/ftxnuEIIIU6ePFkYiAgR/LwIYf5z06BBA5Genh6w/cCBA4XBjzelc6jkgQceEPXq1Sv8/ZZbbhGDBg0SFSpUEO+++64QQoi1a9cKAOLrr78u3M872BRC2zD61KlTfbYPHTpUxMfHhzzHnTt3FuXLlxeHDh1S3Ufr+yk9PV04nc6AD6fHHntMxMfHFw47qb3v1LYX9XNAPjcjRozw2f6f//xHABDvv/9+4TatbVf7XBRC/XkqSrCpdP9aj0frsdx4442iZs2a4vz584X7nDp1SlSsWDGsYFPL+ZVf0z/99FPhtg0bNggAhe8FNfLfrl+/Xly+fFmcPn1afPXVV6J69eqiQ4cOAUGj/DrS8qP0nhoyZEjh7WXKlBGvv/56yHPhL9hnTsOGDUV8fLxITk4WL774osjOzhZTp04VCQkJol27diHfs//4xz9EqVKlCr+8F3e/N954QwAQH374YZH3C+eYtO4b7ueyLJLnfvv27aJRo0Y+r5knnnhC9TkK97UT7Jw2b95cXH311T6paZcvXxb16tXzSS/Q+n4PprivSW9FDjb/+9//Fm47c+aMsNlsYujQoQH7ywHH9u3bw95X7UNavhA+99xzIicnx+ebsppwHjfcYHPYsGHCZrMFBF+yt99+WwAQiYmJolevXqr7eT+2lh/vD2g1WoPNESNGCJvN5vMBffDgQQFAZGRk+OwrvwZycnJ8tlerVk1cd911hb+HOi9CmPvcNGjQQNx2220B2+UPtUmTJvlsVzqHSuSL5K5du8T58+dFfHy8+Pjjj8W9994rHnjgASGE1OsbFxcnzp07F/B34QSbv/32m8/2N998M+gXACGkLwEOh8On99Wf1vfT+fPnRalSpcTjjz8e0Hv05Zdf+vR8hxtsFuVzQAjPufG/2F6+fFmUKlVKZGZmCiFEWG1X+lyURTLYVLp/Lcej9VjOnDkj7Ha7eOyxxwIeJyMjI6xgM9T5FUKICxcuiKpVq4qHHnqocFu/fv1ElSpVxIULF4I+jvx+8P9p3LixOH78eMD+p06dErm5uZp+Ll68GPD3e/fuFbm5ueKLL74QDz/8sLDb7WLatGkhz4e3YJ85DRo0UPxcefnllwUAsXLlStX7feaZZwQA8eqrrwZ9fK37CSFEixYtRKVKlUI+D8H2C+eYtO4b7ueyLFLnfvfu3aJ+/fqiXbt24qOPPhKrV68WU6dOFeXKlRMDBw5UfOxwXzvBzmlWVpYAIB555BHhcrnEvn37RGZmpnA4HAKAWLhwYVifXUKIgH28A/uivib9hU44USHPiAWA48ePQwjhs01Ws2ZNANKssHD3VbNo0SI8//zzmDdvHv71r38hKSkJ99xzD6ZOnYrq1asr/k0kHlfN+fPnUbp0aTgcDsXb5ZmzNpsN77zzjup+ANCwYUPMnTtX0+OmpqaG31gV8fHxEELgwoULSEpKish9hjovgLnPTaVKlRRfE8eOHQMAVKxY0We71nN4yy23AAC++eYb1K1bF5cvX0bnzp3xv//9r7CcxDfffIN27dohISGh2MfgLS4uDoD03Kg5fvw4CgoK4HQ6g+6j5f2UnJyMK1eu4NVXX8Wrr76qeF9FLZFTlM8Bb/77lCpVyuc5P3r0aNhtVzofkRTs/oMdj9ZjOX78ONxut+L503JOtbZHFhcXhyFDhuCll17CtGnTcPnyZSxevBgjR44sfK2GsmDBAjRu3BinT5/GokWL8NZbb6Fv3774v//7P5/9kpKS0Lx5c033qZRPl5qaWvi5cscddwAAxo0bh4yMDFSpUkXT/QZTqVIl5OXlIT093Wf77bffjuHDh2Pz5s2Fnx3eJk6ciOeffx4vvPACHnvsMdX717ofAPz888/YuHEjhg0bFvR5CLVfOMekdd9wP5e1CKedY8eOxalTp7BlyxYkJiYCADp06IDKlStj4MCB6N+/Pzp27OhzP+G8dkKd04EDB+Lw4cN4/vnn8cYbbwAA2rRpg1GjRmHKlCmoVatWWJ9de/bsQd26dX1uy87ORqdOnYr8mlRS5GDTO+m2QoUKsNvtPompsgMHDgCQEmLD3VdN5cqV8fLLL+Pll1/Gvn37sHTpUowdOxaHDh3CV199pfg3kXjcYO25dOkSzp49W/jik23ZsgV33XUX2rVrh7Vr1+Ltt9/Go48+qnpfNWrUwEMPPVSkdhTHsWPHEBcX5xMkVa9eXbG8wYQJExRrlf35558+vwc7L4D5z03Tpk3x4Ycf4sqVKz4Xn19++QUAcO211/rsr3QOlTidTlx99dX45ptvkJaWhhYtWqB8+fLo0qULhg4dih9//BHr16/HxIkTI39QGlSsWBEOhwMul0t1H63vpwoVKsDhcKBfv36qz63/B51WRfkc8Pbnn3+iVq1ahb9fuXIFR48eLQzQi9L2cCbmxcfH+0y2kgULvoPdf7Dj0Xos8fHxsNlsAe9l+f7DEer8yh555BFMnjwZb7/9Ni5cuIArV67g4Ycf1vw4jRs3LpwUdPPNN6OgoADz5s3DRx99hPvuu69wv9WrV+Pmm2/WdJ+7d+9WnLzlrVWrVnjzzTexa9euiASbzZo1U6xRKX8GK5WOmzhxYuHn8T//+U/V+9a6nywrKwsAQn7ehtovnGPSum+4n8tahNPOLVu2oEmTJgHXNLk80a+//hoQbPoL9trRcu7HjBmD4cOHIy8vD8nJyahTpw6GDBmCxMRE3HDDDRBCaP7sqlmzZsBEvIYNGwIo2mtSleY+0L+olbVo06aNqF69us+wX0FBgWjatGlAzqbWfV955RUBQGzbti1ku3r06CGqVKkSdB+tjxvuMPqCBQsUh7h+++03UbVqVXH77beLS5cuie7du4vKlSuLEydOaLrfSNA6jN61a1dx/fXXR/Sx1c6LENY4N/Jwg/+Ek9tuuy2gxIYQ4Z3DoUOHisqVK4vrr7/ep7RFamqquPXWWwUAsWHDBp+/8R9GD/b+UHuf+t+Hms6dO4sKFSoELV+j9f10yy23iOuuu05xaNJbuMPoSrR8DoTKKXzvvfcKt2lte7ByP2rP06RJk4TdbvdJabh48aKoX7++6jC60v1rPR6tx6J3zqb3+ZXdf//94qqrrhK1a9cWPXr0CPkYQqhPEDp27JioUKGCaNy4sU9eW3GH0f3169dP2O32oHnN/oJ95qxYsUIAEC+88ILP9hkzZggAYs2aNT7bn332WQGELkukdT/ZhQsXRMWKFUWrVq2KvV84x6R133A/l2WROvc333yzqFKlik+uuhBCzJkzRwAonLgXjNprR+u597d3716RkpLik8Ou9f0eTLivyWAiFmzKM1NvvPFGsWTJEvH555+L9PT0oLPRQ+0rX2SGDBki1q1bJ3Jzc8WJEyfE9ddfL6ZNmyaWLVsmvvvuOzFt2jQRHx8v7r///qBtD/dxtQab+/btE4DvLLjdu3cLp9Mp2rdvX3gx3r59u3A4HD4zjPXy5ZdfiiVLlhTmRPbs2VMsWbJELFmyJGDCT0FBgUhJSREjR46MaBuUzosQ1jo3Xbt2FRUqVBBz5swRq1atEoMGDRKA7yQHIcI/hx9//HFhjtnq1asLtz/44IMCgKhQoUJAbVL/QFHp/SFP0CpusCnPRq9Xr17hsX/44Yeib9++AbPRQ72ftm7dKipUqCBatWol5s+fL7Kzs8XSpUvFjBkzxM0331y4XzjBZnE+B/xnS3/99ddi5syZIikpKeDDWWvbgwWDas/Trl27ROnSpUWnTp3EF198IT7++GPRsWNHUbdu3SIFm6GOR+uxfP3118Jut4ubbrpJfPrpp+Kjjz4SLVu2FLVr1w4r2NRyfmU//vhj4fvhm2++CfkYQqgHm0IIMXXqVNXANlyDBg0STz75pFi0aJH47rvvxEcffSR69+4tAIjRo0cX7vfdd98Jh8MhJk6cGHAfWj9zunXrJuLi4sRzzz0nVq5cKSZNmiTi4+PFXXfd5XN/06dPFwDEbbfdVljhwPsn3P28LVy4UAAQc+bMCXpetO6n9ZjC2Vfr57IQkT/3n3/+ubDZbKJ169Zi0aJF4ttvvxUvvPCCSEpKEk2aNPF5fWt97YRzTn/55RcxYcIEsXz5crFy5Uoxffp0UblyZdGiRQufAFjr+z2UcJ6/YCIWbAohxJo1a0Tnzp1FYmKiSEhIEK1btxbLli1TvB+t+44bN07UrFlT2O12AUB89dVX4uGHHxbNmjUT5cqVEwkJCaJhw4Zi/Pjxmgpqa3nccINNIYRo3769uOOOO4QQUqLyVVddJf72t78FzAQbNGiQiIuL071QfZ06dRST55UCjW+//VYAEJs2bYp4O7zPixDWOzenT58WTzzxhKhevbooU6aMaNasmeIMwXDP4fHjx4XdbheJiYk+E1vk3h+lEkpKgaL/+yM7O1sIUfxgUwghtm3bJnr27CkqVaokypQpI1JTU8WAAQN8kta1vo93794tBg4cKGrVqiVKly4tqlSpItq2bSuef/75wn3CCTYvXLhQ5M8B+dxs2rRJdOvWTSQlJYnk5GTRt29fxSLYWtoe7HNRCPXn6csvvxTNmzcXCQkJol69emL27NlBJwgFCza1HI+WYxFCiKVLl4pmzZoVPu+TJ09WbFckzq8sLS1NNG7cOOT9y4IFm+fPnxepqamiQYMGQScdavH222+L9u3bi8qVK4tSpUqJ8uXLi44dOwYEsvLrVKnnTOtnzrlz58SYMWNE7dq1RalSpURqaqoYN25cwESRjh07qt6f93OkdT9vXbt2FYmJiT6VRYqzn9ZjCmdfrZ/LQkT+3AshxKpVq8Stt94qqlevLhISEsTVV18tnnzySXHkyBGf/bS+dsI5p7///rvo0KGDqFixoihTpoyoX7++eOaZZ8SZM2cC9tX6fg8mnPMSjE2IcNccIiUff/wxevfujb179/rkKVlBv379sGvXLl3WVrXyeQmHnueQImvChAmYOHEiDh8+XOQ8bYqsn3/+Gddddx1ee+01DB061OjmEFGEGb9YdYy499570bJlS0yaNMnopoTljz/+wKJFizBlyhRd7t+q5yUcep9Dolj1xx9/YNWqVRg8eDBq1KiBAQMGGN0kItIBg80IsdlsmDt3LmrWrAm32210czTbt28fZs+eXbgkYKRZ9byEQ+9zSBSrnnvuOXTt2hVnzpzBkiVLfJbgI6LYwWF0IiIiItINezaJiIiISDcMNomIiIhINww2iYiIiEg3RV6uktS53W4cOHAAycnJYS1fR0RERMYRQuD06dOoWbNmeMsxUlAMNnVw4MAB1K5d2+hmEBERURHk5+fD6XQa3YyYwWBTB8nJyQCkF2u5cuUMbg0RERFpcerUKdSuXbvwOk6RwWBTB/LQebly5RhsEhERWQxT4CKLCQlEREREpBsGm0RERESkGwabRERERKQbBptEREREpBsGm0RERESkGwabRERERKQbBptEREREpBsGm0RERESkGwabRERERKQbBptEREREpBsGm0RERESkGwabRERUJC4XkJ0t/UtEpIbBJhERhS0rC6hTB+jcWfo3K8voFhGRWTHYJCKisLhcwODBgNst/e52A0OGsIeTiJQx2CQiorDk5XkCTVlBAbBzpzHtISJzY7BJRERhadAAsPtdPRwOoH59Y9pDRObGYJOIiMLidAJz5kgBJiD9+9Zb0nYiIn+ljG4AERFZT2YmkJ4uDZ3Xr89Ak4jUMdgkIqIicToZZBJRaBxGJyKisLHGJhFpxWCTiIjCwhqbRBQOBptERKQZa2wSUbgYbBIRkWassUlE4WKwSUREmjVoANhsvtscDiAxkTmcRKSMwSYREWm2YoXv7zYb8MADQOvWzOEkImU2IYQwuhGx5tSpU0hJScHJkydRrlw5o5tDRBQRLpcUTHoPo9vtgBDSj8zhAPbsYVkksh5ev/XBnk0iItJEKV/T7fYNNAHmcBKRLxZ1JyKioFwuKdBMSpJ6MrX0bHKddCKSsWeTiIhUedfUbN0a6NdPCjBlbjfQvz/XSffHovdEHszZ1AFzPogoFijlaDoc0jC5N5sN+PFH4OxZrpMOSAG6XIvUbgfmzJHWkifz4/VbH+zZJCIiRWo1Nf0JIU0I6tSJgSaL3hMFYrBJRESKGjTwHTIHAn8nXyx6TxSIHxtERKTI6ZSGgL3zMSdPDizqbrcDbdpEv31mpBSgc8IUlXQMNomINCipEz4yM6Uh8uxs6d/Ro4EpUzwBlcMhBaQlffhcphSgc8IUlXScIKQDJhgTxRZO+PDwPxdTpgCjRhndKvNxuaShc06YshZev/XBYFMHfLESxQ61GdklcYUcngtlch3SBg2k3+X/l+RzYlW8fuuDRd2JiIIINuEj1oMJlwtYt076f9u2JftcqPHu6ZVzWYVgDziRN+Zs+pk0aRJatmyJ5ORkVK1aFT169MDvv/9udLOIyCAldcJHVhaQmgr07i39pKYCGzcqz05PTDSmjUbzL3PkvZISSx4ReTDY9LN69Wo8+uijWL9+PVauXIkrV67g1ltvxdmzZ41uGhEZoCRO+JCDKO8kKyGAp54CWrb03dftllYWysqKbhvNQKmn11tBAZCTE732EJkVczZDOHz4MKpWrYrVq1ejQ4cOmv6GOR9EsUee8JGYCJw548nJ887Xi5UANDtbWp4yHCUxd1Mph9WfzQbMncvhdKvg9Vsf7NkM4eTJkwCAihUrqu5z8eJFnDp1yueHiGKL0wn88YfUi9e5sxRkDBjgWTe8Tp3Y6d1TSh0IpSQWLnc6pbXivfnXIBWCw+lEDDaDEEJg5MiRuOmmm3Dttdeq7jdp0iSkpKQU/tSuXTuKrSSiaFBahvDdd2NzWUI5dSCcgLMk5LH6c7mA994LvV9JDMSJvDHYDOKxxx7Dzz//jA8//DDofuPGjcPJkycLf/Lz86PUQiKKllD5eUBsBRWZmcDevcAbb4TetyTksSqZNSvwNSFEYO9mSQzEibyx9JGKxx9/HEuXLsX3338PZ4hP0Li4OMTFxUWpZURkBHloOVjAGUtBhZyLetddQOnSwKBBnglDNpvUi9usGVC5srRUZSwHmkp5uS4X8NJLgfs6HMCkScC4cdKXj5IaiBN5Y8+mHyEEHnvsMXzyySdYtWoV6tata3STiMgEnE5pXXDvZRozMjyz1O124O9/Bw4eNK6NkZKV5ZuLCgD79gGLF0s9nYMHS8PsQ4cCffoAK1YY2149+Z+LrCwp0Fy82He2vmzECGlJT+8lPjk5iEo6zkb3M3ToUHzwwQf4/PPP0bBhw8LtKSkpSEhI0HQfnM1GFHvUlml0uYCHHvINuO67D1iyxLi2FofSDGu7HZg9Gzh7Vip/5H/VsNuB9esDyyJZndK5sNmkH6UebrtdSj1gL6Z18fqtDwabfmz+yTZ/mT9/PgYMGKDpPvhiJYotwZZpPHgQaNUq8G+efhp4/vmoNTFiilL2CIjNFXPCORfycHksHX9JxOu3PjiM7kcIofijNdAkotgTbJnGNWuU/+bFF605M70oZY+A2JqNLwvnXHi/PlwuKVCNpXNBVBwMNomIQgi2ZGX79sp/I4Q1Z6bLZY9UBnmCiqXZ+EDg6lF2u/p5ketpTpsWm7VXiYqDwSYRUQjBlqysUUP5b+x2685Mz8wEXnst/L+Lpdn4ssxMz2SfvXulXF01BQXAmDGxWXuVqDgYbBIRaeAddHjPMM7LU95/5EhrTxTp1i1076bNVjLWjHc6gU6dpH9btFDfz24PnDwVa729REXBYJOISCPvoEOmNsQ+bFhUmxZxTqe0pnewgFMI4MMPS1aJn6Qk5e02G9C3b+D2WOztJQoXg00iomJQyuubPDk2evgyMz31NR94IPB2h0Mq6O4fgMticaLMmTPK24UA/vMf322x3NtLFA6uIEREpIHLBaxbJ/2/bVvpX3lVmcxM4NgxT77emDFAhQqBPX1KK9GYndMJ9Owp/TRrBowdKx1jqEDKvy6p1csiyc9dUlLolaRkOTmxV3uUqChYZ1MHrNNFFFuysnyXawSkYVMhPAXe/Yud+xf4jpXgy+WSchDr11cPNIPVJbVKkC1zuaQ10GfM8Dx3/foB778v5WPKrwMlixdLQTpZB6/f+uAwOhFREC5XYKAJeH6XezL9b3e7pZ4t+T7kQFO+zaqzlJXyVv0Fq0tqJVlZQGoqMH2673P3/vvSc5udbc3C/UTRxmCTiCiIvDz1niuZ2pDqqlWe+zB78BXJ/MqNGwO3WW2ijPwFQem5LyiQemn/+AN45hn1+2jTRrfmEVkKg00ioiAaNNBWAkjJ3LlS0BKsKLwZZGVFrhC5yyXldfqz2qQppS8I3nr3Bh56SDkYtdmAefOsdbxEemKwSUQUhJYSQABw//2B2+Tey2BF4Y0W6SF+tSAtWH1KMwq1VKVab/f48dIMfivm4xLphcEmEVEImZnAwoXqt8v1Jv15917KReEXLwY++ABIT9elqWGL9BC/UpBmxdWU/L8gaFm+0+GQejvN8CWCyEwYbBIRadC2bXg9XUq9lytWAH36SEOwZlk3O9JD/EprqwshHbvVeK8a9eOPwZ9/M/VWE5kNg00iIg38e7pkagHIhx/6DqWadUa6HkP86emBwaYZjrUo5Nn3LVuqr4tus0mz0zl0TqSMRd2JiDTKzASqVQO+/BJo1QpISwMSE4HWrQNrSvrPRA42XG10b1hmphQghqqfGYx3wXozH2txjBolHcNbb/luFwI4e9aYNhFZAXs2iYg0GjAA6NYNeOMN4MEHgXfekXq8tPQMmn1Gupb6mWr8Z7Nv3GjuYy2OZ54JzN+024FDh6zZc0sUDQw2iYg0yM0F3n3Xd9u770rbvXP79uxRHk4184x0LdTqcCqlB4wbJw05W/VYg5GrE3hPHBLCk4c7erTnHMXi2vBERcFgk4hIgzVrlLevXSv9q6VnUEtQakbB6nCqDZm3aGHNY9XCu7IA4Lua1PTp0qpDAwZErnYpkdVxbXQdcG1VotizfLk0hO5vwwZpKD1WhVrnPJbWQQ/X4sVSj6YWJeWcWB2v3/pgzyYR6SKWhhCzsoDu3QO3Z2R4As1YOl5voepwWj09IFrMtjwpUTQx2CSiiPMfdp0+3bqBmH9OIiDl6S1bJk0QAiK73KPZaJnYZNX0gOKQX8tair0DsTNBiqgoGGwSUUQpTRgZPdq6gZhSz54QwPnzUnCVm2vO+pmRorXnsjiz2a1G/nIhD6H7B5wOh9Trzd5eIglzNnXAnA8qybKzpcBSjdlz17zrRarlJNps0o/bLfX6Ka0Fnp0tBV+xwuXy1OEEfM9RrPJ/Lcjb/F8Pdru0nGlamlRvU65V6n3OYvk8xRJev/XBnk0iiiilYVdvZs5dUxoO9+/Zk4/NuyfTXywOmco9lytWaE8ZsHIeq1pqhFJPt9sNVKki5e969+6WpN5eomDYs6kDfjOiki4rSxpKLigIvM2sPZtaZl3v3CkV71aagSz3cMpDprGQt6ill1ft+czK8qQX2O1SwG6VcxLsOAFt50CpV5TMj9dvfbBnk4giTp4wMmqU73abzby5a1pmXXfqBLRtqzxhZv36ok+QMWMPoFLPXqhzJDPrOvBahVpuM1QOayxPGCMqCgabRKSbGTN8f7fbpTW4zSic5SRHjvTsKwcb/kOoWpktMHG5pPqRSsHiN98E7u9wBC7VqDUoNatQr4Vgs++tHmgT6YHBJhHpwmoBRzg9VtOnS7+PGlW8Uj9mC0y8Z1krPXeTJgX+TUGBZ6lGOVA2+zrwoSi9FiZPll7T8nOjlo9ptdc9UTQw2CQiXSgFHHY7kJhoTHu0UOuxUuvtmzmzeI9npsBEqZ6oN7vdsyyjEu9AORYKvXu/FiZNAsaM0db7bPVAm0gPDDaJSBf+AQcgBSStWxs/VByMf49VqN6+4gSGZgpMlAJfmcMBDBoUvMoA4Hs+YqHQu9MpPRdjx2rvfY6FQJso0hhsEpFuMjOBnBzfotdGDxWHI1Rvn1JgqDbZR2m7mQITtZ7oIUOk43/rLfXzIPM/H7FQ+qcovc+xEGgTRRKDTSLS1e7dgcOvBQVSEGq2Gdj+QvX2KeV0pqZKw621awPTpnm2q00CMktgIge+3gGnENI2teFzuz1wopSVA0slRU0HiYVAmyhSWGdTB6zTRSTxrrXozX8FHrPWYAy2WkybNoF1FVNTAwOzp5+Wcv601KY0mtoxBLN4sVTQPJZXyVF6HZv5dUtFx+u3PtizSUS6UBuClofUzTIDOxilYe45c4CePQMDq3XrlIO0F180zySgUPLywgs0HQ4p6PbuwTNjzVA9mPl1S2Q2DDaJSBdqQ9B33aU8rG7G4Aso/jC3EL45q4B5ZyerDRnL22y24MPmZqsZqlWwADlY3q6ZX7dEZsJgk4h00aBBYJAFAF98YZ4Z2FrIyw6GGiZu21Z5u8MBTJlijklAoaj15O7dKwVj+/Z5/h8rxcxDBcjB8nZtNvO+bonMhMEmEenC6QSefDJwu9vtuwKPvG3Fiui1zVuwXq1we+pGjfINsO12KbAcPdock4C0UOrJ9Z7sYpVi5lqG87UEyEq9vTKlL1NEFIjBJhHpZtgw5V7MXr18h9KFMKYXLFgwGU5Pnf/KQkOGSBNn9u71BJZWmp1clLaaqWao1i8JagGyd6UEpVn6Mrebw+hEWjDYJCLdqNWRPHNGPW8zWhNMQgWTWnvq/O9HCGDevMDZ6rEuWM3QaE4aCudLglqOau/evoFqZiawfr11cm+JzIbBJhHpSmlYVu0iv3Jl9CaYhAomtfbUmW342EhKz3W0Jw2F83woBchCeL4IeQeqLVsCc+daI/eWyGxYZ1MHrNNFFCg3F1izBmjfXrpwZ2VJF/KCAvW/0bMepVINTf/H826jHFz451tquZ+SSu3c5ORIvdsNGkT+HBXl+XC5pGD00CGpV9NfdraUVuC9byzXFQ2XPIlOj+cz2nj91gd7NolIdwMGAK1aSROGWrWSfpeXsgy23raePYRalorUUvYo3CUnY6EOpdZjUOtlbN1av57OoiwBKueotm0bujfbSrm30WDVclcUXezZ1AG/GRF55OZKAaa/ZcuAHTuUZ6zLotFDGKmeKi33470SjVVXoAnnGJR6Gf3p9RwX9XnV0ptNkljs1ef1Wx8MNnXAFyuRx4wZwQNKNbF2oVdb+nL9eimtwGhahkKLElx4B292u3Lg6T1MbQYcKtcmO1vq0fTXqxfw0kvWPHe8fuuDw+hEpKv27bXv63AA06ZZox5lMErDzEpDym63NKRs9NBjcUsFBUt18E5FWL/ePOWRginOUHkspElopVaDdPFiDqmTLwabRKSrli2BjIzQ+82cKQUlo0Z5ermys6VheCtdvP0DN7n2ptqF2eiVdopbKkhLsCgHby1bhp9PaTaRXATA6lasCCxhJjP6dU3mwmCTiHT3zjvA66+r3+5wAPfd5zsLXL5ot2plnYu3UuA2erTUWxusOLiRpZKKWyoo3GCxuGvNGylSiwDEAvl4gyXildQSYBSIOZs6YM4HUSC1iUIAMHWqFJQBwSeVmH3ygVoOm90urSYESBOjHn3U9yJt5HEVp1RQsJxG7xxQwPqlcUKdJ7Xn3mz5qMUlP6+//QYMHRp8X7O/X5Xw+q2PUkY3gIhKht271W/zniCj1NMmk3tK9Kq7WdyASB5mVsrNnDVLmizldksr0dhsUsBp9FCy3FvpPwM7VKmgYLd7z1iXV90Rwroz8IHgPcBOp/Jzb8Z81OLwfl6VyK9rt9v41zWZC4fRichQdrvvBVkttxHQ7+IdqVw7pxOYMiVwu93uCTQBT+C1eLE5hpIjObSttHyn0oo8VhMqXzUSKQZmlpsLDBqkHmg6HNIKS3v3WjNFgvTFYJOIoqJt28C1pQFPcCZPuvC/aMv0unhHOtdu1CgpLUAOTBwOYORI5V6xKlWUj8eIGc3FLVYut3nduuB1Na2axxepRQCsKCtLqpoQLOnuww+l42XRe1LCnE0dMOeDSNmAAcC773p+v+8+4LbblIuEy3mBiYnA2bP61TxUy7VbvBjo2bPo9+ud1whoz4u0YuF3/zZ792b6s2Ien7eSVoNTS2F+ANiwwRz1YouL1299MNjUAV+sRIHUJli43eqTZaKx5rLaxTTSgd706cCYMb75bLGwzrpasXrANz812HGbTSyt9V1cal/GlPaLhYlQvH7rg8PoRBQVs2YpDyX7f92Vh1mjVbNQrSRRJPMLs7I8gabNBkyapBxwFaVoutHUitUvXCgFIPv2WSuPr6TVygzG5ZKex1BibSIURR57NnXAb0ZEvlwuIDU1MLBUGnJ1OICcHClHLJo9fIsXA717B24vbo9NOL2VsdKzafY2e/Mv0WTlY4mkUDPPZVZJ9dCK1299mLZn891338UXX3xR+PtTTz2F8uXLo23bttgrF6wjIkuYNUs5h2/kSGkGq/+kizNntPfwRWoyTdu2+iylGO2i6dFmxTbL/Hsx1XrfzdyzrAf/SXPBjB0bO4Em6ce0PZsNGzbEG2+8gc6dOyMnJwddunTByy+/jOXLl6NUqVL45JNPjG6iKn4zIvII1qu5d68nN9N70oXW3rJIT6bJygqsN1ncC6leRdPNxmptDpVrKot2DrEZaM3TBGKv55fXb32YtmczPz8f9f/qUvjss89w3333YfDgwZg0aRLWrFljcOuISKu8POVezfvu8/xfqVzKyJG+5YP8e8v0WB5Qj9I1Ren5s2L5GKu1WS3XdORI5eeqJOVyBqt1668k9vxS+EwbbCYlJeHo0aMAgK+//hq33HILACA+Ph7nz583smlEFAa1C9fixcoXbfmiPn269PuoUcqBn16TafQImmK1/qKVqRVpHzYs8LkqaeueO51S0K0FJweRFqYNNrt27YqHHnoIDz30EHbs2IE777wTALB161akpaXp+tjff/89unXrhpo1a8Jms+Gzzz7T9fGIYplakXYg8KLtcvmuUuJ2Ay+9BBw8GPi3oVZ0MSNzJi2VTMF6nJ1O6XWUl+cZOi9puZwdO6rfJi/OYKX8XDKWaYPN1157DW3atMHhw4fx8ccfo1KlSgCATZs2oW/fvro+9tmzZ3Hddddh9uzZuj4OUUkh9+zNmBF4m/dFe926wIBMCODGGwN7QK00MaUkDcFaiVqPs//ztWmT9b7YFNc33yhvf+ghqZwVe+kpHKadILRv3z44nU7Y/d7hQgjk5+cjNTU1Ku2w2Wz49NNP0aNHD81/wwRjImWhJsuolR/y38//Ps08McXqpYFKGrXna9IkYNy4yE4eM7Phw6XZ+f5GjFD+0hgreP3Wh2l7NuvWrYsjR44EbD927Bjq1q1rQIuIqLicTmktdLWJP2rrpwPBywWZdWKKyyUF0CVtCNbK1IbM09JiN+9WqXzYX9MkAug8sEgxqpTRDVCj1uF65swZxMfHR7k1wV28eBEXL14s/P3UqVMGtoZKGjmnLClJqk9ptrIs3uViVqwIvpKO0ynV3Rw0SLlUkpWGLYMVxY71IVgrk3OB/Z+33r2l12YsBZmAcvkwQNrmLyMjNtY/p+gz3TD6yL+mwM2aNQuDBg1C2bJlC28rKCjAjz/+CIfDgbVr10alPVqG0SdMmICJEycGbGc3POlNKaAx04oe/hcypdWClIaTc3OBVq18t9lsUq6YmQJpNWrrrQMlYwjW6rzrrXqLtfQHtZQBt9v3fWqzAUuXAnfdFf02RhuH0fVhup7Nn376CYDUs/nLL7+gTJkyhbeVKVMG1113HUaNGmVU8xSNGzeuMEgGpBdr7dq1DWwRlQRqq3zIM7zT0429KCqVi/EnDyf7t/PMmcB9hVDe14yUhmIBYOZMqb6oFY6hJMvMBJKTA/OH1V6vVqWWMuBPCGnkhKioTBdsZmdnAwAefPBBzJo1yxLfLOLi4hAXF2d0M6iEUQtoAHNcFIO1T+Y/nCwPuZ89K/Wm+PeCWmXoWWko1uFgoGkl8vKl/s9h/fqxs5JQgwaB7zMlVnrvkTmZdoLQ/PnzCwNNl8uF/fv3R+2xz5w5gy1btmDLli0AgN27d2PLli3Yt29f1NpAFMq336rfZoaLQ6hVSPwnB3mXm+nWLTDQDKesUaTWSy8qK5VlImVqz+GKFSWvjNXkyXztUjEJkyooKBATJ04U5cqVE3a7XdjtdpGSkiKeffZZUVBQoOtjZ2dnCwABPxkZGZr+/uTJkwKAOHnypK7tpJIrP18Iu13OgPT9sdmEmDfP6BZK5s1Tb+fixZ798vOldivtZ7cLsWFD0R7Tbjf2XOTnC5GdLf1L1uT9HCq97xwO6z6/q1Ypv+f8f7KzjW5p9PD6rQ/TDaPLnn76aWRlZWHy5Mlo164dhBBYu3YtJkyYgAsXLuCFF17Q7bE7deqkOhueyAzWrVMfohYCaNYsuu1Rk5kpteXGG317Ku12oE0bz++zZqkP5bnd0rC6FmrLChqVvyqvRkPW5f0cZmerl7EyOj+6KMP6ajPvvZlhlISsz7TD6O+++y7mzZuHRx55BM2aNcN1112HoUOHYu7cuXjnnXeMbh6RYbKygD59gu+jtOKOUVq2BPr3993mdkvDkYB0oQxWJDqci11JXFaQoseMS6SGuzqVd4qJnCoQLN3lgQf4hYmKz7TB5rFjx9CoUaOA7Y0aNcKxY8cMaBGR8eSeu1Ad70L4rjluJJcLWLAgcPvgwerrTsvCzXU0YzBAscNsubhqPflq73v/wHT0aKnXf+9eafGBN94IfP+8/745PkfI2kwbbKqtTT579mxcd911BrSIyHhaZnjLzNKjpzZE7nZL7VMKEO126eIX7kotZgsGKPaoraduhHB68pUC0+nTgdRUaZShZ0+gYUOODJA+TFfUXbZ69WrceeedSE1NRZs2bWCz2bBu3Trk5+fjyy+/RPv27Y1uoioWhSW9KBVhVitd4nAAH3wglXAxsudFrbi53S71qDidvkW0I1H03OzrpRNFglpRdqXC89nZUo+mEvm9CGi/v1jF67c+TNuz2bFjR+zYsQP33HMPTpw4gWPHjuHee+/F77//bupAk0hP/j13gBRo2mxAx46eHkI56b93b2PLswTriZ0zx3MBi3RvkZnXSydrMrqclpJwevKDlSJzu6URCI4MkF5M27NpZfxmRHrLzQVat9Y+pG5U74RSz4vdDqxfr22NZSOKZ8dKwW6KHKX1w8203KjWnnyl5W1l3iMNJXlkgNdvfZi2ZxMATpw4gZdeegkPPfQQBg0ahJkzZ+LkyZNGN4vIcGfOaA80AWl4OidHv/aoUeopmTNHW6AZ7izbSDDiMcncwp2EYwStPfmZmcCHHyrfJudQh3N/RFqZNtjcuHEjrrrqKsycORPHjh3DkSNHMGPGDFx11VXYvHmz0c0jMlSo1XmU9O5tTPBUlCHy3NzwL/DFHea0QlBB0Rdr5bTk3Ex/rNpAejJtsDlixAjcfffd2LNnDz755BN8+umn2L17N+666y4MHz7c6OYRGUopdzOUaJRDUgv4wukpycqS6oSGc4GPRI9krAUVFBmxVE7L5QLGjFG+jfU0SU+mDTY3btyIMWPGoFQpzyJHpUqVwlNPPYWNGzca2DIic/DuMXz6aW1/o2fwFImAL1gdUbtd+QIfqR7JWAoqKHJiadJMsJW6WE+T9GTaYLNcuXLYt29fwPb8/HwkJycb0CIi83E6pWCoYkXl220239/1Cp4iFfAFm72udpGMVI9kLAUVFFlKqSBmmp2upS2hVupiLz7pybTBZu/evZGZmYlFixYhPz8fLpcLCxcuxEMPPYS+ffsa3TwiU5B7E598Uvn2G26ITvAUqYAvWC6qEMr3F8keSTMV7CZz8U4FMdNEMq1tCbUgBHvxSU+mLX106dIljB49Gm+++SauXLkCAChdujQeeeQRTJ48GXFxcQa3UB1LJ1A0BCuY7m3ZMiApSd8yJuEUlw7Fu8C7t2D3F+mi8ERqIvlaj2Zbgn1e8D3jweu3PkzZs1lQUICcnByMHz8ex48fx5YtW/DTTz/h2LFjmDlzpqkDTaJo0bp05c6d+pcxieQQtNy7OGqUp8cy1P1lZkqlnWbMkP7lRZP0YqaJZOG0Rek9Om0ae/EpOkzbsxkfH4/t27ejbt26RjclbPxmRNEQTs/mXXdFr02RLAZdlGLVZiy6TbHD7D2boRZNKMkF27Xg9VsfpuzZBICmTZti165dRjeDyLS0lj86fz467QEiXwxay/2xPiZFk5kmkil9Brjd0upiSrmb8upYDDQp2kwbbL7wwgsYNWoUli9fjoMHD+LUqVM+P0TkGXJevNjolhjHTMOaZC1FnVFupolkcgqJ9yQ5pS9cWVlAaqo0kSg11TOEzi9lFA2lQu9ijNtuuw0AcPfdd8PmVb9FCAGbzYYC/9kDRCWU0wlUrqx8m80GtGkT3fZEmzwb3X9YkzNrKZjipl44nebpHVRavlb+wiWvdT5okKd8mBDAU09J/2faCUWDaYPN7Oxso5tAZBlKARcgXUxl8hBagwbmuUhGgjyU6D8bPZaOkSJLLfUiPd2ar5tQX7jWrVOvU+t2S+fCqsdO1mDaYLNjx45GN4HIMvwDLnkw4K23gLlzgX79gPfei90JNJmZ0sWSEx/0E0tfVoKlXljx2Ir7hcvtllYXmjZN33ZSyWXa2ehWxtlsZBSXS8rf6t1bvScDMG72LFlTrM32N9OM8khSm2nuckl5mvxMCI3Xb32YdoIQEYVPzt8M9RWSE2hIq1ic7V+cGeVmWqbSn1r1BqdTGuFQW50L4GcC6YvBJlGMSUoKvY/d7snnMvPFk4wXq7P9izKj3EzLVIYrMxPYu9d3sQRvnFRHejJVsLl06VJcvnzZ6GYQWdqZM6H3EQJYscLaF0+KjkiuPW824dSFtWIPr/8XSadTysv0Dzo5qY70Zqpg85577sGJEycAAA6HA4cOHTK2QUQWpBQc+BNCunAOGmStiydFn5mKmBvJaj28wb5IegedZqgVSrHPVMFmlSpVsH79egCeeppEFB45OAgVcLrdgbmdZr54knHMVMTcKFbq4dXaCxvpFb+I1Jgq2Hz44YfRvXt3OBwO2Gw2VK9eHQ6HQ/GHiIrHbveUSJKZ9eJJxivpgYmVenit1gtLsc90pY9+++037Ny5E3fffTfmz5+P8uXLK+7XvXv36DYsDCydQEZSKuuiZOpUoGLFwNp8JbHXikgrtfJCZhKrpZ2igddvfZiuqHujRo3QqFEjjB8/Hj179kTZsmWNbhKRpSj1aigZO1bqqdmzx/wXT7KWWCoA789My1SqcTqlhRzefdez7YEHzN9uil2m69n0d/jwYfz++++w2Wy4+uqrUaVKFaObFBK/GZGRtPZsAuztoMiLtQLwVsSezaLj9VsfpsrZ9Hbu3DkMHDgQNWvWRIcOHdC+fXvUrFkTmZmZOHfunNHNIzIt/9wymdKEIeZxUSRZsTxQLGLOJpmNaYPNESNGYPXq1Vi6dClOnDiBEydO4PPPP8fq1avx5JNPGt08IlPznj28YYP07/r1gQGn3Q4kJhrSRIpBDHLMwUoz56lkMO0weuXKlfHRRx+hU6dOPtuzs7PRq1cvHD582JiGacBu+Nhl9Vy0rCzPhCBZqKFOqx8zRQ+Hb83D+73OyX/a8fqtD9P2bJ47dw7VqlUL2F61alUOo5MhvIskp6YCo0dbb3gwMxPIyfEteRRsqJMrDFE4rFQeKNaxNiqZiWl7Nrt06YJKlSphwYIFiI+PBwCcP38eGRkZOHbsGL755huDW6iO34xij9qkGytOgMjOloJHpe3eAwnspaKiskJ5ICIlvH7rw3Slj2SzZs3CbbfdBqfTieuuuw42mw1btmxBfHw8VqxYYXTzqIRRKyck9wqmp1vnoirnc/kHkf75XMHy76xyrGQMK5QHihVMcyErMO0w+rXXXou8vDxMmjQJzZs3R7NmzTB58mTk5eXhmmuuMbp5VMI0aKB+m9UmQBw8CNx3n2cCgdpQp1GTDFwuqZfVaikKRNHGNBeyCtMOo1sZu+FjU+/ewOLFgdttNmDfPmv0KgwY4FvoOT0dmDdPve3RnmTAGo1E2jDNRR+8fuvDtD2bRGYzapTy9n/+0xof7rm5voEmAKxYIfV0qonmJAPWaCTSjmWmyEoYbBJp1LIlkJERuL1u3ei3pSjWrFHevnZt8L9zOqWJQ3oH1Lx4EmnHWppkJQw2icLw/POB2wYPlnoNzZ5r2L698vZ27czRdl48ibRjmSmyEgabRGHIywvc5nYDN94o1d40c6K+Us9sRgbw88/mmGTAiydReFhLk6zCtBOE6tWrh9zcXFSqVMln+4kTJ/C3v/0Nu3btMqhloTHBOHap1dv0Z+ZE/dxcaei8XTugRo3QkwyiXVqFNRqJyCi8fuvDtD2be/bsQYH3mnp/uXjxIvbv329Ai4g8vW/+w73+zJxr2LIlMHy49G+oPEkjSqtEK0eUiIiiw3RF3ZcuXVr4/xUrViAlJaXw94KCAnz77bdIS0szoGVEksxMoFkzoHVr9R5Oq+QaBivwrjY73EoF7ImIyHimCzZ79OhR+P8MvwSz0qVLIy0tDS+99FKUW0Xkq2VLoF+/wFJCgLVyDeWeWv9amk6nlAcWzRWEuBIKUdHx/UNmZrpg0/3X1a1u3brYuHFjQM4mkRm4XMCCBcq3vfqq1PtnFZmZUnv98yS1LmsZCSzmTlR0fP+Q2ZkyZ/Py5ctIS0vD0aNHjW4KkaK8PEBtat3Qoeadka5GKU8yWrPDWcydqOj4/iErMGWwWbp0afz666+w2WxGN4VIUbC10oHY+cCPRmkVFnMnKjq+f8gKTBlsAkD//v2RZaWuISpxQn0XipUPfL1nh7OYO1HR8f1DVmC6nE3ZpUuXMG/ePKxcuRItWrRAYmKiz+0zZswwqGVEwYfRZfzA1ybYJCUiCo7vH7IC0wabv/76K/72t78BAHbs2OFzG4fXyWhKk2f8jRhhng98s89UVZukRESh8f1DZmfaYDM7O9voJhCpcjrVSx/JqlWLXnuCscpMVaeTF0miouL7h8zMtMtVWhmXu4p9WpatNMOSlUrtNEO7iIjMiNdvfZi2ZxMAcnNzsWTJEuzbtw+XLl3yue2TTz4xqFVEyjNA/elZAF2rYDNVGWwSEVE0mHY2+sKFC9GuXTts27YNn376KS5fvoxt27Zh1apVPktYEhlBaQaoPzNMENIyU9XlkkobWaVMk9XaS0RU0pk22HzxxRcxc+ZMLF++HGXKlMGsWbOwfft29OrVC6mpqUY3j0o4pYLn993nCezMMiM0VGH2rCxpmL1zZ2sUordae4mIyMQ5m4mJidi6dSvS0tJQuXJlZGdno2nTpti+fTs6d+6MgwcPGt1EVcz5KDlcLmlIeuNGYMwYacjaZgOmTAFGjza6dR5yO71nqlotn9Nq7SUi6+H1Wx+m7dmsWLEiTp8+DQCoVasWfv31VwDAiRMncO7cOSObRlTI6ZQCODnQBKT6m+PGmWuYV6kwu9VWHrFae4mISGLaYLN9+/ZYuXIlAKBXr14YNmwYBg0ahL59+6JLly4Gt47Iw6pBkNVWHrFae4mISGLaYHP27Nno06cPAGDcuHEYNWoU/ve//+Hee++NyjKWr7/+OurWrYv4+HjccMMNWLNmje6PGdLGjVKy2saNRrdEuxLQZlMEQUU4z6HyOXUXZpsNby9gvdez1doLsM3RYsU2k2WZtvRRxYoVC/9vt9vx1FNP4amnnorKYy9atAjDhw/H66+/jnbt2uGtt97C7bffjm3bthk6OcnW8hoAK4GWl0IulWgGy5cD3bo1g9RmoHp1wMhU29xcYM0a4MQJ4LvvgLg44OJF4OefgTNnpN5JIYDSuAYNMBP/u6kOjl+WAskKFYDbbgMaNZL2v3wZ6NZNyiFs0EB9uTiXC1i3Djh6VFsbc3Kk/ePjgXr1pG2lSwMPPigViV+zBrj6auDcOek+K1WS/r/seTvK/9EHD0/7DhjVAmvWAO3bAy1bBj6GvJpQUpL0GDk5wNmzQGKidB5cLuUALjcXWLZMalv9+kDbtr75n/IKRYD6akU+KxktWCBNK3/vPaBFC8X2nTnje5/p6VKOpn/+qfzceh9zUVZNUnpsn79VaXM0KR2rqgUL4MregbwXc9DglRZRCcyLvVrVX+fY9fpS5PVrofl+9FglK+Trwa/NRX1d+D9OUhKwe7d0m/f7rDjkz6LC+1ywALnZp/Gfh04DnYBbbpE+S3buBC5ckD7fWrb0/buyZYEdO6TPoPx86fNc3s/78wEAdu2SPk9btJB+Vq4ENm0CbrgB6NpVinEPHpQ+g3btkt7Xe/YA114rHe+hQ9Jn9JEj0v3J9yOfn6DPB5mPMLErV66IJUuWiGeffVY899xz4qOPPhKXL1/W/XFbtWolHn74YZ9tjRo1EmPHjtX09ydPnhQAxMmTJ4vfmD17hNi4UQAFAnAL6e3rFkCBEBs3SrebzZ49om3TU17tFb7tNqDNGRnCry2R+7HbhZg3T4j8fCGys6V/hZC22Wz6Pa7vefX+v+d1kpHhex7mzZPa69/+jAzPdvl4Qp0/m03az/s+bTbPMfvfj7Sf+6/b3GJe8nBpx6pVhdi0SYiNG8W8KUcC2hfsPpXalpHh2yalv1Gidm7mTTkivdc2bZLa6tfmaL6elY41wF+fGWLTJjEvebiw44rnnD+zW9f2FuW8+7dZVK0q5mGgb7unHNHncTXep/97XanNRX1dKD2O0vusuMfi/Vlks7lF21I/Knx2+D5227baPsOuuioan3Pqn72RFNHrNxWC0Q1Q88svv4h69eqJsmXLiuuvv15cf/31IjExUaSlpYmff/5Zt8e9ePGicDgc4pNPPvHZ/sQTT4gOHToo/s2FCxfEyZMnC3/y8/Mj92IFBHBO4YPALYBz0i8mswx3KH5wye2ujt1Rbc+GDfp/6DkcniBTCOn/wS4g0fzZsCH8NnkfT7DzZ7cHvxjJ96P02A5cFvmoVXgH+ahVGGAUt23+bfJ/fvwFOzeF7fS+Y/8HiAK1Y5Wf30J/3aB0PguPRQeKz3GI8+7fZqndTuV2q9xPsR43jGMJuG+lF1yYrwut78niHE9+vtp7VO0z2lo/xX2u/THY1IdpczYfeughXHPNNXC5XNi8eTM2b96M/Px8NGvWDIMHD9btcY8cOYKCggJU81vYulq1avjzzz8V/2bSpElISUkp/Kldu3bkGvT++wDKALD53WCTtr//fuQeK0K+7DIDge2V2fAnInh+NIhGuq3/hCAtKwxFy9q10r/htMn7eIKdPzn1INT9KE6iQinsRP3CO8izN4Ibjoi0zb9NoSZsBTs3BSiFnfaGvncs/1uqVNTeg2rHKj+/hd5/HyhVCnloEHA+C1AKO/85X5f2FWui3F9tBoA81Fdut8r96DFBL+jrQb5vrzYX9XWh9T1ZnOPJy1N7j6p9RluLFSZjEqL0lbwI4uPjxa+//hqw/ZdffhHx8fG6Pe7+/fsFALFu3Tqf7c8//7xo2LCh4t/o2rMphAjas2lCy5YF+9bsFtWrR7c97NkMv01R7dn8a0P+lz+H3csTlZ5NhxD5X/6sfOOmTfq8aBVo7tkUQohNm5R7Nu3uiPYCeSt2D+OmTdLrQKndQe7HsJ5NrzYX9XXBns3i/7Bn0xpM27PZsGFD/O9//wvYfujQIdTXcZpv5cqV4XA4AnoxDx06FNDbKYuLi0O5cuV8fiJJbNoOQPz1g8L/S9vN5667gLbNzsLTXpnU7mhPEmrZEsjI0O/+5QlBgGcZRXnmdKglLSND+P3f83tGhmcSif9sbpnDIe2nNstb7fzZbNL9zZ3r+VubTXkVpYCZ5LiCt2yPwIn9hX/grHZZsX1q96nWtowM3zZpmbUe7Ny89ZbUNgCehkTnifWhdqxqk4Sc2I85tofhwBUAf53zp/fpNqEiUtUCnPaDmIPBnnbbRdD70aNKQcjXg/99F/F1ofY4/nddnONxOqX3g82rI9OOArTFOgR+dvhq29b379RcdVXR2lZcZlmpjUIz7QpCX375JZ566ilMmDABrVu3BgCsX78ezz77LCZPnoybbrqpcN9IB3c33ngjbrjhBrz++uuF25o0aYLu3btj0qRJIf8+4isQuFxAy5aw/bkL0pD6JYjq9aTpf2Z9l7lcWN50LLqdeBv4a0isOg7gYL7NsDbn5kpDjseOAatXS7Mmz5/3mo1eUAABgdK4iAbVz+HQIeCYuxzsDgcqVCyF224DGjcGfvlFmo1+551AWpo0K3rFCmDwYGlIzG6XLiCZmdJTl5OjfTb6unXS/vHxng/w0qWloKJaNan99etL7T56FKiEozg7ZiK+sHdD+Sa1MPj4FOB//8Paxxei3Z3lVWej79wpzT73noWelCT97j3L2//8ffGFNEO0fn2gTRvf2ejyDHEgcLa4z2PnHEb9R9PhTCslnaSsLGlq61+vZ//2+d8nEDjrWH5u27XznY2u1g41So/tdKLwPYjatRXbHE1KxxrAq72ue5/Aznd+QP1jG+DcvFT39hblvBf+odc5dr2xDDv3lUH9Fa/B2bKGfo+r4T4DXg8qbS7q60LpPblnj3Sb9/usuMeSkwPg6FG0+XdXONNKIbfLWHz49nng9Gl0fv3vOJ9YBTt3SlU67rzTMxs9J0e6j4QEzzl2uYA///Ts5/35AEgzzAFp9vkNNwDffANs3gz87W/SzPdNm6S/T0uTjnXXLmDvXuCaa6TTefgwUKaM57NTvh/5/AT7rCoOriCkD9MGm3avb4i2v75ayU31/t1ms6GgoCCij71o0SL069cPb775Jtq0aYM5c+Zg7ty52Lp1K+rUqRPy73V5sV68KL3zbDZp9ODSJc+72qxKSJsNX0axGOc5K0s5SNZdEdtsWHsB672erdZegG2OFiu2OUoYbOrDtMHm6tWrNe/bsWPHiD/+66+/jqlTp+LgwYO49tprMXPmTHTo0EHT3/LFWrJkZ0u1kZW2d+oU9eZoZniQHCartZeIrIfXb32Ytqi7HgFkOIYOHYqhQ4ca2gayBnkFIf8gyOzLKAabxWvG4M1q7SUiIolpJwgRWYG88seUKZ4kf7sdmDTJXAGQy+WZvCQzxTKbYbBae4mISMJgk6iIsrKkYd3OnYExY4B77vH0cI4dK91uBt7trFPH0y5TrDUeBqu1l4iIJKbN2bQy5nzEPqX8QX9myCfUkueoxyxePVmtvURkHbx+68O0OZtEZqZl5Q8z5BNqyXOU62BahdXaS0RU0pl2GH3ChAnYu3ev0c0gUtSgQehix2bIJ2SeIxERGc20weayZctw1VVXoUuXLvjggw9w4cIFo5tEFJbJk43vgWOeIxERGc20weamTZuwefNmNGvWDCNGjECNGjXwyCOPIDc31+imESEvT6qFHIzCaquGyMyUcjSzs6V/o1YEPUxKM+aJSBu+f8jMTBtsAkCzZs0wc+ZM7N+/H2+//Tb279+Pdu3aoWnTppg1axZOnjxpdBOphFIanvY3c6Z5PvidTqnAvFl7NNVmzBNRaHz/kNmZOtiUud1uXLp0CRcvXoQQAhUrVsQbb7yB2rVrY9GiRUY3j0ogpxPo1y/4PvJEHArO5fIsQQlI/w4ZYp5AncjM+P4hKzB1sLlp0yY89thjqFGjBkaMGIHrr78e27dvx+rVq/Hbb79h/PjxeOKJJ4xuJpVALhewYEHwfWJlIo7ew3PBZswTUXB8/5AVmDbYbNasGVq3bo3du3cjKysL+fn5mDx5Mup7Xb379++Pw4cPG9hKKqlC5WzGykScaAzPccY8UdHx/UNWYNpgs2fPntizZw+++OIL9OjRAw55Oq2XKlWqwB2q2CGRDho0UN5uswFvvGHuiThKlHovozU8xxnzREXH9w9ZgSmDzcuXL2P+/PmcAESmplRnUwjg0UeBFSui356iUuu9jObwnFVmzBOZEd8/ZHamXEGodOnSuHjxImyhqmYTGWTdOvVhdLkHMD3d/L0Lar2X6eme4Tn/pS71Gp7jykBERcf3D5mZKXs2AeDxxx/HlClTcOXKFaObQuQjKwvo0yf4PlZJ0A+1nCWH54iIqLhsQoQqTW2Me+65B99++y2SkpLQtGlTJCYm+tz+ySefGNSy0E6dOoWUlBScPHkS5cqVM7o5FEEulzTUHCpV2OGQhrPMGJjl5gJr1gDt2wM1agQej3/bXS4p+KxfPzrH43JJQXCDBuY8f0RmwvdLZPH6rQ9TDqMDQPny5fH3v//d6GYQ+VDqCQSAhx8G5s6VegXN3AM4YADw7rue3zMypN7LIUPU2x7N4bmsLM+wvt0utY35Z0TK+H4hqzBtz6aV8ZtR7HK5gNq1fbfJPYFAdHsAw5WbC7RqFbh9wwaph9Potiv1Gpu5h5jISHy/6IPXb32YtmeTyIyeeSZwm3dPoJk/5NesUd6+di0wfLjxbQ+VP0pEHny/kJWYOtj86KOPsHjxYuzbtw+XLl3yuW3z5s0GtYpKqtxc3yFo2e7d0W9LUbRvr7y9XbvgfxetnLBoz34nsjK+X8hKTDsb/ZVXXsGDDz6IqlWr4qeffkKrVq1QqVIl7Nq1C7fffrvRzaMSaPp05e0vvmiNdYhbtpRyNL3deqs0hK4mGisIyTj7nUg7vl/ISkybs9moUSOMHz8effv2RXJyMv773/+iXr16+Pe//41jx45h9uzZRjdRFXM+Yo9Srqa37GygU6eoNadYcnOBl14CliwJPrHAqJywaM9+J7Iyvl8ii9dvfZi2Z3Pfvn1o27YtACAhIQGnT58GAPTr1w8ffvihkU2jEigvT/02qw1d1ajhCTQB9WUoo7mCkDenUwrceeEkCo3vF7IC0wab1atXx9GjRwEAderUwfr16wEAu3fvhkk7YymGyflR/qw4dKU1iFQ6ZqsF1mQMl0vq7bdCekks4/NAZmHaYLNz585YtmwZACAzMxMjRoxA165d0bt3b9xzzz0Gt45KGv/8KLsdGDXKmusQJyUFruuuFEQyJ4yKIpp5vqSOzwOZiWlzNt1uN9xuN0qVkibML168GD/88APq16+Phx9+GGXKlDG4heqY8xG7rJgf5T2bfMUK37XQAU8QqRY0W/GYyRis/WgOfB6KjtdvfZi29JHdbofdawyvV69e6NWrl4EtIoruajrF5XIBs2YBM2ZIFx25N9P766XdDuTkSDPV1VjpmMlYrP1oDnweyGxMG2wCwIkTJ7BhwwYcOnQIbr93Tv/+/Q1qFZH5ZWUBgwb5BpZKYxhuN3D2bPTaRbGNtR/Ngc8DmY1pg81ly5bhH//4B86ePYvk5GTYvJLMbDYbg00iFS6XNFSuJUGGFyCKJDnPd8gQqSeNeb7G4PNAZmPaCUJPPvkkBg4ciNOnT+PEiRM4fvx44c+xY8eMbh6RaSkNoXmTv7fJFyCAM1YpcjIzpdzA7GxrTqCLJd7lzYiMZNoJQomJifjll19Qr149o5sSNiYYk5GUJgcomToVqFjRM2FIrbg7EXlEa/nW4uAEoaLj9Vsfpu3ZTE9Px8aNG41uBpHl+JcsUjN2rJTXGaq4OxFJrFJOyKgFGYjUmDZn884778To0aOxbds2NG3aFKVLl/a5/e677zaoZUTWEKpnU+l2zlglNVbo0dOTnAvt/+UsPd1854MThMhsTDuMbldaruUvNpsNBQUFUWxNeNgNT0bSOoxut0uTiLw/ATjURkqysphukZ0t9Wgqbe/UKerNCSkrK3CCkPycyV8ckpKAM2dK7hcIJbx+68O0PZv+pY6ISJtQE4QAaZLQnDnS/zljlYKxUo+enqzWW5iZKT1H/gsyeH9xkJXULxAUPabN2SSioklKCr2PzSZdiDhzmEKJ5fy/cNYOt+LyrU6n1OsqtzE3NzDQBJivTfozVc/mK6+8gsGDByM+Ph6vvPJK0H2feOKJKLWKyDpcLmDNmtD7ud2e3EyuEETBWK1HT6uipAao9RZagdJCD96Yr016MlXOZt26dbFx40ZUqlQJdevWVd3PZrNh165dUWxZeJjzQUZQGh5Tw9xMCkew/D8ritXSQGqTuFwuIDU1+EIPsXD8kcDrtz5M1bO5e/duxf8TUXD+eXXeHA7ggQeA99+P7dzMkj5bWk9W7tFTEotrhwfrqV23LvSKYiNGWPfYyfyYs0kUA9QmBfXqJfVWvPNObOdmWqX+oZX55/9ZmZwa4M3KqQFqk7i05mDa7cCwYfq1j8hUPZveRo4cqbjdZrMhPj4e9evXR/fu3VGxYsUot4zIXFwu4PBhadKPf+/FkiXASy9J/4/V3EzOlqZwxdra4aF6atu2Vf58AKx/7GQNpg02f/rpJ2zevBkFBQVo2LAhhBDIy8uDw+FAo0aN8Prrr+PJJ5/EDz/8gCZNmhjdXCJDeA+dyWueexMCyMkBevaMftuiJRaHREl/xU0NMFPaRlJS8ElcTicwd67vMPvkyUDLlrGRFkHmZ9ph9O7du+OWW27BgQMHsGnTJmzevBn79+9H165d0bdvX+zfvx8dOnTAiBEjjG4qkSH8e/TMMNUvnFIykRJrQ6IUPUVNDTBT2kZWFtC6dWCg6d9bmZkJ7N0rvT/37gVGj46dtAgyP1PNRvdWq1YtrFy5MqDXcuvWrbj11luxf/9+bN68GbfeeiuOHDliUCuVcTYbRYPaiib+li0D7rpL//boscqM1t6jWJstTeZlppnsSm2x24H166VeS7W/MUuPrBnx+q0P0/Zsnjx5EocOHQrYfvjwYZw6dQoAUL58eVy6dCnaTSMyBaUePSXRKL5d3AkKSvc3erRUrkVL71FmppQuMGOG9C8DTdKLmYrcK7XF7QbOnlXe379Hdvr06I9EUMlk2mCze/fuGDhwID799FO4XC7s378fn376KTIzM9GjRw8AwIYNG3D11Vcb21Aig/ivaKKmfn39LyiRvADLF8Tp0z2pAaGCV3koceRI6V/ORie9mCltI5y2KH0hHD3aHKkAFPtMG2y+9dZb6NKlC/r06YM6deogNTUVffr0QZcuXfDmm28CABo1aoR58+YZ3FIi48jLTS5erHx7ixZA9+76X1AidQEOVi9ULXjVo1eVvT3kT35dAOZZtjKcJTTVyqMBXK6S9GfaYDMpKQlz587F0aNHC2emHz16FHPmzEFiYiIAoHnz5mjevLmxDSUykJx/pZZ5vWlT5IKwYCK1bnSwC6LNphy86tGryt4e8ub/ugDMU7dW/sIZqi2h0m5iZb17MifTThCyMiYYUzT4lz3S+k7OzpZmoerB5SreKjNKEx5kdrs0i9b/fiM1YcNMEz/IPGLpdTF6tJSeosSqxxRpvH7rw7R1NgEgNzcXS5Yswb59+wImAn3yyScGtYrIeEUte6R3bpla4XitM2DlHlKloXS3W7l2ZqQKdLNeJymJpdfFsGHSIg9KnxcPPGC94yHrMO0w+sKFC9GuXTts27YNn376KS5fvoxt27Zh1apVSElJMbp5RIYKNtysxm43Jrcs3KHpzEypdEs4OaBahxKDMdPEDzKPWHpdOJ3AlCnKt73/PnM2ST+mDTZffPFFzJw5E8uXL0eZMmUwa9YsbN++Hb169UJqaqrRzSMylNayR94WLox+bllRJ++0bBl+Dmhx1+6OVN4pxRYrvC7CmdSWlKS8nTmbpCfTBpt//PEH7rzzTgBAXFwczp49C5vNhhEjRmDOnDkGt47IeCNHei6AdrvycpUyhwNo0yY67fKmNgSZkxP6byPRWxkuIx6TzM/Mr4twRg6ysoBHH1W+zW739NayIgNFmmmDzYoVK+L06dMApNWEfv31VwDAiRMncO7cOSObRmQo7zqUbjcwapQ07Dx4sCfgtNk8/zeyJ0atB7ZXr8CLotIFrri9lUVhxGOS+ZnxdRHOyIG8r1p+95Qp0rGxIgPpwbTBZvv27bFy5UoAQK9evTBs2DAMGjQIffv2RZcuXQxuHZExlCYGvfQS0KqVFFDKFxIhpCBv8WJje2KC5YgNHuy5KEb6AseeGSoJwin7FSzPe+pU6UtrpGvWEslMOxt99uzZuHDhAgBg3LhxKF26NH744Qfce++9+Ne//mVw64iMoXTBUOupKCgAqlQxvifmhhuUt8uzy4HAC9zgwUByMtC2bfjt12ONdiJvZllfXB458C/LpDR5SWlf/3XUY2nmPZmLaXs2K1asiJo1awIA7HY7nnrqKSxduhQzZsxAhQoVDG4dkTHCmRhklhmzam2Wc8TU1nfu3Tv8Xk72zJDezDTMHM7kJaV958yRAk2XSxoF+e232Jl5T+Zi+qLuhw4dwqFDh+D2uxo1a9bMoBaFxqKwpCfvnjs1ZuvRGzAAePddz+82GzB3rtS+YIXcgfCKTWdnS0GA0na9CtlTyWHWAu/hLKbgv29WFjBokPoISUYG8M47EW+yafH6rQ/TBpubNm1CRkYGtm/fDv8m2mw2FBQUGNSy0PhiJb0tXiz1/KnZsMEzNGa03Fzgxht9L2b+qwEFW9kE0B4smjUYoNgQa19mQn3RA0re+4fXb32Ydhj9wQcfxNVXX41169Zh165d2L17d+HPrl27dHvcF154AW3btkXZsmVRvnx53R6HqDjatlUfTrfZgJ9/jm571GRlAa1bB/aauN2+5Y+GDVMv3WS3A4mJ2h7PbDUROVHJ+ryfw1gq8A5oWxyC9TcpEkwbbO7evRtTp07FjTfeiLS0NNSpU8fnRy+XLl1Cz5498cgjj+j2GETF5XQC48Yp3yaEOfIU/fMn/fXp48l3czqlYXU5SPTmdksBq9bcOLPURDRTbh8Vjf9zuGKFub7MFJdagXd/Gzfq2w6KfaYdRu/Rowf69euHv//974Y8/jvvvIPhw4fjxIkTYf8tu+EpGtSG9LxvN3JoL1T7gMAhOjmf7MwZ4O67fXtErTScx+F86wv2HALacyTNTMt7FChZr11ev/Vh2tJH8+bNQ0ZGBn799Vdce+21KF26tM/td999t0EtC3Tx4kVcvHix8PdTp04Z2BoqKZRKmcjMMLQXrH0y/7IqTqf0k50dOPRupRIsaiVkliwBeva0xjGUdOvWqZcBMltx96JSK4ektupXz57RbR/FDtMOo69btw4//PADJk6ciJ49e6JHjx6FP/fcc4/RzfMxadIkpKSkFP7Url3b6CZRCeCfnygzy9CeUv6kf16mWlB89mzgNpvN+ABaK7VyTyNHckjdCrKygL59A7eb4UtcJCm9R6dMUX7teqe9EIXLtMHmE088gX79+uHgwYNwu90+P+HORJ8wYQJsNlvQn43FSEoZN24cTp48WfiTn59f5PsiCod3fuKGDcbnKfrzz5/0zsu024FJkwKD4gEDgG7dAu8r2NrvZqP2RQBg7U+zU8s1ttvN8SUu0vzfo6NGSa9d/4BTXmyBr1sqCtMOox89ehQjRoxAtWrVin1fjz32GPr06RN0n7S0tCLff1xcHOLi4or890TFIQ89m5V3+zIzgePHgTFjpIvX2LFAxYqe4Dg317cepzd5xSEzH6u3zEwgPV0aOh850vc2K6UElDRqM7QXLgTatJGCMqNXDoo0/8+QzEzg0iVg6FDf/eQqEhxOp3CZNti89957kZ2djauuuqrY91W5cmVUrlw5Aq0iouJwuTyBJuDp5UtPly52a9ao/63aEKZZlg5U4nRKF+ZRo7QtKUjGU1sCcs8eaSi5pCyDevy48naWQaKiMG2wefXVV2PcuHH44Ycf0LRp04AJQk888YQuj7tv3z4cO3YM+/btQ0FBAbZs2QIAqF+/PpK01okgogDyknjB1l5u3175b9WGMK2wDro8pD5kiHSsZsmpJYn/lxWl52vy5OBfkmLRhQvK2w8fNvcXPDIn05Y+qlu3ruptNptNt8LuAwYMwLsK43jZ2dnopLGODEsnEPkKtsSmf1kV/6Ut09OBefMCL2pWKy8UzpKCFB3Bvqx4P195ebG1cpAWy5cr504DUv60EOb9glccvH7rw7TBppXxxUrkEWxJPLmXz/9ilZsLrF0rXegTE5V7UKy2dCB7g8wlVB1N7+fKal9sIiHUErKyWDsPvH7rw7Sz0YkoNqhNuLDZpMkGSr0iLVsCyclA9+7qK/DotXSgHktMcjUh81GrhTprVuBzZbZlUPXmcgEzZmjbl8tZkham6tkcOXIknnvuOSQmJmKk//RNPzO0vhMMwG9GRB4uF5CaGlikHfD0Qvr3+mntScrKCsyFLM6Qnh45oEXpFbNiL6jV2qz0vMhfXtSeq5KSCqF1ZSGAPZukjakmCP3000+4fPly4f/V2KxUcI+ohHM6pULRTz0VeNvGjcAffwQGePXqBZ9IJJPLC0UiAPCvrxipSSBqPWhqpY+sMOnJnxXbrDQRaMSIwKFj7+fK7GXGIkXL6l+yMWNKxjmh4jFVz2as4DcjokDPPAO88ILvNodDuqD5r4GekwO0bh3dHLnFi4HevQO3FzcHNJyeTSvmBlqxzd68eysBax9LJHmPGgRjs0mLNZj9y4VWvH7rgzmbRBQVXboEbisoUF4D/ezZ6ObIZWVJNRT9RSIH1D/fT23lJCB4L6hZqbU5J8eT+6pHHmykOJ2etc5LWm5mMPLKQkOGBN9PCK4sRKGxZ1MH/GZEFEgtR06IwJ5NeUbwunXAsWPSKkNt2+pz0VebLR+JHFBv06d7ajWqDTVbsZcw1PMqZz1ZqVROScnN1EJr/ubixbGxshCv3/pgzyYRRYXTCfTr57tNCKB//8CepBUrpACmd2/gkUekf/Waxa02W/7DD4seFMkF7Bcv9vTsKRUF9+8NsmLPmlKbvb9AeP/fKuvCe/d2+jNzL60elKo+EIWLPZs64DcjokAuF1C7duB2OUfz7Fn1vDnvfSPdyxfp3sSsLGDQIE+AZbMBTz6pXLNQLR/Uij1rcpsPHVLOffVm1lqooWiZCGW1WflaBFuUQbZhg1SyzOp4/dYHv68QUVSsW6e8Xc7RlHuS1Hoa5X0jnb8Yyd5EeUa791d4IYCXXlKuCXrokHIPWbCeNb0Ut8dObnPbtsF7wqy6LrxatQLv8xWr9VQzM4H16z0pEUpat5aOt6T1/JI2DDaJyFB2u2/wEWzYTq9ARZ4MkZ0t/VvU4XO1QFkIYORI30lCbre+6QHhiGSQ5B+822ye59MKaQFqQk3e0hKMWlnLltKsc+/n1ZvbLfXop6bGXrBNxcdgk4iiomxZ5e1ut5SjKfMPVmR6ByqR6E1UC5TtdmDYMCmQfeMNc+UxFiVICtV75R2879sH7N1b/EDeaKFWrLJiJYFweT+vCxcG3m6m1zWZC4NNItJdVhZw993qt/tflLwvahs2WCdQkQNl76DEZpO2OZ1SUD10qHK5J6OCknCDJK29oP4lhbwDeSsOtYZKt9Br+VSz0ZouAcResE1FxwlCOmCCMZFHsOUqvc2Y4SmdYvUJFi6XNOkJANq0UV+CU2ZkeaNoF5234mpD3oJN3or08qlm5z8Zzp/Zy3Yp4fVbHww2dcAXK5GH2so8SqxYk1ErtXqFZjhOrUGS2jGEml0uz9BOSor+ylDRZsVKAkUV6guUFYNtXr/1Yaq10YmoZPP+6huptcnNQmm9abtdmuVrdMkYrWvMKx1DqKFi755Mm009hSDSz3FxShAV529LyvrpgPqEuF69pAoMJeU8UGjM2SQiXbVtGzhz1WaTcjFnzAj+t9HI+YpU/mCo+1HK+Zszx/hAU6ZlglS4ZaL8Jx8pjaPpkddYnNn1sVq+SA9qeaoMNMkfg00i0pXTKZVMkS9Kdrv0e8uWwE03GVuTUUtgoSUY1RqgRKrEkpHCOQa1ni89SyEVpwRRrJcvijQrrnhFxmDOpg6Y80Hky+WSirrbbJ4JM0qrknivqa13zpeWyS5aV4yx2nrm0aJ2brxXjIr0OSpKXqk8bH74sHJ+sfffxuIKQcUVS3mqvH7rgzmbRKQrpYAtPV050Fy/HqhRIzoXrmAlf+TZ40q9XP45pKHup6TxD8bmzAmcfKRn6kC4eaX+r0//vFLvv7X6THq9lKQ8VSoaDqMTkW7UArZ16wIDNLdb6u2K1lKNkSrSrXQ/NhuwfXvJG35VSieIdupAOEO7Sq9PtRWPcnOlMj8cYicKH4NNItKNWsBmswVOGop2AexIFelWWvFICKl4e2pqyZlgEizfMdprvWsNcJVen263tDqO999mZUklm8xUjJ/IShhsEpFuNm4M3OZwSMsXerPZjJlYECwoCaeHLDNTykP0D6CF8ARcVlo1J1hb1W4z23KNWgJctS8Ubdp4/tY/iPZmt8feCkFEemCwSUS6cLmAsWMDt48dC4wZ49tLZLdLuZBGCBaUyMHo4sXABx8Eb+OZM8qlfQoKgFmzrFNOR2koXA4wp09XPw4rLteo5QuF2ox6IPSqWEQkYbBJRLpQu0g7HObqAQtlxQqgTx9plnKwQDEpSXm73S7VHbRCrp/SUPjgwVI6QOfOwOjR6sdh1TI4oYbclYJomRDmfd0SmQmDTSLShdpF+tlnjc/X1Cqcuotnzijfx333WSfXTy2HUa0Hz/84rFpHNFjvthxEK72Wzfq6JTIbBptEpAuliTPerNADppaHuGRJYMCpFFzb7cCoUdYZXt60Kbz9HQ4gMdE3hzPak4GixT/gNvPrlshsGGwSkW4yM4FXXw3cLgTw4Yfm7wFT650dOTJwSD3YcpShhpfNMHnI5ZJyabVyOIAHHpBmaVshF7Wo5N5t/xzjnBzzvm6JzIYrCOmAKxAQSZRWCQKstcJOVpanKLk/peNQW01FbbtZCoWrrbzTqxfw0UeeGpTyFUNOhfAvgG6V51WroqxIBHClIavi9Vsf7NkkIl2olYyx2601/CjnIc6YEXibUu6l2jCy0nYzrcWt1ou7eLH078MP++baysuKevM/H2bosS2uosyyV5rRT1SSMdgkIl2ozUZfuNDcw49KAZLTCfTsGfncSzPVpgyWY+t2S7eplQCS+S/taPWAS+6dnDxZe46xmb5AEJkFg00i0kWwgtlmFSxAUsrJHDGieI9nttqUwXpx5WF0f/I27yAsFgIu79fC2LFSwKklx9hMXyCIzILBJhHpwj84s9ulC7ZZh8+1BEhyMDZqlHS7XOS8qL12ZqxNGawXd9y4wP3tdmmo3TsIs3rApfRaGDvWN99WLUXAbF8giMyAwSYR6cLlAurVk2Y422zSBXvMGPMOp4YTIM2Y4clXlIPS3Nyi5SeasTalWhB8yy2B+xYUAFWq+AbIVg+4Qr0Wwu0BN/oLBJHROBtdB5zNRiWd2ix0wLwzll0uKXDwbrN3W+X8vcOHpdWE/MkztY2cUR5p/jPoQ50jb96z+OWAyyrnJNhxAtrOgVr1ATI3Xr/1wZ5NIoootVnoMrMOpwbrkfLuyerTRzl30b+n00r5iWr8Z9CH02tnxh5brYIdZ7BeT++h9Vgtbk9UFOzZ1AG/GVFJplaXUGbWnk2Zlt48m03qwSwokP5VCqxD1WG0Gu+6kUDJ6LVT6p1Uej3Y7cCgQVKA6t27nZ7OWptWw+u3PkoZ3QAiii1yvp7aELrZ89ecTt/2KfVkySsgVakiLdfYunXgsKpV8hO1MEvh+Wjzfy3I2+bM8aQIyPnIb73l2cftloJP+baSdM6IlHAYnYgiSmkIcto0aw6nAsqTXWw2ICFB6rnUshyllWktYxQLBdy1klME5IL3SoSwduknokhisElEEeefrzdqlHXz15SKnQsBdOsGDBgg/W7l/MRQtMzSj4UC7uFyOpVXUVJj1lxlomhgzqYOmPNBFHuWL5cCTH8bNki9m7FKyyz9YDO3YzlncfFi5coEgO868oD5c5VJwuu3PtizSUSkwY4dytvXrg3vfqw23BxqBrpaz+esWbHd2yk/f/6VCWw26QvI3Lmxm1pBFC72bOqA34yIYk9uLtCqVeB2uWfTe7a2WlBh5Yk2anUj1WZnA9rqcVqR9/MoB5tCBNYTZa1N6+H1Wx/s2SQi0qBlSyAjw3dbejpQo4a2nEWrrxeuVjdSqedz5EhrL1cZjMslzTSXj08IKeD0X7ITYK1NIhmDTSIijd55B1i2zFM/c8UKIDXVN/hQCyLNvl54cYb3/SdIDRtm7eUqg3n++cBJQfLzyqCSSBmDTSIijbKygO7dge++82xTmpFcUADk5PhuM/N64ZGYTe7di+d0AlOmeI43VnIWp0/3rafprXfv2MtLJYoU5mzqgDkfRLFHKTcxGKWcTDOuFx7Oeuda+ec0TpkCjB4dkeZGnZyLm5QUWLzfXyzlpZZUvH7rgz2bREQarFunHmjIy1d6UxpOT08HPvhAOb/PKJEe3vfPTRUCGDfOOrmp3rx7fFu1Cv1Fw0xpEURmwmCTiCiErCygTx/12/v3Bx56KHC7d/AhBy69e0v3tWKFPm0NV6SH982em6qVf9Cshd0ObN9uzcCaSE8MNomIgpBnHwdLOHr/fWnI3J8ctJl5JnqoOprhUgpeAWDjxqK30QhKQbM3ux247z7flaXcbmDoUKB2beZvEnljsElEFEReXuglCQsKlLcPGiQFbWbv7YvkcptOJzB5cuD2sWPNEVxrpRY0yxYuBJYskSaC+Rd2B6SebisdL5GeGGwSEQXRoIFyMOFNLSjp3NlzH2adiS6LZE3IFi0Ct5kpuNZC7vFVem4dDiAtTQrON25U/zLiX5GAqKRisElEFITTKS096B1wek8Icjik2db+AandDrRp47mPSA5VG0lLPU4rBNdaZGYCe/cCo0b5PncPPCDNTO/cWRo2J6LgWPpIByydQBR7XC5PT5UcRHovRThtmjRU7HarlzWy+vKF06YBY8ZIPXmhlts0Y5mn4pCfu8TE0CWQZPJSpmQdvH7rg8GmDvhiJSpZ/OtK/vOf0kozsSA3V1o16ddfgU8/9b0tVF1JqwfXSrKzPekRoYQKyMl8eP3WRymjG0BEZGVKdSVfeAFISbFuIXPZgAHAu++q3y6vlFS5sjR0rrRueqwEmbKkJPXbHnhAqkwgk6sOpKfH3nkgCgdzNomINFLKV1QrkWO12df+cnODB5qA1Ivbp0/xlrm0mjNn1G/74IPAbVabGEWkBwabREQaqK0frtbT5XZbO8hYtiz0PkKYs3ZopHl/yQhWL1ROo/BmxYlRRJHGYJOIKIRgRdl371b+G7vdukFGVlbRck5jsRfP+0tGaqo0QUqNXJkgFqoOEEUSczaJiEIoSlH2wYOtGWTIgXVRpo7GWi+eUj6uGrvdM+O+b9/YmxhFVBzs2fSyZ88eZGZmom7dukhISMBVV12F8ePH49KlS0Y3jYgMFKxuZN26gUOnNhvw9NPRa18khVqmUY0cbMVScFXUcxHJAvlEsYDBppfffvsNbrcbb731FrZu3YqZM2fizTffxD//+U+jm0ZEBvIvym63S0syrlgh1Vz07vFyOKQi8FYNNNQC68WLpTqbSivq2O3A+vWxV+JH6VzYbL7rocvcbqkXVM5Z1VL8nqikYJ3NEKZNm4Y33ngDu3bt0vw3rNNFFJv8i5oL4RtoykGX1Qt5KxVkT08H1q0Djh4F/vtfYN486XY58LZ6mSc1audiyRJg5MjA/UeNAho18gy/s9amtfD6rQ8GmyE888wz+Oqrr7AxyBTEixcv4uLFi4W/nzp1CrVr1+aLlSiGuFzSRJFQw6rZ2dIQqtV5r5izeDEwfbrnNpsN6NAB+P57basJWZ1ScXqXS5ow5H8FVfoSEqr4PZkHg019cBg9iD/++AOvvvoqHn744aD7TZo0CSkpKYU/tWvXjlILiShatOTvxdIEGadTqrV5442+gSYgBVKrV3sCqlguewQo52A6ncCTTwbu63YHBqCxOEufKBwlIticMGECbDZb0B//nssDBw7gtttuQ8+ePfHQQw8Fvf9x48bh5MmThT/5+fl6Hg4RGUApf89u92yLtTI306cDTz2lfVZ6SQyohg1Tfk34i6UvIURFUSKG0Y8cOYIjR44E3SctLQ3x8fEApEDz5ptvxo033oh33nkHdqVPjyDYDU8Um9Ty92KtzI3WlAFvJXWo2H9JT5stcAhdLolE5sfrtz5KRJ3NypUro3Llypr23b9/P26++WbccMMNmD9/ftiBJhHFJpcLqFdPWgv87Fnf4DLWAqxwS/7EWq+uVi4X8N57vtv8J4zl5Fh/whhRcTGS8nLgwAF06tQJtWvXxvTp03H48GH8+eef+PPPP41uGhEZyHsVmdatgT/+iO3ASillAAD+8Q+gY0ffbenpUo9mSey5CxWUu93SFxOikq5E9Gxq9fXXX2Pnzp3YuXMnnH5XkhKQbUBECtSWqkxPj92AU64rKqcM2O3SMox9+khBt7dvvjGmjWYgB+VqASdzNYkk7Nn0MmDAAAghFH+IqGQqylKVsSAzU+qxzM4G9u6V6keW1HOhxr/Yv80WuxPGiIqDPZtEREEo9V6VlB4rp9M3WCrJ50JNZqbvJDEg9iaMERUXezaJiILw770qyT1Wast2lsRz4c27Dqf8f4DLVRLJGGwSEYXgPaRcEifDeK/znZkJTJokDRm73dLynVlZRrfQXLwnlNWpw/NDVCLqbEYb63QRUazIyvJd53vyZM/68DK7XcrrLOk9nIByjdKSWoPUinj91gd7NomISJHSTPyxYwNXFXK7pXqSxElUREoYbBIRkSKlwCmcYu8lkVKN0pI+iYqIwSYRESlSC5z82WxAWhonxACcUEakhMEmEREpUgqcHnhACi699e8vrazECTGSkj6hjMgfJwjpgAnGRBRLXC4p5zAxUQoqvYfS7XYph9P7SsIJMWRVvH7rgz2bREQUlFw78swZ5RxO/y4LToghIm8MNomISBOlHE67PXBYnRNiiMgbg00iItJEzuH0DjiFkHI2OSGGiNRwbXQiItIsPd132FwI4P33pTqbZ89yTXAiCsRgk4iINMvLU87RPHvWsyY4EZE3DqMTEZFmLFpOROFisElERJqxaDkRhYvD6EREFJbMTCl3c+dO5mgSUWgMNomIKGxOJ4NMItKGw+hERFQkLhfXQyei0BhsEhFR2LKypHXQuR46EYXCYJOIiMLicgGDB3uWrnS7gSFD2MNJRMoYbBIRUVjy8gLXSOd66ESkhsEmERGFhbU2iSgcDDaJiCgsrLVJROFg6SMiIgoba20SkVYMNomIqEhYa5OItOAwOhERERHphsEmEREREemGwSYRERER6YbBJhERERHphsEmEREREemGwSYRERER6YbBJhERERHphsEmEREREemGwSYRERER6YbBJhERERHphsEmEREREemGa6PrQAgBADh16pTBLSEiIiKt5Ou2fB2nyGCwqYPTp08DAGrXrm1wS4iIiChcp0+fRkpKitHNiBk2wfA94txuNw4cOIDk5GTYbDajm2OoU6dOoXbt2sjPz0e5cuWMbk7M4nmODp5n/fEcRwfPszIhBE6fPo2aNWvCbmemYaSwZ1MHdrsdTqfT6GaYSrly5fiBFgU8z9HB86w/nuPo4HkOxB7NyGPYTkRERES6YbBJRERERLphsEm6iouLw/jx4xEXF2d0U2Iaz3N08Dzrj+c4OnieKZo4QYiIiIiIdMOeTSIiIiLSDYNNIiIiItINg00iIiIi0g2DTSIiIiLSDYNN0sWkSZPQsmVLJCcno2rVqujRowd+//13o5sV0yZNmgSbzYbhw4cb3ZSYs3//fjzwwAOoVKkSypYti+bNm2PTpk1GNyumXLlyBc888wzq1q2LhIQE1KtXD88++yzcbrfRTbO077//Ht26dUPNmjVhs9nw2Wef+dwuhMCECRNQs2ZNJCQkoFOnTti6dasxjaWYxWCTdLF69Wo8+uijWL9+PVauXIkrV67g1ltvxdmzZ41uWkzKzc3FnDlz0KxZM6ObEnOOHz+Odu3aoXTp0vi///s/bNu2DS+99BLKly9vdNNiypQpU/Dmm29i9uzZ2L59O6ZOnYpp06bh1VdfNbpplnb27Flcd911mD17tuLtU6dOxYwZMzB79mzk5uaievXq6Nq1K06fPh3lllIsY+kjiorDhw+jatWqWL16NTp06GB0c2LKmTNn8Le//Q2vv/46nn/+eTRv3hwvv/yy0c2KGWPHjsXatWuxZs0ao5sS0+666y5Uq1YNWVlZhdv+/ve/o2zZsnjvvfcMbFnssNls+PTTT9GjRw8AUq9mzZo1MXz4cIwZMwYAcPHiRVSrVg1TpkzBkCFDDGwtxRL2bFJUnDx5EgBQsWJFg1sSex599FHceeeduOWWW4xuSkxaunQpWrRogZ49e6Jq1aq4/vrrMXfuXKObFXNuuukmfPvtt9ixYwcA4L///S9++OEH3HHHHQa3LHbt3r0bf/75J2699dbCbXFxcejYsSPWrVtnYMso1pQyugEU+4QQGDlyJG666SZce+21RjcnpixcuBCbN29Gbm6u0U2JWbt27cIbb7yBkSNH4p///Cc2bNiAJ554AnFxcejfv7/RzYsZY8aMwcmTJ9GoUSM4HA4UFBTghRdeQN++fY1uWsz6888/AQDVqlXz2V6tWjXs3bvXiCZRjGKwSbp77LHH8PPPP+OHH34wuikxJT8/H8OGDcPXX3+N+Ph4o5sTs9xuN1q0aIEXX3wRAHD99ddj69ateOONNxhsRtCiRYvw/vvv44MPPsA111yDLVu2YPjw4ahZsyYyMjKMbl5Ms9lsPr8LIQK2ERUHg03S1eOPP46lS5fi+++/h9PpNLo5MWXTpk04dOgQbrjhhsJtBQUF+P777zF79mxcvHgRDofDwBbGhho1aqBJkyY+2xo3boyPP/7YoBbFptGjR2Ps2LHo06cPAKBp06bYu3cvJk2axGBTJ9WrVwcg9XDWqFGjcPuhQ4cCejuJioM5m6QLIQQee+wxfPLJJ1i1ahXq1q1rdJNiTpcuXfDLL79gy5YthT8tWrTAP/7xD2zZsoWBZoS0a9cuoGzXjh07UKdOHYNaFJvOnTsHu933kuRwOFj6SEd169ZF9erVsXLlysJtly5dwurVq9G2bVsDW0axhj2bpItHH30UH3zwAT7//HMkJycX5galpKQgISHB4NbFhuTk5IAc2MTERFSqVIm5sRE0YsQItG3bFi+++CJ69eqFDRs2YM6cOZgzZ47RTYsp3bp1wwsvvIDU1FRcc801+OmnnzBjxgwMHDjQ6KZZ2pkzZ7Bz587C33fv3o0tW7agYsWKSE1NxfDhw/Hiiy+iQYMGaNCgAV588UWULVsW999/v4GtppgjiHQAQPFn/vz5RjctpnXs2FEMGzbM6GbEnGXLlolrr71WxMXFiUaNGok5c+YY3aSYc+rUKTFs2DCRmpoq4uPjRb169cTTTz8tLl68aHTTLC07O1vxszgjI0MIIYTb7Rbjx48X1atXF3FxcaJDhw7il19+MbbRFHNYZ5OIiIiIdMOcTSIiIiLSDYNNIiIiItINg00iIiIi0g2DTSIiIiLSDYNNIiIiItINg00iIiIi0g2DTSIiIiLSDYNNIjK9PXv2wGazYcuWLUY3pdjWrl2Lpk2bonTp0ujRo4fRzSEi0h2DTSKiEAYMGBCxwHDkyJFo3rw5du/ejXfeeSci96nVO++8g/Lly0f1MYmIGGwSkW4uXbpkdBOKpaCgAG63O6L3+ccff6Bz585wOp2aAz+rn0ciKtkYbBJRxHTq1AmPPfYYRo4cicqVK6Nr164AgG3btuGOO+5AUlISqlWrhn79+uHIkSOFf/fVV1/hpptuQvny5VGpUiXcdddd+OOPP8J67LS0NDz33HO4//77kZSUhJo1a+LVV1/12WfGjBlo2rQpEhMTUbt2bQwdOhRnzpwpvF3u+Vu+fDmaNGmCuLg4PPjgg3j33Xfx+eefw2azwWaz4bvvvlNsw8WLF/HEE0+gatWqiI+Px0033YTc3FwAnlSAo0ePYuDAgbDZbKo9m2lpaXj++ecxYMAApKSkYNCgQQCAjz/+GNdccw3i4uKQlpaGl156yefvjh8/jv79+6NChQooW7Ysbr/9duTl5QEAvvvuOzz44IM4efJk4XFMmDABAPD666+jQYMGiI+PR7Vq1XDfffeFde6JiIIyenF2IoodHTt2FElJSWL06NHit99+E9u3bxcHDhwQlStXFuPGjRPbt28XmzdvFl27dhU333xz4d999NFH4uOPPxY7duwQP/30k+jWrZto2rSpKCgoEEIIsXv3bgFA/PTTT6qPXadOHZGcnCwmTZokfv/9d/HKK68Ih8Mhvv7668J9Zs6cKVatWiV27dolvv32W9GwYUPxyCOPFN4+f/58Ubp0adG2bVuxdu1a8dtvv4kTJ06IXr16idtuu00cPHhQHDx4UFy8eFGxDU888YSoWbOm+PLLL8XWrVtFRkaGqFChgjh69Ki4cuWKOHjwoChXrpx4+eWXxcGDB8W5c+dUj6VcuXJi2rRpIi8vT+Tl5YmNGzcKu90unn32WfH777+L+fPni4SEBDF//vzCv7v77rtF48aNxffffy+2bNki0tPTRf369cWlS5fExYsXxcsvvyzKlStXeBynT58Wubm5wuFwiA8++EDs2bNHbN68WcyaNUvL001EpAmDTSKKmI4dO4rmzZv7bPvXv/4lbr31Vp9t+fn5AoD4/fffFe/n0KFDAoD45ZdfhBDag83bbrvNZ1vv3r3F7bffrvo3ixcvFpUqVSr8ff78+QKA2LJli89+GRkZonv37qr3I4QQZ86cEaVLlxb/+c9/CrddunRJ1KxZU0ydOrVwW0pKik+AqHYsPXr08Nl2//33i65du/psGz16tGjSpIkQQogdO3YIAGLt2rWFtx85ckQkJCSIxYsXFx5fSkqKz318/PHHoly5cuLUqVNB20REVFQcRieiiGrRooXP75s2bUJ2djaSkpIKfxo1agQAhUPlf/zxB+6//37Uq1cP5cqVQ926dQEA+/btC+ux27RpE/D79u3bC3/Pzs5G165dUatWLSQnJ6N///44evQozp49W7hPmTJl0KxZs7AeVz6Gy5cvo127doXbSpcujVatWvm0QSv/87h9+3af+waAdu3aIS8vDwUFBdi+fTtKlSqFG2+8sfD2SpUqoWHDhkEfv2vXrqhTpw7q1auHfv364T//+Q/OnTsXdnuJiNQw2CSiiEpMTPT53e12o1u3btiyZYvPT15eHjp06AAA6NatG44ePYq5c+fixx9/xI8//gggMhNjbDYbAGDv3r244447cO211+Ljjz/Gpk2b8NprrwEALl++XLh/QkJC4d+EQwjh83je24tyf/7nUel+5Mf0/384j5+cnIzNmzfjww8/RI0aNfDvf/8b1113HU6cOBF2m4mIlDDYJCJd/e1vf8PWrVuRlpaG+vXr+/wkJibi6NGj2L59O5555hl06dIFjRs3xvHjx4v0WOvXrw/4Xe5F3bhxI65cuYKXXnoJrVu3xtVXX40DBw5out8yZcqgoKAg6D7169dHmTJl8MMPPxRuu3z5MjZu3IjGjRuHeSSBmjRp4nPfALBu3TpcffXVcDgcaNKkCa5cuVIYqAPA0aNHsWPHjsLHVzuOUqVK4ZZbbsHUqVPx888/Y8+ePVi1alWx20xEBDDYJCKdPfroozh27Bj69u2LDRs2YNeuXfj6668xcOBAFBQUoEKFCqhUqRLmzJmDnTt3YtWqVRg5cmSRHmvt2rWYOnUqduzYgddeew1LlizBsGHDAABXXXUVrly5gldffRW7du3Ce++9hzfffFPT/aalpeHnn3/G77//jiNHjvj0hMoSExPxyCOPYPTo0fjqq6+wbds2DBo0COfOnUNmZmaRjsfbk08+iW+//RbPPfccduzYgXfffRezZ8/GqFGjAAANGjRA9+7dMWjQIPzwww/473//iwceeAC1atVC9+7dC4/jzJkz+Pbbb3HkyBGcO3cOy5cvxyuvvIItW7Zg7969WLBgAdxuNxo2bFjsNhMRAeBsdCKKnI4dO4phw4YFbN+xY4e45557RPny5UVCQoJo1KiRGD58uHC73UIIIVauXCkaN24s4uLiRLNmzcR3330nAIhPP/1UCKF9gtDEiRNFr169RNmyZUW1atXEyy+/7LPPjBkzRI0aNURCQoJIT08XCxYsEADE8ePHhRDKE2iEkCYsde3aVSQlJQkAIjs7W7EN58+fF48//rioXLmyiIuLE+3atRMbNmzw2UfrBKGZM2cGbP/oo49EkyZNROnSpUVqaqqYNm2az+3Hjh0T/fr1EykpKYXHuGPHDp99Hn74YVGpUiUBQIwfP16sWbNGdOzYUVSoUEEkJCSIZs2aiUWLFgVtHxFROGxCqCT6EBFZSFpaGoYPH47hw4cb3RQiIvLCYXQiIiIi0g2DTSIiIiLSDYfRiYiIiEg37NkkIiIiIt0w2CQiIiIi3TDYJCIiIiLdMNgkIiIiIt0w2CQiIiIi3TDYJCIiIiLdMNgkIiIiIt0w2CQiIiIi3TDYJCIiIiLd/D8qj50/PvVXpQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHHCAYAAACyWSKnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDCUlEQVR4nO3dd3gU1foH8O/sAklIQujNJBRBEAXlCkhTRNToVWw/aSrSLnZFkOYtgpWmIIpepYjtioCAotcrogQUAQkgV0WUDllA6S1IINnz+2PuJFtmZmc2szszm+/nefaB7M7Onp0t8+4573mPJIQQICIiIkogHrsbQERERGQ1BjhERESUcBjgEBERUcJhgENEREQJhwEOERERJRwGOERERJRwGOAQERFRwmGAQ0RERAmHAQ4RERElHAY4RERElHAY4BAREVHCYYATQ6tWrcLYsWNx7NixuD/23LlzcdFFFyElJQWSJGHjxo0R7/P000+jRYsW8Pv9sW+gjpMnT2LkyJG47rrrUKtWLUiShLFjx6puO2vWLJx33nkoKCiIWXucclwAc8cGAE6dOoXHHnsM9evXR3JyMi699FJ88MEHQdvE4xgCwFtvvQVJkrBr1y4A+p+PsWPHQpIkHDp0KKZtsprW5y6az6NTxPp7LF6vtfI4TmmP8nlQLhUqVEC9evXQu3dvbN261bLHMfudocbI90hZLV++POh4BF7WrFkT1T4Z4MTQqlWr8NRTT8U9wDl48CD69u2L888/H59//jlWr16NCy64QPc++/btw8SJE/H000/D47H3bXH48GFMnz4dhYWFuPXWW3W37devH1JTUzFx4sSYtMVJxwUwd2wA4Pbbb8fbb7+NMWPG4D//+Q/atm2LPn364P333y/ZJtbHUHHjjTdi9erVqFevHgD7Ph+xovW5i+bz6CSJ9jo5zezZs7F69Wp8+eWXePjhh7F48WJ07twZR48etWT/Zr8z1Bj5HrHK888/j9WrVwddLr744qj2VcHitrnS6dOnUblyZbubYZktW7bg3LlzuPvuu9GlSxdD95k6dSqqVq2K22+/Pcati6xBgwY4evRoya+omTNnam5boUIF3HfffXjmmWcwatQoy19HJx0XwNyx+eyzz7B06VK8//776NOnDwCga9eu2L17N0aMGIFevXrB6/XG/BgqatWqhVq1asVk306g9bn7/vvvTX8enSDW34uJ9r0brYsvvhht2rQBAFx11VUoLi7GmDFj8NFHH2HAgAFl3r+Z7ww1Rr9HrNK0aVO0b9/ekn3Z/5M0zpTuxw0bNuCOO+5AtWrVcP755wMAVq5ciW7duiE9PR2VK1dGx44d8e9//1t1P5G2HTt2LEaMGAEAaNSoUUlX2/Lly3Hw4EHce++9yMrKQlJSEmrVqoVOnTrhyy+/jNj+SI/bv39/dO7cGQDQq1cvSJKEq666SnefZ8+exaxZs3DnnXcG9VLs378faWlp6N27d9D2n376KSpWrIi//e1vEdsbDeVYGXXXXXfhxIkTlneZah0XwB3HZtGiRUhLS0OPHj2Crh8wYAD27duH7777ruQ6o8dw06ZNkCQJ8+fPL7lu/fr1kCQJF110UdC2N998My677LKSvwOHqPQ+H4F+//139OnTBxkZGahTpw4GDhyI48ePG3r+v/zyC/r06YM6deogKSkJ2dnZuOeee1BYWFiyjdHP/NatW3HnnXeidu3aSEpKwoUXXohXX3215Hatz53e5zHa7wHlO+z777/H7bffjipVqiAjIwN33303Dh48aLrtgfsM/V7Ue5369++Phg0barbPyP4D5efnR3w+Rp4LAPz73//GpZdeiqSkJDRq1AgvvPCC7jFVE6k933zzDSRJwpw5c8Lu+84770CSJOTl5Zl+XCXY+f33303fV43Z79NQZr5HjL4+cSPKmTFjxggAokGDBmLUqFFi6dKl4qOPPhLLly8XFStWFJdddpmYO3eu+Oijj8R1110nJEkSH3zwQdA+jGybn58vHnnkEQFALFy4UKxevVqsXr1aHD9+XOTk5IhatWqJ6dOni+XLl4uPPvpIPPnkk2GPE8rI427btk28+uqrAoB4/vnnxerVq8WmTZt09/v1118LAOKzzz4Lu+2pp54SkiSJdevWCSGEyM3NFcnJyeKRRx4xfMzL4uDBgwKAGDNmjO52F154obj99tstfWy94yKE849N+/btRdu2bcOu/+mnnwQA8cYbbwRdb/QY1qtXT9x7770lf48fP16kpKQIAGLv3r1CCCHOnTsnqlSpIkaOHFmy3ezZswUAsXPnTt3PhxCln9NmzZqJJ598UixdulRMnjxZJCUliQEDBkRs48aNG0VaWppo2LCheP3118VXX30l3nvvPdGzZ09x4sQJIYSxz5MQQmzatElkZGSIli1binfeeUd88cUX4vHHHxcej0eMHTtWCKH9udP7PEb7PRD4HTZixAixZMkSMXnyZJGamipat24tzp49a6rtofsM/F7Ue5369esnGjRooNk+rTYH7t/M8zH6XL788kvh9XpF586dxcKFC8X8+fNF27ZtRXZ2dli7ynp8W7duLTp16hS2j7Zt26p+9gIpn4e8vLyg66dNmyYAiAULFgRd7/f7xblz5wxdtBj9Pg1k9HvE6OujJTc3VwAQtWvXFl6vV6Snp4vrrrtOfPPNN4bbGqrcBjhPPvlk0PXt27cXtWvXFidPniy5rqioSFx88cUiMzNT+P1+09tOmjSp5As9UFpamnjsscdMt93o4ypvlPnz5xva74QJEwQA8dtvv4XdVlBQIOrXry+6desm1q5dK9LT08WAAQOCjkcsGf1A3nXXXaJOnTpB1/n9fnH06FFRUFAQdP0ff/whjh49KoqKioKuP378eMnJTwj94yKE849N06ZNRU5OTtj1+/btKznhBlI7hmruvvtu0bhx45K/r7nmGjF48GBRrVo18fbbbwshhPj2228FAPHFF1+UbBcY4Aih/fkQovRzOnHixKDrH3zwQZGcnBzxGF999dWiatWq4sCBA5rbGP085eTkiMzMzJLgS/Hwww+L5ORkceTIESGE9udO6/povweUYzN06NCg6//1r38JAOK9994ruc5o27W+F4XQfp2iCXDU9m/0+Rh9LpdffrmoX7+++OOPP0q2OXHihKhevbqpAMfI8VXe099//33JdWvXrhUASj4LWpT7rlmzRpw7d06cPHlSfP7556Ju3briyiuvDAtUlPeRkYvaZ0qI6AIco98jRl8fLRs2bBBDhgwRixYtEl9//bV48803xYUXXii8Xq/4/PPPDbc3ULkbolL83//9X8n/CwoK8N133+GOO+5AWlpayfVerxd9+/aFz+fDr7/+anpbLe3atcNbb72FZ599FmvWrMG5c+citteKx9Wyb98+SJKEmjVrht1WuXJlPPvss/jqq6/QtWtX3HDDDZgxY4Zml6deJnzoxcqZJLVr18aBAwdQVFRUct3vv/+OatWq4cEHHwzadvz48ahWrVpY9/EFF1yAK664ouRvveMCuOPY6HVNh96mdgzVdOvWDTt27MDOnTtx5swZrFy5Etdffz26du2KpUuXAgC+/PJLJCUllQzPROvmm28O+rtVq1Y4c+YMDhw4oHmf06dPY8WKFejZs6dmzo/Rz9OZM2fw1Vdf4bbbbkPlypVRVFRUcvnzn/+MM2fORD3DI5rvgUB33XVX0N89e/ZEhQoVkJubCwBRtT3wezEW9Pav93yMPpeCggLk5eXh9ttvR3Jycsm+0tPT0b17d1NtjXR8AaBPnz6oXbt20DDMK6+8glq1aqFXr16GHqd9+/aoWLEi0tPTcf3116NatWr4+OOPUaFCcIrsZZddhry8PEOX+vXrm3qukUT6HjHzXgu8raioCEIIAEDr1q3x0ksv4dZbb8UVV1yBAQMGYNWqVahXrx5GjhwZVbvLbZKxMpMDAI4ePQohRNB1CuWNcvjwYdPbapk7dy6effZZzJw5E//4xz+QlpaG2267DRMnTkTdunVV72PF42r5448/ULFiRc1EMWXGhyRJeOutt3QTypo1a4YZM2YYetzs7GzzjdWQnJwMIQTOnDkTdMIqi0jHBXD2salRo4bqe+LIkSMAgOrVqwddb/QYXnPNNQDkIKZRo0Y4d+4crr76avz+++945plnSm7r1KkTUlJSyvwcAiUlJQGQXxstR48eRXFxMTIzM3W3MfJ5Sk9PR1FREV555RW88sorqvuKdjpxNN8DgUK3qVChQtBrfvjwYdNtVzseVtLbv97zMfpcjh49Cr/fr3r8jBxTo+1RJCUl4b777sOLL76ISZMm4dy5c5g3bx6GDRtW8l6N5J133sGFF16IkydPYu7cuXjjjTfQp08f/Oc//wnaLi0tDZdeeqmhfYYGR2Vh5HvE6Ouza9cuNGrUKOj63NxczTzRqlWr4qabbsLrr7+OP/74w/T3SbkNcAIj0mrVqsHj8WD//v1h2+3btw8ASn7Fm9lWS82aNfHSSy/hpZdewp49e7B48WKMHj0aBw4cwOeff656HyseV689Z8+eRUFBAVJTU4Nu27hxI2666SZ06tQJ3377Ld5880089NBDmvuqV68e/vKXv0TVjrI4cuQIkpKSgk7MdevWLfl1EGjs2LGqdSB+++23oL/1jgvg/GPTsmVLzJkzB0VFRUFfeD/++CMAhE29VDuGajIzM3HBBRfgyy+/RMOGDdGmTRtUrVoV3bp1w4MPPojvvvsOa9aswVNPPWX9kzKgevXq8Hq98Pl8mtsY/TxVq1atpFdH67UN/cI2KprvgUC//fYbzjvvvJK/i4qKcPjw4ZKgMJq2m0lGTU5ODkrYVugFfHr713s+Rp9LcnIyJEkK+ywr+zcj0vFVPPDAAxg/fjzefPNNnDlzBkVFRbj//vsNP86FF15YkljctWtXFBcXY+bMmfjwww9xxx13lGy3YsUKdO3a1dA+d+7cqZoAHg0j3yNGX5/09PSwnvNmzZrpPr7yHR5NonS5DXACpaam4vLLL8fChQvxwgsvlESJfr8f7733XskXutltjfzazM7OxsMPP4yvvvoK3377rSVtNKt58+YAgO3bt6NVq1Yl1//666/IyclBhw4d8PHHH6NHjx4YO3Ys7r77bmRkZET1WLGyY8cOtGjRwtJ9ah0XwB3H5rbbbsOMGTOwYMGCoO7yt99+G/Xr18fll18etL2ZY3jNNddg3rx5yMrKwo033ghA7s3Kzs7Gk08+iXPnzpX09Ggx8vmIRkpKCrp06YL58+fjueeeUw38jX6eJElC165d8f3336NVq1aoVKmSpW1VGP0eCPSvf/0raJbavHnzUFRUVPJruHLlypa0Xet1atiwIQ4cOIDff/8dderUASDPPFyyZElUj6P3fMw8l3bt2mHhwoWYNGlSyTDVyZMn8cknn1jWnkD16tVDjx498Nprr+Hs2bPo3r17mXpgJ06ciAULFuDJJ5/E7bffXjKDUxmiMsLKISoj3yNer9fw66MEc0YcPXoUn376KS699NKgIUfDosrccTElgezgwYNB1yszKi6//HIxf/588fHHH4ucnBzdWVSRtlWSwu677z6xatUqkZeXJ44dOyZat24tJk2aJD755BOxfPlyMWnSJJGcnCzuvPNO3babfVyjScZ79uwJm1Wzc+dOkZmZKa644gpx+vRpIYQQmzdvFl6vN2hmTKx89tlnYv78+eLNN98UAESPHj3E/Pnzxfz588OShouLi0VGRoYYNmyYpW1QOy5CuOvYXHvttaJatWpi+vTpYtmyZWLw4MFhiZJCmD+GCxYsKEloXLFiRcn1AwYMEABEtWrVRHFxcdB9QpOM1T4fSpK31uc0dB9alFlUjRs3Lnnuc+bMEX369AmbRRXp87Rp0yZRrVo10a5dOzF79myRm5srFi9eLCZPniy6du1asp2ZJOOyfA+EzvL54osvxJQpU0RaWpq45JJLRGFhoem2ax3vwPaHvk47duwQFStWFFdddZX497//LRYsWCC6dOkiGjVqpJlkrLZ/o8/H6HP54osvhMfjEZ07dxaLFi0SH374oWjbtq3IysqKahaV3vFVfPfddyWfhy+//DLiYwihPYtKCCEmTpwoAIh3333X0L4iMfKdsXz5cuH1esVTTz0Vdn8j3yNGXx8tffr0EaNGjRLz588Xubm5Yvr06aJZs2aiQoUKYunSpVE9bwY4Ab755htx9dVXi9TUVJGSkiLat28vPvnkE9X9GN32iSeeEPXr1xcej0cAEJ9//rm4//77RatWrUSVKlVESkqKaNasmRgzZkzYySnaxzUb4AghxBVXXCH+/Oc/CyHk7Pjzzz9f/OlPfwrLiB88eLBISkqKeIIpqwYNGhieIfDVV18JAGL9+vWWtyPwuAjhvmNz8uRJ8eijj4q6deuKSpUqiVatWok5c+aE7dPsMTx69KjweDwiNTU1aNqsMtNEbbq5WnAS+vnIzc0VQpQ9wBFCiJ9//ln06NFD1KhRQ1SqVElkZ2eL/v37izNnzpRsY/RzvHPnTjFw4EBx3nnniYoVK4patWqJjh07imeffbZkGzMBzpkzZ6L+HlCOzfr160X37t1FWlqaSE9PF3369BG///57VG3X+14UQvt1+uyzz8Sll14qUlJSROPGjcW0adN0Z1HpBThGno+R5yKEEIsXLxatWrUqed3Hjx+v2i4rjq+iYcOG4sILL4y4f4VegPPHH3+I7Oxs0bRp07DZntEw8p2hvE/VZlgZ/R4x+vqoGTdunLj00ktFRkaG8Hq9olatWuK2224Ta9eujfp5S0KoJClQuaN0P+7evTto3NkN+vbtix07dhju2jfDzcfFjFgeQ7LW2LFj8dRTT+HgwYNR592RtX744QdccsklePXVV8NmbZJ9yu00cQp2++23o23bthg3bpzdTTFl+/btmDt3LiZMmBCT/bv1uJgR62NIlKi2b9+OZcuW4d5770W9evXQv39/u5tEARjgEAA5Q33GjBmoX7++I1bNNmrPnj2YNm1ameutaHHrcTEj1seQKFE988wzuPbaa3Hq1CnMnz+fa2s5DIeoiIiIKOGwB4eIiIgSDgMcIiIiSjgMcIiIiCjhlKtKxn6/H/v27UN6enpUZZ+JiIgo/oQQOHnyJOrXr19S3TmSchXg7Nu3D1lZWXY3g4iIiKKQn5+vu5BuoHIV4KSnpwOQD1CVKlVsbg0REREZceLECWRlZZWcx40oVwGOMixVpUoVBjhEREQuYya9hEnGRERElHAY4BAREVHCYYBDRERECYcBDhERESUcBjhERESUcBjgEBERUcJhgENEREQJhwEOERERJRzXBDj//Oc/0apVq5IifR06dMB//vMfu5tFREREDuSaACczMxPjx4/HunXrsG7dOlx99dW45ZZbsGnTJrubRkRERA4jCSGE3Y2IVvXq1TFp0iQMGjTI0PYnTpxARkYGjh8/zqUaiIiIXCKa87cr16IqLi7G/PnzUVBQgA4dOmhuV1hYiMLCwpK/T5w4EY/mERFFxecDtm4FmjYFDC6YTEQaXDNEBQA//vgj0tLSkJSUhPvvvx+LFi1CixYtNLcfN24cMjIySi5ZWVlxbC0RkXGzZgENGgBXXy3/O2uW3S0icjdXDVGdPXsWe/bswbFjx7BgwQLMnDkTK1as0Axy1HpwsrKyOERFRI7i88lBjd9fep3XC+zaxZ4cIqAcDFFVqlQJTZo0AQC0adMGeXl5mDp1Kt544w3V7ZOSkpCUlBTPJhIRmbZ1a3BwAwDFxcC2bQxwiKLlqiGqUEKIoB4aIiI3atoU8IR8G3u9wP9+zxFRFFzTg/PXv/4VN9xwA7KysnDy5El88MEHWL58OT7//HO7m0ZEVCaZmcD06cB998k9N14v8MYb7L0hKgvXBDi///47+vbti/379yMjIwOtWrXC559/jmuvvdbuphERldmgQUBOjjws1aQJgxuisnJVknFZsQ4OERGR+0Rz/nZ1Dg4RERGRGgY4REQO4fMBubnyv0RUNgxwiIgcQKvQH4MeougwwCEispnPB9x7b2ktHL9fnlF1//2sbkwULQY4REQ20yr098Yb4UEPe3KIjGGAQ0RkM7VCf2qU6sZEFBkDHCIiGwTm1iiF/rxe/fuwujGRcQxwiIjiTC2heNAgeXHNefMASQq/T3mtbswka4oWAxwiojjSSihWenJ69ABmzCjtzZEk+fZdu+QgqDzRmllGZAQDHCKiONJbOVwxaBAwfryclyOEHPAsWRLfdtpNLxAkMoIBDhFRHEVaOdznk4epRo4s3yd3vUCQw1ZkBAMcIqI4GzasdAjK65V7a7ZuBV54QR6K6dVL7rkJVN5mUGkFgnl5HLYiY1yzmjgRkdvNmlU67CJJwPDhQO3awKhR4b0VoTyexJ5B5fPJQV7TpnIukjKz7L775OBOCQRHjiwN/pSerZyc8pd8TZGxB4eIKA5Cc0qEAKZMMRbcKNsnah6OVjKxMrMsN1f+9/ff2bNFxklChL5dElc0y60TEVkhN1c+gZeF1yuf6BOpt8Lnk4OawCBP7XmqbQfIPVu7dyfWMaFw0Zy/2YNDRBQHajklavVuFGqVjROxt8LIrDKt7QA5n4nBDalhgENEFAeh1YojLc2g5OkESsRKxpFmlSnS0tTv36ULZ1SROgY4RERxMmgQMG6cHLj4/eH5JGqUk3+iVjIODfy0nuepU+r3v/lmzqgidQxwiIjixOcDRo82FtgA8naBM4Z++SUxeypCk4nVKjavW6d+39AZVYl4fCg6DHCIiOJEK48EkHsu1HJylBO4EHKdnOzsxOypyMwErrpKvYdKCQwjScQcJYoeAxwiojhRyzfxeOTKxbt2Ba9BpZWjI0T566nQCwwDJWKOEkWPAQ4RUZyo5ZtMny4vsAkAjRsDq1fLQzV6PRblradCLTAMlag5ShQ91sEhIoozn08OZIQAOnaUC/gpRQA9HmDCBP0CgIlYDyeSWbNKqxorlOrGbdrIPTfl6XiUN9Gcv7lUAxHZLrRMf6ILDGiUvJvAZNlIwU157KkYNEhekmHbNiA1FSgoYFBD+hjgEJEtlKBm3Tp5OEbpvZg+PXgWjduDn9D2qy3ZEEoJfAJv83iADz4AOnRw53GwgrJGFZERzMEhorgLXHto5MjSk33oVF+tNYrcIrD92dnAiBHAqlXGFtacMEE9V4cnePn9weJ+FAlzcIgorrTWFAqUmysPPxhZoyh0307p7dFbOymwvo0aSQL27JH/v21bYg7FRPtaBa7IrtbjR4mJa1ERkeNFmvKrTPWNtEZR6K94p/X2aD1PZfhJb1aQEPLz1KsN42ZGXiu1XprQ4T0W9yM9DHCIKK4iTfkdN04+oeutURR6gpw0yXknPr3n6fcDf/+79n09nsSt52IkSFELgHw+uV6QkYU5iQAGOEQUZ0otGK2VtNu2Dd4udI0iIPwEqSQpB7L7xKe0Xy3I8XqBm27SDoCmT0+8XhuFkZ650Nd38GA50Hn88fD9sbgfaWGAQ0Rxl5OjnoMSerJSW6NI7QSp5GPo7csOgwYBu3cDw4eHB2pt2wJ9+wZv36ULkJ+f2DklkVYPV3t9hVAf7iuvU+bJGAY4RBR3W7eqXz90aPjJKjQPResEGTrryCknvsxMeQgtNFDz+YB33w3eduXKyPtz+wyiSKuHG6laDABTpmgvzEkEMMAhojjz+YCDB8OHqDweYMiQyPfXOkEOHx55RWq7BfZaRRqqUeO0ROpo6a0eHvr6qvF6gTvucEYAS87FaeJEFDeBU3wDK/gqQYpyolObQqxWMM8tU6jVpjbn5JibBq827TyRl2zw+YD584Fhw8Jvy8kBPv88/m0i+3CaOBE5lloF38CVtJXgRq2XQu26wKErJw/baM0aAvSHakJF0+MTb1a+DpmZcmFDtWT0L7905mtNzsIAh4jiQusEXatWcC+NWjAweLB7qx3rBSZ6QzWhIiXn2i0Wr0NmpvrMKacFduRMDHCIKC6MnKC1goHQgXTlBJeXFx783Huvs37dR3reRov5RUrOtVMsC/B16RJ+ndcrL7jp1F47cgYGOEQUF0ZO0EZn0Hi98iKd7duHBz9+PzB1qnXtLisrAxMzPT7xFKvhs/79ge7dg6/zeoG775Zfe6f22pEzMMAhorgK/JUfKjNTnu4dyW23AaNGaS/5MGWKs37ZK4HJvHnA++/LSbLRcuLyDbEYPsvLA95+O/z6mTPl6fVOqlpNzsQAh4jiQhnGUHpchFA/MV12WeR9LVyov56VE3M0liwBevcGevUqXV7CiiEWJyRYx2L47Jtv1K/Py3N+sjU5AwMcIrJEpBOt0WGMpk21l3FQBE4zV+Ok5FtAPUdl5MiyD7E4KcHa6uGzK65Qv75tW2cnW5NzMMAhojIzcqK1chgjtHJx4OrcTkq+VeitoG52iEUJJPPynLfAqFXDZz4fcOqUXMwv1KBB8hIXTky2JmepYHcDiMjdtGbQ5OQEn3SUYYz77pN7brROTFu3qq9T5fGUFsobNw4YMUI+ma5cCXTuDNSr59zCf0pwpxXkKD1ZkdodWjBQq0fMac9fj88HrFol/79jR+CDD0rzqzwe4JFHgFdeKd3e7wfeew9YvRooKHDm603OwACHiMpEb+gp9MQzaJAc+CiBCCD3RgRWLF63Tv1xlGEpZfXwTZtKk02V6sBOmVUUKjS4C2WkJ0stkIxmP04ya5Y8zV+rnr7fD7z6avj1xcVycHPVVTFtHrkch6iIqEzMDj0pwxhLloQPa/l8cvCiRTkR+v3yDBsnDc9EEpijMmmS+SEWrWEuJw/N6QlNOteilW+lFQgTKVwT4IwbNw5t27ZFeno6ateujVtvvRW//vqr3c0iKveimUGjNay1apX+7Cg9bphJowR30SwMqhVIrlnjvLo4RujlJQXyeIAnngi/fvRoZwe0ZD/XBDgrVqzAQw89hDVr1mDp0qUoKirCddddh4KCArubRlTumZ1BozWsFZgsbJbHI1e3dQuzCblagWTbtvr7MTuNPF7Tzo0WdZwwAbjmmvDr3RDQks2ESx04cEAAECtWrDB8n+PHjwsA4vjx4zFsGVFs5ecLsWyZ/K9b5ecL4fEIIQ9QyBevV76+X7/g6yWp9F/lPl6vvJ3XG7ytxyPEzJl2P7vYys8XIjfX2Os/c2bpMfN4hBg+XP9+odvH+lgGPl7ga6j8O3GivJ3e+4XKh2jO35IQkUZAnWnbtm1o2rQpfvzxR1x88cWG7hPNcutEThI6i8bJibWRqD2XnBw5Hyewd8fjkWfWdOgg/x04UyovD2jXLni/Hg+we7d7clFixecLP5aA3Es2Y0b4+0Zte69X7pGL5bH0+eQZUYD6a6yYNSt8Bp5b3/tkXjTnb1fOohJCYNiwYejcubNucFNYWIjCwsKSv0+cOBGP5hHFhNHp2G6mNnTl9wevOB648vgnn4Tvw++XT5g9esS2rXbz+eTjFTgDLZBWjotSQTr0fWNmNpyVMjPDXyu1xwudgZco73mKHdfk4AR6+OGH8cMPP2DOnDm6240bNw4ZGRkll6ysrDi1kMh6sVrQ0A4+n/oq4GlpxmZkKYUFn3kmPu11mmgLKyq0Kkg7vUJwZqbcnq1bmWBMkbkuwHnkkUewePFi5ObmIjNCCP/EE0/g+PHjJZf8/Pw4tZLIem44ARm1apX6KuC7dkWekRXakxVKkkqHOhKRVk9e6Ak/NCk5kNr7JhbrSUVDL8nZSUtTkPO5ZohKCIFHHnkEixYtwvLly9GoUaOI90lKSkJSUlIcWkcUe0YrAbvdoEFAq1alFYrbtg2+PdL04okT43NMIg0RxerxDh40X1hx6lRg8mT5fnrvm3gOA6kdv9C8rAkT5AVKt26Ve/fUArv0dKBRI3lph3i9FuQSMUp4ttwDDzwgMjIyxPLly8X+/ftLLqdPnza8D86iokQQOovGjbOq8vNLZ0cFzpbKz488k0dtRk3gJTc39u23c7aRJIUfOyMziszMvoo1teMX6XUNfc5ql/Iwi668iub87ZoAB4DqZfbs2Yb3wQCHEk28T7RWMnqSUzt5z5wZPkU8XlOH9doYi2BT7fEkqfT5e73GX3cnBMNax2/u3MgBjJELp48npmjO367JwRFyMBZ26d+/v91NI4o7nw+YNy88UdfpyxUEGjRIns6dmyv/O2hQ5ERqJT8jJ0fO1xk+PP5LFWi1cerU2OSHqD2eEMCcOeYqGDslf6WsRR4jbePWxHuynmvr4ESDdXAoEQTmKajJzS1dhDDeeSJlpVeLZckS9RpAPl98pw5rtdHvD06ctqqGjBX1afT2AcTvPaKsHN6nj3pbPvhAXiVei8cjL02xaxfQq5f6OlbxqN1D8RfN+ds1PThEFHkGUeDsGKf8YjcjdCaPxwOMGyf/X2vmkNklD6xuo9cLDB0afrK1qifBitlN8e51UqO8H5XARK3nbfhwOUlcuU2SghfaFAL44Qe5bs6MGeEzxBI18Z6iwx4cIhfJzZVPRlqUKrVqFYGd+stWrZfphReAUaNKe2uGDZOvCxXYWxVvgT1HQOyPd1l6quLd6xT4uMoMqPbttStUhz6e8lxTU8PvF9jGwO0KClgAMJGxB4cowakVwgukVKlVW5XbibkJar1MPl9pcAPI/06ZEvxLHrC/BlBgz1E8asiUpacq3r1OQPBre/nlkStUh7b3qqvkqd9672Nlu0gLjlL5xACHyCVmzQo/UYSe9AHthE27A4JQWgXrtIKzxx+3vwidHrMrqsdbaPuGDIndeyS0UrVWrkykx0qk4pYUfwxwiFxAOWEYGVD2euVu/1j2KOhVmzXKzGwar1c+ITs5gADinw9kVrx6naZOVX+vmp3x5pTqyuROzMEhcoF58+TkzEhCVxgva96G2uwaq1Y0jzRjiitHx4fVs9C0VjFXZkCZyZUJzOFhjk103DaTUgtzcIjKuUcflUvXKz0r0fYoaM3AMroOkhF6v86dPtyTSKzuddJaSmPYMHO5MoHvwfbtge3b3X2CtoMbZ1JaiT04RC7g8wHZ2caGqIDS2VRW96xs3ao+i2vyZHnqbjQnoHjXsYmFRPmVbIVY1+1Rm3HFYx/OitfBSdiDQ5SgMjOD6354vcAdd2hvL4Scs+Pzmc+X0asmrJb0Cci/zqP9heikvJVocovK+6/kUGq1jMaPt6ZuT+gMLx57bUaPYUKzdLEIh+NaVOR2gQsmLlsWeV2e++9XX6tKb02iSOtBaa0DVZZ1gJywRlI063oZXTurPJo4sXSBTLPrpKkdV49HiLVr9bfhsS+VaMcnoRfbtAIDHEokkVZfVluB2esVYtKkyCfywCBGbTHH/HwhJk9Wf0y91bzVAhknLBga7clAK8iMx4rmTqYVoMyda/wEqxZIB74/eOxLaf1AiPQ5dhMGOBEwwCG3C/0i69fP/GrLRk/kgb1FWm0xExSUZfVwq4Uex2hPlvFovxN6t8zS6100E8SuXau/cnsi9VAYEfheUP4f6QdLpM+xWzDAiYABDrlZaIAQ+MUWbXBT1l+9Rn8hap2M5s6N/69wqwOtWP5KdkLvVjQi9S4aPbaRAs9E6qGIJPC9IEnhvbOJHuQxwImAAQ65lVaXv5mgxuuV8yKs/tVr5Bei1olq3jz9X+hW91zoBTJlOVnG4ley23so9HK1jAaxa9eq3zc0FycReij0GBmOjtcPBLtEc/7mLCoiF1CbEeH3qy/VEMjrlYur5eYCq1cDbdrIM1qsrAxrZBaUVsl9rYrLS5bEZnaM3sySstTeicVMMLfPglGO57x50S+3cOqU+vUFBfK/yhRxN5cYMEKrtpAaLmURIIYBl+OwB4fcSusX3B13BPc69OsX/PfEifIw0H33Bc9omTQp/r969XpIAn+Fx7Lnwk29IrFoq135PNH2jkXqcXPj8J1Rofk2RnpwPB75M5+IOEQVAQMccrOJE9XH29eulYODtWvlL0Tl70mTtMfpPR57TuplGc6yqtvdTXkbVrbV7oAg2qEktWPgpkA1GmqvVaQhv2in5LtFNOdvVjImconcXPUqwrm5chn7wPWhxo8HRo/W79aeN0+uPuw08ajA6qbqyVa01e1VbUOPgd5n4aqryvY4dldF1nutVq0ytiadm15bo1jJmCiBaeWxpKaGrw8VKbgBgJ9+Kttq4LESjxWknVQ9ORIr2ur2fJ7QY6D1WShL7olTqiJrvVarVwMdO0bOu1O2d8trG0sMcIhcQuvEf+pUdAnITz9t/Is8miUMyiJSwm9Z2xPv52O3WAQEZVWW18DqINjKRWTLSms5lF69gDlzgAkTIu/D7tfWMWI2YOZAzMGhRBCay6A1lbZHD2OJiZFyF+zO3Yi2PXrVXSMVRrMjETfWj+uk3COr3lNWTRF3WlXkmTO18+f+9jf125zy2sYKk4wjYIBDiUbvi1BZu2fePPmydq0QPXua+yJ3WjKn0faoFUU0cn+7grl4Pa4TasZEeg3sCDCd+D7X+lxrXT9vnv2vbSyxDg5ROaJ0q2tNE/D75XohPXrIl3r1gA8/DN/O49HuznZa7oaR9qgNN4wYAUyapH9/u4Yp4vm4Tsg90nsN4p0HowyTAbHP+zJj61btz7XW9Q0b2v/aOg0DHCKXilT8KzRw0dp+2DDtL8VY5m5Ek4NhpD1az3P0aCAtTfv+dgVzTgsiraT2GjdtGp4fppUsH8sAMzSYAqIv9Gg1rTwcPUrxQyrFAIfIpfS+BCVJ/kUaGLhoBQdDhmg/RqxmNEX7S91Ie7SOi9KjpXV/uxJxnZgAbAWt13jJkuDtJEk7WT5WgZ5WrxngjF4Q5X1uNMhJhPdLTMRwyMxxmINDiSYwcVSShLjrLnksXm9Fb7WiaZFyHqzM3bAi32HtWiEmTw5ekyjQpEn6ydRaz8euRFwnJQBbQes1dsrq4E5LKg6kfB7XrhXitdfUc24CF9t0QuJ/PDDJOAIGOJSIAlcVN/JlF3hytyOptqwnF6NtDlxY1OzyAHYkazohAdgqWq/x5Mn6r328Aj2nJRUrAt/bkZKKAycTMMBRZ7qS8dtvv42aNWvixhtvBACMHDkS06dPR4sWLTBnzhw0UAYzHYiVjCnRqFU99XjkehkdO+p3tdtV3bYsj2v2vm6qWJxItF6n1auB9u31X794vWazZsnDUsXFpUOVdubdqB0zoxKxcnGouFQyfv7555GSkgIAWL16NaZNm4aJEyeiZs2aGDp0qNndEVEZaK0y3qtX5NwWu5Jby5LXY7bNTpg1VB5pvcZt20Z+7eP1mpVl9fhYMLNieKhESUq3mukenMqVK+OXX35BdnY2Ro0ahf379+Odd97Bpk2bcNVVV+HgwYOxamuZsQeHnM7sWjiRfvVF6t2wc32iaH6p291mMkfrNXZbz5qVa1Rp7SsvD2jXLrp9lofPQFx6cNLS0nD48GEAwBdffIFrrrkGAJCcnIw//vjD7O6IHEmZ3pqXF7+S/tHMLIo02yJS74adtT+i+aVud5vJHK3X2O6eNTMlCqyszaO3r1OnjO/nb3/jZ8AI0z04d911F3755Re0bt0ac+bMwZ49e1CjRg0sXrwYf/3rX/HTTz/Fqq1lxh4cMmLWrOAppIAcQEyfHrtu7LLmpWRnqxcAM7IPt/2aBtzZ5vLECatyawn8fEf6XFvZY6i3L0BeKbx3b+1CfgqPB9i9W/5/efoMxKUH59VXX0WHDh1w8OBBLFiwADVq1AAArF+/Hn369DG7OyJHCa2PoYh10bGy5MPoVT31+8PrjoSK9GvaiQtT2t0DQNqcsiq3GrNVo63MU9Pa19Sp8nHq1Uu+LtIiuX6//Pj8DERmOsA5ceIEXn75ZXz88ce4/vrrS64fO3Ys+vbta2njiOJNL9Evlol8ZSn2plfwT4iyBWZ2naycGFRRZE5alVuN2YDFyiKMavvyeIAXXyxtkxDydUrRQTUs6mec6QCnUaNGOHToUNj1R44cQaNGjSxpFJFd9IKFWH6xlCW3JPS+oaINzOw6WTm5B4D0OX3ZCbMBi5U5X6H78njkYxXa+1pcLPfiBLZT6dVhvo05pgMcrZSdU6dOITk5ucwNIrKTVrAQjy+WskxbVe47b551vzjtOFk5vQeA9Dl92YloAhYrp5MHfk71cm1efz34sydJ8n2cMJ3dTSoY3XDYsGEAAEmS8OSTT6Jy5coltxUXF+O7777DpZdeankDieJt0CDgyBFg1Cj5S0iSgHHjgJwc+UsulomTmZnGkorVEjgzM+VVw0+cCC9gFk17lZNVaFJkLE9WekEVf7U6nxJAWPH+i5VBg+TPspkEXSOfS6MyM4GaNSMnEwfy+4FatZx1HN3A8Cyqrl27AgBWrFiBDh06oFKlSiW3VapUCQ0bNsTw4cPRtGnT2LTUApxFRUaozXaQJPmiNvMinjNGjM4AsWqWUbyrvbLOjfXsmNHEWW76zFYt5mcguvO36WniAwYMwNSpU10ZIDDAISNyc+X8Dz2SBOzZI89QMjrltKziefIPPCkC8T1ZhQZV48cDl13mzCnHTmdmSjTFV+j7XC0fB3DGMhJOEJcAJ5DP54MkSTjvvPOi3UVcMcAhI4z+uurcGfj22+AvpVj+0tIKvHJz5emiVnHCSVHpAcjLA0aP5gk6GuwNcw6tXrTAnq4lS4IDnnHj5KUt2Asmi0sdHL/fj6effhoZGRlo0KABsrOzUbVqVTzzzDPwR7uQBpGDRKoOrFi5Un0GhBOnkhvllCTfzEz5eSnBjZ1tcSunz2hyM6sqIQfWsglNZh4xgnVuysp0gPO3v/0N06ZNw/jx4/H9999jw4YNeP755/HKK6/gH//4RyzaSBR3gwbJK3Kb5dSp5EY56aTopLa4kdNnNLmVmTIGZn8wsHiftUwPUdWvXx+vv/46br755qDrP/74Yzz44IPYu3evpQ20EoeoyIxoEgGjHSs3kwgaywROJw1rOKktbhXvJPFEZ/Y9Ga9h5fIgLkNUR44cQfPmzcOub968OY4cOWJ2d0SOFamAXqC77iqtUWG2Cq/ZwnZ6v/LKWgHYSYtZOqktbmVlDReytxIyRUGY1K5dO/HII4+EXf/www+Lyy+/3Ozu4ur48eMCgDh+/LjdTSEXee45IeRsG+2LJAmRny/EzJlCeDzydR6P/Lee/PzS7ZWL1ytfb0Z+vhDDh5t77Ej7y801345YcFJbqHyL5vM6c6a8jbJtWT6X5Vk052/TQ1QrVqzAjTfeiOzsbHTo0AGSJGHVqlXIz8/HZ599hiuuuCI2kRiAr7/+GpMmTcL69euxf/9+LFq0CLfeeqvh+3OIisyaNQsYPNhYUa558+TVgM0MqVjRha3VRg7nEFkvmmE/1gUqu7gMUXXp0gVbtmzBbbfdhmPHjuHIkSO4/fbb8euvv8Y0uAGAgoICXHLJJZg2bVpMH4cIKE0QNBLceDzydmaTYsvaha3XRibkEllPa9hPGR7OywsfJmbysD0ML9UQqH79+njuueesbktEN9xwA2644Ya4Py6VT3oriweSJLkYXceO5pc2KGtpe702xmKs346quEROo7z3t26V/w0s+Klg3Sb7RRXgHDt2DLNmzcLmzZshSRJatGiBgQMHIiMjw+r2lUlhYSEKCwtL/j5x4oSNrSE38fmAgweNbSuEXK+levXogpVo1sZRqK0XBcQmIdcJBQCJnCDws6Cs9B3ai6pMCc/J4Y8Bu5jOwVm3bh1ycnKQkpKCdu3aQQiBdevW4Y8//sAXX3yBP/3pT7FqaxBJkiLm4IwdOxZPPfVU2PXMwSE9oV9eRj8hSs4LYN/SBh4PMGwYMGSItY/NKdtEMrPlIzgl3BpxWarhiiuuQJMmTTBjxgxUqCB3ABUVFeEvf/kLduzYga+//tp8y6NgJMBR68HJyspigEOajHx56QU9dn2ZxTqJkfU8iGRG1qpTeL3A6tXAqVMc1i2raAIc00NU69atCwpuAKBChQoYOXIk2rRpY3Z3MZWUlISkpCS7m0EuopXTogwDeb3A0KHACy+EbyNJQGpq7NuoJjMztl+eakNhrOdB5ZHWsHAorxe4+26gfXsO69rF9CyqKlWqYM+ePWHX5+fnIz093ZJGEdlFa1bTmjWlsyaGDFFfp0oI+cts1qyyF9xzGhbdI5IZKQDq8QAffQS8+y7XUrOT6R6cXr16YdCgQXjhhRfQsWNHSJKElStXYsSIEejTp08s2lji1KlT2BYw73Xnzp3YuHEjqlevjuzs7Jg+NpUPmZlA377A22+XXnf33fKqvopZs7SHqPx+uSYNIG+j/GrLyXH/7KOyJEMTJZJBg4D0dKBXL/Xb/X7gs8+0y0bwsxMfpnNwzp49ixEjRuD1119HUVERAKBixYp44IEHMH78+JgOCS1fvhxdu3YNu75fv3546623It6fhf4okkjJtGYTDBVKlza7qYkSQzTfBUzMj17Mk4yLi4uxcuVKtGzZEsnJydi+fTuEEGjSpAkqV64cdcPjhQEORRIpmdZMgqEWM19yrDtD5FyBMxgj4WKnZRPzSsZerxc5OTk4fvw4KleujJYtW6JVq1auCG6IjIhUWVjtdklSz8nRYrTCsNlFOIkovgKrGq9dC0yerL7dlClc7NQOppOMW7ZsiR07dsSiLUS2i5RMq3b7jBlyErJRRmYfKUswMEGRyNmUZRjatgV69FD/gXTHHeyBtYPpAOe5557D8OHD8emnn2L//v04ceJE0IXI7bTWmtG7vW1bYPjwyPs2OvtIbbo615YicjbONnQW00nGnoDwVFJqVAMQQkCSJBQbGYy0CXNwKJa0kg69XnmtqjZtjM8+YuVgIvfi6uHWi0uhv9zcXNMNIyoPlF9vgwcHTyMfN85Y747avqJdhJOI7BPrwptkjOkeHDdjDw5FQ28mU+htVve88JcgEVEcZlERxZrTKgDrzWRSu83q3BklgZHBDRGROQxwyDGcNi1abSbTvfcCeXnas5zS0vSnmRMRUXwwwCFHcOK0aLXeGL8fuPxy4Nln1XtqCgo4i8IMp/XYEVmB72tnMBTgLF68GOfOnYt1W6gc0xraWb3avi8KtaJ+gJxA/MYb4dcrPTWRppnHkpu+WJ3WY0dkBb6vncNQkrHX68Vvv/2GWrVqwev1Yv/+/ahdu3Y82mcpJhk7l1pyriTJFzvXcJo1K7hnSYsT1pgKbKsT2qOH0+ApEfF9HTsxSzKuVasW1vyvVKtS74bISqEFspSeE7uHrAYNkqsUR3rL//3v8krbdnHiEJ8eFjKkRMT3tbMYCnDuv/9+3HLLLfB6vZAkCXXr1oXX61W9EEUrcGjnL38JriUDyF8UU6fGv11t28rLMei9vZ9+2t7uaLd9sUZa84vIjfi+dhbDdXB++eUXbNu2DTfffDNmz56NqlWrqm53yy23WNk+S3GIyh18PiA7OzzAAeQvj9277enuVWrS5OUBTzyhvoKwXd3RbuwaD1yJmSstU6Lg+zo2ojl/my7099RTT2HEiBGuXEGcAY475ObKCXpannwSuOgioGNH+07ePh8wfz4wbFj4bbm5cu2aeHPjFysLGVIi4vvaenEJcBQHDx7Er7/+CkmScMEFF6BWrVrR7CauGOC4g9aaTqEkSR46susk7sReE36xElEiiksl49OnT2PgwIGoX78+rrzySlxxxRWoX78+Bg0ahNOnT5tuNFGozEx5ccpIhLA3kVYtMXrcOHsDC1Y+JiKSmQ5whg4dihUrVmDx4sU4duwYjh07ho8//hgrVqzA448/Hos2UjnUpo2x7exOpB00SA7GPB65J2f0aNa9ICJyAtNDVDVr1sSHH36Iq0KSDHJzc9GzZ08cPHjQyvZZikNU7mF0mMrjAebMsS8fx4nDVEREiSZuQ1R16tQJu7527docoiLLKMM/apWEAwkB9Opl3xRtp0/PdlNlY0o8fP+RnUwHOB06dMCYMWNw5syZkuv++OMPPPXUU+jQoYOljaPyLSdHfap4IOV2uwrbObnuBUvGk534/iO7mR6i+umnn3D99dfjzJkzuOSSSyBJEjZu3Ijk5GQsWbIEF110UazaWmYconKXSNPFte4T7ynaTpyezaEzshPff2S1aM7fFcw+yMUXX4ytW7fivffewy+//AIhBHr37o277roLKSkpphtNpEXpHVHLw1G73uOxp+dk0CC5t8lJ07P1hs6c0D5KbHz/kROYDnAAICUlBYMHD7a6LURBlOniI0eG36YW9ERX0Sk6Pp/8Jd60qdxO5eIUasGhU4bOKPHx/UdOYDoHhyiejE4XB+QAJx7JvW7ILQit0aMMnTkpCKPExfcfOUHUlYzdiDk47mN0ujgg/2Jcs0ZeHDOe7dHLLQjt6Yk3VjYmO/H9R1aJyzRxonjKzAT69jW2rd8PtG8f2x4VI9PClamxf/+7/T09rGxMduL7j+zEHhxyNDM9OIpYztaI1IMzaxZw773q7eUsEiKi6MSlB6dx48Y4fPhw2PXHjh1D48aNze6OSJdaj0kkxcXA6tWxKTCml1vg82kHN0q7nFIAkIgo0ZmeRbVr1y4UFxeHXV9YWIi9e/da0igiRdOm8qrhZvoZJQno3VsONDweOSCxsi6N1rTwSMFY4DR2u3NziIgSneEAZ/HixSX/X7JkCTIyMkr+Li4uxldffYWGDRta2jiizExgwgT1qeJ6lEBDqXCck2NtIKE2LVyvbg8APPFE+DBWLAIwIiIykYPj0VkUqGLFimjYsCFefPFF3HTTTZY1zmrMwXGvF14ARo2SgwKvFxg8GPj9d2DRImP3j1eF4/79gbff1m5Dkyas8EpEZFZMKxn7//eN3KhRI6xbtw41atSIrpVEURg+XB52UoaFliyRe0GMiFeBMZ8PePdd/TawwisRUXyYSjI+d+4cGjZsqJpkTBRrypRTQD+ZV5LsKTCmlYMjScDQofL/nbw4JxFRIjGVZFyxYkX89NNPkCQpVu0hikgvmVcJaOxYG0otB0eS5MsLLwCTJ8s1fQIHhT0eVnglIooF09PE77nnHsxyYm16KjfS0tSv/+c/5VyWQYPsKTAWOoVc6akJTHh+++3wGWE5OfFrIxFReWF6mvjZs2cxc+ZMLF26FG3atEFqamrQ7ZMnT7ascURqTp1Sv755c/t7QgKnkB84APTqpb+938/8GyqfWCqBYs10gPPTTz/hT3/6EwBgy5YtQbdx6IriwekrFStTyH0+/WnjgLPaTRQvLJVA8cClGsiVAr8gJQn461+Bbt2c92tw1iy5Dk9xsRzM3H038N57pX+/8Qa/2Kl8MbtgLRHAxTapnFFCcyGA554rXdRy0qTYLNMQjUGD5C/u3Fz537feCv6bwQ2VN0YWrCWyQlQ9OHl5eZg/fz727NmDs2fPBt22cOFCyxpnNfbgJAajC3Cy65vIediDQ9GISw/OBx98gE6dOuHnn3/GokWLcO7cOfz8889YtmxZ0PINRLFidAFOZZkGJ/TkEJFMb8FaIiuZDnCef/55TJkyBZ9++ikqVaqEqVOnYvPmzejZsyeys7Nj0UaiIGrF8rSw65vIeUKHbtnLSrFgOsDZvn07brzxRgBAUlISCgoKIEkShg4diunTp1veQKJQyi9AI0EOZykROZMdtaqofDE9Tbx69eo4efIkAOC8887DTz/9hJYtW+LYsWM4ffq05Q0kUqPUm1m9Wv67YUOgoABYtw4YPTp4lhK/QImIyh/TAc4VV1yBpUuXomXLlujZsyeGDBmCZcuWYenSpejWrVss2kikKjMT6NEj+LqrrgpelJPBDRFR+WR6iGratGno3bs3AOCJJ57A8OHD8fvvv+P222+PyxIOr732Gho1aoTk5GRcdtll+Oabb2L+mBGtWyfPUV63zu6WROaWtpahnXHv+i4HxzTu3NJWt7QTcE9b3dJOwF1tLYeiGqJSeDwejBw5EiNHjrS0UVrmzp2Lxx57DK+99ho6deqEN954AzfccAN+/vlnWxOcpbYXAVgKtD0bts6QE/h88iKPy5cDQGvIbZVv69wZuPNOoHv3sgcEPh/wySfA/v3y/gD570OHgJUrgd9/B2rWlAvz1aolb/Pzz8B33wEHDwIpKUBWFpCaCvyeVwPbDi9AUmcgIxO47jpgwABg507g8GGgRg2gY8fIbfb5gFWr5P83aiQv89C0qfz31q3yulbKdcq+AkvIA6X3D328ku3eXQzkbsHW51cj7Yk2YfsL2z7g8UP/H9iGwGPZtq36vtLS5GOi1r6wY/HaYmzNFWj62mJkvtlG95gZKaFvRal9tX34fMDW51ejae4WZL77LtAmvK1WPrbeMQzcRvV1fecdOVNWo51laa/Z+2htH/g+zTTQ1tD7RfqMWP58Ao6pr24bzeek9bksS1v0Pneq71UDn6nA++3fD3zzDXDBBfL3nPLe27YNOHMm+DGV57htG7B9O5CeLl+/ciXQogVw002l32m7dwPLlsnL1dxzD/Dll8CbbwL16wPXXw8cOSI/5g8/AL/8IsdklSvL+2vUSI7Pfv0VaNZMfmusW1d6DOrVk9tfUABs2SLvR8lGadSo9LMT+P9oXpOYEFEoKioS8+fPF08//bR45plnxIcffijOnTsXza5Madeunbj//vuDrmvevLkYPXq0ofsfP35cABDHjx8ve2N27RJi3ToBFAvAL+Ryc34BFAuxbp18uwPMnCkC2qd/mTmzbI8jSZEfo2yX4OchSfpt1mqTJIVf7/HI28+cKf9fbbvAx5s54ZDweOT2SCgWEoqD2ujx+IPaprXfwP8HtiG0ff36qe8r4vH43/t05j92CQ+K5MdBkZj5j12q79PAfSvt0Tq2RrbTE7aPCYfEzL/vLDmuHhSJmemPCbF+fVBbrX5srWOoto3STrFundyu2rXlG2rXDmtnWY6V2ftobR/4PvWgSMzEQN226h0ftc+IZc/nf+/TwGM6M/2x0rYHfJ5CPx+RvgcMHyudz13wffxi5t93GvpMab3P9C79+sXr+zR2F7OviRHRnL9h9kF+/PFH0bhxY1G5cmXRunVr0bp1a5GamioaNmwofvjhB7O7M6ywsFB4vV6xcOHCoOsfffRRceWVV6re58yZM+L48eMll/z8fNMHSBMggNNhJ13579PyHzbLzzf/pszPj+5xzH6Irbp4POptjqZNHk/k+3g8QqxdK0q+2PQuXq/cDjNt8Xq1v9jWro28r7DjAYh8nBfWXi/OiXycF/Q+Vdu38hwiHVu17cy+Zzw4p99OIGaPrfoaa2wT1KbASDVwozIcK7P30dpe7X0qtz1Tta1Gjo/a+9OS5xN4oySpv2e92q+L1veAqWOl8Zw/+UTlPjgnpAifqbJ8L7o5uIn2cxlJNAGO6Rycv/zlL7jooovg8/mwYcMGbNiwAfn5+WjVqhXuvfdeqzuYShw6dAjFxcWoU6dO0PV16tTBb7/9pnqfcePGISMjo+SSlZVlXYPeew9AJQChC4xK8vXvvWfdY0Vp61Zz2wsRXc0Yo4X3YkFZjTtUNG3y+yPfx++Xu4j98Ebcn1KDx0xbiovl10HNt99G3lfY8XjvPWz1NA9rbzEqYJunWdD71GgJfStK7avtw48K6u1EE6BCBfm5xOixg9qhvMYa25QcO6D0xVL+/V879R4rUnvN3kdre7X3qXw8z1dtq97+Avcb+v605Pm8957cHgAQAlvRNLztxdqvi9b3gNG26L3e//mPyn1QASLCZ6os34ta3wFu4ogaZGajqOTkZPHTTz+FXf/jjz+K5ORks7szbO/evQKAWLVqVdD1zz77rGjWrJnqfWLagyOE0O3BcQD24Jjfl+EeHAP7dkQPjhAi/7Mf1H/Jf/ZDxGMW1x4cjxAeyR/eTpwnD13E8LHNvMZer3xMVW/8XzvLcqws7cFR6Xko6WUIaauR4xOzHhwh5Pb8bwPH9+B4/Oo9OAGfKfbguLAHp1mzZvj999/Drj9w4ACaxLCiWs2aNeH1esN6aw4cOBDWq6NISkpClSpVgi5WEus3AxD/u6Dk//L19svMBGbONL79jBnRJYYphfek0M6sGJMk+XHV2qxXDFCSwq/3euXtA0vIS1Lwc1Ier23b/23nkV93CcXwoPh/W4mS/Sk1eEJL0wc+fuD/lfvMmBF+LPv1kx83dF9GjkdmnXOYjnvhRZH8OCjCG7gPmXXOqR6zSCX0rSi1r7aP6dOB6X/fE9xO6QFkYm9MHztQ2Gscsk3J4ynHTnnxNKpORtNes/fR2j70fVryunv2az+4yv5Cn/uMGbF9PvB4kIm9mC7dX/peCHlOgYdb73vAaFuU/ap97m66SeU+f9uDGRE+U3rvMz39+snH2Gi1difyeJxRg8z0YpufffYZRo4cibFjx6J9+/YAgDVr1uDpp5/G+PHj0blz55JtrQ4oLr/8clx22WV47bXXSq5r0aIFbrnlFowbNy7i/S1fbNPnA9q2hfTbDsjDVWch6jYG8vLsf2UD+HxA356nsXx16JBaEa5s50efASm46SZrZlF9+inw22/A/4pd49//Bg4ckLuADxyQZz95PPIsqptuAjZvBtaulW9LSQGyav2BtI1fY7+nHraLpqh07iQyxAlcd3dtDHikCnbtKp1F1aGDsVlUocUAlTh82zZ5JoNyXeAMEaWODlB6/9DH8+Xtx7ach9Ak+yzQuze2vbUSqQd3oeD1d9GkQy3VWVSB+1X7f2AbAo+l2iwqpf27dqm3L2jjtm3hq3MZtl19L5osm47M39drvk8D2xlpFlVZ6w2F7cPng+9PN2Nb9XZo0r8zMhe+DOTnh7XVysfWO4aB2wS9T/53TJGVJVednDVLtZ1laa/Z+2htH/g+zXyge8S2RnzusXo+KsfUt6sI215dEvZ5CvxcG/keMNoWvc9d0H1g/DMVeL/9++Wh5iZN5BlUyntv2zagsDD4MZXnuG0bsGOHPIvK75dnVjVvLs9wUr7Tdu2SZ8k2aybPmP3yS2D2bOC88+QZqMeOyY/544/ybKmrrpIfG5D3sX596Qypyy6T/1aOQb16chtOnSp9Hn/8UXpf5bMT+P9oXpNIojl/mw5wPAFhpfS/cFfZReDfkiShuLg4fAdlMHfuXPTt2xevv/46OnTogOnTp2PGjBnYtGkTGjRoEPH+MVlNvLAQqFRJDv2FAM6eBZKSrNm31dzSVre0E3BPW93STsA9bXVLOwH3tNUt7QTc1dYEEM3523QdnNzcXNMNs0qvXr1w+PBhPP3009i/fz8uvvhifPbZZ4aCm5gJfENLkrPf4G5pq4l2qtXqAMpeIyUWbbWVW9oJuKetbmkn4J62uqWdgLvaWk6Z7sFxs5j04JBtJk0CRo2SfzwplDF0IeShsOnTuVIxEZHbRXP+dnEaE5VnL7wAjBwZHNwApTn8gDxefd99ci8PERGVLwxwyHV8PrnnxghH1GIgojA+n7wiA3+AUKwwwCHXMVNAy+stnalERM4waxbQoIG8JlKDBvLfRFZjgEOu07Spdo0ItboyDpqxT1Tu+XzAvfeW/kjhUDLFiukAZ+zYsdi9e3cs2kJkSGgBLY8H+Nvf5O7uPXvklXVzc+WaDE5IMA7timfXPJVnViy3QWSE6QDnk08+wfnnn49u3brh/fffx5kzZ2LRLqKIlC9JIYBGjeTiVUrlYOX/dgvtiu/fn13zVL6p9cByKJliIapp4j/88ANmz56N999/H2fPnkXv3r0xcOBAtA0tt+ownCaeGHw+OTgI/BXo9co9Nk4IahRq7QzlxHYTxdqsWfKwVHFx6VCyE3pbybniNk28VatWmDJlCvbu3Ys333wTe/fuRadOndCyZUtMnToVx48fj2a3RIY4vYtbGYJatSpyMrST2k0UL4MGyYG9k4aSKfGUKcnY7/fj7NmzKCwshBAC1atXxz//+U9kZWVh7ty5VrWRKEhamvr1mzfbn9cSOCTVq1fkBUg9HnbNU/nkpKFkSkxRBTjr16/Hww8/jHr16mHo0KFo3bo1Nm/ejBUrVuCXX37BmDFj8Oijj1rdViIA8pIMah58sDSvxY5E3tDZIUBwIUKvV14pODDoEQJYsiR+bSQiKi9M5+C0atUKmzdvxnXXXYfBgweje/fu8IasB3/w4EHUqVMHfqPFSuKEOTiJIVJuiyTJF78/vss15ObKPTdqPB5gzRp5ZV435A8RETlJXHJwevTogV27duHf//43br311rDgBgBq1arluOCG3E/plQGA8eO1a+EIYU+NDb36PH4/UFDg/PwhIqJEYSrAOXfuHGbPns0kYoq7F14ozW3JzpaXajAaQ8crgMjMBPr2Vb9NkuRcG06RJSKKD1MBTsWKFVFYWAgpUuYkkYUmTQJGjAiue2NmYDVeAYTPB7z7rvptQgAffBBepJDVlomIYsP0ENUjjzyCCRMmoKioKBbtIQpiZmHNQLFerkEtiTnSGlmjRsnbc4osEVHsVTB7h++++w5fffUVvvjiC7Rs2RKpqalBty9cuNCyxhFt3WqutwaQg5rVq+WclyZNrA9uZs0qnS0VmMSsDD9pBTl+vzxUplRbZq8NEVHsmA5wqlativ/7v/+LRVuIwkQKGkIpPTaxKqqttVBgTk7p8JNSoVWtbcy1ISKKD9MBzuzZs2PRDiJVSuLu229H3nb4cGDIkNj2jOjNgsrMlHtycnLkv7/8Ehg3Tt6euTZERPEV1VpUbsU6OO5jZD0nRTzqyZhdB8vnk4OdWAyVGeHzyUFZ06YMrij++P4jq0Rz/jbdgwMAH374IebNm4c9e/bg7NmzQbdt2LAhml0SqYqUuBsosCclVkKHoSL1zNiZa6OVK0QUD3z/kd1Mz6J6+eWXMWDAANSuXRvff/892rVrhxo1amDHjh244YYbYtFGKsfWrTO3fUjOe0y4YRaUVq6Q3Wt1UfnA9x85gekA57XXXsP06dMxbdo0VKpUCSNHjsTSpUvx6KOPsgAgWcrnA0aPVr9NqxRTQUHs2hModKFAO9a+0sOKyWQnvv/ICUwHOHv27EHHjh0BACkpKTh58iQAoG/fvpgzZ461raNyTW94SojwIMeuWUqBK4gri33ajRWTyU58/5ETmA5w6tati8OHDwMAGjRogDVr1gAAdu7ciXKUr0xx0LSpdk8NIAc5sS7oF4lTu+JZMZnsxPcfOYHpJOOrr74an3zyCf70pz9h0KBBGDp0KD788EOsW7cOt99+eyzaSOXUkiXGtps3D+jQwZ4vz0jTxu0UOGXdrllcVH7x/Ud2Mz1N3O/3w+/3o0IFOTaaN28eVq5ciSZNmuD+++9HpUqVYtJQK3CauHuYmR6emyvnw9jB7LRxIiIyLy7TxD0eDzwBg6s9e/ZEz549ze6GSJfR6eEej73j+pmZwIQJpaubsyueiMgZoqqDc+zYMaxduxYHDhyAP+QsdM8991jSMCrfjE4PnzDB3mBi1qzS4EaS5MrFTpw2TkRU3pgeovrkk09w1113oaCgAOnp6ZACskAlScKRI0csb6RVOETlDkaGpzweYPx4YMSI+LUrlBOHp1g5logSUTTnb9OzqB5//HEMHDgQJ0+exLFjx3D06NGSi5ODG3IPveEpj0dOKt69O/7BTWCtG59PboeTan04cbp6JE6rH0RkBb6vncF0D05qaip+/PFHNG7cOFZtihn24LiDzwdkZ8vTwEMNHw5MmhT/NgWWnVc6LdXaZ1cPjhN7kyJhKX9KRHxfx0ZcenBycnKwzmz9fCKDlCGWJ54Iv83rlVcLt6NNgbVuhNAObuxKMHZb5Vin1g8iKgu+r53FdJLxjTfeiBEjRuDnn39Gy5YtUbFixaDbb775ZssaR+VL6C+fHj2ABQvsn520alXkGV1jxgB/+Yt9vSVK5djQHhynVo51cv0gomjxfe0spoeoPKH1twN3JkkoLi4uc6NihUNUzqU1xLJ6tby+lF2FwgKDLj2SBMyYYW9X9KxZ4aucO7Vr3I1DakSR8H0dO3EZolIK/aldnBzckLNp/fIpKAhe1DKeQrubFZIUvoSEEMFd0XYkGbphlXMFS/lTIuL72llM9+C4GXtwnMuJv3xyc+UZSaHmzZMDml691O+zfTuTDI3y+VjKnxIP39fWi+b8bSjAefnll3HvvfciOTkZL7/8su62jz76qLHW2oABjrM5bYhFL+gCtIfU2rd3VqBGROR2MQtwGjVqhHXr1qFGjRpo1KiR9s4kCTt27DDe4jhjgON8Tvvloxd0qd3WuLF6r4+d62UREbldzAKcRMEAh6KhF3SF3mb1UBsrExMRxWmxTaLyJjNTO7gIvW3JkuAaOcr6VNEEJywYRkQUPdM9OMOGDVPfkSQhOTkZTZo0wS233ILq1atb0kArsQeHYklrDS2PR14U9LLLjPfEODHpmoiMYc+r9eLSg/P9999jw4YNKC4uRrNmzSCEwNatW+H1etG8eXO89tprePzxx7Fy5Uq0aNHC9JMgcoJIX1Bqt0+dql4vx+8vXTfLaE8MC4YRuRN7Xp3DdB2cW265Bddccw327duH9evXY8OGDdi7dy+uvfZa9OnTB3v37sWVV16JoUOHxqK9RDEXadFKtdvz8oAXXoi8b6Ol25XKxIGcXJmYiLhUg9OYHqI677zzsHTp0rDemU2bNuG6667D3r17sWHDBlx33XU4dOiQpY0tKw5RUSSRhobUbtdbfFOLkVlVTps2T0ThlN7ctDTgm2+Axx8P32byZHnpGfa+Ri8ulYyPHz+OAwcOhF1/8OBBnDhxAgBQtWpVnD171uyuiWwXadFKtdu1Ft/UYrQnxk2ViYnKo8De3Hbt1IMbABg2TL03mGIrqiGqgQMHYtGiRfD5fNi7dy8WLVqEQYMG4dZbbwUArF27FhdccIGlDX3uuefQsWNHVK5cGVWrVrV030SKSENDarcbEW3p9sxM+5aqICJtWku5aOFwVfyZ/qp+44030K1bN/Tu3RsNGjRAdnY2evfujW7duuH1118HADRv3hwzZ860tKFnz55Fjx498MADD1i6X6JAmZlA377B1919d2mAoaw1E7oWVSBJKg2CvF5g5szE6YmxY40tIidatUo/uLnnnvDrAnuDKfaiLvR36tQp7NixA0IInH/++UhLS7O6bareeustPPbYYzh27Jjp+zIHhyLRysH56CNgyxbgiiuAevXUp4Mr277xBpCT46yKzFbg7BAiWeBnQY8kBQ9fs9RD9OJa6C8tLQ2tWrWK9u5EjqSVg9O9e+nfOTnqX2ySJK9F1bat/HcifYlpzQ7JyUms50kUidmhKa83eKIAPy/xE1WAk5eXh/nz52PPnj1hycQLFy60pGFWKCwsRGFhYcnfShI0kRYlx0bvy2vJEvXrhQAKCmLTrkhiXViMdXmIZGqfBS1CAHPmALVqJVZvrluYzsH54IMP0KlTJ/z8889YtGgRzp07h59//hnLli1DRkaGqX2NHTsWkiTpXtatW2e2iSXGjRuHjIyMkktWVlbU+6LyQcmxUZKCzVCSkaPJUylLbkvgTI7sbLmooNU5MqzLQyQzM9HA6wU6dOBEAbuYzsFp1aoV7rvvPjz00ENIT0/Hf//7XzRq1Aj33Xcf6tWrh6eeesrwvg4dOhSxVk7Dhg2RnJxc8reZHBy1HpysrCzm4FBEPh8wf748vdMIpfsZMJ+nUpbcFr3lIazOkWFdHiJZ4GfB41EvFcE8NWvFZTXx1NRUbNq0CQ0bNkTNmjWRm5uLli1bYvPmzbj66quxf//+qBpvFJOMKV60ggc1EycCffqYXz+qrGtO5ebKPTdqYpHQqLeyOlF5EvhZWLIkOPgfOhQYMoSfESvFpdBf9erVcfLkSQByVeOffvoJAHDs2DGcPn3a7O4M27NnDzZu3Ig9e/aguLgYGzduxMaNG3Hq1KmYPSaVb2aGq0aPVp82GmlaaKTCgpHodZfHYkoq6/IQlea8KYF+aFHOSZP4GXEC0wHOFVdcgaVLlwIAevbsiSFDhmDw4MHo06cPunXrZnkDFU8++SRat26NMWPG4NSpU2jdujVat25dphwdokgGDQJeeSXydn5/cP0bRaQ8lbLmtihBmFqQU5YcGda7IVKntVadXvDPz5NNhEmHDx8We/fuFUIIUVxcLCZMmCC6d+8uhg4dKo4cOWJ2d3F1/PhxAUAcP37c7qaQi7z2mjLCrn2RJCHy84WYOVMIr1e+zuuV/44kmvuEys8XYvjwsu9HaY/HI+/H44l+P1bJzxdi2TL5XyI75eeXfjaUi9er/9502ufJraI5f0dd6M+NmINDZhkt6HXXXcD48aULcprNU7Eqt6Ws+ylrTpDVWFyw7GJdQqA80cp501o812mfJzeLS5Kx4sCBAzhw4AD8Id/8Ti7+xwCHzMjLA9q3N17zIl4n4FiesMx+gccSTw5lxwDRWmbfk076PLldXJKM169fj4svvhj16tVDq1atcOmll5ZcWrdubbrRRE40axZw+eXGgxsgPovpaY3/W8VJ9W7KmoBd3mlVn2YeSPRCJx5Eqk7spM9TeWQ6wBkwYAAuuOACrFq1Cjt27MDOnTtLLjt27IhFG4niSjkxRNO3GcsTcDxOWGa/wGOJJ4eyYYAYG6EzpvR6xMx+npiMbC3TSzXs3LkTCxcuRBN+y1CCMlqKvXNn4NtvwxfTi9VHI17LJQwaZP9iocow3PjxwBNPcC2faKgtO8IA0RqZmcbfh3qfp8Dh5iVLgocTx48H2rRh7lRZmA5wunXrhv/+978McChhGVmPSpLkNWZCC3zF8gQczxNW4Bd4vJNUQ/NGJkyQv+hZXNAcpfcgXu9P0qYWEIW+zwOrIfv9wMiR8v+ZOxU900nGhw4dQr9+/dCuXTtcfPHFqFixYtDtN998s6UNtBKTjMmo0GUJ7r4beO899WUK4lnd1+hyCVYFJfFOUmVisfXsqD7NmVv6zFRJB/gZAOI0i2rx4sXo27dvSTXjoJ1JEoqLi83sLq4Y4JBRPp9cmfjIEaB6daBjR/l6JyxTEOmEZVVQYkewwVkn7ueGmVt2B2B6S6zo3ac8fwbiMovq0UcfRd++fbF//374/f6gi5ODGyKjlJlKvXoBDzwg/9uggTwcFetlCowkGWpVTPX5gHnzrEtEtiNJlYnF7uaGmVvRzES0MvnX5wMOHpSHuY3yeIADB5x1HF3BbDXBtLQ0sW3bNrN3cwRWMqZI1CqVGq1YWlZlqXgaeF+1S26u+fZEU7XVClZUdiZ7LFtm3fsvFuyuRBy4L0nS/rxeeaX69eW5EnI052/TPTi33347cnNzrY+0iBxAbwaVU6eAh943VLQ9IHZNGTczDZecxek9cGZ7Ja3skQrdlxDysQrtyfF4gK+/Vt+HE3vEnMz0LKoLLrgATzzxBFauXImWLVuGJRk/+uijljWOKN70ZlA5dQq4XlAmSWULSuyaMm5mGi45h9NnbpmdiWhlaQa1ffn9wPDhwJQp8n6V2VR6YlEaIlGZTjJu1KiR9s4kydHF/phkTEYEzlRS6M1YskJZEnpfeAEYMUL9NiP7sDvhMhpubHN5YsfMLaOMzkQErE2019sXAKxeLef7RTojezzA7t3y/8vTZyCq83fMBswciDk4ZFR+vpw3sHat/G88VrKOJvdEL2fISP6DG1c6dmObyVmUz7eRz7WVOWF6+9LKX1K7/O1v5e8zwNXEI2APDjmd2V++kaab6v3atLvmTDS9MHa3mczReo2d0gNntB1W9khp7SsvD2jXLrp9lofPQDTnb0M5OMOGDcMzzzyD1NRUDBs2THfbyZMnG3pgIgpnNvckUs6QXv5DvJZ+UBNtrRQ720zmaL3GTqmTY6YdVuaEae3r1Kno98nPgDpDPThdu3bFokWLULVqVXTt2lV7Z5KEZcuWWdpAK7EHhxJRaE7BuHFA27aRf23a1RtSlsc1e1+n9BQY4aa2RqL1Oq1eDbRvr//6xeM4OLEn0Gx140B2tz0emIMTAXNwKBHl5wsxd64Q8+YZyynIz5fH+/Pz7ak5U9ZaKUbbPHFiaa0RM3kKgccnXhItr0jrNZ48Wf+1j9dxcGq9nsD3tnLRq5dTnmpFxaUODhE5R2DV5V69gGeekasZa9XJCK3iChirOWNlJVcraqUE1iVR88IL8mKFgYsXBtYP0Xo+0VS5LSs3VP81S+s17txZ+7WP53Fwar2ewBpQa9cC//yn+naBtXOi6fEpN2IYcDkOe3AokejNoJKk8F910VYmjsWv6mh7jow8B73jkpur/Xzsqtzs1N6EstJ6jUOrbivv1XgfB6dXzJ45M3LvTTzfp3ZjDw5ROaJX4E8I+ddw4K9frQTdqVO1HyNWv6qjrVZspBKt1nHxeIDUVO3nY8faW4BzexPKSus1zskJrvUihPwapKXF9ziotc/KnsqyUD53Ruc4x+N96kYMcIhcSu3EGMjvD/7S09p+8mTtL/RYnvS1Fg3VYyQY0Hqe48fLM1W0no9dgYZdS2LEg9prvHVr+Im7uBgoKIj/cQhsnx3Dk1r0frxoSU2NTVvcjAEOkUspJ0atIEfpsZg3T77s3w/ccUf4dqGBUCCn9S4YCQZCt/F4gEmT5GrPes/HzkAjXutvOaGHQu81MHscrHo+TsuDatpUe7VxreuV42Z375OjxHDIzHGYg0OJIHSWz9y56uPyOTnGxvCNrKbstFwFI5VotbaJ9HzMVLl1EyfN1LLiPWXl83FaHtTMmfpVjNU+1055bWOFlYwjYB0ccju14mQ5OeH1MyRJvkTq5ja6xpYdawvFsh6Kk9dKigWn1n2J9jWw+vk46fho1cPxeORhVkCeIajH7tc2FqI5f3OIisgltLrRgfChlccfjxzcjBljfDgkmnyZsohHPkT5+WlnXwK1HjPvqdChKKufj5PyoLTybz74AOjTBxg1KvI+7H5tnYIBDpFLaH2pr14NNG4s/6vkLgwZop+ADAAXXWTPr9NIeQKxzodwUjKpEVbkmTghlyra56H2esXi+cQrDyoSrefWoQOwapWxwDwRZuFZgQEOkUusWxd+nccjF/i7+mq5BP727fL1W7cCEyboJyB36BC7tqoxGljEsrfBacmkkVgVjNndQxHt8zDTa2nF84l3T6VWG9Se25Ilcg+OFiX5OJFm4ZUVc3CIXMDoOjWBuTfKmH16OvDvf8sXIeQvwPHjgcsui9+6R5FyHALzbYDY5UNorb6emyuf2JwkFnkhduVSRfs8Ir1eiZxLFfjcAOOf/wkT5BmDiSZmq4kTkb2M1sVQ5lQA8vajR5deJ0nA8OFA7dryOH48V3PW65VZsiQ8cXr69OAFRK36Raq2+npgd76TFryMxcrpVq6KbYTPJ5coiPZ5KNOlA3+GS1Lp6xXv5xNPgc8tN9f45/+JJ+SenkQ9LmZwiIrIBbTG5bVqYij8/tKTgxByUb/Ro60dojGSW6HVfq3Kwjk5scmH0BuqKctwUCzqyzghb6YslOP5+OPht5XleYS+551Q2yfWIhX1DMQE41IMcIhcQOvEPGOG8S8+QA4gjOa3GDlxGA0KtNqvV1k4VvkQWiX6o83NiVXSst15M2URejwDmXkeakm1gYUp3ZYwHi2198LEiXLvmJuD4JiLUU0eR2KhP3K70CJ0oQsXqi26GVoMzMiCkkaKqEWzOGVo++1a4DJUtIXe4tF+NxYe1DqeU6YYfx5ai00qx9cp7514UnsvGClcGVgY1K242CZROaD8otX7lay4997gX31Kfoter4CR3oxIuRVaQntlnNJLEe1wUDzqyzhhZo9ZWsfzjjuM171RW2wy8P3hxNo+sab2XtCb3l5eerg0xTDgchz24JCbhfaqDB8eeRmGefPUf/Xp9QpE6s3Q6zWK9he0E3opolk+oDz2Ihg1cWLpsTG7HIPWe3DevNJteOz1Jdrxieb8zQCHyAXUvqwirTMlSdEHG1pfjGq3BW7j9jVwogm0nLhWl91Cg/FJk8zd3+jJmcdem9PW1yorDlERJSi17ni9ClaSJCcgRzOsoTdspDVdfcqU6Gc7OWkWTDTDQU6pgOsUakOco0ebe32NDl3y2Gtz+yw8K7DQH5EL5OUB7dpF3m7oULlCcYcOZc/ZUCuiZnXxObXFQ5WTlJNq0pBxWsX5hg8HJk0yt69ELuQXD7NmhdeTcmsQGM35mwEOkQtonTRCKT03sQwSrPrS1AuW1Ir/ufWL2emsfo/orYa9Zo1cGsDsYzHYjV6iBIlcTZwoQal1N0tS+HVClM54itUMCquGBfQWD9WaxeWk4axEEIv3SGYmMGxY+PV+v7xemtnHKvczgcrIjbPwrMIeHCKXCOw5UYSWsVfMmwf07h2b9ZysotWD8/778gKioYYPlysxO7lXx+k9DfFa88vnA7Kz9fPEjDxWLNbjIndiDw5RAhs0SO7dCOy1UTuBeL3y9U6vEaKVSNqxo3py5IsvOnsVcKf3NIS2b+rU2L1HMjPloVLltVWrtm3ksSLVumGPHulhgEPkImpLGwSSJP0gwWkzKNSGuzIz5RWRlfZ7vXLydGgwZ3fAFnhyLctSD9E8XjT3DW3flCnh6zpZ+R4JfG3XrAl/P3o8wIED6s9Hea5padrv49CAbcQIBjoUIiYT1h2KdXDI7fTq0ITWCnFrjZDAGiqSJBeMc1rRMqNFF62qOWJk6Qw9WjVRhg+P33sk8P0oSaV1nEKfz8SJpbepLTUycaIQc+eq14GSJPe8z8mcaM7fzMEhchm1XJxAublyUiHgvhkUkWZWqc3einfei1YbA1duD2y3Ffksao+3erXxGUl6xxWI33vE55PbrZUf9sEHck+MFkmSL3q9mMzRSUzMwSEqB5Su/3nzIg8xOH0GRV6enDiclyf/rZdzETqclZMjnwyzs+Ob96LVxscfj82aWlqPZ2ZGkl7hvHi+RzIzgZo1tWfPjRqlf3+13LJQdg9dknO4IsDZtWsXBg0ahEaNGiElJQXnn38+xowZg7Nnz9rdNKK4U3osOnQITuS0a6HKaPXvLxcvfPxx+d/+/SNXX1VOxkuWyCf2F14o7TWJV+KxVhuHDIlNVV21xwPM5/s4peqv1vEzErwY4cRcM7KHKwKcX375BX6/H2+88QY2bdqEKVOm4PXXX8df//pXu5tGFFehiZWAM05aZuXlAW+/HXzd228D+/fLPQ3KCdDjibzaeaB4/HqPd29I6ONFOyNJCYztHq40M3sOKO2l9HjUeyzvuy84Id1NQT7FWMwygmJs4sSJolGjRqbuwyRjcjOnJdqWxYsvqie9TpkSOaFWK2FWuZhd2DFa8V4BXXm8tWvNvQ/y8+VkYq2kXrXtly2L/fNSO36BicjKIp2B22klzjthNXqKrXKVZPz3v/8dn3/+OdatW6e5TWFhIQoLC0v+PnHiBLKysphkTK6ktVxDYFKxW2itrfXJJ8Att+gXdtNaCkAhScCePYn9K97ochmBa30F0krE1VsbLF4iJca7LXGerFFukoy3b9+OV155Bffff7/uduPGjUNGRkbJJSsrK04tJLJeIq0O3LYt0K9f8HX9+gGpqZGLz4UOcYQSQk5YTWRG8mnMDuXFo5aPEZGG+ZyeOE/OYWuAM3bsWEiSpHsJ7aHZt28frr/+evTo0QN/+ctfdPf/xBNP4Pjx4yWX/Pz8WD4dopjSy/1wo7fekntsHnxQ/vett4wHccoJ/skn49RYB4p0olebfaVQO6aRqgY7ASsXkxm2DlEdOnQIhw4d0t2mYcOGSE5OBiAHN127dsXll1+Ot956Cx61jDQdrINDiSBRuui1hkP69w9OQL7jDjkIUtZPCqx5ozbU5fEAu3e7+9joMVr3R29Vb7WhJ7vWffL5gFWr5P937Cj/q/b8nDB8RvaJ6vwdo3wgy/l8PtG0aVPRu3dvUVRUFNU+mGRM5AxaCdNqCbSBVWoDE2X79VPfRyJXsjVb0Tg0KXf4cP1E3HhXv545M7wicWAV44kT5e0SKcGeopOwScb79u1Dly5dkJ2djXfeeQfegMH3unXrGt4Pe3CIYsdMRWGthOnJk4Fhw6J7fI9HXvOobdvo7u900fawmO3xi1cPYaRkccWkScBllyVOgj1FJ5rzd4UYt8kSX3zxBbZt24Zt27YhM+QT54L4jCjhmR0+UHJtQk/WnTuHX2+U3w8UFJi/n13MLjGhlSOzerVcHVhrP0p9HqPMbh8tvRyhQKNGAaNHh1/v1gR7ih9XzKLq378/hBCqFyKyVzSzb7QSptu2la8PLehmhBtOeEqS7AsvBBdsNLLEhFoCtscD9OoV36UqrKJVoTmU3w+MGxd+/fjxiZtnRdZwRYBDRM5ldvaNcpLPyVGf6pyTEznA8XjkaeVumlEWWIV6xAjz07HVgkIlI8XMfpxCeT6RghxJCl7EVNGmTWzaRYmDAQ4RlYmZ+jyhS00sWRI+1dno0MWzz8rDM5Mny//m5Dh3CrFeTRrA+HTswPo3778ffuJ32rTuSAYNkme8zZsnX/Lz5Zwb5f2kFeh6vXLNJKe+3uQMrkgytgqTjIliw0hlXaNJsj6fvEJ4pG+m4cPl4MbvLz0RCuHMKcRaSdWKaKZj2zWtOx58Pjlo7dUr/H3g8QB9+wLvvssp4+VJualkTETOYqSyrpWF5Lxe4MUXS/fn9KEavXyTaIfXnFj40apCfJmZwa9poGefLQ1uAGe+3uQMDHCIyBKRKusaHcraulX9xBa4YvTQofo9PE4bqlELRiZOLPsq8EYCy3gJHX6MVcLzmTPOr7hMzuCKaeJE5H7KST5wOrlaj8P69eH3DUw09fuB2rX1p5M7cUZVTo6cNyNJQIcO1vW0xGtatx6tmXQ5OdG3rWPH8ARjSZJn2qmVGHDa6032Yw8OETmGzyfXPQkVOFwhBPDEE8CECdrDPkOH2n/SD6T0bvTqBfTuLSdXR8uJ6zHFYh2rzExgxozg11gIebX5vn2dNTRHzsQkYyKKCyNJsZGScQPl5sozaS6/PPhXvtPWorIyGdip6zHFMuE5Ly/8NfZ65STkggL3r8lGxjDJmIgcS+tX/vz5pb0RWnk6odOFlSGJtm3lX/mBv+anT3fWCS9S74bRHploCirGSywTnufNU58OX1Cgn/NFxACHiOJCaybRsGGlSalaJ8rQICbw5OmkRFs1esnVZhJzYzEMZKVYvA4+nzxbLhRzbsgIDlERUdwE1ssJFTi0pLbgY+h1ZtdyspNanaCcHHPDOolc90aNzyf33jz+ePhtOTnA55/Hv01kHw5REZGjKb/yJ08Ov83vB6ZOlf+vNuU88Dqtng8nJuAC8vMOrLo8aJD5Hhkn1r0pC73XSnl91YIbAPjyS+e9xuQ87MEhorjTqlZspEdCqydj/Hh5BpbTEnAB9eRgsz04CrXeLbfRS5ZWe33VTJ4M9Ojh3mNA5rAHh4hcITMTGDw4/Hq1HozQX/paPR9KcAM4KwE3L089ORiQpzsH6tw58v4iFVR0ukjJ0kbXIgvM3SJSwwCHiOJu1iw5cThUaPKo2lCUWtKuWtE/JyTgzpolT3FWa9vq1fKSA4FWrACyshL7pB1paE7t9ZWk0qG5QE4KZMl5GOAQUVwpv+DVBsf9/tIieFq/9IHwXJTx442vaB4ves/T6wUOHdLuqbj33sQ9aUdaskMt12jGDO3cLScEsuRMDHCIKK70hiCEKP1FrvdLP3RK8ogRzkvA1XqeHg9w993Aww9r39fvT9yTtpFkabUp55mZcs6N0wJZci4mGRNRXBlJIs3NlU9aZpNwnZSAq/Y8PR7g44/l5Qb0nr8kAXv2yP93y1R4s6J9rdSm3DslmZxih0nGROR4ob/gQym/yKOZFu2kBFy19k+fLi8vESmJVpKAOXPiszq3XaJ9rZxe2JGcgz04RGQL5Rd8Xp68eKbWL3In9cpEQ61AoZFp0KEraXs8ctDTsaM7jwNRWURz/maAQ0S2c3sQY9YLLwTX7AlcLR1QnxUWeJuTavzEk5KblZYGnDqVmEN3pI4BTgQMcIjIboFF7iQJmDABqF49OK8ksGihmkReokFL4HFTeDzy8bvsMgY7iY4BTgQMcIjITnrrSQFyL1Zqqtw78eWXwPPPa+8rN1fOYSkPjAzrleeerfKAScZERA6mNfV9/nz5/9u3A+3by4nF48Zp76e8TY02Ut2YRf8oFAMcIqI4UStyB5QuOzB4cOmJXKtv3eOxv8ZPLOgtvql13EKx6B8FYoBDRBQnelPk/X71oEaS5H89HmD4cGD37sQbhtFaHV6RmSnnJUVS3nq2SB8DHCKiOMrJAd5/H3jyycjbSlJpgAMAzZsnZs+N3uKbijZt1O+v9Ow4oXo1OUsFuxtARFReBM4E8njCa90EUgKb0BN/Tk5incT1luQIfJ5paer3f/BB4P/+r/yUGCDj2INDRBQHaj0VkYQGP4mYYxJp8U3FqVPq93/tNQY3pI4BDhFRHKj1VOgV6dBahTzRckyMLsmhlWicyAuTUtkwwCEiigOtnorAHBs9iTp7CtBfX0qZXQXIRf1CJWLQR9ZggENEFAehPRUeDzB0qHzS1lp4NFROTuzaZze1xTdDZ1dVqwZMnMjEYjKGlYyJiOLI5wOmTgUmTy5NNp4wQZ4ltG4dMHq0nGujprxXLw6t+szcm/KDlYyJiFxACW4A+d/Ro+WT9fDh8gl83rzwoavyNhQTaXZVaG8PUSgGOEREcaR34gbkk/aJE8G3J3L+jRajs6uItDDAISKKo0gnbmU6eWDygBBAq1bxa6MTGJ1dRaSFAQ4RURzpnbh9Pnl4Sm06efv24UsYJDq92VVEkTDJmIjIBj5fcKJsYJVjLUqSLXsxqLyJ5vzNpRqIiGyQmVkaqIRWOdaitoQBEanjEBURkc3UEo8BzqQiKgsGOERENtNKPA4sAsgkWyJzGOAQEdlMK/F4xAgm2RJFi0nGREQOEZp4TEQyJhkTEblYYOIxEZUNh6iIiIgo4TDAISJyCJ9Pzrfx+exuCZH7uSbAufnmm5GdnY3k5GTUq1cPffv2xb59++xuFhGRJWbNklfPvvpq+d/yVrWYyGquCXC6du2KefPm4ddff8WCBQuwfft23HHHHXY3i4iozEIL/fn9wH33sSeHqCxck2Q8dOjQkv83aNAAo0ePxq233opz586hYsWKNraMiKhs9FYYZ9IxUXRcE+AEOnLkCP71r3+hY8eOusFNYWEhCgsLS/4+ceJEPJpHRGSKUugvMMhh1WKisnHNEBUAjBo1CqmpqahRowb27NmDjz/+WHf7cePGISMjo+SSlZUVp5YSERmnt8I4EUXH1kJ/Y8eOxVNPPaW7TV5eHtq0aQMAOHToEI4cOYLdu3fjqaeeQkZGBj799FNIoQu2/I9aD05WVhYL/RGRI7HQH5G6aAr92RrgHDp0CIcOHdLdpmHDhkhOTg673ufzISsrC6tWrUKHDh0MPR4rGRMREbmP6yoZ16xZEzVr1ozqvkpcFthDQ0RERAS4JMl47dq1WLt2LTp37oxq1aphx44dePLJJ3H++ecb7r0hIiKi8sMVScYpKSlYuHAhunXrhmbNmmHgwIG4+OKLsWLFCiQlJdndPCIiInIYV/TgtGzZEsuWLbO7GUREROQSrujBISIiIjKDAQ4RERElHAY4RERElHAY4BAREVHCYYBDRERECYcBDhERESUcBjhERESUcFxRB8cqyvIOJ06csLklREREZJRy3jazfGa5CnBOnjwJAMjKyrK5JURERGTWyZMnkZGRYWhbW1cTjze/3499+/YhPT0dkiTZ3RxbnDhxAllZWcjPz+eK6hbhMbUej6n1eEytx2NqPa1jKoTAyZMnUb9+fXg8xrJrylUPjsfjQWZmpt3NcIQqVarwA2kxHlPr8Zhaj8fUejym1lM7pkZ7bhRMMiYiIqKEwwCHiIiIEg4DnHImKSkJY8aMQVJSkt1NSRg8ptbjMbUej6n1eEytZ+UxLVdJxkRERFQ+sAeHiIiIEg4DHCIiIko4DHCIiIgo4TDAISIiooTDAKccGDduHNq2bYv09HTUrl0bt956K3799Ve7m5VQxo0bB0mS8Nhjj9ndFNfbu3cv7r77btSoUQOVK1fGpZdeivXr19vdLNcqKirC3//+dzRq1AgpKSlo3Lgxnn76afj9frub5hpff/01unfvjvr160OSJHz00UdBtwshMHbsWNSvXx8pKSm46qqrsGnTJnsa6xJ6x/TcuXMYNWoUWrZsidTUVNSvXx/33HMP9u3bZ+oxGOCUAytWrMBDDz2ENWvWYOnSpSgqKsJ1112HgoICu5uWEPLy8jB9+nS0atXK7qa43tGjR9GpUydUrFgR//nPf/Dzzz/jxRdfRNWqVe1ummtNmDABr7/+OqZNm4bNmzdj4sSJmDRpEl555RW7m+YaBQUFuOSSSzBt2jTV2ydOnIjJkydj2rRpyMvLQ926dXHttdeWrH9I4fSO6enTp7Fhwwb84x//wIYNG7Bw4UJs2bIFN998s7kHEVTuHDhwQAAQK1assLsprnfy5EnRtGlTsXTpUtGlSxcxZMgQu5vkaqNGjRKdO3e2uxkJ5cYbbxQDBw4Muu72228Xd999t00tcjcAYtGiRSV/+/1+UbduXTF+/PiS686cOSMyMjLE66+/bkML3Sf0mKpZu3atACB2795teL/swSmHjh8/DgCoXr26zS1xv4ceegg33ngjrrnmGrubkhAWL16MNm3aoEePHqhduzZat26NGTNm2N0sV+vcuTO++uorbNmyBQDw3//+FytXrsSf//xnm1uWGHbu3InffvsN1113Xcl1SUlJ6NKlC1atWmVjyxLL8ePHIUmSqd7ccrXYJsljxcOGDUPnzp1x8cUX290cV/vggw+wYcMG5OXl2d2UhLFjxw7885//xLBhw/DXv/4Va9euxaOPPoqkpCTcc889djfPlUaNGoXjx4+jefPm8Hq9KC4uxnPPPYc+ffrY3bSE8NtvvwEA6tSpE3R9nTp1sHv3bjualHDOnDmD0aNH48477zS1qCkDnHLm4Ycfxg8//ICVK1fa3RRXy8/Px5AhQ/DFF18gOTnZ7uYkDL/fjzZt2uD5558HALRu3RqbNm3CP//5TwY4UZo7dy7ee+89vP/++7jooouwceNGPPbYY6hfvz769etnd/MShiRJQX8LIcKuI/POnTuH3r17w+/347XXXjN1XwY45cgjjzyCxYsX4+uvv0ZmZqbdzXG19evX48CBA7jssstKrisuLsbXX3+NadOmobCwEF6v18YWulO9evXQokWLoOsuvPBCLFiwwKYWud+IESMwevRo9O7dGwDQsmVL7N69G+PGjWOAY4G6desCkHty6tWrV3L9gQMHwnp1yJxz586hZ8+e2LlzJ5YtW2aq9wbgLKpyQQiBhx9+GAsXLsSyZcvQqFEju5vket26dcOPP/6IjRs3llzatGmDu+66Cxs3bmRwE6VOnTqFlTDYsmULGjRoYFOL3O/06dPweIK/6r1eL6eJW6RRo0aoW7culi5dWnLd2bNnsWLFCnTs2NHGlrmbEtxs3boVX375JWrUqGF6H+zBKQceeughvP/++/j444+Rnp5eMmackZGBlJQUm1vnTunp6WE5TKmpqahRowZzm8pg6NCh6NixI55//nn07NkTa9euxfTp0zF9+nS7m+Za3bt3x3PPPYfs7GxcdNFF+P777zF58mQMHDjQ7qa5xqlTp7Bt27aSv3fu3ImNGzeievXqyM7OxmOPPYbnn38eTZs2RdOmTfH888+jcuXKuPPOO21stbPpHdP69evjjjvuwIYNG/Dpp5+iuLi45LxVvXp1VKpUydiDlGVqF7kDANXL7Nmz7W5aQuE0cWt88skn4uKLLxZJSUmiefPmYvr06XY3ydVOnDghhgwZIrKzs0VycrJo3Lix+Nvf/iYKCwvtbppr5Obmqn6H9uvXTwghTxUfM2aMqFu3rkhKShJXXnml+PHHH+1ttMPpHdOdO3dqnrdyc3MNP4YkhBBli8OIiIiInIU5OERERJRwGOAQERFRwmGAQ0RERAmHAQ4RERElHAY4RERElHAY4BAREVHCYYBDRERECYcBDhFFbdeuXZAkCRs3brS7KWX27bffomXLlqhYsSJuvfVWu5tDRGXEAIeIXKt///6WBSPDhg3DpZdeip07d+Ktt96yZJ9GvfXWW6hatWpcH5Mo0THAISqHzp49a3cTyqS4uNjyxSK3b9+Oq6++GpmZmYaDDbcfR6JExgCHqBy46qqr8PDDD2PYsGGoWbMmrr32WgDAzz//jD//+c9IS0tDnTp10LdvXxw6dKjkfp9//jk6d+6MqlWrokaNGrjpppuwfft2U4/dsGFDPPPMM7jzzjuRlpaG+vXr45VXXgnaZvLkyWjZsiVSU1ORlZWFBx98EKdOnSq5Xenh+PTTT9GiRQskJSVhwIABePvtt/Hxxx9DkiRIkoTly5ertqGwsBCPPvooateujeTkZHTu3Bl5eXkASofZDh8+jIEDB0KSJM0enIYNG+LZZ59F//79kZGRgcGDBwMAFixYgIsuughJSUlo2LAhXnzxxaD7HT16FPfccw+qVauGypUr44YbbsDWrVsBAMuXL8eAAQNw/PjxkucxduxYAMBrr72Gpk2bIjk5GXXq1MEdd9xh6tgTlWuxWkiLiJyjS5cuIi0tTYwYMUL88ssvYvPmzWLfvn2iZs2a4oknnhCbN28WGzZsENdee63o2rVryf0+/PBDsWDBArFlyxbx/fffi+7du4uWLVuK4uJiIYQoWRTv+++/13zsBg0aiPT0dDFu3Djx66+/ipdffll4vV7xxRdflGwzZcoUsWzZMrFjxw7x1VdfiWbNmokHHnig5PbZs2eLihUrio4dO4pvv/1W/PLLL+LYsWOiZ8+e4vrrrxf79+8X+/fv11xA8tFHHxX169cXn332mdi0aZPo16+fqFatmjh8+LAoKioS+/fvF1WqVBEvvfSS2L9/vzh9+rTmc6lSpYqYNGmS2Lp1q9i6datYt26d8Hg84umnnxa//vqrmD17tkhJSQlazPbmm28WF154ofj666/Fxo0bRU5OjmjSpIk4e/asKCwsFC+99JKoUqVKyfM4efKkyMvLE16vV7z//vti165dYsOGDWLq1KlGXm4iEkIwwCEqB7p06SIuvfTSoOv+8Y9/iOuuuy7ouvz8fAFA/Prrr6r7OXDggABQslKy0QDn+uuvD7quV69e4oYbbtC8z7x580SNGjVK/p49e7YAIDZu3Bi0Xb9+/cQtt9yiuR8hhDh16pSoWLGi+Ne//lVy3dmzZ0X9+vXFxIkTS67LyMgICkq0nsutt94adN2dd94prr322qDrRowYIVq0aCGEEGLLli0CgPj2229Lbj906JBISUkR8+bNK3l+GRkZQftYsGCBqFKlijhx4oRum4hIHYeoiMqJNm3aBP29fv165ObmIi0treTSvHlzACgZhtq+fTvuvPNONG7cGFWqVEGjRo0AAHv27DH12B06dAj7e/PmzSV/5+bm4tprr8V5552H9PR03HPPPTh8+DAKCgpKtqlUqRJatWpl6nGV53Du3Dl06tSp5LqKFSuiXbt2QW0wKvQ4bt68OWjfANCpUyds3boVxcXF2Lx5MypUqIDLL7+85PYaNWqgWbNmuo9/7bXXokGDBmjcuDH69u2Lf/3rXzh9+rTp9hKVVwxwiMqJ1NTUoL/9fj+6d++OjRs3Bl22bt2KK6+8EgDQvXt3HD58GDNmzMB3332H7777DoA1ybWSJAEAdu/ejT//+c+4+OKLsWDBAqxfvx6vvvoqAODcuXMl26ekpJTcxwwhRNDjBV4fzf5Cj6PafpTHDP2/mcdPT0/Hhg0bMGfOHNSrVw9PPvkkLrnkEhw7dsx0m4nKIwY4ROXUn/70J2zatAkNGzZEkyZNgi6pqak4fPgwNm/ejL///e/o1q0bLrzwQhw9ejSqx1qzZk3Y30pv0bp161BUVIQXX3wR7du3xwUXXIB9+/YZ2m+lSpVQXFysu02TJk1QqVIlrFy5suS6c+fOYd26dbjwwgtNPpNwLVq0CNo3AKxatQoXXHABvF4vWrRogaKiopLgEAAOHz6MLVu2lDy+1vOoUKECrrnmGkycOBE//PADdu3ahWXLlpW5zUTlAQMconLqoYcewpEjR9CnTx+sXbsWO3bswBdffIGBAweiuLgY1apVQ40aNTB9+nRs27YNy5Ytw7Bhw6J6rG+//RYTJ07Eli1b8Oqrr2L+/PkYMmQIAOD8889HUVERXnnlFezYsQPvvvsuXn/9dUP7bdiwIX744Qf8+uuvOHToUFCPjyI1NRUPPPAARowYgc8//xw///wzBg8ejNOnT2PQoEFRPZ9Ajz/+OL766is888wz2LJlC95++21MmzYNw4cPBwA0bdoUt9xyCwYPHoyVK1fiv//9L+6++26cd955uOWWW0qex6lTp/DVV1/h0KFDOH36ND799FO8/PLL2LhxI3bv3o133nkHfr8fzZo1K3ObicoFOxOAiCg+unTpIoYMGRJ2/ZYtW8Rtt90mqlatKlJSUkTz5s3FY489Jvx+vxBCiKVLl4oLL7xQJCUliVatWonly5cLAGLRokVCCONJxk899ZTo2bOnqFy5sqhTp4546aWXgraZPHmyqFevnkhJSRE5OTninXfeEQDE0aNHhRDqSbhCyEnP1157rUhLSxMARG5urmob/vjjD/HII4+ImjVriqSkJNGpUyexdu3aoG2MJhlPmTIl7PoPP/xQtGjRQlSsWFFkZ2eLSZMmBd1+5MgR0bdvX5GRkVHyHLds2RK0zf333y9q1KghAIgxY8aIb775RnTp0kVUq1ZNpKSkiFatWom5c+fqto+ISklCaAwQExFZoGHDhnjsscfw2GOP2d0UIipHOERFRERECYcBDhERESUcDlERERFRwmEPDhERESUcBjhERESUcBjgEBERUcJhgENEREQJhwEOERERJRwGOERERJRwGOAQERFRwmGAQ0RERAmHAQ4RERElnP8HwGS7Yo/PGPUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAHHCAYAAACGDCH+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACO20lEQVR4nO3dd3gU1foH8O9sgCQkEHpNIggIoiBeQWlWROxyvdK8Agoidoo0O4IaSBAsKApEEL3S5VqviBJRmgSQnw0V6SsovUuA7Pn9MU6yZWZ2ZrM7Zff7eZ48kM3s7JnZMu+e8573SEIIASIiIiIiG3nsbgAREREREYNSIiIiIrIdg1IiIiIish2DUiIiIiKyHYNSIiIiIrIdg1IiIiIish2DUiIiIiKyHYNSIiIiIrIdg1IiIiIish2DUiIiIiKyHYNSIiIiIrKdo4PSlStXYvTo0Th06JDljz137lycd955SE1NhSRJ2LBhQ9j7jBkzBs2bN4fP54t9A3UcPXoUI0aMwDXXXIOaNWtCkiSMHj1addv8/HzUr18fx48fj1l7nHJeAHPnBgCOHTuGwYMHo169ekhJSUGrVq0wZ86cgG2sOIcAMHPmTEiShG3btgHQf3+MHj0akiRh3759MW1TtGm97yJ5PzpFrD/HrHqulcdxSnuU94PyU65cOdStWxc9e/bEpk2bovY4GzZswA033IDs7GykpqaiWrVqaNeuHd555x1D9zf7mbN8+XJcf/31qFq1KlJTU9GkSROMHTs2YJulS5eiX79+aNasGdLS0lC/fn3ccsstWLduXUTbAcCdd94ZcD6Df1avXm1qO7PHZGZbI5/LsTr3APDtt9+ia9euqFevHipWrIhmzZphzJgxOHHiRMB2Rl87Zs/pmjVr0KVLF1SqVAnp6em48sorsWLFioBtvvzyS1PPUVlE87EcH5Q+88wzlgele/fuRe/evdGoUSN8+umnWLVqFc455xzd++zatQu5ubkYM2YMPB57T+v+/fsxdepUFBUVoWvXrrrb9u3bF2lpacjNzY1JW5x0XgBz5wYAbr31Vrz11lt4+umn8b///Q9t2rRBr1698O6775ZsE+tzqLjhhhuwatUq1K1bF4B9749Y0XrfRfJ+dJJ4e56cZsaMGVi1ahU+//xzPPjgg/jggw/QsWNHHDx4MCr7P3ToELKysvD888/jk08+waxZs9CgQQP07t0bzz77bNj7m/nMeffdd3H55ZcjIyMDs2bNwieffIKRI0dCCBGw3ZQpU7Bt2zYMGjQIn3zyCV566SXs2bMHbdu2xdKlS01vBwBPPvkkVq1aFfJTo0YN1K9fH23atDG1ndljMrOtkc/lWJ37n376Ce3bt8e2bdvw4osv4qOPPkLPnj0xZswY9OrVK2Bbo68dM+e0sLAQl112Gf766y+8/fbbePvtt3Hy5El06tQJq1atCjmu559/PmS/559/vu65iFRUHktEwfHjx6OxmxB5eXkCgNi6dWtM9q9l+fLlAoCYO3eu4fuMGDFC1K9fXxQXF8ewZcb4fD7h8/mEEELs3btXABBPP/205vYTJkwQGRkZMXkenXRehDB3bj7++GMBQLz77rsBt3fu3FnUq1dPnDlzpuS2WJ5DLXrvj6effloAEHv37rWsPWWl9b6L5P3oBMprIVafY8r+rXqulccxul2s2zNjxgwBQBQWFgbc/swzzwgA4s0334zp419yySUiKysr7HZGP3O8Xq9IS0sT9913X9h9/vnnnyG3HT16VNSuXVt06tTJ9HZavvzySwFAPPHEExFtZ+aYjG5r5nM5Fuf+8ccfFwDEb7/9FnD7PffcIwCIAwcOhN2HkdeO1jnt0qWLqF27dsC15siRI6JGjRqiffv2JbcVFBQIAGL+/Plh21NW0Xws011XytDM+vXrcdttt6Fq1apo1KgRALnru1OnTqhUqRIqVqyI9u3b4+OPP1bdT7htR48ejeHDhwMAGjZsWNIV/OWXX2Lv3r245557kJWVheTkZNSsWRMdOnTA559/Hrb94R73zjvvRMeOHQEAPXr0gCRJuOKKK3T3eerUKeTn5+P2228P6A3cvXs30tPT0bNnz4DtP/roI5QvXx6PP/542PZGQjlXRv373//GkSNHVIc/ykLrvADuODeLFi1Ceno6unXrFnD7XXfdhV27duGbb74puc3oOfzxxx8hSRLmz59fctu6desgSRLOO++8gG1vvvlmXHTRRSW/+w/f670//P3555/o1asXMjIyULt2bfTr1w+HDx82dPw///wzevXqhdq1ayM5ORnZ2dno06cPioqKSrYx+p7ftGkTbr/9dtSqVQvJyck499xz8eqrr5b8Xet9p/d+jPRzQPkM+/bbb3HrrbeicuXKyMjIwB133IG9e/eabrv/PoM/F/WepzvvvBMNGjTQbJ+R/fvbuXNn2OMxciwA8PHHH6NVq1ZITk5Gw4YNMWHCBN1zqiZce77++mtIkoTZs2eH3HfWrFmQJAmFhYWmH7d169YA5Nd+LNWoUQPlypULu53Rz5zp06fj+PHjGDlyZNhta9WqFXJbeno6mjdvjp07d5reTkt+fj4kSUK/fv0i2s7MMRnd1szncizOffny5QEAGRkZAbdXqVIFHo8HFSpUCLsPI68drXO6YsUKXHHFFahYsWLJbZUqVcJll12GlStXYvfu3WEfX43Rz4aYMxvFKt+CzzrrLDFy5EixZMkS8d///ld8+eWXonz58uKiiy4Sc+fOFf/973/FNddcIyRJEnPmzAnYh5Ftd+7cKR566CEBQLz33nti1apVYtWqVeLw4cOiS5cuombNmmLq1Kniyy+/FP/973/FU089FfI4wYw87m+//SZeffVVAUA8//zzYtWqVeLHH3/U3e9XX30lAIhPPvkk5G/PPPOMkCRJrF27Vgghf6NISUkRDz30kOFzXhZGekqFEOLcc88Vt956a1QfW++8COH8c9O2bVvRpk2bkNt/+OEHAUC88cYbAbcbPYd169YV99xzT8nv48aNE6mpqQKA+P3334UQQpw+fVpUrlxZjBgxomQ7pWdo69atuu8PIUrfp02bNhVPPfWUWLJkiZg4caJITk4Wd911V9g2btiwQaSnp4sGDRqI119/XXzxxRfinXfeEd27dxdHjhwRQhh7PwkhxI8//igyMjJEixYtxKxZs8Rnn30mHnnkEeHxeMTo0aOFENrvO733Y6SfA/6fYcOHDxeLFy8WEydOFGlpaeLCCy8Up06dMtX24H36fy7qPU99+/YVZ511lmb7tNrsv38zx2P0WD7//HORlJQkOnbsKN577z0xf/580aZNG5GdnW2qp9TI+b3wwgtFhw4dQvbRpk0b1feeP62e0smTJwsAYuHChQG3+3w+cfr0aUM/aoqLi8Xp06fFnj17xKuvvirKlSsnXn/99bDnw5/eZ85VV10lqlWrJj799FNxwQUXiKSkJFGzZk0xcODAkve1nkOHDomMjAzxz3/+M2rbpaamiquvvjri7cwck9FtzX4uK6J17rdu3SqqVKkibrvtNrF582Zx5MgR8eGHH4qMjAzNa5fZ147eOa1QoYLo06dPyO29evUSAMTixYuFEKW9l7Vq1RJJSUmiUqVK4pprrhFff/11yH2NfjZoMfNY4UQclD711FMBt7dt21bUqlVLHD16tOS2M2fOiPPPP19kZmaWdKGb2VZr2Cs9PV0MHjzYbNMNP67Zrujx48cLAOKPP/4I+dvx48dFvXr1RKdOncSaNWtEpUqVxF133RVwPmLJaFD673//W9SuXTvgNp/PJw4ePBgyJP3XX3+JgwcPBgyTCCHE4cOHSwIWIfTPixDOPzdNmjQRXbp0Cbl9165dJUGSP7VzqOaOO+4QZ599dsnvV199tRgwYICoWrWqeOutt4QQQqxYsUIAEJ999lnJdv5BqRDGhu9zc3MDbr///vtFSkpK2HN81VVXiSpVqog9e/ZobmP0/dSlSxeRmZkZ8uH+4IMPipSUlJLhLq33ndbtkX4OKOdmyJAhAbf/5z//EQDEO++8U3Kb0bZrfS4Kof08RRKUqu3f6PEYPZZLLrlE1KtXT/z1118l2xw5ckRUq1bNVFBq5Pwqr+lvv/225LY1a9YIACXvBS3KfVevXi1Onz4tjh49Kj799FNRp04dcdlll4UEl8rryMiP2ntq4MCBJX+vUKGCeO2118Kei2B6nzlNmzYVKSkpolKlSuL5558XBQUFIjc3V6SmpooOHTqEfc/++9//FuXKlSv5kl/W7aZMmSIAiNmzZ0e8nZljMrqt2c9lRTTP/caNG0WzZs0CXjMPP/yw5nNk9rWjd05btWolzjnnnICUuNOnT4uzzz47IK1h/fr1YtCgQWLRokXiq6++Em+++aY499xzRVJSkvj0008D9mn0s0GLmccKJ+Kg9P/+7/9Kbjt27JiQJEncf//9IdsrgcnGjRtNb6v1Ya5cMMeOHStWrVoV8M1bi5nHNRuUDho0SEiSFBKkKd58800BQKSlpYnu3btrbuf/2EZ+/D/ItRgNSocMGSIkSQr4IN+9e7cAIPr27RuwrfIaWLVqVcDttWvXFhdccEHJ7+HOixDOPjdNmjQR1157bcjtyodfTk5OwO1q51CNcjHdsmWL+Ouvv0RKSopYuHChuPXWW8Udd9whhJB7kZOTk8WJEydC7mcmKP35558Dbn/99dd1vygIIX9ZSEpKCujNDWb0/fTXX3+JcuXKiYceeiikN+qTTz4J6Ek3G5RG8jkgROm5Cb4onz59WpQrV070799fCCFMtV3tc1ERzaBUbf9GjsfosRw7dkx4PB7x4IMPhjxO3759TQWl4c6vEEKcPHlS1KpVS9x9990lt/Xu3VvUrFlTnDx5UvdxlPdD8M+5554rDh48GLL9kSNHRGFhoaGfoqKikPtv375dFBYWio8//ljce++9wuPxiLy8vLDnw5/eZ06TJk1UP1defPFFAUAsWbJEc79PPPGEACBeeeUV3cc3up0QQrRu3VpUr1497POgt52ZYzK6rdnPZUW0zv3WrVtF48aNRYcOHcSCBQvEsmXLRG5urqhcubLo16+f6mObfe3ondP8/HwBQNx3333C6/WKHTt2iP79+4ukpCQBQHek6ODBgyIzM1O0bNmy5DYzn3PBf9f7oqT2WEaET4jRoMwABoCDBw9CCBFwm6JevXoA5FlwZrfVMnfuXDz77LOYPn06nnzySaSnp+Of//wncnNzUadOHdX7RONxtfz1118oX748kpKSVP+uzBSWJAkzZ87U3A4AmjZtimnTphl63OzsbPON1ZCSkgIhBE6ePIn09PSo7DPceQGcfW6qV6+u+po4cOAAAKBatWoBtxs9h1dffTUA4PPPP0fDhg1x+vRpXHXVVfjzzz9Lyo98/vnn6NChA1JTU8t8DP6Sk5MByM+NloMHD6K4uBiZmZm62xh5P1WqVAlnzpzBK6+8gldeeUV1X5GWDorkc8Bf8DblypULeM73799vuu1q5yOa9PavdzxGj+XgwYPw+Xyq58/IOTXaHkVycjIGDhyIF154AXl5eTh9+jTmzZuHoUOHlrxWw5k1axbOPfdcHD16FHPnzsUbb7yBXr164X//+1/Adunp6WjVqpWhfarl+2VnZ5d8rlx//fUAgEcffRR9+/ZFzZo1De1XT/Xq1bFp0yZ06dIl4PbrrrsOgwcPxvr160s+O/w988wzePbZZ/Hcc8/hwQcf1Ny/0e0A4LvvvsPatWsxaNAg3ech3HZmjsnotmY/l40w085Ro0bhyJEj2LBhA9LS0gAAl112GWrUqIF+/fqhT58+uPzyywP2Y+a1E+6c9uvXD3v37sWzzz6LKVOmAADatWuHYcOGYfz48ahfv77mcVapUgU33ngjXn/9dfz1119ITU01/Nmwbds2NGzYMOD2goICzTk3ao9lRMRBqX/ycNWqVeHxeFQTbHft2gVATuw1u62WGjVq4MUXX8SLL76IHTt24IMPPsCoUaOwZ88efPrpp6r3icbj6rXn1KlTOH78eMmLVLFhwwbceOON6NChA1asWIE333wTDzzwgOa+6tati7vvvjuidpTFgQMHkJycHBBM1alTR7Vsx+jRo1Vrvf3xxx8Bv+udF8D556ZFixaYPXs2zpw5E3CR+v777wEgpNSF2jlUk5mZiXPOOQeff/45GjRogNatW6NKlSro1KkT7r//fnzzzTdYvXo1nnnmmegflAHVqlVDUlISvF6v5jZG309Vq1ZFUlISevfurfncBn/QGRXJ54C/P/74I+AD/MyZM9i/f39JIB9J281MMExJSQmYNKbQC9L19q93PEaPJSUlBZIkhbyXlf2bEe78Ku677z6MGzcOb775Jk6ePIkzZ87g3nvvNfw45557bsnkpiuvvBLFxcWYPn06FixYgNtuu61ku2XLluHKK680tM+tW7eqTkLzd/HFF+P111/Hli1bohKUtmzZUrWmo/IZrFZS75lnnin5PH7sscc09210O0V+fj4AhP28DbedmWMyuq3Zz2UjzLRzw4YNaN68ecg1TSnb9MMPP4QEpcH0XjtGzv3IkSMxePBgbNq0CZUqVcJZZ52FgQMHIi0tLWByrBrlmJTPEqOfDZUqVQqZeNi0aVNTj2WIqX5VoV3uo127dqJOnToBw43FxcWiRYsWITmlRrd9+eWXBQDx008/hW1X165dRc2aNXW3Mfq4ZofvZ82apTq09vPPP4tatWqJ6667Tpw6dUrccsstokaNGuLQoUOG9hsNRofvO3fuLC688MKoPrbWeRHCHedGGboIHg659tprQ0qPCGHuHN5///2iRo0a4sILLwwo+ZGdnS2uueYaAUCsWbMm4D7Bw/d67w+t92nwPrRcddVVomrVqrplfYy+n66++mpxwQUXqA6J+jM7fK/GyOdAuJzHt99+u+Q2o23XK4Ok9Tzl5OQIj8cTkEpRVFQkGjdurDl8r7Z/o8dj9FhinVPqf34Vt99+u2jUqJHIysoSXbt2DfsYQmhPdDpw4ICoWrWqOPfccwPy7so6fB+sd+/ewuPx6OZdB9P7zFm8eLEAIJ577rmA2ydOnCgAhEwaGTNmjADCl2syup3i5MmTolq1auLiiy8u83ZmjsnotmY/lxXROvdXXnmlqFmzZkAuvRBCTJ06VQAomYCoR+u1Y/TcB9u+fbvIyMgIm2N/4MABUb9+fdGqVauA241+Npih9VjhRC0oVWbiXnLJJWL+/Pni/fffF126dNGdfR9uW+ViNHDgQLFy5UpRWFgoDh06JC688EKRl5cnPvzwQ/Hll1+KvLw8kZKSIm6//Xbdtpt9XKNB6Y4dOwQQOOtv69atIjMzU1x66aUlF+2NGzeKpKSkgBnVsfLJJ5+I+fPnl+RsduvWTcyfP1/Mnz8/ZOJScXGxyMjIEEOHDo1qG9TOixDuOjedO3cWVatWFVOnThVLly4VAwYMEEDgZA0hzJ/DhQsXluTALVu2rOT2u+66SwAQVatWDantGhxQqr0/lIlmZQ1Kldn3Z599dsmxz549W/Tq1Stk9n2499OPP/4oqlatKi6++GIxY8YMUVBQID744AMxceJEceWVV5ZsZyYoLcvnQPDs8M8++0xMmjRJpKenh3wwG227XtCo9Txt2bJFlC9fXlxxxRXi448/FgsXLhSXX365aNiwYURBabjjMXosn332mfB4PKJjx45i0aJFYsGCBaJNmzYiKyvLVFBq5Pwqvvnmm5L3w+effx72MYTQDkqFECI3N1czADZrwIAB4pFHHhFz584VX375pViwYIHo0aOHACCGDx9est2XX34pkpKSxDPPPBOyD6OfOTfddJNITk4WY8eOFUuWLBE5OTkiJSVF3HjjjQH7mzBhggAgrr322pKKDv4/ZrfzN2fOHAFATJ06Vfe8GN3O6DGZ2dbo57IQ0T/377//vpAkSbRt21bMnTtXfPHFF+K5554T6enponnz5gGvb6OvHTPn9PvvvxejR48WH330kViyZImYMGGCqFGjhmjdunVAoNyrVy8xcuRIMX/+fFFQUCCmTp0qmjZtKsqVKxeSn2z0s0GLmccKJ2pBqRBCfP311+Kqq64SaWlpIjU1VbRt21Z8+OGHqvsxuu2jjz4q6tWrJzwejwAgPv30U3HvvfeKli1bisqVK4vU1FTRtGlT8fTTTxsqXG7kcSMpBHvppZeK66+/XgghJ1w3atRI/OMf/wiZzTZgwACRnJwc8wUBzjrrLNVJAGoByRdffCEAiHXr1kW9Hf7nRQj3nZujR4+Khx9+WNSpU0dUqFBBtGzZUnVGpNlzePDgQeHxeERaWlrABB2lN0mttJRaQBn8/igoKBBClD0oFUKIn376SXTr1k1Ur15dVKhQQWRnZ4s777wzIPne6Pt469atol+/fqJ+/fqifPnyombNmqJ9+/bi2WefLdnGTFB68uTJiD8HlHOzbt06cdNNN4n09HRRqVIl0atXL9Vi40barve5KIT28/TJJ5+IVq1aidTUVHH22WeLyZMn60500gtKjRyPkWMRQogPPvhAtGzZsuR5HzdunGq7onF+FQ0aNBDnnntu2P0r9ILSv/76S2RnZ4smTZroTp404s033xSXXnqpqFGjhihXrpyoUqWKuPzyy0MCXuV1qtYTZ/Qz58SJE2LkyJEiKytLlCtXTmRnZ4tHH300ZMLL5Zdfrrk//+fI6Hb+OnfuLNLS0gIqqZRlO6PHZGZbo5/LQkT/3AshxNKlS8U111wj6tSpI1JTU8U555wjHnnkEbFv376A7Yy+dsyc019++UVcdtllolq1aqJChQqicePG4oknnhDHjh0L2C4nJ0e0atVKZGRklJS4+uc//xkyAqcw+tmgxuxj6ZGEUEkaJNMWLlyIHj16YPv27bqJxk7Uu3dvbNmyJWTt3Ghw83kxI5bnkKJr9OjReOaZZ7B3796I88gpur777jtccMEFePXVV3H//ffb3Rwison9i5HHiVtvvRVt2rRBTk6O3U0xZfPmzZg7dy7Gjx8fk/279byYEetzSBSvNm/ejKVLl+Kee+5B3bp1ceedd9rdJCKyEYPSKJEkCdOmTUO9evXg8/nsbo5hO3bswOTJk0uWcow2t54XM2J9Doni1dixY9G5c2ccO3YM8+fPD1g6kYgSD4fviYiIiMh27CklIiIiItsxKCUiIiIi2zEoJSIiIiLbRbzMKJnj8/mwa9cuVKpUydySW0RERGQbIQSOHj2KevXqqS73StHDoNQiu3btQlZWlt3NICIiogjs3LkTmZmZdjcjrjEotUilSpUAyC/qypUr29waIiIiMuLIkSPIysoquY5T7DAotYgyZF+5cmUGpURERC7D1LvYY3IEEREREdmOQSkRERER2Y5BKRERERHZjkEpEREREdmOQSkRERER2Y5BKRERERHZjkEpEREREdmOQSkRERER2Y5BKRERERHZjkEpEREREdmOQSkRERER2Y5BKRFRnPJ6gYIC+d9ElOjHT+Q2DEqJiOJQfj5w1lnAVVfJ/+bn290iayX68RO5kSSEEHY3IhEcOXIEGRkZOHz4MCpXrmx3c4gojnm9ciDm85XelpQEbNsGZGba1izLJPrxU3Tx+m0d9pQSEcWZTZsCAzIAKC4GfvvNnvZYLdGPn8itGJQSEcWZJk0AT9Cne1IS0LixPe2xWqIfP5FbMSglInKgskzSycwEpk6VAzFA/veNNxJn6DrRj5/IrZhTahHmpBCRUfn5wD33yEPQHo8cYLVsCXz9NXDppUCbNsb24/XKQ9aNGydmQJbox0/Rweu3dRiUWoQvaiIyorAQuOQSQO+TuW9fYOZMy5rkeF6vnEfapAmDT4o+Xr+tw+F7IiKHyM8H2rbVD0gB4K235OCV9Es/sU4pkbswKCUicgCvt3TI3ogVK2LbHjcIPmc+HzBwoHw765QSuQ+DUiIiB1ArY6SnQ4fYtcUttEo/rVqlHawSkXMxKCUicgC1MkYeD7BmjZxD6q9vX6BuXQ5Na5V+EoJ1SonciEEpEZEDqJUxmjpVnmk/c6YcnE6aJP976aUcmga0Sz+1b886pURuxNn3FuHsPSIKpjZrPFwZo3haQjNas+bVzll+vjxkX1xcGqz27x+ddlNi4fXbOuwpJSKygdZEnMxM4IortAPSqVPjY2g6mhOR1M5Z//5yoF5QIP/LgJTI+dhTahF+0yIiRSS9nfn5wIAB6uWi3NZTGu3eXtYppVji9ds67CklIrKY1qxxrd5OpfSRWkAqSe5bQtPs8eth6Sei+MGglIjIYlqzxhs3Vi/4Hq5cVJcusWlnrOgdvxl6dUqDt0v0SgVEbsCglIjIYpmZ8spN/i65BFi8WL3Xr0kTuUdUjRDuyyfVmjVvtLdXCTLHjg3f48qeVCL3YE6pRZiTQkSKwkLg4ovDb6fkWQJAdnZ85JP6C1dpQE1+vv7KV/7nI54qFZB9eP22Tjm7G0BElAj8J+N8/bWx+xQXA/PnA/XrqwekHk9pD6MbJ/tkZpprq5GlWIcMKd2nXu6qW84RUSJhUEpEFGP+vXuSBPTqZfy+Q4fK95GkwMDU4wFWr5aL6/vv3+ORh8bjsQRSuNxajwcYNKj0dyV3NbinVMlddWMgTxTPmFNKRBRDwb17QgDvvmtuH0KE9pT27i0HpOEm+8TTJB+1CVL+xo0LDS6HDi3NXfV45J7U3buB4cPllAjmmhI5B4NSIqIY0uvdU5u85PEATz0Vfr/vvFPa06c1RB1vk3yUCVJagWmbNvK/Xm9p0Dlhgnx+Lr9cDuwnTJDzeSdMKA30tWbtE5G1GJQSkSu4tcdPr3dPCGDYsND17gcM0O8RBEoDT63ySmlpxsoluU3//nLaQnBArwzLK4G4f9ApBLBsmXpersKNq2IRxRsGpUTkWIWFwMSJwOOPu7fHT693LylJzoEMXg4zM1MenvenFYRplVc6diw+liNV06YNMG1a6DHv3i0H9Hp5p1oiqZNKRNHFklAWYUkJInPuvBN46y31v6mV9XH6pBWvF3jpJWDSJDk4VAIptQlJaqWMgic69e0LzJwZeB//8kqJUA7J6wVWrZLPy44dwMiRkQWk8Tw5jMqO12/rsKeUiGwXPDRfWKgdkAJyUPfSS6W/uyF3MjMTyMsL7RVVo5YnGtx9oOSU+u//iitKA86yFqh3ouDXyeLFQM+eQI8ecg6p2YA0KUlOn9i+nQEpkROwp9SAKVOmYMqUKdj2dxXr8847D0899RSuu+46w/vgNy0idWrljA4fBh55RP9+Ho8cTADx1yOo1suppqBADkTD7ctsgXonCn6djB8fvmfU45Fn39eqBTz6qPxlRiFJ8j6GD49928ndeP22DoNSAz788EMkJSWh8d8JR2+99Rby8vLw7bff4rzzzjO0D76oiUJpDTH/97/ATTeFv39BgdyDeNVV6n8LF7DFmpmUguBt8/PliUnKUL/PF9hb6vbA2wyvN3RFq+B0hmD+dVwBufe9bdv4+vJC1uD12zocvjfgpptuwvXXX49zzjkH55xzDp577jmkp6dj9erVdjeNyNW0yhktW6a91rtCmZiiN/vcztn6ZlIK/LfNzpaH+fv3Dxzq/9e/Au9zxx2JE0ytXBkagAqh/RpRqhgoASkQ3xO/iOIFg1KTiouLMWfOHBw/fhzt2rXT3K6oqAhHjhwJ+CGiQGoBpccjz7gPXr0oN1c9P1Itd/KOO+ReMbtyTMMVtNfbVghgxAi5pJGSJzpnDrBgQeD9gnNKE9E99wQ+77m52vm6Wl9eOOOeyDkYlBr0/fffIz09HcnJybj33nuxaNEiNG/eXHP7nJwcZGRklPxkZWVZ2Foid8jMlFfhUYIFjwe47bbQHi2fT+710pok5N+ruGoV8Pbb9tbn1Ctob2RbQM6X9Hrln5EjQ/+u18vnhpquZtrYvn1or6gkhfYmDx8eONnLXzxO/CKKN8wpNejUqVPYsWMHDh06hIULF2L69OlYtmyZZmBaVFSEoqKikt+PHDmCrKws5qQQ+QleEx5QzxM0k/tXUGB/jqmZckxq+ZIKvZxZZaJX8P6Cz2lurjzD3CpG8mjVJreFm/3ufx9FJKWc4mXiF1mHOaUWEhSRTp06iXvuucfw9ocPHxYAxOHDh2PYKiL32LlTCI9HWdVd+ycpSYjp00vvs3Sp/K+WNWtC95uUpH+fWJg+XX7c4GNQk5urftw7d2qfp9zc0P3s3CmEJBnbNhamTy9tq8ejfsxqx2P0+VmzJvT4ovXcGnltUWLi9ds6HL6PkBAioCeUiMzRWxNeMWlS6VB98MShCRNCh3/z89VnWNsxTBs8tKzXmzd8uDy5SUlj0MuZ9XjkbdVKGalNCAKAUaNiP5SvlUdbWBj4PJlJbQh27Fjo8UVjspIb6twSJQIO3xvw2GOP4brrrkNWVhaOHj2KOXPmYNy4cfj000/RuXNnQ/tg9z9RoHC1OP2Hu/W2VYZwu3QJ3Sa4LJDT+a9Q1L596IpV4Yad582TC8mriXX6glbahFK6SakZ2r175KWZ1F4HWmkMRiXCyldUNrx+W4c9pQb8+eef6N27N5o2bYpOnTrhm2++MRWQElGo4B5ASVLvKQT0e1V9PrmHbuVK9QlSx4/Hpv2x4L9CUXCPXfCKTWrat1e/3YpZ5mqz24HSnk2fT+7dvuQSoHdv4xOO/CdEKa8Z/0lPQsjnLVJl6bklouhiT6lF+E2LSJ1/DyCg3htoZIWjKVOABx5wb49XtHrs8vOBu+8u/d3Kdd39C/57PPq94KtWyV8Y9Hp+1SZEqfWIl+V5Zk8phcPrt3XYU0pElgouBeTfA6jVGxjcq6qmenV3l/yJVo9d//7Azp3yUP68edau6+6fR7t6tXrPKSAf1/Hj+j2/Wjmqaj3iZenZZKkoIucoZ3cDiChxmCkFFFxaqH9/uZds1So5L9GfJAHt2snbdekiByhpafLEGGXY1+mU4e/gHrtIht0zM4Fu3aLXNrOPrZzvqVNLe079GTkurSBdSfOIxnlSKK8tlooishd7SonIEmZWOdKaDa0EW9OnBxbcnzatNJDIzAQ2b7Z3RadIxGOPndJzOmyYdr6wFq0VmNq1i815MpKzS0SxxZxSizAnhRKdXlH7xo3lnrH0dGDrVqBXr/A5flqz0e3IETRSMN7MvuKxxy6S4/LPUVWCT6Vn3ej+ovncUGLi9ds6HL4nIktoDU+vXQt06qQ/iUnJGfQPKvyHif0DD73czFgEJZGsTqTH/7iiwSlBWSTHpTesHrw/teOM9nNDRLHF4Xsiihq99czVhqdzcuR13cMV0dfLGQwe6l+3Tn2Czdq15o7FCDMpCbGmdu7joSi8kWF1teN00nNDRMYwKCWiqDASAAWvctS6tbGAVCtnUC3wGDVK/gkWi1WNnFLjMt6CMr0vN2rbmpmlv2qV8X0TkbUYlBJRmZkJgPx7vrQKrvvLydEectUKCmvUCN02FsGi1mScWBeq92dV6SQzgWJZGFlO1l+4Wfr+JElenMDNPcdE8YxBKRGVWaQ9hsqQvl5g+uij2gGJVlDYsaM1waITZsybCcoiPQdWpQGoBdjDh+s/rtprwOMBGjQIfG6UbdS+OFkVcBORPgalRFRm0eox9F8+UqEX3AYHhR4PMGQIULeudcFicEqC1RNpYlk6yeuVC/APGBD7NADlsfSWk1V7XLWFFXw+uSQYUPrczJ5duuSporgYeOkl9+fdEsULloSyCEtKULzTK9+jxcjyoVrloPxnWnu9wHPPyY8pROCSlPFYXilYNEonqe3Tv9cyWEGBnIYRDeEey8jjFhYCl1wSGHj6v3bUXmvBvafB9yECeP22EntKiSgqIukxVBt6Bkp7TNV699SGkmfPBl5/vTQgUXrVgMQoiB587rt0CRyONtv1EDyMHiyaqRDhHsvo4x47pt4TqvSyq6VaDB3qjIlqRCRjnVIiihqztSjVapcCpb2d48YFBrdak3qCl7EEYlub1KmEAObMKS2zpQT3/r3HZfmyAEQ/FULrsSZNAk6flnOK/XuAtR7XyDKtwXVPAWDixOguWUpEkWNPKRHZRi0fUKGUd/LPIdSa1KMlLS067XSa4Ik5/r3Hw4eXniMhQnuPjeSCauWpzpsX/bxZrce67Tb5WIz2vhuddOZf/cEJE9WIqBSDUqI44dYZxMrQ88SJoX8LriupFcBomTcvqk11BLWSSUaHv40OTWsFa926heb2Ks9NpK+/cIGhmTXpjaSQBLfT7olqRFSKE50swkRpiiW3LaeoTFRKT5dzAZs0kW9Xm4ii9PZJEjB+PFCtWuikngMHgBEjQh/HyZNWIln+U2uyjpGAFDB/PvQmSfm/5iJNE9B7rGgsjxq8D7e9T8gZeP22kCBLHD58WAAQhw8ftrspFGd27hTC41FCN/knKUm+3YmmTw9tr8cj3z59utx25RgkKXA7QIi8PPnYCgoCj3HgwNBtAXk7p/E/B8qxG7F0qfoxqp0nZd/K35KSjD9OOGqvuWi+/iI9P3r7yM111/uEnIPXb+uwp9Qi/KZFsVJQIA/lqt1upGRPNHqkjNIrAaX04gFyj9mePUCPHqHbeTzA9u2hbVXbtxN7SsvSTq375uQETgjKyQHatCmdsBPtslhar7ngbSIpGRWN59FMj3I0S1tRfOL12zrMKSVyubIUrrdqpR6F3qxu/9nyV1wBtG+vXkzf51PPi9TKTQSclWsb6epXgPYxBk8IGj48cDJPtMtihVsetiwz2MtyfvT2oQzZR6udRBR9DEqJXC7SGcRm1quPFr1gJjhAyMyUc0jDbecveNIK4LzVesq6+pXexByrxr3UVtLSqy1rRjRWB9Pax/jxnGlP5Gh25w8kCuakUKyp5Vnq0cpPjHUOpn/eqH9un1beYF5eaS6gmbxIJ+faBufOljXXMxo5mJHwf82Zff3pKev52blTiGHD1PcRzXZSYuD12zrMKbUIc1LIabxeIDs7dFnGd9+Vh85j2YOkzLROSwOOHw+f72hkqczg3Niy5trGWqTLf6rtxw25tGZFY3lUSQIeeQQYNMjd54Lsxeu3dRiUWoQvarKDWukl5eKcnw8MGFAalEajrE80mZmApVbqp0uX+AzWgjk9+LZSvAboZC9ev63DnFKiOOJfGNx/EtPFFwfmVSr5pP5fSSNd/cdMm4wyMwFLKzcWSIzVeqKRgxkvojFJiojsw6CUKE74B3JZWXIvqNoM5IEDgZUrwxdcj8bFXG31oXABqtkJWHqBiNtX6zES0HOpzFIM0IncjUEpURwIDuQA7ZnYxcXyUL1eSR+g7BdzteBy+PDwvZ9me7vUAhGPp7TtsSiJZAUzvcVuD76jRa0qwJAhsX1Mty7vS+REDEqJ4oBe/c9gSUlAu3aBF2+1bcra26bXJr3eT7O9XUog4l/TVAhg8eLI2u0EkZTrcmvwHW1KgD5smPz7hAmxKwdmdZ1fonjHoJQoDjRpol5oPph/sNm/P7BqVej9PB759rL2toUrsK7V+xnJcHSXLqFBaaxrrsZSIuRGxrKHcfduYOLE8EF9WdpgR53faNM7fvYAkx0YlBIlkMcflwM4QL7YfP116DC/zyeXaSqr4OAymJki+OEC5HgL4uI9NzKWPYz5+cAll4R/PUTSBv9Aze2vOf/jz84G8vLU/8YeYLISS0JZhCUlKJaMrEWukCTgX/8C3ntPfw36aA0DK/UmCwsD12d/443o5T7GYymg/Hy55y0W58tOsXyu1Pat9hiRtCG47Ni4ccCoUe58zanVKAbkL60tWwI9e4bWL3bDccUKr9/WYU8pURwIN1TuTwhgwQLtC3e0Z24ruY7B67OrBViRDifG4wz0eJ28FMseRq08Zo8n8PVgtg1qQ/WPPureZUtfekl9IuRzzwE9eoT+zU09wORu5exuABGVnRKUKT1rHo/xiU+KSZOA226L7UU1M9N4T5R/8X69vyn695dTE6KxSpJT6J0vt1K+QAX3MEYjNUFt3x4PsHo10KZN5G3QCmJbt5a/MLjpNef1yvm2ZsRT6gg5G3tKieKEf8/a6tXGJj4pkpKADh3ki68dExv0Jo2YmVDCGejOF8tebbV9T50aGJBG0ga9HF+3vOaUkQYjNYr9uakHmNyPPaVEccB/Sc7GjYF587TrlAZLSgJuvRVo27Z0vfDx4+XhdjOPG+3yUcqQoRDaf+OF0p1i2attdN9m2hA8EuG2QM1/pEGS5J9wnw9JScDs2XL5OLccJ7kfJzpZhInSFCvBFxxA/YKjXIz8AzxJAq67Dvjkk9Dt8/JKaz2Ge1ytIXUjvF6596ZXL/VJI0D8TWKKR9H6ghIr0WifMmnPLUP1gP7kL3+PPSZ/GY23iXXRwOu3dTh8b0BOTg7atGmDSpUqoVatWujatSt++eUXu5tFFDK07b9+vT+PB8jNDR3WF0I9IAWAkSO1h/KjVaNRKT2jTK5Qhkj9e6LicRJTvHF6CaFotc8tQ/X+jC6s0blzfE6sI3dhUGrAsmXL8MADD2D16tVYsmQJzpw5g2uuuQbHo1HMkagMjF5wfD45yMzPNz6s7/Npz7iNxgxqtYAakFMPgi+K8ToTPR44vYi809sXS14vsHev8SWF3Rh0U3xhTqkBn376acDvM2bMQK1atbBu3TpcdtllNrWKSH0WsRafT+5hNMrjAdLSjD+u2Rm6aoGtzwfUrKl+UYzHmejxQO8LihOeL6e3L1b802sA/TzSu++WU2gAoH37+D4v5GzsKY3A4cOHAQDVqlXT3KaoqAhHjhwJ+CGKtuChbSVv1AxJUu9J8fnkyU/BQ51Kbl5ZazTG+6pFicLpz6PT2xcLwb3DgP4IydSpcgpNjx5yUX2npV9Q4mBQapIQAkOHDkXHjh1x/vnna26Xk5ODjIyMkp+srCwLW0mJxH9oe8cOYM4cc/cXQr5PQQHw4YeBQW3wUKd/bt7IkUBOTuRD6swVjQ/Bz6PHI78unPI8Or19sWA0rUfhH7AKIQe0iZDeQM7D2fcmPfDAA/j444+xfPlyZOp8qhUVFaGoqKjk9yNHjiArK4uz9yjmjM62VfjPcp86FRg7NnSbggK5ZykWs+DDzWh2+qxukk2YIH9RKWs1hlhxevuiSWsZUTMKCuT8UuLseysxKDXhoYcewn//+1989dVXaNiwoan78kVNVvJfN93jAYYOBWrVKl17XqH0TgLAgAHqFzEl8Ny0Se4hDRbLi1e0yk5RbMVyPftocHr7YiEvDxgxIrL7ejzA9u3xe27M4vXbOpzoZIAQAg899BAWLVqEL7/80nRASmQ1/8LgaWnAsWNyT2OvXqW3HT9emld31lnaAan/kHqslodUozVrukuXwIsle1Lt5/TJRE5vX7R5vfISqI8/Djz/fPgeU/9JUJIkf/mLx/NCzsecUgMeeOABvPPOO3j33XdRqVIl/PHHH/jjjz/w119/2d00Ik2ZmcDmzfJkJaU+4+LFcq9mmzalpV/08s/Gji3tmbQ6B9RI2Smn18dMFE6fTOT09kWT/3siJ0cuiq83+XHYMDkXfd48+WfHDo5GkH04fG+ApPGOnjFjBu68805D+2D3P1nN6JBluBzUvn2BmTMDt7diVZtw7U/EIVkn808ZceKKQHrti5fedrX3hMejvaiGJMlBqJuP2Qq8fluHPaUGCCFUf4wGpERW8nrlPM+VK40VuM/MlHNOtbz1FlBYGLi9FQW2w/XMRqOAP0WP0xc40Gqf03vblfez1xv4f7Xt5s1Tr/3LridyC+aUEtksmr00wRODggtmaw1Z1q6tv98VK+Qhf6v558YG98xGo4A/RZfTFzgIbp/RvGW7+L+flQE7ZTle/0l/wYXyjRIifvNqyZ3YU0pko2j20qhdYP0L43s8QM+e8sXMv+fT65VL5ejp0CHydpWVVs8s65xSWTm5t11tGV7lC6Z//WC1QvlG8UscOQ17SolsEu1eGq1lO/3//5//yP8fOxa47Tbg/vvltbH1Lmh9+9rTS2qEXk8qUThO7m0PVwBfCZ6FMB6QKiu++Xz8EkfOxKCUyCbRLlOjdoHVs2CB/KNcqPyH+T0e4MkngRtucF5AGpzu4PQhY7KHkbQYpbc9eAKUE15P4d7P/sGz0fe9EMDcuUDNmvwSR87E4Xsim0S7TI3acopGKMGo/zD41KnA6NHOC0idPimFnMHM68SpE7SC38/+qTj+wbPa+751a+39NmhgzURFokiwJJRFWFKC1MSijI5SsiktTa5RarTndMoUoFkz5/agsAQUGRFvrxP/EmyAdqpKXp6cGx7uis7lQ83j9ds6HL4nspHRnEgzM/T9h7P9hybDqV7d2RerRFuVhyITb6+T4PQUtWPweoFRo8IHpE7JlyXS4qrh+7feegsff/xxye8jRoxAlSpV0L59e2zfvt3GlhFFLlzdz7IMWfsPTX74ITB4MHD33aHbSRLQrl0EjbdQIq3KQ5FLxNdJuElRgHxOnJIvS6TFVUHp888/j9TUVADAqlWrMHnyZOTm5qJGjRoYMmSIza2jRKRXzDpa+1eboa/1eGrtUZYbveUW4MUXgTfflGfU+5eKmjbN+RcrloAiIxLxdaIWiCuSkuSlRLdvd06+LJEWV+WUVqxYET///DOys7MxcuRI7N69G7NmzcKPP/6IK664Anv37rW7iZqYkxJ/ggvVjxsnTzCI5lKFBQVyD6na7cFD7cHtUYpra+XYrVoFHD9uPofU7iUZrVrmlNwt0V4nwfnpOTnyRMVEOf5Y4vXbOq7KKU1PT8f+/fuRnZ2Nzz77rKR3NCUlBX/99ZfNraNEotaDOWKE/H+PR162c9Cgsl8MjNZR1Kt5qpVjd/y4+RxSrcDXSiwBRUYk2uuENXspHrhq+L5z5864++67cffdd+PXX3/FDTfcAAD48ccf0aBBA3sbRwlFL4fL5wMmTACys8tessjoUKTe5I5o5diZTSWItVinTlD8iffXTLj8dCKnc1VQ+uqrr6Jdu3bYu3cvFi5ciOrVqwMA1q1bh169etncOkokTZqUrkWtRYjoBG1G6ijqBZ7RyrFbudI5SzKyXimZFY+vmXgPsinxuCqndMeOHcjMzIQn6OorhMDOnTuRnZ1tU8vCY05K/Ln2WmDx4vDbWVUXMFzN07Lk2PkP2/uzo/5jvNWhpNhz02vGaM62/3tSkoDx44Hhw6O3fyrF67d1XNVT2rBhQ+zbty/k9gMHDqBhw4Y2tIgSldcLfPZZ+O2Ch8lj2bMRrkc10qG94GF7hV0lZvRSFYjUuOU149+bm50tF8RXE/yeFELOaZ8wwfj+46W3mOKLq4JSrU7dY8eOISUlxeLWUCJbuTJ8oergoM2KC0Iscsq08mfnzLGnxEwi1qGksnHDa0Yr0HziidAvslrvyZEj9cvFOSknnEiNK2bfDx06FAAgSRKeeuopVKxYseRvxcXF+Oabb9CqVSubWkeJSK+HJSkJGDIkcPa93ux4pw+haVUAsKvYvpIjG5yq4PTzSPZxw2tGK9B87jn5x7/ahZLTHvzF2OfTXrkq3la6ovjkiqD022+/BSD3lH7//feoUKFCyd8qVKiACy64AMOGDbOreZRg8vPl3gstY8YAffoEftC7+YLgxAs6y9+QWU5/zWgFmorgL7Ljx5eWoVPo9f4aLS9HZCdXTXS666678NJLL7ky0ZiJ0vFBbcKEGkmSV0lShrcLC4GLLw7dbs0aucC1GyRaMXIiq+XlhQaawfwnTk6YIA/Z+3zqkxuDhZsMSep4/baOq4JSf16vF5IkoX79+nY3xRC+qOOD1gpLajweeWm/zExzKzMRUeLyDzSDqVUMMPtlkV8uzeP12zqumujk8/kwZswYZGRk4KyzzkJ2djaqVKmCsWPHwheu64ooCvTWmA6m5Hdp3Y9DZ0QUTFmnvqAAyM0NX1/Y7ORGFtgnJ3NVUPr4449j8uTJGDduHL799lusX78ezz//PF555RU8+eSTdjePEoBaIfrHHlMvpO/xlAad0SpgT0TxTwkchw8Pv3AGUTxx1fB9vXr18Prrr+Pmm28OuP3999/H/fffj99//92mloXH7v/4EjwEFlxcPjinVClYnZ4urznPoTMiInfg9ds6rph9rzhw4ACaNWsWcnuzZs1w4MABG1pEiSozMzCo7NIFmD0bOHAAqF4daNAA2LoVmDdPHoobNUoOWJWyLswjJSIiCuSqoPSCCy7A5MmT8fLLLwfcPnnyZFxwwQU2tYoSXV6ePDFBCDno7N0bmDVLvbSLm+qTEpE6LtVJFBuuCkpzc3Nxww034PPPP0e7du0gSRJWrlyJnTt34pNPPrG7eZSAJkwILOHi8wFvvaV/H7fUJyWiUP6pOv4F7a3AYJjinatySgFg165dePXVV/Hzzz9DCIHmzZvj/vvvR7169exumi7mpMQfozVLg6mVdbEKL2pEkVN7z1v1frYzGE50vH5bx1U9pYA82em5556zuxlEmssChpOTY09AyIsaUdlEe2U2o18S3bxMMZEZrgtKDx06hPz8fGzcuBGSJKF58+bo168fMjIy7G4aJZh16yK7nx0rOPGiRlR20Vyq08yXRDcvU0xkhqvqlK5duxaNGjXCpEmTcODAAezbtw8TJ05Eo0aNsH79erubRwnE65UnN5klSaUXMK9Xrj/o9QbuN/i2aNC7qBGRMdGqN6z1JVHrfc/FNyhRuCooHTJkCG6++WZs27YN7733HhYtWoStW7fixhtvxODBg+1uHiWQSIfuFfn5cm7aVVfJ/+bnq98WrSCVFzWi6Ojfv+wF7bW+JL70kvr2XHyDEoWrJjqlpqbi22+/DalV+tNPP6F169Y4ceKETS0Lj4nS8SXSSU6AXLu0Z8/A+yoBY/BtQpSWmiprDmh+vtwbU1xcelFjTimR9bQ+Pzweua6xVrDJdevtweu3dVzVU1q5cmXs2LEj5PadO3eiUqVKNrSIEpVaz4XaUqPBJAnYty/0YuTzqd+mfGUMN7xnRDR6eIio7DIzgaFDQ2/3+bR7S5X7cd16imeuCkp79OiB/v37Y+7cudi5cye8Xi/mzJmDu+++G7169bK7eZRggoO8adNKg9TgoXKFEMD994fe7vFo30cRjRxQXtSInGHQIPUvshMnln75jFWOOZFTuWr2/YQJEyBJEvr06YMzZ84AAMqXL4/77rsP48aNs7l1lIj8lxvt31+ezf7SS8ALL5jbz7hxQLVqgcPr/j2lAHNAieJJZibwyCPyAhz+fD75y+fixSzhRonHNTmlxcXFWL58OVq0aIGUlBRs3rwZQgg0btwYFStWjPnjf/XVV8jLy8O6deuwe/duLFq0CF27djV8f+akJIZIc00LCuQeTP+cscWLmQNKFM+8XiA7O/TL56pVQNu29hTpp1C8flvHNcP3SUlJ6NKlCw4fPoyKFSuiRYsWaNmypSUBKQAcP34cF1xwASZPnmzJ45E7RTIr378H1H94nTmgRPEtMzMw7Uf58nnsGEu4UWJy1fB9ixYtsGXLFjRs2NDyx77uuutw3XXXWf645C5qxbXVSJLcOxKutIt/egARxR8l7cd/Vn1hofq2aWnWto3Iaq7pKQWA5557DsOGDcNHH32E3bt348iRIwE/RHZTm5Xft2/gBKi8PGDHDvaAEpEseALisWPq2x0/blmTiGzhqp7Sa6+9FgBw8803Q/KbtiiEgCRJKC4utqtpIYqKilBUVFTyO4PmxKHW8/Hss/LvaWmlF5wrrrC1mUTkUNFczpTITVwVlBYUFNjdBMNycnLwzDPP2N0M8uP1yjmfTZrEfkg8eNg9M5OzaYnIGGXEJXiiI1N5KN65Zva9k0iSFHb2vVpPaVZWFmfvxZBe0Jmfb29AqDYrn7NpiRKT0S/IXMHJGTj73jquyil1k+TkZFSuXDngh2JHbd14hddbGpAC0VkdySytta45m5Yoseh9VgXjYheUaFw1fG+nY8eO4Te/CGLr1q3YsGEDqlWrhuzsbBtbRmpB5z33AJUqAQ0bAl9/rR0QxvLD3r83hDliRKT1BblLFwaeRACDUsPWrl2LK6+8suT3oX8vXNy3b1/MnDnTplYRoN4L6fMBPXpo38fjkQNCrxdYuVK+rX376F0Y1NIFmCNGlNj0Rkz4WUDkgpzSDz74ANdddx3Kly9vd1PKhDkpsRPpKkrnnQf8+GPp75IkF7Iua66pXv4owBwxokTF3HJ34vXbOo7PKf3nP/+JQ4cOAZBXddqzZ4+9DSLHCa4NapR/QArIxeyjkWsarjeEOWJEiUmtjjFHTIhKOT4orVmzJlavXg2gtB4pUTBlSc558+Qez0hFY/KRkj/qT8kf9XrlovmFhfK/egGwsq2VE7KIKLa4fDCRNscHpffeey9uueUWJCUlQZIk1KlTB0lJSao/lNgyM4Fu3YDc3Mj3EY3JR1q9IYsXl866vfhi/dm3ZmboEpG7cMSESJ3jc0oB4Oeff8Zvv/2Gm2++GTNmzECVKlVUt7vlllusbZgJzEmxTmGhHPSZFa2cUoV/jUFAO+81OKeMeWdERM7B67d1XDH7vlmzZmjWrBmefvppdOvWDRUrVrS7SeRgH34Y2f0kSS7NEi3+qzoVFGhPxAqefcsZukRElIgcP3zv7+mnn0bFihWxd+9eLF++HCtWrMDevXvtbhY5TEpKZPfz+YD582OTw6mWZ6oIThnQy0klIiKKV64KSk+cOIF+/fqhXr16uOyyy3DppZeiXr166N+/P06cOGF388ghqlaN/L5Dh8Ymh1OrQkDw7Ful4P64cZyhS0REicUVw/eKIUOGYNmyZfjggw/QoUMHAMDy5cvx8MMP45FHHsGUKVNsbiE5QfXqZbt/rFZZ6d9f3udvvwFpacDx44H1SoML7o8fD7RuzZqmRESUGFwx0UlRo0YNLFiwAFdccUXA7QUFBejevbujh/KZKG0drxfIzpbrjpZFQYE8Q9YKnNxERORMvH5bx3XD97Vr1w65vVatWhy+pxKZmfIseq0cTiMkKTSHM5Z1Q/UmNxFRfGENYiJ1rgpK27Vrh6effhonT54sue2vv/7CM888g3bt2tnYMnKa/v2B7dvlD/6dO4G8PPP7WLy49P+xrhvKyU1EiYE1iIm0uWr4/ocffsC1116LkydP4oILLoAkSdiwYQNSUlKwePFinHfeeXY3URO7/+1VUCBfBMzwX6/eiqH1/Hw5l7W4uHRyE1d7IYofTNNxJ16/reOqiU7nn38+Nm3ahHfeeQc///wzhBDo2bMn/v3vfyM1NdXu5pGDNWkiD8mb+QqmDJ8LYU3dUP+JUJzcRBR/WIOYSJ+rglIASE1NxYABA+xuBrlMZqY8m33ECOP38R8+93hCezdiMbTuX3CfiOKLkqZjxWcJkRu5KqeUqCyqVZN7S43wrw2qtZY9g0ciMoOfJUT6XJVT6mbMSbGXWi6XliuuAN5+O/RC4b+WPS8iRBQpfpa4C6/f1nHd8D1RJNRyubQsW6Z+O4fWiSga+FlCpI7D95QQ9NaeDyYE64MSERFZzVVB6dlnn439+/eH3H7o0CGcffbZNrSI3CI4lytcgJqWFvs2ERERUSlXBaXbtm1DcXFxyO1FRUX4/fffbWgRuUn//nI9wGHDwpeGOn7ckiYRERHR31yRU/rBBx+U/H/x4sXIyMgo+b24uBhffPEFGjRoYEPLyI0mTtQPStVKtHi9cl5qkybMBSMiIooFVwSlXbt2Lfl/3759A/5Wvnx5NGjQAC+88ILFrSI30prwpNQOTEoCcnLk7QA5AM3PB+65R/67xyOnAXClJSIiouhyRVDq+zuKaNiwIdauXYvq1avb3CJyK63i1atWyUP2a9cCI0eWBqDjx5f+Dsj/Dhwor7zEHlMiIqLocU1O6enTp9GgQQPViU5ERmkVr65bF9izR17xyT8A9Q9IFcqygERERBQ9rglKy5cvjx9++AGS0SV5iDQoE54KCuR/Dx6UC+v36BGaa+rzha4CxWUBiYiIos81QSkA9OnTB/n5+XY3g6LA6wXmzZN/vF7rHz8zU165afZsYPhw7cL6SUnyED6XBSQiIootV+SUKk6dOoXp06djyZIlaN26NdKCiklOnDjRppaRGfn5wIABgb2SublycGglr1centeiBKD9+wO9enFZQCIiolhyVVD6ww8/4B//+AcA4Ndffw34G4f13cHrBe6+O/T2ESPkYfJhw6xry6ZN6qWhPB5gzhygXbvSAJTLAhIREcWWq4LSgoICu5tAZbRypfbfRo4Eeva0LvhTm4kPyMP13bpZ0wYiIiKSuSqnlOKbz2ftrHa1pUdzc0t7a71eeTKUVs5ruL8TERGRca7qKQWAwsJCzJ8/Hzt27MCpU6cC/vbee+/Z1Coyqn177b/ZMau9f3+55mhwvmi4gvksqE9ERBRdruopnTNnDjp06ICffvoJixYtwunTp/HTTz9h6dKlAUuPknNlZsrF59UMGGBP3qYyE195bK+3NOAESgvmKz2i4f5ORERE5rkqKH3++ecxadIkfPTRR6hQoQJeeuklbNy4Ed27d0d2drbdzSODLrhA/fZjx6xthxa1pUj9C+aH+zsRERGZ56qgdPPmzbjhhhsAAMnJyTh+/DgkScKQIUMwdepUm1tHZfWf/zijt1GZAOXPP7Ug3N+JiIjIPFcFpdWqVcPRo0cBAPXr18cPP/wAADh06BBOnDhhZ9PIhOrV1W8XwprexnATlLSWIvUvD6X3dyIiIjLPVROdLr30UixZsgQtWrRA9+7dMWjQICxduhRLlixBp06d7G4eGaQ12cmK3kajE5S0JkAZ/TsRERGZ46qe0smTJ6Nnz54AgEcffRTDhg3Dn3/+iVtvvdWS5Udfe+01NGzYECkpKbjooovw9ddfx/wxDVm7FrjqKvlfJ9FoV2YmMH164KYeT+x7G1UnKN0jdHtM/SdAmf17xJz6fALObZtT2wWwbZFi24gSjqt6SqtVq1byf4/HgxEjRmDEiBGWPPbcuXMxePBgvPbaa+jQoQPeeOMNXHfddfjpp59snWT11FPA2LGtACwB2pxSXaHICl6vPHv+88+BM2eUWy/8u11yo1JTgeuuA66+Wv7ra68Bhw4BJ08CN94ItGkj70cpsF+xIvDrr8A55wDffQesWwdcdBHQp4/895UrgS+/lG+vUAGoVQu46y6gVStg1ixgwQLgyBG5Z/bGG+VezZAJSj4JH30ENG0q54oaCTC9Xnmyk9HtTe9r1iw5v+Dtt4HWrTW3BwLvq9Wu4Nv12h+8f+W5aN/+72112hassBD4+mvg0kvl59bw8RsQcj8T7YrG45u6r1/bvHVaR+3xjD6veq+ZcOdNbZ/Kbenp8uRErWMp8/skwuc0GsK2/e+2eV/7AJt6tzZ0jMpn2/79cgpTyXvqbx99BMybBzRrJn/G6b03wz3fH34I/PKL/Ll2002l2yuPD5S2Yfdu+X16zjnAiROl7WvYUH5+09Pl2PvTT4E//pA/g1u0KN1m61Z5f8r2/u2ZORN4912gTh2gWjUgORkoKpI/qxs3Lj0HyrEcPw6sWQOkpJT+HVD5HIrkOSN3EC5z5swZMX/+fDFmzBgxduxYsWDBAnH69OmYP+7FF18s7r333oDbmjVrJkaNGmXo/ocPHxYAxOHDh6PToG3bRHrqaQH4hJyNKf7+f7EQa9cKsW1bdB7HgOnThV8bIvvxeITo21cISTK2vdHtAn98urd7PD4xfXr4Y/V4Stscbnvj+/KJ6U9sFWLdOiFq1ZJvrFVL/v3v59N/e0kqPQfKuVNrV3B7tbYL3jb4/EqST0x/cptm24L17Rt4/759o3cuQ86biXZF4/EN3XfbNrkNfs/n9EqDhcdj/LWm93jBz6OR5z/wNRP+vKkdo/9t/u/d4GOJ+NyqnDczz2k0aLY9qG3T0U94cKb0fI7fp7vP0PdU6b7btw/9XNJ6b4Z7vtU+K818tkbjs3z6dCEaNTL2Oe5/LOE+5/3PmaHnLEqifv0mTbC7AWZ8//334uyzzxYVK1YUF154objwwgtFWlqaaNCggfjuu+9i9rhFRUUiKSlJvPfeewG3P/zww+Kyyy5Tvc/JkyfF4cOHS3527twZ1Rf1k3hSI8jyCeCE/IsFdu605oPOqp+kJPmYtI41+MNTb/tw5y1kXzgtdqJ+6Sex3yfyTtTX/ODWOo41a7Q/7IPbr9aekG1xWuxEpvrVws+aNer3X7Om7OdS+7yFb1e0nktD9w26ku5E/ZIAJhqPF43nX++8aR2jVmDjfyxlep8EnTczz2k06Lbd//wgM/T5xGnVY9R7/jweIWbMUP+bJJl4b/79fFsVeNr5E/xaiubnshYGpdZxVU7p3XffjfPOOw9erxfr16/H+vXrsXPnTrRs2RL33HNPzB533759KC4uRu3atQNur127Nv744w/V++Tk5CAjI6PkJysrK6pteq/eYACSyl8kABWAd96J6uNp2bTJkoexjF690WjWJ1XdF8rhNzSWP1eB0n/LlcOmx2aGbK+nuBhYvjz0MdS2++039faEbIty+A2NQtoW/FrTSrVesaL0/5GeS+3zFr5dYfdj8Lk0dN933pHb8HebNqEJfEiK2uOFY+T51ztvWseobKb2eFGp4xt03tTaFku6bfdr2yY0Dn0+UU71GPWeP58PWLRI/W9CmHhv/v18az0/8ST4tcS60XHG7qjYjJSUFPHDDz+E3P7999+LlJSUmD3u77//LgCIlStXBtz+7LPPiqZNm6reJ+Y9pU8KodtTahH2lEaxp9Tjk3tKgxu1bp3p3rLY9ZTWD2lbMHt6SsO3K1rPpeH7rltXsoFze0rVz5ttPaVB583McxoNYdv+d9vMPJ/sKY3uD3tK45urekqbNm2KP//8M+T2PXv2oHEMawnVqFEDSUlJIb2ie/bsCek9VSQnJ6Ny5coBP9E0ZgyQXrEYgPC7VQAQEOs2RvWx9KjNpI9EUhLQty8gqXX+qjC6nTGipA16FQCiWZ9UdV+P70Amfi+tzO9XoT94e0kq/bNy7oLb1aZN6GOobZeZqb5//3PskQTewEBkenaHtC1Ymzby4/jr2zdwslOk5zLkfh7j7dLdj4nn0vR9PR5k4ndMle5FEs5E5fGCn0cjz3/AaybMedM6xmnTSm9TxKyOr8r7INaMtj3TsxtTcU/p8+kRmseo7DP4MCRJvv3OO9XL5E2bpv7e1Hu+p00L/WyUJHl7q05jUpJ8TWjUKPy2Hk/gsQQLPha1Ki2sGx1fJCGECL+ZM3zyyScYMWIERo8ejbZt2wIAVq9ejTFjxmDcuHHo2LFjybbRDgIvueQSXHTRRXjttddKbmvevDluueUW5OTkhL3/kSNHkJGRgcOHD0evbV4vnmo6B2NPDIJc3esURJ2z5WnPFr8jA2ffFwf91QdAoGKKhGuvL4/OnUv/cuCAPBvTf/b9qlXy31JTS+uAfv89sH498I9/AL17y39ftUqenLt+vTyrs1Yt+QOuVSt5wu7ChfLs/vbt5RmomzYBjz8e2vYplUagWf5wNG5X0/Ds+2jVJw3YF7zyScjKkguh5ucDO3cGPJ/+2wOB7dBqV/Dteu0P3r/yXLRrsBuZN/9Dt23BCgvlIfsOHfRn30dyLkvul2a+XdF4fEP39YY+n95tZ/Dbq4sNv9b0Hs/o86r6mjF43tT2qdyWlibPltY6/ojPrcp5M/OcRoNm24Pa5p3yIX7bUQGNF7+KzDZ1w+5z1arS2e3t2oXOvl+wQJ4x37u3/nsz3PP90UellUtuvLF0e+XxgdI27N4tv08bNwb++qu0fQ0ayM9vWppc4eR//wP+/FP+DG7ZsnSbbdvk/Snb+7dn5kxgzhz5s7lGDblKyqlTQM2a8nbKOVCO5dgxeaZ/cnLp3wG/z6F22i+BaH4uB4vJ9ZtUuSoo9fh91ZP+/gqlNN//d0mSUFwcHBiVzdy5c9G7d2+8/vrraNeuHaZOnYpp06bhxx9/xFlnnRX2/jF7URcVye90SZJHLk6dkt/RdgvTrvx84O67SzeXJPlbvloh+2jxeoGzzgrMP0pKEtj2yylkNnLAOQOc+3wCzm2bU9sFsG2RYtvIQRiUWsdVdUoLCgpse+wePXpg//79GDNmDHbv3o3zzz8fn3zyiaGANKb8PwwlyTkfjjrt8noDA1JA/mwfOFBeJSlWnSHKMM/AgXIivDzMI2kGpOHq3sWkLp5Tn0/AuW1zarsAti1SbBtRQnJVT6mb8ZtWqSlTgPvvV/9bQYG8SlIsGRnmCbccqdHlSomIyN14/baOqyY6UXzYvVv9dkkqzXuLpXDLg6ouRzoQJcuRhvs7ERERmceglCx38KD67Q8+6IwZk+Hq3rEuHhERUfQxKCVLeb3Aq6+q/80pqVlNmoSWT0lKKu3FDfd3IiIiMo9BKVlq0yZ5UpOaSZPsGQL3euVcVuWxw9W9Y108IiKi6HNVUDp69Ghs377d7mZQGaSna//NjiHw/Hy5TNRVVwHZ2UBennx7//5y/b2CAvnf4ElM4f5ORERE5rgqKP3www/RqFEjdOrUCe+++y5Onjxpd5PIpGPHtP/m8Vg7BB48YUkIYMQIYMIE+fdwE6LC/Z2IiIiMc1VQum7dOqxfvx4tW7bEkCFDULduXdx3330oLCy0u2lkUJMm2kuEjh9vbYCnNmEJAEaOBObN42x6IiIiK7kqKAWAli1bYtKkSfj999/x5ptv4vfff0eHDh3QokULvPTSSzh8+LDdTSQdmZmh6zNLEpCbCwwbZm1btAJknw/o0UMe1s/Pl28LzjslIiKi6HJdUKrw+Xw4deoUioqKIIRAtWrVMGXKFGRlZWHu3Ll2N4909O8P7Ngh90bOmyf/f/hw69uRmSn3zmpR6o/m5ZXmnfoHqkRERBQ9rlvRad26dZgxYwZmz56N5ORk9OnTB3fffTca/52M+MILLyA3Nxd//vmnzS0NxBUhnMV/idA5c+Qhe7WhfKB0iWtFUpI8uYm5pERE8Y/Xb+u4qqe0ZcuWaNu2LbZu3Yr8/Hzs3LkT48aNKwlIAaBPnz7Yu3evja0kp/OfcX/WWUDVqsD27XKvbfBwvscTWsKKhfKJiIiiz1VBabdu3bBt2zZ8/PHH6Nq1K5KUQpF+atasCZ9WlxclPK0lQnfvBmrUkHNb/euPjh/PQvlERERWKGd3A4w6ffo0ZsyYgX/961+oX7++3c0hl9JaIvSSS+QeUY8HGDcOaNNGDjwzM+We1IED5e1YKJ+IiCg2XBOUli9fHkVFRZC06gkRGaAsERocmCpD9D4f8OijgTmj/fsDXbrIQ/ZKoEpERETR5arh+4ceegjjx4/HmTNn7G4KudjQoaFD8v7UckZZKJ+IiCi2XNNTCgDffPMNvvjiC3z22Wdo0aIF0tLSAv7+3nvv2dQycoP8/NJ80nAd7kEvLSIiIooxVwWlVapUwb/+9S+7m0EupLakqJ7jx2PfJiIiIirlqqB0xowZdjeBXEprSVE1ksTZ9UQUO/51kpkSRFTKVTmlRJFSJjgZcfnl6rdzqVEiKqvgOslcIY6olOtWdFqwYAHmzZuHHTt24NSpUwF/W79+vU2tCo8rQtjvzjuBt94ytq3HA0ydKs+8BwLzUYP/RkRkhNcrB6L+ozZcIc75eP22jqt6Sl9++WXcddddqFWrFr799ltcfPHFqF69OrZs2YLrrrvO7uaRg3m9wKxZxrdXiup7vdoF99ljSkRmaNVJ5gpxRDJXBaWvvfYapk6dismTJ6NChQoYMWIElixZgocffhiHDx+2u3nkYJs2hZ/cFEy5WFh5IWGKAFH8Uksj4gpxRKVcFZTu2LED7du3BwCkpqbi6NGjAIDevXtj9uzZdjaNHK5JE/P3US4WVl1ImGtGFN8yM+XUH/+ljLlCHFEpVwWlderUwf79+wEAZ511FlavXg0A2Lp1K1yWGksW8O91XLw4fG1Sf5JUerGw4kLCFAGixNC/v5xDWlAg/8vcdKJSrioJddVVV+HDDz/EP/7xD/Tv3x9DhgzBggULsHbtWtx66612N48cJD8fGDDA/JC9vy5dSv8f66VG9VIE2ItCFF+UL7tEFMhVs+99Ph98Ph/KlZNj6Xnz5mH58uVo3Lgx7r33XlSoUMHmFmrj7D3reL1AdnbZAlJA7sm44oqoNKmEVn1CzsolInImXr+t46qeUo/HA49fcl/37t3RvXt3G1tETrRyZdkD0ljljPqXlRo6FBg0KDBFYOBAuYc0KQkYN04OYAEGpkREFP9c1VMKAIcOHcKaNWuwZ88e+ILGO/v06WNTq8LjNy3rTJkC3H9/5PdXckajmeul1hMKyLmr06aVPpbXKw/ZFxYCo0axLioRkd14/baOq3pKP/zwQ/z73//G8ePHUalSJUh+M1ckSXJ0UErWOXgwsvslJQGzZwPt2lmTMwrIPboDB8r5qv55Zp06hU56UrYhIiKKR66aff/II4+gX79+OHr0KA4dOoSDBw+W/Bw4cMDu5pFDnDwZ2f3++U+gW7fYBH56y5wG1zxlgW0iIkpErgpKf//9dzz88MOoWLGi3U0hB7vppsjut2ABMGFC9NrhX5IquKyUv+D8VRbYJiKiROSqoLRLly5Yu3at3c0gh1u2LPL7jhwZndqgaoXwlfqEw4aVBp1qNU9ZYJuIiBKRqyY65efnY8yYMbjrrrvQokULlC9fPuDvN998s00tC4+J0rHn9coz73v2LNvs+7KWgjJS3kmZ0KRX89TINkTkPlql4ciZeP22jquCUo9WUh7kiU7FxcUWtsYcvqhjy7/cUllEozZoQYHcQ6p2e+PGvBgRJbLg0nCsrOF8vH5bx1XD90rxfLUfJwekFFvBS3QaIUnA9OlAXp7+UHoktHJCCwu5tj1RIuNywkT6XBWU2uW5555D+/btUbFiRVSpUsXu5lAQrXJLeiRJLrE0bBiwfXt016FWywkdN6607ijAixFRImJlDSJ9jq9T+vLLL+Oee+5BSkoKXn75Zd1tH3744Zi04dSpU+jWrRvatWuHfHZvOY7SM+n/Ye/xAHPmAA0aAMuXy6sn+fP5SteVj8U61P37y0GvkhPKte2JSO2zipU1iEo5Pqe0YcOGWLt2LapXr46GDRtqbidJErZs2RLTtsycORODBw/GoUOHTN+XOSmxlZ8fuESn/4pMTlhX3gltICL76X1WkTPx+m0dx/eUbt26VfX/TldUVISioqKS348cOWJja+JfcM+kWoml4AuBlcGgE9pARPbT+6wKxln6lGgcH5S6VU5ODp555hm7m5FQ9IbhzVwIYsUJbSAi+xlJGcrPBwYMkMvbSRIwbRp7VCn+OX743t/Q4MTAv0mShJSUFDRu3Bi33HILqlWrFnZfo0ePDhs0FhYWonXr1iW/mxm+V+spzcrKYvd/ggju4WCPBxEZ5fUC2dmB9ZYlCdixg58fduDwvXVc1VP67bffYv369SguLkbTpk0hhMCmTZuQlJSEZs2a4bXXXsMjjzyC5cuXo3nz5rr7evDBB9GzZ0/dbRo0aBBxW5OTk5GcnBzx/cm9gusQ9u4NvP126e/jx8sF/hmkEpGalStDFwARAli1CujWzZ42EVnBVUGp0gs6Y8aMkm8rR44cQf/+/dGxY0cMGDAAt99+O4YMGYLFixfr7qtGjRqoUaOGFc2mBKJWh/Ctt0r/7vMBw4fLP0D44tnsYSWKf3yfE8lcVac0Ly8PY8eODeg+r1y5MkaPHo3c3FxUrFgRTz31FNatWxfVx92xYwc2bNiAHTt2oLi4GBs2bMCGDRtw7NixqD4OuZ/Zmql69Urz81lsnyjeqb3P27eXh+v9eTxAu3b2tJHIKq4KSg8fPow9e/aE3L53796S2e1VqlTBqVOnovq4Tz31FC688EI8/fTTOHbsGC688EJceOGFWLt2bVQfh9wvPT30YhKOf/Fsr1cu5F9YyJVfiOKd1ytPZgp+nwPyxCb/BTimTmUvKsU/1w3f9+vXDy+88ALatGkDSZKwZs0aDBs2DF27dgUArFmzBuecc05UH3fmzJmYOXNmVPdJ8UfJJY1k6mBhIbB5c2AuKovtE8W3l14K/bxQ3ues1kGJyFWz748dO4YhQ4Zg1qxZOHPmDACgXLly6Nu3LyZNmoS0tDRs2LABANCqVSv7GqqCs/fik5ILlp4OtG1rbOhekkIvRJ6/xyz07s9i+0TxQ22GPSB/Fmzfzve5k/D6bR1X9ZSmp6dj2rRpmDRpErZs2QIhBBo1aoT09PSSbZwWjFL8Cp5lbzQgffVV4P77A2/Xuq+y32gV2+eECiJnUOslBeQlkfnepETlqqBUkZ6ejpYtW9rdDEpgarPsjRACqFEjNIhV6ylNSpJLwBw/Hp3hu+AgWm/WPxHFjtcLTJwYervHAwwapH8/fqmkeOa6oLSwsBDz58/Hjh07QiY0vffeeza1ihKN2Vn2CkmSZ9CqLTkKhN7Wpk102qsWRA8cKOes8eJGZE5Zg0Otzw+9XlJ+qaRE4KrZ93PmzEGHDh3w008/YdGiRTh9+jR++uknLF26FBkZGXY3jxJIkyalvZuR6N9fzg8tKJD/7d9f/bZoUbsI+s/6JyJjolGqTe3zIylJu5dU60slq3FQvHFVUPr8889j0qRJ+Oijj1ChQgW89NJL2LhxI7p3747s7Gy7m0cJJDNTXpnJLCFKA8HMTOCKKwJ7RtRuiwati2DjxtF9HKJ4Fq3gMDNT7un0L/mklzPOL5WUKFwVlG7evBk33HADAHkZz+PHj0OSJAwZMgRTp061uXWUaC66KLL7FRZGtx1GmL0IElGoaAaHZkZG+KWSEoWrgtJq1arh6NGjAID69evjhx9+AAAcOnQIJ06csLNplIAiHcJ/9FF7ht1imR5AlAiiHRwaHRnhl0pKFK4KSi+99FIsWbIEANC9e3cMGjQIAwYMQK9evdCpUyebW0eJJtIhfDuH3WKVHkCUCOwMDvmlkhKBq4rnHzhwACdPnkS9evXg8/kwYcIELF++HI0bN8aTTz6JqlWr2t1ETSy+G7/y8oBRo0rrid5xBzBrlvbKTiyCT+RuXi9XWkokvH5bx1VBqZvxRR1fgkvCeL1yTdF9+4Dq1YGGDeXAE5D/ffTRwFJP7OUgInIHXr+t47o6pQCwZ88e7NmzB76gjHMW1CcrBNcLHDcO2LMHmDChdBtJAqZNKw0+e/WSe1bS0oBjx+Qglj0sREREpVzVU7pu3Tr07dsXGzduRHCzJUlCcXGxTS0Lj9+04oPXK9cmNFI4P3gNaxa/JiKzuIqT/Xj9to6rekrvuusunHPOOcjPz0ft2rUhSZLdTaIEY2YlJ59P7h1Vhve5ohIRGaEEomvXluara32RNRu0MsglJ3NVULp161a89957aMzibGQTpSSM0Z5S5aWqV9+QFwYiUkyYAIwcGfp5ofZF1n9bI6MvHK0hp3NVSahOnTrh//7v/+xuBiUwpSRMuPqkkiRvp1w80tPVt0tLi277YsnrlcvRcGlDotjIywOGD9f+0utfTi5423CrS3GpUnIDV/WUTp8+HX379sUPP/yA888/H+XLlw/4+80332xTyyiR9O8P1K4N3HRT6N86dgSuvx5o1Aho37709mPH1Pd1/Hhs2hhtTuxh4TAkmeXk14zXK/d66lEK9Wttqzf6wtEacgNXBaUrV67E8uXL8b///S/kb06f6ETxRWsBseXL5R8gMHhTG/Z3yzKBTsyHdWKQTM7m9NfMpk3atY2BwEL9BQXq2/qnDAVz82cQJQ5XDd8//PDD6N27N3bv3g2fzxfww4CUnMZ/eMzNywRq9bCsWmVPezgMSWa54TWjtWzx44+HruKkte348dqfKW7+DKLE4aqgdP/+/RgyZAhq165td1MowbVvL+eNhuOfA2bFMoF6eZ+R5oRqXQB79JB7n6ymNwxJpMYNr5ngoNHjAXJzgWefDV0aWGvbYcP0H4NLlZLTuapOad++fXHppZfi7rvvtrspprHOWfy59lpg8WL9baxcUlRveLKsQ5f5+XLPUvCAhB1LpqrViuXSraTHTa8ZM0uYcrlTa/D6bR1XBaXPPfccXnzxRdxwww1o0aJFyESnhx9+2KaWhccXdXzxeoHsbP0csGjmrYWboKF30QWic0GeN0/uHQ1WUCD35FjJP0jm0q1kBF8zFClev63jqqC0YcOGmn+TJAlbtmyxsDXm8EUdXwoKgKuuUv+bxwMMHQoMGhSd3gsjvZxa7VEmRGj9zUww6bTeJvYSkVl8zVAkeP22jquCUjfjizq+qAVokgTMnQu0axe9C57RQNCKnlKAvU1ETubkklduxuu3dVw10YnIKdRmsk6bBnTrFt2LgdEJGnoza7X+Bpif+OSEiRIs4k9GJNrrJD9f/vJ51VXyv3l5iXX8FB8c31M6dOhQjB07FmlpaRg6dKjuthMnTrSoVebxm1Z8ivVwoNkhc732+P9t8WJgwAB5aF+S5IDaDT2eTq81Sc6QaK8Ttc8JRbTTiRIRr9/WcXxQeuWVV2LRokWoUqUKrrzySs3tJEnC0qVLLWyZOXxRU6TKOmSuDOmlpwNr1wK//AK89FLgNpIE7Njh7IuW03JayZkS8XWil+OucNOXT6fh9ds6jl/RqaCgQPX/RPEiXB5Y//7y6kmR9Mj69xjpEUIuht+tm7m2W4nLJJIRifg6UVutKZgQ9q/ERhQOc0qJbBScB6ZVjD4zM7SAthYll66w0FhAqti/39k5aGpF/LlMIgWL5HXi5PxT/7ZptTMzExg3Tn2RC39OWzCAKBiDUiKbxGLpQ/8gt21b4wGpJAEPPBA+OLYTl0kkI8y+Tox+MbSDf9uys+UftXbm5wOjRpXm0LZurb3PtLTYt5soUo7PKY0XzEmhYHq1RSMpRq832UGPxyMP7fl/EkgS8MQTwE03AW3amG9LLLHWJBlh5HXi5PzTcO9nvZJveubNA2rUYNkoM3j9tg57SolsEu3haLVcOj233SYHwLNnh65MJQQwdixw8cXAnXdG1p5YCU5lcPLQK9nHSMqL0ZJrdgj3flbaaeZ9L0nyqmxO7BUmAhiUEtkm2sPRakGumiFDgDVrgPnz5Yt2+/b693vrLTk/1YmcPPRKzufkPOVw72elnUbf90DgiEg00oWIoo1BKZGNolmMPjjI1bpQ3Xxz4JB8ZqZcx1DPihWRt6ustHpCY5GTS4nFyXnKwW2TpNL3tN7iGGY4pVeYSMGglMhmZmbWh+Mf5K5ebbwXqHZt/f126FD2tkVCryfUyUOvicrpqRRq7XPCKmVa/Nu2Ywewfbt6O5XtzK4fI0nO6BUmUjAoDWPbtm3o378/GjZsiNTUVDRq1AhPP/00Tp06ZXfTiFQpQW6bNsZ6gbxeYORI7f317RvYs2pV4BGuJ9TJQ6+JyOmpFHrti+YXw2jzb5teOzMz5TrDwe8Jj0cOPoncgEFpGD///DN8Ph/eeOMN/Pjjj5g0aRJef/11PPbYY3Y3jSgsI71A4SZKXHpp6f+tDDzC9YQ6eeg10Tg9lcLp7YsWtRQeny90IqNCCHl1N69XnpU/b178nRNyF5aEikBeXh6mTJmCLVu2GL4PS0qQ1dRWivJfcvTYMflvQOSlZ2JZPsdouR6WiLJftMubRZvT2xdtXq+8QluPHtoBqT9JKt2Oy5GG4vXbOo5fZtSJDh8+jGrVqtndDCJN/suLShLwyCNArVqlBbYVHo/cszJ1qvbqT0rvpBDWLt+o9PoMHCg/jlZPqDKsSfZRW+bSSakUTm9ftGVmyhU2jHY5+W8nhPxZwOVIyQ4cvjdp8+bNeOWVV3DvvffqbldUVIQjR44E/BDFSvBShP4BphDAhAnAiBGhQaUyjNmlizyJYsqU0PwzvdIzHg+wZ0/Zhvz0clSdPAmFSmVmAuPHq88OdwKnty/avF7ghRciv7/PxwmDZI+EDUpHjx4NSZJ0f9auXRtwn127duHaa69Ft27dcPfdd+vuPycnBxkZGSU/WVlZsTwcSmDBeZ5jx5orol9cLA/1bdoEXHSR3KtqpPSMMuTXo0fk+aVGclSdPAmFZPn58mQ5pWc+J8dZXyCc3r5o27TJeC+pGo8nfnuRydkSNqd037592Ldvn+42DRo0QEpKCgA5IL3yyitxySWXYObMmfCEqVZcVFSEoqKikt+PHDmCrKws5qRQVEW6tKg/pWfU/5PA45Frlw4apD5bf9UqoGfPsuWXOnmJRzLO6c+j09sXC2rHLEnADTcAH30Uuj1zSvUxp9Q6CZtTWqNGDdSoUcPQtr///juuvPJKXHTRRZgxY0bYgBQAkpOTkZycXNZmEukyu7SoGrWvpT4fMGmSHJQGy8yU184ua36p3uz6eA0W4pHTn0enty8WgvOxlS+eagEpADz2GHDBBfL/27WL3/NCzpeww/dG7dq1C1dccQWysrIwYcIE7N27F3/88Qf++OMPu5tGZGqJQUmSL1JG6RWij0aNULM5qk4vzJ6onF4v1untixUlH3vevMCeUDXjxsnBaLduDEjJXgxKw/jss8/w22+/YenSpcjMzETdunVLfojsZmaJQY8HuPFG44W09fLKolEj1EyOqtMLsycyp9eLjWb73PbFSGtUI5jyBdRtx0fxJ2FzSq3GnBSKJaVW59q1ctmn4mL17YJ7TDwe4NprgU8+Cd02Lw8YNszY45alRmi4HFUg8XIC3cjp9WLL2j7/MmtKKTU35F0azTt/7DG5x9Rtx2cFXr+tw6DUInxRk1W0gjwtHg/wr38BCxeWXpDGjQOGD499WxV6xc2FSKzC54lCbXEHq/dtZjs3fzHKzy/NL/V45PdUuCt/UhLw7rtA+/buOMZY4vXbOhy+J4ojykW2XTugd29j9/H5gPfeA1avlgO97dutDUgB/bw/MzmBHH50h1imYxjdt5k2hFvy1un86/3Onm2sXFRxcdnKvRFFgj2lFuE3LYq14FWcAHO1CidOjP1EB72eKf/eHCXvTxk+1Pub//3dOLyaaGLZ66i2b49H/sLVpk3kbdDbHohdj28sRFJGzk29wrHA67d12FNKFAfUVnEy+3Vz6NDY9oqE65nSW70p3MpOwcevrFTl9h7TeOz5jWWvo9q+fT6gbdvA15vZNmhNllq82H0T8DIz5fe6GW7qFSZ3Y0+pRfhNi2JJKydTjccD3HorsGiR+oSoaPeKeL3AypVyjqv/p000H0cvJ9Wteafx2vNrdU+p2mNE2gb/yVKAe/NMvV4gOzv0i+vjj8v1Snv0iN171Y14/bYOe0qJ4kCTJsZKPT39tJwzOn++fJGZODF0m2j2iii9o8EXOSOPY6aXMN5qUcZrzy8Q2xJSyr7Vavf6v94ibYP/krduzjPNzJRXbVKO3+MBcnOBZ5+VU3j8/+a0El8U39hTahF+06JY0ur5CBbc41ZYCFxySWiZqOAcvEjbpJe7ptf7Ekkv4YQJpeuba+WdukU89vwGi2UJqcJCecg+XC9mWdrg9hn5gP7xO73El5V4/bYOe0qJ4sCmTcZySP173PLz5Qt38P3UcvAibZNeQKrV+xJJL2F+fmlAKklATo57A1Ig/np+1fj3OkZb3bpy3mS43r6ytMHpiwYYoXf8sXx+iLQwKCWKA2aWGy0uluuY+gd+waIxXKwVWM2bpz5ZSWF2WFRtktejj7p7qDuSgCceJ0VFQkkZmTBBfk0MG6b/eiuLcBPwiMgcBqVEcUBtyU6tHNOkJDlwM7r0YLTapARW4cpOme0lDBfEujVYMxPwcBlWmdoXlEmTYvuY7FEkih4GpURxwj+I2bEjcLKCQgkM27cP37MajeHiSHqSzPYS6gWxbg/WjAQ88Twpyiw3Tz4iIk50sgwTpckOymSFtDTg+PHASQv+k4kUkiT3Llk1UUivmL6ZiRZqxfW7dHH/RBQjEmFSlFHxMPmInIfXb+uUs7sBRBQ7mZnaF+MuXUInOXk88jKE7drFfmWnl16SS1JpzbD3b3u4Ncr795ePxz+ILSjQ7jVzQoASrbXflZ7i4EDM7ZOiIjk/Si+7/zrvQ4aUfb9EZA0O3xPFCbO5k2oz9ouLgZo1Y3uxzs+Xy1cpE1EA/SHnCROMDcEHD3U7eQZ7NNMK7JwF7v+ai2bublnOj5IyMmyY/Lvy+snPd386B1G84/C9Rdj9T7EUSV1PO4Y6w9UuDR5yzssDRowI3CZcG/17whYvDh3Wt3uGdDTOu1pvn9V1Jf1fc8qkOiHKvvpUtM5P8D6ULygc2iezeP22DntKiVwu0okudvSwhatd6t+L6fXKtUeD6U1cCe4JA5xXsqesk3H0evus6mJQm+WuPHZZJ1pFY7KS2j58Pk6CInI65pQSuZzeRTxcgKmWixlLavmPQGBArPQC7t2rHmR5POpD8FrB+bZtzprwU5YcUK1jPHAAGDWqtKd83DigdWv5sYDo51DqfbkAypa7G40cWbV9aPWUOiGdg4hk7Cklcrmy5k5aWWcxuHfW4wksbu7fC9irl3qt1fHj5X+D8xeffdYdPWFl6aHW+gKirGYFyP+OGCGfw+xs+SfaOZThFmuIJNhTclKBsvfgq53jqVPdvwITUbxjTqlFmJNCsaRWEskJQ9Va1PIfw+UBKj2A1aqF5s8eOBCaewo4O2cwkhxQrXMUbiEERTRyVxX+rzmPp3QIP5LXn1pOdDR68LVeZ1zTnczg9ds6DEotwhc1xZqbL7Zer7z86COPhP5t3jy5IoDS86Y2Caa4WH2/w4bJk6XiSfAXkHHjAntKwzFav9TI5Dn/1xwQ2esv2hPuIin5xDJRpIfXb+swp5QoTujVJHUytSL+iqSkwJqpWrVHtXTvHr12OoVaHnDVqqWBqp6y5q5WqiSvBqY8H8GvuUhef1opCfPny0vSKtsYCRgjqUIRyX2IKDbYU2oRftMiCqVXIsrjkfNHlXqTWtvr9ZQm0qpGhYXA8uXA/v1y72lZhtW1VokCoh+46b0GzJSaMtrj6t8rCnAFKAqP12/rcKITEUVNJAX8tYadfT55WNp/co7WJKHc3ND7J9LM6vx8oG1bYOhQICdHDkoLCoDt24EdO8yXxNKbyFTWkk/Bgp9Tf2ZKTRkpJRVcTuull9wxOY4oUTAoJaKoiGS1nHCzuNUCEWXFHv9Aq1cveTtlX0qwCkRvlSGnUhtqHzUqMLfT7HiYXqAIRD9wU57TiRP1t9N73PT00GoN/l9M1M7TxInOXfWLKBExKCWiMotWAX+1AFUtEPEvY6UEw2+8IQdfSokpwLolJaO5xKZZej2E0Viuc948/WAvWjIz5RzSSEpNKT3F/sF38BeTlSvVC+oPHcoyUUROwaCUiMqsrKvw+AezwfQCILWVhSZNAnbvjixIjoTd66lr1alNSyv7OVACxWnTrAnc1L6kKAGx1uMGvwaU+61aJf9feW569lQPrgcNct6qX0SJirPviajMIl2FRwkotIaXJUnOkdQKgLSC4eXLI1/lygytHuIuXazrbVMCueA6tceORe8cWLnyV/BjAfqPq7Wk6LZtoV9YJKl0YlxwkMveUSL7MSglojLTCozULvT+s5/DLVcphJwfWa2aeg+WVjC8b1/otrEYci7LEq/RpBY0er1lX67Tn5Ulx8yUmtJ6DQgR+twIAcyeXVr3loEokbNw+J6IokJtAlKw4KHutWv1cwgB/WFntdn448bJP8HGjYt+EFLWJV6jKXi52LIsZ+omWsfZvr36c9OunXXL6hKROaxTahHWOaNEp1VHctw4uTc0XOH34JqjwfUmlV7CTZvUa2zGqmap05d4dcpKX5GummT0fmrH6fTnhtyB12/rMCi1CF/UlOi0CrIXFMiBxG+/yZNztm2TJ6XoFTTXW4Un2stWGhHNwC8el7yMdNWkcM9zpMEqkRm8fluHQalF+KKmRGcmWNTr4TKyH7f2kMXjkpeFhcAll4SWawr3JUHveV68OP7OEzkXr9/WYU4pEVnCTI6jVn6q1yvXzdQrP+X1AmefLZcEclOZn0hrvertz+6FA9TqhwLGyoVpTSJbtSo25b6ccL6IEh2DUiKyjJHJUIrgiTvKJKlHHlHfPi0tcCJV27bA5s3uGbIta61XfxMm2Fc7VQnuCgtD64cqlDqqekGg1iQytVn1ZV1hyu5as0Qk4/C9Rdj9T6QueMKSWp6g2lBusHnzwueiOlm0cmHz8oARIwJvs+o8BKcfqD1fHg/Quzfw9tvhh9/V0jC6dIluzrAdOcjkLrx+W4c9pURkG/8equxs+UettypcPdNY9aBZKRolnLze0IAUsOY8qKUfBPN4gPffLw1Ile20ht/VetYXLw5MB/B4ylbqKpo91ERUNgxKDbj55puRnZ2NlJQU1K1bF71798auXbvsbhaRq6ktEaoEG8GBitpQrkKvLqXHIw8T28VsnmKXLsC778q9vsHpDUb2tXKl+u2SFPvaqVpfHJTnJClJDrrT0swFgf5pHForgHXpEnm7nVRrlijRMSg14Morr8S8efPwyy+/YOHChdi8eTNuu+02u5tF5Grhej+Li4H58+VARK0XMS8vsActeBtA3n/btvbkCJrNU1TyQHv0kNMQFi/W3teECebaMnBg7IeitYK71asDn6eyBIFaS4qWpVczURYZIHIFQaa9//77QpIkcerUKcP3OXz4sAAgDh8+HMOWEbnHzp1CeDxK/6j2j8cjxPTppfcpKJD/1bJmTeh+k5L07xNtasem14bc3NDjVrbXOk+5ueqPK0mB20mSdcc+fbrcbqX9yvMW6XbBPvxQ+zyVlZHXFiUmXr+tw55Skw4cOID//Oc/aN++PcqXL6+5XVFREY4cORLwQ0SllB4qM8uMBs/IV3PsmP05gmbyFL1eYOTI0NuV7bV6lEeNCh3Kz8wEpk0L7PWbNs26Xj+j1RXMVGFQ3HkncNNNgbdFmnerlgZh5LVFRLHFoNSgkSNHIi0tDdWrV8eOHTvw/vvv626fk5ODjIyMkp+srCyLWkrkHl26hOYHSlLodkqAppdXqfwtPd3+HEEzQ9SbNoWeA0C+f+PG2vm0WsPWkQR80WQ0uDMTBBYWAm+9FXr7f/8rv4aU10S4vFuWfiJytoQNSkePHg1JknR/1q5dW7L98OHD8e233+Kzzz5DUlIS+vTpA6FTTevRRx/F4cOHS3527txpxWERuYpaQCaE+oSlwkLtgCK4Pmnv3vbmCJrJU9QKOsePl7fPzJT/H0wv0I63Xr+vv1a//e23jVVvAKK/OAERRV/C1indt28f9u3bp7tNgwYNkJKSEnK71+tFVlYWVq5ciXbt2hl6PNY5IwqlVSNy3Di5tJHep5NSSxJQ38eqVcDx4/aueW503XX/epwej3z8w4cH1nAdMgRYsKD0Pn37AjNnxvwQHKGwELj44tDbJUn7NRJca7SgQA5YgxUUyAE8kRZev61Tzu4G2KVGjRqoUaNGRPdV4viioqJoNoko4Sg9isEF0lu21A9IgdIhfa36pMeP2x9sKD2d4fTvLw9D+wewwYXog8/HO+8Azz4bP72hetq0kYNw/yH8Ll0CKxQEU5Yk7dZN/l1J6wj+8sLST0TOkbBBqVFr1qzBmjVr0LFjR1StWhVbtmzBU089hUaNGhnuJSUibWoB2cSJ4e+n5Fwq/3dLsOHf++kfUPoHsEYK0StBebigVOvx3GbmTOCBB4AVK4AOHYC6dcOv8tWjB7BmDVCrljwxzH9bjwfIyXH3OSGKNwmbU2pUamoq3nvvPXTq1AlNmzZFv379cP7552PZsmVITk62u3lEcSE4B/LSS8PfZ+jQ0kDODXUmvV55SN7IRJtwNVyB0MBbbZJPvE3sadMGGDxY/jf4eZek0ElyQsg1XUeMUK9vOmpUaZoEEdkvYXNKrcacFCJz7rxTfcY1oL42udH8TTvk5wMDBoQOwWutsa6WaxucP+mfUxo81D91avTXiHcir1dexUqSgHbt5P/36GF+P5Ikl86yulIBuQOv39ZhUGoRvqiJzCsslIdr9+6VZ6D75526JYBQCzD9FRTIgXTwEHtwUB4clIab6PXuu+oBWrxM7DEaiBsVbwE7RQ+v39ZhTikROVabNvIPANx3n3N7QvXoDcUnJQFz5sgBlVIKSwmu3n47cNvg7oNwE70kyV25tmYUFgb2PCvlnbZtC5w4Z4bRHF0iih3mlBKRK7i19qZWHVJJkgOhN94IDK7uuUcOrIzmlGoV6m/Xzh25tmbl58u1aLWCdGXxgGHDSs+LxwNcfrn+6mHxErATuRmDUiKiGAqekOPxyD15WolTPh8wdmz4/d5xR/iJXnav7hRtwVUJgi1ZIv+bmQnk5QHbt8vBKQAsWyaf82HD5Bn5/kFrvATsRG7HnFKLMCeFKLH5T8QyOyFHqVPq/2nt8QCrV5emNzh5ole0aBXA95eXVxqIai3OoOSOJsI5o7Lj9ds67CklIrJApOkHkyYBs2eH9qz6fPIqR0qZJ7emN5ihlQrhb+TI0hJPavm8yjA/kBjnjMhNGJQSEVmsffvQmppqdTaTkoDbblPfXnHPPe6ts6lWW1VPcKqCGp+vNOjUyrdl7iiRMzEoJSKyWGYm0KdP4G19+si1Ms1OTPIPwtwk0sL+/nmyjz0W+nf/oNMtCysQkYw5pRZhTgoRKfRyHYHQPEe9XEpJAnbscFegFS7X04wJE+Qhe59Pu4Ytc0epLHj9tg7rlBIRWUwv11Etx1EZhtaadb54sbtm1usdv9mgcdgwoGdP/aBTqVJARM7G4XsiIouZzXXUy6UUQi4x5aa80mjnenLCElF8YFBKRGQxvVxHrck/Si7lxImh+/OfUe4GVuV6mp1IRUT2Yk6pRZiTQkTBgnMd1dZzV4blvV552Ds9XV7RKBr5mHaLVq6ncm6aNCndj965JDKD12/rMCi1CF/URKRHbfKPUiD/u+9K13qXJHmm/jvvyD2kWpN7EoVa8NmlS/QmUhHx+m0dTnQiInIAtck/SoF8f0IAs2YB33wDHD+e2DPKg5cd9fnk/Np3343eRCoisg6DUiIiBwg3w96fEHKvX7duMW+Wo2nN4pek0HPJovlEzseJTkREDqBM/gm3jCaV0prF364di+YTuRE//oiIHKJ/fzmHVGtJUYXHIwdeiU5vFr//yk/btiVuzi2RmzAoJSJykDZtQpcb7ds38PepU9nrp9ALPlm/lMhdOPveIpy9R0RmBJdLiqR8klqppESS6MdP0cHrt3XYU0pE5EDBvXxme/3y8+WySFddJf+bnx+rljpToh8/kRuxp9Qi/KZFRFZRq3maSHU6E/34Kbp4/bYOe0qJiOKMVqkkNy1FWhaJfvxEbsWglIgozmiVSkqUOp2JfvxEbsWglIgozuiVSkoEiX78RG7FnFKLMCeFiKwWyYz9eJLox0/Rweu3dbjMKBFRnMrMTOxgLNGPn8htOHxPRERERLZjUEpEREREtmNQSkRERES2Y1BKRERERLZjUEpEREREtmNQSkRERES2Y1BKRERERLZjUEpEREREtmNQSkRERES2Y1BKRERERLZjUEpEREREtitndwMShRACAHDkyBGbW0JERERGKddt5TpOscOg1CJHjx4FAGRlZdncEiIiIjLr6NGjyMjIsLsZcU0SDP0t4fP5sGvXLlSqVAmSJNndHEscOXIEWVlZ2LlzJypXrmx3c1yD5808nrPI8LxFhufNPDefMyEEjh49inr16sHjYdZjLLGn1CIejweZmZl2N8MWlStXdt2HkBPwvJnHcxYZnrfI8LyZ59Zzxh5SazDkJyIiIiLbMSglIiIiItsxKKWYSU5OxtNPP43k5GS7m+IqPG/m8ZxFhuctMjxv5vGckRGc6EREREREtmNPKRERERHZjkEpEREREdmOQSkRERER2Y5BKRERERHZjkEpRV1OTg7atGmDSpUqoVatWujatSt++eUXu5vlKjk5OZAkCYMHD7a7KY73+++/44477kD16tVRsWJFtGrVCuvWrbO7WY525swZPPHEE2jYsCFSU1Nx9tlnY8yYMfD5fHY3zTG++uor3HTTTahXrx4kScJ///vfgL8LITB69GjUq1cPqampuOKKK/Djjz/a01gH0Ttvp0+fxsiRI9GiRQukpaWhXr166NOnD3bt2mVfg8lRGJRS1C1btgwPPPAAVq9ejSVLluDMmTO45pprcPz4cbub5gqFhYWYOnUqWrZsaXdTHO/gwYPo0KEDypcvj//973/46aef8MILL6BKlSp2N83Rxo8fj9dffx2TJ0/Gxo0bkZubi7y8PLzyyit2N80xjh8/jgsuuACTJ09W/Xtubi4mTpyIyZMno7CwEHXq1EHnzp1x9OhRi1vqLHrn7cSJE1i/fj2efPJJrF+/Hu+99x5+/fVX3HzzzTa0lJyIJaEo5vbu3YtatWph2bJluOyyy+xujqMdO3YM//jHP/Daa6/h2WefRatWrfDiiy/a3SzHGjVqFFasWIGvv/7a7qa4yo033ojatWsjPz+/5LZ//etfqFixIt5++20bW+ZMkiRh0aJF6Nq1KwC5l7RevXoYPHgwRo4cCQAoKipC7dq1MX78eAwcONDG1jpH8HlTU1hYiIsvvhjbt29Hdna2dY0jR2JPKcXc4cOHAQDVqlWzuSXO98ADD+CGG27A1VdfbXdTXOGDDz5A69at0a1bN9SqVQsXXnghpk2bZnezHK9jx4744osv8OuvvwIA/u///g/Lly/H9ddfb3PL3GHr1q34448/cM0115TclpycjMsvvxwrV660sWXuc/jwYUiSxNENAgCUs7sBFN+EEBg6dCg6duyI888/3+7mONqcOXOwfv16FBYW2t0U19iyZQumTJmCoUOH4rHHHsOaNWvw8MMPIzk5GX369LG7eY41cuRIHD58GM2aNUNSUhKKi4vx3HPPoVevXnY3zRX++OMPAEDt2rUDbq9duza2b99uR5Nc6eTJkxg1ahRuv/12VK5c2e7mkAMwKKWYevDBB/Hdd99h+fLldjfF0Xbu3IlBgwbhs88+Q0pKit3NcQ2fz4fWrVvj+eefBwBceOGF+PHHHzFlyhQGpTrmzp2Ld955B++++y7OO+88bNiwAYMHD0a9evXQt29fu5vnGpIkBfwuhAi5jdSdPn0aPXv2hM/nw2uvvWZ3c8ghGJRSzDz00EP44IMP8NVXXyEzM9Pu5jjaunXrsGfPHlx00UUltxUXF+Orr77C5MmTUVRUhKSkJBtb6Ex169ZF8+bNA24799xzsXDhQpta5A7Dhw/HqFGj0LNnTwBAixYtsH37duTk5DAoNaBOnToA5B7TunXrlty+Z8+ekN5TCnX69Gl0794dW7duxdKlS9lLSiWYU0pRJ4TAgw8+iPfeew9Lly5Fw4YN7W6S43Xq1Anff/89NmzYUPLTunVr/Pvf/8aGDRsYkGro0KFDSLmxX3/9FWeddZZNLXKHEydOwOMJ/PhPSkpiSSiDGjZsiDp16mDJkiUlt506dQrLli1D+/btbWyZ8ykB6aZNm/D555+jevXqdjeJHIQ9pRR1DzzwAN599128//77qFSpUkn+VUZGBlJTU21unTNVqlQpJOc2LS0N1atXZy6ujiFDhqB9+/Z4/vnn0b17d6xZswZTp07F1KlT7W6ao91000147rnnkJ2djfPOOw/ffvstJk6ciH79+tndNMc4duwYfvvtt5Lft27dig0bNqBatWrIzs7G4MGD8fzzz6NJkyZo0qQJnn/+eVSsWBG33367ja22n955q1evHm677TasX78eH330EYqLi0uuD9WqVUOFChXsajY5hSCKMgCqPzNmzLC7aa5y+eWXi0GDBtndDMf78MMPxfnnny+Sk5NFs2bNxNSpU+1ukuMdOXJEDBo0SGRnZ4uUlBRx9tlni8cff1wUFRXZ3TTHKCgoUP0c69u3rxBCCJ/PJ55++mlRp04dkZycLC677DLx/fff29toB9A7b1u3btW8PhQUFNjddHIA1iklIiIiItsxp5SIiIiIbMeglIiIiIhsx6CUiIiIiGzHoJSIiIiIbMeglIiIiIhsx6CUiIiIiGzHoJSIiIiIbMeglIhcadu2bZAkCRs2bLC7KWW2YsUKtGjRAuXLl0fXrl3tbg4RkS0YlBIRReDOO++MWgA5dOhQtGrVClu3bsXMmTOjsk+jZs6ciSpVqlj6mEREahiUEpGlTp06ZXcTyqS4uBg+ny+q+9y8eTOuuuoqZGZmGg4Q3X4eiYiCMSglopi64oor8OCDD2Lo0KGoUaMGOnfuDAD46aefcP311yM9PR21a9dG7969sW/fvpL7ffrpp+jYsSOqVKmC6tWr48Ybb8TmzZtNPXaDBg0wduxY3H777UhPT0e9evXwyiuvBGwzceJEtGjRAmlpacjKysL999+PY8eOlfxd6Un86KOP0Lx5cyQnJ+Ouu+7CW2+9hffffx+SJEGSJHz55ZeqbSgqKsLDDz+MWrVqISUlBR07dkRhYSGA0hSE/fv3o1+/fpAkSbOntEGDBnj22Wdx5513IiMjAwMGDAAALFy4EOeddx6Sk5PRoEEDvPDCCwH3O3jwIPr06YOqVauiYsWKuO6667Bp0yYAwJdffom77roLhw8fLjmO0aNHAwBee+01NGnSBCkpKahduzZuu+02U+eeiMg0QUQUQ5dffrlIT08Xw4cPFz///LPYuHGj2LVrl6hRo4Z49NFHxcaNG8X69etF586dxZVXXllyvwULFoiFCxeKX3/9VXz77bfipptuEi1atBDFxcVCCCG2bt0qAIhvv/1W87HPOussUalSJZGTkyN++eUX8fLLL4ukpCTx2WeflWwzadIksXTpUrFlyxbxxRdfiKZNm4r77ruv5O8zZswQ5cuXF+3btxcrVqwQP//8szh06JDo3r27uPbaa8Xu3bvF7t27RVFRkWobHn74YVGvXj3xySefiB9//FH07dtXVK1aVezfv1+cOXNG7N69W1SuXFm8+OKLYvfu3eLEiROax1K5cmWRl5cnNm3aJDZt2iTWrl0rPB6PGDNmjPjll1/EjBkzRGpqqpgxY0bJ/W6++WZx7rnniq+++kps2LBBdOnSRTRu3FicOnVKFBUViRdffFFUrly55DiOHj0qCgsLRVJSknj33XfFtm3bxPr168VLL71k5OkmIooYg1IiiqnLL79ctGrVKuC2J598UlxzzTUBt+3cuVMAEL/88ovqfvbs2SMAiO+//14IYTwovfbaawNu69Gjh7juuus07zNv3jxRvXr1kt9nzJghAIgNGzYEbNe3b19xyy23aO5HCCGOHTsmypcvL/7zn/+U3Hbq1ClRr149kZubW3JbRkZGQCCpdSxdu3YNuO32228XnTt3Drht+PDhonnz5kIIIX799VcBQKxYsaLk7/v27ROpqali3rx5JceXkZERsI+FCxeKypUriyNHjui2iYgomjh8T0Qx17p164Df161bh4KCAqSnp5f8NGvWDABKhug3b96M22+/HWeffTYqV66Mhg0bAgB27Nhh6rHbtWsX8vvGjRtLfi8oKEDnzp1Rv359VKpUCX369MH+/ftx/Pjxkm0qVKiAli1bmnpc5RhOnz6NDh06lNxWvnx5XHzxxQFtMCr4PG7cuDFg3wDQoUMHbNq0CcXFxdi4cSPKlSuHSy65pOTv1atXR9OmTXUfv3PnzjjrrLNw9tlno3fv3vjPf/6DEydOmG4vEZEZDEqJKObS0tICfvf5fLjpppuwYcOGgJ9NmzbhsssuAwDcdNNN2L9/P6ZNm4ZvvvkG33zzDYDoTPCRJAkAsH37dlx//fU4//zzsXDhQqxbtw6vvvoqAOD06dMl26emppbcxwwhRMDj+d8eyf6Cz6PafpTHDP6/mcevVKkS1q9fj9mzZ6Nu3bp46qmncMEFF+DQoUOm20xEZBSDUiKy3D/+8Q/8+OOPaNCgARo3bhzwk5aWhv3792Pjxo144okn0KlTJ5x77rk4ePBgRI+1evXqkN+VXtm1a9fizJkzeOGFF9C2bVucc8452LVrl6H9VqhQAcXFxbrbNG7cGBUqVMDy5ctLbjt9+jTWrl2Lc8891+SRhGrevHnAvgFg5cqVOOecc5CUlITmzZvjzJkzJQE9AOzfvx+//vpryeNrHUe5cuVw9dVXIzc3F9999x22bduGpUuXlrnNRERaGJQSkeUeeOABHDhwAL169cKaNWuwZcsWfPbZZ+jXrx+Ki4tRtWpVVK9eHVOnTsVvv/2GpUuXYujQoRE91ooVK5Cbm4tff/0Vr776KubPn49BgwYBABo1aoQzZ87glVdewZYtW/D222/j9ddfN7TfBg0a4LvvvsMvv/yCffv2BfSsKtLS0nDfffdh+PDh+PTTT/HTTz9hwIABOHHiBPr37x/R8fh75JFH8MUXX2Ds2LH49ddf8dZbb2Hy5MkYNmwYAKBJkya45ZZbMGDAACxfvhz/93//hzvuuAP169fHLbfcUnIcx44dwxdffIF9+/bhxIkT+Oijj/Dyyy9jw4YN2L59O2bNmgWfz4emTZuWuc1ERJrsTGglovh3+eWXi0GDBoXc/uuvv4p//vOfokqVKiI1NVU0a9ZMDB48WPh8PiGEEEuWLBHnnnuuSE5OFi1bthRffvmlACAWLVokhDA+0emZZ54R3bt3FxUrVhS1a9cWL774YsA2EydOFHXr1hWpqamiS5cuYtasWQKAOHjwoBBCfSKQEPLEq86dO4v09HQBQBQUFKi24a+//hIPPfSQqFGjhkhOThYdOnQQa9asCdjG6ESnSZMmhdy+YMEC0bx5c1G+fHmRnZ0t8vLyAv5+4MAB0bt3b5GRkVFyjL/++mvANvfee6+oXr26ACCefvpp8fXXX4vLL79cVK1aVaSmpoqWLVuKuXPn6raPiKisJCE0ko6IiFyuQYMGGDx4MAYPHmx3U4iIKAwO3xMRERGR7RiUEhEREZHtOHxPRERERLZjTykRERER2Y5BKRERERHZjkEpEREREdmOQSkRERER2Y5BKRERERHZjkEpEREREdmOQSkRERER2Y5BKRERERHZjkEpEREREdnu/wGwfQSHC8YvgQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHIklEQVR4nO2deXwTdf7/X5Nwt+WWo1QuwQMRdQU5PZGtrguoK5eKIBVRURDk8ucBiitQEEVdVwtd1HUFisd6iwqVrwhIAVlvRc5GUA6hQJGjzef3xzjNJJmZzEwmySR5PR+PPNpMZj7znk8yn8973p/3IQkhBAghhBBCUgxPogUghBBCCIkFVHIIIYQQkpJQySGEEEJISkIlhxBCCCEpCZUcQgghhKQkVHIIIYQQkpJQySGEEEJISkIlhxBCCCEpCZUcQgghhKQkVHIIIYQQkpJQySGEEEJISkIlJwasXr0a06ZNw8GDB+N+7iVLluDss89G7dq1IUkSNm3aFPGYRx55BB06dIDf74+9gAYcPnwYkyZNwp///GeccsopkCQJ06ZN09y3sLAQLVq0QHl5eczkcUu/ANb6BgCOHDmCe+65B9nZ2ahVqxbOO+88LF68OGifePQhALzwwguQJAnbt28HYHx/TJs2DZIkYd++fTGVyWn07js796NbiPU4Fq/vWjmPW+RR7gflVa1aNTRv3hyDBw/G5s2bHT2XmXHAieOtnMfMvlbHO0MEcZzZs2cLAGLbtm1xPe+ePXtE9erVRd++fcUnn3wi1qxZI8rLyw2P+fnnn0VGRoZYunRpnKTUZ9u2baJevXri4osvFrfeeqsAIKZOnaq578mTJ0X79u3FQw89FBNZ3NQvQljrGyGE6NOnj6hfv7547rnnxIoVK6qO+c9//lO1T6z7UGHPnj1izZo14tixY0II4/tj6tSpAoDYu3dvTGVyEr37zs796CZiPY7F67tWzuMWeRYuXCgAiIULF4o1a9aI4uJi8eijj4ratWuLJk2aiN9++82xc5kZB5w43sp5zOxrdbwzIq2VnFgNOIlSclatWiUAiCVLlpg+ZtKkSaJFixaisrIyhpKZw+/3C7/fL4QQYu/evRF/2HPmzBH16tWLyffopn4RwlrfvPvuuwKAeOWVV4K29+nTR2RnZ4uKioqqbbHsQz1STcnRu+/s3I9uQPktxGocU9pPdyWnpKQkaPvDDz8sAIh//etfjpzHyjgQzfFWzmN2X6tzgRFps1ylmCI3btyI66+/Hg0aNMBpp50GAFi1ahV69+6NrKws1KlTBz169MC7776r2U6kfadNm4aJEycCANq0aVNlkvzkk0+wd+9e3HbbbTj11FNRs2ZNnHLKKejZsyc+/vjjiPJHOu/w4cPRq1cvAMCgQYMgSRIuvfRSwzZPnDiBwsJC3HDDDfB4Aj+F3bt3IzMzE4MHDw7a/5133kH16tVx//33R5TXDkpfmeXGG2/EoUOHLJlfzaDXL0By9M0bb7yBzMxMDBgwIGj7Lbfcgl27duHzzz+v2ma2D7/55htIkoSlS5dWbduwYQMkScLZZ58dtG+/fv1wwQUXVL1XL1cZ3R9qfv31VwwZMgT16tVD06ZNMWLECJSVlZm6/u+//x5DhgxB06ZNUbNmTbRs2RI333wzjh8/XrWP2Xt+8+bNuOGGG9CkSRPUrFkTZ511Fv7xj39Ufa533xndj3bHAWUM++KLL3Ddddehbt26qFevHm666Sbs3bvXsuzqNkPHRaPvafjw4WjdurWufGbaV1NaWhrxesxcCwC8++67OO+881CzZk20adMGc+bMMexTLSLJ8+mnn0KSJCxatCjs2JdeegmSJKGkpMTyeTt37gxA/u07gZVxIJrjrZzH7L5W5wIj0kbJUbjuuuvQrl07LF26FM899xxWrlyJyy+/HGVlZSgsLMSiRYuQlZWFvn37YsmSJUHHmtn31ltvxd133w0AeP3117FmzRqsWbMGf/rTnzB06FD897//xUMPPYQPP/wQCxYswBVXXIH9+/cbymzmvA8++GDVTf/YY49hzZo1ePbZZw3b/fzzz7F//35cdtllQdubN2+OSZMmoaioCBs2bAAAfPLJJxgwYADuuOMO/P3vfzfZ27GlWbNmOPPMM3UVUrvo9QuQHH3z9ddf46yzzkK1atWCtnfq1KnqcwWzfXj22WejefPmQRPxxx9/jNq1a+Pbb7/Frl27AAAVFRVYuXIlrrjiCs12jO4PNX/7299w+umn47XXXsOUKVPwyiuvYNy4cRGv/X//+x+6dOmCtWvX4pFHHsH777+PGTNm4Pjx4zhx4gQAc/cTAHz77bfo0qULvv76azz++ON45513cPXVV2PMmDF4+OGHAejfd0b3o91xQOHaa69Fu3bt8Oqrr2LatGn473//i9zcXJw8edKS7GpCx0Wz35NZQtu3cj1mr2X58uXo378/srKysHjxYsyePRtFRUVYuHChJVkjyXPRRRfh/PPP11SynnnmGXTp0gVdunSx2kXYtm0bAOD0008P2i6EQEVFhamXGivjgBZmj7dynmhlsoUt+08SopgiQ/0PunXrJpo0aSIOHz5cta2iokJ07NhR5OTkVJnMrOyrZ+bNzMwU99xzj2XZzZ63uLhYADDtRzJr1iwBQPzyyy9hn5WXl4vs7GzRu3dvsW7dOpGVlSVuueWWoP6IJWZNlDfeeKNo2rRp0Da/3y8OHDgQtgTz+++/iwMHDoSZacvKysShQ4eq3hv1ixDu75v27duL3NzcsO27du0SAMRjjz0WtF2rD7W46aabRNu2baveX3HFFWLkyJGiQYMG4sUXXxRCCPHZZ58JAOLDDz+s2k8xzyv3g5nlqvz8/KDtd955p6hVq1bEPr788stF/fr1xZ49e3T3MXs/5ebmipycHFFWVhZ0/F133SVq1apV5Tuhd9/pbbc7Dih9M27cuKDt//nPfwQA8fLLL1dtMyu73rgohP73NGzYMNGqVStd+bS2abVv9nrMXkvXrl1Fdna2+P3336v2OXTokGjYsKGl5Soz/av8pr/44ouqbevWrRMAqu4FPZRj165dK06ePCkOHz4sPvjgA9GsWTNx8cUXi5MnTwbtr/yOzLzU35XVcSAUs8dbOY8dmbhcZZG//e1vVf+Xl5fj888/x/XXX4/MzMyq7V6vF0OHDoXP58MPP/xgeV89LrzwQrzwwgt49NFHsXbt2qAnLz2cOK8eu3btgiRJaNy4cdhnderUwaOPPorly5fjsssuw1VXXYX58+frmhA/+eSToIgBo5eTESZNmjTBnj17gp5ifv31VzRo0AB33nln0L4zZ85EgwYNwkzJp59+Oi666KKq90b9AiRH3xiZekM/0+pDLXr37o2tW7di27ZtOHbsGFatWoUrr7wSl112GT766CMAsnWnZs2aVUs1dunXr1/Q+06dOuHYsWPYs2eP7jFHjx7FypUrMXDgQJxyyima+5i9n44dO4bly5fj2muvRZ06dYKelv/yl7/g2LFjWLt2ra1rszMOqLnxxhuD3g8cOBDVqlVDcXExANiSXT0uxgKj9o2ux+y1lJeXo6SkBNdddx1q1apV1ZZiobNCpP4FgCFDhqBJkyZB1pynn34ap5xyCgYNGmTqPN26dUP16tWRlZWFK6+8Eg0aNMCbb74ZZuW44IILUFJSYuqVnZ0ddKyVccDqPurPrJwnWpmsUi3yLqlF8+bNq/4/cOAAhBBB2xSUH4tiQrayrx5LlizBo48+igULFuDBBx9EZmYmrr32WuTn56NZs2aaxzhxXj1+//13VK9eHV6vV/NzxWwqSRJeeOEF3f0A4IwzzsD8+fNNnbdly5bWhdWhVq1aEELg2LFjQZNWNETqF8DdfdOoUSPN38Rvv/0GAGjYsGHQdrN9qCxBffzxx2jTpg1OnjyJyy+/HL/++iumT59e9VnPnj1Ru3btqK9BTc2aNQHI340eBw4cQGVlJXJycgz3MXM/ZWVloaKiAk8//TSefvppzbbshhrbGQfUhO5TrVq1oO98//79lmXX6g8nMWrf6HrMXsuBAwfg9/s1+89Mn5qVR6FmzZoYNWoUHn/8ccyePRsnT55EUVERxo8fX/VbjcRLL72Es846C4cPH8aSJUvw/PPPY8iQIXj//feD9svMzMR5551nqk21gmR1HAjF7PFWzhOtTHZIOyVHrSk2aNAAHo8Hu3fvDttP8TFQnuat7KtH48aN8eSTT+LJJ5/Ezp078dZbb2HKlCnYs2cPPvjgA81jnDivkTwnTpxAeXk5MjIygj7btGkT/vrXv6Jnz5747LPP8K9//QujR4/Wbat58+a49dZbbckRDb/99htq1qwZNDk3a9YMQoiwfadNm6aZa+GXX34Jem/UL4D7++acc87BokWLUFFRETToffXVVwCAjh07Bu2v1Yda5OTk4PTTT8fHH3+M1q1bo3Pnzqhfvz569+6NO++8E59//jnWrl2r6fMRDxo2bAiv1wufz6e7j9n7qUGDBlXWHb3vtk2bNrbktDMOqPnll1/QokWLqvcVFRXYv39/lWJoR3YrT9C1atUKcuJWMFL6jNo3uh6z11KrVi1IkhR2LyvtWyFS/yrccccdmDlzJv71r3/h2LFjqKiowO233276PGeddVaVs/Fll12GyspKLFiwAK+++iquv/76qv1Wrlyp6R+oxbZt26qcwq2OA6GYPd7KeaKVyQ5pt1ylJiMjA127dsXrr78e9ITo9/vx8ssvVw3qVvc189TZsmVL3HXXXejTpw82btzoiIxWOfPMMwEAW7ZsCdr+ww8/IDc3F927d0dxcTH69++PadOmmY5uiSdbt25Fhw4dHG1Tr1+A5Oiba6+9FkeOHMFrr70WtP3FF19EdnY2unbtGrTdSh9eccUVWLFiBT766CP06dMHgGzVatmyJR566CGcPHlS1+lYwcz9YYfatWvjkksuwdKlS3UnXLP3U506dXDZZZfhiy++QKdOndC5c+ewV+ikZwez44Ca//znP0Hvi4qKUFFRURW95ZTset9T69atsWfPnqAooBMnTmDZsmWm5LdyPWavJSMjAxdeeCFef/11HDt2rKqtw4cP4+2333ZMHjXNmzfHgAED8Oyzz+K5555D3759o7LE5ufno0GDBnjooYeCEpDaXa6yOg6EYvZ4K+eJViZb2PLkSUL0ciB88sknonr16qJr165i6dKl4s033xS5ublCkiSxePFiW/sqjmKjRo0Sq1evFiUlJeLgwYPi/PPPF7NnzxZvv/22+OSTT8Ts2bNFrVq1xA033GAou9XzmnU83rlzpwAgnn/++apt27ZtEzk5OeKiiy4SR48eFUII8d133wmv1ysmTZpkqt1oeO+998TSpUvFv/71LwFADBgwQCxdulQsXbo0zJG4srJS1KtXT4wfP95RGbT6RYjk6ps+ffqIBg0aiIKCArFixQoxcuTIMOdJIaz34WuvvVbl5Lhy5cqq7bfccosAIBo0aBCWWyjU8Vjr/lAcv/Xu09A29Ni0aZPIzMwUbdu2rbr2RYsWiSFDhlSdw+z99M0334gGDRqICy+8UCxcuFAUFxeLt956S8ydO1dcdtllVftZcTyOZhxQ+qZVq1Zi4sSJ4sMPPxRPPPGEyMzMFOeee644fvy4ZdmNcsPofU9bt24V1atXF5deeql49913xWuvvSYuueQS0aZNG13HY632zV6P2Wv58MMPhcfjEb169RJvvPGGePXVV0WXLl3Eqaeeasnx2Ez/Knz++edV98PHH38c8RxC6OfJEUKI/Px8AUD8+9//NtVWJMyMA5988onwer3i4YcftnW8lf2s7GtlvDMi7ZUcIYT49NNPxeWXXy4yMjJE7dq1Rbdu3cTbb7+t2Y7Zfe+77z6RnZ0tPB6PACA++OADcfvtt4tOnTqJunXritq1a4szzjhDTJ061dQXZua8VpUcIYS46KKLxF/+8hchhOzhftppp4k//elPYZEMI0eOFDVr1ox5gsNWrVqZihwQQojly5cLAGLDhg2Oy6HuFyGSr28OHz4sxowZI5o1ayZq1KghOnXqJBYtWhTWptU+PHDggPB4PCIjI0OcOHGiarsSgXLdddeFHaOloITeH8XFxUKI6JUcIYT49ttvxYABA0SjRo1EjRo1RMuWLcXw4cOrMi4LYf4+3rZtmxgxYoRo0aKFqF69ujjllFNEjx49xKOPPlq1jxUl59ixY7bHAaVvNmzYIPr27SsyMzNFVlaWGDJkiPj1119tyR4pAZ7e9/Tee++J8847T9SuXVu0bdtWPPPMM4bRVUZKjpnrMXMtQgjx1ltviU6dOlV97zNnzrScDNBs/yq0bt1anHXWWRHbVzBScn7//XfRsmVL0b59+4jJ+sxgZhxQfqda0UtmxxGz+1nZ18p4Z4QkhIbzAkkbXnvtNQwaNAg7duwIWodOBoYOHYqtW7fis88+c7ztZO4XK8SyD4mzTJs2DQ8//DD27t1r2w+POMuXX36Jc889F//4xz/CojmJO0hrnxwiJ+nq0qULZsyYkWhRLLFlyxYsWbIEs2bNikn7ydovVoh1HxKSqmzZsgUrVqzAbbfdhubNm2P48OGJFonoQCUnzZEkCfPnz0d2drYrqm2bZefOnXjmmWeizseiR7L2ixVi3YeEpCrTp09Hnz59cOTIESxduhR16tRJtEhEBy5XEUIIISQloSWHEEIIISkJlRxCCCGEpCRUcgghhBCSkqRVWQe/349du3YhKysrJoXACCGEEOI8QggcPnwY2dnZ8HjM22fSSsnZtWsXTj311ESLQQghhBAblJaWGhbhDSWtlJysrCwAcifVrVs3wdIQQgghxAyHDh3CqaeeWjWPmyWtlBxliapu3bpUcgghhJAkw6qrCR2PCSGEEJKSUMkhhBBCSEpCJYcQQgghKQmVHEIIIYSkJFRyCCGEEJKSUMkhhBBCSEpCJYcQQgghKQmVHEIIIYSkJFRyCCGEEJKSUMkhhBBCSEpCJYcQQgghKQmVHEIIIbr4fEBxsfyXkGSDSg4hhBBNCguBVq2Ayy+X/xYWJloiQqxBJYcQkjbQKmGekhJg5EjA75ff+/3AqFHsO5JcUMkhhKQFaqtEy5bAxImcsPUoLAS6dQOECN5eWQn89FNiZCLEDlRyCCEpj88XbJUQApgzh0swWvh8wG23BfpKjdcLtGsXf5kIsQuVHEKIa7GzvKR1zOrV4VYJgEswWmzerK3geDzA888DOTnxl4kQu1DJIYS4EjtOr3aO4RJMMO3bywqNGo8HWLsWyMtLjEyE2EUSQuv5JjU5dOgQ6tWrh7KyMtStWzfR4hBCdPD5ZCVFbVHweoHt2wOWBJ9PtjpkZgJHjsh/u3XTPgaQ/XC0RrvQdomsHI4aJSuAXq9swaGCQxKJ3fm7WgxlIoQQW2gtmSgWl5wceRIO9RvxePSPufRSYP788GOUCTyVFRxFGWzf3vx15uUBubly37Vrl9r9Q1IbWnIIIa7DyJIDhH+mh5b156efgIwMoLw8NSZwIyVGrQx6PEBBAS0yJDmxO3/TJ4cQ4jpycuQJ2euV36stLnqOsQqKP4mWlSYnR7bqdOki/012BcfIByk0SopO1iQdoSWHEOJaFMuL2uKiZeVR8HqBNWuMrTR2lm/cSCS/peJiWfkJpbhYVvAISSZoySGEpByK5SXUGlNQoB0B9PzzxlaaVCpTYOS3BGhHSTHPDUk3qOQQQpKO3FztSKnc3MD/oflytJZvbrsteZdvIikxRkt+hKQLVHIIIa5EK6mfsk0ruZ/fH7BiaFlstCwffj8wb15sryNWmFFi8vLk5aviYvkvnY5JukGfHEKI69CKCgIC2yQpXMkxir5SfHW6dtU/LlktHFp+S7E4RyQ/plTxdSLuhD45hJCkRrHSlJRoLyupt2k9ms2YoR99VVkpOyPfe2/4cU5lPE5UhXMtv6VoCL0OM35MqeTrRFILKjmEkISjniRDsxYD8vtIeXG6dJH/GvmqDByofWxGhnlZtZSZVJnkQ69j9uzIYegMVSduJmmVnBkzZkCSJNxzzz2JFoUQEgVak2QoHk+44qJG7XC7bFmwpUddWPLIEe3jy8vNyaqlzKTKJK91HVOmGEdwAZGjvAhJJEmp5JSUlKCgoACdOnVKtCiEkCgxqnoNyApMQUGwk63HI/vlKJ8rSowyUYcuZylRV9GEVespM6tXp8Ykr+eYHam/GKpO3EzSKTlHjhzBjTfeiPnz56NBgwaJFocQEiV6k+TatcFRQepIobVrgcWLgaKi4KghvYlaUTiiCavWs1hIUmpM8pmZAcVRwesFZs0y7i+GqhM3k3RKzujRo3H11VfjiiuuiLjv8ePHcejQoaAXIcRd6E2SWkn9cnKALVtkv51Bg4DBg+XlKQUzVgW7YdV6bXfv7s5J3oojdGGh3KdqC5hyHRMmRO4vhqoT1yKSiEWLFomOHTuK33//XQghxCWXXCLGjh2ru//UqVMFgLBXWVlZnCQmhJiltFSI4mL5r9E+Ho8Q8nQsv7ze4GMWLAjeR5LkbVptrVhhfL5QFiyQz6ecV92uGfnNYEeuUPLz5esG5L7Qun71+UL71OMRYt06++cnxGnKyspszd9JY8kpLS3F2LFj8fLLL6NWrVqmjrnvvvtQVlZW9SotLY2xlIQQu5gJhTbj5BqaDVmIcEdgu9FQRhYLJ0K5nYjSmjMHmDQp0AdKCH5RkbZVR2+Jz6wzNiFuJmmSAf73v//FtddeC69iEwZQWVkJSZLg8Xhw/PjxoM+0YDJAks6kQrK2SEUpgciFKc20kQickMuoeCkQSKyoVs7c2h+EqEn5ZIC9e/fGV199hU2bNlW9OnfujBtvvBGbNm2KqOAQks44mccl3knv1Ocz4+QayS/HrSHPTsilF6mmoBXeTsdhkspUS7QAZsnKykLHjh2DtmVkZKBRo0Zh2wkhAfRCn3NzrU9kWuUWnHYyVVucli3TPl9urjz5Z2TIuW8UBQgITNqjRslKQuikrShBoZaLREdDOSGXVhuhKIpTaI0rpU9jWR6CkHiTNJYcQog9nLJcxCPpndri1LIlMHKk9vnUUVZa1qm8PLlW1dy58t9Q3xk3Wi6ckCsnRw75Nkqc6PFoK056PkVGlrtElbIgxDQxcYN2KXa9swlJZsxEJJlhxYrgNpRXcXHs5NQ7n15EkHJN6ggrvegip6KhnCYaudTXrURXhb5mz7bXXmg/hn6Wnx99VBghetidv5PG8dgJ6HhM0pXCwvDlG6vLTLF2UNVzGFajnG/zZu19J0wAxo5NT0dare9Hsegoy30zZwITJ9pvz6jSu/qcsVjGJOlNyjseE0Ls40Sytlgv82g5DKtR16Bq3z48Oy8gL08VFGgvz61Zo92ulSUXNy/P6IWCL14sy7xjh3kFR6+9ykpg3jxjB+dkrd1FUhMqOYSkCU7kcYllZttQJUoLpQZVTg5w773hn/v9wPTp2scOGhQeVWYl6sztlcaNMjLb+d71lM65c+USEEYKqRui1QgBqOQQQizihLKkh6JEzZ0b/pm6BhUgL0sZTbShhCYFtOJInQyVxu1Y2owsUzk5wPjx4duVRIFGCqkbotUIAajkEEJcRk4OMGBA5BpUZiw/oagtDFaiztyaWycUM5Y2RbGZPdvYMuXzyfXDQlG+B/W5Zs92X7QaIUASZTx2Ajoek1TH5wNWr5b/79EjuSea4cOBF18MvB82DHjhhfD9fD7Z32bQoOByDmqnW/W2HTvkfrHiSJ3sWYGV3EMbNgCTJ2v706idiufNk61pfn/A90kIY6d1n495dkjssD1/xyDSy7UwhJwkM0aFG0tLhZgwIThsWF2Y0omij/HETti7VvHMBQvCQ6lDw6D1Cm6aad/MdSS630MLlhq9Qn9D6vD8hx5i0U6SOOzO31RyCEkCIuUr0cuJouQviZQzxm3YzckTmmOmtDS8byQpWOnQykujp5xYyWFjJldPrDGbe0hR3PR+R+rfUzL8fkjqwTw5JuByFUkmlKWn/fuBu+6ynq9EQZKCl3GSYZnFqeWhoiJ5GUtr+4AB2sc4UboikctbJSXAp58CF10kl7yIlHtIkW3cOLmCuZl93f77IamH3fk7aWpXEZJOFBbKJQ30HkEUp1chrCk46mPdPElFqj8VK5yq82XkqBzLawj1Y7rkEu3fACD36cyZQOfOAYduxQ/HiGT4/RCiwOgqQlyGMtEa2ViVCBejBHqSBOTnR45SsiNfPBLiWYkU0pOlR4/wpIEej5w7RgunoqgiVUKPBSUlwQoOAKxcKf+OlD7weuXfhNKnEyYE0gGERqt5PLKCF9p/DA8nyQSVHEJchlE2WSDYqmEURj1rFjB4sJzrRJlwPR5gxgz7T+HxTohnlJPHjCw5OcD8+cHhzQUF+tfvlHKSiCKgn36q/5kkyUt027fLWY/1+lStWO7YATz3XHj/MTycJBP0ySHEZWj5cwDyRLVkiWyFCJ1kSkqArl2DrT/qZQp1GHAy+plYkQWQFcX27QNyWQlvdqLOl1rOaMKqldBv9bXo8cADwN//rv/5hAlyPhs7MDycJBrWriIkRVCsAGqLgiTJT9QDBmhPMkeOhC9vqd8r8TGAdrZeM0tQbkqIZ1RXScu6o1iEgMjX6WTpimiyQ1uxmvl8soXOiCeesL/EGMss14TEEio5hLiQvDx5uaCoSH7t3Gk82W7YYK19tXJidjJNhJ+JHuvXh2/zeoHHH9cvvWBFaUj0pG61jESkJU7AnRmaCYk1XK4iJElRljIyM4Fu3SJPcmqMQtCNlqCcWsqxsgwTSkmJ9vWOGiXLE0pxsayIuWWpzQzFxdqh38XFAYuUGr0lTjVuvl5CIsHlKkLSCLVVomtXawoOEHA+troE5cRSTjTOy4WF+tfbu7d2pFlJibuW2sxg1WqWkyM7muuRSg7D8YruI6kBlRxCkozQpQw7tlil8KKdJaholnKiqeZtFFrv9coO2VoT/X33ydYutyy1mcFOdNYFF2hvf+KJ6H2L3EK8o/tI8kMlh5AkY/VqbUuGXr6cUNSTe7xDnaOxqOj5nXg8AZm1JvrKSqC8PP4h3dFi1Wqmp7Bef707rjNaC0w0CjJJX6jkEJJEFBYCQ4aEb/d6gbVr5UkkPz94Mh82zHhydzKaKBLROC9rHevxyNetyNy+fXjyOkmS24/ldcZqCcVKVFgicvNoodUXTlhgkm3JkbgEx6touRgW6CTJjF6xRa2iiVqFKs0Wlow1dqp5mz1WqyCnxxPb6451IU6r7Sfyu9aS1U5FeS2caockJyzQaQJGV5FkRi/ixqjYpFuJJrmc0bFWo5KiJdYJEp1uP5qoNjNta8n6yivaRVLtfCdOJmokyQULdBKS4ijLNaGTiBDyBJOIZQm7E6ZSksIORsfq9VGsHIxjXYjTyfadqK5uR1ZJcu47ycuTi6Uy+zIxC31yCEkStAoo+v3yU3K8I01mzwZatnRflEu8/VJinSDRqfbj4bSrJ2v37s5+J4lO1Bgr9Py6GDIfHVRyCEkiFOfZoqLIpRq0cGLAnDMHmDTJ+rnjRTwdqWOtVC1bFhwyr44ks0I8nHaN+iKe34mbMHu/6TlmM2Q+euiTQ4jDxNLvQcGO74kTyxVGmXVj5feSDMSigKVWX3s8crkPO35M8cr4XFICrFoF9OoVyMeUjpi93/S+mzVrwjN7p3PWamY8JsQFxOvJy+oyhlPLFUa5atyaWC8eOLGEEvrUr9XXfr8960u8lvEKC+WJefx4+W+6Wh6s3G96VrZVqxgy7wRUcghxiHgmK7M6aTm1XKGlXAHAzJnp+XTpFFrKsdP+Pk4uGWktwzBZXwAr95ve99yrV3Jl6XYrVHIIcYh4JyuzMmk5NWFqOT+PGqWdoNCNuNGJU085AJy3vjhhcdKzViYqWZ8bv1Mr95veA0uXLu5I7pj0xCBnj2thMkASS9yerEwrkV5pqRArVthLzDZhQiDxXiyS4DlNrJP22WXFivAEj4Cc0E8IdyVyNPqNJ+L379bvVAjrSS/1vmc3ff+JhMkATUDHYxINZhyK3Z6sTO0gu2yZfUfkeDqyKueLxpk73vJawc2yhRLJ4T2ev/9k6LdYOKSnK3Q8JiSGmHUojleorF0TvboWUjT+E/Fcmkj1ukduqTllhkjLMPEMFXfrd6q+N+0sD7px+S2piYldyaVwuYrYYd268HpIiVyGisZEryxPLVlivERipp14LE04dZ5169y9lChE8ixLRFN7zEncuDxsdG+aWRp28/JborE7f1PJIWmFVR8U9aBjVyGI5vxax2sN7EuWRG4zdACNVnGLx2QXyV/FrJxafcYJxD5uUcjconAJYax06Skv6vHAjUqbm6CSYwIqOelNpKekUAVEr+q33cHHiac0vUk/Upta1+LxBLbZnSBiPdlFO/DrXfe6dbGRl8QftyhcevdmUZH2bzg/P3g8mDDBuYepVMTu/E2fHJIWRMrhoeX3YZT4zqrPhNUcInrr8np5aiK1uXq1dmK5xYvt+U8o8gGxrSMUrb+KXkK98nJn5SSJwy21rPT8lT7+WNt3aPLk4PHg8cflYqahxzMvTnRQySFpgZGTop4CkpkZPmh5PMDatdYdKq04SRo52oZO+qFotVlYqJ3HRimeaHWCiHc9nWicWWNdQJMQBS2FfOZMYP788H09nuCaZEDgvaLouNkBPZmgkkPSAqPJTsvKoaRVnzkzeNAqKLBXj8fsZGvG4qMu0hnpyS+0PQW7hR4TldXW7tN6MkUupQLpHhkUqpBfcEG4MgPI903ovQvI+3o88r2dToVMYwmVHJIW6E12y5YBgwdrHzN+PDBliqzoRBsSa3ayNWvxyckBBgyQnxKN2tRbclu82N61uDVs14h0rYAdb1gxW0atkBstL0uStqJTWQmccgoVcaegkkPSCrUF4rffZKuEUTpMv19WdKwm89J6olVPtmvWAG3bhj/xZmZqt5eRob1dbwL3+eSnwe+/1x5kt283fy1qknX5xy1+G6kK61ZpozzcaN2Dfj/w7LPJeT8lE1RySFqgDMKKQiOErLxoWTlCsWqpiORTs2WLXKFZ6/MjR7TbNHKUDZ3ACwuBli2BQYOAO+/Uvsb77rM3AXH5JzWJdpkpGS188SIvD3jzTe3PLriA91OsoZJD0gK96CI9U7IaK09WkZ5oI33evn24CdvjsX7+SMVaopmAuPyTWjixzJSsFr54oWeJLS/n/RRrqOSQlKewUN/v5qqrtNfFFZwIWVYrFHaeeK1Ul9PzwQnFquIW+pTP5Z/UwKllJlr4jImkBPJ+ih1UckhKE8my8e67+p898YTzIcuRfG42b9YOLTVrdTFydLQzAdGZNLVxcpmJFgl99JRAIL2j0eIBlRyS0pi1bITi9QLXX28vZHno0OBtN90UaCeSz020Zn8tR0dJAhYssD4B0Zk09XF6mSndLRJGvk15eXLAwdy58l+ADxDxgEoOSWmMLBtGzJxpb6D2+YCXXgre9u9/B/vcRDJbR2v2z8uT5Q/F6gREZ9LUh8tMMko0YlGRdSVeUWzmzDFWWgoL5YCD8eOBrl2BkSP5ABEXYlRmwpWwdlV6oi7iJ0n69ajUr4ceCq5hFVpUU6/Qpl5176IibXn0akZFU4/HqUJ/LBiYPsSy/lO0RWljzYIFwcVqJcl8HTejAr7qe8WoDh7rVJmDBTpNQCUnfVEP4vn5kQcbZbAbNiy8qKZRoc1RoyIrOaHyOI0TlbsV3FTlmSQfThSljSV6yofHE/neNKO4KPecUWFdPkCYw+78LQlhJXYjuTl06BDq1auHsrIy1K1bN9HikBji88nLLe3bB5vefT7ZlGzHTwcILDWpj/d6A8n1tNqWJGDnzvgtAWhdoyKj3SW4n36ynhCRpDdO/w5jQXGxvLyk99mll8r/a40nRscCwdeq1ReSJI8nlZWBZUI6a+tjd/6mTw5JOYwiguw6Iiv4/fp+Knpt33tvfAd1p/0s0t2ZlNgjGXy69Hz21Lmp9MaTSJGM6ntO656cP5/RaPGAlhySUkR6eozWkgPIA5tZS04in1xpgSGJxO2WHMU6s2EDMHlyQE5JkhWQvDzja1i2THYeVmZQj0fOJN6oEdCrl3YhX96T9rE7f1eLoUyExB2jp8ecnMAT1ahR8nYFrxe49lrg1Vcjn6NPH3mAU1CHiKvbtmpB0Vtis4tyvYQkgtB7zU2RW4WFgfQIHo8cjdi6tfxZ9+4BGfXGkzVrwvNv+f3AjBmBNgsKwq0zvCfjDy05JKUwevICAkoEICs+GRlyjpp27eTPjNbYlbb8/uDBTf10WlgYeLpTPxFGInTQ1RogCYkVTivYoW27yXphxcLk88l14NT3uyQBixfLteGM8HiAHTvccc2pAH1yCIG+P8qyZcHr6suWyX4mzZsHBjAzOXV69QrPSKxYiny+YPO1EOZyXxgl3Yu2cGK6wf6yTqyzWrvNpytaXyFJAtq0iTxW+P3AvHn2ZCTOQSWHpByh6eVzc7WViNmzwxWfggLjWlYrV4ZvU5L5zZunrwAZoTfozpvHjKhWYAkK66RjVmsrWZ5Xrw6/p/1+2fqrfpjSU3jmzgVKSqKXmdiHSg5JSdRPj3pKhNrZUBncmza1dh6PJ1CDZu5c7c8jpcjXGnQ9Hrm9dJp8oiEdJ2snSIYIKKcxG31oVNh38WL54Ul5mNqxA5gwIXw/v1/ObkyFO3FQySEpT/v24dYZj0fb6tKvn7Wq38pgV1SkHbE1cmRkM73WoDt+fPpNPtGQjpO1EzhduypZiFRMNFJh3+efl311lGXvnBxg7Fhti07osjWXVOMLlRyS8qgjoQBZ4Zk1S39AMovirNiqlZwLR4v58809xYUOuloDZjpMPnZJ18k6WtK5dpWRr5CZfFqhyotWcVwFReHmkmr8oZJDUhqtJzKPRzZDm1lTD0XZz+uVw06nTDEeDK0sm6gH3XSefOzA/rJPJKtGuuHzAXv3GvvmKWhZC7XGA69XjuTkkmr8YZ4cktIYLWPk5clLTUooebduxgqL1yvnxygvB44cAd57z1xSQXWeHiuo5XNL+K2bYX/Zh/lbZNSpHCRJfhlZd9U+d8oDVSiKwn3kiHEOLxIbqOSQlEZZxgjNiaEMTOrBPTRx2U03AS+/HJzIrEsXYPhw4MUXtc+nV9vK7rIJJx9rsL/SCyfz+4Q6rwsRuJ/1FJ0pU+Tz794NfPqp9kPPokVygsHVq43HIhIbqOSQlMZK1tXcXOCVV+SnNyXr6aOPBlsGSkr0FRylbcCdWV4JSSWcTKDp82kHD+hZaiUJuP56ecn6scf021X89gYPDliHFEWHY0N8oJJDUhqfD2jbNrDMpLeMETpg3ncf0KmT/FmPHoFjPv1U+zyjR8tPdcp+XDYhJHbopQzIzbV+v6nv/VC0LLMeD/Dmm0D//pGXt2fODE5VoViE/vlP4K9/5dgQDyw7Hr/44ot49913q95PmjQJ9evXR48ePbBjxw5HhVMzY8YMdOnSBVlZWWjSpAmuueYa/PDDDzE7H0l+1JEM3boBW7ZoDypaA+bf/y6nbR80SA4VVaIgLrpI+1zDhgW37bYsr4QkO+rQa6spA/TCtkPvfTVer2wdCnVoLyiQffiMFJwnnpAtOBdcEL6fEPJDUWjUJ4kNlpWcxx57DLVr1wYArFmzBs888wzy8/PRuHFjjBs3znEBFVauXInRo0dj7dq1+Oijj1BRUYE///nPKC8vj9k5SfJiJTlcpHBRIeS2fD7gyy/DPx82TLviMCHEGUJDr9evN04ZoFZqjMK29e79qVPlpevcXO3oM6MSMF6vvJSVk6O/HyOr4oiwSO3atcWOHTuEEEJMmjRJDB06VAghxNdffy0aN25stTnb7NmzRwAQK1euNH1MWVmZACDKyspiKBlxAytWCCGrJ8Gv4uLwfUtLhfB4tPdXv4qKwveTJPl4Qkhs0Lo/vV4hZs+W/yrvFyyQ91+wILC/xyPfo6HHKvesVtuSFHy80m4oCxYEzq9uO3R/tTxmxiOijd3527IlJzMzE/v37wcAfPjhh7jiiisAALVq1cLvv//uoPplTFlZGQCgYcOGuvscP34chw4dCnqR5MZstlAryeFycuTkgEYoGZK1TM/MqktI7NBbmurcOdzComXBNaonF5pfKdQHx8jiolh4ioqAZ5+V/2rlGcrLA9auZbLKhGFVm7rhhhvEn/70J5GXlyfq1Kkj9u3bJ4QQ4s033xRnn3221eZs4ff7Rd++fUWvXr0M95s6daoAEPaiJSexlJbKlharFpDQJzS9Jyz1/lpPenrk52s/cUmSfKzeE6WZ67B7zYSkO1buOz0LbqRjS0tlq8qSJdYsLlbGJKvjEQnGriXHspJz4MABMXr0aNGvXz/x/vvvV21/6KGHxKOPPmq1OVvceeedolWrVqI0woxx7NgxUVZWVvUqLS2lkpNgrCoqCnYVDGXwMquILFkiL0utWyf/LSoKPtbOQGX3mgkhMmbvOzNLz/n5+uexMs7YGZOsjEckmLgpOTt27BCVlZVh2/1+f5WvTiy56667RE5Ojti6davlY+mTk1iisYRY8bGxgxVFxKriZPeaCSEBzN53Wr4yVsYMswpVrMckEozd+dtynpw2bdpg9+7daNKkSdD23377DW3atEFlZWWUC2jaCCFw991344033sAnn3yCNm3axOQ8JHYYhX0qodYlJXIumosukiOWlHDRzMzYZQu1mnPDSlZdM9dMCImM2ftOKe+xZk0gCZ+C0ZihjDW5ubJvTaQ8V5GyqRN3YNnxWOjktz5y5Ahq1aoVtUB6jB49Gi+//DJeeeUVZGVl4ZdffsEvv/wSV2dnEh2RnIGHDwcuvFCu6H3hhUDPnsF5boYOjU0BRqs5N6zA6tgklTEbCBBvcnKAAQPMF20NDTNftixynisWhU0OJKGntYQwfvx4AMC8efMwcuRI1KlTp+qzyspKfP755/B6vfjss89iI6hOSdiFCxdi+PDhpto4dOgQ6tWrh7KyMtStW9dB6YhZCguDSx7MmCFHSZSXA337Gh+rLpCp94Rlp5aNzycPbKFPZNu3B9qIpkZO6DU//zwrPZPkx8myCrHE5wtYZYDw+9jM/W+2fSo4scPu/G16ueqLL74AIFtyvvrqK9SoUaPqsxo1auDcc8/FhAkTLIhsDZO6GHE56krRH38sl0JQarpEorJSVnAuvVT7c7uDbqT6VtEO5qyOTVINJ8sqxBplmUvvPnZiSZnTk3sxbclRuOWWWzBv3ryktITQkuMeZs8GJk2yftz998s1Y0L9dlavltff1b9mK09jgPYTWbRPeYSkIsXF8tKO1na9h5BEYnQfA/bv8WSxZqUCdudvy0qOGp/PB0mS0KJFC7tNxBUqOe7A55PrQTnx9NOjh5xoS68sQ7SDbrIN5oTEg2RT/iPdx3aWlJOtD5Idu/O3Zcdjv9+PRx55BPXq1UOrVq3QsmVL1K9fH9OnT4ffqAAQIX+webNz5t3Vq/UVHCccfOk4TEg4yeZ0G+k+VtenWrMGaNs2sjN1LAMWiHNYVnLuv/9+PPPMM5g5cya++OILbNy4EY899hiefvppPPjgg7GQkaQYRsXtnMKpQTfZBnNC4oVW4Uq3YuY+zskBtmyRIzm1inmGwgeg5MDyclV2djaee+459OvXL2j7m2++iTvvvBM///yzowI6CZer3IN6LdsskhTZAuT1AosWAd27O6uIMIKCkOSnpARYtQro1Uv251NjZ/mJkZPxI27LVb/99hvOPPPMsO1nnnkmfvvtN6vNkTQlLw/YsQO46SZzkVWAvN/11wdv69Ej/OlswADnFZGcnMh5Mwgh7qWwULbSjB8v/w210thZfkoma1a6YtmS07VrV3Tt2hVPPfVU0Pa7774bJSUlWLt2raMCOgktOe5i+HDgxRetHVNUBOzbB/z6K3D11YHoqp9+AjIygCNH7OWyIYSkLmZzYdGR2L3EPE+OQn5+Pq6++mp8/PHH6N69OyRJwurVq1FaWor33nvPanMkTSkpsa7gSFIgTbvHA5x6asDk/O67wOOPy8tZDOUkhKgxkwsnUr4skpzYCiHftWsX/vGPf+D777+HEAIdOnTAnXfeiezs7FjI6Bi05LiHuXPl8g1m8XgCJfDU22bNAiZPDh/A+ARGCFGwYqWh/507SUienGSDSo57KCmR61OZQZJkJ+Xnn9f+TO8XbCeXTTTlGwgh7oVOwslNXJWcgwcPorCwEN999x0kSUKHDh0wYsQI1KtXz2pTcYVKjruw4pOjZckxwo4lJx7ZS6lEEZI4aKVJXuKm5Kxfvx65ubmoXbs2LrzwQgghsH79evz+++/48MMP8ac//cmy8PGCSo77KCkBPvsMqF8fOHhQrjy+bRswaFD4vgMHyo7HkbCjoMTD6ZAp4AkhxB5xU3IuuugitGvXDvPnz0e1arLfckVFBW699VZs3boV//d//2dN8jhCJSc50FM41qyRQz/V25VkXH6/vM+4ccDYsdYVk1iXb2DkBiGE2CdueXLWr1+PyZMnVyk4AFCtWjVMmjQJ69evt9ocSSN8Pllp0EqXrv5MLztply7h2wsK5Hw7Sp6K2bPtKQ2xzl7KFPCEEBJ/LIeQ161bFzt37gxLCFhaWoqsrCzHBCOphdFSjd5nubnB6+c+n1xTZs0aoLw8eF3dqfINsQofVZSoUEsOU8ATQkjssLxcNWbMGLzxxhuYM2cOevToAUmSsGrVKkycOBF/+9vf8OSTT8ZI1OjhclViMFqqAcwt42gpQrm5zjvxxtIxkdEdhLgLBgIkD3FLBjhnzhxIkoSbb74ZFRUVAIDq1avjjjvuwMyZM602R9IAo6UaISIn6fL5gutc+f3AyJHy/0LIYeTz5zujMOTkxG6w07JOEUISAwMB0gNLlpzKykqsWrUK55xzDmrVqoUtW7ZACIF27dqhTp06sZTTEWjJsYZTTzlGlpzdu7Xz5axbF8hmrOcUrEaSgJ07qTgQQiLDQIDkIy6Ox16vF7m5uSgrK0OdOnVwzjnnoFOnTkmh4BBrFBbKg8Dll8t/Q4vZWUHPkTgnR641pUV5eeB/LafgUISQfXUIISQSDARIHyxHV51zzjnYunVrLGQhLkFreWjUKO2oKLPoVes1G9U0fnxgP7NVywkhRItYR1MS92BZyfn73/+OCRMm4J133sHu3btx6NChoBdJfmL1lJOTI+ecUZuDjaw8QMCiNGeO/H7CBODzz8MVHY8H6N49OvkIIelBpHGHpA6Wo6s8KvVXUs00QghIkoTKykrnpHMY+uSYIxHr1VpRTSUl4cn/FDmWLWOkEiEkOljmIXmIW3RVcXGx1UNIkmGUMyZWIZehUU2FhXIEVagKrliUGKlECImWWEZTEndgWcm55JJLYiEHcSFqnxwgfiGXik+Qlo1RvW7OAYoQQogRlpUckvqEKhlCBN4r2xRn5Nxc5y08Wj5BgKxYcd2cEEKIWSw7HpPUR0vJ8Pv1l46cDDcHtCMfPB5g7dqA5cioDhYhhBACUMkhGpjJSwPIEU4ZGc6Hm2tFPhQUBJIDOq1UEUKIAh+gUgtTSs5bb72FkydPxloW4hJycuS8NJEQQg7tjkW4uV5enVjk8CGEEIAPUKmIqRByr9eLX375Baeccgq8Xi92796NJk2axEM+R2EIuXl8PuDUU+0dG8twc70SD8XFcg4eQgixA0s9uJuYlnU45ZRTsHbtWgCBfDgktcnJAfLz7R0by3w1zFRKCIkFLPWQmphScm6//Xb0798fXq8XkiShWbNm8Hq9mi+SGvh8QOfOwC23WD+2oCB2pl5mKiWExAI+QKUmpjMef//99/jpp5/Qr18/LFy4EPXr19fcr3///k7K5yhcrjKHOh9ONMTS1MtMpYQQpyksZCZ1t2J3/rZc1uHhhx/GxIkTk7LyOJWcyGitS0cDfWUIIckEH6DcSdzKOkydOhUAsHfvXvzwww+QJAmnn346TjnlFKtNEReil4jPDqGm3liVhCCEEKdgJvXUwnKenKNHj2LEiBHIzs7GxRdfjIsuugjZ2dnIy8vD0aNHYyEjiSNmc+SY4dZbZaXG52NoJiGEkPhjeTobN24cVq5cibfeegsHDx7EwYMH8eabb2LlypW49957YyEjiSOhjr3RMH9+QKkZOdI4tw0TcBFCCHEayz45jRs3xquvvopLQxwtiouLMXDgQOzdu9dJ+RyFPjnmUdalMzKAd94BHnnE+XMo/jrxKvxJCCEkOYlpnhw1R48eRdOmTcO2N2nShMtVKUROjqyAdOkiW2GcTo2k+OswgzEhhJBYYVnJ6d69O6ZOnYpjx45Vbfv999/x8MMPo3v37o4KR1ITdTVxJuAihBASKyxHV82bNw9XXnklcnJycO6550KSJGzatAm1atXCsmXLYiEjSTCbN4dXILeDJIW3ozg6h6ZSZwIuQggh0WLZJweQLTcvv/wyvv/+ewgh0KFDB9x4442oXbt2LGR0DPrk2MPp3DlAcKJAJuAihBBiRNySASYzVHLsM2cOMHmyNUVHsdCEWmoU1IkCmYCLEEKIHnFzPCbpR2FhQMGRJOD668NDzLUck6+6Cpg7F3jzzcg1YRRHZyo4hBBCnIJKDjEkNPpJCOCNN+SQcrVio2UPfPddYPx4oH9/YOjQgGLk8QAzZlChIYQQEluo5BBD9KKf7r/fvDOy3w+8/DIwZUpg6WrKFGY9JoQQEluo5KQ40WYSdqrMQ2WlbL1hPhxCCCHxwvL01bZtW+zfvz9s+8GDB9G2bVtHhCLO4ES9KLNlHiIpQlrOx8yHQwghJJZYVnK2b9+OysrKsO3Hjx/Hzz//7IhQJHqczCSclyeHexcVhTsYezzy9rVrjRWd666L7HxMCCGEOInpZIBvvfVW1f/Lli1DvXr1qt5XVlZi+fLlaN26taPCEfsYZRK24/CbkwMMGAAcOhSe06Z7d2D6dOPw8jfeAGbOBO67L/hYQF5Oa9+ejsiEEG18PnlM4zhBrGJaybnmmmuq/h82bFjQZ9WrV0fr1q3x+OOPOyYYiY7ly7W3r18fyE1jh7w8IDc3kNNm2TKgZcvITsiVlUC1asCaNUB5eeBYJckgC3MSQrRgAV8SDZaTAbZp0wbr169Ho0aNYiVTzEiXZICzZwOTJml/ps40HC12MiErg1RubvixZmXjUx0h6YHWGOPkGEaSh7gkAzx58iRat26t6XhM3IHPp6/gALJFZc0aZ86ltSSmIEnazsqKb9Dq1fYckZ1wpiaEJAcs4EuixZKSU716dXz99deQtNLbEleweXPkfQYNckY5MAovnzVLftqaOzf8s8pKWQmy6ojspDM1IcT9aI0xDFggVrAcXXXzzTejkI/PrqV9+8j7COGMcqCEl6sHIUmSl8smTgw4K2sNUt27B4emK47IRiZoPtURkl6EprAwM04QosayT87dd9+Nl156Ce3atUPnzp2RkZER9PlcrUd3l5AuPjl9+wLvvBN5P3WBzGjw+QJLYN27BwYgxXdm/frwqCrFcdBKYU6uzxOSnrCAL4lbFfLLLrtMvzFJwooVK6w0F1fSRckpKQEuvNB4H0kCFi8G2rQBjhxx3ok3NCJi1iygc+foB6nCwvAQdkZaEEJIahM3JSeZSRclBwCGDwdefNH8/k6GZsba4sKnOkIISS/iEl1FkocXXgDWrTOvBPj9suWlpCT6c8fadyYnR15mo4JDCCHECNPJANWUlJRg6dKl2LlzJ06cOBH02euvv+6IYCR6unQBhg0D/v53c/v7/UDXrsD8+dFZdJSIiFBLDiMiCCGExBPLlpzFixejZ8+e+Pbbb/HGG2/g5MmT+Pbbb7FixYqgUg8k8fh8cuVvKzgRecWICEIIIW7AspLz2GOP4YknnsA777yDGjVqYN68efjuu+8wcOBAtGzZMhYyEpsYJeszwomlJaWoZ3Gx/JfOwYQQQuKNZSVny5YtuPrqqwEANWvWRHl5OSRJwrhx41BQUOC4gMQ+Rsn6jHBqaYm+M4QQQhKJ5SmwYcOGOHz4MACgRYsW+PrrrwEABw8exNGjR52VjkRF6LKRFh6P7LfDpSVCCCGphmUl56KLLsJHH30EABg4cCDGjh2LkSNHYsiQIejdu7fjApLoUJaNiork3DhqJAlYu1aOxOLSEiGEkFTDspLzzDPPYPDgwQCA++67DxMmTMCvv/6K6667Li7lHp599lm0adMGtWrVwgUXXIBPP/005uc0xfr1ctXI9esTLYmMSh6lvML8+eGKzpdfyn9jurTk4r5xBZTHGDfJ4yZZAMpDSAQsh5A3bNiw6n+Px4NJkyZhklHZawdZsmQJ7rnnHjz77LPo2bMnnn/+eVx11VX49ttvE+r0/NBDwPTp5wP4COhyAk6nV1TKI7RvD+zeDfznP8DGjbKCcvw40LgxcPIkUFYmv5ckoIbogJpiCepdCmS2ArKzgUaNECSbEknVtCnw44/ARRfJYeclJcCnn8rvmzcPnBuQ/8/MlLMkZ2YC27bJTsrHjslZljMygrMn+3zA6ge/xP7i09HowS/RY35nXUXK55OrkwNAjx7h5SFC2w3dZrYvVz/4JVDcGD2efQt4pLNhO0bnVvrBSAb18Ur/hf6f89JLshnt3/+W00JHOH+sqDrXv99CjoY8Vq47GhnCfgMvvQRf8Y/Y/NgatH9K//djeE0mv6OIpUWefQubiwXam/jtaKHcWw0bAr/9FrjnbGPw20kIKnl8zfT7R+9eVz7TOs7qvRBpf6PP1fKps8IDwceEtqEeO0O/V/X9s21b4NpD29Tad//+QDsHDgBbtwJ79gAVFUDr1vIc0Ldv8Pit/MZOP10el9X3rd517Ngh51f7y1+Av/7VWl+uXi3L2ahR+HeaUIQNKioqxNKlS8Ujjzwipk+fLl599VVx8uRJO01Z4sILLxS333570LYzzzxTTJkyxdTxZWVlAoAoKytzRqDt20Vm7ZMC8AtZZRB//F8pxPr1QmzfHvUpFiwQwuMRqvZj+zrttOD3khT4q/wf6eXxCLFg1j6x4IFtQpL8Ie35xYIHtoX1zYIFwe1LkrxNff0ej/42M99VqDwS/FXvPR5/WDuRzh10vRoyqPdV95/8v+q8WffIHzRpIsSGDVW/HVvXaZMFs/YJj+cPmVAhFmBEkDzy5+au27YMYb8Bv1jw4HaxIOse4UFFoL80fj967UXqP1N9vH273AcPbq+SQ0Kl4W9Hi2HDtO+XYcMiH6slj9iwQf6ONH47cUVDngVZ9wR+TyH9o3evK59pfR9W74VI+xt9HiqfWk5lu8cjf2/qNnr00P9e9cbx0Db1xhi747fWy+g61K8ePcz3ZWh/qb9Tp7A7f8Pqib766ivRtm1bUadOHXH++eeL888/X2RkZIjWrVuLL7/80mpzpjl+/Ljwer3i9ddfD9o+ZswYcfHFF2sec+zYMVFWVlb1Ki0ttdVJejyIB0WwgqNWdI7Kb6KgtDS+Co6TLy9OCvwxIYS+PDgpStEi4nVKkrZCEbrN65XbMOxLtBCSjjxa7WjJ5PXqK3qhMlj57rxKf6gaL0ULW9dp+3cW0jeyTDkBWXT6zimZSku1+9aDkzqytYjYXqT+M7OPECJiH5jph3XrjH8D69ZZ6KzQm0T9V3nFkxB5tPpK6R+9+8LjkftA6/vQ267X35G+V6PPnR5z162zOBYYjDGJeC1caL0vnR4bFOwqOZZ9cm699VacffbZ8Pl82LhxIzZu3IjS0lJ06tQJt912m9OGpir27duHyspKNG3aNGh706ZN8csvv2geM2PGDNSrV6/qdeqppzoq0+vZ9wCQND6RANQAXn45qvbt5rlxA5WoBkA7rMuPavjp/y2seq93nUKEb/f77ZWM2Pz/XoDQkUerHb3SFEJEPlbveN3zohp+QrtA49WqYfP/eyGmpTHUbN4M+EP6RpbpNPlzz5lhnzst0+bN2n3rRzVt2VS/H732IvWf6fIjL79s2Ae6x6mI5Dr42WfGn4fKg2p/eBoonab67UQ77lgmRJ7NaB/+nf3RP3r3hd8PrFql/X3obdfr70jfq9HnTo+5n31mcSwwGGMSwX//a70vtfZLKFa1qVq1aomvv/46bPtXX30latWqZbU50/z8888CgFi9enXQ9kcffVScccYZmsfE3JLzoBCGlpwoSWpLjlevb4TwSH5TVg9HLTmlQoQunRk9eSTEkqNs2LDBvJXBATTPpZKp9L0vY/60ZsmS4/Gb+r4ds+QIIfeBWyw5QshLQ1oNbdhgsSGHUMlDS07w90pLjjPEbbnq3HPPFcuXLw/bvnz5ctGxY0erzZnGznJVKI775AghMuvo+OQ4NNgsWKAoDPH58ev55Hg85s/v9f6xtvzg9rAlIgkVYsGD2zWvU32zqH1ylOuvaldjm6m+DJFHQmXVe612Ip079HqNvjt1/6mVNy9OigXSrYGdgKrfjt3rtMOCBbLyUCUTRgTJY+W6o5FB/RvzSH6xACPEAunWP5Y//5BN4/eje00R+s90H2/YIBZgRJUcEiqqJnKz/eCYT84f8gT9ZkJ+O3EnRJ6g7yykf/TudeUzre/D6r0QaX+jz/V8YtT3sNcrf2/qNiL55ITeP8q1q9vUG2Psjt9ar6DxJ+Q61C+1T06kvoy1v54Q9udvSQghrFh+3nvvPUyaNAnTpk1Dt27dAABr167FI488gpkzZ6JXr15V+1oph26Grl274oILLsCzzz5bta1Dhw7o378/Zpgo0mS3VLshPh8eOmMxph8d98eGExDN2sou7g65l/t8stmvXTs5umrRIjlC86uv5Kimxo1lL/uDB4HjxyshiZOogZOoWbMa6lXuRWblIeRc1BaNWtTBokXBbXu9sknyp5+Anj0D3vmffSa/b948cG5A/j8jAygvl/9u3y5vO35cDu7IzJT3zcmRBff9qR/WZP0Z+7v+BY0+fw/dD3+InI1vafaNzwesWSP/3717cKSBIoPRNjMdqciD3r3Rfd08YNcu/PSPZWjX/RTdqAG9cyv9YCSD+nil/6r+X7MX7UbnIqd1NTk5UWEhUFoa9NuxdZ028ZXsxk+5o9Gu5Qnk3NE3TB4r121bBvVvoPVu5PT7E3DqqfBdNwY/vbAK7X5bp/v70WsvUv+Z6mOfD+jSBb6mF+Cny29DuxUFEX87Wij3Vv368v2q3HOW+UMenHqq7m8nrmjI49teods/eve68pnW92H1Xoi0v9Hnavlatw783oHgY0LbUI+dWtFVyv2zfXvg2kPb1NpXK7pq7145qrZVK6BJE+Dqq4PHb+U31q6dPC6r71u969i+XZ5brrwyPLoqUl+uWROIrgr9Tp3A7vxtWcnxqOoESH8kXVGaUL+XJAmVlZVWmo7IkiVLMHToUDz33HPo3r07CgoKMH/+fHzzzTdo1apVxONjouQA8gxfo4Ycuy0EcOIEULOmc+07JM+cOcCkSfImQM52XFAgj0kxC1VOkr6hPJQnqWShPCTNsDt/W86TU1xcbPUQxxg0aBD279+PRx55BLt370bHjh3x3nvvmVJwYor6RpakxN/YIfL49tbE9OmyQqNGCKBTJ/kh8LbbZAcyteITC1nc1jeUJwTKkxyyAJSHEBNYtuQkMzGz5LgYtQKjhZIBWf0r8Hpls6VrkjkRQghJa+zO3zZqVJNkweczVnCAgKuYGqdC/3w+Ofmpzxd9W4QQQohVqOSkMHZzPni9Aec0uxQWyg5xl18u/41DWTNCCCEkCCo5KUz79rKPjRU8HuD556Nbqgq1IPn9co0sWnQIIYTEEyo5KUxODnDVVdaOWbw4eqdj05lkCSGEkBhiWcmZNm0aduzYEQtZiMO88w7w7rvm9/d6A3kbokHLguTEEhghhBBiBctKzttvv43TTjsNvXv3xiuvvIJjx47FQi4SJQMHAn37mt/f641+mUohJ0cOQ/d6nW8boEMzIYQQc1hWcjZs2ICNGzeiU6dOGDduHJo3b4477rgDJSUlsZCP2OD++4GlS433kSSgqAhYt05WGLZvdzA3DuS2tm8PtJ2b64xiQodmQgghZokqT05FRQXefvttLFy4EB988AHOOOMM3HrrrRg+fDjq1avnpJyOkA55cnw+ObO6GYqLgUsvdeacq1fL//foEW6xMUo2aCXTss8nKzZqfx/m9CEk9YlZRnaSNCQkT47f78eJEydw/PhxCCHQsGFD/POf/8Spp56KJUuWRNM0scnmzeb2c8pHprAQaNkSGDRIfrVsCcyZE/jcKNLKqlWGDs2EpB+03pJosKXkbNiwAXfddReaN2+OcePG4fzzz8d3332HlStX4vvvv8fUqVMxZswYp2UlJmjfPvI+ToSJAwEFRm0LFAKYOBGYPVv+vKhIWzFZs8Z6mDkdmglJL5iOgkSLZSWnU6dO6NatG7Zt24bCwkKUlpZi5syZaKeaaW6++Wbs3bvXUUGJOXJy5EHACCfCxAHjZIOTJ8tPXffeG/6Z1ysrQ1atMrF2aCaEuAtab0m0WC7QOWDAAIwYMQItWrTQ3eeUU06B306qXeIIDzwgKwNa3lZOhYkDAcuK1letVS5COf/zz8u+O6HHmrHK5OXJTsw//STvSwWHkNRFa4yh9ZZYwZIl5+TJk1i4cCHKyspiJQ9xgJwcYNYs7c9mznRmmUopRl9QECjyGYknnpCXqdq2DRxrxyqTkyM7TFPBISS1ofWWRIslS0716tVx/PhxSGZnNZIwOne2tj0SSnTD+vXAlCnBkVI7dwKPPioPPnp4vcDJk0C3bsHHbt9OqwwhRB9ab0k0WA4hnzlzJr7//nssWLAA1apZXu1KKOkQQq7gZLi1OgQ8FI8HWLQIaNMmoMBocf31wOuvM/ybEEKIdezO35aVnGuvvRbLly9HZmYmzjnnHGRkZAR9/vrrr1tpLq6kk5IDyMrJqFGyo55i5rXqcKylLGkhSdo+OAp6vjtO5eohhBCSutidvy2bYurXr4+//e1vVg8jCcAJM69RBJWaSKqyskRFB0JCCCHxwrKSs3DhwljIQWJETk50y0FGEVRW8HplX54ZM+S26EBICCEk1kSV8ZikPlrRDbNnA//8p/moKq8XuOmmgIIjSfL/TtbKIoQQQkKxVbvq1VdfRVFREXbu3IkTJ04EfbZx40bHhHOadPPJcRKfTw7/FkKOppo8Odi6o+WTc/XVQO/esjWof386HRNCCLFH3GpXPfXUU7jlllvQpEkTfPHFF7jwwgvRqFEjbN26FVdddZXV5kiSsGwZMHiwXJ9q4sTw5SstVfndd4Hx44F+/SJnLVVy7zBdOyGEEKewrOQ8++yzKCgowDPPPIMaNWpg0qRJ+OijjzBmzBgmCUxRQuvHWEUv87HidMwCfIQQQmKBZSVn586d6NGjBwCgdu3aOHz4MABg6NChWLRokbPSEVdgNsIqEkpxTbXTMQvwEUIIiRWWlZxmzZph//79AIBWrVph7dq1AIBt27bBhnsPSQLatzfvZGyEWpFRYAE+QgghscKyknP55Zfj7bffBgDk5eVh3Lhx6NOnDwYNGoRrr73WcQFJ6iFEwFqjhKirYf4cQgghTmA5T05BQUFVhfHbb78dDRs2xKpVq9C3b1/cfvvtjgtIEoNSqyozE3j77cjJ/qyiWGsuvVQOUQ/NzMyoK0IIIdFiK4Q8WWEIuTmMalVZwesNKC5+f7CiFBpC7vOxAB8hhBBt4lbWAQAOHjyIdevWYc+ePVVWHYWbb77ZTpPEJUQbSaXm1lvlsPN27eQQdCNrTbSZmQkhhJBQLFty3n77bdx4440oLy9HVlYWJJVHqiRJ+O233xwX0iloyYlMcbEcyu0EtNYQQghxgrglA7z33nsxYsQIHD58GAcPHsSBAweqXm5WcIg5tByB7RIaJZWTI/vgUMEhhLgVJiZNLSxPZz///DPGjBmDOnXqxEIekmBCa1VFQyyjpDgQEUKcholJUw/LSk5ubi7Wr18fC1mIS8jLk5eZiouBW26x10Yso6Q4EBFCnIaJSVMTy47HV199NSZOnIhvv/0W55xzDqpXrx70eb9+/RwTjiSOnBy50vjChdaPHTUKeOCB2Cg4egNRbi6XwQgh9jFKTMqxJXmx7HjsMXDYkCQJlZWVUQsVK+h4bJ45c+RCnHaIZYVxPcfo4mLZ34cQQuzg88mWYbWiE8uxjFgjbo7Hfr9f9+VmBYeYx+cDJk82t2/fvuHbnCrLoOV3wwzJhJBYEOqPyMSkqYFDcTQklbBSkHPo0NgoHXp+NxyICCGxQu2PuH27/J4kN6aWq5566incdtttqFWrFp566inDfceMGeOYcE7D5SpzaJlttVBMuVqJ/qIZHLTO7/EAa9cCXboE9mHOHUIISQ/szt+mlJw2bdpg/fr1aNSoEdq0aaPfmCRh69atpk8eb6jkmKewMKC4eDzArFlAgwb6yoyTSoee343HI1tx+HRFCCHpRUyVnFSBSo41SkqAVauAXr3ia0ExsiSpHQGVIqLt29OaQwghqUzcHI9JelBYCHTrBowfL/9V+8TEOmux4nejFcinODUzVw4hJFqYVDT1sWzJGT9+vHZDkoRatWqhXbt26N+/Pxo2bOiIgE5CS445EhFKqWWVKSmRFaxQ35w33wT69Quuau7xADt20KJDCDFHYWEg5xaXwt1P3JarLrvsMmzcuBGVlZU444wzIITA5s2b4fV6ceaZZ+KHH36AJElYtWoVOnToYPlCYgmVHHPEOxeN0WCj9g2KRFERMGCA8/IRQlIL5sRJPuK2XNW/f39cccUV2LVrFzZs2ICNGzfi559/Rp8+fTBkyBD8/PPPuPjiizFu3DirTROXEKtcNFqm4Uip1PPygDVrAFWxe0IIiQqj7MYktbCs5MyePRvTp08P0qTq1q2LadOmIT8/H3Xq1MFDDz2EDRs2OCooiR+xyEWj50NjZrA5ciR4aUoLSQK6d7cvHyEkfWBS0fTBspJTVlaGPXv2hG3fu3cvDh06BACoX78+Tpw4Eb10JGE4mRTLyFqTmal9TEZG4H+tAUmSAts8HmD+fJqZCSHmYFLR9MFygc7+/ftjxIgRePzxx9GlSxdIkoR169ZhwoQJuOaaawAA69atw+mnn+60rCTO5OQ4c9MbWWv0LDTl5cFyFBSE5+jJzU2+hIAMeyfEHeTlJecYQqxh2fH4yJEjGDduHF566SVUVFQAAKpVq4Zhw4bhiSeeQEZGBjZt2gQAOO+885yWNyroeJwYjJz8AOPP1ApBvHL0xEoJYTQHIYTYI+7JAI8cOYKtW7dCCIHTTjsNmXrrDi6CSk7iUEdJhWZL1voM0FcIYqWIxFIJYTQHIYTYhxmPTUAlJ7EYWWLUnwH6CsGyZeGKSG5u9EpPrJWQeIflE0JIKmF3/rbskwMAJSUlWLp0KXbu3BnmYPz666/baZKkAVo+PmqrjDLZFxVp+/CsWRPuwHzbbbJfjxCy0jN+PDB2rHXFxMhvyAklR3GeDlWiGM1BCCGxw3J01eLFi9GzZ098++23eOONN3Dy5El8++23WLFiBerVqxcLGUmKog4rb9kSGDQIeOABYPDg8H29XmD58nBFxO8POC/7/cCcOXJbVss8xDqklNEchCQelnFIPywvV3Xq1AmjRo3C6NGjkZWVhf/9739o06YNRo0ahebNm+Phhx+OlaxRw+Uq9+DzycqImV+f1wvMmAFMnmxuf+UYq0tNRn5DThEP52lCSDh0/E9u4pbxeMuWLbj66qsBADVr1kR5eTkkScK4ceNQUFBgtTmSpqxebV5huf9+2eKjtb9eJmQ72UudzA2kRzwKnBJCgomUWZ2kLpaVnIYNG+Lw4cMAgBYtWuDrr78GABw8eBBHjx51VjpCADzyiLyEFarQeDxAfn5gCUiN3aUmKiGEpB5WyjhwSSu1sKzkXHTRRfjoo48AAAMHDsTYsWMxcuRIDBkyBL1793ZcQJKa9OhhrR6VYsVR+7QUFAATJshWlwkTAj419HchhKgx63OnV36GJC+WfXJ+++03HDt2DNnZ2fD7/ZgzZw5WrVqFdu3a4cEHH0SDBg1iJWvU0CfHXajXyM1SVATs3w/s2gX07Qt06RKI0MrMlDMl09+FEBJKJJ875rJyN8yTYwIqOe7C5wMefVS2yJj9FV5wAaCu/dqjB7B2LZ0JCSGRMXL8t5vLiqVa4kNc8+QAwJ49e7Bnzx74Qx7DO3XqZLdJkkYUFgIjR5pXbhRCi9uvXh34X3EmzMqSlR8nBxwOZISkBnpjjp1cVozYcj+WfXI2bNiAjh07onnz5ujUqRPOO++8qtf5558fCxlJiqFEOsTChlhZKefbcXI9nev0hGiTTE66ke5jq7msGLGVHNjKk9OuXTtMnjwZTZs2hRTiPdqqVStHBXQSLle5Az2zsNM4sZ7OdXpCtEkmK4aZ+9iqbx9LtcSXuC1Xbdu2Da+//jraMR89sUn79nJklR1LztlnA998E3jfowfw+eeyBScUJ8oyxLrcAyHJiJ4VIzfXnfdFpPtYS2GLpKiwVEtyYHm5qnfv3vjf//4XC1lImpCTA8yaZe/YhQuBdeuAJ56Q/372mfw0VlQUHpJudcDRMr3HutwDIcmIlbwzbsDoPra77MRSLcmBZUvOggULMGzYMHz99dfo2LEjqlevHvR5v379HBOOpCY+H9C5s5zJeMYMeVAxa9kpL5efsLp0CWzLyQEGDAAOHQoPETU74OiZ3pWBzG676mum4zJJFZLNimF0HxcX27fW5uXJ1iuWanEvln1y3nrrLQwdOrQq63FQY5KESq11gyjZvn07pk+fjhUrVuCXX35BdnY2brrpJtx///2oUaOG6Xbok5N4QpWJmTNlheXIETnvjRFer1yJ/MgRfWXBTm0os+v1dgeyZPJdIMQs8aj15gTqBwwg/D6O1u+ODzDxwfb8LSzSqlUrMXr0aPHLL79YPdQ277//vhg+fLhYtmyZ2LJli3jzzTdFkyZNxL333mupnbKyMgFAlJWVxUhSYkRpqRAejxCyzUZ+eb3ydiGEGDYs+LMePeTPlf2GDQsc7/EIsWCBM3KtWBF8XuVVXBx925GumZBkprRUvk/c+ntesMDcmLFgQfBYY3ZsMds+iR6787dlS05WVhY2bdqE0047zZoa5jCzZ8/GP//5T2zdutX0MbTkJBYz0QglJbKfTc+egWzGP/0EZGQA3brFJsoplhFUjMAgJP74fHIOrSFDzN/XamstENk6w8jL+BK3KuTXXXcdiouLrR7mOGVlZWjYsKHhPsePH8ehQ4eCXiRxmHHi7dIFuOeegM+NUjDzyJHYOTrayY9hNjcIHZcJcQaz952SD2fQIGtjhjLWLFtmLi9WsjlfpyuWHY9PP/103HfffVi1ahXOOeecMMfjMWPGOCacHlu2bMHTTz+Nxx9/3HC/GTNm4OGHH465PMQc0Tjx2nV0NLtenpcHdOoEvPMO0KyZ/H9RkfyZOnuyVf8apxyXCUlnzN53oZFSWpSU6FtRrYTG2xmT6L+TAKyui7Vu3Vr31aZNG0ttTZ06VQAwfJWUlAQd8/PPP4t27dqJvLy8iO0fO3ZMlJWVVb1KS0vpk+MC7K7jW103t7JevmCBEJKk7ZsjSfLn0fjXuN13gRC3YuW+0/Ovi3Rsaal87JIl1vzz8vODx5j8fP1rmDCB/jvREDefHCfZt28f9u3bZ7hP69atUatWLQDArl27cNlll6Fr16544YUX4AldB4gAfXKSH7NRTlbWy7X2DcXjARYtkk3godC/hpDYYeTX1q5dsGXEzL2sHKvcs2orkZJrSz0r6o0b6uMUtKxMenX66L9jjbgX6HSCxo0bo3Hjxqb2/fnnn3HZZZfhggsuwMKFCy0rOCQ1yMkxNyhYyVSstW8oygAYap6WJPrXEBJL9JaF1q8HevcOX8IKXR72+8OVFuWeDV2eEkK+p73e4OVlQFaM1MqU1rJY6PKWUZ0+Zk6PD6aUnPHjx2P69OnIyMjA+PHjDfedO3euI4Kp2bVrFy699FK0bNkSc+bMwd69e6s+a9asmePnI8mPlfVyrX1D8XiA7t3lAfTWWwPbhQAeeAB44QXHRCeEqNDya5sxA5g8Wdt3JjRB37Jl+j5xWg84QsiJSjt2lO95xRFZrUy1bas/XqiVF6MHKAYgxAdTSs4XX3yBkydPVv2vR2ixTqf48MMP8dNPP+Gnn35CTojam8DVNuJirDj8KvvqOSxKkvx5To7skBzKiy8Co0cHZ2EmhDhHqOISyVKrtvgaZSXWe8B55JFAstIpU8KVqTVr9B+MPB5gzx7ZiqPXPgMQ4kdCfXLiDX1y0g91nh2jTMnKvu+8A+zeLSssv/8ub+/ePXDM3LnAvfeGH3vnncB994VXNGYUBSHO42SOGnXm5lD0FJmiouAyMgpqnx7F6gME9vN4ZP+cyy8PjtokkYlbnhxCkomcHGDLFjmRYKS8F8uWyRaZRx4B+veXB7Hu3WVlRcnNcdFF2sc++2ygbSVPR6TzEULs4WRxzLw8WTnS8rRQlqhCGTQIOHBAPq64WC4WrBQJVswG6iU0Zb9Zs4D58+XjOTbEB1pySEpj9olPaz+PJxBEqnZsHD5cXqLSQhkQmQWVkNgTTU05rba0xopbb5UVEy2LTn4+MHGi/L9eFFhRkVxAmBmSo4OWHEI0iJSVVMmiunq1dqRE6FNZSQkwbBjw9tvyElUofr+zWVCtZFcm7K90Q8lS7ISSEGodUpaqnn9e33l4ypTAb00ruzkADB4sW2yYITkxUMkhKY1RWQX1stLgwYH1dD0qK4GuXeX9+/cH2rTRHtRCsRtFwWUva7C/7EPlUEZZuioqClhxjfD7A0qKoiSFjiPKA1JmJku8JAIqOSSlUQYe9eDi9wOLF4fnxwAiKy1qy86UKXL0hfLkp4UVXwH1RKOXXj7dJyE92F/2oXIYTE4O0LhxZAUHMK+kVFYC5eXO+RER81DJISlPbm7wgCVEcI4N9fYHHjDfbmUl0Lq1vtMiIK/nG9W2UgidaObNo2nbClwKsEc6K4dG1iu9pSc1Soi5EphglPhPUYYUS1FxsfzXzNhAooNKDklJ1APY5s3hA486hbuC1wv89a/mlqAUBg2So7IGDNA+bv78yBOG1kQzdy5N21ZgtXd7pKtyGMl6pWUBVjNwoKzgTJ4caCMvTz9vjtpi46QfEYkMlRyScoQOYBs2aE+As2aFm46//DJYIZKkgDKk/l9BCPnJFwC0koGr1+z10Jpo/H65PZq2zeFkSHE6kY7KoVnrVV4esHatdv9MmBCeJPDDD8PP5fHIbdBikzio5JCUQmsAC/WdUSbAiRODTce5ufrmZkBWcG67LXy78uQ7dqy2dSjShKE30YwdS9O2FbgUYJ10VA6tWK+6dAGGDg3edtNNcmLRSPXuAPlBhZnQEwuVHJJS6A1gXbqEKzTFxXJ2Y0Wp0atjo3Y2XrBAX5HJyZGXpxSFJdRMrYfRREPTtjXYX9aJtXLotsgtrYcKdSkGNT4f8O9/B297+WXtSKlQPB75QYUkFio5JKUwMr8rE6BScO/yy4ELLwwsaz37bOT2KyuBP/85eNtNN0U/qdIKQRJJrJRDN0ZuhT5UKFmKlSzEc+YE9tV7aAqNlPJ4gOuvD37AUerdkcTCjMck5VDXolGsIorSoJV11Cpa1c23b5f/d1NGU9bPIonE7Rl+fT650ObgweHjgZLJONI1zJkTiNTUqlsV+rASek/yHjUPMx4T8gdGVhGtJzOr6K3n6z31zZsX3fns4MYnaJJeuD1yS8mHozUeKJmMjZaSfb7gVBShS9uhzsyh9+Tw4bxH4wEtOSStiNaSY1SbCtBuW5KAnTvDa2XF6gnO6SdoPm0SO7jdkgMYjwfFxfISnrJfaI0svVpVWm2YGXfc1jdug5YcQgxQnB8BOdIqUgkHQFZohg0LfoorKDB2Eh45MrwdIWSzuEKsrSxOPkHTIpQexMI5OBkit3Jy5FQSoYRGRWr5LEVKGKhuw4wF2U1WrpRCpBFlZWUCgCgrK0u0KCSOLFgghMcjG5MlSX4FjMvar6lThSgtlY8vLRWiuDjwXm+bEEIsWaLdXlFR4DhFFuXl9Ya3U1oqxIoV4dvNYPYc8WqHuBv1/eHxyO+dRO9ecRP5+YE+8HrN98GCBfL+ytii14bWvRT64r1ljN35m0oOSWnMDC5ar9mz7Z8vVInyeAKD14oV2ucrLg604cSkc/31we0PG2a9DTOykuSGimwAu8qY+jijNtQKkdcr35Pq904rl6mG3fmbPjkkpTGzbq5FNOvjw4cDL74YeD9sGPDCC/L/Ph/QsmVwwkGPB9ixI+DMGK0fw5w5cmRI6PWsWSMnMTPrW5MMPhUkOvTuD7U/CnGOkhJg1SqgVy85d5eWrw/Rhj45hGhgptCeFpWVwNKl1n0U9JKHGbWjVnii9adRIj5CqawEunWz5luTDD4VJDqcLuvgtsR/bqKwUL4Hx4+X/xYWMnllPKCSQ1KaSIX2rr5a/9jx460720ZSUrSKhQoR+Lx9+3CnaEkyP+kYOTjaqTTNJIWpjZOKLJ3U9Unnau+JhkoOSXny8oBFi7Q/e/9942OtDkaRnoztPDmbiQQzOr8WVqxDWk+bfGJPHZxQZDmJGxPp4Yf3U+ygkkPSgh49tOvVmMmXY1UhMHoyjvS5lqXHTCVzvfN7PNrWqmiWJPjEnnpEu2zi9sR/iaa8XHt7Rgbvp1hDJYekBaHLVh6PnC/HjNXDqkJg9GTs8wFt28pOwFqfZ2Zqt5mRoX++0KdA9fnXrtW2Vs2YYT8xIJ/YSShO+/akEoWFQL9+2p9t2MD7KdZQySFpS8OGxv46gDxQz5wpP6laGXi0nozVT2zdugFbtoQrGkeOaLen9ySo9xSonP/IEW1rVevW5q9FTbI+sXM5ILbQSV0b5aFAK4bZ4wHuuCM576dkgiHkJC0wCofevVtWOtSfeTzA4sXy51OmyJ95PLIz8tix1gdvs+HYVvZbvVouLqi+g0P31UsnL0nA/PnW/S8SFVYeTWmJwsLA07Je4UTiDAyJDv6tbt6sHaKvLuYZitcLvPKKvMSern2ohe35OwY5e1wLkwGmL5ES24Um6lqwQD+RoCRZT9xlJbGeliyhnxslOAxtU92eE0nfIsnnNNEkR2SyOxJPQn+rs2drZ1jXu3/VGdljkX06mWEyQBPQkpO+mLFAhD6FGiUStGq9sGoB0XsijlToT6/NoiJg0KDw/YuK5ErMVi0k8Xpij9ZyxGR3JF7o/Vbz8mTrYSiSFGzJ0bLuMPlmACYDJMQAMz4DoX40RuHYVtfNrfos6EW7GOXBMWpTL7ps0CB7UR2KfEBsfV2i9QHS+g49HmNHbpJcuMXfSu+3esUV2k7Zs2YFjwf33hu+fEX/HAeIiV3JpXC5ilitT+P0Uk+0xQr1ll+KiiK3GbrMFGpGt3pNsS7sKIQzy01a36EblwKiKcoab9wiazx+g2Yx+q3qLfGG1r3i0qo+LNBpAio5xA6lpUJMmGCvSnEsiMYnRhlU9aqlmy2+Gc8B2QkfoHXr3D2BuGmyjoRbZHWjUmD0WzXzgBNvf7dkgj45JqBPDokGs34o0UQCOS2L0fHJ5OsS7fW62TcnmQqhmvVti/XvH3Dvd+rEvZnuEWpa0CeHkBhjJitsvLKX2s1Qq/gvANHlNYl38rdoM/K6OVldMuUeiiRrPLP3uvU7Vf9WrfgLqe9NFu10Dio5hDiE27MBh05AQHQ1i8aPD0wybk/+5uZkdZEma7c41gLGssb79+/m7xSwpvAZ7eum7z8picnimUuhTw6JJVZy4TiFWQdQJ/0X1D4ZkiTE7be7x7clEtE6fscKPV8Mt/i/qNGTNRG/fyHc+Z1aud8iOSy77ftPFHQ8NgGVHBJL4u0IaWUAdGoC0kuQmJ8f1aUQET5Zx+L35FRUlJZi4UZH4ERh5X7T27eoiP2pxu78zeUqQhwinuZzq0sDTvkv6OXpmTKF5vRoCfU7ctpXx0l/GS0fKa0iuG5aPoonVu43vX2FSB5fLTdDJYcQBzGqQO4kVidApxQwvQSJfn96D76x8JvQS2Rox7HW7f5iqYaV+01vX60Enm5wrE42qOQQ4jDRRgJFwucD9u4NpIFXiDQAOqGA5eTImVpDcdvgG09nzVhFFCmTn/p7FgJYtsx6W/GI4IqkSKWbA62V+01rX7c7VicNMVo+cyX0ySHJTqjTr5K1ON6Jw/Lz3ZMcMZR4OmvG2g/Fqfbj4S9j5IdCB1r7uNGxOhHQJ4eQFCf0SVkI2ZxdVBTbpTEtJk4EduyI/bKcVeK9LBNrC4lT7cfDKqDnW5KR4ex3km4WoVhbhlMdKjmEJAl6Ex4QPgDGYyKIZvCNRj6jY+OdWC/WCemcbD/W/mJ6itSRI859J/FMNkhSAyo5hCQJek6/gwYFD/ZaE4Gbnn6jmagiHdu+fbivkl1nXTPE2kJip32j7zrWVgEtRcopRY3O08QWMVo+cyX0ySHJjlFV9HXr5MKbodXFJSmyP0S8qkpH4xuidazHI1+3ep/QvpGk4NwzsbjOWPtNmG3frb4vThSeTFSyQeIO6JNDSBqQlwe88kr49spKoFs32aoTWnJXnW9D6+k3nksA0SwnaR3r98vXrcg8b174cULI7cfyOmNlIbFSz8jNlg4nlsrcWquKuBsqOYQkGVr5MwDtJH1aqJWKeE+M0UxURjl6Ro0CSkqAuXPDP/d4nHd+jQdWlTI9BXLpUndcZ7SKIEOqiR2o5BCSZIQO9loTfyRKSuS/diwr0fj3RDNRhWbUDZV51SptRW/8eGedX+OBHeVzwwbt7ePHp46TbrySbZLUQRIi1Liduhw6dAj16tVDWVkZ6tatm2hxCIkKn0+epDMy5CUbs5YcQFYutm+X/2/VKvhY5TMtxaOwMDD5ejyy0mFnolFkb9fO+pN4SYn29d5/PzBjhva1ANauM9EUF8sWHK3tl14avt3nC7++UNx8vYREwu78TUsOIS7F55Nz4BQVGUfKdOminYXYCMWKYcWy4uTSVjRLF126ADNnhm+fOVN+aV1Lsi11WF3W06sppsbNlitCYkW1RAtACAmnsBAYOTLgRCxJwPz5+laTli2tta+eMPPygNzcyJYVo6WteCsLnTuHb6uslBWg7du1r8XsdQKy4rZ5s6xsRHNtdttRlLJRo+TriqSUKUpRJEsOnXRJukFLDiEuQ7GYqBeShZCVHi2rTmEhMGRIeDsej7b/ilZ1aDOWFTdFtxjJonUtVqKUnIrCirYdK/4nOTny78OIv/3N3Hm1fK7clGeJEEvEJKDdpTBPDkkG9PKBqHPDKHlGtHLHKK/8fDmHTGjeHI/Hfj4XJ/KdOIVZWazkjkmmWlGhLFli/Lsxc/1afeXW3DskvbA7f9PxmBCXYcWJdPNmbQdVQF7iuvdeYM6c8M/0HFjNymfXadjOuYyWeyLJ4vPJS3nqUc7jketuae1v1eFXD6fasYLWtWrh8QCLFsmpCIBA/wLhvzsle7S6TTowk0RAx2NCUgSjUGkFxRdGL3cMIE9Mc+eGlzmIdokpXgUDzSz3RJJl9erwSd/vB9as0d7fqSW5RCzt5eTIflvKeSUJGDgwfD+/X04a2bKl/FL6d968cMVasQGpoQMzSSao5BDiQvLyZGtDURHwz38a+58YKUR+v2zNSZaoIoVEZe91KgorUdFcyu+muBjYuRN4/HFjJVhRYPx+4IknwhViLejATJIJLlcRkgQUFoZH2qgdUUtKgK5dw5+6laUZIH5LTE5gd7kndHlLawlHkmQFQOkHrSUxvWUwq9FS8Vza00P924nEhAmy9U9vqVTrt0dIPLA9f8fAP8i10PGYJDORijSqHUSVwpTJ6iRqx3FXz2lW7Xgd2idWnGqT2QG3tFSIoiJ9J3V1/65bp10I9aGHgouhap0jHkVeSXpCx2MT0JJDUh2fL+Bv0r17clht9Bg+HHjxxcD7YcOAF14I38/nk31vBg8Ot9gA+k7HWg7eek61VvZ1M2qrjscTUGNCLTR6++lluXYqEzYhetidv6nkEEJch1mlQj25mkVZ8rKyJJaIaCm7WIlIA/SX0xSFOdR5Wf09KArmkCHJrwASd2N3/mbGY0KIq1DKWUTKrhzqnGwGtdOsVpZgPadaK/smEjMWFaXMhfq9Fjk5wLp14duV72HZMv3+T1QmbEJCYXQVIcQSscx+q4SN33uv9ufr1wf+1wp5NiI007OVCKhkqH3ldESazyc7IYfi8chFYY0UTDcqgCQ9oZJDSJrghHLiVMkDPfkiWWamTJH38/nk8OhQPB7tkHuPB1i7NtyqYaV0gpV9E4FebbE1a+x973pFP8ePB44ciRyB5SYFkKQvXK4iJA1wwjFUz1KQm+vMhGalkrZWkjpAnoBvvx2oXj085L5LF+02Q5dvjLCyb7zRWlLzeOTEf0LIjtizZgETJ9pvz+sFxo4NtB16rsWLk9/hnaQWtOQQkuI4tYxhVIXcCYyyNysoyyBa+3o8gQk4L0+2YMydK//VUujcWnTSrlyhS2qKEqIog0IAkyZpl/kw057aQqP1WUEBMGAAFRziMmIQzu5amCeHpCN6BT+Li621E4+ik6FFN4cN0y/CaVSgM1JOG7fmvHFCrtmzjfPh6BVo1ctzY5SfKVLuJkKcIm3y5Bw/fhxdu3bF//73P3zxxRc477zzTB/LEHKSjjiZ4yVS5mUnCM0SrJU1WAmTzswEysvDPzO6XrfmvHFCLjPFXYHw0HfmuSFuJ20KdE6aNAnZ2dmJFoOQpMHJyKB4ON+GFt0Mfa92fu7WDdiyJfhaIi2rxXrZzS5OyGXGryk08ilRdcIIiQdJpeS8//77+PDDDzHH7KIyIQSAs8pJvKqQa2FmQo5UATwRFcLN4IRckfyatBRctyp9hDhB0ig5v/76K0aOHIl///vfqFOnjqljjh8/jkOHDgW9CElXEqmcmMGMw62ZCTknB5g5MzDZh07s0Vq2YuWw7ITFLSdHjqAKxeOREyxqKbhuVfoIcYSYeAg5jN/vF1deeaWYPn26EEKIbdu2CQDiiy++MDxu6tSpAkDYi47HhLgLsw63ZpyfQ9uaPVu/LatOs0ZyOlWg0gln3vz8gJyhTtlahDpxT5hAZ2LiLuw6HidUydFTQtSvkpISMW/ePNGjRw9RUVEhhDCv5Bw7dkyUlZVVvUpLS6nkEOIyrEZtGUVVmW3LjkJi1LYbo7WsKkulpbJyo1RtV1+Hmf5iFXISS5Iyumrfvn3Yt2+f4T6tW7fG4MGD8fbbb0NSygoDqKyshNfrxY033ogX1aWKDWB0FSHuQ6/4ZVER0LhxcKFJdVTV9u2yqtGjR+BzM4U07UYSGck5eLD7orWsohfdNXMmMHmycX8xOovEmpSuQr5z584gf5pdu3YhNzcXr776Krp27YockyMJlRxC3IfW5OrxBOwlyqQJBCZS5XlH/Xlenn5bO3ZEHz6ud+wrr8hZhUNxY4VyI/SUOK2sx+r+cmtIPkktUjqEvGXLlujYsWPV6/TTTwcAnHbaaaYVHEKIO9FyuFWXbfD7ZeVGHVUV+rkSYaW0pTL6Qgi5YjYQXSSRnmNwjx6p4birl0U6Un8xOou4maRQcgghqY06xP2VV8LrUvn9xvlf1JNqbm64kqMoQR9/rH18RoZ1OZVIpWSoUG4GretQR6kphCpwjM4ibiYpC3S2bt0aSbDKRgixgFITyefTLv4IGCs6JSXy8pBRNe4ZM7SPLS+3LqeavDxZuQrNzJxsaF1Hw4bhWa7V16coR0b7EJIoksInxynok0NIcqBVPgIIbJOkcGuP4gcCWPOdUfvsJCOKM7baQTsW54ikwJnZhxC72J2/k9KSQwhJbfQsI8q2PXvCFRZlyerSS7UtC4rvTKiVZ9as5J2UzUQ1OaEEaVmv7OxDSLyhTw4hxJVoZWhWtu3cGb6/xxPwAzHjO+PxAPn5wIQJsb2OWGGmxIW6zlerVvJ7QtIJLlcRQpIKvUrbkgTMnx85P0uqLKtEygnE0G6SSnC5ihCScmgttehV2laiqDp1Ao4c0V+eSZVlFSWqKVSJUaxZRqHdqXD9hJiBy1WEEFeit9RiVGm7shLo2lV/eSZWxTUTQaTQdYZ2E0IlhxDiQoz8TZTJXU/R0UoSCAQrTS1bAhMnJr+yo+V7pJAq+XsIiQb65BBCXIeZGlQ+HzBvHvDEE7IFRytySjmmXTttP550qLNk1wcpHqHphJglpcs6EELSCzNLLTk5wOzZAUvG2rX6x+j58WhFJKUaWlFqkWBUFkkVqOQQQlyHlaUWZRLv0kX/mMxM/XOxzlIwWkuFt90mZ5QmJNlgdBUhxJXYKZWgd8yRI/rH0Bk3GC2rl98vO3SbCdEnxE1QySGEuBY74d5ax2iFWwN0xtVCr6+UEP3cXPYXSR64XEUISXm0sh1PmBAekUSMo9e4tEeSDUZXEULShlTJdhwPSkrkJSr1DMGMySRRMLqKEEIiYCfSKF3p0kX2wWGeHZLM0CeHEEKIJnacvwlxE1RyCCGE6JIqtb5IesLlKkIIIYSkJFRyCCGEEJKSUMkhhBBCSEpCJYcQQgghKQmVHEIIIYSkJFRyCCGEEJKSUMkhhBBCSEpCJYcQQgghKQmVHEIIIYSkJFRyCCGEEJKSUMkhhBBCSEqSVrWrhBAA5JLthBBCCEkOlHlbmcfNklZKzuHDhwEAp556aoIlIYQQQohVDh8+jHr16pneXxJW1aIkxu/3Y9euXcjKyoIkSYkWJ6YcOnQIp556KkpLS1G3bt1Ei+Mq2DfGsH/0Yd8Yw/4xhv2jT6S+EULg8OHDyM7Ohsdj3tMmrSw5Ho8HOTk5iRYjrtStW5c3kw7sG2PYP/qwb4xh/xjD/tHHqG+sWHAU6HhMCCGEkJSESg4hhBBCUhIqOSlKzZo1MXXqVNSsWTPRorgO9o0x7B992DfGsH+MYf/oE6u+SSvHY0IIIYSkD7TkEEIIISQloZJDCCGEkJSESg4hhBBCUhIqOYQQQghJSajkpBAzZsxAly5dkJWVhSZNmuCaa67BDz/8kGixXMmMGTMgSRLuueeeRIviGn7++WfcdNNNaNSoEerUqYPzzjsPGzZsSLRYrqCiogIPPPAA2rRpg9q1a6Nt27Z45JFH4Pf7Ey1aQvi///s/9O3bF9nZ2ZAkCf/973+DPhdCYNq0acjOzkbt2rVx6aWX4ptvvkmMsHHGqG9OnjyJyZMn45xzzkFGRgays7Nx8803Y9euXYkTOM5E+u2oGTVqFCRJwpNPPmn7fFRyUoiVK1di9OjRWLt2LT766CNUVFTgz3/+M8rLyxMtmqsoKSlBQUEBOnXqlGhRXMOBAwfQs2dPVK9eHe+//z6+/fZbPP7446hfv36iRXMFs2bNwnPPPYdnnnkG3333HfLz8zF79mw8/fTTiRYtIZSXl+Pcc8/FM888o/l5fn4+5s6di2eeeQYlJSVo1qwZ+vTpU1U/MJUx6pujR49i48aNePDBB7Fx40a8/vrr+PHHH9GvX78ESJoYIv12FP773//i888/R3Z2dnQnFCRl2bNnjwAgVq5cmWhRXMPhw4dF+/btxUcffSQuueQSMXbs2ESL5AomT54sevXqlWgxXMvVV18tRowYEbTtuuuuEzfddFOCJHIPAMQbb7xR9d7v94tmzZqJmTNnVm07duyYqFevnnjuuecSIGHiCO0bLdatWycAiB07dsRHKBeh1z8+n0+0aNFCfP3116JVq1biiSeesH0OWnJSmLKyMgBAw4YNEyyJexg9ejSuvvpqXHHFFYkWxVW89dZb6Ny5MwYMGIAmTZrg/PPPx/z58xMtlmvo1asXli9fjh9//BEA8L///Q+rVq3CX/7ylwRL5j62bduGX375BX/+85+rttWsWROXXHIJVq9enUDJ3ElZWRkkSaLV9A/8fj+GDh2KiRMn4uyzz466vbQq0JlOCCEwfvx49OrVCx07dky0OK5g8eLF2LhxI0pKShItiuvYunUr/vnPf2L8+PH4f//v/2HdunUYM2YMatasiZtvvjnR4iWcyZMno6ysDGeeeSa8Xi8qKyvx97//HUOGDEm0aK7jl19+AQA0bdo0aHvTpk2xY8eORIjkWo4dO4YpU6bghhtuYMHOP5g1axaqVauGMWPGONIelZwU5a677sKXX36JVatWJVoUV1BaWoqxY8fiww8/RK1atRItjuvw+/3o3LkzHnvsMQDA+eefj2+++Qb//Oc/qeQAWLJkCV5++WW88sorOPvss7Fp0ybcc889yM7OxrBhwxItniuRJCnovRAibFs6c/LkSQwePBh+vx/PPvtsosVxBRs2bMC8efOwceNGx34rXK5KQe6++2689dZbKC4uRk5OTqLFcQUbNmzAnj17cMEFF6BatWqoVq0aVq5ciaeeegrVqlVDZWVlokVMKM2bN0eHDh2Ctp111lnYuXNngiRyFxMnTsSUKVMwePBgnHPOORg6dCjGjRuHGTNmJFo019GsWTMAAYuOwp49e8KsO+nKyZMnMXDgQGzbtg0fffQRrTh/8Omnn2LPnj1o2bJl1Ti9Y8cO3HvvvWjdurWtNmnJSSGEELj77rvxxhtv4JNPPkGbNm0SLZJr6N27N7766qugbbfccgvOPPNMTJ48GV6vN0GSuYOePXuGpRv48ccf0apVqwRJ5C6OHj0Kjyf4mdDr9aZtCLkRbdq0QbNmzfDRRx/h/PPPBwCcOHECK1euxKxZsxIsXeJRFJzNmzejuLgYjRo1SrRIrmHo0KFh/pK5ubkYOnQobrnlFlttUslJIUaPHo1XXnkFb775JrKysqqepOrVq4fatWsnWLrEkpWVFeablJGRgUaNGtFnCcC4cePQo0cPPPbYYxg4cCDWrVuHgoICFBQUJFo0V9C3b1/8/e9/R8uWLXH22Wfjiy++wNy5czFixIhEi5YQjhw5gp9++qnq/bZt27Bp0yY0bNgQLVu2xD333IPHHnsM7du3R/v27fHYY4+hTp06uOGGGxIodXww6pvs7Gxcf/312LhxI9555x1UVlZWjdMNGzZEjRo1EiV23Ij02wlV+qpXr45mzZrhjDPOsHdC23FZxHUA0HwtXLgw0aK5EoaQB/P222+Ljh07ipo1a4ozzzxTFBQUJFok13Do0CExduxY0bJlS1GrVi3Rtm1bcf/994vjx48nWrSEUFxcrDnWDBs2TAghh5FPnTpVNGvWTNSsWVNcfPHF4quvvkqs0HHCqG+2bdumO04XFxcnWvS4EOm3E0q0IeSSEELYU48IIYQQQtwLHY8JIYQQkpJQySGEEEJISkIlhxBCCCEpCZUcQgghhKQkVHIIIYQQkpJQySGEEEJISkIlhxBCCCEpCZUcQohttm/fDkmSsGnTpkSLEjWfffYZzjnnHFSvXh3XXHNNosUhhDgAlRxCSNIyfPhwxxSS8ePH47zzzsO2bdvwwgsvONKmWV544QXUr18/ruckJB2gkkNIGnLixIlEixAVlZWVjhfH3LJlCy6//HLk5OSYVjiSvR8JSXWo5BCSBlx66aW46667MH78eDRu3Bh9+vQBAHz77bf4y1/+gszMTDRt2hRDhw7Fvn37qo774IMP0KtXL9SvXx+NGjXCX//6V2zZssXSuVu3bo3p06fjhhtuQGZmJrKzs/H0008H7TN37lycc845yMjIwKmnnoo777wTR44cqfpcsXS888476NChA2rWrIlbbrkFL774It58801IkgRJkvDJJ59oynD8+HGMGTMGTZo0Qa1atdCrVy+UlJQACCy57d+/HyNGjIAkSbqWnNatW+PRRx/F8OHDUa9ePYwcORIA8Nprr+Hss89GzZo10bp1azz++ONBxx04cAA333wzGjRogDp16uCqq67C5s2bAQCffPIJbrnlFpSVlVVdx7Rp0wAAzz77LNq3b49atWqhadOmuP766y31PSFpj+2qV4SQpOGSSy4RmZmZYuLEieL7778X3333ndi1a5do3LixuO+++8R3330nNm7cKPr06SMuu+yyquNeffVV8dprr4kff/xRfPHFF6Jv377inHPOEZWVlUIIUVVw8IsvvtA9d6tWrURWVpaYMWOG+OGHH8RTTz0lvF6v+PDDD6v2eeKJJ8SKFSvE1q1bxfLly8UZZ5wh7rjjjqrPFy5cKKpXry569OghPvvsM/H999+LgwcPioEDB4orr7xS7N69W+zevVu3YOaYMWNEdna2eO+998Q333wjhg0bJho0aCD2798vKioqxO7du0XdunXFk08+KXbv3i2OHj2qey1169YVs2fPFps3bxabN28W69evFx6PRzzyyCPihx9+EAsXLhS1a9cOKozbr18/cdZZZ4n/+7//E5s2bRK5ubmiXbt24sSJE+L48ePiySefFHXr1q26jsOHD4uSkhLh9XrFK6+8IrZv3y42btwo5s2bZ+brJoT8AZUcQtKASy65RJx33nlB2x588EHx5z//OWhbaWmpACB++OEHzXb27NkjAFRVlDar5Fx55ZVB2wYNGiSuuuoq3WOKiopEo0aNqt4vXLhQABCbNm0K2m/YsGGif//+uu0IIcSRI0dE9erVxX/+85+qbSdOnBDZ2dkiPz+/alu9evWCFBO9a7nmmmuCtt1www2iT58+QdsmTpwoOnToIIQQ4scffxQAxGeffVb1+b59+0Tt2rVFUVFR1fXVq1cvqI3XXntN1K1bVxw6dMhQJkKIPlyuIiRN6Ny5c9D7DRs2oLi4GJmZmVWvM888EwCqlqS2bNmCG264AW3btkXdunXRpk0bAMDOnTstnbt79+5h77/77ruq98XFxejTpw9atGiBrKws3Hzzzdi/fz/Ky8ur9qlRowY6depk6bzKNZw8eRI9e/as2la9enVceOGFQTKYJbQfv/vuu6C2AaBnz57YvHkzKisr8d1336FatWro2rVr1eeNGjXCGWecYXj+Pn36oFWrVmjbti2GDh2K//znPzh69KhleQlJZ6jkEJImZGRkBL33+/3o27cvNm3aFPTavHkzLr74YgBA3759sX//fsyfPx+ff/45Pv/8cwDOONxKkgQA2LFjB/7yl7+gY8eOeO2117Bhwwb84x//AACcPHmyav/atWtXHWMFIUTQ+dTb7bQX2o9a7SjnDP3fyvmzsrKwceNGLFq0CM2bN8dDDz2Ec889FwcPHrQsMyHpCpUcQtKUP/3pT/jmm2/QunVrtGvXLuiVkZGB/fv347vvvsMDDzyA3r1746yzzsKBAwdsnWvt2rVh7xWr0fr161FRUYHHH38c3bp1w+mnn45du3aZardGjRqorKw03Kddu3aoUaMGVq1aVbXt5MmTWL9+Pc466yyLVxJOhw4dgtoGgNWrV+P000+H1+tFhw4dUFFRUaUgAsD+/fvx448/Vp1f7zqqVauGK664Avn5+fjyyy+xfft2rFixImqZCUkXqOQQkqaMHj0av/32G4YMGYJ169Zh69at+PDDDzFixAhUVlaiQYMGaNSoEQoKCvDTTz9hxYoVGD9+vK1zffbZZ8jPz8ePP/6If/zjH1i6dCnGjh0LADjttNNQUVGBp59+Glu3bsW///1vPPfcc6babd26Nb788kv88MMP2LdvX5DlRyEjIwN33HEHJk6ciA8++ADffvstRo4ciaNHjyIvL8/W9ai59957sXz5ckyfPh0//vgjXnzxRTzzzDOYMGECAKB9+/bo378/Ro4ciVWrVuF///sfbrrpJrRo0QL9+/evuo4jR45g+fLl2LdvH44ePYp33nkHTz31FDZt2oQdO3bgpZdegt/vxxlnnBG1zISkDYl0CCKExIdLLrlEjB07Nmz7jz/+KK699lpRv359Ubt2bXHmmWeKe+65R/j9fiGEEB999JE466yzRM2aNUWnTp3EJ598IgCIN954Qwhh3vH44YcfFgMHDhR16tQRTZs2FU8++WTQPnPnzhXNmzcXtWvXFrm5ueKll14SAMSBAweEENqOuULIjtB9+vQRmZmZAoAoLi7WlOH3338Xd999t2jcuLGoWbOm6Nmzp1i3bl3QPmYdj5944omw7a+++qro0KGDqF69umjZsqWYPXt20Oe//fabGDp0qKhXr17VNf74449B+9x+++2iUaNGAoCYOnWq+PTTT8Ull1wiGjRoIGrXri06deoklixZYigfISQYSQidBWNCCHGA1q1b45577sE999yTaFEIIWkGl6sIIYQQkpJQySGEEEJISsLlKkIIIYSkJLTkEEIIISQloZJDCCGEkJSESg4hhBBCUhIqOYQQQghJSajkEEIIISQloZJDCCGEkJSESg4hhBBCUhIqOYQQQghJSajkEEIIISQl+f9xWroDWEDElAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAAHHCAYAAAChoqAWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUsElEQVR4nO3dd3gU1foH8O9sgCQkITRphioooqIIoSuCYmyIjSYCSkRQlCb1qj+w0QWxC+Ril2rBci+iBK40Ce3aUEFaAirV0ANkz++PuZNsmZmd2Z3dnZ39fp4nD2QyO3Nmtsy7Z97zHkkIIUBEREREFMNc0W4AEREREVGoGNQSERERUcxjUEtEREREMY9BLRERERHFPAa1RERERBTzGNQSERERUcxjUEtEREREMY9BLRERERHFPAa1RERERBTzGNQSERERUcxjUEtEREREMc/WQe3atWsxYcIE/P333xHf94IFC3DZZZchOTkZkiRh69atAR/zzDPPoEmTJnC73eFvoI7jx49j9OjRuPHGG3HBBRdAkiRMmDBBdd2cnBxceOGFOHnyZNjaY5fzApg7NwBw4sQJDBs2DLVq1UJSUhKuuuoqzJ8/32udSJxDAHjrrbcgSRJ2794NQP/9MWHCBEiShEOHDoW1TVbTet8F8360i3B/jkXquVb2Y5f2KO8H5adMmTKoWbMmevbsie3bt1u6LyOfA1Y83sx+jKy7detW3HrrrahTpw6Sk5NRuXJltGnTBu+9957f9sx+NgLA6tWrccstt6BSpUpITk5Go0aN8Oyzz5b8fcWKFejfvz8aN26MlJQUXHjhhejatSs2bdrkty2j695///1ez7vvz/r164Na18jxBLOukecpHOceALZs2YI77rgDtWrVQvny5dG4cWM888wzOHXqlNd6Zl4nZs7phg0bkJWVhbS0NKSmpqJjx45Ys2aN7nEBwNy5cyFJElJTUwOu60fY2LRp0wQAsWvXroju98CBA6Js2bKiS5cuYuXKlWLdunXi5MmTuo/Zt2+fSElJEYsWLYpQK7Xt2rVLpKeni2uvvVY8+OCDAoAYP3686rrnzp0TjRo1Ev/3f/8XlrbY6bwIYe7cCCFE586dRcWKFcUbb7whVqxYUfKY999/v2SdcJ9DxYEDB8S6devEmTNnhBD674/x48cLAOLgwYNhbZOVtN53wbwf7STcn2OReq6V/dilPfPmzRMAxLx588S6detEbm6ueO6550RycrKoVq2aOHLkiGX7MvI5YMXjzezHyLq5ubli4MCB4t133xUrVqwQn332mejZs6cAIJ599lmv7Zn9bHz//feFy+USPXv2FEuXLhUrVqwQc+bMEU8//XTJOvfcc4/o2LGjeO2118TKlSvFokWLROvWrUWZMmXEN99847U9o+vu2LFDrFu3zu+natWq4sILLxTnz58Pal0jxxPMukaep3Cc+59++kkkJSWJK6+8UixYsEB88803Yvz48SIhIUHcfvvtXtsz8zoxek43bNggEhMTxTXXXCM+/vhj8dFHH4nWrVuLxMREsXbtWs1jKygoEOnp6aJWrVoiJSVFcz0tlgS14brARCuoXb16tQAgFixYYPgxo0ePFhdeeKEoLi4OY8uMcbvdwu12CyGEOHjwYMA3yPTp00V6enpYnkc7nRchzJ2bL774QgAQH3zwgdfyzp07i1q1anl9IIbzHGpxWlCr9b4L5v1oB8prIVyfY8r24z2ozcvL81r+9NNPCwDin//8pyX7MfM5EMrjzewn1Da1atVK1K5d22uZmc/GgoICkZKSIh5++GHd/fz1119+y44fPy6qV68urr/++qDX9bVy5UoBQDz55JO662mta/R4zK5r9HkKx7l/4oknBACxY8cOr+UPPfSQAGDoS5/a60SN2jnNysoS1atX97omHjt2TFStWlW0bdtWc1u33Xab6NKli+jXr19QQa3p9APl1tLmzZtxzz33oFKlSrjooosAyN3h119/PdLS0lC+fHm0bdsWX3zxhep2Aq07YcIEjBo1CgBQv379kq7tlStX4uDBg3jooYdQu3ZtJCYm4oILLkC7du3w9ddfB2x/oP3ef//9aN++PQCgR48ekCQJ1113ne42z549i5ycHNx7771wuUpP6R9//IHU1FT07NnTa/3PP/8cZcuWxRNPPBGwvcFQzpVRvXv3xrFjx0zdTjNC67wAsXFuPv74Y6SmpqJbt25eyx944AHs378f3333Xckyo+fwp59+giRJWLRoUcmyTZs2QZIkXHbZZV7r3n777WjevHnJ757pB3rvD09//fUXevXqhfT0dFSvXh39+/dHYWGhoeP/5Zdf0KtXL1SvXh2JiYmoU6cO+vbti6KiopJ1jL7nt2/fjnvvvRfVqlVDYmIiLr30Urz66qslf9d63+m9H4P9HFA+w7Zs2YK77roLFSpUQHp6Ou677z4cPHjQdNs9t+n7uaj3PN1///2oV6+eZvuMbN9Tfn5+wOMxciwA8MUXX+Cqq65CYmIi6tevj+nTp+ueUzWB2vPtt99CkiR8+OGHfo995513IEkS8vLyTO+3RYsWAOTXvhXMfA6E8ngz+wm1TVWrVkWZMmW8lpn5bJw7dy5OnjyJMWPG6K5XrVo1v2Wpqalo0qQJ8vPzg17XV05ODiRJQv/+/QO2XW1do8djdl2jz1M4zn3ZsmUBAOnp6V7LK1asCJfLhXLlygXcl9rrRI3aOV2zZg2uu+46lC9fvmRZWloarr32WqxduxZ//PGH33bee+89rFq1Cq+99lrAfWoJOqf2rrvuQsOGDbFo0SK88cYbWLVqFTp16oTCwkLk5OTgww8/RFpaGrp06YIFCxZ4PdbIug8++CAee+wxAMBHH32EdevWYd26dbj66qvRp08ffPLJJ/i///s/fPXVV5g7dy5uuOEGHD58WLfNRvb71FNPlXzIT5w4EevWrQt4gr/77jscPnwYHTt29Fpes2ZNjB49GgsXLizJC1q5ciW6deuGhx9+GM8//7zBsx1eNWrUQOPGjTW/gARL67wAsXFufvzxR1x66aV+b+qmTZuW/F1h9BxedtllqFmzplfg9fXXXyM5ORk///wz9u/fDwA4f/48Vq1ahRtuuEF1O3rvD0933303Lr74YixZsgRjx47FBx98gOHDhwc89v/+97/IzMzE+vXr8cwzz+Bf//oXJk2ahKKiIpw9exaAsfcTAPz888/IzMzEjz/+iBdeeAGff/45br31VgwZMgRPP/00AO33nd77MdjPAcWdd96Jhg0bYvHixZgwYQI++eQTZGVl4dy5c6ba7sn3c9Ho82SU7/bNHI/RY/nmm2/QtWtXpKWlYf78+Zg2bRoWLlyIefPmmWproPZcc801aNasmWpQ/corryAzMxOZmZlmTxF27doFALj44ou9lgshcP78eUM/nsx8Dqgx+ngz+zHbJrfbjfPnz+PgwYN47bXXsGzZMkNBmZb//Oc/qFy5Mn755RdcddVVKFOmDKpVq4ZBgwbh2LFjuo8tLCzE5s2b/b7EB7tuYWEhFi9ejOuvvx7169cPuD21dc0cj5l1Q33tqDG6/379+qFixYp4+OGHsXPnThw/fhyff/453nzzTQwePBgpKSl+2w7mdaJ1Ts+ePYvExES/9ZVlP/zwg9fyAwcOYNiwYZg8eTIyMjJMnRMvZrt2lVtLvvmDrVu3FtWqVRPHjx8vWXb+/Hlx+eWXi4yMjJKudTPrat22S01NFcOGDTPbdMP7zc3NFQAM54FOmTJFABB//vmn399OnjwpatWqJa6//nqxYcMGkZaWJh544AGv8xFORtIPhBCid+/eonr16l7L3G63OHr0qN8t9dOnT4ujR4/63eIqLCwUx44dK/ld77wIYf9z06hRI5GVleW3fP/+/QKAmDhxotdytXOo5r777hMNGjQo+f2GG24QAwYMEJUqVRJvv/22EEKINWvWCADiq6++KllPud2qvB+MpB9MnTrVa/kjjzwikpKSAp7jTp06iYoVK4oDBw5ormP0/ZSVlSUyMjJEYWGh1+MfffRRkZSUVHIbTOt9p7U82M8B5dwMHz7ca/n7778vAIj33nuvZJnRtmt9Lgqh/Tz169dP1K1bV7N9asvUtm/0eIweS6tWrUStWrXE6dOnS9Y5duyYqFy5sqn0AyPnV3lNb9mypWTZhg0bBICS94IW5bHr168X586dE8ePHxf//ve/RY0aNcS1114rzp0757W+8joy8uP5XJn9HPBl9PFm9mO2TQMHDiw5tnLlyonXXntNt82BPhsvueQSkZSUJNLS0sTEiRNFbm6umDp1qkhOThbt2rXT/Xzp3bu3KFOmjNi4caNuG4yu+/rrrwsA4sMPPwy4Pa11zRyPmXWDee1Yee63bdsmGjdu7PXaHjJkiObzY/Z1IoT2Ob3qqqvExRdf7JV6eO7cOdGgQQPVlIy7775btG3btqRtEUs/UNx9990l/z958iS+++473HPPPV6j1RISEtCnTx8UFBTg119/Nb2ulpYtW+Ktt97Cc889h/Xr13v1rGixYr9a9u/fD0mSULVqVb+/lS9fHs899xy++eYbdOzYETfffDPmzJmjeath5cqVuiMLPX+sHAFerVo1HDhwwKuX4q+//kKlSpXwyCOPeK07efJkVKpUye/W4MUXX4xrrrmm5He98wLExrnRuyXk+ze1c6jm+uuvx86dO7Fr1y6cOXMGq1evxk033YSOHTti+fLlAOTe28TExJJb78G6/fbbvX5v2rQpzpw5gwMHDmg+5tSpU1i1ahW6d++OCy64QHUdo++nM2fO4JtvvsGdd96J8uXLe/WG3XLLLThz5ozfCGSjgvkc8NS7d2+v37t3744yZcogNzcXAIJqu+fnYjjobV/veIwey8mTJ5GXl4e77roLSUlJJdtSeuDNCHR+AaBXr16oVq2aV2/tyy+/jAsuuAA9evQwtJ/WrVujbNmySEtLw0033YRKlSrh008/9esda968OfLy8gz91KpVy+uxZj4HzK7j+Tcz+zGz7j/+8Q/k5eXhiy++QP/+/fHoo48GlVKicLvdOHPmDP7xj39g3LhxuO666zBq1ChMmjQJa9aswTfffKP6uKeeegrvv/8+Zs6c6ZVaFcq6OTk5qFKlCu68886A7dZa18zxmD32UF87vozuf/fu3ejSpQuqVKmCxYsXY9WqVZg6dSreeustPPjgg6rbDuZ1onVOH3vsMfz222949NFHsW/fPuTn52PQoEHYs2cPAHilJC5ZsgSfffaZ7vXfqMDJEhpq1qxZ8v+jR49CCOG1TKF8OCi3BM2sq2XBggV47rnnMHfuXDz11FNITU3FnXfeialTp6JGjRqqj7Fiv1pOnz6NsmXLIiEhQfXvym0wSZLw1ltvaa4HAJdccgnmzJljaL916tQx31gNSUlJEELgzJkzwZXRUBHovAD2PjdVqlRRfU0cOXIEAFC5cmWv5UbPoZJS8PXXX6N+/fo4d+4cOnXqhL/++qukJMvXX3+Ndu3aITk5OeRj8KTc+jl9+rTmY44ePYri4mLdW0BG309paWk4f/48Xn75Zbz88suq2wq29FMwnwOefNcpU6aM13N++PBh021XOx9W0tu+3vEYPZajR4/C7Xarnj8j59RoexSJiYkYOHAgXnjhBUybNg3nzp3DwoULMWLECNVbl2reeecdXHrppTh+/DgWLFiAN998E7169cK//vUvr/VSU1Nx1VVXGdqmZ0Bs9nPAl9HHm9mP2TbVqVOn5DPxlltuAQCMGzcO/fr10/ziGuiYtm/fjqysLK/lN998M4YNG4bNmzf7pU49/fTTeO655/D888/j0Ucf1d2+0XW///57bNy4EUOHDg34etFb18zxmF03lNeOGqP7Hzt2LI4dO4atW7eWpBpce+21qFq1Kvr374++ffuiQ4cOXtsw+zrRO6f9+/fHwYMH8dxzz+H1118HALRp0wYjR47ElClTcOGFFwKQS54NHjwYjz32GGrVqlVS+lBJc/v7779RtmxZ1XQJNUEHtZ7RdKVKleByuVQTf5UcQaW3zsy6WqpWrYoXX3wRL774Ivbu3YulS5di7NixOHDgAP7973+rPsaK/eq15+zZszh58qTfid+6dStuu+02tGvXDmvWrME///lPDB48WHNbNWvW1PwWFU5HjhxBYmKiVzBWo0YNCCH81p0wYYJqDb0///zT63e98wLY/9xcccUV+PDDD3H+/Hmvi5ySC3T55Zd7ra92DtVkZGTg4osvxtdff4169eqhRYsWqFixIq6//no88sgj+O6777B+/XrVnM1IqFy5MhISElBQUKC5jtH3U6VKlUp6b7We20B5cFqC+Rzw9Oeff5Z8sAJyHvPhw4dLvggE03YzvQxJSUleg+4UekG+3vb1jsfosSQlJUGSJL/3srJ9MwKdX8XDDz+MyZMn45///CfOnDmD8+fPY9CgQYb3c+mll5YMDuvYsSOKi4sxd+5cLF68GPfcc0/JeqtWrVLN71eza9eukkF8Zj8HfBl9vJn9hNqmli1b4o033sDOnTuDCmqbNm2qeodFuV74Dgx++umnS64b//jHP3S3bWbdnJwcADB0XdBb18zxmFk31OdJjdH9b926FU2aNPG79ip56j/++KNfUOsr0Osk0PkfM2YMhg0bhu3btyMtLQ1169bFwIEDkZKSUtL7fujQIfz111944YUX8MILL/hto1KlSujatSs++eQT3baWMJuvoFWupU2bNqJGjRri1KlTJcuKi4vFFVdc4ZdTa3Tdl156SQAQP//8c8B23XHHHeKCCy7QXcfofs3m1L7zzjsCgPjvf//rtfyXX34R1apVEzfffLM4e/as6Nq1q6hatar4+++/DW3XCkZzajt37iyaNWtm6b61zosQsXFuvvzySwFAzJ8/32v5TTfdpFo2x8w5fOSRR0TVqlVFs2bNvMqg1KlTR9x4440CgNiwYYPXY3xzavXeH1rvU99taOnUqZOoVKmSblkmo++nG264QVx55ZWiqKhId59mc2rVGPkcCJTz+e6775YsM9p2vTJWWs/TpEmThMvl8so5LyoqEg0bNtTMqVXbvtHjMXos4c6p9Ty/invvvVdcdNFFonbt2uKOO+4IuA8htEt6HTlyRFSqVElceumlXvl8x44dE3l5eYZ+PM+R2c8BX0Yfb2Y/obapT58+wuVyaebMB/psXLZsmQAgnn/+ea/lM2bMEADEt99+W7LsmWeeMVxuy8y6Z86cEZUrVxYtW7YMeV0zx2Nm3WCeJ6vOfceOHcUFF1zgNeZBCCFmz54tAIhPPvlEdfue9F4nZs6/Ys+ePSI9Pd1rLMTp06dFbm6u309WVpZISkoSubm54ocffjC8D8uC2pUrV4qyZcuKVq1aiUWLFolPP/1UZGVlCUmS/J5Qo+sqF7OBAweKtWvXiry8PPH333+LZs2aiWnTponPPvtMrFy5UkybNk0kJSWJe++9V7ftZvdrNKjdu3evACDefPPNkmW7du0SGRkZ4pprrim56G/btk0kJCSI0aNHG9puKL788kuxaNEi8c9//lMAEN26dROLFi0SixYt8hv4VVxcLNLT08WIESMsbYPaeREits5N586dRaVKlcTs2bPFihUrxIABA/wGuwhh/hwuWbKkJCF/1apVJcsfeOABAUBUqlTJr7avb0Cq9v5QBuqFGtRu3bpVpKamigYNGpQc+4cffih69epVsg+j76effvpJVKpUSbRs2VLMmzdP5ObmiqVLl4oZM2aIjh07lqxnJqgN5XNAOTd169YVo0aNEl999ZWYOXOmSE1N9Qv6jLZdL+jUep527twpypYtK6677jrxxRdfiCVLlogOHTqI+vXrBxXUBjoeo8fy1VdfCZfLJdq3by8+/vhjsXjxYpGZmSlq165tKqg1cn4V3333Xcn74euvvw64DyG0g1ohhJg6dapmAB0MI58DK1euFAkJCZoF+I18jhhdz+i6AwYMEI8//rhYsGCBWLlypVi8eLHo0aOHACBGjRrlt00zn41dunQRiYmJ4tlnnxXLly8XkyZNEklJSeK2224rWWf69OkCgLjppptUC/Z7MrOuEELMnz9fABCzZ8/2+1sw6xo5nmDWNfqcWn3uP/30UyFJkmjdunXJ5AvPP/+8SE1NFU2aNPF6H5p9nRg5pz/88IOYMGGC+Pzzz8Xy5cvF9OnTRdWqVUWLFi38Am01wQ4UsyyoFUKIb7/9VnTq1EmkpKSI5ORk0bp1a/HZZ5+pbsfouuPGjRO1atUSLpdLABD//ve/xaBBg0TTpk1FhQoVRHJysrjkkkvE+PHjDRW+N7Jfs0GtEEJcc8014pZbbhFCyCMbL7roInH11Vf7jTQeMGCASExMDPuEEnXr1jU0slcIIb755hsBQGzatMnydnieFyFi79wcP35cDBkyRNSoUUOUK1dONG3aVHWUrdlzePToUeFyuURKSoo4e/ZsyXKlN+uuu+7ye4xaQOr7/sjNzRVChB7UCiHEzz//LLp16yaqVKkiypUrJ+rUqSPuv//+khnNhDD+Pt61a5fo37+/uPDCC0XZsmXFBRdcINq2bSuee+65knXMBLVnzpwJ+nNAOTebNm0SXbp0EampqSItLU306tVLtQC8kbYHmnBA63n68ssvxVVXXSWSk5NFgwYNxCuvvKJb/UAvqDVyPEaORQghli5dKpo2bVryvE+ePNn05AtGz6+iXr164tJLLw24fYVeUHv69GlRp04d0ahRo4C9lkYY+RxQXqdqPWxGP0eMrmd03X/+85/immuuEVWrVhVlypQRFStWFB06dNAM9s18Np46dUqMGTNG1K5dW5QpU0bUqVNHjBs3zuvzoUOHDprb830tmVlXCDlYTElJ8aq4o8XIukaOJ5h1jT6nVp97IYRYsWKFuPHGG0WNGjVEcnKyuPjii8Xjjz8uDh065LWe2deJkXP666+/imuvvVZUrlxZlCtXTjRs2FA8+eST4sSJE5rb9BRsUCsJoZI0SaYtWbIEPXr0wJ49e7zyyGJBnz59sHPnTkNzMpsVy+fFjHCeQ7LWhAkT8PTTT+PgwYNB59GTtb7//ntceeWVePXVV/2qrRARGRV0SS/ydtdddyEzMxOTJk2KdlNM+f3337FgwQJMmTIlLNuP1fNiRrjPIZFT/f7771ixYgUeeugh1KxZE/fff3+0m0REMYxBrUUkScKcOXNQq1YtuN3uaDfHsL179+KVV14JuR6qllg9L2aE+xwSOdWzzz6Lzp0748SJE1i0aJHXlJpERGYx/YCIiIiIYh57aomIiIgo5jGoJSIiIqKYx6CWiIiIiGJe0NPkkrXcbjf279+PtLQ0U1NtEhERUfQIIXD8+HHUqlXLb4pgiiwGtTaxf/9+1K5dO9rNICIioiDk5+cjIyMj2s2IawxqbSItLQ2A/KaoUKFClFtDRERERhw7dgy1a9cuuY5T9DCotQkl5aBChQoMaomIiGIMUwejj8kfFtm3bx/uu+8+VKlSBeXLl8dVV12FTZs2RbtZRERERHGBPbUWOHr0KNq1a4eOHTviX//6F6pVq4bff/8dFStWjHbTiIiIiOICg1oLTJkyBbVr18a8efNKltWrVy96DSIiIiKKM0w/sMDSpUvRokULdOvWDdWqVUOzZs0wZ84c3ccUFRXh2LFjXj9EREREFBwGtRbYuXMnXn/9dTRq1AjLli3DoEGDMGTIELzzzjuaj5k0aRLS09NLfljOi4iIiCh4khBCRLsRsa5cuXJo0aIF1q5dW7JsyJAhyMvLw7p161QfU1RUhKKiopLflZIghYWFrH5AREQUI44dO4b09HRev22APbUWqFmzJpo0aeK17NJLL8XevXs1H5OYmFhSvotlvIiIiIhCw6DWAu3atcOvv/7qtey3335D3bp1o9QiIiIiovjCoNYCw4cPx/r16zFx4kTs2LEDH3zwAWbPno3BgwdHu2lEREREcYFBrQUyMzPx8ccf48MPP8Tll1+OZ599Fi+++CJ69+4d7aYRERERxQUOFLMJJpoTERHFHl6/7YM9tURE5KegAMjNlf8lIooFDGqJiMhLTg5Qty7QqZP8b05OtFtERBQYg1oiIipRUAA89BDgdsu/u93AwIHssSUi+2NQS0REJbZvLw1oFcXFwI4d0WkPEZFRDGqJiKhEo0aAy+fKkJAANGwYnfYQERnFoJaIiEosWwZ41sRxuYA33wQyMvzX5WAyIrITBrVERASgNJ/Wt9BjVpb/uhxMRkR2w6CWiIgAqOfTut3++bQcTEZEdsSgloiIABjPp+VgMiKyIwa1RERxyjcnNiMDmD1bDmQB+V+1fFoOJiMiO2JQS0QUgBMHRGnlxGZlAR98ACxcCKxbBzRo4H/cRoNfIqJIkoTwHRJA0cC5o4msUVAg3x5v1MiaICsnpzR/1OWSg7ns7NC3G00FBXIg65lCkJAATJ4MjBkjL5ckebkQ2sddUCCnHDRsyICW4hev3/bBoNYm+KYgCp3VAahW8Ld7d2wHcbm5cg+tL5fLP1dW4YTjJgoHXr/tg+kHROQI4RiRH4sDooykSqjlxOoFtID9j5uIiEEtETmC2QA02OAv0ICoaObfGq0dq5YTe/PN+tvmQDAisjsGtUTkCGYC0FCCP70BUdGckMBsT3V2tpxOkJsrDwj717+0t82BYEQUCxjUElFMUesJVQaHTZmiH4AWFMij+oMN/nbv1s7RjfaEBMGkSmRkANddB5w4oZ56IEny+VKO24lVIIjIOcpEuwFEREapDQQDvJdNngxkZvqPyPd8rC8l+NPqiczICNxLqRdURqKHU+mp9h3UZiRlQO2xgPwloVs3+f9ag/CCrTZhdZUKIiJWP7AJjp4k0qdWicDlkktOeX6KqY3SV3usJytG9tuhUkJOjtw7XFxc2lOt1bOclwd8+y1wzTXylwDPx7pcckA7cqS8rtaxTZoEjB1rvtqEb4A8ZQrQvDkDXIpNvH7bB3tqiSgmqPWEGu11XbtWP6C1Il9Uyb/1DSr1tmt1b2V2tjx5gm/tWN/93H8/8PbbpY/r1w946y31xwLavdBjxpR+oVDSLbKyAh+zb5rGqFHy/51SB5iIooM5tUQUE9QGgqnxveWekwP06uW/nsvlnS9qBaP5t0q7wjGoTMmTVQJL3/08+aR3QAvIv+flyf9Xu3enVQLMd10jZb/UAmRFpPOQichZGNQSUUzIyABGjFD/mxJw+faO+vYKeq4/e7acL2r17W7foFJNpAaVqe1n4kT1dadP1w6y1apATJkSuNqE2sCyQF9OWA+XiILFoJaIYkb37qXTtyoSEoD169V7R7V6BefPj+4t7khN6qC2H61RFIsW6QfZvr3QI0fqlzvT6on2DZB9sR4uEQWLQS0RxYScHKB1a/9BYW++KQ90Uusd1apd26ZN2JurK5hJHazczz33eC/LyjKWSuDbC62VbhGoJ9rzcVOnGq8DTESkh0EtEdmeWhqByyVPGqDX46r0CiqBnctlj6DJ7KQOoeynTx/vZffdJ/fKbtgAzJwp/zt3rn6QrVefVi3dwkhPtPK4UaOM5yETEelh9QMisj2tygcnT0anPVbQqlRgpYIC4N13vZe9+y4weLDcu52ZWbpcq3KDVn1aPWZr5hqpA0xEFAjr1NoE69wRaTNbA1YpYZWaKqcsRLN2bDTl5so5rb60gtOCAu8gO5Tau2Zq5hLFMl6/7YPpB0RkO763u83crvccoNSqlfZt8HiY8nXTJvXlWtUWfFMJQhnQZqa8GRGRFRjUEpGtaI2aNxIk+ebeqt2HSkiQa7KGo0asnRQUyJMjaDESnIY6oM1IeTMiIqswqCUi2wg0aj4jQw6otm9X72HVKuHlWcd28uTSqV3V9uEUepMcAMaCU7MD2uKh95uI7ItBLRHZRqDb3YFm4dLqWfSsY9u8eWRqxEab3iQHZqotqPWQqwWvZmZIUx6fl+e/HQbGRBQsDhSzCSaaE8lBTsuW/ss3bABq1jQ2aCnQAKVQBj/FGt9zMWmSXPEglGoLatUQsrKMn1PPxyuU7QDmKy0QRRuv3/bBoNYm+KYg0h6tn5sr58dq/e2667yX+Y7i92VmZL5SSaFRo/AHveHYV6BzYXZbasHrBx8APXr4r+/73Kg9XqH0KsfDlw1yFl6/7YPpB0RkqVBuH+sNTDIzaCnQACWjI/PN3FIPVTD7UjvXapUjlHMR6q19rfQQSTL23Ojl+brd8ZEWQkThw6CWiCwTahCoNzDJilm4PIO6QIFvoEFrVsrLM78vtXOtd/6tCNBTU+UA1pMkydMOG3lu9PJ8XS7twJh5tkRkBNMPbIK3LyjW5eXJdWE9P1GCvX2sd8s82NvpWrmgWrf79VIhfNMdQpGTAwwYoF5+TGtfarfx9W7fA6HnEWu10+UC9uwp7QkO9Nx4pn54tuXNN+X/+6aFAMyzJXvj9ds+GNTaBN8UFMvUBv8orA4Cg6EVBAoh/6gFS5EYUKaXY6q3L62AW43ZfGS1Nq5dC/TsqR54G92O7zZ37ABSUuSpjj2DYM/AGIifQX0Uu3j9tg+mHxA5WCRu2/repvdkplB/OKnlcrrdpUGa2u1+K9IdgmkXIAfZevtSu42vd/t+40b/bRh5bpSUhR49tANal0sOTs1QUj8yM/1TQDzTQkKZ0YyI4g+DWiKHCucgJ89gOdjALJh9BUsvl1OhFiyFe6pXreB0/Xr9fakF3LNnqwfhgDzZhK/Jk9VTO5RzrfdlxZPbLaedTJumv14wQp3RjIjiC4NaIgcKZpCT0eDRN1jetCm4wMxIG6wKzNWCQN8BT8FWUgiFVnCamRn4sWoBt9oyrS8dLVrI/yrnfPp073M9a1bggFYhBDB6tLwNK0Wit5yInIM5tTbBnByyktlBTr6DqCZPloMe3wFUWnmmd94JLF5cuqxfP+Ctt8y12bcNU6YAY8ZYm0/pma+5bJnxWrXhZmbwm9latnq5wcuW6aeOeKZoAPIXAb0rhuegMavarzzGqlq7RFbj9dtGBNlCYWGhACAKCwuj3RRygPx8IVwuZRiU/ONyCbFggfy3QOt6PmbkyNLHrFihvp4kef+ekOC/n2Daq7av3FzLTpPIz5e3Z6at0TR3bul5cbnk340+LiGh9LmZO1f/eVd+Ro70fm4lyf+5VntMsO3Pz5dfY7HyfBAJweu3nbCn1ib4TY+s5lk6SbnVrjbS38hIekkC5sxRnw7V5Qq96oFWG3x7Bp0y8j3Y3spQKgH49nYGet4lCfjuO6B168Clwzxp9dYGar9ayTWW7qJYwOu3fTCnlsiBCgqAtDTg5ZeB11/3Dg5982uNDKISQn4M4J/jOGVK6IN5tAYETZminU9pp4L8ZtoSbJ5wqJUAfHODAz3vkgTs2qVeNWL+fPl4e/f2f5zbrd4mvfZHcqKLeFZQACxcKP/w3JIjRburmGS8fUFWmTvX/5ZxoNv4nren9X6Ux/jetle7vR1Mu9W2oZYiEOxt+GAEuiVupi1qt/yNpmroPTbY2/aBnveFC/Xbm59vPPVEr/1aaS1WpprEO7XPhXC+b+IJr9/2waDWJvimICuoBRlqP2qBhxI8TpumHugECr6Ux2/YEHxepJEc11ACQ7M8A1ZJEmLq1NDaEmrwphb4hxrg5+frB6+BvrCY+UKj98UlUs+pk2l9udHKn3a5eI6twOu3fTCotQm+KcgKWkGT58Arz4FCWsFnfr484Mf3MYFEogdV6xhnzLD2Aq0VCEybFrgtWkGqFcGbZ+BvZTCoF5wG+rJhZsCd1rpW9PbHM733nt7nAnvDQ8frt31woJhNMNGcrFBQANSpI1+uPCUkAOvWlU5J6lnKSZLk3NVRo9S3Z6bUVCSmNNWbWtbKAUZaA6k8B0IFc8yeA/hCLSVmtnSbL98Ba9EunRXt/ceqQK9DrfeMkRJsFBiv3/bBgWJhMGnSJEiShGHDhkW7KRRnMjLkKgWeEwtIklx3VpmSFPAelCOEeuF8JeAxGmBEakpT34L8nqwcYNSokf8EDco+lGNSmxxg8mT5XGi1wcpZykKZcUttwFo4J5owItr7j1WB3nvK69TztSJJ8jKea3KUaHcVO82GDRtEvXr1RNOmTcXQoUMNP463L8hK+flCDBzonXqg3I7UuhXpmV8XTBpBpPMi8/PllINw3lKdOtVcPvLUqZEbwKYI5rY9c1idxejzqeRPL1zI59pKvH7bB3tqLXTixAn07t0bc+bMQaVKlaLdHIpzc+aU/t+zBzNQD2Sw5ZUiPaVpRgbQrVvo5cT0jBoFTJtWug+tY8rIkPc5dmzky1IF0/MbqLyWXUqlkbHnw+h7T3nPdOvGHlpyJga1Fho8eDBuvfVW3HDDDdFuCsU5vaAlI0POofXlcgEpKaGlEVh5az0QJT1Cr5atFUaOlPMOAx1TpNIv1Ji9ba+VtrBxY3A1dCk8zNQ0juR7j8iuykS7AU4xf/58bN68GXl5eYbWLyoqQlFRUcnvx44dC1fTKA4pQYvvTFApKfL/R42Se2vHjPHuWWzdWs4JVZslbONGY4OPMjLC3wvkO/uUkjMc7ACjQDN8GTkmtXNuZa+xlZYt8x5M6HIBkyb5vx4GDpRnkWOvXnipvf7U7pg89JD+8xGJ9x6RnbGn1gL5+fkYOnQo3nvvPSQlJRl6zKRJk5Cenl7yU7t27TC3kuKJ2mAqJWhVBoSNHAmMG+f9OLdbXua7HJBvrUfzlrRyGzYvz/9iP25c8AFtsDN8+Yp0+kWwlGDJt0KG2uj4SPU0xzOt159az7/bDcyaFfk2EsUKlvSywCeffII777wTCR4RRHFxMSRJgsvlQlFRkdffAPWe2tq1a7MkCFkqL08OZH0vjlOnAr16aZfGmjEDGDHCf7nRUlFW8+yZ9Zzy11MwbQtHGTK7l6XSKgO2cCHQs2f4S7JRKb3XH6Bdno/Pib2wpJd9sKfWAtdffz1++OEHbN26teSnRYsW6N27N7Zu3eoX0AJAYmIiKlSo4PVDZLUTJ9SD1rFjgbVrtWu9tm8f3gFYZvjehlULaINtWzjyYO1elkorn7ZNm9joaXaSQLnvjz/u/xit16eZAX4cDEhOxaDWAmlpabj88su9flJSUlClShVcfvnl0W4exTG1AAYo7fFU+5uSn2qXAEftwg8ErkhgRCh1XmOVXppEPA02skNgF+j1N3SosdenmRQaq9JtiOyIQS2Rg2lVOpAkuWeuTx/v5d26lc4sZpcAR+vCv3596G2LlTxYq+k9t3bvabaCXQK7QK8/I69PMyX4gi3XRxQrmFNrE8zJoXBRmzrX5QI+/RTo2jU2ciitnFpWjd3zYKlUoEoVRh4fbB51qPvW267e60/v72amSg51WmVSx+u3fbCkF1EMM3KR3b7dPw/V7Qa6dPFf1zOfz06ys+VSRuEKPCNZCilcgVE88C3lNnu2+S83gfJYw7HvUEvG6f3dTCm5WCo7RxQMph8Qxajp043dQtXKq1WTkCDXsg0m1zDcOYpOuC1ul9vesciqW+fB5FGHsu9Az3mo7xslRcHzmNxuuRax1rrxlm5D8YNBLVEMUS6ATz4p5776XmQXLvS/OKrVrFXjcgH33SeXADMbdNklWLPD4B8tzGcMjVWVKoIJ7ILdd6DnXOt9Y/Z1nJXlfTdGCO3Xll1y5YnCQpAtFBYWCgCisLAw2k0hm5o7VwiXSwj5kqX943LJ6+bnC7FihfyvEPK/M2ZoP27ePP/tJyTIj/Pdlqf8fO3HRZLn+VHOgZ2sWKF+3nNzo92y2GD16yw/Xz73Rh4f7L71nnOtbU6dav51rLWfhQuNnAkKFa/f9sGeWqIY4Nvjo8ftBgYM8O8BysiQqxtIkvrjjh5V742aNUu/FzYctV7NioVe0HgsH2Ylq2+dm0lnCXbfes+51vtGbapirdex0qObmqqeYtSjB1NcKL4wqCWKAVq1WrUIoX5h1CrxlZCgPuGCyyXPLqZ3kbVDsGaHwDoQ5jOGLpq3zoPZt95zrva+cbn8B3VqvY49Uxdat5bL8/mmGOmlIRA5EYNaohigN9jLyCAwzwtjr17yhU7psVUutGoTLowYEThYtEOwZofA2gjmM4YumgMGg9m31nOu9r6ZMsX/Tora61jtzsR77wEvv+y/f7t9uSMKJwa1RDFAuQB6XvAkCRg5EtizB5g7t/Ti6HJpXxiV3p033yx9vOeF1vcCbHRGo2gHa3YIrI1yQhUHMkd5zgHvAWC+75tKlbwfJ0nqr2OtOxNVq8bGlzuicOHkCzbB4s3xI9g6pYGKxnsWaF+2zH+ygqws40XnPduoti279jByEgWyq0B1bs1MCqE2oYqybiy9X52C12/7YE8tUYQUFMhluIItfRUob9SzB1Ct59Ro3qlvmSEgdm6ZsxfU/uxcdi1cjAxkNJMX7luD1rNHN9p3TYiiiUEtUQTk5Mg9K9OnBz9C32zeqG+At3Gj/zq+j9e6+AIMFil0dqlnHGlGAlaj72/lPeo77XVWVunv/HJH8YpBLVGYqV2EFGYGcYSSN1pQAIwd67988mTvxwe6+MZjLxtZIxbKroWLkYDV6Ps7Fip9EEULg1oik8wGdnrluLR6WrX2EeytRa02tGjh/bvexTdee9msFq9fDOIlGFN7fo0GrNnZwLp1chm9devU399qNWk5GIxIxqCWyIRgAjutclwul3zRWrvW+wIYaB/B3Fo0emtT6+ILxG8vm5WsmhY1FsVK2bVQ6L13A30hVXLuW7eWS+m1bu3/3s/JkZf7Diaza6UPooiL9pRmJOM0e/YXyjSdc+fK6ypTX2ZlCSFJpduRpNKpbcM15Wy/ft7b7ddP/1g9pxDlFK+hs3Ja1Fjl+T5ISHDWsRp572pNNz13rvfngdrj1bbvcgmxYUPkjpHU8fptH+ypJTIo2NunBQVAgwby7cTcXGD9emD5cu8cWyHkqW3Xrg3PLdq8POCdd7yXvfeeds+gb29wPPSyhZsV06LGOiePzA/0+aDXS28k515t+243cPKktcdBFMsY1BIZFExg5zuV5e+/AydOqOe3CiFf7K0MHpVbmq1aGZ9+U00sTW5gV6FOi+oUTh2Zr/f5oDdIzmjOPb9YEgXGoJbIIKOBnZIfmZenfiFTG+ihePNNuSKBkeAxUB6mZxkxtV4gvQui2rad3Mumx6p8V61pURmoOIPe54NeL65Wzr3ve59fLIkMiHb+A8mYkxM7fPNNPc2dW5r3ppYjp+Shzp2r/jdAiIUL9ffhux+1PEy1/DvPHyWHN5htx5NwnAvf59bJeabxSO29Gyjf1jfnfuRI7fd+oM8Gijxev+2D0+TaBKfZi31q01yq2bAByMwEXn8deOQR/78vXAh062ZuP77TaebmyikPWiQJ2LtXvZfZ6FSdThfJc8HpfZ0vJ0d/+lq+BmIXr9/2wfQDIgOM3IJWG+SlRhnY0aWLHFx6kiSgTRv9xwc7O5EnIdTzNrW2vW6dfpucKJJ1VZ2aZ0qlAqXv8DVAFDoGtUQ6lIFWerVF8/LkdXr1Crw9z3zJjAxgzpzS4NPlkn8PdFELNCAlN1de5pl/p9eOQNsGgB49gptsIZbrr5oZmBPLx+lkdnteGLgShReDWiINngOtfAd7TZtWGui2bOm9jsLlAtq29V52ww3ev2dnA3v2yBfePXuMDb7KyAD69PFedt99wLJl3sE3UNozNHWqsQEmvoNRFEKYLzUV6zOQGR2YE+vHaVehBqROel7sFpwT2RVzam2COTn2YjQ/Vs/rrwODB6sHu7NnqwewSomfRo20e3PU2qb0KOrlf5rJ2Vu4UO6d9ZWbK/c0BeKk3Fy98+ak47STnJzSyiF67xctTnpe9M6Fkc8LCj9ev+2DPbVEKvRqRxqRkADs36++Dbdbvkj59rro9Sx59tRoFWEPlP9p5tZn27ahlZqKZD5quOmdNycdp13o1XQ1KtrPi1U9q3rnwkk90URWYVBLpCLQQCs9kiRffJ59VnsdtxuYNStwTVu1i9fGjf5tkyT/QWeh1DsNtSZmvBSKj5fjjCQrAtJoPi9WBpt6AzdDDfyJnIhBLZEKrdxSPS4XMGiQ/H8jST0vvCDn7HbqJM/4ZfTiNW6cXLRfaZsSzHru04rC7KFMthAvheLj5TgjyYqANFrPixW9zJ60zoUQvENApIZBLZGG7Gw5qJwxA3jiidILpFYP7vz5QPfu6gGtWh6qUoZd+b8vvYtXixZyoLlwoRzUej7e5ZLbbcWMX6GM1o6XGcji5TgjxaqANBrPi9VpD1rnItT0ICKnKhPtBhDZle8AjSlT5GAyJQVo3dp/EIpSX9bl8v/b448DK1ca37fLVXrx8g1aJal00FLVqur5tUot3GjLyIiPXst4Oc5Iyc4GsrJCn4wg0s+L0rPq+/4PJdhUzsW6dfLnQNu2pcGu72QOfA1SvGNPLZEKtduIY8fKF6fMTO2eJN+eFZcLmDRJDoTNmD9fu2fJM3eWOZ3kVLFY09VsL7PRAWXLlgE9e8oVSZQ8Xd4hIPLHoJZIRaDbiHoXlOxsYPLk0h6bsWOBTZuMDzxzuYB69Urb4Zua4HaXtoM5nUT2YjTYNDqgTC9PNxYDf6JwYp1am2CdO3sxWudSrU6k1mMnTZIHeRUXB96/Uo8yK8t4OzhvPFFsMFNHNzdXDnx9Ga0ZTeHH67d9sKeWSIWRHlCtnhatXt7MTO/BXXqU3hjAWE8se2yIYoeZAWVMMSIyzlFB7dtvv40vvvii5PfRo0ejYsWKaNu2Lfbs2RPFllGs8rzl50nvlqDeRUgZ3GXk/ohykWPuHJGzmAlUmWJEZJyjgtqJEyciOTkZALBu3Tq88sormDp1KqpWrYrhw4dHuXUUS5Sg1bPklme9Sb2elkAXIaMTO3he5NgTS+QcZgNVfrElMsZRJb3y8/PR8H9RwCeffIJ77rkHDz30ENq1a4frmHxE/2NkvvRAQWug0j16JYmUC5pnT68kAX37Au+9xxI9RPHAbNkylo0jCsxRPbWpqak4fPgwAOCrr77CDTfcAABISkrC6dOno9k0sgmjI443bvRf5ttzGqinRa93NTsb2LNHzq9duBDYuxd46y32xhDFEqMlubTwDgyRtRxV/aB379745Zdf0KxZM3z44YfYu3cvqlSpgqVLl+If//gHfvzxx2g3URNHT4afmYoGvusBwLRpwMiR/tv07Wkx0hNMRNaK9PvOd3KW2bP5RTRe8fptH47qqX311VfRpk0bHDx4EEuWLEGVKlUAAJs2bUKvXr2i3DqKNqMjjtXWA+TZxHz59rQY7QkmIutE+n2nN1CUiKLHUT21e/fuRUZGBlw+o3CEEMjPz0edOnWi1LLA+E0v/ELpqdWqIRnM9onIOtF437F2LHni9ds+HNVTW79+fRw6dMhv+ZEjR1C/fv0otIjsxOiI42BL6JipPekp1Lw8ongW7PsuFKwdS2RPjgpqtTqdT5w4gaSkpAi3huzIaGkcvfW0gtBgLnRMVyAKTTQCTNaOJbInR6QfjBgxAgAwa9YsDBgwAOXLly/5W3FxMb777jskJCRgzZo10WpiQLx9YY1wDxYJNDgkJ0fOrfMsy6UVODNdgcgaZt53ViooANatk+tYt23L92284vXbPhxRp3bLli0A5J7aH374AeXKlSv5W7ly5XDllVdipO+wdXIcK0Yj6wXFeXnqg0OyskrXNVN7MlAtXCIyxmzNV6ssW8YKCER24oieWsUDDzyAWbNmxeQ3JX7TC00og7uUIFbvApWTAwwYoD69rdrgECM9xuypJYpdfP+Sgtdv+3BUTu28efNKXlAFBQXYt29flFtEkRJosIhaHqxvPuuAAeolenynzPWklrtnNE82knl5HIxGZK1oDFAjIn2OCmrdbjeeeeYZpKeno27duqhTpw4qVqyIZ599Fm61wqPkGHqDRdSCTLU6k75Bq3KB0qpb63L5B6Fm61dGYk53DkYjsh4rIBDZj6OC2ieeeAKvvPIKJk+ejC1btmDz5s2YOHEiXn75ZTz11FPRbh6FkVavJ6AeZK5dqx6oelIuUGoXL5cLWL/ePwgNpvcmnFNlskg8UXiwAgKR/TgqqH377bcxd+5cPPzww2jatCmuvPJKPPLII5gzZw7eeuutsO130qRJyMzMRFpaGqpVq4Y77rgDv/76a9j2R+o8ez3XrQMaNACee049yJQk/0DVk+cFyvfi5XIBI0YANWv6P85uvTe8RUoUPpG400JExjkqqD1y5AgaN27st7xx48Y4cuRI2Pa7atUqDB48GOvXr8fy5ctx/vx53HjjjTh58mTY9knelJxRANi4EWjdWr7drvTW+kpOBqZM8V+ekAAsXOh/gVIuXkoRjenT1W/l2633xm5BNpHThPNOCxGZ46jqB61atUKrVq3w0ksveS1/7LHHkJeXh/Xr10ekHQcPHkS1atWwatUqXHvttYYew9GTwfMs5WVG797A++/7L9eqZrB2LdCrl7HRzgUFkS8vpCVaNTyJiOIBr9/24Yg6tYqpU6fi1ltvxddff402bdpAkiSsXbsW+fn5+PLLLyPWjsLCQgBA5cqVI7bPeKOUzEpNDS6gBdQDWq1qBlr70Korq6Qt2EG0angSOUE4J3QJ92QxRPHGUT21ALB//368+uqr+OWXXyCEQJMmTfDII4+gVq1aEdm/EAJdu3bF0aNH8e2332quV1RUhKKiopLfjx07htq1a/ObngGeQaYkqZfaMsPlkrel1oupVovSE+tSEtmLlYGiFRO6RGPbFFnsqbUPxwW10TZ48GB88cUXWL16NTJ0PlEnTJiAp59+2m853xT6AgWZwRg/Xk43UOvFzM2Vc3PV8FY+kb1YGSiGc3IFTtzgLAxq7cNR6QcA8PfffyMnJwfbtm2DJElo0qQJ+vfvj/T09LDv+7HHHsPSpUvxn//8RzegBYBx48ZhxIgRJb8rPbWkT6tmbChatJCD2oICeZAYIM/jDgAHD/r3BrtcwPz5QJs2vAAR2YVW+TrPaazNCOc01pwimyg8HBXUbty4EVlZWUhOTkbLli0hhMCMGTPw/PPP46uvvsLVV18dlv0KIfDYY4/h448/xsqVK1G/fv2Aj0lMTERiYmJY2uNkymh+KwPb228H7r4bWLLEO3hVgllJKv2/0jvbrZt1+yei0FkdKKp91lhVOSSc2yaKZ44q6TV8+HDcfvvt2L17Nz766CN8/PHH2LVrF2677TYMGzYsbPsdPHgw3nvvPXzwwQdIS0vDn3/+iT///BOnT58O2z7jlVrNWEkytw3f9YUAFi/2z81VfhdC3o9aqS+yn0hOCczph+3D6vJ14SzPZ7fSf0RO4aic2uTkZGzZssWvVu3PP/+MFi1a4NSpU2HZr6QRVc2bNw/333+/oW0wJ8ccpWTWgQNAjx7+f+/SBUhKAhYtKl12zz3A4MHajwlErdQX2UskB99woI/9hKN8XTjL89mp9B8Fj9dv+3BUUFu9enW8++67uPHGG72WL1u2DH379sVff/0VpZYFxjdFcNQGXLhcwCuvyAGs56tbGYgBAMGkL2/YAGRmBt9Olu4Jr0gOvuFAH/tioEiRxuu3fTgq/aBHjx7Izs7GggULkJ+fj4KCAsyfPx8PPvggevXqFe3mURiopSMIATzyiH86gWd+3UMPmd9XsBPE5eTIAVCnTuqzkJE1IjklMKcfti/O8EUUvxzVU3v27FmMGjUKb7zxBs6fPw8AKFu2LB5++GFMnjzZ1gOz+E0vNAUFwLp1clqB1ivasyetoACoU8d/YNhrr8n/HzzYml449uhFDntqKVbwzo2z8PptH47pqS0uLsa6deswfvx4HD16FFu3bsWWLVtw5MgRzJw509YBLYUuIwOoWlU7oHW5gOHDvdefM8d7oMacOcCgQfKPVYM42KMXOZEcfMOBPs4WzgGAvHNDFD6O6qlNSkrCtm3bDJXUsht+0wudkYkZfAf06OXfWZGbxx69yItkTiXzN50nnAMA+XngTLx+24djemoB4IorrsDOnTuj3QyKAuV23rhx+uspBdmVHhi9/DsrcvPYoxd5kcypZP6ms2hN4GBVjy3v3BCFl6MmX3j++ecxcuRIPPvss2jevDlSUlK8/s5vUM7k2bNipGZtpGfuyc6WZzVijx6RvYV7pi9OukAUXo5KP3B5VN72rB0rhIAkSSguLo5Gswzh7YvgGEk58OVyAXv2qKcbhDJ4w8rBHxxIQhR5kUgPCEctXYouXr/tw1E9tbm5udFuAkWYWs8KoD+VrhDAsmXeF5JQ8+iszMNjUX+i6FDShXyDTiu/WPLODVH4OKqnNpbxm15wvZNaPSvr1sl1ZVNS5F6Wnj3Ve18AYO1a+e9qEzUYaYeVvTscSEIUfRwASGbw+m0fjhooRrHLs8xNnTrAtGnGHqc1ECszUx7Ak5kpl/pSy5ObNUvep1ptWzODN6wc/MGBJETRxwGARLHJUekHFJt8RxwLAYweLQ/66tlTDvRSU4ETJ9R7cZXbeevWyY9t29b772qDM1wu4IUX9CdqMDp4w8rBHxxIQkREFBz21FLUaeXFjh4t99p26gS0bKlfrHzZMjkA7tHDfx2lN9djHCHcbv2A1kwenZVlu1gCjIiIKDgxn1O7dOlS3HzzzShbtmy0mxKSeM7JycuTg1ajfHNMjeShqk2Lq7bdDz8E2rQJvvqBVXl4zOkjIooN8Xz9tpuYTz+488478eeff+KCCy5AQkIC/vjjD1SrVi3azSITTpwwt75v3chAtSULCoCFC9UDWuVWv9Ij2q1bcMcAyPuyKgC1cltERETxIOaD2gsuuADr169Hly5dSurRUmxJTdUvweXLN8dULw/VszyW2nY++UQOitu3lweVeWKtWKL4w/c9UeyK+ZzaQYMGoWvXrkhISIAkSahRowYSEhJUf8h+cnKA1q3NBbS+OaZaeaiAfkB7331A167AiBFyGzzzcD2rMWjl8RKRs/B9TxTbYj6nFgB++eUX7NixA7fffjvmzZuHihUrqq7XtWvXyDbMhHjMyTE7G5gkAVOnAiNHam/PMw81N1e+OPmaORNo184/mPasXctasUTxhTWiKVjxeP22q5hPPwCAxo0bo3Hjxhg/fjy6deuG8uXLR7tJZIBW1QMtQgBjxwIdOqiX9/LNQ01NVd9Ou3by47XycIUI7/zvRGQ/gXLzw41pD0Shi/n0A0/jx49H+fLlcfDgQaxevRpr1qzBwYMHo90s0qDkwppRXAy0alV6e3D6dO11tQag7d6tvm8lD1fvb0TkTNF83zPtgcgajgpqT506hf79+6NWrVq49tprcc0116BWrVrIzs7GqVOnot088qHkwpod26ckzLjdwKhR2rOPaQXNPXvKdW316sGOGMFasUTxJFo1on0nn3G7gYED5eVEZI6jgtrhw4dj1apVWLp0Kf7++2/8/fff+PTTT7Fq1So8/vjj0W4eqcjKMh/U+ho7Vv0CoDbpAlB60cjKknttc3Plf7OzS3tMpk+X1xs5svRvRORs2dn+nwnhxqmxiazjiIFiiqpVq2Lx4sW47rrrvJbn5uaie/futk5FiNdEc63BXGbNmCHXmFXrVVm4UJ5pTG25Z11aDhQhokjj507si9frtx05qqf21KlTqF69ut/yatWqMf3Apho1Cr2nFpDTBbRy0dq2VU9D6NHDe332mBBRpHFqbCLrOCqobdOmDcaPH48zZ86ULDt9+jSefvpptGnTJootIy0ZGcDdd/svd7mAiRPNBbxauWi+Fw2FEN7rc4AYEUVDNNIeiJzIESW9FLNmzcJNN92EjIwMXHnllZAkCVu3bkVSUhKWLVsW7eaRioIC4KOP/JffdBPwj394L5MkedkNNwApKcDq1XIPrSetEjzZ2UBamn8aguf6SvA7cKC8nD0mRBQpnBqbKHSOyqkF5J7Z9957D7/88guEEGjSpAl69+6N5OTkaDdNV7zm5JjJqZUkYO/e0g9+s7loRtf3ncSBiGIH671SpMXr9duOHNVTCwDJyckYMGBAtJtBBim3/I1MwiCEdy9sRgbQpw/w9tul69x3n/aFzGhPLHtMiGJTTk5peSyXS36/81Y+UfxwXE9trIrnb3o5OaWBpl6A63IBe/bo99S6XMD69UBmpvb+2BNL5DysIkDREs/Xb7tx1EAxik2egyTWr9eeZWz2bO+Lk1q1ArdbnnFMb0aejAzguut4oSNyElYvISIGtRRRBQVy8FpQ4P1/JdDMzPSuVOByAYMGAfn5/rcRtWYM861qQETOx+olROS4nFqKjrw84NtvgYsvlisTpKYCJ07IFxpA7kXZtAkYM0buTVFKdQnhn/uWnS3P9hUoRUDJkfWcYlKhVQWBiJyJ1UuIyFE5tQ0aNEBeXh6qVKnitfzvv//G1VdfjZ07d0apZYHFck7O/fd7D9by5Bm86gmU+6aMaPYMlpV18/LklAPPffhujyOiieIDc+Yp0mL5+u00jko/2L17N4qLi/2WFxUVYd++fVFokfPl5WkHtIAcaBr52uSZ++aZlgDI+bF168qlv1q2lP/1nD0sMxOYM0d7Rh7Px2vNOkZEzsCceaL45Yj0g6VLl5b8f9myZUhPTy/5vbi4GN988w3q1asXhZY537ffWrMdJffNtyTPlCmlKQuelNnDsrLki5dWykJBgXd6gu/jrMKeYCIiouhyRFB7xx13lPy/X79+Xn8rW7Ys6tWrhxdeeCHCrYoP11xjzXbuu0/+1zcAVQtoFb55s2r1ZfVGRFsVfLI2JhERUfQ5Iv3A7XbD7Xajbt26OHjwYMnvbrcbRUVF+PXXX3HbbbdFu5mOlJkJ3HNP6Nt57z1g7Vr1HlklL9eXkZHN4R4RrdUTzMoLREREkeWIoBYAzp07h3r16uHw4cPRbkrceeSR0LdRXAysWKEegE6ZUpov67ncyMhmZUS0Vr5tqFgbk4iIyB4ckX4AyGkGP/74IyStbj0KGzNT3eqZM0cOYMeO9S7Jk50N9OolB4opKcDJk+ZGNhstERYMtWNnbUwiIqLIc0xPLQD07dsXORzaHnFKb2io3yfcbrk6gTK72O7dpbmpnpMzBDOyOVwjosPdE0xERETGOKpO7WOPPYZ33nkHDRs2RIsWLZCSkuL19xkzZkSpZYE5oc5dQQHw4IPAsmXBbyNWB1qxNiYRUXxywvXbKRwV1Hbs2FHzb5IkYcWKFRFsjTlOelPcfTfw0UfBPz7QRAxERER24aTrd6xzTE4tAOTm5ka7CQSgS5fQglpOcUtERERmOSqnluyhbt3QHs+BVkRERGSWo3pqASAvLw+LFi3C3r17cfbsWa+/fRRK9yEZ1qiRPGgs2MSW4cPZS0tERETmOKqndv78+WjXrh1+/vlnfPzxxzh37hx+/vlnrFixwmvqXAqvjAy5PFewune3ri1EREQUHxwV1E6cOBEzZ87E559/jnLlymHWrFnYtm0bunfvjjp16kS7eXElOxvIzy+d/laNVgmwkyfD0yYiIiJyLkcFtb///jtuvfVWAEBiYiJOnjwJSZIwfPhwzJ49O8qtiz8ZGcCkSUCHDv5/S0gApk4N7xS2REREFD8cFdRWrlwZx48fBwBceOGF+PHHHwEAf//9N06dOhXNpsWlnBygTh1g1Sr/vxUXA5UqceICIiIisoajBopdc801WL58Oa644gp0794dQ4cOxYoVK7B8+XJcf/310W5eXCkoAB56SH+w2MCBcj3a3bs5cQERERGFxlE9ta+88gp69uwJABg3bhxGjhyJv/76C3fddVdEps997bXXUL9+fSQlJaF58+b49ttvw75PwzZuBDp1kv+NgO3b5Wlv9XjWow3HFLYlInzsttl3vO+fxx6fx05EcctRPbWVK1cu+b/L5cLo0aMxevToiOx7wYIFGDZsGF577TW0a9cOb775Jm6++Wb8/PPPUR+klpAAuN3NACwHMoHWrYFFi4wFkQUFwNq1wOHDpcuOHgU++UTuYb3mGuCyy4APPgCKioDERKBsWbmsVyAuF5CSAuTmAqmpwIkT8iCxDRuAmjXlSRz++AP47LPS3z3bnJcHfPut3IbMTJ1jeG0ptucKnHx6IzY0a1HSzpYt5f0rbd2+3fv/SpsaNSrdb0FB6XqGgvB33pEP8N13UVCjhddjPbfluX+j+1J7vF+bPfaPFi0MNNjcfrXOQck67y5Fhsbxa23L6PMasF3/O/aC15Zie58Wmuc5mHOgt57aseeJFsZeq/977MmTwG+/mT8HJdv532s+ddpKnBjUwvjr1eAxBhTE684sy14nJtYzuszsPpW/p6YCu3bJy9q2Df05S00F5s2TP1NvuQXo2BHYswdYsUL+TG3eHKhfH1i8WP6cBYBLL5U/Fzt1kmuOq32+KO08fBioUkXehvI7IC/zbb9yLfE8Ns/zonzWJyXJd+3atpWXffstcPHFgJJB2LZtaXvUnge1z20jzwE5hHCY8+fPi0WLFolnnnlGPPvss2Lx4sXi3LlzYd9vy5YtxaBBg7yWNW7cWIwdO9bQ4wsLCwUAUVhYaF2jdu8WQLEA3EJOBPD8cYu5Uw7pPnzuXCEkyfdxRn/U9un/Y2b7kiS3SQgh+vXz/lu/fv7HLjZuFHOf2i1cOK/bJkkqbYfn/5Ufl0ve79y58v89l2mdd7FxoxCbNglRrZoQgJibNky4XO7/PdYt+vUr3ZbnPo3uy/Pv6m12i7lP7S7Zv6hWTW7Pxo1y+3Sec6P71ToHc6ccKj1WnBdz0d/v+LWOMeDzaqjdpcc+F/1Lnn9JcgtJcgd8/ow+z2rrqR17v8QPPV57bs1j8txeMOdA7zXvcgV+v4dyLjz37/m6N/q6M8ua14nJ59bgMrP71HrePT/vzNDaXrA/ap8vZj+vfa8lkiS8PgOD2bbW8+D7uW3meQ9WWK7fFBREuwFW+uGHH0SDBg1E+fLlRbNmzUSzZs1ESkqKqFevnvj+++/Dtt+ioiKRkJAgPvroI6/lQ4YMEddee63qY86cOSMKCwtLfvLz8y1/U7hwQjOQk3/Oi/x89cfm54cS0Ibvx+US4rPP1P+2YYPHAQAiHxd6XNxD+0lI8D8fCQlC/fz5fPqabUegfeXnG7sYJOCcyEeG91VA+dF4zn23G2i/vucgP1/4HWsCzgnJd5nKMWq93ryeV6PtxjmxAS10z7va82fkGPXW8z1OCeeE2nvQ95gCPaeBzoEQIuBrPgHnNN/vhs+r1mv+f/v3ezINvO7M2rDBwteJwefW5TK2TPX9YPI9Zfh8GzzGaP4kJMjPSzivJWqfJb77N/U6DgKDWvtwVE7tgw8+iMsuuwwFBQXYvHkzNm/ejPz8fDRt2hQPPfRQ2PZ76NAhFBcXo3r16l7Lq1evjj///FP1MZMmTUJ6enrJT+3atS1vlxtJADSKwQIAErBjh/pftm+X3/5243YDX36p/rc1azx+ee89bHc1hhsJluy3uNj/fCg5wX7eew8o87/MHiGwHY1MtSPQvozkKwNAMcpgBy4qaQcAuV3vvae6vtp2A+3X9xxs3w6/Yy1GGQjfZSrHqPV683pejbYbZbAa7XTPu9rzZ+QY9dbzPU6BMlB7D/oeU6DnNNA5ABDwNV+MMprvdzVGz4Xn/j1f917/6rzuzNIaqhDU68Tgc+t2G1um+n4w+Z4K1D49Rj8bIqW4GFi9OrzXErXPEt/9m3odU2yLdlRtpaSkJPHjjz/6Lf/hhx9EUlJS2Pa7b98+AUCsXbvWa/lzzz0nLrnkEtXHRKSn1iVEoDQAx/bUCiHyv/w+Oj21Qsi3XP+3YnR7ai/0Xrhpk+brxbKeWpVe07jpqfU9pkj21Ar917wVvX4Bt+Hxujf6ujOLPbXmjjGaP+yppUhzVE/tJZdcgr/++stv+YEDB9AwjBX9q1atioSEBL9e2QMHDvj13ioSExNRoUIFrx+rFRcDgPjfjy+BuXO1E+aVqW61Zv2yipntS5Jc1/a224B+/bz/1q+f/2CRjOrnMBsPIQHn/7dE7TzIA9aUdkiS+oQQb74pnw/TNXVdLmRgH2ZLg0rakZAgt1fZluc+jewrI8O7vq9qm10Cb2IgMlx/lB5kAL7bDbRftXNQso5LPtcJOI83MRBzfI5f7RjnzDH2vAZs9/+OPdO12ev5lyThd559nz8jx6i33pw53sc+BwPRD+/A87Wn+lr12Z7Zc1CyHY3XfIJLmK4BbfRcqFJOtIHXnVmZmRa9Tkw8t7NnG1um+X4w+J7y5HKZr9utt71geX4+mn3cm2/Kz4vvtcTl8v4MNCPQ56VC+VtmJuuhxxNJCKF+pY9BX375JUaPHo0JEyagdevWAID169fjmWeeweTJk9G+ffuSda0OIlu1aoXmzZvjtddeK1nWpEkTdO3aFZMmTQr4+GPHjiE9PR2FhYXWtq2gAAm1K8ONxJJFrRM2YNG6esjIrGnk4Vi3zr/6waefyqNd27eXqx98+CFw5ow8crVsWXn06mefCeilP7hcwPr18kjvlBT53xMn5CpANWrIwesffwBffFH6u2/1gzVrgHbtNC5oBQVAZiYKqjfHjk4P4cRnK7Dxjwtxpu8AJFWriBYt5JGyyvcdpVau8n+lTZ71cwsKDNbU/d++Ubu2PGdwTg4Kdp/HjleXoWGbC0pG/vru08y+1B5f0uaUP5Bx+9Ve+0d+vnzSAnyam9mv5mjvvD+wI2swGtY5i4yHu6gev9a2Aj6vgdrtc+wFr3+GHXvLoeGyV4GaNQ09f0afZ7X11I497/fKWPPYfLS7tWLA6gc7dsjvgx07zJ8D39d8yr+X4OSfx9Fw2auG3u9GjzHQ/oN53ZkV8uskmOfW4DKz+1T+npIiV5UBgDZtQqt+oGxv3jz5M/Wmm+SKBrt3AytXyp+pzZsD9eoBS5aUVj9o3BhIS5PLLNarp/75orRTqX5Qr17p74C8zLf9yrXE89g8z4vyWZ+YKP/epo28bM0a+ffTp0sfq7RH7XlQ+9w28hyEImzXbzLNUUGty6NXQPrf10Ll8Dx/lyQJxXI3pmUWLFiAPn364I033kCbNm0we/ZszJkzBz/99BPq1q0b8PFhfVMUFQHlyslfcYUAzp6VPznCKDdX/gA1st5114WxIVE4dlvsO973z2OPz2MnigIGtfbhqDq1ubm5Udt3jx49cPjwYTzzzDP4448/cPnll+PLL780FNCGnecFRZIicoFp1EjuidUbtJCQIH9rDmv9wCgcuy32He/757FHZ9922D8RxS1H9dTGMid+08vJkafK1Qps+/WTC6cr67hccu5TdnZk20lERBQsJ16/YxWDWptw4puioEDO03rkEfW/yzOdyXcoPZft3s0kfiIiig1OvH7HKkelH5B9BOqlBZTqDP7LduxgUEtERETmOKqkF9lDQUHggFZPSoq17SEiIiLnY1BLlgt1VpuFC61rCxEREcUHRwW1EyZMwJ49e6LdjLiXmhra42fOlHt7iYiIiIxyVFD72Wef4aKLLsL111+PDz74AGfOnIl2k+LS8uWhPZ7zchMREZFZjgpqN23ahM2bN6Np06YYPnw4atasiYcffhh5eXnRblrcyMkBnngitG0o9WuJiIiIjHJUUAsATZs2xcyZM7Fv3z7885//xL59+9CuXTtcccUVmDVrFgoLC6PdRMfKywMGDAhtG8HMd24HBQXy7GhMmyAiIooOxwW1CrfbjbNnz6KoqAhCCFSuXBmvv/46ateujQULFkS7eY6TkwO0bOldczYY8+cDWVmxFSDm5AB168rTAtetK/9OREREkeW4oHbTpk149NFHUbNmTQwfPhzNmjXDtm3bsGrVKvzyyy8YP348hgwZEu1mOopSwitULhewZ496gKj0hOblBRfwhqsn1bd8mdsNDBwYOwE5ERGRUzgqqG3atClat26NXbt2IScnB/n5+Zg8eTIaeiRo9u3bFwcPHoxiK50n1BJeigEDgDFj/APEadNKA92WLc33iIazJ1Xt2DnQjYiIKPIcNU3us88+i/79++PCCy+MdlNMi+Vp9rp1AxYvDm0bCQnABx8APXr4/02S1NMajEypW1AgB7KegaeVU/GGe/tERGRvsXz9dhrH9NSeO3cO8+bN40CwCMvLCz2gBYD77gPatpVTEDy5XNp5ur49omopBuHuSc3IAGbPlgNZQP43Fge6ERERxTrHBLVly5ZFUVERJEmKdlPiyrffWrOd996T//UNEKdM8Q90FZ6lv7RSDBo18n+81SXDsrPlntncXPnf7Gzrtk1ERETGOCaoBYDHHnsMU6ZMwfnz56PdlLhxzTXWbEfpPfUNEEeO9A50FZ49onqDtSLVk5qRAVx3HXtoiYiIosVRObV33nknvvnmG6SmpuKKK65ASkqK198/+uijKLUssFjOybn/fuDtt72XJSQAw4cD1aoB48bJQaueQHmoBQVy0JuSApw8Kfe0KusuXKiei5ubKweano/3fBwROU9BgZx21KgR3+sUGbF8/XaaMtFugJUqVqyIu+++O9rNiDtvvQUMHgysWSMHjamp3sFjr15yQLlxIzB2rBzgSpL843ar9576XpiUH185OerlxHxTDLQeT0TOoXweuN1y2tHs2UwHIoonjuqpjWXx8k3Ps8cUUO899bwwSZL8/yef9A9K1SoPALyYEcUjViKhaImX63cscFRPLdmfb4+p8n+lZzY11Ts/Vgi5F/fNN4G5c70DVa36uPPny2XGiCh+6FU6YVBLFB8cF9QuXrwYCxcuxN69e3H27Fmvv23evDlKrSI9vrcMtSZyeOgheQpd5QKlVDbw7Zlp00Z/f8y5I3Ierc8DKyudEJG9Oar6wUsvvYQHHngA1apVw5YtW9CyZUtUqVIFO3fuxM033xzt5pEKtcoFWtxu7/qyGRlAnz7e69x3n36gGs7ZxYgoelgzmogclVPbuHFjjB8/Hr169UJaWhr++9//okGDBvi///s/HDlyBK+88kq0m6gpXnNycnPlANMISQL27vVOWTCTQ2d0ffbkEsUuVjqhSIvX67cdOaqndu/evWjbti0AIDk5GcePHwcA9OnTBx9++GE0m0Ya1CZHAORAV20ejTfekAPhvDy5lJeZ2cLWrg28PntyiWIba0YTxS9HBbU1atTA4cOHAQB169bF+vXrAQC7du2CgzqkHSUjA7jrLv/lK1YAd9zhHdgKATz/vBxwtmwJPP64/+O0cuhycuTSYnrr603iQEQUTmrTfBOROY4Kajt16oTPPvsMAJCdnY3hw4ejc+fO6NGjB+68884ot47UFBQAS5ao/+3jj+VA1iitHDrfYFXhcnmvrzd6mogoXHiHiMgajsqpdbvdcLvdKFNGLuqwcOFCrF69Gg0bNsSgQYNQrly5KLdQW7zm5JjJqdUzcyZwzz3qtxy1ZhxbuNC79BfrXBJRpPFzJ/bF6/XbjhxV0svlcsHlkaDZvXt3dO/ePYotokA2bgx9Gy6XdkCbkwMMGOC/XCn95TsobPZsOeWguFje7vDhobePiGJHpAeKsr4ukXUc1VMLAH///Tc2bNiAAwcOwO3zSdG3b98otSqwePympzUjmFlTpwKjRhnfvpKmAKhPqVlQAMyaBcyYwek2ieJJNKbZZU9t7IvH67ddOSqo/eyzz9C7d2+cPHkSaWlpkDxGGUmShCNHjkSxdfri8U0RbOqBJMm5ti4XMGUKMHKkue0vXCj30mpdSABeZIjiTTSDy5yc0jtEypdufomOHfF4/bYrR6UfPP744+jfvz8mTpyI8uXLR7s5FIDaDECBJCQA69YBJ08GrkOZmqq+/NAh/fJeQvB2IFG8iWYaQHa2PFsi6+sShcZRQe2+ffswZMgQBrQxwjeHNRBJAiZPBjIz1f/umwt34oT6eo88Im9L6fFVeJb34nSbRPEl2tPsZmQwmCUKlaNKemVlZWGjFSOPKGKys+XbeyNHqk+24EkIYMwY9XI3aiVxtCZ2ULYFqE+pyek2ieIP3/dEsc9RObU5OTl45pln8MADD+CKK65A2bJlvf5+++23R6llgcVzTk5BAVCnjvGatL55bnq5cMuW6fcEv/46cPo00L69fw8wp9skij9835NZ8Xz9thtHBbUurW45yAPFio3c446SeH5TaNWR1ZObK0+FqfxfbUCYsk5BgZyH26OHd+CspCAoI52nTAGaN49cKR8iIop98Xz9thtHpR8oky+o/dg5oCVzfPPc1NIMPNfJyJAnWZgypXQ95V/PKXFHjQptRh8rp7nklJlERETmOCqopdjUtq36cklSD1Z989yM5MLl5ABjx5b2yg4YoJ3u4HbLKQtmAkorp7nklJlERETmxXz6wUsvvYSHHnoISUlJeOmll3TXHTJkSIRaZV68375QZv5SXo1K4XOlzE1Kin4Zr4ICuUyXJMk1aD3X0cq5dbv183g9Uxz0WFnfkoXYiYhiS7xfv+0k5kt6zZw5E71790ZSUhJmzpypuZ4kSbYOauOdUqdx3Tr5d8/ANFAwF2gWIK36kyNHAjNnqg8iM1PKx8r6lpwyk4iIKDgx31PrFPymFxytns116+Q6tampwK5dQK9e2rOH7dgB5OUB48YFN6MPe2qJnMW35jWRHl6/7SPme2opvmn1bLZurT1TmcvlnXObkSGnGfTqFVwpH99JJEKpb2nltojIvEB3fqzAoJkoPBzVUztixAjV5ZIkISkpCQ0bNkTXrl1RuXLlCLcsMH7TC45az2YgLhewZ4/1FxMr61uyViZR5EXiTkkkgmaKLF6/7cNRQW3Hjh2xefNmFBcX45JLLoEQAtu3b0dCQgIaN26MX3/9FZIkYfXq1WjSpEm0m+uFb4rg5eSU9mz6TnOpxeggMKuwZ4bI/gLVvA4V04uciddv+3BUSa+uXbvihhtuwP79+7Fp0yZs3rwZ+/btQ+fOndGrVy/s27cP1157LYYPHx7tppKFlKl2c3PlvNhAIjmfO8ASXUSxIlDN61DpDQQlotA5qqf2wgsvxPLly/16YX/66SfceOON2LdvHzZv3owbb7wRhw4dilIr1fGbXuiMpCL4DgLT60G1oneVPTORF8lecfbAO4/nnR+zg0YD4eeBM/H6bR+O6qktLCzEgQMH/JYfPHgQx44dAwBUrFgRZ8+ejXTTKALUekEUkiSX8Nq9u/QCNX06UKeOdw+qMpPX9OnW9K6yZyayItkrzh54Z/K88+P5eWEFIxPFEFHwHNVT27t3b6xbtw4vvPACMjMzIUkSNmzYgJEjR6Jt27Z49913MX/+fEyfPh0bN26MdnO98JteaJTJF3r21J5QwbNHZNo0YPRo49tniS77i+S55vNKoeBAUGfh9ds+HFXS680338Tw4cPRs2dPnD9/HgBQpkwZ9OvXr2RihsaNG2Pu3LnRbCZZzHM0sSTJP2qBrWcPqZmA1vOxZi9ALNEVOZGcuIKTZFAoMjL4OiEKB0f11CpOnDiBnTt3QgiBiy66CKmpqdFuUkD8phcctR4zlwsYMgSYNcs7uHW5gA8/lP/fo4f5fW3YAGRmBt9O9syEF3tqCWCeM0Uer9/24aicWkVqaiqaNm2KK6+8MuwB7e7du5GdnY369esjOTkZF110EcaPH8+83TBTcl/XrvXvMXO7gRdf9O+tdbvlYLZXr+D2efJkcI8DSid44EU2fCKZr8jcSHsKR56z8llTUBD6tiK5baJ45Kj0AwDIy8vDokWLsHfvXr/A8qOPPrJ8f7/88gvcbjfefPNNNGzYED/++CMGDBiAkydPYvr06Zbvj4ynG2gxM1GDIiEBOHBAvvgwcLGv7GwgKysyveKR3BcFVlBQ+rkAyP8OHCg/R8E+N+GcKIGTMBBZz1HpB/Pnz0ffvn1x4403Yvny5bjxxhuxfft2/Pnnn7jzzjsxb968iLRj2rRpeP3117Fz507Dj+HtC2OCmUFMT4cOwODB8gxjY8eWTuBw113Axx+X/i6E/MOLD5E9WT1xQjhTTJi+4iy8ftuHo9IPJk6ciJkzZ+Lzzz9HuXLlMGvWLGzbtg3du3dHnTp1ItaOwsLCgFPxFhUV4dixY14/FJhe2a5grFoF1KtXWu4rN1cOcBctkn9fuLA0oAXkfT/0kLyctwyJ7MPqiRPCWY6Ppf6IwsNRQe3vv/+OW2+9FQCQmJiIkydPQpIkDB8+HLNnz45YG15++WUMGjRId71JkyYhPT295Kd27doRaV+sU7twheqLL+RgFvDOe83IAKpW1c7NZW1SIvuwOs85nLOLhXvmMqJ45aigtnLlyjh+/DgAeXaxH3/8EQDw999/49SpU6a2NWHCBEiSpPvjW+t2//79uOmmm9CtWzc8+OCDutsfN24cCgsLS37y8/NNtS9e+V64rAhwn31We2CJXhCt5Oyxx5bIHqycOCGcgwE50JAoPByVU3vvvfeiRYsWGDFiBJ5//nnMmjULXbt2xfLly3H11VebGih26NChgFPp1qtXD0lJSQDkgLZjx45o1aoV3nrrLbhMRlvMyTFHKZGVkgK0bm1dSoJaXpvntJlq1HL27FZWyG7tIYoV4SzHx1J/zsDrt304Kqg9cuQIzpw5g1q1asHtdmP69OlYvXo1GjZsiKeeegqVKlUKy3737duHjh07onnz5njvvfeQoHz9NoFviuAFCjrVSBJw773A++/7/00rSF23Tp6xLNDgDruNarZbe4iInITXb/twVFAbDfv370eHDh1Qp04dvPPOO14BbY0aNQxvh2+K0Hj2eMyfD4wZo997+9lnwC+/AKNGeS9PSAA++ABo29a/56SgQJ7QYeZM79nBPANEu41qtlt7iIichtdv+3BcnVoAOHDgAA4cOAC3T1TTtGlTy/f11VdfYceOHdixYwcyfKIEfl+IHGXayYICoHlzYP16ebKE+fPlwNPX6dNy4OuruFgeBObbo+lbG3fkSGDoUP/A0G7Tp9qtPUROw9QeIvtwVE/tpk2b0K9fP2zbts0voJQkCcVm7k9HGL/phU7tNntWlnpP5QcfBJ4qV+nRBNSn4l2/3n/aXLv1jNqtPUROwtQeAnj9thNHVT944IEHcPHFF2Pt2rXYuXMndu3aVfJjZiIEij1aswkB6qOM27YNXDlB6dFU6+10u+UBar7VEoIZ1RzOqTI5ypooPLQ+c1gNhSh6HNVTm5aWhi1btqBhDBb74ze90ASaTUhtlLHnALOEBPmi5Plu0Oup9V1HLf/WyKjmSPX0cJQ1kbWsnsGMYhev3/bhqJ7a66+/Hv/973+j3QyKgkDFzDMyvCdWAPxrWs6Zo96jqfR2qvXsas0CpLY/X5Hs6THSHiIyjhMoENmPowaKzZ07F/369cOPP/6Iyy+/HGXLlvX6++233x6lllG4KYGnZ8+rkdvsStAKyEFuVpZ6j2Z2NtC0qX9NXLWLmNGBIxzERWSdSA/YCvYzh4jCx1HpB0uXLkWfPn1KZhXzxIFi8SHct9l9UxZ8S3qZSSfgIC4ia0RrwFZBAbB2rVwRpU0bvm/jFa/f9uGooLZevXq47bbb8NRTT6F69erRbo4pfFNEjtEeHa31tALnYILUQEEyEemL1pdDVj4gBa/f9uGonNrDhw9j+PDhMRfQUuTk5MgXwE6d5H99qxcYWU8rP1UvnUCLlXPVE8WjYN53oWLlAyJ7clRQe9dddyE3NzfazSCbMnohCvaCFezAEQ7iIgpeNAZsRSOQJqLAHDVQ7OKLL8a4ceOwevVqXHHFFX4DxYYMGRKllpEdGB2YFewALg4cIYq8aLzvlEA60KBRIoosR+XU1q9fX/NvkiTZegIG5uSEn9HcO7X1AGDaNHl6XN9t+ubdsiYsUeRF+n3HfHhS8PptH44KamMZ3xSRYfRCNG0aMHq09zLfADjUgSLKyGlAnuEsI4PzyBPFEn6BJYDXbzthUGsTfFNEjpELkZEZygL1+uoFqDk5wIABpTOYSRLQty/w7rscTU0UL8x8ieUXXvvi9ds+Yj6ndsSIEXj22WeRkpKCESNG6K47Y8aMCLWK7MxzwgUtgXLmAuXd6vXiKgPRPL9OCgG8/Xbp78rgtKwsXsCInMjMnR6WDyMyJuaD2i1btuDcuXMl/9ciSVKkmkQOoAw+8byQeA4+0Qt6taonKAGqWkCsxjNIZi8NkXME+owIdl2ieBfzQa1nCS+W86JI0RtxnZurX+7n4EE53SBQ4o8SJLOXhshZzFRY4XTaRMYxp9YmmJNjL2YqJfjm52o9dtIkYOxYY720SpCclWW8HezJJbKHQO9HM7OgcTpt++P12z4cNfkCkVWMFFdXLly+A86WLfPuhXW5gMmTjQe0kgR88oncG2ukHUZnSSOi8DPyflTu9CQkyL/r1dY1sy5RvGNPrU3wm569BOod0UoJUHucywV8+CHQo4fx/UsSMGeO3FNbp45/kLxnT2muLXtxiOzB7PvRTEkwrbtCvEMTfbx+2wd7aolUqPWOTJ4sX0Dy8rSn0VXrWXW7gSNHzO1fCHmbf/yh/jcFp+skpyookPPTA01PbSdm349Gp8hWuyvEOzRE/hjUEulQLlDFxfJkDJ06Aa1bq1+4Pv+8dBCYp4QE4IsvzO+7uBhYvdp/QJkQ8kWyoEDen++89y4XkJJifn/hEIuBSTDi5TgjxaqALdLPi1IVxVOo0+eqnQutigh8/VG8Y1BLpEKrliygnRf78MOlKQZKYOtylQa8viSp9ALoeyEE5Ith+/bqF8mNG+ULXI8ecrs813G75cDbip6bUIKCeOlJipfjjBSrArZoPC9W579qnYu1a3mHhkgNg1oiFUZryapRgszXX9cv2/X443JubG6u/O/cuf4Xw8xM/4vkpEnAmDGl7RNC/vHsIbai5yaUoCBeepLi5TgjyYqUmmg+L9nZcg5tbq78byjl97TOhecXYkWoPcJETsCglkiF2m1EM4qLgdOntYNalwsYOtQ7p07rYui7vEUL/wudEtj6tsG3WoPRXtdQg4J4yfWNl+OMJCtu4Uf7eTGaKxuI1rlo04YVEYjUMKglUqHcRgw2sHW5tAPjhAR5254jmJVgU+ti6Lm8USP/vN1APTdme11Dvb0ZjtzCaNH7MuCk47QLK27hO+V50TsXVvYIEzmGIFsoLCwUAERhYWG0m0IeNmwQwuVS+kHln4QEIaZOlf/1XO7743IJ0bat97KsLCHy80u3P3du6fZdLvn3QPLzhZAk7+1KkhDTppW2KSFB3lZ+vhALFvivn5Dg3Q5Pnm0y+hit7fi2J9YYeX6ccJx2lJ8vRG6uudecJyc9L6GeCwovXr/tg3VqbYJ17uwrJ8d/OlylJu2OHXKlgZMngRMngNtv18+j9axZGWyN2dxcucdVbXnDhqW1LJct804hUFv/uuu8l6m1CQh+el4zdTjtxuysT7F6nE5mt+eFdWWdiddv+ygT7QYQ2V12tjwJgu/FMSPD+8KUm6sf0ALec7YHO6e7cmvVN9hS2qYEzHoBrdatWK0BcvPnA9266R+bGt9zFEvMPD+hHieDnfCw0+tPa8IWIrIOc2qJDDAy8MPo4DKlhuzJk/p/12tLoJzDQNUbxoxRPxa9gSnxJlJ5mSwJ5nxGBl6y1jFR6BjUEpmkdfHxDTa1AtyTJ+XApUsX7b8HusAFGiQSKMCeNCn0OemdLlznwvO5ZUkw51F77waqxuD5xaZOHWDUKO3XAINfIh3RTuolGRPNY4ORgUPKoA6tQWZqy30HoZkdPBaorVr70hp4ojUwJT9fiBUr4mvAipWDdHxfPyNHqj83ubmh74siT+vzIT9f/bMgP1/9b1rv/WAGllL48fptHxwoZhNMNLe/YAZ2qQ0ya9BAfaAXAAwaJPcOmh08ptfmWbOAGTPU0xHUBotpYU5gaLReP263dy52KM83RU+gzwetAadaAz99Hx/swFIKP16/7YPpB0QGBVPQ3TNNYN06OaBNTVVPDZAkoGNHa4vGZ2QA06YB69f717Y1kx/K2+Sh03r9PP54fKV7OPX2eaDPB62UIb1UIc/Ha21/3TqrjoAo9jGoJTIo2IFDGRnA778DrVvLPTKtWgGdO3sHmZIEzJkDtG0bnsFJmZlA377ey+67Tzt48g08oj1DkxNovX6GDo2fIvpOHhRn9PPB996o3kQvno/XCn579nTWeSQKSbTzH0jGnJzYEExBd62cOUkSYuBAIRYu9J+Qweqi8WptcLnU80TV8vb0cgLJOCdNCGBWPLyG9J7fQPmw+flyjrXe68OqiVHIWrx+2wdzam2COTmxw2xBd6M5c0b3EUxNU602jBwppyd4blsrb2/ZMvWcQDLHbhMCRIrepCFG87pjgdrzayYfNi8PWL0aaN9evsPia+FCoEcP/+VOO4+xhNdv++DkC0QmmS3orjZZgsJsMf9gB2s1aiSnOPh+hZ05U779rexLL81AaxIKMsdOEwJEkt6kIU6i9vwancjDyPtbSVFy+nkkCgZzaonCzGjOXCChDNbKyJAHJPnyzYsNlBdoZBIKIjXxXAPZSL6t0fe32ueJ2y3fSSGKdwxqiSIgOxvYs0e+3R/sRd3sYC3fwV5Dhwa+sGoFHoAzR6xTZAWaNMSpgp0FUOv9nZXlfddFCO8A2KkVJogCYVBLFCFKea1gL+qBens8L2Rqo8zVLqzDh/vvxzfwAIyNWLfDhdQObSB98drbH8wsgFp3crZv908lUgJgJ1eYIAqEQS1RhAV7UV+2zPtCJkmlQanvNJsDBqjfxlQurCNHysunT/e/8CkD0ZSLqZFbona4kNqhDUR61N77yhcxwHhagVYAnJLCetIU3xjUEsUAJd/O95bj9OlyEPvgg6UXMqXQjyff25gzZpSu43nh8w0MZ80KfEvUDhMz2KENRrE3Of5oPee+77ejR/XTChRa6Qy7drGeNMU3BrVEMUAt305hpCif521MrUB13Tr/wHDGjMC3RO0wMYMd2mAEe5NDF80vBcHsW+s5V/siNmZM4C+kCrU0oV69/NdjZQSKJwxqiWKA3lSaaiRJfVBKQQHwwgvqjzl0yD8wdLuBESP0B7gEO9OalezQhkBiqTfZrqL5pSCYfes952pfxNxuc9NZK+kMgPd+FC5X/FSYIAIY1BLFBN/bjXoSEuQpd30HpRQUyIXbtXp2JSm4aVztUKrJDm0IJFZ6k+3K6i8FZnpdg9233nOu9UVsyhTzr2OtOznz58dPhQkiAJwm1y44zR4ZkZ8vRG6uEE88oT5Vpu+Uuwqt6TV9p83t1y/4aVyVtkVzuk47tEFLPEwTG04rVqi/bnNzzW8r0JS1Vu070HOuNa2u2ddxfr487bbR11Z+vnxMfO1Zg9dv+2BQaxN8U5BZ06aVXjD1AlC1C6vWT0KCEBs22DcwjHVaQQwFZtWXgmC2E8q+Az3nVnwRmzvXO6iVJO3XltmAngLj9ds+JCGMDDOhcOPc0RQMtXnmfeXmynmAvvr2Bd55R319O84hr+QhNmpkr7QCs4w8Z6QuJ0e+7V9cXHpr3uztda33Q6DXfSj7DudzXlAg5/j6Tpu7e7f/vsysS8bx+m0fZaLdACIKnto88742bvRf5nIBjz4KvPuuf+1bOw2uUuTklOY0ulxy/qyVuYKRDJiNPGekLjtbnk0rlABRyWX1DewCve5D2Xeg5zzQ60/v73p5u6GsSxSLOFDMQkVFRbjqqqsgSRK2bt0a7eYQoaAAGDvWf7nR+zN2qKmqNUgnL8+atsVrmS2t59YOz7meUGckC2VQYThmQwv0+gv0dzOVP2KhSghRKBjUWmj06NGoVatWtJtBVEJrVLQQwOrV/sGtEHIdW8A+wZ5W71Lr1qG3LV7LbGk9t3Z5zsMt0JS1kRLo9Wfk9WkmSI+FKiFEoWBOrUX+9a9/YcSIEViyZAkuu+wybNmyBVdddZXhxzMnh8JBLYcOkHtr1q+XA0Ojf4tW7p3WMXgKtm3B5lfGMq28ynXr7POcx4tAr79Ro+RZA7X+7slM3i7zuq3F67d9sKfWAn/99RcGDBiAd999F+XLlzf0mKKiIhw7dszrhygcRozwLuguSXJvTWam/Ddfbrd8IbVLTVXf3iW1SSiCbVs4bsfa/fa9Vs/36tX2ec7jhd7rT2uiFK3Xp5nUiHCkURDZAYPaEAkhcP/992PQoEFo0aKF4cdNmjQJ6enpJT+1a9cOYyspHim3kpWenkGD5MkX9u4tnYyhQQP/x7lcwKJF/sujmXvnebt4/XrrAlGrb8fGwu17tUDK5QLat2e+ZaTpvf62b1fPfR8+nMEokRamH2iYMGECnn76ad118vLysHbtWixYsAD/+c9/kJCQgN27d6N+/foB0w+KiopQVFRU8vuxY8dQu3Zt3r4gSwQq3ZOTAwwY4H/RTEiQL5pqtzxHjgSmTQtrsw3zLa80aRLQokXw1QsC3Y41Uh0hlsol+T7/kiTPQgeEXjKLzFN7/am9nlwuYM8e+72e4h3TD+yDQa2GQ4cO4dChQ7rr1KtXDz179sRnn30GyeP+bnFxMRISEtC7d2+8/fbbhvbHNwVZSS9Xr2FDoE4d/4BWyaWtWTO0i2mkymMpgcDGjcCYMeEr92W0nFgs5efqBeAA8y3twmxtXKfUco41vH7bB4PaEO3du9crH3b//v3IysrC4sWL0apVK2QY/GThm4KslJcHtGrlHbgqQcv27erBF1AagAVbaD7c9WR9hbt3NFYK25sNZmIpAI93Rgd1Rfq9R6V4/bYPTr4Qojp16nj9npqaCgC46KKLDAe0RFZSLm6+Aa1nrqgkqaceKPmTwRSa1yo/lJUVnqCuoEDOEQ5nMflZs4xtXwkqJ08Gxo3z/jIQ7o+BYIKZYCcgoMgzMlmH0fdeQQGwdq38/7Zt2ZtLzsOBYkQO4ntxU4wdWxroZGTI+ZOeFRFcLv8AzOwIab3ZiqymDMh6/HH/v1kVnBkdfe45OGzsWDmwDVT/1KoKCcHW2bVrvVK7V46wKyPvvZwcOe2oRw/5p04dew5kJAoF0w9sgrcvyApat5WVfNkTJ0pvURcUyLVJAaBNG/Wex9RU78foidTtd726tVYObtI6l54D5oI5ZitvE4eaRuB7azsSOZla++Dt8+AFeh3q1avmwLPQ8fptI4JsobCwUAAQhYWF0W4KxbD8fCEkSQg5ucD7R1nucgkxd672NubOldfxfGygxyj7Hjmy9LEJCYEfo7aNFSvkf7WsWKF+fDNn6j/OrPx89fPguQ+ttuTmGt9mQoK5dnueIyu2p/B83n2f70DPi5HnTW8fVh5HvJo7Vz5nau89rdep3muVjOP12z4Y1NoE3xRklalTtS9gegFDfr4QCxb4BxdGggzfYGXkSPMBiV5Q5dvOSAVAeoFCMG0xGwSrtcf3HAVqYyBaz7tyHIGeFyuet1DPC8ny8+VzpvbeVntf+35Jo+Dw+m0fDGptgm8KstK0ad6BRqCAQa13Vu8xVvcW6m1DrRcw1EDODK1AIZi2hHKuAp0jvTZqCfS8L1yo394NG/zvDGgdj17gyp7a8PN9riUpvO+beMLrt30wqLUJvinIavn5clDy2mv6AYNWL45WT61ar2yovWxaAY9nOoPaLfFgArlwMNOWYANyq3szAz3vLpfcg6sV7Go971ptChS4RvKLSrxSPhMWLrTH+8YpeP22Dw4UswkmmpPVPAfeSJL843b7D6bSGmzkSXlMVpb6gBS3Ww5TPJeZGSCmNdAl1O0a2W80itUbrT3q+5hQBuL5Hmug512SgO++A1q39p+IQwlL1egNPgpU/ziY80IUbbx+2wdLehE5kG+pJyUAWbjQv9SUUrPUk8slr7thg3d5Kq3SQY8/Hlp5KLUSU8OH+wdOVpYI8yzFVbduZMsb+ZZLM1LKKpQyXGrHqva8exJCfg14PgdKfWO9rpARI7TblJ0tv5a0Sp6ZLSNHROSJPbU2wW96ZCWzpZ6MziCm1Vs4aZI8Va0QcuDz+OPA0KHmgxPPnjrA+hJhnqXKfHsgIzX7ly+zpazM9mbq9fAuW1b6vPtS6ylXm7TDU7hKRHH6V7IzXr/tgz21RA6k1gunNylBoB40hVpv4eTJ8qQDSrAjBDB9enDF3T176qyeIMCzt9I3oAXCN1GEHrXJEx56SJ7mWIvnOVLr4fVdpleY3/N5nzYtcE95oIB29mzrg85o9qgTUWxhT61N8JseWc1o72swPHsLt2/Xzs20ovfTijxLvQkbFFptDWcvod5kGYF6bNV6eAH/ZWp50IAcxI4c6b0sUE+5mg4dgMGD/SfwsEKkJvQgCgWv3/bBoNYm+KagcIjEwJtAAaPR2a3CSS94VBs8pwj3LFeBZkfTCt7UHqf0zKsFgB9+CIwebXz7Cs8vRlrCGWSGOmMaUSTw+m0fTD8gcrBIDLzxTRPwpJfyEEla6Rjr12unXKilBgwcqD+Yyyzl3KkN2NJLh1BLKXC7tdMMWrQwt32Fkp6wcKGcT6smmLQNJUUiL08/fcJsGg0RxTcGtUQUMiX4GTmyNAgJJQdWrxqAkUoBvrTyczMztYN+vVxUK2Vny8G1meBNq2KF1jZCCQ4zMoBu3YA5c9SDb5erdDtGnhvPHNmWLb1zZX3zZ5ctszavmogcLnolcskTizeTU4Q6KYLetKtGp2S1om2RnuXK7OQDauvrbcOKyQ3UZhCTJGPT6QqhP+GDy2X9jGlEkcDrt30wp9YmmJNDpD8wCLB20JCRAWDhHGyn1Saz5bp819fbRqg51lo5rgsXAj17Bn5ujEz0obZP5s+SnfH6bR9lot0AIiKF3i1/IbT/ZrZigdEBYNnZcvWASM1ypZQyC2V932W+5yKUY1DSGHyDV6PPjdrjFVoD3Zg/S0RGMaeWiGwjNVV9eUqK8bxQtbqmnrmeZgeAxfIsV77nYto08/nInrRyk9u2NfbcaA0qTEiQlzN/lohCwZ5aIrKNEyfUl588WRoQ+aYD+PZK+gasAwbII/eVXtkRI4z3+MYytXOhlPUyW57Ms7dXq/c60HOj8Hx8Sor83HpuJ5I940TkLMyptQnm5BAZK7avlxdqJGdTbfpXJxb0D3QujB6zmVq9kaiLTGQ3vH7bB9MPiMg2Ak2Nq/QYagVNaikKvoqLgccfd/5t7kDnwkh5snhK1SCi2MeglohsRal56zspglqurC/foNjl8p80ICEBGDpUfR9OkpEBTJmi/Xcjg7BCrdUbTE1hIqJgMaglItvx7fEz02PoGRTv2SNPGqDWKxsPvYrNm6svd7nUe6d9g9BQJm0w8iWEiMhKDGqJyPbM9hh6BqzZ2cC6dcCMGfK/duqVDXdPptbMY+vXywOyPPetFoQGSgfREokphomIfDGoJSLb0wrOUlICPzYnB2jdWq560Lq1fXoMI9GTmZEB9OnjvaxPH+D77733PX26dhCqlQ6ix+yXEKYpEJEVWP3AJjh6kkif5+xeCiOj8a2chcwqkWqX1n48zyEg5x2rXQmMzOalNtGF0SoW27cDGzcCY8caq65AZEe8ftsHe2qJKCYoaQSeA7+UHsW8PPWePq0ew3Xrwt9ePaEOwAp1P76EUB9Q55s769ujqtXbHChtwfNxo0czTYGIrMGglohixsKF/j2KxcVyWoHabXytslY9ekQ3DSGUAVih7kerzNdDD+nnzvoGsHopC4B22oJvvq2vcAT3RBQfGNQSUUwoKJAHe6nRCqy0pmUVQg6sFi60vlfQSH5osAOwzFLbz5Qp/r2ykgQ8+aR27qzawK8xYwL3NqtVmFDrPfYUjuCeiOIDg1oiigmBgiGFb2CVnQ188IH/em633GNr5SAtM4O/ghmAZYRvUO27n5Ej5TJnSo+tyyX/rgSeBw4Aa9d6B+Vq597tNpay4EtvUginToRBRJHBgWI2wURzIn1qg49cLrnXNdCUt2qP9WTFIC07DEoLZUrbnBxgwIDScylJcrCbna19bJMmAePGyV8klIDUSHDuOegvIQGYPBlo0YLT61Js4vXbPhjU2gTfFESB+QZDb74pL/dcNmmSHCB5jsb3fawaIyP99eTmyj20Vm/XqFCCaq2g3+WSJ7BQgl7fc68EvJ7BsZn2BvM4Irvh9ds+GNTaBN8URMaoBUPKso0bS3M91XoqCwrkygc9e5oL/tTKVqmtE82e2mCCauW4Dh6UUzHUzJgBdOsmHwMDUSJ/vH7bB4Nam+Cbgig0ZoJKrV5HNWZu6ZvZrtXMBtWex6XkxmpdDVg/lkgbr9/2waDWJvimIAqN2Z5KI72OwfS+RrM302hQrXZcWhMwKOwwaQWRHfH6bR9lot0AIiIrKKPqfQNQrdH4GRmBAzS9SRK0Hmtku+GSnQ1kZQUOqtWOK1D3RqDjJiKKNpb0IiJHCEft10hNkmAltdqwvrQmZdAqtQXY/7iJiBjUEpFjWF37NVKTJESa2nHNnu29TJJKc221jtvIRBNERJHCnFqbYE4OkX05ddS/2nFNmyZXkBBCDmoffxwYOlR9sJ3RAXRETsbrt30wqLUJvimIKNqMDoyLdvkyIjvh9ds+mH5AREQA9AfGBbMeEVEkMaglIiIAxgfGxeIAOiJyPga1REQEwH8AmcslTzvsm1Lg1AF0RBTbmFNrE8zJISK7mD5df7phhVMH0BGZweu3fTCotQm+KYjIDjgIjMgcXr/tg+kHRERUgoPAiChWMaglIqISHARGRLGKQS0REZXgIDAiilVlot0AIiKyl+xsICuLg8CIKLYwqCUiIj8ZGQxmiSi2MP3AIl988QVatWqF5ORkVK1aFXfddVe0m0REREQUN9hTa4ElS5ZgwIABmDhxIjp16gQhBH744YdoN4uIiIgobjCoDdH58+cxdOhQTJs2Ddke1ckvueSSKLaKiIiIKL4w/SBEmzdvxr59++ByudCsWTPUrFkTN998M3766SfdxxUVFeHYsWNeP0REREQUHAa1Idq5cycAYMKECXjyySfx+eefo1KlSujQoQOOHDmi+bhJkyYhPT295Kd27dqRajIRERGR4zCo1TBhwgRIkqT7s3HjRrj/N/XOE088gbvvvhvNmzfHvHnzIEkSFi1apLn9cePGobCwsOQnPz8/UodGRERE5DjMqdXw6KOPomfPnrrr1KtXD8ePHwcANGnSpGR5YmIiGjRogL1792o+NjExEYmJidY0loiIiCjOMajVULVqVVStWjXges2bN0diYiJ+/fVXtG/fHgBw7tw57N69G3Xr1g13M4mIiIgIDGpDVqFCBQwaNAjjx49H7dq1UbduXUybNg0A0K1btyi3joiIiCg+MKi1wLRp01CmTBn06dMHp0+fRqtWrbBixQpUqlQp2k0jIiIiiguSEEJEuxEEHDt2DOnp6SgsLESFChWi3RwiIiIygNdv+2BPrU0o3y1Yr5aIiCh2KNdt9hFGH4Nam1CqKLBeLRERUew5fvw40tPTo92MuMb0A5twu93Yv38/0tLSIElStJtjqWPHjqF27drIz8+Pu1sz8XzsQHwfP4+dx85jjw9CCBw/fhy1atWCy8Xy/9HEnlqbcLlcyMjIiHYzwqpChQpx9UHnKZ6PHYjv4+ex89jjTTweO3to7YFfKYiIiIgo5jGoJSIiIqKYx6CWwi4xMRHjx4+Py2mB4/nYgfg+fh47jz3exPOxkz1woBgRERERxTz21BIRERFRzGNQS0REREQxj0EtEREREcU8BrVEREREFPMY1FLYTJo0CZmZmUhLS0O1atVwxx134Ndff412s6Ji0qRJkCQJw4YNi3ZTImLfvn247777UKVKFZQvXx5XXXUVNm3aFO1mhd358+fx5JNPon79+khOTkaDBg3wzDPPwO12R7tplvvPf/6DLl26oFatWpAkCZ988onX34UQmDBhAmrVqoXk5GRcd911+Omnn6LTWIvpHfu5c+cwZswYXHHFFUhJSUGtWrXQt29f7N+/P3oNtlig597TwIEDIUkSXnzxxYi1j+IXg1oKm1WrVmHw4MFYv349li9fjvPnz+PGG2/EyZMno920iMrLy8Ps2bPRtGnTaDclIo4ePYp27dqhbNmy+Ne//oWff/4ZL7zwAipWrBjtpoXdlClT8MYbb+CVV17Btm3bMHXqVEybNg0vv/xytJtmuZMnT+LKK6/EK6+8ovr3qVOnYsaMGXjllVeQl5eHGjVqoHPnzjh+/HiEW2o9vWM/deoUNm/ejKeeegqbN2/GRx99hN9++w233357FFoaHoGee8Unn3yC7777DrVq1YpQyyjuCaIIOXDggAAgVq1aFe2mRMzx48dFo0aNxPLly0WHDh3E0KFDo92ksBszZoxo3759tJsRFbfeeqvo37+/17K77rpL3HfffVFqUWQAEB9//HHJ7263W9SoUUNMnjy5ZNmZM2dEenq6eOONN6LQwvDxPXY1GzZsEADEnj17ItOoCNI6/oKCAnHhhReKH3/8UdStW1fMnDkz4m2j+MOeWoqYwsJCAEDlypWj3JLIGTx4MG699VbccMMN0W5KxCxduhQtWrRAt27dUK1aNTRr1gxz5syJdrMion379vjmm2/w22+/AQD++9//YvXq1bjlllui3LLI2rVrF/7880/ceOONJcsSExPRoUMHrF27Nooti47CwkJIkhQXdysAwO12o0+fPhg1ahQuu+yyaDeH4kiZaDeA4oMQAiNGjED79u1x+eWXR7s5ETF//nxs3rwZeXl50W5KRO3cuROvv/46RowYgX/84x/YsGEDhgwZgsTERPTt2zfazQurMWPGoLCwEI0bN0ZCQgKKi4vx/PPPo1evXtFuWkT9+eefAIDq1at7La9evTr27NkTjSZFzZkzZzB27Fjce++9qFChQrSbExFTpkxBmTJlMGTIkGg3heIMg1qKiEcffRTff/89Vq9eHe2mRER+fj6GDh2Kr776CklJSdFuTkS53W60aNECEydOBAA0a9YMP/30E15//XXHB7ULFizAe++9hw8++ACXXXYZtm7dimHDhqFWrVro169ftJsXcZIkef0uhPBb5mTnzp1Dz5494Xa78dprr0W7ORGxadMmzJo1C5s3b46r55rsgekHFHaPPfYYli5ditzcXGRkZES7ORGxadMmHDhwAM2bN0eZMmVQpkwZrFq1Ci+99BLKlCmD4uLiaDcxbGrWrIkmTZp4Lbv00kuxd+/eKLUockaNGoWxY8eiZ8+euOKKK9CnTx8MHz4ckyZNinbTIqpGjRoASntsFQcOHPDrvXWqc+fOoXv37ti1axeWL18eN7203377LQ4cOIA6deqUfPbt2bMHjz/+OOrVqxft5pHDsaeWwkYIgcceewwff/wxVq5cifr160e7SRFz/fXX44cffvBa9sADD6Bx48YYM2YMEhISotSy8GvXrp1f6bbffvsNdevWjVKLIufUqVNwubz7ChISEhxZ0ktP/fr1UaNGDSxfvhzNmjUDAJw9exarVq3ClClToty68FMC2u3btyM3NxdVqlSJdpMipk+fPn5jCLKystCnTx888MADUWoVxQsGtRQ2gwcPxgcffIBPP/0UaWlpJb026enpSE5OjnLrwistLc0vdzglJQVVqlRxfE7x8OHD0bZtW0ycOBHdu3fHhg0bMHv2bMyePTvaTQu7Ll264Pnnn0edOnVw2WWXYcuWLZgxYwb69+8f7aZZ7sSJE9ixY0fJ77t27cLWrVtRuXJl1KlTB8OGDcPEiRPRqFEjNGrUCBMnTkT58uVx7733RrHV1tA79lq1auGee+7B5s2b8fnnn6O4uLjks69y5cooV65ctJptmUDPvW8QX7ZsWdSoUQOXXHJJpJtK8SbK1RfIwQCo/sybNy/aTYuKeCnpJYQQn332mbj88stFYmKiaNy4sZg9e3a0mxQRx44dE0OHDhV16tQRSUlJokGDBuKJJ54QRUVF0W6a5XJzc1Xf3/369RNCyGW9xo8fL2rUqCESExPFtddeK3744YfoNtoiese+a9cuzc++3NzcaDfdEoGee18s6UWRIgkhRITiZyIiIiKisOBAMSIiIiKKeQxqiYiIiCjmMaglIiIiopjHoJaIiIiIYh6DWiIiIiKKeQxqiYiIiCjmMaglIiIiopjHoJaIHGn37t2QJAlbt26NdlNCtmbNGlxxxRUoW7Ys7rjjjmg3h4jIlhjUEhGFwf33329ZADpixAhcddVV2LVrF9566y1LtmnUW2+9hYoVK0Z0n0REwWBQS0S2cvbs2Wg3ISTFxcVwu92WbvP3339Hp06dkJGRYTjAjPXzSERkFoNaIoqq6667Do8++ihGjBiBqlWronPnzgCAn3/+GbfccgtSU1NRvXp19OnTB4cOHSp53L///W+0b98eFStWRJUqVXDbbbfh999/N7XvevXq4dlnn8W9996L1NRU1KpVCy+//LLXOjNmzMAVV1yBlJQU1K5dG4888ghOnDhR8nelJ/Pzzz9HkyZNkJiYiAceeABvv/02Pv30U0iSBEmSsHLlStU2FBUVYciQIahWrRqSkpLQvn175OXlAShNoTh8+DD69+8PSZI0e2rr1auH5557Dvfffz/S09MxYMAAAMCSJUtw2WWXITExEfXq1cMLL7zg9bijR4+ib9++qFSpEsqXL4+bb74Z27dvBwCsXLkSDzzwAAoLC0uOY8KECQCA1157DY0aNUJSUhKqV6+Oe+65x9S5JyKynCAiiqIOHTqI1NRUMWrUKPHLL7+Ibdu2if3794uqVauKcePGiW3btonNmzeLzp07i44dO5Y8bvHixWLJkiXit99+E1u2bBFdunQRV1xxhSguLhZCCLFr1y4BQGzZskVz33Xr1hVpaWli0qRJ4tdffxUvvfSSSEhIEF999VXJOjNnzhQrVqwQO3fuFN9884245JJLxMMPP1zy93nz5omyZcuKtm3bijVr1ohffvlF/P3336J79+7ipptuEn/88Yf4448/RFFRkWobhgwZImrVqiW+/PJL8dNPP4l+/fqJSpUqicOHD4vz58+LP/74Q1SoUEG8+OKL4o8//hCnTp3SPJYKFSqIadOmie3bt4vt27eLjRs3CpfLJZ555hnx66+/innz5onk5GQxb968ksfdfvvt4tJLLxX/+c9/xNatW0VWVpZo2LChOHv2rCgqKhIvvviiqFChQslxHD9+XOTl5YmEhATxwQcfiN27d4vNmzeLWbNmGXm6iYjChkEtEUVVhw4dxFVXXeW17KmnnhI33nij17L8/HwBQPz666+q2zlw4IAAIH744QchhPGg9qabbvJa1qNHD3HzzTdrPmbhwoWiSpUqJb/PmzdPABBbt271Wq9fv36ia9eumtsRQogTJ06IsmXLivfff79k2dmzZ0WtWrXE1KlTS5alp6d7BaJax3LHHXd4Lbv33ntF586dvZaNGjVKNGnSRAghxG+//SYAiDVr1pT8/dChQyI5OVksXLiw5PjS09O9trFkyRJRoUIFcezYMd02ERFFEtMPiCjqWrRo4fX7pk2bkJubi9TU1JKfxo0bA0BJisHvv/+Oe++9Fw0aNECFChVQv359AMDevXtN7btNmzZ+v2/btq3k99zcXHTu3BkXXngh0tLS0LdvXxw+fBgnT54sWadcuXJo2rSpqf0qx3Du3Dm0a9euZFnZsmXRsmVLrzYY5Xset23b5rVtAGjXrh22b9+O4uJibNu2DWXKlEGrVq1K/l6lShVccskluvvv3Lkz6tatiwYNGqBPnz54//33cerUKdPtJSKyEoNaIoq6lJQUr9/dbje6dOmCrVu3ev1s374d1157LQCgS5cuOHz4MObMmYPvvvsO3333HQBrBkhJkgQA2LNnD2655RZcfvnlWLJkCTZt2oRXX30VAHDu3LmS9ZOTk0seY4YQwmt/nsuD2Z7veVTbjrJP3/+b2X9aWho2b96MDz/8EDVr1sT//d//4corr8Tff/9tus1ERFZhUEtEtnP11Vfjp59+Qr169dCwYUOvn5SUFBw+fBjbtm3Dk08+ieuvvx6XXnopjh49GtS+1q9f7/e70iu8ceNGnD9/Hi+88AJat26Niy++GPv37ze03XLlyqG4uFh3nYYNG6JcuXJYvXp1ybJz585h48aNuPTSS00eib8mTZp4bRsA1q5di4svvhgJCQlo0qQJzp8/X/KFAAAOHz6M3377rWT/WsdRpkwZ3HDDDZg6dSq+//577N69GytWrAi5zUREwWJQS0S2M3jwYBw5cgS9evXChg0bsHPnTnz11Vfo378/iouLUalSJVSpUgWzZ8/Gjh07sGLFCowYMSKofa1ZswZTp07Fb7/9hldffRWLFi3C0KFDAQAXXXQRzp8/j5dffhk7d+7Eu+++izfeeMPQduvVq4fvv/8ev/76Kw4dOuTVs6tISUnBww8/jFGjRuHf//43fv75ZwwYMACnTp1CdnZ2UMfj6fHHH8c333yDZ599Fr/99hvefvttvPLKKxg5ciQAoFGjRujatSsGDBiA1atX47///S/uu+8+XHjhhejatWvJcZw4cQLffPMNDh06hFOnTuHzzz/HSy+9hK1bt2LPnj1455134Ha7cckll4TcZiKioEUzoZeIqEOHDmLo0KF+y3/77Tdx5513iooVK4rk5GTRuHFjMWzYMOF2u4UQQixfvlxceumlIjExUTRt2lSsXLlSABAff/yxEML4QLGnn35adO/eXZQvX15Ur15dvPjii17rzJgxQ9SsWVMkJyeLrKws8c477wgA4ujRo0II9YFUQsgD1zp37ixSU1MFAJGbm6vahtOnT4vHHntMVK1aVSQmJop27dqJDRs2eK1jdKDYzJkz/ZYvXrxYNGnSRJQtW1bUqVNHTJs2zevvR44cEX369BHp6eklx/jbb795rTNo0CBRpUoVAUCMHz9efPvtt6JDhw6iUqVKIjk5WTRt2lQsWLBAt31EROEmCaGRVEVE5HD16tXDsGHDMGzYsGg3hYiIQsT0AyIiIiKKeQxqiYiIiCjmMf2AiIiIiGIee2qJiIiIKOYxqCUiIiKimMegloiIiIhiHoNaIiIiIop5DGqJiIiIKOYxqCUiIiKimMegloiIiIhiHoNaIiIiIop5DGqJiIiIKOb9P2GyrDU54G53AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACF8ElEQVR4nO2deXgURfrHvzMhJJBw3xAgHAqiHK6AXIqCGPGWlUtFwIiLFwoC4u5vBU9CouCBFxIRV0VAwPVaESGwIgHCtQoihDvhkDtcEkKmfn+0PZmju6d7pntmevL9PM88yfR0V1VXV1e//dZ7OIQQAoQQQgghNscZ6QYQQgghhJgBhRpCCCGExAQUagghhBASE1CoIYQQQkhMQKGGEEIIITEBhRpCCCGExAQUagghhBASE1CoIYQQQkhMQKGGEEIIITEBhRpCCCGExAQUagghhBASE1CoCROrVq3CpEmTcPLkybDXPXfuXFx++eWoVKkSHA4HNm3aFPCY559/Hm3atIHL5bK+gRqcPn0a48ePx4033og6derA4XBg0qRJivtmZ2ejUaNGOHv2rGXtiZZ+AYz1DQCcOXMGTz75JBo2bIjExER06NABn332mdc+4ehDAPjwww/hcDiwZ88eANr3x6RJk+BwOHD06FFL22Q2avddMPdjtGD1PBauay3XEy3tke8H+VOhQgU0aNAAgwYNQn5+vql16ZkHzDhe735G57FAUKgJE6tWrcJzzz0XdqHmyJEjGDJkCFq0aIHvvvsOubm5uPTSSzWPOXDgADIzM/H888/D6YzsEDl27BhmzJiB4uJi3HnnnZr7Dh06FElJScjMzLSkLdHUL4CxvgGAfv36Yfbs2Zg4cSL+85//oFOnThg8eDA+/fRT9z5W96HMLbfcgtzcXDRo0ABA5O4Pq1C774K5H6OJWLtO0casWbOQm5uLH374AY899hi+/PJL9OjRAydOnDCtDj3zgBnH693P6DwWEEG8OHv2rCXlZmVlCQBi9+7dlpSvxsqVKwUAMXfuXN3HjB8/XjRq1EiUlpZa2DJ9uFwu4XK5hBBCHDlyRAAQEydOVN3/lVdeEdWqVbPkOkZTvwhhrG+++eYbAUB8+umnXtv79OkjGjZsKC5evOjeZmUfqqF1f0ycOFEAEEeOHAlbe0JF7b4L5n6MBuSxYNU8Jpcfrmst16N3P6vbM2vWLAFA5OXleW1/7rnnBADxwQcfmFKPkXkglOON1GN0jg9E5F83I4isWtywYQPuvvtu1KhRAy1atAAArFy5Er1790aVKlVQuXJldOvWDd98841iOYH2nTRpEsaNGwcAaNasmVvFuHz5chw5cgQPPfQQGjdujISEBNSpUwfdu3fHDz/8ELD9geodNmwYevToAQAYOHAgHA4HrrvuOs0yL1y4gOzsbNxzzz1e2oiDBw8iOTkZgwYN8tr/66+/Rnx8PP7xj38EbG8wyH2ll3vvvRenTp0ypE7Vg1q/APbom0WLFiE5ORn9+/f32j58+HAcOHAAa9ascW/T24dbtmyBw+HA/Pnz3dvWr18Ph8OByy+/3Gvf22+/HVdddZX7u+fyk9b94cnvv/+OwYMHo1q1aqhXrx4eeOABFBUV6Tr/3377DYMHD0a9evWQkJCAJk2a4P7770dxcbF7H733fH5+Pu655x7UrVsXCQkJuOyyy/DWW2+5f1e777Tux2DnAXkO27hxI/r164eqVauiWrVquO+++3DkyBHDbfcs03de1LpOw4YNQ2pqqmr79JTvSUFBQcDz0XMuAPDNN9+gQ4cOSEhIQLNmzfDKK69o9qkSgdrz448/wuFwYM6cOX7HfvTRR3A4HMjLyzNcb8eOHQFIY98MjMwDoRxvpB6jc3xAghaHYgBZCm/atKl4+umnxZIlS8QXX3whli9fLuLj48VVV10l5s6dK7744gtx4403CofDIT777DOvMvTsW1BQIB5//HEBQCxcuFDk5uaK3NxcUVRUJNLS0kSdOnXEjBkzxPLly8UXX3whnn32Wb96fNFT744dO8Rbb70lAIiXX35Z5Obmii1btmiW+9///lcAEN9++63fb88995xwOBxi3bp1QgghcnJyRGJionj88cd193ko6JXiL7vsMtGvXz9T69bqFyGiv2+6dOkiOnXq5Ld98+bNAoB47733vLbr7cMGDRqIhx56yP09IyNDVKpUSQAQ+/fvF0IIUVJSIqpWrSrGjx/v3k9+M929e7fm/SFE2X3aqlUr8eyzz4olS5aIqVOnioSEBDF8+PCAbdy0aZNITk4Wqamp4t133xVLly4VH3/8sRgwYIA4deqUEELf/SSEEFu2bBHVqlUTbdu2FR999JH4/vvvxVNPPSWcTqeYNGmSEEL9vtO6H4OdBzznsHHjxonFixeLqVOniqSkJHHllVeKCxcuGGq7b5me86LWdRo6dKho2rSpavvU2uxZvpHz0XsuP/zwg4iLixM9evQQCxcuFPPnzxedOnUSTZo0MaSp0dO/V155pejevbtfGZ06dVK89zxR09RMnz5dABALFizw2u5yuURJSYmujydG5wFf9B4fbD1maGoo1ADi2Wef9drepUsXUbduXXH69Gn3tosXL4orrrhCpKSkuFVlRvZVU9smJyeLJ5980nDb9dabk5MjAIj58+frKnfKlCkCgDh06JDfb2fPnhUNGzYUvXv3FmvXrhVVqlQRw4cP9+oPK9E74O+9915Rr149r20ul0ucOHHCb0nljz/+ECdOnPBTuxYVFbkfeEJo94sQ0d83l1xyiUhLS/PbfuDAAfdD1hOlPlTivvvuE82bN3d/v+GGG8SIESNEjRo1xOzZs4UQQvz0008CgPj+++/d+3kKNULoW37KzMz02v7II4+IxMTEgH3cq1cvUb16dXH48GHVffTeT2lpaSIlJcUtcMk89thjIjExURw/flwIoX7fqW0Pdh6Q+2b06NFe2z/55BMBQHz88cfubXrbrjYvCqF+nYIRapTK13s+es/l6quvFg0bNhR//PGHe59Tp06JmjVrGhJq9PSvPKY3btzo3rZ27VoBwH0vqCEfu3r1alFSUiJOnz4tvvvuO1G/fn1x7bXX+gkn8jjS8/G8VkbnAV/0Hh9sPVx+Mom//vWv7v/Pnj2LNWvW4O6770ZycrJ7e1xcHIYMGYLCwkJs27bN8L5qdO7cGR9++CFefPFFrF69GiUlJQHba0a9ahw4cAAOhwO1a9f2+61y5cp48cUXsXTpUlx//fXo27cv3n//fVXV4fLly70s+rU+ZnqA1K1bF4cPH8bFixfd237//XfUqFEDjzzyiNe+GRkZqFGjhp9q+NJLL8U111zj/q7VL4A9+kZLxev7m1IfKtG7d2/s2rULu3fvxvnz57Fy5UrcdNNNuP7667FkyRIAwA8//ICEhAT30kuw3H777V7f27Vrh/Pnz+Pw4cOqx5w7dw4rVqzAgAEDUKdOHcV99N5P58+fx9KlS3HXXXehcuXKuHjxovtz88034/z581i9enVQ5xbMPODJvffe6/V9wIABqFChAnJycgAgqLZ7zotWoFW+1vnoPZezZ88iLy8P/fr1Q2JiorusKlWq4LbbbjPU1kD9CwCDBw9G3bp1vZbA3nzzTdSpUwcDBw7UVU+XLl0QHx+PKlWq4KabbkKNGjXw73//GxUqVPDa76qrrkJeXp6uT8OGDb2ONTIPGN3H87dQ6wmWCoF3iX1kDwwAOHHiBIQQXttk5MFx7Ngxw/uqMXfuXLz44ouYOXMm/vnPfyI5ORl33XUXMjMzUb9+fcVjzKhXjT/++APx8fGIi4tT/F321HA4HPjwww9V9wOAVq1a4f3339dVb5MmTYw3VoXExEQIIXD+/Hmvh1QoBOoXILr7platWopj4vjx4wCAmjVrem3X24c33HADAElwadasGUpKStCrVy/8/vvveOGFF9y/de/eHZUqVQr5HDxJSEgAIF0bNU6cOIHS0lKkpKRo7qPnfqpSpQouXryIN998E2+++aZiWcG6/gYzD3jiu0+FChW8rvmxY8cMt12pP8xEq3yt89F7LidOnIDL5VLsPz19qrc9MgkJCfjb3/6GV199FVlZWSgpKcG8efMwZswY91gNxEcffYTLLrsMp0+fxty5c/Hee+9h8ODB+M9//uO1X3JyMjp06KCrTE+ByOg84Ive40OtJxQo1MBbaqxRowacTicOHjzot9+BAwcAwP22bmRfNWrXro3XXnsNr732Gvbt24cvv/wSEyZMwOHDh/Hdd98pHmNGvVrtuXDhAs6ePYukpCSv3zZt2oRbb70V3bt3x08//YQPPvgAjz76qGpZDRo0wIMPPhhUO0Lh+PHjSEhI8HoY169fH0IIv30nTZqkGBPh0KFDXt+1+gWI/r5p27Yt5syZg4sXL3pNcr/88gsA4IorrvDaX6kPlUhJScGll16KH374AampqejYsSOqV6+O3r1745FHHsGaNWuwevVqPPfcc+aflA5q1qyJuLg4FBYWqu6j936qUaOGW3ujdm2bNWsWVDuDmQc8OXToEBo1auT+fvHiRRw7dswtCAbTdiNv04mJiV5G1zJaQp5W+Vrno/dcEhMT4XA4/O5luXwjBOpfmYcffhgZGRn44IMPcP78eVy8eBEjR47UXc9ll13mNg6+/vrrUVpaipkzZ+Lzzz/H3Xff7d5vxYoVuP7663WVuXv3brcRt9F5wBe9x4daTyhw+cmHpKQkXH311Vi4cKHXG6DL5cLHH3/snsSN7qvnrbJJkyZ47LHH0KdPH2zYsMGUNhqldevWAICdO3d6bd+2bRvS0tLQtWtX5OTk4I477sCkSZN0e5+Ek127dqFNmzamlqnWL4A9+uauu+7CmTNnsGDBAq/ts2fPRsOGDXH11Vd7bTfShzfccAOWLVuGJUuWoE+fPgAkrVWTJk3w7LPPoqSkxK3RUUPP/REMlSpVQs+ePTF//nzVB6ze+6ly5cq4/vrrsXHjRrRr1w4dO3b0+/g+5IJB7zzgySeffOL1fd68ebh48aLbu8qstqtdp9TUVBw+fNjLS+fChQtYvHixrvYbOR+955KUlITOnTtj4cKFOH/+vLus06dP46uvvjKtPZ40aNAA/fv3x9tvv413330Xt912W0ia1szMTNSoUQPPPvusV8DPYJefjM4Dvug9PtR6QiJoa5wYQC0GgewJcfXVV4v58+eLf//73yItLU3T+ynQvrJh19/+9jexatUqkZeXJ06ePCmuvPJKkZWVJb766iuxfPlykZWVJRITE8U999yj2Xaj9eo1FN63b5+fdfru3btFSkqKuOaaa8S5c+eEEEJs3bpVxMXFeXm0WMW3334r5s+fLz744AMBQPTv31/Mnz9fzJ8/38/wt7S0VFSrVk2MGTPG1DYo9YsQ9uqbPn36iBo1aogZM2aIZcuWiREjRvgZOwphvA8XLFjgNkpcsWKFe/vw4cMFAFGjRg2/2D6+hsJK94dsqK12n/qWoYbs/dS8eXP3uc+ZM0cMHjzYz/sp0P20ZcsWUaNGDdG5c2cxa9YskZOTI7788ksxdepUcf3117v3M2IoHMo84Oud8/3334tp06aJ5ORk0b59e1FcXGy47VqxWdSu065du0R8fLy47rrrxDfffCMWLFggevbsKZo1a6ZqKKxUvt7z0Xsu33//vXA6naJHjx5i0aJF4vPPPxedOnUSjRs3Dsr7Sat/ZdasWeO+H3744YeAdQih7v0khBCZmZkCgPjXv/6lq6xA6JkHli9fLuLi4sRzzz0X1PFG9hPC2DwWCAo1KjfXjz/+KHr16iWSkpJEpUqVRJcuXcRXX32lWI7efZ955hnRsGFD4XQ6BQDx3XffiZEjR4p27dqJqlWrikqVKolWrVqJiRMn6rqQeuo1KtQIIcQ111wjbr75ZiGEZK3eokUL8Ze//MXP02DEiBEiISHB8oCCTZs21WXZL4QQS5cuFQDE+vXrTW+HZ78IYb++OX36tBg1apSoX7++qFixomjXrp2YM2eOX5lG+/DEiRPC6XSKpKQkLxdX2UNEyTVcSSDxvT9ycnKEEKELNUII8euvv4r+/fuLWrVqiYoVK4omTZqIYcOGifPnz7v30Xsf7969WzzwwAOiUaNGIj4+XtSpU0d069ZNvPjii+59jAg158+fD3oekPtm/fr14rbbbhPJycmiSpUqYvDgweL3338Pqu2BAs6pXadvv/1WdOjQQVSqVEk0b95cTJ8+XdP7SUuo0XM+es5FCCG+/PJL0a5dO/d1z8jIMBx8T2//yqSmporLLrssYPkyWkLNH3/8IZo0aSIuueSSgMHx9KBnHpDHqZIXkt55RO9+QhibxwLhEELB0ICUaxYsWICBAwdi7969XuvIdmDIkCHYtWsXfvrpJ9PLtnO/GMHKPiTmMmnSJDz33HM4cuRI0HZ0xFx+/vlntG/fHm+99ZaftyWxHtrUED/69euHTp06YfLkyZFuiiF27tyJuXPnYsqUKZaUb9d+MYLVfUhIrLJz504sW7YMDz30EBo0aIBhw4ZFuknlEgo1xA+Hw4H3338fDRs2jIps1HrZt28fpk+fHnI8FDXs2i9GsLoPCYlVXnjhBfTp0wdnzpzB/PnzUbly5Ug3qVzC5SdCCCGExATU1BBCCCEkJqBQQwghhJCYgEINIYQQQmKCcpUmweVy4cCBA6hSpYqlCbUIIYQQYh5CCJw+fRoNGzaE06mujylXQs2BAwfQuHHjSDeDEEIIIUFQUFCgmaC2XAk1VapUASB1StWqVSPcGkIIIYTo4dSpU2jcuLH7Oa5GuRJq5CWnqlWrUqghhBBCbEYg0xEaChNCCCEkJqBQQwghhJCYgEINIYQQQmICCjWEEEIIiQko1BBCCCEkJqBQQwghhJCYgEINIYQQQmICCjWEEEIIiQko1BBCCCEkJqBQQwghhJCYgEINIYQQQmICCjWEkHJHYSGQkyP9JYTEDhRqCCHliuxsoGlToFcv6W92dqRbRAgxCwo1hJByQ2Eh8NBDgMslfXe5gL/9jRobQmIFCjWEkHJDfn6ZQCNTWgrs2BGZ9hBCzIVCDSGk3HDJJYDTZ9aLiwNatoxMewgh5kKhhhBSbkhJAWbMkAQZQPr73nvSdkKI/akQ6QYQQkg4SU8H0tKkJaeWLSWBprBQWpq65BIKOITYGWpqCCHljpQU4LrrpL/0hiIkdqBQQwgpt5jhDcWYN4REDxRqCCHlllC9oajlISS6oFBDCCm3hOINxZg3hEQfFGoIIeWWULyhGPOGkOiD3k+EkHKNkjeUHmQtj6dgw5g3hEQWamoIIeUOX+NeT28ovTDmDSHRB4UaQki5wkzj3vR0YM8eSUDas0f6TgiJHA4hhIh0I8LFqVOnUK1aNRQVFaFq1aqRbg4hJEjkYHnJycCZM/qD5hUWSoKM75LRnj3UsBASzeh9ftOmhhBiK7Kzvb2OAMm2ZcaMwJoSLeNeRhYmxP5w+YmQKMWOQd2sbrOvG7WMXndqLRfucMWcseN1JcQuUKghJAqxY1C3cLRZSdMio8edWs24FwhPzBk7XldC7ARtagiJMuxo9xFKm40s+SjVo6c+3zoKC71duHNyJEHDl5wcySsqmLbqaXu0X1dCogW9z29qagiJMuwY1C3YNhvVXPhqWmS03KmV6vB14V6/3v8435gzoWpZ7HhdCbEb1NQQEmW88gowbpz3tmh/ow9GC2HkGDVNS1IScPasetA8pTqcTmD1aqBTJ/V9ACAzs+w6mKFloaaGkOChpoYQG1JYCDz9tP/2yZOj+8EXTCA6vZoLLU1Lp07aQfOU6nC5gC5dyjQtanY6nTqVGfWuWhW6loXB+gixHmpqCIki9Np2WEWoLs2+tiqB9g2kuQhVu6HHBgdQruPBB4H335e2OxzSds/ZMlgti1If0ZWcEG2oqSHEhgSTNdosF2EzPHOMpBvQo7kI1Q5FrsO3T+Vy5s+X/vdsh9Mp/fbee2V1y8KM5z4ZGcEJIL59RI8oQsyDQg0hUYTSQ9jlAhYvVt7frAeib/wXq1yafQmUZsAMIS89XbKhURJsxoyR+g2Q6p83z1sb44kQkvbG4ZD65+mn9fW3ltAZqX4nJFahUENIBMjLA6ZOlf76kpbm/WAVQvlBl5dn3gMxkp45Wtodo3YoakJep07KXlNAWb8dPAgUFKgLNXFxUhny73r6O5DQSY8oQszFVkLN/v37cd9996FWrVqoXLkyOnTogPVKvpiERDHDhgGdOwNPPSX9HTbM+/f8fP8Hq++DLjsbuPpq8x6IahqRpKTIR7/VmzQykNZDLmfqVP9jS0sl4+GnnlJvxw03BL4uRtoDBKeJIoSoYxuh5sSJE+jevTvi4+Pxn//8B7/++iteffVVVK9ePdJNI0Q3eXnA7Nne22bP9tbYBHrQyQ9LJY1CsA9EJY3IffdJD3o9S1tWh/7XY6ujR+uRkgL076+8FKUWqVjmhx/KDIZltPpbb3voEUWIedhGqJkyZQoaN26MWbNmoXPnzkhNTUXv3r3RokWLSDeNEN38+KPy9m++Kfs/JQWYMqXswev7oFNzQXY6Q3sgempEcnOBf/1L39JWtBi6agmDnkKXryChJOAoUVoqaXL0CiB6tTB6NVGEEB0Im3DZZZeJJ598Utx9992iTp06okOHDmLGjBmax5w/f14UFRW5PwUFBQKAKCoqClOrCfFm7VohJB2L/ycrS4iCAiHGjhXC4ZC2ORxCZGZ6l1FQIITT6X2s0ymVbRbLlim3MScncFvi4qTtkWDmTKl+uR0zZ0ofuY1Op/RdbntOjtRvvueg9HE6pWPk4/Sco1J7iL0oKJDuh0iNaSJRVFSk6/ltG6EmISFBJCQkiGeeeUZs2LBBvPvuuyIxMVHMnj1b9ZiJEycKAH4fCjXEbIxMfEOHBn6ABhISrH5Y6hVW9Ao/4cRT6NB7Hr79KQuVvkJnqO0h9kJNICbhJ+aEmvj4eNG1a1evbY8//rjo0qWL6jHU1JBwEMzE9/bbxgQbJSHBzIelklCmR3CKNk2NL0aELs/+9Dx3p9NfW0Zin2gf2+UNvUKNbWxqGjRogDZt2nhtu+yyy7Bv3z7VYxISElC1alWvDyFmEmyckdtu02/LoWaMaiTQnRZqNjF6bD0iaeiqxzjZiHeRZ396nvvevf65uEjsQ3d7e2IboaZ79+7Ytm2b17bt27ejqRw5i5AIEOzEJxsDByJU419PlISAQEKZr+CkVEYkDF31GierCV1AYIFIPnc9+5LYg+72NiVMmqOQWbt2rahQoYJ46aWXRH5+vvjkk09E5cqVxccff6y7DL3qK0L0EqqKOjPTe+lKtuWIi5MMhs1SdastkRlZnokW+4Jg+tx3aUnveUTLOZPIQEPv6EHv89tWCS2//vprPPPMM8jPz0ezZs0wZswYjBgxQvfxTGhJrCA7W9JulJaWaQL0aCvkJIbJycDZs2VvgHoTQvqWo5YMUSsp5MGDUgBAX9aulaLw6inDs069iRlDSeAYStJPIwkyQ02mSeyD1ng0kqSVWIfe53eFMLYpZG699VbceuutkW4GIV6kp0upDYxMfNnZZcs+Tqe0RCI/kI1MnL7lTJkCjB3rvY/WEpnaK83Zs/rL8EzM6NmWjAygY0f/B4XSuRtZspKXBXyFDT3LAnrOI5h9iX1RGo9pad5CDq+3jQiL3ihK4PITiQbM8qpQKgfQH9fGiMtzoP3U2qIUG8aMcw92WcBI/fR+iX2UrrHDwSXHaCTmvJ8IiRVWrTLHq0ItsvCECd5GrbKxrGeIfyGkzN96vZcC7afWFsDb+Ngsj5JgjZO1zsPXCJopDGITz+usNB6FYNZ0O2Mrm5pQoU0NiTTZ2cCIEf7LPsHYaijZfMj42pcEsg/Razegtp9WWzzb1LJldNip+J6H1pIYbSpiB6Xl2qefDpz3S4+9FrEWvc9vamoICRNqiSiD1QCouYU7HP72JYE0JHpj3qjt56vV8EW2eYkW7YfneRh1ayf2ROk6T5gg2X555gEzkrSURB8UaggJE2pLNHPmBB/bZdAg/22+kzJgXcwNT1W+55JQVpa64BLuuDaBgvQxyFr5QO06d+rkHWjx/fcjL3ST4KFQQ0iYUBMsunYNvsz8fP9tLpf/A9kKDYlSADxZqzF2rLbgEi7th54gfUrXBQDy8oKrU0+kYxJ+tAR7tWjSzJpuQ8Jithwl0PuJqOGb+8iqzLxmB/My6qFjVr4oO3gGGWljVpa+RKK+5SvlyzLbcyaWs0SH+9wYTM++xFxCSzOgUEOU8H0QDR1q7MFkdGI2O2tzJCbqcGXnDuWhZ6SNRs9HSXixQtDzrScrK3YEnEhFa2bWdHtCoUYBCjXEF634KnoeTNESRj/cE3U4NDWh9m1mpv5raUb8mrlzzRX09Mb+CRdmalXsoOkj0QXj1BCiA634KjJqRqPBZuhWIlQ7DCttVJTaZrUXU6h9W1goebb4kpGh3EYj56NmcOpwmGuMrTf2TzjQm0BULzTOJlZBoYbEDIWFwLx50kfvZK9mJOqJ2oPJrInZ7AeGmWi1zUqDylD7Vk0g6NhR/Ri956Nl8G2moBdobJaWAvPnWy/YmCm8yzADNrGMMGmOogIuP8UuM2eWZbiWQ53rtYXJylJOIxDIRsXokoWS6j6a1fBqbVu71nq7jlD7xep+1bJjMnMp0LMetY/VS1FW2U/RaJcYgTY1ClCoiU3UbA/k/EZK+NprKB07b17gB5OeiVnLNiRcBrfBoNY2WXi0+mEa6kPP6odmuOyY5HoyM9UFHCsFYSsFRBrtEr3ofX4zTQKxPTk50vKI2m++4c31hPRXO1YJrTD6etITREPaACX09JPVbQ01RUGspTgoLJSWnMaM8f/NylD+2dnSklNpadmyWrTHb5FzO/lmiSf2hGkSSLlBzfbA6dRvC+OLkfV9LSNdPekJoiFtgBK+bVPq42CNO/UaRodqAG30+HAGzgumrpQUoH//8NujWB2Qzux+D2SnxgCJMUxY9EZRApefYhfPJZ5ANjVK6nSnU58djVH0qu6jWQ0vt23tWnOWIaLFDd6XcLYr1Lqi1R4lGLdvtb4I1oU80D0XreOPaEObGgUo1MQ2BQWSHUwgWxhfo2LP4GmegoVZcTmi9QEUDKGei1n2GWZHog2nwbaZfRCMIGxltGyjwoJaX2RmepeVmam/zVp2amYJ5iT8UKhRgEINUdPS+Aoynh5RZrzNRbMmRkbvwy6UczHDMNqKN+1wGmxH0jjcKi1FsIJaIGP0QJ5eSmNWS1BSKzcaDPOJNhRqFKBQU36RJz+tqK++S1jl6W0uXCr5aHXVtqOmJprqDVZQU3vJUCrLt81aY9ZXo6gUtqG83NuxAiMKE/InnkaDgwZJkV89iYsDkpK8A4z5UloKvP669W2NBFYEV1MjVMNoqyLRhtNgO1LG4VZG8VULppeUpG6QK3snZWR498WUKYGDDubmao9ZX8Pmq65SvredTmDyZKkdNBqOEcIkZEUF1NTENnpV0Q6Hv12I2pum2jKVWe2LBiKxHBKKPYiVWo5wLhPGWr4uX+2IVmJYpUSdnn0RSGtqNM+WmkboH/+g0bBd4PKTAhRqYhc1VbTaA3vePH+j4EBq70CTppbAEs0eF9Ec1ViJWDK8DjfhCkioZZCrd7ypCS5jxwY3Zn3P3dMY2Q7jvrxDoUYBCjWxidYEF8gw2BOlrM56JrxAAosRt24rNDl6yrWboGAHw+toJRx9p6X906sZDHTvBjNmPc89mqN5E38o1ChAoSY2GTtWe3LSmxdK7c1Qa9LUI7DomTyt0uQYKZeCAjELoy8aWi8MWoJLKGPWbhrK8g6FGgUo1EQnoWgoCgqU3TQ9J6dQ1d0TJ6q3TY/AEqj+WPDoIcQXLYHEiJZFSXBhDKnyB72fiC0IFM48EPn50uPal9Gjy7xJ9Hp9dOvm7xnlcAAPPqjumaLm9eEZsj6Qt4tVXilWersYgSHpyydaqRWMpF3wTXUR6pyht43EnlCoIRHDDFfi5GTl7QMGlP2vR/AApEnz/ffL9nU6pe9arrZ63XPlyXPePODTT4G0NOPtM4pV5RrBzAcQiQyhCKVqubdkd26jiUbNmDN8zyfU/GIkuqBQQyKGGZqEM2eUt589W/a/UmLGjAzlSSw9Hdi7V5r09u7V9+am9rbnO3kuXizFyRk40PsBb1Xckkgnywxn/BtiDVYIpaGUGeqcwUSX5YAwLYdFBbSpiS7MsPnQY68ir717hkkPlE+moECysZk7V7msQPga6OpxH7XKUDdSBsD0LrE3VthkRTKidKBjoznsAqGhsCIUaqIPMwz1lMooKJC8ojwnKb35ZJS8pbQCifliJPR7LD/gY9VQOVqDKJqNFUJpqGWqJaMNte5YHauxhN7nt0MIJTPL2OTUqVOoVq0aioqKULVq1Ug3h/xJYaGkPja6vu5JXh6wciXQowfw88/AiBHKBsRqxMVJS0cA0KRJ4GPl/ZXam5Mjqbd9cTq9VedaZcQK2dnSklNpadnyl52NMbOzy5bUnE5pec8u5yPbsVxyib4xV1goLdGYOWZDKVPpWKdTWiYO9Xzy85Xv2Zwcyd6GRB69z2/a1JCowKho7bn2nZ0NdOkCjBkj/TUq0ABl6/Jq3lRq+yuhZqA7ZUrk7Fv0YIU9QSx5l9jZRigYOxYrbLJCKVPJnsbl0m9Po1V3NBjVE5MIi94oSuDyU/QRzDq27zFKKmWjn7g4KbT73Lnqy1R6VdO+S1+ey2rRGuBOT1Tk8rDkooVdbYTMsGMxe8wGU6ZaKpOsrMDHeY5dtboZsya6oU2NAhRqootgJlu9OZoCfXr29P7erVtZuQ5HYMFGbSL1FQ7kPDXRDA0o9WFXuwu7CmNKKKUy0boGRsdutL50EAbfIzZAyz1TbSlE6RglfIPoeeJ0Aj/+6L1t1aqycoWQjn/nHeDZZ5XL6NjRf5vS8sS0aYHbGmkCXQe7LrmYTaRd5IMllpZWlO47taXgYMYuY9bYH9sKNZMnT4bD4cCTTz4Z6aaQIFGbbPPylNf/CwuBI0e0BRZA+v3vf1ffb8SIwIKRywW0bi3tq/eBEC0RfI2SnOzfV/I52vWcrMKONkJ2FcaUMCKgceyWT2wp1OTl5WHGjBlo165dpJtCQkBpss3IACZM8H+7euUVScAZODBwuVOmAJMnqxv89u7tPzH6Ik+URh4Idnwjlo2sPfuKBpTaWPU2b2XgNzsKY0rE+v1ITCBMy2Gmcfr0aXHJJZeIJUuWiJ49e4onnnhC97G0qYlOPNex1db/9cZ9eecd9TI81999jQKHDjWWDVjNcNZOxoZq8XTWrvXez07nZFfsYrckj/u1ayNrOK7X9oVjN3aI2Tg1Q4cORc2aNTFt2jRcd9116NChA1577TVdxzJOTXSgFS9DLRaFHjsaOWYF4F8GIC2xPPUU8MQTUr2+8XH0xssJFKvEjLg74UAtno5SbA67nJMdsSIejBV4jnsZK2L1GI2nE6isVauke79r1+jqT2IM3c/vsIhYJjFnzhxxxRVXiD/++EMIIQJqas6fPy+Kiorcn4KCAmpqIoyeN1Lftyu1FAOZmepvYZ5lOJ2St5MZb8J29YBRIpbOxc7YwTtJy+vQzDFjpsZKrSyGJ7AnMefSvW/fPlG3bl2xadMm97ZAQs3EiRMFAL8PhZrwI+dS0vsQ9VUvq6mRtdTQnrmezJqI7fAAMgLV85HHDsKl1pKuWePfzH5QK8vzBSmal/mIPzG3/PTFF1/grrvuQpxsIQagtLQUDocDTqcTxcXFXr8BQHFxMYqLi93fT506hcaNG3P5yUKUVMdKamtP9IYiN7IEoqTSD7beQOVG41KBEbi0FHmiPZ2E1v1k1vg3shwabFkOh79RvJ3v3fKE3uWnCmFsU0j07t0bv/zyi9e24cOHo3Xr1nj66af9BBoASEhIQEJCQriaWO5RsjVp1047bYERb4SUFP2TT6B4NnK9RtfvZe8L3weQnSdFI/1KrCE9HUhLi17h0nfcy5g5/tet898WrLeS7PkUyDZPdvGOtv4mwWMbTY0SNBSOHpTe5OTYJ1oCjVVvpIHeLN97T/o/2OSE1G6Q8og87pOSgLNnzRv/avdrVhYwdmxwZfpqvzIygKefji0ta3ki5jQ1JLpR0owEEpfnzAH697emPUoalcmTgU6dyt78PCdROR5OWpp+jQ0nQlLeMDLujWhB1TSrShGE9aKk/apRI7a0rMQfWws1y5cvj3QTyJ8kJxvbPy5OcrG0Ei2Vfk4OVdGEWEWgsAe+KC0XmREoz1cIi/ZlPhI6towoTCKPb/TTM2f0HxvONyS16K+MNkqINQSbcylcqRyY3ym2oVBDDJOd7Z+bSUlI8CQuTlofj5Yw7bGUD4eQaCLYnEuxksqBRBZbGwobhYbCoaPl0rx4sbrr9rx5ZfYzZkYMDRUa/BJiLrEY9oBEHr3Pb2pqiCG03sLS04HVq5UzPsv2M0pankhCVTQh5kItKIkkFGqIIQLZovz8s/dvDkeZ+/S8eVLMGiNr7YSQyBFs5vBQl5KszFhOYhsKNcQQWm9hsoGg54KmwwEcPy5pZQYO9Hfz9lxr50RGyhvRPOZD1aoGqwWNNm0usRe0qSFBoWSLohaaXAslexwrMv8SEm0YdXsOJ5Gyi6E9DlGDNjXEUpTewgJ5QPmiFNkX4LIUiX2CcXsOR5tkrVGwHkyhEql6SexgWKiZPXs2vvnmG/f38ePHo3r16ujWrRv27t1rauOIvUhJAfr0Cbyf0wm8807ZWrueiSya1fSEGCXaHt6eSz5NmgCffaZs8C/nS7PqXmT8KBIqhoWal19+GZUqVQIA5ObmYvr06cjMzETt2rUxevRo0xtI7ENhIbBkSeD9XC7g0UelJScg8ETmu8b+yisUcIi9sfLhbVTo8NUaCSEthQFlgo2sVV282Fp7F3pOkZARBqlUqZLYu3evEEKI8ePHiyFDhgghhNi8ebOoXbu20eLCSlFRkQAgioqKIt2UmKKgQIhly4SYO1cIaUrU94mLk44VQoiZM6Xv8vaZM8vKdjqVj3c6y/YjxG6ojflQy5TvF733x7Jl2vfovHnSfah0L3rew2ZSUCBETo41ZRN7ovf5bVhTk5ycjGPHjgEAvv/+e9xwww0AgMTERPzxxx9mylvEBmRnS+rqXr0k7yZflbUWnup2TxfQ3FygeXP1tX2ZaLBDICRYzI6gG6ydjpYtXGkpUKeOpCkJ55IZ40eRYDEs1PTp0wcPPvggHnzwQWzfvh233HILAGDLli1ITU01u30kiiksBB580NtNWwj9xsJOp7e6PSUF2LkT6NKlTL29bp12eTQiJHbGzId3sEKHvOSjdJ95LonR3oXYAcNCzVtvvYWuXbviyJEjWLBgAWrVqgUAWL9+PQYPHmx6A0n08uKLytvlN8S//137eCHK7GoA5TfNZ54BpkwpW2P3hZMqIRKhCB3p6cDevcDYseoxqPLzve9F2ruQaMRwnJp9+/YhJSUFTp+7RwiBgoICNGnSxNQGmgnj1JhHYaG07KQ1erKypL/jx6vv5xmDQi3OTU6ONDHv2AHk5UmCTmlp2aQaLbE9CIk02dnSC0Uo94dvDCrfeDoZGUCnTubnS4umnHAk+tD7/DYs1MTFxeHgwYOoW7eu1/Zjx46hbt26KC0tDa7FYYBCjXnMmyfZ0GjhdEpvf4BkJ7N5M/D88/775eRIKni9gbeYhDK88GFjL8y8P8IVDC+aAxGS6MCy4HtqMtCZM2eQmJhotDhiE2Q30bw8YORIYNCgwMe4XNLkmpIiZegeMUJbPa7XnZNGhOGDIevtRzTY6RghGgMREvtSQe+OY8aMAQA4HA48++yzqFy5svu30tJSrFmzBh06dDC9gSTyeL5FGcHhALZuLXtjlIUWX/W45+Sbng6kpVETEw2oPWzS0nhdyguynY6vpsZMOzYtwYnjjBhFt1CzceNGAJKm5pdffkHFihXdv1WsWBHt27fH2LFjzW8hCRtKywy+DzYjCAE88ogUaO/99yWBRY/QIgtAJLLwYUP0vIiESjgEJ1J+MGxTM3z4cLz++uu2tEmhTY06amvawSSpVIJJ6ewHkwsSGavt2MwwcCaxjWWGwp4UFhbC4XCgUaNGwRYRVijUKKP18AL8f/PlhhuApUu1PaGAMoNgYh/4sCHhgg4ARAvLDIVdLheef/55VKtWDU2bNkWTJk1QvXp1vPDCC3AFs0ZBIk6gZQZP410lfvhB+qsVTZjqZHtidtRbQtSgAwAxA902NTL/+Mc/kJ2djYyMDHTv3h1CCPz000+YNGkSzp8/j5deesmKdhKLKCwEjhzx3+4Z7dfTDiYpSXq4HTsm2cp4JsGLiwPmzAH+9z/g5ZfLNDdOJ4N02RnaOBFC7ILh5aeGDRvi3Xffxe233+61/d///jceeeQR7N+/39QGmkl5XH7SijGi5dXkcJQZ9yqhZmszdiwwdWpZmX/7G/B//8eHIiGEkOCxbPnp+PHjaN26td/21q1b4/jx40aLIxaiFWMkkFeTENLveXnKv6uFZH/1Ve8yZ84M7RwIIYQQvRgWatq3b4/p06f7bZ8+fTrat29vSqNI6AQKaKWV/VrG5QKuvlpKd5CT4x0MSylQ3ujR/sbCTDhJCCEkXBi2qcnMzMQtt9yCH374AV27doXD4cCqVatQUFCAb7/91oo2kiAIZPybnCwtMQVafBRCyt0E+Icv9405A3gvPQE0ECaEEBI+DGtqevbsie3bt+Ouu+7CyZMncfz4cfTr1w/btm3DNddcY0UbSRBoZezNzpY0MEad+V0uSfvjq7GRPRb0pjkgJNqR04IwVD8h9iKkODV2o7wZCivFGElLC5xdOxDz5km5nNSwIt4EkyqScMHkioREH3qf34aXnwDg5MmTyM7OxtatW+FwONCmTRs88MADqFatWtANJuYjLw/l5kpCTLduwKpVoQk0ejDbBZgPGRIumO+KEHtjePlp3bp1aNGiBaZNm4bjx4/j6NGjmDp1Klq0aIENGzZY0UYSAosXSxm1Bw6UPKCWLg2tPIcD6NrVnLbpgRl8STgJR1ZqQoh1GBZqRo8ejdtvvx179uzBwoULsWjRIuzevRu33nornnzySQuaSIKlsBAYMcJbIFBzsa5fX3n72LFltjlOpxS7JpxvrHzIkHCiZYtGCIl+gtLUPP3006hQoWzlqkKFChg/fjzWrVtnauNIaLz+uv9Sk5ob96FD/tvi4oAnngD27pWMJvfuDf+yDx8yJJzQ2J0Qe2NYqKlatSr27dvnt72goABVqlQxpVEkdAoLJfdqX7TyM/nuN3ly2WR++LBkjxPuZR8+ZEi4Yb4rQuyLYUPhgQMHIj09Ha+88gq6desGh8OBlStXYty4cRg8eLAVbSRBoBZcTwj98WkmTAC2bAE++sh7/5kzwzvR+8bDoUBDrIb5rgixJ4Zdui9cuIBx48bh3XffxcWLFwEA8fHxePjhh5GRkYGEhARLGmoG5cmlu7BQMgy2KnF6QQEnfUIIIeHBktxPpaWlyM3NxcSJE3HixAls2rQJGzduxPHjxzFt2jRLBZrJkyejU6dOqFKlCurWrYs777wT27Zts6w+u5OSAgwZYl35ubnWlU0IIYQEgyGhJi4uDmlpaSgqKkLlypXRtm1btGvXDpUrV7aqfW5WrFiBRx99FKtXr8aSJUtw8eJF3HjjjTh79qzldduRwkLgX/9S/93h8DfAJYTEPoyWTGIZwzY1bdu2xa5du9CsWTMr2qPKd9995/V91qxZqFu3LtavX49rr702rG2xA4ESVj70ENC+PfDII8bL9oxVw0i/hNgHBrIksY7hd/WXXnoJY8eOxddff42DBw/i1KlTXp9wUVRUBACoWbOm6j7FxcURa1+kUXKF9uS994BHH1X3htLyksrMlASY7GzJbqdXL+nvK6+E1uZwwzdWEsv4jm8GsiTlAmEQh8Ph/jidTvdH/h4OXC6XuO2220SPHj0095s4caIA4PcpKioKSzsjzcyZQsTFCQFIf0eOFMLhkL5rfeLihMjKKjtW/jidQmRmSmUXFEjffY+Vf5cpKBBi2TLpbzQxc2ZZ+51O6TshsYLS+F62TPl+z8mJdGsJCUxRUZGu57dh76cVK1Zo/t6zZ88gxSv9PProo/jmm2+wcuVKpGiseRQXF6O4uNj9/dSpU2jcuHHMez95LgkBZa7Q+fmSVkUJ2c1bjgOTnl6WmDIpCTh71tudOidHuSynUwrSJ2tyolHVreQZFhcnxSThEhqxO2rjOzcX6NKF457YE8sSWoZDaNHi8ccfx5dffon//ve/mgINACQkJES1i7kVaAkSBw+qx6hxOIC5cyVbGblbtWJ1yMtbvnY7LldZCoNoTQyolXoh0m0jJFTUxvfZs9J88Le/Sd8ZyJLEIrbxfxFC4LHHHsPChQuxbNmysBsq2wGtNfPsbOktTU0v53IBderon+BSUoApU/y3yykMojlnE1MvGIO2R/ZCa3wzWjKJdWwj1Dz66KP4+OOP8emnn6JKlSo4dOgQDh06hD/++CPSTYsa1ASJ3FxvYUeJYB7qY8dKRsPyBOr55hfNggNTL+jH1xg8OzvSLSKBCDS+U1KA667jeCexiWGbmkjhUHHHmTVrFoYNG6arjFiOKFxYCIwaBSxa5P/b228ru27LS1Gh2rvItje+KQyys/1V3dH0ZqjWbiJB2yN7w/FNYglTbWq+/PJL9O3bF/Hx8aY10Cg2kb0iQnY28OCD6r/Xru1v/+J0Bs7/pBc125toz9nE/D7a0PbI3nB8k/KILk1NXFwcDh06hDp16iAuLg4HDx5E3bp1w9E+U4lFTU1hIdC4sfrvsjfSZ58BTz8tPaTi4qS/nleeb+DEF2pqCCHRgqm5n+rUqYPVq1cDkDQmaktBJLwUFgYOeJeRASxeXCbQOBySVsdXlNUy4qWhaPmEtkeEELuha/lp5MiRuOOOO+BwOOBwOFC/fn3VfUtLS01rHFEn0JITAPzjH5JBYOfOZduEAN5/3385Ss2IN9KxZpiGIbJE+xIiIYR4ottQ+LfffsOOHTtw++23Y9asWahevbrifnfccYeZ7TOVWFl+CrTkBEjeKn/5i7omZ+xYYNo0bSPevLzIBuuKtEBFCCEkOtD7/Dbs/fTcc89h3LhxYcnMbTaxINTIS06vvx58GbKdDaD+Bp6dDYwYoWxMnJMjaYCshPYchBBCZCyLKDxx4kQAwJEjR7Bt2zY4HA5ceumlqFOnTvCtJbrw1FyEwpgx0l+1ZZ28PKkeJYEmXLFm6HlDCCHEKIaD7507dw4PPPAAGjZsiGuvvRbXXHMNGjZsiPT0dJw7d86KNhL4RwsOFqcTqFtXPaBadjZw9dXK9Tid4TMUjebgfYQQQqITw0LN6NGjsWLFCnz55Zc4efIkTp48iX//+99YsWIFnnrqKSvaSKCsuQiGESPKPKEA71QKsuCkpKFxOoHVq8Nn00LPG0IIIUYxbFNTu3ZtfP7557jOx6giJycHAwYMwJEjR8xsn6nY2aamsBBo0sR4wDyHQxJaAElIUBOMcnKkstUyb0fKSJdRUQkhhFhmU3Pu3DnUq1fPb3vdunW5/GQhcgLJ8eONHffAA9LH14vJE89lHaXIw6tXA506BdfuUGFUVEKiC4ZZINGM4eWnrl27YuLEiTh//rx72x9//IHnnnsOXbt2NbVxxJtx44CsLGPHaNnIAN7LOkpLPjNmRE6gIYREF0xwSqIdw8tPmzdvxk033YTz58+jffv2cDgc2LRpExITE7F48WJcfvnlVrU1ZOy8/CSjJ+ieHuLigDlzgK5d/d+2uORDCPGFYRZIJLFs+emKK65Afn4+Pv74Y/z2228QQmDQoEG49957UalSpZAaTbSRDXm1kDNvayFrZ/r3V66DqmVCiC8Ms0DsgGGhBgAqVaqEESNGmN0WEgA9HlCBBBqnE8jNVV5SYgRfQogacpgFPelVCIkUhm1qSORQit1iFJcLOHvWf7tvHBxPV29CCGGYBWIHKNTYCNkDKpQk6WpvVlqqZUIIASTN7Z49UgiIPXuoySXRB4UaG5GdLQXOk5eY7rsvsIDzl794f7/vPuU3K0bwJYToISVFyv1GDQ2JRijURCmFhdLbkLz8o5QmYc4cSXMjq4OV2LDB+/vHHysvKVG1TAghxO4YFmqaN2+OY8eO+W0/efIkmjdvbkqjyiuyIPPKK96xIG67TdqmtDzUqZOkBp43T9+ylNaSElXLhBBC7Ixh76c9e/agtLTUb3txcTH2799vSqPKI1lZytGCXS7g66+Vj3E6gcOHpSWi/v2BU6cCJ70MtKTECL6EEELsim6h5ssvv3T/v3jxYlSrVs39vbS0FEuXLkVqaqqpjSsv/N//AS+9ZPw4IYCBA73dr9u1kyIIK7l2c0mJEEJILKM7orBTw5c4Pj4eqampePXVV3Hrrbea1jizicaIwmoaGqN4RvbMzpbcsUtLpe2TJ0vLVEoRghlsjxBCSLRjekRh159rGs2aNcO6detQq1at0FtZzikslLyZzMAzsmd6OpCWFjjVAYPtEULCDV+kiJUYMhQuKSlBamqqoqEwMU5+fuAIwHrxtZUJ5HbJYHuEkHDDhJjEagwJNfHx8di8eTMcoUR/I27MiBAMSGVkZBh762GwPUJIOOGLFAkHhh+p999/P7IpXpuCb2yYYHG5pGUsI5eFwfYIIeGEL1IkHBh26b5w4QJmzpyJJUuWoGPHjkhKSvL6ferUqaY1rjwg27/k5kqeTMEuR8lvPWlp+jQ2skDlaVBMzyhCiFUwISYJB4aFms2bN+Mvf8be3759u9dvXJYKjpQUoHbt0O1rPI2F9aDXoJgQQkKFL1IkHOh26Y4FotGlW6awUDKc0wqcFwhPt26teuh5QAiJFIWFfJEixtH7/GbupyhBfosJ1nDY4ZDi0WhNEvQ8IIREGibEJFYSlKYmLy8P8+fPx759+3DhwgWv3xYuXGha48wmmjU1MvPmSbY1waAVa0ZJE6RHs0MIIYREGss0NZ999hm6d++OX3/9FYsWLUJJSQl+/fVXLFu2zCt1AgmObt2C19ZouUgG8jzwzQpOCCGE2A3Dj8+XX34Z06ZNw9dff42KFSvi9ddfx9atWzFgwAA0adLEijbamrw8YOpU6a8ejLh5K9llq7lIarlwc1mKEEJILGBYqNm5cyduueUWAEBCQgLOnj0Lh8OB0aNHY8aMGaY30M4MGwZ07gw89ZT0d9gwfcelp0vLQvPmqWttxo4F1qzRH2vGV1iSPQ8AewbEomaJEEKIL4aFmpo1a+L06dMAgEaNGmHz5s0AgJMnT+LcuXPmts7G5OUBs2d7b5s925jGpn9/b0HE6QRGjgQKCqREmJ06KQsqajYysrCUkyP9TU+3Z0AsapYIIYQoYThOzTXXXIMlS5agbdu2GDBgAJ544gksW7YMS5YsQe/eva1ooy358Ufl7T/9JAkjegkUS8ZorJmUFO997BYQSy3Uut6gg4QQQmIXw5qa6dOnY9CgQQCAZ555BmPHjsXvv/+Ofv36hSV9wttvv41mzZohMTERV111FX5Ukx4iwbp1kvpg3TrUrKm8S/XqxotVdYH8s76UQ+uCdpFUW5ZSqwvr1hmvJBhU6rNEsxTOc4uSfrR9XeGuL9znRggJCsOampoeT2un04nx48dj/PjxpjZKjblz5+LJJ5/E22+/je7du+O9995D37598euvv0bUSLmwUNJsFBdfCWAJoKGJ+cc/gHfeAVq1AlJTJSHnp5+AnTuBw4elcpKSgF27gL59pf22bQMSEoDiYmnpae9e4Oabges35+KSnO1I+de/gI4d3W3xDa4nb0tOBs6c8Q+8p6bt8Srro49QmLMdq/75C47d3hG1akmeWgcPSlqpa64BGjQAVq2Sju3WTTtDuFZ7AAAffYS8nNP46pEjaDAcuO02afORI/6aJYcD2Lq1rO15eZJgduIEMHw40KFDgHZ99JG0Jvevf+HrQx3x7bdS/3boEDhQoZFghoWFQP7L3tdM63i13zy3A8r75OX9eV3WLEenP89NHiNGylHab9Uq4NgxoFYtoFkz6RomJwNnJvuPRyMUFkpl79gBnD8v2aElJfmPZfe1/O5LpKicm1L7NcdbIDzGSDDnFgi918J335SU4M7PSH1qx+u515Vwj81rvLXWeXnAJ59I53DVVWX3fLD3YCjjW+m8As2t69aVybwdOwKVKgFffQXUqCFpk5U09PLxZ88CP/wgbbv3XuD33yWbyuRk4PhxoKREmstuvVW9LWr9qtZ+z7q3by87LpQArVER3FUEwcWLF8X8+fPF888/L1544QXx+eefi5KSkmCKMkTnzp3FyJEjvba1bt1aTJgwQdfxRUVFAoAoKioyrU0zpxwVgEtISQ7C+ZHqdOKimFnlSSHWrxcz/2+3cDr/3O4UYuZM6eN0eh8r/6Z5XjOFR1kuMTRhjnCgVLENSh+HQ7kOzfbs2SPEunVCrF8vhibM8SnfJRwOl7ts3zLk7d26afebu10edYm6dYUARLcKazzqdPm3T+NcNPt0zx7va/PnNZv5zz1+1ytQ2Z7bHQ7p47vP0L+e9jqPofhAOsf166Vz3rNHVzla9fmPAf/xKNelh5kzlcr2bpO0T9l1caBUzMQDfueme7wFQmGMaNUVLHqvhe++TqcQQ4caPz8j9akd73mt1O51JYYO9W7r0KHK2z3LDuYeDHZ8q81hSvUojS2tj3yuSnXr/XTrptwWtX5V6yelcSOXr2tOU0D3fBgkep/fMFrwL7/8Ipo3by4qV64srrzySnHllVeKpKQkkZqaKn7++eegGxyI4uJiERcXJxYuXOi1fdSoUeLaa69VPOb8+fOiqKjI/SkoKNDVKXopKBACuGhoUFrxiUOJWIuOwunTFqdT/aaJi5Par3Ze/scZF9x861Au12NfNBICEGvRMWB9ag9APR+ns6wuubCvcLNmnXrORa1PC9DI/9qgxG+bfLxa2WvXak+CcXFCfPWV0rVyibXo6N5QgEYBy1Frh97x6NW/Ou6jQNfT6VTeR6orxXuj3vGmMv7dKA0430aESKA+9mynkeuhOhYN1KfWXsXroKM/165VrnPWrODOKZT7RO/4djqVy9OaW7U+a9cav5aBPmrlmFGXrvtE41roOVYveoUawzY1Dz74IC6//HIUFhZiw4YN2LBhAwoKCtCuXTs89NBDZiuS3Bw9ehSlpaWoV6+e1/Z69erh0KFDisdMnjwZ1apVc38aN25sapvy8wFAR0AZiylFBaxEd7h82uJyqeeS0rJDUbJbAYwnK/WtQ7lcj33/PguoUAE/okfA+oQw3Bw3LldZXXJh3+JmzTr1nItan+b//UP/a4MKftvk49XKXrlSOzdYaSnw7bdQOA8HfkJ36d8KFaT2BChHrR16KEUF7EBLqX8//jjg/vn5ga+ny6W8j1RXC+mLT30Bx1sgO6yPP/YaI15/dZ5bIAL1sWc7jVwP1bFooD619ipeBx39qWb+uGiR9nFqdYRyn+gd3y6Xcnlac6sWP/2k3vZgUSvHjLr02itGlRetUWkpMTFRbN682W/7L7/8IhITE40Wp5v9+/cLAGLVqlVe21988UXRqlUrxWPCo6mJ/MetqXF6v6HbTlNTIIRYvz48mpo/65I3WqqpKRD+18ZSTY3/tXNratav1/22HrKmZv163fdRaJqaRu5zCzyOA49/LzzGiNdH57npOXdqaoI7J2pqytpiVV121NTAaMHt27cXS5cu9du+dOlSccUVVxgtTjfBLD/5YolNzUwhImlTE4cSMdPxoBCAmPnPPSIurmxAyeu+8jbPwabHpsZdFkrEUHzo9xAOdKOprYFrtufPh8hQfOjTry6vFQClidXpNGBT41GXfDd2w0rFa6nWX159FKBPZ/5zj4hDidc1m4kHRNyfwo7v8Wple273fNB77iOtr/vY1Mgzzp8PY89yPG2UtNqh1u9q49HIg1/LpsZzLHvu48RFyabG59zUrpGR8e/GZ4xo1RUseq6p0r5xcdK1Nnp+RupTO97rOhiwnzBqU6M2LtX6w8h9orWf71yhVI/S2NL6KNm5GDkeKLOp8W2LHpuaQONGLl/vnKb3WpiF3ue34YSW3377LcaPH49JkyahS5cuAIDVq1fj+eefR0ZGBnr06OHe1+ykkVdffTWuuuoqvP322+5tbdq0wR133IHJkycHPN6qhJaFeQfRsnNlFCPZ5xf/pam6dYHmzSXr8ObNgapVgdxcSX139Ki0LTlZ8obq2xdo3VqyTK9YEbhwQfJ8KthRjJt2vIlejXeg5bAeSFn4huQWlZeHQqQoejHt2CF5kpw9qxzPRs2yf0fuEbR8NA0pqRVQ2G8UcmduwbHDpaiV+TS63loLBw9Kas7u3SXvp9xc6diuXbW9FVTbU1gomeA3boy83hPwzeyjqH9mB25dOhpo0AC5ucCgQf7eT2+/LXkGyN5PM2YAJ08CQ4dKXkyK7fKoC+npQHY2vs6/FN/d8S5uujsZHToEjv8jn0vAGEGFhSj8y+3YUbOz1zUr/HIDdpxtoHpNlMr23A4o75P39e/4afB0dG+8D52e6CZFKPxzjMg76ilHab/c3DLvp9RU4OyeI0gaOQRn66T6jUcjLhCFhVLZO3ZInn4dO0r3gu9Yzv36GDBhArqmHkTKw7cpnptS+7XGv2ajfMZIMOempxo918J3X9mLxej5GalP7Xg997oSeXllc4av99OcOcDp05L3k+zpE+w9GMr4VjovpXo8+379eukDSO1PTAS++UbycH3oIXWPpB07JI+vZcukbYMHS95Pn38OVK4szWMlJdJc5un95NsWtX5Va79n3Tt2lB2ne05TIJRjA6H7+W1UWnI4HO6P0+kUTqdT8bvT6QxSHlPns88+E/Hx8SI7O1v8+uuv4sknnxRJSUlij04vBCs0NW7OnxfC5ZL+d7nES88VK0raL79sTX3i/PmgiwpotW5iXbrQqG/ZMuU3mJwc8+synSjqR1vXFe76wn1uhBA/9D6/DcepycnJCV7UCpGBAwfi2LFjeP7553Hw4EFcccUV+Pbbb9G0adOItclNQkLZ/w4HWrauqLhbMJF6FX3/Peor3O9Afn5C0HEFAkbo9Tk3r+9WoFGf6RGQw3luUdSPtq4r3PWF+9wIIUFjePnJzli1/KREYSHQpImkR5BxOIB9+4wJHtnZZUKHwyH9/3//V1aG5+9Op7Tskp6u3S5PASknRwqU6ktOjhTFOBrJzpYEr9LSsgjIWudMCCHE3uh9flOosRCjAocncsTOwYOV3fHGjgUGDAC6dPHXWuzZoyw4KbUnLU1KCqm3jGjByrVbQggh0QWFGgXCLdQAwT18PYWPYFDSshQWqgsvixdT80EIISR60fv8NmxTQ4zhmxU7EL42LkZRsy/RCo5kNNM3IYQQEo1QqIkyVq0KTaBRzLCNwAa2RoUvQgghJNownCZh0qRJ2Lt3rxVtKfdkZ0sxWIJl8mT1ZaOUFMmGJu7P0DlaAhAhhBBiRwzb1Fx11VX43//+h549eyI9PR39+vVDYmKiVe0zlUjY1OhFyebFKHoMfGlgSwiJJIohKggJgN7nt2FNzfr167Fhwwa0a9cOo0ePRoMGDfDwww8jLy8vpAaXd8xIcKYngVhKimRE7BkRMydH+ksIIVaSnS29vPXqJf3Nzo50i0isYVioAYB27dph2rRp2L9/Pz744APs378f3bt3R9u2bfH666+jqKjI7HbGNIWFwJEjoZdjNAgdJxhCSLhQC/TJFypiJkEJNTIulwsXLlxAcXExhBCoWbMm3nnnHTRu3Bhz5841q40xjSxYDBwYWjkOhzEbGU4whJBwouWBSYhZBCXUrF+/Ho899hgaNGiA0aNH48orr8TWrVuxYsUK/Pbbb5g4cSJGjRpldltjjlDdtz1xOiW3bL1wgiGEhBPZA9OTkFKcEKKAYaGmXbt26NKlC3bv3o3s7GwUFBQgIyMDLT1G5v33348jZqynxDhm2NHIGBVIOMEQQsIJPTBJODAcp6Z///544IEH0KhRI9V96tSpA5dZT+sY5pJLpGUjM2I6+wokgTwM5AnGN5IwJxhCiFUw0CexGkOampKSEsyaNYuGwCaRkgJMmRL88bKmxVMgKSwExo2TkmnKBsBZWcoeTunpkgt4To70l6kRCCFW4+uBSYiZGNLUxMfHo7i4GA6Hw6r2lDvGjQOKioCXXjJ+bEYG0KlT2RuPUs4olwsYP176XympJiMJE0IIiRUMB9/LyMjAb7/9hpkzZ6JCBXtlWYjm4HtZWcCECcZsbDyD7ekN3meHDNyEEEKIJ5YltFyzZg2WLl2K77//Hm3btkVSUpLX7wsXLjTeWoJx44DBg6W15nXrJAGntFTSrtxyC9CiBfDaa97HeBoHz5unTyCSj1ETahjtkxBCiF0xLNRUr14df/3rX61oS7lHXgq67jopB5SnMV1hIfDGG/4JKfPygN699Wt4tDycPJevlJaqCCGEkGjG8PKTnYnm5Sc9ZGeXeSs5HMA99wCffqrtPXXZZcDWrWXfhw4FPvzQfz+l5SsuVRFCCIkGLMv9RCJHerpkHCy7gX/ySWB3cE+BBgA+/lg5ajCD8RFC9MB8cSSaCcrS9/PPP8e8efOwb98+XLhwweu3DRs2mNIw4k9hIfD006HFtVGzqZGD8flqahiMjxAiwyVqEu0Y1tS88cYbGD58OOrWrYuNGzeic+fOqFWrFnbt2oW+ffta0UbyJ2ZEIHY6AR/bbgCM9kkI0Yb54ogdMCzUvP3225gxYwamT5+OihUrYvz48ViyZAlGjRrFoHwWo5TawJdAIYRcLqBLF+WM3AzGRwhRg0vUxA4YFmr27duHbt26AQAqVaqE06dPAwCGDBmCOXPmmNs64oWsTdFCaWnK4fAWduQ3rHnz/N+yUlKkJaf8fL6BEULKYL44YgcMCzX169fHsWPHAABNmzbF6tWrAQC7d+9GOXKkihgnThjb/513gM8+8xd2SkuBgQMljydPrU12trRNTrGgpNEhhJQ/uERN7IBhoaZXr1746quvAADp6ekYPXo0+vTpg4EDB+Kuu+4yvYGkjKwsKUifER55BNi3T33ZynNdXGnN/KGHpFg4hBDCJWoS7RiOU+NyueByudwpEubNm4eVK1eiZcuWGDlyJCpWrGhJQ83AznFqCgulJJXBKMOcTila8WefSRoaJXJypLJ79VI+PlJeDoxwTAghRO/zm8H3bEJOjrLAYZSRIyWVsedVl4PsAer5o5xOYPVqKYFmuKD7KCGEEMBioebkyZNYu3YtDh8+DJfPE/D+++833towYWehRm/CykA4nVIAv2eekbQ28rq4LCwoZfr2PDZcggUjHBNCCJGxLKHlV199hXvvvRdnz55FlSpV4PBwq3E4HFEt1NgZ2UhPTpMQLC4XcPiwJBx45paSSU8H2rWT3L59BRvZ/iYtzXrBQst9lEINIYQQJQwbCj/11FN44IEHcPr0aZw8eRInTpxwf44fP25FG8mfyEZ6Tz4ZeF+teDZTp0p/1Vy3O3WSBCilMsIVl4Luo4QQQoxiWKjZv38/Ro0ahcqVK1vRHhKAlBTgqacC79e3LzBzpnIwPpcLeP11bdft9HTJhiZSggXdRwkhhBjFsFCTlpaGdevWWdEWopOUFHWBReabb4Ddu4E1a/x/czolbU2gcOeyxiZSggXdR6MDJjAkhNgFw4bC2dnZeP755zF8+HC0bdsW8fHxXr/ffvvtpjbQTOxsKKxEYSHw6qvAa6+p75OZCdSsWWaL43QCI0ZIwokvOTnAddcp16Nkf0NiH3qgEUKiAcu8n5waxhoOhwOloVixWkysCTWAJHA0bqz+u9MJ7N0rxah5+umyh5MQym7dZgstjDNjX+iBRgiJFvQ+vw0vP8nB95Q+0SzQxCryUpQaLheQm1sm0MjbHI4yexmrlpWYcsHeMIEhIcRuGBZqIsGePXuQnp6OZs2aoVKlSmjRogUmTpyICxcuRLppUUF6OlBQAKhlqTh6VNk921PICQUlmwullAtKdjuRhLYi2tADzd5wfJPyiK44NW+88QYeeughJCYm4o033tDcd9SoUaY0zJPffvsNLpcL7733Hlq2bInNmzdjxIgROHv2LF555RXT67MjKSnA448Dixb5/1a7tvRwUhNehAg+/kxWlqQFEsLb5iLa48zQViQwvrGR6IFmHzi+SXlFl01Ns2bNsG7dOtSqVQvNmjVTL8zhwK5du0xtoBpZWVl45513DNUXizY1nmjZQCxeHDhwn5qhsBqvvOKfYFMr5UK02GPQVsQYNBS3F4HGN+3ciB0xNaLw7t27Ff+PJEVFRahZs2akmxFVaL1Zy5GCr75aOSmm0ylFGi4s1DfRFRZKGhpfZG3MdddF71t+tGuRoo2UFPaLndAa34sXU4NDYhtbJrTcuXMn/vKXv+DVV1/Fgw8+qLpfcXExiouL3d9PnTqFxo0bx6ymRsbzzRooeyvLzw+cFNNzopPf6JKTgTNnvN/s1BJsyt5W8n7R+JZPTQ2JZdTGd26uf/oTjntiFyzL/TRmzBjF7Q6HA4mJiWjZsiXuuOMOXVqUSZMm4bnnntPcJy8vDx07dnR/P3DgAG666Sb0799fU6ABgMmTJwcsPxaR36x919VHjJC8nrTEWNmg98QJb48pQDp2yhRpyUk2IvV9I8zI8J4go/Etn7YiJJZRG99nzlBDSWIfw5qa66+/Hhs2bEBpaSlatWoFIQTy8/MRFxeH1q1bY9u2bXA4HFi5ciXatGmjWdbRo0dx9OhRzX1SU1ORmJgIQBJorr/+elx99dX48MMPNWPmAOVXUwPoy+qtFK9GRkv4ycoCxo6VhCbPoH5Tpkjb7UI0apEIMQvf8U0NJbEzlgXfe+211/Djjz9i1qxZ7oJPnTqF9PR09OjRAyNGjMA999yDP/74A4sXLw7tLDzYv38/rr/+elx11VX4+OOPESfH7jdArBsKe6K2PCQzcqRkY/PII8bLdjiAffvKJkoKBoTYA88XEVmDQ5saYgcsE2oaNWqEJUuW+GlhtmzZghtvvBH79+/Hhg0bcOONNwbUwujlwIED6NmzJ5o0aYKPPvrIS6CpX7++7nLKk1BTWAg0aaKubZHzRgVrUTVvHtC/f3DHEkIiB19EiB2xzKamqKgIhw8f9hNqjhw5glOnTgEAqlevbmpgvO+//x47duzAjh07kOJzF9rQzjkqYLcRUj6JRjs3QszCcEThO+64Aw888AAWLVqEwsJC7N+/H4sWLUJ6ejruvPNOAMDatWtx6aWXmtbIYcOGQQih+CHK5OdbK7h07Wpd2YQQQkgwGBZq3nvvPfTu3RuDBg1C06ZN0aRJEwwaNAi9e/fGu+++CwBo3bo1ZmolJCKWoxTiXkZeegpEXBwwdKh3OQ6HlGsq3G96DPlOCCEkEEHHqTlz5gx27doFIQRatGiB5ORks9tmOuXJpgZQjvirlS7Bl8xM6fjCQinGBSBpaMIt0DDkOwk3jLpLSHRhmaGwnSlvQk0gD6hAeKY8iNQETzdUEm4oRBMSfVhmKAxIAfHmz5+Pffv2+RkEL1y4MJgiiQUoBcgzoqkpLQVefx149VXJPsfhAN5/P7wTPFMakHCill0+mGSvhJDwY9im5rPPPkP37t3x66+/YtGiRSgpKcGvv/6KZcuWoVq1ala0kQRJSooU4Ve2iYmLAwIEYfbjlVfKDI6FkKISh9OuRck2KC6uLAUEIWaiJUQTQqIfw0LNyy+/jGnTpuHrr79GxYoV8frrr2Pr1q0YMGAAmjRpYkUbSZBkZwMTJpSp0TMygN69QytTiDL7mnAgh3yXQxMxpQGxEgrRhNgbw0LNzp07ccsttwAAEhIScPbsWTgcDowePRozZswwvYEkOJTU6BMmAM2a6fd+CqVuMz2V0tMlG5qcHOkv7RuIVVCIJsTeGBZqatasidOnTwOQogtv3rwZAHDy5EmcO3fO3NaRoFFTo589K9nFBEibpYrTqR2jJjtbMuzt1Uv6m50dXD2+pKQA113HhwuxHgrRhNgXw4bC11xzDZYsWYK2bdtiwIABeOKJJ7Bs2TIsWbIEvUNd2yCmoWQkLKvRr7sOqFIFGDjQWJlKb62erq8AjSxJbMCou4TYE8NCzfTp03H+/HkAwDPPPIP4+HisXLkS/fr1wz//+U/TG0iCQ1aj+yavkyfqbt30eULJtjidOvnnivF1fR0zhp5KhBBCIgfj1MQ4WsnrPIUSX2Qh5YknlAUStfgxLpd3eganE1i9WhKKCCGEkGDQ+/wO0rICOHz4MDZv3oyff/7Z60OiCy1blPR0YO9eaXnIl4wMICur7Dhf4181m53+/b3tdVwuoEsX82xrCCGEEDUMa2rWr1+PoUOHYuvWrX4JJR0OB0pLS01toJmUR02NHgoLgSZNvDUsnlF7fZeZRowA2rcHHntMfyA/RgG2L0wZQAiJNJZFFB4+fDguvfRSZGdno169enBY7R9MLEcpo7dnwDFf49/33ivbz+HQlw2ctjX2hCkDCCF2wrCmpkqVKti4cSNa2jAaFTU1ymjlV8rPD5w/qksXyW5GC6dTWuqiUGMfmHeLyIRDW0eNINHCMpua3r1743//+19IjSPRhVbAMaUIq74EEmgAYMoUTlR2gykDCGBd7Klw10HKB4Y1NUePHsXQoUPRuXNnXHHFFYiPj/f6/fbbbze1gWZCTY02ap5S2dllruFGkV3Cx43zrodvZNEPNTUkHGOA44zowTKbmlWrVmHlypX4z3/+4/dbtBsKE23UAo6lp0seUq+/LiW41IuSO7ceGw0KPdFBoFhHJPbR0taZNQ7CUQcpPxhefho1ahSGDBmCgwcPwuVyeX0o0MQuKSmSi3dBATBypL78US6XlJYBkASVefMkzynfiMOeOaKoho4umDKgfBOOBJ9MIkrMxLBQc+zYMYwePRr16tWzoj0kyklJAd55B/jss8D7yhNTVpbkMj5woLaXlVISTl+hR97PzISZRBvm3bIXZt4f4UjwySSixEwMCzX9+vVDTk6OFW0hNqJbN21tjcMBTJ4MvPsuMH68utu35xuZlhpanqizsqjJIUQNMzSdvkKRr7YuLc38lwpqBIlZGDYUfumll/Daa6/hlltuQdu2bf0MhUeNGmVqA82EhsLmMnKkd8waGb2xa3xtatQMBjMygKefVg70R4NCQiRCNbgtLJTs5qZOVbd5Y9wiEin0Pr8NCzXNmjVTL8zhwK5du4wUF1Yo1JhLYSHQuHHwxyvFrvH0tIqLk7Q9EyZoRy7OyZGWRwgpz+TkKMeU0nN/ZGdL9m6+TwNPoYheSiSSWOb9tHv37pAaRmKHlBRg5syyNze9GhoZl8vbw6GwEGjeHMjNlQyMW7ZUXpLyhAaFxM6Y6eknG9z6Ch2B7g/Zlk3p3vX0QqKXErEDQSe0JAQoS4qZkwOsWRM4UJ8nnhOupy1Aly7Azp2Bg//RoJDYGbM9/YI1uNV6cYiLAw4flgSfcHop0RmABIuu5acxY8bghRdeQFJSEsaMGaO579SpU01rnNlw+cl6xo3TF8tGnnDT0wOrtX2XpDIygI4d/YMEEmIXrFzKUQuiaaQtQJkjgBBl9jOAf9wis21qaLdDlDB1+Wnjxo0oKSlx/68Gk1sSPZ7+Tifw5puSFwUQWK0tB/8zMlETEs1YuZSjFkRTa3/PIItOp2RfM2NG2ZKUHF5hzx7pY9W9qBbWIS2N9z3Rh2FDYTtDTY21qL3xqSG/haWl0QCRlC+i0ejWU8OjlsjWaqP8UIydSWxjWUJLQgDlNW+1tXk1BZ78FgYw+BYpX0RjwDnPIIuRivLL6MIkVCjUEMOoGTiqTUhTppRN3r7IKncG3yLljWge85ESuqJR2CP2gstPxBB6jHo918QdDuD996Ulptxc/1QJkVa5E0LUMWp07HtssO7qodRLYhMuPxFL0DJwBIB27byFFiHKlpj695cEHL6FEWIPgs37Faq7OvONkWChpoYYQktTs3ixclRSQMrQ3b9/WRnR8hZmZvAzQkh0GkET+0NNDbEEtTVvQD0qKQAMGiTFr5FzoUbDW5jZwc8IIYG1uVow6B4JFWpqSFD4alvUXDGVCGdALTVNDN8mCbGGYO8tBt0jWlBTQyzFd807OVn/sbIrt9VvY1qamFDeJgkh6gTjwaQWdM+KOYLaoNjGdkJNcXExOnToAIfDgU2bNkW6OeRPzpwxtn9pqeQNZRVKk+RDD0m2PeHOY0NIrKBXIDDqrm7VS4Zve7nkHPvYTqgZP348GjZsGOlmEB+UhASHQzvB5aBB1k0qSpOkyyW5lDdtKhk1hxIPg297pLzhKxCMG6c9/o14MKklrl23Lujm+rX3lVfCpw0iEUTYiG+//Va0bt1abNmyRQAQGzduNHR8UVGRACCKioqsaWA5Z+ZMIeLihACkvzNnCrF2rRAOh7RN6RMXJ0RBgfltKSgQwukMXG9BgRA5OcbaMHNmWdlOp/SdkFApKBBi2TJr7odQUbufHA7zxn9mpnnzg1J71eaDnBxz2k+sRe/z2zaamt9//x0jRozAv/71L1SuXFnXMcXFxTh16pTXh1iHksq5Uyfv2DS+qKmYlTQhRrQjvuv6avUajYcRzrX/cEGtU+SJ9mURtRQochwqM8ZOx47+24JdglLT1PqmbOGSc+xhC6FGCIFhw4Zh5MiR6Kg08lWYPHkyqlWr5v40btzYwlYSQFlIkIWdefP02bEoTfBqk77WAzktDfj0U+Cdd8yzn4k1A+Nof5iWB+wgKKstDwHmjX8z7dz0pGxh8M8YJTyKI2UmTpwoAGh+8vLyxOuvvy66desmLl68KIQQYvfu3bqWn86fPy+Kiorcn4KCAi4/RRilJSpP1NTGvtvi4iR1tdoykO8SUVqadr16UWqfr4o8mpcRPNFzLsR6li2zx7KI571r1ZgJND+YUVYwS84k8uhdfoponJqjR4/i6NGjmvukpqZi0KBB+Oqrr+Dw0B2WlpYiLi4O9957L2bPnq2rPsapiQ60IgobiXfji9MJ7N0r/e8bJ0Nm7FjgiSeken1j2OiNLpydLb1Jl5aWve3J3h12irWh1tee0Z9lGHnZOuwUM6mwEHj9dWDqVKm9vuPfrDrMijheWCh5WQoBdOsWff1J9KP7+R0WEStE9u7dK3755Rf3Z/HixQKA+Pzzz0WBAXGbhsLRiadmQ6+mRs3o75131N985eMKCvw1OUOHahv/+mpflN727Kb50Gv8ScNo6zFTQxEOIq3t0KsN5diNHfQ+v20h1Piid/nJFwo10YfSpKM0wXtu0/JqAryXpZQ+f/tb4DI8hRG9E6NdlhE8CbSkYDdBzc5YLSjYZVk0EHrvR47d2IJCjQIUaqILrUlHTRMyb562i7isafjHP9QFl0ACjacwYmRitOskOneu+vnbUVCzGjsKB7GisTByj3HsxhYx59LtSWpqKoQQ6NChQ6SbQkJAy5NIyYsqJQWoXVuamrQQAnjpJWWbGkDZtdMXpxPYulWyidHr7RRMePhooFs3da8TRl72xo7eYnbwrtKLEe9Djt3yiS2FGhIbBDPpaLmWGsFXMOrWrUwYcTikifORR4AXXlA+Xi3SqWesntxcoHnz6H94aAljdhXUrMCuwkEshSFQuu/U5oxgc1AxZpPNCY/iKDrg8lP0EYyBpO8xepaSAn3i4qTox3qWt/QsK6mp+6N56ULLpiPShqHRgF2XM0JdFrVizAZTppphe1ZW4OM8x65a3bGyRBerxLRNTbBQqIlO1q4VYupU6a9ePCcqXyNiPUKJURsSIw8ztYdIVlb5nDSjWZAzgl1tpoQI3rvKigd9sGWaIVRqvWzY9dqWFyjUKEChJvowa9L0FIw8yzSiqZENlEPV1KhNvuVx0oy1t1+7uV57YlTbZsWDPpQy1cI9mHE+dtXClSdi2lCYxAZm2ShkZwNdugBjxkh/ASkI39ix3uvpQ4d6283Itjm+NiTvv+9tSOx0eh8baG1eye7H6Qxs1xBr6/l2tUHRQim/mV0wmufMClucUMqUbWQ8700hgMWLQ6+bRsUxRJiErKiAmprowoy3o0Bvfp5vpwUFkvvyvHmBM3TL7uPyvr5lBcL3jV4pdk4wsXCCIVLLP3z7tTfRpqkJ9fhAx9pZC1ce4PKTAhRqogszJk29D04jQsPatUK8+qpxGx9fwcFXCNLKRWPV0lQkl39op2B/rHjQh1JmqIKyntxz5d0gPlqhUKMAhZroI9RJc+1a5UnOUyAx8nAdOtR7v6FD9Z2D3ginnpoiGas0GtEgVPDt1/6E8qBX0xIGW6YZY5qCiz2hUKMAhZroJJRJRk0gGDs28D6+QoOagPT22+pt0zvJagk+Vgkf0bL8w4dI+SSQsB/ssqjZgnKseOfFOhRqFKBQE3uoeSv52tXoERpefVVZCNDSwOgRHPTUb4VGIxo0NaR8osd+Re+yqJ6l3WCJNe+8WIbeT6RckJICPPWU/3ZPj4rFi6VpVcbpVPZeuuYa9XrUPHf0eE3o8fiwwqvGaETVWPO+IpFDa8wb8YrzTEvRpAmQlSVtlz25gODHbCx65xGmSSAxwBNPqAsW8sTlKdQAQFqafzk//6xdj5LrqR7BQa+7qFGXWz3oFZbsltOIAljwhKPvtMa8XrduX6FDCGD8eOCVV6TvwYxZz3OPpfQRxIMwaY6iAi4/xS5qyzdqy0Pz5nmrtNVCsPsuQWnZ1mipw6PZYNZuy1RcMggeq/vOc6koVG8/tezxTqdk/2Z0zPqee6AwCyS6oE2NAhRqYhslwUJpAnU4/Cd2PekRPI2PzWpfNBAJg+JgjTOtFsDCaTQabgNVq/tOSWBSG/O+Ak9WlndfzJypHdl76lRjY1YtGvE//hG9LxvEGwo1ClCoKZ8Eyg0lJ7PU0tTE8htcuDU1oWgLrBTAwqkBioS2ycq+C2YMyQKPp8bE6fTOkaZ2L+rR1HgKjVqpSzIzo/Nlg3hDoUYBCjXlF3kCVVNp5+R4Cz+e2pzy4DYaruWxSEaUjUS5ka4rXPUGKzCpaVC0BBp5bGqNWV+hUUtQiuUXlliC3k+k3KFlACkb4XbrppyXqWVLb6Paffuk/FFmeCPZwQjXiPdVKIamoRpnGvXoCle7orUuT6zqOyD43ElKfeFyeed3AqSy583zHptqY1bJq2nCBCAjw7+NAI2DY44wCVlRATU1sYvSm5nWvp5LUA5H2fq/2doUuxnhBiLUZROz+sNs+yQ7ampCsUuyYrklGG2fWl9kZlqTSiEYA2MSHXD5SQEKNbGJmudSZqb+/T1tbcy0cdCrlo/m5Sm5bWY9EKLVEyyc7Qq1rmj1AAtGYNLykrIilUK0jj+ijd7nt0MIISKrKwofp06dQrVq1VBUVISqVatGujnEJHJypKUdX5xOaQnJV72utr8ncXGSSjtU1XxhobTk5Kli9y07O7tMXe50SksEZgTfMwPftvkuFQBSf8qB0PRSWCip/Fu2NDcuj1I9+fnS8oieesLVrlDq0jOmrMBoXxot28x+z86WAumVlpYts3neU+G8zsQcdD+/wyJiRQnU1MQmWjFmlAwV9cSk0WPk6FmelpZF680wmpen9PST1W0NRYMVzpgs4aKgQD2dh5Uu+NGqGdIiWkMokODg8pMCFGpil6wsYw9cX0HD91inU/KUCjQhGsnQrTTBRkvSSSW03GDDtUQT7IM0EjFZrEIWnpSCxYVDuLSyL6N52ZVEFxRqFKBQE9t4Tvp6HriyoJGV5R+7Ro99jRmTvd00NXKMEFlAs+qhFGq/RDImi5l94ik8aWnLrBSqrOpLO2p/SOSgUKMAhZrYx6jKOZQlFrMm+2g2XDQSC8TMdofat2rG4IHGhR6BRKttZvaJnrE5bZo949tEszBPohPGqSHlEqNJIZXiZPiiFsci2NgcvliRodssjMQCMTPDcah9K8dk8Yx3IoSUsV0NvfGE1NqWlGRunwQam3FxwN13W2/oakV8GyaTJFZBoYaUa5QeUL6oPUzNnOxDzdBtZeZlpbZZ/VAyo2/T0vyFGjUhw4iQpta2M2fM7ROtsWlm4Dw9mC14m/VCQIgvFGpIuUbpATV0qP6HaTCTvdkCSCQiFofjoRTqg9SI4GVUSFNqm9l9ojQ2s7Iip9ELVfD2Lcuq6MaBsPIFgEQBYVoOiwpoU0PU8LXFsTLqqpl2KEZtE8w2Yo1WWyAhjPWNUe85Nazok1h2TQ73udE42b4w+J4CDL5HIokVQdPUAgkqBcSzIsifVhAzK4O16SVQEDa5nb7XBQAyM4Fx44zXycBu0YmR+y8axi7xRu/zu0IY20RIuUZtiSM3F+jfP7gyL7nEf5ucoNMTNZuRtLTQJu2UFO/j5YfB+vXA00+rC1Dhemikp0vnqCVkqBnkduoUXJ2+fUKig0BLjPJ4XLw4eiN8k8BQqCEkTMg2F74T66BBwKlTwU2cn33mv01J96o1oZv1APbUBHniK0CFOy1EICFD6brQaDX2ULvOeXlA797e2cHle8gs4Z+EDxoKExImZONIX2PSYF1/CwslbYgvQvgbuAYyYtVrPKm2n68myBdZgDLTFTwUg0/PYwMZrdKwNDZQus4ZGcCECWXjUbao8oSu5vaCQg0hYSQ9HZgzx397MBOn2rKJ0vLT4sXek7XTWfbg1us9pbWfnpgqLVua5woeiseX0rFqnlaR8Cwj1uF7na+6KnCcKmrt7AUNhQkJM2YZDOs1cFXaT85gDuhrS6A2q7VF3k820DXj3EMpw6ixaCSyYZPwoXSNHQ7p/tAyLifhR+/zm5oaQkzAyBKFkhp89GjjdfqW43RKcUx8PXaUtCMul6Qd0as5CbSf0jllZvprPsyITxKKtsfK2DXEfiiNx/ffj94I3yQw1NQQEiLBGr4WFgKvvw68+qq0NOR0AlOmSCpxI15BgVyItTQOBw8CnTv7H7N2rbf3j16thV535lDcnqmpIWYT7aEJiIHnt+URc0zk66+/Fp07dxaJiYmiVq1a4q677jJ0PIPvEbMJJTFfQYF/dnDP5Itjx5oXlEwtKJyRxJHRFGzPaFs8gw4aOTaazpmEHwbrix5iLvjeggULMGLECLz88svo1asXhBD45ZdfcPfdd+sug5oaYjZGgt/5Mm4c8Mor2vs4HJI63AwVuNLbqFFthNobbSTeZvVqe5Q0aYFi1wRTD4ktqKmLLvQ+v20h1Fy8eBGpqal47rnnkB7C7E6hhphNsBNfXh5w9dXKMWV8sXoi1Yq6q0dYCXfcGSOEEkWWyw7lm1BeWIj5xJSh8IYNG7B//344nU5ceeWVaNCgAfr27YstW7ZoHldcXIxTp055fQgxk2AMX7OzJTsWva8TasapZsVPCcWd2cy4M1ag19jX91yHDSv73qSJZIBNyhfMJG5TrF8JC505c+YIAKJJkybi888/F+vWrRODBw8WtWrVEseOHVM9buLEiQKA34c2NcRs9Cbm07KjcTj87XPUbHSsXuvXaytkxCYnXHjaz+g5D6V9lD5ZWaG3h9gL2lRFD3ptaiIq1KgJHZ6fvLw88cknnwgA4r333nMfe/78eVG7dm3x7rvvqpZ//vx5UVRU5P4UFBRQqCERZe5cdYFm5kzpwTd2rLfAkpnpXYbSQ9jpFGLtWvPaqVdYCcVQ2gqUhD21B5MsbKhdEyXjbVlQ0iuk0NDU/sRylnQ7oVeoiWjup8ceewyDBg3S3Cc1NRWnT58GALRp08a9PSEhAc2bN8e+fftUj01ISEBCQoI5jSXEQt5+u2zZJysLqFevLCHkhAlAzZplv6vFnenSJXR7FtmOJDlZXz4kefnN1yYnEjYoakthe/ZIH09jX087IIdD+gRaDnS5JBf8qVP12Q8ZSSJK+53ohQlKbUaYhKyQKCoqEgkJCWKmx2vOhQsXRN26db20N3rKATU1JIIoLT/JGgDPfbS0H1rLJaFoSXy1CkOH6le9W/02q0c7Eop2yeEoO1e1vnU4/K+dVn/rbQ+1OYQERu/z2xaGwlWrVsXIkSMxceJEfP/999i2bRsefvhhAED//v0j3DpC9JOSIrloexoWz5jh/SaoN3qvrxGj735GUNIqfPwxkJurL7JqSorkEWLFG63e/Et6DDsLC4F58/z7VwgpJ9e8edoaG9/ftPpbb3ui2dCaELthC6EGALKysjBo0CAMGTIEnTp1wt69e7Fs2TLUqFEj0k0jxBBq3kYy69f7H+P7MExPB1avNs87Q02QOnvWOmFFRsuLy8hDP5AnmiwcPfWU/7FxcUDXrkDt2upCjRDSMpXvcWr9rcczjqkYCDGZMGmOogIuP5FoR21pyddYWMYs74xIGfwGWnoJxrtKaSls7VrtJTvZSHvuXHXvtLg4If7+97Jy9Pa31tJctBlaExKtxNTyEyHlBaU3d8A7D5MngbQ+ejEj0aRR9GhhgokV4rsUlp0tBTpU6tdp06R+AyQtzsCB0v9KGpn77gMyMsqMhDMy9PW31tJcJPqdkFjGFhGFzYIRhUm0E+nQ7KGmBDDixaM3YqtWxGM97fHtTxm5XwHlPp8zB0hNlZbgkpIk7zIzrotSHzEVAyHaxFREYULKC0pGwC4XsHhx+OoP1oZGr0GvjF4tTCjaKDXNl9NZphFRs2upU0fSkF13HXDmjDm2L2p9ZKWhNSHlCWpqCIkyCgul0Pyed2a0J9ILVsMUrBbGM57OmTPqmiGldjmdkpG1vKSnps3JzJSSjoZyfoHaEu3XlZBogZoaQmxKfr4x1+FoIFgvnmC0MJ7ajs6dtTVDSjYrM2YADRqUeVylpABTpvgf+8wzZfY9Zti+0NOJEOuhpoaQKMOOb/TharMeGxk1jY1ss7J4sX9W8ebN9dn3hGL7YsfrSki0QE0NITbFjh4x4Wqzmo0MoK31kG1WAGWPKzkthCdqaSGCtX2x43UlxG5QU0NIlGJHjxir2xyspkZGy+Nq587gvayMYMfrSkik0fv8plBDCLEVnsbFMnqFkEBLQBQ4CIlO9D6/I5qlmxBCjJKeLmW63rFDih9z9qx+ISRQVnFmZCbE3lBTQwgpd5ipkTEScJAQEhw0FCaEEBXMCnZnNOAgIcRaKNQQQso9WpnCtY7Rm0GcEBIeKNQQQso1wWpbGEyPkOiDQg0hpNwSirYlmAzihBBroVBDCCm3hKJtYTA9QqIPunQTQsotsrbFN26NXm2Lp3s5Y9sQEnmoqSGElFvM0LaY5UlFCAkdamoIIeUOz9gy1LYQEjtQqCGElCuys/2zdKenU5ghJBbg8hMhpNzA2DKExDYUaggh5QbGliEktqFQQwgpNzC2DCGxDYUaQki5gbFlCIltaChMCClX0NuJkNiFQg0hpNyRkkJhhpBYhMtPhBBCCIkJKNQQQgghJCagUEMIIYSQmIBCDSGEEEJiAgo1hBBCCIkJKNQQQgghJCagUEMIIYSQmIBCDSGEEEJiAgo1hBBCCIkJKNQQQgghJCagUEMIIYSQmKBc5X4SQgAATp06FeGWEEIIIUQv8nNbfo6rUa6EmtOnTwMAGjduHOGWEEIIIcQop0+fRrVq1VR/d4hAYk8M4XK5cODAAVSpUgUOhyPSzYkYp06dQuPGjVFQUICqVatGujkRh/3hD/vEG/aHP+wTb9gf/pjZJ0IInD59Gg0bNoTTqW45U640NU6nEykpKZFuRtRQtWpV3nwesD/8YZ94w/7wh33iDfvDH7P6REtDI0NDYUIIIYTEBBRqCCGEEBITUKgphyQkJGDixIlISEiIdFOiAvaHP+wTb9gf/rBPvGF/+BOJPilXhsKEEEIIiV2oqSGEEEJITEChhhBCCCExAYUaQgghhMQEFGoIIYQQEhNQqIkhJk+ejE6dOqFKlSqoW7cu7rzzTmzbtk3zmOXLl8PhcPh9fvvttzC12lomTZrkd27169fXPGbFihW46qqrkJiYiObNm+Pdd98NU2vDQ2pqquI1f/TRRxX3j7Ux8t///he33XYbGjZsCIfDgS+++MLrdyEEJk2ahIYNG6JSpUq47rrrsGXLloDlLliwAG3atEFCQgLatGmDRYsWWXQG5qPVJyUlJXj66afRtm1bJCUloWHDhrj//vtx4MABzTI//PBDxXFz/vx5i88mdAKNkWHDhvmdV5cuXQKWG6tjBIDitXY4HMjKylIt04oxQqEmhlixYgUeffRRrF69GkuWLMHFixdx44034uzZswGP3bZtGw4ePOj+XHLJJWFocXi4/PLLvc7tl19+Ud139+7duPnmm3HNNddg48aN+Pvf/45Ro0ZhwYIFYWyxteTl5Xn1x5IlSwAA/fv31zwuVsbI2bNn0b59e0yfPl3x98zMTEydOhXTp09HXl4e6tevjz59+rhzxymRm5uLgQMHYsiQIfjf//6HIUOGYMCAAVizZo1Vp2EqWn1y7tw5bNiwAf/85z+xYcMGLFy4ENu3b8ftt98esNyqVat6jZmDBw8iMTHRilMwlUBjBABuuukmr/P69ttvNcuM5TECwO86f/DBB3A4HPjrX/+qWa7pY0SQmOXw4cMCgFixYoXqPjk5OQKAOHHiRPgaFkYmTpwo2rdvr3v/8ePHi9atW3tt+9vf/ia6dOlicsuihyeeeEK0aNFCuFwuxd9jeYwAEIsWLXJ/d7lcon79+iIjI8O97fz586JatWri3XffVS1nwIAB4qabbvLalpaWJgYNGmR6m63Gt0+UWLt2rQAg9u7dq7rPrFmzRLVq1cxtXARQ6o+hQ4eKO+64w1A55W2M3HHHHaJXr16a+1gxRqipiWGKiooAADVr1gy475VXXokGDRqgd+/eyMnJsbppYSU/Px8NGzZEs2bNMGjQIOzatUt139zcXNx4441e29LS0rBu3TqUlJRY3dSwc+HCBXz88cd44IEHAiZ5jeUxIrN7924cOnTIawwkJCSgZ8+eWLVqlepxauNG6xg7U1RUBIfDgerVq2vud+bMGTRt2hQpKSm49dZbsXHjxvA0MAwsX74cdevWxaWXXooRI0bg8OHDmvuXpzHy+++/45tvvkF6enrAfc0eIxRqYhQhBMaMGYMePXrgiiuuUN2vQYMGmDFjBhYsWICFCxeiVatW6N27N/773/+GsbXWcfXVV+Ojjz7C4sWL8f777+PQoUPo1q0bjh07prj/oUOHUK9ePa9t9erVw8WLF3H06NFwNDmsfPHFFzh58iSGDRumuk+sjxFPDh06BACKY0D+Te04o8fYlfPnz2PChAm45557NJMUtm7dGh9++CG+/PJLzJkzB4mJiejevTvy8/PD2Fpr6Nu3Lz755BMsW7YMr776KvLy8tCrVy8UFxerHlOexsjs2bNRpUoV9OvXT3M/K8ZIucrSXZ547LHH8PPPP2PlypWa+7Vq1QqtWrVyf+/atSsKCgrwyiuv4Nprr7W6mZbTt29f9/9t27ZF165d0aJFC8yePRtjxoxRPMZXYyH+DLodSJNhR7Kzs9G3b180bNhQdZ9YHyNKKI2BQNc/mGPsRklJCQYNGgSXy4W3335bc98uXbp4Gc92794df/nLX/Dmm2/ijTfesLqpljJw4ED3/1dccQU6duyIpk2b4ptvvtF8kJeHMQIAH3zwAe69996AtjFWjBFqamKQxx9/HF9++SVycnKQkpJi+PguXbrExNuUEklJSWjbtq3q+dWvX9/vzenw4cOoUKECatWqFY4mho29e/fihx9+wIMPPmj42FgdI7JnnNIY8H3L9j3O6DF2o6SkBAMGDMDu3buxZMkSTS2NEk6nE506dYrJcdOgQQM0bdpU89zKwxgBgB9//BHbtm0Lal4xY4xQqIkhhBB47LHHsHDhQixbtgzNmjULqpyNGzeiQYMGJrcuOiguLsbWrVtVz69r165ubyCZ77//Hh07dkR8fHw4mhg2Zs2ahbp16+KWW24xfGysjpFmzZqhfv36XmPgwoULWLFiBbp166Z6nNq40TrGTsgCTX5+Pn744YegBHwhBDZt2hST4+bYsWMoKCjQPLdYHyMy2dnZuOqqq9C+fXvDx5oyRkw1OyYR5eGHHxbVqlUTy5cvFwcPHnR/zp07595nwoQJYsiQIe7v06ZNE4sWLRLbt28XmzdvFhMmTBAAxIIFCyJxCqbz1FNPieXLl4tdu3aJ1atXi1tvvVVUqVJF7NmzRwjh3x+7du0SlStXFqNHjxa//vqryM7OFvHx8eLzzz+P1ClYQmlpqWjSpIl4+umn/X6L9TFy+vRpsXHjRrFx40YBQEydOlVs3LjR7cmTkZEhqlWrJhYuXCh++eUXMXjwYNGgQQNx6tQpdxlDhgwREyZMcH//6aefRFxcnMjIyBBbt24VGRkZokKFCmL16tVhP79g0OqTkpIScfvtt4uUlBSxadMmr7mluLjYXYZvn0yaNEl89913YufOnWLjxo1i+PDhokKFCmLNmjWROEVDaPXH6dOnxVNPPSVWrVoldu/eLXJyckTXrl1Fo0aNyu0YkSkqKhKVK1cW77zzjmIZ4RgjFGpiCACKn1mzZrn3GTp0qOjZs6f7+5QpU0SLFi1EYmKiqFGjhujRo4f45ptvwt94ixg4cKBo0KCBiI+PFw0bNhT9+vUTW7Zscf/u2x9CCLF8+XJx5ZVXiooVK4rU1FTVG9TOLF68WAAQ27Zt8/st1seI7KLu+xk6dKgQQnLrnjhxoqhfv75ISEgQ1157rfjll1+8yujZs6d7f5n58+eLVq1aifj4eNG6dWtbCX1afbJ7927VuSUnJ8ddhm+fPPnkk6JJkyaiYsWKok6dOuLGG28Uq1atCv/JBYFWf5w7d07ceOONok6dOiI+Pl40adJEDB06VOzbt8+rjPI0RmTee+89UalSJXHy5EnFMsIxRhxC/GkFSQghhBBiY2hTQwghhJCYgEINIYQQQmICCjWEEEIIiQko1BBCCCEkJqBQQwghhJCYgEINIYQQQmICCjWEEEIIiQko1BBCgmbPnj1wOBzYtGlTpJsSMj/99BPatm2L+Ph43HnnnZFuDiEkCCjUEEJsy7Bhw0wTQMaMGYMOHTpg9+7d+PDDD00pUy8ffvghqlevHtY6CYlFKNQQUg65cOFCpJsQEqWlpXC5XKaWuXPnTvTq1QspKSm6BQy79yMhsQaFGkLKAddddx0ee+wxjBkzBrVr10afPn0AAL/++ituvvlmJCcno169ehgyZAiOHj3qPu67775Djx49UL16ddSqVQu33nordu7caaju1NRUvPDCC7jnnnuQnJyMhg0b4s033/TaZ+rUqWjbti2SkpLQuHFjPPLIIzhz5oz7d1mT8fXXX6NNmzZISEjA8OHDMXv2bPz73/+Gw+GAw+HA8uXLFdtQXFyMUaNGoW7dukhMTESPHj2Ql5cHoGwJ7dixY3jggQfgcDhUNTWpqal48cUXMWzYMFSrVg0jRowAACxYsACXX345EhISkJqaildffdXruBMnTuD+++9HjRo1ULlyZfTt2xf5+fkAgOXLl2P48OEoKipyn8ekSZMAAG+//TYuueQSJCYmol69erj77rsN9T0h5Y6QMkcRQmxBz549RXJyshg3bpz47bffxNatW8WBAwdE7dq1xTPPPCO2bt0qNmzYIPr06SOuv/5693Gff/65WLBggdi+fbvYuHGjuO2220Tbtm1FaWmpEEK4kx1u3LhRte6mTZuKKlWqiMmTJ4tt27aJN954Q8TFxYnvv//evc+0adPEsmXLxK5du8TSpUtFq1atxMMPP+z+fdasWSI+Pl5069ZN/PTTT+K3334TJ0+eFAMGDBA33XSTYtZoT0aNGiUaNmwovv32W7FlyxYxdOhQUaNGDXHs2DFx8eJFcfDgQVG1alXx2muv+WW29z2XqlWriqysLJGfny/y8/PFunXrhNPpFM8//7zYtm2bmDVrlqhUqZJXItnbb79dXHbZZeK///2v2LRpk0hLSxMtW7YUFy5cEMXFxeK1114TVatWdZ/H6dOnRV5enoiLixOffvqp2LNnj9iwYYN4/fXX9VxuQsotFGoIKQf07NlTdOjQwWvbP//5T3HjjTd6bSsoKFDN3i2EEIcPHxYA3Fmr9Qo1N910k9e2gQMHir59+6oeM2/ePFGrVi3391mzZgkAYtOmTV77DR06VNxxxx2q5QghxJkzZ0R8fLz45JNP3NsuXLggGjZsKDIzM93bqlWr5iWIqJ3LnXfe6bXtnnvuEX369PHaNm7cONGmTRshhBDbt28XAMRPP/3k/v3o0aOiUqVKYt68ee7zq1atmlcZCxYsEFWrVhWnTp3SbBMhpAwuPxFSTujYsaPX9/Xr1yMnJwfJycnuT+vWrQHAvcS0c+dO3HPPPWjevDmqVq2KZs2aAQD27dtnqO6uXbv6fd+6dav7e05ODvr06YNGjRqhSpUquP/++3Hs2DGcPXvWvU/FihXRrl07Q/XK51BSUoLu3bu7t8XHx6Nz585ebdCLbz9u3brVq2wA6N69O/Lz81FaWoqtW7eiQoUKuPrqq92/16pVC61atdKsv0+fPmjatCmaN2+OIUOG4JNPPsG5c+cMt5eQ8gSFGkLKCUlJSV7fXS4XbrvtNmzatMnrk5+fj2uvvRYAcNttt+HYsWN4//33sWbNGqxZswaAOQayDocDALB3717cfPPNuOKKK7BgwQKsX78eb731FgCgpKTEvX+lSpXcxxhBCOFVn+f2YMrz7UelcuQ6ff83Un+VKlWwYcMGzJkzBw0aNMCzzz6L9u3b4+TJk4bbTEh5gUINIeWUv/zlL9iyZQtSU1PRsmVLr09SUhKOHTuGrVu34v/+7//Qu3dvXHbZZThx4kRQda1evdrvu6wVWrduHS5evIhXX30VXbp0waWXXooDBw7oKrdixYooLS3V3Kdly5aoWLEiVq5c6d5WUlKCdevW4bLLLjN4Jv60adPGq2wAWLVqFS699FLExcWhTZs2uHjxolsgBIBjx45h+/bt7vrVzqNChQq44YYbkJmZiZ9//hl79uzBsmXLQm4zIbEKhRpCyimPPvoojh8/jsGDB2Pt2rXYtWsXvv/+ezzwwAMoLS1FjRo1UKtWLcyYMQM7duzAsmXLMGbMmKDq+umnn5CZmYnt27fjrbfewvz58/HEE08AAFq0aIGLFy/izTffxK5du/Cvf/0L7777rq5yU1NT8fPPP2Pbtm04evSol2ZHJikpCQ8//DDGjRuH7777Dr/++itGjBiBc+fOIT09Pajz8eSpp57C0qVL8cILL2D79u2YPXs2pk+fjrFjxwIALrnkEtxxxx0YMWIEVq5cif/973+477770KhRI9xxxx3u8zhz5gyWLl2Ko0eP4ty5c/j666/xxhtvYNOmTdi7dy8++ugjuFwutGrVKuQ2ExKzRNKghxASHnr27CmeeOIJv+3bt28Xd911l6hevbqoVKmSaN26tXjyySeFy+USQgixZMkScdlll4mEhATRrl07sXz5cgFALFq0SAih31D4ueeeEwMGDBCVK1cW9erVE6+99prXPlOnThUNGjQQlSpVEmlpaeKjjz4SAMSJEyeEEMqGtEJIhst9+vQRycnJAoDIyclRbMMff/whHn/8cVG7dm2RkJAgunfvLtauXeu1j15D4WnTpvlt//zzz0WbNm1EfHy8aNKkicjKyvL6/fjx42LIkCGiWrVq7nPcvn271z4jR44UtWrVEgDExIkTxY8//ih69uwpatSoISpVqiTatWsn5s6dq9k+Qso7DiFUFnwJIcQEUlNT8eSTT+LJJ5+MdFMIITEOl58IIYQQEhNQqCGEEEJITMDlJ0IIIYTEBNTUEEIIISQmoFBDCCGEkJiAQg0hhBBCYgIKNYQQQgiJCSjUEEIIISQmoFBDCCGEkJiAQg0hhBBCYgIKNYQQQgiJCSjUEEIIISQm+H8IJzE6I1mQZAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAHHCAYAAACYxRFNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgZElEQVR4nO3dd3gU1foH8O9uCAkkIXRICKEXUUAvHUSaEBtipagQJCJWpBcbWClBsItABCxXAQEF8XcRJaBAkNCuKIgIARKKFCE0CSF7fn/Mnc2Wmd2Z3Z2t38/z7AOZnXKm7M67Z855j0kIIUBEREREFITMgS4AEREREZEaBqtEREREFLQYrBIRERFR0GKwSkRERERBi8EqEREREQUtBqtEREREFLQYrBIRERFR0GKwSkRERERBi8EqEREREQUtBqtEREREFLQYrBIRERFR0ArqYHXTpk2YPHkyzp496/dtL1q0CNdeey3KlSsHk8mEnTt3ul3m5ZdfRrNmzWCxWIwvoAvnz5/HuHHj0KtXL1SrVg0mkwmTJ09WnDcrKwu1atXCxYsXDStPsBwXQN+xAYALFy5gxIgRSE5ORmxsLK6//np88cUXdvP44xgCwIIFC2AymXDw4EEArj8fkydPhslkwqlTpwwtk6+pfe48+TwGC6O/x/x1ruXtBEt55M+D/CpTpgySkpLQv39/7Nu3z6fb0vI94Ivltc63c+dO3H777UhNTUW5cuVQuXJldOjQAZ9++qndfHq/7wBgw4YNuO2221CpUiWUK1cOjRo1wiuvvGI3z9q1azFkyBA0bdoUcXFxqFWrFvr06YNt27Z5NB8ADB482O58Or42b96saz69+6RnPq3nSe/x17r9HTt24K677kJycjLKly+Ppk2b4uWXX8alS5es82i9Rjw5plu2bEFaWhoSEhIQHx+Pbt26YePGjar7BQDz5s2DyWRCfHy8y/lUiSCWmZkpAIi8vDy/bvfEiRMiOjpa9O7dW6xbt07k5OSIixcvulzmyJEjIi4uTixZssRPpVSXl5cnEhMTxU033SQeeeQRAUBMmjRJcd7i4mLRqFEj8eKLLxpSlmA6LkLoOzZCCNGzZ09RsWJFMXv2bLF27VrrMp999pl1HqOPoezEiRMiJydHXL58WQjh+vMxadIkAUCcPHnS0DL5ktrnzpPPYzAx+nvMX+da3k6wlGf+/PkCgJg/f77IyckR2dnZ4tVXXxXlypUT1atXF3///bfPtqXle8AXy2udLzs7WwwbNkx88sknYu3atWLlypWif//+AoB45ZVXrPPp/b777LPPhNlsFv379xcrVqwQa9euFXPnzhUvvfSS3Xz33Xef6Natm3j//ffFunXrxJIlS0T79u1FmTJlxA8//KB7PiGE+PPPP0VOTo7Tq2rVqqJWrVri6tWruubTu09a59NznvQcf63b/+2330RsbKxo2bKlWLRokfjhhx/EpEmTRFRUlLjzzjut82m9RvQe0y1btoiYmBjRuXNnsXz5crFs2TLRvn17ERMTIzZt2qS4bwUFBSIxMVEkJyeLuLg4xXnc8UmwatSNI1DB6oYNGwQAsWjRIs3LjBs3TtSqVUuUlJQYWDJtLBaLsFgsQgghTp486fYLasaMGSIxMdGQ8xhMx0UIfcdm1apVAoD497//bTe9Z8+eIjk52e4DbOQxVBNuwara586Tz2MwkK8Fo77H5PVHerCam5trN/2ll14SAMRHH33kk+3o+R7wZnlvtyOEEO3atRO1a9e2/q3n+66goEDExcWJxx9/3O12/vrrL6dp58+fFzVq1BA9evTQPZ+adevWCQDi+eef92g+rfukZ9/1nCetx1/P9p977jkBQPz555920x999FEBwO2PNMdrRI3aMU1LSxM1atSwu9edO3dOVK1aVXTs2FFxXXfccYfo3bu3SE9P9zhY1d0MQH7Es337dtx3332oVKkSGjRoAECqwu7RowcSEhJQvnx5dOzYEatWrVJcj7t5J0+ejLFjxwIA6tWrZ62OXrduHU6ePIlHH30UtWvXRkxMDKpVq4ZOnTrh+++/d1t+d9sdPHgwbrzxRgBAv379YDKZ0LVrV5frvHLlCrKysvDAAw/AbC49pMeOHUN8fDz69+9vN/8333yD6OhoPPfcc27L6wn5WGn14IMP4ty5c7oea2mhdlyA0Dg2y5cvR3x8PO6//3676Q8//DCOHj2Kn3/+2TpN6zH87bffYDKZsGTJEuu0bdu2wWQy4dprr7Wb984770SrVq2sf9s2A3D1+bD1119/YcCAAUhMTESNGjUwZMgQFBYWatr/33//HQMGDECNGjUQExOD1NRUDBo0CEVFRdZ5tH7m9+3bhwceeADVq1dHTEwMrrnmGrz33nvW99U+d64+j55+D8jfYTt27MA999yDChUqIDExEQ899BBOnjypu+y263T8XnR1ngYPHoy6deuqlk/L+m3l5+e73R8t+wIAq1atwvXXX4+YmBjUq1cPM2bMcHlMlbgrz08//QSTyYTPP//cadmPP/4YJpMJubm5urfbunVrANK17wt6vge8Wd7b7QBA1apVUaZMGevfer7v5s2bh4sXL2L8+PFu561evbrTtPj4eDRr1gz5+fm651OTlZUFk8mEIUOGeDSf1n3Ss+96zpPW469n+9HR0QCAxMREu+kVK1aE2WxG2bJlXS7veI2oUTumGzduRNeuXVG+fHnrtISEBNx0003YtGkTjh07Zjf/p59+ivXr1+P99993u02X9Ea38q/mOnXqiPHjx4s1a9aIr776Sqxbt05ER0eLVq1aiUWLFomvvvpK9OrVS5hMJvHFF1/YrUPLvPn5+eLpp58WAMSyZcus1dKFhYUiLS1NVKtWTcyZM0esW7dOfPXVV+LFF1902o4jLdv9888/xXvvvScAiNdff13k5OSI3377zeV6f/zxRwFAfPvtt07vvfTSS8JkMomtW7cKIaSq+djYWPH0009rPube0FKzKoQQ11xzjbjnnnt8um1Xx0WI4D827du3F23atHGa/uuvvwoA4sMPP7SbrvUYJiUliUcffdT699SpU0W5cuUEAHHkyBEhhNS0oEKFCmLcuHHW+eSapLy8PJefDyFKP6dNmjQRL774olizZo2YOXOmiImJEQ8//LDbMu7cuVPEx8eLunXritmzZ4sffvhBfPrpp6Jv377i3LlzQghtnychpMdWiYmJonnz5uLjjz8W3333nRg9erQwm81i8uTJQgj1z52rz6On3wO232Fjx44Vq1evFjNnzhRxcXHihhtuEFeuXNFVdsd12n4vujpP6enpok6dOqrlUyuz7fr17I/Wffn+++9FVFSUuPHGG8WyZcvEkiVLRJs2bURqaqqumlUtx/eGG24QnTp1clpHmzZtFD97ttRqVt99910BQCxdutRuusViEcXFxZpetvR+DzjSurwn2ykpKRHFxcXixIkT4r333hNlypQRs2fPViyHu++77t27i8qVK4v//Oc/omXLliIqKkpUq1ZNDBs2zPq94srZs2dFYmKiuPvuu302X7ly5cTNN9/s8Xxa90nPvnt6Pbg6/nq2n5eXJypWrCjuu+8+sX//fnHu3DmxcuVKkZiYqHjv1HONyFwd07Jly4pBgwY5TR8wYIAAIFavXm2d9tdff4kqVaqI9957TwghvKpZ9ThYdWyf1759e1G9enVx/vx567SrV6+K6667TqSkpFirwvXMq/b4LD4+XowYMUJv0TVvNzs7WwDQ3M5y2rRpAoA4fvy403sXL14UycnJokePHmLLli0iISFBPPzww3bHw0hag9UHH3xQ1KhRw26axWIRZ86ccXq0/c8//4gzZ844PZYqLCy0BjJCuD4uQgT/sWnUqJFIS0tzmn706FFr8GRL6Rgqeeihh0T9+vWtf998881i6NCholKlSmLhwoVCCCE2btwoAIjvvvvOOp9tsCqEtmYA06dPt5v+xBNPiNjYWLfHuHv37qJixYrixIkTqvNo/TylpaWJlJQUpy/dp556SsTGxlofW6l97tSme/o9IB+bkSNH2k3/7LPPBADx6aefWqdpLbva96IQ6ufJk2BVaf1a90frvrRr104kJyeLf/75xzrPuXPnROXKlXUFq1qOr3xN79ixwzpty5YtAoD1s6BGXnbz5s2iuLhYnD9/XvznP/8RNWvWFDfddJNT0ClfR1petudK7/eAI63Le7KdYcOGWctctmxZ8f7776uWw933XZMmTURsbKxISEgQr7/+usjOzhbTp08X5cqVE506dXL7nfHggw+KMmXKWCsfvJ3vgw8+EADE559/7vF8WvdJz757ej24Ov56j/2ePXtE06ZN7a7Z4cOHK54jPdeIzNUxvf7660Xjxo3tmvYVFxeL+vXrOzWPuPfee0XHjh2t5fJrMwDZvffea/3/xYsX8fPPP+O+++6z6+kVFRWFgQMHoqCgAHv37tU9r5q2bdtiwYIFePXVV7F582YUFxe7La8vtqvm6NGjMJlMqFq1qtN75cuXx6uvvooffvgB3bp1w6233oq5c+eqPhpYt26dy155ti9f9oiuXr06Tpw4gatXr1qn/fXXX6hUqRKeeOIJu3mnTp2KSpUqOT2ia9y4MTp37mz929VxAULj2Lh6hOP4ntIxVNKjRw8cOHAAeXl5uHz5MjZs2IBbbrkF3bp1w5o1awAA33//PWJiYqyPwD1155132v3dokULXL58GSdOnFBd5tKlS1i/fj369u2LatWqKc6j9fN0+fJl/PDDD7j77rtRvnx5XL161fq67bbbcPnyZcXeu1p48j1g68EHH7T7u2/fvihTpgyys7MBwKOy234vGsHV+l3tj9Z9uXjxInJzc3HPPfcgNjbWuq6EhAT07t1bV1ndHV8AGDBgAKpXr27XFOGdd95BtWrV0K9fP03bad++PaKjo5GQkIBbbrkFlSpVwtdff+30qLNVq1bIzc3V9EpOTrZbVs/3gN55bN/Tu51nn30Wubm5WLVqFYYMGYKnnnrKoyYbAGCxWHD58mU8++yzmDhxIrp27YqxY8diypQp2LhxI3744QfVZV944QV89tlnmDVrll3TJU/nA6TH0FWqVMHdd9/t8Xxa90nvvnt7PXhaTgA4ePAgevfujSpVquDLL7/E+vXrMX36dCxYsACPPPKI07o9uUZcHdOnn34af/zxB5566ikcOXIE+fn5eOyxx3Do0CEAsDb5W7p0KVauXOnynq6H+4YLKpKSkqz/P3PmDIQQdtNk8of+9OnTuudVs2jRIrz66quYN28eXnjhBcTHx+Puu+/G9OnTUbNmTcVlfLFdNf/88w+io6MRFRWl+H7jxo0BSBfxggULVOcDgCZNmmDu3Lmatpuamqq/sCpiY2MhhMDly5c9Ty3hwN1xAYL72FSpUkXxmvj7778BAJUrV7abrvUY3nzzzQCkgLRevXooLi5G9+7d8ddff1nTlHz//ffo1KkTypUr5/U+2IqJiQEgnRs1Z86cQUlJCVJSUlzOo+XzlJCQgKtXr+Kdd97BO++8o7guT1McefI9YMtxnjJlytid89OnT+suu9Lx8CVX63e1P1r35cyZM7BYLIrHT8sx1VoeWUxMDIYNG4Y33ngDmZmZKC4uxuLFizFq1CjrterOxx9/jGuuuQbnz5/HokWL8OGHH2LAgAH4v//7P7v54uPjcf3112tap22gq/d7wJHW5T3ZTmpqqvW77rbbbgMATJw4Eenp6ao/NF2Vc9++fUhLS7Obfuutt2LEiBHYvn279bvL1ksvvYRXX30Vr732Gp566inV9WudDwB++eUXbN26Fc8884zL68DdfFr3Sc++e3s9KNGz/QkTJuDcuXPYuXMn4uLiAAA33XQTqlatiiFDhmDQoEHo0qWLdR16rxF3x3TIkCE4efIkXn31VXzwwQcAgA4dOmDMmDGYNm0aatWqhQsXLuDJJ5/E008/jeTkZGvavitXrgAAzp49i+joaGv5tfA4WLWNlCtVqgSz2ezUsBaQatcAWGvX9MyrpmrVqnjzzTfx5ptv4vDhw1ixYgUmTJiAEydO4D//+Y/iMr7YrqvyXLlyBRcvXnQ6+Dt37sQdd9yBTp06YePGjfjoo4/w5JNPqq4rKSlJ8deR0f7++2/ExMTYBVk1a9aEEMJp3smTJyvmijt+/Ljd366OCxD8x6Z58+b4/PPPcfXqVbub165duwAA1113nd38SsdQSUpKCho3bozvv/8edevWRevWrVGxYkX06NEDTzzxBH7++Wds3rwZL730ku93SoPKlSsjKioKBQUFqvNo/TxVqlTJWtuqdm7r1avnUTk9+R6wdfz4cdSqVcv699WrV3H69GlrgO9J2fXUIMTGxtp1VpO5Ct5drd/V/mjdl9jYWJhMJqfPsrx+PdwdX9njjz+OqVOn4qOPPsLly5dx9epVPPbYY5q3c80111g7VXXr1g0lJSWYN28evvzyS9x3333W+davX49u3bppWmdeXp6185ve7wFHWpf3djuA9LRh9uzZOHDggO5gtUWLFopPOeR7gGMnWUAKQOX7wbPPPqu6bq3zybKysgDA7fe9u/m07pOefffFefK0nIB032zWrJnTPbVNmzYAgF9//dUuWHXk7hrRcuzHjx+PESNGYN++fUhISECdOnUwbNgwxMXFoVWrVvjrr7/w119/4Y033sAbb7zhtHylSpXQp08ffPXVV6rbcKK33YBaWpIOHTqImjVrikuXLlmnlZSUiObNmzu1WdU679tvvy0AiN27d7st11133SWqVavmch6t29XbZvXjjz8WAMR///tfu+m///67qF69urj11lvFlStXRJ8+fUTVqlXF2bNnNa3XF7S2We3Zs6e44YYbfLptteMiRGgcm2+//VYAcOqwc8sttyimktFzDJ944glRtWpVccMNN9ilBklNTRW9evUSAMSWLVvslnFss+rq86H2OXVch5ru3buLSpUquUw/pPXzdPPNN4uWLVuKoqIil9vU22ZViZbvAXdtKj/55BPrNK1ld5WuSe08TZkyRZjNZrs23UVFRaJhw4aqbVaV1q91f7Tui9FtVm2Pr+yBBx4QDRo0ELVr1xZ33XWX220Iod7B6u+//xaVKlUS11xzjV27unPnzonc3FxNL9tjpPd7wJHW5b3djhBCDBw4UJjNZsW25u6+71avXi0AiNdee81u+syZMwUA8dNPP9lNf/nllwUUUhs50jqf7PLly6Jy5cqibdu2Xs+ndZ/07Lun58nV8dez/W7duolq1arZ9RUQQog5c+YIANaOl2pcXSNaj72jQ4cOicTERGsfgn/++UdkZ2c7vdLS0kRsbKzIzs4Wu3bt0rUNnwWrcs/gdu3aiSVLloivv/5apKWlucwG4G5e+SY1bNgwsWnTJpGbmyvOnj0rbrjhBpGZmSlWrlwp1q1bJzIzM0VsbKx44IEHXJZd73a1BquHDx926gWYl5cnUlJSROfOna038z179oioqCi7Ht5G+fbbb8WSJUvERx99JACI+++/XyxZskQsWbLEqcNUSUmJSExMFKNGjfJpGZSOixChdWx69uwpKlWqJObMmSPWrl0rhg4d6tRJRAj9x3Dp0qXWRu/r16+3Tn/44YcFAFGpUiWn3LSOgabS50Pu4OZtsCpnA6hfv7513z///HMxYMAAp2wA7j5Pv/32m6hUqZJo27atmD9/vsjOzhYrVqwQM2fOFN26dbPOpydY9eZ7wLG3+nfffSdmzZol4uPjnYI5rWV3FUyqnacDBw6I6Oho0bVrV7Fq1SqxdOlS0aVLF1GvXj2PglV3+6N1X7777jthNpvFjTfeKJYvXy6+/PJL0aZNG1G7dm1dwaqW4yv7+eefrZ+H77//3u02hFAPVoUQYvr06aqBsSe0fA+sW7dOREVFqSaR1/I9onW+oUOHitGjR4tFixaJdevWiS+//FL069dPABBjx461m1fP913v3r1FTEyMeOWVV8SaNWvElClTRGxsrLjjjjvs5psxY4YAIG655RbFZPJ657P1xRdfCABizpw5Ls6I9vm07pPW+YTQfp6E0H78tW7/66+/FiaTSbRv3946KMBrr70m4uPjRbNmzayfLz3XiJ5jumvXLjF58mTxzTffiDVr1ogZM2aIqlWritatWzsF0I4Ckg1A6Uvzp59+Et27dxdxcXGiXLlyon379mLlypWK69E678SJE0VycrIwm80CgPjPf/4jHnvsMdGiRQtRoUIFUa5cOdGkSRMxadIkTQnZtWxXb7AqhBCdO3cWt912mxBC6hXYoEED8a9//cup5+3QoUNFTEyM4QMd1KlTR1NPVyGE+OGHHwQAsW3bNp+Xw/a4CBF6x+b8+fNi+PDhombNmqJs2bKiRYsWij0k9R7DM2fOCLPZLOLi4uxS+ci1T0opsJQCTcfPR3Z2thDC+2BVCCF2794t7r//flGlShVRtmxZkZqaKgYPHmwdQUsI7Z/jvLw8MWTIEFGrVi0RHR0tqlWrJjp27CheffVV6zx6gtXLly97/D0gH5tt27aJ3r17i/j4eJGQkCAGDBigmMRcS9ndJcJXO0/ffvutuP7660W5cuVE/fr1xbvvvusyG4CrYFXL/mjZFyGEWLFihWjRooX1vE+dOlX3oABaj6+sbt264pprrnG7fpmrYPWff/4RqampolGjRppqJN3R8j0gX6dKNWdav0e0zvfRRx+Jzp07i6pVq4oyZcqIihUrii5duigG53q+7y5duiTGjx8vateuLcqUKSNSU1PFxIkT7T7zQgjRpUsX1XXaXiNa57PVs2dPERcXZ5dZxpv5tO6T1vmE0H6ehNB+/PVsf+3ataJXr16iZs2aoly5cqJx48Zi9OjR4tSpU9Z59Fwjeo7p3r17xU033SQqV64sypYtKxo2bCief/55ceHCBdVlZN4EqyYhFBolkm5Lly5Fv379cOjQIbt2WqFg4MCBOHDggNuxfT0RysdFDyOPIfnW5MmT8dJLL+HkyZMet1Mn3/rll1/QsmVLvPfee07ZR4iIPE5dRfbuuecetGnTBlOmTAl0UXTZv38/Fi1ahGnTphmy/lA9LnoYfQyJwtX+/fuxdu1aPProo0hKSsLgwYMDXSQiCkIMVn3EZDJh7ty5SE5OhsViCXRxNDt8+DDeffddr/N5qgnV46KH0ceQKFy98sor6NmzJy5cuIAlS5bYDeFIRCRjMwAiIiIiClqsWSUiIiKioMVglYiIiIiCFoNVIiIiIgpaHg+3Sp6zWCw4evQoEhISdA3PSERERIEjhMD58+eRnJysOAQtGYPBagAcPXoUtWvXDnQxiIiIyAP5+flISUkJdDEiRlgHqz/++CMyMzOxbds2HDt2DMuXL8ddd91lfV8IgZdeeglz5szBmTNn0K5dO7z33nu49tprXa536dKleOGFF7B//340aNAAr732Gu6++27N5UpISAAgXewVKlTwaN+IiIjIv86dO4fatWtb7+PkH2EdrF68eBEtW7bEww8/jHvvvdfp/enTp2PmzJlYsGABGjdujFdffRU9e/bE3r17VS/EnJwc9OvXD6+88gruvvtuLF++HH379sWGDRvQrl07TeWSH/1XqFCBwSoREVGIYRM+/4qYPKsmk8muZlUIgeTkZIwYMQLjx48HABQVFaFGjRqYNm0ahg0bpriefv364dy5c/i///s/67RbbrkFlSpVwueff66pLOfOnUNiYiIKCwsZrBIREYUI3r8DI2JbB+fl5eH48ePo1auXdVpMTAy6dOmCTZs2qS6Xk5NjtwwApKWluVyGiIiIiDwT1s0AXDl+/DgAoEaNGnbTa9SogUOHDrlcTmkZeX1KioqKUFRUZP373LlznhSZiIiIKOJEbM2qzLHdiRDCbVsUvctMmTIFiYmJ1hczARARERFpE7HBas2aNQHAqUb0xIkTTjWnjsvpXWbixIkoLCy0vvLz870oOREREVHkiNhgtV69eqhZsybWrFljnXblyhWsX78eHTt2VF2uQ4cOdssAwHfffedymZiYGGvPf2YAICIiItIurNusXrhwAX/++af177y8POzcuROVK1dGamoqRowYgddffx2NGjVCo0aN8Prrr6N8+fJ44IEHrMsMGjQItWrVwpQpUwAAzzzzDG666SZMmzYNffr0wddff43vv/8eGzZs8Pv+EREREYW7sA5Wt27dim7duln/HjVqFAAgPT0dCxYswLhx4/DPP//giSeesA4K8N1339nlWD18+LDdkGodO3bEF198geeffx4vvPACGjRogEWLFmnOsUpERERE2kVMntVgwjxtREREoYf378CI2DarRERERBT8GKwSERERUdBisEpEEamgAMjOlv4lIqLgxWCViCJOVhZQpw7Qvbv0b1ZWoEtERERqGKwSUUQpKAAefRSwWKS/LRZg2DDWsBIRBSsGq0QUUfbtKw1UZSUlgE1KZiIiCiIMVokoojRqBJgdvvmiooCGDQNTHiIico3BKhFFlJQUYM4cKUAFpH8//FCaTkREwSesR7AiovBVUCA90m/USH+gmZEBpKVJj/4bNmSgSkQUzFizSkQhxxe9+VNSgK5dtQWqTHNFRBQ4DFaJKKT4uzc/01wREQUWg1UiCin+7M3PNFdERIHHNqtEFFLk3vy2Aatab365XWt8PHDhgnL7VldtX10FxmznSkTkH6xZJaKQorU3v+3j+7ZtlR/ju3vEzzRXRESBZxJCiEAXItKcO3cOiYmJKCwsRIUKFQJdHKKQVFCg3pu/oEAKPh1rRQEp2Dx4UPq/4zzye7bry8qSHv2XlJQGxhkZvt4bIgoFvH8HBpsBEFFISklRfxSv9PheJj/GF0LbI36lNFfepM0iIiJ92AyAiIKCUnooT1NGKT2+l8mP8fU84rdNc6UlOwBTXRER+Q6DVSIKOKUA0JuUUY7tWmW27Vs9GclKS3YAx3LPmKG93ERE5IxtVgOAbV6ISim1L5VrPN21J9Wy7j//BOLigIsX1du3ah3JKjtbCkKVpnftqt5Wdvp0YOxY7eUmouDE+3dgsM0qEQWUUvtSpfamnqSMctWuVc88Mndps9Tayk6YAAwYwPatRESeYDMAIgoopbajZrN6e9JAtgeVmw7Yls1iAVavlv6v1lbWYjFm0AIiokjAYJWIAkqp7eicOcDAgfbz3X038NZbgR/6NC1NyiQgE6K03WpKCjBtmvMyzM1KROQ5tlkNALZ5IXJm23YUUM+TasuTdqy22/Mk/ZS7dqsAkJkpPfq3WJiblSic8P4dGKxZJaKgYJseylWeVFtyO1a9vMk0oCXl1dixwKFDUgB78CADVSIibzBYJaKg4ypPqi1PHq9rST/litaUV7bBNxEReY7BKhEFHbU8qba05EVVolRrq7eGNiNDqjFlzSkRkfEYrBJRULINCDMzSwNXsxkYM8Z1kOgqY4CekatcYc0pEZF/MFgloqAlB4RycJqdLbUFzcxUDxLdtUf1ZOQqIiIKHGYDCAD2JiRf8rRXu6/XEQyURpBSyxigZ+QqIiKA9+9AYc0qUQjzple7L9cRLPS0RzXiMX4gBywgIgpXDFaJQpRSr/ZHHwVyc71bh56e8cFGLYuAfExyc4GZM/UdI638GfQzKCaiSMJglShEKdUiWixAu3ZSm05P1+Fp7tJgoDaC1MSJQN++QNu2wOjR0r+DB/tuu/4M+sOpJpyISAsGq0QhSq0WUQhg3DhgxgzP1hHqQ4O2auU8raQEWLLEftrChdpqWLXUYvor6A+3mnAiIi0YrBKFKLlXu1ry/PHj3Qcx/uwZ769H10oBuMmkPO/Gja7XpbUW019Bf7jVhBMRaRHRwWrdunVhMpmcXk8++aTi/OvWrVOc//fff/dzyYkkGRnA5s3K71ks2oIYfyS49+ej62PHgPvuKw0eo6KkZgBKOnVSX4+eWkx/Bf3hWBNOROROmUAXIJByc3NRUlJi/fvXX39Fz549cf/997tcbu/evXYpK6pVq2ZYGYncSUqSag4dk9CZzdqDmJQU+8DKl6ms1IK+tDTldXuz7cGDpcf7srQ0YN48aT1Hjti/l54OtGmjvi5XtZhK5crIkLZnZDosOSgeNkwqixwUA9KPjVBPPUZEpCSia1arVauGmjVrWl/ffPMNGjRogC5durhcrnr16nbLRbkaE5LIYPv2OQeqADBqlGeBi69rQfU8uvZm27m59sEoAKxeLdW0AsCCBcCWLcCsWdK/Cxa4Xp8ntZj+GNXKsSYcYIcrIgpvER2s2rpy5Qo+/fRTDBkyBCa1Bm7/c8MNNyApKQk9evRAdna223UXFRXh3Llzdi+KbHrab7qbVy2oeuYZz8qllA5r8WLP25pqDfr0dh5yPC4//aQ8n2271DZtgBEjXNeoyoJ5pCs5KAbY4YqIwh+D1f/56quvcPbsWQx2kc8mKSkJc+bMwdKlS7Fs2TI0adIEPXr0wI8//uhy3VOmTEFiYqL1Vbt2bR+XnkKJntpDLfP6MqhSS4fVr5/y9rUE3VrL520NbOfOytt31S7VHX+05/UGO1wRUSTgcKv/k5aWhrJly2LlypW6luvduzdMJhNWrFihOk9RURGKioqsf587dw61a9fmcG0RSO9woFrnlefX015SqW2o0jZt2W4/K6u0Vs9slgJSV8Gcu/Jp3V9X8z3/vHO7VHeP+0OZ3mtEy/rCYdhdVyJhH8k4HG41MFizCuDQoUP4/vvv8cgjj+hetn379ti3b5/LeWJiYlChQgW7F0UmPTVhemvN9LSXVKuxdawFdSRv35N8n+7K54saWL3tUkOdL2vVQ3mwAa3NakJ5H4kiGWtWAUyePBkffvgh8vPzUaaMvgQJ9913H/7++2+sXbtW8zL8ZRa5jKxZVdueltpTx/UWFAA5OUD//srz7dsn3fAdZWeXtqXUUhYlubnAhg3AjTcqty31dW1iONBbq660fCCOqdo1oaf2U2sNP68b8gXevwNERLiSkhKRmpoqxo8f7/TehAkTxMCBA61/z5o1Syxfvlz88ccf4tdffxUTJkwQAMTSpUt1bbOwsFAAEIWFhV6Xn0LPvHlCREUJAUj/zpunPF9+vhBjxghhNrufV2078rJmc+mya9dK0xxfY8ZoL2t+fum65VdUlDRdrSwmkzSfyaS+H2pl1lou8ozaNZGdbdw2p08vvSZsz7XWa0AIfdehL/cxP19an9r1TuGL9+/AiPhgdfXq1QKA2Lt3r9N76enpokuXLta/p02bJho0aCBiY2NFpUqVxI033ihWrVqle5u82Ck/X7pJugrubG/YY8bouzG6uokrvSdvR2kbamXVE3TLQYn8Mpmc16c3AHZ3DL3hLhgJt2BF77H3Vmam8/UXFSXEli36yqEnAPXVPuoJpin88P4dGBEfrAYCL3ZSIgdAem/YStzdxMeM8U0tk5aAcdEi5W0tXqyvzP7iLhgJ12DFX7XVaj+WACFmztR3DXhSw+/NPvo7qKfgw/t3YLCDFVEQsO340a6d9+mI3OU2feYZadQrtfe18mUS/GAYStRdxzFPOpaFCn+l6VLqIAdI5/7GG/VdA3o7mHm7j0wVRhQYDFaJAswxAFLq8qg3aHN3E09JAebO9a4XudYe2B07OgfGZjPQoYO+MvuDu2Ak3IMVf4zApfSjBACmTpU61Lm6BpSuOb0BqDf7GAw/qIgiUqCrdiMRHyOQLbXH3552rLLl7jG9p+0+9T4K1/P41bZM/m4b6u4xLx8D+4bt9WA2S21YbSldl8HS/IKd+yIb79+BwdRVAcDUF2QrNxdo3945pU5ODnDxoufpiIziaQogvemV9A464CtZWdKj/ZKS0po92+26e5+00XM9GJV2ytMBArxNFUahi/fvwGCwGgC82ElmG5DJfBEAyTfh+HjgwgXfjtaTna0/x6pegc6JqWW0LQYr/uOra842OF29OjA/hii08f4dGPoy4BORzzi2VQWkm2ZOjnIyfNvlbGuDHP9WCoB9eTOW2+05BpK+bLfnqm2oNwMiaJWS4n4Z/sz3H19cc7afC7kNtXwO5Y5yaWn88UEUjNjBiihAlAIyi0V69K/GcbjIwYPt/54xwzlQldfrq17r/ugI5W1HFk+G1QzFITu1ljkYeFNWb685pU6Mjj82wqmjHFG4YTOAAOBjBAKktqrt2tnfNF096lZ6NO7IsfbJka8f1Rv5KNzTtqGeNCFwbB87bRrQqpXyMKCpqfbnzGwGDh3yf41coNr0esJXZfX0mlNrRmCLQ6+SFrx/BwaD1QDgxR655EfT27YB48fra6uq5YYLSI841dJfKd2MvXlcbjRPghO97Rtd/QhwDKwWLwb69XOeb/Fi4P77tZXPFwLdplePYCirUhlMJun8sqMc6cH7d2CwGQCRn9g+Ph471vnGmZPj+maplp/SVlSUVCsoPy61na702DSYHmkr8SQnpt4mBGpJ6oHgTfofSvlejSir3iYFSs0I5s71zyAIROQ9BqsU0fzV5k+pM5UtIaTaVleUbrjp6c7t+MaOLb0Jr1wJzJypHAiH62hMets3uvsRYBtYKQ1wYDI5D3BgtFBKTu/rsnr6A8tx8IC0NCmQZkYHohAQuBSvkYtJhYODP5OMqyX+t32ZTPZlUEuI75gwXS2xv7v9UyuT2jjsoUbPgAe2id4dX45J/5mcXj9vymr7OfDVoAzuzqGWwSj8PWAFBQfevwODwWoA8GIPPFc3PSNuQkrbcxUYeRsQabmpczQme3JwO326+8DK05G/fC1YyqGFJ2V1/ByMGeP9Dyx3172Wz16w/GAh/+P9OzDYwSoA2EA78NQ64YwZIz02N6KHtW3vdle99hcvBvr3194hRamDlNZORhyNSRmT/geeWscsi0V7Bg0lrj4bDRu67wzmqsMYELydFck3eP8ODLZZpYik1I7ObC4NVAHft+G0bTN36BCwZYtyWz4htHdIUWu/p7WdoGM7vkAHqka2IdazbseOXaGUzzSY6TmOah2zRo/2Lsevq8+Gls5gavO89VZwd1YkCmmBrtqNRHyMEBwc29H54hGjt2WYN0/743ktjzPldZvNQmRm+qbMRrXVM/LRqjfrDqdHvoFsZ6n3OLprqqO1ScGWLUK88Yb0r21ZlJp6eNN8xmRik5pIwPt3YDBYDQBe7MHD9qZnZBtOV0GC0o1XS4cULR2kpk8vvYn6ItAyKnAz+th7uu5waterdO78Fbx6ehy97USWnm6/zfR0+zKpdUx0t81g+KFLgcH7d2AwWA0AXuzBS+km5O2N3NMAz13tkbsAwNeBlpGBm5GZCbxZd7hkTFA6dyZT4LNhaDmOSp8DLUH2li3K27StYdWzTVfzhNOPGnKN9+/AYJtVIhtyG84xY6R2aTNmeNf+zJtcpu4S4rvLJ+rrZOxGJqJv1Mg5f6nZ7Ju8oWptFE+ccH8eQimfqStK5862bbTROXa9OY6OnwN3eVbldrErVyqvb+NG53kd91vLYBS28+jN7UtE+jBYJVIwc2Zpj2NvbuSbNhk70pCrDlK+DrT8Hbj5Kk+JYyAhZ2Lo18/9D5FwCUK0jH5m5AhYvjqO7n782Qayr72mvI5OnZzn9UWHqGDrrEgUThisEjnQUoOopVdzVpaUgsqRrwM8tVogXwdaRgZu+/Y5B6dC+D6oX7y49EEtoO2HSDgEIUoBu2NNttE1xr44jq4+m0qBrOM+pqcDbdoYN3qbJ8MDE5F7ZQJdAKJgI9dCOeZRlG/kWVmlNzq1XKzyzdAxAPN3zVxGBtCiBbBhA3DjjdKN2tv1paX5Pgepu2OuhVK+WVspKUDVqs7nRA52UlLU1yE/6g1ljudu9WrnHLtG76O3x9HVdaLW1OGDD4DLl6UaVfn6dxX0hvp5JgpLgW40G4nYQDv4TZ9e2mFCb2obIdQ7lCxe7N/9CKW0S970/Na6n67OXygdK19x1ZEoWIcT9SbtlIwdoshTvH8HBoPVAODFHtwcgxbb/KRaU9QEw80wGMqglydDcurdT29y20YKfwfuegNjb9JOydvSMqwukSPevwODw60GAIdr8y93j4cd53U1lGLt2srLbdni/Ig90EOZah1yNdR5sp+Ow6lGyrHSwtVnwIhH5Fqa1ejhaqhcx21Nmwa0bs1hdUk73r8Dg21WKahpDTTV5tN7I3TVls3Vz7qLF52nGdW+UytftAMNBZ7sp2PbyUg5Vlr4sz2nWkentDTvOgIqLau0rQkTjAvCich3mA2AgpbW1DJq83nS49dVeialXKC27ysJZO/gcEm75I4v9jNSjpUW/kxRZmTu3kBui4h8i80AAoCPEdzT+ijS1Xz79nn2aFfp8X1amrS+rVuB8eNLa1l98djSaK4ei4YTX+xnpBwrd/zVhMWfTQ783byBwhPv34HBZgAUlLQ+inQ137ZtzuvVUkOklOJHvsmZzcD06dLfANChQ/Df6MIh7ZIWvtjPSDlW7virCYtco+2PFFr+3BYR+RZrVgOAv8zc87ZmNScHaN/eOZCdPh0YO9b35SAiz/mzRpu15+QN3r8Dg21WKShpbUMozye3sTObpfkuXHAOVAHXSfGVRqXS085Ny6hWROTMn227OcoUUehhsEpBS+vwjGfOOPfU19tJRK2TVny8tmEpfT3OuCsMiomIKJKwGUAA8DGC5xxTVGVmAuPG2c8jP6ZXGk5SKeBVe9Q/ZYp9ZypAClznzrVfj9FNBWz3efVq3+akJCIi7Xj/Dgx2sKKg5RiYKiX0Hj/eeTn5Mb1tJ5G4OKlpQEGB8xjwao/6HYNgQApW09LspxmZl9Jxn+XxlQDf5KQkIiIKdhHdDGDy5MkwmUx2r5o1a7pcZv369WjVqhViY2NRv359zJ4920+ljSyOj9Wff945Z6pjrafMbC59TJ+SAuzfL3W2ktc1eLD9urdudW4y4Pi3zGJxbq9qVF5KpTyxjvvLPJHBgU0zgo+rc8LzRRRaIjpYBYBrr70Wx44ds7527dqlOm9eXh5uu+02dO7cGTt27MCzzz6L4cOHY+nSpX4scfhTCtJee8259tJiUU7SP22a9G92NpCb67yuhQvt/544UVrGtjPXtGnK67YNhGVGJZRXqrF1ZPQoS7ypu+fP9spGCbfz7OqchMP5Ioo4IoJNmjRJtGzZUvP848aNE02bNrWbNmzYMNG+fXtd2y0sLBQARGFhoa7lwll+vhBr15b+W/rAW/0VFSXE9OnSv4AQZrP097x50v/laVrWlZ0tbVv+VwhpPSaT/XwmkzRdbR9sl/fFMXEsv9lcOi0qSr0svuB4HI3cVqhSOkdRUb67BvwhXM6z/N2xZYv6OQmH80WBxft3YER8zeq+ffuQnJyMevXqoX///jhw4IDqvDk5OejVq5fdtLS0NGzduhXFxcWqyxUVFeHcuXN2LyrlWNOh9FjekZyiauzY0owBhw4BAwY416S6I9dOOqa0ycgAfv7ZvoZVCPUhW32dEkepxnbOHGk/3WVI8JYnQ9VGolAfwjNczrPtd4hSfmX5nIT6+SKKVBEdrLZr1w4ff/wxVq9ejblz5+L48ePo2LEjTp8+rTj/8ePHUaNGDbtpNWrUwNWrV3Hq1CnV7UyZMgWJiYnWV+3atX26H6FM6Wbp+FjekdkMbN5cGqjZBonuHp2bTEB6uvZH9nl5gW0nqpS+yx95InlT18ao9sr+Eg7nWek7xJF8TkL9fBFFqogOVm+99Vbce++9aN68OW6++WasWrUKALBw4ULVZUwODRnF/yIZx+m2Jk6ciMLCQusrPz/fB6UPD2o3y9atS4O06dOdaxfVkvsr3Yxsmc3Aq6+WrjsnB6hfX7kmKStLqql15O7m5uv2f4FIYs6bujZGtVf2l3A4z2o/UOX9sj0noX6+iCJVRAerjuLi4tC8eXPs27dP8f2aNWvi+PHjdtNOnDiBMmXKoEqVKqrrjYmJQYUKFexeJFG6WZrNwIkT0v+7drV/1O/u0bfjzciRbUopxywBth0tHGtrbMvm6uYWLp03UlKAgQPtpz30EG/qSrQOXhGMwiF4Uwu4N29WPiehfL6IIhUHBbBRVFSEBg0a4NFHH8WLL77o9P748eOxcuVK7N692zrt8ccfx86dO5GTk6N5O0wqbC8rqzR5v1xBLYRz0vuCAmDTJun/HTu6vqEWFEi1pv37KyfrB5QT+efkSPlYT54E+vVzXu/ixcD996tv08jBAfwpnPaF3CsokH7EyW23Q43td4irAUCIvMX7d4AEuINXQI0ePVqsW7dOHDhwQGzevFnccccdIiEhQRw8eFAIIcSECRPEwIEDrfMfOHBAlC9fXowcOVLs3r1bZGVliejoaPHll1/q2i57EzrLzxdi8WLlnrpbtggxZoz2Xvm25s0rzRZg23teLeOA3PvfZHLOBOCu17DaOrOzfXKI/Cqc9oWCj232D18t6+tsHERKeP8OjIgewaqgoAADBgzAqVOnUK1aNbRv3x6bN29GnTp1AADHjh3D4cOHrfPXq1cP3377LUaOHIn33nsPycnJePvtt3HvvfcGahfCRkoKULWqcvvVdu2cOzkJIT2mtx29yXHEK8B+FCvbWiP50aHj9uTtCCHV8srzuHv8r7bOUGv/JwunfaHg4jgqm54hg5VGsRszRnpPbpNKROGHzQACgI8RlCk9enYnO1tq1+rJDdD20aFS4ApIAatSkwQ1M2ZII2tZLKH/OJKPVkmN0g9Drct52rxE7fth+nSpXbuRPN1fCj+8fwcGO1hR0HDs7KEl12rDhp7nirTtaLF5s/L25J9yWtaZlVUaqJpMwJQpoR3csSMKKfGmE6E3qbLUev1PmGBsXthw6TRJFMpYsxoA/GXmmtzZIy5OOcE3IAWDc+dKAVR2tnQjcfTii8C117rvjCXTUtMq1+TK5ZRrWwDnWh+zGfj8c+3bJwp23na8M6JmFbD/XPoSOxqSI96/A4M1qxQUbHOTynlF27RxTp/UpYvUI//w4dKaPrXcqi+/LPXoT011XxtSUCDlW83JUa9ptW2z6Vjb8tZbzjdRi0XaPmtjKFx4O4iAN6myUlKkNqqOjGxLHQ6DJhCFAwarFHBqj9kKCoBPPrGfd8MGoEMH+5ubUk5QW3JnLLVHhY5DNe7fLwXKajdVpWYHM2eqN1sI1SEsiRz5YhABb5qXjBkjtVFVSvhvhHAYNIEoHBgerC5cuNA6MhQAjBs3DhUrVkTHjh1x6NAhozdPQaygQKolHTpUub2pu1oNuTY2N9c5qHVksQBLljgHjK7au6rdVJXKZbEAo0a5H4yAKJT5ahABb0ZlGzsWOHTIP22pw2HQBKJwYHib1SZNmuCDDz5A9+7dkZOTgx49euDNN9/EN998gzJlymDZsmVGbj4osc2Lfe99JdnZUu2FWnux1avte/9rzSBgNktB5TPPSDcctfaurtrAuWrHBrgejIA3Of9g721jhfogAnpF2v6SOt6/A8PwmtX8/Hw0/N8zk6+++gr33XcfHn30UUyZMgU//fST0ZunIKQ2lKlMfsymVqsBONeGamWxSOml5Hasnjzmc1XbkpIijXDF2pjAYe9t43lTMxqKIm1/iYKN4cFqfHw8Tp8+DQD47rvvcPPNNwMAYmNj8c8//xi9eQoSth2o1FLQAFLgOHWqfVJ/20fxaWlS0wFXAarJBDz7bOnQrUqEkB73A54Flu7a3THtU2B4msaMwovt9w0RhT7DR7Dq2bMnHnnkEdxwww34448/cPvttwMAfvvtN9StW9fozVMQcEzYP3Wq86N7Ofm+xQKMGyf9X070LddYZmZKeUzdNVwxmYCWLd3PV1Ii9eLPzFQe5coddyPmcEQd/3PVzpnnIjJ4M0IWEQUnw2tW33vvPXTo0AEnT57E0qVLUaVKFQDAtm3bMGDAAKM3TwFi2/nJsaZr4kQpBY1tbaYtIaSAdcaM0mkzZpQGse5YLMDate4HFQCkXvy26bIY0IQ29t6ObKxZJwpPhnewOnz4MFJSUmB2uIMIIZCfn4/U1FQjNx+Uwr2BtmPNhloS74YNpRqvEyekfKSOTCbg55+BpCSpjanSlSrXyDqSxw2fMKE0yX+rVlLwrFQWIxKKU2BwmNjI5UmHSSI9wv3+HawMbwZQr149HDt2DNWrV7eb/vfff6NevXooKSkxugjkR0o1G47MZmDPHilI7dhRClqVgk4hpLyno0ap16iqTbdYgL/+ktqLyo/3Aeegl7Vu4Scjw7NmHRT65Jp1x0wc/IwThTbDmwGoVdxeuHABsbGxRm+e/Eyt85RcsW4ySe8/8UTp6FKrVyuPTANI886apd5ZytWj/pkzpX/lx/spKdIQreylH/7YrCMyMS8qUXgyrGZ11KhRAACTyYQXX3wR5cuXt75XUlKCn3/+Gddff71Rm6cAUavZyMmRajkdH/fLvfIPHgQKC4HXXnNeZ0mJNHLNzJml6zWZpMATKH3k68hice5Yw1o3ovDGzzhR+DEsWN2xYwcAqWZ1165dKFu2rPW9smXLomXLlhgzZoxRm6cAkWs2bNsMTp0KXLggBaZKFe0lJVIw26OHcrBqNktJ/J95RpoPsB9yNS1Nmt63r/1yao//fNVLn4nniYKT/BmXO3o2aiRN5+eVKDQZ3sHq4YcfxltvvcWGyDYioYG2POJLbq7Uycld4n6zWcoSMGWK87zPPScFsu5uMv7sWMP0OETBzfYzKjcjEoKfV/JOJNy/g5HhwaqtgoICmEwm1KpVy1+bDErhfrHLNY7x8VIHKT0jTNkym4F77gGWLbPP0dq6tXrg6uthEZVqT10Nt8oaG6LAU/qM2uLnlTwV7vfvYGV4ByuLxYKXX34ZiYmJqFOnDlJTU1GxYkW88sorsHgaxVDQysqSOk117w60a+ddoPr116WBKlA6YICrYTR92bFGbdhOV4nniSjwXI2SB/DzShRqDA9Wn3vuObz77ruYOnUqduzYge3bt+P111/HO++8gxdeeMHozZMfFRQAQ4eWtkv1ps7eYnF9wzE62ber5OJMPE/kHb3DoeqdX+kzaoufV6LQYniwunDhQsybNw+PP/44WrRogZYtW+KJJ57A3LlzsWDBAqM3T360aZN64n4lHTs6j14li4oCbrzR9Q3HyNoRd8N2Mj0OkWfUnlj4an7A+TNqMpV+l/DzShR6DG+zGhsbi19++QWNGze2m753715cf/31+Oeff4zcfFAK1zYvixcrj0Q1YoQUmHboABw7BmzcCHTqBLRpY98Ra+JE585Rtp2mHJnNwKFDxtx0tLRL9XX7WKJwp7e9t7ftw3NzgQ0bpB++SUn8vJL3wvX+HewMr1lt2bIl3n33Xafp7777Llq2bGn05smPOnZUrkV9802gf38p+X+bNlLwKgeq+/ZJN4+xY6UbUHa29K/cUzcjo3R6Zqb9+oWQ1mkELbWnTDxfSu9jWopMett7e9M+PCurdAS89u2l7wp+XolCk+E1q+vXr8ftt9+O1NRUdOjQASaTCZs2bUJ+fj6+/fZbdO7c2cjNB6Vw/mXmqibUtkYkMxMYP945lYxt73ug9P/HjgErVwKvvKK+TiOw9tQ9pvEirfxVs8qMHWSUcL5/BzO/pK46evQo3nvvPfz+++8QQqBZs2Z44oknkJycbPSmg1K4X+wFBcCSJVKNhqPFi6VH92PH2k+XBw8YP945L6LJ5LqzVna2VGNC/seggPTSmw/Zk/zJ2dlSG1el6d58V3AgEAr3+3ew8mueVZJEwsWemSmlmXJkNquPZOU4TKsWDIwCy6iggMKbbVvSNm3cz6/3CYcRP6L4BIGAyLh/ByO/BKtnz55FVlYW9uzZA5PJhGbNmmHIkCFITEw0etNBKdwv9txcKceqnivLXe2pEqNHqSL3WLNKevkr6PPliHa8zkkW7vfvYGV4B6utW7eiQYMGmDVrFv7++2+cOnUKM2fORIMGDbB9+3ajN09+lpmpP1AFpEwArtJUOfrgA/uOWMEuXDsgMY0X6eEqf7Gv2XbO9Pa7ggOBEAWW4TWrnTt3RsOGDTF37lyUKVMGAHD16lU88sgjOHDgAH788UcjNx+UwvWX2YwZzm1RtTCZgMOHpd66ck2IySS95PartldpejoQSil6I+HxITuikRah2myENaskC9f7d7AzPFgtV64cduzYgaZNm9pN3717N1q3bo1Lly4ZufmgFI4Xu7uxuOWAU61dqnyzsg16gNL/O+ZnDRW8yRGVCuXPgy+bFVDoCsf7dygoY/QGKlSogMOHDzsFq/n5+UhISDB68+QnroZGta0ZVaoptR36MCXFOZep/G8oBakydyNhEUWSlBQp68eECdLnIpSajWRkAGlpfIJAFAiGB6v9+vVDRkYGZsyYgY4dO8JkMmHDhg0YO3YsBgwYYPTmyQCO6VsKCoCTJ9U7Sbnq+R9KNytPyGOUO9YkcVxyikRZWaWBqtksBa6hVDvp+GOaiPzD8GB1xowZMJlMGDRoEK5evQoAiI6OxuOPP46pU6cavXnyMcf2lwMHAp98Yp8b1R0hgBdeAK67ThqCNZy//OUOSI6PD8N5n4mUKHWumjBBGt2OnwcicsXQNqslJSXYsGEDmjdvjtjYWOzfvx9CCDRs2BDly5c3arNBL1TbvLhrlwroy5Uarp2NlLADEkW6UO1cRWQrVO/foc7wDlaxsbHYs2cP6tWrZ+RmQkqoXuxqNxtHenKmms3SiFYM4IjCWyh3riKSher9O9QZnme1efPmOHDggNGb8ciUKVPQpk0bJCQkoHr16rjrrruwd+9el8usW7cOJpPJ6fX777/7qdSBI7e/dCUqSl+OVYsFyMnxrlxE4ZrHNpwwJy8RecrwYPW1117DmDFj8M033+DYsWM4d+6c3SuQ1q9fjyeffBKbN2/GmjVrcPXqVfTq1QsXL150u+zevXtx7Ngx66tRo0Z+KHFgOd5slLRu7b/yEAFSO+o6daRa/zp1pL8pOPkyUT8RRQ7DmwGYbariTDY9cIQQMJlMKCkpMXLzupw8eRLVq1fH+vXrcdNNNynOs27dOnTr1g1nzpxBxYoVPdpOqD9GKCgAXn9dGkXKkd5hU+UBAVi7Qp7go2Ui8qdQv3+HKsOzAWRnZxu9CZ8pLCwEAFSuXNntvDfccAMuX76MZs2a4fnnn0e3bt1U5y0qKkJRUZH170DXKHsrJQV4+GHlYFUI7QGr3MHKl0GFY1otCm/MY0tEFP4Mr1kNFUII9OnTB2fOnMFPP/2kOt/evXvx448/olWrVigqKsInn3yC2bNnY926daq1sZMnT8ZLL73kND3Uf5ndfz/w5ZeeLWsyAdOmeTY8K6AclEbCsKZkjzWrRORPrFkNDAar//Pkk09i1apV2LBhA1J03uV69+4Nk8mEFStWKL6vVLNau3btkLvYlQYDqF3b8/V5GlQ4BqXTpkm5Ghm0RCYOg0lE/sJgNTAMbwYQCp5++mmsWLECP/74o+5AFQDat2+PTz/9VPX9mJgYxMTEeFPEgFOqtaxf37t1evK4Vimx+NixfBwcyTgMJhFReDM8G0AwE0LgqaeewrJly7B27VqPc8Hu2LEDSUlJPi5d8FAKEB99FNixw/2yrVqpvycPO6on7ZBSUAoAc+c6p9XisKaRIyVFSizPQJWIKPwYEqyuWLECxcXFRqzap5588kl8+umn+Pe//42EhAQcP34cx48fxz///GOdZ+LEiRg0aJD17zfffBNfffUV9u3bh99++w0TJ07E0qVL8dRTTwViF/xCKUC0WIDRo90vqxbQms3S49rVq/WlHVLL9SoEMGoUczgShRLmxyUiLQwJVu+++26cPXsWABAVFYUTJ04YsRmvffDBBygsLETXrl2RlJRkfS1atMg6z7Fjx3D48GHr31euXMGYMWPQokULdO7cGRs2bMCqVatwzz33BGIX/GLbNs+XtVikzlS2zGZg82bp0a1jje2wYa5vXCkpUhtVRyYT8MwzzOEYSAw8SA/mxyUirQzpYFWzZk3MnTsXvXv3htlsxl9//YVq1ar5ejMhKxgbaCv1ri8oADZtkjov+eoqse0A4+lY4Uoduzhsa2AxEwPpwSwOFKqC8f4dCQzpYPXYY4+hT58+1qFIa9asqTpvMA0KEKmUAg3AvtbTF8xmaWjVNm2kv+VH+o43LHftTPftc55msbAzVaAotWkeNkyqOef5ICXsEElEehgSrE6ePBn9+/fHn3/+iTvvvBPz58/3eLQnMpZaoGGx+K42VWaxALYj2crDt9qmHZo6tTQYldNjOdb4ehrkkjEYeJBe/AwTkR6Gpa5q2rQpmjZtikmTJuH+++9H+fLljdoUeUEt0DCC0s3INu1Qbi4wfnxpDe/AgcAnnzg/WlYKctmZKnAYeJBe/AwTkR5+GxTg5MmT2Lt3L0wmExo3bhzRbViDqc2LUtsxI7hrx6ilHI5t2goKmFszWDAxP3mCn2EKNcF0/44khg8KcOnSJTz11FP45JNPrO1To6KiMGjQILzzzjuscQ0wxxoOI8i9/+W2qkrU8qfacny0nJLCG1ywYGJ+8gQ/w0SkheGDAowcORLr16/HihUrcPbsWZw9exZff/011q9fj9FaEnWS4TIygH//23frM5lK01VFRUnBsKtAFVDPn2qLj5aDGxPzExGREQxvBlC1alV8+eWX6OqQiyg7Oxt9+/bFyZMnjdx8UArGxwieNAcwmZw7YQ0bBjz/vPR/vbVstlkJHDEdEhERBVow3r8jgeE1q5cuXUKNGjWcplevXh2XLl0yevOkUUoKcOut+pYZNKh0xCizGcjMBGbPLn20p7eWLSNDai7gWMMqNyNgoEpERBR5DA9WO3TogEmTJuHy5cvWaf/88w9eeukldOjQwejNk0bPPQesWqVvmU8+Ab76Cli8GPj8c2nwAG+1aSPVoNoOm6qlGQERERGFJ8ObAfz666+45ZZbcPnyZbRs2RImkwk7d+5EbGwsVq9ejWuvvdbIzQelYHuMMGMGMHas58vLzQF8+aievYSJiCjYBNv9O1L4JXXVP//8g08//RS///47hBBo1qwZHnzwQZQrV87oTQelYLrYCwqA1FTfDqfKIROJiCgcBdP9O5IYnroKAMqVK4ehQ4f6Y1Ok06ZNvh2piiMXERERkS8Z3maVgtvp075dn216qYICIDtb+peIiIjIEwxWI1yVKsrTW7bUvy6TqXTIxKwsKRVW9+7Sv1lZnpWPAS8REVFkY7Aa4erVU57+yy+lif1NJmD6dKBLF9frMpulUYwKCuzzpVosUv5VvQGnrwJeIiIiCl0MViNYVhbQvr3ye0KUtmUVApg4EejVy/X65PaqSkOnyu9p5auAl4iIiEKb4cFq/fr1cVqhYeTZs2dRv359ozdPKhyDQXdKSqRcrK7I7VWVhk7VO1SqLwJeIiIiCn2GB6sHDx5ESUmJ0/SioiIcOXLE6M2TCqVg0BtRUaXtVVNSnBP7y+9p5YuAl4iIiEKfYamrVqxYYf3/6tWrkZiYaP27pKQEP/zwA+rWrWvU5smNbdu8X0dUFDBlijS6lGPy/owMqf2qp4n95YB32DCpRtWTgJeIiIhCn2GDApgdq8VsREdHo27dunjjjTdwxx13GLH5oBbopMIFBVKHJW9qVhcvBjp0sA8eCwqkGttGjXwXVHIkKyIiChaBvn9HKsNqVi3/i4Tq1auHrVu3oopajiTyu02bvG8C4BioZmWVtoH15bCrcrMCIiIiikyGtlktLi5G3bp1FTtYUWBkZQH9+nm/HtuOTuy5T0REREYxNFiNjo7Gr7/+CpOcsJMCSg4qveXY0Yk994mIiMgohmcDGDRoELKYzT0o+CIDgNns3NGJPfeJiIjIKIa1WZVduXIF8+bNw5o1a9C6dWvExcXZvT9z5kyji0D/06iRd8s/9JDU+9+xDWkw99w3otMXERER+Y9h2QBk3bp1U9+4yYS1a9caufmgFMjehM89B7z+umfLms3AoUPqQV+w9dw3qtMXERFFJmYDCAzDg1VyFuiLvW9fYMkSz5adORO4//7gCEZdUUrPFRUFHDwY/GUnIqLgFOj7d6QyvM0qBZ/Fi4EtW4BZs4Cnnwb09H8bNUoKAoO9GTI7fREREYUHv9Ss5ubmYsmSJTh8+DCuXLli996yZcuM3nzQMfqXmd52mgUFwKuvSu1MtQr2WkrWrBIRka+xZjUwDK9Z/eKLL9CpUyfs3r0by5cvR3FxMXbv3o21a9faDcFKvpGVJQVp3bsDqalS+9FrrpEe36tJSQFmzwby84ExY7TVtJaUADk5viu3r8mdvqKipL+DqdMXERERaWd4zWqLFi0wbNgwPPnkk0hISMB///tf1KtXD8OGDUNSUhJeeuklIzcflIz6ZeZuGNWYGOCnn4A2bUrnV6qBzc0F2rUD3F0ZJhMwd25wd1oKtk5fREQUulizGhiG16zu378ft99+OwAgJiYGFy9ehMlkwsiRIzFnzhyjNx9R3OVRLSoC2raVOkjZ1sA6tkFt00YKQuVaSbNZWkb+WyZE8I9UlZICdO3KQJWIiChUGR6sVq5cGefPnwcA1KpVC7/++isA4OzZs7h06ZLRm48oSsn5lXz5JfDII66HR83IkNp3ZmdL6aoWLwb+/W/ndbHTEhERERnJ8GC1c+fOWLNmDQCgb9++eOaZZzB06FAMGDAAPXr0MHrzEUVup+kJpaDTsVayY0eOVEVERET+ZXiw+u6776J///4AgIkTJ2LMmDH466+/cM899wTNMKzvv/8+6tWrh9jYWLRq1Qo//fSTy/nXr1+PVq1aITY2FvXr18fs2bP9VFL3MjKktFR6aQk6nTotoQQfTjzo+0fsW7dK7RO2bvXxirlurjsI1k1ERLoYPtxq5cqVrf83m80YN24cxo0bZ/RmNVu0aBFGjBiB999/H506dcKHH36IW2+9Fbt370ZqaqrT/Hl5ebjtttswdOhQfPrpp9i4cSOeeOIJVKtWDffee28A9qDUN98AQ4cCx4/LUwQAbUlUGzSQBguoUwe46Sagd2/g2DGpQ1bnzlI71oICoH594KuvgNyXv8XJ3ANYv6QNarSrizvukNZTUACsXCkt27YtILf06NhR+nfTJqkG9/JlaRtJSdI0eZ6UFAAffwxkZ6Pg/RXYN7A14uOBCxdKO4LZdgyT1wkA9erZzyeXx64T2ccfoyD7D6wcux/HOrdG796lHc4cy6/0nu12HTunFby/AiuzG+PYEyfQ9kUgLk56/9gxaZ1JSc7HNSlJuZObvK34eCAvD8D8XeiY/Qfw/gpsuqW10/7aHgfrcdTK4XjrXZ/LVGn/Wzc++QRo3drurdxc++tLbV2q67dZd0HN1h4Pq+u4/oICYN/rOYjPPo8Lr+eg0dutFc+NJ8fd1bFSe8+oIYO1rLegQNv+KR5DPw1zrOW4AdrKk5sLfPaZ9P8HH5T+dbxG9azb3XGx/Zxv3Qrs3Qs0aSJ9VGw/20rbcvy/7XmS35O/P06fBqpUkb4z8vJK51P6jMnfT40b23+H2U6zfi8BKF9eqiCJjZUqPPR+/2g9RkrnV+na1HrNUogRfnD16lWxZMkS8fLLL4tXXnlFfPnll6K4uNgfm3arbdu24rHHHrOb1rRpUzFhwgTF+ceNGyeaNm1qN23YsGGiffv2mrdZWFgoAIjCwkL9BVbRsaMQUpcnY14dOwphNlv+97fF4X2L6Nj8nJg37ZRX2zCZLGLeCweFqF5dzMMQYcZVu+2ZzUKkp0v/SvNLL8f1mM1CzJsnveR5zWZp3fMSRggTSuzKnn7veSGENL/jutLThfU9pe2azRYx7/k8Me+FgwIO61U+VsovucyO27JdXiq38zYcj4HJVLouVQcPCrF1qxDbtjkdb5PJYr9dF+uzP8b/m89h3QKQ/t22TZp+8KBIT3c+zkrrcpo27ZTTuucljLBem2azxf2+q5bfItJvP+l0ncvnWBw86HQd6DnuisfKzXuulvGGlvXOm2e/j2r757gu28+oL8usZz/UP6/q5XG8JvV/F7g+p47HxfZv9e/E0vVr+b/tcu6/b50/Y754afr+8eAYOZ5fpWtT6zXrDSPu3+QejN7Arl27RP369UX58uXFDTfcIG644QYRFxcn6tatK3755RejN+9SUVGRiIqKEsuWLbObPnz4cHHTTTcpLtO5c2cxfPhwu2nLli0TZcqUEVeuXFFc5vLly6KwsND6ys/P9+nFvnKl775oPH9ZhH0g5dnLjGKxBa1tAlXPXlFRzl/YZhQ7BKqlZV+5Uv0LfuVK11/mUSgW8LK8cpm3bPHNjSMqSoj8fBcXjc3M+Uhxe7yV1pef71zWqCgh8lHL/m5h+y8gtqC18rlXWJfjOYlCcen6TSaRj1pOZXe77y7Kr/bjIkq+Lt2cG7Vtqx6rfPX3lK4Frfumd78d16t8bKRpWubzdZn17Ie7z5BSebZs0fa5cvtd4OKcBuPLZDKmnFrOuSfHSD6/apUU/rj+GKwGhuFtVh955BFce+21KCgowPbt27F9+3bk5+ejRYsWePTRR43evEunTp1CSUkJatSoYTe9Ro0aOF76LN3O8ePHFee/evUqTp06pbjMlClTkJiYaH3Vrl3bNzvwP99+69PVecgEXzSBtqAMNqATLIhyP7MLJSXSV5XjuoViGU34v/9znl/2f//nOiVYCcoAXpYXkMq8YYPrbelZl8ssDZ9+CpSRWgHtQ0O3x1tpfapD2j4737pu60GV/y1TBj89oNzGW2ldjuekBGXwp7mJdZ370Mip7FozVCinelNuNlOCMtjwwAduz43atl0N/6v2ntK14IvsG1qGIlZLg2exaJvP1bp9Rc9xc1ceN90UrNx+F7g4p8FICGPKqeWce3KM5POr9F2tti5mrAkPhger//3vfzFlyhRUqlTJOq1SpUp47bXXsHPnTqM3r4nJYcgmIYTTNHfzK02XTZw4EYWFhdZXfn6+lyW2d9ttPl2dh1QiPZ3MuIobsRFmlHi1nqgo55G4zLgKE5S/0W69VX3krltvdZ0SLMosAC/LC0hlvvFGbenHtKzLZYe5Bx8Efv4ZANAI+9web6X1KaVKi4oCGj7e07puJz//jM4jWim+pbQux3MSFQU0/ObN0jIolF1rhgrlVG/K13GUWeDGEa3dnhu1baseq4bq7yldC77IvuGqLK7mAaRpWuZztW5f0XPc3JWnc2dt23T7XeDinAYjk8mYcmo5554cI/n8Kn1Xq62LGWvCg+EfpyZNmuCvv/5ymn7ixAk0DPAVVLVqVURFRTnVop44ccKp9lRWs2ZNxfnLlCmDKlWqKC4TExODChUq2L186Y47ShvVG6VjR9tBARxv6AIdW1zEvHnqAZ+WIVxNJoE5GIY25u2Yg0cRhat224uKAtLTS8thMimvVx5a1XZggyiztO65pmEOAatAerp0DOfOdV6f/J5tFgTbL/ioKODD5w5jHh51Wq/W/bYtc5s29tuyPdbS+p2DbccvabNZ39CyKeZjdsfbZBJ25VZbn6YhbeXC2RSyTRvpuNpKT1del905lNdfo9i6zhQcwRzTY9ay6xlWV6n86Xf87Xzd4So+fO6w07nRc9xdHSu19xy356shg7WcN3ke2300maRpSvPZHcN035dZz344Hjenz6tCeZSuSUdK3wVmc+ln3N05dTwutn+rsS277bZs/6/0PaglCJRHIHQ8Vt7S+v2j9xjZnl/H72qzWVqX4z1I73chBS/Dh1v99ttvMW7cOEyePBnt27cHAGzevBkvv/wypk6dihtvvNE6byCGLmvXrh1atWqF999/3zqtWbNm6NOnD6ZMmeI0//jx47Fy5Urs3r3bOu3xxx/Hzp07kZOTo2mbRg3XVpoNoATS40z55V6TJkDVqkBqqpQN4I47pB6gGzcCnTqVZgP4M+ckLjw6ErnlbsLJRh1x6dc83GdZhDt2TQVSUlBQIJXj+HGpR+s//0jr79BB+jcnR3okU1QE3H671BtePmwd6h5Dyp3/AmrXBjIyUPDBSvx5uCziPv4AF+NrWIdMtR1CVV4nANStC1y8aD+0qnXeuNJ1F9wzHN98kI/jp8rg9kWD0OaO0h8mtuW//XbnHsC227UO44oCoE0bFNRohW+ajcPxdb+j9T8/In7OLDTsUA3HjgGrVgE1azof16Qk5eFg5W3FXfgLBx96HqhaFR0euRb44gvkHEwCpk5F3VZVrPtrexw6dND45VwgldvxeDdc/R6QlKR5fYpD2jqsG1lZQH6+1N36fzPl5tpfX2rrcpqmsO6Cg1fx53ur0bBDNY+yAdiey4J/3Yk/K7dF3N29cHH5d2j49xakbF9hLZDa9afluLsa/lftPaOGDNay3oICbfvnuC5/DnOs5bgB2sqTmwt8/rn0/wEDpH8dr1E963Z3XKyf8zhg2zbgjz+kHvetWsHus620Lcf/254n+b24OGlwFzkbQN260t/yfEqfMfn7qWFDqde/0jR5vQBQrpyUySAmRnpf8/ePzmOkdH6Vrk2t16ynONxqYBgerJptfuLJj8kdH5vLj91LSrx/lKrXokWLMHDgQMyePRsdOnTAnDlzMHfuXPz222+oU6cOJk6ciCNHjuDjjz8GIKWuuu666zBs2DAMHToUOTk5eOyxx/D5559rTl1l9MWemwu0bSugNVAFpF+tBw+6/2BnZQGPPipgsZikX7MfCmQMvCJ9U/lCURFQtqz081gI4ArXzXWH0bqJKKQxWA2MMkZvIDs72+hNeKVfv344ffo0Xn75ZRw7dgzXXXcdvv32W9SpUwcAcOzYMRw+fNg6f7169fDtt99i5MiReO+995CcnIy333474DlWZVlZ0lCqegJVoLQRursatEcfBSwWad0WCzDsMRPSbonx3a9X26DAZPJtkMB1c92BXjcREelmeM0qOTPql1lBgZTU35PenUo1q47JmBcvBvr1c142O1salpWIiCicsWY1MEKgvyJppTUVyH33SQ3RXXWCyMqSAt/u3aV/+/YtbcNliz0tiYiIyEiGNwMg/5FTgagFrImJwJo1pR0F0tKUG65/843clEBisQBLljivLxR6Wvpz2EciIiLyPdashhHHVCAmE9C0KdCuHTB/PnD2rH2P1pQU6fG9bS/KW26Rxq/X4osvpM7YwcqxdjgrK9AlIiIiIr3YZjUAjG7zojdtTEEB8MorUqCrldbsAYGi1H432MtMRETBjW1WA8PwZgCTJ0/Gww8/bO1dT8aTk1K7kpsLrFwJ/PorsHy5vvUbmejbV1wNKRnM5SYiIiJ7hjcDWLlyJRo0aIAePXrg3//+Ny5fvmz0JsmNvn2Btm2l2lS9geqsWVLtZDA//ge0DSlJREREwc/wYHXbtm3Yvn07WrRogZEjRyIpKQmPP/44cnNzjd40KXjuOeXOUlqYzVImAVej2GRnS/8GmqahQImIiCjo+aWDVYsWLTBr1iwcOXIEH330EY4cOYJOnTqhefPmeOutt1BYWOiPYkS8ggLg9dc9X14pdZUsGDszZWRItcDZ2aFRG0xERETO/JoNwGKx4MqVKygqKoIQApUrV8YHH3yA2rVrY9GiRf4sSkTat8+75T/7DEhNdQ5ES0e2kv62WIBhw4KnhtU24wERERGFFr8Eq9u2bcNTTz2FpKQkjBw5EjfccAP27NmD9evX4/fff8ekSZMwfPhwfxQloim149RLCOdA1FVnJiIiIiJvGB6stmjRAu3bt0deXh6ysrKQn5+PqVOnoqFNT5dBgwbh5MmTRhcl4sntOL3lGIiyMxMREREZxfBg9f7778fBgwexatUq3HXXXYiSe7zYqFatGiyeDGhPumVkAL5ocWEbiLIzExERERnF0GC1uLgY8+fPZweqINOxo/fNATZtsm8KYFRnpmDKMEBERET+Z2iwGh0djaKiIphMJiM3QzqlpADTpim/V7OmtnX06yf1+s/MLA0mlYZv9SbQDMYMA0RERORfhjcDePrppzFt2jRcvXrV6E2RDq1aKU8/flz7OiwWYNw45WDS20AzmDMMEBERkf+YhBDCyA3cfffd+OGHHxAfH4/mzZsjLi7O7v1ly5YZufmgFAxjCxcUSEGkL5sKR0VJTQAA53XL72ltx5qdLQW6StO7dvWyoERERB4Ihvt3JCpj9AYqVqyIe++91+jNkE5yp6hhw6Te/UpMJilVldkMTJwoLfP44+rrlLMECKGeykprsCpnGHAMeJlhgIiIKLIYHqzOnz/f6E2QhzIygBYtgLZtnd+TA1VAChhff11boJmbK4105W2g6RhMM8MAERFRZPLrCFYUfPLylKc7Ng4RAsjPd7++iROlf32RyorDpRIREZHhNasA8OWXX2Lx4sU4fPgwrly5Yvfe9u3b/VEEUnH6tG/XJz/uz8gA0tKk/zds6HmNaEoKa1OJiIgimeE1q2+//TYefvhhVK9eHTt27EDbtm1RpUoVHDhwALfeeqvRmyc3qlTx7fpsH/c7prIiIiIi0svwYPX999/HnDlz8O6776Js2bIYN24c1qxZg+HDh3OwgCDQsaPUPtUX2K6UiIiIfM3wYPXw4cPo2LEjAKBcuXI4f/48AGDgwIH4/PPPjd48uZGSAkyf7vnyZrO0PEeuIiIiIiMYHqzWrFkTp//XMLJOnTrYvHkzACAvLw8Gp3gljcaMAZ59Vv9yZjPw9ddA69betUu1VVAAjB3LkauIiIhIYniw2r17d6xcuRIAkJGRgZEjR6Jnz57o168f7r77bqM3Txq5yp+qxGQCBg4E+vQpDSpnzPCuDFlZQGqqtB7bkasefVRKiUVERESRx/ARrCwWCywWC8qUkRIPLF68GBs2bEDDhg3x2GOPoWzZskZuPigF4wgYaiNGuWKbi1X26KPACy9I/9+3T0rur6XG1d2IWmazlA6L6auIiChQgvH+HQkMD1bJWTBe7Lm5QLt2zsGnJ+QOW/LoV1qCTC3Bst4hW4mIiHwpGO/fkcAveVbPnj2LLVu24MSJE7A4VJ0NGjTIH0UgF7KypBpR20DVNuDUy3YZ+TF+ixZAmzbqyygNr+pI75Ct5F8FBfpq04mIiLQwvGZ15cqVePDBB3Hx4kUkJCTAZJMnyWQy4e+//zZy80EpmH6ZKT1+N5ulgNOXV4bJBMyd67qGNSurdHhVpWDZsWaVwVHwkH/wWCxsskHa8TNMoSaY7t+RxPAOVqNHj8aQIUNw/vx5nD17FmfOnLG+IjFQDTb79jnXZlosvg1UAWl9w4Ypp6KS01SlpZUOr3r4sBTcqg3ZmpXFjAHBoqCgNFAFpH/VzjWRjJ9hItLK8JrVuLg47Nq1C/Xr1zdyMyElmH6ZKdWsRkUZE7ACUiDatWvp3+5q5AoKnIdsVSsz27MGhlp7Y8dzTSTjZ5hCVTDdvyOJ4TWraWlp2Lp1q9GbIQ+lpEgBomMNpm2tpq+YzUBcXOnfWmrklIZsVaoNltuzkv/J7Y1t2Q67S+SIn2Ei0sPwDla33347xo4di927d6N58+aIjo62e//OO+80ugjkRkaG9AjesQZTnpabC0yY4LrzkxYWC9C+fWntqasblqvalUaNnKeZzQyOAkX+wSO3N+awu+SOUodK/sAhIjWGNwMwO1a52G7cZEJJSYmRm1d18OBBvPLKK1i7di2OHz+O5ORkPPTQQ3juuedc5n4dPHgwFi5caDetXbt21pG5tAi1xwgFBVKyfk+vFMd8rGYzsHkzkJTk2aPAGTOkUa4ct3H4sPR/dtgIDKUmG0RqbDtUyj9w2CmPgl2o3b/DheE1q46pqoLF77//DovFgg8//BANGzbEr7/+iqFDh+LixYuY4WYopltuuQXz58+3/h3uAxvs2+dd+1XHZS0WKafr3Ln6a+QKCoDx45W38dZbwMyZ7JEeKCkpDFJJO7UnOkREjjgogI3MzEx88MEHOHDggOo8gwcPxtmzZ/HVV195vJ1Q+2Wmlt4qMxMYPdrz9cq1qID2G5ZaZx6TSXqxw0ZkYgokIvKHULt/hwtDalbffvttPProo4iNjcXbb7/tct7hw4cbUQSPFBYWonLlym7nW7duHapXr46KFSuiS5cueO2111C9enU/lDAw1NokepvgQW6f6tiByhW1wQOGDpXKqLR+Bi/hjTleiYjCmyE1q/Xq1cPWrVtRpUoV1KtXT33jJpPLWkx/2r9/P/71r3/hjTfewCOPPKI636JFixAfH486deogLy8PL7zwAq5evYpt27YhJiZGcZmioiIUFRVZ/z537hxq164dcr/MHNskFhQAtWt7vj5Paz5t27qZzcC0aUD//kyFE4mYAomI/Ik1qwEiwsykSZMEAJev3Nxcu2WOHDkiGjZsKDIyMnRv7+jRoyI6OlosXbpUd5kKCwt1by+Y3HefPM5V6ctkkl6O0x1fZrMQ06d7vu38fCGys6V/ZfPmCREVJa0/Kkr6m8Lb2rXK11d2dqBLRkThqLCwMCzu36Em7Nqsnjp1CqdOnXI5T926dREbGwsAOHr0KLp164Z27dphwYIFLrMXqGnUqBEeeeQRjFfq+YPwqVmVFRQAK1cCTzzh3Xq0DMGqF3ukRxbWrBKRP7FmNTAMzwYwatQoxekmkwmxsbFo2LAh+vTpo6mtqBZVq1ZF1apVNc175MgRdOvWDa1atcL8+fM9ClRPnz6N/Px8JCUlqc4TExOj2kQg1Ni2D1TimKbKFSGktqZpab4LLNgjPbIwxysRUfgzvGa1W7du2L59O0pKStCkSRMIIbBv3z5ERUWhadOm2Lt3L0wmEzZs2IBmzZoZWRQ7R48eRZcuXZCamoqPP/4YUTbDNdWsWdP6/6ZNm2LKlCm4++67ceHCBUyePBn33nsvkpKScPDgQTz77LM4fPgw9uzZg4SEBE3bDtVfZkq1WI66dwfWrdM3gMDixcD993tdPIpgrFEPHczcQKEsVO/foc7w4Vb79OmDm2++GUePHsW2bduwfft2HDlyBD179sSAAQNw5MgR3HTTTRg5cqTRRbHz3Xff4c8//8TatWuRkpKCpKQk68vW3r17UVhYCACIiorCrl270KdPHzRu3Bjp6elo3LgxcnJyNAeqoUxpxClH69cD99zjn/IQyZSG5aXgk5Ul/eDt3l36Nysr0CUiolBgeM1qrVq1sGbNGqda099++w29evXCkSNHsH37dvTq1cttW9NwEaq/zLTUrALKqaVczXvoEIMMonDH9sUUDkL1/h3qDK9ZLSwsxIkTJ5ymnzx5EufOnQMAVKxYEVeuXDG6KOQluX2g3GLCbJbaqNrSE6hGRUnri4QbVUGBNKBBQUGgS0IUGEpPZuRcyERErvilGcCQIUOwfPlyFBQU4MiRI1i+fDkyMjJw1113AQC2bNmCxo0bG10U8oGMDKkmJDtbqhGdO9c+eNUaqE6aBPz731LnqnDHR59EpQN62IqKktoZExG5YngzgAsXLmDkyJH4+OOPcfXqVQBAmTJlkJ6ejlmzZiEuLg47d+4EAFx//fVGFiVohNtjhIICICcH6NdPWyYAuTZWiPAfcYiPPolKKQ3oMWZMoEtFpF243b9Dhd/yrF64cAEHDhyAEAINGjRAfHy8PzYblMLxYs/OlmoOlTims3L8O5yDN7Xjkp0tdQgiijSZmcD48aH5Y5WZDCgc79+hIOwGBQgF4Xixu+t8JQeoanlY5eDN9mYAlP7/2DHgp5+Azp2BNm0M2w2fY80qUalQ/jzY5pgOtSCbfCcc79+hwPBBAQAgNzcXS5YsweHDh506Ui1btswfRSCDpaRIj/TGjlV+Xw5Q1X4axcXZ3wxsmwo4Brjp6cCCBT4ruqEiJWk9a5xIC1edrIL5uikosB8MxWKRPtO+HNCEiNQZ3sHqiy++QKdOnbB7924sX74cxcXF2L17N9auXYvExESjN09+NGYMMH26c4YALRxHxpJHeZf/b2vhQuCDD0KnZ71tp7SDB8OvNoYdyEgrf3ey8lUWDmYyIAosw4PV119/HbNmzcI333yDsmXL4q233sKePXvQt29fpKamGr158rOxY4Gff9YfsM6Zo2/UqyeeCK3AKFyT1qvVOIXKDwnyL8f0d0Y+afDljyhmMiAKLMOD1f379+P2228HAMTExODixYswmUwYOXIk5syZY/TmKQCSkoChQ5Xfi4pSTlcld7bQg4FR4LHGifTKyJCyh8ycKf2r5UmD3hpSX/+I8meQTUTODA9WK1eujPPnzwOQRrP69ddfAQBnz57FpUuXjN48+Zlcm6H2O+Tzz4F585xrXqOipDav8s3AZCoNXl3V0jIwCizWOJFeWVlA+/bAqFHSv+5qPD2pITXiR1S4N+chCmaGB6udO3fGmjVrAAB9+/bFM888g6FDh2LAgAHo0aOH0ZsnP3KszXAUFQV06CDVRtgOJiDXUowZU3ozOHxYGnRA/v+WLdJAAkrrNDIw4shTrrHGifTQW+PpaQ2pUT+iwrU5D1GwMzwbwLvvvovLly8DACZOnIjo6Ghs2LAB99xzD1544QWjN09+pFSbIXMMYjIypOYAf/4p3UBSUpR7lMvTL1wA4uPtMwOYzcYGRkxVo43SuSRSojcbgKfZAyIlCwdRpGCe1QAI1zxtublA27bO019/HWjQAOjY0Tlfqhygbt0KTJjgHBg6ZgmwZTZLta9G3IC05INkuiYiffTmWfU2L2tuLrBhA3DjjVJben5eyVvhev8Odn7JswoAJ06cwIkTJ2BxiDpatGjhryKQwS5cUJ7+3HPK+VU7dgQ2b3YOROVHfS1auG5WYLEYl5/RXY0Oa12J9NNb4+lNDala3mZ+XolCj+E1q9u2bUN6ejr27NkDx02ZTCaUlJQYufmgFK6/zNyNYqXXiy8CL7+s/r6RI9+4qtEBQncUHqJgUFCgr9mIJ/O7+i7i55U8Fa7372BneAerhx9+GI0bN8amTZtw4MAB5OXlWV8HDhwwevPkR46dbfSmonL06qvqmQCMboPmquMQ0zUReUdvRyW987tqPw/w80oUagyvWU1ISMCOHTvQkLlsrML9l5lcCxIXJ6Wm8aam1WSSXhaLFDBOmSK1dVWrYfF1O1KlGp1QHt+cKBKwZpWMEu7372BleM1qjx498N///tfozVAQSUmRgrsLF4CpU0trJ10xm6V2aY6EkNqdybkNx451rmGR00tlZvp+2E+lGh2mayIKbo6fUdu8zfy8EoUew2tWT506hfT0dLRt2xbXXXcdoqOj7d6/8847jdx8UAr3X2aOnY+mTZOCx127gFdecZ7fZJKGaE1KAlJTnTtj2bYV3bRJ+rdjR+eOTo6Mrj3R246OiPzL9jMK8PNK3gv3+3ewMjwbwKZNm7Bhwwb83//9n9N7kdrBKpwpJfEeP14KQNV+Fk2fLj3anzFDeZ6SEuCtt4A33rB/f/r00nRXStTyMfqqqUBKCm96RMHI9jPetWvpdH5eiUKT4c0Ahg8fjoEDB+LYsWOwWCx2Lwaq4UepY4PFohyEms1SwDlmjPQIf+xY5XVGRTkHqgAwbpzr9rBms9Ru1nYEKk+GbiSi0MHPOFH48UsHq507d6JBgwZGbiakhPNjBK3pq2bNAu67r3SEKqXH/4AUcI4aJdW6KrEd0cpRWhqwZo19c4Rx4+znZ0eL8MQBGyITOz+S0cL5/h3MDK9Zveeee5CdnW30ZihIKHU+ckw/FRUlBaqAVOu5aZNywGkySYMGPPOMegqrHj2Up5tMpYEqIP07dqzzdpjCJvywZi1yMa0cUXgyvGb1tddew5tvvonbb78dzZs3d+pgNXz4cCM3H5Qi4ZeZbceG1audR6AB7DthKbVpzcyUmggAUs2qWjMBJX37AosXu5/PyCFbyf9YsxbZeP7JaJFw/w5Ghger9erVU9+4yRSRAwNE4sXu2CvX8YbiOBzi1Kmlwan8SPf776Xp7poYmM1SjayWHK9ye1k+Ng4P2dlSjarSdNuONhS+srKcfxxzaFXylUi8fwcDw4NVchbpF7taQAGUti2Va1SV0mBFRUntWNWYTNJ8+/dLTRLUrnC5xmX1avttaB033F2AywDY/1izRgDTypFxIv3+HSgMVgMg0i92raPLAMqBR06O9yNjyUFpWppnwY1jEO0Y4Lp7n4zDmjXyNf7wJFmk378DxZBgddSoUXjllVcQFxeHUa6qwADMnDnT15sPerzY7QMKJdnZUo2o2iPd/ftLlzebtQeuUVHAyJFSp62UFM8eG7uqvQOkDmMDBrB2L5BYs2asQAdv/tw+f3iSLd6/A8OQQQF27NiB4uJi6//VmNS6eFPYy8iQajVzcoB+/ZzTScltWx0DUfm9rl2l5f/8U8qlqqWm1TZdlqxRI/VtAMo3RbUex2+9BcycqVwOtQEKyBgcsME4gQ7e/Ll9pUFOhg2Tvnt4fRH5kSC/KywsFABEYWFhoIsSFObNEyIqSsoHEBUl/W37ntksvWc2279nKz1dzieg/DKbhcjPd799s1mIMWOkedW2nZ9fOt12/Y7TbF9RUerbJwoVSte+J9d2fr4Qa9d6tpzJ5L/P1tq1yp/n7GxjtkfBj/fvwDA8zyqROxkZ0iPy7GzpX1e1JLm5UkoqeUQqQPr/J5+oL2MySbUvajUh8vZt02SlpgJDhzrXqBQUKOeSHTXKdRvcDz9kTQyFPl/kMfUmD+5bb/k3V7L85MWW7ZMXIvIPdrAKALZ5cU1+9B4fr/5432QC5s6VAk21dqeTJgHXXgt06OA+UNQ68pZtW1Z36bjMZuCLL7RtP1gFum0iBRdvsy14s7zaZ9ToXMnssEe2eP8ODEParBJ5yrE9mlrwKIQ0X1qaervTRx7RdgPctw84edJ9oOpYo+LYLnLOHPtOX1OnAvff73qdwSzQbRMp+MhPFRyDN62BoquaWXfrUFoWkJ5qGPlDSm5fzw57RIHDmtUA4C8zZVprN23JNZ2e1H44BmOOo2iZTNLLYtG+zhkzgPHjQz/AY75ScsXTbAu+rlnlNUn+xvt3YER0m9W6devCZDLZvSZMmOByGSEEJk+ejOTkZJQrVw5du3bFb7/95qcSh6+CAqktqlKg6thmzHa6XNPpqt1rQYE03bGdq2MvX5OpdFtRUcCgQaXBq5YAuqCgNFCVl5HbuYYajrFOrqSkSD8S9QaJSu29tdbMerMsEYW2iG8G8PLLL2Po0KHWv+Pj413OP336dMycORMLFixA48aN8eqrr6Jnz57Yu3cvEhISjC5uWLKt4XQkDwKweDHwxhulwaNSpymldEVqj7KVgjGLRdpOtWql6bDk7cnNDlq0ANq0Ud4Pbx5xBht3Kb2IPOXNY3VXy7J9NVEYC2guggCrU6eOmDVrlub5LRaLqFmzppg6dap12uXLl0ViYqKYPXu25vUw9UUppVQ4tilpbFNV5ecLsXix9HKXqiY/X4hFi9TT7LhLwaOWssZkUk+f5au0PsHCVUoxCi+eppIKFlpT3MlCfX8pcHj/DoyIbgYAANOmTUOVKlVw/fXX47XXXsOVK1dU583Ly8Px48fRq1cv67SYmBh06dIFmzZt8kdxw45ap4lZs6Qa1fr1pRoTudakQwep05K7oVDr1JEGG3BV0+nqkaJSyhpACkHVHu2H42NK2yYNpE6pqUmo8CaVVDBQS9yfm6t8TkJ9f4kiUUQ3A3jmmWfwr3/9C5UqVcKWLVswceJE5OXlYd68eYrzHz9+HABQo0YNu+k1atTAoUOHVLdTVFSEoqIi69/nzp3zQenDg9rj5qtXS9NWyQOdCeG+05LjjcuR/Ci7oEAKhHNygIsXnR8pyoGn0rpcPdoPl57D8nG0bQbBkXuUhXLWhHAYoUmt+U27ds7fGeGwv0SRKOxqVidPnuzUacrxtXXrVgDAyJEj0aVLF7Ro0QKPPPIIZs+ejaysLJw+fdrlNhyHiRVCuBw6dsqUKUhMTLS+ateu7f2Ohgml2sgpU+w7Ktn20rdYpJtNbq7y+tRqamUWC/D886U1K+3bA/v3qweemzeXBssyd203Pe18oiYQtXbsYKWNWvATKjWs4XCeXT0FAezPSTjsL1EkCrtg9amnnsKePXtcvq677jrFZdu3bw8A+FPlm6tmzZoASmtYZSdOnHCqbbU1ceJEFBYWWl/5+fme7FrYcuzJ37q1+4CzffvSx3e2wZzajUsmBLBwofbgIilJCkZsswT489G+0iNLfwSvHLlHm1APfsLhPDv+4FX6/MvnJBz2lygiBbrRbDBZuXKlACAOHTqk+L7cwWratGnWaUVFRexg5WOuOl05dl6aPr10XpNJ+tu2Y5CW9chjfTt2upg3z34ccpNJiMxM1+X2ZacNpeNgNpeWSUtHEm+wg5V74dCpLlzOc36+9DnessX1OQmX/aXA4P07MCI2WN20aZOYOXOm2LFjhzhw4IBYtGiRSE5OFnfeeafdfE2aNBHLli2z/j116lSRmJgoli1bJnbt2iUGDBggkpKSxLlz5zRvmxe7e1oDTttgUn5lZrq+cSkFvZmZ9r2JMzOV160WiOjtjayFWkYCfwZG8nEMpeDL38Ih+Am38+zunITb/pL/8P4dGBEbrG7btk20a9dOJCYmitjYWNGkSRMxadIkcfHiRbv5AIj58+db/7ZYLGLSpEmiZs2aIiYmRtx0001i165durbNi10b2xuKUtCpFoSazfY3IccbV3q6/d+2tbPu1i3XwjqW04jaNa01zI7lIf9j8BN8eE7ICLx/BwaHWw0ADtfmGcchVadOBcaNK+1IYUsehlXuVBEfb9/r33a4yH37pDahWk2fDowda78tpeXlMnjDcZ8tFvv95XCTRET+w/t3YIRdBysKX44dscaMAaZNc55P7jBh2znJsde/bY99tU4X06c7ZwIAgIkT7Ts3Gdlpw3Gf584NrzyuRERE7jBYpaDm2PPdMS3U2LHSIAG2HnpI+ldrSiG1ZP5jxwJffOE8v2Nvb6MHA7DdZ8fgNVTyeRIREXmKzQACgI8RtNGSbL2gQKo9dRxU4N//lkawcuTq0bxt0wA50FRbv9Kjd6XliYgofPD+HRisWaWgpDXZulqeS5NJOd+i2mACgHIyf7VaU8A516mvBwMgihT+HPgilIfGJYpUDFYpKGlNtq7WXrRDB+X2rI7tTdXY3tAcH72fOcOxxSn8+SuoUxr4Ihy2RUS+w2CVgpLWTkuu2ou2auW8Xi2jCynd0ORa088/l9qyhtLwmpFSk+SL/YyUY+WOv4I6fw5XG+pD4xJFMgarFJT0dFpS63TkSS99Vze0ggJg/HjnZYJ5eM1IqUnyxX5GyrFyx59BnT+Hqw31oXGJIhmDVQpaenq+62lv6qpNqasb2r59yjldTSb1ADiQNXWRUpPkyX46npdIOVZa+DOoMzLtWyC3RUS+xWCVgpq3nZb0pnpydUNr1Eg576qaQNfURUpNkt79VDovkXKstPBnUGdE2je1H4hK25o6VTr3kfijhCiUMFilsKcn4HW8oZnN0g0tJUV6jR7tvIwQzkFNMNTUhWJNkic10Xr2U+28xMeH3rEyitF5gx15kjtY7Tpx9wPRdltTpkjNeiK92QdRKGCwSuQgI0O6kZlMUjAzfnzpjeyZZ7QFNWo1dTk5xpXbkb+DDm95WhOtZz/VzsvFi6F1rHxFLejz9+ATen5Qql0nWn8gpqRIn9cJE9jsgyhUMFglclBQIN3I5PaptjcyrYGRUm0fAPTv7/8aHNsbsi8Y0Q7X25porcGVq1rYSBgdzPbcuftxEIx5g11dJ2o/RL75Bpg50z7HMpt9EIUWBqtEDtzdyLQENXJQ6xgYGVGDoxY8yjd2OegWwvttG9UO1xfBg7vgSg5opk5V/7Ghto5wSGlle+5SU4GhQ/1fs+jtcXR1nSj9EDGZgMcfl5rvtG0LDB4sTQ/FJjJEkYzBKpGD+HjnjlSONzIttU4ZGVJeVke+rMFxFTz6uvbIyHa4Sp3XXGVZ0Mv2OE2YIAWsWmtQA91Rzhccz50QzpktjK5Z9MVxdBVkKrU3d9zHhQulGlajmsiEw48aomDEYJXIRlYW0L69/U3OmxtZx47G1eC4Cx59XXvk70enejIvuKJ0nCZMKA1w9C4bim0blc6dIyNrFn11HN0FmbZPPZ57TnkdGzc6z+uLZh/h8KOGKFgxWCX6H8cbKiAFezk5nt/ItNTguHqM76qWxl3w6OvaIyMfnSrlsLVYfBMIexNkh0vbRrVH5P7qUObNcXT8HLgLMuWnHr17K6+vUyfneT1p9mE7T7j8qCEKWoL8rrCwUAAQhYWFgS5KxMvPF2Lt2tJ/Sx+Qlr6ys32znexs6V9b8+YJYTZL2zGbpb9dTXdcpzyP/IqKst9Gfr4QixYJsXix87Y9MW+etA15W0rl8oSWfQnEuo0sl78pnTu169LXPD2OWj4HrqSn228zPd2+TPJnX+82HecZM8a47w4KLrx/BwaD1QDgxR4cHG8406f7NzBRu4Fv2aK9HK6CR29v9K7KbUSAY1Qg7O26jSyXv/krOFWi9zi6CnDVAk0lW7YIMWuW9K9tWZQ+G1p/ACrNYzKFx48aco3378BgsBoAvNgDT+2Gk5lpbGBie5NdtEi5NmbmTH21NEoBiJ6aLD03fqMZGUx5s+5ABnnhRM9xVHvSMWaMdz/CXH02tDxdcVWucPlRQ+p4/w4MkxBKo52Tkc6dO4fExEQUFhaiQoUKgS5ORMrOljpCKE1v2FBqS6elA44eWVml7dpMJuc2moDUdjAnR+rkZdvGLypKap+ntTyu9q9rV+Uymc1SG9dwzC+ql5zmqlEj5WPu7n3yXkGB1FHJ8XNgsTh3gPTVZ6NhQ+Vt2q5frVwHD0r/N+K7g4IH79+BwQ5WFJHcpcDxdTJ0pdRBjuROLm3aeN8xSktnqHDvFKI3jZA8f2am617dwdTrO5RSJektq1IHwZEjvU+5pSf9ldJnz9U8wTiQAlFYCHTVbiTiY4Tg4M+2iGqPDm1fH3xgv4zaI1PHx/auOoq42j8jO5QFmt72urbzO75sm08EU4cro9okG8Gbstp+Dnx1/N19NrQ0V2DTkMjE+3dgMFgNAF7swSOQvaEdX4sXu1+P400/PV29o4htD2WTSfmGHCyBly/p3S8t50YO4IMlwA+lc+frsnrzI9P2hx2DTfIE79+BwWYAFNH89djO8dGhI5MJqFvX9TqUHtsvXOj8GF9+jD1jRumyQjg/4jdqFB9f8uQxt96cnu4S5ts2n4iPV54nLk57+XwhlPK/+rqsnibzd2y+sXq1dF737QuNZhREkYzBKpGf2N5kMzPtA1chpE5Vrto/ahmFqKQEGD9eeT6lAMHXo/j4kqdtQ/UOXqA0v+1ytgH8hQvK8128qK1svhJKY9sbUVa9PzKVfugNHRo8bY+JyDUGq0R+JN9kx4yRev3bDinqroOTq6BKpjQeukwtQPC0dtnIzj3edP7SW2OsNH9mpnIAHyxBYijUist8WVZPrzmlH3pChG/nQqJww2CVKEAuXNDXs1nppp+ebv/3tGnKAa3Z7Ntgxuge8d4+OtZbY+w4/5gxygF8MAWJwVwr7sgXZfXmmtPyQy9Ym1EQEcA8qwHAPG0EKOdrNJuBzZul9FWulrPN5ej4d1aWVEtUUlKa7ueZZ3wXULnKMxlK2/CG4zEnY/nierD9XMhPILzJ10qRiffvwGDNKlGAKHW6slhK266qPfJ0fGzv+LdjLVZmpm9vwP7o3BPoGkwtj5v5M99/fHHN2X4uDh0C5s4NjhpyInKPNasBwF9mZCs313nEKpNJegXjyFKe1nJ5MupTIGow3Y3qxVG/fEPP9WBUTbun1xdHMItcvH8HBmtWiQLswgXjOn+4qyH0pMOKJ7Weetob2pbJ3yMCuevYFe6jfvmL4/Vgm2YNcL4ujapp9+T6CqYRzIgiRmDTvEYmJhUmW1qS0nuSeN7dqEHejoCkNal6fr40KIHtvpjNyssFelQmd0n/g2VQgFCmdr1Pny697+oa0Dqqmz/LHqyDMZAxeP8ODNasEgWYY62R2Wyf0grQnx5JSw3h0KHe1RBqrZXatMm5fafFIqXu0lNmf3CXmipYUlcZxch0ZDK1fMETJkhNYlxdA0rXnN6aTm/2MZQGYyAKJwxWiYKArzt/uLupvvWWvrRZanwZ3OgNBIwIrNw9bg50xy8j+evxtloaKYsF2LBB/zWg5weOt/sY7j9WiIJWoKt2AyU7O1sAUHxt2bJFdbn09HSn+du1a6dr23yMQFoeW8qPPLds0f+I09XjSrXHsGqP5tXKqvWRvVIzAJNJ+VGu1kesRjcXcNfEIdzGlff34+3MTOfrLypKutb1lENPswxf7eO8edJy8vL+bqpCgcX7d2BEbLBaVFQkjh07Zvd65JFHRN26dYXFYlFdLj09Xdxyyy12y50+fVrXtnmxRzY9gZY3QZnaTVXtBj9mjPbt673xa90PLYEA2w0687bNZiDa4k6fXnoebc+1nmBQz7Xgy30Mtx8rpB3v34ERscGqoytXrojq1auLl19+2eV86enpok+fPl5tixd75NJzc/VFUKZ0U9Wy3vx8IRYtUp/Pkxu/1hv8li1CzJwp/auEnZzs+aKWOVA/AFx1mNIaDGoNbvkjh3yB9+/AYJvV/1mxYgVOnTqFwYMHu5133bp1qF69Oho3boyhQ4fixIkTLucvKirCuXPn7F4UmfS0y/RFZw6lDinu2l3K7fr69VPfvidt97R0yMrKknLOjhpVOjiCI3fbzs0FZs6U/g13vuqUFqi2uGrXhJ6UUlqHcg3n9sZE4Y6DAvzPbbfdBgD49ttvXc63aNEixMfHo06dOsjLy8MLL7yAq1evYtu2bYiJiVFcZvLkyXjppZecpjOpcOTRk9xcbyJ0vYnKlRKiK23Tlu32HYd1/fBD18nx3ZVPz/6qbXvwYGDhwtL50tOBBQvcHwtXgjkBfHa21FlIaXrXrvrXFwnDyEbCPpJxOChAgAS6atfXJk2apNpxSn7l5ubaLZOfny/MZrP48ssvdW/v6NGjIjo6WixdulR1nsuXL4vCwkLrKz8/n48RIpieNnla5/VVhyO1R+xq29f6uFZL+fQ+3nfc9pYtysu76C/pVqDzvrrDR9tE/sVmAIERdjWrp06dwqlTp1zOU7duXcTGxlr/fuWVV/DOO+/gyJEjiI6O1r3NRo0a4ZFHHsH48eM1zc9fZqSndsfdvL4cilJpXWYz8MUXQIcOntVEaS2ft/sxcyYwerTz9FmzgBEjjCt3oOmt4SYiz/H+HRhlAl0AX6tatSqqVq2qeX4hBObPn49BgwZ5FKiePn0a+fn5SEpK0r0sRa6UFO0Bj7t51dq2vvUWkJmpv1xz5jgHP/ffr289Wsr355/KbWkdt631OHXurDy9U6fS/+fmAj/9JM3bpo1vyh0Itk0TMjKAtDQ+2iai8BXxHazWrl2LvLw8ZKhURTRt2hTLly8HAFy4cAFjxoxBTk4ODh48iHXr1qF3796oWrUq7r77bn8Wm8gqPl55+syZniXM19phRSs9nbG82XabNlIbVVu9egHy78jBg4G2baXa17Ztpb99VW6ZP0aAUkps78kY90REoSLig9WsrCx07NgR11xzjeL7e/fuRWFhIQAgKioKu3btQp8+fdC4cWOkp6ejcePGyMnJQUJCgj+LTWSVl6c83WLRnjnAMcjyZfCjtxe2N9tesADYskXKZGA2A999JwV0zz1n3/EKkP52lTFAb7n9MQJUMAxJS0Tkb2HXZjUUsM0L+UpWFjB0KJyGTgW0t6/MyioNgMxmKUAzos2jv3phK7U1NZmUj5GW9qxayu2v9q2+7v1PRPrw/h0YYddmlShSyLVsSkGY2aytvadaTV1amu8DSj3tdL2h1NZU7Se5bXtWNVrK7a/2rXLTBMegmGPTE1E4i/hmAEShSilAAoBJk4BDh7TVjvpi4IFgs22b87SoKOdOYunp7jtZaeVJ+1ZPMLE9EUUiNgMIAD5GIF/wxaPnUEnPpJXaoAbTpwNjx0ptVDdulGpUfRWoyvyZQoqJ7YkCg/fvwGAzAKIQ5W2qJ1+tI5io1TbLgWmbNr4PUmX+TCHlryYVRETBgDWrAcBfZuRLvqhlC5eaOr3D2QbrMKpEFJx4/w4MtlklCnG+SDMVCnk6teQw1dqm0x9ppoiIyDdYsxoA/GVGpI1c+7ltGzB+vFRjajJJif2fecZ1Kim1muJwa6dLRP7D+3dgsGaViIKSbe3n2LGlwaUQwIwZrmtEXdUU+yoDgj9GqyIiIgarRBSEHPO/KvF09CZfpJliMwIiIv9hsEpEQUetV78jT2pEvc1VqnXIU9a8EhH5BoNVIgoKtsGdUu2nEk8T72dkSG1Us7Olf/XkQ9XSjCAzE0hNZc0rEZEvMFglooBzfKy+ejUwcKD9PPfdB4wZ47vRmzzNgNCokdTJy5Zt0DxjBjBuXOkQr542VyAiIgmzAQQAexMSlVLqnS/Xqir12AcCmxM2KwsYOrQ0GDWZgLlzpdpZtRG0AKkWt2tXvxaViHyM9+/A4AhWRBRQSo/VlYI9+VG7ntpQXyf+l9ur2v7EN5ulkasA9ba2ZrNnzRWIiIjNAIgowJTap5rNvu2xn5oqpb9SehSvpyOUu/aqam1tp05lDlciIk8xWCWigFLqnT9njm977KvlZtWbgspd2ivHfTGbpc5WY8dqKzcRETljm9UAYJsXImdKo065GonKlexsKQBVYtv2VetIVrbNCVavljpMlZSUBtGO2QQ8LTcRBTfevwODbVaJKCikpDgHdkrTtJBrQF21fRVC/ZG+7Tazskprac1mqeb04EHXwain5SYiImdsBkBEIclVW1P5cbxS+1H5sb2WkazUBgAAPEt7RURE+jFYJaKQo6WtaUYGcOiQem5WLSNZaRkAgIiIjMU2qwHANi9EnlPKZarW1tR2GbXH9u7e07stIgpfvH8HBmtWiSikeFLb6Wq0KnfveZOVgIiIvMcOVkQUUpQ6T+nNwapHRoaU9J+9+4mIAoM1q0QUUgJR2+mq9pWIiIzFmlUiCjm+qO309VCsRERkDNasElFI8qa2U+/IVUREFDgMVokooqjlTlXK10pERIHHYJWIIgpzpxIRhRYGq0QUUbSMXEVERMGDwSoRRRTmTiUiCi3MBkBEEYe5U4mIQgeDVSKKSCkpDFKJiEIBmwEQERERUdBisEpEREREQStsg9XXXnsNHTt2RPny5VGxYkXFeQ4fPozevXsjLi4OVatWxfDhw3HlyhWX6y0qKsLTTz+NqlWrIi4uDnfeeScKmKCRiIiIyBBhG6xeuXIF999/Px5//HHF90tKSnD77bfj4sWL2LBhA7744gssXboUo0ePdrneESNGYPny5fjiiy+wYcMGXLhwAXfccQdKSkqM2A0iIiKiiGYSQohAF8JICxYswIgRI3D27Fm76f/3f/+HO+64A/n5+UhOTgYAfPHFFxg8eDBOnDiBChUqOK2rsLAQ1apVwyeffIJ+/foBAI4ePYratWvj22+/RVpamqYynTt3DomJiSgsLFTcDhEREQUf3r8DI2xrVt3JycnBddddZw1UASAtLQ1FRUXYtm2b4jLbtm1DcXExevXqZZ2WnJyM6667Dps2bVLdVlFREc6dO2f3IiIiIiL3IjZYPX78OGrUqGE3rVKlSihbtiyOHz+uukzZsmVRqVIlu+k1atRQXQYApkyZgsTEROurdu3a3u8AERERUQQIqWB18uTJMJlMLl9bt27VvD6TyeQ0TQihON0Vd8tMnDgRhYWF1ld+fr6u9RMRERFFqpAaFOCpp55C//79Xc5Tt25dTeuqWbMmfv75Z7tpZ86cQXFxsVONq+0yV65cwZkzZ+xqV0+cOIGOHTuqbismJgYxMTGaykVEREREpUIqWK1atSqqVq3qk3V16NABr732Go4dO4akpCQAwHfffYeYmBi0atVKcZlWrVohOjoaa9asQd++fQEAx44dw6+//orp06f7pFxEREREVCqkmgHocfjwYezcuROHDx9GSUkJdu7ciZ07d+LChQsAgF69eqFZs2YYOHAgduzYgR9++AFjxozB0KFDrT38jhw5gqZNm2LLli0AgMTERGRkZGD06NH44YcfsGPHDjz00ENo3rw5br755oDtKxEREVG4CqmaVT1efPFFLFy40Pr3DTfcAADIzs5G165dERUVhVWrVuGJJ55Ap06dUK5cOTzwwAOYMWOGdZni4mLs3bsXly5dsk6bNWsWypQpg759++Kff/5Bjx49sGDBAkRFRWkum5wtjFkBiIiIQod83w7zrJ9BJ+zzrAajgoICZgQgIiIKUfn5+UhJSQl0MSIGg9UAsFgsOHr0KBISEnD+/HnUrl0b+fn5YZ1g+Ny5c2G/n5Gwj0Bk7Gck7CMQGfsZCfsIRMZ+BsM+CiFw/vx5JCcnw2wO25aUQSdsmwEEM7PZbP1FJqe8qlChQth+wdiKhP2MhH0EImM/I2EfgcjYz0jYRyAy9jPQ+5iYmBiwbUcq/iwgIiIioqDFYJWIiIiIghaD1QCLiYnBpEmTwn7QgEjYz0jYRyAy9jMS9hGIjP2MhH0EImM/I2EfSRk7WBERERFR0GLNKhEREREFLQarRERERBS0GKwSERERUdBisEpEREREQYvBqh+8//77qFevHmJjY9GqVSv89NNPLudfv349WrVqhdjYWNSvXx+zZ8/2U0n1mzJlCtq0aYOEhARUr14dd911F/bu3etymXXr1sFkMjm9fv/9dz+VWr/Jkyc7lbdmzZoulwml8yirW7eu4rl58sknFecPhXP5448/onfv3khOTobJZMJXX31l974QApMnT0ZycjLKlSuHrl274rfffnO73qVLl6JZs2aIiYlBs2bNsHz5coP2QBtX+1lcXIzx48ejefPmiIuLQ3JyMgYNGoSjR4+6XOeCBQsUz+/ly5cN3htl7s7l4MGDncravn17t+sNpXMJQPGcmEwmZGZmqq4z2M6llntHuHw2yXsMVg22aNEijBgxAs899xx27NiBzp0749Zbb8Xhw4cV58/Ly8Ntt92Gzp07Y8eOHXj22WcxfPhwLF261M8l12b9+vV48sknsXnzZqxZswZXr15Fr169cPHiRbfL7t27F8eOHbO+GjVq5IcSe+7aa6+1K++uXbtU5w218yjLzc2128c1a9YAAO6//36XywXzubx48SJatmyJd999V/H96dOnY+bMmXj33XeRm5uLmjVromfPnjh//rzqOnNyctCvXz8MHDgQ//3vfzFw4ED07dsXP//8s1G74Zar/bx06RK2b9+OF154Adu3b8eyZcvwxx9/4M4773S73goVKtid22PHjiE2NtaIXXDL3bkEgFtuucWurN9++63LdYbauQTgdD4++ugjmEwm3HvvvS7XG0znUsu9I1w+m+QDggzVtm1b8dhjj9lNa9q0qZgwYYLi/OPGjRNNmza1mzZs2DDRvn17w8roSydOnBAAxPr161Xnyc7OFgDEmTNn/FcwL02aNEm0bNlS8/yhfh5lzzzzjGjQoIGwWCyK74fauQQgli9fbv3bYrGImjVriqlTp1qnXb58WSQmJorZs2errqdv377illtusZuWlpYm+vfv7/Mye8JxP5Vs2bJFABCHDh1SnWf+/PkiMTHRt4XzEaV9TE9PF3369NG1nnA4l3369BHdu3d3OU8wn0shnO8d4frZJM+wZtVAV65cwbZt29CrVy+76b169cKmTZsUl8nJyXGaPy0tDVu3bkVxcbFhZfWVwsJCAEDlypXdznvDDTcgKSkJPXr0QHZ2ttFF89q+ffuQnJyMevXqoX///jhw4IDqvKF+HgHp+v30008xZMgQmEwml/OG2rmU5eXl4fjx43bnKiYmBl26dFH9jALq59fVMsGmsLAQJpMJFStWdDnfhQsXUKdOHaSkpOCOO+7Ajh07/FNAD61btw7Vq1dH48aNMXToUJw4ccLl/KF+Lv/66y+sWrUKGRkZbucN5nPpeO+I5M8mOWOwaqBTp06hpKQENWrUsJteo0YNHD9+XHGZ48ePK85/9epVnDp1yrCy+oIQAqNGjcKNN96I6667TnW+pKQkzJkzB0uXLsWyZcvQpEkT9OjRAz/++KMfS6tPu3bt8PHHH2P16tWYO3cujh8/jo4dO+L06dOK84fyeZR99dVXOHv2LAYPHqw6TyieS1vy51DPZ1ReTu8yweTy5cuYMGECHnjgAVSoUEF1vqZNm2LBggVYsWIFPv/8c8TGxqJTp07Yt2+fH0ur3a233orPPvsMa9euxRtvvIHc3Fx0794dRUVFqsuE+rlcuHAhEhIScM8997icL5jPpdK9I1I/m6SsTKALEAkca6WEEC5rqpTmV5oebJ566in88ssv2LBhg8v5mjRpgiZNmlj/7tChA/Lz8zFjxgzcdNNNRhfTI7feeqv1/82bN0eHDh3QoEEDLFy4EKNGjVJcJlTPoywrKwu33norkpOTVecJxXOpRO9n1NNlgkFxcTH69+8Pi8WC999/3+W87du3t+ug1KlTJ/zrX//CO++8g7ffftvoourWr18/6/+vu+46tG7dGnXq1MGqVatcBnOhei4B4KOPPsKDDz7otu1pMJ9LV/eOSPpskjrWrBqoatWqiIqKcvpFd+LECadffrKaNWsqzl+mTBlUqVLFsLJ66+mnn8aKFSuQnZ2NlJQU3cu3b98+KH7haxUXF4fmzZurljlUz6Ps0KFD+P777/HII4/oXjaUzqWc0UHPZ1ReTu8ywaC4uBh9+/ZFXl4e1qxZ47JWVYnZbEabNm1C5vwmJSWhTp06LssbqucSAH766Sfs3bvXo89psJxLtXtHpH02yTUGqwYqW7YsWrVqZe1RLVuzZg06duyouEyHDh2c5v/uu+/QunVrREdHG1ZWTwkh8NRTT2HZsmVYu3Yt6tWr59F6duzYgaSkJB+XzjhFRUXYs2ePaplD7Tw6mj9/PqpXr47bb79d97KhdC7r1auHmjVr2p2rK1euYP369aqfUUD9/LpaJtDkQHXfvn34/vvvPfrRJITAzp07Q+b8nj59Gvn5+S7LG4rnUpaVlYVWrVqhZcuWupcN9Ll0d++IpM8maRCIXl2R5IsvvhDR0dEiKytL7N69W4wYMULExcWJgwcPCiGEmDBhghg4cKB1/gMHDojy5cuLkSNHit27d4usrCwRHR0tvvzyy0DtgkuPP/64SExMFOvWrRPHjh2zvi5dumSdx3EfZ82aJZYvXy7++OMP8euvv4oJEyYIAGLp0qWB2AVNRo8eLdatWycOHDggNm/eLO644w6RkJAQNufRVklJiUhNTRXjx493ei8Uz+X58+fFjh07xI4dOwQAMXPmTLFjxw5rL/ipU6eKxMREsWzZMrFr1y4xYMAAkZSUJM6dO2ddx8CBA+0yeGzcuFFERUWJqVOnij179oipU6eKMmXKiM2bN/t9/2Su9rO4uFjceeedIiUlRezcudPus1pUVGRdh+N+Tp48WfznP/8R+/fvFzt27BAPP/ywKFOmjPj5558DsYsu9/H8+fNi9OjRYtOmTSIvL09kZ2eLDh06iFq1aoXVuZQVFhaK8uXLiw8++EBxHcF+LrXcO8Lls0neY7DqB++9956oU6eOKFu2rPjXv/5ll9YpPT1ddOnSxW7+devWiRtuuEGULVtW1K1bV/XLKBgAUHzNnz/fOo/jPk6bNk00aNBAxMbGikqVKokbb7xRrFq1yv+F16Ffv34iKSlJREdHi+TkZHHPPfeI3377zfp+qJ9HW6tXrxYAxN69e53eC8VzKafXcnylp6cLIaQUOZMmTRI1a9YUMTEx4qabbhK7du2yW0eXLl2s88uWLFkimjRpIqKjo0XTpk0DHqC72s+8vDzVz2p2drZ1HY77OWLECJGamirKli0rqlWrJnr16iU2bdrk/537H1f7eOnSJdGrVy9RrVo1ER0dLVJTU0V6ero4fPiw3TpC/VzKPvzwQ1GuXDlx9uxZxXUE+7nUcu8Il88mec8kxP96fRARERERBRm2WSUiIiKioMVglYiIiIiCFoNVIiIiIgpaDFaJiIiIKGgxWCUiIiKioMVglYiIiIiCFoNVIiIiIgpaDFaJKOQdPHgQJpMJO3fuDHRRvLZx40Y0b94c0dHRuOuuuwJdHCKigGOwSkTkpcGDB/sssBw1ahSuv/565OXlYcGCBT5Zp1YLFixAxYoV/bpNIiJ3GKwSUcBcuXIl0EXwSklJCSwWi0/XuX//fnTv3h0pKSmaA8dQP45ERK4wWCUiv+natSueeuopjBo1ClWrVkXPnj0BALt378Ztt92G+Ph41KhRAwMHDsSpU6esy/3nP//BjTfeiIoVK6JKlSq44447sH//fl3brlu3Ll555RU88MADiI+PR3JyMt555x27eWbOnInmzZsjLi4OtWvXxhNPPIELFy5Y35drHr/55hs0a9YMMTExePjhh7Fw4UJ8/fXXMJlMMJlMWLdunWIZioqKMHz4cFSvXh2xsbG48cYbkZubC6C0KcPp06cxZMgQmEwm1ZrVunXr4tVXX8XgwYORmJiIoUOHAgCWLl2Ka6+9FjExMahbty7eeOMNu+XOnDmDQYMGoVKlSihfvjxuvfVW7Nu3DwCwbt06PPzwwygsLLTux+TJkwEA77//Pho1aoTY2FjUqFED9913n65jT0TkFUFE5CddunQR8fHxYuzYseL3338Xe/bsEUePHhVVq1YVEydOFHv27BHbt28XPXv2FN26dbMu9+WXX4qlS5eKP/74Q+zYsUP07t1bNG/eXJSUlAghhMjLyxMAxI4dO1S3XadOHZGQkCCmTJki9u7dK95++20RFRUlvvvuO+s8s2bNEmvXrhUHDhwQP/zwg2jSpIl4/PHHre/Pnz9fREdHi44dO4qNGzeK33//XZw9e1b07dtX3HLLLeLYsWPi2LFjoqioSLEMw4cPF8nJyeLbb78Vv/32m0hPTxeVKlUSp0+fFlevXhXHjh0TFSpUEG+++aY4duyYuHTpkuq+VKhQQWRmZop9+/aJffv2ia1btwqz2SxefvllsXfvXjF//nxRrlw5MX/+fOtyd955p7jmmmvEjz/+KHbu3CnS0tJEw4YNxZUrV0RRUZF48803RYUKFaz7cf78eZGbmyuioqLEv//9b3Hw4EGxfft28dZbb2k53UREPsFglYj8pkuXLuL666+3m/bCCy+IXr162U3Lz88XAMTevXsV13PixAkBQOzatUsIoT1YveWWW+ym9evXT9x6662qyyxevFhUqVLF+vf8+fMFALFz5067+dLT00WfPn1U1yOEEBcuXBDR0dHis88+s067cuWKSE5OFtOnT7dOS0xMtAsw1fblrrvuspv2wAMPiJ49e9pNGzt2rGjWrJkQQog//vhDABAbN260vn/q1ClRrlw5sXjxYuv+JSYm2q1j6dKlokKFCuLcuXMuy0REZBQ2AyAiv2rdurXd39u2bUN2djbi4+Otr6ZNmwKA9VH//v378cADD6B+/fqoUKEC6tWrBwA4fPiwrm136NDB6e89e/ZY/87OzkbPnj1Rq1YtJCQkYNCgQTh9+jQuXrxonads2bJo0aKFru3K+1BcXIxOnTpZp0VHR6Nt27Z2ZdDK8Tju2bPHbt0A0KlTJ+zbtw8lJSXYs2cPypQpg3bt2lnfr1KlCpo0aeJy+z179kSdOnVQv359DBw4EJ999hkuXbqku7xERJ5isEpEfhUXF2f3t8ViQe/evbFz50671759+3DTTTcBAHr37o3Tp09j7ty5+Pnnn/Hzzz8D8E3HIpPJBAA4dOgQbrvtNlx33XVYunQptm3bhvfeew8AUFxcbJ2/XLly1mX0EELYbc92uifrczyOSuuRt+n4fz3bT0hIwPbt2/H5558jKSkJL774Ilq2bImzZ8/qLjMRkScYrBJRQP3rX//Cb7/9hrp166Jhw4Z2r7i4OJw+fRp79uzB888/jx49euCaa67BmTNnPNrW5s2bnf6Wa3G3bt2Kq1ev4o033kD79u3RuHFjHD16VNN6y5Yti5KSEpfzNGzYEGXLlsWGDRus04qLi7F161Zcc801OvfEWbNmzezWDQCbNm1C48aNERUVhWbNmuHq1avWQB8ATp8+jT/++MO6fbX9KFOmDG6++WZMnz4dv/zyCw4ePIi1a9d6XWYiIi0YrBJRQD355JP4+++/MWDAAGzZsgUHDhzAd999hyFDhqCkpASVKlVClSpVMGfOHPz5559Yu3YtRo0a5dG2Nm7ciOnTp+OPP/7Ae++9hyVLluCZZ54BADRo0ABXr17FO++8gwMHDuCTTz7B7NmzNa23bt26+OWXX7B3716cOnXKriZWFhcXh8cffxxjx47Ff/7zH+zevRtDhw7FpUuXkJGR4dH+2Bo9ejR++OEHvPLKK/jjjz+wcOFCvPvuuxgzZgwAoFGjRujTpw+GDh2KDRs24L///S8eeugh1KpVC3369LHux4ULF/DDDz/g1KlTuHTpEr755hu8/fbb2LlzJw4dOoSPP/4YFosFTZo08brMRESaBLLBLBFFli5duohnnnnGafoff/wh7r77blGxYkVRrlw50bRpUzFixAhhsViEEEKsWbNGXHPNNSImJka0aNFCrFu3TgAQy5cvF0Jo72D10ksvib59+4ry5cuLGjVqiDfffNNunpkzZ4qkpCRRrlw5kZaWJj7++GMBQJw5c0YIodwBSQipw1fPnj1FfHy8ACCys7MVy/DPP/+Ip59+WlStWlXExMSITp06iS1bttjNo7WD1axZs5ymf/nll6JZs2YiOjpapKamiszMTLv3//77bzFw4ECRmJho3cc//vjDbp7HHntMVKlSRQAQkyZNEj/99JPo0qWLqFSpkihXrpxo0aKFWLRokcvyERH5kkkIlYZMRERhpG7duhgxYgRGjBgR6KIQEZEObAZAREREREGLwSoRERERBS02AyAiIiKioMWaVSIiIiIKWgxWiYiIiChoMVglIiIioqDFYJWIiIiIghaDVSIiIiIKWgxWiYiIiChoMVglIiIioqDFYJWIiIiIghaDVSIiIiIKWv8Pbc/WO/LyFagAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/pklEQVR4nO3deXgT1foH8O+kQAstVDahtZSCgIqCCzu4K1avIuoVERWLIu4LICDqVUC5ggXhquhVoOKOFBFF5SeyFK8ISNmuiqhVtkZQ9gJFtub8/pg7aTKZSWaSmWSSfD/PkweaTGZOJpOZd855zzmSEEKAiIiIKAm4Yl0AIiIiomhh4ENERERJg4EPERERJQ0GPkRERJQ0GPgQERFR0mDgQ0REREmDgQ8RERElDQY+RERElDQY+BAREVHSYOBDRERESYOBDxERESUNBj4Ot3z5cowePRr79++P+rZnzZqFM888E7Vr14YkSVi/fn3I9zzzzDNo27YtPB6P/QUM4uDBgxgxYgSuuOIKNG7cGJIkYfTo0ZrLFhUV4ZRTTkFlZaVt5XHKfgHM7RsAOHToEAYPHozs7GykpaXhnHPOwQcffOC3TDT2IQC8+eabkCQJW7ZsARD89zF69GhIkoTdu3fbWiar6f3uwvk9OoXd57FofdfKdpxSHuX3oDxq1KiBrKws3HzzzSgrK7N0W0bOA5G+3+y5KVwMfBxu+fLlGDNmTNQDn127dqF///449dRT8cUXX2DFihVo06ZN0Pds374dhYWFeOaZZ+ByxfbQ2rNnD6ZOnYqjR4/iuuuuC7psQUEB0tPTUVhYaEtZnLRfAHP7BgBuuOEGvPXWWxg1ahT+7//+D506dUK/fv3w/vvve5exex8qrr76aqxYsQJZWVkAYvf7sIve7y6c36OTJNr35DQzZszAihUrsGjRIjz44IOYN28ezj//fOzbt8+ybRg5D0T6frPnprAJskRlZaUt650wYYIAIDZv3mzL+vUsW7ZMABCzZs0y/J4RI0aIU045RVRVVdlYMmM8Ho/weDxCCCF27dolAIhRo0bpLj9x4kSRmZlpy/fopP0ihLl98/nnnwsA4v333/d7vmfPniI7O1ucOHHC+5yd+1BPsN/HqFGjBACxa9euqJUnUnq/u3B+j06gHAt2nceU9Ufru1a2Y3Q5u8szY8YMAUCUlpb6PT9mzBgBQLzxxhuWbMfMeSCS95s9b4cr9refcUipxly7di1uvPFG1K9fH6eeeioAYNmyZbjssstQt25d1KlTB927d8fnn3+uuZ5Qy44ePRrDhw8HALRo0cJbnbl06VLs2rULd999N5o1a4bU1FQ0btwYPXr0wKJFi0KWP9R2BwwYgPPPPx8A0LdvX0iShIsvvjjoOo8dO4aioiLccsstfrUaO3bsQEZGBm6++Wa/5T/77DPUrFkTTz75ZMjyhkPZV0bdeuutOHDggKmqWyP09gsQH/tm7ty5yMjIQJ8+ffyev+OOO7B9+3Z8++233ueM7sMNGzZAkiTMnj3b+9yaNWsgSRLOPPNMv2WvvfZadOjQwfu3b1NXsN+Hrz///BP9+vVDZmYmmjRpgjvvvBMVFRWGPv9PP/2Efv36oUmTJkhNTUVubi5uv/12HD161LuM0d98WVkZbrnlFpx88slITU3FGWecgVdeecX7ut7vLtjvMdzzgHIOW7duHW644QbUq1cPmZmZuO2227Br1y7TZfddp/q8GOx7GjBgAPLy8nTLZ2T9vsrLy0N+HiOfBQA+//xznHPOOUhNTUWLFi0wceLEoPtUS6jyfP3115AkCTNnzgx479tvvw1JklBaWmp6ux07dgQgH/tWMHMeiOT9Zs/bYbM8lEoCSjTfvHlz8dhjj4mFCxeKjz/+WCxdulTUrFlTdOjQQcyaNUt8/PHH4oorrhCSJIkPPvjAbx1Gli0vLxcPPfSQACA++ugjsWLFCrFixQpRUVEh8vPzRePGjcXUqVPF0qVLxccffyyefvrpgO2oGdnur7/+Kl555RUBQDz33HNixYoVYsOGDUHX+5///EcAEPPnzw94bcyYMUKSJLF69WohhBAlJSUiLS1NPPTQQ4b3eSSM3jmcccYZ4oYbbrB028H2ixDO3zddu3YVnTp1Cnj+hx9+EADE66+/7ve80X2YlZUl7r77bu/f48ePF7Vr1xYAxO+//y6EEOL48eOiXr16YsSIEd7llDvczZs3B/19CFH9Oz3ttNPE008/LRYuXCgmTZokUlNTxR133BGyjOvXrxcZGRkiLy9PvPbaa2Lx4sXi3XffFTfddJM4cOCAEMLY70kIITZs2CAyMzNFu3btxNtvvy2+/PJL8eijjwqXyyVGjx4thND/3QX7PYZ7HvA9hw0fPlwsWLBATJo0SaSnp4tzzz1XHDt2zFTZ1ev0PS8G+54KCgpE8+bNdcunV2bf9Zv5PEY/y6JFi0RKSoo4//zzxUcffSRmz54tOnXqJHJzc03V+BjZv+eee67o0aNHwDo6deqk+dvzpVfjM2XKFAFAzJkzx+95j8cjjh8/bujhy+x5QC2c99tZ48PAJwzKQf3000/7Pd+1a1dx8skni4MHD3qfO3HihDjrrLNETk6OtwrPzLJ6VcQZGRli8ODBpstudLslJSUCgJg9e7ah9T7//PMCgPjjjz8CXqusrBTZ2dnisssuE6tWrRJ169YVd9xxh9/+sJPRH9Ctt94qmjRp4vecx+MR+/btC2i++euvv8S+ffsCqngrKiq8F0Uhgu8XIZy/b1q3bi3y8/MDnt++fbv3QuxLax9que2220TLli29f19++eVi0KBBon79+uKtt94SQgjxzTffCADiyy+/9C7nG/gIYaypq7Cw0O/5+++/X6SlpYXcx5deeqk46aSTxM6dO3WXMfp7ys/PFzk5Od6gTPHggw+KtLQ0sXfvXiGE/u9O7/lwzwPKvhkyZIjf8++9954AIN59913vc0bLrndeFEL/ewon8NFav9HPY/SzdOnSRWRnZ4u//vrLu8yBAwdEgwYNTAU+RvavckyvW7fO+9yqVasEAO9vQY/y3pUrV4rjx4+LgwcPii+++EI0bdpUXHjhhQEBjHIcGXn4fldmzwNq4byfTV0O9fe//937/8rKSnz77be48cYbkZGR4X0+JSUF/fv3h9vtxs8//2x6WT2dO3fGm2++ibFjx2LlypU4fvx4yPJasV0927dvhyRJaNSoUcBrderUwdixY7F48WJccskluOqqqzBt2jTdKs2lS5f69VQI9rCyZ8vJJ5+MnTt34sSJE97n/vzzT9SvXx/333+/37Ljx49H/fr1A6qh27RpgwsuuMD7d7D9AsTHvglW9ax+TWsfarnsssuwadMmbN68GUeOHMGyZctw5ZVX4pJLLsHChQsBAIsWLUJqaqq3mSdc1157rd/f7du3x5EjR7Bz507d9xw+fBhfffUVbrrpJjRu3FhzGaO/pyNHjmDx4sW4/vrrUadOHZw4ccL7+Nvf/oYjR45g5cqVYX22cM4Dvm699Va/v2+66SbUqFEDJSUlABBW2X3Pi3YItv5gn8foZ6msrERpaSluuOEGpKWleddVt25d9OrVy1RZQ+1fAOjXrx9OPvlkv+a2l19+GY0bN0bfvn0Nbadr166oWbMm6tatiyuvvBL169fHJ598gho1avgt16FDB5SWlhp6ZGdn+73XzHnA7DJRad7yUSP0IqRH6VkCAPv27YMQwu85hXIA7dmzx/SyembNmoWxY8di+vTpeOqpp5CRkYHrr78ehYWFaNq0qeZ7rNiunr/++gs1a9ZESkqK5utKDxRJkvDmm2/qLgcAp512GqZNm2Zou7m5ueYLqyMtLQ1CCBw5csTvQhaJUPsFcPa+adiwoeYxsXfvXgBAgwYN/J43ug8vv/xyAHJw06JFCxw/fhyXXnop/vzzTzz77LPe13r06IHatWtH/Bl8paamApC/Gz379u1DVVUVcnJygi5j5PdUt25dnDhxAi+//DJefvllzXWF2+05nPOAL/UyNWrU8PvO9+zZY7rsWvvDSsHWH+zzGP0s+/btg8fj0dx/Rvap0fIoUlNTcc899+CFF17AhAkTcPz4cRQXF2Po0KHeYzWUt99+G2eccQYOHjyIWbNm4fXXX0e/fv3wf//3f37LZWRk4JxzzjG0Tt+gyex5QC3S91uNgU8EfKPU+vXrw+VyYceOHQHLbd++HQC8d/1mltXTqFEj/Otf/8K//vUvbNu2DfPmzcPIkSOxc+dOfPHFF5rvsWK7wcpz7NgxVFZWIj093e+19evX45prrkGPHj3wzTff4I033sADDzygu66srCzcddddYZUjEnv37kVqaqrfBbtp06YQQgQsO3r0aM3xJf744w+/v4PtF8D5+6Zdu3aYOXMmTpw44Xci/P777wEAZ511lt/yWvtQS05ODtq0aYNFixYhLy8PHTt2xEknnYTLLrsM999/P7799lusXLkSY8aMsf5DGdCgQQOkpKTA7XbrLmP091S/fn1vLZDed9uiRYuwyhnOecDXH3/8gVNOOcX794kTJ7Bnzx5vsBhO2c3cvaelpfkliiuCBYLB1h/s8xj9LGlpaZAkKeC3rKzfjFD7V3Hfffdh/PjxeOONN3DkyBGcOHEC9957r+HtnHHGGd6E5ksuuQRVVVWYPn06PvzwQ9x4443e5b766itccsklhta5efNmb+K52fOAWqTvtxqbuiySnp6OLl264KOPPvK7k/R4PHj33Xe9J3qzyxq5O83NzcWDDz6Inj17Yu3atZaU0azTTz8dAPDbb7/5Pf/zzz8jPz8f3bp1Q0lJCXr37o3Ro0cb7lUTTZs2bULbtm0tXafefgHiY99cf/31OHToEObMmeP3/FtvvYXs7Gx06dLF73kz+/Dyyy/HkiVLsHDhQvTs2ROAXPuVm5uLp59+GsePH/fWDOkx8vsIR+3atXHRRRdh9uzZuhdho7+nOnXq4JJLLsG6devQvn17dOzYMeChvhCGw+h5wNd7773n93dxcTFOnDjh7TVmVdn1vqe8vDzs3LnTr/fRsWPHsGDBAkPlN/N5jH6W9PR0dO7cGR999BGOHDniXdfBgwfx6aefWlYeX1lZWejTpw9effVVvPbaa+jVq1dENbaFhYWoX78+nn76ab9BU8Nt6jJ7HlCL9P2WszxrKAnojdGg9PDo0qWLmD17tvjkk09Efn5+0F5doZZVktHuuecesXz5clFaWir2798vzj33XDFhwgTx6aefiqVLl4oJEyaItLQ0ccsttwQtu9ntGk1u3rZtW0B2/ubNm0VOTo644IILxOHDh4UQQmzcuFGkpKT49dSxy/z588Xs2bPFG2+8IQCIPn36iNmzZ4vZs2cHJCtXVVWJzMxMMXToUEvLoLVfhIivfdOzZ09Rv359MXXqVLFkyRIxaNCggARNIczvwzlz5ngTKb/66ivv83fccYcAIOrXrx8w9pE6uVnr96Ekl+v9TtXr0KP06mrZsqX3s8+cOVP069cvoFdXqN/Thg0bRP369UXnzp3FjBkzRElJiZg3b56YNGmSuOSSS7zLmUlujuQ8oO519OWXX4rJkyeLjIwMcfbZZ4ujR4+aLnuwsWv0vqdNmzaJmjVriosvvlh8/vnnYs6cOeKiiy4SLVq00E1u1lq/0c9j9LN8+eWXwuVyifPPP1/MnTtXfPjhh6JTp06iWbNmYfXqCrZ/Fd9++63397Bo0aKQ2xBCv1eXEEIUFhYKAOKdd94xtK5QjJwHli5dKlJSUsSYMWPCer8Q5s5N4WLgE4ZgP8Cvv/5aXHrppSI9PV3Url1bdO3aVXz66aea6zG67OOPPy6ys7OFy+USAMQXX3wh7r33XtG+fXtRr149Ubt2bXHaaaeJUaNGGTowjGzXbOAjhBAXXHCB+Nvf/iaEkLP1Tz31VHHeeecF9KAYNGiQSE1NtX1QxubNmxvqsSCEEIsXLxYAxJo1aywvh+9+ESL+9s3BgwfFww8/LJo2bSpq1aol2rdvL2bOnBmwTrP7cN++fcLlcon09HS/7r1KzxetbvFaQYv691FSUiKEiDzwEUKIH3/8UfTp00c0bNhQ1KpVS+Tm5ooBAwaII0eOeJcx+jvevHmzuPPOO8Upp5wiatasKRo3biy6d+8uxo4d613GTOBz5MiRsM8Dyr5Zs2aN6NWrl8jIyBB169YV/fr1E3/++WdYZQ81aJ/e9zR//nxxzjnniNq1a4uWLVuKKVOmBO3VFSzwMfJ5jHwWIYSYN2+eaN++vfd7Hz9+vOkBDI3uX0VeXp4444wzQq5fESzw+euvv0Rubq5o3bp1yAEGjTByHlCOU62eWEbPI2bOTeGShNBIYCAKw5w5c9C3b19s3brVr107HvTv3x+bNm3CN998Y/m643m/mGHnPiRrjR49GmPGjMGuXbvCzusja3333Xc4++yz8corrwT0IiVrMceHLHPDDTegU6dOGDduXKyLYspvv/2GWbNm4fnnn7dl/fG6X8ywex8SJarffvsNS5Yswd13342srCwMGDAg1kVKeAx8yDKSJGHatGnIzs52xCzkRm3btg1TpkyJeLwYPfG6X8ywex8SJapnn30WPXv2xKFDhzB79mzUqVMn1kVKeGzqIiIioqTBGh8iIiJKGgx8iIiIKGkw8CEiIqKkwSkrVDweD7Zv3466detGfeI0IiIiCo8QAgcPHkR2djZcLv16HQY+Ktu3b0ezZs1iXQwiIiIKQ3l5edAJhhn4qNStWxeAvOPq1asX49IQERGREQcOHECzZs2813E9DHxUlOatevXqMfAhIiKKM6HSVJjcTEREREmDgQ8RERElDQY+RERElDQY+BAREVHSYOBDRERESYOBDxERESUNBj5ERESUNBj4EBERUdJg4ENERERJg4EPERERJQ0GPkRERJQ0GPgQJSm3Gygpkf8lIkoWDHyIklBREdC8OXDppfK/RUWxLhERUXQw8CFKMm43cPfdgMcj/+3xAPfcw5ofIkoODHyIkkxZWXXQo6iqAn79NTblIRmbHomig4EPUZJp3RpwqX75KSlAq1axKQ+x6ZEomhj4ECWZnBxg6lQ52AHkf19/XX6eoo9Nj0TRVSPWBSCi6Bs4EMjPl5u3WrVi0BNLwZoe+b0QWY+BD1GSysnhhdUJlKZH3+CHTY9E9mFTFxFRDLHpkSi6WONDRBRjbHokih4GPkRkObdbzl1p3ZoXcaPY9EgUHWzqIkpidowdw67ZRORkDHyIkpQdAQq7ZhOR0zHwIXIYM7Uw4dbY2BWgcFRoInI6Bj5EDmKmFiaSGhu7AhSOCk1ETsfAh8ghzNTCRFpjY1eAwq7ZROR0DHyIHMJMLUykNTZ2BigDBwJbtshNcFu2yH+Tc3FyVEo2DHyIHEKvFiY9PfDCZEWNjZ0BSk4OcPHFiVPTk6jBAXvgUTJi4EPkEFq1MLfdBnTtGnhhsqrGJidHDpbKyiK7qCdqYAAkbnBgdYK72WMgkY8ZcjYGPkQRsvIE7lsLs2IF8M47+hcmK2psrLio29Ut3gkXxUTunm9lgrvZYyBRg0mKD5IQQsS6EE5y4MABZGZmoqKiAvXq1Yt1ccjhioqqL4wul1wLY1WTUUmJfGHQev7iiyNfv9stX3TUk2Nu2WK85siKdajZuU/Nsvs7iCWrvjuz67HjmCECjF+/WeNDFCa7awPs7hpuxR2/1d3inVbDkujd84cOjby51OwxwLGeKNYY+BCFye4TuN1dw624qFsdGDjtopio3fOVpqaJE+X9PWxY+M2lZo+BRA8myfkY+BCFKRoncLt7Xhm5qKvzbXz/tjowcOJFMdG656tr1YQAJk8Of31mj4FEDSYpjog48tVXX4lrrrlGZGVlCQBi7ty5fq97PB4xatQokZWVJdLS0sRFF10kfvjhB1PbqKioEABERUWFhSWnRDV9uhApKUIA8r/Tp0e2vvJyIZYskf+1m7KtVauEKCnR3ub06UK4XPLnc7mEKCjw/1v5vOXl+uswy+p9Sv6WLJH3rfpRUhLZes0eA1YeM0RCGL9+x1XgM3/+fPHkk0+KOXPmaAY+48ePF3Xr1hVz5swR33//vejbt6/IysoSBw4cMLwNBj5klpkTeLDARh1kWHnBV293woTQ2yovr15G75GSYs+FKxYXxWgGnbGk9b3a9T2aLVcy7H+yT0IGPr7UgY/H4xFNmzYV48eP9z535MgRkZmZKV577TXD62XgQ3ZRBzYTJlS/pncxWrUq8ouBers33qgfwPhefPRqBqyuKXACO4NOJ3JarVqy7X+yh9Hrd8Lk+GzevBl//PEHrrjiCu9zqampuOiii7B8+XLd9x09ehQHDhzwexBZTau30vDhwIQJ8t96Sb1agxdGut0PPwxcrqoKePFF/7FV1qwJzLdRi3X+jRWc1pMsGpyUt5SM+59iK2ECnz/++AMA0KRJE7/nmzRp4n1Ny7hx45CZmel9NGvWzNZyUnLSCmwAYORI+QSvldQLRH4x0NuumiQBkyb5b2/kSGD8eP8k1IIC+5JSYzVoodN6kkWL3rQi0f4eknX/U+wkTOCjkCTJ728hRMBzvh5//HFUVFR4H+Xl5XYXkeJEOBcAvfcEC2x+/TWwp4vWsuFcDPS2q+Z7x+27vU6d/GsG3nzTnpqCWI7k68SeZLESi++B+5+iLWECn6ZNmwJAQO3Ozp07A2qBfKWmpqJevXp+D0o8ZoOYcC4Awd6TkwM8/3zge3xP8L7NDytXWnMxUAIqZV0ul3+tjcsFFBYC//iH/vbUNQNWT0Aa66YOdq+WBfse7KwF4v6nqItOypH1oJPc/Pzzz3ufO3r0KJObyXTipJleL75dwo28p7CwerlQSaVWJaBqfX6tXlOxSni1q3u1WcnevVrvexg2LDqJx8m+/ylyRq/fcTVX16FDh/Dr/+r6zz33XEyaNAmXXHIJGjRogNzcXDz//PMYN24cZsyYgdatW+O5557D0qVL8fPPP6Nu3bqGtsG5uhJLOPMCGZ2fqagIGDRIvjxIkvxvqPcoZfr11+ralFDlN7qs3vvNzqMUyfZClaWsTG7a8F03525yBq3vQakF5HdD8cDw9TsqYZhFSkpKBICAR0FBgRCiegDDpk2bitTUVHHhhReK77//3tQ2WOOTWMKpTQjWtXzWLPmxapUQkhSbMW7MCPfzWz2eSqhat2jXNiXSmDFWfhb19zBsmDNq44iMSPhxfOzCwCexhDtYm+8Afykp8ojFoQIdoHoZJ4yNIoT5z2/HeCpGyxCtpo5EGjPGru9L+R6cOtghkZakG8eHSEs4iZNFRcBjj8nV+5Ik///tt7WbstRefTWwx1OsumkD5j6/XUnGRrsrW500rSXWidRWsvOzKMc6E48pEdWIdQGI7DZwIJCfbyx3RWsCx/HjjQU9LhdwzTX+6y8qql6fyyVfRKI9WJzRzx8sQInkQqd0V1bnicSiu7JdnzEWQn2WYDlVWs8D+ser0d8PUTxgjQ8lBaO1CVoXE6XmR02SqpM/U1Lki4T6AuOU2gUjn9+u8VScVGuQSGPGBPssekMrBBtyIdjxGo3aOKJoYeBDMRHL5p9g9C4mhYX+wY/LBUybBmzdqj+YX7yNSGtngOKUKRLMfkanHqeA/mcBtAOY0tLggbje8bpiRfj7wMn7j5JYlHKO4gaTm+0XjeTSSHq66PUwKi8XorhYfoRab3m53PtLnRAdD4mhyTCeipHPGC9J0OrPoteTb9Kk4D20tBKZJSn8fRAv+48SR0KO4xMNHMfHXtEYs8WKvJpIxrPx3b5SSyRE9R15LCeEVAuW7+E00SxrPI8tpFf2FSvkSW/V4/Rs3Vr9mYqK5Fqgqir5NSUE8l2PkX0Qz/uP4pfR6zebuiiq7G7+sSqvJtycBq3kaJcLKC6OTRNPsKYGu+dlsrKZI9pzSMVbM6UvvSawTp3k532bbIUAFiyo/tu3SXLKlMCkft99EOz7jef9R4mPgQ9FldnkUrMXT6tPuKG2r35db/uNG4d/pxtuABFuIqsVrAxU9MpaWmpf/ki8J0Hr5VTl5wcGPurvPScH+O034IEHAtcbKnlaEe/7jxJcVBre4ghzfOxndJTecHIErBxwzchow1pzYFk54Fu4eRKhymHn/FhG5y0zSq+sduePxGruMjsZ+d71RiVX9oHRYzwR9x85G0duDhMDn+gIlVyqdXJ1uYxdPK044YY6uQd7PZztayVjRxJEhbrA2TUi7/Tp+iNchxtUaZVV66JsRzK2lYnevhPaxmq6jFDfu2+grX4UF8vLmAmakyFRnpyDgU+YGPg4Q7CZoo2I9IQb6uSu93pxcfXFzej29Wp1Iplny0iti9V35MEClEgDE9+y6m3DyfNHaQUUserpFKzXopHvj9NYkFMx8AkTAx9nKC/Xr26PxglWr8Zp1Sr919Vdf4cNM9btXe8iEuk8WwUFoQMbK+/IgzVJWTmHlNVNaXazMyAMtzyzZgUOy2Dm+2MzFjkRA58wMfBxjljPDO17cte6CKhrIbQCNUkKflEIVatj9AITbEb5aDU1hAoWrRRPF16979iu4znYGFbBcsbMfn9sxiKnYeATJgY+zhGNKvVQAx2Gql1QTv6zZulf2IKV2chnNHKBsTNZORTffRjNgCReLrzRrPExG9jY3fxJFE2cnZ3int1zPBnpcn3oUPDu8cp4P927B3bf1VpezchnjOU8W6Go9yEQvakp4mX+KPV3rDByPJsZyiDUEAVGhnpwytQiRHbiyM0qHLnZeSIZRTnYOo2MLGtmBFrfUW99GRmx1orP6Lv9aIwSbcfovPE0krRZynecng5UVob+rs2OQF5SIgegWs9ffDFHU6bEx5GbKWHYcWdvdKBDM7VOyt3ysGH+s7YbqaWy4jNG+27d6sEioz06c7Qp33GnTqG/63AGmAxV62d3DSpRvGCNjwprfOKT2ZqCYHe/QOC6zNbIhLN8vNV0WFmDwNoIf6Fqb/QYqfWzowaVyAlY40NJI5yaAuXu1/cO2eMB/vEP7XWZrZExs3ysazrCnRLDyhoEzu3kL9ycLSO1ftHKjbJyrjYiK7HGR4U1PvElkpoCtxvIzZX7t+ixu9Yh1jUdsZ7J3ncdrPGp5nYDL74ITJok75No5GxZyYrjisgs1vhQUoikpqCsLHjQY2Zd4bKypsPsHXasZ7JXr4P5JzKlBnDiRPnvYcPiq4eV3RPgEkWKgQ/FjNsNFBfLj3BPikaaBPQCgoyM0Ov3XZcdVfdWdUMPp7nMac1L7EqtHTRMnhzbMpnltOOKSI2BD8VEUZHczNS3r/zIzQ0vtyVUTUGwgODQIe11avXIsisPx4qaDr077NLS4IFarMb+CSZexuaxSyIEDU48roh8McdHhTk+9tPK5wDkk+XWreFd9LTyTELljei9vmJF9TgrALB8OdCvn735J5Hkyej1AJIkuSkvWI5FtMf+oeASJdeJxxXFAnN8KCaMNAdp3dUC8nPh3tlq1RSEunvWq21RxllZsEC+CPXta/9deCQ1HVp32EB1/lKwHAs2LzlLouQ68bgiJ6sR6wJQ4jDakyMjo7o2wpfLpV8d7nbLNS+APD2EkQuBXg5Penr1/wcOBPLztWuLfJuP1JxUda9cLJU7bJdLP1DT2m85OfF3YU1kesdkvOFxRU7FwIcsoZdnkp/vf/JTgiN10CNJ8sVb60RZVAQMGlT9HkkCpk0LfRepl8NTWen/t9YJWq9WCnDmXbjvxTI9HejaNbC5xCmBGoXGoIHIPmzqIksYScrUqkWRJODf/wa2bdMOZJT3+AZKQsjPhepdtXp14HNGAwCt5iOXS+6BZqbqPpqDuPlOiZAIzSWkj4MDEoWPgQ+FRX3iNdKTQys4EgI4/XT/Jibf9YabD+R2AyNHBj4/fryxAEAr12LqVKBPH+MBRCxHZGaOReKK9UjfRPGOgQ+Z5nvizc0Fhg+Xnw9VyxAqONI6oesl7gbLBwL0A6aOHY1/zkiCBycM4pbsXcMTkROOK9+ysNaJ4hEDHzJFfeIVQh5htnlz+e9ggUKwHit6J3QgcE6tYPlACqvGEgk3eEiE8VjIGXwDDKccV6x1onjGwIdMCdb0pAQqwQIFvVqUYCf0gQPl8X2UUZ718oF8xbpbMAdxIyuoA4w1a4wdV3bWxjip1okoHAx8yBDlRJqRod30BBi/89SqRQkVKOTkyPk1ZnJslCCruBh4/32511O0xDrwovinFWCMHCnnqQU7rozWxoQbHDml1okoXAx8KCTfE2nXrkD//trBTyQ1GnYFCjNnVk+LwQRjiid6AUanTvrHldHaGK08PaMBkF6Px507WetD8YFTVqhwygp/waZ1KC6WJ1C0clj6SKZuUJs4sTrxWhGPw/9Tcgpn+gq96UtKSuRaVr31AsEHHVXznZJCkuTnQk2PQmQ3TllBltC766ysBCZMsL5Gw6qeSKWlwIgRgc/HqkqePWDIrHBqQcMdVgIwnqvjdgMtW1bf/PiOws58H4oHDHwoKCO5N07rMl1UBHTpEjg6NBC6G7xd5WEPGAqH2eZSI8GS3hARQOgbA3Wz96pVzPeh+MOmLhU2dQUKNdOy0s22devYB0B61fiKwsLA5q9ol4fNbWS3UE3GvvPq+Qp2bGody0oAxeObnIBNXRQxpXkmP1//rjNUbUa0m3j0qvElSW6a69cv9uXhHTHZLVRNrDJExLBhxpvStI5lj0cOoNh7keIJa3xUWOMjMzLTeqjaDKOztVtJ76505Urgu++cUR7eEZOTGO1QoFebKknA88/Lvc3ieTZ5in+s8aGwGe0Sq1ebMXu2nFxs9yBnWrVJenNsZWXFZtA1judDTmc0T099LCuEAB5/vDroYSI/OR0DHwpgtHkmI0P7/UOHyomPdjbxBGti00oIjWWTE8fzoUQxcKA8GKia8ltiIj/FAzZ1qSRjU5c6OTlY8wxQvWxZmfaYIXqsauIJp/mITU5E1gg2tpf6hoe/MYomNnWRIVp3aHrNMwsWhJ43SI8kRd7Eo1ShL19uvvaGTU4UK4nW9KP3Wzp0iIn8FB9Y46OSTDU+oWpBfJMed+wIHBsnJQUYN05u36+qCr6tSO/8fBOlfQdMM7t+K0eGJgrFzgT/WA8jof4tsVaVYo01PhRSqLwXJelxwQLtAQHV8wY9+WTkE5hqUSdbK+VQhso3U3vjxAEXKbqiVQNj5yzmTsilUf+WWKtK8YKBTxIzMry9cvLWGwV55075/7/9Jtf+KDUyapFMYBpsbJ7iYiYMk3HRDBjsSqi3M6CKFBP5KR4w8Eli6js0l0sOXnzv0PSCDkB+vm9feXbnQYP8a2RcruqgSmkSKysL7+TcurV2MOXxAI0b846SjIl2wGDkxiIcTh8Uk7Wq5HQMfJLcwIHA+PHyCdrjAUaO9L8LDjavj0KIwBohjwf44AP5zm/8eHm94d5l5+TIA6SpWXERoeQR7YBBq+lnyJDI12tXQEWULBj4JDm3G3jsMf27YOXkrVXjEkxKCtCtm3wyDrZ+o4YPl6ec8K1FYv4AmRGLgEFp+hk2TD72J06MvInN7lyaROuFRqTGwCfJGbkLHjgQ+Pbb4MGPJGmfiK28yx42TJ5fiPkDFI5YJt9OmlRdK2pFE5tduTROSJomshsDnySXkREY0LhcgXfBnToB06b55wMp73O55KYorROxXlPZ6tXhlZf5AxSJWCTf2tXEZvVvwclJ00RWYuCTJLSqr4uK5JFW1fk5Qshd2NV8LxpbtwKFhf65QQsWBJ6Ic3LkHB+1kSN5QqXYiHbwHC85OU5PmiayCgOfJKBVfa2+u/MlhP6dnnLRAIzn7nTsGPgcT6iULLSa2CLp5WiXeAnQiCLFwCeBud3yODe+Xc2VAEVr2gdfoQITvbvDFSsCl+UJ1R5MQo0fvrWlkfZytAsHIKRkwcAnQSm1PH37ao+4LEnBu6mHCkz0cnRuuinwRM4TqvWYhBp/cnKs6+VoFw5ASMmAc3WpJMJcXVpz5vhyuYCVK4HvvpNPukogBMhBkhKY6J30jKx/69bAwIbzZFmDcyLFr5ISOVjVel5pQiai8Ng2V9dbb72Fzz//3Pv3iBEjcNJJJ6F79+7YunVreKUlSwUbbRmQX+vaVf6/cnfnO0BgsPcaXf+KFYHNMOyRZQ0mocYvNvsSxZ7pwOe5555D7dq1AQArVqzAlClTUFhYiEaNGmGIFcOSUsS0Tq7qv5UqdkA+6Y4cWd0kpiQ3l5Zq55AYGc355puNNcMwT8U8XjzjF5t9iWLPdOBTXl6OVv87w3788ce48cYbcffdd2PcuHH4+uuvLS8gmad1ch06NHA5pZZArwahSxft4EW9fi1GchiYpxIeXjzjG/NoiGLLdOCTkZGBPXv2AAC+/PJLXH755QCAtLQ0/PXXX9aWzqTRo0dDkiS/R9OmTWNaplhRn1wfeUS7liA9Hdi1S3tU5mAjzSrrnzQpdFm0mmE4WFpkePGMb2z2JYqdGmbf0LNnT9x1110499xz8csvv+Dqq68GAGzYsAF5eXlWl8+0M888E4sWLfL+nRKsWiLB5eRUn1jdbrnWZ/JkORBJSQFuu03O9QmV0wNUBy/qwQn79Kmeh0iPVjNMsDwVXgyM8f1+iYjIGNM1Pq+88gq6deuGXbt2Yc6cOWjYsCEAYM2aNejXr5/lBTSrRo0aaNq0qffRuHHjWBcp5pQmpYkT5WBj2DA5+fidd4wFPYrS0sDntJpdCgpCN8Po5QlpbYOIiMgqpruzb9u2DTk5OXCprlpCCJSXlyM3N9fSApoxevRoTJgwAZmZmUhNTUWXLl3w3HPPoWXLlobXkQjd2X2Vlsq5Or7fckoK8P778hg/ZgTrMq3uqm6k6/rEifKs60a3EW/cbrlmq3XrxPg8REROZlt39hYtWmD37t0Bz+/duxctWrQwuzpLdenSBW+//TYWLFiAadOm4Y8//kD37t29OUlajh49igMHDvg9EoXeXFx6AxgGm31deZ9el2l1zoKRHIYOHcxtI54wcZuIyJlMBz56FUSHDh1CWlpaxAWKxFVXXYW///3vaNeuHS6//HLveENvvfWW7nvGjRuHzMxM76NZs2bRKq6tgs3FlZICdOsW2EQ1bRqwapWcB/Tpp/Z3mU7UbtlM3CYici7Dyc1D/9cfWpIkPP3006hTp473taqqKnz77bc455xzLC9gJNLT09GuXTuUlZXpLvP44497PxsgV5UlQvCjN8igy1WdczNwIJCfL+f7CAF07y4/36mTvOzUqdUjO9vRZVrJD7JzG7HAxG3yFarJk02iRNFlOPBZt24dALnG5/vvv0etWrW8r9WqVQtnn302hg0bZn0JI3D06FFs3LgRF1xwge4yqampSE1NjWKpokOpTfG9ACtTVWRlyd2gW7cGFiyorp1wueRAROkaPXAg0L49sGwZcP751QFRpHxP9Erw5YSpLKy6AGnt+0SoySLzior0f1+hXmdARGQTYdKAAQNERUWF2bdFxaOPPiqWLl0qNm3aJFauXCmuueYaUbduXbFlyxbD66ioqBAAHPsZzZg+XYiUFCEA+d/p0+WHyyU/J0nyQ67vqV6uvLz6/cqyLpf8t6/yciGWLKle3miZgq3TiHC2G41yqden3veUXMrLq48prd9XsNetPh6JkoHR67fpwMdXeXm5cLvdkazCUn379hVZWVmiZs2aIjs7W9xwww1iw4YNptYRb4FPqCCgvFyIkhL53/LywEBH66EsH+ykHc6JOdQ6jbDjgmBFufTWq+xLSj5Lluj/voK9Xlxsz/FIlOiMXr9NJzd7PB4888wzyMzMRPPmzZGbm4uTTjoJzz77LDxmBoWxwQcffIDt27fj2LFj+P333zFnzhy0bds2pmWygzK/1cSJoXsO5eTITSxlZcDYsYE9vNSUJplgeSrhJu9GOrmmXUnDdk36ydF5k1uo5H2914VIzEloOS8fOYXpwOfJJ5/ElClTMH78eKxbtw5r167Fc889h5dffhlPPfWUHWUkH77dpIcPDx0E+C7/+uuB65Mk7cEGg520ww0UIu3FZVeAkqi9yyi2Qs2ppvd69+6JdzxyeAdyFLNVSVlZWeKTTz4JeP7jjz8W2dnZZlfnOE5u6tJqklE/Jk0KnkOgfgwbJsSqVfL7Vq3y355enkokTUOR5L7obXfWrMibAZyWk2NHHhPFRqgmT63XnXY8RsKupmQiNdtyfFJTU8XPP/8c8PxPP/0k0tLSzK7OcZwc+OjlBKgfSu5LqOVTUoQoLAydwKx10o40gAk398V3uy5Xdc6SFfk+TsnJYWIrCeGc4zFSoXKdiKxi9PptesqKLl26oEuXLnjppZf8nn/ooYdQWlqKlStXWlYbFQtOnrLC7ZariY2kUqWkAB9/DPTqpb/Mk08C48YFdrs2OmWEkWkp7OB2y2MP9e0bOBVHvE93ofUdJ8LnIn2J3m2dxzRFi9Hrt+nZ2QsLC3H11Vdj0aJF6NatGyRJwvLly1FeXo758+dHVGgKTmvAv3HjgBo15JnXfVVVySfTYBo2jGygvVjNDp6TAzRqpD0VR7wPEsjBD5NLqHF+EkGiDlRK8ct0jQ8AbN++Ha+88gp++uknCCHQtm1b3H///cjOzrajjFHl5BofQL57Wr5cTkru1q16QtDcXP9AwOUC+vUD3ntPez0pKXKtSdeu8Xknlqh3kYn6uShQsn3XsaohpuRhW40PAGRnZ+Of//xn2IUjc0pLga+/BvbsAcaPD7w7XLAg8D0eT/Cg5/XX5ZGY+/cHfKcyu+GG6poiJ5+cEvUuMlE/FwVKttq9WNUQE6mFVeOzf/9+FBUVYePGjZAkCW3btsWdd96JzMxMO8oYVU6r8RkwwD8w8eVyAVOmAA88EHp8HsXkycCNN8onoNJSoEsX7ffGS7V7ot5FJurnomrJVuNDZDej12/Tgc/q1auRn5+P2rVro3PnzhBCYPXq1fjrr7/w5Zdf4rzzzou48LHkpMCntBTo3Nnadd56q1xrtGABMGhQ8ICJJ2EiexUVBdbuOf1mg8ipbAt8LrjgArRq1QrTpk1DjRpyS9mJEydw1113YdOmTfjPf/4TWcljzEmBz6RJwKOP2rNuSTJWS1RSIo8+TET2YO0ekTVsy/FZvXq1X9ADADVq1MCIESPQsWPH8EpLmoJMKh/UjTcCH34YfBmj4W56enhlICJjmPtCFF2mp6yoV68etm3bFvB8eXk56tata0mhSNapE1BQYP59DzwAfPqpNWWorLRmPYmEcw4REcUv04FP3759MXDgQMyaNQvl5eVwu9344IMPcNddd6Ffv352lDGpvfmmHMRIkrHlXS65luaaa4IHTeo5uu65J/rzA8VjAME5h4iI4pzZIaGPHj0qHn74YVGrVi3hcrmEy+USqampYvDgweLIkSNmV+c4Tp2ywneqBqNTVgghxKefai8zYULgkPjq6SAmTLD388TbtAycc4iIyLlsmbKiqqoKy5YtQ7t27ZCWlobffvsNQgi0atUKderUsS86iyInJTerud3Aiy/KSc8eT3UtkNY3mJICvP++PNPzggXVPUdcLrlX1/Dh2tuYMAF47DF5nXZ1aY/XbrwlJXJNj9bzTAAnIoot23p1paWlYePGjWjRokXEhXQiJwc+itJS4LPPgLFjQ8/bpQQv+fmhe45EKyCJpwDCdx4lID4DNiKiZGD0+m06x6ddu3bYtGlTRIUj49xuoLhYfrjdck5J167AM88Ym6zU45HnAtqxQw56li+vXpdasJFkrdS6dfTzicKhzudZsEAOIn1zoziqMhFRfDHdnf2f//wnhg0bhmeffRYdOnRAuqq/s1NrSeJRUVHoQQaN8HgCR2iWJGDaNP9mLCUgUQc/paXW1sTEw7QMbnf15JGA/O8998i1O1u2cNwVIqJ4Zbqpy+Vzqy75dDUSQkCSJFRVVVlXuhhwSlOX1sSjVtNqppk4MTD/x67mHCcP3BZPzXFEVvJt3nXa75IoGNsGMCwpKYmoYGRMWZn5oEeS5IeRJjBAe0LEDh2MLWcFJw/cplX75cTmOCIrFRVV13TGy3x9RGaFNUlpInNSjU+zZubec/31wNy5xpfXqskxmuCcDHeFnEeJkkm89rYkUtiW3EzRY3TQQsXcufrvUScTu1zaeTVK/k2wBN5kGcRv4ED5pF9SIv/LoIcSWbQ6NxDFGmt8VJxS46OXY2KE0kSTkiKP2dOxY3UTzYoV8r/dugW/i9PLv+FdIVFi4m+b4p1tOT4UHXo9rIx46ik5AVcrabhPH2Pr0Mu/CXZXyJMjUfyKh96WRFYw1NQ1b948HD9+3O6ykI+cHKB///Dee+JEdc8jq+fCipcxeIjIPDbvUjIwFPhcf/312L9/PwAgJSUFO3futLNMBHnsnLfeCr1c8+aBzz33nNwt3Y48HCM5QEQUv3Jy5Bsn/qYpURkKfBo3boyVK1cCqB6vh+wzcaI84GAokgRs2xb4vBDAiBGBg+9ZVfPDu0IiIopXhnJ87r33XvTu3RuSJEGSJDRt2lR32XgfwDDWJkyQgxYjgqWlq1+zOg/HyWPwEBER6THcq+unn37Cr7/+imuvvRYzZszASSedpLlc7969rSxf1MWyV5eVozVLkv961L0zkmEcHiIiSh6W9+o6/fTTcfrpp2PUqFHo06cP6tSpY0lBqVo4ozWrKXNw7d0LjBxZ3a399dfl10tKgDVrgMce4+isRESUfMIex2fXrl34+eefIUkS2rRpg8aNG1tdtpiIdY2PehwNX+paHF+jRgFnnimPz7Nggf+w888/D9Sv7z/ppi+O1UFERPHOtpGbDx8+jDvvvBPZ2dm48MILccEFFyA7OxsDBw7E4cOHIyp0slP3mFLTC3okCbjrruoxetSzij/2mH7QAyTv6Kxut/Xd/YmIyNlMBz5DhgzBV199hXnz5mH//v3Yv38/PvnkE3z11Vd49NFH7ShjUhk4UB5d2UzHOd9lX3wxMMDxeIIPhJiM4/Cop90YPpwBEBFRMjDd1NWoUSN8+OGHuFgZIe9/SkpKcNNNN2HXrl1Wli/qnDBlRTjTVZSUyMGLVnK0MuCgXjNXsk2+qdekqORHJdO+ICJKFLY2dTVp0iTg+ZNPPplNXRFSml4WLTL3PpdLDnr0kqOHDg0cdLCwMHnH4dGadgOQ952V4x0REZHzmJ6rq1u3bhg1ahTefvttpKWlAQD++usvjBkzBt26dbO8gMmiqCh4Hk4wffpUJyar5/dyuYBHHpFfz8/Xnng02QSbB43zjhERJTbTgc+LL76IK6+8Ejk5OTj77LMhSRLWr1+PtLQ0LFiwwI4yJjy3O/ygBwBuu03+V5nfy3eqi/79qy/iHHRQpp6M0Vcy5jsRESWTsLqz//XXX3j33Xfx008/QQiBtm3b4tZbb0Xt2rXtKGNUxSLHJ5ycHl833QS88IL8f3XuCruq63O75WTwSZP8xztKtqY/IqJEYPT6HfY4PokqFoGPFSM2SxLw6KPyPF9qJSXVs7VTILebTYAUXRw5nch6tiU3k/VycuSmrkgIIdf6uFTfKJtuQuNs1BRN6qEUiopiXSKi5MLAxyH+8Y/I1yEE0LOnf++t11/nBZ3IKdT5fB4PexISRRsDH4fIyZFnZo/UokXyAIh6XdXtGq2YoyAThaY1lEKyjpxOFCsMfBxk2DDgyScjW0dVFVBZqd10Y1cVO6vuiYxRhlLwxeZoougyHfi0bNkSe/bsCXh+//79aNmypSWFSmb33mtuugo1vZOoXVXsrLonMk49Hx+bo4miz/Q4Plu2bEGVevATAEePHsXvv/9uSaGSVWkpMGNGZL27brtN+yQarIo9kpOuXeslSlQDB3IwUaJYMhz4zJs3z/v/BQsWIDMz0/t3VVUVFi9ejLy8PEsLlwyUbq0TJwLz50e+vrffBsaODTyZao1WbEUVu5XrZRdfShYcTJQodgwHPtddd533/wUFBX6v1axZE3l5eXhBGUWPDCkqAgYNCr+GR5IC3ysEcNddwBdf+D+vHq3Yqip2q9brO2WHyyWvkwMJEhGR1UwPYNiiRQusXr0aDRs2tKtMMRWtAQwjHbTQ5QI++QTo1Uv79VWrgE6dtLdrRxV7JOvVmi2dI04TEZEZtgxgePz4ceTl5WkmN5M5y5eHH/SkpMg1ItdcI09XoeWbb7Sft2uwvkjWyy6+REQULaYCn5o1a+KHH36AFEm3I4rIvff6j88zbJj2cj16RK1IEWMXXyIiihbT3dlvv/12FHGgloi1aBHe+6ZO9f+7UydAlXKFggLtZi6nivcuvhy8kYgofpjuzn7s2DFMnz4dCxcuRMeOHZGenu73+qRJkywrXCLbvDm893k8/l3F3W450LnxRvn5Hj3iK+hRxGsXXyZlExHFF9OBzw8//IDzzjsPAPDLL7/4vcYmMPu5XNVNQFoX3XgMehTx1sVXb/DG/Pz4+hxERMnEdOBTUlJiRzmSTvfu4b1PSYjmRTf2OHgjEVH84VxdMRLupKRCAC++yJ5QTsCkbCKi+GO6xgcASktLMXv2bGzbtg3Hjh3ze+2jjz6ypGCJyu2Wu7L/+ivw22/A2WcD//2vuXVMmiR3Y7djJGYyzq5BIYmsxlHRiaqZrvH54IMP0KNHD/z444+YO3cujh8/jh9//BFLlizxm8aCAhUVyYMW9u0rz8L+xhvmgx5ADnYqK+O7J1SiGDhQHl6gpMR/mAEipygqkgcIvfRS+V92yqVkZ3rk5vbt2+Oee+7BAw88gLp16+K///0vWrRogXvuuQdZWVkYM2aMXWWNCrtGbna7gWbNrFmX76jGdo3ETETxj6OiUzKxZeRmAPjtt99w9dVXAwBSU1NRWVkJSZIwZMgQTFUPMkNen35qzXokSa7ZAeRaBsCekZiJKP4xF5AokOnAp0GDBjh48CAA4JRTTsEPP/wAANi/fz8OHz5sbekSyI4d1qzn1Vflf1l1TUShMAGfKJDpwOeCCy7AwoULAQA33XQTHnnkEQwaNAj9+vXDZZddZnkBE4XeZKJmSBLQoYN2N3aOGkxEavE+KjqRHUwHPlOmTMHNN98MAHj88ccxbNgw/Pnnn7jhhhscM5XFq6++ihYtWiAtLQ0dOnTA119/HesioVMneXRlM554ovpuzeUCpk0DDh0KUnW9erVcDbR6deQF5rq4LjvXRVHDBHwif6a7szdo0MD7f5fLhREjRmDEiBGWFioSs2bNwuDBg/Hqq6+iR48eeP3113HVVVfhxx9/RG5ubszK5XYDtWvLj7/+MvaeP/8EPvkEWLwYOHAAOHYMWLdOe9nXXgOWb92OVisbosWEpdj8947YswfYtw84cgTo3BlITwcyMuTgqXVrufnt66+BCy6QtzV/PvC3vwHnnAMsf+o7oKQRur86DzlvdERpafWyvqND6z2vfObly4E9//4VWNoGDZ/6Dt2ndfS721S62fqWC/jf+/YADRtWD/ZYVga0fmceckpK4H51Hsr6d/Qur6xDmQqkRYvA9QHyurzbf/tt+WrwzjtAx45+ZVaW9V336tXyPuvVC8jKql6uRQvg0LgVaF3yC3J81mWEZjdjjXLp7SvfqUuU9Xj3VWsgR2dd4XC/Og9lJQKtX50HPNNRt3t0JF2n1ftf61gJtl7d/ZBjXZduM+XQ+q6MriPSbfsuozcqupXd3PX2PaD/nYZal/q8oC6r0fJ7z0V75L+V80qwc5Hv+URZ1nc9RtbhWy7fc6Vy/lCvJ9jxr16Hcr7Vek7vPKb3fbjdch7qjh3ytULJWgn2fYX7W3XE0AoiDCdOnBCzZ88WzzzzjHj22WfFhx9+KI4fPx7OqizXuXNnce+99/o9d/rpp4uRI0caen9FRYUAICoqKiwr0/TpQshDD0br4YnwvdXvl1Alurc/6PdcQYH8uQoK/N+rPC+EENOf3y0kKbAckuQR0/+xWYgtW8T06UK4XOrXtcukrMuFE6IAbwgXTnjXp7UdvfV5t79mjRAnnyw/efLJQqxZI6b/Y3PAurTLo72/XTghptcdLK979WohtmwJeVwon9/l0i+XWL1aTH9+d8C+crnkdfiuR5JE9b5yeeTyqNYVqlx+tmyRt//Ulup9jir/bUzX+0zC77VQpk/339+SVP1+I+sN3A/VyxcUhF8uvW0YKYf6uzK6Diu2HWrdkXxXwdblu+99/6/+To2sy/d9vt+n+rgPVn71cRXq+NI7jxQUaJ1Pgq9DKZf6XGlk/ep9pXW+1XpO63cU7PsIVja97yvc36qVx5wWo9dvmF3x999/L1q2bCnq1Kkjzj33XHHuueeK9PR0kZeXJ7777ruwC2yFo0ePipSUFPHRRx/5Pf/www+LCy+8UPM9R44cERUVFd5HeXm5oR1nVHl5uAGIkx6BgcWMGdrLrlolf2blIqn1cOG4WIWOQU80Zstj5pGC46Icp/idDcpxipCClNn0upUnghwX6s+vVS4BiHKcors/Xa7gJ+yAdYYoV4AQ2weESEmRP4/mZ/rfa0Z+J1qfw+WSj6lQ69V7f6gym2Hk8wUrR0qKsc9i5bb11h3Jd2VkXcEeLpf+doyuKyUl8JDWKn95efCbF73jy8wj1DoiXXd5ubx+o+8xdrMW/velt09DHd9WHnN6jAY+pnN87rrrLpx55plwu91Yu3Yt1q5di/LycrRv3x5333231RVSpuzevRtVVVVo0qSJ3/NNmjTBH3/8ofmecePGITMz0/toZtVgO/9TVmbp6mIkcPLZuXO1l/zmm/91oUWK7to8qIFlt/w7IFcpkvKYUYUa+BWt5N8eAAiBMrSGCFJm0+uuUQN4913d5TS7GWuUCwDKXKfr7k+PJ3A9QdcZolwB3n036PaB6hyzSLpOa70XkJ9btiz0evXeH6rMZhj5fMHKUVVl7LNYuW29dVvZzd3svvd49LdjdF1VVdWHtO9z6vWWlQUupy6L1ndiRqh1RLruX3+Vm7KMCvZ5IymDQm+fhjq+HTW0gtmIKi0tTfzwww8Bz3///fciLS3N7Oos9fvvvwsAYvny5X7Pjx07Vpx22mma72GNj5FHGDU+Qe5yXJInwrusCGt8XB7/WhnItRrBmswMr1upYVmzJuRxEXD3o1EuAYjy+d8FvZs0VOOjPBGiXJplnf8da3x0tsEaH9b4sMbH2PHtpBofmF3x2WefLRYvXhzw/OLFi8VZZ51ldnWWCqepS405Ph4BVFUf9DghuuNrv3UayvGZLgc4AT9KnBDTn9riXSYlJfBHptWOrgQlKTguCvCGSMFxeXnJE/LEpv57+lNb/F/837/Tn9oS0G5t7KRVXbbp0l3ykwYCDN/Pn5KiXy6xZo3mvkpJqc51UF7zLbNfeXzWZdqaNWI67qze5zjhbRZUyqD7mUzm+Pjub3XeQKj1+i7jexylpMjHZrjl0tuGkXKovyuj67Bi26HWHcl3FWxdvsdguDk+6v3nd1xrHPfBym80x0e9TfWyRnJ89L53ozk+ese/EM7O8VHnsOl9L1Yec1qMXr9NT1kxf/58jBgxAqNHj0bXrl0BACtXrsQzzzyD8ePH4/zzz/cua+WUD0Z16dIFHTp0wKvKSH8A2rZti969e2PcuHEh32/nlBVPPAF8+KHxXl133QX07i336jp0SB7D5/Bh4NFH1UsK9Kv1Edo12oFWf2uDvG/ew5bttbDnsULsQ30cPSp36MnIkHt2VVbKA5jt2CE3TfXoIffq+uIL4MqOu3DOiHysqHsFcNll6LbqReT8uQal09bjm1+boEePwF5dyjoCenWV7sCKnk9jT2YLoMf5aPjtfHQ7+CVy1s7zpvMrU274lgsAVqyo7vHQrRuAHTvwa/4DaJV7DDn39YL735/i12210GrBK0BWlncdW7bI78/LC1wfIK8rB265sM2ayX17i4qA8nKgtBRu5PgtC1SXb80a4I8/gKuvlntlrFgBYM8e5D15Kyob56HVgPOR89FL3nUZ6bLgN+VIkHIhJ0dzX/n2blHWAwC/rtiFVg/kIyevhua6THHL5XI36YBfL70brZZMBbZvx6+vLECrbo01e22EO42K2636rlQ9RUKtN2A/+Cxv1fQuZsqh9V0ZXUek2zaybiunvNHb94D+dxpqXerzgrqsRsuvHFe+vbr0ji9lm77nE2VZ3/UYWYdvuXzPlcr5Q72eYMe/eh2+vbrUz6nX47vvgMBtuN3AZ5/J57eOHauvUcG+r3B/q3ZOs2T0+m068HH5DAMqSXKuhbIK378lSUJVVZXpgkdq1qxZ6N+/P1577TV069YNU6dOxbRp07BhwwY0b9485PvtCnwAoE8fOfAx6okngHHj5JhakuRxfFq2lIdSUStZcAwX96wpLyiE3Pc9NTW8gh49CtSqxXVxXfasi6LOEV2IiWxm9PptehyfEmWCKIfq27cv9uzZg2eeeQY7duzAWWedhfnz5xsKeuxUWmou6AGA556r/r8QwKBBwLffyoMZqicdbNW2VnXOryRFdlHyfS/XxXVZvS6KqqKi6tHeXS55JGcOYkjJzHSNT6Kzq8bn6aeBZ5+NfD3//jdQs6Y8TUVVVfUQ9DyREZEaZ2enZGLb7OwUnqwsa9Zz333yvxyCnohCcVQXYiKHYOATJb16yS0EVrjnHvnfiy+W/y0p4SSlRBSIs7MTBWLgEyU5OXJysvokFA7ljq2oSK7GvvRS+V+HzBGbdNxuBp/kTJydnSgQc3xU7OzVBVR35Tt0CFiyBJg92/wF0+UCVq4EunZl232sMXGU4oGdXYiJnMK2HJ/Ro0dj69atERUumeXkyE1U11wD1KkTXi3B0KFy4MS2+9hyu6uDHkD+9557WPNDzqOcdxj0EIUR+Hz66ac49dRTcdlll+H999/HkSNH7ChXwnO7gX/+M7z33nQT2+6dgImjRETxx3Tgs2bNGqxduxbt27fHkCFDkJWVhfvuuw+lpaV2lC9hLV8e/nsrK9l27wQMPomI4k9Yqbbt27fH5MmT8fvvv+ONN97A77//jh49eqBdu3Z48cUXUVFRYXU5E44ydLpZvhfWgQOru7V//DFQUSEPlBiv4i1JmMEnEVH8iaiPkcfjwbFjx3D06FEIIdCgQQP8+9//RrNmzTBr1iyrypiQGjYM731//7v/3zk5wJtvyt3lH30U6NwZGDAg0tJFX7z2UPMNPjmmEhGR84XVq2vNmjWYMWMGZs6cidTUVNx+++2466670Op/VREvvPACCgsL8eeff1peYLvZ3atLUVoqBynh8O09pLeeVasCJw11Ko4uS0REkbKtV1f79u3RtWtXbN68GUVFRSgvL8f48eO9QQ8A3H777di1a1d4JU8Shw6F/16PR+5NVFoKTJyovcw334S//mhjkjAREUWL6UlK+/TpgzvvvBOnnHKK7jKNGzeGR30lIz9KYmy4u8njAbp0kScv1dKjh/bzds3SHMl6tfYFk4SJiMgOpmp8jh8/jhkzZjB52QLqxNhw6AU9+fnazVx25dFEul4mCRMRUbSYzvE55ZRTsGjRIpxxxhl2lSmmopXjo1BGVJ0wAZg/P/L1SRKwbVtg0GBXHo2V6+XoskREFC7bcnweeughPP/88zhx4kREBSSZMqLq55/LCcn336+/7AsvhF7f7bdrBw125dFYuV6OLkvJIt6GbiBKJKZrfK6//nosXrwYGRkZaNeuHdLT0/1e/+ijjywtYLRFu8ZHze0GcnO1m7EkSb95S6FX2xIPNT5EyYDzuxHZw7Yan5NOOgl///vfkZ+fj+zsbGRmZvo9KDKvvaYf3BgJUfVqW+zKo2F+DpFxnN+NKPY4O7tKLGt8Jk4Ehg+PbB0pKcCKFXJ3ea0eVnbl0TA/hyi0khK5E4DW8xdfHPXiECUUo9dv093ZyR5ud+RBDwBcfjnQtat+NXpOjj2BiV3rJUokHLqBKPbCCnw+/PBDFBcXY9u2bTh27Jjfa2vXrrWkYMlm7NjI1yFJwMKFgdXo+fkMSoicQGkavuceuVmaTcNE0Wc6x+ell17CHXfcgZNPPhnr1q1D586d0bBhQ2zatAlXXXWVHWVMeG63fDKMhMslz9XFEZDNYw8biibO70YUW6YDn1dffRVTp07FlClTUKtWLYwYMQILFy7Eww8/zIENw1RWZixxWU/fvsDWrcAjj8gBkC9Wo+tTmhdzc+NvclSKbxy6gSh2TAc+27ZtQ/fu3QEAtWvXxsGDBwEA/fv3x8yZM60tXZJQ2v3Dddtt1Tk2/ftrv0b+lNGmJ06sDjrZw4aIKPGZvtw2bdoUe/bsAQA0b94cK1euBABs3rwZ7CAWnkinr3j3Xflftxt45x3/1955p/pCziYdmbpLsS82DRIRJTbTgc+ll16KTz/9FAAwcOBADBkyBD179kTfvn1x/fXXW17AZOHb7v/EE+beO3t29SSh6ou5xwO8+GLgfFoTJiRvEKS1nxRsGiQiSmymx/HxeDzweDyoUUPuEFZcXIxly5ahVatWuPfee1GrVi1bChotsR65GQCKi+W8HTNKSuQLttaoz0ozmtbFPhlHjtUabRpIzn1BRJQojF6/OYChSqwDn6IiYNAgc8nOLpec3JyTIyfrTpxobpvJOMVEUZF/l+IhQ+Tk8GTaB0REicTWwGf//v1YtWoVdu7cCY/qtvn22283X1oHiWXgo1cTEYrvjOxa6whW46NIxpFjOdo0EVHisG3k5k8//RS33norKisrUbduXUiS5H1NkqS4D3xiKVjuSTBCANOmAWeeCXTv7j9AmssFPP88UL9+9XNqyZrXwtGmiYiSj+nk5kcffRR33nknDh48iP3792Pfvn3ex969e+0oY9Jo3VquvQnHM8/IeUG5ufLf48bJ6/J4gMcek59TkqcnTOCkokRElJxMN3Wlp6fj+++/R8uWLe0qU0zFOscnnBwdLZLknyekzuNhMw8RESUSo9dv0zU++fn5WL16dUSFI31aoy+HQx3OqseniXTkWI4JRERE8ch0js/VV1+N4cOH48cff0S7du1Qs2ZNv9evvfZaywqXjNSTGIZLq8bHqjyeoqLqAQDZBZyIiOKJ6aYuV5DqCEmSUBXJ1doBYt3UpXC75YEHw2n2kiSgsBAYOdJ/BmgrghOtXmPJ2B2eKFEpg6G2bs3fNMUX25q6lAEMtR7xHvQ4SU4OcPrp4TV7PfEEMGyYPTNAa/U84zQPRIlBPcI7J+2lRGRBNgnZIdh8UqHUqCEHPED4eTx6OTxaE6oma3d4okSiPudw0l5KVIZyfF566SXcfffdSEtLw0svvRR02YcfftiSgiW7cMf0AYBnnwXGjKkew6dDBzlgAYDly+V/u3fXD4iC5fCoc5DYHZ4oMQSrzeXvmxKJoRyfFi1aYPXq1WjYsCFatGihvzJJwqZNmywtYLQ5KcenWTPz71MnNes9L0nyoIfqJjCjOTzJ0h2e+Q6ULJi/R/HO0pGbN2/erPl/cpbrrwfmztV+TR0MCSHX2uTn+5/UjN71JcOox+y9RsmEtbmULDhJqYpTanxKSuQEQ7NcLnNNZOo5utzuwBnek/Guj3e/lKySpTaXEo9tc3UNHTpU83lJkpCWloZWrVqhd+/eaNCggdlVkw8lidhsno+Z5bWSkhcs8P9bkuy763NyMxLzHShZJUNtLiU30zU+l1xyCdauXYuqqiqcdtppEEKgrKwMKSkpOP300/Hzzz9DkiQsW7YMbdu2tavctnFKjQ8gN7X4Tjbarx/w/vvaOTyhqHN8tJpuolnL4fRmpGD7AnBuwEZElKxsG8end+/euPzyy7F9+3asWbMGa9euxe+//46ePXuiX79++P3333HhhRdiyJAhEX0AkgMBZSyerVuBd9+VE5KVCUaNcrmAb78FysuB4mL5sXVrYKARrTF64qHbrJLvoJ7MdcECjnNCRBTPTNf4nHLKKVi4cGFAbc6GDRtwxRVX4Pfff8fatWtxxRVXYPfu3ZYWNhqcVOOjp7QUWLYM2LNHnoU9WPOWcsHOzw9dSxGtGh+9/CV1vpET+OY7AMz7ISJyKttqfCoqKrBz586A53ft2oUDBw4AAE466SQcO3bM7KopBLdbnr29Sxdg6FA56Bk5Erj88sBlU1Lkmh2laUappcjNBSZM0F5/Tg4wfnz1AIV29eqIp0EQfSdz5ajVRETxL6ymrjvvvBNz586F2+3G77//jrlz52LgwIG47rrrAACrVq1CmzZtrC5rUlOGkp84sTpXx+MBnnsOWLTIf1klYOnTB1i/HrjrruoLthDAiBHyetSjMxcVyYGUxyPnBI0fb0/ejV4zktNrTeIpYCMiIm2mm7oOHTqEIUOG4O2338aJEycAADVq1EBBQQEmT56M9PR0rF+/HgBwzjnnWF1e2zmxqeuzz4BrrzWW1OxyAStXAp06AQMGAG+9pb2cJMkPJci5+mp5O+p1bd1qX0ASj91mfRPOrZz8lYiIImP0+h32OD6HDh3Cpk2bIITAqaeeioyMjLAL6yROC3yCBS96SkqAQ4eAXr0i335xsVxzRNXiMWAjIkp0to3jo8jIyED79u3DfTsZUFpqPugBgFdeAT780PrykIzjnBARxa+wAp/S0lLMnj0b27ZtC0hi/uijjywpGAFffx3e+0IFPZIk/xuqrk+SgG7dwisDERnj5IE8iRKR6eTmDz74AD169MCPP/6IuXPn4vjx4/jxxx+xZMkSZGZm2lHGpHXBBdav8/LL5TF9pk0LTNT15XLJy/BEHBvqxHNKTEqnBY4LRRQ9pgOf5557DpMnT8Znn32GWrVq4cUXX8TGjRtx0003ITc3144yJq1OnYCCAv3XXS7g3/+ursExYtEioGtX+f9btwJnnun/eocO1QMmxkPSbiIGCLwYJod4GMiTKBGZDnx+++03XH311QCA1NRUVFZWQpIkDBkyBFOnTrW8gMnuzTeBVauAyZOBJ57w7wI+dSpw773atTfBgiHlBLtjB7Bxo/9r69fHT9JuIgYIvBgmD44LRRQbpgOfBg0a4ODBgwDkUZx/+OEHAMD+/ftx+PBha0tHAOSan8GDgX/+Ux6QsLhYnrMrP19+PT8/MF9HkoDbbtNfZ1WVPPpzvJ54EzVA4MUweSTbuFCJWDtL8cl04HPBBRdg4cKFAICbbroJjzzyCAYNGoR+/frhsssus7yA5G/BAuDmm4G+feVajgkT5EBIHfh4PMB55+mvJyUFOP/8+D3xJmqAkGwXw2QWrwN5hiMRa2cpfpkex2fv3r04cuQIsrOz4fF4MHHiRCxbtgytWrXCU089hfr169tV1qhw2jg+vrTm0tKTkgJ8/LH+WD6SBBQWAvXrhz8gX6x6o7jdwPLlcgDoe/QmyrxZHCQxuST6uFDRmgOQyPYBDBOVkwMfvck91ZSLZcuWoZcvLAT69dM/8eoFN0VF1U1NLpd85xqNgMl3u77d8q0IEJzUrTjRL4bJJNzjyknHYyTiaVJiim+Gr98iTH/++af4/vvvxX//+1+/R7yrqKgQAERFRUWsixKgvFwIl0sI+VKv/Zg8WV7O6PIulxCrVgmxZEn1+xTTp1e/3+WS/9Zbb0pK4Pu16K0z3M+fkiJEcbGxbdtVLiI9Ro6r8vLA318iHY+RnC+IzDB6/TYd+KxevVqceeaZwuVyCUmS/B4ulyvsAjuFkwMfIeQTYEqKdhCjdTIJtrxv8GMmuFmyRHs9JSXByx7pCTDc7YbCEzPZwchxpRXgJOLx6HseSkmJ70COnMvo9dt0cvMdd9yBNm3aYPny5di0aRM2b97sfWzatCncGioyaOBAuW28pERObA6VGJmfL/cAKy4GnnxSe51aPaOCJQ+Hm4AbaUKyXYm/diVKsxdLcgt1XOn1TFy+PPES933PW1u2MGeNYsxsRJWRkSHKysrCjsjs1Lx5cwHA7/HYY4+ZWofTa3zUysvlGg+tu0Gtu8nCQv/n9GpQQt11hnMHZ8WdrB13jnbcYSdSUwWFJ9RxpVeDWVyceDU+RNFgW1NX7969xYcffhh2wezUvHlz8cwzz4gdO3Z4HwcPHjS1jngLfPQEO+kqwdKqVZEFN8GCLj1WBC7hbDca5VIkYlMFhSfYcRXsOGHTEJF5Rq/fpnt17d69GwUFBejcuTPOOuss1KxZ0+/1a6+91pKaqHDk5eVh8ODBGDx4cNjrcHKvLjP0elIUFwN9+lT/HarrdGmpPNDh+efLAylaQd1jySm9V6zqScVeLOQr2HEV7PfHnn1E5tjWnX3evHno37+/d/Rmv5VJEqqqqsyX1iJ5eXk4evQojh07hmbNmqFPnz4YPnw4atWqpfueo0eP4ujRo96/Dxw4gGbNmsV94KM35o8kyVNc+J5cly+vnondqi7rRkVjG9HGcUvIDAY4RNawLfDJy8vDNddcg6eeegpNmjSJuKBWmjx5Ms477zzUr18fq1atwuOPP47evXtj+vTpuu8ZPXo0xowZE/B8vAc+gP/dpC/lIrxgQWDQ0b498PXXQJs2QO/e9l68EzlA4CCERETRZVvgU7duXaxfvx6nnnpqxIU0Qi8w8VVaWoqOHTsGPD9nzhzceOON2L17Nxo2bKj53kSt8VEUF8vTW2g9f/PN/kGHJCFg6gs1K5trEr1JiHfyRETRYzTwqWF2xTfccANKSkqiFvg8+OCDuPnmm4Muk5eXp/l8165dAQC//vqrbuCTmpqK1NTUiMroZN27y7U56loVIQKbwUIFPcG6jqvzdIzk7axZY24b8SYnhwEPEZHTmA582rRpg8cffxzLli1Du3btApKbH374YcsKBwCNGjVCo0aNwnrvunXrAABZWVlWFimuKBMhKs0uLhcwZAjQokVgQBTKuHHaF3J1nk7//sA77wTP23G7gcceM74NIiIiK5hu6mrRooX+yiQpZoMYrlixAitXrsQll1yCzMxMlJaWYsiQIejYsSM++eQTw+tJlF5dam438OKLwKRJ/gHKu+8G5gDp0WqCMjJxqlbeTqI3cxERUXTZ1tS1efPmiApml9TUVMyaNQtjxozB0aNH0bx5cwwaNAgjRoyIddFixre5CagOegD533ffBVaskIOSvn2DN3VpNUG53XKuUKhaI2XUWd/ARxmFWd0ElyjNXNHglGEAiIjiienAx6nOO+88rFy5MtbFcAx189PQodrD4FdWAo0aaQc9SmCiNR2G7/pD0Qpo1E1welNukLZEHAYgmTBoJYodQ01dQ4cOxbPPPov09HQMHTo06LKTJk2yrHCxkAhNXVrNT1r5PCkpco3P5s1yDy/fI0F5rbIysFeS0eYtI1252fPJvEQeBiAZMGglsoelTV3r1q3D8ePHvf/XI0mSyWKSHbQmR9QKem67DejaVTuAue02/ZGatdavNnMm0Lhx6ICGPZ/MCzb5Jfels+lNTJqfz++OKFoMBT4lJSWa/ydn0sqf8eVyAR9/HDhAoa933wXGjtU+GRtZv3oUaIDV+1ZhflT8YtBKFHuuWBeArKfkz6SkaL/u8YSutVFOxnrrHz9e+zVJkretNSdR8+ZyT67mzeW/KTzq75f5UfFDCVp9OS1odbvl3pVud6xLQmQPBj4JauBAOeejuFgORnylpMiTjqpPwOplgp2MNQbKBgDMmqU9Zo9W9T5PrOFTvt+SEvlf5og4n1Lj+fzzzg1aeYNCySBhenVRoJwceSb2AwcCe0916uTfq0oJjoQwdjLWa27p1i1wWVbv24P5UfFDndA8frz8G3RSUj/zjyhZsMYnCejVDijPDxsm/y2EHACNGxe8F5aS5vX889W1RsGCpdWrA59zWvU+kV20AorHH3dW0AMEv0EhSiSs8UkSwWoHJk2q7souhHxS7tdPO09HOYH71hApwVJ+vhwU+SYvu93AyJGB2xw/3lknfUoe0U6yj5caTybNU7JgjU+SM3qXV1oKDBpUvawQ/sHSY49p5wboJVHr5QgFo4wUXVzM/CAKTyxyWDIytPPsIg0orE5CZtI8JQsGPknOSC+ToiKgc+fgU1r4zvbum7xsVS+WoiIgN1eeWqNvX/n/TLwkM2KRZF9UJI+VpR4cNNKAwq4AjknzlAwY+CS5nJzguTrKxcKsqip55GcrerG43XJtk+/FQwj2DCNzop3Dog60APl3tmJFZAGF3QFcTo48UTBreihRMccnyRUVyc1USt6OOrHZyCjNLpd/05fynDLxaaS9WMrKtGubnJgnQc4V7RwWvRHUKyutXy9/C0TGscYnianvHJXEZt87R62mKoXLJefbbN0KTJtWXaujXFyUYCXSXiytWwfmSCjb2bmTtT5kTLRzWOwarNDpgyByAERyOgY+ScxI1b9ysdAKPDweeT4uAGjZUu69pTeVRSRNCjk5cmDlWwZJkgOrvn050BoZF80cFrsCLScnIXMARIoHhmZnTyaJMDu7UaFm+fbt9rtjB9ClS2CS5rhxcsATqjnMitnD3W45P2LPHuD++wPLYmT9nC+Mos3tloN+q8ftsWu9Zrbv+1sKdT4hspvR6zdrfJJYsDtH9Z3bd9/5N2elpMh5O0aCHkBeZsGCyMvbpw9w2mmBOT9GapR4N0qxYFeycCyTkLV+SxwAkeIFa3xUkqnGR6G+cwx25wZUL1tWJp/4jLLq7s/InSXvRonsofdbWrFC7rrP3xjFCmt8yDD1nWOoXiPKshkZ+uvUSoi26u4vVI6DE+9GmfBJiWL5cu3fUmWlc3OPiHwx8KEARnuNHDqk/f7Jk4GVK+3teaKXpKo3xklGRux6wrCJjRJFUZE8nY2a8lviAIgUDxj4UACjvUb0AqQbb6ye/d3Ouz+tHAe9mp0tW2JzNxqL0YKJzDBaG6k1ICMgnwPGjZN/e243B0Ak52PgQ5rUd27KBKS+J8dQAVIs7v70xh3q2xfYty/65Yl1ExuRHrcbGD7ceG2k3mCmd98td3JgjSbFCyY3qyRjcnMovrOyu1xysOMbNMS6W62ab3nVCgvlk320MKmaYiHUsA1FRYHTwADBj02tY1m5yeDxTU7A5GayhJGmGqdVbQ8cCMycqf3ayJHRbWZy8mBzFB/MJsaHyilTftPBpoHRonUs33gjazQp/jDwoaBCNdU4tbdS9+7aTV4eT/RPykz4pHCZTYw3cqMSbP69UAn/yrE8bJi8juJi8+sgijUGPhSUXgJzerq5/ACjrAqklFnn1WJ1UnZarRg5XziJ8UZyyvTy4MzURk6apF1jxBpNigcMfCgorert226Tp6+YONHa3kpWd/seNgx44onqOb5icVJ2ao0YOV+wIEbvuDIyFIX6N+1yyb8Vo7WRejVGkyezRpPihCA/FRUVAoCoqKiIdVEcpbxciJISIVatEsLlEkK+3wt8lJSEv371elNS5Od9l1myxP+5YKZPr16nyyXEhAnhlS1c6u1Pnx7d7VN80/tNFBYGP66mT5eXU5bXO+6U37TR31OocpldD5HVjF6/GfioMPAJbskS/aDH6MlPK4DRW68SSBUWCiFJxoOIWJ+cY719SgzqIGbCBGPHVbhBTbjlYlBPTmD0+s2mLjIlVH4AELxpR685K1gV/cSJwIgR1TkFVuU62CnW26fEoE6M79DB2HFld04ZE/YpnjHwIVOC5QcAxrrRauUF6XX7BoDHHgssR6ggQiuQcrnMJzaHm6NjdNoPolB8gxgnHVdM2Kd4xcCHTPO929u6FZgwQX4+nG60vgGM1l2kXiJlqCBGCaSUxGZArjFasMD454wk2doJ4/cwsTrxOOG4Iop3HLlZhSM3h6ekRA4QtJ6/+GL5/1ojv0oS8MorQK9exkeLBYyNwOx2A7m5/t1uXS45WAt1odAbpXbmTHmMIKMXmliNah1qtG2Kb04bLZ3ICThyM0VVON1oATkouf9+OUDRqlHRalqbMMHYtBPLlweONeLxACtWhH6vVk2TxyPP+WWm9ieazQFKDU9pKSdGTXRsZiIKHwMfsoTRKviBA+XAw7cJCpADlLvv1r44q5vWhg2ztuxaTUJ6SdyAMwMJ32a5rl2ZWB3vEqGZMhE+AyUmBj5kGaM9PQ4d0h71Ndh0EuHc4XbvHhhgSRLQrVv133p5PFq1U76cFEhoJY2rBUuA5QXKWaweyDMWEuEzUOJi4EOWMhKg6NWmhNPrSqF18c7JAaZNq96WyyX/rZTN7ZZnqPYNGO6+W24qKikB8vPlAK642P6eNJEEH8ESwIHgCbC8QDlLONNUOE0ifAZKbAx8KOqU2hTfYEKS5OfCyVkIdvEeOFBuHlOayXxrofRygLp0qV7XggVAnz729qSJNPjQy69auTJ47RsvUM6TCOM/JcJnoMTGXl0q7NUVPW53daJxt27hBRJava9SUuSLfaj1FRfLycrB+K7Ljp40kZTfV1GRHLRUVVUHZqF6cRnpiRdtbrd84WzdOjkTd606HmIpET4DxSf26iLHy8mRa1P69An/hBjJ3aVWDpCa77rs6Elj1d1xOCPpOmkwPIDNboB2J4EhQ2JbJrM41hA5HQMfimuRXLxzcoDnn68OfiQpMBCyOxCwMvgwG5hZdYGyIjmazW7VlCB22DB5P0ycGH+BIKe0ICdj4ENxLZKLd1ERMHKknOfjcsmDIk6bZs2dqtFgINZ3x5FeoKyqpWFeSKBJk8zNT6dwSi89jjVETsUcHxXm+MQns/k3wfIQgMB1mck9CWfU5HgcidfKXA7mhfgLN//KyLGX7HlUlLiY40NJxezdZbAaBvW6zNRqlJYGdpE3cqdu1d1xNO/2rayliXXNl9OE0wRqpLmQeVREDHwoDthxMTd6YTGTe1JUJI+arK5DNRIMWPEZo31Rszo5OtHzQnynFAn1XYcTCIYKRI0ey05pKiOyjSA/FRUVAoCoqKiIdVFICDF9uhAulxCA/O/06dauOyVFXndKiva6lyyRX1c/Skr8lysvry6n+pGSIr9u52fU2n6o7VpBax+Wl8v7ze5txxPf71h5GPmuy8vlY83Ivgx1DBg5lu38vRHZzej1m4GPCgMf54jGxTzUhWXVquBlUC7ys2ZpX1RCXTyMfEYjgYTRAM0OvvswmhfOeAmwIgmKzQoWzIc61mIVPBNZxej1m01d5Fgvvmh/T59guTVK05U64VZpcvBtWrr55sCu8C6XPHpysCabUM0TRpuv9Jqd0tPtb7ZQ9iEQ2JSiTAFitXjKVdGbUgSw/ngO1lwYqvlM71hUBhlVY5MYxa0oBWJxgzU+zlBeLoQk2X+HHGz7Wk0Tq1bpvy5JoZvOjGxH+Yxm78DVd/sFBaFrX6ysNdGrdbKq5kcpa6haOKeJZo2P0fIUF8u1lOqaRa1ySlLg98cmMXIi1vhQXCsr057BfcgQ493VI7kb1br79XiAykr914UAZs6Ut7tiBdCyZWTj+JjtNeV7t79iBfDOO9Ht4aM3+awVgxH6lrVLl/ga80f9HSti1XNtwQK5hrJvX//vXa+cQvh/fxxskuJelAKxuMEan+gIVdOgV+Ni5O44GsnCwV4PZ/tauUaR5FyEyvmxK59DK4k30nyjYDUmdtecWFkjpnzHq1YZT1i2mpHvXS9frbhYft1MPlm85GFRYmByc5gY+NjPaGBgpNeVmpUX9FDb1+vRZGVAEc4+EMKaHj7hsropKlgTmtn9YkYiNucY+d71Ak1lHxg9xhNx/5GzMfAJEwMfe5kNDMx05xXC+gt6qO2rX7cjoDC7DxSR9PCJVLgBmxa9stpZc5IIPZy0alvCCVr0ajWDfb+JsP8o/jDwCRMDH3vZ3e061idcve2rE0mjJVjQZGVwYnbbZtldVrVYDg9gBb3alunT/TsNaNXEKAHTq68G3wfBvt94338Un4xevzlXlwrn6rJXNOZkKiqSky2rqqoTSM2OAqw3n5GReY58t+9yVZ/2jc7bFU3xNEdYNMsaz3OH6ZV9xYrA4RlcLmDrVv/pWZTEZWV4Bt8rhNF9EM/7j+IX5+oiR4rGnEx2zTg+caKxXlDK9ouLq4MewJm9X7TGMbJrfJZI12vlbN+hyhJPc4epP4teb8Bly7R7KupNaaEct+Hsg3jaf5SEolL/FEfY1BUdVjaDWEmvqerJJ7XzHVat0u+1Eo/V/XYlpDop0dVMWZx6nCq0PkuwnKhwEt6Li8PfB07ff5RY2NQVJjZ1JbeSErlGR02S/Kv81c9rNWPFW3W/XeV10n5wUlkiFeyzLFig3dwbrBk4kfYNJSc2dRH5MNrMojUIn5Kno8W3Gevuu/3X76TqfiOf3+yAiUbZtd54L0ukgn0WvebecKe04PQUlEgY+FDCMzNCsfrk73IBI0dqj0is5vEAn33mf4GINN/ICpHO99WqVWTbt2u98V6WSIX6LHo5UcFypbSO13iaF43IkKg0vMUR5vgklnC7t0+Y4J87UVBQ3Z3a5RLillu08yGCdROOhUjn+7IyxyfUeqM1ym+0u8bbyY7P4vs9xHp4CCIzEm4cn7Fjx4pu3bqJ2rVri8zMTM1ltm7dKq655hpRp04d0bBhQ/HQQw+Jo0ePmtoOA5/EEk6CsZEB8/QmUXXaBcLs5y8vl8ccKi62vuyhxhSKZvJzIiXdWj1eku/3MGxY/CXoU/JKuElKjx07hj59+uC+++7TfL2qqgpXX301KisrsWzZMnzwwQeYM2cOHn300SiXlJwknKYNvdyJysrqJoKcHGDatOp1K2OeqN+jlTtiJl8i0twKM59fadLo21eexHLBgvC2qUeviSUWk15a2TU+1qz6LFrfw6RJidM0SOQVpUDMMjNmzNCs8Zk/f75wuVzi999/9z43c+ZMkZqaaqr2hjU+icdsc4CZ6n3fiSeNvKewsLqmKFTNhlW1IHpzis2aVT2idCybNJzS7T/ZJ9TU+x6GDYtO02Cy73+KXMI1dSn0Ap+nnnpKtG/f3u+5vXv3CgBiyZIluus7cuSIqKio8D7Ky8sZ+CQgs80B4eROhHrPhAmhm8OUk7+VE336TlMgSXK+km8znSQFb9Kw+4LkhDwSJ40zFCvBvge7mwa5/8kKSRf4DBo0SPTs2TPg+Vq1aon3339fd32jRo0SAAIeDHwonJO93nv0Zrz2rdnwPfnr5Q+ZrQUJtl11MrbWRa+wUHuAPKsDoVgmHDsh8HKKWHwP3P9klbjI8Rk9ejQkSQr6WL16teH1SRqJFkIIzecVjz/+OCoqKryP8vLysD4LJZ5wcif03qOVNwTI+ROtWulPF+ArnNwKve2qeTzA0KH+Y7iMHy935ffN+Rg0yJ6uzbHs9p9IY/tEKhbfA/c/RVuNWG78wQcfxM033xx0mby8PEPratq0Kb799lu/5/bt24fjx4+jSZMmuu9LTU1FamqqoW0QhUtJMlaf4MePl4OkkhL9wMjjCX/wQ73tqqWkAI88Ij+UiUC1LkjKPTlQnYScn29NkrCSNB5tWvsoGRJ49Sbcjfb3kKz7n2InpjU+jRo1wumnnx70kZaWZmhd3bp1ww8//IAdO3Z4n/vyyy+RmpqKDh062PURiAzRGhhxwgRg+HD5b73eVytXRnb3rTUab0GBfy80l6s6qPKtsdIqk5pdd+bRHCnYSSNsR4uTBiVMxv1PsRU3c3Vt27YNe/fuxbx58zBhwgR8/fXXAIBWrVohIyMDVVVVOOecc9CkSRNMmDABe/fuxYABA3Ddddfh5ZdfNrwdztVFZundOestq9SoqJcNNo+SFWX03a7bDaxYIb/WrZt+uX3LpEzd4XvGsGMup6Ki6mY/rTnQ7BLsu0kkTp2TK1n2P9nH8PU7GglHVigoKNBMQi7xyfbcunWruPrqq0Xt2rVFgwYNxIMPPiiOHDliajvszk5mWN0bJRYD64VKVvYtk17yq1UJz05NdE2krtZ2DR9gdh8l0j4lZ0jYXl12Y+BDRkXrIm3nBSKcwE0dnFkZ/DllTB9fidbV2o7j1uw+SrR9Ss5g9PodN01d0cKmLjKqpETOkdB6/uKLrdmGnc0+VjR5WN1s4rRmGKeVxyrqJsyhQ+XE9mh8Z4m6Tyn2jF6/42bKCiKnsXumb7uncrCiG7HVXZGdluiaqF2tlW7rw4bJf0+cGH6Ss9l9lKj7lOIHAx+iMNl9kbb7AmFF4GZH8BfLMX3U7A5uY23SpMgDa7P7KNH3KTkfAx+iCNhxkVa6cmdkhL5ARNLt24rAza7gzymTiDqtBspKVgXWZvdRIu9Tig/M8VFhjg/Fkjqnp39/4N13tbu4W5H/43YDy5fL4/oE69ZuZD2J3BU5ET+fHflZZvZRIu5Tii2j128GPioMfChW9C5EK1YAlZX+FwgrLlqxGi+HnMPOsaOIoo3JzURxRq/pobIysNkn0mYKuxOnoznyMoXPSflURNHCwIfIIcwkfUaaIGpn4rSTpkOg0JyST0UULQx8iBzCTNJnpAmidvWssbsmiYgoUgx8iBzETNNDJM0UdvWs4RgtROR0TG5WYXIzJROre9ZwVF4iihUmNxNRSFbnd3CMFiJyuhqxLgARJZaBA4H8fI7RQkTOxMCHiCyXk8OAxyy3W86Rat2a+47ITmzqIiKKMQ4BQBQ9DHyIiGKIQwAQRRcDH6IkxdGVnYFDABBFFwMfoiTEphXnsGswSSLSxsCHKMmwacVZOAQAUXSxVxdRkgnWtMKLbWxwCACi6GHgQ5RklKYV9ejKbFqJLQ4BQBQdbOoiSjJsWiGiZMYaH6IkxKYVIkpWDHyIkhSbVogoGbGpi4iIiJIGAx8iIiJKGgx8iIiIKGkw8CEiIqKkwcCHiIiIkgYDHyIiIkoaDHyIiIgoaTDwISIioqTBwIeIiIiSBgMfIiIiShoMfIiIiChpcK4uFSEEAODAgQMxLgkREREZpVy3leu4HgY+KgcPHgQANGvWLMYlISIiIrMOHjyIzMxM3dclESo0SjIejwfbt29H3bp1IUmS5jIHDhxAs2bNUF5ejnr16kW5hMmN+z52uO9jh/s+drjvY8fsvhdC4ODBg8jOzobLpZ/JwxofFZfLhZycHEPL1qtXjz+EGOG+jx3u+9jhvo8d7vvYMbPvg9X0KJjcTEREREmDgQ8RERElDQY+YUhNTcWoUaOQmpoa66IkHe772OG+jx3u+9jhvo8du/Y9k5uJiIgoabDGh4iIiJIGAx8iIiJKGgx8iIiIKGkw8CEiIqKkwcAnDK+++ipatGiBtLQ0dOjQAV9//XWsi5TwRo8eDUmS/B5NmzaNdbES0n/+8x/06tUL2dnZkCQJH3/8sd/rQgiMHj0a2dnZqF27Ni6++GJs2LAhNoVNMKH2/YABAwJ+B127do1NYRPIuHHj0KlTJ9StWxcnn3wyrrvuOvz8889+y/C4t4eRfW/1cc/Ax6RZs2Zh8ODBePLJJ7Fu3TpccMEFuOqqq7Bt27ZYFy3hnXnmmdixY4f38f3338e6SAmpsrISZ599NqZMmaL5emFhISZNmoQpU6agtLQUTZs2Rc+ePb3z3FH4Qu17ALjyyiv9fgfz58+PYgkT01dffYUHHngAK1euxMKFC3HixAlcccUVqKys9C7D494eRvY9YPFxL8iUzp07i3vvvdfvudNPP12MHDkyRiVKDqNGjRJnn312rIuRdACIuXPnev/2eDyiadOmYvz48d7njhw5IjIzM8Vrr70WgxImLvW+F0KIgoIC0bt375iUJ5ns3LlTABBfffWVEILHfTSp970Q1h/3rPEx4dixY1izZg2uuOIKv+evuOIKLF++PEalSh5lZWXIzs5GixYtcPPNN2PTpk2xLlLS2bx5M/744w+/30Bqaiouuugi/gaiZOnSpTj55JPRpk0bDBo0CDt37ox1kRJORUUFAKBBgwYAeNxHk3rfK6w87hn4mLB7925UVVWhSZMmfs83adIEf/zxR4xKlRy6dOmCt99+GwsWLMC0adPwxx9/oHv37tizZ0+si5ZUlOOcv4HYuOqqq/Dee+9hyZIleOGFF1BaWopLL70UR48ejXXREoYQAkOHDsX555+Ps846CwCP+2jR2veA9cc9Z2cPgyRJfn8LIQKeI2tdddVV3v+3a9cO3bp1w6mnnoq33noLQ4cOjWHJkhN/A7HRt29f7//POussdOzYEc2bN8fnn3+OG264IYYlSxwPPvggvvvuOyxbtizgNR739tLb91Yf96zxMaFRo0ZISUkJiPB37twZcCdA9kpPT0e7du1QVlYW66IkFaUnHX8DzpCVlYXmzZvzd2CRhx56CPPmzUNJSQlycnK8z/O4t5/evtcS6XHPwMeEWrVqoUOHDli4cKHf8wsXLkT37t1jVKrkdPToUWzcuBFZWVmxLkpSadGiBZo2ber3Gzh27Bi++uor/gZiYM+ePSgvL+fvIEJCCDz44IP46KOPsGTJErRo0cLvdR739gm177VEetyzqcukoUOHon///ujYsSO6deuGqVOnYtu2bbj33ntjXbSENmzYMPTq1Qu5ubnYuXMnxo4diwMHDqCgoCDWRUs4hw4dwq+//ur9e/PmzVi/fj0aNGiA3NxcDB48GM899xxat26N1q1b47nnnkOdOnVwyy23xLDUiSHYvm/QoAFGjx6Nv//978jKysKWLVvwxBNPoFGjRrj++utjWOr498ADD+D999/HJ598grp163prdjIzM1G7dm1IksTj3iah9v2hQ4esP+4t6x+WRF555RXRvHlzUatWLXHeeef5dbsje/Tt21dkZWWJmjVriuzsbHHDDTeIDRs2xLpYCamkpEQACHgUFBQIIeSuvaNGjRJNmzYVqamp4sILLxTff/99bAudIILt+8OHD4srrrhCNG7cWNSsWVPk5uaKgoICsW3btlgXO+5p7XMAYsaMGd5leNzbI9S+t+O4l/63YSIiIqKExxwfIiIiShoMfIiIiChpMPAhIiKipMHAh4iIiJIGAx8iIiJKGgx8iIiIKGkw8CEiIqKkwcCHiGy1ZcsWSJKE9evXx7ooEfvmm2/Qrl071KxZE9ddd12si0NEYWDgQ0QJbcCAAZYFKUOHDsU555yDzZs3480337RknUa9+eabOOmkk6K6TaJExMCHiDQdO3Ys1kWISFVVFTwej6Xr/O2333DppZciJyfHcBAS7/uRKNEw8CEiAMDFF1+MBx98EEOHDkWjRo3Qs2dPAMCPP/6Iv/3tb8jIyECTJk3Qv39/7N692/u+L774Aueffz5OOukkNGzYENdccw1+++03U9vOy8vDs88+i1tuuQUZGRnIzs7Gyy+/7LfMpEmT0K5dO6Snp6NZs2a4//77cejQIe/rSo3IZ599hrZt2yI1NRV33HEH3nrrLXzyySeQJAmSJGHp0qWaZTh69CgefvhhnHzyyUhLS8P555+P0tJSANXNdXv27MGdd94JSZJ0a3zy8vIwduxYDBgwAJmZmRg0aBAAYM6cOTjzzDORmpqKvLw8vPDCC37v27dvH26//XbUr18fderUwVVXXYWysjIAwNKlS3HHHXegoqLC+zlGjx4NAHj11VfRunVrpKWloUmTJrjxxhtN7XuipGPJLGNEFPcuuugikZGRIYYPHy5++uknsXHjRrF9+3bRqFEj8fjjj4uNGzeKtWvXip49e4pLLrnE+74PP/xQzJkzR/zyyy9i3bp1olevXqJdu3aiqqpKCCHE5s2bBQCxbt063W03b95c1K1bV4wbN078/PPP4qWXXhIpKSniyy+/9C4zefJksWTJErFp0yaxePFicdppp4n77rvP+/qMGTNEzZo1Rffu3cU333wjfvrpJ7F//35x0003iSuvvFLs2LFD7NixQxw9elSzDA8//LDIzs4W8+fPFxs2bBAFBQWifv36Ys+ePeLEiRNix44dol69euJf//qX2LFjhzh8+LDuZ6lXr56YMGGCKCsrE2VlZWL16tXC5XKJZ555Rvz8889ixowZonbt2n6TYF577bXijDPOEP/5z3/E+vXrRX5+vmjVqpU4duyYOHr0qPjXv/4l6tWr5/0cBw8eFKWlpSIlJUW8//77YsuWLWLt2rXixRdfNPJ1EyUtBj5EJISQA59zzjnH77mnnnpKXHHFFX7PlZeXCwDi559/1lzPzp07BQDvzNVGA58rr7zS77m+ffuKq666Svc9xcXFomHDht6/Z8yYIQCI9evX+y1XUFAgevfurbseIYQ4dOiQqFmzpnjvvfe8zx07dkxkZ2eLwsJC73OZmZl+wYreZ7nuuuv8nrvllltEz549/Z4bPny4aNu2rRBCiF9++UUAEN9884339d27d4vatWuL4uJi7+fLzMz0W8ecOXNEvXr1xIEDB4KWiYiqsamLiLw6duzo9/eaNWtQUlKCjIwM7+P0008HAG9z1m+//YZbbrkFLVu2RL169dCiRQsAwLZt20xtu1u3bgF/b9y40ft3SUkJevbsiVNOOQV169bF7bffjj179qCystK7TK1atdC+fXtT21U+w/Hjx9GjRw/vczVr1kTnzp39ymCUej9u3LjRb90A0KNHD5SVlaGqqgobN25EjRo10KVLF+/rDRs2xGmnnRZ0+z179kTz5s3RsmVL9O/fH++99x4OHz5surxEyYSBDxF5paen+/3t8XjQq1cvrF+/3u9RVlaGCy+8EADQq1cv7NmzB9OmTcO3336Lb7/9FoA1Sb2SJAEAtm7dir/97W8466yzMGfOHKxZswavvPIKAOD48ePe5WvXru19jxlCCL/t+T4fzvrU+1FrPco21f83s/26deti7dq1mDlzJrKysvD000/j7LPPxv79+02XmShZMPAhIl3nnXceNmzYgLy8PLRq1crvkZ6ejj179mDjxo34xz/+gcsuuwxnnHEG9u3bF9a2Vq5cGfC3Uru0evVqnDhxAi+88AK6du2KNm3aYPv27YbWW6tWLVRVVQVdplWrVqhVqxaWLVvmfe748eNYvXo1zjjjDJOfJFDbtm391g0Ay5cvR5s2bZCSkoK2bdvixIkT3qARAPbs2YNffvnFu329z1GjRg1cfvnlKCwsxHfffYctW7ZgyZIlEZeZKFEx8CEiXQ888AD27t2Lfv36YdWqVdi0aRO+/PJL3HnnnaiqqkL9+vXRsGFDTJ06Fb/++iuWLFmCoUOHhrWtb775BoWFhfjll1/wyiuvYPbs2XjkkUcAAKeeeipOnDiBl19+GZs2bcI777yD1157zdB68/Ly8N133+Hnn3/G7t27/WqIFOnp6bjvvvswfPhwfPHFF/jxxx8xaNAgHD58GAMHDgzr8/h69NFHsXjxYjz77LP45Zdf8NZbb2HKlCkYNmwYAKB169bo3bs3Bg0ahGXLluG///0vbrvtNpxyyino3bu393McOnQIixcvxu7du3H48GF89tlneOmll7B+/Xps3boVb7/9NjweD0477bSIy0yUsGKZYEREznHRRReJRx55JOD5X375RVx//fXipJNOErVr1xann366GDx4sPB4PEIIIRYuXCjOOOMMkZqaKtq3by+WLl0qAIi5c+cKIYwnN48ZM0bcdNNNok6dOqJJkybiX//6l98ykyZNEllZWaJ27doiPz9fvP322wKA2LdvnxBCO/lXCDnZumfPniIjI0MAECUlJZpl+Ouvv8RDDz0kGjVqJFJTU0WPHj3EqlWr/JYxmtw8efLkgOc//PBD0bZtW1GzZk2Rm5srJkyY4Pf63r17Rf/+/UVmZqb3M/7yyy9+y9x7772iYcOGAoAYNWqU+Prrr8VFF10k6tevL2rXri3at28vZs2aFbR8RMlOEkKncZmIKEry8vIwePBgDB48ONZFIaIEx6YuIiIiShoMfIiIiChpsKmLiIiIkgZrfIiIiChpMPAhIiKipMHAh4iIiJIGAx8iIiJKGgx8iIiIKGkw8CEiIqKkwcCHiIiIkgYDHyIiIkoaDHyIiIgoafw/0NRRzyDgggEAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAHHCAYAAADu/6PGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJuElEQVR4nO3dd3wUZf4H8M9ugCQkIZRAiqEXFaUdIE0EQQio2H5KUSFIBCyIdMQ7D1ApAsJ5YjkgYj0FBBXFUxACSpPQTkSUAAESAekJBAmQfX5/zM1my8zu7O7sbPu8X699QWZnZ54p2fnm+zSTEEKAiIiIiMgH5kAXgIiIiIhCH4NKIiIiIvIZg0oiIiIi8hmDSiIiIiLyGYNKIiIiIvIZg0oiIiIi8hmDSiIiIiLyGYNKIiIiIvIZg0oiIiIi8hmDSiIiIiLyGYNKIiIiIvJZUAeVmzdvxpQpU3D+/HnD971kyRLcdNNNiI2Nhclkwu7du91+5sUXX0TTpk1hsVj8X0AXLly4gAkTJqBnz56oWbMmTCYTpkyZorhudnY2rrvuOpSUlPitPMFyXgDPzg0AXLx4EaNGjUJaWhpiYmLQsmVLfPLJJ3brGHEOAeDdd9+FyWTC4cOHAbj+/ZgyZQpMJhNOnz7t1zLpTe33zpvfx2Dh7+8xo661vJ9gKY/8+yC/KlSogNTUVPTv3x95eXm67kvL94Cvn9+9ezfuuusu1KlTB7GxsahevTo6dOiADz/80Gl7nn6Pbdy4EXfeeSeqVauG2NhYNG7cGC+99JLdOuvWrcOQIUNwww03IC4uDtdddx3uvfde7Nixw2l7WtcdPHiw3TVyfG3dutWrdbUekyfrar3Gnp57rfvftWsX7rvvPqSlpaFy5cq44YYb8OKLL+LSpUt262m9Tzw9n9u2bUNGRgYSEhIQHx+P22+/HZs2bXJ5XIpEEJs9e7YAIPLz8w3d78mTJ0XFihVFnz59xPr168WWLVtESUmJy8/8/vvvIi4uTixbtsygUqrLz88XiYmJ4rbbbhOPP/64ACAmT56suO7Vq1dF48aNxd///ne/lCWYzosQnp0bIYTo0aOHqFq1qnj77bfFunXrrJ/56KOPrOv4+xzKTp48KbZs2SIuX74shHD9+zF58mQBQJw6dcqvZdKT2u+dN7+PwcTf32NGXWt5P8FSnsWLFwsAYvHixWLLli0iJydHvPzyyyI2NlbUqlVLnD17Vrd9afke8PXzOTk5Yvjw4eKDDz4Q69atE19++aXo37+/ACBeeuklu+158j320UcfCbPZLPr37y9Wrlwp1q1bJxYuXCimTp1qt96DDz4obr/9dvHmm2+K9evXi2XLlon27duLChUqiLVr13q17oEDB8SWLVucXklJSeK6664T165d82pdrcfkybpar7GnzxAt+9+7d6+IiYkRLVq0EEuWLBFr164VkydPFlFRUeKee+6x257W+8ST87lt2zYRHR0tOnfuLD777DOxYsUK0b59exEdHS02b96semxKdAkq/fUFH6igcuPGjQKAWLJkiebPTJgwQVx33XWirKzMjyXTxmKxCIvFIoQQ4tSpU25v+jlz5ojExES/XMdgOi9CeHZuVq1aJQCIf//733bLe/ToIdLS0ux+Kf15DtWEW1Cp9nvnze9jMJDvBX99j8nbj/SgMjc312751KlTBQDxzjvv6LIfT74H/PH5du3aidq1a9st0/o9VlhYKOLi4sSTTz7pch9CCPHHH384Lbtw4YJITk4W3bt393pdR+vXrxcAxN/+9je3ZVJa15Nj0rquJ9fIk2eI1v3/9a9/FQDEgQMH7JYPGzZMAND0B5LSfeJI7dxnZGSI5ORku+dXcXGxSEpKEh07dnS7b1seV3/LVRs7d+7Egw8+iGrVqqFhw4YApBRv9+7dkZCQgMqVK6Njx45YtWqV4nbcrTtlyhSMHz8eAFC/fn1rynb9+vU4deoUhg0bhtq1ayM6Oho1a9ZEp06d8N1337ktv7v9Dh48GLfeeisAoF+/fjCZTOjatavLbV65cgXZ2dl4+OGHYTaXn9Ljx48jPj4e/fv3t1v/q6++QsWKFfHXv/7VbXm9IZ8rrR555BEUFxd7VJ2jhdp5AULj3Hz22WeIj4/HQw89ZLf8sccew7Fjx/Djjz9al2k9h3v37oXJZMKyZcusy3bs2AGTyYSbbrrJbt177rkHrVu3tv5sW/3t6vfD1h9//IEBAwYgMTERycnJGDJkCIqKijQd/6+//ooBAwYgOTkZ0dHRqFOnDgYNGoTS0lLrOlp/5/Py8vDwww+jVq1aiI6Oxo033og33njD+r7a752r30dvvwfk77Bdu3bhgQceQJUqVZCYmIhHH30Up06d8rjsttt0/F50dZ0GDx6MevXqqZZPy/ZtFRQUuD0eLccCAKtWrULLli0RHR2N+vXrY86cOS7PqRJ35fnhhx9gMpnw8ccfO332/fffh8lkQm5ursf7bdOmDQDp3teDJ98D/vh8UlISKlSoYLdM6/fYokWLUFJSgokTJ7pdt1atWk7L4uPj0bRpUxQUFHi9rqPs7GyYTCYMGTLEbZmU1vXkmLSu68k18uQZonX/FStWBAAkJibaLa9atSrMZjMqVarkdl9K94kjtXO/adMmdO3aFZUrV7YuS0hIwG233YbNmzfj+PHjbvdv5VEIKsr/Cq1bt66YOHGiWLNmjfj888/F+vXrRcWKFUXr1q3FkiVLxOeffy569uwpTCaT+OSTT5yiZXfrFhQUiGeeeUYAECtWrLCmbouKikRGRoaoWbOmWLBggVi/fr34/PPPxd///nen/TjSst8DBw6IN954QwAQ06dPF1u2bBF79+51ud3vv/9eABBff/2103tTp04VJpNJbN++XQghpa5jYmLEM888o/mc+0JLplIIIW688UbxwAMP6LpvV+dFiOA/N+3btxdt27Z1Wv7zzz8LAOJf//qX3XKt5zA1NVUMGzbM+vPMmTNFbGysACB+//13IYRUpV6lShUxYcIE63pyZiY/P9/l74cQ5b+n119/vfj73/8u1qxZI+bOnSuio6PFY4895raMu3fvFvHx8aJevXri7bffFmvXrhUffvih6Nu3ryguLhZCaPt9EkKq2klMTBTNmjUT77//vli9erUYO3asMJvNYsqUKUII9d87V7+P3n4P2H6HjR8/Xnz77bdi7ty5Ii4uTrRq1UpcuXLFo7I7btP2e9HVdcrMzBR169ZVLZ9amW2378nxaD2W7777TkRFRYlbb71VrFixQixbtky0bdtW1KlTx6NMpZbz26pVK9GpUyenbbRt21bxd8+WWqZy/vz5AoBYvny53XKLxSKuXr2q6WXL0+8BR55+vqysTFy9elWcPHlSvPHGG6JChQri7bffVt2+q++xbt26ierVq4tvvvlGtGjRQkRFRYmaNWuK4cOHW78rXDl//rxITEwU999/vy7rnj9/XsTGxoo77rhD0/aU1vXkmLSu6+01dvcM0br//Px8UbVqVfHggw+KgwcPiuLiYvHll1+KxMRE1eehp/eJq3NfqVIlMWjQIKflAwYMEADEt99+q7pdR14HlY7tx9q3by9q1aolLly4YF127do1cfPNN4v09HRrutiTddWqjeLj48WoUaM8Lbrm/ebk5AgAmtsBvvLKKwKAOHHihNN7JSUlIi0tTXTv3l1s27ZNJCQkiMcee8zufPiT1qDykUceEcnJyXbLLBaLOHfunFOV7p9//inOnTvnVG1TVFRkDTiEcH1ehAj+c9O4cWORkZHhtPzYsWPWIMeW0jlU8uijj4oGDRpYf77jjjvE0KFDRbVq1cR7770nhBBi06ZNAoBYvXq1dT3boFIIbdXfs2bNslv+1FNPiZiYGLfnuFu3bqJq1ari5MmTquto/X3KyMgQ6enpTl/4I0aMEDExMdaqHbXfO7Xl3n4PyOdm9OjRdss/+ugjAUB8+OGH1mVay672vSiE+nXyJqhU2r7W49F6LO3atRNpaWnizz//tK5TXFwsqlev7lFQqeX8yvf0rl27rMu2bdsmAFh/F9TIn926dau4evWquHDhgvjmm29ESkqKuO2225yCQ/k+0vKyvVaefg848vTzw4cPt5ajUqVK4s0333S5fVffY9dff72IiYkRCQkJYvr06SInJ0fMmjVLxMbGik6dOrn9HnjkkUdEhQoVrH/4+7ruW2+9JQCIjz/+2O321Nb15Ji0ruvtNXb3DPGkrPv27RM33HCD3X04cuRI1Wvk6X3i6ty3bNlSNGnSxK6Z2tWrV0WDBg0UmwW44nXv7//7v/+z/r+kpAQ//vgjHnzwQcTHx1uXR0VFYeDAgSgsLMRvv/3m8bpqbrnlFrz77rt4+eWXsXXrVly9etVtefXYr5pjx47BZDIhKSnJ6b3KlSvj5Zdfxtq1a3H77bejd+/eWLhwoWr6fP369S57bNm+9OwBW6tWLZw8eRLXrl2zLvvjjz9QrVo1PPXUU3brzpw5E9WqVXOqmmrSpAk6d+5s/dnVeQFC49y4quZwfE/pHCrp3r07Dh06hPz8fFy+fBkbN25Er169cPvtt2PNmjUAgO+++w7R0dHWql9v3XPPPXY/N2/eHJcvX8bJkydVP3Pp0iVs2LABffv2Rc2aNRXX0fr7dPnyZaxduxb3338/KleujGvXrllfd955Jy5fvuzUC1Erb74HbD3yyCN2P/ft2xcVKlRATk4OAHhVdtvvRX9wtX1Xx6P1WEpKSpCbm4sHHngAMTEx1m0lJCSgT58+HpXV3fkFgAEDBqBWrVp2VfCvv/46atasiX79+mnaT/v27VGxYkUkJCSgV69eqFatGr744gunqsDWrVsjNzdX0ystLc3us558D3i6juN7zz//PHJzc7Fq1SoMGTIEI0aM8Kr5AQBYLBZcvnwZzz//PCZNmoSuXbti/PjxmDFjBjZt2oS1a9eqfvaFF17ARx99hHnz5tk1w/Fl3ezsbNSoUQP333+/27KrrevJMXmyrq/XWInW/R8+fBh9+vRBjRo18Omnn2LDhg2YNWsW3n33XTz++OOK2/b0PnF17p955hns378fI0aMwO+//46CggI88cQTOHLkCAA4NV9zxXUFvAupqanW/587dw5CCLtlMvmX88yZMx6vq2bJkiV4+eWXsWjRIrzwwguIj4/H/fffj1mzZiElJUXxM3rsV82ff/6JihUrIioqSvH9Jk2aAJBuzHfffVd1PQC4/vrrsXDhQk37rVOnjueFVRETEwMhBC5fvmwXJPjC3XkBgvvc1KhRQ/GeOHv2LACgevXqdsu1nsM77rgDgBQ41q9fH1evXkW3bt3wxx9/WIeZ+O6779CpUyfExsb6fAy2oqOjAUjXRs25c+dQVlaG9PR0l+to+X1KSEjAtWvX8Prrr+P1119X3Ja3Q8948z1gy3GdChUq2F3zM2fOeFx2pfOhJ1fbd3U8Wo/l3LlzsFgsiudPyznVWh5ZdHQ0hg8fjldffRWzZ8/G1atXsXTpUowZM8Z6r7rz/vvv48Ybb8SFCxewZMkS/Otf/8KAAQPwn//8x269+Ph4tGzZUtM2bQNST78HHHn6+Tp16li/v+68804AwKRJk5CZman6R56rfefl5SEjI8Nuee/evTFq1Cjs3LnT+n1ka+rUqXj55Zcxbdo0jBgxwuU+tK77008/Yfv27Xj22WfdXltX63pyTFrX9fUaq9G6/+eeew7FxcXYvXs34uLiAAC33XYbkpKSMGTIEAwaNAhdunSx24Yn94m7cz9kyBCcOnUKL7/8Mt566y0AQIcOHTBu3Di88soruO666zQfs9dBpW3kXq1aNZjNZsXGnMeOHQMAa7bKk3XVJCUl4R//+Af+8Y9/4OjRo1i5ciWee+45nDx5Et98843iZ/TYr6vyXLlyBSUlJdYbQrZ7927cfffd6NSpEzZt2oR33nkHTz/9tOq2UlNTVf8y8aezZ88iOjraLhhKSUmBEMJp3SlTpiiOy3XixAm7n12dFyD4z02zZs3w8ccf49q1a3YPmT179gAAbr75Zrv1lc6hkvT0dDRp0gTfffcd6tWrhzZt2qBq1aro3r07nnrqKfz444/YunUrpk6dqv9BaVC9enVERUWhsLBQdR2tv0/VqlWzZi/Vrm39+vW9Kqc33wO2Tpw4Yfdlee3aNZw5c8YaiHtTdk8yGjExMXadnmSugmxX23d1PFqPJSYmBiaTyel3Wd6+J9ydX9mTTz6JmTNn4p133sHly5dx7do1PPHEE5r3c+ONN1o759x+++0oKyvDokWL8Omnn+LBBx+0rrdhwwbcfvvtmraZn59v7UTl6feAI18/f8stt+Dtt9/GoUOHPA4qmzdvrlgTIH+vK2Wgpk6dav2Of/75511u35N1s7OzAUDTd7irdT05Jq3r+nqN1Gjd/+7du9G0aVOn52Tbtm0BAD///LNTUOnI1X2i5dxPnDgRo0aNQl5eHhISElC3bl0MHz4ccXFxbjPVjgfnEbXhIjp06CBSUlLEpUuXrMvKyspEs2bNnNpUal33n//8pwAgfvnlF7fluu+++0TNmjVdrqN1v562qXz//fcFAPHf//7Xbvmvv/4qatWqJXr37i2uXLki7r33XpGUlCTOnz+vabt60NqmskePHqJVq1a67lvtvAgRGufm66+/FgCcOn706tVLcSgQT87hU089JZKSkkSrVq3shneoU6eO6NmzpwAgtm3bZvcZxzaVrn4/1H5PHbehplu3bqJatWouh4XR+vt0xx13iBYtWojS0lKX+/S0TaUSLd8D7tr8ffDBB9ZlWsvuahgdtes0Y8YMYTab7docl5aWikaNGqm2qVTavtbj0Xos/m5TaXt+ZQ8//LBo2LChqF27trjvvvvc7kMI9Y46Z8+eFdWqVRM33nijXRux4uJikZubq+lle448/R5w5OvnBw4cKMxms2r7ZlffY99++60AIKZNm2a3fO7cuQKA+OGHH+yWv/jii4pDzijxZN3Lly+L6tWri1tuucXndT05Jq3renuN3D1DtO7/9ttvFzVr1rRrny6EEAsWLBAArJ3yXFG7Tzw597aOHDkiEhMTPW63rltQKfcEbdeunVi2bJn44osvREZGhsve3+7WlR8mw4cPF5s3bxa5ubni/PnzolWrVmL27Nniyy+/FOvXrxezZ88WMTEx4uGHH3ZZdk/3qzWoPHr0qFMPsfz8fJGeni46d+5sfeju27dPREVF2fXo9Zevv/5aLFu2TLzzzjsCgHjooYfEsmXLxLJly5w63pSVlYnExEQxZswYXcugdF6ECK1z06NHD1GtWjWxYMECsW7dOjF06FCnzgZCeH4Oly9fbm1kvWHDBuvyxx57TAAQ1apVcxrb0zEgVPr9kDtK+RpUyr2/GzRoYD32jz/+WAwYMMCp97e736e9e/eKatWqiVtuuUUsXrxY5OTkiJUrV4q5c+eK22+/3bqeJ0GlL98Djr2TV69eLebNmyfi4+Odgi6tZXcV9Kldp0OHDomKFSuKrl27ilWrVonly5eLLl26iPr163sVVLo7Hq3Hsnr1amE2m8Wtt94qPvvsM/Hpp5+Ktm3bitq1a3sUVGo5v7Iff/zR+vvw3Xffud2HEOpBpRBCzJo1SzWA9YaW74H169eLqKgoxQG4tXx+6NChYuzYsWLJkiVi/fr14tNPPxX9+vUTAMT48eOdtqn1e6xPnz4iOjpavPTSS2LNmjVixowZIiYmRtx9991225szZ44AIHr16qU4aLa36wohxCeffCIAiAULFrg911rW1XpMnqyr9bteCM+eIVr2/8UXXwiTySTat29vHfx82rRpIj4+XjRt2tTud8bT+0TL+dyzZ4+YMmWK+Oqrr8SaNWvEnDlzRFJSkmjTpo1ToOuObkGlEEL88MMPolu3biIuLk7ExsaK9u3biy+//FJxO1rXnTRpkkhLSxNms1kAEN9884144oknRPPmzUWVKlVEbGysuP7668XkyZM1DTytZb+eBpVCCNG5c2dx5513CiGkHmMNGzYUf/nLX5x6Wg4dOlRER0f7fUD3unXraurZKIQQa9euFQDEjh07dC+H7XkRIvTOzYULF8TIkSNFSkqKqFSpkmjevLli7zlPz+G5c+eE2WwWcXFxdkOsyNkcpaGJlAJCx9+PnJwcIYTvQaUQQvzyyy/ioYceEjVq1BCVKlUSderUEYMHD7bO6COE9t/j/Px8MWTIEHHdddeJihUripo1a4qOHTuKl19+2bqOJ0Hl5cuXvf4ekM/Njh07RJ8+fUR8fLxISEgQAwYMUBzUWUvZ3Q34rXadvv76a9GyZUsRGxsrGjRoIObPn++y97eroFLL8Wg5FiGEWLlypWjevLn1us+cOdPjwc+1nl9ZvXr1xI033uh2+zJXQeWff/4p6tSpIxo3buw2E6iFlu8B+T5Vylpp+fw777wjOnfuLJKSkkSFChVE1apVRZcuXVQDY63fY5cuXRITJ04UtWvXFhUqVBB16tQRkyZNsvs9FkKILl26qG7P8bp7sq4QUsAWFxdnNzqIGi3raj0mT9bV+l0vhGfPEK37X7dunejZs6dISUkRsbGxokmTJmLs2LHi9OnTdut5ep9oOZ+//fabuO2220T16tVFpUqVRKNGjcTf/vY3cfHiRdXPqDEJodBojjy2fPly9OvXD0eOHPGoUWswGDhwIA4dOuTdPJ9uhPJ58YQ/zyHpa8qUKZg6dSpOnTrldTtq0tdPP/2EFi1a4I033nAabYKIQofXQwqRvQceeABt27bFjBkzAl0Ujxw8eBBLlizBK6+84pfth+p58YS/zyFRuDp48CDWrVuHYcOGITU1FYMHDw50kYjIBwwqdWIymbBw4UKkpaXBYrEEujiaHT16FPPnz/d5PEQ1oXpePOHvc0gUrl566SX06NEDFy9exLJly+ymiSOi0MPqbyIiIiLyWdhnKmfMmIG2bdsiISEBtWrVwn333ec0c44QAlOmTEFaWhpiY2PRtWtX7N27N0AlJiIiIgo9YR9UbtiwAU8//TS2bt2KNWvW4Nq1a+jZsydKSkqs68yaNQtz587F/PnzkZubi5SUFPTo0QMXLlwIYMmJiIiIQkfEVX+fOnUKtWrVwoYNG3DbbbdBCIG0tDSMGjUKEydOBACUlpYiOTkZr7zyCoYPHx7gEhMREREFP6+naQxVRUVFAMrn8szPz8eJEyfQs2dP6zrR0dHo0qULNm/erDmotFgsOHbsGBISEryefJ6IiIiMJYTAhQsXkJaWpjh1JWkXUUGlEAJjxozBrbfeap3LU57PNjk52W7d5ORkHDlyRHVbpaWldvP2/v7772jatKkfSk1ERET+VlBQgPT09EAXI6RFVFA5YsQI/PTTT9i4caPTe47ZRSGEy4zjjBkzMHXqVKflBQUFqFKliu+FJSIiIr8rLi5G7dq1kZCQEOiihLyICSqfeeYZrFy5Et9//73dXyIpKSkApIxlamqqdfnJkyedspe2Jk2ahDFjxlh/lm/KKlWqMKgkIiIKMWy65ruwbzwghMCIESOwYsUKrFu3DvXr17d7v379+khJScGaNWusy65cuYINGzagY8eOqtuNjo62BpAMJImIiCjShX2m8umnn8a///1vfPHFF0hISLC2oUxMTERsbCxMJhNGjRqF6dOno3HjxmjcuDGmT5+OypUr4+GHHw5w6YmIiIhCQ9gHlW+99RYAoGvXrnbLFy9ebJ1ndsKECfjzzz/x1FNP4dy5c2jXrh1Wr17N9hVEREREGkXcOJX+UlxcjMTERBQVFbEqnIiIKETw+a2fsG9TSURERET+x6CSiIiIiHzGoJKIiIiIfMagkoiIiIh8xqCSiIiIiHzGoJKIiIiIfMagkoiIiIh8xqCSiEhFYSGQkyP9S0RErjGoJCJSkJ0N1K0LdOsm/ZudHegSEREFNwaVREQOCguBYcMAi0X62WIBhg9nxpKIyBUGlUREDvLyygNKWVkZcOBAYMpDRBQKGFQSETlo3BgwO3w7RkUBjRoFpjxERKGAQSURkYP0dGDBAimQBKR///UvaTkRESmrEOgCEBEFo6wsICNDqvJu1IgBJRGROwwqiYhUpKczmCQi0orV30RERETkMwaVREREROQzBpVERERE5DMGlURERETkMwaVROSEc14TEZGnGFQSkR3OeU1ERN5gUElEVpzzmoiIvMWgkoisOOc1ERF5i0ElEVlpmfOa7S2JiEgJg0oisnI35zXbWxIRkRqTEEIEuhDhoLi4GImJiSgqKkKVKlUCXRwinxQWOs95XVgoBZK21eNRUcDhw/pOZVhYKFXDN27MKRKJyP/4/NYPM5VE5CQ9Heja1T6oM6K9JTOhREShi0ElEWmipb2lL4Kh5znbixIReY9BJVGY8Vdg5K69pa8C3fPcVZaUwSYRkXtsU6kTtsmgYJCdXZ7tM5ulIDArS999KLW31Gu7RrTZ9HTf337r/3NKRIHD57d+mKkkChNGVR8rtbfUa7v+zIS6opYl3bIl8FXyREShgkElUZgIdPWxHrKypOxgTo70r21G0J9V0GrtRYXw7JyympyIIhmDSqIQoxa4+LsjjVGUMqH+7hWuliXt2FH7OWXPdSKKdAwqiUKIq8AlkNXH/mRUtb5SllTrOQ2GnutERIHGjjo6YUNf8jetHVn81ZEmUHJypCBaaXnXrsaUwd05DYYyEpF3+PzWT4VAF4CItHHVZtI20ElPD49gUiZX6zsG00ZW67s7p8FQRiKiQIuI6u/vv/8effr0QVpaGkwmEz7//HO79wcPHgyTyWT3at++fWAKS6Qi2NtMhur4mHoIhTISEflbRASVJSUlaNGiBebPn6+6Tq9evXD8+HHr6+uvvzawhETuBXPg4u9OKq56hftCz0DYX2UkIgoVEdem0mQy4bPPPsN9991nXTZ48GCcP3/eKYPpCbbJMFZhoVQd3LhxcARVRtKrzaRe5zCQg5b7woiB4oko+PH5rZ+IyFRqsX79etSqVQtNmjTB0KFDcfLkSZfrl5aWori42O5Fxoj0oVv0GHxcz3MYiuNjsrc2EZH+GFQC6N27Nz766COsW7cOr776KnJzc9GtWzeUlpaqfmbGjBlITEy0vmrXrm1giSOXr8EAB6fWP6Dyd1tPf1yzUAyEiYiCHYNKAP369cNdd92Fm2++GX369MF//vMf7N+/H6tWrVL9zKRJk1BUVGR9FRQUGFjiyOVLMBDpGU6Z3gGVP9t6+uuaBUOnJ/6BQ0ThhkGlgtTUVNStWxd5eXmq60RHR6NKlSp2L/I/b4MBVneW80dA5UknFa3BlD+vmV6BsLeBIf/AIaJwxKBSwZkzZ1BQUIDU1NRAF4UceBsMsLqznL8yi1raenoSTPn7mvnaW9vbwJB/4BBRuIqI3t8XL17Egf89iVq1aoW5c+fi9ttvR/Xq1VG9enVMmTIF//d//4fU1FQcPnwYzz//PI4ePYp9+/YhISFB0z7Ye8xYnvaADtUeyv5k1Mw7ci/z+HigfXvt1yCYr5kvZePsO0TBhc9v/UREpnL79u1o1aoVWrVqBQAYM2YMWrVqhb///e+IiorCnj17cO+996JJkybIzMxEkyZNsGXLFs0BJRnP0x7Qjtk5sxkYPdpvxQs4LdWyevQid8c2m+cYUAKuM4/BPC6nL1nUYGjPSUTkDxGRqTQC/9IJDYWFwGuvAXPnhu/4hMEy/qJSNs+RluxeMMxl7jimp69Z1Oxsqcq7rKw8WA6ne5AolPD5rR8GlTrhTRkagrlKVQ/BdHxq1bzyHNmhEkypBem+BobBECwTEZ/feqoQ6AIQGclVtWU4PNiD6fjkal7HAHfLFqCkxJhgytdZg9Q61WRkSAFkRob3gWF6enjcc0REsohoU0kkC/f2bMFyfHIwN3Omc5vItm3935YT0GfYHrUgfdky6RiNaJdKRBQqGFRSRAnmzh96CIbjsw3mnntOCiy9HbYH8G4sSL2G7VEK0gFgzBiOL0lE5IhtKnXCNhmhxbE9m6/VpMEmUO319G7T6W2nIz2H7bFtO+konNrjEkUqPr/1w0wlRSTbastwnN0kUNWyeg5Y7ku2Uc9mAPIg6XPnOr8XqQPoExEpYVBJES03Fxg6lLOb6EXPYM6XAFXvZgDp6cBDDwVHe1UiomDFoJIiVna2NCC3YwMQf2SfvJ0jOtToGcz5GqD6Og2jo2Bor0pEFMwYVFJEcqxataV39ikcq9dd0SuY0yuI07PVuN6BKhFROGFHHZ2woW9ocTUwt54z0ATTYOShyttOR8EysxARBTc+v/XDTCVFJKWqVbMZ2LpV38BDz44rkcqbTkfuOvlESnMEIiIjMaikiKRUtbpggTQwt56CZTDySOMqmI+05ghEREZhUEkRy4j2ccHQuSMSs3JqwXxcnD6DohMRkTMGlRSy9AiWbKtW/RV8KQWvRgV64ZCV8+ZcqQXzFy+yOQIRkb8wqKSQpDVY0hqQ+Dv4CsRg63pNVRhIvpwrpWCezRGIiPyHvb91wt5jxtHao1pr71+l7cmddvRuY2lkb/Dx44E5c5yXezNVYSD461zZTrsoZzDZK5wocvH5rR9mKinkaOlR7UmWTml7FgvQrp3+WUSjeoMXFgKvvuq8PJSycnpP+ShnrDnWJBGRfzCopJDTuDFgMtkvcwyWPAlIlKpEAWnQbL2ri111INGzjWVenvKg36NHa8/yaWk64M+2oXpVVStVoRvRlpaIKNIwqCSfBOKB/O239j+bTM49qj0JSOROHUqBpd5ZRKUOJI8+Kk0XqWcbS7VxOJ99VtvntbRlNKIdqq89591lrMOhIxMRUbBgm0qdRGKbjEDMWOJJOztP287l5kpV3ra/Ef5q7yjPEhMXJwWU/mhj6W3bQS3n2NP2joWFUva0cWP3x+W4rrcz6gDqMyfl5Ejb42xHRBSJz29/YaaSvBKonsWeVGt72naubVtg4UJjxpSUq1/9OcSNt20HtZxjT66DJ9lAd1XVnnKVseZsR0RE+mJQSV4J1APZ03Z2ngYkRnfi8PcQN94EZDt2OC9zLJPWcnvyx4fWdT1pcuGqCj0Yhxdi+04iCmUMKskrgXwgjxnj32yiL5kxb/YV6Bl3bBUWAhMnOi+fMcO+TFrL7ckfH1rW9aYNpNofCsF27tm+k4hCHdtU6iQS22T40mZPa/s6x/3JmSyTCRg7Vup4Eg7t33xpN6gnV20Qlca2dFduT9peulvXX+NWBsO5N3L8UiKyF4nPb39hppK85k1VsbfZGMeqUSGAefO8LXnwMTI76orezQs8yQa6W9dfTS6C4dyzfScRhQNmKnXCv3Tc8yUb42kGTWnf3mRHI5E/ZpzxJBuotm44Z/PC+diIgh2f3/phppIM4202prAQOHXK/YDnasK1rZq/OnX4o7OSJ9lAtXWDrQ2knsL52IgocjBTqRP+peOeN9kY23aUjjIzgXff1X+fWumR/dSjfalRY4QGi2BoA+kv4XxsRMGKz2/9MFNJhvE0G+PYjtLRhx+6H27GX23V9Mh+6tW+VM8xQkNhSJtgaAPpL+F8bEQU/hhUkqE8qVpVCghtaRluxh9DH+kR1PmyDbVAedky34LBcG0mQERExmBQSar8lbWSszGA6+0rBYS2zOby4FAtSAP0b6umR/bTl22onZcxY7wPBgM1QxIREYUPBpWkyDFrNXu2vgGmlqxYeroUKKl55RVtw8340vFEKbD2Nvtpuy1fMqiOzQhseRsMckgbIiLyFYNKcqKUtZowQZ9q0cJCYOlS7VmxZ5917vUNACNGAK1bl3/GXZDmTVs1tcDXm566jtv69lvfMqhyoDx3rvN73gSDwThlIRERhRb2/tZJOPUeUxsTUuZN7+nCQuC116QgSK2dpNqYk7bjJprNwP/9H7B8uXPPZ7XxFb3pYa2l17jWnrqutgX41ttXz97t/hifkogo2IXT8zvQKgS6ABR85KyVWvAnZ8K0Bi3Z2cDQodIsOGrMZiAuTvm9rCwgI0PaZ1wc0L69c5YzI8N+PTlI83boHVfVwfJxp6drOweutuVrT185a+oYDHqzTaXzR0REpFVEVH9///336NOnD9LS0mAymfD555/bvS+EwJQpU5CWlobY2Fh07doVe/fuDUxhg4CrNnuAZ9WiclW6u3y4xSIFi2pV63L19cWLygHaa6/ZryfPFe1t5xM9q4P9XbWs52DlwTqkjZFDHYXCsEpERMEoIoLKkpIStGjRAvPnz1d8f9asWZg7dy7mz5+P3NxcpKSkoEePHrhw4YLBJQ0etoHK7Nnet/1zNyyQLS1Bn1rP57lznT/nS+cTPWc4MWK2FL2CwWAMqIwc6khpX8F4ToiIglHEtak0mUz47LPPcN999wGQspRpaWkYNWoUJk6cCAAoLS1FcnIyXnnlFQyXx6VxI5zbZBQWAps3Sx1mOnTwvC2lY5s/wHX1uty2Uq0t5PjxwJw5zp9buhRISipfX4/2hnrOcBLss6UE4yw9Rs6JrbQvk0l6BdM5ISJ9hfPz22gRkal0JT8/HydOnEDPnj2ty6Kjo9GlSxds3rxZ9XOlpaUoLi62e4UjOXPTrx/Qv7/Ua9kTjlk6sxkYNw74+GPl9eWxJ11lp5R6hJtMUvls11fa9+jRnpe/USMpuPU1UxWsVctA8I5TaeRQR0r7EiL4zgkRUbCK+KDyxIkTAIDk5GS75cnJydb3lMyYMQOJiYnWV+3atf1azkDQK9CwrUo/ckSqTu/YUbka+5VXpH9d7Tc9HVi40D5YlNdzXF/e97hx0ntz5nhWhRops8wE6ziVRg515G6wfSA4zgkRUbCK+KBSZnJIfQkhnJbZmjRpEoqKiqyvgoICfxfRcHoGGo5ZOjmL6HiKq1XTtl/bQPXjj507AjmubzuUkdbgOFizd/4QHx+c41Qa0R5VbV9ms/P9GQznhIgoWEV8UJmSkgIATlnJkydPOmUvbUVHR6NKlSp2r3Dj7yxRRobzQ3v4cO0BjhyoKmU9bdf3NjgO1uyd3rKz7YdpAvwbvHlKz97trhQWAg0aAFu2lGfVbTPiwXROiIiCUcQHlfXr10dKSgrWrFljXXblyhVs2LABHTt2DGDJAk/vLJFjL1q1oK2kxLP9uiunt8FxJMwy45iNBaRj3rIluDqk+Ls9qm0zh/btgYMHpX0ZFdASEYWDiBj8/OLFizhgk17Kz8/H7t27Ub16ddSpUwejRo3C9OnT0bhxYzRu3BjTp09H5cqV8fDDDwew1MHBceDxixelQMSb2VocexZnZDj3ApeDtq5d7QfiBqQHu9qsOK4G7vZ2gHA9BxYPVkqBvcUiBfaRQq2ZQ0ZG+QD34XTNiYj8RkSAnJwcAcDplZmZKYQQwmKxiMmTJ4uUlBQRHR0tbrvtNrFnzx6P9lFUVCQAiKKiIj8cQeAtWiSE2SwEIP27aJH2zxYUlH9WfkVFScsXLZL+Ly9T2q4v+3YsR06O9K8RnwsFrq5NpFi3zv745VdOTqBLRkRGCPfnt5EibpxKfwnnca58HStQbS5x2/Eo1cZvNHKcwkgV6XN+8x4jimzh/Pw2WsS3qST3fO2wsn278zLbtomu2stFSmeZQIr0doNG9jAnIgpnEdGmknyzdq3y8rg45eW2M+EcPw78b6IiOzNnantoy51llNpdkn4ivd2gqza5RESkDYNKUiQHhvHxwIwZyusodeaw7ZAjDxek1MCiTRtt5YiEzjIUHCI9sCYi8hWDSrJTWAi89lr5YOEmk3JQaDI5Zwsde9Gqtdb1NNPILBIREVHwY1BJVtnZwNCh9sGgWmAohDQPuG37O6X2j47MZu8yjUpZJNtqdgaaREREgcWOOgSgPMvoyVgAjlMWups72WwGtm7VpyNIpMzJTUREFCoMCyrfe+89rFq1yvrzhAkTULVqVXTs2BFHjhwxqhikQkuW0VFZWfmUdvKA6GpzJ0dFSe+1bet7WSNpTm4iIqJQYVhQOX36dMTGxgIAtmzZgvnz52PWrFlISkrC6NGjjSoGqVDLMrrLPPbrZ58ttB2e5sgR4OhR/Yeq4TBDREREwcewwc8rV66MX3/9FXXq1MHEiRNx/PhxvP/++9i7dy+6du2KU6dOGVEMvwmHwVNtB8E2m4ExY4AuXYB77nGuFjeby+cekRk1YDQHq6ZIwDbDRMYIh+d3sDAsUxkfH48zZ84AAFavXo077rgDABATE4M///zTqGKQisJCICEBeP11YOlSKct4ww3KASUA/O1vzsuNyhZysGoKd2wzTEShyLBM5SOPPIJff/0VrVq1wscff4yjR4+iRo0aWLlyJZ5//nn8/PPPRhTDb0L5Lx3HXt8mEzBrljRouVI7S7nDTfv2gc0WuprekYIbs3DqmIknMlYoP7+DjWGZyjfeeAMdOnTAqVOnsHz5ctSoUQMAsGPHDgwYMMCoYpCDwkLlYYTUAkr5/dRUYOBA++WPPqrtoVdYWN65xxeupnek4MUsnGtsM0xEocqwTOXRo0eRnp4Os0PPDyEECgoKUKdOHSOK4TfB/JeOq6zQ0qVSZxtPLV0K9O/veTbFdsYds1mqxnbXgYdZrfDBLJx7PEdExgrm53eoMSxTWb9+fZw+fdpp+dmzZ1G/fn2jihFxXGWFsrOlwNAVpd7f8iw7nmZTvBkKiFmt8MIsnHtsM0xEocqwoFItIXrx4kXExMQYVYyIIldt2wZxw4ZJy7UOdv7GG87LTCagfn3ngNPd9IueBhShMB6lXlX5kUJp6CpX902knl/bobn0HI6LiMif/D5N45gxYwAAJpMJf//731G5cmXre2VlZfjxxx/RsmVLfxcjIm3e7Bw0WizSgOVJSdqmVKxe3Xm5xQJs3Ai88grw3HNSYKglm9K4sfNc4kpziMtcBaHBkLXxpio/0slZOHnoKlf3jRHnN5ibVihNTUpEFMz8HlTu2rULgJSp3LNnDypVqmR9r1KlSmjRogXGjRvn72KQjTNnpMDOMcBzNGYM0LGj9EB3DO7GjJGWz5wpzZLjbQ9secYdJXJWy7FtmatsqFHUsqgZGQwE3MnKks6Tq577Rpxf/lFARKQvvweVOTk5AIDHHnsMr732GhvB+olSxqVjR+XA8emnpQepyaQeWEZFAc8+65xZsmWxAJMmae9AkJennDlVyzx6ktUyWrBnUYOduyycv88v/yggItKfYW0qFy9ebA0oCwsL8fvvvxu167Bn25mlTh1pYHJAejguXGjfhs1kKn+QCiG9t3QpMHu2escAuX3X3LnO+/akk4Wn7els9x1sbcu8ORbSzt/nlx2GiIj0Z1hQabFY8OKLLyIxMRF169ZFnTp1ULVqVbz00kuwuGvcR6ocMy5CANOmAQ89JP2clSVVUcvVzEqz4NSsCYwb5zp4S0+XtunLg97bXq3BOB4le+j6l7/PL/8oICLSn2HjVE6aNAnZ2dmYOnUqOnXqBCEENm3ahClTpmDo0KGYNm2aEcXwm0CNc5WTI2UolWzbJg1S7jjmnaNZs4Dx47Xtz3Z+cPlB72n2MJxmwgmnYwlG/jy/etzLRBT6OE6lfgwLKtPS0vD222/jnnvusVv+xRdf4Kmnngr56vBA3ZSFhVKVt9JVnDcPaNFCPeiUmc3SXN9aH9qFhVIPciGkdptqHS2CtVctkYx/FBARg0r9GFb9ffbsWdxwww1Oy2+44QacPXvWqGKEnfR04Pnnld/r1Em5ms+R3FlGq2+/lQZN79dPeUByDlhOoSIYm1YQEYUqw4LKFi1aYP78+U7L58+fjxYtWhhVjLD08svAgw/aL8vMlIb6cWybpsRsLm9L5m6waaVes8OGAW+9ZT+oejAPWE5ERET68/uQQrJZs2bhrrvuwnfffYcOHTrAZDJh8+bNKCgowNdff21UMcKOXM08YYKUGfzjD+Cuu6SAUpaVBSQnA6++Cqxf77yNBQuk4DM7W5qBR65Kl9ta2lZlK/WatViAp56ShioaOzbwQ+2w6p2IiMh4hrWpBIBjx47hjTfewK+//gohBJo2bYqnnnoKaWlpRhXBbwLRJsN28GaZySQNI2Tb4WDwYOC995S3IbenPH4cuOUW5/cfeghYvrx8gOiZM6VZdNQ6/pjNUlBqe1dFRWkfy9JXHNCaiIg8wTaV+jE0qAxnRt+UhYXqvbpNJuDHH6VsZW6ucrBoa9w4KYup5U6IipICy4kT1QPLceOkTkJG96pVOidGBrREjpg1Jwp+DCr1Y1j1NwCcP38e2dnZ2LdvH0wmE5o2bYohQ4YgMTHRyGKEBaVqaJkQQLt2UsayqMj1dsxm7QElIAWKbdoAW7dK+3D8nNkszcTz7LPG96rlLDcUTJg1J6JIY1hHne3bt6Nhw4aYN28ezp49i9OnT2Pu3Llo2LAhdu7caVQxwoa7Xt1CSB1kmjRRX8dkkjr4eJKrlgeIbttWebYeuX1mIHrV6jmgtbsOS0SusMMaEUUiw4LK0aNH45577sHhw4exYsUKfPbZZ8jPz8fdd9+NUaNGGVWMsCH36pZnylFSVgbExwMNG9ovT04GnnhC+v/SpeqfN5ulXuSupm88ckTaxtKlwNGjgc3E6DULSzgMicSgWJ0R54bTQBJRJDKsTWVsbCx27drlNFblL7/8gjZt2uDSpUtGFMNvAtUmIzdXuRoakIKqzz8H+vTRvr2oKODxx4Hu3YEOHaSALNQGiPalvKHcLlNuv7d9e3lnKla72jOqSjqU7yOiSMM2lfoxLFNZpUoVHD161Gl5QUEBEhISjCpG2FGqhgbKs3T792vf1rx50kPv7belXt/yw8+fVdn+yBr5Ut5QzTDZZlcnTGC1qxIjq6Q5NzwRRSLDOur069cPWVlZmDNnDjp27AiTyYSNGzdi/PjxGDBggFHFCAuOPUqzsoCMDCnwiYsDSkrKs3S5udq2GRUlta909dDTuydrMHZkkNtlOmaYvGmXaRTHYMkROytJjO7IZft7GSpZfiIiXxgWVM6ZMwcmkwmDBg3CtWvXAAAVK1bEk08+iZkzZxpVjJDnGIi98grQurUUDHXt6rx+27ZSu0i1cSoBbVkU24HRTSZpkPNnn/X+QamWNcrICOzDV84wDR9uPyRSMAcErkYCAII/KDZKIP5gkDutERFFAkPaVJaVlWHjxo1o1qwZYmJicPDgQQgh0KhRI1SuXNnfuzeEEW0y3I1NqRboOc6UI4uKAj7+uLztpBq1dptKA61rPY6lS6XyOsrJkYLjQI/vF0rtSF3dF0aOExoKsrOd/2BwPDeBvveIyFhsU6kjYZDo6Ghx6NAho3bnkcmTJwsAdq/k5GSPtlFUVCQAiKKiIj+VUoh16+S5atRfZrMQixaVf6agQFqmtO7s2e73uWiR6/1FRUn70GrRIvXyyNuyXcfxeGyPa906z/YdzhYtks6ffB5nzxYiJyf8z48390FBgfq54b1HFHmMeH5HCsM66jRr1gyHDh0yanceu+mmm3D8+HHra8+ePYEukhN3Y1MCzp0PXFWNtmnjeltyFbUrnnRicdX2T84aAe47U4TDkD96y8qSOlnl5Ej/jhtn/DihRvP2PlDryKWlIw/vPSIidYYFldOmTcO4cePw1Vdf4fjx4yguLrZ7BVqFChWQkpJifdWsWTPQRXLi2KNUTVkZsGWLFGDExysHomaz+7Zk7trqAVIVuKvt2PbuVtue3Os8K8t972sOKq0uEAPOB4o/7gPee0REvjGso06vXr0AAPfccw9MNiN2CyFgMplQVlZmVFEU5eXlIS0tDdHR0WjXrh2mT5+OBg0aqK5fWlqK0tJS689GBca2PUpzc8vHI7RlMgF9+0r/N5uBgQOBDz4oX89kkjr45OVJPytlbPLyygNSV4Glq8HXlToVKXWUkHudFxYCp0657kzBqRgJ8M994K4jD+89IiLXDAsqc3JyjNqVx9q1a4f3338fTZo0wR9//IGXX34ZHTt2xN69e1GjRg3Fz8yYMQNTp041uKQS22kQu3Z17kRj+3+LBfjwQ2mu7sOHpWWHDwMTJyoP5eMYCA4cKH2+rEwKIB0761gsyg9VpazOc88BM2cCkyY596y23a/JVP5wd+x9HYpD/pD+/HEfuOv5z3uPiMg1w2bUCSUlJSVo2LAhJkyYgDFjxiiuo5SprF27tuG9x3JypPZdWtaTe1WrzfQBKL+3ZYs09uWaNcD06fbbVZslRK1cOTnSQ9i2Z7VSmcxm4JNPlHum2waggPe90Cm0aenJ7Q1XPf/9tU8iChz2/taPYZnKUBIXF4dmzZohT64fVhAdHY3o6GgDSyVxHO7ku+/cf8a2/aSrKjwhlN+TB1Pv3t152zNnKlf9ucrqOI7dp1QmiwWoWVN52xkZzpnZYBjjkozlr8HFXY0tyQHNiYjUGdZRJ5SUlpZi3759SE1NDXRR7Dj2PJ0zB5gxw/3nbAM/pR7kZjNw8qRypx45EFTrZKPWg9yTaeqUyuSqWjEvz7kaPhSmUiT9BaJzUiR1iCIi8gSDSgDjxo3Dhg0bkJ+fjx9//BEPPvggiouLkZmZGeiiWSm1UZw40Tm4cmQyAbazYMrBnhzEye0k+/UD2reX2lAqBYKeBn6A8zA3atWEns6T7E1ZXPHH/ONERESRxq9B5cqVK3H16lV/7kIXhYWFGDBgAK6//no88MADqFSpErZu3Yq6desGumhWalXErnpfA1LA6CqDJw89Lm/vww/LhyOyDQQ9DfxkWrM6WgNQX8qihOMOEhER6cOvHXWioqJw4sQJ1KxZE1FRUTh+/Dhq1arlr90FlL8b+qp1ZpF7VLsa9mfWLGD8ePXtOJI79aiVI1jak/laFledlgJ9bEREZAx21NGPXzOVNWvWxNatWwGUj0dJ3pGzc7an0GKRemPLw//cdZfyZ597Tppr29UA5DKzGYiLc12OYGlP5mtZ3A12TURERNr5Nah84okncO+99yIqKgomkwkpKSmIiopSfJF7zZurt6G0WIBVq9Tf69dPysqtXet6qkeLRWpbmZ1tfFtDo/end9tMIiKiSObXIYWmTJmC/v3748CBA7jnnnuwePFiVK1a1Z+7DGs//ODb5y0WYNo0aQabzz4rH2tv4kT7KnSLReoUJLe3dBwg3R8cB1339/4A94NdExERkXaGDX4+depUjB8/HpUrVzZid4Yzok1Gbi5wyy2+b8dslmbYkcefzMtzP4C6P9saBrptYzC1EyUiImOxTaV+DBv8fPLkyQCAU6dO4bfffoPJZEKTJk1Qs2ZNo4oQ8tq2lbKMn37q23YsFimgtO2M426Ob3/OcezNnMqOg8D7wtVg10RERKSNYeNUXrp0CUOGDEFaWhpuu+02dO7cGWlpacjKysKlS5eMKkZIy84GVqzwfTuO7QaVhuhR6lO1fbvv+1biadtGDgNEREQUfAwLKkePHo0NGzZg5cqVOH/+PM6fP48vvvgCGzZswNixY40qRshyHPzcF6NHl8+5LXeMcRwn8pVXnD/33HP+6UTjybiTSoPADx/OgcuJiIgCzbDq7+XLl+PTTz9FV5s61zvvvBOxsbHo27cv3nrrLaOKEpLcDQWklckE9O2r3jFGDuSUpl/0ZxW41jmVvakqJyIiIv8zLKi8dOkSkpOTnZbXqlWL1d8ayFXEvgaWQkhDBjnOpDN8uBTUOc4R7th5xp/D7Whp2xiIchEREZF7hlV/d+jQAZMnT8bly5ety/78809MnToVHTp0MKoYISs9XZqXWw8Wi/N4l46Dfus5FaKegrVcREREkc6wIYV+/vln9OrVC5cvX0aLFi1gMpmwe/duxMTE4Ntvv8VNN91kRDH8JhDTNOpJbQifYB1uJ1jLRUREoYVDCunHsOrvm2++GXl5efjwww/x66+/QgiB/v3745FHHkFsbKxRxQhZerWptCVXI7vK9gXrcDvBWi4iIqJIZVhQCQCxsbEYOnSokbsMG3q1qbQ1bJg0fWMwZPv0HHeSiIiIjGdYm0ryjdyWUGn8SG8tXBgcASXHnSQiIgp9DCpDyNmzzh1sfOHYOccXtmNeevo5jjtJREQU+hhUhoDCQmDpUmDiRN+245jl1GsoHl8yja7GnSQiIqLQwaAyyMkBW79+vmcpJ01yPxSPpxlHTzONjtv3dIpGIiIiCk6GBZUNGjTAmTNnnJafP38eDRo0MKoYIUXPqRkBoGJF+6kYs7Ls3/cm4+hJplFp+xx3koiIKDwYNk6l2WzGiRMnUKtWLbvlf/zxB+rUqYPS0lIjiuE3/hjnKidHCsD08tZbwBNPKL+nNA6m2tiV3nzO3Xocd5KIiAKB41Tqx+9DCq1cudL6/2+//RaJiYnWn8vKyrB27VrUq1fP38UISXoPI3T33dK/SsP3eDuntjzTz3vvlS979FHnz7jbPsedJCIiCm1+z1SaHRvM2ahYsSLq1auHV199FXfLEU+I8tdfOtnZUhvFsjLftjN7NjBunLQ9uUrdbJaqnrOyAp+pJCIiCgRmKvXj9zaVFosFFosFdevWxalTp6w/WywWlJaW4rfffgv5gNKfsrKU2z96asIEqep76FDnTjW5uVIm8ZVXPG/bqLVNJdtOEhERhTdDZtS5evUq6tWrhzNnzqBGjRpG7DKspKcDV674tg0hpCDOUVkZ0L59eeZy5kygbVvtbRuVqujVem9nZQEZGWw7SUREFI4M6f1dsWJF/PzzzzDpOR1MhPFns1PbzOWkSZ4FfJ5mINPTga5dGVASERGFG8OGFBo0aBCyOf+e1776yrP1tcTvSs1dvRl4XK6iVxuqiCiUeTtbFBFRpDGk+hsArly5gkWLFmHNmjVo06YN4uLi7N6fO3euUUUJObNnA7t2efYZV92vzGbgk0+k7Kdc9S3zduBx9t6mcKTWsc1oSiM2EBEFG8OCyp9//hl/+ctfAAD79++3e4/V4uoKC6VONp4ymdQDS4sFKC6W2k4uWFDeu5ydZ4jKqc0WlZFh7O9IsAS2RETuGDb4ebjz15AEw4dLDxG9eTvwODMmFCnUJh/IyZHaBRuBQ3ER+R+HFNIP5/4OYoWF/gkoAfu2k1o7z3gzjSNRqAqGeek9mQaViCjQDKv+BoDc3FwsW7YMR48exRWHMXJWrFhhZFFCQl6ef7fv0KzVpWCpCiQyijyyQSCbh3gyZBcRUaAZlqn85JNP0KlTJ/zyyy/47LPPcPXqVfzyyy9Yt26d3dSNVE4pU+IJ+bNq2ygp0b4tIzIm7GVLwSbQIxtw0gAiCiWGBZXTp0/HvHnz8NVXX6FSpUp47bXXsG/fPvTt2xd16tQxqhghRX6geOupp6SH4datvlfj+bsqkFXrFKwCPbZqoANbIiKtDAsqDx48iLvuugsAEB0djZKSEphMJowePRoL/NVwMAw0b+79Z998Uwr65F7evmQ7/JkxUataZ8aSSBLowJaISAvDgsrq1avjwoULAIDrrrsOP//8MwDg/PnzuHTpklHFCDkffeT9Zy2W8uppPbId/sqYsDMCERFR6DOso07nzp2xZs0aNGvWDH379sWzzz6LdevWYc2aNejevbtRxQg5/4vDveJYPa3HAOX+GOScnRGIiIhCn2GZyvnz56N///4AgEmTJmHcuHH4448/8MADDwTN9I1vvvkm6tevj5iYGLRu3Ro//PBDoIuEhg21r5uRUT49o2L19PbtUqPF7du1bdDT9b3cR/qgbljw/GHtVev+Pg6DjtvjfRAREQUxwzKV1atXt/7fbDZjwoQJmODNVDF+smTJEowaNQpvvvkmOnXqhH/961/o3bs3fvnll4B2JKpWTfu6Bw4A118P1K4NtGoF7NkDTJ8OFBVJ77U+dgw9tl7A9vEH8FuLNtZ1v/tO+vwjj0j//vAD0LkzkPrWSmzOqYEDzxzDT3Wl7XTuDAwaVB7wyYOhx8cD+fkAFv+Eyjmx2D/6KJpMbIO4OCkTCQDvvw/8+ivQty9w993/++z0LWicsx8Z9d7Bv//9Ig4eBP78U2pLmpsLfPklkJoKtGkDXLz4v229KZULL+xBx4VtANgPyG5bposXgcYfrER6Tg7wwQdAmzaKA7jbLXv/famO/4MPkCvaWMvQp4/9+ps3S/+vXx/YPuEgflt/N2o9cwyNRgMdO9qXxbFscpkK31yJvIFtrOdIXtfxmGTyfs+cAWrUkPYDlJdF/tndAPW25VLbr/x/63l0PAYNA+Dn5pbfT23bul5X6Vx9+SVw/Lh07lNTlcvjLdtrKF8vV8u1lnnzZun37fJlqdzycaveCxqvk9pnbM+xfI6Utqn2+6S0b08nOXA8Z4Drzzv+/iiVxV0ZvDmfjp91dS9pvXfl9Zo0gfX7Tq08rsqodN/Z/g7ccgsgtxRzd19q4c35cvXd5G+ceCNECANdu3ZNLFu2TLz44ovipZdeEp9++qm4evWqkUVQdcstt4gnnnjCbtkNN9wgnnvuOU2fLyoqEgBEUVGRbmVatEgIabJFPV8WjT9bBFCmup1Fi6SX2ay0HYvdvyaT8z4aXvenMJv/9z7KhMm6L8d1hcK2yuyWy9s3m4XIzHQukxnXxCIMEaJWLbHohcPW/ZrNtschL7OIRQmjhABEZvTHTuWR1zeZXJ1DqZyZ/3fBWhazWfzv5/IyZeIdYcY16/rycZhM5duXyyjfD/b7Vf5Z6bOO95VcLtv11f4vvxzPr9r2ZZmZ9p/PzHR9r9udK4fPKr3c7d/d75bt8ZlMytdWXq61zI7nTD5upXXdnUctn1E7T47b1Lqe0n7dnWOlc+bqHlS6j5XudVdl8OZ8Kn1W6/lSu3eVzqtaeVwdk9I5dPU74Oq+1MKTa6z2feHL758/y+sNfzy/IxWM2tGePXtEgwYNROXKlUWrVq1Eq1atRFxcnKhXr5746aefjCqGotLSUhEVFSVWrFhht3zkyJHitttuU/zM5cuXRVFRkfVVUFCg601ZUKD8xRssL6Wgw7OXWvDon1cUroptaGMN4mwfAI4PmChcFV/iTsUymkzO62s/Rnc/q5Q9Soht2zzZr/1nCwrs7ytvtqN1+7Jt25TX37ZN+V73tkxq+/fmd0vpXpCXO+7D3+dRy/bd/f7J21S7Fkr7Vtqvq3Os5XvKcfuu1le7192VUet94eqz7s6X473r7ry6u7fk/Xn7Xe/Nve/pNXZ3rr0tg7/K6y0GlfoxrE3l448/jptuugmFhYXYuXMndu7ciYKCAjRv3hzDhg0zqhiKTp8+jbKyMiQnJ9stT05OxokTJxQ/M2PGDCQmJlpftWvX1rVMeXnSr0+wkn+9vWfSqyialKECNqITLIiyW26xKPQ8RwV8jd5QKqMQzuurc/y8u5+VlZUBGzd6sl/7z9r2olfqae8LtV76as2RN21yXuZLmbwZJUDtd0vpXpCXO+7D3+dRy/bd/f7J23TXNNx2356OxKDle8px+67WV7vX3ZXR1T4dy6v2WXfny/He9aTJveL3zP/25+13vbcjZHhyjd2dayNG6eDoIKHFsKDyv//9L2bMmIFqNo0Eq1WrhmnTpmH37t1GFcMlk8n+IS+EcFommzRpEoqKiqyvgoICXcvSuHF5p5tgZDL5Wj5jI+YoXMOt2AQzyuyWm80Kg7rjGu7Ef6BURpPJt1mO7Gk7B1FRwK23erdfx170vs7S5G77ss6dldfv1Ml5mS9l8maUALXfLaV7QV7uuA9/n0ct23f3+ydvU+1aKO3b00kOtHxPOW7f1fpq97q7Mrrap2N51T7r7nw53rvuzqstxe+Z/+3P2+96b0fI8OQauzvXRozS4e+JN0hnRqVEW7RoIdauXeu0fO3ateLmm282qhiKvKn+dhS6bSpdree+TWVUlNJ2HdtUOn++YfqfIgpXpaohXBMma7W06/JJ1dfl5TKhTJj/1xYxKkpqh+RYpihcldpUms1iEYaIKHP5+o7HEYWrYpHpcSEAkYl37cpj2+7OvjpGpU2lTVmsZTOXlykT75SfA5PFrj2jvH25jPL94FgN5KpNpe1nHe8ruVy2+7L9v9nsvG3H86u2fZmnbSodz5WW6j+92lQqtXuzveZay+yqTaXTveDmPGr5jNp5ctym1vWU9utLm0q17SudJ8d73VUZvDmfSp/Ver48aVOpVh5Xx6R0P6rdT7b3q7c8ucZq3xe+/P75s7zeYPW3fkxCCGFE8Pr1119jwoQJmDJlCtq3bw8A2Lp1K1588UXMnDkTt956q3XdKlWqGFEkO+3atUPr1q3x5ptvWpc1bdoU9957L2bMmOH288XFxUhMTERRUZGu5X/rLWm6RS0a1ilFpbhopKcDf/kLcOUKULMmUFRQhIPZ6/GXpALcMSgNO/79K/afqo4mL/RDerNqWLdO+vyAAdK/m1adR6fX+yO1dgVsaTsSB77ejz2nU1HUqTdu7VEZAwfa92Y8cACIu/gHDj/6N6BGDcT26oIDX+5Dows7Eb9gHhp1qAlA6nz922/Agw8Cd7csROFf7sGB6reg0eBbgU8+wZbDqcgbPhtXYqvif5MvYdUqICUFaN0aKDl8Co2ezgDS0rCl7UggJwcdir8FVq3CgZJUNGpU3mNSLlPJoCfRqM4VpD/ZR5r7saAAhSt32q1vPY4t0vbT61WQRnbPzkbuwepYlbkEKU0Scffd9utv2QLgzBnU++sj2BHfBfsb3Ymav/2ARhf/iw5rXkR621RrWaxlyz2OAxlPW8tU+NaXOHC0Ehp9+waQmmpdF7D/nEzer9z7u0MHafmWLdK/8s9Kn7VlWy7b9ZX+HxcnzRPveH5dbV+WmytVG3bqpK33t925KgS++go4cQK46y6p17JSebxlvYaQzpvTtXVYrrXMW7ZIy0pLpXLb9v52XNeT66T2GdtzLJ8jpW3m5jr8Prk4h55cY6VzBrj+vO369eopl8VdGbw5n46fdXUvab135fUaNZJ6k7sqj6syKt13tr8DbdpII2PYvu8Lb86Xq+8mf/P0nvSEv57fkciwoNJsk7+Wq5TlXdv+bDKZUFZW5rwBP1uyZAkGDhyIt99+Gx06dMCCBQuwcOFC7N27F3Xr1nX7eX/dlNOnA3/9q5Y1BerWNeHIEekns1maVtE6601pKVCpklTPIoQUcUZHq2/O0/V93Ef2IoFhwwGLxeRcdp32EYzHrXkfRETkFwwq9VPBqB3l5OQYtSuv9OvXD2fOnMGLL76I48eP4+abb8bXX3+tKaD0p4MHta5ZHlAC5fNnZ2T876+66Gibcb5MSE93E8TYBjkmk/Vnl2OFqXzG3T4KC4Fhw01Oc39by67DPvy2vlH7ICIiCnKGBZVdunQxaldee+qpp/CU1rpmgyQkeP9ZuYdcerpU8ztsmBSwucwEuqDHNpS46t3HQW6JiIhCg2HV3+HOX+nz3FxpJgVvmEzA0aPS/+vWdZ5b+/Bh7UFbYaHv2wjEtonCAWcTIfIfVn/rx7Ahhcg7P/3k/Wcfflh6EG3e7Ps4X/4cKyw9Xcp6ap77myiCZGdLf3R16yb9m50d6BIRESljplIn/vhLRymD5wmzubyq2nEbZjNw5EhwZCpt9xGIXoVErgQyS8gsPpH/MVOpH2Yqg5gvs3aYTLDr+OLI0z8ljMgmpqcDXbvyYUnBI9BZQs4mQkShxLCgcsqUKThi2z2Z3Grc2PvPugsahfD8wZSVJWVIcnKkf/XopEMUrAoLyzumAeWjEhQWGlcGziZCRKHEsKDyyy+/RMOGDdG9e3f8+9//xuXLl43adchKT5ceav5g+2AqLJQCRS0PS2YTKVIEQ5aQ7Y2JKJQYFlTu2LEDO3fuRPPmzTF69GikpqbiySefRG5urlFFCEkvvOCf7c6YUT7UEDsBEDkLliwhawiIKFQY2qayefPmmDdvHn7//Xe88847+P3339GpUyc0a9YMr732GoqKiowsTkhITwcWLfL8c44PQ0cVKkjDFelVvedJtpMoFARTlpA1BEQUCgLSUcdiseDKlSsoLS2FEALVq1fHW2+9hdq1a2PJkiWBKFJQy8oCevXy7DOdO7t+f8wYoF07far3mO2kcMUsIRGRdoYGlTt27MCIESOQmpqK0aNHo1WrVti3bx82bNiAX3/9FZMnT8bIkSONLFLIqF/fs/U3bHC/jlJnHk+r94KhMwORPzFLSESkjWFBZfPmzdG+fXvk5+cjOzsbBQUFmDlzJhrZRDCDBg3CqVOnjCpSSKlUyX/blqvKo6KktpZ5edqDQk87M7CanIiIKDwZNvf3Qw89hCFDhuC6665TXadmzZqweDswYxjTIwCLigJmzgQmTnQeSHnLFqCkBNi+vfx9rXN7y50ZHLeplO3019zhREREFHiGZCqvXr2KxYsXsyOOF+T2iq+95tt2Zs4Exo1T7njQtq0UBNoGnFqrseXODHK202xW7szAanIiIqLwZkhQWbFiRZSWlsJkMhmxu7DhGIj5Yvx4aXtqHQ/8PSZfMIz5R0RERP5jWJvKZ555Bq+88gquXbtm1C5Dni/TNCr56ivpX6WOB96Oyac1A+lu+2xrSUREFNoMa1P5448/Yu3atVi9ejWaNWuGuLg4u/dXrFhhVFFChlJ7RV+cOCEFbXl50rZtg0q5Gnv4cCmDqHVMPlcZSK3bZ1tLIiKi0GdYUFm1alX83//9n1G7CwuOgZivrl6V2meqBW9ZWUBGhhQQNmqkbQgVTzrqKG1fLdOZkcEhXIiIiEKJSQil0QrJU8XFxUhMTERRURGqVKmi67YLC6Ue2v36KY8tqZXJZP/5qCipXaWvwVt2tnMGUmumMSdHGjRdaXnXrr6Vi4iIyB1/Pr8jTUBm1CHPpKcDDz0EvPKKb9txDEj16ijjy6wjwTK/MhEREfnGsOpvAPj000+xdOlSHD16FFeuXLF7b+fOnUYWJSRVr67v9sxm4ORJKRPqa7YyPd27bXjblpOIiIiCi2GZyn/+85947LHHUKtWLezatQu33HILatSogUOHDqF3795GFSNkyW0P9SSEVKUe6Pm6Ob8yERFR6DMsqHzzzTexYMECzJ8/H5UqVcKECROwZs0ajBw5koOia6D38EJAeXW4q4HIjRrqh/MrExERhTbDgsqjR4+iY8eOAIDY2FhcuHABADBw4EB8/PHHRhUjZCm1PdSTUvtKeTafbt0Cn810xHEtiYiIgothQWVKSgrOnDkDAKhbty62bt0KAMjPzwc7oLuXng4MHOi/7Tt2jgnmaRWDOdglIiKKVIYFld26dcOXX34JAMjKysLo0aPRo0cP9OvXD/fff79RxQhZhYXABx/osy2zGcjMdJ4D3LbqOVinVQzmYJeIiCiSGdb7e8GCBbD8LxJ44oknUL16dWzcuBF9+vTBE088YVQxQpaebSo/+UQaoujll9UHOt++3flz/h7qR222H1taZ/AhIiIiYxkWVJrNZphtGgX27dsXffv2NWr3IU/PKRuPHJH+dRwGSA7q4uOB555z/tzMmf4L3LRO1ejJDD5ERERkHENn1Dl//jy2bduGkydPWrOWskGDBhlVDL8wYkR+25lrfKE0k45jUKcUvPprlpvCwvLpI12V0bas3s7gQ0REZIsz6ujHsEzll19+iUceeQQlJSVISEiAyWSyvmcymUI+qDRCVhbwzTfAp5/6th3H6mKldoqO/JkN9LRK25s5yl3RUu1ORERErhnWUWfs2LEYMmQILly4gPPnz+PcuXPW19mzZ40qRkjLzfU9oASkTGRcXPmQPGrtNeXWCv6e5cabqRr1GteSPcmJiIj0YVhQ+fvvv2PkyJGoXLmyUbsMOz/8oM92HngAaN++PJD67jvloG7rVmNmuZGnanTVG90f2JOciIhIP4ZVf2dkZGD79u1o0KCBUbsMO507+/Z5sxmYNAmYMcM+kJo+3X49Oahr29a3/XlC7yptLdiTnIiISD+GBZV33XUXxo8fj19++QXNmjVDxYoV7d6/5557jCpKyPrpJ/X3zGagd29g1Srl9z75BOjQQQqkpk1zvZ0tW4wNKGWOvdH9jT3JiYiI9GNY72+zizkGTSYTynzt0hxg/u49ptRD2myWhv6ZMaN8Hm8ls2YB48erb8eRq17ewdSpRY+ysCc5EVFkY+9v/RjWptJisai+Qj2gNIJSVa3F4j6gBOyzju6me4yKsu/EY8ubTi2ezNHtybp6dbDJypLajBrRdpSIiCicGRZUBrN69erBZDLZvZ5TGv07gJR6SJvN7gNKk8l5Tm+16R6jooBHH7XvxCMHa950avEk8PNkXb072OjVk5yIiCiS+bVN5T//+U8MGzYMMTEx+Oc//+ly3ZEjR/qzKG69+OKLGDp0qPXn+Pj4AJbGmdxD2raqduZMYMIE14GlEMDHH5dXf6sNHzRvHtCpkxRQOgZrGRmed2pRC/wyMpzX92RdtWNgBxsiIqLA8mtQOW/ePDzyyCOIiYnBvHnzVNczmUwBDyoTEhKQkpIS0DK4o9RD+tw5597bjp57DhgwQFpfrXPKgw+6DtbUponcvl25/aUngZ+nQWLjxlIG1jaYZgebyBSINr7B1K6YiCiY+LX6Oz8/HzVq1LD+X+116NAhfxZDk1deeQU1atRAy5YtMW3aNFy5csXl+qWlpSguLrZ7GcGxqvaOO9x/xmKRAjT582pjQqoNQh4XJz1ElVoEPPeccrWzqwHNHdtOqlXtnzypvO1vv7X/2WQyZlxLCi7+GrjeVdteDpZPROSCIDF37lyxfv168d///lcsXLhQJCUliaysLJefmTx5sgDg9CoqKjKo1JJt24QwmYSQ8nbKr6goab0lS6RXQYH0ysmR/rW1aJG0vvy5zEwhzGbpZ7X95OQol81xW4sWSS95e2az9LPjuiZT+b5s1xFCKq/8edvjczwOCm/+ug/U7k9/7pOIAquoqCggz+9wZNiQQmPGjFFcbjKZEBMTg0aNGuHee+9F9erVddnflClTMHXqVJfr5Obmok2bNk7Lly9fjgcffBCnT5+2ZlodlZaWorS01PpzcXExateubciQBHL12/btwMSJzm0q5WnVhSjvfPP+++XrmUzAwoXqPZ0LC6XMZlycfRtLJWYzcOSIepZQ3pZcNe04nFFUlNTrOj1dWnfLFqB/f/V1cnKkLJEjV8MgUfjxx32gNNwW7z2i8MchhfRj2ODnu3btws6dO1FWVobrr78eQgjk5eUhKioKN9xwA958802MHTsWGzduRNOmTX3e34gRI9C/f3+X69SrV09xefv27QEABw4cUA0qo6OjER0d7VMZvZGdbd+pRYkQwNKlQM2a5YGhbeAphLQNtY4w8iDkOTmu9yNvyxXbAc2VtldWBixbBjz0kLReUpLr9pUcsJwA/9wH7tr28t4jInLNsCGF7r33Xtxxxx04duwYduzYgZ07d+L3339Hjx49MGDAAPz++++47bbbMHr0aF32l5SUhBtuuMHlKyYmRvGzu3btAgCkpqbqUha9OPaSVhMVJc2e07UrcPGi8vq27SzVKLV1dCSE++24296YMeXt01y1xQQCN094KPBknM9Q54/7gPceEZGPjKpnT0tLE3v37nVa/vPPP4u0tDQhhBA7duwQNWrUMKpIQgghNm/eLObOnSt27dolDh06JJYsWSLS0tLEPffc49F2jGiTsW6d67aTtm0XZUrtwOTX7Nnu97lokes2m562KbNtO6m2LaW2mI7U2oRGKse2gLNnS/dLuJ8fb+6DggL1c8N7jyjysE2lfgwLKuPi4kSOQo+OnJwcER8fL4QQ4uDBgyIhIcGoIgkhpEC2Xbt2IjExUcTExIjrr79eTJ48WZSUlHi0HSNuSlcBotksxLhx6g9KpcAwKqq8444rap2BHDsyeHIcc+e67vQT6Ae3q8Aj2Li7L7y5RuHKVUccWaDvPSIyFoNK/RgWVD788MOifv36YsWKFaKgoEAUFhaKFStWiAYNGohHH31UCCHExx9/LFq3bm1UkXRl1E3pmEmZPVt6AG7bph4EZWa6zm5qCTwcH8ZqAaxWwdyTVkvgEUzcZbCD5bwGWjDfc0QUOAwq9WNY7++LFy9i9OjReP/993Ht2jUAQIUKFZCZmYl58+YhLi4Ou3fvBgC0bNnSiCLpysjeY7Y9qtPT7TvvmM1SG8Vnn5Xey80FbrnF/TZte7lq3a+vsrPtZwj6178CP/e2ux7AwUipzI7YQzkwvbc5UDpR8GPvb/0YFlTKLl68iEOHDkEIgYYNGwbddIjeCtRNmZurPOyPPGxQUREwdqy2bc2dW94L2yh6B6q+CtVhY2wDdEfBHhQbxeg/GBz/2FuwIPB/NBGRMwaV+jE8qAxXgbgps7OBoUPVh/WJigI+/xzo00f7Ns1m4M47pVefPuXjR4ZStsWX8oZiplImB+i5ucCkScGVAQ4WRmXHQ/k+Ioo0DCr1Y2hQmZubi2XLluHo0aNO0yCuWLHCqGL4hdE3pZYqT0DKsD3+OHDwYPmyWrWA+++XMpmuPm8yAYMGAR98oJ5tKSwENm+W/t+xY+AfmHpkh4KxWt5TwZYBDiZGnJtQzXgTRSIGlfoxLKj85JNPMGjQIPTs2RNr1qxBz549kZeXhxMnTuD+++/H4sWLjSiG3xh9U6o9tGy5y1SaTFJ199Kl2vdrm21xzJS6m6nH3/TMDjEoI18wU0kUOhhU6sewwc+nT5+OefPm4auvvkKlSpXw2muvYd++fejbty/q1KljVDHChruByc1mKcO2f7/6OkIAn35aPq2jFvIMI7m5zlXv8kw9hYWBGYjb1YwonkpPlzJKDADIGxwonYgikWFB5cGDB3HXXXcBkKY4LCkpgclkwujRo7FgwQKjihE2HB9atjIypPm4s7KAzp1db8dikTryuJs5RxYVJc053q6dcltOiwV47TUpS9OtW/lMOUZwNyMKkZGysqTMZE6O9G+oNaEgIvKUYUFl9erVceHCBQDAddddh59//hkAcP78eVy6dMmoYoQV24fWl18C8+YB27YB33xTnhFp2xbIzFTfhtksDT905IgUjNoymaTP2mZbZswAJk5U7xxkNgOvvlqeMbRYpPaJRmQsmR2iYMOMNxFFEsOCys6dO2PNmjUAgL59++LZZ5/F0KFDMWDAAHTv3t2oYoQd+aHVsiUQHS0Fl7m59uu8+660XKmDgMUCfPuttJ1vvpGC0smTgbfeAo4elT5rm21p00a9c4/JJI2R6RhwelsF7Q1mh4iIiALDsI46Z8+exeXLl5GWlgaLxYI5c+Zg48aNaNSoEV544QVUq1bNiGL4TSAb+ioNLZSZKQWE8vtyj2glZrOUqdSSTVHqgGA2A2+8Adx9t/QzOygQEVGoYEcd/XCcSp0E6qZ0NbTQtm1Aaqr2oYe0DnXibsidcBiSh4iIIgODSv1UMHqHJ0+exMmTJ2FxiHKaN29udFHCglKPZ9mmTUCLFu4DSrPZs84sGRnAv/8tVXd36OCcgczKktaJhCF5Qm1geLLH60dEpB/DgsodO3YgMzMT+/btg2Ny1GQyoUxpfjlyS+7xrBQ4duokZSrV3pfNnKn9gap1cPH0dPVthsuDnNPw+Z8/7xVePyIifRnWUeexxx5DkyZNsHnzZhw6dAj5+fnW16FDh4wqRtiRezw7jjWZmSn1/E5Pl4JGV0MGtW0r/etubMnCQvu2md707M7O9ny4oUCMeemOHueCXPPmXtGK14+ISH+GtalMSEjArl270ChMBw0MdJuMwkLgq6+AEyeAu+4qDxSVZr2xveJRUVJV9tGj0lBBrqZjXLpUGtPSkdb2mN7MMhKs2SROw+df/p6RhtePiGSBfn6HE8Oqv7t3747//ve/YRtUBlp6OvDEE/bLCguVZ72JipI60cjV4v362X9OztpkZJRPx6jWe9yTwcVdzXijFCioZZPkcgWSUrMDDrSunbtqbU/vFU/x+hER6c+woHLRokXIzMzEzz//jJtvvhkVK1a0e/+ee+4xqigRY/Nm5UHK588HatSQgkm1PHVZmTQzzrPPug4oZ8yQAgDA/cM+Pl55eVyc8nJ/Bxa+kJsdOPZyD3S5QoGW7LO/gz5ePyIi/RkWVG7evBkbN27Ef/7zH6f32FHHWDVqAElJ6gGlbO5coEED5YBy3jzg2jXXVeaOLl5UXl5Sorw82LNJkdTLXS9as89GBH3Bfv3CpUMbEUUOw9pU1qtXD3fffTdeeOEFJCcnG7FLQwVjm4zCQqBOHfvgUR7oHNA2fqVjG0x5G1u3Au3be9bmzds2lRzzMnx42paxsDB4gz5/Cta2xEThKBif36HKsN7fZ86cwejRo8MyoAxW6enAwoX2c2EvWFA+3M+CBa57hQPK2UwhgPx89appV+XxdG5uTrsYXuTssy1X2edInDubPdOJKFQZFlQ+8MADyMnJMWp39D+ugrKsLODjjz3fphBSBtOT4EBLedREYmARrrz5wyLSuGpLTEQUzAxrU9mkSRNMmjQJGzduRLNmzZw66owcOdKookQcVwORd+yoXsUthHKmUp5JZ+BA4L33ypc/+qi24MBVeSj8BXtbxkAL9rbERERqDGtTWb9+ffVCmEwhPwB6KLfJcBzLUm7DBSj3/Pa2TaXe2JGBwhXbEhMZJ5Sf38HGsExlfn6+UbsiD8mZoy1bgDNngOrVpQxmejqQkKA8juVXXwV2uB92ZKBwxmwuEYUiwzKV4S4c/tKxDdRMJmn2nL59gXbtnKvB5WkhHWfnMSJT6e/ZVoiIKHKEw/M7WPg1UzlmzBi89NJLiIuLw5gxY1yuO3fuXH8Whdxw7HEqBDBnjjRWpVoPcLNZCi4tFvsOF7bV0oD+VdTBPCg6ERFRpPJrULlr1y5cvXrV+n81JjntRQGjFKgBrsextFik+cBr1iyvonPMdgLlAaheVdTsyEBERBR8WP2tk1BPnytVKbvjWOXsbhtyB5+2bX0uLjsyEBGRLkL9+R1MDBunkoKb1sHQZSaT8/iCatlOmcUitc/MzvatrAAHRSciIgo2DCrJKitLmsJx3LjywanldpNKMjLsf1aaLcWREFL1uKezgxQWSgGk7ec4KDoREVHwYFBJdtLTgdmzy7OAR45IvcAdCeE8w4fjbClqAanFArz2mvYyZWdL1erdukn/6pHpJCIiIn2xTaVOwrlNRm4ucMstzsu3bVNuH1lYWD6+3vHjyp/VOgQQhw8io3AwfaLIFM7Pb6MxU0luXbyovLykRHm5bbV027ZSdbojrXMZcx5kYyg1L4gkzIYTEfmOQSW5pdRW0pMhfJ591vXnXQU0vu7bVqQHTmoiPaByHKPVYpFGFuB9QkTkGQaVpMmYMeVtJW0HOtfCsa2l7efdBTSuPusJXwKncA5GGVAxG05EpJewDyqnTZuGjh07onLlyqhatariOkePHkWfPn0QFxeHpKQkjBw5EleuXDG2oEFKDsbmzJEevOPGeTeEj9IQQO4CGjmYy8jQNnyQWvDnS+AU7lk8BlT6ZsOJiCJZ2AeVV65cwUMPPYQnn3xS8f2ysjLcddddKCkpwcaNG/HJJ59g+fLlGKvU5TnCKE3dOG+e99tzHALIVUDjGMx9+63r4YNcBX/eBk6RkMVTCqjMZiAuLjDlCQR32fBwzlQTEekp7IPKqVOnYvTo0WjWrJni+6tXr8Yvv/yCDz/8EK1atcIdd9yBV199FQsXLkRxcbHBpQ0u/s5iqWWI4uI8C+bcBX/eZqIiIYvnGFAB0jG3bx9cWVl/B3a2mfQtW4AGDaR9hXummohIT2EfVLqzZcsW3HzzzUhLS7Muy8jIQGlpKXbs2KH6udLSUhQXF9u9wo2/qwW//VbKfsrkWXouXtQWzMmBxubNrtf3tl1mpFSLZmVJgZTtsQZTVtaowC49HTh4UAqou3UD6tQBhg4N70w1EZGeIj6oPHHiBJKTk+2WVatWDZUqVcKJEydUPzdjxgwkJiZaX7Vr1/Z3UQ2nVycZwDnTJGcXbYNKIYBz57QFc7aBRv/+zoOsO/Yub9BACpw8mdZRz+MPdloDeaMZ2QRBqbmH4yi+wXBOiIiCVUgGlVOmTIHJZHL52r59u+btmRSmfRFCKC6XTZo0CUVFRdZXQUGBV8cS7PSYY9s2AKxTBxg/Xjm7CAATJ0r/umvjZptBkh/87nqXt28vZaI8CQojZY7xYM3KGtkEwd3c9UBwnBMiomBVIdAF8MaIESPQv39/l+vUq1dP07ZSUlLw448/2i07d+4crl696pTBtBUdHY3o6GhN+wh1th1rbH/WQin7M2eO+hzhFosUMGRlSb2+5Zl5bPf52mvOGSQhgI8/BmrWLF9fLcuVkaH9GPScZSWYZ2yRs7LDh0tBW7BkZeVg13FGJX8Edkr7MpmkZcF0ToiIglVIBpVJSUlISkrSZVsdOnTAtGnTcPz4caSmpgKQOu9ER0ejdevWuuwjVMlB0I4dUgbRYpEesAsWaM/YqWV/1DJCtgFDerrzA7ywEJg71/lzZjPQoYP9+q6yXFoCg+zs8qDU0+P257b8xVUgHyhGBrtq+wq2c0JEFKzCfu7vo0eP4uzZs1i5ciVmz56NH374AQDQqFEjxMfHo6ysDC1btkRycjJmz56Ns2fPYvDgwbjvvvvw+uuva95PuM0dahsEOfJk7m2lubvVyA9xV8FWTo5Ule1o3Dhg9mz7bCDg/bzhes45bsT85XplQYM1m2o7n7y/y2Xkvogo8MLt+R1QIsxlZmYKAE6vnJwc6zpHjhwRd911l4iNjRXVq1cXI0aMEJcvX/ZoP0VFRQKAKCoq0vkIjFdQIITZLHdTUH7ZnD63Fi1yvz2zWYht21yXad06aR3HbUVFSe/b7sdsln5etEh6X15v0SJtZV63zvfj9se2lCgddyC3Q0QUSsLp+R1oYZ+pNEo4/aWjlg2UeZNlKyyU2kLOmydVLartt2tX5+WOVcf/93/AihXOVZRq2UDA88yTluyi1qyeq20BvmUG9cqCGpFNJSIKRuH0/A60kOz9Tf6l1BNY5m2btvR0qXr68GFg6VLtPY0de3pbLMCyZcCTT9r3yHbXftLVbDxq5XXVA92TsRPVtvXtt76Nv1hYKJ1LPXpHR8JA70RE5F/MVOok3P7Syc6277AwYwbQtq1+7cwct6/WlnL8eKm3uJLZs6W2lID7TJu3bQWV2td5m9Wz3RbgW2ZQrzavtmVjppKIIlG4Pb8DiUGlTsLxpvR3hwV323fXycdsBo4csc8eKgWqeve8VmseoFZ9r/c2XJ0XLZ2d1GgN9ImIwkk4Pr8DhUGlTnhTaqc1a+iubae8jm0Q5hio+iMDp8c2fdmG2nmZNw948EHfe3+z5zMRRRI+v/XDNpVkKE/aIrpq2wkot8N0bD/pj7aCekzf6Ms21Ga/8TWglMvlaftTIiIigJlK3fAvHfe8yc7ZVsmaTPYz6WRmAu++q/8+tdIjq+ftNiK5qjpYx9LUQzgfG1Gw4vNbP8xUkmG8yRrKc28vXer83ocfSg9hV/TIKrratq9ZPW+34e85yQsLpW27O79G8yTTHWrC+diIKDIwU6kT/qXjnj/aEWrtHMO2gtr5Y0pJTzJwauuGcw/1cD42omDH57d+mKkkn3iS0fJHO0KlsS3V9s22gu4VFtoPVWSxSNXsvmQsPcnAuVrXX2NpBkNWluOEElE4YFBJXvOmus7balvHgNRsBkaP9rbkwScYAhvA8+DGXbk9CVLdrevrHxZKgqXK2R/HRkRkNAaV5BVfMlq+tiOUBzyfMyc82p4FS2ADqPe4z811Xqal3J4Eqe7W9SXTrRT8+iMr6y1/tv0lIjIK21TqJNLaZOgxALg3jGh7ZmQP3GBsSzdnjjSTkS2lec+1lNuT4/Nkm560j1VrIxqoe9gVtv0lMl6kPb/9iZlK8kqgquv0rp51ZHTW0N9t6bypVm/d2nmZY5m0ltuTDJzWdT3JdLvKRgZjlTPb/hJRKGNQSV4JVHWdJ4GApwFibi4wdKgx1aFysBcf77/AxtsAWcs59uQ6eNKOVmldX9qbugp+WeVMRKQzQbooKioSAERRUVGgi2KoggIhcnKkf42yaJEQZrMQ0lDoQphM0jLHctmuAwgRFaVeTsdt2r5ycvxXfrNZiMxMqWxyGR2PxRtKx282a79Oixa5L5OWdXzleK483YeW+yAQ9zARBY9IfX77A9tU6oRtMoxTWAjUqWM/u45j2ztP2sspteVT264eZVdqN7hlC1BSol9bOrXjHzcOmD1be1ndte/zZxtAvdqbRvLsQ0TkHp/f+qkQ6AIQeSovzz6gBOyrNIHy6lnHgESpelapihSQPq93dahadWxJib6dQxo3dp7WEgDmzQOefVbbMaWnu19Pyzrecld1rVVWFpCRYR/8cjpEIiL9sU0lhRwt7fk8aS+ntD2zGdi6Vf+MllGdQ9LTgbFjnZeH0oDaep4r2w4wwTSEExFROGFQSSFHa8CotYOI0vYWLADatg1c2fXw7LPB17vZE3qcK8dOPsE0NiURUbhhm0qdsE2G8fRuz+fv9oG21a1GjUcYDu0JvT1XSuNTNmgQfGNTElFg8fmtHwaVOuFNGZqMaFunNvi2USJxQG1XHaLatw+uweaJKLD4/NYPq78pYhnRti4YqlsjcUBtVx2iODYlEZF/sPc3RSSlYG/YMKB5c33bUurVg5k846r3f9euzr3BiYjId8xUUkRSCvYsFqBdO30zlsE4FWCo8WZGHXedfCIxe0tE5G8MKikiKQV7gDSuo57V05E6FaAvUyva8qWJgifTQ3pCr2MjIgo3DCopIsnBnlJgqfdYjv4KboKVXm1V9WqPqmdXRI5xSUSkjkElRaysLGmAc5PJfrm/BiOPhOpWPTsmuWqPqoXeAWAwdLoiIgpmDCopIslVmKmpwMKFkVc97S++BoK2fGmPqncAWFgILF2q37EREYUjBpUUcRwzWED4VU8Hqt2fWiB48qTnZfGlPaqewa18vyhNe8lOV0RE5Tj4uU44eGpoUBsUO5wGvw70YOu2s/iYzVKbRiG8L4s3g7frdZ2VtmO7vVCcoYiI7PH5rR9mKimi6JnBCkbB0O5P7pi0dGl5QGlbltxcz7Ko3rRH1avXvdL9AgDz5oVPVpuISC8c/JwiiqtBscNBsAy2np4OJCU597wuK5PGAvUlc6lVVpbvg5yr3S8PPlg+h7u/p/kkIgoVzFRSRAn3cSODabB1V2OBAsZkUX3tde/qfvG1dznHuySicMOgkiJKYSHQoAGwZUt4dcyRBVPQ7FgWb8cEDXTwpTTOqK/NDDjeJRGFI3bU0Qkb+ga/QHdgMZI3nVv8XZa4OKB9e886zwTrNcvJkQJCpeVdu7r+bCR0FiMKJXx+6yfsM5XTpk1Dx44dUblyZVStWlVxHZPJ5PR6++23jS0oecTT7FUwdGAxkpZqX6MygHJZ2rb1LItqxDXz9hz40swg3DuLEVHkCvug8sqVK3jooYfw5JNPulxv8eLFOH78uPWVmZlpUAnJU95UHfJBbi9Q1a+eTFnp72vmyznwpZlBMLV7JSLSU8RUf7/77rsYNWoUzp8/7/SeyWTCZ599hvvuu8/r7TN9bgxvqw5Z5VjOX+dC757Q/rxmeo5j6U0zA9uxPDneJVFg8fmtn7DPVGo1YsQIJCUloW3btnj77bdhURqczkZpaSmKi4vtXuR/3mavgqkDS6D5IwPoj8ynP6+ZXufA297lnmRsiYhCBcepBPDSSy+he/fuiI2Nxdq1azF27FicPn0af/vb31Q/M2PGDEydOtXAUhLg2ziTeoxbGA70HqtTre1jRobv59hf1ywYxitNT4/ce5CIwlNIZiqnTJmi2LnG9rV9+3bN2/vb3/6GDh06oGXLlhg7dixefPFFzJ492+VnJk2ahKKiIuuroKDA18MiDXzNXvk6bmE40DsD6O+2j/64ZsxcExHpLyTbVJ4+fRqnT592uU69evUQExNj/dlVm0pHmzZtwq233ooTJ04gOTlZU5nYJsNYwTRkjtH0aruo1zkM5faqkXwfEZGEz2/9hGT1d1JSEpKSkvy2/V27diEmJkZ1CCIKvEitOtRz3Ea9zqGc9XPseKL39fHHlIh630ectpGIIllIBpWeOHr0KM6ePYujR4+irKwMu3fvBgA0atQI8fHx+PLLL3HixAl06NABsbGxyMnJwV//+lcMGzYM0dHRgS08kQ1/tl30lb/bqwbrIOi2QqGMRET+FJLV354YPHgw3nvvPaflOTk56Nq1K7755htMmjQJBw4cgMViQYMGDfD444/j6aefRoUK2mNups/J33yZxSWUBUP1ursMZDCUkYi8w+e3fsI+U/nuu+/i3XffVX2/V69e6NWrl3EFIvKS1h7L4VYF66ojkBHHpyUDGegyEhEFg5Ds/U0UibT0WA7UTDn+ZOQMNI7TNmqdKpKz5BARMagkCimuBs0O1/nNjRr+Rykg1zpcEocoIiKKgDaVRmGbDAq0cGlzqVZ978/hf9TaRG7ZArRvr72tJIcoIgo9fH7rh5lKojARDlWwrqrv/TlwvVpGsqTEswwkB9cnokjGoJIoTBhVBevY7lDP7Qaq+t5VQM55uomItGFQSRRG/B0A+bMjkL+ne3TFXUDODCQRkXtsU6kTtsmgcOfvsRiDYaxHtokkijx8fuuHmUoi0sTfmcRg6EHNjCQRkffCfvBzIvKcUg9srYOv+8Lf0z0SEZH/MFNJRHbU2k0alUlktpCIKDSxTaVO2CaDwoGWdo1sd0hE4YTPb/2w+puIrLTMYZ2ezmCSiIicsfqbiKzCYQB1IiIKDAaVRGQVDD2wiYgoNLH6m4jssAc2ERF5g0ElETlhu0kiIvIUq7+JiIiIyGcMKomIiIjIZwwqiYiIiMhnDCqJiIiIyGcMKomIVBQWAjk50r9EROQag0oiIgVqc6ATEZEyBpVERA4KC4Fhw8qnrLRYgOHDmbEkInKFQSURkQNXc6ATEZEyBpVERA44BzoRkecYVBIROeAc6EREnuM0jURECjgHOhGRZxhUEhGp4BzoRETasfqbiIiIiHzGoJKIiIiIfMagkoiIiIh8xqCSiIiIiHzGoJKIiIiIfMagkoiIiIh8xqCSiIiIiHwW1kHl4cOHkZWVhfr16yM2NhYNGzbE5MmTceXKFbv1jh49ij59+iAuLg5JSUkYOXKk0zpEREREpC6sBz//9ddfYbFY8K9//QuNGjXCzz//jKFDh6KkpARz5swBAJSVleGuu+5CzZo1sXHjRpw5cwaZmZkQQuD1118P8BEQERERhQaTEEIEuhBGmj17Nt566y0cOnQIAPCf//wHd999NwoKCpCWlgYA+OSTTzB48GCcPHkSVapU0bTd4uJiJCYmoqioSPNniIiIKLD4/NZPWFd/KykqKkL16tWtP2/ZsgU333yzNaAEgIyMDJSWlmLHjh2q2yktLUVxcbHdi4iIiChShXX1t6ODBw/i9ddfx6uvvmpdduLECSQnJ9utV61aNVSqVAknTpxQ3daMGTMwdepUp+UMLomIiEKH/NyOsIpbvwjJoHLKlCmKAZ2t3NxctGnTxvrzsWPH0KtXLzz00EN4/PHH7dY1mUxOnxdCKC6XTZo0CWPGjLH+/Pvvv6Np06aoXbu21sMgIiKiIHHhwgUkJiYGuhghLSSDyhEjRqB///4u16lXr571/8eOHcPtt9+ODh06YMGCBXbrpaSk4Mcff7Rbdu7cOVy9etUpg2krOjoa0dHR1p/j4+NRUFCAhIQEl8GomuLiYtSuXRsFBQUR1aaDx83jjgQ8bh53JAjV4xZC4MKFC3bN4Mg7IRlUJiUlISkpSdO6v//+O26//Xa0bt0aixcvhtls34y0Q4cOmDZtGo4fP47U1FQAwOrVqxEdHY3WrVtrLpPZbEZ6err2g1BRpUqVkPpl1AuPO7LwuCMLjzuyhOJxM0Opj5AMKrU6duwYunbtijp16mDOnDk4deqU9b2UlBQAQM+ePdG0aVMMHDgQs2fPxtmzZzFu3DgMHTo05H4piIiIiAIlrIPK1atX48CBAzhw4IBTFlFukBsVFYVVq1bhqaeeQqdOnRAbG4uHH37YOo4lEREREbkX1kHl4MGDMXjwYLfr1alTB1999ZX/C+RCdHQ0Jk+ebNdOMxLwuHnckYDHzeOOBJF63FQu4gY/JyIiIiL9Rdzg50RERESkPwaVREREROQzBpVERERE5DMGlURERETkMwaVQeLNN99E/fr1ERMTg9atW+OHH34IdJH8asqUKTCZTHYveezQcPL999+jT58+SEtLg8lkwueff273vhACU6ZMQVpaGmJjY9G1a1fs3bs3MIXVkbvjHjx4sNP1b9++fWAKq5MZM2agbdu2SEhIQK1atXDffffht99+s1snHK+3luMOx+v91ltvoXnz5taBvjt06ID//Oc/1vfD8VoD7o87HK81acegMggsWbIEo0aNwl//+lfs2rULnTt3Ru/evXH06NFAF82vbrrpJhw/ftz62rNnT6CLpLuSkhK0aNEC8+fPV3x/1qxZmDt3LubPn4/c3FykpKSgR48euHDhgsEl1Ze74waAXr162V3/r7/+2sAS6m/Dhg14+umnsXXrVqxZswbXrl1Dz549UVJSYl0nHK+3luMGwu96p6enY+bMmdi+fTu2b9+Obt264d5777UGjuF4rQH3xw2E37UmDwgKuFtuuUU88cQTdstuuOEG8dxzzwWoRP43efJk0aJFi0AXw1AAxGeffWb92WKxiJSUFDFz5kzrssuXL4vExETx9ttvB6CE/uF43EIIkZmZKe69996AlMcoJ0+eFADEhg0bhBCRc70dj1uIyLjeQghRrVo1sWjRooi51jL5uIWInGtNypipDLArV65gx44d6Nmzp93ynj17YvPmzQEqlTHy8vKQlpaG+vXro3///jh06FCgi2So/Px8nDhxwu7aR0dHo0uXLmF/7QFg/fr1qFWrFpo0aYKhQ4fi5MmTgS6SroqKigAA1atXBxA519vxuGXhfL3LysrwySefoKSkBB06dIiYa+143LJwvtbkWljPqBMKTp8+jbKyMiQnJ9stT05OxokTJwJUKv9r164d3n//fTRp0gR//PEHXn75ZXTs2BF79+5FjRo1Al08Q8jXV+naHzlyJBBFMkzv3r3x0EMPoW7dusjPz8cLL7yAbt26YceOHWExG4cQAmPGjMGtt96Km2++GUBkXG+l4wbC93rv2bMHHTp0wOXLlxEfH4/PPvsMTZs2tQaO4Xqt1Y4bCN9rTdowqAwSJpPJ7mchhNOycNK7d2/r/5s1a4YOHTqgYcOGeO+99zBmzJgAlsx4kXbtAaBfv37W/998881o06YN6tati1WrVuGBBx4IYMn0MWLECPz000/YuHGj03vhfL3Vjjtcr/f111+P3bt34/z581i+fDkyMzOxYcMG6/vheq3Vjrtp06Zhe61JG1Z/B1hSUhKioqKcspInT550+is3nMXFxaFZs2bIy8sLdFEMI/d2j/RrDwCpqamoW7duWFz/Z555BitXrkROTg7S09Oty8P9eqsdt5Jwud6VKlVCo0aN0KZNG8yYMQMtWrTAa6+9FvbXWu24lYTLtSZtGFQGWKVKldC6dWusWbPGbvmaNWvQsWPHAJXKeKWlpdi3bx9SU1MDXRTD1K9fHykpKXbX/sqVK9iwYUNEXXsAOHPmDAoKCkL6+gshMGLECKxYsQLr1q1D/fr17d4P1+vt7riVhMP1ViKEQGlpadheazXycSsJ12tNKgLVQ4jKffLJJ6JixYoiOztb/PLLL2LUqFEiLi5OHD58ONBF85uxY8eK9evXi0OHDomtW7eKu+++WyQkJITdMV+4cEHs2rVL7Nq1SwAQc+fOFbt27RJHjhwRQggxc+ZMkZiYKFasWCH27NkjBgwYIFJTU0VxcXGAS+4bV8d94cIFMXbsWLF582aRn58vcnJyRIcOHcR1110X0sf95JNPisTERLF+/Xpx/Phx6+vSpUvWdcLxers77nC93pMmTRLff/+9yM/PFz/99JN4/vnnhdlsFqtXrxZChOe1FsL1cYfrtSbtGFQGiTfeeEPUrVtXVKpUSfzlL3+xG44jHPXr10+kpqaKihUrirS0NPHAAw+IvXv3BrpYusvJyREAnF6ZmZlCCGmYmcmTJ4uUlBQRHR0tbrvtNrFnz57AFloHro770qVLomfPnqJmzZqiYsWKok6dOiIzM1McPXo00MX2idLxAhCLFy+2rhOO19vdcYfr9R4yZIj1O7tmzZqie/fu1oBSiPC81kK4Pu5wvdaknUkIIYzLixIRERFROGKbSiIiIiLyGYNKIiIiIvIZg0oiIiIi8hmDSiIiIiLyGYNKIiIiIvIZg0oiIiIi8hmDSiIiIiLyGYNKIgpKhw8fhslkwu7duwNdFJ9t2rQJzZo1Q8WKFXHfffcFujhERH7BoJKISMHgwYN1CwDHjBmDli1bIj8/H++++64u29Tq3XffRdWqVQ3dJxFFJgaVRKSrK1euBLoIPikrK4PFYtF1mwcPHkS3bt2Qnp6uOcAL9fNIRJGHQSUR+aRr164YMWIExowZg6SkJPTo0QMA8Msvv+DOO+9EfHw8kpOTMXDgQJw+fdr6uW+++Qa33norqlatiho1auDuu+/GwYMHPdp3vXr18NJLL+Hhhx9GfHw80tLS8Prrr9utM3fuXDRr1gxxcXGoXbs2nnrqKVy8eNH6vpzJ++qrr9C0aVNER0fjsccew3vvvYcvvvgCJpMJJpMJ69evVyxDaWkpRo4ciVq1aiEmJga33norcnNzAZRX4Z85cwZDhgyByWRSzVTWq1cPL7/8MgYPHozExEQMHToUALB8+XLcdNNNiI6ORr169fDqq6/afe7cuXMYNGgQqlWrhsqVK6N3797Iy8sDAKxfvx6PPfYYioqKrMcxZcoUAMCbb76Jxo0bIyYmBsnJyXjwwQc9OvdERE4CPfk4EYW2Ll26iPj4eDF+/Hjx66+/in379oljx46JpKQkMWnSJLFv3z6xc+dO0aNHD3H77bdbP/fpp5+K5cuXi/3794tdu3aJPn36iGbNmomysjIhhBD5+fkCgNi1a5fqvuvWrSsSEhLEjBkzxG+//Sb++c9/iqioKLF69WrrOvPmzRPr1q0Thw4dEmvXrhXXX3+9ePLJJ63vL168WFSsWFF07NhRbNq0Sfz666/i/Pnzom/fvqJXr17i+PHj4vjx46K0tFSxDCNHjhRpaWni66+/Fnv37hWZmZmiWrVq4syZM+LatWvi+PHjokqVKuIf//iHOH78uLh06ZLqsVSpUkXMnj1b5OXliby8PLF9+3ZhNpvFiy++KH777TexePFiERsbKxYvXmz93D333CNuvPFG8f3334vdu3eLjIwM0ahRI3HlyhVRWloq/vGPf4gqVapYj+PChQsiNzdXREVFiX//+9/i8OHDYufOneK1117TcrmJiFQxqCQin3Tp0kW0bNnSbtkLL7wgevbsabesoKBAABC//fab4nZOnjwpAIg9e/YIIbQHlb169bJb1q9fP9G7d2/VzyxdulTUqFHD+vPixYsFALF792679TIzM8W9996ruh0hhLh48aKoWLGi+Oijj6zLrly5ItLS0sSsWbOsyxITE+0CQbVjue++++yWPfzww6JHjx52y8aPHy+aNm0qhBBi//79AoDYtGmT9f3Tp0+L2NhYsXTpUuvxJSYm2m1j+fLlokqVKqK4uNhlmYiIPMHqbyLyWZs2bex+3rFjB3JychAfH2993XDDDQBgreI+ePAgHn74YTRo0ABVqlRB/fr1AQBHjx71aN8dOnRw+nnfvn3Wn3NyctCjRw9cd911SEhIwKBBg3DmzBmUlJRY16lUqRKaN2/u0X7lY7h69So6depkXVaxYkXccsstdmXQyvE87tu3z27bANCpUyfk5eWhrKwM+/btQ4UKFdCuXTvr+zVq1MD111/vcv89evRA3bp10aBBAwwcOBAfffQRLl265HF5iYhsMagkIp/FxcXZ/WyxWNCnTx/s3r3b7pWXl4fbbrsNANCnTx+cOXMGCxcuxI8//ogff/wRgD4dVEwmEwDgyJEjuPPOO3HzzTdj+fLl2LFjB9544w0AwNWrV63rx8bGWj/jCSGE3f5sl3uzPcfzqLQdeZ+O//dk/wkJCdi5cyc+/vhjpKam4u9//ztatGiB8+fPe1xmIiIZg0oi0t1f/vIX7N27F/Xq1UOjRo3sXnFxcThz5gz27duHv/3tb+jevTtuvPFGnDt3zqt9bd261elnOSu6fft2XLt2Da+++irat2+PJk2a4NixY5q2W6lSJZSVlblcp1GjRqhUqRI2btxoXXb16lVs374dN954o4dH4qxp06Z22waAzZs3o0mTJoiKikLTpk1x7do1a0AOAGfOnMH+/fut+1c7jgoVKuCOO+7ArFmz8NNPP+Hw4cNYt26dz2UmosjFoJKIdPf000/j7NmzGDBgALZt24ZDhw5h9erVGDJkCMrKylCtWjXUqFEDCxYswIEDB7Bu3TqMGTPGq31t2rQJs2bNwv79+/HGG29g2bJlePbZZwEADRs2xLVr1/D666/j0KFD+OCDD/D2229r2m69evXw008/4bfffsPp06ftMpuyuLg4PPnkkxg/fjy++eYb/PLLLxg6dCguXbqErKwsr47H1tixY7F27Vq89NJL2L9/P9577z3Mnz8f48aNAwA0btwY9957L4YOHYqNGzfiv//9Lx599FFcd911uPfee63HcfHiRaxduxanT5/GpUuX8NVXX+Gf//wndu/ejSNHjuD999+HxWLB9ddf73OZiSiCBbJBJxGFvi5duohnn33Wafn+/fvF/fffL6pWrSpiY2PFDTfcIEaNGiUsFosQQog1a9aIG2+8UURHR4vmzZuL9evXCwDis88+E0Jo76gzdepU0bdvX1G5cmWRnJws/vGPf9itM3fuXJGamipiY2NFRkaGeP/99wUAce7cOSGEckcWIaSOQz169BDx8fECgMjJyVEsw59//imeeeYZkZSUJKKjo0WnTp3Etm3b7NbR2lFn3rx5Tss//fRT0bRpU1GxYkVRp04dMXv2bLv3z549KwYOHCgSExOtx7h//367dZ544glRo0YNAUBMnjxZ/PDDD6JLly6iWrVqIjY2VjRv3lwsWbLEZfmIiNwxCaHSKIeIKMjVq1cPo0aNwqhRowJdFCKiiMfqbyIiIiLyGYNKIiIiIvIZq7+JiIiIyGfMVBIRERGRzxhUEhEREZHPGFQSERERkc8YVBIRERGRzxhUEhEREZHPGFQSERERkc8YVBIRERGRzxhUEhEREZHPGFQSERERkc/+Hwwlc/dvrgdgAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4TklEQVR4nO3deXgT1f4/8HdSSltaKGVrqaUUBVkExAsomwIi1A1FrmwqgiKuyCag3PtTcAULgih6FehFvV5BEFBcAaGgCEjLclVARNlaoLIXKFKgPb8/5jshy0wyk8wkmeT9ep480MksJydp55NzPuccmxBCgIiIiCgK2ENdACIiIqJgYeBDREREUYOBDxEREUUNBj5EREQUNRj4EBERUdRg4ENERERRg4EPERERRQ0GPkRERBQ1GPgQERFR1GDgQ0RERFGDgQ8RERFFDQY+FrVu3TpMnDgRJ0+eDPq1P/74Y1x11VVISEiAzWbD1q1bfR7zwgsvoFmzZqioqDC/gF6cPn0a48aNQ48ePVC7dm3YbDZMnDhRcd/c3FxcdtllKC0tNa084VIvgL66AYAzZ85g5MiRSE9PR3x8PFq1aoX58+e77BOMOgSA9957DzabDXv37gXg/fdj4sSJsNlsOHr0qKllMpra750/v4/hwuy/Y8F6r+XrhEt55N8H+VGpUiXUrVsX/fv3x65duwy9lpa/A2r0/s0xCgMfi1q3bh2ef/75oAc+R44cwcCBA3HFFVfgm2++wfr163HllVd6PebgwYPIycnBCy+8ALs9tB+5Y8eOYdasWSgrK0OvXr287jto0CAkJiYiJyfHlLKEU70A+uoGAHr37o33338fEyZMwNdff422bdtiwIAB+Oijjxz7mF2Hsttuuw3r169H3bp1AYTu98Msar93/vw+hpNIe5/Czdy5c7F+/Xp8++23GDZsGJYuXYpOnTrhxIkThl1Dy98BNXr/5hilUtCuFKXOnj2LKlWqhLoYhvntt99w4cIF3HfffejcubOmY2bMmIHq1aujd+/eJpfOt/r16+PEiROOb11z5sxR3bdSpUp45JFH8OKLL+Lpp582/H0Mp3oB9NXNV199hRUrVuCjjz7CgAEDAABdu3bFvn37MHbsWPTr1w8xMTGm16Gsdu3aqF27tinnDgdqv3dbtmzR/fsYDsz+uxhpf3f91bx5c7Rp0wYA0KVLF5SXl2PChAn49NNP8cADDwR8fq1/B9To+ZtjpNB/zYwgcjPm5s2bcffddyMlJQVXXHEFAGDt2rXo1q0bqlatiipVqqBDhw748ssvFc/ja9+JEydi7NixAIAGDRo4mjNXr16NI0eO4OGHH0a9evUQFxeH2rVro2PHjvj22299lt/XdQcPHoxOnToBAPr16webzYYuXbp4Pef58+eRm5uLe+65x6VV49ChQ0hKSkL//v1d9v/iiy8QGxuLf/7znz7L6w+5rrS69957cerUKc1Nt1qp1QtgjbpZsmQJkpKS0KdPH5ftDzzwAA4ePIgff/zRsU1rHW7btg02mw0LFy50bNu0aRNsNhuuuuoql33vuOMOtG7d2vGzc1eXt98PZ3/++ScGDBiA5ORkpKam4sEHH0RJSYmm1//rr79iwIABSE1NRVxcHDIzM3H//fejrKzMsY/W3/ldu3bhnnvuQZ06dRAXF4emTZvirbfecjyv9nvn7ffR378D8t+wLVu2oHfv3qhWrRqSk5Nx33334ciRI7rL7nxO97+L3t6nwYMHIysrS7V8Ws7vrLCw0Ofr0fJaAODLL79Eq1atEBcXhwYNGmDq1Kle61SJr/J8//33sNlsmDdvnsexH3zwAWw2G/Lz83VfVw6C/vzzT93HKtHzd0CJ3r/HhhFkmAkTJggAon79+uLpp58WK1asEJ9++qlYvXq1iI2NFa1btxYff/yx+PTTT0WPHj2EzWYT8+fPdzmHln0LCwvFk08+KQCIxYsXi/Xr14v169eLkpISkZ2dLWrXri1mzZolVq9eLT799FPx3HPPeVzHnZbr/v777+Ktt94SAMQrr7wi1q9fL7Zt2+b1vN99950AIL766iuP555//nlhs9lEQUGBEEKIvLw8ER8fL5588knNdR6II0eOCABiwoQJXvdr2rSp6N27t6HX9lYvQoR/3bRr1060bdvWY/svv/wiAIh3333XZbvWOqxbt654+OGHHT9PnjxZJCQkCADiwIEDQgghLly4IKpVqybGjRvn2G/u3LkCgNizZ4/X3w8hLv2eNm7cWDz33HNixYoVYtq0aSIuLk488MADPsu4detWkZSUJLKyssQ777wjVq5cKT788EPRt29fcerUKSGEtt8nIYTYtm2bSE5OFi1atBAffPCBWL58uXjqqaeE3W4XEydOFEKo/955+3309++A89+wsWPHimXLlolp06aJxMREcc0114jz58/rKrv7OZ3/Lnp7nwYNGiTq16+vWj61MjufX8/r0fpavv32WxETEyM6deokFi9eLBYuXCjatm0rMjMzPcoVaP1ec801omPHjh7naNu2reLvnjP59yE/P99l+8yZMwUAsWjRIpftFRUV4sKFC5oezvT+HfBG699jIzDwMZD8oX7uuedctrdr107UqVNHnD592rHt4sWLonnz5iIjI0NUVFTo3nfKlCmOP/TOkpKSxMiRI3WXXet18/LyBACxcOFCTed99dVXBQBRXFzs8VxpaalIT08X3bp1Exs3bhRVq1YVDzzwgEt9mEnrL9q9994rUlNTXbZVVFSIEydOiNLSUpftf/31lzhx4oS4ePGiy/aSkhLHTVEI7/UiRPjXTaNGjUR2drbH9oMHDzpuxM6U6lDJfffdJy6//HLHzzfddJMYOnSoSElJEe+//74QQogffvhBABDLly937Occ+Aih/vshxKXf05ycHJftjz/+uIiPj/dZxzfeeKOoXr26OHz4sOo+Wn+fsrOzRUZGhiMokw0bNkzEx8eL48ePCyHUf+/Utvv7d0Cum1GjRrls/+9//ysAiA8//NCxTWvZ1f4uCqH+PvkT+CidX+vr0fparrvuOpGeni7++usvxz6nTp0SNWrU0BX4aKlf+TO9ZcsWx7aNGzcKAI7fBTXysRs2bBAXLlwQp0+fFt98841IS0sTN9xwg0cAI3+OtDyc3yu9fwe8CWbgw64uE/z97393/L+0tBQ//vgj7r77biQlJTm2x8TEYODAgSgqKsLOnTt176vm2muvxXvvvYeXXnoJGzZswIULF3yW14jrqjl48CBsNhtq1arl8VyVKlXw0ksvYeXKlejatStuueUWzJ49W7Xpc/Xq1S4jFbw9jBzZUqdOHRw+fBgXL150bPvzzz+RkpKCxx9/3GXfyZMnIyUlxaMZ+sorr8T111/v+NlbvQDWqBtvTdTuzynVoZJu3bph9+7d2LNnD86dO4e1a9fi5ptvRteuXbFixQoAwLfffou4uDhHN4+/7rjjDpefW7ZsiXPnzuHw4cOqx5w9exZr1qxB3759VXOKtP4+nTt3DitXrsRdd92FKlWq4OLFi47HrbfeinPnzmHDhg1+vTZ//g44u/fee11+7tu3LypVqoS8vDwA8Kvszn8XzeDt/N5ej9bXUlpaivz8fPTu3Rvx8fGOc1WtWhU9e/bUVVZf9QsAAwYMQJ06dVy62958803Url0b/fr103Sddu3aITY2FlWrVsXNN9+MlJQUfPbZZ6hUyTW9t3Xr1sjPz9f0SE9PdzlWz9+BcMHkZhPII0sA4MSJExBCuGyTyR+gY8eO6d5Xzccff4yXXnoJc+bMwbPPPoukpCTcddddyMnJQVpamuIxRlxXzV9//YXY2FjVBDd5BIrNZsN7773nNRGucePGmD17tqbrZmZm6i+sivj4eAghcO7cOZcbWSB81QsQ3nVTs2ZNxc/E8ePHAQA1atRw2a61Dm+66SYAUnDToEEDXLhwATfeeCP+/PNPvPjii47nOnbsiISEhIBfg7O4uDgA0nuj5sSJEygvL0dGRobXfbT8PlWtWhUXL17Em2++iTfffFPxXP4Oe/bn74Az930qVark8p4fO3ZMd9mV6sNI3s7v7fVofS0nTpxARUWFYv1pqVOt5ZHFxcXhkUcewWuvvYYpU6bgwoULWLBgAUaPHu34rPrywQcfoGnTpjh9+jQ+/vhjvPvuuxgwYAC+/vprl/2SkpLQqlUrTed0Dpr0/h0IFwx8TOAc5aakpMBut+PQoUMe+x08eBAAHN/69eyrplatWnj99dfx+uuvY//+/Vi6dCmeeeYZHD58GN98843iMUZc11t5zp8/j9LSUiQmJro8t3XrVtx+++3o2LEjfvjhB/z73//GE088oXquunXr4qGHHvKrHIE4fvw44uLiXG7YaWlpEEJ47Dtx4kTFeSiKi4tdfvZWL0D4102LFi0wb948XLx40eUP4c8//wxAGk3iTKkOlWRkZODKK6/Et99+i6ysLLRp0wbVq1dHt27d8Pjjj+PHH3/Ehg0b8Pzzzxv/ojSoUaMGYmJiUFRUpLqP1t+nlJQURyuQ2nvboEEDv8rpz98BZ8XFxbjsssscP1+8eBHHjh1zBIv+lF3Pt//4+HiXRHGZt0DQ2/m9vR6tryU+Ph42m83jd1k+vx6+6lf22GOPYfLkyfj3v/+Nc+fO4eLFi3j00Uc1X6dp06aOhOauXbuivLwcc+bMwSeffIK7777bsd+aNWvQtWtXTefcs2ePI/Fc79+BcMGuLpMlJibiuuuuw+LFi12+SVZUVODDDz90/KHXu6+Wb6eZmZkYNmwYunfvjs2bNxtSRr2aNGkCAPjjjz9ctu/cuRPZ2dlo37498vLycOedd2LixImaR9UE0+7du9GsWTNDz6lWL4A16uauu+7CmTNnsGjRIpft77//PtLT03Hddde5bNdThzfddBNWrVqFFStWoHv37gCk1q/MzEw899xzuHDhgqNlSI2W3w9/JCQkoHPnzli4cKHqTVjr71OVKlXQtWtXbNmyBS1btkSbNm08Hu43Qn9o/Tvg7L///a/LzwsWLMDFixcdo8aMKrva+5SVlYXDhw+7jD46f/48li1bpqn8el6P1teSmJiIa6+9FosXL8a5c+cc5zp9+jQ+//xzw8rjrG7duujTpw/efvttvPPOO+jZs2dALbY5OTlISUnBc8895zJpqr9dXXr/DoQN07OIooicuHbkyBGX7fIIj+uuu04sXLhQfPbZZyI7O9vrqC5f+8rJaI888ohYt26dyM/PFydPnhTXXHONmDJlivj888/F6tWrxZQpU0R8fLy45557vJZd73W1Jjfv37/fI7t/z549IiMjQ1x//fXi7NmzQgghduzYIWJiYlxG6pjlq6++EgsXLhT//ve/BQDRp08fsXDhQrFw4UKPZOXy8nKRnJwsRo8ebWgZlOpFCGvVTffu3UVKSoqYNWuWWLVqlRg6dKhHgqYQ+utw0aJFjkTKNWvWOLY/8MADAoBISUkR5eXlLse4Jzcr/X7IyeVqv6fu51Ajj+q6/PLLHa993rx5YsCAAR6junz9Pm3btk2kpKSIa6+9VsydO1fk5eWJpUuXimnTpomuXbs69tOT3BzI3wH3UUfLly8X06dPF0lJSeLqq68WZWVlusuuVt/O5Xd/n3bv3i1iY2NFly5dxJdffikWLVokOnfuLBo0aKCa3Kx0fq2vR+trWb58ubDb7aJTp05iyZIl4pNPPhFt27YV9erV82tUl7f6lf3444+O34dvv/3W5zWEUB/VJYQQOTk5AoD4z3/+o+lcvmj5O7B69WoRExMjnn/+eY/j9fzNMQoDHwN5+wX8/vvvxY033igSExNFQkKCaNeunfj8888Vz6N13/Hjx4v09HRht9sFAPHNN9+IRx99VLRs2VJUq1ZNJCQkiMaNG4sJEyZo+gBpua7ewEcIIa6//npx6623CiGkbP8rrrhC/O1vf/MYQTF06FARFxfn88YTqPr162sasSCEECtXrhQAxKZNmwwvh3O9CGG9ujl9+rQYPny4SEtLE5UrVxYtW7YU8+bN8zin3jo8ceKEsNvtIjEx0WV4rzzyRWlYvFLQ4v77kZeXJ4QIPPARQojt27eLPn36iJo1a4rKlSuLzMxMMXjwYHHu3DnHPlp/j/fs2SMefPBBcdlll4nY2FhRu3Zt0aFDB/HSSy859tET+Jw7d87vvwNy3WzatEn07NlTJCUliapVq4oBAwaIP//806+ye/u7KIT6+/TVV1+JVq1aiYSEBHH55ZeLmTNneh3V5S3w0fJ6tLwWIYRYunSpaNmypeN9nzx5smK5jKhfWVZWlmjatKnP88u8BT5//fWXyMzMFI0aNfIYfeoPLX8H5M+p0ogtPX9zjGITQiFRgchAixYtQr9+/bBv3z6Xfm0rGDhwIHbv3o0ffvjB8HNbuV70MLMOyVgTJ07E888/jyNHjvid10fG+umnn3D11Vfjrbfe8hhFSv5hjg+Zrnfv3mjbti0mTZoU6qLo8scff+Djjz/Gq6++asr5rVovephdh0SR6o8//sCqVavw8MMPo27duhg8eHCoixQxGPiQ6Ww2G2bPno309PSwWIVcq/3792PmzJkBzxejxqr1oofZdUgUqV588UV0794dZ86cwcKFC7n2mIHY1UVERERRgy0+REREFDUY+BAREVHUYOBDREREUYNLVripqKjAwYMHUbVq1bBdYI2IiIhcCSFw+vRppKenw25Xb9dh4OPm4MGDqFevXqiLQURERH4oLCz0upAwAx83VatWBSBVXLVq1UJcGiIiItLi1KlTqFevnuM+roaBjxu5e6tatWoMfIiIiCzGV5oKk5uJiIgoajDwISIioqjBwIeIiIiihmUCn3/9619o2bKlI/emffv2+Prrrx3PCyEwceJEpKenIyEhAV26dMG2bdtCWGIiIiIKN5YJfDIyMjB58mQUFBSgoKAAN954I+68805HcJOTk4Np06Zh5syZyM/PR1paGrp3747Tp0+HuOREREQULiy9SGmNGjUwZcoUPPjgg0hPT8fIkSPx9NNPAwDKysqQmpqKV199FY888ojmc546dQrJyckoKSnhqC4iIiKL0Hr/tkyLj7Py8nLMnz8fpaWlaN++Pfbs2YPi4mL06NHDsU9cXBw6d+6MdevWeT1XWVkZTp065fIgIiKiyGSpwOfnn39GUlIS4uLi8Oijj2LJkiVo1qwZiouLAQCpqaku+6empjqeUzNp0iQkJyc7Hpy1mYiIKHJZKvBp3Lgxtm7dig0bNuCxxx7DoEGDsH37dsfz7pMWCSF8TmQ0fvx4lJSUOB6FhYWmlJ2IiIhCz1IzN1euXBkNGzYEALRp0wb5+fmYMWOGI6+nuLgYdevWdex/+PBhj1Ygd3FxcYiLizOv0ERERBQ2LNXi404IgbKyMjRo0ABpaWlYsWKF47nz589jzZo16NChQwhLSEREROHEMi0+//jHP3DLLbegXr16OH36NObPn4/Vq1fjm2++gc1mw8iRI/HKK6+gUaNGaNSoEV555RVUqVIF99xzT6iLTkFSVATs2gU0agR4WZiXiIiimGUCnz///BMDBw7EoUOHkJycjJYtW+Kbb75B9+7dAQDjxo3DX3/9hccffxwnTpzAddddh+XLl/tcpZUiQ24u8PDDQEUFYLcDs2YBQ4aEulRERBRuLD2Pjxk4j4/1FBUB9etLQY8sJgbYu5ctP0RE0SKi5/EhcrZrl2vQAwDl5cDvv4emPEREFL4Y+JDlNWokdW85i4kB/m8AIBERkQMDH7K8jAwppycmRvo5JgZ49112cxERkSfLJDcTeTNkCJCdLXVvNWzIoIeIiJQx8KGIkZERvQEPh/ITEWnDri4ii8vNlUa13Xij9G9ubqhLREQUvhj4EFlYUdGl+YsA6d9HHpG2ExGRJwY+RBbGofxERPow8CGyMA7lJyLSh4EPkYVxKD8RkT4c1UVkcRzKT0SkHQMfoggQzUP5iYj0YFcXERERRQ0GPkRERBQ1GPgQERFR1GDgQ0RERFGDgQ8RERFFDQY+REREFDUY+BCRX4qKgLw8rgtGRNbCwIeIdOOK8ERkVQx8KKKxVcL4OuCK8ERkZQx8KGKxVcKcOuCK8ERkZTYhhAh1IcLJqVOnkJycjJKSElSrVi3UxSE/FRVJN3rnG3RMDLB3b/Qs7WBWHbBuiSgcab1/s8WHIhJbJcyrA64IT0RWxkVKKSI1agTY7Z6tEg0bhq5MwWZmHXBFeCKyKrb4UESyYquE0UnIZtdBRgbQpUt41ykRkTvm+Lhhjk9kKSqyRqtEbu6lkVJ2uxSwDBlizLmtUgdERIHQev9m4OOGgQ+5KyqS8mUaNTIncGCyMBFR4JjcTBEvGHP0OA8Hz8wExo41/npMxCYiCh4GPmRJwZijx32iPiGAqVN9X09vQCYnITuLtkRsIqJgYeBDlhOsmYOVWmJ8Xc+fgMyKidhERFbFwIcsJ1hdQ0otMd6uF0hANmSIlNOTlyf9a1RiMxERuWLgQ5YTrK4huSVGKfhRut66dYEFZBweTkRkPgY+ZDnB7BoaMgTYtw8YM8b79XJzgf79PY83IiDjQqtERMbhcHY3HM5uHcGen0btekrD0YFLAVIg3VZmzu9DRBRJOI+Pnxj4kF55eVIys7sFC4A+ffSfT543KCkJaNeO8/sQEWmh9f7NtbqIAqS2Jlb79vrP5dzCY7NJQ+idyTlDRgQ+zhMzAuZO0khEFC6Y40MUIKNyjvLzPecNcmdUErf7xIyZmebOiUREFC7Y1eWGXV3kr0ByjnJzgaFDlYMduTXJiJwhuZxKOUkydqcRkRWxq4soyDIy/AsW5Pl/1Fp41q8HSkuNS+JWm5hRZmR3GhFRuGHgQxRiaoGI3S618LRta+z1lHKSnHG5DCKKZMzxIQoxpQkZ7XZgwwZzhq675yTZ7VIiNcDlMogo8jHwIdLAzEkElZKjZ80yvqXHmfMSGfv2Afv3c7kMIooOTG52w+RmchesSQSDPSEjEVEk4QSGfmLgQ86URkBF46gn5zl/oul1E5F1aL1/s6uLyItgrQQfzpzn/OE8P0RkdQx8iLwI1krw4Uoeai8HfxUVwCOPWHPBVC72SkSAhQKfSZMmoW3btqhatSrq1KmDXr16YefOnS77CCEwceJEpKenIyEhAV26dMG2bdtCVGKKBMFcCT4cRUqLF1utiEhmmcBnzZo1eOKJJ7BhwwasWLECFy9eRI8ePVBaWurYJycnB9OmTcPMmTORn5+PtLQ0dO/eHadPnw5hycnqnEdARduop0ho8YqkVisiCpxlk5uPHDmCOnXqYM2aNbjhhhsghEB6ejpGjhyJp59+GgBQVlaG1NRUvPrqq3jkkUc0nZfJzUSucnOlQKG83LhlM4IpL09q6VHa3qVL0ItDRCaJ+OTmkpISAECNGjUAAHv27EFxcTF69Ojh2CcuLg6dO3fGunXrVM9TVlaGU6dOuTyItIqGvBGrt3hFQqsVERnHkoGPEAKjR49Gp06d0Lx5cwBAcXExACA1NdVl39TUVMdzSiZNmoTk5GTHo169euYVnCJKNOWNZGRIrSNWzG2K9jwtInJlycBn2LBh+OmnnzBv3jyP52zy3Pv/Rwjhsc3Z+PHjUVJS4ngUFhYaXl4yT6haXCIpbySQOrRKi5fVW62IyDiWC3yefPJJLF26FHl5echw+sqWlpYGAB6tO4cPH/ZoBXIWFxeHatWquTwimVVuVGqcyx/KFheOdrJei5eVW62IyDiWCXyEEBg2bBgWL16MVatWoUGDBi7PN2jQAGlpaVixYoVj2/nz57FmzRp06NAh2MUNS1a7UblzL//QoaFrcTEibyTUQWggrVZ6jvX2OkNdB0QUfSwT+DzxxBP48MMP8dFHH6Fq1aooLi5GcXEx/vrrLwBSF9fIkSPxyiuvYMmSJfjll18wePBgVKlSBffcc0+ISx96Vu+aUSq/+3jEYLa4BJo3ohSEBjsICKTVSuux3oJtqwfiRGRRwiIAKD7mzp3r2KeiokJMmDBBpKWlibi4OHHDDTeIn3/+Wdd1SkpKBABRUlJi8CswX2GhEKtWSf+6W7VKCClUcH3k5QW9mH5RK7/zIyZG+bU781ZH/igslOpQz/kKC4Ww213LbrNd2ma3CzFnjjHl01sOLXWo9Vhv+wRybSIiJVrv35Zp8RFCKD4GDx7s2Mdms2HixIk4dOgQzp07hzVr1jhGfUU692/PU6e6Pm/1Ib1K5bfbL23T0uLiq4XBnxYXf/JGlFpLhAh+a1wgrVZajvXWKhQpOVJEZD2WncDQLFacwFBpBXEAyMkBxo699LPVJ6JTKn92tnSzbNjQ+w3b1yrrubmXutLsdummrqdu9KxervZ+uQvWBHtFRdrqUO+x3uoc4Kr3RGQsrfdvBj5urBj4qM1Ma7cD+/a53kgCucmFA3/L72323oYNA7sJ+xM0OR8jz7bg/JsYqiBATwCnhbdg2+qBOBGFl4ifuZkuUeoGAqSbqnvXgdWH9Ppbfm9dfYF0uxiRNG6zAfffH/oJ9sxINvY2fw7n1iGiUGCLjxsrtvgAUk6Pc7cWwK4Dd2otDL66wbzRug6Uc0sKoHy99euB0lJt3XZGtsrI52TXExFZGVt8osyYMVJOj55k32ij1sIQSJKvlqRx95aUGTOUW5hKS323Zpk1BNysZGPO00NE4YYtPm6s2uIjU8uBMaOVINI41x2gvb685aootaTIgZLe1hUzW2XMOHegCeNERHqwxSdKKeXARMpEcXLrQX6+Oa0Ict0tW6avvrzlqii1pFRUAKNH629hMnMIuNELeVp9wkwiilxs8XFj9RYfd76GFGtp1QiH1iLn1gOZGa0IRrd8+Kp/PSPUgpGHY9SoP625T0RERmGLDwFQbyWYMUNbq0Y4tBa5tx7IzGhFMLpVxVtLitYRanJLF2Bsq4xaeY0Y9Wf1CTOJKHIx8IlwajMeT5vmuxtCqbvi4YeD312hFIzIAglKlBJvzbhhBzJs2z3wBKwxBNzorjMiIqMw8IlwSjeg0aO9t2rIAcG6dcqtLDNmmF9uZ2rzFAH+ByVqLVlm3bD9aUlRy5MBrDEXE+fpIaJwxBwfN5GW4yNzH7GkliuybJnrjMJKnw6lGaHNppTj4+9sv1pyZcJhhmvmyRARacccH3Lh3OKg1qoBuAYXaiGx0ozQwWS3S/MW+duKoCWPJxxmuGaeDBGR8Rj4RCmlbghvuTTO7HbtN18jJrBT6vKZPt3/81kloLBSnkwoJyrkJIlEpAcDnyjm3qrhLZdGZrNJN2Oti3caMSIsmCOtwo0V8mRCOfIvHEYdEpG1MMfHTaTm+Gg1ZQowbpzrtpgYYOZMoGZNoH374M85Y9b8NeGQx2N1RswTZca1+X4SRR/m+JCDnq6ANm08t5WXA02aAH36aL+hGN1K489Mx76EQx5PKBnRRRToPFGBMHMmayKKXAx8Ipx7V8DUqd5vdkblvxh1Hrn8U6dKN7lAkpojSaBBi1FdRIHMExUoq+RqEVF4YeATwZSSgseO9X6zMyr/xYjzuJdfiMCSmiNFoEGLketo+TNPlFGslKtFROGDOT5uIinHR20eGJm3fAit+S++1vFSOo/Wtb84j40nI/JazKhXrfNEOZfRqDXgmKtFRABzfAi+R2l5+xauJf9FS8uD+3n0tFawK8OTEXktZtSrlnminD9LRo7GivZcLSLSh4FPBHO/AbkL5Gant7ukqAhYsAAYOlTbGmHBWpQzGIycZ8aIoCUYXUTehuEb2dVGRKQXAx+L8Pfm6XwDyskx7manp+VB/nbfr5/nbNDux1h1UU41Rs8zY1TQEoz5gdRaYjgai4hCiTk+bsIxx8d5nSq7Xbrx+XujMiofQmuuidJ+zpyPibR5Wcx8PaHOawkkPyfS3mciCg/M8bEQb605RncLGJUPobXlwdsyGO7HRFpLgJmvJ5R5LYG2YnE0FhGFEgOfEPN1EwnnYEBLd4laTsqCBZ7HRFoyc1KStMSHMyu/HsC4QNwKS3EQUWRi4BNCWm4i4R4M+Gp5UPt2rzQLdCS1BOTmAu3aueY0Wfn1yIwMxDkai4hCgYFPCGm5ifgTDITbatV6vt1HQkuAe0ALSMHr+vXGv55gv9fhHoiH22efiMIPA58Q0noT0RMMGDGKyMibh/PQdK3f7q3eEqAU0FZUAKWlxl4nFCuTh3OrHFdqJyItOKrLTbBHdeXmSt1b5eWXbiKBjNgKdLSMkSPIjDyXlQRj1FKoR0YFe1SZlhnCOVKMKLpxVJdF+Nu1o9QqE2j+hZEjyHydK5K7JILRKhLqpPdgtsppackJdX0QkXXoDnzef/99fPnll46fx40bh+rVq6NDhw7Yt2+foYWLFnpvImo3gkDzL/y5eagFMN7OFewuiVAEWWblKsmvJSkpvHNtjKI1GA/33CMiCh+6A59XXnkFCQkJAID169dj5syZyMnJQa1atTBq1CjDC0iuvN0IAm1p0Hsz9RbAKN2I7HbgzJngLlcQyrwPo1tFnF9Lu3bAwIHhmWtjJK3BeDjnHhFReNGd41OlShX8+uuvyMzMxNNPP41Dhw7hgw8+wLZt29ClSxccOXLErLIGRTjO3OxMy8ra/uRfOOfjyLzlHGnJqXDOX5LZ7coTGpqx4nok5X2ovZb166Wk6UhdmVzvexjqGa2JKHRMy/FJSkrCsWPHAADLly/HTTfdBACIj4/HX3/95WdxSSstTfpySwPg2cWj1O3jz/BrLd/EhwyRzuE8iZ9S0GNWl0Qk5X2ovZbSUmuPgPNFb0uO1UcEEpH5Kuk9oHv37njooYdwzTXX4LfffsNtt90GANi2bRuysrKMLh+5kW8EziPBJk+Wbozy84DyiCpAeZSVP8Ov5QDM/Zu4ewBz5oznwqTApWPN7JLQWkYriKTXoteQIUB2NltyiMgYult83nrrLbRv3x5HjhzBokWLULNmTQDApk2bMGDAAMMLSJ6cE2cnTQKefto1h0UtD2joUOXcGn8SQ92/idvtgFKKl9q5N2wwf5LCSMr7iKTX4g+25BCRUXTn+Ozfvx8ZGRmwu93NhBAoLCxEZmamoQUMtnDP8XGmlP9gtwMzZwKPP67tHHJujb/zCRUVATNmANOmqc/XY+RcRf6IpLyPSHotRERG0nr/1h34xMTE4NChQ6hTp47L9mPHjqFOnTood85ktSArBT5qic6AlFfjvk5URYXnNuckUX9uqlqTT614w/Y1aR4REYUP05Kb1eKkM2fOID4+Xu/pKABK3UjOnLtFJk0Cnnrq0v5KXSX+dCfoGW5spa4KLn9ARBSZNCc3jx49GgBgs9nw3HPPoUqVKo7nysvL8eOPP6JVq1aGF5DUyXkf7iOyAKll56GHgP79gYICKQ9I7ooaMwYYMcK/IERuBUlKkhKX5bl/IinpVi1HKjvb2MCNLUpERMGnOfDZsmULAKnF5+eff0blypUdz1WuXBlXX301xowZY3wJCYD6TXLIEKBlS+Daaz2PmTNHel4OegDp3+nTpcBHL6W5fux2aSK9Dz90zeGx8o3cWyuWkZMRRuM6ZkREoaY7x+eBBx7AjBkzwj7/xV/hmOOj5SY5diwwdarnsX37AgsWeG7XO2GgUi6PLNIm0jN74sNImljRGVuwiCiUTMvxmTt3ruOERUVFOHDggP+lJJ+0rlU0YoTyEhELF3qeU09XlDzh4bp1ykEPEHkT6Zk9dDySJlaUMSeKiKxCd+BTUVGBF154AcnJyahfvz4yMzNRvXp1vPjii6hQuzOS33zdJOXABPC8WY8erTx54KhR6tP9O8/q7HwzGzDAdQZmZ/4EUkprc4XTiu1mLTIKRN6CmlqDcyKicKA78PnnP/+JmTNnYvLkydiyZQs2b96MV155BW+++SaeffZZM8oYtYqKgF9/9Qw45Juk+7dswPVmrdYKpJTf436uKVM8b2Y2m/INW2triLdWgXBsMTBrJFq4TUYYaMAZiS1YRBS5dOf4pKen45133sEdd9zhsv2zzz7D448/bvmur3DJ8cnNlWZaVnp3bDYgJwcYN055Xh7gUq7FsmW+Jw9UmwhRqQFvwQKgdm0gMVFfTo+3vBYgMnNefAmHuY2MSLKO1JwlIrIW03J8jh8/jiZNmnhsb9KkCY4fP673dLp899136NmzJ9LT02Gz2fDpp5+6PC+EwMSJE5Geno6EhAR06dIF27ZtM7VMZpC7DtRCUiE8gx5ACm5mzPDeCqR0U1Nbq0updad9e6kVpG1bfa0h3loForXFINRzGxnVRRVuLVhERN7oDnyuvvpqzJw502P7zJkzcfXVVxtSKDWlpaWq1weAnJwcTJs2DTNnzkR+fj7S0tLQvXt3nD592tRyGU0pEHCn1hIkLx0BSP8+/LD0f283WLWck1dfNe5m5i2vJdJyXqzCyIDTzJwoIiJDCZ1Wr14tEhMTRdOmTcWDDz4ohgwZIpo2bSqSkpLEd999p/d0fgMglixZ4vi5oqJCpKWlicmTJzu2nTt3TiQnJ4t33nlH83lLSkoEAFFSUmJkcUVhoRCrVkn/atnXbhdCCm+0P7p0Ud4+ZozvssyZI0RMjLR/TIz0s7xvXp62cvuidg1fz5E5lD5nMTHGvNdERMGm9f6tu8Wnc+fO+O2333DXXXfh5MmTOH78OHr37o2dO3fi+uuvNzww02rPnj0oLi5Gjx49HNvi4uLQuXNnrFu3LmTlAvQn7spdB0qJyd6sXq28fdo05ZFazmVR+8ZuZHeMt1YBthgEH7uoiCga6U5uDhc2mw1LlixBr169AADr1q1Dx44dceDAAaSnpzv2e/jhh7Fv3z4sW7ZM8TxlZWUoKytz/Hzq1CnUq1fPsORmPYmf7hPAFRVJEwMCUm4NAHzxBfDYY/rLIS9TwSRUchcOSdZERIHSmtyseckKZydPnkRubi527NgBm82GZs2a4cEHH0RycrLfBTaKzW3stxDCY5uzSZMm4fnnnzetPFqXP1AbXdOnj+s+Tzzhei73VdjVTJsmJSSbvRQDWU9GBt9/Iooeuru6CgoKcMUVV2D69Ok4fvw4jh49imnTpuGKK67A5s2bzSijJmlpaQCA4uJil+2HDx9Gamqq6nHjx49HSUmJ41FYWGhoubQk7moZXeO+DyCdd+lS311g8jnV5uFhEjEREUUL3YHPqFGjcMcdd2Dv3r1YvHgxlixZgj179uD222/HyJEjTSiiNg0aNEBaWhpWrFjh2Hb+/HmsWbMGHTp0UD0uLi4O1apVc3kYSUsehbdWIW9LRlRUAGvWKOcDuZOHoocipyOcZmQmIqLoprurq6CgALNnz0alSpcOrVSpEsaNG4c2bdoYWjh3Z86cwe9OY2337NmDrVu3okaNGsjMzMTIkSPxyiuvoFGjRmjUqBFeeeUVVKlSBffcc4+p5fJlyBAgO1s9j0JuFXLPvSkoALp1u9T9pdStNW0asG8fsGGD8grt8rnkAMe9LIAUlPi7sKSvhSm5CjkFggufEpHh9A4Xq1Onjli2bJnH9m+++UbUqVNH7+l0ycvLEwA8HoMGDRJCSEPaJ0yYINLS0kRcXJy44YYbxM8//6zrGmYNZ/fFfTh3To7nUGObTXm4+oIF0hBk9+0226Xn1K4pX8NuVx9CrjYU39fxHC5NgdD6+SQiEkL7/Vt34PPkk0+KjIwMMX/+fLF//35RWFgo5s2bJzIyMsSIESP8LW/YCFXgI4TrnDmrVmmfv8duFyI7Wz0oUruWlqBE7eaj5Xi115CXZ0btUSRh0ExEemm9f+vu6po6dSpsNhvuv/9+XLx4EQAQGxuLxx57DJMnTzaqISriKTXhu4+uUer+Ki/3PFdFhbQml5J+/YCNG6Wh7FrziuT91JKus7O1Ha/WhcdkavJF62hIIiK9dCU3l5eXY/369ZgwYQJOnDiBrVu3YsuWLTh+/DimT5+OuLg4s8oZUbRMaKiUFD1qlP5rCQFMnQpkZrpeR8toM283Hy3Hc4I88heXMSEis+iewDA+Ph47duxAgwYNzCpTSJm9OruWCQ2dW4MA10Rk92P1cL9Obq73ldt9ldXX8c7n4QR5pJfWzxcREWDi6uwtWrTA7t27AypcNPO1MKR7a9CMGZcCBvcWFFlMDDBokOd2d+XlwMKFl4aV+1omwleLjbfjnYewh3oVctIunKYe4DImRGQKvclDy5YtE61atRKff/65OHjwoCgpKXF5WJ3Zyc05OZ7JvnLSptripDab64iWwkJp4VF5lJf8vJwcnZNzaYSYWjK0nhEyehcq5Wgca+L7RkRWpvX+rbury+7U8e68FIT4v6UhypWyby3EzK4upa4jAJgyRVpLKy9PaulR4tzFpLW7bMYMaZ4fpa4xs9bo0rM2mbw/52kJPb3vGxFRuDFtra68vLyAChbNlLq5AKBNG+nG8+uv6sc6j2jRMuIlI0MKqEaMkLq3Ro/2vr9R9IzG4eSG4YOjqIgoWugOfDp37mxGOaKC2vDub7+VWnq8tb05j2jRM0w8I0Na6HTMGO/7G9XyorVs3obK80YbfJx6gIiihe7kZvKfUrLwXXcBL7/se4X1++5zbc3RM0zc1/5ahtcH8hqVyuYryZuCi1MPEFG00J3jE+nMHs4OXBrenZgIXHed76AHUM630DtMXGl/s3I7fJWNOSXhiVMPEJFVmZbjQ4GTh6YvWKAt6AEuDUXv08f1hiQfX1QkreAOAB06KN+03GeGBszL7VC6lvvzs2Z5ztPCm21o+XrfiIisTlPgs3TpUtxyyy2IjY01uzwRzzmX5tgx5X3uuw/46CPPgGT0aClX59VXgZSUSzky7qu222zA7NnaEoVDmdvha9V6IiIio2nq6oqJiUFxcTFq166NmJgYHDp0CHXq1AlG+YLOzK4u51FM8kwA7rVvswH79wPz5gHPPGPcLM3eTJly6VrOM+RyqDkREVmFoTM3165dGxs2bABwab4e0sd9FJM8naC72bOlBUflQMTfqtaaKJybe+ladjswebIU9BiZ8AyE14zAREQUvTQFPo8++ijuvPNOxMTEwGazIS0tDTExMYoPUqY2h4+7b77xDJD8oaW7SmlI+TPPAPn5ykPN/Q1ajA6iiIiI/KUpx2fixIno378/fv/9d9xxxx2YO3cuqlevbnLRIotSLo2STz4J/Fp2u7ZEYbXE5rVrjUt45nw9REQUTjSP6mrSpAmaNGmCCRMmoE+fPqhSpYqZ5Yo47qOY3BOSjWCzAW+/Ddx+u7agQi2xuVMn4xKeOSMwERGFE90TGE6YMAFVqlTBkSNHsHbtWvzwww84cuSIGWWLOM6rTe/fD3z+ubHnFwJo0kR7QKE2aV3btsZNZicHV844IzAREYWK7gkMz549i2HDhuE///mPY0HSmJgY3H///XjzzTct3xIUjAkMnd18s5TMbAS7Hdi3z7/uKKUh5UZNZpeb6zlfD9fkIiIiIxk6qsvZqFGjsGbNGixduhQnT57EyZMn8dlnn2HNmjV46qmnAip0NHrxRePOJYR/QVRGhhTc7NrlmsCckQF06RJ4l5RzS9fevQx6iIgodHS3+NSqVQuffPIJunTp4rI9Ly8Pffv2tXy3V7BbfMaOBaZONe58drs0B5Da7M1KuEo6ERFZnWktPmfPnkVqaqrH9jp16uDs2bN6TxfVioqA115Tf95u95zHx9e8PhUVQL9+QGamNDGhljIYOXTd17U4l0904XtOROFGd+DTvn17TJgwAefOnXNs++uvv/D888+jffv2hhYu0u3apT6yy2aTlqbo0cN1u/vPaoQAxo1zbU1yvwkVFUnrhQVjlXTO5RN9+J4TUTjS3dX1yy+/4Oabb8a5c+dw9dVXw2azYevWrYiPj8eyZctw1VVXmVXWoAhmV1dREVCvnr5jYmKkQEXruyYnPC9b5tqdNXAg8J//KM8rZPQq6VyJPfrwPSeiYDOtq6t58+bYtWsXJk2ahFatWqFly5aYPHkydu3aZfmgJ9gyMqRgRI/ycuCpp1yHmufkSC03St1gFRXA+vWe3Vnvv68e9Bi9Srq3uXwoMvE9J6JwpXkCQ2cJCQkYOnSo0WWJOkVFgEK6lFd2O9C5szTXjs0GtG9/KUjZu1fq3nIWEyO1DmlZLmP6dODuu43/Rh7KFeApNPieE1G40t3iQ8aQ8x/0DmevqAB69pQSmPv3dx2+PnaslNAsTxgot9506OA5iaC7mBhzgh5AfaJEdnlELr7nRBSudOf4RLpg5Pgo5T/4y24HnnwSaNxYCogyMpQnHnSfRPC++4APP/Q+qWBRkdRl0aiRMTcsoyZEJOvge05EwaL1/s3Ax00wAp+8PGmkixnmzFGfg8f9JuTtpuQ8t4/NJuUVjRhhXABkZEBFRETEwMdPVmvxcWezSeuABRJQqJXPiMkN/Z0sUUuwxICKiCh6mTaq6/LLL8exY8c8tp88eRKXX3653tNFJTn/wVfejT+EkEZxBUJpRA4Q+OSG/k6WqGU+GM4ZQ0REWui+9e7du9exOKmzsrIyHDhwwJBCRYMhQ4ANG8wJfvRQmllXaUV1mdKQZK2z8/ozxFlLsBTM2aeJiMjaNA9nX7p0qeP/y5YtQ3JysuPn8vJyrFy5EllZWYYWLtK1bSu1/DjftI2g9W1Q6nbKzpYClMmTgWee8SyX+5BkPV1X/gxx9hYsyd1ZWvYhIiICdOT42L00TcTGxiIrKwuvvfYabr/9dsMKFwrBXqS0qEhaV8vITCu7XVruonVr9XwXpevKEyAKcekcf/4pze+jNPpL6+y8zrk3y5a5ji5TGk3mXk5f1+AswUREZHiOT0VFBSoqKlC/fn0cOXLE8XNFRQXKysqwc+dOywc9oeBtvS6tnnzStWuqokKa08dbvsu6dZ7XFeLStooKqcVnxAgpgMjLk/51DlK0dF25594A6udTomU+GM4ZQ0REWumaufnChQvIysrCsWPHULNmTbPKFFWSkgI/x1tvqXeVyfku2dn6AwE5iOnSRfp51y7pX/k8vrqu1HJv9u69dE4thgyRyu9tPhgt+xAREelKrY2NjcUvv/wCm9KiUOSXPXsCP4c8144apQTiDh28HwNcCmLURkz5amkxcr2mjAwpWPIW0GjZh4iIopvuMUX3338/cjlWOOz46i5LTHT9OSMDmD37UheZ3Q4MGuQZxADeR0wNGaLedaU0OozrNRERUSjpXqT0/PnzmDNnDlasWIE2bdog0e2OOm3aNMMKFw3klhejkpvVzlVa6rlNqXvopZdcf87L8z1iKiNDuZVFbhFyT2ZmiwwREYWK7sDnl19+wd/+9jcAwG+//ebyHLvA9JNbXh56yJjzySOynIMVu92zxcf5+u6Jws4/B7rKNnNviIgonHDJCjfBHs4OSN1G9eoZcy6bDcjJAcaN82z58baOlzfuC5z6GoJOREQUbKYtWUHGW7fOuHMJAWzfrtzdNXSo99mM1WZg9pbHQ0REZCW6u7oAID8/HwsXLsT+/ftx/vx5l+cWL15sSMHIf3PnKm+X1/Hq08fzOV8zMKvl8RAREVmJ7haf+fPno2PHjti+fTuWLFmCCxcuYPv27Vi1apXLMhaknZah5UZRWF+Wa12RKbSu4UZEFEy6A59XXnkF06dPxxdffIHKlStjxowZ2LFjB/r27YvMzEwzyhjx5ATnYFCad9LI+XaIAPW5n4iIQk134PPHH3/gtttuAwDExcWhtLQUNpsNo0aNwqxZswwvYLQYMgTo3du/Y7W2FtlsQPv2nts53w4ZiS2IRBTOdAc+NWrUwOnTpwEAl112GX755RcAwMmTJ3H27FljSxdlWrfWf4zdLrUWDRrkeS7ngMhmk/bzNt8O17oiI7AFkYjCme7k5uuvvx4rVqxAixYt0LdvX4wYMQKrVq3CihUr0K1bNzPKGDXuvx/45z+17WuzAU89JS0impEhtRg98QTwww9Ax45A27bSN+z166X927d3Xc1cXi1d3sb5dsgogc79RERkJt0tPjNnzkT//v0BAOPHj8eYMWPw559/onfv3mGzlMXbb7+NBg0aID4+Hq1bt8b3338f6iJpkpEBpKRo2VNg6VJgyhTXAKWtrQAjl96ItrYCx/n69JEeGcUFwI03IvfZvcq5FwUFyLj/RnRJKlAOegqk41FQoFwkb88HcqwRz1NQsQWRiMJZxE1g+PHHH2PgwIF4++230bFjR7z77ruYM2cOtm/frin5OhQTGDpr1Ehbl8DAgUCNGkBxsTQrc61awL7F+fjz9xKkNkxG59Ft0aYNcOaMtAL8iuFLsWlDGRbj73CPd7OygPOHjyPj7K9o3lSgVs+OKCsD6tSRvqU3aADseW4u8M1XaND3Opx5dAySkqRzN2oEbN0KfDX+O1z7yxxUubkL8MCD0jF7pFFkJz5YisMbfkeddg3RcNQdjucA6dxnJr2JRkteRcbwvwMzZgCQWqXWrZOOr7n03+jwzXPIGP535N83A59/DpSVAXFxQM+eQN1/PYfP5x7GobZ3oudbt6BtW8/6Umrl8vZ8URHwwQfAr79eChIbNZL2dd9v1y641If7Ps7nV9rPeZue4CA/H/j+e+D664G6db2/PrMo1avzay0tvdSC6GtfvXXg/Prd33PnawHa6kb+zAHSSEvnfX19ftz3U3o9zs/Jn/8OHbyXz+X3oOb//b7o+Pxo/dy7l8mfz5C398MbrZ8Btc+P2num9/paf1+D/TvmrZxangs3ZpZV8/1b+OHixYti4cKF4oUXXhAvvvii+OSTT8SFCxf8OZXhrr32WvHoo4+6bGvSpIl45plnNB1fUlIiAIiSkhIziufTuHFCSDPu+HpU6NhHy75ar+V+zgqV63i7pud+dlwUc6qOFGLTJjHn/+0RNpvr8TaUiw6VflQ4b4XH+QbddkSIvXsddTpnjhB2u/S83S797Mz9+UGDlMtts0kP5/3k49T2mTPH9fxK+8kPpbKpcS+j+zWDQale1era175668D99Q8apFwupfdD7bU4vx82m/ey+6oP99ej9Jyv9869THo/P3o+9+7n1vsZ8vZ+eKP1M6D2+VF7z7TS+rnU+jkyi7f3UuvnMxyYXVat92/oPfHPP/8sLr/8clGlShVxzTXXiGuuuUYkJiaKrKws8dNPP/ldYCOUlZWJmJgYsXjxYpftw4cPFzfccIPiMefOnRMlJSWOR2FhoaaKM0u/foEEKNZ+xOCC2Ig2woaLKvtoDeAqxEa0EUIIUVjo+UcsJkbarva8oa8pRv3mpba/XDY1GzcGfo5AKdWb3a5c1xs3Km9Xqxdf5Vd7/Rs3+n4/lc6tdozdrl52refQ+xmQz+3v59Lb8Xo+93o+Q97eD72fIa1ltduV61RPubV+hkP1O+atnFrf53ASjLJqDXx05/g89NBDuOqqq1BUVITNmzdj8+bNKCwsRMuWLfHwww/720JliKNHj6K8vBypqaku21NTU1FcXKx4zKRJk5CcnOx41DNq0Sw/rV4d0suHVDkqYS06QiBGZQ+tszza8MO9/wLge4SR0vNGKi+XfsX17O+rq9NXylowRlAp1VtFhXJdr12rvF2tXnyVX+31//CD7/dT6dxqx1RUqJdd6znk/bV+BuRz+/u59Ha8ns+9ns+Qt/fDG1915q2sFRXKdaqn3Fo/w77KZzZv76WVRlCGU1l1Bz7/+9//MGnSJKQ4ZeGmpKTg5ZdfxtatW40sm9/cV4kXQqiuHD9+/HiUlJQ4HoWFhcEooqouXUJ6+ZCKwUV0wg+w2dTuElojCIGOI9oA8D1HkdLzRoqJ0Tcrt5bRT9dfH/g5AqVUb3a7cl136qS8Xa1efJVf7fV37Oj7/VQ6t9oxdrt62bWeQ95f62dAPre/n0tvx+v53Ov5DHl7P7zxVWfeymq3K9epnnJr/Qz7Kp/ZvL2XVpqDLazKqrcp6eqrrxYrV6702L5y5UrRvHlzvaczlD9dXe5CneMzcKDWZu3IyvGJwQUxx/aQEICY8+xej2ZsGy6KDlircF6FHJ/bj7rU6Zw5UpOq3LSqlD/g/Ly3HB+5qVbeTz5ObR85Z8B9P6WmeqWyqVHL8dFzjkAp1ataXfvaV28d+Mrxkc/rXM/ezu2e1+Ge4+Pt86N0XffXo/Sc82dB6dy+8oKUug3cj9f6uXcvTzBzfLR8BtQ+P86/Q/6UW+vnUuvnyCze3kutn89wYHZZtd6/dY/q+uqrrzBu3DhMnDgR7dq1AwBs2LABL7zwAiZPnoxOnTo59g3FqKjrrrsOrVu3xttvv+3Y1qxZM9x5552YNGmSz+NDParrssuAgwd97zcwbj5qDbwVxaXVkIgzqPnpv7E/vhGKa1+FtCO/4IaLq9H6o6dQ+pcdiY8OxLcJt2Nz7ZvxydbL4drQJ5CFP3C+UiLqXQa0OLMeNc8W4fy9g1H78mpomHIMWf+8F3tTrgG6dkXWD/9FafFpJH7wL5QmpaJh4iFs7TEW38TegTa31Ebi2mXAsWPI+vAl7C2qhGPjXsWJqpk40rgTau9ci4al/5Oe+ytV2u+f96K0dhYaDu6EjMVvAIWFQH4+ipCB9V8cw7Fxr6JmbTvaD22OjMVvIP+PGvhy0Mc4VzkZ8edLcNv7/VC3XiV80Wwcilf/itvKFqPt/+Z4DBcoKvI+R5H780VFwH/+A+zcKbXCZWVd+mbivt/vv0sj6+QRTO77OJ9faT/nbXpHdcnzNtWtG5o5mJTq1fm1Oo/S8bWv3jpwfv1Ko7rkawHa6kZt3iu11+mtPpRej/Nze/deuo638sllkkd1ZWXp+/xo/dy7l8nfUV1q74c3Wj8Dap8ftfdM7/W1/r6Gap4zb++l1s9nODCzrFrv37oDH7tTW5XcfSSfwvlnm82G8vJy3QUPlDyc/Z133kH79u0xa9YszJ49G9u2bUP9+vV9Hh/qwKd6daCkxNdeAp8vOo/be8dd2lRWBlSuLLX/CgGcPw/ExUlDB7edR6NmscioZ0PuHIFHHgXKy22O+VWG3Kd8rK9za3o+kGONeJ5CIjf30rIVdrs0r8+QIaEuFRFFMtMCnzVr1mjet3PnznpObZi3334bOTk5OHToEJo3b47p06fjhhtu0HRsKAOf/Hzg2mu17z9mzKWZm+Xjned1eekl6YYjhOvNRy3ittJcEBS+ioqkeY/cZ27eu5efKyIyj2mBT6QLZeAzcqRj/j7N5DW4vv8eeP997/t6u/nwGzoZJS9PmvRRaXs0J+8Tkbm03r9NHM9Cep05o/8YIYChQ30HPYD60EGupk1GCqvRG0REbhj4hIncXKd1s3TS02anFFyF0/wKZH1cq4uIwlmlUBeApJaVoUODcy2lYIaraZPRhgwBsrOtM9KEiKIHW3zCwLp1+lptAqE0qRi/oZMZMjKknB5+jogonOgOfCZOnIh9+/aZURYyyNy5ytvvvlt9fo0hQ6TE57w86V/3xOaiIuk55v0QEZGV6Q58Pv/8c1xxxRXo1q0bPvroI5w7d86MckWVDh2MO5fNBhw96jmd+z//CSxc6P1YtW/oubnS8OQbb5T+9TcXiYiIKNR0Bz6bNm3C5s2b0bJlS4waNQp169bFY489hvz8fDPKFxWWLTPuXEIATz/t2nUWEwM8+qh/5zNixBdbi4iIKFz4lePTsmVLTJ8+HQcOHMC///1vHDhwAB07dkSLFi0wY8YMlPieepj+j9GJzTabvhFa7kGJ+8+BjvhiaxEREYWTgJKbKyoqcP78eZSVlUEIgRo1auBf//oX6tWrh48//tioMkY0oxOb1c6VmOi5LTcXyMyUgpLMTGDwYM8gRcucLGotOpwfiIiIwo1fgc+mTZswbNgw1K1bF6NGjcI111yDHTt2YM2aNfj1118xYcIEDB8+3OiykhfuOT3uSktdf5ZbmuRASQhpEkT3IAXwPuLLW4sO5wciIqJwo3vJipYtW2LHjh3o0aMHhg4dip49eyJGviv+nyNHjiA1NRUV7nc9Cwj2khV61+dS4j4HjzulpSoWLAD69fN9bnmZAbUVjL2tyWTkmk1a1hHjWmNERNHLtCUr+vTpg7179+LLL79Er169PIIeAKhdu7Ylg55Q8GeZCndPPOHZHSULZE6emBjg8GEpONu1y3MiOl8tOmrzAwH6kp215Akxl4iIiLTQ1eJz4cIFNG7cGF988QWaNWtmZrlCJtgtPkVFUn6NkXk+MTHA5MlAmzbqs+YqXddmu5QcbbdLzzk/7754qdYWHefWomXL9C2GquUaXA2ciIhMafGJjY1FWVkZbL4SSkgzI4eyy9avB8aM8T5rbkaGtKq7c2vM7NnAvn1SN5h70AN4JidrnfFZnh8I0J/srCVPiLlERESkle6urieffBKvvvoqLl68aEZ5okp+vhQIGL1cxd692vZTmq05IwOoVUu9TO4Bha8Zn535E6BoGVXG1cCJiEgr3YuU/vjjj1i5ciWWL1+OFi1aINFtnPTixYsNK1wky811HVUVKhkZni00SouWypQCCqVzKPFnMVS5VemRR6QgSalVScs+REREgB+BT/Xq1fH3v//djLJEDXl+GzOCHpsNaN8+sHO4BxKyQAMKfwMULSt9czVwIiLSQvdw9kgXjOTmvDxp9JHRbDYpTyc7W3lYt/twb1/Dv+Wk5MREaR6gQAMK+XpJScacj4iISKb1/q27xYcC560rSS+7HRgxArjySuD226VkaXmEk/Ooqdxc19FUAwcC//mP99FVWruwtHC//qxZlxKeKXJxbiUiCjd+tfh88sknWLBgAfbv34/z58+7PLd582bDChcKwRrOnpvr2ZWklc0mdZPJXUW+hpevXw+0a6d/kkOjcLh5dFIKdr0lvxMRBcK0CQzfeOMNPPDAA6hTpw62bNmCa6+9FjVr1sTu3btxyy23BFToaCKPhnruOX3HxcQAP/4oDTn/6COpW0s2Y4byqKm1a323LpWXAwsXmrOOFoebRx+u00ZE4Up34PP2229j1qxZmDlzJipXroxx48ZhxYoVGD58OFdl1ykjAygu1ndMebkU9PTvLy05Ub8+MGWKtO211zz3j4kBOnVSn9nZ2ejR5sx6zOHm0YfBLhGFK92Bz/79+9GhQwcAQEJCAk6fPg0AGDhwIObNm2ds6SJcUZHU/K/kmmuUFx6NiZECHOdv0uPGSUGQUqflqFFA27aeEw0OGnTpZ2dmfDPXOtEhRQ4Gu0QUrnQHPmlpaTh27BgAoH79+tiwYQMAYM+ePeAAMX127VJ/butWICfHtSsLkFpvtFaznPgMeE40+N570r/TpnkeZ8Y3cz0THZL1MdglonClO7n5oYceQr169TBhwgS88847GD16NDp27IiCggL07t0buRZfHTKYa3X5WqdLab0srdwTn72VgYnHZBbnddr4eSIiM2m9f+sOfCoqKlBRUYFKlaSR8AsWLMDatWvRsGFDPProo6hcuXJgJQ+xYC9SOnUqMHasceez24H586VJDLXeaJxHmGkNmIiIiMKJaYFPpAvF6uz16hlzrkCGDJv9zZzzuRARkZlMncDw5MmT2LhxIw4fPowKt6Eb999/vz+njEpFRcBddxl7TvecIK3l0DLTs784nwsREYUL3S0+n3/+Oe69916UlpaiatWqsDkNPbLZbDh+/LjhhQwms1t85GBi0ybtXVwNGgB79mjbNy9P34zIakGJUcEKc4iIiCgYTOvquvLKK3HrrbfilVdeQZUqVQIuaLgxM/BxDiYCJc/e7L7trbeAnj21BRV6Znr2N1hRW5dMb4BGRETkjWkzNx84cADDhw+PyKDHTO4z2QZKKVwVAnj8cWmkmJbBdWqTzCnN9OzvEHfO50JEROFEd+CTnZ2NgoICM8oS0ZSCDCWtW2ubZdkbIbRNQqgWlCjN9OxvsML5XIiIKJzoTm6+7bbbMHbsWGzfvh0tWrRAbGysy/N33HGHYYWLJFpXZN+6FXj1VeCZZ6RWFqUuLS3kFhpvAYYclMhD2e12YPLkSzM9uw9x9zdYGTJESrrmfC5ERBRqunN87F6aI2w2G8r9WW48jJid4+McTDz0kBRQuMvLA/Lzgaef9i/oAfTl5EyZculazonMnHyOiIisgvP4+CkYo7rkYOLQIeDaaz33eeABaUkJpXfGbpdahFJSLgVR8sA6eX89o7BCPeqK8/sQEZERTJ3Hh/wn39x37QKOHFHeZ+5c5e3TpwN3333pHM7dR4A0GgvQN2uzt1W0zQ5EOL8PEREFm6YWnzfeeAMPP/ww4uPj8cYbb3jdd/jw4YYVLhTMbvFxvtm7t9R4Y7cD+/YFNsGg0v5mtfj4KluoW5pIGVvgiMiqNN+/hQZZWVni6NGjjv+rPRo0aKDldGGtpKREABAlJSWGn7uwUAi7XV52VHrYbK4/qz1sNul42Zw5l85lt0s/e+Nt/zlzhIiJkZ6LifF9Ll+0lG3VKuXXmZcX2LXJf3o/U0RE4UTr/Zs5Pm7MbPFRm8zvkUeA2bN9j/iSJ/3T21qiZX+jEpm1lo0tPuGF7wcRWZ1pExiS/5TmzbHbgf/3/6RurAUL1I91nkfHW16Ou6Ii6by+9s/IkIKqQG9yWsvG+X3Ci57PFBGRlelObh49erTidpvNhvj4eDRs2BB33nknatSoEXDhIo18sx869FJejxDAsmVSUm+tWsrH2e2uQYHSnEDuEwwWFQEzZgCvvaacQ2TW7Mlayibj/D7hQ8/7RkRkZbq7urp27YrNmzejvLwcjRs3hhACu3btQkxMDJo0aYKdO3fCZrNh7dq1aNasmVnlNk0whrOrdSkAns/Z7cCGDdKkgs7nmDEDmDbNdURUdrb0zb2gQJoAUa3rTG5d0TqCSm/Cq/t8RXquRaHD942IrMy0rq4777wTN910Ew4ePIhNmzZh8+bNOHDgALp3744BAwbgwIEDuOGGGzBq1KiAXkCk8jV83L37Z9Ys16AnN1cKjqZOdT3P999L22+8ERg3Tj3omT5dCrLkG1pRkZQ7pLa8hXy9G2+U/nVfA0zp+CFDpGvk5blei8JbOL5vvj6fRES66c2aTk9PF9u2bfPY/ssvv4j09HQhhBCbNm0SNWvW1HvqsGDmqC4hlEd2xcS4jtgqLJRGNxUWSo9Vqy793/1YPQ/36/gaxeOrrFpHATm/BiKtOMqMiPTQev/W3eJTUlKCw4cPe2w/cuQITp06BQCoXr06zp8/H2hMFpG0JPXKicbLlrm2tsyY4f/q7u55Qu6rxVdUeC5s6q11SsvxgO8WIyIlWj9fRER6+dXV9eCDD2LJkiUoKirCgQMHsGTJEgwZMgS9evUCAGzcuBFXXnml0WWNGFq6FJT+8E+frv9adjswZow0asz5OlpG8ait3t6wobbjefMif3GUGRGZRfeornfffRejRo1C//79cfHiRekklSph0KBBmP5/d+YmTZpgzpw5xpY0wmRkeCYKOycRq/3hVxITA9x0k9RC5G7+fKBPH8/tWkbxuK/e7t465ev4UC6HQdbGUWZEZBbdLT5JSUmYPXs2jh07hi1btmDz5s04duwYZs2ahcTERABAq1at0KpVK0ML+vLLL6NDhw6oUqUKqlevrrjP/v370bNnTyQmJqJWrVoYPny4Zbrc3LuECgo8W1vkJS7czZsHKMWZNpuUmaPUwqJ1Hh211iktx3trMSLyhvM8EZFZLDNz84QJE1C9enUUFRUhNzcXJ0+edHm+vLwcrVq1Qu3atfHaa6/h2LFjGDRoEHr37o0333xT83XMGs7ubUi42hD3yZOlYelya0tFheecPPIaXmorvcv7OC8A6lwWILB5dHzN+Mwh0hQIo2YUJ6LIp/X+7Vfgk5+fj4ULF2L//v0eLSqLFy/WX1od3nvvPYwcOdIj8Pn6669x++23o7CwEOnp6QCA+fPnY/DgwTh8+LDmIMaMwMfXKuRqS1nk5Ul/8H//HTh8GOjXz3OfMWOAJk1cc2mUyHMFLVsW/BXRefMiIiKzmTaPz/z589GxY0ds374dS5YswYULF7B9+3asWrUKycnJARU6EOvXr0fz5s0dQQ8AZGdno6ysDJs2bVI9rqysDKdOnXJ5GElLgq+3LiF5hFeHDsrLXXTu7DvoAaQWl/XrQ5NsbNRyGERERIHSHfi88sormD59Or744gtUrlwZM2bMwI4dO9C3b19kZmaaUUZNiouLkZqa6rItJSUFlStXRnFxsepxkyZNQnJysuNRr149Q8ulZXSK1iHuzvsA0nnvuEPbEHe7Xeom40gZIiKKZroDnz/++AO33XYbACAuLg6lpaWw2WwYNWoUZs2apetcEydOhM1m8/ooKCjQfD6bQvavEEJxu2z8+PEoKSlxPAoLC3W9Bl+0JvgqJRHLC4wuWCD9PzsbcE9X0tpROXq0cqsRk42JsyMTUTTRPZy9Ro0aOH36NADgsssuwy+//IIWLVrg5MmTOHv2rK5zDRs2DP379/e6T1ZWlqZzpaWl4ccff3TZduLECVy4cMGjJchZXFwc4uLiNF3DH76GhLvvK2/PzXVdzBS4NEpLL7sdGDHCd1n0rsnlD19J3mZfn1z5yj8jIoo4eqeEHjBggHjttdeEEEK89NJLonbt2uKhhx4S9evXF3fddZfuKab1mjt3rkhOTvbY/tVXXwm73S4OHjzo2DZ//nwRFxena/kJs5ascF6GQsu+/ixN0aWL8vYxY3yXRW15ACOXm/C2BAGXJwg+LcunEBFZhdb7t+5RXcePH8e5c+eQnp6OiooKTJ06FWvXrkXDhg3x7LPPIiUlxZQAbf/+/Th+/DiWLl2KKVOm4PvvvwcANGzYEElJSY7h7KmpqZgyZQqOHz+OwYMHo1evXmExnF0PtVFevths0sN9dfd9+7y3oHgbTv/008a0BuhdlV5+ji0/5vE2mrBLF/3nY4sdEYWS5vt3UMIwAwwaNEgA8Hjk5eU59tm3b5+47bbbREJCgqhRo4YYNmyYOHfunK7rmL1IqRZaWnxsNvXWnZiYS9/e58zx3WqzapXyuYxsDVC7Rl6e9+fIPEa2+LDFjohCzbQWH9nhw4dx+PBhVLgNE2rZsqU/pwsb4dDiA7jmXriz2YCcHGDcONecH+cWFHneHC3z9ii1xrgvFyBbsACoVQtISgLOnNH+7Z4tPp7CoYXEiAkmvb23kfz+EVF4Ma3Fp6CgQFx11VXCbrcLm83m8rDb7X7GaeEjHFp8ZIWFQvzrX56tO/K38jlzvLfuKH2jt9uVv9G7nysnR/lY97Lo+XavVF4tz0WicGoh0ZN/poQtdkQUDkxr8WnZsiUaNmyIp59+GqmpqR5DxevXr+9HnBY+wqXFR+YrD8N5VuT5811zckaPBqZO9Tx2zBhgyhTP7e4zLLu3BigtmQHo+3bvbRbncJvh2awWmUhrIYm010NE1mTakhVVq1bFli1b0DBCJ38Jt8BH601lyhSp68uZPGmh+zvsT6CitmSGTO4Ci5TEVjOHeRudVBwOuCYbEYWaaUtWdOvWDf/73/8CKhxpp2VW56IiqaXHXUUF0KeP53Y9szV7WzJDZrMB/ftfWlk+N1fbucOVlmVGAhGJq9YrTcBJRBSOdLf4HD16FIMGDcK1116L5s2bIzY21uX5O+64w9ACBlu4tfjIvHUDLVig3BpjtwMbNgDt2hnTDeH8rd75Gu6tSlbv5ghGiwxbSIiIjKX1/q175uZ169Zh7dq1+Prrrz2es9lsKHe+K5JhnGd1diZ3ySgZP14aefXqq8Azz1y6yY4a5V8ZhgyRls34/XcgMREoLVXuApNblKwa+MgtMu7BopEtMs51GS45TURE0UB3i09WVhZuv/12PPvss16XgrCqcG3xUaKU/wNIXU9//zuwePGlHJXJk6Ug5bXXpNYZo/JWIjWxlS0yRETWYmpy89atW3HFFVcEXMhwZKXAR61L5l//Ap54wjMYcR+V5R6g+DuKSUuQEA5z1ugVbqPMiIhInWnJzb1790ZeXl5AhSNjqCXJ1qjh2QpUXu45uss5yTk3V2q50ZugXFQEXH45sH69emKrv+c2ir+rj8uJ3eEU9HAldSKiwOhu8Xn55Zfx+uuv47bbbkOLFi08kpuHDx9uaAGDzSotPnILSkGBlMvj3NqSna3c/aTW4gP4112lZci3WlfY+vX6Zn72VyStPh5Jr0UvK7YYElFwmdbV1aBBA/WT2WzYvXu3ntOFHSsEPu43wFdfBdq0ce2SUep+ApS7pPwZxaQ1t0dtxJnNZmyuUSBltIJIei16RXPAR0TamRb4RLpwD3z03ACVclTUtimt1bVhA9C2rXI5tARL3tYbc2bWDTySJgqMpNeiRzQHfESkj2k5PhRau3Yp5+84T0go54EAnjkqSnkr7pMkAtI12rVTz8fxNQmf+ySAMrcVThTLb5RImihQ7bUkJkZ2zo+Wz7sz5kARkS+a5vEZPXo0XnzxRSQmJmL06NFe9502bZohBSNlvuaY8bdbYMgQoGVL18kO5RmLs7M9v13LwZJ715m8n9INCwDeflt5xJkZwYivMprNyLwUpddy332X3q9I7QLSM6cSu8SISAtNXV1du3bFkiVLUL16dXTt2lX9ZDYbVq1aZWgBgy3cu7oA9eHjgXYL+JvrozTk21tZli0L7hw5oRiWbtZNWH4tiYnGzcgd7rROl8AuMaLoxhwfP4Ui8PGnZUDpZh5oHojRNw9vN6xIniMnGDfhUOf8BHuUla/PS6jrg4hCjzk+FuHvHDdKuTqB5rRoWRBVD28LV4bjHDlG0ZuX4o9Q5i+FYl4mX5+XSMrnIiJzMfAJIT2rgGtJ2jQicDF6le1IDnDUBOMmbHSQqpXZK9f7K1T1QUTWw8AnhLS2DOj5hm1E4GJGsKJntI3VR+Yo3YT9XRjWG6ODVC2C0Zrlr1DUBxFZD3N83AQzx0dLLki4J21qyfXQk+gbSSNzioqAGTOMXxg2lML980hE0Ys5PhagpXk+nL9ha2mJUusaWbDAs0UnXLtRAjFt2qVlQiLh9RjZpWT1lj0isiYGPiHmq3k+XJM2tQYpaoFbv36ewVI4B3n+iLTXIzOiSynUC9cSUfRi4BMGvOXUGJ20adS3bK03daXATeYeLIVrkOcvM19PqFtLAskDi8SWPSKyDgY+FhDoN2z5JjllinHfsrXe1JWWw3DmHCypBXmANbtEzBppZFRrSaiCp0htCSMia2BysxsrzNysh7eFQgNNStUyo66sqAhYv17q4nL+xCmVwXmyumXLrJ/sbORkjUYlFwcjiVwt8Z0J0kRkBiY3k+pCobJAF3vU0xKVkQH06QPMnu27BUTuRgEio0vEyOkBjGgtCUZXk7dWKc65Q0ShxMAngqktFCrzttij1q4UXzd19wBKT7DELhFPRuQNmVGvzu+zlsDKyDl3Qp3vRETWwsAngnlLLFb7lm1ka4BaAKW1BSTSkp2NYERridH16v4+z5ihLbAyoiWMo8OISC8GPhFM6SY5ZYr3b9lGtQYYEUC5l99uN2cGZKsJtLXE6Ll43N/nadOCE7BydBgR+YOBT4Rzv0mOGROcxR6NCqDk8o8ZI/08dSq/2QOBt5YY1dWk9D5XVACjR5ufw8OuUCLyB0d1uYm0UV165eYCQ4deGnlltwOvvgpkZko/d+ig7QZm5Mgds0YBaVlug7zz9t4Axo1m03ttvp9E0Yejusgn96RQuevAORSuqADGjZOGoffrJwVAWlpbjOxOMeObvZVyQ8I5edfb+2zGYrdar01EpIYtPm6ipcVHaR6Xyy+XAgFf7HZg3z7tLT+Bfus3+pu9lVoKrLJoq5FzFVnp2kQUPtjiQ6rUkkKTktRHgTmrqNDe2mLEt36jk5ytkhtipeRds1t3wvXaRGQ9DHyihHN3idqNv7TUM8BQYreHZki5cwAQSJKzlgTucOheskqARkRkJQx8ooB7PktBgfqN33m0z7x5yucbPTq4366Vco8A/1tAfOWGhEv+TyTMYxQOASQRkTMGPhFOqbtk/HhppJbajV/uOujQwfPGa7cDI0YErfgAvM9A7W8LiNpwbrO6l/wJAKy+aGu4BJBERM4Y+EQ4te6SNm18z+OidOOdNSv4uRS+ZqD2twVEKTck3EaQuQdogDWCCSvlJxFRdOGoLjeRNqrLiBFM4TBqxnkleJmvFeH9EcwRZIC+eYSCMRrNqLmN8vKURwjm5V1agJaIyEgc1RWl3LtUjJjrJBxGzTi3fGzcaMzilkr8rS+1riy1FqQZM/S33Jid7Gxk11Qk5CcRUWRii48bK7f4eJvzJRxabcKdc2sHoL2+fNW7eyuNHBDobbkxs8XHjHM7t9KZ0TpHROSMLT5RpqhIWmpCLaciHFptwoFay4x7a8eyZdrqy1cui1IL0ujR/rXcmDlTsRmtSUatB0ZEZCQGPhFixgzP4d6c88WVWldOIIm4WgIG9wBgxAjlbqDERN+jtcwKJszqmmLATUThhoFPBCgqAqZN89weqokGw5G34CaQ1g6tAYNzAKDUcnPffUC7dtrya8wIJsxsTfI2lJ/z/BBRsDHwiQBq89woTTRo9RuNv+X3FtwE0toRSMAgl6e8HPjgg9AP/TajNclbwjTn+SGiUGBysxsrJjdrTUy1yoKXapTKn52tbfi1rzoKNBFXT/K4UlmUBGvodyBD2L0d62sov1UWiiUia2BycxTR0upg9QnllMr/8MNAZqb27iFvdRRoa4ee7idvM1HLgjX0O5BWF1/Hemtl4zpkRBQqlgh89u7diyFDhqBBgwZISEjAFVdcgQkTJuD8+fMu++3fvx89e/ZEYmIiatWqheHDh3vsE6l83bitfqNRKn9FxaWEbi2BnK868id3xp+uN6WuNZvNnPwabwIJhrUc660LkfP8EFGoWCLw+fXXX1FRUYF3330X27Ztw/Tp0/HOO+/gH//4h2Of8vJy3HbbbSgtLcXatWsxf/58LFq0CE899VQISx5c3m7cVr/ReFu2QqZ1SLhRicH+tpYotT7Nnh38od+BBMNajvXWymZmMjURkVfConJyckSDBg0cP3/11VfCbreLAwcOOLbNmzdPxMXFiZKSEs3nLSkpEQB0HWMVc+YIERMjBCD9O2dOqEukj3v5bTbp//IjJkaIwsLglKWwUAi7PbDrFxYKkZcXvDIrXd/f16DnWG+vM9R1QESRQ+v92xItPkpKSkpQo0YNx8/r169H8+bNkZ6e7tiWnZ2NsrIybNq0KRRFDDtWn1DOvfyzZ4euxcCIrsNQz3ETSKuLnmO9vc5Q1wERRZ9KoS6AP/744w+8+eabeO211xzbiouLkZqa6rJfSkoKKleujOLiYtVzlZWVoayszPHzqVOnjC9wGJG7GazKufxDhkijukKxFIfc9eY+KskqXYeyQOowlPXvD6MWYCUiawtpi8/EiRNhs9m8PgoKClyOOXjwIG6++Wb06dMHDz30kMtzNpvN4xpCCMXtskmTJiE5OdnxqFevnjEvjoIiVC0GkZSjEkgdWqXFhnMGEZEspPP4HD16FEePHvW6T1ZWFuLj4wFIQU/Xrl1x3XXX4b333oPdKdv1ueeew2effYb//e9/jm0nTpxAjRo1sGrVKnTt2lXx/EotPvXq1bPUPD4UOtGy+KuVW0vMXNyViMKH1nl8QtrVVatWLdSqVUvTvgcOHEDXrl3RunVrzJ071yXoAYD27dvj5ZdfxqFDh1C3bl0AwPLlyxEXF4fWrVurnjcuLg5xcXH+vwiKCmo3fqt3HWph9YkvveVjRfp7R0SeLDFz88GDB9G5c2dkZmbigw8+QIzcvwAgLS0NgDScvVWrVkhNTcWUKVNw/PhxDB48GL169cKbb76p+VpWnLmZzGX1G38gIqG1JBJeAxH5FlEzNy9fvhy///47Vq1ahYyMDNStW9fxkMXExODLL79EfHw8OnbsiL59+6JXr16YOnVqCEtOVmf1Ga8DZfWJL4HIysciosBZosUnmNjiQ87y8qSEWKXtwVhHK9QiqbUkWvKxiKJVRLX4EIWK1We8DlQktZZYZQQaEZmLgQ+RF5F04/eX1Se+JCJyxq4uN+zqIiXB6Cax8pBxIqJQs8RwdiKrMHvYeihGjjkHWgCDLiKKDuzqIgoxpZFjDz8M5Oebd03nmYwzM6UHZzUmomjAwIcoxJSGjFdUAO3amROEuAda8vrq8nWjabg+EUUfBj5EIaY0cgy4FITk50uJxUYFI0qBljOrzdNDRKQHAx8igxQV+RegyCPHlIKf8nKp5cfIbii1QEsWTcP1iSj6MPAhMkCgq38PGQJs2KDe8iP/a0Q3lPsQfbsdsNmk/0fjcH0iii4czu6Gw9lJLyNnN87NlYKb8nIpIFHqkjJq1mjnIfoAZzUmImvjcHaiIFFbz2r9eqBPH33nGjIEyM6WgpDERKmbyz2gMqobyn2IPgMeIooG7Ooiy/I3p8bo66nlzPTv719Ojry0Qtu2nDWaiMhoDHzIkgLNqdGjqAgYO1b9emrJyUbk5HC5CCIiYzHHxw1zfMJfMFcMz80Fhg69NM+Nt+stWAD06+d5jmhZyZ2IKJS4OjtFLLWcGqPnnpEn+lP6aqB0vQ4dAlvJPdhdd0RE0YiBD1mOUk6NGXPPeJvoT+l6gazkHsyuOyKiaMbAhywnkABDD7WkZW/X8ycnR2mtLi4bQURkDgY+ZEnBSPpVmuhvzBjf15NHZWkNxILVdUdERJzHhyzMfR4aMzjPq2PW5H5yy5JZ8/UQEdElbPGhiGZEwrDeFhx/zm9m1x2TpomILmHgQxHLSgnDZnXdWakOiIiCgfP4uOE8PpEhmHP9hCuz66CoSMpPatQoeuqUiMIX5/GhqMaEYXPrgC1JRGRVDHwoIgVrrp9wZlYdcPg9EVkZAx+KSMGa6yecmVUHbE0jIitjjo8b5vhElqIic4eiW4HRdcD8KSIKR1rv35zHhyJaMOb6CXdG14HckvTII1JLTzS2phGRdTHwISLdgjGxIxGRGRj4EJFf2JpGRFbE5GYiIiKKGgx8iIiIKGow8CEiIqKowcCHiIiIogYDHyIiIooaDHyIiIgoajDwIYoARUVAXh7XyyIi8oWBD5HFcaV0IiLtGPgQWRhXSici0oeBD5GFcaV0IiJ9GPgQWVijRoDd7bc4JkZaP4uIiDwx8CGyMHml9JgY6WeulE5E5B0XKSWyOK6UTkSkHQMfihhFRVLOS6NG0Xfz50rpRETasKuLIgKHdBMRkRYMfMjyOKSbiIi0YuBDlsch3UREpBUDH7I8DukmIiKtGPiQ5XFINxERaWWZwOeOO+5AZmYm4uPjUbduXQwcOBAHDx502Wf//v3o2bMnEhMTUatWLQwfPhznz58PUYkpmIYMAfbulRbq3LtX+pmIiMidZQKfrl27YsGCBdi5cycWLVqEP/74A3fffbfj+fLyctx2220oLS3F2rVrMX/+fCxatAhPPfVUCEtNwZSRAXTpwpYeIiJSZxNCiFAXwh9Lly5Fr169UFZWhtjYWHz99de4/fbbUVhYiPT0dADA/PnzMXjwYBw+fBjVqlXTdN5Tp04hOTkZJSUlmo8hIiKi0NJ6/7ZMi4+z48eP47///S86dOiA2NhYAMD69evRvHlzR9ADANnZ2SgrK8OmTZtUz1VWVoZTp065PIiIiCgyWSrwefrpp5GYmIiaNWti//79+OyzzxzPFRcXIzU11WX/lJQUVK5cGcXFxarnnDRpEpKTkx2PevXqmVZ+IiIiCq2QBj4TJ06EzWbz+igoKHDsP3bsWGzZsgXLly9HTEwM7r//fjj31NlsNo9rCCEUt8vGjx+PkpISx6OwsNDYF0lERERhI6RrdQ0bNgz9+/f3uk9WVpbj/7Vq1UKtWrVw5ZVXomnTpqhXrx42bNiA9u3bIy0tDT/++KPLsSdOnMCFCxc8WoKcxcXFIS4uLqDXQURERNYQ0sBHDmT8Ibf0lJWVAQDat2+Pl19+GYcOHULdunUBAMuXL0dcXBxat25tTIGJiIjI0iyxOvvGjRuxceNGdOrUCSkpKdi9ezeee+45XHHFFWjfvj0AoEePHmjWrBkGDhyIKVOm4Pjx4xgzZgyGDh3K0VlEREQEwCLJzQkJCVi8eDG6deuGxo0b48EHH0Tz5s2xZs0aRzdVTEwMvvzyS8THx6Njx47o27cvevXqhalTp4a49ERERBQuLDuPj1k4jw8REZH1RPQ8PkRERET+YOBDREREUcMSyc3BJPf8cQZnIiIi65Dv274yeBj4uDl9+jQAcAZnIiIiCzp9+jSSk5NVn2dys5uKigocPHgQVatW9TrjsxlOnTqFevXqobCwkInVOrDe9GOd+Yf1ph/rzD+sN/2EEDh9+jTS09Nht6tn8rDFx43dbkdGRkZIy1CtWjV+0P3AetOPdeYf1pt+rDP/sN708dbSI2NyMxEREUUNBj5EREQUNRj4hJG4uDhMmDCBi6bqxHrTj3XmH9abfqwz/7DezMPkZiIiIooabPEhIiKiqMHAh4iIiKIGAx8iIiKKGgx8iIiIKGow8Akjb7/9Nho0aID4+Hi0bt0a33//faiLFDa+++479OzZE+np6bDZbPj0009dnhdCYOLEiUhPT0dCQgK6dOmCbdu2haawYWLSpElo27Ytqlatijp16qBXr17YuXOnyz6sN0//+te/0LJlS8fEce3bt8fXX3/teJ515tukSZNgs9kwcuRIxzbWm6eJEyfCZrO5PNLS0hzPs87MwcAnTHz88ccYOXIk/vnPf2LLli24/vrrccstt2D//v2hLlpYKC0txdVXX42ZM2cqPp+Tk4Np06Zh5syZyM/PR1paGrp37+5Yey0arVmzBk888QQ2bNiAFStW4OLFi+jRowdKS0sd+7DePGVkZGDy5MkoKChAQUEBbrzxRtx5552OGw7rzLv8/HzMmjULLVu2dNnOelN21VVX4dChQ47Hzz//7HiOdWYSQWHh2muvFY8++qjLtiZNmohnnnkmRCUKXwDEkiVLHD9XVFSItLQ0MXnyZMe2c+fOieTkZPHOO++EoITh6fDhwwKAWLNmjRCC9aZHSkqKmDNnDuvMh9OnT4tGjRqJFStWiM6dO4sRI0YIIfhZUzNhwgRx9dVXKz7HOjMPW3zCwPnz57Fp0yb06NHDZXuPHj2wbt26EJXKOvbs2YPi4mKX+ouLi0Pnzp1Zf05KSkoAADVq1ADAetOivLwc8+fPR2lpKdq3b8868+GJJ57AbbfdhptuusllO+tN3a5du5Ceno4GDRqgf//+2L17NwDWmZm4SGkYOHr0KMrLy5GamuqyPTU1FcXFxSEqlXXIdaRUf/v27QtFkcKOEAKjR49Gp06d0Lx5cwCsN29+/vlntG/fHufOnUNSUhKWLFmCZs2aOW44rDNP8+fPx+bNm5Gfn+/xHD9ryq677jp88MEHuPLKK/Hnn3/ipZdeQocOHbBt2zbWmYkY+IQRm83m8rMQwmMbqWP9qRs2bBh++uknrF271uM51punxo0bY+vWrTh58iQWLVqEQYMGYc2aNY7nWWeuCgsLMWLECCxfvhzx8fGq+7HeXN1yyy2O/7do0QLt27fHFVdcgffffx/t2rUDwDozA7u6wkCtWrUQExPj0bpz+PBhj2ifPMmjIFh/yp588kksXboUeXl5yMjIcGxnvamrXLkyGjZsiDZt2mDSpEm4+uqrMWPGDNaZik2bNuHw4cNo3bo1KlWqhEqVKmHNmjV44403UKlSJUfdsN68S0xMRIsWLbBr1y5+1kzEwCcMVK5cGa1bt8aKFStctq9YsQIdOnQIUamso0GDBkhLS3Opv/Pnz2PNmjVRXX9CCAwbNgyLFy/GqlWr0KBBA5fnWW/aCSFQVlbGOlPRrVs3/Pzzz9i6davj0aZNG9x7773YunUrLr/8ctabBmVlZdixYwfq1q3Lz5qZQpZWTS7mz58vYmNjRW5urti+fbsYOXKkSExMFHv37g110cLC6dOnxZYtW8SWLVsEADFt2jSxZcsWsW/fPiGEEJMnTxbJycli8eLF4ueffxYDBgwQdevWFadOnQpxyUPnscceE8nJyWL16tXi0KFDjsfZs2cd+7DePI0fP1589913Ys+ePeKnn34S//jHP4TdbhfLly8XQrDOtHIe1SUE603JU089JVavXi12794tNmzYIG6//XZRtWpVx9991pk5GPiEkbfeekvUr19fVK5cWfztb39zDDsmIfLy8gQAj8egQYOEENLQzwkTJoi0tDQRFxcnbrjhBvHzzz+HttAhplRfAMTcuXMd+7DePD344IOO38PatWuLbt26OYIeIVhnWrkHPqw3T/369RN169YVsbGxIj09XfTu3Vts27bN8TzrzBw2IYQITVsTERERUXAxx4eIiIiiBgMfIiIiihoMfIiIiChqMPAhIiKiqMHAh4iIiKIGAx8iIiKKGgx8iIiIKGow8CEiU+3duxc2mw1bt24NdVEC9sMPP6BFixaIjY1Fr169Ql0cIvIDAx8iimiDBw82LEgZPXo0WrVqhT179uC9994z5Jxavffee6hevXpQr0kUiRj4EJGi8+fPh7oIASkvL0dFRYWh5/zjjz9w4403IiMjQ3MQYvV6JIo0DHyICADQpUsXDBs2DKNHj0atWrXQvXt3AMD27dtx6623IikpCampqRg4cCCOHj3qOO6bb75Bp06dUL16ddSsWRO33347/vjjD13XzsrKwosvvoh77rkHSUlJSE9Px5tvvumyz7Rp09CiRQskJiaiXr16ePzxx3HmzBnH83KLyBdffIFmzZohLi4ODzzwAN5//3189tlnsNlssNlsWL16tWIZysrKMHz4cNSpUwfx8fHo1KkT8vPzAVzqrjt27BgefPBB2Gw21RafrKwsvPTSSxg8eDCSk5MxdOhQAMCiRYtw1VVXIS4uDllZWXjttddcjjtx4gTuv/9+pKSkoEqVKrjllluwa9cuAMDq1avxwAMPoKSkxPE6Jk6cCAB4++230ahRI8THxyM1NRV33323rronijqhXiyMiMJD586dRVJSkhg7dqz49ddfxY4dO8TBgwdFrVq1xPjx48WOHTvE5s2bRffu3UXXrl0dx33yySdi0aJF4rfffhNbtmwRPXv2FC1atBDl5eVCCCH27NkjAIgtW7aoXrt+/fqiatWqYtKkSWLnzp3ijTfeEDExMS6Lg06fPl2sWrVK7N69W6xcuVI0btxYPPbYY47n586dK2JjY0WHDh3EDz/8IH799Vdx8uRJ0bdvX3HzzTc7VqcvKytTLMPw4cNFenq6+Oqrr8S2bdvEoEGDREpKijh27Ji4ePGiOHTokKhWrZp4/fXXPVa5d38t1apVE1OmTBG7du0Su3btEgUFBcJut4sXXnhB7Ny5U8ydO1ckJCS4LBh7xx13iKZNm4rvvvtObN26VWRnZ4uGDRuK8+fPi7KyMvH666+LatWqOV7H6dOnRX5+voiJiREfffSR2Lt3r9i8ebOYMWOGlrebKGox8CEiIYQU+LRq1cpl27PPPit69Ojhsq2wsFAAEDt37lQ8z+HDhwUAxyrSWgOfm2++2WVbv379xC233KJ6zIIFC0TNmjUdP8+dO1cAEFu3bnXZb9CgQeLOO+9UPY8QQpw5c0bExsaK//73v45t58+fF+np6SInJ8exLTk52SVYUXstvXr1ctl2zz33iO7du7tsGzt2rGjWrJkQQojffvtNABA//PCD4/mjR4+KhIQEsWDBAsfrS05OdjnHokWLRLVq1cSpU6e8lomILmFXFxE5tGnTxuXnTZs2IS8vD0lJSY5HkyZNAMDRnfXHH3/gnnvuweWXX45q1aqhQYMGAID9+/frunb79u09ft6xY4fj57y8PHTv3h2XXXYZqlativvvvx/Hjh1DaWmpY5/KlSujZcuWuq4rv4YLFy6gY8eOjm2xsbG49tprXcqglXs97tixw+XcANCxY0fs2rUL5eXl2LFjBypVqoTrrrvO8XzNmjXRuHFjr9fv3r076tevj8svvxwDBw7Ef//7X5w9e1Z3eYmiCQMfInJITEx0+bmiogI9e/bE1q1bXR67du3CDTfcAADo2bMnjh07htmzZ+PHH3/Ejz/+CMCYpF6bzQYA2LdvH2699VY0b94cixYtwqZNm/DWW28BAC5cuODYPyEhwXGMHkIIl+s5b/fnfO71qHQe+Zru/9dz/apVq2Lz5s2YN28e6tati+eeew5XX301Tp48qbvMRNGCgQ8Rqfrb3/6Gbdu2ISsrCw0bNnR5JCYm4tixY9ixYwf+3//7f+jWrRuaNm2KEydO+HWtDRs2ePwsty4VFBTg4sWLeO2119CuXTtceeWVOHjwoKbzVq5cGeXl5V73adiwISpXroy1a9c6tl24cAEFBQVo2rSpzlfiqVmzZi7nBoB169bhyiuvRExMDJo1a4aLFy86gkYAOHbsGH777TfH9dVeR6VKlXDTTTchJycHP/30E/bu3YtVq1YFXGaiSMXAh4hUPfHEEzh+/DgGDBiAjRs3Yvfu3Vi+fDkefPBBlJeXIyUlBTVr1sSsWbPw+++/Y9WqVRg9erRf1/rhhx+Qk5OD3377DW+99RYWLlyIESNGAACuuOIKXLx4EW+++SZ2796N//znP3jnnXc0nTcrKws//fQTdu7ciaNHj7q0EMkSExPx2GOPYezYsfjmm2+wfft2DB06FGfPnsWQIUP8ej3OnnrqKaxcuRIvvvgifvvtN7z//vuYOXMmxowZAwBo1KgR7rzzTgwdOhRr167F//73P9x333247LLLcOeddzpex5kzZ7By5UocPXoUZ8+exRdffIE33ngDW7duxb59+/DBBx+goqICjRs3DrjMRBErlAlGRBQ+OnfuLEaMGOGx/bfffhN33XWXqF69ukhISBBNmjQRI0eOFBUVFUIIIVasWCGaNm0q4uLiRMuWLcXq1asFALFkyRIhhPbk5ueff1707dtXVKlSRaSmporXX3/dZZ9p06aJunXrioSEBJGdnS0++OADAUCcOHFCCKGc/CuElGzdvXt3kZSUJACIvLw8xTL89ddf4sknnxS1atUScXFxomPHjmLjxo0u+2hNbp4+fbrH9k8++UQ0a9ZMxMbGiszMTDFlyhSX548fPy4GDhwokpOTHa/xt99+c9nn0UcfFTVr1hQAxIQJE8T3338vOnfuLFJSUkRCQoJo2bKl+Pjjj72Wjyja2YRQ6VwmIgqSrKwsjBw5EiNHjgx1UYgowrGri4iIiKIGAx8iIiKKGuzqIiIioqjBFh8iIiKKGgx8iIiIKGow8CEiIqKowcCHiIiIogYDHyIiIooaDHyIiIgoajDwISIioqjBwIeIiIiiBgMfIiIiihr/H9yOFRPTJhkmAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "N = 10\n", + "w = prod([Polynomial([-n, 1.0]) for n = 1:N])\n", + "fig = figure()\n", + "#using Interact\n", + "#@manipulate for logR in -9:0.1:-1\n", + "for logR in -9:0.5:-1\n", + " display(\n", + " withfig(fig) do\n", + " plot(1:N, zeros(10), \"r*\")\n", + " R = exp10(logR)\n", + " for i = 1:100\n", + " r = roots(Polynomial(coeffs(w) .* (1 .+ R .* randn(N+1))))\n", + " plot(real(r), imag(r), \"b.\")\n", + " end\n", + " xlabel(\"real part of roots\")\n", + " ylabel(\"imaginary part of roots\")\n", + " title(\"roots of \\$(x-1)\\\\cdots(x-10)\\$ with coeffs perturbed by R=$R\")\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Even a **tiny error** causes the roots to be **complete garbage**. This gets exponentially worse as the degree of the polynomials increases.\n", + "\n", + "Because computers inevitably use a finite precision (usually about 15 significant digits), the tiny roundoff errors mean that characteristic polynomials are a computational disaster if they are actually computed explicitly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Companion matrices\n", + "\n", + "Finding **roots of polynomials is *equivalent* to finding eigenvalues**. Not only can you find eigenvalues by solving for the roots of the characteristic polynomial, but you can conversely find roots of *any* polynomial by turning into a matrix and finding the eigenvalues.\n", + "\n", + "Given the degree-$n$ polynomial:\n", + "\n", + "$$\n", + "p(z)=c_0 + c_1 z + \\cdots + c_{n-1}z^{n-1} + z^n \\;,\n", + "$$\n", + "\n", + "(notice that the $z^n$ coefficient is 1), we define the $n \\times n$ **companion matrix**\n", + "\n", + "$$\n", + "C=\\begin{pmatrix}\n", + "0 & 1 & 0 & \\dots & 0 \\\\\n", + "0 & 0 & 1 & \\dots & 0 \\\\\n", + "0 & \\ddots & \\ddots & \\ddots & \\vdots \\\\\n", + "\\vdots & \\vdots & \\ddots & 0 & 1 \\\\\n", + "-c_0 & -c_1 & \\dots & -c_{n-2} & -c_{n-1}\n", + "\\end{pmatrix}.\n", + "$$\n", + "\n", + "The amazing fact is that the *characteristic polynomial* $\\det (C - \\lambda I) = p(\\lambda)$, and so the **eigenvalues of C are the roots of p**.\n", + "\n", + "## Proof\n", + "\n", + "Suppose $z$ is an root of $p(z) = 0$. We can now show that this is an eigenvalue of $C$, with eigenvector $= (1,z,z^2,\\ldots,z^{n-1})$:\n", + "\n", + "$$\n", + "C \\begin{pmatrix} 1 \\\\ z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\end{pmatrix}\n", + "= \\begin{pmatrix} z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\\\ -c_0 - c_1 z - \\cdots - c_{n-1} z^{m-1} \\end{pmatrix}\n", + "= \\begin{pmatrix} z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\\\ z^n \\end{pmatrix}\n", + "= z \\begin{pmatrix} 1 \\\\ z \\\\ z^2 \\\\ \\vdots \\\\ z^{n-1} \\end{pmatrix}\n", + "$$\n", + "\n", + "where in the last row we used the fact that $p(z) = 0$ so $z^n = -c_0 - c_1 z - \\cdots - c_{n-1} z^{m-1}$.\n", + "\n", + "Hence $z$ is an eigenvalue. The **eigenvalues of C are the roots of p** and vice versa.\n", + "\n", + "## Conclusion\n", + "\n", + "If you have a polynomial whose leading coefficient is *not* 1, you can just divide the polynomial by that coefficient to get it in this form, without changing its roots. Hence the **roots of any polynomial can be found by computing the eigenvalues of a companion matrix.**" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "companion (generic function with 1 method)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function companion(p::Polynomial)\n", + " c = coeffs(p)\n", + " n = degree(p)\n", + " c = c[1:n] / c[end]\n", + " C = [ [ zeros(n-1)'; I ] -c ]'\n", + " return C\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$6 - 5\\cdot x + x^{2}$" + ], + "text/plain": [ + "Polynomial(6 - 5*x + x^2)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p = Polynomial([-2, 1]) * Polynomial([-3, 1]) # (x - 2) * (x - 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 adjoint(::Matrix{Float64}) with eltype Float64:\n", + " 0.0 1.0\n", + " -6.0 5.0" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C = companion(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 2.0\n", + " 3.0" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(C)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$-24 + 2\\cdot x + 17\\cdot x^{2} - 8\\cdot x^{3} + x^{4}$" + ], + "text/plain": [ + "Polynomial(-24 + 2*x + 17*x^2 - 8*x^3 + x^4)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " # (x - 2) * (x - 3) * (x - 4) * (x + 1)\n", + "p = Polynomial([-2, 1]) * Polynomial([-3, 1]) * Polynomial([-4, 1]) * Polynomial([1, 1])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 adjoint(::Matrix{Float64}) with eltype Float64:\n", + " 0.0 1.0 0.0 0.0\n", + " 0.0 0.0 1.0 0.0\n", + " 0.0 0.0 0.0 1.0\n", + " 24.0 -2.0 -17.0 8.0" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C = companion(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Vector{Float64}:\n", + " -0.9999999999999991\n", + " 1.999999999999996\n", + " 3.0000000000000084\n", + " 3.9999999999999947" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In fact, **this is the most common method to find roots of polynomials of degree ≥ 5**: you find the companion matrix, and compute its eigenvalues. This is precisely [how the Polynomials package does it](https://github.com/JuliaMath/Polynomials.jl/blob/6153edc221081498f79d59827b2fc5551ef9dd2d/src/polynomials/standard-basis.jl#L440-L464) (albeit with some extra cleverness to check for leading and trailing zero coefficients):" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "roots(p::P; kwargs...) where {T, P<:(Polynomials.StandardBasisPolynomial{T})} in Polynomials at /Users/stevenj/.julia/packages/Polynomials/4DeNc/src/polynomials/standard-basis.jl:464" + ], + "text/plain": [ + "roots(p::P; kwargs...) where {T, P<:(Polynomials.StandardBasisPolynomial{T})} in Polynomials at /Users/stevenj/.julia/packages/Polynomials/4DeNc/src/polynomials/standard-basis.jl:464" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@which roots(p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This would seem rather circular if eigenvalues were computed, in turn, by finding roots of polynomials. But they aren't: **practical computer eigenvalue solvers never compute the characteristic polynomial, and don't resemble generic root-finding algorithms (like Newton's method)**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Computing eigenvalues = polynomial roots = hard\n", + "\n", + "* Everyone learns the [quadratic formula](https://en.wikipedia.org/wiki/Quadratic_formula) to find roots of a quadratic (degree-2) polynomial.\n", + "\n", + "* There is a (horrible) [cubic formula](https://en.wikipedia.org/wiki/Cubic_function) to find the roots of any cubic (degree-3) polynomial.\n", + "\n", + "* There is a (terrifying) [quartic formula](https://en.wikipedia.org/wiki/Quartic_function) to find the roots of any quartic (degree-4) polynomial.\n", + "\n", + "* There is **no formula** (in terms of a *finite number* of ±,×,÷,ⁿ√) for the roots of an **arbitrary quintic** polynomial or **any degree ≥ 5**. This is the [Abel–Ruffini theorem](https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem), proved in the 19th century.\n", + "\n", + "This does **not mean** that you can't compute roots (or eigenvalues) in practice! But it means that **root-finding/eigenvalue algorithms are necessarily *iterative***: they **converge toward the solution** but **never reach it exactly**. You can get the solution to *any desired accuracy*.\n", + "\n", + "For example we've already seen one such algorithm! [Newton's method](https://en.wikipedia.org/wiki/Newton%27s_method) is an algorithm that could be used to find the roots of an arbitrary polynomial (given enough starting guesses), and converges *very* quickly without ever exactly *reaching* the root.\n", + "\n", + "The most common algorithm to find eigenvalues (and hence polynomial roots, via companion matrices) is the [QR algorithm](https://en.wikipedia.org/wiki/QR_algorithm). As you might guess, it is *related* to the $A=QR$ factorization. Explaining *how* and *why* this algorithm works, however, is outside the scope of 18.06. (It takes me a week+ in 18.335: graduate numerical methods.)\n", + "\n", + "This means that the textbook characteristic-polynomial method we use to find eigenvalues of $2\\times 2$ matrices is something of a fraud: unlike Gaussian elimination, it bears no resemblance whatsoever to how eigenvalues are really computed. In 18.06, therefore, we will mostly assume that the computer hands us the eigenvalues and eigenvectors, and **we will focus on what eigensolutions *mean*, how they are *used*, and what their *properties* are.**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "One thing that it is useful to know, however, is that the computer algorithm to compute eigenvalues/eigenvectors of an $m \\times m$ matrix requires $\\sim m^3$ operations, just like Gaussian elimination. However, the \"constant\" coefficient in front of $m^3$ is significantly worse:" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0.025024 seconds (4 allocations: 7.637 MiB)\n", + " 0.039420 seconds (7 allocations: 8.179 MiB)\n", + " 0.402130 seconds (14 allocations: 7.936 MiB)\n", + " 0.628848 seconds (21 allocations: 31.580 MiB)\n" + ] + } + ], + "source": [ + "A1000 = rand(1000,1000)\n", + "LinearAlgebra.BLAS.set_num_threads(1) # use 1 cpu for benchmarking\n", + "@time lu(A1000)\n", + "@time qr(A1000)\n", + "@time eigvals(A1000)\n", + "@time eigen(A1000);" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "37.08389555236729" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@elapsed(eigen(A1000)) / @elapsed(lu(A1000))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finding eigenvalues and/or eigenvectors is not so cheap, but it is often worth it!" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.1" + }, + "widgets": { + "state": { + "1df4718a-d6a4-4ee1-9281-dbdb7f019e2d": { + "views": [ + { + "cell_index": 27 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Elimination-matrices.ipynb b/notes/Elimination-matrices.ipynb similarity index 100% rename from lectures/Elimination-matrices.ipynb rename to notes/Elimination-matrices.ipynb diff --git a/notes/Fibonacci.ipynb b/notes/Fibonacci.ipynb new file mode 100644 index 00000000..f96d0bfe --- /dev/null +++ b/notes/Fibonacci.ipynb @@ -0,0 +1,565 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fibonacci recurrence\n", + "\n", + "The [Fibonacci numbers](https://en.wikipedia.org/wiki/Fibonacci_number) are:\n", + "\n", + "$$\n", + "1,1,2,3,5,8,13,21,34,\\ldots\n", + "$$\n", + "\n", + "Each number $f_n$ in the sequence is the sum of the previous two, defining the [recurrence relation](https://en.wikipedia.org/wiki/Recurrence_relation):\n", + "\n", + "$$\n", + "f_n = f_{n-1} + f_{n-2}\n", + "$$\n", + "\n", + "Perhaps the most obvious way to implement this in a programming language is via [recursion](https://en.wikipedia.org/wiki/Recursion_(computer_science)):" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "slowfib (generic function with 1 method)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function slowfib(n)\n", + " if n < 2\n", + " return BigInt(1) # use bigint type to support huge integers\n", + " else\n", + " return slowfib(n-1) + slowfib(n-2)\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that there is a slight catch: we have to make sure to do our computations with the `BigInt` integer type, which implements [arbitrary precision arithmetic](https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic). The Fibonacci numbers quickly get so big that they [overflow](https://en.wikipedia.org/wiki/Integer_overflow) the maximum representable integer using the default (fast, fixed numbrer of binary digits) hardware integer type." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10-element Vector{BigInt}:\n", + " 1\n", + " 2\n", + " 3\n", + " 5\n", + " 8\n", + " 13\n", + " 21\n", + " 34\n", + " 55\n", + " 89" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[slowfib(n) for n = 1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Not that it matters for toy calculations like this, but [there are much faster ways to compute Fibonacci numbers](https://discourse.julialang.org/t/efficient-implementations-of-fibonacci-function-with-interesting-results/18123) than the [recursive](https://en.wikipedia.org/wiki/Recursion) function defined above. The [GMP library](https://en.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library) used internally by Julia for `BigInt` arithmetic actually provides an [optimized Fibonacci-calculating function `mpz_fib_ui`](https://gmplib.org/manual/Number-Theoretic-Functions.html) that we can call if we want to using the low-level [`ccall` technique](https://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code.html):" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "fastfib (generic function with 1 method)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function fastfib(n)\n", + " z = BigInt()\n", + " ccall((:__gmpz_fib_ui, :libgmp), Cvoid, (Ref{BigInt}, Culong), z, n)\n", + " return z\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100-element Vector{BigInt}:\n", + " 1\n", + " 1\n", + " 2\n", + " 3\n", + " 5\n", + " 8\n", + " 13\n", + " 21\n", + " 34\n", + " 55\n", + " 89\n", + " 144\n", + " 233\n", + " ⋮\n", + " 1779979416004714189\n", + " 2880067194370816120\n", + " 4660046610375530309\n", + " 7540113804746346429\n", + " 12200160415121876738\n", + " 19740274219868223167\n", + " 31940434634990099905\n", + " 51680708854858323072\n", + " 83621143489848422977\n", + " 135301852344706746049\n", + " 218922995834555169026\n", + " 354224848179261915075" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[fastfib(i) for i = 1:100]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's about 1000x faster even for the 20th Fibonacci number. It turns out that the recursive algorithm is pretty terrible — the [time increases exponentially with `n`](https://www.youtube.com/watch?v=pqivnzmSbq4)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0.000007 seconds (2 allocations: 40 bytes)\n", + " 0.000002 seconds (2 allocations: 40 bytes)\n", + " 0.000002 seconds (2 allocations: 40 bytes)\n", + " 0.002284 seconds (43.78 k allocations: 940.625 KiB)\n", + " 0.002528 seconds (43.78 k allocations: 940.625 KiB)\n", + " 0.002812 seconds (43.78 k allocations: 940.625 KiB)\n" + ] + }, + { + "data": { + "text/plain": [ + "10946" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@time fastfib(20)\n", + "@time fastfib(20)\n", + "@time fastfib(20)\n", + "@time slowfib(20)\n", + "@time slowfib(20)\n", + "@time slowfib(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fibonacci as matrices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can represent the Fibonacci recurrence as repeated multiplication by a $2 \\times 2$ matrix, since:\n", + "\n", + "$$\n", + "\\begin{pmatrix} f_{n+1} \\\\ f_n \\end{pmatrix} = \n", + "\\underbrace{\\begin{pmatrix} 1 & 1 \\\\ 1 & 0 \\end{pmatrix}}_F\n", + "\\begin{pmatrix} f_{n} \\\\ f_{n-1} \\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Int64}:\n", + " 1 1\n", + " 1 0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F = [1 1\n", + " 1 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Int64}:\n", + " 34\n", + " 21" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F^7 * [1,1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, plugging in $f_1 = 1, f_2 = 1$, then\n", + "\n", + "$$\n", + "\\begin{pmatrix} f_{n+2} \\\\ f_{n+1} \\end{pmatrix} = \n", + "F^n\n", + "\\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix}\n", + "$$\n", + "\n", + "and the key to understanding $F^n$ is the eigenvalues of $F$:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -0.6180339887498948\n", + " 1.618033988749895" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(F)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Analytically, we can easily solve this $2 \\times 2$ eigenproblem to show that the eigenvalues are $(1 \\pm \\sqrt{5})/2$ (just the roots of the quadratic characteristic polynomial $\\det (F-\\lambda I) = \\lambda^2 - \\lambda - 1$):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.618033988749895" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(1 + √5)/2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.6180339887498949" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(1 - √5)/2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For example, to compute $f_{100}$, we can multiply $F^{98}$ by $(1,1)$ (again converting to `BigInt` using `big` first to avoid overflow):" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{BigInt}:\n", + " 354224848179261915075\n", + " 218922995834555169026" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "big.(F)^98 * [1, 1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This matches our `fastfib` function from above:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(354224848179261915075, 218922995834555169026)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fastfib(100), fastfib(99)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An important thing about $F^n$ is that, for large $n$, the behavior is dominated by the biggest $|\\lambda|$. That is, for large $n$, we must have $(f_{n}, f_{n-1})$ approximately parallel to the corresponding eigenvector, and hence:\n", + "\n", + "$$\n", + "\\begin{pmatrix} f_{n+1} \\\\ f_{n} \\end{pmatrix} =\n", + "F \\begin{pmatrix} f_{n} \\\\ f_{n-1} \\end{pmatrix}\n", + "\\approx \n", + "\\lambda_1\n", + "\\begin{pmatrix} f_{n} \\\\ f_{n-1} \\end{pmatrix}\n", + "$$\n", + "\n", + "where $\\lambda_1 = (1 + \\sqrt{5})/2$ is the so-called [golden ratio](https://en.wikipedia.org/wiki/Golden_ratio).\n", + "\n", + "Let's compute the ratios of $f_{n+1}/f_{n}$ and show that they approach the golden ratio:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.61803398874989484820458683436563811772030917980576286213544862270526046281891" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(1 + √big(5))/2 # golden ratio computed to many digits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also plot the ratio vs. $n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.618033988749894848204586834365638117720312743963795685753591851088290198698868" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fastfib(101) / fastfib(100)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHFCAYAAAD7ZFORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSDUlEQVR4nO3deVxU5f4H8M8w7AiDoOwguCSm5oaaC4KZGiotZmWWkNYtr5qaWaZWersVZbeyq6VZqZVLVq51zdJcsNLcAMslfxaKC7gLgrINz++P04yMMMMAM3POHD7v12tenDk8M/OdYWA+PMs5GiGEABEREZEKuchdABEREZG9MOgQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6JCiHTp0CLNmzcLx48erfO+xxx5DdHS0w2uy1osvvoioqCi4urrC399f7nIUbdu2bdBoNNi2bZtDH/f48ePQaDTVXuLi4gAA0dHReOyxx6rU+vXXXzu0VrksWbIEGo2m2t9BpWtoPyuqnqvcBRBZcujQIfzrX/9CYmJilVDz0ksvYeLEifIUVoN169bhtddew4wZM5CUlAQPDw+5S1K0zp07Y+fOnbj11ltlefynn34aI0aMMNnXqFEjAMCaNWvg5+cnR1mKMHjwYOzcuROhoaFyl0JUJww65FDXrl2Dt7e3Te6rRYsWNrkfe/j9998BABMmTEBQUJDM1Sifn58fbr/9dtkePyoqyuzjd+rUycHVKEvTpk3RtGlTuctQtOvXr8PT0xMajUbuUqgaHLoiu5k1axY0Gg3279+PYcOGoXHjxsZwsnfvXgwfPhzR0dHw8vJCdHQ0Hn74YZw4ccJ4+yVLluCBBx4AAPTt29c4pLBkyRIA1Q9dFRcXY9q0aYiJiYG7uzvCw8Mxbtw4XLlyxaTdli1bkJiYiMDAQHh5eSEqKgr3338/rl27ZvE5VVRUYPbs2YiNjYWHhweCgoKQkpKCU6dOGdtER0fjxRdfBAAEBwdDo9Fg1qxZZu/zr7/+wvDhwxEWFgYPDw8EBwejX79+yMzMNLYxdx83D6sAwOnTp/Hkk08iMjIS7u7uCAsLw7Bhw3D27FljmytXruDZZ59F8+bNjc9j0KBBOHLkiLFNaWkpXn31VeNzbdq0KUaNGoXz58/X+rWcP38+OnTogEaNGsHX1xexsbGYPn268fs3D13NmTMHGo0Gx44dq/Kcp06dCnd3d1y4cMG4b/PmzejXrx/8/Pzg7e2NXr164ccffzT7mtdGda8xIL3XJk+ejJCQEHh5eSEhIQEZGRlV2q1fvx49evSAt7c3fH190b9/f+zcudOkjeF35eDBg3j44Yeh0+kQHByM0aNHIz8/36Tt+++/jz59+iAoKAg+Pj5o3749Zs+ejbKysiqPvXHjRvTr1w86nQ7e3t5o06YN0tLSTNr8+uuvSE5ORmBgIDw9PdGiRQtMmjTJ+H1rh66sfQ6G4ULD73FlN7/PDfd54MABPPDAA9DpdAgICMDkyZNRXl6OP/74A3fddRd8fX0RHR2N2bNnV1ubtT+rvXv34u6770ZAQAA8PT3RqVMnfPnllyZtDK/HDz/8gNGjR6Np06bw9vZGSUkJzp8/b/zdM/zO9OrVC5s3b7b42pF9sUeH7G7o0KEYPnw4xowZg6KiIgDSH7vWrVtj+PDhCAgIQG5uLubPn4+uXbvi0KFDaNKkCQYPHozXX38d06dPx/vvv4/OnTsDMN+TI4TAvffeix9//BHTpk1DfHw8Dhw4gJkzZ2Lnzp3YuXMnPDw8cPz4cQwePBjx8fFYtGgR/P39cfr0aWzcuBGlpaUWe5z++c9/YuHChRg/fjyGDBmC48eP46WXXsK2bduwf/9+NGnSBGvWrMH777+PTz75BBs3boROp0NERITZ+xw0aBD0ej1mz56NqKgoXLhwAb/88kuVcGaN06dPo2vXrigrK8P06dNx22234eLFi/j+++9x+fJlBAcH4+rVq+jduzeOHz+OqVOnonv37igsLER6ejpyc3MRGxuLiooK3HPPPdixYweef/559OzZEydOnMDMmTORmJiIvXv3wsvLy6rX8osvvsDYsWPx9NNP4z//+Q9cXFxw7NgxHDp0yOzzePTRRzF16lQsWbIEr776qnG/Xq/H0qVLkZycjCZNmgAAli5dipSUFNxzzz349NNP4ebmhg8//BADBw7E999/j379+tX4ulVUVKC8vNxkn1artfgf+vTp09G5c2d8/PHHyM/Px6xZs5CYmIiMjAw0b94cALB8+XI88sgjGDBgAFasWIGSkhLMnj0biYmJ+PHHH9G7d2+T+7z//vvx0EMP4fHHH8dvv/2GadOmAQAWLVpkbPPnn39ixIgRxjCflZWF1157DUeOHDFp98knn+Af//gHEhISsGDBAgQFBeHo0aPG3kYA+P7775GcnIw2bdrgnXfeQVRUFI4fP44ffvihxtfMHGueQ209+OCDePTRR/HUU09h06ZNxmC3efNmjB07FlOmTMHy5csxdepUtGzZEkOHDjW5vTU/q61bt+Kuu+5C9+7dsWDBAuh0OnzxxRd46KGHcO3atSphd/To0Rg8eDA+//xzFBUVwc3NDSNHjsT+/fvx2muv4ZZbbsGVK1ewf/9+XLx4sc7PnWxAENnJzJkzBQDx8ssv19i2vLxcFBYWCh8fH/Hee+8Z93/11VcCgNi6dWuV26SmpopmzZoZr2/cuFEAELNnzzZpt3LlSgFALFy4UAghxNdffy0AiMzMzFo9n8OHDwsAYuzYsSb7f/31VwFATJ8+3bjP8NzPnz9v8T4vXLggAIg5c+ZYbAdAzJw5s8r+Zs2aidTUVOP10aNHCzc3N3Ho0CGz9/XKK68IAGLTpk1m26xYsUIAEKtWrTLZv2fPHgFAfPDBB0II617L8ePHC39/f7PfF0KIrVu3Vvk5Dx06VERERAi9Xm/ct2HDBgFAfPPNN0IIIYqKikRAQIBITk42uT+9Xi86dOggunXrZvFxs7OzBYBqL4bX5+bX2FBr586dRUVFhXH/8ePHhZubm3jiiSeMNYSFhYn27dubPIerV6+KoKAg0bNnT+M+w/vl5vfu2LFjhaenp8nj3Pw8y8rKxGeffSa0Wq24dOmS8TH8/PxE7969zd5WCCFatGghWrRoIa5fv262zeLFiwUAkZ2dbbZNbZ6D4TVfvHhxlfu4+X1uuM+3337bpF3Hjh0FALF69WrjvrKyMtG0aVMxdOhQ4z5rf1ZCCBEbGys6deokysrKTB5ryJAhIjQ01PgzNLweKSkpVepv1KiRmDRpkrmXiGTCoSuyu/vvv7/KvsLCQuN/X66urnB1dUWjRo1QVFSEw4cP1+lxtmzZAgBV/vN64IEH4OPjYxzK6NixI9zd3fHkk0/i008/xV9//WXV/W/durXa++/WrRvatGlTp6GSgIAAtGjRAm+99RbeeecdZGRkoKKiotb3Y/Ddd9+hb9++aNOmjcU2t9xyC+68806zbb799lv4+/sjOTkZ5eXlxkvHjh0REhJiHGKy5rXs1q0brly5gocffhjr1q0zGXKyZNSoUTh16pRJt//ixYsREhKCpKQkAMAvv/yCS5cuITU11aTOiooK3HXXXdizZ4+xF9GSiRMnYs+ePSaX7t27W7zNiBEjTHp8mjVrhp49exrfJ3/88QfOnDmDkSNHwsXlxp/aRo0a4f7778euXbuqDJXefffdJtdvu+02FBcX49y5c8Z9GRkZuPvuuxEYGAitVgs3NzekpKRAr9fj6NGjxteloKAAY8eONdsrdfToUfz55594/PHH4enpWeNrZC1rnkNtDRkyxOR6mzZtoNFojO8DAHB1dUXLli1Nhr8NavpZHTt2DEeOHMEjjzwCACbvpUGDBiE3Nxd//PGHyX1W93etW7duxl7IXbt2VTucSI7HoEN2V91qjREjRmDevHl44okn8P3332P37t3Ys2cPmjZtiuvXr9fpcS5evAhXV9cqEyc1Gg1CQkKM3cctWrTA5s2bERQUhHHjxqFFixZo0aIF3nvvvRrv39zzCQsLq1P3tEajwY8//oiBAwdi9uzZ6Ny5M5o2bYoJEybg6tWrtb6/8+fPWxwms7bN2bNnceXKFbi7u8PNzc3kkpeXZwwr1ryWI0eOxKJFi3DixAncf//9CAoKQvfu3bFp0yaLNSQlJSE0NBSLFy8GAFy+fBnr169HSkoKtFqtsU4AGDZsWJU633zzTQghcOnSJcsvGoCIiAjExcWZXHx9fS3eJiQkpNp9hvdBTe+XiooKXL582WR/YGCgyXXDaj3D70ROTg7i4+Nx+vRpvPfee9ixYwf27NmD999/36SdYR6VpZ+zNW3qoqbnUBcBAQEm193d3eHt7V0loLm7u6O4uLjK7Wv6WRneR1OmTKnyPho7diwAVAno1f1cV65cidTUVHz88cfo0aMHAgICkJKSgry8vFo8W7I1ztEhu7v5P8r8/Hx8++23mDlzJl544QXj/pKSEqs+lMwJDAxEeXk5zp8/bxJ2hBDIy8tD165djfvi4+MRHx8PvV6PvXv3Yu7cuZg0aRKCg4MxfPhws/cPALm5uVU+HM6cOWOcM1JbzZo1wyeffAJA+i/7yy+/xKxZs1BaWooFCxYAkD4sSkpKqtz25nDVtGlTk4nR1bGmTZMmTRAYGIiNGzdW+/3KIcCa13LUqFEYNWoUioqKkJ6ejpkzZ2LIkCE4evQomjVrVu1jaLVajBw5Ev/9739x5coVLF++HCUlJRg1apRJnQAwd+5cs6umgoODLT7XuqruwysvL8/4Pqn8frnZmTNn4OLigsaNG9fqMdeuXYuioiKsXr3a5HWrPHEdgPH9b+nnbE0bezCEk5vfz/acx1LTz8rwPpo2bVqV+T0GrVu3NrleXU9ZkyZNMGfOHMyZMwc5OTlYv349XnjhBZw7d87s7xLZH3t0yOE0Gg2EEFWOLfPxxx9Dr9eb7KvNf4OGSadLly412b9q1SoUFRVVOylVq9Wie/fuxv+I9+/fb/b+77jjjmrvf8+ePTh8+LBVk15rcsstt+DFF19E+/btTWqJjo7GgQMHTNpu2bIFhYWFJvuSkpKwdevWKt3sN7c5evSocaivOkOGDMHFixeh1+ur9HTExcVV+aMPWPda+vj4ICkpCTNmzEBpaSkOHjxotgZACkjFxcVYsWIFlixZgh49eiA2Ntb4/V69esHf3x+HDh2qts64uDi4u7tbfIy6WrFiBYQQxusnTpzAL7/8gsTERADSB2N4eDiWL19u0q6oqAirVq0yrsSqDcOHa+XfHSEEPvroI5N2PXv2hE6nw4IFC0weu7JbbrkFLVq0wKJFi6oN0fYSHBwMT0/PKu/ndevW2e0xrflZtWrVCllZWWbfRzX18N0sKioK48ePR//+/S3+XSH7Y48OOZyfnx/69OmDt956C02aNEF0dDS2b9+OTz75pMoRhNu1awcAWLhwIXx9feHp6YmYmJgq3eMA0L9/fwwcOBBTp05FQUEBevXqZVx11alTJ4wcORIAsGDBAmzZsgWDBw9GVFQUiouLjStCLM1bad26NZ588knMnTsXLi4uSEpKMq66ioyMxDPPPFPr1+LAgQMYP348HnjgAbRq1Qru7u7YsmULDhw4YNLbNXLkSLz00kt4+eWXkZCQgEOHDmHevHnQ6XQm9/fKK6/gu+++Q58+fTB9+nS0b98eV65cwcaNGzF58mTExsZi0qRJWLlyJe655x688MIL6NatG65fv47t27djyJAh6Nu3L4YPH45ly5Zh0KBBmDhxIrp16wY3NzecOnUKW7duxT333IP77rvPqtfyH//4B7y8vNCrVy+EhoYiLy8PaWlp0Ol0Jr1s1YmNjUWPHj2QlpaGkydPYuHChSbfb9SoEebOnYvU1FRcunQJw4YNQ1BQEM6fP4+srCycP38e8+fPr/XPxRrnzp3Dfffdh3/84x/Iz8/HzJkz4enpaVxl5OLigtmzZ+ORRx7BkCFD8NRTT6GkpARvvfUWrly5gjfeeKPWj9m/f3+4u7vj4YcfxvPPP4/i4mLMnz+/yhBYo0aN8Pbbb+OJJ57AnXfeiX/84x8IDg7GsWPHkJWVhXnz5gGQlqonJyfj9ttvxzPPPIOoqCjk5OTg+++/x7Jly+r/IlVDo9Hg0UcfxaJFi9CiRQt06NABu3fvxvLly+3yeEDNPysA+PDDD5GUlISBAwfiscceQ3h4OC5duoTDhw9j//79+Oqrryw+Rn5+Pvr27YsRI0YgNjYWvr6+2LNnDzZu3Gi2l4gcRL550KR2llYenTp1Stx///2icePGwtfXV9x1113i999/r7LCRQgh5syZI2JiYoRWqzVZrXHzqishhLh+/bqYOnWqaNasmXBzcxOhoaHin//8p7h8+bKxzc6dO8V9990nmjVrJjw8PERgYKBISEgQ69evr/E56fV68eabb4pbbrlFuLm5iSZNmohHH31UnDx50urnXtnZs2fFY489JmJjY4WPj49o1KiRuO2228S7774rysvLje1KSkrE888/LyIjI4WXl5dISEgQmZmZ1b5eJ0+eFKNHjxYhISHCzc1NhIWFiQcffFCcPXvW2Oby5cti4sSJIioqSri5uYmgoCAxePBgceTIEWObsrIy8Z///Ed06NBBeHp6ikaNGonY2Fjx1FNPif/7v/+z+rX89NNPRd++fUVwcLBwd3c31nPgwAFjm+pWXRksXLhQABBeXl4iPz+/2tdx+/btYvDgwSIgIEC4ubmJ8PBwMXjwYPHVV19ZfP0NK4Deeusts23Mrbr6/PPPxYQJE0TTpk2Fh4eHiI+PF3v37q1y+7Vr14ru3bsLT09P4ePjI/r16yd+/vlnkzbm3i/VrXj65ptvjD+T8PBw8dxzz4nvvvuu2tdvw4YNIiEhQfj4+Ahvb29x6623ijfffNOkzc6dO0VSUpLQ6XTCw8NDtGjRQjzzzDMWa6hObZ5Dfn6+eOKJJ0RwcLDw8fERycnJ4vjx42ZXXd18n6mpqcLHx6dKDQkJCaJt27bG67X9WWVlZYkHH3xQBAUFCTc3NxESEiLuuOMOsWDBgirPZ8+ePSa3LS4uFmPGjBG33Xab8PPzE15eXqJ169Zi5syZoqioyOJrR/alEcJMvyYRERGRk+McHSIiIlItBh0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQYdIiIiUq0Gf8DAiooKnDlzBr6+vmZPfkdERETKIoTA1atXERYWZnLi3Js1+KBz5swZREZGyl0GERER1cHJkyctnpy2wQcdw/lLTp48CT8/P5mrISIiImsUFBQgMjKyxvOQNfigYxiu8vPzY9AhIiJyMjVNO+FkZCIiIlItBh0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQYdIiIiUq0Gf2RkcnJ6PbBjB5CbC4SGAvHxgFYrd1VERKQQiunRSUtLQ9euXeHr64ugoCDce++9+OOPP2q83fbt29GlSxd4enqiefPmWLBggQOqJUVYvRqIjgb69gVGjJC+RkdL+4mIiKCgoLN9+3aMGzcOu3btwqZNm1BeXo4BAwagqKjI7G2ys7MxaNAgxMfHIyMjA9OnT8eECROwatUqB1ZOsli9Ghg2DDh1ynT/6dPSfoYdIiICoBFCCLmLqM758+cRFBSE7du3o0+fPtW2mTp1KtavX4/Dhw8b940ZMwZZWVnYuXOnVY9TUFAAnU6H/Px8ntTTWej1Us/NzSHHQKMBIiKA7GwOYxERqZS1n9+K6dG5WX5+PgAgICDAbJudO3diwIABJvsGDhyIvXv3oqysrNrblJSUoKCgwORCTmbHDvMhBwCEAE6elNoREVGDpsigI4TA5MmT0bt3b7Rr185su7y8PAQHB5vsCw4ORnl5OS5cuFDtbdLS0qDT6YyXyMhIm9ZODpCba9t2RESkWooMOuPHj8eBAwewYsWKGttqNBqT64aRuJv3G0ybNg35+fnGy8mTJ+tfMDlWaKht2xERkWopbnn5008/jfXr1yM9PR0REREW24aEhCAvL89k37lz5+Dq6orAwMBqb+Ph4QEPDw+b1UsyiI+X5uCcPi0NU93MMEcnPt7xtRERkaIopkdHCIHx48dj9erV2LJlC2JiYmq8TY8ePbBp0yaTfT/88APi4uLg5uZmr1JJblot8N571X/P0JM3Zw4nIhMRkXKCzrhx47B06VIsX74cvr6+yMvLQ15eHq5fv25sM23aNKSkpBivjxkzBidOnMDkyZNx+PBhLFq0CJ988gmmTJkix1MgRxo6FJg7t+r+iAjg66+l7xMRUYOnmKAzf/585OfnIzExEaGhocbLypUrjW1yc3ORk5NjvB4TE4MNGzZg27Zt6NixI/7973/jv//9L+6//345ngI5WqtW0tcmTW705OzYwZBDRERGipmjY83hfJYsWVJlX0JCAvbv32+Hikjx/vpL+tqjB3D2LLB7N7BtG5CaKmtZRESkHIrp0SGqtT//lL42bw7ceae0fdOcLSIiatgYdMh5GXp0mjcH+veXtjdvrn4lFhERNUgMOuS8DEGnRQtp+MrbWxrC+v13eesiIiLFYNAh5ySE6dCVhweQkCBd5/AVERH9jUGHnNPFi8DVq9J2dLT0lfN0iIjoJgw65JwMw1bh4YCXl7RtmKezfTtQUiJPXUREpCgMOuScKg9bGbRrBwQHA9evAzt3ylMXEREpCoMOOafKK64MNBoOXxERkQkGHXJOhh6dFi1M9xuGrxh0iIgIDDrkrKrr0QFu9Ojs3QtcvuzYmoiISHEYdMg5VT6GTmXh4UCbNtLy8y1bHF8XEREpCoMOOZ+SEuDUKWn75h4dgMNXRERkxKBDzuf4canHxscHaNq06vcZdIiI6G8MOuR8Kg9baTRVv5+QALi6Su0MbYmIqEFi0CHnU90xdCrz9QVuv13a3rzZMTUREZEiMeiQ8zG34qoyDl8REREYdMgZmVtxVZkh6GzZAuj19q+JiIgUiUGHnE9NQ1cA0LUr4OcHXLoEZGQ4pi4iIlIcBh1yLkJYN3Tl6gr07Sttc/iKiKjBYtAh53LuHHDtmrTaKjraclvO0yEiavAYdMi5GIatIiMBd3fLbQ1B5+efpXBEREQNDoMOORdrhq0MWrWSAlFpKbBjh33rIiIiRWLQIedizYorA42Gw1dERA0cgw45F2tWXFVmCDo8cCARUYPEoEPOpTZDVwBwxx3S16ws4OxZ+9RERESKxaBDzsXQo2PN0BUABAUBHTtK2z/+aJeSiIhIuRh0yHlcuwbk5krb1vboABy+IiJqwBh0yHkcPy591emAgADrb1d5QrIQNi+LiIiUi0GHnEflicgajfW3690b8PAATp0C/vjDPrUREZEiMeiQ86jtRGQDLy8p7ABcZk5E1MAw6JDzqM0xdG7GeTpERA0Sgw45j9oeQ6eyO++Uvm7dCpSV2a4mIiJSNAYdch51HboCgE6dgMBA4OpVYPdu29ZFRESKxaBDzqGiAsjOlrbrMnTl4gL06ydtc/iKiKjBYNAh55CbCxQXA1qtdKLOujAMX3FCMhFRg8GgQ87BMGwVFQW4udXtPgwTknftAgoKbFMXEREpGoMOOYf6rLgyiI4GWrYE9Hpg2zZbVEVERArHoEPOoT4rrirjMnMiogaFQYecQ31WXFXGeTpERA0Kgw45B1sMXQHAHXdIK7COHJFOCUFERKrGoEPOwVZDV/7+QNeu0jaHr4iIVI9Bh5SvsBA4d07arm+PDsDhKyKiBoRBh5TPMGwVEADodPW/v8oTkisq6n9/RESkWAw6pHy2mohs0KMH4OMj9RL99ptt7pOIiBSJQYeUz1YTkQ3c3YGEBGmb83SIiFSNQYeUz1YTkSvjPB0iogaBQYeUz9ZDV8CNeTrp6dI5tIiISJUYdEj5bD10BQBt2wIhIcD168DOnba7XyIiUhQGHVI2vR7Izpa2bdmjo9Fw+IqIqAFg0CFlO30aKCuTzlgeEWHb+zYMXzHoEBGpFoMOKZth2Co6GtBqbXvfhh6dffuAS5dse99ERKQIDDqkbPZYcWUQFibN1REC2LLF9vdPRESyY9AhZbPHiqvKOE+HiEjVGHRI2eyx4qoyztMhIlI1Bh1SNnsOXQHSEZJdXaWVXYZQRUREqsGgQ8pm7x6dRo2kc18B7NUhIlIhRQWd9PR0JCcnIywsDBqNBmvXrq3xNsuWLUOHDh3g7e2N0NBQjBo1ChcvXrR/sWR/+fmA4WcZE2O/x+HwFRGRaikq6BQVFaFDhw6YN2+eVe1/+uknpKSk4PHHH8fBgwfx1VdfYc+ePXjiiSfsXCk5hKE3p2lTwNfXfo9jCDpbtkgHKCQiItVwlbuAypKSkpCUlGR1+127diE6OhoTJkwAAMTExOCpp57C7Nmz7VUiOZK9h60M4uIAnQ64fBnYvx/o2tW+j0dERA6jqB6d2urZsydOnTqFDRs2QAiBs2fP4uuvv8bgwYPN3qakpAQFBQUmF1Ioe09ENnB1Bfr2lbY5fEVEpCpOH3SWLVuGhx56CO7u7ggJCYG/vz/mzp1r9jZpaWnQ6XTGS2RkpAMrplqx9zF0KuM8HSIiVXLqoHPo0CFMmDABL7/8Mvbt24eNGzciOzsbY8aMMXubadOmIT8/33g5efKkAyumWnHU0BVwI+j88gtQVGT/xyMiIodQ1Byd2kpLS0OvXr3w3HPPAQBuu+02+Pj4ID4+Hq+++ipCQ0Or3MbDwwMeHh6OLpXqwlFDVwDQsiUQFQXk5AA7dgB33WX/xyQiIrtz6h6da9euwcXF9Clo/z7xoxBCjpLIVsrLgRMnpG1HBB2NhsNXREQqpKigU1hYiMzMTGRmZgIAsrOzkZmZiZycHADSsFNKSoqxfXJyMlavXo358+fjr7/+ws8//4wJEyagW7duCAsLk+MpkK2cPCkt9fbwkE6+6QiGoLN5s2Mej4iI7E5RQ1d79+5FX8PqFwCTJ08GAKSmpmLJkiXIzc01hh4AeOyxx3D16lXMmzcPzz77LPz9/XHHHXfgzTffdHjtZGOGYauYGMDFQXn8jjukrwcOAGfPAsHBjnlcIiKyG41o4GM8BQUF0Ol0yM/Ph5+fn9zlkMHChcBTTwGDBgH/+5/jHrdzZyAjA1i6FHjkEcc9LhER1Yq1n9+KGroiMnLkiqvKOE+HiEhVGHRImRy54qqyyvN0GnZnJxGRKjDokDI58mCBlfXqJU2APn0aOHLEsY9NREQ2x6BDyiTX0JWXFxAfL21z+IqIyOkx6JDyXLoEXLkibcfEOP7xucyciEg1GHRIeQy9OaGhgLe34x//zjulr9u2AWVljn98IiKyGQYdUh655ucYdOwINGkCXL0K/PqrPDUQEZFNMOiQ8si14srAxQXo10/a5jwdIiKnxqBDyiPXROTKDMNXnKdDROTUGHRIeeTu0QFuTEj+9VcgP1++OoiIqF4YdEh55J6jAwDNmgGtWkknFt22Tb46iIioXhh0SFlKS6UzlwPyDl0BXGZORKQCDDqkLCdOABUV0oH75D57uGGeDickExE5LQYdUpbKw1Yajby19O0rrcD6448bvUxERORUGHRIWZSw4srA3x/o1k3a5vAVEZFTYtAhZVHCiqvKOHxFROTUGHRIWZSw4qqyyhOSKyrkrYWIiGqNQYeURUlDVwBw++2Ajw9w/jxw4IDc1RARUS0x6JByCKG8oSt3dyAxUdrmPB0iIqfDoEPKceECUFgorbaKjpa7mhs4T4eIyGkx6JByGIatwsMBT095a6nMME8nPR0oLpa3FiIiqhUGHVIOpQ1bGdx6KxAaKoWcX36RuxoiIqoFBh1SDqVNRDbQaDh8RUTkpBh0SDmUtrS8MsPwFYMOEZFTYdAh5VDq0BVwo0dn/37g4kV5ayEiIqsx6JByKHXoCpDm6LRrJy2B37JF7mqIiMhKDDqkDMXFwOnT0rYSe3QAztMhInJCDDqkDMePS70ljRoBTZrIXU31Ks/TEULeWoiIyCoMOqQMlYetNBp5azGnTx/AzU0KZYZ6iYhI0Rh0SBmUPBHZoFEjoEcPaZvDV0REToFBh5RByUvLK+MycyIip8KgQ8qg5BVXlRmCzpYtgF4vby1ERFQjBh1SBmcYugKALl0AnQ64cgXYt0/uaoiIqAYMOiQ/IZynR8fVFbjjDmm7IQ1f6fXAtm3AihXSV/ZmEZGTYNAh+Z09C1y/Dri4AFFRcldTs4Y2T2f1aiA6GujbFxgxQvoaHS3tJyJSOAYdkp9h2CoyEnB3l7cWaxiCzi+/AEVF8tZib6tXA8OGAadOme4/fVraz7BDRArHoEPyc5ZhK4MWLYBmzYCyMiA9Xe5q7EevByZOrP7giIZ9kyZxGIuIFI1Bh+TnLEvLDTSahjF8tWNH1Z6cyoQATp6U2hERKRSDDsnPWVZcVWYIOps3y1uHPeXm2rYdEZEMGHRIfs42dAVIK680GuC334C8PLmrsY/QUOvaHTgAlJfbtxYiojpi0CH5OdvQFSCdeLRTJ2lbrb06vXoBnp41t3vjDaBNG2DJEgYeIlIcBh2S17VrN4Y+nCnoAOqfp/PvfwPFxdV/T6ORLo8+KoW+Y8eAUaOA1q2BRYukidpERArAoEPyys6Wvvr7AwEBspZSa5Xn6VS3MsmZrV4tBR0AePppICLC9PsREcDXXwOffy79DGfPBpo2lXrnHn9cCjyffMLAQ0SyY9AheTnjRGQDw9DOmTPA4cNyV2M7v/8OpKRI25MmAf/9L3D8OLB1K7B8ufQ1OxsYOlRq06gR8Nxz0r7//AcICpK2n3gCuOUW4KOPgNJSuZ4NETVwDDokL2ecn2Pg6QnEx0vbahm+unwZuPde6UCId9wBvPWWtF+rBRITgYcflr5qtVVv6+MDPPusFHLefhsIDpYC0pNPAq1aAR9+yMBDRA7HoEPycsYVV5WpaZm5Xi8FmT//lE7xsHKldG6v2vL2BiZPln62774LhIQAOTnAmDFAy5bAggVASYnNyyciqg6DDsnLmYeuAODOO6Wv27Y5/3yUGTOA778HvLyAtWulScb14e0tDX399Rfw3nvScvWTJ4F//lMKPB98wMBDRHbHoEPycuahKwDo0EGahFtYCOzaJXc1dffFF8Cbb0rbixdLz8tWvLyACROkn/V//wuEhUlHXB43TurJmzfP/OquhoZniSeyOQYdkk9FxY1VV846dOXiAvTrJ2076zydzExg9Ghpe+pU4KGH7PM4np7SCq4//5TCTXi4dHLQp5+Wfv5z5zbswMOzxBPZBYMOyefMGWnowtVVOnO5s3LmeToXLkiTj69fBwYOBF57zf6P6ekp9eb8+ac0fBURIb0XJkyQevbee0+qpyHhWeIdyxl7zlhz3YkGLj8/XwAQ+fn5cpfS8GzfLgQgRIsWcldSPydOSM9DqxXiyhW5q7FeWZkQffve+BlcuiRPHcXFQsyfL0RUlFQLIERIiBDvvivEtWvy1ORI5eVCRETceO43XzQaISIjpXZKVF4uxNatQixfLn1Vap0Gq1ZVfb0jIqT9SsWaq2Xt57dGCLUd6ax2CgoKoNPpkJ+fDz8/P7nLaViWLJGOptu/P/DDD3JXUz+tWwNHjwJr1kg9JM7gmWeAOXOk4+Ds2gW0bStvPaWl0nvi9deBEyekfcHBwPPPSyu2vL1lLc/mDEO3y5YBM2fW3D4uTprEHRAABAaafq287e9ft9VydbF6NTBxomlPVESE1CtnOM6Skhh6zm7+2NNopK9ff628ulmzWdZ+fjPo2DHoFBUVmf2eVquFZ6XzCFlq6+LiAi8vrzq1vXbtGsz9iDUaDbwrfXjUpu3169dRUVFhtg4fH5+a277yCjB7NnyeekpacgyguLgYegvdm5Xvt6a23t7e0Pz9i1VSUoJyC+dhqk1bLy8vuLhIo76lpaUoKyuTllMvXCgdM+addyy3NcPT0xPav49PU5u2ZWVlKLVwfBoPDw+4/v3BZ2y7fLlUKyBt3313lbbl5eUosbAqyt3dHW5ubrVuq9frUWxhLo6bEHD/4gvgtdegP34cxYA04XvSJOkghJXeA25ubnB3dwcAVFRU4LqFIa/atHV1dYWHhwcAQAiBa9eu1a/t9evA4cPQ/v47PA8eBLKygKwsFF29avZ+tQAqn2nM/G+9NAfBq9L1Ip0OaNxYuhiC0N/bLgEB8AoJMQaja15eEI0bSwHppuMjWfwbsW4d8MgjN9oC8JZuJD3lZctQ8ff7qjpW/Y2opm2d/0aUl0vnZDOccubvev/+6EUJgPLQUGDnTsDNTXottFppHp5WC29fX2j+/l2u09+IurTV66Waz5wBIL0fDD+hUgBlgDTX7dChKj+7ev+NsKJttb/3lWp2B+B28x1oNFIYzs6u/nhctWD157fN+pCclD2HrgCYvQwaNMikrbe3t9m2CQkJJm2bNGlitm1cXJxJ22bNmplte+utt5q0vfXWW822bdasmUnbuLg4s22bNGli0jYhIcFsW29AiNmzjW0HDRpk8XWrbNiwYRbbFhYWGtumpqZabHvu3Dlj27Fjx1psm52dbWw7ZcoUi21///13Y9uZM2dabLt7925j29mzZ1tsu3XrVmPbefPmWWz77bffGtsuXrzYYtsvv/zS2PbLL7+02Hbx4sXGtt9++63FtvPmzTO23bp1q8W2sw3vh9JSsXvGDIttZ86cabzf33//3WLbKVOmGNtmZ2dbbDt27Fhj23Pnzllsm5qaamxbWFhose3f/+MaL5baDrqprbebm9m2CR4eQvj5Gds2sXC/cTfdbzMLbW/V6YQYP16Il18W4r33xK3h4WbbNqt8vxqNiLNQbxN/fyF27BBi82Yh/vc/kdC2rdm23m5uQjz/vBATJwoxZowYFBFh8XUTbdoI0by5EOHhYpi7u8W2hZVqTq3h53Hu7+cltFox1sXFYtvs4GBpKDYmRkzR6Sy2/b1DByF69xaiTx8xMzraYtvdleqdXUO9W3v0EGLIECEGDxbzLPxtByC+ve02aRg7MVEsbt3aYtsvW7YUols3Ibp2FV82b26x7eKb3msml0p/w+rK2s9vB/VvElngrEvLnVF+vtwVWM/NDbjnHssTpJVwpOXsbGDaNGn1WkaG5bZBQcDIkUDHjtKlffua79/wH/DFi+aP1XT77TeO5XT5MhAbK32tTuPGQJcuwKVL0uXECZg9V1t+vrRCrraEsHxcqStXbhxVvCZlZdK51Kxlz9OxCGHdhNqzZ62/z6ysutdjyc6d1rc9cMD6tseO1b6W6lTqWbM3Dl1x6KpObW0ydBUdDVy4AJ/9+4FOnQA48dAVIJ0yYfdu4P33gdRUy22rYfehq9JSlPXti9JffpHOQbVtG3DTe14RQ1eVhphM2paXS0drfuMN42EJ3AIC4D5lCjB+PCp8fEyHo/R64Oefgbw8ICQEbomJcP/7d6PWQ1fnzgEHD0ofCAcOAL/9Jp0TrLgYrgA8/r6dAHANkObStG8P3HabdGnfHggNhdbVtfrf+5uGgYC/h64qzWkoGjjQbL31/htRWioFo0uXpK9/b2suX4Z3YaEUsi5dwrXz5yEuXpRWg128aHK/xqGrv10HYPJb7+Fx4+LuDh8vL+P1666uqPh7/83t4OEBn0aNjPuKXVygd3Orth08POCj091oC0Dv6ipd37+/ymtcZegKANavB3r2lN4/FRXSV70e3p6e0Px9veT6dZSXllZpg4oKoKICXq6u0pJmvR6lJSUoKykxbft3O+j18NJqTduWlt5od/iwNN/pb9UOXQHA2LHSaVY0GmmoTaOBp7u79DdCo0GZXo/Sigrp+4YLYNz2cHeXfu8NbfV607aVLpXblldUoKS83LTN778DL74IANUPXRls3SqdTqYenHLoavv27WLIkCEiNDRUABBr1qyp8TbFxcVi+vTpIioqSri7u4vmzZuLTz75xOrH5KormRQU3OjCdKaVSpa89JL0fIYPl7uS6v3zn1J9fn5CHDkidzV1V1YmxKefCtGq1Y33UECAEK+9JoTh97iuKz4qKoQ4dUqIb78V4tVXhXjgAelxNJrqu9+9vITo3l2Ip54S4oMPhPjlFyGuXq3b86qu5shIZa6s2brV/JBE5cuGDUKUlkqvq9wMq9vM/SyVuLqNNVtk7ee3ooLOhg0bxIwZM8SqVausDjp333236N69u9i0aZPIzs4Wv/76q/j555+tfkwGHZlkZUlv+sBAuSuxnfR06Tk1aSKEXi93NaYWLrzxR6bSnB2nVlYmxOefC3HLLTf+iDZuLAXN6v7IajTSxRAcSkuFOHBAuo9nnxWiXz/pZ2fuQzs0VIikJCFeeEGIL76QwqKtP2CcZam2M34ACyH97A3vA0vvDSVhzWY5ZdCpzJqg89133wmdTicuXrxY58dh0JHJ6tXSG79rV7krsZ3SUiEaNZKe1/79cldzw88/C+HmJtX16qtyV2N75eVCLFsmROvW1vUy+PgI0amTEO7u1X9fqxWibVshRoyQJsr/8IMQZ8/K/SyVxxk/gIVwrp4zA9ZcLac/jo5Go8GaNWtwr4VjkowdOxZHjx5FXFwcPv/8c/j4+ODuu+/Gv//9b5Mx6MpKSkpM5hIUFBQgMjKSx9FxtLffBqZMAYYPl46aqRbJycC330qTJ597Tu5qpGWpXbpI81Tuvx/46qsb4/Nqo9cDs2YBr75q/W18faXzenXseONr27bS+bmoZtUdRycyUjo+k9KO7VKZXg/s2CFNiA0NlSZG13Ops92x5iqsnaPj1Kuu/vrrL/z000/w9PTEmjVrcOHCBYwdOxaXLl3CokWLqr1NWloa/vWvfzm4UqrC2c9abs6dd0pBZ9Mm+YNOcbH0YZOXB7RrJx2MT60hB5D+gN56q3VtJ02SzrEVHS1N3qS6GTpUWhnnbB/AWm29J8I6HGuuM6cOOhUVFdBoNFi2bBl0Oh0A4J133sGwYcPw/vvvV9urM23aNEyePNl43dCjQw7m7GctN8dw3qsdO6Sg4elpub29CCGdT+rXX6XlxGvXSkdAVrvQUOva3XOP+t57clHIhxmROU79r0xoaCjCw8ONIQcA2rRpAyEETt18cry/eXh4wM/Pz+RCMjAEHWc9a7k5bdoAYWFSyPn5Z/nq+OADYNEiqbfiiy/U9zqbEx8vHXPGXM+VRiMNrVh7DBcicnpOHXR69eqFM2fOoLCw0Ljv6NGjcHFxQUREhIyVkUV6PXD8uLSttv+qNRpp+AqQhq/ksH27NDQDAG++CQwYIE8dctBqbxx35OawY7g+Z47yh1aIyGYUFXQKCwuRmZmJzMxMAEB2djYyMzORk5MDQBp2SklJMbYfMWIEAgMDMWrUKBw6dAjp6el47rnnMHr0aLOTkUkBTp2Sjnbq7i6dp0VtDMNXcgSdnBzggQekg+s9/DDw7LOOr0FuQ4dKJw28+b0VEaHMEyASkV0pao7O3r170bdvX+N1w1ya1NRULFmyBLm5ucbQAwCNGjXCpk2b8PTTTyMuLg6BgYF48MEH8WptVl2Q4xmGraKj1fmftaFHJyMDuHABaNLEMY97/Tpw333A+fPS6qGPP1b35GNLnHWSLBHZnKKCTmJiotlTEADAkiVLquyLjY3FJrmGCKhu1LriyiAkRDrk/2+/AVu2AA8+aP/HFEI6G/n+/VKwWrsW8Pau8WaqxkmyRASFDV1RA6HWiciVOXqezrvvAkuXSh/uX30FNGvmmMclIlI4Bh1yPLUuLa+s8jwdex+Tc/PmG8fsefdd9mIQEVXCoEOOp/ahKwDo0wdwcwNOnLjxfO3hr7+Ahx6Sznb82GPA+PH2eywiIifEoEOO1xCGrnx8gJ49pW17DV8VFQH33gtcugR07QrMn99wJx8TEZnBoEOOdeWK9MEMADExspZid/ZcZi4EMGqUNOE5OFg655BcR2EmIlIwm6y6OnLkCL755hv4+/ujbdu2aNeuHY84TNUz9OYEBan/lAT9+wMvviitvCovB1xtuMjxzTelScdubsCqVdIxYoiIqAqb9OgkJSWhtLQUV65cwYcffojExES0bt3aFndNatMQhq0MunQB/P2B/Hxg3z7b3e933wHTp0vbc+cCvXrZ7r6JiFTGJv9ihoSEYMaMGSb79Hq9Le6a1KYhrLgy0GqBO+6QhpU2bQK6d6//fR49Kh3x2HDcnKeeqv99EhGpmE16dAYOHIjPP//cZJ+WRyCl6jSEFVeV2XKeTkGBNPk4P1/qxZk7t/73SUSkclYHnalTp6K4uLja7+3evRszZsxAy5YtMWLECKSlpeHbb7+1WZGkIg1p6Aq4EXR27gQqnXy21ioqgJQU4PBh6ezoX38tnSuMiIgssjrovPvuu8jPzwcgnXuqqKjI+L0NGzYgJycH+/fvx/jx4xEYGIjNmzfbvlpyfg2tR6d5c+mcXmVlQHp63e/n3/8G1q2Tws2aNdJpJoiIqEZWB53w8HBkZGQAAJYuXWoSdAz8/PzQs2dPPPnkk5gzZ47NiiSVKCuTzq4NNJweHY2m/sNX69YBs2ZJ2wsWAN262aQ0IqKGwOqgM2XKFNx9993o+fdB0JYtW4bdu3fj+vXrdiuOVObkSUCvl4730pB6JOoTdA4dAh59VNp++mnp2DlERGQ1jbB0uvCbHDx4EOvWrcOLL76I5s2b4/jx49BoNGjZsiU6dOiAjh07okOHDkhKSrJnzTZVUFAAnU6H/Px8HvvH3jZtAgYMANq0kT7AG4qLF4GmTaWVUmfOAKGh1t3uyhWp9+b//g9ISJBePzc3u5ZKROQsrP38rtWqq7Zt22L69Olo3rw5du3ahatXr+Knn37CpEmT0LhxY6xbtw4PPvhgvYsnlWpoE5ENAgOBzp2lbWvnrun1wIgRUsiJirpxcEAiIqqVOh1H59ixY8bt7t27o3ul44PUooOIGpqGdAydm/XvLx00cNMmYOTImtu/9JJ0YEAvL2DtWqlHiIiIaq1WPTrTp0/H7t27LbbR8KSCZE5DW3FVmWGezubN0hCWJV9+CaSlSdsffwx06mTf2oiIVKxWQSc3NxdDhgxBaGgonnzySfzvf/9DSUmJvWojtWmoQ1eAdCZzT08gN9fy/KQDB25MOJ4yRRq+IiKiOqtV0Fm8eDHOnj2LL7/8Ev7+/nj22WfRpEkTDB06FEuWLMGFCxfsVSc5OyEado+OpyfQp4+0bW711cWL0pGPr12TeoAMvTpERFRntT4FhEajQXx8PGbPno0jR45g9+7duP322/HRRx8hPDwcffr0wX/+8x+cPn3aHvWSs7p0STqFAQDExMhbi1wsLTMvLweGDweys6Ug+MUXtj3bORFRA1Xvc121adMGzz//PH7++WecOnUKqamp2LFjB1asWGGL+kgtDMNWYWHSBNuG6M47pa/btwOlpabfmzpVmr/j7S1NPg4IcHh5RERqZNN/GZs2bYrHH38cjz/+uC3vltSgIa+4MrjtNmn11PnzwK5dN4ayli4F3nlH2v70U6B9e/lqJCJSGZucvbw6+/bts9ddkzNqyPNzDFxcbvTqfPQRsGIF8OGHwBNPSPumTweGDZOvPiIiFbLbJID77rsPOYbzGhE15BVXlRmGpJYulS4GnTsDr7wiT01ERCpWr6Bj7ijIQghcunSpPndNasOhK2D1auCDD6r/XkaGdPLOoUMdWxMRkcrVK+hs3rwZn3/+ORo1amSyXwiB9PT0ehVGKtPQh670emDiRMsHC5w0CbjnHkCrdVhZRERqV6+gk5iYiEaNGiEhIaHK9zrxaK5kUFoqnbkcaLhDVzt2AKdOmf++ENJrtGMHkJjosLKIiNSuXkFn9erVZr+3cePG+tw1qcnx49IHuY8PEBQkdzXyyM21bTsiIrKK3VZdERlVnp/TUM+FFhpq23ZERGQVBh2yP05EBuLjgYgI80FPowEiI6V2RERkMzYNOqKmszJTw9TQJyID0gTj996Ttm8OO4brc+ZwIjIRkY3ZNOh06dLFlndHasFj6EiGDgW+/hoIDzfdHxEh7efSciIim7PpAQPZo0PV4tDVDUOHSkvId+yQJh6HhkrDVezJISKyi3oHnc8++wyAFHIuX75svA4AKSkp9b17cnZCcOjqZlotl5ATETlIvYNO5V4cwzZ7dsjo/HmgqEiahxIdLXc1RETUwGiEDVNJ586dsX//flvdnUMUFBRAp9MhPz8ffn5+cpejPrt2AT16SCuKeO4zIiKyEWs/v7nqiuyLw1ZERCQjmwadffv22fLuSA244oqIiGRk06Dj4sLjD9JNuOKKiIhkxGRC9sWhKyIikpFNjqNz5MgRfPPNN/D390fbtm3Rrl07TuwlCYeuiIhIRjbp0UlKSkJpaSmuXLmCDz/8EImJiWjdurUt7pqcWXExcPq0tM0eHSIikoFNenRCQkIwY8YMk316vd4Wd03OLDtb+urnBwQGylsLERE1SFb36EydOhXFxcXVfm/gwIH4/PPPTfZpeUh7qjwR2dxZu4mIiOzI6qDz7rvvIj8/HwCQmpqKoqIi4/d2796NGTNmoGXLlhgxYgTS0tLw7bff2r5aci6ciExERDKzOuiEh4cjIyMDALB06VKToLNhwwbk5ORg//79GD9+PAIDA7F582bbV0vOhRORiYhIZlbP0ZkyZQruvvtuxMXFAQCWLVuGXr16oX379vDy8gIA+Pn5oWfPnujZs6d9qiXnwmPoEBGRzKzu0Rk3bhwyMjIwZMgQCCHw/vvvo2fPnvDz80ObNm0wfPhwvPHGG9i4caM96yVnwqErIiKSWZ1O6tmyZUvs2rULPj4+OHDgADIzM42X33//HVevXrVHrXbBk3raiRCAt7e0xPzYMQ5fERGRTVn7+W3Ts5cD0ok9NU60woZBx05yc4GwMMDFRQo7bm5yV0RERCoiy9nLAThVyCE7MgxbRUUx5BARkWx4riuyD664IiIiBWDQIfvgiisiIlIABh2yD664IiIiBWDQIfvg0BURESkAgw7ZB4euiIhIARQVdNLT05GcnIywsDBoNBqsXbvW6tv+/PPPcHV1RceOHe1WH1mpqAjIy5O22aNDREQyUlTQKSoqQocOHTBv3rxa3S4/Px8pKSno16+fnSqjWsnOlr42bgz4+8taChERNWxWn+vKEZKSkpCUlFTr2z311FMYMWIEtFptrXqByE44bEVERAqhqB6duli8eDH+/PNPzJw5U+5SyMCw4orDVkREJDNF9ejU1v/93//hhRdewI4dO+Dqat1TKSkpQUlJifF6QUGBvcpruNijQ0RECuG0PTp6vR4jRozAv/71L9xyyy1W3y4tLQ06nc54iYyMtGOVDRSPoUNERAph85N62opGo8GaNWtw7733Vvv9K1euoHHjxtBqtcZ9FRUVEEJAq9Xihx9+wB133FHldtX16ERGRvKknrYUGwv88Qfw449ANT8DIiKi+rL2pJ5OO3Tl5+eH3377zWTfBx98gC1btuDrr79GTExMtbfz8PCAh4eHI0psmCoqbqy6Yo8OERHJTFFBp7CwEMeOHTNez87ORmZmJgICAhAVFYVp06bh9OnT+Oyzz+Di4oJ27dqZ3D4oKAienp5V9pMDnT4NlJYCrq5ARITc1RARUQOnqKCzd+9e9O3b13h98uTJAIDU1FQsWbIEubm5yMnJkas8soZhInJ0tBR2iIiIZKTYOTqOYu0YH1lp8WJg9GhgwADg++/lroaIiFTK2s9vp111RQrFFVdERKQgDDpkWzxrORERKQiDDtkWDxZIREQKwqBDtsWhKyIiUhAGHbKdggLgwgVpm0GHiIgUgEGHbMdwoMAmTQCuYCMiIgVg0CHb4VnLiYhIYRh0yHY4EZmIiBSGQYdsh0GHiIgUhkGHbIdDV0REpDAMOmQ77NEhIiKFYdAh2ygvB44fl7YZdIiISCEYdMg2Tp2Swo67OxAeLnc1REREABh0yFYMw1YxMYAL31ZERKQM/EQi2+CpH4iISIEYdMg2eNZyIiJSIAYdsg2uuCIiIgVi0CHb4NAVEREpEIMO2QaHroiISIEYdKj+Ll+WLoC06oqIiEghGHSo/gy9OSEhgI+PvLUQERFVwqBD9ceJyEREpFAMOlR/DDpERKRQDDpUfzxrORERKRSDDtUfe3SIiEihGHSo/hh0iIhIoRh0qH7KyoCcHGmbQ1dERKQwDDpUPzk5gF4PeHpKy8uJiIgUhEGH6qfyqR80GnlrISIiugmDDtUPT/1AREQKxqBD9cOJyEREpGAMOlQ/PGs5EREpGIMO1Q+HroiISMEYdKjuhODQFRERKRqDDtXdxYtAQYG0HRMjby1ERETVYNChujP05oSHS8fRISIiUhgGHao7DlsREZHCMehQ3fGs5UREpHAMOlR37NEhIiKFY9ChumPQISIihWPQobrj0BURESkcgw7VTUkJcOqUtM0eHSIiUigGHaqbEyekAwb6+ABNm8pdDRERUbUYdKhuKg9baTTy1kJERGQGgw7VDSciExGRE2DQobrhWcuJiMgJMOhQ3fCs5URE5AQYdKhuOHRFREROgEGHak8IBh0iInIKDDpUe+fOAUVF0mqr6Gi5qyEiIjKLQYdqz9CbExkJuLvLWwsREZEFDDpUezz1AxEROQkGHao9zs8hIiInwaBDtcegQ0REToJBh2qPQ1dEROQkGHSo9tijQ0RETkJRQSc9PR3JyckICwuDRqPB2rVrLbZfvXo1+vfvj6ZNm8LPzw89evTA999/75hiG6rr14EzZ6RtBh0iIlI4RQWdoqIidOjQAfPmzbOqfXp6Ovr3748NGzZg37596Nu3L5KTk5GRkWHnShuw7Gzpq04HBATIWwsREVENXOUuoLKkpCQkJSVZ3X7OnDkm119//XWsW7cO33zzDTp16mTj6giA6bCVRiNvLURERDVQVI9OfVVUVODq1asIYE+D/XB+DhERORFF9ejU19tvv42ioiI8+OCDZtuUlJSgpKTEeL2goMARpakHV1wREZETUU2PzooVKzBr1iysXLkSQUFBZtulpaVBp9MZL5GRkQ6sUgXYo0NERE5EFUFn5cqVePzxx/Hll1/izjvvtNh22rRpyM/PN15OnjzpoCpVwtCjw6BDREROwOmHrlasWIHRo0djxYoVGDx4cI3tPTw84OHh4YDKVKii4saqKw5dERGRE1BU0CksLMSxY8eM17Ozs5GZmYmAgABERUVh2rRpOH36ND777DMAUshJSUnBe++9h9tvvx15eXkAAC8vL+h0Olmeg6rl5QHFxYBWK525nIiISOEUNXS1d+9edOrUybg0fPLkyejUqRNefvllAEBubi5ycnKM7T/88EOUl5dj3LhxCA0NNV4mTpwoS/2qZxi2atYMcHOTtxYiIiIrKKpHJzExEUIIs99fsmSJyfVt27bZtyAyxYnIRETkZBTVo0MKx6BDREROhkGHrMdj6BARkZNh0CHrsUeHiIicDIMOWY9Bh4iInAyDDlmnsBA4e1ba5tAVERE5CQYdso7hQIEBAQCPUURERE6CQYesw2ErIiJyQgw6ZB2uuCIiIifEoEPWYY8OERE5IQYdsg6DDhEROSEGHbIOh66IiMgJMehQzfR64PhxaZs9OkRE5EQYdKhmp08DpaXSGcsjIuSuhoiIyGoMOlQzw/yc6GhAq5W1FCIiotpg0KGacSIyERE5KQYdqhknIhMRkZNi0KGasUeHiIicFIMO1YxBh4iInBSDDtWMQ1dEROSkGHTIsvx84OJFaTsmRt5aiIiIaolBhyzLzpa+Nm0K+PrKWwsREVEtMeiQZRy2IiIiJ8agQ5ZxIjIRETkxBh2yjEGHiIicGIMOWcahKyIicmIMOmQZe3SIiMiJMeiQeeXlwIkT0jaDDhEROSEGHTLv5Ekp7Hh4AGFhcldDRERUaww6ZJ5h2ComBnDhW4WIiJwPP73IPE5EJiIiJ8egQ+ZxIjIRETk5Bh0yj0GHiIicHIMOmcehKyIicnIMOmQee3SIiMjJMehQ9S5fBq5ckbZjYmQthYiIqK4YdKh6hmGr0FDA21veWoiIiOqIQYeqx2ErIiJSAQYdqh6DDhERqQCDDlWPK66IiEgFGHSoeuzRISIiFWDQoeox6BARkQow6FBVpaVATo60zaErIiJyYgw6VFVODlBRIS0rDw6WuxoiIqI6Y9ChqioPW2k08tZCRERUDww6VJVhxRXn5xARkZNj0KGqOBGZiIhUgkGHquIxdIiISCUYdKgq9ugQEZFKMOiQKSEYdIiISDUYdMjUhQvA1avSaqvoaLmrISIiqhcGHTJl6M0JDwc8PeWthYiIqJ4YdMgUh62IiEhFGHTIFFdcERGRijDokCn26BARkYow6JApBh0iIlIRBh0yxaErIiJSEVe5CyCF0OuBH38ETp2SrjdrJm89RERENqCoHp309HQkJycjLCwMGo0Ga9eurfE227dvR5cuXeDp6YnmzZtjwYIF9i9UbVavlo6ZM3DgjX1du0r7iYiInJiigk5RURE6dOiAefPmWdU+OzsbgwYNQnx8PDIyMjB9+nRMmDABq1atsnOlKrJ6NTBs2I2eHIPTp6X9DDtEROTENEIIIXcR1dFoNFizZg3uvfdes22mTp2K9evX4/Dhw8Z9Y8aMQVZWFnbu3GnV4xQUFECn0yE/Px9+fn71Ldu56PVST87NIcdAowEiIoDsbECrdWhpREREllj7+a2oHp3a2rlzJwYMGGCyb+DAgdi7dy/KysqqvU1JSQkKCgpMLg3Wjh3mQw4gnffq5EmpHRERkRNy6qCTl5eH4OBgk33BwcEoLy/HhQsXqr1NWloadDqd8RIZGemIUpUpN9e27YiIiBTGqYMOIA1xVWYYibt5v8G0adOQn59vvJw8edLuNSpWaKht2xERESmMUy8vDwkJQV5ensm+c+fOwdXVFYGBgdXexsPDAx4eHo4oT/ni46U5OKdPS8NUNzPM0YmPd3xtRERENuDUPTo9evTApk2bTPb98MMPiIuLg5ubm0xVORGtFnjvPWn75h4ww/U5czgRmYiInJaigk5hYSEyMzORmZkJQFo+npmZiZycHADSsFNKSoqx/ZgxY3DixAlMnjwZhw8fxqJFi/DJJ59gypQpcpTvnIYOBb7+GggPN90fESHtHzpUnrqIiIhsQFHLy7dt24a+fftW2Z+amoolS5bgsccew/Hjx7Ft2zbj97Zv345nnnkGBw8eRFhYGKZOnYoxY8ZY/ZgNenl5ZXq9tLoqN1eakxMfz54cIiJSLGs/vxUVdOTAoENEROR8GsRxdIiIiIgsYdAhIiIi1WLQISIiItVi0CEiIiLVYtAhIiIi1WLQISIiItVi0CEiIiLVYtAhIiIi1WLQISIiItVy6rOX24LhwNAFBQUyV0JERETWMnxu13SChwYfdK5evQoAiIyMlLkSIiIiqq2rV69Cp9OZ/X6DP9dVRUUFzpw5A19fX2g0Gpvdb0FBASIjI3Hy5EmeQ8vO+Fo7Bl9nx+Dr7Bh8nR3Dnq+zEAJXr15FWFgYXFzMz8Rp8D06Li4uiIiIsNv9+/n58ZfIQfhaOwZfZ8fg6+wYfJ0dw16vs6WeHANORiYiIiLVYtAhIiIi1WLQsRMPDw/MnDkTHh4ecpeienytHYOvs2PwdXYMvs6OoYTXucFPRiYiIiL1Yo8OERERqRaDDhEREakWgw4RERGpFoMOERERqRaDjp188MEHiImJgaenJ7p06YIdO3bIXZKqpKWloWvXrvD19UVQUBDuvfde/PHHH3KXpXppaWnQaDSYNGmS3KWozunTp/Hoo48iMDAQ3t7e6NixI/bt2yd3WapTXl6OF198ETExMfDy8kLz5s3xyiuvoKKiQu7SnFp6ejqSk5MRFhYGjUaDtWvXmnxfCIFZs2YhLCwMXl5eSExMxMGDBx1SG4OOHaxcuRKTJk3CjBkzkJGRgfj4eCQlJSEnJ0fu0lRj+/btGDduHHbt2oVNmzahvLwcAwYMQFFRkdylqdaePXuwcOFC3HbbbXKXojqXL19Gr1694Obmhu+++w6HDh3C22+/DX9/f7lLU50333wTCxYswLx583D48GHMnj0bb731FubOnSt3aU6tqKgIHTp0wLx586r9/uzZs/HOO+9g3rx52LNnD0JCQtC/f3/j+SbtSpDNdevWTYwZM8ZkX2xsrHjhhRdkqkj9zp07JwCI7du3y12KKl29elW0atVKbNq0SSQkJIiJEyfKXZKqTJ06VfTu3VvuMhqEwYMHi9GjR5vsGzp0qHj00Udlqkh9AIg1a9YYr1dUVIiQkBDxxhtvGPcVFxcLnU4nFixYYPd62KNjY6Wlpdi3bx8GDBhgsn/AgAH45ZdfZKpK/fLz8wEAAQEBMleiTuPGjcPgwYNx5513yl2KKq1fvx5xcXF44IEHEBQUhE6dOuGjjz6SuyxV6t27N3788UccPXoUAJCVlYWffvoJgwYNkrky9crOzkZeXp7J56KHhwcSEhIc8rnY4E/qaWsXLlyAXq9HcHCwyf7g4GDk5eXJVJW6CSEwefJk9O7dG+3atZO7HNX54osvsH//fuzZs0fuUlTrr7/+wvz58zF58mRMnz4du3fvxoQJE+Dh4YGUlBS5y1OVqVOnIj8/H7GxsdBqtdDr9Xjttdfw8MMPy12aahk++6r7XDxx4oTdH59Bx040Go3JdSFElX1kG+PHj8eBAwfw008/yV2K6pw8eRITJ07EDz/8AE9PT7nLUa2KigrExcXh9ddfBwB06tQJBw8exPz58xl0bGzlypVYunQpli9fjrZt2yIzMxOTJk1CWFgYUlNT5S5P1eT6XGTQsbEmTZpAq9VW6b05d+5clTRL9ff0009j/fr1SE9PR0REhNzlqM6+fftw7tw5dOnSxbhPr9cjPT0d8+bNQ0lJCbRarYwVqkNoaChuvfVWk31t2rTBqlWrZKpIvZ577jm88MILGD58OACgffv2OHHiBNLS0hh07CQkJASA1LMTGhpq3O+oz0XO0bExd3d3dOnSBZs2bTLZv2nTJvTs2VOmqtRHCIHx48dj9erV2LJlC2JiYuQuSZX69euH3377DZmZmcZLXFwcHnnkEWRmZjLk2EivXr2qHB7h6NGjaNasmUwVqde1a9fg4mL60afVarm83I5iYmIQEhJi8rlYWlqK7du3O+RzkT06djB58mSMHDkScXFx6NGjBxYuXIicnByMGTNG7tJUY9y4cVi+fDnWrVsHX19fYw+aTqeDl5eXzNWph6+vb5V5Tz4+PggMDOR8KBt65pln0LNnT7z++ut48MEHsXv3bixcuBALFy6UuzTVSU5OxmuvvYaoqCi0bdsWGRkZeOeddzB69Gi5S3NqhYWFOHbsmPF6dnY2MjMzERAQgKioKEyaNAmvv/46WrVqhVatWuH111+Ht7c3RowYYf/i7L6uq4F6//33RbNmzYS7u7vo3Lkzlz3bGIBqL4sXL5a7NNXj8nL7+Oabb0S7du2Eh4eHiI2NFQsXLpS7JFUqKCgQEydOFFFRUcLT01M0b95czJgxQ5SUlMhdmlPbunVrtX+TU1NThRDSEvOZM2eKkJAQ4eHhIfr06SN+++03h9SmEUII+8cpIiIiIsfjHB0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQYdIlKdY8eOQaPR4H//+x/69esHb29vtG7dGr/++qvcpRGRgzHoEJHqZGVlQaPR4O2338aLL76IrKwsREVF4YUXXpC7NCJyMAYdIlKdrKws6HQ6rFy5En379kWrVq1w77334vz583KXRkQOxqBDRKqTlZWF5ORkNG3a1Ljvr7/+QsuWLWWsiojkwKBDRKqTlZWFHj16mOzLyMhAx44d5SmIiGTDoENEqpKfn48TJ06gU6dOJvszMzMZdIgaIAYdIlKVrKwsaLVadOjQwbjvxIkTuHz5MoMOUQPEoENEqpKVlYXY2Fh4eXkZ92VkZMDf3x/R0dHyFUZEstAIIYTcRRARERHZA3t0iIiISLUYdIiIiEi1GHSIiIhItRh0iIiISLUYdIiIiEi1GHSIiIhItRh0iIiISLUYdIiIiEi1GHSIiIhItRh0iIiISLUYdIiIiEi1GHSIiIhItf4fqd4AYwwui9kAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'ratios of successive Fibonacci numbers')" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "plot(1:10, [Float64(fastfib(n+1)/fastfib(n)) for n=1:10], \"ro-\")\n", + "plot([0,10], (1+√5)/2 * [1,1], \"k--\")\n", + "xlabel(L\"n\")\n", + "ylabel(L\"f_{n+1}/f_n\")\n", + "title(\"ratios of successive Fibonacci numbers\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Clearly, it converges rapidly as expected!\n", + "\n", + "(In fact, it converges exponentially rapidly, with the error going exponentially to zero with $n$. We will discuss this in more detail later when discussing the **power method**.)" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.2" + }, + "widgets": { + "state": { + "8e329874-d1fc-4e80-ad8d-1dbbd5b2474b": { + "views": [ + { + "cell_index": 13 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Gauss-Jordan.ipynb b/notes/Gauss-Jordan.ipynb new file mode 100644 index 00000000..80c23fc8 --- /dev/null +++ b/notes/Gauss-Jordan.ipynb @@ -0,0 +1,468 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gauss–Jordan and computing A⁻¹\n", + "\n", + "The Gauss–Jordan algorithm is a technique for hand-calculation of the inverse. Nowadays, you should hardly ever compute a matrix inverse, even on a computer, but Gauss–Jordan is still useful to go over:\n", + "\n", + "* It helps us to understand when and why an inverse matrix exists.\n", + "\n", + "* It gives us yet another example to help us understand the *structure* of elimination operations" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra # as usual, we'll load this package" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Review: Inverses\n", + "\n", + "The inverse of a linear operator $A$ is the operat that \"undoes\" the action of $A$:\n", + "\n", + "$$\n", + "\\boxed{A^{-1}(Ax) = x} .\n", + "$$\n", + "\n", + "for *any* $x$. Equivalently, $\\boxed{Ax=b \\implies x = A^{-1} b}$. This means that\n", + "\n", + "* **A⁻¹ only exists for (m×m) square matrices with m (nonzero) pivots**\n", + "\n", + "since for non-square matrices or matrices with one or more \"zero pivots\" we can't always solve $Ax=b$ (we'd divide by zero during backsubstitution). It is also easy to see that $\\boxed{(A^{-1})^{-1} = A}$, i.e. that $A$ undoes the action of $A^{-1}$.\n", + "\n", + "Equivalently,\n", + "$$\n", + "\\boxed{AA^{-1} = A^{-1} A = I}\n", + "$$\n", + "where $I$ is the m×m identity matrix — in linear algebra, we typically *infer* the size of $I$ from context, but if it is ambiguous we might write $I_m$.\n", + "\n", + "### Inverses of products: (AB)⁻¹ = B⁻¹A⁻¹\n", + "\n", + "It is easy to see that the inverse of a product $BA$ is the product of the inverses in *reverse order*: $\\boxed{(AB)^{-1} = B^{-1} A^{-1}}$. Intuitively, when you reverse a sequence of operations, you always need to retrace your steps in backwards order. Explicitly:\n", + "$$\n", + "(AB)^{-1} AB = B^{-1} \\underbrace{A^{-1} A}_I B = B^{-1} B = I \\, .\n", + "$$\n", + "\n", + "For example, we saw that Gaussian elimination corresponded to the factorization $A = LU$, where $U$ is the result of elimination and $L$ is simply a record of the elimination steps. Then\n", + "$$\n", + "Ax = b \\implies x = A^{-1} b = (LU)^{-1} b = \\underbrace{U^{-1} \\underbrace{ L^{-1} b }_\\mbox{forward substitution}}_\\mbox{backsubstitution} \\, .\n", + "$$\n", + "\n", + "### Rarely compute inverses!\n", + "\n", + "In general **rarely if ever** compute inverses explicitly:\n", + "\n", + "* **Read \"x = A⁻¹b\" as \"solve Ax=b for x\" the best way you can**, and invariably there are better ways to solve for x than inverting a matrix.\n", + "\n", + "More on this below. Instead, **inverses are mostly a *conceptual* tool** to move operators/matrices around in equations. Once we have the equations in the form that we want, we then carry out the computations in some other way.\n", + "\n", + "### Notation:\n", + "\n", + "Inverses allow us to \"divide by matrices\", but we always have to be clear about whether we are dividing **on the left or on the right**. The following notations can be convenient, and are used in computer software like Julia and Matlab and elsewhere for square invertible matrices $A$:\n", + "\n", + "$$ B / A = BA^{-1}, \\\\ A \\backslash B = A^{-1} B$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inverses by linear equations\n", + "\n", + "The equation $A A^{-1} = I$ actually gives us the algorithm to compute $A^{-1}$.\n", + "\n", + "Suppose we denote the *columns* of $A^{-1} = \\begin{pmatrix} x_1 & x_2 & \\cdots & x_m \\end{pmatrix}$, and the columns of $I = \\begin{pmatrix} e_1 & e_2 & \\cdots & e_m \\end{pmatrix}$.\n", + "\n", + "Then \n", + "$$\n", + "A \\underbrace{\\begin{pmatrix} x_1 & x_2 & \\cdots & x_m \\end{pmatrix}}_{A^{-1}} = \n", + "\\begin{pmatrix} A x_1 & A x_2 & \\cdots & A x_n \\end{pmatrix} = \\underbrace{\\begin{pmatrix} e_1 & e_2 & \\cdots & e_m \\end{pmatrix}}_I.\n", + "$$\n", + "(The key fact here is that **multiplying A by a matrix on the right** is equivalent to **multiplying A by each column of that matrix**, which you can easily see by writing out the computation.)\n", + "\n", + "In consequence $A x_k = e_k$, which is a **linear equation for the k-th column of A⁻¹**. Equivalently, to find A⁻¹ for an m×m matrix A, we must **solve Ax=b for m right-hand sides** equal to the columns of I.\n", + "\n", + "* Put another way, for *any* matrix $B$, $Be_k = k\\mbox{-th column of }B$. So the k-th column of $A^{-1}$ is $x_k = A^{-1} e_k$, i.e. the solution to $Ax_k = e_k$.\n", + "\n", + "\n", + "* Ideally, we do Gaussian elimination $A=LU$ *once*, then compute $x_k = U^{-1} L^{-1} e_k$ by forward+back-substitution for each column of $I$. (This is essentially what the computer does.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: computing L⁻¹ = E\n", + "\n", + "For example, how might we compute the inverse of the L matrix we got from Gaussian elimination in the last lecture, which should give us $L^{-1} = E$? We solve\n", + "\n", + "$$\n", + "\\underbrace{\\begin{pmatrix} 1 & & \\\\ 1 & 1 & \\\\ 3 & -1 & 1 \\end{pmatrix}}_L x_k = e_k\n", + "$$\n", + "\n", + "for $e_1,e_2,e_3$ (the columns of the 3×3 identity I).\n", + "\n", + "Let's do it for $e_1$, to find the **first column** $x_1$ of $L^{-1} = E$:\n", + "$$\n", + "\\underbrace{\\begin{pmatrix} 1 & & \\\\ 1 & 1 & \\\\ 3 & -1 & 1 \\end{pmatrix}}_L \\underbrace{\\begin{pmatrix} a \\\\ b \\\\ c \\end{pmatrix}}_{x_1} = \\underbrace{\\begin{pmatrix} 1 \\\\ 0 \\\\ 0 \\end{pmatrix}}_{x_1}\n", + "$$\n", + "By forward substitution (from top to bottom), we get $a = 1$, $1a + 1b = 0 \\implies b = -1$, $3a - 1b + 1c = 0 \\implies c = -4$, so $\\boxed{x_1 = [1, -1, -4]}$. Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", + " 1 0 0\n", + " 1 1 0\n", + " 3 -1 1" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L = [1 0 0\n", + " 1 1 0\n", + " 3 -1 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Float64}:\n", + " 1.0 0.0 0.0\n", + " -1.0 1.0 0.0\n", + " -4.0 1.0 1.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E = L^-1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Float64}:\n", + " 1.0\n", + " -1.0\n", + " -4.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E[:,1] # first column" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, the first column is `[1, -1, -4]`. We could easily get the other two columns as well (left as an exercise).\n", + "\n", + "**Important note***: there is **no simple formula** for the inverse of a triangular matrix like L or U! You can invert *individual* elimination steps $E_k$ by flipping signs, but the *product* of the elimination steps is not so easy to invert.\n", + "\n", + "(A lot of students get confused by this because Strang's lectures and textbook start by inverting individual elimination steps, which is easier.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another way to write this is `L \\ I`, which *conceptually* means \"multiply $I$ by $L^{-1}$ on the *left*\", but *actually* in Julia is computed without inverting any matrix explicitly, by instead solving with 3 right-hand sides:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Float64}:\n", + " 1.0 0.0 0.0\n", + " -1.0 1.0 0.0\n", + " -4.0 1.0 1.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L \\ I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that `I` is a special object defined by Julia's `LinearAlgebra` package which essentially means **an identity matrix whose size is inferred from context**.\n", + "\n", + "If we want an $m \\times m$ identity matrix, we can use `I(m)`:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Diagonal{Bool, Vector{Bool}}:\n", + " 1 ⋅ ⋅\n", + " ⋅ 1 ⋅\n", + " ⋅ ⋅ 1" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The Gauss–Jordan algorithm.\n", + "\n", + "Gauss–Jordan could be viewed as just a trick (primarily for hand calculation) to organize solving $A b_k = e_k$. But it's also nice to think about algebraically — it is a nice application of our \"matrix viewpoint\" of Gaussian elimination.\n", + "\n", + "The Gauss–Jordan idea, in a nutshell is: **if we do some row operations on A to obtain I, then doing the *same* row operations on I gives A⁻¹**. Why?\n", + "\n", + "* Row operations correspond to multiplying $A$ by a some matrix $E=\\cdots E_2 E_1$ on the *left*.\n", + "\n", + "* So, doing row operations that turn $A$ into $I$ means that $EA = I$, and hence $E = A^{-1}$.\n", + "\n", + "* Doing the *same* row operations on $I$ is equivalent to multiplying $I$ on the *left* by the *same* matrix $E$, giving $EI$. But $EI = E$, and $E = A^{-1}$, so this gives $A^{-1}$!\n", + "\n", + "As usual for Gaussian elimination, to do the *same* row operations on both $A$ and $I$ we **augment A** with $I$. That is, we do:\n", + "\n", + "$$\n", + "\\boxed{\n", + "\\left(\\begin{array}{c|c}A & I\\end{array}\\right) \\underset{\\mbox{row ops}}{\\longrightarrow} \\left(\\begin{array}{c|c}I & A^{-1}\\end{array}\\right)\n", + "}\n", + "$$\n", + "\n", + "### Elimination $A \\to I$\n", + "\n", + "How do we do row operations to turn $A$ into $I$? Simple:\n", + "\n", + "1. First, do ordinary Gaussian elimination \"downwards\" to turn $A$ into $U$ (an **upper-triangular** matrix).\n", + "\n", + "2. Then, do Gaussian elimination \"upwards\" on $U$ to eliminate entries *above* the diagonal, turning $U$ into a **diagonal** matrix $D$\n", + "\n", + "3. Finally, divide each row of $D$ by the diagonal entry to turn it into $I$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gauss–Jordan example\n", + "\n", + "Let's perform these $A \\to I$ elimination steps on $3 \\times 3$ matrix $A$: first eliminate down to make $U$, then eliminate up to make $D$, then divide by the diagonals to make $I$:\n", + "\n", + "$$\n", + "\\underbrace{\\begin{pmatrix} \\boxed{1} & 4 & 1 \\\\ 1 & 2 & -1 \\\\ 3 & 14 & 6 \\end{pmatrix}}_A\n", + "\\longrightarrow\n", + "\\begin{pmatrix} \\boxed{1} & 4 & 1 \\\\ 0 & \\boxed{-2} & -2 \\\\ 0 & 2 & 3 \\end{pmatrix}\n", + "\\longrightarrow\n", + "\\underbrace{\\begin{pmatrix} \\boxed{1} & 4 & 1 \\\\ 0 & \\boxed{-2} & -2 \\\\ 0 & 0 & \\boxed{1} \\end{pmatrix}}_U\n", + "\\\\\n", + "\\longrightarrow\n", + "\\begin{pmatrix} 1 & 0 & -3 \\\\ 0 & \\boxed{-2} & -2 \\\\ 0 & 0 & 1 \\end{pmatrix}\n", + "\\longrightarrow\n", + "\\underbrace{\\begin{pmatrix} 1 & 0 & 0 \\\\ 0 & -2 & 0 \\\\ 0 & 0 & \\boxed{1} \\end{pmatrix}}_D\n", + "\\longrightarrow\n", + "\\underbrace{\\begin{pmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\end{pmatrix}}_I\n", + "$$\n", + "\n", + "No problem! It is easy to see that this will work **whenever A has all of its pivots** (i.e. it is non-singular)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get the inverse, we needed to augment this with $I$ so that we perform the same elimination steps on both.\n", + "\n", + "$$\n", + "\\left(\\begin{array}{rrr|rrr}\n", + " \\boxed{1} & 4 & 1 & 1 & 0 & 0 \\\\\n", + " 1 & 2 & -1 & 0 & 1 & 0 \\\\\n", + " 3 & 14 & 6 & 0 & 0 & 1 \\end{array}\\right)\n", + "\\longrightarrow\n", + "\\left(\\begin{array}{rrr|rrr}\n", + " \\boxed{1} & 4 & 1 & 1 & 0 & 0 \\\\\n", + " 0 & \\boxed{-2} & -2 & -1 & 1 & 0 \\\\\n", + " 0 & 2 & 3 & -3 & 0 & 1 \\end{array}\\right) \\\\\n", + "\\longrightarrow\n", + "\\left(\\begin{array}{rrr|rrr}\n", + " \\boxed{1} & 4 & 1 & 1 & 0 & 0 \\\\\n", + " 0 & \\boxed{-2} & -2 & -1 & 1 & 0 \\\\\n", + " 0 & 0 & \\boxed{1} & -4 & 1 & 1 \\end{array}\\right)\n", + "\\longrightarrow\n", + "\\left(\\begin{array}{rrr|rrr}\n", + " 1 & 0 & -3 & -1 & 2 & 0 \\\\\n", + " 0 & \\boxed{-2} & -2 & -1 & 1 & 0 \\\\\n", + " 0 & 0 & 1 & -4 & 1 & 1 \\end{array}\\right) \\\\\n", + "\\longrightarrow\n", + "\\left(\\begin{array}{rrr|rrr}\n", + " 1 & 0 & 0 & -13 & 5 & 3 \\\\\n", + " 0 & -2 & 0 & -9 & 3 & 2 \\\\\n", + " 0 & 0 & \\boxed{1} & -4 & 1 & 1 \\end{array}\\right)\n", + "\\longrightarrow\n", + "\\left(\\begin{array}{rrr|rrr}\n", + " 1 & 0 & 0 & -13 & 5 & 3 \\\\\n", + " 0 & 1 & 0 & 4.5 & -1.5 & -1 \\\\\n", + " 0 & 0 & 1 & -4 & 1 & 1 \\end{array}\\right)\n", + "$$\n", + "\n", + "Whew, this was a lot of work! Did we get the right answer?" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", + " 1 4 1\n", + " 1 2 -1\n", + " 3 14 6" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [1 4 1\n", + " 1 2 -1\n", + " 3 14 6]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Float64}:\n", + " -13.0 5.0 3.0\n", + " 4.5 -1.5 -1.0\n", + " -4.0 1.0 1.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A^-1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hooray!\n", + "\n", + "(It is *really* easy to make a mistake during this process.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# (Almost) Never Compute Inverses!\n", + "\n", + "Matrix inverses are funny, however:\n", + "\n", + "* Inverse matrices are very convenient in *analytical* manipulations, because they allow you to move matrices from one side to the other of equations easily.\n", + "\n", + "* Inverse matrices are **almost never computed** in \"serious\" numerical calculations. Whenever you see $A^{-1} B$ (or $A^{-1} b$), when you go to *implement* it on a computer you should *read* $A^{-1} B$ as \"solve $AX = B$ by some method.\" e.g. solve it by `A \\ B` or by first computing the LU factorization of $A$ and then using it to solve $AX = B$.\n", + "\n", + "One reason that you don't usually compute inverse matrices is that it is wasteful: once you have $A=LU$ (later we will generalize this to \"$PA = LU$\"), you can solve $AX=B$ directly without bothering to find $A^{-1}$, and computing $A^{-1}$ requires much more work if you only have to solve a few right-hand sides.\n", + "\n", + "Another reason is that for many special matrices, there are ways to solve $AX=B$ *much* more quickly than you can find $A^{-1}$. For example, many large matrices in practice are [sparse](https://en.wikipedia.org/wiki/Sparse_matrix) (mostly zero), and often for sparse matrices you can arrange for $L$ and $U$ to be sparse too. Sparse matrices are much more efficient to work with than general \"dense\" matrices because you don't have to multiply (or even store) the zeros. Even if $A$ is sparse, however, $A^{-1}$ is usually non-sparse, so you lose the special efficiency of sparsity if you compute the inverse matrix. \n", + "\n", + "For example:\n", + "\n", + "* If you see $U^{-1} b$ where $U$ is *upper* triangular, don't compute $U^{-1}$ explicitly! Just solve $Ux = b$ by *back-substitution* (from the bottom row up).\n", + "\n", + "* If you see $L^{-1} b$ where $L$ is *lower* triangular, don't compute $L^{-1}$ explicitly! Just solve $Lx = b$ by *forward-substitution* (from the top row down)." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Gaussian Elimination Live.ipynb b/notes/Gaussian Elimination Live.ipynb new file mode 100644 index 00000000..795c2ef7 --- /dev/null +++ b/notes/Gaussian Elimination Live.ipynb @@ -0,0 +1,2058 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Eliminate from (general) A to (upper triangular) U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Demonstrate Gaussian Elimination (page 51 of GS)\n", + "\n", + "(Reminder: Julia programming syntax will not be tested in this class, but that doesn't mean you can't learn from watching the code being executed)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "lookat (generic function with 1 method)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# nice viz for matrices\n", + "function lookat(A; redrow=0, rounding=2, showtext=true)\n", + " n = size(A,1)\n", + " plot(legend=false, axis=false)\n", + " rowcolor = redrow > 0 ? :red : :black \n", + " for i=1:n, j=1:n \n", + " scatter!( [j],[i], ann= showtext ? (j,i,round(A[i,j],digits=rounding), :white ) : (j,i,\"\") ,\n", + " color=abs(A[i,j]) > .0001 ? (i==redrow ? rowcolor : :black) : :white, \n", + " marker=:square, markersize=30, aspectratio=1, yflip=true, yaxis=[.5,n+.5],xaxis=[.5,n+.5])\n", + " end\n", + " plot!()\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 2.0 12.0 4.0 7.0\n", + " 29.0 12.0 69.0 24.0\n", + " 7.0 7.0 7.0 7.0\n", + " 3.0 7.0 5.0 2.0" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [2 12 4 7; 29 12 69 24 ; 7 7 7 7; 3 7 5 2]\n", + "A = A*1.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "29.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "69.0\n", + "\n", + "\n", + "24.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "3.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "5.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lookat(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What multiple of the first row must i subtract from the second row to zero out the (2,1) entry?" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L = fill(0.0, 4,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14.5" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[2,1] = A[2,1]/A[1,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-162.0\n", + "\n", + "\n", + "11.0\n", + "\n", + "\n", + "-77.5\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "3.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "5.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[2,:] -= L[2,1]*A[1,:]; # subtract the multiplier times the first row from the second row\n", + "lookat(A, redrow=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.5" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[3,1] = A[3,1]/A[1,1] # the diagonal entry that we divide by is called the \"pivot\"" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-162.0\n", + "\n", + "\n", + "11.0\n", + "\n", + "\n", + "-77.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-35.0\n", + "\n", + "\n", + "-7.0\n", + "\n", + "\n", + "-17.5\n", + "\n", + "\n", + "3.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "5.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[3,:] -= L[3,1]*A[1,:]; # subtract the multiplier times the first row from the second row\n", + "lookat(A, redrow=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-162.0\n", + "\n", + "\n", + "11.0\n", + "\n", + "\n", + "-77.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-35.0\n", + "\n", + "\n", + "-7.0\n", + "\n", + "\n", + "-17.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-11.0\n", + "\n", + "\n", + "-1.0\n", + "\n", + "\n", + "-8.5\n", + "\n", + "\n" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[4,1] = A[4,1]/A[1,1] \n", + "A[4,:] -= L[4,1]*A[1,:]; # subtract the multiplier times the first row from the second row\n", + "lookat(A, redrow=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-162.0\n", + "\n", + "\n", + "11.0\n", + "\n", + "\n", + "-77.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-9.38\n", + "\n", + "\n", + "-0.76\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-11.0\n", + "\n", + "\n", + "-1.0\n", + "\n", + "\n", + "-8.5\n", + "\n", + "\n" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[3,2] = A[3,2]/A[2,2] \n", + "A[3,:] -= L[3,2]*A[2,:]; # subtract the multiplier times the first row from the second row\n", + "lookat(A, redrow=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-162.0\n", + "\n", + "\n", + "11.0\n", + "\n", + "\n", + "-77.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-9.38\n", + "\n", + "\n", + "-0.76\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-1.75\n", + "\n", + "\n", + "-3.24\n", + "\n", + "\n" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[4,2] = A[4,2]/A[2,2] \n", + "A[4,:] -= L[4,2]*A[2,:]; # subtract the multiplier times the first row from the second row\n", + "lookat(A, redrow=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "12.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-162.0\n", + "\n", + "\n", + "11.0\n", + "\n", + "\n", + "-77.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-9.38\n", + "\n", + "\n", + "-0.76\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-3.1\n", + "\n", + "\n" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[4,3] = A[4,3]/A[3,3] \n", + "A[4,:] -= L[4,3]*A[3,:]; # subtract the multiplier times the first row from the second row\n", + "lookat(A, redrow=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "n = 6\n", + "A = rand(n,n)\n", + "keepA = [copy(A)]\n", + "row = [0]\n", + "L = fill(0.0,n,n)\n", + "for j=1:n, i=j+1:n\n", + " L[i,j] = A[i,j] / A[j,j]\n", + " A[i,:] -= L[i,j] * A[j,:]\n", + " push!(keepA,copy(A))\n", + " push!(row,i)\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "using Interact" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "i" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 16, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "12019567677823032763", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/860bb4a9e1927248d6fb4a7d59e926f541e3bfc2-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/4b164c07c3632d5e274899a8ab8726c70dab4aff-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/67252656a23d4f0f6f4ba7ab8e8eb9ffc4ae9b5d-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"12019567677823032763\",\"id\":\"ob_18\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"12019567677823032763\",\"id\":\"ob_17\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"12019567677823032763\",\"id\":\"ob_18\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"12019567677823032763\",\"id\":\"ob_17\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "ob_18", + "sync": false, + "value": 0 + }, + "index": { + "id": "ob_17", + "sync": true, + "value": 8 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "ob_24", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "4433206657539994618", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "ob_24", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n0.6\n\n\n0.72\n\n\n0.05\n\n\n0.66\n\n\n0.18\n\n\n0.86\n\n\n-0.0\n\n\n0.06\n\n\n0.93\n\n\n0.2\n\n\n0.73\n\n\n-0.18\n\n\n-0.0\n\n\n0.0\n\n\n0.4\n\n\n0.23\n\n\n1.2\n\n\n-0.04\n\n\n0.0\n\n\n0.0\n\n\n-5.25\n\n\n-0.81\n\n\n-4.35\n\n\n1.33\n\n\n0.0\n\n\n-0.35\n\n\n-0.0\n\n\n-0.45\n\n\n0.51\n\n\n-0.89\n\n\n0.0\n\n\n-0.28\n\n\n0.03\n\n\n-0.28\n\n\n0.7\n\n\n0.51\n\n\n" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"i\"], Dict{Symbol,Any}(:className => \"interact \",:style => Dict{Any,Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(:max => 16,:min => 1,:attributes => Dict{Any,Any}(:type => \"range\",Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\" => \"horizontal\"),:step => 1,:className => \"slider slider is-fullwidth\",:style => Dict{Any,Any}()))], Dict{Symbol,Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\")), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing),\"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "8, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/SbgIk/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(sz_max:32,sz_curr:0), Set(AbstractConnection[]), Base.GenericCondition{Base.AlwaysLockedST}(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000011760e650, Task (runnable) @0x000000011760e650), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"12019567677823032763\\\",\\\"id\\\":\\\"ob_18\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"12019567677823032763\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"12019567677823032763\\\",\\\"id\\\":\\\"ob_18\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"12019567677823032763\\\",\\\"id\\\":\\\"ob_17\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className => \"field interact-widget\")), Observable{Any} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Plot{Plots.GRBackend() n=36}], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol,Any}())" + ] + }, + "execution_count": 29, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "0460c48b-c1ce-4198-9750-65eccae2357d" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "@manipulate for i =1: length(keepA)\n", + " lookat( keepA[i], redrow=row[i])\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Array{Float64,2}:\n", + " 0.601848 0.719816 0.0549105 0.664714 0.184826 0.856158\n", + " 0.373551 0.503678 0.964187 0.613921 0.840482 0.349087\n", + " 0.139154 0.146278 0.0863354 0.315124 0.982249 0.226666\n", + " 0.176656 0.560782 0.473594 0.625323 0.164821 0.457171\n", + " 0.919038 0.751709 0.0796167 0.569861 0.793574 0.418587\n", + " 0.288685 0.0699438 0.0534446 0.0420711 0.788685 0.921932" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = keepA[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Array{Float64,2}:\n", + " 0.601848 0.719816 0.0549105 0.664714 0.184826 0.856158 \n", + " -5.55112e-17 0.0569073 0.930105 0.201351 0.725765 -0.182307 \n", + " -1.96573e-17 0.0 0.403003 0.232736 1.19652 -0.0358447\n", + " 8.46105e-17 0.0 0.0 2.22829 11.2549 0.858134 \n", + " 3.25219e-17 0.0 0.0 0.0 0.685981 -0.537103 \n", + " 3.55852e-18 0.0 0.0 0.0 -5.55112e-17 1.1249 " + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U = keepA[end]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Array{Float64,2}:\n", + " 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.620673 0.0 0.0 0.0 0.0 0.0\n", + " 0.231211 -0.354114 0.0 0.0 0.0 0.0\n", + " 0.293522 6.14156 -13.0392 0.0 0.0 0.0\n", + " 1.52703 -6.10589 14.0815 -1.11881 0.0 0.0\n", + " 0.479664 -4.83816 11.2334 -0.860311 0.660471 0.0" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Array{Float64,2}:\n", + " 1.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.620673 1.0 0.0 0.0 0.0 0.0\n", + " 0.231211 -0.354114 1.0 0.0 0.0 0.0\n", + " 0.293522 6.14156 -13.0392 1.0 0.0 0.0\n", + " 1.52703 -6.10589 14.0815 -1.11881 1.0 0.0\n", + " 0.479664 -4.83816 11.2334 -0.860311 0.660471 1.0" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L += I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## First view of the LU decomposition" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Array{Float64,2}:\n", + " 0.601848 0.719816 0.0549105 0.664714 0.184826 0.856158\n", + " 0.373551 0.503678 0.964187 0.613921 0.840482 0.349087\n", + " 0.139154 0.146278 0.0863354 0.315124 0.982249 0.226666\n", + " 0.176656 0.560782 0.473594 0.625323 0.164821 0.457171\n", + " 0.919038 0.751709 0.0796167 0.569861 0.793574 0.418587\n", + " 0.288685 0.0699438 0.0534446 0.0420711 0.788685 0.921932" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×6 Array{Float64,2}:\n", + " 0.601848 0.719816 0.0549105 0.664714 0.184826 0.856158\n", + " 0.373551 0.503678 0.964187 0.613921 0.840482 0.349087\n", + " 0.139154 0.146278 0.0863354 0.315124 0.982249 0.226666\n", + " 0.176656 0.560782 0.473594 0.625323 0.164821 0.457171\n", + " 0.919038 0.751709 0.0796167 0.569861 0.793574 0.418587\n", + " 0.288685 0.0699438 0.0534446 0.0420711 0.788685 0.921932" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L * U" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "true" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A ≈ L * U" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Int64,2}:\n", + " 2 12 4 7\n", + " 29 12 69 24\n", + " 7 7 7 7\n", + " 3 7 5 2" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [2 12 4 7; 29 12 69 24 ; 7 7 7 7; 3 7 5 2]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Adjoint{Int64,Array{Int64,2}}:\n", + " 2 29 7 3\n", + " 12 12 7 7\n", + " 4 69 7 5\n", + " 7 24 7 2" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×3 Array{Int64,2}:\n", + " 1 2 3\n", + " 4 5 6" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A= [ 1 2 3; 4 5 6]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×2 Adjoint{Int64,Array{Int64,2}}:\n", + " 1 4\n", + " 2 5\n", + " 3 6" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A'\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Adjoint{Int64,Array{Int64,2}}\n", + " parent: Array{Int64}((2, 3)) [1 2 3; 4 5 6]\n" + ] + } + ], + "source": [ + "dump(A')" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×3×4 Array{Int64,3}:\n", + "[:, :, 1] =\n", + " 2 8 3\n", + " 7 5 3\n", + "\n", + "[:, :, 2] =\n", + " 7 5 8\n", + " 3 4 5\n", + "\n", + "[:, :, 3] =\n", + " 4 2 8\n", + " 8 4 2\n", + "\n", + "[:, :, 4] =\n", + " 8 3 8\n", + " 7 4 9" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand( 1:9, 2,3,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×3×2 Array{Int64,3}:\n", + "[:, :, 1] =\n", + " 2 8 3\n", + " 7 5 8\n", + " 4 2 8\n", + " 8 3 8\n", + "\n", + "[:, :, 2] =\n", + " 7 5 3\n", + " 3 4 5\n", + " 8 4 2\n", + " 7 4 9" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "permutedims(A, [3 2 1])" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "ename": "DimensionMismatch", + "evalue": "DimensionMismatch(\"matrix is not square: dimensions are (4, 6)\")", + "output_type": "error", + "traceback": [ + "DimensionMismatch(\"matrix is not square: dimensions are (4, 6)\")", + "", + "Stacktrace:", + " [1] inv(::Array{Float64,2}) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.3/LinearAlgebra/src/LinearAlgebra.jl:221", + " [2] top-level scope at In[47]:1" + ] + } + ], + "source": [ + "inv( rand(4,6))" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " 0.961711 0.705796 0.334855 \n", + " 0.825322 0.76569 0.0211825\n", + " 0.22131 0.162853 0.357397 " + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(3,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " 0.466144 0.282758 0.176453 \n", + " 0.804355 0.748308 0.9467 \n", + " 0.764508 0.457893 0.0473501" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = rand(3,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " 110.378 -81.0345 -112.35 \n", + " -191.261 138.822 201.288 \n", + " 50.3087 -34.295 -57.3957" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "inv( A*B )" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " 110.378 -81.0345 -112.35 \n", + " -191.261 138.822 201.288 \n", + " 50.3087 -34.295 -57.3957" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "inv(B) * inv(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1:10" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = 1:10\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10×10 Array{Int64,2}:\n", + " 1 2 3 4 5 6 7 8 9 10\n", + " 2 4 6 8 10 12 14 16 18 20\n", + " 3 6 9 12 15 18 21 24 27 30\n", + " 4 8 12 16 20 24 28 32 36 40\n", + " 5 10 15 20 25 30 35 40 45 50\n", + " 6 12 18 24 30 36 42 48 54 60\n", + " 7 14 21 28 35 42 49 56 63 70\n", + " 8 16 24 32 40 48 56 64 72 80\n", + " 9 18 27 36 45 54 63 72 81 90\n", + " 10 20 30 40 50 60 70 80 90 100" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x * x'" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Array{Int64,1}:\n", + " 1\n", + " 2\n", + " 4\n", + " 5" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x =[ 1 ,2 ,4, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Array{Int64,1}:\n", + " 2\n", + " 4\n", + " 6" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = [ 2, 4, 6]" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×3 Array{Int64,2}:\n", + " 2 4 6\n", + " 4 8 12\n", + " 8 16 24\n", + " 10 20 30" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x * y'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "@webio": { + "lastCommId": "20e37d08220749748154c409ff8f06a0", + "lastKernelId": "0460c48b-c1ce-4198-9750-65eccae2357d" + }, + "kernelspec": { + "display_name": "Julia 1.3.1", + "language": "julia", + "name": "julia-1.3" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.3.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Gaussian Elimination.ipynb b/notes/Gaussian Elimination.ipynb new file mode 100644 index 00000000..a60df22c --- /dev/null +++ b/notes/Gaussian Elimination.ipynb @@ -0,0 +1,3475 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Eliminate from (general) A to (upper triangular) U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Demonstrate Gaussian Elimination (page 51 of GS)\n", + "\n", + "(Reminder: Julia programming syntax will not be tested in this class, but that doesn't mean you can't learn from\n", + "watching the code being executed)\n", + "\n", + "(If you are familiar with Jupyter notebooks and wish to execute yourself, you can download this notebook \n", + "using the download button in the upper right, but WARNING: right click to \"download as\", or OPTION-click (MAC) or ALT-Click (Linux and Windows I think) on the download icon, or you won't get an ipynb file.) You can then drag into Jupyter." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "lookat (generic function with 1 method)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# nice viz for matrices\n", + "function lookat(A; redrow=0, rounding=2, showtext=true)\n", + " n = size(A,1)\n", + " plot(legend=false, axis=false)\n", + " rowcolor = redrow > 0 ? :red : :black \n", + " for i=1:n, j=1:n \n", + " scatter!( [j],[i], ann= showtext ? (j,i,round(A[i,j],digits=rounding), :white ) : (j,i,\"\") ,\n", + " color=abs(A[i,j]) > .0001 ? (i==redrow ? rowcolor : :black) : :white, \n", + " marker=:square, markersize=30, aspectratio=1, yflip=true, yaxis=[.5,n+.5],xaxis=[.5,n+.5])\n", + " end\n", + " plot!()\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 4.0 9.0 4.0 9.0\n", + " 4.0 7.0 6.0 6.0\n", + " 2.0 9.0 8.0 6.0\n", + " 7.0 1.0 6.0 8.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(1.0:9,4,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L = fill(0.0,4,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "8.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "8.0\n", + "\n", + "\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lookat(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What multiple of row 1 must we subtract from row 2 to zero out the (2,1) entry?" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[2,1] = A[2,1] / A[1,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "-3.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "8.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "8.0\n", + "\n", + "\n" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# A[2,:] = A[2,:] - L[2,1] * A[1,:]\n", + "A[2,:] -= L[2,1] * A[1,:] # subtract that multiple of the first row from the second\n", + "lookat(A, redrow=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What multiple of row 1 must we subtract from row 3 to zero out the (3,1) entry?" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[3,1] = A[3,1] / A[1,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "-3.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "4.5\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "7.0\n", + "\n", + "\n", + "1.0\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "8.0\n", + "\n", + "\n" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[3,:] -= L[3,1] * A[1,:]\n", + "lookat(A, redrow=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "-3.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "4.5\n", + "\n", + "\n", + "6.0\n", + "\n", + "\n", + "1.5\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-14.75\n", + "\n", + "\n", + "-1.0\n", + "\n", + "\n", + "-7.75\n", + "\n", + "\n" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[4,1] = A[4,1] / A[1,1]\n", + "A[4,:] -= L[4,1] * A[1,:]\n", + "lookat(A, redrow=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2.25" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[3,2] = A[3,2] / A[2,2]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "-3.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "10.5\n", + "\n", + "\n", + "-5.25\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-14.75\n", + "\n", + "\n", + "-1.0\n", + "\n", + "\n", + "-7.75\n", + "\n", + "\n" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[3,:] -= L[3,2] * A[2,:]; lookat(A, redrow=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "4.0\n", + "\n", + "\n", + "9.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.0\n", + "\n", + "\n", + "2.0\n", + "\n", + "\n", + "-3.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "10.5\n", + "\n", + "\n", + "-5.25\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-15.75\n", + "\n", + "\n", + "14.38\n", + "\n", + "\n" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L[4,2] = A[4,2] / A[2,2]; A[4,:] -= L[4,2] * A[2,:]; lookat(A, redrow=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "-1.33\n", + "\n", + "\n", + "0.98\n", + "\n", + "\n", + "-1.62\n", + "\n", + "\n", + "-1.59\n", + "\n", + "\n", + "0.32\n", + "\n", + "\n", + "-1.21\n", + "\n", + "\n", + "1.29\n", + "\n", + "\n", + "-0.75\n", + "\n", + "\n", + "0.96\n", + "\n", + "\n", + "0.14\n", + "\n", + "\n", + "0.8\n", + "\n", + "\n", + "0.38\n", + "\n", + "\n", + "-0.84\n", + "\n", + "\n", + "-0.91\n", + "\n", + "\n", + "0.35\n", + "\n", + "\n", + "-0.54\n", + "\n", + "\n", + "1.41\n", + "\n", + "\n", + "0.33\n", + "\n", + "\n", + "1.27\n", + "\n", + "\n", + "-0.21\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "-1.21\n", + "\n", + "\n", + "1.29\n", + "\n", + "\n", + "-0.75\n", + "\n", + "\n", + "0.96\n", + "\n", + "\n", + "0.14\n", + "\n", + "\n", + "0.8\n", + "\n", + "\n", + "0.38\n", + "\n", + "\n", + "-0.84\n", + "\n", + "\n", + "-0.91\n", + "\n", + "\n", + "0.35\n", + "\n", + "\n", + "-0.54\n", + "\n", + "\n", + "1.41\n", + "\n", + "\n", + "0.33\n", + "\n", + "\n", + "1.27\n", + "\n", + "\n", + "-0.21\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-1.9\n", + "\n", + "\n", + "-1.66\n", + "\n", + "\n", + "1.28\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.8\n", + "\n", + "\n", + "0.38\n", + "\n", + "\n", + "-0.84\n", + "\n", + "\n", + "-0.91\n", + "\n", + "\n", + "0.35\n", + "\n", + "\n", + "-0.54\n", + "\n", + "\n", + "1.41\n", + "\n", + "\n", + "0.33\n", + "\n", + "\n", + "1.27\n", + "\n", + "\n", + "-0.21\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-1.9\n", + "\n", + "\n", + "-1.66\n", + "\n", + "\n", + "1.28\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "2.51\n", + "\n", + "\n", + "-0.24\n", + "\n", + "\n", + "-1.12\n", + "\n", + "\n", + "0.63\n", + "\n", + "\n", + "-0.54\n", + "\n", + "\n", + "1.41\n", + "\n", + "\n", + "0.33\n", + "\n", + "\n", + "1.27\n", + "\n", + "\n", + "-0.21\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-1.9\n", + "\n", + "\n", + "-1.66\n", + "\n", + "\n", + "1.28\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "2.51\n", + "\n", + "\n", + "-0.24\n", + "\n", + "\n", + "-1.12\n", + "\n", + "\n", + "0.63\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-0.01\n", + "\n", + "\n", + "-0.07\n", + "\n", + "\n", + "1.42\n", + "\n", + "\n", + "-0.4\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.2\n", + "\n", + "\n", + "-0.17\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "2.51\n", + "\n", + "\n", + "-0.24\n", + "\n", + "\n", + "-1.12\n", + "\n", + "\n", + "0.63\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-0.01\n", + "\n", + "\n", + "-0.07\n", + "\n", + "\n", + "1.42\n", + "\n", + "\n", + "-0.4\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.2\n", + "\n", + "\n", + "-0.17\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.82\n", + "\n", + "\n", + "-2.34\n", + "\n", + "\n", + "0.48\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-0.01\n", + "\n", + "\n", + "-0.07\n", + "\n", + "\n", + "1.42\n", + "\n", + "\n", + "-0.4\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.2\n", + "\n", + "\n", + "-0.17\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.82\n", + "\n", + "\n", + "-2.34\n", + "\n", + "\n", + "0.48\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-0.07\n", + "\n", + "\n", + "1.42\n", + "\n", + "\n", + "-0.4\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.2\n", + "\n", + "\n", + "-0.17\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "18.4\n", + "\n", + "\n", + "-1.14\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-0.07\n", + "\n", + "\n", + "1.42\n", + "\n", + "\n", + "-0.4\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.2\n", + "\n", + "\n", + "-0.17\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "18.4\n", + "\n", + "\n", + "-1.14\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "1.91\n", + "\n", + "\n", + "-0.44\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-2.19\n", + "\n", + "\n", + "-0.62\n", + "\n", + "\n", + "0.22\n", + "\n", + "\n", + "-0.29\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-2.54\n", + "\n", + "\n", + "-2.62\n", + "\n", + "\n", + "-1.23\n", + "\n", + "\n", + "-0.15\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.2\n", + "\n", + "\n", + "-0.17\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "18.4\n", + "\n", + "\n", + "-1.14\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "0.0\n", + "\n", + "\n", + "-0.32\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n = 5\n", + "A = randn(n,n)\n", + "L = fill(0.0,n,n)\n", + "display(lookat(A))\n", + "for j=1:n, i=(j+1):n\n", + " L[i,j] = A[i,j]/A[j,j]\n", + " A[i,:] -= L[i,j] * A[j,:]\n", + " display(lookat(A,redrow=i))\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "0.07\n", + "\n", + "\n", + "-0.93\n", + "\n", + "\n", + "0.69\n", + "\n", + "\n", + "0.76\n", + "\n", + "\n", + "0.67\n", + "\n", + "\n", + "0.83\n", + "\n", + "\n", + "-0.25\n", + "\n", + "\n", + "0.23\n", + "\n", + "\n", + "-0.45\n", + "\n", + "\n", + "-0.07\n", + "\n", + "\n", + "0.12\n", + "\n", + "\n", + "-0.52\n", + "\n", + "\n", + "0.48\n", + "\n", + "\n", + "-1.65\n", + "\n", + "\n", + "0.74\n", + "\n", + "\n", + "1.63\n", + "\n", + "\n", + "0.23\n", + "\n", + "\n", + "-0.84\n", + "\n", + "\n", + "1.13\n", + "\n", + "\n", + "-2.09\n", + "\n", + "\n", + "-0.55\n", + "\n", + "\n", + "-1.4\n", + "\n", + "\n", + "0.3\n", + "\n", + "\n", + "2.64\n", + "\n", + "\n", + "-1.12\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n = 5\n", + "A = randn(n,n)\n", + "L = fill(0.0,n,n)\n", + "Akeep = [copy(A)]\n", + "row = [0]\n", + "display(lookat(A))\n", + "for j=1:n, i=(j+1):n\n", + " L[i,j] = A[i,j]/A[j,j]\n", + " A[i,:] -= L[i,j] * A[j,:]\n", + " push!(Akeep,copy(A))\n", + " push!(row,i)\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\n", + " For troubleshooting, please see \n", + " the WebIO/IJulia documentation.\n", + " \n", + "

    \n" + ], + "text/plain": [ + "HTML{String}(\"\\n\\n Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\\n For troubleshooting, please see \\n the WebIO/IJulia documentation.\\n \\n

    \\n\")" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "using Interact" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 11, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "17084213940907812968", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/860bb4a9e1927248d6fb4a7d59e926f541e3bfc2-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/4b164c07c3632d5e274899a8ab8726c70dab4aff-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/67252656a23d4f0f6f4ba7ab8e8eb9ffc4ae9b5d-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"17084213940907812968\",\"id\":\"ob_10\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"17084213940907812968\",\"id\":\"ob_09\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"17084213940907812968\",\"id\":\"ob_10\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"17084213940907812968\",\"id\":\"ob_09\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "ob_10", + "sync": false, + "value": 0 + }, + "index": { + "id": "ob_09", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "ob_16", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "12708210615104101939", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "ob_16", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n0.07\n\n\n-0.93\n\n\n0.69\n\n\n0.76\n\n\n0.67\n\n\n0.83\n\n\n-0.25\n\n\n0.23\n\n\n-0.45\n\n\n-0.07\n\n\n0.12\n\n\n-0.52\n\n\n0.48\n\n\n-1.65\n\n\n0.74\n\n\n1.63\n\n\n0.23\n\n\n-0.84\n\n\n1.13\n\n\n-2.09\n\n\n-0.55\n\n\n-1.4\n\n\n0.3\n\n\n2.64\n\n\n-1.12\n\n\n" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[nothing], Dict{Symbol,Any}(:className => \"interact \",:style => Dict{Any,Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol,Any}(:max => 11,:min => 1,:attributes => Dict{Any,Any}(:type => \"range\",Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\" => \"horizontal\"),:step => 1,:className => \"slider slider is-fullwidth\",:style => Dict{Any,Any}()))], Dict{Symbol,Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol,Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\")), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing),\"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "1, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/1sDlc/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/9mFwe/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/SbgIk/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(sz_max:32,sz_curr:0), Set(AbstractConnection[]), Base.GenericCondition{Base.AlwaysLockedST}(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000010ae28250, Task (runnable) @0x000000010ae28250), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"17084213940907812968\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"17084213940907812968\\\",\\\"id\\\":\\\"ob_09\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"17084213940907812968\\\",\\\"id\\\":\\\"ob_10\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"17084213940907812968\\\",\\\"id\\\":\\\"ob_09\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2618192f019dfcc40a9013ef31cb09a511d8ea26-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/df29ad18e8884e98d1d36dd0c339f642f729bf96-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className => \"field interact-widget\")), Observable{Any} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Plot{Plots.GRBackend() n=25}], Dict{Symbol,Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol,Any}())" + ] + }, + "execution_count": 24, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "491971e1-5e20-4d24-b021-08a27ca47da3" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "@manipulate for i=slider(1:length(Akeep),value=1)\n", + " lookat(Akeep[i],redrow=row[i],showtext=true)\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Array{Float64,2}:\n", + " 1.0 0.0 0.0 0.0 0.0\n", + " 11.2268 1.0 0.0 0.0 0.0\n", + " 1.65127 0.100262 1.0 0.0 0.0\n", + " 22.1736 2.04623 -7.9508 1.0 0.0\n", + " -7.45666 -0.817478 -7.32798 1.03327 1.0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U = Akeep[end]\n", + "A = Akeep[1]\n", + "L += I" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Array{Float64,2}:\n", + " 0.0737129 -0.934928 0.686715 0.756193 0.665156\n", + " 0.827557 -0.250188 0.22969 -0.451796 -0.067432\n", + " 0.12172 -0.516531 0.479388 -1.64916 0.735843\n", + " 1.63448 0.234953 -0.837002 1.12689 -2.08616 \n", + " -0.549652 -1.40446 0.295059 2.6386 -1.12414 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L*U" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Array{Float64,2}:\n", + " 0.0737129 -0.934928 0.686715 0.756193 0.665156\n", + " 0.827557 -0.250188 0.22969 -0.451796 -0.067432\n", + " 0.12172 -0.516531 0.479388 -1.64916 0.735843\n", + " 1.63448 0.234953 -0.837002 1.12689 -2.08616 \n", + " -0.549652 -1.40446 0.295059 2.6386 -1.12414 " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "true" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L*U ≈ A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "@webio": { + "lastCommId": "eae5c4a469c94994884bdc3fd65a736a", + "lastKernelId": "6c0e5fe2-1c02-40cc-b0c7-24e073bb3e7d" + }, + "kernelspec": { + "display_name": "Julia 1.3.1", + "language": "julia", + "name": "julia-1.3" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.3.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Gaussian-elimination.ipynb b/notes/Gaussian-elimination.ipynb new file mode 100644 index 00000000..4c717e05 --- /dev/null +++ b/notes/Gaussian-elimination.ipynb @@ -0,0 +1,6119 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gaussian elimination\n", + "\n", + "This Julia notebook allows us to interactively visualize the process of Gaussian elimination.\n", + "\n", + "Recall that the process of [Gaussian elimination](https://en.wikipedia.org/wiki/Gaussian_elimination) involves subtracting rows to turn a matrix $A$ into an [upper triangular matrix](https://en.wikipedia.org/wiki/Triangular_matrix) $U$. Often we *augment* the matrix with an additional column, representing the right-hand side $b$ of a system of equations $Ax=b$ that we want to solve: by doing the same row operations to both $A$ and $b$, we arrive at an equivalent equation $Ux=c$ that is easy to solve by *backsubstitution* (solving for one variable at a time, working from the last row to the top row).\n", + "\n", + "For example, suppose we are solving:\n", + "\n", + "$$\n", + "Ax = \n", + "\\begin{pmatrix}\n", + "1 & 3 & 1 \\\\\n", + "1 & 1 & -1 \\\\\n", + "3 & 11 & 6 \n", + "\\end{pmatrix} x = \n", + "\\begin{pmatrix}\n", + "9 \\\\\n", + "1 \\\\\n", + "35\n", + "\\end{pmatrix} = b\n", + "$$\n", + "\n", + "We would perform the following elimination process.\n", + "\n", + "$$\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "1 & 1 & -1 & 1 \\\\\n", + "3 & 11 & 6 & 35\n", + "\\end{array}\\right]\\to\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "0 & \\boxed{-2} & -2 & -8 \\\\\n", + "0 & 2 & 3 & 8\n", + "\\end{array}\\right]\\to\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "0 & \\boxed{-2} & -2 & -8 \\\\\n", + "0 & 0 & \\boxed{1} & 0\n", + "\\end{array}\\right]\n", + "$$\n", + "\n", + "The boxed values are known as the **pivots**. Now we do **backsubstitution**, working from the bottom up. The last row is a single equation in a single unknown:\n", + "\n", + "$$\n", + "1 x_3 = 0 \\implies x_3 = 0 .\n", + "$$\n", + "\n", + "Now that we know $x_3$, the second row gives:\n", + "\n", + "$$\n", + "-2x_2 - 2x_3 = -8 \\implies -2x_2 - 0 = -8 \\implies x_2 = 4 .\n", + "$$\n", + "\n", + "Finally, now that we know $x_2$ and $x_3$, the first row gives:\n", + "\n", + "$$\n", + "1 x_1 + 3 x_2 + 1x_3 = 9 \\implies x_1 + 12 + 0 = 9 \\implies x_1 = -3.\n", + "$$\n", + "\n", + "It is much more fun to let the computer do the arithmetic than to crunch through it ourselves on the blackboard, but usually the computer does things *too* quickly (and it often does some re-ordering of the rows that makes it harder to follow what is going on). For example, in Julia, we can solve the above system of equations by simply:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", + " 1 3 1\n", + " 1 1 -1\n", + " 3 11 6" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [1 3 1\n", + " 1 1 -1\n", + " 3 11 6]" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Int64}:\n", + " 9\n", + " 1\n", + " 35" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = [9, 1, 35]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Float64}:\n", + " -3.0\n", + " 4.0\n", + " -0.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = A \\ b # solves Ax = b by (essentially) Gaussian elimination" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Float64}:\n", + " -3.0\n", + " 4.0\n", + " 0.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A^-1 * b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What's next?\n", + "\n", + "The basic Gaussian-elimination process is essentially the same as what you learned in 8th–9th grade algebra. Where do we go from here? There are several directions we would like to pursue in 18.06:\n", + "\n", + "* Zooming out and understanding this process *algebraically*: we want to think of elimination steps in terms of matrix operations (matrix products), and this will eventually lead us to viewing elimination as a *factorization* of the matrix A: the **LU factorization**. This factorization is key to how Gaussian elimination is *actually used* in large problems, and it helps us *understand* A by breaking it into simpler matrices.\n", + "\n", + "* What happens if you encounter a zero pivot?\n", + " - At the simplest hand-calculation level, you just swap rows *if you can*, as reviewed below. But in practical numerical calculations something more interesting happens — it turns out that you need to swap rows even if the pivots are nonzero! This eventually leads us to a \"PA = LU\" factorization, which is critical if you actually want to *use* Gaussian elimination in real life.\n", + " - If you *can't* swap rows to get rid of a zero pivot, then the matrix is *singular*. In high school, you typically just give up if the matrix is singular, but it turns out that there are lots of things to say about this case.\n", + " \n", + "* How does this process scale? It is good to understand what happens for $n \\times n$ matrices. Is Gaussian elimination practical on a computer for $n = 1000$? What about $n = 10^6$?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Row swaps\n", + "\n", + "Occasionally, we may encounter a zero in the pivot position. Sometimes this means that the equations are **singular** (may have no solutions) — we will talk more about this later. However, as long as there is a nonzero value *below* the pivot, we can fix the problem by **swapping rows** (which just corresponds to re-ordering the equations).\n", + "\n", + "For example:\n", + "\n", + "\n", + "$$\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "1 & 3 & -1 & 1 \\\\\n", + "3 & 11 & 6 & 35\n", + "\\end{array}\\right]\\to\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "0 & 0 & -2 & -8 \\\\\n", + "0 & 2 & 3 & 8\n", + "\\end{array}\\right]\\to\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "0 & \\boxed{2} & 3 & 8 \\\\\n", + "0 & 0 & \\boxed{-2} & -8\n", + "\\end{array}\\right]\n", + "$$\n", + "\n", + "where in the second step we swapped the second and third rows to get a nonzero pivot in the second row.\n", + "\n", + "At this point we can again solve bottom-up by backsubstitution:\n", + "\n", + "$$\n", + "-2x_3 = 8 \\implies x_3 = 4 \\\\\n", + "2x_2 + 3x_3 = 8 = 2x_2 + 12 \\implies x_2 = -2 \\\\\n", + "x_1 + 3x_2 + x_3 = 9 = x_1 -6 + 4 \\implies x_3 = 11\n", + "$$\n", + "\n", + "Of course, the computer can get the answer much more quickly and easily:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Float64}:\n", + " 11.000000000000005\n", + " -2.0000000000000013\n", + " 4.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[ 1 3 1\n", + " 1 3 -1\n", + " 3 11 6 ] \\\n", + "[9\n", + " 1\n", + " 35]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## “Big” matrices on the computer\n", + "\n", + "Of course, the computer can solve *much bigger problems* easily. It can solve 1000 equations in 1000 unknowns in a fraction of a second — nowadays, that is no longer considered a \"big\" system of equations." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000×1000 Matrix{Float64}:\n", + " 0.754693 0.560733 0.910327 … 0.611877 0.292508 0.72601\n", + " 0.351665 0.369858 0.871103 0.25676 0.0405945 0.726211\n", + " 0.763593 0.464121 0.390283 0.604981 0.147775 0.72878\n", + " 0.453561 0.147726 0.600355 0.178248 0.914899 0.757964\n", + " 0.247388 0.981658 0.410212 0.817523 0.826953 0.440147\n", + " 0.633554 0.862141 0.688732 … 0.264323 0.497675 0.514361\n", + " 0.133259 0.527097 0.376906 0.965998 0.945114 0.884697\n", + " 0.711564 0.423059 0.870123 0.823831 0.272452 0.92002\n", + " 0.564027 0.638453 0.530519 0.900897 0.0810425 0.0930512\n", + " 0.214856 0.290041 0.819278 0.90219 0.552371 0.553739\n", + " 0.903851 0.897284 0.759832 … 0.208446 0.173989 0.0596702\n", + " 0.104133 0.113186 0.0797224 0.250324 0.604153 0.41286\n", + " 0.235456 0.590892 0.789271 0.973052 0.294701 0.143293\n", + " ⋮ ⋱ \n", + " 0.215499 0.188321 0.975163 0.957026 0.871916 0.828928\n", + " 0.967067 0.591485 0.632038 0.010651 0.100226 0.991383\n", + " 0.119558 0.460483 0.199182 … 0.261509 0.324492 0.965666\n", + " 0.607541 0.628893 0.434687 0.263299 0.525989 0.577185\n", + " 0.230643 0.298218 0.603661 0.184217 0.13649 0.918041\n", + " 0.976573 0.985378 0.0157184 0.842938 0.745338 0.0950755\n", + " 0.461015 0.438604 0.308731 0.139264 0.478038 0.482712\n", + " 0.732309 0.0759328 0.585691 … 0.638138 0.604144 0.850571\n", + " 0.636802 0.322266 0.469396 0.578963 0.205645 0.172984\n", + " 0.414916 0.494336 0.807718 0.320688 0.657784 0.982512\n", + " 0.293371 0.493783 0.74403 0.799018 0.264314 0.186339\n", + " 0.104612 0.662899 0.301098 0.698438 0.609498 0.937989" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Ahuge = rand(1000,1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000-element Vector{Float64}:\n", + " 0.11648951400817487\n", + " 0.638398291445165\n", + " 0.8298021277628341\n", + " 0.6578245083268514\n", + " 0.2992909571326191\n", + " 0.04434321426269938\n", + " 0.2273049093293089\n", + " 0.9208209561794793\n", + " 0.508792941046068\n", + " 0.6918189711915684\n", + " 0.6824429390834486\n", + " 0.914443078331818\n", + " 0.2796681550890874\n", + " ⋮\n", + " 0.9260513170733145\n", + " 0.9305175378530915\n", + " 0.019844020048994104\n", + " 0.5146618522657653\n", + " 0.9889596344281131\n", + " 0.7890502663051733\n", + " 0.7176160909676175\n", + " 0.33518616859067674\n", + " 0.6782977395680323\n", + " 0.6828375702950923\n", + " 0.6045951621057377\n", + " 0.9432704795434865" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bhuge = rand(1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000-element Vector{Float64}:\n", + " -0.40242365163345395\n", + " -1.2575603935803086\n", + " 1.3767709589169037\n", + " 0.020777542800422127\n", + " -0.43224063490856907\n", + " 0.07846278754888261\n", + " -1.2788481293898533\n", + " -0.23363827638256934\n", + " 1.1367178501838064\n", + " -0.6419266345464728\n", + " 1.16574989194809\n", + " -1.0109259917168187\n", + " -0.2547952187241332\n", + " ⋮\n", + " 0.17760057480194702\n", + " -0.026736570616518872\n", + " 1.7923137060044423\n", + " -0.9918298946342873\n", + " -1.0221141312210762\n", + " 0.4426412052246268\n", + " -0.13777635985018952\n", + " -0.4722031299540175\n", + " -0.14595252778895984\n", + " -0.37017438393408275\n", + " 0.88508351548458\n", + " -0.1397370446925542" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Ahuge \\ bhuge" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0.016476 seconds (4 allocations: 7.645 MiB)\n", + " 0.017585 seconds (4 allocations: 7.645 MiB)\n", + " 0.014655 seconds (4 allocations: 7.645 MiB)\n" + ] + } + ], + "source": [ + "@time Ahuge \\ bhuge;\n", + "@time Ahuge \\ bhuge;\n", + "@time Ahuge \\ bhuge;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to see the matrix $U$ from above, we use the fact (covered soon in 18.06) that Gaussian elimination is really \"LU\" factorization, performed by the function `lufact` in the built-in `LinearAlgebra` package. By default, however, \"serious\" computer implementations of this process automatically re-order the rows to reduce the effect of roundoff errors, so we need to pass an extra option that tells Julia not to do this. (You should *not* normally do this, except for learning exercises.)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×4 Matrix{Float64}:\n", + " 1.0 3.0 1.0 9.0\n", + " 0.0 -2.0 -2.0 -8.0\n", + " 0.0 0.0 1.0 0.0" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# LU factorization (Gaussian elimination) of the augumented matrix [A b], \n", + "# passing the NoPivot() option to prevent row re-ordering\n", + "F = lu([A b], NoPivot()) # a \"factorization\" object storing both L and U\n", + "F.U # just show U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, it would be nice to show the individual steps of this process. This requires some programming." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Code to interactively visualize Gaussian elimination\n", + "\n", + "The following is some slightly tricky code that lets us visualize the process of Gaussian elimination in Julia. It takes advantage of the [Interact](https://github.com/JuliaGizmos/Interact.jl) package in Julia, which allows us to easily create interactive displays using sliders, pushbuttons, and other widgets.\n", + "\n", + "Implementing this is **not really a beginner exercise** for new Julia programmers, though it is fairly straightforward for people who are used to Julia. It involves defining our own type to control display, our own implementation of Gaussian elimination that allows us to stop partway through, and using the Interact package to create interactive widgets.\n", + "\n", + "You can skip this part if you aren't ready for the programming details." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "naive_gauss" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"\n", + " naive_gauss(A, [step])\n", + "\n", + "Given a matrix `A`, performs Gaussian elimination to convert\n", + "`A` into an upper-triangular matrix `U`.\n", + "\n", + "This implementation is \"naive\" because it *never re-orders the rows*.\n", + "(It will obviously fail if a zero pivot is encountered.)\n", + "\n", + "If the optional `step` argument is supplied, only performs `step`\n", + "steps of Gaussian elimination.\n", + "\n", + "Returns `(U, row, col, factor)`, where `row` and `col` are the\n", + "row and column of the last step performed, while `factor`\n", + "is the last factor multiplying the pivot row.\n", + "\"\"\"\n", + "function naive_gauss(A, step=typemax(Int))\n", + " m = size(A,1) # number of rows\n", + " factor = A[1,1]/A[1,1]\n", + " step ≤ 0 && return (A, 1, 1, factor)\n", + " U = copyto!(similar(A, typeof(factor)), A)\n", + " for j = 1:m # loop over m columns\n", + " for i = j+1:m # loop over rows below the pivot row j\n", + " # subtract a multiple of the pivot row (j)\n", + " # from the current row (i) to cancel U[i,j] = Uᵢⱼ:\n", + " factor = -U[i,j]/U[j,j]\n", + " U[i,:] = U[i,:] + U[j,:] * factor\n", + " step -= 1\n", + " step ≤ 0 && return (U, i, j, factor)\n", + " end\n", + " end\n", + " return U, m, m, factor\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For display purposes on the 18.06 github page, we can't use interactive sliders, so I just use the following code to switch to non-interactively output each of the \"steps\" of the animation.\n", + "\n", + "To go back to interactive sliders, change `import Interact` to `using Interact` below:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "slider (generic function with 1 method)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import Interact # change to \"using Interact\" to make interactive\n", + "\n", + "# non-interactive replacements for Interact features\n", + "if !isdefined(Main, :slider)\n", + " # non-interactive replacement for Interact.@manipulate\n", + " macro manipulate(expr)\n", + " return Expr(:for, esc(expr.args[1]), :(display($(esc(expr.args[2])))))\n", + " end\n", + " slider(r; kws...) = r\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "visualize_gauss (generic function with 1 method)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "# For display, I only want to show 3 decimal places of floating-point values,\n", + "# but I want to show integers and similar types exactly, so I define a little\n", + "# function to do this rounding\n", + "shorten(x::AbstractFloat) = round(x, digits=3)\n", + "shorten(x) = x # leave non floating-point values as-is\n", + "\n", + "# create an interactive widget to visualize the Gaussian-elimination process for the matrix A.\n", + "function visualize_gauss(A)\n", + " m = size(A, 1)\n", + " @manipulate for step in slider(1:(m*(m-1))÷2, value=1, label=\"gauss step\")\n", + " Uprev, = naive_gauss(A, step-1)\n", + " U, row, col, factor = naive_gauss(A, step)\n", + " pivot = U[col,col]\n", + " Interact.vbox(\n", + " Interact.node(:pre, \"Gaussian elimination for column $col with pivot $pivot: add $(shorten(factor)) * (row $col) to (row $row)\"),\n", + " Interact.hbox(shorten.(Uprev),\n", + " Interact.hskip(1*Interact.em), \"⟶\", Interact.hskip(1*Interact.em),\n", + " shorten.(U)\n", + " )(Interact.alignitems(:center))\n", + " )(Interact.alignitems(:center))\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gaussian elimination examples\n", + "\n", + "Now, let's use this machinery to interact with some examples, starting with our $3 \\times 3$ matrix from above:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    3×4 Matrix{Int64}:\n 1   3   1   9\n 1   1  -1   1\n 3  11   6  35
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    3×4 Matrix{Float64}:\n 1.0   3.0   1.0   9.0\n 0.0  -2.0  -2.0  -8.0\n 3.0  11.0   6.0  35.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [1 3 1 9; 1 1 -1 1; 3 11 6 35]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot 1.0: add -3.0 * (row 1) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    3×4 Matrix{Float64}:\n 1.0   3.0   1.0   9.0\n 0.0  -2.0  -2.0  -8.0\n 3.0  11.0   6.0  35.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    3×4 Matrix{Float64}:\n 1.0   3.0   1.0   9.0\n 0.0  -2.0  -2.0  -8.0\n 0.0   2.0   3.0   8.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot 1.0: add -3.0 * (row 1) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 3.0 11.0 6.0 35.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 0.0 2.0 3.0 8.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot -2.0: add 1.0 * (row 2) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    3×4 Matrix{Float64}:\n 1.0   3.0   1.0   9.0\n 0.0  -2.0  -2.0  -8.0\n 0.0   2.0   3.0   8.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    3×4 Matrix{Float64}:\n 1.0   3.0   1.0   9.0\n 0.0  -2.0  -2.0  -8.0\n 0.0   0.0   1.0   0.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot -2.0: add 1.0 * (row 2) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 0.0 2.0 3.0 8.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [1.0 3.0 1.0 9.0; 0.0 -2.0 -2.0 -8.0; 0.0 0.0 1.0 0.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "visualize_gauss([A b])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -9.0: add -0.889 * (row 1) to (row 2)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Int64}:\n -9  -2  7  -3  -1\n -8   3  5  -9  -1\n  7  -4  8   7   0\n  5   3  2  -8  -9\n -5   7  3   1   2
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  7.0  -4.0     8.0     7.0     0.0\n  5.0   3.0     2.0    -8.0    -9.0\n -5.0   7.0     3.0     1.0     2.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -9.0: add -0.889 * (row 1) to (row 2)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9 -2 … -3 -1; -8 3 … -9 -1; … ; 5 3 … -8 -9; -5 7 … 1 2]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 5.0 3.0 … -8.0 -9.0; -5.0 7.0 … 1.0 2.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -9.0: add 0.778 * (row 1) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  7.0  -4.0     8.0     7.0     0.0\n  5.0   3.0     2.0    -8.0    -9.0\n -5.0   7.0     3.0     1.0     2.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0  -5.556  13.444   4.667  -0.778\n  5.0   3.0     2.0    -8.0    -9.0\n -5.0   7.0     3.0     1.0     2.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -9.0: add 0.778 * (row 1) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 5.0 3.0 … -8.0 -9.0; -5.0 7.0 … 1.0 2.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 5.0 3.0 … -8.0 -9.0; -5.0 7.0 … 1.0 2.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -9.0: add 0.556 * (row 1) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0  -5.556  13.444   4.667  -0.778\n  5.0   3.0     2.0    -8.0    -9.0\n -5.0   7.0     3.0     1.0     2.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0  -5.556  13.444   4.667  -0.778\n  0.0   1.889   5.889  -9.667  -9.556\n -5.0   7.0     3.0     1.0     2.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -9.0: add 0.556 * (row 1) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 5.0 3.0 … -8.0 -9.0; -5.0 7.0 … 1.0 2.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 1.889 … -9.667 -9.556; -5.0 7.0 … 1.0 2.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -9.0: add -0.556 * (row 1) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0  -5.556  13.444   4.667  -0.778\n  0.0   1.889   5.889  -9.667  -9.556\n -5.0   7.0     3.0     1.0     2.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0  -5.556  13.444   4.667  -0.778\n  0.0   1.889   5.889  -9.667  -9.556\n  0.0   8.111  -0.889   2.667   2.556
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -9.0: add -0.556 * (row 1) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 1.889 … -9.667 -9.556; -5.0 7.0 … 1.0 2.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 1.889 … -9.667 -9.556; 0.0 8.111 … 2.667 2.556]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot 4.777777777777778: add 1.163 * (row 2) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0  -5.556  13.444   4.667  -0.778\n  0.0   1.889   5.889  -9.667  -9.556\n  0.0   8.111  -0.889   2.667   2.556
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   1.889   5.889  -9.667  -9.556\n  0.0   8.111  -0.889   2.667   2.556
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot 4.777777777777778: add 1.163 * (row 2) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 1.889 … -9.667 -9.556; 0.0 8.111 … 2.667 2.556]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 1.889 … -9.667 -9.556; 0.0 8.111 … 2.667 2.556]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot 4.777777777777778: add -0.395 * (row 2) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   1.889   5.889  -9.667  -9.556\n  0.0   8.111  -0.889   2.667   2.556
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0     6.372  -7.163  -9.512\n  0.0   8.111  -0.889   2.667   2.556
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot 4.777777777777778: add -0.395 * (row 2) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 1.889 … -9.667 -9.556; 0.0 8.111 … 2.667 2.556]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -7.163 -9.512; 0.0 8.111 … 2.667 2.556]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot 4.777777777777778: add -1.698 * (row 2) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0     6.372  -7.163  -9.512\n  0.0   8.111  -0.889   2.667   2.556
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0     6.372  -7.163  -9.512\n  0.0   0.0     1.186  13.419   2.744
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot 4.777777777777778: add -1.698 * (row 2) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -7.163 -9.512; 0.0 8.111 … 2.667 2.556]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -7.163 -9.512; 0.0 0.0 … 13.419 2.744]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 3 with pivot 12.02325581395349: add -0.53 * (row 3) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0     6.372  -7.163  -9.512\n  0.0   0.0     1.186  13.419   2.744
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0    -0.0    -5.733  -9.031\n  0.0   0.0     1.186  13.419   2.744
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 3 with pivot 12.02325581395349: add -0.53 * (row 3) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -7.163 -9.512; 0.0 0.0 … 13.419 2.744]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -5.733 -9.031; 0.0 0.0 … 13.419 2.744]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 3 with pivot 12.02325581395349: add -0.099 * (row 3) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0    -0.0    -5.733  -9.031\n  0.0   0.0     1.186  13.419   2.744
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0    -0.0    -5.733  -9.031\n  0.0   0.0     0.0    13.685   2.834
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 3 with pivot 12.02325581395349: add -0.099 * (row 3) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -5.733 -9.031; 0.0 0.0 … 13.419 2.744]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -5.733 -9.031; 0.0 0.0 … 13.685 2.834]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 4 with pivot -5.7330754352030935: add 2.387 * (row 4) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0    -1.0\n  0.0   4.778  -1.222  -6.333  -0.111\n  0.0   0.0    12.023  -2.698  -0.907\n  0.0   0.0    -0.0    -5.733  -9.031\n  0.0   0.0     0.0    13.685   2.834
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -9.0  -2.0     7.0    -3.0     -1.0\n  0.0   4.778  -1.222  -6.333   -0.111\n  0.0   0.0    12.023  -2.698   -0.907\n  0.0   0.0    -0.0    -5.733   -9.031\n  0.0   0.0    -0.0     0.0    -18.723
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 4 with pivot -5.7330754352030935: add 2.387 * (row 4) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -5.733 -9.031; 0.0 0.0 … 13.685 2.834]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-9.0 -2.0 … -3.0 -1.0; 0.0 4.778 … -6.333 -0.111; … ; 0.0 0.0 … -5.733 -9.031; 0.0 0.0 … 0.0 -18.723]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "visualize_gauss(rand(-9:9,5,5))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, because we are not re-ordering the rows, this process can go horribly wrong, most obviously if a zero pivot is encountered:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Int64}:\n -3   5   5   3  -7\n  3  -5   8  -8  -6\n  8   2   8   2  -8\n -6  -2   6   4  -8\n -8   4  -6  -1   8
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0   5.0   5.0   3.0   -7.0\n  0.0   0.0  13.0  -5.0  -13.0\n  8.0   2.0   8.0   2.0   -8.0\n -6.0  -2.0   6.0   4.0   -8.0\n -8.0   4.0  -6.0  -1.0    8.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3 5 … 3 -7; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -8 4 … -1 8]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -3.0: add 2.667 * (row 1) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0   5.0   5.0   3.0   -7.0\n  0.0   0.0  13.0  -5.0  -13.0\n  8.0   2.0   8.0   2.0   -8.0\n -6.0  -2.0   6.0   4.0   -8.0\n -8.0   4.0  -6.0  -1.0    8.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0   5.0     5.0     3.0   -7.0\n  0.0   0.0    13.0    -5.0  -13.0\n  0.0  15.333  21.333  10.0  -26.667\n -6.0  -2.0     6.0     4.0   -8.0\n -8.0   4.0    -6.0    -1.0    8.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -3.0: add 2.667 * (row 1) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -3.0: add -2.0 * (row 1) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0   5.0     5.0     3.0   -7.0\n  0.0   0.0    13.0    -5.0  -13.0\n  0.0  15.333  21.333  10.0  -26.667\n -6.0  -2.0     6.0     4.0   -8.0\n -8.0   4.0    -6.0    -1.0    8.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0    5.0     5.0     3.0   -7.0\n  0.0    0.0    13.0    -5.0  -13.0\n  0.0   15.333  21.333  10.0  -26.667\n  0.0  -12.0    -4.0    -2.0    6.0\n -8.0    4.0    -6.0    -1.0    8.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -3.0: add -2.0 * (row 1) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; -6.0 -2.0 … 4.0 -8.0; -8.0 4.0 … -1.0 8.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; 0.0 -12.0 … -2.0 6.0; -8.0 4.0 … -1.0 8.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -3.0: add -2.667 * (row 1) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0    5.0     5.0     3.0   -7.0\n  0.0    0.0    13.0    -5.0  -13.0\n  0.0   15.333  21.333  10.0  -26.667\n  0.0  -12.0    -4.0    -2.0    6.0\n -8.0    4.0    -6.0    -1.0    8.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0    5.0      5.0     3.0   -7.0\n  0.0    0.0     13.0    -5.0  -13.0\n  0.0   15.333   21.333  10.0  -26.667\n  0.0  -12.0     -4.0    -2.0    6.0\n  0.0   -9.333  -19.333  -9.0   26.667
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -3.0: add -2.667 * (row 1) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; 0.0 -12.0 … -2.0 6.0; -8.0 4.0 … -1.0 8.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; 0.0 -12.0 … -2.0 6.0; 0.0 -9.333 … -9.0 26.667]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot 0.0: add -Inf * (row 2) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -3.0    5.0      5.0     3.0   -7.0\n  0.0    0.0     13.0    -5.0  -13.0\n  0.0   15.333   21.333  10.0  -26.667\n  0.0  -12.0     -4.0    -2.0    6.0\n  0.0   -9.333  -19.333  -9.0   26.667
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0      5.0     3.0   -7.0\n   0.0    0.0     13.0    -5.0  -13.0\n NaN    NaN      -Inf     Inf    Inf\n   0.0  -12.0     -4.0    -2.0    6.0\n   0.0   -9.333  -19.333  -9.0   26.667
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot 0.0: add -Inf * (row 2) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; 0.0 -12.0 … -2.0 6.0; 0.0 -9.333 … -9.0 26.667]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; 0.0 -12.0 … -2.0 6.0; 0.0 -9.333 … -9.0 26.667]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot 0.0: add Inf * (row 2) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0      5.0     3.0   -7.0\n   0.0    0.0     13.0    -5.0  -13.0\n NaN    NaN      -Inf     Inf    Inf\n   0.0  -12.0     -4.0    -2.0    6.0\n   0.0   -9.333  -19.333  -9.0   26.667
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0      5.0      3.0   -7.0\n   0.0    0.0     13.0     -5.0  -13.0\n NaN    NaN      -Inf      Inf    Inf\n NaN    NaN       Inf     -Inf   -Inf\n   0.0   -9.333  -19.333   -9.0   26.667
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot 0.0: add Inf * (row 2) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; 0.0 -12.0 … -2.0 6.0; 0.0 -9.333 … -9.0 26.667]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … -Inf -Inf; 0.0 -9.333 … -9.0 26.667]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot 0.0: add Inf * (row 2) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0      5.0      3.0   -7.0\n   0.0    0.0     13.0     -5.0  -13.0\n NaN    NaN      -Inf      Inf    Inf\n NaN    NaN       Inf     -Inf   -Inf\n   0.0   -9.333  -19.333   -9.0   26.667
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN     Inf   -Inf   -Inf\n NaN    NaN     Inf   -Inf   -Inf
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot 0.0: add Inf * (row 2) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … -Inf -Inf; 0.0 -9.333 … -9.0 26.667]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … -Inf -Inf; NaN NaN … -Inf -Inf]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 3 with pivot -Inf: add NaN * (row 3) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN     Inf   -Inf   -Inf\n NaN    NaN     Inf   -Inf   -Inf
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN    NaN    NaN    NaN\n NaN    NaN     Inf   -Inf   -Inf
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 3 with pivot -Inf: add NaN * (row 3) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … -Inf -Inf; NaN NaN … -Inf -Inf]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … NaN NaN; NaN NaN … -Inf -Inf]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 3 with pivot -Inf: add NaN * (row 3) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN    NaN    NaN    NaN\n NaN    NaN     Inf   -Inf   -Inf
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN    NaN    NaN    NaN\n NaN    NaN    NaN    NaN    NaN
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 3 with pivot -Inf: add NaN * (row 3) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … NaN NaN; NaN NaN … -Inf -Inf]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … NaN NaN; NaN NaN … NaN NaN]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 4 with pivot NaN: add NaN * (row 4) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN    NaN    NaN    NaN\n NaN    NaN    NaN    NaN    NaN
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n  -3.0    5.0    5.0    3.0   -7.0\n   0.0    0.0   13.0   -5.0  -13.0\n NaN    NaN    -Inf    Inf    Inf\n NaN    NaN    NaN    NaN    NaN\n NaN    NaN    NaN    NaN    NaN
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 4 with pivot NaN: add NaN * (row 4) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … NaN NaN; NaN NaN … NaN NaN]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-3.0 5.0 … 3.0 -7.0; 0.0 0.0 … -5.0 -13.0; … ; NaN NaN … NaN NaN; NaN NaN … NaN NaN]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "Abad = [-3 5 5 3 -7\n", + " 3 -5 8 -8 -6\n", + " 8 2 8 2 -8\n", + " -6 -2 6 4 -8\n", + " -8 4 -6 -1 8]\n", + "visualize_gauss(Abad)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But this matrix is not actually singular:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "19211.999999999996" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "det(Abad)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we can fix the problem just by re-ordering the rows, e.g. swapping the first and last rows:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Int64}:\n -8   4  -6  -1   8\n  3  -5   8  -8  -6\n  8   2   8   2  -8\n -6  -2   6   4  -8\n -3   5   5   3  -7
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0     8.0\n  0.0  -3.5   5.75  -8.375  -3.0\n  8.0   2.0   8.0    2.0    -8.0\n -6.0  -2.0   6.0    4.0    -8.0\n -3.0   5.0   5.0    3.0    -7.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8 4 … -1 8; 3 -5 … -8 -6; … ; -6 -2 … 4 -8; -3 5 … 3 -7]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -8.0: add 1.0 * (row 1) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0     8.0\n  0.0  -3.5   5.75  -8.375  -3.0\n  8.0   2.0   8.0    2.0    -8.0\n -6.0  -2.0   6.0    4.0    -8.0\n -3.0   5.0   5.0    3.0    -7.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0     8.0\n  0.0  -3.5   5.75  -8.375  -3.0\n  0.0   6.0   2.0    1.0     0.0\n -6.0  -2.0   6.0    4.0    -8.0\n -3.0   5.0   5.0    3.0    -7.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -8.0: add 1.0 * (row 1) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -8.0: add -0.75 * (row 1) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0     8.0\n  0.0  -3.5   5.75  -8.375  -3.0\n  0.0   6.0   2.0    1.0     0.0\n -6.0  -2.0   6.0    4.0    -8.0\n -3.0   5.0   5.0    3.0    -7.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0      8.0\n  0.0  -3.5   5.75  -8.375   -3.0\n  0.0   6.0   2.0    1.0      0.0\n  0.0  -5.0  10.5    4.75   -14.0\n -3.0   5.0   5.0    3.0     -7.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -8.0: add -0.75 * (row 1) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; -6.0 -2.0 … 4.0 -8.0; -3.0 5.0 … 3.0 -7.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 -5.0 … 4.75 -14.0; -3.0 5.0 … 3.0 -7.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 1 with pivot -8.0: add -0.375 * (row 1) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0      8.0\n  0.0  -3.5   5.75  -8.375   -3.0\n  0.0   6.0   2.0    1.0      0.0\n  0.0  -5.0  10.5    4.75   -14.0\n -3.0   5.0   5.0    3.0     -7.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0      8.0\n  0.0  -3.5   5.75  -8.375   -3.0\n  0.0   6.0   2.0    1.0      0.0\n  0.0  -5.0  10.5    4.75   -14.0\n  0.0   3.5   7.25   3.375  -10.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 1 with pivot -8.0: add -0.375 * (row 1) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 -5.0 … 4.75 -14.0; -3.0 5.0 … 3.0 -7.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 -5.0 … 4.75 -14.0; 0.0 3.5 … 3.375 -10.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot -3.5: add 1.714 * (row 2) to (row 3)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0   -1.0      8.0\n  0.0  -3.5   5.75  -8.375   -3.0\n  0.0   6.0   2.0    1.0      0.0\n  0.0  -5.0  10.5    4.75   -14.0\n  0.0   3.5   7.25   3.375  -10.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0  -5.0  10.5      4.75   -14.0\n  0.0   3.5   7.25     3.375  -10.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot -3.5: add 1.714 * (row 2) to (row 3)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 -5.0 … 4.75 -14.0; 0.0 3.5 … 3.375 -10.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 -5.0 … 4.75 -14.0; 0.0 3.5 … 3.375 -10.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot -3.5: add -1.429 * (row 2) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0  -5.0  10.5      4.75   -14.0\n  0.0   3.5   7.25     3.375  -10.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0   0.0   2.286   16.714   -9.714\n  0.0   3.5   7.25     3.375  -10.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot -3.5: add -1.429 * (row 2) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 -5.0 … 4.75 -14.0; 0.0 3.5 … 3.375 -10.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 16.714 -9.714; 0.0 3.5 … 3.375 -10.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 2 with pivot -3.5: add 1.0 * (row 2) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0   0.0   2.286   16.714   -9.714\n  0.0   3.5   7.25     3.375  -10.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0   0.0   2.286   16.714   -9.714\n  0.0   0.0  13.0     -5.0    -13.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 2 with pivot -3.5: add 1.0 * (row 2) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 16.714 -9.714; 0.0 3.5 … 3.375 -10.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 16.714 -9.714; 0.0 0.0 … -5.0 -13.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 3 with pivot 11.857142857142856: add -0.193 * (row 3) to (row 4)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0   0.0   2.286   16.714   -9.714\n  0.0   0.0  13.0     -5.0    -13.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0   0.0   0.0     19.289   -8.723\n  0.0   0.0  13.0     -5.0    -13.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 3 with pivot 11.857142857142856: add -0.193 * (row 3) to (row 4)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 16.714 -9.714; 0.0 0.0 … -5.0 -13.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 19.289 -8.723; 0.0 0.0 … -5.0 -13.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 3 with pivot 11.857142857142856: add -1.096 * (row 3) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0      8.0\n  0.0  -3.5   5.75    -8.375   -3.0\n  0.0   0.0  11.857  -13.357   -5.143\n  0.0   0.0   0.0     19.289   -8.723\n  0.0   0.0  13.0     -5.0    -13.0
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0     8.0\n  0.0  -3.5   5.75    -8.375  -3.0\n  0.0   0.0  11.857  -13.357  -5.143\n  0.0   0.0   0.0     19.289  -8.723\n  0.0   0.0   0.0      9.645  -7.361
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 3 with pivot 11.857142857142856: add -1.096 * (row 3) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 19.289 -8.723; 0.0 0.0 … -5.0 -13.0]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 19.289 -8.723; 0.0 0.0 … 9.645 -7.361]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + "Gaussian elimination for column 4 with pivot 19.289156626506024: add -0.5 * (row 4) to (row 5)" + ], + "instanceArgs": { + "namespace": "html", + "tag": "pre" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0     8.0\n  0.0  -3.5   5.75    -8.375  -3.0\n  0.0   0.0  11.857  -13.357  -5.143\n  0.0   0.0   0.0     19.289  -8.723\n  0.0   0.0   0.0      9.645  -7.361
    " + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + "⟶", + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "height": "0.0px", + "width": "1.0em" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5×5 Matrix{Float64}:\n -8.0   4.0  -6.0     -1.0     8.0\n  0.0  -3.5   5.75    -8.375  -3.0\n  0.0   0.0  11.857  -13.357  -5.143\n  0.0   0.0   0.0     19.289  -8.723\n  0.0   0.0   0.0      0.0    -3.0
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-items": "center", + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " (pre\n", + " \"Gaussian elimination for column 4 with pivot 19.289156626506024: add -0.5 * (row 4) to (row 5)\")\n", + " (div { style=Dict{Any, Any}(\"align-items\" => :center, \"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 19.289 -8.723; 0.0 0.0 … 9.645 -7.361]\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " \"⟶\"\n", + " (div { style=Dict{String, Measures.Length{U, Float64} where U}(\"height\" => 0.0px, \"width\" => 1.0em) })\n", + " [-8.0 4.0 … -1.0 8.0; 0.0 -3.5 … -8.375 -3.0; … ; 0.0 0.0 … 19.289 -8.723; 0.0 0.0 … 0.0 -3.0]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "Aok = [-8 4 -6 -1 8\n", + " 3 -5 8 -8 -6\n", + " 8 2 8 2 -8\n", + " -6 -2 6 4 -8\n", + " -3 5 5 3 -7]\n", + "visualize_gauss(Aok)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A bigger example\n", + "\n", + "We quickly run out of space for displaying matrices as text, but we can visualize the process for larger matrices by using images, with the PyPlot package (a wrapper around the Python Matplotlib library):" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "using PyPlot" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABARklEQVR4nO3de1xVVf7/8fdJFFCBvmpyMVR0FC9oGWRe8jYmfcVuYxfLUruOpF2QcUy0vpKVZDpGN29lmmNO/kprrMzEUszUVNTylqlDigThLdA0EFi/P4wzHUEFzkbY8Ho+HvvxmLPO2nutvceZ8+Gz1l7LYYwxAgAANd5lld0BAABQNRAUAAAASQQFAADgdwQFAABAEkEBAAD4HUEBAACQRFAAAAB+R1AAAAAkERQAAIDfERSgRAsXLlRiYmJld0MrV65U165dVbduXTVq1Ej333+/srKyKrtbTg6HQ/Hx8ZXdjXJZu3atHn74YYWHh8vT01MOh0M//vhjZXfLUvPnz9fdd9+t0NBQXXbZZWrevHlldwmo0ggKUKKqEBQkJyerf//+8vf317///W+98sorWrlypfr27avc3NxK7Vt18MUXX2jlypVq2rSpunXrVtndqRD//Oc/tXPnTnXu3FktW7as7O4AVZ5HZXcAOJ+///3vat26tT744AN5eJz9pxoSEqLu3bvr7bff1qOPPlrJPbS3Z555RhMmTJAkTZ06VatXr66Qdk6dOqW6detWyLUv5vPPP9dll5392+emm27Sjh07KqUfgF2QKaiBDh8+rL/+9a8KDg6Wp6enrrjiCnXv3l0rV66UJPXu3VuffvqpDhw4IIfD4TyK5OXl6fnnn1ebNm2c5z/wwAM6fPiwSzvNmzfXTTfdpA8//FAdO3aUl5eXWrRooVdfffWifUxPT9emTZs0ZMgQZ0AgSd26dVPr1q314Ycflvv+09PTnfdfp04dBQUF6Y477tDPP//srHPw4EHdd999aty4sTw9PdW2bVv94x//UGFh4QWvHR8f7/KsisybN69Yer7o+XzyySfq1KmTvL291bZtW33yySfOc9q2bat69eqpc+fO2rx5s8s177//ftWvX1/79u1TVFSU6tevr+DgYP3tb38rVSal6MfSSkV92r59uyIjI+Xj46O+fftKko4dO6YRI0aoSZMmqlOnjlq0aKHx48e79PXOO+9U+/btXa558803y+Fw6P3333eWbdmyRQ6HQx9//PEF+1MR9whUZ2QKaqAhQ4Zoy5YteuGFF9S6dWv98ssv2rJli44ePSpJmj59uv76179q//79xX58CwsLdeutt+qrr77SmDFj1K1bNx04cEATJkxQ7969tXnzZnl7ezvrb9u2TTExMYqPj1dAQIDeffddPfnkk8rLy9Po0aPP28eiv+g6duxY7LuOHTvq66+/dikrGiu+2Jh4enq6rr32Wp05c0bjxo1Tx44ddfToUX3++ec6fvy4/P39dfjwYXXr1k15eXl67rnn1Lx5c33yyScaPXq09u/fr+nTp1+wjbL49ttvFRcXp/Hjx8vPz0/PPvusBg4cqLi4OH3xxReaNGmSHA6HnnrqKd10001KTU11eb5nzpzRLbfcooceekh/+9vftGbNGj333HPy8/PT//3f/1nWz7LIy8vTLbfcouHDh2vs2LHKz8/Xb7/9pj59+mj//v169tln1bFjR3311VdKSEjQtm3b9Omnn0qSbrjhBn3wwQfKyMhQYGCg8vPzlZycLG9vbyUlJenOO++UdHauiYeHh3r37l0p9whUWwY1Tv369U1MTMwF6wwYMMA0a9asWPm//vUvI8ksXrzYpXzTpk1Gkpk+fbqzrFmzZsbhcJht27a51O3Xr5/x9fU1v/7663nbf/fdd40ks379+mLf/fWvfzV16tRxKWvZsqVp2bLlBe/JGGMefPBBU7t2bbNr167z1hk7dqyRZL755huX8kcffdQ4HA6zZ88eZ5kkM2HCBOfnCRMmmJL+ZzV37lwjyaSmpjrLmjVrZry9vc2hQ4ecZdu2bTOSTGBgoMvz+eijj4wks3TpUmfZsGHDjCTz//7f/3NpKyoqyoSGhp7/IZRgypQpxfpXHkV9evvtt13KZ86cWWJfJ0+ebCSZFStWGGOM2bdvn5Fk5s+fb4wxZu3atUaSGTNmjAkJCXGe169fP9OtW7cy9e18/6YB/Be5tRqoc+fOmjdvnp5//nlt2LBBZ86cKfW5n3zyiS6//HLdfPPNys/Pdx5XX321AgICio1Lt2/fXldddZVL2eDBg5WTk6MtW7ZctL2SUvElle/bt0/79u276PU+++wz9enTR23btj1vnS+//FLt2rVT586dXcrvv/9+GWP05ZdfXrSd0rr66qvVpEkT5+eifvXu3dtlHL6o/MCBAy7nOxwO3XzzzS5lHTt2LFbvUrv99ttdPn/55ZeqV6+e7rjjDpfy+++/X9LZSY+S1LJlSzVv3tw5lJWUlKQOHTrovvvuU2pqqvbv36/c3FytXbtWN9xwQ8XfCFDDEBTUQIsWLdKwYcP01ltvqWvXrmrQoIGGDh2qzMzMi577888/65dfflGdOnVUu3ZtlyMzM1NHjhxxqR8QEFDsGkVlRcMVJWnYsOF56xw7dkwNGjS4aF9LcvjwYV155ZUXrHP06FEFBgYWKw8KCjpvn8rr3PuoU6fOBct/++03l/K6devKy8vLpczT07NYvUupbt268vX1dSk7evSoAgICigVzjRs3loeHh8sz7du3rzNIWLlypfr166cOHTrI399fK1eu1Ndff63Tp08TFAAVgDkFNVCjRo2UmJioxMREHTx4UEuXLtXYsWOVlZWl5cuXX/Tchg0bnreej4+Py+eSAo2isqIf/pKEhYVJkrZv366oqCiX77Zv3+78vqyuuOIKHTp06IJ1GjZsqIyMjGLlP/30k6Szz+B8in6gc3Nz5enp6Sw/N1iqzkrK7jRs2FDffPONjDEu32dlZSk/P9/lmfbt21dz5szRxo0b9c033+jpp5+WJP35z39WUlKSDhw4oPr166tLly4VfzNADUOmoIZr2rSpHnvsMfXr188lne/p6anTp08Xq3/TTTfp6NGjKigoUERERLEjNDTUpf7OnTv17bffupQtXLhQPj4+uuaaa87bryZNmqhz585asGCBCgoKnOUbNmzQnj17NHDgwHLdb//+/bVq1Srt2bPnvHX69u2rXbt2FRvemD9/vhwOh/r06XPec4smPH733Xcu5RebJV/d9e3bVydPntRHH33kUj5//nzn93+s63A49Mwzz+iyyy5Tz549JZ2dhLhq1SolJSWpZ8+eql279iXrP1BTkCmoYbKzs9WnTx8NHjxYbdq0kY+PjzZt2qTly5e7/NB26NBBS5Ys0YwZMxQeHq7LLrtMERERuvvuu/Xuu+8qKipKTz75pDp37qzatWvr0KFDWrVqlW699Vb95S9/cV4nKChIt9xyi+Lj4xUYGKgFCxYoKSlJkydPvui765MnT1a/fv105513asSIEcrKytLYsWMVFhamBx54wKXun/70J0m66LyCiRMn6rPPPlPPnj01btw4dejQQb/88ouWL1+u2NhYtWnTRqNGjdL8+fM1YMAATZw4Uc2aNdOnn36q6dOn69FHH1Xr1q3Pe/2oqCg1aNBADz30kCZOnCgPDw/NmzdPaWlpF+xXZTh8+LCSk5Mlnc2+SGfnXFxxxRW64oor1KtXL2fd3r17Kzk5WcaYcrU1dOhQvfHGGxo2bJh+/PFHdejQQWvXrtWkSZMUFRXlMhTQuHFjhYWFacWKFerTp4/z38kNN9ygY8eO6dixY5o2bVqp2t21a5d27dol6WyG6tSpU/rggw8kSe3atVO7du3KdT9AtVXJEx1xif32228mOjradOzY0fj6+hpvb28TGhpqJkyY4DLb/dixY+aOO+4wl19+uXE4HC4z6s+cOWOmTp1qrrrqKuPl5WXq169v2rRpY4YPH2727t3rrNesWTMzYMAA88EHH5j27dubOnXqmObNm5tp06aVur8rVqwwXbp0MV5eXqZBgwZm6NCh5ueffy5Wr1mzZqWeWZ6WlmYefPBBExAQYGrXrm2CgoLMXXfd5XLdAwcOmMGDB5uGDRua2rVrm9DQUDNlyhRTUFDgci2d8/aBMcZs3LjRdOvWzdSrV880adLETJgwwbz11lslvn0wYMCAYv2TZEaOHOlSlpqaaiSZKVOmOMuGDRtm6tWrV+z8870Bca5Vq1YZSSUevXr1cqkbHh5uAgICLnrN8/XJGGOOHj1qoqOjTWBgoPHw8DDNmjUzcXFx5rfffitWd9SoUUaSeeGFF1zKW7VqZSSZ77777qJ9Mea/z6Kk49z/3gAY4zCmnKE/cBHNmzdXWFiYczEe2NOJEyfUoEEDJSYmauTIkZXdHQAViDkFAC5ozZo1atKkiR555JHK7gqACkZQAOCCBgwYoB9//NH5WiSA6ovhAwAAIIlMAQAApTZjxgx17NhRvr6+8vX1VdeuXfXZZ59d8Jzk5GSFh4c7N4WbOXPmJept2REUAABQSldeeaVefPFFbd68WZs3b9af//xn3Xrrrdq5c2eJ9VNTUxUVFaUePXpo69atGjdunJ544gktXrz4Eve8dCps+GD69OmaMmWKMjIy1L59eyUmJqpHjx4V0RQAAJWmQYMGmjJlih566KFi3z311FNaunSpdu/e7SyLjo7Wt99+q/Xr11/KbpZKhSxetGjRIsXExGj69Onq3r27Zs2apf79+2vXrl1q2rTpBc8tLCzUTz/9JB8fn/NuhgMAqLqMMTpx4oSCgoJ02WUVl5D+7bfflJeX5/Z1zDnLb0tnV3X941LlJSkoKND777+vX3/9VV27di2xzvr16xUZGelSduONN2rOnDk6c+ZM1VuZsyIWP+jcubOJjo52KWvTpo0ZO3bsRc9NS0s772IjHBwcHBz2OdLS0iriJ8YYY8zp06dNQECAJf2sX79+sbILLW713XffmXr16platWoZPz8/8+mnn563bqtWrYotwvX1118bSeann36y6nFYxvJMQV5enlJSUjR27FiX8sjISK1bt65Y/dzcXOXm5jo/m99HM9LSXpKvr7fV3QMAVLCcnNMKDh5TbIM0K+Xl5SkzM1NpaanFduUsi5ycHAUHhygtLc3lOhfKEoSGhmrbtm365ZdftHjxYg0bNkzJycnnXTb73CxE0e9cVcyGWx4UHDlyRAUFBfL393cp9/f3L3HHvISEBD377LPFyn19vQkKAMDGLsWPXtFbAJfyOnXq1HHutxIREaFNmzbplVde0axZs4rVDQgIKPbbl5WVJQ8PjwvuFFtZKmywp6TIqKR/IHFxccrOznYeVXHjGABAVZVvweEeY4xLxvuPunbtqqSkJJeyFStWKCIiourNJ1AFZAoaNWqkWrVqlRgZnZs9kEo3mQMAgJK5+8NetnPHjRun/v37Kzg4WCdOnNB7772n1atXa/ny5ZLO/qGbnp7u3BY8Ojpar7/+umJjY/XII49o/fr1mjNnjv71r3+50eeKY3mmoE6dOgoPDy8WGSUlJalbt25WNwcAqNEubabg559/1pAhQxQaGqq+ffvqm2++0fLly9WvXz9JUkZGhg4ePOisHxISomXLlmn16tW6+uqr9dxzz+nVV1/V7bff7tZdV5QKeSUxNjZWQ4YMUUREhLp27arZs2fr4MGDio6OrojmAAC4JObMmXPB7+fNm1esrFevXtqyZUsF9chaFRIUDBo0SEePHtXEiROVkZGhsLAwLVu2TM2aNauI5gAANVaB3Bs+KLCqI9VChQQFkjRixAiNGDGioi4PAIAu9ZyC6o69DwAAgKQKzBQAAFDxyBRYiaAAAGBjBAVWYvgAAABIIlMAALC1Arn3BgFvH/wRQQEAwMZ4JdFKDB8AAABJZAoAALbGREMrERTYSD3Hwy6ffzVvVVJPAKCqICiwEkEBAMDGCAqsxJwCAAAgiUwBAMDWePvASgQFNsIcAgA4F8MHVmL4AAAASCJTAACwNTIFViIoAADYGEGBlRg+AAAAksgUAABsjUyBlQgKAAA2xiuJVmL4AAAASCJTAACwNYYPrERQAACwMYICKxEUAABsjKDASswpAAAAksgUAABsjUyBlQgKAAA2xiuJVmL4AAAASCJTAACwtQK599c+mYI/IigAANgYcwqsxPABAACQRKYAAGBrZAqsRFAAALAx3j6wEsMHAABAEpkCAICtMXxgJYICAICNERRYiaAAAGBjBAVWYk4BAACQRKYAAGBrZAqsRFAAALAxXkm0EsMHAABAEpkCAICt5Uuq5eb5KEJQAACwMYICKzF8AAAAJJEpAADYGpkCKxEUAABsjLcPrMTwAQAAkESmAABga/ly7+9bhg/+iKAAAGBjBAVWYvgAAGBj+RYcpZeQkKBrr71WPj4+aty4sW677Tbt2bPnguesXr1aDoej2PH999+Xqe1LgaAAAIBSSk5O1siRI7VhwwYlJSUpPz9fkZGR+vXXXy967p49e5SRkeE8WrVqdQl6XDYMHwAAbKxA7r1BULZzly9f7vJ57ty5aty4sVJSUtSzZ88Lntu4cWNdfvnlZe3gJUWmAABgY0WvJJb3OBsU5OTkuBy5ubmlaj07O1uS1KBBg4vW7dSpkwIDA9W3b1+tWrWq9Ld4CREUAABqvODgYPn5+TmPhISEi55jjFFsbKyuv/56hYWFnbdeYGCgZs+ercWLF2vJkiUKDQ1V3759tWbNGitvwRIMHwAAbCxfksPN86W0tDT5+vo6Sz09PS965mOPPabvvvtOa9euvWC90NBQhYaGOj937dpVaWlpmjp16kWHHC41ggIAgI1ZExT4+vq6BAUX8/jjj2vp0qVas2aNrrzyyjK32qVLFy1YsKDM51U0ggIAAErJGKPHH39cH374oVavXq2QkJByXWfr1q0KDAy0uHfuIygAANiYNZmC0ho5cqQWLlyof//73/Lx8VFmZqYkyc/PT97e3pKkuLg4paena/78+ZKkxMRENW/eXO3bt1deXp4WLFigxYsXa/HixW70u2IQFAAAbOzSBgUzZsyQJPXu3dulfO7cubr//vslSRkZGTp48KDzu7y8PI0ePVrp6eny9vZW+/bt9emnnyoqKsqNflcMhzHGVHYn/ignJ0d+fn7Kzn5Nvr7eld0dAEAZ5eSclp/f48rOzi7TOH3Z2ij6regnX9/ablznjPz8kiq0r3ZCpgAAYGMFci9TwNbJf0RQAACwMXc3NGJDpD8iKAAA2BhBgZVY0RAAAEgqY1BQmi0jjTGKj49XUFCQvL291bt3b+3cudPSTgMAcNal3Tq5uitTUFCaLSNfeuklTZs2Ta+//ro2bdqkgIAA9evXTydOnLC88wCAms6aDZFwVpnmFFxsy0hjjBITEzV+/HgNHDhQkvTOO+/I399fCxcu1PDhw4tdMzc312U3qpycnPLcBwAAcJNbcwrO3TIyNTVVmZmZioyMdNbx9PRUr169tG7duhKvkZCQ4LIzVXBwsDtdAgDUKAwfWKncQUFJW0YWLffo7+/vUtff39/53bni4uKUnZ3tPNLS0srbJQBAjUNQYKVyv5J4oS0jHQ7XhSSMMcXKinh6epZqi0oAAFCxypUpKNoyctWqVS5bRgYEBEhSsaxAVlZWsewBAADuI1NgpTIFBcYYPfbYY1qyZIm+/PLLYltGhoSEKCAgQElJSc6yvLw8JScnq1u3btb0GAAAJ4ICK5Vp+OBiW0Y6HA7FxMRo0qRJatWqlVq1aqVJkyapbt26Gjx4cIXcAAAAsEaZgoLSbBk5ZswYnT59WiNGjNDx48d13XXXacWKFfLx8bGkwwAA/FeBJHc2+y20qiPVQpmCgtLssuxwOBQfH6/4+Pjy9gkAgFIiKLASGyIBAGwsX+4tuUNQ8EdsiAQAACSRKQAA2BqZAisRFAAAbIygwEoMHwAAAElkCgAAtlYg9/7ad+fNheqHoAAAYGP5kkreW6d0CAr+iOEDAAAgiUwBAMDWyBRYiaAAAGBjBAVWYvgAAABIIlMAALAzU+jeH/skClwQFAA1SD3Hw87//Kt5qxJ7AlikUO69kcjaRS4ICgAA9lXw++HO+XBiTgEAAJBEpgAAYGdkCixFUADUIMwjQLXDnAJLMXwAAAAkkSkAANgZwweWIigAANgXwweWYvgAAABIIlMAALCzQrk3BECmwAVBAQDAvphTYCmGDwAAgCQyBQAAO2OioaUICgAA9sXwgaUICgAA9kVQYCnmFAAAAElkCgAAdsacAksRFAAA7IvhA0sxfAAAACSRKQAA2JmRe0MAxqqOVA8EBQAA+2L4wFIMHwAAAElkCgAAdkamwFIEBQAA++KVREsxfAAAQCklJCTo2muvlY+Pjxo3bqzbbrtNe/bsueh5ycnJCg8Pl5eXl1q0aKGZM2degt6WHUEBAMC+Ciw4yiA5OVkjR47Uhg0blJSUpPz8fEVGRurXX3897zmpqamKiopSjx49tHXrVo0bN05PPPGEFi9eXMabrXgMHwAA7OsSzylYvny5y+e5c+eqcePGSklJUc+ePUs8Z+bMmWratKkSExMlSW3bttXmzZs1depU3X777eXpdYUhUwAAsK9CCw5JOTk5Lkdubm6pms/OzpYkNWjQ4Lx11q9fr8jISJeyG2+8UZs3b9aZM2dKd5+XCEEBAKDGCw4Olp+fn/NISEi46DnGGMXGxur6669XWFjYeetlZmbK39/fpczf31/5+fk6cuSI2323EsMHAAD7KpR7wwe/ZwrS0tLk6+vrLPb09LzoqY899pi+++47rV279qJ1HQ6Hy2djTInllY2gAABgXxa9kujr6+sSFFzM448/rqVLl2rNmjW68sorL1g3ICBAmZmZLmVZWVny8PBQw4YNy9zlisTwAQAApWSM0WOPPaYlS5boyy+/VEhIyEXP6dq1q5KSklzKVqxYoYiICNWuXbuiulouBAUAAPu6xK8kjhw5UgsWLNDChQvl4+OjzMxMZWZm6vTp0846cXFxGjp0qPNzdHS0Dhw4oNjYWO3evVtvv/225syZo9GjR5ep7TNnzigtLU179uzRsWPHytbxUiIoAADY1yUOCmbMmKHs7Gz17t1bgYGBzmPRokXOOhkZGTp48KDzc0hIiJYtW6bVq1fr6quv1nPPPadXX321VK8jnjx5UrNmzVLv3r3l5+en5s2bq127drriiivUrFkzPfLII9q0aVPZbuICmFMAAEApFU0QvJB58+YVK+vVq5e2bNlSprZefvllvfDCC2revLluueUWjR07Vk2aNJG3t7eOHTumHTt26KuvvlK/fv3UpUsXvfbaa2rVqlWZ2jgXQQEAwL6q8d4H69at06pVq9ShQ4cSv+/cubMefPBBzZw5U3PmzFFycjJBAQCgBqvGuyS+//77parn6empESNGWNImcwoAAIAkMgUAADurxpmCIocOHdKMGTO0bt06ZWZmyuFwyN/fX926dVN0dLSCg4Mta4ugAABgX0buzQu4+LzBSrV27Vr1799fwcHBioyMVGRkpIwxysrK0kcffaTXXntNn332mbp3725JewQFAAD7quaZglGjRunhhx/Wyy+/fN7vY2JiLHstkTkFAABUUTt27FB0dPR5vx8+fLh27NhhWXsEBQAA+7Jo6+SqKjAwUOvWrTvv9+vXr1dgYKBl7TF8AACwr2o+fDB69GhFR0crJSVF/fr1k7+/vxwOhzIzM5WUlKS33npLiYmJlrVHUAAAQBU1YsQINWzYUC+//LJmzZqlgoKzUUytWrUUHh6u+fPn66677rKsPYICAIB9VfNMgSQNGjRIgwYN0pkzZ3TkyBFJUqNGjSpkh0WCAgCAfVXjZY7PVbt2bUvnD5SEoAAAgCqMxYuqsXqOh10+/2reqqSeAEA1UM2HD1i8CACA0iqUez/sVXz4gMWLAAAorWq+ToGtFi9KSEiQw+FQTEyMs8wYo/j4eAUFBcnb21u9e/fWzp073e0nAAA1jm0WL9q0aZNmz56tjh07upS/9NJLmjZtmubNm6fWrVvr+eefV79+/bRnzx75+Pi43WG7Yw4BAFioms8psMXiRSdPntS9996rN998U88//7yz3BijxMREjR8/XgMHDpQkvfPOO/L399fChQs1fPjwYtfKzc1Vbm6u83NOTk55ugQAqImq+SuJl3rxonINH4wcOVIDBgzQDTfc4FKempqqzMxMRUZGOss8PT3Vq1ev86Y/EhIS5Ofn5zysfLUCAAC7GzRokDZs2KBTp04pPT1d6enpOnXqlDZs2GBpQCCVI1Pw3nvvacuWLSXOdMzMzJQk+fv7u5T7+/vrwIEDJV4vLi5OsbGxzs85OTkEBgCA0qnmwwd/VOUWL0pLS9OTTz6pFStWyMvL67z1HA6Hy2djTLGyIp6envL09CxLNwAAOKsGBQWSdPz4cb3zzjvau3evAgMDNWzYMEv/kC7T8EFKSoqysrIUHh4uDw8PeXh4KDk5Wa+++qo8PDycGYKijEGRrKysYtkDAABwYUFBQTp69Kiks0P07dq10+TJk7V3717NmjVLHTp00Pfff29Ze2UKCvr27avt27dr27ZtziMiIkL33nuvtm3bphYtWiggIEBJSUnOc/Ly8pScnKxu3bpZ1mkAACRV+3UKMjMznZMLx40bpzZt2mj//v1asWKF9u3bpx49euiZZ56xrL0yDR/4+PgoLCzMpaxevXpq2LChszwmJkaTJk1Sq1at1KpVK02aNEl169bV4MGDLes0AACSqv2Khn/0zTff6K233lLdunUlnR1+f/rpp3XHHXdY1oblyxyPGTNGp0+f1ogRI3T8+HFdd911WrFiBWsUAABQDkVz8nJzc0ucyH/48GHL2nI7KFi9erXLZ4fDofj4eMXHx7t7aQAALqyar1MgnR269/DwUE5Ojn744Qe1b9/e+d3BgwfVqFEjy9piQyQAgH1V87cPJkyY4PK5aOigyMcff6wePXpY1h5BAQDAvmpYUHCuKVOmWNoeuyQCAABJZAoAAHZWA+YUXEoEBQAA+6rmwweXGsMHAADYyNdff+2yu7CVCAoAAPZVYMFhM/3791d6enqFXJvhAwCAfRm5Ny/AWNWRS8eYius0mQIAACCJTAEAwM5qwETD+fPnu3zOz8/XkiVL1LhxY2fZ0KFDLWmLoAAAYF814JXEuXPnunw+c+aMPvjgA3l7e0s6u70AQQEAADXAqlWrXD77+Pho4cKFatGiheVtERQAAOyrBgwfXEoEBQAA+yIosBRBAQDAvmrAnIJzjRs3Tg0aNKiQaxMUAABgI3FxcRV2bYICAIB9MXxgKYICAIB9Fcq9H3YbDh9UJFY0BAAAksgUAADsrAZONKxIBAUAAPuqxnMKQkJC5HA4ynxeTEyMnnjiiXK1SVAAAEAVNG/evHKd17x583K3SVAAALCvajx80KtXr0veJhMNAQD2VWDBYSOTJ0+WJH333Xc6c+aM5dcnKAAAoAzWrFmjm2++WUFBQXI4HProo48uWH/16tVyOBzFju+//77MbV9//fWSpPj4eHXs2FEdO3bU4MGDlZCQoE8++UQ///xzeW7JieEDAIB9VcJEw19//VVXXXWVHnjgAd1+++2lPm/Pnj3y9fV1fr7iiivK3Hb37t0lSUuWLJEknTp1Sjt27ND27du1cuVKTZgwQVFRUXruuefKfG2JoAAAYGcWzSnIyclxKfb09JSnp2eJp/Tv31/9+/cvc1ONGzfW5ZdfXubzLqRu3brq3LmzOnfu7CwLDw8vd1DA8AEAwL6KVjQs7/F7UBAcHCw/Pz/nkZCQYHlXO3XqpMDAQPXt21erVq2y/PpFNmzYUO5zyRQAAGq8tLQ0l9T++bIE5REYGKjZs2crPDxcubm5+uc//6m+fftq9erV6tmzpyVtZGRkqEGDBvL09FTt2rXLfR2CAgCAfRXIvZz373MKfH19XYICK4WGhio0NNT5uWvXrkpLS9PUqVMtCwqGDBmi/fv36/bbb9fUqVPLfR2CAgCAfdl0nYIuXbpowYIFll1v5cqVklSuNxr+iDkFAABcYlu3blVgYGCZz3vllVcknX2TobCweETTpk0bt/pFpgAAYF8WDR+UxcmTJ7Vv3z7n59TUVG3btk0NGjRQ06ZNFRcXp/T0dM2fP1+SlJiYqObNm6t9+/bKy8vTggULtHjxYi1evLjMbYeFhUmSRo0apX379ql+/fpq3769wsLCFBYWpgEDBpT9hv6AoAAAYF+VMHywefNm9enTx/k5NjZWkjRs2DDNmzdPGRkZOnjwoPP7vLw8jR49Wunp6fL29lb79u316aefKioqqsxt9+3bV5K0bNkySWdfpdyxY4d27NihpKQkt4MChzHGuHUFi+Xk5MjPz0/Z2a/J19e7srsDACijnJzT8vN7XNnZ2RU2ec/5WxEl+ZZ/sr1yzkh+y1ShfXVHRESEwsPDnUfHjh3dervgYsgUAADsqxKGDy6lrl27KiUlRQsWLNDp06dVp04dtW/fXt26ddPdd9/tXOHQKgQFAAD7quZBwWuvvSZJKigo0M6dO7V582Zt3rxZn3/+uaZPn64hQ4Zo7ty5cjgclrTH2wcAAFRxtWrVUseOHfXggw9q+vTp+uGHH7R8+XItW7ZMc+bMsawdggIAgH0Z/XeyYXmOKjWrrmz69eun559/XrNmzbLsmgQFAAD7cmffA3d3WKwCunTp4vJ6pLsICgAA9lXNg4I33nhDGzduVG5ubonfHz582NK3EZhoCABAFfX0008rJydHHh4eateunSIiIhQREaG2bdvq1KlTiouLs2z/BImgAABgZzbd+6C0jh8/rv379yslJcV5LF68WL/88ouks8sau7MB0rkICgAA9lUgyZ238ar48IEktWzZUi1bttRdd93lLDt06JDOnDmjkJAQS9siKAAAwGauvPLKCrkuQQEAwL6q+fDBpUZQAACwr2o8fBASElKulQpjYmL0xBNPlKtNggIAAKqgefPmleu85s2bl7tNggIAgH0Vyr2/9qvw8EGvXr0ueZssXgQAsC93ljh2dz5CBTt48GCZ6qenp7vdJkEBAABV0LXXXqtHHnlEGzduPG+d7OxsvfnmmwoLC9OSJUvcbpPhAwCAfbk7UbAKTzTcvXu3Jk2apP/93/9V7dq1FRERoaCgIHl5een48ePatWuXdu7cqYiICE2ZMkX9+/d3u00yBQAA+6rGex80aNBAU6dO1U8//aQZM2aodevWOnLkiPbu3StJuvfee5WSkqKvv/7akoBAIlMA4DzqOR52/udfzVuV2BPgAgrl3iuJVXhOQREvLy8NHDhQAwcOrPC2yBQAAABJZAoAAHZWjecUnM8vv/yizz//XOnp6XI4HAoMDNSNN96o//mf/3H72mQKAAD2VY1fSSzJnDlz1LlzZ23YsEGFhYUqKCjQhg0b1KVLF82ZM8ft6zuMMcaCflomJydHfn5+ys5+Tb6+3pXdHQBAGeXknJaf3+PKzs6Wr69vBbXx+29FC8m3lhvXKZD8/qMK7auVQkNDlZKSovr167uUnzhxQuHh4frhhx/cuj7DBwAA+3L3L32bZQocDodOnjxZLCg4efJkufZJOBdBAQDAvgokuZPvtllQMHXqVPXq1UthYWFq0qSJJOnQoUPauXOn/vGPf7h9fYICAABs4qabblL//v21ceNG/fTTTzLGqEmTJurcubNq1XJjHOV3BAUAAPuqYcMHklSrVi117dq1WHlKSorCw8PdunaZ3z5IT0/Xfffdp4YNG6pu3bq6+uqrlZKS4vzeGKP4+HgFBQXJ29tbvXv31s6dO93qJAAAJarGKxqW1V/+8he3r1GmTMHx48fVvXt39enTR5999pkaN26s/fv36/LLL3fWeemllzRt2jTNmzdPrVu31vPPP69+/fppz5498vHxcbvDAADUVHfddVeJ5cYYHTt2zO3rlykomDx5soKDgzV37lxnWfPmzV06lZiYqPHjxzuXY3znnXfk7++vhQsXavjw4W53GAAApxo20XDlypX65z//WeztA2OM1qxZ4/b1yxQULF26VDfeeKPuvPNOJScnq0mTJhoxYoQeeeQRSVJqaqoyMzMVGRnpPMfT01O9evXSunXrSgwKcnNzlZub6/yck5NT3nsBANQ0NWxOQe/evVW/fn316tWr2HedOnVy+/plmlPwn//8RzNmzFCrVq30+eefKzo6Wk888YTmz58vScrMzJQk+fv7u5zn7+/v/O5cCQkJ8vPzcx7BwcHluQ8AQE1UKPfmE9gsKFiyZEmJAYEkLV++3O3rlykoKCws1DXXXKNJkyapU6dOGj58uB555BHNmDHDpd65CygYY867qEJcXJyys7OdR1paWhlvAQAAWKFMwweBgYFq166dS1nbtm21ePFiSVJAQICksxmDwMBAZ52srKxi2YMinp6e8vT0LFOnAQCQ5P7WyVVqof/zi42NLbHc4XDIy8tLf/rTn3TrrbeqQYMGbrVTpqCge/fu2rNnj0vZDz/8oGbNmkmSQkJCFBAQoKSkJOfYRl5enpKTkzV58mS3OgoAQDEFqhFBwdatW7VlyxYVFBQoNDRUxhjt3btXtWrVUps2bTR9+nT97W9/09q1a4v98V4WZRo+GDVqlDZs2KBJkyZp3759WrhwoWbPnq2RI0dKOhuxxMTEaNKkSfrwww+1Y8cO3X///apbt64GDx5c7k4CAFCT3Xrrrbrhhhv0008/KSUlRVu2bFF6err69eune+65R+np6erZs6dGjRrlVjtl3iXxk08+UVxcnPbu3auQkBDFxsY63z6Qzs4fePbZZzVr1iwdP35c1113nd544w2FhYWV6vrskggA9nZJd0n0lnzdyBTkGMnvdNXfJbFJkyZKSkoqlgXYuXOnIiMjlZ6eri1btigyMlJHjhwpdztlXub4pptu0k033XTe7x0Oh+Lj4xUfH1/uTgEAUCo1ZE5Bdna2srKyigUFhw8fdr7Kf/nllysvL8+tdsq8zDEAALi0br31Vj344IP68MMPdejQIaWnp+vDDz/UQw89pNtuu02StHHjRrVu3dqtdtgQCQBgXzVkouGsWbM0atQo3X333crPz5ckeXh4aNiwYXr55ZclSW3atNFbb73lVjtlnlNQ0ZhTAAD2dknnFDgsmFNgqv6cgiInT57Uf/7zHxlj1LJly2LLHbuLTAEAADZRv359dezYscKuT1AAALAvI9sMAbjrl19+0Zw5c7R79245HA61bdtWDz30kPz8/Cxrg4mGAADbcmfbg6LDDjZv3qyWLVvq5Zdf1rFjx3TkyBG9/PLLatmypbZs2WJZO2QKAAC25e4Pu12CglGjRumWW27Rm2++KQ+Psz/d+fn5evjhhxUTE2PJtskSQQEAAFXe5s2bXQIC6ezbB2PGjFFERIRl7TB8AACwrUILDjvw9fXVwYMHi5WnpaXJx8fHsnYICgAAtlVT5hQMGjRIDz30kBYtWqS0tDQdOnRI7733nh5++GHdc889lrXD8AEAAFXc1KlT5XA4NHToUOXn58sYozp16ujRRx/Viy++aFk7BAUAANtydwjALsMHderU0SuvvKKEhATt379fxhj96U9/Ut26dS1th6AAAGBblfH2wZo1azRlyhSlpKQoIyNDH374oXP/gfNJTk5WbGysdu7cqaCgII0ZM0bR0dEXPCc2NrbUfZo2bVqp614IQQEAAGXw66+/6qqrrtIDDzyg22+//aL1U1NTFRUVpUceeUQLFizQ119/rREjRuiKK6644Plbt24tVX8cDnc2f3BFUAAAsK1CuZcpKM/wQf/+/dW/f/9S1585c6aaNm2qxMRESVLbtm21efNmTZ069YJBwapVq8rRO/fw9gEAwLaseiUxJyfH5cjNzbWsj+vXr1dkZKRL2Y033qjNmzfrzJkzlrVjBYICAECNFxwcLD8/P+eRkJBg2bUzMzPl7+/vUubv76/8/HwdOXLEsnaswPABAMC2rJpomJaW5rJ1sqenpzvdKubccX9jTInllY2gAABgW1YFBb6+vi5BgZUCAgKUmZnpUpaVlSUPDw81bNiwQtosL4ICAIBt2WGdgq5du+rjjz92KVuxYoUiIiJUu3btS9CD0mNOAQAAZXDy5Elt27ZN27Ztk3T2lcNt27Y59yaIi4vT0KFDnfWjo6N14MABxcbGavfu3Xr77bc1Z84cjR49ujK6f0FkCgAAtlUZixdt3rxZffr0cX4uWmRo2LBhmjdvnjIyMlw2LwoJCdGyZcs0atQovfHGGwoKCtKrr75aqjUOLjWHKZrtUEXk5OTIz89P2dmvydfXu7K7AwAoo5yc0/Lze1zZ2dkVNk5f9FuxTZI7ewSekHS1VKF9tROGDwAAgCSGDwAANlYZKxpWZwQFAADbqow5BdUZwwcAAEASmQIAgI3ZYZ0COyEoAADYFsMH1mL4AAAASCJTAACwMTIF1iIoAADYFnMKrEVQAACwLTIF1mJOAQAAkESmAABgY0buDQFUqc1/qgCCAgCAbTF8YC2GDwAAgCQyBQAAGyNTYC2CAgCAbfFKorUYPgAAAJLIFAAAbIzhA2sRFAAAbIugwFoMHwAAAElkCgAANsZEQ2sRFAAAbKtQ7g0BEBS4IigAANgWmQJrMacAAABIIlMAALAx3j6wFkEBAMC2CAqsxfABAACQRKYAAGBjTDS0FkEBAMC2GD6wFsMHAABAEpkCAICNkSmwFkEBAMC2jNybF2Cs6kg1wfABAACQRKYAAGBjDB9Yi6AAAGBbvJJoLYICAIBtkSmwFnMKAACAJDIFAAAbI1NgLYICAIBtMafAWgwfAAAASWUMCvLz8/X0008rJCRE3t7eatGihSZOnKjCwv/GWsYYxcfHKygoSN7e3urdu7d27txpeccBACiw4MB/lSkomDx5smbOnKnXX39du3fv1ksvvaQpU6botddec9Z56aWXNG3aNL3++uvatGmTAgIC1K9fP504ccLyzgMAarZCuRcQMHzgqkxzCtavX69bb71VAwYMkCQ1b95c//rXv7R582ZJZ7MEiYmJGj9+vAYOHChJeuedd+Tv76+FCxdq+PDhFne/+qvneNj5n381b1ViTwAA1V2ZMgXXX3+9vvjiC/3www+SpG+//VZr165VVFSUJCk1NVWZmZmKjIx0nuPp6alevXpp3bp1JV4zNzdXOTk5LgcAAKVRaMGB/ypTpuCpp55Sdna22rRpo1q1aqmgoEAvvPCC7rnnHklSZmamJMnf39/lPH9/fx04cKDEayYkJOjZZ58tT98BADUcryRaq0yZgkWLFmnBggVauHChtmzZonfeeUdTp07VO++841LP4XC4fDbGFCsrEhcXp+zsbOeRlpZWxlsAAABWKFOm4O9//7vGjh2ru+++W5LUoUMHHThwQAkJCRo2bJgCAgIknc0YBAYGOs/Lysoqlj0o4unpKU9Pz/L2v9pjHgEAnB/rFFirTJmCU6dO6bLLXE+pVauW85XEkJAQBQQEKCkpyfl9Xl6ekpOT1a1bNwu6CwDAf/FKorXKlCm4+eab9cILL6hp06Zq3769tm7dqmnTpunBBx+UdHbYICYmRpMmTVKrVq3UqlUrTZo0SXXr1tXgwYMr5AYAADUXcwqsVaag4LXXXtMzzzyjESNGKCsrS0FBQRo+fLj+7//+z1lnzJgxOn36tEaMGKHjx4/ruuuu04oVK+Tj42N55wEAgHUcxhhT2Z34o5ycHPn5+Sk7+zX5+npXdncAAGWUk3Nafn6PKzs7W76+vhXUxtnfijhJXm5c5zdJCVKF9tVO2PsAAGBblbWi4fTp0xUSEiIvLy+Fh4frq6++Om/d1atXy+FwFDu+//77crZecQgKAAAog0WLFikmJkbjx4/X1q1b1aNHD/Xv318HDx684Hl79uxRRkaG82jVqtUl6nHpERQAAGyrMt4+mDZtmh566CE9/PDDatu2rRITExUcHKwZM2Zc8LzGjRsrICDAedSqVascrVcsggIAgG1Ztczxucvt5+bmltheXl6eUlJSXJbzl6TIyMjzLudfpFOnTgoMDFTfvn21atWq8txuhSMoAADUeMHBwfLz83MeCQkJJdY7cuSICgoKSlzOv2ip/3MFBgZq9uzZWrx4sZYsWaLQ0FD17dtXa9assfw+3FWmVxIBAKhKrFqnIC0tzeXtg4uttFuW5fxDQ0MVGhrq/Ny1a1elpaVp6tSp6tmzZ/k6XkHIFAAAbMuq4QNfX1+X43xBQaNGjVSrVq1iWYELLedfki5dumjv3r2lrn+pEBQAAFBKderUUXh4uMty/pKUlJRUpuX8t27d6rJHUFXB8AEAwLYqY5nj2NhYDRkyRBEREeratatmz56tgwcPKjo6WtLZ3X/T09M1f/58SVJiYqKaN2+u9u3bKy8vTwsWLNDixYu1ePFiN3peMQgKAAC2VRlBwaBBg3T06FFNnDhRGRkZCgsL07Jly9SsWTNJUkZGhsuaBXl5eRo9erTS09Pl7e2t9u3b69NPP1VUVJQbPa8YLHMMALDUpVzm+K+S6rhxnTxJs8Uyx0WYUwAAACQxfAAAsDG2TrYWQQEAwLYICqzF8AEAAJBEpgAAYGN/XICovOfjvwgKAAC2xfCBtRg+AAAAksgUAABsjOEDaxEUAABsi+EDazF8AAAAJJEpAADYWKHc+2uf4QNXBAUAANtiToG1CAoAALZVIPfGwZlT4Io5BQAAQBKZAgCAjZEpsBZBAQDAtphTYC2GDwAAgCQyBQAAG2P4wFoEBQAA22L4wFoMHwAAAElkCgAANsaKhtYiKAAA2FaBJIeb5+O/GD4AAACSyBQAAGyMiYbWIigAANgWwwfWIigAANgWQYG1mFMAAAAkkSkAANgYcwqsRVAAALAthg+sxfABAACQRKYAAGBjRu4NARirOlJNEBQAAGzL3fQ/wweuGD4AAACSyBQAAGyMTIG1CAoAALZVKPfePuCVRFcMHwAAAElkCgAANsbwgbUICgAAtkVQYC2CAgCAbTGnwFrMKQAAAJLIFAAAbMzdv/TJFLgiKAAA2BZBgbUYPgAAAJLIFAAAbKxA7m1qRKbAFUEBAMC2CAqsxfABAACQRKYAAGBjTDS0FkEBAMC2GD6wFsMHAABAEpkCAICNFcq9TIE751ZHZAoAALZVaMFRHtOnT1dISIi8vLwUHh6ur7766oL1k5OTFR4eLi8vL7Vo0UIzZ84sZ8sVi6AAAGBbBRYcZbVo0SLFxMRo/Pjx2rp1q3r06KH+/fvr4MGDJdZPTU1VVFSUevTooa1bt2rcuHF64okntHjx4nK0XrEcxpgqlT3JycmRn5+fsrNfk6+vd2V3BwBQRjk5p+Xn97iys7Pl6+tbQW2c/a2oL/d2STSSTkpl6ut1112na665RjNmzHCWtW3bVrfddpsSEhKK1X/qqae0dOlS7d6921kWHR2tb7/9VuvXr3ej99arcnMKimKUnJzTldwTAEB5FP3/96X4m7NA7gcF0tkg4488PT3l6elZrH5eXp5SUlI0duxYl/LIyEitW7euxDbWr1+vyMhIl7Ibb7xRc+bM0ZkzZ1S7du3y34DFqlxQcOLECUlScPCYSu4JAMAdJ06ckJ+fX4Vcu06dOgoICFBmZqbb16pfv76Cg4NdyiZMmKD4+PhidY8cOaKCggL5+/u7lPv7+5+3L5mZmSXWz8/P15EjRxQYGOjeDVioygUFQUFBSktLkzFGTZs2VVpaWoWln6qDnJwcBQcH85wugudUOjyn0uE5XZgxRidOnFBQUFCFteHl5aXU1FTl5eW5fS1jjBwO13xDSVmCPzq3fknXuFj9ksorW5ULCi677DJdeeWVzlSOr68v/6MrBZ5T6fCcSofnVDo8p/OrqAzBH3l5ecnLy6vC2/mjRo0aqVatWsWyAllZWcWyAUVKymhkZWXJw8NDDRs2rLC+lgdvHwAAUEp16tRReHi4kpKSXMqTkpLUrVu3Es/p2rVrsforVqxQRERElZpPIBEUAABQJrGxsXrrrbf09ttva/fu3Ro1apQOHjyo6OhoSVJcXJyGDh3qrB8dHa0DBw4oNjZWu3fv1ttvv605c+Zo9OjRlXUL51Xlhg+KeHp6asKECRcd16npeE6lw3MqHZ5T6fCcarZBgwbp6NGjmjhxojIyMhQWFqZly5apWbNmkqSMjAyXNQtCQkK0bNkyjRo1Sm+88YaCgoL06quv6vbbb6+sWzivKrdOAQAAqBwMHwAAAEkEBQAA4HcEBQAAQBJBAQAA+B1BAQAAkFSFg4Ky7lVdnSUkJOjaa6+Vj4+PGjdurNtuu0179uxxqWOMUXx8vIKCguTt7a3evXtr586dldTjqiEhIUEOh0MxMTHOMp7TWenp6brvvvvUsGFD1a1bV1dffbVSUlKc3/OcpPz8fD399NMKCQmRt7e3WrRooYkTJ6qwsNBZh+eEasdUQe+9956pXbu2efPNN82uXbvMk08+aerVq2cOHDhQ2V2rFDfeeKOZO3eu2bFjh9m2bZsZMGCAadq0qTl58qSzzosvvmh8fHzM4sWLzfbt282gQYNMYGCgycnJqcSeV56NGzea5s2bm44dO5onn3zSWc5zMubYsWOmWbNm5v777zfffPONSU1NNStXrjT79u1z1uE5GfP888+bhg0bmk8++cSkpqaa999/39SvX98kJiY66/CcUN1UyaCgc+fOJjo62qWsTZs2ZuzYsZXUo6olKyvLSDLJycnGGGMKCwtNQECAefHFF511fvvtN+Pn52dmzpxZWd2sNCdOnDCtWrUySUlJplevXs6ggOd01lNPPWWuv/76837PczprwIAB5sEHH3QpGzhwoLnvvvuMMTwnVE9VbvigaK/qc/eevtBe1TVNdna2JKlBgwaSpNTUVGVmZro8M09PT/Xq1atGPrORI0dqwIABuuGGG1zKeU5nLV26VBEREbrzzjvVuHFjderUSW+++abze57TWddff72++OIL/fDDD5Kkb7/9VmvXrlVUVJQknhOqpyq3zHF59qquSYwxio2N1fXXX6+wsDBJcj6Xkp7ZgQMHLnkfK9N7772nLVu2aNOmTcW+4zmd9Z///EczZsxQbGysxo0bp40bN+qJJ56Qp6enhg4dynP63VNPPaXs7Gy1adNGtWrVUkFBgV544QXdc889kvj3hOqpygUFRcq6V3VN8dhjj+m7777T2rVri31X059ZWlqannzySa1YseKC26nW9OdUWFioiIgITZo0SZLUqVMn7dy5UzNmzHDZxKWmP6dFixZpwYIFWrhwodq3b69t27YpJiZGQUFBGjZsmLNeTX9OqF6q3PBBefaqrikef/xxLV26VKtWrdKVV17pLA8ICJCkGv/MUlJSlJWVpfDwcHl4eMjDw0PJycl69dVX5eHh4XwWNf05BQYGql27di5lbdu2dW7gwr+ns/7+979r7Nixuvvuu9WhQwcNGTJEo0aNUkJCgiSeE6qnKhcUlGev6urOGKPHHntMS5Ys0ZdffqmQkBCX70NCQhQQEODyzPLy8pScnFyjnlnfvn21fft2bdu2zXlERETo3nvv1bZt29SiRQuek6Tu3bsXe6X1hx9+cO7wxr+ns06dOqXLLnP9v8hatWo5X0nkOaFaqsRJjudV9ErinDlzzK5du0xMTIypV6+e+fHHHyu7a5Xi0UcfNX5+fmb16tUmIyPDeZw6dcpZ58UXXzR+fn5myZIlZvv27eaee+7h1ShjXN4+MIbnZMzZ1zU9PDzMCy+8YPbu3WveffddU7duXbNgwQJnHZ6TMcOGDTNNmjRxvpK4ZMkS06hRIzNmzBhnHZ4TqpsqGRQYY8wbb7xhmjVrZurUqWOuueYa5+t3NZGkEo+5c+c66xQWFpoJEyaYgIAA4+npaXr27Gm2b99eeZ2uIs4NCnhOZ3388ccmLCzMeHp6mjZt2pjZs2e7fM9zMiYnJ8c8+eSTpmnTpsbLy8u0aNHCjB8/3uTm5jrr8JxQ3TiMMaYyMxUAAKBqqHJzCgAAQOUgKAAAAJIICgAAwO8ICgAAgCSCAgAA8DuCAgAAIImgAAAA/I6gAAAASCIoAAAAvyMoAAAAkggKAADA7/4/cLxmkSCd3IAAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNoElEQVR4nO3de1xUdf4/8NfIZQCFMVG5KCqWoUJuLmTiDVPBRdsuuptlqeVlJS+FrF8VbZMuiqlrrJa3JC8Z6a/AzdJMLMVctQS11MzMSIgg1JTxglw/vz+IiRlghjPnDMwZXs/HYx4P5pzP+Xw+58wgbz9XjRBCgIiIiJq9Fk1dASIiIrIPDAqIiIgIAIMCIiIi+h2DAiIiIgLAoICIiIh+x6CAiIiIADAoICIiot8xKCAiIiIADAqIiIjodwwKHFRKSgqSkpKatA6DBw+GRqOp9frLX/5ilO6nn36qM51Go8G2bdtq5fvjjz9i1KhRaN26NVq1aoXIyEgcP368sW7LosGDB2Pw4MFNXQ1ZPvzwQ0RERMDLywstW7ZEcHAw1q9f39TVUkR93zWNRoPu3bsbpU1KSsKoUaMQGBgIjUaj+s+VyBLnpq4A2UZKSgpOnz6N2NjYJq1H165d8e677xoda926dZ1pZ86cibFjxxod69atm9H7S5cuYeDAgbjjjjvw9ttvw83NDYmJiRg8eDCOHTuGoKAgRevfHC1ZsgQLFixATEwM4uPj4eLigu+++w6lpaVNXTVFHDlypNaxL7/8ErGxsXj00UeNjq9duxYtW7bEkCFD8NFHHzVWFYmaDIMCsil3d3f07du3QWk7depkMe2yZctw6dIlHD58GJ07dwYADBgwAHfeeSdefPFFbN++XXadm7OsrCwsWLAAiYmJmDNnjuH40KFDFS2nuLgYbm5u0Gg0iubbEHV9x9atWweNRoNJkyYZHf/222/RokVVg2pISEij1I+oKbH7QIUuXbqEf/zjHwgICIBWq0W7du3Qv39/7Nu3D0BV8/WuXbtw8eJFo6bRaqWlpXj11VfRvXt3w/XPPPMMLl26ZFROly5d8OCDD2LHjh3o1asX3Nzc0LVrV6xcubJR77emHTt2YMiQIYaAAAC8vLwwatQofPTRRygvL7cq35KSErz88svo0aMH3Nzc4O3tjQceeACHDx82pLl9+zbi4+MRGBgIV1dXdOjQAdOnT8e1a9fM5n3gwAFoNBocOHDA6Hh1t8mmTZsMx55++mm0atUK3333HYYPH46WLVvCz88PS5YsAQAcPXoUAwYMQMuWLXH33Xdj8+bNRnlu2rQJGo0G+/fvx7PPPou2bdvC29sbo0aNwi+//GLxObzxxhvQarWYOXOmxbQNVV2nvXv3YuLEiWjXrh08PDxQUlKCyspKLF261PBdbN++PcaPH4+ff/7ZcP2bb76JFi1aoLCw0HDs3//+NzQaDaZPn244VllZiTvuuAP//Oc/JdXv+vXreP/99xEREYG77rrL6Fx1QEDUXPAbr0Ljxo3Df//7X7z44ovYu3cvNmzYgGHDhuHKlSsAgNWrV6N///7w9fXFkSNHDC+g6h/Ohx9+GEuWLMHYsWOxa9cuLFmyBOnp6Rg8eDCKi4uNyjp58iRiY2Mxa9Ys7NixA/369cPzzz+P5cuXN6iuFy5cQJs2beDs7Iw777wTCxYsqFVGtSVLlsDV1RUeHh4YMGAAdu7caXS+uLgYFy5cQK9evWpd26tXLxQXF+PHH380HHv66aeh0Wjw008/ma1jeXk5oqOj8corrxiCoE2bNqFfv37IyckBAAgh8Mgjj2D58uUYN24cdu3ahbi4OGzevBlDhgxBSUlJg55HQ5SVlWHUqFEYOXIkPvzwQ0RHRyM+Ph7z58/HhAkTMHHiROzYsQNBQUF4+umnkZWVVSuPyZMnw8XFBSkpKVi6dCkOHDiAp556ymLZBw8eRI8ePZCamoqgoCA4OTmhY8eOmDdvnuzug4kTJ8LFxQXvvPMOPvjgA7i4uODZZ5/F3LlzERkZiZ07d+KVV17Bnj170K9fP1y+fBkAMGzYMAgh8Nlnnxny2rdvH9zd3ZGenm44lpmZiWvXrmHYsGGS6rVt2zbcvHkTkydPlnV/RA5BkOq0atVKxMbGmk0zcuRI0blz51rH33vvPQFApKamGh0/duyYACBWr15tONa5c2eh0WjEyZMnjdJGRkYKLy8vcfPmTbN1WLBggVi9erX4/PPPxa5du8SMGTOEs7OzGDRokKioqDCk++WXX8SUKVPE//t//0988cUX4t133xV9+/YVAMRbb71lSJeXlycAiMTExFplpaSkCADi8OHDhmMTJ04UTk5O4qeffjJbzy1bttQqy9SePXsEALF06VKj49u3bxcAxPr16w3HIiIiREREhOH9/v37BQCxf/9+o2uzs7MFALFx40bDsQkTJtT6fMrKykS7du0EAHH8+HHD8StXrggnJycRFxdnOLZx40YBQEybNs2orKVLlwoAIj8/3+yz0Gq1wtPTU9xxxx3ijTfeEJ9//rlYsGCBcHJyEmPHjjV7bX2q6zR+/Hij42fPnq2zrl9++aUAIObPn2841rFjRzFx4kQhhBAlJSWiZcuWYu7cuQKAuHjxohBCiEWLFgkXFxdx48YNSfW7//77RevWrUVxcbHZdMHBwUafK5EjYlCgQkOGDBGtW7cWr7zyijhy5IgoLS2tlaa+oODJJ58UrVu3FqWlpaKsrMzo5evrKx577DFD2s6dO4uQkJBaeVT/I//FF19Irvvy5csFAJGWlmY2XWlpqejdu7fw9vYWZWVlQog/goIlS5bUSl8dFBw5ckRynZ544gnh5uZmFKiYmjNnjgAgCgsLjY5XVlaKli1bijFjxhiOyQ0KNBpNrT9Q4eHhws/Pr1a9/Pz8xOjRow3vqz+bPXv2GKWrDmqOHj1a7z0KIYSLi4sAIN577z2j47GxsQKAOH/+vNnr61Jdpw8//NDo+OrVqwUA8dVXX9W6pkePHuL+++83vJ8wYYLo1KmTEKLqeWo0GvHrr7+Ktm3big0bNgghhHjggQfEoEGDJNXt9OnTAoCYPn26xbQMCqg5YPeBCm3fvh0TJkzAhg0bEB4ejjZt2mD8+PEoKCiweO2vv/6Ka9euwdXVFS4uLkavgoICQ5NtNV9f31p5VB+r7q6QoroJ++jRo2bTubi4YMyYMbhy5QrOnz8PALjjjjug0WjqLPe3334DALRp00ZynS5dugR/f3+z/cdXrlyBs7Mz2rVrZ3Rco9HA19fXqmdRHw8PD7i5uRkdc3V1rfPeXF1dcfv27VrHvb29jd5rtVoAqLfrxvS64cOHGx2Pjo4GAFlTP/38/IzeVz8z0+MA4O/vb/RMhw0bhpycHJw/fx779u1D79690b59ewwZMgT79u1DcXExDh8+LLnrIDk5GQDYdUD0O84+UKG2bdsiKSkJSUlJyMnJwc6dOzFv3jwUFhZiz549Fq/19vauN52np6fR+7oCjepjpn94pGjIAC4hhFFad3d33HXXXTh16lSttKdOnYK7uzu6du0quS7t2rXDoUOHUFlZWW+9vL29UV5ejkuXLhkFBkIIFBQU4L777qs3/+o/8KbjDkwDMHvQq1evOj9z08/CGqYzDaq/P/n5+ejYsaPRuV9++QVt27Y1vK+e/bBv3z6kp6cjMjLScPyFF17AwYMHUVJSIikoKC0txTvvvIPQ0FDce++91twSkcNhS4HKderUCTNmzKi1gI9Wq63zf4UPPvggrly5goqKCoSFhdV6mc7zP3PmDL7++mujYykpKfD09MSf//xnyfWtHi1vaephWVkZtm/fjrZt2xqNCH/00Ufx+eefIzc313Ds+vXrSEtLw0MPPQRnZ+lxbnR0NG7fvm00C8BU9R+lrVu3Gh1PTU3FzZs3zU7Z69KlCwDgm2++MTpuOpDSHowePRoA8Mknnxgd3717N1q0aGE2+JFqyJAhAGo/02PHjuHs2bNGz9TPzw89e/ZEamoqsrKyDEFBZGQkLl26hBUrVsDLy0tS/Xbu3InLly/XmoZI1JyxpUBlioqK8MADD2Ds2LHo3r07PD09cezYMezZswejRo0ypLvnnnuQlpaGNWvWIDQ0FC1atEBYWBgef/xxvPvuuxgxYgSef/559OnTBy4uLvj555+xf/9+PPzww0YLuPj7++Ohhx5CQkIC/Pz8sHXrVqSnp+O1116Dh4dHvfX84osvsGjRIjz66KPo2rUrbt++jU8++QTr16/HkCFD8Ne//tWQNi4uDmVlZYYZE7m5uVi1ahVOnjyJjRs3wsnJyZB29uzZeOeddzBy5Ei8/PLL0Gq1WLJkCW7fvo2EhASjOkyaNAmbN2/GhQsXjKYwmnriiSewceNGxMTE4Ny5c3jggQdQWVmJL7/8Ej169MDjjz+OyMhIDB8+HHPnzoVer0f//v3xzTffYOHChejduzfGjRtXb/6+vr4YNmwYEhMTcccdd6Bz58747LPPkJaWVu81TeWZZ57BunXrMG3aNFy+fBk9e/bEvn378Oabb2LatGlGzzEhIQEvvfQS9u/fb9VKf0FBQfjHP/6BVatWoUWLFoiOjsZPP/2Ef/3rXwgICMCsWbOM0g8dOhSrVq2Cu7s7+vfvDwAIDAxEYGAg9u7dKzkoTE5Ohru7e60Fs2rKzMw0zF7R6/UQQuCDDz4AANx3331mv1dEqtS0QxpIqtu3b4uYmBjRq1cv4eXlJdzd3UVQUJBYuHCh0WyA3377Tfztb38TrVu3FhqNRtT8qMvKysTy5cvFn/70J+Hm5iZatWolunfvLqZOnWo0kKxz585i5MiR4oMPPhDBwcHC1dVVdOnSRaxYscJiPc+fPy9GjBghOnToILRarXBzcxP33HOPWLRokbh9+7ZR2uTkZNGnTx/Rpk0b4ezsLO644w4xfPhw8emnn9aZ9w8//CAeeeQR4eXlJTw8PMTQoUNFVlZWrXTVI/mzs7Mt1re4uFi8+OKLolu3bsLV1VV4e3uLIUOGGM1mKC4uFnPnzhWdO3cWLi4uws/PTzz77LPi6tWrRnmZDjQUQoj8/Hzxt7/9TbRp00bodDrx1FNPiczMzDoHGrZs2bJW/SIiIkRwcHCt49WfUbXqQX3Hjh0zSlffYMe6XLlyRUydOlX4+PgIFxcXcffdd4tly5bVGoj5z3/+U2g0GnH27Fmz+dVXJyGEqKioEK+99pq4++67hYuLi2jbtq146qmnRG5ubq20H374oQAgIiMjjY5PmTJFABArV660eG/VcnJyRIsWLWrNiDBV/R2q61XzcyNyFBohfu8sJDLRpUsXhISE4OOPP27qqpAd6tOnDzp37oz333+/qatCRAph9wERSabX6/H111/XWlGRiNSNQQERSebl5aXoKo5EZB/YfUBEREQAOCWRiIiowdasWYNevXrBy8sLXl5eCA8PrzWF11RGRgZCQ0MNm8qtXbu2kWorHYMCIiKiBurYsSOWLFmCzMxMZGZmYsiQIXj44Ydx5syZOtNnZ2djxIgRGDhwIE6cOIH58+fjueeeQ2pqaiPXvGFs1n2wevVqLFu2DPn5+QgODkZSUhIGDhxoi6KIiIiaTJs2bbBs2bI6F8KaO3cudu7cibNnzxqOxcTE4OuvvzbsXmtPbDLQcPv27YiNjTVs4btu3TpER0fj22+/RadOncxeW1lZiV9++QWenp61lkUlIiL7J4TA9evXLe4pItft27dlb+kNVNXX9O+NVqs17BlSn4qKCrz//vu4efMmwsPD60xz5MgRREVFGR0bPnw4kpOTUVZWBhcXF3mVV5otFj/o06ePiImJMTrWvXt3MW/ePIvX5ubm1rtYCF988cUXX+p51bUIlVKKi4uFr6+vIvVs1apVrWMLFy6st+xvvvlGtGzZUjg5OQmdTid27dpVb9pu3bqJRYsWGR373//+JwCIX375RanHoRjFWwpKS0uRlZWFefPmGR2PiorC4cOHa6UvKSkxmtokfu/NyM1dCi8vd6WrR0RENqbXFyMgYE6tDdaUVFpaioKCAuTmZsPLy8vqfPR6PQICApGbm2uUj7lWgqCgIJw8eRLXrl1DamoqJkyYgIyMDPTs2bPO9KatENV/5+yxNVzxoODy5cuoqKiAj4+P0XEfH586d19LTEzESy+9VOu4l5c7gwIiIhVrjD961bMAGjMfV1dXw0ZtYWFhOHbsGP7zn/9g3bp1tdL6+vrW+ttXWFgIZ2dnWTvN2orNFi+qKzKq6wsSHx+PuLg4w/uqqC0AvrqZqE59U2yrcUXtveONldf4Wert1UxvWo65vMpN3pumtTZfJZmWY1pna/Oy9HlIeW7W5mMpr9Ym72+Yuc60HLcaP1v67Ezf3zBzzlK55tK6mTmn1Ocq51rT5+Rm8t5cHZWsv5zvV81rTetvqryen+u69raZc6aU+rfC0nNoVePnG/Wmsqzm/VTKyEeqcsj73si5tooQot7FvMLDw/HRRx8ZHdu7dy/CwsLsbzwBbPAXqW3btnBycqozMjJtPQAaNpiDiIiobo0bFMyfPx/R0dEICAjA9evXsW3bNhw4cAB79uwBUPUf3by8PGzZsgVA1UyDN954A3FxcZgyZQqOHDmC5ORkvPfeezLqbDuKDwt1dXVFaGgo0tPTjY6np6ejX79+ShdHRETNWrkCr4b79ddfMW7cOAQFBWHo0KH48ssvsWfPHkRGRgIA8vPzkZOTY0gfGBiI3bt348CBA7j33nvxyiuvYOXKlRg9erSsu7YVm6xTsH37dowbNw5r165FeHg41q9fj7feegtnzpyxuP+4Xq+HTqeDO4C6eqNuig1KV5eIiBSk1xdDp5uJoqIiRfr76y6j6m9FUdFF2QMNdbrONq2rmtikQ3vMmDG4cuUKXn75ZeTn5yMkJAS7d++2GBAQERFJUwF53QcVSlXEIdhslNu0adMwbdo0W2VPREQEexho6Ei49wEREREBaLz5cIppqZls9F59YwyUnBpIRNTcsaVASaoLCoiIiP7AoEBJ7D4gIiIiAGwpICIiVauAvBkEnH1Qk+qDAvWNMWBTFRGRcjglUUnsPiAiIiIADtBSQEREzRkHGirJ4YKCmt0JxrsrArV3AGtt8t7cbmfmmO5m1srMe9O010zeS9lRztwua1J2OzOtr6W8aqY3rZ+5XRMt3ZtzPT/Xla9pXlJ2JKx5rem9XzNzrbkd7+oqt6F1qOu8uXxrlmtaf3Oflem15naENE1raTdGc5+dKXN5WXou5nZBlbKbpLnvj2neptea+32x9O+GlF0SzX3uUupv6fMw9/tsLl/T9L41fr5poUwlMShQksMFBURE1JwwKFASxxQQERERALYUEBGRqnH2gZIcOihoqXnc6H3t6YrXbFSyaT+clP59c33ylsqxltR8rC3X0r1J+cU2Vwcp/bpSnreS9ZdSrrl8LX0WUp6TlDqZy0vOP9BKPRdLeVl6bnKeeUPJed5S6i/nOZnL19TPNX4ulpCnXOw+UBK7D4iIiAiAg7cUEBGRo2NLgZIYFBARkYoxKFASuw+IiIgIAFsKiIhI1dhSoCQGBUREpGKckqgkdh8QERERALYUEBGRqrH7QEkMCoiISMUYFCiJQQEREakYgwIlcUwBERERAWBLARERqRpbCpTEoICIiFSMUxKVxO4DIiIiAsCWAiIiUrUKyPvfPlsKamJQQEREKsYxBUpi9wEREREBYEsBERGpGlsKlMSggIiIVIyzD5TE7gMiIiICwJYCIiJSNXYfKIlBARERqRiDAiUxKCAiIhVjUKAkjikgIiIiAGwpICIiVWNLgZIYFBARkYpxSqKS2H1AREREANhSQEREqlYOwEnm9VSNQQEREakYgwIlsfuAiIiIALClgIiIVI0tBUpiUEBERCrG2QdKYlBAqtRSM9no/U2xoYlqQkTkOBgUEBGRipVD3vA4dh/UxKCAiIhUjEGBkjj7gIiIVKxcgVfDJSYm4r777oOnpyfat2+PRx55BOfOnTN7zYEDB6DRaGq9vvvuO0llNwa2FJAqcQwBETWFjIwMTJ8+Hffddx/Ky8uxYMECREVF4dtvv0XLli3NXnvu3Dl4eXkZ3rdr187W1ZWMQQEREalYBeTNIJB27Z49e4zeb9y4Ee3bt0dWVhYGDRpk9tr27dujdevWUivYqNh9QEREKlY9JdHaV1VQoNfrjV4lJSUNKr2oqAgA0KZNG4tpe/fuDT8/PwwdOhT79+9v+C02IgYFRETU7AUEBECn0xleiYmJFq8RQiAuLg4DBgxASEhIven8/Pywfv16pKamIi0tDUFBQRg6dCgOHjyo5C0ogt0HRESkYuUANDKvB3Jzc436+7VarcUrZ8yYgW+++QaHDh0ymy4oKAhBQUGG9+Hh4cjNzcXy5cstdjk0NgYFRESkYsoEBV5eXkZBgSUzZ87Ezp07cfDgQXTs2FFyqX379sXWrVslX2drDAqIiIgaSAiBmTNnYseOHThw4AACAwOtyufEiRPw8/NTuHbyMSggIiIVU6aloKGmT5+OlJQUfPjhh/D09ERBQQEAQKfTwd3dHQAQHx+PvLw8bNmyBQCQlJSELl26IDg4GKWlpdi6dStSU1ORmpoqo9620ayCAq6XT0TkaBo3KFizZg0AYPDgwUbHN27ciKeffhoAkJ+fj5ycHMO50tJSzJ49G3l5eXB3d0dwcDB27dqFESNGyKi3bWiEEKKpK1GTXq+virgg72NuCAYFRETK0+uLodPNRFFRkaR+emllVP2tKCqKhJeXi4x8yqDTpdu0rmrSrFoKiIjI0VRA3n8huXVyTc0qKGDLABGRo5G7oRE3RKqpWQUFRETkaBgUKIkrGhIREREAiUFBQ7aMFEIgISEB/v7+cHd3x+DBg3HmzBlFK01ERFSlcbdOdnSSgoLqLSOPHj2K9PR0lJeXIyoqCjdv3jSkWbp0KVasWIE33ngDx44dg6+vLyIjI3H9+nXFK09ERM2dMhsiURVJYwosbRkphEBSUhIWLFiAUaNGAQA2b94MHx8fpKSkYOrUqbXyLCkpMdqNSq/XW3MfREREJJOsMQWmW0ZmZ2ejoKAAUVFRhjRarRYRERE4fPhwnXkkJiYa7UwVEBAgp0pERNSssPtASVYHBXVtGVm93KOPj49RWh8fH8M5U/Hx8SgqKjK8cnNzra0SERE1OwwKlGT1lERzW0ZqNMYLSQghah2rptVqG7RFJREREdmWVS0F1VtG7t+/32jLSF9fXwCo1SpQWFhYq/WAiIhIPrYUKElSUCCEwIwZM5CWlobPP/+81paRgYGB8PX1RXp6uuFYaWkpMjIy0K9fP2VqTEREZMCgQEmSug8sbRmp0WgQGxuLxYsXo1u3bujWrRsWL14MDw8PjB071iY3QERERMqQFBQ0ZMvIOXPmoLi4GNOmTcPVq1dx//33Y+/evfD09FSkwkRERH+oACBns99KpSriECQFBQ3ZZVmj0SAhIQEJCQnW1omIiKiBGBQoiRsiERGRipVD3pI7DApq4oZIREREBIAtBUREpGpsKVASgwIiIlIxBgVKYvcBERERAWBLARERqVoF5P1vX87MBcfDoICIiFSsHEDde+s0DIOCmth9QERERADYUkBERKrGlgIlMSggIiIVY1CgJHYfEBEREQC2FBARkZqJSnn/2WdDgREGBUREpF6VkDcjkWsXGWFQQERE6lXx+0vO9WTAMQVEREQEgC0FRESkZmwpUBSDAiIiFWipmWz4+abY0IQ1sTMcU6Aodh8QERERALYUEBGRmrH7QFEMCoiISL3YfaAoBgVERCrAcQTUGBgUEBGRelVCXhcAWwqMMCggIiL14pgCRXH2AREREQFgSwEREakZBxoqikEBERGpF7sPFMWggIiI1ItBgaI4poCIiIgAsKWAiIjUjGMKFMWggIiI1IvdB4pi9wEREREBYEsBERGpmYC8LgChVEUcA4MCIiJSL3YfKIrdB0RERASALQVERKRmbClQFIMCIiJSL05JVBS7D4iIiBooMTER9913Hzw9PdG+fXs88sgjOHfunMXrMjIyEBoaCjc3N3Tt2hVr165thNpKx6CAiIjUq0KBlwQZGRmYPn06jh49ivT0dJSXlyMqKgo3b96s95rs7GyMGDECAwcOxIkTJzB//nw899xzSE1NlXiztsfuAyIiUq9GHlOwZ88eo/cbN25E+/btkZWVhUGDBtV5zdq1a9GpUyckJSUBAHr06IHMzEwsX74co0ePtqbWNsOWAiIiUq9KBV4A9Hq90aukpKRBxRcVFQEA2rRpU2+aI0eOICoqyujY8OHDkZmZibKysobdZyNhUEBERM1eQEAAdDqd4ZWYmGjxGiEE4uLiMGDAAISEhNSbrqCgAD4+PkbHfHx8UF5ejsuXL8uuu5LYfUBEROpVCXndB7+3FOTm5sLLy8twWKvVWrx0xowZ+Oabb3Do0CGLaTUajdF7IUSdx5sagwIiIlIvhaYkenl5GQUFlsycORM7d+7EwYMH0bFjR7NpfX19UVBQYHSssLAQzs7O8Pb2llxlW2L3ARERUQMJITBjxgykpaXh888/R2BgoMVrwsPDkZ6ebnRs7969CAsLg4uLi62qahUGBUREpF6NPCVx+vTp2Lp1K1JSUuDp6YmCggIUFBSguLjYkCY+Ph7jx483vI+JicHFixcRFxeHs2fP4u2330ZycjJmz54tqeyysjLk5ubi3Llz+O2336RVvIEYFBARkXo1clCwZs0aFBUVYfDgwfDz8zO8tm/fbkiTn5+PnJwcw/vAwEDs3r0bBw4cwL333otXXnkFK1eubNB0xBs3bmDdunUYPHgwdDodunTpgp49e6Jdu3bo3LkzpkyZgmPHjkm7CTM4poCIiKiBqgcImrNp06ZaxyIiInD8+HFJZb3++utYtGgRunTpgoceegjz5s1Dhw4d4O7ujt9++w2nT5/GF198gcjISPTt2xerVq1Ct27dJJVhikEBERGplwPvfXD48GHs378f99xzT53n+/Tpg4kTJ2Lt2rVITk5GRkYGgwIiImrGHHiXxPfff79B6bRaLaZNm6ZImRxTQERERADYUkBERGrmwC0F1X7++WesWbMGhw8fRkFBATQaDXx8fNCvXz/ExMQgICBAsbIYFBARkXoJyBsXYHncYJM6dOgQoqOjERAQgKioKERFRUEIgcLCQvz3v//FqlWr8Mknn6B///6KlMeggIiI1MvBWwpmzZqFyZMn4/XXX6/3fGxsrGLTEjmmgIiIyE6dPn0aMTEx9Z6fOnUqTp8+rVh5DAqIiEi9FNo62V75+fnh8OHD9Z4/cuQI/Pz8FCuP3QdERKReDt59MHv2bMTExCArKwuRkZHw8fGBRqNBQUEB0tPTsWHDBiQlJSlWHoMCIiIiOzVt2jR4e3vj9ddfx7p161BRURXFODk5ITQ0FFu2bMFjjz2mWHkMCoiISL0cvKUAAMaMGYMxY8agrKwMly9fBgC0bdvWJjssMiggIiL1cuBljk25uLgoOn6gLgwKiIiI7BgXLyIiImoIB+8+4OJFREREDVUJeX/Y7bz7gIsXERERNZSDr1OgqsWLEhMTodFoEBsbazgmhEBCQgL8/f3h7u6OwYMH48yZM3LrSURE1OyoZvGiY8eOYf369ejVq5fR8aVLl2LFihXYtGkT7r77brz66quIjIzEuXPn4OnpKbvCREREBg4+pkAVixfduHEDTz75JN566y28+uqrhuNCCCQlJWHBggUYNWoUAGDz5s3w8fFBSkoKpk6dWiuvkpISlJSUGN7r9XprqkRERM2Rg09JbOzFi6zqPpg+fTpGjhyJYcOGGR3Pzs5GQUEBoqKiDMe0Wi0iIiLqbf5ITEyETqczvJScWkFERKR2Y8aMwdGjR3Hr1i3k5eUhLy8Pt27dwtGjRxUNCAArWgq2bduG48eP1znSsaCgAADg4+NjdNzHxwcXL16sM7/4+HjExcUZ3uv1egYGRETUMA7efVCT3S1elJubi+effx579+6Fm5tbvek0Go3ReyFErWPVtFottFqtlGoQERFVaUZBAQBcvXoVmzdvxvnz5+Hn54cJEyYo+h9pSd0HWVlZKCwsRGhoKJydneHs7IyMjAysXLkSzs7OhhaC6haDaoWFhbVaD4iIiMg8f39/XLlyBUBVF33Pnj3x2muv4fz581i3bh3uuecefPfdd4qVJykoGDp0KE6dOoWTJ08aXmFhYXjyySdx8uRJdO3aFb6+vkhPTzdcU1paioyMDPTr10+xShMREQFw+HUKCgoKDIML58+fj+7du+PChQvYu3cvfvjhBwwcOBD/+te/FCtPUveBp6cnQkJCjI61bNkS3t7ehuOxsbFYvHgxunXrhm7dumHx4sXw8PDA2LFjFas0ERERAIdf0bCmL7/8Ehs2bICHhweAqu73F154AX/7298UK0PxZY7nzJmD4uJiTJs2DVevXsX999+PvXv3co0CIiIiK1SPySspKalzIP+lS5cUK0t2UHDgwAGj9xqNBgkJCUhISJCbNRERkXkOvk4BUNV17+zsDL1ej++//x7BwcGGczk5OWjbtq1iZXFDJCIiUi8Hn32wcOFCo/fVXQfVPvroIwwcOFCx8hgUEBGRejWzoMDUsmXLFC2PuyQSERERALYUEBGRmjWDMQWNiUEBERGpl4N3HzQ2dh8QERGpyP/+9z+j3YWVxKCAiIjUq0KBl8pER0cjLy/PJnmz+4CIiNRLQN64AKFURRqPELarNFsKiIiICABbCoiISM2awUDDLVu2GL0vLy9HWloa2rdvbzg2fvx4RcpiUEBEROrVDKYkbty40eh9WVkZPvjgA7i7uwOo2l6AQQEREVEzsH//fqP3np6eSElJQdeuXRUvi0EBERGpVzPoPmhMDAqIiEi9GBQoikEBERGpVzMYU2Bq/vz5aNOmjU3yZlBARESkIvHx8TbLm0EBERGpF7sPFMWggIiI1KsS8v6wq7D7wJa4oiEREREBYEsBERGpWTMcaGhLDAqIiEi9HHhMQWBgIDQajeTrYmNj8dxzz1lVJoMCIiIiO7Rp0yarruvSpYvVZTIoICIi9XLg7oOIiIhGL5MDDYmISL0qFHipyGuvvQYA+Oabb1BWVqZ4/gwKiIiIJDh48CD++te/wt/fHxqNBv/973/Npj9w4AA0Gk2t13fffSe57AEDBgAAEhIS0KtXL/Tq1Qtjx45FYmIiPv74Y/z666/W3JIBuw+IiEi9mmCg4c2bN/GnP/0JzzzzDEaPHt3g686dOwcvLy/D+3bt2kkuu3///gCAtLQ0AMCtW7dw+vRpnDp1Cvv27cPChQsxYsQIvPLKK5LzBhgUEBGRmik0pkCv1xsd1mq10Gq1dV4SHR2N6OhoyUW1b98erVu3lnydOR4eHujTpw/69OljOBYaGmp1UMDuAyIiUq/qFQ2tff0eFAQEBECn0xleiYmJile1d+/e8PPzw9ChQ7F//37F86929OhRq69lSwERETV7ubm5Rk379bUSWMPPzw/r169HaGgoSkpK8M4772Do0KE4cOAABg0apEgZ+fn5aNOmDbRaLVxcXKzOh0EBERGpVwXktXn/PqbAy8vLKChQUlBQEIKCggzvw8PDkZubi+XLlysWFIwbNw4XLlzA6NGjsXz5cqvzYVBARETqpdJ1Cvr27YutW7cqlt++ffsAwKoZDTVxTAEREVEjO3HiBPz8/CRf95///AdA1UyGysraEU337t1l1YstBUREpF4KdR9IcePGDfzwww+G99nZ2Th58iTatGmDTp06IT4+Hnl5ediyZQsAICkpCV26dEFwcDBKS0uxdetWpKamIjU1VXLZISEhAIBZs2bhhx9+QKtWrRAcHIyQkBCEhIRg5MiR0m+oBgYFRESkXk3QfZCZmYkHHnjA8D4uLg4AMGHCBGzatAn5+fnIyckxnC8tLcXs2bORl5cHd3d3BAcHY9euXRgxYoTksocOHQoA2L17N4CqqZSnT5/G6dOnkZ6eLjso0AghhKwcFKbX66HT6eAOQPreUObdFBsUzpGIiEzp9cXQ6WaiqKjIZoP3qv9WFI0AvKwfbA99GaDbDZvWVY6wsDCEhoYaXr169ZI1u8ASthQQEZF6NUH3QWMKDw9HVlYWtm7diuLiYri6uiI4OBj9+vXD448/bljhUCkMCoiISL0cPChYtWoVAKCiogJnzpxBZmYmMjMz8emnn2L16tUYN24cNm7cCI1GmbZ1zj4gIiKyc05OTujVqxcmTpyI1atX4/vvv8eePXuwe/duJCcnK1YOgwIiIlIvgT8GG1rzsqtRddJERkbi1Vdfxbp16xTLk0EBERGpl5x9D+TusGgH+vbtazQ9Ui4GBUREpF4OHhS8+eab+Oqrr1BSUlLn+UuXLik6G4EDDYmIiOzUCy+8AL1eD2dnZ/Ts2RNhYWEICwtDjx49cOvWLcTHxyu2fwLAoICIiNRMpXsfNNTVq1dx4cIFZGVlGV6pqam4du0agKpljeVsgGSKQQEREalXBeStdGfn3QcAcOedd+LOO+/EY489Zjj2888/o6ysDIGBgYqWxaCAiIhIZTp27GiTfBkUEBGRejl490FjY1BARETq5cDdB4GBgVatVBgbG4vnnnvOqjIZFBAREdmhTZs2WXVdly5drC6TQQEREalXJeT9b9+Ouw8iIiIavUwuXkREROolZ4ljueMRbCwnJ0dS+ry8PNllMiggIiKyQ/fddx+mTJmCr776qt40RUVFeOuttxASEoK0tDTZZbL7gIiI1EvuQEE7Hmh49uxZLF68GH/5y1/g4uKCsLAw+Pv7w83NDVevXsW3336LM2fOICwsDMuWLUN0dLTsMjVCCLvaI0qv10On08Ed8gaU1uWm2KBwjkREZEqvL4ZONxNFRUXw8vKyURlVfyuKegBeTjLyqQB0Z2HTusp1+/Zt7N69G1988QV++uknFBcXo23btujduzeGDx+OkJAQxcpiSwEREalXJeT9D9KOxxRUc3Nzw6hRozBq1Cibl8UxBURERASALQVERKRmDjymoD7Xrl3Dp59+iry8PGg0Gvj5+WH48OG44447ZOfNlgIiIlIvB56SWJfk5GT06dMHR48eRWVlJSoqKnD06FH07dsXycnJsvNnSwEREZFKLF26FMePH0erVq2Mjr/yyisIDQ3FpEmTZOXPoICIiNRL7v/0VdZSoNFocOPGjVpBwY0bN6zaJ8EUgwIiIlKvCgByJtarLChYvnw5IiIiEBISgg4dOgAAfv75Z5w5cwb//ve/ZefPoICIiEglHnzwQURHR+Orr77CL7/8AiEEOnTogD59+sDJScaCDb9jUEBEROrVzLoPAMDJyQnh4eG1jmdlZSE0NFRW3pJnH+Tl5eGpp56Ct7c3PDw8cO+99yIrK8twXgiBhIQE+Pv7w93dHYMHD8aZM2dkVZKIiKhOFQq8HMSjjz4qOw9JLQVXr15F//798cADD+CTTz5B+/btceHCBbRu3dqQZunSpVixYgU2bdqEu+++G6+++ioiIyNx7tw5eHp6yq4wERFRc/XYY4/VeVwIgd9++012/pKCgtdeew0BAQHYuHGj4ViXLl2MKpWUlIQFCxYYlmPcvHkzfHx8kJKSgqlTp8quMBERkUEzG2i4b98+vPPOO7VmHwghcPDgQdn5SwoKdu7cieHDh+Pvf/87MjIy0KFDB0ybNg1TpkwBAGRnZ6OgoABRUVGGa7RaLSIiInD48OE6g4KSkhKUlJQY3uv1emvvhYiImptmNqZg8ODBaNWqFSIiImqd6927t+z8JY0p+PHHH7FmzRp069YNn376KWJiYvDcc89hy5YtAICCggIAgI+Pj9F1Pj4+hnOmEhMTodPpDK+AgABr7oOIiJqjSsgbT6CyoCAtLa3OgAAA9uzZIzt/SUFBZWUl/vznP2Px4sXo3bs3pk6diilTpmDNmjVG6UwXUBBC1LuoQnx8PIqKigyv3NxcibdARERESpDUfeDn54eePXsaHevRowdSU1MBAL6+vgCqWgz8/PwMaQoLC2u1HlTTarXQarWSKk1ERARA/tbJcsYjNKK4uLg6j2s0Gri5ueGuu+7Cww8/jDZt2sgqR1JQ0L9/f5w7d87o2Pfff4/OnTsDAAIDA+Hr64v09HRD30ZpaSkyMjLw2muvyaooERFRLRVoFkHBiRMncPz4cVRUVCAoKAhCCJw/fx5OTk7o3r07Vq9ejX/+8584dOhQrf+8SyGp+2DWrFk4evQoFi9ejB9++AEpKSlYv349pk+fDqAqYomNjcXixYuxY8cOnD59Gk8//TQ8PDwwduxYqytJRETUnD388MMYNmwYfvnlF2RlZeH48ePIy8tDZGQknnjiCeTl5WHQoEGYNWuWrHI0QghJcdLHH3+M+Ph4nD9/HoGBgYiLizPMPgCqxg+89NJLWLduHa5evYr7778fb775JkJCQhqUv16vh06ngzvkBX91uSk2KJwjERGZ0uuLodPNRFFREby8vGxURtXfiiJ3wEvGHwu9AHTFsGldldChQwekp6fXagU4c+YMoqKikJeXh+PHjyMqKgqXL1+2uhzJyxw/+OCDePDBB+s9r9FokJCQgISEBKsrRURE1CDNZExBUVERCgsLawUFly5dMkzlb926NUpLS2WVI3mZYyIiImpcDz/8MCZOnIgdO3bg559/Rl5eHnbs2IFJkybhkUceAQB89dVXuPvuu2WVww2RiIhIvZrJQMN169Zh1qxZePzxx1FeXg4AcHZ2xoQJE/D6668DALp3744NG+R1k0seU2BrHFNARKRujTqmQKPAmAJh/2MKqt24cQM//vgjhBC48847ay13LBdbCoiIiFSiVatW6NWrl83yZ1BARETqJaCaLgC5rl27huTkZJw9exYajQY9evTApEmToNPpFCuDAw2JiEi15Gx7UP1Sg8zMTNx55514/fXX8dtvv+Hy5ct4/fXXceedd+L48eOKlcOWAiIiUi25f9jVEhTMmjULDz30EN566y04O1f96S4vL8fkyZMRGxuryLbJAIMCIiIiu5eZmWkUEABVsw/mzJmDsLAwxcph9wEREalWpQIvNfDy8kJOTk6t47m5ufD09FSsHAYFRESkWs1lTMGYMWMwadIkbN++Hbm5ufj555+xbds2TJ48GU888YRi5bD7gIiIyM4tX74cGo0G48ePR3l5OYQQcHV1xbPPPoslS5YoVg6DAiIiUi25XQBq6T5wdXXFf/7zHyQmJuLChQsQQuCuu+6Ch4eHouUwKCAiItVqitkHBw8exLJly5CVlYX8/Hzs2LHDsP9AfTIyMhAXF4czZ87A398fc+bMQUxMjNlr4uLiGlynFStWNDitOQwKiIiIJLh58yb+9Kc/4ZlnnsHo0aMtps/OzsaIESMwZcoUbN26Ff/73/8wbdo0tGvXzuz1J06caFB9NBrlNgVgUEBERKpVCXktBdZ0H0RHRyM6OrrB6deuXYtOnTohKSkJANCjRw9kZmZi+fLlZoOC/fv3W1E7eTj7gIiIVEupKYl6vd7oVVJSolgdjxw5gqioKKNjw4cPR2ZmJsrKyhQrRwkMCoiIqNkLCAiATqczvBITExXLu6CgAD4+PkbHfHx8UF5ejsuXLytWjhLYfUBERKql1EDD3Nxco62TtVqtnGrVYtrvL4So83hTY1BARESqpVRQ4OXlZRQUKMnX1xcFBQVGxwoLC+Hs7Axvb2+blGktBgVERKRaalinIDw8HB999JHRsb179yIsLAwuLi6NUIOG45gCIiIiCW7cuIGTJ0/i5MmTAKqmHJ48edKwN0F8fDzGjx9vSB8TE4OLFy8iLi4OZ8+exdtvv43k5GTMnj27KapvFlsKiIhItZpi8aLMzEw88MADhvfViwxNmDABmzZtQn5+vtHmRYGBgdi9ezdmzZqFN998E/7+/li5cmWD1jhobBpRPdrBTuj1euh0OrgDUHr4xU2xQeEciYjIlF5fDJ1uJoqKimzWT1/9t+IkADl7BF4HcC9g07qqCbsPiIiICAC7D8gKLTWTDT+z9YWImlJTrGjoyBgUEBGRajXFmAJHxu4DIiIiAsCWAiIiUjE1rFOgJgwKSDKOIyAie8HuA2Wx+4CIiIgAsKWAiIhUjC0FymJQQEREqsUxBcpy6KDgpthqcuS2yfvWFs43lOl1bibvW9X4udzk3DUL15qmr8ncxyflXkzLNM33hpn0pvWztr6Wzpvma5r2tplzpte61fMzUPvzqO860zLrUrMe5upgmpdp/c3dq6U6tTJz3lI55fX8XNd7Of+U1MzL0ve/5nspn7Ol52L6HZfy2Ukh5flL+Y6b3p9zPT/Xxdzvs7nnYqptjZ9vWShTOWwpUBbHFBAREREAB28pICIixyYgrwvArjb/sQPNPCgw19St5LXmmmHl5GsrjVUHKV0NSjZXN7QOctLKYaumedP3lp6xlO+tPTJXZ1vdT2P9myInXyndRFLybprvC7sPlMXuAyIiIgLQ7FsKiIhIzdhSoCwGBUREpFqckqgsBw8KLE0ZMz2vVD+YnHyboo9b6lRMa6duKjmewlwdLOVjbmqXOXL6W83VwRI59yqlDpbGGFhbjhRSnouS967ktQ0lp/5KXmtu+qWUfK/V+LnYQj5krxw8KCAiIkfG7gNlMSggIiLVYlCgLM4+ICIiIgAO31LQVHPdLS1XKuVac/PKpdTJHEv5SnluctYekEJOXuaWgLXH+itZrrl8rf1cpZbTFM9Yyu+ZlHylsvb32dK1TbW8eH1LVDfe8D0ONFSWgwcFRETkyCohrwuAQYExBgVERKRabClQloMHBVKmptmyXKWmdtnL0qzW1kPJKW5KLSfbVMscN9Z3Qsq19vD9aqxnbA/LETfFMuu2zKvmjoqckqhWDh4UEBGRI+PsA2UxKCAiItViUKAsTkkkIiIiAGwpICIiFeNAQ2UxKCAiItVi94Gy2H1AREREANhSQEREKsaWAmU5eFBgj8scW5obrrZljuWUI2f5ZFstc2xu7Qp7XOZY6jNtjO+THFzm2Lpr5dRfyr9P5jTNMsdCZmlCqYo4CHYfEBEREQCHbykgIiJHxu4DZTEoICIi1eKURGUxKDBi72uaN1a/riW22vtASn9rU3xWjr73ga22aJZCjXsfWDvGxlJaW21l3Rh7XDTe/7/ZUqAsjikgIiIiAGwpICIiFWNLgbIcPCiw1BzqZuG8Oea23zXNt+Z707Q3TN5LqZO5j0/KttBSm+rN3Y+1U+tMz1uqk7mphHLKMf08zJUppflXznfP3L2a5mP6uZsrR8kpiUpN07P0XORMxzR3zvS5SfnszOUrpf6W8jJ3zlz9LV2r1JTp1jV+djVTvrI4pkBZ7D4gIiIiABKDgvLycrzwwgsIDAyEu7s7unbtipdffhmVlX/EWkIIJCQkwN/fH+7u7hg8eDDOnDmjeMWJiIgqFHjRHyQFBa+99hrWrl2LN954A2fPnsXSpUuxbNkyrFq1ypBm6dKlWLFiBd544w0cO3YMvr6+iIyMxPXr1xWvPBERNW+VkBcQsPvAmKSOwCNHjuDhhx/GyJEjAQBdunTBe++9h8zMTABVrQRJSUlYsGABRo0aBQDYvHkzfHx8kJKSgqlTpypcfaU1xlQdqWmbYppeY5HTp91US83aSmN9dtaOUWkstpoiKvX7Y+1UTlt+jtb+W9AUy72r7d8iqiappWDAgAH47LPP8P333wMAvv76axw6dAgjRowAAGRnZ6OgoABRUVGGa7RaLSIiInD48OE68ywpKYFerzd6ERERNUSlAi/6g6QQce7cuSgqKkL37t3h5OSEiooKLFq0CE888QQAoKCgAADg4+NjdJ2Pjw8uXrxYZ56JiYl46aWXrKk7ERE1c5ySqCxJLQXbt2/H1q1bkZKSguPHj2Pz5s1Yvnw5Nm/ebJROo9EYvRdC1DpWLT4+HkVFRYZXbm6uxFsgIiIiJUhqKfi///s/zJs3D48//jgA4J577sHFixeRmJiICRMmwNfXF0BVi4Gfn5/husLCwlqtB9W0Wi20Wq219VdYY2xNbMv53o3Vt6k25uZl2wsp88qV2ubX0nNpiu+QUltKK1kPOesfmFJyu21r0yr5+1Dfmh+N9zvGdQqUJaml4NatW2jRwvgSJycnw5TEwMBA+Pr6Ij093XC+tLQUGRkZ6NevnwLVJSIi+gOnJCpLUjj317/+FYsWLUKnTp0QHByMEydOYMWKFZg4cSKAqm6D2NhYLF68GN26dUO3bt2wePFieHh4YOzYsTa5ASIiar44pkBZkoKCVatW4V//+hemTZuGwsJC+Pv7Y+rUqXjxxRcNaebMmYPi4mJMmzYNV69exf3334+9e/fC09NT8cpbZmmpX3PnldyFzNzSuaakLE+sVHOplDKtSV9NyeZdOZ+drZb6lZJeqc/ZUp3MffcsLY3bFDtIKvn9l/P8lfrs5Ox02Fi7Y0qZSmju/LUaPxdbyIfslUYIIZq6EjXp9XrodDq4A6h7aGLD3RQbLKSw1daktvxD01w0Vv+2PfSjy6Fk/dX+LOyRGp6pUmOR/shHry+GTvcsioqK4OXlJSPP+lX/rYiH+d0oLLkNIBGwaV3VhHsfEBGRajXVioarV69GYGAg3NzcEBoaii+++KLetAcOHIBGo6n1+u6776ws3XYYFBAREUmwfft2xMbGYsGCBThx4gQGDhyI6Oho5OTkmL3u3LlzyM/PN7y6devWSDVuOHucm6UgqdvKmtuS1pS5fjjTx2rvWydbuldzz62xtk62tH2tlK2Ta14rZetkS98nU42xdbKc7cG5dfIflNo62ZStpjNKqb+cLZpNfx/sb+vkphhouGLFCkyaNAmTJ08GACQlJeHTTz/FmjVrkJiYWO917du3R+vWra2raCNhSwEREamWUsscmy63X1JSUmd5paWlyMrKMlrOHwCioqLqXc6/Wu/eveHn54ehQ4di//791tyuzTEoICKiZi8gIAA6nc7wqu9//JcvX0ZFRUWdy/lXL/Vvys/PD+vXr0dqairS0tIQFBSEoUOH4uDBg4rfh1wO3n1ARESOTKnug9zcXKPZB5ZW2pWynH9QUBCCgoIM78PDw5Gbm4vly5dj0KBB1lXcRhw8KJC6ToFSW3+ay1fqteY42joFUp6/nHUKzPXJW1um1HpIGYshZ868rdbisFVejbVOgZy8rf3+yylTalopv0tSpiTa3zoFSi1z7OXl1aApiW3btoWTk1OtVgFzy/nXpW/fvti6dauUqjYKdh8QERE1kKurK0JDQ42W8weA9PR0Scv5nzhxwmiPIHvh4C0FRETkyJpi9kFcXBzGjRuHsLAwhIeHY/369cjJyUFMTAyAqt1/8/LysGXLFgBVsxO6dOmC4OBglJaWYuvWrUhNTUVqaqqMmtsGgwKqg5SpXk21QpsaVoozp7Hqay+7DjoSW62Eaqmcxvg81PcdaIqgYMyYMbhy5Qpefvll5OfnIyQkBLt370bnzp0BAPn5+UZrFpSWlmL27NnIy8uDu7s7goODsWvXLowYMUJGzW2DyxwbaayldBujTDmaU1Cgvn8EpWFQUDdbbUetxqBAqftpmmWO/wF5qyKUAlgPLnNcjWMKiIiICAC7D4iISMW4dbKyHDwokLMMqhSW8pXSPCenubeh10nJR0n20pQtZTllW1HqWdiqGVwOKcv1WrpWqV0fm+pzNWXt77Ol83I+dynPydznU3P5ZzmTBKVhUKAsdh8QERERAIdvKSAiIkem1OJFVIVBARERqRa7D5Tl4EGBnKVybVWukkuz2qqf1FbLx9pqGVdb1sNWlHoWcp5TU31/bHWtlLyUrKNSYxca63vZGMs/173DINk/Bw8KiIjIkbH7QFkMCoiISLXYfaAszj4gIiIiAA7fUuBm8t50DEFrC+cbyvS6VmbqYdond81M2rrS12Tu45NyL6b5mNbhhoXzDS1Xyr1Z+uxM62xuO2TTctzq+Rmo/XlIqZMpc33Ncj7nmuWaftdMPyvT8+aek7nnJuVepapvrrvpOdP3Uj5nS8/f9LlJ+eykjCmo+RzN/R6Z5mt6rblzdZ03d87cc7KUb830bWv8fMtM+cqqhLz/7bP7wJiDBwVEROTIOKZAWQwKiIhItSogrx+cYwqMOXhQIHVKolJTguTka6651FaklqnUlMSGTm+SWqaU+kvpZpF631KmxFn7TC3VX8pzVGqqmpyliqU8Fymfs6VmcSl5K/XZSf09s/Y5Wvo8bps5J6WONbtgGq/7gJTl4EEBERE5MrYUKItBARERqRbHFCiLUxKJiIgIgMO3FNjLMse2WrpYqfEGSvaVK3VdYy1z3FTLSnOZY+WvlZKXPdSxserQWEurN80yx+w+UJaDBwVEROTI2H2gLHYfEBEREQC2FBARkYpxRUNlOXhQYGl+rrnbt5TW2uWHLZUjhZz54ObyMdUUWw1L/eyk1FHK524rtvrslPze2uPnbo/lKLV1srl8TfO2Vf1NWft75WRlXaSrAKCReT39gd0HREREBMDhWwqIiMiRcaChshw8KLDlsrRS8rFV86I9TI2ylcaakthUGuuza6opl9ZqrDrY4++hlHztfTpp4zXKs/tAWQ4eFBARkSNjUKAsjikgIiIiAGwpICIiFeOYAmU5eFAgZ0qiFJbydTOT1nSpZSnTkKTUyRzTfE3fW6pjQ8ttqimi5uph6V6VKlNOXnKmprmZvK95f5Y+d2uXgzYlZcprY00VtNWUVkus/X22dK2cKdJSfh/Mlduqxs+N1wjN7gNlsfuAiIiIADh8SwERETkyAXldAEKpijgIBgVERKRacpv/2X1gzMGDAnvZOvmGjGsbek4OqVs922rr5MaaU9+ctk429x2Xs8W3FPb4jO1hnQtH2zq55r9zxRLyJHvi4EEBERE5MrYUKItBARERqVYl5M0+4JREYw4eFMjZQU7JKUvmpkbZajdGJadYNdayzU0xJdFSObbSWFMSm/MuifYwJdFWv4e22rXVXJmWNM0uiaQsBw8KiIjIkbH7QFkMCoiISLUYFCiLQQEREakWxxQoy8GDgqaadmQvU41slY/ap67JWWpWKY01JbE5b51s71MS5eSrZFqlxgg1zdbJpCwHDwqIiMiRyf2fPlsKjDEoICIi1WJQoCxuiEREREQAHL6lwNy2sXWdN7f8rblHZSlfc1snmy6BLGVOupQ6mWNaX0t5KbV1sjmWtnC19NmaU/Na03LMLUktdW67ub5aKfU3V67U77i5rZPNpZVyr1JJGeNh7RoNcp6/KSm/h6bMPX9L5Zi7dynfHynrqEj53W9d42dXM+mUVQF5mxqxpcCYgwcFRETkyBgUKIvdB0RERASALQVERKRiHGioLAcPCiz1E5qeV2pes5R8pZRjq61uG2udAiXnVsvZ9rqxtk42l15K/eXkI+X7JGWLbynl2CofOWs0KPX9aUg9GpqPlPRynpOcvUzMnb9W4+fG2zqZ3QfKYvcBERERAXD4lgIiInJklZDXUiDnWkfk4C0FbiYvS+edrXxZyrdVjZelOkkp1zQvc/maI+f+LKU1V46581I/O2tJyUfKvZqmt1W5tvw+WXuvcn5/5KQ1VydTUp6bpWul/Bsi5V6b6nOXkm9NNf+da1nHtbZRqcDLGqtXr0ZgYCDc3NwQGhqKL774wmz6jIwMhIaGws3NDV27dsXatWutLNm2HDwoICIiR1ahwEuq7du3IzY2FgsWLMCJEycwcOBAREdHIycnp8702dnZGDFiBAYOHIgTJ05g/vz5eO6555CammpF6bbFoICIiEiCFStWYNKkSZg8eTJ69OiBpKQkBAQEYM2aNXWmX7t2LTp16oSkpCT06NEDkydPxsSJE7F8+fJGrrllDWkXbFRCVPXwKNHPo9ffMjlSYvLeNCYyPd9QpiNyTRukar43TWs6SlfKR+Jk5pyUe7HUgGaaV830pnG2lBUNzY2CNr03c3Wo67w5NcsxzcfcqGlL9TeX3tJ3xFz9zZVrKR/T8+b+X2T6zGumdbQVDS09NynX1mTp/51S7tXc74CU+lti7t8nS/nWTP/HKoZ6fdXvUfW/57ZUAXlbJ1fXUK/XGx3XarXQarW10peWliIrKwvz5s0zOh4VFYXDhw/XWcaRI0cQFRVldGz48OFITk5GWVkZXFxcrL8BhdldUHD9+nUA8iYMVdPp/qFALkREZI3r169Dp9PZJG9XV1f4+vqioKBAdl6tWrVCQECA0bGFCxciISGhVtrLly+joqICPj4+Rsd9fHzqrUtBQUGd6cvLy3H58mX4+fnJuwEF2V1Q4O/vj9zcXAgh0KlTJ+Tm5sLLy6upq2W39Ho9AgIC+Jws4HNqGD6nhuFzMk8IgevXr8Pf399mZbi5uSE7OxulpaWy8xJCQKMxbm+oq5WgJtP0deVhKX1dx5ua3QUFLVq0QMeOHQ1NOV5eXvylawA+p4bhc2oYPqeG4XOqn61aCGpyc3ODm5uc2UfStW3bFk5OTrVaBQoLC2u1BlSrq0WjsLAQzs7O8Pb2tlldrcGBhkRERA3k6uqK0NBQpKenGx1PT09Hv3796rwmPDy8Vvq9e/ciLCzMrsYTAAwKiIiIJImLi8OGDRvw9ttv4+zZs5g1axZycnIQExMDAIiPj8f48eMN6WNiYnDx4kXExcXh7NmzePvtt5GcnIzZs2c31S3Uy+66D6pptVosXLjQYr9Oc8fn1DB8Tg3D59QwfE7N25gxY3DlyhW8/PLLyM/PR0hICHbv3o3OnTsDAPLz843WLAgMDMTu3bsxa9YsvPnmm/D398fKlSsxevToprqFemlEY8wZISIiIrvH7gMiIiICwKCAiIiIfseggIiIiAAwKCAiIqLfMSggIiIiAHYcFEjdq9qRJSYm4r777oOnpyfat2+PRx55BOfOnTNKI4RAQkIC/P394e7ujsGDB+PMmTNNVGP7kJiYCI1Gg9jYWMMxPqcqeXl5eOqpp+Dt7Q0PDw/ce++9yMrKMpzncwLKy8vxwgsvIDAwEO7u7ujatStefvllVFb+sYEQnxM5HGGHtm3bJlxcXMRbb70lvv32W/H888+Lli1biosXLzZ11ZrE8OHDxcaNG8Xp06fFyZMnxciRI0WnTp3EjRs3DGmWLFkiPD09RWpqqjh16pQYM2aM8PPzE3q9vglr3nS++uor0aVLF9GrVy/x/PPPG47zOQnx22+/ic6dO4unn35afPnllyI7O1vs27dP/PDDD4Y0fE5CvPrqq8Lb21t8/PHHIjs7W7z//vuiVatWIikpyZCGz4kcjV0GBX369BExMTFGx7p37y7mzZvXRDWyL4WFhQKAyMjIEEIIUVlZKXx9fcWSJUsMaW7fvi10Op1Yu3ZtU1WzyVy/fl1069ZNpKeni4iICENQwOdUZe7cuWLAgAH1nudzqjJy5EgxceJEo2OjRo0STz31lBCCz4kck911H1TvVW2697S5vaqbm6KiIgBAmzZtAADZ2dkoKCgwemZarRYRERHN8plNnz4dI0eOxLBhw4yO8zlV2blzJ8LCwvD3v/8d7du3R+/evfHWW28ZzvM5VRkwYAA+++wzfP/99wCAr7/+GocOHcKIESMA8DmRY7K7ZY6t2au6ORFCIC4uDgMGDEBISAgAGJ5LXc/s4sWLjV7HprRt2zYcP34cx44dq3WOz6nKjz/+iDVr1iAuLg7z58/HV199heeeew5arRbjx4/nc/rd3LlzUVRUhO7du8PJyQkVFRVYtGgRnnjiCQD8PpFjsrugoJrUvaqbixkzZuCbb77BoUOHap1r7s8sNzcXzz//PPbu3Wt2O9Xm/pwqKysRFhaGxYsXAwB69+6NM2fOYM2aNUabuDT357R9+3Zs3boVKSkpCA4OxsmTJxEbGwt/f39MmDDBkK65PydyLHbXfWDNXtXNxcyZM7Fz507s378fHTt2NBz39fUFgGb/zLKyslBYWIjQ0FA4OzvD2dkZGRkZWLlyJZydnQ3Pork/Jz8/P/Ts2dPoWI8ePQwbuPD7VOX//u//MG/ePDz++OO45557MG7cOMyaNQuJiYkA+JzIMdldUGDNXtWOTgiBGTNmIC0tDZ9//jkCAwONzgcGBsLX19fomZWWliIjI6NZPbOhQ4fi1KlTOHnypOEVFhaGJ598EidPnkTXrl35nAD079+/1pTW77//3rDDG79PVW7duoUWLYz/iXRycjJMSeRzIofUhIMc61U9JTE5OVl8++23IjY2VrRs2VL89NNPTV21JvHss88KnU4nDhw4IPLz8w2vW7duGdIsWbJE6HQ6kZaWJk6dOiWeeOIJTo0Swmj2gRB8TkJUTdd0dnYWixYtEufPnxfvvvuu8PDwEFu3bjWk4XMSYsKECaJDhw6GKYlpaWmibdu2Ys6cOYY0fE7kaOwyKBBCiDfffFN07txZuLq6ij//+c+G6XfNEYA6Xxs3bjSkqaysFAsXLhS+vr5Cq9WKQYMGiVOnTjVdpe2EaVDA51Tlo48+EiEhIUKr1Yru3buL9evXG53ncxJCr9eL559/XnTq1Em4ubmJrl27igULFoiSkhJDGj4ncjQaIYRoypYKIiIisg92N6aAiIiImgaDAiIiIgLAoICIiIh+x6CAiIiIADAoICIiot8xKCAiIiIADAqIiIjodwwKiIiICACDAiIiIvodgwIiIiICwKCAiIiIfvf/AfjtUBSCKAaPAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNFklEQVR4nO3de1hU1f4/8PfIZQCBMTW5KAqWooKmgXcNDMGDlnr0lJfy0sWjR82QY6ZZSR0VU7/GsfKW5iWj/HXQjqmZmEqZkopaiqZWpIQQeQOvILB+fxBzmAFm2LP3DLOH9+t59vM4e9Zea+01I3xYa+21NEIIASIiIqr3GtR1BYiIiMg+MCggIiIiAAwKiIiI6E8MCoiIiAgAgwIiIiL6E4MCIiIiAsCggIiIiP7EoICIiIgAMCggIiKiPzEoUJHk5GQkJSXVaR22b9+OsWPHomPHjnBxcYFGo6kx7auvvorHHnsMzZs3h0ajwfjx42tM+8svv2DYsGFo1KgRPD09ER0djWPHjlWb9pNPPkHnzp3h5uYGf39/xMXF4ebNm3JvTRG//vorNBoN1q9fX9dVsUhtP9+MjAxMmTIFHTt2hJeXF3x8fNC/f3/s3bvXxjW2nsjISGg0mhqPvLw8fdqioiIsXrwYoaGhaNiwIXx8fBAbG4uDBw/W4R0QScegQEXsISjYunUr0tPT0aFDBzz00EMm07799tu4cuUKBg8eDFdX1xrT/fHHH+jbty/OnTuHDz74AP/v//0/3L17F5GRkTh79qxB2o8++gijRo1C165d8cUXX2Du3LlYv349hg0bpsj91Xe1/Xw//vhjHD58GM8++yz++9//Ys2aNdBqtYiKisLGjRttWGPrWb58OQ4dOmRwfPXVV3BxcUGPHj3g6+urTzthwgTMmjULQ4cOxeeff4733nsPf/zxByIiInD48OE6vAsiiQSpxqBBg0SrVq3qtA6lpaX6f0+ZMkWY+gpVTtuwYUMxbty4atO99NJLwsXFRfz666/6cwUFBaJp06biySef1J8rKSkRfn5+IiYmxuD6jz76SAAQO3fulHo7isvKyhIAxLp16+q6Khap7ef7+++/VzlXUlIiOnXqJB544AHF6lNSUiLu3r2rWH5yrV+/XgAQa9as0Z+7e/eucHJyEk8//bRB2kuXLgkAYtq0abauJpHF2FNgJ/744w/8/e9/R0BAALRaLe6//3707t0be/bsAVDelbljxw5cuHDBoAuzQnFxMebNm4d27drpr3/mmWfwxx9/GJQTGBiIxx57DFu3bkWnTp3g5uaG1q1bY9myZbWqZ4MGtf/K1Dbt1q1b8eijj6JVq1b6c97e3hg2bBg+//xzlJSUAADS09ORm5uLZ555xuD6J554Ap6enti6dWut62bsxx9/xKhRo+Dj4wOtVouWLVti7NixKCoq0qc5deoUhgwZgvvuuw9ubm7o3LkzNmzYYDbv8ePHIzAwsMr5hISEKt3zGo0GU6dOxbp16xAcHAx3d3eEh4cjPT0dQggsXrwYQUFB8PT0xKOPPoqffvrJ4PrIyEiEhobiyJEj6Nu3Lzw8PNC6dWssXLgQZWVlZuta28+sWbNmVc45OTkhLCwM2dnZtcrDWMXQy6JFizBv3jwEBQVBq9Vi3759AIBt27ahZ8+e8PDwgJeXF6Kjo3Ho0CH99ZmZmdBoNPj000/15zIyMqDRaBASEmJQ1uDBgxEWFia5jmvXroWnpydGjBihP9egQQM0aNAAOp3OIK23tzcaNGgANzc3yeUQ1RUGBXZizJgx+Oyzz/D6669j9+7dWLNmDfr3748rV64AKO/K7N27N3x9fQ26MwGgrKwMQ4YMwcKFCzF69Gjs2LEDCxcuRGpqKiIjI3Hnzh2Dsk6cOIG4uDhMnz4dW7duRa9evfDiiy9iyZIlNr/vO3fu4Oeff0anTp2qvNepUyfcuXMHv/zyC4DyX8oV5ytzcXFBu3bt9O9X0Gg0iIyMNFuH77//Hl27dkV6ejrefPNNfPHFF0hMTERRURGKi4sBAGfPnkWvXr2QmZmJZcuWYcuWLejQoQPGjx+PRYsWWXLrNdq+fTvWrFmDhQsX4uOPP8aNGzcwaNAg/POf/8S3336Ld999F6tXr8bp06cxfPhwCKONTvPy8vDUU0/h6aefxrZt2xAbG4vZs2dj06ZNitbTWElJCb755psqv4ClWrZsGfbu3YslS5bgiy++QLt27ZCcnIwhQ4bA29sbH3/8MdauXYtr164hMjISBw4cAACEhITAz89PH0gDwJ49e+Du7o7Tp0/j0qVL+nqmpaWhf//+kup1/vx5fPPNNxg5ciQ8PT31511cXDB58mRs2LABn332GQoLC/Hrr79iwoQJ0Ol0mDBhgqz2ILKpuu6qoHKenp4iLi7OZJqahg8+/vhjAUCkpKQYnD9y5IgAIJYvX64/16pVK6HRaMSJEycM0kZHRwtvb29x69atWtfZ3PBBZTUNH+Tk5AgAIjExscp7ycnJAoA4ePCgEEKI+fPnCwAiNze3StqYmBjRtm1bg3NOTk7i0UcfNVu3Rx99VDRq1Ejk5+fXmGbkyJFCq9WKixcvGpyPjY0VHh4e4vr160KI6ocPxo0bV+3nNnfu3CrtB0D4+vqKmzdv6s999tlnAoDo3LmzKCsr059PSkoSAMQPP/ygPxcRESEAiO+++84g3w4dOogBAwbU3AjVkPL5CiHEnDlzBADx2WefSSqnQkXbPfDAA6K4uFh/vrS0VPj7+4uOHTsaDG/cuHFDNGvWTPTq1Ut/7umnnxatW7fWv+7fv7+YMGGCuO+++8SGDRuEEEJ8++23AoDYvXu3pPq9/PLLAoA4dOhQlffKysrE66+/Lho0aCAACACiZcuW4vjx45LKIKpr7CmwE926dcP69esxb948pKen4969e7W+dvv27WjUqBEef/xxlJSU6I/OnTvD19cX+/fvN0gfEhJSZRLZ6NGjUVhYWOOMf2sz9RRDdV3stUlXUlKCr776ymS5t2/fRlpaGp588kncf//9Nabbu3cvoqKiEBAQYHB+/PjxuH37tkE3tlz9+vVDw4YN9a/bt28PAIiNjTW4x4rzFy5cMLje19cX3bp1MzjXqVOnKumUtGbNGsyfPx///Oc/MWTIEFl5DR48GC4uLvrXZ8+exaVLlzBmzBiD4Q1PT08MHz4c6enpuH37NgAgKioKv/zyC7KysnD37l0cOHAAf/nLX9CvXz+kpqYCKO890Gq16NOnT63rVFJSgg0bNiAkJAQ9evSo8v78+fOxZMkSJCQkYN++ffjvf/+L4OBgREdH4/jx45Y2BZHNMSiwE5s3b8a4ceOwZs0a9OzZE40bN8bYsWMNHnuqye+//47r16/D1dUVLi4uBkdeXh4uX75skL7yrGnjcxXDFbZy3333QaPRVFvu1atXAQCNGzcGADRp0gRA9XW8evWqPp0U165dQ2lpKVq0aGEy3ZUrV+Dn51flvL+/f411spTxfVQ8uVHT+bt37xqcr2inyrRabZVhJKWsW7cOEydOxN///ncsXrxYdn7G7VzRtjW1f1lZGa5duwYA+iGBPXv24MCBA7h37x4effRR9O/fXx8g7tmzB71794a7u3ut67Rz507k5eXh+eefr/LemTNn8Prrr+ONN97Aa6+9hsjISAwePBg7duxAo0aNEB8fX+tyiOqac11XgMo1bdoUSUlJSEpKwsWLF7Ft2zbMmjUL+fn52LVrl9lrmzRpUmM6Ly8vg9fVBRoV56r7hWJN7u7uePDBB3Hy5Mkq7508eRLu7u5o3bo1AKBjx4768x06dNCnKykp0U8UlKpx48ZwcnLCb7/9ZjJdkyZNkJubW+V8xTh106ZNa7zWzc3NYMJiBeNgTY3WrVuH559/HuPGjcPKlStN9vjUlnEeFd/Jmtq/QYMGuO+++wAALVq0QNu2bbFnzx4EBgYiPDwcjRo1QlRUFCZPnozvvvsO6enpeOONNyTVae3atXB1dcWYMWOqvPf9999DCIGuXbsanHdxccFDDz2EtLQ0SWUR1SX2FNihli1bYurUqVUW8Knpr73HHnsMV65cQWlpKcLDw6scwcHBBukzMzPx/fffG5xLTk6Gl5cXHn74YevclAl//etfsXfvXoNZ6zdu3MCWLVswePBgODuXx67du3eHn59flYWB/vOf/+DmzZsWrVXg7u6OiIgIfPrppyZ/SUdFRWHv3r36IKDCxo0b4eHhUW2XcoXAwEDk5+fj999/158rLi7Gl19+Kbm+9mT9+vV4/vnn8fTTT2PNmjWKBATVCQ4ORvPmzZGcnGwwqfLWrVtISUnRP5FQoWIRpdTUVERHRwMA2rZti5YtW+L111/HvXv3JE0yzMvLw86dOzF06NBqg+aK3qL09HSD80VFRTh27JjZXigie8KeAjtQUFCAfv36YfTo0WjXrh28vLxw5MgR7Nq1y+AXXceOHbFlyxasWLECYWFhaNCgAcLDwzFy5Eh89NFHGDhwIF588UV069YNLi4u+O2337Bv3z4MGTIEf/3rX/X5+Pv7Y/DgwUhISICfnx82bdqE1NRUvPXWWwY/XKtz4cIFHDlyBADw888/Ayj/pQxA/5dZhbS0NP0jkaWlpbhw4YI+bUREhH4Mf8aMGfjwww8xaNAgvPnmm9BqtVi4cCHu3r2LhIQEfX5OTk5YtGgRxowZg4kTJ2LUqFE4f/48Zs6ciejoaPzlL38xqKuzszMiIiLMzitYunQp+vTpg+7du2PWrFl48MEH8fvvv2Pbtm1YtWoVvLy8MHfuXGzfvh39+vXD66+/jsaNG+Ojjz7Cjh07sGjRoiqPo1U2YsQIvP766xg5ciReeukl3L17F8uWLUNpaanJetWF2n6+n376KZ577jl07twZEydOrLJAT5cuXaDVagEA+/fvR79+/TB37lyDz7O2GjRogEWLFuGpp57CY489hokTJ+pXELx+/ToWLlxokD4qKgrLly/H5cuXDRb7ioqKwrp163DfffdJehxxw4YNKCkpqXboAAD69OmDrl27IiEhAbdv38YjjzyCgoICvPPOO8jKysKHH34o+Z6J6kxdz3Sk8sVPJk2aJDp16iS8vb2Fu7u7CA4OFnPnzjV4GuDq1avib3/7m2jUqJHQaDQGM8Pv3bsnlixZIh566CHh5uYmPD09Rbt27cTEiRPF+fPn9elatWolBg0aJP7zn/+IkJAQ4erqKgIDA8XSpUtrVdd169bpZ1cbH8ZPF1TMhK/u2Ldvn0Han376SQwdOlR4e3sLDw8PERUVJTIyMqqtQ3JysujUqZNwdXUVvr6+Ytq0aeLGjRtV0gEQERERtbqv06dPiyeeeEI0adJEuLq6ipYtW4rx48cbLJxz8uRJ8fjjjwudTidcXV3FQw89VGWRopoWL9q5c6fo3LmzcHd3F61btxbvvvtujU8fTJkypdo8Fy9ebHB+3759AoD49NNP9eciIiJESEhIlfur6QkIY7X9fMeNG1djOgAiKytLn/bzzz8XAMTKlStNll3TfVb47LPPRPfu3YWbm5to2LChiIqKEt9++22VdNeuXRMNGjQQDRs2NHiKoWKRq2HDhplth8ratm0rAgMDDZ78MHb9+nUxZ84c0b59e+Hh4SGaNWsmIiMj7WJBLSIpNEIYPeRMDi0wMBChoaHYvn17XVeF6omZM2fi448/xvnz57mQD5Gd45wCIrKqffv24bXXXmNAQKQCnFNARFZVMUeBiOwfhw+IiIgIAIcPiIiIam3FihXo1KkTvL294e3tjZ49e+KLL74weU1aWhrCwsL0G9CtXLnSRrWVjkEBERFRLbVo0QILFy7E0aNHcfToUTz66KMYMmQIMjMzq02flZWFgQMHom/fvjh+/DheeeUVTJs2DSkpKTauee1Ybfhg+fLlWLx4MXJzcxESEoKkpCT07dvXGkURERHVmcaNG2Px4sV47rnnqrz38ssvY9u2bThz5oz+3KRJk/D9998rumeKUqwy0XDz5s2Ii4vTb/e7atUqxMbG4vTp02jZsqXJa8vKynDp0iV4eXlZbYU0IiKyHiEEbty4AX9/f4NNrJR29+5d/fbmcgghqvy+0Wq1+gW4alJaWopPP/0Ut27dQs+ePatNc+jQIcTExBicGzBgANauXYt79+4ZbP5lF6yx+EG3bt3EpEmTDM61a9dOzJo1y+y12dnZJhdF4cGDBw8e6jiys7Ot8StGCCHEnTt3hK+vryL19PT0rHJu7ty5NZb9ww8/iIYNGwonJyeh0+nEjh07akzbpk0bMX/+fINzFdt3X7p0SanmUIziPQXFxcXIyMjArFmzDM7HxMTg4MGDVdIXFRUZbBYj/hzNyM5eBG/v2u9iRkRE9qGw8A4CAmZW2YxNScXFxcjLy0N2dha8vb0tzqewsBABAUHIzs42yMdUL0FwcDBOnDiB69evIyUlBePGjUNaWprBRm2VGfdCVPyes8fecMWDgsuXL6O0tBQ+Pj4G5318fKrdnS8xMbHaHcu8vd0ZFBARqZgtfulVPAVgy3xcXV3x4IMPAgDCw8Nx5MgR/Pvf/8aqVauqpPX19a3yuy8/Px/Ozs4235W2Nqy2eFF1kVF1X5DZs2cb7DdeHrUFwFf3AipS3xKfVLrCcO/4qkoq/Vvq7VVOb1yOqbxKjF4bp7U0XyUZl2NcZ0vzMvd5SGk3S/Mxl1cjo9c3TVxnXE7lVfjMfXbGr2+aeM9cuabSupl4T6nPVc61xu1kvJKhqToqWX8536/K15pbibGkhn9Xd+1dE+8ZU+pnhbl28Kz075s1pjKv8v2UychHqhLI+97IubacEKLa7dEBoGfPnvj8888Nzu3evRvh4eH2N58AVviN1LRpUzg5OVUbGRn3HgC1m8xBRERUPdsGBa+88gpiY2MREBCAGzdu4JNPPsH+/fuxa9cuAOV/6Obk5GDjxo0Ayp80ePfddxEfH48JEybg0KFDWLt2LT7++GMZdbYexaeFurq6IiwsDKmpqQbnU1NT0atXL6WLIyKieq1EgaP2fv/9d4wZMwbBwcGIiorCd999h127diE6OhoAkJubi4sXL+rTBwUFYefOndi/fz86d+6Mf/3rX1i2bBmGDx8u666txSrrFGzevBljxozBypUr0bNnT6xevRrvv/8+MjMz0apVK5PXFhYWQqfTwR1AdaNRt8QapatLREQKKiy8A53uBRQUFCgy3l99GeW/KwoKLsieaKjTtbJqXdXEKgPaI0aMwJUrV/Dmm28iNzcXoaGh2Llzp9mAgIiISJpSyBs+KFWqIg7BarPcJk+ejMmTJ1sreyIiItjDRENHwr0PiIiICIDtnodTTEPN8wav1TfHQMlHA4mI6jv2FChJdUEBERHR/zAoUBKHD4iIiAgAewqIiEjVSiHvCQI+fVCZ6oMC9c0xYFcVEZFy+Eiikjh8QERERAAcoKeAiIjqM040VJLDBQWVhxMMd1cEqu4A1sjotandzkwx3s3M08Rr47TXjV5L2VHO1C5rUnY7M66vubwqpzeun6ldE83dm3MN/64uX+O8pOxIWPla43u/buJaUzveVVdubetQ3fum8q1crnH9TX1Wxtea2hHSOK253RhNfXbGTOVlrl1M7YIqZTdJU98f47yNrzX1/8Xczw0puySa+tyl1N/c52Hq/7OpfI3T+1b69y0zZSqJQYGSHC4oICKi+oRBgZI4p4CIiIgAsKeAiIhUjU8fKMmhg4KGmpEGr6s+rnjdSiUbj8NJGd83NSZvrhxLSc3H0nLN3ZuU/9im6iBlXFdKeytZfynlmsrX3GchpZ2k1MlUXnJ+QCvVLubyMtductq8tuS0t5T6y2knU/ka+63Sv+9IyFMuDh8oicMHREREBMDBewqIiMjRsadASQwKiIhIxRgUKKleBQXqWxKZiIjIdupVUEBERI6GPQVKYlBAREQqxkcSlcSnD4iIiAhAPe8p4ByDCubWkDeV3tQa+LXJq75Sqp2UbG9Tednqc+X3Rxmm/o86Gg4fKKleBwVERKR2DAqUxKCAiIhUjEGBkhgUVGK47fJnRu9K2RL4stFrU1uTSmGua1VKHSu/bmT0Xp6Zcivfz3Wj90zlZW5b3Mr5mtsCWMryvcZ1ul7p374m3jPOy9wWulK27jV1P+a24ja1Le51E3Uwztu4nAeMXv9uog7G5VSuh/FnY27L6cpaGL3+rdpU5ZqaqVNlUn/UmdqK29RnZ+67Z2o7auNyzG0fXplxG1duG+OfR6a2ITf3M8XUdtuVry0zriCpBIMCIiJSMfYUKIlBARERqRgfSVQSH0kkIiIiAOwpqFFDzVCD16YfV5Szfa2tGI8NVn59XWJepu7HeD6CqToYM1UPU++ZY+paU/U1x9znKmfr3squS0grpQ7GzlqpDlLu9VcJaeV8dlIY/xV6XcK1UtLK+WtXznbtUtIa17Gma4sk5ClXKeT9tc+egsoYFBARkYpxToGSOHxAREREANhTQEREqsaeAiUxKKglLolMRGSP+PSBkjh8QERERADYU0BERKrG4QMlMSiwkOGSyBxKqJ+4o1/12C5kSwwKlMSggIiIVIxBgZI4p4CIiIgAsKeAiIhUjT0FSmJQQGQx/jCpHtuFbImPJCqJwwdEREQEgD0FRESkaiUAnGReTxUYFBARkYoxKFASgwKbqNzM/AISEZF9YlBAREQqxp4CJTEoICIiFePTB0piUGATjESJiMj+MSggIiIVK4G8p+v5R1tlDAqIiEjFGBQoiYsXERGRipUocNReYmIiunbtCi8vLzRr1gxDhw7F2bNnTV6zf/9+aDSaKsePP/4oqWxbYE+BTfCRRPnq83a8jnbvar8fUz82lbwXU+2k9jZUr7S0NEyZMgVdu3ZFSUkJ5syZg5iYGJw+fRoNGzY0ee3Zs2fh7e2tf33//fdbu7qSMSggIiIVK4W8JwikXbtr1y6D1+vWrUOzZs2QkZGBRx55xOS1zZo1Q6NGjaRW0KY4fEBERCpW8UiipUd5UFBYWGhwFBUV1ar0goICAEDjxo3Npu3SpQv8/PwQFRWFffv21f4WbYhBARER1XsBAQHQ6XT6IzEx0ew1QgjEx8ejT58+CA0NrTGdn58fVq9ejZSUFGzZsgXBwcGIiorC119/reQtKILDBzbB8T756nMbOtq9q/1+bFV/U+WovQ2VVAJAI/N6IDs722C8X6vVmr1y6tSp+OGHH3DgwAGT6YKDgxEcHKx/3bNnT2RnZ2PJkiVmhxxsjUEBERGpmDJBgbe3t0FQYM4LL7yAbdu24euvv0aLFi0kl9qjRw9s2rRJ8nXWxqCAiIioloQQeOGFF7B161bs378fQUFBFuVz/Phx+Pn5KVw7+RgUEBGRiinTU1BbU6ZMQXJyMv773//Cy8sLeXl5AACdTgd3d3cAwOzZs5GTk4ONGzcCAJKSkhAYGIiQkBAUFxdj06ZNSElJQUpKiox6WweDApvgOgXWZ2kbS3neW+p/F6U+azl1rIvvmz3UwZrkrFMg5XtaF+2oxs/OtkHBihUrAACRkZEG59etW4fx48cDAHJzc3Hx4kX9e8XFxZgxYwZycnLg7u6OkJAQ7NixAwMHDpRRb+tgUEBERFRLQgizadavX2/weubMmZg5c6aVaqQsBgVERKRipZDXU8CtkytjUGD3LO1utJduP6WWhLWHbk2p3b1UPXv4LNWObfg/cu+9PrddVfwpRkREKsagQElc0ZCIiIgASAwKarNlpBACCQkJ8Pf3h7u7OyIjI5GZmalopYmIiMrZdutkRycpKKjYMjI9PR2pqakoKSlBTEwMbt26pU+zaNEiLF26FO+++y6OHDkCX19fREdH48aNG4pXnsi2nM0cUtKbSqsG5u7HkdSne1UjZTZEonKSvuHmtowUQiApKQlz5szBsGHDAAAbNmyAj48PkpOTMXHixCp5FhUVGexGVVhYaMl9EBERkUyy5hQYbxmZlZWFvLw8xMTE6NNotVpERETg4MGD1eaRmJhosDNVQECAnCoREVG9wuEDJVkcFFS3ZWTFco8+Pj4GaX18fPTvGZs9ezYKCgr0R3Z2tqVVIiKieodBgZIsHiAztWWkRmO4kIQQosq5ClqttlZbVKqbnC+dlGvt8cutVJ3M5WNpOfbSvkptk6uGbX3t8XtqipL1VeqztFYbqu2zIaVZ1FNQsWXkvn37DLaM9PX1BYAqvQL5+flVeg+IiIjkY0+BkiQFBUIITJ06FVu2bMHevXurbBkZFBQEX19fpKam6s8VFxcjLS0NvXr1UqbGREREegwKlCRp+MDclpEajQZxcXFYsGAB2rRpgzZt2mDBggXw8PDA6NGjrXID6uBW6d/GX0Dj17baga22+SidV22ZaxdT70uprzV3SaxtvsZ5y/lO2Gr5W1PlSPmsqnvf3kj53KV8zuauldPGllLbZ0NKk/RTrjZbRs6cORN37tzB5MmTce3aNXTv3h27d++Gl5eXIhUmIiL6n1IA5ncurFmZUhVxCJKCgtpsGanRaJCQkICEhARL60RERFRLDAqUxOW5iIhIxUogb8kdBgWVMSiwibsS0trq8UVb5KNkXnwkUX4+SuIjidbPi48kku0xKCAiIhVjT4GSGBQQEZGKMShQkqy9D4iIiMhxsKeAiIhUrBTy/tqX8+SC42FQQEREKlYCoPq9dWqHQUFlHD4gIiIiAOwpICIiVWNPgZIYFBARkYoxKFAShw+IiIgIAHsKiIhIzUSZvD/22VFggEEBERGpVxnkPZHItYsMMCggIiL1Kv3zkHM96XFOAREREQFgTwEREakZewoUxaCAiIjUi3MKFMXhAyIiIgLAngIiIlIzDh8oikEBERGpF4cPFMWgwCYqN3OJA5QjhamvmJJ1tPTejesnp05K5uXIdbCHOkph7sekpd83c9eZaidrtaHaPhtSGoMCIiJSrzLIGwJgT4EBBgVERKRenFOgKAYFNmGrLjh77Oqz93tXsn720P5qqIM91FEKc8MfcvKyNK212lBtnw0pjUEBERGpFycaKopBARERqReHDxTFoICIiNSLQYGiGBQQEUnCcXdyXAwKiIhIvTinQFEMCoiISL04fKAobohEREREANhTUG811Dyv//ctsaYOa0JEJIOAvCEAoVRFHAODAiIiUi8OHyiKwwdEREQEgD0F9RaHDCrI2RWOO8qRvbLHHVOthD0FimJQQERE6sVHEhXF4QMiIqJaSkxMRNeuXeHl5YVmzZph6NChOHv2rNnr0tLSEBYWBjc3N7Ru3RorV660QW2lY1BARETqVarAIUFaWhqmTJmC9PR0pKamoqSkBDExMbh161aN12RlZWHgwIHo27cvjh8/jldeeQXTpk1DSkqKxJu1Pg4f2IStxvfsfRzRHsfg5dTBHupvzB7bmJRn7nO29HNX4ffHxnMKdu3aZfB63bp1aNasGTIyMvDII49Ue83KlSvRsmVLJCUlAQDat2+Po0ePYsmSJRg+fLgltbYa9hQQEZF6lSlwACgsLDQ4ioqKalV8QUEBAKBx48Y1pjl06BBiYmIMzg0YMABHjx7FvXv3anefNsKggIiI6r2AgADodDr9kZiYaPYaIQTi4+PRp08fhIaG1pguLy8PPj4+Bud8fHxQUlKCy5cvy667kjh8QERE6lUGecMHf/YUZGdnw9vbW39aq9WavXTq1Kn44YcfcODAAbNpNRqNwWshRLXn6xqDAqrnVDiGapLa608kkUKPJHp7exsEBea88MIL2LZtG77++mu0aNHCZFpfX1/k5eUZnMvPz4ezszOaNGkiucrWxOEDIiKiWhJCYOrUqdiyZQv27t2LoKAgs9f07NkTqampBud2796N8PBwuLi4WKuqFmFQQERE6mXjRxKnTJmCTZs2ITk5GV5eXsjLy0NeXh7u3LmjTzN79myMHTtW/3rSpEm4cOEC4uPjcebMGXzwwQdYu3YtZsyYIanse/fuITs7G2fPnsXVq1elVbyWGBTYREmlwxHKsVQJ7K+O9lgnInP4vdWzcVCwYsUKFBQUIDIyEn5+fvpj8+bN+jS5ubm4ePGi/nVQUBB27tyJ/fv3o3PnzvjXv/6FZcuW1epxxJs3b2LVqlWIjIyETqdDYGAgOnTogPvvvx+tWrXChAkTcOTIEWk3YQLnFBAREdVSxQRBU9avX1/lXEREBI4dOyaprLfffhvz589HYGAgBg8ejFmzZqF58+Zwd3fH1atXcerUKXzzzTeIjo5Gjx498M4776BNmzaSyjDGoICIiNTLgfc+OHjwIPbt24eOHTtW+363bt3w7LPPYuXKlVi7di3S0tIYFBARUT3mwLskfvrpp7VKp9VqMXnyZEXKZFBARER/qufzE4hBARERqZgD9xRU+O2337BixQocPHgQeXl50Gg08PHxQa9evTBp0iQEBAQoVhaDAiIiUi8BefMCzM8brFMHDhxAbGwsAgICEBMTg5iYGAghkJ+fj88++wzvvPMOvvjiC/Tu3VuR8hgUEBGRejl4T8H06dPx/PPP4+23367x/bi4OMUeS+Q6BTbhXOmwR86wXh2N87ZFOZZeZ+5aU/dizfuTU8e6YA91sCUp92rv7VLfPjv7d+rUKUyaNKnG9ydOnIhTp04pVh6DAiIiUi+Ftk62V35+fjh48GCN7x86dAh+fn6KlcdQkIiI1MvBhw9mzJiBSZMmISMjA9HR0fDx8YFGo0FeXh5SU1OxZs0aJCUlKVYegwIiIiI7NXnyZDRp0gRvv/02Vq1ahdLS8ijGyckJYWFh2LhxI5588knFymNQYHdMfSTmniGufK2U542N09bVdsKm6m+PWxybq6Oln4cayPk87PGzlMJWPzZNtZPa21BBDt5TAAAjRozAiBEjcO/ePVy+fBkA0LRpU6vssMiggIiI1MuBlzk25uLiouj8geowKCAiIrJjXLyoXpPTDWjptdbsipQzjGFpPlKoYZhFqTZUkpzPSu1d3bb6P2rv/x/shIMPH3DxIiIiotoqg7xf7HY+fMDFi4iIiGrLwdcpUNXiRYmJidBoNIiLi9OfE0IgISEB/v7+cHd3R2RkJDIzM+XWk4iIqN5RzeJFR44cwerVq9GpUyeD84sWLcLSpUuxfv16tG3bFvPmzUN0dDTOnj0LLy8v2RVWJ3sfp7P3+tVGXdyDI7Qbkco5+JwCVSxedPPmTTz11FN4//33MW/ePP15IQSSkpIwZ84cDBs2DACwYcMG+Pj4IDk5GRMnTqySV1FREYqKivSvCwsLLakSERHVRw7+SKKtFy+yaPhgypQpGDRoEPr3729wPisrC3l5eYiJidGf02q1iIiIqLH7IzExETqdTn8o+WgFERGR2o0YMQLp6em4ffs2cnJykJOTg9u3byM9PV3RgACwoKfgk08+wbFjx6qd6ZiXlwcA8PHxMTjv4+ODCxcuVJvf7NmzER8fr39dWFjIwICIiGrHwYcPKrO7xYuys7Px4osvYvfu3XBzc6sxnUajMXgthKhyroJWq4VWq5VSDSIionL1KCgAgGvXrmHDhg04f/48/Pz8MG7cOEX/kJY0fJCRkYH8/HyEhYXB2dkZzs7OSEtLw7Jly+Ds7KzvIajoMaiQn59fpfeAiIiITPP398eVK1cAlA/Rd+jQAW+99RbOnz+PVatWoWPHjvjxxx8VK09SUBAVFYWTJ0/ixIkT+iM8PBxPPfUUTpw4gdatW8PX1xepqan6a4qLi5GWloZevXopVmkiIiIADr9OQV5enn5y4SuvvIJ27drh559/xu7du/HTTz+hb9++eO211xQrT9LwgZeXF0JDQw3ONWzYEE2aNNGfj4uLw4IFC9CmTRu0adMGCxYsgIeHB0aPHq1Ype2flN3yzC2da620pnZcM5eXFDUPM0lbxtU4n7sm3jfXxlLylfJfRMqyx1I+S1P5Sm0nS3dutObip1K+i7XNR0mm/j8bM25vY1K+p6Y+S2t9zubyNVZTW9hwsVwHX9Gwsu+++w5r1qyBh4cHgPLh91dffRV/+9vfFCtD8U9u5syZuHPnDiZPnoxr166he/fu2L17dz1eo4CIiMhyFXPyioqKqp3I/8cffyhWluygYP/+/QavNRoNEhISkJCQIDdrIiIi0xx8nQKgfOje2dkZhYWFOHfuHEJCQvTvXbx4EU2bNlWsLG6IRERE6uXgTx/MnTvX4HXF0EGFzz//HH379lWsPAYFViFlTNvctbZIa83lek2Nf0thbmzT3PuWXmeqzsb/fSytg7lypLSbnPuxxnX2Wo4UcuYBGZPyHTGV1lqfs9TvcE3l2PBzrGdBgbHFixcrWh53SSQiIiIA7CkgIiI1qwdzCmyJQQEREamXgw8f2BqHD2zCudLhCOU4Emc4Vrs52v3UZ/wsqXrffvutwe7CSmJQQERE6lWqwKEysbGxyMnJsUreDD+JiEi9BOTNCxBKVcR2hLBepRkU2D1LlytVqkwly5WTr7lrbdFOUupgTE6drPV5yCFl2WwpS26rgZwfm0p9T+3x/yg5AgYFRESkXvVgouHGjRsNXpeUlGDLli1o1qyZ/tzYsWMVKYtBARERqVc9eCRx3bp1Bq/v3buH//znP3B3dwdQvr0AgwIiIqJ6YN++fQavvby8kJycjNatWyteFoMCu2etZY9tkY+S+Zq71hbL91qrDnLLtUUdpJRTV+1UVxxpaXKp+dbFnCcj9WD4wJYYFBARkXoxKFAUgwIiIlKvejCnwNgrr7yCxo0bWyVvBgVEREQqMnv2bKvlzaDAJhxtDFWK+nzv5Jj4nf4fO2gLDh8oikEBERGpVxnk/WJX4fCBNXHvAyIiIgLAngIiIlKzejjR0JoYFBARScL9AeyKA88pCAoKgkajkXxdXFwcpk2bZlGZDAqIiIjs0Pr16y26LjAw0OIyGRQQEZF6OfDwQUREhM3L5ERDm3CudNgjZ1ivjra6d0vLUfLerdmOVJW9tLc91EEpctq0jj6PUgUOFXnrrbcAAD/88APu3buneP4MCoiIiCT4+uuv8fjjj8Pf3x8ajQafffaZyfT79++HRqOpcvz444+Sy+7Tpw8AICEhAZ06dUKnTp0wevRoJCYmYvv27fj9998tuSU9RwhtiYiovqqDiYa3bt3CQw89hGeeeQbDhw+v9XVnz56Ft7e3/vX9998vuezevXsDALZs2QIAuH37Nk6dOoWTJ09iz549mDt3LgYOHIh//etfkvMGGBQQEZGaKTSnoLCw0OC0VquFVqut9pLY2FjExsZKLqpZs2Zo1KiR5OtM8fDwQLdu3dCtWzf9ubCwMIuDAg4f2ERJpcMelcB6dbTVvVtajpL3bs12pKrqqr2Ny3Wkz1zO/dRRW1SsaGjp8WdQEBAQAJ1Opz8SExMVr2qXLl3g5+eHqKgo7Nu3T/H8K6Snp1t8LXsKiIio3svOzjbo2q+pl8ASfn5+WL16NcLCwlBUVIQPP/wQUVFR2L9/Px555BFFysjNzUXjxo2h1Wrh4uJicT4MCoiISL1KIa/P+885Bd7e3gZBgZKCg4MRHBysf92zZ09kZ2djyZIligUFY8aMwc8//4zhw4djyZIlFufDoICIiNRLpesU9OjRA5s2bVIsvz179gCARU80VMY5BURERDZ2/Phx+Pn5Sb7u3//+N4DyJxnKyqpGNO3atZNVL/YUEBGReik0fCDFzZs38dNPP+lfZ2Vl4cSJE2jcuDFatmyJ2bNnIycnBxs3bgQAJCUlITAwECEhISguLsamTZuQkpKClJQUyWWHhoYCAKZPn46ffvoJnp6eCAkJQWhoKEJDQzFo0CDpN1QJgwIiIlKvOhg+OHr0KPr166d/HR8fDwAYN24c1q9fj9zcXFy8eFH/fnFxMWbMmIGcnBy4u7sjJCQEO3bswMCBAyWXHRUVBQDYuXMngPJHKU+dOoVTp04hNTVVdlCgEUIIWTkorLCwEDqdDu4ApO8NVTduiTV1XQUiIrtRWHgHOt0LKCgosNrkvYrfFQUDAW/LJ9uj8B6g2wmr1lWO8PBwhIWF6Y9OnTrJerrAHPYUEBGRetXB8IEt9ezZExkZGdi0aRPu3LkDV1dXhISEoFevXhg5cqR+hUOlMCggIiL1cvCg4J133gEAlJaWIjMzE0ePHsXRo0fx5ZdfYvny5RgzZgzWrVsHjUaZvnU+fUBERGTnnJyc0KlTJzz77LNYvnw5zp07h127dmHnzp1Yu3atYuUwKCAiksWRtk5WIYH/TTa05LCrWXXSREdHY968eVi1apVieTIoICIi9ZKz74HcHRbtQI8ePQwej5SLQQEREamXgwcF7733Hg4fPoyioqJq3//jjz8UfRqB/V1ERER26tVXX0VhYSGcnZ3RoUMHhIeHIzw8HO3bt8ft27cxe/ZsxfZPABgU2EjlZnaE7VXrgvFX1bgdHbmNzd27pWnJMnJ+bEr5ntbFZ6nC749K9z6orWvXruHnn39GRkaG/khJScH169cBlC9rLGcDJGMMCoiISL1KIW+lOzsfPgCABx54AA888ACefPJJ/bnffvsN9+7dQ1BQkKJlMSggIiJSmRYtWlglXwYFNqGCLji7Z64NHbmNpdybI7eDvZDTxvb+Warw++Pgwwe2xqCAiIjUy4GHD4KCgixaqTAuLg7Tpk2zqEwGBURERHZo/fr1Fl0XGBhocZkMCoiISL3KIO+vfTsePoiIiLB5mQwKbMJWj8vZ42N5Ur5ich61s4d7t9bjXPb4SKKpcqR8VtW9b2+U+g4b5yXnkUR7+K7ZiTLIGz6w46Dg4sWLaNmyZa3T5+TkoHnz5rLK5IqGREREdqhr166YMGECDh8+XGOagoICvP/++wgNDcWWLVtkl8meAiIiUi+5EwXteKLhmTNnsGDBAvzlL3+Bi4sLwsPD4e/vDzc3N1y7dg2nT59GZmYmwsPDsXjxYsTGxsoukz0FRESkXg6890Hjxo2xZMkSXLp0CStWrEDbtm1x+fJlnD9/HgDw1FNPISMjA99++60iAQHAngKFmGtGU++bG281lVYKKeOTSpYrRV3MC5A6/m1p3lLHj9XGVP2l3Js9zp+wl3KlsIc5NjbiwHMKKri5uWHYsGEYNmyY1ctiTwEREREBUP+fJ0REVJ858JyCmly/fh1ffvklcnJyoNFo4OfnhwEDBuC+++6TnTd7CoiISL3KFDhUZO3atejWrRvS09NRVlaG0tJSpKeno0ePHli7dq3s/DVCCKFAPRVTWFgInU4Hd8gbJrKlW2JNXVeBiMhuFBbegU73AgoKCuDt7W2lMsp/VxS0BrydZORTCuh+gVXrqqTg4GBkZGTA09PT4PyNGzcQFhaGc+fOycqfwwdERKRecv/SV1lPgUajwc2bN6sEBTdv3rRonwRjDAqIiEi9SgHI6e9WWVCwZMkSREREIDQ0VL964W+//YbMzEz83//9n+z8GRQQERGpxGOPPYbY2FgcPnwYly5dghACzZs3R7du3eDkJGMc5U8MCoiISL3q2fABADg5OaFnz55VzmdkZCAsLExW3pKfPsjJycHTTz+NJk2awMPDA507d0ZGRob+fSEEEhIS4O/vD3d3d0RGRiIzM1NWJYmIiKrlwCsaSvXXv/5Vdh6SegquXbuG3r17o1+/fvjiiy/QrFkz/Pzzz2jUqJE+zaJFi7B06VKsX78ebdu2xbx58xAdHY2zZ8/Cy8tLdoWJiIjqqyeffLLa80IIXL16VXb+koKCt956CwEBAVi3bp3+XGBgoEGlkpKSMGfOHP1yjBs2bICPjw+Sk5MxceJE2RVWJ6WWu5WzLWtdLXOs1LLNcpYjVmqpXKmjbZben5ythuvT1sl1da+mcOtkm6tnEw337NmDDz/8sMrTB0IIfP3117Lzl/RTbtu2bRgwYACeeOIJpKWloXnz5pg8eTImTJgAAMjKykJeXh5iYmL012i1WkRERODgwYPVBgVFRUUoKirSvy4sLLT0XoiIqL6pZ3MKIiMj4enpiYiIiCrvdenSRXb+kuYU/PLLL1ixYgXatGmDL7/8EpMmTcK0adOwceNGAEBeXh4AwMfHx+A6Hx8f/XvGEhMTodPp9EdAQIAl90FERPVRGeTNJ1BZULBly5ZqAwIA2LVrl+z8JQUFZWVlePjhh7FgwQJ06dIFEydOxIQJE7BixQqDdMYLKAghalxUYfbs2SgoKNAf2dnZEm+BiIiIlCBp+MDPzw8dOnQwONe+fXukpKQAAHx9fQGU9xj4+fnp0+Tn51fpPaig1Wqh1WolVVp9pIzLyRnDM3Wtpe/JpVTe5vKxtBxbfTZy8raXOta2HGt9VtbKx5blKPVZWuveVTCHwJjcrZPtaqH/msXHx1d7XqPRwM3NDQ8++CCGDBmCxo0byypHUlDQu3dvnD171uDcuXPn0KpVKwBAUFAQfH19kZqaqh/bKC4uRlpaGt566y1ZFSUiIqqiFPUiKDh+/DiOHTuG0tJSBAcHQwiB8+fPw8nJCe3atcPy5cvxz3/+EwcOHKjyx7sUkoYPpk+fjvT0dCxYsAA//fQTkpOTsXr1akyZMgVAecQSFxeHBQsWYOvWrTh16hTGjx8PDw8PjB492uJKEhER1WdDhgxB//79cenSJWRkZODYsWPIyclBdHQ0Ro0ahZycHDzyyCOYPn26rHIk75K4fft2zJ49G+fPn0dQUBDi4+P1Tx8A5fMH3njjDaxatQrXrl1D9+7d8d577yE0NLRW+XOXRCKyb3Ie25PySKK16mD9fG26S6I74C3jl0WhAHR37H+XxObNmyM1NbVKL0BmZiZiYmKQk5ODY8eOISYmBpcvX7a4HMnLHD/22GN47LHHanxfo9EgISEBCQkJFleKiIioVurJnIKCggLk5+dXCQr++OMP/aP8jRo1QnFxsaxyJC9zTERERLY1ZMgQPPvss9i6dSt+++035OTkYOvWrXjuuecwdOhQAMDhw4fRtm1bWeVwQyQiIlKvejLRcNWqVZg+fTpGjhyJkpLyYR1nZ2eMGzcOb7/9NgCgXbt2WLNG3nC25DkF1uaYcwrkjCNauiyqnCWEjaltmWMl8zWV1hwuc1x9HZRavpfLHNecly3+P9TMpnMKNArMKRD2P6egws2bN/HLL79ACIEHHnigynLHcrGngIiISCU8PT3RqVMnq+XPoICIiNRLQDVDAHJdv34da9euxZkzZ6DRaNC+fXs899xz0Ol0ipXBiYZERKRacrY9qDjU4OjRo3jggQfw9ttv4+rVq7h8+TLefvttPPDAAzh27Jhi5bCnwCastXSxUuVwmWPl00rFZY5rd62laeVQ4zLH9vizwDrk/mJXS1Awffp0DB48GO+//z6cnct/dZeUlOD5559HXFycItsmAwwKiIiI7N7Ro0cNAgKg/OmDmTNnIjw8XLFyOHxARESqVabAoQbe3t64ePFilfPZ2dnw8vJSrBz2FNiEUkubqpFSjyRKKcf2j2BZlz0+plefyflOK/VIorWo7/tTX4YPRowYgeeeew5LlixBr169oNFocODAAbz00ksYNWqUYuUwKCAiIrJzS5YsgUajwdixY1FSUgIhBFxdXfGPf/wDCxcuVKwcBgVERKRacocA1DJ84Orqin//+99ITEzEzz//DCEEHnzwQXh4eChaDoMCIiJSrboYPvj666+xePFiZGRkIDc3F1u3btXvP1CTtLQ0xMfHIzMzE/7+/pg5cyYmTZpk8pr4+Pha12np0qW1TmsKgwKbsP9xOeux98fG1PDZ2ONjevWZvT9iLAe/P7Vx69YtPPTQQ3jmmWcwfPhws+mzsrIwcOBATJgwAZs2bcK3336LyZMn4/777zd5/fHjx2tVH41GuU0BGBQQEZFqlUFeT4ElwwexsbGIjY2tdfqVK1eiZcuWSEpKAgC0b98eR48exZIlS0wGBfv27bOgdvLwkUQiIlItpR5JLCwsNDiKiooUq+OhQ4cQExNjcG7AgAE4evQo7t27p1g5SmBQQERE9V5AQAB0Op3+SExMVCzvvLw8+Pj4GJzz8fFBSUkJLl++rFg5SuDwARGRJOp7lt+RKTXRMDs722DrZK1WK6daVRiP+wshqj1f1xgUEBGRaikVFHh7exsEBUry9fVFXl6ewbn8/Hw4OzujSZMmVinTUgwKiIhItdSwTkHPnj3x+eefG5zbvXs3wsPD4eLiYoMa1B7nFBAREUlw8+ZNnDhxAidOnABQ/sjhiRMn9HsTzJ49G2PHjtWnnzRpEi5cuID4+HicOXMGH3zwAdauXYsZM2bURfVNYk8BEZEknENgT+pi8aKjR4+iX79++tcViwyNGzcO69evR25ursHmRUFBQdi5cyemT5+O9957D/7+/li2bFmt1jiwNY2omO1gJwoLC6HT6eAOwL6mX9TsllhT11UgIrIbhYV3oNO9gIKCAquN01f8rjgBQM4egTcAdAasWlc14fABERERAeDwARER6anvccu6WNHQkTEoICIi1aqLOQWOjMMHREREBIA9BUREpGJqWKdATRgUEBHRn+x/DoExDh8oi8MHREREBIA9BUREpGLsKVAWgwIiIlItzilQFoMCIiJSLfYUKItzCoiIiAgAewqIiEjFBOQNAdjV5j92gEEBERGpFocPlMXhAyIiIgLAngIiIlIx9hQoi0EBERGpFh9JVBaDApuo3MzqW0aUiOoL9W2dTMpiUEBERKrF4QNlMSggIiLVYlCgLD59QERERADYU0CqwbFOshdyvoucX6Q0TjRUFoMCIiJSrTLIGwJgUGCIQQEREakWewqUxaCAVMJaXa1KdQVLvdZa7LFOjsa4TaUMCdj752Hv9SNrY1BARESqxacPlMWggIiIVItBgbL4SCIREREBYE+BjdSncTq1jWnLqZ893ps91snRqO077tg40VBZDAqIiEi1OHygLA4fEBEREQD2FBARkYqxp0BZDApIYRxfJUfH77g9EZA3L0AoVREHweEDIiIiAsCeAiIiUjEOHyiLQQEREakWH0lUFoMCC90SaySk5napRI7DHrZOttZaCepbg4E9BcrinAIiIiICwJ4CIiJSMfYUKItBgU3YfxccEdWWPSyNba2fKer7WcU5Bcri8AEREREBkBgUlJSU4NVXX0VQUBDc3d3RunVrvPnmmygr+1+sJYRAQkIC/P394e7ujsjISGRmZipecSIiolIFDvofSUHBW2+9hZUrV+Ldd9/FmTNnsGjRIixevBjvvPOOPs2iRYuwdOlSvPvuuzhy5Ah8fX0RHR2NGzduKF55IiKq38ogLyDg8IEhSUHBoUOHMGTIEAwaNAiBgYH429/+hpiYGBw9ehRAeS9BUlIS5syZg2HDhiE0NBQbNmzA7du3kZycbJUbICIiImVICgr69OmDr776CufOnQMAfP/99zhw4AAGDhwIAMjKykJeXh5iYmL012i1WkRERODgwYPV5llUVITCwkKDg4iIqDbKFDjofyQ9ffDyyy+joKAA7dq1g5OTE0pLSzF//nyMGjUKAJCXlwcA8PHxMbjOx8cHFy5cqDbPxMREvPHGG5bUnYiI6jk+kqgsST0FmzdvxqZNm5CcnIxjx45hw4YNWLJkCTZs2GCQTqPRGLwWQlQ5V2H27NkoKCjQH9nZ2RJvgYiIiJQgqafgpZdewqxZszBy5EgAQMeOHXHhwgUkJiZi3Lhx8PX1BVDeY+Dn56e/Lj8/v0rvQQWtVgutVmtp/YmIqB7jOgXKktRTcPv2bTRoYHiJk5OT/pHEoKAg+Pr6IjU1Vf9+cXEx0tLS0KtXLwWqS0RE9D98JFFZknoKHn/8ccyfPx8tW7ZESEgIjh8/jqVLl+LZZ58FUD5sEBcXhwULFqBNmzZo06YNFixYAA8PD4wePdoqN0BERPUX5xQoS1JQ8M477+C1117D5MmTkZ+fD39/f0ycOBGvv/66Ps3MmTNx584dTJ48GdeuXUP37t2xe/dueHl5KV559eAuidZnaRurb1c40xztfhyNrX4W8P8DWUYjhBB1XYnKCgsLodPp4A6g+qmJ9oFbJ9sb/hAs52j342jqR1BQWHgHOt0LKCgogLe3t0V5mC+j/HfFbABuMvK5CyARsGpd1YR7HxARkWrV1YqGy5cvR1BQENzc3BAWFoZvvvmmxrT79++HRqOpcvz4448Wlm49DAqIiIgk2Lx5M+Li4jBnzhwcP34cffv2RWxsLC5evGjyurNnzyI3N1d/tGnTxkY1rj0GBUS15mx0SH3fWuVWVmJ0kPVZ4zM3zldq3vXnO1AXTx8sXboUzz33HJ5//nm0b98eSUlJCAgIwIoVK0xe16xZM/j6+uoPJycnC0q3LgYFRESkWkotc2y83H5RUVG15RUXFyMjI8NgOX8AiImJqXE5/wpdunSBn58foqKisG/fPktu1+oYFBARUb0XEBAAnU6nPxITE6tNd/nyZZSWlla7nH/FUv/G/Pz8sHr1aqSkpGDLli0IDg5GVFQUvv76a8XvQy6l+7uIiIhsRql1CrKzsw2ePjC30q6U5fyDg4MRHBysf92zZ09kZ2djyZIleOSRRyyruJUwKLAJxx/Xq3uWtrGU68yltdbnzO+PfVPyO2RpWqWo77um1DLH3t7etXoksWnTpnBycqrSK2BqOf/q9OjRA5s2bZJSVZvg8AEREVEtubq6IiwszGA5fwBITU2VtJz/8ePHDfYIshfsKSAiItWqi2WO4+PjMWbMGISHh6Nnz55YvXo1Ll68iEmTJgEo3/03JycHGzduBAAkJSUhMDAQISEhKC4uxqZNm5CSkoKUlBQZNbcOBgVERKRadREUjBgxAleuXMGbb76J3NxchIaGYufOnWjVqhUAIDc312DNguLiYsyYMQM5OTlwd3dHSEgIduzYgYEDB8qouXVwmWMLSVvmmIio/rDlMsd/B+AqI59iAKvBZY4rcE4BERERAeDwARERqRi3TlYWgwIiIvqT+nbZZFCgLA4fEBEREQD2FBARkYoptXgRlWNQQEREqsXhA2UxKCAioj/Z/xwCsi4GBUREpFocPlAWgwIiIlItDh8oi08fEBEREQD2FBARkYqVQd5f+xw+MMSggIiIVItzCpTFoICIiFSrFPLGwTmnwBDnFBAREREA9hQQEZGKsadAWQwKiIhItTinQFkcPiAiIiIA7CkgIiIV4/CBshgUEBGRanH4QFkcPiAiIiIA7CkgIiIV44qGymJQQEREqlUKQCPzevofDh8QERERAPYUEBGRinGiobIYFBARkWpx+EBZDAqIiEi1GBQoi3MKiIiICAB7CoiISMU4p0BZDAqIiEi1OHygLA4fEBEREQD2FBARkYoJyBsCEEpVxEEwKCAiItWS2/3P4QNDHD4gIiIiAOwpICIiFWNPgbIYFBARkWqVQd7TB3wk0RCHD4iIiAgAewqIiEjFOHygLAYFRESkWgwKlMWggIiIVItzCpTFOQVEREQEgD0FRESkYnL/0mdPgSEGBUREpFoMCpTF4QMiIiICwJ4CIiKJjH9sltRJLahcKeRtasSeAkMMCoiISLUYFCiLwwdEREQEgD0FRESkYpxoqCwGBUREknAOgT3h8IGyOHxAREREANhTQEREKlYGeT0Fcq51ROwpICIi1SpT4LDE8uXLERQUBDc3N4SFheGbb74xmT4tLQ1hYWFwc3ND69atsXLlSgtLti4GBUREpFqlChxSbd68GXFxcZgzZw6OHz+Ovn37IjY2FhcvXqw2fVZWFgYOHIi+ffvi+PHjeOWVVzBt2jSkpKRYULp1aYQQdtV7UlhYCJ1OB3fI2/nK2m6JNXVdBSIiu1RYeAc63QsoKCiAt7e3lcoo/13hCXm/KwSAm4Ckunbv3h0PP/wwVqxYoT/Xvn17DB06FImJiVXSv/zyy9i2bRvOnDmjPzdp0iR8//33OHTokIzaK8/u5hRUxCh2FalUo7DwTl1XgYjILlX8fLTF35ylkB8UAOVBRmVarRZarbZK+uLiYmRkZGDWrFkG52NiYnDw4MFqyzh06BBiYmIMzg0YMABr167FvXv34OLiYvkNKMzugoIbN24AAO7WcT3M0eleqOsqEBHZtRs3bkCn01klb1dXV/j6+iIvL092Xp6enggICDA4N3fuXCQkJFRJe/nyZZSWlsLHx8fgvI+PT411ycvLqzZ9SUkJLl++DD8/P3k3oCC7Cwr8/f2RnZ0NIQRatmyJ7Oxsq3U/OYLCwkIEBASwncxgO9UO26l22E6mCSFw48YN+Pv7W60MNzc3ZGVlobi4WHZeQghoNIb9DdX1ElRmnL66PMylr+58XbO7oKBBgwZo0aKFvivH29ub/+lqge1UO2yn2mE71Q7bqWbW6iGozM3NDW5ublYvp7KmTZvCycmpSq9Afn5+ld6ACtX1aOTn58PZ2RlNmjSxWl0twacPiIiIasnV1RVhYWFITU01OJ+amopevXpVe03Pnj2rpN+9ezfCw8Ptaj4BwKCAiIhIkvj4eKxZswYffPABzpw5g+nTp+PixYuYNGkSAGD27NkYO3asPv2kSZNw4cIFxMfH48yZM/jggw+wdu1azJgxo65uoUZ2N3xQQavVYu7cuWbHdeo7tlPtsJ1qh+1UO2yn+m3EiBG4cuUK3nzzTeTm5iI0NBQ7d+5Eq1atAAC5ubkGaxYEBQVh586dmD59Ot577z34+/tj2bJlGD58eF3dQo3sbp0CIiIiqhscPiAiIiIADAqIiIjoTwwKiIiICACDAiIiIvoTgwIiIiICYMdBgdS9qh1ZYmIiunbtCi8vLzRr1gxDhw7F2bNnDdIIIZCQkAB/f3+4u7sjMjISmZmZdVRj+5CYmAiNRoO4uDj9ObZTuZycHDz99NNo0qQJPDw80LlzZ2RkZOjfZzsBJSUlePXVVxEUFAR3d3e0bt0ab775JsrKyvRp2E7kcIQd+uSTT4SLi4t4//33xenTp8WLL74oGjZsKC5cuFDXVasTAwYMEOvWrROnTp0SJ06cEIMGDRItW7YUN2/e1KdZuHCh8PLyEikpKeLkyZNixIgRws/PTxQWFtZhzevO4cOHRWBgoOjUqZN48cUX9efZTkJcvXpVtGrVSowfP1589913IisrS+zZs0f89NNP+jRsJyHmzZsnmjRpIrZv3y6ysrLEp59+Kjw9PUVSUpI+DduJHI1dBgXdunUTkyZNMjjXrl07MWvWrDqqkX3Jz88XAERaWpoQQoiysjLh6+srFi5cqE9z9+5dodPpxMqVK+uqmnXmxo0bok2bNiI1NVVERETogwK2U7mXX35Z9OnTp8b32U7lBg0aJJ599lmDc8OGDRNPP/20EILtRI7J7oYPKvaqNt572tRe1fVNQUEBAKBx48YAgKysLOTl5Rm0mVarRURERL1ssylTpmDQoEHo37+/wXm2U7lt27YhPDwcTzzxBJo1a4YuXbrg/fff17/PdirXp08ffPXVVzh37hwA4Pvvv8eBAwcwcOBAAGwnckx2t8yxJXtV1ydCCMTHx6NPnz4IDQ0FAH27VNdmFy5csHkd69Inn3yCY8eO4ciRI1XeYzuV++WXX7BixQrEx8fjlVdeweHDhzFt2jRotVqMHTuW7fSnl19+GQUFBWjXrh2cnJxQWlqK+fPnY9SoUQD4fSLHZHdBQQWpe1XXF1OnTsUPP/yAAwcOVHmvvrdZdnY2XnzxRezevdvkdqr1vZ3KysoQHh6OBQsWAAC6dOmCzMxMrFixwmATl/reTps3b8amTZuQnJyMkJAQnDhxAnFxcfD398e4ceP06ep7O5FjsbvhA0v2qq4vXnjhBWzbtg379u1DixYt9Od9fX0BoN63WUZGBvLz8xEWFgZnZ2c4OzsjLS0Ny5Ytg7Ozs74t6ns7+fn5oUOHDgbn2rdvr9/Ahd+nci+99BJmzZqFkSNHomPHjhgzZgymT5+OxMREAGwnckx2FxRYsle1oxNCYOrUqdiyZQv27t2LoKAgg/eDgoLg6+tr0GbFxcVIS0urV20WFRWFkydP4sSJE/ojPDwcTz31FE6cOIHWrVuznQD07t27yiOt586d0+/wxu9Tudu3b6NBA8MfkU5OTvpHEtlO5JDqcJJjjSoeSVy7dq04ffq0iIuLEw0bNhS//vprXVetTvzjH/8QOp1O7N+/X+Tm5uqP27dv69MsXLhQ6HQ6sWXLFnHy5EkxatQoPholhMHTB0KwnYQof1zT2dlZzJ8/X5w/f1589NFHwsPDQ2zatEmfhu0kxLhx40Tz5s31jyRu2bJFNG3aVMycOVOfhu1EjsYugwIhhHjvvfdEq1athKurq3j44Yf1j9/VRwCqPdatW6dPU1ZWJubOnSt8fX2FVqsVjzzyiDh58mTdVdpOGAcFbKdyn3/+uQgNDRVarVa0a9dOrF692uB9tpMQhYWF4sUXXxQtW7YUbm5uonXr1mLOnDmiqKhIn4btRI5GI4QQddlTQURERPbB7uYUEBERUd1gUEBEREQAGBQQERHRnxgUEBEREQAGBURERPQnBgVEREQEgEEBERER/YlBAREREQFgUEBERER/YlBAREREABgUEBER0Z/+P+tDl9D3ugduAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOmklEQVR4nO3deVxU1f8/8NfEMqDCuLMoCpYraBq44BIWih+0so9+yrRcWuXjFvIpC62PViqmfo2s1Exz+RjWzw9aVlriR8RMSUUpRTMrUyKI3BhX1vP7g5iYAYa5c+8wc2dez8fjPh7MnXvPOffcgXlzzrnnaIQQAkREROTybrN3AYiIiMgxMCggIiIiAAwKiIiI6E8MCoiIiAgAgwIiIiL6E4MCIiIiAsCggIiIiP7EoICIiIgAMCggIiKiPzEoUJGUlBQkJyfbtQyfffYZJkyYgO7du8PDwwMajcbs8SdOnMBDDz2EVq1aQavVIjg4GFOmTDE6Zt68edBoNDU2Ly+vWtP88MMP0bNnT3h5eSEwMBDx8fG4du2aYtcoxy+//AKNRoP169fbuyhWkXJ/f/jhB4wePRrNmjVDo0aN0LdvX2zfvr0BS9uwXnrpJWg0GoSFhdX6/u7duxEZGYlGjRqhZcuWmDRpEgoLCxu4lETyMChQEUcICrZt24bMzEx069YNd955p9lj09PT0adPH+j1eqxatQq7du3Ca6+9VueX/RdffIGDBw8atn379tU45oMPPsDYsWPRu3dv7Ny5E3PnzsX69esxatQoRa7P1Vl6f3/55RdERkbi9OnTWLVqFbZs2YJWrVrhwQcfRGpqagOWuGFkZ2dj6dKl8PPzq/X9jIwMxMbGws/PD5988gnefPNN7N69G9HR0SguLm7g0hLJIEg1RowYIdq3b2/XMpSXlxt+njp1qqjrI3T9+nUREBAgRowYISoqKsymOXfuXAFA/PHHH2aPKysrEwEBASImJsZo/wcffCAAiB07dlh4FbZz9uxZAUCsW7fO3kWxiqX3d/LkycLLy0v8+uuvhn1lZWWia9euIigoyCgdOcrKysStW7cUSctapaWlomfPnmLGjBkiKipKhIaG1jimd+/eolu3bqK0tNSw7+uvvxYAxIoVKxqyuESysKXAQfzxxx945plnEBQUBK1Wi1atWmHAgAHYvXs3AGDw4MH4/PPPce7cOaMm9iolJSWYP38+unTpYjj/8ccfxx9//GGUT3BwMO677z5s27YNPXr0gJeXFzp06IDly5dbVM7bbrPsI7Nlyxbk5+fj+eefr7eLwVKZmZnIz8/H448/brT/oYceQpMmTbBt2zar0/7+++8xduxY+Pn5QavVol27dpgwYYLRf3knTpzAyJEj0axZM3h5eaFnz57YsGFDvWlPmjQJwcHBNfZXdZtUp9FoMG3aNKxbtw6dO3eGt7c3IiIikJmZCSEElixZgpCQEDRp0gT33nsvfvzxR6PzBw8ejLCwMBw+fBiDBg1Co0aN0KFDByxatAgVFRX1ltXS+/v111/jzjvvRJs2bQz73NzcEBsbi9zcXBw6dMiidKqr6npZvHgx5s+fj5CQEGi1WqSnpwMAtm/fbmie9/HxwdChQ3Hw4EHD+Tk5OdBoNNiyZYthX1ZWFjQaDUJDQ43yeuCBBxAeHm5RuRYtWoRLly5hwYIFtb6fl5eHw4cPY/z48XB3dzfs79+/Pzp16iTrc0nU0BgUOIjx48fj448/xr///W/s2rULa9aswZAhQ3Dx4kUAwIoVKzBgwAD4+/sbNbEDQEVFBUaOHIlFixZh3Lhx+Pzzz7Fo0SKkpaVh8ODBuHnzplFe2dnZiI+Px8yZM7Ft2zb0798fzz77LJYuXarY9VQ1/ZeXl2PgwIHw9PREs2bNMHbsWPz222+1ntO9e3e4ubnBz88PEyZMwPnz543eP3HiBACgR48eRvs9PDzQpUsXw/tVNBoNBg8eXG9Zv/32W/Tu3RuZmZl49dVXsXPnTiQlJaG4uBglJSUAgNOnT6N///7IycnB8uXLsXXrVnTr1g2TJk3C4sWLLaoTS3322WdYs2YNFi1ahM2bN+Pq1asYMWIE/vWvf+Hrr7/G22+/jdWrV+PkyZMYPXo0hMlCpwUFBXj00Ufx2GOPYfv27YiNjUViYiI2bdqkWBlLSkqg1Wpr7K/a991331md9vLly7Fnzx4sXboUO3fuRJcuXZCSkoKRI0fC19cXmzdvxtq1a3H58mUMHjwY+/fvBwCEhoYiICDAEEgDlf383t7eOHnypOFzV1ZWhoyMDAwZMqTespw8eRLz58/HypUr0aRJk1qPqetzWbXP9HNJ5NDs3VRBlZo0aSLi4+PNHlNX98HmzZsFAJGammq0//DhwzWaL9u3by80Go3Izs42Onbo0KHC19dXXL9+3eIym2teHjZsmAAgmjZtKmbNmiX27NkjVq1aJVq0aCHuuOMOo3w2btwoFixYIHbs2CH27NkjFi1aJJo3by78/PyMmqcXLFggAIj8/Pwa+cXExIhOnToZ7XNzcxP33ntvvddx7733iqZNm4rCwsI6j3nkkUeEVqsV58+fN9ofGxsrGjVqJK5cuSKEqL37YOLEibXet6puk+oACH9/f3Ht2jXDvo8//lgAED179jTqiklOThYAxHfffWfYFxUVJQCIb775xijdbt26iWHDhtVdCbUwd38ffPBB0bRpU3H16lWj/YMGDRIAxMKFCyXlJcRfdXf77beLkpISw/7y8nIRGBgounfvbtQtcfXqVdG6dWvRv39/w77HHntMdOjQwfB6yJAh4umnnxbNmjUTGzZsEEL81ay/a9cus+UpLy8Xffv2FWPHjjXsq637oKr76uDBgzXSeOaZZ4Snp6eFNUBkf2wpcBB9+vTB+vXrMX/+fGRmZqK0tNTicz/77DM0bdoU999/P8rKygxbz5494e/vj7179xodHxoaWmMQ2bhx46DX63H06FElLsfQVD1mzBi8/vrruOeeezB58mSsXbsWP/74I1JSUgzHjh8/HrNnz0ZsbCzuuecevPDCC9i5cyf++OOPWv8Lr6s7wnR/WVkZ/ve//5kt540bN5CRkYGHH34YrVq1qvO4PXv2IDo6GkFBQUb7J02ahBs3bhg1Y8t1zz33oHHjxobXXbt2BQDExsYaXWPV/nPnzhmd7+/vjz59+hjt69GjR43j5Jg2bRqKioowYcIE/Pzzz/j999/x8ssv48CBAwAs74aozQMPPAAPDw/D69OnT+O3337D+PHjjdJt0qQJRo8ejczMTNy4cQMAEB0djZ9//hlnz57FrVu3sH//fvztb3/DPffcg7S0NACVrQdarRYDBw40W45ly5bhzJkzFg/utfRzSeTIGBQ4iI8++ggTJ07EmjVrEBkZiebNm2PChAkoKCio99zff/8dV65cgaenJzw8PIy2goICXLhwweh4f3//GmlU7avqrpCrRYsWAIBhw4YZ7R82bBg0Gk29wUefPn3QqVMnZGZm1kiztjJeunQJzZs3l1zOy5cvo7y8HG3btjV73MWLFxEQEFBjf2BgYJ1lspbpdXh6eprdf+vWLaP9VfVUnVarrdGNJEd0dDTWrVuHffv24fbbb4e/vz+2bt2K1157DQCMxhpIZVrPVXVbV/1XVFTg8uXLAGDoEti9ezf279+P0tJS3HvvvRgyZIghQNy9ezcGDBgAb2/vOstw/vx5/Pvf/8bcuXPh6emJK1eu4MqVKygrK0NFRQWuXLliqE9bfC6J7IVBgYNo2bIlkpOT8csvv+DcuXNISkrC1q1bMWnSJIvObdGiBQ4fPlzrtmLFCqPjaws0qvbV9oVijdr6V6uz5D9JIYTRcd27dwcAHD9+3Oi4srIyfP/993U+P25O8+bN4ebmhl9//dXscS1atEB+fn6N/VX91C1btqzzXC8vr1ofSzMN1tRm4sSJKCgowMmTJ3HmzBnk5OQAqPzPeNCgQVana/qfddVnsq76v+2229CsWTMAQNu2bdGpUyfs3r0baWlpiIiIQNOmTREdHY38/Hx88803yMzMrHc8wc8//4ybN2/i2WefRbNmzQzb119/jVOnTqFZs2ZITEwEAMPnzvRzWbXPms8lkb0wKHBA7dq1w7Rp0zB06FCj/6jr+m/vvvvuw8WLF1FeXo6IiIgaW+fOnY2Oz8nJwbfffmu0LyUlBT4+PrjrrrsUuYa///3v0Gg02Llzp9H+nTt3QgiBfv36mT0/MzMTZ86cMTqub9++CAgIqDEx0H//+19cu3bNqrkKvL29ERUVhS1btpj9ko6OjsaePXtqDJLcuHEjGjVqZPZ6goODUVhYiN9//92wr6SkBF9++aXk8joad3d3dO3aFXfccQeKioqwevVqjBw5Eu3bt1csj86dO6NNmzZISUkxGlR5/fp1pKamGp5IqDJkyBDs2bMHaWlpGDp0KACgU6dOaNeuHf7973+jtLS03qCgZ8+eSE9Pr7HdeeedCA4ORnp6OqZNmwagslWkT58+2LRpE8rLyw1pZGZm4vTp05xDg9TFzmMaSAhx5coV0atXL7FkyRLx6aefir1794olS5YILy8vMW7cOMNxVQPTVqxYIb755htx+PBhIUTls9yxsbGiefPm4pVXXhE7d+4Uu3fvFuvXrxcTJ04UW7duNaTRvn170aZNG9GuXTvx/vvvi507d4pHH31UABCvv/56vWX95ZdfxJYtW8SWLVvE3/72NwHA8LqqPFWmTZsmbrvtNpGQkCDS0tLEO++8I5o1ayZ69eoliouLDcf16NFDLF68WHz66aciLS1NLFiwQDRt2lQEBgaK3377zSjN//znPwKAeOaZZ0R6erpYvXq1aNq0qRg6dGiNslo60DA7O1s0adJEdOjQQaxevVrs2bNHbN68WYwdO1bo9XohhBDff/+98PHxEZ06dRKbNm0SO3bsMNTb4sWLDWnVNtDw559/Fh4eHmLw4MHi888/F6mpqSIqKkqEhITUOtBw6tSpRvuq0lyyZInR/vT0dEP9V6nrOfq6BjuasvT+/v7772LWrFnik08+EXv27BErVqwQwcHBokOHDiIvL6/Wcs6dO9ds3nVdpxB/DeYbPny4+OSTT8T/+3//T/Tu3Vt4enqKr776yujY1NRUAUAAEBkZGYb9jz/+uAAgmjVrZvU8CnXVb3p6unB3dxd///vfRVpamvjggw9EUFCQCAsLs/s8C0RSMChwALdu3RJxcXGiR48ewtfXV3h7e4vOnTuLuXPnGo3Sv3TpkvjHP/4hmjZtKjQajdEXSmlpqVi6dKm48847hZeXl2jSpIno0qWLmDx5sjhz5ozhuPbt24sRI0aI//73vyI0NFR4enqK4OBgsWzZMovKum7dOsMfXNNt4sSJRseWlZWJRYsWiTvuuEN4eHiIgIAA8c9//lNcvnzZ6LhHHnlE3HHHHaJx48bCw8NDtG/fXsTFxdUICKqkpKSIHj16CE9PT+Hv7y9mzJhRYxS8EJVfsFFRURZd18mTJ8VDDz0kWrRoITw9PUW7du3EpEmTjP6gHz9+XNx///1Cp9MJT09Pceedd9aYpKiuyYt27NghevbsKby9vUWHDh3E22+/XefTB/YMCiy9vxcvXhQxMTGiVatWwsPDQ7Rr105Mnz691gmoPv30UwFArFq1ymze5oICISqfwujbt6/w8vISjRs3FtHR0eLrr7+ucdzly5fFbbfdJho3bmz0FENVYDFq1Kh666EuddWvEELs2rVL9OvXT3h5eYnmzZuLCRMmiN9//93qvIjsQSOEyUPO5NSCg4MRFhaGzz77zN5FIRcxa9YsbN68GWfOnKlzimsicgwcU0BENpWeno6XX36ZAQGRCrjXfwgRkfUOHz5s7yIQkYXYfUBEREQA2H1ARERksZUrV6JHjx7w9fWFr68vIiMjazx6bSojIwPh4eGGBehWrVrVQKWVjkEBERGRhdq2bYtFixbhyJEjOHLkCO69916MHDnSMHmXqbNnz2L48OEYNGgQjh07htmzZ2PGjBlITU1t4JJbxmbdBytWrMCSJUuQn5+P0NBQJCcny5rljIiIyBE1b94cS5YswZNPPlnjvRdeeAHbt2/HqVOnDPvi4uLw7bffKrpmilJsMtDwo48+Qnx8vGG533fffRexsbE4efIk2rVrZ/bciooK/Pbbb/Dx8eFCIkREKiSEwNWrVxEYGChrcaz63Lp1y7C8uRxCiBrfN1qtttblwasrLy/Hli1bcP36dURGRtZ6zMGDBxETE2O0b9iwYVi7di1KS0uNFv9yCLaY/KBPnz4iLi7OaF+XLl3Eiy++WO+5ubm5dU6ewo0bN27c1LPl5uba4itGCCHEzZs3hb+/vyLlbNKkSY195mbg/O6770Tjxo2Fm5ub0Ol04vPPP6/z2I4dO4oFCxYY7atavruuCdrsSfGWgpKSEmRlZeHFF1802h8TE2NYVrW64uJio8VixJ+9Gbm5i+HrW/cqZkRE5Jj0+psICpoFHx8fm+VRUlKCgoIC5Oaeha+vr9Xp6PV6BAWFIDc31ygdc60EnTt3RnZ2Nq5cuYLU1FRMnDgRGRkZ6NatW63Hm7ZCVH3POWJruOJBwYULF1BeXg4/Pz+j/X5+frWuzpeUlIRXXnmlxn5fX28GBUREKtYQX3pVTwE0ZDqenp644447AAARERE4fPgw3nzzTbz77rs1jvX396/x3VdYWAh3d3fFVqVVks0mL6otMqrtA5KYmIiEhATD68qoLQj+uumoOvq6+LDaGcZrx9dUVu1nqZdX/XjTfMylVWby2vRYa9NVkmk+pmW2Nq367oeUerM2nfrSamry+pqZ80zzqT4LX333zvT1NTPv1ZevuWO9zLyn1H2Vc65pPZnOZGiujEqWX87nq/q59c3EWFbHz7Wde8vMe6aU+ltRXz00qfbztTqPql/166mQkY5UZZD3uZFzbiUhRK3LowNAZGQkPv30U6N9u3btQkREhOONJ4ANvpFatmwJNze3WiMj09YDwLLBHERERLVr2KBg9uzZiI2NRVBQEK5evYoPP/wQe/fuxRdffAGg8h/dvLw8bNy4EUDlkwZvv/02EhIS8PTTT+PgwYNYu3YtNm/eLKPMtqP4sFBPT0+Eh4cjLS3NaH9aWhr69++vdHZEROTSyhTYLPf7779j/Pjx6Ny5M6Kjo/HNN9/giy++wNChQwEA+fn5OH/+vOH4kJAQ7NixA3v37kXPnj3x2muvYfny5Rg9erSsq7YVm8xT8NFHH2H8+PFYtWoVIiMjsXr1arz33nvIyclB+/btzZ6r1+uh0+ngDaC23qjrYo3SxSUiIgXp9Teh001HUVGRIv39tedR+V1RVHRO9kBDna69TcuqJjbp0B4zZgwuXryIV199Ffn5+QgLC8OOHTvqDQiIiIikKYe87oNypQriFGw2ym3KlCmYMmWKrZInIiKCIww0dCZc+4CIiIgANNzzcIpprHnK6LX6xhgo+WggEZGrY0uBklQXFBAREf2FQYGS2H1AREREANhSQEREqlYOeU8Q8OmD6lQfFKhvjAGbqoiIlMNHEpXE7gMiIiIC4AQtBURE5Mo40FBJThcUVO9OMF5dEai5AlhTk9fmVjszx3Q1syZmXpsee8XktZQV5cytsiZltTPT8taXVvXjTctnbtXE+q7NvY6fa0vXNC0pKxJWP9f02q+YOdfcine15WtpGWp731y61fM1Lb+5e2V6rrkVIU2PrW81RnP3zpS5tOqrF3OroEpZTdLc58c0bdNzzf2+1Pd3Q8oqiebuu5Ty13c/zP0+m0vX9Hj/aj9frydPJTEoUJLTBQVERORKGBQoiWMKiIiICABbCoiISNX49IGSnDooaKx5xOh1zccVr9goZ9N+OCn9++b65OvLx1pS07E23/quTcovtrkySOnXlVLfSpZfSr7m0q3vXkipJyllMpeWnD/QStVLfWnVV29y6txScupbSvnl1JO5dE39Wu3nmxLSlIvdB0pi9wEREREBcPKWAiIicnZsKVASgwIiIlIxBgVKcqmgQH1TIhMRETUclwoKiIjI2bClQEkMCoiISMX4SKKS+PQBERERAXDxlgKOMahS3xzy5o43Nwe+JWm5KqXqScn6NpdWQ91Xfn6UYe531Nmw+0BJLh0UEBGR2jEoUBKDAiIiUjEGBUpiUFCN8bLLH5u8K2VJ4Asmr80tTSpFfU2rUspY/XVTk/cK6sm3+vVcMXnPXFr1LYtbPd36lgCWMn2vaZmuVPvZ38x7pmnVt4SulKV7zV1PfUtxm1sW94qZMpimbZrP7SavfzdTBtN8qpfD9N7Ut+R0dW1NXv9a61GVWtZTpuqk/qkztxS3uXtX32fP3HLUpvnUt3x4daZ1XL1uTP8emVuGvL6/KeaW265+boVpAUklGBQQEZGKsaVASQwKiIhIxfhIopL4SCIREREBYEtBnRprHjR6bf5xRTnL1zYU077B6q+vSEzL3PWYjkcwVwZT5sph7r36mDvXXHnrU999lbN0b3VXJBwrpQymTtuoDFKu9RcJx8q5d1KY/hd6RcK5Uo6V89+unOXapRxrWsa6zi2WkKZc5ZD33z5bCqpjUEBERCrGMQVKYvcBERERAWBLARERqRpbCpTEoMBCnBKZiMgR8ekDJbH7gIiIiACwpYCIiFSN3QdKYlBgJeMpkdmV4Jq4ol/tWC/UkBgUKIlBARERqRiDAiVxTAEREREBYEsBERGpGlsKlMSgQAF8XNFV8Y9J7Vgv1JD4SKKS2H1AREREANhSQEREqlYGwE3m+VSFQQEREakYgwIlMSiwAY4xICIiNWJQQEREKsaWAiUxKCAiIhXj0wdKYlDQADglMhERqQGDAiIiUrEyyHu6nt0H1TEoICIiFWNQoCROXkRERCpWpsBmuaSkJPTu3Rs+Pj5o3bo1HnzwQZw+fdrsOXv37oVGo6mxff/995LybghsKWhgjvm4Ipe6tQ7rrXasF9dR/V67xn3OyMjA1KlT0bt3b5SVlWHOnDmIiYnByZMn0bhxY7Pnnj59Gr6+vobXrVq1snVxJWNQQEREKlYOeU8QSDv3iy++MHq9bt06tG7dGllZWbj77rvNntu6dWs0bdpUagEbFLsPiIhIxaoeSbR2qwwK9Hq90VZcXGxR7kVFRQCA5s2b13tsr169EBAQgOjoaKSnp1t+iQ2IQQEREbm8oKAg6HQ6w5aUlFTvOUIIJCQkYODAgQgLC6vzuICAAKxevRqpqanYunUrOnfujOjoaOzbt0/JS1AEuw/szDHGGLhGX6DyWG+1Y724Dke412UANDLPB3Jzc436+7Vabb1nTps2Dd999x32799v9rjOnTujc+fOhteRkZHIzc3F0qVL6+1yaGgMCoiISMWUCQp8fX2NgoL6TJ8+Hdu3b8e+ffvQtm1bybn269cPmzZtknyerTEoICIispAQAtOnT8e2bduwd+9ehISEWJXOsWPHEBAQoHDp5GNQQEREKqZMS4Glpk6dipSUFHzyySfw8fFBQUEBAECn08Hb2xsAkJiYiLy8PGzcuBEAkJycjODgYISGhqKkpASbNm1CamoqUlNTZZTbNhgUOBjHGGNARKQWDRsUrFy5EgAwePBgo/3r1q3DpEmTAAD5+fk4f/684b2SkhI899xzyMvLg7e3N0JDQ/H5559j+PDhMsptGxohhLB3IarT6/WVERfk3WZnwaCAiNRGr78JnW46ioqKJPXTS8uj8ruiqGgofH09ZKRTCp0uzaZlVRO2FBARkYqVQ96/kFw6uToGBQ6Oyy4TEZkj97FIR3is0nEwKCAiIhVjUKAkzmhIREREACQGBZYsGSmEwLx58xAYGAhvb28MHjwYOTk5ihaaiIioUsMunezsJAUFVUtGZmZmIi0tDWVlZYiJicH169cNxyxevBjLli3D22+/jcOHD8Pf3x9Dhw7F1atXFS88ERG5OmUWRKJKksYU1LdkpBACycnJmDNnDkaNGgUA2LBhA/z8/JCSkoLJkyfXSLO4uNhoNSq9Xm/NdRAREZFMssYUmC4ZefbsWRQUFCAmJsZwjFarRVRUFA4cOFBrGklJSUYrUwUFBckpEhERuRR2HyjJ6qCgtiUjq6Z79PPzMzrWz8/P8J6pxMREFBUVGbbc3Fxri0RERC6HQYGSrH4k0dySkRqN8UQSQoga+6potVqLlqgkoP7bJeXDXT0te/1SmF6Po/9y1ldeOdfjCPfDHCXvlSPcdyV/l8yla6trk5KPPcrEp93VyqqWgqolI9PT042WjPT39weAGq0ChYWFNVoPiIiI5GNLgZIkBQVCCEybNg1bt27Fnj17aiwZGRISAn9/f6SlpRn2lZSUICMjA/3791emxERERAYMCpQkqY2nviUjNRoN4uPjsXDhQnTs2BEdO3bEwoUL0ahRI4wbN84mF+BalPzwVk/LXs25jtBtIaUM9R0r53oc/Q+TrT579mKrMjji744ty1TX75Ij3GOyhqSgwJIlI2fNmoWbN29iypQpuHz5Mvr27Ytdu3bBx8dHkQITERH9pRyAnMV+K5QqiFOQFBRYssqyRqPBvHnzMG/ePGvLREREZCEGBUriEFEiIlKxMsibcodBQXUMCgiu1//natdLZCv8XXI2DAqIiEjF2FKgJAYFRESkYgwKlCRr7QMiIiJyHmwpUBUpU7OaHmvuXNN+wfr6Cc09599Q06+aO9dW8y5I/XUxVyZLz5PKltMRW5tufZ/FW2bea6g+a6XytdVU5KbnyvlbIKcM5vKxl3LI+29fzpMLzodBARERqVgZgNrX1rEMg4Lq2H1AREREANhS4EIcYZrahvq4yen+kJKulGZZKWWSQw3T9zpCk7Pa1fdZVFs+crClQEmOeIeJiIgsxKBASew+ICIiIgBsKSAiIjUTFfL+2WdDgREGBaqi5HKp1vary8nXUfqllSqHo1yPrdiqnpR61FFJav9MqOH3zkYqIO+JRM5dZIRBARERqVf5n5uc88mAYwqIiIgIAFsKiIhIzdhSoCgGBS7DHtMCOztHrDdHLJMpRywTqRbHFCiK3QdEREQEgC0FRESkZuw+UBSDAiIiUi92HyiKQYHLaKjnmF2JI9abI5aJiNSCQQEREalXBeR1AbClwAiDAiIiUi+OKVAUgwKygq2mSLYVNTymR0RkfwwKiIhIvTjQUFEMCoiISL3YfaAoBgVERKReDAoUxaDAZckZF6C2Pnm1ldfZcYwHkaNiUEBEROrFMQWKYlBARETqxe4DRXFBJCIiIgLAlgIXxn5c+Ryxb9wRy6R2rFOHJiCvC0AoVRDnwKCAiIjUi90HimL3AREREQFgSwFZRalpjtXeLCulvPVdq1J1aqv74Sj3yh5TbKvtc+li2FKgKAYFRESkXnwkUVHsPiAiIrJQUlISevfuDR8fH7Ru3RoPPvggTp8+Xe95GRkZCA8Ph5eXFzp06IBVq1Y1QGmlY1BARETqVa7AJkFGRgamTp2KzMxMpKWloaysDDExMbh+/Xqd55w9exbDhw/HoEGDcOzYMcyePRszZsxAamqqxIu1PXYfuAwl+4vNva+Gfml7kFOnDcVcGZQsn73GTDgzF/7dauAxBV988YXR63Xr1qF169bIysrC3XffXes5q1atQrt27ZCcnAwA6Nq1K44cOYKlS5di9OjR1pTaZthSQERE6lWhwAZAr9cbbcXFxRZlX1RUBABo3rx5ncccPHgQMTExRvuGDRuGI0eOoLS01LLrbCAMCoiIyOUFBQVBp9MZtqSkpHrPEUIgISEBAwcORFhYWJ3HFRQUwM/Pz2ifn58fysrKcOHCBdllVxK7D4iISL0qIK/74M+WgtzcXPj6+hp2a7Xaek+dNm0avvvuO+zfv7/eYzUajdFrIUSt++2NQQE1IBfq5yRqUC78u6XQI4m+vr5GQUF9pk+fju3bt2Pfvn1o27at2WP9/f1RUFBgtK+wsBDu7u5o0aKF5CLbErsPiIiILCSEwLRp07B161bs2bMHISEh9Z4TGRmJtLQ0o327du1CREQEPDw8bFVUqzAoICIi9WrgRxKnTp2KTZs2ISUlBT4+PigoKEBBQQFu3rxpOCYxMRETJkwwvI6Li8O5c+eQkJCAU6dO4f3338fatWvx3HPPScq7tLQUubm5OH36NC5duiSt4BZi94Gq1He7zD3+JzWthiDnMSpHeARLyTLYaupoU9ambatrlZuWUmUw5Qj1JCUfU7Z6FNgR7p2JBn4kceXKlQCAwYMHG+1ft24dJk2aBADIz8/H+fPnDe+FhIRgx44dmDlzJt555x0EBgZi+fLlFj2OeO3aNXzwwQfYvHkzDh06ZPRURNu2bRETE4NnnnkGvXv3lnYhdXCEbwYiIiJVqBogaM769etr7IuKisLRo0cl5fXGG29gwYIFCA4OxgMPPIAXX3wRbdq0gbe3Ny5duoQTJ07gq6++wtChQ9GvXz+89dZb6Nixo6Q8TDEoICIi9XLitQ8OHDiA9PR0dO/evdb3+/TpgyeeeAKrVq3C2rVrkZGRwaCAiIhcmBOvkrhlyxaLjtNqtZgyZYoieTIoUBUp/Xf26utrqDI6QF+mw0z9a4t0bJmus927hkhXTj7Odu/IlhgUEBGRejlxS0GVX3/9FStXrsSBAwdQUFAAjUYDPz8/9O/fH3FxcQgKClIsLwYFRESkXgLyxgXUP27Qrvbv34/Y2FgEBQUhJiYGMTExEEKgsLAQH3/8Md566y3s3LkTAwYMUCQ/BgVERKReTt5SMHPmTDz11FN444036nw/Pj4ehw8fViQ/Tl6kKu4mm5xzrU3HUTjDNVTniNdiqzKZu3dqv6/mfs+UvB611xNZ6sSJE4iLi6vz/cmTJ+PEiROK5ceggIiI1EuhpZMdVUBAAA4cOFDn+wcPHkRAQIBi+THEJCIi9XLy7oPnnnsOcXFxyMrKwtChQ+Hn5weNRoOCggKkpaVhzZo1SE5OViw/BgVEREQOasqUKWjRogXeeOMNvPvuuygvr4xi3NzcEB4ejo0bN+Lhhx9WLD8GBaqi5HP9jnDr5cyj7mzPSzvi9dhq/nxL83QGjlBPDrhegZKcvKUAAMaMGYMxY8agtLQUFy5cAAC0bNnSJissOsI3AxERkXWceJpjUx4eHoqOH6gNgwIiIiIHxsmLqA5ylks114QotXnR3DK/UvKRQ04+Si2LKyVdKdfuKEvbKnW/bPlZlJKvFFLupbXH1peOPT7jphoqHxmcvPuAkxcRERFZqgLyvtgdvPuAkxcRERFZysnnKVDV5EVJSUnQaDSIj4837BNCYN68eQgMDIS3tzcGDx6MnJwcueUkIiJyOaqZvOjw4cNYvXo1evToYbR/8eLFWLZsGdavX49OnTph/vz5GDp0KE6fPg0fHx/ZBXY118Waaq/kPLLXUMunWvteQ5XBVnna8lx75WOr5Zwd4TNiq3SVfKy2ofKx1bkNxMnHFKhi8qJr167h0UcfxXvvvYf58+cb9gshkJycjDlz5mDUqFEAgA0bNsDPzw8pKSmYPHlyjbSKi4tRXFxseK3X660pEhERuSInfySxoScvsqr7YOrUqRgxYgSGDBlitP/s2bMoKChATEyMYZ9Wq0VUVFSdzR9JSUnQ6XSGTclHK4iIiNRuzJgxyMzMxI0bN5CXl4e8vDzcuHEDmZmZigYEgBUtBR9++CGOHj1a60jHgoICAICfn5/Rfj8/P5w7d67W9BITE5GQkGB4rdfrGRgQEZFlnLz7oDqHm7woNzcXzz77LHbt2gUvL686j9NoNEavhRA19lXRarXQarVSikFWcfKpTonIoLHmKcPPxuOSnJALBQUAcPnyZWzYsAFnzpxBQEAAJk6cqOg/0pK6D7KyslBYWIjw8HC4u7vD3d0dGRkZWL58Odzd3Q0tBFUtBlUKCwtrtB4QERGReYGBgbh48SKAyi76bt264fXXX8eZM2fw7rvvonv37vj+++8Vy09SUBAdHY3jx48jOzvbsEVERODRRx9FdnY2OnToAH9/f6SlpRnOKSkpQUZGBvr3769YoYmIiAA4/TwFBQUFhsGFs2fPRpcuXfDTTz9h165d+PHHHzFo0CC8/PLLiuUnqfvAx8cHYWFhRvsaN26MFi1aGPbHx8dj4cKF6NixIzp27IiFCxeiUaNGGDdunGKFJmsoNW2rMzA3TbNS6ZqmrdTUuI5KSp2q7fqkTEfcUNdivkz26TJwr+NnG3PyGQ2r++abb7BmzRo0atQIQGX3+0svvYR//OMfiuWh+J2bNWsWbt68iSlTpuDy5cvo27cvdu3axTkKiIiIrFA1Jq+4uLjWgfx//PGHYnnJDgr27t1r9Fqj0WDevHmYN2+e3KSJiIjMc/J5CoDKrnt3d3fo9Xr88MMPCA0NNbx3/vx5tGzZUrG8uCASERGpl5M/fTB37lyj11VdB1U+/fRTDBo0SLH8GBQQHL9PV2lqn/7WETnz9cmZjthWHLEOy+r42cZcLCgwtWTJEkXz4yqJREREBIAtBUREpGYuMKagITEoICIi9XLy7oOGxu4Dl+FushHZCz+LRHJ8/fXXRqsLK4lBARERqVe5ApvKxMbGIi8vzyZpM0wnIiL1EpA3LkAoVZCGI4TtCs2gwGU44iNMalffrw/rvHZqqxe1TcsM2GfqZXIGDAqIiEi9XGCg4caNG41el5WVYevWrWjdurVh34QJExTJi0EBERGplws8krhu3Tqj16Wlpfjvf/8Lb29vAJXLCzAoICIicgHp6elGr318fJCSkoIOHToonheDAiKrsa/WNajxPquxzFZyge6DhsSggIiI1ItBgaIYFBARkXq5wJgCU7Nnz0bz5s1tkjaDAiIiIhVJTEy0WdoMCoiISL3YfaAoBgVERKReFZD3xa7C7gNb4toHREREBIAtBUREpGYuONDQlhgUEBGRejnxmIKQkBBoNBrJ58XHx2PGjBlW5cmggIiIyAGtX7/eqvOCg4OtzpNBARERqZcTdx9ERUU1eJ4caEhEZJa7yUYOpVyBTUVef/11AMB3332H0tJSxdNnUEBERCTBvn37cP/99yMwMBAajQYff/yx2eP37t0LjUZTY/v+++8l5z1w4EAAwLx589CjRw/06NED48aNQ1JSEj777DP8/vvv1lySAcNeIiJSLzsMNLx+/TruvPNOPP744xg9erTF550+fRq+vr6G161atZKc94ABAwAAW7duBQDcuHEDJ06cwPHjx7F7927MnTsXw4cPx2uvvSY5bYBBARERqZlCYwr0er3Rbq1WC61WW+spsbGxiI2NlZxV69at0bRpU8nnmdOoUSP06dMHffr0MewLDw+3Oihg94HLMO0XZR+pfI5Yj45YJrUrM9nUxsk/E1UzGlq7/RkUBAUFQafTGbakpCTFi9qrVy8EBAQgOjoa6enpiqdfJTMz0+pznfATQkREJE1ubq5R035drQTWCAgIwOrVqxEeHo7i4mL85z//QXR0NPbu3Yu7775bkTzy8/PRvHlzaLVaeHh4WJ0OgwIiIlKvcshr8/5zTIGvr69RUKCkzp07o3PnzobXkZGRyM3NxdKlSxULCsaPH4+ffvoJo0ePxtKlS61Oh0EBERGpl0rnKejXrx82bdqkWHq7d+8GAKueaKiOYwpchmm/qJr7SB2FI9ajI5aJ7IufCUd07NgxBAQESD7vzTffBFD5JENFRc2IpkuXLrLKxZYCIiJSL4W6D6S4du0afvzxR8Prs2fPIjs7G82bN0e7du2QmJiIvLw8bNy4EQCQnJyM4OBghIaGoqSkBJs2bUJqaipSU1Ml5x0WFgYAmDlzJn788Uc0adIEoaGhCAsLQ1hYGEaMGCH9gqphUEBEROplh+6DI0eO4J577jG8TkhIAABMnDgR69evR35+Ps6fP294v6SkBM899xzy8vLg7e2N0NBQfP755xg+fLjkvKOjowEAO3bsAFD5KOWJEydw4sQJpKWlyQ4KNEIIISsFhen1euh0OngDkL42lPO5LtYolJJp/Fdm4XtEcvHz5Wr0+pvQ6aajqKjIZoP3qr4rioYDvtYPtoe+FNDtgE3LKkdERATCw8MNW48ePWQ9XVAfthQQEZF62aH7oCFFRkYiKysLmzZtws2bN+Hp6YnQ0FD0798fjzzyiGGGQ6UwKCAiIvVy8qDgrbfeAgCUl5cjJycHR44cwZEjR/Dll19ixYoVGD9+PNatWweNRpm2dT59QERE5ODc3NzQo0cPPPHEE1ixYgV++OEHfPHFF9ixYwfWrl2rWD4MClyG6WNJ1ac95SNLZEv8fJENCfw12NCazaFG1UkzdOhQzJ8/H++++65iaTIoICIi9ZKz7oHcFRYdQL9+/Ywej5SLQQEREamXkwcF77zzDg4dOoTi4uJa3//jjz8UfRqBAw2JiIgc1EsvvQS9Xg93d3d069YNERERiIiIQNeuXXHjxg0kJiYqtn4CwKDAhbFvl4icgErXPrDU5cuX8dNPPyErK8uwpaam4sqVKwAqpzWWswCSKQYFRESkXuWQN9Odg3cfAMDtt9+O22+/HQ8//LBh36+//orS0lKEhIQomheDAiIiIpVp27atTdJlUKBqUqaPNXerlexKcOYpbaX+ujjTtZNlHOXzb4/fdztdq5N3HzQ0BgVERKReTtx9EBISYtVMhfHx8ZgxY4ZVeTIoICIickDr16+36rzg4GCr82RQQERE6lUBef/tO3D3QVRUVIPnycmLVE3K9LGmx9pq2llnntLWXB3aul5JHRzlM2CP33c7kTPFsdzxCDZ2/vx5Scfn5eXJzpNBARERkQPq3bs3nn76aRw6dKjOY4qKivDee+8hLCwMW7dulZ0nuw+IiEi95A4UdOCBhqdOncLChQvxt7/9DR4eHoiIiEBgYCC8vLxw+fJlnDx5Ejk5OYiIiMCSJUsQGxsrO0+NEMKh1ojS6/XQ6XTwhrwBpc7iulhj7yIQEUmi19+ETjcdRUVF8PX1tVEeld8VRV0BXzcZ6ZQDulOwaVnlunXrFnbs2IGvvvoKv/zyC27evImWLVuiV69eGDZsGMLCwhTLiy0FRESkXhWQ9x+kA48pqOLl5YVRo0Zh1KhRNs+LYwqIiIgIAFsKiIhIzZx4TEFdrly5gi+//BJ5eXnQaDQICAjAsGHD0KxZM9lps6WAiIjUy4kfSazN2rVr0adPH2RmZqKiogLl5eXIzMxEv379sHbtWtnps6VA1Rpq7QM5+fB5/YbliPXviGWyFUe51oZak8AB1j5wMYsXL8bRo0fRpEkTo/2vvfYawsPD8eSTT8pKn0EBERGpl9z/9FXWUqDRaHDt2rUaQcG1a9esWifBFIMCIiJSr3IAch6sV1lQsHTpUkRFRSEsLAxt2rQBAPz666/IycnB//3f/8lOn0GBqtiraVJKPmxCtC9HrH9HLJOtOMq1OuLfBlLCfffdh9jYWBw6dAi//fYbhBBo06YN+vTpAzc3GRM2/IlBARERqZeLdR8AgJubGyIjI2vsz8rKQnh4uKy0JT99kJeXh8ceewwtWrRAo0aN0LNnT2RlZRneF0Jg3rx5CAwMhLe3NwYPHoycnBxZhSQiIqpVuQKbk/j73/8uOw1JLQWXL1/GgAEDcM8992Dnzp1o3bo1fvrpJzRt2tRwzOLFi7Fs2TKsX78enTp1wvz58zF06FCcPn0aPj4+sgtMRETkqh5++OFa9wshcOnSJdnpSwoKXn/9dQQFBWHdunWGfcHBwUaFSk5Oxpw5cwzTMW7YsAF+fn5ISUnB5MmTZRfYtcnpv2Pf318c/TEqR3msrToly6RUWg1VT454PxyRex0/25iLDTTcvXs3/vOf/9R4+kAIgX379slOX9Kd2759O4YNG4aHHnoIGRkZaNOmDaZMmYKnn34aAHD27FkUFBQgJibGcI5Wq0VUVBQOHDhQa1BQXFyM4uJiw2u9Xm/ttRARkatxsTEFgwcPRpMmTRAVFVXjvV69eslOX9KYgp9//hkrV65Ex44d8eWXXyIuLg4zZszAxo0bAQAFBQUAAD8/P6Pz/Pz8DO+ZSkpKgk6nM2xBQUHWXAcREbmiCsgbT6CyoGDr1q21BgQA8MUXX8hOX1JQUFFRgbvuugsLFy5Er169MHnyZDz99NNYuXKl0XGmEygIIeqcVCExMRFFRUWGLTc3V+IlEBERkRIkdR8EBASgW7duRvu6du2K1NRUAIC/vz+AyhaDgIAAwzGFhYU1Wg+qaLVaaLVaSYUmksfR+4QdsXxKlkmptPgsvmMpq+NnG5O7dLKc8QgNKCEhodb9Go0GXl5euOOOOzBy5Eg0b95cVj6SgoIBAwbg9OnTRvt++OEHtG/fHgAQEhICf39/pKWlGfo2SkpKkJGRgddff11WQYmIiGooh0sEBceOHcPRo0dRXl6Ozp07QwiBM2fOwM3NDV26dMGKFSvwr3/9C/v376/xz7sUkroPZs6ciczMTCxcuBA//vgjUlJSsHr1akydOhVAZcQSHx+PhQsXYtu2bThx4gQmTZqERo0aYdy4cVYXkoiIyJWNHDkSQ4YMwW+//YasrCwcPXoUeXl5GDp0KMaOHYu8vDzcfffdmDlzpqx8NEIISXHSZ599hsTERJw5cwYhISFISEgwPH0AVI4feOWVV/Duu+/i8uXL6Nu3L9555x2EhYVZlL5er4dOp4M35AV/zuK6WGPvIhARSaLX34RONx1FRUXw9fW1UR6V3xVF3oCvjC8LvQB0N2HTsiqhTZs2SEtLq9EKkJOTg5iYGOTl5eHo0aOIiYnBhQsXrM5H8sOk9913H+67774639doNJg3bx7mzZtndaGIiIgs4iJjCoqKilBYWFgjKPjjjz8Mj/I3bdoUJSUlsvKRPM0xERERNayRI0fiiSeewLZt2/Drr78iLy8P27Ztw5NPPokHH3wQAHDo0CF06tRJVj5cEImIiNTLRQYavvvuu5g5cyYeeeQRlJVVPt3h7u6OiRMn4o033gAAdOnSBWvWyOtyljymwNY4psAYxxQQ2RunOZaqQccUaBQYUyAcf0xBlWvXruHnn3+GEAK33357jemO5WJLARERkUo0adIEPXr0sFn6DAqIiEi9BFTTBSDXlStXsHbtWpw6dQoajQZdu3bFk08+CZ1Op1geHGhIRESqJWfZg6pNDY4cOYLbb78db7zxBi5duoQLFy7gjTfewO23346jR48qlg9bCgjsMyUyh78PjkzuF7tagoKZM2figQcewHvvvQd398q/2WVlZXjqqacQHx+vyLLJAIMCIiIih3fkyBGjgACofPpg1qxZiIiIUCwfdh8QEZFqVSiwqYGvry/Onz9fY39ubi58fHwUy4ctBS7DlbsIbHXtjlinjlgmIttxle6DMWPG4Mknn8TSpUvRv39/aDQa7N+/H88//zzGjh2rWD4MCoiIiBzc0qVLodFoMGHCBJSVlUEIAU9PT/zzn//EokWLFMuHQQEREamW3C4AtXQfeHp64s0330RSUhJ++uknCCFwxx13oFGjRormw6CAiIhUyx7dB/v27cOSJUuQlZWF/Px8bNu2zbD+QF0yMjKQkJCAnJwcBAYGYtasWYiLizN7TkJCgsVlWrZsmcXHmsOgwGWY61t29n5nW12fI9abI5aJyLlcv34dd955Jx5//HGMHj263uPPnj2L4cOH4+mnn8amTZvw9ddfY8qUKWjVqpXZ848dO2ZReTQa5RYFYFBARESqVQF5LQXWdB/ExsYiNjbW4uNXrVqFdu3aITk5GQDQtWtXHDlyBEuXLjUbFKSnp1tROnn4SCIREamWUo8k6vV6o624uFixMh48eBAxMTFG+4YNG4YjR46gtLRUsXyUwKCAiIhcXlBQEHQ6nWFLSkpSLO2CggL4+fkZ7fPz80NZWRkuXLigWD5KYPcBERGpllIDDXNzc42WTtZqtXKKVYNpv78Qotb99saggIiIVEupoMDX19coKFCSv78/CgoKjPYVFhbC3d0dLVq0sEme1mJQQEREqqWGeQoiIyPx6aefGu3btWsXIiIi4OHh0QAlsBzHFBAREUlw7do1ZGdnIzs7G0DlI4fZ2dmGtQkSExMxYcIEw/FxcXE4d+4cEhIScOrUKbz//vtYu3YtnnvuOXsU3yy2FBARkWrZY/KiI0eO4J577jG8rppkaOLEiVi/fj3y8/ONFi8KCQnBjh07MHPmTLzzzjsIDAzE8uXLLZrjoKFpRNVoBweh1+uh0+ngDcCxhl/Yx3Wxxt5FICKSRK+/CZ1uOoqKimzWT1/1XZENQM4agVcB9ARsWlY1YfcBERERAWD3AbkELidM5KzsMaOhM2NQQEREqmWPMQXOjN0HREREBIAtBUREpGJqmKdATRgUqIqcvnEpt9o0XVfuk69+7basF3P5WJuO3LRsVQZHKKOzMVenUupb6r1R6nNrPXYfKIvdB0RERASALQVERKRibClQFoMCIiJSLY4pUBaDAlWx1RgCJSk17sFR+pkbqhyOcr1K4BiCvyg5DsjcuUrVqfruDVsKlMUxBURERASALQVERKRiAvK6ABxq8R8HwKDAaSnZDCglLTn52qrpUm3pysEyORZH+H2wZf3b/96y+0BZ7D4gIiIiAGwpICIiFWNLgbIYFBARkWrxkURlsfuAiIiIALClgIiIVIzdB8piUEBERKrFoEBZ7D4gIiIiAGwpcCGuPNUsETkrDjRUFoMCIiJSrQrI6wJgUGCMQQEREakWWwqUxaDAZbC7gIiIzGNQQEREqsWnD5TFoICIiFSLQYGy+EgiERERAWBLgcpIuV31HWtujIHpe+bSMj3Wy+T1LTPpyBnnICUt0zKV1fFzbemay8NW19NQ9WKrc+v7TJi+X/11fWWQc3+kHGvu2uX82ZRyrVJIKZOUa5NTpw2DAw2VxaCAiIhUi90HymL3AREREQFgSwEREakYWwqUxaBAVaT02SnZvyclrVtm3nPEMslJ117XY6t0bHWukvVvq/tjj/veUJ8fpcYbWPJ+wxOQNy5AKFUQJ8HuAyIiIgLAlgIiIlIxdh8oi0EBERGpFh9JVBaDAkLDLatsr+WbG+rZaldanprXWvv7jlgPjlgm5bClQFkcU0BEREQA2FJAREQqxpYCZTEocBmO0Nxrr2ZMKVO1SuEIdWpL5prFHeFaG6r+1feYXsOxf9cJxxQoi90HREREBEBiUFBWVoaXXnoJISEh8Pb2RocOHfDqq6+iouKvWEsIgXnz5iEwMBDe3t4YPHgwcnJyFC84ERFRuQIb/UVSUPD6669j1apVePvtt3Hq1CksXrwYS5YswVtvvWU4ZvHixVi2bBnefvttHD58GP7+/hg6dCiuXr2qeOGJiMi1VUBeQMDuA2OSOlcPHjyIkSNHYsSIEQCA4OBgbN68GUeOHAFQ2UqQnJyMOXPmYNSoUQCADRs2wM/PDykpKZg8ebLCxSfLSVkq2dk54jS1jsjRr8/Ry+cKeA+cjaSWgoEDB+J///sffvjhBwDAt99+i/3792P48OEAgLNnz6KgoAAxMTGGc7RaLaKionDgwIFa0ywuLoZerzfaiIiILFGhwEZ/kdRS8MILL6CoqAhdunSBm5sbysvLsWDBAowdOxYAUFBQAADw8/MzOs/Pzw/nzp2rNc2kpCS88sor1pSdiIhcHB9JVJakloKPPvoImzZtQkpKCo4ePYoNGzZg6dKl2LBhg9FxGo3G6LUQosa+KomJiSgqKjJsubm5Ei+BiIiIlCCppeD555/Hiy++iEceeQQA0L17d5w7dw5JSUmYOHEi/P39AVS2GAQEBBjOKywsrNF6UEWr1UKr1VpbfiIicmGcp0BZkloKbty4gdtuMz7Fzc3N8EhiSEgI/P39kZaWZni/pKQEGRkZ6N+/vwLFJSIi+gsfSVSWpJaC+++/HwsWLEC7du0QGhqKY8eOYdmyZXjiiScAVHYbxMfHY+HChejYsSM6duyIhQsXolGjRhg3bpxNLoCIiFwXxxQoS1JQ8NZbb+Hll1/GlClTUFhYiMDAQEyePBn//ve/DcfMmjULN2/exJQpU3D58mX07dsXu3btgo+Pj+KFJynMTQkrZRW42t5XG/tPzep8WKeuiffd2WiEEMLehahOr9dDp9PBG0DtQxNdy3WxRqGUGBT8hX/IlMc6dU2133e9/iZ0uukoKiqCr6+vTXKu+q5IBOAlI51bAJIAm5ZVTbj2ARERqZa9ZjRcsWIFQkJC4OXlhfDwcHz11Vd1Hrt3715oNJoa2/fff29l7rbDoICIiEiCjz76CPHx8ZgzZw6OHTuGQYMGITY2FufPnzd73unTp5Gfn2/YOnbs2EAlthyDApflXm1zNWXVNjnc4Xj1aK8yVa9T0zI4Yj05G3N17Nz1b4+nD5YtW4Ynn3wSTz31FLp27Yrk5GQEBQVh5cqVZs9r3bo1/P39DZubm5sVudsWgwIiIlItpaY5Np1uv7i4uNb8SkpKkJWVZTSdPwDExMTUOZ1/lV69eiEgIADR0dFIT0+35nJtjkEBERG5vKCgIOh0OsOWlJRU63EXLlxAeXl5rdP5V031byogIACrV69Gamoqtm7dis6dOyM6Ohr79u1T/Drkcr62JCIichlKzVOQm5tr9PRBfTPtSpnOv3PnzujcubPhdWRkJHJzc7F06VLcfffd1hXcRhgUuAw5/ed8xKx2jlgvjlAmRyiDq7HX0uj2v9dKTXPs6+tr0SOJLVu2hJubW41WAXPT+demX79+2LRpk5SiNgh2HxAREVnI09MT4eHhRtP5A0BaWpqk6fyPHTtmtEaQo2BLARERqZY9pjlOSEjA+PHjERERgcjISKxevRrnz59HXFwcgMrVf/Py8rBx40YAQHJyMoKDgxEaGoqSkhJs2rQJqampSE1NlVFy22BQoGpSZimUMiuhnBkN5cx+aKtZ8cx9zOvLx1yZTOdRu2VxiaTlY206ctOSk6859iiTlPtsyfHmzjVHykyiUsiZsdRcOqbM/Q7I+fxbzx5BwZgxY3Dx4kW8+uqryM/PR1hYGHbs2IH27dsDAPLz843mLCgpKcFzzz2HvLw8eHt7IzQ0FJ9//jmGDx8uo+S2wWmOHZz5aY4ZFEhP1xSDAmUwKLCMawQFDTnN8TMAPGWkUwJgNTjNcRWOKSAiIiIA7D4gIiIV49LJymJQoCpyugDMqe9YJdOy1bm2yqehHvVSKi17PSJm/0fTanL0z63aPu+1sc84guoYFCiL3QdEREQEgC0FRESkYkpNXkSVGBQQEZFqsftAWQwKVEUN/fWOyFbX7sp1So6Fn0VSBoMCIiJSLXYfKItBARERqRa7D5TFpw+IiIgIAFsKiIhIxSog7799dh8YY1BARESqxTEFymJQQEREqlUOef3gHFNgjEGBy1BqFTVnYKvVGKmS1JX2lMrH8nQba54yem1+NVIi18GggIiIVIstBcpiUEBERKrFMQXK4iOJREREBIAtBU7MVsssy+EoYxc4jsC2HHFJYGPyxhA4yueYAHYfKI1BARERqRa7D5TF7gMiIiICwJYCIiJSMc5oqCwGBU7LtJ/TEfpB2fdKzoCfY0dSDkAj83z6C7sPiIiICABbCoiISMU40FBZDAqIiEi12H2gLAYFRESkWgwKlMUxBURERASALQVERKRiHFOgLAYFLoOPURGR82H3gbLYfUBEREQA2FJAREQqJiCvC0AoVRAnwaCAiIhUS27zP7sPjDEoUBU5UxVLudUcf2AZJaeOrp6WUunITctW1FDG6tRWXlO2LL9Sn1tyFAwKiIhItdhSoCwGBUREpFoVkPf0AR9JNMagQFWUbJ6T0/XAZsJK9rofDZGOLamhjNWprbym1F5+akgMCoiISLXYfaAsBgVERKRaDAqUxaCAiIhUi2MKlMWggFD/mAFn65PkY1QNi2NSnBfvpbNhUEBERKol9z99thQYY1BARESqxaBAWVwQiYiIiACwpYAASO8XVHufvFJlru/Xx9p8nK0P3rT8ars+Ryyvo5ep4b5ayiFvUSO2FBhjUEBERKrFoEBZ7D4gIiIiAGwpICIiFeNAQ2UxKHAZjjhPv9rZqh6cvX7Vdn2OWF5HL1PDlY/dB8pi9wEREREBYEsBERGpWAXktRTIOdcZsaWAiIhUq0KBzRorVqxASEgIvLy8EB4ejq+++srs8RkZGQgPD4eXlxc6dOiAVatWWZmzbTEoICIi1SpXYJPqo48+Qnx8PObMmYNjx45h0KBBiI2Nxfnz52s9/uzZsxg+fDgGDRqEY8eOYfbs2ZgxYwZSU1OtyN22NEIIh2o90ev10Ol08Ia8la+cxXWxxt5FICKSRK+/CZ1uOoqKiuDr62ujPCq/K5pA3neFAHANkFTWvn374q677sLKlSsN+7p27YoHH3wQSUlJNY5/4YUXsH37dpw6dcqwLy4uDt9++y0OHjwoo/TKc7gxBVUxikNFKnak19+0dxGIiCSp+rvVEP9zlkN+UABUBhnVabVaaLXaGseXlJQgKysLL774otH+mJgYHDhwoNY8Dh48iJiYGKN9w4YNw9q1a1FaWgoPDw/rL0BhDhcUXL16FQBwy87lcBQ63XR7F4GIyCpXr16FTqezSdqenp7w9/dHQUGB7LSaNGmCoKAgo31z587FvHnzahx74cIFlJeXw8/Pz2i/n59fnWUpKCio9fiysjJcuHABAQEB8i5AQQ4XFAQGBiI3NxdCCLRr1w65ubk2a35yBnq9HkFBQaynerCeLMN6sgzryTwhBK5evYrAwECb5eHl5YWzZ8+ipKREdlpCCGg0xu0NtbUSVGd6fG1p1Hd8bfvtzeGCgttuuw1t27Y1NOX4+vryl84CrCfLsJ4sw3qyDOupbrZqIajOy8sLXl5eNs+nupYtW8LNza1Gq0BhYWGN1oAqtbVoFBYWwt3dHS1atLBZWa3Bpw+IiIgs5OnpifDwcKSlpRntT0tLQ//+/Ws9JzIyssbxu3btQkREhEONJwAYFBAREUmSkJCANWvW4P3338epU6cwc+ZMnD9/HnFxcQCAxMRETJgwwXB8XFwczp07h4SEBJw6dQrvv/8+1q5di+eee85el1Anh+s+qKLVajF37tx6+3VcHevJMqwny7CeLMN6cm1jxozBxYsX8eqrryI/Px9hYWHYsWMH2rdvDwDIz883mrMgJCQEO3bswMyZM/HOO+8gMDAQy5cvx+jRo+11CXVyuHkKiIiIyD7YfUBEREQAGBQQERHRnxgUEBEREQAGBURERPQnBgVEREQEwIGDAqlrVTuzpKQk9O7dGz4+PmjdujUefPBBnD592ugYIQTmzZuHwMBAeHt7Y/DgwcjJybFTiR1DUlISNBoN4uPjDftYT5Xy8vLw2GOPoUWLFmjUqBF69uyJrKwsw/usJ6CsrAwvvfQSQkJC4O3tjQ4dOuDVV19FRUWF4RjWEzkd4YA+/PBD4eHhId577z1x8uRJ8eyzz4rGjRuLc+fO2btodjFs2DCxbt06ceLECZGdnS1GjBgh2rVrJ65du2Y4ZtGiRcLHx0ekpqaK48ePizFjxoiAgACh1+vtWHL7OXTokAgODhY9evQQzz77rGE/60mIS5cuifbt24tJkyaJb775Rpw9e1bs3r1b/Pjjj4ZjWE9CzJ8/X7Ro0UJ89tln4uzZs2LLli2iSZMmIjk52XAM64mcjUMGBX369BFxcXFG+7p06SJefPFFO5XIsRQWFgoAIiMjQwghREVFhfD39xeLFi0yHHPr1i2h0+nEqlWr7FVMu7l69aro2LGjSEtLE1FRUYaggPVU6YUXXhADBw6s833WU6URI0aIJ554wmjfqFGjxGOPPSaEYD2Rc3K47oOqtapN1542t1a1qykqKgIANG/eHABw9uxZFBQUGNWZVqtFVFSUS9bZ1KlTMWLECAwZMsRoP+up0vbt2xEREYGHHnoIrVu3Rq9evfDee+8Z3mc9VRo4cCD+97//4YcffgAAfPvtt9i/fz+GDx8OgPVEzsnhpjm2Zq1qVyKEQEJCAgYOHIiwsDAAMNRLbXV27ty5Bi+jPX344Yc4evQoDh8+XOM91lOln3/+GStXrkRCQgJmz56NQ4cOYcaMGdBqtZgwYQLr6U8vvPACioqK0KVLF7i5uaG8vBwLFizA2LFjAfDzRM7J4YKCKlLXqnYV06ZNw3fffYf9+/fXeM/V6yw3NxfPPvssdu3aZXY5VVevp4qKCkRERGDhwoUAgF69eiEnJwcrV640WsTF1evpo48+wqZNm5CSkoLQ0FBkZ2cjPj4egYGBmDhxouE4V68nci4O131gzVrVrmL69OnYvn070tPT0bZtW8N+f39/AHD5OsvKykJhYSHCw8Ph7u4Od3d3ZGRkYPny5XB3dzfUhavXU0BAALp162a0r2vXroYFXPh5qvT888/jxRdfxCOPPILu3btj/PjxmDlzJpKSkgCwnsg5OVxQYM1a1c5OCIFp06Zh69at2LNnD0JCQozeDwkJgb+/v1GdlZSUICMjw6XqLDo6GsePH0d2drZhi4iIwKOPPors7Gx06NCB9QRgwIABNR5p/eGHHwwrvPHzVOnGjRu47TbjP5Fubm6GRxJZT+SU7DjIsU5VjySuXbtWnDx5UsTHx4vGjRuLX375xd5Fs4t//vOfQqfTib1794r8/HzDduPGDcMxixYtEjqdTmzdulUcP35cjB07lo9GCWH09IEQrCchKh/XdHd3FwsWLBBnzpwRH3zwgWjUqJHYtGmT4RjWkxATJ04Ubdq0MTySuHXrVtGyZUsxa9YswzGsJ3I2DhkUCCHEO++8I9q3by88PT3FXXfdZXj8zhUBqHVbt26d4ZiKigoxd+5c4e/vL7Rarbj77rvF8ePH7VdoB2EaFLCeKn366aciLCxMaLVa0aVLF7F69Wqj91lPQuj1evHss8+Kdu3aCS8vL9GhQwcxZ84cUVxcbDiG9UTORiOEEPZsqSAiIiLH4HBjCoiIiMg+GBQQERERAAYFRERE9CcGBURERASAQQERERH9iUEBERERAWBQQERERH9iUEBEREQAGBQQERHRnxgUEBEREQAGBURERPSn/w/Ma5mRvaT/CQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSy0lEQVR4nO3deVxU5f4H8M8IMqAsbsmiKFiuoGmg5RYUiqGWpbdMy6Xt6lUz5JZldtNKxe1nXCu3NJfLxbxetKulJaZiLpSillumRUoEkaWMKwg8vz+IiRngzJw5Z5YzfN6v17xezpnnnOc5zxzhy7PqhBACREREVOfVc3YBiIiIyDUwKCAiIiIADAqIiIjoDwwKiIiICACDAiIiIvoDgwIiIiICwKCAiIiI/sCggIiIiAAwKCAiIqI/MCjQkLS0NKSkpDgtf4PBgNmzZyM2NhZBQUHw9fVF586dMW/ePNy8edMkbXZ2NiZOnIjOnTvDz88PgYGB6NevH3bt2lXjtX/44QcMHToUjRo1gq+vL/r3748jR47UmPbDDz9E165d4e3tjZCQECQmJuLq1auq368tfvzxR+h0OqxZs8bZRZFNzvdb6cSJE3j00Udx2223Qa/XIywsDBMmTHBwye1jzZo10Ol0Nb4KCgpM0n788ccYPXo0OnfujPr160On0zmp1ETKMCjQEGcHBRcuXEBKSgruuusurFixAlu2bMFf/vIXzJw5E4MHD0bVFbPXr1+Pr776Ck8//TT+97//YeXKldDr9YiLi8O6detMrvvrr7+ib9+++O677/DBBx/gP//5D27evInY2FicOXPGJO2///1vjBgxAt27d8f27dsxY8YMrFmzBkOHDnVIHbgzOd8vAOzevRs9evSAwWDAsmXLsGPHDrz11lvw9vZ20h3Yx+rVq3Hw4EGTV9OmTU3SbN68GVlZWejUqRPuvPNOJ5WUSAWCNGPQoEGidevWTsv/6tWr4urVq9WOL1iwQAAQX3zxhfHYL7/8Ui1daWmp6NKli7j99ttNjr/00kuifv364scffzQeKyoqEs2aNROPPfaYyfnBwcEiPj7e5Px///vfAoDYtm2bzfemlpycHAFArF692tlFkU3O93vt2jURHBwsBg0aJMrLy+1WptLSUnHz5k27XV/K6tWrBQBx6NAhi2nLysqM/544caLgj1bSKrYUuIhff/0Vf/3rXxEaGgq9Xo/bbrsNvXv3xs6dOwEAsbGx+OSTT3D+/HmTZsxKJSUlmDVrFjp06GA8/6mnnsKvv/5qkk9YWBgGDx6MzZs3o0uXLvD29kabNm2wePFii2Vs2LAhGjZsWO14jx49AAC5ubnGY82bN6+WzsPDA1FRUSbpgIq/su6//360bt3aeMzf3x9Dhw7F1q1bUVpaCgDIyspCfn4+nnrqKZPzH330Ufj6+mLz5s0W76E23377LUaMGIHAwEDo9Xq0atUKo0ePRnFxsTHNiRMnMGTIEDRu3Bje3t7o2rUr1q5da/HaY8eORVhYWLXjM2fOrNbMrNPpMGnSJKxevRrt27eHj48PoqOjkZWVBSEEFixYgPDwcPj6+uL+++/HuXPnTM6PjY1FZGQkDh06hL59+6JBgwZo06YN5s6di/Lycslyyvl+N27ciPz8fLz00kuqNZVXdr3Mnz8fs2bNQnh4OPR6PXbv3g0A2LJlC3r27IkGDRrAz88P/fv3x8GDB43nnzx5EjqdDhs3bjQey87Ohk6nQ0REhEleDz30EKKiolQpNwDUq8cfpeQe+CS7iFGjRuGjjz7C66+/jh07dmDlypXo168ffvvtNwDAkiVL0Lt3bwQFBZk0YwJAeXk5hgwZgrlz52LkyJH45JNPMHfuXGRkZCA2NhY3btwwyevYsWNITEzElClTsHnzZvTq1QsvvPACFi5caFPZK8cJmP/gNVdaWoovvvjCJN2NGzfw/fffo0uXLtXSd+nSBTdu3MAPP/wAoOKXcuXxqurXr48OHToYP6+k0+kQGxtrsfxff/01unfvjqysLLz55pvYvn07kpOTUVxcjJKSEgDAmTNn0KtXL5w8eRKLFy/Gpk2b0KlTJ4wdOxbz58+3mIccH3/8MVauXIm5c+di/fr1uHLlCgYNGoS///3v2L9/P959912sWLECp06dwrBhw6o16xcUFOCJJ57Ak08+iS1btiAhIQHTpk1DamqqTeWp6fvdu3cvAKCsrAx9+vSBl5cXGjdujBEjRuDnn3+28c4rLF68GLt27cLChQuxfft2dOjQAWlpaRgyZAj8/f2xfv16rFq1CpcuXUJsbCz27dtnLF9wcLAxkAaAnTt3wsfHB6dOnTKWq7S0FJmZmejXr59V5Rk8eDA8PDzQpEkTDB06tNpzRuRWnN1UQRV8fX1FYmKiZJraug/Wr18vAIj09HST44cOHRIAxJIlS4zHWrduLXQ6nTh27JhJ2v79+wt/f39x7do1WeX++uuvhY+Pj3jkkUcspp0+fboAID766CPjsby8PAFAJCcnV0uflpYmAIgDBw4IIYSYPXu2ACDy8/OrpY2Pjxft2rUzOebh4SHuv/9+i+W6//77RaNGjURhYWGtaR5//HGh1+vFhQsXTI4nJCSIBg0aiMuXLwshau4+GDNmTI3f24wZM6o1MwMQQUFBJs34H330kQAgunbtatJUn5KSIgCIb775xngsJiZGABBffvmlyXU7deokBgwYUHsl1KK273fAgAECgGjUqJGYOnWq2LVrl1i2bJlo2rSpuOOOO2Q/R0L8WXe33367KCkpMR4vKysTISEhonPnzibN9FeuXBHNmzcXvXr1Mh578sknRZs2bYzv+/XrJ5577jnRuHFjsXbtWiGEEPv37xcAxI4dOyTLs337djF9+nSxdetWkZmZKd59913RsmVL0bBhw2r/f6pi9wFpGVsKXESPHj2wZs0azJo1C1lZWbh165bV53788cdo1KgRHnzwQZSWlhpfXbt2RVBQEPbs2WOSPiIiotpgqJEjR8JgMNQ64r8mP/74IwYPHozQ0FCsXLlSMu3KlSsxe/Zs/P3vf8eQIUOqfS7VBF1TE7s16UpLS/H5559Lluv69evIzMzEY489httuu63WdLt27UJcXBxCQ0NNjo8dOxbXr183acZW6r777jNpxu/YsSMAICEhweQeK4+fP3/e5PygoCBjk3+lLl26VEtnidT3W9kVMXz4cMybNw/33Xcfxo0bh1WrVuHcuXNIS0uTlVdVDz30EOrXr298f+bMGfz8888YNWqUSTO9r68vhg0bhqysLFy/fh0AEBcXhx9++AE5OTm4efMm9u3bhwceeAD33XcfMjIyAFS0Huj1evTp00eyHA888ABmzZqFwYMH495778XEiRPxxRdfQKfT4fXXX7f5/ohcGYMCF7FhwwaMGTMGK1euRM+ePdGkSROMHj262tSnmvzyyy+4fPkyvLy8UL9+fZNXQUEBLl68aJI+KCio2jUqj1V2V1hy/vx53HffffD09MTnn3+OJk2a1Jp29erVGDduHP76179iwYIFJp81btwYOp2uxnx///13ADBeu3LEd21ppcpQm0uXLqGsrAwtW7aUTPfbb78hODi42vGQkJBay2Qr8/vw8vKSPG4+XdB8ZDwA6PX6at1IUix9v5V5DBgwwOT4gAEDoNPpZAWX5szrubJua6v/8vJyXLp0CQCMXQI7d+7Evn37cOvWLdx///3o16+fMUDcuXMnevfuDR8fH9llCwsLQ58+fZCVlSX7XCItYFDgIpo1a4aUlBT8+OOPOH/+PJKTk7Fp0yaMHTvWqnObNm2KQ4cO1fhasmSJSfqaAo3KYzX9QjF3/vx5xMbGQgiB3bt3S/5CXb16NZ599lmMGTMGy5Ytq/bXvI+PD+644w4cP3682rnHjx+Hj48P2rRpAwDo3Lmz8XhVpaWl+PbbbxEZGWmx7OaaNGkCDw8P/PTTT5LpmjZtivz8/GrHK/upmzVrVuu53t7eJgMWK5kHa67Cmu+3pjEgVSkZeGf+jFQ+k7XVf7169dC4cWMAQMuWLdGuXTvs3LkTGRkZiI6ORqNGjRAXF4f8/Hx8+eWXyMrKsno8QU2EEBxYSG6LT7YLatWqFSZNmlRtAZ/a/tobPHgwfvvtN5SVlSE6Orraq3379ibpT548ia+//trkWFpaGvz8/HDXXXdJlu3ChQuIjY1FWVkZdu3aZTJjwNyaNWvw7LPP4sknn8TKlStrbfZ/5JFHsGvXLpPR7VeuXMGmTZvw0EMPwdPTEwBw9913Izg4uNrCQP/9739x9epVm9Yq8PHxQUxMDDZu3Cj5SzouLg67du2qNohu3bp1aNCgAe65555azw0LC0NhYSF++eUX47GSkhJ89tlnsstrb9Z+v4888gh0Oh22b99ucnz79u0QQkjWh1zt27dHixYtkJaWZjKo8tq1a0hPTzfOSKhUuUhWRkYG+vfvDwBo164dWrVqhddffx23bt2yOSjIycnB/v37Vb0/Ipfi1BENJIQQ4vLly6Jbt25iwYIFYuvWrWLPnj1iwYIFwtvbW4wcOdKYrnJg2pIlS8SXX35pnD9dWloqEhISRJMmTcQbb7whtm/fLnbu3CnWrFkjxowZIzZt2mS8RuvWrUWLFi1Eq1atxAcffCC2b98unnjiCQFAzJs3T7Kcv/zyi2jTpo3Q6/UiNTVVHDx40OSVm5trTPuf//xH1KtXT9x1111i//791dJWnXteWFgogoODRefOncXmzZvFtm3bxL333iv8/PzE6dOnTcrwr3/9SwAQf/3rX8Xu3bvFihUrRKNGjUT//v2rldfagYbHjh0Tvr6+ok2bNmLFihVi165dYv369WLEiBHCYDAIIYT49ttvhZ+fn2jXrp1ITU0V27ZtM9bb/PnzjdeqaaDhDz/8IOrXry9iY2PFJ598ItLT00VMTIwIDw+vcaDhxIkTTY5VXnPBggUmx3fv3i0AiI0bNxqPxcTEiIiIiGr3WNtgx6rkfL9CCDFp0iRRr149kZSUJDIyMsR7770nGjduLLp16yaKi4urlXPGjBmS+dd2n0L8uRbFwIEDxf/+9z/xn//8R3Tv3l14eXmZrJ8ghBDp6ekCgAAgMjMzjcefeuopAUA0btzYZMBibeLi4sQbb7whNm/eLD7//HORkpIiQkJChJ+fnzh+/LhJ2h9//FFs3LhRbNy4UTzwwAPG72Xjxo1WrXNA5CoYFLiAmzdvivHjx4suXboIf39/4ePjI9q3by9mzJhhMor7999/F3/5y19Eo0aNhE6nM/mFcuvWLbFw4UJx5513Cm9vb+Hr6ys6dOggxo0bJ86ePWtM17p1azFo0CDx3//+V0RERAgvLy8RFhYmFi1aZLGclT/ca3tV/aE/ZswYybQ5OTkm1z537px4+OGHhb+/v2jQoIGIi4sT2dnZNZYjLS1NdOnSRXh5eYmgoCAxefJkceXKlWrpAIiYmBiL9yWEEKdOnRKPPvqoaNq0qfDy8hKtWrUSY8eONQlejh8/Lh588EEREBAgvLy8xJ133lltkaLaFi/atm2b6Nq1q/Dx8RFt2rQR7777bq2zD5wVFMj5foWoCEbnzp0r7rjjDlG/fn0RHBws/va3v4lLly6ZpNu6dasAIJYtWyaZv1RQIETFLIy7775beHt7i4YNG4q4uDixf//+aukuXbok6tWrJxo2bGgyi6EysBg6dKhkOSolJiaKTp06CT8/P+Hp6SlCQkLEk08+Kc6cOVMtbeVCRzW9xowZY1V+RK5AJ4TZJGdya2FhYYiMjMTHH3/s7KJQHTF16lSsX78eZ8+edbslkIncDccUEJFd7d69G//4xz8YEBBpgKezC0BE7u3QoUPOLgIRWYndB0RERASA3QdERERWW7p0Kbp06QJ/f3/4+/ujZ8+e1abmmsvMzERUVJRxA7ply5Y5qLTyMSggIiKyUsuWLTF37lwcPnwYhw8fxv33348hQ4bg5MmTNabPycnBwIED0bdvXxw9ehSvvvoqJk+ejPT0dAeX3Dp26z5YsmQJFixYgPz8fERERCAlJQV9+/a1R1ZERERO06RJEyxYsADPPPNMtc9efvllbNmyBadPnzYeGz9+PL7++mtV90xRi10GGm7YsAGJiYnG7X6XL1+OhIQEnDp1Cq1atZI8t7y8HD///DP8/PxU26ediIgcRwiBK1euICQkxK5LQt+8edO4vbkSQohqv2/0ej30er3keWVlZdi4cSOuXbuGnj171pjm4MGDiI+PNzk2YMAArFq1Crdu3TLZ/Msl2GPxgx49eojx48ebHOvQoYN45ZVXLJ6bm5sruYAKX3zxxRdf2niZr4Kpphs3boigoCBVyunr61vtmNQKnN98841o2LCh8PDwEAEBAeKTTz6pNW3btm3F7NmzTY5Vbt/9888/q1UdqlG9paCkpATZ2dl45ZVXTI7Hx8fjwIED1dIXFxebbBYj/ujNyM2dD39/+buYERGRcxkMNxAaOhV+fn52y6OkpAQFBQXIzc2Bv7+/zdcxGAwIDQ1Hbm6uyXWkWgnat2+PY8eO4fLly0hPT8eYMWOQmZmJTp061ZjevBWi8vecK7aGqx4UXLx4EWVlZQgMDDQ5HhgYWOPufMnJyXjjjTeqHff392FQQESkYY74pVc5C8CR1/Hy8sIdd9wBAIiOjsahQ4fwz3/+E8uXL6+WNigoqNrvvsLCQnh6elq1K62j2W3xopoio5oekGnTpiEpKcn4viJqC0VQwPOoTH1NfFjlDNO946srrfJvubdXNb15PlLXKjV7b57W1uuqyTwf8zLbei1L34ecerP1Opau1cjs/VWJ88zzqboKn6Xvzvz9VYnPLOUrldZb4jO1vlcl55rXk/lKhlJlVLP8Sp6vqudaWomxtJZ/13TuTYnPzKn1s8JSPfhW+ffVWlNZVvV+yhVcR65SKHtulJxbQQhR4/boANCzZ09s3brV5NiOHTsQHR3teuMJYIffSM2aNYOHh0eNkZF56wFg3WAOIiKimjk2KHj11VeRkJCA0NBQXLlyBR9++CH27NmDTz/9FEDFH7p5eXlYt24dgIqZBu+++y6SkpLw3HPP4eDBg1i1ahXWr1+voMz2o/qwUC8vL0RFRSEjI8PkeEZGBnr16qV2dkREVKeVqvCy3i+//IJRo0ahffv2iIuLw5dffolPP/0U/fv3BwDk5+fjwoULxvTh4eHYtm0b9uzZg65du+Ktt97C4sWLMWzYMEV3bS92Wadgw4YNGDVqFJYtW4aePXtixYoVeP/993Hy5Em0bt1a8lyDwYCAgAD4AKipN+qaWKl2cYmISEUGww0EBDyPoqIiVfr7a86j4ndFUdF5xQMNAwJa27WsWmKXDu3hw4fjt99+w5tvvon8/HxERkZi27ZtFgMCIiIiecqgrPugTK2CuAW7jXKbMGECJkyYYK/LExERwRUGGroT7n1AREREABw3H041DXXPmrzX3hgDNacGEhHVdWwpUJPmggIiIqI/MShQE7sPiIiICABbCoiISNPKoGwGAWcfVKX5oEB7YwzYVEVEpB5OSVQTuw+IiIgIgBu0FBARUV3GgYZqcrugoGp3gunuikD1HcAamb2X2u1MivluZr4S783TXjZ7L2dHOald1uTsdmZeXkvXqprevHxSuyZaujfPWv5d03XNryVnR8Kq55rf+2WJc6V2vKspX2vLUNPnUtetmq95+aW+K/NzpXaENE9raTdGqe/OnNS1LNWL1C6ocnaTlHp+zK9tfq7U/xdLPzfk7JIo9b3LKb+l70Pq/7PUdc3TB1X59zULeaqJQYGa3C4oICKiuoRBgZo4poCIiIgAsKWAiIg0jbMP1OTWQUFD3eMm76tPV7xsp5zN++Hk9O9L9clbysdWcq9ja76W7k3Of2ypMsjp15VT32qWX06+Ute19F3IqSc5ZZK6lpIf0GrVi6VrWao3JXVuLSX1Laf8SupJ6rrmfqry7xsyrqkUuw/UxO4DIiIiAuDmLQVEROTu2FKgJgYFRESkYQwK1FSnggLtLYlMRETkOHUqKCAiInfDlgI1MSggIiIN45RENXH2AREREQGo4y0FHGNQydIa8lLppdbAt+ZadZVa9aRmfUtdy1HfK58fdUj9H3U37D5QU50OCoiISOsYFKiJQQEREWkYgwI1MSiownTb5Y/MPpWzJfBFs/dSW5PKYalpVU4Zq75vZPZZgYV8q97PZbPPpK5laVvcqte1tAWwnOV7zct0ucq/gyQ+M7+WpS105WzdK3U/lrbiltoW97JEGcyvbZ7P7Wbvf5Eog3k+Vcth/t1Y2nK6qpZm73+qMVWFZhbKVJXcH3VSW3FLfXeWnj2p7ajN87G0fXhV5nVctW7Mfx5JbUNu6WeK1HbbVc8tNy8gaQSDAiIi0jC2FKiJQQEREWkYpySqiVMSiYiICABbCmrVUPewyXvp6YpKtq91FPO+warvL8u8ltT9mI9HkCqDOalySH1midS5UuW1xNL3qmTr3qouy0grpwzmztipDHLu9UcZaZV8d3KY/xV6Wca5ctIq+WtXyXbtctKal7G2c4tlXFOpMij7a58tBVUxKCAiIg3jmAI1sfuAiIiIALClgIiINI0tBWpiUGAlLolMROSKOPtATew+ICIiIgBsKSAiIk1j94GaGBTYyHRJZHYl1E3c0a9mrBdyJAYFamJQQEREGsagQE0cU0BEREQA2FJARESaxpYCNTEoUAGnK9ZV/GFSM9YLORKnJKqJ3QdEREQEgC0FRESkaaUAPBSeT5UYFBARkYYxKFATgwI74BgDIiLSIgYFRESkYWwpUBODAiIi0jDOPlATgwIH4JLIRESkBQwKiIhIw0qhbHY9uw+qYlBAREQaxqBATVy8iIiINKxUhZf1kpOT0b17d/j5+aF58+Z4+OGHcebMGclz9uzZA51OV+317bffysrbEdhS4GCuOV2RW93ahvVWM9ZL3VH1u64b33NmZiYmTpyI7t27o7S0FNOnT0d8fDxOnTqFhg0bSp575swZ+Pv7G9/fdttt9i6ubAwKiIhIw8qgbAaBvHM//fRTk/erV69G8+bNkZ2djXvvvVfy3ObNm6NRo0ZyC+hQ7D4gIiINq5ySaOurIigwGAwmr+LiYqtyLyoqAgA0adLEYtpu3bohODgYcXFx2L17t/W36EAMCoiIqM4LDQ1FQECA8ZWcnGzxHCEEkpKS0KdPH0RGRtaaLjg4GCtWrEB6ejo2bdqE9u3bIy4uDnv37lXzFlTB7gMnc40xBnWjL1B9rLeasV7qDlf4rksB6BSeD+Tm5pr09+v1eotnTpo0Cd988w327dsnma59+/Zo37698X3Pnj2Rm5uLhQsXWuxycDQGBUREpGHqBAX+/v4mQYElzz//PLZs2YK9e/eiZcuWsnO95557kJqaKvs8e2NQQEREZCUhBJ5//nls3rwZe/bsQXh4uE3XOXr0KIKDg1UunXIMCoiISMPUaSmw1sSJE5GWlob//e9/8PPzQ0FBAQAgICAAPj4+AIBp06YhLy8P69atAwCkpKQgLCwMERERKCkpQWpqKtLT05Genq6g3PbBoMDFuMYYAyIirXBsULB06VIAQGxsrMnx1atXY+zYsQCA/Px8XLhwwfhZSUkJXnzxReTl5cHHxwcRERH45JNPMHDgQAXltg+dEEI4uxBVGQyGiogLyr5md8GggIi0xmC4gYCA51FUVCSrn15eHhW/K4qK+sPfv76C69xCQECGXcuqJWwpICIiDSuDsj8huXVyVQwKXBy3XSYikqJ0WqQrTKt0HQwKiIhIwxgUqIkrGhIREREAmUGBNVtGCiEwc+ZMhISEwMfHB7GxsTh58qSqhSYiIqrg2K2T3Z2soKByy8isrCxkZGSgtLQU8fHxuHbtmjHN/PnzsWjRIrz77rs4dOgQgoKC0L9/f1y5ckX1wtc1DXXPmryU8azycuS5zuAJ1y+zVPnMy2+v785R9aSF78PVST0T5nXq7vWtzoZIVEHWE2Jpy0ghBFJSUjB9+nQMHToUALB27VoEBgYiLS0N48aNq3bN4uJik92oDAaDLfdBRERECikaU2C+ZWROTg4KCgoQHx9vTKPX6xETE4MDBw7UeI3k5GSTnalCQ0OVFImIiOoUdh+oyeagoKYtIyuXewwMDDRJGxgYaPzM3LRp01BUVGR85ebm2lokIiKqcxgUqMnmDiapLSN1OtOFJIQQ1Y5V0uv1Vm1RSdVVXxK56o5bvmapL5u9r7qrl3nA5m32/qbZ+9ZV/p1XewGrXcv8cTMvU1Xmac3LYF7GqunN0zYye3+1yr/NfyCYX1cqbZDZe0v1KKVqWvPym3+XUvdq6Qdcoyr/Ni9vM7P3FyXKYJ6vnB8ljczeS+Vz1ey9VD1J5XPR7DPzepLK17xezMskVefm9VI1raX/Z1LPj3l5zUnVqXmZrkp8JpXWXNV6ui6RjlyZTS0FlVtG7t6922TLyKCgih+S5q0ChYWF1VoPiIiIlGNLgZpkBQVCCEyaNAmbNm3Crl27qm0ZGR4ejqCgIGRkZBiPlZSUIDMzE7169VKnxEREREYMCtQkq/vA0paROp0OiYmJmDNnDtq2bYu2bdtizpw5aNCgAUaOHGmXG6A/NdQ9afy35SWRf5T4zFKz7BkLn1cl1dyohJzrmjeTV33szX8gWLp3qeuak3MtqbRyrmOJVL1J3c9lB5XB0r2q+f1UJVUm864HOaR+4Vh6hqU+l/P8X5aRVomq9X3DQXmS2mQFBdZsGTl16lTcuHEDEyZMwKVLl3D33Xdjx44d8PPzU6XAREREfyoDoGSz33K1CuIWZAUF1uyyrNPpMHPmTMycOdPWMhEREVmJQYGa3HF5KyIiqjNKoWzJHQYFVTEocFPVpyuukXG2pYE3Un3y1p4n91xL11LrukrKYOvUNFfhqDIqycfWZ8/daeH5Ii1gUEBERBrGlgI1MSggIiINY1CgJkV7HxAREZH7YEtBHdFQN9bkveV1DKpSq+/cXmMI5HJGHzbHOTg+H7U4q57k5OusOnWFMR5lUPbXvpKZC+6HQQEREWlYKYCa99axDoOCqth9QERERADYUlBnVZ2yaLkrQU6zoL2aEJ3VNOmKTbZSXOG7sidnlNkVnz1X4QplZEuBmhgUEBGRhjEoUBO7D4iIiAgAWwqIiEjLRLmyP/bZUGCCQQHVsCSynOmKREROVA5lMxK5dpEJBgVERKRdZX+8lJxPRhxTQERERADYUkBERFrGlgJVMSggG7jC0qbmXLFMzqDWtsRyz3UUfs9khmMKVMXuAyIiIgLAlgIiItIydh+oikEBERFpF7sPVMWggGzgin25rlgmZ9DC9s5KaKGMRNrFoICIiLSrHMq6ANhSYIJBARERaRfHFKiKQQEREQHgkufEoICIiLSMAw1VxaCAiIi0i90HqmJQQERE2sWgQFUMCoiI3Jr1y1dzDAExKCAiIu3imAJVMSggIiLtYveBqrghEhEREQFgSwFZxfwxqfr+poW0pVZ+ZilPS9QqkxTz8iq5H3st1+tt9t68LqqydO+2llHNe5Uqo6XrKjlX6jpSz4GaZbJXWilyvzsX2MpaQFkXgFCrIO6BQQEREWkXuw9Uxe4DIiIiAsCWArKJrc2Ecs6Tm4dUerWaWh3VBaCEkjpW68eB3CZ0tb47ueVQ6zr2eq6d8V2q+f/OQdhSoCoGBUREpF2ckqgqdh8QERFZKTk5Gd27d4efnx+aN2+Ohx9+GGfOnLF4XmZmJqKiouDt7Y02bdpg2bJlDiitfAwKiIhIu8pUeMmQmZmJiRMnIisrCxkZGSgtLUV8fDyuXbtW6zk5OTkYOHAg+vbti6NHj+LVV1/F5MmTkZ6eLvNm7Y/dB2QDe01DkrqumtPCpKYkSuXjAv2nFtlz2qfWuMB0OVXZ+oy7OQePKfj0009N3q9evRrNmzdHdnY27r333hrPWbZsGVq1aoWUlBQAQMeOHXH48GEsXLgQw4YNs6XUdsOWAiIi0q5yFV4ADAaDyau4uNiq7IuKigAATZo0qTXNwYMHER8fb3JswIABOHz4MG7dumXdfToIgwIiIqrzQkNDERAQYHwlJydbPEcIgaSkJPTp0weRkZG1pisoKEBgYKDJscDAQJSWluLixYuKy64md28/JCIid1YOZd0Hf7QU5Obmwt/f33hYr9dbPHXSpEn45ptvsG/fPotpdTqdyXshRI3HnY1BAVnBUr+71Ge2zrWWk6c1n9eWjyVKxjlIpTWn1voIcsZIWDrX2vMsXUfNZY7VWmPC0rm2LjHsqGWO5VxXCVvvx4G/WlSakujv728SFFjy/PPPY8uWLdi7dy9atmwpmTYoKAgFBQUmxwoLC+Hp6YmmTZvKLrI9sfuAiIjISkIITJo0CZs2bcKuXbsQHh5u8ZyePXsiIyPD5NiOHTsQHR2N+vXr26uoNmFQQERE2uXgKYkTJ05Eamoq0tLS4Ofnh4KCAhQUFODGjRvGNNOmTcPo0aON78ePH4/z588jKSkJp0+fxgcffIBVq1bhxRdflJX3rVu3kJubizNnzuD333+XV3ArMSggB/KU8VJybXdTavbSOle4H1cog7OY37vG68HBQcHSpUtRVFSE2NhYBAcHG18bNmwwpsnPz8eFCxeM78PDw7Ft2zbs2bMHXbt2xVtvvYXFixdbNR3x6tWrWL58OWJjYxEQEICwsDB06tQJt912G1q3bo3nnnsOhw4dkncTEtzxJygREZFdVA4QlLJmzZpqx2JiYnDkyBFZeb399tuYPXs2wsLC8NBDD+GVV15BixYt4OPjg99//x0nTpzAF198gf79++Oee+7BO++8g7Zt28rKwxyDAiIi0i433vvgwIED2L17Nzp37lzj5z169MDTTz+NZcuWYdWqVcjMzGRQQEREdZgb75K4ceNGq9Lp9XpMmDBBlTwZFJAVzPsa5Wx1a+1nSt1UKR+1tlm2lNZedXHT7L0zymjP79nWZaftuSWwve5XrW2j7bnddG3pNTo+gRgUEBGRhrlxS0Gln376CUuXLsWBAwdQUFAAnU6HwMBA9OrVC+PHj0doaKhqeTEoICIi7RJQNi7A8rhBp9q3bx8SEhIQGhqK+Ph4xMfHQwiBwsJCfPTRR3jnnXewfft29O7dW5X8GBQQEZF2uXlLwZQpU/Dss8/i7bffrvXzxMRE1aYlMiggK7hi/6qjrqtWvq7Yx+qKZTKn5vgQV2Cv+3HWWB6ytxMnTiA1NbXWz8eNG4dly5aplh8XLyIiIu1SaetkVxUcHIwDBw7U+vnBgwcRHBysWn5sKSAiIu1y8+6DF198EePHj0d2djb69++PwMBA6HQ6FBQUICMjAytXrkRKSopq+TEoICIiclETJkxA06ZN8fbbb2P58uUoK6uIYjw8PBAVFYV169bhscceUy0/BgVEboX9x1THuHlLAQAMHz4cw4cPx61bt3Dx4kUAQLNmzeyywyKDAiIi0i43XubYXP369VUdP1ATBgVEREQujIsXERG5LPMfm+yycSo37z7g4kVERETWKoeyX+wu3n3g6MWLuE4BERFpl5uvU3DixAmMHz++1s/HjRuHEydOqJafoqAgOTkZOp0OiYmJxmNCCMycORMhISHw8fFBbGwsTp48qbScREREdY5mFi86dOgQVqxYgS5dupgcnz9/PhYtWoQ1a9agXbt2mDVrFvr3748zZ87Az89PcYHJFVR9bBzVn6pk+1dX6AN2VBmU5OMK9WSJM549c65YL3WYm48p0MTiRVevXsUTTzyB999/H7NmzTIeF0IgJSUF06dPx9ChQwEAa9euRWBgINLS0jBu3Lhq1youLkZxcbHxvcFgsKVIRERUF7n5lERHL15kU/fBxIkTMWjQIPTr18/keE5ODgoKChAfH288ptfrERMTU2vzR3JyMgICAowvNadWEBERad3w4cORlZWF69evIy8vD3l5ebh+/TqysrJUDQgAG1oKPvzwQxw5cqTGkY4FBQUAgMDAQJPjgYGBOH/+fI3XmzZtGpKSkozvDQYDAwMiIrKOm3cfVOVyixfl5ubihRdewI4dO+Dt7V1rOp1OZ/JeCFHtWCW9Xg+9Xi+nGORw5o+JVL+uFvql5XCFPmwlpL4PLcxIVlJGrX93UizVizPG+jipjutQUAAAly5dwtq1a3H27FkEBwdjzJgxqv4hLav7IDs7G4WFhYiKioKnpyc8PT2RmZmJxYsXw9PT09hCUNliUKmwsLBa6wERERFJCwkJwW+//Qagoou+U6dOmDdvHs6ePYvly5ejc+fO+Pbbb1XLT1ZQEBcXh+PHj+PYsWPGV3R0NJ544gkcO3YMbdq0QVBQEDIyMoznlJSUIDMzE7169VKt0ERERADcfp2CgoIC4+DCV199FR06dMD333+PHTt24Ny5c+jbty/+8Y9/qJafrLY5Pz8/REZGmhxr2LAhmjZtajyemJiIOXPmoG3btmjbti3mzJmDBg0aYOTIkaoVmhzNvFlQqpnQUU2IcvJRUia17sfd6sVRLHVPWXuuqzS3q8VSeR3VrO8C9ebmKxpW9eWXX2LlypVo0KABgIru99deew1/+ctfVMtD9U7FqVOn4saNG5gwYQIuXbqEu+++Gzt27OAaBURERDaoHJNXXFxc40D+X3/9VbW8FAcFe/bsMXmv0+kwc+ZMzJw5U+mliYiIpLn5OgVARde9p6cnDAYDvvvuO0RERBg/u3DhApo1a6ZaXloYfkxERFQzN599MGPGDJP3lV0HlbZu3Yq+ffuqlh+DArKC1JTEmxbSVqVkyV05n8uZJumovmYl+ciZ5mk+Vdj8+5Gi1hLJzlr6Wsn4A6lr26v/Xm59y5kKbGs+Ghx7UceCAnMLFixQNT/ukkhEREQA2FJARERaVgfGFDgSgwIiItIuN+8+cDQGBWQFZ6xToGbfpdbWVVByrpwxBNbn01D3rMn7a2Kl1eeqyxXWp1BrKW+552nt/x3Zy/79+xEdHW2XLQI4poCIiLSrTIWXxiQkJCAvL88u12ZLARERaZeAsnEBQq2COI4Q9is0gwIisqh6d0FdxiZ2cl8MCoiISLvqwEDDdevWmbwvLS3Fpk2b0Lx5c+Ox0aNHq5IXgwIiItKuOjAlcfXq1Sbvb926hf/+97/w8fEBULG9AIMCIiKiOmD37t0m7/38/JCWloY2bdqonheDArKCWksKW7qukuVXrb2OXM7K11b2qn9n0UIZ5VBrOWh3+54VqAPdB47EoICIiLSLQYGqGBQQEZF21YExBeZeffVVNGnSxC7XZlBARESkIdOmTbPbtRkUkBXkbNOq1jK0crdwtdejbK+tk12hX9cVymCJu9W/vZYjlro/LXzPCrD7QFUMCoiISLvKoewXuwa7D+yJex8QERERALYUEBGRltXBgYb2xKCArOCMx8RRYwbMuUrfM9XM1nn+rvI9qrVOgTlXuT8ncOMxBeHh4dDpdLLPS0xMxOTJk23Kk0EBERGRC1qzZo1N54WFhdmcJ4MCIiLSLjfuPoiJiXF4nhxoSDbwrPJyRB415SP1uflnctKWmr1sLYMlSs6Vc1216klOvpbKpBa5z4ice1WrXszV9mwprTc537ObKVPhpSHz5s0DAHzzzTe4deuW6tdnUEBERCTD3r178eCDDyIkJAQ6nQ4fffSRZPo9e/ZAp9NVe3377bey8+7Tpw8AYObMmejSpQu6dOmCkSNHIjk5GR9//DF++eUXW27JyA3DRiIiqjOcMNDw2rVruPPOO/HUU09h2LBhVp935swZ+Pv7G9/fdtttsvPu3bs3AGDTpk0AgOvXr+PEiRM4fvw4du7ciRkzZmDgwIF46623ZF8bYFBARERaptKYAoPBYHJYr9dDr9fXeEpCQgISEhJkZ9W8eXM0atRI9nlSGjRogB49eqBHjx7GY1FRUTYHBew+IBu4Qv+x+cu7ykvNfNSihX5dJWWU01eupExS4z+sLV9NL3uVUSqtK9LCc2qmckVDW19/BAWhoaEICAgwvpKTk1Uvardu3RAcHIy4uDjs3r1b9etXysrKsvlcjXzrRERE9pObm2vStF9bK4EtgoODsWLFCkRFRaG4uBj/+te/EBcXhz179uDee+9VJY/8/Hw0adIEer0e9evXt/k6DAqIiEi7yqCszfuPMQX+/v4mQYGa2rdvj/bt2xvf9+zZE7m5uVi4cKFqQcGoUaPw/fffY9iwYVi4cKHN12FQQERE2qXRdQruuecepKamqna9nTt3AoBNMxqqYlBAuCbWmB0x72M1f3/TxpzMHzepvly5/by2bhVrKa1nLf+Wy1KdqkVJPubfa9X7VVJeZy3nq1aZLX3vtubjiksTyy2TWs9I3XP06FEEBwfLPu+f//wnXnjhBZw5cwZt27ZFvXqmzSQdOnRQVC4GBUREpF0qdR/IcfXqVZw7d874PicnB8eOHUOTJk3QqlUrTJs2DXl5eVi3bh0AICUlBWFhYYiIiEBJSQlSU1ORnp6O9PR02XlHRkYCAKZMmYJz587B19cXERERiIyMRGRkJAYNGiT/hqpgUEBERNrlhO6Dw4cP47777jO+T0pKAgCMGTMGa9asQX5+Pi5cuGD8vKSkBC+++CLy8vLg4+ODiIgIfPLJJxg4cKDsvOPi4gAA27ZtA1AxlfLEiRM4ceIEMjIyFAcFOiGEUHQFlRkMBgQEBMAHgPy9ocgW18RKJ+UsFZOyKZJIqwyGGwgIeB5FRUV2G7xX+buiaCDgb/tgexhuAQHbYNeyKhEdHY2oqCjjq0uXLopmF1jClgIiItIuJ3QfOFLPnj2RnZ2N1NRU3LhxA15eXoiIiECvXr3w+OOPG1c4VAuDAiIi0i43DwreeecdAEBZWRlOnjyJw4cP4/Dhw/jss8+wZMkSjBo1CqtXr4ZOp07bOlc0JCIicnEeHh7o0qULnn76aSxZsgTfffcdPv30U2zbtg2rVq1SLR8GBeRE9lp2lojqDIE/Bxva8nKpUXXy9O/fH7NmzcLy5ctVuyaDAiIi0i4l+x4o3WHRBdxzzz0m0yOVYlBARETa5eZBwXvvvYevvvoKxcXFNX7+66+/qjobgQMNiYiIXNRrr70Gg8EAT09PdOrUCdHR0YiOjkbHjh1x/fp1TJs2TbX9EwAGBQTA8vLD5p9XfS+1NK75teQsc2zO0qNqa5nk5GOpXuRc19YyWDrXfOtoqWWP1Vy22VGq3p+lJZ3VWgdDyXMrdS05S2ybk3Ovls6Vuo4GxvdodO8Da126dAnff/89srOzja/09HRcvnwZQMWyxko2QDLHoICIiLSrDMpWunPx7gMAuP3223H77bfjscceMx776aefcOvWLYSHh6uaF4MCIiIijWnZsqVdrsuggGzgCk2K9totz1G78MmhpEyu8F2pyRW/HzmUdKe5026MKnLz7gNHY1BARETa5cbdB+Hh4TatVJiYmIjJkyfblCeDAiIiIhe0Zs0am84LCwuzOU8GBUREpF3lUPbXvgt3H8TExDg8Ty5eRBrlafZyRD6OomTJZ3vVixaXoXbGd2dJ1TLJrVNXvx8nUbLEsdLxCHZ24cIFWenz8vIU58mggIiIyAV1794dzz33HL766qta0xQVFeH9999HZGQkNm3apDhPVwo5iYiI5FE6UNCFBxqePn0ac+bMwQMPPID69esjOjoaISEh8Pb2xqVLl3Dq1CmcPHkS0dHRWLBgARISEhTnyZYCIiLSLjfe+6BJkyZYuHAhfv75ZyxduhTt2rXDxYsXcfbsWQDAE088gezsbOzfv1+VgABgSwEBsN/8aHtdp6Zr2etR1tqSsPasY61Ra4ltNSnJV879OOpHuws8I+VQNiXRhccUVPL29sbQoUMxdOhQu+fFlgIiIiICwJYCIiLSMjceU1Cby5cv47PPPkNeXh50Oh2Cg4MxYMAANG7cWPG12VJARETa5cZTEmuyatUq9OjRA1lZWSgvL0dZWRmysrJwzz33YNWqVYqvz5YCgrL+STnbCZtv62u+xbHUdeRsnaxm+aXSymGvrZPl1pNa21U7aqyF1P0p2XpYCSXbFCt5vmx9xsmdzJ8/H0eOHIGvr6/J8bfeegtRUVF45plnFF2fTxIREWmX0r/0NdZSoNPpcPXq1WpBwdWrV23aJ8EcgwIiItKuMgBCwfkaCwoWLlyImJgYREZGokWLFgCAn376CSdPnsT//d//Kb4+gwKCulMSpboEpD6zlKeSMrrC1slK7l1OWlfYWtie0yKdcX/Omuap9Xslexg8eDASEhLw1Vdf4eeff4YQAi1atECPHj3g4eGh+PoMCoiISLvqWPcBAHh4eKBnz57VjmdnZyMqKkrRtWXPPsjLy8OTTz6Jpk2bokGDBujatSuys7ONnwshMHPmTISEhMDHxwexsbE4efKkokISERHVyI1XNJTrkUceUXwNWS0Fly5dQu/evXHfffdh+/btaN68Ob7//ns0atTImGb+/PlYtGgR1qxZg3bt2mHWrFno378/zpw5Az8/P8UFJiIiqqsee+yxGo8LIfD7778rvr6soGDevHkIDQ3F6tWrjcfCwsJMCpWSkoLp06cbl2Ncu3YtAgMDkZaWhnHjxikuMBERkVEdG2i4c+dO/Otf/6o2+0AIgb179yq+vqygYMuWLRgwYAAeffRRZGZmokWLFpgwYQKee+45AEBOTg4KCgoQHx9vPEev1yMmJgYHDhyoMSgoLi5GcXGx8b3BYLD1XoiIqK6pY2MKYmNj4evri5iYmGqfdevWTfH1ZY0p+OGHH7B06VK0bdsWn332GcaPH4/Jkydj3bp1AICCggIAQGBgoMl5gYGBxs/MJScnIyAgwPgKDQ215T6IiKguKoey8QQaCwo2bdpUY0AAAJ9++qni68sKCsrLy3HXXXdhzpw56NatG8aNG4fnnnsOS5cuNUlnvoCCEKLWRRWmTZuGoqIi4ys3N1fmLRAREZEaZHUfBAcHo1OnTibHOnbsiPT0dABAUFAQgIoWg+DgYGOawsLCaq0HlfR6PfR6vaxCk6OptcyxkuVv5SzF7KjliF3huvbMR606VZO9lqFWUgZbtzSWW15bl3hW8/+ZWvmoSOnWyUrGIzhQUlJSjcd1Oh28vb1xxx13YMiQIWjSpImifGQFBb1798aZM2dMjn333Xdo3bo1ACA8PBxBQUHIyMgw9m2UlJQgMzMT8+bNU1RQIiKiaspQJ4KCo0eP4siRIygrK0P79u0hhMDZs2fh4eGBDh06YMmSJfj73/+Offv2VfvjXQ5Z3QdTpkxBVlYW5syZg3PnziEtLQ0rVqzAxIkTAVRELImJiZgzZw42b96MEydOYOzYsWjQoAFGjhxpcyGJiIjqsiFDhqBfv374+eefkZ2djSNHjiAvLw/9+/fHiBEjkJeXh3vvvRdTpkxRlI9OCCErTvr4448xbdo0nD17FuHh4UhKSjLOPgAqxg+88cYbWL58OS5duoS7774b7733HiIjI626vsFgQEBAAHygLPgj610Ta8yOqLkDm63dB5Z2/5Mqo/mSwmrtUCinq8TSdR21S6LUMsFqfa/m7LlTo1Rztb12vHTWzpPO2N1Tne4Dg+EGAgKeR1FREfz9/WXkb73K3xVFPoC/gl8WBgEE3IBdy6qGFi1aICMjo1orwMmTJxEfH4+8vDwcOXIE8fHxuHjxos35yP6pMHjwYAwePLjWz3U6HWbOnImZM2faXCgiIiKr1JExBUVFRSgsLKwWFPz666/GqfyNGjVCSUmJonxkL3NMREREjjVkyBA8/fTT2Lx5M3766Sfk5eVh8+bNeOaZZ/Dwww8DAL766iu0a9dOUT7cEImIiLSrjgw0XL58OaZMmYLHH38cpaUVXTWenp4YM2YM3n77bQBAhw4dsHLlSkX5yB5TYG8cU+B414Syh4iIqCqHjinQqTCmQLj+mIJKV69exQ8//AAhBG6//fZqyx0rxZYCIiIijfD19UWXLl3sdn0GBUREpF0CmukCUOry5ctYtWoVTp8+DZ1Oh44dO+KZZ55BQECAanlwoCEREWmWkm0PKl9acPjwYdx+++14++238fvvv+PixYt4++23cfvtt+PIkSOq5cOWAnITLrDcKjkAv2cypfQXu1aCgilTpuChhx7C+++/D0/Piv8HpaWlePbZZ5GYmKjKtskAgwIiIiKXd/jwYZOAAKiYfTB16lRER0erlg+7D4iISLPKVXhpgb+/Py5cuFDteG5uLvz8/FTLhy0FBHlLCJtz1i6JjuKKuy9KlcleyylrkSt+d/bK1xXK6Jznpa50HwwfPhzPPPMMFi5ciF69ekGn02Hfvn146aWXMGLECNXyYVBARETk4hYuXAidTofRo0ejtLQUQgh4eXnhb3/7G+bOnataPgwKiIhIs5R2AWil+8DLywv//Oc/kZycjO+//x5CCNxxxx1o0KCBqvkwKCAiIs1yRvfB3r17sWDBAmRnZyM/Px+bN2827j9Qm8zMTCQlJeHkyZMICQnB1KlTMX78eMlzkpKSrC7TokWLrE4rhUEBwXJfoJy+Qqm0SvocndW/rVa+apZfrTrW4pgBZ9yfFp49LZTRfVy7dg133nknnnrqKQwbNsxi+pycHAwcOBDPPfccUlNTsX//fkyYMAG33Xab5PlHjx61qjw6nXqbAjAoICIizSqHspYCW7oPEhISkJCQYHX6ZcuWoVWrVkhJSQEAdOzYEYcPH8bChQslg4Ldu3fbUDplOCWRiIg0S60piQaDweRVXFysWhkPHjyI+Ph4k2MDBgzA4cOHcevWLdXyUQODAiIiqvNCQ0MREBBgfCUnJ6t27YKCAgQGBpocCwwMRGlpKS5evKhaPmpg9wG5CefPl3YNzpqv7ij8nq1jaz1p7/lRa6Bhbm6uydbJer1eSbGqMe/3F0LUeNzZGBQQEZFmqRUU+Pv7mwQFagoKCkJBQYHJscLCQnh6eqJp06Z2ydNWDAqIiEiztLBOQc+ePbF161aTYzt27EB0dDTq16/vgBJYj2MKiIiIZLh69SqOHTuGY8eOAaiYcnjs2DHj3gTTpk3D6NGjjenHjx+P8+fPIykpCadPn8YHH3yAVatW4cUXX3RG8SWxpYDchOv3fTqGu9eDu9+fWmytJ+3VrzMWLzp8+DDuu+8+4/vKRYbGjBmDNWvWID8/32TzovDwcGzbtg1TpkzBe++9h5CQECxevNiqNQ4cTScqRzu4CIPBgICAAPgAcK3hF+7rmljp7CIQkRsxGG4gIOB5FBUV2a2fvvJ3xTEASvYIvAKgK2DXsmoJuw+IiIgIALsPyCZytu6tSsk2v1JlsJSPElqbAqeF7XbJfTj//4czVjR0ZwwKiIhIs5wxpsCdsfuAiIiIALClgIiINEwL6xRoCYMCsoErbN3rqP5LrfWza2G7XVfA8RTugt0H6mL3AREREQFgSwEREWkYWwrUxaCAiIg0i2MK1MWggKyg1toDch43S328WlinwFFllMrTUdvm2mu+uiv2/btimeouthSoi2MKiIiICABbCoiISMMElHUBuNTmPy6AQQE5kZpN23IeZTlN3WpNm3T3/2r2akKX+p4d1TViTgvdBY5aftj5dcHuA3Wx+4CIiIgAuP+fL0RE5MbYUqAuBgVERKRZnJKoLgYFZAW1ls61Zz+uqy/vq4VlmZ3fP2yZrWXUwr2pqa7dL6mFQQEREWkWuw/UxaCAiIg0i0GBujj7gIiIiACwpYAAKFsDQMkyx1L9nkoeTVfsT3XU0rhqLnNs63XsyVHz72vL05n5yimDK6zn4BgcaKguBgVERKRZ5VDWBcCgwBSDAiIi0iy2FKiLQQHBcdP9XH3aoD1xSqI63Hk6qZr5cuom2YZBARERaRZnH6iLQQEREWkWgwJ1cUoiERERAWBLAdnEGdPC6jJXmM6oZhmcMe3N0o86Pse2cf7PAg40VBeDAiIi0ix2H6iL3QdEREQEgC0FRESkYWwpUBeDArIB+18dyxXWOFCzDHVprQF35/x6FVA2LkCoVRA3we4DIiIiAsCWAiIi0jB2H6iLQQEREWkWpySqi0EB2UBqbrL2tl51L6x/qlvYUqAujikgIiIiAGwpICIiDWNLgboYFJANHDV1jeRj/VPdwjEF6mL3AREREQGQGRSUlpbitddeQ3h4OHx8fNCmTRu8+eabKC//M9YSQmDmzJkICQmBj48PYmNjcfLkSdULTkREVKbCi/4kKyiYN28eli1bhnfffRenT5/G/PnzsWDBArzzzjvGNPPnz8eiRYvw7rvv4tChQwgKCkL//v1x5coV1QtPRER1WzmUBQTsPjAla0zBwYMHMWTIEAwaNAgAEBYWhvXr1+Pw4cMAKloJUlJSMH36dAwdOhQAsHbtWgQGBiItLQ3jxo1TufhEpD1SP3a0PiaCU0JJ22S1FPTp0weff/45vvvuOwDA119/jX379mHgwIEAgJycHBQUFCA+Pt54jl6vR0xMDA4cOFDjNYuLi2EwGExeRERE1ihX4UV/ktVS8PLLL6OoqAgdOnSAh4cHysrKMHv2bIwYMQIAUFBQAAAIDAw0OS8wMBDnz5+v8ZrJycl44403bCk7ERHVcZySqC5ZLQUbNmxAamoq0tLScOTIEaxduxYLFy7E2rVrTdLpdDqT90KIascqTZs2DUVFRcZXbm6uzFsgIiIiNchqKXjppZfwyiuv4PHHHwcAdO7cGefPn0dycjLGjBmDoKAgABUtBsHBwcbzCgsLq7UeVNLr9dDr9baWn1ShZj+o1LWU5CPnUdV6P66le5W6Pzl1bCmtvfr+1Xy+rL2ums+eWut0yK1/e92fPa7jOFynQF2yWgquX7+OevVMT/Hw8DBOSQwPD0dQUBAyMjKMn5eUlCAzMxO9evVSobhERER/4pREdclqKXjwwQcxe/ZstGrVChERETh69CgWLVqEp59+GkBFt0FiYiLmzJmDtm3bom3btpgzZw4aNGiAkSNH2uUGiIio7uKYAnXJCgreeecd/OMf/8CECRNQWFiIkJAQjBs3Dq+//roxzdSpU3Hjxg1MmDABly5dwt13340dO3bAz89P9cKTWiw1EarVjKxmU6Scpm5XYK8maDU5qulYrXwc9ezZaydQS+dJ5Wv+mVrfldzrSJWJtEgnhBDOLkRVBoMBAQEB8AFQ89BEUts1sdJCCjlBgb1+scjpf3XFH06u+AtXydgFJdTq33f34EkqX1d5xmsuk8FwAwEBz6OoqAj+/v52ybnyd8U0AN4KrnMTQDJg17JqCfc+ICIizXLWioZLlixBeHg4vL29ERUVhS+++KLWtHv27IFOp6v2+vbbb23M3X4YFBAREcmwYcMGJCYmYvr06Th69Cj69u2LhIQEXLhwQfK8M2fOID8/3/hq27atg0psPVfviCWHkNscautjY97Id9PG69R0LTmcMRVSyfQ/OeR0CdhrSqKaUyrlfm5Lnpao+dzKqVPzfJXUm63XcZVuito5Y6DhokWL8Mwzz+DZZ58FAKSkpOCzzz7D0qVLkZycXOt5zZs3R6NGjWwrqIOwpYCIiDRLrWWOzZfbLy4urjG/kpISZGdnmyznDwDx8fG1LudfqVu3bggODkZcXBx2795ty+3aHYMCIiKq80JDQxEQEGB81fYX/8WLF1FWVlbjcv6VS/2bCw4OxooVK5Ceno5Nmzahffv2iIuLw969e1W/D6XYfUBERJqlVvdBbm6uyewDSyvtylnOv3379mjfvr3xfc+ePZGbm4uFCxfi3nvvta3gdsKggCB/vrSt/YxK+mLtNS9bbr62snTvzphnruT7UKsMcs91Rh+3mvVkr+/HWesUOH/MgVrLHPv7+1s1JbFZs2bw8PCo1iogtZx/Te655x6kpqbKKapDsPuAiIjISl5eXoiKijJZzh8AMjIyZC3nf/ToUZM9glwFWwqIiEiznDH7ICkpCaNGjUJ0dDR69uyJFStW4MKFCxg/fjyAit1/8/LysG7dOgAVsxPCwsIQERGBkpISpKamIj09Henp6QpKbh8MCgjKpoFZmsZWtQlUztQu8+vIKaOcpnol15VzP5bSqvVf0VI+Ve/d0rROW5didtSUREtdSmotzy1naqCSqaZypiQqmb6o5tRZOf/v7MMZQcHw4cPx22+/4c0330R+fj4iIyOxbds2tG7dGgCQn59vsmZBSUkJXnzxReTl5cHHxwcRERH45JNPMHDgQAUltw8uc0y4JtZYSMGgoObrMiioGYMC68pg6VztBgWOXOb4rwC8FFynBMAKcJnjShxTQERERADYfUBERBrGrZPVxaCAYN8pZGqllbMbo5plkvpczSlj9pr6qFb55XCV58lR00ntVQY5+Up1R9lzy3LnY1CgLnYfEBEREQC2FBARkYaptXgRVWBQQEREmsXuA3UxKCCou62v1LWUbOur5qMqZ0qW1JREOdvMKkkrh5IpiWr15ztr62RnTUm013bUaqXV3nbI5DwMCoiISLPYfaAuBgVERKRZ7D5QF2cfEBEREQC2FBAAy32Mas3HV3IdZ22VbOtyseYctQ3uVRlptbhOgb3WxZDirPUonHGv2tw6Wclf++w+MMWggIiINItjCtTFoICIiDSrDMr6wTmmwBTHFBAREREAthQQEZGGsaVAXQwKiIhIszimQF3sPiAiIiIAbCkgIiINY/eBuhgUEBGRZrH7QF3sPiAiIiIAbCkgIiIN44qG6mJQQJC/taqcx8bWbWWVbN9siZylWW29V0vXUSutmvlIUbKcrb2+dznPqT3Lb+u15P4/s/WZsefWyWrVse3KAOgUnk9/YvcBERERAWBLARERaRgHGqqLQQFB2c5ocpomlewgp2azsq2UdGk4asc7Z53rqOuqVY9KnlslzfHOSOv8nQztid0H6mJQQEREmsWgQF0cU0BEREQA2FJAREQaxjEF6mJQQFaQ039vr6lRznpU1eqPddY0Q0dNn1PC1v58R42f0OKURGvPU5Kna2D3gbrYfUBEREQA2FJAREQaJqCsC0CoVRA3waCAiIg0S2nzP7sPTDEoIFh+DOQ8JmqNKTBPK6eMNy2ktTVfJfPVvc3em5dRqp7MSX3uqHyULJ+s5Fwl41usLYOcPOWWwV7ld9Ry3HL+f5AWMSggIiLNYkuBuhgUEBGRZpVD2ewDTkk0xaCAYN+pXbY2LypZetleTatK6kmqGV/NfNSsY6k6lUNJmdSaImfP8tv6XSq5rpr5yEnLLgJ3x6CAiIg0i90H6mJQQEREmsWgQF0MCoiISLM4pkBdDArICo7a9tde17XXua5QL+YsTcesyhW/KzWvpVY5XHHrZyVp1bwOxxi4GwYFRESkWUr/0mdLgSkGBUREpFkMCtTFDZGIiIgIAFsKSDFHbesrZ/lVR/VzuuI2s65YJq1zVp3yu7RGGZRtasSWAlMMCoiISLMYFKiL3QdEREQEgC0FRESkYRxoqC4GBaSQo+ZSu+Ka7K7Yx+uKZdI6Z9Upv0trsPtAXew+ICIiIgBsKSAiIg0rh7KWAiXnuiO2FBBZzdPsReSq6s5zWq7CyxZLlixBeHg4vL29ERUVhS+++EIyfWZmJqKiouDt7Y02bdpg2bJlNuZsXwwKiIhIs8pUeMm1YcMGJCYmYvr06Th69Cj69u2LhIQEXLhwocb0OTk5GDhwIPr27YujR4/i1VdfxeTJk5Genm5D7valE0K4VOuJwWBAQEAAfKBs5yuy3jWx0tlF0AguJkNa4YzFvP5kMNxAQMDzKCoqgr+/v53yqPhd4QtlvysEgKuArLLefffduOuuu7B06VLjsY4dO+Lhhx9GcnJytfQvv/wytmzZgtOnTxuPjR8/Hl9//TUOHjyooPTqc7m2pcoYxaUiFTdnMNxwdhE0gkEBaYXzgwLgz5/n9lQG5UEBUBFkVKXX66HX66ulLykpQXZ2Nl555RWT4/Hx8Thw4ECNeRw8eBDx8fEmxwYMGIBVq1bh1q1bqF+/vu03oDKXCwquXLkCQN4GsKRMQMDzzi4CEbmhK1euICAgwC7X9vLyQlBQEAoKChRfy9fXF6GhoSbHZsyYgZkzZ1ZLe/HiRZSVlSEwMNDkeGBgYK1lKSgoqDF9aWkpLl68iODgYGU3oCKXCwpCQkKQm5sLIQRatWqF3NxcuzU/uQODwYDQ0FDWkwWsJ+uwnqzDepImhMCVK1cQEhJitzy8vb2Rk5ODkpISxdcSQkCnM21vqKmVoCrz9DVdw1L6mo47m8sFBfXq1UPLli2NTTn+/v78T2cF1pN1WE/WYT1Zh/VUO3u1EFTl7e0Nb29vu+dTVbNmzeDh4VGtVaCwsLBaa0Clmlo0CgsL4enpiaZNm9qtrLbg7AMiIiIreXl5ISoqChkZGSbHMzIy0KtXrxrP6dmzZ7X0O3bsQHR0tEuNJwAYFBAREcmSlJSElStX4oMPPsDp06cxZcoUXLhwAePHjwcATJs2DaNHjzamHz9+PM6fP4+kpCScPn0aH3zwAVatWoUXX3zRWbdQK5frPqik1+sxY8YMi/06dR3ryTqsJ+uwnqzDeqrbhg8fjt9++w1vvvkm8vPzERkZiW3btqF169YAgPz8fJM1C8LDw7Ft2zZMmTIF7733HkJCQrB48WIMGzbMWbdQK5dbp4CIiIicg90HREREBIBBAREREf2BQQEREREBYFBAREREf2BQQERERABcOCiQu1e1O0tOTkb37t3h5+eH5s2b4+GHH8aZM2dM0gghMHPmTISEhMDHxwexsbE4efKkk0rsGpKTk6HT6ZCYmGg8xnqqkJeXhyeffBJNmzZFgwYN0LVrV2RnZxs/Zz0BpaWleO211xAeHg4fHx+0adMGb775JsrLy41pWE/kdoQL+vDDD0X9+vXF+++/L06dOiVeeOEF0bBhQ3H+/HlnF80pBgwYIFavXi1OnDghjh07JgYNGiRatWolrl69akwzd+5c4efnJ9LT08Xx48fF8OHDRXBwsDAYDE4sufN89dVXIiwsTHTp0kW88MILxuOsJyF+//130bp1azF27Fjx5ZdfipycHLFz505x7tw5YxrWkxCzZs0STZs2FR9//LHIyckRGzduFL6+viIlJcWYhvVE7sYlg4IePXqI8ePHmxzr0KGDeOWVV5xUItdSWFgoAIjMzEwhhBDl5eUiKChIzJ0715jm5s2bIiAgQCxbtsxZxXSaK1euiLZt24qMjAwRExNjDApYTxVefvll0adPn1o/Zz1VGDRokHj66adNjg0dOlQ8+eSTQgjWE7knl+s+qNyr2nzvaam9quuaoqIiAECTJk0AADk5OSgoKDCpM71ej5iYmDpZZxMnTsSgQYPQr18/k+OspwpbtmxBdHQ0Hn30UTRv3hzdunXD+++/b/yc9VShT58++Pzzz/Hdd98BAL7++mvs27cPAwcOBMB6Ivfkcssc27JXdV0ihEBSUhL69OmDyMhIADDWS011dv78eYeX0Zk+/PBDHDlyBIcOHar2Geupwg8//IClS5ciKSkJr776Kr766itMnjwZer0eo0ePZj394eWXX0ZRURE6dOgADw8PlJWVYfbs2RgxYgQAPk/knlwuKKgkd6/qumLSpEn45ptvsG/fvmqf1fU6y83NxQsvvIAdO3ZIbqda1+upvLwc0dHRmDNnDgCgW7duOHnyJJYuXWqyiUtdr6cNGzYgNTUVaWlpiIiIwLFjx5CYmIiQkBCMGTPGmK6u1xO5F5frPrBlr+q64vnnn8eWLVuwe/dutGzZ0ng8KCgIAOp8nWVnZ6OwsBBRUVHw9PSEp6cnMjMzsXjxYnh6ehrroq7XU3BwMDp16mRyrGPHjsYNXPg8VXjppZfwyiuv4PHHH0fnzp0xatQoTJkyBcnJyQBYT+SeXC4osGWvancnhMCkSZOwadMm7Nq1C+Hh4Safh4eHIygoyKTOSkpKkJmZWafqLC4uDsePH8exY8eMr+joaDzxxBM4duwY2rRpw3oC0Lt372pTWr/77jvjDm98nipcv34d9eqZ/oj08PAwTklkPZFbcuIgx1pVTklctWqVOHXqlEhMTBQNGzYUP/74o7OL5hR/+9vfREBAgNizZ4/Iz883vq5fv25MM3fuXBEQECA2bdokjh8/LkaMGMGpUUKYzD4QgvUkRMV0TU9PTzF79mxx9uxZ8e9//1s0aNBApKamGtOwnoQYM2aMaNGihXFK4qZNm0SzZs3E1KlTjWlYT+RuXDIoEEKI9957T7Ru3Vp4eXmJu+66yzj9ri4CUONr9erVxjTl5eVixowZIigoSOj1enHvvfeK48ePO6/QLsI8KGA9Vdi6dauIjIwUer1edOjQQaxYscLkc9aTEAaDQbzwwguiVatWwtvbW7Rp00ZMnz5dFBcXG9Ownsjd6IQQwpktFUREROQaXG5MARERETkHgwIiIiICwKCAiIiI/sCggIiIiAAwKCAiIqI/MCggIiIiAAwKiIiI6A8MCoiIiAgAgwIiIiL6A4MCIiIiAsCggIiIiP7w/3GiIspcZ/omAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVq0lEQVR4nO3deVxU5f4H8M8IMqDCmJosigrmlmQapKkZlolX7VbXbpll2WaSmSG/MpduWqmYeovbouaSS2Z6C+1qLkmlmKnlXpKZFSkRRJYw4gICz+8PYpo5wBnOnGeWA5/36zWvF3PmnOd5zjMD8+VZTUIIASIiIqr3Gni7AEREROQbGBQQERERAAYFRERE9CcGBURERASAQQERERH9iUEBERERAWBQQERERH9iUEBEREQAGBQQERHRnxgUGMjq1auRmprqtfytVitmzpyJ/v37IywsDE2aNMFVV12Fl156CRcvXnQ4d/r06TCZTDU+1qxZ4/TcwMDAasuxZs0adO/eHYGBgYiIiEBSUhKKiorceu+19dNPP8FkMmH58uXeLopLpk6dih49eqBZs2YIDAxEdHQ0Hn30UZw8eVL1uo8//tj2vp0+fdpDpfWsZ599FiaTCTExMVVe69+/f7Wf4b/97W9eKCmR6/y9XQCqvdWrV+Po0aNISkrySv6nTp1Camoq7rvvPiQnJ6NJkyb47LPPMH36dKSnpyM9PR0mkwkA8Mgjj1T7B3H06NH44Ycfqn1t69atsFgstucNGlSNWd955x2MHDkSjzzyCF555RV89913eOaZZ/DNN99g27ZtEu+2fiooKMCIESPQpUsXBAcH45tvvsGMGTOwYcMGZGZmonnz5lWuKSoqwujRoxEREYFffvnFC6V2v8OHD2PevHkIDQ2t8Zzo6Gi88847DseaNm3q5pIRycWggGotKioKP/30Exo3bmw7dtNNN6Fx48Z4+umn8fnnn+P6668HALRu3RqtW7d2uP6nn35CZmYm7r333mr/WMbGxqJFixY15l9WVoann34aCQkJWLx4MQDgxhtvRHBwMO69915s2bIFgwcPlnCn9dcbb7zh8Lx///6IiorCkCFD8L///Q8PPfRQlWsmTZqEyy67DEOHDsWMGTOklqesrAylpaUwm81S09WitLQUDz74IMaMGYMjR47U2BISFBSE6667zsOlI5KL3Qc+4rfffsOjjz6KyMhImM1mXH755ejbty8+/vhjABV/nDdt2oSTJ086NE9WKikpwYwZM9C5c2fb9Q8++CB+++03h3zatWuHW265BevXr0e3bt1sTcSvvvqq0zI2btzYISCo1LNnTwBAdna26vVvvfUWhBB45JFHnOZVnb179yI3NxcPPvigw/E777wTTZo0wfr1611KFwC+/fZbjBgxAqGhoTCbzWjTpg3uv/9+FBcX2845evQobrvtNlx22WUIDAxE9+7dsWLFCqdpP/DAA2jXrl2V45XdJvZMJhPGjRuHZcuWoVOnTggKCkJcXBz27t0LIQTmzp2LqKgoNGnSBDfddBO+//57h+v79++PmJgY7Nu3D/369UOjRo0QHR2N2bNno7y83KW6ufzyywEA/v5V/4f47LPPsGjRIixZsgR+fn4upV+psutlzpw5mDFjBqKiomA2m7F9+3YAwIYNG9C7d280atQIwcHBGDhwIPbs2WO7PjMzEyaTCe+9957t2IEDB2AymdC1a1eHvG699VbExsbWqlyzZ8/GH3/8gZkzZ+q6PyJDEOQTBg0aJC6//HKxaNEisWPHDvHBBx+I5557TqxZs0YIIURmZqbo27evCAsLE3v27LE9hBCirKxM/O1vfxONGzcWzz//vEhPTxdLliwRrVq1EldeeaU4f/68LZ+2bduKVq1aiTZt2oi33npLbN68Wdx7770CgJg7d65LZZ82bZoAII4cOVLjOWVlZSIyMlJcccUVNV4fFhYmGjRoIFq2bCnuu+8+cfLkSYfzFi5cKACIzMzMKmnExcWJ3r17OxwDIOLj452W//Dhw6JJkyaiXbt2YuHCheKTTz4Rq1atEnfddZewWq1CCCG+/fZbERwcLNq3by9WrlwpNm3aJEaMGCEAiJdeesmWVlZWlgAgli1bZjs2atQo0bZt2xrvW1nmtm3bij59+oh169aJ9evXi44dO4pmzZqJCRMmiNtuu018+OGH4p133hGhoaGiW7duory83HZ9fHy8aN68uejQoYNYuHChSE9PF2PHjhUAxIoVK5zWRaVLly6J8+fPi4MHD4q+ffuKjh07irNnzzqcc/78edGhQwfx9NNPO9zPb7/9Vut87FXWXatWrcSNN94o3n//fbFt2zaRlZUl3nnnHQFAJCQkiA8++ECsXbtWxMbGioCAAPHZZ5/Z0ggPDxePPvqo7fns2bNFUFCQACBycnJs9xYSEiImTpzotEyZmZnCbDaLTZs2CSEq6rdr165VzouPjxeBgYHisssuE35+fiI6OlpMmTLF4XePyAgYFPiIJk2aiKSkJNVzhg4dWu2Xy7vvvisAiLS0NIfj+/btEwDE/Pnzbcfatm0rTCaTOHz4sMO5AwcOFCEhIeLcuXOayn3kyBERFBQk/vGPf6iet2XLFgFApKSkVHlt5cqVYubMmWLz5s3i008/FbNnzxbNmjUToaGh4ueff7adN3PmTAFA5ObmVkkjISFBdOzY0eGYn5+fuOmmm5zew0033SSaNm0q8vPzazzn7rvvFmazWZw6dcrh+ODBg0WjRo1EQUGBEEJOUBAWFiaKiopsxz744AMBQHTv3t0hAEhNTRUAxFdffWU7Fh8fLwCIL774wiHdK6+8UgwaNKjmSrCTm5srANgevXr1sn2h2vu///s/ER0dbfvikxUUtG/fXpSUlNiOl5WViYiICHHVVVeJsrIy2/GzZ8+Kli1bij59+tiOjRw5UkRHR9ue33zzzWL06NHisssuswVFn3/+uQAgtm3bplqesrIy0atXLzFixAjbsZqCgqlTp4r58+eLTz/9VGzatEmMGzdO+Pv7ixtuuMGhzES+jkGBj6j8YnrxxRfFnj17HP4oVqopKLj33ntF06ZNRUlJibh06ZLDIywsTNx11122c9u2bStiYmKqpLFs2TIBwOG/LmeysrJEZGSk6Nixo/j9999Vz/3nP/8p/P39q/1Cr84XX3whGjRoIMaPH287VhkU5OXlVTk/ISFBdOrUqdZlr3Tu3Dnh5+fn8N9ldVq2bCmGDBlS5fjatWsFALFlyxYhhJygwP5LSAghjh8/LgCIyZMnOxz/6KOPBACxceNG27H4+HgRFhZWJa+7775bdO7cWfUeK126dEns27dP7Nq1SyxevFh06NBBdOzYUfzyyy+2c7744gvh5+cn0tPTq9yP3qBgwoQJDse/+eYbAUDMmTOnyjWPPfaYaNCggS2Yrfwc//jjj+LChQsiMDBQpKWliWHDhomRI0cKIYR4/vnnhdlsdvpf/Ny5c0WzZs3Er7/+ajtWU1BQnXnz5gkAYt26dbU6n8gXcEyBj1i7di1GjRqFJUuWoHfv3mjWrBnuv/9+5OXlOb32119/RUFBAQICAtCwYUOHR15eXpWBUWFhYVXSqDz2+++/16q8J0+exI033gh/f3988sknaNasWY3nnj59Ghs2bMDQoUOrzbs6PXv2RMeOHbF3717bscqR79WV8Y8//lAtQ03OnDmDsrKyKoMilX7//XeEh4dXOR4REVFjmVylvI+AgADV48rpoNXNEDCbzbhw4UKt8vf390dcXBz69u2LRx55BJ9++il+/PFHzJ4923bOQw89hGHDhiEuLg4FBQUoKCiwlcNqteLs2bO1yqs6ynqurNua6r+8vBxnzpwBANx8880AKqZI7tq1C5cuXcJNN92Em2++GZ988onttb59+yIoKKjGMpw6dQrPPfccpk2bhoCAANs9lpaWory8HAUFBU7rc+TIkQDg8Bkm8nWcfeAjWrRogdTUVKSmpuLUqVPYsGEDJk2ahPz8fGzdutXptc2bN6/xvODgYIfn1QUalceq+0JROnnyJPr37w8hBHbs2OH0C/Xtt99GSUmJ5gGGQgiHaYlXXXUVAODrr7/GlVdeaTteWlpqGyioVbNmzeDn54eff/5Z9bzmzZsjNze3yvHKKXhqsyYCAwMdBixWMsp8/tatWyMiIgLfffed7VhmZiYyMzMdBvVVat++Pa6++mocPnzYpfyUgy8rP5M11X+DBg1w2WWX2crasWNHfPzxx2jXrh3i4uLQtGlTDBgwAGPHjsUXX3yBvXv34vnnn1ctw48//ogLFy7gySefxJNPPlnl9csuuwxPPvlkrdYNqW5qLZGvYlDgg9q0aYNx48bhk08+weeff247XtN/e7fccgvWrFmDsrIy9OrVy2n6mZmZOHLkCK6++mrbsdWrVyM4OBjXXHON6rWnTp1C//79UVZWhh07dqBt27ZO81u6dCkiIiI0TRfcu3cvTpw4gfHjx9uO9erVC+Hh4Vi+fDmGDx9uO/7++++jqKgIw4YNq3X6lYKCghAfH4/33nsPM2fOrPHLfcCAAVi/fj1++eUXW+sAAKxcuRKNGjVSnYrWrl075Ofn49dff7XNcy8pKcFHH32kubze8P333+Pnn3/GrbfeajtWOSPA3vLly7FixQp88MEHaNWqlbT8O3XqhFatWmH16tV46qmnbEHDuXPnkJaWZpuRUOnmm2/Gf//7X0RGRmLo0KEAgI4dO6JNmzZ47rnncOnSJVuLQk26d+9e7T0mJSWhsLAQy5YtcxoMV85M4TRFMhRv91+QEAUFBaJHjx5i7ty5YuPGjWLHjh1i7ty5IjAwUNxzzz228yr7bOfPny+++OILsW/fPiGEEKWlpWLw4MGiWbNm4vnnnxdbtmwRH3/8sVi+fLkYNWqUQ5+mcvbBli1bbLMP7EfRV+fXX38V0dHRwmw2i1WrVjnMgtizZ4/Izs6ucs3evXsFADFlypQa0+3WrZuYM2eO2Lhxo0hPTxczZ84UTZs2FREREQ792EII8fbbbwsA4tFHHxXbt28XixYtEk2bNhUDBw6skm5tBxpWzj6Ijo4WixYtEp9++ql49913xYgRI6rMPujYsaNYtWqVw6wN+77u6sYU/Pjjj6Jhw4aif//+YtOmTSItLU3Ex8eLqKioascUPP744w7HKtNUzg7Zvn27ACDee+8927Ga+rxrGtdg78iRI+Kmm24S8+fPF1u3bhXbtm0T//73v0Xr1q3F5ZdfLn766SfV62saU1BZzmnTpqleX9N9CiFssw+GDBki/ve//4n//ve/4tprr60y+0AIIdLS0myDJDMyMmzHH3zwQQFAXHbZZS4P/quufnfu3CkGDRokFi5cKLZt2yY2bNggHnvsMdvnjwMNyUgYFPiAixcvisTERNGtWzcREhIigoKCRKdOncS0adMcZgP88ccf4p///Kdo2rSpMJlMDl8oly5dEvPmzRNXX321CAwMFE2aNBGdO3cWY8aMESdOnLCd17ZtWzF06FDx/vvvi65du4qAgADRrl078fLLLzstZ+Uf95oe1f3RHz16tDCZTOKHH36oMd27775bXHHFFaJx48aiYcOGom3btiIxMbFKQFBp9erVolu3biIgIECEhYWJ8ePHV5kuJ0TtpyQKUTGY7c477xTNmzcXAQEBok2bNuKBBx4QFy9etJ3z9ddfi7///e/CYrGIgIAAcfXVVzt8+QtRfVAghBCbN28W3bt3F0FBQSI6Olq8/vrrNQ409FZQkJeXJ0aOHCnat28vGjVqJAICAkR0dLRITEysMuuiOjUFBRs3bhQAxMKFC1WvVwsKhKiYhdGrVy8RGBgoGjduLAYMGCA+//zzKuedOXNGNGjQQDRu3NhhwG5lYDFs2DCn91KT6ur3xIkTYsiQIaJVq1bCbDaLwMBAcdVVV4mZM2c6fH6IjMAkhBBubowgH9KuXTvExMTgww8/9HZRqJ6YOHEi3n33XZw4caLG/SyIyDdwBAwRudX27dvxr3/9iwEBkQFwoCERudW+ffu8XQQiqiV2HxAREREAdh8QERHV2oIFC9CtWzeEhIQgJCQEvXv3xpYtW1SvycjIQGxsrG0DuoULF3qotNoxKCAiIqql1q1bY/bs2di/fz/279+Pm266CbfddhsyMzOrPT8rKwtDhgxBv379cOjQIUyZMgXjx49HWlqah0teO27rPpg/fz7mzp2L3NxcdO3aFampqejXr587siIiIvKaZs2aYe7cuXj44YervPbMM89gw4YNOHbsmO1YYmIijhw54rD1t69wy0DDtWvXIikpCfPnz0ffvn3x5ptvYvDgwfjmm2/Qpk0b1WvLy8vxyy+/IDg4uMpyp0RE5PuEEDh79iwiIiLcuszzxYsXUVJSojsdIUSV7xuz2Qyz2ax6XVlZGd577z2cO3cOvXv3rvacPXv2ICEhweHYoEGDsHTpUly6dAkNGzbUV3jZ3LH4Qc+ePUViYqLDsc6dO4tJkyY5vTY7O1t1gRw++OCDDz6M8ahulVNZLly4IMLCwqSUs0mTJlWOqa3A+dVXX4nGjRsLPz8/YbFYxKZNm2o8t0OHDmLmzJkOxyq3765pgTZvkt5SUFJSggMHDmDSpEkOxxMSErB79+4q5xcXFztsFiP+7M3Izp6DkJCadzEjIiLfZLVeQGTkxCqbsclUUlKCvLw8ZGdnISQkxOV0rFYrIiOjkJ2d7ZCOWitBp06dcPjwYRQUFCAtLQ2jRo1CRkaGw0Zt9pStEJXfc77YGi49KDh9+jTKyspsG79UCg0NrXZ3vpSUlGp3LAsJCWJQQERkYJ740qucBeDJdAICAnDFFVcAAOLi4rBv3z785z//wZtvvlnl3LCwsCrfffn5+fD396/VrrSe5rbFi6qLjKr7gEyePBnJycm25xVRWyTCLE+g8uxzYo3dFY57x1dVavez1tuzP1+Zj1papYrnynNdTVcmZT7KMrualrP3Q0u9uZqOs7SaKp4XqVynzMd+FT5n753yeZHKa87yVTs3UOU1We+rnmuV9aRcyVCtjDLLr+fzZX+ts5UYS2v4ubprL6q8piTrb4Wzemhi93NRjWc5Z38/5TrS0aoU+j43eq6tIISodnt0AOjduzc2btzocGzbtm2Ii4vzvfEEcMM3UosWLeDn51dtZKRsPQBqN5iDiIioep4NCqZMmYLBgwcjMjISZ8+exZo1a7Bjxw5s3boVQMU/ujk5OVi5ciWAipkGr7/+OpKTkzF69Gjs2bMHS5cuxbvvvqujzO4jfVhoQEAAYmNjkZ6e7nA8PT0dffr0kZ0dERHVa6USHrX366+/4r777kOnTp0wYMAAfPHFF9i6dSsGDhwIAMjNzcWpU6ds50dFRWHz5s3YsWMHunfvjhdffBGvvvoq7rjjDl137S5uWadg7dq1uO+++7Bw4UL07t0bixYtwuLFi5GZmYm2bduqXmu1WmGxWBAEoLreqHNiieziEhGRRFbrBVgsT6CwsFBKf3/1eVR8VxQWntQ90NBiaevWshqJWzq0hw8fjt9//x0vvPACcnNzERMTg82bNzsNCIiIiLQpg77ugzJZBakT3DbKbezYsRg7dqy7kiciIoIvDDSsS7j3AREREQHw3Hw4aRqbHnF4brwxBjKnBhIR1XdsKZDJcEEBERHRXxgUyMTuAyIiIgLAlgIiIjK0MuibQcDZB/YMHxQYb4wBm6qIiOThlESZ2H1AREREAOpASwEREdVnHGgoU50LCuy7Exx3VwSq7gDWVPFcbbczNcrdzJqoPFeeW6B4rmVHObVd1rTsdqYsr7O07M9Xlk9t10Rn9+Zfw8/VpatMS8uOhPbXKu+9QOVatR3vqsu3tmWo7nW1dO3zVZZf7b1SXqu2I6TyXGe7Maq9d0pqaTmrF7VdULXsJqn2+VGmrbxW7ffF2d8NLbskqr3vWsrv7P1Q+31WS1d5fpjdz+ec5CkTgwKZ6lxQQERE9QmDApk4poCIiIgAsKWAiIgMjbMPZKrTQUFj090Oz6tOVyxwU87Kfjgt/ftqffLO8nGV1nRczdfZvWn5xVYrg5Z+XS31LbP8WvJVS9fZe6GlnrSUSS0tPX+gZdWLs7Sc1ZueOq8tPfWtpfx66kktXaWf7X6+oCFNvdh9IBO7D4iIiAhAHW8pICKiuo4tBTIxKCAiIgNjUCBTvQoKjLckMhERkefUq6CAiIjqGrYUyMSggIiIDIxTEmXi7AMiIiICUM9bCjjGoJKzNeTVzldbA782adVXsupJZn2rpeWp95WfHznUfkfrGnYfyFSvgwIiIjI6BgUyMSggIiIDY1AgE4MCO47bLn+geFXLlsCnFc/VtibVwlnTqpYy2j9vqngtz0m+9vdToHhNLS1n2+Lap+tsC2Aty/cqy1Rg93OYymvKtJxtoatl6161+3G2FbfatrgFKmVQpq3Mp73i+a8qZVDmY18O5XvjbMtpe60Vz3+u9qwKLZyUyZ7WP3VqW3GrvXfOPntq21Er83G2fbg9ZR3b143y75HaNuTO/qaobbdtf225soBkEAwKiIjIwNhSIBODAiIiMjBOSZSJUxKJiIgIAFsKatTYdLvDc/Xpinq2r/UUZd+g/fMCjWmp3Y9yPIJaGZTUyqH2mjNq16qV1xln76uerXvtFWg4V0sZlI67qQxa7vUnDefqee+0UP4XWqDhWi3n6vlvV8927VrOVZaxpmuLNaSpVxn0/bfPlgJ7DAqIiMjAOKZAJnYfEBEREQC2FBARkaGxpUAmBgW1xCWRiYh8EWcfyMTuAyIiIgLAlgIiIjI0dh/IxKDARY5LIrMroX7ijn7VY72QJzEokIlBARERGRiDApk4poCIiIgAsKWAiIgMjS0FMjEokIDTFesr/jGpHuuFPIlTEmVi9wEREREBYEsBEREZWikAP53XUyUGBUREZGAMCmRiUOAGHGNARERGxKCAiIgMjC0FMjEoICIiA+PsA5kYFHgAl0QmIiIjYFBAREQGVgp9s+vZfWCPQQERERkYgwKZuHgREREZWKmER+2lpKTg2muvRXBwMFq2bInbb78dx48fV71mx44dMJlMVR7ffvutprw9gS0FHuab0xW51a1rWG/VY73UH/bvdf14nzMyMvD444/j2muvRWlpKaZOnYqEhAR88803aNy4seq1x48fR0hIiO355Zdf7u7iasaggIiIDKwM+mYQaLt269atDs+XLVuGli1b4sCBA7jhhhtUr23ZsiWaNm2qtYAexe4DIiIysMopia4+KoICq9Xq8CguLq5V7oWFhQCAZs2aOT23R48eCA8Px4ABA7B9+/ba36IHMSggIqJ6LzIyEhaLxfZISUlxeo0QAsnJybj++usRExNT43nh4eFYtGgR0tLSsG7dOnTq1AkDBgzAzp07Zd6CFOw+8DLfGGNQP/oC5WO9VY/1Un/4wntdCsCk83ogOzvbob/fbDY7vXLcuHH46quvsGvXLtXzOnXqhE6dOtme9+7dG9nZ2Zg3b57TLgdPY1BAREQGJicoCAkJcQgKnHniiSewYcMG7Ny5E61bt9ac63XXXYdVq1Zpvs7dGBQQERHVkhACTzzxBNavX48dO3YgKirKpXQOHTqE8PBwyaXTj0EBEREZmJyWgtp6/PHHsXr1avzvf/9DcHAw8vLyAAAWiwVBQUEAgMmTJyMnJwcrV64EAKSmpqJdu3bo2rUrSkpKsGrVKqSlpSEtLU1Hud2DQYGP8Y0xBkRERuHZoGDBggUAgP79+zscX7ZsGR544AEAQG5uLk6dOmV7raSkBE899RRycnIQFBSErl27YtOmTRgyZIiOcruHSQghvF0Ie1artSLigr63ua5gUEBERmO1XoDF8gQKCws19dNry6Piu6KwcCBCQhrqSOcSLJZ0t5bVSNhSQEREBlYGff9CcutkewwKfBy3XSYiUqN3WqQvTKv0HQwKiIjIwBgUyMQVDYmIiAiAxqCgNltGCiEwffp0REREICgoCP3790dmZqbUQhMREVXw7NbJdZ2moKByy8i9e/ciPT0dpaWlSEhIwLlz52znzJkzBy+//DJef/117Nu3D2FhYRg4cCDOnj0rvfD1TWPTIw4PffztHp681hv84ftlViufsvzueu88VU9GeD98ndpnQlmndb2+5WyIRBU0fUKcbRkphEBqaiqmTp2KYcOGAQBWrFiB0NBQrF69GmPGjKmSZnFxscNuVFar1ZX7ICIiIp10jSlQbhmZlZWFvLw8JCQk2M4xm82Ij4/H7t27q00jJSXFYWeqyMhIPUUiIqJ6hd0HMrkcFFS3ZWTlco+hoaEO54aGhtpeU5o8eTIKCwttj+zsbFeLRERE9Q6DAplc7mBS2zLSZHJcSEIIUeVYJbPZXKstKqmqqksi2++41URxdoHiuf2uXsqALVDx/KLieVu7n3NqLmCVtJQfN2WZ7CnPVZZBWUb785XnNlU8L7L7WfkHQZmu2rlhiufO6lGN/bnK8ivfS7V7dfYHrqndz8rytlA8P61SBmW+Wv6UNFU8V8unSPFcrZ7U8jmteE1ZT2r5KutFWSa1OlfWi/25zn7P1D4/yvIqqdWpskxFKq+pnatkX0/nVc4jX+ZSS0HllpHbt2932DIyLKzij6SyVSA/P79K6wEREZF+bCmQSVNQIITAuHHjsG7dOnz66adVtoyMiopCWFgY0tPTbcdKSkqQkZGBPn36yCkxERGRDYMCmTR1HzjbMtJkMiEpKQmzZs1Chw4d0KFDB8yaNQuNGjXCPffc45YboL80No20/ex8SeSfVF5z1ix73Mnr9tSaG/XQkq6ymdz+Y6/8g+Ds3tXSVdKSltq5WtJxRq3e1O6nwENlcHavMt8fe2plUnY9aKH2hePsM6z2upbPf4GGc/Wwr+8LHsqTZNMUFNRmy8iJEyfiwoULGDt2LM6cOYNevXph27ZtCA4OllJgIiKiv5QB0LPZb7msgtQJmoKC2uyybDKZMH36dEyfPt3VMhEREdUSgwKZ6uLyVkREVG+UQt+SOwwK7DEoqKOqTldcruFqZwNv1Prka3ud1mudpSUrXT1lcHVqmq/wVBn15OPqZ6+uM8Lni4yAQQERERkYWwpkYlBAREQGxqBAJl17HxAREVHdwZaCeqKx6QGH587XMbAnq+/cXWMItPJGHzbHOXg+H1m8VU9a8vVWnfrCGI8y6PtvX8/MhbqHQQERERlYKYDq99apHQYF9th9QERERADYUlBv2U9ZdN6VoKVZ0F1NiN5qmvTFJls1vvBeuZM3yuyLnz1f4QtlZEuBTAwKiIjIwBgUyMTuAyIiIgLAlgIiIjIyUa7vn302FDhgUEDVLImsZboiEZEXlUPfjESuXeSAQQERERlX2Z8PPdeTDccUEBEREQC2FBARkZGxpUAqBgVUhfMxBt5Y2tTZkq9qZapP28rK2pZY67We4gvL6pJP4ZgCqdh9QERERADYUkBEREbG7gOpGBQQEZFxsftAKgYF5JTn1jFQ+zg66z/2xf5lWf3f7tpC1whjCJSMUEY1HBNBvo1BARERGVc59HUBsKXAAYMCIiIyLo4pkIpBAWmmbdtlV8lsWjV6M21d2466PmOdk29jUEBERMbFgYZSMSggIiLjYveBVAwKiIjIuBgUSMWggHSpOl1xueKMQLufWyle+1XxvL3dzwVOzlX2zV60+7mp4rXmiucn7X4OVLx2Ea5roZLvScVrynxa2/2sdm8A0MTu559VXqvueYHdz6GK135XPLcvh7KelOnan+usTGrLUCvrME/xvKndz6ehLrCGn4Gqdaosk/35yj+TBSp5Ks8NUzlXWU/Kc4tU8nV2rv3vmvJ3R3lu0xryUL5W3ev2n1v794pt8kbFoICIiIyLYwqkYlBARETGxe4DqbghEhEREQFgSwFJ1tj0gMPzc2KN3bNiHSkr+0GVfcTK5/b0/Ctg39es7BtXlknL8sNaztXya6pnOWi1sQzK+nU27sGesvzKc7Xcn/21zq4rreHn6q7Vs3S0luW57c91VqdaPgfOxkjUlrP3Ssvn2EME9HUBCFkFqRsYFBARkXGx+0Aqdh8QERERALYUkJs1Nt1t+7nqdEWlI3Y/O2s6VWuuVl5boHKusgtAjbNzlVPk7PN11sxqPz1NS3O1s2Z85bQ3e8ppkmr5Ku9Ny5+OAifX2ters+ZqV6eMar1Oy/lq9aacUql2rpbPojJdpR80pOVsaqca+8+X/fvqwX+/2VIgFYMCIiIyLk5JlIrdB0RERLWUkpKCa6+9FsHBwWjZsiVuv/12HD9+3Ol1GRkZiI2NRWBgIKKjo7Fw4UIPlFY7BgVERGRcZRIeGmRkZODxxx/H3r17kZ6ejtLSUiQkJODcuXM1XpOVlYUhQ4agX79+OHToEKZMmYLx48cjLS1N4826n0kI4VMTMqxWKywWC4IAmLxdGHKrqtsuq/WVE5FRWK0XYLE8gcLCQoSEhLgpj4rvisIdQIhytrCWdIoAS3+4XNbffvsNLVu2REZGBm644YZqz3nmmWewYcMGHDt2zHYsMTERR44cwZ49e1wtuluwpYCIiIyrXMIDFUGG/aO4uHbrqhQWFgIAmjVrVuM5e/bsQUJCgsOxQYMGYf/+/bh06VLt7tNDGBQQEVG9FxkZCYvFYnukpKQ4vUYIgeTkZFx//fWIiYmp8by8vDyEhjpuQBYaGorS0lKcPq1n9od8nH1ARETGVQ590wr/bCnIzs526D4wm81OLx03bhy++uor7Nq1y+m5JpNjh3hlz73yuLcxKCCvqbrtsv0YAy1L2DqjtqStluVutaTrTmpjL9xVJpnpykrLF+rfnfl66/5c5V/Dz24maUpiSEiIpjEFTzzxBDZs2ICdO3eidevWqueGhYUhL89xbYn8/Hz4+/ujeXPl1u7exe4DIiKiWhJCYNy4cVi3bh0+/fRTREVFOb2md+/eSE9Pdzi2bds2xMXFoWHDhu4qqksYFBARkXF5eEri448/jlWrVmH16tUIDg5GXl4e8vLycOHCBds5kydPxv333297npiYiJMnTyI5ORnHjh3DW2+9haVLl+Kpp57SlPelS5eQnZ2N48eP448//tBW8Fpi9wH5EHd9HGV1Ebiz+VbLTntq9HQneKr+1V7XsyOhnt0kZXYj1TYfPTta6imD2rVaP+M+8BXi4WWOFyxYAADo37+/w/Fly5bhgQceAADk5ubi1KlTtteioqKwefNmTJgwAW+88QYiIiLw6quv4o477nCaX1FREd555x28++67+PLLLx1mRbRu3RoJCQl49NFHce2112q7kRr4wDtKRERkDLVZ2mf58uVVjsXHx+PgwYOa8nrllVcwc+ZMtGvXDrfeeismTZqEVq1aISgoCH/88QeOHj2Kzz77DAMHDsR1112H1157DR06dNCUhxKDAiIiMq46vPfB7t27sX37dlx11VXVvt6zZ0889NBDWLhwIZYuXYqMjAwGBUREVI/V4V0S33vvvVqdZzabMXbsWCl5Miggg9DTX6zWT6qlX1frr4usqYOeOldJy70H2v2sdZtid43VUCu/s3ryxFgSLWXQUw5n6cj6PJXW8DMZCYMCIiIyrjrcUlDp559/xoIFC7B7927k5eXBZDIhNDQUffr0QWJiIiIjI6XlxaCAiIiMS0DfuACf2hKwql27dmHw4MGIjIxEQkICEhISIIRAfn4+PvjgA7z22mvYsmUL+vbtKyU/BgVERGRcdbylYMKECXjkkUfwyiuv1Ph6UlIS9u3bJyU/BgVkEM76QbXMX3e1v1NLns7ykbX2gJb+YS3pauWpPmRXx3hoLZ+sz4gv0LNOgatrJfCrRZajR49i1apVNb4+ZswYLFy4UFp+XNGQiIiMS9LWyb4qPDwcu3fvrvH1PXv2IDw8XFp+DOeIiMi46nj3wVNPPYXExEQcOHAAAwcORGhoKEwmE/Ly8pCeno4lS5YgNTVVWn4MCoiIiHzU2LFj0bx5c7zyyit48803UVZWEcX4+fkhNjYWK1euxF133SUtPwYF5EP09Me62n+vZ7yBL/Yfu4ueOfQyxy5oWfvBU9z1mfHU+BBZv3deqv863lIAAMOHD8fw4cNx6dIlnD59GgDQokULt+ywyKCAiIiMqw4vc6zUsGFDqeMHqsOggIiIyIdx8SKqpwKdn2KjpblamW6Rhnz0LFXs6pbAepqC9UyT1JpWTec6K7+sLhstWzKrpePsWi33464uMGf0lMn+90PrlEQf+Aqp490HXLyIiIiotsqh74vdx7sPPL14EdcpICIi46rj6xQcPXoUiYmJNb4+ZswYHD16VFp+uoKClJQUmEwmJCUl2Y4JITB9+nREREQgKCgI/fv3R2Zmpt5yEhER1TuGWbxo3759WLRoEbp16+ZwfM6cOXj55ZexfPlydOzYETNmzMDAgQNx/PhxBAcH6y4w1WX2W+7KWppYma6Slq2TZV4rMx9Xz5V5rZZ0ZeXjzimhamlr3RraE/TUsZ77qSkfD07XreNjCgyxeFFRURHuvfdeLF68GDNmzLAdF0IgNTUVU6dOxbBhwwAAK1asQGhoKFavXo0xY8ZUSau4uBjFxcW251ar1ZUiERFRfVTHpyR6evEil7oPHn/8cQwdOhQ333yzw/GsrCzk5eUhISHBdsxsNiM+Pr7G5o+UlBRYLBbbQ+bUCiIiIqMbPnw49u7di/PnzyMnJwc5OTk4f/489u7dKzUgAFxoKVizZg0OHjxY7UjHvLw8AEBoaKjD8dDQUJw8ebLa9CZPnozk5GTbc6vVysCAiIhqp453H9jzucWLsrOz8eSTT2Lbtm0IDKx5TrnJZHJ4LoSocqyS2WyG2WzWUgyqF2T2Sdan5YiJ6pl6FBQAwJkzZ7BixQqcOHEC4eHhGDVqlNR/pDV1Hxw4cAD5+fmIjY2Fv78//P39kZGRgVdffRX+/v62FoLKFoNK+fn5VVoPiIiISF1ERAR+//13ABVd9FdeeSVeeuklnDhxAm+++SauuuoqfPvtt9Ly0xQUDBgwAF9//TUOHz5se8TFxeHee+/F4cOHER0djbCwMKSnp9uuKSkpQUZGBvr06SOt0ERERADq/DoFeXl5tsGFU6ZMQefOnfHDDz9g27Zt+P7779GvXz/861//kpafpu6D4OBgxMTEOBxr3LgxmjdvbjuelJSEWbNmoUOHDujQoQNmzZqFRo0a4Z577pFWaCJtZE5vJKprZC3T7CV1fEVDe1988QWWLFmCRo0aAajofn/22Wfxz3/+U1oe0pc5njhxIi5cuICxY8fizJkz6NWrF7Zt28Y1CoiIiFxQOSavuLi42oH8v/32m7S8dAcFO3bscHhuMpkwffp0TJ8+XW/SRERE6ur4OgVARde9v78/rFYrvvvuO3Tt2tX22qlTp9CiRQtpeXFDJCIiMq46Pvtg2rRpDs8ruw4qbdy4Ef369ZOWH4MC8iHe2DpZy3gDrdsSy9o6WVl+tWVp9WydrFYXeraJlrmdsz1lvchaKhrQ9n7oyUfWtWpbJ7tzWeaa3lsPfrXUs6BAae7cuVLz4y6JREREBIAtBUREZGT1YEyBJzEoICIi46rj3QeexqCAfIiWvnIt/dZFKq95a162nv57LfSMc/BEGfTQsl2w1jrVMj7B1bpxVg96PgdaxhHIem/5deIpn3/+OeLi4tyyRQDHFBARkXGVSXgYzODBg5GTk+OWtBnaERGRcQnoGxcgZBXEc4RwX6EZFJDXnBNLNJytp7lXFq15uDpFzp3T2ryVr6x8vJ2nzLRkfqZ9YXni0hp+JiNhUEBERMZVDwYarly50uF5aWkp1q1bh5YtW9qO3X///VLyYlBARETGVQ+mJC5btszh+aVLl/D+++8jKCgIQMX2AgwKiIiI6oHt27c7PA8ODsbq1asRHR0tPS8GBeRF3NKYiHSqB90HnsSggIiIjItBgVQMCoiIyLjqwZgCpSlTpqBZs2ZuSZtBARERkYFMnjzZbWkzKCAv0jKGgOMPiKga7D6QikEBEREZVzn0fbEbsPvAnbj3AREREQFgSwERERlZPRxo6E4MCsiHuLqtr95rXcmjNvmo/Xr5wngKmel6ov7V8nSWr7M/dZ56P2R9JrTQU08GGLtTh8cUREVFwWQyab4uKSkJ48ePdylPBgVEREQ+aPny5S5d165dO5fzZFBARETGVYe7D+Lj4z2eJwcakg8ptXv4Kx7u4s58SlUeetJRo+V+lOm6qy6U6XoqHzXO6lQtHVnvpUxq9avlfdZzb576nVUok/AwkJdeegkA8NVXX+HSpUvS02dQQEREpMHOnTvx97//HRERETCZTPjggw9Uz9+xYwdMJlOVx7fffqs57+uvvx4AMH36dHTr1g3dunXDPffcg5SUFHz44Yf49ddfXbklG3YfEBGRcXlhoOG5c+dw9dVX48EHH8Qdd9xR6+uOHz+OkJAQ2/PLL79cc959+/YFAKxbtw4AcP78eRw9ehRff/01Pv74Y0ybNg1DhgzBiy++qDltgEEBEREZmaQxBVar1eGw2WyG2Wyu9pLBgwdj8ODBmrNq2bIlmjZtqvk6NY0aNULPnj3Rs2dP27HY2FiXgwJ2H5AXBSoeav2RWvqlZfZteqqPVEs+aucq61RWmbQ8ZOYji8zxE1qu9VI/u0fuzUdUrmjo6uPPoCAyMhIWi8X2SElJkV7UHj16IDw8HAMGDMD27dulp19p7969Ll9rkHediIjIfbKzsx2a9mtqJXBFeHg4Fi1ahNjYWBQXF+Ptt9/GgAEDsGPHDtxwww1S8sjNzUWzZs1gNpvRsGFDl9NhUEBERMZVBn1t3n+OKQgJCXEICmTq1KkTOnXqZHveu3dvZGdnY968edKCgvvuuw8//PAD7rjjDsybN8/ldBgUEBGRcRl0nYLrrrsOq1atkpbexx9/DAAuzWiwxzEF5EVa5vFrmT/trfn3etR2zrxy3rlaOnrnwmtJR099y1rPQQuZ+WhZ08DVsSNaP19aPiNqaxqQuxw6dAjh4eGar/vPf/4DoGImQ3l51Yimc+fOusrFlgIiIjIuSd0HWhQVFeH777+3Pc/KysLhw4fRrFkztGnTBpMnT0ZOTg5WrlwJAEhNTUW7du3QtWtXlJSUYNWqVUhLS0NaWprmvGNiYgAAEyZMwPfff48mTZqga9euiImJQUxMDIYOHar9huwwKCAiIuPyQvfB/v37ceONN9qeJycnAwBGjRqF5cuXIzc3F6dOnbK9XlJSgqeeego5OTkICgpC165dsWnTJgwZMkRz3gMGDAAAbN68GUDFVMqjR4/i6NGjSE9P1x0UmIQQQlcKklmtVlgsFgQB0L43FBnJObFEw9nVLcfqabVZOtfb3FVPztL1V3lNa1q15QufCT1klt+36sJqvQCL5QkUFha6bfBe5XdF4RAgxPXB9rBeAiyb4day6hEXF4fY2Fjbo1u3brpmFzjDlgIiIjIuL3QfeFLv3r1x4MABrFq1ChcuXEBAQAC6du2KPn364O6777atcCgLgwIiIjKuOh4UvPbaawCAsrIyZGZmYv/+/di/fz8++ugjzJ8/H/fddx+WLVsGk0lO2zpnHxAREfk4Pz8/dOvWDQ899BDmz5+P7777Dlu3bsXmzZuxdOlSafkwKCAv8tSSqrKWRFabOufJPlx31ZlaXWiZMuopRp8+567po1qnPsripSWSBf4abOjKw6dG1WkzcOBAzJgxA2+++aa0NBkUEBGRcenZ90DvDos+4LrrrnOYHqkXgwIiIjKuOh4UvPHGG/jyyy9RXFxc7eu//fab1NkIHGhIRETko5599llYrVb4+/vjyiuvRFxcHOLi4tClSxecP38ekydPlrZ/AsCggAxDT5+r2rVG7Yt25TU96cpkxDo3Gm/UcWkNP7uZQfc+qK0zZ87ghx9+wIEDB2yPtLQ0FBQUAKhY1ljPBkhKDAqIiMi4yqBvpTsf7z4AgPbt26N9+/a46667bMd+/vlnXLp0CVFRUVLzYlBARERkMK1bt3ZLugwKyIvUlmYNdHKtrGZyLcv3aklXK7VlgtXKoDy3ieJ5kYtlcPaaWhkvOrlWy5K8aq8pPyPKc7W8H2plVN6PWr5a8lSm46ze1NLWUn61dPUsl+xfw89uVse7DzyNQQERERlXHe4+iIqKcmmlwqSkJIwfP96lPBkUEBER+aDly5e7dF27du1czpNBARERGVc59P2378PdB/Hx8R7Pk0EBeZGyr7O2r8nkrM/UF6bpaSmDljEE7iqDs2tl1anMz4iWMsrK11k6WupJS/k98T57eEqinu4DHw4KTp06hTZt2tT6/JycHLRq1UpXnlzRkIiIyAdde+21GD16NL788ssazyksLMTixYsRExODdevW6c6TLQVERGRcegcK+vBAw2PHjmHWrFn429/+hoYNGyIuLg4REREIDAzEmTNn8M033yAzMxNxcXGYO3cuBg8erDtPkxDCp/aIslqtsFgsCIK+FiHyfefEEm8XgaRRm1JJ9Y3VegEWyxMoLCxESEiIm/Ko+K4o7AKE+OlIpwywHINby6rXxYsXsXnzZnz22Wf46aefcOHCBbRo0QI9evTAoEGDEBMTIy0vthSQF2mZL61nbrueedl61imQ9UUpc50CLeshqNWTkpZ0lc+19NH7+roRWsqg9bOnJS1Z6WrhxXUK6uiYgkqBgYEYNmwYhg0b5va8OKaAiIiIALClgIiIjKwOjymoSUFBAT766CPk5OTAZDIhPDwcgwYNwmWXXaY7bbYUEBGRcZVLeBjI0qVL0bNnT+zduxfl5eUoKyvD3r17cd1112Hp0qW602dLAXmRJ/o2PXmtkrsG3Hlqe2Rv/Hlw9pnQMs7BGzjIktxrzpw5OHjwIJo0cRw/9OKLLyI2NhYPP/ywrvR98beKiIiodvT+p2+wlgKTyYSioqIqQUFRUZFL+yQoMSggIiLjKgOgZ2K9wYKCefPmIT4+HjExMbbVC3/++WdkZmbi3//+t+70GRSQF2mZiuZsGVdZWw9r4alfHy1ldOfSv55IR8+53ur68YVuIk995snbbrnlFgwePBhffvklfvnlFwgh0KpVK/Ts2RN+fjoWbPgTgwIiIjKuetZ9AAB+fn7o3bt3leMHDhxAbGysrrQ1zz7IycnByJEj0bx5czRq1Ajdu3fHgQMHbK8LITB9+nREREQgKCgI/fv3R2Zmpq5CEhERVatMwqOO+Mc//qE7DU0tBWfOnEHfvn1x4403YsuWLWjZsiV++OEHNG3a1HbOnDlz8PLLL2P58uXo2LEjZsyYgYEDB+L48eMIDg7WXWAiIqL66q677qr2uBACf/zxh+70NQUFL730EiIjI7Fs2TLbsXbt2jkUKjU1FVOnTrUtx7hixQqEhoZi9erVGDNmjO4CU32htd/TXdvBupon4J39ADw1XVHPte5aDlrPksKy8vFGOp5OuzZ5ejD/ejbQ8OOPP8bbb79dZfaBEAI7d+7Unb6moGDDhg0YNGgQ7rzzTmRkZKBVq1YYO3YsRo8eDQDIyspCXl4eEhISbNeYzWbEx8dj9+7d1QYFxcXFKC4utj23Wq2u3gsREdU39WxMQf/+/dGkSRPEx8dXea1Hjx6609c0puDHH3/EggUL0KFDB3z00UdITEzE+PHjsXLlSgBAXl4eACA0NNThutDQUNtrSikpKbBYLLZHZGSkK/dBRET1UTn0jScwWFCwbt26agMCANi6davu9DUFBeXl5bjmmmswa9Ys9OjRA2PGjMHo0aOxYMECh/OUCygIIWpcVGHy5MkoLCy0PbKzszXeAhEREcmgqfsgPDwcV155pcOxLl26IC0tDQAQFhYGoKLFIDw83HZOfn5+ldaDSmazGWazWVOhiYyB88FrxxP1xPeiztK7dbKe8QgelJycXO1xk8mEwMBAXHHFFbjtttvQrFkzXfloCgr69u2L48ePOxz77rvv0LZtWwBAVFQUwsLCkJ6ebuvbKCkpQUZGBl566SVdBSUiIqqiDPUiKDh06BAOHjyIsrIydOrUCUIInDhxAn5+fujcuTPmz5+P//u//8OuXbuq/POuhabugwkTJmDv3r2YNWsWvv/+e6xevRqLFi3C448/DqAiYklKSsKsWbOwfv16HD16FA888AAaNWqEe+65x+VCEhER1We33XYbbr75Zvzyyy84cOAADh48iJycHAwcOBAjRoxATk4ObrjhBkyYMEFXPiYhhKY46cMPP8TkyZNx4sQJREVFITk52Tb7AKgYP/D888/jzTffxJkzZ9CrVy+88cYbiImJqVX6VqsVFosFQdAX/JHvOyeWKI5oabhy17Q2NVqntWlZetlT0+m0pKulTr0x/VJPHSp5o05llkEtX89/1qzWC7BYnkBhYSFCQkJcSsN5HhXfFYVBQIiOLwurACwX4NayytCqVSukp6dXaQXIzMxEQkICcnJycPDgQSQkJOD06dMu56N5meNbbrkFt9xyS42vm0wmTJ8+HdOnT3e5UERERLVST8YUFBYWIj8/v0pQ8Ntvv9mm8jdt2hQlJSW68tG8zDERERF51m233YaHHnoI69evx88//4ycnBysX78eDz/8MG6//XYAwJdffomOHTvqyocbIhERkXHVk4GGb775JiZMmIC7774bpaUV3Tr+/v4YNWoUXnnlFQBA586dsWSJsltWG81jCtyNYwrqj6pjCoioLvDomAKThDEFwvfHFFQqKirCjz/+CCEE2rdvX2W5Y73YUkBERGQQTZo0Qbdu3dyWPoMCIiIyLgHDdAHoVVBQgKVLl+LYsWMwmUzo0qULHn74YVgsFml5cKAhEREZlp5tDyofRrB//360b98er7zyCv744w+cPn0ar7zyCtq3b4+DBw9Ky4ctBeSj9Hw09awJoEbrXHdZc/c9Nc9cz1x3LWsyKOkpo6vpeIun1imQla7v0/vFbpSgYMKECbj11luxePFi+PtXvN+lpaV45JFHkJSUJGXbZIBBARERkc/bv3+/Q0AAVMw+mDhxIuLi4qTlw+4DIiIyrHIJDyMICQnBqVOnqhzPzs5GcHCwtHzYUkBepNYkLbPJU1ZaWtPxVr6y8tHS/aH2ui++l97irvIbvV5cV1+6D4YPH46HH34Y8+bNQ58+fWAymbBr1y48/fTTGDFihLR8GBQQERH5uHnz5sFkMuH+++9HaWkphBAICAjAY489htmzZ0vLh0EBEREZlt4uAKN0HwQEBOA///kPUlJS8MMPP0AIgSuuuAKNGjWSmg+DAiIiMixvdB/s3LkTc+fOxYEDB5Cbm4v169fb9h+oSUZGBpKTk5GZmYmIiAhMnDgRiYmJqtckJyfXukwvv/xyrc9Vw6CAqNbctYWxTLKmIGpNy2i8tR21N/himYzt3LlzuPrqq/Hggw/ijjvucHp+VlYWhgwZgtGjR2PVqlX4/PPPMXbsWFx++eWq1x86dKhW5TGZ5G0KwKCAiIgMqxz6Wgpc6T4YPHgwBg8eXOvzFy5ciDZt2iA1NRUA0KVLF+zfvx/z5s1TDQq2b9/uQun04ZREIiIyLFlTEq1Wq8OjuLhYWhn37NmDhIQEh2ODBg3C/v37cenSJWn5yMCggIiI6r3IyEhYLBbbIyUlRVraeXl5CA0NdTgWGhqK0tJSnD59Wlo+MrD7gLxIZt+mrCWFjU5L/7HR619PX7kvrBfgqb7+uv37IGugYXZ2tsPWyWazWU+xqlD2+wshqj3ubQwKiIjIsGQFBSEhIQ5BgUxhYWHIy8tzOJafnw9/f380b97cLXm6ikEBEREZlhHWKejduzc2btzocGzbtm2Ii4tDw4YNPVCC2uOYAiIiIg2Kiopw+PBhHD58GEDFlMPDhw/b9iaYPHky7r//ftv5iYmJOHnyJJKTk3Hs2DG89dZbWLp0KZ566ilvFF8VWwrIR2ndblfWdsie6oN3FyOUUVZfuru2yPYUXy+fMXhj8aL9+/fjxhtvtD2vXGRo1KhRWL58OXJzcx02L4qKisLmzZsxYcIEvPHGG4iIiMCrr75aqzUOPM0kKkc7+Air1QqLxYIgAL41/IJkOyeWqLyqNShwldG+SHyVloGG9WnhoPrJar0Ai+UJFBYWuq2fvvK74jAAPXsEngXQHXBrWY2E3QdEREQEgN0H5FP0fBzV/lOVtUWz1v9EZU3T05Kvu1pYZP4X7q6WAZlc/TxpSVdJ5mdES7rGns7rjRUN6zIGBUREZFjeGFNQl7H7gIiIiACwpYCIiAzMCOsUGAmDAvIimf2r9ufXtVHo7lq+V890TF+YQeDOcRqu5uutKa6yxngY73eH3QdysfuAiIiIALClgIiIDIwtBXIxKCAiIsPimAK5GBSQFznrp5aVrrvo6ZeWmY+r6vM2v94qv6zxCO7i+2MIlNhSIBfHFBAREREAthQQEZGBCejrAvCpzX98AIMC8iG+3nTprfL5QjO/r783dQHr2BXsPpCL3QdEREQEgC0FRERkYGwpkItBARERGRanJMrFoIC8SK3/W+sWwK5udesL08BkMsL9yCqjO+/VE9sJG738annyq8Wo+M4REZFhsftALgYFRERkWAwK5OLsAyIiIgLAlgIyLC0fXVnb12rtA5bVr+ut7Xi1lMEbfdhKnho7oictd/3J9YU/5aU1/OxeHGgoly98koiIiFxSDn1dAAwKHDEoICIiw2JLgVwMCshHaZlWqOSuc7U2iRptiWG1unDXjpZayqCkpUwy3zs974cvThGVhVMS6wK+c0REZFicfSAXgwIiIjIsBgVycUoiERERAWBLAXmVu/qptYxHkDmdTNbSy87y9dQUSy199O5679ToyVPmtEJZZZY53sAbYxc4JbEuYFBARESGxe4Dudh9QERERADYUkBERAbGlgK5GBSQD9GydbKr6XoyHVl9/+7q73aWrrvKKIu31gvwxXUK6vL6B+oE9I0LELIKUkew+4CIiIgAsKWAiIgMjN0HcjEoICIiw+KURLkYFJAXeWrOtrdo2U5Yy5oG9pTnyqw3d22H7AvvrcytlMmb2FIgF8cUEBEREQC2FBARkYGxpUAuBgXkRXW9yVbWlD5v1VNdfn/q8r3VLxxTIBe7D4iIiAiAxqCgtLQUzz77LKKiohAUFITo6Gi88MILKC//K9YSQmD69OmIiIhAUFAQ+vfvj8zMTOkFJyIiKpPwoL9oCgpeeuklLFy4EK+//jqOHTuGOXPmYO7cuXjttdds58yZMwcvv/wyXn/9dezbtw9hYWEYOHAgzp49K73wRERUv5VDX0DA7gNHmsYU7NmzB7fddhuGDh0KAGjXrh3effdd7N+/H0BFK0FqaiqmTp2KYcOGAQBWrFiB0NBQrF69GmPGjJFcfDI2tWlhWqeMubpNsbe20HWXQMXzi5LS1bLNspb3qjbn1zYdJT3vh7umY9aUh+x8PFF+tTw5XM2oNLUUXH/99fjkk0/w3XffAQCOHDmCXbt2YciQIQCArKws5OXlISEhwXaN2WxGfHw8du/eXW2axcXFsFqtDg8iIqLaKJfwoL9oCueeeeYZFBYWonPnzvDz80NZWRlmzpyJESNGAADy8vIAAKGhoQ7XhYaG4uTJk9WmmZKSgueff96VshMRUT3HKYlyaWopWLt2LVatWoXVq1fj4MGDWLFiBebNm4cVK1Y4nGcymRyeCyGqHKs0efJkFBYW2h7Z2dkab4GIiIhk0NRS8PTTT2PSpEm4++67AQBXXXUVTp48iZSUFIwaNQphYWEAKloMwsPDbdfl5+dXaT2oZDabYTabXS0/GZqy/7vI7mflR1NL/6ue/kxv9YXKWubYXfXmrF601JueMnlqPIis90NWGZylrfa+e2qMjXdwnQK5NLUUnD9/Hg0aOF7i5+dnm5IYFRWFsLAwpKen214vKSlBRkYG+vTpI6G4REREf+GURLk0/Vv097//HTNnzkSbNm3QtWtXHDp0CC+//DIeeughABXdBklJSZg1axY6dOiADh06YNasWWjUqBHuuecet9wAERHVXxxTIJemoOC1117Dv/71L4wdOxb5+fmIiIjAmDFj8Nxzz9nOmThxIi5cuICxY8fizJkz6NWrF7Zt24bg4GDphSejK1J5zVmzpTeae5VkdjXIWhJZOQXRG0ste2pHRT3TLbV+vmSd6wtlcNeS2qU1/ExGYhJCCG8Xwp7VaoXFYkEQgOqHJlJdcU4sUXlV6xx0V/tQ9fBU/6usPnh38sY6Be7kic9TXVun4C9W6wVYLE+gsLAQISEhbsqj4rtiMqqOTtLiIoAUwK1lNRLufUBERIblrRUN58+fj6ioKAQGBiI2NhafffZZjefu2LEDJpOpyuPbb791MXf3YVBARESkwdq1a5GUlISpU6fi0KFD6NevHwYPHoxTp06pXnf8+HHk5ubaHh06dPBQiWuPQQF5kb/iYa9U8dBDVlrK8jpLt6Z700pmXfgCd70fnuKL74e36sL7vDH74OWXX8bDDz+MRx55BF26dEFqaioiIyOxYMEC1etatmyJsLAw28PPz8+F3N2LQQERERmWrGWOlcvtFxcXV5tfSUkJDhw44LCcPwAkJCTUuJx/pR49eiA8PBwDBgzA9u3bXbldt2NQQERE9V5kZCQsFovtkZKSUu15p0+fRllZWbXL+Vcu9a8UHh6ORYsWIS0tDevWrUOnTp0wYMAA7Ny5U/p96FW/2pmIiKhOkbVOQXZ2tsPsA2cr7WpZzr9Tp07o1KmT7Xnv3r2RnZ2NefPm4YYbbnCt4G7CoIAMQuacbneVQe/5RuaNe3Vnnr74efJUWsYia5njkJCQWk1JbNGiBfz8/Kq0Cqgt51+d6667DqtWrdJSVI9g9wEREVEtBQQEIDY21mE5fwBIT0/XtJz/oUOHHPYI8hVsKSAiIsPyxjLHycnJuO+++xAXF4fevXtj0aJFOHXqFBITEwFU7P6bk5ODlStXAgBSU1PRrl07dO3aFSUlJVi1ahXS0tKQlpamo+TuwaCAvEhtRTdna5RpWapVy65wenhqpUG11eqU9aZl2WNZu0sq89S6OqXatVreOz27/7lr2Ww9O166+t55apdE/xp+di9vBAXDhw/H77//jhdeeAG5ubmIiYnB5s2b0bZtWwBAbm6uw5oFJSUleOqpp5CTk4OgoCB07doVmzZtwpAhQ3SU3D24zDF5zTmh7E+z/zJhUFC7tJTpNFE8Z1DgPB1n+TIoqJ2/rq1Y5vgxjyxz/CiAAB3plABYBC5zXIljCoiIiAgAuw+IiMjAuHWyXAwKyIv0bOGq1iSq52Ptah+qzHT1UOYjaytcPV0AeshKV+ZOh7Lq1J351B8MCuRi9wEREREBYEsBEREZmKzFi6gCgwIiIjIsdh/IxaCAfIir08CU53tq+p/MPl+1fHyB1vdDy7V6pvi561xffA+I3I9BARERGRa7D+RiUEBERIbF7gO5OPuAiIiIALClgAzDW3287srXXWspyJxD767xFO5ae0ALmeNOfIGsJbZlva+eq89y6Ptvn90HjhgUEBGRYXFMgVwMCoiIyLDKoK8fnGMKHDEoIB/iC8vqeoq7pknK2vrW2bUydwp0x9a9zq41+ufHGW9McfXO1skkF985IiIyLLYUyMWggIiIDItjCuTilEQiIiICwJYC8ipPTa2Tda6v8MV6k7WNtC9MdawLvFEX3pmSyO4DuRgUEBGRYbH7QC52HxAREREAthQQEZGBcUVDuRgUUD3nzuVuZc0VN8L8e1n5emr54bq2zLEsxquXMgAmndfTX9h9QERERADYUkBERAbGgYZyMSiges6dzaO+sBugFt5qOvbGkry+3yzuHcarF3YfyMWggIiIDItBgVwcU0BEREQA2FJAREQGxjEFcjEoIB+ldetkT/RL+0Kfu7N83XWuM3rq32j92DK3d3Y1HarE7gO52H1AREREANhSQEREBiagrwtAyCpIHcGggIiIDEtv8z+7DxwxKKA6whv9sc76ltX62X1h6WI9ZfIFesZPKMnabttZmeyfOyuTrPEhRntfyZsYFBARkWGxpUAuBgVERGRY5dA3+4BTEh0xKCAvclcTupamYnc243ujS0BPU7Gz7gQt16qR1ZytpfvD2bnuKpOecz313sniX8PPZCR854iIyLDYfSAXgwIiIjIsBgVyMSggIiLD4pgCuRgUkBe5q89dZr+u0VyUmJanpkJ6I9269r4reeP+1MZwkFEwKCAiIsPS+58+WwocMSggIiLDYlAgFzdEIiIiIgBsKSCvkrnNr6tz6o24BKza8smBiucyxxio0bKks5I3th7Ws0S1EXij/N5Zp6AM+jY1YkuBIwYFRERkWAwK5GL3AREREQFgSwERERkYBxrKxaCAvMhb68TLuM6b1MrsqTEESp7a50FWWu76PPmK+rNOAbsP5GL3AREREQFgSwERERlYOfS1FOi5ti5iSwH5KH8dD2dpGZ277lXWtc7SlVlGb7yvnsrXaJ9b75S3XMLDFfPnz0dUVBQCAwMRGxuLzz77TPX8jIwMxMbGIjAwENHR0Vi4cKGLObsXgwIiIjKsMgkPrdauXYukpCRMnToVhw4dQr9+/TB48GCcOnWq2vOzsrIwZMgQ9OvXD4cOHcKUKVMwfvx4pKWluZC7e5mEED7VemK1WmGxWBAEfTtfke87J5aovKrnPw1ni+cYfRCZloWCZC7oU9trjbB4kR6e+jwZ7XP7V3mt1guwWB5DYWEhQkJC3JJb5XdFE+j7rhAAigBNZe3VqxeuueYaLFiwwHasS5cuuP3225GSklLl/GeeeQYbNmzAsWPHbMcSExNx5MgR7NmzR0fp5fO5NqnKGMWnIhVyC6v1gsqrDApqxqBAfzp6MCionmNQAPz199ydyqA/KAAqggx7ZrMZZrO5yvklJSU4cOAAJk2a5HA8ISEBu3fvrjaPPXv2ICEhweHYoEGDsHTpUly6dAkNGzZ0/QYk87mg4OzZswC8N7GKPMdiecLbRSAiNzp79iwsFotb0g4ICEBYWBjy8vJ0p9WkSRNERkY6HJs2bRqmT59e5dzTp0+jrKwMoaGhDsdDQ0NrLEteXl6155eWluL06dMIDw/XdwMS+VxQEBERgezsbAgh0KZNG2RnZ7ut+akusFqtiIyMZD05wXqqHdZT7bCe1AkhcPbsWURERLgtj8DAQGRlZaGkpER3WkIImEyO7Q3VtRLYU55fXRrOzq/uuLf5XFDQoEEDtG7d2taUExISwl+6WmA91Q7rqXZYT7XDeqqZu1oI7AUGBiIwULkJmHu1aNECfn5+VVoF8vPzq7QGVKquRSM/Px/+/v5o3ry528rqCs4+ICIiqqWAgADExsYiPT3d4Xh6ejr69OlT7TW9e/eucv62bdsQFxfnU+MJAAYFREREmiQnJ2PJkiV46623cOzYMUyYMAGnTp1CYmIiAGDy5Mm4//77becnJibi5MmTSE5OxrFjx/DWW29h6dKleOqpp7x1CzXyue6DSmazGdOmTXPar1PfsZ5qh/VUO6yn2mE91W/Dhw/H77//jhdeeAG5ubmIiYnB5s2b0bZtWwBAbm6uw5oFUVFR2Lx5MyZMmIA33ngDERERePXVV3HHHXd46xZq5HPrFBAREZF3sPuAiIiIADAoICIioj8xKCAiIiIADAqIiIjoTwwKiIiICIAPBwVa96quy1JSUnDttdciODgYLVu2xO23347jx487nCOEwPTp0xEREYGgoCD0798fmZmZXiqxb0hJSYHJZEJSUpLtGOupQk5ODkaOHInmzZujUaNG6N69Ow4cOGB7nfUElJaW4tlnn0VUVBSCgoIQHR2NF154AeXl5bZzWE9U5wgftGbNGtGwYUOxePFi8c0334gnn3xSNG7cWJw8edLbRfOKQYMGiWXLlomjR4+Kw4cPi6FDh4o2bdqIoqIi2zmzZ88WwcHBIi0tTXz99ddi+PDhIjw8XFitVi+W3Hu+/PJL0a5dO9GtWzfx5JNP2o6znoT4448/RNu2bcUDDzwgvvjiC5GVlSU+/vhj8f3339vOYT0JMWPGDNG8eXPx4YcfiqysLPHee++JJk2aiNTUVNs5rCeqa3wyKOjZs6dITEx0ONa5c2cxadIkL5XIt+Tn5wsAIiMjQwghRHl5uQgLCxOzZ8+2nXPx4kVhsVjEwoULvVVMrzl79qzo0KGDSE9PF/Hx8baggPVU4ZlnnhHXX399ja+znioMHTpUPPTQQw7Hhg0bJkaOHCmEYD1R3eRz3QeVe1Ur955W26u6viksLAQANGvWDACQlZWFvLw8hzozm82Ij4+vl3X2+OOPY+jQobj55psdjrOeKmzYsAFxcXG488470bJlS/To0QOLFy+2vc56qnD99dfjk08+wXfffQcAOHLkCHbt2oUhQ4YAYD1R3eRzyxy7sld1fSKEQHJyMq6//nrExMQAgK1eqquzkydPeryM3rRmzRocPHgQ+/btq/Ia66nCjz/+iAULFiA5ORlTpkzBl19+ifHjx8NsNuP+++9nPf3pmWeeQWFhITp37gw/Pz+UlZVh5syZGDFiBAB+nqhu8rmgoJLWvarri3HjxuGrr77Crl27qrxW3+ssOzsbTz75JLZt26a6nWp9r6fy8nLExcVh1qxZAIAePXogMzMTCxYscNjEpb7X09q1a7Fq1SqsXr0aXbt2xeHDh5GUlISIiAiMGjXKdl59ryeqW3yu+8CVvarriyeeeAIbNmzA9u3b0bp1a9vxsLAwAKj3dXbgwAHk5+cjNjYW/v7+8Pf3R0ZGBl599VX4+/vb6qK+11N4eDiuvPJKh2NdunSxbeDCz1OFp59+GpMmTcLdd9+Nq666Cvfddx8mTJiAlJQUAKwnqpt8LihwZa/quk4IgXHjxmHdunX49NNPERUV5fB6VFQUwsLCHOqspKQEGRkZ9arOBgwYgK+//hqHDx+2PeLi4nDvvffi8OHDiI6OZj0B6Nu3b5Uprd99951thzd+niqcP38eDRo4/on08/OzTUlkPVGd5MVBjjWqnJK4dOlS8c0334ikpCTRuHFj8dNPP3m7aF7x2GOPCYvFInbs2CFyc3Ntj/Pnz9vOmT17trBYLGLdunXi66+/FiNGjODUKCEcZh8IwXoSomK6pr+/v5g5c6Y4ceKEeOedd0SjRo3EqlWrbOewnoQYNWqUaNWqlW1K4rp160SLFi3ExIkTbeewnqiu8cmgQAgh3njjDdG2bVsREBAgrrnmGtv0u/oIQLWPZcuW2c4pLy8X06ZNE2FhYcJsNosbbrhBfP31194rtI9QBgWspwobN24UMTExwmw2i86dO4tFixY5vM56EsJqtYonn3xStGnTRgQGBoro6GgxdepUUVxcbDuH9UR1jUkIIbzZUkFERES+wefGFBAREZF3MCggIiIiAAwKiIiI6E8MCoiIiAgAgwIiIiL6E4MCIiIiAsCggIiIiP7EoICIiIgAMCggIiKiPzEoICIiIgAMCoiIiOhP/w+zN6E4BjwUugAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa5UlEQVR4nO3de1xUZeI/8M8EMoDcvCQXRUHXW5LpQpqaoZm4are1LbObdpVVM+RXpllprYqpa24XNdO8rFlti/o1sxI3pUwtRS0lMytTIohMAfGGwPP7g5hmDsM588w5M8yBz/v1mteLc85znuc5zwzMw3O1CCEEiIiIqNG7rL4zQERERL6BlQIiIiICwEoBERER/Y6VAiIiIgLASgERERH9jpUCIiIiAsBKAREREf2OlQIiIiICwEoBERER/Y6VAhNZu3YtFi5cWK95mDZtGnr27InmzZsjMDAQ7du3xyOPPILjx487hMvLy8Nf//pXtG/fHk2bNkV4eDh69uyJV155BRUVFbXi/eGHHzBixAhEREQgJCQEgwcPxr59+5zm4e2330aPHj0QGBiImJgYpKWloayszCPPK+vHH3+ExWLBypUr6zsrup0/fx6dOnWCxWLB/PnzHa7Jvr8NwdNPPw2LxYKEhASn18+ePYtnn30WnTp1gtVqRYsWLTBw4EAcPXrUyzklcp9/fWeAXLd27VocOnQIaWlp9ZaH4uJijBo1Cl27dkVoaCi+/vprzJw5Exs3bkRubi5atGgBoPoPZFhYGJ555hm0bdsW5eXl2Lx5Mx599FEcOHAAy5Yts8X566+/on///mjWrBneeOMNBAYGIiMjAwMGDMCePXvQuXNnW9g333wT99xzDx566CG8+OKL+Pbbb/Hkk0/i66+/xpYtW7xeHg3ZM888g7Nnzzq9JvP+NgQHDhzA/PnzERkZ6fR6WVkZBg4ciJ9//hlTpkxB9+7dUVJSgp07d+LcuXNezi2RDoJMY/jw4aJdu3b1nY1aNm/eLACI5cuXa4a94447hL+/v7hw4YLt3BNPPCGaNGkifvzxR9u5kpIS0bJlS3HHHXfYzlVUVIjo6GiRkpLiEOebb74pAIjNmzcb8DT6HDt2TAAQK1asqO+s6PL555+LgIAA8e677woAYt68eS7d5+z91aOiosKwuNx16dIl0aNHDzFx4kSRnJwsunXrVivMY489Jpo2bSq+//77esghkXHYfeAjfv31VzzyyCOIjY2F1WrF5Zdfjn79+mHr1q0AgAEDBuD999/H8ePHYbFYbK8a5eXlmDlzJrp06WK7//7778evv/7qkE5cXBxuvPFGrF+/Ht27d7d1Abz00ktu5/3yyy8HAPj7azc8XX755bjsssvg5+dnO7d+/Xpcf/31aNeune1cWFgYRowYgffee8/WHL17924UFBTg/vvvd4jz9ttvR0hICNavX+/2M3zzzTcYNWoUIiMjYbVa0bZtW9x33324ePGiLcyhQ4dwyy23oFmzZggMDESPHj2watUqzbjHjBmDuLi4WudnzJjh8B4CgMViwYQJE7BixQp07twZQUFBSEpKwu7duyGEwLx58xAfH4+QkBBcf/31+O677xzuHzBgABISErBnzx70798fwcHBaN++PebMmYOqqiqXyqK8vBwPPPAAxo8fj6SkJJfuqeHs/XVVTdfL3LlzMXPmTMTHx8NqtWLbtm0AgI0bN6JPnz4IDg5GaGgoBg8ejF27dtnuz83NhcViwbvvvms7l5OTA4vFgm7dujmkdfPNNyMxMdGlfM2ZMwenTp3CrFmznF4/d+4cli1bhttvvx3t27eXfWwi31LftRKqNmTIEHH55ZeLpUuXiu3bt4sNGzaIZ599Vrz99ttCCCFyc3NFv379RFRUlNi1a5ftJYQQlZWV4i9/+Yto2rSpeO6550RWVpZYtmyZaN26tbjiiivEuXPnbOm0a9dOtG7dWrRt21a88cYbYvPmzeLuu++W+m9QiOr/ns6dOyf27dsn+vXrJzp16iTOnDlTK1xVVZW4dOmSOHXqlHj77bdF06ZNxdSpU23Xz507JywWi3jiiSdq3fvKK68IAOLIkSNCCCGWLFkiAIjc3NxaYZOSkkSfPn0czgEQycnJms9y4MABERISIuLi4sSSJUvE//73P7FmzRpxxx13iNLSUiGEEN98840IDQ0VHTp0EKtXrxbvv/++GDVqlAAgXnjhBVtczloKRo8e7bSFZ/r06UL5KwhAtGvXTvTt21esW7dOrF+/XnTq1Ek0b95cTJo0Sdxyyy1i06ZN4s033xSRkZGie/fuoqqqynZ/cnKyaNGihejYsaNYsmSJyMrKEuPGjRMAxKpVqzTLQgghpk2bJuLi4kRZWZnteer6bGi9vzJq0mrdurUYOHCg+O9//yu2bNkijh07ZmsNSklJERs2bBDvvPOOSExMFAEBAeLTTz+1xREdHS0eeeQR2/GcOXNEUFCQACDy8/OFENWf3bCwMDF58mTNPOXm5gqr1Sref/99IYRw2lLwySefCABi1qxZIjU1VURERIgmTZqIxMREsWnTJrfKgqi+sFLgI0JCQkRaWppqmLq6D9566y0BQGRmZjqc37NnjwAgFi1aZDvXrl07YbFYxIEDBxzCDh48WISFhYmzZ89q5rWgoEAAsL169+5t+4OrlJGRYQtnsVjEtGnTHK7n5+cLACIjI6PWvWvXrhUAxM6dO4UQQsyaNUsAEAUFBbXCpqSkiE6dOjmc8/PzE9dff73m81x//fUiIiJCFBUV1RnmzjvvFFarVZw4ccLh/NChQ0VwcLAoLi4WQhhTKYiKihJlZWW2cxs2bBAARI8ePRwqAAsXLhQAxFdffWU7l5ycLACIzz//3CHeK664QgwZMqTuQvjd/v37RZMmTcSHH37o8Dx1VQq03l8ZNWl16NBBlJeX285XVlaKmJgYceWVV4rKykrb+TNnzohWrVqJvn372s7dc889on379rbjG264QTz88MOiWbNmtkrRZ599JgCILVu2qOansrJS9O7dW4waNcp2zlmloOb3LywsTPTr109s3LhRbNq0SQwcOFBYLBZbWRKZAbsPfESvXr2wcuVKzJw5E7t378alS5dcvnfTpk2IiIjATTfdhIqKCturR48eiIqKwvbt2x3Cd+vWDVdddZXDubvuugulpaV1jvi317JlS+zZswc7duzA66+/jlOnTmHgwIEoKCioFXbMmDHYs2cPPvroI0yePBnz5s3Do48+Wiucshld7VpdYZXnKyoq8L///U/1Wc6dO4fs7Gzccccdtm4QZz7++GMMGjQIsbGxDufHjBmDc+fOOTRj6zVw4EA0bdrUdty1a1cAwNChQx2esea8cuZHVFQUevXq5XCue/futcIpVVRU4IEHHsDIkSMxZMgQl/Lq6vsr4+abb0aTJk1sx0eOHMHPP/+Me++9F5dd9sefrJCQENx2223YvXu3bTDfoEGD8MMPP+DYsWO4cOECduzYgb/85S8YOHAgsrKyAABbt26F1WrFtddeq5qPBQsW4OjRo5ozfmq6ZQICAvDBBx/gpptuwvDhw7Fp0yZER0fjH//4hzvFQFQvOPvAR7zzzjuYOXMmli1bhmeeeQYhISH461//irlz5yIqKkr13l9++QXFxcUICAhwev3kyZMOx87iqzn322+/aebV39/f1tfcr18//OUvf0F8fDzmzJmDf/3rX7XirYk7JSUFzZo1w5QpU/DAAw+gZ8+eaNasGSwWi9N0T506BQBo3rw5ANhmNvz222+1RoGfOnXKFk7G6dOnUVlZiTZt2qiG++233xAdHV3rfExMjO26UZTPUfO+1nX+woULDudrysme1WrF+fPnVdNduHAhfvjhB/znP/9BcXExAKC0tNSWRnFxMUJDQx3GC2i9v+5QlnNN2dZV/lVVVTh9+jSCg4Nxww03AKj+4o+Pj8elS5dw/fXX45dffrF9OW/duhX9+vVDUFBQnXk4ceIEnn32WcyZMwcBAQG28qioqEBVVRWKi4thtVoRFBRkK+++ffsiNDTUFkdwcDCSk5OxYcMGt8qBqD6wpcBHtGzZEgsXLsSPP/6I48ePIyMjA+vWrcOYMWNcurdFixbYs2eP09eiRYscwhcWFtaKo+acsy8ULW3atEFMTAy+/fZbzbA1/8HWhA0KCsKf/vQnHDx4sFbYgwcPIigoyDZ468orr7Sdt1dRUYFvvvmmzvnjapo3bw4/Pz/89NNPquFatGjhtCXk559/BlD9HtQlMDDQYcBiDWVlrb4dOnQIJSUl6NixI5o1a4ZmzZrZWpSeeeYZNGvWzOn7ZE/5/rpD2eJT85msq/wvu+wyNGvWDED1Z7FTp07YunUrsrKykJSUhIiICAwaNAgFBQX4/PPPsXv3blvloS4//PADzp8/j8cee8xWFs2aNcNnn32Gw4cPo1mzZpg6dSqA6laYugghHFo3iHwdP60+qG3btpgwYUKtBXzq+m/vxhtvxG+//YbKykokJSXVetnP8weqR2l/+eWXDufWrl2L0NBQ/PnPf5bO73fffYeffvoJf/rTnzTD1owktw/717/+FR9//DHy8vJs586cOYN169bh5ptvts1q6N27N6Kjo2stDPTf//4XZWVlGDFihHTeg4KCkJycjHfffVf1S3rQoEH4+OOPbZWAGqtXr0ZwcDCuueaaOu+Ni4tDUVERfvnlF9u58vJyfPTRR9L59aQpU6Zg27ZtDq+33noLAJCamopt27ZpvsfO3l+9OnfujNatW2Pt2rUQQtjOnz17FpmZmbYZCTVuuOEGfPzxx8jKysLgwYMBAJ06dULbtm3x7LPP4tKlS5qVgh49etQqi23btuGqq65CXFwctm3bhgkTJgCobsHo06cPPvvsM1vLCvBH15TaZ4PI59T3oAYSori4WPTs2VPMmzdPvPfee2L79u1i3rx5IjAwUNx11122cDUD0xYtWiQ+//xzsWfPHiFE9VzuoUOHiubNm4vnnntOfPDBB2Lr1q1i5cqVYvTo0WLdunW2OJSzDz744APb7AP7UfTOfPnll+L6668XixYtEh9++KHYsmWL+Oc//ynatGkjLr/8cod1Bp599lkxduxY8eabb9pmU6Smpgo/Pz9x++23O8RbVFQkoqOjxZVXXinWr18vNm/eLK677joRGhoqDh8+7BD23//+twAgHnnkEbFt2zaxdOlSERERIQYPHlwrv64ONKyZfdC+fXuxdOlS8fHHH4u33npLjBo1qtbsg06dOok1a9Y4zNqYO3euLS5nAw1/+OEH0aRJEzFgwADx/vvvi8zMTJGcnCzi4+OdDjQcP368w7m6Bvtt27ZNABDvvvuu7Vxd8+jrGuyopa60Zd7fmnxOnz7drbSE+GMtimHDhon/+7//E//5z3/E1VdfXWv2gRBCZGZm2gY/Zmdn287ff//9AoBo1qyZw4BFGXWV72effSYCAgLENddcI9avXy82bNgg+vfvL5o0aWIbKEtkBqwU+IALFy6I1NRU0b17dxEWFiaCgoJE586dxfTp0x1mA5w6dUr87W9/ExEREcJisTh8oVy6dEnMnz9fXHXVVSIwMFCEhISILl26iLFjx4qjR4/awrVr104MHz5c/Pe//xXdunUTAQEBIi4uTixYsEAzn4WFheKee+4RHTp0EMHBwSIgIEC0b99epKam1hqVv3HjRnHDDTeIyMhI4e/vL0JCQkSvXr3ESy+9JC5dulQr7u+++07ceuutIiwsTAQHB4tBgwaJnJwcp/lYu3at6N69uwgICBBRUVFi4sSJTqdDwsUpiUII8fXXX4vbb79dtGjRQgQEBIi2bduKMWPGOCycc/DgQXHTTTeJ8PBwERAQIK666qpaixTVtXjR5s2bRY8ePURQUJBo3769eOWVV+qcfWCGSoHM+/vee+8JAGLJkiVupVVjw4YNonfv3iIwMFA0bdpUDBo0SHz22We1wp0+fVpcdtllomnTpg6zGGoqFiNGjHD18Wupq3yFEOLTTz8VycnJIjg4WAQHB4vrr7/eaf6IfJlFCLv2OGrw4uLikJCQgE2bNtV3VqiRmDx5Mt566y0cPXoUgYGB9Z0dIlLBMQVE5FHbtm3DM888wwoBkQlwSiIRedSePXvqOwtE5CJ2HxAREREAdh8QERG5bPHixejevTvCwsIQFhaGPn364IMPPlC9Jzs7G4mJibYN6JYsWeKl3MpjpYCIiMhFbdq0wZw5c7B3717s3bsX119/PW655Rbk5uY6DX/s2DEMGzYM/fv3x/79+/HUU09h4sSJyMzM9HLOXeOx7oNFixZh3rx5KCgoQLdu3bBw4UL079/fE0kRERHVm+bNm2PevHl48MEHa1178sknsXHjRhw+fNh2LjU1FV9++aWhe6YYxSMDDd955x2kpaVh0aJF6NevH1577TUMHToUX3/9Ndq2bat6b1VVFX7++WeEhoaqbpJDRES+SQiBM2fOICYmxqPLPF+4cAHl5eW64xFC1Pq+sVqtsFqtqvdVVlbi3XffxdmzZ9GnTx+nYXbt2oWUlBSHc0OGDMHy5ctx6dIlh82/fIInFj/o1auXSE1NdTjXpUsXMWXKFM178/LyHLbl5Ysvvvjiy5yvvLw8T3zFCCGEOH/+vIiKijIknyEhIbXOqa3A+dVXX4mmTZsKPz8/ER4eLt5///06w3bs2FHMmjXL4VzN9t0///yzUcVhGMNbCsrLy5GTk4MpU6Y4nE9JScHOnTtrhb948aLDZjHi996MvLy5CAurexczIiLyTaWl5xEbO9lh10ijlZeXo7CwEHl5xxAWFuZ2PKWlpYiNjUdeXp5DPGqtBJ07d8aBAwdQXFyMzMxMjB49GtnZ2bjiiiuchle2QtR8z/lia7jhlYKTJ0+isrKy1ta2kZGRTnfny8jIwHPPPVfrfFhYECsFREQm5o0vvZpZAN6MJyAgwLbpV1JSEvbs2YN//etfeO2112qFjYqKqvXdV1RUBH9/f7d2pfU0jy1e5Kxm5OwDMnXqVKSnp9uOq2ttsYgKfxQ1oc+Kt+3ucNw7vrYKu59lH88+vDIdtbgqFMfKsO7GayRlOso8uxuX1vshU27uxqMVV4TiuEzlPmU69qvwab13yuMylWta6aqFDVS5ZtT7qudeZTkpVzJUy6OR+dfz+bK/V2slxoo6fnZ27wWVa0pG/a3QKocQu5/L6gylzf55qnTEI6sC+j43eu6tJoRwuj06APTp0wfvvfeew7ktW7YgKSnJ98YTwAPfSC1btoSfn5/TmpGy9QBwbTAHERGRc96tFDz11FMYOnQoYmNjcebMGbz99tvYvn07PvzwQwDV/+jm5+dj9erVAKpnGrzyyitIT0/Hww8/jF27dmH58uW2bcl9jeHDQgMCApCYmIisrCyH81lZWejbt6/RyRERUaNWYcDLdb/88gvuvfdedO7cGYMGDcLnn3+ODz/8EIMHDwYAFBQU4MSJE7bw8fHx2Lx5M7Zv344ePXrgH//4B1566SXcdtttup7aUzyyTsE777yDe++9F0uWLEGfPn2wdOlSvP7668jNzUW7du1U7y0tLUV4eDiCADjrjTorlhmdXSIiMlBp6XmEhz+KkpISQ/r7nadR/V1RUnJc90DD8PB2Hs2rmXikQ3vkyJH47bff8Pzzz6OgoAAJCQnYvHmzZoWAiIhITiX0dR9UGpWRBsFjo9zGjRuHcePGeSp6IiIi+MJAw4aEex8QERERAO/NhzNMU8tDDsfmG2Ng5NRAIqLGji0FRjJdpYCIiOgPrBQYid0HREREBIAtBUREZGqV0DeDgLMP7Jm+UmC+MQZsqiIiMg6nJBqJ3QdEREQEoAG0FBARUWPGgYZGanCVAvvuBMfdFYHaO4BFKI7VdjtTo9zNLETlWBm2WHEss6Oc2i5rMrudKfOrFZd9eGX+1HZN1Ho2/zp+dhavMi6ZHQnt71U+e7HKvWo73jlL19U8OLuuFq99usr8q71XynvVdoRUhtXajVHtvVNSi0urXNR2QZXZTVLt86OMW3mv2u+L1t8NmV0S1d53mfxrvR9qv89q8SrDR9n9fFYjTSOxUmCkBlcpICKixoSVAiNxTAEREREBYEsBERGZGmcfGKlBVwqaWu50OK49XbHYQykr++Fk+vfV+uS10nGXbDzupqv1bDK/2Gp5kOnXlSlvI/Mvk65avFrvhUw5yeRJLS49f6CNKhetuLTKTU+Zu0pPecvkX085qcWr9JPdz+cl4tSL3QdGYvcBERERAWjgLQVERNTQsaXASKwUEBGRibFSYKRGVSkw35LIRERE3tOoKgVERNTQsKXASKwUEBGRiXFKopE4+4CIiIgANPKWAo4xqKG1hrxaeLU18F2Jq7EyqpyMLG+1uLz1vvLzYwy139GGht0HRmrUlQIiIjI7VgqMxEoBERGZGCsFRmKlwI7jtssbFFdltgQ+qThW25pUhlbTqkwe7Y8jFNcKNdK1f55ixTW1uLS2xbWPV2sLYJnle5V5Krb7OUrlmjIurS10ZbbuVXsera241bbFLVbJgzJuZTodFMe/qORBmY59PpTvjdaW0/baKI5/chqqWkuNPNmT/VOnthW32nun9dlT245amY7W9uH2lGVsXzbKv0dq25Br/U1R227b/t4qZQbJJFgpICIiE2NLgZFYKSAiIhPjlEQjcUoiERERAWBLQZ2aWm51OFafrqhn+1pvUfYN2h8XS8al9jzK8QhqeVBSy4faNS1q96rlV4vW+6pn6157xRJhZfKgdMRDeZB51h8lwup572Qo/wstlrhXJqye/3b1bNcuE1aZx7ruvSgRp16V0PffPlsK7LFSQEREJsYxBUZi9wEREREBYEsBERGZGlsKjMRKgYu4JDIRkS/i7AMjsfuAiIiIALClgIiITI3dB0ZipcBNjksisyuhceKOfs6xXMibWCkwEisFRERkYqwUGIljCoiIiAgAWwqIiMjU2FJgJFYKDMDpio0V/5g4x3Ihb+KURCOx+4CIiIgAsKWAiIhMrQKAn877qQYrBUREZGKsFBiJlQIP4BgDIiIyI1YKiIjIxNhSYCRWCoiIyMQ4+8BIrBR4AZdEJiIiM2ClgIiITKwC+mbXs/vAHisFRERkYqwUGImLFxERkYlVGPByXUZGBq6++mqEhoaiVatWuPXWW3HkyBHVe7Zv3w6LxVLr9c0330il7Q1sKfAy35yuyK1u3cNyc47l0njYv9eN433Ozs7G+PHjcfXVV6OiogLTpk1DSkoKvv76azRt2lT13iNHjiAsLMx2fPnll3s6u9JYKSAiIhOrhL4ZBHL3fvjhhw7HK1asQKtWrZCTk4PrrrtO9d5WrVohIiJCNoNexe4DIiIysZopie6+qisFpaWlDq+LFy+6lHpJSQkAoHnz5pphe/bsiejoaAwaNAjbtm1z/RG9iJUCIiJq9GJjYxEeHm57ZWRkaN4jhEB6ejquvfZaJCQk1BkuOjoaS5cuRWZmJtatW4fOnTtj0KBB+OSTT4x8BEOw+6Ce+cYYg8bRF2g8lptzLJfGwxfe6woAFp33A3l5eQ79/VarVfPOCRMm4KuvvsKOHTtUw3Xu3BmdO3e2Hffp0wd5eXmYP3++ZpeDt7FSQEREJmZMpSAsLMyhUqDl0UcfxcaNG/HJJ5+gTZs20qlec801WLNmjfR9nsZKARERkYuEEHj00Uexfv16bN++HfHx8W7Fs3//fkRHRxucO/1YKSAiIhMzpqXAVePHj8fatWvxf//3fwgNDUVhYSEAIDw8HEFBQQCAqVOnIj8/H6tXrwYALFy4EHFxcejWrRvKy8uxZs0aZGZmIjMzU0e+PYOVAh/jG2MMiIjMwruVgsWLFwMABgwY4HB+xYoVGDNmDACgoKAAJ06csF0rLy/H448/jvz8fAQFBaFbt254//33MWzYMB359gyLEELUdybslZaWVte4oO9tbihYKSAisyktPY/w8EdRUlIi1U8vl0b1d0VJyWCEhTXREc8lhIdneTSvZsKWAiIiMrFK6PsXklsn22OlwMdx22UiIjV6p0X6wrRK38FKARERmRgrBUbiioZEREQEQLJS4MqWkUIIzJgxAzExMQgKCsKAAQOQm5traKaJiIiqeXfr5IZOqlJQs2Xk7t27kZWVhYqKCqSkpODs2bO2MHPnzsWCBQvwyiuvYM+ePYiKisLgwYNx5swZwzPf2DS1POTw0sff7uXNe+uDP3w/z2r5U+bfU++dt8rJDO+Hr1P7TCjLtKGXtzEbIlE1qU+I1paRQggsXLgQ06ZNw4gRIwAAq1atQmRkJNauXYuxY8fWivPixYsOu1GVlpa68xxERESkk64xBcotI48dO4bCwkKkpKTYwlitViQnJ2Pnzp1O48jIyHDYmSo2NlZPloiIqFFh94GR3K4UONsysma5x8jISIewkZGRtmtKU6dORUlJie2Vl5fnbpaIiKjRYaXASG53MKltGWmxOC4kIYSoda6G1Wp1aYtKqq32ksj2O26FKEIXK47td/VSVtgCFccXFMft7H7OrzuDteJSftyUebKnDKvMgzKP9uGVYSMUx2V2Pyv/ICjjVQsbpTjWKkc19mGV+Ve+l2rPqvUHLsLuZ2V+WyqOT6rkQZmuzJ+SCMWxWjplimO1clJL56TimrKc1NJVlosyT2plriwX+7Bav2dqnx9lfpXUylSZpzKVa2phlezL6ZxKOPJlbrUU1GwZuW3bNoctI6Oiqv9IKlsFioqKarUeEBER6ceWAiNJVQqEEJgwYQLWrVuHjz/+uNaWkfHx8YiKikJWVpbtXHl5ObKzs9G3b19jckxERGTDSoGRpLoPtLaMtFgsSEtLw+zZs9GxY0d07NgRs2fPRnBwMO666y6PPAD9oanlHtvP2ksi/6hyTatZ9ojGdXtqzY16yMSrbCa3/9gr/yBoPbtavEoycamFlYlHi1q5qT1PsZfyoPWsRr4/9tTypOx6kKH2haP1GVa7LvP5L5YIq4d9eZ/3UppkNKlKgStbRk6ePBnnz5/HuHHjcPr0afTu3RtbtmxBaGioIRkmIiL6QyUAPZv9VhmVkQZBqlLgyi7LFosFM2bMwIwZM9zNExERkYtYKTBSQ1zeioiIGo0K6Ftyh5UCe6wUNFC1pyuulLhba+CNWp+8q/fJ3qsVl1Hx6smDu1PTfIW38qgnHXc/ew2dGT5fZAasFBARkYmxpcBIrBQQEZGJsVJgJF17HxAREVHDwZaCRqKpZYzDsfY6BvaM6jv31BgCWfXRh81xDt5Pxyj1VU4y6dZXmfrCGI9K6PtvX8/MhYaHlQIiIjKxCgDO99ZxDSsF9th9QERERADYUtBo2U9Z1O5KkGkW9FQTYn01Tfpik60aX3ivPKk+8uyLnz1f4Qt5ZEuBkVgpICIiE2OlwEjsPiAiIiIAbCkgIiIzE1X6/tlnQ4EDVgrIyZLIMtMViYjqURX0zUjk2kUOWCkgIiLzqvz9ped+suGYAiIiIgLAlgIiIjIzthQYipUCqkV7jEF9LG2qteSrWp4a07ayRm1LLHuvt/jCsrrkUzimwFDsPiAiIiIAbCkgIiIzY/eBoVgpICIi82L3gaFYKSBN3lvHQO3jqNV/7Iv9y0b1f3tqC10zjCFQMkMe1XBMBPk2VgqIiMi8qqCvC4AtBQ5YKSAiIvPimAJDsVJA0uS2XXaXkU2rZm+mbWjbUTdmLHPybawUEBGReXGgoaFYKSAiIvNi94GhWCkgIiLzYqXAUKwUkC61pyuuVIQItPu5teLaL4rjDnY/F2uEVfbNXrD7OUJxrYXi+Ljdz4GKaxfgvpYq6R5XXFOm08buZ7VnA4AQu59/Urnm7LjY7udIxbXfFMf2+VCWkzJe+7BaeVJbhlpZhoWK4wi7n09CXWAdPwO1y1SZJ/vwyj+TxSppKsNGqYRVlpMybJlKulph7X/XlL87yrARdaShvObsuv3n1v69Ypu8WbFSQERE5sUxBYZipYCIiMyL3QeG4oZIREREBIAtBWSwppYxDsdnxdt2Rxd1xKzsB1X2ESuP7en5V8C+r1nZN67Mk8zywzJhZX5N9SwHrTaWQVm+WuMe7Cnzrwwr83z292rdV1HHz87u1bN0tMzy3PZhtcpU5nOgNUbCVVrvlczn2EsE9HUBCKMy0jCwUkBERObF7gNDsfuAiIiIALClgDysqeVO28+1pysqfWn3s1bTqVpztfLeYpWwyi4ANVphlVPk7NPVama1n54m01yt1YyvnPZmTzlNUi1d5bPJ/Oko1rjXvly1mqvdnTIqe59MeLVyU06pVAsr81lUxqv0vURcWlM71dh/vuzfVy/++82WAkOxUkBERObFKYmGYvcBERGRizIyMnD11VcjNDQUrVq1wq233oojR45o3pednY3ExEQEBgaiffv2WLJkiRdyK4+VAiIiMq9KA14SsrOzMX78eOzevRtZWVmoqKhASkoKzp49W+c9x44dw7Bhw9C/f3/s378fTz31FCZOnIjMzEzJh/U8ixDCpyZklJaWIjw8HEEALPWdGfKo2tsuq/WVE5FZlJaeR3j4oygpKUFYWJiH0qj+rijZDoQpZwvLxFMGhA+A23n99ddf0apVK2RnZ+O6665zGubJJ5/Exo0bcfjwYdu51NRUfPnll9i1a5e7WfcIthQQEZF5VRnwQnUlw/518aJr66qUlJQAAJo3b15nmF27diElJcXh3JAhQ7B3715cunTJtef0ElYKiIio0YuNjUV4eLjtlZGRoXmPEALp6em49tprkZCQUGe4wsJCREY6bkAWGRmJiooKnDypZ/aH8Tj7gIiIzKsK+qYV/t5SkJeX59B9YLVaNW+dMGECvvrqK+zYsUMzrMXi2CFe03OvPF/fWCmgelN722X7MQYyS9hqUVvSVma5W5l4PUlt7IWn8mRkvEbF5Qvl78l06+v53OVfx88eZtCUxLCwMKkxBY8++ig2btyITz75BG3atFENGxUVhcJCx7UlioqK4O/vjxYtlFu71y92HxAREblICIEJEyZg3bp1+PjjjxEfH695T58+fZCVleVwbsuWLUhKSkKTJk08lVW3sFJARETm5eUpiePHj8eaNWuwdu1ahIaGorCwEIWFhTh//rwtzNSpU3HffffZjlNTU3H8+HGkp6fj8OHDeOONN7B8+XI8/vjjUmlfunQJeXl5OHLkCE6dOiWXcRex+4B8hn13Qu0lkT21y52eJtn6as6tj3T1LL0sG5ervNWFYbZmfC0yuzrKUNuV0oO8vMzx4sWLAQADBgxwOL9ixQqMGTMGAFBQUIATJ07YrsXHx2Pz5s2YNGkSXn31VcTExOCll17CbbfdppleWVkZ3nzzTbz11lv44osvHGZFtGnTBikpKXjkkUdw9dVXyz1IHVgpICIicpErS/usXLmy1rnk5GTs27dPKq0XX3wRs2bNQlxcHG6++WZMmTIFrVu3RlBQEE6dOoVDhw7h008/xeDBg3HNNdfg5ZdfRseOHaXSUGKlgIiIzKsB732wc+dObNu2DVdeeaXT67169cIDDzyAJUuWYPny5cjOzmalgIiIGrEGvEviu+++61I4q9WKcePGGZImKwXkk5paxjgcy40x8NQ0Pdl43O27lfm1VMZj5JRKsy87LVP+amWhp0zV0tUqf1+cTkoNHSsFRERkXg24paDGTz/9hMWLF2Pnzp0oLCyExWJBZGQk+vbti9TUVMTGxhqWFisFRERkXgL6xgX41JaAte3YsQNDhw5FbGwsUlJSkJKSAiEEioqKsGHDBrz88sv44IMP0K9fP0PSY6WAiIjMq4G3FEyaNAkPPfQQXnzxxTqvp6WlYc+ePYakx0oBmULtMQbKbZe90U/qrTUN9IxVkGHkegK+2E+t1n/vjTR9hS/miVx16NAhrFmzps7rY8eOxZIlSwxLjysaEhGReRm0dbKvio6Oxs6dO+u8vmvXLkRHRxuWHlsKiIjIvBp498Hjjz+O1NRU5OTkYPDgwYiMjITFYkFhYSGysrKwbNkyLFy40LD0WCkgIiLyUePGjUOLFi3w4osv4rXXXkNlZXUtxs/PD4mJiVi9ejXuuOMOw9JjpYBMSd+2y/bqaw18me2cPUXPOgVGrp8vsx6Cu2FlrjU03vqM19PWyQ28pQAARo4ciZEjR+LSpUs4efIkAKBly5Ye2WGxMf1mEBFRQ9OAlzlWatKkiaHjB5xhpYCIiMiHcfEiIknq2y4ryTQryyxLqxaXzBK23ppCJrMkr5b62ILayD9fvjhtz1NN+TJdQSbQwLsPuHgRERGRq6qg74vdx7sPvL14EdcpICIi82rg6xQcOnQIqampdV4fO3YsDh06ZFh6uioFGRkZsFgsSEtLs50TQmDGjBmIiYlBUFAQBgwYgNzcXL35JCIianRMs3jRnj17sHTpUnTv3t3h/Ny5c7FgwQKsXLkSnTp1wsyZMzF48GAcOXIEoaGhujNMpEV7SWR3XfBweG/Tk7/66oP3xb5/dxm5zLTavZ5Mx900DdTAxxSYYvGisrIy3H333Xj99dcxc+ZM23khBBYuXIhp06ZhxIgRAIBVq1YhMjISa9euxdixY2vFdfHiRVy8eNF2XFpa6k6WiIioMWrgUxK9vXiRW90H48ePx/Dhw3HDDTc4nD927BgKCwuRkpJiO2e1WpGcnFxn80dGRgbCw8NtLyOnVhAREZndyJEjsXv3bpw7dw75+fnIz8/HuXPnsHv3bkMrBIAbLQVvv/029u3b53SkY2FhIQAgMjLS4XxkZCSOHz/uNL6pU6ciPT3ddlxaWsqKARERuaaBdx/Y87nFi/Ly8vDYY49hy5YtCAwMrDOcxWJxOBZC1DpXw2q1wmq1ymSDSIr6kshKRq5TQA2TUZ8DI9eJMIoJP+ONqFIAAKdPn8aqVatw9OhRREdHY/To0Yb+Iy3VfZCTk4OioiIkJibC398f/v7+yM7OxksvvQR/f39bC0FNi0GNoqKiWq0HREREpC4mJga//fYbgOou+iuuuAIvvPACjh49itdeew1XXnklvvnmG8PSk6oUDBo0CAcPHsSBAwdsr6SkJNx99904cOAA2rdvj6ioKGRlZdnuKS8vR3Z2Nvr27WtYpomIiAA0+HUKCgsLbYMLn3rqKXTp0gXff/89tmzZgu+++w79+/fHM888Y1h6Ut0HoaGhSEhIcDjXtGlTtGjRwnY+LS0Ns2fPRseOHdGxY0fMnj0bwcHBuOuuuwzLNJEe6ksiqy0BG6K4ppzSpzwOVLmm1kyrTEdmiWQlmSVtjVpWVyu/ynTsy0kZVqZM1Si7O7Xy5G63kVbYurtdte+1P1bGoyyLEJVrMvGWKY5d/fx48Zu2ga9oaO/zzz/HsmXLEBwcDKC6+/3pp5/G3/72N8PSMHyZ48mTJ+P8+fMYN24cTp8+jd69e2PLli1co4CIiMgNNWPyLl686HQg/6+//mpYWrorBdu3b3c4tlgsmDFjBmbMmKE3aiIiInUNfJ0CoLrr3t/fH6Wlpfj222/RrVs327UTJ06gZcuWhqXFDZGIiMi8Gvjsg+nTpzsc13Qd1HjvvffQv39/w9KzCCGEYbEZoLS0FOHh4QgC4HwSI5HnGLckMlHjVVp6HuHhj6KkpARhYWEeSqP6u6JkBhCmNlRDK54LQPgMeDSvZsJdEomIiAgAuw+IiMjMGsGYAm9ipYCIiMyrgY8p8DZWCohcpjXXXW3uu7tz/rUYuQytp9YpMPJeo8pUzzoFSu7mw8h41dZDkFnnQmv9A1fLiV8tnvTZZ58hKSnJI1sEcEwBERGZV6UBL5MZOnQo8vPzPRI3q3NERGReAvrGBfjU/DvXeHLSICsFRC6TWVYXcL9pv752ptOTrrfu9VSZql038v3wVjqyn1VX73M1/ybYXZGcYqWAiIjMqxEMNFy9erXDcUVFBdatW4dWrVrZzt13332GpMVKARERmVcjmJK4YsUKh+NLly7hv//9L4KCggBUby/ASgEREVEjsG3bNofj0NBQrF27Fu3btzc8LVYKqFGTW9ZYdsqe2q+XzPa7amSm1mnxhSmJSnr6po2KV0+5aMUlk47M83hr6qar8XhQI+g+8CZWCoiIyLxYKTAUKwVERGRejWBMgdJTTz2F5s2beyRuVgqIiIhMZOrUqR6Lm5UCauS0fgXsr7dUXCvTOA6x+7lYcU1tyeQIlWuA+lxyreexT1eZX2W6xXXc5yxP9teV+dNaKtc+XWVYtTJVXlPGq7bsrlr+lXGHKK4p77UPq7VMsH1cyjyp5UEZlzJPyrAtVa4p82T/PMrPeKHiWO1zYH/Ni4vlsvvAUKwUEBGReVVB3xe7CbsPPIl7HxAREREAthQQEZGZNcKBhp7ESgE1clrzsO37X4s17pXp+1e7V63PV3ksu6a/Wp6Ufc9qeVKyvy47j98+Xa17ZcrU1WvO4pV5drV4ZK7LvO9aYYtdjEd5rPwMKLmaf3f3XnBDAx5TEB8fD4vFIn1fWloaJk6c6FaarBQQERH5oJUrV7p1X1xcnNtpslJARETm1YC7D5KTk72eJisFRA7UuhO0poHJTIlTsr+uNf1Pz5REteVv1dI1cgleJfty1ZqSqDalUs+URLV7taYZ2tMKq5YnrSmJau+HktrUTaW6phU6u9fVZZq5zLGnvPDCC3jyySfx1VdfoWvXrmjSpImh8XP2ARERkYRPPvkEN910E2JiYmCxWLBhwwbV8Nu3b4fFYqn1+uabb6TTvvbaawEAM2bMQPfu3dG9e3fcddddyMjIwKZNm/DLL7+480g2bCkgIiLzqoeWgrNnz+Kqq67C/fffj9tuu83l+44cOYKwsDDb8eWXXy6ddr9+/QAA69atAwCcO3cOhw4dwsGDB7F161ZMnz4dw4YNwz/+8Q/puAFWCoiIyMwMGlNQWlrqcNpqtcJqtTq9ZejQoRg6dKh0Uq1atUJERIT0fWqCg4PRq1cv9OrVy3YuMTGRlQIiY6j1PSuXfNWi1Zdbl5Nu3gfIT1G0V6wjXplnVcYl87xq6WhNvXNXseJY7c+m1lQ8+/wr49FKx/55lGGV1MrU3c8A4PpUw/MuhjOAQSsaxsbGOpyePn06ZsyYoSPi2nr27IkLFy7giiuuwNNPP42BAwcaGn+N3bt3u30vKwVERNTo5eXlOTTt19VK4I7o6GgsXboUiYmJuHjxIv79739j0KBB2L59O6677jpD0igoKEDz5s1htVp1DT5kpYCIiMyrEvqGzP/eyhAWFuZQKTBS586d0blzZ9txnz59kJeXh/nz5xtWKbj33nvx/fff47bbbsP8+fPdjoeVAiIiMi+TrlNwzTXXYM2aNYbFt3XrVgBwa0aDPVYKiByo9bdqbaGrNidda1682lxxmeV7Zebja61TYP88MusfaPU7q60JoDUuQC2sVjoy3H0/ZMpfa50CmTUOlGHt45IZa6FnnQJ3wjVe+/fvR3R0tPR9//rXv/DYY4/hyJEj6NixIy67zLGZpEuXLrryxXeOiIjMy6DuAxllZWX47rvvbMfHjh3DgQMH0Lx5c7Rt2xZTp05Ffn4+Vq9eDQBYuHAh4uLi0K1bN5SXl2PNmjXIzMxEZmamdNoJCQkAgEmTJuG7775DSEgIunXrhoSEBCQkJGD48OHyD2SHlQIiIjKveug+2Lt3r8PMgfT0dADA6NGjsXLlShQUFODEiRO26+Xl5Xj88ceRn5+PoKAgdOvWDe+//z6GDRsmnfagQYMAAJs3bwZQPZXy0KFDOHToELKysnRXCixCCKErBoOVlpYiPDwcQQDk94YiknNWrFScUWvulV1+2KjuAyW1XRJ9oftApgtAz70yUw5l8g84PrvW++7uctCy/5Op5Un52bPv6pLZJVF2KW/n10pLzyE8/BGUlJR4bPBezXdFyTAgTMdKv6WXgPDN8Ghe9UhKSkJiYqLt1b17d8OXNrbHlgIiIjKveug+8KY+ffogJycHa9aswfnz5xEQEIBu3bqhb9++uPPOO20rHBqFlQIiIjKvBl4pePnllwEAlZWVyM3Nxd69e7F371589NFHWLRoEe69916sWLECFosxbevcEImIiMjH+fn5oXv37njggQewaNEifPvtt/jwww+xefNmLF++3LB02FJAjZyeLYBl7tUic6/MFEUZMvfq6es3avlhLe6OP1CSGbdh5DgHtTEqWnHJ5MkT5eTFf78F9A009KlRdXIGDx6MmTNn4rXXXsNDDz1kSJxsKSAiIvOqNOBlYtdcc43D9Ei9WCkgIiLzauCVgldffRVffPEFLl686PT6r7/+auhsBHYfEBER+ainn34apaWl8Pf3xxVXXIGkpCQkJSWha9euOHfuHKZOnWrY/gkAKwXU6Mn8CijncCv7fJVzukNUrqmRnVMvQ63/WPl8xRJpqq3noNU3rjanXm2evMyYDq21H5T32qerZ5ljmXxo5VFtnQK1z56y/JXH9s8ToRHW1fU1vLihgEn3PnDV6dOn8f333yMnJ8f2yszMRHFxMYDqZY31bICkxEoBERGZVyX0rXTn490HANChQwd06NABd9xxh+3cTz/9hEuXLiE+Pt7QtFgpICIiMpk2bdp4JF5WCqiRk5mCpdUMqydud6e1yS5zrEbtebTi0SoLtbguqFyTyYenpknqeTa1uNS6LLTiVusCUF436jPgLK66PrfemnaKBt994G2sFBARkXk14O6D+Ph4t1YqTEtLw8SJE91Kk5UCIiIiH7Ry5Uq37ouLi3M7TVYKiIjIvKqg7799H+4+SE5O9nqarBQQqVLb6lZP/72raeqN11u/4jL991rlaM9bZap2Xeb9kE3H3Xu1ytCopYu1+MBXSBX0dR/4cKXgxIkTaNu2rcvh8/Pz0bp1a11pckVDIiIiH3T11Vfj4YcfxhdffFFnmJKSErz++utISEjAunXrdKfpA9U8IiIiN+kdKOjDAw0PHz6M2bNn4y9/+QuaNGmCpKQkxMTEIDAwEKdPn8bXX3+N3NxcJCUlYd68eRg6dKjuNNlSQERE5tWA9z5o3rw55s+fj59//hmLFy9Gp06dcPLkSRw9ehQAcPfddyMnJwefffaZIRUCgC0FRBrs+2OLJe9Vm5Ou1s8rsySykp7+Yz3rFOhZW0HmeT219kN9rFOgh1aZFXsoXlfXiXC+eY9HNOAxBTUCAwMxYsQIjBgxwuNpsaWAiIiIALClgIiIzKwBjymoS3FxMT766CPk5+fDYrEgOjoaQ4YMQbNmzXTHzZYCIiIyryoDXiayfPly9OrVC7t370ZVVRUqKyuxe/duXHPNNVi+fLnu+NlSQOTA1a1hldecHbs7V1zPOgUyc92N3DdBzzoFMmm6m45sntTWKVBydxyH7J9ftc+icqyC/XWtz6lanowsYzLC3LlzsW/fPoSEOG51/o9//AOJiYl48MEHdcXPSgEREZmX3v/0TdZSYLFYUFZWVqtSUFZW5tY+CUqsFBARkXlVAhA67jdZpWD+/PlITk5GQkKCbfXCn376Cbm5ufjnP/+pO35WCogcyGzN6y0yTbpGTh30FJmlf7XuNSqsTDx6/mwa9awy77Mn3/O6uln41eIpN954I4YOHYovvvgCP//8M4QQaN26NXr16gU/Pz/d8fOdIyIi82pk3QcA4Ofnhz59+tQ6n5OTg8TERF1xS88+yM/Pxz333IMWLVogODgYPXr0QE5Oju26EAIzZsxATEwMgoKCMGDAAOTm5urKJBERkVMNeEVDWX/96191xyHVUnD69Gn069cPAwcOxAcffIBWrVrh+++/R0REhC3M3LlzsWDBAqxcuRKdOnXCzJkzMXjwYBw5cgShoaG6M0xERNRY3XHHHU7PCyFw6tQp3fFLVQpeeOEFxMbGYsWKFbZzcXFxDplauHAhpk2bZluOcdWqVYiMjMTatWsxduxY3Rkmany8NZ1RD3e3Glaqr+2ojZymp8aosvCFMlXy1jgGhUY20HDr1q3497//XWv2gRACn3zyie74pSoFGzduxJAhQ3D77bcjOzsbrVu3xrhx4/Dwww8DAI4dO4bCwkKkpKTY7rFarUhOTsbOnTudVgouXryIixf/WCe7tLTU3WchIqLGppGNKRgwYABCQkKQnJxc61rPnj11xy81puCHH37A4sWL0bFjR3z00UdITU3FxIkTsXr1agBAYWEhACAyMtLhvsjISNs1pYyMDISHh9tesbGx7jwHERE1RlXQN57AZJWCdevWOa0QAMCHH36oO36pSkFVVRX+/Oc/Y/bs2ejZsyfGjh2Lhx9+GIsXL3YIp1xAQQhR56IKU6dORUlJie2Vl5cn+QhERERkBKnug+joaFxxxRUO57p27YrMzEwAQFRUFIDqFoPo6GhbmKKiolqtBzWsViusVqtUponqh2w/qbv9qt7qj/VUX7Mv9Lkbqb7WdqiP98MX1rGQpHfrZD3jEbwoPT3d6XmLxYLAwED86U9/wi233ILmzZvrSkeqUtCvXz8cOXLE4dy3336Ldu3aAQDi4+MRFRWFrKwsW99GeXk5srOz8cILL+jKKBERUS2VaBSVgv3792Pfvn2orKxE586dIYTA0aNH4efnhy5dumDRokX4f//v/2HHjh21/nmXIdV9MGnSJOzevRuzZ8/Gd999h7Vr12Lp0qUYP348gOoaS1paGmbPno3169fj0KFDGDNmDIKDg3HXXXe5nUkiIqLG7JZbbsENN9yAn3/+GTk5Odi3bx/y8/MxePBgjBo1Cvn5+bjuuuswadIkXelYhBBS9aRNmzZh6tSpOHr0KOLj45Genm6bfQBUjx947rnn8Nprr+H06dPo3bs3Xn31VSQkJLgUf2lpKcLDwxEEfZU/IlecFcskQntrl0RlOkpqU7/07JKotvOeTLxKWs8us6Ofp3ZjNGqXRJlyUoZVHit3PpTZsVOmnGR2X3Stcbm09DzCw/+OkpIShIWFuXSPrJrvipIgIEzHl0WpAMLPw6N5NULr1q2RlZVVqxUgNzcXKSkpyM/Px759+5CSkoKTJ0+6nY70Msc33ngjbrzxxjqvWywWzJgxAzNmzHA7U0RERC5pJGMKSkpKUFRUVKtS8Ouvv9qm8kdERKC8vFxXOtLLHBMREZF33XLLLXjggQewfv16/PTTT8jPz8f69evx4IMP4tZbbwUAfPHFF+jUqZOudLghEhERmVcjGWj42muvYdKkSbjzzjtRUVHd5ePv74/Ro0fjxRdfBAB06dIFy5bJdInWxkoBkSr7X5EQxTVlf6vy2L5/tkwlXiWt/mIZav3WWmMKZPrV7e9VloNWntTulekrV8ujVv+9Wn++7FgSNfZxaeVBLV5lnpSfL/vPqtbnVC1erTEFdY1H8OKKQI2kUhASEoLXX38dL774In744QcIIdChQweH5Y579OihOx1WCoiIiEwiJCQE3bt391j8rBQQEZF5CZjmv329iouLsXz5chw+fBgWiwVdu3bFgw8+iPDwcMPS4EBDIiIyLT3bHtS8zGDv3r3o0KEDXnzxRZw6dQonT57Eiy++iA4dOmDfvn2GpcOWAiJV9n2myn5brb5lmXn+9pTpqOVJlky6amHVnlU2f/bpysypl7mmFVbt/dEaIyGTB/tnlf3zK/NZLJaMu654ldTKwv7e826mL0/vF7tZKgWTJk3CzTffjNdffx3+/tWfnYqKCjz00ENIS0szZNtkgJUCIiIin7d3716HCgFQPftg8uTJSEpKMiwddh8QEZFpVRnwMoOwsDCcOHGi1vm8vDyEhoYalg5bCohcJjsVzRd2HTQqHSOftT52UfRWt4QM2SWqXb3mrbC+obF0H4wcORIPPvgg5s+fj759+8JisWDHjh144oknMGrUKMPSYaWAiIjIx82fPx8WiwX33XcfKioqIIRAQEAA/v73v2POnDmGpcNKARERmZbeLgCzdB8EBATgX//6FzIyMvD9999DCIE//elPCA4ONjQdVgqIiMi06qP74JNPPsG8efOQk5ODgoICrF+/3rb/QF2ys7ORnp6O3NxcxMTEYPLkyUhNTVW9Jz093eU8LViwwOWwalgpIHIgs1Sukp4ledX6cmXC6qFn++C67nMnXbW43C1TPdP/ZN93NTL58NRW1koyWyerUdsWumE5e/YsrrrqKtx///247bbbNMMfO3YMw4YNw8MPP4w1a9bgs88+w7hx43D55Zer3r9//36X8mOx6Fnn2VHDfueIiKhBq4K+lgJ3ug+GDh2KoUOHuhx+yZIlaNu2LRYuXAgA6Nq1K/bu3Yv58+erVgq2bdvmRu704ZREIiIyLaOmJJaWljq8Ll68aFged+3ahZSUFIdzQ4YMwd69e3Hp0iXD0jECKwVERNToxcbGIjw83PbKyMgwLO7CwkJERkY6nIuMjERFRQVOnjxpWDpGYPcBkQNfWBNAT1gtMnP3PZUHPepj7r6R93orD+6Wk1F58t7nxaiBhnl5eQgLC7Odt1qterJVi7LfXwjh9Hx9Y6WAiIhMy6hKQVhYmEOlwEhRUVEoLCx0OFdUVAR/f3+0aNHCI2m6i5UCIiIyLTOsU9CnTx+89957Due2bNmCpKQkNGnSxAs5cB3HFBAREUkoKyvDgQMHcODAAQDVUw4PHDhg25tg6tSpuO+++2zhU1NTcfz4caSnp+Pw4cN44403sHz5cjz++OP1kX1VbCkgUmX/KxKluKbcZlZ5HKJyTW2eeUuVa4Dj3HHlPHKt+ev289CVeYpQHBfXcZ9WvMo8aeXR/nmNLFO1efNq+VfGHaK4przXPqxWOdnHpcyTWh4Ax3JU5kkZ1v6zWqwR1p7ys1eoOFYrC/v8B6ikYaz6WLxo7969GDhwoO24ZpGh0aNHY+XKlSgoKHDYvCg+Ph6bN2/GpEmT8OqrryImJgYvvfSSS2sceBsrBUREZFr10X0wYMAA20BBZ1auXFnrXHJyMvbt2+dGat7F7gMiIiICwJYCIgW1XwllU6qSWrOyzLbLynnLRk61U2s6VpsvrXafMl3Z6Wha5WpPbdld2a2tXb1Xq5vCntaywMUuxuOMWhkrj39yM95ijbBqnwP7eM5LpK9Pfaxo2JCxUkBERKZVH2MKGjJ2HxAREREAthQQEZGJmWGdAjNhpYDIgZHLs6ptv+sLywYbmaf6WGJYZvtgPVtX6xmroEYrHpktpdWuy5STzFbJammab5ljqsbuAyIiIgLAlgIiIjIxthQYi5UCIiIyLY4pMBYrBdTIyfQta/26aPVbu6q+xhuolYXMs8uOVdDTd65GJv9qPPkZcTddmWWbjUpT5l7vfbWwpcBYHFNAREREANhSQEREJiagrwug7h0MGidWCqiR81bTqkxYrZ32ZOKVaZqX+XMgM/1Pi8y97oZV0jNFUS2sVp6U760ard0ljVLXTofKa57Mg/vYfWAsdh8QERERAF+s9hEREbmILQXGYqWAiIhMi1MSjcVKAZHLZJeAdXeanpHL6nprSV496ciUq6fGcegZtyFD7VmNnM7o7nLFWve5mgdfWMab3MFKARERmRa7D4zFSgEREZkWKwXG4uwDIiIiAsCWAiIJRi7fa9R9evputdLx1PoBMvmQmSdvZFm4u06BbDpG5UGNkWtxuLr0sve+WjjQ0FisFBARkWlVQV8XACsFjlgpICIi02JLgbFYKSBymdYSsGrTufQsqytDpvlXbWc9wPF5ZLoalLSe3d2uB6Oa7bXILDttZBeAzPuh/OyFqORB7ViZZlmduXOeDzI7vqNERGRanH1gLFYKiIjItFgpMBanJBIREREAthRQoyfTVx6iuKbsb1XGZd8/K9M3q0xHZuyCWrzOju2p9Z2r9W8rryuvyWwnrAyrLDe1MlV7Vq0+eJn+e+Vxmco1tXEbyjTV4tW6V5mO/WdI67Nnf6/sZ9yefZ689/8mBxoai5UCIiIyLXYfGIvdB0RERASALQVERGRibCkwFisF1MjJbAl8UjIumXUL7BVLpiND7V5l/3GFyjW1e2W3WZa5V6ZM9Ww1rPbsan82tcZ7XKjjZ2fx6nlWrc9qXWQ/4/bsy+m8m+nLE9A3LkAYlZEGgt0HREREBIAtBUREZGLsPjAWKwVERGRanJJoLFYKiFymNTdcZptfJbU1AdT6cWXTtL+u1actQ8+WxmrrFMisyaCktk6BzF4UMu+HTJ60rqmlq/Ve2a83oCxDtTKV3fvAnn2e/CTu04ctBcbimAIiIiICwJYCIiIyMbYUGIuVAmrkZH4FtJb61bMlsLvbB8v+Cqs1QatNifNWE7oWteWUjcyDWteDklqZ6tk6WS0uremLavnXs0W27+GYAmOx+4CIiIgASFYKKioq8PTTTyM+Ph5BQUFo3749nn/+eVRV/VHXEkJgxowZiImJQVBQEAYMGIDc3FzDM05ERFRpwIv+IFUpeOGFF7BkyRK88sorOHz4MObOnYt58+bh5ZdftoWZO3cuFixYgFdeeQV79uxBVFQUBg8ejDNnzhieeSIiatyqoK9CwO4DR1IdSLt27cItt9yC4cOHAwDi4uLw1ltvYe/evQCqWwkWLlyIadOmYcSIEQCAVatWITIyEmvXrsXYsWMNzj6R0fRMKzQqXiOnJKpdlxkTocXdMRGy91bU8bMyHmfHdcUDGDtmQo1aX7+ecQLuTn9VMmqcg/nGJlA1qZaCa6+9Fv/73//w7bffAgC+/PJL7NixA8OGDQMAHDt2DIWFhUhJSbHdY7VakZycjJ07dzqN8+LFiygtLXV4ERERuaLKgBf9Qao69+STT6KkpARdunSBn58fKisrMWvWLIwaNQoAUFhYCACIjIx0uC8yMhLHjx93GmdGRgaee+45d/JORESNHKckGkuqpeCdd97BmjVrsHbtWuzbtw+rVq3C/PnzsWrVKodwFovF4VgIUetcjalTp6KkpMT2ysvLk3wEIiIiMoJUS8ETTzyBKVOm4M477wQAXHnllTh+/DgyMjIwevRoREVFAahuMYiOjrbdV1RUVKv1oIbVaoXVanU3/0Q6yfRhF0vGpbZErFq6WsvSutsHr6VYRzz2efTk1sky4ytcvQaob52sdk1vOmrUxkyobXOtvC6zpXSxZJ7qStN7WydznQJjSbUUnDt3Dpdd5niLn5+fbUpifHw8oqKikJWVZbteXl6O7Oxs9O3b14DsEhER/YFTEo0l1VJw0003YdasWWjbti26deuG/fv3Y8GCBXjggQcAVHcbpKWlYfbs2ejYsSM6duyI2bNnIzg4GHfddZdHHoCIiBovjikwllSl4OWXX8YzzzyDcePGoaioCDExMRg7diyeffZZW5jJkyfj/PnzGDduHE6fPo3evXtjy5YtCA0NNTzzRN4ls4StMnx9LQusJx13l+/Vm65R6Xgr/54i8354i6vTGTkl0awsQghR35mwV1paivDwcAQBcD40kcg4Z8UyidB6tk6W+RLy1joFMvfqiVeL2tbJRqWjZ+tkIysUer4sZfIkU6b29DzrH/eWlp5HePjfUVJSgrCwMIk4XFfzXTEVtX9jZFwAkAF4NK9mwr0PiIjItOprRcNFixYhPj4egYGBSExMxKefflpn2O3bt8NisdR6ffPNN26m7jmsFBAREUl45513kJaWhmnTpmH//v3o378/hg4dihMnTqjed+TIERQUFNheHTt29FKOXceOHyL6nZ5tf2XGBdTXGAmjaG2h7SqZLZmV4WWWI5bpKlE+m3Lqo+99ZdTHQMMFCxbgwQcfxEMPPQQAWLhwIT766CMsXrwYGRkZdd7XqlUrREREuJdRL2FLARERmZZRyxwrl9u/ePGi0/TKy8uRk5PjsJw/AKSkpNS5nH+Nnj17Ijo6GoMGDcK2bdvceVyPY6WAiIgavdjYWISHh9tedf3Hf/LkSVRWVjpdzr9mqX+l6OhoLF26FJmZmVi3bh06d+6MQYMG4ZNPPjH8OfTyvbYgIiIiFxnVfZCXl+cw+0BrpV2Z5fw7d+6Mzp0724779OmDvLw8zJ8/H9ddd517GfcQVgqIXCYztcvIdGSvu3uvnuV7ZfLkqfyrhZXtv1fj7hgCrXj0TAdUhlXLo8wS27LpupKGsYxa5jgsLMylKYktW7aEn59frVYBteX8nbnmmmuwZs0amax6BbsPiIiIXBQQEIDExESH5fwBICsrS2o5//379zvsEeQr2FJARESmVR+zD9LT03HvvfciKSkJffr0wdKlS3HixAmkpqYCqN79Nz8/H6tXrwZQPTshLi4O3bp1Q3l5OdasWYPMzExkZmbqyLlnsFJAjZzMr0CI4lhmN0NfWWZX7XllpqrJrDSoNSVOZpVC+3zoaX7XmlKp1vWgPL6gck0tD1rr8KlND9SaOmj/WdXqWpCZkqhU12fce3sP1kelYOTIkfjtt9/w/PPPo6CgAAkJCdi8eTPatWsHACgoKHBYs6C8vByPP/448vPzERQUhG7duuH999/HsGHDdOTcM7jMMTVqZ8VKidCylQK1P/qe6leXXc5X7Zr989RXpUBt+V6ZSoHMvH7Ze2UqBe6uNQA4fkErP4vKL+8IlTyoVQq04nXt81Naeg7h4Y94ZZnjRwAE6IinHMBScJnjGhxTQERERADYfUBERCbGrZONxUoBNXIyzfjFknEbNXVNhp6pg3qmqumZPmfUdEBPTak0crplRR0/y9Lq6y/2ULyulpPz1QA9gZUCY7H7gIiIiACwpYCIiEzMqMWLqBorBUREZFrsPjAWKwVEDtR+JSIUxzJTEmWmdimnhalNKZPdltj+ujK/alMutabaqU0V1Mqj/b1a0+dkpiTKbOcssyaA2lRBrXKyL2OZ9Q+UxzJTErU+p3XdBwAnFcdqU1Ptr7Fn2qxYKSAiItNi94GxWCkgIiLTYveBsdjGQ0RERADYUkCkoDYPu1giLKA+51vtXuV9nponr9Y3Lhuv2jgHrbi05sbXlY5WvEatf6A1dkEmTbXxBzJxaX1GlGMBXFWscV2tjO3zdN7N9OVVQd9/++w+cMRKARERmRbHFBiLlQIiIjKtSujrB+eYAkesFBC5TM+ytDJb6nprW2Uj06mvraCNYmQXjTfi8VR561kOmhoCVgqIiMi02FJgLFYKiIjItDimwFickkhEREQA2FJApKD2K6G1DK1aeJm+WD1T1fRQG/egNSbC3WeVJZOOu2GV4Y18P/T8yXX3/TAyXjX+dfzsWew+MBYrBUREZFrsPjAWuw+IiIgIAFsKiIjIxLiiobFYKSByYOT6Ae72rdfXXHA9z+6LaysYFdYX13Pw1Pth1NoJ3vsMVwKw6Lyf/sDuAyIiIgLAlgIiIjIxDjQ0FisF1MjJTMGSna5l1DQ9PdPEjErHk3nQs+ugEWkYmY6RjJoeqGTkZ7yue707JZHdB8ZhpYCIiEyLlQJjcUwBERERAWBLARERmRjHFBiLlQJq5LSWh9XT/+puP7XWr6XaWAVPLUfsi33ueujpnzdqfIiez54v4pTEhoDdB0RERASALQVERGRiAvq6AIRRGWkgWCkgIiLT0tv8z+4DR6wUEDnw1DoFnkzHF+hZk8FT2y7L/HmrjzIP1Liu5zNi1Lbd7m7JzK8Ws+I7R0REpsWWAmOxUkBERKZVBX2zDzgl0RErBUQuk51yaNROdUZOHfTWboAyZKayyTSL18dy0FrqYzdJb31+3AlHvoaVAiIiMi12HxiLlQIiIjItVgqMxUoBERGZFscUGIuVAmrkZH4FIhTHFzSO7aeclUmkG6I4VvbPKtNxlzJeZbr2eVZOn1Pea39dmT+taW3292o9q8wywTJTQtXCaj27zBbTgXX87IxaWSjvVZZThMo1tfdH+RkoVhyrlYX9NS6Wa1asFBARkWnp/U+fLQWOWCkgIiLTYqXAWGzjISIiIgBsKaBGT2Y+tXJcgNZ6Amp9/2rpKtORuVeL2q+8TH7VjmXzJzNGQmadBZm+frW4jMqfbLwyZaw8LlO5ppZH2TzVde9FjXiMUwl9mxqxpcARKwVERGRarBQYi90HREREBIAtBUREZGIcaGgsVgqIXCa7PoBRex8Yyd29D7TyZGS/uyfu9ZU9IfSMvbCnVd7urmWhZ0yBO+H0Y/eBsdh9QERERADYUkBERCZWBX0tBXrubYjYUkDkskDFy1/xUnL1mrNlf9XScTdePXmSTVctrJ57ZeJ1NQ2tdGXC6klX+b4rX2rxKrkaj1Z+Za7Lvu/GqDLg5Y5FixYhPj4egYGBSExMxKeffqoaPjs7G4mJiQgMDET79u2xZMkSN1P2LFYKiIjItCoNeMl65513kJaWhmnTpmH//v3o378/hg4dihMnTjgNf+zYMQwbNgz9+/fH/v378dRTT2HixInIzMx0I3XPsgghfKr1pLS0FOHh4QiCvp2viFxxViyTCC2zMQ4gt3lPXRvLOLvX1TSNzJNMvEpag87c3bhIZjCb7H+uas+uFlZPulph7QcBymy8pBaPVh7c+4yUlp5HePjfUVJSgrCwMJX03FfzXRECfd8VAtVLPcnktXfv3vjzn/+MxYsX28517doVt956KzIyMmqFf/LJJ7Fx40YcPnzYdi41NRVffvkldu3apSP3xvO5MQU1dRSfqqlQg1Vael4itLKhUfk/hlFfwFrpuJqmkXlipcC1sHrS9dO4br9KoNb7odYorrbaoHGVAuCPv+eeVAn9lQKgupJhz2q1wmq11gpfXl6OnJwcTJkyxeF8SkoKdu7c6TSNXbt2ISUlxeHckCFDsHz5cly6dAlNmjRx/wEM5nOVgjNnzgAwbnNYIjXh4Y/WdxaIGqwzZ84gPDzcI3EHBAQgKioKhYWFuuMKCQlBbGysw7np06djxowZtcKePHkSlZWViIyMdDgfGRlZZ14KCwudhq+oqMDJkycRHR2t7wEM5HOVgpiYGOTl5UEIgbZt2yIvL89jzU8NQWlpKWJjY1lOGlhOrmE5uYblpE4IgTNnziAmJsZjaQQGBuLYsWMoLy/XHZcQAhaLY3uDs1YCe8rwzuLQCu/sfH3zuUrBZZddhjZt2tiacsLCwvhL5wKWk2tYTq5hObmG5VQ3T7UQ2AsMDERgoNaMCmO1bNkSfn5+tVoFioqKarUG1HDWolFUVAR/f3+0aNHCY3l1B2cfEBERuSggIACJiYnIyspyOJ+VlYW+ffs6vadPnz61wm/ZsgVJSUk+NZ4AYKWAiIhISnp6OpYtW4Y33ngDhw8fxqRJk3DixAmkpqYCAKZOnYr77rvPFj41NRXHjx9Heno6Dh8+jDfeeAPLly/H448/Xl+PUCef6z6oYbVaMX36dM1+ncaO5eQalpNrWE6uYTk1biNHjsRvv/2G559/HgUFBUhISMDmzZvRrl07AEBBQYHDmgXx8fHYvHkzJk2ahFdffRUxMTF46aWXcNttt9XXI9TJ59YpICIiovrB7gMiIiICwEoBERER/Y6VAiIiIgLASgERERH9jpUCIiIiAuDDlQLZvaobsoyMDFx99dUIDQ1Fq1atcOutt+LIkSMOYYQQmDFjBmJiYhAUFIQBAwYgNze3nnLsGzIyMmCxWJCWlmY7x3Kqlp+fj3vuuQctWrRAcHAwevTogZycHNt1lhNQUVGBp59+GvHx8QgKCkL79u3x/PPPo6rqj82GWE7U4Agf9Pbbb4smTZqI119/XXz99dfiscceE02bNhXHjx+v76zViyFDhogVK1aIQ4cOiQMHDojhw4eLtm3birKyMluYOXPmiNDQUJGZmSkOHjwoRo4cKaKjo0VpaWk95rz+fPHFFyIuLk50795dPPbYY7bzLCchTp06Jdq1ayfGjBkjPv/8c3Hs2DGxdetW8d1339nCsJyEmDlzpmjRooXYtGmTOHbsmHj33XdFSEiIWLhwoS0My4kaGp+sFPTq1UukpqY6nOvSpYuYMmVKPeXItxQVFQkAIjs7WwghRFVVlYiKihJz5syxhblw4YIIDw8XS5Ysqa9s1pszZ86Ijh07iqysLJGcnGyrFLCcqj355JPi2muvrfM6y6na8OHDxQMPPOBwbsSIEeKee+4RQrCcqGHyue6Dmr2qlXtPq+1V3diUlJQAAJo3bw4AOHbsGAoLCx3KzGq1Ijk5uVGW2fjx4zF8+HDccMMNDudZTtU2btyIpKQk3H777WjVqhV69uyJ119/3Xad5VTt2muvxf/+9z98++23AIAvv/wSO3bswLBhwwCwnKhh8rlljt3Zq7oxEUIgPT0d1157LRISEgDAVi7Oyuz48eNez2N9evvtt7Fv3z7s2bOn1jWWU7UffvgBixcvRnp6Op566il88cUXmDhxIqxWK+677z6W0++efPJJlJSUoEuXLvDz80NlZSVmzZqFUaNGAeDniRomn6sU1JDdq7qxmDBhAr766ivs2LGj1rXGXmZ5eXl47LHHsGXLFtXtVBt7OVVVVSEpKQmzZ88GAPTs2RO5ublYvHixwyYujb2c3nnnHaxZswZr165Ft27dcODAAaSlpSEmJgajR4+2hWvs5UQNi891H7izV3Vj8eijj2Ljxo3Ytm0b2rRpYzsfFRUFAI2+zHJyclBUVITExET4+/vD398f2dnZeOmll+Dv728ri8ZeTtHR0bjiiiscznXt2tW2gQs/T9WeeOIJTJkyBXfeeSeuvPJK3HvvvZg0aRIyMjIAsJyoYfK5SoE7e1U3dEIITJgwAevWrcPHH3+M+Ph4h+vx8fGIiopyKLPy8nJkZ2c3qjIbNGgQDh48iAMHDtheSUlJuPvuu3HgwAG0b9+e5QSgX79+taa0fvvtt7Yd3vh5qnbu3Dlcdpnjn0g/Pz/blESWEzVI9TjIsU41UxKXL18uvv76a5GWliaaNm0qfvzxx/rOWr34+9//LsLDw8X27dtFQUGB7XXu3DlbmDlz5ojw8HCxbt06cfDgQTFq1ChOjRLCYfaBECwnIaqna/r7+4tZs2aJo0ePijfffFMEBweLNWvW2MKwnIQYPXq0aN26tW1K4rp160TLli3F5MmTbWFYTtTQ+GSlQAghXn31VdGuXTsREBAg/vznP9um3zVGAJy+VqxYYQtTVVUlpk+fLqKiooTVahXXXXedOHjwYP1l2kcoKwUsp2rvvfeeSEhIEFarVXTp0kUsXbrU4TrLSYjS0lLx2GOPibZt24rAwEDRvn17MW3aNHHx4kVbGJYTNTQWIYSoz5YKIiIi8g0+N6aAiIiI6gcrBURERASAlQIiIiL6HSsFREREBICVAiIiIvodKwVEREQEgJUCIiIi+h0rBURERASAlQIiIiL6HSsFREREBICVAiIiIvrd/wfjTKxAdFhrkgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR3klEQVR4nO3deVxU9f4/8NcIMiDLmAubgoK5BVoG7guWiql1K7tlllur5Bby87pWWqmYes2s1FxyuWr5NbSrSSVeFTO1FKUUzaVMkSBcGVfWz+8PYpo5AzOcmTPMHHg9H495PDhnPud8PvOZgXnzWTVCCAEiIiKq8Wo5uwBERETkGhgUEBEREQAGBURERPQXBgVEREQEgEEBERER/YVBAREREQFgUEBERER/YVBAREREABgUEBER0V8YFKjIhg0bsHDhQqeWYdq0aWjXrh3q1asHT09PhIeH49VXX8X58+fN0p49exZDhw5FaGgovLy80KxZMyQkJODKlSsm6WbMmAGNRmP28PT0LLcMn3/+OR544AF4enoiODgY8fHxuHnzpkNer1y///47NBoNVq9e7eyi2KRnz57lvhePPPKISbrMzEw8+eSTCA8Ph7e3N3Q6Hdq1a4ePPvoIRUVFTiq98nbv3o0+ffrA398fPj4+aNu2LRYtWoTi4mKTdF999RWGDRuGNm3aoHbt2tBoNE4qMZF93J1dAKq8DRs24Pjx44iPj3daGa5fv47BgwejdevW8PX1xYkTJzBz5kxs3boVGRkZqF+/PgDg0qVL6NSpE/z8/PDuu+8iNDQUR48exfTp07F7926kpaWhVi3TmPSbb76BTqczHEufB4D169djyJAhePnll/H+++/j9OnTmDRpEk6cOIEdO3Y49sXXEOHh4Vi/fr3Jubp165oc37p1C35+fnjzzTcRGhqKgoICJCcnY+zYsUhPT8eKFSuqsMSOsXPnTvTt2xc9evTA8uXL4e3tja1bt+L111/Hr7/+ig8++MCQdsuWLTh48CDatWsHrVaLtLQ0J5acyA6CVGPAgAGiSZMmzi6GmeTkZAFArFy50nBu+fLlAoDYuXOnSdrZs2cLAOLIkSOGc9OnTxcAxKVLlyzmU1RUJIKCgkRsbKzJ+fXr1wsAIjk5WYFXY59z584JAGLVqlXOLopNYmJiREREhM3XP/PMM8Ld3V3cvXtXkfIUFRUpdi+5nn/+eaHVasXNmzdNzsfGxgo/Pz+Tc8XFxYafR48eLfinldSK3Qcu4tKlS3j11VcREhICrVaLhg0bomvXrti5cyeA0mbd7du34/z58ybNumUKCgowc+ZMtGrVynD9Cy+8gEuXLpnk07RpUzz66KPYsmUL2rZta+gCWLRokc1lb9iwIQDA3f3vhqfatWsDgMl//sDf/3FW1DVgycGDB5GdnY0XXnjB5PzTTz8NHx8fbNmyRfY9y/zyyy8YPHgwAgICoNVqERoaimHDhiE/P9+Q5vjx43j88cdxzz33wNPTEw888ADWrFlj9d4jRoxA06ZNzc6XdZsY02g0GDNmDFatWoWWLVvCy8sL0dHROHjwIIQQmDdvHsLCwuDj44OHH34YZ8+eNbm+Z8+eiIyMxKFDh9C9e3fUqVMH4eHhmDNnDkpKSmyrHBkaNmyIWrVqwc3NTfa1ZV0vc+fOxcyZMxEWFgatVovdu3cDALZu3YrOnTujTp068PX1RZ8+fXDgwAHD9RkZGdBoNNi0aZPhXFpaGjQaDSIiIkzy+sc//oGoqCiL5alduzY8PDzg5eVlcr5u3bpmn9/yWrWIVMnZUQmV6tu3r2jYsKFYtmyZ2LNnj/jyyy/FW2+9JT7//HMhhBAZGRmia9euIjAwUBw4cMDwEKL0v5RHHnlEeHt7i7ffflukpKSIFStWiEaNGon77rtP3L5925BPkyZNRKNGjURoaKj49NNPRXJysnj++ecFADFv3rxKl7ewsFDcvn1bHDlyRHTt2lW0aNFC3Lhxw/D89evXRWhoqOjRo4c4fvy4uHHjhkhNTRWhoaHiscceM7lXWUtBYGCgqFWrlvD39xdDhw4V58+fN0m3dOlSAUBkZGSYlSc6Olp07tzZ5BwAERMTY/W1pKenCx8fH9G0aVOxdOlS8b///U+sW7dOPPPMM0Kv1wshhPjll1+Er6+vaNasmVi7dq3Yvn27GDx4sAAg3nvvPcO9ymspGD58eLktPGWvW1rmJk2aiC5duojNmzeLLVu2iBYtWoh69eqJ8ePHi8cff1x89dVXYv369SIgIEC0bdtWlJSUGK6PiYkR9evXF82bNxdLly4VKSkpYtSoUQKAWLNmjdW6iImJEZ6enuKee+4Rbm5uIjw8XEydOtXkM2SspKREFBYWiqtXr4rPP/9ceHt7iylTpljNpzxlddeoUSPx0EMPiS+++ELs2LFDnDt3ztAaFBsbK7788kuxceNGERUVJTw8PMR3331nuEdQUJB49dVXDcdz5swRXl5eAoDIysoSQpR+dv38/MTEiRMtlufgwYNCq9WK0aNHi6ysLHHt2jWxdu1aUbt2bTF//vwKr2NLAakZP7kuwsfHR8THx1tMU1H3wWeffSYAiKSkJJPzhw4dEgDE4sWLDeeaNGkiNBqNSE9PN0nbp08f4efnJ27dumW1rNnZ2QKA4dGxY0fDH1xjf/zxh+jcubNJ2qefftqsOXjt2rVi1qxZIjk5WezatUvMmTNH1KtXTwQEBIiLFy8a0s2aNUsAENnZ2WZ5xcbGihYtWpicc3NzEw8//LDV1/Pwww+LunXritzc3ArTPPvss0Kr1YoLFy6YnO/Xr5+oU6eOuH79uhBCmaAgMDDQpMn6yy+/FADEAw88YBIALFy4UAAQP//8s+FcTEyMACB++OEHk/ved999om/fvhVXwl+mTZsmFi9eLHbt2iW2b98uxowZI9zd3UWPHj1MmsjLJCYmGt5bjUYjpk2bZjWPipTVXbNmzURBQYHhfHFxsQgODhZt2rQxKcONGzeEv7+/6NKli+HckCFDRHh4uOG4d+/e4pVXXhH33HOPISj6/vvvBQCxY8cOq2X6/vvvRXBwsOE1urm5iblz51q8hkEBqRk/uS6i7Ivp3XffFQcOHDD5o1imoqDg+eefF3Xr1hUFBQWisLDQ5BEYGCieeeYZQ9omTZqIyMhIs3usWrVKADD5r6sihYWF4tChQ2Lfvn1i+fLlonnz5qJFixbijz/+MKS5evWqaN++vYiIiBDr168Xe/fuFYsXLzaMCSgsLLSYxw8//CBq1aolxo0bZzhXFhTk5OSYpY+NjRUtW7a0WnapW7duCTc3N5P/Lsvj7+8v+vfvb3Z+48aNAoD4+uuvhRDKBAWDBw82OXfq1CkBwOw/8G+//VYAENu2bTOci4mJEYGBgWZ5Pfvss6JVq1YWX2NF5s+fLwCIzZs3mz2XnZ0tDh06JL799lsxadIk4eHhIcaMGWNTPmV1N378eJPzJ06cEADK/TJ+7bXXRK1atQzBbNnn+LfffhN37twRnp6eIikpSQwcOFAMGTJECCHE22+/LbRabYWtH2UOHz4s/P39xWOPPSa2bdsmdu3aJd544w3h4eEh3nnnnQqvY1BAasbZBy5i48aNmDlzJlasWIE333wTPj4+ePLJJzF37lwEBgZavPbPP//E9evX4eHhUe7zly9fNjku735l56TTBcvj7u6O6OhoAEDXrl3xyCOPICwsDHPmzDGMyH7vvfeQnp6O8+fPIygoCADQvXt3tGrVCg8//DDWr1+P4cOHV5hHhw4d0KJFCxw8eNBwrmxmw5UrVxAQEGCS/urVq6hXr57Vsktdu3YNxcXFaNy4scV0V65cMbwOY8HBwYbnlSJ9HWXva0Xn7969a3K+rJ6MabVa3Llzx6byDBkyBBMmTMDBgwfx5JNPmjwXGBho+OzExsbinnvuweTJk/Hiiy+iXbt2NuUnreeyuq2o/ktKSnDt2jXUqVMHvXv3BlA6cyAsLAyFhYV4+OGH8eeff+Ldd981PNe1a1ezsQJSo0ePRkBAALZs2WIYI/HQQw+hVq1amDFjBp5//nmEh4fb9BqJXBVHx7iIBg0aYOHChfj9999x/vx5JCYmYvPmzRgxYkSlrq1fvz4OHTpU7mPx4sUm6XNycszuUXauvC8Uaxo3bozg4GCcPn3acC49PR2NGjUy+0Pevn17AKWD9qwRQpgM4GrTpg0A4NixYybpioqK8MsvvyAyMlJ22evVqwc3NzdcvHjRYrr69esjOzvb7Pwff/wBoPQ9qIinp6fJgMUy0mDN1VVmMF2HDh0AwOSzIJd08GXZZ7Ki+q9VqxbuueceAKWfxRYtWmDnzp1ISUlBdHQ06tati169eiE7Oxs//PADDh48aAgeLElPT0dUVJTZoMn27dujpKQEJ0+etPUlErksBgUuKDQ0FGPGjEGfPn1w5MgRw/mK/tt79NFHceXKFRQXFyM6Otrs0bJlS5P0GRkZ+Omnn0zObdiwAb6+vnjwwQdll/fs2bO4ePEi7r33XsO54OBgXLx4EVlZWSZpy0aLW/vP/ODBgzhz5gw6depkONexY0cEBQWZLQz0xRdf4ObNmxg4cKDssnt5eSEmJgabNm2y+CXdq1cv7Nq1yxAElFm7di3q1KljUk6ppk2bIjc3F3/++afhXEFBAb799lvZ5XWGshkWll5jmbKZAsafBXu1bNkSjRo1woYNGyCEMJy/desWkpKSDDMSyvTu3Ru7du1CSkoK+vTpAwBo0aIFQkND8dZbb6GwsLBSQUFwcDAOHz5stlBRZT/DRKrk7P4LKh2p365dOzFv3jyxbds2sWfPHjFv3jzh6ekpnnvuOUO6sj7oxYsXix9++EEcOnRICFE6l7tfv36iXr164u233xZff/212Llzp1i9erUYPny4SV+wdPbB119/bZh9YDyKvjw//fSTePjhh8XixYvFN998I3bs2CH+/e9/i8aNG4uGDRuK33//3ZD28OHDwsPDQ7Ru3VqsWbNG7Nq1SyxatEj4+/uLgIAAkzUJ2rZtK+bOnSu2bdsmUlJSxKxZs0TdunVFcHCwyTgFIYT4z3/+IwCIV199VezevVssW7ZM1K1bV/Tp08esvJUdaFg2+yA8PFwsW7ZM7Nq1S3z22Wdi8ODBZrMPWrRoIdatW2cya8O4r7u8MQW//fabqF27tujZs6fYvn27SEpKEjExMSIsLKzcMQWjR482OVd2T+nskN27dwsAYtOmTYZzFa0zUNG4BmN79+4Vffv2FUuXLhU7duwQW7duFa+99pqhHo0H+b311lti5MiRYv369YbZMnFxccLNzU08/fTT5ZZz+vTpFvOv6HUK8fdaFP379xf//e9/xf/93/+J9u3bm80+EEKIpKQkw8DA1NRUw/kXXnhBABD33HNPuYMmpRYtWiQAiH79+okvv/xS7NixQ0yaNEm4u7uL3r17m6T9/fffxaZNm8SmTZvEI488YnhfNm3aZPg9JVIDBgUu4O7duyIuLk60bdtW+Pn5CS8vL9GyZUsxffp0k9kAV69eFf/85z9F3bp1hUajMflCKSwsFPPnzxf333+/8PT0FD4+PqJVq1Zi5MiR4syZM4Z0TZo0EQMGDBBffPGFiIiIEB4eHqJp06ZiwYIFVsuZk5MjhgwZIpo1aybq1KkjPDw8RHh4uIiLizMblS+EEEeOHBFPPvmkaNy4sdBqtSI8PFy8/PLLZmmfffZZce+99wpvb29Ru3Zt0aRJExEXF2cWEJTZsGGDaNu2rfDw8BCBgYFi3LhxJtMhy6CSUxKFKB3M9vTTT4v69esLDw8PERoaKkaMGGEyU+LYsWPiscceEzqdTnh4eIj777/fbJGiihYvSk5OFg888IDw8vIS4eHh4qOPPqpwoKGzgoIzZ86I/v37i0aNGgmtVis8PT1FmzZtxKxZs8xmjGzdulX07t1bBAQECHd3d+Hj4yM6dOggFi1aZDaIdNu2bQKAWLp0qcX8LQUFQpTOwujYsaPw9PQU3t7eolevXuL77783S3ft2jVRq1Yt4e3tbTJgtyywGDhwoMVyGEtKShLdunUTDRo0EN7e3iIiIkK8++67ZgsalQ1wLO8xfPjwSudH5GwaIYza46jaa9q0KSIjI/HVV185uyhUQ0ycOBGfffYZzpw5Y9OiVURUdTimgIgcavfu3XjzzTcZEBCpAKckEpFDHTp0yNlFIKJKYvcBERERAWD3ARERUaUtWbIEbdu2hZ+fH/z8/NC5c2d8/fXXFq9JTU1FVFSUYQO6pUuXVlFp5WNQQEREVEmNGzfGnDlzcPjwYRw+fBgPP/wwHn/8cWRkZJSb/ty5c+jfvz+6d++Oo0ePYurUqRg3bhySkpKquOSV47Dug8WLF2PevHnIzs5GREQEFi5ciO7duzsiKyIiIqepV68e5s2bh5deesnsuUmTJmHr1q0mK2DGxcXhp59+Mtn621U4ZKDhxo0bER8fj8WLF6Nr16745JNP0K9fP5w4cQKhoaEWry0pKcEff/wBX19fs+VOiYjI9QkhcOPGDQQHB1dqeWxb3b17FwUFBXbfRwhh9n2j1Wqh1WotXldcXIxNmzbh1q1b6Ny5c7lpDhw4gNjYWJNzffv2xcqVK1FYWIjatWvbV3ilOWLxgw4dOoi4uDiTc61atRKTJ0+2em1mZmaFi4DwwQcffPChnkdmZqYjvmKEEELcuXNHBAYGKlJOHx8fs3OWVuD8+eefhbe3t3BzcxM6nU5s3769wrTNmzcXs2bNMjlXtn13RQu0OZPiLQUFBQVIS0vD5MmTTc7HxsZi//79Zunz8/NNNosRf/VmZGbOhZ+f5V3MiIjI9ej1dxASMhG+vr4Oy6OgoAA5OTnIzDwHPz8/m++j1+sREhKGzMxMk/tYaiVo2bIl0tPTcf36dSQlJWH48OFITU3FfffdV256aStE2fecK7aGKx4UXL58GcXFxWZb2wYEBJS7O19iYiLefvtts/N+fl4MCoiIVKwqvvTKZgFU5X08PDwMm35FR0fj0KFD+OCDD/DJJ5+YpQ0MDDT77svNzYW7u7tNu9I6msMWLyovMirvAzJlyhQkJCQYjkujthAE6saiLPUt8bnRFaZ7x5srMvpZ7sszTi/Nx9K9iiTH0rS23ldJ0nykZbb1XtbeDzn1Zut9rN2rruT4poXrpPkYr8Jn7b2THt+08Jy1fC2l9bTwnFLvqz3XSutJupKhpTIqWX57Pl/G11pbibGogp/Lu/auheeklPpbYa0efIx+vllhKuuMX0+JHfeRqwj2fW7subaUEKLc7dEBoHPnzti2bZvJuR07diA6Otr1xhPAAd9IDRo0gJubW7mRkbT1AKjcYA4iIqLyVW1QMHXqVPTr1w8hISG4ceMGPv/8c+zZswfffPMNgNJ/dLOysrB27VoApTMNPvroIyQkJOCVV17BgQMHsHLlSnz22Wd2lNlxFB8W6uHhgaioKKSkpJicT0lJQZcuXZTOjoiIarQiBR6V9+eff2Lo0KFo2bIlevXqhR9++AHffPMN+vTpAwDIzs7GhQsXDOnDwsKQnJyMPXv24IEHHsC7776LRYsW4amnnrLrVTuKQ9Yp2LhxI4YOHYqlS5eic+fOWLZsGZYvX46MjAw0adLE4rV6vR46nQ5eAMrrjbolVihdXCIiUpBefwc63Vjk5eUp0t9ffh6l3xV5eeftHmio0zVxaFnVxCEd2oMGDcKVK1fwzjvvIDs7G5GRkUhOTrYaEBAREclTDPu6D4qVKki14LBRbqNGjcKoUaMcdXsiIiK4wkDD6oR7HxARERGAqpsPpxhvzcsmx+obY6Dk1EAiopqOLQVKUl1QQERE9DcGBUpi9wEREREBYEsBERGpWjHsm0HA2QfGVB8UqG+MAZuqiIiUwymJSmL3AREREQGoBi0FRERUk3GgoZKqXVBg3J1gursiYL4DWF3JsaXdziyR7mbmY+FYmva65FjOjnKWdlmTs9uZtLzW7mWcXlo+S7smWntt7hX8XN59pfeSsyOh8bXS137dwrWWdrwrL9/KlqG85y3d1zhfafktvVfSay3tCClNa203RkvvnZSle1mrF0u7oMrZTdLS50d6b+m1ln5frP3dkLNLoqX3XU75rb0fln6fLd1Xmj7Q6OdbVvJUEoMCJVW7oICIiGoSBgVK4pgCIiIiAsCWAiIiUjXOPlBStQ4KvDXPmhybT1e87qCcpf1wcvr3LfXJW8vHVnLvY2u+1l6bnF9sS2WQ068rp76VLL+cfC3d19p7Iaee5JTJ0r3s+QOtVL1Yu5e1erOnzivLnvqWU3576snSfaUuGv18R8Y97cXuAyWx+4CIiIgAVPOWAiIiqu7YUqAkBgVERKRiDAqUVKOCAvUtiUxERFR1alRQQERE1Q1bCpTEoICIiFSMUxKVxNkHREREBKCGtxRwjEEZa2vIW0pvaQ38ytyrplKqnpSsb0v3qqr3lZ8fZVj6Ha1u2H2gpBodFBARkdoxKFASgwIiIlIxBgVKYlBgxHTb5S8lz8rZEviy5NjS1qRyWGtalVNG4+O6kudyrORr/HquS56zdC9r2+Ia39faFsBylu+Vlum60c+BFp6T3svaFrpytu619HqsbcVtaVvc6xbKIL23NJ9mkuM/LZRBmo9xOaTvjbUtp401lhxfLDdVqQZWymRM7p86S1txW3rvrH32LG1HLc3H2vbhxqR1bFw30r9HlrYht/Y3xdJ228bXlkgLSCrBoICIiFSMLQVKYlBAREQqximJSuKURCIiIgLAloIKeWueMDm2PF3Rnu1rq4q0b9D4+LrMe1l6PdLxCJbKIGWpHJaes8bStZbKa42199WerXuNXZeRVk4ZpE45qAxyXuvvMtLa897JIf0v9LqMa+Wktee/XXu2a5eTVlrGiq7Nl3FPexXDvv/22VJgjEEBERGpGMcUKIndB0RERASALQVERKRqbClQEoOCSuKSyEREroizD5TE7gMiIiICwJYCIiJSNXYfKIlBgY1Ml0RmV0LNxB39ysd6oarEoEBJDAqIiEjFGBQoiWMKiIiICABbCoiISNXYUqAkBgUK4HTFmop/TMrHeqGqxCmJSmL3AREREQFgSwEREalaEQA3O6+nMgwKiIhIxRgUKIlBgQNwjAEREakRgwIiIlIxthQoiUEBERGpGGcfKIlBQRXgkshERKQGDAqIiEjFimDf7Hp2HxhjUEBERCrGoEBJXLyIiIhUrEiBR+UlJiaiffv28PX1hb+/P5544gmcOnXK4jV79uyBRqMxe/zyyy+y8q4KbCmoYq45XZFb3dqG9VY+1kvNYfxe14z3OTU1FaNHj0b79u1RVFSEadOmITY2FidOnIC3t7fFa0+dOgU/Pz/DccOGDR1dXNkYFBARkYoVw74ZBPKu/eabb0yOV61aBX9/f6SlpaFHjx4Wr/X390fdunXlFrBKsfuAiIhUrGxKoq2P0qBAr9ebPPLz8yuVe15eHgCgXr16VtO2a9cOQUFB6NWrF3bv3l35l1iFGBQQEVGNFxISAp1OZ3gkJiZavUYIgYSEBHTr1g2RkZEVpgsKCsKyZcuQlJSEzZs3o2XLlujVqxf27t2r5EtQBLsPnMw1xhjUjL5A5bHeysd6qTlc4b0uAqCx83ogMzPTpL9fq9VavXLMmDH4+eefsW/fPovpWrZsiZYtWxqOO3fujMzMTMyfP99ql0NVY1BAREQqpkxQ4OfnZxIUWDN27Fhs3boVe/fuRePGjWXn2qlTJ6xbt072dY7GoICIiKiShBAYO3YstmzZgj179iAsLMym+xw9ehRBQUEKl85+DAqIiEjFlGkpqKzRo0djw4YN+O9//wtfX1/k5OQAAHQ6Hby8vAAAU6ZMQVZWFtauXQsAWLhwIZo2bYqIiAgUFBRg3bp1SEpKQlJSkh3ldgwGBS7GNcYYEBGpRdUGBUuWLAEA9OzZ0+T8qlWrMGLECABAdnY2Lly4YHiuoKAAEyZMQFZWFry8vBAREYHt27ejf//+dpTbMTRCCOHsQhjT6/WlERfse5urCwYFRKQ2ev0d6HRjkZeXJ6ufXl4epd8VeXl94OdX2477FEKnS3FoWdWELQVERKRixbDvX0hunWyMQYGL47bLRESW2Dst0hWmVboOBgVERKRiDAqUxBUNiYiICIDMoKAyW0YKITBjxgwEBwfDy8sLPXv2REZGhqKFJiIiKlW1WydXd7KCgrItIw8ePIiUlBQUFRUhNjYWt27dMqSZO3cuFixYgI8++giHDh1CYGAg+vTpgxs3bihe+JrGW/OyycM+7kaPqrzWGdzh+mW2VD5p+R313lVVPanh/XB1lj4T0jqt7vWtzIZIVErWJ8TalpFCCCxcuBDTpk3DwIEDAQBr1qxBQEAANmzYgJEjR5rdMz8/32Q3Kr1eb8vrICIiIjvZNaZAumXkuXPnkJOTg9jYWEMarVaLmJgY7N+/v9x7JCYmmuxMFRISYk+RiIioRmH3gZJsDgrK2zKybLnHgIAAk7QBAQGG56SmTJmCvLw8wyMzM9PWIhERUY3DoEBJNncwWdoyUqMxXUhCCGF2roxWq63UFpVkznxJZOMdt3wkqa9Ljo139ZIGbJ6S47uS4yZGP2dVXECze0k/btIyGZOmlZZBWkbj9NK0dSXHN41+lv5BkN7XUtpAybG1erTEOK20/NL30tJrtfYHrq7Rz9LyNpAcX7ZQBmm+cv6U1JUcW8rnpuTYUj1Zyuey5DlpPVnKV1ov0jJZqnNpvRintfZ7ZunzIy2vlKU6lZbppoXnLKWVMq6n2xbSkSuzqaWgbMvI3bt3m2wZGRhY+kdS2iqQm5tr1npARERkP7YUKElWUCCEwJgxY7B582bs2rXLbMvIsLAwBAYGIiUlxXCuoKAAqamp6NKlizIlJiIiMmBQoCRZ3QfWtozUaDSIj4/H7Nmz0bx5czRv3hyzZ89GnTp18NxzzznkBdDfvDVDDD9bXxL5dwvPWWuWPWXleWOWmhvtIee+0mZy44+99A+Ctddu6b5Scu5lKa2c+1hjqd4svZ7rVVQGa69VyffHmKUySbse5LD0hWPtM2zpeTmf/+sy0trDuL7vVFGepDRZQUFltoycOHEi7ty5g1GjRuHatWvo2LEjduzYAV9fX0UKTERE9LdiAPZs9luiVEGqBVlBQWV2WdZoNJgxYwZmzJhha5mIiIgqiUGBkqrj8lZERFRjFMG+JXcYFBhjUFBNmU9XXC3jamsDbyz1yVf2OrnXWruXUve1pwy2Tk1zFVVVRnvysfWzV92p4fNFasCggIiIVIwtBUpiUEBERCrGoEBJdu19QERERNUHWwpqCG/NCJNj6+sYGFOq79xRYwjkckYfNsc5VH0+SnFWPcnJ11l16gpjPIph33/79sxcqH4YFBARkYoVASh/b53KYVBgjN0HREREBIAtBTWW8ZRF610JcpoFHdWE6KymSVdssrXEFd4rR3JGmV3xs+cqXKGMbClQEoMCIiJSMQYFSmL3AREREQFgSwEREamZKLHvn302FJhgUEDlLIksZ7oiEZETlcC+GYlcu8gEgwIiIlKv4r8e9lxPBhxTQERERADYUkBERGrGlgJFMSggM9bHGDhjaVNrS75aKlNN2lZWqW2J5V5bVVxhWV1yKRxToCh2HxAREREAthQQEZGasftAUQwKiIhIvdh9oCgGBWRV1a1jYOnjaK3/2BX7l5Xq/3bUFrpqGEMgpYYyWsIxEeTaGBQQEZF6lcC+LgC2FJhgUEBEROrFMQWKYlBAssnbdtlWSjatqr2ZtrptR12Tsc7JtTEoICIi9eJAQ0UxKCAiIvVi94GiGBQQEZF6MShQFIMCsov5dMXVkhSeRj83kjz3p+S4mdHP162klfbN3jX6ua7kufqS4/NGP3tKnrsL2zWwkO95yXPSfBob/WzptQGAj9HPFy08V97xdaOfAyTPXZEcG5dDWk/S+xqntVYmS8tQS+swR3Jc1+jny7DMs4KfAfM6lZbJOL30z+R1C3lK0wZaSCutJ2namxbytZbW+HdN+rsjTVu3gjykz5X3vPHn1vi9Ypu8WjEoICIi9eKYAkUxKCAiIvVi94GiuCESERERAWBLASnMWzPC5PiW+NzoKN+OO0v7QaV9xNJjY/b8K2Dc1yztG5eWSc7yw3LSyvk1tWc5aEtjGaT1a23cgzFp+aVp5bw+42utXVdUwc/lXWvP0tFyluc2TmutTuV8DqyNkagsa++VnM9xFRGwrwtAKFWQ6oFBARERqRe7DxTF7gMiIiICwJYCcjBvzbOGn82nK0r9ZPSztaZTS83V0muvW0gr7QKwxFpa6RQ543ytNbMaT0+T01xtrRlfOu3NmHSapKV8pa9Nzp+O61auNa5Xa83Vtk4ZlXudnPSW6k06pdJSWjmfRel9pX6VcS9rUzstMf58Gb+vVfjvN1sKFMWggIiI1ItTEhXF7gMiIqJKSkxMRPv27eHr6wt/f3888cQTOHXqlNXrUlNTERUVBU9PT4SHh2Pp0qVVUFr5GBQQEZF6FSvwkCE1NRWjR4/GwYMHkZKSgqKiIsTGxuLWrVsVXnPu3Dn0798f3bt3x9GjRzF16lSMGzcOSUlJMl+s42mEEC41IUOv10On08ELgMbZhSGHMt922VJfORGphV5/BzrdWOTl5cHPz89BeZR+V+TtAfyks4Xl3OcmoOsJm8t66dIl+Pv7IzU1FT169Cg3zaRJk7B161acPHnScC4uLg4//fQTDhw4YGvRHYItBUREpF4lCjxQGmQYP/LzK7euSl5eHgCgXr16FaY5cOAAYmNjTc717dsXhw8fRmFhYeVeZxVhUEBERDVeSEgIdDqd4ZGYmGj1GiEEEhIS0K1bN0RGRlaYLicnBwEBphuQBQQEoKioCJcv2zP7Q3mcfUBEROpVAvumFf7VUpCZmWnSfaDVaq1eOmbMGPz888/Yt2+f1bQajWmHeFnPvfS8szEoIKcx33bZeIyBnCVsrbG0pK2c5W7l3NeRLI29cFSZlLyvUvdyhfp3ZL7Oen22cq/gZwdTaEqin5+frDEFY8eOxdatW7F37140btzYYtrAwEDk5JiuLZGbmwt3d3fUry/d2t252H1ARERUSUIIjBkzBps3b8auXbsQFhZm9ZrOnTsjJSXF5NyOHTsQHR2N2rVrO6qoNmFQQERE6lXFUxJHjx6NdevWYcOGDfD19UVOTg5ycnJw584dQ5opU6Zg2LBhhuO4uDicP38eCQkJOHnyJD799FOsXLkSEyZMkJV3YWEhMjMzcerUKVy9elVewSuJ3QfkMoy7E8yXRHbULnf2NMk6qznXGfnas/Sy3HtVVlV1YaitGd8aObs6ymFpV0oHquJljpcsWQIA6Nmzp8n5VatWYcSIEQCA7OxsXLhwwfBcWFgYkpOTMX78eHz88ccIDg7GokWL8NRTT1nN7+bNm1i/fj0+++wz/PjjjyazIho3bozY2Fi8+uqraN++vbwXUgEGBURERJVUmaV9Vq9ebXYuJiYGR44ckZXX+++/j1mzZqFp06b4xz/+gcmTJ6NRo0bw8vLC1atXcfz4cXz33Xfo06cPOnXqhA8//BDNmzeXlYcUgwIiIlKvarz3wf79+7F79260adOm3Oc7dOiAF198EUuXLsXKlSuRmprKoICIiGqwarxL4qZNmyqVTqvVYtSoUYrkyaCAXJK3ZoTJsbwxBo6apif3Prb23cr5tZTeR8kplWpfdlpO/VuqC3vq1FK+1urfFaeTUnXHoICIiNSrGrcUlLl48SKWLFmC/fv3IycnBxqNBgEBAejSpQvi4uIQEhKiWF4MCoiISL0E7BsX4FJbAprbt28f+vXrh5CQEMTGxiI2NhZCCOTm5uLLL7/Ehx9+iK+//hpdu3ZVJD8GBUREpF7VvKVg/PjxePnll/H+++9X+Hx8fDwOHTqkSH4MCkgVzMcYSLddrop+0qpa08CesQpyKLmegCv2U1vqv6+KPF2FK5aJKuv48eNYt25dhc+PHDkSS5cuVSw/rmhIRETqpdDWya4qKCgI+/fvr/D5AwcOICgoSLH82FJARETqVc27DyZMmIC4uDikpaWhT58+CAgIgEajQU5ODlJSUrBixQosXLhQsfwYFBAREbmoUaNGoX79+nj//ffxySefoLi4NIpxc3NDVFQU1q5di2eeeUax/BgUkCrZt+2yMWetgS9nO2dHsWedAiXXz5ezHoKtaeU8V91U1WfcSVsnV/OWAgAYNGgQBg0ahMLCQly+fBkA0KBBA4fssFiTfjOIiKi6qcbLHEvVrl1b0fED5WFQQERE5MK4eBGRTJa3XZaS06wsZ1laS/eSs4RtVU0hk7MkrzXO2IJayT9frjhtz1FN+XK6glSgmncfcPEiIiKiyiqBfV/sLt59UNWLF3GdAiIiUq9qvk7B8ePHERcXV+HzI0eOxPHjxxXLz66gIDExERqNBvHx8YZzQgjMmDEDwcHB8PLyQs+ePZGRkWFvOYmIiGoc1SxedOjQISxbtgxt27Y1OT937lwsWLAAq1evRosWLTBz5kz06dMHp06dgq+vr90FJrLG+pLItrrr4PRVzZ7yOasP3hX7/m2l5DLTlq51ZD625qmgaj6mQBWLF928eRPPP/88li9fjpkzZxrOCyGwcOFCTJs2DQMHDgQArFmzBgEBAdiwYQNGjhxpdq/8/Hzk5+cbjvV6vS1FIiKimqiaT0ms6sWLbOo+GD16NAYMGIDevXubnD937hxycnIQGxtrOKfVahETE1Nh80diYiJ0Op3hoeTUCiIiIrUbNGgQDh48iNu3byMrKwtZWVm4ffs2Dh48qGhAANjQUvD555/jyJEj5Y50zMnJAQAEBASYnA8ICMD58+fLvd+UKVOQkJBgONbr9QwMiIiocqp594Exl1u8KDMzE6+//jp27NgBT0/PCtNpNBqTYyGE2bkyWq0WWq1WTjGIZLG8JLKUkusUUPWk1OdAyXUilKLCz3gNCgoA4Nq1a1izZg3OnDmDoKAgDB8+XNF/pGV1H6SlpSE3NxdRUVFwd3eHu7s7UlNTsWjRIri7uxtaCMpaDMrk5uaatR4QERGRZcHBwbhy5QqA0i76++67D++99x7OnDmDTz75BG3atMEvv/yiWH6ygoJevXrh2LFjSE9PNzyio6Px/PPPIz09HeHh4QgMDERKSorhmoKCAqSmpqJLly6KFZqIiAhAtV+nICcnxzC4cOrUqWjVqhV+/fVX7NixA2fPnkX37t3x5ptvKpafrO4DX19fREZGmpzz9vZG/fr1Defj4+Mxe/ZsNG/eHM2bN8fs2bNRp04dPPfcc4oVmsgelpdEtrQErI/kOemUPumxp4XnLDXTSvORs0SylJwlbZVaVtdaeaX5GNeTNK2cOrVE2t1prUy2dhtZS1txt6v1a42PpfeR1oWPhefk3Pem5Liyn58q/Kat5isaGvvhhx+wYsUK1KlTB0Bp9/sbb7yBf/7zn4rlofgyxxMnTsSdO3cwatQoXLt2DR07dsSOHTu4RgEREZENysbk5efnlzuQ/9KlS4rlZXdQsGfPHpNjjUaDGTNmYMaMGfbemoiIyLJqvk4BUNp17+7uDr1ej9OnTyMiIsLw3IULF9CgQQPF8uKGSEREpF7VfPbB9OnTTY7Lug7KbNu2Dd27d1csP40QQih2NwXo9XrodDp4ASh/EiOR4yi3JDJRzaXX34FONxZ5eXnw8/NzUB6l3xV5MwA/S0M1rN3nLqCbAYeWVU24SyIREREBYPcBERGpWQ0YU1CVGBQQEZF6VfMxBVWNQQGREfMlkVcbHcmZRy5Nb+ucf2v5KrkMrZy5+pbILZOcelKqTu1Zp0DK1nIoeV9L6yHI2TpZqXriV4sjff/994iOjnbIFgEcU0BEROpVrMBDZfr164esrCyH3JvhHBERqZeAfeMCXGr+XeU4ctIggwIiC7w1Iww/3xLrZF6t1A6L9nQRKNXsb60Mcpqr7fmzY0+XgZwy2FpGOe+zku+rUp8nFe6SSIpiUEBEROpVAwYarl271uS4qKgImzdvhr+/v+HcsGHDFMmLQQEREalXDZiSuGrVKpPjwsJCfPHFF/Dy8gJQur0AgwIiIqIaYPfu3SbHvr6+2LBhA8LDwxXPi0EBUSV5a4aYHFtfElmpXy8l+3Ud1UcsZxtjZ6iqvnF7pv/Jube1fGx9P6xdV9lpt1U4FqEGdB9UJQYFRESkXgwKFMWggIiI1KsGjCmQmjp1KurVq+eQezMoICIiUpEpU6Y47N4MCohsZL4kstx1DCpibZnjuxaeUzJfS+T0GUv3tbW2dK5SZTDOV9pX7qjllC3dR8pHcmytjJbKJK1jOZ8RS89XVT3Zgd0HimJQQERE6lUC+77YVdh94Ejc+4CIiIgAsKWAiIjUrAYONHQkBgVECrG8joG1fvXKPgc4rh/XWWsYOCrfm3Zcq1SZLN3nukJ5AJbrWM7aCXK5wN4I1XhMQVhYGDQajezr4uPjMW7cOJvyZFBARETkglavXm3TdU2bNrU5TwYFRESkXtW4+yAmJqbK8+RAQyIH8da8bHg4jrvkIed5uddWNq09ZbaWj63sqSdHsSdPZ5TXWr5OKlOxAg8Vee+99wAAP//8MwoLCxW/P4MCIiIiGfbu3YvHHnsMwcHB0Gg0+PLLLy2m37NnDzQajdnjl19+kZ13t27dAAAzZsxA27Zt0bZtWzz33HNITEzEV199hT///NOWl2TA7gMiIlIvJww0vHXrFu6//3688MILeOqppyp93alTp+Dn52c4btiwoey8u3btCgDYvHkzAOD27ds4fvw4jh07hp07d2L69Ono378/3n33Xdn3BhgUEBGRmik0pkCv15uc1mq10Gq15V7Sr18/9OvXT3ZW/v7+qFu3ruzrLKlTpw46dOiADh06GM5FRUXZHBSw+4CoCnhrhpg87FNk4WEtbWWfsycfueWXUyZb2VNPjmJPns4or7V8nVSmshUNbX38FRSEhIRAp9MZHomJiYoXtV27dggKCkKvXr2we/duxe9f5uDBgzZfy5YCIiKq8TIzM02a9itqJbBFUFAQli1bhqioKOTn5+M///kPevXqhT179qBHjx6K5JGdnY169epBq9Widu3aNt+HQQEREalXMexr8/5rTIGfn59JUKCkli1bomXLlobjzp07IzMzE/Pnz1csKBg6dCh+/fVXPPXUU5g/f77N92FQQERE6qXSdQo6deqEdeuU2lkV2LlzJwDYNKPBGMcUEDmB8RoG8tcxsHVtAf4P4Hhy6lvJ98ZV1i3gZ62yjh49iqCgINnXffDBBwBKZzKUlJhHNK1atbKrXHzniIhIvRTqPpDj5s2bOHv2rOH43LlzSE9PR7169RAaGoopU6YgKysLa9euBQAsXLgQTZs2RUREBAoKCrBu3TokJSUhKSlJdt6RkZEAgPHjx+Ps2bPw8fFBREQEIiMjERkZiQEDBsh/QUYYFBARkXo5ofvg8OHDeOihhwzHCQkJAIDhw4dj9erVyM7OxoULFwzPFxQUYMKECcjKyoKXlxciIiKwfft29O/fX3bevXr1AgAkJycDKJ1Kefz4cRw/fhwpKSl2BwUaIYSw6w4K0+v10Ol08AIgf28oIvUz3V2RSH30+jvQ6cYiLy/PYYP3yr4r8voDfrYPtoe+ENAlw6FltUd0dDSioqIMj7Zt29o1u8AathQQEZF6OaH7oCp17twZaWlpWLduHe7cuQMPDw9ERESgS5cuePbZZw0rHCqFQQEREalXNQ8KPvzwQwBAcXExMjIycPjwYRw+fBjffvstFi9ejKFDh2LVqlXQaJRpW+fsAyIiIhfn5uaGtm3b4sUXX8TixYtx+vRpfPPNN0hOTsbKlSsVy4dBAZGLUW66YlVuPewMzpr+pxRXLJM1Llhmgb8HG9rycKlRdfL06dMHM2fOxCeffKLYPRkUEBGRetmz74G9Oyy6gE6dOplMj7QXgwIiIlKvah4UfPzxx/jxxx+Rn59f7vOXLl1SdDaCi7T/EBERkdQbb7wBvV4Pd3d33HfffYiOjkZ0dDRat26N27dvY8qUKYrtnwAwKCCqZhy1ZW1Vbs9bWXLK5IrlVyMXrEeV7n1QWdeuXcOvv/6KtLQ0wyMpKQnXr18HULqssT0bIEkxKCAiIvUqhn0r3bl49wEANGvWDM2aNcMzzzxjOHfx4kUUFhYiLCxM0bwYFBAREalM48aNHXJfBgVERE7hgk3xalTNuw+qGoMCIiJSr2rcfRAWFmbTSoXx8fEYN26cTXkyKCAiInJBq1evtum6pk2b2pwngwIiIlKvEtj3374Ldx/ExMRUeZ5cvIiIiNTLniWO7R2P4GAXLlyQlT4rK8vuPBkUEBERuaD27dvjlVdewY8//lhhmry8PCxfvhyRkZHYvHmz3Xmy+4CIiNTL3oGCLjzQ8OTJk5g9ezYeeeQR1K5dG9HR0QgODoanpyeuXbuGEydOICMjA9HR0Zg3bx769etnd54aIYRL7RGl1+uh0+ngBfsGlBJVF7fECmcXgUgWvf4OdLqxyMvLg5+fn4PyKP2uyGsN+LnZcZ9iQHcSDi2rve7evYvk5GR89913+P3333Hnzh00aNAA7dq1Q9++fREZGalYXmwpIHJ50l9Ttc1vt1Z+dwvPqYHayy+HC34WS2Dff5AuPKagjKenJwYOHIiBAwc6PC+OKSAiIiIAbCkgIiI1q8ZjCipy/fp1fPvtt8jKyoJGo0FQUBD69u2Le+65x+57s6WAiIjUqxpPSSzPypUr0aFDBxw8eBAlJSUoLi7GwYMH0alTJ6xcudLu+7OlgMjlqb0P3loZ1fAaLFF7+eWw9FrdK/iZlDR37lwcOXIEPj4+JuffffddREVF4aWXXrLr/nzniIhIvez9T19lLQUajQY3b940Cwpu3rxp0z4JUgwKiIhIvYoB2DOxXmVBwfz58xETE4PIyEg0atQIAHDx4kVkZGTg3//+t933Z1BApDo1qbnaEhecHlejFVXwMynp0UcfRb9+/fDjjz/ijz/+gBACjRo1QocOHeDmZseCDX9hUEBEROpVw7oPAMDNzQ2dO3c2O5+WloaoqCi77i179kFWVhaGDBmC+vXro06dOnjggQeQlpZmeF4IgRkzZiA4OBheXl7o2bMnMjIy7CokERFRuYoVeFQTTz75pN33kNVScO3aNXTt2hUPPfQQvv76a/j7++PXX39F3bp1DWnmzp2LBQsWYPXq1WjRogVmzpyJPn364NSpU/D19bW7wERERDXVM888U+55IQSuXr1q9/1lBQXvvfceQkJCsGrVKsO5pk2bmhRq4cKFmDZtmmE5xjVr1iAgIAAbNmzAyJEj7S4wEZFzWfqzKacvXckxEVU1vsIFx3HUsIGGO3fuxH/+8x+z2QdCCOzdu9fu+8sKCrZu3Yq+ffvi6aefRmpqKho1aoRRo0bhlVdeAQCcO3cOOTk5iI2NNVyj1WoRExOD/fv3lxsU5OfnIz8/33Cs1+ttfS1ERFTT1LAxBT179oSPjw9iYmLMnmvXrp3d95c1puC3337DkiVL0Lx5c3z77beIi4vDuHHjsHbtWgBATk4OACAgIMDkuoCAAMNzUomJidDpdIZHSEiILa+DiIhqohLYN55AZUHB5s2byw0IAOCbb76x+/6ygoKSkhI8+OCDmD17Ntq1a4eRI0filVdewZIlS0zSSRdQEEJUuKjClClTkJeXZ3hkZmbKfAlERESkBFndB0FBQbjvvvtMzrVu3RpJSUkAgMDAQAClLQZBQUGGNLm5uWatB2W0Wi20Wq2sQhMRyaNkX7gL9KObcYUyOWmZY3u3TrZnPEIVSkhIKPe8RqOBp6cn7r33Xjz++OOoV6+eXfnIeue6du2KU6dOmZw7ffo0mjRpAgAICwtDYGAgUlJSDH0bBQUFSE1NxXvvvWdXQYmIiMwUo0YEBUePHsWRI0dQXFyMli1bQgiBM2fOwM3NDa1atcLixYvx//7f/8O+ffvM/nmXQ1b3wfjx43Hw4EHMnj0bZ8+exYYNG7Bs2TKMHj0aQGnEEh8fj9mzZ2PLli04fvw4RowYgTp16uC5556zuZBEREQ12eOPP47evXvjjz/+QFpaGo4cOYKsrCz06dMHgwcPRlZWFnr06IHx48fblY9GCCErTvrqq68wZcoUnDlzBmFhYUhISDDMPgBKxw+8/fbb+OSTT3Dt2jV07NgRH3/8MSIjIyt1f71eD51OBy/YF/wRVRe3xApnF8FFueD0OAIA6PV3oNONRV5eHvz8/ByUR+l3RZ4X4GfHl4VeALo7cGhZldCoUSOkpKSYtQJkZGQgNjYWWVlZOHLkCGJjY3H58mWb85Hd8fPoo4/i0UcfrfB5jUaDGTNmYMaMGTYXioiIqFJqyJiCvLw85ObmmgUFly5dMkzlr1u3LgoKCuzKR/Yyx0RERFS1Hn/8cbz44ovYsmULLl68iKysLGzZsgUvvfQSnnjiCQDAjz/+iBYtWtiVDzdEIiIi9aohAw0/+eQTjB8/Hs8++yyKikq7ytzd3TF8+HC8//77AIBWrVphxQr7uhtljylwNI4pIDLFMQWkNlU6pkCjwJgC4fpjCsrcvHkTv/32G4QQaNasmdlyx/ZiSwEREZFK+Pj4oG3btg67P4MCIiJSLwHVdAHY6/r161i5ciVOnjwJjUaD1q1b46WXXoJOp1MsDw40JCIi1bJn24OyhxocPnwYzZo1w/vvv4+rV6/i8uXLeP/999GsWTMcOXJEsXzYUkBETmb8Z4hrDVTM1nqSs56D3LUfnP/e2fvFrpagYPz48fjHP/6B5cuXw929tN6Liorw8ssvIz4+XpFtkwEGBURERC7v8OHDJgEBUDr7YOLEiYiOjlYsH3YfEBGRapUo8FADPz8/XLhwwex8ZmYmfH19FcuHLQVE5GTsMqgcW+tJznVy83D+e1dTug8GDRqEl156CfPnz0eXLl2g0Wiwb98+/Otf/8LgwYMVy4dBARERkYubP38+NBoNhg0bhqKiIggh4OHhgddeew1z5sxRLB8GBUREpFr2dgGopfvAw8MDH3zwARITE/Hrr79CCIF7770XderUUTQfBgVERKRazug+2Lt3L+bNm4e0tDRkZ2djy5Ythv0HKpKamoqEhARkZGQgODgYEydORFxcnMVrEhISKl2mBQsWVDqtJQwKiIiIZLh16xbuv/9+vPDCC3jqqaespj937hz69++PV155BevWrcP333+PUaNGoWHDhhavP3r0aKXKo9EotykAgwIiIlKtEtjXUmBL90G/fv3Qr1+/SqdfunQpQkNDsXDhQgBA69atcfjwYcyfP99iULB7924bSmcfTkkkIiLVUmpKol6vN3nk5+crVsYDBw4gNjbW5Fzfvn1x+PBhFBYWKpaPEhgUEBFRjRcSEgKdTmd4JCYmKnbvnJwcBAQEmJwLCAhAUVERLl++rFg+SmD3ARGplNwleV2NGsvvemVWaqBhZmamydbJWq3WnmKZkfb7CyHKPe9sDAqIiEi1lAoK/Pz8TIICJQUGBiInJ8fkXG5uLtzd3VG/fn2H5GkrBgVERKRaalinoHPnzti2bZvJuR07diA6Ohq1a9eughJUHscUEBERyXDz5k2kp6cjPT0dQOmUw/T0dMPeBFOmTMGwYcMM6ePi4nD+/HkkJCTg5MmT+PTTT7Fy5UpMmDDBGcW3iC0FRKRSzu/Pto+zym/PuADXq3NnLF50+PBhPPTQQ4bjskWGhg8fjtWrVyM7O9tk86KwsDAkJydj/Pjx+PjjjxEcHIxFixZVao2DqqYRZaMdXIRer4dOp4MXANcafkHkHLfECmcXgaoVxw8W1OvvQKcbi7y8PIf105d9V6QDsGePwBsAHgAcWlY1YfcBERERAWD3ARGRkzhrep89+bjelERnrGhYnTEoICIi1XLGmILqjN0HREREBIAtBUREpGJqWKdATRgUEBHZxfjPqCOn99maj5KcP4ZAit0HymL3AREREQFgSwEREakYWwqUxaCAiIhUi2MKlMWggKjGkjPn3PXmp1svk6U/b0qW39Z72VN+e9jzXla2TFX31cKWAmVxTAEREREBYEsBERGpmIB9XQAutfmPC2BQQFRjqXt3POtlcsUyy+Go8ttz38peW3V1z+4DZbH7gIiIiACwpYCIiFSMLQXKYlBARESqxSmJymJQQETkFGof80DVEYMCIiJSLXYfKItBARERqRaDAmVx9gEREREBYEsBEamWKy69LIezyq/2ejPFgYbKYlBARESqVQL7ugAYFJhiUEBERKrFlgJlMSggIpVSd7O3+stP1RGDAiIiUi3OPlAWgwIiIlItBgXK4pREIiIiAsCWAiKqEdQ4Dc9RZVbDa688DjRUFoMCIiJSLXYfKIvdB0RERASALQVERKRibClQFoMCIlIpNY4TMGat/I56PWqvN1MC9o0LEEoVpJpg9wEREREBYEsBERGpGLsPlMWggIiIVItTEpXFoICIVEpOX7gr9ps7q0yuWBe2Y0uBsjimgIiIiACwpYCIiFSMLQXKYlBARApz1pQ3V8hXTp5yy6tUPlLq7k7gmAJlsfuAiIiIAMgMCoqKivDGG28gLCwMXl5eCA8PxzvvvIOSkr9jLSEEZsyYgeDgYHh5eaFnz57IyMhQvOBERETFCjzob7KCgvfeew9Lly7FRx99hJMnT2Lu3LmYN28ePvzwQ0OauXPnYsGCBfjoo49w6NAhBAYGok+fPrhx44bihSciopqtBPYFBOw+MCVrTMGBAwfw+OOPY8CAAQCApk2b4rPPPsPhw4cBlLYSLFy4ENOmTcPAgQMBAGvWrEFAQAA2bNiAkSNHKlx8InI9NW2qna35yr2uqvKhmkxWS0G3bt3wv//9D6dPnwYA/PTTT9i3bx/69+8PADh37hxycnIQGxtruEar1SImJgb79+8v9575+fnQ6/UmDyIiosooUeBBf5PVUjBp0iTk5eWhVatWcHNzQ3FxMWbNmoXBgwcDAHJycgAAAQEBJtcFBATg/Pnz5d4zMTERb7/9ti1lJyKiGo5TEpUlq6Vg48aNWLduHTZs2IAjR45gzZo1mD9/PtasWWOSTqPRmBwLIczOlZkyZQry8vIMj8zMTJkvgYiIiJQgq6XgX//6FyZPnoxnn30WANCmTRucP38eiYmJGD58OAIDAwGUthgEBQUZrsvNzTVrPSij1Wqh1WptLT9RtXNLrHB2EYhUg+sUKEtWS8Ht27dRq5bpJW5uboYpiWFhYQgMDERKSorh+YKCAqSmpqJLly4KFJeIiOhvnJKoLFktBY899hhmzZqF0NBQRERE4OjRo1iwYAFefPFFAKXdBvHx8Zg9ezaaN2+O5s2bY/bs2ahTpw6ee+45h7wAIiKquTimQFmygoIPP/wQb775JkaNGoXc3FwEBwdj5MiReOuttwxpJk6ciDt37mDUqFG4du0aOnbsiB07dsDX11fxwhMREZFyNEII4exCGNPr9dDpdPACUP7QRKLqjWMKSO30+jvQ6cYiLy8Pfn5+Dsqj9LtiCgBPO+5zF0Ai4NCyqgn3PiAiItVy1oqGixcvRlhYGDw9PREVFYXvvvuuwrR79uyBRqMxe/zyyy825u44DAqIiIhk2LhxI+Lj4zFt2jQcPXoU3bt3R79+/XDhwgWL1506dQrZ2dmGR/PmzauoxJXHoICIiFTLGbMPFixYgJdeegkvv/wyWrdujYULFyIkJARLliyxeJ2/vz8CAwMNDzc3NxtydywGBUREpFpKLXMsXW4/Pz+/3PwKCgqQlpZmspw/AMTGxla4nH+Zdu3aISgoCL169cLu3bttebkOx6CAiIhqvJCQEOh0OsMjMTGx3HSXL19GcXFxucv5ly31LxUUFIRly5YhKSkJmzdvRsuWLdGrVy/s3btX8ddhL1lTEomIiFyJUusUZGZmmsw+sLbSrpzl/Fu2bImWLVsajjt37ozMzEzMnz8fPXr0sK3gDsKWAiJSKXfJg8pXvetJqe4DPz8/k0dFQUGDBg3g5uZm1ipgaTn/8nTq1AlnzpypdPqqwqCAiIiokjw8PBAVFWWynD8ApKSkyFrO/+jRoyZ7BLmK6hc2EhFRjeGMZY4TEhIwdOhQREdHo3Pnzli2bBkuXLiAuLg4AKW7/2ZlZWHt2rUAgIULF6Jp06aIiIhAQUEB1q1bh6SkJCQlJdlRcsdgUEBETmb8Z6hIxnVy0jqSreV3FumffaXK7F7Bz47ljKBg0KBBuHLlCt555x1kZ2cjMjISycnJaNKkCQAgOzvbZM2CgoICTJgwAVlZWfDy8kJERAS2b9+O/v3721Fyx+Ayx0QupuYtc6y2L1UpVy+/tS9o5YOC0mWOX6uSZY5fBeBhx30KACwDlzkuwzEFREREBIDdB0REpGLcOllZDAqIyMlcscldDrWV31HlLargZ8diUKAsdh8QERERALYUEBGRihkvQGTr9fQ3BgVERKRa7D5QFoMCInIyV5/Sp3asU6o8BgVERKRa7D5QFoMCIiJSLXYfKIuzD4iIiAgAWwqIVMjSr62c/mNHrYEvl635ukr5HTUmorq9z45RAvv+22f3gSkGBUREpFocU6AsBgVERKRaxbCvH5xjCkwxKCBSHaWaf9XejOwq5a+KZYNd4T5UEzAoICIi1WJLgbIYFBARkWpxTIGyOCWRiIiIALClgIgcrnpPiXN91bv+2X2gLAYFRESkWuw+UBa7D4iIiAgAWwqIiEjFuKKhshgUEJGDVa8+bHOuvvWzK5ZJOcUANHZeT39j9wEREREBYEsBERGpGAcaKotBARGRLNV7ip/asPtAWQwKiIhItRgUKItjCoiIiAgAWwqIiEjFOKZAWQwKiGqs6t437qipgs6qJ1tfT/V+n9l9oCx2HxAREREAthQQEZGKCdjXBSCUKkg1waCAiIhUy97mf3YfmGJQQFRjVa++ZXPV7fXZ+nqqWz2QIzEoICIi1WJLgbIYFBARkWqVwL7ZB5ySaIqzD4iIiAgAWwqIiEjF2H2gLAYFRESkWgwKlMWggIiIVItjCpTFoIBIdRy1fK+zVLfXQ6ReDAqIiEi17P1Pny0FphgUEBGRajEoUBanJBIREREAthQQqVB163evbq+HqlIx7NvUiC0FphgUEBGRajEoUBa7D4iIiAgAWwqIiEjFONBQWQwKiIhItdh9oCx2HxAREREAthQQEZGKlcC+lgJ7rq2O2FJARESqVaLAwxaLFy9GWFgYPD09ERUVhe+++85i+tTUVERFRcHT0xPh4eFYunSpjTk7FoMCIiJSrWIFHnJt3LgR8fHxmDZtGo4ePYru3bujX79+uHDhQrnpz507h/79+6N79+44evQopk6dinHjxiEpKcmG3B1LI4RwqdYTvV4PnU4HL9i38xWRWt0SK5xdBCK76PV3oNONRV5eHvz8/ByUR+l3hQ/s+64QAG4CssrasWNHPPjgg1iyZInhXOvWrfHEE08gMTHRLP2kSZOwdetWnDx50nAuLi4OP/30Ew4cOGBH6ZXncmMKymIUl4pUiKqQXn/H2UUgskvZZ7gq/ucshv1BAVAaZBjTarXQarVm6QsKCpCWlobJkyebnI+NjcX+/fvLzePAgQOIjY01Ode3b1+sXLkShYWFqF27tu0vQGEuFxTcuHEDAHDXyeUgchadbqyzi0CkiBs3bkCn0znk3h4eHggMDEROTo7d9/Lx8UFISIjJuenTp2PGjBlmaS9fvozi4mIEBASYnA8ICKiwLDk5OeWmLyoqwuXLlxEUFGTfC1CQywUFwcHByMzMhBACoaGhyMzMdFjzU3Wg1+sREhLCerKC9VQ5rKfKYT1ZJoTAjRs3EBwc7LA8PD09ce7cORQUFNh9LyEENBrT9obyWgmMSdOXdw9r6cs772wuFxTUqlULjRs3NjTl+Pn58ZeuElhPlcN6qhzWU+WwnirmqBYCY56envD09HR4PsYaNGgANzc3s1aB3Nxcs9aAMuW1aOTm5sLd3R3169d3WFltwdkHREREleTh4YGoqCikpKSYnE9JSUGXLl3KvaZz585m6Xfs2IHo6GiXGk8AMCggIiKSJSEhAStWrMCnn36KkydPYvz48bhw4QLi4uIAAFOmTMGwYcMM6ePi4nD+/HkkJCTg5MmT+PTTT7Fy5UpMmDDBWS+hQi7XfVBGq9Vi+vTpVvt1ajrWU+WwniqH9VQ5rKeabdCgQbhy5QreeecdZGdnIzIyEsnJyWjSpAkAIDs722TNgrCwMCQnJ2P8+PH4+OOPERwcjEWLFuGpp55y1kuokMutU0BERETOwe4DIiIiAsCggIiIiP7CoICIiIgAMCggIiKivzAoICIiIgAuHBTI3au6OktMTET79u3h6+sLf39/PPHEEzh16pRJGiEEZsyYgeDgYHh5eaFnz57IyMhwUoldQ2JiIjQaDeLj4w3nWE+lsrKyMGTIENSvXx916tTBAw88gLS0NMPzrCegqKgIb7zxBsLCwuDl5YXw8HC88847KCkpMaRhPVG1I1zQ559/LmrXri2WL18uTpw4IV5//XXh7e0tzp8/7+yiOUXfvn3FqlWrxPHjx0V6eroYMGCACA0NFTdv3jSkmTNnjvD19RVJSUni2LFjYtCgQSIoKEjo9Xonltx5fvzxR9G0aVPRtm1b8frrrxvOs56EuHr1qmjSpIkYMWKE+OGHH8S5c+fEzp07xdmzZw1pWE9CzJw5U9SvX1989dVX4ty5c2LTpk3Cx8dHLFy40JCG9UTVjUsGBR06dBBxcXEm51q1aiUmT57spBK5ltzcXAFApKamCiGEKCkpEYGBgWLOnDmGNHfv3hU6nU4sXbrUWcV0mhs3bojmzZuLlJQUERMTYwgKWE+lJk2aJLp161bh86ynUgMGDBAvvviiybmBAweKIUOGCCFYT1Q9uVz3Qdle1dK9py3tVV3T5OXlAQDq1asHADh37hxycnJM6kyr1SImJqZG1tno0aMxYMAA9O7d2+Q866nU1q1bER0djaeffhr+/v5o164dli9fbnie9VSqW7du+N///ofTp08DAH766Sfs27cP/fv3B8B6ourJ5ZY5tmWv6ppECIGEhAR069YNkZGRAGCol/Lq7Pz581VeRmf6/PPPceTIERw6dMjsOdZTqd9++w1LlixBQkICpk6dih9//BHjxo2DVqvFsGHDWE9/mTRpEvLy8tCqVSu4ubmhuLgYs2bNwuDBgwHw80TVk8sFBWXk7lVdU4wZMwY///wz9u3bZ/ZcTa+zzMxMvP7669ixY4fF7VRrej2VlJQgOjoas2fPBgC0a9cOGRkZWLJkickmLjW9njZu3Ih169Zhw4YNiIiIQHp6OuLj4xEcHIzhw4cb0tX0eqLqxeW6D2zZq7qmGDt2LLZu3Yrdu3ejcePGhvOBgYEAUOPrLC0tDbm5uYiKioK7uzvc3d2RmpqKRYsWwd3d3VAXNb2egoKCcN9995mca926tWEDF36eSv3rX//C5MmT8eyzz6JNmzYYOnQoxo8fj8TERACsJ6qeXC4osGWv6upOCIExY8Zg8+bN2LVrF8LCwkyeDwsLQ2BgoEmdFRQUIDU1tUbVWa9evXDs2DGkp6cbHtHR0Xj++eeRnp6O8PBw1hOArl27mk1pPX36tGGHN36eSt2+fRu1apn+iXRzczNMSWQ9UbXkxEGOFSqbkrhy5Upx4sQJER8fL7y9vcXvv//u7KI5xWuvvSZ0Op3Ys2ePyM7ONjxu375tSDNnzhyh0+nE5s2bxbFjx8TgwYM5NUoIk9kHQrCehCidrunu7i5mzZolzpw5I9avXy/q1Kkj1q1bZ0jDehJi+PDholGjRoYpiZs3bxYNGjQQEydONKRhPVF145JBgRBCfPzxx6JJkybCw8NDPPjgg4bpdzURgHIfq1atMqQpKSkR06dPF4GBgUKr1YoePXqIY8eOOa/QLkIaFLCeSm3btk1ERkYKrVYrWrVqJZYtW2byPOtJCL1eL15//XURGhoqPD09RXh4uJg2bZrIz883pGE9UXWjEUIIZ7ZUEBERkWtwuTEFRERE5BwMCoiIiAgAgwIiIiL6C4MCIiIiAsCggIiIiP7CoICIiIgAMCggIiKivzAoICIiIgAMCoiIiOgvDAqIiIgIAIMCIiIi+sv/B3Eby3u2E0iuAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVIUlEQVR4nO3de1hU1f4/8PcIMtzH1OSiKGiKBpke0EIzNBNDux37ltmptNLkaBnyLdOstE6Kpd/idFEzzUtm9eugHjPqiCelTC1FLSXTSlIiCE1hxAsIrN8fxDSzgT2zZ++5bHi/nmeeh7332nutWTPCx3U1CCEEiIiIqNVr4+kCEBERkXdgUEBEREQAGBQQERHRHxgUEBEREQAGBURERPQHBgVEREQEgEEBERER/YFBAREREQFgUEBERER/YFCgI+vWrUNWVpani2Fx4cIF9OrVCwaDAYsWLZJNu3XrVhgMBhgMBpw6darR9WPHjmHMmDFo164dgoODMWLECOzbt6/JZ73//vvo168f/P39ERkZifT0dFRWVmryntT6+eefYTAYsGrVKk8XxWnnzp3Ds88+i169esFoNKJDhw4YNmwYfvjhB0uauXPnWj7Ppl7vv/++B9+BNoYOHSr7HktLSy1pq6qqsHDhQsTHxyMoKAhhYWFITU3Fzp07PfgOiJTz9XQByHHr1q3DoUOHkJ6e7umiAACeeeYZnDt3zm66yspKTJo0CZGRkfj1118bXT958iSGDBmCyy67DG+//Tb8/f2RmZmJoUOHYs+ePYiNjbWkfffdd3Hvvfdi4sSJeOWVV3D06FE8+eST+O6777BlyxZN319rVFlZiWHDhuHXX3/FzJkz0bdvX1RUVGDnzp04f/68Jd3EiRNx0003Nbp/0qRJ+Omnn5q8pjeLFy+G2Wy2OXf+/HncdNNNSEhIQHh4uOX8pEmT8O6772LWrFm44YYbcPr0aSxYsADJycn48ssvMXDgQHcXn8g5gnRj9OjRolu3bp4uhhBCiK+++kr4+fmJDz/8UAAQCxcubDbt1KlTRf/+/cXTTz8tAIiTJ0/aXH/iiSdE27Ztxc8//2w5V1FRITp27Cjuuusuy7mamhoREREhUlJSbO5/9913BQCRk5Oj0btzXmFhoQAgVq5c6emiOOWxxx4TQUFB4qefflJ8b2FhoTAYDOLee+/VrDw1NTXi4sWLmj1PrVWrVgkAYvny5ZZzFy9eFD4+Po3e96+//ioAiGnTprm7mEROY/eBlzh58iQefvhhREVFwWg04vLLL8fgwYOxdetWAPVNmR9//DGOHz9u04TZoLq6Gi+88AJ69+5tuf+BBx7AyZMnbfKJjo7GzTffjA0bNqBv377w9/dH9+7d8eqrrzpc1urqajz44IOYOnUqEhMTZdN+8cUXWLZsGZYvXw4fH58m02zYsAE33HADunXrZjkXGhqKMWPG4KOPPkJNTQ0AYPfu3SgpKcEDDzxgc/+dd96J4OBgbNiwweH3IPX9999j3LhxCAsLg9FoRNeuXXH//fejqqrKkubQoUO47bbbcNlll8Hf3x/9+vXD6tWr7T57woQJiI6ObnS+oQnemsFgwCOPPIKVK1ciNjYWAQEBSExMxO7duyGEwMKFCxETE4Pg4GDccMMN+PHHH23uHzp0KOLj47Fnzx4MGTIEgYGB6N69OxYsWIC6ujrZcp4/fx7Lly/HnXfeie7du9t9X1Jvv/02hBCYOHGi4nuBP7teXnrpJbzwwguIiYmB0WjEtm3bAACbNm1CUlISAgMDERISghEjRmDXrl2W+wsKCmAwGPDhhx9azuXn58NgMCAuLs4mr1tvvRUJCQmKy7hixQoEBwdj7NixlnNt2rRBmzZtYDKZbNKGhoaiTZs28Pf3V5wPkcd4OiqheiNHjhSXX365WLZsmdi+fbvYuHGjePbZZ8X7778vhBCioKBADB48WISHh4tdu3ZZXkIIUVtbK2666SYRFBQknnvuOZGbmyuWL18uOnfuLK688kpx/vx5Sz7dunUTnTt3Fl27dhVvv/22yMnJEX/729/s/m/f2uzZs0V0dLSorKy0/M+4qXvPnz8vevbsKZ544gkhhBBz5sxp1FJw/vx5YTAYLGmsvf766wKAOHLkiBBCiKVLlwoAoqCgoFHaxMREkZSUZHMOgEhOTrb7fg4cOCCCg4NFdHS0WLp0qfjvf/8r1q5dK+666y5hNpuFEEJ8//33IiQkRPTo0UOsWbNGfPzxx2LcuHECgHjxxRctz2qqpWD8+PFNtvA01Ie0zN26dRODBg0S69evFxs2bBC9evUS7du3F9OnTxe33Xab2Lx5s3j33XdFWFiY6Nu3r6irq7Pcn5ycLDp06CB69uwpli5dKnJzc8WUKVMEALF69WrZevj8888FADFv3jyRlpYm2rVrJ9q2bSsSEhLE5s2bZe+tra0VUVFR4oorrpBNJ6eh7jp37iyGDRsm/vWvf4ktW7aIwsJCS2tQSkqK2Lhxo/jggw9EQkKC8PPzE1988YXlGREREeLhhx+2HC9YsEAEBAQIAKK4uFgIIcSlS5dEaGiomDFjhqLyHT16VAAQEydObHTtscceE8HBwWLDhg2ioqJCFBYWinHjxonLLrtM/PDDD07WCJH7MSjwEsHBwSI9PV02TXPdB++9954AILKzs23O79mzRwAQixcvtpzr1q2bMBgM4sCBAzZpR4wYIUJDQ8W5c+dky7B//37Rtm1b8emnnwohhGxQ8L//+7+ie/fulqCkqaCguLhYABCZmZmN7l+3bp0AIHbu3CmEEGLevHkCgCgpKWmUNiUlRfTq1cvmnI+Pj7jhhhtk348QQtxwww2iXbt2oqysrNk0d999tzAajeLEiRM251NTU0VgYKAoLy8XQmgTFISHh4vKykrLuY0bNwoAol+/fjYBQFZWlgAgvv32W8u55ORkAUB89dVXNs+98sorxciRI5uvBPHn9yg0NFQMHjxYbNq0SWzevFkMGzZMGAwGy2felE8++aTZz9FRDXXXo0cPUV1dbTlfW1srIiMjxVVXXSVqa2st58+ePSs6deokBg0aZDl37733iu7du1uOb7zxRjFp0iRx2WWXWYKiL7/8UgAQW7ZsUVS+J598UgCwBOPW6urqxLPPPivatGkjAAgAomvXrmL//v2K8iDyNHYfeImBAwdi1apVeOGFF7B7925cunTJ4Xs3b96Mdu3a4ZZbbkFNTY3l1a9fP4SHh2P79u026ePi4nD11VfbnLvnnntgNpubHfEPADU1NXjwwQcxduxYjBw5UrZMX3/9NbKysvDmm28iICDA7nuQNqPLXWsurfR8TU0N/vvf/8rme/78eeTl5eGuu+7C5Zdf3my6zz77DMOHD0dUVJTN+QkTJuD8+fM2zdhqDRs2DEFBQZbjPn36AABSU1Nt3mPD+ePHj9vcHx4e3mhgW9++fRulk2roXvDz88Mnn3yCW265BaNHj8bmzZsRERGBf/zjH83eu2LFCvj6+mLChAn236Adt956K9q2bWs5PnLkCH799Vfcd999aNPmz19ZwcHBuOOOO7B7927LIMjhw4fj2LFjKCwsxMWLF7Fjxw7cdNNNGDZsGHJzcwHUz4QxGo247rrrHC5TTU0NVq9ejbi4OFx77bWNrs+bNw+LFi3C3LlzsW3bNvz73/9GbGwsRowYgf379ztbFURux6DAS3zwwQcYP348li9fjqSkJLRv3x7333+/zbSn5vz2228oLy+Hn58f2rZta/MqLS1tNAXQetS09Nzvv//ebD5ZWVk4duwY5syZg/LycpSXl1tGZ1+8eBHl5eWora0FADz44IMYM2YMEhMTLWkvXrwIADCbzTh79iwA4LLLLoPBYGgy39OnTwMA2rdvDwDo0KFDs2U8ffq0JZ0SZ86cQW1tLbp06SKb7vfff0dERESj85GRkc2WyVnS9+Hn5yd7vqFeGzTUkzWj0YgLFy7I5ttw36BBgxASEmI5HxgYiOTk5GYDxlOnTmHTpk0YPXp0k98tpaT13FC3zdV/XV0dzpw5AwC48cYbAdT/4d+xYwcuXbqEG264ATfeeKMlQNy6dSsGDx7sULDaICcnB6WlpU2Olzh8+DCeffZZPPfcc3jmmWcwdOhQ3Hrrrfj444/Rrl07ZGRkOJwPkadxSqKX6NixI7KyspCVlYUTJ05g06ZNmDlzJsrKyvDpp5/avbdDhw7NprP+BQ+gyUCj4VxTf1AaHDp0CBUVFejZs2eja8888wyeeeYZ7N+/H/369UNBQQEKCgpsBn016NGjB66++mocOHAAAQEBuOKKK3Dw4MFG6Q4ePIiAgADLoLerrrrKcv7KK6+0pKupqbEMFFSqffv28PHxwS+//CKbrkOHDigpKWl0vmGKZceOHZu919/f32bAYoOm1mvwpL59+zZ7TQhh8790a++88w6qq6udHmAoJW3xafhONlf/bdq0wWWXXQYA6NKlC3r16oWtW7ciOjoaiYmJaNeuHYYPH44pU6bgq6++wu7du/Hcc88pKtOKFSvg5+eH++67r9G1b775BkIIDBgwwOZ827ZtcfXVVyMvL09RXkSexJYCL9S1a1c88sgjjRbwae5/ezfffDN+//131NbWIjExsdHLep4/UD9K+5tvvrE5t27dOoSEhOAvf/lLs+WaOXMmtm3bZvN67733AABpaWnYtm0brrjiCgBolG7btm0YP348AGDjxo1Yvny55bl//etf8dlnn6GoqMhy7uzZs1i/fj1uvfVW+PrWx67XXHMNIiIiGi0M9K9//QuVlZUYM2ZMs2VvTkBAAJKTk/Hhhx/K/pEePnw4Pvvss0brLKxZswaBgYFNNik3iI6ORllZGX777TfLuerqavznP/9RXF5XioiIQFJSEr788kub+fkNXSzNvccVK1YgMjISqampLilXbGwsOnfujHXr1kEIYTl/7tw5ZGdnW2YkNLjxxhvx2WefITc3FyNGjAAA9OrVC127dsWzzz6LS5cuWVoUHFFaWoqcnBzcfvvtTQbNDa1Fu3fvtjlfVVWFffv22W2FIvIqHh7TQEKI8vJy0b9/f7Fw4ULx0Ucfie3bt4uFCxcKf39/cc8991jSNQxMW7x4sfjqq6/Enj17hBD1c7lTU1NF+/btxXPPPSc++eQTsXXrVrFq1Soxfvx4sX79esszpLMPPvnkE8vsA+tR9I6SG2go1dRAQyGEKCsrExEREeKqq64SGzZsEDk5OeL6668XISEh4vDhwzZp33nnHQFAPPzww2Lbtm1i2bJlol27dmLEiBGN8nN0oGHD7IPu3buLZcuWic8++0y89957Yty4cY1mH/Tq1UusXbvWZtbGSy+91Kg+rAcaHjt2TLRt21YMHTpUfPzxxyI7O1skJyeLmJiYJgcaTp061eZcc3W8bds2AUB8+OGHlnPJyckiLi6u0XtsbrCj1Jdffin8/PzEtddeKzZs2CA2btwohgwZItq2bWsZ8Glt9+7dAoB46qmnmn1mQznnzJkjm7fcd6lh9sGoUaPEv//9b/H//t//EwMGDGg0+0AIIbKzsy2D/fLy8iznH3jgAQFAXHbZZTYDFu1ZsGCB7MDE2tpaMWDAAOHv7y+effZZsXXrVpGdnS2GDh0qAIh33nnH4byIPI1BgRe4ePGiSEtLE3379hWhoaEiICBAxMbGijlz5tjMBjh9+rT4n//5H9GuXTthMBhs/qBcunRJLFq0SFx99dXC399fBAcHi969e4vJkyfbTInq1q2bGD16tPjXv/4l4uLihJ+fn4iOjhYvv/yyU2XXIigQQogff/xR3H777SI0NFQEBgaK4cOHi/z8/Cafs27dOtG3b1/h5+cnwsPDxbRp08TZs2cbpYODUxKFEOK7774Td955p+jQoYPw8/MTXbt2FRMmTLBZOOfgwYPilltuESaTSfj5+Ymrr7660SJFzS1elJOTI/r16ycCAgJE9+7dxeuvv97s7ANPBgVCCPHFF1+I5ORkERgYKAIDA8UNN9wgvvzyyybTTpo0SRgMBtnFjj766CMBQCxdulQ2X3vfpY0bN4prrrlG+Pv7i6CgIDF8+PAmy3XmzBnRpk0bERQUZDOLoSGwGDNmjGw5pHr16iWio6NtZn5IlZeXi9mzZ4s+ffqIwMBA0alTJzF06FCvWFCLSAmDEFbtcdTiRUdHIz4+Hps3b/Z0UaiVmDFjBt577z388MMPXMiHyMtxTAERudS2bdvwzDPPMCAg0gHOPiAil9qzZ4+ni0BEDmL3AREREQFg9wEREZHDlixZgr59+yI0NBShoaFISkrCJ598IntPXl4eEhISLBvQLV261E2lVY5BARERkYO6dOmCBQsWYO/evdi7dy9uuOEG3HbbbSgoKGgyfWFhIUaNGoUhQ4Zg//79eOqppzBt2jRkZ2e7ueSOcVn3weLFi7Fw4UKUlJQgLi4OWVlZGDJkiCuyIiIi8pj27dtj4cKFeOihhxpde/LJJ7Fp0yYcPnzYci4tLQ3ffPONpnumaMUlAw0/+OADpKenY/HixRg8eDDefPNNpKam4rvvvkPXrl1l762rq8Ovv/6KkJAQ2U1yiIjIOwkhcPbsWURGRja7PLYWLl68iOrqatXPEUI0+ntjNBphNBpl76utrcWHH36Ic+fOISkpqck0u3btQkpKis25kSNHYsWKFbh06ZLN5l9ewRWLHwwcOFCkpaXZnOvdu7eYOXOm3XuLioosq5HxxRdffPGl31dRUZEr/sQIIYS4cOGCCA8P16ScwcHBjc7JrcD57bffiqCgIOHj4yNMJpP4+OOPm03bs2dPMW/ePJtzDdt3//rrr1pVh2Y0bymorq5Gfn4+Zs6caXM+JSUFO3fubJS+qqrKZrMY8UdvRlHRSwgNdXwXMyIi8g5m8wVERc1otBmblqqrq1FaWoqiokKEhoY6/Ryz2YyoqBgUFRXZPEeulSA2NhYHDhxAeXk5srOzMX78eOTl5dls1GZN2grR8HfOG1vDNQ8KTp06hdraWoSFhdmcDwsLa3J3vszMzCZ3LAsNDWBQQESkY+74o9cwC8Cdz/Hz87Ns/paYmIg9e/bgn//8J958881GacPDwxv97SsrK4Ovr6/srrSe4rLFi5qKjJr6gsyaNctmv/H6qC0K4aZH0ZD6nHjf6g7bveMbq7H6Wenbs04vzUfuWTWSY2laZ5+rJWk+0jI7+yx7n4eSenP2Ofae1U5yXClznzQf61X47H120uNKmWv28pVL6y9zTavPVc290nqSrmQoV0Yty6/m+2V9r72VGGua+bmpey/KXJPS6neFvXoItvq5stlU9lm/nzoVz1GqBuq+N2rurSeEaHJ7dABISkrCRx99ZHNuy5YtSExM9L7xBHDBX6SOHTvCx8enychI2noAODaYg4iIqGnuDQqeeuoppKamIioqCmfPnsX777+P7du349NPPwVQ/x/d4uJirFmzBkD9TIPXX38dGRkZmDRpEnbt2oUVK1ZYtp33NpoPC/Xz80NCQgJyc3Ntzufm5mLQoEFaZ0dERK1ajQYvx/3222+47777EBsbi+HDh+Orr77Cp59+ihEjRgAASkpKcOLECUv6mJgY5OTkYPv27ejXrx/+8Y9/4NVXX8Udd9yh6l27ikvWKfjggw9w3333YenSpUhKSsKyZcvw1ltvoaCgAN26dZO912w2w2QyIQBAU71R58RyrYtLREQaMpsvwGR6FBUVFZr09zedR/3fioqK46oHGppM3VxaVj1xSYf22LFj8fvvv+P5559HSUkJ4uPjkZOTYzcgICIiUqYW6roParUqSIvgslFuU6ZMwZQpU1z1eCIiInjDQMOWhHsfEBEREQD3zYfTTJBhos2x/sYYaDk1kIiotWNLgZZ0FxQQERH9iUGBlth9QERERADYUkBERLpWC3UzCDj7wJrugwL9jTFgUxURkXY4JVFL7D4gIiIiAC2gpYCIiFozDjTUUosLCqy7E2x3VwQa7wDWTnIst9uZHOluZsEyx9K05ZJjJTvKye2ypmS3M2l57T3LOr20fHK7Jtp7b77N/NzUc6XPUrIjofW90vdeLnOv3I53TeXraBmaui73XOt8peWX+6yk98rtCClNa283RrnPTkruWfbqRW4XVCW7Scp9f6TPlt4r9+/F3u8NJbskyn3uSspv7/OQ+/cs91xp+nCrn8/ZyVNLDAq01OKCAiIiak0YFGiJYwqIiIgIAFsKiIhI1zj7QEstOigIMtxtc9x4umK5i3KW9sMp6d+X65O3l4+zlD7H2XztvTcl/7DlyqCkX1dJfWtZfiX5yj3X3mehpJ6UlEnuWWp+QWtVL/aeZa/e1NS5o9TUt5Lyq6knuedK/WL18wUFz1SL3QdaYvcBERERAWjhLQVERNTSsaVASwwKiIhIxxgUaKlVBQX6WxKZiIjIfVpVUEBERC0NWwq0xKCAiIh0jFMStcTZB0RERASglbcUcIxBA3tryMull1sD35FntVZa1ZOW9S33LHd9rvz+aEPu32hLw+4DLbXqoICIiPSOQYGWGBQQEZGOMSjQEoMCK7bbLm+UXFWyJfApybHc1qRK2GtaVVJG6+N2kmuldvK1fj/lkmtyz7K3La71c+1tAaxk+V5pmcqtfg6XuSZ9lr0tdJVs3Sv3fuxtxS23LW65TBmkz5bm00Ny/JtMGaT5WJdD+tnY23LaWhfJ8S9NpqrX0U6ZrCn9VSe3FbfcZ2fvuye3HbU0H3vbh1uT1rF13Uh/H8ltQ27vd4rcdtvW99ZJC0g6waCAiIh0jC0FWmJQQEREOsYpiVrilEQiIiICwJaCZgUZbrc5lp+uqGb7WneR9g1aH5crfJbc+5GOR5Arg5RcOeSu2SN3r1x57bH3uarZutdauYK0SsogdcRFZVDyXn9WkFbNZ6eE9H+h5QruVZJWzf921WzXriSttIzN3Vul4Jlq1ULd//bZUmCNQQEREekYxxRoid0HREREBIAtBUREpGtsKdASgwIHcUlkIiJvxNkHWmL3AREREQFgSwEREekauw+0xKDASbZLIrMroXXijn5NY72QOzEo0BKDAiIi0jEGBVrimAIiIiICwJYCIiLSNbYUaIlBgQY4XbG14i+TprFeyJ04JVFL7D4gIiIiAGwpICIiXasB4KPyfmrAoICIiHSMQYGWGBS4AMcYEBGRHjEoICIiHWNLgZYYFBARkY5x9oGWGBS4AZdEJiIiPWBQQEREOlYDdbPr2X1gjUEBERHpGIMCLXHxIiIi0rEaDV6Oy8zMxIABAxASEoJOnTrh9ttvx5EjR2Tv2b59OwwGQ6PX999/ryhvd2BLgZt553RFbnXrHNZb01gvrYf1Z906Pue8vDxMnToVAwYMQE1NDWbPno2UlBR89913CAoKkr33yJEjCA0NtRxffvnlri6uYgwKiIhIx2qhbgaBsns//fRTm+OVK1eiU6dOyM/Px/XXXy97b6dOndCuXTulBXQrdh8QEZGONUxJdPZVHxSYzWabV1VVlUO5V1RUAADat29vN23//v0RERGB4cOHY9u2bY6/RTdiUEBERK1eVFQUTCaT5ZWZmWn3HiEEMjIycN111yE+Pr7ZdBEREVi2bBmys7Oxfv16xMbGYvjw4fj888+1fAuaYPeBh3nHGIPW0ReoPdZb01gvrYc3fNY1AAwq7weKiops+vuNRqPdOx955BF8++232LFjh2y62NhYxMbGWo6TkpJQVFSERYsW2e1ycDcGBUREpGPaBAWhoaE2QYE9jz76KDZt2oTPP/8cXbp0UZzrtddei7Vr1yq+z9UYFBARETlICIFHH30UGzZswPbt2xETE+PUc/bv34+IiAiNS6cegwIiItIxbVoKHDV16lSsW7cO//73vxESEoLS0lIAgMlkQkBAAABg1qxZKC4uxpo1awAAWVlZiI6ORlxcHKqrq7F27VpkZ2cjOztbRbldg0GBl/GOMQZERHrh3qBgyZIlAIChQ4fanF+5ciUmTJgAACgpKcGJEycs16qrq/H444+juLgYAQEBiIuLw8cff4xRo0apKLdrGIQQwtOFsGY2m+sjLqj7mFsKBgVEpDdm8wWYTI+ioqJCUT+9sjzq/1ZUVIxAaGhbFc+5BJMp16Vl1RO2FBARkY7VQt1/Ibl1sjUGBV6O2y4TEclROy3SG6ZVeg8GBUREpGMMCrTEFQ2JiIgIgMKgwJEtI4UQmDt3LiIjIxEQEIChQ4eioKBA00ITERHVc+/WyS2doqCgYcvI3bt3Izc3FzU1NUhJScG5c+csaV566SW8/PLLeP3117Fnzx6Eh4djxIgROHv2rOaFb22CDBNtXur4Wr3cea8n+ML7yyxXPmn5XfXZuaue9PB5eDu574S0Tlt6fWuzIRLVU/QNsbdlpBACWVlZmD17NsaMGQMAWL16NcLCwrBu3TpMnjy50TOrqqpsdqMym83OvA8iIiJSSdWYAumWkYWFhSgtLUVKSooljdFoRHJyMnbu3NnkMzIzM212poqKilJTJCIialXYfaAlp4OCpraMbFjuMSwszCZtWFiY5ZrUrFmzUFFRYXkVFRU5WyQiImp1GBRoyekOJrktIw0G24UkhBCNzjUwGo0ObVFJjTVeEtl6x61gSepyybH1rl7SgM1fcnxRctzN6ufi5gvY6FnSr5u0TNakaaVlkJbROr00bTvJcaXVz9JfCNLnyqUNlxzbq0c51mml5Zd+lnLv1d4vuHZWP0vL21FyfEqmDNJ8lfwqaSc5lsunUnIsV09y+ZySXJPWk1y+0nqRlkmuzqX1Yp3W3r8zue+PtLxScnUqLVOlzDW5tFLW9XReJh15M6daChq2jNy2bZvNlpHh4fW/JKWtAmVlZY1aD4iIiNRjS4GWFAUFQgg88sgjWL9+PT777LNGW0bGxMQgPDwcubm5lnPV1dXIy8vDoEGDtCkxERGRBYMCLSnqPrC3ZaTBYEB6ejrmz5+Pnj17omfPnpg/fz4CAwNxzz33uOQN0J+CDPdafra/JPLPMtfsNcsesXPdmlxzoxpKnittJrf+2kt/Idh773LPlVLyLLm0Sp5jj1y9yb2fcjeVwd571fLzsSZXJmnXgxJyf3DsfYflriv5/pcrSKuGdX1fcFOepDVFQYEjW0bOmDEDFy5cwJQpU3DmzBlcc8012LJlC0JCQjQpMBER0Z9qAajZ7LdOq4K0CIqCAkd2WTYYDJg7dy7mzp3rbJmIiIgcxKBASy1xeSsiImo1aqBuyR0GBdYYFLRQjacrrlJwt72BN3J98o7ep/Ree8/S6rlqyuDs1DRv4a4yqsnH2e9eS6eH7xfpAYMCIiLSMbYUaIlBARER6RiDAi2p2vuAiIiIWg62FLQSQYYJNsf21zGwplXfuavGECjliT5sjnNwfz5a8VQ9KcnXU3XqDWM8aqHuf/tqZi60PAwKiIhIx2oANL23jmMYFFhj9wEREREBYEtBq2U9ZdF+V4KSZkFXNSF6qmnSG5ts5XjDZ+VKniizN373vIU3lJEtBVpiUEBERDrGoEBL7D4gIiIiAGwpICIiPRN16v6zz4YCGwwKqIklkZVMVyQi8qA6qJuRyLWLbDAoICIi/ar946XmfrLgmAIiIiICwJYCIiLSM7YUaIpBATVif4yBJ5Y2tbfkq1yZWtO2slptS6z0XnfxhmV1yatwTIGm2H1AREREANhSQEREesbuA00xKCAiIv1i94GmGBSQXe5bx0Du62iv/9gb+5e16v921Ra6ehhDIKWHMsrhmAjybgwKiIhIv+qgrguALQU2GBQQEZF+cUyBphgUkGLKtl12lpZNq3pvpm1p21G3Zqxz8m4MCoiISL840FBTDAqIiEi/2H2gKQYFRESkXwwKNMWggFRpPF1xlSSFv9XPnSXXfpMc97D6udxOWmnf7EWrn9tJrnWQHB+3+tlfcu0inNdRJt/jkmvSfLpY/Sz33gAg2OrnX2SuNXVcbvVzmOTa75Jj63JI60n6XOu09soktwy1tA5LJcftrH4+BXn+zfwMNK5TaZms00t/TZbL5ClNGy6TVlpP0rSVMvnaS2v9b036b0eatl0zeUivNXXd+ntr/VmxTV6vGBQQEZF+cUyBphgUEBGRfrH7QFPcEImIiIgAsKWANBZkmGBzfE68b3VUpeLJ0n5QaR+x9Niamv8KWPc1S/vGpWVSsvywkrRK/pmqWQ5abiyDtH7tjXuwJi2/NK2S92d9r737apr5ual71SwdrWR5buu09upUyffA3hgJR9n7rJR8j91EQF0XgNCqIC0DgwIiItIvdh9oit0HREREBIAtBeRiQYa7LT83nq4o9Y3Vz/aaTuWaq6X3lsuklXYByLGXVjpFzjpfe82s1tPTlDRX22vGl057syadJimXr/S9KfnVUW7nXut6tddc7eyUUaX3KUkvV2/SKZVyaZV8F6XPlfpJwbPsTe2UY/39sv5c3fjfb7YUaIpBARER6RenJGqK3QdEREQOyszMxIABAxASEoJOnTrh9ttvx5EjR+zel5eXh4SEBPj7+6N79+5YunSpG0qrHIMCIiLSr1oNXgrk5eVh6tSp2L17N3Jzc1FTU4OUlBScO3eu2XsKCwsxatQoDBkyBPv378dTTz2FadOmITs7W+GbdT2DEMKrJmSYzWaYTCYEADB4ujDkUo23XZbrKycivTCbL8BkehQVFRUIDQ11UR71fysqtgOh0tnCSp5TCZiGwumynjx5Ep06dUJeXh6uv/76JtM8+eST2LRpEw4fPmw5l5aWhm+++Qa7du1ytuguwZYCIiLSrzoNXqgPMqxfVVWOratSUVEBAGjfvn2zaXbt2oWUlBSbcyNHjsTevXtx6dIlx96nmzAoICKiVi8qKgomk8nyyszMtHuPEAIZGRm47rrrEB8f32y60tJShIXZbkAWFhaGmpoanDqlZvaH9jj7gIiI9KsO6qYV/tFSUFRUZNN9YDQa7d76yCOP4Ntvv8WOHTvspjUYbDvEG3rupec9jUEBeUzjbZetxxgoWcLWHrklbZUsd6vkua4kN/bCVWXS8rlaPcsb6t+V+Xrq/TnLt5mfXUyjKYmhoaGKxhQ8+uij2LRpEz7//HN06dJFNm14eDhKS23XligrK4Ovry86dJBu7e5Z7D4gIiJykBACjzzyCNavX4/PPvsMMTExdu9JSkpCbm6uzbktW7YgMTERbdu2dVVRncKggIiI9MvNUxKnTp2KtWvXYt26dQgJCUFpaSlKS0tx4cIFS5pZs2bh/vvvtxynpaXh+PHjyMjIwOHDh/H2229jxYoVePzxxxXlfenSJRQVFeHIkSM4ffq0soI7iN0H5DWsuxMaL4nsql3u1DTJeqo51xP5qll6WemzHOWuLgy9NePbo2RXRyXkdqV0ITcvc7xkyRIAwNChQ23Or1y5EhMmTAAAlJSU4MSJE5ZrMTExyMnJwfTp0/HGG28gMjISr776Ku644w67+VVWVuLdd9/Fe++9h6+//tpmVkSXLl2QkpKChx9+GAMGDFD2RprBoICIiMhBjizts2rVqkbnkpOTsW/fPkV5vfLKK5g3bx6io6Nx6623YubMmejcuTMCAgJw+vRpHDp0CF988QVGjBiBa6+9Fq+99hp69uypKA8pBgVERKRfLXjvg507d2Lbtm246qqrmrw+cOBAPPjgg1i6dClWrFiBvLw8BgVERNSKteBdEj/88EOH0hmNRkyZMkWTPBkUkFcKMkywOVY2xsBV0/SUPsfZvlsl/yylz9FySqXel51WUv9ydaGmTuXytVf/3jidlFo6BgVERKRfLbiloMEvv/yCJUuWYOfOnSgtLYXBYEBYWBgGDRqEtLQ0REVFaZYXgwIiItIvAXXjArxqS8DGduzYgdTUVERFRSElJQUpKSkQQqCsrAwbN27Ea6+9hk8++QSDBw/WJD8GBUREpF8tvKVg+vTpmDhxIl555ZVmr6enp2PPnj2a5MeggHSh8RgD6bbL7ugnddeaBmrGKiih5XoC3thPLdd/7448vYU3lokcdejQIaxdu7bZ65MnT8bSpUs1y48rGhIRkX5ptHWyt4qIiMDOnTubvb5r1y5ERERolh9bCoiISL9aePfB448/jrS0NOTn52PEiBEICwuDwWBAaWkpcnNzsXz5cmRlZWmWH4MCIiIiLzVlyhR06NABr7zyCt58803U1tZHMT4+PkhISMCaNWtw1113aZYfgwLSJXXbLlvz1Br4SrZzdhU16xRouX6+kvUQnE2r5FpL467vuIe2Tm7hLQUAMHbsWIwdOxaXLl3CqVOnAAAdO3Z0yQ6LrelfBhERtTQteJljqbZt22o6fqApDAqIiIi8GBcvIlJIfttlKSXNykqWpZV7lpIlbN01hUzJkrz2eGILai1/fXnjtD1XNeUr6QrSgRbefcDFi4iIiBxVB3V/2L28+8DdixdxnQIiItKvFr5OwaFDh5CWltbs9cmTJ+PQoUOa5acqKMjMzITBYEB6errlnBACc+fORWRkJAICAjB06FAUFBSoLScREVGro5vFi/bs2YNly5ahb9++NudfeuklvPzyy1i1ahV69eqFF154ASNGjMCRI0cQEhKiusBE9thfEtlZF12c3t3UlM9TffDe2PfvLC2XmZa715X5OJunhlr4mAJdLF5UWVmJv/3tb3jrrbfwwgsvWM4LIZCVlYXZs2djzJgxAIDVq1cjLCwM69atw+TJkxs9q6qqClVVVZZjs9nsTJGIiKg1auFTEt29eJFT3QdTp07F6NGjceONN9qcLywsRGlpKVJSUiznjEYjkpOTm23+yMzMhMlksry0nFpBRESkd2PHjsXu3btx/vx5FBcXo7i4GOfPn8fu3bs1DQgAJ1oK3n//fezbt6/JkY6lpaUAgLCwMJvzYWFhOH78eJPPmzVrFjIyMizHZrOZgQERETmmhXcfWPO6xYuKiorw2GOPYcuWLfD39282ncFgsDkWQjQ618BoNMJoNCopBpEi8ksiS2m5TgG1TFp9D7RcJ0IrOvyOt6KgAADOnDmD1atX44cffkBERATGjx+v6X+kFXUf5Ofno6ysDAkJCfD19YWvry/y8vLw6quvwtfX19JC0NBi0KCsrKxR6wERERHJi4yMxO+//w6gvov+yiuvxIsvvogffvgBb775Jq666ip8//33muWnKCgYPnw4Dh48iAMHDlheiYmJ+Nvf/oYDBw6ge/fuCA8PR25uruWe6upq5OXlYdCgQZoVmoiICECLX6egtLTUMrjwqaeeQu/evfHTTz9hy5Yt+PHHHzFkyBA888wzmuWnqPsgJCQE8fHxNueCgoLQoUMHy/n09HTMnz8fPXv2RM+ePTF//nwEBgbinnvu0azQRGrIL4kstwRssOSadEqf9Nhf5ppcM600HyVLJEspWdJWq2V17ZVXmo91PUnTKqlTOdLuTntlcrbbyF7a5rtd7d9rfSx9jrQugmWuKXlupeTY0e+PG//StvAVDa199dVXWL58OQIDAwHUd78//fTT+J//+R/N8tB8meMZM2bgwoULmDJlCs6cOYNrrrkGW7Zs4RoFRERETmgYk1dVVdXkQP6TJ09qlpfqoGD79u02xwaDAXPnzsXcuXPVPpqIiEheC1+nAKjvuvf19YXZbMbRo0cRFxdnuXbixAl07NhRs7y4IRIREelXC599MGfOHJvjhq6DBh999BGGDBmiWX4GIYTQ7GkaMJvNMJlMCADQ9CRGItfRbklkotbLbL4Ak+lRVFRUIDQ01EV51P+tqJgLhMoN1bD3nIuAaS5cWlY94S6JREREBIDdB0REpGetYEyBOzEoICIi/WrhYwrcjUEBkZXGSyKvsjpSMo9cmt7ZOf/28tVyGVolc/XlKC2TknrSqk7VrFMg5Ww5tHyu3HoISrZO1qqe+KfFlb788kskJia6ZIsAjikgIiL9qtXgpTOpqakoLi52ybMZzhERkX4JqBsX4FXz7xzjykmDDAqIZAQZJlh+PifWKrxbqx0W1XQRaNXsb68MSpqr1fzaUdNloKQMzpZRyees5eeq1fdJh7skkqYYFBARkX61goGGa9assTmuqanB+vXr0alTJ8u5+++/X5O8GBQQEZF+tYIpiStXrrQ5vnTpEv71r38hICAAQP32AgwKiIiIWoFt27bZHIeEhGDdunXo3r275nkxKCByUJDhXptj+0sia/XPS8t+XVf1ESvZxtgT3NU3rmb6n5Jn28vH2c/D3n2OTrt141iEVtB94E4MCoiISL8YFGiKQQEREelXKxhTIPXUU0+hffv2Lnk2gwIiIiIdmTVrlsuezaCAyEmNl0RWuo5Bc+wtc3xR5pqW+cpR0mcs3dfW3tK5WpXBOl9pX7mrllOWe45UsOTYXhnlyiStYyXfEbnr7qonFdh9oCkGBUREpF91UPeHXYfdB67EvQ+IiIgIAFsKiIhIz1rhQENXYlBApBH5dQzs9as7eg1wXT+up9YwcFW+lSru1apMcs8p1ygPQL6OlaydoJQX7I3QgscUxMTEwGAwKL4vPT0d06ZNcypPBgVEREReaNWqVU7dFx0d7XSeDAqIiEi/WnD3QXJystvz5EBDIhcJMky0vFzHV/JScl3pvY6mVVNme/k4S009uYqaPD1RXnv5eqhMtRq8dOTFF18EAHz77be4dOmS5s9nUEBERKTA559/jltuuQWRkZEwGAzYuHGjbPrt27fDYDA0en3//feK877uuusAAHPnzkXfvn3Rt29f3HPPPcjMzMTmzZvx22+/OfOWLNh9QERE+uWBgYbnzp3D1VdfjQceeAB33HGHw/cdOXIEoaGhluPLL79ccd6DBw8GAKxfvx4AcP78eRw6dAgHDx7E1q1bMWfOHIwaNQr/+Mc/FD8bYFBARER6ptGYArPZbHPaaDTCaDQ2eUtqaipSU1MVZ9WpUye0a9dO8X1yAgMDMXDgQAwcONByLiEhwemggN0HRG4QZLjX5qVOjczLXlpHr6nJR2n5lZTJWWrqyVXU5OmJ8trL10NlaljR0NnXH0FBVFQUTCaT5ZWZmal5Ufv374+IiAgMHz4c27Zt0/z5DXbv3u30vWwpICKiVq+oqMimab+5VgJnREREYNmyZUhISEBVVRXeeecdDB8+HNu3b8f111+vSR4lJSVo3749jEYj2rZt6/RzGBQQEZF+1UJdm/cfYwpCQ0NtggItxcbGIjY21nKclJSEoqIiLFq0SLOg4L777sNPP/2EO+64A4sWLXL6OQwKiIhIv3S6TsG1116LtWu12lkV2Lp1KwA4NaPBGscUEHmA9RoGytcxcHZtAf4fwPWU1LeWn423rFvA75qj9u/fj4iICMX3/fOf/wRQP5Ohrq5xRNO7d29V5eInR0RE+qVR94ESlZWV+PHHHy3HhYWFOHDgANq3b4+uXbti1qxZKC4uxpo1awAAWVlZiI6ORlxcHKqrq7F27VpkZ2cjOztbcd7x8fEAgOnTp+PHH39EcHAw4uLiEB8fj/j4eIwePVr5G7LCoICIiPTLA90He/fuxbBhwyzHGRkZAIDx48dj1apVKCkpwYkTJyzXq6ur8fjjj6O4uBgBAQGIi4vDxx9/jFGjRinOe/jw4QCAnJwcAPVTKQ8dOoRDhw4hNzdXdVBgEEIIVU/QmNlshslkQgAA5XtDEemf7e6KRPpjNl+AyfQoKioqXDZ4r+FvRcUoINT5wfYwXwJMOXBpWdVITExEQkKC5dW3b19VswvsYUsBERHplwe6D9wpKSkJ+fn5WLt2LS5cuAA/Pz/ExcVh0KBBuPvuuy0rHGqFQQEREelXCw8KXnvtNQBAbW0tCgoKsHfvXuzduxf/+c9/sHjxYtx3331YuXIlDAZt2tY5+4CIiMjL+fj4oG/fvnjwwQexePFiHD16FJ9++ilycnKwYsUKzfJhUEDkZbSbrujOrYc9wVPT/7TijWWyxwvLLPDnYENnXl41qk6ZESNG4IUXXsCbb76p2TMZFBARkX6p2fdA7Q6LXuDaa6+1mR6pFoMCIiLSrxYeFLzxxhv4+uuvUVVV1eT1kydPajobwUvaf4iIiEjq6aefhtlshq+vL6688kokJiYiMTERffr0wfnz5zFr1izN9k8AGBQQeT3puAL5dQxctWWtO7fndZSSMum9/N7CC8us070PHHXmzBn89NNPyM/Pt7yys7NRXl4OoH5ZYzUbIEkxKCAiIv2qhbqV7ry8+wAAevTogR49euCuu+6ynPvll19w6dIlxMTEaJoXgwIiIiKd6dKli0uey6CASGesuxPOCenWq/6S40oFT1bz60DuXmkZpGW8KPOcYJlnSZ8jZf1caVp7zeDW15XcKy3/RZnrSpvi5e6Vqzdp2nLJsfX7s/dc6ftp7l43/mlp4d0H7saggIiI9KsFdx/ExMQ4tVJheno6pk2b5lSeDAqIiIi80KpVq5y6Lzo62uk8GRQQEZF+1UHd//a9uPsgOTnZ7XkyKCDSsSDDvTbH6rZddtd0M2m/tFwZymXSKhkvoSStlvdKqaljuXul1+TqWErJ5+HovW6culgHdd0HXhwUnDhxAl27dnU4fXFxMTp37qwqT65oSERE5IUGDBiASZMm4euvv242TUVFBd566y3Ex8dj/fr1qvNkSwEREemX2oGCXjzQ8PDhw5g/fz5uuukmtG3bFomJiYiMjIS/vz/OnDmD7777DgUFBUhMTMTChQuRmpqqOk+DEMKr9ogym80wmUwIgLoWIaLWSF33AZE2zOYLMJkeRUVFBUJDQ12UR/3fioo+QKiPiufUAqbDcGlZ1bp48SJycnLwxRdf4Oeff8aFCxfQsWNH9O/fHyNHjkR8fLxmebGlgKgFabwk8ipJCrn590r6obWkZO6+3K8se3PslXC2T1yap1yZ7KWVUrIOgJJ1FuSea69OvWDZ4xY8pqCBv78/xowZgzFjxrg8L44pICIiIgBsKSAiIj1rwWMKmlNeXo7//Oc/KC4uhsFgQEREBEaOHInLLrtM9bPZUkBERPpVp8FLR1asWIGBAwdi9+7dqKurQ21tLXbv3o1rr70WK1asUP18DjQkakXkByIq6a+Xu9dd/dBqnqvkXnsNqtbX7Y3LULP3gdweBXLPUjKmwB7HGpfrBxr+3T0DDbtrMNDwmHcPNLQWGxuL/Px8BAfb7gty9uxZJCQk4OjRo6qez+4DIiLSL7X/09dZS4HBYEBlZWWjoKCystKpfRKkGBQQEZF+1QJQ096ts6Bg0aJFSE5ORnx8vGX1wl9++QUFBQX4v//7P9XPZ1BA1IrYbrss7Upw1RK8ruKu8mr53rQqs5ryu6PevGCqYgt18803IzU1FV9//TV+/fVXCCHQuXNnDBw4ED4+KvpR/sCggIiI9KuVdR8AgI+PD5KSkhqdz8/PR0JCgqpnK559UFxcjHvvvRcdOnRAYGAg+vXrh/z8fMt1IQTmzp2LyMhIBAQEYOjQoSgoKFBVSCIioibVavBqIf7617+qfoailoIzZ85g8ODBGDZsGD755BN06tQJP/30E9q1a2dJ89JLL+Hll1/GqlWr0KtXL7zwwgsYMWIEjhw5gpCQENUFJiIiaq3uuuuuJs8LIXD69GnVz1cUFLz44ouIiorCypUrLeeio6NtCpWVlYXZs2dblmNcvXo1wsLCsG7dOkyePFl1gYlIG42XRFazb4L1tDfptDwtly6Wu0/NMsfaT8tT/hw99MPLlVluCWcXamUDDbdu3Yp33nmn0ewDIQQ+//xz1c9X9Mlt2rQJI0eOxJ133om8vDx07twZU6ZMwaRJkwAAhYWFKC0tRUpKiuUeo9GI5ORk7Ny5s8mgoKqqClVVVZZjs9ns7HshIqLWppWNKRg6dCiCg4ORnJzc6Fr//v1VP1/RmIJjx45hyZIl6NmzJ/7zn/8gLS0N06ZNw5o1awAApaWlAICwsDCb+8LCwizXpDIzM2EymSyvqKgoZ94HERG1RnVQN55AZ0HB+vXrmwwIAODTTz9V/XxFQUFdXR3+8pe/YP78+ejfvz8mT56MSZMmYcmSJTbppAsoCCGaXVRh1qxZqKiosLyKiooUvgUiIiLSgqLug4iICFx55ZU25/r06YPs7GwAQHh4OID6FoOIiAhLmrKyskatBw2MRiOMRqOiQhOR9rQdYyBHya8drZYy1rK/Xm7ZYCVLPNvbulpNmZ3dorkVbp3sVQv9Ny8jI6PJ8waDAf7+/rjiiitw2223oX379qryURQUDB48GEeOHLE5d/ToUXTr1g0AEBMTg/DwcOTm5lr6Nqqrq5GXl4cXX3xRVUGJiIgaqUWrCAr279+Pffv2oba2FrGxsRBC4IcffoCPjw969+6NxYsX43//93+xY8eORv95V0JR98H06dOxe/duzJ8/Hz/++CPWrVuHZcuWYerUqQDqI5b09HTMnz8fGzZswKFDhzBhwgQEBgbinnvucbqQRERErdltt92GG2+8Eb/++ivy8/Oxb98+FBcXY8SIERg3bhyKi4tx/fXXY/r06aryUbxL4ubNmzFr1iz88MMPiImJQUZGhmX2AVA/fuC5557Dm2++iTNnzuCaa67BG2+8gfj4eIeez10SibxP464EJdMIvXHqoJpmcXu7DsqR6z5Qshyxmil/cu9d+lxpl4Zj9VS/S+Kj7tklMQAIVfHHwiwA0wXv3yWxc+fOyM3NbdQKUFBQgJSUFBQXF2Pfvn1ISUnBqVOnnM5H8Tfr5ptvxs0339zsdYPBgLlz52Lu3LlOF4qIiMghrWRMQUVFBcrKyhoFBSdPnrRM5W/Xrh2qq6tV5aN4mWMiIiJyr9tuuw0PPvggNmzYgF9++QXFxcXYsGEDHnroIdx+++0AgK+//hq9evVSlQ83RCIiIv1qJQMN33zzTUyfPh133303amrqu218fX0xfvx4vPLKKwCA3r17Y/lydbOGFI8pcDWOKSDyfufE+5Iz1v+/qJRcC5YcS/uprfvW7fXPW1+Xe440X2lae33lcmmjJcflCu61Prb3HGk9WpOWV3ost+y03Ocj/aykfdNKxhT83T1jCgwajCkQ3j+moEFlZSWOHTsGIQR69OjRaLljtdhSQEREpBPBwcHo27evy57PoICIiPRLQDddAGqVl5djxYoVOHz4MAwGA/r06YOHHnoIJpNJszw40JCIiHRLzbYHDS892Lt3L3r06IFXXnkFp0+fxqlTp/DKK6+gR48e2Ldvn2b5cEwBEal2TqyyOnLl0reuWrrYVesUqFlSWI6StR+0XBfCsa2T3Tmm4CQANTmYAVwO7x9TMGTIEFxxxRV466234OtbX9c1NTWYOHEijh07psm2yQC7D4iIiLze3r17bQICoH72wYwZM5CYmKhZPuw+ICIi3arT4KUHoaGhOHHiRKPzRUVFCAkJ0SwfthQQkWpBhgmWn123u6K3kFuOuKX/SnW0q8R9uyeqHReglzEFY8eOxUMPPYRFixZh0KBBMBgM2LFjB5544gmMGzdOs3xa+jeYiIhI9xYtWgSDwYD7778fNTU1EELAz88Pf//737FgwQLN8mFQQEREuqW2C0Av3Qd+fn745z//iczMTPz0008QQuCKK65AYGCgpvkwKCAiIt3yRPfB559/joULFyI/Px8lJSXYsGGDZf+B5uTl5SEjIwMFBQWIjIzEjBkzkJaWJntPRkaGw2V6+eWXHU4rh0EBEWkqyDDR5ljbMQau6qt2dvtjVz1H7b1alZGacu7cOVx99dV44IEHcMcdd9hNX1hYiFGjRmHSpElYu3YtvvzyS0yZMgWXX3657P379+93qDwGg3YT+BkUEBGRbtVBXUuBM90HqampSE1NdTj90qVL0bVrV2RlZQEA+vTpg71792LRokWyQcG2bducKJ06nJJIRES6pdWURLPZbPOqqqrSrIy7du1CSkqKzbmRI0di7969uHTpkmb5aIFBARERtXpRUVEwmUyWV2ZmpmbPLi0tRVhYmM25sLAw1NTU4NQp6U6UnsXuAyJyKW3HGLhqmePWTN91qtVAw6KiIptljo1Go5piNSLt92/YYUDL8QBaYFBARES6pVVQEBoa6rK9D8LDw1FaWmpzrqysDL6+vujQoYNL8nQWgwIiItItPaxTkJSUhI8++sjm3JYtW5CYmIi2bdu6oQSO45gCIiIiBSorK3HgwAEcOHAAQP2UwwMHDlj2Jpg1axbuv/9+S/q0tDQcP34cGRkZOHz4MN5++22sWLECjz/+uCeKL4stBUTkxVraryi596Pl1snOlkEpz49H8MTiRXv37sWwYcMsxw2LDI0fPx6rVq1CSUmJzeZFMTExyMnJwfTp0/HGG28gMjISr776qkNrHLibQTSMdvASDXtkBwDwruEXRKQFZQMNtfoj6i28PShQWqdNBwVm8wWYTI+ioqLCZf30DX8rDgBQs0fgWQD9AJeWVU/YfUBEREQAWl7bHBF5Pbn/5ar5H7C7KCm/lDdssyytUzXl8Pzn44kVDVsyBgVERKRbnhhT0JKx+4CIiIgAsKWAiIh0TA/rFOgJgwIicjM12/p6Ygqcq/rclbxXpff6y6SVu1cPYzpssftAW+w+ICIiIgBsKSAiIh1jS4G2GBQQEZFucUyBthgUEJGbqVmnwFXL+arp+5dLq6YMavr+LyrIV473jzFgS4G2OKaAiIiIALClgIiIdExAXReAV23+4wUYFBCRF9Gyedoblk/2vuZ2Zby//Ow+0Ba7D4iIiAgAWwqIiEjH2FKgLQYFRESkW5ySqC0GBUTkZp7op/b+vnFlXLUcdEurJ1KKQQEREekWuw+0xaCAiIh0i0GBtjj7gIiIiACwpYCIqAVQsw6DvscRcKChthgUEBGRbtVBXRcAgwJbDAqIiEi32FKgLQYFRES6p+8uAPIeDAqIiEi3OPtAWwwKiIhItxgUaItTEomIiAgAWwqIyO3kfu1I+8ZdteWxmufK3Wvvuc4uP6ykDPbyUVL/Svg287NrcaChthgUEBGRbrH7QFvsPiAiIiIAbCkgIiIdY0uBthgUEJGbecMSvGqeK3evvedq9X7U5OOOOnXfugkC6sYFCK0K0kKw+4CIiIgAsKWAiIh0jN0H2mJQQEREusUpidpiUEBELnVOLPd0EeC69Q7s5aOEvTK5an0BuTycLZP7/rSwpUBbHFNAREREANhSQEREOsaWAm0xKCAiHdFqmWB3kSuj0l+/csspK6FlV0pz97rvs+GYAm2x+4CIiIgAKAwKampq8PTTTyMmJgYBAQHo3r07nn/+edTV/RlrCSEwd+5cREZGIiAgAEOHDkVBQYHmBSciIqrV4EV/UhQUvPjii1i6dClef/11HD58GC+99BIWLlyI1157zZLmpZdewssvv4zXX38de/bsQXh4OEaMGIGzZ89qXngiImrd6qAuIGD3gS1FHVO7du3CbbfdhtGjRwMAoqOj8d5772Hv3r0A6lsJsrKyMHv2bIwZMwYAsHr1aoSFhWHdunWYPHmyxsUnIv1TMk7A2b5qd23JrCQfJVsaKyVXp+7YzpnD1fRKUUvBddddh//+9784evQoAOCbb77Bjh07MGrUKABAYWEhSktLkZKSYrnHaDQiOTkZO3fubPKZVVVVMJvNNi8iIiJH1Gnwoj8pCueefPJJVFRUoHfv3vDx8UFtbS3mzZuHcePGAQBKS0sBAGFhYTb3hYWF4fjx400+MzMzE88995wzZSciolaOUxK1pail4IMPPsDatWuxbt067Nu3D6tXr8aiRYuwevVqm3QGg8HmWAjR6FyDWbNmoaKiwvIqKipS+BaIiIhIC4paCp544gnMnDkTd999NwDgqquuwvHjx5GZmYnx48cjPDwcQH2LQUREhOW+srKyRq0HDYxGI4xGo7PlJyLdc8ecdnctcyzlqW2iPZGvZ7ZO5joF2lLUUnD+/Hm0aWN7i4+Pj2VKYkxMDMLDw5Gbm2u5Xl1djby8PAwaNEiD4hIREf2JUxK1pail4JZbbsG8efPQtWtXxMXFYf/+/Xj55Zfx4IMPAqjvNkhPT8f8+fPRs2dP9OzZE/Pnz0dgYCDuuecel7wBIiJqvTimQFuKgoLXXnsNzzzzDKZMmYKysjJERkZi8uTJePbZZy1pZsyYgQsXLmDKlCk4c+YMrrnmGmzZsgUhISGaF56IWgK5KXFa7QyodLc/JcsTyy0/7Oxz1Objqjp1tEyckqhXBiGE8HQhrJnNZphMJgQAaHpoIhHpif2tk90RFNjDoKDptFKOlclsvgCT6e+oqKhAaGionWc6p+FvxSwA/iqecxFAJuDSsuoJ9z4gIiLd8tSKhosXL0ZMTAz8/f2RkJCAL774otm027dvh8FgaPT6/vvvnczddRgUEBERKfDBBx8gPT0ds2fPxv79+zFkyBCkpqbixIkTsvcdOXIEJSUlllfPnj3dVGLHMSggIlKkRvKSu+YreTn6HG+l5L27hydmH7z88st46KGHMHHiRPTp0wdZWVmIiorCkiVLZO/r1KkTwsPDLS8fHx8ncnctBgVERKRbWi1zLF1uv6qqqsn8qqurkZ+fb7OcPwCkpKQ0u5x/g/79+yMiIgLDhw/Htm3bnHm7LseggIiIWr2oqCiYTCbLKzMzs8l0p06dQm1tbZPL+Tcs9S8VERGBZcuWITs7G+vXr0dsbCyGDx+Ozz//XPP3oRbnjRARkW5ptU5BUVGRzewDeyvtKlnOPzY2FrGxsZbjpKQkFBUVYdGiRbj++uudK7iLMCggIg+T63/2xuWI3fVcNfXiDXXqHlotcxwaGurQlMSOHTvCx8enUauA3HL+Tbn22muxdu1aJUV1C3YfEBEROcjPzw8JCQk2y/kDQG5urqLl/Pfv32+zR5C3YEsBERHplieWOc7IyMB9992HxMREJCUlYdmyZThx4gTS0tIA1O/+W1xcjDVr1gAAsrKyEB0djbi4OFRXV2Pt2rXIzs5Gdna2ipK7BoMCIiLNeGo3RiX0UEbHeSIoGDt2LH7//Xc8//zzKCkpQXx8PHJyctCtWzcAQElJic2aBdXV1Xj88cdRXFyMgIAAxMXF4eOPP8aoUaNUlNw1uMwxEbmU/WWOWxI9/MF1fRnrlzl+1C3LHD8MwE/Fc6oBLAOXOW7AMQVEREQEgN0HRESkY9w6WVsMCojIzbT6taOk2VtpnnI7EirJR1pGuf38Lip4lvQ5cvcq2SVRytl73fenhUGBtth9QERERADYUkBERDqm1eJFVI9BARER6Ra7D7TFoICI3MwT0/Rctdyw0rTSvn9nn2XvOWrudfa5zqQjb8OggIiIdIvdB9piUEBERLrF7gNtcfYBERERAWBLARG5ndyvHSXz4u31W6v59Sb3bLn1A+ytU6DmvWu1ToH03ppmfm6Ko+/dfX9a6qDuf/vsPrDFoICIiHSLYwq0xaCAiIh0qxbq+sE5psAWgwIicjE1u/I524yvNB+t2MtTyfLJSqYVqlm6WEn3h1yZlHRDkLdiUEBERLrFlgJtMSggIiLd4pgCbXFKIhEREQFgSwERuZyrpuVp2W+tZtyDkudo9StXq/JKn6XVc9y7dTK7D7TDoICIiHSL3QfaYvcBERERAWBLARER6RhXNNQWgwIicjMttyKWI9dX7qq1E7R8b2p+Pcu9d1eNxfDMOgW1AAwq76c/sfuAiIiIALClgIiIdIwDDbXFoICI3MxduyQqoWTnQ7lyKOmWULOksNxOh2ruVVqnnl/OmN0H2mJQQEREusWgQFscU0BEREQA2FJAREQ6xjEF2mJQQEQe5qopis729SvNU6upj0rSqpnOKLftspp68twyx+w+0A67D4iIiAgAWwqIiEjHBNR1AQitCtJCMCggIiLdUtv8z+4DWwwKiMjN3LXMsSueY+/Zrhy74G1p5e71/PoF5BwGBUREpFtsKdAWgwIiItKtOqibfcApibYYFBCRF1PTHK9lvnJlkEurt/JrtXMj/7ToFT85IiLSLXYfaItBARER6RaDAm0xKCAiIt3imAJtMSggIg+T69P21NQ2T0yb1JJ0KWOt0jr6Xr2xTsgRDAqIiEi31P5Pny0FthgUEBGRbjEo0BY3RCIiIiIAbCkgIpezN1ff2e151fRbe2r9ADVlcPa9u/K9avV5OK8W6jY1YkuBLQYFRESkWwwKtMXuAyIiIgLAlgIiItIxDjTUFoMCInIxLfua9bCVsqs4W2Z3bRvtGew+0Ba7D4iIiAgAWwqIiEjH6qCupUDNvS0RWwqIyM18ZV5q0irJU8l1uTLYe8nlo6bM/pKXlKPX7D1HSZnUfD7Oq9Pg5YzFixcjJiYG/v7+SEhIwBdffCGbPi8vDwkJCfD390f37t2xdOlSJ3N2LQYFRESkW7UavJT64IMPkJ6ejtmzZ2P//v0YMmQIUlNTceLEiSbTFxYWYtSoURgyZAj279+Pp556CtOmTUN2drYTubuWQQjhVa0nZrMZJpMJAVC38xUReYdzYrnkjNz/IqUD15SklWNvAR+562r+16vm/ciVSfq/eummRv4OXpOytzmSY/VkNl+AyfR3VFRUIDQ01M4zndPwtyIY6v5WCACVgKKyXnPNNfjLX/6CJUuWWM716dMHt99+OzIzMxulf/LJJ7Fp0yYcPnzYci4tLQ3ffPMNdu3apaL02vO6MQUNMYpXRSpE5DSz+YLkDIMC59JaX5c2eldJjuscvCYlTSvleFAA/Pn73JVqoT4oAOqDDGtGoxFGo7FR+urqauTn52PmzJk251NSUrBz584m89i1axdSUlJszo0cORIrVqzApUuX0LZtW+ffgMa8Lig4e/YsAGWbeRKR9zKZHvV0EchDzp49C5PJ5JJn+/n5ITw8HKWlpaqfFRwcjKioKJtzc+bMwdy5cxulPXXqFGpraxEWFmZzPiwsrNmylJaWNpm+pqYGp06dQkREhLo3oCGvCwoiIyNRVFQEIQS6du2KoqIilzU/tQRmsxlRUVGsJztYT45hPTmG9SRPCIGzZ88iMjLSZXn4+/ujsLAQ1dXVqp8lhIDBYNve0FQrgTVp+qaeYS99U+c9zeuCgjZt2qBLly6WppzQ0FD+o3MA68kxrCfHsJ4cw3pqnqtaCKz5+/vD39+RWRPa6dixI3x8fBq1CpSVlTVqDWjQVItGWVkZfH190aFDB5eV1RmcfUBEROQgPz8/JCQkIDc31+Z8bm4uBg0a1OQ9SUlJjdJv2bIFiYmJXjWeAGBQQEREpEhGRgaWL1+Ot99+G4cPH8b06dNx4sQJpKWlAQBmzZqF+++/35I+LS0Nx48fR0ZGBg4fPoy3334bK1aswOOPP+6pt9Asr+s+aGA0GjFnzhy7/TqtHevJMawnx7CeHMN6at3Gjh2L33//Hc8//zxKSkoQHx+PnJwcdOvWDQBQUlJis2ZBTEwMcnJyMH36dLzxxhuIjIzEq6++ijvuuMNTb6FZXrdOAREREXkGuw+IiIgIAIMCIiIi+gODAiIiIgLAoICIiIj+wKCAiIiIAHhxUKB0r+qWLDMzEwMGDEBISAg6deqE22+/HUeOHLFJI4TA3LlzERkZiYCAAAwdOhQFBQUeKrF3yMzMhMFgQHp6uuUc66lecXEx7r33XnTo0AGBgYHo168f8vPzLddZT0BNTQ2efvppxMTEICAgAN27d8fzzz+Puro/NxRiPVGLI7zQ+++/L9q2bSveeust8d1334nHHntMBAUFiePHj3u6aB4xcuRIsXLlSnHo0CFx4MABMXr0aNG1a1dRWVlpSbNgwQIREhIisrOzxcGDB8XYsWNFRESEMJvNHiy553z99dciOjpa9O3bVzz22GOW86wnIU6fPi26desmJkyYIL766itRWFgotm7dKn788UdLGtaTEC+88ILo0KGD2Lx5sygsLBQffvihCA4OFllZWZY0rCdqabwyKBg4cKBIS0uzOde7d28xc+ZMD5XIu5SVlQkAIi8vTwghRF1dnQgPDxcLFiywpLl48aIwmUxi6dKlniqmx5w9e1b07NlT5ObmiuTkZEtQwHqq9+STT4rrrruu2eusp3qjR48WDz74oM25MWPGiHvvvVcIwXqilsnrug8a9qqW7j0tt1d1a1NRUQEAaN++PQCgsLAQpaWlNnVmNBqRnJzcKuts6tSpGD16NG688Uab86yneps2bUJiYiLuvPNOdOrUCf3798dbb71luc56qnfdddfhv//9L44ePQoA+Oabb7Bjxw6MGjUKAOuJWiavW+bYmb2qWxMhBDIyMnDdddchPj4eACz10lSdHT9+3O1l9KT3338f+/btw549expdYz3VO3bsGJYsWYKMjAw89dRT+PrrrzFt2jQYjUbcf//9rKc/PPnkk6ioqEDv3r3h4+OD2tpazJs3D+PGjQPA7xO1TF4XFDRQuld1a/HII4/g22+/xY4dOxpda+11VlRUhMceewxbtmyR3U61tddTXV0dEhMTMX/+fABA//79UVBQgCVLlths4tLa6+mDDz7A2rVrsW7dOsTFxeHAgQNIT09HZGQkxo8fb0nX2uuJWhav6z5wZq/q1uLRRx/Fpk2bsG3bNnTp0sVyPjw8HABafZ3l5+ejrKwMCQkJ8PX1ha+vL/Ly8vDqq6/C19fXUhetvZ4iIiJw5ZVX2pzr06ePZQMXfp/qPfHEE5g5cybuvvtuXHXVVbjvvvswffp0ZGZmAmA9UcvkdUGBM3tVt3RCCDzyyCNYv349PvvsM8TExNhcj4mJQXh4uE2dVVdXIy8vr1XV2fDhw3Hw4EEcOHDA8kpMTMTf/vY3HDhwAN27d2c9ARg8eHCjKa1Hjx617PDG71O98+fPo00b21+RPj4+limJrCdqkTw4yLFZDVMSV6xYIb777juRnp4ugoKCxM8//+zponnE3//+d2EymcT27dtFSUmJ5XX+/HlLmgULFgiTySTWr18vDh48KMaNG8epUULYzD4QgvUkRP10TV9fXzFv3jzxww8/iHfffVcEBgaKtWvXWtKwnoQYP3686Ny5s2VK4vr160XHjh3FjBkzLGlYT9TSeGVQIIQQb7zxhujWrZvw8/MTf/nLXyzT71ojAE2+Vq5caUlTV1cn5syZI8LDw4XRaBTXX3+9OHjwoOcK7SWkQQHrqd5HH30k4uPjhdFoFL179xbLli2zuc56EsJsNovHHntMdO3aVfj7+4vu3buL2bNni6qqKksa1hO1NAYhhPBkSwURERF5B68bU0BERESewaCAiIiIADAoICIioj8wKCAiIiIADAqIiIjoDwwKiIiICACDAiIiIvoDgwIiIiICwKCAiIiI/sCggIiIiAAwKCAiIqI//H98ZzEktk43qgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGxCAYAAADyL8XzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVIklEQVR4nO3deVxU9f4/8NcEMiDL4MqiKGiKCpoGrmVYJobWtau3zMqlVa5LId+uW4vWTTH1mlmpWeYSaf28WFmpiVfFLC1FrVwyS1MkCDVhXEHg8/uDmGbOwBnOnDPDHHg9H495POac8znn85kzw8ybz2oQQggQERFRvXdDbReAiIiIPAODAiIiIgLAoICIiIj+xKCAiIiIADAoICIioj8xKCAiIiIADAqIiIjoTwwKiIiICACDAiIiIvoTgwIPtWbNGixcuLC2i2Fx9epVtG/fHgaDAfPnz7c7/tNPP2HYsGFo1KgRGjZsiJ49e2LDhg126WbOnAmDwWD38PX1rTLfDz74AF27doWvry/Cw8ORkpKCS5cuaf76nPHrr7/CYDBg5cqVtV0Up5SUlOCFF15AVFQUfHx80Lp1a0ybNg1Xr161S1vT91evzpw5g5SUFCQkJCA4ONjh+7p161b07t0bDRs2RNOmTTFmzBgUFBTYpbt+/TpefPFFREZGwmg0okOHDnj99ddd+EqI1GFQ4KE8LSh4/vnncfny5SqP/frrr+jduzeOHTuGpUuXYt26dWjWrBnuvfdeZGRkVHnO5s2bsXv3bstj586ddmnef/99jBgxAt27d8emTZswY8YMrFy5EkOHDtX0tdVXI0aMwLx58/Dkk09i48aNePzxx7FgwQIMHz7cJp0z76/e/Pzzz3j//ffh4+ODQYMGyabNyspCUlISQkJC8Mknn+C1117D1q1b0b9/fxQXF9ukHTduHNLS0jB+/Hh88cUX+Pvf/46nn34as2fPduXLIXKeII80ePBg0bp169ouhhBCiG+++Ub4+PiIdevWCQBi3rx5NsfHjh0rfH19xZkzZyz7SktLRceOHUVERIQoKyuz7J8xY4YAIM6ePSubZ2lpqQgLCxOJiYk2+99//30BQGzcuFGDV6bOyZMnBQCxYsWK2i6KYrt37xYAxH/+8x+b/bNnzxYAxJYtWyz7lLy/apSWlopr165pci2lrF/D3r17Zd/X7t27i06dOonr169b9n311VcCgFi8eLFl36FDh4TBYBCzZ8+2Of+JJ54Qfn5+4vz589q+CCINsKagFpw9exZPPvkkIiIiYDQa0axZM9xyyy3YunUrAKBfv374/PPPcerUKZsq9kolJSV4+eWX0aFDB8v5jzzyCM6ePWuTT2RkJO6++2589NFH6NKlC3x9fdGmTRssWrSoxmUtKSnBo48+ivHjxyM+Pr7KNF999RVuuukmtGjRwrLPy8sLSUlJyMnJwbfffqvk9gAA9uzZg7y8PDzyyCM2+++77z4EBATgo48+UnzNSj/++CNGjBiBkJAQGI1GtGrVCqNGjbL5L+/QoUMYMmQIGjVqBF9fX3Tt2hWrVq1yeO0xY8YgMjLSbn9ls4k1g8GACRMmYMWKFYiOjoafnx/i4+OxZ88eCCEwb948REVFISAgAHfccQd+/vlnm/P79euH2NhY7N27F3379kXDhg3Rpk0bzJkzB+Xl5bLl/OqrrwDA7r/iu+++GwBsagBc8f5WNr3MnTsXL7/8MqKiomA0GrF9+3YAwIYNGyzV84GBgRgwYAB2795tOf/w4cMwGAxYt26dZV92djYMBgNiYmJs8vrb3/6GuLg42fLccEPNvgpzc3Oxd+9ejBw5Et7e3pb9ffr0Qfv27W0+lx9//DGEEHaf4UceeQRXr17F5s2ba5QnkTsxKKgFI0eOxMcff4wXXngBW7ZswTvvvIM777wT58+fBwAsXrwYt9xyC0JDQ22q2AGgvLwcQ4YMwZw5c/Dggw/i888/x5w5c5CZmYl+/frZtQcfPHgQKSkpmDRpEj766CP06dMHTz/9dJX9Aqry0ksv4fLly/j3v/9dbZqSkhIYjUa7/ZX7vv/+e7tjnTt3hpeXF0JCQjBq1CicPn3a5vihQ4cAAF26dLHZ36BBA3To0MFyvJLBYEC/fv0cvp7vvvsO3bt3x549e/DSSy9h06ZNSEtLQ3FxMUpKSgAAx44dQ58+fXD48GEsWrQI69evR6dOnTBmzBjMnTvXYR5KfPbZZ3jnnXcwZ84crF27FhcvXsTgwYPxf//3f/jqq6/wxhtvYNmyZThy5AiGDRsGIVnUND8/Hw899BAefvhhbNiwAUlJSZg2bRrS09Nl8618rdL3rar3zJn3t6YWLVqEbdu2Yf78+di0aRM6dOiANWvWYMiQIQgKCsLatWuxfPlyXLhwAf369cOuXbsAADExMQgLC7ME0kBFO7+fnx+OHDmC3377DQBQWlqKrKws3HnnnU6X0Vp1n8vKfdafy0OHDqFZs2YIDQ21S2d9LSKPUss1FfVSQECASElJkU1TXfPB2rVrBQCRkZFhs7+yytO6+rJ169bCYDCIgwcP2qQdMGCACAoKEpcvX5Ytw4EDB0SDBg3E5s2bhRB/VZdLmw/uvfdeERwcLC5evGizv2/fvgKATfXp6tWrxaxZs8TGjRvFtm3bxJw5c0Tjxo1FSEiITfX0rFmzBACRl5dnV67ExETRvn17m31eXl7ijjvukH09Qghxxx13iODgYFFQUFBtmgceeEAYjUZx+vRpm/1JSUmiYcOGorCwUAhRdfPB6NGjq3zfKptNrAEQoaGh4tKlS5Z9H3/8sQAgunbtKsrLyy37Fy5cKACI77//3rIvISFBABDffPONzXU7deokBg4cWP1NsMrnvffes9m/fPlyAcDm/ip5f2uq8t61bdtWlJSUWPaXlZWJ8PBw0blzZ5sq/YsXL4rmzZuLPn36WPY9/PDDok2bNpbtO++8UzzxxBOiUaNGYtWqVUKIv6r1rZtDHJFrPqhsvtq9e7fdsSeffFL4+PhYtgcMGCCio6OrzMPHx0c8+eSTNS4TkbuwpqAW9OjRAytXrsTLL7+MPXv24Pr16zU+97PPPkNwcDDuuecelJaWWh5du3ZFaGgoduzYYZM+JiYGN910k82+Bx98EGazGfv37682n9LSUjz66KMYPnw4Bg4cKFumCRMmoKioCKNGjcKJEyfw+++/4/nnn8fXX38NwLZqduTIkZg+fTqSkpJw++23Y8qUKdi0aRPOnj1b5X/h0ir36vaXlpbif//7n2w5r1y5gqysLNx///1o1qxZtem2bduG/v37IyIiwmb/mDFjcOXKFZtqbLVuv/12+Pv7W7Y7duwIAEhKSrJ5jZX7T506ZXN+aGgoevToYbOvS5cudumkkpKScOONN2LKlCnIzMxEYWEhNm/ejOnTp8PLy8vmPVPy/ir1t7/9DQ0aNLBsHzt2DL/99htGjhxpc92AgAAMGzYMe/bswZUrVwAA/fv3x4kTJ3Dy5Elcu3YNu3btwl133YXbb78dmZmZACpqD4xGI2699Vany1iVmn4uq0vn6BhRbWFQUAs+/PBDjB49Gu+88w569+6Nxo0bY9SoUcjPz3d47u+//47CwkL4+PigQYMGNo/8/HycO3fOJr206tJ6X2VzRVUWLlyIEydOYMaMGSgsLERhYSHMZjMA4Nq1aygsLERZWRmAii/nFStWYOfOnWjbti1CQ0Oxfv16S5ODdVt0VXr06IH27dtjz549ln1NmjSptox//PEHGjduLHvNqly4cAFlZWVo2bKlbLrz588jLCzMbn94eHi1ZXKW9HX4+PjI7r927ZrN/sr7ZM1oNFY5rFB6vU2bNqFVq1ZITExEo0aN8I9//APTp09Ho0aNbN4zte+vHOl9rry31d3/8vJyXLhwAQAsTQJbt27Frl27cP36ddxxxx248847LQHi1q1bccstt8DPz8/pMlpT8rls0qRJlekuX76MkpISpz7DRK7GoKAWNG3aFAsXLsSvv/6KU6dOIS0tDevXr8eYMWNqdG6TJk2wd+/eKh+LFy+2SV9VoFG5r6oflEqHDh1CUVER2rVrh0aNGqFRo0aWGofnn38ejRo1wg8//GBJP3r0aOTn5+PIkSM4fvw4Dh8+DKDiv6G+ffs6fF1CCJv/DDt37gwANnkAFTUCP/74I2JjYx1eU6px48bw8vLCmTNnZNM1adIEeXl5dvsr26mbNm1a7bm+vr52w9IA2AVrnuDGG2/E7t27cebMGXz//fcoKCjAfffdh3PnzuG2226zSav2/a2O9L/lys9kdff/hhtuQKNGjQAALVu2RPv27bF161ZkZmYiPj4ewcHB6N+/P/Ly8vDNN99gz549mvUnAGD53Ek/l5X7rD+XnTt3xtmzZ+3+BivPdeYzTORqDApqWatWrTBhwgQMGDDApjq/uv/27r77bpw/fx5lZWWIj4+3e0RHR9ukP3z4ML777jubfWvWrEFgYCBuvvnmass1depUbN++3eaxdu1aAEBycjK2b9+OG2+80eYcb29vdOzYETfeeCOKioqwbNkyDBkyBK1bt5a9B3v27MHx48fRq1cvy76ePXsiLCzMbgKZ//73v7h06ZJTcxX4+fkhISEB69atk/2R7t+/P7Zt22YJAiqtXr0aDRs2tCmnVGRkJAoKCvD7779b9pWUlOCLL75QXF53adGiBTp37oyGDRti3rx58Pf3x2OPPWaXztn3V4no6Gi0aNECa9asselUefnyZWRkZFhGJFS68847sW3bNmRmZmLAgAEAgPbt26NVq1Z44YUXcP36dU2DghYtWqBHjx5IT0+31JQBFZ/hY8eO2XwuhwwZAoPBYDdqZeXKlfDz88Ndd92lWbmINFPbnRrqm8LCQtGtWzcxb9488emnn4odO3aIefPmCV9fX/Hggw9a0lV2TFu8eLH45ptvxN69e4UQFWO5k5KSROPGjcWLL74oNm3aJLZu3SpWrlwpRo8eLdavX2+5RuvWrUWLFi1Eq1atxLvvvis2bdokHnroIQFAvPLKK4rLXl1Hw99//11MnjxZfPLJJ2Lbtm1i8eLFIjIyUrRp00bk5ubapO3SpYuYO3eu+PTTT0VmZqaYNWuWCA4OFuHh4eK3336zSfvee+8JAOLJJ58U27dvF8uWLRPBwcFiwIABdmWraUfDgwcPioCAANGmTRuxbNkysW3bNrF27VoxYsQIYTabhRBC/PjjjyIwMFC0b99epKeni40bN1ru29y5c+3uh3WHtBMnTogGDRqIfv36ic8//1xkZGSIhIQEERUVVWVHw/Hjx9foHm/fvl0AEOvWrbPsS0hIEDExMXavsbrOjlKvvPKKWLVqldi+fbv44IMPxNChQ8UNN9wg3n//fZt0St7fynLOmDFDNu/qXqcQf3XmGzRokPjkk0/E//t//090795d+Pj4iC+//NImbUZGhgAgAIisrCzL/kceeUQAEI0aNarxPArr1q0T69atE6+88orlvancJ32N3t7e4u9//7vIzMwU77//voiIiBCxsbF28yw8/vjjwmg0innz5okdO3aI6dOnC4PBIGbNmlWjMhG5G4MCN7t27ZpITk4WXbp0EUFBQcLPz09ER0eLGTNm2IwG+OOPP8Q//vEPERwcLAwGg80PyvXr18X8+fPFTTfdJHx9fUVAQIDo0KGDGDt2rDh+/LglXevWrcXgwYPFf//7XxETEyN8fHxEZGSkWLBggVNlr+6L/Pz58yIxMVE0a9ZMNGjQQLRq1UpMnDixygmKHnjgAXHjjTcKf39/0aBBA9G6dWuRnJxsFxBUWrNmjejSpYvw8fERoaGh4qmnnrLrBS9ExQ9sQkJCjV7HkSNHxH333SeaNGkifHx8RKtWrcSYMWNsvtB/+OEHcc899wiTySR8fHzETTfdZNcbvbrJizZu3Ci6du0q/Pz8RJs2bcQbb7xR7eiD2gwKXnzxRdG2bVthNBpFcHCwuOuuu8TOnTvt0il5fz/99FMBQCxdulQ2b7mgQIiK0RE9e/YUvr6+wt/fX/Tv31989dVXdukuXLggbrjhBuHv728ziqEysBg6dKij22BRGVxU9ZDasmWL6NWrl/D19RWNGzcWo0aNEr///rtdupKSEjFjxgzRqlUr4ePjI9q3by8WLVpU4zIRuZtBCMnAZ6ozIiMjERsbi88++6y2i0L1xOTJk7F27VocP3682vUsiMhzsU8BEWlm+/bteP755xkQEOmUt+MkREQ1s3fv3touAhGpwOYDIiIiAsDmAyIiohpbsmQJunTpgqCgIAQFBaF3797YtGmT7DlZWVmIi4uzLEq3dOlSN5VWOQYFRERENdSyZUvMmTMH+/btw759+3DHHXdgyJAhlgm9pE6ePIlBgwahb9++OHDgAKZPn46nnnrKZiVST+Ky5oPFixdj3rx5yMvLQ0xMDBYuXKhq5jMiIiJP1LhxY8ybN6/KSb+mTJmCDRs24OjRo5Z9ycnJ+O677zRdR0UrLulo+OGHHyIlJcWyBPBbb72FpKQkHDlyBK1atZI9t7y8HL/99hsCAwO5YAgRkQ4JIXDx4kWEh4erWjDLkWvXrlmWAVdDCGH3e2M0GqtcMtxaWVkZ1q1bh8uXL6N3795Vptm9ezcSExNt9g0cOBDLly/H9evXbRYE8wiumPygR48eIjk52WZfhw4dxNSpUx2em5OTIzuJCB988MEHH/p45OTkuOInRgghxNWrV0VoaKgm5QwICLDbJzcr5/fffy/8/f2Fl5eXMJlM4vPPP682bbt27exmsKxc0ru6Sdtqk+Y1BSUlJcjOzsbUqVNt9icmJlqWWrVWXFxss4CM+LM1IydnLoKCtFnZjIiI3MdsvoqIiMkIDAx0WR4lJSXIz89HTs5JBAUFOX0ds9mMiIgo5OTk2FxHrpYgOjoaBw8eRGFhITIyMjB69GhkZWWhU6dOVaaX1kJU/s55Ym245kHBuXPnUFZWhpCQEJv9ISEhVa7Yl5aWhhdffNFuf1CQH4MCIiIdc8ePXuUoAHdex8fHx7IgXHx8PPbu3YvXXnsNb731ll3a0NBQu9++goICeHt7y65UW1tcNnlRVZFRVR+QadOmITU11bJdEbVFINQ0EZWpL4sPrM6wXU/eXqnVc6Uvzzq9NB+5a5VKtqVpnb2ulqT5SMvs7LUcvR9K7puz13F0rWDJ9iWZ86T5WM/M5+i9k25fkjnmKF+5tL4yx7R6X9WcK71P0tkN5cqoZfnVfL6sz3U0O2NpNc+rOveazDEprb4rHN2HAKvnl6pN5Zj16ylXcR2lSqHuc6Pm3ApCiCqXTAeA3r1749NPP7XZt2XLFsTHx3tefwK44BepadOm8PLyqjIyktYeADXrzEFERFQ19wYF06dPR1JSEiIiInDx4kV88MEH2LFjBzZv3gyg4h/d3NxcrF69GkDFSIM33ngDqampeOKJJ7B7924sX77cshS9p9G8W6iPjw/i4uKQmZlpsz8zMxN9+vTROjsiIqrXSjV41Nzvv/+OkSNHIjo6Gv3798c333yDzZs3Y8CAAQCAvLw8nD592pI+KioKGzduxI4dO9C1a1f8+9//xqJFizBs2DBVr9pVXDJPwYcffoiRI0di6dKl6N27N5YtW4a3334bhw8fRuvWrWXPNZvNMJlM8ANQVWvUZfGO1sUlIiINmc1XYTJNRFFRkSbt/VXnUfFbUVR0SnVHQ5OptUvLqicuadAePnw4zp8/j5deegl5eXmIjY3Fxo0bHQYEREREypRBXfNBmVYFqRNc1stt3LhxGDdunKsuT0REBE/oaFiXcO0DIiIiAuC+8XCa8Tc8brOtvz4GWg4NJCKq71hToCXdBQVERER/YVCgJTYfEBEREQDWFBARka6VQd0IAo4+sKb7oEB/fQxYVUVEpB0OSdQSmw+IiIgIQB2oKSAiovqMHQ21VOeCAuvmBNvVFQH7FcCCJdtyq53Jka5mFiCzLU1bKNlWsqKc3CprSlY7k5bX0bWs00vLJ7dqoqPX5l3N86quK72WkhUJrc+VvvZCmXPlVryrKt+alqGq43LXtc5XWn6590p6rtyKkNK0jlZjlHvvpOSu5ei+yK2CqmQ1SbnPj/Ta0nPl/l4cfW8oWSVR7n1XUn5H74fc37PcdaXpQ62eX3aQp5YYFGipzgUFRERUnzAo0BL7FBAREREA1hQQEZGucfSBlup0UOBveMBm2364YqGLcpa2wylp35drk3eUj7OUXsfZfB29NiV/2HJlUNKuq+R+a1l+JfnKXdfRe6HkPikpk9y11HxBa3VfHF3L0X1Tc89rSs39VlJ+NfdJ7rpSZ6yeX1VwTbXYfKAlNh8QERERgDpeU0BERHUdawq0xKCAiIh0jEGBlupVUKC/KZGJiIjcp14FBUREVNewpkBLDAqIiEjHOCRRSxx9QERERADqeU0B+xhUcjSHvFx6uTnwa3Kt+kqr+6Tl/Za7lrveV35+tCH3N1rXsPlAS/U6KCAiIr1jUKAlBgVERKRjDAq0xKDAiu2yyx9LjipZEvicZFtuaVIlHFWtKimj9Xaw5Fi+g3ytX0+h5JjctRwti2t9XUdLACuZvldapkKr56Eyx6TXcrSErpKle+Vej6OluOWWxS2UKYP02tJ82kq2f5cpgzQf63JI3xtHS05baynZPlNlqgpNHZTJmtKvOrmluOXeO0efPbnlqKX5OFo+3Jr0HlvfG+n3kdwy5I6+U+SW27Y+t1xaQNIJBgVERKRjrCnQEoMCIiLSMQ5J1BKHJBIREREA1hRUy99wr822/HBFNcvXuou0bdB6u1DhteRej7Q/glwZpOTKIXfMEblz5crriKP3Vc3SvdYKFaRVUgapYy4qg5LX+quCtGreOyWk/4UWKjhXSVo1/+2qWa5dSVppGas7t1jBNdUqg7r/9llTYI1BARER6Rj7FGiJzQdEREQEgDUFRESka6wp0BKDghrilMhERJ6Iow+0xOYDIiIiAsCaAiIi0jU2H2iJQYGTbKdEZlNC/cQV/arG+0LuxKBASwwKiIhIxxgUaIl9CoiIiAgAawqIiEjXWFOgJQYFGuBwxfqKXyZV430hd+KQRC2x+YCIiIgAsKaAiIh0rRSAl8rzqRKDAiIi0jEGBVpiUOAC7GNARER6xKCAiIh0jDUFWmJQQEREOsbRB1piUOAGnBKZiIj0gEEBERHpWCnUja5n84E1BgVERKRjDAq0xMmLiIhIx0o1eNRcWloaunfvjsDAQDRv3hz33nsvjh07JnvOjh07YDAY7B4//vijorzdgTUFbuaZwxW51K1zeN+qxvtSf1i/1/Xjfc7KysL48ePRvXt3lJaW4tlnn0ViYiKOHDkCf39/2XOPHTuGoKAgy3azZs1cXVzFGBQQEZGOlUHdCAJl527evNlme8WKFWjevDmys7Nx2223yZ7bvHlzBAcHKy2gW7H5gIiIdKxySKKzj4qgwGw22zyKi4trlHtRUREAoHHjxg7TduvWDWFhYejfvz+2b99e85foRgwKiIio3ouIiIDJZLI80tLSHJ4jhEBqaipuvfVWxMbGVpsuLCwMy5YtQ0ZGBtavX4/o6Gj0798fO3fu1PIlaILNB7XMM/oY1I+2QO3xvlWN96X+8IT3uhSAQeX5QE5Ojk17v9FodHjmhAkT8P3332PXrl2y6aKjoxEdHW3Z7t27N3JycjB//nyHTQ7uxqCAiIh0TJugICgoyCYocGTixInYsGEDdu7ciZYtWyrOtVevXkhPT1d8nqsxKCAiIqohIQQmTpyIjz76CDt27EBUVJRT1zlw4ADCwsI0Lp16DAqIiEjHtKkpqKnx48djzZo1+OSTTxAYGIj8/HwAgMlkgp+fHwBg2rRpyM3NxerVqwEACxcuRGRkJGJiYlBSUoL09HRkZGQgIyNDRbldg0GBh/GMPgZERHrh3qBgyZIlAIB+/frZ7F+xYgXGjBkDAMjLy8Pp06ctx0pKSvDMM88gNzcXfn5+iImJweeff45BgwapKLdrGIQQorYLYc1sNldEXFD3NtcVDAqISG/M5qswmSaiqKhIUTu9sjwqfiuKigYgKKiBiutch8mU6dKy6glrCoiISMfKoO5fSC6dbI1BgYfjsstERHLUDov0hGGVnoNBARER6RiDAi1xRkMiIiICoDAoqMmSkUIIzJw5E+Hh4fDz80O/fv1w+PBhTQtNRERUwb1LJ9d1ioKCyiUj9+zZg8zMTJSWliIxMRGXL1+2pJk7dy4WLFiAN954A3v37kVoaCgGDBiAixcval74+sbf8LjNQx1vq4c7z60N3vD8MsuVT1p+V7137rpPeng/PJ3cZ0J6T+v6/dZmQSSqoOgT4mjJSCEEFi5ciGeffRZDhw4FAKxatQohISFYs2YNxo4da3fN4uJim9WozGazM6+DiIiIVFLVp0C6ZOTJkyeRn5+PxMRESxqj0YiEhAR8/fXXVV4jLS3NZmWqiIgINUUiIqJ6hc0HWnI6KKhqycjK6R5DQkJs0oaEhFiOSU2bNg1FRUWWR05OjrNFIiKieodBgZacbmCSWzLSYLCdSEIIYbevktForNESlWTPfkpk6xW3AiSpCyXb1qt6SQM2X8n2Ncl2a6vnudUX0O5a0o+btEzWpGmlZZCW0Tq9NG2wZPuS1XPpF4L0unJpQyXbju6jHOu00vJL30u51+roCy7Y6rm0vE0l2+dkyiDNV8lXSbBkWy6fS5Jtufskl885yTHpfZLLV3pfpGWSu+fS+2Kd1tHfmdznR1peKbl7Ki3TJZljcmmlrO/TFZl05MmcqimoXDJy+/btNktGhoZWfElKawUKCgrsag+IiIjUY02BlhQFBUIITJgwAevXr8e2bdvsloyMiopCaGgoMjMzLftKSkqQlZWFPn36aFNiIiIiCwYFWlLUfOBoyUiDwYCUlBTMnj0b7dq1Q7t27TB79mw0bNgQDz74oEteAP3F3/Cw5bnjKZF/lTnmqFr2mIPj1uSqG9VQcl1pNbn1x176heDotctdV0rJteTSKrmOI3L3Te71FLqpDI5eq5bvjzW5MkmbHpSQ+8Fx9BmWO67k81+oIK0a1vf7qpvyJK0pCgpqsmTk5MmTcfXqVYwbNw4XLlxAz549sWXLFgQGBmpSYCIior+UAVCz2G+5VgWpExQFBTVZZdlgMGDmzJmYOXOms2UiIiKqIQYFWqqL01sREVG9UQp1U+4wKLDGoKCOsh+uuFLB2Y463si1ydf0PKXnOrqWVtdVUwZnh6Z5CneVUU0+zn726jo9fL5IDxgUEBGRjrGmQEsMCoiISMcYFGhJ1doHREREVHewpqCe8DeMsdl2PI+BNa3azl3Vh0Cp2mjDZj8H9+ejldq6T0ryra176gl9PMqg7r99NSMX6h4GBUREpGOlAKpeW6dmGBRYY/MBERERAWBNQb1lPWTRcVOCkmpBV1Uh1lbVpCdW2crxhPfKlWqjzJ742fMUnlBG1hRoiUEBERHpGIMCLbH5gIiIiACwpoCIiPRMlKv7Z58VBTYYFFAVUyIrGa5IRFSLyqFuRCLnLrLBoICIiPSr7M+HmvPJgn0KiIiICABrCoiISM9YU6ApBgVkx3Efg9qY2tTRlK9yZapPy8pqtSyx0nPdxROm1SWPwj4FmmLzAREREQFgTQEREekZmw80xaCAiIj0i80HmmJQQA65bx4DuY+jo/ZjT2xf1qr921VL6OqhD4GUHsooh30iyLMxKCAiIv0qh7omANYU2GBQQERE+sU+BZpiUECKKVt22VlaVq3qvZq2ri1HXZ/xnpNnY1BARET6xY6GmmJQQERE+sXmA00xKCAiIv1iUKApBgWkiv1wxZWSFL5Wz1tIjv0u2W5r9bzQQVpp2+w1q+fBkmNNJNunrJ77So5dg/OayuR7SnJMmk9Lq+dyrw0AAqyen5E5VtV2odXzEMmx85Jt63JI75P0utZpHZVJbhpq6T3Ml2wHWz0/B3m+1TwH7O+ptEzW6aVfk4UyeUrThsqkld4nadpLMvk6Smv9tyb925GmDa4mD+mxqo5bf26t3yvWyesVgwIiItIv9inQFIMCIiLSLzYfaIoLIhEREREA1hSQxvwNY2y2L4sPrLaKVVxZ2g4qbSOWbltT86+AdVuztG1cWiYl0w8rSavkz1TNdNByfRmk99dRvwdr0vJL0yp5fdbnOjqvtJrnVZ2rZupoJdNzW6d1dE+VfA4c9ZGoKUfvlZLPsZsIqGsCEFoVpG5gUEBERPrF5gNNsfmAiIiIALCmgFzM3/CA5bn9cEWp76yeO6o6lauulp5bKJNW2gQgx1Fa6RA563wdVbNaD09TUl3tqBpfOuzNmnSYpFy+0tem5Kuj0MG51vfVUXW1s0NGlZ6nJL3cfZMOqZRLq+SzKL2u1C8KruVoaKcc68+X9fvqxn+/WVOgKQYFRESkXxySqCk2HxAREdVQWloaunfvjsDAQDRv3hz33nsvjh075vC8rKwsxMXFwdfXF23atMHSpUvdUFrlGBQQEZF+lWnwUCArKwvjx4/Hnj17kJmZidLSUiQmJuLy5cvVnnPy5EkMGjQIffv2xYEDBzB9+nQ89dRTyMjIUPhiXc8ghPCoARlmsxkmkwl+AAy1XRhyKftll+XayolIL8zmqzCZJqKoqAhBQUEuyqPit6JoBxAkHS2s5DqXAFM/OF3Ws2fPonnz5sjKysJtt91WZZopU6Zgw4YNOHr0qGVfcnIyvvvuO+zevdvZorsEawqIiEi/yjV4oCLIsH4UF9dsXpWioiIAQOPGjatNs3v3biQmJtrsGzhwIPbt24fr16/X7HW6CYMCIiKq9yIiImAymSyPtLQ0h+cIIZCamopbb70VsbGx1abLz89HSIjtAmQhISEoLS3FuXNqRn9oj6MPiIhIv8qhbljhnzUFOTk5Ns0HRqPR4akTJkzA999/j127djlMazDYNohXttxL99c2BgVUa+yXXbbuY6BkCltH5Ka0VTLdrZLrupJc3wtXlUnL62p1LU+4/67Mt7Zen7O8q3nuYhoNSQwKClLUp2DixInYsGEDdu7ciZYtW8qmDQ0NRX6+7dwSBQUF8Pb2RpMm0qXdaxebD4iIiGpICIEJEyZg/fr12LZtG6Kiohye07t3b2RmZtrs27JlC+Lj49GgQQNXFdUpDAqIiEi/3Dwkcfz48UhPT8eaNWsQGBiI/Px85Ofn4+rVq5Y006ZNw6hRoyzbycnJOHXqFFJTU3H06FG8++67WL58OZ555hlFeV+/fh05OTk4duwY/vjjD2UFryE2H5DHsG5OsJ8S2VWr3Kmpkq2t6tzayFfN1MtKr1VT7mrC0Fs1viNKVnVUQm5VShdy8zTHS5YsAQD069fPZv+KFSswZswYAEBeXh5Onz5tORYVFYWNGzdi0qRJePPNNxEeHo5FixZh2LBhDvO7dOkS3n//faxduxbffvutzaiIli1bIjExEU8++SS6d++u7IVUg0EBERFRDdVkap+VK1fa7UtISMD+/fsV5fXqq69i1qxZiIyMxN/+9jdMnToVLVq0gJ+fH/744w8cOnQIX375JQYMGIBevXrh9ddfR7t27RTlIcWggIiI9KsOr33w9ddfY/v27ejcuXOVx3v06IFHH30US5cuxfLly5GVlcWggIiI6rE6vEriunXrapTOaDRi3LhxmuTJoIA8kr9hjM22sj4Grhqmp/Q6zrbdKvmzlF5HyyGVep92Wsn9l7sXau6pXL6O7r8nDieluo5BARER6VcdrimodObMGSxZsgRff/018vPzYTAYEBISgj59+iA5ORkRERGa5cWggIiI9EtAXb8Aj1oS0N6uXbuQlJSEiIgIJCYmIjExEUIIFBQU4OOPP8brr7+OTZs24ZZbbtEkPwYFRESkX3W8pmDSpEl4/PHH8eqrr1Z7PCUlBXv37tUkPwYFpAv2fQykyy67o53UXXMaqOmroISW8wl4Yju1XPu9O/L0FJ5YJqqpQ4cOIT09vdrjY8eOxdKlSzXLjzMaEhGRfmm0dLKnCgsLw9dff13t8d27dyMsLEyz/FhTQERE+lXHmw+eeeYZJCcnIzs7GwMGDEBISAgMBgPy8/ORmZmJd955BwsXLtQsPwYFREREHmrcuHFo0qQJXn31Vbz11lsoK6uIYry8vBAXF4fVq1fj/vvv1yw/BgWkS+qWXbZWW3PgK1nO2VXUzFOg5fz5SuZDcDatkmN1jbs+47W0dHIdrykAgOHDh2P48OG4fv06zp07BwBo2rSpS1ZYrE9/GUREVNfU4WmOpRo0aKBp/4GqMCggIiLyYJy8iEgh+WWXpZRUKyuZllbuWkqmsHXXEDIlU/I6UhtLUGv59eWJw/ZcVZWvpClIB+p48wEnLyIiIqqpcqj7Yffw5gN3T17EeQqIiEi/6vg8BYcOHUJycnK1x8eOHYtDhw5plp+qoCAtLQ0GgwEpKSmWfUIIzJw5E+Hh4fDz80O/fv1w+PBhteUkIiKqd3QzedHevXuxbNkydOnSxWb/3LlzsWDBAqxcuRLt27fHyy+/jAEDBuDYsWMIDAxUXWAiRxxPieysay5O725qyldbbfCe2PbvLC2nmZY715X5OJunhup4nwJdTF506dIlPPTQQ3j77bfx8ssvW/YLIbBw4UI8++yzGDp0KABg1apVCAkJwZo1azB27Fi7axUXF6O4uNiybTabnSkSERHVR3V8SKK7Jy9yqvlg/PjxGDx4MO68806b/SdPnkR+fj4SExMt+4xGIxISEqqt/khLS4PJZLI8tBxaQUREpHfDhw/Hnj17cOXKFeTm5iI3NxdXrlzBnj17NA0IACdqCj744APs37+/yp6O+fn5AICQkBCb/SEhITh16lSV15s2bRpSU1Mt22azmYEBERHVTB1vPrDmcZMX5eTk4Omnn8aWLVvg6+tbbTqDwWCzLYSw21fJaDTCaDQqKQaRIvJTIktpOU8B1U1afQ60nCdCKzr8jNejoAAALly4gFWrVuH48eMICwvD6NGjNf1HWlHzQXZ2NgoKChAXFwdvb294e3sjKysLixYtgre3t6WGoLLGoFJBQYFd7QERERHJCw8Px/nz5wFUNNF36tQJr7zyCo4fP4633noLnTt3xo8//qhZfoqCgv79++OHH37AwYMHLY/4+Hg89NBDOHjwINq0aYPQ0FBkZmZazikpKUFWVhb69OmjWaGJiIgA1Pl5CvLz8y2dC6dPn44OHTrgl19+wZYtW/Dzzz+jb9++eP755zXLT1HzQWBgIGJjY232+fv7o0mTJpb9KSkpmD17Ntq1a4d27dph9uzZaNiwIR588EHNCk2khvyUyHJTwAZIjkmH9Em3fWWOyVXTSvNRMkWylJIpbbWaVtdReaX5WN8naVol91SOtLnTUZmcbTZylLb6ZlfH51pvS68jvRcBMseUXPeSZLumnx83/tLW8RkNrX3zzTd455130LBhQwAVze/PPfcc/vGPf2iWh+bTHE+ePBlXr17FuHHjcOHCBfTs2RNbtmzhHAVEREROqOyTV1xcXGVH/rNnz2qWl+qgYMeOHTbbBoMBM2fOxMyZM9VemoiISF4dn6cAqGi69/b2htlsxk8//YSYmBjLsdOnT6Np06aa5cUFkYiISL/q+OiDGTNm2GxXNh1U+vTTT9G3b1/N8jMIIYRmV9OA2WyGyWSCH4CqBzESuY52UyIT1V9m81WYTBNRVFSEoKAgF+VR8VtRNBMIkuuq4eg61wDTTLi0rHrCVRKJiIgIAJsPiIhIz+pBnwJ3YlBARET6Vcf7FLgbgwIiK/ZTIq+02lIyjlya3tkx/47y1XIaWiVj9eUoLZOS+6TVPVUzT4GUs+XQ8rpy8yEoWTpZq/vEnxZX+uqrrxAfH++SJQLYp4CIiPSrTIOHziQlJSE3N9cl12Y4R0RE+iWgrl+AR42/qxlXDhpkUEAkw98wxvL8skhXeLZWKyyqaSLQqtrfURmUVFer+dpR02SgpAzOllHJ+6zl+6rV50mHqySSphgUEBGRftWDjoarV6+22S4tLcX69evRvHlzy75Ro0ZpkheDAiIi0q96MCRxxYoVNtvXr1/Hf//7X/j5+QGoWF6AQQEREVE9sH37dpvtwMBArFmzBm3atNE8LwYFRDXkb3jYZtvxlMha/Xlp2a7rqjZiJcsY1wZ3tY2rGf6n5NqO8nH2/XB0Xk2H3bqxL0I9aD5wJwYFRESkXwwKNMWggIiI9Kse9CmQmj59Oho3buySazMoICIi0pFp06a57NoMCoicZD8lstJ5DKrjaJrjazLHtMxXjpI2Y+m6to6mztWqDNb5StvKXTWdstx1pAIk247KKFcm6T1W8hmRO+6u+6QCmw80xaCAiIj0qxzqfth12HzgSlz7gIiIiACwpoCIiPSsHnY0dCUGBUQakZ/HwFG7ek2PAa5rx62tOQxcle8lFedqVSa56xRqlAcgf4+VzJ2glAesjVCH+xRERUXBYDAoPi8lJQVPPfWUU3kyKCAiIvJAK1eudOq8yMhIp/NkUEBERPpVh5sPEhIS3J4nOxoSuYi/4XHLw3W8JQ8lx5WeW9O0asrsKB9nqblPrqImz9oor6N8a6lMZRo8dOSVV14BAHz//fe4fv265tdnUEBERKTAzp07cc899yA8PBwGgwEff/yxbPodO3bAYDDYPX788UfFed96660AgJkzZ6JLly7o0qULHnzwQaSlpeGzzz7D77//7sxLsmDzARER6VctdDS8fPkybrrpJjzyyCMYNmxYjc87duwYgoKCLNvNmjVTnPctt9wCAFi/fj0A4MqVKzh06BB++OEHbN26FTNmzMCgQYPw73//W/G1AQYFRESkZxr1KTCbzTa7jUYjjEZjlackJSUhKSlJcVbNmzdHcHCw4vPkNGzYED169ECPHj0s++Li4pwOCth8QOQG/oaHbR7qlMo8HKWt6TE1+Sgtv5IyOUvNfXIVNXnWRnkd5VtLZaqc0dDZx59BQUREBEwmk+WRlpameVG7deuGsLAw9O/fH9u3b9f8+pX27Nnj9LmsKSAionovJyfHpmq/uloCZ4SFhWHZsmWIi4tDcXEx3nvvPfTv3x87duzAbbfdpkkeeXl5aNy4MYxGIxo0aOD0dRgUEBGRfpVBXZ33n30KgoKCbIICLUVHRyM6Otqy3bt3b+Tk5GD+/PmaBQUjR47EL7/8gmHDhmH+/PlOX4dBARER6ZdO5yno1asX0tO1WlkV2Lp1KwA4NaLBGvsUENUC6zkMlM9j4OzcAvwfwPWU3G8t3xtPmbeAn7WaOnDgAMLCwhSf99prrwGoGMlQXm4f0XTo0EFVufjOERGRfmnUfKDEpUuX8PPPP1u2T548iYMHD6Jx48Zo1aoVpk2bhtzcXKxevRoAsHDhQkRGRiImJgYlJSVIT09HRkYGMjIyFOcdGxsLAJg0aRJ+/vlnBAQEICYmBrGxsYiNjcXgwYOVvyArDAqIiEi/aqH5YN++fbj99tst26mpqQCA0aNHY+XKlcjLy8Pp06ctx0tKSvDMM88gNzcXfn5+iImJweeff45BgwYpzrt///4AgI0bNwKoGEp56NAhHDp0CJmZmaqDAoMQQqi6gsbMZjNMJhP8AChfG4pI/2xXVyTSH7P5KkymiSgqKnJZ573K34qiQUCQ853tYb4OmDbCpWVVIz4+HnFxcZZHly5dVI0ucIQ1BUREpF+10HzgTr1790Z2djbS09Nx9epV+Pj4ICYmBn369MEDDzxgmeFQKwwKiIhIv+p4UPD6668DAMrKynD48GHs27cP+/btwxdffIHFixdj5MiRWLFiBQwGberWOfqAiIjIw3l5eaFLly549NFHsXjxYvz000/YvHkzNm7ciOXLl2uWD4MCIg+j3XBFdy49XBtqa/ifVjyxTI54YJkF/ups6MzDo3rVKTNgwAC8/PLLeOuttzS7JoMCIiLSLzXrHqhdYdED9OrVy2Z4pFoMCoiISL/qeFDw5ptv4ttvv0VxcXGVx8+ePavpaAQPqf8hIiIiqeeeew5msxne3t7o1KkT4uPjER8fj44dO+LKlSuYNm2aZusnAAwKiDyetF+B/DwGrlqy1p3L89aUkjLpvfyewgPLrNO1D2rqwoUL+OWXX5CdnW15ZGRkoLCwEEDFtMZqFkCSYlBARET6VQZ1M915ePMBALRt2xZt27bF/fffb9l35swZXL9+HVFRUZrmxaCAiIhIZ1q2bOmS6zIoINIZ6+aEy0K69KqvZPuSgiur+TqQO1daBmkZr8lcJ0DmWtLrSFlfV5rWUTW49XEl50rLf03muNKqeLlz5e6bNG2hZNv69Tm6rvT1VHeuG39a6njzgbsxKCAiIv2qw80HUVFRTs1UmJKSgqeeesqpPBkUEBEReaCVK1c6dV5kZKTTeTIoICIi/SqHuv/2Pbj5ICEhwe15Migg0jF/w8M22+qWXXbXcDNpu7RcGQpl0irpL6EkrZbnSqm5x3LnSo/J3WMpJe9HTc9149DFcqhrPvDgoOD06dNo1apVjdPn5uaiRYsWqvLkjIZEREQeqHv37njiiSfw7bffVpumqKgIb7/9NmJjY7F+/XrVebKmgIiI9EttR0EP7mh49OhRzJ49G3fddRcaNGiA+Ph4hIeHw9fXFxcuXMCRI0dw+PBhxMfHY968eUhKSlKdp0EI4VFrRJnNZphMJvhBXY0QUX2krvmASBtm81WYTBNRVFSEoKAgF+VR8VtR1BEI8lJxnTLAdBQuLata165dw8aNG/Hll1/i119/xdWrV9G0aVN069YNAwcORGxsrGZ5saaAqA6xnxJ5pSSF3Ph7Je3QWlIydl/uK8vRGHslnG0Tl+YpVyZHaaWUzAOgZJ4Fues6uqceMO1xHe5TUMnX1xdDhw7F0KFDXZ4X+xQQERERANYUEBGRntXhPgXVKSwsxBdffIHc3FwYDAaEhYVh4MCBaNSokeprs6aAiIj0q1yDh44sX74cPXr0wJ49e1BeXo6ysjLs2bMHvXr1wvLly1Vfnx0NieoR+Y6IStrr5c51Vzu0musqOddRhar1cUf9MtSsfSC3RoHctZT0KXCkZpXLFR0N/+mejoZtNOhoeMKzOxpai46ORnZ2NgICbNcFuXjxIuLi4vDTTz+puj6bD4iISL/U/qevs5oCg8GAS5cu2QUFly5dcmqdBCkGBUREpF9lANTUd+ssKJg/fz4SEhIQGxtrmb3wzJkzOHz4MP7zn/+ovj6DAqJ6xHbZZWlTgqum4HUVd5VXy9emVZnVlN8d980DhirWUXfffTeSkpLw7bff4rfffoMQAi1atECPHj3g5aWiHeVPDAqIiEi/6lnzAQB4eXmhd+/edvuzs7MRFxen6tqKRx/k5ubi4YcfRpMmTdCwYUN07doV2dnZluNCCMycORPh4eHw8/NDv379cPjwYVWFJCIiqlKZBo864u9//7vqayiqKbhw4QJuueUW3H777di0aROaN2+OX375BcHBwZY0c+fOxYIFC7By5Uq0b98eL7/8MgYMGIBjx44hMDBQdYGJiIjqq/vvv7/K/UII/PHHH6qvrygoeOWVVxAREYEVK1ZY9kVGRtoUauHChXj22Wct0zGuWrUKISEhWLNmDcaOHau6wESkDfspkdWsm2A97E06LE/LqYvlzlMzzbH2w/KUX0cP7fByZZabwtmF6llHw61bt+K9996zG30ghMDOnTtVX1/RO7dhwwYMHDgQ9913H7KystCiRQuMGzcOTzzxBADg5MmTyM/PR2JiouUco9GIhIQEfP3111UGBcXFxSguLrZsm81mZ18LERHVN/WsT0G/fv0QEBCAhIQEu2PdunVTfX1FfQpOnDiBJUuWoF27dvjiiy+QnJyMp556CqtXrwYA5OfnAwBCQkJszgsJCbEck0pLS4PJZLI8IiIinHkdRERUH5VDXX8CnQUF69evrzIgAIDNmzervr6ioKC8vBw333wzZs+ejW7dumHs2LF44oknsGTJEpt00gkUhBDVTqowbdo0FBUVWR45OTkKXwIRERFpQVHzQVhYGDp16mSzr2PHjsjIyAAAhIaGAqioMQgLC7OkKSgosKs9qGQ0GmE0GhUVmoi0p20fAzlKvna0mspYy/Z6uWmDlUzx7GjpajVldnaJ5nq4dLJHTfRfvdTU1Cr3GwwG+Pr64sYbb8SQIUPQuHFjVfkoCgpuueUWHDt2zGbfTz/9hNatWwMAoqKiEBoaiszMTEvbRklJCbKysvDKK6+oKigREZGdMtSLoODAgQPYv38/ysrKEB0dDSEEjh8/Di8vL3To0AGLFy/G//3f/2HXrl12/7wroaj5YNKkSdizZw9mz56Nn3/+GWvWrMGyZcswfvx4ABURS0pKCmbPno2PPvoIhw4dwpgxY9CwYUM8+OCDTheSiIioPhsyZAjuvPNO/Pbbb8jOzsb+/fuRm5uLAQMGYMSIEcjNzcVtt92GSZMmqcpH8SqJn332GaZNm4bjx48jKioKqampltEHQEX/gRdffBFvvfUWLly4gJ49e+LNN99EbGxsja7PVRKJPI99U4KSYYSeOHRQTbW4o1UH5cg1HyiZjljNkD+51y69rrRJo2b3qWKVxInuWSXRDwhS8WNhFoDpquevktiiRQtkZmba1QIcPnwYiYmJyM3Nxf79+5GYmIhz5845nY/iT9bdd9+Nu+++u9rjBoMBM2fOxMyZM50uFBERUY3Ukz4FRUVFKCgosAsKzp49axnKHxwcjJKSElX5KJ7mmIiIiNxryJAhePTRR/HRRx/hzJkzyM3NxUcffYTHHnsM9957LwDg22+/Rfv27VXlwwWRiIhIv+pJR8O33noLkyZNwgMPPIDS0opmG29vb4wePRqvvvoqAKBDhw545x11o4YU9ylwNfYpIPJ8l8UHkj3W/19ckhwLkGxL26mt29Ydtc9bH5e7jjRfaVpHbeVyaSMl24UKzrXednQd6X20Ji2vdFtu2mm590f6XknbppX0Kfine/oUGDToUyA8v09BpUuXLuHEiRMQQqBt27Z20x2rxZoCIiIinQgICECXLl1cdn0GBUREpF8CumkCUKuwsBDLly/H0aNHYTAY0LFjRzz22GMwmUya5cGOhkREpFtqlj2ofOjBvn370LZtW7z66qv4448/cO7cObz66qto27Yt9u/fr1k+7FNARKpdFiuttlw59a2rpi521TwFaqYUlqNk7gct54Wo2dLJ7uxTcBaAmhzMAJrB8/sU9O3bFzfeeCPefvtteHtX3OvS0lI8/vjjOHHihCbLJgNsPiAiIvJ4+/btswkIgIrRB5MnT0Z8fLxm+bD5gIiIdKtcg4ceBAUF4fTp03b7c3JyEBgYqFk+rCkgItX8DWMsz123uqKnkJuOuK5/pda0qcR9qyeq7Reglz4Fw4cPx2OPPYb58+ejT58+MBgM2LVrF/71r39hxIgRmuVT1z/BREREujd//nwYDAaMGjUKpaWlEELAx8cH//znPzFnzhzN8mFQQEREuqW2CUAvzQc+Pj547bXXkJaWhl9++QVCCNx4441o2LChpvkwKCAiIt2qjeaDnTt3Yt68ecjOzkZeXh4++ugjy/oD1cnKykJqaioOHz6M8PBwTJ48GcnJybLnpKam1rhMCxYsqHFaOQwKiEhT/obHbba17WPgqrZqZ5c/dtV11J6rVRmpKpcvX8ZNN92ERx55BMOGDXOY/uTJkxg0aBCeeOIJpKen46uvvsK4cePQrFkz2fMPHDhQo/IYDNoN4GdQQEREulUOdTUFzjQfJCUlISkpqcbply5dilatWmHhwoUAgI4dO2Lfvn2YP3++bFCwfft2J0qnDockEhGRbmk1JNFsNts8iouLNSvj7t27kZiYaLNv4MCB2LdvH65fv65ZPlpgUEBERPVeREQETCaT5ZGWlqbZtfPz8xESEmKzLyQkBKWlpTh3TroSZe1i8wERuZS2fQxcNc1xfabve6pVR8OcnBybaY6NRqOaYtmRtvtXrjCgZX8ALTAoICIi3dIqKAgKCnLZ2gehoaHIz8+32VdQUABvb280adLEJXk6i0EBERHplh7mKejduzc+/fRTm31btmxBfHw8GjRo4IYS1Bz7FBARESlw6dIlHDx4EAcPHgRQMeTw4MGDlrUJpk2bhlGjRlnSJycn49SpU0hNTcXRo0fx7rvvYvny5XjmmWdqo/iyWFNARG6lrI9BXfuKkns9Wi6d7Kpz5a5VO/0RamPyon379uH222+3bFdOMjR69GisXLkSeXl5NosXRUVFYePGjZg0aRLefPNNhIeHY9GiRTWa48DdDKKyt4OHqFwj2w+AZ3W/ICJXcD4o0F+nuPoSFJjNV2EyTURRUZHL2ukrfysOAlCzRuBFAF0Bl5ZVT9h8QERERADqXt0cEemMdXOCfa2B3H+xSv7jdfRV56p85JZZVpOPGp5QBu3UxoyGdRmDAiIi0q3a6FNQl7H5gIiIiACwpoCIiHRMD/MU6AmDAiLyGI6HK9bGEDgt85Erv3RbzUgFX6vn11SUyZHa73PA5gNtsfmAiIiIALCmgIiIdIw1BdpiUEBERLrFPgXaYlBARB7Lvo9ButWWmln8HLG+tpJztZxpUO64o/4H3jLHXNUPQC5P12FNgbbYp4CIiIgAsKaAiIh0TEBdE4BHLf7jARgUEJFu+Bsetjy3bUoAHA+9s6Zk+mEtq9udbZYAbF+foyaBazLH5PLV3zTHbD7QFpsPiIiICABrCoiISMdYU6AtBgVERKRbHJKoLQYFRKRL1v0LgKqmRLampL+BGkra4JW212s1xbM7lmT2/L4IVDUGBUREpFtsPtAWgwIiItItBgXa4ugDIiIiAsCaAiKqIxwvu+wsNV+TcnMEOJo/QK5d3lGZ5OZD0Oq6cue676eFHQ21xaCAiIh0qxzqmgAYFNhiUEBERLrFmgJtMSggojrJujnhslip8GythtSpqbqX+3p21PTga/VcOhxTrky+kmNKzqW6gEEBERHpFkcfaItBARER6RaDAm1xSCIREREBYE0BEdUD/oYxNtuOhys6O6WwmjZ3NWnVlNF6+5KC63gGdjTUFoMCIiLSLTYfaIvNB0RERASANQVERKRjrCnQFoMCIqp3HE+JLDd2X26OAOlXqnScv1zbv6N85KiZ08C6jAEyxxxd2/q6Xg7O046Aun4BQquC1BFsPiAiIiIArCkgIiIdY/OBthgUEBGRbnFIorYYFBBRvSffx8BR2751u7uSr1RHcxpoNceBoz4FSvKsaT7u+/+bNQXaYp8CIiIiAsCaAiIi0jHWFGiLQQERkYTtsssfO0ht3XzgaFih3DTCwQ7Syg2TlBtmKL2ONJ9rMsfOOSiTbzXP3VcJzT4F2mLzAREREQFQGBSUlpbiueeeQ1RUFPz8/NCmTRu89NJLKC//K9YSQmDmzJkIDw+Hn58f+vXrh8OHD2tecCIiojINHvQXRUHBK6+8gqVLl+KNN97A0aNHMXfuXMybNw+vv/66Jc3cuXOxYMECvPHGG9i7dy9CQ0MxYMAAXLx4UfPCExFR/VYOdQEBmw9sKepTsHv3bgwZMgSDBw8GAERGRmLt2rXYt28fgIpagoULF+LZZ5/F0KFDAQCrVq1CSEgI1qxZg7Fjx2pcfCIi1/I33GuzLb/sspKlh6Vfv9L2e7nhf46mH5aTL1OOQoXXsi6j9Wu/qvA65CkU1RTceuut+N///oeffvoJAPDdd99h165dGDRoEADg5MmTyM/PR2JiouUco9GIhIQEfP3111Ves7i4GGaz2eZBRERUE+UaPOgvimoKpkyZgqKiInTo0AFeXl4oKyvDrFmzMGLECABAfn5FBBoSEmJzXkhICE6dOlXlNdPS0vDiiy86U3YiIqrnOCRRW4pqCj788EOkp6djzZo12L9/P1atWoX58+dj1apVNukMBoPNthDCbl+ladOmoaioyPLIyclR+BKIiIhIC4pqCv71r39h6tSpeOCBBwAAnTt3xqlTp5CWlobRo0cjNDQUQEWNQVhYmOW8goICu9qDSkajEUaj0dnyExG5lf2UyCutttQsd+zoXOv0Wqat7jxX5qMdzlOgLUU1BVeuXMENN9ie4uXlZRmSGBUVhdDQUGRmZlqOl5SUICsrC3369NGguERERH/hkERtKaopuOeeezBr1iy0atUKMTExOHDgABYsWIBHH30UQEWzQUpKCmbPno127dqhXbt2mD17Nho2bIgHH3zQJS+AiIjqL/Yp0JaioOD111/H888/j3HjxqGgoADh4eEYO3YsXnjhBUuayZMn4+rVqxg3bhwuXLiAnj17YsuWLQgMDNS88EREtc3fMMbyXH64opTSYYVarZqoJq1Uda+hdpoSSD2DEELUdiGsmc1mmEwm+AGoumsiEZFnUhYU1F1m81WYTBNRVFSEoKAgF+VR8VsxDfYrQShxDUAa4NKy6gnXPiAiIt2qrRkNFy9ejKioKPj6+iIuLg5ffvlltWl37NgBg8Fg9/jxxx+dzN11GBQQEREp8OGHHyIlJQXPPvssDhw4gL59+yIpKQmnT5+WPe/YsWPIy8uzPNq1a+emEtccl04mItKI/XDFvZIUx6yeB0iOSdvh20q2f7F67miKZO9qngNAnGTbul/AMckx6bnSMllX3GdbPXffQL/a6Gi4YMECPPbYY3j88Yr3e+HChfjiiy+wZMkSpKWlVXte8+bNERwc7FxB3YQ1BUREpFtaTXMsnW6/uLi4yvxKSkqQnZ1tM50/ACQmJlY7nX+lbt26ISwsDP3798f27dudebkux6CAiIjqvYiICJhMJsujuv/4z507h7Kysiqn86+c6l8qLCwMy5YtQ0ZGBtavX4/o6Gj0798fO3fu1Px1qMXmAyIi0i2tmg9ycnJsRh84mmlXyXT+0dHRiI6Otmz37t0bOTk5mD9/Pm677TbnCu4iDAqIiFzE39DdZtt2yKKjeQqyJdtKphQureY5AHxTw/OUlsma+6YE0mqa46CgoBoNSWzatCm8vLzsagXkpvOvSq9evZCenq6kqG7B5gMiIqIa8vHxQVxcnM10/gCQmZmpaDr/AwcO2KwR5ClYU0BERLpVG6MPUlNTMXLkSMTHx6N3795YtmwZTp8+jeTkZAAVq//m5uZi9erVACpGJ0RGRiImJgYlJSVIT09HRkYGMjIyVJTcNRgUEBG5ifWQxcvCUdWxtCpf7utaLq1W16lKdXMJ1u0hicOHD8f58+fx0ksvIS8vD7Gxsdi4cSNat24NAMjLy7OZs6CkpATPPPMMcnNz4efnh5iYGHz++ecYNGiQipK7Bqc5JiKqBeqCAukxJWnlJgWW9nNwLigwm6/AZHrULdMcPwnAR8V1SgAsA6c5rsQ+BURERASAzQdERKRjXDpZWwwKiIhqgb/hYZvty2KlJIVcE4Gar265oZDS5gBHwyYvVbP/as2LoxKDAm2x+YCIiIgAsKaAiIh0TKvJi6gCgwIiItItNh9oi0EBEZEH8DeMsdmW72OgZJpjKenXvnVaR30I5M6VW66Z9ILvHBER6RabD7TFoICIiHSLzQfa4ugDIiIiAsCaAiIij2Tfx+CdqhMq5mx/A0fnKunzoJ1yqPtvn80HthgUEBGRbrFPgbYYFBARkW6VQV07OPsU2GJQQESkA7bLLq+UHFXSJKAludUYSY8YFBARkW6xpkBbDAqIiEi32KdAWxySSERERABYU0BEpDvKhitq2dbvaMii+7H5QFsMCoiISLfYfKAtNh8QERERANYUEBGRjnFGQ20xKCAi0jnrOQwA6TwG0q956fLIcj8D0j4DvjVM676f2jIABpXn01/YfEBEREQAWFNAREQ6xo6G2mJQQERUx1gPWbws0iVH5b72HQ05VNL04B5sPtBW7b+jRERETmJQoC32KSAiIiIArCkgIiIdY58CbTEoICKqw/wND9ts2/cxsO4n4GjaYulx623rnxP3Vcqz+UBbbD4gIiIiAKwpICIiHRNQ1wQgtCpIHcGggIiIdEtt9T+bD2wxKCAiqkfs+xhYL7vseUsjk3sxKCAiIt1iTYG2GBQQEZFulUPd6AMOSbTFoICIqB6zXmHRdnXFqrB5oa5jUEBERLrF5gNtMSggIiLdYlCgLQYFRESkW+xToC0GBUREBMB2yWVAOlwRkO9DUFrNc9ITBgVERKRbav/TZ02BLQYFRESkWwwKtMUFkYiIiAgAawqIiKga1nMYAFX1Mah9ZVC3qBFrCmwxKCAiIt1iUKAtNh8QERERANYUEBGRjrGjobYYFBARUY14Yh8DNh9oi80HREREBIA1BUREpGPlUFdToObcuog1BURE5BR/w+OWR20p1+DhjMWLFyMqKgq+vr6Ii4vDl19+KZs+KysLcXFx8PX1RZs2bbB06VInc3YtBgVERKRbZRo8lPrwww+RkpKCZ599FgcOHEDfvn2RlJSE06dPV5n+5MmTGDRoEPr27YsDBw5g+vTpeOqpp5CRkeFE7q5lEEJ4VO2J2WyGyWSCH9StfEVERO5j3enQbL4Kk2kiioqKEBQU5JL8Kn8rAqDut0IAuAQoKmvPnj1x8803Y8mSJZZ9HTt2xL333ou0tDS79FOmTMGGDRtw9OhRy77k5GR899132L17t4rSa8/j+hRUxigeFakQEZEss/mq3XN3/M9ZBvVBAVARZFgzGo0wGo126UtKSpCdnY2pU6fa7E9MTMTXX39dZR67d+9GYmKizb6BAwdi+fLluH79Oho0aOD8C9CYxwUFFy9eBABcq+VyEBFRzZlME+32Xbx4ESaTySX5+fj4IDQ0FPn5+aqvFRAQgIiICJt9M2bMwMyZM+3Snjt3DmVlZQgJCbHZHxISUm1Z8vPzq0xfWlqKc+fOISwsTN0L0JDHBQXh4eHIycmBEAKtWrVCTk6Oy6qf6gKz2YyIiAjeJwd4n2qG96lmeJ/kCSFw8eJFhIeHuywPX19fnDx5EiUlJaqvJYSAwWBb31BVLYE1afqqruEofVX7a5vHBQU33HADWrZsaanKCQoK4h9dDfA+1QzvU83wPtUM71P1XFVDYM3X1xe+vr4uz8da06ZN4eXlZVcrUFBQYFcbUKmqGo2CggJ4e3ujSZMmLiurMzj6gIiIqIZ8fHwQFxeHzMxMm/2ZmZno06dPlef07t3bLv2WLVsQHx/vUf0JAAYFREREiqSmpuKdd97Bu+++i6NHj2LSpEk4ffo0kpOTAQDTpk3DqFGjLOmTk5Nx6tQppKam4ujRo3j33XexfPlyPPPMM7X1Eqrlcc0HlYxGI2bMmOGwXae+432qGd6nmuF9qhnep/pt+PDhOH/+PF566SXk5eUhNjYWGzduROvWrQEAeXl5NnMWREVFYePGjZg0aRLefPNNhIeHY9GiRRg2bFhtvYRqedw8BURERFQ72HxAREREABgUEBER0Z8YFBAREREABgVERET0JwYFREREBMCDgwKla1XXZWlpaejevTsCAwPRvHlz3HvvvTh27JhNGiEEZs6cifDwcPj5+aFfv344fPhwLZXYM6SlpcFgMCAlJcWyj/epQm5uLh5++GE0adIEDRs2RNeuXZGdnW05zvsElJaW4rnnnkNUVBT8/PzQpk0bvPTSSygvL7ek4X2iOkd4oA8++EA0aNBAvP322+LIkSPi6aefFv7+/uLUqVO1XbRaMXDgQLFixQpx6NAhcfDgQTF48GDRqlUrcenSJUuaOXPmiMDAQJGRkSF++OEHMXz4cBEWFibMZnMtlrz2fPvttyIyMlJ06dJFPP3005b9vE9C/PHHH6J169ZizJgx4ptvvhEnT54UW7duFT///LMlDe+TEC+//LJo0qSJ+Oyzz8TJkyfFunXrREBAgFi4cKElDe8T1TUeGRT06NFDJCcn2+zr0KGDmDp1ai2VyLMUFBQIACIrK0sIIUR5ebkIDQ0Vc+bMsaS5du2aMJlMYunSpbVVzFpz8eJF0a5dO5GZmSkSEhIsQQHvU4UpU6aIW2+9tdrjvE8VBg8eLB599FGbfUOHDhUPP/ywEIL3ieomj2s+qFyrWrr2tNxa1fVNUVERAKBx48YAgJMnTyI/P9/mnhmNRiQkJNTLezZ+/HgMHjwYd955p81+3qcKGzZsQHx8PO677z40b94c3bp1w9tvv205zvtU4dZbb8X//vc//PTTTwCA7777Drt27cKgQYMA8D5R3eRx0xw7s1Z1fSKEQGpqKm699VbExsYCgOW+VHXPTp065fYy1qYPPvgA+/fvx969e+2O8T5VOHHiBJYsWYLU1FRMnz4d3377LZ566ikYjUaMGjWK9+lPU6ZMQVFRETp06AAvLy+UlZVh1qxZGDFiBAB+nqhu8rigoJLStarriwkTJuD777/Hrl277I7V93uWk5ODp59+Glu2bJFdTrW+36fy8nLEx8dj9uzZAIBu3brh8OHDWLJkic0iLvX9Pn344YdIT0/HmjVrEBMTg4MHDyIlJQXh4eEYPXq0JV19v09Ut3hc84Eza1XXFxMnTsSGDRuwfft2tGzZ0rI/NDQUAOr9PcvOzkZBQQHi4uLg7e0Nb29vZGVlYdGiRfD29rbci/p+n8LCwtCpUyebfR07drQs4MLPU4V//etfmDp1Kh544AF07twZI0eOxKRJk5CWlgaA94nqJo8LCpxZq7quE0JgwoQJWL9+PbZt24aoqCib41FRUQgNDbW5ZyUlJcjKyqpX96x///744YcfcPDgQcsjPj4eDz30EA4ePIg2bdrwPgG45ZZb7Ia0/vTTT5YV3vh5qnDlyhXccIPtV6SXl5dlSCLvE9VJtdjJsVqVQxKXL18ujhw5IlJSUoS/v7/49ddfa7toteKf//ynMJlMYseOHSIvL8/yuHLliiXNnDlzhMlkEuvXrxc//PCDGDFiBIdGCWEz+kAI3ichKoZrent7i1mzZonjx4+L999/XzRs2FCkp6db0vA+CTF69GjRokULy5DE9evXi6ZNm4rJkydb0vA+UV3jkUGBEEK8+eabonXr1sLHx0fcfPPNluF39RGAKh8rVqywpCkvLxczZswQoaGhwmg0ittuu0388MMPtVdoDyENCnifKnz66aciNjZWGI1G0aFDB7Fs2TKb47xPQpjNZvH000+LVq1aCV9fX9GmTRvx7LPPiuLiYksa3ieqawxCCFGbNRVERETkGTyuTwERERHVDgYFREREBIBBAREREf2JQQEREREBYFBAREREf2JQQERERAAYFBAREdGfGBQQERERAAYFRERE9CcGBURERASAQQERERH96f8DB2WOy6gBj2cAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n", + "│ caller = npyinitialize() at numpy.jl:67\n", + "└ @ PyCall /Users/stevenj/.julia/packages/PyCall/L0fLP/src/numpy.jl:67\n" + ] + } + ], + "source": [ + "m = 100\n", + "Abig = randn(m,m)\n", + "fig = figure()\n", + "nsteps = (m*(m-1))÷2\n", + "@manipulate for step in slider(0:550:nsteps, value=2, label=\"gauss step\")\n", + " withfig(fig) do\n", + " U, row, col = naive_gauss(Abig, step)\n", + " # I had to experiment a little to find a nice way to plot this\n", + " V = log10.(abs.(U) .+ 500)\n", + " V[abs.(U) .< 0.001] .= 0 # color small entries black\n", + " imshow(V, cmap=\"hot\", vmin=0, vmax=3)\n", + " title(\"step $step: column $col, row $row\")\n", + " colorbar(label=L\"\\log_{10}(|U_{i,j}| + 500)\")\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that it takes a *lot* more steps of Gaussian elimination for a $100 \\times 100$ matrix (4950 steps) than for a $5 \\times 5$ matrix (10 steps). Later on in 18.06, we will analyze the computational cost of Gaussian elimination and how it scales with the size of the matrix (in computer science, this is known as the [complexity](https://en.wikipedia.org/wiki/Computational_complexity_theory) of the algorithm)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another interesting example can be found in the [Machine Learning with Gaussian Elimination notebook](https://github.com/mitmath/1806/blob/master/notes/Machine-Learning-with-Gaussian-elimination.ipynb)." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "9b4f2f66effd4c52a9c59b704ece959f", + "lastKernelId": "a047c49e-3ec7-4b3d-bfa2-571929d498c5" + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + }, + "widgets": { + "state": { + "294167a6-1234-43dc-aef6-951949f1fac6": { + "views": [ + { + "cell_index": 26 + } + ] + }, + "41f7367b-0ad3-43e3-bd43-c6e4a1618e8d": { + "views": [ + { + "cell_index": 19 + } + ] + }, + "6e3620ec-4915-4734-8d3a-3332fdc63970": { + "views": [ + { + "cell_index": 16 + } + ] + }, + "ce72699c-d8cc-4a03-902b-a490178223e5": { + "views": [ + { + "cell_index": 17 + } + ] + }, + "db2d9825-08d3-4028-8072-1e865d1a0c4f": { + "views": [ + { + "cell_index": 23 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notes/Global-warming-regression.ipynb b/notes/Global-warming-regression.ipynb new file mode 100644 index 00000000..7f39c874 --- /dev/null +++ b/notes/Global-warming-regression.ipynb @@ -0,0 +1,316 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Fitting Global Warming\n", + "\n", + "It is well established that [global average temperatures have been rising](https://en.wikipedia.org/wiki/Climate_change) for many decades, and there is a [broad scientific consensus](https://www.ipcc.ch/) that this change is primarily due to human activity.\n", + "\n", + "But over short timescales, the random year-to-year variations in temperature are large, making it harder for humans to notice the long-term trend.\n", + "\n", + "How do we extract *average trends* from noisy data? Linear algebra!" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Global temperature data 1973–2022:" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "The following is data on the change (°C) in [average global temperature](https://en.wikipedia.org/wiki/Global_temperature_record) (compared to the 1901–2000 average) since 1973 (the year Prof. Johnson was born), from the [National Centers for Environmental Information](https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/1/1/1973-2022):" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "source": [ + "year = [1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]\n", + "ΔT = [0.28, -0.19, 0.11, -0.02, 0.13, 0.16, 0.15, 0.33, 0.51, 0.14, 0.53, 0.3, 0.22, 0.31, 0.32, 0.56, 0.17, 0.36, 0.43, 0.46, 0.36, 0.27, 0.56, 0.25, 0.34, 0.6, 0.51, 0.34, 0.47, 0.71, 0.72, 0.61, 0.65, 0.5, 0.92, 0.27, 0.6, 0.73, 0.46, 0.44, 0.62, 0.69, 0.83, 1.12, 0.98, 0.75, 0.94, 1.14, 0.78, 0.89];" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "using PyPlot\n", + "plot(year, ΔT, \"r.-\")\n", + "xlabel(\"year\")\n", + "ylabel(\"ΔT (°C) vs. 1901–2000 baseline\")\n", + "title(\"Global average temperature change\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACKzElEQVR4nO3deXiMV/8G8HuyR0gIkohEBLHVThGtBtXYdUWrRZWWqnrRVbW1tOXXTXW3RVVfVaW0tIqorUoXu5bat5AIQUKQSHJ+f5z3mSWZSeaZeWbL3J/ryjVLnpk58yTMnXO+5xydEEKAiIiIyEv5uLoBRERERK7EMERERERejWGIiIiIvBrDEBEREXk1hiEiIiLyagxDRERE5NUYhoiIiMirMQwRERGRV2MYIiIiIq/GMEQeZd++fRg2bBjq1q2L4OBgBAcHIyEhASNGjMCOHTtMjp08eTJ0Op1Nr9OpUyc0adJEiyabPGenTp00fU5vdeDAAUyePBknT550dVPczrlz5zB58mTs2bPH1U2xmU6nw+jRo13dDPIiDEPkMWbPno3WrVvjjz/+wH/+8x/8+OOP+OmnnzB27Fj8888/uP3223Hs2DFXN5Oc4MCBA5gyZQrDkBnnzp3DlClTPDoMETmbn6sbQGSN3377DaNGjUKvXr2wbNkyBAQE6L/XpUsXPPPMM1i6dCmCg4Nd2Mry5/r166hQoYKrm+HVbty4gaCgIJt7ObVSWFiIgoICBAYGurQdRI7AniHyCNOmTYOvry9mz55tEoSM9evXD9HR0aU+T1FREd555x00bNgQgYGBiIiIwODBg5GWlmb2+F9//RXt27dHcHAwatasiddeew2FhYUmx0yZMgXt2rVDeHg4QkND0apVK6SkpMDWPZCXLFmC5ORk1KhRA8HBwWjUqBFefvll5Obm6o+ZOXMmdDodjh49WuLxL730EgICAnDx4kX9fevXr8fdd9+N0NBQVKhQAXfccQd++eUXk8cpw4q7du3CQw89hCpVqqBu3boAgB07duDhhx9G7dq1ERwcjNq1a+ORRx7BqVOnSrz+1q1bkZiYiKCgIP05mzdvHnQ6XYmenCVLliAxMREhISGoWLEiunXrht27d5d6fhYsWIB+/foBADp37gydTgedTocFCxbY9H737duHfv36ISwsDOHh4Rg/fjwKCgpw6NAhdO/eHZUqVULt2rXxzjvvmDx+06ZN0Ol0+O9//4vx48cjKioKwcHBSEpKMvseduzYgb59+yI8PBxBQUFo2bIlvv322xLvTafTYd26dXjiiSdQvXp1VKhQAXl5eTh69CiGDh2KhIQEVKhQATVr1kSfPn2wf/9+kzbdfvvtAIChQ4fqz83kyZMBWB6qffzxx1G7dm397ZMnT0Kn0+Gdd97Bm2++ifj4eAQGBmLjxo1WvxdL8vLyMHXqVDRq1AhBQUGoWrUqOnfujG3btpU49quvvkKjRo1QoUIFNG/eHD/++KPJ9605J8p50el0WLx4MSZOnIjo6GiEhoaia9euOHTokMmxQghMmzYNcXFxCAoKQps2bZCammr23OXk5OD5559HfHw8AgICULNmTYwdO9bk3yp5CEHk5goKCkRwcLBITExU9bhJkyaJ4r/iTz31lAAgRo8eLdasWSNmzZolqlevLmJjY8WFCxf0xyUlJYmqVauK6Oho8dFHH4m1a9eKMWPGCADimWeeMXnOxx9/XKSkpIjU1FSRmpoq3njjDREcHCymTJliclxSUpJISkoqs91vvPGG+OCDD8RPP/0kNm3aJGbNmiXi4+NF586d9cdcuHBBBAQEiIkTJ5o8tqCgQERHR4sHHnhAf99XX30ldDqduO+++8Ty5cvFqlWrRO/evYWvr69Yv359ifMVFxcnXnrpJZGamiq+//57IYQQS5cuFa+//rpYsWKF2Lx5s/jmm29EUlKSqF69usl527t3rwgKChLNmjUT33zzjVi5cqXo2bOnqF27tgAgTpw4oT/2rbfeEjqdTjzxxBPixx9/FMuXLxeJiYkiJCRE/PPPPxbPT2Zmppg2bZoAID799FOxfft2sX37dpGZmWnT+23QoIF44403RGpqqnjxxRf1vx8NGzYUH330kUhNTRVDhw4VAMR3332nf/zGjRsFABEbGyvuvfdesWrVKvHf//5X1KtXT4SGhopjx47pj92wYYMICAgQHTt2FEuWLBFr1qwRjz/+uAAgvvjiC/1xX3zxhQAgatasKZ566inx888/i2XLlomCggKxefNm8dxzz4lly5aJzZs3ixUrVoj77rtPBAcHi3///VcIIUR2drb+OV599VX9uTlz5owQwvLv4JAhQ0RcXJz+9okTJ/Tt6Ny5s1i2bJlYt26dOHHihNXvxZxbt26Jzp07Cz8/P/H888+L1atXi5UrV4pXXnlFLF68WH8cAFG7dm3Rtm1b8e2334rVq1eLTp06CT8/P5Pzas05Mf5Z1a5dWzz66KPip59+EosXLxa1atUSCQkJoqCgQH/shAkTBADx1FNPiTVr1oi5c+eKWrVqiRo1apicu9zcXNGiRQtRrVo1MWPGDLF+/Xrx4YcfirCwMNGlSxdRVFRU6rkg98IwRG4vIyNDABAPP/xwie8VFBSIW7du6b+M/wMqHoYOHjwoAIhRo0aZPMcff/whAIhXXnlFf19SUpIAIH744QeTY5988knh4+MjTp06ZbathYWF4tatW2Lq1KmiatWqJu2xNgwZKyoqErdu3RKbN28WAMTevXv133vggQdETEyMKCws1N+3evVqAUCsWrVKCCH/ww4PDxd9+vQp0c7mzZuLtm3b6u9Tztfrr79eZrsKCgrEtWvXREhIiPjwww/19/fr10+EhISYBKTCwkLRuHFjkzB0+vRp4efnJ5599lmT57169aqIiooS/fv3L/X1ly5dKgCIjRs3mtxvy/t9//33TY5t0aKFACCWL1+uv+/WrVuievXqJiFT+YBt1aqVyc/55MmTwt/fXwwfPlx/X8OGDUXLli3FrVu3TF6rd+/eokaNGvqfoRJkBg8eXOr7F0L+DPLz80VCQoIYN26c/v6//vrLYjBRG4bq1q0r8vPzTY619r2Ys3DhQgFAzJ07t9T3BkBERkaKnJwc/X0ZGRnCx8dHTJ8+3eLjLJ0T5WfVs2dPk+O//fZbAUBs375dCCHEpUuXRGBgoBgwYIDJcdu3bxcATM7d9OnThY+Pj/jrr79Mjl22bJkAIFavXl3qeyT3wmEy8mitW7eGv7+//uv999+3eKzSxf/444+b3N+2bVs0atSoxDBKpUqV0LdvX5P7Bg4ciKKiImzZskV/34YNG9C1a1eEhYXB19cX/v7+eP3115GVlYXMzEzV7+n48eMYOHAgoqKi9M+XlJQEADh48KD+uKFDhyItLQ3r16/X3/fFF18gKioKPXr0AABs27YNly5dwpAhQ1BQUKD/KioqQvfu3fHXX3+V6NJ/8MEHS7Tp2rVreOmll1CvXj34+fnBz88PFStWRG5urkmbNm/ejC5duqBatWr6+3x8fNC/f3+T51u7di0KCgowePBgk3YFBQUhKSkJmzZtUn3ebH2/vXv3NrndqFEj6HQ6/TkEAD8/P9SrV8/ssODAgQNN6nni4uLQoUMH/e/b0aNH8e+//+LRRx8FAJN29ezZE+np6SWGasz9DAoKCjBt2jQ0btwYAQEB8PPzQ0BAAI4cOWLyM9BS37594e/vr79ty3sx9vPPPyMoKAhPPPFEma/duXNnVKpUSX87MjISERERJj8Dteek+L/nZs2aAYD+OX///Xfk5eWV+H1t3769yTAiAPz4449o0qQJWrRoYXIeunXrBp1OZ/PvMLkGC6jJ7VWrVg3BwcFmP4i+/vprXL9+Henp6SX+oysuKysLAFCjRo0S34uOji7x/JGRkSWOi4qKMnmuP//8E8nJyejUqRPmzp2LmJgYBAQE4Pvvv8dbb72FGzduWPcm/+fatWvo2LEjgoKC8Oabb6J+/fqoUKECzpw5gwceeMDk+Xr06IEaNWrgiy++QHJyMi5fvoyVK1fiP//5D3x9fQEA58+fBwA89NBDFl/z0qVLCAkJ0d82d34GDhyIX375Ba+99hpuv/12hIaGQqfToWfPniZtysrKMnveit+ntEupbynOx8e2v9Nseb/h4eEm3w8ICECFChUQFBRU4v6cnJwSz6f8ThS/b+/evSZtev755/H888+bbZNxfRdg/mcwfvx4fPrpp3jppZeQlJSEKlWqwMfHB8OHD1f9e2at4u2w5b0Yu3DhAqKjo636+VatWrXEfYGBgSbvVe05Kf6cSjG4cqzy79ra3+GjR4+ahEVjpZ0Hcj8MQ+T2fH190aVLF6xbtw7p6ekm/0E3btwYAKyaYq38R5ieno6YmBiT7507d86kNwMw/MdvLCMjw+S5vvnmG/j7++PHH380+fD8/vvvy35jZmzYsAHnzp3Dpk2b9L1BAHDlypUSx/r6+mLQoEH46KOPcOXKFXz99dfIy8vD0KFD9cco7+njjz9G+/btzb5m8f/ki89ays7Oxo8//ohJkybh5Zdf1t+fl5eHS5cumRxbtWrVUs9b8XYtW7YMcXFxZttlC1ver72KvzflPuV3RGnThAkT8MADD5h9jgYNGpjcNjdz7L///S8GDx6MadOmmdx/8eJFVK5c2aq2BgUFITs7u8T9lj64i7fDlvdirHr16ti6dSuKiopsDrzGtDgnxpSfmaXfYePeIeWPtPnz55t9ruL/n5B7YxgijzBhwgT8/PPPGDlyJJYtW2bxr7HSdOnSBYD8D9S4R+Kvv/7CwYMHMXHiRJPjr169ipUrV5r0OH399dfw8fHBXXfdBUB+WPj5+el7YgD5V+ZXX32lun3K8wEoMX159uzZZo8fOnQo3nnnHSxevBgLFixAYmIiGjZsqP/+HXfcgcqVK+PAgQM2L2Kn0+kghCjRpnnz5pWYWZeUlITVq1fj4sWL+g+DoqIiLF261OS4bt26wc/PD8eOHTM7JFSW4n/RK7R4v2otXrwY48eP1//sTp06hW3btmHw4MEAZDhISEjA3r17S3xoq6HT6Ur8DH766SecPXsW9erV099n6dwAQO3atbF06VLk5eXpj8vKysK2bdsQGhpaZhvsfS89evTQ/65aM1RWFmvPibXatWuHwMBALFmyxCTs/f777zh16pRJGOrduzemTZuGqlWrIj4+3ub3QO6BYYg8wh133IFPP/0Uzz77LFq1aoWnnnoKt912G3x8fJCeno7vvvsOAEr9D71BgwZ46qmn8PHHH8PHxwc9evTAyZMn8dprryE2Nhbjxo0zOb5q1ap4+umncfr0adSvXx+rV6/G3Llz8fTTT6NWrVoAgF69emHGjBkYOHAgnnrqKWRlZeG9996zeS2WDh06oEqVKhg5ciQmTZoEf39/LFq0SD/kUlzDhg2RmJiI6dOn48yZM5gzZ47J9ytWrIiPP/4YQ4YMwaVLl/DQQw8hIiICFy5cwN69e3HhwgV8/vnnpbYpNDQUd911F959911Uq1YNtWvXxubNm5GSklLir++JEydi1apVuPvuuzFx4kQEBwdj1qxZ+jodpTegdu3amDp1KiZOnIjjx4+je/fuqFKlCs6fP48///wTISEhmDJlisU2KauDz5kzB5UqVUJQUBDi4+NRtWpVu9+vWpmZmbj//vvx5JNPIjs7G5MmTUJQUBAmTJigP2b27Nno0aMHunXrhscffxw1a9bEpUuXcPDgQezatatEWDSnd+/eWLBgARo2bIhmzZph586dePfdd0v0ciqrsy9atAiNGjVCxYoVER0djejoaAwaNAizZ8/GY489hieffBJZWVl45513rApCWryXRx55BF988QVGjhyJQ4cOoXPnzigqKsIff/yBRo0a4eGHH7a6HWrOibWUpRWmT5+OKlWq4P7770daWhqmTJmCGjVqmPRmjR07Ft999x3uuusujBs3Ds2aNUNRURFOnz6NdevW4bnnnkO7du1sage5gKsruInU2LNnjxg6dKiIj48XgYGBIigoSNSrV08MHjxY/PLLLybHmptaX1hYKN5++21Rv3594e/vL6pVqyYee+wx/dRjRVJSkrjtttvEpk2bRJs2bURgYKCoUaOGeOWVV0rMopk/f75o0KCBCAwMFHXq1BHTp08XKSkpJaaSWzubbNu2bSIxMVFUqFBBVK9eXQwfPlzs2rXL4gyhOXPmCAAiODhYZGdnm33OzZs3i169eonw8HDh7+8vatasKXr16iWWLl1a4nwZzwRTpKWliQcffFBUqVJFVKpUSXTv3l38/fffIi4uTgwZMsTk2F9//VW0a9dOBAYGiqioKPHCCy+It99+WwAQV65cMTn2+++/F507dxahoaEiMDBQxMXFiYceeshkCrwlM2fOFPHx8cLX17fEubHn/Q4ZMkSEhISUeD3ld0KhzFD66quvxJgxY0T16tVFYGCg6Nixo9ixY0eJx+/du1f0799fRERECH9/fxEVFSW6dOkiZs2apT9GmU1WfIaSEEJcvnxZDBs2TERERIgKFSqIO++8U/z6669mf68WL14sGjZsKPz9/QUAMWnSJP33vvzyS9GoUSMRFBQkGjduLJYsWWJxNtm7775boh3WvhdLbty4IV5//XWRkJAgAgICRNWqVUWXLl3Etm3b9MfAzBIWQogSv2/WnhPlZ2X88zd+n8a/O0VFReLNN98UMTExIiAgQDRr1kz8+OOPonnz5uL+++83efy1a9fEq6++Kho0aCACAgJEWFiYaNq0qRg3bpzIyMgo81yQ+9AJYePKcEREVkpOTsbJkydx+PBhVzdFM5s2bULnzp2xdOnSUgu2yfOdOHECDRs2xKRJk/DKK6+4ujnkABwmIyJNjR8/Hi1btkRsbCwuXbqERYsWITU1FSkpKa5uGlGZ9u7di8WLF6NDhw4IDQ3FoUOH9EOJw4YNc3XzyEEYhohIU4WFhXj99deRkZEBnU6Hxo0b46uvvsJjjz3m6qYRlSkkJAQ7duxASkoKrly5grCwMHTq1AlvvfWW5jMRyX1wmIyIiIi8GlegJiIiIq/mUWFoy5Yt6NOnD6Kjo6HT6cpc2G758uW45557UL16dYSGhiIxMRFr1651TmOJiIjII3hUGMrNzUXz5s3xySefWHX8li1bcM8992D16tXYuXMnOnfujD59+mD37t0ObikRERF5Co+tGdLpdFixYgXuu+8+VY+77bbbMGDAALz++utWHV9UVIRz586hUqVKZpfIJyIiIvcjhMDVq1et2g/Pq2aTFRUV4erVqyU2ZizNuXPnEBsb68BWERERkaOcOXOmzFXJvSoMvf/++8jNzUX//v0tHpOXl4e8vDz9baXj7MyZM6qWrCciIiLXycnJQWxsLCpVqlTmsV4ThhYvXozJkyfjhx9+QEREhMXjpk+fbnZPpNDQUIYhIiIiD2NNiYtHFVDbasmSJRg2bBi+/fZbdO3atdRjJ0yYgOzsbP3XmTNnnNRKIiIicoVy3zO0ePFiPPHEE1i8eDF69epV5vGBgYE27zhOREREnsejwtC1a9dw9OhR/e0TJ05gz549CA8PR61atTBhwgScPXsWCxcuBCCD0ODBg/Hhhx+iffv2yMjIAAAEBwcjLCzMJe+BiIiI3ItHDZPt2LEDLVu2RMuWLQEYNoRUpsmnp6fj9OnT+uNnz56NgoICPPPMM6hRo4b+6z//+Y9L2k9ERETux2PXGXKWnJwchIWFITs7mwXUREREHkLN57dH9QwRERERaY1hiIiIiLwawxARERF5NYYhIiIi8moMQ0REROTVGIaIiIjIqzEMERERkTppacDGjfKyHGAYIiIiIuulpABxcUCXLvIyJcXVLbIbwxARERFZJy0NeOopoKhI3i4qAkaM8PgeIoYhIiIiss6RI4YgpCgsBIz2DfVEDENERERknYQEwKdYdPD1BerVc017NMIwRERE5M7cqVg5JgZ48EHDbR8fYPZseb8HYxgiIiJyV+5YrBwUZLg+fjwwbJjr2qIRhiEiIiJ35K7Fynv3Gq7n5rquHRpiGCIiInJH7lisnJ8PHDxouH3unOvaoiGGISIiInfkjsXK//4L3LpluM0wRERERA4TEwO8847pfR9/7NpiZWWILDRUXjIMERERkUMlJprerl/fNe1QKGGoa1d5mZFRcijPAzEMERERuauTJ01v//KLS5qht2+fvLznHkCnkzVMFy64tk0aYBgiIiJyV0oYqlhRXm7Y4LKmADD0DLVuDURGyuvlYKiMYYiIiMhdnTghL/v3l5d//QVkZ7umLefPA5mZsqj7ttuA6Gh5P8MQEREROYzSM3TXXXIWWVERsHmza9qi9AolJAAVKjAMERERkRMoYah2beDuu+V1Vw2VKWGoeXN5yTBEREREDlVUBJw6Ja/HxxvCkKuKqJXi6WbN5CXDEBERETlUerpc4NDPTwaPTp3k/X//Let3nK14z1CNGvKSYYiIiIgcQhkii42Vgah6dUMQ2bjRuW3JyzNsw8FhMiIiInIK43ohhauGyv79FygoACpXNqyAzTBEREREDqVMqzcOQ126yEtnF1EbD5HpdPK6EoYyM2VQ8mAMQ0RERO7IXM/QXXfJzVqPHy+5OrUjKWFIKZ4G5LCdr68s9M7MdF5bHIBhiIiIyB2ZC0OVKgFt28rrzuwdUmaSKfVCgAxCUVHyuocPlTEMERERuSMlDMXHm97v7LohIUrOJFOUk7ohhiEiIiJ3U1gInD4trxv3DAGmiy8K4fi2nD8vN2NVtuEwxjBEREREDlF8jSFj7dsDQUFARoZhursjKb1C9esDwcGm32MYIiIiIodQhshq1ZK1OcaCgoA775TXnTFUZq54WsEwRERERA5hblq9MWWKvTPCkLniaUU5WYWaYYiIiMjdmJtJZkypG9q0SdYXOZKl4mmAPUNERETkIGWFoVatgLAwIDsb2LXLce3Iy5OrTwMcJiMiIiInsjStXuHnByQlyeuOXG/o4EG5unSVKoZtOIwpYejCBSA/33HtcDCGISIiIndTVs8Q4Jz1hsxtw2GsalXA319eP3/ece1wMIYhIiIid1LaGkPGlCLqrVvlcJYjKMXT5obIALn2UDkoovaoMLRlyxb06dMH0dHR0Ol0+P7778t8zObNm9G6dWsEBQWhTp06mDVrluMbSkREZKtz5+TQlL+/IWiYc9ttQGQkcOMG8PvvjmlLacXTinJQN+RRYSg3NxfNmzfHJ598YtXxJ06cQM+ePdGxY0fs3r0br7zyCsaMGYPvvvvOwS0lIiKykTKt3twaQ8Z0OsdOsTfehsNSzxBQLsKQn6sboEaPHj3Qo0cPq4+fNWsWatWqhZkzZwIAGjVqhB07duC9997Dgw8+6KBWEhER2cGaeiFFly7A4sWyiHrqVG3bkZEBXLxofhsOY+UgDHlUz5Ba27dvR3Jyssl93bp1w44dO3Dr1i2zj8nLy0NOTo7JFxERkdOoCUNKEfUffwDXrmnbDqVXqEGDkttwGGMYcm8ZGRmIjIw0uS8yMhIFBQW4ePGi2cdMnz4dYWFh+q/Y2FhnNJWIiEgqa1q9sfh4GZoKCoAtW7RthzVDZADDkCfQFZsKKP63w2/x+xUTJkxAdna2/uvMmTMObyMREZGemp4hwHQXey2Vtg2HMc4mc29RUVHIyMgwuS8zMxN+fn6oWrWq2ccEBgYiNDTU5IuIiMhpbA1D338PpKVp1w5rZpIB7Blyd4mJiUhNTTW5b926dWjTpg38lUWiiIiI3EVBAaCMSFgbhtLT5eWxY0BcHJCSYn87bt4sfRsOY0oYunRJPs4DeVQYunbtGvbs2YM9e/YAkFPn9+zZg9P/W5xqwoQJGDx4sP74kSNH4tSpUxg/fjwOHjyI+fPnIyUlBc8//7wrmk9ERFS6s2etW2NIkZYGvPCC4XZRETBihP09RAcPysUfw8OBmjVLP7ZKFSAwUF4vNhrjKTwqDO3YsQMtW7ZEy5YtAQDjx49Hy5Yt8frrrwMA0tPT9cEIAOLj47F69Wps2rQJLVq0wBtvvIGPPvqI0+qJiMg9KUNkcXFySntZjhyRAchYYSFw9Kh97TAunrZQY6un03n8UJlHrTPUqVMnfQG0OQsWLChxX1JSEnY5ckdfIiIiraitF0pIkKHJOBD5+gL16tnXDmuLpxXR0XKxSA8NQx7VM0RERFSuqZlWD8id5OfMMe1Fmj3b/A7zalhbPK3w8J4hhiEiIiJ3obZnCACGDQN27jTcHjjQvjZYuw2HMYYhIiIi0oQtYQiQPThVqsjrhw/b14b0dCArSw63lbYNhzGGISIiItKErWFIpwMaNZLXlSnxtjLehiMoyLrHMAwRERGR3WxZY8hYw4by8uBB+9qhdogM8PhVqBmGiIiI3EFampwWHxAAREWpf7xWPUO//y4v1QQy9gwRERGR3dSuMVScFj1DKSnADz/I62+/bf1q1koYys4Grl+3/fVdhGGIiIjIHaidVl+c0jN06JDsYVIrLQ146inDbSGsX806NBSoUEFeV7YH8SAMQ0RERO7A1uJpRe3acluMvDzg1Cn1j7dnNWsPX4WaYYiIiMgd2BuGfH2B+vXldVuGyhISSm69oWY1a4YhIiIisou9YQiwr4g6JgZISjLc9vVVt5o1wxAREZGRtDRg40b7d0/3JidOyEt7wpC9RdR5efJy4kQZzoYNs/6xDENERET/k5IiZ0R16SIvrZ2R5M1u3TIER1f1DBUWGtYYevRR9fubMQwRERHBMCNJKcQtKrJ+RpI3S0uT5yowEIiMtP15jHuGhFD32CNH5LT4ChUMtUdqMAwRERHBvhlJ3sy4XsiWNYYU9evLIuhLl4CLF9U9dvduedm8uawXUsuDV6FmGCIiIu0kJJT8MFczI8lbaVE8Dchenbg4eV1t3ZAShlq2tO212TNEREQEWWcyZ47htk6nbkaSt9IqDAG21w3t2iUvbQ1DSs/QtWvA1au2PYeLMAwREZG2hg0DQkLk9aQkdTOSvJUWM8kUtswoE8L+nqFKleQX4HGrUNsVho4ePYq1a9fixo0bAAChtliLiIjKnxs3gNxceT0/37Vt8RSu7hk6c0bWGfn5AU2a2P7aaofK3GQJBpvCUFZWFrp27Yr69eujZ8+eSP9fAhw+fDiee+45TRtIREQeJjPTcD0723Xt8CRahiFbeoaUXqHGjeWMNlupCUNutASDTWFo3Lhx8PPzw+nTp1FB2ZgNwIABA7BmzRrNGkdERB7IOAzl5LiuHZ4iPx84e1Ze17Jn6NQpQw9dWewdIlNYG4bcbAkGm8LQunXr8PbbbyOmWEFcQkICTtmyORwREZUfDEPqKGsMBQXZt8aQolo1+QUAhw9b9xhnhyE3W4LBpjCUm5tr0iOkuHjxIgLt6V4jIiLPVzwMFf/QI1PGQ2TFN0q1ldqhMmeHITdbgsGmMHTXXXdh4cKF+ts6nQ5FRUV499130blzZ80aR0REHuj8ecN1IawfqvFWWtYLKdQUUWdlyQJqAGjRwr7XtTYMxcQADz9suK12U1iN+dnyoHfffRedOnXCjh07kJ+fjxdffBH//PMPLl26hN9++03rNhIRkScx7hkCZO+QMuWaStJyWr1CTc+Q0itUty4QGmrf66opoFbqpJ5+GnjlFZeuRWVTz1Djxo2xb98+tG3bFvfccw9yc3PxwAMPYPfu3ahbt67WbSQiIk9SPAxxRlnpXN0zpNUQGWC6JUdpy+1kZABbtsjrL7/s8kU5beoZAoCoqChMmTJFy7YQEVF5YK5niCxzRBhSeoYOHwYKCuT6QZYoYahVK/tfVwlDN27IEFy5svnjli+XYaldO6BWLftf1042h6ErV67gzz//RGZmJoqKFccNHjzY7oYREZGHYhhSxxFhKC5Ozk67eVM+f2mFyfZuw2GsQgUZgK5ckatQWwpDS5fKy4cesv81NWBTGFq1ahUeffRR5ObmolKlStAZVb/rdDqGISIib6YUUFesKPep4jCZZcZrDMXHa/e8Pj5AgwbA3r2ybshSGLp2zTD9XoswBMi6oStX5FCZMlxn7Px5wxCZm4Qhm2qGnnvuOTzxxBO4evUqrly5gsuXL+u/Ll26pHUbiYjIUxQVARcuyOsJCfKSPUOWnTkjh4uCg4Hq1bV9bmvqhvbtk69fo4Y2axwBZRdRr1ghf09uv13b3jA72BSGzp49izFjxphda4iIiLzY5cty8TxAzk4CGIZK44g1hhTWzCjTsnhaUVYYUobI+vXT7jXtZFMY6tatG3bs2KF1W4iIyNMp9UKVKxt6OjhMZpkjptUrrOkZcnYYyswENm2S191kiAywsWaoV69eeOGFF3DgwAE0bdoU/v7+Jt/v27evJo0jIiIPo4ShiAjDmjXsGbLMEcXTCiUMHTwoh8LM9Tw5OwwpQ2StW2tbI2Unm8LQk08+CQCYOnVqie/pdDoUKl2kRETkXZTi6chIQxhiz5BlBw7IS0uzruyhbHlx5YoMqcVrgm7dAv7+W153VhhatkxeutEQGWDjMFlRUZHFLwYhIiIvZtwzFBYmr7NnyLyUFNlTAgD/93/ytpaCggy9L+bqhg4ckLPZwsK07aWxFIYuXgQ2bpTX3WiIDLAxDBEREZnFYTLrpKUBTz1luC0EMGKEvF9LpRVRK0NkLVpoW7xtaRXqFStkcX3Llobiejdh9TDZRx99hKeeegpBQUH46KOPSj12zJgxdjeMiIg8kLkwxGGyko4ckbUzxgoLgaNHtd2aolEj4KefzBdRO6JeCDCEofx84NIloGpVedsNZ5EprA5DH3zwAR599FEEBQXhgw8+sHicTqdjGCIi8lYcJrNOQoLsjTHuOfH1LX2laFtY0zOkdRgKDJQBKCtL9g4p1zdskN/35DB0Qpn+V+w6ERGRnrkCaoahkmJigI4dDSsx+/oCs2drv2Gppen1RUXAnj3yuhZ7khUXHS0DUHo60LQp8P33suerRQvtA58GWDNERETa4TCZ9ZRtOKZNk1Pshw3T/jWUnqEzZ+TWG4pjx4CrV2WRtXKMlooXUbvZXmTFWd0zNH78eKufdMaMGTY1xhqfffYZ3n33XaSnp+O2227DzJkz0bFjR4vHL1q0CO+88w6OHDmCsLAwdO/eHe+99x6qKmOYRESkHXPDZNeuyV4BX1/XtcvdnDolA4mvLzB6NFCpkmNeJzxc/iwyM4FDh+T6PoBhiKxp09J3tLeVcRi6dAn45Rd52w2HyAAVYWi3cuLKoNN6OXEjS5YswdixY/HZZ5/hjjvuwOzZs9GjRw8cOHAAtWrVKnH81q1bMXjwYHzwwQfo06cPzp49i5EjR2L48OFYoUxnJCIibdy8aRgSi4iQO5grrl0zhCMy1M+0beu4IKRo2FCGoYMHS4YhreuFFMZh6PvvgYICoFkzoH59x7yenawOQxuVtQFcaMaMGRg2bBiGDx8OAJg5cybWrl2Lzz//HNOnTy9x/O+//47atWvrC7rj4+MxYsQIvPPOO05tNxGRV1A2aPX3l4sI6nRAQICcVZSdzTBkTOkpuftux79Wo0ayNsm4bsiZYej4cXndTXuFADtrho4ePYq1a9fixo0bAABhXBWvsfz8fOzcuRPJyckm9ycnJ2Pbtm1mH9OhQwekpaVh9erVEELg/PnzWLZsGXr16mXxdfLy8pCTk2PyRUREVlCKpyMiDOvWcEZZSUI4PwwBhhllQjgvDP3zD7B+vbzupvVCgI1hKCsrC3fffTfq16+Pnj17Ij09HQAwfPhwPPfcc5o2UHHx4kUUFhYisthy4pGRkcjIyDD7mA4dOmDRokUYMGAAAgICEBUVhcqVK+Pjjz+2+DrTp09HWFiY/is2NlbT90FEVG4Z1wspOKOspH//BTIyZPFy+/aOfz2lQFrpGUpPlz8rHx9ZM+QIShg6fFhu+9GkiWMKtTViUxgaN24c/P39cfr0aVQwGhMeMGAA1qxZo1njzClekySEsFindODAAYwZMwavv/46du7ciTVr1uDEiRMYOXKkxeefMGECsrOz9V9nzpzRtP1EROVWaWGIM8oMlF6hO++UgcjRlJ6hI0dk7Y7SK9SwoWldl5aUhRcVbjxEBti4Ueu6deuwdu1axBRbDyEhIQGnTp3SpGHFVatWDb6+viV6gTIzM0v0FimmT5+OO+64Ay+88AIAoFmzZggJCUHHjh3x5ptvokbxHxaAwMBABAYGav8GiIjKO3NhiMNkJSnF0126OOf1YmJk6Ll+XdbvOHqIDACiokxvu3kYsqlnKDc316RHSHHx4kWHBYmAgAC0bt0aqampJvenpqaiQ4cOZh9z/fp1+PiYvkXf/03tdGR9ExGRV+IwWdkKCw2blTqjXgiQw2HGK1E7IwwtXGh620Jtr7uwKQzdddddWGj0RnU6HYqKivDuu++ic+fOmjWuuPHjx2PevHmYP38+Dh48iHHjxuH06dP6Ya8JEyZg8ODB+uP79OmD5cuX4/PPP8fx48fx22+/YcyYMWjbti2ilfFMIiLShvHq0woOk5navRu4ckX2mDli5WdLjOuGHB2Gim9CCzhmE1oN2TRM9u6776JTp07YsWMH8vPz8eKLL+Kff/7BpUuX8Ntvv2ndRr0BAwYgKysLU6dORXp6Opo0aYLVq1cjLi4OAJCeno7Tp0/rj3/88cdx9epVfPLJJ3juuedQuXJldOnSBW+//bbD2khE5LU4TFY2ZYgsKckxix1aotQNbd8OKFtqtWjhmNdy1ia0GrLpJ9G4cWPs27cPn3/+OXx9fZGbm4sHHngAzzzzjNk6HC2NGjUKo0aNMvu9BQsWlLjv2WefxbPPPuvQNhEREThMZg1nTqk3pvQM/fyzvIyLk6tTO0JCghyaMw5EjtiEVkM2x9KoqChMmTJFy7YQEZEn42yy0uXnA7/+Kq87q3haofQM5efLS0cO0cXEAHPmyKExZRsWR2xCqyGbaobWrFmDrVu36m9/+umnaNGiBQYOHIjLly9r1jgiIvIQQnCYrCy//w7cuCFrqm67zbmvXa+e7K1ROLJ4GpCbzp48KYvFHbUJrYZsCkMvvPCCfmXm/fv3Y/z48ejZsyeOHz+uakNXIiIqJy5flmvYAOwZskQZIuvSxbBCt7MEBgJ16xpuO2NB4ZgYoFMnt+4RUtg0THbixAk0btwYAPDdd9+hT58+mDZtGnbt2oWePXtq2kAiIvIASq9QWJj84FWwZsjA2esLFWe8JM6wYXIIy817bJzFpp6hgIAAXL9+HQCwfv16/X5h4eHh3MuLiMgbmRsiAzhMprh2TQ6TAc4vngbktPZ9+wy3i4rcfrq7M9nUM3TnnXdi/PjxuOOOO/Dnn39iyZIlAIDDhw+XWJWaiIi8gKUwxGEy6ddf5TBifLz8crYjR2RdlzE3n+7uTDb1DH3yySfw8/PDsmXL8Pnnn6NmzZoAgJ9//hndu3fXtIFEROQBygpD3t4z5OohMmW6uzE3n+7uTDb1DNWqVQs//vhjifs/+OADuxtEREQeyNzq04BhmOz6ddkz4syFBt2Jq9YXUnjgdHdnsvu38saNG7h165bJfaHKXwJEROQdyuoZAmTvkKMW+ktLk0NBCQnu9wGflQXs2SOvO3DLqjINGwZ06yaHxurVc7/z5EI2b9Q6evRoREREoGLFiqhSpYrJFxEReRlLYcjfHwgOltcdNVSWkiJXVO7SRV6mpDjmdWy1aZOs17nttpK7uTubB013dyabwtCLL76IDRs24LPPPkNgYCDmzZuHKVOmIDo62mQDVyIicpK0NLnAnatmB1kKQ4Bj64aUTUGVrR/ccZaUq4fIqEw2haFVq1bhs88+w0MPPQQ/Pz907NgRr776KqZNm4ZFixZp3UYiIiqNO/SMWBOGHDGjrLRNQd2Fq4unqUw2haFLly4h/n9TA0NDQ3Hp0iUAcsr9li1btGsdERGZV1QE7N4NTJgADB/u+p4RSwXUgGPXGkpIKLmaszvNkjp7Fjh0SM7kSkpydWvIApsKqOvUqYOTJ08iLi4OjRs3xrfffou2bdti1apVqFy5ssZNJCLyYsaFwb6+wLp18is1FbhwwfxjnL1+TF6eodfH2cNkNWvKouysLHlbp3OvWVJKr1Dr1gA/H92WTWFo6NCh2Lt3L5KSkjBhwgT06tULH3/8MQoKCjBjxgyt20hE5J1SUkzrYYqrWBFITATWrzddUM/ZPSNKKPPzM/+B78hhssOHDUEIAPr2da8tJlgv5BFsCkPjxo3TX+/cuTMOHjyInTt3om7dumjevLlmjSMi8lrFC4MVzZoBffoAyclA+/ZAQIAMTU8+KQORK3pGlHqh6tVLLuwHOHaYbO1aeenvD9y6BWRkaP8athKCYchDaLL6VVxcHOLi4rR4KiIiAswXBgPAhx/KqdHGhg2TH7xPPimnbg8d6pQm6pVWPA04dphszRp52a8f8PXXwLFj2r+GrY4elaE2IADo0MHVraFS2FRADQC//PILevfujbp166JevXro3bs31q9fr2XbiIi8l9rtEx59VA6bpacDf/7p+PYZK614GnDcMNnNm3INHwAYNUpeXrzoPlt/KL1CHTqY7hhPbsfmvcm6d++OSpUq4T//+Q/GjBmD0NBQ9OzZE5988onWbSQi8j4xMYDxFkdlbZ8QHCyHzwBg6VLHt89YWT1Djhom+/VX4MYNIDpaBo5q1eT9x49r+zq2WrVKXrZp49p2UJlsCkPTp0/HBx98gMWLF2PMmDEYM2YMvv76a3zwwQeYNm2a1m0kIvJObdvKy6pVgZMnyy4MfugheblsWckdyh3JVcNkyhBZt26yVqpuXXnbHcLQ3LnA6tXy+owZ7rcqNpmwKQzl5OSY3Z0+OTkZOe7SPUlE5OkOHZKXzZpZVxDdowcQEgKcPg389Zdj22bM2jCk9TCZEoaUz6M6deSlq+uG0tKAkSMNt91xVWwyYVMY6tu3L1asWFHi/h9++AF9lG5aIiKyjxKGGjSw7vjgYKB3b3ndmUNlShiyVDPkiGGyM2eAAwdkXVXXrvI+d+kZOnzY/VfFJhNWzyb76KOP9NcbNWqEt956C5s2bUJiYiIA4Pfff8dvv/2G5557TvtWEhF5I7VhCJCzqpYskWHonXdKrs7sCEoBtTN7hpQp9e3ayUUXAffpGTp9uuR97rQqNpVgdRj6wLiQD0CVKlVw4MABHDhwQH9f5cqVMX/+fLz66qvatZCIyFvZEoZ69JAzl06dAnbudE7xritqhozrhRTu0DNUVATMnCmv63Sydqus4ndyOavD0IkTJxzZDiIiMmY8rKImDFWoAPTqJXuGli51fBgSwvmzyQoK5KrbgKFeCDD0DJ06JY/x02QpPXWWLgX27pUBcOtWuTp2vXoMQm7O5nWGiIjIgU6flnt+BQTInejV6NdPXi5d6vhZZdnZcuVnoOyeoZs3gfx8+1/zjz/k64aHm4a96GggMFAGoTNn7H8dtQoKgNdfl9efew5o2lQukMkg5PYYhoiI3JEyRFavnhxmUaNnT1lMfeIEsGuX9m0zpvQKhYYCQUHmj6lUyXBdi94hZYgsOdn03Pj4APHx8ror6oa++koWT1etCowd6/zXJ5sxDBERuSNb6oUUISFyqAyQaw45UlnF04AcrgoJkde1DEPG9UIKV9UN5eUBU6bI6xMmGHrDyCMwDBERuSN7whBgWIBR7VBZWhqwcaP1a+KUVS+k0GpG2YULsjAcMB+GXDWjbO5cWasUHW3YGoQ8BsMQEZE7sjcM9eolh62OHQP27LHuMSkpsj6pSxd5ac2qyWrDkL09Q6mpMtw1bw7UqFHy+67oGbp+HXjrLXn91VflECV5FJtK7Y8cOYJt27YhIyMDOp0OkZGR6NChAxISErRuHxGRd7I3DFWsKGuHli+XvUMtW5Z+fFoa8NRThsUClVWTu3UrvQDY2jCk1Yyy4qtOF+eKnqFPPgEyMoDatcveMoXckqowlJ2djcGDB2PVqlUICwtDREQEhBC4cOECcnJy0KdPHyxcuBChHCslIrLdtWvA2bPyuq1hCJCzypQw9NZbpS/AuH695VWTrQlDllafVmgxTFZUZFhs0dwQGWDoGTp2TPYgOXrRyexs4O235fUpU+TsP/I4qobJnn32WZw4cQLbt2/H5cuXcejQIRw+fBiXL1/Gtm3bcOLECTz77LOOaisRkXc4ckReVqtmWF3ZFr16yanmR48C+/ZZPu7MGVn0W5w1qyZbU0ANaDNMtnevDF8hIcAdd5g/RplNlpMDXLpk+2tZa8YM+TqNGgGPPur41yOHUBWGVq5ciblz56Jdu3YlvteuXTvMnj0bP/zwg2aNIyLySsoQWf369j1PpUpyRWrA8l5lWVmylyUjQ/buGPekWLNqsjOHyZQhsrvvttwDExwsi5gBxw+VXbwowxAATJ2qfgkEchuqC6h1pXQ5lvY9IiKykr31QsZKW4AxN1f2Hh08CNSsCfz5J/D77/J7Oh3Qv3/Zz+/M2WRl1QspnFVE/fbbckizZUvggQcc+1rkUKrCUJ8+ffDkk09ix44dJb63Y8cOjBw5En379tWscUREXknLMNS7txwqO3wY+Ptvw/23bsmg9McfQJUqwLp1QK1aQNu2cqhJCGDbtrKf31mzyXJyDO2xVC+kcEYR9Y4dwIcfyutvvSUXfCSPpeqn9/HHHyM6Ohpt27ZFeHg4GjZsiEaNGiE8PBzt2rVDjRo1THa3JyIiG2gZhkJDDeFBGSorKgKeeAL4+Wc5rPTTT0DjxobH3HWXvNy8ufTnzs8HLl+W18sqoLZ3mGzDBrndRUKCIexY4uieoZQUGRqVbUiUYnfyWKpmk1WuXBk///wzDh48iN9//x0ZGRkAgKioKCQmJqJhw4YOaSQRkdcQQvbiANqEIUD2AK1cKcPQlCnA888D//2vrHFZuhRITDQ9PikJ+PJLYMuW0p/3wgV56esre5dKY+8wmbVDZIBje4aUJQiMhxxHjpTt4h5kHsumdYYaNWqERo0aad0WIiJKT5d1KL6+hh4Oe/XpIwuO//1X1gj9/LO8f/58w7YdxpSeoT//BG7csLyIoDJEVr162cNE9gyTCaEuDDmyZ+jIEduWICC3pnqQUwiB1NRUTJkyBU8//TRGjRqFKVOmYP369RCO3h0ZwGeffYb4+HgEBQWhdevW+PXXX0s9Pi8vDxMnTkRcXBwCAwNRt25dzJ8/3+HtJCKyiTJEFh+v3Zo1YWFy6jdgCEL9+gGDB5s/vk4dOSPr1i1ZU2SJtfVCShsA28LQ4cNyq4uAANlrVRalZygtTe4ZpiVziwtbswQBuTVVYejs2bNo1aoVevTogRUrVuD48eM4evQoVqxYge7du6NNmzY468Cx0yVLlmDs2LGYOHEidu/ejY4dO6JHjx44ffq0xcf0798fv/zyC1JSUnDo0CEsXryYw3lEZJnavbm0ptW0emNpaSXXGVq+3PJ71OkMvUOlDZWpCUP2DJN98428bNvWsOFraapXlytwCwGcPKn+9UoTE2P6fn19rVuCgNyaqjA0atQohIeH48yZM9izZw/Wrl2LdevWYc+ePThz5gwqV66MZ555xlFtxYwZMzBs2DAMHz4cjRo1wsyZMxEbG4vPP//c7PFr1qzB5s2bsXr1anTt2hW1a9dG27Zt0aFDB4e1kYg8mC17c2lNy+JpxZEjJafVK0M7lqgJQ2UVTwO2D5OlpACTJ8vrv/1m3c9Ep3Nc3VB2tuF9f/+9DFvcgsPjqQpDv/zyC2bMmIEaZjbHq1GjBt577z2sX79es8YZy8/Px86dO5GcnGxyf3JyMrZZmP65cuVKtGnTBu+88w5q1qyJ+vXr4/nnn8eNGzcsvk5eXh5ycnJMvojIC1jam8vZPUSOCEMJCSVresoa2lHC0LZtctaYOdauPg0Yhsmys0sGM0uUn4lCCOt/Jo6qG9q1S17Wrg3cey97hMoJVWEoODgYl0pZ3vzy5csIdtBuvRcvXkRhYSEii/0FEhkZqZ/VVtzx48exdetW/P3331ixYgVmzpyJZcuWldp7NX36dISFhem/YmNjNX0fROSmSiuMdSZHhKGYGGDOHMMKydYM7TRuLLcDuXED2LnT/DG2DJPdumV9HY89PxNH9Qwp6+y1aaPt85JLqQpDDz/8MIYMGYJly5Yh22jcNzs7G8uWLcPQoUMxcOBAzRtprPgq10IIiytfFxUVQafTYdGiRWjbti169uyJGTNmYMGCBRZ7hyZMmIDs7Gz915kzZzR/D0TkhhISSm7q6ezC2Lw8Q42LlmEIkEM5J0/KeihrhnZ0OqBjR3nd0lCZmjBUsaLhurU97vb8TBzVM8QwVC6pCkPvv/8+evXqhUcffRTh4eEIDg5GcHAwwsPD8eijj6JXr1549913HdLQatWqwdfXt0QvUGZmZoneIkWNGjVQs2ZNhCnds5DLAgghkGahmzUwMBChoaEmX0TkBWJiDDOuAPkh7OzC2GPHZE9IpUpAVJT2zx8TA3TqZP17KqtuSE0Y8vWV7wuwvog6JsZ0SxA1xcrsGSIVVK0zFBAQgM8//xxvv/02duzYgfP/Gy+OiopC69atHRocAgIC0Lp1a6SmpuL+++/X35+amop7773X7GPuuOMOLF26FNeuXUPF//1VcvjwYfj4+CCG47xEVJxxj3FAgPP3mzIeInOHvR6VMLR1qxyeKr4RqZoCakAOlV29qq6IWvm/ul8/uSmqtf93G/cMCaHN+bx0ydDT1KqV/c9HbsOmzVRCQ0PRpUsXPPLII3jkkUfQuXNnp/SgjB8/HvPmzcP8+fNx8OBBjBs3DqdPn8bIkSMByCGuwUbrZgwcOBBVq1bF0KFDceDAAWzZsgUvvPACnnjiCYfVNhGRh8rPl2vZAEBsrByyWrjQuW1wxLR6ezRvLntzcnJKTs0XQl0BNWDbjDKlFz8xUV0vXVycLBq/cQOwUFeqmlI8Xbdu2Stuk0dRvQJ1bm4uvv76a2zbtg0ZGRnQ6XSIjIzEHXfcgUceeQQh1qwBYaMBAwYgKysLU6dORXp6Opo0aYLVq1cjLi4OAJCenm6y5lDFihWRmpqKZ599Fm3atEHVqlXRv39/vPnmmw5rIxF5qJMn5RBVhQrAyy8DzzwDzJoFjBnjvF4aRxRP28PXF7jzTrlQ45Ytcnd2RU6OYZZZ9erWPZ/xjDJrKWFIbW++v7/cePbkSdmbY2YWtGocIiu3VPUMHThwAPXr18eLL76Iy5cvo1atWoiJicHly5fxwgsvoEGDBjhw4ICj2gpArnV08uRJ5OXlYefOnbhL6cYFsGDBAmzatMnk+IYNGyI1NRXXr1/HmTNn8P7777NXiIhKUmYo1asHPPaYXNzv33+BMla515S7hSHAsOJz8U1blSGyihVlgLSGLT1DyiQWW2b2KkNlWtUNMQyVW6p6hp555hncdddd+PLLLxFQbJn4/Px8PP7443jmmWewceNGTRtJ5NXS0uQU44QE71zTxFnvX/nArFdPfmgPHAjMnSt7h4z+6HIodwxDxkXUxrU3aoqnFWq35CgsBM6dk9dt+dnXqQP88gvDEJVJVc/QH3/8gddee61EEAJkgfMrr7yCP0rbx4aI1HGHFZFdyZnv37hnCJCL+wHAd98Zdmd3pKwsWaALmN//ylVat5YbtWZlAQcPGu5XWzwNqN+SIzMTKCiQtT+2zK7Tcnr9xYuGmjLj4UIqF1SFoSpVquDIkSMWv3/06FFUYVEZkTbcZUVkV3H2+y8ehlq3lj0A+fnAggWOeU1jSq9QbKx1+285S0CALF4GTKfYqy2eBtQPkyk/6xo1AD/VJa7aTq9XFp6sX9/Qw0Xlhqow9OSTT2LIkCF47733sHfvXmRkZOD8+fPYu3cv3nvvPTzxxBMYofw1RUT2cZcVkV3F2e+/eBgCgP/NVMXs2SXbojV3HCJTmFtvyBnDZPbUCwHa9gxxiKxcUxW1J0+ejODgYMyYMQMvvviifuVnIQSioqLw8ssv48UXX3RIQ4m8jrL6rvE+Ts5eEdmVlP20jEOIo95/QQFw4oS8rnyAAsDDDwPjx8uehQ0bgK5dtX9thbtNqzdmrm7IljCkdpjM1plkCqVn6Px54No101Ww1WIYKtdUrzP00ksv4dy5czh27Bi2bt2KrVu34tixYzh37hyDEJGWYmJMP5jVrL5bHsTEAKNHG277+Dju/Z85I/fMCgw0ff6QEGDQIHl91iztX9eYO/cMtWsnp6qfPWsIjfaEIbXDZLb+zCtXBsLD5XWl3bZiGCrXbFp0EQDi4+ORmJiIxMRExMfHa9kmIlIof0GHhFi3n1R5YxwMJk1y3PtXhsjq1Cm5u7sy9P/990B6umNeH3DvMFShAtC2rbyuTLFXaobUFFCrHSazNwwB2tQNnT8v26LTsXi6nFIdhm7cuIGtW7eaXU/o5s2bWOjsFVuJyqvLlw2zmHJzgapVXdseV1A2LQXUrU2jlvG0+uKaNgU6dJD1SvPnO+b1CwoMgcwdwxBQsm7IGcNk9tYMAdrUDSnF0w0b2jfURm5LVRg6fPgwGjVqhLvuugtNmzZFp06dkG70l1J2djaGDh2qeSOJNJGWJnfs9pTZWIcPm95W/hL3JsZhyGh1ec2ZK542phRSz5kjQ5HWTp2Sw3RBQXLVZHekZRjytJ4hDpGVe6rC0EsvvYSmTZsiMzMThw4dQmhoKO644w6TLTCI3JInrtejDJsotNpfyZO4Sxh66CFZe3L6NLB2rfavr/yslaJxd9Shg2zb8ePy56KsiWTLbDJreoaKimSNEmBfGNKiZ4hhqNxT9a9u27ZtmDZtGqpVq4Z69eph5cqV6NGjBzp27IjjWkxdJHIET12vp3gYYs+Q416nrDAUHAwMGSKvO6KQ2p3rhRShoYZ6meXL5aWPj6FA2drnAGTPkPEsSXMuXJC9ZTqdffuKsWeIrKAqDN24cQN+xRa++vTTT9G3b18kJSXhcPFufSJ34Knr9Xh7z9C1a6YrP6eny53ktVZUZPigNJ69V5xSSP3TT4ZaFq2487R6Y8pQ2dKl8rJ6dTnL0VpKGCoslLvJl0Y5xzVqyJlstlJ+pidP2jbEee6c/N3z8QFatLC9HeTWVIWhhg0bYoeSkI18/PHHuPfee9G3b1/NGkakGWW9HmOesF6P8YrEgPeFIWXrg7AwWUsDGIZNtHTuHHDzplzhOC7O8nENGgCdO8vwNG+etm3whJ4hwLBp6++/y0s1Q2SALD5W/i2WNVSmRb0QANSsKVfRvnXLtt5g5TOvcWPrN6Qlj6MqDN1///1YvHix2e998skneOSRRyDK6vokUkOLoueYGKB5c8NtT1ivp7BQ9mgBhg8gbwtDyhBZfLyhqNgRQ2VKD2Ht2mVv+aD0Ds2aBaSmajfU6ilh6M47TW+rDUM6nfVF1FqFIV9f+bMFbKsbUmaScYisXFMVhiZMmIDVq1db/P5nn32GIkcvWU/eQ8uiZ6VnAQBWrnT/9XrOnJFDQoGBcsE7wHvDUO3ahjCk9BZpqbRp9cXdf7/s3cjMBJKTtSnGz8kxrF/k7mGoalWgSRPDbbVhCHB+GAIMQ2W21A2xXsgr2D1tYfHixcjNzdWiLUQGWhc9GwcJZRaMO1N6CurVk938AMMQ4NieIWvCUGamXPNJoUUxvtIDGBEhV0x2d0rdEGBbGLJ2RpkWawwplCJqtT1DQjAMeQm7w9CIESNw3htnuZBjaVn0LIRpkPj3X/va5gzGBbVRUfI6w5Drw9CRIyVnQdlbjO8pQ2QK4zBk3ONqLU/qGUpLkwHY1xdo1sz+dpDbsjsMsUaIHMLceiu2Fj3n5MgCWcXBg/a1zRmMPyCNw5A3/XtT9pJyVs2QNb9bWv5eKjwtDBn3gr3zjvphQleEIVt7hpReoSZN5PIKVG656epe5PViYgDj1cx1OtuLnov3qHhSz1CDBoa9n27edOyWFO7GuGdImeWldRgSQl0YiomRq1ArtNg81lOm1QMyoBhvyC2E+mFCa4bJhDA8pxbDZLb2DLF42mvYHYZ0xacsE2nFeA+gIUNsL3pWhnFDQuTlkSNyLyh3ZhyGKlQw/DXtLUNlV68CWVnyelycac+Qlr1jmZlyPSOdzjDjqCzDhgFjx8rr999vfzG+J/UMaTF8bU3P0IULQH6+/QsuKpTNxC9fll/WYr2Q1+AwGbkv4zWtrl61/XmUANGypQwWt27ZtzS/o+XmGv4qVj4gld4hb6nPU2aNVakiexKUnpfr17UtgFc+xGvVkjP3rHXPPfLy77/te/2iIsMedJ4QhrQYJrQmDCm//5GRco0ge4WEGIabrf23z+Jpr2J3GPr5559RU5ntQqSVggJg927DbaMNgVVTwlCNGnLXacC964aU2UXVqhm2OvC2ImrjITJAFuoqgVDLoTI1Q2TG2raVl4cOqetpKO7cORnw/PwMdS3uTBkmVFadtmXNLmuGybSsF1Ko3Zbj1CnZO+nvDzRtql07yC3ZHYbuvPNOBKr5i4rIGv/+Kz8kFFqEoagozwhD5oZNvD0MAY4polazxpCxatUMH65//WX76ys/6zp17NtywpmGDZM/n40b5aXaYUI1PUNa1Asp1G7YqvQKNW2qrteQPJKmBdQHDx5EHU/464bcn/IfkfIBeO6c7bUixmGoUSN53Z2LqM0V1HprGFJqPQDHhCFbe4YAw2KYf/xh++sr21oo781TxMQAnTrZ1nNjTRhS1hhyZc8Qi6e9iqZhKD8/H6ccsUIseR8lDPXuLS/z8oArV2x7LvYMeR5lWr2je4ZcGYZSUoDXXpPXf/nF/pWsPYWrhsls7RliGPIKZWzEY2r8+PGlfv+C8Q7TRPZQ/iq7805g8WJZl5GeLgtq1TIOQ8oU7X//lT1N7jgbkmHIecNkWoShP/9U/7ukrLCu9HYqU9S7dXPvPfO0oGaYzFU9Qyye9jqqwtCHH36IFi1aIFT5ZS7m2rVrmjSKvNytW8CePfJ6mzay8FkJQ40bq38+4zBUr56cDaPsBxUdrVmzNSGE+4ehtDRZ5J2Q4LgPbmeEoUuXDMXPtgzvt2gh63wuXJDtNR7SK0tpU9QZhhxbM3T6tOwdKu1nfvy47IkOCABuu027NpDbUhWGEhISMG7cODz22GNmv79nzx60bt1ak4aRFztwQC4wGBYm/wOrUUPeZ0sRdWGhXEsGkIEiMFA+55EjsnfI3cJQerpc98bX1/CfN+A+YSglxbBnnI+PnFmk9aa3OTmG6fNKTx6g/WatSq9QdLRcckGtoCAZiP76Sw6VqQlDyhR140Bk70rWnqKsYTLjBRe1DIY//mh4/oSE0n93lV6h5s21mdpPbk9VzVDr1q2xUxm+MEOn03HdIbKf8h9R69byA0NZdO3cOfXPlZUlA5FOB1SvLu9z57ohZc2Z+HjT/4SVMJSZKd+PK2i9ea4lStgJDzf0IgCGMJSeLmvI7GXPEJnC1rqhmBhDPRxg2xR1T2XcM2Tu8yIry7B9jlZ/rKSlyd9VRVGR/F229LvLITKvoyoMvf/++xirrLxqRvPmzVFUvOuXSC3jMAQY/kO0pWdI6UmpVs0wddmdZ5RZ2pqhenUZ6AoLDSszO9uSJdptnlsac0NkgDwHysagZ8/a/zq2Tqs3pqw3ZEsRtdJj+fzztk1R91RKGBJC9oIWpwSUiAjtprSbG5YsKgL69ZO9zsVxJpnXURWGoqKiEGfcbU3kCMX/I1J6hmwJQ8qKzUrPCuDePUOWtmbw95eBDnD+UJkQwKefmu5JpfDx0X5ox9y0ekCGQS3rhrTsGdq1S24fYa2sLFl4DQD/+Y939AgpKlQwLNporm7IEfVC5lbOBuTSBk2byl4i5f+XoiKGIS9k89T6U6dO4Y8//sCff/7J6fSknfx8YO9eeV2LMGRcPK3whJ4hc1szKO/BmVty5OcDTz8NjB4tPyTatTN8kAFyWwqtP8jNTatXuFsYSkiQMxzz8oD9+61/3Pr18nw2aeJdQQiQoba0ImpHrDFkbuXsN9+Ue8sVFQFz58rfg0mTgLVrZbsCA22bsEEeSXUY+uCDDxAbG4s6deogMTER7du3R506dRAbG4uZM2c6oInkVf7+W34AV6li6BnQIgwpWzkAhp6hs2fdbxf40sKQ8h6c1TN08SKQnCxrWXQ64O23ge3bZc/N1KnymP37ta9hsjRMBrhfGNLpbBsqW7tWXnbrZvtrezIlDJkronZE8TRQcuXsiROB5cuBX38F2reXK95PnQr07CmPz8sDvvxS2zaQ21IVht544w1MnjwZo0ePxs6dO3H27FmkpaVh586dGD16NCZPnow333zTUW0lb2BcuKis22JPAbW5nqHKlQ233al3KC/P0CtSWs+QI8NQWpr8sFi/Xn7Ib94MVKoErFwph8l0Ovkh9eKLMrCeOwds2KBtG5wRhnJyDDU7xrP2bKG2iFoIYM0aeb17d/te21MpM8pKGyZzRI+ZuZWz77wT2LYNmDWr5PGOmCBAbknV1Po5c+bgyy+/xH333Wdyf3R0NFq0aIH69etj9OjRePXVV7VsI3mT4sXTgCEM5ebK3esrVbL++cyFIUAOlWVkyDCk/GXvaseOyS77SpVKthdwfBgynjavqFNHBqHia60EBgIDBsgPkK++MuzirgVnhCGleLp6ddMZa7ZQG4b275e9nBUqyA9ib1TaMJkjaobKotOVnLQAeM/aT6SuZygrKwsNzP3F+j/169fHZXt2cCYyN6W1YkVDAFI7VGYpDLljEbUyrb5BA/OrGTsyDBWfNq/4/nvLi84NHiwvly+XQVUL2dmGhRDNTdbQKgxpMUSmULuDvdIr1KmTYXactyltmMwRNUPWMFdk7S1rP5G6MNS2bVu89dZbKCgoKPG9goICTJs2DW3d5a9s8jw3b8qaIaDkLA5b64ZK6xkC3GuYzNK0eoUjw5C5qcdA6dP427eXHxS5ucCKFdq0Q5mMUbWq+R5A4zBkz5pmWkyrV6jdwV6pF/LWITLA8jCZoxZctIa5ImtvWfuJ1A2Tffzxx0hOTkZERASSkpIQGRkJnU6HjIwMbNmyBYGBgUhNTXVUW6m8279fbsVRrVrJXbxr1JA9J+W5Z6i04mnAsWEoIUH2RhkHjLL+KtbpgMceAyZPBhYulNftpdRMWVrNWflgys2VvTDh4ba9jpY9Q4AcKjt+XA6VJSdbPu7aNVmwC3h3GLI0THb5MnDjhrxes6Zz2wTIIutu3eTvR716DEJeRFXPUNOmTXH48GG89dZbCA0NxYkTJ3D8+HGEhobirbfewr///ovbuI8L2cpc8bTCliLqvDzDtg6WeoaOHZMBzB24Mgzl5Zmec2v/KlYC0C+/2FbgXlxp9UIAEBwsF+MD7Bsqc0QYAgxrB1mycaP8fatTx7uHXywNkym9QsYLbDqbuSJrKvdU9QwBQKVKlfD000/j6aefdkR7yJuZK55W2DJMpswW8vcvudt9zZqyFunaNfnBqIQjV7I2DF26JMOLVqvzArJ3p6gISEqS1639q7huXeCOO4DffgO+/lqupmyPssIQIHsNMzNlGGrRwrbXcVQY+uOP0newV+qFunVTt8t9eWNpmMxV9ULk9WxadDE3NxdbtmzBkiVLsGzZMuzatctpe5J99tlniI+PR1BQEFq3bo1flS7nMvz222/w8/NDC1v/8yTHK20/IFu25FAWJ4yMLFkYqdMZhsrcoW4oK8tQn5OQYP6YKlUMW4ooQU8L//wDLFokr7//vvq/igcNkpdffWV/W6wNQ4DtG7Zev27YzkOrMFR8B3tLWC8kWRomc1W9EHk9VWGoqKgIL774IqpXr47OnTtj4MCB6N+/P9q0aYP4+HisWrXKUe0EACxZsgRjx47FxIkTsXv3bnTs2BE9evTA6TK6y7OzszF48GDcfffdDm0f2eHGDfmhDJgPQ7b0DFmqF1K4U92Q0isUGwuEhJg/xsfHMQsvvv667M144AHzvXJl6d9fbiq7b59h9XBbqQlDtg6THT8uL6tUsb3mqDhlB3vA8hT7o0flsKy/P9C5szav66ks7VzPMEQuoioMvfLKK/jxxx+xePFirF69GnfccQf+7//+DwcOHMDgwYPRr18/rFu3zlFtxYwZMzBs2DAMHz4cjRo1wsyZMxEbG4vPP/+81MeNGDECAwcORGJiosPaRnbau1eu6REZab5w0paaobLCkDvNKDOeVl8arbfk2LFDTo3X6QyrSqtVpYphB3Z7e4esCUPKlHtbw5AyRGbvYovFlbUStTJEdued6tbKKo/K6hly5hpDRFAZhr766ivMnj0b9957L7p164bFixfjjTfeQHx8PKZOnYqJEydi8uTJDmlofn4+du7cieRiMzWSk5Oxbds2i4/74osvcOzYMUyaNMmq18nLy0NOTo7JFzlBacXTgH09Q8ZbcRhzx54hS9PqFVoXUSsLpD76qOX1hKyhrDn09de2b89x5Yr8AhzbM6R1vZCirMUXvX0LDmOWwhBrhshFVIWhq1evoqbRX+01atTAzZs39QstPvjgg9hrbze5BRcvXkRhYSEii32wRUZGIsPCB8ORI0fw8ssvY9GiRfDzs65WfPr06QgLC9N/xfIvFOcorV4IMISh7GzD1NuyqOkZclLNm0VlFU8rtAxDv/4qP6D9/GTRtD169JBrA6Wny5lltlB6hapXtzxUCNgfhrRcY8iY8Q72xWco5uUZti3x9nohgMNk5HZUT61fvHix/va3336LihUrIup//0EXFRUhUMsZLmboivUaCCFK3AcAhYWFGDhwIKZMmYL6Zf21bWTChAnIzs7Wf51R/lIhxyptJhkg//MMDpbXre0dKisM1asng8C1a4aCWlexNgxpVTMkhNyoEpBrq9g7ZBQQILfnAGwfKrNmiAwwhKH0dLmpr1qO6hky3sF+3z7T723dKgu3o6KAZs20fV1PZK5nyJULLpLXUxWGpk6dijfeeAPt2rVDUlISBg0aZDL8tGbNGrRs2VLzRgJAtWrV4OvrW6IXKDMzs0RvESB7sXbs2IHRo0fDz88Pfn5+mDp1Kvbu3Qs/Pz9ssLC5ZGBgIEJDQ02+yMFycw1DVZbCkE6nfqisrDDk728IAa4cKlP2PwKc1zO0bp3sGQoMNAyV2UuZVbZ8uQyYalkbhqpXl+0WwrYQ66gwVNoO9sYbs3rzlHqF8v/q1auGlc+zsw3bujAMkZOpCkN33303/vzzT3Tt2hW33347Vq9ejbFjx+q///zzz+MXW7vIyxAQEIDWrVuXWOE6NTUVHTp0KHF8aGgo9u/fjz179ui/Ro4ciQYNGmDPnj1op3Rpk+vt2SP/Q4yONkyhN0dtEXVZYQhwjyLqkydlD0dQUMmVt4vTIgwZ9wqNGqXdB0+7drJ35Pp1GYjUsjYM6XS2D5Xl5Rke44hFDy3VDbFeyJQyTAbIQAQYeoWqVjX0AhM5iepFF5s1a4ZmLurmHT9+PAYNGoQ2bdogMTERc+bMwenTpzFy5EgAcojr7NmzWLhwIXx8fNCkSROTx0dERCAoKKjE/eRiZdULKbTuGQLco4haGSIzt1FkcVqEoRUrgJ075aKTEybY/jzF6XSyd+j11+VQmVJUbS1rwxAgw9CRI+rD0MmTMnhXrGhYyVpL5sLQ2bNyqxmdDrjnHu1f0xMFBsqe2Vu35FBZWBiLp8mlbFp00RJlMUZHGTBgAGbOnImpU6eiRYsW2LJlC1avXo24/021TU9PL3PNIXJDjghD164ZutzdvWdImVZvTW2bvWGosBB47TV5fexYOeSkJePtOdQOYakNQ4D6MGQ8ROaI4arbb5eXxjvYK71CbdvKXg+S5774lhysFyIX0jQMHT16FJ0dvJjYqFGjcPLkSeTl5WHnzp2466679N9bsGABNm3aZPGxkydPxp49exzaPrJBWcXTCjWrUCthISRE9gJY4k49Q2XVCwGGMJSba1tdzuLFwIEDQOXKwHPPqX98WeLj5To6QhhWtbaGEGVv0mrM3jCk9RpDiurVDTvYK7/XxltwkEHxLTm4xhC5kKZhiEi1q1cNYaCsMKSmZ0hZlLC0XiHAEIYyMgxr3DibmjBUsaJh2rna3qETJ4AXX5TXX3xRBiJHUIbH5s+X08mVD7nSXLli+FBUFlUsja1hyFHT6o0ZD5UVFADr18vbnFJvqviMMvYMkQupCkPh4eGlfhn30hBZZfdu2SsQG2t5cUSFmgJqa+qFAPkfstLj5KqhMjVhCLBtFeqUFNkbogRJ4wJWrfXrJ5csOHQIuPtuGW5SUkp/jDJEFhEBVKhQ9mtoMUzmKMZh6K+/5HBZlSqGITSSig+TsWaIXEhVAXVeXh6efvppNG3a1Oz3T506hSlTpmjSMPIS1tYLAep6hqwNQ4CsGzp3Toah9u3LPl5LV68awp2aMHTsmPU9Q2lpwFNPmS4sOWYM0LevYz54rl2TPSKKoiJgxAg5TGTp9dTUCwGmm7WWtkt8cc4OQ8oQ2T33yIBIBpaGyRiGyAVU/ets0aIFYmNjMWTIELPf37t3L8MQqWNLGMrKklPRAwIsH6smDDVsKAt+XVE3pBRPR0RYP2yltoj6yBHDWi4KZW0jR3zwHDlS8r6yXk9tGFLqSnJzZc+LNRuuFhQY6pIcGYaMd7CfP1/ex3qhkiwNk7FmiFxA1TBZr169cKWUuorw8HAMVjudlrybtcXTgJyJ4+8vr5cVBMral8yYK2eUqR0iA9SHoYSEkj0nvr6OCwTmlggo6/XUhqHgYMPUeGuHyk6floEoKKj09azsZbyDvfIBzzBUkvEwWU6OYb0hcxs1EzmY6l3rS9vwNDY2Fl988YXdjSIvceWKoRfBmjCkZhVqtT1DgGt7hlRsGaM6DMXEAMYbHPv6ArNnO244IiYGmDPHNICV9XpqwxCgvm5o+3bD48paz8leykrUgPz94gd8ScbDZEq9UJUqpe9LR+QgnE1GrrNrl7ysXRuoVs26x1hbRK22ZgiQdTh5eda1Qyu29AzZsj+ZspP8c8/J4DFsmPWPtcWwYcCffxpCR1m1WGqm1SvUhKGUFMN2IYcPl13Qba+bNw3XDx1y/Ot5IuNhMtYLkYsxDJHr7NwpL62pF1I4omeoRg35H3NRkaHA1lmcMUwmhJy1BwAPP+y8D5w2bYD77pPXZ8+2fJwQju0ZMldAPmKEdVP+bZGWBhj3kAvh2NfzVMbDZKwXIhdjGCLXUVYrT0iw/jHWhKGiIuvXGQLkcI4rhsqEMAyTOTIMpaXJonNfX8DZW9GMGCEvFy40rAhe3OXLhnoRa9YYUlgbhkorIHcEZ7+epzIeJmPPELkYwxC5RkoK8OOP8vrbb1s/jGDNKtSXL8s9jwDr959yRRH12bMyIPj5GVYttobxOkPFP3TNUXqFGjeWxb3O1LWrfG/Z2cCSJeaPUXqFIiPVbdBpbRjyhAJyb2Q8TMY1hsjFGIbI+ZRhC4WyDo01wwjW1AwpPSbh4XJDSGu4omdo61Z5GRtrmCVnDSXg3bpl2P+qNEoYatlSXfu04ONj6B2yNFRmyxAZYH0YiokBjNdGc1YBua+vc17PU5kbJuM5IhdhGCLns2cYwZphMjVDZApn9wylpAADB8rrJ06oK7ANDDSsq2PNUJkrwxAAPP64DHt//mloizF7w9C5c4aeQHNOnwb+/lteX7jQeQXkJ08CGzc65/U8kblhMtYMkYtoGoaGDBmCLl26aPmUVB7ZM2xhTRhSUzytUHqG/v3XuqEnWxUWyuHBJ5+0r6BXzZYcrg5DERHAgw/K6+Z6h2yZSQbITVEDA+V5PHvW8nHz5smfaZcuckaZs3ofYmKATp3Y22EJZ5ORG9E0DNWsWRNxagogyTvFxJh+MKsZRlDCUGam6ZYPxmwJQ3XqyN6L69e1mfWTliZ7BdLS5Nf8+XImV2Qk0KePaRAC1BfYWltEnZVlGEZSFgJ0BWWobNEiQ7G0wtaeIR8fQ0+CpaGyW7dkGAKAkSPVPT85lhKGcnMN+5NxPSZyEU03y5k2bZqWT0flWVaWvPzgA+Chh6z/i7B6dRmeCgtlIDK3krAtYcjfX/ZMHTwov5QhGFukpMiaKEs9TBUryv27jKktsLU2DO3ZIy/r1nXs5qxlSUqSM+YOHZKByDiY2BqGAPlzOnrUchhatUr2IkZEAPfeq/75yXGUMKQICwMqVXJNW8jradIzVFhYiD179uCyNcWcRBcuyA02AWDoUHVd476+hkUHLRVR2xKGAEPd0KpVtvcOKcXhxYNQy5bA66/LoulLl2RvhT0FttaGIVcPkSl0OkMAmjXL0DNm6xpDCqUnWvl9Kk4Zlhs2rPS97Mj5AgNNJziwXohcyKYwNHbsWKT8r+CzsLAQSUlJaNWqFWJjY7Fp0yYt20flkbLYYv36tvVWlFU3pGZfMmPKqsGffio/ZG1ZNdhccTgAzJgBTJkC3HGH7IWyt8DW2jCkrPLt6jAEAIMHyw+/vXtlMTUgg6HSS2ZLb1xpM8qOHQPWrZNB7MknbWszOZZx7xDrhciFbApDy5YtQ/PmzQEAq1atwokTJ/Dvv/9i7NixmDhxoqYNpHLIlpWnjVkbhtT0DKWlAT//bLitZrq/MXMLSFoaArOnwNbTeoYAOQNuwAB5XemxUXqFoqLUrTGkKC0MzZ0rL7t1U1+cTc5h/McQwxC5kE1h6OLFi4j633/Gq1evRr9+/VC/fn0MGzYM+/fv17SBVA4pO9W7Uxg6csT+omaF8Uw5R60xY83+ZLm5hu0+3CEMAYahsm++kWsk2TNEBlgOQ3l5smgdMBRvk/thzxC5CZvCUGRkJA4cOIDCwkKsWbMGXbt2BQBcv34dvkodBJEl9oah0lahvnULuHhRXlcThrRaNXjePBmq2rd37Boz1vQM7dsn2xIVpb5+ylHat5cLIN64AXz1le3T6hXGYcg4zK5YIWvToqOB3r3tazM5jnEYYs0QuZBNYWjo0KHo378/mjRpAp1Oh3vuuQcA8Mcff6Chsl4Llc14+rW3yMiQ71ens723orRVqC9ckB+Kvr5A1arWP6eyarBxIJoxQ91fqwUFhmnc//mPY9eYUcLNxYuWFxx0pyEyhXEh9ezZhjBka8+Q8gF67Rpw5YrhfmUY7skn5XYn5J44TEZuwqYwNHnyZMybNw9PPfUUfvvtNwT+b0aAr68vXn75ZU0bWG6lpMgi3S5dbC/W9URKvVDDhnKKuS1KGyZTekoiIgyztaylFDXXrStvF5/+XpaffpKL/1WvDtx/v7rHqlW1qnx/QsgAaI47hiEAePRRoEIF4MABYPlyeZ+tYSg4WJ5vwDBU9u+/wKZNMtgOH25va8mROExGbsKmMHTy5Ek89NBDGDduHGKMfoGHDBmCe7mWR9nS0uRfrMqsI1uLdT2RvcXTQOlhyJatOIzFxgKTJ8vrH30ka0+spfRGPPGE9Xui2crX17BHmaVVqN01DIWFGbYiUcKrrWEIKFk3NGeOvOzdmx+w7o5hiNyETWGoTp06uPPOOzF79mxcunRJ6zaVf1oW63oae+uFAEMYMrdru61rDBkbMED+x3z+PPDf/1r3mBMngDVr5HVnTeMurW7o1i1AmczgbmEIKLkadFCQ7c9lHIZu3AAWLJC3WTjt/pRhsgoV5LYcRC5iUxjasWMH2rdvjzfffBPR0dG49957sXTpUuSp+Svam9mzN5en0yIMRUbK81dQYCiWVmgRhvz9gbFj5fX337dur7K5c2XATU42DLM5Wmlh6OBBID9f/uXtjtPKW7c2LJgIAJ072z5UbByGli6Vs9Ti4uSUenJvymzH69e9q1yA3I5NYahVq1Z47733cPr0afz888+IiIjAiBEjEBERgSeeeELrNpY/MTHA6NGG246afu1uzp2TQ1s+Pvbtk+Xvb6gTKV5ErUUYAmTvTmioDBWrV5d+bH6+a6ZxlxaGlCGyFi1KzpJzB2lpptPh7RkqNg5DxoXTnNnq3tLSDDVjgHeVC5Dbset/SZ1Oh86dO2Pu3LlYv3496tSpgy+//FKrtpVvSs1EZKTjpl+7G6VXqHFj2S1uD0t1Q1qFodBQQ7B5993Sj/3hBzmkVqOG3ITVWawJQ+44RAZoO1SshKGNG4Ft2+TsMf5R5v68uVyA3I5dYejMmTN455130KJFC9x+++0ICQnBJ598olXbyrdq1eRlbm757xFSaFE8rSgrDKndisOc//xHfrBu2WLYPsIcpTdi+HDZa+UsnhyGtFrXCTAMtymF5PfdZ/j9IPel5e8AkZ1sCkNz5sxBUlIS4uPj8eWXX6J///44duwYtm7diqefflrrNpZPShi6ds2wJ1Z5p0W9kMLRPUMAULOmoQfvvffMH3P4MPDLL66Zxm0pDBUVGXarb9XKqU2ymrKukz2b1SqK72nGwmnPoOXvAJGdbFqN7I033sDDDz+MDz/8EC3sqf3wZmFh8h9/YSGQlSU/eMszITwvDAHA888DCxcC330HHD8O1Klj+n1lGnfPnrZtNGoPS2Ho+HE5MycwUK7n5K6GDZNFzkePyt4AWz8EV640va0s5EjuT6vfASI72RSGTp8+DV3x2VCkjk4ne4fOn5czosp7GEpLAzIzZQBs1sz+51O25DAuoL5+3TA9V6sw1LSp/M967Vrggw+Ajz82fO/mTddO47a0P5kyRNa0qXOH7WwRE2PfB2BaWslp+k8/DfTowQ9WT2Hv7wCRBmwaJmMQ0oiyXUTx6eHlkdIr1KSJbbuTF2euZ0ipGQkKMl3MzV4vvCAv58+XvXiK776Tt2Nj5YevsymBLydHBkGFu9cLaenIkZJLH7AIl4hUcsM5t15EqRvyhjCkZfE0UHoYiooquY6TPbp0kVPUr18HPv/ccL+rp3GHhhoWKzRehdqbwhCLcIlIAwxDrqSEIePehvJKy3ohwDQMKdNzta4XUuh0ht6hjz+Ww2P//AP8+qv84HXVsgg6neG9emsYYhEuEWmAYciVvKVnSOviacAQAvLzAWVLGEeFIQDo108Oh2VmAl99ZegVuvdeQ/2SKxQvok5Pl8HIx0eb2ixPoGywu3Gj96zZRUSaYhhyJW8JQ6dOyd4vf39Z1KuFoCAgPFxeV4bKHBmG/P2BcePk9WnTXLPitDnFw5DSK9Sggf0LW3qSmBigUyf2CBGRTVSHoUOHDmHy5Mm4++67UbduXdSoUQPNmjXDkCFD8PXXX3N/MjW8JQwpvUJNm2q7m3vxuiFHhiFAriMUHCx7H3Jz5X2nTjnmtaxlKQx5wxAZEZFGrA5Du3fvxj333IPmzZtjy5YtuP322zF27Fi88cYbeOyxxyCEwMSJExEdHY23336bocga3hKGtC6eVjg7DGVnl1wg8+mnXbuXEsMQEZHdrF5n6L777sMLL7yAJUuWIFwZnjBj+/bt+OCDD/D+++/jlVde0aSR5Za3TK3Xul5I4ewwVNpeSq4anmEYIiKym9U9Q0eOHMHo0aNLDUIAkJiYiG+//RbPP/+83Y0z57PPPkN8fDyCgoLQunVr/PrrrxaPXb58Oe655x5Ur14doaGhSExMxNq1ax3SLpt4w2wyRxRPK5QwpCy8qOW+ZOa44zRu4zCUnS1XnwYYhoiIVLA6DAUEBKh6YrXHW2PJkiUYO3YsJk6ciN27d6Njx47o0aMHTp8+bfb4LVu24J577sHq1auxc+dOdO7cGX369MFu5a9nV/OGYbLjx4ErV4CAAOC227R9bmUWlzK93tE9Q+44jds4DCn7kdWqZSguJyKiMqkqoN6wYQMaN26MHGXLAyPZ2dm47bbbSu2psdeMGTMwbNgwDB8+HI0aNcLMmTMRGxuLz40XwjMyc+ZMvPjii7j99tuRkJCAadOmISEhAatWrXJYG1VRwtD166YrCJcnSq9Q8+YyEGnJeJgsOxtQ6tQc1TMEuN80buMwtGuXvM5eISIiVVSFoZkzZ+LJJ59EqJmtDsLCwjBixAjMmDFDs8YZy8/Px86dO5GcnGxyf3JyMrZt22bVcxQVFeHq1aulDvXl5eUhJyfH5MthKlUy7B1VXofKHFU8DZiGIaVXKCxMm+0+SuNO07iV4JeXB2zaJK+76071RERuSlUY2rt3L7p3727x+8nJydipfPhp7OLFiygsLERksb/6IyMjkVF8o0oL3n//feTm5qJ///4Wj5k+fTrCwsL0X7GxsXa1u1TKZq1A+R0qc1S9EGA+DDlqiMxdBQXJAAgAv/wiL9kzRESkiqowdP78efiXsgu2n58fLly4YHejSlN8k1ghhFUbxy5evBiTJ0/GkiVLEBERYfG4CRMmIDs7W/915swZu9tcqvI8o6yoyDk9Q9evA4cPy+veFoYAw3tW1j5iGCIiUkVVGKpZsyb2799v8fv79u1DDeUDSmPVqlWDr69viV6gzMzMEr1FxS1ZsgTDhg3Dt99+i65du5Z6bGBgIEJDQ02+HKo8zyg7elTuqB4UBDRurP3zh4QYdqdXiuK9OQwB8vepZk3XtYWIyAOpCkM9e/bE66+/jpvFF54DcOPGDUyaNAm9e/fWrHHGAgIC0Lp1a6Smpprcn5qaig4dOlh83OLFi/H444/j66+/Rq9evRzSNruU52EypVeoRQvAz+olrdRRwjfDkNSypRx+JSIiq6n6hHr11VexfPly1K9fH6NHj0aDBg2g0+lw8OBBfPrppygsLMTEiRMd1VaMHz8egwYNQps2bZCYmIg5c+bg9OnTGDlyJAA5xHX27FksXLgQgAxCgwcPxocffoj27dvre5WCg4MRptRZuFp5DkOOrBdS1KgBHDoE7NsnbzMMua4dREQeSlUYioyMxLZt2/D0009jwoQJEP9bjVen06Fbt2747LPPyhyysseAAQOQlZWFqVOnIj09HU2aNMHq1asRFxcHAEhPTzdZc2j27NkoKCjAM888g2eeeUZ//5AhQ7BgwQKHtVMVhiH7KD1DN27IS28PQ7Vqua4dREQeSvXYRVxcHFavXo3Lly/j6NGjEEIgISEBVapUcUT7Shg1ahRGjRpl9nvFA84mZaqxOyuvYaiw0LDujTPCkMIbw5BSPA4AY8bIGi1Xr39ERORBbC7kqFKlCm6//XYt2+KdymsYOnwYuHYNqFABaNjQca+jrEKt8LYwlJYGGP8RUFQEjBgBdOvmHusgERF5AFUF1Ddu3MD06dPx8ssvI13ZHJPs44lT69PS5ArMpe3WrhRPt2xp2L7CEYr3DDly9Wl3VNrmsUREZBVVYWjYsGE4evQoqlatWuYUdbKSp02tnzlT1qV06QLExQEpKeaPc0a9EGAahnQ6oHp1x76eu3HHzWOJiDyMqjC0adMmjB8/Hi+88AKOHDmCzMxMR7XLexgPkxX/C9/drFsHjBtnaGdRETB8ODB2LLB1K3DrluHY336Tl3XqOLZNxmGoenXHTeF3V+64eSwRkYfRCWH9J/AjjzyCSpUqoX79+pg1axaOekFXfE5ODsLCwpCdne2YBRivXZN7lCnXQ0K0fw0tLF8ODBxo2AzVnNBQ2WMUEgIsWiTv8/GRH9aOKujNzgYqV5bXmzUD9u51zOu4u7Q0OTRWrx6DEBER1H1+q+oZmjdvHuLi4nD+/Hn8ouyDRPYJCQECA+V1d6wbEgJ44w3gwQfNByEfH6BPHyA8XK42/f33hiAEGAp6S6svskdoqCzSBryveNqYO20eS0TkYVSFoZCQEEycOBHvvvuufm0fspM7b9Z6/TowYADw+uvy9pgxcgjGeEhmzhxg5UogMxP46y/giSdKPo8jC3qN64SUHjYiIiIVVIUhchB3nFF25gxw553A0qWAvz8wdy7w4YfAU08BJ0/K2WQnTxqGv3x9ZbH0lCnOLehNSQFOnZLXly+3XNBNRERkgdVhaOTIkVbv4L5kyRIsMh4qodK5y4wyZcr8Dz8At98u9/uqXh345RdZKK0obUjGmQW9aWkynCmEcOyQHBERlUtWT72pXr06mjRpgg4dOqBv375o06YNoqOjERQUhMuXL+PAgQPYunUrvvnmG9SsWRNz5sxxZLvLF3cYJktJkcGiqMhwX7NmcghM7ZDosGFy0T9HF/QeOWLaXsAwJMfaGSIispLVYeiNN97As88+i5SUFMyaNQt///23yfcrVaqErl27Yt68eUhOTta8oeWaq8OQ0sNiHCx0OuDbb9UHIUVMjOMDibLGjnG7ucYOERGppGpRloiICEyYMAETJkzAlStXcOrUKdy4cQPVqlVD3bp1odPpHNXO8s3VYchcD4sQQHo60KCBa9pkDWVIbsQI2SPENXaIiMgGNq9QV7lyZVRW1nch+7g6DHlyD4uzhuSIiKjc4mwyd2BvGLJmr7DSxMTIafMKT+th4Ro7RERkB4Yhd6BMrbdlNllKiqzrKWuvsLIoCxd262Y6ZZ6IiKicYxhyB7b2DBUvfLZntefNm+XlgAHsYSEiIq+iKgydPn0aKrYyI2vZullraVPL1bhxA/jzT3n9rrvUPZaIiMjDqQpD8fHxuHDhgqPa4r2UMJSfLzdrtZZS+GzMlsLnP/6QO85HRzt+l3kiIiI3oyoMsVfIQSpUAIKD5XU1Q2UxMcDQoab32VL4vGWLvLzrLrm+EBERkRdhzZC7sLVuqHZtw/XAQGDgQPWvrYShpCT1jyUiIvJwqtcZmjdvHipWrFjqMWOMp2mTdapWlZujqp1RpmxSCgB5ebIQunt36x+fnw9s2yavs16IiIi8kOowNGvWLPgqm3CaodPpGIZsYWvPkBKGwsKA7GxgzRp1YWjnTllAXa0a0KiRutcmIiIqB1SHoR07diAiIsIRbfFu9oahQYOATz6RYUgNZYisY0fWCxERkVdSVTPEvcccyJYwJARw+rS8/sQTcibZoUNy0URrGRdPExEReSHOJnMXtoShzEzg5k3Zo3PbbUBiorx/7VrrHl9YCGzdKq8zDBERkZdSFYYmTZpUZvH0nj177GmP97IlDClDZNHRQECAoVbI2qGyffuAnBwgNBRo3tz61yUiIipHVIehCsoeVkays7Px2WefoXXr1mjTpo1mjfMqyv5ktoShuDh52a2bvPzlF7mIYlmUIbI775RDbERERF7IrnWGNmzYgMceeww1atTAlClTULt2bQ6l2UrpGVIztV4JQ8paQ61ayee5ehXYvr3sxyv7kXGIjIiIvJjqMJSWloY333wTdevWRd++fSGEwLJly3Du3DlMmTLFEW30DvYMkyk9Qz4+ht6hsobKhGDxNBEREVSGoZ49eyIhIQHbt2/H1KlTcf78eSxatAg9e/aEr68vZ5vZw5bNWouHIcD6uqGDB2UvVHAw0Lq1urYSERGVI6rWGVqzZg0GDhyIsWPHsjZIa0rNUEGBLGoOCyv7McoUeuMwlJwsL3fvBs6fByIjzT9W6RXq0EEWXxMREXkpVT1Dv/32G4KDg9GlSxc0aNAAU6dOxdGjRx3VNu8SHAyEhMjr1g6VmesZioiQtUMAsG6d5cdyiIyIiAiAyjCUmJiIuXPnIiMjAy+99BLWrVuHBg0aoH379vj4449x/vx5R7XTO6ipG7pyRfYgAUCtWqbfK2uojPVCREREejbNJqtQoQKeeOIJbN26FQcOHMBdd92FadOmoWvXrlq3z7soQ2XWzChTeoWqVTP0KCmUIuq1a+XCisUdPw6cPQv4+wPt2tneXiIionLArqn1ANCgQQO88847SEtLw/Lly9GrVy8t2uWd1PQMmRsiUyQmApUqyVC1a1fJ7yu9Qm3byuE5IiIiL2Z3GFL4+vrivvvuw8qVK7V6Su+jVRjy9weUXjpzW3NwiIyIiEhPszBEGtAqDAGlrzekhKGkJHXtIyIiKocYhtyJI8LQ9u3A5cuG+9PSZM2Qj4+cVk9EROTlGIbciZZhqHZtoGFDoKhI7lWm+PVXedmqlawrIiIi8nIMQ+7Eltlkyr5k5ihT7I3rhrgfGRERkQmPC0OfffYZ4uPjERQUhNatW+NXpafDgs2bN6N169YICgpCnTp1MGvWLCe11AbW9gzduAFkZsrrlnqGANO6IWWLDxZPExERmfCoMLRkyRKMHTsWEydOxO7du9GxY0f06NEDp0+fNnv8iRMn0LNnT3Ts2BG7d+/GK6+8gjFjxuC7775zcsutZG0YUnqFKlUCKle2fFxSEhAUJOuEDhyQAergQfm9O++0u7lERETlgUeFoRkzZmDYsGEYPnw4GjVqhJkzZyI2Nhaff/652eNnzZqFWrVqYebMmWjUqBGGDx+OJ554Au+9956TW24lJQxlZclaH0uM64VK2xw3ONgwY2zNGmDrVnm9aVPDkBwREZGX85gwlJ+fj507dyJZ2Yj0f5KTk7Ft2zazj9m+fXuJ47t164YdO3bg1q1bZh+Tl5eHnJwcky+nUQJKYSGQnW35uLKKp40Zr0bNITIiIqISPCYMXbx4EYWFhYgstgt7ZGQkMjIyzD4mIyPD7PEFBQW4aGEoavr06QgLC9N/xcbGavMGrBEYaJjhVdpQmZowpBRRb95sKKRmGCIiItLzmDCk0BUbFhJClLivrOPN3a+YMGECsrOz9V9nzpyxs8UqGQ+VWaImDDVsKDdyzc8H/v1X3texo31tJCIiKkc8JgxVq1YNvr6+JXqBMjMzS/T+KKKioswe7+fnh6oWamYCAwMRGhpq8uVUSru06hnS6Qy9Q4Ccil+jhs3NIyIiKm88JgwFBASgdevWSE1NNbk/NTUVHSyspJyYmFji+HXr1qFNmzbw9/d3WFvtYs2MMjVhCAB8fU0fm5JiW9uIiIjKIY8JQwAwfvx4zJs3D/Pnz8fBgwcxbtw4nD59GiNHjgQgh7gGDx6sP37kyJE4deoUxo8fj4MHD2L+/PlISUnB888/76q3ULaywtCtW8DZs/K6NWEoLQ2YPdtwWwhgxAh5PxEREcHP1Q1QY8CAAcjKysLUqVORnp6OJk2aYPXq1Yj7XyhIT083WXMoPj4eq1evxrhx4/Dpp58iOjoaH330ER588EFXvYWylRWGzp6V0+4DAgALw4MmjhwpOU2/sBA4ehSIibGvrUREROWAR4UhABg1ahRGjRpl9nsLFiwocV9SUhJ27drl4FZpqKwwpAyR1aolN1stS0KCPM44EPn6AvXq2ddOIiKicsKjhsm8QlmzyazZk8xYTAwwZ46hbsjXVw6bsVeIiIgIgAf2DJV7Zc0mO3lSXlpbPA0Aw4bJxRePHpU9QgxCREREegxD7sbaYTI1YQiQAYghiIiIqAQOk7kbR4UhIiIiMothyN0oYejSJTnrqziGISIiIk0xDLkbpWaoqAi4csX0e0VFgLJ0AMMQERGRJhiG3I2/PxAWJq8XHyo7f17uMebjA9Ss6fy2ERERlUMMQ+7I0vR6ZYisZk0ZmoiIiMhuDEPuyNL0etYLERERaY5hyB1ZmlHGMERERKQ5hiF3xDBERETkNAxD7qisMGTtVhxERERUJoYhd2QpDNmyFQcRERGVimHIHZmbTSYEh8mIiIgcgGHIHZmbTXb5MnDtmrxeq5bz20RERFROMQy5I3PDZEqvUEQEEBzs/DYRERGVUwxD7qi0MMQhMiIiIk0xDLkjJQxdvgwUFMjrDENEREQOwTDkjsLD5aUQMhABDENEREQOwjDkjvz8gCpV5HVlRhnDEBERkUMwDLmr4nVDDENEREQOwTDkropPr2cYIiIicgiGIXdl3DOUm2sIRQxDREREmmIYclfGYUjpFQoLAypXdlmTiIiIyiOGIXdlLgyxV4iIiEhzDEPuynh/MoYhIiIih2EYclfsGSIiInIKhiF3ZTybjGGIiIjIYfxc3QCywLhnyOd/mZVhiIiISHMMQ+7KOAzduCGvMwwRERFpjmHIXSlh6MoVIDtbXmcYIiIi0hxrhtxVlSqATievCwEEBQEREa5tExERUTnEMOSufH0Nu9cDQK1ahnBEREREmmEYcmfKUBnAITIiIiIHYRhyZ8r0egCoXdtlzSAiIirPGIbcGXuGiIiIHI5hyJ0xDBERETkcw5A7YxgiIiJyOIYhd2YchgICXNcOIiKicsxjwtDly5cxaNAghIWFISwsDIMGDcKVK1csHn/r1i289NJLaNq0KUJCQhAdHY3Bgwfj3Llzzmu0vQ4cMFzv0AFISXFdW4iIiMopjwlDAwcOxJ49e7BmzRqsWbMGe/bswaBBgywef/36dezatQuvvfYadu3aheXLl+Pw4cPo27evE1tth7Q04MsvDbeLioARI+T9REREpBmP2I7j4MGDWLNmDX7//Xe0a9cOADB37lwkJibi0KFDaNCgQYnHhIWFITU11eS+jz/+GG3btsXp06dRq1Ytp7TdZkeOyJWnjRUWAkePAjExrmkTERFROeQRPUPbt29HWFiYPggBQPv27REWFoZt27ZZ/TzZ2dnQ6XSoXLmyxWPy8vKQk5Nj8uUSCQmG3eoVvr5AvXquaQ8REVE55RFhKCMjAxFm9uWKiIhARkaGVc9x8+ZNvPzyyxg4cCBCQ0MtHjd9+nR9XVJYWBhiY2NtbrddYmKAOXNkAALk5ezZ7BUiIiLSmEvD0OTJk6HT6Ur92rFjBwBAZ2ZfLiGE2fuLu3XrFh5++GEUFRXhs88+K/XYCRMmIDs7W/915swZ296cFoYNA06eBDZulJfDhrmuLUREROWUS2uGRo8ejYcffrjUY2rXro19+/bh/PnzJb534cIFREZGlvr4W7duoX///jhx4gQ2bNhQaq8QAAQGBiIwMLDsxjtLTAx7g4iIiBzIpWGoWrVqqGa8lo4FiYmJyM7Oxp9//om2bdsCAP744w9kZ2ejQ4cOFh+nBKEjR45g48aNqGq81xcRERERPKRmqFGjRujevTuefPJJ/P777/j999/x5JNPonfv3iYzyRo2bIgVK1YAAAoKCvDQQw9hx44dWLRoEQoLC5GRkYGMjAzk5+e76q0QERGRm/GIMAQAixYtQtOmTZGcnIzk5GQ0a9YMX331lckxhw4dQnZ2NgAgLS0NK1euRFpaGlq0aIEaNWrov9TMQCMiIqLyTSdE8cVsyFhOTg7CwsKQnZ1dZr0RERERuQc1n98e0zNERERE5AgMQ0REROTVGIaIiIjIqzEMERERkVdjGCIiIiKvxjBEREREXo1hiIiIiLyaS7fj8ATKMkw5OTkubgkRERFZS/nctmY5RYahMly9ehUAEBsb6+KWEBERkVpXr15FWFhYqcdwBeoyFBUV4dy5c6hUqRJ0Op2rm1Ou5OTkIDY2FmfOnOHq3k7A8+1cPN/OxfPtXJ5wvoUQuHr1KqKjo+HjU3pVEHuGyuDj44OYmBhXN6NcCw0Nddt/TOURz7dz8Xw7F8+3c7n7+S6rR0jBAmoiIiLyagxDRERE5NUYhshlAgMDMWnSJAQGBrq6KV6B59u5eL6di+fbucrb+WYBNREREXk19gwRERGRV2MYIiIiIq/GMERERERejWGIiIiIvBrDENlly5Yt6NOnD6Kjo6HT6fD999+bfP/8+fN4/PHHER0djQoVKqB79+44cuSIyTEZGRkYNGgQoqKiEBISglatWmHZsmUmx1y+fBmDBg1CWFgYwsLCMGjQIFy5csXB7879aHG+jx07hvvvvx/Vq1dHaGgo+vfvj/Pnz5scw/MNTJ8+HbfffjsqVaqEiIgI3HfffTh06JDJMUIITJ48GdHR0QgODkanTp3wzz//mByTl5eHZ599FtWqVUNISAj69u2LtLQ0k2N4vrU733PmzEGnTp0QGhoKnU5n9jzyfGtzvi9duoRnn30WDRo0QIUKFVCrVi2MGTMG2dnZJs/jCeebYYjskpubi+bNm+OTTz4p8T0hBO677z4cP34cP/zwA3bv3o24uDh07doVubm5+uMGDRqEQ4cOYeXKldi/fz8eeOABDBgwALt379YfM3DgQOzZswdr1qzBmjVrsGfPHgwaNMgp79Gd2Hu+c3NzkZycDJ1Ohw0bNuC3335Dfn4++vTpg6KiIv1z8XwDmzdvxjPPPIPff/8dqampKCgoQHJyssnv7jvvvIMZM2bgk08+wV9//YWoqCjcc889+j0NAWDs2LFYsWIFvvnmG2zduhXXrl1D7969UVhYqD+G51u78339+nV0794dr7zyisXX4vnW5nyfO3cO586dw3vvvYf9+/djwYIFWLNmDYYNG2byWh5xvgWRRgCIFStW6G8fOnRIABB///23/r6CggIRHh4u5s6dq78vJCRELFy40OS5wsPDxbx584QQQhw4cEAAEL///rv++9u3bxcAxL///uugd+P+bDnfa9euFT4+PiI7O1t/zKVLlwQAkZqaKoTg+bYkMzNTABCbN28WQghRVFQkoqKixP/93//pj7l586YICwsTs2bNEkIIceXKFeHv7y+++eYb/TFnz54VPj4+Ys2aNUIInm9LbDnfxjZu3CgAiMuXL5vcz/Ntnr3nW/Htt9+KgIAAcevWLSGE55xv9gyRw+Tl5QEAgoKC9Pf5+voiICAAW7du1d935513YsmSJbh06RKKiorwzTffIC8vD506dQIAbN++HWFhYWjXrp3+Me3bt0dYWBi2bdvmnDfjAaw533l5edDpdCYLpQUFBcHHx0d/DM+3eUrXf3h4OADgxIkTyMjIQHJysv6YwMBAJCUl6c/Tzp07cevWLZNjoqOj0aRJE/0xPN/m2XK+rcHzbZ5W5zs7OxuhoaHw85Nbn3rK+WYYIodp2LAh4uLiMGHCBFy+fBn5+fn4v//7P2RkZCA9PV1/3JIlS1BQUICqVasiMDAQI0aMwIoVK1C3bl0AsqYoIiKixPNHREQgIyPDae/H3Vlzvtu3b4+QkBC89NJLuH79OnJzc/HCCy+gqKhIfwzPd0lCCIwfPx533nknmjRpAgD6cxEZGWlybGRkpP57GRkZCAgIQJUqVUo9hufblK3n2xo83yVpdb6zsrLwxhtvYMSIEfr7POV8MwyRw/j7++O7777D4cOHER4ejgoVKmDTpk3o0aMHfH199ce9+uqruHz5MtavX48dO3Zg/Pjx6NevH/bv368/RqfTlXh+IYTZ+72VNee7evXqWLp0KVatWoWKFSsiLCwM2dnZaNWqlcnPhOfb1OjRo7Fv3z4sXry4xPeKnxNrzlPxY3i+TWl9vst6Dlufp7zQ4nzn5OSgV69eaNy4MSZNmlTqc5T2PK7i5+oGUPnWunVr7NmzB9nZ2cjPz0f16tXRrl07tGnTBoCc2fTJJ5/g77//xm233QYAaN68OX799Vd8+umnmDVrFqKiokrMdgKACxculPirxduVdb4BIDk5GceOHcPFixfh5+eHypUrIyoqCvHx8QDA813Ms88+i5UrV2LLli2IiYnR3x8VFQVA/uVbo0YN/f2ZmZn68xQVFYX8/HxcvnzZpHcoMzMTHTp00B/D821gz/m2Bs+3KS3O99WrV9G9e3dUrFgRK1asgL+/v8nzeML5Zs8QOUVYWBiqV6+OI0eOYMeOHbj33nsByJkfAODjY/qr6Ovrq5/dlJiYiOzsbPz555/67//xxx/Izs7Wf6CQKUvn21i1atVQuXJlbNiwAZmZmejbty8Anm+FEAKjR4/G8uXLsWHDBn1YVMTHxyMqKgqpqan6+/Lz87F582b9eWrdujX8/f1NjklPT8fff/+tP4bnW9LifFuD51vS6nzn5OQgOTkZAQEBWLlypUnNIuBB59sFRdtUjly9elXs3r1b7N69WwAQM2bMELt37xanTp0SQsiZBRs3bhTHjh0T33//vYiLixMPPPCA/vH5+fmiXr16omPHjuKPP/4QR48eFe+9957Q6XTip59+0h/XvXt30axZM7F9+3axfft20bRpU9G7d2+nv19Xs/d8CyHE/Pnzxfbt28XRo0fFV199JcLDw8X48eNNjuH5FuLpp58WYWFhYtOmTSI9PV3/df36df0x//d//yfCwsLE8uXLxf79+8UjjzwiatSoIXJycvTHjBw5UsTExIj169eLXbt2iS5duojmzZuLgoIC/TE839qd7/T0dLF7924xd+5cAUBs2bJF7N69W2RlZemP4fnW5nzn5OSIdu3aiaZNm4qjR4+aPI+n/X4zDJFdlOmrxb+GDBkihBDiww8/FDExMcLf31/UqlVLvPrqqyIvL8/kOQ4fPiweeOABERERISpUqCCaNWtWYqp9VlaWePTRR0WlSpVEpUqVxKOPPlpiyqw30OJ8v/TSSyIyMlL4+/uLhIQE8f7774uioiKTY3i+hdnzDEB88cUX+mOKiorEpEmTRFRUlAgMDBR33XWX2L9/v8nz3LhxQ4wePVqEh4eL4OBg0bt3b3H69GmTY3i+tTvfkyZNKvN5eL61Od+W/j8CIE6cOKE/zhPOt04IIRzV60RERETk7lgzRERERF6NYYiIiIi8GsMQEREReTWGISIiIvJqDENERETk1RiGiIiIyKsxDBEREZFXYxgiIiIir8YwRERERF6NYYiIyAaFhYX6zYSJyLMxDBGRx1u4cCGqVq2KvLw8k/sffPBBDB48GACwatUqtG7dGkFBQahTpw6mTJmCgoIC/bEzZsxA06ZNERISgtjYWIwaNQrXrl3Tf3/BggWoXLkyfvzxRzRu3BiBgYE4deqUc94gETkUwxARebx+/fqhsLAQK1eu1N938eJF/Pjjjxg6dCjWrl2Lxx57DGPGjMGBAwcwe/ZsLFiwAG+99Zb+eB8fH3z00Uf4+++/8eWXX2LDhg148cUXTV7n+vXrmD59OubNm4d//vkHERERTnuPROQ43KiViMqFUaNG4eTJk1i9ejUA4MMPP8RHH32Eo0ePIikpCT169MCECRP0x//3v//Fiy++iHPnzpl9vqVLl+Lpp5/GxYsXAcieoaFDh2LPnj1o3ry5498QETkNwxARlQu7d+/G7bffjlOnTqFmzZpo0aIFHnzwQbz22msICQlBUVERfH199ccXFhbi5s2byM3NRYUKFbBx40ZMmzYNBw4cQE5ODgoKCnDz5k1cu3YNISEhWLBgAUaMGIGbN29Cp9O58J0Skdb8XN0AIiIttGzZEs2bN8fChQvRrVs37N+/H6tWrQIAFBUVYcqUKXjggQdKPC4oKAinTp1Cz549MXLkSLzxxhsIDw/H1q1bMWzYMNy6dUt/bHBwMIMQUTnEMERE5cbw4cPxwQcf4OzZs+jatStiY2MBAK1atcKhQ4dQr149s4/bsWMHCgoK8P7778PHR5ZSfvvtt05rNxG5FsMQEZUbjz76KJ5//nnMnTsXCxcu1N//+uuvo3fv3oiNjUW/fv3g4+ODffv2Yf/+/XjzzTdRt25dFBQU4OOPP0afPn3w22+/YdasWS58J0TkTJxNRkTlRmhoKB588EFUrFgR9913n/7+bt264ccff0Rqaipuv/12tG/fHjNmzEBcXBwAoEWLFpgxYwbefvttNGnSBIsWLcL06dNd9C6IyNlYQE1E5co999yDRo0a4aOPPnJ1U4jIQzAMEVG5cOnSJaxbtw6PPvooDhw4gAYNGri6SUTkIVgzRETlQqtWrXD58mW8/fbbDEJEpAp7hoiIiMirsYCaiIiIvBrDEBEREXk1hiEiIiLyagxDRERE5NUYhoiIiMirMQwRERGRV2MYIiIiIq/GMERERERejWGIiIiIvNr/A7zdO1RHyg5pAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'Global average temperature change')" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Is this a big change? For comparison, in [the most recent ice age](https://en.wikipedia.org/wiki/Last_Glacial_Maximum), the global average temperature was [about 6° C colder](https://www.smithsonianmag.com/smart-news/ice-age-temperature-science-how-cold-180975674/) than it is now … but that change took thousands of years.\n", + "\n", + "So over my lifetime the temperature has changed by 1/6 of an ice age, [warming > 10× faster than after the ice age](https://royalsociety.org/topics-policy/projects/climate-change-evidence-causes/question-6/), and in fact changing faster than it has [for millions of years](https://news.stanford.edu/news/2013/august/climate-change-speed-080113.html).\n", + "\n", + "![xkcd: Thickness of Ice Sheets](https://imgs.xkcd.com/comics/ice_sheets.png)" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Naive slope estimation: Pick two data points" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "If you would like to **estimate the slope** (the rate of **change of temperature per year**), a **naive** way would be to **pick two points** and draw a straight line through them, but this would be a pretty poor approach because the data is so noisy.\n", + "\n", + "You will get **wildly varying slopes** depending on which years you picked, especially for years that are close together:" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "plot(year, ΔT, \"r.-\")\n", + "xlabel(\"year\")\n", + "ylabel(\"ΔT (°C) vs. 1901–2000 baseline\")\n", + "title(\"Global average temperature change\")\n", + "\n", + "for (i,j,c) in ((1,50,\"k\"), (26,34,\"b\"), (25,35,\"g\"))\n", + " slope = (ΔT[j] - ΔT[i]) / (year[j] - year[i])\n", + " plot(year[[i,j]], ΔT[[i,j]], \"$(c)o\")\n", + " plot(year[[begin,end]], ΔT[i] .+ (year[[begin,end]] .- year[i]) .* slope, \"$c-\")\n", + "end\n", + "\n", + "ylim(-0.2, 1.2)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADGiklEQVR4nOydd1xT5xfGnyRMQXCgyFJxIO490LoVB2qrtS5w1VatW9s6667a1tat1arVKrirdRTFvcdPqat1IqigDHEAIrLy/v443gxIIJMk8H4/n/tJuLnjzSD3yXmfc46IMcbA4XA4HA6HU0QRm3oAHA6Hw+FwOKaEiyEOh8PhcDhFGi6GOBwOh8PhFGm4GOJwOBwOh1Ok4WKIw+FwOBxOkYaLIQ6Hw+FwOEUaLoY4HA6Hw+EUabgY4nA4HA6HU6ThYojD4XA4HE6RhoshjkVx69YtDBs2DJUrV4a9vT3s7e1RtWpVjBgxAteuXVPads6cORCJRDqdp02bNqhVq5Yhhqx0zDZt2hj0mEWVO3fuYM6cOXj8+LGph2J2PH/+HHPmzMGNGzdMPRSdEYlEGDNmjKmHwSlCcDHEsRjWrVuHhg0b4sqVKxg/fjwOHTqEv//+GxMmTMB///2Hxo0b49GjR6YeJqcAuHPnDubOncvFkAqeP3+OuXPnWrQY4nAKGitTD4DD0YQLFy5g1KhRCAgIwJ49e2BjYyN7rF27dhg9ejR2794Ne3t7E46y8PHu3TsUK1bM1MMo0qSlpcHOzk7nKKehyM7ORlZWFmxtbU06Dg7HGPDIEMciWLhwISQSCdatW6ckhBT57LPP4O7unudxpFIpfvrpJ/j6+sLW1hZly5bFoEGDEBMTo3L7c+fOoVmzZrC3t4eHhwdmzpyJ7OxspW3mzp2Lpk2bolSpUnByckKDBg2wceNG6NoDeefOnfD394ebmxvs7e1RvXp1TJ06FampqbJtli1bBpFIhIiIiFz7T5kyBTY2NkhMTJStO378ONq3bw8nJycUK1YMLVq0wIkTJ5T2E6YV//nnH/Tu3RslS5ZE5cqVAQDXrl1Dv379ULFiRdjb26NixYro378/njx5kuv858+fh5+fH+zs7GSv2YYNGyASiXJFcnbu3Ak/Pz84ODjA0dERnTp1wvXr1/N8fTZv3ozPPvsMANC2bVuIRCKIRCJs3rxZp+d769YtfPbZZ3B2dkapUqUwadIkZGVl4f79++jcuTOKFy+OihUr4qefflLa//Tp0xCJRAgODsakSZNQrlw52Nvbo3Xr1iqfw7Vr19CjRw+UKlUKdnZ2qF+/Pnbt2pXruYlEIhw9ehSff/45ypQpg2LFiiE9PR0REREYOnQoqlatimLFisHDwwPdu3fH7du3lcbUuHFjAMDQoUNlr82cOXMAqJ+qHTJkCCpWrCj7+/HjxxCJRPjpp5/w/fffw9vbG7a2tjh16pTGz0Ud6enpmDdvHqpXrw47OzuULl0abdu2xcWLF3Ntu3XrVlSvXh3FihVD3bp1cejQIaXHNXlNhNdFJBJh+/btmDFjBtzd3eHk5IQOHTrg/v37StsyxrBw4UJUqFABdnZ2aNSoEY4dO6bytUtOTsY333wDb29v2NjYwMPDAxMmTFD6X+VYCIzDMXOysrKYvb098/Pz02q/2bNns5wf8eHDhzMAbMyYMezIkSNs7dq1rEyZMszLy4u9ePFCtl3r1q1Z6dKlmbu7O1uxYgULCwtj48aNYwDY6NGjlY45ZMgQtnHjRnbs2DF27NgxNn/+fGZvb8/mzp2rtF3r1q1Z69at8x33/Pnz2dKlS9nff//NTp8+zdauXcu8vb1Z27ZtZdu8ePGC2djYsBkzZijtm5WVxdzd3VmvXr1k67Zu3cpEIhH75JNP2N69e9nBgwdZt27dmEQiYcePH8/1elWoUIFNmTKFHTt2jP3111+MMcZ2797NZs2axfbt28fOnDnDduzYwVq3bs3KlCmj9LrdvHmT2dnZsTp16rAdO3awAwcOsK5du7KKFSsyACwqKkq27YIFC5hIJGKff/45O3ToENu7dy/z8/NjDg4O7L///lP7+iQkJLCFCxcyAGz16tXs0qVL7NKlSywhIUGn51utWjU2f/58duzYMTZ58mTZ58PX15etWLGCHTt2jA0dOpQBYH/++ads/1OnTjEAzMvLi3388cfs4MGDLDg4mFWpUoU5OTmxR48eybY9efIks7GxYS1btmQ7d+5kR44cYUOGDGEA2KZNm2Tbbdq0iQFgHh4ebPjw4ezw4cNsz549LCsri505c4Z9/fXXbM+ePezMmTNs37597JNPPmH29vbs3r17jDHGkpKSZMf47rvvZK9NdHQ0Y0z9Z3Dw4MGsQoUKsr+joqJk42jbti3bs2cPO3r0KIuKitL4uagiMzOTtW3blllZWbFvvvmGhYaGsgMHDrDp06ez7du3y7YDwCpWrMiaNGnCdu3axUJDQ1mbNm2YlZWV0uuqyWui+F5VrFiRBQYGsr///ptt376dlS9fnlWtWpVlZWXJtp02bRoDwIYPH86OHDnC1q9fz8qXL8/c3NyUXrvU1FRWr1495uLiwpYsWcKOHz/Oli9fzpydnVm7du2YVCrN87XgmBdcDHHMnri4OAaA9evXL9djWVlZLDMzU7YofgHlFEN3795lANioUaOUjnHlyhUGgE2fPl22rnXr1gwA279/v9K2X375JROLxezJkycqx5qdnc0yMzPZvHnzWOnSpZXGo6kYUkQqlbLMzEx25swZBoDdvHlT9livXr2Yp6cny87Olq0LDQ1lANjBgwcZY/SFXapUKda9e/dc46xbty5r0qSJbJ3wes2aNSvfcWVlZbG3b98yBwcHtnz5ctn6zz77jDk4OCgJpOzsbFajRg0lMfT06VNmZWXFxo4dq3TclJQUVq5cOdanT588z797924GgJ06dUppvS7P95dfflHatl69egwA27t3r2xdZmYmK1OmjJLIFC6wDRo0UHqfHz9+zKytrdkXX3whW+fr68vq16/PMjMzlc7VrVs35ubmJnsPBSEzaNCgPJ8/Y/QeZGRksKpVq7KJEyfK1l+9elWtMNFWDFWuXJllZGQobavpc1HFli1bGAC2fv36PJ8bAObq6sqSk5Nl6+Li4phYLGaLFi1Su5+610R4r7p27aq0/a5duxgAdunSJcYYY69evWK2trasb9++SttdunSJAVB67RYtWsTEYjG7evWq0rZ79uxhAFhoaGiez5FjXvBpMo5F07BhQ1hbW8uWX375Re22Qoh/yJAhSuubNGmC6tWr55pGKV68OHr06KG0bsCAAZBKpTh79qxs3cmTJ9GhQwc4OztDIpHA2toas2bNwsuXL5GQkKD1c4qMjMSAAQNQrlw52fFat24NALh7965su6FDhyImJgbHjx+Xrdu0aRPKlSuHLl26AAAuXryIV69eYfDgwcjKypItUqkUnTt3xtWrV3OF9D/99NNcY3r79i2mTJmCKlWqwMrKClZWVnB0dERqaqrSmM6cOYN27drBxcVFtk4sFqNPnz5KxwsLC0NWVhYGDRqkNC47Ozu0bt0ap0+f1vp10/X5duvWTenv6tWrQyQSyV5DALCyskKVKlVUTgsOGDBAyc9ToUIFNG/eXPZ5i4iIwL179xAYGAgASuPq2rUrYmNjc03VqHoPsrKysHDhQtSoUQM2NjawsrKCjY0NHj58qPQeGJIePXrA2tpa9rcuz0WRw4cPw87ODp9//nm+527bti2KFy8u+9vV1RVly5ZVeg+0fU1y/j/XqVMHAGTHvHz5MtLT03N9Xps1a6Y0jQgAhw4dQq1atVCvXj2l16FTp04QiUQ6f4Y5poEbqDlmj4uLC+zt7VVeiLZt24Z3794hNjY21xddTl6+fAkAcHNzy/WYu7t7ruO7urrm2q5cuXJKx/rf//4Hf39/tGnTBuvXr4enpydsbGzw119/YcGCBUhLS9PsSX7g7du3aNmyJezs7PD999/Dx8cHxYoVQ3R0NHr16qV0vC5dusDNzQ2bNm2Cv78/Xr9+jQMHDmD8+PGQSCQAgPj4eABA79691Z7z1atXcHBwkP2t6vUZMGAATpw4gZkzZ6Jx48ZwcnKCSCRC165dlcb08uVLla9bznXCuAR/S07EYt1+p+nyfEuVKqX0uI2NDYoVKwY7O7tc65OTk3MdT/hM5Fx38+ZNpTF98803+Oabb1SOSdHfBah+DyZNmoTVq1djypQpaN26NUqWLAmxWIwvvvhC68+ZpuQchy7PRZEXL17A3d1do/e3dOnSudbZ2toqPVdtX5OcxxTM4MK2wv+1pp/hiIgIJbGoSF6vA8f84GKIY/ZIJBK0a9cOR48eRWxsrNIXdI0aNQBAoxRr4YswNjYWnp6eSo89f/5cKZoByL/4FYmLi1M61o4dO2BtbY1Dhw4pXTz/+uuv/J+YCk6ePInnz5/j9OnTsmgQALx58ybXthKJBAMHDsSKFSvw5s0bbNu2Denp6Rg6dKhsG+E5rVy5Es2aNVN5zpxf8jmzlpKSknDo0CHMnj0bU6dOla1PT0/Hq1evlLYtXbp0nq9bznHt2bMHFSpUUDkuXdDl+epLzucmrBM+I8KYpk2bhl69eqk8RrVq1ZT+VpU5FhwcjEGDBmHhwoVK6xMTE1GiRAmNxmpnZ4ekpKRc69VduHOOQ5fnokiZMmVw/vx5SKVSnQWvIoZ4TRQR3jN1n2HF6JDwI+33339Xeayc3ycc84aLIY5FMG3aNBw+fBgjR47Enj171P4ay4t27doBoC9QxYjE1atXcffuXcyYMUNp+5SUFBw4cEAp4rRt2zaIxWK0atUKAF0srKysZJEYgH5lbt26VevxCccDkCt9ed26dSq3Hzp0KH766Sds374dmzdvhp+fH3x9fWWPt2jRAiVKlMCdO3d0LmInEonAGMs1pg0bNuTKrGvdujVCQ0ORmJgouxhIpVLs3r1babtOnTrBysoKjx49UjkllB85f9ELGOL5asv27dsxadIk2Xv35MkTXLx4EYMGDQJA4qBq1aq4efNmrou2NohEolzvwd9//41nz56hSpUqsnXqXhsAqFixInbv3o309HTZdi9fvsTFixfh5OSU7xj0fS5dunSRfVY1mSrLD01fE01p2rQpbG1tsXPnTiWxd/nyZTx58kRJDHXr1g0LFy5E6dKl4e3trfNz4JgHXAxxLIIWLVpg9erVGDt2LBo0aIDhw4ejZs2aEIvFiI2NxZ9//gkAeX6hV6tWDcOHD8fKlSshFovRpUsXPH78GDNnzoSXlxcmTpyotH3p0qXx1Vdf4enTp/Dx8UFoaCjWr1+Pr776CuXLlwcABAQEYMmSJRgwYACGDx+Oly9f4ueff9a5Fkvz5s1RsmRJjBw5ErNnz4a1tTVCQkJkUy458fX1hZ+fHxYtWoTo6Gj89ttvSo87Ojpi5cqVGDx4MF69eoXevXujbNmyePHiBW7evIkXL17g119/zXNMTk5OaNWqFRYvXgwXFxdUrFgRZ86cwcaNG3P9+p4xYwYOHjyI9u3bY8aMGbC3t8fatWtlPh0hGlCxYkXMmzcPM2bMQGRkJDp37oySJUsiPj4e//vf/+Dg4IC5c+eqHZNQHfy3335D8eLFYWdnB29vb5QuXVrv56stCQkJ6NmzJ7788kskJSVh9uzZsLOzw7Rp02TbrFu3Dl26dEGnTp0wZMgQeHh44NWrV7h79y7++eefXGJRFd26dcPmzZvh6+uLOnXqIDw8HIsXL84V5RSqs4eEhKB69epwdHSEu7s73N3dMXDgQKxbtw5BQUH48ssv8fLlS/z0008aCSFDPJf+/ftj06ZNGDlyJO7fv4+2bdtCKpXiypUrqF69Ovr166fxOLR5TTRFKK2waNEilCxZEj179kRMTAzmzp0LNzc3pWjWhAkT8Oeff6JVq1aYOHEi6tSpA6lUiqdPn+Lo0aP4+uuv0bRpU53GwTEBpnZwczjacOPGDTZ06FDm7e3NbG1tmZ2dHatSpQobNGgQO3HihNK2qlLrs7Oz2Y8//sh8fHyYtbU1c3FxYUFBQbLUY4HWrVuzmjVrstOnT7NGjRoxW1tb5ubmxqZPn54ri+b3339n1apVY7a2tqxSpUps0aJFbOPGjblSyTXNJrt48SLz8/NjxYoVY2XKlGFffPEF++eff9RmCP32228MALO3t2dJSUkqj3nmzBkWEBDASpUqxaytrZmHhwcLCAhgu3fvzvV6KWaCCcTExLBPP/2UlSxZkhUvXpx17tyZ/fvvv6xChQps8ODBStueO3eONW3alNna2rJy5cqxb7/9lv34448MAHvz5o3Stn/99Rdr27Ytc3JyYra2tqxChQqsd+/eSinw6li2bBnz9vZmEokk12ujz/MdPHgwc3BwyHU+4TMhIGQobd26lY0bN46VKVOG2draspYtW7Jr167l2v/mzZusT58+rGzZssza2pqVK1eOtWvXjq1du1a2jZBNljNDiTHGXr9+zYYNG8bKli3LihUrxj766CN27tw5lZ+r7du3M19fX2Ztbc0AsNmzZ8se++OPP1j16tWZnZ0dq1GjBtu5c6fabLLFixfnGoemz0UdaWlpbNasWaxq1arMxsaGlS5dmrVr145dvHhRtg1UlLBgjOX6vGn6mgjvleL7r/g8FT87UqmUff/998zT05PZ2NiwOnXqsEOHDrG6deuynj17Ku3/9u1b9t1337Fq1aoxGxsb5uzszGrXrs0mTpzI4uLi8n0tOOaDiDEdK8NxOByOhvj7++Px48d48OCBqYdiME6fPo22bdti9+7deRq2OZZPVFQUfH19MXv2bEyfPt3Uw+EYAT5NxuFwDMqkSZNQv359eHl54dWrVwgJCcGxY8ewceNGUw+Nw8mXmzdvYvv27WjevDmcnJxw//592VTisGHDTD08jpHgYojD4RiU7OxszJo1C3FxcRCJRKhRowa2bt2KoKAgUw+Nw8kXBwcHXLt2DRs3bsSbN2/g7OyMNm3aYMGCBQbPROSYD3yajMPhcDgcTpHGoipQnz17Ft27d4e7uztEIlG+tVz27t2Ljh07okyZMnBycoKfnx/CwsIKZrAcDofD4XAsAosSQ6mpqahbty5WrVql0fZnz55Fx44dERoaivDwcLRt2xbdu3fPtys2h8PhcDicooPFTpOJRCLs27cPn3zyiVb71axZE3379sWsWbOMMzAOh8PhcDgWRZEyUEulUqSkpOTqRaRIeno60tPTlfZ59eoVSpcurbJEPofD4XA4HPODMYaUlBSN+uEVKTH0yy+/IDU1NVdHYkUWLVqUZ+VbDofD4XA4lkN0dHS+VcmLzDTZ9u3b8cUXX2D//v3o0KGD2u1yRoaSkpJQvnx5REdHa1WynsPhcDiWwa34W2i1qRUYY/ir319o693W1EPiGIDk5GR4eXnJSiTkRZGIDO3cuRPDhg3D7t278xRCADU5VNVXysnJiYshDofDKWRImRRT9kwBs2XoU7MPPq77samHxDEwmlhcLCqbTBe2b9+OIUOGYNu2bQgICDD1cDgcDodjRmy5uQUXoy/CwdoBv/j/YurhcEyERUWG3r59i4iICNnfUVFRuHHjBkqVKoXy5ctj2rRpePbsGbZs2QKAhNCgQYOwfPlyNGvWDHFxcQAAe3v7fENmHA6HwyncvE57jcnHJgMAZreeDU8n3brdcywfi4oMXbt2DfXr10f9+vUByHsgCWnysbGxePr0qWz7devWISsrC6NHj4abm5tsGT9+vEnGz+FwOBzzYeapmXjx7gWqu1TH+Gb8ulCUsVgDdUGRnJwMZ2dnJCUlcc8Qh8PhFBKux15Ho/WNIGVSnBh0Au2825l6SBwDo83126IiQxwOh8Ph6IuUSTE6dDSkTIq+NftyIcThYojD4XA4RYs/bvyBSzGXuGmaI4OLIQ6Hw+EUGV6nvcbk42SantNmDjycPEw8Io45wMUQh8PhcIoM3538DonvElGjTA2Mb8pN0xyCiyEOh8PhFAnCn4fj12u/AgBWdVkFa4m1iUfEMRe4GOJwOBxOoUcwTTMw9K/Vn7fc4CjBxRCHw+FwCj2brm/ClWdX4GjjiJ/9fzb1cCyfmBjg1Cm6LQRwMcThcDicQs2rtFeYemIqAGBO6zlwL+5u4hFZOBs3AhUqAO3a0e3GjaYekd5wMcThcDicQo2iaXpc03GmHo5lExMDDB8OSKX0t1QKjBhh8REiLoY4HA6HU2gJfx6OtdfWAgBWd13NTdP68vChXAgJZGcDCn1DLREuhjgcDodTKJEyKUaFjgIDw4DaA9CmYhtTD8nyqVoVEOeQDhIJUKWKacZjILgY4nA4HE6h5Pfrv+N/z/6H4jbFsbjjYlMPR3fMyazs6Qn07Sv/WywG1q2j9RYMF0McDofDKXS8fPcSU4+TaXpum7mWa5o2R7Oyo6P8/pQpwLBhphuLgeBiiMPhcDiFjhknZ+Bl2kvULFMTY5qMMfVwdMNczcr//iu//+6d6cZhQLgY4nA4HE6h4trza/gt/DcAFm6aNkezMmPKYig21nRjMSBcDHE4HA6n0CBlUoz6m0zTgbUD0bpia1MPSXfM0az89CmQkiL/Oy7OdGMxIFwMcTgcDqfQsPGfjbj6/Krlm6YBMiUvX668bu1a05qVb9+mW5GIbnlkiMPhcDgc8+Hlu5eyStPz2s6DW3E3E4/IALTOEdlq2dI04xAQxFDDhnTLxRCHw+FwOObD9BPT8SrtFWqXrW25pumcPHmi/Pfp0yYZhgzBL+TvT7dv39Ji4XAxxOFwOByL5+qzq1j/z3oAwKquq2AltjLxiAyEuYkhITLk5wc4OND9QhAd4mKIw+FwOBZNtjRbVmk6qE4QWlVoZeohGY6nT+m2bl26PXOGMrpMQWYmcO8e3a9dG3D7MA1ZCEzUXAxxOBwOx6LZeH0jrj2/BidbJ8s3TedEiAz16QPY2lIU5uFD04zlwQMSRMWLA+XLy8UQjwxxOBwOh2M6Et8lYtqJaQCAeW3moZxjOROPyMAIYsjHB2jWjO6baqpMmCKrVYuyycp9eK25GOJwOBwOx3QomqZHNxlt6uEYHkEMVagAtGlD900lhgTzdK1adMsjQxwOh8PhmJYrMVew4Z8NAKjSdKExTQukp8uFhqIYMpVvSIgM1a5Nt9wzxOFwOByO6ciWZmN06GgwMAyqOwgtK5i4/o4xEHqQ2dkBZcoATZsCNjbA8+emackhRIZyiiEeGeJwOBwOp+BZ/896hMeGw8nWCT91+MnUwzEOwhRZ+fLk0bG3N51v6O1bIDKS7gvTZNwzxOFwOByOaUh8l4jpJ6YDAOa3nQ9XR1cTj8hIKPqFBBSnygqS//6j23LlABcXus8jQxwOh8PhmIZpx6fh9fvXqONaB6MajzL1cIyHUGNIlRg6fbpgfUM5zdOAXAwlJgIZGQU3FiPAxRCHw+FwLIbLMZex4XohNk0roioy1KwZ+YaePQMePSq4seQ0TwNA6dKA1YfXPyGh4MZiBLgY4nA4HI5FIJimAWBw3cH4qPxHJh6RkVH0DAnY25ORGihY31BO8zQAiMWFxjfExRCHw+FwLILfwn/DP7H/wNnWGT92+NHUwzE+qiJDgGl8Q4oFFxXhYojD4XA4nILhReoLTD9Jpunv231feE3TAlIpEB1N93OKodat6bagfEMJCbSIRECNGsqPFRITNRdDHA6HwzF7ph6fijfv36Cua12MbDTS1MMxPvHxZEoWiwEPD+XH/PwAa2uqQySkuxsTYYqsUiV5p3oBLoY4HA6HwzE+l2Mu4/cbvwMoAqZpAWGKzMODhI8ixYrJfUMFMVWmyjwtUEiqUHMxxOFwOByzJVuajVF/U/r8kHpD0KJ8CxOPqIBQZZ5WpCD7lGkihnhkiMPhcDgc47AufB2ux10vOqZpAXXmaYGC9A2pqjEkwA3UHA6Hw+EYj4TUBMw4OQMAsKDdApR1KGviERUgqgouKiL4hqKjgago441DKlWdVi/AI0McDofD4RgPwTRdv1z9omGaViS/yJCDA9CkCd03pm/oyRMgNZUKPVatmvtxQQzFx5NwslC4GOJwOByO2XEx+iI23dgEgEzTErHExCMqYPLzDAEF4xsS/ELVq8urTSvi+qHEQWYm8OqV8cZhZLgY4nA4HI5ZoVhpemi9ofDz8jPxiExAfpEhoGB8Q3mZpwGKGAmNWy14qoyLIQ6Hw+GYFWuvrcWNuBsoYVcCP3T4wdTDKXjevAGSk+l+XmKoeXOK1jx9Cjx+bJyx5GWeFigEJmqLEkNnz55F9+7d4e7uDpFIhL/++ivffc6cOYOGDRvCzs4OlSpVwtq1a40/UA6Hw+HoRJE2TQsI5unSpXMXOVSkIHxD+UWGgEJhorYoMZSamoq6deti1apVGm0fFRWFrl27omXLlrh+/TqmT5+OcePG4c8//zTySDkcDoejC1OOT0FSehLql6uPEQ1HmHo4pkGTKTIBY/qGMjKA+/fpviZiyIILL1pUGc8uXbqgS5cuGm+/du1alC9fHsuWLQMAVK9eHdeuXcPPP/+MTz/91Eij5HA4HI4uXHh6AZtvbAYArAlYU/RM0wKamKcFWrcGFi40jhi6fx/IygKcnQFPT/Xb8ciQeXPp0iX4+/srrevUqROuXbuGzMxMlfukp6cjOTlZaeFwOByOccmSZslM08PqD0Mzz2YmHpEJ0SYyJPiGnjwxvG9IsVO9SKR+O+4ZMm/i4uLg6qrc2djV1RVZWVlITExUuc+iRYvg7OwsW7y8vApiqBwOh1Ok+fXqr7gZfxMl7EpgUftFph6Oacmv4KIijo5A48Z039C+IU3M0wCPDFkCohxqln1IP8y5XmDatGlISkqSLdHR0UYfI4fD4RRl4t/GY+apmQCAhe0WooxDGROPyMRoExkClFPsDYkm5mmAiyFzp1y5cojLYehKSEiAlZUVSpcurXIfW1tbODk5KS0cDofDMR6CabqBWwMMbzjc1MMxPdp4hgC5ifrwYSAmxnDjyKsNhyKFwEBdqMWQn58fjh07prTu6NGjaNSoEaytrU00Kg6Hw+EInH96Hn/c/AMAsKZrETZNC7x/LxcVmkaGIiLoNj6e9tm4Uf9xpKTIPUiaTpO9fUuLBWJRYujt27e4ceMGbty4AYBS52/cuIGnH+ZXp02bhkGDBsm2HzlyJJ48eYJJkybh7t27+P3337Fx40Z88803phg+h8PhcBRQNE1/Uf8LNPVsauIRmQFCZMfeXl7ZOb/tx42T/y2VAiNG6B8hEqJC7u5AqVJ5b+voKK+HZKFTZRYlhq5du4b69eujfv36AIBJkyahfv36mDVrFgAgNjZWJowAwNvbG6GhoTh9+jTq1auH+fPnY8WKFTytnsPhcMyANVfX4Fb8LZS0K4lFHYq4aVpA0S+UVwaXwMOHuRukZmfLo0W6oql5WsDCfUMWVWeoTZs2MgO0KjZv3pxrXevWrfHPP/8YcVQcDofD0Za4t3Ey0/Si9ovgUkyDKEhRQFvzdNWqgFisLIgkEqBKFf3Goal5WsDNjQSYhfqGLCoyxOFwOJzCweRjk5GcnoyGbg3xRYMvTD0c80Fb87SnJ/DbbySIBNaty7tIoiZoap4WsPDIEBdDHA6HwylQzj05h623tkIEUdGuNK0KbSNDADBsGBAeLv97wAD9xsCYcsFFTeBiiMPhcDgczVAyTTf4Ak08mph4RGaGNgUXFalbFyhRgu7r6xeKjwcSE8mzVKOGZvtYeBVqLoY4HA6HU2Cs/t9q3E64jVL2pbCw/UJTD8f80CUyBJBwqVaN7j94oN8YhCmyKlUoq00TeGSIw+FwOJz8iU2JxazTlP3LTdMqkEoBoeuBpp4hRQQxJHSa1xVtzdOAxRde5GKIw+FwOAXC5ONkmm7s3hjD6g8z9XDMj9hYIDOTssE8PLTf38eHbvUVQ9qapwEeGeJwOBwOJz/OPjmL4FvBEEGE1V1Xc9O0KgS/kIcHdaLXFkNFhgQztiBwNEHwDCUmAhkZ+p3fBHAxxOFwOByjkpmdKTNNf9ngSzT2aGziEZkpuvqFBBTFUB41+fJk/Xrg5k26P2qU5q09SpeWC7j4eN3ObUK4GOJwOByOUVl9dTX+TfiXm6bzQ18xVKUKGanfvKEIjbbExAAjR8r/1qa1h1hs0RllFlWBmsPhcDjmT7Y0G+eenkNsSixsJDaYdYpM0z+0/wGli5U28ejMGG0LLubE3p6E1OPHFB0qU0a7/fNq7aFJEUc3NxJOFmii5mKIw+FwOAZj7929GH9kPGKSlaMJVUtVxbAG3DSdJ/pGhgAyUQti6KOPtNu3alWKLClOsWnT2sOCTdR8mozD4XA4BmHv3b3ovat3LiEEAA9fPcRf9/4q+EFZEroWXFREHxO1pycVbxSQSLRr7WHB02RcDHE4HA5Hb7Kl2Rh/ZDwYVBt3RRBhwpEJyJZmF/DILATGDBMZ0jej7M0bul26lCJMw7SI5vHIEIfD4XCKMueenlMZERJgYIhOjsa5p+cKcFQWxJs3QEoK3ffy0v04+lShTkoiAQQAgwdr3+zVggsvcjFkItLS5BFRDofDsXRiUzSLBmi6XZFDiAq5uAAODrofRxBDjx4BWVna7XvrFt16eQElS2p/bh4Z4mjLX39RJLR1ayrr8Pq1qUfE4XA4uuNWXLMCfZpuV+QwhF8IoIKN9vZUyToqSrt9hfpCir4hbeBiiKMtt2+Taf/sWWD4cPKdffopsHcvkJ5u6tFxOByOdrQs3xKeTuqnVUQQwcvJCy3LtyzAUVkQhvALAVTvR9e2HPqKIcFAHReXO0XfzNFLDEVERCAsLAxpaWkAAKZrxcsiyMKF9Nn/8Udq/5KRQULo00/p8zR8OAklC/s8cTicIopELMEv/r+ofEwEEQBgWedlvA2HOgwlhgDdTdT6iiFXV7rNygJevsx38+zsbJw+fRrbt2/H6dOnkZ1tOnO9TmLo5cuX6NChA3x8fNC1a1fEfgiJffHFF/j6668NOsDCjJcXMHkyTdPevEn3PTzIR7d+PU2heXsD06cD//1n6tFyOBxO3kQnUcd1sUj50uLp5Ik9ffagV/VephiWZaBvwUVFdDFRZ2fLG7TqKoZsbMjzBORrot67dy8qVqyItm3bYsCAAWjbti0qVqyIvXv36nZuPdFJDE2cOBFWVlZ4+vQpihUrJlvft29fHDlyxGCDK0rUqUNRoidPgJMngc8/B5ycaBp50SKgVi2gfn3gl1+A589NPVoOh8NR5lnyM8w5MwcAsK79MpzaDGzbA5y6Uh1R46O4EMoPQ3mGAN0iQw8fUmZPsWJA5cq6n1sD39DevXvRu3dvxORo8/Hs2TP07t3bJIJIJzF09OhR/Pjjj/DMkXZXtWpVPBHULUcnJBKgbVvqjRcXB+zaBXz8MWBtDdy4AXzzDWU7duwIbN4MJCebesQcDocDfHPsG7zNeIumHk3xuWtntHkM9P8XaPMYfGpMEww5TaaLZ0iYIqtdmy5EupKPGMrOzsb48eNV2mqEdRMmTCjwKTOdxFBqaqpSREggMTERtra2eg+KQ9jbA599RplnsbHAr78CLVpQba7jx4GhQ2mKtl8/4NAhSh7gcDicguZU1Cns+HcHRBBhTcAaiBMV/CL8F1v+vH8v7/RuyMhQXJzmr7++fiGBfKpQnzt3LldESBHGGKKjo3HuXMHWo9JJDLVq1QpbtmyR/S0SiSCVSrF48WK0bdvWYIPjyCldmpoJnz8PREYC339Pn/f374GdO4Hu3UmQjx4NXLqk3FqGw+FwjEVmdiZGh44GAHzV6Cs0cGsAvHgh34CLofwRpsiKFQNKldL/eE5OclGiaXTIUGIoj8hQSkoKdu7cqdFhYgs4PV8nMbR48WKsW7cOXbp0QUZGBiZPnoxatWrh7Nmz+PHHHw09Rk4OvL2BGTOAu3eBa9eACRMoQvTyJbBmDdC8OfXVmz1btyKkHA6HoynLryzH3cS7cCnmgu/bfU8rExLkG7x9y9Ni80NxikwkMswxtTVRG1oMfTBQZ2Zm4u+//0b//v3h6uqKtWvXaniYgq1HpZMYqlGjBm7duoUmTZqgY8eOSE1NRa9evXD9+nVU1sd4xdEKkQho2JBayMTEAGFhwMCBVLw0MhKYN4/+H5o0AVaskEdhORwOxxDEJMdgzuk5AICfOvyEkvYfqhYrRoYYA1JTC35wloQhzdMC2pioX74Enj2j+3Xq6HdeNzcwAJfu38fo0aPh7u6Obt26YceOHUhLS4OPjw+cnJzU7i4SieDl5YWWLQu2HpWVrjuWK1cOc+fONeRYOHpgZQX4+9Py66/A/v1ASAgJpKtXaZk0iR4PCiJTtj4V3zkcDuebo98gNTMVfp5+GFxvsPwBRTEE0FRZ8eIFOzhLwpDmaQFtTNRCVKhSJb3ep/v37yPk778RAiDy5k3ZcV1dXdGvXz8EBQWhYcOG2LdvH3r37g0w5ba+og9RsWXLlkGij4lbB3QWQ2/evMH//vc/JCQkQJojBDpo0CC9B8bRHQcHYMAAWhISyFMUHAz873/A4cO0ODgAPXuSMGrfnsQUh8PhaMqJyBPY+d9OiEVirO66Wrm2UE4xJDQg5ajGkDWGBLSJDAliSIeoUFxcHHbs2IHg4GCEh4fL1jsA6DVwIIKCgtCuXTtYKVxkevXqhT2bNmH8kCFQtFJ7enpi2bJl6NWr4Msw6HQJPHjwIAIDA5GamorixYvL1BxAyo6LIfOhbFlg7FhaHjygaFFICPXwCw6mxdUV6N8fCAykaTdDTVlzOJzCSUZ2BsYcHgOATNP13eorb6DoGQK4iTo/jBEZUvQMSaXUpkMdWvqFUlJSsG/fPoSEhOD48eOygIhEIkHnDh0QGBaGHgAcVq9WG2nqJRLhYwDnvL0Ru2AB3Nzc0LJlywKPCMlgOlC1alU2fvx4lpqaqsvuFkVSUhIDwJKSkkw9FIMhlTJ26RJjo0czVro0YzSpT0u1aozNn89YZKSpR8nhcMyVn87/xDAHrMxPZdird69yb9CggfIXy7FjBT9IS8Lbm16nc+cMd8zMTMasrem4T5/mvW29erTd3r1qN8nIyGCHDh1i/fr1Y/b29gyAbPHz82OrVq1iCQkJtLGjIx3vwQP15/zkE9pm1iwdnpxmaHP9FjGmfRK2g4MDbt++jUqVKhlYmpkfycnJcHZ2RlJSUp6mL0slM5N8RSEhVM/o/Xv5Yy1aULSoTx9K7edwOJyY5Bj4rvJFamYqNn28CUPqDcm9UfnyQHQ0YGtLnaf//BMwwdSHRZCdDdjZUT+vp0+pT5OhqF4duHcPOHYM6NBB9TaZmYCjIzXIfPSIfEMfYIzh8uXLCA4Oxq5du5CYmCh7zMfHB0FBQRgwYEDuxCkfH6pofeYM0KpV7nOmplLbjvfvgevXgXr1DPBkc6PN9VunbLJOnTrh2rVrOg2OY15YWwPdugHbt1O22ebN9D8jEgEXLgCjRlGm5McfA7t3U7V2DodTdPn66NdIzUxFc6/mGFRXhSWCMblnyNubbrlnSD2xsSSEJBLA3d2wx9bERH3vHgmh4sWBihU/bH4fs2bNQpUqVdC8eXOsWbMGiYmJcHV1xfjx43H16lXcu3cPM2fOVJ1Bnk/hRYSFkRDy9tY/ld9A6OQZCggIwLfffos7d+6gdu3asLa2Vnq8R48eBhkcp2BxcgIGD6bl+XNgxw7yFF2/Dhw4QIuTE/Dpp2S8bt1av6rtHA7HsjgeeRy7/tul2jQt8PatPMRcqRJdbLlnSD2CX8jT0/BfqJqYqD/4heJ8fbFjxYrcRmgHB/Tq1UulEVot+fUn27ePbnv2NBuTqk5i6MsvvwQAzJs3L9djIpGowHuKcAyPuzul4k+aBPz3n9x4/fQpsGkTLR4elLEWFKR/aQoOh2PeZGRnYEwomaZHNx6NeuXqqd5QiArZ28svilwMqccY5mmBfAovpqSkYN+2bQgBcPzaNUivXgXwwQjduTMCAwPRo0cPOGhbhyVH4UUlMjOpfxRAYshM0GmaTCqVql24ECp81KwJLFwIREUBZ88Cw4cDJUpQja7FiynKWbs28OOPZBPgcDiFj6WXluL+y/so61AW89rm/iEsQxBDZcoAzs50n4sh9Rij4KKAishQzorQgw8fxlEAUsbg5+eHVatWITY2FocOHUL//v21F0JA3pGh06eBN28o1dnPT/tjGwleXYajMWIx0LIlLStWAKGhNI126BDw77/A1KnAtGk0fRYURNNpJUqYetQcDkdfopOiMe8sCaCfOvyEEnYl1G+sKIaEtGruGVKPMSNDHzxD7PFjXD59GsG7d+c2QkskCMrOxoA9e1D5008Nc968xJAwRfbxx2bls9BYDK1YsQLDhw+HnZ0dVqxYkee248aN03tgHPPG1pYinD17Aq9fU7JIcDAlD5w+Tcvo0WTODgoCunShfTgcjuXx9dGv8S7zHVp4tcDAugPz3lioMVSmDJkMAR4Zyot79+jWCBW67796hRBbW4SkpyNSoYm6rCJ0585o2KUL1Qrs3NlwJ1ZnoJZKKW0ZMKspMkALMbR06VIEBgbCzs4OS5cuVbudSCTiYqiIUbIk8MUXtDx9CmzbRsLov/9IJP35J23Tpw8Jo+bN867/xeFwzIdjj45h953deZumFREiQ2XLcjGUHxs30i9HgMLqpUsDw4bpdUi1FaFtbdGrTx9lI3RYGD1Ytaph+zOpiwxduULrihcH2rUz3PkMgMZiKCoqSuV9DkeR8uVpumzKFODWLRJF27ZRdtq6dbRUqED1i4KCqAwGh8MxT9Kz0mWVpsc0HoO65TRIg1acJuNiSD0xMWTAFJBKgREjgE6dKLNMC/KsCF2uHAKfPUOPqVPhMGeO8o6G6lSfE0EMvXxJafs2NvS3MEUWEGB2UwX89znHKIhE9P+1eDFFi44fB4YOpR8ET56QIbtGDWr/sWSJ+gxMDodjOpZeXooHLx/A1cEVc9tq2Jibe4Y04+FDEkCKZGcDEREa7Z7LCD14MI4ePQqpVKpshB41Cv0BOKgKYhhLDJUuTUXsACpgB1D9KcWUejND48jQpEmTND7okiVLdBoMp3AikVAz2PbtgdWrgYMHKWJ0+DDwzz+0fPstPR4URP8nvME1h2NaniY9xfyz8wEAizsuzts0rQj3DGlG1ar0q1GxCYREAlSponYXnSpC51V40VhiSCQi31B0NP3S9fIi30REBEWEunQx7PkMgMZi6Pr16xptJzKTAkoc88TenrxDffoAiYlU1To4GLh4kSrGHzsGjBxJiQZBQYC/v/wHBofDKTgmhU3Cu8x3+Kj8RwiqE6T5jtwzpBmeniRCbtygvyUS8hGomCK7f/8+QkJCEBISgsjISNl6mRE6KAgNGzZUff1VTK9nTF7k8P17uXnbGFWgFcUQII8Kdexonr92jdYhzUisXr2aVaxYkdna2rIGDRqws2fP5rl9cHAwq1OnDrO3t2flypVjQ4YMYYmJiRqfrzA2ajVHIiIYmzePMR8f5f6OLi6MjRnD2OXL1GCWw+EYn7CIMIY5YJK5EnYz7qZ2O5cvT/+8ly8zFhVF9+3tjTJOiyY7m7FSpej1Wb2asehopYdjY2PZ0qVLWcOGDZWaojo4OLCBAweysLAwlpmZmf953r1jTCSi88THy9eHh9O6kiWN8+Xaowcd/9df6e/69envjRsNfy41aHP91ksMPXz4kB05coS9e/eOMcaY1MhXqx07djBra2u2fv16dufOHTZ+/Hjm4ODAnjx5onL7c+fOMbFYzJYvX84iIyPZuXPnWM2aNdknn3yi8Tm5GCpYpFLG/vc/xsaPZ6xsWWVhVKUKY7Nn590ImcPh6Mf7zPfMZ6UPwxyw8YfHa7ezVErCB2Ds0SPGXr6U/wNnZBhlvBbLzZv0ujg4yF6b5ORk9scffzB/f38mFotlAkgikbCAgAC2bds29vbtW+3PVbEinevcOfm633+ndW3aGOgJ5WDECDr+7NmMRUbSfbGYMaGzfQFgdDGUmJjI2rVrx0QiEROLxezRo0eMMcY+//xzNmnSJF0OqRFNmjRhI0eOVFrn6+vLpk6dqnL7xYsXs0qVKimtW7FiBfP09NT4nFwMmY7MTMYOH2YsMJCxYsWUhVHTpoytXFmg/1ccTpFg4dmFDHPAXBe7sjdpb7TbOSVF/k+anEwXeeHvly+NM2BLZflyxgCW0aEDO3ToEOvXrx+zt7dXigL5+fmxVatWsQR9v+g6daL3YMMG+brx42nd+PH6HVsdc+bQ8YcPZ2zJErrfurVxzqUGba7fOmWTTZw4EdbW1nj69CmKFSsmW9+3b18cOXJEj0k79WRkZCA8PBz+/v5K6/39/XHx4kWV+zRv3hwxMTEIDQ0FYwzx8fHYs2cPAgICjDJGjmGxsqI6YMHBlJAQHEx/i8VUrmLsWMrgDAgAtm8H3r0z9Yg5HMtG0TT9s//PcLZz1u4Agl/I1hZwdCTDn709reO+IRmMMVzauxejAbhfvIhu3bphx44dSEtLg4+PD+bNm4eIiAhcvHgRo0ePRpkyZfQ7oSoTtbHM0wKKhRfNOItMQKd2HEePHkVYWBg8cxi9qlatiidCaXEDk5iYiOzsbLi6uiqtd3V1RZyqZnAgMRQSEoK+ffvi/fv3yMrKQo8ePbBy5Uq150lPT0d6errs72T+D2wWODpSbaLAQOr9t3MniaNr16gtSGgobdOrFxmv27Uzq0rvHI5FMDFsItKy0tCyfEsE1g7U/gCK5mnBqFu8OJCWxtProcYI/e6dZkZofcjZo4wx44shodbQ7dvyliOffGKccxkAnSJDqampShEhgcTERNgauZBSzg8JY0ztB+fOnTsYN24cZs2ahfDwcBw5cgRRUVEYOXKk2uMvWrQIzs7OssXLy8ug4+foT7lywPjxwNWrlAwxcybg7Q28fQts2UIZaJ6ewKRJlLavmLnK4XBUcyTiCPbe3QuJSILVXVfrdkFWrDEkUMQzyuLi4rBs2TI0atQIvr6+mD9/PiIjI+EAYKBEgrC//0ZMTIxsG6NkZOcUQzEx1EdJIqGCb8ZAEEOPH9OXcIMGxum/ZiB0EkOtWrXCli1bZH+LRCJIpVIsXrwYbRX6nxgSFxcXSCSSXFGghISEXNEigUWLFqFFixb49ttvUadOHXTq1Alr1qzB77//jlg1Vf6mTZuGpKQk2RLN27CbNdWqAfPmAY8eARcuAKNGUb2vuDhg6VIq6lizJrBgAf1Pcjic3KRnpWPs4bEAgLFNxqK2a23dDsTFEACqCL1lyxZ06tQJHh4emDhxIsLDwyGRSBAQEIBtgwcjHsCWdu3g37UrtcYwJoIYevQIyMqSR4V8fQE7O+OcUxBDAmY8RQboOE22ePFitGnTBteuXUNGRgYmT56M//77D69evcKFCxcMPUYAgI2NDRo2bIhjx46hp8KLeuzYMXz88ccq93n37l2uD5nkw9wJUxMusLW1NXp0i2N4RCLqeda8OYmgsDCaRjtwALh7F/juO1o++oim0T77DChVytSj5nDMg18u/YKIVxEo51gOc9rM0f1AigUXBYSaMoVcDGVmZuLo0aMIDg7G/v37kZaWJnvMz88PgYGB6NOnD/l/evemB9q0KZjBeXgAxYqRsTIqyvhTZACQM0jRq5fxzmUAdBJDNWrUwK1bt/Drr79CIpEgNTUVvXr1wujRo+GWUw0akEmTJmHgwIFo1KgR/Pz88Ntvv+Hp06eyaa9p06bh2bNnsqhV9+7d8eWXX+LXX39Fp06dEBsbiwkTJqBJkyZwd3c32jg5psXGBujenZakJGDvXhJGp04B58/TMnYsGa+DgujWWD+OOBxz58mbJ/j+7PcAgJ876mCaVkTRMyQgRIYKoWeI6VIRWioFzpyh+wUlhsRiqnh98yZNlRWEGFKYPQJAlXWNNSVnCIyb2GZ4Vq9ezSpUqMBsbGxYgwYN2JkzZ2SPDR48mLXOkbq3YsUKVqNGDWZvb8/c3NxYYGAgi4mJ0fh8PLW+8BATw9jixYzVraucpu/szNiwYYydOkV10DicokTPHT0Z5oC12tRK/1pxgwfTP9WiRfJ1gYG07pdf9Du2GXHv3j02c+ZMVqlSJaVUeFdXVzZ+/Hh29epV9a/l7dv0ehQrxlh6esENuk8fOu/PP8ur2x45YpxzRUdTTSHFL1qJJFdhSWNj9DpDhw8fZucUijetWrWK1a1bl/Xv35+9evVKl0OaLVwMFU5u32Zs6lTGvLyU/189PRmbMoWxW7dMPUIOx/iEPgiVVZq+HX9b/wN27Zq7ns1XX8mL71kwBqsIvXIlvR4dOhh/0IrMnEnnDQyUV6SOjTXOuU6eVP5iFZZTp4xzPjUYvc7Qt99+K0s5v337NiZNmoSuXbsiMjJSq4auHI6pqFULWLSITNWnTwNffAE4O1OSxY8/AnXqUAR58WJax+EUNt5nvZeZpsc3HY9aZWvpf9BC5hnK1wi9bRvi4+OxZcsW+Pv7a2aELugpMgHBRH3oEEmTsmXltYAMTdWqNDWnSD5NaE2NTp6hqKgo1Pgw9/fnn3+ie/fuWLhwIf755x907drVoAPkcIyJWAy0bk3LypVUryg4mL4vbt0CJk8Gpkyh762gIODTT0k0cTiWzs8Xf8aj14/g5uiG2W1mG+aghcAzpJURWlsYo19fgOnEUFIS3RrTL+TpCfz2GzBiBJCdnWcTWnNBJzFkY2ODdx/K/R4/fhyDBg0CAJQqVYoXKeRYLHZ2lPDQqxfw6hWwZw8Jo3PnyHx96hSl7vfoQcKoc2cya3M4lsbjN4+x4NwCAFRp2snWyTAHttDUeqaLEVoX7twBEhOpKnfjxnqOWkuEKtQCxhRDADBsGNCpExARQREhMxZCgI5i6KOPPsKkSZPQokUL/O9//8POnTsBAA8ePMhVlZrDsURKlQKGD6flyRNg2zZg61ZK09+9m5ZSpYA+fUgYNW8uL7jL4Zg7E8Mm4n3We7Su0Br9a/U3zEFTU+U9cSxEDKmsCA3qbNC/f38EBgYatiK0MEXWvHnB/5JycqJpMaFWX506xj+np6fZiyABnTxDq1atgpWVFfbs2YNff/0VHh4eAIDDhw+jc+fOBh0gh2NqKlQApk0D/vuPKlpPmkTfKa9eAWvXUu2iypWpEva9e6YeLYeTN6EPQ/HXvb/0qzStCiEqZGMj9wkB8vtmMk2mtiK0gwMGDhyIsLAwxMTEYOnSpYavCG2qKTIBYaoMMJ5fyEIRMcabFeRFcnIynJ2dkZSUBCcnA4WSORZPdjZNmwUHA3/+Sa1ABBo2pGhRv378+4ZjXrzPeo9aa2rh0etH+Nrva/zs/7PhDn71KtCkCUUCFCv3Hz8OdOwI1K5NRjwTkJKSgn379iEkJATHjx+HVCoFQEV4O3fujMDAQPTo0QMODg7GGwRjVIjwxQuae//oI+OdSx2tWwNnz9J9sZh8PcOGFfw4Cghtrt96i6G0tDRkZmYqrStMooGLIU5+vHtHla6Dg6nydVYWrReL6RoQFET9CR0dTTpMDgfzz8zHrNOz4F7cHfdG30Nx2+L576QpoaFUwbR+fQqhCvzvf0DTphRiLcCeOEY1QuvCnTvUG8jenvqCFXSng5gYoHx55WaNEgm9JxYylaUt2ly/dfIMpaamYsqUKdi1axdevnyZ6/Hs7GxdDsvhWCTFilEUqF8/+tG3axcJo8uXSRyFhdE2n3xCwqhjR8DYrYg4nJxEvY7CwvMLAQC/+P9iWCEEqDZPAwWaWl9gRmhdEPxCfn4FL4QA4OHD3F2rs7PJ4FxIxZA26PSVPHnyZJw6dQpr1qzBoEGDsHr1ajx79gzr1q3DDz/8YOgxcjgWQ5kywOjRtEREACEhtDx8SCbsbdso67hfPyAwkBJKuPGaUxBMCJuA91nv0bZiW/St2dfwJ1BVYwhQTq1nzCgf+AI3QuuCqf1CQu2fD1OEAMy+9k+BoktVRy8vL3bqQyXJ4sWLs4cPHzLGGNuyZQvr0qWLLoc0W3gFao6+SKWMXbnC2NixjJUpo1yQtWpVxubOZSwiwtSj5BRmDt0/xDAHzGqeFfsv4T/jnOTbb+lDPXGi8vrkZPkH/t07g51ObUXoYsW0qwhdEEiljJUtS6/B2bOmG8eGDdQWQ2iPoVgpvBBi9ArUr169gre3NwDyB7169QoApdyfFcxZHA4HAP0QbtIEWLECePaMrBUDBpB14OFDYPZs+nHm5wesXi2fbeBwDMH7rPcYd2QcAGBC0wmoUcZIzTLVTZM5OMijQXpOlamtCC0WIwDANgDxaWnY0rq15hWhC4L79ylyZmdHXwamYtgw8gidOkW3hdg8rS06iaFKlSrh8QcjXI0aNbBr1y4AwMGDB1GiRAlDjY3DKXRYWwNdutDUWXw8NXb296fo9eXLwJgxgLs70L07sHOnvGwLh6MrP134CZGvI+Fe3B2zWs8y3onUiSGxWJ49oIMYyszMxN9//43+/fvD1dUVgwcPxtGjRyGVSuHn54dV8+cjljEcAtAfgANjVPnYnProCFNkpvILKeLpSVN13CekhE6yeejQobh58yZat26NadOmISAgACtXrkRWVhaWLFli6DFyOIWS4sWBgQNpiYsDduwg43V4OLUDOXSIriGffkrG67ZtaYqfw1FJTAyFGqtWlV3oIl9HYtH5RQCAJf5LDG+aVkSdZwgg31BKisa1hpg2RuhTp8zfGGxqvxAnXwxSZ+jJkycIDw9H5cqVUdfYJb4LGJ5azylo7t6VG68VM5Hd3Gh6LSiIKulz4zVHxvr1wMiRZI5VqB/TY3sPHHxwEO282+H4wOPGNRB7e9MH9uJFioAoUqMGfbBPncpTEOhkhDb3lHHG6J83Pp4yylq1MvWIigwFWmeosMPFEMdUMEbXleBgmjJ7/Vr+WI0aJIoGDKDyLZxCjIqIDwAqgX70KPWG2btXeR+JBAfPrkePY5/DSmyFWyNvoXqZ6sYdp6MjteR4+DB3hlLTplRvaP9+au6nQFxcHHbs2IHg4GCEh4fL1js4OKBXr14ICgpCu3bt8vb/NGsGXLlC982tmOD9+4CvL/mFXr+mW06BYPQ6QwBw4sQJLF26FHfv3oVIJIKvry8mTJiADh066HpIDoejgEgEtGhBy/LlwOHDJIwOHqT6bdOn09KqFQmj3r2BkiVNPWqOQdm4kRrkCRGfGTOo3cXhw2QyU0yTViBNlI3x52YAACY2m2h8IfTuHQkhQP00GSCbJjNoRWjGlEOoI0aYjxAC5FNkzZpxIWTG6CSGVq1ahYkTJ6J3794YP348AODy5cvo2rUrlixZgjFjxhh0kBxOUcfGBvj4Y1qSkqgFSHAwfc+ePUvLmDFUADgoiG5N7dPk6ElMjFwIAXQ7f77yNrVqAS1bAuvWKQmjn1qKEPU+Fh7FPTCz1Uzjj1UwT1tby4WPIk5OyARw9MIFBB86ZNiK0P/+S1NQAioKAZsU7heyDHTJ3Xd3d2crV67MtX7VqlXMzc1Nl0OaLbzOEMecefqUsR9/ZKxOHeX6RSVKMPbll4ydPs1YdrapR8nRiZMnld9UYWnRgrF16+jNF9iwgTGRiDGAPSoJZjvHimEO2M5/dxbMWK9epbF5eCitlkql7OLFi2yUry9zUagFBID5+PiwefPmsQh9i2z98gud286Obhs31u94hkQqZaxcORrX6dOmHk2RQ5vrt05iyNHRUVZoUZEHDx4wBwcHXQ5ptnAxxLEUbt5kbPJkuh4pXju9vBibOpWxf/819Qg5WhEdzZhYrPxmSiS0XhWbNjEGsG5DbBnmgLX/oz2TSqUFM9bQUBpfvXqMMcbu3bvHZs6cySpVqqQkgFwdHNiECRPY1atXDTe2zp3p3IMG0a2Li2GOawju36cx2doylpZm6tEUOYxedLFHjx7Yt29frvX79+9H9+7ddYxRcTgcfahTB/jxR+DpU+DkSbJNODlRA/EffqAZlfr1gZ9/puKPHDPH05OMwAJiMU2HqcuQ6tcPB+vY4VDFdFiLrLCq66qCaz/x4gXiACx79w6NGjWCr68v5s+fj8jISDg4OGBg7doIAxAzZAiWLl2KRo0aGWZs6enyLuxffkm3iYkap/AbHe4Xshg09gytWLFCdr969epYsGABTp8+Db8PKZSXL1/GhQsX8PXXXxt+lBwOR2PEYqpJ1LYtsHIl8Pff5C8KDQVu3KBl8mSgXTvyF/XqpdrmwTEDevcGvviC7v/3H2UlqSFNwjCuG/2+nZTZCL4u6rc1FDIj9IIFOA5A+uABABVG6NWrgSlTgLdvDTuAS5fIvO3qSpkGJUtSxlZUFP06MDWhoXTboIFpx8HJF43F0NKlS5X+LlmyJO7cuYM7d+7I1pUoUQK///47vvvuO8ONkMPh6Iy9PV1Pe/cmX+nu3VS/6Px54MQJWr76irKdg4KATp3IrM0xEx4+pFtX1zyFEAD8cP4HPLZ5B88k4Ltjr4D5eW6uM5mZmTh69CiCg4NzG6Hd3BA4Y0ZuI7Sgtg3duf7YMbrt0IHSL729zUcMbdhApQQASgetWdO8stw4SmgshqKioow5Dg6HY2RKl6a6fCNH0rVi2zaKGN27B+zaRUvp0kDfviSMmjXjhR1NjiCGqlbNc7NHrx7hxws/AgCWHJfA8d8HVOSwumFS6ll+FaEdHDDg+nVUHjMGGD069wGKf6h8bWgxdPw43XbsSLfe3sA//9AH3JTExFCKv4BUSn936mQehSA5udDJM8ThcCwbb28qWXPnDnDtGjBxIgUfXr4E1qwBmjenunmzZlHNOI6JEMSQj4/aTRhjGHdkHNKz09GhUgf09vwgDFT4OrXl/v37mDVrFqpUqYLmzZtjzZo1SExMhKurKyZMmICrV6/i3r17mOnhgcqA6hpDQK46Qwbh9Wv68AIUGQLogw2YXgw9fJi7BpTQIoRjlnAxxOEUYUQioGFDYMkS+jEbFka90hwcgMhIKmvj60uNtlesUC7nwikANIgMHXxwEKEPQ2EttsbKLish6tmLHtBRDMXFxWHZsmWqjdADByIsLAwxMTHKRui8+pIBxpkmO3WKBEf16oCHB60zFzGUlZV7nUSSuzI3x2zgYojD4QAArKwAf39gyxYSPdu2AV270nf41avA+PF0zenShXxHQsFhjhH5YEhWJ4beZb7DuMPjAABf+31NpukePUjlXrtGqYQakJKSgi1btqBTp07w8PDAxIkTER4eDolEgoCAAGzbtg3x8fHYsmUL/P39c7fGEIouli2r+gTGmCYT/ELCFBlgPmJo/Xq6FeaZJZK8MwE5JkfndhwcDqfw4uAA9O9PS0IC9UYLCaH2T0eO0OLgAPTsCQQG0ixFXq2jODqST2Toh/M/4EnSE3g5eeG7Vh8SV4TMqvPngb/+AsaOVblvnkZobStCC2KoICNDqsRQpUp0GxVFlZlMYXr791/KVACod5yVFUWEuBAya3ij1nzgjVo5HDkPH5IoCg4GHj2Sry9bloRTUBBNu3HjtQF4+RJwcaH7qalAsWJKD0e8ikDNNTWRkZ2BPZ/twac1PpU/uGQJ8PXXVF/h5EnZ6nyN0EFBGDBgACpXrqz5ONPS5GN7/RooUSL3NgkJJNIA8s6I9ZyUiIoi4WNlRQ1rhcjT+/eUQimcU9vWHoagb1/KRujdWy6KOCbB6F3rHz58iIsXLyIuLg4ikQiurq5o3rw5quaT8WCJcDHE4eSGMYoSBQdT1Ejhmopq1ShaFBgo/6HO0YHLlwE/P5qbjIlReogxhoBtATgccRj+lf1xJPCIchFDQSxIJEB8PO4nJiIkJAQhISGIjIyUbebq6or+/fsjMDAQDRs21K0Q4tOnQIUK1JcsPV21ElYUKUlJ+he2Wr+e+rZ99BFw7pzyYx4ewPPn9AFt0kS/82jLf/8BtWvTP8itW3SfYzKM1rU+KSkJgwYNwsGDB+Hs7IyyZcuCMYYXL14gOTkZ3bt3x5YtW7ho4HAKOSIRpd43awYsXUqzAcHBNCtz/z5loc2aRVlpQUFAnz6Uts/Rgjwyyfbf34/DEYflpumcAsTbG3E1amDHnTsIbtQI4Qpd3R0cHNCrVy8EBQWhXbt2uf0/2qI4RaZOTNnaUhQnK4umyvS9RqiaIhPw9iYxFBVV8GJo/nwSQp9+yoWQhaFVrHLs2LGIiorCpUuX8Pr1a9y/fx8PHjzA69evcfHiRURFRWGsmvlpDodTOLG2BgICgO3byXi9eTNdo8Ri4OJFYNQooFw54OOPafZAwZrCyQs1fqF3me8w4cgEAMA3zb+BT2m5WFIyQt+9i4kAwh8/1twIDVAU6tSpXNEoteTnFwJIJBkqvV4qpWqhgDylXhFTmajv3KEPOEC/BDgWhVY/CQ4cOICwsDA0bdo012NNmzbFunXr0LlzZ4MNjsPhWBZOTsDgwbQ8fw7s2EERo+vXgQMHaClenOwUQUFA69Y0k8NRgZpMskXnFslM0zNazsjbCA0g0MoKfR48QBlBJOTFxo00/SSVkpr97bf8qyZrIoYA+nC8eqW/ifr6dblPSFXkx1RiSIgK9epl+urXHK3R2sWW15xygTUF5HA4Zo+7OzBpEhUE/u8/YPp0spakpACbNgHt29Pf334L3LxJ1xGOAioiQw9fPsRPF38CAHzl/RUmT5wMd3d3dOvWDTt27EBaWhp8fHwwb948RDx8iIuVKmF0VhbKhIfnf76YGLkQAuRVk/OLEOVXY0jAUBllwhRZ27aqUxhNIYbu3CHzHMCjQhaKVmKoe/fu+PLLL3FNqPqpwLVr1zBy5Ej06NHDYIPjcDiFgxo1gAULqJDj2bN0zS1ZEnj2DPj5Z6BePfox/eOPGpfGKdwwlksMMcbw+Z7PkZGdAftn9pjec7r6itAzZ6JylSoUpQA0K8Coa9Xk/GoMCRiq1lDOFhw5MYUY+v57es969gTq1i2483IMhlZiaOXKlXB3d0eTJk1QqlQp+Pr6onr16ihVqhSaNm0KNzc3pe72HA6Ho4hYDLRsSfXnYmPpGv3pp9Qc9t9/galTgfLlgTZtqM/lmzemHrGJSEigEJpIhDgHByxbtgxVulfB+bjzQBaQ9mda3hWhBXr2pNu//wYyMvI+5/XruddpUjVZm2kyQD/PUFoa1U8C8hdDT56QmDM2d+/SfDDAo0IWjFaeoRIlSuDw4cO4e/cuLl++jLi4OABAuXLl4OfnB998uipzOByOgK0t8MkntLx5A+zZQ/6iM2fky+jRQPfulKbftSvtUxRIuXkT+wCE2NrieKVKkEqkwIf+p5UTKmP+qvno0aMHHBwc8j5Qs2bkXo+LI1N0p06qtzt+HJgyRXmdSKRZ1WRtxZA+kaFz5yh939NTfb82T0+aPsvMJOOal5fu59MEISr0yScU4uRYJDrlVFavXh3VDdQNmcPhcEqUAL74gpanTykzbetW8hr9+SctJUpQin5QEBVY1rdun7mRmZmJsLAwhISEYP/evUgDqD4PAI9ADzwr8Qyejp64ufImHGzyEUECYjGl8a1bR2E4VWLo9m0Kz2VlAf36AZ07A0OGkKErP/M0oLlnyBDTZIpTZOo8qhIJhRcjI2mqzJhi6N49HhUqJGgthhhjOH78eK6iiy1atED79u25iZrD4ehF+fIUpJg8merWBQdTn7Tnzym56bff6DotFHasUcPUI9adPCtCAwhq0gR+axcg4O8AIBtY0XWF5kJIoGdPEkP79wNr1iiryOfPqS5CcjLNX27eDLx7R0Lj8WMSOvl5gTT1DBkiMpRXfSFFvL3lYqhVK93Plx/ff08+q48/BurXN955OEZHq99Wz549Q4MGDdClSxfs27cPkZGRiIiIwL59+9C5c2c0atQIz549M9ZYORxOEUIkIi/q4sUULTpxAhg6lAIMT54ACxcCNWsCDRpQ94nYWFOPWHPu37+PWbNmoUqVKmjevHluI3S7drgH4Lt+/bD4v8XIyM5A5yqd8YnvJ9qfrG1bwNmZpsouX5avT0khIRQdTWXD//qL5iFLlqQXFgAuXMj/+AXlGUpIAG7coPvt2+e9reAbUqi2bXDOnCGVDgCzZxvvPJwCQSsxNGrUKJQqVQrR0dG4ceMGwsLCcPToUdy4cQPR0dEoUaIERo8ebayxcjicIopEArRrB/z+OxV23LmTmrNbWZHv9+uvySri7w/88Yf+df2MQVxcHJYtW4ZGjRrB19cX8+fPR2RkpGojdGIiRAD2lUnE0UdHYSOxwYrOK3SLvNvYkOgB5FllWVk053jjBomY0FCgVCn5Ph99RLf5iaH0dPmLbWzPkNBjrW7d/KNQxs4o27iRXP5CPYh//jHOeTgFB9MCBwcHduPGDbWP//PPP8zBwUGbQ5o9SUlJDABLSkoy9VA4HE4OXrxgbM0axpo3Z4yuTLTY2zPWrx9jhw4xlpFhuvElJyezP/74g/n7+zOxWMwAMABMIpGwgIAAtm3bNvb27VvlnaRSxooVY2+twbx+cmOYA/bdie/0G8ju3fTCVK5Mxx8+XP5CXbmSe/utW+nxpk3zPm50NG1nZUXHzYv162nbbt10ew6ff077f/NN/ttu20bbfvSRbufKi+hoxsRi5Q+cRELrOWaFNtdvrTxD9vb2ePXqldrHX79+DXuhGR+Hw+EYGRcX4KuvaImMpFmLrVupePOOHbS4uFAj8aAgoGlT9b5bQ6FkhM5ZEdrPD4GBgejTpw/KqIukPH8OvHuHBR1EiH4XiwrOFTCt5TT9BtW5M02BPXoEdOkChIXRC7F9u+oqzkJk6J9/yEMkdKXPiaJ5Or8XVp/IEGNyv5CqFhw5MWZkKK96TPll3nHMF21U1pgxY5iXlxfbvXs3e/PmjWz9mzdv2O7du1n58uXZuHHjtJdvWrB69WpWsWJFZmtryxo0aMDOnj2b5/bv379n06dPZ+XLl2c2NjasUqVKbOPGjRqfj0eGOBzLQipl7OpVxsaPZ6xsWeUf8JUrMzZ7NmMPHqjeNyuLsVOnKLBw6hT9rdk5pezixYts1KhRzMXFRRYBAsB8fHzYvHnzWEREhGYHO3WK3SsNZj0TDHPA9t3dp9l++VG3rvKL0a+f+m2lUsbc3Wm706fVb3fkCG1Tp07+5z98mLatX1/robP792lfGxvGUlPz3z4+nrYXiRh7/1778+WFEA3jkSGzR5vrt1ZiKD09nY0cOZLZ2NgwsVjM7OzsmJ2dHROLxczGxoZ99dVXLD09XeeB58eOHTuYtbU1W79+Pbtz5w4bP348c3BwYE+ePFG7T48ePVjTpk3ZsWPHWFRUFLty5Qq7cOGCxufkYojDsVwyM+kaHBTEWLFiytevJk0YW7GCrpuMMfbnn4x5eipv4+lJ69Vx7949NnPmTFapUiUlAeTq6somTJjArl69yqT5TR/lQLp2LfMPIiHUJbiL1vurJDqahIE2F/DPPqPtFixQv40wnda+ff5jOH9erki1ZdUq2rddO822/zDVyAASUoamXDnl13HDBsOfg6M3RhNDiic4ceIE27ZtG9u2bRs7efJkgYiFJk2asJEjRyqt8/X1ZVOnTlW5/eHDh5mzszN7+fKlzufkYojDKRykpDAWHMxY587Klg+JhLEGDXL/2BcCCyKRsiCKjY1lS5cuZQ0bNlQSQA4ODmzgwIEsLCyMZWZm6jzOPVN6MMwBs5ktZg9fPjTAM2eMnTyp+gmeOqV+n+XLaZsuXdRvs2RJ/lEmgVu3aNsyZbQePuvUifadMkXzfWrWpH2OHNH+fHnx9q1cWP75J48ImTFG8wwJODk5oV27dnpP0WlDRkYGwsPDMXXqVKX1/v7+uHjxosp9Dhw4gEaNGuGnn37C1q1b4eDggB49emD+/Pnc28ThFDEcHeW1iYSMtOBg4OpV9clAjJEVZtw4KZKTQ7B9ezCOHz8O6QfPiEQiQefOnREYGKhZReh8SM1IxQTJUQDAlGL+qFIqn1YYmlK1KtUXUvS65Ndqo0ULur14Ud7FPieCZyi/7C5A99T6334jjxNAdRaqVtWsGKS3N1XtNLRvSOgq7O4u7/3GsXi0FkOpqanYtm2byqKL/fv31/vLQB2JiYnIzs6Gq6ur0npXV1dZW5CcREZG4vz587Czs8O+ffuQmJiIUaNG4dWrV/j9999V7pOeno709HTZ38n6NhXkcDhmh6srMG4cLVu2AIMHq9+WMeDZMzGGDt0I4AwADY3QOvD92e8RY/MeFV8DU5t8ZbDjwtOTRMWIEWT2lUjyb7VRty7g4AAkJZGoqF079zaa1hgC5GLo/Xvqk2Zjk/8+MTHkjheQSuk5dOqUv1nZWCZqoYcbL7JYqNCqztCdO3fg4+ODyZMn4/Xr1yhfvjw8PT3x+vVrfPvtt6hWrRru3LljrLECQK46G4wxtbU3pFIpRCIRQkJC0KRJE3Tt2hVLlizB5s2blTI8FFm0aBGcnZ1li5ex+9pwOByTYm2t2XaOjpMxceIKRERE4OLFixg9erRBhdC9xHv45dIvAIDlR4BivirEhz4MG0ZVpU+dotv8oitWVtTbDFBfb0gbMSS04wA0jw7llbmVH8YSQ0IYsUEDwx6XY1K0igyNHj0arVq1wh9//AGbHKo+IyMDQ4YMwejRo3Hq1CmDDhIAXFxcIJFIckWBEhISckWLBNzc3ODh4QFnZ2fZuurVq4MxhpiYGFStWjXXPtOmTcOkSZNkfycnJ3NBxOEUYtzcNNvu7duuWLqUptUCA4HPPgNKlzbMGBhjGHt4LDKlmQh4AHSPsqa+JIbG01O79O+PPqLS3+fPAyNH5n5cGzFkZQXY21Pn+eRkzV68qlVpnlIobgjkP70nwCNDHC3QKjJ05coVzJw5M5cQAgAbGxtMnz4dV65cMdjgch6/YcOGOCbUmvjAsWPH0Lx5c5X7tGjRAs+fP8fbt29l6x48eACxWAxPNV8Itra2cHJyUlo4HE7hQ6gI/fXXTQBEA5Cq3bZUKaqALRKRLvjqKxJRn3wC7Nkj66eqM3vu7MHxyOOwFVlj+WFAVKkyXfRNjeAbUhcZ0sYzBGjvG/L0BLp2lf+tyfSegDHEUHo68O+/dJ9HhgoVWomhkiVL4uHDh2ofj4iIQMmSJfUelDomTZqEDRs24Pfff8fdu3cxceJEPH36FCM//GKZNm0aBg0aJNt+wIABKF26NIYOHYo7d+7g7Nmz+Pbbb/H5559zAzWHUwRJSUnBli1b0KlTJ3h4eGDixIn455+rEIsnAhAhpyASgUEkAtavpwBJdDR5eOvVAzIzqffpZ5+RB2nYMJqByjmrkx9vM95i0lGKRk+x74DKr0EREXOgWTMyTj9+DKjqO6lNZAjQrfCiILQ+/1yz6T0BQQy9fGm4/iz//UdvfMmSxonccUyGVmLoyy+/xODBg/Hzzz/j5s2biIuLQ3x8PG7evImff/4Zn3/+OUaMGGGssaJv375YtmwZ5s2bh3r16uHs2bMIDQ1FhQoVAACxsbF4+vSpbHtHR0ccO3YMb968QaNGjRAYGIju3btjxYoVRhsjh8MxLzIzM3Ho0CH0798frq6uGDx4MI4ePQqpVAo/Pz+sWrUKcXG/4s+NSfCE8gXf0/4l9uyRJw15eADffEMzJbdvA1OnAl5edG3//XeKHlWoAEyZQo9rwvdnv0dMcgwqlqiIqc8r00ofHwO+AnpQvDgZqYHc0aH0dLmo0VQMCb4hbcSQIMJattRuis/JSd5vzVDRIWGKrEED45cy5xQs2ubt//DDD8zNzY2JRCImFouZWCxmIpGIubm5sR9//FH7QgBmDq8zxOFYHjpVhL5wgWVBzE659mXbfnjCTqE1y5LYyKsyqiE7m4o0f/klY87OymV8atdm7Mcf1ZeiuZNwh1nNs2KYA3bg3gHGAgJox7VrDfNCGIKxY2lMY8cqr4+JkRdqys7W7Fht2tA+27drfn6hXtDRo5rvI9CwIe3711/a76uKUaM074/GMTlGrTM0ZcoUTJkyBVFRUTIzc7ly5eAthCQ5HA7HRNy/fx8hISEICQlBZGSkbL2rqyv69++PwMBANGzYUHUGamQkJJCiTY0EYEp54M93wNUManb29ddqzykWA61b07JiBTWADw4G/v6bokNTplAEqU0b6o/26aeAs7PcNJ0lzUI3n27oXq078PAbOqi5TJMB5BtauTJ3ZEixL5mqGkSq0KXWUEwM3Xp4aL6PgLc3EB5unMgQp1ChU9FFAPD29uYCiMMpCGJiKMW4atWi2Qgyn+cfFxeHHTt2IDg4GOHh4bL1Dg4O6NWrF4KCgtCuXTtYWeXzdSeIp0qV6HbYMEod27gRmDRJo2kROzuaUuvVC3j9mszVwcHA2bPkJzp1Chg1CujeHagYsBsnnpyArcQWyzsvB7Ky5GMwNzEEADdukIgRprq09QsB2k+TpaZSnSNAdzEEGEYMZWdTwUWAi6FCiFaeIQBIS0vD+fPnVdYTev/+PbZs2WKQgXE4HNCFuEIFuRll40ZTj6hgUfP8VRmhw8PDIZFIEBAQgG3btiE+Ph5btmyBv79//kIIoI7uAFD5g2+nXz9KBb97F7h8WeuhlywJfPklcOYM+X4XLgRq1CCrzZ4DKfj59kQAQO030xB7pxJY1GMSRHZ2ul34jYWnJ732UimgmC2sixjS1kAt+IUcHeX7aoMhxdCDB8C7d1SI0pzEKscgaCWGHjx4gOrVq6NVq1aoXbs22rRpg9jYWNnjSUlJGDp0qMEHyeEUSWJigOHD5elJQvVdYdqgsJPj+WdKpTg0fDj6f/yxWiN0bGyszCytdTX8nJEhZ2dKFQP0FqEVKgDTplFW9vXrQKNv5gNOz4HX3ri2fDI++gio1NId32E+7nl11HzaqaD46CO6PX9evq4gxZCHh26GZUOKIaHYYr165vf+cPRGq3d0ypQpqF27NhISEnD//n04OTmhRYsWShlcHA7HQOhTfbcw8PAhmFSKSwBGA3AH0F0qxY4DB5CWlgYfHx/MmzfPcBWhc4ohQJ7GvXMnoFCvTFdEIsDW4y5u2C0FAMxvvgKDA+3h6Ag8ji+GBfgO1R8eQKNGwLJlgJpOQwWPqnpD2tYYArT3DCmKIV0Q3svISOXCjbogiCFebLFQopUYunjxIhYuXAgXFxdUqVIFBw4cQJcuXdCyZUslsyKHwzEAqkLxmlbftXDu37+PWfv3owqA5gDWAEgE4ApgwrBhuHr1Ku7du4eZM2eisjCtpQ9pacDz53Rf8XgtW9L78PYtsGuX3qdhjGHM4THIkmahu093fNenGzZvpsaxOzptQjcchJU4G+HhwMSJpAE6dSIPtwG0mO4IkaFLl2gqDygYz5C+YqhCBVKg797Jx6sr3DxdqNFKDKWlpeWae1+9ejV69OiB1q1b48GDBwYdHIdTpPH0VC7spk31XQtEqAjdqFEj+Pr6Yv7y5YgE4ABgIIAwkQgx69Zh6YYNaNSokdqehDohTKM4O5PZR0AkkkeHNmzQ+zS7/tuFk1EnYWdlR6bpDxQrBvTFThxEDzz/ZQdWraJ6h1IpcPQoMGgQFXYcMICy1TIz9R6KdtSsSa9Naipw6xatK+hpMl2wtaXu8oB+U2WM8TYchRytxJCvry+uXbuWa/3KlSvx8ccfo0ePHgYbGIdT5GEMePWK7tvaald910LI1wgdFIR4AFsA+E+bBqvhw40zEMUpspwia/BgEqKXLpGZWkdS0lNklaanfTQN3iVzZON++DFZpoEXRo+m0z18CMydS8Gpd++A7duBgADSBuPGAf/7n/6zPxohFgNC2yPBN6SPGCqoaTLAML6hx4+BN28AGxtywXMKHVqJoZ49e2L79u0qH1u1ahX69+8PViD/mRxOESA+Xj43kp4OlChh0uEYCk0qQsuM0KVLQ2aDNuY8Uc5MMkXKlSMFAuhlpJ53Zh6epzxHpZKVMLnFZOUHMzKAJ0/ovsL0aJUqwKxZwP37lMg1dixpjxcvqPRP06ZAtWokmIxuJcvpG9LHM1RQkSHAMGJI8AvVqkWCiFPo0EoMTZs2DaGhoWofX7NmDaTaNubhcAqKmBgq9GIp2Vg5+wDGx5tmHAaAMYZLly5h9OjRcHd3R/fu3bFjx478jdCKyRnR0cYboCrztCJCRG7LFhIuWnLnxR0su7IMALCi8wrYWdnlPr9USink5crl2l8kApo0oaKOz57RVNmAAZT5//AhMGcOaSg/P2D1av3tMSoRxND58xSOsgTPEGAYMcT9QoUevfMDt2/fjtTUVEOMhcMxHpZYr6cQiKH79+9j1qxZqFKlCpo3b441a9YgMTERrq6umDBhQv5GaCFaAphWDHXtSiLlxQvg0CGtDs0Yw5hQMk33qNYDAT4BuTcS3uuqVfNNIbe2Brp0AUJCKDizdSuZrMViKoc0ZgzZZLp1A3bsoOk1g9CkCWBlRUbzhw/lxRCN5RnKzgaE0i2mFkNCZIiLoUKL3mJoxIgRiLfAL2lOEcJS6/VYqBjKZYSePx+RkZFwcHDAwIEDERYWhpiYGCxdujR/I3RBiSFhmkydGLKyIu8QoLWQ3vnfTpx6fAp2VnZY1mmZ6o0UxZAWODpSi48jRyiIsnQp0LAhJXz9/TfQvz8Zr4cMAY4fJ32hM8WKycXAX3/RrUSibDjPD0XPUH6WioQEGrBYTE9CVwwphrh5utCitxjiHiGO2WOp9XosSAwZpSJ0airw8qX87/h48k4ZGqlUfqHMK01fmCoTlIcGpKSnYFIYmaanfzQ9t2laQEcxpEi5csCECcC1a+Tz/u47oGJFslr98QfQsSPg5UVt1q5f19F4LaTYC2LIxUW7AoTCNFl2NpUzyAvhNS5XjsSorghi6OlT3dRgbCx99sRioE4d3cfBMWt4GU1O4UfV1IMl1OsRSlUIUwRmJoa0MkLrUhFa8As5OVE2HSCvBWRI4uKA9+/pM+HlpX67qlWBVq1IPG3erNGh556Zi9i3sahcsjK+bfGt+g2F99pAbR58fYH582n27/x5YORICuDExgJLllCAp1YtYNEi5eBbvgi+oUuX6FbbIpcODvL/xfymygzhFxL2t7amegQailglhKiQry9FxziFEr3FkEFrfXA4OTGE6dnTUzm8bQn1eqRSeeSqZUu6FbJ3TAhjTGZy1soIrQvCVbpCBfl7ZYypMmGKrHx5umjmhRAd+u034MSJPD+X/yb8i2WXlwEAVnZZmds0rYgBIkOqEIlIv/z6K2m+/fupw4itLXDnDjB9OkWPWrWip/T6dT4HFMSQgLbvr1isuYnaUGJIIpHX69Jlqoybp4sEfJqMY74Y0vRsby+/f/iw+dfref6cphEkEsqfBkwaGRJMzlWqVEGLFi20N0LrgqIYEiI2xhBDgnlak3H37k2NVJ8+BTp0UPu5FEzT2Swbn/h+gi5Vu6g/Zlqa/Hn5+OjwBDTDxgbo0YMKacfH07DbtiXBdO4c2ejKlQN69QL+/JOCZblwdUV2ZR+cRmtsRz+cZq21n3nStNaQocQQoJ9viPuFigR6TMQShw8fhoc5dVjmFA7UmZ47ddItoqMoJIQsGHNGiBR4e5tsmiwuLg47duxAcHAwwsPDZesdHR3Rs2dPBAUFoV27dpr5f3RBUQwJUQRjiiF15mlFXr1S9i2p+Vxu/3c7zjw5AzsrOyzttDTvYwqRqRIlgNKltRu7jjg7A59/TktMDBVzDA6m4tL79tEi9KkNCqLgpFgM7N0LjI+9hBiUogOdBjwrAsuXk4jSiIKODAGGEUM8MlSo0ftb7CPBUMfhGJK8TM/6iqH79/UbW0GgOG0iFLUrADGUkpKCffv2ISQkBMePH5fVDbOyskKnTp0QFBSEHj16oFhBeCcUxdCbN3TfGBmA+WWSKfLwYW7ncY7PZXJ6Mr45+g0AYEbLGahYomL+xwQ0Sqs3Bp6ewLff0nLrFqXsb9tGL/WGDbR4eQGNGpFIApSzx549o4DZnj0aCiJN0+vNQQy9eiX/HNarp/84OGaLQX/S3b17FwEBAbxpK0d/qlaln6KKgkhX03NamnJI3hLEkGCo9fGRpxUbSQxlZmYiLCwMISEh2L9/P9IUsnz8/PwQGBiIPn366Of/0QXBQF2+vDyaYOppMg0+l3NPk2m6Sqkq+Kb5N/kf00h+IV2oU4eWRYuAs2cpWrR7N73s8pdeWbAxRhpuwgTg44/p5cgTSxJDgl+oUqVCUwGeoxqDZpNlZGTgiVapCRyOGjw9gVGj5H+LRLqbnnOKCEsQQ4oXSEEMJSerMXJoT4EaoXWloAzU2kyTeXqS01hALFb6XP6b8C+WX6EGrPmapgUMnElmCMRioE0bigrFx1OF67xgjN6ac+c0OLggbC3BM8TN00UGrSJDkyZNyvPxF0apAc8psri4yO+PGKG76VnIwhKJ6Fv7/n35z1lzRVEMlShB7teMDLoyVaig82Hv3buHkJAQbNu2TSmC6+rqiv79+yMwMBANGzY0fZaoYhp0hQpyA7yhxVBqqlwsayKGAPocnj9P6fWffy77XDLGMDp0NLJZNnr69kTnKp01O57wXhvRPK0PdnaaD+3QIernmmf7Lk0iQ2/fyh83hBgS3tvnz8nzJZRqyA9uni4yaCWGli9fjnr16sFJ+DDn4K0xGylyih7CFxFAFy1dES52NWsC//1HBuoXL7RrMFmQZGfLfSyCj6RsWTJx6CCGTG6E1oVnz2gqysaGImPCxSsxkaY9FbMD9UEQhKVKaTcN0qYNiSGFKOO229tw9slZ2FvZ52+aVsSMpsnU4eam2Xa//AJs2gT07UvGaz8/Fb85NBFDghAuXlweSdIHFxeqcZSaShFHTdUdjwwVGbT69qtatSomTpyIoKAglY/fuHEDDRs2NMjAOBzZFxFARVJ0RRBDFSrQL87Hj+kiZq5iKDqaokA2NvL6KK6uJIY0rDVkVkZoXRD8Ql5eNGdTsiQVvHv3ji6UhiqYqc0UmSKNG9PtP/8A2dlIynyLb46RP+i7Vt+hQgkNBevbt/L+W2Yshlq2pJnAZ8/UV652dKQlLo7qGv36K72sgYG0VKv2YUNNUusNOUUGkCLz9gb+/Zfec03E0Nu3crHLI0OFHq08Qw0bNlT6ZZkTkUjE6w5xDENiovKUiCHEkKur/BvZnH1DQqSgcmW5G1UDE7UmFaGfP3+OQ4cOoV+/fuYrhABlvxBAFzNj+IZ0FUPVqskjDffuYc7pOYh7G4eqparia7+vNT+OUFjTxcWsDboSCaXPA7kjPSIRLX/8QW9NWBgwaBC9PJGRVAnb15f04/LlQDwUPHDqMLQYArT3Dd28ScrP3V2/3mgci0CryNAvv/yC9Dx6A9WtW1f2C5TD0QshKmRlRV0nDSWGHB3p29qcxZAqQ60aMcQYw6VLlxASEoJdu3YhMTFR9piPjw+CgoIwYMAAwxVCLChyiiGAokQPHhhWDGmTVq+IREIdUc+exe2L+7AydiUAYEWXFbC10tCPAljEFJlAr16UPj9+vHKFA09PYNkyeVq9vz8ta9YABw5QRlpYGPVMu3YN+Fo8Ch1RGUH/3cMnqSSacmEOYkj4DuJRoSKBVmKoXLlyxhoHh6OM4Bdq2ZLacSQmkqk2v3YJqlAUQ8L+5iyGVF0gc9QashgjtK6oE0OAcSJDuojFRo3Azp7F6MdrkG2TjV7Ve2lumha4epVu3d21P78J6NWL0ufPnaPZPTc3+hdVlU7v4AD0709LQgJVvg4OBq5cEeMIuuBIeBcUKwv07En+og4dFPqxmoMY4sUWixQ6OyafPHmCuLg4iEQiuLq6ooIeGS4cTi6EX2UdOlDBk+xsMj3rctEQxFDZsnJRYWliyNUVcQB2nD2L4EaNLMcIrSuKNYYEBDFkyMKLuk6TAUDjxgipA5yzidXeNA1QP4yff6b7e/fS3+beJgYkfNq00W6fsmWBMWNoefjbKYSMOIMQ288R8a48QkKo0GPZsiScAgOBRjHPqJoRjwxxCgit6wwtXboUXl5eqFSpEvz8/NCsWTNUqlQJXl5eWLZsmRGGyCmSCL/KGjWSTxHpOlWmGBkSjJORkRRpMkcUxFBKSgq2bNmCTps2wQPAxBs3EB4eDisrKwQEBGD79u2Ij4/Hli1b4O/vXzBCyBDNc/OjICJD2dnyC6MOYiipTjV840/3Z7aYjvLO5fPeQRGh3YzgsWSMykcY8zU1E6pWE2MO5uJBBX9cvkwCycWFokfLlwNNmgC+R5ZiPr5DpMSA04eCGHrwIP/XOT2dzNYAjwwVFZgWzJs3jzk5ObEffviBXb9+nT1//pw9e/aMXb9+nf3www/M2dmZzZ8/X5tDmj1JSUkMAEtKSjL1UIoOSUmM0eWBsYQExho0oPuHDul2vFKlaP9//2UsO5uxYsXo7/v3DTtuQ5CRwTIkEnYQYP169GD29vYMgGzxs7dnq1atYgkJCaYZ34YNjInF9PqJxfS3oZFKGbO3p3NERMjXh4bSujp1DHOep0/peFZWjGVlab37+MPjGOaA+YwBe3/1snY7nzwp/4wrLqdOaT0Oi+Off+i5urnJVmVk0L93v37yt15YmjdnbPVqxl680PO8q1bJD5rfZzc8nLYrVYo+jxyLRJvrt1ZiyNPTk+3bt0/t43v37mXu7u7aHNLs4WLIBJw9S19Enp70d0AA/a3LhTcjQ/4FKHyb1qtHfx84YLgx64lUKmUXLlxgowYMYC4K4gcA8/HxYfNGj2YRwpezqYiOlgshYZFIaL0hiY+nY4tEjKWny9ffvk3rS5Y0zHlOn6bjVami9a43Ym8w8VwxwxywsMpgbN067Q4QHU3Pz9ivpTkSEUHP18FB5cPJr7PYH6LBrCPCmFgslb08VlaMde/O2M6djL17p+U5tf3srl9P27Rvr+WJOOaENtdvrabJXr58iWqyYhG58fHxwevXr3WMUXE4H8hpXBSM+7pMkwl1eSQSKqwHmFV6/b179zBz5kxUqVIFLVq0wJpt25AIwNXKChMmTMDVq1dpm9mzURmgxpGmmt7Lq3muIRH8Qm5uyqWMhWmy16/1K8IpoGMmGWMMYw6PgZRJ8Wl2Nfg/AqVJaYOnJ9C+vfxviUT3djOWhlBEMTWVPj85H34Xj0HsDxyVdEX0Yyl++YW+CrKygIMHqaCjqyswdChw4oTKQ+RG3Wf33j3V23PzdJFDKzHUpEkTLFiwAFlZWbkey8rKwsKFC9GkSRODDY5TRMlpXNRHDCmap8UfPu4mFkNxcXFYtmwZGjVqhOrVq+P7779HZGQkHB0dMbBRI4QBiOnWDUuXLkWjRo0oI6x0aXnKjqna3giZT4ro2jw3LwS/UPkcHhxnZ/mF1BDeGh0zyYJvBeP80/MoZl0MS2pMpJWqXpv8ED7Ps2dTIVALME8bBMUOBqq6FgiZZG5ucPeSYNIkIDycisdPn042spQUKgDeoQN9TL79FrhxQ31BSFmD3ZyMGAGEhuZez83TRQ6txNDKlStx4sQJlC1bFj179sTIkSPx1VdfoWfPnnB1dcWpU6ewevVqY42VU1QwZGRI0TwtIJiohXo+BYDMCN2pEzw8PDBx4kTVRuimTeEPwCpnBFYsBoRmqUbqXq8WqRSYNg2YMoX+VkzXnzzZ8NEMVeZpAUMWXtQhk+zN+zeyStMzW81E+eZd6IF//6U2IZoSG0v7iETA2LFFIyIkYGsrL3GhqvCimrT6GjWABQvobTt7lnRMyZLUbuznn0m31K4N/PCDPLgoQ2iwK/ygEIup5lhkJBAQAHTpAty9S49lZ1PBRYBHhooQWomh2rVr48GDB1iwYAGcnJwQFRWFyMhIODk5YcGCBbh37x5q1qxprLFyigLv3wN37tB9Q0aGFMVQAUWGdKoInVcRvhy1hgqEtDTKd/7hB/p79mwSKx060N/G6EeYlxgyZEaZDtNks0/NRkJqAqqVroZJfpNoPGXL0hyOcAHVhOPH6bZBA4r6FSVEorz7kwlRPzVp9WIx1TZau5Y05b59wKefksb67z/S7RUqUPr/hg3Amzcfdhw2jCJwp07RZywmBvjmGxJmR46Qkho/Hti/X97/zgKKYXIMhPEtTJYNN1AXMP/7HxkXXVzkWRznzulsdGU//ED7DhokX6eYrfbmjWHG/QGZEXrUKObi4pLbCD1vHotQzJDKibc3jevs2dyPdexIj23ebNAxqyUhgTE/PzqntTVjf/whf+zQIVrv6spYZqZhz/vxx3Ts1atzPzZsGD02d67+53FxoWPduKHR5oqm6aMRR+UPdO1Kx1m5UvNzDxpE+0ydquWgCwkVK9Lzv3Qp92NTp9JjY8dqdcjXrynHok0bZZ+0jQ1jvXoxtncvY+/fq9jxwQPGevRQnd1njGxJToGhzfVbp6IkqampCA8PR2xsLCQSCSpVqoT69etbbrVbjvmgOEUmfJ4M5RkScHIic25sLEWHDOBzM0hF6PR0eVRE1S9SDfqT6U1MDEWnRCL6JR0ZST2z9u1TrrTXsSMZ0uPjgdOn5ZEiQ6Cq4KKAoQovJidTVXNAXn8mD6RMitGhoyFlUnxW4zN0rNxR/mDjxuQ70dQ3xBhw7BjdN+TrZknkFRnSsfp0iRL0kR02jD5C27cDW7dStGjvXlpKlAD69KHCjh999MFGVLUqRYO2bwcGDFA+6IgRQKdORWsas4iilRiSSqWYOnUqVq1aJetRxj441sqXL4+VK1eie/fuhh8lp+igyrgoiKG3b2lxdNT8eKqmyQCaKtNTDMXFxWHHjh0IDg42TEXoyEjy5zg6qm4MaWwxtHEjFQJUzLqpVAn4+2/qtKmIjQ3w2WeUAbV9u2Ev6gUxTSYIVhcXZUOvGrbe3IoL0RdQzLoYfvH/RfnBRo3oVtOMsjt36LNnZwe0aKHFoAsRRhBDipQvTxa3yZOBW7cgq3L9/DlZh377jbYJDKRWIDVqQP49o4iQLcnFUKFHK8/Q9OnTcejQIWzfvh2hoaFo0aIFfvjhB9y5cweDBg3CZ599hqNHjxprrJyigKqUVkdHeTdHbaNDQmp9TnGho4laYyO0LhWhFf1CqiJIxhRDQkXknOnHe/fmFkIC/fvT7Z9/UlTLELx9S+UDAOMaqLUwT795/waTj08GAMxqNQtezl7KGwhi6O5dSnPKD8Ev1KoVCaKiiCCGVL1eBuxLJhIBdesCP/1E0aITJyglv3hx+nvRIqBmTfq6+eVkfTwX5TinMbIlOWaJVpGhrVu3YseOHWjZsiUAoFatWvD19cX48eMxb948WFtbY86cOfD39zfKYDmFnMxM+hkH5E5pdXOjX2hxcdp9OeUVGQI0MlFnZmYiLCwMISEh2L9/P9IUsob8/PwQGBiIPn36oIyQ7aUr+XUwF56DIPAMiao6LADV9FFHy5Z0wXr2DDh8GPjkE/3HIUSFSpRQHbExdGRIg7T6WadmyUzTE/0m5t6gXDkSaTExFNls1SrvAxb1KTJAXiLBSJEhVUgkQLt2tKxeDRw6RI1jQ0Ppbbt+vQS+FUWjPU4gCFvRU3wATut+5lGhIoJWkaGUlBR4KHxA3dzc8P79e1mhxU8//RQ3tcmo4HAUuXePIgzFi+e+SOnqG9JRDDHGcPHiRYwePRru7u7o3r07duzYgbS0NPj4+GDevHmIiIiQbaO3EAI0F0PGiAypikbl96tYLAb69aP727cbZhx5+YUAuRhKTlZ9IdUUDTPJbsTdwOqrVC5kVddVsJHYqN6wcWO6zc83lJFBHiuAfFdFFXXTZMnJ8gxFA4shReztaZZ3/36asVyzhmYsGRPhODpgCP5AOZuX6HdsGA4dMt82hhzDoXVq/XaFL71du3bB0dER5T5cqKRSKWxtbQ07Qk7RQdEvlLNAmi5iKDtbbpJVJ4ZyRERyVYReswaJiYlwdXVVrgg9cyYqa1msL1+EKTthCi8nxhRDjo7KUzaaVkQWpsoOHjRMmn1efiFhnCVK0H19TNQaTJMpmqb71OyDDpXyiORo6hu6coUqL5cpA9Spo+WgCxHqxJAQFXJ2lk+NGxkXF+Crr4Dz50kjz59PXw9p78XYuRPo3h1wd6eGspcv51HYkWPRaDVNNm/ePAQEBODAgQOws7PDxYsXsXjxYtnjR44cQX1esZOjK4JfSNVnSBcxlJhIQkckom88RSpWpPoiaWmICw/HjgsXDGeE1pX8IkNCRtyLFyT0hAJyhmD5cqqt4uMD/Por3WoyPdCgAY334UP6mR0YqN848hNDAI3rzRuaKqtRQ7fzaDBNtuXmFlyMvggHa4fcpumcaBoZEqbI2rdXXRG5qCBMk+X0DBlpikxTKlUCvvsOmDGDql6HhFDQMz6eptZWr6aPTGAgLep+t3AsD63+G9u3b4///e9/6NChAxo3bozQ0FBMmDBB9vg333yDEydOGHqMSqxZswbe3t6ws7NDw4YNce7cOY32u3DhAqysrFCvXj2jjo+jB3n1A9JFDAkRFBcXIIeQSUlLwxYXF3QC4NGsmWGN0Lrw7p080qFODAlTcVIp8PKl4c795g2wbBndnz+fTBWa+iREInl0aNs2/ceiiRjS1zeUlUXF9wC1kaHXaa8x+RiZpme3ng1Pp3xej4YN6fbRo7x9VoIYKspTZED+kSETiSEBkYiCfUuX0r/lkSOUdebgQG/xvHkUPWraFFi50jg2Pk4BY/SqRwZkx44dzNramq1fv57duXOHjR8/njk4OLAnT57kud+bN29YpUqVmL+/P6tbt65W5+RFFwuI7GzGihenQme3buV+fMMGeiwgQPNjHj1K+9SqxRhjLCMjgx08eJD169eP2dvbKxVE9PPzY6tWrWIJCQkGekJacusWjbVECXmxSVWULq3+NdKVuXPpmDVq0PugLXfvytuKJybqN5YWLehYu3ap32b4cNpm1izdzhEVJa/Gl5WlcpPRf49mmAPmu8qXpWela3bcypXpuEePqn78zRt55/R8vrMKPer+nxcsoPVDhphmXPnw9i1jISGMdelCTe+F2owSCa0LCaFtOOaB0brW50dqairOnj1ryEMqsWTJEgwbNgxffPEFqlevjmXLlsHLywu//vprnvuNGDECAwYMgJ+fn9HGxtGTR48oZG5nB1SvnvtxITIUG6v5MePjwQBctLVVbYQuWRLzAEQMHGhYI7Qu5JdWL2Bo31BSEv38BYBZs3SbuvH1panNrCxgzx79xqOuSasi+hZeFKbIvL1VTjVej72OX6/Rd8qqLnmYpnOSn2/o1CmK6vn45P38igJmHhlSh4MD1WUMDaWhLl9OM6TZ2ZRQGRhI/6KDBgFhYfQvwbEMDCqGIiIi0LZtW0MeUkZGRgbCw8Nzpe37+/vj4sWLavfbtGkTHj16hNmzZ2t0nvT0dCQnJystnAJAME/Xrp1rSguA1tNk9+7dw8w//kAVAC3Cw1UboRcvxkwAlXWpbG1oBDGUnwnB0GJoxQqaJqtRA+jdW/fjCFNl+mSVZWZSVTzAuNNkeWSSKZqm+9bsi/aV2mt+3Px8Q3yKTI6Zeoa0wdUVGDcO+N//KCl11iz6SKWmUuXrzp1ptnniRPIfceO1eWMxDr7ExERkZ2fDNUdWkKurK+LUXMwePnyIqVOnIiQkRGPPx6JFi+Ds7CxbvLy88t+Joz95+YUAuRiKj1ddDwdUEXrZsmVo1KgRqlevju+PH0ckAEdrawwcOBBhYWGIiYnB0qVL0ahRI4iEYoJGbtiqEUImWX6NIQ1Za0gxKjRzpn6G7L596fbsWd0jNjEx9N7a2iq3T8mJvoUX88gk++PGH7gUc0kz03RO8osMCcUWi3J9IQELjQypw8cHmDuXSqFdvAiMGkX9d+PjyY7XqBH93vj+eyAqytSj5ahCKzFUqlSpPJdW+RUbMwA5ezsxxlT2e8rOzsaAAQMwd+5c+Ghh+Z82bRqSkpJkS7QhumNz8keIDKkTQ2XL0vRRdraSeTjPitCentgOIP6771QboYXPxdOnlEllSvLLJBMwZGRo5Uoy+1avTkVX9KF8eSrCyBiwc6dux1CcIstruk4xMqTLz201mWSv017LKk3PaTMHHk5aXpCFfnrR0bnfn6dPSfBKJICRoucWRSETQwIiEeDnR1lnz59TxYm+fWn2/949+s1RqRL1RVu71rB5EBz90CpFJj09HV999RVq166t8vEnT55g7ty5BhlYTlxcXCCRSHJFgRISEnJFiwC6SF67dg3Xr1/HmDFjAFAdJMYYrKyscPToUbRr1y7Xfra2trxWUkHDWN5p9QClwbu4AC9eIDM6GmFXruRfEXrQIIo2qIvuubgAJUuSIHj40LR1XwpaDCUnA0uW0H19o0IC/fsD587RVNnXX2u/f34FFwWEyFBqKk3xlSyp3XnUTJN9d/I7JL5LRI0yNTC+6XjtjgnQ1I+vL7XluHYNCAiQPyZMkTVpQjV0ijqqpsmysuSfawsVQ4rY2ADdutGSnEydbUJCqCXIhQu0jBsHdO1KXqNu3agYJMc0aCWG6tWrBy8vLwwePFjl4zdv3jSaGLKxsUHDhg1x7Ngx9OzZU7b+2LFj+Pjjj3Nt7+TkhNu3byutW7NmDU6ePIk9e/bAW4NO1ZwCIiaGagJJJOQZUgFjDJeKF0fIixfY1a4dEpOSZI/5+PggKCgIAwYMUC6EqK76tIBIRPmxly/TVJmpxFBKitwLlZ8YEqaP9BVDQlTI15faeBuC3r2BsWPJIPHwYf7PJSeapNUDQLFiNAfx8iV9drQVQyqmycKfhyuZpq0l1todU6BxYxJDV68qiyE+RaaMEBlKT6fF1pb+B6RS8gzmNU1qgTg5AUOG0PLsGbBjB7UCuXGDynPt30/b9O5NKfytWxftMlSmQKuXOyAgAG/evFH7eKlSpTBo0CB9x6SWSZMmYcOGDfj9999x9+5dTJw4EU+fPsXIkSMB0BSXcH6xWIxatWopLWXLloWdnR1q1aoFhwKqbsrRAGGKrEaNXI0rlSpCR0ZiDYDEpCTNKkLnJ4YArXqUGY2ICLp1cZFXV1aHISJDxogKAVQHSTAH62Kk1lQMAbr7hl6/ltcB+vCDSDBNMzD0q9UPbb31mMZS5RuSSuViiJunCSEyBMijQ8IUmZtboVYCHh4UOL1+Hbh9G5g6lYKhycnA779Tma8KFYDJk+WtGjnGR6vI0PTp0/N83MvLC5s2bdJrQHnRt29fvHz5EvPmzUNsbCxq1aqF0NBQVPjw5RkbG4unQqidYznkME/HxcVhx44duStCW1mhZ1YWgr74Au1+/TVvU7xUqr5jvSLmIIbya8OhiCHE0KpV1Bm+WjW58dlQDBhAFeq2bSOhlVeZgJxoI4a8vICbN7UXQ0JUyNWVWnsA2HxjM648uwJHG0f83PFn7Y6XE8WMMsbo+d+6RZFPR0egWTP9jl9YsLKiCN+7d6QCXFws3i+kC7VqAYsWAQsWUDuQ4GBg1y4KeC5eTEvt2hQt6t9f/Yw/R38sTn6PGjUKjx8/Rnp6OsLDw5VM25s3b8ZpoQmiCubMmYMbN24Yf5Ac7bh+HSkAtmRlqTZCCxWhx4zBFgD+xYvnnx34+rW8yEdetYMEASIIElOgqV8IUM4m08U8nJIC/PIhS8qQUSGBTz6h6N79+zQHoA2aeoYA3dPrc0yRvUp7hSnHpwAA5rTWwTSdk7p16UKfkCDPqhP8Qq1bk/eNQ+T0DRVBMSQgFgOtWgG//UazhX/+CfTsSb6j27eBKVPoN0LbtsDGjWSV4xgWixNDnMJDZmYmDh06hP7HjsEVwOCQEBw9ehRSqRR+fn5YtWoVnj9/jkOHDqFfv34oJlwANakLJESFSpQgP4I6FCNDpioEoo0YErwUmZl5t31QhxAV8vGRd5w3JMWLkxMU0G6qjDG5GNI0MgRon8afQwwpmqbHNR2n3bFUYW9PP/cBeb0hXl9INTkzyoqwGFLEzg7o1YsM13FxJJBataJ/kdOngS++oEojn31GXqOMDFOPuHDAxRCnQGGMyao9yypCp6UhDYBPlSqYN28eIiIiVFeE1qbwoiZ+IQCoUoWmMpKSTNdgSBsxZGcnz0bSdrz37gE//ED3jREVEhAKMAYHU+qMJoIlIQF4/57eC036oukaGRIyySpXRvjzcKy9thYAsLrrat1N0zlR9A29f08ZdgAXQznhYihfSpYEvvwSOHOG2uktWkTWyvR0Kvb+ySf0tThyJE2zqSnBxtEALoY4BYKSEbpFC3lF6JIlMQHAVS8v3HvwQLURWsAYYsjOjjrYA6bzDWkjhgDdfEMbN9K3qHDhefdO8321pWtXel1jYyl7qkIFOn9eCH4hd3eaG8gPXQ3UHyJDUu+KGBU6CgwMA2oPQJuKbbQ7Tl4o+oYuXCBB5O6uus1MUYaLIa2oUIHM1v/+S+brr78mr/nr18C6dVTmq3JlYMYMSmjkaAcXQxyjkasi9PffIzIyEo6OjvKK0F9/jaUAGjVvrrJ4phJubsKB8z+5pmIIMK2J+vVrMtcCxhNDMTHA8OHK04CjRuleKTo/EhPpp6uAVAqMGJH3+bSZIgN0L7z4QQz9bn8P/3v2PzjaOGJxx8Wa768JipGho0fpfocO2pnJiwLcM6QTIhFQrx7w88/08T9+nFL2ixen6NHChfS7p2FDKjCvTTvHogwXQxyDkmdFaMEIHR8vrwgt5I6qK7aoiBAZev1a+WKrCm3EkGCiNoUYEqJCbm6y7KZ80bbW0MOHuePn2dnylH5D8/BhboGS3/k0adCqiBAZev9eozK+2dJsnI44ju3FH+OADzA1aj0AYG6buXAv7q7ZOTWlVi3yqb15A/zxB63j9YVyoxgZYoyLIR2QSID27YFNm+g34o4dZNmzsqIk3UmT6F+lUyfql5azFRxHjlap9fkxePBgREdH4+TJk4Y8LMfMyczMRFhYWP4VoVVldeXXk0yREiVoCiUjg4RAXhdOXSJDpsgo03aKDNA+MlS1Kv2cVBQoEgn5pYxB1aqUHqMowPI7nzZp9YC8f5mQteXionbTvXf3YvyR8YhJjgF6fViZ/hpeTl4Y22SsZufTBhsbyir73//k7xEXQ7lRFEPJyVRRHOBiSEeKFaNKGX37UnB21y6y7V26RAHKo0fJ3//JJ5Sq37EjT25UxKCRIQ8PD1nNH07hRqURescOpKWlwcfHJ28jtEBysjxaoElkSCTS3DdkKdNkBSGGhJ+GAhIJmQw0MSrrgqcnpcAoTgvldz5txZBwHiBP39Deu3vRe1dvEkI5iE6OxsEHBzU/nzYIviGAPl/CFC9HjjBNlpwsjwqVLElXdY5euLjQTPjFi/QVO3cufcWkpVGSZ0AAac6xY4ErV0yXSGtOGFQMLVy40KhFFzmmR60RWpOK0DkR6tB4eeX5y14JQQzlNxGuixiKjKSU9YKkIMSQIhMnkrFg2DDt99WGYcOozYlA69Z5b6+tZwjIN6MsW5qN8UfGg0H1N70IIkw4MgHZ0mzNz6kpigb1Bw/yN5AXRYTIUEoKnyIzIpUrA7Nm0W+9//2P+qGVKQO8eEGVNpo1I6fA3LnGmzm3BAwihrKzs3Hjxg281qXuCcfs0cgIHRODpUuXolGjRvkboQW0mSIT0DYypEmPIw8P+jWalSWvQ1NQCGJIk+rTArqIoZs36fazz4wXEcpJkyZA5850//ff895WW88QkK8YOvf0nMqIkAADQ3RyNM49Paf5OTUhJkbuFQLoZ3d+BvKiiOI0GRdDRkckooDl8uX0coeGUsH4YsVIBM2ZQ7/JmjUjkfTihalHXLDoJIYmTJiAjR9+6WRnZ6N169Zo0KABvLy88qwAzbEctDZC51cRWhXnz9Ntju7heaKJGGJMs1YcAiKRaUzUjMl9SrpEhjStM/TiBUXSRCK1jXCNhhCB2rxZXhE8Jykp8gKSukSG1IiM2BTN0mg03U5jCtqwbqlwMWQyrK2BLl2AkBD6TbV1K82ki8U0bTZ2LM3sdutGpmxjVuIwF3QSQ3v27EHdunUBAAcPHkRUVBTu3buHCRMmYMaMGQYdIKfgkFWE7t8frq6uGDx4cN4VofWZ29+4kWrOA8CyZZpPI2gihlJSKMsI0EwMAaYxUScmUrFHgGLZmqIYGdJksl+IClWurHnGmqHo0YOmQGNjqWeZKoSoUMmSyg088yOfyJBbcc18OppupzGCgVwRYxrWLRXF1HouhkyGoyMZqo8cobdh2TKqDpGdDfz9N9VQdXUFBg+mYurZRphVNgd0EkOJiYko9+GiFBoais8++ww+Pj4YNmwYbt++bdABcoyLQYzQ2iLUvZEPQvNpBE3EkDB95OiouRnTFCbqCxfo1s2N0jw0RRBDaWnA27f5by+IoQ8/YAoUGxtg0CC6r07w6mKeBvI1ULcs3xKeTuqnBEUQwcvJCy3Lt9TuvJqM67ff5BW+jW1Yt1R4ZMjsKFcOGD+e6oXevQt89x3VpH37FtiyBfD3p98gX39NhR8Lk/FaJzHk6uqKO3fuIDs7G0eOHEGHD2mj7969g8RYJf45BsWgRmht0WcaQZPCi9qYpwUKWgxt3EgNiACKmmhjsHVwoAXQzDdkSjEEyKfKDh1SPV5tGrQqojhNpqIPgUQswRL/JSp3FYF8bcs6L4NEbITvrGHDyKh+6lTBGNYtEUUxJPwQ4mLIbPD1BebPJxvlhQvAV18BpUrR19WSJWT1rFmTijw+fmzq0eqPTmJo6NCh6NOnD2rVqgWRSISOH3ruXLlyBb6+vgYdIMdwGM0IrS1C3RtFNJ1G0CYyZK5iSFVFaG0NttoUXjS1GKpRg1yZWVn08zInukaGPDzoc5SRodbt+fo9eZFEOX7Bejp5Yk+fPehVvZeKvQyEpyfQpg2PCKlDVWo9F0Nmh0gENG8OrFlDQmj/fsrDsLWl6NGMGYC3NzWT/e036gNtiehUdHHOnDmoVasWoqOj8dlnn8H2Q1dwiUSCqVOnGnSAHP1ISUnBvn37EBISguPHj0P64Re0lZUVOnXqhKCgIPTo0UM//4+2eHpSI52zZ+lvbaYRFMUQY6pbHOgihgQDc0ICVQ4uUULzfVURE0MRsKpV6XllZVH1s9BQYPdu9ZExTS+crq5AVFT+YigjQ96oyFRiCJCn2m/YAHzzjfL7pqsYsramz0NsLL3eOd7vxHeJmHZiGgDglzCgfsAwxH7cHm7F3dCyfEvjRIQ4mqOYWi/0J+NiyKyxsSEbYI8eZHfcu5cKO546Rf2Iz50DxoyhOkZBQXRrZ2fqUWsI04GoqChddrNIkpKSGACWlJRk6qFoTEZGBjt48CDr168fs7e3ZwBki5+fH1u1ahVLSEgw7SAbNWIMYGz2bMaiozXf79072g9g7PVr1dvMmkWPjxyp3Zjc3Gi/K1e02y8nGzYwJhbTsUQieq7OzvJxq1okEu1eh48/pv3WrMl7uxs3aLsSJRiTSvV5VvqRnMyYgwON5dw55cf8/Gj97t3aH7dxY9p3375cD3154EuGOWC1vwLLlIgYi4nRbewc45CSovw/YG3NWHa2qUfF0YHoaMZ++omxOnWU31JnZ8a++IKxU6dM89Zqc/3WaZqsUqVK+Oijj7Bu3Tq8stSYWCGDmcIIrSuZmYBgtA8K0m4awd4ecHam++qmynSJDAGGmSoTpsCEyA9j1LAzKYkm3AcMoDzWpUv1M9hqWmtImCKrU8e0jUKLFwf69KH7Of1RunqGALUZZVdirmDDPxsAAKv/Bqw6d+VRB3PDwUH5M+nunjsLj2MReHoC335LXze3bgFTptC6pCQKBrdtS0bsqVOBf/819WhVo9Mn79q1a2jWrBm+//57uLu74+OPP8bu3buRnl/zTI7BMakRWlfu3qVGq05O2tUYEsjPNyTU39Gk4KIighgKC9O9QJ4qczgArF5N4woJIQE4YYJ+BltNaw2Z2i+kiPAcd+2ST4tkZADPn9N9XVr5qBBD2dJsjA4dDQaGgfft0PIpgC++0H3cHOMgEimXUuBitVBQuzbwww80+33qFP3bOzvTv+iPP9LjdesCixebVx1SncRQgwYN8PPPP+Pp06c4fPgwypYtixEjRqBs2bL4/PPPDT1GTg7MxgitK9ev0239+rr9EsxPDOkaGRIK/4WE0IVZlxYK6szhPXrII0EC+hhstY0MmYMYat6cBOe7d8DOnbQuJoaiZ3Z22otXQKUY2vDPBoTHhsNJXAw/HXxPr1VAgAGeAMfgCL4hgIuhQoZYTF9vGzbQV/WePdQk1tqaokeTJ1MwuH17YNMmeck1k41Xn51FIhHatm2L9evX4/jx46hUqRL+UCxDzzEYBVIRuqAQ2nBo0pxVFcYQQzExZGwWkEp1a6Hg4UGNfwSMVWNGEzHEmHmJIZFIHqHZQFNYSm04dBHtOapQK5qm5z/2Rrm3oDpHvD23ecLFUJHAzg749FNg3z762l67lnJoGANOngQ+/5y+bk2JXlfM6OhobN++Hdu2bcPt27dlVYo5+ZOdnY1z584hNjYWbm5uaNmyZa4aTZmZmQgLC0NISAj279+PtLQ02WN+fn4IDAxEnz59TOv/0QUhMqRNTzJFjCGGHj7MXUFM2wwvgNIpEhKo2OOePRQTNkZqtSZiKDaWqlyLxVQQxBwYNAiYNo06Rv77r24NWhXJUXhx2vFpeP3+NeqUqo5R8+/QYzxabb5wMVTkKFWKhM+IEeQQ2LaNbJT9+5t2XDqJod9++w0hISG4cOECqlWrhsDAQPz111+oWLGigYdXONm7dy/Gjx+PGIWog6enJ5YvX46ePXvi0qVLCAkJwa5du5CYmCjbxsfHB0FBQRgwYID5+H+0RSpVnibThbwKL757J6/KrG1qvVis7PfRpYWCMLXWvz81/zEWmtQZEqJC1appV+HamJQtC3TvTj8RN26kFhyAbuZpQB4ZevYMl59cwIbrH0zTyS1hlX0XaNGCqsdxzBPuGSrSVKwITJ9Ov49MXc1aJzE0f/589OvXD8uXL0e9evUMPKTCzd69e9G7d2+wHO98TEwMPv30U7i6uiJe4QLn6uqK/v37IzAwEA0bNjQ//4+2RESQWLGz0/0ilVdkSHjt7Oy063MltFBQzASbO1e7qE5SknyqzdgVhwWhl5JCbTlUiZ1bt+jWHKbIFBk2jMTQ1q1ywahrZMjNDRCLkZ2dhdGHvgIADK47GB99e1J+Lo75wiNDHNAMuakvbTqJoadPn1r+RdkEZGdnY/z48bmEkCLx8fFwdHREz549ERQUhHbt2pm3/0dbhKhQnTqArs9LEEOxKrqNK06RafsZHTaMWjf36UMFEoUsJ03Zvp2ESfXqVHHZmDg7UwW0jAx6zqqisubkF1KkUydKo37+nKYSAd3FkJUV4O6O38rF4J/E23C2dcaPDh8DEX+QGP7sM8ONm2N4uBjimAk6Gai5ENKNc+fOKU2NqWP37t2WYYTWBcE8ratfCNAsMqRtJpmApyfw/fd0/48/qBq1pghTZMOGGf9njkiUv2/IXMWQlRUwZAjdf/+ebnUVQwBeeLtienu6P7/tfLhu3Ud/9OtHzXo55oti9Nbd3XTj4BR5eIWrAiRWVSRDBa+FFO/CiL7maUAuhl68oDYXiuhaY0iRtm3J+Jyaqnl6/a1bVFzR2hoYOFD3c2tDXrWG3r+XF480NzEE5DY165HtNa3BK7yxB+qK3fFV1f4FN1XJ0R8hMlS8OPDypWnHwinScDFUgLgJxl8DbWdxMKZ/Wj0AuLiQ2Zmx3A069Y0MARR1GT+e7q9cmVtwqUIQTT166CfEtCGvyNB//1E2nIuL3HBuTlSuLC9yCVCerQ51nS7HXMbGklEAgNUpLWG1czcJwZo1gSZNDDVajrG4d49uU1J0r+3F4RgALoYKkJYtW8LT01PtNKNIJIKXlxdatmxZwCMrIGJi6NeflRVQq5bux5FI5IIj51SZIcQQQG0zXFyoDs6BA3lvm55O3QqBgo1G5CWGFKfIzHFaOyYGePBA/rcOdZ2ypdkY9fcoAMCQ60CLx9KCnark6EdMDPDnn/K/da3txeEYAC6GChCJRILly5cDAHJ+TQsCadmyZbnqDRUahKhQjRr6tzJW5xsylBiyt5dXAVu2LO9t//oLePWK/Eb+/vqdVxs0FUPmSF51nTRkXfg6XI+7DmdxMfx4HFT7Pzy8YKcqObpjgM8Ah2MotBZD9+/fx5w5c9C+fXtUrlwZbm5uqFOnDgYPHoxt27bx/mT50KtXL+zZswcewsX8A56entizZw969eplopEVAIYwTwsYWwwBwKhRFMU6d04+dlUI1ZSHDMndcsOY5FVryNzFkFDXSREt6jolpCZgxskZAIAF1UahbCqowCRANf9dXAw3Vo5x0PMzwOEYEo3F0PXr19GxY0fUrVsXZ8+eRePGjTFhwgTMnz8fQUFBYIxhxowZcHd3x48//shFUR706tULj2/fxikA2wCcCgtDVFRU4RZCgGHM0wLqCi8aUgy5u8s7rX+I6OXi8WPg+HG6P3So/ufUBnWRIXNrw6EKoa6TIB61bFsy9fhUvHn/BvXK1cPI5uOUH+TGactAz88Ah2NINM7b/uSTT/Dtt99i586dKFWqlNrtLl26hKVLl+KXX37B9OnTDTLIwoikVCm0ESoe16pVsBEFU2EI87SAulpDhhRDABmpt20Dduyglss5InrYtIlu27UDKlUyzDk1RZ0Yio6mkgBWVuZdfVmo6xQRQdEADS+Cl6IvYdMNet1Xd10NyeEjyhsILT445o+OnwEOx9BoLIYePnwIGxubfLfz8/ODn58fMjIy9BpYoUcspiYtiYlkKi7sNTYSEoBnz8jUaohohappsvR0eV0gQ4mhJk0APz8qwrh2LTBnjvyx7Gy5GBIakBYk6sSQEBWqXh2wtS3YMWmLp6dWF8BsaTZGhZJpemi9oWguKg+MzJFw8NVXVNmaX1gtAy0/AxyOMdB4mkwTIaTP9kWS0qXp9tUr046jIBCmyKpW1a5NhjpUiSEhzd7KSt7zyhBMmEC3v/5Kgkvg+HGKwpQsCfTsabjzaYoghl6/pkrUAuY+RaYHa6+txY24GyhhVwI/dPiBTLiK/eQAbsLlcDhao5WB+uTJk6hRowaSk5NzPZaUlISaNWvi3LlzBhtcoUcQQ0Wh2Jgh/UKAajEkREjKljVsWnXPnvTLNSGBpssEhDTuwED9s+N0oVQp+fSqYr2lQiqGlEzT7RagrENZbsLlcDgGQSsxtGzZMnz55ZdwUuwn8wFnZ2eMGDECS5YsMdjgCj1FSQwZ0i8E5C2GDDVFJmBtDYwZQ/eXL5cXe/zrL1pnKsOuWKw6o6yQiqEpx6cgKT0J9cvVx4iGH8oecBMuh8MxAFqJoZs3b6Jz585qH/f390d4eLjegyoyFEUxZOjIUEoKtc0AjCeGAODLL6n20PXrlGofHAxkZtLzqVfP8OfTlJy+odRU+RRRIRJDF55ewOYbmwEAawLWQCJWSDgYNoyy+k6dolueTcbhcLREKzEUHx8P6zx6CFlZWeFFzvYIHPUUFTGUlAQ8ekT3DRUZKl6cxAkgFwLGFEOlSgGDBtH9ZcuUKx2bkpyRodu3KXJVrlzBtQUxMlnSLIwOHQ0A+Lze52jm2Sz3Rp6eQJs2PCLE4XB0Qisx5OHhgdu3b6t9/NatW4W3r5YxKCpi6MYNui1fXv6c9UUkyj1VZkwxBADjPtSz2bePen/Z2lLbDlOSMzJUCKfI1l5bi5vxN+WmaQ6HwzEwWomhrl27YtasWXj//n2ux9LS0jB79mx069bNYIMr9BQVMWRo87SAILyFWkPGFkM1atAikJ6u3FvJFBRyMRT/Nh7fnfwOALCw3UKUcShj4hFxOJzCiMZ1hgDgu+++w969e+Hj44MxY8agWrVqEIlEuHv3LlavXo3s7GzMmDHDWGMtfBQVMWRo87RAQUeGYmKAu3eV140YQUXjTDU9U8jFkGCabuDWAMMbDjf1cDgcTiFFKzHk6uqKixcv4quvvsK0adPAPjTZE4lE6NSpE9asWQNXY12ICiNFRQwZKzJU0GIor8aSphZDCQlUb+fWLfq7EIih80/P44+bfwAA1nTNYZrmcDgcA6J1o9YKFSogNDQUiYmJuHLlCi5fvozExESEhoaiYsWKRhiiMmvWrIG3tzfs7OzQsGHDPOsa7d27Fx07dkSZMmXg5OQEPz8/hIWFGX2MGlMUxNC7d8CdO3Tf2JGhhAS6NZYYMseaNoqRoago4O1b8jJVq2a6MRkARdP0F/W/QFPPpiYeEYfDKcxoLYYESpYsicaNG6NJkyYoachqv3mwc+dOTJgwATNmzMD169fRsmVLdOnSBU/V9CI6e/YsOnbsiNDQUISHh6Nt27bo3r07rguRClOjWIE6Z8ShsHD7NkUsypY1fMsRRTGUlSXvWm6sLCpzrGmjKIaEKbKaNakKtwWz5uoa3Iq/hZJ2JbGowyJTD4fD4RRytPrGTEtLw7Jly5CUlITx48cXeObYkiVLMGzYMHzxoQ/UsmXLEBYWhl9//RWLFuX+wly2bJnS3wsXLsT+/ftx8OBB1Dd0lEIXBDGUnU3p5yVKmHQ4RkFxisyQVaEBZTGUmEiCUiwGXFwMex5FzK2xpCCGEhPl3iwLnyKLexuHmadmAgAWtl8Il2JGfD85HA4HWkaGhg0bhoiICJQuXRodOnQw1phUkpGRgfDwcPj7+/+/vXuPj/nK/wf+mkTuZNKIJCIRiqZat4pLaJW1xKWosnRLY1fVUhUl1Vrdtq5FNa6lX3XpWq1FL1hUQ9SdUCp+DdGIS0MkkYaYRCLXOb8/Pp3JTK4zycx8ZjKv5+Mxj5l85szkzEHycs77cz56x8PDw3H69GmD3kOtViM3Nxfe3t5VtiksLEROTo7ezWxcXAAPD+lxfV0qM1fxNKAfhjT1Qj4+ZTM35mJNe9r4+EghU60GDh+Wjtl4GJp1aBZyCnMQ2jQUEztPlLs7RGQHjApDR48eRVRUFN555x0kJycjU1OjYQFZWVkoLS2tUKDt5+eHDN1LMlRj2bJlyMvLw+jRo6tss3jxYiiVSu0tKCioTv2uUX2vGzJX8TRQFobu3i2rG7K3Av4GDcr+Dp09K93bcBg6kXICW/7fFiigqLjTNBGRmRgVhnr37o1Vq1YhOjoazZs3h68MO9wqyi21CCEqHKvMtm3bMHfuXOzYsaPafs+ePRsqlUp7u337dp37XK36HIaKi8vObjLHzJAm+BQXl53ybm9hCCj7zJqrt9toGNIrmu78Oro16yZzj4jIXhgVhjZu3Ijg4GDcvXsXP/74o7n6VCkfHx84OjpWmAXKzMys8XT+HTt2YMKECfj6669rXN5zcXGBp6en3s2s6nMYunIFKCoClErg8cdN//7OzmXjp9nl2p7DEAAEBQEWOqHB1Nb+tBYJmQnwdvPGoj8vkrs7RGRHjCqg9vDwkG1TRWdnZ4SGhiI2NhYvvfSS9nhsbCxefPHFKl+3bds2vPbaa9i2bRteeOEFS3TVOJr6pfoYhnTrhUxdPK3h7y+NneZMKnsPQzY6K5Sem44Pj34IAFj858UsmiYii7Kp82+joqIQERGBLl26oEePHli/fj1u3bqFyZMnA5CWuO7cuYMtW7YAkILQuHHjsGrVKoSFhWlnldzc3KBUKmX7HHrq88yQOYunNfz9peuEafYyYhiSrx918O6hd5FTmIOuAV0x4RledZ6ILMvgZbLJkycbXD+zY8cObN26tdadqsrLL7+MlStXYv78+ejUqROOHz+O/fv3Izg4GACQnp6ut+fQ559/jpKSErz55pto2rSp9vbWW2+ZvG+1Vp/DkDmLpzU0RdRFRdK9vYchazjDzUjHU47jq1++ggIKrB28lkXTRGRxBs8MNWnSBO3atUPPnj0xbNgwdOnSBQEBAXB1dUV2djYSExNx8uRJbN++Hc2aNcP69evN0uEpU6ZgypQplT63efNmva+PHj1qlj6YVH0NQ2p1WR2PuWeGdMlQ1C+7pKSyx2++CTg5Sfsh2YDi0mJt0fTEzhPRtVlXmXtERPbI4DC0YMECREZGYtOmTVi3bh0uXbqk93yjRo3Qr18/bNy4scJeQFSN+hqGrl2TLg3h5mbeS0OUD0P2NjOUmgr85z9lX6vV8l881ghrz63FpcxLLJomIlkZVTPk6+uL2bNnY/bs2Xjw4AFSUlLw6NEj+Pj4oFWrVgad4k7l2GIYSk2VLlrapk3Vv3A19UIdOpj30hD2Hoas8eKxBkrPTceHR6Si6SV/XoLG7o1l7hER2ata/5by8vKCV328fISl2VoYWr8emDy57NIX69dXviRjiXohgMtkmovHavYYAuS/eKyB3ol9B7lFuejWrBsmdLaNZT0iqp9qfaFWMhFbCkOXL0tLMJqZCLUamDgR+PJL4NEj/baaS6S0aGHePumGIW9vqV7GnljjxWMNcOy3Y9iasFVbNO2g4I8iIpKPTZ1aXy9pwlBeHlBYKF2vzBrdvAkMHlzxuBDAuHFSSPrTn4BBg4DcXODkSen52bOlz2iugl7diwXb2xKZhrVdPLYGukXT/wj9B7oEdJG5R0Rk7xRClC84IF05OTlQKpVQqVTm2Y1arZZmM9Rq4M4dICDA9N+jrs6cAYYNA37/veJzCoUUQqq7PpyjI/Dbb+b5Ja1WA66u0iU5+vQBjhwx/fcgk1oRtwJRB6PQ2K0xkqYmsVaIiMzCmN/fRs1N37p1C8xOJubgYN27UH/7rTTj8/vv0iny0dH6SzIbNgBpadI1yJYskQqmy9MU9JqDg0PZ7FqjRub5HmQyablpmHN0DgBgST8WTRORdTAqDLVs2RK/VzY7QHVjjXVDQgCffAKMGgUUFABDhgDHjwNvvy3N8hw5It1PmCDNDrVvD8yaBXz/vRRQdJmzoHfTprJZqX37pK/JaukWTb/2zGtyd4eICICRYYizQmZibWGouFg6Y+zdd6WvIyOB3buBhg2lrwMDpSWpypa9LFnQm5oK/OMfZV8LIdUupaaa/ntRnR397Sj+m/BfKKDAZ4M/Y9E0EVkNFlBbA2sJQ6mp0inx0dHSLJCDA7BiBTBtmnHvY6mC3uRk/VPKAZvZY8fe6BZNT+4yGaEBoTL3iIiojNFhaOPGjWiomSGowjRjf3naO2sIQ5s2SbMsmnDh7CzVCw0dWrv3Cww0fyCx4T127M3qs6uR+HsifNx9sLDvQrm7Q0Skx+gwtG7dOjhqlkAqoVAoGIaMJXcY0iw36YaKkhLzXlPMFDRLcpMmSTNCNrLHjr1Jy03D3GNzAUg7TXu7ecvbISKicowOQ+fPn4evve3ya25yh6HKlpvUattYbrKxPXbs0cyDM/Gw6CG6N+uO8c+Ml7s7REQVGBWGeO0xM5E7DNn6cpMlluSoVo7cPIJtl7ZJRdMvsGiaiKwTzyazBnUNQ6mp0qnutT2LKjAQGK/zP3YuN5EJ6BZNv9HlDXRuaubr1BER1ZJRYWjOnDk1Fk9fvHixLv2xT3UJQ5s2AcHBQN++0n1t99nR1IGNHl22fxBRHaw6uwpXsq6waJqIrJ7RYcjd3b3CcZVKhc8++wyhoaHo0oXXGTJabcNQ+cJntbr2++ycOiXdv/IKZ4SozlJzUjH36FwAwNJ+S/GY22PydoiIqBp1WsA/fPgwXn31VTRt2hTz5s1DixYtuJRWG5owdP9+xULm6lS3z44x7t+XrkgPAD17GvdaokrMPDgTecV56BHYA3/r9De5u0NEVC2jw1BqaioWLlyIVq1aYdiwYRBC4Ntvv0VaWhrmzZtnjj7Wf5owpFYDKpXhr9MUPuuqTeFzXJx0/8QTAM8UpDr68caP2HF5BxwUDlg7eC2LponI6hn1U2rw4MFo06YN4uLiMH/+fNy9exdbt27F4MGD4ejoyLPNasvFBfDwkB4bs1QWGAiMG6d/rDaFz5olsmefNe51ROUUlRYh8odIAFLR9DNNrXyvKiIiGHlqfUxMDMaMGYPp06ezNsjUGjcG8vKkMGTMzE6LFmWPHR2lAmhjnTwp3T/3nPGvJdKx6oxUNN3EvQkW/GmB3N0hIjKIUTNDp06dgpubG/r27YuQkBDMnz8f14ytT6HK1baI+tatsselpdI1xYxRWAicOyc95swQ1UFqTirmHZOWypf2Z9E0EdkOo8JQjx49sGHDBmRkZGDWrFk4ePAgQkJCEBYWhk8//RR37941Vz/rv9qGodu3pXulUrqPjTXu9RcuAAUFgI+PVDNEVEtvH3wbecV56BnUE+M6jqv5BUREVqJWlY3u7u547bXXcPLkSSQmJuL555/HokWL0K9fP1P3z37UdWZozBjp3tgwpFsvxJovqqVDNw7h68tfs2iaiGxSnX9ihYSEYOnSpUhNTcXOnTvxwgsvmKJf9qc2YUiIsjD0979LYSYxEUhLM/w9WC9EdVRUWoSp+6cCAKZ0mYJO/p3k7RARkZFM9t83R0dHDB8+HHv27DHVW9qX2oShe/eAR4+kxx06AKGh0uNDhwx7vRA8k4zqbOWZlUi6lyQVTfdl0TQR2R7OZVuL2oQhTb2Qnx/g6gpolikNXSq7ehXIypJe25nXjSLj3Vbdxvxj8wEAn/T/BF6uXvJ2iIioFhiGrEVtwpBmiax5c+m+f3/p/tAhadanJppZoa5dpb2OiIykKZp+NuhZRHSMkLs7RES1wjBkLeoShoKCpPuePQE3NyAjo+zyGtVhvRDVQez1WHyT+A2LponI5vGnl7WoyzKZZmbI1RXo1Ut6bMhSGeuFqJYKSwox9QepaHpq16no6N9R5h4REdUew5C1MMUyGaC/VFadzEypZgjgxVnJaCvOrMDVe1fh5+GHeX/iNQmJyLYxDFkLTRjKz5c2QTREZWFIU0R97BhQVFT1a0+flu6ffhp4jDsFk+FuqW5hwXHprLGl/ZeyaJqIbB7DkLVQKqVriwGGzw6VrxkCpFPsmzSRrnOmuRp9ZVgvRLX09sG3kV+cj+eaP4eIDiyaJiLbxzBkLRQKwNtbemxIGCouBtLTpce6M0MODmWzQ9UtlbFeiGrh4PWD+DbxWzgqHLF28FoouGs5EdUDDEPWxJi6obQ0QK0GnJ0BX1/952rab+jRI+Dnn6XHnBkiAxWWFCLyh0gAwNRuU9HBr4PMPSIiMg2GIWtiTBjSXSJzKPfHqCmiPncOePCg4mvPnZNmlpo2BVq0qG1vyc4sj1teVjTdh0XTRFR/MAxZk9qGofKCgoCQEGnm6MiRis/r1gtxmYMMoFs0HR0eDaWrUuYeERGZDsOQNTEmDJXfY6i86pbKWC9ERppxYAYelTxCr+a9MLb9WLm7Q0RkUgxD1qQ2M0NVhaGq9htSq8tOq2e9EBngwLUD2HllJ4umiajeYhiyJqYMQ336SKfqJycDKSllxxMTpToiDw+gI3cNpurpFk1HdotEe7/2MveIiMj0GIasialqhgBp36Ju3aTHuktlmnqhsDCgQYPa9ZPsxrK4ZUi+nwz/hv6Y22eu3N0hIjILhiFrYsqaIaDypTLWC5GBUh6kYOHxhQCA6P4smiai+svmwtBnn32Gli1bwtXVFaGhoThx4kS17Y8dO4bQ0FC4urri8ccfx7p16yzU01owNAzl5JSdMl/VzBBQVkT9449SrRBQFoZYL0Q10BRNPx/8PMa0HyN3d4iIzMamwtCOHTswffp0/Otf/0J8fDx69eqFQYMG4ZZmyaicmzdvYvDgwejVqxfi4+Px3nvvYdq0afjuu+8s3HMDGRqGNLNCjz0GNGpUdbuwMKBhQyArC7h4Udqo8eZNaV+isDCTdJnqpx+Sf8CuX3exaJqI7IJNhaHly5djwoQJeP3119G2bVusXLkSQUFB+L//+79K269btw7NmzfHypUr0bZtW7z++ut47bXXEB0dbeGeG0gThrKzy2ZyKlNTvZCGk5NUSA1IS2WaWaGOHasPUWTXCkoKtEXTb3V/C+1828ncIyIi87KZMFRUVISff/4Z4eHhesfDw8NxWnOqeDlxcXEV2g8YMADnz59HcXFxpa8pLCxETk6O3s1iNGFIrQZUqqrbGVIvpKG735CmeJr1QlSN6NPRuJ59Hf4N/TGnzxy5u0NEZHY2E4aysrJQWloKPz8/veN+fn7IyMio9DUZGRmVti8pKUFWVlalr1m8eDGUSqX2FlTT7IspOTtLy1pA9UtlNZ1Wr0tTRH3ihFQ7BLBeiKr024PfsOjEIgDAsvBl8HTxlLlHRETmZzNhSKN87YIQotp6hsraV3ZcY/bs2VCpVNrbbc0sjKUYUjdkTBhq2xYICAAKC4HLl6VjnBmiKmiKpnsH98Yr7V6RuztERBZhM2HIx8cHjo6OFWaBMjMzK8z+aPj7+1favkGDBmisCR3luLi4wNPTU+9mUcaEIUNmrRSKsqUyAGjWDAgMrH3/qN7an7wfu3/dzaJpIrI7NhOGnJ2dERoaithy19qKjY1Fz549K31Njx49KrQ/ePAgunTpAicnJ7P1tU4MCUPG1AwBUiG1xp07wKZNtesb1VsFJQWY9sM0AMD0sOl42vdpmXtERGQ5NhOGACAqKgobN27EF198gStXrmDGjBm4desWJk+eDEBa4ho3bpy2/eTJk5GSkoKoqChcuXIFX3zxBTZt2oSZM2fK9RFqVlMYUquNC0OpqcC//61/bNIk6TjRHz459QmuZ19HQKMAzOnNomkisi82dT2Gl19+Gffu3cP8+fORnp6Odu3aYf/+/QgODgYApKen6+051LJlS+zfvx8zZszA2rVrERAQgNWrV2PkyJFyfYSa1RSG7t4FioulvYICAmp+v+Tkiqfpl5YC165xuYwAADezb2LRSaloOrp/NBq5cNsFIrIvNhWGAGDKlCmYMmVKpc9t3ry5wrHevXvjwoULZu6VCdUUhjRhLyDAsGuLtWkjBSfdQOToCLRuXbd+Ur0x48AMFJQUoE+LPvhru7/K3R0iIouzqWUyu1BTGDK2XigwEFi/XgpAgHT/+eecFSIAwPdXv8f/kv6HBg4NsGbQGhZNE5FdsrmZoXrP0JkhQ8MQAEyYAAwYIC2NtW7NIEQA/iiajvmjaLo7i6aJyH4xDFkbc4QhQApADEGkY+mppbiRfQMBjQLwYe8P5e4OEZFsuExmbQxdJrPkzthU79zIvoHFJxcDAJaHL2fRNBHZNYYha2OumSEiHdNjpqOgpAB9W/bF6KdHy90dIiJZMQxZG00Yys8HCgoqPs8wRHW07+o+7L26l0XTRER/YBiyNp6eZafMl58dKigAMjOlxwxDVAuPih9pd5qeETYDbZu0lblHRETyYxiyNgoF4O0tPS4fhjS7Rru7A489Ztl+Ub2w9NRS3HxwE80aNcMHz38gd3eIiKwCw5A1qqpuSHeJjEsbZCS9oukBLJomItJgGLJGhoQhIiO9FfMWCksL8eeWf8aop0bJ3R0iIqvBMGSNGIbIxPYm7cW+q/vg5OCENYNZNE1EpIthyBpVFYa4xxDVwqPiR9qdpqN6ROFJnydl7hERkXVhGLJGnBkiE1pycgl+e/AbAj0D8f7z78vdHSIiq8MwZI0YhshErt+/jo9PfQxA2mm6oXNDmXtERGR9GIasUWVhSIiyMMRlMjKAEALTYqahsLQQ/R7vh7889Re5u0REZJUYhqxRZWEoO1valRrgBVfJIHuv7sX+5P1wcnDCp4M+ZdE0EVEVGIasUWVhSDMr5OsLuLlZvk9kU/KL87U7Tb/d420WTRMRVYNhyBpVF4ZYL0QGWHJyCVJUKQjyDGLRNBFRDRiGrJEmDGVnA2q19Jj1QmSga/evaYumVwxYAQ9nD5l7RERk3RiGrJHm2mRqNfDggfRYs8cQZ4aoGkIITPthGopKi9D/8f4Y0XaE3F0iIrJ6DEPWyNkZaPTHdaM0S2VcJiMD7Enagx+u/cCiaSIiIzAMWavydUMMQ1SD/OJ8vBXzFgBgZs+ZCPEJkblHRES2gWHIWlUVhlgzRFVYfGKxtmj6X73+JXd3iIhsBsOQtdINQyUlQFqa9DVnhqgSyfeSsfT0UgDAyoErWTRNRGQEhiFrpRuG0tKkYmonJ8DPT95+kdURQiDyh0gUlRZhQKsBeOnJl+TuEhGRTWEYsla6YUh3icyBf2Skb/evu3Hg+gE4OThh9aDVLJomIjISf7Naq6rCEJGO/OJ8TD8wHQDwTs938ETjJ+TtEBGRDWIYsla6YYh7DFEVFp1YhFuqW2iubI73er0nd3eIiGwSw5C1qmxmiGGIdFy9dxWfnP4EALByAIumiYhqi2HIWjEMUTV0i6YHth6I4U8Ol7tLREQ2q4HcHaAqVHaxVtYM0R92/boLB68fhLOjM1YPZNE0EVFdMAxZK90wlJcnPebMEAHIK8rD9JjpAIB3e76LNo3byNshIiIbxzBkrTRh6NEj6QZwZogAAB+d+Ai3c24jWBmM2b1my90dIiKbx5oha9WoEdBAJ6t6eQGenrJ1h6zD1XtXEX06GoC007S7k7vMPSIisn0MQ9ZKoSibHQI4K0TaoulidTEGtR6EF0NelLtLRET1AsOQNdMNQ6wXsns7r+wsK5rmTtNERCbDMGTNGIboD3lFedqdpmc9OwutvVvL2yEionqEYciaMQzRHxYeX4jUnFS08GqBfz73T7m7Q0RUrzAMWTPWDBGAX7N+xbK4ZQCAVQNXsWiaiMjEGIasGWeG7J5u0fTgNoMx9ImhcneJiKjeYRiyZt7eZY+dnOTrB8nmuyvf4dCNQ3BxdOFO00REZmIzYSg7OxsRERFQKpVQKpWIiIjAgwcPqmxfXFyMWbNmoX379vDw8EBAQADGjRuHtLQ0y3W6rhITyx4/+yywaZN8fSGLe1j0EDMOzAAgFU238m4lc4+IiOonmwlDY8aMwcWLFxETE4OYmBhcvHgRERERVbbPz8/HhQsX8MEHH+DChQvYuXMnrl69imHDhlmw13WQmgp8+WXZ12o1MGmSdJzsAoumiYgswyYux3HlyhXExMTgzJkz6N69OwBgw4YN6NGjB5KSkhASElLhNUqlErGxsXrHPv30U3Tr1g23bt1Cc2uvwUlOBoTQP1ZaCly7BgQGytMnspgrv1/RFk2vHrgabk5uMveIiKj+somZobi4OCiVSm0QAoCwsDAolUqcPn3a4PdRqVRQKBTw8vIyQy9NrE0bwKHcH4+jI9Ca+8vUd5qi6RJ1CYY8MQRDQ1g0TURkTjYxM5SRkQFfX98Kx319fZGRkWHQexQUFOCf//wnxowZA89qrvFVWFiIwsJC7dcqlQoAkJOTY2Sv68jTE1i1CnjrLWmJzMEBWLlSOm7pvpBF7byyEz9e+RHOjs5Y2HOh5f/uERHVA5qfnaL8KkslZA1Dc+fOxbx586ptc+7cOQCo9CwaIYRBZ9cUFxfjr3/9K9RqNT777LNq2y5evLjSPgXJvc+PWg1ERko3sgtFKEKnjzrJ3Q0iIpuWm5sLpVJZbRuFMCQymUlWVhaysrKqbdOiRQv897//RVRUVIWzx7y8vLBixQqMHz++ytcXFxdj9OjRuHHjBg4fPozGunv3VKL8zJBarcb9+/fRuHFjntZsYjk5OQgKCsLt27erna0j0+B4WxbH27I43pZlC+MthEBubi4CAgLgUL7spBxZZ4Z8fHzg4+NTY7sePXpApVLhp59+Qrdu3QAAZ8+ehUqlQs+ePat8nSYIJScn48iRIzUGIQBwcXGBi4uL3jGbqDGyYZ6enlb7j6k+4nhbFsfbsjjelmXt413TjJCGTRRQt23bFgMHDsTEiRNx5swZnDlzBhMnTsSQIUP0ziR78sknsWvXLgBASUkJ/vKXv+D8+fPYunUrSktLkZGRgYyMDBQVFcn1UYiIiMjK2EQYAoCtW7eiffv2CA8PR3h4ODp06IAvdffhAZCUlKQteE5NTcWePXuQmpqKTp06oWnTptqbMWegERERUf1mE2eTAYC3tze++uqratvolj+1aNHCoApyko+LiwvmzJlTYVmSzIPjbVkcb8vieFtWfRtvWQuoiYiIiORmM8tkRERERObAMERERER2jWGIiIiI7BrDEBEREdk1hiGqk+PHj2Po0KEICAiAQqHA7t279Z6/e/cu/v73vyMgIADu7u4YOHAgkpOT9dpkZGQgIiIC/v7+8PDwQOfOnfHtt9/qtcnOzkZERASUSiWUSiUiIiIq7EhuD0wx3tevX8dLL72EJk2awNPTE6NHj8bdu3f12nC8pUvzdO3aFY0aNYKvry+GDx+OpKQkvTZCCMydOxcBAQFwc3NDnz59cPnyZb02hYWFiIyMhI+PDzw8PDBs2DCkpqbqteF4m268169fjz59+sDT0xMKhaLSceR4m2a879+/j8jISISEhMDd3R3NmzfHtGnTtFvcaNjCeDMMUZ3k5eWhY8eOWLNmTYXnhBAYPnw4bty4gf/973+Ij49HcHAw+vXrh7y8PG27iIgIJCUlYc+ePUhISMCIESPw8ssvIz4+XttmzJgxuHjxImJiYhATE4OLFy8iIiLCIp/RmtR1vPPy8hAeHg6FQoHDhw/j1KlTKCoqwtChQ6FWq7XvxfEGjh07hjfffBNnzpxBbGwsSkpKEB4ervd3d+nSpVi+fDnWrFmDc+fOwd/fH/3790dubq62zfTp07Fr1y5s374dJ0+exMOHDzFkyBCUlpZq23C8TTfe+fn5GDhwIN57770qvxfH2zTjnZaWhrS0NERHRyMhIQGbN29GTEwMJkyYoPe9bGK8BZGJABC7du3Sfp2UlCQAiEuXLmmPlZSUCG9vb7FhwwbtMQ8PD7Flyxa99/L29hYbN24UQgiRmJgoAIgzZ85on4+LixMAxK+//mqmT2P9ajPeBw4cEA4ODkKlUmnb3L9/XwAQsbGxQgiOd1UyMzMFAHHs2DEhhBBqtVr4+/uLJUuWaNsUFBQIpVIp1q1bJ4QQ4sGDB8LJyUls375d2+bOnTvCwcFBxMTECCE43lWpzXjrOnLkiAAgsrOz9Y5zvCtX1/HW+Prrr4Wzs7MoLi4WQtjOeHNmiMxGc8FbV1dX7TFHR0c4Ozvj5MmT2mPPPfccduzYgfv370OtVmP79u0oLCxEnz59AABxcXFQKpXo3r279jVhYWFQKpXcTVyHIeNdWFgIhUKht1Gaq6srHBwctG043pXTTP17e3sDAG7evImMjAyEh4dr27i4uKB3797acfr5559RXFys1yYgIADt2rXTtuF4V642420IjnflTDXeKpUKnp6eaNBA2tPZVsabYYjM5sknn0RwcDBmz56N7OxsFBUVYcmSJcjIyEB6erq23Y4dO1BSUoLGjRvDxcUFkyZNwq5du9CqVSsAUk2Rr69vhff39fVFRkaGxT6PtTNkvMPCwuDh4YFZs2YhPz8feXl5eOedd6BWq7VtON4VCSEQFRWF5557Du3atQMA7Vj4+fnptfXz89M+l5GRAWdnZzz22GPVtuF466vteBuC412Rqcb73r17WLBgASZNmqQ9ZivjzTBEZuPk5ITvvvsOV69ehbe3N9zd3XH06FEMGjQIjo6O2nbvv/8+srOzcejQIZw/fx5RUVEYNWoUEhIStG0UCkWF9xdCVHrcXhky3k2aNME333yDvXv3omHDhlAqlVCpVOjcubPenwnHW9/UqVPxyy+/YNu2bRWeKz8mhoxT+TYcb32mHu+a3qO271NfmGK8c3Jy8MILL+Cpp57CnDlzqn2P6t5HLjZzbTKyTaGhobh48SJUKhWKiorQpEkTdO/eHV26dAEgndm0Zs0aXLp0CU8//TQAoGPHjjhx4gTWrl2LdevWwd/fv8LZTgDw+++/V/hfi72rabwBIDw8HNevX0dWVhYaNGgALy8v+Pv7o2XLlgDA8S4nMjISe/bswfHjxxEYGKg97u/vD0D6n2/Tpk21xzMzM7Xj5O/vj6KiImRnZ+vNDmVmZqJnz57aNhzvMnUZb0NwvPWZYrxzc3MxcOBANGzYELt27YKTk5Pe+9jCeHNmiCxCqVSiSZMmSE5Oxvnz5/Hiiy8CkM78AAAHB/2/io6Ojtqzm3r06AGVSoWffvpJ+/zZs2ehUqm0v1BIX1XjrcvHxwdeXl44fPgwMjMzMWzYMAAcbw0hBKZOnYqdO3fi8OHD2rCo0bJlS/j7+yM2NlZ7rKioCMeOHdOOU2hoKJycnPTapKen49KlS9o2HG+JKcbbEBxvianGOycnB+Hh4XB2dsaePXv0ahYBGxpvGYq2qR7Jzc0V8fHxIj4+XgAQy5cvF/Hx8SIlJUUIIZ1ZcOTIEXH9+nWxe/duERwcLEaMGKF9fVFRkWjdurXo1auXOHv2rLh27ZqIjo4WCoVCfP/999p2AwcOFB06dBBxcXEiLi5OtG/fXgwZMsTin1dudR1vIYT44osvRFxcnLh27Zr48ssvhbe3t4iKitJrw/EW4o033hBKpVIcPXpUpKena2/5+fnaNkuWLBFKpVLs3LlTJCQkiFdeeUU0bdpU5OTkaNtMnjxZBAYGikOHDokLFy6Ivn37io4dO4qSkhJtG4636cY7PT1dxMfHiw0bNggA4vjx4yI+Pl7cu3dP24bjbZrxzsnJEd27dxft27cX165d03sfW/v7zTBEdaI5fbX87W9/+5sQQohVq1aJwMBA4eTkJJo3by7ef/99UVhYqPceV69eFSNGjBC+vr7C3d1ddOjQocKp9vfu3RNjx44VjRo1Eo0aNRJjx46tcMqsPTDFeM+aNUv4+fkJJycn0aZNG7Fs2TKhVqv12nC8RaXjDED8+9//1rZRq9Vizpw5wt/fX7i4uIjnn39eJCQk6L3Po0ePxNSpU4W3t7dwc3MTQ4YMEbdu3dJrw/E23XjPmTOnxvfheJtmvKv6eQRA3Lx5U9vOFsZbIYQQ5pp1IiIiIrJ2rBkiIiIiu8YwRERERHaNYYiIiIjsGsMQERER2TWGISIiIrJrDENERERk1xiGiIiIyK4xDBEREZFdYxgiIiIiu8YwRERUC6WlpdqLCRORbWMYIiKbt2XLFjRu3BiFhYV6x0eOHIlx48YBAPbu3YvQ0FC4urri8ccfx7x581BSUqJtu3z5crRv3x4eHh4ICgrClClT8PDhQ+3zmzdvhpeXF/bt24ennnoKLi4uSElJscwHJCKzYhgiIps3atQolJaWYs+ePdpjWVlZ2LdvH8aPH48DBw7g1VdfxbRp05CYmIjPP/8cmzdvxkcffaRt7+DggNWrV+PSpUv4z3/+g8OHD+Pdd9/V+z75+flYvHgxNm7ciMuXL8PX19din5GIzIcXaiWiemHKlCn47bffsH//fgDAqlWrsHr1aly7dg29e/fGoEGDMHv2bG37r776Cu+++y7S0tIqfb9vvvkGb7zxBrKysgBIM0Pjx4/HxYsX0bFjR/N/ICKyGIYhIqoX4uPj0bVrV6SkpKBZs2bo1KkTRo4ciQ8++AAeHh5Qq9VwdHTUti8tLUVBQQHy8vLg7u6OI0eOYNGiRUhMTEROTg5KSkpQUFCAhw8fwsPDA5s3b8akSZNQUFAAhUIh4yclIlNrIHcHiIhM4ZlnnkHHjh2xZcsWDBgwAAkJCdi7dy8AQK1WY968eRgxYkSF17m6uiIlJQWDBw/G5MmTsWDBAnh7e+PkyZOYMGECiouLtW3d3NwYhIjqIYYhIqo3Xn/9daxYsQJ37txBv379EBQUBADo3LkzkpKS0Lp160pfd/78eZSUlGDZsmVwcJBKKb/++muL9ZuI5MUwRET1xtixYzFz5kxs2LABW7Zs0R7/8MMPMWTIEAQFBWHUqFFwcHDAL7/8goSEBCxcuBCtWrVCSUkJPv30UwwdOhSnTp3CunXrZPwkRGRJPJuMiOoNT09PjBw5Eg0bNsTw4cO1xwcMGIB9+/YhNjYWXbt2RVhYGJYvX47g4GAAQKdOnbB8+XJ8/PHHaNeuHbZu3YrFixfL9CmIyNJYQE1E9Ur//v3Rtm1brF69Wu6uEJGNYBgionrh/v37OHjwIMaOHYvExESEhITI3SUishGsGSKieqFz587Izs7Gxx9/zCBEREbhzBARERHZNRZQExERkV1jGCIiIiK7xjBEREREdo1hiIiIiOwawxARERHZNYYhIiIismsMQ0RERGTXGIaIiIjIrjEMERERkV37/2oQa3fok9hDAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(-0.2, 1.2)" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Even using the first and last points is not that great of an estimate unless the timespan is extremely long (but over a longer timescale the change is not linear … in the last century it has accelerated enormously)." + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Least-square fitting\n", + "\n", + "Instead, a much more reliable approach is to look at *all* the data simultaneously.\n", + "\n", + "We can't draw a single line that goes through all of the points, but we can try to minimize some *average* error between the fit and *all* of the points. The most common approach is to minimize the average |error|², which is called a [least squares fit](https://en.wikipedia.org/wiki/Least_squares) or, in the particular case of fitting to a *line*, [linear regression](https://en.wikipedia.org/wiki/Linear_regression):\n", + "\n", + "For example, if we want to fit to the linear model\n", + "$$\n", + "\\mathrm{model}(\\mathrm{year}) = \\Delta T = x_1 + x_2 (\\mathrm{year} - 1973)\n", + "$$\n", + "where $x_1$ is the intercept and $x_2$ is the slope, then sum of the squares of errors for $m$ data points is:\n", + "$$\n", + "\\mathrm{SSE} = \\sum_{k=1}^m \\big[ \\Delta T_k - \\underbrace{\\mathrm{model}(\\mathrm{year}_k)}_{\\mbox{row }k\\mbox{ of }Ax} \\big]^2\n", + "$$\n", + "\n", + "### Matrix formulation\n", + "\n", + "A key fact is that **this model depends linearly** on the **unknown x** parameters. And so we can write it in terms of matrix and vector algebra.\n", + "\n", + "In matrix form, we obtain:\n", + "$$\n", + "\\mathrm{SSE} = \\Vert b - Ax \\Vert^2\n", + "$$\n", + "where\n", + "$$\n", + "A = \\begin{pmatrix} 1 & \\mathrm{year}_1 - 1973 \\\\ 1 & \\mathrm{year}_2 - 1973 \\\\ \\vdots & \\vdots \\\\ 1 & \\mathrm{year}_m - 1973 \\end{pmatrix}, \n", + "\\qquad x = \\begin{pmatrix} x_1 \\\\ x_2 \\end{pmatrix}, \\qquad b = \\begin{pmatrix} \\Delta T_1 \\\\ \\Delta T_2 \\\\ \\vdots \\Delta T_m \\end{pmatrix} \\, .\n", + "$$\n", + "As we've seen in class, the minimum of $\\Vert b - Ax \\Vert^2$ is achieved by **orthogonal projection** of $b$ onto $C(A)$, corresponding to $\\hat{x}$ solving the \"normal equations\"\n", + "$$\n", + "A^T A \\hat{x} = A^T b\n", + "$$\n", + "or simply by `A \\ b` in Julia:" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "b = ΔT\n", + "A = [ones(length(year)) year.-1973]\n", + "\n", + "x̂ = A \\ b" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.08468235294117633\n", + " 0.01638847539015606" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Alternatively, the normal equations solution:\n", + "(A'A) \\ A'b" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.08468235294117676\n", + " 0.016388475390156053" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Let's plot it:" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "using PyPlot\n", + "plot(year, ΔT, \"r.-\")\n", + "xlabel(\"year\")\n", + "ylabel(\"ΔT (°C) vs. 1901–2000 baseline\")\n", + "title(\"Global average temperature change: Linear fit\")\n", + "\n", + "plot(year, A * x̂, \"k-\")\n", + "legend([\"data\", \"fit: slope $(round(x̂[2], sigdigits=2)) °C/year\"])" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACzfklEQVR4nOydd1wT5x/HP2EPBRVlCQIqKu6tuHDittU6qtaJeyJoq7WtW+vAvRXnr7XW1ap14a6ide+tIKDgQEVBZeX5/fF4GSSBTALk+369eN3l8tzdc0nIffKdIsYYA0EQBEEQhIliZuwJEARBEARBGBMSQwRBEARBmDQkhgiCIAiCMGlIDBEEQRAEYdKQGCIIgiAIwqQhMUQQBEEQhElDYoggCIIgCJOGxBBBEARBECYNiSGCIAiCIEwaEkMEAODGjRsICgpCmTJlYGtrC1tbW/j6+mLo0KG4dOmS3NipU6dCJBJpdZ6mTZuicuXK+piy3DGbNm2q12OaKnfu3MHUqVMRHR1t7KnkOZ4/f46pU6fi2rVrxp6K1ohEIowaNcrY0zAK3t7e6NChQ7Zj+vfvD29v79yZkAFIS0vDsGHD4ObmBnNzc1SvXh0Av/b+/ftLxhWEz7K+sTD2BAjjs2bNGowaNQrly5fH2LFjUalSJYhEIty9exfbtm1DnTp18OjRI5QpU8bYUyUMzJ07dzBt2jQ0bdo0X98UDMHz588xbdo0eHt7S24yRMHi559/xtixY409Da1ZtWoV1qxZg2XLlqFWrVooVKgQAGDPnj1wcHCQjKPPsiIkhkycs2fPYsSIEWjfvj127twJKysryXPNmzfHyJEjsWPHDtja2hpxlgWPjx8/ws7OztjTMGk+ffoEGxsbra2c+iIzMxMZGRmwtrY26jwI5PkffIwxfP78WeX38a1bt2Bra6tg/atRo0ZuTC9fQ24yE2f27NkwNzfHmjVr5ISQLN26dYO7u3u2xxGLxZg3bx4qVKgAa2trODs7o2/fvoiLi1M6/t9//0X9+vVha2uLkiVL4ueff0ZmZqbcmGnTpqFevXooVqwYHBwcULNmTYSHh0Pb3sLbt29HYGAg3NzcYGtrCz8/P0ycOBEpKSmSMYsXL4ZIJMKjR48U9v/hhx9gZWWF169fS7YdPXoULVq0gIODA+zs7NCwYUMcO3ZMbj/BrXjlyhV07doVRYsWlXzpXrp0Cd9++y28vb1ha2sLb29v9OzZE0+fPlU4/5kzZ+Dv7w8bGxvJa7Z+/XqIRCIFt9b27dvh7+8Pe3t7FCpUCK1bt8bVq1ezfX02bdqEbt26AQCaNWsGkUgEkUiETZs2aXW9N27cQLdu3eDo6IhixYohJCQEGRkZuH//Ptq0aYPChQvD29sb8+bNk9v/5MmTEIlE+N///oeQkBC4urrC1tYWAQEBSq/h0qVL6NSpE4oVKwYbGxvUqFEDf/75p8K1iUQiHDlyBAMHDkSJEiVgZ2eH1NRUPHr0CAMGDICvry/s7OxQsmRJdOzYETdv3pSbU506dQAAAwYMkLw2U6dOBaDaVZvV7RIdHQ2RSIR58+Zh5syZ8PHxgbW1NU6cOKH2tagiNTUV06dPh5+fH2xsbODk5IRmzZohMjJSYezWrVvh5+cHOzs7VKtWDfv375d7Xp3XRHhdRCIRtm3bhsmTJ8Pd3R0ODg5o2bIl7t+/LzeWMYbZs2fDy8sLNjY2qF27NiIiIpS+du/fv8f48ePh4+MDKysrlCxZEsHBwXL/q4ZAmZtMcC3m9JoBwMOHD9GrVy84OzvD2toafn5+WLFihdyYz58/IzQ0FNWrV5f8b/j7++Pvv/9WOJ5w7tWrV8PPzw/W1tbYvHmz0rmLRCKsX78enz59UvjflXWT5fRZNlkYYbJkZGQwW1tb5u/vr9F+U6ZMYVk/OkOGDGEA2KhRo9ihQ4fY6tWrWYkSJZinpyd79eqVZFxAQABzcnJi7u7ubOnSpezw4cNszJgxDAAbOXKk3DH79+/PwsPDWUREBIuIiGAzZsxgtra2bNq0aXLjAgICWEBAQI7znjFjBlu0aBH7559/2MmTJ9nq1auZj48Pa9asmWTMq1evmJWVFZs8ebLcvhkZGczd3Z116dJFsm3r1q1MJBKxr7/+mu3evZvt27ePdejQgZmbm7OjR48qvF5eXl7shx9+YBEREeyvv/5ijDG2Y8cO9ssvv7A9e/awU6dOsT/++IMFBASwEiVKyL1u169fZzY2Nqxq1arsjz/+YHv37mXt2rVj3t7eDACLioqSjJ01axYTiURs4MCBbP/+/Wz37t3M39+f2dvbs9u3b6t8fV6+fMlmz57NALAVK1awc+fOsXPnzrGXL19qdb3ly5dnM2bMYBEREez777+XfD4qVKjAli5dyiIiItiAAQMYALZr1y7J/idOnGAAmKenJ/vqq6/Yvn372P/+9z9WtmxZ5uDgwB4/fiwZe/z4cWZlZcUaN27Mtm/fzg4dOsT69+/PALCNGzdKxm3cuJEBYCVLlmRDhgxhBw8eZDt37mQZGRns1KlTLDQ0lO3cuZOdOnWK7dmzh3399dfM1taW3bt3jzHGWFJSkuQYP/30k+S1iY2NZYyp/gz269ePeXl5SR5HRUVJ5tGsWTO2c+dOduTIERYVFaX2tSgjPT2dNWvWjFlYWLDx48ezAwcOsL1797Iff/yRbdu2TTIOAPP29mZ169Zlf/75Jztw4ABr2rQps7CwkHtd1XlNZN8rb29v1rt3b/bPP/+wbdu2sVKlSjFfX1+WkZEhGTtp0iQGgA0ZMoQdOnSIrVu3jpUqVYq5ubnJvXYpKSmsevXqrHjx4mzhwoXs6NGjbMmSJczR0ZE1b96cicVihc/aiRMnsn19GGPMy8uLtW/fPtsxWd8vTV6z27dvM0dHR1alShW2ZcsWduTIERYaGsrMzMzY1KlTJePevXvH+vfvz7Zu3cqOHz/ODh06xMaPH8/MzMzY5s2bFc5dsmRJVrVqVfb777+z48ePs1u3bimd+7lz51i7du2Yra2twv+ul5cX69evH2Ms58+yqUJiyIRJSEhgANi3336r8FxGRgZLT0+X/Cn7AhK4e/cuA8BGjBghd4z//vuPAWA//vijZFtAQAADwP7++2+5sYMHD2ZmZmbs6dOnSueamZnJ0tPT2fTp05mTk5PcfNQVQ7KIxWKWnp7OTp06xQCw69evS57r0qUL8/DwYJmZmZJtBw4cYADYvn37GGP8C7tYsWKsY8eOCvOsVq0aq1u3rmSb8Hr98ssvOc4rIyODJScnM3t7e7ZkyRLJ9m7dujF7e3s5gZSZmckqVqwoJ4ZiYmKYhYUFGz16tNxxP3z4wFxdXVn37t2zPf+OHTuU3ly0ud6wsDC5sdWrV2cA2O7duyXb0tPTWYkSJeREpnCDrVmzptz7HB0dzSwtLdmgQYMk2ypUqMBq1KjB0tPT5c7VoUMH5ubmJnkPhS//vn37Znv9jPH3IC0tjfn6+rJx48ZJtl+8eFGlMNFUDJUpU4alpaXJjVX3WpSxZcsWBoCtW7cu22sDwFxcXNj79+8l2xISEpiZmRmbM2eOyv1UvSbCe9WuXTu58X/++ScDwM6dO8cYY+zNmzfM2tqa9ejRQ27cuXPnGAC5127OnDnMzMyMXbx4UW7szp07GQB24MABybZp06Yxc3NzdvLkyWyvmzHdxJA6r1nr1q2Zh4cHS0pKktt/1KhRzMbGhr1580bpOYXv2qCgIFajRg2Fczs6OqrcV9n87e3tFbbLiiHGsv8smyrkJiOUUqtWLVhaWkr+wsLCVI4VTPyy2QoAULduXfj5+Sm4UQoXLoxOnTrJbevVqxfEYjFOnz4t2Xb8+HG0bNkSjo6OMDc3h6WlJX755RckJibi5cuXGl/TkydP0KtXL7i6ukqOFxAQAAC4e/euZNyAAQMQFxeHo0ePSrZt3LgRrq6uaNu2LQAgMjISb968Qb9+/ZCRkSH5E4vFaNOmDS5evKhg0v/mm28U5pScnIwffvgBZcuWhYWFBSwsLFCoUCGkpKTIzenUqVNo3rw5ihcvLtlmZmaG7t27yx3v8OHDyMjIQN++feXmZWNjg4CAAJw8eVLj103b682auePn5weRSCR5DQHAwsICZcuWVeoW7NWrl1w8j5eXFxo0aCD5vD169Aj37t1D7969AUBuXu3atUN8fLyCq0bZe5CRkYHZs2ejYsWKsLKygoWFBaysrPDw4UO590CfdOrUCZaWlpLH2lyLLAcPHoSNjQ0GDhyY47mbNWuGwoULSx67uLjA2dlZ7j3Q9DXJ+v9ctWpVAJAc8/z580hNTVX4vNavX1/BLbV//35UrlwZ1atXl3sdWrduDZFIJPcZ/uWXX5CRkSH5PzYUOb1mnz9/xrFjx9C5c2fY2dkpvH+fP3/G+fPnJfvv2LEDDRs2RKFChWBhYQFLS0uEh4crfW2bN2+OokWLGvT6CAqgNmmKFy8OW1tbpTei33//HR8/fkR8fLzCF11WEhMTAQBubm4Kz7m7uysc38XFRWGcq6ur3LEuXLiAwMBANG3aFOvWrYOHhwesrKzw119/YdasWfj06ZN6F/mF5ORkNG7cGDY2Npg5cybKlSsHOzs7xMbGokuXLnLHa9u2Ldzc3LBx40YEBgbi7du32Lt3L8aOHQtzc3MAwIsXLwAAXbt2VXnON2/ewN7eXvJY2evTq1cvHDt2DD///DPq1KkDBwcHiEQitGvXTm5OiYmJSl+3rNuEeQkxAVkxM9Pu948211usWDG5562srGBnZwcbGxuF7e/fv1c4nvCZyLrt+vXrcnMaP348xo8fr3ROsvFdgPL3ICQkBCtWrMAPP/yAgIAAFC1aFGZmZhg0aJDGnzN1yToPba5FllevXsHd3V2t99fJyUlhm7W1tdy1avqaZD2mEAwujBX+r9X9DD969EhOLMqS3etgKHJ6zRITE5GRkYFly5Zh2bJlSo8hzHv37t3o3r07unXrhgkTJsDV1RUWFhZYtWoVNmzYoLCfss8soX9IDJkw5ubmaN68OY4cOYL4+Hi5f7qKFSsCgFr1ZoQvivj4eHh4eMg99/z5czlrBiD94pclISFB7lh//PEHLC0tsX//frmb519//ZXzhSnh+PHjeP78OU6ePCn3K/Ldu3cKY83NzdGnTx8sXboU7969w++//47U1FQMGDBAMka4pmXLlqF+/fpKz5n1Sz5r1lJSUhL279+PKVOmYOLEiZLtqampePPmjdxYJyenbF+3rPPauXMnvLy8lM5LG7S5Xl3Jem3CNuEzIsxp0qRJ6NKli9JjlC9fXu6xssyx//3vf+jbty9mz54tt/3169coUqSIWnO1sbFBUlKSwnZVN+6s89DmWmQpUaIEzpw5A7FYrLXglUUfr4kswnum6jMsax0SfqQpEwbC83mNokWLSr43Ro4cqXSMj48PAP7a+vj4YPv27XKfg9TUVKX7GTvb0VQgMWTiTJo0CQcPHsSwYcOwc+dOlb/GsqN58+YA+D+5rEXi4sWLuHv3LiZPniw3/sOHD9i7d6+cxen333+HmZkZmjRpAoB/AVhYWEgsMQD/lbl161aN5yccD4BC+vKaNWuUjh8wYADmzZuHbdu2YdOmTfD390eFChUkzzds2BBFihTBnTt3tC5iJxKJwBhTmNP69esVMusCAgJw4MABvH79WnIzEIvF2LFjh9y41q1bw8LCAo8fP1bqEsqJrL/oBfRxvZqybds2hISESN67p0+fIjIyEn379gXAxYGvry+uX7+ucNPWBJFIpPAe/PPPP3j27BnKli0r2abqtQF4ts6OHTuQmpoqGZeYmIjIyEi5+i6q0PVa2rZtK/msquMqywl1XxN1qVevHqytrbF9+3Y5sXf+/Hk8ffpUTgx16NABs2fPhpOTk0RA5HXs7OzQrFkzXL16FVWrVlWZmQvw19bKykpO5CQkJCjNJjMU2X2WTRUSQyZOw4YNsWLFCowePRo1a9bEkCFDUKlSJZiZmSE+Ph67du0CgGy/0MuXL48hQ4Zg2bJlMDMzQ9u2bREdHY2ff/4Znp6eGDdunNx4JycnDB8+HDExMShXrhwOHDiAdevWYfjw4ShVqhQAoH379li4cCF69eqFIUOGIDExEQsWLNC6FkuDBg1QtGhRDBs2DFOmTIGlpSV+++03icslKxUqVIC/vz/mzJmD2NhYrF27Vu75QoUKYdmyZejXrx/evHmDrl27wtnZGa9evcL169fx6tUrrFq1Kts5OTg4oEmTJpg/fz6KFy8Ob29vnDp1CuHh4Qq/vidPnox9+/ahRYsWmDx5MmxtbbF69WpJnI5gDfD29sb06dMxefJkPHnyBG3atEHRokXx4sULXLhwAfb29pg2bZrKOQnVwdeuXYvChQvDxsYGPj4+cHJy0vl6NeXly5fo3LkzBg8ejKSkJEyZMgU2NjaYNGmSZMyaNWvQtm1btG7dGv3790fJkiXx5s0b3L17F1euXFEQi8ro0KEDNm3ahAoVKqBq1aq4fPky5s+fr2DlFKqz//bbb/Dz80OhQoXg7u4Od3d39OnTB2vWrMF3332HwYMHIzExEfPmzVNLCOnjWnr27ImNGzdi2LBhuH//Ppo1awaxWIz//vsPfn5++Pbbb9WehyaviboIpRXmzJmDokWLonPnzoiLi8O0adPg5uYmZ80KDg7Grl270KRJE4wbNw5Vq1aFWCxGTEwMjhw5gtDQUNSrVw8AMH36dEyfPh3Hjh1TK24oISEBO3fuVNju7e2N2rVra3VtAkuWLEGjRo3QuHFjDB8+HN7e3vjw4QMePXqEffv24fjx4wD4a7t7926MGDECXbt2RWxsLGbMmAE3Nzc8fPhQpzmoS3afZZPF2BHcRN7g2rVrbMCAAczHx4dZW1szGxsbVrZsWda3b1927NgxubHKUuszMzPZ3LlzWbly5ZilpSUrXrw4++677xTSNQMCAlilSpXYyZMnWe3atZm1tTVzc3NjP/74o0IWzYYNG1j58uWZtbU1K126NJszZw4LDw9XSCVXN5ssMjKS+fv7Mzs7O1aiRAk2aNAgduXKFZVZFWvXrmUAmK2trUKGiMCpU6dY+/btWbFixZilpSUrWbIka9++PduxY4fC6yWbCSYQFxfHvvnmG1a0aFFWuHBh1qZNG3br1i2F7A/GGPv3339ZvXr1mLW1NXN1dWUTJkxgc+fOZQDYu3fv5Mb+9ddfrFmzZszBwYFZW1szLy8v1rVrV7kUeFUsXryY+fj4MHNzc4XXRpfrVZXpInwmBIQMpa1bt7IxY8awEiVKMGtra9a4cWN26dIlhf2vX7/OunfvzpydnZmlpSVzdXVlzZs3Z6tXr5aMEbLJsmYoMcbY27dvWVBQEHN2dmZ2dnasUaNG7N9//1X6udq2bRurUKECs7S0ZADYlClTJM9t3ryZ+fn5MRsbG1axYkW2fft2ldlk8+fPV5iHuteiik+fPrFffvmF+fr6MisrK+bk5MSaN2/OIiMjJWOgpIQFY4rZRuq+JsJ7Jfv+y16n7GdHLBazmTNnMg8PD2ZlZcWqVq3K9u/fz6pVq8Y6d+4st39ycjL76aefWPny5ZmVlZUkZX3cuHEsISFBMk7T1HoASv+Ea1eVTabOayZc98CBA1nJkiWZpaUlK1GiBGvQoAGbOXOm3Lhff/2VeXt7M2tra+bn58fWrVun9HtV1blVoW42GWPZf5ZNERFjWlawIwjC6AQGBiI6OhoPHjww9lT0xsmTJ9GsWTPs2LEj24BtIv8TFRWFChUqYMqUKfjxxx+NPR3ChCE3GUHkE0JCQlCjRg14enrizZs3+O233xAREYHw8HBjT40gcuT69evYtm0bGjRoAAcHB9y/f1/iSgwKCjL29AgTh8QQQeQTMjMz8csvvyAhIQEikQgVK1bE1q1b8d133xl7agSRI/b29rh06RLCw8Px7t07ODo6omnTppg1a5beMxEJQlPITUYQBEEQhElDFagJgiAIgjBp8pUYOn36NDp27Ah3d3eIRKIcC/Dt3r0brVq1QokSJeDg4AB/f38cPnw4dyZLEARBEES+IF+JoZSUFFSrVg3Lly9Xa/zp06fRqlUrHDhwAJcvX0azZs3QsWNHXL161cAzJQiCIAgiv5BvY4ZEIhH27NmDr7/+WqP9KlWqhB49euCXX35Ra7xYLMbz589RuHBhKotOEARBEPkExhg+fPigVt8+k8omE4vF+PDhg0IDyex4/vw5PD09DTgrgiAIgiAMRWxsbI7V001KDIWFhSElJQXdu3dXOSY1NVWuYZ5gOIuNjdWotD5BEARBEMbj/fv38PT0ROHChXMcazJiaNu2bZg6dSr+/vtvODs7qxw3Z84cpb2bHBwcSAwRBEEQRD5DnRCXfBVArS3bt29HUFAQ/vzzT7Rs2TLbsZMmTUJSUpLkLzY2NpdmSRAEQRCEMSjwlqFt27Zh4MCB2LZtG9q3b5/jeGtra607oxMEQRAEkf/IV2IoOTkZjx49kjyOiorCtWvXUKxYMZQqVQqTJk3Cs2fPsGXLFgBcCPXt2xdLlixB/fr1kZCQAACwtbWFo6OjUa6BIAiCIIi8Rb5KrRe6WWelX79+2LRpE/r374/o6GicPHkSANC0aVOcOnVK5Xh1eP/+PRwdHZGUlJRtzFBmZibS09PVOiZBEPJYWVnlmPpKEAShCerev4F8JoaMQU4vJmMMCQkJePfuXe5PjiAKCGZmZvDx8YGVlZWxp0IQRAFBEzGUr9xkeRFBCDk7O8POzo4KMxKEhgiFTePj41GqVCn6HyIIItchMaQDmZmZEiHk5ORk7OkQRL6lRIkSeP78OTIyMmBpaWns6RAEYWKQk14HhBghOzs7I8+EIPI3gnssMzPTyDMhCMIUITGkB8isTxC6Qf9DBEEYExJDBEEQBEGYNCSGCAlNmzZFcHCwsadBEARBELkKiSFCK06ePAmRSEQlBQiCIEyRuDjgxAm+LACQGCIIgiAIQn3CwwEvL6B5c74MDzf2jHSGxFBeIZdVdkpKCvr27YtChQrBzc0NYWFhcs//73//Q+3atVG4cGG4urqiV69eePnyJQAgOjpaUgm8aNGiEIlE6N+/PwDg0KFDaNSoEYoUKQInJyd06NABjx8/zpVrIgiCIAxMXBwwZAggFvPHYjEwdGi+txCRGNI3jAEpKZr9rVwpr7JXrtT8GBoWEp8wYQJOnDiBPXv24MiRIzh58iQuX74seT4tLQ0zZszA9evX8ddffyEqKkoieDw9PbFr1y4AwP379xEfH48lS5YA4CIrJCQEFy9exLFjx2BmZobOnTtDLPzjEARBEPmXhw+lQkggMxOQ6RuaH6Gii/rm40egUCHt9xeLgZEj+Z8mJCcD9vZqDk1GeHg4tmzZglatWgEANm/eDA8PD8mYgQMHStZLly6NpUuXom7dukhOTkahQoVQrFgxAICzszOKFCkiGfvNN9/InSs8PBzOzs64c+cOKleurNk1EQRBEHkLX1/AzExeEJmbA2XLGm9OeoAsQybI48ePkZaWBn9/f8m2YsWKoXz58pLHV69exVdffQUvLy8ULlwYTZs2BQDExMTkeOxevXqhdOnScHBwgI+Pj1r7EQRBECrIS8HKHh6A7I9eMzNgzRq+PR9DliF9Y2fHrTTq8uwZ4OenqLLv3AFKltTsvGqSU2/elJQUBAYGIjAwEP/73/9QokQJxMTEoHXr1khLS8t2344dO8LT0xPr1q2Du7s7xGIxKleunON+BEEQhBLCw6UxOmZmwNq1QFCQcedkYyNdDwkx/nz0AIkhfSMSqe2uAgCUK8c/3EOHcr+ruTlX2eXKGWyKZcuWhaWlJc6fP49SpUoBAN6+fYsHDx4gICAA9+7dw+vXr/Hrr7/C09MTAHDp0iW5Yyhrn5CYmIi7d+9izZo1aNy4MQDgzJkzBrsOgiCIAo2qYOXWrY1ribl+XbqekmK8eegREkN5gaAg/uF+9Ij7XQ38IS9UqBCCgoIwYcIEODk5wcXFBZMnT4aZGfealipVClZWVli2bBmGDRuGW7duYcaMGXLH8PLygkgkwv79+9GuXTvY2tqiaNGicHJywtq1a+Hm5oaYmBhMnDjRoNdCEARRYMkuWNlYYigtDbh7V/r4+XPjzEPPUMxQXsHDA2jaNNc+4PPnz0eTJk3QqVMntGzZEo0aNUKtWrUA8A7imzZtwo4dO1CxYkX8+uuvWLBggdz+JUuWxLRp0zBx4kS4uLhg1KhRMDMzwx9//IHLly+jcuXKGDduHObPn58r10MQBFHgEIKVZTF2sPK9e8CXJuUACowYErGcAkhMnPfv38PR0RFJSUlwcHCQe+7z58+IioqCj48PbGR9qARBaAT9LxGECsLCgPHjpY9XrgSGDzfefLZuBfr2BRwcgPfveWxrXgjsVkJ29++skGWIIAiCIPIqMlm/AAwaT6oWQrxQy5Z8mZCg6MrLh5AYIgiCIIi8SnS0/ONjx4wyDQk3bvBlq1Y8YSgzE3j1yrhz0gMkhgiCIAgiryKIIaGY7/HjRpsKAKllqFYtwMWFrxeAuCESQwRBEASRV4mK4svu3fny4kUgKck4c3nxAnj5kgd1V6oEuLvz7SSGCIIgCIIwGIJlqEkTnkUmFgOnThlnLoJVyNeXF/olMUQQBEEQhMERxJC3N9CiBV83lqtMEEPVqvEliSGCIAiCIAyKWAw8fcrXfXykYshYQdRC8HTVqnxJYoggCIIgCIMSH88LHFpYcOHxpWE2bt3i8Tu5TVbLkJsbX5IYIgiCIAjCIAguMk9PLohKlJAKkRMncncuqanSNhzkJiMKAowxDBkyBMWKFYNIJMK1a9fQtGlTBAcHG/S8J0+ehEgkwrt37wx6HoIgiAKBbLyQgLFcZffuARkZQJEi0rZRJIaI/MyhQ4ewadMm7N+/H/Hx8ahcuTJ2794t14zV29sbixcvNt4kDczbt2/Rp08fODo6wtHREX369MlRpDHGMHXqVLi7u8PW1hZNmzbF7du35casXbsWTZs2hYODQ7bC759//kG9evVga2uL4sWLo0uXLtmeOyEhAW3btoW7uztGjBgBcZaKr48ePcKAAQPg4eEBa2tr+Pj4oGfPnrh06ZLcuE+fPsHOzg737t3L9nwEQeQBhLR6WTHUvDlf5nYQtayLTCTi64IYevmSC6V8DIkhE+Tx48dwc3NDgwYN4OrqCgsLCxQrVgyFCxc29tRyjV69euHatWs4dOgQDh06hGvXrqFPnz7Z7jNv3jwsXLgQy5cvx8WLF+Hq6opWrVrhw4cPkjEfP35EmzZt8OOPP6o8zq5du9CnTx8MGDAA169fx9mzZ9GrV69sz/3TTz+hTp06OHjwIKKjo7Ft2zbJc5cuXUKtWrXw4MEDrFmzBnfu3MGePXtQoUIFhIaGyh0nIiICnp6eqFChQrbnMyTpsk0eCYJQjTLLUJMmvFnrkyeK1akNiSCGhOBpgLvtzM15oPfLl7k3F0PAiGxJSkpiAFhSUpLCc58+fWJ37txhnz59MsLMtKNfv34MgOTPy8uLMcZYQEAAGzt2rGRddowmH5Po6GjWoUMHVqRIEWZnZ8cqVqzI/vnnH8YYYydOnGAA2Nu3byXjd+7cySpWrMisrKyYl5cXW7BggdzxvLy82PTp01nPnj2Zvb09c3NzY0uXLpUb8+7dOzZ48GBWokQJVrhwYdasWTN27do1lXO8c+cOA8DOnz8v2Xbu3DkGgN27d0/pPmKxmLm6urJff/1Vsu3z58/M0dGRrV69WmG8smtljLH09HRWsmRJtn79epXzU8Y333zD/vjjD5aZmclGjBjBVqxYIZlXpUqVWK1atVhmZqbCflnPP3DgQDZ+/HgWFRXFRCIRu3jxotzzS5cuZaVKlWJisZgxxtjt27dZ27Ztmb29PXN2dmbfffcde/XqlWT8wYMHWcOGDZmjoyMrVqwYa9++PXv06JHk+aioKAaAbd++nQUEBDBra2u2YcMGhXnmx/8lgjA4LVowBjC2ebP8dn9/vj08PPfm0rIlP2fW766SJfn2LN8leYHs7t9ZIcuQnmGMISUlJdf/GGNqzW/JkiWYPn06PDw8EB8fj4sXLyqM2b17Nzw8PDB9+nTEx8cjPj5e8pxIJMKmTZtUHn/kyJFITU3F6dOncfPmTcydOxeFhDLyWbh8+TK6d++Ob7/9Fjdv3sTUqVPx888/Kxx//vz5qFq1Kq5cuYJJkyZh3LhxiIiIkLze7du3R0JCAg4cOIDLly+jZs2aaNGiBd68eaP0vOfOnYOjoyPq1asn2Va/fn04OjoiMjJS6T5RUVFISEhAYGCgZJu1tTUCAgJU7qOMK1eu4NmzZzAzM0ONGjXg5uaGtm3bKrjbsjJx4kSMGTMG1tbWuHr1Kvr27QsAuHbtGm7fvo3Q0FCYmSn+OxcpUkSyLhaLsX//fnz11Vfw9vZGy5YtsXHjRrnxGzduRP/+/SESiRAfH4+AgABUr14dly5dwqFDh/DixQt0FyrhAkhJSUFISAguXryIY8eOwczMDJ07d1Zw4/3www8YM2YM7t69i9atW6v9ehGESSNYfnx85LfndtwQY4qZZAIFJW7I0Mosv6OpZSg5OVnBqpIbf8nJyWpf06JFiyQWIQFZyxBj3CKzaNEihX3Lly/Pdu/erfLYVapUYVOnTlX6XFZrSa9evVirVq3kxkyYMIFVrFhRbh5t2rSRG9OjRw/Wtm1bxhhjx44dYw4ODuzz589yY8qUKcPWrFmjdB6zZs1ivr6+Ctt9fX3Z7Nmzle5z9uxZBoA9e/ZMbvvgwYNZYGBgjtcqsG3bNgaAlSpViu3cuZNdunSJ9ezZkzk5ObHExESl5xZIT09n8fHxctu2b9/OALArV65ku69wDcWLF5dYkLZv386KFi0qee2uXbvGRCIRi4qKYowx9vPPPytcW2xsLAPA7t+/r/QcL1++ZADYzZs3GWNSy9DixYuznRtZhggiCxkZjFlacqtLTIz8cydO8O2urox9seIalPh4fj4zM8Y+fpR/7quv+HOrVhl+HhpCliHCYNy7dw+dO3dW+fyYMWMwc+ZMNGzYEFOmTMENoUiXEu7evYuGDRvKbWvYsCEePnyIzMxMyTZ/f3+5Mf7+/rj7JcXz8uXLSE5OhpOTEwoVKiT5i4qKwuPHj1WeWyQEAMrAGFO6Pbv91NlHFsFiMnnyZHzzzTeoVasWNm7cCJFIhB07dmS7r4WFBVxdXRXOr2xeyvj777/RoUMHiQXp66+/hoWFBfbs2QMA2LBhA5o1awbvL/EJly9fxokTJ+ReVyHWSHhtHz9+jF69eqF06dJwcHCAz5dfsDExMXLnrl27do7zIwhChqw1hmSpXx+wsQESEqTp7oZEsAqVKwfY2so/V0AsQxbGnkBBw87ODsnJyUY5b15g0KBBaN26Nf755x8cOXIEc+bMQVhYGEaPHq0wVpmQYGq6+4T9xGIx3NzccPLkSYUxsi4iWVxdXfFCScGyV69ewUXowqxkH4BndbkJhcYAvHz5UuU+yhD2rVixomSbtbU1SpcurSAg1KFcuXIAuLCsXr16tmP37t2LOXPmSB5bWVmhT58+2LhxI7p06YLff/9dLoNQLBajY8eOmDt3rsrr6NixIzw9PbFu3Tq4u7tDLBajcuXKSEtLkxtvb2+v8bURhEkjuMhKleJByrLY2ACNGgFHj3JXmcz3iUFQFjwtQGKIUIZIJCoQX/xWVlZy1hlN8PT0xLBhwzBs2DBMmjQJ69atUyqGKlasiDNnzshti4yMRLly5WAu889//vx5uTHnz5+XWChq1qyJhIQEWFhYSCwaOeHv74+kpCRcuHABdevWBQD8999/SEpKQoMGDZTu4+PjA1dXV0RERKBGjRoAgLS0NJw6dUqpWFBFrVq1YG1tjfv376NRo0YAeHZVdHQ0vLy81D6OQPXq1VGxYkWEhYWhR48eCnFD7969Q5EiRfDw4UNER0fLxTwBXLxWrlwZK1euRHp6ulyKf82aNbFr1y54e3vDwkLxqyIxMRF3797FmjVr0LhxYwBQeD8JgtASZWn1sjRvLhVDSr5f9Ypg4c8aLwQUmCrU5CYjlOLt7Y3Tp0/j2bNneP36tWR7hQoVJG4VZQQHB+Pw4cOIiorClStXcPz4cfj5+SkdGxoaimPHjmHGjBl48OABNm/ejOXLl2P8+PFy486ePYt58+bhwYMHWLFiBXbs2IGxY8cCAFq2bAl/f398/fXXOHz4MKKjoxEZGYmffvpJocaOgJ+fH9q0aYPBgwfj/PnzOH/+PAYPHowOHTqgfPnySq9VJBIhODgYs2fPxp49e3Dr1i30798fdnZ2cmnxCQkJuHbtGh49egQAuHnzJq5duyYJ5nZwcMCwYcMwZcoUHDlyBPfv38fw4cMBAN26dVP5uqpCJBJh48aNePDgAZo0aYIDBw7gyZMnuHHjBmbNmoWvvvoKAHeRtWzZUsGC6Ofnh/r16+OHH35Az549YStjAh85ciTevHmDnj174sKFC3jy5AmOHDmCgQMHIjMzE0WLFoWTkxPWrl2LR48e4fjx4wgJCdH4GgiCUIKytHpZhCDqkycBLX+4qo2q4GmgwFiGKIA6Bwpaaj1j6gVQnzt3jlWtWpVZW1vLpdYDYBs3blR57FGjRrEyZcowa2trVqJECdanTx/2+vVrxlj2qfWWlpasVKlSbP78+XLH8/LyYtOmTWPdu3dndnZ2zMXFRSEY9/3792z06NHM3d2dWVpaMk9PT9a7d28WkzXoUIbExETWu3dvVrhwYVa4cGHWu3dvhWDnrNcqFovZlClTmKurK7O2tmZNmjSRBAoLTJkyRWmAu+xx0tLSWGhoKHN2dmaFCxdmLVu2ZLdu3VI5V3W4f/8+69u3L3N3d5eUKejZs6cksLpRo0Zs3bp1SvcNDw9nANiFCxcUnnvw4AHr3LkzK1KkCLO1tWUVKlRgwcHBktT7iIgI5ufnx6ytrVnVqlXZyZMnGQC2Z88expg0gPrq1avZzj+//i8RhMEYOJAHJk+frvz59HTGHB35GCX/u3rj82fGLCyUB3Izxti1a/y5EiUMNwct0SSAWsSYmkEaJsr79+/h6OiIpKQkODg4yD33+fNnREVFwcfHBzY2NkaaYcHG29sbwcHBBm8VUpB5/fo13NzcEBsbqxCADQCzZs3CH3/8gZs3bxphdhz6XyKILLRowatMb90KfPed8jFffQXs3Qv8+ivwww+Gmce1a0CNGkDRokBiorT6tMCrV4CzM19PTQWsrAwzDy3I7v6dFXKTEUQB582bN1i4cKGCEEpOTsbFixexbNkyjBkzxkizIwhCKTm5yYDcqTekrA2HLE5OgKUlX1eSmJJfIDFEEAWccuXKKQ1gHzVqFBo1aoSAgAAMHDjQCDMjCEIpmZmAkF2anRgS+pSdOcOtMoZACJ5WlkkGAGZmBSKIOl+JodOnT6Njx45wd3eHSCTCX3/9leM+p06dQq1atWBjY4PSpUtj9erVhp8ooTeio6PJRWYgNm3ahNTUVGzfvl0ue48gCCPz/DlvfGppKRUayqhUCXBxAT59ArJk3eqN7IKnBQpAEHW+EkMpKSmoVq0ali9frtb4qKgotGvXDo0bN8bVq1fx448/YsyYMdi1a5eBZ0oQBEEQWiKk1SurMSSLSCS1DhnCVSbbhkOVZQgoEGIoX9UZatu2Ldq2bav2+NWrV6NUqVKSQnJ+fn64dOkSFixYgG+++UZv86IYdILQDfofIggZ1IkXEmjeHNi2jQdbT5+u33kkJACvX3NXWKVKqscVADGUryxDmnLu3DmFInOtW7fGpUuXkJ6ernSf1NRUvH//Xu5PFZZfgsY+fvyov0kThAkiVKwmdx1BQDMxJARR//cfoO/uB4JVqHx5xTYcshQAMZSvLEOakpCQoNAqwcXFBRkZGZJ046zMmTMH06ZNU+v45ubmKFKkCF6+fAmAt8TQpE8VQRC87cerV69gZ2entNI1QZgcqrrVK8PHh4um6Gjg9GmgXTv9zUMdFxlAYig/oKr3lSrRMmnSJLkquu/fv4enp6fK4wvpyoIgIghCc8zMzFCqVCn6MUEQgGaWIYBbh8LDuatMn2IouzYcshSAbLICLYZcXV2RkJAgt+3ly5ewsLCAk5OT0n2sra1hbW2t9jlEIhHc3Nzg7Oys0vVGEET2WFlZKfRVIwiTRVsx9NdfQHAw4OGhn3mok0kGkGUor+Pv7499+/bJbTty5Ahq164tiffRF+bm5hTvQBAEQehGRgYQG8vX1RVD8fF8+fgx4OUFrF0LBAXpNo/Pn4F79/i6um6yN2/4fvmwiny++imWnJyMa9eu4dq1awB46vy1a9cQ86U41aRJk9C3b1/J+GHDhuHp06cICQnB3bt3sWHDBoSHhys0AiUIgiCIPMGzZ+rVGBKIiwMmTJA+FouBoUP5dl24e5cXfyxWDChZMvuxRYsCgkclizcmv5CvxNClS5dQo0YN1KhRAwAQEhKCGjVq4JdffgEAxMfHS4QRAPj4+ODAgQM4efIkqlevjhkzZmDp0qV6TasnCIIgCL0huMi8vHhKe048fMgFkCyZmcCjR7rNQzZ4OqdYPpEo37vK8pWbrGnTptnWI9m0aZPCtoCAAFy5csWAsyIIgiAIPaFpvJCvLxdNsoLI3BwoW1a3eagbPC3g7s6LReZTMZSvLEMEQRAEUaDRJK0e4MHSa9fKW5HWrNE9iFrd4GmBfG4ZIjFEEARBEHkFTS1DAA+WvnxZ+rhXL93moG4bDllIDBEEQRAEoRe0EUMAt+AULcrXHzzQbQ7x8UBiIne3ZdeGQxYSQwRBEARB6AVtxZBIBPj58XUhJV5bZNtwqJsmT2KIIAiCIAid0abGkCwVKvDl3bu6zUNTFxmQ76tQkxgiCIIgiLxAXBxPi7eyAr60etIIfVmGzp/nS00EGVmGCIIgCILQGU1rDGVFH5ah8HDg77/5+ty5/LE6CGIoKQn4+FH78xsJEkMEQRAEkRfQNK0+K4Jl6P59bmHSlLg4YMgQ6WPG1K9m7eAA2NnxdaE9SD6CxBBBEARB5AW0DZ4W8PbmbTFSU4GnTzXfX5dq1vm8CjWJIYIgCILIC+gqhszNgXLl+Lo2rjJfX8XWG5pUsyYxRBAEQRCETugqhgDdgqg9PICAAOljc3PNqlmTGCIIgiAIGeLigBMndO+ebkpERfGlLmJI1yDq1FS+nDyZi7OgIPX3JTFEEARBEF8ID+cZUc2b86W6GUmmTHq6VDgayzKUmSmtMdS7t+b9zUgMEQRBEASkGUlCIK5YrH5GkikTF8dfK2trwMVF++PIWoYY02zfhw95WrydnTT2SBNIDBEEQRAEdMtIMmVk44W0qTEkUK4cD4J+8wZ4/Vqzfa9e5ctq1Xi8kKbk4yrUJIYIgiAI/eHrq3gz1yQjyVTRR/A0wK06Xl58XdO4IUEM1aih3bnJMkQQBEEQ4HEma9dKH4tEmmUkmSr6EkOA9nFDV67wpbZiSLAMJScDHz5odwwjQWKIIAiC0C9BQYC9PV8PCNAsI8lU0UcmmYA2GWWM6W4ZKlyY/wH5rgq1TmLo0aNHOHz4MD59+gQAYJoGaxEEQRAFj0+fgJQUvp6WZty55BeMbRmKjeVxRhYWQOXK2p9bU1dZHinBoJUYSkxMRMuWLVGuXDm0a9cO8V8U4KBBgxAaGqrXCRIEQRD5jJcvpetJScabR35Cn2JIG8uQYBWqWJFntGmLJmIoD5Vg0EoMjRs3DhYWFoiJiYGd0JgNQI8ePXDo0CG9TY4gCILIh8iKoffvjTeP/EJaGvDsGV/Xp2Xo6VOphS4ndHWRCagrhr6UYHglFmMagKdGLsGglRg6cuQI5s6dC48sAXG+vr54qk1zOIIgCKLgQGJIM4QaQzY2utUYEihenP8BwIMH6u2Ty2Lo/rFjGCoWoxSAqQCWAkYtwaCVGEpJSZGzCAm8fv0a1rqY1wiCIIj8T1YxlLXuECGPrIssa6NUbdHUVZYLYogxhlOnTqFTp06o0L8/1gL4DKAOgMaAUUswaCWGmjRpgi1btkgei0QiiMVizJ8/H82aNdPb5AiCIIh8yIsX0nXG1HfVmCr6jBcS0CSIOjGRB1ADQPXqup1XiRhKT0/Htm3bUKdOHTRt2hT79u2DSCTCVx4eOAXgPwBfa9oUVs9YaLPT/Pnz0bRpU1y6dAlpaWn4/vvvcfv2bbx58wZnz57V9xwJgiCI/ISsZQjg1iEh5ZpQRJ9p9QKaWIYEq1CZMoCDg27nlRFD79+/x/r167FkyRLExMQAAGxsbNC/f3+MGzcO5YYM4S7C4cOBH380ai0qrcRQxYoVcePGDaxatQrm5uZISUlBly5dMHLkSLgJRZcIgiAI0ySrGEpKAkqWNM5c8gPGtgzpy0UGAG5uiAWw5OlTrPP0xPsvMWPOzs4YNWoUhg8fjuLFiwMJCcDp03yfiRONXpRTKzEEAK6urpg2bZo+50IQBEEUBJRZhgjVGEIMCZahBw+AjAxeP0gVghiqWVOnU16+fBlhc+fiTwCZGRnA+/fw8/NDaGgoevfuDRsbG+ng3bu5C7VePaBUKZ3Oqw+0FkPv3r3DhQsX8PLlS4izBMf17dtX54kRBEEQ+RQSQ5phCDHk5cWz0z5/5sfPLjBZhzYcYrEYBw4cQFhYGE6ePCnZ3hxA6KpVaDNkCMyUNZ7dsYMvu3bV+JyGQCsxtG/fPvTu3RspKSkoXLgwRDLR7yKRiMQQQRCEKSMEUBcqxPtUUeFF1cjWGPLx0d9xzcyA8uWB69d53JAqMZScLE2/10AMffr0CVu3bsWiRYtw74srzsLCAt9++y1Czp5Fjago5U17Af75EFxkeUQMaZVNFhoaioEDB+LDhw949+4d3r59K/l78+aNvudIEARB5BfEYuDVK77u68uXZBlSTWwsdxfZ2gIlSuj32OrEDd24wc/v5qZWjaNXr15h2rRp8PLywtChQ3Hv3j04OjpiwoQJiIqKwtatW1GjTBk+WFWtoT17+OekTh39WsN0QCvL0LNnzzBmzBiltYYIgiAIE+btW148D+DZSVevkhjKDkPUGBJQJ6NMzeDpe/fuYdGiRdiyZQs+f/4MAPDy8kJwcDCCgoJQWDZbMKfCi4KLrFu3nK4g19BKDLVu3RqXLl1C6dKl9T0fgiAIIj8jxAsVKSK1dJCbTDWGSKsXUMcylI0YEookhoWFYf/+/ZLtderUwfjx49GlSxdYKAvMzk4MvXwJCLFFecRFBmgphtq3b48JEybgzp07qFKlCiwtLeWe79Spk14mRxAEQeQzBDHk7CytWUOWIdUYInhaQBBDd+9yV5gyy5MSMZSeno4dO3YgLCwMV74EV4tEInTq1AmhoaFo1KiRXKywAtmJIcFFVquWfmOkdEQrMTR48GAAwPTp0xWeE4lEyBRMpARBEIRpIQRPu7hIxRBZhlRz5w5fFimi/2MLAczv3nGRmjUmKD0duHWLr9eogaSkJEmRxNgvFaltbW3Rv39/BAcHo1y5cuqdNzsxtHMnX+YhFxmgpRjKmkpPEARBEADkLUOOjnydLEPKCQ/nlhIA+PVXHmMVFKS/49vYcOvL48fcOpRVDN25A6SlIaZwYSxZvhzr1q/Hhw8fACgpkqgJqsTQ69fAiRN8PQ+5yAAts8kIgiAIQinkJlOPuDhgyBDpY8aAoUP5dn2STRD15T170AtA6Q8fsHDRInz48AEVK1bE+vXr8fTpU/z888+aCyGAZ6YBXAwxJt2+Zw8Prq9Rgwu/PITalqGlS5diyJAhsLGxwdKlS7MdO2bMGJ0nRhAEQeRDlIkhcpMp8vAhj52RJTMTePRIv60p/PyAf/6RBFGLxWL8888/CAsLw6lTpyTDmjdvjvHjx6N169bKiyRqgiCG0tKAN28AJyf+OA9mkQmoLYYWLVokKae9aNEileNEIhGJIYIgCFOF3GTq4evLA5plLSfm5tlXitaGL5ahT7duYcuaNVi0aBHu378PALAQifAtYwiZPh01fv5Zf+e0tuYCKDGRW4eE9ePH+fP5WQxFCel/WdYJgiAIQoKyAGoSQ4p4eACNG0srMZubA2vW6L1h6UtXV6wEsOLkSbz+IkYcHR0xZPBgjFm1Ch4pKUDnzno9JwAeN5SYCMTHA1WqAH/9xS1f1avrX/DpAYoZIgiCIPQHucnUR2jDMXs2T7HXY/D0vXv3MGTIEJT65htMA/BaLIZXqVJYtGgRYmNjMW/IEC6EbGykcUX6JGsQdR7rRZYVtS1DISEhah904cKFWk1GHVauXIn58+cjPj4elSpVwuLFi9G4cWOV43/77TfMmzcPDx8+hKOjI9q0aYMFCxbASfBhEgRBEPpDmZssOZlbBczNjTevvMbTpzzLy9wcGDUKkK3grCVCkcQFCxbgn3/+kWyvY2GB8RkZ6PLnn7CoV49vPHiQL6tUyb6jvbbIiqE3b4Bjx/jjPOgiAzQQQ1eFwkw5kG0hJh3Zvn07goODsXLlSjRs2BBr1qxB27ZtcefOHZQqVUph/JkzZ9C3b18sWrQIHTt2xLNnzzBs2DAMGjQIe4R0RoIgCEI/fP4sdYk5OwOyLZuSk6XiiJDGz9Stq7MQyrFI4uTJEP37Lw/aFsSQmm04tEZWDP31F5CRAVStCqhbqyiXUVsMnRBqAxiRhQsXIigoCIMGDQIALF68GIcPH8aqVaswZ84chfHnz5+Ht7e3JKDbx8cHQ4cOxbx583J13gRBECaB0KDV0pIXERSJACsrnlWUlERiSBbBUtKihdaHSEpKwrp167B06dLsiyRWrAj8+698W47cFENPnvD1PGoVAnSMGXr06BEOHz6MT58+AeAmOkORlpaGy5cvIzAwUG57YGAgIiMjle7ToEEDxMXF4cCBA2CM4cWLF9i5cyfat2+v8jypqal4//693B9BEAShBkLwtLOztPUDZZQpwphOYujp06cICQmBp6cnJkyYgNjYWDg7O2P69OmIiYnBypUr5atFy7blEM6fW2Lo9m3g6FG+nkfjhQAtxVBiYiJatGiBcuXKoV27doiPjwcADBo0CKGhoXqdoMDr16+RmZkJlywVNF1cXJCQkKB0nwYNGuC3335Djx49YGVlBVdXVxQpUgTLli1TeZ45c+bA0dFR8ufp6anX6yAIgiiwyMYLCVBGmSL37gEJCTx4uX59tXe7dOkSevbsiTJlymCRJkUShQBpwTIUH8/fKzMzHjNkCAQx9OABb/tRubJhArX1hFZiaNy4cbC0tERMTAzsZHzCPXr0wKFDh/Q2OWVkjUlijKmMU7pz5w7GjBmDX375BZcvX8ahQ4cQFRWFYcOGqTz+pEmTkJSUJPkTTI8EQRBEDmQnhiijTIpgFWrUiAuibBCLxdi7dy8CAgJQp04d/PHHH8jMzESLFi1w4MAB3Lx5E0FBQbDJ7jiCZejhQx67I1iFKlSQj+vSJ0LhRYE87CIDtOxNduTIERw+fBgeWeoh+Pr64unTp3qZWFaKFy8Oc3NzBSvQy5cvFaxFAnPmzEHDhg0xYcIEAEDVqlVhb2+Pxo0bY+bMmXDL+mYBsLa2hrW1tf4vgCAIoqCjTAyRm0wRIXi6eXOVQz59+oQtW7Zg4cKFePDgAQDAwsIC3377LUJDQ1G9enX1z+fhwUXPx488fsfQLjIAcHWVf5zHxZBWlqGUlBQ5i5DA69evDSYkrKysUKtWLURERMhtj4iIQIMGDZTu8/HjR4Wy4uZfUjsNGd9EEARhkpCbLGcyM6XNSpXEC718+RJTpkxBqVKlMGzYMDx48ACOjo6YMGECoqKisHXrVs2EEMDdYbI9ynJDDG3ZIv9YRWxvXkErMdSkSRNskblQkUgEsViM+fPno1mzZnqbXFZCQkKwfv16bNiwAXfv3sW4ceMQExMjcXtNmjQJffv2lYzv2LEjdu/ejVWrVuHJkyc4e/YsxowZg7p168Jd8GcSBEEQ+kG2+rQAucnkuXoVePeOW8xq1pRsvnv3LgYPHoxSpUph+vTpeP36Nby8vLB48WJeJHHePAVvjEbIxg0ZWgxlbUILGKYJrR7Ryk02f/58NG3aFJcuXUJaWhq+//573L59G2/evMHZs2f1PUcJPXr0QGJiIqZPn474+HhUrlwZBw4cgJeXFwAgPj4eMTExkvH9+/fHhw8fsHz5coSGhqJIkSJo3rw55s6da7A5EgRBmCzkJssZwUUWEABmbo6TJ04gLCxMrkhi3bp1ERoaii5dusBCXwURhbihc+cAoaWWphYmdcmtJrR6RKtXuWLFirhx4wZWrVoFc3NzpKSkoEuXLhg5cqTSOBx9MmLECIwYMULpc5s2bVLYNnr0aIwePdqgcyIIgiBAbjJ1OHYM6QD+dHREWK1akoLGIpEIX331FUJDQ9GwYUP9FzAWLENC5WkvL6BYMf2eQ8DXl7vmZAWRIZrQ6hGtJaerqyumTZumz7kQBEEQ+RnKJsuWpFevsPb4cSwFELd1KwBpkcRx48bB19fXcCcXLENpaXwp46LTOx4ewNq13DUmtGExQBNafaJVzNChQ4dw5swZyeMVK1agevXq6NWrF96+fau3yREEQRD5BMbITaYCSZFEb298n5GBOPAaeTNmzJAUSTSoEAK4VUY2ociQwdMAbzobHc2DxfXchNYQaCWGJkyYIKnMfPPmTYSEhKBdu3Z48uSJRg1dCYIgiALC27e8hg1AlqEvKBRJ/PgRFQGE162L6Oho/PTTT8qLJBoCa2ugTBnp49woKOzhATRtmqctQgJaucmioqJQsWJFAMCuXbvQsWNHzJ49G1euXEG7du30OkGCIAgiHyBYhRwd+Y1XwMRihsRiMfbv34+wsDCcPn1asr1FixYIjY9Hmzt3IBo8OMdiiwZBtiROUBB3YeVxi01uoZVlyMrKCh8/fgQAHD16VNIvrFixYtTLiyAIwhRR5iIDTMZN9unTJ6xZswZ+fn746quvcPr0aVhYWOC7777D1atXcfSvv9D2wQOIAJ2as2pNXBxw44b0sVic59PdcxOtLEONGjVCSEgIGjZsiAsXLmD79u0AgAcPHuhWB4EgCILIn6gSQwXcTfby5UusWLECK1euxOvXrwEAjo6OGDp0KEaPHi29Jx48yN2IPj78L7d5+JDHdcmSx9PdcxOtxNDy5csxYsQI7Ny5E6tWrULJkiUBAAcPHkSbNm30OkGCIAgiH5CTGCpglqF79+5h4cKF2LJlC1JTUwEA3t7eCA4OxsCBA1G4cGH5HdRowWFQ8mG6e26ilRgqVaoU9u/fr7B90aJFOk+IIAiCyIcoqz4NSN1kHz9yy4i+iggaAcYYTp48qVAksV69eggNDUXnzp1VF0kUmrMaw0UG5Mt099xE50/lp0+fkJ6eLrfNQfglQBAEQZgGOVmGAG4dMlShv7g47gry9dX7DT49PR1//vknwsLCFIokjh8/Hg0aNMi+SGJiInDtGl83YMuqHAkKAlq35q6xsmVJCMmglRhKSUnBDz/8gD///BOJiYkKz2dmZuo8MYIgCCIfoUoMWVoCtrbAp0+GE0Ph4bwXlljMXUFr1+olSyopKQlr167F0qVLEfcl0NjW1hYDBgxAcHCw+rWBTp7k8TqVKil2c89tPDxIBClBq2yy77//HsePH8fKlSthbW2N9evXY9q0aXB3d5dr4EoQBEHkEnFxvMCdsbKDVIkhwLBxQ0JTUCEWRg9ZUpIiiZ6e+P777xEXFwcXFxfMnDkTsbGxWLFihWZFEo3tIiNyRCvL0L59+7BlyxY0bdoUAwcOROPGjVG2bFl4eXnht99+Q+/evfU9T4IgCEIVBrKMaEROYujFC8NklOmxKejFixcRFhaGnTt3SjwcFStWRGhoKHr16gUbbWsDGTt4msgRrSxDb968gc+X1EAHBwe8efMGAE+5ly0yRRAEQRgIsRi4ehWYNAkYNEivlhGtUBVADRi21pCvL5A1XkeDLCmxWIy9e/ciICAAdevWxfbt25GZmYkWLVrg4MGDuHXrFgYOHKi9EHr2DLh/n4vUgADtjkEYHK0sQ6VLl0Z0dDS8vLxQsWJF/Pnnn6hbty727duHIkWK6HmKBEEQJoxsYLC5OXDkCP+LiABevVK+T27Xj0lNlVp9cttNVrIkj0MS4ldFIrWypD5+/IgtW7Zg0aJFePDgAQDAwsICPXv2REhICKpXr66f+QlWoVq1ALo/5lm0EkMDBgzA9evXERAQgEmTJqF9+/ZYtmwZMjIysHDhQn3PkSAIwjSRdX8po1AhwN8fOHpUvqBebtePEUSZhYXyG74hCy8+eCAVQgDQqVO2LkKhSOKKFSskCUCOjo4YNmwYRo8eLambpzcoXihfoJUYGjdunGS9WbNmuHv3Li5fvowyZcqgWrVqepscQRCEyZI1MFigalWgY0cgMBCoXx+wsuKiafBgLojUtIzoFSFeqEQJ+c7oAoZ0kx0+zJeWlkB6OpCQoHTY3bt3sXDhQmzdulW9Ion6gDESQ/kEvVS/8vLygpeXlz4ORRAEQQDKA4MBYMkS3glclqAgfuMdPJinbg8YkCtTlJBd8DRgWDfZoUN82a0b8PvvwOPHkqd0KpKoDx494qLWygpo0MBw5yF0RqsAagA4duwYOnTogDJlyqBs2bLo0KEDjh49qs+5EQRBmC5C+wRZsnN/9e7N3Wbx8cCFC4afnyzZBU8DhnOTff7Ma/gAwIgRfPn6NdITE/Hbb7+hVq1aaN68Of755x+IRCJ8/fXX+Pfff3Hu3Dl069bNsEIIkFqFGjSQ7xhP5Dm0EkPLly9HmzZtULhwYYwdOxZjxoyBg4MD2rVrh+XLl+t7jgRBEKaHhwcg2+Iop/YJtrbcfQYAO3YYfn6y5GQZMpSb7N9/eTFHd3egQQMkFSuG+QBKV6ok6RZva2uLESNG4P79+9izZw8aNWqUfbVofbJvH1/Wrp075yO0RitZPGfOHCxatAijRo2SbBszZgwaNmyIWbNmyW0nCIIgtKRuXb50cuLtHHKKA+raFdi2Ddi5E1iwQDHl3FAYy032xUX2tGFDLAkNxfp37/ABAF68gIuLC0aPHo1hw4bByclJv+dVh3XrgAMH+PrChUCFCrlf+4lQG60sQ+/fv1fanT4wMBDvC1hnYoIgCKNx/z5fVq2qXkB027aAvT0QEwNcvGjYucmirhjSs5vs4p49+BZAmV27sGjRInwQi1EJQHi3bnj69CkmT55sHCEUFwcMGyZ9bKzaT4TaaCWGOnXqhD179ihs//vvv9FRMNMSBEEQuiGIofLl1Rtvawt06MDXc9NVJoghVTFDenSTicVi/P3332hSrx7qRkVhO4BMsRgtW7bEwZ49cRPAQCcnWFtb63wurXnwQHVVbCJPorabbOnSpZJ1Pz8/zJo1CydPnoS/vz8A4Pz58zh79ixCQ0P1P0uCIAhTRFMxBPCsqu3buRiaNy93XGVCALUBLUNCkcSFCxfi4cOHAPgNrFeJEgiJiOBlXTZu5G5CmYwyoxATo7gtt2s/ERqhthhaJBvIB6Bo0aK4c+cO7ty5I9lWpEgRbNiwAT/99JP+ZkgQBGGqaCOG2rblmUtPnwKXL+dO8K4BY4ZevHiBFStWYOXKlZIiiUWKFMFQZ2eMfvAAJUeOBIT6dmXK8OWTJxqfR2+IxcDixXxdJOIlD3IKfieMjtpiKCoqypDzIAiCIGSRdatoIobs7ID27bllaMcOw4shxgySTXbnzh0sXLgQ//vf/yRFEn18fHiRxL59Ucjbmw+UjV8tXZovnz4FMjJ4RezcZscO4Pp1LgDPnOHVscuWJSGUx9G6zhBBEARhQGJieM8vKytA06K23brx5Y4d8m06DEFSEq/8DORsGfr8GUhLU3koxhiOHTuGdu3aoVKlSggPD0dqairq16+PHTt24OHDhxgzZgwK3b7Nz1usmLzYc3cHrK25EIqN1dMFakBGBvDLL3w9NBSoUoUXyCQhlOchMUQQBJEXEVxkZctyN4smtGvHg6mjooArV/Q/N1kEq5CDA6Cqs7tsqwsl1qH09HT873//Q82aNXkg9MGDEIlE6Ny5M86ePYtz586ha9euMBdeB6HqdGCg/GtjZgb4+PB1Y8QNbd3Kg6ednIDg4Nw/P6E1JIYIgiDyItrECwnY23NXGcBrDhmSnIKnAe6usrfn6zJi6N27d5g/fz58fHzQp08fXLt2DXZ2dhg5ciQePHiA3bt3o4GyNhaCGGrdWvE5Y8UNpaYC06bx9UmTpNYwIl9AYoggCCIvoosYAngBRkBzV1lcHHDihPo1cXKKFxKQySiLjo5GcHAwPD098f333+PZs2dwcXHBzJkzERMTg+XLl6OsqsyrV694YDigXAwJcUO5bRlat47HKrm7S1uDEPkGI0SXEQRBEDmiqxhq3567rR4/5tWra9TIeZ/wcGDIEJ4RZWYGrF2bc9VkDcTQhfh4hIWGYuepUxB/qcNTqVIlhISEoHfv3urVBoqI4OKuWjXAzU3xeWNYhj5+BGbN4us//cRdlES+Qisx9PDhQ0RGRiIhIQEikQguLi5o0KABfH199T0/giAI00RXMVSoEI8d2r2bW4dyEkNxcVIhBEirJrdunX0AcA5iKDMzE/v27UPYs2c4A3CrE4CWLVti/PjxCAwM1KxXmOAiU9IFAYBxLEPLlwMJCYC3N7XcyKdoJIaSkpLQt29f7Nu3D46OjnB2dgZjDK9evcL79+/RsWNHbNmyBQ7kKyUIgtCe5GTg2TO+rq0YAnhWmSCGZs3KvgDj0aOqqyarI4ayVJ/++PEjNm/ejEWLFkmKJFoC6NmoEUKWL+dFEjVFLAYOH+brylxkgNQy9PgxtyAZuuhkUhIwdy5fnzaNZ/8R+Q6NYoZGjx6NqKgonDt3Dm/fvsX9+/fx4MEDvH37FpGRkYiKisLo0aMNNVeCIAjT4It4QPHiPH1cW9q356nmjx4BN26oHhcby4N+s6JO1eQsAdQvXrzAL7/8glKlSmHEiBF4+PAhihQpgonlyiEKwOaePbUTQgCv3/PyJQ/GbthQ+Rghm+z9e+DNG+3OowkLF/Lz+PkBvXsb/nyEQdBIDO3duxfr1q1DvXr1FJ6rV68e1qxZg7///ltvkyMIgjBJBBdZuXK6HadwYV6RGlDdqywxkVtZEhK4dUfWkqJO1eQvlqE7aWkYNGgQvLy8MGPGDCQmJsLb2xtLlixBbGws5jRsiJKAbv3JBBdZixaqLTC2tjyIGTC8q+z1ay6GAGD6dM1LIBB5Bo2zybLz7Wrk9yUIgiCUo2u8kCzZFWBMSeHWo7t3gZIlgQsXgPPn+XMiEdC9e7aHZozhWFQU2gGoFBqqUCTx0aNHvEhioUL66VyfU7yQQG4FUc+dy12aNWoAXboY9lyEQdFIDHXs2BGDBw/GpUuXFJ67dOkShg0bhk6dOultcgRBECaJPsVQhw7cVfbgAXDrlnR7ejoXSv/9BxQtChw5ApQqBdSty11NjAGRkUoPKVckMS4OB4HsiyQCOvUnk+wnzEdVvJBAbgRRX7oELFnC12fN4tl3RL5Fo3dv2bJlcHd3R926dVGsWDFUqFABfn5+KFasGOrVqwc3Nze57vYEQRCEFuhTDDk4SMWD4CoTi4GBA4GDB7lb6Z9/gIoVpfs0acKXp07JHUppkUQAIwE8+O8/1UUSAa36k8lx/Dhvd+HrKxU7qjC0ZSg8nItGoQ2JEOxO5Fs0yiYrUqQIDh48iLt37+L8+fNISEgAALi6usLf3x8VKlQwyCQJgiBMBsa4FQfQjxgCuAVo714uhqZNA8aPB/73Px7jsmMH4O8vPz4gANi8GTh9GgAQHR2NJUuWYP369UhOTgYAuLi4YEz//hg2dy6KmZsDtWplPwdd3WTqusgAw1qGhBIEsi7HYcP4vKgHWb5FqzpDfn5+8PPz0/dcCIIgiPh4Hodibi61cOhKx4484PjePR4jdPAg375hg7RthyxfLEMXzp9HWNeu2Llnj6RIYuXKlRESEoJevXrB+s4dHjdTokTObiJd3GSMaSaGDGkZevhQuxIERJ5GYycnYwwRERGYNm0ahg8fjhEjRmDatGk4evQomKG7IwNYuXIlfHx8YGNjg1q1auHff//NdnxqaiomT54MLy8vWFtbo0yZMtiwYYPB50kQBKEVgovMx0d/NWscHXnqNyAVQt26AX37KgwVi8X4++ZNNLGyQr3MTPy5axfEYjFatWqFQ4cO4caNGxgwYACvFq1u9WlhDoB2YujBA97qwsqKW61yQrAMxcXxnmH6RFlxYXVKEBB5Go0sQ8+ePUOHDh1w8+ZNVK5cGS4uLmCMITIyEjNmzEC1atWwd+9elCxZ0iCT3b59O4KDg7Fy5Uo0bNgQa9asQdu2bXHnzh2UKlVK6T7du3fHixcvEB4ejrJly+Lly5fIyMgwyPwIgigAxMXxX/++vsb5pa+vtHpZ4uIU6wzt3s23f7lGlUUSq1VDyObNymsDaSKGdHGT/fEHX9atK234mh0lSvAK3MnJQHS0/tyNAH+9nJ2l125url4JAiJvwzSgU6dOrHnz5uz58+cKzz1//pw1b96cffXVV5ocUiPq1q3Lhg0bJretQoUKbOLEiUrHHzx4kDk6OrLExEStz5mUlMQAsKSkJK2PQRBEPmH9esbMzBgD+HL9+tyfQ3AwP/+4cfo75vHj/JhZ/06cYAkJCeynn35iTk5ODAADwIoUKcImBgayOICxFi1UH3fBAn6c3r1znsPNm3xs8eKazX39eul8RSL135OqVfk+//yj2fly4t076Xz++oux2Fj9Hp/QG5rcvzVykx07dgwLFy6Em5LmeG5ubliwYAGOHj2qF5GWlbS0NFy+fBmBgYFy2wMDAxGpIv1z7969qF27NubNm4eSJUuiXLlyGD9+PD59+qTyPKmpqXj//r3cH0EQJoCq3lzqdm/XF/rMJBPw9VWI6bltZoag1atRqlQpzJw5E4mJifDx8ZEWSVy4kBdJjIwE0tKUHzdL9elsEdxkSUmK9Y5UIbwnAoyp/54YKm7oyhW+9PYGvvqKLEIFBI3EkK2tLd5kU9787du3sDVQt97Xr18jMzMTLln637i4uEiy2rLy5MkTnDlzBrdu3cKePXuwePFi7Ny5EyNHjlR5njlz5sDR0VHy5+npqdfrIAgij5JdYGxuYggx5OEBrF0LZmaGYwDaAagsFmPD9u1IS0uTFEl8+PChtEhixYq8HcinT8Dly8qPq42bLD1d/TgeXd4TQ2WUCXX2atfW73EJo6KRGPr222/Rr18/7Ny5E0kyft+kpCTs3LkTAwYMQK9evfQ+SVmyVrlmjKmsfC0WiyESifDbb7+hbt26aNeuHRYuXIhNmzaptA5NmjQJSUlJkr/Y2Fi9XwNBEHkQX1/Fpp65HRibmspjXAC9iqG0tDRstbJCTT8/tAQkRRK7dOmiukiiSAQ0bszXv6TYK6CJGCpUSLqursVdl/fEUJYhEkMFEo0CqMPCwpCRkYHevXsjIyMDVl8yHdLS0mBhYYGgoCDMnz/fIBMtXrw4zM3NFaxAL1++VLAWCbi5uaFkyZJwFMyz4GUBGGOIi4uDr5KsAGtra54lQRCEaeHhwTOu7tzhj0Wi3A+MffyYW0IKFwZcXXU+3Lt377B27VosWbIEz58/BwDY2dlh4MCBCA4ORpmcUvebNAH27OFi6IcfFJ/XRAyZm/Pr+vCBu8rU2cfDg7cE2b5degx13xOyDBEaoJEYsrKywqpVqzB37lxcunQJL774i11dXVGrVi04CGZQA2BlZYVatWohIiICnTt3lmyPiIjAV199pXSfhg0bYseOHUhOTuZmXwAPHjyAmZkZPMjPSxBEVmQtxlZWud9vStZFpkOvx+joaCxevBjh4eGSIomurq4YPXo0hg0bhmLFiql3IKES9Zkz3D2VtRGpIIZU/CBVwMGBiyFNYjGF7+pu3XhTVHW/u2UtQ4zp9HpKePNGammqWVP34xF5B4OHc+uRP/74g1laWrLw8HB2584dFhwczOzt7Vl0dDRjjLGJEyeyPn36SMZ/+PCBeXh4sK5du7Lbt2+zU6dOMV9fXzZo0CC1z0nZZARhIqSmSjPJPD35cvHi3J3DnDn8vL16abX7+fPnWbdu3ZiZmZkkM6xy5cps48aN7PPnz5ofMCODscKF+ZyuXJF/TixmzMqKP/flOzhH/Pz4+OPH1Z9Djx58n4UL1d+HMcbS0qTvp5IMaK2IiODHK1NGP8cjDIom92+NK1CnpKTg999/R2RkJBISEiASieDi4oKGDRuiZ8+esFenBoSW9OjRA4mJiZg+fTri4+NRuXJlHDhwAF5eXgCA+Ph4xMTESMYXKlQIERERGD16NGrXrg0nJyd0794dM2fONNgcCYLIp0RHcxeVnR0wcSIwciSwejUwZox+rArqoEXwdGZmJvbt24ewsDCcOXNGsj0wMBChoaFo1aqVyrjKHDE3Bxo14oUaT5/m3dkF3r+XZpmVKKHe8WQzytRFyBzT1Jpvackbz0ZHc2uOkixojSEXWYFFowDqO3fuoFy5cvj+++/x9u1blCpVCh4eHnj79i0mTJiA8uXL447gbzcQI0aMQHR0NFJTU3H58mU0Ecy4ADZt2oSTJ0/Kja9QoQIiIiLw8eNHxMbGIiwszGAZbwRB5GOEDKWyZYHvvuPF/e7dA3Kocq9XNBBDHz9+xMqVK1GhQgV07twZZ86cgaWlJfr164fr16/j8OHDCAwM1F4ICQgVn7M0bZW4yAoV4gJSHbRpySEksWiT2Su4yvQVN0RiqMCikWVo5MiRaNKkCTZv3iwJnhZIS0tD//79MXLkSJw4cUKvkyQIk8bYFZGNTW5dv3DDLFuW37R79QLWrePWIZkfXQZFDTGUkJCAFStWYOXKlZJSJ0WLFsWwYcMwatQouLu763dOwrWfPi0fe6NJ8LSApi05MjOBL4HfWr33pUsDx46RGCJyRCPL0H///Yeff/5ZQQgBPMD5xx9/xH///ae3yRGEyRMeDnh5Ac2b82V4uLFnlLvk5vXLWoYAXtwPAHbtAl69Mtx5BRITeYAuoLT/1e3btxEUFAQvLy/MnDkTb968gY+PD5YtW4aYmBjMnj1b/0II4N3obW35/O7elW7XNHga0Lwlx8uXQEYGLxipTXadPtPrX7/m/dEAeXchUSDQSAwVLVpU0rNGGY8ePULRokV1nhRBEMg7FZGNRW5ff1YxVKsWtwCkpQGbNhnmnLIIViFPT0n/LcYYjh07hnbt2qFy5crYsGED0tLS4O/vj507d+Lhw4cYNWqUJFvWIFhZAf7+fF223pAm1acFNHWTCe+1mxtgoXGIq37T64XCk+XKSS1cRIFBIzE0ePBg9OvXDwsWLMD169eRkJCAFy9e4Pr161iwYAEGDhyIocKvKYIgdCOvVEQ2Frl9/VnFEAAMG8aXa9YozkXfyLjI0tLSsHXrVtSsWRMtW7bEwYMH5YokRkZG4ptvvpEvkmhIZF1lArnhJtMlXgjQr2WIXGQFGo2k9tSpU2Fra4uFCxfi+++/lwTmMcbg6uqKiRMn4vvvvzfIRAnC5BCq78r2ccrtisjGROinJStCDHX9GRlAVBRfly1E+O23QEgItywcPw60bKn/cwvcv493ANampGBp6dJ49uwZAA2LJBoKZXFD2oghTd1k2maSCQiWoRcveAd7XSxoJIYKNBpZhgDghx9+wPPnz/H48WOcOXMGZ86cwePHj/H8+XMSQgShTzw85G/MmlTfLQh4eACjRkkfm5kZ7vpjY3nPLGtr+ePb2wN9+vD11av1f94vREdHI3jHDngC+OHcOTx79gyurq6YPXs2YmNjsWzZMuMJIQCoV4+nqj97JhWNuoghTd1k2r7nRYoAQoFJYd7aQmKoQKOxGBLw8fGBv78//P394ePjo885EQQhIPyCtrfn9VKCgow6nVxHNqtqyhTDXb/gIitdWqG7uySQ+q+/gPh4vZ72woUL6NGjB8qUKYMlT54gGUBlb29s3LgR0dHRmDRpkvrVog2JnR1Qty5fF1LshZghTQKoNXWT6SqGAP3EDb14weciElHwdAFFYzH06dMnnDlzRmk9oc+fP2PLli16mRhBmDxv30qzmFJSACcn487HGAhNSwHNatNoimxafVaqVAEaNODxShs26HyqzMxM/PXXX2jcuDHq1auHP//8E2KxGIEiEQ4DuHH8OPr375/3eiRmjRvKDTeZrjFDgH7ihoTg6QoVdHO1EXkWjcTQgwcP4OfnhyZNmqBKlSpo2rQp4mV+KSUlJWHAgAF6nyRB6IW4OODEifyTjfXggfxj4Ze4KSErhmSqy+sdZcHTsgiB1GvXclGkBdkWSdy/H4cZQ6CNDURfKurnOfQphvKbZYhcZAUejcTQDz/8gCpVquDly5e4f/8+HBwc0LBhQ7kWGASRJ8mP9XqE7CKBhATjzMOY5BUx1LUrjz2JiQEOH9bo0AkJCfj555/h6emJkSNHSkqQTJo0CdHR0di0aROqCoUMhaDxvEiDBnxuT57w90WoiaRNNpk6liGxmMcoAbqJIX1YhkgMFXg0+q+LjIzE7NmzUbx4cZQtWxZ79+5F27Zt0bhxYzzRR+oiQRiC/FqvJ6sYIsuQ4c6TkxiytQX69ePragZSKyuSWLp0aeVFErXoSZbrODhI42V27+ZLMzNpgLK6xwC4ZUg2S1IZr17xoHaRSLe+YmQZItRAIzH06dMnWGQpfLVixQp06tQJAQEBeJDVrE8QeYH8Wq/H1C1DycnylZ/j44HUVP2fRyyW3iizy9gSAqn/+Ucay5IFoUhi27ZtlRZJfPDggfIiicJ7Xa6cjhdjYARX2Y4dfFmiBM9yVBdBDGVmAp8+ZT9WeI3d3Hgmm7YI72l0tHYuzufP+WfPzAyoXl37eRB5Go3EUIUKFXBJUMgyLFu2DF999RU6deqkt4kRhN4Q6vXIkh/q9chWJAZMTwwJrQ8cHQEbG74uuE30yfPnwOfPvMJxdvE65csDzZpx8bR+vdxTQpHEGjVqoGXLljh06BDMzMzQpUsXREZG5lwkMT9YhgBp09bz5/lSExcZwIOPhf/FnFxl+ogXAoCSJXkV7fR07azBwj2vYkX1G9IS+Q6NxFDnzp2xbds2pc8tX74cPXv2BMvJ9EkQmqCPoGcPD6BaNenj/FCvJzOTW7QA6Q3I1MSQ4CLz8QFKleLrhnCVCRZCb++cWz4I1qHVq4GICLy7fRtz586Fj48P+vbti+vXr8POzg6jRo3CgwcPsGvXLvgLrSyyI7+IoUaN5B9rKoZEIvWDqPUlhszN+XsLaBc3JGSSkYusQKORGJo0aRIOHDig8vmVK1dCbOiS9YTpoM+gZ8GyAAB79+b9ej2xsdwlZG3NC94BpiuGvL2lYkiwFumT7NLqs9K5M1CoEKJevkRwYCA8KlfGxIkT8fz5c7i5uWlXJPH9e2n9orwuhpycgMqVpY81FUNA7oshQOoq0yZuiOKFTAKd0xa2bduGlJQUfcyFIKToO+hZVkgIWTB5GcFSULYsN/MDJIYAw1qG1BBD/x0+jO7JySgLYAmAFABVAGxauBBRUVHaFUkULIDOzrxicl5HiBsCtBND6maU6aPGkIAQRK2pZYgxEkMmgs5iaOjQoXhhilkuhGHRZ9AzY/JC4t493eaWG8gG1Lq68nUSQ0YRQ5mZmdizZw8aNWqE+p06YQcAMYBAAIcBXAfQr0YN7Ysk5hcXmYCsGJK1uKpLfrIMxcXxekrm5kDVqrrPg8izaNSoVRkUI0QYBH026Xz/ngfICty9q/v8DI3sDVJWDAlNMk0BoZeUjw+QmMjXc1EMffz4EZs2bcKiRYvw6MsYS0tL9E5PRwi4RQiA7sH4+U0MyVpn583j/6uauJ2NIYa0tQwJVqHKlXl5BaLAkkerexEmj4cHIFvNXCTSPug5q0UlP1mGypeX9n76/NmwLSnyGrKWISHLS99iiDEFMZSQkICffvpJZZHEjevXS4WQPprH5pe0eoALFNmG3Ixp7r5Wx03GmPSY+nCTaWsZouBpk0Fny5DIVH6lErmPbC2Wfv20D3oW3Lj29rzH18OHQEZGzplDxkRWDNnZ8V/T799zYSfcTAoyHz5IrUFeXtKU5pgY/VrHXr7k9YxEItz++BELg4Lwv//9D2lpaQCA0qVLY9y4cRgwYADs7e35PkFBwK1bwOLFPKBa12D8/GQZys59ra4gVMcy9OoVkJame8FFAaGZ+Nu3/K9oUfX2o3ghk0FnyxC5yQiDIVvT6sMH7Y8jWIZq1OA31fR03UrzG5qUFOmvYuEGKViHTCU+T8gaK1qUiz/hRvvxo14D4NnDhzgGoK21NSrXrClXJHHXrl2SIokSISTQqhVf3rql2wTEYmkPuvwghpS1C9HUTaiOGBI+/y4uvEaQrtjbS93N6v7vU/C0SaGzGDp48CBKCtkuBKEvMjKAq1elj2UaAmuMIIbc3HjXaSBvxw0J2UXFi0tbHZhaELWsiwzggbqCINSDq0xSJLFXL7QEcOjzZ5iZmeGbb76RFEns0qWL6iKJdevy5f373NKgLc+fc4FnYSGNa8nLeHjwZrXC66JNzS513GT6jBcS0LQtx9On3DppaQlUqZLzeCJfo7MYatSokfZZFAShinv3+E1CQB9iyNU1f4ghZW4TUxdDgF4yyt69eydfJDE2FvYARleujIcPH2Lnzp3qFUksXlx6c714Uev5SN7r0qV1azmRmwQF8ffnxAm+1NRNqIllSB/xQgKaNmwVrEJVqvB6X0SBRq8B1Hfv3kXp/PDrhsj7CF9Ewg3w+fOcGzuqQlYM+fnx9bwcRK0soNZUxZAQ6wHoJIaioqIwduxYeHh4yBdJrFoVMQCW9uun+XeXUAzzv/80no8Eoa2FcG35BQ8PoGlT7Sw36oghocaQMS1DFDxtUuhVDKWlpeGpISrEEqaHIIY6dODL1FTg3TvtjkWWofyHkFavo2Xov//+Q7du3VC2bFksXboUKSkpqFKlCjZt2sSLJFpboxigXWq8rmIoPBz4+We+fuyYbhXW8xPGcpNpaxkiMWQSaJROExISku3zr2Q7TBOELgi/yho1ArZt43EZ8fHqZ4HIIiuGhBTte/fybs0eEkM6uckyMzOxd+9ehIWF4ezZs5LtgYGBCA0NRatWraRZsBpUn1ZAEEMXLmj+WRIqrAvWTiFFvXXrvN0zTx9o4iYzlmWIgqdNDo3E0JIlS1C9enU4CB/mLCQnJ+tlUoSJk54OXLvG12vX5oHPghiqWFHz48mKobJleTaM0A/K3V1v09YLjOV9MRQXx4O8fX0Nd+PWQgylpKRIiiQ+/nLDs7S0RO/evRESEoIqWYNg37yRBj9r496vXp3H+bx6xecr69LLCX2kqOdXjB0zFBPDrUPZvedPnnBLtJUVUKmS/uZA5Fk0EkO+vr4YN24cvvvuO6XPX7t2DbVq1dLLxAgT5s4dXmDQ0ZF/gbm58W3aBFFnZvJaMgAXFNbW/JgPH3LrUF4TQ/HxvO6Nubn0yxvIO2IoPFzaM87MjGcW6bvp7fv30vR5wZIHqGzWGh8fj+XLl2P16tV482W/okWLYtiwYRg1ahTcVb3HglXI3V1ax0gTbGy4ILp4kbvKNBFD+qywnt/IyU0mW3BRn8Jw/37p8X19s//sClahatX0k9pP5Hk0ihmqVasWLgvuCyWIRCKqO0TojvBFVKsWv2EIRdeeP9f8WImJXBCJRECJEnxbXo4bEmrO+PjIfwkLYujlS349xkDfzXNVIYidYsWkVgRAKobi44HUVNy6dQsDBgyAt7c3Zs+ejTdv3qB06dJYtmwZYmNjMXv2bNVCCNDNRSagbdyQh4c0Hg7QLkU9vyJrGVJ2v0hMlLbP0dePlbg4/lkVEIv5Z1nVZ5dcZCaHRpahsLAwpKamqny+WrVqEGc1/RKEpsiKIUD6haiNZUiwpBQvLk1d9vMD9u3LmxllqlozlCjBBV1mJr9ZaNMtXFe2b88d144yFxkAlCgBZm2No6mpCGvVCof//VfylL+/P0JDQ/H111+rrg2UFSF2RBcxJNQb0iaIWrBYjh8PjB1rGkIIkIohxrgVtHBh+ecFgeLsrL+UdmVuSbEY6NaNWzuzut8pk8zk0Mgy5OrqCi9ZszVBGIKsX0SCZUgbMSRUbBYsK0Detgypas1gackFHZD7rjLGgBUr5HtSCZiZ6d+1oyStPi0tDZu3bEF1xni3+H//VSiS+M0336gvhAD9WoauXOHtI9QlMZEHXgOmJYQA7pIU3idlcUOGiBdSVjkb4KUNqlThViLh+0UsJjFkgmidWv/06VP8999/uHDhAqXTE/ojLQ24fp2v60MMyQZPC+TlWkPZ9akSriE3W3KkpQHDhwOjRvGbRL160hsZwNtS6PtGLpNW//btW/z666/w9vZG//79cSMtjRdJbNVKsyKJytCHGPL15RmOqanAzZvq73f0KH89K1c2LSEEcAtndkHUhqgxpKxy9syZvLecWAysW8c/B1OmAIcP83lZW2uXsEHkSzQWQ4sWLYKnpydKly4Nf39/1K9fH6VLl4anpycWL15sgCkSJsWtW/wGXLSo1DKgDzEktHIApJahZ8/yXhf47MSQcA25ZRl6/RoIDOSxLCIRMHcucO4ct9xMn87H3Lyp/xim6Gg8ATDm0iV4enpi0qRJiI+Ph5ubG+bUqoVYAEubNNG9wKs+xJBIpJ2r7PBhvmzdWvtz52cEMaQsiNoQwdOAYuXsyZOB3buBf/8F6tfnFe+nTwfatePjU1OBzZv1Owciz6KRGJoxYwamTp2KUaNG4fLly3j27Bni4uJw+fJljBo1ClOnTsXMmTMNNVfCFJANXBTqtugSQK3MMlSkiPRxXrIOpaZKrSLZWYYMKYbi4vjN4uhRfpM/dYrHdOzdy91kIhG/SX3/PResz58Dx4/r7fTnz59HtxMn4Atg2alTckUSo6OjMbFjRxQFdO9P9v69NGZHNmtPGzQNomYMOHSIr7dpo9u58ytCRll2bjJDWMyUVc5u1AiIjARWr1Ycb4gEASJPolEA9dq1a7F582Z8/fXXctvd3d1RvXp1lCtXDqNGjcJPP/2kzzkSpkTW4GlAKoZSUnj3+qwBl9mhTAwB3FWWkMDFkPDL3tg8fsxN9oULK84XMLwYkk2bFyhdmguhrLVWrK2BHj34DWTrVmkXdy3IzMzE33//jbCwMERGRkq2t27YEKFTpqBly5bSIol66E8GQBo8XaKEfMaaNmgqhm7e5FZOOzt+IzZFsnOTGSJmKCdEIsWkBcB0aj8RmlmGEhMTUV7ZL9YvlCtXDm916eBMEMpSWgsVkgogTV1lqsRQXgyiFtLqy5dXXs3YkGIoa9q8wF9/qS4617cvX+7ezYWqhqSkpGDFihUoX768JBDa0tIS/QHcAHDo4EH5atGA/sSQPlxkApp2sBesQk2b8lpFpkh2bjJDxAypg7Iga1Op/URoJobq1q2LWbNmISMjQ+G5jIwMzJ49G3Xzyq9sIv/x+TOPGQIUszi0jRvKzjIE5C03maq0egFDiiFlqccAz3pSRf36/EaRkgLs2aP2qeLj4zF58mR4enpi1KhRePz4MYoWLYoff/wRTw8exEYAVZyclFsAZcWQLjXN9JFWL6BpB3shXshUXWSAajeZoQouqoOyIGtTqf1EaOYmW7ZsGQIDA+Hs7IyAgAC4uLhAJBIhISEBp0+fhrW1NSIiIgw1V6Kgc/Mmb8VRvLhiF283N245KciWoeyCpwHDiiFfX26NkhUYOf0qFomA774Dpk4Ftmzh69lw69YthIWF4ffff0falzT00qVLY9y4cRgwYADs7e2Bv//mg1VVcxZuTCkp3ApTrJiaF5gFfVqGAO4qe/KEu8oCA1WPS07mAbuAaYshVW6yt2+BT5/4esmSuTsngAdZt27NPx9ly5IQMiE0sgxVqVIFDx48wKxZs+Dg4ICoqCg8efIEDg4OmDVrFu7du4dK1MeF0BZlwdMC2gRRp6ZK2zqosgw9fswFWF7AmGIoNVX+NVf3V7EggI4dU/reMMYQERGBNm3aSAKh09LS0KBBA+zatQsPHjzAqFGjuBACVBdcFLC1lRac1MVVZggxBEhrB6nixAn+eStd2rTdL6rcZIJVqEQJ47kQlQVZEwUejSxDAFC4cGEMHz4cw4cPN8R8CFNGWfC0gDZuMiFbyNJSsdt9yZI8Fik5md8YBXFkTNQVQ2/ecPGir+q8ALfuiMVAQABfV/dXcZkyQMOGwNmzwO+/82rK4EUS//jjD4SFheHGjRsAADMzM3Tp0gWhoaGoX7++8uPlJIYAbjV8+ZKLoerV1bzALBhKDP33X/Yd7IV4odatNetyX9BQ5SYzVrwQYfJoVXQxJSUFp0+fxvbt27Fz505cuXIl13qSrVy5Ej4+PrCxsUGtWrXwr0xJ/uw4e/YsLCwsUF3bL0/C8GTXD0iblhxCcUIXF8XASJFI6irLC3FDiYnS+BxfX+VjihaVthQRhJ4+uH0b+O03vh4Wpvmv4j59+HLrVkmRRB8fH/Tr1w83btyAvb09Ro8ejYcPH2LHjh2qhRCgvhgCFBq2qs3Hj7zGFKA/MZS1g70qKF6Io8pNZqx4IcLk0UgMicVifP/99yhRogSaNWuGXr16oXv37qhduzZ8fHywb98+Q80TALB9+3YEBwdj8uTJuHr1Kho3boy2bdsiJgdzeVJSEvr27YsWLVoYdH6EDnz6xG/KgHIxpI1lSFW8kEBeihsSrEKenoDgMsqKmZlhCi/+8gu3ZnTpotwqlxPdu+OJpSXG3LgBz5IlMWnSJDx//hzu7u6YM2cOYmNjsXTpUvWKJGoihrR1kz15wpdFi2ofc5QVoYM9oDrF/tEj7pa1tASaNdPPefMrqjrXkxgijIRGYujHH3/E/v37sW3bNhw4cAANGzbEr7/+ijt37qBv377o1q0bjhw5Yqi5YuHChQgKCsKgQYPg5+eHxYsXw9PTE6tWrcp2v6FDh6JXr17al+0nDM/167ymh4uL8sBJbWKGchJDeSmjTDatPjv03ZLj0iWeGi8SSatKa8D58+fRbcgQ+KanYxmAlE+fULVqVWzevBlRUVGYOHEiimZ1UWaHOmJI6I+orRgSXGS6FlvMSk6VqAUXWaNGmtXKKojkZBnKzRpDBAENY4a2bt2KP/74A40bNwYAVK5cGRUqVMDYsWMxffp0WFpaYurUqQjMLptCS9LS0nD58mVMnDhRbntgYKBcobasbNy4EY8fP8b//vc/tapjp6amIjU1VfL4fV5r11BQyS54GtDNMiTbikOWvGgZUpVWL6DvIGqhQGrv3qrrCWUhMzMTe/fuxYIFC+T+99oACC1WDC0uX4bIQuNwRODdO/4HGNYypO94IYF69XhDW1ViyNRbcMiiSgxRzBBhJDSyDH348AElZX61u7m54fPnz5JCi9988w2uC0029czr16+RmZkJlyw3NhcXFySouDE8fPgQEydOxG+//QYLNb+c58yZA0dHR8mfJ/1CyR2yixcCpGIoKUmaepsTmliGcinmTSU5BU8L6FMM/fsvv0FbWPCg6RxISUnB8uXLUb58eXTp0gWRkZGwsrLCgAEDcPPKFRx0ckLLN28g0rY9h2AVKlFCtasQ0F0M6bPGkCyyHeyzZiimpkrblph6vBBAbjIiz6Fxav22bdskj//8808UKlQIrl++oMViMaz1meGiBFEWqwFjTGEbwH+99urVC9OmTUO5nH5tyzBp0iQkJSVJ/mKFXyqEYckukwzgX562tnxdXetQTmKobFkuBJKTpQG1xkJdMaSvmCHGeKNKgNdWycZlJFskcfTo0ZIiiZMnT8bTp0+xYcMGVK5Rg7fnAHh7Dm1Qx0UGSMVQfDxv6qsphrIMyXaw/5JBJ+HMGR647eoKVK2q3/PmR5RZhoxZcJEweTSyZU+fPh3t27fH3r17YWNjg8jISMyfP1/y/KFDh1CjRg29TxIAihcvDnNzcwUr0MuXLxWsRQC3Yl26dAlXr17FqFGjAHCxxhiDhYUFjhw5gubNmyvsZ21tbXBBR2QhJUXqqlIlhkQibh168oTfBNUJxs1JDFlachFw/z4/v7G+gIX+R0DuWYaOHOGWIWtrqassCzdv3sTChQvliiSWKVMG48aNQ//+/aW1gQT69AFWruQxSKtW8dIFmqCuGCpRgs87NZWLWFUFGlVhKDEkdLA/fJi7ymQ/y7KNWU05pV5AEEMfPvCSDmZm3EoktHUhMUTkMhpZhlq0aIELFy6gZcuWqFOnDg4cOIDg4GDJ8+PHj8exY8f0PUcAgJWVFWrVqqVQ4ToiIgINGjRQGO/g4ICbN2/i2rVrkr9hw4ahfPnyuHbtGuoJJm3C+Fy7xr8Q3d2lKfTK0DSIOicxBOSNIOroaG7hsLFRrLydFX2IIVmr0IgRcjcexhiOHDmC1q1bo2rVqpIiiQ0bNsTu3btx//59jBw5UlEIAdxN5OvLLSC7d2s+L3XFkEikvassNVW6jyGKHqpq2krxQvIIbjKACyJAahVycpJagQkil9A4yrFq1aqoaiQzb0hICPr06YPatWvD398fa9euRUxMDIYNGwaAu7iePXuGLVu2wMzMDJUrV5bb39nZGTY2NgrbCSOTU7yQgKZB1OqIobwQRC24yJQ1isyKPsTQnj3A5cvccjNpEgCeoLBt2zaEhYXh5s2bANQskiiLSMStQ7/8wl1lQiNXdVFXDAFcDD18qLkYio7mwrtQIWkla32iTAw9e8ZbzYhEQKtW+j9nfsTamltm09O5q8zRkYKnCaOiRcqHalJSUnD58mU0adJEn4eV0KNHDyQmJmL69OmIj49H5cqVceDAAXh9SbWNj4/PseYQkQcxhBhKTpaa3PO6ZUhIq1cntk1XMZSZCfz8M18PDsYbc3OsmTMHy5YtQ/yX19Xe3h5BQUEYO3aserWBZPnuOy6Gjh3jIkCT/lKaiiFAczEk6yIzhLuqTh2+FDrYFy0qtQrVrcutHgR/7R0ceKHRpCSeSk/xQoQR0aoCtSoePXqEZgYuJjZixAhER0cjNTVVQXht2rQJJ0+eVLnv1KlTce3aNYPOj9CCnIKnBTSpQi2IBXv77GNX8pJlKKd4IUAqhlJSuODTlG3bgDt38LhwYYx+8QKenp748ccfER8fL1ckccmSJZoLIYDH7zRqxF1xQlVrdWAMiIqSHiMndBVD+q4xJFCihDSeTfhcy7bgIKRkbclBNYYII6JXMUQQGvPhg1QM5CSGNLEMCUUJs7MKAVIxlJAgrXGT22gihgoVkqada2odiorCueBgdAVQLjkZy9etw8ePH3UrkqgMwT22YQNPJxductnx7p30pigUVcwObcWQodLqZZF1lWVkAEeP8seUUi9P1owysgwRRkQjMVSsWLFs/wzlHiMKMFevcquAp6fq4ogCmgRQqxMvBPAvZMHiZCxXmSZiCNC4CnVmZiZ2jxiBhqVLo0FiInYBEDOGNm3aICIiAteuXUPfvn1hZWWl+dyV0a0bL1lw/z7QogUXN+Hh2e8juMicnQE7u5zPoQ83maGQFUMXL0rdZYILjeBk7VxPMUOEEdEoZig1NRXDhw9HlSpVlD7/9OlTTJs2TS8TI0wEdeOFAM0sQ+qKIYDHDT1/zsWQOoHC+uTDB6m400QMPX6co2UoJSUFGzduxOIFC/D4S1NTKwDfAQgxM0OldesMc+NJTuYWEQGxGBg6lLuJVJ1Pk3ghQL5Za3Zd4rOS22JIcJG1asUFIiFFlZuMxBBhBDT676xevTo8PT3Rr18/pc9fv36dxBChGdqIocREnoqenSVDEzFUoQIP+DVG3JAQPO3sDBQpot4+OQRRx8fHY9myZVi9erWkOnwxAMMBjALgCnCB8uiRYW48Dx8qbhNqKelLDAlxJSkp3PKiTsPVjAxpXJIhxZBsB/sNG/g2ihdSRJWbjGKGCCOgkZusffv2eJdNXEWxYsXQV9N0WsK0UTd4GuCZOJaWfD2neJmc+pLJYsyMMk1dZIBKMXTr1i0MGDAAXl5emDNnDt6+fYuyZctixcyZiAEwE1+EEACYmxtOECgrEZDT+TQVQ7a20tR4dV1lMTFcENnYZF/PSldkO9gLN3gSQ4rIusnev5fWG9IkA5Eg9ITGXeunTJmi8nlPT09s3LhR50kRJsK7d1IrgjpiSKhCDeTsKtPUMgQY1zKkQcsYWTHEGENERATatGmDKlWqYNOmTUhPT0fDhg2xZ88e3Lt3DyMmT4a97M3Y3BxYs8Zw7ggPD2DtWnnXVU7n01QMAZrHDZ07J90vp3pOuiJ0sAf454tu8IrIusmEeKGiRbPvS0cQBoKyyQjjceUKX3p7A8WLq7ePukHUmsYMATwOJzVVvXnoC20sQy4uSAOw+eJFVKtWDYGBgTh8+DDMzMzQrVs3nD9/HmfOnMHXX38Nc3Nzvk9mJl+GhnLhERSkz6tQJCgIuHBBKjpyisXSJK1eQBMxFB7OC0ICXIDmFNCtK58/S9fv3zf8+fIjsm4yihcijAyJIcJ4XL7Ml+rECwkYwjLk5sa/mIU4mtxEQzH05s0bzPn3X3gD6H/9Om7evAl7e3uMGTMGDx8+xJ9//qnYaoYxnrUHAN9+m3s3nNq1ga+/5utr1qgex5hhLUNxccCQIfw8AkOHqpfyrw1xcYCshZwxw54vvyLrJqN4IcLIkBgijMfp03zp66v+PuqIIbFY/TpDAHfnGMNVxpjUTZaDGHr8+DFGjx7NiyRu3Yp4AO5mZvj1119zLpIYF8eDzs3NgdxuRTN0KF9u2SKtCJ6Vt2+l8SLq1BgSUFcMPXzIPxOyyDbH1Te5fb78iqybjCxDhJEhMUQYh/BwYP9+vj53rvpuBHWqUL99y3seAer3nzJGEPWzZ1wgWFhIqxZnITIyEt988w18fX2xfPlyfPz4EdUqVsQWAFFmZvhhwoSciyQKVqGKFXlwb27SsiW/tqQkYPt25WMEq5CLi2YNOtUVQ76+iqn3eS2A3BSRdZNRjSHCyJAYInIfwW0hINShUceNoE7MkOAiK1aMN4RUB2NYhs6c4UtPT2mWHHiRxF27dqFBgwaSbvHsS5HEo0eP4urly+gDwCojgwu/nBDEUI0a+r+GnDAzk1qHVLnKtHGRAeqLIQ8PQLY2Wm4FkAvxWoY+X35FmZuMXiPCSJAYInIfXdwI6rjJNHGRCeS2ZSg8HOjVi69HRQHh4UhOTsayZctQrlw5dO3aFefOnYOVlRUGDhyIW7du4eDBg2jRogVENjbSujrqtOQwphgCgP79udi7cEE6F1l0FUPPn0stgcqIiQFu3eLrW7bkXgB5dDRw4kTunC8/osxNRjFDhJHQqxjq168fmjdvrs9DEgURXdwW6oghTYKnBQTL0L17ikJNn2Rmcvfg4MGSgN54AD8OHoxSHh4YM2YMnjx5gmLFiuGnn37C06dPER4ejkqVKskfR5OWHMYWQ87OwDff8HVl1iFtMskA3hTV2pq/js+eqR63fj1/T5s35xlluWV98PAAmjYla4cqKJuMyEPoVQyVLFkSXpoEQBKmiYeH/I1ZEzeCIIZevpRv+SCLNmKodGluvfj4UT9ZP3Fx3CoQF8f/NmzgmVwuLkDHjgBjuAlgAAAvAHMYw9ukJF4kccUKxMTEYMaMGXBVdQ05VKGWkJgodSMJhQCNgeAq++03abC0gLaWITMzqSVBlassPZ2LIQAYNkyz4xOGRRBDKSnS/mRUj4kwEnptljN79mx9Ho4oyCQm8uWiRUDXrur/IixRgounzEwuiJRVEtZGDFlacsvU3bv8T3DBaEN4OI+JUmJhYgAibGwQ9vkzjshsbwQgdN06dBwwQFobKDvUFUPXrvFlmTJSt4QxCAjgGXP373NBJCtMtBVDAH+fHj1SLYb27eNWRGdn4KuvND8+YTgEMSTg6AgULmycuRAmj14sQ5mZmbh27ZqkDxJBZMurV7zBJgAMGKCZadzcXNpiQ1UQtTZiCJDGDe3bp711SAgOzyKEUqtVw6ZOnVCtTBm0/iKEzAB0A3DezAz/rl+PrwcNUk8IAeqLIWO7yAREIqkAWr1aWvNH2xpDAoIlWvg8ZUVwywUFZd/Ljsh9rK3lExwoXogwIlqJoeDgYIR/SYXOzMxEQEAAatasCU9PT5w8eVKf8yMKIkKxxXLltLNW5BQ3pElfMlmEqsErVvCbrDZVg7MEh78BMAeAT1wcBuzdi5uPH8Pe3h5jx47Fo7Nn8eeJE6j39KnmAbbqiiGhyrexxRAA9O3Lb37Xr/NgagB484Z3uQe0s8Zll1H2+DFw5AgXYoMHazdnwrDIWocoXogwIlqJoZ07d6JatWoAgH379iEqKgr37t1DcHAwJk+erNcJEgUQbSpPy6KuGNLEMhQXBxw8KH2sSbq/LF8KSD4GMBqAJ4AfAcQnJqJkyZKYO3cu4uLisHjxYvg0aKB9gG1+swwBPAOuRw++LlhsBKuQq6tmNYYEshND69bxZevWmgdnE7mD7I8hEkOEEdFKDL1+/VoS2HngwAF069YN5cqVQ1BQEG7evKnXCRIFEKFTfV4SQw8fyrdrALSqGhx56RK+AeALYDmAjwCqeXpiy5YtePLkCb7//nsUKVJEo2MqRbB6ZSeGUlKk7T7yghgCpK6yP/7gNZJ0cZEBqsVQaioPWgekwdtE3oMsQ0QeQSsx5OLigjt37iAzMxOHDh1Cy5YtAQAfP35UP+aBMF10FUPZVaFOTwdev+brmoghHaoGZ2ZmYufOnfD390fDzp2xGzxQuk3duji6bRuuPn2KPn36wEqfMSvqWIZu3OACz9VV8/gpQ1G/Pi+A+OkTsHWr9mn1ArJiSFbM7tnDY9Pc3YEOHXSbM2E4ZMUQxQwRRkQrMTRgwAB0794dlStXhkgkQqtWrQAA//33HyoI9VqInJFNvzYVEhL49YpE2lsrsqtC/eoVvymamwNOTuofU6gaLCuIFi7M9teqUCTR19dX0i3eCsBAALfmzcPB//5Di2+/hShrTSV9IIib169VFxzMSy4yAdlA6jVrpGJIW8uQcANNTgbevZNuF9xwgwfzdidE3oTcZEQeQSsxNHXqVKxfvx5DhgzB2bNnYf0lI8Dc3BwTJ07U6wQLLOHhPEi3eXPtg3XzI0K8UIUKQKFC2h0jOzeZYClxdpa2Q1AXoWpwmTL8sRDYm4Xnz59j0qRJ8PT0xJgxYxAVFcWLJHbrhqcAwkuUQKUxYzQ7t6Y4OfHrY4wLQGXkRTEEAL17A3Z2wJ07wO7dfJu2YsjWlpdbAKSusnv3gJMnubAdNEjX2RKGhNxkRB5BKzEUHR2Nrl27Yty4cfCQ+QD369cPX1Etj5yJi+O/WIWsI22DdfMjugZPA9mLIW1accji6QlMncrXly7lsSdfuHHjBvr16wdvb2/8+uuvePfuHXx9fbFy5UrExsZiRnIyXAFg4ED1e6Jpi7m5tAmtqirUeVUMOTpKW5EI4lVbMQQoxg2tXcuXHTrQDTavQ2KIyCNoJYZKly6NRo0aYc2aNXjz5o2+51Tw0VOwbr5E13ghQCqGXrxQLGyobY0hWXr04F/ML16Abd2Kw4cPIzAwENWqVcOWLVuQnp6ORo0aYc+ePbh79y6GDx8OuxcvgEOH+P65lcadXdxQejogJDPkNTEEKFaDtrHR/liyYujTJ2DTJv6YAqfzPoKbzM6Ot+UgCCOhlRi6dOkS6tevj5kzZ8Ld3R1fffUVduzYgVSZX9FENujSmyu/ow8x5OLCX7+MDGmwtIA+xJClJVJHjcImANVGjUKbNm0QEREBMzMzdO/eHf/99x/+/fdffP3119KEgXXruMANDJS62QxNdmLo7l0gLY3/8s6LaeW1akkLJgJAs2bau4plxdCOHTxLzcuLp9QTeRsh2/HjR9MKFyDyHFqJoZo1a2LBggWIiYnBwYMH4ezsjKFDh8LZ2RkDBw7U9xwLHh4ewKhR0sea9ObKzzx/zl1bZma69cmytJTGiWQNotZRDL158wazZ8+G96JFGADgZmoq7G1seJHER4+wfft21K1bV36ntDTjpHFnJ4YEF1n16opZcnmBuDj5dHhdXMWyYkg2cJoyW/M2cXHSmDHAtMIFiDyHTt+SIpEIzZo1w7p163D06FGULl0amzdv1tfcCjZCzISLCw/a1bQCcX5EsApVrMjN4rqgKm5ISzH0+PFjjB49Gp6enpg8eTISXrxAyUKFMBdAXM2avEiiKgvL339zl52bG2/CmluoI4byoosM0K+rWBBDJ04AkZE8e4x+lOV9TDlcgMhz6CSGYmNjMW/ePFSvXh116tSBvb09li9frq+5FWyKF+fLlJSCbxES0EfwtEBOYkjNVhyRkZH45ptv4Ovri+XLl+Pjx4+S2KAnN27gewsLFImMlLaPUIZgjRg0iFutcov8LIZ0qOukgOBuEwLJv/5a+vkg8i76/AwQhI5oJYbWrl2LgIAA+Pj4YPPmzejevTseP36MM2fOYPjw4fqeY8FEEEPJydKeWAUdfcQLCehgGcrMzMSuXbvQoEEDNGzYELt37wZjDG3atMHRo0dx9epVXiTRx0dqwVuwQPnBHjwAjh0zThq3KjEkFku71desmatTUhuhrpPgytLFVZy1pxkFTucP9PkZIAgd0aoa2YwZM/Dtt99iyZIlqK5L7Icp4+jI//kzM4HERKBkSWPPyLAwZnQxlJycjI0bN2Lx4sV48uQJAMDKygrfffcdQkJCUKlSJcXzjB8PbNkC7NoFPHkClC4t/7yQxt2unXaNRnVBlRh68oRn5lhb83pOeZWgIB7k/OgRtwZoexPcu1f+sVDIkcj76OszQBA6opUYiomJMUxVXVNCJOLWoRcveEZUQRdDcXHAy5dcAFatqvvxhJYcsgHUHz9K03NlxNDz58+xbNkyrFmzBm/fvgUAFCtWDCNGjMDIkSMlffaUUqUK/7I+fBhYtAhYtkz63OfPxk3jVtWfTHCRVamSu247bfDw0O0GGBenmKY/fDjQti3dWPMLun4GCEIPaOUmIyGkJ4R2EVnTwwsiglWocmXtupNnRZllSIgZsbEBHBxw48YN9O/fX1Ik8e3bt/JFEmfMyF4ICUyYwJcbNnArnsCuXfyxpye/+eY2wtzfv+dCUCCvxwvpk4cPFWtNURAuQRAakgdzbk0IIW7IFMSQPoOnAZViiAE47OiIwNatUa1aNWzevFl5kURNstmaN+cp6h8/AqtWSbcbO43bwUFarFC2CrUpiSEKwiUIQg+QGDImghiStTYUVPQZLwTIiyHGkJqaik2//45qANq8eJFzkURNEImk1qFly7h77PZt4N9/+Y3XWGURRCKpdchUxRAF4RIEoQeonbMxMRXLkL6DpwGJCHiTlobVP/+MZeHhSPgSO1PIwgKDRo3C2LFj4a1LzytZunUDJk4EYmOBrVulrS6++koav2QMXF15nSohbig+ngsjMzP9xGblBygIlyAIHSExZExMRQw9fcqtX5aWPKhXDzx+9gyLrK2xMTUVH2fNAgCULFwYYz58wJA+fVBk0SK9nEeCpSUwbhwQEgLMni3tFG/sNO6sGWWCVah8ed0LW+YnKAiXIAgd0NhNdv/+fUydOhUtWrRAmTJl4ObmhqpVq6Jfv374/fffqT+ZJpiKGBKsQlWq6NzNPTIyEl26dIGvry9WpKbiI4DqZcpg69ateNKjB74HUES255U+GTSIB39HR/NimQAXesZElRgyBRcZQRCEnlBbDF29ehWtWrVCtWrVcPr0adSpUwfBwcGYMWMGvvvuOzDGMHnyZLi7u2Pu3LkkitTBVMSQjsHTmZmZ2LlzJ/z9/dGwYUPs2bMHjDG0dXLCMQBXfv4Z3333HawEa40uTVqzIylJsUDm8OHG7aVEYoggCEJn1HaTff3115gwYQK2b9+OYsWKqRx37tw5LFq0CGFhYfjxxx/1MskCi6mk1msZL5ScnIwNGzZg8eLFiPpSSM/Kygp9+vRBSEgIKv76K4/fEYSAPjrWZ0d2vZSM5aIhMUQQBKEzaouhhw8fwsrKKsdx/v7+8Pf3R1pamk4TU8XKlSsxf/58xMfHo1KlSli8eDEaN26sdOzu3buxatUqXLt2DampqahUqRKmTp2K1q1bG2RuGmMK2WRaBE8LRRJXr16Nd+/eAQCcnJwkRRJdhGKDQkaZUHhRw75kGiOkccvWtTF2GresGEpK4tWnARJDBEEQGqC2m0wdIaTLeHXYvn07goODMXnyZFy9ehWNGzdG27ZtERMTo3T86dOn0apVKxw4cACXL19Gs2bN0LFjR1wVfj0bG1Nwkz15Arx7B1hZAcraXchw48YN9OvXT1Ik8d27d5IiiTExMZg+fbpUCAHSLK4v6fUGtwzlxTRuWTEk9CMrVQrIxnpLEARBZIFpwLFjx5ifnx9LSkpSeO7du3esYsWK7PTp05ocUiPq1q3Lhg0bJretQoUKbOLEiWofo2LFimzatGlqj09KSmIAlF6zziQlMcZv44ylpOj/+HmBP/7g11enjtKnxWIxO3jwIGvZsiUDIPlr3Lgx++uvv1hmZqbqY2/fzo/dqBFjb99KX8uPHw1zLQKxsYydOMGXxiY6ml+ztTVjCxfy9a++MvasCIIgjI4m92+NUusXL16MwYMHw8HBQeE5R0dHDB06FAsXLlTpttKFtLQ0XL58GRMnTpTbHhgYiMjISLWOIRaL8eHDh2xjnlJTU+WCv98Lva4MQeHCPGU7PZ27ygpiKrSK4OnU1FT8/vvvCAsLw+3btwEAZmZm6Nq1K0JDQ1G3bt2cjy1beFGwCjk66qfdR3bkpTRuwVKWmgqcPMnX82qneoIgiDyKRqn1169fR5s2bVQ+HxgYiMvCzU/PvH79GpmZmfJuEgAuLi6SYns5ERYWhpSUFHTv3l3lmDlz5sDR0VHy5+npqdO8s0Vo1goUXFdZlnihxMREzJo1C97e3hg4cCBu376NQoUKITg4GI8fP8b27dvVE0KAcjFkKBdZXsXGhgtAADh2jC8pXoggCEIjNLIMvXjxApbZdMG2sLDAKyG92UBkbRLLGFOrcey2bdswdepU/P3333B2dlY5btKkSQgJCZE8fv/+vWEFkZMTv5kXRDEkFkssQ4+cnbF41Chs3LgRH780FS1ZsiTGjBmDIUOGoEiRIpofXxBDHz8CDx7wdVMTQwC/5qQkae0jEkMEQRAaoZEYKlmyJG7evImyKrJnbty4ATfhBqVnihcvDnNzcwUr0MuXLxWsRVnZvn07goKCsGPHDrRs2TLbsdbW1rDWsTCgRhTgjDL28CEi379HmJkZ/urUCexLWnr16tURGhqK7t276xZob2/Pm5W+fy9NKTdVMXT/Pl8vXhwoWdK48yEIgshnaOQma9euHX755Rd8zlp4DsCnT58wZcoUdOjQQW+Tk8XKygq1atVCRESE3PaIiAg0aNBA5X7btm1D//798fvvv6N9+/YGmZtOFEA3mVAksUGHDmgEYI9YDMYY2rVrh2PHjuHKlSu8SKI+Mg4F8W3qYkigRg3ufiUIgiDURiPL0E8//YTdu3ejXLlyGDVqFMqXLw+RSIS7d+9ixYoVyMzMxOTJkw01V4SEhKBPnz6oXbs2/P39sXbtWsTExGDYsGEAuIvr2bNn2LJlCwAuhPr27YslS5agfv36EquSra0tHIU4C2NTgMSQ0iKJAPpUrIiQHTtQsWJF/Z/UzY1bRW7c4I9JDBlvHgRBEPkUjcSQi4sLIiMjMXz4cEyaNEni9hCJRGjdujVWrlyZo8tKF3r06IHExERMnz4d8fHxqFy5Mg4cOACvL72o4uPj5WoOrVmzBhkZGRg5ciRGjhwp2d6vXz9s2rTJYPPUiAIghp49e4Zly5ZhzZo1ckUSh9vbY1RMDFy+/x4whBACpJahT5/40tTFUKlSxpsHQRBEPkXjrvVeXl44cOAA3r59i0ePHoExBl9fXxQtWtQQ81NgxIgRGDFihNLnsgqck0KqcV4mH4uh69evIywsDNu2bUNGRgYAwNfXF+PGjUO/776DnVAUUcueZGqRNUbNFMWQEDwOAGPG8AyzoCDjzYcgCCKfobEYEihatCjq1Kmjz7mYJvlMDDHGcPjwYSxYsADHhFRuAI0bN0ZoaCg6duwIMzMz4O5dIDmZ106qUMFwExIEl4CpiaG4OED2R4BYDAwdCrRunXdqIREEQeRxNBJDnz59wuLFi5GUlISxY8caLHPMpMgnzVpTU1Px22+/YeHChZIiiebm5pIiiQrCWKg3VaOGtH2FIcj6GTSgmzZPkhebxxIEQeQzNBJDQUFBsLW1RYUKFdCyZUvJTZHQgTyeWp+YmIjVq1dj2bJlePHiBQCgEIBBAMaKxfBu1QpQZiHUslO9xsiKIZEIKFHCsOfLa+TF5rEEQRD5DI3E0MmTJxEREYFKlSph8uTJePnyZbYFDAk1kHWTMZZn0qIfPXqERYsWYePGjfj0JTi5ZPHiGPv6NQYDKALw+Q4aBNy8CXTtCtSrx9uLAMDZs3xZurRhJyorhkqUACy09vzmT4TmsUOHcotQXmgeSxAEkc8QMZbVxq6anj17onDhwihXrhxWr16NR48eGXJueYL379/D0dERSUlJSnuy6UxyMu9RJqzb2+v/HGrCGENkZCQWLFiAv//+W5ItWKNGDYQ2aYLuq1bBMi1N9QEcHIDmzfk1/PYb32Zmxm/WhgroTUoChOrVVasC168b5jx5nbg47horW5aEEEEQBDS7f2tUdHH9+vXw8vLCixcv5IJnCR2wtweEitdGihvKyMjAjh074O/vj0aNGuGvv/6SFkk8ehSXv/4avZcsUS6EzMyAjh2BYsV4Jei//pIKIUAa0BsXZ5jJOzhIG9yaWvC0LB4eQNOmJIQIgiC0QCOfgr29vUGLKpokQrPWZ8+4GPpSMyk3+PDhg6RIYnR0NABe6btPnz4ICQlBRW9voH9/YMcOvsOYMUClSsCIEfIumaAg/vjqVWDVKmDDBvkTGTKgV4gTevpUamEjCIIgCA0wsQCLPIqTk1QM5QLPnj3D0qVLsWbNGiQlJX2ZghNGjBiBkSNH8sKZsbFAo0Zc4FhaAitX8vggAGjXTtElY27Og6WnTeOp3rkV0BsezoUQAOzezR9TjR2CIAhCA9R2kw0bNgyxsbFqjd2+fTt+k3WVENmTSxll169fR9++feHt7Y158+YhKSkJvr6+WLVqFWJiYjB9yBC43LkD/P03zxC7epVbXY4dkwohIHuXjBDQK6TTGzKgNy4OGDJE+pgxw7rkCIIgiAKJ2pahEiVKoHLlymjQoAE6deqE2rVrw93dHTY2Nnj79i3u3LmDM2fO4I8//kDJkiWxdu1aQ867YGHAwouMMRw6dAhhYWFycV5NmjRBaGgoOnTowIskhodzYSFr0alaFdi7V3PXXVAQL/pn6IDehw/l5wtQjR2CIAhCY9QWQzNmzMDo0aMRHh6O1atX49atW3LPFy5cGC1btsT69esRGBio94kWaAwghj5//iwpknjnzh0AvEhit27dEBoaitqy9X8EC4ussBCJgD//1D6GycPD8IKEauwQBEEQekCjmCFnZ2dMmjQJkyZNwrt37/D06VN8+vQJxYsXR5kyZSDKIzVy8h16FEOJiYlYtWoVli9fLimSWLhwYQwaNAhjx46VNLWVQ5mFhTEgPh4oX17nORkMqrFDEARB6AGtA6iLFCmCIkJ9F0I39CCGHj58iEWLFmHTpk2SIokeHh4YO3YsBg8eDEdHR9U752cLS2655AiCIIgCC2WT5QW0FEOMMZw9exZhM2fi7yNH5Iokjh8/Ht26dYOlUBE6Ozw8eNr84sX8cX6zsOSGS44gCIIosJAYygsIzVrVzCbLyMjAnj17sGDBAly4cEGyvT2A0PHj0XTePM1dlkLhwtatgfXrSVwQBEEQJoNGFagJA6GmZejDhw9YsmQJfH190b17d1y4cAHW4E1TbwPYD6DZokUQPXum+RxOneLLHj1ICBEEQRAmhUZiKCYmBhq0MiPUJWuz1iw8e/YMP/zwAzw9PREcHIzo6GgUL14cv/Tti6cA1gGoKAwWUss14dMnQLAwNWmi5UUQBEEQRP5EIzHk4+ODV69eGWouposghtLSeLPWLygrkig0yY2JicG0WbPgYpblLdQm8Pm//4D0dMDd3fBd5gmCIAgij6FRzBBZhQyEnR1gawt8+gT26hUOnz2LBQsWZF8kEeDurAEDeMFEAW0Cn0+fFk7C6wsRBEEQhAlBAdR5hFQnJ/wWF4eFrVrh9pMnAHiRxK5duyI0NBR16tRRvqO3t3Td2hro1UvzkwtiKCBA830JgiAIIp+jsRhav349ChUqlO2YMWPGaD0hU0NSJDEhAS8A4MkTFCpUCIMHD1ZdJFEWoUkpAKSm8kDoNm3Un0BaGhAZydcpXoggCIIwQTQWQ6tXr4a50IRTCSKRiMSQGjx69AiLFi3Cxo0bpUUSAYz99lsMXr06+yKJsghiyNERSEoCDh3STAxdvswDqIsXB/z8NLsIgiAIgigAaCyGLl26BGdnZ0PMxaRYuHAhVq1aBeBLkURra3Q7fx6W9epxYaMughjq0wdYvpyLIU0QXGSNG1O8EEEQBGGSaJRNRr3H9Me4cePQvn17HD9+HJcvX0av2rVhCWhWhZoxICaGrw8cyDPJ7t8HoqPVP4Zs8DRBEARBmCAaiSHKJtMfvr6+2L9/P5o1a8ZFpjYtOV6+BD5/5hadSpUAf3++/fBh9fbPzATOnOHrJIYIgiAIE0UjMTRlypQcg6evXbumy3xMF23EkOAic3cHrKyksULquspu3ADevwccHIBq1dQ/L0EQBEEUIDQWQ3ZCDysZkpKSsHLlStSqVQu1a9fW2+RMCqE/mTZiSMg4a92aL48d40UUc0JwkTVqxF1sBEEQBGGC6NSb7Pjx4/juu+/g5uaGadOmwdvbm1xp2iJYhtRs1gpAKoaEWkM1a/LjfPgAnDuX8/5CPzJykREEQRAmjMZiKC4uDjNnzkSZMmXQqVMnMMawc+dOPH/+HNOmTTPEHE0DXdxkgmXIzExqHcrJVcYYBU8TBEEQBDQUQ+3atYOvry/OnTuH6dOn48WLF/jtt9/Qrl07mJubU7aZLuTQrFUpWcUQoH7c0N273AplawvUqqXZXAmCIAiiAKFRnaFDhw6hV69eCA4OptggfSPEDGVk8KBmdWoNCSn0smIoMJAvr14FXrwAXFyU7ytYhRo04MHXBEEQBGGiaGQZOnv2LGxt/9/e/QdFWedxAH/vIr+FhxBhJcAsG7QT8SQVHE2nMcRCz9OzOj28K2w0T51iujy7OvtxF9YYlVpHYR7ZOad1SYeeg9Jgmgl25DJiGIoZirCSCrsI8WPZ7/2xtw+sLD+E/b3v18wO67OfffzuJ8t33+f73ccf999/P2JjY/Hyyy+jqqrKVmPzLP7+QGCg8flAL5VZmhkKDzeuHQKAQ4d6fy8vkREREQG4xTCUlJSEnJwcaDQarF+/HocOHUJsbCwSExOxdetWXLlyxVbj9Ay3sm6osdE4gwQAMTHmr/V3qYzrhYiIiGSD2k0WEBCAxx9/HMeOHUNFRQXuu+8+vPrqq5gzZ461x+dZTJfKBrKjzDQrFBbWNaNkYlpEffCg8YsVb/b998Dly4C3NzBt2uDHS0RE5AaGtLUeAGJjY/H666+jpqYGe/fuxUMPPWSNcXmmW5kZsnSJzCQpCQgKMoaqkyd7vm6aFZo61Xh5joiIyIMNOQyZeHl5YeHChcjPz7fWKT2PtcKQtzdgmqWzdGsOXiIjIiKSWS0MkRVYKwwBfX/fkCkMzZp1a+MjIiJyQwxDzsQWYai4GGho6DpeU2NcM6RUGrfVExEReTiGIWdizTB0xx3AuHGAwWC8V5nJl18af06ebFxXRERE5OEYhpzJYHaTme5LZolpi333dUO8HxkREZEZlwtD7777LsaMGQM/Pz8kJCTgS9NMRy+OHDmChIQE+Pn54c4770R2dradRjoIA50Z+uknoL7e+Ly3mSHAfN2Q6RYfXDxNRERkxqXC0J49e/DUU0/hT3/6E9RqNWbOnIl58+bh4sWLFusvXLiABx98EDNnzoRarcZzzz2HdevW4dNPP7XzyAdooGHINCsUFASEhPReN2sW4OdnXCdUUWEMUGfOGF+bMWPIwyUiInIHLhWGsrKykJ6ejhUrVmD8+PF46623EB0djb/97W8W67OzsxETE4O33noL48ePx4oVK/D4449j8+bNdh75AJnC0LVrxrU+vem+Xqivm+P6+3ftGCsoAI4dMz6Pi+u6JEdEROThXCYMtbe345tvvkGy6Uak/5ecnIzjx49bfE9xcXGP+rlz56K0tBQdHR0W39PW1gadTmf2sBtTQOnsBLTa3uv6WzzdXfdvo+YlMiIioh5cJgxdvXoVnZ2diLjpLuwRERHQaDQW36PRaCzW6/V6XO3lUlRmZiYkSZIf0dHR1vkAA+Hr27XDq69LZbcShkyLqI8c6VpIzTBEREQkc5kwZKK46bKQEKLHsf7qLR032bBhA7Rarfy4dOnSEEd8i7pfKuvNrYShceOMN3Jtbwe++854bObMoY2RiIjIjbhMGAoLC4OXl1ePWaD6+voesz8mKpXKYv2wYcMwopc1M76+vggODjZ72JVpXNaaGVIoumaHAONW/FGjBj08IiIid+MyYcjHxwcJCQkoLCw0O15YWIjpvXyTclJSUo/6Q4cO4d5774W3t7fNxjokA9lRdithCAC8vMzf+8EHgxsbERGRG3KZMAQAGRkZ2L59O3bs2IEzZ87g6aefxsWLF7Fq1SoAxktcy5cvl+tXrVqF6upqZGRk4MyZM9ixYwc++OADPPPMM476CP3rLwx1dACXLxufDyQM1dQA773X9WshgJUrjceJiIgIwxw9gFvxyCOP4Nq1a3j55ZdRV1eHCRMm4MCBAxj9/1BQV1dn9p1DY8aMwYEDB/D000/jnXfeQWRkJLZs2YLFixc76iP0r78wdPmycdu9jw/Qy+VBM+fO9dym39kJVFUBUVFDGysREZEbcKkwBACrV6/G6tWrLb6Wm5vb49isWbNw8uRJG4/KivoLQ6ZLZDExxput9ufuu4113QORlxcwduzQxklEROQmXOoymUfobzfZQO5J1l1UFPD++13rhry8jJfNOCtEREQEwAVnhtxef7vJfvjB+HOgi6cBID3d+OWLVVXGGSEGISIiIhnDkLMZ6GWyWwlDgDEAMQQRERH1wMtkzsZWYYiIiIgsYhhyNqYwdP26cdfXzRiGiIiIrIphyNmY1gwZDEBjo/lrBgNg+uoAhiEiIiKrYBhyNt7egCQZn998qezKFeM9xpRK4Pbb7T82IiIiN8Qw5Ix6215vukR2++3G0ERERERDxjDkjHrbXs/1QkRERFbHMOSMettRxjBERERkdQxDzohhiIiIyG4YhpxRf2FooLfiICIion4xDDmj3sLQYG7FQURERH1iGHJGlnaTCcHLZERERDbAMOSMLO0ma2gAbtwwPo+Jsf+YiIiI3BTDkDOydJnMNCsUHg74+9t/TERERG6KYcgZ9RWGeImMiIjIqhiGnJEpDDU0AHq98TnDEBERkU0wDDmj0FDjTyGMgQhgGCIiIrIRhiFnNGwYcNttxuemHWUMQ0RERDbBMOSsbl43xDBERERkEwxDzurm7fUMQ0RERDbBMOSsus8MNTd3hSKGISIiIqtiGHJW3cOQaVZIkoCQEIcNiYiIyB0xDDkrS2GIs0JERERWxzDkrLrfn4xhiIiIyGYYhpwVZ4aIiIjsgmHIWXXfTcYwREREZDPDHD0A6kX3mSHl/zMrwxAREZHVMQw5q+5h6KefjM8ZhoiIiKyOYchZmcJQYyOg1RqfMwwRERFZHdcMOavbbgMUCuNzIQA/PyA83LFjIiIickMMQ87Ky6vr7vUAEBPTFY6IiIjIahiGnJnpUhnAS2REREQ2wjDkzEzb6wHgjjscNgwiIiJ3xjDkzDgzREREZHMMQ86MYYiIiMjmGIacGcMQERGRzTEMObPuYcjHx3HjICIicmMuE4YaGhqQlpYGSZIgSRLS0tLQ2NjYa31HRwfWr1+PuLg4BAYGIjIyEsuXL0dtba39Bj1UFRVdz6dPBz74wHFjISIiclMuE4aWLl2KsrIyFBQUoKCgAGVlZUhLS+u1vqWlBSdPnsQLL7yAkydPYu/evTh79iwWLFhgx1EPQU0N8OGHXb82GICVK43HiYiIyGpc4nYcZ86cQUFBAUpKSjBt2jQAQE5ODpKSklBZWYnY2Nge75EkCYWFhWbHtm7diqlTp+LixYuIiYmxy9gH7dw54zdPd9fZCVRVAVFRjhkTERGRG3KJmaHi4mJIkiQHIQBITEyEJEk4fvz4gM+j1WqhUCgQEhLSa01bWxt0Op3ZwyHuvrvrbvUmXl7A2LGOGQ8REZGbcokwpNFoEG7hvlzh4eHQaDQDOkdrayv++Mc/YunSpQgODu61LjMzU16XJEkSoqOjBz3uIYmKAt5/3xiAAOPP997jrBAREZGVOTQMvfjii1AoFH0+SktLAQAKC/flEkJYPH6zjo4OPProozAYDHj33Xf7rN2wYQO0Wq38uHTp0uA+nDWkpwM//AAcPmz8mZ7uuLEQERG5KYeuGVqzZg0effTRPmvuuOMOnDp1CleuXOnx2o8//oiIiIg+39/R0YGHH34YFy5cQFFRUZ+zQgDg6+sLX1/f/gdvL1FRnA0iIiKyIYeGobCwMIR1/y6dXiQlJUGr1eLrr7/G1KlTAQAnTpyAVqvF9OnTe32fKQidO3cOhw8fxoju9/oiIiIigousGRo/fjxSUlLwxBNPoKSkBCUlJXjiiSeQmppqtpNs3LhxyMvLAwDo9Xr86le/QmlpKXbt2oXOzk5oNBpoNBq0t7c76qMQERGRk3GJMAQAu3btQlxcHJKTk5GcnIyJEyfio48+MquprKyEVqsFANTU1CA/Px81NTWYNGkSRo0aJT9uZQcaERERuTeFEDd/mQ11p9PpIEkStFptv+uNiIiIyDncyt/fLjMzRERERGQLDENERETk0RiGiIiIyKMxDBEREZFHYxgiIiIij8YwRERERB6NYYiIiIg8mkNvx+EKTF/DpNPpHDwSIiIiGijT39sD+TpFhqF+NDU1AQCio6MdPBIiIiK6VU1NTZAkqc8afgN1PwwGA2praxEUFASFQuHo4bgVnU6H6OhoXLp0id/ubQfst32x3/bFftuXK/RbCIGmpiZERkZCqex7VRBnhvqhVCoRFRXl6GG4teDgYKf9l8kdsd/2xX7bF/ttX87e7/5mhEy4gJqIiIg8GsMQEREReTSGIXIYX19fbNy4Eb6+vo4eikdgv+2L/bYv9tu+3K3fXEBNREREHo0zQ0REROTRGIaIiIjIozEMERERkUdjGCIiIiKPxjBEQ3L06FHMnz8fkZGRUCgU+Oyzz8xev3LlCn73u98hMjISAQEBSElJwblz58xqNBoN0tLSoFKpEBgYiMmTJ+Nf//qXWU1DQwPS0tIgSRIkSUJaWhoaGxtt/OmcjzX6ff78efzyl7/EyJEjERwcjIcffhhXrlwxq2G/gczMTEyZMgVBQUEIDw/HwoULUVlZaVYjhMCLL76IyMhI+Pv7Y/bs2fj222/Natra2rB27VqEhYUhMDAQCxYsQE1NjVkN+229fr///vuYPXs2goODoVAoLPaR/bZOv69fv461a9ciNjYWAQEBiImJwbp166DVas3O4wr9ZhiiIWlubkZ8fDy2bdvW4zUhBBYuXIjvv/8e//73v6FWqzF69GjMmTMHzc3Ncl1aWhoqKyuRn5+P8vJyLFq0CI888gjUarVcs3TpUpSVlaGgoAAFBQUoKytDWlqaXT6jMxlqv5ubm5GcnAyFQoGioiJ89dVXaG9vx/z582EwGORzsd/AkSNH8Pvf/x4lJSUoLCyEXq9HcnKy2Z/d119/HVlZWdi2bRv++9//QqVS4YEHHpDvaQgATz31FPLy8rB7924cO3YMN27cQGpqKjo7O+Ua9tt6/W5paUFKSgqee+65Xn8v9ts6/a6trUVtbS02b96M8vJy5ObmoqCgAOnp6Wa/l0v0WxBZCQCRl5cn/7qyslIAEKdPn5aP6fV6ERoaKnJycuRjgYGBYufOnWbnCg0NFdu3bxdCCFFRUSEAiJKSEvn14uJiAUB89913Nvo0zm8w/T548KBQKpVCq9XKNdevXxcARGFhoRCC/e5NfX29ACCOHDkihBDCYDAIlUolNm3aJNe0trYKSZJEdna2EEKIxsZG4e3tLXbv3i3XXL58WSiVSlFQUCCEYL97M5h+d3f48GEBQDQ0NJgdZ78tG2q/TT7++GPh4+MjOjo6hBCu02/ODJHNtLW1AQD8/PzkY15eXvDx8cGxY8fkYzNmzMCePXtw/fp1GAwG7N69G21tbZg9ezYAoLi4GJIkYdq0afJ7EhMTIUkSjh8/bp8P4wIG0u+2tjYoFAqzL0rz8/ODUqmUa9hvy0xT/6GhoQCACxcuQKPRIDk5Wa7x9fXFrFmz5D5988036OjoMKuJjIzEhAkT5Br227LB9Hsg2G/LrNVvrVaL4OBgDBtmvPWpq/SbYYhsZty4cRg9ejQ2bNiAhoYGtLe3Y9OmTdBoNKirq5Pr9uzZA71ejxEjRsDX1xcrV65EXl4e7rrrLgDGNUXh4eE9zh8eHg6NRmO3z+PsBtLvxMREBAYGYv369WhpaUFzczP+8Ic/wGAwyDXsd09CCGRkZGDGjBmYMGECAMi9iIiIMKuNiIiQX9NoNPDx8cFtt93WZw37bW6w/R4I9rsna/X72rVreOWVV7By5Ur5mKv0m2GIbMbb2xuffvopzp49i9DQUAQEBOCLL77AvHnz4OXlJdc9//zzaGhowOeff47S0lJkZGRgyZIlKC8vl2sUCkWP8wshLB73VAPp98iRI/HJJ59g3759GD58OCRJglarxeTJk83+mbDf5tasWYNTp07hn//8Z4/Xbu7JQPp0cw37bc7a/e7vHIM9j7uwRr91Oh0eeugh3HPPPdi4cWOf5+jrPI4yzNEDIPeWkJCAsrIyaLVatLe3Y+TIkZg2bRruvfdeAMadTdu2bcPp06fxs5/9DAAQHx+PL7/8Eu+88w6ys7OhUql67HYCgB9//LHH/7V4uv76DQDJyck4f/48rl69imHDhiEkJAQqlQpjxowBAPb7JmvXrkV+fj6OHj2KqKgo+bhKpQJg/D/fUaNGycfr6+vlPqlUKrS3t6OhocFsdqi+vh7Tp0+Xa9jvLkPp90Cw3+as0e+mpiakpKRg+PDhyMvLg7e3t9l5XKHfnBkiu5AkCSNHjsS5c+dQWlqKX/ziFwCMOz8AQKk0/6Po5eUl725KSkqCVqvF119/Lb9+4sQJaLVa+S8UMtdbv7sLCwtDSEgIioqKUF9fjwULFgBgv02EEFizZg327t2LoqIiOSyajBkzBiqVCoWFhfKx9vZ2HDlyRO5TQkICvL29zWrq6upw+vRpuYb9NrJGvweC/TayVr91Oh2Sk5Ph4+OD/Px8szWLgAv12wGLtsmNNDU1CbVaLdRqtQAgsrKyhFqtFtXV1UII486Cw4cPi/Pnz4vPPvtMjB49WixatEh+f3t7uxg7dqyYOXOmOHHihKiqqhKbN28WCoVC/Oc//5HrUlJSxMSJE0VxcbEoLi4WcXFxIjU11e6f19GG2m8hhNixY4coLi4WVVVV4qOPPhKhoaEiIyPDrIb9FuLJJ58UkiSJL774QtTV1cmPlpYWuWbTpk1CkiSxd+9eUV5eLn7961+LUaNGCZ1OJ9esWrVKREVFic8//1ycPHlS3H///SI+Pl7o9Xq5hv22Xr/r6uqEWq0WOTk5AoA4evSoUKvV4tq1a3IN+22dfut0OjFt2jQRFxcnqqqqzM7jan++GYZoSEzbV29+/Pa3vxVCCPH222+LqKgo4e3tLWJiYsTzzz8v2trazM5x9uxZsWjRIhEeHi4CAgLExIkTe2y1v3btmli2bJkICgoSQUFBYtmyZT22zHoCa/R7/fr1IiIiQnh7e4u7775bvPHGG8JgMJjVsN/CYp8BiL///e9yjcFgEBs3bhQqlUr4+vqK++67T5SXl5ud56effhJr1qwRoaGhwt/fX6SmpoqLFy+a1bDf1uv3xo0b+z0P+22dfvf23yMA4sKFC3KdK/RbIYQQtpp1IiIiInJ2XDNEREREHo1hiIiIiDwawxARERF5NIYhIiIi8mgMQ0REROTRGIaIiIjIozEMERERkUdjGCIiIiKPxjBEREREHo1hiIhoEDo7O+WbCRORa2MYIiKXt3PnTowYMQJtbW1mxxcvXozly5cDAPbt24eEhAT4+fnhzjvvxEsvvQS9Xi/XZmVlIS4uDoGBgYiOjsbq1atx48YN+fXc3FyEhIRg//79uOeee+Dr64vq6mr7fEAisimGISJyeUuWLEFnZyfy8/PlY1evXsX+/fvx2GOP4eDBg/jNb36DdevWoaKiAu+99x5yc3Px17/+Va5XKpXYsmULTp8+jQ8//BBFRUV49tlnzX6flpYWZGZmYvv27fj2228RHh5ut89IRLbDG7USkVtYvXo1fvjhBxw4cAAA8Pbbb2PLli2oqqrCrFmzMG/ePGzYsEGu/8c//oFnn30WtbW1Fs/3ySef4Mknn8TVq1cBGGeGHnvsMZSVlSE+Pt72H4iI7IZhiIjcglqtxpQpU1BdXY3bb78dkyZNwuLFi/HCCy8gMDAQBoMBXl5ecn1nZydaW1vR3NyMgIAAHD58GK+++ioqKiqg0+mg1+vR2tqKGzduIDAwELm5uVi5ciVaW1uhUCgc+EmJyNqGOXoARETW8POf/xzx8fHYuXMn5s6di/Lycuzbtw8AYDAY8NJLL2HRokU93ufn54fq6mo8+OCDWLVqFV555RWEhobi2LFjSE9PR0dHh1zr7+/PIETkhhiGiMhtrFixAm+++SYuX76MOXPmIDo6GgAwefJkVFZWYuzYsRbfV1paCr1ejzfeeANKpXEp5ccff2y3cRORYzEMEZHbWLZsGZ555hnk5ORg586d8vE///nPSE1NRXR0NJYsWQKlUolTp06hvLwcf/nLX3DXXXdBr9dj69atmD9/Pr766itkZ2c78JMQkT1xNxkRuY3g4GAsXrwYw4cPx8KFC+Xjc+fOxf79+1FYWIgpU6YgMTERWVlZGD16NABg0qRJyMrKwmuvvYYJEyZg165dyMzMdNCnICJ74wJqInIrDzzwAMaPH48tW7Y4eihE5CIYhojILVy/fh2HDh3CsmXLUFFRgdjYWEcPiYhcBNcMEZFbmDx5MhoaGvDaa68xCBHRLeHMEBEREXk0LqAmIiIij8YwRERERB6NYYiIiIg8GsMQEREReTSGISIiIvJoDENERETk0RiGiIiIyKMxDBEREZFHYxgiIiIij/Y/jv5xwFCn9VMAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "PyObject " + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "It's obvious by eye that this fit line is a better description of the overall trend than any two data points.\n", + "\n", + "More precisely, if the data noise is uncorrelated, then in a certain statistical sense a least-squares estimate is optimal, as described by the [Gauss–Markov theorem](https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem)." + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.7.2", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/lectures/Gram-Schmidt.ipynb b/notes/Gram-Schmidt.ipynb similarity index 51% rename from lectures/Gram-Schmidt.ipynb rename to notes/Gram-Schmidt.ipynb index 501fad8e..7abc772b 100644 --- a/lectures/Gram-Schmidt.ipynb +++ b/notes/Gram-Schmidt.ipynb @@ -15,20 +15,29 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6×4 Array{Int64,2}:\n", - " 7 2 6 9\n", - " 2 4 3 2\n", - " 8 6 4 10\n", - " 4 9 2 5\n", - " 7 1 5 9\n", - " 7 8 4 6" + "6×4 Matrix{Int64}:\n", + " 5 10 6 8\n", + " 10 6 5 1\n", + " 2 1 7 3\n", + " 7 5 4 8\n", + " 1 3 8 3\n", + " 1 8 9 4" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -46,22 +55,22 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6×4 Array{Float64,2}:\n", - " 7.0 -3.12121 1.12662 0.293808 \n", - " 2.0 2.5368 1.93453 -0.0432856\n", - " 8.0 0.147186 -1.2154 0.62856 \n", - " 4.0 6.07359 -0.0355781 1.14313 \n", - " 7.0 -4.12121 0.031269 0.178556 \n", - " 7.0 2.87879 -0.301254 -1.83157 " + "6×4 Matrix{Float64}:\n", + " 5.0 5.61111 -3.16215 1.37162\n", + " 10.0 -2.77778 -0.0979465 -3.70534\n", + " 2.0 -0.755556 6.16936 1.22464\n", + " 7.0 -1.14444 -0.324354 4.20193\n", + " 1.0 2.12222 5.22283 0.0756904\n", + " 1.0 7.12222 1.49913 -1.74319" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -83,29 +92,29 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6×4 Array{Float64,2}:\n", - " 0.460566 -0.352596 0.43914 0.129135 \n", - " 0.13159 0.286576 0.754051 -0.0190249\n", - " 0.526361 0.0166273 -0.473745 0.276266 \n", - " 0.263181 0.686121 -0.0138678 0.502429 \n", - " 0.460566 -0.465564 0.0121882 0.0784793\n", - " 0.460566 0.32521 -0.117424 -0.805013 " + "6×4 Matrix{Float64}:\n", + " 0.372678 0.571756 -0.358733 0.223061\n", + " 0.745356 -0.283047 -0.0111116 -0.602583\n", + " 0.149071 -0.0769889 0.699888 0.199157\n", + " 0.521749 -0.116616 -0.0367966 0.683342\n", + " 0.0745356 0.216248 0.592508 0.0123092\n", + " 0.0745356 0.725734 0.170071 -0.283488" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# now we normalize\n", - "q₁ = normalize(v₁) # same as A/norm(A)\n", + "q₁ = normalize(v₁)\n", "q₂ = normalize(v₂)\n", "q₃ = normalize(v₃)\n", "q₄ = normalize(v₄);\n", @@ -116,20 +125,20 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 1.0 4.06e-17 -9.50947e-17 -7.11172e-17\n", - " 4.06e-17 1.0 7.34308e-17 -1.81051e-16\n", - " -9.50947e-17 7.34308e-17 1.0 1.19386e-15\n", - " -7.11172e-17 -1.81051e-16 1.19386e-15 1.0 " + "4×4 Matrix{Float64}:\n", + " 1.0 -9.21828e-17 8.99478e-17 1.35877e-16\n", + " -9.21828e-17 1.0 1.0142e-17 1.42552e-16\n", + " 8.99478e-17 1.0142e-17 1.0 -2.09229e-16\n", + " 1.35877e-16 1.42552e-16 -2.09229e-16 1.0" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -141,20 +150,20 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 0.0 4.06e-17 -9.50947e-17 -7.11172e-17\n", - " 4.06e-17 2.22045e-16 7.34308e-17 -1.81051e-16\n", - " -9.50947e-17 7.34308e-17 0.0 1.19386e-15\n", - " -7.11172e-17 -1.81051e-16 1.19386e-15 2.22045e-16" + "4×4 Matrix{Float64}:\n", + " 0.0 -9.21828e-17 8.99478e-17 1.35877e-16\n", + " -9.21828e-17 0.0 1.0142e-17 1.42552e-16\n", + " 8.99478e-17 1.0142e-17 0.0 -2.09229e-16\n", + " 1.35877e-16 1.42552e-16 -2.09229e-16 2.22045e-16" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -165,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -174,31 +183,31 @@ "true" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Q'Q ≈ eye(4)" + "Q'Q ≈ I" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 231.0 3.55271e-15 -4.88498e-15 -3.10862e-15\n", - " 3.55271e-15 78.3593 1.26619e-15 -2.82135e-15\n", - " -4.88498e-15 1.26619e-15 6.5819 6.95173e-15\n", - " -3.10862e-15 -2.82135e-15 6.95173e-15 5.17654 " + "4×4 Matrix{Float64}:\n", + " 180.0 -1.42109e-14 1.33227e-14 1.28786e-14\n", + " -1.42109e-14 96.3111 9.32625e-15 6.94211e-15\n", + " 1.33227e-14 9.32625e-15 77.7003 -1.16249e-14\n", + " 1.28786e-14 6.94211e-15 -1.16249e-14 37.8113" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -210,27 +219,27 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 15.1987 11.1194 9.93507 17.8963 \n", - " 0.0 8.85208 -0.84408 -1.24216\n", - " -0.0 -0.0 2.56552 0.05872\n", - " -0.0 -0.0 0.0 2.2752 " + "4×4 Matrix{Float64}:\n", + " 13.4164 11.7766 10.3605 8.86974\n", + " -0.0 9.81382 9.2715 6.67879\n", + " 0.0 0.0 8.81478 1.38213\n", + " 0.0 0.0 0.0 6.14909" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# What does this triangular structure say?\n", - "round.(Q'A, 5)" + "round.(Q'A, digits=5)" ] }, { @@ -244,90 +253,112 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, + "execution_count": 10, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "text/plain": [ - "([-0.460566 0.352596 0.43914 -0.129135; -0.13159 -0.286576 0.754051 0.0190249; … ; -0.460566 0.465564 0.0121882 -0.0784793; -0.460566 -0.32521 -0.117424 0.805013], [-15.1987 -11.1194 -9.93507 -17.8963; 0.0 -8.85208 0.84408 1.24216; 0.0 0.0 2.56552 0.0587228; 0.0 0.0 0.0 -2.2752])" + "LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}}\n", + "Q factor:\n", + "6×6 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}}:\n", + " -0.372678 0.571756 0.358733 -0.223061 -0.0840586 -0.590504\n", + " -0.745356 -0.283047 0.0111116 0.602583 0.0189054 -0.0272178\n", + " -0.149071 -0.0769889 -0.699888 -0.199157 -0.619405 -0.242243\n", + " -0.521749 -0.116616 0.0367966 -0.683342 0.131189 0.478182\n", + " -0.0745356 0.216248 -0.592508 -0.0123092 0.74464 -0.204877\n", + " -0.0745356 0.725734 -0.170071 0.283488 -0.192913 0.566789\n", + "R factor:\n", + "4×4 Matrix{Float64}:\n", + " -13.4164 -11.7766 -10.3604 -8.86974\n", + " 0.0 9.81382 9.2715 6.67879\n", + " 0.0 0.0 -8.81478 -1.38213\n", + " 0.0 0.0 0.0 -6.14909" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Q2,R = qr(A)" + "F = qr(A) # returns a \"factorization object\" that stores both Q (implicitly) and R" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " -1.0 0.0 0.0 0.0\n", - " -0.0 -1.0 -0.0 0.0\n", - " 0.0 -0.0 1.0 -0.0\n", - " 0.0 0.0 0.0 -1.0" + "4×4 Matrix{Float64}:\n", + " -13.4164 -11.7766 -10.3604 -8.86974\n", + " 0.0 9.81382 9.2715 6.67879\n", + " 0.0 0.0 -8.81478 -1.38213\n", + " 0.0 0.0 0.0 -6.14909" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "round.(Q'Q2, 5) # almost I, up to signs" + "R = F.R" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " -15.1987 -11.1194 -9.93507 -17.8963 \n", - " 0.0 -8.85208 0.84408 1.24216 \n", - " 0.0 0.0 2.56552 0.0587228\n", - " 0.0 0.0 0.0 -2.2752 " + "6×4 Matrix{Float64}:\n", + " -0.372678 0.571756 0.358733 -0.223061\n", + " -0.745356 -0.283047 0.0111116 0.602583\n", + " -0.149071 -0.0769889 -0.699888 -0.199157\n", + " -0.521749 -0.116616 0.0367966 -0.683342\n", + " -0.0745356 0.216248 -0.592508 -0.0123092\n", + " -0.0745356 0.725734 -0.170071 0.283488" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "R # Recognize this matrix?" + "Q2 = Matrix(F.Q) # extract the \"thin\" QR factor you would get from Gram–Schmidt" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "true" + "4×4 Matrix{Float64}:\n", + " -1.0 -0.0 -0.0 0.0\n", + " 0.0 1.0 0.0 -0.0\n", + " -0.0 0.0 -1.0 0.0\n", + " -0.0 -0.0 -0.0 -1.0" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Q2*R ≈ A" + "round.(Q'Q2, digits=5) # almost I, up to signs" ] }, { @@ -338,13 +369,11 @@ { "data": { "text/plain": [ - "6-element Array{Float64,1}:\n", - " 0.891932\n", - " 0.169511\n", - " 0.408775\n", - " 0.138505\n", - " 0.768323\n", - " 0.147395" + "4×4 Matrix{Float64}:\n", + " -13.4164 -11.7766 -10.3604 -8.86974\n", + " 0.0 9.81382 9.2715 6.67879\n", + " 0.0 0.0 -8.81478 -1.38213\n", + " 0.0 0.0 0.0 -6.14909" ] }, "execution_count": 14, @@ -353,7 +382,7 @@ } ], "source": [ - "b = rand(6)" + "R # Recognize this matrix?" ] }, { @@ -364,11 +393,7 @@ { "data": { "text/plain": [ - "4-element Array{Float64,1}:\n", - " -0.108273 \n", - " -0.0274501\n", - " 0.12079 \n", - " 0.103778 " + "true" ] }, "execution_count": 15, @@ -377,7 +402,7 @@ } ], "source": [ - "A \\ b" + "Q2*R ≈ A" ] }, { @@ -388,11 +413,13 @@ { "data": { "text/plain": [ - "4-element Array{Float64,1}:\n", - " -0.108273 \n", - " -0.0274501\n", - " 0.12079 \n", - " 0.103778 " + "6-element Vector{Float64}:\n", + " 0.5450097629781777\n", + " 0.8599801580391012\n", + " 0.7036387925825908\n", + " 0.7553540639899048\n", + " 0.7234080262946185\n", + " 0.14725528162868073" ] }, "execution_count": 16, @@ -401,7 +428,7 @@ } ], "source": [ - "inv(A'A) * A'b" + "b = rand(6)" ] }, { @@ -412,11 +439,11 @@ { "data": { "text/plain": [ - "4-element Array{Float64,1}:\n", - " -0.108273 \n", - " -0.0274501\n", - " 0.12079 \n", - " 0.103778 " + "4-element Vector{Float64}:\n", + " 0.08995466028300682\n", + " -0.0768023071730735\n", + " 0.07513430689992019\n", + " 0.03688677949256471" ] }, "execution_count": 17, @@ -425,21 +452,104 @@ } ], "source": [ - "R \\ Q2'b" + "A \\ b" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Vector{Float64}:\n", + " 0.08995466028300675\n", + " -0.07680230717307351\n", + " 0.07513430689992023\n", + " 0.03688677949256475" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "inv(A'A) * A'b" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Vector{Float64}:\n", + " 0.0899546602830068\n", + " -0.07680230717307351\n", + " 0.07513430689992022\n", + " 0.03688677949256465" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "R \\ (Q2'b)[1:4]" ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Vector{Float64}:\n", + " 0.08995466028300678\n", + " -0.07680230717307349\n", + " 0.07513430689992023\n", + " 0.03688677949256459" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F \\ b # the factorization object F can be used directly for a least-square solve" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 1.7.1", "language": "julia", - "name": "julia-0.6" + "name": "julia-1.7" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "0.6.3" + "version": "1.7.1" } }, "nbformat": 4, diff --git a/notes/Graphs-Networks.ipynb b/notes/Graphs-Networks.ipynb new file mode 100644 index 00000000..cd129beb --- /dev/null +++ b/notes/Graphs-Networks.ipynb @@ -0,0 +1,6529 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graphs and Networks in Linear Algebra\n", + "\n", + "This notebook is based on section 10.1 of Strang's *Linear Algebra* textbook.\n", + "\n", + "One interesting source of large matrices in linear algebra is a [graph](https://en.wikipedia.org/wiki/Graph_(discrete_mathematics), a collection of *nodes* (vertices) and *edges* (arrows from one vertex to another). Graphs are used in many applications to represent *relationships* and *connectivity*, such as:\n", + "\n", + "* For computer networks, nodes could represent web pages, and edges could represent links.\n", + "* For circuits, edges could represent wires (or resistors) and nodes junctions.\n", + "* For transportation, nodes could represent cities and edges roads.\n", + "* In bioinformatics, graphs can represent gene regulatory networks.\n", + "* In sociology, nodes could represent people and edges relationships.\n", + "* ... and many, many other applications ...\n", + "\n", + "In this notebook, we explain how a graph can be represented by a *matrix*, and how linear algebra can tell us properties of the graph and can help us do computations on graph-based problems. There is a particularly beautiful connection to Kirchhoff's laws of circuit theory." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Packages for this notebook\n", + "\n", + "To run the code in this notebook, you'll need to install a few Julia packages used below. To do so, uncomment the following line and run it:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Pkg.add.([\"Graphs\", \"MetaGraphs\", \"GraphPlot\", \"NamedColors\", \"RowEchelon\", Interact\", \"SymPy\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "...and then run this cell to import the packages:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "8a9fe2d3-11ba-493f-9228-1ded0ad827a7" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "using Interact, RowEchelon, Graphs, MetaGraphs, GraphPlot, NamedColors, LinearAlgebra\n", + "import SymPy\n", + "using SymPy: Sym" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Julia Graph-visualization code\n", + "\n", + "There are several Julia packages for manipulating graphs, e.g. [LightGraphs](https://github.com/JuliaGraphs/LightGraphs.jl), along with several packages for visualizing graphs, e.g. [GraphViz](https://github.com/Keno/GraphViz.jl). LightGraphs is oriented towards fast and sophisticated graph computations, however, and here I just want to do some simple and pretty visualizations with simple algorithms based on those in Strang's 18.06 textbook.\n", + "\n", + "So, here I define a simple `MyGraph` wrapper around LightGraphs directed graphs, with metadata attached via the MetaGraphs package, for basic plotting via the GraphPlots package." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "labels (generic function with 1 method)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "struct MyGraph\n", + " g::MetaDiGraph\n", + "end\n", + "Base.copy(mg::MyGraph) = MyGraph(copy(mg.g))\n", + "function MyGraph(edges::Pair{<:Integer,<:Integer}...)\n", + " g = SimpleDiGraphFromIterator(Edge(e) for e in edges)\n", + " MyGraph(MetaDiGraph(g))\n", + "end\n", + "\n", + "using Random\n", + "function deterministic_spring_layout(g::AbstractGraph; seed::Integer=0, kws...)\n", + " rng = MersenneTwister(seed)\n", + " spring_layout(g, 2 .* rand(rng, nv(g)) .- 1.0, 2 .* rand(rng,nv(g)) .- 1.0; kws...)\n", + "end\n", + "function Base.show(io::IO, m::MIME\"image/svg+xml\", mg::MyGraph)\n", + " show(io, m, \n", + " gplot(mg.g, layout=deterministic_spring_layout,\n", + " nodelabel=map(v -> get(MetaGraphs.props(mg.g, v), :label, v), vertices(mg.g)),\n", + " nodefillc=map(v -> get(MetaGraphs.props(mg.g, v), :color, \"gray\"), vertices(mg.g)),\n", + " edgelabel=map(ie -> get(MetaGraphs.props(mg.g, ie[2]), :label, ie[1]), enumerate(edges(mg.g))),\n", + " edgestrokec=map(e -> get(MetaGraphs.props(mg.g, e), :color, \"lightgray\"), edges(mg.g)),\n", + " ))\n", + "end\n", + "\n", + "function nodecolors!(g::MyGraph, nodes::AbstractVector{<:Integer}, color::String=\"red\")\n", + " for n in nodes\n", + " set_prop!(g.g, n, :color, color)\n", + " end\n", + " g\n", + "end\n", + "nodecolors(g, nodes, color) = nodecolors!(copy(g), nodes, color)\n", + "edgearr(g, e) = e\n", + "edgearr(g, e::AbstractVector{<:Integer}) = collect(edges(g))[e]\n", + "edgearr(g, e::AbstractVector{<:Pair}) = Edge.(e)\n", + "function edgecolors!(g::MyGraph, edges::AbstractVector, color::String=\"red\")\n", + " for e in edgearr(g.g, edges)\n", + " set_prop!(g.g, e, :color, color)\n", + " end\n", + " g\n", + "end\n", + "edgecolors(g::MyGraph, edges::AbstractVector, color::String=\"red\") = edgecolors!(copy(g), edges, color)\n", + "\n", + "# A little code so that we can label graph nodes/edges with SymPy expressions.\n", + "# convert strings like \"v_2 - v_0\" from SymPy to nicer Unicode strings like \"v₂ - v₀\"\n", + "subchar(d::Integer) = Char(UInt32('₀')+d)\n", + "subchar(c::Char) = subchar(UInt32(c)-UInt32('0'))\n", + "subchar(s::String) = replace(s, r\"_[0-9]\" => s -> subchar(s[2]))\n", + "labelstring(s::SymPy.Sym) = subchar(repr(\"text/plain\", s))\n", + "labelstring(x) = x\n", + "\n", + "function labels!(g::MyGraph; edges=nothing, nodes=nothing)\n", + " if edges !== nothing\n", + " for (e,E) in zip(MetaGraphs.edges(g.g), edges)\n", + " set_prop!(g.g, e, :label, labelstring(E))\n", + " end\n", + " end\n", + " if nodes !== nothing\n", + " for (n,N) in zip(vertices(g.g), nodes)\n", + " set_prop!(g.g, n, :label, labelstring(N))\n", + " end\n", + " end\n", + " g\n", + "end\n", + "labels(g::MyGraph; kws...) = labels!(copy(g); kws...)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "randgraph (generic function with 1 method)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# generate a random graph with a given average #edges per node\n", + "function randgraph(numnodes::Integer, edgespernode::Real)\n", + " p = edgespernode/numnodes # probability of each edge\n", + " e = Vector{Pair{Int,Int}}()\n", + " for i = 1:numnodes, j = 1:numnodes\n", + " if i != j && rand() < p\n", + " push!(e, i=>j)\n", + " end\n", + " end\n", + " return MyGraph(e...)\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "incidence (generic function with 1 method)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# returns the incidence matrix for g\n", + "function incidence(g::MyGraph)\n", + " A = zeros(Int, ne(g.g), nv(g.g))\n", + " for (i,e) in enumerate(edges(g.g))\n", + " A[i,e.src] = -1\n", + " A[i,e.dst] = +1\n", + " end\n", + " return A\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "leftnullspace (generic function with 1 method)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Find the loops in g by the simplest \"textbook\" manner:\n", + "# get a basis for the left nullspace incidence matrix.\n", + "# We do this via the rref form, rather than nullspace(A'), because\n", + "# we want a \"nice\" basis of ±1 and 0 entries.\n", + "function leftnullspace(g::MyGraph)\n", + " A = incidence(g)\n", + " R = rref(Matrix(A'))\n", + " m, n = size(R)\n", + " pivots = Int[]\n", + " for i = 1:m\n", + " j = findfirst(!iszero, R[i,:])\n", + " j !== nothing && push!(pivots, j)\n", + " end\n", + " r = length(pivots) # rank\n", + " free = Int[j for j=1:n if j ∉ pivots]\n", + " N = zeros(Int, n, n-r)\n", + " k = 0\n", + " for (k,j) in enumerate(free)\n", + " N[pivots, k] = -R[1:r, j]\n", + " N[j, k] = 1\n", + " end\n", + " return N\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tree (generic function with 1 method)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# color the edges of a spanning tree of g, by the textbook\n", + "# method of finding the pivot rows of the incidence matrix\n", + "function pivotrows(g::MyGraph)\n", + " A = incidence(g)\n", + " R = rref(Matrix(A'))\n", + " m, n = size(R)\n", + " pivots = Int[]\n", + " for i = 1:m\n", + " j = findfirst(!iszero, R[i,:])\n", + " j !== nothing && push!(pivots, j)\n", + " end\n", + " return pivots\n", + "end\n", + "colortree(g::MyGraph, color::String=\"red\") = edgecolors(g, pivotrows(g), color)\n", + "tree(g::MyGraph) = MyGraph(MetaDiGraph(SimpleDiGraphFromIterator(edgearr(g.g, pivotrows(g)))))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Graphs and incidence matrices\n", + "\n", + "Let's start by looking at an example graph with 6 nodes 8 edges. Computers are pretty good at drawing graphs for us:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g = MyGraph(1=>4, 4=>5, 5=>6, 6=>3, 3=>2, 2=>1, 2=>6, 4=>6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A key way to represent a graph in linear algebra is the [incidence matrix](https://en.wikipedia.org/wiki/Incidence_matrix). As defined in Strang's textbook, this is a matrix where the **rows correspond to edges** and the **columns correspond to nodes**. (Some authors use the transpose of this instead.)\n", + "\n", + "In particular, in the row for each edge going **from node N to node M**, there is a **-1 in column N** and a **+1 in column N**.\n", + "\n", + "For example, the incidence matrix of the graph above is:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8×6 Matrix{Int64}:\n", + " -1 0 0 1 0 0\n", + " 1 -1 0 0 0 0\n", + " 0 -1 0 0 0 1\n", + " 0 1 -1 0 0 0\n", + " 0 0 0 -1 1 0\n", + " 0 0 0 -1 0 1\n", + " 0 0 0 0 -1 1\n", + " 0 0 1 0 0 -1" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = incidence(g)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There is an interesting structure if you think about *loops* in the graph. For example, in the graph above there is a loop among nodes 6, 3, 2, via edges 4,3,8. Let's look at the rows of $A$ corresponding to those edges:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×6 Matrix{Int64}:\n", + " 0 1 -1 0 0 0\n", + " 0 -1 0 0 0 1\n", + " 0 0 1 0 0 -1" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[[4,3,8],:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we **add these rows** we get **zero**:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1×6 adjoint(::Vector{Int64}) with eltype Int64:\n", + " 0 0 0 0 0 0" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[4,:]' + A[3,:]' + A[8,:]'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In general, it is easy to see that **any loop in the graph** corresponds to **dependent rows**: if we sum the rows going around the loop (with a minus sign for arrows in the wrong direction), we get zero.\n", + "\n", + "The reason is simple: we get a -1 in a column when we *leave* a node, and a +1 in the column when we *enter* a node. When we go around the loop, we leave and enter each node, so the sum is zero.\n", + "\n", + "But dependent rows correspond to **elements of the left nullspace**:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1×6 Matrix{Int64}:\n", + " 0 0 0 0 0 0" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[0 0 1 1 0 0 0 1] * A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That means that the number of \"independent\" (primitive) loops in a graph is related to the **rank** of the incidence matrix, and the **independent rows of A have no loops**.\n", + "\n", + "Let's look at the row-reduced echelon (rref) form of $A^T$:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×8 Matrix{Int64}:\n", + " 1 0 0 0 0 -1 -1 0\n", + " 0 1 0 0 0 -1 -1 0\n", + " 0 0 1 0 0 1 1 -1\n", + " 0 0 0 1 0 0 0 -1\n", + " 0 0 0 0 1 0 -1 0\n", + " 0 0 0 0 0 0 0 0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Matrix{Int}(rref(Matrix(A')))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the rank of $A$ is 5:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rank(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This means that there are **five loop-free (independent) edges**, and there are **three** (8 - 5) primitive loops. Using the rref form of $A^T$, we can read off a basis for the left nullspace from the free columns (6,7,8):" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8×3 Matrix{Int64}:\n", + " 1 1 0\n", + " 1 1 0\n", + " -1 -1 1\n", + " 0 0 1\n", + " 0 1 0\n", + " 1 0 0\n", + " 0 1 0\n", + " 0 0 1" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N = leftnullspace(g)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×3 Matrix{Int64}:\n", + " 0 0 0\n", + " 0 0 0\n", + " 0 0 0\n", + " 0 0 0\n", + " 0 0 0\n", + " 0 0 0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A' * N" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize these loops by plotting the edges in a different color (red) one by one,\n", + "with help from the Interact package to give us an interactive widget:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "animloops (generic function with 1 method)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "colorloop(g::MyGraph, n::Vector) = edgecolors!(edgecolors(g, findall(n .> 0), \"red\"), findall(n .< 0), \"blue\")\n", + "function animloops(g::MyGraph)\n", + " L = leftnullspace(g)\n", + " @manipulate for loop in 1:size(L,2)\n", + " colorloop(g, L[:,loop])\n", + " end\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "loop" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 3, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "11758169215002176570", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"11758169215002176570\",\"id\":\"12445682383640240541\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"11758169215002176570\",\"id\":\"13173288597411769607\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"11758169215002176570\",\"id\":\"12445682383640240541\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"11758169215002176570\",\"id\":\"13173288597411769607\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "12445682383640240541", + "sync": false, + "value": 0 + }, + "index": { + "id": "13173288597411769607", + "sync": true, + "value": 2 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "3988630758424797120", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "7944926038166744988", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "3988630758424797120", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "\n\n\n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n \n \n 7\n \n \n \n \n 8\n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n\n\n" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"loop\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 3, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable(2), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000283c9bb00, Task (runnable) @0x0000000283c9bb00), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"11758169215002176570\\\",\\\"id\\\":\\\"12445682383640240541\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"11758169215002176570\\\",\\\"id\\\":\\\"13173288597411769607\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"11758169215002176570\\\",\\\"id\\\":\\\"12445682383640240541\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"11758169215002176570\\\",\\\"id\\\":\\\"13173288597411769607\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 18, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "8a9fe2d3-11ba-493f-9228-1ded0ad827a7" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "animloops(g)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These three loops are **not the only loops** in the graph, but the **other loops can be made from combinations of these loops**. (Similarly, the columns of $N$ are not the *whole* left nullspace, they are just a **basis** for the n nullspace.\n", + "\n", + "For example, the loop between nodes 1-4-5-6-3-2 can be made by starting with 1-4-5-6-2 and \"adding\" the 6-3-2 loop.\n", + "\n", + "In this sense, a basis for the left nullspace of $A$ is a \"basis\" for the other loops in the graph: we say that they are \"primitive\" loops." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "colorloop(g, N[:,2] + N[:,3]) # add two loops to make another loop" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is fun to do the same thing for bigger graphs, chosen at random:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "loop" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 20, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "1320740273246710239", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"1320740273246710239\",\"id\":\"14295287463229216227\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"1320740273246710239\",\"id\":\"18381593539664038702\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"1320740273246710239\",\"id\":\"14295287463229216227\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"1320740273246710239\",\"id\":\"18381593539664038702\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "14295287463229216227", + "sync": false, + "value": 0 + }, + "index": { + "id": "18381593539664038702", + "sync": true, + "value": 10 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "9170528261463681105", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "8189222639433794150", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "9170528261463681105", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "\n\n\n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n \n \n 7\n \n \n \n \n 8\n \n \n \n \n 9\n \n \n \n \n 10\n \n \n \n \n 11\n \n \n \n \n 12\n \n \n \n \n 13\n \n \n \n \n 14\n \n \n \n \n 15\n \n \n \n \n 16\n \n \n \n \n 17\n \n \n \n \n 18\n \n \n \n \n 19\n \n \n \n \n 20\n \n \n \n \n 21\n \n \n \n \n 22\n \n \n \n \n 23\n \n \n \n \n 24\n \n \n \n \n 25\n \n \n \n \n 26\n \n \n \n \n 27\n \n \n \n \n 28\n \n \n \n \n 29\n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n \n \n 7\n \n \n \n \n 8\n \n \n \n \n 9\n \n \n \n \n 10\n \n \n\n\n" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"loop\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 20, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable(10), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x00000002837fef80, Task (runnable) @0x00000002837fef80), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"1320740273246710239\\\",\\\"id\\\":\\\"14295287463229216227\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"1320740273246710239\\\",\\\"id\\\":\\\"18381593539664038702\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"1320740273246710239\\\",\\\"id\\\":\\\"14295287463229216227\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"1320740273246710239\\\",\\\"id\\\":\\\"18381593539664038702\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[MyGraph({10, 29} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 20, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "8a9fe2d3-11ba-493f-9228-1ded0ad827a7" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "gbig = randgraph(10, 3)\n", + "animloops(gbig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conversely, the *independent* rows of $A$ (corresponding to the **pivot columns** of the rref form of $A^T$) form a **maximal set of edges with no loops**. A graph with no loops is called a [tree](https://en.wikipedia.org/wiki/Tree_(graph_theory)), and this particular tree is called a [spanning tree](https://en.wikipedia.org/wiki/Spanning_tree) because it touches all of (\"spans\") the nodes (assuming the graph is connected).\n", + "\n", + "Let's color the spanning tree (loop-free edges) of our example graph red:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "colortree(g)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also discard all of the edges that are *not* in the spanning tree, and we are left with a more boring graph of *just* the spanning tree:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 5} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tree(g)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can do the same thing for our bigger random example:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + " \n", + " \n", + " 9\n", + " \n", + " \n", + " \n", + " \n", + " 10\n", + " \n", + " \n", + " \n", + " \n", + " 11\n", + " \n", + " \n", + " \n", + " \n", + " 12\n", + " \n", + " \n", + " \n", + " \n", + " 13\n", + " \n", + " \n", + " \n", + " \n", + " 14\n", + " \n", + " \n", + " \n", + " \n", + " 15\n", + " \n", + " \n", + " \n", + " \n", + " 16\n", + " \n", + " \n", + " \n", + " \n", + " 17\n", + " \n", + " \n", + " \n", + " \n", + " 18\n", + " \n", + " \n", + " \n", + " \n", + " 19\n", + " \n", + " \n", + " \n", + " \n", + " 20\n", + " \n", + " \n", + " \n", + " \n", + " 21\n", + " \n", + " \n", + " \n", + " \n", + " 22\n", + " \n", + " \n", + " \n", + " \n", + " 23\n", + " \n", + " \n", + " \n", + " \n", + " 24\n", + " \n", + " \n", + " \n", + " \n", + " 25\n", + " \n", + " \n", + " \n", + " \n", + " 26\n", + " \n", + " \n", + " \n", + " \n", + " 27\n", + " \n", + " \n", + " \n", + " \n", + " 28\n", + " \n", + " \n", + " \n", + " \n", + " 29\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + " \n", + " \n", + " 9\n", + " \n", + " \n", + " \n", + " \n", + " 10\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({10, 29} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "colortree(gbig)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + " \n", + " \n", + " 9\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + " \n", + " \n", + " 9\n", + " \n", + " \n", + " \n", + " \n", + " 10\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({10, 9} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tree(gbig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And we can make trees from even larger graphs, for fun:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + " \n", + " \n", + " 9\n", + " \n", + " \n", + " \n", + " \n", + " 10\n", + " \n", + " \n", + " \n", + " \n", + " 11\n", + " \n", + " \n", + " \n", + " \n", + " 12\n", + " \n", + " \n", + " \n", + " \n", + " 13\n", + " \n", + " \n", + " \n", + " \n", + " 14\n", + " \n", + " \n", + " \n", + " \n", + " 15\n", + " \n", + " \n", + " \n", + " \n", + " 16\n", + " \n", + " \n", + " \n", + " \n", + " 17\n", + " \n", + " \n", + " \n", + " \n", + " 18\n", + " \n", + " \n", + " \n", + " \n", + " 19\n", + " \n", + " \n", + " \n", + " \n", + " 20\n", + " \n", + " \n", + " \n", + " \n", + " 21\n", + " \n", + " \n", + " \n", + " \n", + " 22\n", + " \n", + " \n", + " \n", + " \n", + " 23\n", + " \n", + " \n", + " \n", + " \n", + " 24\n", + " \n", + " \n", + " \n", + " \n", + " 25\n", + " \n", + " \n", + " \n", + " \n", + " 26\n", + " \n", + " \n", + " \n", + " \n", + " 27\n", + " \n", + " \n", + " \n", + " \n", + " 28\n", + " \n", + " \n", + " \n", + " \n", + " 29\n", + " \n", + " \n", + " \n", + " \n", + " 30\n", + " \n", + " \n", + " \n", + " \n", + " 31\n", + " \n", + " \n", + " \n", + " \n", + " 32\n", + " \n", + " \n", + " \n", + " \n", + " 33\n", + " \n", + " \n", + " \n", + " \n", + " 34\n", + " \n", + " \n", + " \n", + " \n", + " 35\n", + " \n", + " \n", + " \n", + " \n", + " 36\n", + " \n", + " \n", + " \n", + " \n", + " 37\n", + " \n", + " \n", + " \n", + " \n", + " 38\n", + " \n", + " \n", + " \n", + " \n", + " 39\n", + " \n", + " \n", + " \n", + " \n", + " 40\n", + " \n", + " \n", + " \n", + " \n", + " 41\n", + " \n", + " \n", + " \n", + " \n", + " 42\n", + " \n", + " \n", + " \n", + " \n", + " 43\n", + " \n", + " \n", + " \n", + " \n", + " 44\n", + " \n", + " \n", + " \n", + " \n", + " 45\n", + " \n", + " \n", + " \n", + " \n", + " 46\n", + " \n", + " \n", + " \n", + " \n", + " 47\n", + " \n", + " \n", + " \n", + " \n", + " 48\n", + " \n", + " \n", + " \n", + " \n", + " 49\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " 2\n", + " \n", + " \n", + " \n", + " \n", + " 3\n", + " \n", + " \n", + " \n", + " \n", + " 4\n", + " \n", + " \n", + " \n", + " \n", + " 5\n", + " \n", + " \n", + " \n", + " \n", + " 6\n", + " \n", + " \n", + " \n", + " \n", + " 7\n", + " \n", + " \n", + " \n", + " \n", + " 8\n", + " \n", + " \n", + " \n", + " \n", + " 9\n", + " \n", + " \n", + " \n", + " \n", + " 10\n", + " \n", + " \n", + " \n", + " \n", + " 11\n", + " \n", + " \n", + " \n", + " \n", + " 12\n", + " \n", + " \n", + " \n", + " \n", + " 13\n", + " \n", + " \n", + " \n", + " \n", + " 14\n", + " \n", + " \n", + " \n", + " \n", + " 15\n", + " \n", + " \n", + " \n", + " \n", + " 16\n", + " \n", + " \n", + " \n", + " \n", + " 17\n", + " \n", + " \n", + " \n", + " \n", + " 18\n", + " \n", + " \n", + " \n", + " \n", + " 19\n", + " \n", + " \n", + " \n", + " \n", + " 20\n", + " \n", + " \n", + " \n", + " \n", + " 21\n", + " \n", + " \n", + " \n", + " \n", + " 22\n", + " \n", + " \n", + " \n", + " \n", + " 23\n", + " \n", + " \n", + " \n", + " \n", + " 24\n", + " \n", + " \n", + " \n", + " \n", + " 25\n", + " \n", + " \n", + " \n", + " \n", + " 26\n", + " \n", + " \n", + " \n", + " \n", + " 27\n", + " \n", + " \n", + " \n", + " \n", + " 28\n", + " \n", + " \n", + " \n", + " \n", + " 29\n", + " \n", + " \n", + " \n", + " \n", + " 30\n", + " \n", + " \n", + " \n", + " \n", + " 31\n", + " \n", + " \n", + " \n", + " \n", + " 32\n", + " \n", + " \n", + " \n", + " \n", + " 33\n", + " \n", + " \n", + " \n", + " \n", + " 34\n", + " \n", + " \n", + " \n", + " \n", + " 35\n", + " \n", + " \n", + " \n", + " \n", + " 36\n", + " \n", + " \n", + " \n", + " \n", + " 37\n", + " \n", + " \n", + " \n", + " \n", + " 38\n", + " \n", + " \n", + " \n", + " \n", + " 39\n", + " \n", + " \n", + " \n", + " \n", + " 40\n", + " \n", + " \n", + " \n", + " \n", + " 41\n", + " \n", + " \n", + " \n", + " \n", + " 42\n", + " \n", + " \n", + " \n", + " \n", + " 43\n", + " \n", + " \n", + " \n", + " \n", + " 44\n", + " \n", + " \n", + " \n", + " \n", + " 45\n", + " \n", + " \n", + " \n", + " \n", + " 46\n", + " \n", + " \n", + " \n", + " \n", + " 47\n", + " \n", + " \n", + " \n", + " \n", + " 48\n", + " \n", + " \n", + " \n", + " \n", + " 49\n", + " \n", + " \n", + " \n", + " \n", + " 50\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({50, 49} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tree(randgraph(50, 8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Graphs and Kirchhoff's circuit laws\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An elegant application of the incidence matrix and its subspaces arises if we think of the graph as representing an **electrical circuit**:\n", + "\n", + "* Each edge represents a wire/resistor, with an unknown current $i$. The *direction* of the edge indicates the *sign convention* ($i>0$ indicates current flowing in the direction of the arrow).\n", + "* Each node represents a junction, with an unknown voltage $v$.\n", + "\n", + "Let's visualize this by re-labeling our graph from above. We'll use the [SymPy](https://github.com/JuliaPy/SymPy.jl) package to allow us to do *symbolic* (not numeric) calculations with the incidence matrix." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " i₁\n", + " \n", + " \n", + " \n", + " \n", + " i₂\n", + " \n", + " \n", + " \n", + " \n", + " i₃\n", + " \n", + " \n", + " \n", + " \n", + " i₄\n", + " \n", + " \n", + " \n", + " \n", + " i₅\n", + " \n", + " \n", + " \n", + " \n", + " i₆\n", + " \n", + " \n", + " \n", + " \n", + " i₇\n", + " \n", + " \n", + " \n", + " \n", + " i₈\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " v₁\n", + " \n", + " \n", + " \n", + " \n", + " v₂\n", + " \n", + " \n", + " \n", + " \n", + " v₃\n", + " \n", + " \n", + " \n", + " \n", + " v₄\n", + " \n", + " \n", + " \n", + " \n", + " v₅\n", + " \n", + " \n", + " \n", + " \n", + " v₆\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "labels(g, edges=[Sym(\"i_$i\") for i = 1:size(A,1)], nodes=[Sym(\"v_$i\") for i = 1:size(A,2)])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Kirchhoff's voltage law (KVL)\n", + "\n", + "Let's start doing some linear algebra. What happens if we *multiply* our incidence matrix $A$ by a vector of voltages, one per node?" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{r}v_{1}\\\\v_{2}\\\\v_{3}\\\\v_{4}\\\\v_{5}\\\\v_{6}\\end{array} \\right]$\n" + ], + "text/plain": [ + "6-element Vector{Sym}:\n", + " v₁\n", + " v₂\n", + " v₃\n", + " v₄\n", + " v₅\n", + " v₆" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v = [Sym(\"v_$i\") for i = 1:size(A,2)]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8×6 Matrix{Int64}:\n", + " -1 0 0 1 0 0\n", + " 1 -1 0 0 0 0\n", + " 0 -1 0 0 0 1\n", + " 0 1 -1 0 0 0\n", + " 0 0 0 -1 1 0\n", + " 0 0 0 -1 0 1\n", + " 0 0 0 0 -1 1\n", + " 0 0 1 0 0 -1" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{r}- v_{1} + v_{4}\\\\v_{1} - v_{2}\\\\- v_{2} + v_{6}\\\\v_{2} - v_{3}\\\\- v_{4} + v_{5}\\\\- v_{4} + v_{6}\\\\- v_{5} + v_{6}\\\\v_{3} - v_{6}\\end{array} \\right]$\n" + ], + "text/plain": [ + "8-element Vector{Sym}:\n", + " -v₁ + v₄\n", + " v₁ - v₂\n", + " -v₂ + v₆\n", + " v₂ - v₃\n", + " -v₄ + v₅\n", + " -v₄ + v₆\n", + " -v₅ + v₆\n", + " v₃ - v₆" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What we get are the **voltage difference** (and in particular, the **voltage rise**) across each edge. It is easier to see this if we use the elements of $Av$ to directly label the edges of our graph:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " -v₁ + v₄\n", + " \n", + " \n", + " \n", + " \n", + " v₁ - v₂\n", + " \n", + " \n", + " \n", + " \n", + " -v₂ + v₆\n", + " \n", + " \n", + " \n", + " \n", + " v₂ - v₃\n", + " \n", + " \n", + " \n", + " \n", + " -v₄ + v₅\n", + " \n", + " \n", + " \n", + " \n", + " -v₄ + v₆\n", + " \n", + " \n", + " \n", + " \n", + " -v₅ + v₆\n", + " \n", + " \n", + " \n", + " \n", + " v₃ - v₆\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " v₁\n", + " \n", + " \n", + " \n", + " \n", + " v₂\n", + " \n", + " \n", + " \n", + " \n", + " v₃\n", + " \n", + " \n", + " \n", + " \n", + " v₄\n", + " \n", + " \n", + " \n", + " \n", + " v₅\n", + " \n", + " \n", + " \n", + " \n", + " v₆\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "labels(g, edges=A*v, nodes=v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's ask the inverse question: **what voltage differences $d=Av$** can possibly arise? i.e. what $d$ are in $C(A)$? \n", + "\n", + "Remember, $A$ is **not full rank**: its rank is 5, but there are 8 rows (8 edges). So, $C(A)$ is 5-dimensional (\"missing\" three dimensions). Equivalently $C(A)$ is **orthogonal to the left nullspace**, which has three rows. What does this mean?\n", + "\n", + "Let's visualize the differences d:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " d₁\n", + " \n", + " \n", + " \n", + " \n", + " d₂\n", + " \n", + " \n", + " \n", + " \n", + " d₃\n", + " \n", + " \n", + " \n", + " \n", + " d₄\n", + " \n", + " \n", + " \n", + " \n", + " d₅\n", + " \n", + " \n", + " \n", + " \n", + " d₆\n", + " \n", + " \n", + " \n", + " \n", + " d₇\n", + " \n", + " \n", + " \n", + " \n", + " d₈\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " v₁\n", + " \n", + " \n", + " \n", + " \n", + " v₂\n", + " \n", + " \n", + " \n", + " \n", + " v₃\n", + " \n", + " \n", + " \n", + " \n", + " v₄\n", + " \n", + " \n", + " \n", + " \n", + " v₅\n", + " \n", + " \n", + " \n", + " \n", + " v₆\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = [Sym(\"d_$j\") for j = 1:size(A,1)]\n", + "labels(g, edges=d, nodes=v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If $N$ is a basis for the left nullspace, we must have $N^T d = 0$, or:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{r}d_{1} + d_{2} - d_{3} + d_{6}\\\\d_{1} + d_{2} - d_{3} + d_{5} + d_{7}\\\\d_{3} + d_{4} + d_{8}\\end{array} \\right]$\n" + ], + "text/plain": [ + "3-element Vector{Sym}:\n", + " d₁ + d₂ - d₃ + d₆\n", + " d₁ + d₂ - d₃ + d₅ + d₇\n", + " d₃ + d₄ + d₈" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N' * d" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But what is this? Remember, each element of the left nullspace corresponded to a **loop in the graph**. Saying $N^T d = 0$, or $d \\perp N(A^T)$, is equivalent to saying that the **sum of the voltage rises around each loop = 0**.\n", + "\n", + "But this is precisely [Kirchhoff's voltage law](https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws) from circuit theory!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Kirchhoff's current law (KCL)\n", + "\n", + "To actually solve circuit problems, we need three additional ingredients:\n", + "\n", + "* The voltage difference $d$ must be divided by a resistance $R$ to get the *current* $i$ through that edge: $i = -d/R = -Yd$ (where $Y=1/R$ is the \"admittance\"), by [Ohm's law](https://en.wikipedia.org/wiki/Ohm's_law). Note that we need a minus sign to get the current in the direction of the arrow, since $d$ was the the voltage *rise* across the edge.\n", + "\n", + "* The sum of the currents $i$ entering each node must be zero, by Kirchhoff's current law (KCL).\n", + "\n", + "* To get a nontrivial solution, we need some kind of *source*: a battery or current source, to start currents flowing.\n", + "\n", + "How do we represent each one of these steps by linear-algebra operations?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Ohm's law\n", + "\n", + "To represent Ohm's law, we need to multiply the voltage differences $d=Av$ by a *diagonal matrix* of admittances:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{rrrrrrrr}Y_{1}&0&0&0&0&0&0&0\\\\0&Y_{2}&0&0&0&0&0&0\\\\0&0&Y_{3}&0&0&0&0&0\\\\0&0&0&Y_{4}&0&0&0&0\\\\0&0&0&0&Y_{5}&0&0&0\\\\0&0&0&0&0&Y_{6}&0&0\\\\0&0&0&0&0&0&Y_{7}&0\\\\0&0&0&0&0&0&0&Y_{8}\\end{array}\\right]$\n" + ], + "text/plain": [ + "8×8 Matrix{Sym}:\n", + " Y₁ 0 0 0 0 0 0 0\n", + " 0 Y₂ 0 0 0 0 0 0\n", + " 0 0 Y₃ 0 0 0 0 0\n", + " 0 0 0 Y₄ 0 0 0 0\n", + " 0 0 0 0 Y₅ 0 0 0\n", + " 0 0 0 0 0 Y₆ 0 0\n", + " 0 0 0 0 0 0 Y₇ 0\n", + " 0 0 0 0 0 0 0 Y₈" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y = diagm(0=>[Sym(\"Y_$i\") for i = 1:size(A,1)])" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{r}Y_{1} d_{1}\\\\Y_{2} d_{2}\\\\Y_{3} d_{3}\\\\Y_{4} d_{4}\\\\Y_{5} d_{5}\\\\Y_{6} d_{6}\\\\Y_{7} d_{7}\\\\Y_{8} d_{8}\\end{array} \\right]$\n" + ], + "text/plain": [ + "8-element Vector{Sym}:\n", + " Y₁⋅d₁\n", + " Y₂⋅d₂\n", + " Y₃⋅d₃\n", + " Y₄⋅d₄\n", + " Y₅⋅d₅\n", + " Y₆⋅d₆\n", + " Y₇⋅d₇\n", + " Y₈⋅d₈" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y*d" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{r}Y_{1} \\left(- v_{1} + v_{4}\\right)\\\\Y_{2} \\left(v_{1} - v_{2}\\right)\\\\Y_{3} \\left(- v_{2} + v_{6}\\right)\\\\Y_{4} \\left(v_{2} - v_{3}\\right)\\\\Y_{5} \\left(- v_{4} + v_{5}\\right)\\\\Y_{6} \\left(- v_{4} + v_{6}\\right)\\\\Y_{7} \\left(- v_{5} + v_{6}\\right)\\\\Y_{8} \\left(v_{3} - v_{6}\\right)\\end{array} \\right]$\n" + ], + "text/plain": [ + "8-element Vector{Sym}:\n", + " Y₁⋅(-v₁ + v₄)\n", + " Y₂⋅(v₁ - v₂)\n", + " Y₃⋅(-v₂ + v₆)\n", + " Y₄⋅(v₂ - v₃)\n", + " Y₅⋅(-v₄ + v₅)\n", + " Y₆⋅(-v₄ + v₆)\n", + " Y₇⋅(-v₅ + v₆)\n", + " Y₈⋅(v₃ - v₆)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y*A*v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Net current into each node\n", + "\n", + "Given the currents $i$, a little thought shows that the net current flowing into each node is precisely $A^T i$:" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{r}- i_{1} + i_{2}\\\\- i_{2} - i_{3} + i_{4}\\\\- i_{4} + i_{8}\\\\i_{1} - i_{5} - i_{6}\\\\i_{5} - i_{7}\\\\i_{3} + i_{6} + i_{7} - i_{8}\\end{array} \\right]$\n" + ], + "text/plain": [ + "6-element Vector{Sym}:\n", + " -i₁ + i₂\n", + " -i₂ - i₃ + i₄\n", + " -i₄ + i₈\n", + " i₁ - i₅ - i₆\n", + " i₅ - i₇\n", + " i₃ + i₆ + i₇ - i₈" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "i = [Sym(\"i_$j\") for j=1:size(A,1)]\n", + "A'*i" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " i₁\n", + " \n", + " \n", + " \n", + " \n", + " i₂\n", + " \n", + " \n", + " \n", + " \n", + " i₃\n", + " \n", + " \n", + " \n", + " \n", + " i₄\n", + " \n", + " \n", + " \n", + " \n", + " i₅\n", + " \n", + " \n", + " \n", + " \n", + " i₆\n", + " \n", + " \n", + " \n", + " \n", + " i₇\n", + " \n", + " \n", + " \n", + " \n", + " i₈\n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " -i₁ + i₂\n", + " \n", + " \n", + " \n", + " \n", + " -i₂ - i₃ + i₄\n", + " \n", + " \n", + " \n", + " \n", + " -i₄ + i₈\n", + " \n", + " \n", + " \n", + " \n", + " i₁ - i₅ - i₆\n", + " \n", + " \n", + " \n", + " \n", + " i₅ - i₇\n", + " \n", + " \n", + " \n", + " \n", + " i₃ + i₆ + i₇ - i₈\n", + " \n", + " \n", + "\n", + "\n" + ], + "text/plain": [ + "MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "labels(g, edges=i, nodes=A'*i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Why is this? The reason is that each row $A^T$ corresponds to a node, and has $\\pm 1$ for each edge going into or out of the node, exactly the right sign to sum the net currents flowing in:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×8 adjoint(::Matrix{Int64}) with eltype Int64:\n", + " -1 1 0 0 0 0 0 0\n", + " 0 -1 -1 1 0 0 0 0\n", + " 0 0 0 -1 0 0 0 1\n", + " 1 0 0 0 -1 -1 0 0\n", + " 0 0 0 0 1 0 -1 0\n", + " 0 0 1 0 0 1 1 -1" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Putting it together, given voltages $v$, the net current flowing **out of** each node is\n", + "\n", + "$$\n", + "A^T Y A v\n", + "$$\n", + "\n", + "The matrix $A^T Y A$ is a very special and important kind of matrix. It is obviously **symmetric**, and later on in the course we will see that any matrix of this form is necessarily **positive semidefinite** (all pivots are ≥ 0). Many important matrices in science, engineering, statistics, and other fields take on this special form.\n", + "\n", + "If we multiply $A^T Y A$ together, not all of its specialness is apparent. It is often better to leave it in \"factored\" form:" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left[ \\begin{array}{rrrrrr}Y_{1} + Y_{2}&- Y_{2}&0&- Y_{1}&0&0\\\\- Y_{2}&Y_{2} + Y_{3} + Y_{4}&- Y_{4}&0&0&- Y_{3}\\\\0&- Y_{4}&Y_{4} + Y_{8}&0&0&- Y_{8}\\\\- Y_{1}&0&0&Y_{1} + Y_{5} + Y_{6}&- Y_{5}&- Y_{6}\\\\0&0&0&- Y_{5}&Y_{5} + Y_{7}&- Y_{7}\\\\0&- Y_{3}&- Y_{8}&- Y_{6}&- Y_{7}&Y_{3} + Y_{6} + Y_{7} + Y_{8}\\end{array}\\right]$\n" + ], + "text/plain": [ + "6×6 Matrix{Sym}:\n", + " Y₁ + Y₂ -Y₂ 0 … 0 0\n", + " -Y₂ Y₂ + Y₃ + Y₄ -Y₄ 0 -Y₃\n", + " 0 -Y₄ Y₄ + Y₈ 0 -Y₈\n", + " -Y₁ 0 0 -Y₅ -Y₆\n", + " 0 0 0 Y₅ + Y₇ -Y₇\n", + " 0 -Y₃ -Y₈ … -Y₇ Y₃ + Y₆ + Y₇ + Y₈" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A' * Y * A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Null space\n", + "\n", + "If we just say that the net current flowing out of each node is zero, we get the equation:\n", + "$$\n", + "A^T Y A v = 0\n", + "$$\n", + "or $v \\in N(A^T Y A) = N(A)$.\n", + "\n", + "It is an amazing and important fact that $N(A^T Y A) = N(A)$!! (You saw a version of this in homework.) Why is this? Clearly, if $Ax = 0$ then $A^T Y Ax=0$. But what about the converse? Here is a trick: if $A^T Y Ax =0$, then $x^T A^T Y A x=0 = (Ax)^T Y (Ax)$. Let $y=Ax$. It is easy to see that $y^T Y y = \\sum_i Y_i y_i^2 = 0$ only if $y=0$, since all of the admittances $Y_i$ are positive. (We will later say that $Y$ is a \"positive-definite matrix\".) This means that $A^T Y Ax =0$ implies that $y=Ax=0$, which implies that $x \\in N(A)$.\n", + "\n", + "What is $N(A)$? The rank of $A$ is 5, so $N(A)$ must be **1-dimensional**. A basis for it is:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6×1 Matrix{Float64}:\n", + " 0.40824829046386296\n", + " 0.4082482904638631\n", + " 0.4082482904638628\n", + " 0.40824829046386335\n", + " 0.4082482904638631\n", + " 0.40824829046386313" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nullspace(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "But this is, of course, just the space of vectors where **all voltages are equal**. In hindsight, this should be obvious: if all the voltages are equal, then their difference are zero, and the currents are zero, and KCL is satisfied." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Current sources\n", + "\n", + "Of course, it is much more interesting to think about circuits when the currents are nonzero!\n", + "\n", + "To do this, we must consider a **source term** in the equations, and in particular we could try to solve\n", + "\n", + "$$\n", + "A^T Y A v = s\n", + "$$\n", + "\n", + "for some $s\\ne 0$. What does $s$ represent? It is precisely an **external source of current** flowing **out of each node**.\n", + "\n", + "For this to have a solution, however, we must have $s \\in C(A^T Y A) = N((A^T Y A)^T)^\\perp = N(A^T Y A)^\\perp = N(A)^\\perp$ (since $A^T Y A$ is symmetric, the left and right nullspaces are equal). We know a basis for $N(A)$ from above, so this boils down to:\n", + "\n", + "$$\n", + "\\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\end{pmatrix} s = 0 = \\sum_{i=1}^6 s_i\n", + "$$\n", + "\n", + "That is, to have a solution, **all current that flows in must flow out**, so that the net current flowing into the circuit is zero. This makes a lot of physical sense!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just for fun, let's solve this circuit problem when the current is flowing **into node 2** and **out through node 1**, with slider controls for the 8 admittances, and label the edges with the currents." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "twodigits (generic function with 1 method)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "twodigits(x) = round(x, digits=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₁" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "5432103940800811028", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"5432103940800811028\",\"id\":\"523688131832745273\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"5432103940800811028\",\"id\":\"1932163917185879796\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"5432103940800811028\",\"id\":\"523688131832745273\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"5432103940800811028\",\"id\":\"1932163917185879796\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "523688131832745273", + "sync": false, + "value": 0 + }, + "index": { + "id": "1932163917185879796", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₂" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "1718417666948007598", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"1718417666948007598\",\"id\":\"8725565259840982185\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"1718417666948007598\",\"id\":\"3511672556481969786\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"1718417666948007598\",\"id\":\"8725565259840982185\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"1718417666948007598\",\"id\":\"3511672556481969786\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "8725565259840982185", + "sync": false, + "value": 0 + }, + "index": { + "id": "3511672556481969786", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₃" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "15970815832708533116", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"15970815832708533116\",\"id\":\"2420044375029248402\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"15970815832708533116\",\"id\":\"554882307497398093\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"15970815832708533116\",\"id\":\"2420044375029248402\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"15970815832708533116\",\"id\":\"554882307497398093\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "2420044375029248402", + "sync": false, + "value": 0 + }, + "index": { + "id": "554882307497398093", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₄" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "3780806694388362671", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"3780806694388362671\",\"id\":\"16800950861448885590\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"3780806694388362671\",\"id\":\"636691891107015737\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"3780806694388362671\",\"id\":\"16800950861448885590\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"3780806694388362671\",\"id\":\"636691891107015737\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "16800950861448885590", + "sync": false, + "value": 0 + }, + "index": { + "id": "636691891107015737", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₅" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "6128907041811942585", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"6128907041811942585\",\"id\":\"15585748669024378077\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"6128907041811942585\",\"id\":\"16496876739494999155\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"6128907041811942585\",\"id\":\"15585748669024378077\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"6128907041811942585\",\"id\":\"16496876739494999155\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "15585748669024378077", + "sync": false, + "value": 0 + }, + "index": { + "id": "16496876739494999155", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₆" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "7909771970869587988", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"7909771970869587988\",\"id\":\"16774039972888896363\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"7909771970869587988\",\"id\":\"9956793018930867036\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"7909771970869587988\",\"id\":\"16774039972888896363\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"7909771970869587988\",\"id\":\"9956793018930867036\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "16774039972888896363", + "sync": false, + "value": 0 + }, + "index": { + "id": "9956793018930867036", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₇" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "8740962986163213682", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"8740962986163213682\",\"id\":\"10158758216819727422\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"8740962986163213682\",\"id\":\"16039901869771518637\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"8740962986163213682\",\"id\":\"10158758216819727422\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"8740962986163213682\",\"id\":\"16039901869771518637\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "10158758216819727422", + "sync": false, + "value": 0 + }, + "index": { + "id": "16039901869771518637", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Y₈" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 100, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "4003882290061871992", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"0.2\",\"0.3\",\"0.4\",\"0.5\",\"0.6\",\"0.7\",\"0.8\",\"0.9\",\"1.0\",\"1.1\",\"1.2\",\"1.3\",\"1.4\",\"1.5\",\"1.6\",\"1.7\",\"1.8\",\"1.9\",\"2.0\",\"2.1\",\"2.2\",\"2.3\",\"2.4\",\"2.5\",\"2.6\",\"2.7\",\"2.8\",\"2.9\",\"3.0\",\"3.1\",\"3.2\",\"3.3\",\"3.4\",\"3.5\",\"3.6\",\"3.7\",\"3.8\",\"3.9\",\"4.0\",\"4.1\",\"4.2\",\"4.3\",\"4.4\",\"4.5\",\"4.6\",\"4.7\",\"4.8\",\"4.9\",\"5.0\",\"5.1\",\"5.2\",\"5.3\",\"5.4\",\"5.5\",\"5.6\",\"5.7\",\"5.8\",\"5.9\",\"6.0\",\"6.1\",\"6.2\",\"6.3\",\"6.4\",\"6.5\",\"6.6\",\"6.7\",\"6.8\",\"6.9\",\"7.0\",\"7.1\",\"7.2\",\"7.3\",\"7.4\",\"7.5\",\"7.6\",\"7.7\",\"7.8\",\"7.9\",\"8.0\",\"8.1\",\"8.2\",\"8.3\",\"8.4\",\"8.5\",\"8.6\",\"8.7\",\"8.8\",\"8.9\",\"9.0\",\"9.1\",\"9.2\",\"9.3\",\"9.4\",\"9.5\",\"9.6\",\"9.7\",\"9.8\",\"9.9\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"4003882290061871992\",\"id\":\"11487652428459938951\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"4003882290061871992\",\"id\":\"10134177006576795128\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"4003882290061871992\",\"id\":\"11487652428459938951\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"4003882290061871992\",\"id\":\"10134177006576795128\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "11487652428459938951", + "sync": false, + "value": 0 + }, + "index": { + "id": "10134177006576795128", + "sync": true, + "value": 50 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "5333283363638451252", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "941155555585390175", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "5333283363638451252", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "\n\n\n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n i₁ = -0.3\n \n \n \n \n i₂ = 0.7\n \n \n \n \n i₃ = 0.2\n \n \n \n \n i₄ = -0.1\n \n \n \n \n i₅ = -0.1\n \n \n \n \n i₆ = -0.2\n \n \n \n \n i₇ = -0.1\n \n \n \n \n i₈ = -0.1\n \n \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n \n \n 1\n \n \n \n \n 2\n \n \n \n \n 3\n \n \n \n \n 4\n \n \n \n \n 5\n \n \n \n \n 6\n \n \n\n\n" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₁\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000283a659f0, Task (runnable) @0x0000000283a659f0), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"5432103940800811028\\\",\\\"id\\\":\\\"523688131832745273\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"5432103940800811028\\\",\\\"id\\\":\\\"1932163917185879796\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"5432103940800811028\\\",\\\"id\\\":\\\"523688131832745273\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"5432103940800811028\\\",\\\"id\\\":\\\"1932163917185879796\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₂\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000287ef1e40, Task (runnable) @0x0000000287ef1e40), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"1718417666948007598\\\",\\\"id\\\":\\\"8725565259840982185\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"1718417666948007598\\\",\\\"id\\\":\\\"3511672556481969786\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"1718417666948007598\\\",\\\"id\\\":\\\"8725565259840982185\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"1718417666948007598\\\",\\\"id\\\":\\\"3511672556481969786\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₃\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000287f38e70, Task (runnable) @0x0000000287f38e70), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"15970815832708533116\\\",\\\"id\\\":\\\"2420044375029248402\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"15970815832708533116\\\",\\\"id\\\":\\\"554882307497398093\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"15970815832708533116\\\",\\\"id\\\":\\\"2420044375029248402\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"15970815832708533116\\\",\\\"id\\\":\\\"554882307497398093\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₄\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000028a171b60, Task (runnable) @0x000000028a171b60), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"3780806694388362671\\\",\\\"id\\\":\\\"16800950861448885590\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"3780806694388362671\\\",\\\"id\\\":\\\"636691891107015737\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"3780806694388362671\\\",\\\"id\\\":\\\"16800950861448885590\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"3780806694388362671\\\",\\\"id\\\":\\\"636691891107015737\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₅\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000028a557990, Task (runnable) @0x000000028a557990), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"6128907041811942585\\\",\\\"id\\\":\\\"15585748669024378077\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"6128907041811942585\\\",\\\"id\\\":\\\"16496876739494999155\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"6128907041811942585\\\",\\\"id\\\":\\\"15585748669024378077\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"6128907041811942585\\\",\\\"id\\\":\\\"16496876739494999155\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₆\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000028b07ab30, Task (runnable) @0x000000028b07ab30), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"7909771970869587988\\\",\\\"id\\\":\\\"16774039972888896363\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"7909771970869587988\\\",\\\"id\\\":\\\"9956793018930867036\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"7909771970869587988\\\",\\\"id\\\":\\\"16774039972888896363\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"7909771970869587988\\\",\\\"id\\\":\\\"9956793018930867036\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₇\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000287ee8d00, Task (runnable) @0x0000000287ee8d00), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"8740962986163213682\\\",\\\"id\\\":\\\"10158758216819727422\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"8740962986163213682\\\",\\\"id\\\":\\\"16039901869771518637\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"8740962986163213682\\\",\\\"id\\\":\\\"10158758216819727422\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"8740962986163213682\\\",\\\"id\\\":\\\"16039901869771518637\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Y₈\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 100, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(50), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000287ede290, Task (runnable) @0x0000000287ede290), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"0.2\\\",\\\"0.3\\\",\\\"0.4\\\",\\\"0.5\\\",\\\"0.6\\\",\\\"0.7\\\",\\\"0.8\\\",\\\"0.9\\\",\\\"1.0\\\",\\\"1.1\\\",\\\"1.2\\\",\\\"1.3\\\",\\\"1.4\\\",\\\"1.5\\\",\\\"1.6\\\",\\\"1.7\\\",\\\"1.8\\\",\\\"1.9\\\",\\\"2.0\\\",\\\"2.1\\\",\\\"2.2\\\",\\\"2.3\\\",\\\"2.4\\\",\\\"2.5\\\",\\\"2.6\\\",\\\"2.7\\\",\\\"2.8\\\",\\\"2.9\\\",\\\"3.0\\\",\\\"3.1\\\",\\\"3.2\\\",\\\"3.3\\\",\\\"3.4\\\",\\\"3.5\\\",\\\"3.6\\\",\\\"3.7\\\",\\\"3.8\\\",\\\"3.9\\\",\\\"4.0\\\",\\\"4.1\\\",\\\"4.2\\\",\\\"4.3\\\",\\\"4.4\\\",\\\"4.5\\\",\\\"4.6\\\",\\\"4.7\\\",\\\"4.8\\\",\\\"4.9\\\",\\\"5.0\\\",\\\"5.1\\\",\\\"5.2\\\",\\\"5.3\\\",\\\"5.4\\\",\\\"5.5\\\",\\\"5.6\\\",\\\"5.7\\\",\\\"5.8\\\",\\\"5.9\\\",\\\"6.0\\\",\\\"6.1\\\",\\\"6.2\\\",\\\"6.3\\\",\\\"6.4\\\",\\\"6.5\\\",\\\"6.6\\\",\\\"6.7\\\",\\\"6.8\\\",\\\"6.9\\\",\\\"7.0\\\",\\\"7.1\\\",\\\"7.2\\\",\\\"7.3\\\",\\\"7.4\\\",\\\"7.5\\\",\\\"7.6\\\",\\\"7.7\\\",\\\"7.8\\\",\\\"7.9\\\",\\\"8.0\\\",\\\"8.1\\\",\\\"8.2\\\",\\\"8.3\\\",\\\"8.4\\\",\\\"8.5\\\",\\\"8.6\\\",\\\"8.7\\\",\\\"8.8\\\",\\\"8.9\\\",\\\"9.0\\\",\\\"9.1\\\",\\\"9.2\\\",\\\"9.3\\\",\\\"9.4\\\",\\\"9.5\\\",\\\"9.6\\\",\\\"9.7\\\",\\\"9.8\\\",\\\"9.9\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"4003882290061871992\\\",\\\"id\\\":\\\"11487652428459938951\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"4003882290061871992\\\",\\\"id\\\":\\\"10134177006576795128\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"4003882290061871992\\\",\\\"id\\\":\\\"11487652428459938951\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"4003882290061871992\\\",\\\"id\\\":\\\"10134177006576795128\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[MyGraph({6, 8} directed Int64 metagraph with Float64 weights defined by :weight (default weight 1.0))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 42, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "8a9fe2d3-11ba-493f-9228-1ded0ad827a7" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "@manipulate for Y₁=0.1:0.1:10,\n", + " Y₂=0.1:0.1:10,\n", + " Y₃=0.1:0.1:10,\n", + " Y₄=0.1:0.1:10,\n", + " Y₅=0.1:0.1:10,\n", + " Y₆=0.1:0.1:10,\n", + " Y₇=0.1:0.1:10,\n", + " Y₈=0.1:0.1:10\n", + " s = [1,-1,0,0,0,0]\n", + " Y = diagm(0=>[Y₁,Y₂,Y₃,Y₄,Y₅,Y₆,Y₇,Y₈])\n", + " nodecolors!(labels(g, edges=[subchar(\"i_$j = $i\") for (j,i) in enumerate(twodigits.(Y*A*(pinv(A'*Y*A) * s)))]),\n", + " [1,2])\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that if we make the admittance $Y_2$ really large compared to all of the other admittances, then nearly all of the current should flow just over that one edge. Conversely, if we make $Y_2$ really *small*, it is almost like \"cutting\" that wire: almost all of the current should flow through the *other* edges.\n", + "\n", + "Hooray, math (and physics) works!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sparsity\n", + "\n", + "The case of matrices arising from graphs illustrates another point that I've made many times: **really large matrices are often sparse (mostly 0)** in practice.\n", + "\n", + "For example, imagine a circuit with a million nodes. For the most part, there will only be *wires between nearby nodes*. Or imagine a graph where the nodes are websites and the edges are links: there are billions of sites, but *each site only links to a few other sites* (a few hundred at most, usually). In such cases, the **incidence matrix is mostly zero**, and similarly for $A^T Y A$ etcetetera.\n", + "\n", + "This is hugely important, because solving $Ax=b$ and most other matrix equations scale as $\\sim n^3$ for $n \\times n$ matrices. $1000 \\times 1000$ matrices are easy (< 1 second), but $n=10^6$ would require supercomputers, and $n=10^9$ would be impossibly hard. What saves us is that there are **much faster algorithms for sparse matrices**. We won't learn much about such algorithms in 18.06, but the key point is to know that they exist.\n", + "\n", + "If you encounter a large sparse matrix problem in the future, go read about sparse matrix algorithms!" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "124bc382b0be4e3f8fe62e6f2805cf54", + "lastKernelId": "8a9fe2d3-11ba-493f-9228-1ded0ad827a7" + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.8.3", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/Handwriting classification using SVD Julia 1.0 March 2019.ipynb b/notes/Handwriting-classification-SVD.ipynb similarity index 100% rename from Handwriting classification using SVD Julia 1.0 March 2019.ipynb rename to notes/Handwriting-classification-SVD.ipynb diff --git a/notes/Introduction to Linear Algebra 6th edition and A = CR_04.pdf b/notes/Introduction to Linear Algebra 6th edition and A = CR_04.pdf new file mode 100644 index 00000000..5d3972fc Binary files /dev/null and b/notes/Introduction to Linear Algebra 6th edition and A = CR_04.pdf differ diff --git a/lectures/Inverses-LU-intro.ipynb b/notes/Inverses-LU-intro.ipynb similarity index 65% rename from lectures/Inverses-LU-intro.ipynb rename to notes/Inverses-LU-intro.ipynb index eb20ccd0..acde9e57 100644 --- a/lectures/Inverses-LU-intro.ipynb +++ b/notes/Inverses-LU-intro.ipynb @@ -1,5 +1,14 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra # load this package for most of Julia's linear algebra functions" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -11,19 +20,19 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 3 1\n", " 1 1 -1\n", " 3 11 6" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -43,27 +52,27 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 3.0 1.0\n", " 0.0 -2.0 -2.0\n", " 0.0 0.0 1.0" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# LU factorization (Gaussian elimination) of the matrix A, \n", - "# passing the undocumented option Val{false} to prevent row re-ordering\n", - "L, U = lu(A, Val{false}) \n", + "# passing the NoPivot() to prevent row re-ordering (\"pivoting\")\n", + "L, U = lu(A, NoPivot()) \n", "U # just show U" ] }, @@ -77,26 +86,26 @@ "\n", "1. Leave the first row alone.\n", "2. Subtract the first row from the second row to get the new second row.\n", - "3. Subtract $3 \\times {}$ first frow from the third row to get the new third row.\n", + "3. Subtract $3 \\times {}$ first row from the third row to get the new third row.\n", "\n", "This corresponds to multiplying $A$ on the left by the matrix `E1`. As above (in the \"row × matrix\" picture), the three rows of `E1` correspond exactly to the three row operations listed above:" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -3 0 1" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -109,19 +118,19 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 3 1\n", " 0 -2 -2\n", " 0 2 3" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -134,26 +143,208 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As desired, this introduced zeros below the diagonal in the first column. Now, we need to eliminate the 2 below the diagonal in the *second* column of `E1*A`. Our new pivot is $-2$ (in the second row), and we just add the second row of `E1*A` with the third row to make the new third row.\n", + "As desired, this introduced zeros below the diagonal in the first column." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's fun and perhaps illuminating to try acting `E1` on a matrix of *symbolic* variables, using the [Symbolics.jl](https://github.com/JuliaSymbolics/Symbolics.jl) computer-algebra (symbolic-math) package for Julia." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "using Symbolics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll define a matrix `S` whose entries are *variables* instead of numbers, and then act `E1` on it.\n", + "\n", + "We *could* use boring variables like $s_{11}$ etcetera:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "s{{_1}}ˏ{_1} & s{{_1}}ˏ{_2} & s{{_1}}ˏ{_3} \\\\\n", + "s{{_2}}ˏ{_1} & s{{_2}}ˏ{_2} & s{{_2}}ˏ{_3} \\\\\n", + "s{{_3}}ˏ{_1} & s{{_3}}ˏ{_2} & s{{_3}}ˏ{_3} \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " s[1, 1] s[1, 2] s[1, 3]\n", + " s[2, 1] s[2, 2] s[2, 3]\n", + " s[3, 1] s[3, 2] s[3, 3]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@variables s[1:3, 1:3] # declare an bunch of symbolic variables\n", + "S = collect(s) # & collect them into a matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "s{{_1}}ˏ{_1} & s{{_1}}ˏ{_2} & s{{_1}}ˏ{_3} \\\\\n", + " - s{{_1}}ˏ{_1} + s{{_2}}ˏ{_1} & - s{{_1}}ˏ{_2} + s{{_2}}ˏ{_2} & - s{{_1}}ˏ{_3} + s{{_2}}ˏ{_3} \\\\\n", + " - 3 s{{_1}}ˏ{_1} + s{{_3}}ˏ{_1} & - 3 s{{_1}}ˏ{_2} + s{{_3}}ˏ{_2} & - 3 s{{_1}}ˏ{_3} + s{{_3}}ˏ{_3} \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " s[1, 1] s[1, 2] s[1, 3]\n", + " s[2, 1] - s[1, 1] s[2, 2] - s[1, 2] s[2, 3] - s[1, 3]\n", + " s[3, 1] - 3s[1, 1] s[3, 2] - 3s[1, 2] s[3, 3] - 3s[1, 3]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E1 * S" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But it's hard to visually distinguish all of these subscripts, and nowadays on a computer we have a lot more symbols to choose from.\n", + "\n", + "Let's instead make a symbolic matrix full of emoji:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "😀 & 🥸 & 😭 \\\\\n", + "🐸 & 🐶 & 🐨 \\\\\n", + "🚗 & 🚛 & 🚜 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " 😀 🥸 😭\n", + " 🐸 🐶 🐨\n", + " 🚗 🚛 🚜" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@variables 😀 🥸 😭 🐸 🐶 🐨 🚗 🚛 🚜 # declare \"moar funner\" symbolic variables\n", + "\n", + "S = [ 😀 🥸 😭 # first row = faces\n", + " 🐸 🐶 🐨 # second row = animals\n", + " 🚗 🚛 🚜 ] # third row = Cars™" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "😀 & 🥸 & 😭 \\\\\n", + "🐸 - 😀 & 🐶 - 🥸 & 🐨 - 😭 \\\\\n", + "🚗 - 3 😀 & 🚛 - 3 🥸 & 🚜 - 3 😭 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " 😀 🥸 😭\n", + " 🐸 - 😀 🐶 - 🥸 🐨 - 😭\n", + " 🚗 - 3😀 🚛 - 3🥸 🚜 - 3😭" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E1 * S" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to eliminate the 2 below the diagonal in the *second* column of `E1*A`. Our new pivot is $-2$ (in the second row), and we just add the second row of `E1*A` with the third row to make the new third row.\n", "\n", "This corresponds to multiplying on the left by the matrix `E2`, which leaves the first two rows alone and makes the new third row by adding the second and third rows:" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " 0 1 0\n", " 0 1 1" ] }, - "execution_count": 5, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -166,19 +357,53 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "😀 & 🥸 & 😭 \\\\\n", + "🐸 & 🐶 & 🐨 \\\\\n", + "🐸 + 🚗 & 🐶 + 🚛 & 🐨 + 🚜 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Num}:\n", + " 😀 🥸 😭\n", + " 🐸 🐶 🐨\n", + " 🐸 + 🚗 🐶 + 🚛 🐨 + 🚜" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E2 * S" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", " 1 3 1\n", " 0 -2 -2\n", " 0 0 1" ] }, - "execution_count": 6, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -187,6 +412,40 @@ "E2*E1*A" ] }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{equation}\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + "😀 & 🥸 & 😭 \\\\\n", + "🐸 - 😀 & 🐶 - 🥸 & 🐨 - 😭 \\\\\n", + "🐸 + 🚗 - 4 😀 & 🐶 + 🚛 - 4 🥸 & 🐨 + 🚜 - 4 😭 \\\\\n", + "\\end{array}\n", + "\\right]\n", + "\\end{equation}\n" + ], + "text/plain": [ + "3×3 Matrix{Num}:\n", + " 😀 🥸 😭\n", + " 🐸 - 😀 🐶 - 🥸 🐨 - 😭\n", + " 🐸 + 🚗 - 4😀 🐶 + 🚛 - 4🥸 🐨 + 🚜 - 4😭" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E2*E1*S" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -196,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -205,7 +464,7 @@ "true" ] }, - "execution_count": 7, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -227,42 +486,49 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -4 1 1" ] }, - "execution_count": 8, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "E2*E1" + "E = E2*E1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(Notice that when we multiply $E_2 E_1$ to get $E$, the elimination steps get \"mixed up together\", and we get new numbers like `-4` (above) that didn't appear as multipliers in the elimination steps. As discussed below, this makes $E$ a bit inconvenient as a way to work with Gaussian elimination, because it requires some pointless effort to compute $E$.)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -3 1 1" ] }, - "execution_count": 9, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -288,152 +554,183 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# The Identity Matrix\n", + "# The other way around: A = LU\n", "\n", - "A very important special matrix is the *identity* matrix $I$. Here is a $ 5 \\times 5$ identity matrix:\n", + "There are two problems with writing $U = EA$.\n", + "\n", + "1. The matrix $E$ is annoying to compute — the different elimination steps are mixed up together, and we don't *actually* want to multiply those matrices together.\n", + "\n", + "2. We want to think of this process as **simplifying A**. i.e. we want to *replace* $A$ with $A = \\mbox{simpler stuff}$.\n", + "\n", + "Both of these concerns are addressed by thinking about Gaussian elimination **in reverse**: *How do we get A back from U*? Again, this consists of row operations on $U$, and will result in\n", "\n", "$$\n", - "I = \\begin{pmatrix} 1&0&0&0&0 \\\\ 0&1&0&0&0 \\\\ 0&0&1&0&0 \\\\ 0&0&0&1&0 \\\\ 0&0&0&0&1 \\end{pmatrix}\n", - "= \\begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\end{pmatrix}\n", + "A = LU\n", "$$\n", "\n", - "where the columns $e_1 \\cdots e_5$ of $I$ are the **unit vectors** in each component.\n", + "where $L$ is a lower-triangular matrix with 1's on the diagonal, and the **multipliers from the elimination steps** written below the diagonal.\n", "\n", - "The identity matrix, which can be constructed by `eye(5)` in Julia, has the property that $Ix=x$ for any $x$, and hence $IA = A$ for any (here $5 \\times 5$) matrix $A$:" + "See handwritten notes on:\n", + "\n", + "1. How to get $L$: just a record of the elimination steps, no extra computation!\n", + "2. How to *use* $A = LU$ to solve $Ax=b$ for any right-hand side(s) we want.\n", + "\n", + "Check:" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 4 -2 -7 -4 -8\n", - " 9 -6 -6 -1 -5\n", - " -2 -9 3 -5 2\n", - " 9 7 -9 5 -8\n", - " -1 6 -3 9 6" + "LU{Float64, Matrix{Float64}}\n", + "L factor:\n", + "3×3 Matrix{Float64}:\n", + " 1.0 0.0 0.0\n", + " 1.0 1.0 0.0\n", + " 3.0 -1.0 1.0\n", + "U factor:\n", + "3×3 Matrix{Float64}:\n", + " 1.0 3.0 1.0\n", + " 0.0 -2.0 -2.0\n", + " 0.0 0.0 1.0" ] }, - "execution_count": 10, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "A = [4 -2 -7 -4 -8\n", - " 9 -6 -6 -1 -5\n", - " -2 -9 3 -5 2\n", - " 9 7 -9 5 -8\n", - " -1 6 -3 9 6] # a randomly chosen 5x5 matrix" + "lu(A, NoPivot())" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Int64,1}:\n", - " -7\n", - " 2\n", - " 4\n", - " -4\n", - " -7" + "3×3 Matrix{Float64}:\n", + " 1.0 0.0 0.0\n", + " 1.0 1.0 0.0\n", + " 3.0 -1.0 1.0" ] }, - "execution_count": 11, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "b = [-7,2,4,-4,-7] # a randomly chosen right-hand side" + "E^-1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Identity Matrix\n", + "\n", + "A very important special matrix is the *identity* matrix $I$. Here is a $ 5 \\times 5$ identity matrix:\n", + "\n", + "$$\n", + "I = \\begin{pmatrix} 1&0&0&0&0 \\\\ 0&1&0&0&0 \\\\ 0&0&1&0&0 \\\\ 0&0&0&1&0 \\\\ 0&0&0&0&1 \\end{pmatrix}\n", + "= \\begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\end{pmatrix}\n", + "$$\n", + "\n", + "where the columns $e_1 \\cdots e_5$ of $I$ are the **unit vectors** in each component.\n", + "\n", + "The identity matrix, which can be constructed by `I(5)` in Julia, has the property that $Ix=x$ for any $x$, and hence $IA = A$ for any (here $5 \\times 5$) matrix $A$:" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 0.0 0.0 0.0 0.0\n", - " 0.0 1.0 0.0 0.0 0.0\n", - " 0.0 0.0 1.0 0.0 0.0\n", - " 0.0 0.0 0.0 1.0 0.0\n", - " 0.0 0.0 0.0 0.0 1.0" + "5×5 Matrix{Int64}:\n", + " 4 -2 -7 -4 -8\n", + " 9 -6 -6 -1 -5\n", + " -2 -9 3 -5 2\n", + " 9 7 -9 5 -8\n", + " -1 6 -3 9 6" ] }, - "execution_count": 12, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "eye(5)" + "A = [4 -2 -7 -4 -8\n", + " 9 -6 -6 -1 -5\n", + " -2 -9 3 -5 2\n", + " 9 7 -9 5 -8\n", + " -1 6 -3 9 6] # a randomly chosen 5x5 matrix" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 0 0 0 0\n", - " 0 1 0 0 0\n", - " 0 0 1 0 0\n", - " 0 0 0 1 0\n", - " 0 0 0 0 1" + "5-element Vector{Int64}:\n", + " -7\n", + " 2\n", + " 4\n", + " -4\n", + " -7" ] }, - "execution_count": 13, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "eye(Int,5)" + "b = [-7,2,4,-4,-7] # a randomly chosen right-hand side" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 0 0 0 0\n", - " 0 1 0 0 0\n", - " 0 0 1 0 0\n", - " 0 0 0 1 0\n", - " 0 0 0 0 1" + "5×5 Diagonal{Bool, Vector{Bool}}:\n", + " 1 ⋅ ⋅ ⋅ ⋅\n", + " ⋅ 1 ⋅ ⋅ ⋅\n", + " ⋅ ⋅ 1 ⋅ ⋅\n", + " ⋅ ⋅ ⋅ 1 ⋅\n", + " ⋅ ⋅ ⋅ ⋅ 1" ] }, - "execution_count": 14, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "I₅ = eye(Int, 5)" + "I(5)" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -442,18 +739,18 @@ "true" ] }, - "execution_count": 15, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "I₅ * b == b" + "I(5) * b == b" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -462,18 +759,18 @@ "true" ] }, - "execution_count": 16, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "I₅ * A == A" + "I(5) * A == A" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -482,13 +779,13 @@ "true" ] }, - "execution_count": 17, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "A * I₅ == A" + "A * I(5) == A" ] }, { @@ -504,17 +801,17 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "UniformScaling{Int64}\n", - "1*I" + "UniformScaling{Bool}\n", + "true*I" ] }, - "execution_count": 18, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -525,13 +822,13 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Int64,1}:\n", + "5-element Vector{Int64}:\n", " -7\n", " 2\n", " 4\n", @@ -539,7 +836,7 @@ " -7" ] }, - "execution_count": 19, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -550,7 +847,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -559,7 +856,7 @@ "true" ] }, - "execution_count": 20, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -570,18 +867,18 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Int64,1}:\n", + "2-element Vector{Int64}:\n", " 2\n", " 3" ] }, - "execution_count": 21, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -607,19 +904,19 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×2 Array{Int64,2}:\n", + "3×2 Matrix{Int64}:\n", " 2 3\n", " 4 5\n", " 6 7" ] }, - "execution_count": 22, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -632,19 +929,19 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×2 Array{Int64,2}:\n", + "3×2 Matrix{Int64}:\n", " 2 3\n", " 4 5\n", " 6 7" ] }, - "execution_count": 23, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -655,70 +952,78 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×2 Array{Float64,2}:\n", - " 2.0 3.0\n", - " 4.0 5.0\n", - " 6.0 7.0" + "3×2 Matrix{Int64}:\n", + " 2 3\n", + " 4 5\n", + " 6 7" ] }, - "execution_count": 24, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "eye(3) * B * eye(2)" + "I(3) * B * I(2)" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 33, "metadata": {}, "outputs": [ { "ename": "LoadError", - "evalue": "\u001b[91mDimensionMismatch(\"matrix A has dimensions (2,2), matrix B has dimensions (3,2)\")\u001b[39m", + "evalue": "DimensionMismatch(\"second dimension of D, 2, does not match the first of B, 3\")", "output_type": "error", "traceback": [ - "\u001b[91mDimensionMismatch(\"matrix A has dimensions (2,2), matrix B has dimensions (3,2)\")\u001b[39m", + "DimensionMismatch(\"second dimension of D, 2, does not match the first of B, 3\")", "", "Stacktrace:", - " [1] \u001b[1m_generic_matmatmul!\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Array{Float64,2}, ::Char, ::Char, ::Array{Float64,2}, ::Array{Int64,2}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./linalg/matmul.jl:492\u001b[22m\u001b[22m", - " [2] \u001b[1mgeneric_matmatmul!\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Array{Float64,2}, ::Char, ::Char, ::Array{Float64,2}, ::Array{Int64,2}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./linalg/matmul.jl:483\u001b[22m\u001b[22m", - " [3] \u001b[1m*\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::Array{Float64,2}, ::Array{Int64,2}, ::Array{Float64,2}\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./operators.jl:424\u001b[22m\u001b[22m", - " [4] \u001b[1minclude_string\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::String, ::String\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./loading.jl:522\u001b[22m\u001b[22m", - " [5] \u001b[1mexecute_request\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m/Users/stevenj/.julia/v0.6/IJulia/src/execute_request.jl:193\u001b[22m\u001b[22m", - " [6] \u001b[1m(::Compat.#inner#14{Array{Any,1},IJulia.#execute_request,Tuple{ZMQ.Socket,IJulia.Msg}})\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m/Users/stevenj/.julia/v0.6/Compat/src/Compat.jl:332\u001b[22m\u001b[22m", - " [7] \u001b[1meventloop\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m/Users/stevenj/.julia/v0.6/IJulia/src/eventloop.jl:8\u001b[22m\u001b[22m", - " [8] \u001b[1m(::IJulia.##13#16)\u001b[22m\u001b[22m\u001b[1m(\u001b[22m\u001b[22m\u001b[1m)\u001b[22m\u001b[22m at \u001b[1m./task.jl:335\u001b[22m\u001b[22m" + " [1] lmul!(D::Diagonal{Bool, Vector{Bool}}, B::Matrix{Int64})", + " @ LinearAlgebra /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/diagonal.jl:241", + " [2] *(D::Diagonal{Bool, Vector{Bool}}, A::Matrix{Int64})", + " @ LinearAlgebra /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/diagonal.jl:224", + " [3] _tri_matmul(A::Diagonal{Bool, Vector{Bool}}, B::Matrix{Int64}, C::Diagonal{Bool, Vector{Bool}}, δ::Nothing)", + " @ LinearAlgebra /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/matmul.jl:1132", + " [4] _tri_matmul", + " @ /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/matmul.jl:1124 [inlined]", + " [5] *(A::Diagonal{Bool, Vector{Bool}}, B::Matrix{Int64}, C::Diagonal{Bool, Vector{Bool}})", + " @ LinearAlgebra /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/matmul.jl:1120", + " [6] top-level scope", + " @ In[33]:1", + " [7] eval", + " @ ./boot.jl:373 [inlined]", + " [8] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)", + " @ Base ./loading.jl:1196" ] } ], "source": [ - "eye(2) * B * eye(3) # should give an error: wrong-shape matrices!" + "I(2) * B * I(3) # should give an error: wrong-shape matrices!" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×2 Array{Int64,2}:\n", + "3×2 Matrix{Int64}:\n", " 2 3\n", " 4 5\n", " 6 7" ] }, - "execution_count": 26, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -753,21 +1058,21 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", + "5×5 Matrix{Float64}:\n", " 0.0109991 0.529789 -0.908341 -0.635197 -0.0879927\n", - " 0.131989 0.35747 -0.900092 -0.622365 -0.055912 \n", - " -0.235564 -0.179652 0.370302 0.353804 -0.11549 \n", + " 0.131989 0.35747 -0.900092 -0.622365 -0.055912\n", + " -0.235564 -0.179652 0.370302 0.353804 -0.11549\n", " -0.301558 -0.69172 1.48701 1.16499 0.0791323\n", " 0.2044 0.678582 -1.29667 -1.05408 0.0314696" ] }, - "execution_count": 27, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -778,23 +1083,34 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 36, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 -0.0 -0.0 -0.0 0.0\n", - " 0.0 1.0 0.0 0.0 -0.0\n", - " -0.0 0.0 1.0 0.0 0.0\n", - " -0.0 -0.0 0.0 1.0 -0.0\n", - " 0.0 -0.0 0.0 -0.0 1.0" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" + "ename": "LoadError", + "evalue": "MethodError: no method matching round(::Float64, ::Int64)\n\u001b[0mClosest candidates are:\n\u001b[0m round(::T, \u001b[91m::RoundingMode{:NearestTiesUp}\u001b[39m) where T<:AbstractFloat at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/floatfuncs.jl:220\n\u001b[0m round(\u001b[91m::Type{T}\u001b[39m, ::Integer) where T<:Integer at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/int.jl:645\n\u001b[0m round(::Float64, \u001b[91m::RoundingMode{:ToZero}\u001b[39m) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/float.jl:371\n\u001b[0m ...", + "output_type": "error", + "traceback": [ + "MethodError: no method matching round(::Float64, ::Int64)\n\u001b[0mClosest candidates are:\n\u001b[0m round(::T, \u001b[91m::RoundingMode{:NearestTiesUp}\u001b[39m) where T<:AbstractFloat at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/floatfuncs.jl:220\n\u001b[0m round(\u001b[91m::Type{T}\u001b[39m, ::Integer) where T<:Integer at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/int.jl:645\n\u001b[0m round(::Float64, \u001b[91m::RoundingMode{:ToZero}\u001b[39m) at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/base/float.jl:371\n\u001b[0m ...", + "", + "Stacktrace:", + " [1] _broadcast_getindex_evalf", + " @ ./broadcast.jl:670 [inlined]", + " [2] _broadcast_getindex", + " @ ./broadcast.jl:643 [inlined]", + " [3] getindex", + " @ ./broadcast.jl:597 [inlined]", + " [4] copy", + " @ ./broadcast.jl:899 [inlined]", + " [5] materialize(bc::Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{2}, Nothing, typeof(round), Tuple{Matrix{Float64}, Int64}})", + " @ Base.Broadcast ./broadcast.jl:860", + " [6] top-level scope", + " @ In[36]:1", + " [7] eval", + " @ ./boot.jl:373 [inlined]", + " [8] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)", + " @ Base ./loading.jl:1196" + ] } ], "source": [ @@ -824,20 +1140,20 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " -17.1155 7.25509 15.2367 -2.63616 \n", - " -12.3564 0.0787515 12.6795 6.77686 \n", - " -5.72966 2.96267 2.70526 0.887499\n", - " 24.2664 -7.88857 -20.8341 -1.26545 " + "4×4 Matrix{Float64}:\n", + " 2.22127 1.98224 -3.57568 -1.32172\n", + " 2.93196 -1.87908 1.29332 -1.45601\n", + " 1.02713 1.25965 -0.0833894 -2.21414\n", + " -5.81069 -0.203271 2.05968 4.76163" ] }, - "execution_count": 29, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -850,20 +1166,20 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " -17.1155 7.25509 15.2367 -2.63616 \n", - " -12.3564 0.0787515 12.6795 6.77686 \n", - " -5.72966 2.96267 2.70526 0.887499\n", - " 24.2664 -7.88857 -20.8341 -1.26545 " + "4×4 Matrix{Float64}:\n", + " 2.22127 1.98224 -3.57568 -1.32172\n", + " 2.93196 -1.87908 1.29332 -1.45601\n", + " 1.02713 1.25965 -0.0833894 -2.21414\n", + " -5.81069 -0.203271 2.05968 4.76163" ] }, - "execution_count": 30, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -874,20 +1190,20 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Float64,2}:\n", - " 0.247692 3.59046 -1.54283 -3.45161\n", - " 2.84239 2.57558 0.765851 -8.5674 \n", - " -26.2048 -37.2233 22.6356 64.1628 \n", - " 18.4061 23.2797 -15.3648 -41.0558 " + "4×4 Matrix{Float64}:\n", + " 0.0647283 -3.91299 4.92046 -3.07784\n", + " -1.34403 -0.547912 -0.499501 3.0236\n", + " -1.23397 -0.192993 3.08178 -1.93372\n", + " 1.8898 3.55496 -5.53689 2.42184" ] }, - "execution_count": 31, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -927,19 +1243,19 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " 0 1 0\n", " 0 1 1" ] }, - "execution_count": 32, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -969,19 +1285,19 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -4 1 1" ] }, - "execution_count": 33, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -992,19 +1308,19 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -3 1 1" ] }, - "execution_count": 34, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1015,19 +1331,19 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " 1.0 1.0 0.0\n", " 3.0 -1.0 1.0" ] }, - "execution_count": 35, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1038,19 +1354,19 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -3 0 1" ] }, - "execution_count": 36, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -1061,19 +1377,19 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " 0 1 0\n", " 0 1 1" ] }, - "execution_count": 37, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -1114,19 +1430,19 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " 0.0 1.0 0.0\n", " 0.0 -1.0 1.0" ] }, - "execution_count": 38, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1144,19 +1460,19 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " 1.0 1.0 0.0\n", " 3.0 0.0 1.0" ] }, - "execution_count": 39, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1174,21 +1490,24 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 48, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "3×3 Array{Float64,2}:\n", - " 1.0 3.0 1.0\n", - " 0.0 -2.0 -2.0\n", - " 0.0 0.0 1.0" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" + "ename": "LoadError", + "evalue": "MethodError: no method matching lu(::Matrix{Int64}, ::Type{Val{false}})\n\u001b[0mClosest candidates are:\n\u001b[0m lu(\u001b[91m::SciMLBase.DiffEqScaledOperator\u001b[39m, ::Any...) at ~/.julia/packages/SciMLBase/XzX8e/src/operators/diffeq_operator.jl:129\n\u001b[0m lu(\u001b[91m::SciMLBase.AbstractDiffEqLinearOperator\u001b[39m, ::Any...) at ~/.julia/packages/SciMLBase/XzX8e/src/operators/common_defaults.jl:33\n\u001b[0m lu(::AbstractMatrix{T}, \u001b[91m::Union{NoPivot, RowMaximum}\u001b[39m; check) where T at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/lu.jl:277\n\u001b[0m ...", + "output_type": "error", + "traceback": [ + "MethodError: no method matching lu(::Matrix{Int64}, ::Type{Val{false}})\n\u001b[0mClosest candidates are:\n\u001b[0m lu(\u001b[91m::SciMLBase.DiffEqScaledOperator\u001b[39m, ::Any...) at ~/.julia/packages/SciMLBase/XzX8e/src/operators/diffeq_operator.jl:129\n\u001b[0m lu(\u001b[91m::SciMLBase.AbstractDiffEqLinearOperator\u001b[39m, ::Any...) at ~/.julia/packages/SciMLBase/XzX8e/src/operators/common_defaults.jl:33\n\u001b[0m lu(::AbstractMatrix{T}, \u001b[91m::Union{NoPivot, RowMaximum}\u001b[39m; check) where T at /Applications/Julia-1.7.app/Contents/Resources/julia/share/julia/stdlib/v1.7/LinearAlgebra/src/lu.jl:277\n\u001b[0m ...", + "", + "Stacktrace:", + " [1] top-level scope", + " @ In[48]:1", + " [2] eval", + " @ ./boot.jl:373 [inlined]", + " [3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)", + " @ Base ./loading.jl:1196" + ] } ], "source": [ @@ -1198,19 +1517,19 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 3.0 1.0\n", " 1.0 1.0 -1.0\n", " 3.0 11.0 6.0" ] }, - "execution_count": 41, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -1228,19 +1547,19 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " 1.0 1.0 0.0\n", " 3.0 -1.0 1.0" ] }, - "execution_count": 42, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -1258,19 +1577,19 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " 1.0 1.0 0.0\n", " 3.0 -1.0 1.0" ] }, - "execution_count": 43, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -1281,19 +1600,19 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 0 0\n", " -1 1 0\n", " -3 0 1" ] }, - "execution_count": 44, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -1328,19 +1647,19 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " 1.0 1.0 0.0\n", " 3.0 -1.0 1.0" ] }, - "execution_count": 45, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -1351,19 +1670,19 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " -1.0 1.0 0.0\n", " -4.0 1.0 1.0" ] }, - "execution_count": 46, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -1397,13 +1716,13 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Int64,2}:\n", + "5×5 Matrix{Int64}:\n", " 4 -2 -7 -4 -8\n", " 9 -6 -6 -1 -5\n", " -2 -9 3 -5 2\n", @@ -1411,7 +1730,7 @@ " -1 6 -3 9 6" ] }, - "execution_count": 47, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -1426,46 +1745,46 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", + "5×5 Matrix{Float64}:\n", " 0.0109991 0.529789 -0.908341 -0.635197 -0.0879927\n", - " 0.131989 0.35747 -0.900092 -0.622365 -0.055912 \n", - " -0.235564 -0.179652 0.370302 0.353804 -0.11549 \n", + " 0.131989 0.35747 -0.900092 -0.622365 -0.055912\n", + " -0.235564 -0.179652 0.370302 0.353804 -0.11549\n", " -0.301558 -0.69172 1.48701 1.16499 0.0791323\n", " 0.2044 0.678582 -1.29667 -1.05408 0.0314696" ] }, - "execution_count": 48, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Ainv = A \\ I₅" + "Ainv = A \\ I(5)" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 2.10942e-15 2.44249e-15 -2.88658e-15 -2.66454e-15 4.996e-16 \n", - " 1.88738e-15 2.77556e-15 -3.21965e-15 -2.55351e-15 5.27356e-16\n", - " -8.04912e-16 -9.99201e-16 1.88738e-15 1.11022e-15 -1.94289e-16\n", - " -3.83027e-15 -4.32987e-15 5.9952e-15 5.55112e-15 -7.63278e-16\n", - " 3.16414e-15 3.66374e-15 -5.32907e-15 -4.44089e-15 6.73073e-16" + "5×5 Matrix{Float64}:\n", + " -1.73472e-18 -2.22045e-16 0.0 -1.11022e-16 0.0\n", + " 2.77556e-17 5.55112e-17 -1.11022e-16 -2.22045e-16 1.38778e-17\n", + " 2.77556e-17 1.11022e-16 -2.22045e-16 -1.11022e-16 1.38778e-17\n", + " 0.0 -1.11022e-16 0.0 0.0 -1.38778e-17\n", + " 0.0 -1.11022e-16 0.0 0.0 0.0" ] }, - "execution_count": 49, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -1478,26 +1797,46 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "(The difference is just roundoff errors.)" + "The difference is just roundoff errors. We can also check approximate equality (ignoring roundoff differences) with `≈` (typed by `\\approx` followed by a *tab*):" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 -8.32667e-15 -1.49325e-14 -4.88498e-15 -1.0103e-14 \n", - " 1.46549e-14 1.0 -1.82077e-14 -2.22045e-15 -1.15463e-14\n", - " -6.02296e-15 -1.77636e-15 1.0 -1.11022e-15 5.55112e-15\n", - " -1.58068e-14 1.4877e-14 2.36478e-14 1.0 1.4877e-14 \n", - " 1.38639e-14 -7.68829e-15 -2.05808e-14 -5.77316e-15 1.0 " + "true" ] }, - "execution_count": 50, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Ainv ≈ inv(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 1.0 1.11022e-16 1.72085e-15 -6.66134e-16 1.88738e-15\n", + " -1.70697e-15 1.0 1.9984e-15 -6.66134e-16 1.33227e-15\n", + " 4.44089e-16 1.11022e-15 1.0 4.44089e-16 -4.44089e-16\n", + " 1.19349e-15 -5.55112e-17 2.77556e-17 1.0 1.72085e-15\n", + " -1.45023e-15 -1.05471e-15 -8.04912e-16 -2.77556e-16 1.0" + ] + }, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -1515,21 +1854,21 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 8.88178e-16 0.0 0.0 -5.55112e-17\n", - " 4.44089e-16 1.0 0.0 -8.88178e-16 0.0 \n", - " 1.72085e-15 -4.21885e-15 1.0 -4.88498e-15 -1.08247e-15\n", - " -4.44089e-15 2.66454e-15 5.32907e-15 1.0 7.77156e-16\n", - " -3.10862e-15 8.88178e-16 -1.77636e-15 5.32907e-15 1.0 " + "5×5 Matrix{Float64}:\n", + " 1.0 -8.88178e-16 1.77636e-15 0.0 -5.55112e-17\n", + " 0.0 1.0 -8.88178e-16 0.0 -5.55112e-17\n", + " -1.66533e-16 4.44089e-16 1.0 2.66454e-15 1.38778e-17\n", + " 0.0 -8.88178e-16 0.0 1.0 -5.55112e-17\n", + " 6.66134e-16 1.77636e-15 -3.55271e-15 -3.55271e-15 1.0" ] }, - "execution_count": 51, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -1553,21 +1892,21 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×2 Array{Float64,2}:\n", + "5×2 Matrix{Float64}:\n", " 0.505958 0.505958\n", " -0.928506 -0.928506\n", - " 2.16407 2.16407 \n", - " 1.46166 1.46166 \n", - " -1.26428 -1.26428 " + " 2.16407 2.16407\n", + " 1.46166 1.46166\n", + " -1.26428 -1.26428" ] }, - "execution_count": 52, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -1595,16 +1934,20 @@ } ], "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 1.7.1", "language": "julia", - "name": "julia-0.6" + "name": "julia-1.7" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "0.6.3" + "version": "1.7.1" } }, "nbformat": 4, diff --git a/lectures/LU-for-real.ipynb b/notes/LU-for-real.ipynb similarity index 67% rename from lectures/LU-for-real.ipynb rename to notes/LU-for-real.ipynb index 6942d158..4b344518 100644 --- a/lectures/LU-for-real.ipynb +++ b/notes/LU-for-real.ipynb @@ -1,19 +1,30 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Whence cometh the L in LU?\n", "\n", - "Last time, we constructed the LU factorization by what may have seemed like a laborious procedure. Getting $U$ was \"easy\", it was just Gaussian elimination. But to get $L$, we first wrote out the individual elimination steps as matrices, then inverted them to move them to the other side, then multiplied them together to get $L$.\n", + "Often, LU factorization is first presented in terms of a laborious procedure. Getting $U$ was \"easy\", it was just Gaussian elimination. But to get $L$, it is common to first write out the individual elimination steps as matrices, then invert them to move them to the other side, then multiply them together to get $L$. Such a presentation makes it seem like $L$ is more trouble than it is worth, and that $A = LU$ factorization is a theoretically pretty but practically useless construction.\n", + "\n", + "However, nothing could be further from the truth. It turns out that we can just \"read off\" $L$ much more simply directly from the pivot-row \"multipliers\" that we use during elimination steps, so that $L$ is an extremely useful and practical record of the elimination steps—indeed, a necessary record, in order to preserve all of the information from $A$ and to solve $Ax=b$ for new right-hand-sides $b$. \n", "\n", - "However, it turns out that we can just \"read off\" $L$ much more simply directly from the pivot-row \"multipliers\" that we use during elimination steps. To see this, let's first write a Julia function to perform Gaussian elimination (without row swaps!) and print out all of the steps:" + "To see some examples this, let's first write a Julia function to perform Gaussian elimination (without row swaps!) and print out all of the steps:" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -22,7 +33,7 @@ "print_gauss (generic function with 1 method)" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -56,13 +67,13 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Int64,2}:\n", + "5×5 Matrix{Int64}:\n", " 4 -2 -7 -4 -8\n", " 9 -6 -6 -1 -5\n", " -2 -9 3 -5 2\n", @@ -70,7 +81,7 @@ " -1 6 -3 9 6" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -85,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -107,15 +118,15 @@ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 4.0 -2.0 -7.0 -4.0 -8.0 \n", - " 0.0 -1.5 9.75 8.0 13.0 \n", - " 0.0 0.0 -65.5 -60.3333 -88.6667 \n", + "5×5 Matrix{Float64}:\n", + " 4.0 -2.0 -7.0 -4.0 -8.0\n", + " 0.0 -1.5 9.75 8.0 13.0\n", + " 0.0 0.0 -65.5 -60.3333 -88.6667\n", " 0.0 0.0 0.0 0.262087 -0.659033\n", - " 0.0 0.0 0.0 0.0 31.7767 " + " 0.0 0.0 0.0 0.0 31.7767" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -133,27 +144,27 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 4.0 -2.0 -7.0 -4.0 -8.0 \n", - " 0.0 -1.5 9.75 8.0 13.0 \n", - " 0.0 0.0 -65.5 -60.3333 -88.6667 \n", + "5×5 Matrix{Float64}:\n", + " 4.0 -2.0 -7.0 -4.0 -8.0\n", + " 0.0 -1.5 9.75 8.0 13.0\n", + " 0.0 0.0 -65.5 -60.3333 -88.6667\n", " 0.0 0.0 0.0 0.262087 -0.659033\n", - " 0.0 0.0 0.0 0.0 31.7767 " + " 0.0 0.0 0.0 0.0 31.7767" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "L, U = lu(A, Val{false})\n", + "L, U = lu(A, NoPivot())\n", "U" ] }, @@ -166,13 +177,13 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", + "5×5 Matrix{Float64}:\n", " 1.0 0.0 0.0 0.0 0.0\n", " 2.25 1.0 0.0 0.0 0.0\n", " -0.5 6.66667 1.0 0.0 0.0\n", @@ -180,7 +191,7 @@ " -0.25 -3.66667 -0.473282 33.4951 1.0" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -202,13 +213,13 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", + "5-element Vector{Float64}:\n", " -2.0\n", " -9.0\n", " 3.0\n", @@ -216,7 +227,7 @@ " 2.0" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -231,9 +242,9 @@ "source": [ "But this is exactly the *reverse of the elimination steps*, so of course it works. **Putting the multipliers in $L$ is the right thing!**\n", "\n", - "See section 2.6 of the textbook for more info.\n", + "See also section 2.6 of the textbook for more info.\n", "\n", - "Still, computing the $L$ in the LU factorization requires care to put all of the multipliers in the right place with the right sign. It is a pain for human beings, which is why we typically don't do it when performing Gaussian elimination by hand. However, computers are great at this kind of tedious bookkeeping, and since keeping track of $L$ requires almost *no extra work*, computers essentially *always* figure out *both* $L$ and $U$ when doing Gaussian elimination.\n", + "Still, computing the $L$ in the LU factorization requires care to put all of the multipliers in the right place with the right sign. It can be a pain for human beings, which is why we typically don't do it when performing Gaussian elimination by hand. However, computers are great at this kind of tedious bookkeeping, and since keeping track of $L$ requires almost *no extra work*, computers essentially *always* figure out *both* $L$ and $U$ when doing Gaussian elimination.\n", "\n", "## Warning:\n", "\n", @@ -244,13 +255,13 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", + "5×5 Matrix{Float64}:\n", " 1.0 0.0 0.0 0.0 0.0\n", " 2.25 1.0 0.0 0.0 0.0\n", " -0.5 6.66667 1.0 0.0 0.0\n", @@ -258,7 +269,7 @@ " -0.25 -3.66667 -0.473282 33.4951 1.0" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -269,27 +280,11 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 1.0 0.0 0.0 0.0 0.0\n", - " -2.25 1.0 0.0 0.0 0.0\n", - " 15.5 -6.66667 1.0 0.0 0.0\n", - " -0.21374 -0.628499 1.24427 1.0 0.0\n", - " 6.49515 21.5631 -41.2039 -33.4951 1.0" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "inv(L)" + " " ] }, { @@ -332,7 +327,7 @@ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 2 0\n", " 2 5 1\n", " -3 1 -1" @@ -370,7 +365,7 @@ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " -2.0 1.0 0.0\n", " 17.0 -7.0 1.0" @@ -426,11 +421,11 @@ { "data": { "text/plain": [ - "5-element Array{Int64,1}:\n", - " 7\n", - " -3\n", - " 2\n", - " -9\n", + "5-element Vector{Int64}:\n", + " -7\n", + " 0\n", + " 1\n", + " -6\n", " 2" ] }, @@ -456,12 +451,12 @@ { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", - " 7.0 \n", - " -18.75 \n", - " 130.5 \n", - " -6.12214\n", - " 201.825 " + "5-element Vector{Float64}:\n", + " -7.0\n", + " 15.75\n", + " -107.49999999999999\n", + " -3.259541984732806\n", + " 116.30097087378371" ] }, "execution_count": 12, @@ -470,7 +465,7 @@ } ], "source": [ - "_, U_and_c = lu([A b], Val{false}) # eliminate augmented matrix (without row swaps)\n", + "_, U_and_c = lu([A b], NoPivot()) # eliminate augmented matrix (without row swaps)\n", "U = UpperTriangular(U_and_c[:, 1:end-1]) # all but last column is U\n", "c = U_and_c[:, end] # last column is c" ] @@ -490,12 +485,12 @@ { "data": { "text/plain": [ - "5×2 Array{Float64,2}:\n", - " 2.21173 2.21173\n", - " 3.54079 3.54079\n", - " -3.7846 -3.7846 \n", - " -7.38833 -7.38833\n", - " 6.35136 6.35136" + "5×2 Matrix{Float64}:\n", + " 2.64986 2.64986\n", + " 1.79835 1.79835\n", + " -0.334555 -0.334555\n", + " -3.23373 -3.23373\n", + " 3.65995 3.65995" ] }, "execution_count": 13, @@ -528,12 +523,12 @@ { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", - " 7.0 \n", - " -18.75 \n", - " 130.5 \n", - " -6.12214\n", - " 201.825 " + "5-element Vector{Float64}:\n", + " -7.0\n", + " 15.75\n", + " -107.49999999999999\n", + " -3.259541984732803\n", + " 116.30097087378363" ] }, "execution_count": 14, @@ -542,7 +537,7 @@ } ], "source": [ - "L, U = lu(A, Val{false}) # Gaussian elimination without row swaps\n", + "L, U = lu(A, NoPivot()) # Gaussian elimination without row swaps\n", "c = L \\ b # solve Lc = b for c" ] }, @@ -564,22 +559,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "c[1] = b[1] = 7.0\n", - "c[2] = b[2]- 2.25 * c[1] = -18.75\n", - "c[3] = b[3]- -0.5 * c[1]- 6.666666666666666 * c[2] = 130.5\n", - "c[4] = b[4]- 2.25 * c[1]- -7.666666666666666 * c[2]- -1.2442748091603053 * c[3] = -6.122137404580144\n", - "c[5] = b[5]- -0.25 * c[1]- -3.6666666666666665 * c[2]- -0.47328244274809156 * c[3]- 33.495145631067324 * c[4] = 201.8252427184424\n" + "c[1] = b[1] = -7.0\n", + "c[2] = b[2]- 2.25 * c[1] = 15.75\n", + "c[3] = b[3]- -0.5 * c[1]- 6.666666666666666 * c[2] = -107.49999999999999\n", + "c[4] = b[4]- 2.25 * c[1]- -7.666666666666666 * c[2]- -1.2442748091603053 * c[3] = -3.259541984732806\n", + "c[5] = b[5]- -0.25 * c[1]- -3.6666666666666665 * c[2]- -0.47328244274809156 * c[3]- 33.495145631067324 * c[4] = 116.30097087378371\n" ] }, { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", - " 7.0 \n", - " -18.75 \n", - " 130.5 \n", - " -6.12214\n", - " 201.825 " + "5-element Vector{Float64}:\n", + " -7.0\n", + " 15.75\n", + " -107.49999999999999\n", + " -3.259541984732806\n", + " 116.30097087378371" ] }, "execution_count": 15, @@ -641,7 +636,7 @@ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 1 2 0\n", " 2 5 1\n", " -3 1 -1" @@ -671,7 +666,7 @@ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", + "3-element Vector{Float64}:\n", " 5.0\n", " 5.0\n", " -24.0" @@ -708,7 +703,7 @@ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", + "3-element Vector{Float64}:\n", " 1.0\n", " 2.0\n", " 3.0" @@ -738,10 +733,10 @@ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", - " 1.0\n", + "3-element Vector{Float64}:\n", + " 1.0000000000000002\n", " 2.0\n", - " 3.0" + " 2.999999999999999" ] }, "execution_count": 19, @@ -784,7 +779,7 @@ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " 5 10 15\n", " 15 30 45\n", " -4 -8 -12" @@ -807,7 +802,7 @@ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 2.0 3.0\n", " 2.0 4.0 6.0\n", " 3.0 6.0 9.0" @@ -830,9 +825,10 @@ { "data": { "text/plain": [ - "Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:\n", - "[1.0 0.0 0.0; 2.0 1.0 0.0; -3.0 7.0 1.0]\n", - "[1.0 2.0 0.0; 0.0 1.0 1.0; 0.0 0.0 -8.0]" + "3×3 Matrix{Float64}:\n", + " 1.0 2.0 3.0\n", + " 2.0 4.0 6.0\n", + " 3.0 6.0 9.0" ] }, "execution_count": 22, @@ -841,7 +837,7 @@ } ], "source": [ - "LU = lufact(A)" + "A^-1 * B" ] }, { @@ -852,13 +848,43 @@ { "data": { "text/plain": [ - "3×2 Array{Float64,2}:\n", + "LinearAlgebra.LU{Float64, Matrix{Float64}}\n", + "L factor:\n", + "3×3 Matrix{Float64}:\n", + " 1.0 0.0 0.0\n", + " -0.666667 1.0 0.0\n", + " -0.333333 0.411765 1.0\n", + "U factor:\n", + "3×3 Matrix{Float64}:\n", + " -3.0 1.0 -1.0\n", + " 0.0 5.66667 0.333333\n", + " 0.0 0.0 -0.470588" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "LU = lu(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×2 Matrix{Float64}:\n", " 1.0 1.0\n", " 2.0 2.0\n", " 3.0 3.0" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -876,19 +902,19 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", - " 2.0\n", + "3-element Vector{Float64}:\n", + " 2.0000000000000004\n", " 4.0\n", - " 6.0" + " 5.999999999999998" ] }, - "execution_count": 24, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -899,19 +925,19 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " 1.0 2.0 3.0\n", " 2.0 4.0 6.0\n", " 3.0 6.0 9.0" ] }, - "execution_count": 25, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -931,7 +957,232 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Row swaps and PA = LU" + "## Row swaps vs. LU\n", + "\n", + "Occasionally, we may encounter a zero in the pivot position. Sometimes this means that the equations are **singular** (may have no solutions) — we will talk more about this later. However, as long as there is a nonzero value *below* the pivot, we can fix the problem by **swapping rows** (which just corresponds to re-ordering the equations).\n", + "\n", + "For example:\n", + "\n", + "\n", + "$$\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "1 & 3 & -1 & 1 \\\\\n", + "3 & 11 & 6 & 35\n", + "\\end{array}\\right]\n", + "\\stackrel{r_2 - \\color{red}{1}r_1}{\\stackrel{r_3 + \\color{red}{3}r_1}{\\longrightarrow}}\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "0 & 0 & -2 & -8 \\\\\n", + "0 & 2 & 3 & 8\n", + "\\end{array}\\right]\n", + "\\stackrel{\\mbox{swap } r_3 \\leftrightarrow r_2}{\\longrightarrow}\n", + "\\left[\\begin{array}{rrr|r}\n", + "\\boxed{1} & 3 & 1 & 9 \\\\\n", + "0 & \\boxed{2} & 3 & 8 \\\\\n", + "0 & 0 & \\boxed{-2} & -8\n", + "\\end{array}\\right]\n", + "$$\n", + "\n", + "where in the second step we swapped the second and third rows to get a nonzero pivot in the second row.\n", + "\n", + "At this point we can again solve bottom-up by backsubstitution:\n", + "\n", + "$$\n", + "-2x_3 = 8 \\implies x_3 = 4 \\\\\n", + "2x_2 + 3x_3 = 8 = 2x_2 + 12 \\implies x_2 = -2 \\\\\n", + "x_1 + 3x_2 + x_3 = 9 = x_1 -6 + 4 \\implies x_3 = 11\n", + "$$\n", + "\n", + "Of course, the computer can get the answer much more quickly and easily:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", + " 1 3 1\n", + " 1 3 -1\n", + " 3 11 6" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 1 3 1\n", + " 1 3 -1\n", + " 3 11 6 ]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Int64}:\n", + " 9\n", + " 1\n", + " 35" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = [9, 1, 35]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Float64}:\n", + " 11.000000000000005\n", + " -2.0000000000000013\n", + " 4.0" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A \\ b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But what does this mean for LU factorization? If we write out the elimination steps (laboriously) as matrix multiplications, then the second step is expressed by a [permutation matrix](https://en.wikipedia.org/wiki/Permutation_matrix) $P_2$ that swaps the 2nd and third rows:\n", + "\n", + "$$\n", + "\\underbrace{\\begin{pmatrix} 1 & 3 & 1 \\\\ & 2 & 3 \\\\ & & -2 \\end{pmatrix}}_U =\n", + "\\underbrace{\\begin{pmatrix} 1 & & \\\\ & & 1 \\\\ & 1 & \\end{pmatrix}}_{P_2}\n", + "\\underbrace{\\begin{pmatrix} 1 & & \\\\ -1 & 1 & \\\\ -3 & & 1 \\end{pmatrix}}_{E_1}\n", + "\\underbrace{\\begin{pmatrix} 1 & 3 & 1 \\\\ 1 & 3 & -1 \\\\ 3 & 11 & 6 \\end{pmatrix}}_A\n", + "$$\n", + "\n", + "But if we multiply $P_2 E_1$, the result is no longer lower triangular:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", + " 1 0 0\n", + " -3 0 1\n", + " -1 1 0" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "P2 = [1 0 0\n", + " 0 0 1\n", + " 0 1 0]\n", + "E1 = [1 0 0\n", + " -1 1 0\n", + " -3 0 1]\n", + "P2 * E1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The reason for this is straightforward: the lower-triangular structure of the elimination matrix $E$ (and hence $L = E^{-1}$) came from the fact that we **always subtracted earlier rows from later rows** during elimination, and this **is no longer true** if we did row swaps.\n", + "\n", + "Does this mean that the whole concept of LU factorization goes out the window? Is $A$ no longer a product of \"nice\" triangular matrices? **No.** There are two tricks.\n", + "\n", + "**Trick #1**: if we had re-ordered the rows of $A$ *in the beginning*, then we wouldn't have needed row swaps:\n", + "\n", + "$$\n", + "\\underbrace{\\begin{pmatrix} 1 & & \\\\ & & 1 \\\\ & 1 & \\end{pmatrix}}_{P}\n", + "\\underbrace{\\begin{pmatrix} 1 & 3 & 1 \\\\ 1 & 3 & -1 \\\\ 3 & 11 & 6 \\end{pmatrix}}_A\n", + "=\n", + "\\underbrace{\\begin{pmatrix} 1 & 3 & 1 \\\\ 3 & 11 & 6 \\\\ 1 & 3 & -1 \\end{pmatrix}}_{PA}\n", + "=\n", + "\\underbrace{\\begin{pmatrix} 1 & & \\\\ 3 & 1 & \\\\ 1 & & 1 \\end{pmatrix}}_L\n", + "\\underbrace{\\begin{pmatrix} 1 & 3 & 1 \\\\ & 2 & 3 \\\\ & & -2 \\end{pmatrix}}_U \n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Int64}:\n", + " 1 3 1\n", + " 3 11 6\n", + " 1 3 -1" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L = [1 0 0\n", + " 3 1 0\n", + " 1 0 1]\n", + "U = [1 3 1\n", + " 0 2 3\n", + " 0 0 -2]\n", + "L*U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is called the \"PA=LU\" factorization, and is what *real* numerical linear-algebra software actually computes, as we discuss more below.\n", + "\n", + "**Trick #2:** How do you know what re-ordering of A to use *in advance?* It turns out that you don't need to do it in advance — there is a tricky book-keeping technique to \"work backwards\" to figure out what P and L as you go along. Whenever you do a row swap, there is a way to \"commute\" it through the elimination steps to figure out what L *would* have been if you had *started* with that permutation!\n", + "\n", + "I *won't* go over this book-keeping trick in 18.06! It's more a technique for computer implementations, and is described in many textbooks on numerical linear algebra. I will **never** ask you to compute the \"PA=LU\" factorization by hand. But it is important to know that:\n", + "\n", + "* PA=LU is the factorization that you get in *practice* from *real* Gaussian elimination steps.\n", + "* U is the output of elimination, as usual, and L and P are just a record of the elimination and row-swap steps (just book-keeping, no arithmetic required).\n", + "* If you are *given* PA=LU, we need to know how to *use* it, e.g. to solve Ax=b." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Row swaps and PA = LU in practice" ] }, { @@ -940,24 +1191,51 @@ "source": [ "Up to now, we have mostly ignored the possibility of row swaps. Row swaps may be *required* if you encounter a zero pivot (assuming there is a nonzero value below it in the same column), but this is often unlikely to occur in practice (especially for random matrices!).\n", "\n", - "However, even as in the example above where no row swaps were *required*, a computer will often do them *anyway*, in order to minimize roundoff errors. It turns out that roundoff errors (the computer only keeps about 15–16 significant digits) can be disastrous if the pivot is merely very small. So, the computer swaps rows to **make the pivot as big as possible**, as strategy called *partial pivoting*. As a result, the `lu` function in Julia returns *three* things: $L$, $U$, and the permutation $p$ giving the **re-ordering of the rows** of $A$ that is needed. For example:" + "However, even as in our examples where no row swaps were *required*, a computer will often do them *anyway*, in order to minimize roundoff errors. It turns out that roundoff errors (the computer only keeps about 15–16 significant digits) can be disastrous if the pivot is merely very small. So, the computer swaps rows to **make the pivot as big as possible**, as strategy called *partial pivoting*. As a result, the `lu` function in Julia returns *three* things: $L$, $U$, and the permutation $p$ giving the **re-ordering of the rows** of $A$ that is needed. For example:" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Int64}:\n", + " 1 2 0\n", + " 2 5 1\n", + " -3 1 -1" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# matrix from earlier example, does not *require* row swaps\n", + "\n", + "A = [ 1 2 0\n", + " 2 5 1\n", + " -3 1 -1]" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Matrix{Float64}:\n", " 1.0 0.0 0.0\n", " -0.666667 1.0 0.0\n", " -0.333333 0.411765 1.0" ] }, - "execution_count": 26, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -969,19 +1247,19 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -3.0 1.0 -1.0 \n", + "3×3 Matrix{Float64}:\n", + " -3.0 1.0 -1.0\n", " 0.0 5.66667 0.333333\n", " 0.0 0.0 -0.470588" ] }, - "execution_count": 27, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -994,26 +1272,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Notice that this is **not the same as what we got by hand!** Julia (really, the underlying [LAPACK linear-algebra library](https://en.wikipedia.org/wiki/LAPACK)) re-orders the rows *even though it doesn't have to*.\n", + "Notice that this is **not the same as what we got by hand!** Julia (really, the underlying [LAPACK linear-algebra library](https://en.wikipedia.org/wiki/LAPACK)) re-orders the rows *even though it doesn't have to*. (If you want to look it up, the algorithm is called \"**partial pivoting**\".)\n", "\n", "To know what re-ordering Julia's `lu` function did, we can look at the `p` vector returned by `lu(A)`:" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Int64,1}:\n", + "3-element Vector{Int64}:\n", " 3\n", " 2\n", " 1" ] }, - "execution_count": 28, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -1026,30 +1304,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "`p` says tells you in what order we should put the rows of $A$ to match the product $LU$: we should re-order `A` to put row 2 first, then row 4, then row 1, then row 5, then row 3. We can do this in Julia easily by:" + "`p` says tells you in what order we should put the rows of $A$ to match the product $LU$: we should re-order `A` to put row 3 first, then row 2, then row 1. We can do this in Julia easily by:" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Int64,2}:\n", + "3×3 Matrix{Int64}:\n", " -3 1 -1\n", " 2 5 1\n", " 1 2 0" ] }, - "execution_count": 29, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "A[p,:] # A with the rows in order p" + "A[p,:] # A with the rows in order p = PA" ] }, { @@ -1061,19 +1339,19 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", + "3×3 Matrix{Float64}:\n", " -3.0 1.0 -1.0\n", " 2.0 5.0 1.0\n", " 1.0 2.0 0.0" ] }, - "execution_count": 30, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -1091,7 +1369,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -1100,31 +1378,31 @@ "permutation_matrix (generic function with 1 method)" ] }, - "execution_count": 31, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# construct a permutation matrix P from the permutation vector p\n", - "permutation_matrix(p) = eye(length(p))[p,:] # just reorder the rows of I (returned by eye)" + "permutation_matrix(p) = I(length(p))[p,:] # just reorder the rows of I (returned by I(n))" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", - " 0.0 0.0 1.0\n", - " 0.0 1.0 0.0\n", - " 1.0 0.0 0.0" + "3×3 SparseArrays.SparseMatrixCSC{Bool, Int64} with 3 stored entries:\n", + " ⋅ ⋅ 1\n", + " ⋅ 1 ⋅\n", + " 1 ⋅ ⋅" ] }, - "execution_count": 32, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -1135,19 +1413,19 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -3.0 1.0 -1.0\n", - " 2.0 5.0 1.0\n", - " 1.0 2.0 0.0" + "3×3 Matrix{Int64}:\n", + " -3 1 -1\n", + " 2 5 1\n", + " 1 2 0" ] }, - "execution_count": 33, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1163,34 +1441,35 @@ "Thus, LU factorization with row swaps corresponds to a factorization\n", "\n", "$$\n", - "PA = LU\n", + "PA = LU \\Longleftrightarrow A = P^{-1} LU \\Longleftrightarrow A^{-1} = U^{-1} L^{-1} P\n", "$$\n", "\n", "Now, to solve $Ax = b$, a more complete process is:\n", "\n", "1. Factor $PA = LU$\n", - "2. Multiply $P$ by both sides to give $PAx = LUx = Pb$\n", - "3. Let $c=Ux$ and solve $Lc = Pb$ for $c$ by forward-substitution\n", - "3. Solve $Ux = c$ for $x$ by backsubstitution.\n", + "2. Compute $x = U^{-1} L^{-1} P b$, multiplying left to right:\n", + " 1. First, multiply $Pb$: permute $b$ according to $P$, i.e. compute `b[p]` in Julia\n", + " 2. Second, multiply $c = L^{-1} (P b)$, i.e. solve $Lc = Pb$ for $c$ by forward-substitution\n", + " 3. Third, multiply $x = U^{-1} c$, i.e. solve $Ux = c$ for $x$ by backsubstitution.\n", "\n", "Of course, Julia does all of this for you automatically with `A \\ b` or `lufact(A) \\ b`, but we can do it manually:" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", - " 1.0\n", - " 2.0\n", - " 3.0" + "3-element Vector{Float64}:\n", + " -2.25\n", + " 5.625\n", + " -22.625" ] }, - "execution_count": 34, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1201,42 +1480,42 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Int64,1}:\n", - " -4\n", - " 15\n", - " 5" + "3-element Vector{Int64}:\n", + " 35\n", + " 1\n", + " 9" ] }, - "execution_count": 35, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "b[p]" + "b[p] # permute b (equivalent to Pb)" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", - " 1.0\n", - " 2.0\n", - " 3.0" + "3-element Vector{Float64}:\n", + " -2.25\n", + " 5.625\n", + " -22.625" ] }, - "execution_count": 36, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1248,64 +1527,49 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", - " 1.0\n", - " 2.0\n", - " 3.0" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A \\ b" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:\n", - "[1.0 0.0 0.0; 2.0 1.0 0.0; -3.0 7.0 1.0]\n", - "[1.0 2.0 0.0; 0.0 1.0 1.0; 0.0 0.0 -8.0]" + "LinearAlgebra.LU{Float64, Matrix{Float64}}\n", + "L factor:\n", + "3×3 Matrix{Float64}:\n", + " 1.0 0.0 0.0\n", + " -0.666667 1.0 0.0\n", + " -0.333333 0.411765 1.0\n", + "U factor:\n", + "3×3 Matrix{Float64}:\n", + " -3.0 1.0 -1.0\n", + " 0.0 5.66667 0.333333\n", + " 0.0 0.0 -0.470588" ] }, - "execution_count": 38, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "LU = lufact(A)" + "LU = lu(A)" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3-element Array{Float64,1}:\n", - " 1.0\n", - " 2.0\n", - " 3.0" + "3-element Vector{Float64}:\n", + " -2.25\n", + " 5.625\n", + " -22.625" ] }, - "execution_count": 39, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -1325,16 +1589,20 @@ } ], "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 1.7.1", "language": "julia", - "name": "julia-0.6" + "name": "julia-1.7" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "0.6.3" + "version": "1.7.1" } }, "nbformat": 4, diff --git a/notes/Least-Square Fitting.ipynb b/notes/Least-Square Fitting.ipynb new file mode 100644 index 00000000..a3a34f11 --- /dev/null +++ b/notes/Least-Square Fitting.ipynb @@ -0,0 +1,2129 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "fb97620a-78f2-4cb0-950f-ec67309dee75" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "using LinearAlgebra, PyPlot, Interact" + ] + }, + { + "attachments": { + "image-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAGwCAYAAACAS1JbAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBCCV1K6E0QkRJASggtgPQiiEpIAoQSYyCo2MuigmtBRRRs6KqIYqdZUMTOotj7YkFFWRcLduVNCui6r3xvvm/u/PefM/85c+7MvXcAUD/OFYtzUQ0A8kQFktiQAMbY5BQG6QkgAxqgA0NgxOXli1nR0REAlsH27+XddYDI2iuOMq1/9v/XoskX5PMAQKIhTufn8/IgPggAXsUTSwoAIMp4iykFYhmGFWhLYIAQL5LhTAWukuF0Bd4rt4mPZUPcBoCKGpcryQSAdgnyjEJeJtSg9UHsLOILRQCoMyD2zcubxIc4DWJbaCOGWKbPTP9BJ/NvmulDmlxu5hBWzEVeVAKF+eJc7rT/Mx3/u+TlSgd9WMOqliUJjZXNGebtZs6kcBlWg7hXlB4ZBbEWxB+EfLk9xCglSxqaoLBHjXj5bJgzoAuxM58bGA6xEcTBotzICCWfniEM5kAMVwg6VVjAiYdYH+JFgvygOKXNJsmkWKUvtD5DwmYp+bNcidyvzNd9aU4CS6n/OkvAUepjtKKs+CSIKRBbFgoTIyGmQeyUnxMXrrQZXZTFjhy0kUhjZfFbQhwrEIUEKPSxwgxJcKzSviQvf3C+2KYsISdSifcXZMWHKvKDtfG48vjhXLBLAhErYVBHkD82YnAufEFgkGLu2DOBKCFOqfNBXBAQqxiLU8S50Up73FyQGyLjzSF2zS+MU47FEwvgglTo4xniguh4RZx4UTY3LFoRD74cRAA2CAQMIIU1HUwC2UDY0dvQC+8UPcGACyQgEwiAo5IZHJEk7xHBaxwoAn9CJAD5Q+MC5L0CUAj5r0Os4uoIMuS9hfIROeAJxHkgHOTCe6l8lGjIWyJ4DBnhP7xzYeXBeHNhlfX/e36Q/c6wIBOhZKSDHhnqg5bEIGIgMZQYTLTDDXFf3BuPgFd/WF1wJu45OI/v9oQnhE7CQ8I1Qhfh1kThPMlPUY4BXVA/WJmL9B9zgVtDTTc8APeB6lAZ18UNgSPuCv2wcD/o2Q2ybGXcsqwwftL+2wx+eBpKO7IzGSXrkf3Jtj+PpNnT3IZUZLn+MT+KWNOH8s0e6vnZP/uH7PNhG/6zJbYIO4CdwU5g57AjWANgYC1YI9aOHZXhodX1WL66Br3FyuPJgTrCf/gbfLKyTOY71zr3OH9R9BUIpsre0YA9STxNIszMKmCw4BdBwOCIeE7DGS7OLi4AyL4vitfXmxj5dwPRbf/Ozf8DAJ+WgYGBw9+5sBYA9nnA7d/0nbNlwk+HKgBnm3hSSaGCw2UXAnxLqMOdZgBMgAWwhfNxAe7AG/iDIBAGokA8SAYTYPRZcJ1LwBQwA8wFxaAULAerwTqwEWwBO8BusB80gCPgBDgNLoBL4Bq4A1dPN3gB+sA78BlBEBJCReiIAWKKWCEOiAvCRHyRICQCiUWSkTQkExEhUmQGMh8pRcqQdchmpAbZhzQhJ5BzSCdyC3mA9CCvkU8ohqqh2qgxao2OQJkoCw1H49HxaCY6GS1CF6BL0Qq0Gt2F1qMn0AvoNbQLfYH2YwBTxXQxM8wRY2JsLApLwTIwCTYLK8HKsWqsDmuGz/kK1oX1Yh9xIk7HGbgjXMGheALOwyfjs/Al+Dp8B16Pt+FX8Ad4H/6NQCUYERwIXgQOYSwhkzCFUEwoJ2wjHCKcgnupm/COSCTqEm2IHnAvJhOzidOJS4jriXuIx4mdxEfEfhKJZEByIPmQokhcUgGpmLSWtIvUQrpM6iZ9UFFVMVVxUQlWSVERqcxTKVfZqXJM5bLKU5XPZA2yFdmLHEXmk6eRl5G3kpvJF8nd5M8UTYoNxYcST8mmzKVUUOoopyh3KW9UVVXNVT1VY1SFqnNUK1T3qp5VfaD6UU1LzV6NrZaqJlVbqrZd7bjaLbU3VCrVmupPTaEWUJdSa6gnqfepH2h0mhONQ+PTZtMqafW0y7SX6mR1K3WW+gT1IvVy9QPqF9V7Ncga1hpsDa7GLI1KjSaNGxr9mnTNkZpRmnmaSzR3ap7TfKZF0rLWCtLiay3Q2qJ1UusRHaNb0Nl0Hn0+fSv9FL1bm6hto83RztYu1d6t3aHdp6Ol46qTqDNVp1LnqE6XLqZrrcvRzdVdprtf97ruJz1jPZaeQG+xXp3eZb33+sP0/fUF+iX6e/Sv6X8yYBgEGeQYrDBoMLhniBvaG8YYTjHcYHjKsHeY9jDvYbxhJcP2D7tthBrZG8UaTTfaYtRu1G9sYhxiLDZea3zSuNdE18TfJNtklckxkx5TuqmvqdB0lWmL6XOGDoPFyGVUMNoYfWZGZqFmUrPNZh1mn81tzBPM55nvMb9nQbFgWmRYrLJoteizNLUcYznDstbythXZimmVZbXG6ozVe2sb6yTrhdYN1s9s9G04NkU2tTZ3bam2fraTbattr9oR7Zh2OXbr7S7Zo/Zu9ln2lfYXHVAHdwehw3qHzuGE4Z7DRcOrh99wVHNkORY61jo+cNJ1inCa59Tg9HKE5YiUEStGnBnxzdnNOdd5q/OdkVojw0bOG9k88rWLvQvPpdLl6ijqqOBRs0c1jnrl6uAqcN3getON7jbGbaFbq9tXdw93iXude4+HpUeaR5XHDaY2M5q5hHnWk+AZ4Dnb84jnRy93rwKv/V5/eTt653jv9H422ma0YPTW0Y98zH24Ppt9unwZvmm+m3y7/Mz8uH7Vfg/9Lfz5/tv8n7LsWNmsXayXAc4BkoBDAe/ZXuyZ7OOBWGBIYElgR5BWUELQuqD7webBmcG1wX0hbiHTQ46HEkLDQ1eE3uAYc3icGk5fmEfYzLC2cLXwuPB14Q8j7CMkEc1j0DFhY1aOuRtpFSmKbIgCUZyolVH3om2iJ0cfjiHGRMdUxjyJHRk7I/ZMHD1uYtzOuHfxAfHL4u8k2CZIE1oT1RNTE2sS3ycFJpUldY0dMXbm2AvJhsnC5MYUUkpiyraU/nFB41aP6051Sy1OvT7eZvzU8ecmGE7InXB0ovpE7sQDaYS0pLSdaV+4Udxqbn86J70qvY/H5q3hveD781fxewQ+gjLB0wyfjLKMZ5k+mSsze7L8ssqzeoVs4Trhq+zQ7I3Z73OicrbnDOQm5e7JU8lLy2sSaYlyRG2TTCZNndQpdhAXi7sme01ePblPEi7Zlo/kj89vLNCGP/LtUlvpL9IHhb6FlYUfpiROOTBVc6poavs0+2mLpz0tCi76bTo+nTe9dYbZjLkzHsxkzdw8C5mVPqt1tsXsBbO754TM2TGXMjdn7u/znOeVzXs7P2l+8wLjBXMWPPol5JfaYlqxpPjGQu+FGxfhi4SLOhaPWrx28bcSfsn5UufS8tIvS3hLzv868teKXweWZiztWOa+bMNy4nLR8usr/FbsKNMsKyp7tHLMyvpVjFUlq96unrj6XLlr+cY1lDXSNV0VERWNay3XLl/7ZV3WumuVAZV7qoyqFle9X89ff3mD/4a6jcYbSzd+2iTcdHNzyOb6auvq8i3ELYVbnmxN3HrmN+ZvNdsMt5Vu+7pdtL1rR+yOthqPmpqdRjuX1aK10tqeXam7Lu0O3N1Y51i3eY/untK9YK907/N9afuu7w/f33qAeaDuoNXBqkP0QyX1SP20+r6GrIauxuTGzqawptZm7+ZDh50Obz9idqTyqM7RZccoxxYcG2gpauk/Lj7eeyLzxKPWia13To49ebUtpq3jVPips6eDT588wzrTctbn7JFzXueazjPPN1xwv1Df7tZ+6He33w91uHfUX/S42HjJ81Jz5+jOY5f9Lp+4Enjl9FXO1QvXIq91Xk+4fvNG6o2um/ybz27l3np1u/D25ztz7hLultzTuFd+3+h+9R92f+zpcu86+iDwQfvDuId3HvEevXic//hL94In1CflT02f1jxzeXakJ7jn0vNxz7tfiF987i3+U/PPqpe2Lw/+5f9Xe9/Yvu5XklcDr5e8MXiz/a3r29b+6P777/LefX5f8sHgw46PzI9nPiV9evp5yhfSl4qvdl+bv4V/uzuQNzAg5kq48l8BDFY0IwOA19sBoCYDQIfnM8o4xflPXhDFmVWOwH/CijOivLgDUAf/32N64d/NDQD2boXHL6ivngpANBWAeE+Ajho1VAfPavJzpawQ4TlgU+TX9Lx08G+K4sz5Q9w/t0Cm6gp+bv8FNmx8ZgQz/LsAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAALQoAMABAAAAAEAAAGwAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdBz70fcAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHWaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQzMjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj43MjA8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KXAhK/gAAABxpRE9UAAAAAgAAAAAAAADYAAAAKAAAANgAAADYAADms2GQrg8AAEAASURBVHgB7F0HgF1F1T5ve99sSd9N743Qe+hIV4qCFH/pRYqIVOlVFKSISFNBRCAUEUWKICEFEtJDCpC26cmW9O3t/74zM+/d3ewmm+S9ENiZbN69d9q5c+ac75w7d+5MqLJiTaMEQiiEi8aQNEij8NSFEHI1xIUQhxP+IU+IkbhgzjicM04Do+PwvwH/GY/0YF2MCyEvszUPnj444vnv5U+1JqIdVDWvfx5/PP5CEfjn7Y+3vwRFCIP3P7z/9U35nyHnQIfdXPV0aa3h+8KbVZ8Yl4xmHhMI441wmhGLKBdrEzUnuhTx6kFrtKu20TrWpihLagryWjfbZfT0Pf+9/Hn9Ix4AJszBIY3HH4+/3v54+wtUACQ4VFBHQ3/UpUa89z+cf+XcKu9/QUDUt6TcUHKUM3quw7yOUW30P0OV5RiBRiGWM4IYdmU1srHBABUdaX3qRy6XV51gK7080DfWS2bgDSCi0UaYWnnBRBP0yka5OlmDdaU9fTDF89/LHw2l1z9iiRmBdljh8cfhK1HT46+3P0YO1MR6++v9D+9/xdz/DFVhCoeOMtOnVW+XRsqM8Bh1hLlSi2U8XfXS1cnFNQsyzQZTDpqr5fGr750Ry45kHmsAG0kH00EYqVW7Ojx95Z3nv5c/83RMrYFyqJKYc69/ygxFII8/VjaIrQgef4kb3v5QEhQtvP3FQJ73P7z/FTv/M1RZubqxEZijo1wKw9arpdWmwwuntjEOcTinUjKoY8xrZIljulr4sNpqPDMbU8d6WJIROOcfTk0ZPibj3NP3/Ocoq0oX5USlDILh5c/rn8cfj780GA4fAA9qQLz98fbX+x/e//pm/U/MgS7GHQCgwk6ycVrUl1FHBmfq9PKCN8tLHjGsbIGMKfzokEGLULN5bevUSJOsecwpa2BNyOvph3ml01f0gcMx0xz50aXnv5c/6o7XP48/Hn+9/fH2F2gIu0jL6P0P41WRF+ERTO9/GV4Y14mc0RBN/zNUgSkcynQ3odA6xXTWIgE5eMkD8pmnHpNqol2iycMUvWf9wTmSG9CZcaDEnBqBHBxda+BR41g5Uj19MhkcUU6RMwjkjT14/nv5g5446TBi4YTDyIiVmLAYef3z+OPx19sfb3+9/6F2gwbB+19R8T8xAr0a3DSCRb6qH00LjKBuHCI4Z5lrajCRPq4LLEWHWpMQGUhyWbQOMyvNRKl/zFglxkIs5ekrF/Dj+R+RIy9/4IXXP48/Hn+9/fH21/sf3v/a7fxPXcZOHRV6cHgr1twLNmkRz46Do4wzvyzkAhNwzSgtZOI5VsYl7fQlCwSAWZoHzc54T9/zv5l8GNlApH2y8PJn1KuJkqlCef3z+AM9of54/A3jqLc/3v56/8P7X7HyPyNTOGiErQ3mqa6UQSBWNG6CyRpjNlox0y+a+Txh8NLUkMsZwHZ1tFE5RlY4wqZkLCnnYHv6dBo9/738Ge3gr9MznjutCsZTWjTYjF7/wB2PPzqE4eREjx5/oUzghLc/3v56/8P7X85u0lxY29lm/5OrcCiYsBIWJsJqgPlFbVgGWqPWrlsvGempkpyUEnGuOf2CI4PNAstxbTw+/fNDwcgUDuZFGYKXjjazvL1mHTgN0l+/fp2kpqWBZhJTEczTdLhxMaC/dj3bmSZJSclN2h9L+mvLQDMjXZIS0c4wO5vyP9r014K3SjMpwfSHYW9M6a9du14yM9MlMQHtbEP/B+VvR9u/HjTTMzPA20RUsX3yt6P0164tQzuzJCExYafkf3vol5WtlaysLEkEzWjp37bol5aulQ4d0M4EyFAgxJI+dSUrK1N5Swcolvjj2k/edshmO+MhQZjMpnTR4BjSLwFvc3OyJS6eNF2ILf6VlpRJTm4HiQdN6oprf+zoN0hpGWh2yDE0m+F/LOhzyamy0nWSk4d2xgGEtmJ/okW/HnKyFjKUk8N2gmYb7d/O0G+A0S0FzfzcHGAtrTBDbPGPekFdyQNvQ6F4WOuds/9taT9FhjRz0c449idbGSX/ozX6DWBu6Vq0M6eD6qcSDfzEgj55S13Jz81D+9CP2pWxxb/GxnrQXCd5Yd7GFn/o/zVQP9euk/y8PIpt2P807I0N/YZ66Cdo5uXmYslloylkcGv9H8R/jEAXq6vLm1enJuLtWnULSWVFhXw8Zpx07tJJ9t5rpGbVWct8erOOsjbQ6Scuwn4167UlWjoaFUOmZvTLN1fI2LHjpXPXLrL3niM0WWmEa0OBKNPfXFEuY8dMkG7du8jIkSPC7TePAo66a0V06G/aVCHjxoFmt64ycs/hHFo0ymEPFJlo09+0aSNoTpTuBd1kxIjhWn9z/rO1pjujQ3/jxs0yfvynUtC9QEbsMSRce2v9Hw36GzZslAnjJ0phYXcZPnwoqqSQWSG1x2jTX79ug0z4dJL07Fkgw4ahnSTZAl13H9GgX7ZunUz87HPQLJShQwcbag4HYkR/HQzIxElTpHePnjJ46EA20jUpZvTpEEwizd49ZcjgAaAXO/xxzSmGIzvlc9Ds00sGDQJNBCNF+I0R/ZLSUpn8+TTp16+3DBg4QPVTu1Gpx4Z+8ZpSmTINNPv0Ac1+Sima+h8WjoD+rSkukSmTZ8iAAX2kf7++rdqfaOLf6jUlMm3qdOk/oB9o9kFfmrWgtFPpf8UAf1evXi3Tps1CO/uiT9FOK0E8xoo+aU6fPksGDugvffv2As2muOeuo0l/5apVMmP6FzIQemJo2qYG2uvouuPO0l+5fJVMn/kF8GAgdLSnslb1M4b4t2z5Cvli1mwZAqzt3bOn9iJa6ppkWhtl+kuXrZBZX8yRYaDZAzgfa/+LzVm2dLnMmj1PRgwbLIU9ChilQfnLVsYA/5YsXiZz5s6DvR4iPQoLQCU6/ke4c5rpAeVvSdESmTvnSxkxcqgUdOtusqKlbcI/3crb6ZYWolIHInDOtTLmf7VI8vJz1Uuno80H9zDWaHbDVgcOwRoM282vQgYYz7WftRLSCmQ2YIlfZJg/fyGeZvNAF0/RWBA9nC9G9PlkMf/r+ZLfsSOeaDvY2yZdNjY29BswxD9/wULpmJ+vT9Gu/YaPvIXo0+fI2ddfLZROnfN1VCTMV6W2Zf9Ho/18av8a/dmpc0d9ct9W/0ej/fWk+fUC6dKlM0ZKs7U/2yp/O0q/vr4OcrtIuuDBj6OWzUMs6Nc31ENu0c6uXUEzU3sRUkOI2yJEi35DXb18hf7sDppZHUATMhVRUIJe9OnXWd52795VsjEKHUv8cXdfh3bOn78AD37dJRM0lakxwh92FvW/1tEsAM1M0Iwh/hh8EamtqZUFkNuCHt0kM4My5KQn+vijew6g82rramTBgsVqnDPS09l8bX9z+xPN9tfU1sgi0CwoKJCMzDSlGBTWWOBvTU2NLFy4WHr0KJQ0vMV17dd2kXhAWaJFvxY0yVs6W+l4o+pCtPS/JftfXV0rixYtwoN8D0nHm2MnQY42j9GmX1NVLYuKiqQneQuaRm5jgz+un6prQHMRaPbqIWmpqbb/Yot/VRWQW7STDntqeopRCbSWomPuK/r0q6qqZNHipdKndw9JSXbtBL0Y4l9lZaUsLrI0U1JM42KMf5VVoMl29uolqalJkNGAQvJ8a/S5lXcIS8w16ibp6AQtG6yAPeTEMnjGPM6E2c7jEwnVhn9I5jbUfN3AOPU/GUkCMLY699lqoafv+e/lD6hExaGKqJ5QpyKBV0zSPHrGK69/lmHgBfjh8QdcIPgaEfL46+2Pt7/e//D+V+z8T12FI2KcjX2GHQIGR2JpqnmldltPeOEu0T1whOkLc95ziB/t4Gh36jb5cK15cOXqDdepcaYuzYx6PP0In8iTMK/CJ8opG+/57+XP65/HH4+/3v54++v9D+9/7Ur/Ux1o444ZT41vYvnEYrxYeGywTC5On+X0gvH6p2laXrPSPWYuOoCmPpOBMSZODR1+mCucT1PxgwhHy9MnM/Df8z8sE17+oJle/6AT1Av9M/BC/FBV8fjj8TdgVyATRkB44u0PbbK3vzSr3v/w/lcAJxQdqBwGLrbH/23iQLMgRUuDahvrDBglEiAd/NCG8UtfM1ps4sJbd5sa7C/rs6+acaoKbKydSWeFNjhaeunpg1n88/wPOwXgh5c/o0Ne/zz+ePyFLgQwwdsfoCMHXZoEXnv7a42p9z8oIt7/MkaUekKHwgbna+mlOhqUmm34X80/ItRy1DkyGkfjLKMaMzSs1yTAak315uNp1VtGbRGM+2NU2JwzG/+7rdrZnxphDwRFXnv6nv9e/iADUAivfwAEi0dAB8ADEYTw5vFHZ88HMJT8iQSPvxxr8vbHaAt5QZ1RvcGP2u2A7DDe21/DIO9/QBYgEN7+tG5/7Qg0lUqfSxR3A/qkkmSWmok8xRKNlKk4McwNluC5ZrDaGTyneoKOcwj4Oaeqsqfv+e/lj5rDENQm6ofXv8Bq8mF4IWZ4/PH4S+MW1JiwgHj7o3zx9hcOh5UF73/Qnnj/i5hBWYiC/1lZgY1UaLLN3AojaMQgveaJMeg8kmQw8NrkYCwMvVZjbyqQqO4xE/FlIZcv0yfcsJNtM3r6hsHKRDIWfFEAjPCYnAqGAIsR7fnv5Y9i4/VPFSmgHB5/gA0ef7398fbX+x/e/4qu/6lTONQrC1gc447BOaYxxled8Hi5YYoaJntgkYiPZyJdEsfMzBRt4/yhz1CTjhfBhzap+sU04iLB04+4yuoOe/57+YN6eP3z+OPx19sfb3+9/wEfyTlZsAze/4JEkB+WKY41u9L/NMvYsV84rYKvRPkPd+LWEOXN0B2mA8wbpTOsYKYTmHnziNckFtIs9oc5EXTkg0fXTI1t8mMWFvD0Pf+9/G2P/jXUN2C7U6d37kjVwrlqKg5e/8Jv6sgVQlTz4PEHEuPxH7Lh8Wd78McoEzRK7b7HH8MHoovH3/Zif+BAuykc6HarCxSAEOZaYIcVCIMzOaol1vZYp5r5mcUFXDs3WEuGi9gTK1e6V7wKGeMZkMA/XJoYT9/z38vf1vTvoYefkAcfeESe+dPjcuoPTjJqBOXx+mffdIEjOs2NmOMsm8cftWsef439ctbG2x9vf73/4f2vHfE/4UAXY4yKbitAhaMQOFXnFzrF2DiOYNmJyzw1RGip+axqkhjJKzvmjDObjso0Ben6bI9o1sly+quVsSRjPX3Pfy9/bdW/Rx/7o9xy811Qwzi5995fyS+uvdLrn+IKkcXjj+Kzx19IAuyLtz/e/lIOvP+hnpb3v6Lnf4aqKtdwtgbES31Y590aU0RrzvkcwSREmcwaHfmBd82sdJU1g+ZjWZ7wgHPsUmgK20pw4CC3p2+4EpBuZZk+zXj+Ky+sxBhxMiJpeOR+25n81dTWysEHHyuzZ89VDpxw/Pfk2Wcfl9zcbFyrIuLg9c/jj8dfVRBvf4AH3v4aS+v9D2cjvP+1c/6nXcYOEGOd5YDJNbhDc0x7TGcXR/cUx0SX144zI4aZeIAzba7wi4ALLW/lNpJmI5jH0wefmvGNbCH7HP9w9Pw3PKHIODlqr/I3d848OfSw46WiopLs0PDII/fLpZdcgI91zXsdjXTy4/VPhcbJjdUuwziPPwo0Ed5YtuDg8Sdsnjz+AkMIIwxOVr6t+FuySeSDWUkyd0W8rFoXkr371MuVx1SH28c2evvr9X9r+BdxoJ02OG9X53FQhBAgRVpJOA/FihnwRIsEOnUuuGdcvQ7nx5U75xGZGvERYhwmUFP5muZFBhozT99oL5kDdnj+gw1OhlRmvPxRkf75r3flx2deoHrExy+nT/fff4dce+0VERlyvPP65/HH42+b7M/GipDMg3O1Es7V+oo4qa4XKSqOk69WxcuZB9RKz/w66Z7bKIW5+JiXeoXg7Z8x9coMhzm8cOe7Cf6s2hiSMx/LlIHd6uXnx1VJYX6DZCZjwo/zlrz/EbEd3v9o1f+yHxFSvuHMwnHVN10q/YjT66AkRRRB9YG+L08QzKmZCx12dBzjNZEXyMfRaZPZ0KKzjODpe/57+dsx/fvNbx6TO+683+oRdEyVUyQtNVWmTx8nPQoLqcxe/zz+ePzdhv2phZpM+CpBnv1fsiwrxQNpkw/p1VCpsVMVs3aMisUH17d/sUnyMiL6R6Po/DGvf7sP/mzCg9GJD2XIGXgIuuZY8/aurf7HqvVx8qPH09Xtuev0SjliaJ1MWpgg172UKtefUCk/2KcujL/N+39zdUju/keqrNsUL1+uomwZWE5KEKmtC8mQ7nVy1XHVMrQ7ntQoat7/aqP+qUqqFuogkrV/zfnPTou2/2lGoNmT4WXptO9IW4VEr3TeAHsbV+4Rm+fMFAjBKHfe9MgrU4HGOyKefhP+FxUtlbf++Y4c972jZNCgAUbLVNvC7DN94fkfkL6mLGkqdy7tuyt/mzZtljvuuE/++NSfAzwxXNiwfpkkJyVBXb+77WejXZ8Hz12cOfr2e/xt2f7U4EOcC59Ol6JSDhg5g6ynMOLQHOCvQvA27N/dP6yUwwfXhWXRy1+El7sL/tz0Spp8+nWCvHP9ZslMhRHdDv/j0DszDdDYjn3j55vl9Efx1ITAqPMOqZGLj6zeov+f+jBZXvo0GTmM0e7TsUEW4W1Gn844rolvYv+75TTKSXvWaF2sVx++vP03DN6G/jmXqKnemaKxkL/wFI6mBEmKT9WRYHxok8v8MhVn6NgQPk4wN4cojihzWgdiXJw5M/WxLIPKQ4CAqdM1tH3T32PPg6W6qlqu+NklctWVlyi/PP8pM0ZKzK+XP2pLQ32jvPfe+7Js+Up8UDhPXnjh7xjNiBhwCs+HH74tBx+0v+qz1z9VJ48/EARiigtGp9on/o7HiPMtr6aG9SNor8ifn2FebH84OtnpjZKAgaZ15SHJTmuQipo4zJ2Nl3vfSsKH8FazwNNxd2zy9m83tf+zl8XLz55Pk8vQp2cfUOPEn55Mq/3PTNSV6UsT5KoXUsN5Gb9XrwaZXkTfJtL//4JjngP5cHGzV8TJ5X9Kx3SRBnn03ArJSIGEIXtQ/6YsTpBJC+LlX1OTpLzG+D+5GY3yp0vK8VYD16Dv7Z/pJfNL8MLZN+x/6hQODmu7/RjYSXx1wMAb5a+KAu8V0SYuKGyI0/dU7tFAC+GHQsA5zpF4XX+UDdZUywDk8PQj/C9du04KCwZJ3769Zc4XEz3/vfw10b/amhqZPHmajB33mXz66SQ4xx+rjBiNxGkguMfYZcvmSX5eLvTU6JrXP3LL449B8/aLv3UNITni3owW7c/tp1ZhJLlWkhLaZv+Wl4n8+AkzEjnudnydBvny9m/3s/+H3JWlCPnuDZvgyPK07fJ/15up8uEXmG+B8MBZlXCc4+XVickcL5QD+9XKZ/NNGt9A3PPDCu3/DZWNcv7TGXLavjVy7iH4QHEb/k8Z5tr/4KF0pUGc7pAm8qtTK2X/fpga4v0v9R3JnAh6f7P+py5jx7sJGxS9M3t77EF7q1wBxzwBmd2a2BLrZ2ujWMIEFrJOM09tVfrIZanorGrEQ5bMxxc8dxk1vy3E8ja+vdAvK10rBT0Gyxln/EBefPHpdtd+093tt/9bav/ESVNk8sRp8tH/xsq48ROkkqtuQDda07/ExDiprcU8OuSZ+OmHssfI4UbZUDk56/XP8M7jT/vF3zqox1V/TZPZy+H0QJH4Ly0ZH5btXyMXHF4FLYHybKf9OfRuvN5HoXG3b4iUt1Dm7R+Z+c3iz6SF8TpXmfg39rZN2+V/YNxCjnqAzneDdMKBUzeIv/diTvN/ZyfIny8th6NMx9e088ObN2HanMiDb6fI+sqQ3P+jKqS0vf0fz02SX/87RSqqjQANw8eOf7yQ87W9/6VDsGBza/ZvV/qf4Skc6BkN5i25fep2kTjyFUIDhql1IgbO9UlK30FQKDiCiiMtEgP7nFKqfrRJtylM1cp0Tpm5avLb3ulv3lwunTr1lXPPO1OeefqxMG88/9uX/C1fuVKnY9xzz29UBhSWjXIY/bJA7QSESY8++qDsOXKEDB82VFLSMN/O659iDfHJ44+TFBwBJu0df4+8J0tqqR8BPfroFjg9iYiCHYu8gGceZdk27d8fPkiRMfMSZfRVm7392w3t/90YQaaze+MplXLySIzomq5t8tua//HIf1LkDUyvoP9TmNMgL/0MI8zQo1pMoTvyvmx58fJNcvVf03V6Dyu+DyPUowbUyaKSkHSEw52JaRvh0Eb94xzpnz5lR6NR/OxDa+Wyo/Bwh3PvfwHT6RSBGd+k/xl2oMNurloa3BjAhVMz1CfGpRpw9pwG8yzFtWa1M21s5KBNQpJacFsCBxTXrb+1btN0U7M5d08WmrGd0mc/ZGZ1lyOPGCX/+ucrnv9G8NqV/F1//a3yxBPPmjbb9lOJEhISZMiQgbLXXiPxf4TsvfdIGTZkiCRxqKNJ8Pq3xetz8sfjj8dfOHYryuLkrCfomNCeheTUvWvl2hMrcQZlo74xfgfszx/+myzzV8fLo+eVo5pm0xdstd7+gRFtsP+NeEMwtShR/jktSXrl18uURfHK24uOrJKk+JAcPawG89BNV7EXm4Yt8a+6VuSk32RKNRyat6/dJDmYz85/bfU/fvR4hqxar8Ih5xxcI5fCkXX+z2Pvp8j5o6plCeTq8j+bm+qZL/K3KziVx5RxYrW9/T9rebxcoXWaFl5+dJWcfVCt3ruj35b27yh97/+B72Aw+Wfkhf0Q8X9DleVrKG02AxOZzY7YIJ7bFOqmDDwHN1nUVIYyGscyLGVfDfOCGagkACszzG4I8tckMpMpow8RyO/qZGx7p1/QY6h069JZPp/8sed/O5S/1LQuRkGsUnTulC8PP/yAHH/8sZKWlhLWFa9/Dl8MlnDQS42Jxx+Pv1uxPzfjg8HxXyUaSwOBMR/9WdnZCfvzwFspkgn/6arvYZRwK/SNcht63v6BGwH7vwazX+55K02WlMTp1Iet+R+ZqSL/um6TxNPPQDVb0/+n/pckL403Aw1mjnrb+c8bPOXhDFmH+cn0YT7C9IwkvKlojr/1cPqPuM+u0oH+H38npolYQDJeDS8ITibolY2yUI+ELf2fpSXxcvnz6bKxyvhfN59cJSfsWbsF/a21f2foe/8PvY4Oasn/DVVVrAnPvDC9zU4yDq8VMdPnKgkmzXQyep61RuTBloPkaHn8Eh3woYY60pQZ64BzvV945Vo9i7MaDQEa7HDNQAKaidftg/5ee42S1WvWyMoVX2qb21v727v8rV+/AStrfCgjRgyRPn36SEoqpmMEdIN6ofrh9c9gg4KHQQf31kvRwuOPx98W7M/Bd2XAJsGoQEjOPqhGLseKDBoCOrYj9ueKP6fLGftXyZFD69V6efsHBrfA/9bs/5i58XLba2lq5Vvjf2piSKqwWDf1W/sPo8GXH236z9iNlv2Pn/wxHcvGxaPuRsx/3rhd/sfclfFy6XPw1lF6/74N8vA55agFd9AC/h58N9eI5tuHRnnjmk3SGdM3ouH/TMH87Wv/ZnjDhvMjxcMGme9cVHb17ti6lttv+GUtq/e/tqv/0aFgOTm4pf8Zqqxc3dgInutThvYEMrIAf+jwoiB3DeS5dgJTaJh4jSxxTDcF8MscJp6nSpe/SpwROOcfi2sqCDPZ02/C/6OOOQUrLHwupcVFkpGG5ZU8/428USwRvPxRgbz+efzx+Lsj9mfUXZnW/jTKb8+pkP371DXBXzVNapi2z/5xGbIRPRokFTvaefunpt3weRv2vwF+4F1vpsn/5nICuvEJWPqH+9XJQf1rZJ++dVvg//gvE+Wm0alS0KFBXrmq3NgFMh3liAvN+X/ek2lSVIaRXDwsnXNgjbkvS2tb/sfzE5Lkuf+loEyjXAFn/eyD4bC3gr9sx3/n8MNUkV+fWSkHD0TjttH+bdF39v+yv+CjVyzDRzeK9X+AOftpCd7/+ib9T8yBLkYPoDfCTpoBDSuReiCW8KMT9poVURzxwsA60kzhRxcMPA9LsK1TI00yU21O1kCXGyU8/Sb8T0vrpHx659+j5cgjD1Omev57+fP65/HH4y/hkHKw4/bnEF0tA5ALlL3imBo56wA4RN7+qd2mPXbL2NI0a8AxVvaHa0qMwhuB5vx/8vwKGd4DzidDC/Q3VcXL8b9Nl9Ow898vjq/aqv+xDjsPnoKdBxluPqVKjh+JCdEqQW3zP87C8oQr15oJEs9cVCGDu/EDxJbl74WxyfKnj82GKZcdUyXnYL6y8jEK/k8dPlg8HFNEjCXEAwbWsb76WLNpi/e/DINVZN0T1C7wP0MVmMKhRN2EHusUU8AiATkMcsM3xgsKOLwu1US7RJTQyqzM8BxJrLIBjYnjUxsrZQQyUlHtoiy4JA2b2TGAeTW0L/pHH/19mTBhkvzjzb/JcccdDQ60r/aHH8Bs7/v2+/73+GNhwOPvTtufQ++hM2XsT59OjfL8ZRjB9PbnG7G/z45JkRfGYm6y5f8RQ2rljtOqMK9ZPQVrAbbEv7HY/ObON1Jl9NWbsdEIRq0DNpKFUCJsRiYtwFbbL6eo/3E/RoUPGUQHum3+x2bMOz4eHx86/Pn4ts2SCP/F3Z3xZMwvIz+YnSj3/MN8pzIAG6c8dxE+KEV8tPwfjqJf+FSa1Nhni6fh0A+BQ7+19keTvvf/mvq/upEKma8igB+VY3QHgxFCpMGxXYcNPjIy0iQpiU9XJrCUrg3NcohiHc0D4614axI7U0edeaKFWKpl+mtBMz0jHTST8LzH/LyXCIVY0C9buxbtzJBkrGwQbH8s6ZeVgbeZoJkImiD6+O+flhtuvEOefuoR+cn/na38jzb9srVlWO0jAx9D8LVZy/yPdvvLytZKFnibSBlqQ/9Hg35ZaZlkZGeBt2ynIdtW+dtR+qUlZZLdIUsSQZN17Kj8bw99tjML7STNYIgl/VLQ1HYmmHYGVDN8C9GmXwze5nTI1hVJYqH/LeFfcXGZ5OVkSgJ4G2v8MfQbpaRkreTmZEu80uR4V6zxrxFTxsokN7eDxGO1F4btkT/NG+71yMnW+p9uSElJqeTl5kpcPF5NmyaypRpiQR9bBsrL42rlyU/ybANxfWWFdM/FUE6M6NdDaKifubk52MkwHu1Dy2KMf7TZ1M880AyRt46naGOs6DdYmmxnPGgybK3//zMjUR54m/5ExP6Mxy6Oben/m15JlX7YHfLCI6qEeKsbRcVxlLhpIP2P5yVgbjXnMIuMvrJcumKr7Lbyf8L8RLnh5VSrf3b9aNvO/DzDW94w6fC+35uZKPf9U3doITkZj011ooH/2HJWyuAP5UJXnv04Vf6GaSUaQJhrWpvxcRMV/N0a/81N864j/A/iX2NDg3BjNyO3qAmJaHo4xAJ/OZ+4FH5CHjb+ikd/0r+kLMcS/xqACaSZD97G44tU10Tt023Q12XsNCNLtdALTCsvL5cxn0yQzp07yV5YOotxEZHRC3NNUGA9WqGJJ0hyUj3dCDKDWZqHluiXl1eA5nhdjWLPPUdo57FuDk7Hiv5mtHMs2tmlWxfZizQRzL2BMO49FvQ3bdos48d9Kl27dpWRew1XGqNff0v+7yeXym233SC/uvk6FaBo0t+4cZOMH/+ZdO/WDZtsDLNtRGNb6X/96GMn279xw3oZh53zCrt3x8dxQ5W37sfwOPr0N2zYIOMnTJQehYUyfPjg7ZK/pvfW9v5fv26DTPhskvQsLJBhw4ZAZHZM/reH/tp162XiZ5OlZ88CGTp0sBVaU0Os6K9dC5oTP5dePXvIkKGDQAy9GEX9b6n93GRo4udTpE/vnjJ4MGkGwSQ29On4TMJGNr2xM+jggQNiij9O/4rhVE7BbpOkOWRg/6jrv+OtO1L/1qwpkSlTp0vffn1k4IB+Limm+LdmTbFMnTpD+oNm//6gGUP8cfZnzepimTJlpjw49bQmbRxzK5wQ+nxBkcKlwaa267+W10Kmeurf6tUlMh287T+ov/Tv2ydM150YGriKYvtXrVwt06fPkgED+0m/vn1R+fbZ36b31rb2r1y1UmZM/0IGDR4AHe2lVbSGPzUYND3qfozsIrD9h2DNZK6dzPNgMLzZkn5FdZykJjXISqyXP2PmbBkCPOjdp4fpPy1kaiH9v41PkWc+wsMvPhx9DfOlu2LedDAYGohpgf/Pf4IpGWMwKAH79/29auW6k6pkxfIVMmvWXF1StFcv0NSAWoB/S0vj5Own8SGhlaOxt29Em1jxzvF/GWh+QZrDBkmnLj3lew+Sd4YId808ZjgYGmX8Xbp0ucyZPRc2ZZD0AM6TXCz9L7JpSdEymT1nnowYPkQKYUNb638jNZbJAf4rS5r1/7b4v6RoqcyZ86UMHzlU/ROtzv5si35kCgcLGBnQosZpMpE8X7hgkeTiqYBPI6yUc27gDut5sBmmsP6aVGwhaHIGZFs7GrWgXnWqTfYm9Bvw9LNg4SI8ieSFaTo6saJPZVs4HzTz83SUSxtnfpq0M5r0OTpB3nbsmC85GP0ha8bBuT3m2B/IhReeJ0/8/iHlDmlGq/31WGRzwfzF0qljR8nGKBfr1oATp/jB/mfaztLn0+x8tLNTp47SIQefJlMTt9L/0aDPJZDmL1yAB78u0iGbHw7ZdrRB/naUPuV2/tcLpQuWIeyQnQ2COyb/20O/DusnLQBvu4ImR6GdoKh2xoh+bX0d5HYxHvy6SFaWMYQqQ/yxghpt+q6d3fGAm443NrHEH8f/OmxZt2DhYino1lXfErF51AXXq0G9YJqGnWx/XV0ddGWhFBR0w9uwiJMRLf1vbEH+SZN4W4AH3Ey89XPtN621emObF632c1v6BYuK8IBbIOnpWP8NFccKf1w/1dXWajs/XTVI/jIW23iTJv4dPaxWbj+9Eq/5bRcCm7SjzY/+7ij/a2qxoQZkqLAH2pmWBpqoKcb4VwPeLlq0BI5Pdyx9ydUbjFrqMUb0leZC9GePQtBMBU0y12lKU/qvYQvsx99LDvP/nes3SVYaPIXt5H9NNdq5uAiDB4WSmmpGmZvjz0XPZcpXK80oq5lbbT5KbIv94eYo3LKbfHvkvArZu3e91FRXy0LQ7NWzp6Sl8uPCSIDJkcPsHPsEOOwf/WqDxOG4s/wnzUWLlwgd9tSUFPnZC2kyc4kZ5R/YFVNFLjYfUuqd2BvaGv/bIn9VoFkE59LRdO1kW1yvunZFOICznaBfVVmlNHujnckp5u0E6w7SiTZ90lyyZCkewHpKip1h0Wb84yocykzeJRvOu9MA9kOaKRDhKGSgNx+uXEEmkhouiXJcG48OKT8U5POeycVfVEjw0Kc9Vm6vWRinEWLtl/78+QtlxB4Hy4knHiOvvfZihCVgkOe/lz+vf8QN4gWPBlkIHy4Qtzz+ePzdlv25+ZUUGf81nBDaIwaI0xi8Due6whSwb5v9ozoUbwzJcnzwxv+r1sdJ2aY4+Qyrg2zAh3Rs05Du9ZIDR7VnpwYZUVgne/eplZSESPtVr9j8GLa/EUvbjeJ6yaq/jfKDvevkuhOwdjbuPxb0nx2TbOZZo/KXrtgsPfJAqA3+B3cZPA4jvRwtp0y8eyNWvcAyetvC3zN/ny4r15mpAG9cg52Fs/mll+GpNjIK/k9FbUhOfyRDNpsV/OSJn1bIHvajS49/uw7/MQJdrK6uCi+FKuLtaqeb0WNCUSQYOccvjJfZEtamUkpwqulWJ01BjTGJtlajKQ7ibCFPX/m/cRPWj+zST/becw9MQfgvOOb5TwlywUgTfr38ef1T9LLS4fHH4y9EQfGhDfaHjtDNo9Nlwld0ooEusD/79qqXO86olOxUWj5Gw8btZvgLv05WrQth57t4WYK1jResidMtqiP4aJx/vWa7DEdccpPr1KSQnDCyRs49qFrys5F5F9j/1yYlyuPYvY+BD7of37pREmn7Y2T/X/4sUZ78r6H3l0vLMXeaX+CZ3jVDfGg3+dSM/gyM8F75QrpGD8aDx9MXmlFeZqVMtGZ/rsCmJ18sY2Uif/i/CixtCA/c0mt+3Br9bcnfE2jT6M8wio9/2Xgo+vf12ELeNiU8rsCbZWQM6LfWfqXWBv3jfe1M+3cL+pVYhSPMW2UzG2W6jqxXxnOUGE+N4WjIhkaZVBvftJOCNWg19kdZht7l2odaCSsNZDZgFYjQ9PZHPye3B6audMBr8lmW2QE+ef63O/mbOX2O5HfM1XnrRHSvfwFbr3Dh8ScCpHT6jNkMYi/PPf7CZAfsTwMcuMPu5Wio4ZSzP1djN8Ef7l+DSOLu7mN/Pp6TKLe/iVUeeEt6d/b+OJob7nX2fkiSsEZwRkqjrN3Ma4aQjOxVJ5iVJBsQV7wpJNV1LC/SKRMbf/x8M05jb/8veDpDFqy2IAaK3AmyOf/DEby5neT/y58myZMfmukAf7xgswwvxASENvgf1/89TSZiBQ/ey48PrMWSh1z/GZfbwN8730iTj9BPzHzn6VVy1FCu+mFCNPVvIXZr/L8/YkUZ8gf9/9Etm7XP2aHscd5q8xBN+uFnLSXWVP7aDX1u5R3CxK9G3aQdTNCWb9l8xx7TLUznf8dCm8oRQXYb/5DMOaghG6f+NyNZDp2tc58tCnj6W/J/4KC98IHEGtmwfinmUJnXQeSeMld5zyvPfyuw4AX48R2VP+5KeOpp57Dz5fyfniNPPvk7017f/5YPHn++y/JPubc9HDiLLv79dRw+NMN2zwqtaqca5Qxs5HHJkVX4WI1uh0mK3El06bfV/haVhOQ8Ok16ow1y+OB62QfTMNaVx0s+nGCuUczRcyyYJcnxmDqwFfvLtqwoi5M5K+LUxhwzDA8MbJZtP87CIZrtv+qFVJm+JIFwLb86uVKO3xMbm8TQ/7iJU3WwmgbdjRtOqpaTSY982Yb/cejd+J5Ee150A5azsQFLW/r/Smx4MgMbntD/OQz9c/+PKsz4Ywz8n8g9hrApUJUc2A/OOtpJUt7/ir3/qatwRJTDyAcFOwgZqlNUpfAJL9wlXGYIImWRr2NC/GgAR8ybt6KHfLjWPCjj6g1W5ekbXipTwQzyPyWts14uXjRLPw4jjzz/wQNlhLLGsuO7L39jPh4nx594Rrj/P5/0P6wqMrTdtD+MFeGT9tX/4WaHT3z7yQHDjujp//tYguzetzC6i4qdnSKdM/arlWuOwxxdz/+o4C+dPsfK1zBHuHN4jjCYbe1fkP8ub7gQOwXBxG+7/y//U7rMxkMCfZTzDq2Ri480m484U8Ij69Jg6XO78KMfoANt0t68drPkZyHRFbLxfFtP3wbf4GK+ebxsqmqUX2DL7fV2zjkLjMfa0bHyfx57H2thf46HEdzXj/avlau+V+n9r13of6oDrVJiJYVvgiAS+IFI4UbYMy5Ox5f1gvH6p2laXrNS7JnLypmeUOJ4YuLY0UaYAvk0FT/I5mi1d/qpaV2VK2PG/Fv2228fsMZw1nzAAEaZP89/ihcD+QHh+a7KXxoeqNBEaqY2Fh//mut20n4v/17/d4X9WYGP7+58I0W+XIVX99QttX8hOXRgjdyI0csOaXjrR9vo8XeH8eeQe8xuesSzD7EddRJnSTAgIhb2/71ZSXIfHozYnT/Hzn2nY+dJyhLpO/gk+SD9KUUJci1W4GD/98pvlBcv36Ql1mMa9HzMO//9BymCxVUgDxjFxweD3O2QLwRVZFy9SqBR/nJJhfTrwnUrtLqo+j+6ScxLWH0EtIZi45anME873C5LXxPtPXn/C30EJmyr/9vqfzZxoGmkWLUGKwkuTvsCP04IiCFYscvQsYKhawDR6W4SeG2nGuBUO5A0eMJgDzx1tHhuCEXiWAurbi/0L7zwSvn7y6/Jf99/Uw459GDtlfbU/vbe/83bT8uSmt5FVYM/1//yKrnrrlu9/gUwweMP0NHjb1hHzAktx/bbn4++SJQ7dUc5axNpePBa9YLDq+X8Q+GAoVpv/2Cfd0D/DuHUCGv/x2HVExdiZf9nLQvJz/5CZ1jkFGzjff3JmMu8Df/j2f8ly1/HczO1RinEqh2Uopp6rmxi7rZp/8MdAz5npzdKATbkScVMoCmLzBJzg7s3yjMXso2ogX9UUXfCqihXNuxI+zdhp8QTfosHEj55YG72WKxnznuLBF5sv/w3tz+sxfsfprvYh+H+b/4RIftTOwAnZJjJjK41j4Z6zc4hrCBVf9FvBrcZtUUw3r7pQnPObPzPNTcV77V3TEHGe/oiN910pzz22B/l7y89J6eddornv5c/ufqaG+XZZ58n/GKt8lxZtnSe1z/iCP4rjhA8tggefzja4vHXWCvygmLC/9uyPyX4yO6WV9MwGm1X6TDej1z9vWp8YMj1w7z9Uz6SnwEbjstA2FL/DsE6yY7/Y7BTn24gyAgEHqJt/7npyrEPct14cy9jQdPRb83/uPRPaTJnud3BkTekN8Y1I0S6YCrHyg0iHfHtKR+oeuU3SGHHBsnGB5sMS7CZyrnYTMWFyG6EsfF/RnHdad4iyL+KnRa5q2YkbMl/3iX/b0v+yRvv/1EeITmt+B92BJqiRUabwKMRBV4zJbCaMxPRP1opTkzlwRLhDCja/Nx0XfiGjOlDhZ5+c/7/9qHfy2233yuPP/agXHTx+eCQMYHaSZ7/7VL+6usbJCOrm+oVVxKYPfsz6dOnF5Tb6x9xyoTmmKPKYrHI4w/55PHXGsQ22p+pRYny879yGTTIlooX3HAcx9y2AesDsy5Gevlrq/6NuifLOCTg/+vXbMYcaFq/2Pofh97lPghslIfOrpL9+bFdK/1fjunux//GOPnsV/o/ozCF57xDa6VPp3p8nLl1/6e6tkGO/jXoWbn4GKPsCRQY1MT/0da/Q8JtEyy1V4m1vtE20vP+F/gdY/yvrMBGKgoMOGj/gvHsa33a5om55JHJwcBrk4OxEDQWdV/TBhLVPWYiwca2J9Iwm9E+3ZtKWDHiVQAiNJgzGAIkEP3dov+X51+UK674pdx++41yy02/0Ga3p/a39/5vrf0//8XN8vRTf1Z5uP+BO+Taa66wKvHdkv/W2m8bG9YHjz+OI77/Y2l/uDHJWU9gh0aw28lc5w6N8trVXPqNwfO/rfwfhTnQ5BcZ99DZFbJ/X6yrF2P7f9bvM2T5eq6MIdi4pVZ+eVIFaOIGOLLIGwnQH/t1gvxqNB6Y0KCeGF1+6YrI+s/saReCstC8/w+9y4wKM29k85bY+D+3vJoq47CWOVcW+fWPquSQgWYlDieo3v+CblI4Y+F/6hQOlYgtxAH85wsLTH5Hx3AlDSf0iiK4ivi4Js3mIJSgLK9UNHXslAuxcT+eOBRiKhvEjo0ET99wy3Dkn2+/I2eddaH87GcXym8fus/z38sfBKNR/vPuB3L66eepkAzs11dmzPoU517/yBuPP4rQ4ITH31jYnzrsYHLE/XCMrNmi/euJV/cvXgFnzMtfm/XvyQ9T5KUJyWH7Pw5TKgxTjc9AcDMyHD3/Yy1IfP+RTPU/0pNDMvrqcslMgTcdDhH/gyPkDfC0nf/zMVbRCI8gO5BBua35P8diBY8qDnKjFm5Uc8splTHzf259LU0+mWemm/zihGr5/j7mI0lDXYcq4cl5/ysW/qdZxg6yo68VtIsBPRASt4YgBZlw7FYipsipM60TaNhFKKyyx0JMZBx/rHCq549L0jAH/DYNOr0ERE0Xe/rk//hxE+WYY78vZ551mvz5z3/0/LfC1d7lr2zdBunefSCVUHVq08blkhCPz9hVaaFXXv8sEzz+KMrupvjLraWvfD5NrsSqCPv1rfvW2B/uYXf5cxkydxUUjfYOP29iA5KOboaA1z/whExoXf+WYe3ps/8QmSNs5pTXxtz+3/1manjHxsHdG/Bxnx1Zpm9i/Y/SjXFy+mMZ4Tfl7OKLjqiVnx5aqe1qq/057dF0KdmIIqp/2Czmto0x83/MaLeRxwFYieNPF/OBrnX+I7FJ8P5XpP/54K2m1O5hsi3/Fw60m8KBSoxNBnNRCZ7AsMMKzhUl7FHRQc/VqWZ+ZnEB184N1pIsqkXsidUr3atdExjPgAT+4dLEePrz5s6TvfY5XI455nB5+5+vgEeWh8ov+1BDfnn+K0csWyBG9kmbHAuzzJ58R+Qv1a4RzuZMnvqJDB0yyPAAzWwP7acuePzBoMa3VP/LsOPwDzAa6MIbPy+XTlwLmO3RyN0b/yl9XMvY8X8/TEF4+Bw4LbuR/hWvj5O15SGsSxySCqxNXIUVJGqw7Foddh6sh3NQB8euAUdiJHWJf7lYReJErFLBi1jb/0N1HrSTAJHeGMn/62VwaAlqMaJfhJ37zsPHfc7/+NMl5TKgCx+JTPspf6c9miHFcKKVMfCkOOf5hpOrZGh3MM/cHI7bxp+ZRfFy1QvYzUbb0yjv3lAuGdjghn6to68Cg9qC9JFDr7eH/2djatEyTDGi/B0+qFbuxjQO73+ZLnT8dzyONv/hQBdDldhtEAo+heFUmY+OZ2wcn6DsxGWeGpBDCvJSNpjESF7ZZx6c2XRUpilI5/C5KatNYSEtxyc0T5+cbsr/1WtKpFefYbLPXnvK+LHvglfgkmOZ46/nf7uUv/32P0JmfTGXGiR/feEZOeOHp1C7vP6BHwwef3Zf/OWKFhc/C8eC0qsGIaRr1w6DgxJr+1NUHCfz18RLJRbQ6IBbOGwI54rumP35xUvpMmUh5p0SutGO8bdv/kb0rxqb4y0pC8n81Qny9ep4WbAmTmYuwVduymFrf3FudgKmlVHOm1/Lf8ZSZ1KS4+Rf122UFC6Bje5h3ljZ/9r6kFz65zSZzxVOLP0GDNj9YO8auebYKknETtjbS39zdUjSkk1b1D9pwf/gCiDETXKhf9d6eer8CknGluekRvk7BHOXg/7PBEzf2FH/Z9RdGMkGHdLTqT6Xl2ubHH0n/zvr/zzzcZL8bXyyyt/lR1fLOQdxmT7QbaH9LfX/ztJnO9qr/QlVVa7hbA3t5EDvUsIgOEww3R1mfPjEZAn/EoiQla6y1qb5WJYnPOAcuxQaSrYSHDjI7ekbrgT5X1tbK9nZBdKrd0+ZO+fzSJJlnfI0+OP5327k7+57HpQHfv077f1bb71efnXLL1W/vP55/Nmd8fdnL6TIrKXcNaMp/n+CVQrUyjTHtijZn6rakBzDucvN7M/LPyuXQnwktr32h7dpPoQzALxPn3p55JzKXYI/oz9LkvewRvX81XTzAiGM/463OKrtbpRkOKN5mDGRm1mHUWYcMxokB8ccbAKSm4nl1zAymoPR544ZjZJml2LTmqPEf1PXlvZ/cyXmBz+UYfmPdKUXbFOjHDywHqPADZIAsfkCDwaL8BD0vT1qJQHNZ79uRB1lm0PYkjxe1mzEes/HVuqOfEbEKFXkBw+G/uaqOKywwekjpIel6LACyGtYCSTeZr37LUzz+IIyKroF96GDOEJtamEWJ7o8bRLC/I/4P7e9niZjMDdZg6V/7PB6ue1UTrEw9KPh/zzyboq8+TnWrEaVVxxTKWcd6D4itI3iDVj6Stc1giLi/a/t1n8DVtqrYpexI4ONwgVYrjkofmqYTbJ5aDJltR6mR55zmYkR5qmLaRoQp9UzAucRGjaCmTx9ZXSENyKdO/fTL0fXrJ7v2OP5D5FxcuV41d7k78WXXpOLL74SehSSH599hjz33O/1XDmjTPH652TD44/B3G8Sf8trQnI5RhsXY3SU4O/6ZhReN9+H180aYoj/P8fWytzYggOuJD6iR72cuk+tHD0Mw7d6Nzi0kf7UhQnC+qhr1DJiz91nVMgRQ+hogYA2Ljb69xVGay/B6D0pB+mzWXugTR2zGjAVplE6ZzZKJZrGeb6copAJR/mb7H/ebmv06zASzY8KX5sIpxWOhmlZsHUabQaBKT5obEvtZ7luOQ3ywJkVcLhdDkQyNKM/G+s7Ux5Zk33fLp/cuhHrURv6HMXn7oiFeXb3QFceR0OflWq1WkNr9qcWInHEfWY1jmD7X7i0XPp0pqNN+rxzhDbKX0v0I6PqjXLggHr5zVl4mGOVWjF+3P1bcpG06NBvrf3tgX7EgQ5z1XIbwhruAXBCnehwHrKGGSAEFPowpzTGiYSRDZfmyvKIYo2YQBaHCbxkvgaX7nrb05dBg/aVpUuXycb1y/FKK0EfIg27PP/bs/x9Mna8HHfcGVAb7JLVo0DmfznV6BB+7fiHuQ7rFC7dudc/jz+7EH8XYKT09tdSzRxNJ6WAryuPq5Kz9se0jV2A/z99Ol0W0nm3gbvfbY/9qcGA3ifzEmXMVwkydp4ZnTQK1SBZ8MP+80u85rchlvrHaRhnP54hRw6rlcMH10teRp3kwD/jXGwXYkmfg5ixsj8cPT7niQypxhxtdSbV/luCaF9T/4OtZRpGpjF0PBQPCscOr5HjOTJNP5zJDLZ4k3NTTF78NFGe/Sg1LH9HDq2TX32/Eo4zMtCZjZL/sRTzrs8JbKrCexl9Vbl0ya2Pmv8zCutAOyf2FEyB+eWJ9qF0K+3fHvlnnzflPwWODIK0tXP/z35ESFmDMwvB0ZF+9jKCzqHhGL/RGo1zQql9Qz7yBMGc2qdy13GO8ZrIC8qmdbh5jv+6BSXKe/pb8v/gg46RaTO+kKVLZkvHjvnKZ89/I2wqYkbolC/mtH3I35TJ02XUqOPCWomlKL3+KYa0j/5nZ38b5P9fUxPl8fdTzHJeHGUh5gP0HzyzEq/mOed51+D/M7otM+YxWPrnHVQrlxwNJ6MV+pUYMecUiSXFIflsYZKMxxq74YAyjv/84I4fmKlz4eUP7IyO/m3ECi2fLUiQ6YvipD/2jarF8oHcNv2LZfGyFLv8nYx1nLtgtL0LRtt7YyQ3JdE8hm0v/dveSJUxc8wDEcee6f/8DTv59cTIM0O0/B/e+8PvJsuclfFyDXaxHFmIoWnKYivyRxFjaCv9K19IlxlLuNldozx6XqXsjSlFlFGVU9JR4xjRPx3wjCJ93quSwK/ykQ1oJ/TNCDR7Uj8pJitMMAyxF/reAHnIGMoWj/zPTIEQjHLnTY+8MhVovCPi6bfI/+HDD5CFCxfL1GmfyJBBWGkhwj7PfydY7VD+li5bLgMH7x3WPzrQDI4la/ABalHREvnwozGSmZkhp5x8gvTu1UPhzeufxx9KispKjPCXKz9c+2KacMoBjXqYDK6eu3izDOzKT8ohvuEEXMXQ/lRjAYWjMQea5t0pjaO/Z+96mb4YThTod4NDVoztu+us/8E8DI2wf1y6VR0ea//uOaNSDh/ClRkiIVJ7RBddnDny18tfrOWPPdKU7+56S/5/8mWC3DoarxEC8scR3BP3NPOstXd3c//nUG7lbds8+hqMbnNFG1yH1cumGfn38hdN+QtP4WjKcPskwV6xwciQyWV+bfcAVUL4OMN0DjITFTmsjxgXZ84YYwSZVSoYMcIGTz8o8Ib/KXa5ssewnfelF/0UPPP8J5fau/zV1tRIVofCsOZsWFckr7z6D7ns8mt1FIUJTp9sJj18/PE7csD+++i51z/wyONPWDycvDjdMggeTlZetQV/ijBqe95TXOkgYhN64UO9veConrF/jRTm0oDvevwvKomX8/6IJcxsk4LyTzFw71m31v5BBY1yOz4AYxvCjwXe/n3r7f9n8xPkxpc5ncPhZqP0yG2Usw+ukWOG1+p86N3V/5m/KkEufDbFWkWRsVxv2vtf0PNd43/qFA6+VsP8eRUggmRkWgXRxkIh0yFhYQAKCxvi6NiZ9exYwAY6OpzjbB/ZEavrHxJwcB4GIJ55+i3y//TTz5V33/1QXh39vJx8Ml7Ze/57+bPaldWhQGo5OVOD0Sh7ET64x9hAhKwtXSJpqQTcgLnw+tei/hms8/inrjAhfhv489GcJLn7Hyn6up3SxZfKp+xdLdwogx9lfdP4v3LKyWw+AABAAElEQVRdCFs0p+lSb2Gd2Ir96YvVH07eq0727F2rK0Fsq/0R68javf37Ntn/aqzo8dKnSfL6lGTZXEHpNb3J1UqOw1Sdcw6uxs6FZvCGaRH0pFxTOSJ+DtN3Vf+/hWlSD/8nFeTMPZtdHXcdfeXDN9j+b5q+LmNHaQgbVL0j/bF4YM65ApAZgdAVnTXN9pl1iFVq8EOzY4WJp7YqHXK2VPRpH/Gw22q4PP2W+e+WK3vm6cfkJ+ec5flPRYVs6SMYTtuz/KWmd95K+xulb9/esnDR4i3074orLpbfPXSvlvX65/GHAyc7i7/1mPLwxAep8vpkzie1FeLsyGF1ctdp2MFNo0w8zcHugP9fY3rJRiyX24Av85ZhXu0G3Oa+mDvKzUQ6dajHMmm4X96yNWDe/oET7QB/qzEm8en8eMx7T5LpWDavhLuMQxB+jh0zT9+fAxa7l/3h9A2jWSG5Bh/mnrGfuUcVXpOwW+ofbfd3wf6Ep3BQTBhUR9CyyAs4G48GNwBUdCIGG488HFEgwOizNs4Zp4HRREn1o026TTHpyKtzysxVk19PH+yw/P/DE8/I9TfcJg88cKdce/Xlnv9e/sL6l5rWhYIS1h3qzfHHHSO33nqDjNxjuIS4sCkfevGTlt41nO/OO26WG2+6xusfdCzCvTB7PP4RqC3+BDGbUN8S/pfCwbjt9XSZsxz8tPjfCx9h3YMPBXnk3A/ah2BdjPP47+Xv26B/JVgdZAm2Ht+jAA9VSbuX/7MCb1R+jF0Ijf/VIC9cVqE7Oiqwef9rl/ifYQc6DHOKdERLOtNQcgVU+xATNjlUfixDR6uNrFsqgnYp4tWDVuvkqtWtp7VulmNJTdFzhVmX0dOXl19+XS7Aer/X//IaueeuWyy/yE7P//Yuf9zOW9XPKt/fX/qTnHrqSapr1Cz3+nTEHgfL/PkLww7M8hVfSW6HDqas1z+PPzuBv9OLEuSuN1NlLTaycOEoLAd248mVkgZnw+O/t3/Ovjuz7u0/NCUK/g8HOG/4e7pMWhBZIWar0zeooPTVrGNtXDfvfzn53FH/N1RZvobWVmHU2OJwVRrJbQrpKNOR1lFn9AKVQVmvcewZc62v5njBDBQSRJjX7Mbh469JZCZbh41ydTKWFHjNn/ZM/70PPpRTf3COXHTBefL7Pzzk+Q8hpAw5WQk6kBSj9iR//MA02P4KrMQRbH9dTZ1c+4ub5Lk/vWgUCXzbZ5+RMm7s+9QsDap6Xv8UZ5xMefxpG/5e9Fw6Vtng0ptGluIhfFccU41d4LCDB5np8d/bP2//Y+b/vDIxSf7w32StPx8b5zxzUbl0wlHV0evfLsOfUFXFGvfmDbbDWFPjpvDcXBuPJZJmjAyu6VWzs2ww5cxTt+bW936IpSIxj3WAuN6i+2qHxVmNBk8fbCAXzQPH5MlTZdRhJ8gPMLL48kvPhdPITVUVz/92K39uhRbqzd8hG6eeerKVmwZ58cXRcsmlVzNJgxltENm0YaUkJsRDzb3+efwB6EIMthd/a7HRxUPvJMt/ZmJdZYI6KkjB6UPnVMjIHhwX8/hPpihrvP2DI+Ptf7T9nymL4+W6l1KF3x50xtKLD59bIT2x0o3xG7z+7Ur9C1VWrm7kB6Q6yqzm1qIqkZEOL4wtd60pK1kvaRlpkpKSjJEv5EEa/bc4pjOvYqlBVMYTQcwBv+oYMwLn/GNxTQVhJrdCv7R0nWSlp0lSahIyGVBSOjGkX1paKplZGZKcnKI0XftjSb+kuEyyszIlKTk5wjgwZtHCIhk2bH85ZNSB8sF7bykoR6v9JaVrJTMjXZLB29b4zzZHs/2kmd0hU5ITQbMN/R8N+sUllrdJ3Ehh++RvR+kXl5RKdnaWJCfZdu6g/G+Nfmoq5kBbXeLocwnaWV1VIb/+zePypz//lQqmHCafczpky5fzJksW7smViQb/2c7cDlmSgP5UuVQJNbgQpL+j+t9S+4uLQTM3Cw8C4C3aH0v8MfQbZE1pCXiYg3ZChhBijX9EVPZnbk6uJMbjgUfXqI0t/oGVQl3Jzc1GO+3HgM30vxjzQX/1Wpp8udKMiDj+v3FtuXTE6Je5w7b3f2NjvbYzJ6eDJIG3EFkEK7gU1Gb0TfrO8V95qzKUi13r0A6SacX+RIt+I3bSKCkpkbz8PInHA2xb7d/O0Oeb2xLoZ14eaMahncpXNJZ/YGQ09N/1v6mLJKArkKH8/FzQ5Brglk4M8I+8IX16kcUla5VmAl+DgKrGWzHSe4syfZXbYtDslCcJsCmu/TyLFf0GbCZD/ezYMU8e+Fe6vD8zQfbtVy+3f79COmClEIZo0yfNEuhKx8658A+BQ4ZMTPGvoQGYUMp25ivNaPofrdn/+roGKYNvkg/ecjt3FVz+QJC2RR9zoIuBKWBNGKRNIdsjeiivqJCxYyZIp84dZe+9R2pHYWIHCKEciSAXxx4YeB6WYFunRjruM5l58Gv2zuGNIqYZ/fLyCuGWxV26dJa99t4DpFgz4c8ISizob95Emp9KN9Dcc88RtjFKMGb0N24qx2v1CdKtoAs+/hqB9kX4v37jBunadYAMGTpIpk0eG7X2b9i4ScaP/1QKuneXPfDBWUv8B7Gotn/D+o0yYcJEKSjoJsNHDNO2bK3/o0F/3aYN8tn4SdjuursMHzZUq+RPW+RvR+mvX79ePpswWXqA5rARg0EMcmtEN2r0N27YKE/84VmpqKyQqqoaKcbGKa+9/o9w/WGCoPvQb++VK664iFIVTo9G+8vKNsjEzz+XXj17ytAhg6Ku/y3xv7SsTCZNmiK9e/eQwYPB2xjij6NfCjCf9PlU6duntwwe1D+m+ENZof6XFpfI5MnTpE/fXjJo0ADtzljjX3FpsUyZPAM0+8igAf2MrDiRwXHusgS5ZXSKlGG+M6N5n4cNqZXbf1AlyfC3dwT/KbdTp86Ufn17y4BBfVVXgvgXFlkQjFb7V69eg42pZkr//n1kYP9+2o5Y498q0JwOmgPA1379+qgMkYOxxL+VK1fJ9Fkz0ZcDpG+/3iQXDtHQ/5bs7wrQnIWdcwcNHCh9+vQM23QrMDGhv2I5aM6cjY2lBgAXehqRsb6C8ymiTX/F8uUyc+Y8GTJsAPCvl1a/I/K/Pf2/fOkKmfXFHBkKXyA7v4d8vToRDnSt6gX1MRb0ly5bJrNnz5NhwwdLz8IeoBJb/4v4V7RkmcxVmkNgQwuMzERR/1lhc/kvWrxE5n45Dz7CMCkoLABPrbKQsQxboR/C6JWKm3rnLGiNkiPD8oxeuGCx5OblSE4enkYQYUno0T352AsWMTLLG7BVNsBBjlMDwUSWBhCjHrsoDC6ROUCfw+LchS8P9HJycsztMAvyxYo+RwoWLlokebl5oJmNe3SBhHEeA/p4yEM7F+GJq6N00BFCRFgA4Kv2bKz3m5ubK0WLZkeNfgNGfhZidLsTnriysvFBGZvZjP+mwdFrf53Uy+IFRdKxU0cdhWZjttb/0aBfTxmC3HYCb7NyMrdL/naUfgNoLkB/duncGbzFDlHoTor79sr/1ui/+vfX5PwLf+Y6p9Xjhx/+Uw4+6ICo06f+1WHkh/rZpUsXycriEEhER3hDlCkrxlGjX4/RiQWLiqQ7HnAzMjNIxqolGBwj+vXaziLp1rWL0owl/jj8q6utl0WLFku3bl0lA2+Jgm2LFX3XnwXdu0h6OnlLnprw7swkeejfKVLDHfqAE8nA8quxZNb3saWy4fyO8b++tlbmAxMKC7tLOtsZwP8g/Wi2vwY0ydtCGOf01NRW7U806ddhvfYFixdLDxjntDTsetcG+7ez9OvQzoXQFW1nCtq5nfZ3R+jXVNfIYuyASscnDbyNtv6rijez/9XYVKpocRFo9pDUFLw1VmNmDrGiX1tVre3s2bNQkkEzFv5Pc/5Xg2bRkqXSo1dPSUvmm00Tdkb/tmV/q6tBs2ip9ALN5CS8HSfEN+N/tOlXVVXJEjjRvXqBt/pGnu2M2JZY0K8mzaXL8TDUA/3JqWlqvSyHt05fN1LhDSoj8AP+hDtHq0EEHTluicJEYpwLLMUGaRIiA0kuC5sOkFIWaJz654zliRJgKU9fuUCWGHYaXuG3Z58RwlGwzRuWYS555KMdZvD8b5/yR2D7y19ewlbdH8vnGKnkazZVJZUakX+9/aocffThesV4r38GasgQjz/EaUhFG/CXWP/kRynyMjaYMPgv0iGtUe79YaWM6FHv8cfbP2//vf/Trv0/XcZOjS89OE4h4jEQTFrEs6NzzjjzG8zMBFwzSgtpJkIMLlkxXjJA2JiledDsjPf0t+D/vvseLrPnzJOVWH4sB8uPef57+Wuuf2vXrZf16zbgbU2Ozr32+gcssTjj8WfH8JdL053+aIbU4+mLAyh8sh/QuUHuO6tSumS7R7IgmHv89/YP8kCR8Pbf44+Fhu86/kamcNCrtRjIUwOaNtIkOZuk+sE5N3CH9TwIoyzhMmoqtnAyOQO6pY42iAGY1anWQvjx9MMPGI7/x59whowZMx5zyyZIfzs3kfjkuMpzz38nQPZoGeLljwrlJMXrH8VC9cXjD4QBnGgFf1etj5MfPsapBtQn/ZEjBtfJLZjvnJJINPf447SKvPD4SzkJBI+/ygxvf6Ad33X7w1U4FEzZ5c7CuO6HocHHvBZCTQbdoEFHJJifiQZgtYj94VfqXBuPTx+cKO/GK0xNKEPw1tFmlrfXpvoAMYifpy/nnnepvP76W/LhfzGf9eD9wU1O4yDfPP+9/FEOvP4FsYfnHn92HH9nLIuX20anyvoKILfF358cUiMXH1Gt1x5/PP56++Ptr/c/jP+FEehidXXVeTYzLcJOrPpo4JRxhSNmCuKjcTTeZktWxmikOuGa7uy6JpkSEQ89cm1cbFwzytNvMmGVLPz5db+Sp//4nLwU2GnOcA+/nv9e/uyDKtXPgJrVMq9/yhLFFf0xaBZmkmWWxx+zFgBZ9G+s7fw7fCxYyxEPBHLsqGH1cudpFYaNGutQ3OOPx19v/73/E/AOLcSqf9Je7E8lVuFwhteAJseNnbExMTpKjAXRw9FwdDlwHB5Z1uzKNhQwx2ANFnf1oKPScPywWIGphJUGMpvuCERoOokF8rUj+m4rZq6mwFUVlL3tqP0qHCps7bP/ffvZ7+1X/3dF/3MloCfeT5HXP08E2hr8z89skPvPrJTB3QDUnv/t1v7sCvnz9t+6TXSJrP4ZQ0+XyePfbo0/3Mo7hCVuGnWTdCAp+stM6cB5IPCKSc5BNlfOhbapHBGlh8c/ZOZi7iEbp/4vI1mLm3tnvXBPv3X+33LLXfLIo0/KmWedLs//+UnPfwqXSiJl6dspf1wusR46oBs50D/x+ufx5xvC343lIbnzzRSZvIibxEC3oFaDujbCeTaboyBSg9M6zfMt1z9vf2BvaJe9/VUT4vG3df/D6//W8U9X4YiAIzITQ+njhh0V464wj+KmnphK6cJwtLoRikhd5LznECeN48gNXVxWfc3BPJqfsXS0I+kmBhEMuPD0yQbDlXfeeV9++MOfyAUX/kSeeOK3EaaBVZ7/ZMfuK3+LsED7p59Okssv+4XU1mPReyPelPIm52ef/SN5+qlH4FBjRwov/17/IShO/5vISlCAwjK04/K/qDhObn41TZavM3hMWkcPrZObv18pSQkRVA6TDZ8wp5PhHadPCgwRSubC4/+u6X/PfxU/L39gA1VbA4TC61/b9U8daMc7ctF8n+a4iAg4vi6OMGs+IGC8YTrTNGhWwn7AOUacFmZmnuK/OtrqTAfyaSoTPX3HayPFIZkydZoceujxctJJx8rro//q+a8MorDtfvK3asVq+d/HY2XMx+NkDHbRXL5ipRF6J9/NjtQKpz5M2oC1vhOxLTa0DI2jMrCRXv+cTnj8iR7+jvsyUe5/K1XKa4xQcsDj4qOq5ZyDarz8ef3z+OPx19ufNtjfJg40DbcZJ7aWnfbbxuHUTMvAkU4w5Qtvou3TionDVm8mk8Fk+8uS9lU762MW9X5wwmAPPHW0eK7xzN/O6S/Hdpr9B+4j++6zl4wd965hC3jm+f/NyN8C7L73yMNPyIEH7SunnHwStif/TP7z7ofy3HPPU1ibyDPFuEnkNuVfBDuDmmLUCy//7V7/o41/hOI/j02R58clmrENyFk6Nhm7/bRKObg/dxakECN4+fP65/HH408797+2ib/NPyJU3CSG4sQ64HDWUI0ZBlIH2OCrQVj+cvEM5lXQZWKTYMakjQttzllGy+FHywXKMp7OoadveFODLTxzcnthu9tu8tVXUz3/KSAqHiopRo54HZAhzRD+iY78zZn7pVx88VUybdpMdTFInVMu6urqDKUW6Ofn58lBB+4nPXsUSkJSopx37o+ksKDAbAmNUutK10r3HoOb+NgLF87CFs6dvfyDwR5/IBrgQ7Twt7Ja5D6MOo/9KiGMv4X55mPBnjgyqFZ5/PX65/XP4w9wIJr4Q2dU3yJanAmPtwZs57cNf+wItPOzFUPDDoK54qh0YDVnNhZYq6COEwPuAQ5oac1gLKDJbM/JHjDROeTG9Uacpx8Y+9+C/127D5bKis2ybi238wavPf93qfylpnVVucUPRVVl2Ug8ZRmXAe89Ly9Pbr/tl3LoqINl0MCBSIfMayZToiX5T03rwkq18uOPO0r+8eZLerXo9tsla999JO/k74MsHRzUwWp8/+/S/v8u4N/ysnjMd06RohKYMIu/B/ZvlNtPrZCMFEofjZsJTlLNlcf/70L/R0YYvP118h/Z+tj7H17/dxD/KiuwkYoaZhxow3XYB0eda2Eg1QErk4OB1y5NIRgXIfc1eSBRxZP1wvnj8nX0J6wXgGI2o9JDtKdvmBrg/157j5J5876SFcu/lNzcHDJPQ4DFuIYKeP5HXf745iUtnQ7ulqFrty5ywH77yEHY4GbUoQfJ0OGDJT6EDwGpSIHO2Zb877nXKPnyy6/DBPBWSFb99XlZ+ujj4bj9Jn4moSS8aw+EAAnE+v738t8y/k5aEC93vpEmm2sM/vIZ/JxDquXiI6sxhGGlyOOv0Vlvf7awP2quFWEC4GOvXZrHH4+/7RJ/dQqH6sUW5hjOMSdnYFUNeLxcSUMRxh5YJOLjmUiXZJ5meGV0kWNnBGqMV8OHNqm6YoeCt2bDj6dvuGX4Ybhk+H/8iT/SD9OmThkjQ4YOMqxCNs9/sELFLLby99Y/35Xf/OZROeCAfWTZ8hVy8YX/J8OHD5VuXTpHhf5rr/1DfvJ/l2nHH374IfLuf96Q8vlfyewzz0ac0b8hTz4lWfvvZ0SEqoLg+3/X9P+3Ff84NnHfW2ny3hfxFsk537lRbjq5Sg4fUg80toKk0uTxtzX8/bb2v2IEfrz99f6H979i43+aZeyAnfpaQ11cvuKDYbJrONOR4+C2G6mgMqozrRNYqKIorNjLQkxkHH+YE4Eejk6SNrHM0jzo9Gq+VvT0wbkt+T9g0D6yfOlyefaZ38vZmEfr+U+ZsnL3HZC/V179h5x//uVQC6MdVZVrVP/WfvCBzL/5JsSGJCkjXQb8/g+SvscI3/+KKd+d/o8F/lXWNsqxD2RY/IW+gEj3nEa570cV0rezxWYLxLGg7/Hf2z8VL2//vf/zHfb/4EC7KRx0jJ0J54gzR75sy40m4JeOMYN1qpmfWVzAtXODtSSuTRF7wuLAFc4LNTNOGM+ABP7h0sR4+kH+p2d2k4b6ernggvPkD088BH55/utDHeXlWyB/06fNkKeeeQFTPfaT/zv3x1vI/6OPPSU333JnWP4rK4rD+le5aKF8fd11UrWkSOLS0mXQY49J5t57qf7oM8S3oP1Gq42Oe/0HzsUY/5avi5dbR6fKgtUQDmIupKVrh5A8d/FmyUqB5sSYvr5pJFWCuaWvJzz3+O/57+VP8dvgInTC+z+GBd9C/w8OdDGeEYl0cMo4CoxTdX4BdoyN4xOknbjMU+PkIoXTOliKD9qI5BVPGbQ+pqMyTUE6QdWUZbrJZSJY0tPfGv+feOJp+eUNt8mdd98iN/3yGvaU5/+3RP6mz5ojBx1wlEo4pX7GjAkycEA/nDllCsk777ynm+VQv/bACPOkT/+rL26c/tVv3ixF998nxe+/J4kpKdLvd7+T7AMOUD3y+kdWevxx+Dtlcbzc9XqqbKg0uGo4I/K/2zZJAuSLMuXxF0wI6J+3P97+bs3+ev9Hn3rVJhkfzvsfzv8N4XUxZ2sYUI2gKxEGMmUYpaf4UeBtnoeJDLD+8GkA0OpR8wQFWIInPOAcuxSaWmwlOHCQ29M3XAlYN2WZ4/9bb/1bfnz2hXLpJefLo4/82mY2WcK/nv+7pfylpnWyXWR04b1335DDDjsYcaosKv9PP/O8XHPNTYjDqgi33SA333ydKdNM/0rffluWPPgbrL9eLwMffliyDzrI1s2iXv/aO/6MnpQkT36YJPUNlK1GSU4KyY0nVcoxw2s9/nr7A8jx9tcYT+9/BO2P97+MVLTmf9HIWokJnBjTa5exYw56sxy1MHlMss1v8FgdFDeKzHSX144zm5Ia2aweV97ehSvX5G48/Vb5z90IR2E3whNP+p68wd0Ibec4Pnr+u3E2yjDFcPeQP27lPWRo0w//vsZa3j0KC2wfGoW4/vrb5Ik/PKO9+sH7/8DOkxHHWHM4/cGxBhvrzL/tDknGB4z9H3hA6/H9v3v2v9NTfVaiaJruDuNmtPCvuq5RHvp3qrw3CyvA6FNESLpkN2C+c6UM6FqvOqHwGiP6Xv7at/z5/vf9H7a4u5H93RX4G3GgteG04dZa6zwOtemK8xaXDear2WYGM7SvhsFmdc+4ehmuE1funEdkasQEzjhMYKXyNc3r6evDTID/q1etkT59R8jwPYbJpM8+ArvIM8//3V3+LrrkKnnpb6NVvLOyMmXmjE+lS1eMSDeT/2O/d6qMG/+p5OXmStHi2ZIQH2/nUWlRr38Qd48/EAOHoQH9L9kUJ7e+mi5zV9KEcRpdo+zZs17uOaNSOmSAcRZePf5a2PT2Zwv8UZQJy5a3v83tL3XI40/L+EPGtGf/z35ESP8WziyGKfRNl7XbOoe5yYeESLCKpgeCM08QzKl5EgsDvRM8TeQF8nF00GQ2tDg0guDpt85/vrLPzespaWlpsnLlV8psz3/KkgqOyo853X3kb/bsebLvvoc7dZFPxrwj++2/9xbyX19bC6d6gFSUV8pll10gD//ufqdS0BPqY+BJyiiK7390tpd/kS+W4WPB11KlbLMZiOBc3tP2rZOrjqvS+c5hw6/KYZjm8dfbH29/jd1QX8f7H2o/vf/Vuv+lBle5ZORGcRWnFB0zAk1JCi8LZnIq5oYL4UqlDRFuiFktmMtgjsEod970yCtTgcY7Ip7+Nvk/bNiBsnDRYiletUAyMZoZ9swCXeB4zSh33vTIK89/ckf5EkP5S03Ddty2F04+6Th5bfQL0Lst+f/5lKmYE32izoWePnWcDBzYn91HHdXcekGL5/XPMMTjj/LhPzMS5aF3UqQWMzQYEvHS4roTquTEPTHfGaGp3rvrLeXPZES8x3+jdMo9r38ef4zOGGXy+OvtDzAyAp8OUK0DvQXg2pE8CyY8GBvOGowbYKZe4BqGPYSPE0wskyFsHNZHjIszZ+ZbZ9bAoP4AtdQGU7O7L0/fcNBxR6R7t4Gydv0GbKjybzlg/32Uu8otz//dTv4+GTtBjj/+dPSRCdOmjpXBgwfqdXP5f/jh38utt90r3z/lBHnllb9Yx8fLf3P59/hDzAzhA8FGefK/KTJ6UqIRLuh/fiambPywSoYVwpv2+Ovtj7e/3v9QD8FYG+9/Rexpc/vrPKwd9T91Cgdf63F7Vxp8s+uSMf2GmJlXB5002GwpMkeYqCa6oSF3S7xpvlqMxOv6o3T4SEep2TNPf5v8T0vHiCaYfsP118hdd90S4B7tBTsnwmfTA57/34T8cRrUqMOOlylTpkPOzWMkt+ZmaEn+J078XO6+57fy2CMPSH8sb+f1D1yjE0h+2V99PKeII9rEqSroueJQO5H/jVia7k4sUTd5UXxY/wd2a5QHsDlKxywORTvukHFe/78J/VeR1R/Pf89/7/981/0/XcaOaBx2aNUi6Y/FY3POFXBo3DkFQF1ga9CIFYxlLhNMHo11CXo0F8ynszpxAr9ZHUdPf9v8v+fOB+X+Bx+RB399h1xzNXatA++sn+H5D5naXeTvn2+/K2ed9VNVhbT0VJk9a6J07dbFCLvVMi//Rna9/rcd/5aVxMmNr6TJsrVUfSg//o4eVic3nlwpKVh8Y3eRf70xN2iCe9Qb06O58Pjv7Z/HP49/9F2+C/gfWYVDTT7gz4JdYFKGpvAVagOGqXUiBhuP1nNEjQipz9o4Z5wGRlNLdFDUpNsUk4683I6a2ZoHTx8cAW+a8/8fb/xLzv7JxVgL+qe6FrTn/+4nf/X1jbLvfkfI3LlfqiL98tor5Z57f6X64eU/oOle/7cL/yYtTJC7uTlKjcFfQuvFR9TIuYdUEyw8/sIqxXn74+2v9z8MyHr/a5f5n2EHOuzmqqVHD8D55dQAlUlclpaWSUZGmqRgJzSOMjB/HL1dpLG/moYWXl8xA/Nax9oUZUnjWrREX2lmZUhKcormYh4TYke/pKQUH+mBZlJyk/bzLmNFv6QYNLNNOw070M5m/J8x8ws58MCj5eijD5d/vf2q3svO8L8Y7cwGzWTwlqEl/gf7PxrtL15TIlk5WZKcSN46frbe/9GgXwzeduiQjU0lkkhwu+Rve+m/OvpN+elP8XYAoUN2NhzpSZKTk6PX2soY0i8uLtF2hsrLpeLrr6TD/geiufoEGzP6lNucDh0kMcnOx1VK/ImO/m/J/wZZs6ZUcnNzJCExIeb4Q/p8kF0Duc23NE0TY4c/1P9GTMdasxo083Ll9anp8tSHyZj7bCinJYvcfmqlHDSgNqrtbwBN6koeaCbyi8Rm+EP5jTb+BWnGJ8Sj6aDiFCVG9BvgaK9ZXSod83OENLdmf7aUvx2zP5zWRf3MxzKV8Ul4XaBtc/zUBitvo9l+Gu7Va9ZIfn6+JChvtQNjin8NDUaGOnbMxVKciWgThda0z3Xr9tj/tvC/AYqxBrzt2DFf4rn8p4ZY4Y/p/wZ8h7CmuFg6d+oo8XFmOpUlHDP6jeCtaWce2pmg8rIz9r8t9pdyuwZ+QifyNs6s9GMaGDv8q8eKY/TBOkFu2Z/O/6T8RBt/TH34rqS+XopLStCfnSQuXt+PtBn/QpXlayhtKuZGPMKulEZym8Kqikr5+JPx0qlTZ9lnnz3CebUTLKbwYEmbyggSiDDTDAzD+WsSTTfolY0yDGK8oV9RXiGfjB2vjdpn75HKSB11RbrLG236mzaXy1jQ7NK1q+y154hw+ymo7MhY0N+8cbOuAdy9WzfZY+SwcPvZRjaU/Cf9jZs2S6fO/aR3rx4yb+7nhpN6T8xIrrWd/xs3bpLx4z+Tbt27ysgRw5UO6bEO/pLDvA7S39n2r9+wQT6d8JkUFHSXESPYTkMP9ixm9Dds3CATJkySQmxcMmz4EDTHElPq0aVfByXs328kjFaxtufSi86Xxx7/9Q7L//bwf+3adfLZxMnSs2ehFG5YK/Nvvln2evd9iccUkh3Vv23RLy1bK59/PgWbwvSQocMGKWejqf8t0S8tWQeak6VXz57YoGageQgzQhsz+nxImPL5NOnVp6cMGjxIZYj3ppKEE8Nfcx2t9heXlKGd0+XBaaeF9Z/61zVb5MGzyqVPJ7r1ELMo0mc7J0+ZJn379pIBAwdEXf8NqjTVP+rKtCkzpF//Prq9venK2OCPo796NWhOmyn9+/cF3b76cTwbiz/lKX+jjX+rsI7/tOkz0UbQ7NfXoo+hFyv8W7l8tcycNUsGDOiPPu1jW9WU/3plo6LR/lUrVsmMGV/IoCEDpE+vXjtl/3k/7BRn/1qzP8uWrZRZs2ZDNwdI3969TB+y8E76H1ujv3z5CtCcoxhELGIgG6Ol/y3J39Lly2XWzHnA2oHSu2cPpRdN/Wd72Qb+OvpLly2TL2bNleHDhkiPXoUx8X+ay/+SJUtk9pyvDM2e2HDM+j+t9X808LcINOfN/Qo+wlD4Ct3C7W+L/IWqKtaEZ14Ya0DnyTi8hqXmfPGixRhNy5VcHVEjk8FutkolTTlvy5mnTnaGTvHAtrLqSGvf2JrZavvVonacq0O5YehzdGIRaObl5UmHHFiOQJrp5OjT51PeokVLMPKTJ9kdslSYtIF6k9oibWM06bNdCxcv1pGCbC5PpxSa8l95jHy9eo+QstK1+L9YkpIx6reD/OdIwcLFRRiFycdIaZZWw+4J8lj7l31M4lFofz15u3AJHojyJDMT7dxG/0eDfmNjvSxaAJpdOpql/8Av5SxlKcr0zzv3EnnjzbeNXoBrCxbMkO7dMfd5B+V/e9qv/blosXTt1EXSkuJk2lFHS8HVV0uXs34UM/p19XXan126dkZ/ZlB6wFtyNzr631L76zHatBj6SZp8G7aj8s+Rlbb2P2kugq50xc6PGRkZ2sZo6r+qFn8YeF+gsLG8Ua5/KSRzV5OvRv/6d66X351bKTlodizo19XVgbdF0g0P8hnp6VaOo6f/rIn9FdS/ulrQBG+7de8m6ensT0PP5tJ2uvYH03am/fV1tbJw4WIpwEN1WloquRtz/Kurr4UMLZHCAtBMTUFT0M4o4w/ZG9S/GqwvX1RUJIXd/5+96wCwqsbaZxrT6L33LoggKjZsWHexuwKK3bVXLL+isovYy2LvZcXesMC66ipKEaRXQSyUoczQ2/T2f99J8t6bYYYpvEeZSWDezU1yc26+nHZzcxPQ5IM0CxTDn4nhbD/780/YslatWkkC2rk79r8k+Tct1Ds2/In25OTmoJ0rdXfXxES2M3L6x9HPycmWZctX6OBBQiJeCdkQir9yMr3DMOn/nOxstDMFgwet8da4RqD92oERop+dnSUrVqySNnCe9Q2uclhR/MNNPzs7R1aCZmsMBsXTxyEBJamI6h3sjvyH6h/H/xlZ2ZKCh4W2oFmDMw/wr7z8F5WZmco3hpBnXsSAX94wfyhwEHbuGsi4yUcOGYPnKBLNfHOBkuV1THfVaJ4qRtaLDP7n5XoNCOPc0y8f/gNOOkOmTJ4mc+ZMlK5dsCwasPP4733+y4OTVbNWc+VoykhvvL34acq39pwMztQ9x/+/33uPbJs5Uw76dKxEJTrHZM/R9/Jfef23alMUPhZMlJUb8ToaQDr9+/3dO/BaHPUieP0LXgY2Xv95/e/t3963f9XZ/8Mc6HXoASikgJNslLbR1PprnV44AnACUBKOAY94YWEdaeaYl4paVJUby7o6A56FrY51MD9aa7IOhqevuJEZaTQ1EFgGHPnR5TXX3iJvvPmOfPjBGzJw4F88/vsI/33w/sdyyWXXmr7C7/I/F0qTJo32Gv+nL1osCy+8QB98+82aY4TSshRv0sufQWFf0z+zl8ViZ8Ek2Z7B+8OHcdCJV5+QLYOPzFH5Z8+x77z+9fbH21/vf3j/C9qQgwzQiXvL/4zKwBQO9dPchBrrlDgzS1WuFthobtwvFDscPGOETSkq9NAy9godIWAWqyyAMYgGJb2OCWg2HUW7KB5OcRd0HD19ZYqS8P/X6Ofk7nvulwdGDpdbh91AmC3yBk/XDUxnn2rHWkg9/pHhP05NOfjgo+XXX38n7PLPf9wld9xx817H/+c+fbT/m184VNrcfIuXv31c/3w+u4aM/ipe8jDnjx2XhG9e7zs7Q47snAeuom60B69/vf3x9tf4ERAJIxZOOIyM4Hev619vf6uH/4ER6FRwn3WBGbO6OsiEyIPA8htMZtLHdYFX6drQWoNhZpfnjmQkMyvJpKh/TPZmRLmMFXr6igIh2QX+4/7zjZx77kVy0dDB8tJLoxU1j78BTFnJMV3IkemR5L+PsbzghUOvVFauixUpfv11ppnjbe8h0vRL6/9CzIH84557ZNO330qjv50n7e64EyPiGHMFj+krNy9/+4T+4dKHz3yTKB9PjzMqEQzTpA42RxmUIZ2aYFxFda7Xv97+GOPg7W9QuXv/w/tfpdk/xyWRtr+6jB2JqGAGPiN15J2NCXp2HNVkeZsTLMhUY52LZHGsmjsS6SA7jAGLFA+efvnwX4pRzl69j5R+/Q6RCd+PB4yhYHr89zT/8eOBw48YIPPmLURfRGFL7ttk+F237Tv8D6Fe/cbrsvrFl6T+ccdJ+wdGSXRs8SXn7O2Slbz8FxUp7VXKZmT033bsLDjik0SZyZ0FLf49WubLqL9lSoNkI9tGN0aGPpqnwevf8ulfqltv/4y+KKLkHBd5+2/0hwqUkS3v/1Rt/y84hYP9bX0wRo3RsIkmK+CukT8454SzT0J4hYVNMLrf5GILQ1MyhLdU0HAlrAafIFiHBkScg+3p02gSFYMOf/llde06LTUlPSMVR48/cbHsRrBM2EP89+03E+SMMwcrTa5E8eviWVKvft3ADWnv7AP8vwNzopf9Y4Q0PPNMaXYB5kZ7+UMfgXP2ov6Z9Wes3PxWknXIDBef0itX7vhLlnCpYK//dtZ/Ts6JlrMqe1P+vf719sfzX8DcWeOLwx6yv/uE/HEVDtXibD4bTo7QgNuDoeWUvECSusJ4maYjMiikx2CuvVCv49p4fPrihzrBV+iW3Wi8dLSLleOP5wyefgjYJeOflNRMcV24YJp0aN8W5T3+yjshP+TbPcF/iUlNAlRvuflaefDBEXq+p+hXRP4Ec7XV3OnyWV7+9qb+mfZbnNyOlTZM/xn9d82AbBlyeE6Z8s+3eV7/AjOqPW9/vP739i9gg1xkX7Q/xktRoTX+XhXx/zACvU5dXXVezUyLgBI3zaXZpSscDIzrrGWdkhGS6/BhvkHMOMV6tc00mk9rYKZxsWlEkOTpF5mwWxL+zmn7+r+fSP9jjsLzh8c/wJ17kP9mzpgl/Y89LYD/n3/Mk2bNse6zZWXP/5BnBsq1/nj5Jw4fTIuX5/9XA88zxAMpkN+rTsiSoVhpw+s/ABIcbbGWwtufEA1veAa/3v5CsXj/I2B/lDH2oP3z/Gf5LxOrcAR8WiuYRRKYyVFiKnzbQVT0mqTl7Q9HAwIFdKzL2E6khgZ1mcH4XPtZK9H6EeflCEZZOEImxdMP4n/P8FHyxOhn5Plnn5BLLr1QETewe/z3JP9dPPQq+fDjz5RjyZ+Z6akmbp3FUA4mF7vg+R+PzNVQ/nPzRR4fnyjj53ILcqg76L/GdQrk4UGZ0qkZTrz+UxHx+p8aIlR7IO7tr/c/vP8VNO/7kv/JrbyjsMRToW5SDy2ushsqwMb0O/fMaHrm888NF9hcPhHSEvA/srkNI/ezZ5r2PxN5HZxtnftsvXBPv/z4v/XWe3LV1TfLTTdeIw8/PML2g8df+WoP8R93hOrR83DJx2585O9ZM3+QbtjmWUdEPP97+S+m/7ami9z1cZIsWMGdUIz+69O+QO4/L0Nqx0NHev3r7Y+3v5ANCA5dBPUTaNOCwVo4JLgYC3r/wwIGLIDHHrJ/hqbHn/ynq3A4llR2xQn6AWwaTCVUPDPMraX0x6TDPYYjTF+YryOj+NEUjnanUlMO51oGZ67eQJ2aZqrWwp7+LvGfNnWGHHf8X+WUUwbIZ5++Azw9/nua/4YNGy7Pv/CqisNpp50sH33ylud/L/8l6r8/10XLXe8ly5qt0HHECIrvrL65cvMpWVxV0Kk85SV34vVv0E4Qk4CtCEQUKZvu9d+e1n8GfdcvHn+Pf/X1/9SBdgJBjaTfZdBdVi2OBGh9l6ZjyXrCdCtAKKpBi9I9ZikqQASNMMaISTNGxJQKlNNc/CDB0fL0CQb+iuG/adNmad6ym7Rr30YWL/pZ8VL4tKjHP9L8t2HDRmnZ+gDtF+L+/f++lMMPP1R5V7ddBhOjKzz/ExwFovrK/5TfYmXkpwmSkU0gRGLgMN90cpaceQh2FgzlE83FD4p5/UcYwDPe/pSo/80HpGAU89/rf3U0jOx4/evtf6Ttf3H5K+JAU3HxBjRYu+fSmEp/TpOtfsOH/Xa0FEdm4FWkFjI12F9eaV+1IKoOtEo/L0CwB0YdLcYNoWCap2+gJVxt4MBt3rxJ1qUtl8TE+ECfePwjz3/NmneRLZu3KN937txZ5s6Z5PEHT3r5Bwgh+u+CZ5Nl5SYOMRv9VzsxSkZiykbftvngF6sIkavMwyOC13/e/nj7S3lBoKGjmCAScIpwrsn44fOV9z8MDg6TUP2jGOoP8fT+l2Wm8PufxT8i1M4g5ojYAVAwK9jYDI0YQ6nZWlIZmmaCZfUEh6LBsL/pQhPnlfwL2JuQa7VWT18BKg3/E086QyZNniYzpk+QA3p014/3Pf6WqYoynyZytC8c/JeZmSn1G7SlXlf+/YfdttvzP/BwoEQQfzWoVBAINKtUiqpHeL6P0OfHgre/mySzlnG+swltGmBnwcEZ0qp+Pu7Y3LPeN370vkPuXVtlz5nHBxOvf7398faXgmDkgVK1r8q/FfmQg/d/wmV/98X+tyPQVOrsaBOs/rZnzAlZzZmZ8EZUqSNilHvoFYEC1jpo4RALBzrOITeuHyr09CuC//XX3i6vvzFGxrz9kpx7zhl4uPH4U6WaEDn+e/nlf8tNt2BLbOBNKunpazCPlevyevz3BP7GggL4fVT/bM2IkuEfJsm8leAHNwUBfPnVHTukZgK5kzzq9Z/X//aBwNs/KxPe/lfE/u+r+o8aTnW0uUG1k1ZZ23gV1H+ZGdhIxbn22j4qf+KAE3UMzCmhYXZo4DmLmgAW4KXua+KQTBUPZuLLQi7fRNsSBNYWNHM7DE3me/ql4v/0My/KnXeOwNbRd2Dr6GEGfvSOxz9y/FeA94U9ex0hf/yxTPF+e8wrcvY5p1cJ/t8ycZIktGsjCa1ae/lTIaq4/lm+PkrueD9Z1m7W9xGqLNs3KZBXr0yXGjGQTa//vP739s/bf+//VC3/T6dwqEsQ4vHi3DwR0RhgVQ14vNywQ62CPfCSoI9rEl2WuZZnKIM/8AyetbGUHc6icRHHumlQ6FgHg6dv0DKI7Ar/r7/+Ts48c4gMOu9seePfL+ACjz95M5L898VnX8mgwZco1B07tJd5c6dITBS4Wtl8/8Z/2ahREpOUKK1vdQ9jXv53JX9ObTn9N/2POBnxSYKkZ6mG1I8FucrGmVhtg5zh9Z/X/97+efvv/Z+q5/+ZZezguwamZEDl69tHu4YzDQldEyoAeg80BupM6wRmnDBds2AqTBEtZ8wGs5FuB2WMm8FrigazsAfdabKYp18W/iuWpUi3Hn3loF49ZepP33r89wD/DTjhr/ITlhBkeP65f8mllw0xuFcB/l//xThZ/eILcuC4LzAlJcbLP1VZOfXf2Jmx8tRXCZJPPQc+rIUdukeemyV922NnQQav/7z+9/ZPZcPbf4XB6IWQX+//7L/+JxxoN4WDjrHrYDixmGuBHVZoAWxXq5cSiKtTzfIs4gLOnRusVwYusRFKkL7CME55sG5k8D/r07o8/V3hX1CQLw0adRC4OrJ+45/68KOwATyPvx3pACBUTOQrw1WGxyrDf9NnzJZjjjmVFUlzbNe9+JfpElcj3nwEWwX4PxeriswecIK0uPgSaXnjjWill79dyR/5iQ7zc18nyEcz4pQv+NOyXqE8OihdWjbkVyPh4z9DIMDMrBn/MKiBJK9/DTr66/Wf1/+QDB3ppZQERMZGaAu8/wF/wftfwffV1BzGN6iM/wkHeh1MARkMoGLok0ynyh91MjVaR1aU63QwxRBBDqd18CozJI24GZ1GEmI2H5XxRtlhOraMZNbJ68xNM4FXMtXTrwj+hx0+QBbMWyhLFs+S1m1aEGXqBg0ef/AT+TNM/Hfh0Cvl408+V5Z9+IERctPN15j6ybVVhP9/7tMbu4VGy4EffyzJ7dqprFMqvfxTERbVf+kYXP7np4kydWmsNdKF0qdNgYz8W6bUTqTGCy//FadPrer1LzVe1ZE/b/+8/a+I/ffyv2/If1RWZhrfVqoyUj/WeLfqiKl14HwCKir8aSwQ0eTgDx1hFKCrrCW1HK9ghAfEsUuhqcVWggMHuT19g0oQZEUMmBEgRT2YZaG7+OKr5cOPxsoXn78vJ554nOLr8Se3hZf/Ulatlu4HHCZ5eXlSt24dWbpkttSqXdN2UMhhP+f//C1bZdHQoYpf99delxqNG++S/0JabqL7eftVyqxsBdpWgvyt2xold76fJL+nBV89nHZQrtx+WrbExYaf/0qT/8A9ukg1wT+oCF3D7dG339tfCHG49b+Xv5L9j2LSB+Crp/9nl7EDHNZYEC7aERfUppAxEaGDFhzmNk4f8+04s8bMsIB9OnCVuOu1suB1hhIpInj6CjDRIEwuKGQOPxwd/g8++ISMGvWYPProSLnu+isBu71SD4EzU4273uOvzGeRAjYWEKJUCv/ddfc/ZfRTz2vRO+68WUaOuCvQP66eqsL/edu2ybJ775PsDeulx7vvKu+Uxn/MrGrtp4JzbdLG4ye0/UtTY7Atd6Ks367v6PARaZRceXyWDDky28ufQ04BLIYj0lS8vP6psP4J5T9vf4P2rzrqH9//+17/Bx3ogOWw2s7YCGNHIMXsPDxkGIuiZoUFzKtNOnUuuDFmPQ+Ux5mL84hChZjAF40JfPo6koVdPiPUtp6+xRrYlID/J5+MkwuHXiFXXHGRPPv0Y0RQg8ffsJKCEeApnLk4j+Xkvx3bM6RTp4Nky9atkpiQIEt+nSmNGzVCBWT4qsv/2SkpEt+65S75ryq3vyT987Sb72x1XUJclNxzRroccwA2R7FpYAr3/oPRIM+FxivAf8pmvLYE+a9u+Hv7AzZwOqyK65+S5M/3v+//fZH/7UeE1PVwZuG48iYppww6h7TIh4RMxB8VOg80HLawieqM56CgO8WvmTzhNRidMIUNLa2EWZ5+RfD/ZdFiOfiQY6Vx40ayYvlCVamce8mxnwCjefzNg18l+e/FF16VW4bdowx/5ZUXy9NPPWoZ3x4sH6OAx19VQdXkvw9/jpNnvo5nNwf6/5UrMqRrM2w76PWfwmJEoWr2v5FubWag/7398/bf+z9WH+JQXeXfjEDT4wosS2cURYhvAKWBM+dZuyFO1SBWqdhDaJKLFz3yzFSg6Y6Ip19h/LOzs6VuvdaKPNby1qPDmicuXvTIM48/0VFcdsF/+dg4pZfdOCU6NloWzJ0q7Tu0dfAFASbYNjiseeriRY888/iXB3/XNQrtXtI/YAHhyPMnWKqOS3eqCkTaezdgpY0GiPAmQ4Lraya5eNGj73/P/17+9xf5p7Rq2Ev6x9Pf9/EPTOEoqujtSIK9fx4MD5lS5teaOFiVKHwcyCs08LEM71s4GurS3BzRUKOoxijEAHn67imOx/Lhn5jUlD0ja1b9IvXq1/f4E4Ew8d/48d/IueddpJieg+3S33nrZThQnv/JndVB/jNzonVzlKm/4ctABOq/Hq0L5NHBGVIrgRJqtZnXf17/e/tntQIEJUz613gQKnr64/0PQOvtDxlsn7I/OoWD0yqwy6iaBHYSp24w0FDyl+7x+vUbpGbNZElKxE4BCNZ8mCM71qznpXnmhw3lHGfzxM00XX+QBgfxgAFirBT669etl1q1akt8Yjx9ciObpnJDV+thveGjn4Z21qlVUxIw55X36dofSfppaRukbp1aEg+apeFfEv3z4OCNH/+1TJgwXvoddrDeq96y/uwa/9S0dVKnTh20s0ap+Ie7/Wnr0tDOupIQH1+u/g8H/dS0VKyeUVfiQbMi/JeY1CTQ/5OnfCt9+vQsN/8R23pYsSMhHv25G/xfkfanpqZJ/Xp1pUaNGpYFdt3/5ZG/XdMvlLRUtLN+PcU2EvJfnH4BlutZB2zrg2Yc2sl81UNhlH/K34ZtIne+h5U2UjnP3SwPeXqfLLn1tBzBywgNkdR/gqHvNLSzYYP6EhdXQ/VvSfIfzvZzwIN8W79hA6kRax8atKVG/0eCPs1MalqaNKjfQOJrxGlfVkT/Vab9fKtAvm3YqL7ExnIN79LtT3H+U9/QdL/hO726bPuj7QTNxo3rS0xMnOXbIAeVZv92hz73ClgHuxJsJ+/TtNXgFn76lE/ybaNGDYEtdynYPftfnvbzTeE6+AmNGzUAtoZvTRdFTv8VgCZlpQmmT0bHcOMp3GkE/J/Q9hei/lTwEGnGgGaw98rmP+owhor2f0E+eGgdeKix6c/K8n9F6OcB2/XEtklj7Ojq9C/6khCj0aYlVu+jTYrDbuKfl1cgG9aDh0Aziv1JQsTL/urwcCn0dRk73kXAoOod6Y+toVAyMjLlh+8no1FN5OC+B6Ji1GYrdIQMSXdmnWbega1K339aKoSF9wi/WR33kuinp2fIjxOnSNOmjeG8HKQr4FG58hVgpOjv2JEhE3+cIs2aN5HevXsF2s8IV+CLBP30HekyCe1shg06DjroQItXUfxLo3/38PvlySeflZde+JdcdDF2xtNgMNKbLwX/7du2y+RJU6V5y2bS+6CeSnNX/V8afctnZAXt5l3R37p5u0z5aaq0aNlcDjqwR5n9H7h/y0CVwZ8f//005Wdp2bqFHNijh94lkS2L/z7/Yjy27b5Mb4Ft4hSZ8tLfvHmrTJ06TVq1biU9e3a3/UnSBqXy0NfhTqLKS8rR/k2bNss07JLYum0r6XEAaDqn3XWMHs1JuOhv3LRJpk2bKW1at5YePbqW2f/haP/6jZtl+vTp0q5tGywtCJpsDIJrZvCs8vqHTvOd7yfKum3gElQcDafj2BYLZdBh2dKte1eQiJz+UYJo03qsgjJjxhydMtS1aydtYXn5z6BR8fanrVsnM2fOlQ7t20mXrh0NqgS2HPxXWfxTQXPO7LnSsUN76dS5g6HJPuVwYwX4vyL01+JBc87sedKpYwfpCJocOGITI6n/1qamypxZC6Rzlw7SoWP7MvVPONq/Zk2azJ03X7p07qg0wyF/Zdm/1avXyjzsTdC1awdp3769YUXblZGiv2rVGpk/f6F069ZZ2rVri85kh1ac/yvS/6tS1siChYuka7cuQl1UEf4jHGXZn5L6P2XFKlmwYDH0HtoJmiQaCf1nxN102gp8TL5o4S9yAGxK21at0IVsaWT134rlK2XRL4thUw7A/hb4kD2C+sf5n8uXrQDNJbDXPaRVyxbA1jItm1sG/cAUDhZlUIxQc8ikDHRUoaxYtlLqNKiHkbXaWqd+DKiEyHocwcZRnQRU4rhE+djk670oBRLBFSjLYsWDo5+PJ67ly1foaFNdjJSSVAG0nV6FeCTos52GZgOpjRHh0HuOFH3SXIYObIDRpjp1apeIPzEqif6Yt9+Xq666UW6++Tp5+KF7y40/R0WX/wmaDRtK7dq1inSBwz+0/0ujzydadnZ5+h83J3/+uVxHJ2rXqVlm/4eDfgGeLJctB02saVwbbxUCAfe9K/77298ulS++/I8Wv/feO+Tuu4aViH9J7efoxDJg2xgPfrWSk7XjiE8oL7GyXdGnsalI+/Mx8rNi+TKMcDXBWyK0k91CLb0b8lcW/fx88u0yPOA2kWS8mQq3/JdEP5c6YdlyaQaaSUngoQrwX3nw//mPWPnHx4mSnm3wT8AA5fDT06VV/O/SvGlTSayVHFH9Q4aj/OWDb/9AO5s3ayrJyUlMLjf/aeFK9H8+Rpuoh7jTZnJScoX4rzzyXxL+uVhbfTkMZvPmzdCf5s1mpPSPo8/13JetWC6tmreQBPs2VTGzP5Ggn5uXr3alZYvmkkiaYZb/kvDPzc+FrKyUlhiwYDtd+7WZEaKfk2P6k05IQlJCRPWPs/+5uTnQ8Sl4kG+BChyd2wAAQABJREFUN2GgyVAJ/jcXGvkrS//mZOegP1dJG2xgFh+PN7hAN9L6Lxc0l6WAJtuJXXBd+8trfyvT/7k5ObJiRYq0xmBQAt74Rdr/Yh/k4NuulStXSys4z/GBt6mR1X/8nmzlSvZnK+3Psvqf/OXwDzjQATdXkUYJGF++mlCfGKdMZhkT6MZiGTpqG1ZmU4MHZSmk2ydBZLhqdetZrdvVpzkoy2sQdwU9/TLxn6FbTJ8mp512knzy8Zgg/IplsddnzGVfWcfKdB17zuNvoDH8x1fKXbr2hSDnSFsI1OIlMxU3ouT530l61ZN/rrTx/LcJkm9VVt1EznfOkm4tsdIGmu373/O/l/+qK//e//D+V2X8z6jM9DQiZw1EqCthfCtuU0hHmY60et3qnKlN0dESDCxq4EFfTfCM1oYOMBJMvjG4/DWZLGTrsEnGQJlU25Va1NMvHf+tmKLQtFlnfQU6f8FUj7/lqd3hv3+OfEgefng0GVHefvsVOfusgZ7/q7D8UyWd9lgtSc8yOor93gorbDw+JFOa18c4uNd/nv+rMP/rSxxv/73/A71HV4y/3v+yb4zp85ah/6OyMtLoF5ug3i4vdsYk1Ls1cVM1QcY5L3TXogZznRnC0dKUzgKk0pEmBZTXmknHfrXIyz19goNQCfzbtu8pGzZslE0bl5tXO3bU3+MPfqwg/2Virn/nLgfLxg2bdP7pvLmTzYcpyqSKqPI4udnzP/DYz+U/N0/kkS8S5euF5mMyyl8DzIAZcw1W2sAINPtZFZzv/yK6yfO/l3+v//Z//Uf15v0vY8boflXG/4rKzEzlB55mlMHUYlAltHR4YVS4ayDjNCcM6pjwHEWima/dwMtYwqQHOkfrYTr+OG+A/xE113CYGnFPv9L4n3ryWfjY8ieZPWuidMeHFASU/eLxV9YyfKYPJmXz32uvj8G26Lfphc88/ahccfklnv+Lyf+WiRMle9UKaTpk6H4t/1szo2X4hwkydyW+aHejDJCd7+7eKlgQQuWIDfT6z+t/b/9osI11V8lQA27sjLf/3v+pzv4f5kCvAwdAQAJOsjEaFBQ6txrU6TVeGUrSRcM/DCtbQWIOP/ph0EucB2fr1ESTrWVMlDWwJlzh6Vca/xtvuFNeffXf8u57r8sZZ5zm8SeHVYL/CrHMwcEHHyuLFy/FkkgN5VfMfU5ItB+lgEX50R+fSqo7/6c8/7wUZKRL69vu2G/lf/XmaLn9vURZtYHfCRj9M+jIbLn2hBy0yes/t4yTUSZge8//Xv69/vP639u/nex/VAamcNA10NFhOrLWKaazEAw0MixD3wRfnHJUymaaZJdpyjCLdTo/hlUWwJmORoJexwSUoKK2i6LglJUj3dMPAkcgNZSO/zPPvCx33HmvjBw5XG4fdqMBHtd4/IMwlof/vv3uBzl94PkK3D9H3CV33HGTxZ6H0vE3nGx+nYzYK6ok/2+dMUOWjxghPT76SGKwysj+1v4FKTFy1wcJsgUj0OooYirZzSdny9mH5nr94/UvRB0c7QxXQAN4+Xe6zdt/7/94/y/o/+pGKnQQ1BDiR/1YqziME4Y8KFaO1TCTOtYFXqVrAzILiSFZroimczYh8xlUP/GMEb2IV3n6igIhASaMMyg8innp+H/9vwlyxumDZeiF58vLLz9tLgz5ZR0ef4MlYSmN/04/Y7B8++33UgtLsv26dDaWa6xbLvyrI/8vf/BByVq1Sro88bhEJWGZNfItsHV8S5xd2Jf477tFcfLQZwmSnYe7AiNgfyYZcVaGHNk5X+9dVRKyXDu0TWXIX3Xs/2Dfev3v+98IjMqKY4yQI9O9/Snb/lDneP0DDAw7KQcpT+3j+leXsdMbZQ8GltHQ+w82QkcmTMv4cM7y5teZGntuvJMiWfTV8cyGApjkATBYpHjw9GG0K4n/8hUrsYj8IXLYYYfIDz+MM9ZfATUoe/zL5r9flyyV3n36g1ML5YYbrpJHHxkZYFHDm+gcK9me/wEFmHXN66/L5gkTpNMTT0oN7OCkQr8Py/9bk2LllR/t2rS424a1CuXhQZnSpVm+cf4rKX8BRmEt+3D7vf719sfbX+9/eP8rqLFdbHf8z+AUDtZmbQCjHHVWy2J+9Jc2hoEEOecZ7FgkXTP5YwtqLuaWmpIhvp0aGtQCGirU7kJPP/CAUV78C7FxR4NG7XSB/tWrlhgkPf6KQ3n578Yb79B55LFxsbJ44c/SqlVLz//lkP9sbHQUV6+exGCjoyJhH+K/XMjHI+OS5Ot5sU4tSYcm+fLIoCxpUhsjz3yodzfv9U+F9Q+xc3bBwegSyit/Hn+LnOc/z39WmMpr/7387WX9w1U4YEWMBLPzQrQZV9vAB+rBJHWFMZnDGVc9Bi4I6E9ex7XxOKLHDwWDr3Bsd5Oejnazcvx5+ruF/yGHHicLseVmSspiaYgdDT3+5ee/TZs3SadOfXS7+vP/dra8+eYLlo9h/j3/79fyvzVT5N4Pk2T2ihirw6KkX8c8+efZWZKUSL3j9Y/Xv97+ePtrfRiwQtDZ8frf27+y/V+MQK9TV1dHDcxMiwATGXeX4wh0hYPB8Bl+dUpGSK7zj8mHlifNhY4zdz4aFxvpzPL0i0wYKy/+gy+8XMZ++qVMmDBO+mEqh6Ls8TcMSzAMIiUeH3/8Obn3vvu17E8/fSu9ex3o+d/yTln8V5CVJdumz5QdC+ZL9po1WA6uQBJatpSGZ58jCdgSWkMZ+EdK/ldtipY7uNLGRn1Sx61EyVmH5MpNJ2dJDFcHUkvpHvFxziSvfyqlfwLWwTCM1z/kLq9/gQLCXpJ/j7+B3+PvmNAqJ6v3w6b/M7EKR6BO0DLusCNG4ohzlBgbogTKwdBoksm16ZQUd52+vDN9xypCgposcDfXftZKtH7EVdBYA0u4enihp18W/nf8333yzNMvycj778FKHNcrZqEIEkUXPP5w2Sz/5eXnSvfuh0nK6tXS/+gj5ev/fur5rwz5K8TuI1smT5Tfht1m3yxZ+cRorpmqVShtbrtNmg25AOc7hz3Bf+9MiZcXv+MShOYOuGfT9Sdly3mH5WjrXP97/WN1doiy8PrX2x9vf0MEwvsfxk/z/p+6ompSQv1fbuUdhRGZwkI7UqO8E8pAxghaVWuNEvP55yZnOEVsRqtJhLMyuEFBFJwVKmXFX6dqMAP0mG69cE9/9/AfNPhS+fzz/0gcdoDYvnWV+g0e/7L5b+zYL+WCCy7X0aKPPhwjf/nLSVZIyNvk6WCo7vxfkJcniy+9VHYsWmRBCcp/ozMGSr1jj5eaPXpKXN3aEhWD+cZ7Sf7/OzdWHvw8oQj9RwdlSL8uefCXec+8Ma9/vP719sfbX2h1uDDe/9g9/8PYSuhV6+tVJ/9PV+EIOgewLzgBDjgEU2l2eKY+s0Z44k7hHsMRpi/Mec9R/GgQR7tTtymHcy2DM1dvoE5NM3VpYdTj6QdxIiYBrAIRRcqmR8mUadNkwPGnywknHC/jvnzX419O/jvhxNNlypSfpUPH9jJ/7hSJjsZDpOe/neQvY8kSWTBkSAgjgv9ioqVml67S+amnJbYh5t3vZflnv73yfYKMmRxH/1jbwBt+8bJ06dGCKzC4cTVkIj1UlEyKkSnf/wY7p6eJSgCrQMRgZU69/vf2z9v/va3/PP2943+qA21Nh2pKNT4BKwIViZ5xaTQ75gNCplvFSuvDoEWpdkOME9L0YmYyij/taPywlGZrjv1BgqNlrDgSPP0AJqXhv3nLFmneoosc2KOb/PzzD0FcFeCge+DxD/LfRx9+JpdccrXy5BOPPyDXXnsFMj3/FZe/BYP+JulLf4eAFugHwZT/OoceiuXrnpDYWjWNeFN8VVT3jvzn5Ik8+EWifL/QrLRBto+JEXnrmnRpVT/f3Bx+Pf8H+d/rX29/1DxALgLB67+ArfX+B5kBf97/CvBESf5XEQca7jH+UawQrN/l0phKPJ0R4igxvhmyo1VGMbvtwPX6wA+vtFM9EFUH2lhbU4IV2uBo6amnD7D4P8QpwXlp+Ldu1V0ysjJlw7o/0SfE3AXGPf4WzAD/tWjVRTZt2qyApqX+LrVr1wpgrchVc/4ryMqWpTfdKFtnTAcchvFi69SSdiNHSv3+x6jc7wvyvzUzCjsLJsnClXh7YGehHY3pGvednSkJcexJz/9e/r3+K67/VBFSPLz9JQoanK3Vk2qu/42jQa4pn/9Bv65a+n/FPyJUvqHNQcQ+gKhD5pauU6A023CY4sZzew2ixYIZbTYqzMR5jV6HH70u5Fqmq/9n80iPDqGnTyDwnwAhkK2ZwF/6Dced8FeZOnWG/P77XGnRvBlSXPD488kxlP/Wb9goHTr1ltzsbDm6Pz4e/PpTw5CATFGt5vxfsGO7zISTbDiMfERARPpOniSx3HkQoTj/7Q35X7kxRm5/J0nWbKFg4J5ww4P65ci1J2brFDK9Udxp8f5nu/jHxTi8/gEQlt+JF3Hx+tcAQd7w9of84O2v9z+gGaw8GD2hmsLoUYpLiA5hfjBUbf1rR6Ddc4ZpdlEsaCpDVnNmJrwRFSpEjHCFXhEoYFHVwiEIA1AnkG7ICD1DKrySIbQ2qnRPv2z8/37VjTJmzPtYSWKs9O9/ODvI469SvTP/Pfbo03LfPx7EnOcYmTd3snTs2MHzX4j8Te/TB2cuFEr9E0+WTg8/CJ7Co1pAvCmzJct/QXamrHj0UWl37whUsjP+4ZD/eStj5e4PE2R7Fo17lC5Nd/MpWXJmX8znKEIzMvS9/iu9/z3+oTwXGqdUefsXDvn38uflrzT7s0f1T2YGNlKhVeSjtso345BzPWfEnPLI7NDAc1OCqXB0ealbzSMkk11NI8dhIS5fpyMcASNnC3r6u4X/o4+NlhEjHpLnn3tSLr30AlOX7RyPf5D/cjFhtlv3vrJ69Ro55dQBMvaTtw0Xe/5Tntk6ZaosuQFLIVr5r9Ovn3R7/nkKeLnlPx8j2LOO7i8HT/xRYmrZqTFhlP9v5sfJw18mSA6mN5PFk+JF/nlOhhzWiStt2HkcXv8YcICPl/+g/Hv7A35Qu+Ace29/VVC8/t8t/4MXV0v/T6dw0DqqebQel55xRJjGiF+w4yUo0WEZe8CJs7GMaZ7LApRI4ZnJgaiiJn1egA9tcnXFDqWpxfATYvH0zNOvCP6fjv1CLrzgCrn11uvl/lH3ePxL4b9PP/5MLrzoKnBYlHz5xXsyYMBxlgE9/xGT1S+/LKtefBHSaOTvsNkzKyX/0/scLM2x7F3rG27go3LY5P/NSfHy+oQaRlugyxrVKZRHBmdKR2zP7fWP0aJe/3r74+2v9z9o2IhCOPVvQMmybuhfdQttYnXUv2YZOwAReCUCMPTtv13DmcrYmFLjYLAz1JnWCYQ4oSnTLMBnirAE/lgSQUeeeDSpLFI86Jf/IGpcbE+/MvjPX/CLHNbveDnzzL/Ke+++Dog9/spnxfjv2OP/KtOmzZCuXTvJ7FmTDN+TNz3/qfxlLv1NFgweBPaB1AOTXl9+ITVatFQHmBJcXvn/uc9BCn/DU06VhgP/KrX7HiLRcVhirrjw47w88l+QXyiPjkuS8fPiVHFzAnOnJgVwntOlUU3tQK9/CC5Vr9e/wMDrP3KCt78QCPtSiqJRWf3DAcCK6D/Pf9VD/uBAuykcYA/wiGEwOLF414UdVkJYzjAQEjRNnWqWZxEXcO7cYL0ycImNWL+aC7jzekdNFT5OPX2HSMXxT0/PkEaN2utSdlN/nmB0hsdfWcugGiWzZs2Vo44+WTnvqacelSuvvMhyLpnP85+Tv58xemzmWkVL7T69pdurr1pZpcwy2Idq8Fdp8h+FJTo2/Ocr2fTd/2T73DlSmFcgzS4YIi2uuhqOecXkn/Oc7/0oQWYui9W+I/1+nQpkJFbaSEwgk9uAqNc/9k0fIOGDiQHMRth9sGsVxd+gG6iMNav+1jEUr/8NPPz1/OflD0yAL0O8/aU4BFRG1dU/cKDXYYyODYRS5Cgcour8QtkyNZojeHbiGKPGyCIHZamPmcVEntlnDsRsPirTHOSTqcy1KI5L9FcTeCUpefq7i3/bDr1k+/btWMoO6/bi4SfK41+E/y6/7Dp5772PpV69uvL7b3MlKTkRbOf5r7j8bf7v1/Lb8LtUKin/rW+5SZoNvUgHs4wMV1z+s9LWC53quKZNKyT/67dgpY13E+TP9dBK1Dng6TMOzpGbT8uWWCR5/UNV6vUvpdjbH9pVWlZvf52u8P4HJAP6wftftB30MikfRkpMAjUHUyvnf0ZlZaZxx21TabB2JWHfrWo8kBWImCKBXzoiuDN2ldam5dTFNkXU+7Z5rhkow0FuTz88+J908pkyafJPsnzZImnSuCEq9fgbkRFJXbtOunTrLTn4iPDWW6+TB0bdp1me/0qWv1UvvKDzoQ0PiTS//HJpdd11Bk6jgQKir5EIyP9va6PljveTZMN2o+K4u+k1x2fL4CNzitLmWQToe/1HBW06O6D2A5FiXeDx9/YPrOLtv/d/1JtRPUHdwQgPiGOXas2rQv6fXcaODURDOcLDKP5ccDjY7IAXz3xX1o4zI4V18FCsHqTp9VpZ8DpDiRfwGl5b7Dom44863NM3OLinKEKmUCtGZgTqmmtuljf//Z5M+H68HN6vb7AfHX7VGP+uXQ+RFStWEjb5felsadGyhSJnUGTU818R+cNo8a833yybJ0828gfdd+D770lyly4BvirOfyqtmlhMjivBf9N+j5URHydKOnxlyn8cHrTvPStTju+et0fok08YvP4x+Hv9a3DYlf4NJ/8b7vP85+XPy9++7P8FHWhnDemWUVvCYAUslfEt9CHCpJGtWQBWlU4vT21wzxh6GqgTZy7OIwoVYgJdNCZQ0vkuWtbTryz+jz3+jNx73yh57dVnZciQ84KYE+BqjH82NkypW6+14TP8Zqanef4rh/zl78iQmUcfpXpAndhGDaX7629IfIvmQDG88p+3bavE1q6jjDpudqw8/lWC5Ocbpq2TWCgPD8qUHq2xbp2qC69/wo1/QD94/Q8eA395+2dlDSIJONSJcTZEhTC88u/5z+Cshtrz334jf/YjQnYbnFl0nI60oy8ZdA6t/ZAwLW2d1KpZS5Jqct6odrPqGWV8lKVJ44tWjj2xDk1wgqeZ5iJdvs4UNrTILHrtzvTXpaZJrTp1JDExQcvYghGln7pundTBts6JiYlF2h+4Ads2Pdh2MM9EK9f+VMwPrQvnISEhvlT8y0P/vXc/lCuuuEFOPOl4+fyz9wxOuFGFmE85GjcPPKlpaVKnHrCNxyK6CGX1f3nol9X/SrNOXdBEf/Je8EceiyR90hw//hu5/obblOb7770hZww8LaL014Bm/bp1Jb5GvDE8yhxF8Q9v+wtlDaaoNEB/JiQkhE3+2DeZq1bLvDNOD3R/QquW0v3V1ySuYUNZuxbtbFBf4uPtsnIVlP+tM2fIpv/+V5oOGSJLb7hJDhw3Tk5+pJZk2hkapN+8fpQ8NiRdWjXAR804Z382qA+aNUBTcTW3ZqKVk79d8R/nDqampkoDtLMGaLLfKOx6iBB9NiwVuq9h/XoSR1lR7WLaGSn6ZJo1a9DOxg0kHqulMITqf0s9rO1Hj0rqmjR8/Axs46D70O7S7E+46OdjNZe0teulUeP6EluDK7qwE9msne1PuNqfn18Avk0FzYYSG1sDNJVgRPVfAWlCPps0aSQxMbHsTO27itjfira/sCBf0lLXSSPQjCVNkqSe1/ZGhn4BPoJIJU1gGxcbg34Mn/9RWvuJbRrks1GjxhIbF6P8o01EgyNFPz8f2MIHa9K0MTaNYjsdrkpeNURZ9pcXVaT/C/LyJHXdBstDpp2GsLKS7dfw0s8DD61jO5sA22jIpPU/DRX8asPDS5/YrkvbII0bN5Jo5SFDrbT+V75GEfK1GYGm1tJPqgO3aTvEnKdnpsuPE6ZIY3Re395YnoqNsA0JXlE0yWUXPfLMjFFruuE63AnOitHfkZ4uE3+cIk2bNpE+Bx9oygQvL0rM3oTWWSzu0swxWIGeF6O/Y/sOmTjxJ2nWrIkc1LuXNlGro/Jxmt0NsbuKLT0eQpNcvOiRZ0Xbv33HDpk0cao0bwmavdBOG9yt6Wk56X/22TgZPORyvSQrA6OsiJVEf9u2HTJl8lRphi2/DzqoZ4n4u2srQt/R4jUu7o7btm6TyVN+xtSJZtLrwB4m3xEpof9d1u7Q37xlm/z00zS5e/hIWfrrb9L3kIPBU+P17vS+HJEw0t+0eQu2VJ8ureBo9uzZvRgOpFq0/00BpBfjf3dr5Wn/pk2bdWm+Nq1byQE9uplL8OvqCB4rRz9j+Z+y5LIrJGfrFp3GltihvTTFToMzl/wubdqA5gFFafIGFN+djkXpZy5bLguHXih1+h0heTu2ydhT35SvsEwdA++5NZzm5y7JkHo1gRn6aP3GjTJj2ixp2661dD+gqymkpc2Po8kzFy96LErfGHYU3kX/r1+/UabPnCnt27bFBjxdXPcFCRjS+uto8cTFix55Vnb/r1+/QabPmC0d2rfFcoudURnQ4D0GLw8SUMrmx9HimYsXPQYr0PQAY0TJug3rZOaMOdKhQzvp0qVTgHe05gjRp+Mza/Zc6dihg3Tu2qFIf7pbCzd9PgzNnj1POnfqoDuQGqCAxm7In95jCOY8D8V9zdpUmTtnvnTq3An4tpECfPQTGxMTdEB2wX9adyXwX7tmrcyZu0C6duko7SGv5n74Wzb/kWZl8F+DzanmzlsoXbBEaMf27QJ1uLroXoab/qpVa2T+/IXStVtn6dCurdLk/YfiH276KRhUWLBgkXTr1kXatWtDchocTZ64eNEjzyqH/8oVoLnoFzmga1fVfwECStn8OFo8c/Gix4rRX7kyRRYtXAyb0lXatG5tKjW3HyQQZvrLMc3yl0VLQLM7aLa0DUMPRlD/LVu2UhYvWSI9exwAu82pneXn/8AUjqJA2ycpc/ta3YplKVIXIyJ16nBnMRKwbImGRWFyuBEOZiCd0zq0BEuasibF4K5pyKJecKE4fVZPMOvVI83a1oaYUuY3/PQLcO8rlq/EqFpdjELX0RYG7g/kuEoGWxNO+hx1WQ6aHOGqjZFvV7fDqyL0t+MBoHGTDnLYoQfLjz+Mt3e6M/6kuQzYNgLNWtgpjsHQdcfi/W/6anfaTzCXLV8hjTByWatWTSMP7EIbIkGfH6d+8skXMvSivyuVN954QQadf7bGVR4jQL8AT7PLV6ToR5zJNWsaWtoTlAiDLxPDSb+wMA/YpugTdM3kJBDZffkrzn/pCxfJ4muukfz0HQEerf/Mc9K810FSE2+lKiv/P/cx24bPOnGkvJ88OFA36X9z13ZJMP60yn8++Xb5cmnWpIlZQYWlI6R/XPs5OkH5bIYH+aTkZPZc4B61NyNAPy8/D3ooRZriQT4pCf2JYHwoIyXm13JTmOiTb5ehnc2bNZXEpAS00fCrEo8Q/YI8i23zppKMN35OPmhbIkU/H6NqKyCfzVo0kyS8rXEhEvrHyURuXq488shoeeCBxx05ZZ0P339TBg48VdPCTT8fNKmHWmC6VTzebDo8SYchnPrH2f/c3Fz9zqRFy5bAlm+lDLXQ/gw3fe4suzJlhbQEzXi+TYWOiIT+C5W/PLSTvgkHSeJrQFYi4P+4/jK9JZKbDWxTVknr1i3M2zcnLWGS/5L4LzsnR1auJE20Mw79GQH/x7XP0c8FzRVw3DkYFMc3fjaE4m/Khk//ZWfnyCpii8GgGrpXQfn1j07h4LA+v3DnLREkDl0z8Eb5q+4x88mbmmbKMq7NILBmPSmbywNvAkPw9omLKbr+KDtcc/VKE/P0w4Z/m7Y9JBqvPpb9Oc/jD/678KIr5OOPv9A3Gb8tnWleoXr+g1xWXP62zZwli6+8EugF5b/Pd99LHB6sKyv/qb+myIejJ8knzf4OTQGnDbrkbC5Td2qWxKiy8frH61/YEpqY/dD+FBTm40Goi2zbts0YT4pdSKiHaVerUn7Fa3nzwOLtr/c/vP9lhETVP2zCvqz/dBk72tKAQeW969Awbl9boAn66tY8geiKgppn/WwtZppMzcCL7Dg/o+ZyHM0JT/X7DESYRMfd0ycEFig92DixselcAaY8+B93/ED5+efpsmH9crvOMapQjA3QrLm64L8Wr2u7dOkrHAG6Z/gdMvzuYYpmdWl/QDDD2P9r33pTUkY/FZD/JLx+74Yl72LxZsEEEiuf/K/YhGXq3k2WtZsN/3Pnw6uOy5YLjspGHaiHVVWQ/81F5aPv9Y/Xv5G2P0cdebLMmjOXytvysuFQ6mEGPhicdOLxMnbsO4hDM+2m/vf8T5y9/CsfOJbTozmpTvY/EvaPvKVDwIBTH+gzM9KcLAcEmsIeMinDpKNUAbSNPicjrpPR1dE2L2iiEWeaBtdLyscm3+aYfJTlduBFCJscVSiefuXxv+KK6+Wddz/Crns/SnfMl+LDkHkhYQHmoZrgP+r+x+SBBx/Hq6A4zIGeLU3xYYKGatJ+Y0fC3/+bvv2fLL39TsiqkWD+9njtFanZGzsYMpRD/helxMqd7yfK1gx9nBF+i/N/A7Pk5F65uL7y/F9e+l7/eP0bafuz5Jel0vvgo5Ul3c/yZQskGq9W2rTuYe2fcWyuvvoy+deTD3n7p3B4+ff+F72WYKCp2Rf9z8Ac6ICZ1bvm3cLPwuOx+sQ4NWLuVA6VL5ah0/dqxl4Gm8oYG19s+oZJNlv/at0sxfoMTJ6+dXN3E/8H4TDeP+ox+eTjt+W00wYE8HXV6tbL1QD/vNx8fJjUR1eK+NvfzpK33nxRGbW6tD/S8rdl2lT5Y9gwycvMomRraHX99dLk/PMlmqvJZGRJfnYmVutopHmh/DdlSaz849NEyco18p+MqYv3n5chh7THMnWuoNc/Xv9WwP6kbY2WCb/ESuqWaLm4f5bUT6aNAhNZ++LYak/K/8mnniU/4kN4BtLfujlF4jA3mLeVh7dihxx2nCxZ8pvm84dzapcunYUY5MLzv+f/CvB/gIk04v2vSNs/5/9GYU1cdfUp4MY9DriyKvXcppCOMh1pHXVGKVdW/WdzkV5rxpJQEQtQAfCNlOYbh5u/JhMHBD2zSa5OplpX0tMn5hXE/11sVX3ZFdfJ44+Okuuvv7La4v8J5j0Pvci0//vvxkm/ww8BW3r+C6f87Zg7RxZdZlZ9KYJsiPx3Hj1a6h59jJXqQhk3p4Y8Ph5rPBcYndAwuVAeuyBTOjfN197x8u/1X0X1/8NfJoCv4szUNBoW8F/PFvny3GUZaoqYYFAtwqVGG0TI/nz26TgZcuHlqn8TEhJl+vTvpVPHdubmeI8I+dis6Korb5J33vsQd2ju8fnnHpdLLh1q7rsS+p/N0Yu9/fX+h/e/Iu7/RGG5s8DMC0ONomyE2bq4RiDVEzZ5xshBVOlV478L5jpIrl6PXx13Ryo7koVQXmtmXZx8hgMv11FuzWcpQ4MKz1xlaXj6AWyIi+JTAv5Tp/0snAd9/fV/l8ceG4kHmeqJ/0mnnI3lAafIgT0PUONFbvL8F3752/zjBFl66zAVVb6xKsA/Q0UkAcskdnnqGUnq2F6l+a2J8fLahBrC1TSiIP+t6hfIk3Cem9YrkB1ZUTLttxj5YFo80gtl4apoWbtF9OOqa0/MlnMPzdYHeda9K/53o46qSbz+qfLynwdzc9wDbiUhx398+0k3vFAm3YtVY/aw/cnJyZU6dVtR42i477475K67KCM7yx9XBalZG0tnGbaWuLhY+fSTd2TAgGNxrbGHJs/EPf97+ff6r3T/Z0/r/6jMzNRCLqCho8wq7hBU8ih/KPAwdtw1kHGKMIM6xjxHkWjmmwvwa4Sc6YyaA+thOhMQ539EzTV8TEbc0w8b/muxtmq7DgfKwL+eKh998KbBuZrhv3jJUqwd3h+MVSjPPvuEXHbphZ7/Iih/eRmZ8tstt8i2GdOV3+oedaQ0OPU0aTgAU4i4/BHeojz1dbx8MgOvr638d2paiHWe8yUzT2T1pihJ2RADxxqZ+uoKB1UMofonWibeh5UMmKMKxOsfr39Fnv+6hryPhy7yC91nHkPtz4hzsuWE7tyZZ8/Zn35HDJC5WIOZ3Ew7t3njCmxwRN4n8+N/Mfu3bet26dSpt2zbnq5XJNdMkv/852M5tG9fb3/pX3j/A4xkvCswiNd/+5D+xxzodeBQSHSASY3RYkepBrBHfnRDdYCSSOYRj/W2IczhpHcGxgMazNapiSabubYka2BNuMLTDxv+xLJ+/bZQyO2xGcP3pi9M1yn21QH/YbfeI8+/+IrUrltL/vxtvtAgWaZTDAwrev7bE/KXmxclD3yeKN8txM5kNiRj+d0dmDoNDbIL+QfTUr8waDQK23lnyBGd81RreP3j9S/546pXa8ri1dEB+zPx3u1yzMjaYBo6XoaF3r0eO1nibYcLkZR/bsbVuElHpU++veH6q+TRR0eWqX+2p2+X8867xM6ZLpR62Mn0m2/GSg9sKOH4X9uEmr399f6H13/7hv6LysAUDvpX+nRMR9Y6xUUknhJMrcMDnqLNqDMvcskuEwlamTkERgKQXQBnOto9RalhNI66XRQEF7ByTz8c+CcmNdG+ycxM0w4i3NUF/4zMDOy81Uu2YufDa6+7Qp547AGFtLq0f1+Sv+3ZWJbu1WSMLmNssAz5j4uNkjxss8x/J/bIl8M65MofadHy3lSM3IXon4kjdnj9Az1JjcvAoxmbCupoplMNVwf9e/UbSbIoBcbU8sikEdslHXx36iNmsyYC1LJeobx74/Y9Yn9GjnpEHnroSXaB3hK+MSq3/snJzpZht98tr74yRi9vjO2pv/l6LJbi7Ow62ttf7394/bcP6T/dSCWggqFs1I9V8VX5V4HlznWcVcZM+rgu6JOwvUAVtssIOTLdvFgzieqfU9kxohexQmsCDImAcdBspenpVwR/50CvS/tDamPXv+qE/xtvviPXXnsrWDVKZs+aKN2wFXJ1an+I6Gl0T8tfPsCevzJGvlkQpx92lUW/DaZx3PHXbOnSPF/isZSdVSeBe5/6R5zc9k6i1T8iHGF0oarpnw/xsDBrWazkYDGSLenRkomZBzn4hgGbBMo5h+TIJcdke/0bYn8IxkmP1pZMLBvuTAkdaIa3JtWQVyZwBz5jf/59dbp0aIzhGlyvbz0jYH/Wpq3DiPFhkp6eITHYqnva1P9he+DuFdY/n30+Xm6+5W5Jwzr2g4acJ6+9+qy3v97/UOXo/S8Vb/3ZF/S/LmPnlI99pxq8Q8RMXtCz5agG02yOxswPM1Q7FcniWAmXFKEaM7sshVxio4YGTlgsVEHi1OR5+s6zKA/+V197i/z7zXdlzuxJ0qVrp2qF/xFHnCRz5s6T/kcfKV//91Owk+e/SMsfdtOF4xcnE5fEyORfY2VzJt8uGeHmgbNT+aFDgzoiR3XKk8Pxd3C7fGzTbQrtSv6pD44eiS3RrWf9v+HbJV5ng+hVhoj+4nw/1j/DP0iUH5eiYWivwcw0ja2sl1wgQ4/OlXPhRJdH/o3SNNdXZf5P2RglQ57j9uoMpv8n8QHLssbwD4Eplkx0/DfxH/ig0LCcucT+anGm76b9ufHG2+WVV/+t9K+68lIZPfph9GXl9M/2HTtkzJgPZMDx/aVzZ0wJsfzv+990b6CTAz1p+j8gPLafK4u/q9bwBirz+BvdRJgVHEXGwYQjM4ATcQ/Jqur4B6dwEAqLAaMcdTZIEY0imGiyWehbVZNipoXcD0FE0Fy7T7zDVI8KNGKgoU61Ke7pAxKn4HcH//vvf1QefOgJGf/FR3LCgKNVhVcH/L/4/D9y/uBLlZvefusVOfecMwCo49QQ2fb8BzB2T/62ZIp8Oj1eXv+RUyxsKKY8Kf+FytBR8vLl6dIVo8y6+E4F8T96ZC3VOax+7C07pFEtfmtNx6Tq6B+20TWSsnp6nxzpg4eMHi3zpXEdttXwL5FmvKq1n+1iwyqi//71VaKMnRGnl+oPGERHoK39Wb4uRoa+hO8fUDFHq8Zcmy5tGwK5CvIf6y4L/6W//S4H9zkG05DypEH9+rJg/lSpXw9b3Hv9U23sj/Igfyz/qXby/V+1+5+rcKgxdR1PTaEB3Q9Fgw/oVXmYNPM0HXDu1MkOXGCvQ3lcx7Xx+PTBD5WCr9CtGqLx1qd9Vo4/njOQ8QLVefqVxf/1N96S6667XV5++Wm56MLzqw3+buoKBwu2blklsVgSyvNfeOSPy4X9ujZa5mKkedrvMbJgFVbNwNSCoLxSgE1w8h8NGX/g3Ew5sis//GPgr5X3Csh/fziXRjUUymtXZmHNaAx5a1VIZWcXC47+/qR/1IG20PABYewt6V7/lmF/HvwsQb6aH+JAgw8m3be9iP3hB4XO/px3WJ7ceDKe/CJgfwYNvkw+x9QLhuefe0wuvfQi8Ky3f17/hkf/KmOBn3SDEDe46f2vva7/MQK9Tl1dtVA0ak7bIGrMnXl6pwFzwRkzGi+zJa7NdfYRBQN2TbPMFUEPOXhuVAzOmeTphwX/8V99K+eee6GMHDlcbh92I4AN4u161R2rCv5btm6VZs3wsQ0Cv1yfMWOCxrXp1aD92thKyl/qlij521N4FV6C/CUlRAk2FQSC5CETDDfhN0T+22Bkby12geN0Dh0bhvPzr6EZ0rctvWxzRUnH8vCfcaAN/U/sCDQfz0Pp651Vsv1aF6svof3aFtAy1Etv/+7SH/2fBPlkFpxBq3+/un2H1EokXa9/zVCMwZ6/7AumjcLqLt/MwzKJmmLy6UBrPnkBYfayGLnprUTEooCnyGe3bJcasaYG1lQe/iuNvuO/777/Uf7y1/OUXt++veWHH/6DOdBkJgRlnCA93odrQbjoB9q/H/O/4rQX5c/TB1t6/AP6l6JrxKkM/ZuJVTgCMq0XGaVtJd9Uw1FifMwSKAegNckSMelFlYRTEyhSJKjKguHl2s/mfV1IvUwCJxe5IVbu6VcI/zlzFsgRR56IUegr5fHHRlUL/J9/7hUZdts9arh++WWGtMG2uGq7irTemizPf0Xkb+iLybJ8nTH4JcofkeSonQo1frCiRp2EQunbIV+a1C6UVg3zZfR/4iUbS9YZvREl956ZJScdmFsM/crhr3OgLf2v79whSaBd1fRPNj4YHPAQp6oE9R8/mOTHsF7/lWx/rsAKL0vW8MtT8idWb+mZL/edlQGeo9EznEgdcAHmSadsJH9jVZgTMmXoUblF+D9QWEsE8cepppSFf2IyVj0iIYQpU76WPr0PCq3SZNhfb//wyOL1b1j5zzAbGdBxfZD/izAfTjz/hZn/uJV3FAxiIRfNpBbQPnAdEYTfdY/RFMznnxuutrkQDBoA/Y9sbqBAA8A09b9pBHkdlJ3OfbZW0NMPL/5r16RKu4695Jyzz5C3x7xcLfDvc/Axwg1U/nLqAPnk47fV3/P8Vz75m7MyWm78Nz7U20n+Ka+UbfPLs6tPyJLebQswn7kAhrAAq23UkIc+j5c8FfAoaVILuwtemCGtG2GuaRjkf/WmaBn0bLLeBelP0s1UGONf1dI/n8+KlccxEq3MixYf1KZAnrmYm2sE8Q/Gql77tW1sltoJw3fa+FLaf+qjybqDpcPkAjjG14A/ySyswvHfXe8nyKTf4tQPJt9Muncb8mGXwmB/xo//Rs497yJzm6gzKyN1J/qVsX/bt2/TjwhTVq2WIYPPlR7YUZXQaOUa8/1f1eRf+7YC/O/bv/f1v67CQVVlhNPIJ/QAdFAwVfuUshuI8MSdQj1AEZlBAColGE5oL7tTtymHcy2DM1dvaFVBSloAdQTLsYJA2UCEqS7d0y+Of25uvtSt10qOOqofVqIYi76p2vhP/mmqnDgAHwyCUz755C059ZSTPP+pDKmYVKj/d2AFjW34W7tVMKIcjd0CC6RhzUJJqAEpLSZ/Y7Gz4Oj/Jkg+pJryzy24nxyarqPS4ZL/n7Ayxf+9n6jaiIqBzo8L5naqlvwf/U+MQmvfGa349+Oz5aKjsPoGG10M/6rYfjY0tP1Fmh3S/k07ouTMJ7HWM0Bx+m/YadlyZl8u9VfU/sxbESvX/zvR2CjU8c3/4S0G+FkxBQGDNCkhlJO+Fi0okMP6DZAFixbpdatXLcUmVrV3ol9R/Tt79lw58uiT9Xbi4uLkzjtukuHDb/f9H9L/BKc6879v/77R/+pAq6TaHjHz050WAYvCMro0HUvWE6bbBjgtpEWplFjKKCUTCaonjeHHONMh5dwN4EJHy2hRrTSQ5unDWJQT/1ZtukuDhg1kDtZCNj1l+kQfdPBDLAP9tJ/jf9ll18l7H3wsrVu2EE7fiMUarMqW2kDPf5Ho/39PriGvYZ1dsiND52YF8sSQdKmLqdQBvgoD/s/9r4a89xO3asZSbkfmylXHY4SRHpb5H6Cv57iZ/V3/5GHK+FlPJsuWTExNUNbFdBnM3R132zY0sfzyX9X5fwbmNg97O6lI/4++IEMObp9PVthJ/gc+UVM2pwNBADPq/Aw5pmtIOTIwAy6siP357LNxMnjw5XrpGLzpO++c03eb//74Y7n063ec7NiBjx0RUlOXSu3atdnz+PP9X177V9X5n7yqfK4NBaPwvArov4rI377Q/iIONIWUYqqBHcNOsWl6s/jRZPzQhuEB3I4W4MgMTAWBd2yuD/zy3A61I6oOnOltU4LX2eBo6SnTWd7T1z4hioRWYcFPWfj3PeRYWbs2VVav+hVXVl38N2/eLO07HiTZWVly34g75a47b1X2Cf4QuarbfjNaZ+RqT8gfkXzhm3j5YFqNgPwf2LpAHsE22zUTkRtm+e+PNaBVJ4HnnxiaKYd0wIoe5eD//bn/8QJJ7n4/Sab9ERPQf5cfg41UjsXoKhpW1duvfacNLV3/3/tRokz4BWs8q06kY1woH+MDU87JLxqM/L/+Y4K8MbGGYjewd57cfrpxUBVQe4GzNeWhT7pHHHGyzJ4zV0444TgZ98X7u23/tuFD6P7H/kV+/fU3aY1vOKZN+w5L4dVR/mcrKqL/gxiY9hNJ/Q94VJ7UYLPS0JLe/nv/h/yCUIb8kf+9/weRKv4RoeJGDClolDkcOY/ZLV0XlDuDMH919rS9htgXDWRJt5SLifMavQ4/am9DrmU6O8fT3z38GzRsJxkZGbJta4rUiIOzQ1wBqo5iVCH8n376Jbnz/+7TJeuWLpmFlTiaonWhwfNfuOSPPPT4uAQZNzsOnKSSKod1zJcHz8uQGlwOmkk7hcrjn7YtSs4dHbKJyt3bJEE3USEpQ5+/VVH/5OD7y+MfNOtfWy9RzsZGKreeihF4hKrefnbvruzP4/ho9bOZXIGDes38TLyHH13yJDQY/puPZRevfR3TOFQLYkdLrNYRGO+phP358j9fy3nnXqSE5s+bIp242QlvZqdQPv7nfO3mzbsIVxOKxgoe32Dq3RGYguftr/c/vP+17/qfdgS6yLO3KqSgLqCqDlnNkcoGllQ7FRHTuSEaSK/WAkYDmsI2zlqhUJxDbkwf0jx9oux0fyiaxKsy+Ccmw5GEBVq0cKq079CuiuKfL3369MfHg7/LwIGnyIcfvKm8ZBnUtjmUFz3/kZ8qI3/52KN71Ngk+W4xPFh8MEhH5bgDcrDqQZbEcMIz6jWB8VDMQ+MVw/9zLOv2+HhME7H6Z9J9O4y3pFVSZ1Rt/cOR6KteS5KlqdxND43G71MXZ0if1ph+QB1axdtv+Klk/ffY+ET5YjZG6NWWGP7jEnYhDFJE/vPzo+TYUeZDWV7z4Y07pCl2xjR8W3H7c1i/E2T+goUqBxnp62w9rK9y/H/kUSfJ7NnztJ4bb7hKHnlkJCtDKLn91b3/ffurt/zvM/2fmYGNVCj0fNRV+8Y45FbPGTGnPDI7NPDclGAqBJ2XutU8QjJVPTEThpbL19H4Bo2sLejphxX/YcOGy/MvvCpTp34nvXsdgDcIVQ//yVOmyYkn8uNBrO869h056ZQTPP9FQP64tjNfmf/0W6zqAIrvwD65MuwvcJ5VltkD4Zf/299J1k1bWPut+EDsrL5Y6y0khKgYpIafvnk9FtRxpBca9gR9Yn8CRqJdwPR++QHbmTPsCfqk47p4b7S/NPq3Yv7z9D85xcWEU3vlyF1YOnFX9ufoUfjAz9qff56bIccfwEXLLYoVtD+vvT5Grr/+NuG6z5Mm/hc3UXn+mz5jthxzzGm2JSIbNyyXpGS3Gsu+iT9vtjrzn2+/73/lf53CoaK7kzhAOfHlKLc+xYgTHTCKjD3wkqCPbRJdFlQJivHMFOfYSTTSMF4EH9rk0qGjYx0Mnn5QVao6JlqAp3L4j/7X83L38JHyJebmnTDguCqJ/xWXXy/vvPeRtGrVSpYsno6RUHKZw87zH2WLKOyO/GXmFMqdHyTJnGWcO2Hkf1C/HLn2xOzgK3ClYt6ghAv/7ZipcMYTtSUXI9988P70pnRs4U3vx9wGfvdJ/fPtwjj5x6cJepscKOjZqgC7uXIMHfeLn/lYMpBI9WjJ1U0KsG656EMIlwTkqMos4LxuW7S0bJCHVU1Epv6G8sX07ySsD72vtj9c/W+sROn6bwjWdl61gdgoEnLdiVky+HCzWklp9uc1zIN+cyKnH0WJ7kp4kp0HrWjyzrUye8ZSpdNnoT9/XyZt27eR6Gh0otaqEoIYrzV18XdX8rd16zbpd/gJsnz5SlaJVYTGyGmnnmTr2DV9b3+Bt+3/yuKvoOtPxfvf4+/x1ykc+uUjlLRxcSH6YEq3hiaVgVElhsGoDNSZ1glk5DykaxYvYibT+MOSCORw6gHkMZVFigdPH9iEGf933/1QLr/ienntlWdlyIXYJauK4b9l2xZp3/5AyczMknuxxNPdw28zzOX5D+IVHvlbvz1Gzh7NNZjpSuBBDr+XHZsjlx6dDZkGQ6kw26MqDUs6DPS/xJrIj44zy9cdAGfzpcswfQP17uv65+j7OVrsNB2xQZxTXHSkE1klBB1MYBG0jo6X0b/UCQbiUPwfG5Ih/bCBTaTx35f1PzEd8HBN4TxxRQgwP3FhlhzaHiPKwMz87Gx/fv49Vm57l7sSijTGx4af3EyeMl0Tbv1bXvt38cVXy4cfjcVdRMlFFw+Sl14Y7e0v+d6uIe/9D+9/7cv+JxxoN4UDImxtIYU5Cu+6sMMK1Qt1DAKPqp00ro1ieRZxAefODdcrA5fYCC+HXuMC9rw+WDfi/M/6tC5Pf3fxn/DdD/KXgefLQw+NkJtvugaoGoyrCv7Pv/C63DbsbomOjcHo80xp2bK5Mo/nP/umh9K1G/K3ZUehDHyytsqoqaZQrj85R84/jNMorFKnvEZI/o/+p/14ELSuHZAtg4+A0646A4c9QH935G/Zhhj5el4clp8rlKT4QtmMzfG2ZcTItqwo+e9crhxRqNtKg3V1IxBO0yiu/7Tz6EFrW5ldaKex0GuMPP67035908i73A3+2xX9TfB7T3+ylnmGsPz3+bAdUj+JVqV0/t+SESUDH6sZsD8/3LMNb61wowo+fsnPPMX5ruiHC/8r/36jvP32B0qxSdNGWHJ0stSrV3eP0Xet3Vvt9/QNt3n891//Dw70OjzPsyOhlKGwqfTU+UWbmBrNERQ7cYxRo2SQg7I41Swm8sw+8yNm81GZ5iBfx1aQzDp5nWEaJvBKpnr64cR/wcLFctihx8ktt1wnDz54b5XD/9B+x8vC+b/IyScPkLFj3wYPef4Ll/xtwuoXN2GO6XJsf0z55wo8152cLYPwinxPyH86HJ1TsW4vtQLpv3X1dmnXmPqhauqf3LxCycBzSWZutGTgOSEFUxOaYVMa7tCaHBslDWvlSXwc+qGKtr+i+v+XNdHy99eSDS+CSRpgas/nt6aXy/4cNdKubAJ9MebaHdK2oXG697T9Wb06VTp27qX2j7TffuslOee8M739RX96/8OwhdN/3v/SUdd9Uv9FZWWm8W0J1In6sM675Rl6kRnG3V2bmiZ1ateSpMSkomVMSe1xFqWrrAXY+3otIwiq/W2emkYtrPMCS6OfinWMa9epLUlJWDAfVZR4j1q5qT8c9NemsZ2kiVd9Ie2PJP3Va9KkXt3akpgAmgZu06rdoL8ubYO0addDhg49X15+6amd8F+7Nk3q1qmDj1USMUezFGx3g77pMDYm2P9rU9dI3br1JDGRG2OU3f+l4T9j1hzp3/8UxegDrLxx+sBTtX0l9f+aNWuxO1hdSYgnthXjv9LoF+kj01Mh9PNlzZr1un5rQiJohrQ/UvTp4K4FD9VvUF8SEuIC2FZG/lK3RsvNY5Jk9Wb2DxkjSk7qmSf3nJVZRP6UJuSzAWjGx6M/Id8l4V+Z9n9n5xE7+lxdQblI2wmaDS1Nhz2PYaQfqBb0SJfrqddv0AA8hLX6mBAqo65wGOkT2zVrUqUR2lmD2CIEyAYijrA97iZ9Yr0GTl2jxg2wJCHXJERAmuGhyNAvwPz21DT2ZyOJrwG+Ld62UuiPw+j+I1/gIzsb+mEpxccGgz9Vpeza/vzt6Zqydgs7MEpGnZspx+JDwnDpPzZg+44dUqsW3p5oW0gHFhEL5lI+GzdpIHFYUpRpZ511gfz36+/MPaMsvkWy19hG8VBK+8vDf8SWNrtx44agSWxxLxHWf4UYaFuzdg1oNpG4WHwzwQ5RIHiIDP38/HxsNpMmTUgzjh8577r/2e/mnnAke8Nbr2j/5xdYmk0aSyzbybCb8se7Uqg0whOEkP7PQzvTtJ2giXbuFCJAPz8vD/K5Tpo2bYKlFe0Hu8Vl1N1ImOhrO+GDkSa/aYqk/nH9n5ObJ+vYziagydeCLoTgH2h2IGIK2WXscGILO/YK1IFIZmaGTPh+MhrVWPoefJD2M/NdWTvOjBRyJA8cD9Qz/CLgRKu3xIN5IXdTjP6O9AyZ+ONkaQIgDz64l7s9OwIWqFbvJVz0d6Sng+ZP0qx5E+ndG6MDCHqH7v5xNCNw4aO/fXuGTJo0RZo3ayIHgWYQG0OjsvQLobRr120lAwYcixHad4rgv23bdpk8eao0b9FUDup1oCUESlB44aJfpB6cbNmyTX6aPE2at2ouvQ/sYXmo9P43N1Uy/tdcf7u88fpbyvBLl86GQqFwW4p6MGebt2yVn376WVq2aiE9ex6gfcditiRIVI4+r2Jw9YTy3+bNW7HyyXTdCKFHz+6BghXlf3Nhye0vTn/jps3y87QZ0rp1C1GalZS/VZtj5Ja3kiQVI9Acl6sRUyj/OCdT+nfL20n+Nm7cJNN/nimt27SS7gd0RWmLhh4CZ5Vq/yNYa/qL2dj0Andxx8AsXfGD+G3csFFmTJ8lrdu2lgO6k6bBJxR/k7h79B2+vPl16zfKzJmzpG2bNmhnl7DLv+EiNgRUrfylrdsgM2bOlg7t20qXrp3VhtjsiNGnAZk5a650bN9OOnftxKZrIBbqmJrbCyv9NBjKWbPmSceO7aVzpw6B9ofiXxL985+tJas3ETlySKGcfWiu3HIK18fmTfJQev8//kWefDGvHkvK5diY5pL+dmWXEPzLou/yi/Pfhx9+Kpdedq0ceughcsnFg2XQoHP04XJtaiqWqJuvbeyEdr737kdyGb5PcWHJkpnSBhunuP539TOf8crgvxYDB3PmLpDOXToqvto8rcxCpMRtghJCfDf1/+rVq2XevIXSpUtn6dihnd67kgFQkaKfsmqNzJu/QLp17YJvYtrYxpXe/+QP128WXb3FUPkjKi4oQu7+eS0SVqaslgULFkn3bl2kbbs2aKe+Z8clyNTKw09/xYpVWJL2F9V7baD/GFw7IkV/xYoUWbhosfTo0Q22pZXyYbj9H9MKQkfsomTFipWyaNES0C4GFh8AACZbSURBVOwOmi2VhyrD/w4bB9Su+G/Z8hWyGDR7HniA2m32uQuM74p+0IEOUESE1PQ9iq0GpytXpkjd+nWkdi0zL9IUwNMehS6Eon3+MxcG6uRd4E/vBkcUKsTryWhMoGTna3D5LKj0C2XF8hTMCasHmnjtxuRAGV7DGwwvfQ7Fr1i5SurXrQvnEx8DuXbhGCn6BXhqJ6NyVK1WTYxcBNqP6G7Sb9+xl7Ro3swss+SwI475hbI8ZaU0qt9QatbC3ssMLj+M9IN1sinsz5XSENuL10zG6/ky+x/3VEL70/HA0a5DT9m+PV2G3XqtjHrgvlL5jzT5dXujhradrI/tLBf/lUzf3BMrKpn/8sG7bCdHfpJrAlvXBodvBOgXYrSJPNS4cSNJTE7SJuIGQ/o0JF4K/WWYNkDneeMOtAttSMDA5wPnZcqh2PmPbSjO/9yFasWKFRhVayw18YbIBSRXin6QV6Lk0heT5Pf10dg0JUo+u3W7JNeAgcJ951NWgG0T0ExKIt+GV/5NX4FQiP7j6CFpckQkEW9ryur/cLSfIz8rUlKkGWnyLUYJ+JfGf5Wlz1E16ltuRJRXmChpO6Jk4/Zo2ZYZJZOXxOp3kCf1ypUeLfIxf5tUSub/itAvxNSV5TCYpJmYxGXbyEVF8WdK8fZf/XqSLFrFUThQA2Oc0Qc7C/7FrKhRFv1xWDv6kS/xRhP6p25ClIy73axoEsp/of1fEn1zozu3nx80v/7mOzJ69HOSAierVu2actaZA+XZZx6TlFWrMUjSDCN6adKt2yHaTH6Mf/+oe6DH4ExTLsvZ/tLo815d+/PAQytTVqn+1zdErn4eUaiy+tfcI2905/aT5nLYz5Ytmpm3Uo4mb8zFw0w/FzRXrVwtLVo0B023YRgJIjiaofEw0M/NzUH/rsF3N830DVFk/B/ctPKDOebl5crKVcS2Bd4Q8S3jzvizma7/Gd/d9udk58oqpdkS2GL1mgCeJfc/Se4u/Rx8GbwKfNuqTUu8xWA7EUCuuP0JZ/tzcnJkFR7+WrUETb4hCtH/ZdG3HxESazizuJAgEScG3Vu9yIeETMQfG8QDcbSFTdQ8iQWAdg3XTJ7wGutwM44/0mDw9MOP/xFHnChbsbPVooXTCXSVwP+tMe/JVVfdDIMeJXPncAcwjFwhKIvhl8/+nv8sIOxylTmc76L/f0+LkVvHJMvmdCOTydAhjwzOkN6tMfK8h+Uf60vISQ/VEn5Yd0rPHBl+lvloEckmoD1VQf+QR1+fGC8TFuK1M/opZWPMTvr32YvSpVdbcjb/bAhj++/G2t7bMd88IztKmtQplElLcA+onyQYStL/tN0XH5UtFx+NJeN4W7awie4Z+Rv+QSLu1eBG+mOuTpc2jfmVTdn0x+HNxiNf4KEE8sC2Tr53m2lrGO1fRnaWPPbIU/LQw08qPJyCOGnSV9Ktexc5sNdR8tvSP0ATiIH+ti0pOsXC27/w2z+FGBgbPjV4e//D+1/6wEO+wN/u+p9mBJo14Yk8VE8bhai6RZVNQLO6RwxcElqeJUOTXLzokWemAk13RDz9iOB/1jkX6hSG1LW/2b7Z//E//riBMnXadDnyyH7yv28/J9sFguM1Jrh40eP+3/7AI75rWKD1wTZXpP2LVmPaBpznTIwGUp5rYiDwcSyV1r0ldrtzdVPjqLZBQoTlf8P2KDnrX+YDwucuyZBe2HVPnf89RN812akmPQ9z+yf8UkNGfJwQdEDL0H8/3rcN7h16I8i+RTvb3nQoS7h40WOwgi+xHfujX6KztQB+dqH/C9F+jpZqF9j+f3JophzSjsuHBIOjxRQXL3rk2e7r/4FP1hSuqOHsj9mBMEhzV/TTtoqc+xRW4kAhOlaTRmAEugz8K8t/b/77Xbn6mlt4O5jjXQPL1A2RV155U89J//7775VhwzD6HCH6joeDx/Dgr+ApgNqUwE9okosXPfJs9/vf0weMDtgA+kWTXHbRo8c/3PwXmMJRFGj7JB/aOZBCrhKBX9t3Viwh/FH4OMGkMhvpKMfRAJdmYkwxncxqVRkzwQZPn8g6IQgP/glJ2M4bYcuWlVDg3BJ5/8Z/ydLfMU/8SOW/l15+SoZeOEgZyfNf5eTvG3yMNeozOHLgC74QrI1l1568MFM6N8sDxkZekazB+JCRl//ULdFy3tNJ0gGrbryJkUUX9hR908LwyF9J+o+O62OY4x2q/xz+Tj5D9SXbT7U76R58SBlG/cuR/vNG18SGLvnSu22e1MSUnV/XRkssGKFT03x9w6OOM8rxDQX9nhYNCuWPNEx7mFND7js7Q47sjFr2gv7vj5U0iBVDR+UTfmTKnkMow/6wyAkP4A0H2sNnhkfw8WE2ngM4Cp+VGyWYDSUnHZgjdd1sHV6AUFn+40YpV8GJ/vyzcaYi+3vm2QPlvbdfDaQZvguv/neYhPKTRakI//EmPP3w21+Pv+G2qsx/OoWDrzV0rX8IEpV0cFjbiJaaZ2ChuolJCEFlTwXPTPNkaXJNCX0tFRiyYjlASYWr1wdr8PQjg/8Zpw+Rb/73vaSs/EXnHu/v+N9990j517+e06/c//xzAeZS29VZPP9VWP7mYUe8697kPGIjk5T/N65Kl/ZNofYp6AiUU/7uafn/6dcYadOwADvxGZ2yp+mHs/38xkH1I5CciCkSwz8MzhdXeIH/I4OytL3JCYV40BWZ9UeM3IVpCkH8BQ8TO/BQwWkK7irTP6pF9zD/G+7YO/Qzc6LkZGyi4qzH4CNydVfMkuxP2tZY+WpejDr8nfFQsDE9StLwgLYR87uDIcj/rJP277ZTs+RMbBsfxB8ygZPK2j9ed+hhx+kHWXrjoPPMM4/KFZdfTIpqE739JRIG/3DKX2BVDtS9v9u/yvKfkVTf/kj0vy5jR86FGJPFDBfzcZtx1SAmzhVwzAgIlbjJs3ZWi7GUCbzIOtOM2qr0kddS4WgXr+UoDBUHy3j6Fig92DixsQBWBv+XX3lDbrrp/2T+/J+kU8eOWhdr3h/xz8rIknoN2mobLho6SF7GCLTnP8CB4MQseLZr+Zv1Z6zcDQctA3tycC45gXxokBtRZIXh4b/AjekNmrvcX/mvMvI3bm6cPDk+QY7skicjz8mS/vcbx8/J39OYotKnLUdxd9Z/HL3qr7samr5o26AA6xZjRxbo1uqsf/9IE7n0JXxsbdhW/nF2lgzokataMgXrls/4M07mLI+W+SkxsgkOs1Wf/8/elYBXVV3rFTLdDGBISEKAMAWQIcw8ixW0DhWeOFSwDp9WO2hrtQ5VkSIigxSwrYD6Km2tWp+I2qLYVyeqIkNAZLSMzpA5YTAoGSDj+/+1z7n3EhIy3auJ7P0l555h773OXnutf62zzz5r47c++QuR+JhqSUuuwsh7tfRLrpYx/cslAh+wqvy2AH+1PLqPH2jGxnZF37Evffoa6fFI0aG90EH3Y3r3fk2fB4q+uY/62m9uy9pfh+f6Y/mvUkqRCYD8f5vlzzuFg6xioj0l2Pi9FDbnIVPV8Hb1xS72dSRZDS1VjyOo+FWQYnn800qoHTfXtS+0JmyQV+fUucd+v5Y+mBEg/r/80r/k2utulFWrXseiKiN9XG6D/H900WKZMm0WmaPLk19zzZU6osBjK3+N17+Mj8JkxsseqcDraqppIoLNLMLHat3hoDFZ/QMTAqR/1z8eI3mIOTz3qqOyCw7dU6sxvMwE/Vt47VEZxaWnayV//k/4XXs5wuhsSPTnVj5QfMrjbwZG8fnwZ+yPyP0/KJWXN0fKnlzI83H2BwzTAL8++xMF9vPNxmEE7CgsotMqMgVhEi8eztUdTfLnv7/NQpc12/4tee4fctNNt7kk0P8qAkr/0ksnyN+e/qOJtoIcwaBPfPRvi7W/1v+w/tfxUxRd5Wyq/nkdaC/MqKYRLajMIMJjHJofQg4TiSMMHanhlHvWXONWXRpsnZEwLaGnET4Hv1o3c7GkEtR9d2RFa7T0W8z/1WszsFLfRHll+VIZP+58ZWtb5f8Pr7xBXn31TcgLFx0oUMmx8tc0/XtsRaS8uBGTXVUtayQlrloW4WOwLh35uOyYWVVH6KXVvxbr35jZnCITIgsxr/yuJWZSbQ0GIYbjw8jHbihRnteHfxXw6c6f2wH4yz6ucRw9J2bxKYq/peU1+ACwA0LrGdtB/XffQikwOBtPeA2muwhWr6yQjowkCXG+bGSFdO4AocZ07gWvRcnyzQyDx+XRy+VyTNcIlvxXViLsX4eujpUTmf3gNBk+bKhcfMmV/rcsH32EmOqpqY44WP2z+ANRsP5Xq/c/Q8pKCmk5VcHpzhpocp5Yid14ilegUhw3I9DYBeCwg/FrCumxvppkFcxAA4wT5rpxuLk1F5nJqcM55dbJs44p16yWfvP5v3vPHhk56ntYdGSxXHX1RHRL2+T/ASwskdZvmFRWVOHL9Wky+e7bTEus/DVa/6a84JH1H/tWsOqBJYwfvq5EkttDJsBHq38GjwKJP2fPwcduYG8YnOYK4Ch5zLT01hJJxYi/aqOjkv78r8aoxZzlUfLWLoRqc/D3zanFEoUQctRhN++phr/H8NbkgrlOBA3wke3nqHJCbLVkYfrGDWPK5fuYztEdc8X5gWB99uePb0XKC+/xo+oaGZdeKdMnmlU22RWB7H/Snzt3AZzm32m9rP3A/s8xnSMGcYRzsMiJ760gLWtu7odY9+A07WGVFWzc/udAlo66n8L9b9tv/a/Whn8hR0sLvW++jDVmJ/E2CSf+6G72ec2ADI6p1Tx0kimnw1umpL73wlk60syD/FozrQonP+NHa3PrUG+beSz9QPA/Pz9f0tKGycIFcxFO6Wdtlv8LH3lc7ps6S0KxnOinH2/DwgvJEB0rf43Vv7+ujpRn1sLTcPSvGnr26uQSiYt2nDGrfwbBAow/z2aEyxPveI7Dv+E9KuVRTJmpD//KK+kkYuSZ8q3/WChkVIXccxEXCjHYyPOnqvyfPdss5EXukD1rEIbOFV9jNxq2Pzc/FSU7c/EwifIsyzo0Bbj/+dHSmLPGy9ZtH5CUJCZ0wgfdu2BmcQT7txurn40cdY6hzRvB6b17d0gKlhT273+9Sb97O5X7n31s23/q6n9r6/+QsrICLmFvRplVlaHFikjY0OBCcblqEfex1URg0GNkacfrpgC2zIGtkXE9q9dU+XGNQwb8Y3G9ymFq7Fv6QeH/0bIyfHjXS6ZPmyz33XdXm+X/sFFj5MM9n2I6yvm6LLmVv8bpH9VxwRt4Xb3JvK529W/5ncXSCXOfzWsiq3/Bwp9dOaFy81POHAJ2BvDvBiwdfROWkK4L/3IxL3fmSx7Zg3ByBhhD5JLh5XLvpZyzYPEXHJSxCGFHM0J2XvXdcrntgqMOL8kx5mjY/izNiJDFeLBhJTH4eWMy4myjUpbWilm/GqaW2b81a9bJuPGTTJ3Y7v18u3TGw7+//ft87z4ZNGg0qTntqJGSkjxp1w5zTaz9tf6H9b9atf+JOdD74QEDOrxOsgEN6LNiiPvLSedUcQei8AuQdxxpXjEvJJ0irgft1Omgg1bFjQtUXBzA62Bb+gqY5Icbxkf5RoaBwc3lf1xcd7np5z/GylgPsiZNbYn/GzdukXPOvUjbv2TJEzIR8VMpNVb+Tq5/VXj1P+dfUfL2djjPRnVlLKJBzJxUhiVSKQbkoNW/YOJPOfrg/N9ixNThP7m+4jeYioGlyf35z9f0dy6Nkq2IjuLTf1V6WTMdI6za1aaSbwp/pTpEihAE5CCW9/6iWLDMd6gUwa8vwtLvX5biHK6dO6DCfJAXRPwfQwdauReiH7+O7GlC+zXF/mzdFyq3Y9l6PqYM7VEtj+kbAXAW9+3jPy6SEJN2RdP5/52zzpftH+z09n9ZKUKIINXG39dfWyGTrvyRcyFEZj7wG5ky5c4W03dtur/81UXf2n/0iPU/Ai7/Lk+/zfIXUoopHIoTfKynI+04xa6aq8aTA9R6/iCfGXU2V8xp96LJwyus08VRVlkNAW2nAMWLJj8dRScoE85Z+sHgf48e6XLhBefKX558tE3y/9Zf3SNPPbVE4jt2lM8xghPhibTyx1EJKhmS0SSzdXWUy2DPWBYlGZ84r6lxedywcpl6yTGMbKGQ1T8yAWwIPv6MnQWHD/wn/vVHjO2/3oTpG378350XJove8MjuPI44IiOuRYSGyO3jyvTDN/Yx79Xt22DgbxUi6eV9GSrd47ED+vlFofLOzlD588pIDe1Weqyd7P+S87iJ6Sfifxja1i2+Rq4eXS4XjzARLYKB/yWMAY3IJK79eW1ysbTH4j90e/155HCsTvvzwoYI+Z+3GA3F9H8qFod5DnPSg2F/xl00UVavWsfbkQdmTJH7ptyld+rf/679m//QQpk1a742g5mWPPuETJp0iZb1b1td/G9K+8mpuugHo/3W/oPXRqWt//Mt9f90IRUqqEIQO9vBatUz9j9OcM6WBv3RfV4xiaV4XYUEp1Q53YvePPqimCZAE22HjvpwR1GWpSx95QJZEmD+Dx36XUnrmyYvL3u2zfG/tLRMeqUNka+wmtctN/9UFiycpz6GkSQjNVb+jtc/LjTBRTi27IVDhkQVm/SdCrn9wqMqW1b/vl784ap58Du9+JeBEWXi3/YcLmSDRVXoNNfCvyd/XqKOq8JjkPG3oCgEKz86C5Mchz9wMHGnBv8xQId9Pnx1jquR3olViHBRrb89E6ulO0LDRdD/R0tqJ7bBv/0tkb/1n4TLvc8jmomTMrDEeVP1//l1EfL421zCnI3F6pueankN3wNoLxzXftNnpv3Ns3+jz7xAtv9nh8S0j5XszN3iwcP/ydo/OH00Bgn2OnwMkZIjudIuDG8lrP21/gelwvpfrc7+axg7BWoiCEen+OuXzDUfsvCpkucceDk+p0GH4y5xrAxjFsiHl2wQAGapnSx9x44Ggf9jzh4nEeGRsvKdf7Y5/i9d+g+58cZfqUiuX/cWwj8NQRus/NWnf4wZPBlTAXbmhnr17MeYc/uz7zH8mdW/rxt/jmIw9oJ5nHKAHsNEa4awS4ipwRQI04MuDvKIfvQZfRFl5ooyidYpHuaquRY8/NU5xQ59F//1o296vUhn9K6S8weVS+/kGunZqUpXSjR3r3dmMukWx0HG/1c2Rcgf3oAT6tBbCwfalxpH/0hpiExcGKvLd7tlV2OZdH7T7rbfPc9fntaP/pyRjabgz7DhYxCe7hO54oofyLP/+6cG8XdvZqYMHHiGl/z06ffKtKl3N5s+K7L21/of1v8Knv/pm8JBbXMwSBWPiE708MIVldEknuacMxoGBRjnvPfHyahXsYSXyWnKa34FWuyBhho1tyBOuQ62AS1eYAmztfSVFcoRl6vKT3Pat/XjvycmSbl31ImdrPnbCP/H8xXo6vWSnj5ANm9cZeXP6WH2Ye3+37u/nVy/GB+sOQJBe3/r98vl6jPNR1bOaXO5jfS/UX3eubdZ3v3a7dcL7sZP/uUbxJ8Nn4bL5Of5sRqRkK6Mk7z8BwSiebz64m3F0gVLl3/d+PcVpmcs2xCJRV0qBAOk0h7Oe/JpCAPHG1HWtx7+P/SqR/61NUJ5Sf8+4wETgcPLV5e/DfT/71+LlH9uYVQaw/9ld5RIZ7SZ7Q0k/7971jjZ9sEH8vTTi+WaqyZq/5ObNd7+P9H+3X3XNFm8+K9eWTmw/zOEvfOF7mMTWUdbkH9r/ylQbk+puGnfnaz/Ayl/lv9fA/8ZhUNRnJpJ4KF2agL70Zv4vsV3Chn4NON1btXJ9hZwC2o5xsajyeCHSr5XeMzroJaOtrJy55ilsesjZukHgv/x+IjwaHk5Fh/hByxth//79mXJoPQzpBoCOH/+LLnj9ptVQKz8nah/nJ866REsb+wkys3kCccwH7Xc6t83iD+VkN3z5nSoF/8uGlouExBlY0iqM9xr8e+k+P/gco+8tSPCa3/WTscINJ8UayXK/8nsT+aBULnuT050FOSdc8VROWcAPhwIMP9nzJon/1z+qryLlWA7xp2Gu2wYfwsKC6VX7yGal+2YgnnTMx6Y4rTQ2l+L/yfify3xt/5XA/qv/m6A/E+MQO9XV1fBw4x0e0HMqDufY+gK+5LBGWx1SobfVRcfkNWLa1rQlPAhlO/YuNg45ilLn0MLAeX/rbfcLc8tfVEOF+WgYh/fDRH3Eaf18f/BOb+TeXMfltDwcPn8kw8kMakT7t8k0wpsrfxJ7sFQuROr3BXAiXbTry48Jled6axaR2bV0e+tvf95198G/JmE6QL7daaB6Z+LhlYgdFqNTquJieTolImFYvEPHd4A/lOUOaecv7Mnlcp56VUYf2me/Rmr8aShGSi/4jdHJIbTZhqgD7KaSJ9Ug4U/I//rHNm9+0OV/3dXvSGjzxihbXbI634w6SthbSORw9p/Pwn7Wvrf8t9IepvAf4xMUkeMjVWloVPld4L78OgZxsh7GkCjpzS/s+FotDcDlc5bJfZ8SV02OD6MvaqVaP3YZ3EkI6z+pS39lvD/vmmzZeHCP8qhg3slOjoabIbJbuX8Zwi2AQNHSVZWrkyYME6WLXvGyl8d+vcZpm3c9WyMHEIIMXgCqj03jD0mN55bbvWPLMF/7fR1yz/nGPtSiDx0TYmc1a/K4t83jP/VCDiyYkeYjO5TJXGxkJRWZn9WrlwlXbqkSP/+pzvGlnYQksT7tPbX+h+QA+9Ym8oFBcMVEOt/uZzwYa/ZCzj+cynvEIQYqanh4zc6QSmfSN7tHqPBvM5/twudqxwRZB38w2XGN+V67jyn9p8nWc6d++x44ZZ+8Pj/+98/IjNnzpOPP90q3bp0bRP8X7lyLRznK/ReX3j+SbnssgkUKZU4FS7dO7Xl70OEP7tnaaTG4CVPoiJCZP7VZTKyl3kVbfWvdeDP2Q92cPAPOAghHtmrWhZhCXX99sPin5oQi//Bw39rf63/Yf2v4PmfGoXD55zAS8EBfF78+M7SVeGR+i26wwP3EN0DQ0BbwNdhIZw0j19npW6TD8eaB0duvd469ZzrHJkDS9/HJzLQyyvvDs+650/O/z//5Wn59Z1TZePGlTI4fWCb4P9Pf3qLPP/iS5KQEC+ff/YffPmPeY++BmvbfYcnb7/m+5bJ3/bsULl3abSUHqOchEgsYuH+4ZpSGdgVH6FZ/WtV+KNRLlz5gxCPG1Yh0y5DSEEIpgul/OWxJhxY/Asc/pGnOs2DNgr71v4YabPyZ/XP4o8iruJwc/FXHWhTDZEGQkUAZ5WK4jgB4HHP6bOcHvC8/uk1La9ZCU/M5Qin7hiFZR7dw8Y40375tAJskN+lZemTGfhvIf9ffOEl+fFPbpF///sVGTPmTPOgo8akdfL/8OGvpHfvdCkrK5dbfnmjPLxgjlcmrPyFyKbPQmXq32PkaKVxCOKia+Tha0ulbwojOFj9a23488NHYqTgMN/uGfwbP7hSpl1eqiip8KhXnI3FP6+uW/wPDP4bA01JM/IH6Lf2txXbP+v/0A2EkLYR//M4B5o3bsyyq22mMV6jRJ3GJSoh21eNGRxmtMScwxJR1E7qql/isTPVA7uqwPSUucPk/HDX0g88/1esWCk/uPwa+fuLf5NLLv3vVs//J558Vm67bTLFQRj7ecTwwSqTlCKKFsXlVJW/dVhZ8P5/REkFZmlQ7xhTeNH1pbqQhaqT1b9Whz/XPR4rmQcpzcQ8kVE9q2Thj7AGtsU/MsXiv7V/Rg6wtfY/8PZfQcf6XypdCsHQN/VxA4W/tT8iVAcFQE9PxRkAhbGGaJtHIz/c15zq0OjsaaeMVxu8O8b9Ni602WdJ/nvtvV9ZrdXSDxj/339/s5x77gRZ/KdFcsP1V0OGCFOtl/9nn3ORbNq8RdIHDpCNm1c5zrKVv5W7QmX2K1FSSecZ/dc5DnNp4YildETMXvannw7h0C9Z/aPMf1P4c+nDsXK4pB3osx9MX6xB/GKLfxb/rf1zcMsPu6z9B75b/ydg/g8rCib+OyPQhHYSMslPnnGCV/yiOfOijjyzDOdc0rnxL+HN4GiHZnb2jevmdciN6UeFln6w+P/Rxx8LV8R6aN5suf32X2h/tlb+f/ThxzJ8xFiVw3nzZsodd/zSyh+07M3tkTL//yKkyonE0b2jGXlO7IAwXlb/WjX+jJ2N+NwKjy5G1kjGjGIzIGHxT/Xb4r+1f8Gyf46zYv0Pr48GP88dELX403L8KSvFQipEeA5pq3/LfdSrx9wxh/zlZf/EY5ODZ6ECLOpG8/C7qPDAi/iykOHr9AnLeOEo5mS09IPC/8L9B6RXz3QE5P+1zJg5tVXzf9p9D8oChNwLCwuTTxE1JDkpWcXNlbFTUf7ueS5a3se8Zzf1SuLIc6nEY/qGn4pZ/Wul+GNGoAlzPvzLmHEE/eUOLFj8Uyti8T8o+E/csPYXWOmnf9b/oFRY/FFHtKX+p07hID9PNMdQPL4cxstHSBy/ZNY8zg9L+Hxsc9K9ZJ4meaTQyK5CTTperUvEcqybAk3F9qUT3AFLPwD8ryivkA5x3eTmX/wEzun8Vsv/ysoK6dtvpBQUFMr48RfIyy8vOeX7/5k1HnlyVbhX/05PqZKH4TyfhoU4mKz+AZEUZlov/qzaHS73L/M4mswxhBpZPb2YvWfxz+K/6rHZWPtnvAWXG/QSrP9h/a/W7X+aMHbQXR3Wh6tLWOcTmhvDmc4wRbkwP1/adzhNomOijTOtE7go7Cisus9COPQaNLrNSPrkx19ziVlqJ51eDaLGxfbRpzPVvkMHpUkHnDWwVnXmg0Q/P69Q4uJAMyrK4YlpfzDp5+YWSMeOcRIVHUnu18n/ltDvlJwmF0+4UJ55erFykfzPy8uXONBkO+vjv5GJwLU/36EZBZr+ifTffPNtmTjpWj29ZMkTMunySwLA/xrJzSmU+ISOEhXlUdFsivw1p/3kVl5egcTHoz9Bs7nyvzQjXBa/49H+MqakWl6/t0RXsast/9TVvPwCSYiPFw9paktbrn8na38NwuXl5eZrqEFPZCRIBl7/a9OnnGRDhpISOklkVITBG3KInRok+tV4ZZYD/UxOjJfISE+T8efgV+3k8kewmApv3klvTz0ikeHukblk2mrwlw3Kyc6TpKREiUBG0//ayCbTb6z88RuX3LxcvPVJQjsRNtKJ4U95Dhb9anyFThxKTEwEzUjQqd/+tAT/1A8D+2iaqhyayluEx2Ri1/jzvy771xL61WgXdSU5OUnCsbJq7RQM+tXVlcpbvsULp7A57acU1U6Bol9VWSV5BQXSORk0w523Zi2w/7X1nz1Y2/5XVbGdoNkZNMPQzgD6H/XRr65EfxbmSwraGRaGdpKpQcIfV/9qtJ2FkpyCdoainUHyf/z9j6oq9CfsSueUzhLBdtbBf218ANtPGaLfl4L+5Jtot/0t0T9//a9L/ivwVX5B4X5JSUmSsNAw05WNxD840O4UDrAHtRsCYCMMB1ZYAdNqpLikVNasXitJEJhRI4fpOQVV5mcWN+HYdYO1JCtTgXZ2uA8NCAEhlnepaSYc+tMvPlIsa9auh2IkyogRhqZTmZYLBn2luWY9GNlZRgxD9Aen/SCoNINB/wjauXbte1h1qrMMHzakTv63lH7ffsNl0KAB8sorS5X/R458JWszNkiXrikybGg6qifz8cf+VGLH939L6bPWL78slnXr3pOuXbuA5qAT+j8qJtlL/3BRtngiOPJq5K+59IuKvpT1770v3UBzCNtJkWuk/PnLf1PoHy4qknXvbZIeqd0kHXG3laZy1fC4MfT/xpHnd2kMeMPUFZFX7zkicdHmTsw5jM+wv8CiL74okg0bNkl30BycPgAkzNgNDWNz6LNQQ+0/eKhINm7YLN17pUo6ZEsT6AVK/+uif+DgF7Jp4xbp2TMVK1UO8Lbf5QoZFWj6Bw4ckI2btkrvXt1lwID+DimDXy7/G6Kv86CJ4lQwyN+7938FoDZ9a8oa2XD1b//+Q7J502bpndYbK9H19dJk60xqGn3Ki5Zl8Xrkn1O9tmzeJmlpveT00/s12P+BwF8ara1btkmfPmnS7/Q+Xv3nvdbV/4FofwEGSLZt+0D69O0jffv2dvh5PP8DTT8fg0/btu2QvqenSd/eaY2yfy1tfwEeTEiTfO3Tp1eD/U/RcuWvue3PzcmT7f9hO/tJX8hRMPHHlb/sPNDcvhN60g862jPg+m90h2Li6BD2srNzZPuO3TIIq0T2TOvBiyYhS6Dxx6WflZUtO3bukUED+yv+ue0Plv9F+duHlYB37UI7ge89enRDGwkgTIHHH1f+9u7Lkt27P5LBg/pLao/uSktJ+vE/0PRJcw9oDhk8ULrBhjZF/uFA78czIoUDTIHBptCr2wJe8Ww7PkGCmVnZudIBI5Zx7WOZEzQAciwFQKbm8Yi7TFofr6MyvYLrOraAYqzTdAO2qrEsybMn0s/MypGEuDhpHxuDvMjlFmH+oNAXycwkzY4Sexrb6Wt/sOiTf9nZ2TpiGdu+fb38bwn90aPPw4idR1a/+7q2iUS4THZCJ7QzJrZe/gey/VWoLDsT7UxIMP1JKXD6/9ChQ5KaOkD7lzd4tLRQ91tKn3EWKUOJnRIkCjKk5Jogf82hz5G8rKws0EwEbzG6j3bygbGx8r/47Uh5fh1GAMEe0v8OVq777ZXFutJgffLP2rMgt52SOuly7YHSv5O1vxrtzFbegibaGQz9r02/CsqSjXYmJoJmLN6EETWCiD+kLxDcrMxMScKISFQ02omTTcW/d3aGyYzlblmRDEThgPB75b82/lFu9wETOGIZ48FTExsZZPzjSF5mTq6OHkZ78ObDkT8X/4NBvwqjpFmZuTryE+XBCDTbCP7WZX8CRb8So2qU25SUFLyt4VuM+u1PbfmrT/8oFCeTf44G0xnpypE8jLRTbk/W/4FoP9uZw3ZiOXCPJ6LR+NMS/pcjRFA2/ISuGAyKRH+21P43hv8V5aCZk6ODJGHOG4Vg4195RQXeSuWBZgpGvSFDDfR/U/C/Pv5XkLek2aWLhEeEKR4EG//YzrzsfLSzM2gam9Qc/GtK+49hymk+HsS6pnaRMLytCSb+GDAPkYryY5IL3nZN7YpRb9CEdjYW//4fAAD//4FNMJwAAEAASURBVOxdB2AdxdEe9WbZlmWruPcGtsHU0EsoIaH3GpI/hIQWeg2hhwRCJ6RAIAVCT0IHJ4EANhhwb3Swre4iF1nFqv/3ze7de5YNlqz3JFvM2Xq3t21uZ6d8t7e3m1BXW9HS3CKSIDhwdgFe4GhhgqZEklrncTmRN0GztkgzYlBG87EsAzwhnODTgtpYfaKI0VeOeZ45djmekUEd539GZj6qS5DamjI9h4S2Ev7f/9uH5NJLf457a5EXX3hSDjxwP4RxfIPkj82995V0eeaDFAb12HNUg9x4fJ2kJoc9FhUIcvmz6d9WbX/e/yxFpn+eKD8+YL2kp9AmQq+3Ev0z+xtf+6saav4PTDb/7yTN9L+72L+E2poK9mYIVgjXXITGOqhLW09jj3MCzkF6kLcFMYDPrqSewitXCeK0PAsi7HO6/HrFoCMQSXNFtUhQnmURwTgeQV6j//X8z8gCgAbTaqsrtkr+f2uPb8ucOfNl1KgRMn/uNJUm18Ouryl33Vn+CGBufyFNXpyTGsr0fuOb5LqjayQpCV3WzduvfW36rx0d2LRvkvxb/4MDJv8m/zD0pv/O528r9i8CoMOe894aI8MhUoWDVyce5iGEZQY8UbLTeemP4BlTL8P8uArCPCNTS2KLJLYkgoQvHKQzI42J0Y8Z/8897xJ57LGnZfWqpa4ftiL+z5u/QHbd7QC9r+uvu0quuPyib1T/NwI9X/Vkprz7GZCyqkKCHDqxQa48slaSqBM8EG/6BzaENoKMMvtj9tf8j/lfwx+Gv9RL6k9n408A6HLvtgFmAVz1TZO/nwS9jkaySPBOTE8s6Z28C7qR0NDRIVIdvybygtjICzzD+CMNHglwiEY/Pvy/5pqb5I677pfKysWSnp7hHni2Ev5fftnP5f77H5SkxCT5cNEHMnDwgECkVDZaOMcneMhygqKXuH19zgoyq4ghH5/htxX5q28SOfCWbLbK3Td04chdGuSS79Sp3pj+UR+6b/+b/TP7b/7P/L+z/4Z/tkX850agackxIhyNUxwgUd9OK4c0ol1cBxBfEYxPD7Lh7NTBZQ3qiJwjFWjxMAFXRj/CPM9H8kiPDvL/tjvuk+uuvVm++HKBFOT3RZWEmSDXxfyvr2+QESMnyfIVlbLf/nvJKy8949rLe9O79JcdbH9QF+F1IMBd3f71DSJXPZEpH3zJkWfcDeT/5N3r5ZyD1mujg3vWi27Y/q7mv9Hvev3vavtj9GFdVBGc/QmdN6LN/jjWmP2ljEAaDP85gWiFf8MpHKpHgT5BfXQkT6XH/Tgeulzu16sYGJuAjwMcOEFeWiVO60BMEOdCjIkIpfYHI/xh9CNGK5pfIX/AqxYO53uuMo9ysw38f/Chv8gFF1yOecbTZMzokVrl1sD/F557WU486Qd6P3968D455dQTnD3XNjp50US2tAPtj+YnOcijK9tfvT5BLn8iQ+YtAXjmveCvdyY+oLx03Tei/dpmdAT7NDicZDv7EN1fYXo36n+2qSvlz+gb/03+zP6Y/Q28S+B3gnPb8a9O4eC0ikR4MPozgrTIayUSSMCgMypkOjLQ0fFg3tDpaWIAzTVZc+i0jHDIGvnRYzqFQ1MjNRj9+PL/mWeek9PPOFveeutl2WXnnUKQFvRgV/H/+BPOlBdffFUyM7OkaMl8yczK6vbyt6YmUS59LFM+LOXUBKcT5367Xk76Vr3pH+2C2R+zvzo07KwTf83/mP81/GH4a2vEnwlcxo6eW38IrRTXenCraNmFuQKNGwFtRi4kMCuTcDCbD/orD6aDBD27C+bTWY0I8CmYwN3okwXkDJihJx8mb3x8R/j/7/+8LkcccYouEXfAgftuFfyvqFghI0ZPkqbGRjn1lBPkwQfvjVv7nYA6QSNnu0r+VlWLXPhopnxZwflu6G3cyOXfq5PDd2yIa/9vLe0PpLyr+G/0nZUx/kMSoH/mf8z/Gv5wECOe+KM7+59wCgfYqAef9GhZoiZluHgYnGZIm75Yp/FBHo4oI4R/HEHFmRaJB6NppRVHu3SfwlQgB5RAXmZrfRh9cCTG/J/+3kzZf//vyt///ic5+qjvbRX8v++eP8jlV16HxibIKy8/Lfvtt7eKQnft/xVVCXLR3zJlyQooBuQ/GQ29+qg6OWh7TIaOOrpr+03/ozvZ7J/Zf/N/5v+jbIIPmv0HI2KMf4hP4+V/QgAdwlylBNEG+E1AbyomxiWjmccdVH4sQ8feRlQQ6xM150bTN5jIvB5Yu6Is6Zpm9H03x4H/H370iew0eW/5w+/ultPPPNn3Lbuj6/i/y277yYIFH8qgQQPkow9nYDSWQo7Gx6H9FL2g2q6Qv3lLk+S8P2d6+U+QFNzMjcfVyF5jCZ71zrQvumv7u5r/Rr9r5d/4b/zvSvtr8mfyFy/5S8DmGkRu6sYdEA6hrEZym0ICZQJpHXWGq+fNKPTSOIqnu9ZXg7xgBgJwRLhpHg5w89clMpOvw0cFdTI2fGJg/Ua/w/wvKSmXkaMmye233yjnnXu2Y34X8n/27Hmyx54H6X1cftmFcsMNV4Uy1d36v2hlopx8fw8v1Y71vzm1VnYb0ei0weRfTYLpv7OH3U3+zf5T583/Oa9u/t/wDy29O1QatnH/l1CHnQh1lJltUmvnRgLd6GR061xYR8kUDuCaBSP8QJCGws1/1tyc4tGMWAJprd/l4Hp/QIUayeJGn8zBESf+r6teJ/3yR8gvrr1Srr7yIpDpWv5fdNFV8rs/Pqz9Pw8rg4wa41YGiVf7u0r+lqzAtI2/ZsnKavfoSEG/4dhaOWB8vcm/6b/ZP5ghs//m/8z/O/ff3fyfTvHt5vgvoba2vKUFmFdHmR2K86CYABeAF2CLuwYyjF89lDG8RpZEpnsU7XK4eGZW48hfBYaMQJj/WZ2mcpgaYaMfV/43NzVJds/+8rMLz5Ff/vIXXcr/+oZ6GT5soqysXC277jxZ3nz7pW7Z/5+XJ8rF+GCwsjp4DdMiNx5fJ/tv19il/Df9M/tj9tf8j/lfAA99TW74w/DXluNfzIFeBgQMRBuCZAeaHVJ2gNk5XQqcG5cmUMbEDu+JOKpMUUQdOBhWZM1rX6dGumSm+pysgTWhhNEPeUV+BMsIKt/IMLCIH910hP95eSPkxBOPlfvuva1L+f/Pf76I9Z7/j62Se+/+tZz14x90u/7/uDRZLnk0XVZjvWeClV5ZLXInpm2MLsDWgzicKpj8m/6b/TP7b/7P/H8EK8XL/3unY/4nxv43oQZTOAjNdHSYQFaHJxxYU27rD5WceXDCKLIbdXapLjpIdHmYojX4alhlM8B0IketNdHlJ1D0i+IZff2qEnyJE/+HYcm4/fbaUx5+5AFHAz3UFfw/+tjT5JVX/y1pqamy+It50isnR2Wlu8jfotIkuQTrPFfXUVdE+gA8331qjQwFeDb5N/03+0fnYPYfTOgS+2vyZ/Jn+hc7+6MbqVCZtUr8KI4jyMXhQDDSAHSxcq0mEmMHB0vp2tBMQmRUUpBF4zFDQ8+MVHzIKwa0EEsZfeUCWQKeMMxD2YOIWPB/xx33kpEjh8uzT/0V9XcN/8srlsnokTtKA6aUHHXUd+Xxx/+Exnaf/p+L1TYufxzg2e3GLf16tsg9p9fIwFw+JrrD5J/y3TXypzoFcTP6xn/zP3Q20IhuZH8Dv+lNrZ7YRMMfrqvJEPM/sbX/uoxdqEeYlRGiN3Ibh0ujsiFE54MT43yKhtwPE5hhwyRO9uCSdjrJA3UwS+uD9akeG33HvygGOd6AaR3k/157HSSZ2T1kyiv/iKrdBTuL/3fe8zu55qoblOjTT/9FvvfdQzXcWfTdLncbNT/iRzogf7MWJ8uVT2ZILcAzdaSwlwPPhTlNJv+m/xA6THIz+2f23/zfRga4O9h/xUOGf75x+C8yhYNiDUkOAK6u1EDJVnjhfgPdZ7TbaAWAGOEgnrn18BGaii30CKGDfHpWQUMIqFmdSlAOUUbfs5BPFGSW+wn5F8QEXFV+uiKR303w/7DvHCtrqqrknalTwHNkIMrrZP5P3nkfWbToY+nbr4988dk8SUlO7hb9/8T0VLl/SppTBLB1QI4DzwUA0WLyb/oP7Q30VM9dpH80C0afpq9r7J/x3+TP9K+b6R9X4VAwRfgVaLhCMRh9GBosw6xGV6PUFXIbYh+pZ4rEhgfLcW08jj7zQ6HIKxQVH3IQH82hjJZHXbzmYfSjmB1b/p9wwvflk08+l7lzpnYJ/2fNnCN77c0R5xY556dnyR133oIg5Wjb7v+X5qbKr55PV/Hlz5C+zXLPGdWS24MtNfk3/Tf7Z/Y/MOvm/2gVzf8b/uku+A8j0MsU6lKu/ZvWQNv9qAlHTwgFIgfDOmtZX0lGpQb2gekeE7uCroQqj6/VEQkgBtKZxc30MPqed46dseH/D354rrz15jT5/PO5YHSkPxzEiz//L8Taz3/4wyOgLTJt6msyefIOeh+dRT+Qt9bnjtCf+kmKXP1EJrhJfrrjuUvWSQ4+HDT59wxR1vDHG4dW547wn0x2W0J7/nsSSs3rkOsao2/8N/mLtvuBPJj+ubWA1E4Y/thgwrjTmNjgj0DeWp+3efmrxSocoU9TN0c4EBgbOkGEOUqIBbHDaAiaRnm36OI3dFLRNbCW4FDIDMfHtQe1Eq0fYRbH4eB4dGmjHwv+n3/BZfLkk/+UiopP3ZrTncj/2tpa6ZM7VPt39JhRMg+j4Nt6/7+5KFmu+0eGNDV5+cRo+t/PrZFBuVyqjkYnFGltd/Bj8g+Tafq/zcu/2f8orKHKbv6Pdi8A6UEosHvB2eyf2b9uZf+5lXcClphradE5FV4HNhb/wDwECuIyBi/nfCpHhIiE+R9VcBvuBB+n+FunajAB9BjvrbDRjz//r7jmRrnvnt/LuqoyZ+Y6kf/nn3eJPPTIoyoXBx10gDz/r8e36f7/78JUuemfAM/NTv7H9m+SO0+plewsaoXJv+m/2T+z/+b/zP8b/unu+E9X4fDw1z0k4gLYCj4wEhvC6TDgsrpLQAYAYWJhzntO4EdTOPudejWjvmZlHlwF9UZXFaGkGYw+mBPwiQwMeRUGGBvEt43/N996u9xy8+2yfPmXkpWVGakT9cSb/3vucYjMmjNHab7zzn9khx0mdCr9WMrflHkp8svn0gGeHf+3G9gst51WI9mpfAgy+Tf9N/tn9t/8n/l/51fVT8MvKEZSX+u8bbQrj7f/jaX/U7DARuFwbWgb/uiu7VcA7djhOKLfdZFLiqLBIgDfIE7Hl/WC8Z6B7H0empWwj7m88GggIh4awo9jZlQ+rcDVEdAy+mAeFC9W/D/su8fLG2+8JQvnT5dhI4ZqL4X9FEf+l5eVy8hRkzHVoUkOOGBfeemFp7bZ/n8NHwz+8rk0fBTr5jBNGtwkt51cK5kAzyb/FFXTf7N/UXbd7D9suPk/NY4eE+hAmw6mRclJHP2P8d/kL57ytwGAxrOEAmCVZ8/3IE5tIX40Gj/E13yD7UarcWZCsHV3oBB6Zkk/1QNBVSCHNlwulvNHQEsvlRDy+3tiLcSTGo0fo98+/v/85zfLHXfdL/NmT5NRo0f5DiNTPfNxCnitMTHi/113PSBXX3ODVvnww7+VU046DiS9IDA2zvTZqljI38uzU+TXL3HahnuTstOwJvnlCQDPadQZz06Tf6ek7NfwiA3/WYvpv1MX2lCzf+2zf2oHvNnZFu2Pyb/pv9m/rdD+tf6IUMGAaqsTWGesAa3c0LADynRmDjbor86e9mVCvxkG3JiMg9AuTBr8C/FGVFmj75wjGUSFiRX/n3jqn3LmmT+R6e/+RyZNmtBp/J+80z7y0YcfS2aPLFny5XzpkZWltLel/n9pTqrc9kK6rn3Om99leJPcemKNpKV4OaY8R8lwKPoaMPnnWJPpPyGc2T/KAnV/W9J/zuM0/4ce8/6IZs38PyXYybLhn2+u//Mj0BQEGnd3bIgFmJIoZaUl0jO7l/ToiS+ldOSZZbBFsRqX6BIMawbP1eiwM52hQdJ16wJB3Jh+SWmZ9O6VLZlZ2bg354L1JuNIv6SkVHJ69wbNTM8N1/540i8pKZNevcFbTzOam85URa2mG7K3ffx/+aV/y7HHnSb/nvIv2Xvvb0lxcYnk5PSRzMwMtHPz/b8l7Z85Yy7Wfj5YDe9pp5wo1113peT06a3tVIe0mf53HbDl/OdKHyUlJZKb20cyMtif7ZM/0r/40Qx5/4uUUP52HYmR5+NrJD1l0/znc2ZJSbHk9s2VjHTS3HL5J/229D/fBLl2gmYG+zOaZnS4/e3/Kvq8syK0M69fX0lLI03WzSMUUES1DneMPnlbDP3sl+vaGW/7w9a0QIiKisvRzj6Sno71vsMmbbr/ozJscftb0KFsZ15eP/A2Ve3vluhfe/jf1NwkpZ5melpa2JvsV7fUFOSIjY9h+wO5zcvLl1Q8jbJqHjwH0hRr+s1sJ/wKeZuayvXbSSk+9i/gfzMEt7i4TArySRPtDAB5HO0fP3AuKSl3NCFDkSd8+Nk40ec0vZLSciks6CcpqQHN+NgfbQPsXDN1BfpZWJgnKSkY0YgIqG9z7Ok31jdJGaYmFhSyP6GfG4yehAoSU/pNjfWQ2wrpP6BAkhOTXR+i/a4vozUmdvQbGxtVVwr798emZ3xMQN1h9fGxf6RZRhnqj3ZiozXqZ7zsj1s3uUUaGtBO9OeA/oWgmaRNbLP9qa3BRirKGJxYSoc9yStek1si1dU18uabUyU/P0922onr97qD2V0OXqOh5G+wmkdUoponJuLLAoIa6C+OQLB9RqXHaliJyLrqdVi3+B0pKABNXTOYFDY8okiwYIfpr6uqVpqF/fNlx8kT3b2gZr1dpRB7+lVr18rbb09XgdkRH9cF7Y/mfyzovwleHnLYsfKPZx6TPffYVaZOewfK2F92mLS9a2Er/seC/oUXX6lrP/P+n3ryL5II4ewPZXQ0v77/Y0F/9Zo1Mu2d92TwwP4yYQLa2Q75I/3nZ6bK7S9GNknZHeD5lhNqJJV6jWNT8re6cq28++57MmjgQJkwcbzm2xL5b0/7KytXyfTp78ugwYNkwvbbuTuLurl40F+5slKmvzdDhg4ZJNttN05pxlL/N9X+5StWynvvz5RhQwfL+PFjN8n/WNmfgP7y5Svkgw9mybBhQ2TcuDHan8FPFItj2v5loDlj5kwZPmyYjB07Oq72B94f954gFcuWy8wZs2TE8OEyZqyf4sUO1VQ9xdz+llcsl1kzZ8vIkSNk9JgRTqG8/Q/4H2v6ZQAhs2fNxTS2YfgbCZq+F+Ng/4KOKy8rk1mz5suosSNl5PARbfJ/HW1/KQZl5sydL6PRxlEjhzmQ1077p76oHf1fXFqKJUoXyZgxIyFHw0LHGQ/7Q7lgz5VgIGjevIXQk1Hu254Y4Y+v439RUYnMnw+asAfDYRfc0XH8oQ36CvlfurRY5i9YpHZvKOwfDy+5jjyuYm1/lywuloULP5TtYd+HwM6TXvQRD/qLvyySRR9+JNtPGCeDBw1Scs4KufbGg/6Xi5fKh4s+AkYYD78NmiSo9qAN9k+ncOhdbcQO1MOnDnxVDsRbXFSK0eCekt1Tt1jTEhEaJORGkFkLuhJlI8QBlVCTjhcBw7hUXbEAcZFjY/rFRRiB7p2NUW+MQKsxRx5HSovFg35RUTFGZnMkqwdXqoi0P370W4QKmZODkdke4K0/HJdiR38OnMYeex0sj/71D3LMcUfK0qWl0je3N1bkwBsFPTbmf0faX7++QYaPmCiVlatlwMBC+eTDDzBiWY7RwxydztGW/u8IfX1VzJEf9idGLLOzMvi83mb5e/aDFLnn1Qw4Hif/7P/Xr16LUQ4wy4vtpuSPo01Li4qkX9++GN13q51sqfy3tf3EAKSZB5oZeKMQK/37Ovp8g1C0pFj65qOdfnQ/UM140efoYREcJke9OdK+Kf6za2JJv7m5UZaCZn6/fNDEdu1BI0EnXvQ5qsb+LMgvwKg3Rrhgf+Nnf1T5MZIH3sIOcZCEI+2xtj+bsv8toLkU+lmQn6/tdMx19xMv+i3sT/iyggLwliOz4RFb+xft/xo4Mot25hcW4K0U3ygAUsKeEFhGjtjSb8YyQezPARzJwyjppvgfa/pNjU4/OQCVlgpdwUF1iaf9a2hq1NH9/kqTvI2t/gf4J1r/GjFiWVxcqiOWKXijEBiFwDTE0v4E9DnqzbeM9KUpyaQZP/vDutmGxgZHsz8GoFKTqSvgbtDIONFvaGhAO8swuFcoqSmkGfG/8aLvaJbKwIED/Kh3IEObx19uGTvyha91FGJAscGkYA1HMpIKTwUk96gMKkw6gRkXjNckFtIs/oc5cRD48j6QFsV7TQp+CACMfnz5/8nHn8mkHfaU3z1wJ+ZCnxqwXs/x4P8//vm8nHrqj7T+Sy+9QG668Zptpv+feDdVHpjiwBJFetyAFnngzCpJSTL5N/03+2f2nz4NloHGgT88q9PkmXH8Mf9HTpj/p6yQD04qVGSUMZGfePhfk7/O0T8A6GAKBzrY2wJ2dYKOvPme175WK+F73YNq5meW4MB1AAO1ZFjEB7xd4QYqkfFqFkYC/7M+rcvox5r/paXLZMSoiXL7r26S888/K+78P+7Y0+TlV/6tvTlrxpsyDq/c2cf0K1tz/z/4Rpr85W2AZ2fVZL9xDXLdMbWSnBQKMxph8q8P1dRX03+Vcf0BP8z++TeN1JJQZXxgG9B/3il7Mdb2V42ftX+rt//W/yb/7dF/AOhlGCOm2AAUcBQaQQW/UHbGJnIE2U9cZtCBXKQgL+0BkxjJK4/5EfLpqExTkM7X5wFAZjnepItgSVIy+vHk/+o16/DacqT84hdXyFVXXhxX/i+rWIa1n3eUJnwQsMOOE+Xdd6Zs9f3PqRd3vpYp/3w/OZT/gyc2yjWH10kSNgeivJv8e5UN9Jtaa/qvTDH7Z/bf/B8MAg7z/4Z/FB9+A/BfQl1tBWdrEM4Sw/oAL3AQTfPVFIP422QeTWUGuBBkIFTWnFqAJRjgCWECEa3F14ZTAtC60XdciTBZOQaekUHK9UiSZ53PETlthv/NTS2YS14gF110HnYk/Lnrhzjx/x5sGX7lVdcrjdtvv1HOO/fHW3X/r28UueVfmfL6giTfESJH79wgFx1aC/mMDf9N/k3/zf6Z/XcGxhvxONlfpaEkaLsY4Mn0z/TP9C/W+ueXsaOCUZs5jhKqHNXOATdEBlguGEVmWpDXjzO73BrZqp6gvCp1pJyvnVWFBII6XaTRD+xgLPjfN3eYnHr6iXLf3b/yZtV3SIz5v8vO++vXu0nJyfL5Z3MkD8s36f1vhf1fuS5RjryTH8bi5rz8n753vZy1/3oVwVjyn7pDpYnIuI+IMf/1YRZ1snY9TP+2Wvlz0oBeipK/sN8YjT8dmECAZ7O/EbkO9Mj8j3sDrJxRppj/DWTD7B8NiDcvakz0Mq7+/5vkfyIAOpQ4z22dx6Hi5/SS0WEe9gQz4ImGoIOX/giecfQyzI+rIMwzMrXgI4xETKCk8dswLzLQmRh95bvyBuxQJxrwUHnWfv4PHbK9HPjt/eRPD94fN/7PmjNP9tjjIL3tQ7/zbfnns49t2L9bUf9Xrk2So+7yq5B43v7s0Ho5bheAZ5O/mMufiu1W1P9mf8z+mv8x/2v4AxwIsQUChr/a7P/9R4TkH4wpGKdvehzkATDmdTSSiDBa+U3dYwCHC7on4RBoB8BPE3nBvvGAm2H8kQYPox9//m8/YXes2Ttennz8EdcXceD/ZZf+XO7/3UMqEH/98x/khBOOUn3Up6ytqP8Xr0iUSx7PlGWrcVMqfwly/K7r5bxD1wcibfJv+m/2z+w/rIPzUd5Q6CWthrouZz7M/6kNNf/PsX/DP15lCPnU51M4eEGd6V74z41As8fDZXnQWBw0Gd42uMYr2kVkMMTMxCi7givNH0QFyRueeeUq0PiAiNHvFP7v9q1vY+3nPvLii0+5voox/xuxhuOwEZNkBTa86Im1uxdj6+5MrNcbklGqXd//c5cky9VPZsraWie0NHo3YYOUfcdiMrQ/gnvWS31vDomNiO+Gwu7LqEy3Cgdx7hypQK8DIib/nSL/dO9mf7pe/6g8Jv9RANz03/Tf8NcGeDJwjVu7/w2ncKhBw926s3+S9GCAJ4chXGqQR3ND+RPwcaBzTsjIx3JO60BMEOdC+m2u1s/6aDOip364OrVGX9LlZ14eRp886xj/D/z2EcLtVv/3xktx4f8LL7wiJ5x4pvbX9884SX7/+3s0vDX1/xsLk+WW5zJkfZOTqX49W+Q3p9TIiDzKsMlfoNtOg7X79Mf0r+P6F8gXGWr2z+lfIGFm/yETYIbpH/lg+MPs77aB/3QKB4fVudgAFdjtesWQU2b+KjxmOqKp4Dwiyo44HacPhqZdOnO47Vci8br+LwG3lo/UYPQ7h/9HHX2y7to084P/oXdiz/8TT/yBPA8QzePVV56R/fbdB1S2nv5/YnqK/O7f6brqC+9xOEDz7adUS79sDICY/KtEmP7DPum7+cDWmf0z+w9fZv7P/L/hH8N/BA44AvSky9jxKgRUmuKTFS27MFegcyOguqKzehfvZzwgdhU7t+NBk0PKLopDLp6KzqomTUTpKmEM8yZYk558mEV8vNEnv8iQLef/qaf9SGbMnI1ttWeoMYwl/5cvr9SNWurrG7ElZqF8/NFMSUxCT/uu1M7GBS87u/8pjfe9kiHPfJAc0t9xSJPcfGKt9MzAHel/f6N68mGTP9M/lRiAarN/HbY/VDRqVmfrv3NQVGajb/w3+TP9gyWAIsQC/4RTOGBd9HCzBPyoSxCJM1/hNgPt6sA6iYM6R5SdUeIIKowT74gHo9lLiqNptFgu6kBebgfLbK0Pow+OgDc66hPFnFjw/+yfXCgvvzxFiooWxpz/v//9g3LxxVxfWuTSi8+Xm25BeCvo/7V1Iofdnr2B/B00oUGuPqIOuwtGMdgHTf7AiDjJX8ht0/+Y65/ZX/M/5n8Nf6iNNfzVafgzBNAhzFUZRA8A/HBqhmJiXDKaedxB8Itl6Ig2EBXE+kTNudH0DSYyrwfWrihLOqE3+v4xI478v+SSa+RPf35UVq1Y4l5Jas/Fhv8ZmfnsYT1mzvifbDd+PGpXBK1xQbM6s/9X1bTI4b/B/AwcAf1T9m6Qs/erk0TIoZPn2LRfiYQ/7EsuEda17Tf6xv/Avgby35n6Z/Jn8mfy5/yL6R+cYzfEfwm11RX09gowHBAOoaxGcptCAmUCaR11BhcoDAp9Nc6hBl7rqwFeMgNsB1dActM8HODmr0tkJl+HjwrqZKyHkkaf/I0h/6+//pdy2233SNXaEknGJifK+hjw/4033pLDvnt8KBe1tRVd3v8lWKbusicypWglJcvJ30m718t5B7sNUkz+TP9iJf+BLJn9czJl9h8SYf7P/L/hn26P/xLqairCNz+utZxu4QCHd7EO8yoSdmmM19E7omriE3+4cu6pW52TzjtALAWJeZBfa2Zd/qstFtdRbk3XUkY/Tvy//bb75LrrbpbS0k+kd04v7ZRY8P+KK6+Te+/9vfbbzrvuKG/97xUHzruo/z8sSZbLn8iQ1dVe5iB/Z+5bLz/cp97kj5pr+mf2x+xvzOwfXRcP83/07ub/3YANfrvI/xl9ymHn8D+htra8pQUyr6PMagZAWkExfgh44Wy5ayDDvCkeKhi8RpZEprsCCk608xSVuWo0jQ6bpTlvg/9ZnZbhYzrCRr9T+P+73z8sF196tXzx6Rwp7N8ffdJx/rc0NsrI0ZOlrKxCe/SLz+dJQX9M52B3a6+zgzuv/9/9NEV+8Y8MqcVAM+nnYKPBX59UI2P7Y41nkz9liumf2R+zv7QOHbd/5v/M/xv+oS7RtdDPO1zYVf6/s+ljDvQyDkkRCcOrkAUONHuO6IlIhB/90e14FuGMYT31xHzupiliCm8fh88b1KmRLpmpPidrcPSMPpjTCfz/29+ekB+f/TOZM2eajB49Iib8n/La63LUUaegT1vkgAP3lZdeeKrL+v/VuSly2wvp0tjkZHVgv2a54+Ra6d8HjtLkT3XP9C8QBbM/Zn/N/yj4M//fKf43MMDOFZn96Q72J6EGUzgU9OpXfehaD4oDN+M6HTnY6zwhn3vqdikuOkh0eZiiEEZ/XJXNAIiJCtCZ6PJzdNsvyoY4Vo54o08mg0nkUXCQNwjz1AH+//MfL8qpp/5I3pk2RXacPAms7jj/Tz/9bHnm2X/pjT704P2o/3gNawt8M9il8e7/M37XQ75cxoc6x7PtBjTLrSfXSE4mXEQn0Hed4/qId9DZ7Tf64LjXEeO/yZ/pH30FNAE6YfYv/v7H7O830/7qRirsfPU9VDbPh4gTQhqAFtcUYCIxbnCwlK5NzCRERiUFWTQe4396ZqTiY14xoIVYyugrF8iSOPJ/yhSOFp8sU157Tvbae/cO83/1mjUybPhEqautkx5ZmfLlFwukRzbmTEQd7OJ49/8f/5smj05NdbIJgruPbJKbjq+V9BT3ci3e9FU10E72YeujM9pv9L0ot2Y+ro3/8dc/kz+TP+qZ2b+NDZDZn+5tf3QZOxV+Sj8G8FprgUuLIDs+1TJuY5PBBORjPVpIM+GSIIYVY5IH0CGztD40O+ONflz5/8qU/8oxR50qD/z2DvnBD04Lu2FL+f/Qn/4i559/mdZz0knHySOP/LZT+5+ydf+rafLU+6m4h4j8vXFtlSSzUThM/kz/zP6Y/TX/Y/7X8Ifhr1jjz8gUDqINj0EUeOh0Ch/pkgBG3EFs4jb6cPOfg3ifHIJATcUWXnThLMN8elagjRBoqFAHBREVNFBXCmBmLeHL+XyMDmpl2Oh7xgQnz5DW/J/y7zfkiCNPkmuvvUyuvurSDvN/v/2+K++/P1OpPv/cE3LQQfu7O/gK+rHs/ybIzh0vZcjzs1KCVss+Yxrl5hNqvcRQZiAdJn+mf04SzP5AU9Remv2F7QMnzP+Y/+WgXuBB6C687zL8AUYoYxx3+OtZo9GGvxyq1VU41JhQiAKEowIFwYI0YRniiICpK8ZkjgBc69kxWIv4H5bj2ngc/eNE8cgrdN8NNF462szK8cdrHkY/itmx5//nny+W7SfsJn/8/b1y+vdPAr+3nP8ff/Kp7LDjXtptBQX58tmnsyUpyW3tF+/+b4JQ7nszNkiJkpfT9qqXsw9wazzHm77JP+WG+sqz112VBPdj/Df7Z/bf/J/5f8M/3R3/YQR6mUJdBSPuTV8I4tRHwlM6UxDxkA63OOfptuRmDA5XwOGawK9qkisRQTyRaydiuGaU0efQetz4X1GxTIYOmyB33nmL/PQnPwKhwMS1n//X/vxGueOu3+L5J0F+9rOfyK23Xt8p/d8E/lz0aKbMXgxh0SlBCfKj/evkjL3rO4U+mObkm7+ePrmoh8m/MofcCHG1skZjQs4FHOyI/OlXE8Z/1T+TP9M/sz80Os7EmP0x+9tp/qcWq3AEgkcldGDZSyIjmMhR4maecUnpJHZhlEv18Sq2PoN7LcKY1odCNrSOaz9rJVo/wj6z0SeHAkaTe7Hjf3V1jfTtN0xuvvHncskl528x/xubG2X0KKz9XI4dB3F/H3zwumy/3Th3r9qR8en/BsjMDc9kypufJIXyN6xvi/zt3HWQH5M/lZU48j8US9P/UP6oqY4vJn8mf4Hdjo/9M/2DrlHNzP6Y/YEcbBX4k1t5J2CJuZYWSCWlU21AYAgQ5Y/APTgJZjr/gib4VI4IsQ7+RzK3oU7wcYq/daoGE0CP8R6FG/3O4T+7q0f2ALn80gvkF9dftcX8f/nlf8uxx52B/m+RSZO2l+nv/sfJQxz7vw77oFz7VKZM/yyYJpKAbblr5YTdGvQ+VB7jSN/k32k8+9yFTP/N/pn9d7rgdcLsj/l/wz/qIr4p+E9X4QhcIjyjNh52AGIQiaWr5JUD1wy4w8UDMgMIEwtz3lsCP9rC2e8Uqxl1mgfz4CqoN6xT4wLn7C6MfoRPZGDIqzDA2CC+ffzvlz9Cvv/9U+Q3t93k+hT1RHraXWyO/yeedKY8//wrel+33X6znHveWXHt/9r6BLkCW3PPXpJMIVPZuuSwOjlypwbce/vab/LnejtalNrb/5Q9Hq4O47/ZP7P/5v9oms3/G/75ZuE/BdDOHTqPqN8FEVIpioKLhGVgXGlJifTu1UuysrDOL9Pcf03T8pqV8ISj0A6UuUDEPWsIP+pwovMFN4CC0fSLi8qkd05PpQk3rSXcB1yOuNJhpTwYhcIdpV9UVCI5vXthpLYHb5SVhvfElsWDfnExaOb0lqweWSGt1vyPVftHDJ8kBx96gFyDVThy++RIJtZvDg80N5r/m2p/OaZtDEUd5EtKSop88dlc6ds3d7P8J9+KikulL2hmZGVoX2r/hcRdH7amX7E2QY69G32B4XN+kJAIulcftV4OntjALtf71Sq0qzbsf14VFxVLbm6uZGZm4kpvu83yt6n2b67/+dFtCfqzD2mine4GeacIxom+8hb6mZfbR9IzMh1fSDBkUOzpO96WaN9nZKCdm+B/rOmTgUuXFku/vH6SkZkeqd63NRb631r+mluapKioVPLy0J/pGehO3ESc7V9Lc5MUl5RKv375kpHh1jePlf5DfTYp/83NzaAJGcrLk/Q0LAvZyv7Hg34LaC6FrhTk50laWprKUGv+x9r+tuAjiqXFxVJYUKDtpE6GB2Q4HvSbQLMYtq+gMF/SUtCf6AT6ElXPkDgCMaTf2ORkqLAgT1JTwVscbOtX9b9m6CD95sZG2Pgy6Y92pqRShkhUqWr18aDf0NAkJdCVwgEFkpacjDZG8TVO9MnbktIyGdC/QJKT/SpQoBUP+xPIf1NjAzBYuRRG8TZsHrkbB/qN5G0peFtYKKkpmDaJf/G2f/X1DVJG3g7sL8lJ4C0ENtDJeNFvaABvS8tBsxALISSzlaALhrYB/20AoFmQAhiRdvZLi6yrrpU3/zdV8rHawuSduYOdqx/2z9Fh/1E7/HbUroLgl/X5V33ayVRkH2AWlvNHNP11VdXy1tvTpKCgn0yevKPeFdvD7PGiX72uSt58610V0h13IEjkf8cTBJWfsaZftbZK3n4bNKGMk3eY4HhDfiih2NOfNHEPGT9+nJx+xonSf0Ch7DBxAqnpEbRVL76C/uSd9pUPF32k/b7vvnvLKy8/E/bJ1/X/mjVVMu2d6TJwQH+ZSJoqMKBEOv5oTb+yOkGOuhMPFewI5sNrjZuOq5H9xjUq/c3J3+pVa+Sdd9+XgVCMiRO3d/2Jetoif0pvC/q/snINprS8L4MGDpQJE8fjpik57Zf/9tBfWbla3gPNwUMHYi46aUYf8aFfubJS3p0+Q4YOHSTjMf891vq/qfYvX1Ep770/Q4YNHSzbbTdWNtf/jgsda//y5csxx382aA6RcduNcbcFGaJ9jRf9ZctWyIwPZsnwEUNl3NhRoOlBAWhSDeJh/yqWLZdZM0hzuIwZM8oTovTGz/6V46PmWTPmyMiRw2X06JEhLe03bWjs6VeUVcjMmfNk1JjhMmrUCNdOry5BW2NNv6ysVGbPng+aI2T0iBHan22xfzQdwT0h2C7/UwoQMgc0R6MvR44citJamZKNl/0rKSuROXMWyljQHDFimLJR6cbR/pXgoW/uvIUybsxoGT5yiGOSp+xO5Fxs7W/x0hJZMH+hjBk7RoYPHxLq5Nf5v47yvwgDB/MXLIINGivDhgyOq/1RvkH/liwtkoULF8HWjpehQwa1S/4iXdA+/n+5uEgWAV/Qjw0eMnCL5b899L9cvASY5mOZOGGcDBw0yBVtq/1p/RGhlmObEfAAHJ2VgCfoEunVq6dk9+BoIJMdBf7q7GlfRhM3+HHm34mwC7OMlsMPaVC3NcKf6Jx4XYQnyxyMemdjNNg9+SArC2oyAzQvsaXPUdKcHIxAY6Q9uv3xpM+Rn5zeGIEmTbbKtz8e9Pfc8xDJy+8n99x7m/TtjRHoHhiB/gr+t6bPPs/MLAizX3nlRfKLX1zZpv7nus0cme2LUdIMPxocPm9tgn756kS56G8ZUlzJL0aQAYw5+9t1cvoeWG0DR1vkj31GuSXNdNCktOhTrJaPet7bBH3Sa91+Nnxz8hfQdKPeGJn1NLdE/ttKnyMfRZAhpcnR4A2OLde/r6PfjK+A9Y0CRtqzMjEyG8XDDcjHsP3sczqvvn37QoY4qhZ7/W+tfxyxLCkpw2hwLkb3MerNDDjaIn9BTspce/q/Bbwtxqi3jrSnp6n9jaf9oVw36ygpRqAxGpwOmmjgFsm/a3P071fLn4Am5TY/GIFWvjp1jxd9fpdTBJuQl4/RfYySqtxGyW7r/ncPK5AzNwy2Rf1P3i6FL+uP0eA0jAaTBv++zv51tP1NHIGGLyssdDTbI39b6n+aGgOa+Rj15uZWPL66/2PR/gbQLPMj0CnBaLAj7H9jT78RI+18Q9S/f6Ekp6S0yf91lP8cJdVR78ICffMbT/sT9H9DU6OU4o3CAAx6JSfj26M2+L8NWK8X7eN/PdpZVobRYPA2KQWjwVAU4s+O6N/m7G+DH90fgAHFJLzFCNr/df4v4L8fgaYjYkPdEWVPEMGUqNX8mAhp0EYh4BoXXSLM4Cywy+zDznSEDHGihwqNfmfx/5BDj9JXIlNe+yf47j8cbSP/OVJ+8KFHa1+yl1evXqKvXjn3jXLijo73/9IVAM9Yqm4Zpm+w3sTERPn1SdW6RbcKqcmf6R+Nqtkfs7/qXGNrf6Jro/0x/2f+P3gENv8Dl2z+N+J/a2vKifHxHyfFtwyDSXrNgLvkOYBIDPPgtcvhrhxi96AsKlHhMRPxCp7L1ynCD4G1z2j0O4X/xxxzOp7wyuTdd6a4juDIShv7/4c/Ok/+/ven2dly8cXnyc03Xxvz/v+wJFkuezxD1tSCCGSmV2aL/OaUWhnXv8nkTzkf+YlSMTLLjxia/qkiRTHH7A9kw+yv+R/zv4Y/DH/FFn/qFA71yVEex7ljgCM6Y3xVCcTLlTTUMfkTi0QwtosMktxoKq8UmhEqoyYdL9KPwDjWrV/sbgCJjL7jlrKNcCgu/P/hmT+RGbPmyrx509kLjpj+fj3/166ukmHDJ0htHZAtss6ZPVXGjsb8TO3m2PT/v2akyh0vp+NueGfNktczQe48dZ0MyQMvTP7AFzA+UDJyCZex5H9nyB8/AjX9N/tn9j+YTKbG1+m2Kre7jpf9N/0z+2P2N3b2V6dw6PSu4JUolJgjxMEazhQ3B+UcwCIYVjCjE5io7PTijGQhnhnHH+bEQQ/vB8UYyyytD6NP9jnQSLMaT/6fe/5l8tKLr8qXX84Pu6Et/H/4ob/IeRdcrmV223UX+d+bL/rOjE3///GNdPnbVH4B69o/MKdZ7jqtVvJ7c+SZj3JOuEz+ICuqU57v5IuyBtrlWIQ+Mv0z+2P2V42V+R/zv4Y/1DcY/vKQJUQ+LtAW/PNV+AMAOpjCQcccEACIwVwL7LACCvTKPELvrGEFNczPLMGB6wAGasmwiA94v84NVFg+UjfC/M/6tC6jHy/+X3XlDfLQQ4/I8uWL28X/ffY5VD6YMVt757f33y4/+OEZ7iOYGPT/4++kyQP/xcdSUf3//MVrJadHtIx4GdI78A91zB8D+k74TP6i+R8v+eNztem/2T+z/9G2zfyf+X/zP9ui/wGAXoZndIITGHWOgiKo4Bc6zdhEPsH7icsMukYiBXlxqUmM5JUf80DIp6MyTUE6PjcMARLLoQJfGUuSktHvDP7f8ss75JZbbpd1VWWSmIQ+QKdujv+LFn2I5Qv31S7jWrhffjFPevbuyR7sUP/jEU3ufTVDnn2fI8+QET6wQWaev2id9OlJ2TH5M/2jjCrq1pdZZn/ADmqG2d8O2x/nkDZv/0z+TP+ob4Z/PGQz+xPa34S62grO1lBjpIiFqCg4iKYhODwIZjQUBjQ68kMgRl+nMFoDviwL4FDpI8RmLb4SnIiZjP5X8DYO/L/3vj/KFVf8QirKP5Oe2dlt4v9VV98gd9/9AHtRTjrxWHnkERfWiOCnnf1f15AgNz6bIVM/Tfb9nyAHbd8gVx1ZK1iz3R1xaL/Jn+mf2R+zv2oHzP+0yf7TGHuJiQp4Gx2c2mn/jf8OIxn+2bbxn1/GjhpCa8KncacjoV4goMDYJYejyEwP8vpxZsQwE0+t6qGsMAl/TA/KOUq8wmH0wZhWfCNb8BdL/j/yl8fknHMuls8+nYP1HQtYO/5wfAX/G7Dm5ajROwJwL9OsL7/wtOx/wD5aJOjH9vY/N0i58olM+bCENej7Djl1j/Vy9oH1XKhF26wEeFv4i2X7Tf5cj5Ovnrsa+qr+N/6b/Jn+hebR/B8MgrMdETvSXvsf+A2zP2pdzf6qKwIvOgH/xNr/RwB0KNVEMGiMwzW+c70TCfOw45nBvdpRYOxyBuPP7irMj8sgzDOKteAjxERMYNXXkcwdpDNg9OPG/2eeeQ67EP5YZs1+W8aP4c5q7Muv5v/Lr0yRY489Xbtn4OAB8tGiGViXmZ21Zf3/9kfJcvWT2HjD938izhceWidH7dLg7Kn1v8m/6X/c9F8V2exvaH82Z//UNjrfri9Rnbk0/7el9t/kDxJl+tdt9M9/REj8CjALx6UzLdRqIE6vo5E0EjzQ1RPtCAM4XNDNhWYdGhEYHk3kBbEBRlldZkeLzhKH0e8c/r/66uty9NGnyttvvSI77YIt0jfD/5NOPUv+9a8XtI+uvOIiue76K7Vvt6T/Zy5Olp/9FTsCqpCh3yFat51YI98aha25Tf5M/8z+mP2FYaFt4WH+h/7Y/K8DE04mVDgclNBxtkBYHKQw/MF32Ia/ICsUCMqJYk41JmpYYo0/3Qg0OR4uS+cE1QmkCyviVdCDazw9qdDSyjFT1BEdFYQ3PPPKVaDxARGj32n8f+ed6XLgt4+QV156Rvbbb2/Xl1/Bf07b4NrPgdGav+BdGTls+Bb1/ytzUuS2lzKksckJDfv/j/9XI2MHNEGOcGXyt4E+Baqh6qVfzoFHZJrp3xbJH1lH9xowUK8DJpv8mf6Z/TH741yTmtzANOiF2V/noyPmM8QEyh//42ysuwjCG54jFWh8wORt2P6GUzg2bKh/kovijpMhl8v9+taj8QkJXE+BsTg4oqlzWfhyzMW5kFvrwedyIy2swh+uzqBfjL4+SQbMwTlW/F8wf6HsutsB8sSTj8iRhx8WUtgU//fY62CZhU1XeDC9pgbzoH2vsk81djP9z1wPvZEmf3s7NcR+iJK/nFMtw/sSDbpjU/SjxCNm7ScdHtRZ8jQ4jD571vVztL6G/EEiV4lpb/+zfHR9xn/HUZM/0z+zP04X+Gv21+zvtuR/1qytkuzsHqJTODisHXy85XYddMjCOTsuTwdAiwvFxl7mI42F8GtiMDQWKAVBMOc4R+J1/VcCLmQJARhDRr/T+L9w4ceyE5akO+usM+Tee253PfEV/M/MzEe6e/A54IC95cUXn9a+Yw+3pf8bmxLl1ufTZMr8FBZRj7nnqCa57pg6yUgN5ML63+Tf7I/ZX2dTzP/AP4bT6tRomv+FtzH8YfirM/Fnc3OzVK6slNLSclm8tEiWLFkqn332pXz66efy8cefaPwDD9wpuowd0VAIaBUZeXikCNqFMcjsR6B0RWd9ZPR67gGxQiSiJPx5cOSQsosCSAuo6Kwu0kSUfo/GMG+CZfXkwyzi440++UWGdIz/5RXLZPiwCXLeeWfLr2+78Sv5v2jRJ5gjvQ87QI+KUix716snwm2jX1WXKNc8lSGzF2NNOt42Ovu4XevlvEPqJJndzD7H2fqfvOF/L/N68mHyzeQfPACoMPsTE/2nZJn9hVaBEWZ/zP6a/3Eupqv9T31Dg9TVrde/9etrca6X9fW4Xl8n69c3SH3tej2vb6iTBl43IH19Pc4N0lDv/xobZNXqtfLAb/8gxxxzpOQX5kljfaM0NDXg3CSNSK/HqmKNWgbxuGbclNdeVy/bN7eP9MnJkdVr10hl5SpMN8X0Un/oDAD4oWHDBsm+++wlBx64r3z3u4dwBLqCNjU8FKPBskRNytA0VtAMadPxSBof5OGIMh28jjUjzDg9GE0rrTjapfsUl468/JCM2VofRh8ciSP/6+vrpVfOILnp+qvl0st+1pr9+qRP+ldeg7Wf7/qtpp9w4jHy14d/1+b+/7AkSX78cBb6Hz3MvkanXnDwejlut3pHz/rf5N/03+zfRtYH5oKOIo72T0ma/TH78w20P40Aj/T/BJ8N6xHGuZ7gE4AyPCPc2NCInYpXSnl5uQwaNEDWI64JoLUOQLQB5QlgCWobGtZrufWMQ5hxCmoBhNc3AuDWEgTXAQSDDsHxeg+QEbcegLgWcStWVFLhQ0vgcCKxYSSOic4s6K/P7sO+JO1GMKCrURtF+Iw8IS9MgKfQqh5XWBKSEmUw2j527GjZfsJ2stMOE2WX3XeWAf2x9C/LQn6If0MAHcJc1sccAL8EPsinl+4UNMo1MFFvUpOVbORHITVqUQSt0UG1uvWy1s1yrE9TNEx47i6Nfjz537vXILnggp/IjTdevUn+NzVh7eeRO0KBlmn/v/Dck3LQt/fz/cXu/Or+/7Q8SX74xwzkiEzfufXEWtl7TKMKivU/2Gfyr0DJ9N/sn9l/83/0KN0RfxA86ugpQSvAI8HleoLWOgBNBZ8EoI0yd/Z8GT5qqIYJUAly1wNccmS1DuB1fR3r8eV5RlotRmbrUd+qytXy+htvyR577KbxBKnr/aitO7v6mJfTEgI8R55vcEAMU5JTJDk5CX/JUlW1TqFYfmG+JCclSVJScpjG68TkRElF/kSENR1lksJwIuKYloBzVHwiyqUk4q0z6gOdJKQ/+ujTMnz4UOwtsbckMz0R6UgjFkxBfQSyiViJRuM5gMt0rkyD/8kIcycgwtAEf2Y7n3zqH3L4d78juX1zmID/RCPunACaqEHpJ6Ju3l9Nba3MmTtPDv/ed6RPnxzJz+8rhfmFkpqaEvKLWur8FbkWwT8JtdUYgeYNaAYmhqKskdymkECZjFfUjfQgL288QP10BRx05lkzECQgwqU7gvx1iczk8vJJwOg7rijvOoH/gwaPl+OOPVLuvOtWfRJrzf/XprwhRx11st5UYUGBfPbJLBXqzfX/rC+TddpGNQeaff/fdFyt7DuuybfK+t/kn9bDHSoNpv9m/yASgU+hV6CHUSnBj/kf87/txR/6eh+jn/UAqZwWQBDrpgIwTAAKgIozwSZHRjmCqteatw7gFGUViCIPRkoJaJm3FuXqAU4ZR3D82Wdf6CATRymbAXR02UWcFSthtanU1GRJSUmVlFT+JUtqSgr+GE5BPMEq0gHgnnjqWfm/H56u18nYhjcZeVKZhnwEpyyTzDAAK+tMY1nWhTgC2wULF2FhgJ3D+JQU1ov0NIJXdw8ErCmo24FkgmGUZRxBL/KTTmfhj+5k/xPqMIVDn0rYKkW7NF4O8HqI662b83TOtNHI4ZoF1dI5lrhyQE5aHr9Ex82IJZDW+n3NpMPJRzixuNF3/Oss/o8dv4vsuedu8tCD92+S/2ee+VN9iuNdXXLJ+XLzzT9HJ7EH2X/aYxv1/+sLkuWW5zJlfRPnSCfKwNwmueOUGunfG4bF+t/kn8IERVfLYvpv9s/sf7f1f1RvfV2PkT2CTYLX2lr+EbzW6oifm+8KMOpHU+swylpXw9f9DuDWIh/jONpax7mwKM95sQS2OppKi0qXRLPiwxxpXLBokdSiHi7RmpaWImmp6ZKeAUCaloZwmqQrmE2R9PR0pLv4VJzT05nu8yMv41g+Nc3lS0O5NMSn4zqV9TIPgS51Mtm3AABAAElEQVTCBMM8nHUz/ENOKFr4BuC/hNra8pYW9Lk+5akYoOkKiglwIRLQBu4ax7CXVweMeY0siUx3BQK2aTwzO6jFeliSEQjzP4KuDIcpETb6ncr/3Xc9QIYMHSJPPvnwRvxfu3atDB2+vRo7duSsmW/JuPGj0Elf3f//mJEmd7+Sjm5GR6JDtx/cJL/CtI1eGV42rP9N/k3/oRpm/8z+Qwy6yP814RU+X1fXVNfCvvNcjes6qa6pwZxUnglyGUeQizABbXWNVK+vQXg9ljF15QhumfbBzFlSu65GdsPoJz28h036cEiwmpkB8JqeoeA0AwA1PQPhzHTJJCgFgE0ncM1CWPNmII4Alfnwx3LIR8Cblom/lExJAxAmcE3DyKpOEYQ6Gf4w/NWV+BNzoJehByD+IUh2oBn6QI1wB+0+0TLUJFAUvFjyloDPXXxjzxRfxOcN6tQMLlnzuCBroMqhtNHvVP4fgI1U+PrntZef3Yj/j/z573LOORdpP+200w4y9e3XtFO/qv///Ga6PPw/rvHsepVzna/HMnVpybj2MmX9D3aa/KtM8cf033HB7J/Z/2j/x/GHGozSKrAlcAWwrcFfdU21zPhgjgweMhBpjKuWdevqpKYOYHcdwC6A7TqAYeavZZlqrFSAubbORcO/wlVT6ThHNTMzQzIyMxXcZvGcmaXhjB4AtumZYVpmRpZkZBEEA8jirwfyZhAQI+yAcSbAMEZe8VGL+X/DP4H/pyyEI6jfAP+fUIMpHNroYEKzPh4zJsrjK8hFFKK5lJp76iOnXK7wyZNFtDJ3CnC0juSDmYmI0FoZgYwc3faLouGSlSPe6JPJnrM46UHeIMBTDPh/1NEnywqscTjtrVc34v9BhxwJ0Dxdqd55xy3y05/+nye8IX1uKHjor7OlBnY66P/v7dAgl36vTjA3X8UgaIb1Pwysyb/pv9m/bcL+NzY06bxXXbFAP+rCKgVcYQCgdD0+7GrENIKPP/lMCvCBlU4r4MdimF6g0wyQxikLDNdwWgJHcjHiy1FcTlHgyK0CX5ybsNqBTnijuYdd5ykDI7RZALVZWZlRfz3kP/gu5ZRTj5fMHlmSTTDLdAJgzZfhyvhrgmTOtzX7C4Z6SGH21/BXPPCnbqQSQiAKm8dqED0PggCPAGy5pgITiXGDg8BJ1yZmEiKjkoIsGu9e7LsoxceMZUALsZSHYIwy+iEflT3K89jy/7QzzpZ58xfI3LnT0GkR/i9dXCTjt9tFP4jgxw9ffD5H+vbru1H/Y5qzHHFHtqyt1a7Tjj99z3o568D12qVh5/tk638n6uSLyT/FxfT/m2j/6Eca8IFWHUBoPea1cg1X/VgL11yhgGmMdx91EazyukHKysqlCBsZjBg5XOfM6ioFmubSOSeWqxfoElpc61WX2EIal+RCea5kwLVfV61aLZ9hI4RJkyZBEWmVcHj7pzYKYfqfJHzAlYppBWn8CAxnfpTFqQScF8sPwlLx9/jjT8vZP/6Bn1LAKQecWsDpB+kSTFfgiG0m59pi1DYLoJbANpNTExQgp+vHWwF9tcLm/8z/G/6JO/6Jpf/RZewUqFGD/aseNSz+x6VFNJtPtYxzvywUHEzANaO0kIt3M3RYMZdQ4ahzkD9y1uyMN/qOfxHWOFbSyPsni1jw/5xzLpZXX/sPAPI8pRTw/1e33yU3XP8rjeMi4c88/deN6K/H2uI3PJshb3/MDydcZ34LuwvedjLQtPW/yT9FwvQ/UA1oCM1119g/gk/OZ9Vlr2rxep8faGFENPiAS0dN9aMsjJpyBQJdu9UBWB199cBUVytQsOtGYQlWp017X1avXiXf2n1Xv56sW2OWIFltlDMNkfZjfgKXpOLIKD/IIhglEHUfZyHMD7L0Qy6Xxg+89KMvnNdWVcnKlatk550naznOnXUfhXElAgdqmZcrFOg1P/7CKgP8uIsrGejKB1iBIAnXbsKBmrjwJ7B/5n9Ck96KN7H1P2HlPmD8h7mgvhj+Ce1mICNONrZe+YtM4eAd424DgEtDqI7Q/egv+5gHG8U5L3zppA3U2Kgfn1FT8aTvckZhCwVaKKnG1tWhpY1+p/D/8iuvlYcffkyWV3zuHmp8103acU/55OPPtE8fffRB7OZzOFLYw+533foEuerJTJmzOBH97+KO361BLsDughsc1v/KDpN/KrTp/6bsXwPWf+XHXNUAtvxwlwCRy0npR1uY06pzXes43xWv/HFdp3Nh3XxXznNdxw+6wrganXIwd+4ClbtJE7fXswLQzDSMiLp5q/rhFj/U0j+uLgDQiXCGX2kgNR0fdRHcEowS6OJawwSzuA5AL7+f4AM982RlZWk8gTABK1dCgME3+QcHTP9N/83+dXP7z1U4dMiAJo+Gz+Elp/4AurqZHNP0cKMpIbhWkB0WCDLBiKJKDENw9IVP/AHYcpWDCIco9GkL4QBMs7TR7xT+33TT7XLrr++UqjXFeF2JjkB/vPjSq3L88d/XPuSi5ZUrl8DR4uNAdhFiK6sT5PK/Z8gnZcnoW6xxCR96/TE1svfYyHaXWhg/1v8m/91J/znNYC02Fli3rkqqqwh4q/SjLcb9+9+vy0TsVLVuHT7sqmYefNiFcxU+7uI1579W4cOvlmbqCTUJCgV9S8EoKT/GyszKkNLicikpLZNjjj4Cc1vxuh+v/PmhVw+E9aMt/+FXD50f20M/5uLcV1ceH4EhnWA4OEz/TP+6k/5FEIbhD119JBjcNPxFsBGYvfDcmfYPI9DLFOoqeHVvGp2dx+04c8/naELhyMGwzlrGzbstuX1q4B+YHrRLk1yJCEKOXDuIjWtGGX0O7ced/3ff/Vu56uobpbzsU+nZq5f2ZUZmftDhuAHB6FZF2P8VqxPkoscypGglO0gEKw9hmbpq2WEoXsuq9LDzcFj/O3xEVpj8q0g4wxHR91BIvLDEU/85B3bt6rWyZs0aBb1r1qyVtWuqAIbXyjPPPi+777YT0qoBdqvwMIn4apxXAxxjZJcPiSrO6MgMjMD2yO4h2T166LkHztnZWRp+/90ZcuRR35Ue+Lgri3Fc1YDpPfxHYDrfNQM7aSWBHxvzIZ7t1w5Q1dyYbtAPRp9DPOAPWWT+p1P8T7QemPyZ/G3T+geg5D2F83cOLHskpFEIY5S4aEmp9M7ppU6EhoYDxyHW0+wbGunoGlzN7ldHpeGU3JLBvkxU5mj6RUUl0rt3b8numQVivA/U4Q1dvOgXFxWhnTnqEN0dky4bGy/6IkuLS6RPb0czuv3xov/wn/4m551/mcydM1VGjx4ljdi6Ozt7gJIji2//zc1y7jk/0usvliXJpQDPy9ey00X6oCt+c1q1jM5vblf/E5CwP/vk9lFw0Zb+72j7uTtUUVGx5Obm6hftrK898rcl9LkW9lK0s1/fXIwMZroqon7jQZ91Ll1ShA8+++FjJTzdoKPYj1SV1kes6PPVxOKlxZKHj0w5isrpWBEFjQ19ykxVVbWswlzbVZVr8BHYKnnppSkyaPAA3aGucvVqWbN6jawGQNYzwDKnQzRxMx/YGM6H7dWrp/TGH889/V9Oz57YunWBfO97h0hPhHv2ypae2fhjuCdAMgBw8ADUjHYWFRdJXt98XSEh3vaH+t9EmrBD+fl5uh5ufO2Ps2vN4NlS6EpBfj9HM5QepsfH/jU1N6KdpbqaBdf/5RFv+0dbV1IMmvn5OkVFZTZKWeJBv6mpSW1fIVbt4DQY3XNBnafXmTjQbwZN2qHCwgK8nUhV3vInVvq/Kf/b2NgsxcXF0r9/oc5tj6f9Ceg3NTZKcUmp9CdvMfXIWb3Y2B/HtI3lvxFyW0K5HYB2YtqSM7axt3/R9Bvw8VFJaakMAG/59ipoP0UnXvQbMABRUlIuAwYWYMdCyFAgp3HEf41Y6aaYNAeAJnlLonGyP1ov6q/Hh8elxWUycGB/7NTIHRmDhnrmfh19buWdgCW2WrCeowqflo2uQKQaryD/9+ZUGJ082WknfMGsBJgngNCBIaDgIsz/SOY2rHRkjFP8yUiWhWPUDwq9FGyK/rp16+Stt6ZJQUGeTJ68A6tUqlq5hmJPn69o33r7HdAskMk7TgTFyBEv+hz5mjoNNAv7y447THCNVD6RYuSIJf0/P/KY/PTci+Wxvz8kxxz5PXxQOEWOPuYMEGuRLIycLa/4UgHE/KIkueKJTKnC94GkP7BPi9x5arX0zwnupu39vwqvvd+ZOh3KOEAm4ZX35vrfUexY+1dVrpZ3331fBkExtp+0HfSl7fK3pfRXV65SmgMHD5Tttxu3xfLfHvqVlZUyHSOhg4cMkgkTxmnRjurf5uhzzu57770vQ4YMlu22G4uOAm+9rlNYoulz+sJKAN2iJcVYn7ZRVuJ+V60iIMZ55WpZtaYSU4bWKkBeBVDMNK5jm5CQBECbJTk5vfFQ21tXMJg67V3dZWzXXXeWnN7ZeMDOwR9AMvP0wh/ikjDaG01/S+xP0P7ly1fIBx/MkqHDhsj4cWNUR5ySxt7+KE1UW1GxUmbOmCnDhw8VbhPMI9C4SCi29MuV5iysdDFMxowmTVKMHPGgX7Fsmcz6YLaMGj1MRo3yNNks1dP40C8vXyYzZ84BzZEYPBiuLmxT/ieW7S8vK5OZc+bJ6FEjZdTIkah68/6vo/RLQHP2rHkyZswo0BzWbv+7JfQ5DWnenPlKczhodsT/t5V+MR6G5s1bAD0ZI8NHDIMVgtzwP+QoXvT50Dd//iIZN26UDBs2lAKLPxD8CvvXEfuDivVYgsGKhQsWyfjxY2QoNkFzNqjt/re9+IttWoJBmYULP4R9H6e+haoZtlUxWOzpL8ZqOwsXfiwTtgdN+NDg8ByOC/3FSxfLooWfqu8cRJrtsD+6Ckfk5tz9QQ7AvkgsGUfl4Ov+Hph7FxyMJ1pvARAmFua8qwR+NISz36lVs+prfubR/K5eF3Y1RShpBsqh0i8tLdeRox74UIV5fAWuUHgZW/oleBLJwUi7jqopwSiy0TcdQ/p8gu5DgMARSzQ0aL+jHHv6L7/8bznuuNPllVeelX333UtOO/3H8uyzzylfr7jsQrnhhqvk3tdS5an3glEhkdGFzXL7qTWSk6k9oXkdO9rK/2Y8zZK3rp3RrPyq/u9o+zkCTZq5ffro6KGj6ajFi75IE0ZhyqRvX9DEXFYeWyr/bW0/3wWUwpH06YPRYOzaFSv9a02fqzGsxlJgXA6Mf59/9oWOllZhru9qPKysxN+q1QTFAMccNUYejmIkJ+LjOKyVWwZ9Pva4o3CfvdEnOZAF/CHMcx9c98HbJsoH0/lBXWv6tEnFcF79+uVilDTdm4O2yl/77Q/pcxScI5ZczpE7pDlDpN0aN/p8i0GbkJfXT+c2h7IaBmJPvwW71JWQJt5i8CPD1vZftT7G9LkzHmn2y8NIezBKCkLxtH9NeJijTeBgEJek4xEv+6M8Y/1YNL+4tMTTdKNq0ayMB30+tNJn53OkHSucqI/Wtjpq8aDPEejSMrYTo974SCZofzztXyPenBSXYQQa7UxOTo0p/mhtf7zC4w2X423/AtAMeIvGxhr/RNNvwEh7aXm59MfgXjKWWeTh+jB+9q+xsQn9idFgvMXg0o5B+5V4nOg3YoClDO3k25rkZOpKFNlooQ3jO97+etAsJ28LCyUZmw21x/4ogNa79HcKfwE+8Qd3SyQO4BvE6ViyXjBe/2ualtesNLvM5YySC1CNGOPiFGgrmI7Kp6n4QbaAltEnM/AXB/6/+fZUOfTQY+XF55+QyVgaavjwiVjGCitpoM/nzJ4qn9eMlVtfcGCe9Hca1iy3nFAtPeBvCCi0b3hr7FN2Lw+9Vev/rV3+uXnDKkx5IBDmX6WCXg+KMUpciWkSa/C3CvOFKzFtYs2aVXg6/wQd3CJDMcLNKVWchtNbQTDCGAFW0JsLAAzwG4DhHAJi5ElRY09JYQ0QE/w4Z276r/qjnPE/iDD7R1PibUyc7J/Jn7NSJn/OJoUqaPpn9oempx32ZwMAzYJunAYipd7OVRaCAgoYkugEia8xgOBwro8Lt24OJZIBqqkf6kdQHahDWy4XK/SH0e8c/s/Eq7099z5IHnv0IYCkVXI+5kPz2HWXHeVHt7wuD76OEaio/v/vNeskFd9A0Z9Z/zsZ7mr5b+a0CE5/ANjVkV/sLFmJUV9OrWAcp68QDD/zzPPoWYLfwQDFq6GKLTrHv08uR3o56kug60aCc3U0uA9GhRkPMKyguJeCYgJh63+Tf9P/rUP/u9r+GH3DP4b/YAtaf0SoBpKYFwE/AACQDGjrhkYUABNsEeqhuP7q7GlfhmkbHg5+OwjtwizJv2CrdMXYjMChtRp9ZUS8+P8JduOaOGkP+cMDd8nDf35U3vtgptI74kd3Sknfn+hDETvixD3q5VzsLpiI+TjW/2AI5JIPgE5OVVJjIv/rMTWCDzIEv5wfTOBbuaJSluPv5pt/LSeffLysXLFSVhIsI24V8lbhG4FgNJjTIXL7ciS4j/TldAhMH2EcgTGnQuT2yZUhQwfpCDHX6+Wd88/0D3ygrYmyXdqrZn/ian9M/kz/zP6Y/e0O/sePQG8w9hvtT9TVuqVmIqPIHFBWUI2AA9dRHkhLawbvnaLDznSGgNwtBq0eLGrs1egr1/GjBzkTtZo2Wd1B/peXV8iw4ZPk0ksvkN/85l5UmIBdutJk4rlfSFJ6b0kCjXMOWi8n7F6PtNjT7679z93b+AFcJT+Ow/SIUnxNPHXqO5giM0ynSjCeQJlplRgxXokpEvwAkKtGcC4w52pzFDgXI785Gs7Bx7tvy1ln/VD66ogx0gmOc3L1wzmiedM/PtyZ/XGQjAYjNBBmf1UuzP/oiEioI4HNUAir9p0yY/6Xg3vuiLYm5v/M/38t/qqtwUYqFB03t8IZXUqQXjuRcr8RE+3lTEexgjQVNFwkBKt5UD99oqonFZgjmd6eeRSIYj6j0XcMJp/Itzjyfx02gMgrGC677b6zvDd9hnZnn3HHyfAj/yppQM/XHF0j+2/XgPtxHeh+3e0Ffc9zVBfrld56N+j/ddXVDgRjGsS0ae/px1xVWB6tksAXfwTACoJxXs3pEnq9CvxIUBDs5gL3xhbHDSg/XS675DwAXoBiAOPevTAyTDCMD1X7EChjqoR+PGry32nyz9fPZn8CYGn2Vw2u6Z/pH1WhE/yv2Z9uZH91CgfbszEcAhzg5AysqoEed0uAQcLofChoOCIYz0UGSe5pVr2UZoepRk1Yyo41ohCBhn6xGlSktXlDrmGSYC6jHw/+c53ZrKz+4LTvSIRGn/SCDB5/gNx6Yq1sP6ipG/G/RcqXrcCGGqv1vGL5clm2bKUs45QILFG2YuVKWYFpEStXrtApFJWYRrEeI8kU3ByAXs4nHjp8iEzeYZKu7dwvLxejwX2xygbPfkQY60xzugRXEiBHTf6pu6b/NGXkgtk/s//m/8z/G/7pfvhPp3Do9GbOc1aIC9cHqx+soUgw4KCsA7h0BgqmdQILXQTiNYmFmMi4wG0wGWGdJO1imaX1YfTBm07mf86gfaRu5cdhVxx44zr5w//VyACs8bwt9H9DUz2WnlkmZVjvtLy0QsorlmFnxWXCtWXLKwCSKyo0zDU7XYPwIgZblOcC9OZjebA8bBjBZcL41w9Ld3FZq355TMvD0k/9dPMVN1/Y5N/0n4/yzriZ/YM6qU0HP9SY+7MaDZgTs/+eCZQUHOb/zP8b/lFbQdOgJkMVI/KzLeM/AOhgCgcNY9BAjjhz5Nn3vLaVTVfriLMHFczPLMGB6wCGa8mwiA+wOOyK7lWudTGeBxL4H5cuxujHi/9YvEH++HqqXHPWvlJTMU+5n9pzoJQumSU90tivrj/iRf/r+n8ddp1bgZFhjgj/979vKLDlhjrLMFK8HCPHCowBmufMne/vEidMC+Iyaty1rQDglzup9WMYfwTHBMNcW3IHbMbTr18fzO/mOo9OfgNpM/kz/TP7Y/bX/E9gEc3/doX/M/nb9uQPAHoZnpEJmwAqOAqKoIJf+FTGJvIJ2k9cZtB1MlKQF5eaxEhe+WduhHw6KtMUpPP1RSAgLOdAC/KhUqNPTsef/3XrE+SGf6bL6+8Xy/zfY9dDbPpB/n/+2RxsEZof8/5vwYLzyzElYjlHhTGN4tmn/yX5WCC9ob4B0ygcKHZnTKUAQK7FahQqOuSGExLZaccddLvofOxImV+YJ4V5+bqRBvPus/e3kJanW/Ka/Jn+mf2B4uAw+2v+R/2z+V/DH8Rdhr/ihj8T6morOFsDbMZBHOeBCy8VTfPVHIP422QeTWUGdhTz0Y1pACeWYEmeEMYuha4WXxtOHOQ2+o4rESYrx8AzMog8dFzUkGedzxE5bYb/S1ckyTmPpMua2kQpefMXUvbub7TsEUd8R5544s+b7tuvoL9sxQrdnW0ttueuwNQJ/Svn3GICZUydqFghyzBSvBwrTTQ1Nfp7jMjCzjvvoDtkcdezgsJ+2OUNZ4we52G3t2BqRa9ePd09xaj9Jn+mf2Z/zP46S2v+R/lg/tfwh+GvDuFPv4wdMI4HSxGY43CPmhpEBlgqGEVmapDXjzOzEh/J8UAH+piPF1re261Imo9gHqMPPrXiG9lC9gX8w3lL+L+gOEl+8nCmlm1urpc5dxVIcyN2HsTx/HNPyAEH7KPLqi3n9Inl+MAOUyYqMCK8AqPEFcuWu+kTBMjLAYoxv7i2zi1vx7tNTEoEAM7VKROcLlHAkeK8Ap1KQTDMqRV5iCNYzgEo3rCN1v9giPaDyT9kIU7yb/bH7K/5H+c7qAu0OLS83rtoyOyP2R+zv+3HXxEAHWoVArQ2Oo/D6ZbiYkaHeah+zIARDTo9p42aORjj0IswP66CMM/I1IKPEBMxgZrge8O8yGD0O8T/ekxv0LnEGAGe/kmSPLpoV8dj/H7x3BlS+eEz2h/8GGiT/Edsds9sD4oJiDF1giAYUyg4UpyekS69evWSiRPHYzpFX0lOxDaF/rD+d6Ku7AhknhdB2OTf9N/sn9l/83/m/w3/bBp/bEP4z39ESP8OMIsb15kWHgwl6HU0ko4AAcUDxL4M4HBBNxc6BNqIDEZPFWUjry5f58spLTILh9HfmP/cK72qplbXGtb1h7EJRyW3aOZmHNiAY8UK7EyHzTm4g91yTKuYOWO2w2naOSJ9J5whQ79zP5ibjD/yuUVm/KqHcpvhBIweT9hunOy15+6y7z57uVUpAJT5AV5mZgaKUB6s/510U0pxeN7qycsxo13Q5J/P8Kb/XiAgFGb/oBuqHGQGw37AhWH80cbwMPu/sf03+2v+x/zv1o0/3Ag0LVm4LJ3aMw8IXFjBl1o7XAdDjCiimXwWnqKjgvCGZ165CjReDSuiujn9ZjiJKswXXqng123VzO2Yueawbs6B+FVrAIr9dbBJxwpMpdBjQyaGcelp6ViPGNs3Yx1irks8F6tTcPOOiy46V8rSDpZZa3Ync7WbDtmuVsbKv+T00/8vrDI1NU1Wr17a7fkfiplK6DdP/qz9gW36Ztof63/rf+dCTP6/ifjD9D9++h9O4dgQo/mRNAfVHOBCL3CVDgIy9+u7BeA3AR8HulgmI57TOhS4MSdLROpzMawL2ViFP1ydQUMj+cP0rYB+A1aVWLNmjaxZvUZW8U93oFsDEEpQjOtghBibb7z80mtotegUB4LkpsbgY7pWDfaXWRjx5fbNfXUb5xzdpGMqdsEbMKBQTjrxWLfNM0Ayt3kONvDIyspSRkbzn1+E3vefDHlmerLnusgZ+9TLKbuuwjbQwwJ2yt777ilvvzkNwL5EkpOTw4cf1w9bJ/+/6fJn7XfSGcioWotvkP2x/rf+pzc1+XeYwvQfkmD2r0vxp07h4Gs1LKergI9GOvJajXiLy2NBaZlObOwhGMHhM8/8S/77+tsyZPBASUtNQWKCJGGziqTkJElJSZa0lDRJScMZI50jRgyXyZMnuFd4KOvGRVkbQltI35UmWd5cMDTub5D3zGkpuPs6fPRWje2Za2qqpQprDa9bx3OVhquq1urOdPfd93s5/IjD9CGhas1aWYutm3leg5HjVbwGcK5COWVCQCI8B3cikpSUhG2be2FaRSXoJ8h3Dvs2dqnrozvV5eoWzti1DiA4tw+2c/bxPGdiXjF52h7+B1SD9jc0Jcjhv8mWarcanCSDLxcdViNH7tQo48bvIouXcLTZ3fRFF50jd931gJSVfoz5zL23qP9b049IB2lE+B/E6/rLVHhN5Y34UJz73+iTz+ACnlj1FTrCnal/xn/jv8mf6Z/ZH7O/3c3/6DJ2BFWhQ1Vc48GN2n0X5gp0bgREV3SWRixP1iN7AO2ih0Ea3PDK4SOfIUGOOeZwWhH9/JC5X//f2zqX97hjj3T0AaT0Xjg0zf/q8AHfSbupRZqA4F988RWl9+2D9pOGhiZsktGgG2Vw+2VOX1i48CPU3KIjv7V1dVKLOcRN3D2EdbNSHJGQ3o5GuxRNlvT0VOnZsxeAZbb0xB8BZu/sntKrN8452djiuTc272A6z/6PgDgnB+V6Ysc7TyUgpGd3QTo6q0fbh7DP017+sxF8oPGUpB5NPOCWbFz6ChG66YRa2W9soyz66GPZafK+iHEFHv/7n2QR+HTTLbdjDejZWAO6P1KYxkp58mFW5eNb939r+q5m5mch/zAT3Iqe3QXzxaP9Rp+852H8N/kz/VM9MPsTmG+czf6SGeZ/zP/GEn+EUzic84XZUT3zo85BJN0yJK8ZaE8X6UeYTxILFiyUZ559TrdIListkUUffioffDBLegFEDhg0QBqxYQbXAW7Ex3At+GvWM4WYiFiktKxCHT6XP3MHK2YoQl/vB9eJpIyP3sqxdTPzDB40WJJTMNqNEd/klBSMcnPUO03ps4bDvnuwZKRl4GO4NMnAVIcemZmS1QNnhntmSc+sbDwA9JDs7Gz89QD4rpdhQ4cAAPeQVNQTNSmF1W2y/Xyi5s3oWKuCfTJPo5yUqh9z6T7FpSOvWwHDXUb/tof/Af3ahgS59ukMee8zfCzIA7f1y5NrZe9RjfLW21PlkEOPdfH4vRjzo2/55bVyz12/kyuvvkHmzpkmo0ePDNO3hH5Xt9/o8w0S5EydpOt/fUrpJPkz/hv/Tf5M/8z+dI3/N/vbdfY3BNAhzFMZAAKD8+XUgGDgltHM4w43wzmRaAtRQaxP1JyEvOGmKogJqtWtv7XuoD5NQV6KAcJBRqPfJv6vq0uQyx/PkHlLI0vJXXtUrRwysUn5n5FZoN1Ctg4eNFA+/HiGgvcHH3xELrjwSnn3nf/IDjtgao3x3+TP9M/sj9lf9V/m/8z/G/4x/Lc5/JtQW11B5Kq41QHhEEppJD9KI1BmRW7+imYH3KKCMU7xmV7r0DgvaYQJgBHh0h3g5q9LZCYCaFz5KBZxVRl9/yihrPo6/q8FeL7k0Uz5qJQPKyK5WS1y52k1MqIAzPf8LykpkxEjd5RLLz1fbrrxanIcfyJ//vNj8tNzLpb/THlO9txrd+t/8MTkj5Jh+tdW/TP7B2lxSqO6Y/bf2xDzf6H/Mf9Pm2r4x3kVGguHP8gVvfJR2yr+S6irqQjfvDhryHFg1+G+ia7NqgkujfH8p6g6wg9fDshNy+OX6LgZZQiklWO+Ztblv1pUxgV1RNHQ+rUUEjUTazD65AC5uXKdyEV/y5IvltNtieRlt8g9p9fKwL5c7cM/qnwN/39yzkXyl788LtddewWmclysdVj/R2TM5I+8cPww/SMrIrJBvpj9Az84qkJz5A9n3c3+t8X+mv+D4ECE1JsFMhSlY2Z/aW+czTH7S1Y4XgT4Z2uxvwm1teUt/EhPR5nVEHqpZq/BQOpi7rpGtANlzKLAGGm0n4lomBuTDs2GxofKofV4YeCQDf/j0pXhMCnCRr9d/F9eJXLhX7NkaWWi8r9/jsjdp9dIYW98SQiGsl82x//nnn9FTjzpTHnyiUfk8MO/0y761v8UYJN/03+zf2b/zf+Z/6fDVc/rftvgfw3/kEnbPv7DHOhlsAAABCFIdqCZAkFwqwfO/OiNqIxQmFAaEzsYqUDCsYIpvkiA4HydWo9L1jwuyBpYE0ob/Tbxv7peZHU1lqb7W6aUrnb8H5LLkeca6ZMNYWwH/19//X9y+PdOxFSOP8gJxx/VJvrW/yb/1F3Tf7N/Zv/N/5n/hzUE1jH8QyjsUB15EY7gfQPwX0INpnBoo4MJfR4UEyxFDoJcXPGEfG7UwaW66CDR5WEK6wxwtM4kADMTEaG1MgI5OLrtFsXjJStHvNGPMA5s4VG0MklOuR+bprTi/8j8ZrnjVIDnHgTPTHQnltkc/6e9874cdOAR8sDv75YzzzgZBYz/Jn+mf2Z/IAOB4aYh0SNiW8z+m/8z/+8GUqgazuV6x+tPjN+c/2UOwz/bPv7TjVTYmdr3+FEcRQnA4YQAaQC2+pkaEolxg4OldG1olkNkVFKQReM9vNM4xceMZUALsZTRVy6QJeAJwzzInrc+SZGrnsjw/EeaTxzbn+C5WnpmIhPLuRN+NzwYvyn+z5w1W/ba+xC5+65b5eyzf6g0tUta0Wf/Wv+b/Jv+O+UM9I9aZvbP7L/5P+cw2ut/zP8HTpsO3fCPcsGZ2A3wz9aOP3QZOxV+toDfo/Ecdbi0SMs4OMG4jSEbE5CP5bWQZsIlJ2mwYgzyA4wxS+tDszPe6If8r8e3gPdNSZfnZqQogA2QdcD/V6+olqw0N23D8bN9/F+wYJHssuv+8qtbr5cLf/ZTB8yN/yH/Axl1sgnh9E82Af83EHLN3D7+B/XzbPIPtpv+m/0z+2P2pxU+MPtL22j+Z2v1v5EpHN6TBwDXdVrg3jGNYGkxduLrhY1GstXhu41G3PyfVjIfGgFNxRZ2hNCqCAFYUKCNGAiGgmqS4YGoaPpLi4p1pz9udhKU99l0zg1rjY7XOvjjb6j99FukaEkxdhvMkWxsuqKVu58N6JBm0KqO0icEJm+5vTc3dGH7Zy9JkvP/nLFJ+klYveT5S6okO8NNftkS+tjSRt783zvYZvxYue66q+TKKy4k1zbifyzbz75esrRIcnNzsYENhs2JRDfT/x2lTzlYUrRE+vbthw10MlUslF9tlL8toU+9WbK4SHfC5KY90gH5byv9ZtJcUiR5/fpKJtq55fKP2/W601r/o+WM4Ubs7lm09P/b+xIwPbKy3K/T+5K903uSyb5nNvG5KiAgCsyAiixeRUQRvHeuj15REdArPhdZRJBHRRYvyOIKoxfQi7jDLJmZzEwymcmsMMwk3Z2kl2QmM0m6O0n3333f9/vOqfq700l6qUqn+/8qnfqrTp06b33f+Za3zn/+qqPS1ARMvKRo3DJj/7s0fgEvYuqCDTU3NUlNXQ3Uk7X/X4g/isd40m5bm4FZC5/EQvmz8v/J4h9fOHW4s0taWpqkttZ0O1H/WeMXCgVhvG1pbpa62pqQtKO0JnPo1szkL4yMwD+PSltrM97+WqMgU7W/mco/Cjk7u9GfLa1SU111yfyjgtpK1zOVf6QwqjG+ta0FmNXAREs5x78R6PZI9zFpa2+Sqmr6ioUF/cwJn5jd2p+tUg3dTj//Xuh/ZnkXtz/aUBcw29tbpaqqigabe/wbGQbmkW7paG/HC9xgQ4aarkNBlvLzjcvdRygnMStzjT+qQuSU4ZFhOXLkmHR0tOPlchjICxLmGf+G8fK9oypnm1RCzsv1f7TrVPnYmqb+h/EW66NHISde/ldVQUw0AfnN9YlwcfvTp3CoM7MWga2+bvBpC8gfMjAwKLffvkf4xsAX3HhD2riCJCewBV14Hp+Nx9Fn/lAwnUIQxGXw0NEGXiT+c59LEf4ZYN55xx5pQkC/8YZr7Tgq6AtaonAZ4585fUZuv/NuaUVAv+H663DTY/KnEmaPf/rMKci5V9oQXK+7drfc+3SF/MZfM1HD/YrwqZod7QX5+M8OoZOpN+qLn+nVBSXpeZfS/6nnz8hXvvaPcsst75B3v+dX8Si799ipRfqfiB8rzFT/p54/JXfdda+0dbTKdbt2Xbb/s8A/+dzzsvduYrbLtbt3QARVmtnbZexvpvgnTz4ne/fei6CzWnbu2jZj+58O/rPPngTm/bJmTYfs3Ln9sv2v/jZL+U88+6zcC8xrrlkjO3Zsi6ann1n4/2TyHz9xQvbdd0DWrl0t23dsnbH9T0f+vv4T+nbTdevWyvZtm3ONPzH+EXPfvgOyccNa2byFmHHJPv7E+NvXf1z2338Az4xfJ1u2bALg+PhjV5Atfl9vn3Aq2cYNG+xtqDnGH9NhmfT29soD+w/Kpi0bZNPG9RAToJPknyzlP9rTKw8eACbe+KqYU8h/s8U/erRXDjx4ULZu3iTrIWeUH8LmFv9IQh566BHZunWjrF+/Hkgzz/9Tlf8I3nNw8CAxNwPzGjXTvOIPdcf814UBr4N4C/N2YK4LmOYfts4Dn5gPA3Pn9u0a/7RDZ5j/pxr/urq6gPm47ER8Z8yN8ifkMgd8Dhw8+tgTsmvnDmC2K//MO/4dOtQljz/2bWBul9XIoaEXx/EvK7sw/mEEuh/uTKdCFSbVlO1aH2HN48cQBBbjFd3pSB5O0CkZRpQVgJKGphJex3a18XAwtEoHYbm5WDhpAn4vMBuWLJXF9bXaAlviwib1mnPA70HgWbpsiY6q2RWa/CqGomeP33OsR5YtXSr/+PBS+dS/4zXiAYz4HGemWlavLMgX/vuAVOKFg1nIf+DAw/L9P/DDmL7xS/KhD73XGp2g/6zlPwY5ly9bJrUYPZxK/88efwx3lr2yYjkwdfTQNBc1yM9L2d9M8Pnim6PH+jDqvcxG1bQvL8TNUv5RPAeSul25coViKhovnktO+Hz2JGNC4/JGqa4NIz+mMLPPHPAZuFXOxpU6eph3/KEI9MVjx46hP1diVK06UWle8Yfxl1bJFyDxG4UqYBZF2NzwRzFKegzksqmRmNaf1p35xb9RfItBX2nGtxhVlcDMOf5Qs/xGgf3ZhG8xqjDClbX/o0H+0TRtwQ7lPHYMusUAlMppNXA8+/gT8flsWvoKv62prKzgFSnexM8s5S9Azh6V03SrCqAyiuTNGn90hHEIcmKgrbIKck6i/6zxR/AtRi8wW1pbkI9pQypkIhr3ivs/C3xi9iDetrQ0S3lFRW78p5j/cXS/p7cf39Y0Kab2Z9KbkDIH/jWCuau9fX0YxGyRivJyaDa/+MN+of0XMNLe2wPM9hYpLwPBCr47pfg3hKdwJL7FjtdGo7NRZdjmXTpeiJLUQ6DTIjsaytVsUGKfxS2wlbjoJUPxfPazNqLtY5unYSlF/GHo4qNfr5FvPFg5qfzL60flq786ILAn01MG+j/e/4ysXrsdo9C/IB/72AdLWv+JXZeo/bn8wa+8/yeNPx7/Pf95/nf+k+SJDPjHguF/fJV3GR4xNzbG238ECmW+F9Jfo8WoEgiyVVQWnJbxjoTH+YcmOBrH98mzTPm3flXGA8BjeWDhpYx/4vkyefeXa+XbPRwlmKh/64c7fgdvTsEm97SObnFv5vp/7tRpaW3bJG99y5vkk5/6qPe/27/ZlpqcrmhsyeL+n63/efzz+O/5D1EFKayU87/LP7/7X5/CkSZH5EtyOORPjhTHlJGk02TD8qrtgh6DCJMLc95tGX80hc/wpm6tyJewaB1t3totbipF0golg38Ir+F+86fqizQ9Xv7WZSK3/soZpcvUUbrBnbg7M/0PDQ7JisZr5E0//Ub5zGc/Hsg5GgWQ97/bv/t/GpWSWJVsqPsFd5yZ/xU3lSK5/3n88fjr+cfzz3zJP0qgLR1gjaiu88KTKIYCMONYpmPJusNy/dNjer5WpdispTysqAJLrEyJNgl3cT09ihWqRSxjcdpoUraQ8B/trpBf+nydjiFH8Skz53liLZtaRT739gHoJB/985fES5d2yOt+4sfkL//q/9gllJD+S93+XH5qIMSp6IBu/0msXejx1+3f7d/93+OfDkzOIv6PI9AkbqRvuoRhkVimxsYEg4MkwbxLxNOWLM6Gsvg6cGsgrnlmmGqATSXQxOAGl/DBzYjFbQNKy9gKZ4AsBPzbH6+U932tRs7hWc+Tyb+zoyCf+vlBCp/oJGv5MakGjzxrkdfc/Eq59dYvUuMJlu6ootOyrPFLuf/Vx0rY/l1+Onbpxj/vf+9/t3/3/4Rn6EbKNZJyugkIEuPFVcs/Jv6IUHmTXq0RVsZ5zmOOjy5J477WVP6ns6fDOUEXRR8mvlFo2+aZ/B9flW7asVO01QWM//UHquQj36gR/Oj9QvkhPG8S9vwu5jyH7Tz1v3Rxu7z0h14s//APf2sdEvqFN0dXAr8U+5+hgDbO/y4/9EBbC/aGLdWL258pgrrJ0//d/tz+3P88/nj8DYlnBvknjEBHno8WsBTlM+zxDqDoac48qCPPPAcPWVNyXXxGUiFEJ60cto06JIRcn1vEstLA/7lP18lT/aBQ8YZkgvxvf+k5ecuLzl8x/dfWteL5mZvkwAN7tJfZc1yKe9P73+3f/d/jX/I0/yS8e/z3/Of53/kP4oDehZHHcUkCRGnwv6HBXkgOoTnUQR3osAf1wH0qw1TCTx4uXrhvNVgKoqHNhKd5FB1UesyD+GUhH1+iI0zGwnFaqLjA8f8Ur+X+0r14C1UiP+Sm8oL8//t1Q/KyHcPYpxKpWBzPWf+1mMLBTsW3EAGP13Pl8NUQSqT/NciUsP27/PAr7/+i+BcHVkoj/rv9u/27/y9A/qdTOMCblEmNp8PYIxnGUzXAePkkDa0TPnhGyvGsMB5KZ60YF0SoREt6vw4bsqMMKCTW6RICaSiwWgsD/zO3Vctf3FHFWwaV/5aXn5dP/Dtfr2ryf+gnh+SFW0Cer7D+6+qaZNGiRTJwpgfYC1f/pW5/Ln9pxx/vf+//Us6/bv9u/3nZvz3GDtxJv4rglAz+AxOOz3AmkeXMZV4ACR6NUcm0TqDDDsv1EE/SKmHFmlhIvMOgdCTYdiBdcxByoeJ/9ls18sU9eIMZhKzDx0d+alB2rynIc4Nl8mf/WS2/+LJzsqwOGua0jius/zVrd+gbf/be859zgh8tYCH3f6nbv8tf2vHP+9/7v5Tzv9v/wrZ/EOg4hYPE2DgwiXIZ5hrgDStkwIHnJOxYy5RUsz6rxAX7kQbqmckpYYMMGrxa3xWPmmnb2OYf29O2Fgb+Z79VLV+4k6/FHZP66kXy0Z8ZkJ1thatG/vUbrpVly5bKA/vvWJD6j7NDzKrMxkrJ/lx+uB7DjEYV73/VRQnFX7d/t3/3f49/ecZ/EOh+jBGTtmKkmaOg2FTyi3zD0kUcQQ4Td7lpJBdHOK2DZ9mQNLZtdJrdpe3xOBrT527gJB3bxmlsk+fpWhvjmSxdWPifv7NGPv+tSpV/cQ1Gnn9mUHaAPF9N8m/eeoNUV1XLIwfvXnD6V/ssYftz+Us7/nj/e/+Xcv51+3f7vxL2X3Z2qI+zNYzUpuyODBeclgeM7iaHkg2rkqzBrlmVVFlb03pKsa2Ksu9wLNJINg+2vtDwP397rXzutkrVXUP1mPwhyPP2Ng79XF3yb9/+vbimMXn00fu9/2mlE23b7V9teJxqJurIvBu6c//3+Ofx3/Of538EzZBLSpP/lJL84TF2JA9ks0iCgUckeREbmhjscNE0C1WTco4wzmxnagMT2qE98fyQfFOMUECwBYL/U3/aIEeeLYcebc7zx0ie8WKUq1H+Xbv/i5w7Nyzf+fb+BaN/M+DStT+Xn7HE+z+NsdBHCcVft3+3f/d/j39XKv6lBDpBDNFW53HAGbkE8sxBZGXMumIFjqqis8iDwxLHWHU3qY+9uM1PVBrDjxAXYQI1yff4uqhAtjkP8f/m7ir5xH9Uq6iU6dO/gGkb7YXx8l1F8t9w3Yvl9JnT8t0nH0z7J2bbeah/KrqU7c/l9/53+7dQpkE35hzuxO2rKP4utPzn8cfjT6nFn/AjQsYXkFkQV51podEHZbpfzKTSQKTxiNyXG1hsU2c8axtagMI4eq0sG3X18XXhPMUiWcYy3/H/9p4q+eS/V0EOjD1Dzl971Vl57Y3DV7X8N7zgB+XkM8/KoacPznv9l7r9ufyMIaUbf7z/vf/d/t3/I/8oNf41V/HPRqDJ+JLH0imfDYTYtpX8RmYdbzFInHnVRUtxUdwe/8k9a0DLTWq0g715jP/lvRh5/jc8ow5LLT4++tN4VN3q9AeDiZhI8VeT/C/43pdJX3+/dB56dF7rXxWPldpU2Inb4z+vLv3rvaNeIFbz2P5d/6aBaGvci9vjP7m38OKfSZ/K7PKnuvD+j4Nr/HT7d/9fWPEvmcIx3tHDnVyMjPi0B2ZYLVsHWgjyW4Yfx5lzoCJZgc6ltpnRbCLOkY5EUsvQSPHUj/mK/+V7qjHyXIm0WBae8zyA5zxz7+qX//u/7+Vy5Mgx6e56bELC9/7XO3kaaljc/uHH/DopeDqtW2lCifs/b/5LOf65/N7/bv+ly39K3f91CgenVeAts5oS7a2DTI6aHnWt5sHj5MZ6xOpaOkWZztOIQ9OhgiZae/9LPEuf/8yEgypJAubWPMW/FSPPfEU3BaqvGpOPYOR5F0aebSEJvbrl/4EXvkK6urqlq/Nx73/0Ia3e7R/+mUyroiXz8ZSwZerH/V9jF7VCW7E4hs8SjX8uf7AD738oovTyv9u/278+xo7ZICG0mhlCeqCFhFTBJ7DZCJS9rZDZI+TZJJGwtqWV4EyJhaEYJJltsWWdVU1MFJG4s3C+4X8pTNugPA18wyDI804lzxRofsj/wh98pXQd7sQI9OPzTv+lbn8uP2IGnQ9LCCG2o3vzw//mc/xz+3P7c/+zkOPxRylcScbfZApHkF5Hmshsi76U0EP8CnsUbJdTE/QPdTiizB0da8U2R5J1YTFZsuYxOx6O2HHU5evAWW3iwpv5qxn/u71l8tY/q1dZea31eM7zR97EOc8j807+F7/kJnnqqcNypPuxpBuudv2Xuv25/KUdf7z/vf9LOf+6/bv9X032nxDohOYq00Ungfzyq0nlxNhVXptQXpoxHkNHtmX9mRAw25hk+gIPsG4g1nYqCrRlHuI5aO8qxn//P9TKvzxUoSLyeqsryuRP3lL0qDo9wtX8kP8lL7tZnnzyaRBoG4G+2vVPndtSmvbn8nv/u/1TA+7/jAWlln89/nn8u9riX9nQQB/ZnvJW6x6aqVIpLeRrCumoJNL6CDo9SoqIw1pmInE/eeAdSTAJOArsax4LeFwbUnqODmJf5fi8kXj/12rkXw7yMXWqLpXkz/Cc5+3hOc/zUf6XvfxH5cknnpTuI497/8Mk2Ydcu/27/zOE0Sk8/nn8L/X85/KXNv/x/r94/5edHexLZl4Y22XyJE0knQiEl9lEmbAdM5KBY2TVmmmYbbjJ82z+oZ5JdjyKUhJpVkB9bZlthV8tatOxjSKMqwV/FNf8kX+qka8/wJHnVH4+ru5ff/P0vJb/5S//MfnOd76LHxLiMXZcrkL9q4LVSNSitAdoTWofJWB/Lj863/t/nG+6/bv/e/xDPvD4P6/5B0mhhnauuMxD/lE2NNQ7xh/Q6l2GSRE6BVKR8EIovjWQ26QwXHTuM/dRZRGPqxp4GmtYeaIcHlPFUFvY5h+b44YOU2P7KsUfHimT3/u/NfKtb5fjItO3JlKMb/7WaakAp57P8v/ID4NAP/WUHHrqoPc/OtXsm3aqVo4+L237d/m9/0s5/rv9u/27/Zcu/5uK/2MOdD80BNKQkGRzGlIIIxL2yR/9kfaSZJBq4Iu9wIRRH2X80SEX5R6hbmxTC+2w1rFNtsCWcMZViH9qqExu/miDXi8vsVj+P3vrgGzvgBR6JzB/5X/VK39CvoM50E9/9yHvf7d/vWHQ6St6wxud2T6L7b8U/F8dX4OZyz8x/nn/L/z85/Zvfh/14PGPwbB0+F/s9/h5sf4vG8QUDs0THFZl4gykkMpKlzLpPNwty5YvlSXLloZRVzvKWgyoXMcPHlF168qaHAVBWQQkbZUYqMG7u/BQPOxOxB+Vzs5uWb58uSxZsiRpm4/Ss1FfosTibPDHRoHZ1SW1DSvl9Z9oDa0TJZXttd87Ir/+yqFEO4Y8c/wCTu2CnCsbV8rihnpTVrwBIbQuKX4W8lPr1O0vvu2X5anDXfLUkw9Oon/KFJfZ4xfwHMQu2FAj5GxYDDkv2/+zx+dN3eFDXbKqsVHql9RN0/5mhs8Qcxg6XbWq0eREMzT36dv/1PHHRgvozyPStGqV1DfUaaehx3gDrQ6SB36BvtJJOZukoaFW+1Odgpi2lzn+KL6qOoznlrc2rZLaOpOTWson/pj+RyHnYdhtS3Oz1NXXQqb84k+Mv4UR021LKzBrx+s2L3ztT9hta2uT1NZSt1O3v5nqf3RkRA7BbttaW9CfkPMS+Sfa1mzlHynAVxDj29pa8dbY6kvkn+zkLwyPyOEj3dLe2io1NXxvgFntpfPf7PAL0G1ndzd022ZyTjv/Th9/BHJ2AbO9vU1qoNs840+8uvPDw/gRPDHbpboK8ypzjD9KA+D/hfPnodsjsrqjXSqr7HdRCmzdyvCnl5Gl/MPnh6XryBHpWN0hNZWViXcaZADOGP88MLuBubqjQ6oqq0zEnOPf+eFz0t19TNashm4hpy3o1ChiDvjD6M/uo8DU/sS0gthxAb24byfGH32RCivo9WGF60s6h7bIEwYGBuT22+6UlpZmueGG64qaBV0IJ2jd5Ei6wXKbFW1ljB066swNPUmRL8AfGBiU22/fIy0Irtdfvxuj1XZxcXCMrfGqs8QfOH1G/uO2++SrnS+Vp59dmrRPTOK/+oZh+c1XnzVBMsI/deq07LnzHmltg5zX7p5U/2O4gCzlf+7UGbnrrrvlQx/+mPT19sl3vn3gAv2bfq3/s8A/9fwpYO6VDgTX3bt3ofMu3f9Z4D/33PNyz933Shsc49rdO7Tfpmp/M8U/efI5YN4nq9d0yK5d29XEZ2L/08F/9pmTcu/e+2U1gutOYBYvM/W/y+E/88yzcu+998vatWtkx45t5srFwGE7S/wTirlfrrlmjWzfvjXxTw0NwGMkmbjMFr//xLNy3337ZP06w8wz/qhL4IL7+k/Ivn0PyPr118jWbVvAK7P1/8nib1//cdl//wHZuHGdbN6ySdVI3TG+5oXf19cv+/YfkE0bN8imzRstJAA09mMe+H09fbLvgYOyefN6YG4AGNEunf9mK//Rnl558MBBxdu8YQPkg2Q5x79jx3rkwQcfli1bNsr6DevVP9mpeca/IyAhDz30CDA3yYYN6winuHnGv+6jPXIQmNu2bpZ18JeJC20oa/zu7qPy8MOPyvZtm+UaYsZUNhEc+1nhH8HAwSOPPi7btm3V+EeorPlPjD/R/ziw98hjT2isXbe2A4CMBamQeeDz5vbRR5+QnTu3y1rk0Dzjj3YOBDqEgYPHHvu27AbmGmIGEdl3l8PXx9hpRZ6VPEajWEmMMWPS23dclixukNr6OsU104hQrI9WzDvHHeKIHN/Ip5M80AGsMnG5GH4vyN1SjD7X1vKuHbVwLm8OWH8cSNyfJf4Q5jz/yucr5PHemoARUCA/p2x8/GcHcFeUPX4vgvrSpZATI1xJ76lMKX7W8vcgqP/cz/8PfRPhE4/db45xif7PAv8Y+nP50mXWn0E+flys/9Nj6PgZ9v8xyLkC32LU1FSpM0zH/maGPybH0J+GiVGYWdj/VPHpnz09/bJy5TKpxsiPKZRn05xm7n883/rmQv0DEpg9snLFCqmuASZrztL/LhV/2P98Isax3l5pXAnMasQEyJYu+eDTMUhGGvGNAkdh8ow/UX72J+12Fb6tqcYIF/dn9KbSnAAALqZJREFUav9T7f/RoFtiVgEzLhfr/2AZsRo+p69/ju73wFeaoFsdbco5/mgyLBCzV5rwLUYc4TIZIUJO+PyNT0/PMVnV3CRVFXFULVVdHvijQc5VTbRb+ie+j5tm/uUVTqf/R8cK0nOsV5pbmqSiPH3c60zz/1TwC/hGgTyhGd8QVVSWW0jQi+bZ+cS/UcXsB+Yq/A7K5JyJ/dsVRh1j7xL2x2+IyBOaMIhZWQE5rWdiE7afcfylbjnA1gy7LaecCEN5x7+RYWD29elgbXl5+bTsb6b5h9/W9Pb2S0tbs5Qvom7T5XL2n07h4DmoHQmGBe1QaIeSdMVG7UUrNv+3OI3xjFhRj+Kre6bwaNP6qR2NLSQGdWo9CSsUzRX+uWGRd36pTg4cKu40XliZrGwYk8++fUAaF5uklCFKpfKwWvESFHK1y3/TTW/Qr4UeOXiPXf0c6l8vwPHnzP5d/9CA25/bX4jdpZb/3P/d/z3+zYB/8ikceltBD2LwICPUBfQPbBYDE2mRUmFMJtAREVSKIyPhjPjB8/hsPI5+8IeC6VcobBwN8jZG77bYeNjnydhMwa4c/ghGnt/z5TrZ+2T5uDssysGbvY8nL0ux0byFIv/NN71ejmJk5MEH7qL250z/pW5/Ln8IOnPk/65/17/HP4//c8U/PP7M3/iDEeh+pbpqPCS1KdtVLmujx6TC6WJ5Dmv9SsiIsh6lHlCsx4NO7EQ7I2Vo6b5R7HDSHOAX8Hi6932lRr75CL6imAT/t3/8nLxy9/kFKf/Nr34DvrrA3Md9t1nXTCL/Qu//ubY/x7dn8aiDuf2VXPx1+3f7J4Nw/wd38vg3/+LfEJ7CEZhy4MAky4EJhxIdJcYLUZJidDQHjhOurdVTUsyKxS1oM2Glo9I6nxEFbIQ1iyobHS8q0OMEK6qXIf4ffqNWvrYf89J4KXo1qfz1mDr2L+86Y9eZE/5cyv/q17xB+MOsvXv/c1L5o0YWcv/Ppf6vBvt3+YviygT/d/unBqif/OKv25/b31zmf7c/t79Z2R9f5V2GR9yMYSRWWRT0aV8pBEbJGIqFezyUbnEvUuhwlCPSrMk/HOaPfvgabJYp/2QhW4lznwMLnyv8L9xRLZ/7ViXelHih/CsaRuWr7zijL0wsllqFU03Mf/lf85o3yvMnn5c9d/1zSfa/vhAIJjxZ/1s/s+dtWYj27/KjV73/3f4nif/u/4x46eLxb+HxH4//s4//+hSO1DngMNgB58VHWkqqyD3ljbrBnbgLegwiTC7Mec9l/NEgPsObuq0e9rUO9mK7SZtaFo3Tdq4E/jv+sk724QeDXFJJbWdj86h8Ai9LqQs/Rk+uNdnQ04I65qf8FOWmV79RBgcH5Zvf/LrKolJBGVdC/8WqnKh/x0/9hH2S6CrZ0J6a9/bHfufi/X/l41+xKbn+Xf+0B11gDB5/Pf5GnkabSGJFsmGmYrvzl/9kkX+UQJs6TFP2+8DoRVARmHEs07Hk+MNBHsIp3NVFq1LtrGVJMa3AkpAoUd/IdFE9PYoVqkUs82JtNCnLCn8Pfiz4HjxxI7nOBL9MltWNymd+YUBaluuFLkj5o/5fDQLNB9H/279+1TRwhfQf8S/U/5Xpf8c3L3X9W0yK7n+l4o/bn9sfc5n7n/tfpE8agzz/JlwvT/6XZfwdR6BxL6EEWDuTPYsOjWXq7OxgFmPFu1Q8mjDcrVoZXvWGCqxZvHA/TPXApo5Ua8NsCUv44GbE4rYBpWVshU2z+mzwH+sul//2ufDGv4jDTyzVFWPyRz87JDs7Crnhz7X8xfg3g0DTYv/p63+n8l8J/RfjK+gV7n/Hp2kHR2QHuP7VDLly+1/48d/93/3f45/HfyWRDPqzzX8Tf0SoBFXZKtoOeuY85vjoNgYgw9Waiq+zp8M5drR4baMNRqFtm2fyf8K3i87VVnPCP/JMmbz9Mw0ycP5CfEL+7mvPyst2DutNAS9woclPgqCj+EH/r7n5DVJRVSlf+9rfmEJCOW+OSkH+K21/E/Xv+OZj5PMaENz+VA3ufx5/PP5abCDfWCj8w+P/eP6xEPJfGIFm11I4W4rymUYye9RQOoqsP7whqcaGGXfxGdyOQ9MTt0mPgRMJuT0MGmX54z97ZpHc8rk6OXayyCGL8N/20rPylheBWevVJPkce9RM0dOsE5Hml/z2zcB4/d98809KfUOd3PrlL6qUFI0LP1nTloUrf3gYOcTM3/4m07/jhx8uu/7d/6ABjz8WcT3+ev7x/Bvoh0bGq5h/DQ3iRSoMXfbdFiyX2+QUKOY2N3VdbNRWwE6Ox3jURmxDUiw6qPSEB/HLQr7WVEdYEpIdKuaIfxa8+Je/WC9P9OJFKQk+cHnxmMJw83Uj8u4fGzIBF6D8F9P/TTe/UVasWCp/9ZefhS6gD3ZFCcmvhqiT+GEILr/3v9u/+7/HP8uLCyj/Xyz/efxH3vP8Zyx2pvlfp3CgCcueZJS22Ig0yTCeqgHGW8bAQoYVPlgr9TErjIfsXO5ZdY5d4/2FHK8Gh7aj+sQOZWxaDStmLzuHJVnhc572u79ci7cMVpCyX4D/gvUF+YOfHpQKfp+QAz4lmkv5L4V/802vk5bWZvncn39CNV5q8jOwpkvp9b/L7/3v9h814P7v8T97/nGp/Ovxd/7HX3uMHeTQaRVKcUGW0evxGc4ksvxyjQSYDkYyqGRaJ7Aw+KBcD/EkrRJWrImFxDsMStOYWGXiwpugvPA/+LVa+eeH8Tw6vdMaj8zH1f3pzw3icXVhWskClP9S+n8VXuW9dk2HfOpTf5Sb/i+FH3sjz/53/Ln1P9e/638u47/bn9uf2x8yLTmWfcS0m3x6/p05/wSBjlM4SIwjweWIM0ee4xxF6prUl13AJZBq1meVuGgnhZFmlCln1VPCudwGr+YDvG3GG8u54AD/2F7YzwL/zZ+sl0Mnogz4JEAR/lffcVoaFxMxH/y5lv9y+K961etk0+YN8id//Ae56P9y+LG3S1X/Lr95u/d/acYft3+3f033JZp/3f7nv/2DQPdjjJiCgNTqj/vCgDFiOksXcQQ5TBzmppFcHOG0Dp5lQ9LYttFpOoS2p9M+jCiTMHP6RiTIPM+SJtpBo3ngf+uxSvndv6+BDHad9iZEk4n4H3/LkFx3zUhu+KofMEjFnwP5p4L/yle9Vnbt3Ckf/cj7oJGF1f9Tkd8MMh/7c3z6+9Vt/97/+cVft3+3f/d/j39XM//JIv6XnR3q42wN0EzlUGGDO1g4hMj5HNzE/0nr6FFWQMBABVJlrakn8Axu8APbeEuhtRJawwcHubPGf6irQv7nF+ukQMwJ+FUVZfKxnxmQa9fgWnLCn2v5p4r/ile8Vr7ne2+Q9//e70zet/O0/6cqf6n3v8ufT/xx+9NEADVcGH9VNxqTrU4e8d/17/o3E3P7m8h/3P+iTWQTf8Jj7MgzySY5GpeoHFu2rcTYDhtp1yNpV4T7LKutDUxoh9fK8/GfAClGKGB7GeEf6l8kv/SFxXLmLK8qLAGfL+5+3xuG5CXbRsKx7PFNuLmTfzr4P/KKH5cX/sD3yXvf+67M9D8d/GBd1kkZ9b/jQ536rY5pV5V7Bf3P9e/6d/ubH/Hf429p53/v/9n3f0qgE1Ybsm2cOswMDBwl0UkdArMCRnFJurkbljjGrLtJfezFbX5y8Bc/QlyECdQJzY3HWZFkagb4B7vK5ZYv2Cu6L8BHwa/ddE5e+wI80y4nfGLOpfzTxX/FD/+E/NAPvVje9a53pP0zC/1PFz/r/nf8+WV/3v/Zxj+3f7f/+ZR/3P/d/7Pkf3MR/8KPCMmf0JkgrjrTgleCRecwjfshIQvxn4SaHyTO3MBimzbjOJk5wXqBDyvL1u1AuLmN/8TgMlv8w/ix4Js/SfKMGdVoVy+oCP8tP3hO3vbSc7jmfPDnWv6Z4H/p774i27Zslmt375i1/meCn2X/Oz59aO78z/Xv+nf7c/+7WP7NO/97/PH4Mxfxx0agyWSSx9Ipnw2E2LbV+JXtYD/e4kaSGqrwo7gobo//5J41oOVm9cakZ4F/aqhMbv5Iwzh8uyx1Z3n1jcPyrpvPKr3IA9+w5k5+x4+9bfdN3Btvd3E/H/tz/bv+i22ueHu8Hbr9efzNPv95/PH4Uxxzirc9/hgnMD1kH3+TKRzjFR3upKNn4lOfoMHh5EBDbegd+xzRxY8DeYYuHFHmtA6UxDLbYokRGdaz0Uc9Q1czxT97vkx+5PfrEywDIX56Tbf9zikpxzXlgT/X8jv+3Nqf69/1P5fxz+3P7c/tL831+rX4FeQf7n+l7X86hYPTGvCWbSWY9tZBUs1IdgMV5XFyYz1idRPSS2Jtz7MLR/lB+sw5PnHImrwaVJqEW49GOmtlM8EfKYi89ANLdJqIXtw4dE6jLpN/ffcpqcV7VLhkjT/X8jt+sMM5sj/Xv+tfo5jb35zEf/c/9z/3P/IaeMIc8C/3P+iej7Ejc9YVqa1apK5wlLTTtvkEOpJrfgWnFJhVeQgLS8Nm2AukOR7QT9thPf19IDY4Ck3izJOni1/AOT/4e4txcsQPDYWruW5tQT76piGprkBFPWTHsZcJPtucS/kd3/Xv9qfuHzzets3Z848/7n/uf+5/7n/UQGQeqTY8/qhWomL003YWGv9KpnBY50PsIGzRlyJ6iFM4RsF2dSIEtnUkWR+/QerLEWx8khFziVpSO7Lj4YgdR12+DpzVJi5TwefN1oveF0aelXoTH1cc8He0F+RjPzskdUqes8fnhc+l/I7v+nf741eHjCBXPv64/7n/uf+5/3n88fibEOiEZirThWJAUvnVgHJS7CqvZubQheQXj6Ej20VRLA0H8THJ9A0eZN306XfY5ZlGraeKzzNeDPIc8eMoAJvnsq1tVF+UsriG1xjuBFEexZotvoKgtYhPEXhN45f85Dccx3f9z43/uf1RA+5/7n/uf3OR/z3+ePy5muJv2dAApnCAXZJgGhFkaNRJGlrI1xTSUUik9a5bj1pd5c+BPfIjeXQzGyMBR4ERXEs4XBsSPrDoXiiaCv5woUxe9v70aRsT8be1kjwPyuI6NJoD/lzL7/j2DUi0lYn9n7f9uf5d/4xhbn9zE//d/9z/3P88/lxN8bfs7GAf45ItynbppEZ4Q5gE5x2Tw4c6ZfnyFbJs6VKlvqTZyqrjuSi182zUV3kxv2IdRSmJNBEApC0TJ/xqUJUR2yjCH8U8jcOdnbICmEuXLZGTZ0R+9A8XKwZbs/YUlC3r8o3fGAB5xi8LFQXraeKPjQLzcLc0rlwhi5dwfjVRcHF6kbZNCQwf+1Qcd8MyE/l5h3Gos0tWAnPJ4ga0xFYm6h/FRbqZLf4o5ezqgpwrgblYxVARijBMw9nJP0o5n+6SplUrpaGh/rL9nwU+76IOPQXM5kZpoG6nYX8zxS+MjqgNrWpaJYsX183Y/qeDr/15uEuaVzVJ/eJatSHtuWnaf7GNXQ6/MFqQQ4e6pKUZmOxPRaXdZuP/k+GP4mb+MDCbW4BZDzkz8D/15ujDk9h/ocA41CWtwKyrq1ffnK3/8Xn7l4p/o8A8dLhTWlsNE6CANF/MOv5E+QuFgsb41tZWqa+rCxE2O/9nSxP9r4BfgXfCblvaWqBb9mcq42T9H2PjbPRfGBmGf3ZKW3u71NbWmGov0f8a4Gepf8YExviONmDWVENMyHmZ/Ddb+YdHRqSzq1M6WoFZVxPyZcgsOeGPDCP2IWd3dHRINeScbv6dSf8Poz87O7tldUe71NRQzvziT7S/4eHzGhNWBzlp2lxMu/ngnz93Trq6jsraNaulqqrS/DPn+Hf+vGGuWdshVZWVQUJ1htzwz58flm7IuXpNu8qZhf9djn+ehW67jxyVNWsoZ1XoR8Yii0eXir9lQ0O9Y5xTrKPMtAKepAEFKxIOONvA2QG57Zt3SROSyI03XmeOgWPsv0U4bvdEPM0AWR6b0WN0WC3AAf5h184BMPYnwx8YGJTbb7tbE3RVy/Vyy5834By2g1NC+xF/CWLvX9wyICsbgvGG4/ZBgKnhnz4zIHfcsUda25rl+uuvw3kmP9+ayG1DJ37YR9Ozlf/0aWLeJR3trXLtdbuDnlTK3PBPPX9a9uzZK21IXNddv3NS/VvHZCf/888/L3fdfa+0r26T63YBU43s4v2fBf7zzxHzPgT0Ntm9a7sZDvpsKvY3U/xnTz4v99xzHwJAh+zeud3knKL9mX1hTcNVx5ia/p959jnZu/d+BNcO2UlMnh+aman/XQ7/mRMnZe+9+2Qdguv2HdCtXjElsLiQB/7xE8/Iffftl3XrVsv2bdtyjT9R/uP9J+T+/ZTzGtm6fYvJmaH/azfDDYrj7/ETwLz/gKxftw4vOtqkb23NK/5E/BPHgbnvgGzYcI1s2bpJ+5GY+jKtnOJfX1+f7N9PzPWylXKqdqdv/xZL1PIua3+9wHxg/0OyadNG/F9n3TxB/9RJ7P8s5O851iMHDjwkmyHjxk3rc40/qgVc/7GjPfLQgw8r5ob1kFMdEgf4BxXnEX+PHT0qDz70qGzZtkk2wHYBZTg5xr9j3UfloYOPytZtm4G5Vvst7/h35MgRefjgYxoPNlyzJuhSNZ8bflfnUXn4kcdk+/atGv80HkDBs+Uf7KTJ+Bel6ew8Io8+/Jjs2LUVuYVy2pIl/5mIzxuwxx57Anlsh6xZvTrX+GPTFESefrpTvv34d2Tnrh2yGvxEDVcv7PLxD3Og+8FLoZokSNpJqip6ABd89veewChevY4UkEpiYgfK6Ymojyr80WGoqmV0ndimVrDDWsc22QJbYg+mdbkf307Y298v7/naWvlufwXKiGIU2rawBv6m5jH54zcPSkMtoiAWHuM1zRS/t++4LMVoZW0tWLk2Zo2Ox89W/t7ePoyyL8boRK3qI8qfJ35vb78sx8h+DTAvpv+s8SnnsmVLMTpRo/1zuf7PAr+3p1+WLV8mNdXVwLRlqvY3U3xiLl8OOfn8RNpiMMf88MfkaE+frFgR5JyF/Rf736XkHwVGb18vviFaCd1W5eL/E/F5p98DG2pcuVwqq2BDOccf4nO0kKSrccXKMPLD7szW/yf6n+AbIvrnysblwIQN0YRCn9J288Afw4+wabcrGxulqqLCTJV2yyUnfHbfMWCualwhldXAhIxTtb+Z5h9+W9MD3a5atUKqMdp0qfxDuXWZpfz8NpW6XbWqUSorK4DJ5fL5bzb4o/iGiPmzCZgVwAygATkffOq2D/7ZhG/CKirKZ53/pyL/KB7HRczGJsgJu9Uuyzn+jUG3Pb3H8c3mKqkoN8w8+E+x/KMj0C3iUBO+8aso5+OB8+df/Jaxr69fv/GrWMSYEPlXfvFvBN++9aM/myFnOW2Iyyz9T/VoTqfNTfS/Ar6t6TsOzKZmWcT+1Bs+w9UTLoFfNogpHGp0cUJpSErjPI5XQFR+oJ7d9WjToTgeTEHZZrRjNjkKgr5IAyTrWH1eaHgoHsrYOMoD/sA5kQ/+Q43c8QQ7bnL8jhVj8um3DsjSOpLntA52uDcrfJzNZsKStn2l5Hd813+0vmLbdvu7MvHH/c/9z/0vasDz35XmPx5/5kf8wQh0L66Ud/5Ycyv4Cl3HSCiOgdjynocHIzm347gTCSdoXRZOWFge6K0eUX7MlhUMRdrgePyn+xfJb99aJ0eeRXnANPxQHafx5uQff+005jyzjXCtijB+NRN86oKLyqT4V1Z+x3f9u/25/3n8QWj3+HvF86/nH88/nn+mln/0MXYaqOk1+FZAmbTZj67tGA4GosxRZZaF5nXLVjyAemxHT7JSDvZjzAg7+JIDbbDKxEWrsxzVbnukQj7w/2rl7HmrZcdwcAL+P//mgDTU2LSNpGYG+HMtv+OPt46L9f84I9NTUNP7f9b+5/bn9lesAfc/uJR+MwpNIA3lnf/c/4qtL0R51/8F/Mfzn0amImOZm/yfTuHgpYRr4KYFjVBohxLf5qVzzg9nP08Ug2fEinqULzgpqqf1lehgC46hpJqnIDj9+e3V8hd3ct4o90ma2ZiuinDK5BvvPK1znrPEJxJBIsG/OL5dUZSKV4crHb+EgunIrw04vus/2I7b38X83/2PMcfjT7b5x+MvNOD5x/OP5x8NBVPOv3wKh95W8zQqj9FZF9A/sEk8OSotUiqMyRSR3OpnckI8Uc/js/E4+swfiqVTOFgXDfI2Xke72fiYPDewSF7zUT5mzA5Ziyn+Z942KCdOlclX9lXKB99wTmqr0KI2xfOtdgKODV73dPDnWn7HD32I7kyNLe3/tIft24ys7c/17/rX+OH25/6XBBuPP1cq/3v89fg7X+MvRqD7leqSvIaZFkkQZbfafT6pcLpYnsFap2QYUdajdoLWTXitnmhnKEM25ovqVrnv+XJ5/R/jObKsYjM9xuH/r9eek1fsOp8bvlF8gF8EP2/5Hd+exeH6n9z+3f5AZGAcdM+4cJtlWcQf9z/3P7Ulj/+T5l+PPx5/PP5eIv8M4SkcCacNiWlcAQ9yXgNeiJLUA9HVIq0fVhyNTirQ6IyT4mPcwkvRZ55iEPmp/jJ559/Uy/EzqI3Tb1xXkAcO8eeCdvZn3z4oW/B2wbzwtV1iFV2sGUtRgR7PR37HDzZTpG7XPz2kSCFuf+7/OcVfjz8efzT5FYUbj78efz3/FDnE5fIvX+VdhkfMjY3pnIpAJosbMP4bQg124hbrxMkZMRDZ3RqrcJYGXwNexlFqFCj/ZiEvCGT7QFeF/BaetHFmcEzaVozKh3/qrJwfEfmFz+CxGqj3gTcOyou3oiAsERUHrQ22Mwt8nXsd7gLmQn7Hh124/tWE3f6ufPxx/3P/8/iDXMrxqTnI/+5/7n8Lwf/0KRyRkipXxQ6nX/A+zNi0rbmnnFU3tGbYBT0GESIX4rzjMv5oEJ/hTaVakS8B0DrYY7v3PFkp7/07PGkD/JgjzB/+qUG8RdAafg6j0TX4HWEN5zkrQhEsOXMG+GyxuCk2yX1dsJO3/I7v+nf7S13Z/c/jj8dfzz+ef6EB5x/zin8pgQ6uq1Hcfh8YexFhDcw4lpH22A+4WG5BX2dusAGtSnpcRI5QpifzIDfx/87HK+S9X6mVQkHkezBl4/0/OST1VTyCBdUilmlRG03KssBXok/CX3ydhu74rv/E1tz+aAzuf1nHP48/NCuPv55/iniC51/TgOffeZd/xxFoTrVgaNOFnJb5M5SxlPlUi7HiKC3e3BnuFvDJA+F14Hp+suKZNpr8J/9WI3+/t1IxfmDLsLzv9UNSFd7WyOoRS0/NAV/lQbsqo14wkIgTFsfPt/9d/+Ynbn+ICe5/FnU8/sTw6/EfySjP/Ovx1+Mvw67nnwzzz8QfETKekxyTWIYBKOyDWtrQcFHe05qsZk+kC+ck0TDZYHeVyZ4nK+Tdf1uj2+14Bfdf3HJGqjDtmhh0bG0ofOSBbxTeroXXrNeNleO7/t3+3P88/sAGghl4/DVFZJn/PP8wzXv+JRdy/rFw+FcYgR439lrMJzSS2KOeLAToQWwqqcbIspHrIgacVgjsdFT2HaqUd/1tHX4kaKbzzd8+I5XlSmFjyIZR6X0R9sfxaT0+W3y9I1CmbPjJDYFRf0V0fNc/rZhLsTXT1d3+ip7mTuVM0//d/6A0jz8wHI+/1IHnnzAg5/k3+ES+/Mvjb47xd2gQL1IhZbCxfQv0TJK6zw0jFPxk+CteuG81WAqioc2Ep3mEgwe7y+Wdf10rg+fK5Pu2jMr7Xz8oVRWsr1kYp4WKOeETSc2TF4dfNo4FWMd3/VtgcftTL3b/swCnQYxBA3ahpDeNcbSU4iVYTiiaPP7xoMcf6Mbjr+cfz7/OPxYa/9IpHJoCLkgHCPwkw3iqBr7T45M0NMOED56S5hgrjIc4ZsevKp7qWyS//MUGOXV2TF6AHwz+Pp62UVNpR/WJHeMoefb4eo1Yoc8gCR6lR4lw0bw6x49fJlFLXFz/KVWiNmgls7N/apU+4fbn/ufxx+Ov5x/Pv84/Fhb/ssfYgTslUzKQ8jkHLj7DmeIalTCCRTKgZFp/MEiKgHI9xJN4kGVl8siRMrnlc/ZM551rRuVjbxqUOjxtg1UmLjq9GqAWYrPBN9oCJB354KddmuNP1D5UQ924/t3+9BbT/S+L+Ofxh5kCi8df3j16/vH8q9TI+YdGhXGr+cw/QKDjFA6QKPSudTCSKOY64A0r5vkqLo8oO9YyJdWszypxwT5p8Olzi+SmDzckszO+8RunZTG4tJ6OuMoHaPP8iKYHsJsVvt7ps/XkksMGIR3f9e/25/7n8cfjb8h2nn+YfD3/Ov+IjGx2/K+U+BcIdD/GCEgwQWo5ColNpc1wKJYu4ghCmDjMTTMyHEFd7OohFnKPYw54+aD81pdq5W48dYPt/vkvDsrm1oKNbeEY2+R5utbGeCZLs8G3ltEerw/C6JUBh51q1+74rn+3P/e/GMw8/nj89fzj+df5Rxb8r9T4V9nZoT7O1jBSyzhi7Ip6gE8ZEdVNrPTQxDo8yAXsml99fuZbVfLFO6ulDnOdP/HWQdnYjDemhOOCtxRaK6ERNg+2niU+qbJiKASvmBv8wLbjQxFRJ/h0/bv9uf95/GEc0BgZwgO3ucwg/nv89fzj+ddyqxIi5x8hlkAnC5B/hcfYpcGSgTRQThWc2yTGMZbGUVwejHXDOC9Gncvl3V+2ec8feMOgvGgr3tUdKur52lh6niGxFSwBILZphaHGFPG1tjbAUSU7V9uJ5zu+Kj/VTVAIleT6V0NPdaOWo74wVft3+4M9qQLd/8bZEXY8/sE0PP56/IUvpL7h+ce04fl3vvKPlEAnVh2ivc7jMBKhI5UsTurQ8FkBd9s6VUKEj6v7pc/Xo2RMfu7F5+VtLzlX7CnpNtvAaWP4EeIiTKAm+dYlaZtAKJsmvjWiTauDjm8Te7F9x3f9u/25/3n88fjr+cfzr/MPo06RH5EoOf+aMv8MPyIkvwSZheJ0pkNgozqHeNwPCVMiqvoON5DDmKXx0g8sRhs2F/q2955W/kvbjKN3OvygfYPRqXCeYrGztNmZ4/N8a9LwE6Lv+K7/EA/c/ugMjI3ufx5/NOBarPf4y/Qxq/zH8z3/UIeef/ndm/OP4BAlwL9sBJo9njyWjuEgBgTbVvLBOviLU4x1m1EDyx//a438/b2VWvTlXxmQ1mX8yV7ahgUX7qcN6PHkAPZmga8XgVXE5H7cHv/JPZujpuWOHxQFbbj+zWBpPFiiaeiOzluCjlLzSQ1MK9hKbSrsx+3xn2kDWh5BZul/8RIiFvfj9vhP7rn9UzuqF9d/MBRow/3f/Z/+EJboGrrr8Q+2AR9Jw2caYKPC8KkxJezH7fGfaQNaHpXs8X/exp9kCsf4jg53ksXGgc7mrzQZZWxtvb/niUr57VurpaKiTD7x84OytQXznjmtA/WsJs9I2+O5XNQe2URYZorPhsowOT1i6dcPju/6D1ZH83L7c/+ziGRJTm0CAUdHoj3+qAY8/jJORBKU+kswjzCGZFqydajt+cfzr/OPkuVfOoWDX+viLZsaQOytg8ZsGSgYUpSe8jiKrczqnjxTJm/+NN40OFQmv/6qQfnx7wk/GtTzGITs/VvxLH3+MwMOjpPUJOFqhvjWDlrReSI2sqbQjq8adv27/SVPRaC3gTHaGzjd/zz+ePz1/BMyseffGfEf5x/GA0uZf+lj7Mhlk4SicTUEV1pIILp8AomNQOsTlTX2vPB/L2YFeeHmEfnQfx3SbQtKgcwmFoZDcNKIor8PJCaKSNxnih+m7wVCHuB1z/G1H1z/altmIG5/7n8W5Tz+wBI8/nr+8fzr/MP516z4ZzKFI6GfqtAw6hwK+ePCzkOdsnTlClm+bIkC3ompG791a62y36+844w0LcE4tZJkLQIzxqfyWCYtG3UOzYHboQR1SdMnLjZLpEwKeHnLYWCuWLFcli1bql+hjYJt61kM/jifI2q8GB3rDqNr2h6LZ4BPOQ8fJuZKWbKUP4pMF0LlgU/MQ5BzJXS7dOkSyARMyFY0KUUvIkt8jkoeerpTGhsbZckSuwmKkuaFz4z99NOHZdUqYC5tuGz/ZyH/6AjkPAzMpiZZsrghijgl+5sp/uio6bappUkW19cr1kzsfzr4BTxI/fDhQ9Lc1CwNDZBzhvZPBU21/wsF2u0haWlplvqGeiQi+GGG/j+Z/MMaEw5LSzMw62FDdIoM/X8y+QuFgvpnW0uL1C6uzzX+RPwC7PapQ4elrbUFcvIVrmpGucQfbRyrRM42YNbZ05Tyjn/DIyPwz05pb2uTujrmkqnb30zj/wgxOw/L6rZ2qak1TAUOq6na/3Twh0cKmlc62tuklpiw28vlv8nsfzr5Z7gwLIef7pKO1W0qZ3Ff5oV//vwI5OyS1R3QbV3NrPL/VOUfHj4PG+qWtWvapboamFxyjn/nz52HnEdk7VpiVmXGP3jpF7O/YWAe6gYm5ayqzoX/TMQfPn9eOju7Zc2a1VJTVZVr/CE2l/PnzklX11FZvbYDclZZIdYM9dOx/+nwv3OKyf5crf05Hf6VEOiE5qqn8WrZmfaL0oGBQbn9tj3S3NwkN954rYwUyuRnPlUvx04ukve9bkhesr146gZlVkqLdRgJpgKs2F79rW1b6gtHUDfQjFDxzOkBufOOu6UZSeSG63fr+axji82wXkRrQ1EsDQfxMTP8M2cGgXmXtCKJXH/trkR+AvCy8sA/HeRsbQfmdbtTRRXpP2v8U8+dkT133S3twLz2WmAG2fQ2J3ZUxvinnj8ld+3ZK+0IALt37tBAYfpUQNVt1vgnnzspd999H5JIu1y7a4fZSrixMtOh5WSLf/Lkc3LPPffK6jVrZNfOrUn7Ua14clbwrWhPs8d/5tmTsnfv/bIGAWDnjm3amxdM30Ep7Sgr/BPPPCP337cfwXWN7NhBOYuXmfnf5fr/+DPPyn333i/XXLNWtm3fAtIO3VGmYmjdzg6/XzH3yfp1wNy2OSDlE3+i/MePn4Cc+2XjhnWyhZgQkFaSR/yJ9t/X3y/79j1omFs3jov/eeH39vXJ/v0PycaN62XT5g2QEVKqO0DgjONPbLYHcj4AOTcDb+Om9dCqHlHd5oXf09MrDx44KJs3bZQNm4E5hfw3W/l7jvXLgQcflC1bNsmGDesTtWbl/7TFif539GiPPPTQw7IV9rNh/QbUgKBBv1H/WeMf6T4mDx18RH1z3bprgMclO//XMYEJ/tcNzIMPP6Jxb93atUCbuGSP3w3y/PDDj8r27Vs1/k2m//QqssFXzEcflx3bt8k1yC15xh+2Tf/r7OqSR4G5c/t2JbST6Z82laX8HDR99LEnZPeuncjb7Wo/U/W/sqGBPl45/4IhRFFQgEK+ppCO0o+gzlGfOtxZvvOv62TvU+Wyc3VBPoUfDnKhEZEbqDGxMQYJFGDgEYsJzLUhsczq6iDSRfCJ2YBRvHqMTlCRetePNti8tqRl2pTuZ4Hf339cFmNUtrYGd7NsP8ifJ37/8eOyFJjVxIQkZkrYzBG/r++EjrLXVlcrTtRpnvj9ff36bUI1MVVSQAeTyAu/t5eYy6QKIwXTtb+Z6p9kZNmSZRj5wejELOx/Ovg90G3j8mVSybt2KjMD/7s0/pj09R2X5cCsAibFzML/LmV/GNyXfpCulfhWinIqf1b98qx88EcLo3IcMWF54wqprDAbiraaFz5CDuTsl5XArCiv0PibZ/xRe4Gh9hJz5XKpqKScWLDKM/6NArMf/kk5qyortQ8v1f9ZxH/6I+Vc1bhSyisqco8/xOP/nt4+aVqF/qyopGZ1QXFu+Pz2jXmlEXIS07KKIgZ085ks46/AQXsRE1Y1AXMRdDvL/D8V+yvAPxmHVjU1SmV5udlQzvFvTOXsx4DiKlm0qDzpyzzjH7+R7+09jm8ZGxETTM684k/kH4XRgvTBP1swcLqoApgIQsyheca/QmFE+vpPGGY5fsN0BfgX5TwOzCbtT5NwqvGv7OxgH/ViCz0d6jE1cTs4nGrMtkdHy+Ql72/QIx/GvOfvx/znuNh5dteptXXcHaV0JFYKHcBpC8gKWqhNTwOfGDyR/5RVx3NR6vjsfNc/LcHtD1pw/8ONhMcfj7+aajRfMDJ4/vH86/wDxAlmoGwqcqgp8D/nX6oxRhGLJ0NDvWO4ubFRDpLcqFWqloQXSuVbA7mNtew/VC7v+Ks6+b6NI/Lhnx7C40PZlPVAoC3Ka2Mzekw7hr2Fevxjc3oOgAkzDXxeoRIDXg/OdXzXv9sfHIF+oR5qfuH+p6HF4ozHH1iHx1/PP0y++PP8a3FBv6Zz/uH8a+r8V/OsOpDlWcyB7gcDg0clJNlIMysqxw2f/NEDg/Bv/E2d3PvdcvnAG8/Ki7YNo8juSTjpP1TVMtaNbWo7dljr2CamhmjKR7vTwOe5JAo82yKB47NnXP9mVdRFcgcXbNrtjzqhYmxx/6MePP54/GUm8fzj+RcRcYr8h7HT+Yfzr8g/ywYxhUNJR5xQE9j1uIyrQUYtR269r1r+9F+qpGPlqPzlLQOYA2QGxbUmaW1M9xIewyZHYaCLgKTJmwWoz9Ht8FA87IZAdhl8PkrPRp3RBJZo0I7v+nf7g0O4/2lcoBrCPb/eZ3v88fjr+cfzr/MP5gjnX0yUWfBPfZEKG1OVYqU8VlMQS5mEcAxEl6+k4EEOFu/5doXg91HyPeuG9bgeYt1wXvEH27BZuVaq/Jgtc0MBeNb08GP7PEufTR2bigeKPh3f9e/2Z65Gt3D/Y5zy+OPxNyYNzz+ef51/qBfQJRAauc1F6dkk/M+OmtWUOv/Sx9ipoqi15GekUUVBiWTNQbMc1WH9cCStGJMS29EG7RAH+/lILZ1kgDb05qfoLG46PozW9e/25/6XRu8QIyw2ePzx+AtLgBl4/vH8y5gwjmTEfRsdGHfI+Yfzrzz5ZzqFI9hkJLj6S2W11AvNlSX2oHObf0zuN24JBXo0vCee57BYP9XQsQXWyDsYlumCDcc3Vbj+YS1qGGYdXEc747bbHwOj+1+xXZjnpIbi8Qfa8firQzjRTvTT84/diXj+df7h/Gt2/JNP4dDbemafyHA1EyH9INDwmaQMOrbY3UxC7uLIdDwcPnken43Huz/+UCX9Cj2EMQ4j6GgbG8d/7nNx/CJlu/7d/tz/PP4UhQQESH1BjsZdxkvGzzQ6awzFyuOv5x/Pv84/nH/lzz8xAt2vVFfJq820SCK20V2O47Ar0sV4rgVveyVpOGonaN0krushOyNlyOm+iYh9Fjn+uAnLrn+ahduf+5/HH4bHuFj0xJqjR2GgQo95/NU8ovqhLrio4kxjthOUhLjCfc8/9iwW1ZPnX8+/6Whn8BDPv5fMv0N4CkfQlMYbqxyDDIuwzVFivJAgqQdH0yI7GsrHB6niFrThsNKQhcDPZw9qI9o+tjXQsSnWKD7b8V3/bn/ufx5/krDo8dfzD0MiUyjzqqZLz79BEaoQVQl1M2Fx/oFbRudf2fFPvsq7DI+YG9OX1MMJ1fIuNL/onuldPOtEFw5HOSJCJsw/HOZrGMtCmfJvnarBA8BjeWDhju/6d/vj8A8cR11PV+NCf/Awq6OVWMf9rzhp6oisxx81I4+/nn88/zr/cP5lnDQv/qlP4UiTc8jh5LhMRJqo0xRlyR3FYbE0D8oMIkwurO9K549WEL3Dm7q1pn7NyDrYi+3atjWUImkF5sGkHmskdZMNO892Hd/17/bn/ufxx+MvB2U8/3j+df7h/IscMvBE8FHlSNjNmn8qgQ44ylTt9ymAVhYLiorMHMuUy8cfrvAQLyi5Slbl5bFWuPikAjesTBO9kumienoUK1SLWI5PZeC/6z+xCbc/BAL3P/gE/UL/PP54/LXsoaHS84/n3yJeAZuwAMEN5x8MFc6/SKvMS9Q81DLCCgXT5Z//HxtymOSSsvPkAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Orthogonal projection and least-squares approximation\n", + "\n", + "If $A$ is a \"tall\" $m \\times n$ matrix ($m > n$), then $Ax=b$ in general has **no solution**: it is an [overdetermined system](https://en.wikipedia.org/wiki/Overdetermined_system) of equations (more equations than unknowns $x$). But that doesn't mean we give up!\n", + "\n", + "Instead, we often want to find the **closest thing to a solution**, an **approximate solution** $\\hat{x}$ that **minimizes the error** $\\Vert b - Ax \\Vert$ over all possible $x$.\n", + "\n", + "This is called the [least-squares](https://en.wikipedia.org/wiki/Least_squares) approximation because minimizing $\\Vert b - Ax \\Vert$ (≥ 0) is equivalent to minimizing\n", + "$$\n", + "\\Vert b - Ax \\Vert^2 = (b - Ax)^T (b - Ax) = \\sum_{i=1}^m [b_i - (Ax)_i]^2\n", + "$$\n", + "which is the [sum of the squares of the errors](https://en.wikipedia.org/wiki/Residual_sum_of_squares) in each component of $Ax$.\n", + "\n", + "![image-2.png](attachment:image-2.png)\n", + "\n", + "Since $Ax$ for any $x$ is *any element of C(A)*, this is equivalent to finding the **closest vector in C(A) to b**, which is exactly **orthogonal projection onto C(A)**. That is, the least-square solution $\\hat{x}$ exactly corresponds to the orthogonal projection $\\boxed{p = A\\hat{x} = Pb}$, which means that $\\hat{x}$ solves the [normal equations](https://mathworld.wolfram.com/NormalEquation.html):\n", + "$$\n", + "A^T A \\hat{x} = A^T b\n", + "$$\n", + "(which are *always* solvable).\n", + "\n", + "*Common confusion*: $\\hat{x}$ is *not* the orthogonal projection of $b$, it is the *coefficients* of the orthogonal projection in the basis of the columns of $A$. The orthogonal projection $p$ is $A\\hat{x}$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example:\n", + "\n", + "For example, here is a $3\\times 2$ matrix $A$ whose column space is the plane spanned by (1,3,1) and (-1,2,4):" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×2 Matrix{Int64}:\n", + " 1 -1\n", + " 3 2\n", + " 1 4" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [1 -1\n", + " 3 2\n", + " 1 4]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we pick an arbitrary point $b$, it is unlikely to be in the column space. e.g. consider $b = (1,2,3)$.\n", + "\n", + "We can check that it's not in $C(A)$ in various ways, e.g. by doing elimination on the augmented matrix $\\begin{pmatrix} A & b \\end{pmatrix}$:\n", + "$$\n", + "\\left(\\begin{array}{r|r} A & b \\end{array}\\right) = \\left(\\begin{array}{rr|r}\n", + "\\boxed{1} & -1 & 1 \\\\\n", + "3 & 2 & 2 \\\\\n", + "1 & 4 & 3\n", + "\\end{array}\\right) \\to \\left(\\begin{array}{rr|r}\n", + "\\boxed{1} & -1 & 1 \\\\\n", + " & \\boxed{5} & -1 \\\\\n", + " & 5 & 2\n", + "\\end{array}\\right) \\to \\left(\\begin{array}{rr|r}\n", + "\\boxed{1} & -1 & 1 \\\\\n", + " & \\boxed{5} & -1 \\\\\n", + " & 0 & {\\color{red} 3}\n", + "\\end{array}\\right) = \\left(\\begin{array}{r|r} U & c \\end{array}\\right)\n", + "$$\n", + "Recall that since elimination $A \\to U$ produced a row of zeros but $b \\to c$ is nonzero in that row, then $Ux=c$ cannot be solvable: $b$ is *not* in $C(A)$. Not surprising! *Most* $b \\in \\mathbb{R}^3$ do not lie in the 2d plane $C(A)$!\n", + "\n", + "But we can still solve the normal equations $A^T A \\hat{x} = A^T b$:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Int64}:\n", + " 11 9\n", + " 9 21" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A'A # AᵀA" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Int64}:\n", + " 11 9\n", + " 9 21" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = [1,2,3]\n", + "A'A # Aᵀb" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.5000000000000001\n", + " 0.49999999999999994" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x̂ = (A'A) \\ (A'b) # the least-squares solution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In other words, the least-square solution is $\\boxed{\\hat{x} = [0.5, 0.5]}$, corresponding to the projection $p = [0, 2.5, 2.5]$:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3-element Vector{Float64}:\n", + " 1.6653345369377348e-16\n", + " 2.5000000000000004\n", + " 2.5" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p = A*x̂" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The error $\\Vert b - A\\hat{x}\\Vert$ is as small as it can possibly get, which is not particularly small in this example:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.224744871391589" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm(b - A*x̂)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Computer tip: don't use the normal equations\n", + "\n", + "It turns out that there are [better numerical algorithms](https://discourse.julialang.org/t/efficient-way-of-doing-linear-regression/31232/33?u=stevengj) to find $\\hat{x}$ than to solve the normal equations. We can get the *same* solution in Julia simpy by `x̂ = A \\ b`:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.5000000000000001\n", + " 0.49999999999999983" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x̂ = A \\ b # = least-square solution when A is non-square!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This trick, that `A \\ b` computes $A^{-1} b$ if $A$ is square but computes the least-square solution if $A$ is non-square, was borrowed from [Matlab, which has a similar syntax](https://www.mathworks.com/help/matlab/ref/mldivide.html).\n", + "\n", + "In Python, you should use [`x̂ = numpy.linalg.leastsq(A, b)`](https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html) for similar reasons." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fitting points to a line\n", + "\n", + "The classic example of least square fitting is fitting a bunch of points to a line, also known as **least-squares [linear regression](https://en.wikipedia.org/wiki/Linear_regression)**.\n", + "\n", + "The following is data on the change (°C) in [average January global temperature](https://en.wikipedia.org/wiki/Global_temperature_record) (compared to the 1901–2000 average) since 1973 (the year Prof. Johnson was born), from the [National Centers for Environmental Information](https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/1/1/1973-2022):" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "year = [1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022]\n", + "ΔT = [0.28, -0.19, 0.11, -0.02, 0.13, 0.16, 0.15, 0.33, 0.51, 0.14, 0.53, 0.3, 0.22, 0.31, 0.32, 0.56, 0.17, 0.36, 0.43, 0.46, 0.36, 0.27, 0.56, 0.25, 0.34, 0.6, 0.51, 0.34, 0.47, 0.71, 0.72, 0.61, 0.65, 0.5, 0.92, 0.27, 0.6, 0.73, 0.46, 0.44, 0.62, 0.69, 0.83, 1.12, 0.98, 0.75, 0.94, 1.14, 0.78, 0.89];" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNdElEQVR4nO3deXhM1/8H8Pdkj5AQJBGJCGKrnSKKoMSurRYtRS2tparoqtraWn60RVtVW1S1qpbS0qqttiqt2vVL7URIhCAhSCS5vz9O7yzJTDJ35s6Web+eJ89MJndmztws8845n3OORpIkCURERERuysPRDSAiIiJyJIYhIiIicmsMQ0REROTWGIaIiIjIrTEMERERkVtjGCIiIiK3xjBEREREbo1hiIiIiNwawxARERG5NYYhKtLSpUuh0Whw4MABRzfFpUyaNAkajcai+7Zp0wZ16tRRtT1t2rRBmzZtVH1Md3XixAlMmjQJFy9edHRTnM7Vq1cxadIkHDlyxNFNsZhGo8GoUaMc3QyyI4YhIiKFTpw4gcmTJzMMGXH16lVMnjzZpcMQuR+GIXIbubm5yMrKcnQzSIF79+45uglu7/79+3CGLSz5+0u2xDBEih04cADPPvssKleuDH9/f1SuXBnPPfccLl26ZHCcPLy2Y8cOjBgxAuXKlUPZsmXRs2dPXL161eBYjUaDSZMmFXiuypUr44UXXtB+fv36dYwcORK1a9dGyZIlERISgnbt2uH33383uN/Fixeh0Wgwc+ZMfPDBB4iOjoavry+2bt2K0qVLY9iwYQWe6+LFi/D09MRHH31U6OtPSkrCM888g1KlSqF06dLo168f/v77b2g0GixdurTQ++bl5WHmzJmoWbMmfH19ERISggEDBiApKcno8b///juaN28Of39/VKxYEe+99x5yc3MNjpk8eTKaNWuG4OBgBAYGolGjRkhISLD4DWzlypWIj49HhQoV4O/vj1q1auHtt99GZmam9pg5c+ZAo9Hg7NmzBe7/1ltvwcfHBzdu3NDetm3bNjz++OMIDAxEiRIl8Nhjj+G3334zuJ88rHjo0CE888wzKFOmDKpWrQrA/J85ANizZw9iY2Ph5+enPWeLFy+GRqMp0JOzcuVKxMbGIiAgACVLlkTHjh1x+PDhQs/P0qVL0atXLwBA27ZtodFoCnzvlbzeY8eOoVevXggKCkJwcDDGjRuHnJwcnDp1Cp06dUKpUqVQuXJlzJw50+D+O3fuhEajwbfffotx48YhLCwM/v7+iIuLM/oaDhw4gB49eiA4OBh+fn5o2LAhVq1aVeC1aTQabNmyBYMHD0b58uVRokQJZGVl4ezZsxg0aBBiYmJQokQJVKxYEd27d8fx48cN2vToo48CAAYNGqQ9N/Lvtqmh2hdeeAGVK1fWfm7q93fHjh1mvxZTsrKyMGXKFNSqVQt+fn4oW7Ys2rZti7179xY49ptvvkGtWrVQokQJ1K9fHz///LPB1805J/J50Wg0WLFiBSZMmIDw8HAEBgaiffv2OHXqlMGxkiRh2rRpiIqKgp+fH5o0aYKtW7caPXcZGRl4/fXXER0dDR8fH1SsWBFjxowx+F0l8zAMkWIXL15EjRo1MGfOHGzevBkzZsxAcnIyHn30UYM3QNnQoUPh7e2N7777DjNnzsTOnTvx/PPPW/TcN2/eBABMnDgRv/zyC7766itUqVIFbdq0wc6dOwsc/9lnn2H79u34+OOP8euvv6JOnToYPHgwli9fjvT0dINj582bBx8fHwwePNjk82dmZqJt27bYsWMHZsyYgVWrViE0NBR9+vQxq/0jRozAW2+9hQ4dOmD9+vWYOnUqNm3ahBYtWhQ4dykpKXj22WfRr18//PTTT3jmmWfwwQcf4NVXXzU47uLFixg2bBhWrVqFtWvXomfPnnjllVcwdepUs9qU35kzZ9ClSxckJCRg06ZNGDNmDFatWoXu3btrj3n++efh4+NTIPzl5ubi22+/Rffu3VGuXDkAwLfffov4+HgEBgbi66+/xqpVqxAcHIyOHTsWCAgA0LNnT1SrVg2rV6/G/Pnzta/RnJ+5Y8eOoUOHDrh37x6+/vprzJ8/H4cOHcKHH35Y4HmmTZuG5557DrVr18aqVavwzTff4M6dO2jVqhVOnDhh8vx07doV06ZNAwB88cUX2LdvH/bt24euXbta9Hp79+6N+vXr44cffsCLL76I2bNnY+zYsXjyySfRtWtXrFu3Du3atcNbb72FtWvXFrj/O++8g/Pnz2Px4sVYvHgxrl69ijZt2uD8+fPaY3bs2IHHHnsMt2/fxvz58/HTTz+hQYMG6NOnj9EAP3jwYHh7e+Obb77BmjVr4O3tjatXr6Js2bL4v//7P2zatAlffPEFvLy80KxZM+0beqNGjfDVV18BAN59913tuRk6dKjJ81mY/L+/NWvWVPxa9OXk5KBz586YOnUqunXrhnXr1mHp0qVo0aIFEhMTDY795ZdfMHfuXEyZMgU//PADgoOD8dRTTxmcV3POib533nkHly5dwuLFi7Fw4UKcOXMG3bt3N/gHZ8KECZgwYQI6deqEn376CcOHD8fQoUNx+vRpg8e6d+8e4uLi8PXXX2P06NH49ddf8dZbb2Hp0qXo0aOHU/TmuRSJqAhfffWVBED6+++/jX49JydHunv3rhQQECB9+umnBe43cuRIg+NnzpwpAZCSk5O1twGQJk6cWOCxo6KipIEDB5psW05OjvTw4UPp8ccfl5566int7RcuXJAASFWrVpWys7MN7nPu3DnJw8NDmj17tva2+/fvS2XLlpUGDRpk8rkkSZK++OILCYD066+/Gtw+bNgwCYD01VdfaW+bOHGipP8rdvLkSaPn46+//pIASO+88472tri4OAmA9NNPPxkc++KLL0oeHh7SpUuXjLYvNzdXevjwoTRlyhSpbNmyUl5ensFjxsXFFfr68svLy5MePnwo7dq1SwIgHT16VPu1nj17ShEREVJubq72to0bN0oApA0bNkiSJEmZmZlScHCw1L179wLtrF+/vtS0aVPtbfL5ev/994tsl6mfuV69ekkBAQHS9evXDZ6rdu3aEgDpwoULkiRJUmJiouTl5SW98sorBo97584dKSwsTOrdu3ehz7969WoJgLRjxw6D2y15vZ988onBsQ0aNJAASGvXrtXe9vDhQ6l8+fJSz549tbft2LFDAiA1atTI4Pt88eJFydvbWxo6dKj2tpo1a0oNGzaUHj58aPBc3bp1kypUqKD9Hsq/swMGDCj09UuS+B5kZ2dLMTEx0tixY7W3//333wV+F2SmfgYHDhwoRUVFaT8v7PfX3NdizLJlyyQA0qJFiwp9bQCk0NBQKSMjQ3tbSkqK5OHhIU2fPt3k/UydE/l71aVLF4PjV61aJQGQ9u3bJ0mSJN28eVPy9fWV+vTpY3Dcvn37JAAG52769OmSh4dHgb/La9askQBIGzduLPQ1kiH2DJFid+/exVtvvYVq1arBy8sLXl5eKFmyJDIzM3Hy5MkCx/fo0cPg83r16gGA0SEOc8yfPx+NGjWCn58fvLy84O3tjd9++83kc3t7exvcVqVKFXTr1g3z5s3T/vf03XffIS0trcgZJLt27UKpUqXQqVMng9ufe+65Itstd/HrD/sBQNOmTVGrVq0CvQalSpUqcO769u2LvLw87N69W3vb9u3b0b59ewQFBcHT0xPe3t54//33kZaWhtTU1CLbld/58+fRt29fhIWFaR8vLi4OAAzO8aBBg5CUlIRt27Zpb/vqq68QFhaGzp07AwD27t2LmzdvYuDAgcjJydF+5OXloVOnTvj7778LdOk//fTTBdpk7s/crl270K5dO22vFAB4eHigd+/eBo+3efNm5OTkYMCAAQbt8vPzQ1xcnNFeRnNY8nq7detm8HmtWrWg0Wi05xAAvLy8UK1aNaO/M3379jWYtRgVFYUWLVpof97Onj2Lf//9F/369QMAg3Z16dIFycnJBXoxjH0PcnJyMG3aNNSuXRs+Pj7w8vKCj48Pzpw5Y/R3Tw35f38teS36fv31V/j5+RXa+ytr27YtSpUqpf08NDQUISEhBt8DpeekqL+Ff/75J7Kysgr8vDZv3txgGBEAfv75Z9SpUwcNGjQwOA8dO3aERqOx+GfYXXk5ugHkevr27YvffvsN7733Hh599FEEBgZCo9GgS5cuuH//foHjy5Yta/C5r68vABg9tiizZs3Ca6+9huHDh2Pq1KkoV64cPD098d577xn941OhQgWjj/Pqq6/i8ccfx9atWxEfH48vvvgCsbGxaNSoUaHPn5aWhtDQ0AK3G7vN2H1NtSk8PLzAG52xxwwLCzN4rP379yM+Ph5t2rTBokWLEBERAR8fH/z444/48MMPFZ/ju3fvolWrVvDz88MHH3yA6tWro0SJErh8+TJ69uxp8HidO3dGhQoV8NVXXyE+Ph63bt3C+vXr8eqrr8LT0xMAcO3aNQDAM888Y/I5b968iYCAAO3nxs6PuT9z5n5/5HbJ9S35eXhY9n+iJa83ODjY4Os+Pj4oUaIE/Pz8CtyekZFR4PHkn4n8tx09etSgTa+//jpef/11o23KP0Rr7Hswbtw4fPHFF3jrrbcQFxeHMmXKwMPDA0OHDrXod9kc+dthyWvRd/36dYSHh5v1/c3/dwsQf7v0X6vSc1LU30L599rcn+GzZ88W+GdPVth5oIIYhkiR9PR0/Pzzz5g4cSLefvtt7e1ZWVnaeh5L+Pr6Gp0pIv9xkH377bdo06YNvvzyS4Pb79y5Y/RxTa3z065dO9SpUwdz585FyZIlcejQIXz77bdFtrNs2bLYv39/gdtTUlLMui8AJCcnIyIiwuBrV69eNejNAHR/+I09j/xY33//Pby9vfHzzz8bvHn++OOPRbbHmO3bt+Pq1avYuXOntjcIAG7fvl3gWE9PT/Tv3x+fffYZbt++je+++w5ZWVkYNGiQ9hj5NX3++edo3ry50efM/0c+//dMyc9c2bJlCz1v+du1Zs0aREVFGW2XJSx5vdYy9rOXkpKi/RmR2zR+/Hj07NnT6GPUqFHD4HNjvzfffvstBgwYoK2Xkt24cQOlS5c2q61+fn4FavXkxzAmfzsseS36ypcvjz179iAvL8/iwKtPjXOiT/6emfoZ1u8dKleuHPz9/bFkyRKjj5X/7wkVjmGIFNFoNJAkSfsfjWzx4sUFZjkpUblyZRw7dszgtu3bt+Pu3bsFnj//cx87dgz79u1DZGSkouccPXo0hg8fjvT0dISGhmpnCBUmLi4Oq1atwq+//mowjPH9998Xed927doBEH9A9Xsk/v77b5w8eRITJkwwOP7OnTtYv369Qdf6d999Bw8PD7Ru3RqAOB9eXl7anhhA/Jf5zTffFNkeY+Q3n/zneMGCBUaPHzRoEGbOnIkVK1Zg6dKliI2NRc2aNbVff+yxx1C6dGmcOHHC4kXslPzMxcXFYePGjbhx44b2zSAvLw+rV682OK5jx47w8vLCuXPnjA4JFcVU76Yar1epFStWYNy4cdrv3aVLl7B3714MGDAAgAgHMTExOHr0aIE3bSWM/e798ssvuHLlCqpVq6a9rbCe38qVK2P16tXIysrSHpeWloa9e/ciMDCwyDZY+1o6d+6s/Vk1Z6isKOaeE3M1a9YMvr6+WLlypUHY+/PPP3Hp0iWDMNStWzdMmzYNZcuWRXR0tMWvgQSGITKbRqNBYGAgWrdujY8++gjlypVD5cqVsWvXLiQkJFj0n5Csf//+eO+99/D+++8jLi4OJ06cwNy5cxEUFGRwXLdu3TB16lRMnDgRcXFxOHXqFKZMmYLo6Gjk5OQoes7nn38e48ePx+7du/Huu+/Cx8enyPsMHDgQs2fPxvPPP48PPvgA1apVw6+//orNmzcDKHx4pUaNGnjppZfw+eefw8PDA507d8bFixfx3nvvITIyEmPHjjU4vmzZshgxYgQSExNRvXp1bNy4EYsWLcKIESNQqVIlAGJm06xZs9C3b1+89NJLSEtLw8cff1zgD7S5WrRogTJlymD48OGYOHEivL29sXz5cu2QS341a9ZEbGwspk+fjsuXL2PhwoUGXy9ZsiQ+//xzDBw4EDdv3sQzzzyDkJAQXL9+HUePHsX169cL9PLlp+RnbsKECdiwYQMef/xxTJgwAf7+/pg/f762Tkf+/lSuXBlTpkzBhAkTcP78eXTq1AllypTBtWvXsH//fgQEBGDy5Mkm2ySvDr5w4UKUKlUKfn5+iI6ORtmyZa1+vUqlpqbiqaeewosvvoj09HRMnDgRfn5+GD9+vPaYBQsWoHPnzujYsSNeeOEFVKxYETdv3sTJkydx6NChAmHRmG7dumHp0qWoWbMm6tWrh4MHD+Kjjz4q0MtZtWpV+Pv7Y/ny5ahVqxZKliyJ8PBwhIeHo3///liwYAGef/55vPjii0hLS8PMmTPNCkJqvJbnnnsOX331FYYPH45Tp06hbdu2yMvLw19//YVatWrh2WefNbsdSs6JueSlFaZPn44yZcrgqaeeQlJSEiZPnowKFSoY/H0ZM2YMfvjhB7Ru3Rpjx45FvXr1kJeXh8TERGzZsgWvvfYamjVrZlE73JKDC7jJBcgzqI4fPy5JkiQlJSVJTz/9tFSmTBmpVKlSUqdOnaR//vmnwMwvU7PQ5JkV+jNxsrKypDfffFOKjIyU/P39pbi4OOnIkSMFHjMrK0t6/fXXpYoVK0p+fn5So0aNpB9//NHkbJSPPvqo0Nf2wgsvSF5eXlJSUpLZ5yMxMVHq2bOnVLJkSalUqVLS008/rZ1FpT/7K/9sMkkSs4pmzJghVa9eXfL29pbKlSsnPf/889Lly5cNjouLi5MeeeQRaefOnVKTJk0kX19fqUKFCtI777xTYBbNkiVLpBo1aki+vr5SlSpVpOnTp0sJCQkGs6fkxzRnNtnevXul2NhYqUSJElL58uWloUOHSocOHTI5Q2jhwoUSAMnf319KT083+pi7du2SunbtKgUHB0ve3t5SxYoVpa5du0qrV68ucL70Z4LJzP2ZkyRJ+v3336VmzZpJvr6+UlhYmPTGG29IM2bMkABIt2/fNjj2xx9/lNq2bSsFBgZKvr6+UlRUlPTMM89I27ZtK/I8zZkzR4qOjpY8PT0LnBtrXu/AgQOlgICAAs8n/0zI5N+jb775Rho9erRUvnx5ydfXV2rVqpV04MCBAvc/evSo1Lt3bykkJETy9vaWwsLCpHbt2knz58/XHlPYzNFbt25JQ4YMkUJCQqQSJUpILVu2lH7//XejP1crVqyQatasKXl7exeYKfr1119LtWrVkvz8/KTatWtLK1euVPz7a85rMeX+/fvS+++/L8XExEg+Pj5S2bJlpXbt2kl79+7VHgNAevnllwvcN//Pm7nnRP5e6X//9V+n/s9OXl6e9MEHH0gRERGSj4+PVK9ePennn3+W6tevbzBjVpIk6e7du9K7774r1ahRQ/Lx8ZGCgoKkunXrSmPHjpVSUlKKPBeko5EkLkZAhXv11Vcxd+5c3L5922B2havLzs5G5cqV0bJlS7MXbDNl2rRpePfdd5GYmGjxf4VkO/Hx8bh48WKBtVpc2c6dO9G2bVusXr260IJtcn0XLlxAzZo1MXHiRLzzzjuObk6xxGEyMungwYP4+++/sWTJEvTo0aPYBKHr16/j1KlT+Oqrr3Dt2jWDolxzzJ07F4AYInr48CG2b9+Ozz77DM8//zyDkBMYN24cGjZsiMjISNy8eRPLly/H1q1bkZCQ4OimERXp6NGjWLFiBVq0aIHAwECcOnVKO5Q4ZMgQRzev2GIYIpOeeeYZpKeno0ePHvjss88c3RzV/PLLLxg0aBAqVKiAefPmFTmdPr8SJUpg9uzZuHjxIrKyslCpUiW89dZbePfdd23UYlIiNzcX77//PlJSUqDRaFC7dm188803Fq96TmRPAQEBOHDgABISEnD79m0EBQWhTZs2+PDDD1WfiUg6HCYjIiIit8YVqImIiMituVQY2r17N7p3747w8HBoNJoiF5Zbu3YtOnTogPLlyyMwMBCxsbHaKdBEREREgIuFoczMTNSvX19bwFqU3bt3o0OHDti4cSMOHjyItm3bonv37jh8+LCNW0pERESuwmVrhjQaDdatW4cnn3xS0f0eeeQR9OnTB++//75Zx+fl5eHq1asoVaqUya0diIiIyLlIkoQ7d+6YtR+dW80my8vLw507dwpsjFiYq1evKt7mgYiIiJzD5cuXi1z2xK3C0CeffILMzEz07t3b5DFZWVkGG4bKHWeXL19WtGQ8EREROU5GRgYiIyPNWiPPbcLQihUrMGnSJPz0008ICQkxedz06dON7kkUGBjIMERERORizClxcakCakutXLkSQ4YMwapVq9C+fftCjx0/fjzS09O1H5cvX7ZTK4mIiMgRin3P0IoVKzB48GCsWLECXbt2LfJ4X19fi3f8JiIiItfjUmHo7t27OHv2rPbzCxcu4MiRIwgODkalSpUwfvx4XLlyBcuWLQMggtCAAQPw6aefonnz5khJSQEA+Pv7IygoyCGvgYiIiJyLSw2THThwAA0bNkTDhg0B6DZklKfJJycnIzExUXv8ggULkJOTg5dffhkVKlTQfrz66qsOaT8RERE5H5ddZ8heMjIyEBQUhPT0dBZQExERuQgl798u1TNEREREpDaGISIiInJrDENERETk1hiGiIiIyK0xDBEREZFbYxgiIiIit8YwRERERMokJQE7dojLYoBhiIiIiMyXkABERQHt2onLhARHt8hqDENERERknqQk4KWXgLw88XleHjBsmMv3EDEMERERkXnOnNEFIVluLqC3b6grYhgiIiIi88TEAB75ooOnJ1CtmmPaoxKGISIiImfmTMXKERHA00/rPvfwABYsELe7MIYhIiIiZ+WMxcp+frrr48YBQ4Y4ri0qYRgiIiJyRs5arHz0qO56Zqbj2qEihiEiIiJn5IzFytnZwMmTus+vXnVcW1TEMEREROSMnLFY+d9/gYcPdZ8zDBEREZHNREQAM2ca3vb5544tVpaHyAIDxSXDEBEREdlUbKzh59WrO6YdMjkMtW8vLlNSCg7luSCGISIiImd18aLh57/95pBmaB07Ji47dAA0GlHDdP26Y9ukAoYhIiIiZyWHoZIlxeX27Q5rCgBdz1DjxkBoqLheDIbKGIaIiIic1YUL4rJ3b3H5999Aerpj2nLtGpCaKoq6H3kECA8XtzMMERERkc3IPUOtW4tZZHl5wK5djmmL3CsUEwOUKMEwRERERHYgh6HKlYHHHxfXHTVUJoeh+vXFJcMQERER2VReHnDpkrgeHa0LQ44qopaLp+vVE5cMQ0RERGRTycligUMvLxE82rQRt//zj6jfsbf8PUMVKohLhiEiIiKyCXmILDJSBKLy5XVBZMcO+7YlK0u3DQeHyYiIiMgu9OuFZI4aKvv3XyAnByhdWrcCNsMQERER2ZQ8rV4/DLVrJy7tXUStP0Sm0YjrchhKTRVByYUxDBERETkjYz1DrVuLzVrPny+4OrUtyWFILp4GxLCdp6co9E5NtV9bbIBhiIiIyBkZC0OlSgFNm4rr9uwdkmeSyfVCgAhCYWHiuosPlTEMEREROSM5DEVHG95u77ohSSo4k0xWTOqGGIaIiIicTW4ukJgoruv3DAGGiy9Kku3bcu2a2IxV3oZDH8MQERER2UT+NYb0NW8O+PkBKSm66e62JPcKVa8O+Psbfo1hiIiIiGxCHiKrVEnU5ujz8wNathTX7TFUZqx4WsYwRERERDZhbFq9PnmKvT3CkLHiaVkxWYWaYYiIiMjZGJtJpk+uG9q5U9QX2ZKp4mmAPUNERERkI0WFoUaNgKAgID0dOHTIdu3IyhKrTwMcJiMiIiI7MjWtXublBcTFieu2XG/o5EmxunSZMrptOPTJYej6dSA723btsDGGISIiImdTVM8QYJ/1hoxtw6GvbFnA21tcv3bNdu2wMYYhIiIiZ1LYGkP65CLqPXvEcJYtyMXTxobIALH2UDEoonapMLR79250794d4eHh0Gg0+PHHH4u8z65du9C4cWP4+fmhSpUqmD9/vu0bSkREZKmrV8XQlLe3LmgY88gjQGgocP8+8OeftmlLYcXTsmJQN+RSYSgzMxP169fH3LlzzTr+woUL6NKlC1q1aoXDhw/jnXfewejRo/HDDz/YuKVEREQWkqfVG1tjSJ9GY9sp9vrbcJjqGQKKRRjycnQDlOjcuTM6d+5s9vHz589HpUqVMGfOHABArVq1cODAAXz88cd4+umnbdRKIiIiK5hTLyRr1w5YsUIUUU+Zom47UlKAGzeMb8OhrxiEIZfqGVJq3759iI+PN7itY8eOOHDgAB4+fGj0PllZWcjIyDD4ICIishslYUguov7rL+DuXXXbIfcK1ahRcBsOfQxDzi0lJQWhoaEGt4WGhiInJwc3btwwep/p06cjKChI+xEZGWmPphIREQlFTavXFx0tQlNODrB7t7rtMGeIDGAYcgWafFMBpf92+M1/u2z8+PFIT0/Xfly+fNnmbSQiItJS0jMEGO5ir6bCtuHQx9lkzi0sLAwpKSkGt6WmpsLLywtly5Y1eh9fX18EBgYafBAREdmNpWHoxx+BpCT12mHOTDKAPUPOLjY2Flu3bjW4bcuWLWjSpAm85UWiiIiInEVODiCPSJgbhpKTxeW5c0BUFJCQYH07HjwofBsOfXIYunlT3M8FuVQYunv3Lo4cOYIjR44AEFPnjxw5gsT/FqcaP348BgwYoD1++PDhuHTpEsaNG4eTJ09iyZIlSEhIwOuvv+6I5hMRERXuyhXz1hiSJSUBb7yh+zwvDxg2zPoeopMnxeKPwcFAxYqFH1umDODrK67nG41xFS4Vhg4cOICGDRuiYcOGAIBx48ahYcOGeP/99wEAycnJ2mAEANHR0di4cSN27tyJBg0aYOrUqfjss884rZ6IiJyTPEQWFSWmtBflzBkRgPTl5gJnz1rXDv3iaRM1tloajcsPlbnUOkNt2rTRFkAbs3Tp0gK3xcXF4ZAtd/QlIiJSi9J6oZgYEZr0A5GnJ1CtmnXtMLd4WhYeLhaLdNEw5FI9Q0RERMWakmn1gNhJfuFCw16kBQuM7zCvhLnF0zIX7xliGCIiInIWSnuGAGDIEODgQd3nffta1wZzt+HQxzBEREREqrAkDAGiB6dMGXH99Gnr2pCcDKSlieG2wrbh0McwRERERKqwNAxpNECtWuK6PCXeUvrbcPj5mXcfhiEiIiKymiVrDOmrWVNcnjxpXTuUDpEBLr8KNcMQERGRM0hKEtPifXyAsDDl91erZ+jPP8WlkkDGniEiIiKymtI1hvJTo2coIQH46SdxfcYM81ezlsNQejpw757lz+8gDENERETOQOm0+vzknqFTp0QPk1JJScBLL+k+lyTzV7MODARKlBDX5e1BXAjDEBERkTOwtHhaVrmy2BYjKwu4dEn5/a1ZzdrFV6FmGCIiInIG1oYhT0+genVx3ZKhspiYgltvKFnNmmGIiIiIrGJtGAKsK6KOiADi4nSfe3oqW82aYYiIiEhPUhKwY4f1u6e7kwsXxKU1YcjaIuqsLHE5YYIIZ0OGmH9fhiEiIqL/JCSIGVHt2olLc2ckubOHD3XB0VE9Q7m5ujWG+vVTvr8ZwxARERF0M5LkQty8PPNnJLmzpCRxrnx9gdBQyx9Hv2dIkpTd98wZMS2+RAld7ZESDENERESwbkaSO9OvF7JkjSFZ9eqiCPrmTeDGDWX3PXxYXNavL+qFlHLhVagZhoiISD0xMQXfzJXMSHJXahRPA6JXJypKXFdaNySHoYYNLXtu9gwRERFB1JksXKj7XKNRNiPJXakVhgDL64YOHRKXloYhuWfo7l3gzh3LHsNBGIaIiEhdQ4YAAQHielycshlJ7kqNmWQyS2aUSZL1PUOlSokPwOVWobYqDJ09exabN2/G/fv3AQCS0mItIiIqfu7fBzIzxfXsbMe2xVU4umfo8mVRZ+TlBdSpY/lzKx0qc5IlGCwKQ2lpaWjfvj2qV6+OLl26IPm/BDh06FC89tprqjaQiIhcTGqq7np6uuPa4UrUDEOW9AzJvUK1a4sZbZZSEoacaAkGi8LQ2LFj4eXlhcTERJSQN2YD0KdPH2zatEm1xhERkQvSD0MZGY5rh6vIzgauXBHX1ewZunRJ10NXFGuHyGTmhiEnW4LBojC0ZcsWzJgxAxH5CuJiYmJwyZLN4YiIqPhgGFJGXmPIz8+6NYZk5cqJDwA4fdq8+9g7DDnZEgwWhaHMzEyDHiHZjRs34GtN9xoREbm+/GEo/5seGdIfIsu/UaqllA6V2TsMOdkSDBaFodatW2PZsmXazzUaDfLy8vDRRx+hbdu2qjWOiIhc0LVruuuSZP5QjbtSs15IpqSIOi1NFFADQIMG1j2vuWEoIgJ49lnd50o3hVWZlyV3+uijj9CmTRscOHAA2dnZePPNN/G///0PN2/exB9//KF2G4mIyJXo9wwBondInnJNBak5rV6mpGdI7hWqWhUIDLTueZUUUMt1UiNGAO+849C1qCzqGapduzaOHTuGpk2bokOHDsjMzETPnj1x+PBhVK1aVe02EhGRK8kfhjijrHCO7hlSa4gMMNySo7DldlJSgN27xfW333b4opwW9QwBQFhYGCZPnqxmW4iIqDgw1jNEptkiDMk9Q6dPAzk5Yv0gU+Qw1KiR9c8rh6H790UILl3a+HFr14qw1KwZUKmS9c9rJYvD0O3bt7F//36kpqYiL19x3IABA6xuGBERuSiGIWVsEYaiosTstAcPxOMXVphs7TYc+kqUEAHo9m2xCrWpMLR6tbh85hnrn1MFFoWhDRs2oF+/fsjMzESpUqWg0at+12g0DENERO5MLqAuWVLsU8VhMtP01xiKjlbvcT08gBo1gKNHRd2QqTB0965u+r0aYQgQdUO3b4uhMnm4Tt+1a7ohMicJQxbVDL322msYPHgw7ty5g9u3b+PWrVvaj5s3b6rdRiIichV5ecD16+J6TIy4ZM+QaZcvi+Eif3+gfHl1H9ucuqFjx8TzV6igzhpHQNFF1OvWiZ+TRx9VtzfMChaFoStXrmD06NFG1xoiIiI3duuWWDwPELOTAIahwthijSGZOTPK1CyelhUVhuQhsl691HtOK1kUhjp27IgDBw6o3RYiInJ1cr1Q6dK6ng4Ok5lmi2n1MnN6huwdhlJTgZ07xXUnGSIDLKwZ6tq1K9544w2cOHECdevWhbe3t8HXe/TooUrjiIjIxchhKCREt2YNe4ZMs0XxtEwOQydPiqEwYz1P9g5D8hBZ48bq1khZyaIw9OKLLwIApkyZUuBrGo0GuXIXKRERuRe5eDo0VBeG2DNk2okT4tLUrCtryFte3L4tQmr+mqCHD4F//hHX7RWG1qwRl040RAZYOEyWl5dn8oNBiIjIjen3DAUFievsGTIuIUH0lADA//2f+FxNfn663hdjdUMnTojZbEFB6vbSmApDN24AO3aI6040RAZYGIaIiIiM4jCZeZKSgJde0n0uScCwYeJ2NRVWRC0PkTVooG7xtqlVqNetE8X1DRvqiuudhNnDZJ999hleeukl+Pn54bPPPiv02NGjR1vdMCIickHGwhCHyQo6c0bUzujLzQXOnlV3a4patYBffjFeRG2LeiFAF4ays4GbN4GyZcXnTjiLTGZ2GJo9ezb69esHPz8/zJ492+RxGo2GYYiIyF1xmMw8MTGiN0a/58TTs/CVoi1hTs+Q2mHI11cEoLQ00TskX9++XXzdlcPQBXn6X77rREREWsYKqBmGCoqIAFq10q3E7OkJLFig/oalpqbX5+UBR46I62rsSZZfeLgIQMnJQN26wI8/ip6vBg3UD3wqYM0QERGph8Nk5pO34Zg2TUyxHzJE/eeQe4YuXxZbb8jOnQPu3BFF1vIxaspfRO1ke5HlZ3bP0Lhx48x+0FmzZlnUGHPMmzcPH330EZKTk/HII49gzpw5aNWqlcnjly9fjpkzZ+LMmTMICgpCp06d8PHHH6OsPIZJRETqMTZMdveu6BXw9HRcu5zNpUsikHh6AqNGAaVK2eZ5goPF9yI1FTh1SqzvA+iGyOrWLXxHe0vph6GbN4HffhOfO+EQGaAgDB2WT1wRNGovJ65n5cqVGDNmDObNm4fHHnsMCxYsQOfOnXHixAlUqlSpwPF79uzBgAEDMHv2bHTv3h1XrlzB8OHDMXToUKyTpzMSEZE6HjzQDYmFhIgdzGV37+rCEenqZ5o2tV0QktWsKcLQyZMFw5Da9UIy/TD0449ATg5Qrx5Qvbptns9KZoehHfLaAA40a9YsDBkyBEOHDgUAzJkzB5s3b8aXX36J6dOnFzj+zz//ROXKlbUF3dHR0Rg2bBhmzpxp13YTEbkFeYNWb2+xiKBGA/j4iFlF6ekMQ/rknpLHH7f9c9WqJWqT9OuG7BmGzp8X1520Vwiwsmbo7Nmz2Lx5M+7fvw8AkPSr4lWWnZ2NgwcPIj4+3uD2+Ph47N271+h9WrRogaSkJGzcuBGSJOHatWtYs2YNunbtavJ5srKykJGRYfBBRERmkIunQ0J069ZwRllBkmT/MAToZpRJkv3C0P/+B2zbJq47ab0QYGEYSktLw+OPP47q1aujS5cuSE5OBgAMHToUr732mqoNlN24cQO5ubkIzbeceGhoKFJSUozep0WLFli+fDn69OkDHx8fhIWFoXTp0vj8889NPs/06dMRFBSk/YiMjFT1dRARFVv69UIyzigr6N9/gZQUUbzcvLntn08ukJZ7hpKTxffKw0PUDNmCHIZOnxbbftSpY5tCbZVYFIbGjh0Lb29vJCYmooTemHCfPn2wadMm1RpnTP6aJEmSTNYpnThxAqNHj8b777+PgwcPYtOmTbhw4QKGDx9u8vHHjx+P9PR07cfly5dVbT8RUbFVWBjijDIduVeoZUsRiGxN7hk6c0bU7si9QjVrGtZ1qUleeFHmxENkgIUbtW7ZsgWbN29GRL71EGJiYnDp0iVVGpZfuXLl4OnpWaAXKDU1tUBvkWz69Ol47LHH8MYbbwAA6tWrh4CAALRq1QoffPABKuT/ZgHw9fWFr6+v+i+AiKi4MxaGOExWkFw83a6dfZ4vIkKEnnv3RP2OrYfIACAszPBzJw9DFvUMZWZmGvQIyW7cuGGzIOHj44PGjRtj69atBrdv3boVLVq0MHqfe/fuwcPD8CV6/je105b1TUREbonDZEXLzdVtVmqPeiFADIfpr0RtjzC0bJnh5yZqe52FRWGodevWWKb3QjUaDfLy8vDRRx+hbdu2qjUuv3HjxmHx4sVYsmQJTp48ibFjxyIxMVE77DV+/HgMGDBAe3z37t2xdu1afPnllzh//jz++OMPjB49Gk2bNkW4PJ5JRETq0F99WsZhMkOHDwO3b4seM1us/GyKft2QrcNQ/k1oAdtsQqsii4bJPvroI7Rp0wYHDhxAdnY23nzzTfzvf//DzZs38ccff6jdRq0+ffogLS0NU6ZMQXJyMurUqYONGzciKioKAJCcnIzExETt8S+88ALu3LmDuXPn4rXXXkPp0qXRrl07zJgxw2ZtJCJyWxwmK5o8RBYXZ5vFDk2R64b27QPkLbUaNLDNc9lrE1oVWfSdqF27No4dO4Yvv/wSnp6eyMzMRM+ePfHyyy8brcNR08iRIzFy5EijX1u6dGmB21555RW88sorNm0TERGBw2TmsOeUen1yz9Cvv4rLqCixOrUtxMSIoTn9QGSLTWhVZHEsDQsLw+TJk9VsCxERuTLOJitcdjbw++/iur2Kp2Vyz1B2tri05RBdRASwcKEYGpO3YbHFJrQqsqhmaNOmTdizZ4/28y+++AINGjRA3759cevWLdUaR0RELkKSOExWlD//BO7fFzVVjzxi3+euVk301shsWTwNiE1nL14UxeK22oRWRRaFoTfeeEO7MvPx48cxbtw4dOnSBefPn1e0oSsRERUTt26JNWwA9gyZIg+RtWunW6HbXnx9gapVdZ/bY0HhiAigTRun7hGSWTRMduHCBdSuXRsA8MMPP6B79+6YNm0aDh06hC5duqjaQCIicgFyr1BQkHjjlbFmSMfe6wvlp78kzpAhYgjLyXts7MWiniEfHx/cu3cPALBt2zbtfmHBwcHcy4uIyB0ZGyIDOEwmu3tXDJMB9i+eBsS09mPHdJ/n5Tn9dHd7sqhnqGXLlhg3bhwee+wx7N+/HytXrgQAnD59usCq1ERE5AZMhSEOkwm//y6GEaOjxYe9nTkj6rr0Ofl0d3uyqGdo7ty58PLywpo1a/Dll1+iYsWKAIBff/0VnTp1UrWBRETkAooKQ+7eM+ToITJ5urs+J5/ubk8W9QxVqlQJP//8c4HbZ8+ebXWDiIjIBRlbfRrQDZPduyd6Ruy50KAzcdT6QjIXnO5uT1b/VN6/fx8PHz40uC1Q/k+AiIjcQ1E9Q4DoHbLVQn9JSWIoKCbG+d7g09KAI0fEdRtuWVWkIUOAjh3F0Fi1as53nhzI4o1aR40ahZCQEJQsWRJlypQx+CAiIjdjKgx5ewP+/uK6rYbKEhLEisrt2onLhATbPI+ldu4U9TqPPFJwN3d7c6Hp7vZkURh68803sX37dsybNw++vr5YvHgxJk+ejPDwcIMNXImIyE6SksQCd46aHWQqDAG2rRuSNwWVt35wxllSjh4ioyJZFIY2bNiAefPm4ZlnnoGXlxdatWqFd999F9OmTcPy5cvVbiMRERXGGXpGzAlDtphRVtimoM7C0cXTVCSLwtDNmzcR/d/UwMDAQNy8eROAmHK/e/du9VpHRETG5eUBhw8D48cDQ4c6vmfEVAE1YNu1hmJiCq7m7EyzpK5cAU6dEjO54uIc3RoywaIC6ipVquDixYuIiopC7dq1sWrVKjRt2hQbNmxA6dKlVW4iEZEb0y8M9vQEtmwRH1u3AtevG7+PvdePycrS9frYe5isYkVRlJ2WJj7XaJxrlpTcK9S4McD3R6dlURgaNGgQjh49iri4OIwfPx5du3bF559/jpycHMyaNUvtNhIRuaeEBMN6mPxKlgRiY4Ft2wwX1LN3z4gcyry8jL/h23KY7PRpXRACgB49nGuLCdYLuQSLwtDYsWO119u2bYuTJ0/i4MGDqFq1KurXr69a44iI3Fb+wmBZvXpA9+5AfDzQvDng4yNC04svikDkiJ4RuV6ofPmCC/sBth0m27xZXHp7Aw8fAikp6j+HpSSJYchFqLL6VVRUFKKiotR4KCIiAowXBgPAp5+KqdH6hgwRb7wvviimbg8aZJcmahVWPA3Ydphs0yZx2asX8N13wLlz6j+Hpc6eFaHWxwdo0cLRraFCWFRADQC//fYbunXrhqpVq6JatWro1q0btm3bpmbbiIjcl9LtE/r1E8NmycnA/v22b5++woqnAdsNkz14INbwAYCRI8XljRvOs/WH3CvUooXhjvHkdCzem6xTp04oVaoUXn31VYwePRqBgYHo0qUL5s6dq3YbiYjcT0QEoL/FUVHbJ/j7i+EzAFi92vbt01dUz5Cthsl+/x24fx8IDxeBo1w5cfv58+o+j6U2bBCXTZo4th1UJIvC0PTp0zF79mysWLECo0ePxujRo/Hdd99h9uzZmDZtmtptJCJyT02bisuyZYGLF4suDH7mGXG5Zk3BHcptyVHDZPIQWceOolaqalXxuTOEoUWLgI0bxfVZs5xvVWwyYFEYysjIMLo7fXx8PDKcpXuSiMjVnTolLuvVM68gunNnICAASEwE/v7btm3TZ24YUnuYTA5D8vtRlSri0tF1Q0lJwPDhus+dcVVsMmBRGOrRowfWrVtX4PaffvoJ3eVuWiIiso4chmrUMO94f3+gWzdx3Z5DZXIYMlUzZIthssuXgRMnRF1V+/biNmfpGTp92vlXxSYDZs8m++yzz7TXa9WqhQ8//BA7d+5EbGwsAODPP//EH3/8gddee039VhIRuSOlYQgQs6pWrhRhaObMgqsz24JcQG3PniF5Sn2zZmLRRcB5eoYSEwve5kyrYlMBZoeh2fqFfADKlCmDEydO4MSJE9rbSpcujSVLluDdd99Vr4VERO7KkjDUubOYuXTpEnDwoH2Kdx1RM6RfLyRzhp6hvDxgzhxxXaMRtVtFFb+Tw5kdhi5cuGDLdhARkT79YRUlYahECaBrV9EztHq17cOQJNl/NllOjlh1G9DVCwG6nqFLl8QxXqospafM6tXA0aMiAO7ZI1bHrlaNQcjJWbzOEBER2VBiotjzy8dH7ESvRK9e4nL1atvPKktPFys/A0X3DD14AGRnW/+cf/0lnjc42DDshYcDvr4iCF2+bP3zKJWTA7z/vrj+2mtA3bpigUwGIafHMERE5IzkIbJq1cQwixJduohi6gsXgEOH1G+bPrlXKDAQ8PMzfkypUrrravQOyUNk8fGG58bDA4iOFtcdUTf0zTeieLpsWWDMGPs/P1mMYYiIyBlZUi8kCwgQQ2WAWHPIlooqngbEcFVAgLiuZhjSrxeSOapuKCsLmDxZXB8/XtcbRi6BYYiIyBlZE4YA3QKMSofKkpKAHTvMXxOnqHohmVozyq5fF4XhgPEw5KgZZYsWiVql8HDd1iDkMhiGiIickbVhqGtXMWx17hxw5Ih590lIEPVJ7dqJS3NWTVYahqztGdq6VYS7+vWBChUKft0RPUP37gEffiiuv/uuGKIkl2JRqf2ZM2ewd+9epKSkQKPRIDQ0FC1atEBMTIza7SMick/WhqGSJUXt0Nq1oneoYcPCj09KAl56SbdYoLxqcseOhRcAmxuG1JpRln/V6fwc0TM0dy6QkgJUrlz0linklBSFofT0dAwYMAAbNmxAUFAQQkJCIEkSrl+/joyMDHTv3h3Lli1DIMdKiYgsd/cucOWKuG5pGALErDI5DH34YeELMG7bZnrVZHPCkKnVp2VqDJPl5ekWWzQ2RAboeobOnRM9SLZedDI9HZgxQ1yfPFnM/iOXo2iY7JVXXsGFCxewb98+3Lp1C6dOncLp06dx69Yt7N27FxcuXMArr7xiq7YSEbmHM2fEZblyutWVLdG1q5hqfvYscOyY6eMuXxZFv/mZs2qyOQXUgDrDZEePivAVEAA89pjxY+TZZBkZwM2blj+XuWbNEs9TqxbQr5/tn49sQlEYWr9+PRYtWoRmzZoV+FqzZs2wYMEC/PTTT6o1jojILclDZNWrW/c4pUqJFakB03uVpaWJXpaUFNG7o9+TYs6qyfYcJpOHyB5/3HQPjL+/KGIGbD9UduOGCEMAMGWK8iUQyGkoLqDWFNLlWNjXiIjITNbWC+krbAHGzEzRe3TyJFCxIrB/P/Dnn+JrGg3Qu3fRj2/P2WRF1QvJ7FVEPWOGGNJs2BDo2dO2z0U2pSgMde/eHS+++CIOHDhQ4GsHDhzA8OHD0aNHD9UaR0TkltQMQ926iaGy06eBf/7R3f7woQhKf/0FlCkDbNkCVKoENG0qhpokCdi7t+jHt9dssowMXXtM1QvJ7FFEfeAA8Omn4vqHH4oFH8llKfruff755wgPD0fTpk0RHByMmjVrolatWggODkazZs1QoUIFg93tiYjIAmqGocBAXXiQh8ry8oDBg4FffxXDSr/8AtSurbtP69bicteuwh87Oxu4dUtcL6qA2tphsu3bxXYXMTG6sGOKrXuGEhJEaJS3IZGL3cllKZpNVrp0afz66684efIk/vzzT6SkpAAAwsLCEBsbi5o1a9qkkUREbkOSRC8OoE4YAkQP0Pr1IgxNngy8/jrw7beixmX1aiA21vD4uDjg66+B3bsLf9zr18Wlp6foXSqMtcNk5g6RAbbtGZKXINAfchw+XLSLe5C5LIvWGapVqxZq1aqldluIiCg5WdSheHrqejis1b27KDj+919RI/Trr+L2JUt023bok3uG9u8H7t83vYigPERWvnzRw0TWDJNJkrIwZMueoTNnLFuCgJya4kFOSZKwdetWTJ48GSNGjMDIkSMxefJkbNu2DZKtd0cGMG/ePERHR8PPzw+NGzfG77//XujxWVlZmDBhAqKiouDr64uqVatiyZIlNm8nEZFF5CGy6Gj11qwJChJTvwFdEOrVCxgwwPjxVaqIGVkPH4qaIlPMrReS2wBYFoZOnxZbXfj4iF6rosg9Q0lJYs8wNRlbXNicJQjIqSkKQ1euXEGjRo3QuXNnrFu3DufPn8fZs2exbt06dOrUCU2aNMEVG46drly5EmPGjMGECRNw+PBhtGrVCp07d0ZiYqLJ+/Tu3Ru//fYbEhIScOrUKaxYsYLDeURkmtK9udSm1rR6fUlJBdcZWrvW9GvUaHS9Q4UNlSkJQ9YMk33/vbhs2lS34WthypcXK3BLEnDxovLnK0xEhOHr9fQ0bwkCcmqKwtDIkSMRHByMy5cv48iRI9i8eTO2bNmCI0eO4PLlyyhdujRefvllW7UVs2bNwpAhQzB06FDUqlULc+bMQWRkJL788kujx2/atAm7du3Cxo0b0b59e1SuXBlNmzZFixYtbNZGInJhluzNpTY1i6dlZ84UnFYvD+2YoiQMFVU8DVg+TJaQAEyaJK7/8Yd53xONxnZ1Q+nputf9448ibHELDpenKAz99ttvmDVrFioY2RyvQoUK+Pjjj7Ft2zbVGqcvOzsbBw8eRHx8vMHt8fHx2Gti+uf69evRpEkTzJw5ExUrVkT16tXx+uuv4/79+yafJysrCxkZGQYfROQGTO3NZe8eIluEoZiYgjU9RQ3tyGFo714xa8wYc1efBnTDZOnpBYOZKfL3RCZJ5n9PbFU3dOiQuKxcGXjiCfYIFROKwpC/vz9uFrK8+a1bt+Bvo916b9y4gdzcXITm+w8kNDRUO6stv/Pnz2PPnj34559/sG7dOsyZMwdr1qwptPdq+vTpCAoK0n5ERkaq+jqIyEkVVhhrT7YIQxERwMKFuhWSzRnaqV1bbAdy/z5w8KDxYywZJnv40Pw6Hmu+J7bqGZLX2WvSRN3HJYdSFIaeffZZDBw4EGvWrEG63rhveno61qxZg0GDBqFv376qN1Jf/lWuJUkyufJ1Xl4eNBoNli9fjqZNm6JLly6YNWsWli5darJ3aPz48UhPT9d+XL58WfXXQEROKCam4Kae9i6MzcrS1bioGYYAMZRz8aKohzJnaEejAVq1EtdNDZUpCUMlS+qum9vjbs33xFY9QwxDxZKiMPTJJ5+ga9eu6NevH4KDg+Hv7w9/f38EBwejX79+6Nq1Kz766CObNLRcuXLw9PQs0AuUmppaoLdIVqFCBVSsWBFBcvcsxLIAkiQhyUQ3q6+vLwIDAw0+iMgNREToZlwB4k3Y3oWx586JnpBSpYCwMPUfPyICaNPG/NdUVN2QkjDk6SleF2B+EXVEhOGWIEqKldkzRAooWmfIx8cHX375JWbMmIEDBw7g2n/jxWFhYWjcuLFNg4OPjw8aN26MrVu34qmnntLevnXrVjzxxBNG7/PYY49h9erVuHv3Lkr+91/J6dOn4eHhgQiO8xJRfvo9xj4+9t9vSn+IzBn2epTD0J49Yngq/0akSgqoATFUdueOsiJq+W91r15iU1Rz/3br9wxJkjrn8+ZNXU9To0bWPx45DYs2UwkMDES7du3w3HPP4bnnnkPbtm3t0oMybtw4LF68GEuWLMHJkycxduxYJCYmYvjw4QDEENcAvXUz+vbti7Jly2LQoEE4ceIEdu/ejTfeeAODBw+2WW0TEbmo7Gyxlg0AREaKIatly+zbBltMq7dG/fqiNycjo+DUfElSVkANWDajTO7Fj41V1ksXFSWKxu/fB0zUlSomF09XrVr0itvkUhSvQJ2ZmYnvvvsOe/fuRUpKCjQaDUJDQ/HYY4/hueeeQ4A5a0BYqE+fPkhLS8OUKVOQnJyMOnXqYOPGjYiKigIAJCcnG6w5VLJkSWzduhWvvPIKmjRpgrJly6J379744IMPbNZGInJRFy+KIaoSJYC33wZefhmYPx8YPdp+vTS2KJ62hqcn0LKlWKhx926xO7ssI0M3y6x8efMeT39GmbnkMKS0N9/bW2w8e/Gi6M0xMgtaMQ6RFVuKeoZOnDiB6tWr480338StW7dQqVIlRERE4NatW3jjjTdQo0YNnDhxwlZtBSDWOrp48SKysrJw8OBBtJa7cQEsXboUO3fuNDi+Zs2a2Lp1K+7du4fLly/jk08+Ya8QERUkz1CqVg14/nmxuN+//wJFrHKvKmcLQ4Buxef8m7bKQ2QlS4oAaQ5LeobkSSyWzOyVh8rUqhtiGCq2FPUMvfzyy2jdujW+/vpr+ORbJj47OxsvvPACXn75ZezYsUPVRhK5taQkMcU4JsY91zSx1+uX3zCrVRNv2n37AosWid4hvX+6bMoZw5B+EbV+7Y2S4mmZ0i05cnOBq1fFdUu+91WqAL/9xjBERVLUM/TXX3/hvffeKxCEAFHg/M477+CvwvaxISJlnGFFZEey5+vX7xkCxOJ+APDDD7rd2W0pLU0U6ALG979ylMaNxUataWnAyZO625UWTwPKt+RITQVyckTtjyWz69ScXn/jhq6mTH+4kIoFRWGoTJkyOHPmjMmvnz17FmVYVEakDmdZEdlR7P3684ehxo1FD0B2NrB0qW2eU5/cKxQZad7+W/bi4yOKlwHDKfZKi6cB5cNk8ve6QgXAS3GJq7rT6+WFJ6tX1/VwUbGhKAy9+OKLGDhwID7++GMcPXoUKSkpuHbtGo4ePYqPP/4YgwcPxjD5vykiso6zrIjsKPZ+/fnDEAD8N1MVCxYUbIvanHGITGZsvSF7DJNZUy8EqNszxCGyYk1R1J40aRL8/f0xa9YsvPnmm9qVnyVJQlhYGN5++228+eabNmkokduRV9/V38fJ3isiO5K8n5Z+CLHV68/JAS5cENflN1AAePZZYNw40bOwfTvQvr36zy1ztmn1+ozVDVkShpQOk1k6k0wm9wxduwbcvWu4CrZSDEPFmuJ1ht566y1cvXoV586dw549e7Bnzx6cO3cOV69eZRAiUlNEhOEbs5LVd4uDiAhg1Cjd5x4etnv9ly+LPbN8fQ0fPyAA6N9fXJ8/X/3n1efMPUPNmomp6leu6EKjNWFI6TCZpd/z0qWB4GBxXW63pRiGijWLFl0EgOjoaMTGxiI2NhbR0dFqtomIZPJ/0AEB5u0nVdzoB4OJE233+uUhsipVCu7uLg/9//gjkJxsm+cHnDsMlSgBNG0qrstT7OWaISUF1EqHyawNQ4A6dUPXrom2aDQsni6mFIeh+/fvY8+ePUbXE3rw4AGW2XvFVqLi6tYt3SymzEygbFnHtscR5E1LAWVr0yilP60+v7p1gRYtRL3SkiW2ef6cHF0gc8YwBBSsG7LHMJm1NUOAOnVDcvF0zZrWDbWR01IUhk6fPo1atWqhdevWqFu3Ltq0aYNkvf+U0tPTMWjQINUbSaSKpCSxY7erzMY6fdrwc/k/cXeiH4b0VpdXnbHiaX1yIfXChSIUqe3SJTFM5+cnVk12RmqGIVfrGeIQWbGnKAy99dZbqFu3LlJTU3Hq1CkEBgbiscceM9gCg8gpueJ6PfKwiUyt/ZVcibOEoWeeEbUniYnA5s3qP7/8vZaLxp1RixaibefPi++LvCaSJbPJzOkZyssTNUqAdWFIjZ4hhqFiT9Fv3d69ezFt2jSUK1cO1apVw/r169G5c2e0atUK59WYukhkC666Xk/+MMSeIds9T1FhyN8fGDhQXLdFIbUz1wvJAgN19TJr14pLDw9dgbK5jwGIniH9WZLGXL8uess0Guv2FWPPEJlBURi6f/8+vPItfPXFF1+gR48eiIuLw+n83fpEzsBV1+tx956hu3cNV35OThY7yastL0/3Rqk/ey8/uZD6l190tSxqceZp9frkobLVq8Vl+fJilqO55DCUmyt2ky+MfI4rVBAz2Swlf08vXrRsiPPqVfGz5+EBNGhgeTvIqSkKQzVr1sQBOSHr+fzzz/HEE0+gR48eqjWMSDXyej36XGG9Hv0ViQH3C0Py1gdBQaKWBtANm6jp6lXgwQOxwnFUlOnjatQA2rYV4WnxYnXb4Ao9Q4Bu09Y//xSXSobIAFF8LP8uFjVUpka9EABUrChW0X740LLeYPk9r3Zt8zekJZejKAw99dRTWLFihdGvzZ07F8899xykoro+iZRQo+g5IgKoX1/3uSus15ObK3q0AN0bkLuFIXmILDpaV1Rsi6EyuYewcuWit3yQe4fmzwe2blVvqNVVwlDLloafKw1DGo35RdRqhSFPT/G9BSyrG5JnknGIrFhTFIbGjx+PjRs3mvz6vHnzkGfrJevJfahZ9Cz3LADA+vXOv17P5ctiSMjXVyx4B7hvGKpcWReG5N4iNRU2rT6/p54SvRupqUB8vDrF+BkZuvWLnD0MlS0L1Kmj+1xpGALsH4YA3VCZJXVDrBdyC1ZPW1ixYgUyMzPVaAuRjtpFz/pBQp4F48zknoJq1UQ3P8AwBNi2Z8icMJSaKtZ8kqlRjC/3AIaEiBWTnZ1cNwRYFobMnVGmxhpDMrmIWmnPkCQxDLkJq8PQsGHDcM0dZ7mQbalZ9CxJhkHi33+ta5s96BfUhoWJ6wxDjg9DZ84UnAVlbTG+qwyRyfTDkH6Pq7lcqWcoKUkEYE9PoF4969tBTsvqMMQaIbIJY+utWFr0nJEhCmRlJ09a1zZ70H+D1A9D7vT7Ju8lZa+aIXN+ttT8uZS5WhjS7wWbOVP5MKEjwpClPUNyr1CdOmJ5BSq2nHR1L3J7ERGA/mrmGo3lRc/5e1RcqWeoRg3d3k8PHth2Swpno98zJM/yUjsMSZKyMBQRIVahlqmxeayrTKsHREDR35BbkpQPE5ozTCZJusdUY5jM0p4hFk+7DavDkCb/lGUitejvATRwoOVFz/IwbkCAuDxzRuwF5cz0w1CJErr/pt1lqOzOHSAtTVyPijLsGVKzdyw1VaxnpNHoZhwVZcgQYMwYcf2pp6wvxnelniE1hq/N6Rm6fh3IzrZ+wUWZvJn4rVviw1ysF3IbHCYj56W/ptWdO5Y/jhwgGjYUweLhQ+uW5re1zEzdf8XyG6TcO+Qu9XnyrLEyZURPgtzzcu+eugXw8pt4pUpi5p65OnQQl//8Y93z5+Xp9qBzhTCkxjChOWFI/vkPDRVrBFkrIEA33Gzu7z6Lp92K1WHo119/RUV5tguRWnJygMOHdZ/rbQismByGKlQQu04Dzl03JM8uKldOt9WBuxVR6w+RAaJQVw6Eag6VKRki09e0qbg8dUpZT0N+V6+KgOflpatrcWbyMKG86rQla3aZM0ymZr2QTOm2HJcuid5Jb2+gbl312kFOyeow1LJlS/gq+Y+KyBz//iveJGRqhKGwMNcIQ8aGTdw9DAG2KaJWssaQvnLldG+uf/9t+fPL3+sqVazbcsKehgwR358dO8Sl0mFCJT1DatQLyZRu2Cr3CtWtq6zXkFySqgXUJ0+eRBVX+O+GnJ/8h0h+A7x61fJaEf0wVKuWuO7MRdTGCmrdNQzJtR6AbcKQpT1DgG4xzL/+svz55W0t5NfmKiIigDZtLOu5MScMyWsMObJniMXTbkXVMJSdnY1LtlghltyPHIa6dROXWVnA7duWPRZ7hlyPPK3e1j1DjgxDCQnAe++J67/9Zv1K1q7CUcNklvYMMQy5hSI24jE0bty4Qr9+XX+HaSJryP+VtWwJrFgh6jKSk0VBrVL6YUieov3vv6KnyRlnQzIM2W+YTI0wtH+/8p8leYV1ubdTnqLesaNz75mnBiXDZI7qGWLxtNtRFIY+/fRTNGjQAIHyD3M+d+/eVaVR5OYePgSOHBHXmzQRhc9yGKpdW/nj6YehatXEbBh5P6jwcNWarQpJcv4wlJQkirxjYmz3xm2PMHTzpq742ZLh/QYNRJ3P9euivfpDekUpbIo6w5Bta4YSE0XvUGHf8/PnRU+0jw/wyCPqtYGclqIwFBMTg7Fjx+L55583+vUjR46gcePGqjSM3NiJE2KBwaAg8QesQgVxmyVF1Lm5Yi0ZQAQKX1/xmGfOiN4hZwtDycli3RtPT90fb8B5wlBCgm7POA8PMbNI7U1vMzJ00+flnjxA/c1a5V6h8HCx5IJSfn4iEP39txgqUxKG5Cnq+oHI2pWsXUVRw2T6Cy6qGQx//ln3+DExhf/syr1C9eurM7WfnJ6imqHGjRvjoDx8YYRGo+G6Q2Q9+Q9R48biDUNedO3qVeWPlZYmApFGA5QvL25z5rohec2Z6GjDP8JyGEpNFa/HEdTePNcUOewEB+t6EQBdGEpOFjVk1rJmiExmad1QRISuHg6wbIq6q9LvGTL2fpGWpts+R61/VpKSxM+qLC9P/Cyb+tnlEJnbURSGPvnkE4yRV141on79+sjL3/VLpJR+GAJ0fxAt6RmSe1LKldNNXXbmGWWmtmYoX14Eutxc3crM9rZypXqb5xbG2BAZIM6BvDHolSvWP4+l0+r1yesNWVJELfdYvv66ZVPUXZUchiRJ9ILmJweUkBD1prQbG5bMywN69RK9zvlxJpnbURSGwsLCEKXfbU1kC/n/EMk9Q5aEIXnFZrlnBXDuniFTWzN4e4tAB9h/qEySgC++MNyTSubhof7QjrFp9YAIg2rWDanZM3TokNg+wlxpaaLwGgBefdU9eoRkJUroFm00Vjdki3ohYytnA2Jpg7p1RS+R/PclL49hyA1ZPLX+0qVL+Ouvv7B//35Opyf1ZGcDR4+K62qEIf3iaZkr9AwZ25pBfg323JIjOxsYMQIYNUq8STRrpnsjA8S2FGq/kRubVi9ztjAUEyNmOGZlAcePm3+/bdvE+axTx72CECBCbWFF1LZYY8jYytkffCD2lsvLAxYtEj8HEycCmzeLdvn6WjZhg1yS4jA0e/ZsREZGokqVKoiNjUXz5s1RpUoVREZGYs6cOTZoIrmVf/4Rb8Blyuh6BtQIQ/JWDoCuZ+jKFefbBb6wMCS/Bnv1DN24AcTHi1oWjQaYMQPYt0/03EyZIo45flz9GiZTw2SA84UhjcayobLNm8Vlx46WP7crk8OQsSJqWxRPAwVXzp4wAVi7Fvj9d6B5c7Hi/ZQpQJcu4visLODrr9VtAzktRWFo6tSpmDRpEkaNGoWDBw/iypUrSEpKwsGDBzFq1ChMmjQJH3zwga3aSu5Av3BRXrfFmgJqYz1DpUvrPnem3qGsLF2vSGE9Q7YMQ0lJ4s1i2zbxJr9rF1CqFLB+vRgm02jEm9Sbb4rAevUqsH27um2wRxjKyNDV7OjP2rOE0iJqSQI2bRLXO3Wy7rldlTyjrLBhMlv0mBlbObtlS2DvXmD+/ILH22KCADklRVPrFy5ciK+//hpPPvmkwe3h4eFo0KABqlevjlGjRuHdd99Vs43kTvIXTwO6MJSZKXavL1XK/MczFoYAMVSWkiLCkPyfvaOdOye67EuVKthewPZhSH/avKxKFRGE8q+14usL9Okj3kC++Ua3i7sa7BGG5OLp8uUNZ6xZQmkYOn5c9HKWKCHeiN1RYcNktqgZKopGU3DSAuA+az+Rsp6htLQ01DD2H+t/qlevjlvW7OBMZGxKa8mSugCkdKjMVBhyxiJqeVp9jRrGVzO2ZRjKP21e9uOPphedGzBAXK5dK4KqGtLTdQshGpusoVYYUmOITKZ0B3u5V6hNG93sOHdT2DCZLWqGzGGsyNpd1n4iZWGoadOm+PDDD5GTk1Pgazk5OZg2bRqaOst/2eR6HjwQNUNAwVkcltYNFdYzBDjXMJmpafUyW4YhY1OPgcKn8TdvLt4oMjOBdevUaYc8GaNsWeM9gPphyJo1zdSYVi9TuoO9XC/krkNkgOlhMlstuGgOY0XW7rL2EykbJvv8888RHx+PkJAQxMXFITQ0FBqNBikpKdi9ezd8fX2xdetWW7WVirvjx8VWHOXKFdzFu0IF0XNSnHuGCiueBmwbhmJiRG+UfsAo6r9ijQZ4/nlg0iRg2TJx3VpyzZSp1ZzlN6bMTNELExxs2fOo2TMEiKGy8+fFUFl8vOnj7t4VBbuAe4chU8Nkt24B9++L6xUr2rdNgCiy7thR/HxUq8Yg5EYU9QzVrVsXp0+fxocffojAwEBcuHAB58+fR2BgID788EP8+++/eIT7uJCljBVPyywpos7K0m3rYKpn6Nw5EcCcgSPDUFaW4Tk3979iOQD99ptlBe75FVYvBAD+/mIxPsC6oTJbhCFAt3aQKTt2iJ+3KlXce/jF1DCZ3Cukv8CmvRkrsqZiT1HPEACUKlUKI0aMwIgRI2zRHnJnxoqnZZYMk8mzhby9C+52X7GiqEW6e1e8McrhyJHMDUM3b4rwotbqvIDo3cnLA+LixHVz/yuuWhV47DHgjz+A774Tqylbo6gwBIhew9RUEYYaNLDseWwVhv76q/Ad7OV6oY4dle1yX9yYGiZzVL0QuT2LFl3MzMzE7t27sXLlSqxZswaHDh2y255k8+bNQ3R0NPz8/NC4cWP8Lnc5F+GPP/6Al5cXGlj6x5Nsr7D9gCzZkkNenDA0tGBhpEajGypzhrqhtDRdfU5MjPFjypTRbSkiBz01/O9/wPLl4vonnyj/r7h/f3H5zTfWt8XcMARYvmHrvXu67TzUCkP5d7A3hfVCgqlhMkfVC5HbUxSG8vLy8Oabb6J8+fJo27Yt+vbti969e6NJkyaIjo7Ghg0bbNVOAMDKlSsxZswYTJgwAYcPH0arVq3QuXNnJBbRXZ6eno4BAwbg8ccft2n7yAr374s3ZcB4GLKkZ8hUvZDMmeqG5F6hyEggIMD4MR4etll48f33RW9Gz57Ge+WK0ru32FT22DHd6uGWUhKGLB0mO39eXJYpY3nNUX7yDvaA6Sn2Z8+KYVlvb6BtW3We11WZ2rmeYYgcRFEYeuedd/Dzzz9jxYoV2LhxIx577DH83//9H06cOIEBAwagV69e2LJli63ailmzZmHIkCEYOnQoatWqhTlz5iAyMhJffvllofcbNmwY+vbti9jYWJu1jax09KhY0yM01HjhpCU1Q0WFIWeaUaY/rb4wam/JceCAmBqv0ehWlVaqTBndDuzW9g6ZE4bkKfeWhiF5iMzaxRbzK2olanmIrGVLZWtlFUdF9QzZc40hIigMQ9988w0WLFiAJ554Ah07dsSKFSswdepUREdHY8qUKZgwYQImTZpkk4ZmZ2fj4MGDiM83UyM+Ph579+41eb+vvvoK586dw8SJE816nqysLGRkZBh8kB0UVjwNWNczpL8Vhz5n7BkyNa1epnYRtbxAar9+ptcTMoe85tB331m+Pcft2+IDsG3PkNr1QrKiFl909y049JkKQ6wZIgdRFIbu3LmDinr/tVeoUAEPHjzQLrT49NNP46i13eQm3LhxA7m5uQjN98YWGhqKFBNvDGfOnMHbb7+N5cuXw8vLvFrx6dOnIygoSPsRyf9Q7KOweiFAF4bS03VTb4uipGfITjVvJhVVPC1TMwz9/rt4g/byEkXT1ujcWawNlJwsZpZZQu4VKl/e9FAhYH0YUnONIX36O9jnn6GYlaXbtsTd64UADpOR01E8tX7FihXaz1etWoWSJUsi7L8/0Hl5efBVc4aLEZp8vQaSJBW4DQByc3PRt29fTJ48GdWL+m9bz/jx45Genq79uCz/p0K2VdhMMkD88fT3F9fN7R0qKgxVqyaCwN27uoJaRzE3DKlVMyRJYqNKQKytYu2QkY+P2J4DsHyozJwhMkAXhpKTxaa+StmqZ0h/B/tjxwy/tmePKNwOCwPq1VP3eV2RsZ4hRy64SG5PURiaMmUKpk6dimbNmiEuLg79+/c3GH7atGkTGjZsqHojAaBcuXLw9PQs0AuUmppaoLcIEL1YBw4cwKhRo+Dl5QUvLy9MmTIFR48ehZeXF7ab2FzS19cXgYGBBh9kY5mZuqEqU2FIo1E+VFZUGPL21oUARw6VyfsfAfbrGdqyRfQM+frqhsqsJc8qW7tWBEylzA1D5cuLdkuSZSHWVmGosB3s9Tdmdecp9TL57+qdO7qVz9PTddu6MAyRnSkKQ48//jj279+P9u3b49FHH8XGjRsxZswY7ddff/11/GZpF3kRfHx80Lhx4wIrXG/duhUtWrQocHxgYCCOHz+OI0eOaD+GDx+OGjVq4MiRI2gmd2mT4x05Iv4ghofrptAbo7SIuqgwBDhHEfXFi6KHw8+v4Mrb+akRhvR7hUaOVO+Np1kz0Tty754IREqZG4Y0GsuHyrKydPexxaKHpuqGWC9kSB4mA0QgAnS9QmXL6nqBiexE8aKL9erVQz0HdfOOGzcO/fv3R5MmTRAbG4uFCxciMTERw4cPByCGuK5cuYJly5bBw8MDderUMbh/SEgI/Pz8CtxODlZUvZBM7Z4hwDmKqOUhMmMbReanRhhatw44eFAsOjl+vOWPk59GI3qH3n9fDJXJRdXmMjcMASIMnTmjPAxdvCiCd8mSupWs1WQsDF25Iraa0WiADh3Uf05X5OsremYfPhRDZUFBLJ4mh7Jo0UVT5MUYbaVPnz6YM2cOpkyZggYNGmD37t3YuHEjov6bapucnFzkmkPkhGwRhu7e1XW5O3vPkDyt3pzaNmvDUG4u8N574vqYMWLISU3623MoHcJSGoYA5WFIf4jMFsNVjz4qLvV3sJd7hZo2Fb0eJM59/i05WC9EDqRqGDp79iza2ngxsZEjR+LixYvIysrCwYMH0bp1a+3Xli5dip07d5q876RJk3DkyBGbto8sUFTxtEzJKtRyWAgIEL0ApjhTz1BR9UKALgxlZlpWl7NiBXDiBFC6NPDaa8rvX5ToaLGOjiTpVrU2hyQVvUmrPmvDkNprDMnKl9ftYC//XOtvwUE6+bfk4BpD5ECqhiEixe7c0YWBosKQkp4heVHCwnqFAF0YSknRrXFjb0rCUMmSumnnSnuHLlwA3nxTXH/zTRGIbEEeHluyREwnl9/kCnP7tu5NUV5UsTCWhiFbTavXpz9UlpMDbNsmPueUekP5Z5SxZ4gcSFEYCg4OLvRDv5eGyCyHD4tegchI04sjypQUUJtTLwSIP8hyj5OjhsqUhCHAslWoExJEb4gcJPULWNXWq5dYsuDUKeDxx0W4SUgo/D7yEFlICFCiRNHPocYwma3oh6G//xbDZWXK6IbQSMg/TMaaIXIgRQXUWVlZGDFiBOrWrWv065cuXcLkyZNVaRi5CXPrhQBlPUPmhiFA1A1dvSrCUPPmRR+vpjt3dOFOSRg6d878nqGkJOCllwwXlhw9GujRwzZvPHfvih4RWV4eMGyYGCYy9XxK6oUAw81aC9slPj97hyF5iKxDBxEQScfUMBnDEDmAot/OBg0aIDIyEgMHDjT69aNHjzIMkTKWhKG0NDEV3cfH9LFKwlDNmqLg1xF1Q3LxdEiI+cNWSouoz5zRreUik9c2ssUbz5kzBW8r6vmUhiG5riQzU/S8mLPhak6Ori7JlmFIfwf7JUvEbawXKsjUMBlrhsgBFA2Tde3aFbcLqasIDg7GAKXTacm9mVs8DYiZON7e4npRQaCofcn0OXJGmdIhMkB5GIqJKdhz4ulpu0BgbImAop5PaRjy99dNjTd3qCwxUQQiP7/C17Oylv4O9vIbPMNQQfrDZBkZuvWGjG3UTGRjinetL2zD08jISHz11VdWN4rcxO3bul4Ec8KQklWolfYMAY7tGVKwZYziMBQRAehvcOzpCSxYYLvhiIgIYOFCwwBW1PMpDUOA8rqhfft09ytqPSdryStRA+Lni2/wBekPk8n1QmXKFL4vHZGNcDYZOc6hQ+KycmWgXDnz7mNuEbXSmiFA1OFkZZnXDrVY0jNkyf5k8k7yr70mgseQIebf1xJDhgD79+tCR1G1WEqm1cuUhKGEBN12IadPF13Qba0HD3TXT52y/fO5Iv1hMtYLkYMxDJHjHDwoLs2pF5LZomeoQgXxhzkvT1dgay/2GCaTJDFrDwCefdZ+bzhNmgBPPimuL1hg+jhJsm3PkLEC8mHDzJvyb4mkJEC/h1ySbPt8rkp/mIz1QuRgDEPkOPJq5TEx5t/HnDCUl2f+OkOAGM5xxFCZJOmGyWwZhpKSRNG5pydg761ohg0Tl8uW6VYEz+/WLV29iDlrDMnMDUOFFZDbgr2fz1XpD5OxZ4gcjGGIHCMhAfj5Z3F9xgzzhxHMWYX61i2x5xFg/v5TjiiivnJFBAQvL92qxebQX2co/5uuMXKvUO3aorjXntq3F68tPR1YudL4MXKvUGiosg06zQ1DrlBA7o70h8m4xhA5GMMQ2Z88bCGT16ExZxjBnJohucckOFhsCGkOR/QM7dkjLiMjdbPkzCEHvIcPdftfFUYOQw0bKmufGjw8dL1DpobKLBkiA8wPQxERgP7aaPYqIPf0tM/zuSpjw2Q8R+QgDENkf9YMI5gzTKZkiExm756hhASgb19x/cIFZQW2vr66dXXMGSpzZBgCgBdeEGFv/35dW/RZG4auXtX1BBqTmAj884+4vmyZ/QrIL14Eduywz/O5ImPDZKwZIgdRNQwNHDgQ7dq1U/MhqTiyZtjCnDCkpHhaJvcM/fuveUNPlsrNFcODL75oXUGvki05HB2GQkKAp58W1431DlkykwwQm6L6+orzeOWK6eMWLxbf03btxIwye/U+REQAbdqwt8MUziYjJ6JqGKpYsSKilBRAknuKiDB8Y1YyjCCHodRUwy0f9FkShqpUEb0X9+6pM+snKUn0CiQliY8lS8RMrtBQoHt3wyAEKC+wNbeIOi1NN4wkLwToCPJQ2fLlumJpmaU9Qx4eup4EU0NlDx+KMAQAw4cre3yyLTkMZWbq9ifjekzkIKpuljNt2jQ1H46Ks7Q0cTl7NvDMM+b/R1i+vAhPubkiEBlbSdiSMOTtLXqmTp4UH/IQjCUSEkRNlKkeppIlxf5d+pQW2Jobho4cEZdVq9p2c9aixMWJGXOnTolApB9MLA1DgPg+nT1rOgxt2CB6EUNCgCeeUP74ZDtyGJIFBQGlSjmmLeT2VOkZys3NxZEjR3DLnGJOouvXxQabADBokLKucU9P3aKDpoqoLQlDgK5uaMMGy3uH5OLw/EGoYUPg/fdF0fTNm6K3wpoCW3PDkKOHyGQajS4AzZ+v6xmzdI0hmdwTLf885ScPyw0ZUvhedmR/vr6GExxYL0QOZFEYGjNmDBL+K/jMzc1FXFwcGjVqhMjISOzcuVPN9lFxJC+2WL26Zb0VRdUNKdmXTJ+8avAXX4g3WUtWDTZWHA4As2YBkycDjz0meqGsLbA1NwzJq3w7OgwBwIAB4s3v6FFRTA2IYCj3klnSG1fYjLJz54AtW0QQe/FFy9pMtqXfO8R6IXIgi8LQmjVrUL9+fQDAhg0bcOHCBfz7778YM2YMJkyYoGoDqRiyZOVpfeaGISU9Q0lJwK+/6j5XMt1fn7EFJE0NgVlTYOtqPUOAmAHXp4+4LvfYyL1CYWHK1hiSFRaGFi0Slx07Ki/OJvvQ/2eIYYgcyKIwdOPGDYT998d448aN6NWrF6pXr44hQ4bg+PHjqjaQiiF5p3pnCkNnzlhf1CzTnylnqzVmzNmfLDNTt92HM4QhQDdU9v33Yo0ka4bIANNhKCtLFK0DuuJtcj7sGSInYVEYCg0NxYkTJ5Cbm4tNmzahffv2AIB79+7BU66DIDLF2jBU2CrUDx8CN26I60rCkFqrBi9eLEJV8+a2XWPGnJ6hY8dEW8LClNdP2Urz5mIBxPv3gW++sXxavUw/DOmH2XXrRG1aeDjQrZt1bSbb0Q9DrBkiB7IoDA0aNAi9e/dGnTp1oNFo0KFDBwDAX3/9hZryei1UNP3p1+4iJUW8Xo3G8t6Kwlahvn5dvCl6egJly5r/mPKqwfqBaNYsZf+t5uTopnG/+qpt15iRw82NG6YXHHSmITKZfiH1ggW6MGRpz5D8Bnr3LnD7tu52eRjuxRfFdifknDhMRk7CojA0adIkLF68GC+99BL++OMP+P43I8DT0xNvv/22qg0sthISRJFuu3aWF+u6IrleqGZNMcXcEoUNk8k9JSEhutla5pKLmqtWFZ/nn/5elF9+EYv/lS8PPPWUsvsqVbaseH2SJAKgMc4YhgCgXz+gRAngxAlg7Vpxm6VhyN9fnG9AN1T277/Azp0i2A4dam1ryZY4TEZOwqIwdPHiRTzzzDMYO3YsIvR+gAcOHIgnuJZH0ZKSxH+s8qwjS4t1XZG1xdNA4WHIkq049EVGApMmieuffSZqT8wl90YMHmz+nmiW8vTU7VFmahVqZw1DQUG6rUjk8GppGAIK1g0tXCguu3XjG6yzYxgiJ2FRGKpSpQpatmyJBQsW4ObNm2q3qfhTs1jX1VhbLwTowpCxXdstXWNIX58+4g/ztWvAt9+ad58LF4BNm8R1e03jLqxu6OFDQJ7M4GxhCCi4GrSfn+WPpR+G7t8Hli4Vn7Nw2vnJw2QlSohtOYgcxKIwdODAATRv3hwffPABwsPD8cQTT2D16tXIUvJftDuzZm8uV6dGGAoNFecvJ0dXLC1TIwx5ewNjxojrn3xi3l5lixaJgBsfrxtms7XCwtDJk0B2tvjP2xmnlTdurFswEQDatrV8qFg/DK1eLWapRUWJKfXk3OTZjvfuuVe5ADkdi8JQo0aN8PHHHyMxMRG//vorQkJCMGzYMISEhGDw4MFqt7H4iYgARo3SfW6r6dfO5upVMbTl4WHdPlne3ro6kfxF1GqEIUD07gQGilCxcWPhx2ZnO2Yad2FhSB4ia9Cg4Cw5Z5CUZDgd3pqhYv0wpF84zZmtzi0pSVczBrhXuQA5Hav+Smo0GrRt2xaLFi3Ctm3bUKVKFXz99ddqta14k2smQkNtN/3a2ci9QrVri25xa5iqG1IrDAUG6oLNRx8VfuxPP4khtQoVxCas9mJOGHLGITJA3aFiOQzt2AHs3Stmj/GfMufnzuUC5HSsCkOXL1/GzJkz0aBBAzz66KMICAjA3Llz1Wpb8VaunLjMzCz+PUIyNYqnZUWFIaVbcRjz6qvijXX3bt32EcbIvRFDh4peK3tx5TCk1rpOgG64TS4kf/JJ3c8HOS81fwaIrGRRGFq4cCHi4uIQHR2Nr7/+Gr1798a5c+ewZ88ejBgxQu02Fk9yGLp7V7cnVnGnRr2QzNY9QwBQsaKuB+/jj40fc/o08NtvjpnGbSoM5eXpdqtv1MiuTTKbvK6TNZvVyvLvacbCadeg5s8AkZUsWo1s6tSpePbZZ/Hpp5+igTW1H+4sKEj88ufmAmlp4o23OJMk1wtDAPD668CyZcAPPwDnzwNVqhh+XZ7G3aWLZRuNWsNUGDp/XszM8fUV6zk5qyFDRJHz2bOiN8DSN8H16w0/lxdyJOen1s8AkZUsCkOJiYnQ5J8NRcpoNKJ36No1MSOquIehpCQgNVUEwHr1rH88eUsO/QLqe/d003PVCkN164o/1ps3A7NnA59/rvvagweOncZtan8yeYisbl37DttZIiLCujfApKSC0/RHjAA6d+Ybq6uw9meASAUWDZMxCKlE3i4i//Tw4kjuFapTx7LdyfMz1jMk14z4+Rku5matN94Ql0uWiF482Q8/iM8jI8Wbr73JgS8jQwRBmbPXC6npzJmCSx+wCJeIFHLCObduRK4bcocwpGbxNFB4GAoLK7iOkzXatRNT1O/dA778Une7o6dxBwbqFivUX4XancIQi3CJSAUMQ44khyH93obiSs16IcAwDMnTc9WuF5JpNLreoc8/F8Nj//sf8Pvv4o3XUcsiaDS61+quYYhFuESkAoYhR3KXniG1i6cBXQjIzgbkLWFsFYYAoFcvMRyWmgp8842uV+iJJ3T1S46Qv4g6OVkEIw8PdWqzXIG8we6OHe6zZhcRqYphyJHcJQxduiR6v7y9RVGvGvz8gOBgcV0eKrNlGPL2BsaOFdenTXPMitPG5A9Dcq9QjRrWL2zpSiIigDZt2CNERBZRHIZOnTqFSZMm4fHHH0fVqlVRoUIF1KtXDwMHDsR3333H/cmUcJcwJPcK1a2r7m7u+euGbBmGALGOkL+/6H3IzBS3Xbpkm+cyl6kw5A5DZEREKjE7DB0+fBgdOnRA/fr1sXv3bjz66KMYM2YMpk6diueffx6SJGHChAkIDw/HjBkzGIrM4S5hSO3iaZm9w1B6esEFMkeMcOxeSgxDRERWM3udoSeffBJvvPEGVq5ciWB5eMKIffv2Yfbs2fjkk0/wzjvvqNLIYstdptarXS8ks3cYKmwvJUcNzzAMERFZzeyeoTNnzmDUqFGFBiEAiI2NxapVq/D6669b3Thj5s2bh+joaPj5+aFx48b4/fffTR67du1adOjQAeXLl0dgYCBiY2OxefNmm7TLIu4wm8wWxdMyOQzJCy+quS+ZMc44jVs/DKWni9WnAYYhIiIFzA5DPj4+ih5Y6fHmWLlyJcaMGYMJEybg8OHDaNWqFTp37ozExESjx+/evRsdOnTAxo0bcfDgQbRt2xbdu3fHYfm/Z0dzh2Gy8+eB27cBHx/gkUfUfWx5Fpc8vd7WPUPOOI1bPwzJ+5FVqqQrLicioiIpKqDevn07ateujQx5ywM96enpeOSRRwrtqbHWrFmzMGTIEAwdOhS1atXCnDlzEBkZiS/1F8LTM2fOHLz55pt49NFHERMTg2nTpiEmJgYbNmywWRsVkcPQvXuGKwgXJ3KvUP36IhCpSX+YLD0dkOvUbNUzBDjfNG79MHTokLjOXiEiIkUUhaE5c+bgxRdfRKCRrQ6CgoIwbNgwzJo1S7XG6cvOzsbBgwcRHx9vcHt8fDz27t1r1mPk5eXhzp07hQ71ZWVlISMjw+DDZkqV0u0dVVyHymxVPA0YhiG5VygoSJ3tPgrjTNO45eCXlQXs3CmuO+tO9URETkpRGDp69Cg6depk8uvx8fE4KL/5qezGjRvIzc1FaL7/+kNDQ5GSf6NKEz755BNkZmaid+/eJo+ZPn06goKCtB+RkZFWtbtQ8matQPEdKrNVvRBgPAzZaojMWfn5iQAIAL/9Ji7ZM0REpIiiMHTt2jV4F7ILtpeXF65fv251owqTf5NYSZLM2jh2xYoVmDRpElauXImQkBCTx40fPx7p6enaj8uXL1vd5kIV5xlleXn26Rm6dw84fVpcd7cwBOhes7z2EcMQEZEiisJQxYoVcfz4cZNfP3bsGCrIb1AqK1euHDw9PQv0AqWmphboLcpv5cqVGDJkCFatWoX27dsXeqyvry8CAwMNPmyqOM8oO3tW7Kju5wfUrq3+4wcE6Hanl4vi3TkMAeLnqWJFx7WFiMgFKQpDXbp0wfvvv48H+ReeA3D//n1MnDgR3bp1U61x+nx8fNC4cWNs3brV4PatW7eiRYsWJu+3YsUKvPDCC/juu+/QtWtXm7TNKsV5mEzuFWrQAPAye0krZeTwzTAkNGwohl+JiMhsit6h3n33XaxduxbVq1fHqFGjUKNGDWg0Gpw8eRJffPEFcnNzMWHCBFu1FePGjUP//v3RpEkTxMbGYuHChUhMTMTw4cMBiCGuK1euYNmyZQBEEBowYAA+/fRTNG/eXNur5O/vjyC5zsLRinMYsmW9kKxCBeDUKeDYMfE5w5Dj2kFE5KIUhaHQ0FDs3bsXI0aMwPjx4yH9txqvRqNBx44dMW/evCKHrKzRp08fpKWlYcqUKUhOTkadOnWwceNGREVFAQCSk5MN1hxasGABcnJy8PLLL+Pll1/W3j5w4EAsXbrUZu1UhGHIOnLP0P374tLdw1ClSo5rBxGRi1I8dhEVFYWNGzfi1q1bOHv2LCRJQkxMDMqUKWOL9hUwcuRIjBw50ujX8gecnfJUY2dWXMNQbq5u3Rt7hCGZO4YhuXgcAEaPFjVajl7/iIjIhVhcyFGmTBk8+uijarbFPRXXMHT6NHD3LlCiBFCzpu2eR16FWuZuYSgpCdD/JyAvDxg2DOjY0TnWQSIicgGKCqjv37+P6dOn4+2330ayvDkmWccVp9YnJYkVmAvbrV0unm7YULd9hS3k7xmy5erTzqiwzWOJiMgsisLQkCFDcPbsWZQtW7bIKepkJlebWj9njqhLadcOiIoCEhKMH2ePeiHAMAxpNED58rZ9PmfjjJvHEhG5GEVhaOfOnRg3bhzeeOMNnDlzBqmpqbZql/vQHybL/x++s9myBRg7VtfOvDxg6FBgzBhgzx7g4UPdsX/8IS6rVLFtm/TDUPnytpvC76yccfNYIiIXo5Ek89+Bn3vuOZQqVQrVq1fH/PnzcdYNuuIzMjIQFBSE9PR02yzAePeu2KNMvh4QoP5zqGHtWqBvX91mqMYEBooeo4AAYPlycZuHh3iztlVBb3o6ULq0uF6vHnD0qG2ex9klJYmhsWrVGISIiKDs/VtRz9DixYsRFRWFa9eu4Td5HySyTkAA4Osrrjtj3ZAkAVOnAk8/bTwIeXgA3bsDwcFitekff9QFIUBX0FtYfZE1AgNFkTbgfsXT+pxp81giIhejKAwFBARgwoQJ+Oijj7Rr+5CVnHmz1nv3gD59gPffF5+PHi2GYPSHZBYuBNavB1JTgb//BgYPLvg4tizo1a8TknvYiIiIFFAUhshGnHFG2eXLQMuWwOrVgLc3sGgR8OmnwEsvARcvitlkFy/qhr88PUWx9OTJ9i3oTUgALl0S19euNV3QTUREZILZYWj48OFm7+C+cuVKLNcfKqHCOcuMMnnK/E8/AY8+Kvb7Kl8e+O03USgtK2xIxp4FvUlJIpzJJMm2Q3JERFQsmT31pnz58qhTpw5atGiBHj16oEmTJggPD4efnx9u3bqFEydOYM+ePfj+++9RsWJFLFy40JbtLl6cYZgsIUEEi7w83W316okhMKVDokOGiEX/bF3Qe+aMYXsB3ZAca2eIiMhMZoehqVOn4pVXXkFCQgLmz5+Pf/75x+DrpUqVQvv27bF48WLEx8er3tBizdFhSO5h0Q8WGg2wapXyICSLiLB9IJHX2NFvN9fYISIihRQtyhISEoLx48dj/PjxuH37Ni5duoT79++jXLlyqFq1KjQaja3aWbw5OgwZ62GRJCA5GahRwzFtMoc8JDdsmOgR4ho7RERkAYtXqCtdujRKy+u7kHUcHYZcuYfFXkNyRERUbHE2mTOwNgyZs1dYYSIixLR5mav1sHCNHSIisgLDkDOQp9ZbMpssIUHU9RS1V1hR5IULO3Y0nDJPRERUzDEMOQNLe4byFz5bs9rzrl3isk8f9rAQEZFbURSGEhMToWArMzKXpZu1Fja1XIn794H9+8X11q2V3ZeIiMjFKQpD0dHRuH79uq3a4r7kMJSdLTZrNZdc+KzPksLnv/4SO86Hh9t+l3kiIiInoygMsVfIRkqUAPz9xXUlQ2UREcCgQYa3WVL4vHu3uGzdWqwvRERE5EZYM+QsLK0bqlxZd93XF+jbV/lzy2EoLk75fYmIiFyc4nWGFi9ejJIlSxZ6zGj9adpknrJlxeaoSmeUyZuUAkBWliiE7tTJ/PtnZwN794rrrBciIiI3pDgMzZ8/H57yJpxGaDQahiFLWNozJIehoCAgPR3YtElZGDp4UBRQlysH1Kql7LmJiIiKAcVh6MCBAwgJCbFFW9ybtWGof39g7lwRhpSQh8hatWK9EBERuSVFNUPce8yGLAlDkgQkJorrgweLmWSnTolFE82lXzxNRETkhjibzFlYEoZSU4EHD0SPziOPALGx4vbNm827f24usGePuM4wREREbkpRGJo4cWKRxdNHjhyxpj3uy5IwJA+RhYcDPj66WiFzh8qOHQMyMoDAQKB+ffOfl4iIqBhRHIZKyHtY6UlPT8e8efPQuHFjNGnSRLXGuRV5fzJLwlBUlLjs2FFc/vabWESxKPIQWcuWYoiNiIjIDVm1ztD27dvx/PPPo0KFCpg8eTIqV67MoTRLyT1DSqbWy2FIXmuoUSPxOHfuAPv2FX1/eT8yDpEREZEbUxyGkpKS8MEHH6Bq1aro0aMHJEnCmjVrcPXqVUyePNkWbXQP1gyTyT1DHh663qGihsokicXTREREUBiGunTpgpiYGOzbtw9TpkzBtWvXsHz5cnTp0gWenp6cbWYNSzZrzR+GAPPrhk6eFL1Q/v5A48bK2kpERFSMKFpnaNOmTejbty/GjBnD2iC1yTVDOTmiqDkoqOj7yFPo9cNQfLy4PHwYuHYNCA01fl+5V6hFC1F8TURE5KYU9Qz98ccf8Pf3R7t27VCjRg1MmTIFZ8+etVXb3Iu/PxAQIK6bO1RmrGcoJETUDgHAli2m78shMiIiIgAKw1BsbCwWLVqElJQUvPXWW9iyZQtq1KiB5s2b4/PPP8e1a9ds1U73oKRu6PZt0YMEAJUqGX6tqKEy1gsRERFpWTSbrESJEhg8eDD27NmDEydOoHXr1pg2bRrat2+vdvvcizxUZs6MMrlXqFw5XY+STC6i3rxZLKyY3/nzwJUrgLc30KyZ5e0lIiIqBqyaWg8ANWrUwMyZM5GUlIS1a9eia9euarTLPSnpGTI2RCaLjQVKlRKh6tChgl+Xe4WaNhXDc0RERG7M6jAk8/T0xJNPPon169er9ZDuR60w5O0NyL10xrbm4BAZERGRlmphiFSgVhgCCl9vSA5DcXHK2kdERFQMMQw5E1uEoX37gFu3dLcnJYmaIQ8PMa2eiIjIzTEMORM1w1DlykDNmkBentirTPb77+KyUSNRV0REROTmGIaciSWzyeR9yYyRp9jr1w1xPzIiIiIDLheG5s2bh+joaPj5+aFx48b4Xe7pMGHXrl1o3Lgx/Pz8UKVKFcyfP99OLbWAuT1D9+8DqaniuqmeIcCwbkje4oPF00RERAZcKgytXLkSY8aMwYQJE3D48GG0atUKnTt3RmJiotHjL1y4gC5duqBVq1Y4fPgw3nnnHYwePRo//PCDnVtuJnPDkNwrVKoUULq06ePi4gA/P1EndOKECFAnT4qvtWxpdXOJiIiKA5cKQ7NmzcKQIUMwdOhQ1KpVC3PmzEFkZCS+/PJLo8fPnz8flSpVwpw5c1CrVi0MHToUgwcPxscff2znlptJDkNpaaLWxxT9eqHCNsf199fNGNu0CdizR1yvW1c3JEdEROTmXCYMZWdn4+DBg4iXNyL9T3x8PPbu3Wv0Pvv27StwfMeOHXHgwAE8fPjQ6H2ysrKQkZFh8GE3ckDJzQXS000fV1TxtD791ag5REZERFSAy4ShGzduIDc3F6H5dmEPDQ1FSkqK0fukpKQYPT4nJwc3TAxFTZ8+HUFBQdqPyMhIdV6AOXx9dTO8ChsqUxKG5CLqXbt0hdQMQ0RERFouE4ZkmnzDQpIkFbitqOON3S4bP3480tPTtR+XL1+2ssUK6Q+VmaIkDNWsKTZyzc4G/v1X3NaqlXVtJCIiKkZcJgyVK1cOnp6eBXqBUlNTC/T+yMLCwowe7+XlhbImamZ8fX0RGBho8GFXcrvU6hnSaHS9Q4CYil+hgsXNIyIiKm5cJgz5+PigcePG2Lp1q8HtW7duRQsTKynHxsYWOH7Lli1o0qQJvL29bdZWq5gzo0xJGAIAT0/D+yYkWNY2IiKiYshlwhAAjBs3DosXL8aSJUtw8uRJjB07FomJiRg+fDgAMcQ1YMAA7fHDhw/HpUuXMG7cOJw8eRJLlixBQkICXn/9dUe9hKIVFYYePgSuXBHXzQlDSUnAggW6zyUJGDZM3E5ERETwcnQDlOjTpw/S0tIwZcoUJCcno06dOti4cSOi/gsFycnJBmsORUdHY+PGjRg7diy++OILhIeH47PPPsPTTz/tqJdQtKLC0JUrYtq9jw9gYnjQwJkzBafp5+YCZ88CERHWtZWIiKgYcKkwBAAjR47EyJEjjX5t6dKlBW6Li4vDoUOHbNwqFRUVhuQhskqVxGarRYmJEcfpByJPT6BaNevaSUREVEy41DCZWyhqNpk5e5Lpi4gAFi7U1Q15eophM/YKERERAXDBnqFir6jZZBcviktzi6cBYMgQsfji2bOiR4hBiIiISIthyNmYO0ymJAwBIgAxBBERERXAYTJnY6swREREREYxDDkbOQzdvClmfeXHMERERKQqhiFnI9cM5eUBt28bfi0vD5CXDmAYIiIiUgXDkLPx9gaCgsT1/ENl166JPcY8PICKFe3fNiIiomKIYcgZmZpeLw+RVawoQhMRERFZjWHIGZmaXs96ISIiItUxDDkjUzPKGIaIiIhUxzDkjBiGiIiI7IZhyBkVFYbM3YqDiIiIisQw5IxMhSFLtuIgIiKiQjEMOSNjs8kkicNkRERENsAw5IyMzSa7dQu4e1dcr1TJ/m0iIiIqphiGnJGxYTK5VygkBPD3t3+biIiIiimGIWdUWBjiEBkREZGqGIackRyGbt0CcnLEdYYhIiIim2AYckbBweJSkkQgAhiGiIiIbIRhyBl5eQFlyojr8owyhiEiIiKbYBhyVvnrhhiGiIiIbIJhyFnln17PMERERGQTDEPOSr9nKDNTF4oYhoiIiFTFMOSs9MOQ3CsUFASULu2wJhERERVHDEPOylgYYq8QERGR6hiGnJX+/mQMQ0RERDbDMOSs2DNERERkFwxDzkp/NhnDEBERkc14OboBZIJ+z5DHf5mVYYiIiEh1DEPOSj8M3b8vrjMMERERqY5hyFnJYej2bSA9XVxnGCIiIlIda4acVZkygEYjrksS4OcHhIQ4tk1ERETFEMOQs/L01O1eDwCVKunCEREREamGYciZyUNlAIfIiIiIbIRhyJnJ0+sBoHJlhzWDiIioOGMYcmbsGSIiIrI5hiFnxjBERERkcwxDzoxhiIiIyOYYhpyZfhjy8XFcO4iIiIoxlwlDt27dQv/+/REUFISgoCD0798ft2/fNnn8w4cP8dZbb6Fu3boICAhAeHg4BgwYgKtXr9qv0dY6cUJ3vUULICHBcW0hIiIqplwmDPXt2xdHjhzBpk2bsGnTJhw5cgT9+/c3efy9e/dw6NAhvPfeezh06BDWrl2L06dPo0ePHnZstRWSkoCvv9Z9npcHDBsmbiciIiLVuMR2HCdPnsSmTZvw559/olmzZgCARYsWITY2FqdOnUKNGjUK3CcoKAhbt241uO3zzz9H06ZNkZiYiEqVKtml7RY7c0asPK0vNxc4exaIiHBMm4iIiIohl+gZ2rdvH4KCgrRBCACaN2+OoKAg7N271+zHSU9Ph0ajQenSpU0ek5WVhYyMDIMPh4iJ0e1WL/P0BKpVc0x7iIiIiimXCEMpKSkIMbIvV0hICFJSUsx6jAcPHuDtt99G3759ERgYaPK46dOna+uSgoKCEBkZaXG7rRIRASxcKAIQIC4XLGCvEBERkcocGoYmTZoEjUZT6MeBAwcAABoj+3JJkmT09vwePnyIZ599Fnl5eZg3b16hx44fPx7p6enaj8uXL1v24tQwZAhw8SKwY4e4HDLEcW0hIiIqphxaMzRq1Cg8++yzhR5TuXJlHDt2DNeuXSvwtevXryM0NLTQ+z98+BC9e/fGhQsXsH379kJ7hQDA19cXvr6+RTfeXiIi2BtERERkQw4NQ+XKlUM5/bV0TIiNjUV6ejr279+Ppk2bAgD++usvpKeno0WLFibvJwehM2fOYMeOHSirv9cXEREREVykZqhWrVro1KkTXnzxRfz555/4888/8eKLL6Jbt24GM8lq1qyJdevWAQBycnLwzDPP4MCBA1i+fDlyc3ORkpKClJQUZGdnO+qlEBERkZNxiTAEAMuXL0fdunURHx+P+Ph41KtXD998843BMadOnUJ6ejoAICkpCevXr0dSUhIaNGiAChUqaD+UzEAjIiKi4k0jSfkXsyF9GRkZCAoKQnp6epH1RkREROQclLx/u0zPEBEREZEtMAwRERGRW2MYIiIiIrfGMERERERujWGIiIiI3BrDEBEREbk1hiEiIiJyaw7djsMVyMswZWRkOLglREREZC75fduc5RQZhopw584dAEBkZKSDW0JERERK3blzB0FBQYUewxWoi5CXl4erV6+iVKlS0Gg0jm5OsZKRkYHIyEhcvnyZq3vbAc+3ffF82xfPt325wvmWJAl37txBeHg4PDwKrwpiz1ARPDw8EBER4ehmFGuBgYFO+8tUHPF82xfPt33xfNuXs5/vonqEZCygJiIiIrfGMERERERujWGIHMbX1xcTJ06Er6+vo5viFni+7Yvn2754vu2ruJ1vFlATERGRW2PPEBEREbk1hiEiIiJyawxDRERE5NYYhoiIiMitMQyRVXbv3o3u3bsjPDwcGo0GP/74o8HXr127hhdeeAHh4eEoUaIEOnXqhDNnzhgck5KSgv79+yMsLAwBAQFo1KgR1qxZY3DMrVu30L9/fwQFBSEoKAj9+/fH7du3bfzqnI8a5/vcuXN46qmnUL58eQQGBqJ37964du2awTE838D06dPx6KOPolSpUggJCcGTTz6JU6dOGRwjSRImTZqE8PBw+Pv7o02bNvjf//5ncExWVhZeeeUVlCtXDgEBAejRoweSkpIMjuH5Vu98L1y4EG3atEFgYCA0Go3R88jzrc75vnnzJl555RXUqFEDJUqUQKVKlTB69Gikp6cbPI4rnG+GIbJKZmYm6tevj7lz5xb4miRJePLJJ3H+/Hn89NNPOHz4MKKiotC+fXtkZmZqj+vfvz9OnTqF9evX4/jx4+jZsyf69OmDw4cPa4/p27cvjhw5gk2bNmHTpk04cuQI+vfvb5fX6EysPd+ZmZmIj4+HRqPB9u3b8ccffyA7Oxvdu3dHXl6e9rF4voFdu3bh5Zdfxp9//omtW7ciJycH8fHxBj+7M2fOxKxZszB37lz8/fffCAsLQ4cOHbR7GgLAmDFjsG7dOnz//ffYs2cP7t69i27duiE3N1d7DM+3euf73r176NSpE9555x2Tz8Xzrc75vnr1Kq5evYqPP/4Yx48fx9KlS7Fp0yYMGTLE4Llc4nxLRCoBIK1bt077+alTpyQA0j///KO9LScnRwoODpYWLVqkvS0gIEBatmyZwWMFBwdLixcvliRJkk6cOCEBkP7880/t1/ft2ycBkP79918bvRrnZ8n53rx5s+Th4SGlp6drj7l586YEQNq6daskSTzfpqSmpkoApF27dkmSJEl5eXlSWFiY9H//93/aYx48eCAFBQVJ8+fPlyRJkm7fvi15e3tL33//vfaYK1euSB4eHtKmTZskSeL5NsWS861vx44dEgDp1q1bBrfzfBtn7fmWrVq1SvLx8ZEePnwoSZLrnG/2DJHNZGVlAQD8/Py0t3l6esLHxwd79uzR3tayZUusXLkSN2/eRF5eHr7//ntkZWWhTZs2AIB9+/YhKCgIzZo1096nefPmCAoKwt69e+3zYlyAOec7KysLGo3GYKE0Pz8/eHh4aI/h+TZO7voPDg4GAFy4cAEpKSmIj4/XHuPr64u4uDjteTp48CAePnxocEx4eDjq1KmjPYbn2zhLzrc5eL6NU+t8p6enIzAwEF5eYutTVznfDENkMzVr1kRUVBTGjx+PW7duITs7G//3f/+HlJQUJCcna49buXIlcnJyULZsWfj6+mLYsGFYt24dqlatCkDUFIWEhBR4/JCQEKSkpNjt9Tg7c8538+bNERAQgLfeegv37t1DZmYm3njjDeTl5WmP4fkuSJIkjBs3Di1btkSdOnUAQHsuQkNDDY4NDQ3Vfi0lJQU+Pj4oU6ZMocfwfBuy9Hybg+e7ILXOd1paGqZOnYphw4Zpb3OV880wRDbj7e2NH374AadPn0ZwcDBKlCiBnTt3onPnzvD09NQe9+677+LWrVvYtm0bDhw4gHHjxqFXr144fvy49hiNRlPg8SVJMnq7uzLnfJcvXx6rV6/Ghg0bULJkSQQFBSE9PR2NGjUy+J7wfBsaNWoUjh07hhUrVhT4Wv5zYs55yn8Mz7chtc93UY9h6eMUF2qc74yMDHTt2hW1a9fGxIkTC32Mwh7HUbwc3QAq3ho3bowjR44gPT0d2dnZKF++PJo1a4YmTZoAEDOb5s6di3/++QePPPIIAKB+/fr4/fff8cUXX2D+/PkICwsrMNsJAK5fv17gvxZ3V9T5BoD4+HicO3cON27cgJeXF0qXLo2wsDBER0cDAM93Pq+88grWr1+P3bt3IyIiQnt7WFgYAPGfb4UKFbS3p6amas9TWFgYsrOzcevWLYPeodTUVLRo0UJ7DM+3jjXn2xw834bUON937txBp06dULJkSaxbtw7e3t4Gj+MK55s9Q2QXQUFBKF++PM6cOYMDBw7giSeeACBmfgCAh4fhj6Knp6d2dlNsbCzS09Oxf/9+7df/+usvpKena99QyJCp862vXLlyKF26NLZv347U1FT06NEDAM+3TJIkjBo1CmvXrsX27du1YVEWHR2NsLAwbN26VXtbdnY2du3apT1PjRs3hre3t8ExycnJ+Oeff7TH8HwLapxvc/B8C2qd74yMDMTHx8PHxwfr1683qFkEXOh8O6Bom4qRO3fuSIcPH5YOHz4sAZBmzZolHT58WLp06ZIkSWJmwY4dO6Rz585JP/74oxQVFSX17NlTe//s7GypWrVqUqtWraS//vpLOnv2rPTxxx9LGo1G+uWXX7THderUSapXr560b98+ad++fVLdunWlbt262f31Opq151uSJGnJkiXSvn37pLNnz0rffPONFBwcLI0bN87gGJ5vSRoxYoQUFBQk7dy5U0pOTtZ+3Lt3T3vM//3f/0lBQUHS2rVrpePHj0vPPfecVKFCBSkjI0N7zPDhw6WIiAhp27Zt0qFDh6R27dpJ9evXl3JycrTH8Hyrd76Tk5Olw4cPS4sWLZIASLt375YOHz4spaWlaY/h+VbnfGdkZEjNmjWT6tatK509e9bgcVzt55thiKwiT1/N/zFw4EBJkiTp008/lSIiIiRvb2+pUqVK0rvvvitlZWUZPMbp06elnj17SiEhIVKJEiWkevXqFZhqn5aWJvXr108qVaqUVKpUKalfv34Fpsy6AzXO91tvvSWFhoZK3t7eUkxMjPTJJ59IeXl5BsfwfEtGzzMA6auvvtIek5eXJ02cOFEKCwuTfH19pdatW0vHjx83eJz79+9Lo0aNkoKDgyV/f3+pW7duUmJiosExPN/qne+JEycW+Tg83+qcb1N/jwBIFy5c0B7nCudbI0mSZKteJyIiIiJnx5ohIiIicmsMQ0REROTWGIaIiIjIrTEMERERkVtjGCIiIiK3xjBEREREbo1hiIiIiNwawxARERG5NYYhIiIicmsMQ0REFsjNzdVuJkxEro1hiIhc3rJly1C2bFlkZWUZ3P70009jwIABAIANGzagcePG8PPzQ5UqVTB58mTk5ORoj501axbq1q2LgIAAREZGYuTIkbh7967260uXLkXp0qXx888/o3bt2vD19cWlS5fs8wKJyKYYhojI5fXq1Qu5ublYv3699rYbN27g559/xqBBg7B582Y8//zzGD16NE6cOIEFCxZg6dKl+PDDD7XHe3h44LPPPsM///yDr7/+Gtu3b8ebb75p8Dz37t3D9OnTsXjxYvzvf/9DSEiI3V4jEdkON2olomJh5MiRuHjxIjZu3AgA+PTTT/HZZ5/h7NmziIuLQ+fOnTF+/Hjt8d9++y3efPNNXL161ejjrV69GiNGjMCNGzcAiJ6hQYMG4ciRI6hfv77tXxAR2Q3DEBEVC4cPH8ajjz6KS5cuoWLFimjQoAGefvppvPfeewgICEBeXh48PT21x+fm5uLBgwfIzMxEiRIlsGPHDkybNg0nTpxARkYGcnJy8ODBA9y9excBAQFYunQphg0bhgcPHkCj0TjwlRKR2rwc3QAiIjU0bNgQ9evXx7Jly9CxY0ccP34cGzZsAADk5eVh8uTJ6NmzZ4H7+fn54dKlS+jSpQuGDx+OqVOnIjg4GHv27MGQIUPw8OFD7bH+/v4MQkTFEMMQERUbQ4cOxezZs3HlyhW0b98ekZGRAIBGjRrh1KlTqFatmtH7HThwADk5Ofjkk0/g4SFKKVetWmW3dhORYzEMEVGx0a9fP7z++utYtGgRli1bpr39/fffR7du3RAZGYlevXrBw8MDx44dw/Hjx/HBBx+gatWqyMnJweeff47u3bvjjz/+wPz58x34SojInjibjIiKjcDAQDz99NMoWbIknnzySe3tHTt2xM8//4ytW7fi0UcfRfPmzTFr1ixERUUBABo0aIBZs2ZhxowZqFOnDpYvX47p06c76FUQkb2xgJqIipUOHTqgVq1a+OyzzxzdFCJyEQxDRFQs3Lx5E1u2bEG/fv1w4sQJ1KhRw9FNIiIXwZohIioWGjVqhFu3bmHGjBkMQkSkCHuGiIiIyK2xgJqIiIjcGsMQERERuTWGISIiInJrDENERETk1hiGiIiIyK0xDBEREZFbYxgiIiIit8YwRERERG6NYYiIiIjc2v8DTmOHYk/kbr0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'January global average temperature change')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "plot(year, ΔT, \"r.-\")\n", + "xlabel(\"year\")\n", + "ylabel(\"ΔT (°C) vs. 1901–2000 baseline\")\n", + "title(\"January global average temperature change\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can't draw a single line that goes through all of the points, but we can try to minimize some *average* error between the fit and *all* of the points. The most common approach is to minimize the average |error|², which is called a [least squares fit](https://en.wikipedia.org/wiki/Least_squares) or, in the particular case of fitting to a *line*, [linear regression](https://en.wikipedia.org/wiki/Linear_regression):\n", + "\n", + "For example, if we want to fit to the linear model\n", + "$$\n", + "\\mathrm{model}(\\mathrm{year}) = \\Delta T = x_1 + x_2 (\\mathrm{year} - 1973)\n", + "$$\n", + "where $x_1$ is the intercept and $x_2$ is the slope, then sum of the squares of errors for $m$ data points is:\n", + "$$\n", + "\\mathrm{SSE} = \\sum_{k=1}^m \\big[ \\Delta T_k - \\underbrace{\\mathrm{model}(\\mathrm{year}_k)}_{\\mbox{row }k\\mbox{ of }Ax} \\big]^2\n", + "$$\n", + "\n", + "### Matrix formulation\n", + "\n", + "A key fact is that **this model depends linearly** on the **unknown x** parameters. And so we can write it in terms of matrix and vector algebra.\n", + "\n", + "In matrix form, we obtain:\n", + "$$\n", + "\\mathrm{SSE} = \\Vert b - Ax \\Vert^2\n", + "$$\n", + "where\n", + "$$\n", + "A = \\begin{pmatrix} 1 & \\mathrm{year}_1 - 1973 \\\\ 1 & \\mathrm{year}_2 - 1973 \\\\ \\vdots & \\vdots \\\\ 1 & \\mathrm{year}_m - 1973 \\end{pmatrix}, \n", + "\\qquad x = \\begin{pmatrix} x_1 \\\\ x_2 \\end{pmatrix}, \\qquad b = \\begin{pmatrix} \\Delta T_1 \\\\ \\Delta T_2 \\\\ \\vdots \\Delta T_m \\end{pmatrix} \\, .\n", + "$$\n", + "As we've seen in class, the minimum of $\\Vert b - Ax \\Vert^2$ is achieved by **orthogonal projection** of $b$ onto $C(A)$, corresponding to $\\hat{x}$ solving the \"normal equations\"\n", + "$$\n", + "A^T A \\hat{x} = A^T b\n", + "$$\n", + "or simply by `A \\ b` in Julia:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "50×2 Matrix{Int64}:\n", + " 1 0\n", + " 1 1\n", + " 1 2\n", + " 1 3\n", + " 1 4\n", + " 1 5\n", + " 1 6\n", + " 1 7\n", + " 1 8\n", + " 1 9\n", + " 1 10\n", + " 1 11\n", + " 1 12\n", + " ⋮ \n", + " 1 38\n", + " 1 39\n", + " 1 40\n", + " 1 41\n", + " 1 42\n", + " 1 43\n", + " 1 44\n", + " 1 45\n", + " 1 46\n", + " 1 47\n", + " 1 48\n", + " 1 49" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = ΔT\n", + "A = [year.^0 year.-1973]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.08468235294117643\n", + " 0.01638847539015606" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x̂ = A \\ b" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.08468235294117665\n", + " 0.01638847539015606" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Alternatively, the normal equations solution:\n", + "(A'A) \\ A'b" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1jUlEQVR4nOydd1QUVxvGn6UXBRWlI6CiYm9RsWHFrtFYYu+9IWiiMcaunw17F2sSNRpN1Niwx95b7AoCCqKgKKi0vd8f19nC7sJWlvL+ztkzs7NT7syWefatIsYYA0EQBEEQRAHFxNgDIAiCIAiCMCYkhgiCIAiCKNCQGCIIgiAIokBDYoggCIIgiAINiSGCIAiCIAo0JIYIgiAIgijQkBgiCIIgCKJAQ2KIIAiCIIgCDYkhgiAIgiAKNCSGjMiWLVsgEolw7do1Yw8lTzF9+nSIRCKttm3cuDEqVaqk1/E0btwYjRs31us+Cyr379/H9OnTERERYeyh5DpevXqF6dOn49atW8YeitaIRCKMHj3a2MMwCl5eXmjXrl2W6/Tv3x9eXl45MyADkJqaiuHDh8PFxQWmpqaoVq0aAH7u/fv3l6yXGz/LZsYeAEEQhMD9+/cxY8YMNG7cOE/fFAzBq1evMGPGDHh5eUluMkT+YurUqRg3bpyxh6E1a9aswbp167BixQrUrFkThQoVAgDs27cPdnZ2kvVy42eZxBChMxkZGUhPT4elpaWxh0KoyadPn2BjY2PsYRRoPn/+DCsrK62tnPqCvr+5h9KlSxt7CFnCGMOXL19gbW2t9PV79+7B2tpawfpXvXr1nBieTpCbLBdx7do1fP/99/Dy8oK1tTW8vLzQo0cPvHjxQm49wb126tQpjBgxAsWLF4eDgwM6d+6MV69eya0rEokwffp0hWNlNlu+efMGI0eORIUKFVCoUCE4OjqiadOm+Pfff+W2i4iIgEgkwoIFCzB79mx4e3vD0tISYWFhKFKkCIYNG6ZwrIiICJiammLhwoVZnn90dDS6dOmCwoULo0iRIujVqxeuXr0KkUiELVu2ZLmtWCzGggULUL58eVhaWsLR0RF9+/ZFdHS00vX//fdf1K1bF9bW1nBzc8PUqVORkZEht86MGTNQp04dFCtWDHZ2dqhRowZCQ0OhbW/jXbt2ISAgAC4uLrC2toavry8mTZqE5ORkyTpLly6FSCTC06dPFbb/8ccfYWFhgbdv30qWHT9+HM2aNYOdnR1sbGxQv359nDhxQm47wa1448YNdOnSBUWLFpX86Kr7mQOAc+fOwc/PD1ZWVpJrtnHjRohEIgW31q5du+Dn5wdbW1sUKlQILVu2xM2bN7O8Plu2bEHXrl0BAE2aNIFIJFJ47zU53zt37qBr166wt7dHsWLFEBQUhPT0dDx69AitWrVC4cKF4eXlhQULFshtf/r0aYhEIvz6668ICgqCs7MzrK2t4e/vr/Qcrl27hg4dOqBYsWKwsrJC9erV8ccffyicm0gkwrFjxzBw4ECUKFECNjY2SElJwdOnTzFgwAD4+PjAxsYGbm5uaN++Pe7evSs3pm+++QYAMGDAAMm1Eb7bqly1md0uqr6/p06dUvtcVJGSkoKZM2fC19cXVlZWcHBwQJMmTXDhwgWFdbdv3w5fX1/Y2NigatWqOHjwoNzr6lwT4bqIRCLs2LEDU6ZMgaurK+zs7NC8eXM8evRIbl3GGObOnQtPT09YWVmhVq1aCAsLU3rtPnz4gAkTJsDb2xsWFhZwc3NDYGCg3HfVEChzkwmuxeyuGQA8efIEPXv2hKOjIywtLeHr64tVq1bJrfPlyxcEBwejWrVqku+Gn58f/v77b4X9Ccdeu3YtfH19YWlpia1btyodu0gkwsaNG/H582eF767s/Sa7z7LRYITR2Lx5MwPArl69yhhjbPfu3eyXX35h+/btY2fOnGE7d+5k/v7+rESJEuzNmzcK25UqVYqNGTOGHT16lG3cuJEVLVqUNWnSRO4YANi0adMUju3p6cn69esnef7w4UM2YsQItnPnTnb69Gl28OBBNmjQIGZiYsJOnTolWS88PJwBYG5ubqxJkyZsz5497NixYyw8PJyNHz+e2drasvfv38sda+LEiczKyoq9fftW5bVISkpiZcqUYcWKFWOrVq1iR48eZePHj2fe3t4MANu8ebNk3WnTprHMH92hQ4cyAGz06NHsyJEjbO3ataxEiRLMw8ND7tr5+/szBwcH5urqypYvX86OHj3Kxo4dywCwUaNGye2zf//+LDQ0lIWFhbGwsDA2a9YsZm1tzWbMmCG3nr+/P/P391d5bgKzZs1iS5YsYf/88w87ffo0W7t2LfP29pZ7z968ecMsLCzYlClT5LZNT09nrq6urHPnzpJl27dvZyKRiH377bds79697MCBA6xdu3bM1NSUHT9+XOF6eXp6sh9//JGFhYWxv/76izGm/mfu9u3bzMrKilWpUoXt3LmT7d+/n7Vp04Z5eXkxACw8PFyy7pw5c5hIJGIDBw5kBw8eZHv37mV+fn7M1taW/ffffyqvT1xcHJs7dy4DwFatWsUuXrzILl68yOLi4rQ633LlyrFZs2axsLAw9sMPP0g+H+XLl2fLly9nYWFhbMCAAQwA+/PPPyXbnzp1igFgHh4erGPHjuzAgQPs119/ZWXKlGF2dnbs2bNnknVPnjzJLCwsWMOGDdmuXbvYkSNHWP/+/RU+s8J31s3NjQ0dOpQdPnyY7dmzh6Wnp7MzZ86w4OBgtmfPHnbmzBm2b98+9u233zJra2v28OFDxhhjiYmJkn38/PPPkmsTFRXFGFP9GezXrx/z9PSUPM/q+6vuuSgjLS2NNWnShJmZmbEJEyawQ4cOsf3797OffvqJ7dixQ7IeAObl5cVq167N/vjjD3bo0CHWuHFjZmZmJndd1bkmsu+Vl5cX69WrF/vnn3/Yjh07WMmSJZmPjw9LT0+XrDt58mQGgA0dOpQdOXKEbdiwgZUsWZK5uLjIXbvk5GRWrVo1Vrx4cRYSEsKOHz/Oli1bxuzt7VnTpk2ZWCxW+KzJ/kaqwtPTk7Vt2zbLdTK/X5pcs//++4/Z29uzypUrs23btrFjx46x4OBgZmJiwqZPny5Z7/3796x///5s+/bt7OTJk+zIkSNswoQJzMTEhG3dulXh2G5ubqxKlSrs999/ZydPnmT37t1TOvaLFy+yNm3aMGtra4Xvruz9JrvPsrEgMWREMouhzKSnp7OkpCRma2vLli1bprDdyJEj5dZfsGABA8BiYmIky9QVQ8qOnZaWxpo1a8Y6deokWS78mJYuXZqlpqbKbfPs2TNmYmLClixZIln2+fNn5uDgwAYMGKDyWIwxtmrVKgaAHT58WG75sGHDshVDDx48UHo9Ll++zACwn376SbLM39+fAWB///233LpDhgxhJiYm7MWLF0rHl5GRwdLS0tjMmTOZg4OD3A+iumJIFrFYzNLS0tiZM2cYAHb79m3Ja507d2bu7u4sIyNDsuzQoUMMADtw4ABjjP9gFytWjLVv315hnFWrVmW1a9eWLBOu1y+//JLtuFR95rp27cpsbW3lBFJGRgarUKGCnBiKjIxkZmZmbMyYMXL7/fjxI3N2dmbdunXL8vi7d+9WenPR5nwXL14st261atUYALZ3717JsrS0NFaiRAk5kSncYGvUqCH3PkdERDBzc3M2ePBgybLy5cuz6tWrs7S0NLljtWvXjrm4uEjeQ+E727dv3yzPnzH+HqSmpjIfHx82fvx4yfKrV6+qFCaaiiFl3191z0UZ27ZtYwDYhg0bsjw3AMzJyYl9+PBBsiw2NpaZmJiwefPmqdxO1TUR3qs2bdrIrf/HH38wAOzixYuMMcYSEhKYpaUl6969u9x6Fy9eZADkrt28efOYiYmJwu/ynj17GAB26NAhybIZM2YwU1NTdvr06SzPmzHdxJA616xly5bM3d2dJSYmym0/evRoZmVlxRISEpQeU/itHzRoEKtevbrCse3t7VVuq2z8tra2Cssz32+y+iwbC3KT5SKSkpLw448/okyZMjAzM4OZmRkKFSqE5ORkPHjwQGH9Dh06yD2vUqUKACh1cajD2rVrUaNGDVhZWcHMzAzm5uY4ceKEymObm5vLLStVqhTatWuH1atXS1xJv//+O+Lj47PNIDlz5gwKFy6MVq1ayS3v0aNHtuMWTPyybj8AqF27Nnx9fRXcKIULF1a4dj179oRYLMbZs2cly06ePInmzZvD3t4epqamMDc3xy+//IL4+HjExcVlO67MPH/+HD179oSzs7Nkf/7+/gAgd40HDBiA6OhoHD9+XLJs8+bNcHZ2RuvWrQEAFy5cQEJCAvr164f09HTJQywWo1WrVrh69aqCSf+7775TGJO6n7kzZ86gadOmKF68uGSZiYkJunXrJre/o0ePIj09HX379pUbl5WVFfz9/XH69GmNr5u255s5c8fX1xcikUhyDQHAzMwMZcqUUfqd6dmzp1w8j6enJ+rVqyf5vD19+hQPHz5Er169AEBuXG3atEFMTIyCq0bZe5Ceno65c+eiQoUKsLCwgJmZGSwsLPDkyROl3z19kPn7q825yHL48GFYWVlh4MCB2R67SZMmKFy4sOS5k5MTHB0d5d4DTa9Jdr+Fly5dQkpKisLntW7dugpuqYMHD6JSpUqoVq2a3HVo2bIlRCKR3Gf4l19+QXp6uuR7bCiyu2ZfvnzBiRMn0KlTJ9jY2Ci8f1++fMGlS5ck2+/evRv169dHoUKFJL/1oaGhSq9t06ZNUbRoUYOeX26AAqhzET179sSJEycwdepUfPPNN7Czs4NIJEKbNm3w+fNnhfUdHBzkngsBkMrWzY6QkBAEBwdj+PDhmDVrFooXLw5TU1NMnTpV6RfExcVF6X7GjRuHZs2aISwsDAEBAVi1ahX8/PxQo0aNLI8fHx8PJycnheXKlinbVtWYXF1dFW50yvbp7Owst68rV64gICAAjRs3xoYNG+Du7g4LCwv89ddfmDNnjsbXOCkpCQ0bNoSVlRVmz56NsmXLwsbGBlFRUejcubPc/lq3bg0XFxds3rwZAQEBePfuHfbv349x48bB1NQUAPD69WsAQJcuXVQeMyEhAba2tpLnyq6Pup85dd8fYVxCTEBmTEy0+/+lzfkWK1ZM7nULCwvY2NjAyspKYfmHDx8U9id8JjIvu337ttyYJkyYgAkTJigdk2x8F6D8PQgKCsKqVavw448/wt/fH0WLFoWJiQkGDx6s1XdZHTKPQ5tzkeXNmzdwdXVV6/3N/LsF8N8u2XPV9Jpk91sofK/V/Qw/ffpU4c+eQFbXwVBkd83i4+ORnp6OFStWYMWKFUr3IYx779696NatG7p27YqJEyfC2dkZZmZmWLNmDTZt2qSwnarf+vwGiaFcQmJiIg4ePIhp06Zh0qRJkuUpKSlISEjQer+WlpZISUlRWC78OAj8+uuvaNy4MdasWSO3/OPHj0r3qyoDpmnTpqhUqRJWrlyJQoUK4caNG/j111+zHaeDgwOuXLmisDw2NlatbQEgJiYG7u7ucq+9evVKzpoBSH/4lR1H2NfOnTthbm6OgwcPyt08//rrr2zHo4yTJ0/i1atXOH36tNy/yPfv3yusa2pqij59+mD58uV4//49fv/9d6SkpGDAgAGSdYRzWrFiBerWrav0mJl/5DO/Z5p85hwcHLK8bpnHtWfPHnh6eiodlzZoc766ouyzFxsbK/mMCGOaPHkyOnfurHQf5cqVk3uu7Hvz66+/om/fvpg7d67c8rdv36JIkSJqjdXKygqJiYkKy1XduDOPQ5tzkaVEiRI4d+4cxGKx1oJXFn1cE1mE90zVZ1jWOlS8eHFYW1srFQbC67mNokWLSn43Ro0apXQdb29vAPzaent7Y9euXXKfA2X3CUD1b31+g8RQLkEkEoExppDeunHjRoUsJ03w8vLCnTt35JadPHkSSUlJCsfPfOw7d+7g4sWL8PDw0OiYY8eOxfDhw5GYmAgnJydJhlBW+Pv7448//sDhw4fl3Bg7d+7MdtumTZsC4F9yWYvE1atX8eDBA0yZMkVu/Y8fP2L//v1ypvXff/8dJiYmaNSoEQB+PczMzCSWGID/y9y+fXu241GG8IOS+RqvW7dO6foDBgzAggULsGPHDmzZsgV+fn4oX7685PX69eujSJEiuH//vtZF7DT5zPn7++PQoUN4+/at5GYgFouxe/duufVatmwJMzMzPHv2TKlLKDtUWTf1cb6asmPHDgQFBUneuxcvXuDChQvo27cvAC4OfHx8cPv2bYWbtiYo++79888/ePnyJcqUKSNZlpXl18vLC7t370ZKSopkvfj4eFy4cEGuvosqdD2X1q1bSz6r6rjKskPda6IuderUgaWlJXbt2iUn9i5duoQXL17IiaF27dph7ty5cHBwkAiI3I6NjQ2aNGmCmzdvokqVKrCwsFC5rkgkgoWFhZzIiY2NVZpNZih08WIYChJDuQCRSAQ7Ozs0atQICxcuRPHixeHl5YUzZ84gNDRUq39CAn369MHUqVPxyy+/wN/fH/fv38fKlSthb28vt167du0wa9YsTJs2Df7+/nj06BFmzpwJb29vpKena3TM3r17Y/LkyTh79ix+/vnnLL+YAv369cOSJUvQu3dvzJ49G2XKlMHhw4dx9OhRAFm7V8qVK4ehQ4dixYoVMDExQevWrREREYGpU6fCw8MD48ePl1vfwcEBI0aMQGRkJMqWLYtDhw5hw4YNGDFiBEqWLAkAaNu2LUJCQtCzZ08MHToU8fHxWLRokda1WOrVq4eiRYti+PDhmDZtGszNzfHbb79JXC6ZKV++PPz8/DBv3jxERUVh/fr1cq8XKlQIK1asQL9+/ZCQkIAuXbrA0dERb968we3bt/HmzRsFK19mNPnMTZkyBQcOHECzZs0wZcoUWFtbY+3atZI4HeH98fLywsyZMzFlyhQ8f/4crVq1QtGiRfH69WtcuXIFtra2mDFjhsoxCdXB169fj8KFC8PKygre3t5wcHDQ+Xw1JS4uDp06dcKQIUOQmJiIadOmwcrKCpMnT5ass27dOrRu3RotW7ZE//794ebmhoSEBDx48AA3btxQEIvKaNeuHbZs2YLy5cujSpUquH79OhYuXKhg5SxdujSsra3x22+/wdfXF4UKFYKrqytcXV3Rp08frFu3Dr1798aQIUMQHx+PBQsWqCWE9HEuPXr0wObNmzF8+HA8evQITZo0gVgsxuXLl+Hr64vvv/9e7XFock3URSitMG/ePBQtWhSdOnVCdHQ0ZsyYARcXF7nfl8DAQPz5559o1KgRxo8fjypVqkAsFiMyMhLHjh1DcHAw6tSpAwCYOXMmZs6ciRMnTqgVNxQbG4s9e/YoLPfy8kKtWrW0OjeBZcuWoUGDBmjYsCFGjBgBLy8vfPz4EU+fPsWBAwdw8uRJAPza7t27FyNHjkSXLl0QFRWFWbNmwcXFBU+ePNFpDOqS1WfZaBg5gLtAI2RQ3b17lzHGWHR0NPvuu+9Y0aJFWeHChVmrVq3YvXv3FCLxVWWhCZkVspk4KSkp7IcffmAeHh7M2tqa+fv7s1u3binsMyUlhU2YMIG5ubkxKysrVqNGDfbXX3+pzEZZuHBhlufWv39/ZmZmxqKjo9W+HpGRkaxz586sUKFCrHDhwuy7776TZFHJZn8pS63PyMhg8+fPZ2XLlmXm5uasePHirHfv3grpmv7+/qxixYrs9OnTrFatWszS0pK5uLiwn376SSGLZtOmTaxcuXLM0tKSlSpVis2bN4+FhoYqpJKrm0124cIF5ufnx2xsbFiJEiXY4MGD2Y0bN1RmVaxfv54BYNbW1goZIgJnzpxhbdu2ZcWKFWPm5ubMzc2NtW3blu3evVvheslmggmo+5ljjLF///2X1alTh1laWjJnZ2c2ceJENn/+fAZAoZzCX3/9xZo0acLs7OyYpaUl8/T0ZF26dJFLgVfF0qVLmbe3NzM1NVW4Nrqcr6pMF+EzISB8j7Zv387Gjh3LSpQowSwtLVnDhg3ZtWvXFLa/ffs269atG3N0dGTm5ubM2dmZNW3alK1du1ayTlaZo+/evWODBg1ijo6OzMbGhjVo0ID9+++/Sj9XO3bsYOXLl2fm5uYKmaJbt25lvr6+zMrKilWoUIHt2rVL4++vOueiis+fP7NffvmF+fj4MAsLC+bg4MCaNm3KLly4IFkHSkpYMKaYbaTuNRHeK9n3X/Y8ZT87YrGYzZ49m7m7uzMLCwtWpUoVdvDgQVa1alW5jFnGeKmPn3/+mZUrV45ZWFhIUtbHjx/PYmNjJetpmloPQOlDOHdV2WTqXDPhvAcOHMjc3NyYubk5K1GiBKtXrx6bPXu23Hr/+9//mJeXF7O0tGS+vr5sw4YNSn9XVR1bFepmkzGW9WfZGIgY07KCHKEz48aNw8qVK/H+/Xu5TIG8TmpqKry8vNCgQQO1C7apYu7cufj5558RGRmp9b9CwnAEBAQgIiICjx8/NvZQ9Mbp06fRpEkT7N69O8uAbSLvEx4ejvLly2PatGn46aefjD0cwoiQm8wIXL9+HVevXsWmTZvQoUOHfCOE3rx5g0ePHmHz5s14/fq1XFCuOqxcuRIAdxGlpaXh5MmTWL58OXr37k1CKBcQFBSE6tWrw8PDAwkJCfjtt98QFhaG0NBQYw+NILLl9u3b2LFjB+rVqwc7Ozs8evRI4kocNGiQsYdHGBkSQ0agS5cuSExMRIcOHbB8+XJjD0dv/PPPPxgwYABcXFywevXqbNPpM2NjY4MlS5YgIiICKSkpKFmyJH788Uf8/PPPBhoxoQkZGRn45ZdfEBsbC5FIhAoVKmD79u3o3bu3sYdGENlia2uLa9euITQ0FO/fv4e9vT0aN26MOXPm6D0Tkch7kJuMIAiCIIgCDVWgJgiCIAiiQJOnxNDZs2fRvn17uLq6QiQSZVsAb+/evWjRogVKlCgBOzs7+Pn5SVK1CYIgCIIggDwmhpKTk1G1alVJoG12nD17Fi1atMChQ4dw/fp1NGnSBO3bt8fNmzcNPFKCIAiCIPIKeTZmSCQSYd++ffj222812q5ixYro3r07fvnlF7XWF4vFePXqFQoXLlxgypITBEEQRF6HMYaPHz+q1TevQGWTicVifPz4UaGBY1a8evVK43YUBEEQBEHkDqKiorItz1KgxNDixYuRnJyMbt26qVwnJSVFrmGdYDiLiorSqLQ9QRAEQRDG48OHD/Dw8FCrll+BEUM7duzA9OnT8ffff8PR0VHlevPmzVPaO8nOzo7EEEEQBEHkMdQJcclTAdTasmvXLgwaNAh//PEHmjdvnuW6kydPRmJiouQRFRWVQ6MkCIIgCMIY5HvL0I4dOzBw4EDs2LEDbdu2zXZ9S0tLrTuTEwRBEASR98hTYigpKQlPnz6VPA8PD8etW7dQrFgxlCxZEpMnT8bLly+xbds2AFwI9e3bF8uWLUPdunURGxsLALC2toa9vb1RzoEgCIIgiNxFnkqtF7pJZ6Zfv37YsmUL+vfvj4iICJw+fRoA0LhxY5w5c0bl+urw4cMH2NvbIzExMcuYoYyMDKSlpam1T4Ig5LGwsMg29ZUgCEIT1L1/A3lMDBmD7C4mYwyxsbF4//59zg+OIPIJJiYm8Pb2hoWFhbGHQhBEPkETMZSn3GS5EUEIOTo6wsbGhgozEoSGCIVNY2JiULJkSfoOEQSR45AY0oGMjAyJEHJwcDD2cAgiz1KiRAm8evUK6enpMDc3N/ZwCIIoYJCTXgeEGCEbGxsjj4Qg8jaCeywjI8PIIyEIoiBCYkgPkFmfIHSDvkMEQRgTEkMEQRAEQRRoSAwREho3bozAwEBjD4MgCIIgchQSQ4RWnD59GiKRiEoKEARBFESio4FTp/g0H0BiiCAIgiAI9QkNBTw9gaZN+TQ01Ngj0hkSQ7mFHFbZycnJ6Nu3LwoVKgQXFxcsXrxY7vVff/0VtWrVQuHCheHs7IyePXsiLi4OABARESGpBF60aFGIRCL0798fAHDkyBE0aNAARYoUgYODA9q1a4dnz57lyDkRBEEQBiY6Ghg6FBCL+XOxGBg2LM9biEgM6RvGgORkzR6rV8ur7NWrNd+HhoXEJ06ciFOnTmHfvn04duwYTp8+jevXr0teT01NxaxZs3D79m389ddfCA8PlwgeDw8P/PnnnwCAR48eISYmBsuWLQPARVZQUBCuXr2KEydOwMTEBJ06dYJY+OIQBEEQeZcnT6RCSCAjA5DpG5oXoaKL+ubTJ6BQIe23F4uBUaP4QxOSkgBbWzVXTUJoaCi2bduGFi1aAAC2bt0Kd3d3yToDBw6UzJcqVQrLly9H7dq1kZSUhEKFCqFYsWIAAEdHRxQpUkSy7nfffSd3rNDQUDg6OuL+/fuoVKmSZudEEARB5C58fAATE3lBZGoKlCljvDHpAbIMFUCePXuG1NRU+Pn5SZYVK1YM5cqVkzy/efMmOnbsCE9PTxQuXBiNGzcGAERGRma77549e6JUqVKws7ODt7e3WtsRBEEQKshNwcru7oDsn14TE2DdOr48D0OWIX1jY8OtNOry8iXg66uosu/fB9zcNDuummTXmzc5ORkBAQEICAjAr7/+ihIlSiAyMhItW7ZEampqltu2b98eHh4e2LBhA1xdXSEWi1GpUqVstyMIgiCUEBoqjdExMQHWrwcGDTLumKyspPNBQcYfjx4gMaRvRCK13VUAgLJl+Yd72DDudzU15Sq7bFmDDbFMmTIwNzfHpUuXULJkSQDAu3fv8PjxY/j7++Phw4d4+/Yt/ve//8HDwwMAcO3aNbl9KGufEB8fjwcPHmDdunVo2LAhAODcuXMGOw+CIIh8japg5ZYtjWuJuX1bOp+cbLxx6BESQ7mBQYP4h/vpU+53NfCHvFChQhg0aBAmTpwIBwcHODk5YcqUKTAx4V7TkiVLwsLCAitWrMDw4cNx7949zJo1S24fnp6eEIlEOHjwINq0aQNra2sULVoUDg4OWL9+PVxcXBAZGYlJkyYZ9FwIgiDyLVkFKxtLDKWmAg8eSJ+/emWccegZihnKLbi7A40b59gHfOHChWjUqBE6dOiA5s2bo0GDBqhZsyYA3kF8y5Yt2L17NypUqID//e9/WLRokdz2bm5umDFjBiZNmgQnJyeMHj0aJiYm2LlzJ65fv45KlSph/PjxWLhwYY6cD0EQRL5DCFaWxdjByg8fAl+blAPIN2JIxLILICngfPjwAfb29khMTISdnZ3ca1++fEF4eDi8vb1hJetDJQhCI+i7RBAqWLwYmDBB+nz1amDECOONZ/t2oG9fwM4O+PCBx7bmhsBuJWR1/84MWYYIgiAIIrcik/ULwKDxpGohxAs1b86nsbGKrrw8CIkhgiAIgsitRETIPz9xwijDkHDnDp+2aMEThjIygDdvjDsmPUBiiCAIgiByK4IYEor5njxptKEAkFqGatYEnJz4fD6IGyIxRBAEQRC5lfBwPu3WjU+vXgUSE40zltevgbg4HtRdsSLg6sqXkxgiCIIgCMJgCJahRo14FplYDJw5Y5yxCFYhHx9e6JfEEEEQBEEQBkcQQ15eQLNmfN5YrjJBDFWtyqckhgiCIAiCMChiMfDiBZ/39paKIWMFUQvB01Wq8CmJIYIgCIIgDEpMDC9waGbGhcfXhtm4d4/H7+Q0mS1DLi58SmKIIAiCIAiDILjIPDy4ICpRQipETp3K2bGkpEjbcJCbjMgPMMYwdOhQFCtWDCKRCLdu3ULjxo0RGBho0OOePn0aIpEI79+/N+hxCIIg8gWy8UICxnKVPXwIpKcDRYpI20aRGCLyMkeOHMGWLVtw8OBBxMTEoFKlSti7d69cM1YvLy8sXbrUeIM0MO/evUOfPn1gb28Pe3t79OnTJ1uRxhjD9OnT4erqCmtrazRu3Bj//fef3Drr169H48aNYWdnl6Xw++eff1CnTh1YW1ujePHi6Ny5c5bHjo2NRevWreHq6oqRI0dCnKni69OnTzFgwAC4u7vD0tIS3t7e6NGjB65duya33ufPn2FjY4OHDx9meTyCIHIBQlq9rBhq2pRPczqIWtZFJhLxeUEMxcVxoZSHITFUAHn27BlcXFxQr149ODs7w8zMDMWKFUPhwoWNPbQco2fPnrh16xaOHDmCI0eO4NatW+jTp0+W2yxYsAAhISFYuXIlrl69CmdnZ7Ro0QIfP36UrPPp0ye0atUKP/30k8r9/Pnnn+jTpw8GDBiA27dv4/z58+jZs2eWx/7555/xzTff4PDhw4iIiMCOHTskr127dg01a9bE48ePsW7dOty/fx/79u1D+fLlERwcLLefsLAweHh4oHz58lkez5CkyTZ5JAhCNcosQ40a8Watz58rVqc2JIIYEoKnAe62MzXlgd5xcTk3FkPAiCxJTExkAFhiYqLCa58/f2b3799nnz9/NsLItKNfv34MgOTh6enJGGPM39+fjRs3TjIvu44mH5OIiAjWrl07VqRIEWZjY8MqVKjA/vnnH8YYY6dOnWIA2Lt37yTr79mzh1WoUIFZWFgwT09PtmjRIrn9eXp6spkzZ7IePXowW1tb5uLiwpYvXy63zvv379mQIUNYiRIlWOHChVmTJk3YrVu3VI7x/v37DAC7dOmSZNnFixcZAPbw4UOl24jFYubs7Mz+97//SZZ9+fKF2dvbs7Vr1yqsr+xcGWMsLS2Nubm5sY0bN6ocnzK+++47tnPnTpaRkcFGjhzJVq1aJRlXxYoVWc2aNVlGRobCdpmPP3DgQDZhwgQWHh7ORCIRu3r1qtzry5cvZyVLlmRisZgxxth///3HWrduzWxtbZmjoyPr3bs3e/PmjWT9w4cPs/r16zN7e3tWrFgx1rZtW/b06VPJ6+Hh4QwA27VrF/P392eWlpZs06ZNCuPMi98lgjA4zZoxBjC2dav8cj8/vjw0NOfG0rw5P2bm3y43N748029JbiCr+3dmyDKkZxhjSE5OzvEHY0yt8S1btgwzZ86Eu7s7YmJicPXqVYV19u7dC3d3d8ycORMxMTGIiYmRvCYSibBlyxaV+x81ahRSUlJw9uxZ3L17F/Pnz0choYx8Jq5fv45u3brh+++/x927dzF9+nRMnTpVYf8LFy5ElSpVcOPGDUyePBnjx49HWFiY5Hq3bdsWsbGxOHToEK5fv44aNWqgWbNmSEhIUHrcixcvwt7eHnXq1JEsq1u3Luzt7XHhwgWl24SHhyM2NhYBAQGSZZaWlvD391e5jTJu3LiBly9fwsTEBNWrV4eLiwtat26t4G7LzKRJkzB27FhYWlri5s2b6Nu3LwDg1q1b+O+//xAcHAwTE8Wvc5EiRSTzYrEYBw8eRMeOHeHl5YXmzZtj8+bNcutv3rwZ/fv3h0gkQkxMDPz9/VGtWjVcu3YNR44cwevXr9FNqIQLIDk5GUFBQbh69SpOnDgBExMTdOrUScGN9+OPP2Ls2LF48OABWrZsqfb1IogCjWD58faWX57TcUOMKWaSCeSXuCFDK7O8jqaWoaSkJAWrSk48kpKS1D6nJUuWSCxCArKWIca4RWbJkiUK25YrV47t3btX5b4rV67Mpk+frvS1zNaSnj17shYtWsitM3HiRFahQgW5cbRq1Upune7du7PWrVszxhg7ceIEs7OzY1++fJFbp3Tp0mzdunVKxzFnzhzm4+OjsNzHx4fNnTtX6Tbnz59nANjLly/llg8ZMoQFBARke64CO3bsYABYyZIl2Z49e9i1a9dYjx49mIODA4uPj1d6bIG0tDQWExMjt2zXrl0MALtx40aW2wrnULx4cYkFadeuXaxo0aKSa3fr1i0mEolYeHg4Y4yxqVOnKpxbVFQUA8AePXqk9BhxcXEMALt79y5jTGoZWrp0aZZjI8sQQWQiPZ0xc3NudYmMlH/t1Cm+3NmZsa9WXIMSE8OPZ2LC2KdP8q917MhfW7PG8OPQELIMEQbj4cOH6NSpk8rXx44di9mzZ6N+/fqYNm0a7ghFupTw4MED1K9fX25Z/fr18eTJE2RkZEiW+fn5ya3j5+eHB19TPK9fv46kpCQ4ODigUKFCkkd4eDiePXum8tgiIQBQBsaY0uVZbafONrIIFpMpU6bgu+++Q82aNbF582aIRCLs3r07y23NzMzg7OyscHxl41LG33//jXbt2kksSN9++y3MzMywb98+AMCmTZvQpEkTeH2NT7h+/TpOnTold12FWCPh2j579gw9e/ZEqVKlYGdnB++v/2AjIyPljl2rVq1sx0cQhAyZawzJUrcuYGUFxMZK090NiWAVKlsWsLaWfy2fWIbMjD2A/IaNjQ2SkpKMctzcwODBg9GyZUv8888/OHbsGObNm4fFixdjzJgxCusqExJMTXefsJ1YLIaLiwtOnz6tsI6si0gWZ2dnvFZSsOzNmzdwErowK9kG4FldLkKhMQBxcXEqt1GGsG2FChUkyywtLVGqVCkFAaEOZcuWBcCFZbVq1bJcd//+/Zg3b57kuYWFBfr06YPNmzejc+fO+P333+UyCMViMdq3b4/58+erPI/27dvDw8MDGzZsgKurK8RiMSpVqoTU1FS59W1tbTU+N4Io0AguspIleZCyLFZWQIMGwPHj3FUm83tiEJQFTwuQGCKUIRKJ8sUPv4WFhZx1RhM8PDwwfPhwDB8+HJMnT8aGDRuUiqEKFSrg3LlzcssuXLiAsmXLwlTmy3/p0iW5dS5duiSxUNSoUQOxsbEwMzOTWDSyw8/PD4mJibhy5Qpq164NALh8+TISExNRr149pdt4e3vD2dkZYWFhqF69OgAgNTUVZ86cUSoWVFGzZk1YWlri0aNHaNCgAQCeXRUREQFPT0+19yNQrVo1VKhQAYsXL0b37t0V4obev3+PIkWK4MmTJ4iIiJCLeQK4eK1UqRJWr16NtLQ0uRT/GjVq4M8//4SXlxfMzBR/KuLj4/HgwQOsW7cODRs2BACF95MgCC1RllYvS9OmUjGk5PdVrwgW/szxQkC+qUJNbjJCKV5eXjh79ixevnyJt2/fSpaXL19e4lZRRmBgII4ePYrw8HDcuHEDJ0+ehK+vr9J1g4ODceLECcyaNQuPHz/G1q1bsXLlSkyYMEFuvfPnz2PBggV4/PgxVq1ahd27d2PcuHEAgObNm8PPzw/ffvstjh49ioiICFy4cAE///yzQo0dAV9fX7Rq1QpDhgzBpUuXcOnSJQwZMgTt2rVDuXLllJ6rSCRCYGAg5s6di3379uHevXvo378/bGxs5NLiY2NjcevWLTx9+hQAcPfuXdy6dUsSzG1nZ4fhw4dj2rRpOHbsGB49eoQRI0YAALp27aryuqpCJBJh8+bNePz4MRo1aoRDhw7h+fPnuHPnDubMmYOOHTsC4C6y5s2bK1gQfX19UbduXfz444/o0aMHrGVM4KNGjUJCQgJ69OiBK1eu4Pnz5zh27BgGDhyIjIwMFC1aFA4ODli/fj2ePn2KkydPIigoSONzIAhCCcrS6mURgqhPnwa0/OOqNqqCp4F8YxmiAOpsyG+p9YypF0B98eJFVqVKFWZpaSmXWg+Abd68WeW+R48ezUqXLs0sLS1ZiRIlWJ8+fdjbt28ZY1mn1pubm7OSJUuyhQsXyu3P09OTzZgxg3Xr1o3Z2NgwJycnhWDcDx8+sDFjxjBXV1dmbm7OPDw8WK9evVhk5qBDGeLj41mvXr1Y4cKFWeHChVmvXr0Ugp0zn6tYLGbTpk1jzs7OzNLSkjVq1EgSKCwwbdo0pQHusvtJTU1lwcHBzNHRkRUuXJg1b96c3bt3T+VY1eHRo0esb9++zNXVVVKmoEePHpLA6gYNGrANGzYo3TY0NJQBYFeuXFF47fHjx6xTp06sSJEizNrampUvX54FBgZKUu/DwsKYr68vs7S0ZFWqVGGnT59mANi+ffsYY9IA6ps3b2Y5/rz6XSIIgzFwIA9MnjlT+etpaYzZ2/N1lHx39caXL4yZmSkP5GaMsVu3+GslShhuDFqiSQC1iDE1gzQKKB8+fIC9vT0SExNhZ2cn99qXL18QHh4Ob29vWFlZGWmE+RsvLy8EBgYavFVIfubt27dwcXFBVFSUQgA2AMyZMwc7d+7E3bt3jTA6Dn2XCCITzZrxKtPbtwO9eytfp2NHYP9+4H//A3780TDjuHULqF4dKFoUiI+XVp8WePMGcHTk8ykpgIWFYcahBVndvzNDbjKCyOckJCQgJCREQQglJSXh6tWrWLFiBcaOHWuk0REEoZTs3GRAztQbUtaGQxYHB8DcnM8rSUzJK5AYIoh8TtmyZZUGsI8ePRoNGjSAv78/Bg4caISREQShlIwMQMguzUoMCX3Kzp3jVhlDIARPK8skAwATk3wRRJ2nxNDZs2fRvn17uLq6QiQS4a+//sp2mzNnzqBmzZqwsrJCqVKlsHbtWsMPlNAbERER5CIzEFu2bEFKSgp27doll71HEISRefWKNz41N5cKDWVUrAg4OQGfPwOZsm71RlbB0wL5IIg6T4mh5ORkVK1aFStXrlRr/fDwcLRp0wYNGzbEzZs38dNPP2Hs2LH4888/DTxSgiAIgtASIa1eWY0hWUQiqXXIEK4y2TYcqixDQL4QQ3mqzlDr1q3RunVrtddfu3YtSpYsKSkk5+vri2vXrmHRokX47rvv9DYuikEnCN2g7xBByKBOvJBA06bAjh082HrmTP2OIzYWePuWu8IqVlS9Xj4QQ3nKMqQpFy9eVCgy17JlS1y7dg1paWlKt0lJScGHDx/kHqow/xo09unTJ/0NmiAKIELFanLXEQQ0E0NCEPXly4C+ux8IVqFy5RTbcMiSD8RQnrIMaUpsbKxCqwQnJyekp6dL0o0zM2/ePMyYMUOt/ZuamqJIkSKIi4sDwFtiaNKniiAI3vbjzZs3sLGxUVrpmiAKHKq61SvD25uLpogI4OxZoE0b/Y1DHRcZQGIoL6Cq95Uq0TJ58mS5KrofPnyAh4eHyv0L6cqCICIIQnNMTExQsmRJ+jNBEIBmliGAW4dCQ7mrTJ9iKKs2HLLkg2yyfC2GnJ2dERsbK7csLi4OZmZmcHBwULqNpaUlLC0t1T6GSCSCi4sLHB0dVbreCILIGgsLC4W+agRRYNFWDP31FxAYCLi762cc6mSSAWQZyu34+fnhwIEDcsuOHTuGWrVqSeJ99IWpqSnFOxAEQRC6kZ4OREXxeXXFUEwMnz57Bnh6AuvXA4MG6TaOL1+Ahw/5vLpusoQEvl0erCKfp/6KJSUl4datW7h16xYAnjp/69YtRH4tTjV58mT07dtXsv7w4cPx4sULBAUF4cGDB9i0aRNCQ0MVGoESBEEQRK7g5Uv1agwJREcDEydKn4vFwLBhfLkuPHjAiz8WKwa4uWW9btGigOBRyeSNySvkKTF07do1VK9eHdWrVwcABAUFoXr16vjll18AADExMRJhBADe3t44dOgQTp8+jWrVqmHWrFlYvny5XtPqCYIgCEJvCC4yT0+e0p4dT55wASRLRgbw9Klu45ANns4ulk8kyvOusjzlJmvcuHGW9Ui2bNmisMzf3x83btww4KgIgiAIQk9oGi/k48NFk6wgMjUFypTRbRzqBk8LuLryYpF5VAzlKcsQQRAEQeRrNEmrB3iw9Pr18lakdet0D6JWN3haII9bhkgMEQRBEERuQVPLEMCDpa9flz7v2VO3MajbhkMWEkMEQRAEQegFbcQQwC04RYvy+cePdRtDTAwQH8/dbVm14ZCFxBBBEARBEHpBWzEkEgG+vnxeSInXFtk2HOqmyZMYIgiCIAhCZ7SpMSRL+fJ8+uCBbuPQ1EUG5Pkq1CSGCIIgCCI3EB3N0+ItLICvrZ40Ql+WoUuX+FQTQUaWIYIgCIIgdEbTGkOZ0YdlKDQU+PtvPj9/Pn+uDoIYSkwEPn3S/vhGgsQQQRAEQeQGNE2rz4xgGXr0iFuYNCU6Ghg6VPqcMfWrWdvZATY2fF5oD5KHIDFEEARBELkBbYOnBby8eFuMlBTgxQvNt9elmnUer0JNYoggCIIgcgO6iiFTU6BsWT6vjavMx0ex9YYm1axJDBEEQRAEoRO6iiFAtyBqd3fA31/63NRUs2rWJIYIgiAIQoboaODUKd27pxckwsP5VBcxpGsQdUoKn06ZwsXZoEHqb0tiiCAIgiC+EhrKM6KaNuVTdTOSCjJpaVLhaCzLUEaGtMZQr16a9zcjMUQQBEEQkGYkCYG4YrH6GUkFmehofq0sLQEnJ+33I2sZYkyzbZ884WnxNjbS2CNNIDFEEARBENAtI6kgIxsvpE2NIYGyZXkQdEIC8PatZtvevMmnVavyeCFNycNVqEkMEQRBEPrDx0fxZq5JRlJBRR/B0wC36nh68nlN44YEMVS9unbHJssQQRAEQYDHmaxfL30uEmmWkVRQ0ZcYArSPG7pxg0+1FUOCZSgpCfj4Ubt9GAkSQwRBEIR+GTQIsLXl8/7+mmUkFVT0kUkmoE1GGWO6W4YKF+YPIM9VodZJDD19+hRHjx7F58+fAQBM02AtgiAIIv/x+TOQnMznU1ONO5a8grEtQ1FRPM7IzAyoVEn7Y2vqKsslJRi0EkPx8fFo3rw5ypYtizZt2iDmqwIcPHgwgoOD9TpAgiAIIo8RFyedT0w03jjyEvoUQ9pYhgSrUIUKPKNNWzQRQ7moBINWYmj8+PEwMzNDZGQkbITGbAC6d++OI0eO6G1wBEEQRB5EVgx9+GC8ceQVUlOBly/5vD4tQy9eSC102aGri0xAXTH0tQTDG7EYMwC8MHIJBq3E0LFjxzB//ny4ZwqI8/HxwQttmsMRBEEQ+QcSQ5oh1BiystKtxpBA8eL8AQCPH6u3TQ6LoUcnTmCYWIySAKYDWA4YtQSDVmIoOTlZziIk8PbtW1jqYl4jCIIg8j6ZxVDmukOEPLIussyNUrVFU1dZDoghxhjOnDmDDh06oHz//lgP4AuAbwA0BIxagkErMdSoUSNs27ZN8lwkEkEsFmPhwoVo0qSJ3gZHEARB5EFev5bOM6a+q6agos94IQFNgqjj43kANQBUq6bbcZWIobS0NOzYsQPffPMNGjdujAMHDkAkEqGjuzvOALgM4FtNm8LqGTNtNlq4cCEaN26Ma9euITU1FT/88AP+++8/JCQk4Pz58/oeI0EQBJGXkLUMAdw6JKRcE4roM61eQBPLkGAVKl0asLPT7bgyYujDhw/YuHEjli1bhsjISACAlZUV+vfvj/Hjx6Ps0KHcRThiBPDTT0atRaWVGKpQoQLu3LmDNWvWwNTUFMnJyejcuTNGjRoFF6HoEkEQBFEwySyGEhMBNzfjjCUvYGzLkL5cZADg4oIoAMtevMAGDw98+Boz5ujoiNGjR2PEiBEoXrw4EBsLnD3Lt5k0yehFObUSQwDg7OyMGTNm6HMsBEEQRH5AmWWIUI0hxJBgGXr8GEhP5/WDVCGIoRo1dDrk9evXsXj+fPwBICM9HfjwAb6+vggODkavXr1gZWUlXXnvXu5CrVMHKFlSp+PqA63F0Pv373HlyhXExcVBnCk4rm/fvjoPjCAIgsijkBjSDEOIIU9Pnp325Qvff1aByTq04RCLxTh06BAWL16M06dPS5Y3BRC8Zg1aDR0KE2WNZ3fv5tMuXTQ+piHQSgwdOHAAvXr1QnJyMgoXLgyRTPS7SCQiMUQQBFGQEQKoCxXifaqo8KJqZGsMeXvrb78mJkC5csDt2zxuSJUYSkqSpt9rIIY+f/6M7du3Y8mSJXj41RVnZmaG77//HkHnz6N6eLjypr0A/3wILrJcIoa0yiYLDg7GwIED8fHjR7x//x7v3r2TPBISEvQ9RoIgCCKvIBYDb97weR8fPiXLkGqiori7yNoaKFFCv/tWJ27ozh1+fBcXtWocxcXFYfr06fD09MSwYcPw8OFD2NvbY+LEiQgPD8f27dtRvXRpvrKqWkP79vHPyTff6NcapgNaWYZevnyJsWPHKq01RBAEQRRg3r3jxfMAnp108yaJoawwRI0hAXUyytQMnn748CGWLFmCrVu3IiUlBQDg6emJwMBADBo0CIVlswWzK7wouMi6ds3uDHIMrcRQy5Ytce3aNZQqVUrf4yEIgiDyMkK8UJEiUksHuclUY4i0egF1LENZiCGhSOLixYtx8OBByfJvvvkGEyZMQOfOnWGmLDA7KzEUFwcIsUW5xEUGaCmG2rZti4kTJ+L+/fuoXLkyzM3N5V7v0KGDXgZHEARB5DEEMeToKK1ZQ5Yh1RgieFpAEEMPHnBXmDLLkxIxlJaWht27d2Px4sW48TW4WiQSoUOHDggODkaDBg3kYoUVyEoMCS6ymjX1GyOlI1qJoSFDhgAAZs6cqfCaSCRChmAiJQiCIAoWQvC0k5NUDJFlSDX37/NpkSL637cQwPz+PRepmWOC0tKAe/f4fPXqSExMxIYNG7B8+XJEfa1IbW1tjf79+yMwMBBly5ZV77hZiaE9e/g0F7nIAC3FUOZUeoIgCIIAIG8Zsrfn82QZUk5oKLeUAMD//sdjrAYN0t/+ray49eXZM24dyiyG7t8HUlMRWbgwlq1ciQ0bN+Ljx48AlBRJ1ARVYujtW+DUKT6fi1xkgJbZZARBEAShFHKTqUd0NDB0qPQ5Y8CwYXy5PskiiPra3r3oAaDUx48IWbIEHz9+RIUKFbBx40a8ePECU6dO1VwIATwzDeBiiDHp8n37eHB99epc+OUi1LYMLV++HEOHDoWVlRWWL1+e5bpjx47VeWAEQRBEHkSZGCI3mSJPnvDYGVkyMoCnT/XbmsLXF/jnH0kQtVgsxj///INFixbhrFDrB0DTpk0xYcIEtGzZUnmRRE0QxFBqKpCQADg48Oe5MItMQG0xtGTJEkk57SVLlqhcTyQSkRgiCIIoqJCbTD18fHhAs6zlxNQ060rR2vDVMvT53j1sW7cOS5YswaNHjwAAZiIRvmcMQTNnovrUqfo7pqUlF0Dx8dw6JMyfPMlfz8tiKFxI/8s0TxAEQRASlAVQkxhSxN0daNhQWonZ1BRYt07vDUvjnJ2xGsCq06fx9qsYsbe3x9AhQzB2zRq4JycDnTrp9ZgAeNxQfDwQEwNUrgz89Re3fFWrpn/BpwcoZoggCILQH+QmUx+hDcfcuTzFXo/B0w8fPsTQoUNR8rvvMAPAW7EYniVLYsmSJYiKisKCoUO5ELKyksYV6ZPMQdS5rBdZZtS2DAUFBam905CQEK0Gow6rV6/GwoULERMTg4oVK2Lp0qVo2LChyvV/++03LFiwAE+ePIG9vT1atWqFRYsWwUHwYRIEQRD6Q5mbLCmJWwVMTY03rtzGixc8y8vUFBg9GpCt4KwlQpHERYsW4Z9//pEs/8bMDBPS09H5jz9gVqcOX3j4MJ9Wrpx1R3ttkRVDCQnAiRP8eS50kQEaiKGbQmGmbMiyEJOO7Nq1C4GBgVi9ejXq16+PdevWoXXr1rh//z5KliypsP65c+fQt29fLFmyBO3bt8fLly8xfPhwDB48GPuEdEaCIAhCP3z5InWJOToCsi2bkpKk4oiQxs/Urq2zEMq2SOKUKRD9+y8P2hbEkJptOLRGVgz99ReQng5UqQKoW6soh1FbDJ0SagMYkZCQEAwaNAiDBw8GACxduhRHjx7FmjVrMG/ePIX1L126BC8vL0lAt7e3N4YNG4YFCxbk6LgJgiAKBEKDVnNzXkRQJAIsLHhWUWIiiSFZBEtJs2Za7yKrIonjx4+Hj9Aot0IF4N9/5dty5KQYev6cz+dSqxCgY8zQ06dPcfToUXz+/BkAN9EZitTUVFy/fh0BAQFyywMCAnDhwgWl29SrVw/R0dE4dOgQGGN4/fo19uzZg7Zt26o8TkpKCj58+CD3IAiCINRACJ52dJS2fqCMMkUY00kMRUZGIjg4GB4eHpg4cSKioqLg5OSEWbNmITIyEqtXr5YKIUC+LYdw/JwSQ//9Bxw/zudzabwQoKUYio+PR7NmzVC2bFm0adMGMTExAIDBgwcjODhYrwMUePv2LTIyMuCUqYKmk5MTYmNjlW5Tr149/Pbbb+jevTssLCzg7OyMIkWKYMWKFSqPM2/ePNjb20seHh4eej0PgiCIfItsvJAAZZQp8vAhEBvLg5fr1lV7s2vXrqFHjx4oVaoUQkJC5IokRkRE4Oeff1ZeJFEIkBYsQzEx/L0yMeExQ4ZAEEOPH/O2H5UqGSZQW09oJYbGjx8Pc3NzREZGwkbGJ9y9e3ccOXJEb4NTRuaYJMaYyjil+/fvY+zYsfjll19w/fp1HDlyBOHh4Rg+fLjK/U+ePBmJiYmSh2B6JAiCILIhKzFEGWVSBKtQgwZcEGWBWCzG/v374e/vj2+++QY7d+5ERkYGmjVrhkOHDuHu3bsYNGgQrLLaj2AZevKEx+4IVqHy5eXjuvSJUHhRIBe7yAAte5MdO3YMR48ehXumegg+Pj548eKFXgaWmeLFi8PU1FTBChQXF6dgLRKYN28e6tevj4kTJwIAqlSpAltbWzRs2BCzZ8+GS+Y3C4ClpSUsLS31fwIEQRD5HWViiNxkigjB002bqlzl8+fP2LZtG0JCQvD48WMAgJmZGb7//nsEBwejWrVq6h/P3Z2Lnk+fePyOoV1kAODsLP88l4shrSxDycnJchYhgbdv3xpMSFhYWKBmzZoICwuTWx4WFoZ69eop3ebTp08KZcVNv6Z2GjK+iSAIokBCbrLsyciQNitVEi8UFxeHadOmoWTJkhg+fDgeP34Me3t7TJw4EeHh4di+fbtmQgjg7jDZHmU5IYa2bZN/riK2N7eglRhq1KgRtsmcqEgkglgsxsKFC9GkSRO9DS4zQUFB2LhxIzZt2oQHDx5g/PjxiIyMlLi9Jk+ejL59+0rWb9++Pfbu3Ys1a9bg+fPnOH/+PMaOHYvatWvDVfBnEgRBEPpBtvq0ALnJ5Ll5E3j/nlvMatSQLH7w4AGGDBmCkiVLYubMmXj79i08PT2xdOlSXiRxwQIFb4xGyMYNGVoMZW5CCximCa0e0cpNtnDhQjRu3BjXrl1DamoqfvjhB/z3339ISEjA+fPn9T1GCd27d0d8fDxmzpyJmJgYVKpUCYcOHYKnpycAICYmBpGRkZL1+/fvj48fP2LlypUIDg5GkSJF0LRpU8yfP99gYyQIgiiwkJssewQXmb8/mKkpTp86hcWLF8sVSaxduzaCg4PRuXNnmOmrIKIQN3TxIiC01NLUwqQuOdWEVo9odZUrVKiAO3fuYM2aNTA1NUVycjI6d+6MUaNGKY3D0ScjR47EyJEjlb62ZcsWhWVjxozBmDFjDDomgiAIAuQmU4cTJ5AG4A97eyyuWVNS0FgkEqFjx44IDg5G/fr19V/AWLAMCZWnPT2BYsX0ewwBHx/umpMVRIZoQqtHtJaczs7OmDFjhj7HQhAEQeRlKJssSxLfvMH6kyexHED09u0AVBRJNASCZSg1lU9lXHR6x90dWL+eu8aENiwGaEKrT7SKGTpy5AjOnTsneb5q1SpUq1YNPXv2xLt37/Q2OIIgCCKPwBi5yVTw4sULBAUFwcPLCz+kpyMayLpIoiEoU4ZbawQMGTwN8KazERE8WFzPTWgNgVZiaOLEiZLKzHfv3kVQUBDatGmD58+fa9TQlSAIgsgnvHvHa9gAZBn6ilAksXTp0liyZAk+fvqECgBCa9fOukiiIbC0BEqXlj7PiYLC7u5A48a52iIkoJWbLDw8HBUqVAAA/Pnnn2jfvj3mzp2LGzduoE2bNnodIEEQBJEHEKxC9vb8xitQwGKGxGIxDh48iMWLF+Ps2bOS5c2aNUNwTAxa3b8P0ZAh2RZbNAiyJXEGDeIurFxusckptLIMWVhY4NOnTwCA48ePS/qFFStWjHp5EQRBFESUuciAAuMm+/z5M9atWwdfX1907NgRZ8+ehZmZGXr37o2bN2/i+F9/ofXjxxABOjVn1ZroaODOHelzsTjXp7vnJFpZhho0aICgoCDUr18fV65cwa5duwAAjx8/1q0OAkEQBJE3USWG8rmbLC4uDqtWrcLq1avx9u1bAIC9vT2GDRuGMWPGSO+Jhw9zN6K3N3/kNE+e8LguWXJ5untOopUYWrlyJUaOHIk9e/ZgzZo1cHNzAwAcPnwYrVq10usACYIgiDxAdmIon1mGHj58iJCQEGzbtg0pKSkAAC8vLwQGBmLgwIEoXLiw/AZqtOAwKHkw3T0n0UoMlSxZEgcPHlRYvmTJEp0HRBAEQeRBlFWfBqRusk+fuGVEX0UEjQBjDKdPn1YoklinTh0EBwejU6dOqoskCs1ZjeEiA/JkuntOovOn8vPnz0hLS5NbZif8EyAIgiAKBtlZhgBuHTJUob/oaO4K8vHR+w0+LS0Nf/zxBxYvXqxQJHHChAmoV69e1kUS4+OBW7f4vAFbVmXLoEFAy5bcNVamDAkhGbQSQ8nJyfjxxx/xxx9/ID4+XuH1jIwMnQdGEARB5CFUiSFzc8DaGvj82XBiKDSU98ISi7kraP16vWRJJSYmYv369Vi+fDmivwYaW1tbY8CAAQgMDFS/NtDp0zxep2JFxW7uOY27O4kgJWiVTfbDDz/g5MmTWL16NSwtLbFx40bMmDEDrq6ucg1cCYIgiBwiOpoXuDNWdpAqMQQYNm5IaAoqxMLoIUtKUiTRwwM//PADoqOj4eTkhNmzZyMqKgqrVq3SrEiisV1kRLZoZRk6cOAAtm3bhsaNG2PgwIFo2LAhypQpA09PT/z222/o1auXvsdJEARBqMJAlhGNyE4MvX5tmIwyPTYFvXr1KhYvXow9e/ZIPBwVKlRAcHAwevbsCSttawMZO3iayBatLEMJCQnw/poaaGdnh4SEBAA85V62yBRBEARhIMRi4OZNYPJkYPBgvVpGtEJVADVg2FpDPj5A5ngdDbKkxGIx9u/fD39/f9SuXRu7du1CRkYGmjVrhsOHD+PevXsYOHCg9kLo5Uvg0SMuUv39tdsHYXC0sgyVKlUKERER8PT0RIUKFfDHH3+gdu3aOHDgAIoUKaLnIRIEQRRgZAODTU2BY8f4IywMePNG+TY5XT8mJUVq9clpN5mbG49DEuJXRSK1sqQ+ffqEbdu2YcmSJXj8+DEAwMzMDD169EBQUBCqVaumn/EJVqGaNQG6P+ZatBJDAwYMwO3bt+Hv74/Jkyejbdu2WLFiBdLT0xESEqLvMRIEQRRMZN1fyihUCPDzA44fly+ol9P1YwRRZmam/IZvyMKLjx9LhRAAdOiQpYtQKJK4atUqSQKQvb09hg8fjjFjxkjq5ukNihfKE2glhsaPHy+Zb9KkCR48eIDr16+jdOnSqFq1qt4GRxAEUWDJHBgsUKUK0L49EBAA1K0LWFhw0TRkCBdEalpG9IoQL1SihHxndAFDusmOHuVTc3MgLQ2IjVW62oMHDxASEoLt27erVyRRHzBGYiiPoJfqV56envD09NTHrgiCIAhAeWAwACxbxjuByzJoEL/xDhnCU7cHDMiRIUrIKngaMKyb7MgRPu3aFfj9d+DZM8lLOhVJ1AdPn3JRa2EB1KtnuOMQOqNVADUAnDhxAu3atUPp0qVRpkwZtGvXDsePH9fn2AiCIAouQvsEWbJyf/Xqxd1mMTHAlSuGH58sWQVPA4Zzk335wmv4AMDIkXz69i3S4uPx22+/oWbNmmjatCn++ecfiEQifPvtt/j3339x8eJFdO3a1bBCCJBaherVk+8YT+Q6tBJDK1euRKtWrVC4cGGMGzcOY8eOhZ2dHdq0aYOVK1fqe4wEQRAFD3d3QLbFUXbtE6ytufsMAHbvNvz4ZMnOMmQoN9m///Jijq6uQL16SCxWDAsBlKpYUdIt3traGiNHjsSjR4+wb98+NGjQIOtq0frkwAE+rVUrZ45HaI1WsnjevHlYsmQJRo8eLVk2duxY1K9fH3PmzJFbThAEQWhJ7dp86uDA2zlkFwfUpQuwYwewZw+waJFiyrmhMJab7KuL7EX9+lgWHIyN79/jIwC8fg0nJyeMGTMGw4cPh4ODg36Pqw4bNgCHDvH5kBCgfPmcr/1EqI1WlqEPHz4o7U4fEBCAD/msMzFBEITRePSIT6tUUS8gunVrwNYWiIwErl417NhkUVcM6dlNdnXfPnwPoPSff2LJkiX4KBajIoDQrl3x4sULTJkyxThCKDoaGD5c+txYtZ8ItdFKDHXo0AH79u1TWP7333+jvWCmJQiCIHRDEEPlyqm3vrU10K4dn89JV5kghlTFDOnRTSYWi/H333+jUZ06qB0ejl0AMsRiNG/eHId79MBdAAMdHGBpaanzsbTm8WPVVbGJXInabrLly5dL5n19fTFnzhycPn0afn5+AIBLly7h/PnzCA4O1v8oCYIgCiKaiiGAZ1Xt2sXF0IIFOeMqEwKoDWgZEookhoSE4MmTJwD4DaxniRIICgvjZV02b+ZuQpmMMqMQGam4LKdrPxEaobYYWiIbyAegaNGiuH//Pu7fvy9ZVqRIEWzatAk///yz/kZIEARRUNFGDLVuzTOXXrwArl/PmeBdA8YMvX79GqtWrcLq1aslRRKLFCmCYY6OGPP4MdxGjQKE+nalS/Pp8+caH0dviMXA0qV8XiTiJQ+yC34njI7aYig8PNyQ4yAIgiBkkXWraCKGbGyAtm25ZWj3bsOLIcYMkk12//59hISE4Ndff5UUSfT29uZFEvv2RSEvL76ibPxqqVJ8+uIFkJ7OK2LnNLt3A7dvcwF47hyvjl2mDAmhXI7WdYYIgiAIAxIZyXt+WVgAmha17dqVT3fvlm/TYQgSE3nlZyB7y9CXL0BqqspdMcZw4sQJtGnTBhUrVkRoaChSUlJQt25d7N69G0+ePMHYsWNR6L//+HGLFZMXe66ugKUlF0JRUXo6QQ1ITwd++YXPBwcDlSvzApkkhHI9JIYIgiByI4KLrEwZ7mbRhDZteDB1eDhw44b+xyaLYBWyswNUdXaXbXWhxDqUlpaGX3/9FTVq1OCB0IcPQyQSoVOnTjh//jwuXryILl26wFS4DkLV6YAA+WtjYgJ4e/N5Y8QNbd/Og6cdHIDAwJw/PqE1JIYIgiByI9rECwnY2nJXGcBrDhmS7IKnAe6usrXl8zJi6P3791i4cCG8vb3Rp08f3Lp1CzY2Nhg1ahQeP36MvXv3op6yNhaCGGrZUvE1Y8UNpaQAM2bw+cmTpdYwIk9AYoggCCI3oosYAngBRkBzV1l0NHDqlPo1cbKLFxKQySiLiIhAYGAgPDw88MMPP+Dly5dwcnLC7NmzERkZiZUrV6KMqsyrN294YDigXAwJcUM5bRnasIHHKrm6SluDEHkGI0SXEQRBENmiqxhq25a7rZ4949Wrq1fPfpvQUGDoUJ4RZWICrF+ffdVkDcTQlZgYLA4Oxp4zZyD+WoenYsWKCAoKQq9evdSrDRQWxsVd1aqAi4vi68awDH36BMyZw+d//pm7KIk8hVZi6MmTJ7hw4QJiY2MhEong5OSEevXqwcfHR9/jIwiCKJjoKoYKFeKxQ3v3cutQdmIoOloqhABp1eSWLbMOAM5GDGVkZODAgQNY/PIlzgHc6gSgefPmmDBhAgICAjTrFSa4yJR0QQBgHMvQypVAbCzg5UUtN/IoGomhxMRE9O3bFwcOHIC9vT0cHR3BGMObN2/w4cMHtG/fHtu2bYMd+UoJgiC0JykJePmSz2srhgCeVSaIoTlzsi7AePy46qrJ6oihTNWnP336hK1bt2LJkiWSIonmAHo0aICglSt5kURNEYuBo0f5vDIXGSC1DD17xi1Ihi46mZgIzJ/P52fM4Nl/RJ5Do5ihMWPGIDw8HBcvXsS7d+/w6NEjPH78GO/evcOFCxcQHh6OMWPGGGqsBEEQBYOv4gHFi/P0cW1p25anmj99Cty5o3q9qCge9JsZdaomZwqgfv36NX755ReULFkSI0eOxJMnT1CkSBFMKlsW4QC29uihnRACeP2euDgejF2/vvJ1hGyyDx+AhATtjqMJISH8OL6+QK9ehj8eYRA0EkP79+/Hhg0bUKdOHYXX6tSpg3Xr1uHvv//W2+AIgiAKJIKLrGxZ3fZTuDCvSA2o7lUWH8+tLLGx3Loja0lRp2ryV8vQ/dRUDB48GJ6enpg1axbi4+Ph5eWFZcuWISoqCvPq14cboFt/MsFF1qyZaguMtTUPYgYM7yp7+5aLIQCYOVPzEghErkHjbLKsfLsa+X0JgiAI5egaLyRLVgUYk5O59ejBA8DNDbhyBbh0ib8mEgHdumW5a8YYToSHow2AisHBCkUSnz59yoskFiqkn8712cULCeRUEPX8+dylWb060LmzYY9FGBSNxFD79u0xZMgQXLt2TeG1a9euYfjw4ejQoYPeBkcQBFEg0acYateOu8oePwbu3ZMuT0vjQunyZaBoUeDYMaBkSaB2be5qYgy4cEHpLuWKJEZH4zCQdZFEQKf+ZJLthPGoihcSyIkg6mvXgGXL+PycOTz7jsizaPTurVixAq6urqhduzaKFSuG8uXLw9fXF8WKFUOdOnXg4uIi192eIAiC0AJ9iiE7O6l4EFxlYjEwcCBw+DB3K/3zD1ChgnSbRo349MwZuV0pLZIIYBSAx5cvqy6SCGjVn0yOkyd5uwsfH6nYUYWhLUOhoVw0Cm1IhGB3Is+iUTZZkSJFcPjwYTx48ACXLl1CbGwsAMDZ2Rl+fn4oX768QQZJEARRYGCMW3EA/YghgFuA9u/nYmjGDGDCBODXX3mMy+7dgJ+f/Pr+/sDWrcDZswCAiIgILFu2DBs3bkRSUhIAwMnJCWP798fw+fNRzNQUqFkz6zHo6iZT10UGGNYyJJQgkHU5Dh/Ox0U9yPIsWtUZ8vX1ha+vr77HQhAEQcTE8DgUU1OphUNX2rfnAccPH/IYocOH+fJNm6RtO2T5ahm6cukSFnfpgj379kmKJFaqVAlBQUHo2bMnLO/f53EzJUpk7ybSxU3GmGZiyJCWoSdPtCtBQORqNHZyMsYQFhaGGTNmYMSIERg5ciRmzJiB48ePgxm6OzKA1atXw9vbG1ZWVqhZsyb+/fffLNdPSUnBlClT4OnpCUtLS5QuXRqbNm0y+DgJgiC0QnCReXvrr2aNvT1P/QakQqhrV6BvX4VVxWIx/r57F40sLFAnIwN//PknxGIxWrRogSNHjuDOnTsYMGAArxatbvVpYQyAdmLo8WPe6sLCglutskOwDEVH855h+kRZcWF1ShAQuRqNLEMvX75Eu3btcPfuXVSqVAlOTk5gjOHChQuYNWsWqlativ3798PNzc0gg921axcCAwOxevVq1K9fH+vWrUPr1q1x//59lCxZUuk23bp1w+vXrxEaGooyZcogLi4O6enpBhkfQRD5gOho/u/fx8c4//T1lVYvS3S0Yp2hvXv58q/nqLJIYtWqCNq6VXltIE3EkC5usp07+bR2bWnD16woUYJX4E5KAiIi9OduBPj1cnSUnrupqXolCIjcDdOADh06sKZNm7JXr14pvPbq1SvWtGlT1rFjR012qRG1a9dmw4cPl1tWvnx5NmnSJKXrHz58mNnb27P4+Hitj5mYmMgAsMTERK33QRBEHmHjRsZMTBgD+HTjxpwfQ2AgP/748frb58mTfJ+ZH6dOsdjYWDZ16lTm4ODAADAArEiRImxSQACLBhhr1kz1fhct4vvp1Sv7Mdy9y9ctXlyzsW/cKB2vSKT+e1KlCt/mn380O152vH8vHc9ffzEWFaXf/RN6Q5P7t0ZushMnTiAkJAQuSprjubi4YNGiRTh+/LheRFpmUlNTcf36dQQEBMgtDwgIwAUV6Z/79+9HrVq1sGDBAri5uaFs2bKYMGECPn/+rPI4KSkp+PDhg9yDIIgCgKreXOp2b9cX+swkE/DxUYjpuW9igsHr1skVSfT29pYWSQwJ4UUSL1wAUlOV7zdT9eksEdxkiYmK9Y5UIbwnAoyp/54YKm7oxg0+9fICOnYki1A+QSMxZG1tjYQsypu/e/cO1gbq1vv27VtkZGTAKVP/GycnJ0lWW2aeP3+Oc+fO4d69e9i3bx+WLl2KPXv2YNSoUSqPM2/ePNjb20seHh4eej0PgiByKVkFxuYkhhBD7u7A+vVgJiY4AfAiiWIxQnfulCuS+OTJE2mRxAoVeDuQz5+B69eV71cbN1lamvpxPLq8J4bKKBPq7NWqpd/9EkZFIzH0/fffo1+/ftizZw8SZfy+iYmJ2LNnDwYMGICePXvqfZCyZK5yzRhTWflaLBZDJBLht99+Q+3atdGmTRuEhIRgy5YtKq1DkydPRmJiouQRFRWl93MgCCIX4uOj2NQzpwNjU1J4jAugVzGUlpaGXy0tUcPXF80BSZHEzp07qy6SKBIBDRvy+a8p9gpoIoYKFZLOq2tx1+U9MZRliMRQvkSjAOrFixcjPT0dvXr1Qnp6Oiy+ZjqkpqbCzMwMgwYNwsKFCw0y0OLFi8PU1FTBChQXF6dgLRJwcXGBm5sb7AXzLHhZAMYYoqOj4aMkK8DS0pJnSRAEUbBwd+cZV/fv8+ciUc4Hxj57xi0hhQsDzs467+79+/dYv349li9fjpdfCwPa2Nhg4MCBCAwMROnsUvcbNQL27eNi6McfFV/XRAyZmvLz+viRu8rU2cbdnbcE2bVLug913xOyDBEaoJEYsrCwwJo1azB//nxcu3YNr7/6i52dnVGzZk3YCWZQA2BhYYGaNWsiLCwMnTp1kiwPCwtDx44dlW5Tv3597N69G0lJSdzsC+Dx48cwMTGBO/l5CYLIjKzF2MIi5/tNybrIdOj1GBERgaVLlyI0NFRSJNHZ2RljxozB8OHDUaxYMfV2JFSiPneOu6cyNyIVxJCKP6QK2NlxMaRJLKbwW921K2+Kqu5vt6xliDGdrqeEhASppalGDd33R+QeDB7OrUd27tzJzM3NWWhoKLt//z4LDAxktra2LCIigjHG2KRJk1ifPn0k63/8+JG5u7uzLl26sP/++4+dOXOG+fj4sMGDB6t9TMomI4gCQkqKNJPMw4NPly7N2THMm8eP27OnVptfvnyZdevWjZmYmEgywypVqsQ2b97Mvnz5ovkO09MZK1yYj+nGDfnXxGLGLCz4a19/g7PF15evf/Kk+mPo3p1vExKi/jaMMZaaKn0/lWRAa0VYGN9f6dL62R9hUDS5f2tcgTo5ORm///47Lly4gNjYWIhEIjg5OaF+/fro0aMHbNWpAaEl3bt3R3x8PGbOnImYmBhUqlQJhw4dgqenJwAgJiYGkZGRkvULFSqEsLAwjBkzBrVq1YKDgwO6deuG2bNnG2yMBEHkUSIiuIvKxgaYNAkYNQpYuxYYO1Y/VgV10CJ4OiMjAwcOHMDixYtx7tw5yfKAgAAEBQUhICBAZVxltpiaAg0a8EKNZ8/y7uwCHz5Is8xKlFBvf7IZZeoiZI5pas03N+eNZyMiuDVHSRa0xpCLLN+iUQD1/fv3UbZsWfzwww949+4dSpYsCXd3d7x79w4TJ05EuXLlcF/wtxuIkSNHIiIiAikpKbh+/ToaCWZcAFu2bMHp06fl1i9fvjzCwsLw6dMnREVFYfHixQbLeCMIIg8jZCiVKQP07s2L+z18CGRT5V6vaCCGPn36hNWrV6N8+fLo1KkTzp07B3Nzc/Tr1w+3b9/G0aNH0bJlS+2FkIBQ8TlT01aJi6xQIS4g1UGblhxCEos2mb2Cq0xfcUMkhvItGlmGRo0ahUaNGmHr1q2S4GmB1NRU9O/fH6NGjcKpU6f0OkiCKNAYuyKyscmp8xdumGXK8Jt2z57Ahg3cOiTzp8ugqCGGYmNjsWrVKqxevVpS6qRo0aIYPnw4Ro8eDVdXV/2OSTj3s2flY280CZ4W0LQlR0YG8OoVn9fmvS9VCjhxgsQQkS0aWYYuX76MqVOnKgghgAc4//TTT7h8+bLeBkcQBZ7QUMDTE2jalE9DQ409opwlJ89f1jIE8OJ+APDnn8CbN4Y7rkB8PA/QBZT2v/rvv/8waNAgeHp6Yvbs2UhISIC3tzdWrFiByMhIzJ07V/9CCODd6K2t+fgePJAu1zR4GtC8JUdcHJCezgtGapNdp8/0+rdveX80QN5dSOQLNBJDRYsWlfSsUcbTp09RtGhRnQdFEARyT0VkY5HT559ZDNWsyS0AqanAli2GOaYsglXIw0PSf4sxhhMnTqB169aoVKkSNm3ahNTUVPj5+WHPnj148uQJRo8eLcmWNQgWFoCfH5+XrTekSfVpAU3dZMJ77eICmGkc4qrf9Hqh8GTZslILF5Fv0EgMDRkyBP369cOiRYtw+/ZtxMbG4vXr17h9+zYWLVqEgQMHYpjwb4ogCN3ILRWRjUVOn39mMQQAw4fz6bp1imPRNzIustTUVGzfvh3Vq1dH8+bNceTIEbkiiRcuXMB3330nXyTRkMi6ygRywk2mS7wQoF/LELnI8jUaSe3p06fD2toaISEh+OGHHySBeYwxODs7Y9KkSfjhhx8MMlCCKHAI1Xdl+zjldEVkYyL005IVIYY6//R0IDycz8sWIvz+eyAoiFsWTp4EmjfX/7EFHj3CewDrk5OxzNsbr77GytjY2GDAgAEIDAxEGWO998rihrQRQ5q6ybTNJBMQLEOvX/MO9rpY0EgM5Ws0sgwBwI8//ohXr17h2bNnOHfuHM6dO4dnz57h1atXJIQIQp+4u8vfmDWpvpsfcHcHRo+WPjcxMdz5R0XxnlmWlvL7t7UF+vTh82vX6v+4X4mIiEDg7t3wAPDjxYt49eoVnJ2dMWfOHERFRWHlypXGE0IAUKcOT1V/+VIqGnURQ5q6ybR9z4sUAYQCk8K4tYXEUL5GYzEk4O3tDT8/P/j5+cHb21ufYyIIQkD4B21ry+ulDBpk1OHkOLJZVdOmGe78BRdZqVIK3d0lgdR//QXExOj1sFeuXEH37t1RunRpLHv+HEkAKnl5YfPmzYiIiMBPP/2kfrVoQ2JjA9SuzeeFFHshZkiTAGpN3WS6iiFAP3FDr1/zsYhEFDydT9FYDH3+/Bnnzp1TWk/oy5cv2LZtm14GRhAFnnfvpFlMycmAg4Nxx2MMhKalgGa1aTRFNq0+M5UrA/Xq8XilTZt0PlRGRgb++usvNGzYEHXq1MEff/wBsViMAJEIRwHcOXkS/fv3z309EjPHDeWEm0zXmCFAP3FDQvB0+fK6udqIXItGYujx48fw9fVFo0aNULlyZTRu3BgxMv+UEhMTMWDAAL0PkiD0QnQ0cOpU3snGevxY/rnwT7wgISuGZKrL6x1lwdOyCIHU69dzUaQFWRZJPHgQRxlDgJUVRF8r6uc69CmG8ppliFxk+R6NxNCPP/6IypUrIy4uDo8ePYKdnR3q168v1wKDIHIlebFej5BdJBAba5xxGJPcIoa6dOGxJ5GRwNGjGu06NjYWU6dOhYeHB0aNGiUpQTJ58mRERERgy5YtqCIUMhSCxnMj9erxsT1/zt8XoSaSNtlk6liGxGIeowToJob0YRkiMZTv0ehbd+HCBcydOxfFixdHmTJlsH//frRu3RoNGzbEc32kLhKEIcir9XoyiyGyDBnuONmJIWtroF8/Pq9mILWyIomlSpVSXiRRi55kOY6dnTReZu9ePjUxkQYoq7sPgFuGZLMklfHmDQ9qF4l06ytGliFCDTQSQ58/f4ZZpsJXq1atQocOHeDv74/Hmc36BJEbyKv1egq6ZSgpSb7yc0wMkJKi/+OIxdIbpWz2XmaEQOp//pHGsmSCMYbjx4+rLJL4+PFj5UUShfe6bFkdT8bACK6y3bv5tEQJnuWoLoIYysgAPn/Oel3hGru48Ew2bRHe04gI7Vycr17xz56JCVCtmvbjIHI1Gomh8uXL45qgkGVYsWIFOnbsiA4dOuhtYAShN4R6PbLkhXo9shWJgYInhoTWB/b2gJUVnxfcJvrk1Svgyxde4TireJ1y5YAmTbh42rhR7qXU1FRs27YN1atXR4sWLXDkyBGYmJigc+fOuHDhQvZFEvOCZQiQNm29dIlPNXGRATz4WPguZucq00e8EAC4ufEq2mlp2lmDhXtehQrqN6Ql8hwaiaFOnTphx44dSl9buXIlevToAZad6ZMgNEEfQc/u7kDVqtLneaFeT0YGt2gB0htQQRNDgovM2xsoWZLPG8JVJlgIvbyyb/kgWIfWrgXCwvDu3j3Mnz8f3t7ekm7xNjY2GD16NB4/fow///wTfkIri6zIK2KoQQP555qKIZFI/SBqfYkhU1P+3gLaxQ0JmWTkIsvXaCSGJk+ejEOHDql8ffXq1RAbumQ9UXDQZ9CzYFkAgP37c3+9nqgo7hKytOQF74CCK4a8vKRiSLAW6ZOs0uoz06kTUKgQwuPiMC4gAB6VK2PSpEl49eoVXFxcMHfuXERFRWHFihUonZXLTZYPH6T1i3K7GHJwACpVkj7XVAwBOS+GAKmrTJu4IYoXKhDonLawY8cOJCcn62MsBCFF30HPskJCyILJzQiWgjJluJkfIDEEGNYypIYYunz0KLomJaEMgOUAkgFUBrAlJATh4eGYPHmy5kUSBQugoyOvmJzbEeKGAO3EkLoZZfqoMSQgBFFrahlijMRQAUFnMTRs2DC8LohZLoRh0WfQM2PyQuLhQ93GlhPIBtQ6O/N5EkNGEUMZGRnYt28fGjRogLodOmAPADGAAABHAdwG0K96de2LJOYVF5mArBiStbiqS16yDEVH83pKpqZAlSq6j4PItWjUqFUZFCNEGAR9Nun88IEHyAo8eKD7+AyN7A1SVgwJTTILAkIvKW9vID6ez+egGPr06RO2bNmCJUuW4OnXdczNzdErLQ1B4BYhALoH4+c1MSRrnV2wgH9XNXE7G0MMaWsZEqxClSrx8gpEviWXVvciCjzu7oBsNXORSPug58wWlbxkGSpXTtr76csXw7akyG3IWoaELC99iyHGFMRQbGwsfv75Z5VFEjdv3CgVQvpoHptX0uoBLlBkG3Izprn7Wh03GWPSferDTaatZYiCpwsMOluGRAXlXyqR88jWYunXT/ugZ8GNa2vLe3w9eQKkp2efOWRMZMWQjQ3/N/3hAxd2ws0kP/Pxo9Qa5OkpTWmOjNSvdSwujtczEonw36dPCBk0CL/++itSU1MBAKVKlcL48eMxYMAA2Nra8m0GDQLu3QOWLuUB1boG4+cly1BW7mt1BaE6lqE3b4DUVN0LLgoIzcTfveOPokXV247ihQoMOluGyE1GGAzZmlYfP2q/H8EyVL06v6mmpelWmt/QJCdL/xULN0jBOlRQ4vOErLGiRbn4E260nz7pNQCePXmC4wBaW1qiUo0ackUS//zzT0mRRIkQEmjRgk/v3dNtAGKxtAddXhBDytqFaOomVEcMCZ9/JydeI0hXbG2l7mZ1v/sUPF2g0FkMHT58GG5CtgtB6Iv0dODmTelzmYbAGiOIIRcX3nUayN1xQ0J2UfHi0lYHBS2IWtZFBvBAXUEQ6sFVJimS2LMnWgA48uULTExM8N1330mKJHbu3Fl1kcTatfn00SNuadCWV6+4wDMzk8a15Gbc3XmzWuG6aFOzSx03mT7jhQQ0bcvx4gW3TpqbA5UrZ78+kafRWQw1aNBA+ywKglDFw4f8JiGgDzHk7Jw3xJAyt0lBF0OAXjLK3r17J18kMSoKtgDGVKqEJ0+eYM+ePeoVSSxeXHpzvXpV6/FI3utSpXRrOZGTDBrE359Tp/hUUzehJpYhfcQLCWjasFWwClWuzOt9EfkavQZQP3jwAKXywr8bIvcj/BAJN8BXr7Jv7KgKWTHk68vnc3MQtbKA2oIqhoRYD0AnMRQeHo5x48bBw8NDrkjivKpVEQVgeb9+mv92CcUwL1/WeDwShLYWwrnlFdzdgcaNtbPcqCOGhBpDxrQMUfB0gUKvYig1NRUvDFEhlih4CGKoXTs+TUkB3r/Xbl9kGcp7CGn1OlqGLl++jK5du6JMmTJYvnw5kpOTUblyZWzZsgURERGYZGGBooB2qfG6iqHQUGDqVD5/4oRuFdbzEsZyk2lrGSIxVCDQKJ0mKCgoy9ffyHaYJghdEP6VNWgA7NjB4zJiYtTPApFFVgwJKdoPH+bemj0khnRyk2VkZGD//v1YvHgxzp8/L1keEBCA4OBgtGjRQpoFq0H1aQUEMXTliuafJaHCumDtFFLUW7bM3T3z9IEmbjJjWYYoeLrAoZEYWrZsGapVqwY74cOciaSkJL0MiijgpKUBt27x+Vq1eOCzIIYqVNB8f7JiqEwZng0j9INyddXbsPUCY7lfDEVH8yBvHx/D3bi1EEPJycnYsmULli5dKl8ksVcvBAUFoXLmINiEBGnwszbu/WrVeJzPmzd8vLIuvezQR4p6XsXYMUORkdw6lNV7/vw5t0RbWAAVK+pvDESuRSMx5OPjg/Hjx6N3795KX7916xZq1qypl4ERBZj793mBQXt7/gPm4sKXaRNEnZHBa8kAXFBYWvJ9PnnCrUO5TQzFxPC6N6am0h9vIPeIodBQac84ExOeWaTvprcfPkjT5wVLHqCyWWtsbCxWrlyJNWvWIOHrdkWLFsXw4cMxevRouKp6jwWrkKurtI6RJlhZcUF09Sp3lWkihvRZYT2vkZ2bTLbgoj6F4cGD0v37+GT92RWsQlWr6ie1n8j1aBQzVLNmTVwX3BdKEIlEVHeI0B3hh6hmTX7DEIquvXql+b7i47kgEomAEiX4stwcNyTUnPH2lv8RFsRQXBw/H2Og7+a5qhDETrFiUisCIBVDMTFASgru3buHgQMHwtPTE3PmzEFCQgJKlSqFFStWICoqCnPnzlUthADdXGQC2sYNubtL4+EA7VLU8yqyliFl94v4eGn7HH39WYmO5p9VAbGYf5ZVfXbJRVbg0MgytHjxYqSkpKh8vWrVqhBnNv0ShKbIiiFA+oOojWVIsKQULy5NXfb1BQ4cyJ0ZZapaM5QowQVdRga/WWjTLVxXdu3KGdeOMhcZAJQoAWZpiRMpKVjUogWO/vuv5CU/Pz8EBwfj22+/VV0bKDNC7IguYkioN6RNELVgsZwwARg3rmAIIUAqhhjjVtDCheVfFwSKo6P+UtqVuSXFYqBrV27tzOx+p0yyAodGliFnZ2d4ypqtCcIQZP4hEixD2oghoWKzYFkBcrdlSFVrBnNzLuiAnHeVMQasWiXfk0rAxET/rh0lafWpqanYtn07qjGGFgCO/vuvQpHE7777Tn0hBOjXMnTjBm8foS7x8TzwGihYQgjgLknhfVIWN2SIeCFllbMBXtqgcmVuJRJ+X8RiEkMFEK1T61+8eIHLly/jypUrlE5P6I/UVOD2bT6vDzEkGzwtkJtrDWXVp0o4h5xsyZGaCowYAYwezW8SdepIb2QAb0uh7xu5TFp95iKJd1JTeZHEFi00K5KoDH2IIR8fnuGYkgLcvav+dseP8+tZqVLBEkIAt3BmFURtiBpDyipnz57Ne8uJxcCGDfxzMG0acPQoH5elpXYJG0SeRGMxtGTJEnh4eKBUqVLw8/ND3bp1UapUKXh4eGDp0qUGGCJRoLh3j9+AixaVWgb0IYaEVg6A1DL08mXu6wKflRgSziGnLENv3wIBATyWRSQC5s8HLl7klpuZM/k6d+/qP4YpIgLhAMZdu6ZYJLFmTV4ksVEj3Qu86kMMiUTaucqOHuXTli21P3ZeRhBDyoKoDRE8DShWzp4yBdi7F/j3X6BuXV7xfuZMoE0bvn5KCrB1q37HQORaNBJDs2bNwvTp0zF69Ghcv34dL1++RHR0NK5fv47Ro0dj+vTpmD17tqHGShQEZAMXhbotugRQK7MMFSkifZ6brEMpKVKrSFaWIUOKoehofrM4fpzf5M+c4TEd+/dzN5lIxG9SP/zABeurV8DJk3o7/KVLl9D11CmUAbD8zBnFIont2/Miibr2J/vwQRqzI5u1pw2aBlEzBhw5wudbtdLt2HkVIaMsKzeZISxmyipnN2gAXLgArF2ruL4hEgSIXIlGAdTr16/H1q1b8e2338otd3V1RbVq1VC2bFmMHj0aP//8sz7HSBQkMgdPA1IxlJzMu9dnDrjMCmViCOCusthYLoaEf/bG5tkzbrIvXFhxvIDhxZBs2rxAqVJcCGWutWJpCXTvzm8g27dLu7hrgVAkcdGiRbhw4YJkecv69RE8bRqaN28uLZKoh/5kAKTB0yVKyGesaYOmYujuXW7ltLHhN+KCSFZuMkPEDGWHSKSYtAAUnNpPhGaWofj4eJRT9o/1K2XLlsU7XTo4E4SylNZChaQCSFNXmSoxlBuDqIW0+nLllFczNqQYypw2L/DXX6qLzvXty6d793KhqiHJyclYtWoVypUrh86dO+PChQuwsLDAAAB3ARw5fFi+WjSgPzGkDxeZgKYd7AWrUOPGvFZRQSQrN5khYobUQVmQdUGp/URoJoZq166NOXPmID09XeG19PR0zJ07F7Vzy79sIu/x5QuPGQIUszi0jRvKyjIE5C43maq0egFDiiFlqccAz3pSRd26/EaRnAzs26f2oWJiYjBlyhR4eHhg9OjRePbsGYoWLYqffvoJEYcOYROASg4Oyi2AsmJIl5pm+kirF9C0g70QL1RQXWSAajeZoQouqoOyIOuCUvuJ0MxNtmLFCgQEBMDR0RH+/v5wcnKCSCRCbGwszp49C0tLS4SFhRlqrER+5+5d3oqjeHHFLt4uLtxykp8tQ1kFTwOGFUM+PtwaJSswsvtXLBIBvXsD06cD27bx+Sy4d+8eFi9ejN9//x2pX9PQS5cujfHjx6N///6wtbUF/v6br6yqmrNwY0pO5laYYsXUPMFM6NMyBHBX2fPn3FUWEKB6vaQkHrALFGwxpMpN9u4d8Pkzn3dzy9kxATzIumVL/vkoU4aEUAFCI8tQ5cqV8fjxY8yZMwd2dnYIDw/H8+fPYWdnhzlz5uDhw4eoSH1cCG1RFjwtoE0QdUqKtK2DKsvQs2dcgOUGjCmGUlLkr7m6/4oFAXTihNL3hjGGsLAwtGrVShIInZqainr16mHv3r149OgRRo0axYUQoLrgooC1tbTgpC6uMkOIIUBaO0gVp07xz1upUgXb/aLKTSZYhUqUMJ4LUVmQNZHv0cgyBACFCxfGiBEjMGLECEOMhyjIKAueFtDGTSZkC5mbK3a7d3PjsUhJSfzGKIgjY6KuGEpI4OJFX9V5AW7dEYsBf38+r+6/4tKlgfr1gfPngd9/59WUwYsk7ty5E4sXL8adO3cAACYmJujcuTOCg4NRt25d5fvLTgwB3GoYF8fFULVqap5gJgwlhi5fzrqDvRAv1LKlZl3u8xuq3GTGihciCjxaFV1MTk7G2bNnsWvXLuzZswc3btzIsZ5kq1evhre3N6ysrFCzZk38K1OSPyvOnz8PMzMzVNP2x5MwPFn1A9KmJYdQnNDJSTEwUiSSuspyQ9xQfLw0PsfHR/k6RYtKW4oIQk8f/Pcf8NtvfH7xYs3/Fffpw6fbt+Pdu3f43//+Jy2SeOcObG1tMXbsWDx9+hS7d+9WLYQA9cUQoNCwVW0+feI1pgD9iaHMHexVQfFCHFVuMmPFCxEFHo3EkFgsxg8//IASJUqgSZMm6NmzJ7p164ZatWrB29sbBw4cMNQ4AQC7du1CYGAgpkyZgps3b6Jhw4Zo3bo1IrMxlycmJqJv375o1qyZQcdH6MDnz/ymDCgXQ9pYhlTFCwnkprghwSrk4QEILqPMmJgYpvDiL79wa0bnzsqtctnRrRuem5tj7J078HBzw+TJk/Hq1Su4urrif//7H6KiorBs2TJ4q9PVXRMxpK2b7PlzPi1aVPuYo8wIHewB1Sn2T59yt6y5OdCkiX6Om1dR1bmexBBhJDQSQz/99BMOHjyIHTt24NChQ6hfvz7+97//4f79++jbty+6du2KY8eOGWqsCAkJwaBBgzB48GD4+vpi6dKl8PDwwJo1a7LcbtiwYejZs6f2ZfsJw3P7Nq/p4eSkPHBSm5ih7MRQbsook02rzwp9t+S4do2nxotE0qrSGnDp0iV0HToUPmlpWAEg+fNnVKlSBVu3bkV4eDh+/PFHFM3soswKdcSQ0B9RWzEkuMh0LbaYmewqUQsusgYNNKuVlR/JzjKUkzWGCAIaxgxt374dO3fuRMOGDQEAlSpVQvny5TFu3DjMnDkT5ubmmD59OgKyyqbQktTUVFy/fh2TJk2SWx4QECBXqC0zmzdvxrNnz/Drr7+qVR07JSUFKSkpkucfclu7hvxKVsHTgG6WIdlWHLLkRsuQqrR6AX0HUQsFUnv1Ul1PKBOqiiS2AhBcrBiaXb8OkZnG4YjA+/f8ARjWMqTveCGBOnV4Q1tVYqigt+CQRZUYopghwkhoZBn6+PEj3GT+tbu4uODLly+SQovfffcdbgtNNvXM27dvkZGRAadMNzYnJyfEqrgxPHnyBJMmTcJvv/0GMzV/nOfNmwd7e3vJw4P+oeQMWcULAVIxlJgoTb3NDk0sQzkU86aS7IKnBfQphv79l9+gzcx40HQ2qCySOGAA7t64gcMODmiekACRtu05BKtQiRKqXYWA7mJInzWGZJHtYJ85QzElRdq2pKDHCwHkJiNyHRqn1u/YsUPy/I8//kChQoXg/PUHWiwWw1KfGS5KEGWyGjDGFJYB/N9rz549MWPGDJTN7t+2DJMnT0ZiYqLkESX8UyEMS1aZZAD/8bS25vPqWoeyE0NlynAhkJQkDag1FuqKIX3FDDHGG1UCvLZKFi4joUhiyZIlFYskRkRg06ZNqFS9Om/PAfD2HNqgjosMkIqhmBje1FdTDGUZku1g/zWDTsK5czxw29kZqFJFv8fNiyizDBmz4CJR4NHIlj1z5ky0bdsW+/fvh5WVFS5cuICFCxdKXj9y5AiqV6+u90ECQPHixWFqaqpgBYqLi1OwFgHcinXt2jXcvHkTo0ePBsDFGmMMZmZmOHbsGJo2baqwnaWlpcEFHZGJ5GSpq0qVGBKJuHXo+XN+E1SnY3l2YsjcnIuAR4/48Y31Ayz0PwJyzjJ07Bi3DFlaSl1lmbh37x5CQkLw22+/qS6SKEufPsDq1TwGac0aXrpAE9QVQyVK8HGnpHARq05gtiyGEkNCB/ujR7mrTPazLNuYtSCn1AsIYujjR17SwcSEW4mEti4khogcRiPLULNmzXDlyhU0b94c33zzDQ4dOoTAwEDJ6xMmTMCJEyf0PUYAgIWFBWrWrKlQ4TosLAz16tVTWN/Ozg53797FrVu3JI/hw4ejXLlyuHXrFuoIJm3C+Ny6xX8QXV2lKfTK0DSIOjsxBOSOIOqICG7hsLJSrLydGX2IIVmr0MiRcjeezEUSN2/ejNTUVNSvX195kURZ6tTh1pFPn7gg0hR1xZBIpL2rLCVFuo0hih6qatpK8ULyCG4ygAsiQGoVcnCQWoEJIofQOMqxSpUqqGIkM29QUBD69OmDWrVqwc/PD+vXr0dkZCSGDx8OgLu4Xr58iW3btsHExASVKlWS297R0RFWVlYKywkjk128kICmQdTqiKHcEEQtuMiUNYrMjD7E0L59wPXr3HIzeTIAnqCwY8cOhISEyBVJ/O677xAcHKzenweRiFuHfvmFu8qERq7qoq4YArgYevJEczEUEcGFd6FC0krW+kSZGHr5kreaEYmAFi30f8y8iKUlt8ympXFXmb09BU8TRkWLlA/VJCcn4/r162jUqJE+dyuhe/fuiI+Px8yZMxETE4NKlSrh0KFD8PyaahsTE5NtzSEiF2IIMZSUJDW553bLkJBWr05sm65iKCMDmDqVzwcG4p2ZGdbOm4cVK1Yg5ut1tbW1xaBBgxAYGKhebSBZevfmYujECS4CNOkvpakYAjQXQ7IuMkO4q775hk+FDvZFi0qtQrVrc6sHwa+9nR0vNJqYyFPpKV6IMCJaVaBWxdOnT9HEwMXERo4ciYiICKSkpCgIry1btuD06dMqt50+fTpu3bpl0PERWpBd8LSAJlWoBbFga5t17EpusgxlFy8ESMVQcjIXfJqyYwdw/z6eFy6MsXFx8PDwwE8//YSYmBjtiiRmxtub19FhTFrVWh0YA8LDpfvIDl3FkL5rDAmUKCGNZxM+17ItOAgpmVtyUI0hwojoVQwRhMZ8/CgVA9mJIU0sQ0JRwqysQoBUDMXGSmvc5DSaiKFChaRp55pah8LDcTEwEF0A+CQlYcX69UhOTkaVKlWwbds27YokKkNwj23axNPJhZtcVrx/L70pCkUVs0JbMWSotHpZZF1l6enA8eP8OaXUy5M5o4wsQ4QR0UgMFStWLMuHodxjRD7m5k1uFfDwUF0cUUCTAGp14oUA/oMsWJyM5SrTRAwBGlehzsjIwN6RI1GvVCnUi4/HnwDEjKFVq1YICwvDrVu30KdPH1hYWGg+dmV07cpLFjx6BDRrxsVNaGjW2wguMkdHwMYm+2Pow01mKGTF0NWrUneZ4EIjOJk711PMEGFENIoZSklJwYgRI1C5cmWlr7948QIzZszQy8CIAoK68UKAZpYhdcUQwOOGXr3iYiirJqKG4ONHqbjTRAw9e5atZSg5ORmbN2/G0kWL8OxrU1MLAL0ABJmYoNKGDYa58SQlcYuIgFgMDBvG3USqjqdJvBAg36w1qy7xmclpMSS4yFq04AKRkKLKTUZiiDACGn07q1WrBg8PD/Tr10/p67dv3yYxRGiGNmIoPp6nomdlydBEDJUvzwN+jRE3JARPOzoCRYqot002QdQxMTFYsWIF1q5dK6kOXwzACACjALgAXKA8fWqYG8+TJ4rLhFpK+hJDQlxJcjK3vKjTcDU9XRqXZEgxJNvBftMmvozihRRR5SajmCHCCGjkJmvbti3eZxFXUaxYMfTVNJ2WKNioGzwN8Ewcc3M+n128THZ9yWQxZkaZpi4yQKUYunfvHgYMGABPT0/MmzcP7969Q+nSpbFy1ixEApiNr0IIAExNDScIlJUIyO54mooha2tpary6rrLISC6IrKyyrmelK7Id7IUbPIkhRWTdZB8+SOsNaZKBSBB6QuOu9dOmTVP5uoeHBzZv3qzzoIgCwvv3UiuCOmJIqEINZO8q09QyBBjXMqRByxhZMZS5SOKWLVuQlpYmXyTx559hK3szNjUF1q0znDvC3R1Yv17edZXd8TQVQ4DmcUMXL0q3y66ek64IHewB/vmiG7wism4yIV6oaNGs+9IRhIGgbDLCeNy4wadeXkDx4upto24QtaYxQwCPw0lJUW8c+kIby5CTE1IBbL16FdWqVUNAQACOHj0KExMTdO3aFZcuXcK5c+fQqVMnmJqa8m0yMvg0OJgLj0GD9HkWigwaBFy5IhUd2cViaZJWL6CJGAoN5QUhAS5Aswvo1pUvX6Tzjx4Z/nh5EVk3GcULEUaGxBBhPK5f51N14oUEDGEZcnHhP8xCHE1OoqEYSkhIwLx//4UXgP63b+POnTuwtbXF2LFj8eTJE/zxxx+K1aIZ41l7APD99zl3w6lVC/j2Wz6/bp3q9RgzrGUoOhoYOpQfR2DYMPVS/rUhOhqQtZAzZtjj5VVk3WQUL0QYGRJDhPE4e5ZPfXzU30YdMSQWq19nCODuHGO4yhiTusmyEUPPnj3DmDFjeJHE7dsRA8DVxESuSGIpVc1ro6N50LmpKZDTrWiGDePTbdukFcEz8+6dNF5EnRpDAuqKoSdP+GdCFtnmuPomp4+XV5F1k5FliDAyJIYI4xAaChw8yOfnz1ffjaBOFep373jPI0D9/lPGCKJ++ZILBDMzadXiTFy8eBFdunRB2bJlsXLlSnz69AlVfH2xDUC4iQl+nDgx+yKJglWoQgUe3JuTNG/Ozy0xEdi1S/k6glXIyUmzBp3qiiEfH8XU+9wWQF4QkXWTUY0hwsiQGCJyHsFtISDUoVHHjaBOzJDgIitWjDeEVAdjWIbOneNTDw9plhx4kcQ///wT9erVQ7169fDnn39CLBZLiyTeuIE+ACzS07nwyw5BDFWvrv9zyA4TE6l1SJWrTBsXGaC+GHJ3B2Rro+VUALkQr2Xo4+VVlLnJ6BoRRoLEEJHz6OJGUMdNpomLTCCnLUOhoUDPnnw+PBwIDUVycjJWrlyJsmXLokuXLrh48SIsLCwwcOBA3L17F4cPH0bz5s0hsrKS1tVRpyWHMcUQAPTvz8XelSvSsciiqxh69UpqCVRGZCRw7x6f37Yt5wLIIyKAU6dy5nh5EWVuMooZIoyEXsVQv3790LRpU33uksiP6OK2UEcMaRI8LSBYhh4+VBRq+iQjg7sHhwyRBPTGAPhpyBB4uLlhzJgxeP78OYoVK4YpU6bgxYsXCA0NRaXMsT6atOQwthhydAS++47PK7MOaZNJBvCmqJaW/Dq+fKl6vY0b+XvatCnPKMsp64O7O9C4MVk7VEHZZEQuQq9iyM3NDZ6aBEASBRN3d/kbsyZuBEEMxcXJt3yQRRsxVKoUt158+qSfrJ/oaG4ViI7mj02beCaXkxPQvj3AGO4C6A/AE8A8xvAuMRFlypTBqlWrEBkZidmzZ8NZ1TlkU4VaQny81I0kFAI0BoKr7LffpMHSAtpahkxMpJYEVa6ytDQuhgBg+HDN9k8YFkEMJSdL+5NRPSbCSOi1Wc7cuXP1uTsiPxMfz6dLlgBduqj/j7BECS6eMjK4IFJWSVgbMWRuzi1TDx7wh+CC0YbQUB4TpcTCxACEWVlh8ZcvOCazvAGA4A0b0H7AAGltoKxQVwzdusWnpUtL3RLGwN+fZ8w9esQFkaww0VYMAfx9evpUtRg6cIBbER0dgY4dNd8/YTgEMSRgbw8ULmycsRAFHr1YhjIyMnDr1i1JHySCyJI3b3iDTQAYMEAz07ipqbTFhqogam3EECCNGzpwQHvrkBAcnkkIpVStii0dOqBq6dJo+VUImQDoCuCSiQn+3bgR3w4erJ4QAtQXQ8Z2kQmIRFIBtHattOaPtjWGBARLtPB5yozglhs0KOtedkTOY2kpn+BA8UKEEdFKDAUGBiL0ayp0RkYG/P39UaNGDXh4eOD06dP6HB+RHxGKLZYtq521Iru4IU36kskiVA1etYrfZLWpGpwpODwBwDwA3tHRGLB/P+4+ewZbW1uMGzcOT8+fxx+nTqHOixeaB9iqK4aEKt/GFkMA0Lcvv/ndvs2DqQEgIYF3uQe0s8ZllVH27Blw7BgXYkOGaDdmwrDIWocoXogwIlqJoT179qBq1aoAgAMHDiA8PBwPHz5EYGAgpkyZotcBEvkQbSpPy6KuGNLEMhQdDRw+LH2uSbq/LF8LSD4HMAaAB4CfAMTEx8PNzQ3z589HdHQ0li5dCu969bQPsM1rliGAZ8B1787nBYuNYBVydtasxpBAVmJowwY+bdlS8+BsImeQ/TNEYogwIlqJobdv30oCOw8dOoSuXbuibNmyGDRoEO7evavXARL5EKFTfW4SQ0+eyLdrALSqGnzh2jV8B8AHwEoAnwBU9fDAtm3b8Pz5c/zwww8oUqSIRvtUimD1ykoMJSdL233kBjEESF1lO3fyGkm6uMgA1WIoJYUHrQPS4G0i90GWISKXoJUYcnJywv3795GRkYEjR46gefPmAIBPnz6pH/NAFFx0FUNZVaFOSwPevuXzmoghHaoGyxZJrN+pE/YCEANoVbs2ju/YgZsvXqBPnz6w0GfMijqWoTt3uMBzdtY8fspQ1K3LCyB+/gxs3659Wr2ArBiSFbP79vHYNFdXoF073cZMGA5ZMUQxQ4QR0UoMDRgwAN26dUOlSpUgEonQokULAMDly5dRXqjXQmSPbPp1QSE2lp+vSKS9tSKrKtRv3vCboqkp4OCg/j6FqsGygigkJMt/q0lJSVixYoV8kUQAAwHcW7AAhy9fRrPvv4coc00lfSCIm7dvVRcczE0uMgHZQOp166RiSFvLkHADTUoC3r+XLhfccEOG8HYnRO6E3GRELkErMTR9+nRs3LgRQ4cOxfnz52H5NSPA1NQUkyZN0usA8y2hoTxIt2lT7YN18yJCvFD58kChQtrtIys3mWApcXSUtkNQF6FqcOnS/LkQ2JuJV69e4aeffkLJkiUxduxYSZHEn7t2xQsAoSVKoOLYsZodW1McHPj5McYFoDJyoxgCgF69ABsb4P59YO9evkxbMWRtzcstAFJX2cOHwOnTXNgOHqzraAlDQm4yIpeglRiKiIhAly5dMH78eLjLfID79euHjlTLI3uio/k/ViHrSNtg3byIrsHTQNZiSJtWHLJ4eADTp/P55ct57MlX7ty5g/79+8PLywvz5s3Du3fv5IokzkpKgjMADByofk80bTE1lTahVVWFOreKIXt7aSsSQbxqK4YAxbih9ev5tF07usHmdkgMEbkErcRQqVKl0KBBA6xbtw4JCQn6HlP+R0/BunkSXeOFAKkYev1asbChtjWGZOnenf8wv34Ntn07jh49ioCAAFStWhVbt25FWloaGjRogH379uHhw4cYOXIkbOPigCNH+PY5lcadVdxQWhogJDPkNjEEKFaDtrLSfl+yYujzZ2DLFv6cAqdzP4KbzMaGt+UgCCOhlRi6du0a6tati9mzZ8PV1RUdO3bE7t27kSLzL5rIAl16c+V19CGGnJz49UtPlwZLC+hDDJmbI2X0aGwBUHX0aEm3eBMTE3Tt2hWXLl3Cv//+i2+//VaaMLBhAxe4AQFSN5uhyUoMPXgApKbyf965Ma28Zk1pwUQAaNJEe1exrBjavZtnqXl68pR6IncjZDt++lSwwgWIXIdWYqhGjRpYtGgRIiMjcfjwYTg6OmLYsGFwdHTEwIED9T3G/Ie7OzB6tPS5Jr258jKvXnHXlomJbn2yzM2lcSKZg6h1FEMJCQmYO3cuvJYswQAAd1NSYGtlxYskPn2KP/74A3Xq1JHfKDXVOGncWYkhwUVWrZpillxuIDpaPh1eF1exrBiSDZymzNbcTXS0NGYMKFjhAkSuQ6dfSZFIhCZNmmDDhg04fvw4SpUqha1bt+prbPkbIWbCyYkH7WpagTgvIliFKlTgZnFdUBU3pKUYevbsGcaMGQMPDw9MmTIFsa9fw7VQIcwHEF2jBi+SqMrC8vff3GXn4sKbsOYU6oih3OgiA/TrKhbE0KlTwIULPHuM/pTlfgpyuACR69BJDEVFRWHBggWoVq0avvnmG9ja2mLlypX6Glv+pnhxPk1Ozv8WIQF9BE8LZCeG1GzFceHCBXz33Xfw8fHBypUr8enTJ1StWhXbtm1D+J07+MHMDEUuXJC2j1CGYI0YPJhbrXKKvCyGdKjrpIDgbhMCyb/9Vvr5IHIv+vwMEISOaCWG1q9fD39/f3h7e2Pr1q3o1q0bnj17hnPnzmHEiBH6HmP+RBBDSUnSnlj5HX3ECwnoYBnKyMjAnj174Ofnh/r162Pv3r1gjKFVq1Y4fvw4bt68yYskentLLXiLFinf2ePHwIkTxknjViWGxGJpt/oaNXJ0SGoj1HUSXFm6uIoz9zSjwOm8gT4/AwShI1pVI5s1axa+//57LFu2DNV0if0oyNjb8y9/RgYQHw+4uRl7RIaFMaOLoaSkJGzevBlLlixB+NdifxYWFujduzeCgoJQsWJFxeNMmABs2wb8+Sfw/DlQqpT860Iad5s22jUa1QVVYuj5c56ZY2nJ6znlVgYN4kHOT59ya4C2N8H9++WfC4UcidyPvj4DBKEjWomhyMhIw1TVLUiIRNw69Po1z4jK72IoOhqIi+MCsEoV3fcntOSQDaD+9Emanisjhl69eoUVK1Zg7dq1eP+1SnGxYsUwcuRIjBo1StJnTymVK/Mf66NHgSVLgBUrpK99+WLcNG5V/ckEF1nlyjnrttMGd3fdboDR0Ypp+iNGAK1b0401r6DrZ4Ag9IBWbjISQnpCaBeROT08PyJYhSpV0q47eWaUWYaEmBErK8DODnfu3EG/fv3g5eWF//3vf3j//j18fHywevVqREVFYdasWVkLIYGJE/l00yZuxRP480/+3MOD33xzGmHsHz5wISiQ2+OF9MmTJ4q1pigIlyAIDcmFObcFCCFuqCCIIX0GTwMqxRADcNTeHgEtW0oCoWWLJD548AAjRoyAjSbZbE2b8hT1T5+ANWuky42dxm1nJy1WKFuFuiCJIQrCJQhCD5AYMiaCGJK1NuRX9BkvBMiLIcaQkpKCLb//jioAWr1+LSmS2K1bN1y+fFmxSKImiERS69CKFdw99t9/wL//8huvscoiiERS61BBFUMUhEsQhB6gds7GpKBYhvQdPA1IREBCairWTp2KFaGhiP0aO1PIzAyDR4/GuHHj4KVLzytZunYFJk0CoqKA7dulrS46dpTGLxkDZ2dep0qIG4qJ4cLIxEQ/sVl5AQrCJQhCR0gMGZOCIoZevODWL3NzHtSrB569fIkllpbYnJKCT3PmAADcChfGuI8fMaRPHxRZskQvx5Fgbg6MHw8EBQFz50o7xRs7jTtzRplgFSpXTvfClnkJCsIlCEIHNHaTPXr0CNOnT0ezZs1QunRpuLi4oEqVKujXrx9+//136k+mCQVFDAlWocqVde7mLlskcVVKCj4BqFa6NLZv347n3btjIoAisj2v9MngwTz4OyKCF8sEuNAzJqrEUEFwkREEQegJtcXQzZs30aJFC1StWhVnz57FN998g8DAQMyaNQu9e/cGYwxTpkyBq6sr5s+fT6JIHQqKGNIxeFpVkcQ2Dg44AeDG1Kno3bs3LARrjS5NWrMiMVGxQOaIEcbtpURiiCAIQmfUdpN9++23mDhxInbt2oVixYqpXO/ixYtYsmQJFi9ejJ9++kkvg8y3FJTUei3jhYQiiUuXLsXz588B8CKJffr0QVBQECr87388fkcQAvroWJ8VWfVSMpaLhsQQQRCEzqgthp48eQILC4ts1/Pz84Ofnx9SU1N1GpgqVq9ejYULFyImJgYVK1bE0qVL0bBhQ6Xr7t27F2vWrMGtW7eQkpKCihUrYvr06WjZsqVBxqYxBSGbTIvgabWLJAoZZULhRQ37kmmMkMYtW9fG2GncsmIoMZFXnwZIDBEEQWiA2m4ydYSQLuurw65duxAYGIgpU6bg5s2baNiwIVq3bo3IyEil6589exYtWrTAoUOHcP36dTRp0gTt27fHTeHfs7EpCG6y58+B9+8BCwtAWbsLGTQukihkcX1Nrze4ZSg3pnHLiiGhH1nJkkAW1luCIAgiE0wDTpw4wXx9fVliYqLCa+/fv2cVKlRgZ8+e1WSXGlG7dm02fPhwuWXly5dnkyZNUnsfFSpUYDNmzFB7/cTERAZA6TnrTGIiY/w2zlhysv73nxvYuZOf3zffKH1ZLBazI0eOsBYtWjAAkkeDBg3Yvn37WHp6uup979rF992gAWPv3kmv5adPhjkXgagoxk6d4lNjExHBz9nSkrGQED7fsaOxR0UQBGF0NLl/a5Rav3TpUgwZMgR2dnYKr9nb22PYsGEICQlR6bbShdTUVFy/fh2TJk2SWx4QEIALFy6otQ+xWIyPHz9mGfOUkpIiF/z9Qeh1ZQgKF+Yp22lp3FWWH1OhVQRPp6Sk4Pfff0dISAju3bsHADAxMUGXLl0QHByM2rVrZ79v2cKLglXI3l4/7T6yIjelcQsuwZQU4PRpPp9bO9UTBEHkUjRKrb99+zZatWql8vWAgABcF25+eubt27fIyMiAU6Z4ECcnJ0mxvexYvHgxkpOT0a1bN5XrzJs3D/b29pKHh4eHTuPOEqFZK5B/XWWZ4oUSEhIwd+5ceHl5YeDAgbh37x4KFSqEwMBAPHv2DLt27VJPCAHKxZChXGS5FSsrLgAB4MQJPqV4IYIgCI3QyDL0+vVrmGfRBdvMzAxvhPRmA5G5SSxjTK3GsTt27MD06dPx999/w9HRUeV6kydPRlBQkOT5hw8fDCuIHBz4zTw/iiGxWGIZeubkhCWjR2Pz5s349LWpqJubG8aOHYuhQ4eiSJEimu9fEEOfPgGPH/P5giaGAH7OiYnS2kckhgiCIDRCIzHk5uaGu3fvooyK7Jk7d+7ARbhB6ZnixYvD1NRUwQoUFxenYC3KzK5duzBo0CDs3r0bzZs3z3JdS0tLWOpYGFAj8nNG2dOnuPDhAxaZmOCv9u3BvqalV6tWDcHBwejWrZtugfa2trxZ6YcP0pTygiqGHj3i88WLA25uxh0PQRBEHkMjN1mbNm3wyy+/4EvmwnMAPn/+jGnTpqFdu3Z6G5wsFhYWqFmzJsLCwuSWh4WFoV69eiq327FjB/r374/ff/8dbdu2NcjYdCIfuskkRRLbtkV9APvEYjDG0Lp1a5w4cQI3btzgRRL1kXEoiO+CLoYEqlfn7leCIAhCbTSyDP3888/Yu3cvypYti9GjR6NcuXIQiUR48OABVq1ahYyMDEyZMsVQY0VQUBD69OmDWrVqwc/PD+vXr0dkZCSGDx8OgLu4Xr58iW3btgHgQqhv375YtmwZ6tatK7EqWVtbw16IszA2+UgMJSUlYdOmTVi6dCnCw8MBABYA+lSogKDdu1GhQgX9H9TFhVtF7tzhz0kMGW8cBEEQeRSNxJCTkxMuXLiAESNGYPLkyRK3h0gkQsuWLbF69epsXVa60L17d8THx2PmzJmIiYlBpUqVcOjQIXh+7UUVExMjV3No3bp1SE9Px6hRozBq1CjJ8n79+mHLli0GG6dG5AMx9PLlS6xYsQLr1q2TFEl0cHDACFtbjI6MhNMPPwCGEEKA1DL0+TOfFnQxVLKk8cZBEASRR9G4a72npycOHTqEd+/e4enTp2CMwcfHB0WLFjXE+BQYOXIkRo4cqfS1zALntJBqnJvJw2Lo9u3bWLx4MXbu3Im0tDQAgI+PD8aPH49+vXvDRiiKqGVPMrXIHKNWEMWQEDwOAGPH8gyzQYOMNx6CIIg8hsZiSKBo0aL45ptv9DmWgkkeE0OMMRw9ehSLFy/G8ePHJcsbNmyI4OBgtG/fHiYmJsCDB0BSEq+dVL684QYkCC6BgiaGoqMB2T8BYjEwbBjQsmXuqYVEEASRy9FIDH3+/BlLly5FYmIixo0bZ7DMsQJFHmnWmpKSgt9++w0hISH477//AACmpqaSIokKwlioN1W9urR9hSHI/Bk0oJs2V5Ibm8cSBEHkMTQSQ4MGDYK1tTXKly+P5s2bS26KhA7k8tT6+Ph4rF27FitXrpQEoBcCMBjAOLEYXi1aAMoshFp2qtcYWTEkEgElShj2eLmN3Ng8liAIIo+hkRg6ffo0wsLCULFiRUyZMgVxcXFZFjAk1EDWTcZYrkmLfvr0KZYsWYLNmzfj89fgZPfixTH27VsMAVAE4OMdPBi4exfo0gWoU4e3FwGA8+f5tFQpww5UVgyVKAGYae35zZsIzWOHDeMWodzQPJYgCCKPIWIss41dNT169EDhwoVRtmxZrF27Fk+fPjXk2HIFHz58gL29PRITE5X2ZNOZpCTeo0yYt7XV/zHUhDGGCxcuYPHixfjrr78k2YLVq1dHcKNG6LZmDcxTU1XvwM4OaNqUn8Nvv/FlJib8Zm2ogN7ERECoXl2lCnD7tmGOk9uJjuausTJlSAgRBEFAs/u3RkUXN27cCE9PT7x+/RonhD5IhG7Y2gJCxWsjxQ2lp6dj9+7d8PPzQ4MGDbBv3z4wxtC2bVucPHEC17/9Fr2WLVMuhExMgPbtgWLFeCXov/6SCiFAGtAbHW2YwdvZSRvcFrTgaVnc3YHGjUkIEQRBaIFGPgVbW1uDFlUskAjNWl++5GLoa82knEBZkURLS0v06dMHQUFB8PX0BPr3B3bv5huMHQtUrAiMHCnvkhk0iD+/eRNYswbYtEn+QIYM6BXihF68kFrYCIIgCEIDCliARS7FwUEqhnIAZUUSixcvLqnh5OTkBERFAQ0acIFjbg6sXs3jgwCgTRtFl4ypKQ+WnjGDp3rnVEBvaCgXQgCwdy9/TjV2CIIgCA1Q2002fPhwREVFqbXurl278Jusq4TImhzKKLt9+zb69u0Lb29vzJ8/H+/fv5fEf0VGRmLGkCFwun8f+PtvniF28ya3upw4IRVCQNYuGSGgV0inN2RAb3Q0MHSo9DljhnXJEQRBEPkStS1DJUqUQKVKlVCvXj106NABtWrVgqurK6ysrPDu3Tvcv38f586dw86dO+Hm5ob169cbctz5CwMWXlRVJLFRo0YIDg5Gu3bteJHE0FAuLGQtOlWqAPv3a+66GzSIF/0zdEDvkyfy4wWoxg5BEAShMWqLoVmzZmHMmDEIDQ3F2rVrce/ePbnXCxcujObNm2Pjxo0ICAjQ+0DzNQYQQ6qKJHbt2hXBwcGoJVv/R7CwyAoLkQj44w/tY5jc3Q0vSKjGDkEQBKEHNIoZcnR0xOTJkzF58mS8f/8eL168wOfPn1G8eHGULl0aolxSIyfPoUcxFB8fjzVr1mDlypV4/fo1AKBQoUIYMmQIxo0bJ2lqK4cyCwtjQEwMUK6czmMyGFRjhyAIgtADWgdQFylSBEWE+i6EbuhBDCktkujujnHjxmHIkCGwt7dXvXFetrDklEuOIAiCyLdQNlluQEsxxBjD+fPnsXj2bPx97Jh8kcTgYHTr1g3mQkXorHB352nzS5fy53nNwpITLjmCIAgi30JiKDcgNGtVM5ssPT0d+/btw6JFi3DlyhXJ8rYAgidMQOMFCzR3WQqFC1u2BDZuJHFBEARBFBg0qkBNGAg1LUMfP37EsmXL4OPjg27duuHKlSuwBG+a+h+AgwCaLFkC0cuXmo/hzBk+7d6dhBBBEARRoNBIDEVGRkKDVmaEumRu1pqJly9f4scff4SHhwcCAwMRERGB4sWL45e+ffECwAYAFYSVhdRyTfj8GRAsTI0aaXkSBEEQBJE30UgMeXt7482bN4YaS8FFEEOpqbxZ61eEIoleXl5YsGABEhMT5YskzpkDJ5NMb6E2gc+XLwNpaYCrq+G7zBMEQRBELkOjmCGyChkIGxvA2hr4/BnszRscPX8eixYtkmuGq1AkEeDurAEDeMFEAW0Cn8+eFQ7C6wsRBEEQRAGCAqhzCSkODvgtOhohLVrgv+fPAfAiiV26dEFwcDC++eYb5Rt6eUnnLS2Bnj01P7gghvz9Nd+WIAiCIPI4GouhjRs3olChQlmuM3bsWK0HVNCQFEmMjcVrAHj+PPsiibIITUoBICWFB0K3aqX+AFJTgQsX+DzFCxEEQRAFEI3F0Nq1a2EqNOFUgkgkIjGkBkqLJAIY9/33GLJ2bdZFEmURxJC9PZCYCBw5opkYun6dB1AXLw74+mp2EgRBEASRD9BYDF27dg2Ojo6GGEuBIiQkBGvWrAHAiyROsLRE10uXYF6nDhc26iKIoT59gJUruRjSBMFF1rAhxQsRBEEQBRKNssmo95j+GD9+PNq2bYuTJ0/i+vXr6FmrFszx//buPiqqOv8D+Htm5FkYQgUkQE09aIm44BMeTbdjiKauq2u1Gu6mdjRXPeZpc21rTWvDOsaWmmtprtl6VnuQFl0PSj9MQ9GWHI4YhmKKIgyk4gxiPAzz/f1xdy6MDDDAMI/v1zlzGO985/q9nyzffR/uRcfuQi0EcO2a9H7hQmknWVERcPWq9edovniaiIjIA3UoDHE3me0MHjwYhw4dwi9/+UspZHbmkRyVlUBtrTSi88gjQGKidPzIEeu+39gI5ORI7xmGiIjIQ3UoDK1bt67dxdP5+fld6Y/n6kwYMk2RRUQA3t5Na4WsnSo7dw7Q64GgICAuzvrfl4iIyI10OAz5m55h1YxOp8O2bduQkJCAkSNH2qxzHsX0fLLOhCHTjrMpU6Sf//d/0k0U22OaIhs/XppiIyIi8kBdejZZdnY2nnnmGfTt2xfr169H//79OZXWWaaRISsf1gqgKQyZ7jUUHy+dp7oayM1t//um55FxioyIiDxYh8NQaWkp3njjDQwcOBAzZ86EEAKff/45ysrKsH79+u7oo2foyjSZaWRIqWwaHWpvqkwILp4mIiJCB8PQtGnTMHjwYOTm5mLDhg2oqKjA3r17MW3aNKhUKu4264p2HtZq0f1hCLB+3dCFC9IolJ8fkJDQsb4SERG5kQ7dZygzMxPz5s3DqlWruDbI1kxrhgwGaVGzNfcaMm2hbx6GkpKknxoNUFEBhIVZ/q5pVGjcOGnxNRERkYfq0MjQyZMn4efnh8ceewwxMTHYsGEDiouLu6tvnsXPDwgIkN5bO1VmaWQoNFRaOwQAR4+2/l1OkREREQHoYBhKTEzEjh07oNVqsWbNGhw9ehQxMTEYO3YstmzZgoqKiu7qp2foyLqhO3ekESQAiI42/6y9qTKuFyIiIpJ1ajeZv78/Fi5ciJycHBQWFuLRRx/Fm2++icmTJ9u6f57FNFVmzY4y06hQ795NI0ompkXUR45IN1a8348/AjduAF5ewJgxne8vERGRG+jS1noAiImJwdtvv43S0lIcOHAATzzxhC365Zk6MjJkaYrMJDERCAyUQtXZsy0/N40KjR4tTc8RERF5sC6HIROVSoVZs2YhIyPDVqf0PLYKQ15egGmUztKjOThFRkREJLNZGCIbsFUYAtq+35ApDE2c2LH+ERERuSGGIWfSHWEoNxeoqmo6XloqrRlSKqVt9URERB6OYciZ2DIM9e8PDBkCGI3Ss8pMvvlG+hkfL60rIiIi8nAMQ86kM7vJTM8ls8S0xb75uiE+j4yIiMiMy4Whbdu2YcCAAfD19UVCQgK+MY10tOL48eNISEiAr68vHnroIWzfvt1OPe0Ea0eGfv4ZqKyU3rc2MgSYrxsyPeKDi6eJiIjMuFQY2r9/P1atWoU///nP0Gg0mDBhAqZOnYpr165ZbH/lyhVMmzYNEyZMgEajwcsvv4yVK1fiiy++sHPPrWRtGDKNCgUGAsHBrbebOBHw9ZXWCRUWSgHqwgXps/Hju9xdIiIid+BSYSgtLQ2LFi3C4sWLMXToULz77ruIiorC3//+d4vtt2/fjujoaLz77rsYOnQoFi9ejIULF2LTpk127rmVTGHo1i1prU9rmq8XauvhuH5+TTvGMjOBnBzpfWxs05QcERGRh3OZMFRfX4/vvvsOSaYHkf5PUlISTp06ZfE7ubm5LdpPmTIFeXl5aGhosPiduro66PV6s5fdmAJKYyOg07Xerr3F0801vxs1p8iIiIhacJkwdPPmTTQ2NiLsvqewh4WFQavVWvyOVqu12N5gMOBmK1NRqampUKvV8isqKso2F2ANH5+mHV5tTZV1JAyZFlEfP960kJphiIiISOYyYchEcd+0kBCixbH22ls6brJ27VrodDr5df369S72uIOaT5W1piNhaMgQ6UGu9fXADz9IxyZM6FofiYiI3IjLhKHevXtDpVK1GAWqrKxsMfpjEh4ebrF9jx490KuVNTM+Pj4ICgoye9mVqV+2GhlSKJpGhwBpK37fvp3uHhERkbtxmTDk7e2NhIQEZGVlmR3PysrCuFbupJyYmNii/dGjRzFy5Eh4eXl1W1+7xJodZR0JQwCgUpl/96OPOtc3IiIiN+QyYQgAVq9ejZ07d2LXrl24cOECXnjhBVy7dg1Lly4FIE1xLViwQG6/dOlSlJSUYPXq1bhw4QJ27dqFjz76CC+++KKjLqF97YWhhgbgxg3pvTVhqLQU+OCDpl8LASxZIh0nIiIi9HB0Bzriqaeewq1bt7BhwwaUl5dj2LBhOHz4MPr9LxSUl5eb3XNowIABOHz4MF544QW8//77iIiIwObNmzFnzhxHXUL72gtDN25I2+69vYFWpgfNXLrUcpt+YyNQXAxERnatr0RERG7ApcIQACxbtgzLli2z+Nnu3btbHJs4cSLOnj3bzb2yofbCkGmKLDpaethqewYPlto1D0QqFTBoUNf6SURE5CZcaprMI7S3m8yaZ5I1FxkJfPhh07ohlUqaNuOoEBEREQAXHBlye+3tJrt6Vfpp7eJpAFi0SLr5YnGxNCLEIERERCRjGHI21k6TdSQMAVIAYggiIiJqgdNkzqa7whARERFZxDDkbExh6PZtadfX/RiGiIiIbIphyNmY1gwZjcCdO+afGY2A6dYBDENEREQ2wTDkbLy8ALVaen//VFlFhfSMMaUSePBB+/eNiIjIDTEMOaPWttebpsgefFAKTURERNRlDEPOqLXt9VwvREREZHMMQ86otR1lDENEREQ2xzDkjBiGiIiI7IZhyBm1F4asfRQHERERtYthyBm1FoY68ygOIiIiahPDkDOytJtMCE6TERERdQOGIWdkaTdZVRVw9670Pjra/n0iIiJyUwxDzsjSNJlpVCg0FPDzs3+fiIiI3BTDkDNqKwxxioyIiMimGIackSkMVVUBBoP0nmGIiIioWzAMOaOQEOmnEFIgAhiGiIiIugnDkDPq0QN44AHpvWlHGcMQERFRt2AYclb3rxtiGCIiIuoWDEPO6v7t9QxDRERE3YJhyFk1HxmqqWkKRQxDRERENsUw5KyahyHTqJBaDQQHO6xLRERE7ohhyFlZCkMcFSIiIrI5hiFn1fz5ZAxDRERE3YZhyFlxZIiIiMguGIacVfPdZAxDRERE3aaHoztArWg+MqT8X2ZlGCIiIrI5hiFn1TwM/fyz9J5hiIiIyOYYhpyVKQzduQPodNJ7hiEiIiKb45ohZ/XAA4BCIb0XAvD1BUJDHdsnIiIiN8Qw5KxUqqan1wNAdHRTOCIiIiKbYRhyZqapMoBTZERERN2EYciZmbbXA0D//g7rBhERkTtjGHJmHBkiIiLqdgxDzoxhiIiIqNsxDDkzhiEiIqJuxzDkzJqHIW9vx/WDiIjIjblMGKqqqkJKSgrUajXUajVSUlJw586dVts3NDRgzZo1iI2NRUBAACIiIrBgwQKUlZXZr9NdVVjY9H7cOOCjjxzXFyIiIjflMmFo3rx5yM/PR2ZmJjIzM5Gfn4+UlJRW29+7dw9nz57Fq6++irNnz+LAgQO4ePEiZs6cacded0FpKfDxx02/NhqBJUuk40RERGQzLvE4jgsXLiAzMxOnT5/GmDFjAAA7duxAYmIiioqKEBMT0+I7arUaWVlZZse2bNmC0aNH49q1a4iOjrZL3zvt0iXpztPNNTYCxcVAZKRj+kREROSGXGJkKDc3F2q1Wg5CADB27Fio1WqcOnXK6vPodDooFAoEBwe32qaurg56vd7s5RCDBzc9rd5EpQIGDXJMf4iIiNyUS4QhrVaLUAvP5QoNDYVWq7XqHLW1tfjTn/6EefPmISgoqNV2qamp8roktVqNqKioTve7SyIjgQ8/lAIQIP384AOOChEREdmYQ8PQa6+9BoVC0eYrLy8PAKCw8FwuIYTF4/draGjA008/DaPRiG3btrXZdu3atdDpdPLr+vXrnbs4W1i0CLh6FTh2TPq5aJHj+kJEROSmHLpmaPny5Xj66afbbNO/f3+cO3cOFRUVLT776aefEBYW1ub3Gxoa8OSTT+LKlSvIzs5uc1QIAHx8fODj49N+5+0lMpKjQURERN3IoWGod+/e6N38XjqtSExMhE6nw7fffovRo0cDAM6cOQOdTodx48a1+j1TELp06RKOHTuGXs2f9UVEREQEF1kzNHToUCQnJ+O5557D6dOncfr0aTz33HOYPn262U6yIUOGID09HQBgMBjwm9/8Bnl5edi7dy8aGxuh1Wqh1WpRX1/vqEshIiIiJ+MSYQgA9u7di9jYWCQlJSEpKQnDhw/HJ598YtamqKgIOp0OAFBaWoqMjAyUlpZixIgR6Nu3r/zqyA40IiIicm8KIe6/mQ01p9froVarodPp2l1vRERERM6hI39/u8zIEBEREVF3YBgiIiIij8YwRERERB6NYYiIiIg8GsMQEREReTSGISIiIvJoDENERETk0Rz6OA5XYLoNk16vd3BPiIiIyFqmv7etuZ0iw1A7qqurAQBRUVEO7gkRERF1VHV1NdRqdZtteAfqdhiNRpSVlSEwMBAKhcLR3XErer0eUVFRuH79Ou/ubQest32x3vbFetuXK9RbCIHq6mpERERAqWx7VRBHhtqhVCoRGRnp6G64taCgIKf9l8kdsd72xXrbF+ttX85e7/ZGhEy4gJqIiIg8GsMQEREReTSGIXIYHx8frFu3Dj4+Po7uikdgve2L9bYv1tu+3K3eXEBNREREHo0jQ0REROTRGIaIiIjIozEMERERkUdjGCIiIiKPxjBEXXLixAnMmDEDERERUCgU+PLLL80+r6iowO9//3tERETA398fycnJuHTpklkbrVaLlJQUhIeHIyAgAPHx8fj888/N2lRVVSElJQVqtRpqtRopKSm4c+dON1+d87FFvS9fvoxf//rX6NOnD4KCgvDkk0+ioqLCrA3rDaSmpmLUqFEIDAxEaGgoZs2ahaKiIrM2Qgi89tpriIiIgJ+fHyZNmoTvv//erE1dXR1WrFiB3r17IyAgADNnzkRpaalZG9bbdvX+8MMPMWnSJAQFBUGhUFisI+ttm3rfvn0bK1asQExMDPz9/REdHY2VK1dCp9OZnccV6s0wRF1SU1ODuLg4bN26tcVnQgjMmjULP/74I/79739Do9GgX79+mDx5MmpqauR2KSkpKCoqQkZGBgoKCjB79mw89dRT0Gg0cpt58+YhPz8fmZmZyMzMRH5+PlJSUuxyjc6kq/WuqalBUlISFAoFsrOzcfLkSdTX12PGjBkwGo3yuVhv4Pjx4/jDH/6A06dPIysrCwaDAUlJSWZ/dt9++22kpaVh69at+O9//4vw8HA8/vjj8jMNAWDVqlVIT0/Hvn37kJOTg7t372L69OlobGyU27Detqv3vXv3kJycjJdffrnV34v1tk29y8rKUFZWhk2bNqGgoAC7d+9GZmYmFi1aZPZ7uUS9BZGNABDp6enyr4uKigQAcf78efmYwWAQISEhYseOHfKxgIAAsWfPHrNzhYSEiJ07dwohhCgsLBQAxOnTp+XPc3NzBQDxww8/dNPVOL/O1PvIkSNCqVQKnU4nt7l9+7YAILKysoQQrHdrKisrBQBx/PhxIYQQRqNRhIeHi40bN8ptamtrhVqtFtu3bxdCCHHnzh3h5eUl9u3bJ7e5ceOGUCqVIjMzUwjBeremM/Vu7tixYwKAqKqqMjvOelvW1XqbfPrpp8Lb21s0NDQIIVyn3hwZom5TV1cHAPD19ZWPqVQqeHt7IycnRz42fvx47N+/H7dv34bRaMS+fftQV1eHSZMmAQByc3OhVqsxZswY+Ttjx46FWq3GqVOn7HMxLsCaetfV1UGhUJjdKM3X1xdKpVJuw3pbZhr6DwkJAQBcuXIFWq0WSUlJchsfHx9MnDhRrtN3332HhoYGszYREREYNmyY3Ib1tqwz9bYG622Zreqt0+kQFBSEHj2kR5+6Sr0ZhqjbDBkyBP369cPatWtRVVWF+vp6bNy4EVqtFuXl5XK7/fv3w2AwoFevXvDx8cGSJUuQnp6OgQMHApDWFIWGhrY4f2hoKLRard2ux9lZU++xY8ciICAAa9aswb1791BTU4M//vGPMBqNchvWuyUhBFavXo3x48dj2LBhACDXIiwszKxtWFiY/JlWq4W3tzceeOCBNtuw3uY6W29rsN4t2aret27dwuuvv44lS5bIx1yl3gxD1G28vLzwxRdf4OLFiwgJCYG/vz++/vprTJ06FSqVSm73yiuvoKqqCl999RXy8vKwevVqzJ07FwUFBXIbhULR4vxCCIvHPZU19e7Tpw8+++wzHDx4ED179oRarYZOp0N8fLzZPxPW29zy5ctx7tw5/Otf/2rx2f01saZO97dhvc3Zut7tnaOz53EXtqi3Xq/HE088gYcffhjr1q1r8xxtncdReji6A+TeEhISkJ+fD51Oh/r6evTp0wdjxozByJEjAUg7m7Zu3Yrz58/jkUceAQDExcXhm2++wfvvv4/t27cjPDy8xW4nAPjpp59a/F+Lp2uv3gCQlJSEy5cv4+bNm+jRoweCg4MRHh6OAQMGAADrfZ8VK1YgIyMDJ06cQGRkpHw8PDwcgPR/vn379pWPV1ZWynUKDw9HfX09qqqqzEaHKisrMW7cOLkN692kK/W2Buttzhb1rq6uRnJyMnr27In09HR4eXmZnccV6s2RIbILtVqNPn364NKlS8jLy8OvfvUrANLODwBQKs3/KKpUKnl3U2JiInQ6Hb799lv58zNnzkCn08l/oZC51urdXO/evREcHIzs7GxUVlZi5syZAFhvEyEEli9fjgMHDiA7O1sOiyYDBgxAeHg4srKy5GP19fU4fvy4XKeEhAR4eXmZtSkvL8f58+flNqy3xBb1tgbrLbFVvfV6PZKSkuDt7Y2MjAyzNYuAC9XbAYu2yY1UV1cLjUYjNBqNACDS0tKERqMRJSUlQghpZ8GxY8fE5cuXxZdffin69esnZs+eLX+/vr5eDBo0SEyYMEGcOXNGFBcXi02bNgmFQiH+85//yO2Sk5PF8OHDRW5ursjNzRWxsbFi+vTpdr9eR+tqvYUQYteuXSI3N1cUFxeLTz75RISEhIjVq1ebtWG9hXj++eeFWq0WX3/9tSgvL5df9+7dk9ts3LhRqNVqceDAAVFQUCB++9vfir59+wq9Xi+3Wbp0qYiMjBRfffWVOHv2rHjsscdEXFycMBgMchvW23b1Li8vFxqNRuzYsUMAECdOnBAajUbcunVLbsN626beer1ejBkzRsTGxori4mKz87jan2+GIeoS0/bV+1+/+93vhBBCvPfeeyIyMlJ4eXmJ6Oho8corr4i6ujqzc1y8eFHMnj1bhIaGCn9/fzF8+PAWW+1v3bol5s+fLwIDA0VgYKCYP39+iy2znsAW9V6zZo0ICwsTXl5eYvDgweKdd94RRqPRrA3rLSzWGYD4xz/+IbcxGo1i3bp1Ijw8XPj4+IhHH31UFBQUmJ3n559/FsuXLxchISHCz89PTJ8+XVy7ds2sDettu3qvW7eu3fOw3rapd2v/PQIgrly5IrdzhXorhBCiu0adiIiIiJwd1wwRERGRR2MYIiIiIo/GMEREREQejWGIiIiIPBrDEBEREXk0hiEiIiLyaAxDRERE5NEYhoiIiMijMQwRERGRR2MYIiLqhMbGRvlhwkTk2hiGiMjl7dmzB7169UJdXZ3Z8Tlz5mDBggUAgIMHDyIhIQG+vr546KGHsH79ehgMBrltWloaYmNjERAQgKioKCxbtgx3796VP9+9ezeCg4Nx6NAhPPzww/Dx8UFJSYl9LpCIuhXDEBG5vLlz56KxsREZGRnysZs3b+LQoUN49tlnceTIETzzzDNYuXIlCgsL8cEHH2D37t3461//KrdXKpXYvHkzzp8/j48//hjZ2dl46aWXzH6fe/fuITU1FTt37sT333+P0NBQu10jEXUfPqiViNzCsmXLcPXqVRw+fBgA8N5772Hz5s0oLi7GxIkTMXXqVKxdu1Zu/89//hMvvfQSysrKLJ7vs88+w/PPP4+bN28CkEaGnn32WeTn5yMuLq77L4iI7IZhiIjcgkajwahRo1BSUoIHH3wQI0aMwJw5c/Dqq68iICAARqMRKpVKbt/Y2Ija2lrU1NTA398fx44dw5tvvonCwkLo9XoYDAbU1tbi7t27CAgIwO7du7FkyRLU1tZCoVA48EqJyNZ6OLoDRES28Itf/AJxcXHYs2cPpkyZgoKCAhw8eBAAYDQasX79esyePbvF93x9fVFSUoJp06Zh6dKleP311xESEoKcnBwsWrQIDQ0Ncls/Pz8GISI3xDBERG5j8eLF+Nvf/oYbN25g8uTJiIqKAgDEx8ejqKgIgwYNsvi9vLw8GAwGvPPOO1AqpaWUn376qd36TUSOxTBERG5j/vz5ePHFF7Fjxw7s2bNHPv6Xv/wF06dPR1RUFObOnQulUolz586hoKAAb7zxBgYOHAiDwYAtW7ZgxowZOHnyJLZv3+7AKyEie+JuMiJyG0FBQZgzZw569uyJWbNmycenTJmCQ4cOISsrC6NGjcLYsWORlpaGfv36AQBGjBiBtLQ0vPXWWxg2bBj27t2L1NRUB10FEdkbF1ATkVt5/PHHMXToUGzevNnRXSEiF8EwRERu4fbt2zh69Cjmz5+PwsJCxMTEOLpLROQiuGaIiNxCfHw8qqqq8NZbbzEIEVGHcGSIiIiIPBoXUBMREZFHYxgiIiIij8YwRERERB6NYYiIiIg8GsMQEREReTSGISIiIvJoDENERETk0RiGiIiIyKMxDBEREZFH+39KK57oceWZXQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "plot(year, ΔT, \"r.-\")\n", + "xlabel(\"year\")\n", + "ylabel(\"ΔT (°C) vs. 1901–2000 baseline\")\n", + "title(\"January global average temperature change: Linear fit\")\n", + "\n", + "plot(year, A * x̂, \"k-\")\n", + "legend([\"data\", \"fit: slope $(round(x̂[2], sigdigits=2)) °C/year\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's obvious by eye that this fit line is a better description of the overall trend than any two data points.\n", + "\n", + "More precisely, if the data noise is uncorrelated, then in a certain statistical sense a least-squares estimate is optimal, as described by the [Gauss–Markov theorem](https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fitting a nonlinear-resistance model\n", + "\n", + "Least-square fitting is not limited to fitting lines — you can fit *nonlinear* functions, as long as the **unknowns are multiplicative coefficients** (i.e. the *unknowns appear \"linearly\" in the equations*).\n", + "\n", + "[Ohm's law](https://en.wikipedia.org/wiki/Ohm%27s_law) says that voltage drop $d$ across a resistor is proportional to the current $i$ via $d = iR$, where $R$ is the [resistance](https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance). Normally, we treat $R$ as a constant (the relationship is *linear*), but in fact this is not exactly true.\n", + "\n", + "A real resistance actually *changes* as you increase the voltage drop $d$. (For example, this happens as the resistor heats up; eventually it melts!)\n", + "One simple model of a nonlinear resistance is:\n", + "$$\n", + "R = x_1 + x_2 d^2 .\n", + "$$\n", + "Here, the resistance is constant plus a \"small\" correction that grows as we increase $d$. (We won't have any term proportional to $d$ if the current flows equally well in both directions, so that $R$ doesn't depend on the *sign* of $d$.)\n", + "\n", + "One would normally get these coefficients $x_1$ and $x_2$ by experimental measurements. Such \"fitting\" processes lead directly into the next major topic in 18.06:\n", + "\n", + "## Exact fits\n", + "\n", + "Suppose we put two voltage differences $d_1$ and $d_2$ across our resistor, and measure two resistances $R_1$ and $R_2$. This leads to the following $2 \\times 2$ system of equations for the unknown coefficients $x_1$ and $x_2$:\n", + "\n", + "$$\n", + "\\begin{pmatrix} x_1 + x_2 d_1^2 \\\\ x_1 + x_2 d_2^2 \\end{pmatrix} =\n", + "\\underbrace{\\begin{pmatrix} 1 & d_1^2 \\\\ 1 & d_2^2 \\end{pmatrix}}_A\n", + "\\underbrace{\\begin{pmatrix} x_1 \\\\ x_2 \\end{pmatrix}}_x =\n", + "\\underbrace{\\begin{pmatrix} R_1 \\\\ R_2 \\end{pmatrix}}_b \\; ,\n", + "$$\n", + "\n", + "i.e. a system $Ax = b$. As long as $|d_1| \\ne |d_2|$, the matrix $A$ is non-singular, and this has a unique solution: an **interpolating polynomial** going through the two data points:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "#=\n", + "let fig = figure(), d = range(0,3,length=100)\n", + " @manipulate for d₁=0:0.1:1, d₂=1.1:0.1:2, R₁=1:0.1:2, R₂=1:0.1:2\n", + " withfig(fig) do\n", + " x = [1 d₁^2; 1 d₂^2] \\ [R₁, R₂]\n", + " plot([d₁, d₂], [R₁, R₂], \"ro\")\n", + " plot(d, x[1] .+ x[2]*d.^2, \"k-\")\n", + " xlim(0,3)\n", + " ylim(0,3)\n", + " title(\"fit \\$x\\$ = $x\")\n", + " xlabel(L\"d\")\n", + " ylabel(L\"R\")\n", + " end\n", + " end\n", + "end\n", + "=#" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHICAYAAACiZIUjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0GUlEQVR4nOzdd1xT1/sH8E/YU0RRhrg3Fge4sCpO3AqKe6C4xYHWWpRaahVHpe7dOlGGiloXq8pwVhkqiqIWVFQERdkzyfP7wy/3ZwSVkeQGOO/XK6+Wm3vPeXJNcp+ce4aAiAgMwzAMwzDVkBLfATAMwzAMw/CFJUIMwzAMw1RbLBFiGIZhGKbaYokQwzAMwzDVFkuEGIZhGIaptlgixDAMwzBMtcUSIYZhGIZhqi2WCDEMwzAMU22xRIhhGIZhmGqLJUIMwzAMw1RbLBFiGIZhGKbaYokQw8iBr68v2rRpA01NTQgEAmzZsgUCgQDPnj3j9rl+/Tp+/fVXpKWlSa3eL5X566+/QiAQ4N27d1KrS94q02s4dOhQsX9vRXLx4kUIBALuoaKigkaNGmHJkiXIysriOzyGkSmWCDGMjL19+xaTJ09G06ZNERAQgBs3bsDOzg43btyAsbExt9/169exatUqqSdC0i6TKbshQ4YU+/dWJFFRUQAAPz8/3LhxA4GBgejTpw82b96MhQsX8hwdw8iWCt8BMExV9/jxYxQWFmLSpEmwtrbmtjds2JDHqComJycHWlpafIeh8IrOU506dVCnTh2+w/miqKgoaGhoYMSIEVBWVgYA9O7dGyEhITh37hzP0TGMbLEWIYaRoalTp6J79+4AgLFjx0IgEKBXr17FbpX8+uuv+PHHHwEAjRs35m5RhIaGAvjYqjRr1izUr18f6urqqFOnDr7//nv8888/X6z7W2UCQHJyMsaPHw89PT0YGhrC0dER6enpxcoRCASIioqCvb099PX10bRpUwDA1atX0bdvX+jq6kJLSwvdunXDhQsXSjwPjRo1KjFGgUAgse3vv/9G27Ztoa6ujiZNmmDr1q0l7leW1/C5M2fOQCAQ4NKlS8We2717NwQCAe7duwcAePr0KaZNm4bmzZtDS0sL9erVw7BhwxATE1Pq81TSrbHSnLuynLfyvEeKREZGonXr1lwSBABKSkqoU6cOVFTY72WmamPvcIaRoZUrV6Jz585wcnLC2rVr0bt3b9SoUQO3bt2S2G/GjBl4//49tm/fjlOnTnG3UMzMzAAAkydPRlRUFNzd3dGiRQukpaUhKioKqampX6z7a2UWJUOjRo3C2LFjMX36dMTExGD58uUAgAMHDhQrb+TIkRg3bhzmzJmD7OxshIWFoX///mjbti32798PdXV17Nq1C8OGDYO3tzfGjh1b5vMVEBCAkSNHomfPnvD19YVQKISHhweSk5O/eExZXkORoUOHom7dujh48CD69u0r8dyhQ4dgYWGBtm3bAgBev36N2rVrY/369ahTpw7ev3+Pw4cPo0uXLoiOjkbLli2/ep5KIotzV573CACkpqbixYsX6NWrl8T25ORkPHjwANOnTy9zLAxTqRDDMDIVEhJCAOjEiRPctoMHDxIASkhI4LZt3Lix2LYiOjo65OzsXOa6v1Smm5sbAaDff/9dYvu8efNIQ0ODxGJxsX1/+eUXiX27du1KdevWpczMTG6bUCik7777jkxNTSXKcHBwoIYNGxaLr6jsIp06daL69etTfn4+ty0zM5Nq165Nn39dleU1lGTJkiWkqalJaWlp3LbY2FgCQNu3b//icUKhkAoKCqh58+a0ePHiYvF8fp6Iiv97l/bclfa8EZX/PRIUFEQAaP369VRYWEg5OTl08+ZN6tKlC9nZ2UnESES0a9cu6tChA6moqJCbm1uZ62MYRcNujTFMJdC5c2ccOnQIa9aswc2bN1FYWCiVcocPHy7xd9u2bZGXl4eUlJRi+44aNYr7/+zsbPz777+wt7eHjo4Ot11ZWRmTJ0/Gy5cvERcXV6ZYsrOzERERAVtbW6ipqXHbdXR0MGzYMKm8hk85OjoiNzcXvr6+3LaDBw9CXV0dEyZM4LYJhUKsXbsWZmZmUFNTg4qKCtTU1PDkyRM8fPiwWLmfnqcvvU5pnzug/O+RyMhIAICLiwtUVVWhpaWFrl27okaNGvD19ZWIEQCMjY2xatUq2NraljlGhlFELBFimErA19cXDg4O+Ouvv2BlZYVatWphypQpePPmTYXKrV27tsTf6urqAIDc3Nxi+3464unDhw8gohJHQZmYmADAN2/JfK6oTENDw2LPlbStSFlew6fatGmDTp064eDBgwAAkUiEo0ePYsSIEahVqxa335IlS7By5UrY2tri3Llz+Pfff3H79m20a9fum+epJLI4d0D53yNRUVFQVlbG9evXcfv2bQQEBKBPnz4IDg7Gn3/+WWx/W1tbDBs2DHp6emWOkWEUEesjxDCVgIGBAbZs2YItW7bgxYsXOHv2LFxcXJCSkoKAgAC5xPBp51x9fX0oKSkhKSmp2H6vX7/mYi6ioaGB/Pz8Yvt+OgeQvr4+BAJBif2BKprwfcm0adMwb948PHz4EPHx8UhKSsK0adMk9jl69CimTJmCtWvXFou9Zs2axcr8UqfuImU5d6U5b0XK+x6JioqCmZkZrKysuG1dunSBqakp/vrrL8ybN++rr4dhKjvWIsQwCqK0LRkNGjTA/Pnz0b9/f27+l4qWWVba2tro0qULTp06JVG2WCzG0aNHYWpqihYtWnDbGzVqhJSUFIkkp6CgAIGBgRJlduzYEWfOnEFBQQG3PSsrC+fPn5dq/EXGjx8PDQ0NHDp0CIcOHUK9evVgY2MjsY9AIODOY5ELFy7g1atX5aqzLOeuNOetJKV9j6SnpyM+Ph6dOnWS2F6zZk2MHDkS0dHRiI+PL8/LZJhKgyVCDKMgzM3NAQBbt27FjRs3EBERgczMTKSnp8PCwgIeHh44f/48wsLC4OHhgYCAAPTv379cZUrDunXrkJqait69e+PkyZM4e/YsBg8ejPv378PDw0OiZWTs2LFQVlbGuHHjcPHiRZw6dQo2NjYQiUQSZf7222949eoVBgwYgDNnzsDPzw/9+vWDjo7ON1tayqNmzZqws7PDoUOHcPbsWTg4OEBJSfJrcejQoTh06BC2bNmCy5cvY+PGjZg2bRpMTU3LXW9pz11pz1t53yNRUVEgInTu3LnYc/b29gCA06dPl/t1MkxlwBIhhlEQvXr1wvLly3Hu3Dl0794dnTp1QmRkJDQ0NNClSxd4enpi4sSJGDRoEP766y/89NNPJfbhKE2Z0mBtbY3Lly9DW1sbU6dOxbhx45Ceno6zZ88WG/7duHFj/P3330hLS4O9vT1+/PFHjB49GlOmTJHYb+DAgfDz80NqairGjh2LJUuWwM7ODiNGjCjxNpQ0TJs2DSkpKSgoKMDUqVOLPb9161ZMmjQJ69atw7Bhw3D27FmcOnWKmyOoPEp77kp73sr7HilqLfq8RQgABgwYAF1dXZw5c6bcr5NhKgMBERHfQTAMw3xJYWEh2rdvj3r16iEoKIjvcKo9oVAIoVCIuXPnol69evj555+hqqoqMRkjw1QmLBFiGEahTJ8+Hf3794exsTHevHmDPXv2ICwsDEFBQejXrx/f4VV7v/76K1atWiWx7eDBgyW2pjFMZcASIYZhFMqYMWNw/fp1vH37FqqqqrCwsMCKFSswcOBAvkNjGKYKYokQwzAMwzDVFq+dpXfv3o22bduiRo0aqFGjBqysrODv7//VY8LCwmBpaQkNDQ00adIEe/bskVO0DMMwDMNUNbwmQqampli/fj0iIiIQERGBPn36YMSIEXjw4EGJ+yckJGDw4MHo0aMHoqOjsWLFCixcuBB+fn5yjpxhGIZhmKpA4W6N1apVCxs3bixxxeOffvoJZ8+elVjfZ86cObh79y5u3LghzzAZhmEYhqkCFGaJDZFIhBMnTiA7O1tiqvdP3bhxo9isrwMGDMD+/ftRWFgIVVXVYsfk5+dLTFEvFovx/v171K5dWyYTtDEMwzAMI31EhMzMTJiYmBSb+LQieE+EYmJiYGVlhby8POjo6OD06dMwMzMrcd83b94UW3zR0NAQQqEQ7969K3ERw3Xr1hUb6skwDMMwTOWUmJhYoZndP8d7ItSyZUvcuXMHaWlp8PPzg4ODA8LCwr6YDH3eilN0Z+9LrTvLly/HkiVLuL/T09PRoEEDJCYmokaNGlJ6FQzDMNVLdnY2unXrhmfPnmH69OnYtGkT3yEBAP777z/07NkTWVlZcHFxwfLly/kOSar8/Pzg6OgIAPjjjz8wY8YMniOSn4yMDNSvXx+6urpSLZf3REhNTQ3NmjUDAHTs2BG3b9/G1q1bsXfv3mL7GhkZFVuFOiUlBSoqKqhdu3aJ5aurqxdbMBEAN1KNYRiGKTs3Nzc8e/YMDRo0wObNm6V+cSqPgoICzJw5E1lZWejRowdWr14NFRXeL3NSc+PGDcydOxcA4OzsLPEjvzqRdrcWhVtrjIgk+vR8ysrKCsHBwRLbgoKC0LFjxxL7BzEMwzDSd/36dWzduhUAsG/fPoVIgoCPdwAiIyNRq1YtHDt2rEolQQkJCRgxYgTy8/MxbNgweHh48B1SlcFrIrRixQpcuXIFz549Q0xMDFxdXREaGoqJEycC+Pim/nRxwTlz5uD58+dYsmQJHj58iAMHDmD//v1YunQpXy+BYRimWsnLy4OjoyOICNOmTcOAAQP4DgkAcP78ee723IEDB1C/fn2eI5KetLQ0DBkyBG/fvkWHDh3g5eXF1naTIl7T5eTkZEyePBlJSUnQ09ND27ZtERAQgP79+wMAkpKS8OLFC27/xo0b4+LFi1i8eDF27twJExMTbNu2DaNGjeLrJTAMw1Qrq1atQlxcHIyMjPDHH3/wHQ6Aj51nHRwcAACLFi3CiBEjeI5IegoKCjBq1Cg8fPgQJiYmOHfuHHR0dPgOq0pRuHmEZC0jIwN6enpIT0//ah8hkUiEwsJCOUbGMIpJTU1NqkNVmcorIiICXbt2hUgkwpkzZxQi4RAKhejVqxeuXbsGS0tLXLt2rcR+oZUREcHR0RGHDh2Cjo4Orly5gvbt2/MdFm9Ke/0uq6pzA1VKiAhv3rxBWloa36EwjEJQUlJC48aNoaamxncoDI8KCgrg6OgIkUiEcePGKUQSBHzstH3t2jXUqFEDvr6+VSYJAgB3d3ccOnQIysrKOH78eLVOgmSJJUKfKUqC6tatCy0tLTbpIlOticVivH79GklJSWjQoAH7PFRja9asQUxMDAwMDLBt2za+wwHwcbDMunXrAAB//vknmjZtynNE0uPl5YWVK1cCAHbs2IFBgwbxHFHVxRKhT4hEIi4J+tJwfIapburUqYPXr19DKBSy0ZnVVFRUFNauXQsA2LVrF+rUqcNzRB/7kE6aNAlEhDlz5mDMmDF8hyQ1V65cwbRp0wAAS5cuxZw5c3iOqGpjN/4/UdQnSEtLi+dIGEZxFN0SE4lEPEfC8KGgoABTp06FSCTC6NGjMXr0aL5DgkgkwsSJE/H27Vu0bdtWYSZzlIa4uDiMGDGC6yS9YcMGvkOq8lgiVALW/M8w/499Hqq3T2+J7dixg+9wAAC//fYbQkJCoK2tDV9fX2hqavIdklQkJydj0KBB+PDhA7p27YojR46wgQpywM4wwzAMU6LPb4nVrVuX54iA4OBgrF69GgCwd+9etGrViueIpCM7OxvDhg1DQkICmjZtirNnz7K7E3LCEiGGYRimmIKCAkybNg0ikQj29vYKcUvs9evXmDhxIogIM2fO5CbfrexEIhEmTJiA27dvo3bt2rh48aJC9MOqLlgixDAMwxSzZs0a3Lt3DwYGBti5cyff4UAoFGL8+PF4+/Yt2rVrxy3xUdkRERYtWoSzZ89CXV0dZ8+eRYsWLfgOq1phiRBTbfXq1QsCgQACgQB37tzhOxypmzp1Kvf6zpw5w3c4TCUSGRmpcLfE3NzcEB4eDh0dHRw/frzK9AvatGkTdu7cCYFAgKNHj6Jbt258h1TtsESoiunZsyd38VNTU0Pr1q3h5eUlt/rDw8MxbNgwmJiYVIoL8MyZM5GUlITvvvsOQPnj37VrFxo3bgwNDQ1YWlriypUrZYqjvMd/7bitW7ciKSmpTHEwTH5+PhwcHBRqlFhgYCCXmP31119VpsXEx8eHWytz48aNsLe35zmi6oklQlUIEeHOnTvw8PBAUlIS4uLiMHDgQEyZMgUJCQlyiSE7Oxvt2rVTmNEl36KlpQUjIyNuleryxO/r6wtnZ2e4uroiOjoaPXr0wKBBgyTWyZPF8d86Tk9PD0ZGRqV+HQwDfGx5efDgAerWrYtdu3bxHQ4SExMxadIkAMDcuXMxduxYniOSjrCwMG59tIULF2LJkiU8R1SNUTWTnp5OACg9Pb3Yc7m5uRQbG0u5ubncNrFYTFlZWbw8xGJxmV5bXFwcAaD79+9z22JiYggA+fv7l/+klRMAOn36dJmP8/LyInV1dXr58iW3bfr06WRubk5paWlSi8/a2poWLVr0xedLG3/nzp1pzpw5EttatWpFLi4upYqjvMeX9rjy/jsUKelzwVRNN27cICUlpQq/Z6SloKCArKysCAB16NChyrwH79+/TzVr1iQANHLkSBIKhXyHVCl87fpdEaxF6BtycnKgo6PDyyMnJ6dMsUZGRkJfXx9mZmYAgJcvX8LV1RXq6uowNzcvdTlr1679ZmxlvfVTFuPGjUPLli25qfNXrVqFwMBA+Pv7Q09PT6FiLSgoQGRkJGxsbCS229jY4Pr16zI7vqL1MszncnNzMXXqVIjFYkyaNAm2trZ8h4SffvoJN27cgJ6eHk6ePAkNDQ2+Q6qwV69eYdCgQUhLS8P333+Po0ePQllZme+wqjW2xEYVEhUVhfT0dOjq6kIsFiM3NxeamprYs2cP6tWrBwCws7NDaGgo+vbti5MnT5ZYTmmmqy8qTxYEAgHc3d1hb28PExMTbN26FVeuXCmxTr5jfffuHUQiEQwNDSW2Gxoa4s2bNzI7vqL1MsznXF1dERcXBxMTE4VYS8zPzw+bN28GABw+fBhNmjThOaKKy8jIwODBg5GYmIiWLVvi77//rjKdviszlgh9g5aWFrKysniruywiIyPh5OSEhQsXIi0tDUuXLoWVlRWmTp3K7bNw4UI4Ojri8OHDXyynVq1aqFWrVnnDloqhQ4fCzMwMq1atQlBQENq0aVPifooQK1B89mUiKtOMzOU9vqL1MgzwcW2rLVu2APjYGVlfX5/XeJ4+fQpHR0cAH9faUpSV7iuioKAAI0eOxL1792BoaAh/f3+2pqWCYInQNwgEAmhra/MdRqlER0dj1qxZaNasGYCPI4rMzc0xa9YsNG7cGADQu3dvhIaGfrWctWvXciM0vsTf3x89evSQStwlCQwMxKNHj0ps9fgU37EaGBhAWVm5WCtMSkrKV+Ou6PEVrZdhimRlZWHq1KkgIkyfPp33Vc5zc3Nhb2+PjIwMdO/e/Zuf78pALBZj6tSpuHTpErS1tXHx4kXuO5nhH0uEqoj4+HikpaVxw8ABwMzMDM2aNYO3tzdWrFhR6rL4vt0UFRWF0aNHY+/evfDx8cHKlStx4sSJEvflO1Y1NTVYWloiODgYdnZ23Pbg4OBS/Yot7/EVrZdhiixduhTx8fFo0KCBQixeumDBAty9exd16tSBj48PVFVV+Q6pwpYtWwZvb2+oqKjg1KlTsLCw4Dsk5lNS7XpdCZR11Fhlcfz4cVJRUaH8/HyJ7U5OTtSxY0eJbSEhITRq1CiZxJGZmUnR0dEUHR1NAGjTpk0UHR1Nz58/L9XxCQkJZGRkRO7u7kREFBERQQKBgCIiIqQea0mjxkoT//bt26lPnz7c3z4+PqSqqkr79++n2NhYcnZ2Jm1tbXr27Fmp4ijN8Z/XWZZ6wUaNMV9w8eJFAkAA6PLly3yHQ/v37ycAJBAIKDg4mO9wpGLTpk3cOT5y5Ajf4VRqsho1xhKhT1TmL3wXFxcyMzMrtv3MmTMkEAgoMTGR2ybLRCgkJIT70H/6cHBw4PY5ePAglZSDp6amUqtWrWjWrFkS24cPH04DBgyQeqwlJUKlid/NzY0aNmwocdzOnTupYcOGpKamRhYWFhQWFibx/Jdec2mPL6nO0hxHxBIhpmTv3r0jY2NjAkDOzs58h0NRUVGkrq5OAGjNmjV8hyMV3t7e3HfI+vXr+Q6n0mOJkJRU1USoLGSZCJWGm5sbWVtb81Z/kW/NIyRNfL5mlggxJRk7diwBoFatWlFOTg6vsbx//54aN25MAGjIkCEkEol4jUcaLl26RKqqqgSAFixYUOZ54Zji2DxCjFQMGDAAo0ePxsWLF2Fqaorbt2/LPYbAwED8/vvvcq+3JLt27YKOjg5iYmJkWg8fr3nOnDnQ0dGRa51M5eDj4wNfX18oKyvD09OT1yHcYrEYkydPRkJCAho3bgxPT08oKVXuS1N0dDRsbW1RWFgIe3t7bN68mY3mVGACIiK+g5CnjIwM6OnpIT09HTVq1JB4Li8vj/swVoWJu5ive/XqFXJzcwEADRo0gJqaGs8RSVdKSgoyMjIAAMbGxuUe/cg+F1XLq1evYG5ujg8fPsDNzQ2//vorr/G4u7vj559/hrq6Om7cuIEOHTrwGk9FxcfHo1u3bkhOToa1tTUCAgLY50ZKvnb9rgg2aoyptmQ5mkwR1K1bVyFWDWcUBxFhxowZ+PDhAywtLeHq6sprPMHBwVi5ciWAj62zlT0JSk5Oho2NDZKTk9GuXTv8/fffLAmSIrFYLJNyK3f7I8MwDFNqu3fvRkBAANTV1XHkyBFeh6a/ePECEyZM4OYvKppAsbLKzMzE4MGD8d9//6FRo0YlLgnElF9eXh6mTZsmk7JZixDDMEw1EBcXh6VLlwIAfv/9d25NQj7k5eVh1KhRePfuHSwsLLB9+3beYpGG/Px82NnZISoqCgYGBggMDISxsTHfYVUZHz58gK2tLcLDw2VSPmsRYhiGqeIKCwsxadIk5Obmol+/fpg/fz6v8SxYsAARERGoVasW/Pz8KvV6W2KxGA4ODhKzRrdo0YLvsKqMxMREdO/eHeHh4dDV1ZVJHSwRYhiGqeLWrFmDiIgI6Ovr49ChQ7yOyvrrr7/w119/QSAQwNvbG40aNeItlooiIixcuBC+vr7crNGdOnXiO6wqIyYmBlZWVoiNjYWJiQkCAgJkUg+7NcYwDFOF3bx5E+7u7gA+9hHic5DA7du34eTkBOBjcmZjY8NbLNKwevVq7Ny5EwKBAEeOHKn0r0eRhISEwNbWFhkZGTAzM4O/vz9q1qwpk7pYixDDMEwVlZWVhcmTJ0MkEmHixIkYO3Ysb7G8ffsWo0aNQkFBAUaMGAEXFxfeYpGG3bt3w83NDQCwbds2jB8/nueIqg4vLy8MGDAAGRkZ6NGjB65evYoGDRrIrD6WCDEMw1RRP/zwA54+fYr69etjx44dvMUhFAoxfvx4JCYmokWLFjh8+HClnjTx+PHjXMvWL7/8wnufq6qCiLB+/XpMnDgRhYWFGD16NIKCgqCvry/TeivvO5FhGIb5or///hv79u0DABw+fFhmtxVKY8WKFVxn4lOnTlXqYeXBwcGYNGkSiAhz5szhfULKqkIoFMLJyQnLly8HACxZsgQ+Pj5ymYeJJUJMtdWrVy8IBAIIBALcuXOH73B4MXXqVO4cnDlzhu9wGCl58+YNZsyYAeBjq1Dv3r15i8XX1xcbN24EABw8eBBt2rThLZaK+vfff2FnZ4fCwkKMGTMGO3bsYEtnSEF2djZGjhyJ3bt3QyAQYMuWLfjjjz/k1mrIEqEqpmfPntyFTU1NDa1bt4aXl5fc6g8PD8ewYcNgYmJSKS6uM2fORFJSEr777jtu265du7jlJCwtLXHlypWvlpGZmQlnZ2c0bNgQmpqa6NatW7E13IRCIX7++Wc0btwYmpqaaNKkCX777bcyzZRa1rhK82+xdetWJCUllToGRvGJxWJMnToV7969Q/v27bmO0ny4d+8eN1HiTz/9hNGjR/MWS0Xdv38fgwYNQnZ2Nvr3748jR45AWVmZ77AqveTkZPTu3Rvnzp2DhoYGTpw4gUWLFsk1BpYIVSFEhDt37sDDwwNJSUmIi4vDwIEDMWXKFCQkJMglhuzsbLRr147X/ghloaWlBSMjI6iofBxA6evrC2dnZ7i6uiI6Oho9evTAoEGD8OLFiy+WMWPGDAQHB8PT0xMxMTGwsbFBv3798OrVK26fDRs2YM+ePdixYwcePnyI33//HRs3biz1RHLlias0/xZ6enowMjIqVQxM5bBjxw4EBgZCQ0MDx44dg7q6Oi9xvH//HnZ2dsjJyYGNjQ2vCVlFJSQkwMbGBh8+fEDXrl1x6tQp3s5rVRIXFwcrKyvcvn0btWrVwj///INRo0bJPxCprmVfCaSnpxMASk9PL/Zcbm4uxcbGUm5uLg+RVVxcXBwBoPv373PbYmJiCAD5+/vLPR4AdPr06TIf5+XlRerq6vTy5Utu2/Tp08nc3JzS0tKkFp+1tTUtWrRIYlvnzp1pzpw5EttatWpFLi4uJZaRk5NDysrKdP78eYnt7dq1I1dXV+7vIUOGkKOjo8Q+I0eOpEmTJpUq1rLG9blv/Vt87fnK/rmoTmJiYkhdXZ0A0I4dO3iLQygU0sCBAwkANWrUiN69e8dbLBWVlJRETZs2JQD03XffUWpqKt8hVQnh4eGkr69PAKhJkyYUFxf3zWO+dv2uCNYi9A1EhOzsbF4eRFSmWCMjI6Gvr89Nnf/y5Uu4urpCXV0d5ubmpS5n7dq10NHR+erjW7dlKmLcuHFo2bIl1q1bBwBYtWoVAgMDS1y7R5qxFhQUIDIysthcIDY2Nrh+/XqJxwiFQohEomId+jQ1NXH16lXu7+7du+PSpUt4/PgxAODu3bu4evUqBg8eLJO4mOonLy8PEyZMQH5+PgYPHox58+bxFssvv/yCgIAAaGpq4vTp06hduzZvsVTEhw8fMGDAAPz3339o0qQJgoKCUKtWLb7DqvR8fHzQr18/roXt5s2bvM7GzSZU/IacnBzo6OjwUndWVha0tbVLvX9UVBTS09Ohq6sLsViM3NxcaGpqYs+ePdwkanZ2dggNDUXfvn1x8uTJEsuZM2cOxowZ89W6ZDkpm0AggLu7O+zt7WFiYoKtW7fiypUrJdYpzVjfvXsHkUgEQ0NDie2GhoZ48+ZNicfo6urCysoKq1evRuvWrWFoaAhvb2/8+++/aN68ObffTz/9hPT0dLRq1QrKysoQiURwd3cv1dwj5YmLqX5WrFiBmJgY1KlTBwcOHOCtE++JEyewdu1aAB9nkW7fvj0vcVRUdnY2hg4dinv37sHIyAjBwcFs/bAKIiJs2LCBGxk2cuRIHD16lPclVlgiVIVERkbCyckJCxcuRFpaGpYuXQorKytMnTqV22fhwoVwdHTE4cOHv1hOrVq1eP/VM3ToUJiZmWHVqlUICgr64kgTWcT6+QWEiL56UfH09ISjoyPq1asHZWVlWFhYYMKECYiKiuL28fX1xdGjR+Hl5YU2bdrgzp07cHZ2homJCRwcHGQSF1N9BAYGYvPmzQCAAwcOFEua5eXu3bvc980PP/yACRMm8BJHRRUtonr9+nXUrFkTQUFBaNKkCd9hVWqFhYWYN28e/vrrLwCAs7MzPDw8FKLDOUuEvkFLSwtZWVm81V0W0dHRmDVrFpo1awbg4ygjc3NzzJo1C40bNwYA9O7dG6GhoV8tZ+3atdwvui/x9/dHjx49yhRfWQQGBuLRo0cltoR8SpqxGhgYQFlZuVgrS0pKyldjaNq0KcLCwpCdnY2MjAwYGxtj7Nix3DkHgB9//BEuLi4YN24cAMDc3BzPnz/HunXrvpkIlTcupnpISUnh3kPz5s3D0KFDeYnj3bt3sLW1RU5ODvr374/169fzEkdFFU3+GBwcDG1tbfj7+5epawFTXHp6OkaPHo3g4GAoKSlh69atCjUJJUuEvkEgEJTp9hRf4uPjkZaWJjEM3MzMDM2aNYO3tzdWrFhR6rL4vjUWFRWF0aNHY+/evfDx8cHKlStx4sSJEveVZqxqamqwtLREcHAw7OzsuO3BwcEYMWLEN4/X1taGtrY2Pnz4gMDAQPz+++/cczk5OcXmxFBWVi7V8PmKxsVUXUSEadOmITk5GW3atIGHhwcvcQiFQowdOxbPnj1DkyZN4OPjw43ErEzEYjGmT5+O06dPQ11dHWfPnkXXrl35DqtSe/HiBYYMGYL79+9DW1sbPj4+vCXrXyTVrteVQFUdNXb8+HFSUVGh/Px8ie1OTk7UsWNHiW0hISE0atQomcSRmZlJ0dHRFB0dTQBo06ZNFB0dTc+fPy/V8QkJCWRkZETu7u5ERBQREUECgYAiIiKkHmtJo8Z8fHxIVVWV9u/fT7GxseTs7Eza2tr07Nkzbp/t27dTnz59uL8DAgLI39+f4uPjKSgoiNq1a0edO3emgoICbh8HBweqV68enT9/nhISEujUqVNkYGBAy5YtK1Ws5YmrLP8WYKPGKqWtW7cSAFJXV6d79+7xFseiRYsIAGlra1NMTAxvcVSEWCym+fPnEwBSVlamM2fO8B1SpRcREUFGRkYEgIyNjSkyMrJC5clq1BhLhD5Rmb/wXVxcyMzMrNj2M2fOkEAgoMTERG6bLBOhkJAQAlDs4eDgwO1z8OBBKikHT01NpVatWtGsWbMktg8fPpwGDBgg9VhLSoSIiHbu3EkNGzYkNTU1srCwoLCwMInn3dzcqGHDhtzfvr6+1KRJE1JTUyMjIyNycnIqNsw/IyODFi1aRA0aNCANDQ1q0qQJubq6SiSuXzov5Y2rNP8WRVgiVPncuXOH1NTUeB8qf+jQIe695efnx1scFeXq6sq9Dk9PT77DqfROnz5NWlpaBIDMzc3pxYsXFS6TJUJSUlUTobKQZSJUGm5ubmRtbc1b/UW+lAjxhc/zwhKhyiU7O5tat25NAGjo0KEkFot5iePGjRtcMrZy5UpeYpCGdevWcUnQzp07+Q6nUhOLxeTh4UECgYAA0MCBA6WWuLBESEqqeyJkY2NDBgYGpKmpSfXq1aNbt27JPYauXbvSv//+K/d6P2dtbU2qqqqkra3N622FInycl9mzZ5O2tjZLhCqZOXPmEAAyMjKilJQUXmJ4+fIld9tj+PDhJBKJeImjorZv384lQevXr+c7nEqtoKCAZs+ezZ3PuXPnUmFhodTKl1UiJCAq46x9lVxGRgb09PSQnp6OGjVqSDyXl5eHhIQEbj0npmp79eoVcnNzAQANGjSAmpoazxHJX0pKCjIyMgAAxsbGJQ4MYJ8LxeLn5wd7e3sAQFBQEPr37y/3GHJzc9GzZ09ERESgTZs2uHHjBnR1deUeR0UdOnQI06ZNAwD8/PPPWL16Nc8RVV6fjgwTCATYtGkTFi1aJNUpPr52/a6Iytetn2GkRJYj3yqLunXrom7dunyHwZTS8+fPuVXlf/zxR16SICLCzJkzERERgVq1auHs2bOVMgk6fvw4pk+fDuDjnDa//fYbzxFVXvHx8Rg2bBhiY2OhpaUFb29vDB8+nO+wSo0lQgzDMJWAUCjEhAkTkJaWhs6dO/O2iOnGjRtx7NgxKCsr4+TJk5VyosHz589j4sSJEIvFmDFjBjZt2sQmJy2na9euwdbWFu/evYOJiQnOnTsHCwsLvsMqE7bWGMMwTCXw66+/4vr166hRowa8vb2hqqoq9xguXLgAFxcXAMC2bdvQu3dvucdQUf/88w/s7e25xHLPnj0sCSqno0ePok+fPnj37h0sLCxw69atSpcEASwRYhiGUXiXL1/mZlDft28fL60wDx48wPjx40FEmD17NubOnSv3GCoqPDwcw4cPR35+PmxtbXHo0CGFWOKhshGLxVi5ciUmT56MgoICjBw5EuHh4ZW2uwG7NcYwDKPA3r59i0mTJoGIMH36dIwdO1buMbx79w7Dhg1DZmYmevbsiW3btlW6VpSbN29iyJAhyM3NxaBBg+Dj48NLq1pll5OTg6lTp3Kz/bu4uMDd3b3YzPmVCa+Rr1u3Dp06dYKuri7q1q0LW1tbxMXFffWY0NBQCASCYo9Hjx7JKWqGYRj5EIvFmDZtGpKSktC6dWts3bpV7jEUFBRg1KhRSEhIQJMmTeDn51fpRlhGRUVh4MCByMrKQp8+feDn5wd1dXW+w6p0Xr16hZ49e+LEiRNQVVXFwYMHsW7dukqdBAE8twiFhYXByckJnTp1glAohKurK2xsbBAbG/vN9b3i4uIkhs/VqVNH1uEyDMPI1aZNm3DhwgWoq6vDx8dH7useEhHmzZuH8PBw1KhRA+fOnYOBgYFcY6iomJgY2NjYID09Hd27d8fZs2ehqanJd1iVTkREBIYPH46kpCQYGBjg1KlTMl14W554TYQCAgIk/j548CDq1q2LyMhI9OzZ86vH1q1bFzVr1pRhdAzDMPy5efMmli9fDgDYsmUL2rZtK/cYtmzZgv3790NJSQk+Pj4wMzOTewwV8fDhQ/Tr1w+pqano3LkzLly4UCkW0VY0x48fx9SpU5Gbm4s2bdrg3LlzaNy4Md9hSY1CtWelp6cDAGrVqvXNfTt06ABjY2P07dsXISEhsg6NYRhGbj58+IBx48ZBKBRizJgxmD17ttxj8Pf3x9KlSwEAHh4eGDRokNxjqIjHjx+jT58+SElJQfv27REQECDVSfiqAyLCb7/9hrFjxyI3NxeDBw/G9evXq1QSBChQZ2kiwpIlS9C9e3d89913X9zP2NgY+/btg6WlJfLz8+Hp6Ym+ffsiNDS0xFak/Px85Ofnc38XzaLLMAyjiIgI06ZNw/Pnz9G0aVP8+eefcu+Y/ODBA4wdOxZisRjTp0+Hs7OzXOuvqP/++w99+vTBmzdvYG5ujn/++Qf6+vp8h1WpfN4pevHixdi4cWPVHGUn1QU7KmDevHnUsGFDiVXSS2vo0KE0bNiwEp9zc3MrcQXu6rrWGPP/rK2tufdDdHQ03+HwwsHBgTsHbK0xxbB161YCQGpqahQRESH3+pOTk6lRo0YEgHr27En5+flyj6EiEhISqEGDBgSAzMzMKDk5me+QKp0XL15Qhw4dCACpqqrS/v37+Q6JiGS31phC3BpbsGABzp49i5CQEJiampb5+K5du+LJkyclPrd8+XKkp6dzj8TExIqGq9B69uzJjaRTU1ND69at4eXlJbf6w8PDMWzYMJiYmEAgEODMmTNyq7s8Zs6ciaSkJIlWyF27dnHrallaWuLKlStfLSMzMxPOzs5o2LAhNDU10a1bN9y+fVtin19//bXYSEcjI6MyxVrWuEozKnPr1q1ISkoqUxyM7EREREjcjrK0tJRr/Xl5ebC1tcWzZ8/QrFkznDp1qlKNEEtMTESfPn3w4sULtGjRApcuXWJLyJTRzZs30alTJ0RHR8PAwACXL1+Go6Mj32HJFK+JEBFh/vz5OHXqFC5fvlzu+47R0dEwNjYu8Tl1dXXUqFFD4lFVERHu3LkDDw8PJCUlIS4uDgMHDsSUKVOQkJAglxiys7PRrl077NixQy71VZSWlhaMjIygovLxLrGvry+cnZ3h6uqK6Oho9OjRA4MGDcKLFy++WMaMGTMQHBwMT09PboRKv3798OrVK4n92rRpg6SkJO4RExNT6jjLE1fRqMybN28iODgYQqEQNjY2yM7O5vbR09Mrc0LGyEZaWhrGjh2LwsJC2NnZYf78+XKtn/43T9GNGzdQs2ZNnD9/HrVr15ZrDBXx6tUr9OnTBwkJCWjatCkuX77M3ttldOTIEVhbWyM5ORnm5ua4ffs2unfvzndYsifV9qUymjt3Lunp6VFoaCglJSVxj5ycHG4fFxcXmjx5Mvf35s2b6fTp0/T48WO6f/8+ubi4EADy8/MrVZ1fa1qr7LcA4uLiCADdv3+f2xYTE0MAyN/fX+7x4Cu3W77Gy8uL1NXV6eXLl9y26dOnk7m5OaWlpUktPmtra1q0aJHEts6dO9OcOXMktrVq1YpcXFxKLCMnJ4eUlZXp/PnzEtvbtWtHrq6u3N9ubm7Url27csda1rhKkpKSQgAoLCys2HNf+7eq7J+LykAsFpOdnR0BoIYNG9L79+/lHsNvv/1GAEhFRYUuXbok9/or4tWrV9S8eXMCQI0bN6YXL17wHVKlIhQK6YcffuBuk48YMYIyMzP5DquYKnlrbPfu3UhPT0evXr1gbGzMPXx9fbl9kpKSJH71FhQUYOnSpWjbti169OiBq1ev4sKFCxg5cqRMYiQiZGdn8/IgojLFGhkZCX19fW6I68uXL+Hq6gp1dXWYm5uXupy1a9dCR0fnq49v3ZapiHHjxqFly5ZYt24dAGDVqlUIDAyEv78/9PT0ZBZrQUEBIiMjYWNjI7HdxsYG169fL/EYoVAIkUgEDQ0Nie2ampq4evWqxLYnT57AxMQEjRs3xrhx4xAfHy+zuEpSllGZjHxt27YNp0+fhqqqKk6cOCH3jr2+vr745ZdfAHz8Xu7Tp49c66+IpKQk9O7dG0+ePEGjRo0QEhKC+vXr8x1WpZGWloahQ4fijz/+AAD8/PPPOHXqFHR0dHiOTH54HTVWmgv9oUOHJP5etmwZli1bJqOIisvJyeHtDZGVlVWmOS+ioqKQnp4OXV1diMVi5ObmQlNTE3v27OHWgLGzs0NoaCj69u2LkydPlljOnDlzMGbMmK/WJcs1ZQQCAdzd3WFvbw8TExNs3boVV65cKbFOacb67t07iEQiGBoaSmw3NDTEmzdvSjxGV1cXVlZWWL16NVq3bg1DQ0N4e3vj33//RfPmzbn9unTpgiNHjqBFixZITk7GmjVr0K1bNzx48OCbtx/KE9fnqJSjMhn5u3nzJtcvaNOmTejUqZNc679x4wYcHBwAAD/88ANmzJgh1/or4s2bN+jTpw8eP36MBg0aICQkBA0bNuQ7rEojLi4Ow4cPx+PHj6GpqYnDhw9j9OjRfIcldwozfJ6puMjISDg5OWHhwoVIS0vD0qVLYWVlhalTp3L7LFy4EI6Ojjh8+PAXy6lVqxbvrQZDhw6FmZkZVq1ahaCgILRp06bE/WQR6+dDlYnoq8OXPT094ejoiHr16kFZWRkWFhaYMGECoqKiuH0+nYPF3NwcVlZWaNq0KQ4fPowlS5bIJK5PzZ8/H/fu3SvWSsXw6/379xg7diyEQiFGjx4NJycnudYfHx+PESNGID8/H8OHD8eGDRvkWn9FJCcno0+fPnj06BHq16+P0NBQNGrUiO+wKg1/f3+MGzcOGRkZqF+/Pv7++2906NCB77B4wRKhb9DS0kJWVhZvdZdFdHQ0Zs2ahWbNmgH4OMrI3Nwcs2bN4jqi9+7dG6GhoV8tZ+3atdxK11/i7+8v0+nVAwMD8ejRoxJbQj4lzVgNDAygrKxcrJUlJSXlqzE0bdoUYWFhyM7ORkZGBoyNjTF27Nivdv7X1taGubn5F0c7SiOuIkWjMsPDw8s1KpORDbFYDAcHB7x48QLNmjXDX3/9Jdf5gj58+IAhQ4bg7du3sLCwgJeXV6WZIyYlJQV9+/bFw4cPYWpqipCQkCo3yZ+sEBE2bNiAFStWgIjQvXt3+Pn5VevRdSwR+gaBQFAppmSPj49HWlqaxG0PMzMzNGvWDN7e3lixYkWpy+L71lhUVBRGjx6NvXv3wsfHBytXruQm9fqcNGNVU1ODpaUlgoODYWdnx20PDg7GiBEjvnm8trY2tLW18eHDBwQGBuL333//4r75+fl4+PBhqRK08sZFRFiwYAFOnz6N0NBQdqFQMB4eHjh//jzU1dVx4sQJuY5oLVpI9dGjRzA1NcW5c+cqxfcc8P8tQbGxsahXrx5CQkLQtGlTvsOqFLKzszF9+nSuH+6sWbOwffv2SjVFgkxItet1JVBVR40dP36cVFRUik1+5uTkRB07dpTYFhISQqNGjZJJHJmZmRQdHU3R0dEEgDZt2kTR0dH0/PnzUh2fkJBARkZG5O7uTkREERERJBAIZDKxXEmjxnx8fLgJxGJjY8nZ2Zm0tbXp2bNn3D7bt2+nPn36cH8HBASQv78/xcfHU1BQELVr1446d+5MBQUF3D4//PADhYaGUnx8PN28eZOGDh1Kurq6EuV+TXniKs2ozCJgo8bkKiwsjJSVlQkA7du3T651i8Vimjp1KgEgHR0dunv3rlzrr4ikpCRq3bo1ASBTU1N68uQJ3yFVGgkJCdSuXTtuZOCePXv4DqnMZDVqjCVCn6jMX/guLi5kZmZWbPuZM2dIIBBIzNgty0QoJCSkxJm8HRwcuH0OHjxIJeXgqamp1KpVK5o1a5bE9uHDh9OAAQOkHmtJiRAR0c6dO6lhw4akpqZGFhYWxYabu7m5UcOGDbm/fX19qUmTJqSmpkZGRkbk5ORUbJj/2LFjydjYmFRVVcnExIRGjhxJDx48kNjnS+elvHGV9O8AgA4ePFisbJYIyc/r16/JyMiIANCkSZNILBbLtf41a9YQAFJWVuZlWo3ySkpKolatWnFJ0NOnT/kOqdK4fPky1a5dmwBQ3bp16cqVK3yHVC4sEZKSqpoIlYUsE6HScHNzI2tra97qL/KlRIgvfJ4XlgjJR2FhIfXs2ZMAUJs2bSgrK0uu9R87doxLiHft2iXXuivi9evXXBJUv359lgSVklgsps2bN3Otj5aWlpV6jqUqOY8QI38DBgzA6NGjcfHiRZiamhZbCkIevtV/Rp527doFHR2dMs3yLCt8nJc5c+ZUq/lC+Obq6orw8HDo6urCz89Prv1ywsLCMG3aNAAfh8nPnTtXbnVXxOvXr9G7d2+J0WGsT9C35eTkYMqUKVi8eDFEIhEmT56MK1eusDmWSiAgKuOsfZVcRkYG9PT0kJ6eXqxzYl5eHhISErj1nJiq7dWrV8jNzQUANGjQoFp2GExJSUFGRgYAwNjYuMQLM/tcSMeZM2e4zu4nTpyAvb293Op++PAhunXrhrS0NNjb28PX1xdKSor/O/jly5fo06cPnjx5wiVBTZo04Tsshff8+XPY2dkhOjoaysrK2LRpExYsWCDXUYmy8LXrd0WwUWNMtSXLkW+VRd26dav1sFl5efr0KTdpobOzs1yToOTkZAwePBhpaWmwsrLCkSNHKkUS9Pz5c/Tp0wfx8fHcjNFsnqBvu3z5MsaOHYt3797BwMAAJ06cQK9evfgOS6Ep/qeBYRimEsvJyYG9vT0yMjLw/fffy/X2Z3Z2NoYOHcqtJn/27FloamrKrf7ySkhIgLW1NeLj47l5ulgS9HVEhD/++AP9+/fHu3fvYGFhgcjISJYElQJLhBiGYWSEiDBnzhzcvXsXderUga+vL1RVVeVSt1AoxPjx4xEREQEDAwP4+/vDwMBALnVXxH///Qdra2s8f/4czZs3R2hoKBo0aMB3WAotKysL48aNw9KlSyEWizF58mRcvXqVnbdSYrfGGIZhZGT37t3w9PSEkpISfH195XY7lv43mea5c+egoaGBs2fPcjPOK7K4uDj07dsXr169QqtWrXDp0iWYmJjwHZZCe/LkCUaOHIn79+9DRUUFW7Zswbx58yp9fyB5YokQwzCMDNy4cQPOzs4AgA0bNqB3795yq3v9+vXYs2cPBAIBvLy8YGVlJbe6y+vBgwfo27cvkpOTYWZmhkuXLsHIyIjvsBTa+fPnMWnSJKSnp8PIyAgnT57E999/z3dYlQ67NcYwDCNlycnJsLe3R2FhIezt7fHDDz/IrW5PT09uSZ1t27ZJLMuiqO7cuYNevXohOTkZ7dq1Q2hoKEuCvkIkEmHlypUYNmwY0tPT8f333yMqKoolQeXEWoQYhmGkSCgUYuzYsXj9+jVat26NAwcOyO02RXBwMBwdHQEAy5Ytw/z58+VSb0Xcvn0bNjY2SEtLQ8eOHREYGIhatWrxHZbCSk1NxcSJExEYGAgAmD9/Pv74449qOf2HtLBEiGEYRopcXFwQFhYGXV1dnDp1Crq6unKp986dOxg1ahTXSXrdunVyqbcirl+/joEDByIzMxNWVlbw9/eHnp4e32EprMjISIwaNQrPnz+HpqYm/vzzT0ycOJHvsCo9dmuMYRhGSnx8fPDHH38AAA4dOoRWrVrJpd5nz55h8ODByMzMRO/evXHw4EGFnyvo8uXLsLGxQWZmJqytrREYGMiSoK/Yv38/vv/+ezx//hxNmzbFzZs3WRIkJYr9SWEYhqkk7t69y92W+umnnzBy5Ei51Pvu3TsMGDAASUlJMDc3x+nTp6Guri6XusvrwoULGDx4MLKzs9G/f39cvHhRbi1nlU1ubi6mT5+OGTNmID8/H8OGDUNERATatm3Ld2hVBkuEmGqrV69eEAgEEAgEuHPnDt/h8GLq1KncOThz5gzf4VRaqampsLOzQ25uLmxsbODu7i6XeosmTHz8+DEaNGhQKW4tnTx5EnZ2dsjPz8fw4cNx9uxZaGlp8R2WQoqPj0e3bt1w4MABKCkpwd3dHWfOnEHNmjX5Dq1KYYlQFdOzZ0/uwqampobWrVvDy8tLbvWHh4dj2LBhMDExqRQX15kzZyIpKQnfffcdt23Xrl3culqWlpa4cuXKV8vIzMyEs7MzGjZsCE1NTXTr1q3YYrbr1q1Dp06doKuri7p168LW1hZxcXFlirWsce3evRtt27ZFjRo1UKNGDa4Pxqe2bt2KpKSkMsXBSBKJRBg/fjwSEhLQpEkTeHt7Q1lZWeb1FhYWYsyYMfj3339Rq1YtBAYGKvyyMUeOHMHYsWNRWFiIcePG4eTJk2z9ui84d+4cLC0tcefOHdSpUwdBQUFYsWKFwt/yrIzYGa1CiAh37tyBh4cHkpKSEBcXh4EDB2LKlClISEiQSwzZ2dlo164dduzYIZf6KkpLSwtGRkZQUfk4bsDX1xfOzs5wdXVFdHQ0evTogUGDBuHFixdfLGPGjBkIDg6Gp6cnYmJiYGNjg379+uHVq1fcPmFhYXBycsLNmzcRHBwMoVAIGxsbZGdnlyrO8sRlamqK9evXIyIiAhEREejTpw9GjBiBBw8ecPvo6emxYcoV5OrqiuDgYGhpaeH06dNyGfFERJg5cyYuXrwITU1NnD9/Xm79kcprz549cHBwgFgshqOjI44ePSq3WbYrE6FQiBUrVmD48OHc+nBRUVHo27cv36FVXVTNpKenEwBKT08v9lxubi7FxsZSbm4ut00sFlNWVhYvD7FYXKbXFhcXRwDo/v373LaYmBgCQP7+/uU/aeUEgE6fPl3m47y8vEhdXZ1evnzJbZs+fTqZm5tTWlqa1OKztramRYsWSWzr3LkzzZkzR2Jbq1atyMXFpcQycnJySFlZmc6fPy+xvV27duTq6vrFulNSUggAhYWFlSrWssb1Jfr6+vTXX38V2/61f6uSPhfMR76+vgSAAJCPj4/c6l2+fDkBIGVlZTp37pzc6i2vDRs2cOdpwYIFJBKJ+A5JISUlJZG1tTV3rhYuXEj5+fl8h6Uwvnb9rgiWCH2ipC/8rKws7k0p70dWVlaZXpuXlxfp6+tzCVRiYiINHz68WFLxLe7u7qStrf3VR3h4+DfLKW8iJBaLqW3btuTk5ERERL/++iuZmpqW+BoqEuvniVB+fj4pKyvTqVOnJPZbuHAh9ezZs8QyMjIyCAD9888/Etu7du1K1tbWX3yNT548IQAUExPzxX0qEtfnhEIheXt7k5qaGj148KDY8ywRKru7d++SlpYWAaAff/xRbvVu3ryZ+47Yv3+/3OotD7FYTCtWrODiXb58eZl/4FUXISEhZGRkRABIR0dHrol1ZSGrRIjNI1SFREVFIT09Hbq6uhCLxcjNzYWmpib27NnD9R2ws7NDaGgo+vbti5MnT5ZYzpw5czBmzJiv1iXLvggCgQDu7u6wt7eHiYkJtm7diitXrpRYpzRjfffuHUQiEQwNDSW2Gxoa4s2bNyUeo6urCysrK6xevRqtW7eGoaEhvL298e+//6J58+YlHkNEWLJkCbp37y7RN0macRWJiYmBlZUV8vLyoKOjg9OnT8PMzOybdTJf9+7dO4wYMQI5OTno378/1q5dK5d6jx49isWLFwMA3N3duVFqikgsFmPhwoXYuXMngI/Lfvz00088R6V4xGIxNmzYgJ9//hlisRjfffcdTp48iZYtW/IdWrXBEqFv0NLSQlZWFm91l0VkZCScnJywcOFCpKWlYenSpbCyssLUqVO5fRYuXAhHR0ccPnz4i+XUqlWL95ldhw4dCjMzM6xatQpBQUFo06ZNifvJItbPZwEmoq/ODOzp6QlHR0fUq1cPysrKsLCwwIQJExAVFVXi/vPnz8e9e/dw9epVmcYFAC1btsSdO3eQlpYGPz8/ODg4ICwsjCVDFVDUSfnZs2do2rQpfHx8uD5msnTx4kVMmzYNAODs7Izly5fLvM7yEgqFcHR0hKenJwQCAXbu3Im5c+fyHZbCSU1NhYODAy5cuAAAcHBwwK5du9goOnmTavtSJVDWW2OVSc2aNcnb25v7+8GDB6SkpETx8fES+4WEhNCoUaO+WA7ft8aIiAICAkhTU5OUlZXp4cOHMolVGrfGPpWVlUWvX78mIqIxY8bQ4MGDi+0zf/58MjU1LfZv8jXSuDVWpG/fvjRr1qxi27/2b1XZPxfStmDBAu72xaf98WTp+vXrpKmpSQBo4sSJCt3HJjc3l2xtbbk+TEePHuU7JIV0/fp1ql+/PgEgdXV1+uuvv9htw29gt8aYr4qPj0daWprErRYzMzM0a9YM3t7e3CKMpcH3rbGoqCiMHj0ae/fuhY+PD1auXIkTJ06UuK80Y1VTU4OlpSWCg4MlFqoMDg7GiBEjvnm8trY2tLW18eHDBwQGBuL333/nniMiLFiwAKdPn0ZoaCgaN25cqpikEdeniAj5+fllOob5f/v378f27dsBfLxN9aWWSml68OABhgwZgtzcXAwaNEihZ43OzMyEra0tLl++DDU1NRw/frzM79GqjoiwadMmuLi4QCgUonnz5jhx4gTatWvHd2jVl1TTqkqgqrYIHT9+nFRUVIqNMHBycqKOHTtKbPtWi1BFZGZmUnR0NEVHRxMA2rRpE0VHR9Pz589LdXxCQgIZGRmRu7s7ERFFRESQQCCgiIgIqcda0qgxHx8fUlVVpf3791NsbCw5OzuTtrY2PXv2jNtn+/bt1KdPH+7vgIAA8vf3p/j4eAoKCqJ27dpR586dqaCggNtn7ty5pKenR6GhoZSUlMQ9cnJyShVreeJavnw5hYeHU0JCAt27d49WrFhBSkpKFBQUVKx8sBahb7p27RqpqqoSAPrtt9/kUmdCQgLVq1ePAJCVlVWZB1DI09u3b6lTp05ca9mlS5f4DknhvH//noYPH851Hh87dqzUWzeqMjZqTEqqaiLk4uJCZmZmxbafOXOGBAIBJSYmcttkmQiFhISUOALOwcGB2+fgwYNUUg6emppKrVq1KnbrZvjw4TRgwACpx1pSIkREtHPnTmrYsCGpqamRhYVFsSHubm5u1LBhQ+5vX19fatKkCampqZGRkRE5OTkVG+Zf0jkBQAcPHuT2+dJ5KW9cjo6O3P516tShvn37lpgEFcXHEqEvS0xM5Eb0jBo1Si63ppKSkqhZs2YEgMzMzCg1NVXmdZZXYmIitW7dmgBQ7dq16datW3yHpHBu3rxJDRs2JACkpqZGu3btYrfCyoglQlJSVROhspBlIlQabm5uXx1aLi9fSoT4wud5YYnQl2VnZ5OFhQUBIHNzc8rMzJR5nR8+fKC2bdsSAGrUqFGZpr+Qt8ePH1ODBg0IANWrV6/E6RmqM5FIRB4eHqSiokIAqEmTJhQZGcl3WJWSrBIhxbzRzMjMgAEDMHr0aFy8eBGmpqbFloKQh8/7z/Bp165d0NHRQUxMDN+h8HJe5syZAx0dHbnWWZkQEaZOnYqoqCgYGBjg7NmzMj9f2dnZGDJkCO7duwdDQ0MEBwcr7NIZUVFR6N69O168eIHmzZvj2rVrbETiJ1JTUzF8+HAsXboUQqEQY8aMQVRUFCwsLPgOjfmEgIiI7yDkKSMjA3p6ekhPT0eNGjUknsvLy0NCQgK3nhNTtb169Qq5ubkAgAYNGkBNTY3niOQvJSUFGRkZAABjY2Noa2sX26c6fy5+++03uLm5QVVVFZcuXUKPHj1kWl9BQQFGjBiBgIAA1KxZE2FhYQq7ynhISAhGjBiBzMxMtG/fHgEBAcXmuqrOrl27hnHjxuHly5dQV1fHli1bMHv27G9OecF82deu3xXBRo0x1Zai/sqWp7p166Ju3bp8h6GQTp48CTc3NwAfF7CVdRIkEokwZcoUBAQEQEtLCxcuXFDYJOjUqVMYP348CgoKYG1tjb///lvhV72XF5FIhPXr18PNzQ0ikQgtWrTA8ePH2agwBcZujTEMw3wmOjoaU6ZMAQAsXrwY06dPl2l9RITZs2fD19cXqqqqOHXqFLp16ybTOsvrzz//xOjRo1FQUABbW1sEBASwJOh/kpKSMGDAAPz8888QiUSYNGkSIiIiWBKk4FgixDAM84mkpCQMHz4cubm5GDhwoMz7bdH/llzZv38/lJSU4OXlhQEDBsi0zvIgIri7u2PWrFkQi8WYMWMGTpw4Ue1ul35JQEAA2rVrh0uXLkFLSwuHDh2Cp6cndHV1+Q6N+QaWCDEMw/xPbm4uRowYgZcvX6JVq1ZyWT7j119/xZYtWwB8nLDR3t5epvWVh0gkwoIFC/Dzzz8DAFasWIF9+/bJZWkRRVdQUICffvoJgwYNwtu3b9G2bVtERkbCwcGB79CYUmLvYoZhGHxc/NLBwQG3b99G7dq1cf78eZnf8vHw8MBvv/0GANi+fbvEuoCKIi8vD5MnT8bJkychEAiwefNmLFq0iO+wFMJ///2H8ePHc6NvnZyc4OHhwVrJKhmWCDEMw+Bjy8yJEye4PjpNmzaVaX379u3Djz/+CABYu3Yt5s+fL9P6yiM9PR22trYIDQ2FqqoqPD09MXbsWL7DUgjHjh3D3LlzkZmZCX19fezfv19iCRym8mCJEMMw1d6xY8ewevVqAB8TlJ49e8q0Pk9PT8yZMwcA4OLiopAryb9+/RqDBg3CvXv3oKurizNnzqBPnz58h8W7zMxMzJ8/H0eOHAEA9OjRA8eOHUP9+vV5jowpL9ZHiGGYau3atWtwdHQE8DEpkfXtqRMnTmDq1KkgIjg5OWHt2rUyra88Hj16hG7dunGTOoaFhbEkCEBERAQsLS1x5MgRKCkpYdWqVQgJCWFJUCXHWoQYhqm24uPjYWdnh4KCAtjZ2cHd3V2m9Z07dw4TJkyAWCyGo6Mjtm3bpnAT7F27dg3Dhw/H+/fv0axZMwQGBqJJkyZ8h8UrsVgMDw8PuLq6QigUon79+jh27JjM55Zi5IMlQgzDVEsfPnzAkCFD8PbtW1hYWMDT0xNKSrJrJA8KCoK9vT2EQiEmTJiAffv2ybS+8jh9+jQmTJiAvLw8dOnSBefOnUOdOnX4DotXr169wpQpU3D58mUAgL29Pfbt2wd9fX2eI2OkRbE+hQwjR7169YJAIIBAIMCdO3f4Dkfqpk6dyr2+M2fO8B2OQikoKMCoUaPw6NEjmJqa4ty5cyUuLyItYWFhsLW1RUFBAUaOHInDhw9DWVlZZvWVx44dOzBq1Cjk5eVh2LBhuHz5crVPgs6cOYO2bdvi8uXL0NLSwv79+3H8+HGWBFUxLBGqYnr27Mld/NTU1NC6dWt4eXnJrf7w8HAMGzYMJiYmleICPHPmTCQlJeG7777jtu3atYtbV8vS0hJXrlz5ahmZmZlwdnZGw4YNoampiW7dupV5Mduy1vm5devWQSAQwNnZmdu2detWJCUllamc6qBoFueQkBDo6OjgwoULMDExkVl9169fx9ChQ5Gbm4vBgwfD29tboebfEYvF+Omnn7BgwQLu3Jw6dQpaWlp8h8ab7OxszJo1C3Z2dnj//j0sLS0RHR0NR0dHhbuVyVQcS4SqECLCnTt34OHhgaSkJMTFxWHgwIGYMmUKEhIS5BJDdnY22rVrhx07dsilvorS0tKCkZERd2Hy9fWFs7MzXF1dER0djR49emDQoEF48eLFF8uYMWMGgoOD4enpiZiYGNjY2KBfv3549epVqWIoT52fun37Nvbt21dsXSo9PT0YGRmVqozqZO3atTh06BCUlZVx4sQJma7ndevWLQwcOBBZWVno27cv/Pz8FGpx3/z8fEycOJGbPdvd3R27d+9WqERN3m7fvo0OHTrgzz//hEAgwLJly3D9+nW0aNGC79AYWaFqJj09nQBQenp6sedyc3MpNjaWcnNzuW1isZiysrJ4eYjF4jK9tri4OAJA9+/f57bFxMQQAPL39y//SSsnAHT69OkyH+fl5UXq6ur08uVLbtv06dPJ3Nyc0tLSpBaftbU1LVq0SGJb586dac6cORLbWrVqRS4uLiWWkZOTQ8rKynT+/HmJ7e3atSNXV9dSxVHWOj+VmZlJzZs3p+Dg4BJfD1H5/x2KlPS5qKy8vLwIAAGgPXv2yLSuiIgI0tPTIwBkbW1N2dnZMq2vrFJTU6lnz54EgFRUVOjw4cN8h8QroVBI7u7upKKiQgDI1NSULl++zHdYzCe+dv2uCNYi9A05OTnQ0dHh5ZGTk1OmWCMjI6Gvrw8zMzMAwMuXL+Hq6gp1dXWYm5uXupy1a9d+M7ay3ropi3HjxqFly5ZYt24dAGDVqlUIDAyEv79/sZl+pRlrQUEBIiMjYWNjI7HdxsYG169fL/EYoVAIkUhUbCZZTU1NXL16VSZ1fsrJyQlDhgxBv379vrlvdRceHs4NjV+6dClmz54ts7ru3LmD/v37Iz09Hd27d8f58+cV6lZTQkICvv/+e4SHh6NGjRoICAjgFpmtjp49e4bevXtzo8JGjx6Ne/fuoXfv3nyHxshB9W3/rIKioqKQnp4OXV1diMVi5ObmQlNTE3v27EG9evUAAHZ2dggNDUXfvn1x8uTJEsuZM2cOxowZ89W6isqTBYFAAHd3d9jb28PExARbt27FlStXSqxTmrG+e/cOIpEIhoaGEtsNDQ3x5s2bEo/R1dWFlZUVVq9ejdatW8PQ0BDe3t74999/0bx5c5nUWcTHxwdRUVFl7o9UHT18+BAjRozgOitv2LBBZnXFxMSgX79++PDhA7p27YqLFy9CR0dHZvWVVUREBIYOHYrk5GSYmpri4sWLZfqhVJUQEY4cOYIFCxYgMzMTOjo62LFjB6ZMmcL6AlUjLBH6Bi0tLWRlZfFWd1lERkbCyckJCxcuRFpaGpYuXQorKyuJCeIWLlwIR0dHHD58+Ivl1KpVC7Vq1Spv2FIxdOhQmJmZYdWqVQgKCkKbNm1K3E8WsX7+BUhEX/1S9PT0hKOjI+rVqwdlZWVYWFhgwoQJiIqKklmdiYmJWLRoEYKCgti6Rt/w5s0bDBo0CGlpabCyssLRo0dlNmz9wYMH6NevH1JTU9GxY0cEBAQo1Orjf//9NyZMmICcnBy0a9cOFy5ckOmPGkWWmpqKOXPmcD8Iv//+exw5cqTaz5lUHbFbY98gEAigra3Ny6Osv0iio6PRrVs3NGvWDB07dsSuXbvw+++/S3SU7t279ze/mPm+NQYAgYGBePToUYmtJbKK1cDAAMrKysVaYlJSUr4aQ9OmTREWFoasrCwkJibi1q1bKCwsROPGjWVWZ2RkJFJSUmBpaQkVFRWoqKggLCwM27Ztg4qKCkQi0Tfrrg6ysrIwZMgQPH/+HM2bN8fZs2ehqakpk7piY2PRp08fpKSkoEOHDggKCpL5oq2lRUTYsmUL7OzskJOTgwEDBnyxlbU6CAoKgrm5OU6ePAkVFRW4u7sjLCyMJUHVFGsRqiLi4+ORlpYmMQzczMwMzZo1g7e3N1asWFHqsvi+NRYVFYXRo0dj79698PHxwcqVK3HixIkS95VmrGpqarC0tERwcLDE4onBwcEYMWLEN48vSmA/fPiAwMBAbiSOLOrs27cvYmJiJLZNmzYNrVq1wk8//aRwc9TIhUgEXLkCJCUBxsYQWllh7NixiIqKQp06deDv7w8DAwOZVB0bG4vevXtzSdA///yjMHPNCIVCLF68mBvJOXv2bOzYsaNajgzLycnBsmXLsHPnTgBAq1atcPToUVhaWvIcGcMrqXa9LqO1a9dSx44dSUdHh+rUqUMjRoygR48effO40NBQsrCwIHV1dWrcuDHt3r271HWWddRYZXH8+HFSUVGh/Px8ie1OTk7UsWNHiW0hISE0atQomcSRmZlJ0dHRFB0dTQBo06ZNFB0dTc+fPy/V8QkJCWRkZETu7u5E9HHkjUAgoIiICKnHWtIoKx8fH1JVVaX9+/dTbGwsOTs7k7a2Nj179ozbZ/v27dSnTx/u74CAAPL396f4+HgKCgqidu3aUefOnamgoKBUcZSnztK+HqJqMmrMz4/I1JQIIAJIDNAsbW0CQJqamnTz5k2ZVf3gwQOqW7cuAaAOHTpQamqqzOoqq8zMTBoyZAgBIIFAQB4eHmUejVpV3Lx5k1q0aMGNGpw/f77CjeRjvk5Wo8Z4TYQGDBhABw8epPv379OdO3doyJAh1KBBA8rKyvriMfHx8aSlpUWLFi2i2NhY+vPPP0lVVZVOnjxZqjqraiLk4uJCZmZmxbafOXOGBAIBJSYmcttkmQiFhIRwXzSfPhwcHLh9Dh48SCXl4KmpqdSqVSuaNWuWxPbhw4fTgAEDpB7rlxKHnTt3UsOGDUlNTY0sLCwoLCxM4nk3Nzdq2LAh97evry81adKE1NTUyMjIiJycnIoN8//Say5vnWV5PVU+EfLzIxIIuCSIAPrtf+87AUCnly2TWdUPHjwgQ0NDAkDt27dXqCQoMTGR2rdvzyWDfn5+fIfEi4KCAlq5ciUpKysTAKpXrx4FBQXxHRZTDlUyEfpcSkoKASh2EfjUsmXLqFWrVhLbZs+eTV27di1VHVU1ESoLWSZCpeHm5kbW1ta81V/kS4mDLPD5mqt0IiQUSrQEEUB/fZKA7wCI6tf/uJ+U3b9/XyIJevfundTrKK/bt2+TsbExAaC6devSv//+y3dIvHjw4AFZWlpy74fx48fT+/fv+Q6LKadqMY9Qeno6AHx1FNCNGzeKzbkyYMAAREREoLCwsNj++fn5yMjIkHhUZwMGDMDo0aNx8eJFmJqa8jL0urT9Z+Rh165d0NHRKdbfRtr4eM1z5sxRqGHbMnHlCvDyJffnBQBFswMtB+AEAImJH/eTopiYGPTu3RvJyclo3749/vnnH9SuXVuqdZSXn58fevbsyS0dc+vWLXTu3JnvsORKJBLBw8MDFhYW3PxqPj4+8PLyUpi+W4wCkWpaVQFisZiGDRtG3bt3/+p+zZs35/qPFLl27RoBoNevXxfb383NrcRbNdW5RYj56OXLl/TkyRN68uRJsb5VVUFycjL3+r52u/lbFPpz4eXFtQTdBEiz6Fbs//oJcS1FXl5Sq/LOnTtkYGBAAMjCwkJhboeJxWJau3Yt9x03aNAgqf9yrgyePn1K3bt3lzgPr1694jssRgpk1SKkMMMG5s+fj3v37pVqNt6S5lwpaTsALF++HEuWLOH+zsjIQP369SsYLVMVVPWhw3Xr1kXdunX5DkO2jI0BAI8BDAGQC2AggD8BCErYr6Kio6PRr18/vH//Hp06dUJgYKBCtDDk5+djzpw5OHToEABgwYIF2LRpU7UaGUZE2Lt3L5YuXYrs7Gzo6Ohg8+bNmD59OpsckfkqhfiULFiwAGfPnkV4eDhMTU2/uq+RkVGJc66oqKiU2DStrq4OdXV1qcbLMIyC6NEDScbGGJiUhFQAHQGcAKBa9LxAAJiaAj16VLiqiIgI9O/fH2lpaejSpQsCAgJQs2bNCpdbUW/fvsXIkSNx9epVKCkpYdu2bXBycuI7LLl68eIFpk+fjn/++QcAYG1tjYMHD5ZqLi+G4bWPEBFh/vz5OHXqFC5fvlyqN62VlRWCg4MltgUFBaFjx45QVVX9wlEMw1RFaZmZGKSujgQATfGxjxDXK6qoFWDLFqCC8yrdvHkT/fr1Q1paGrp164agoCCFSILu37+Pzp074+rVq9DT08PFixerVRJERNi/fz++++47/PPPP9DQ0MCmTZtKfT1hGAD89hGaO3cu6enpUWhoKCUlJXGPnJwcbh8XFxeaPHky93fR8PnFixdTbGws7d+/nw2fZxgZUtTPRU5ODrd6ulHNmvSfkZHE6DGqX//j0PoKCgsLIx0dHQJA3bt3p4yMDClEX3Hnzp3j4mratCk9fPiQ75DkKjExkQYOHMj1BbKysqK4uDi+w2JkqEoOny96A3/+OHjwILePg4NDsWHHoaGh1KFDB1JTU6NGjRqxCRUZRoYU8XNRWFhII0aMIABUo0YNunPnzsch8iEhHztGh4RIZch8cHAwaWpqEgDq27dvhTqdS4tYLKaNGzeSQCAgANSrVy+FGrova2KxmA4cOEB6enoEgNTV1Wnjxo0klMEUCYxiqZKJEB9YIsQwZaNonwuxWEyOjo7cRfBr845VxPnz50ldXZ0befRpSzVfcnNzacqUKdyPxlmzZpV6BvOq4PNWoE6dOtGDBw/4DouRk2oxjxDDMMy3rFixAgcOHICSkhJ8fX3Rs2dPqddx+vRp2NnZIT8/HyNGjMDp06dltlhrab1+/Rq9evXCkSNHoKysjK1bt2LPnj3Vom8k/a8vUJs2bRAQEAB1dXVs2LAB169fh5mZGd/hMZWcQowaYxiGKY2NGzdi/fr1AIB9+/aVajHcsjp27BgcHBwgEokwduxYeHp68p5s3L59G7a2tnj9+jX09fVx4sQJ9O3bl9eY5OX58+eYPXs2AgMDAQBdunTBwYMH0bp1a54jY6oK1iLEMEyl8Ndff2HZsmUAgHXr1mH69OlSr2Pv3r2YPHkyRCIRHBwccOzYMd6ToGPHjqFHjx54/fo1zMzMcPv27WqRBInFYuzevRvfffcdAgMDoa6ujo0bN+LatWssCWKkiiVCTLXVq1cvCAQCCAQC3Llzh+9weDF16lTuHJw5c4bvcL7o5MmTmD374+IZy5Ytg4uLi9Tr8PDwwJw5c0BEcHJywoEDB6BcwWH3FSEUCvHjjz9i0qRJyM/Px9ChQ3Hjxg00bdqUt5jk5enTp+jduzfmzZuHrKwsfP/997h79y6WLl3K678JUzWxRKiK6dmzJ3dhU1NTQ+vWreHl5SW3+sPDwzFs2DCYmJgo/MUVAGbOnMmtyVRk165daNy4MTQ0NGBpaYkr31inSigU4ueff0bjxo2hqamJJk2a4LfffoNYLC7TPt9S1rh+/fVX7r1Q9DAyMpLYZ+vWrUhKSip1DHwICgrChAkTIBaLMXPmTO7WmLQQEdzc3PDjjz8CAFxcXLB9+3YoKfH39fj+/XsMHjwYHh4eAD7OkH/mzBnUqFGDt5jkQSgU4o8//kDbtm0RHh4ObW1tbN++HeHh4WjZsiXf4TFVlVS7XlcCVXnUmFgsJl1dXfLw8KCkpCSKj48nZ2dnUlZWpvj4eLnEcPHiRXJ1dSU/P78Kr3ouayWtPu/j40Oqqqr0559/UmxsLC1atIi0tbXp+fPnXyxnzZo1VLt2bTp//jwlJCTQiRMnSEdHh7Zs2VKmfb6mPHG5ublRmzZtJOboSklJKXHfr/1b8fm5uHbtGmlpaREAGjNmjNSHSIvFYlq8eDE3Cmnt2rVSLb887t27R02aNCEApKWlRcePH+c7JLm4e/cudezYkfu36Nu3r9y+t5jKgQ2fl5KqnAjFxcURALp//z63LSYmhgCQv7+/3OMpbyLk5eVF6urq9PLlS27b9OnTydzcnNLS0qQWX0mJUOfOnWnOnDkS21q1akUuLi5fLGfIkCHk6OgosW3kyJE0adKkMu3zNeWJy83Njdq1a1eq8hUxEbpz5w7VrFmTANDAgQOlvjBuYWEhTZs2jbvwbtu2Tarll8fJkydJW1ubAFDjxo3p7t27fIckc3l5efTzzz+TiooKASA9PT36888/SSwW8x0ao2DY8HmeEBGys7N5edD/FpMtrcjISOjr63PDSV++fAlXV1eoq6vD3Ny81OWsXbsWOjo6X31867ZMRYwbNw4tW7bEunXrAACrVq1CYGAg/P39oaenJ7NYCwoKEBkZCRsbG4ntNjY2uH79+heP6969Oy5duoTHjx8DAO7evYurV69i8ODBZdpH2nEBwJMnT2BiYoLGjRtj3LhxiI+P/2Z9iuDRo0fcul7dunXDyZMnoaamJrXy8/PzMXbsWBw8eBBKSko4ePAgFixYILXyy0okEsHFxQX29vbIzs5G3759cfv2bbRt25a3mOTh2rVraN++PdasWQOhUAg7OzvExsZixowZbKFUppgPHz7IpFw2fP4bcnJyoKOj8+0dZSArKwva2tql3j8qKgrp6enQ1dWFWCxGbm4uNDU1sWfPHm6ldTs7O4SGhqJv3744efJkieXMmTMHY8aM+Wpdsly5XSAQwN3dHfb29jAxMcHWrVtx5cqVEuuUZqzv3r2DSCSCoaGhxHZDQ8NiC/1+6qeffkJ6ejpatWoFZWVliEQiuLu7Y/z48WXaR9pxdenSBUeOHEGLFi2QnJyMNWvWoFu3bnjw4EGJCxQrivj4ePTt2xdv376FhYUFLl68WKbPwbdkZWXB1tYWly5dgpqaGnx9fWFrayu18ssqNTUV48eP59ZQXLJkCTZs2FClV47PyMiAi4sLdu/eDeDje3nnzp0YNWoUz5Exiujp06fYunUr9u/fL5sKpNq+VAmU9dZYVlbWF5cCkfWjrNP59+7dmxYsWEBPnjyh27dvk7W1dbFbJ5cvX6azZ8/SqFGjyncCywAV7CNUtIxKaGio9IL6xOe3xl69ekUA6Pr16xL7rVmzhlq2bPnFcry9vcnU1JS8vb3p3r17dOTIEapVqxYdOnSoTPt8SXnj+lxWVhYZGhrSH3/8Uey5r/1byfPWWGJiIjVu3JgAkJmZGb19+1aq5aemplKXLl0IAGlra9M///wj1fLLKioqiho1akQASFNTk7y8vHiNRx7OnDlD9erV477npk2bRqmpqXyHxSgYsVhM4eHhZGtryy0nU/RgfYQqqKyJkFgspqysLF4eZb1HXrNmTfL29ub+fvDgASkpKRXrcBgSEvLVRMjd3Z20tbW/+ggPD/9mPBVJhAICAkhTU5OUlZW/uphkRWL9PBHKz88nZWVlOnXqlMR+CxcupJ49e34xBlNTU9qxY4fEttWrV0skKaXZ50vKG1dJ+vXrV6yvEZFiJELJycnUsmVLbhHR169fS7X8ly9fUps2bQgA1apVi/7991+pll9Wnp6epKGhQQCoSZMmVb4/0OvXr2nUqFHcxaxp06Z06dIlvsNiFEx+fj4dPXpUouM8ABo8eDCdOXNGJolQ1W17lRKBQCDVZnlZiY+PR1pamsQwcDMzMzRr1gze3t5YsWJFqcvi+9ZYVFQURo8ejb1798LHxwcrV67EiRMnStxXmrGqqanB0tISwcHBsLOz47YHBwd/dQbjnJycYkOtlZWVJYbGl2Yfacf1ufz8fDx8+BA9evQo9THy8v79e9jY2CAuLg7169fHpUuXYGxsLLXy4+LiYGNjgxcvXsDExARBQUFo06aN1Movi4KCAixZsgQ7d+4EAAwcOBDHjh1DrVq1eIlH1sRiMfbu3QsXFxdkZGRAWVkZP/74I3755Rfely1hFEdqair27t2LnTt34vXr1wAADQ0NODg4YNGiRWjdujUyMjJkU7lU06pKoKqOGjt+/DipqKgUG1nj5OREHTt2lNj2rRahisjMzKTo6GiKjo4mALRp0yaKjo7+6jDvTyUkJJCRkRG5u7sTEVFERAQJBAKKiIiQeqxfGz6/f/9+io2NJWdnZ9LW1qZnz55x+2zfvp369OnD/e3g4ED16tXjhsafOnWKDAwMaNmyZWXa52vKE9cPP/xAoaGhFB8fTzdv3qShQ4eSrq6uxDFFwGOL0IcPH8jS0pIAkKGhIT1+/Fiq5d+6dYsMDAwIADVv3pwSEhKkWn5ZJCYmUteuXblfuT///HOVXjX93r17Eq+3U6dOdOfOHb7DYhTI/fv3adasWaSpqcm9T4yNjWnNmjXFbo2z4fNSUlUTIRcXFzIzMyu2/cyZMyQQCCgxMZHbJstEKCQkpMT+Tg4ODtw+Bw8epJJy8NTUVGrVqhXNmjVLYvvw4cNpwIABUo+1pESIiGjnzp3UsGFDUlNTIwsLi2Krm7u5uVHDhg25vzMyMmjRokXUoEED0tDQoCZNmpCrq6tEUlqafb50Xsob19ixY8nY2JhUVVXJxMSERo4c+cWVuvlKhDIyMrgLpYGBgcTUD2UmFBKFhBB5eX38r1BIQUFB3HB0S0tLSk5OllboZXb58mWqW7cuN0T83LlzvMUia9nZ2eTi4sINidfR0aFt27ZV6aSPKT2RSETnz5+n/v37S1wnLCwsyNPT84tTZbBESEqqaiJUFrJMhErDzc2NrK2teau/yJcSIb7weV74SISysrKoe/fuBID09fUr1lLg50dkakoEcA+fWrVI9X8X4n79+lFGRob0gi8DsVhMv//+OykpKREAateuHT19+pSXWOTB39+fmxASANna2kr8EGOqr4yMDNq+fTs1b96ce38oKSnRyJEjKSws7Jv9YlkiJCXVPRGysbEhAwMD0tTUpHr16tGtW7fkHkPXrl1576hK9DERUlVVJW1tbbp37x7f4fByXmbPns21mMgzEcrOzqbevXsTAKpRowbdvn27/IX5+REJBBJJ0FaABP/7oh37/feUl5cntdjL4sOHD2RrayvRMpqdnc1LLLL26tUrGjNmDPda69Wrp9AzyzPy8/TpU3J2dqYaNWpw7w89PT364YcfynSrmiVCUlLdEyHm/718+ZKePHlCT548kfqsxZVFcnIydw6+NF2DtD8Xubm5ZGNjw90yuXHjRvkLEwolWoJEAP34SVO7E0BCU9OP+8lZVFQU1zKipqZGe/bsqZKzJQuFQtq2bRvp6upyv/AXL17MWwscoxjEYjEFBQXR0KFDJYa/t2jRgrZv306ZmZllLpMlQlLCEiGGKRtpfi5yc3Np4MCBBHxcR6s00zB8VUgIlwTlAzTxkyRoLUDiolaikJAKx15aYrGY/vzzT1JXVycA1KhRI5l09lcEt27d4jq6A6DOnTtTVFQU32ExPMrMzKSdO3dS69atJfr/DBo0iPz9/UkkEpW7bFklQmz4PMMwcpGfn4+RI0ciICAAmpqaOH/+fMWH8iclAQAyAYwE8A8AZQD7ATiUsJ+sZWdnw8nJCYcPHwYADBs2DIcPH4a+vr5c6peXDx8+wNXVFXv27AERQU9PD+vWrcOsWbOgrKzMd3gMD54+fYqdO3fiwIED3DB3HR0dTJ06FQsWLECLFi14jvDLWCLEMIzMFSVB/v7+0NTUxIULF9C7d++KF2xsjCQAQwBEA9AGcBLAwBL2k7XY2FiMHj0asbGxUFJSwrp167B06dJi80dVZkQET09PLF26FG/fvgUATJo0CRs3boSRkRHP0THyJhaLERAQgO3btyMgIIDb3qJFC8yfPx8ODg6oUaMGjxGWDkuEGIaRqfz8fIwaNQoXL17kWoKkkgQBiK1dG4OUlfFCJEIdABcAdPp0B4EAMDUFZDyJ5JEjRzB37lzk5OTA2NgY3t7esLa2lmmd8hYTE4P58+cjPDwcANC6dWvs2rULvXr14jcwRu4+fPiAgwcPYufOndxCzgKBAIMGDcKCBQtgY2NTqX4AsESoBFTGVd8ZpiqryOchPz8fo0ePxoULF6ChoYFz586hT58+UokrNDQUtra2SBeJ0ByAP4Cmn+5QtHr5li2AjG7X5OTkYP78+Th48CAAoH///jh69Cjq1q0rk/r4kJGRgV9//RXbtm2DSCSClpYW3Nzc4OzsDDU1Nb7DY+QoOjoaO3fuhJeXF3JzcwEANWvWhKOjI+bOnYtmzZrxHGE5SbXHUSXwtc5WQqGQYmNj6d27dzxExjCKKS0tjWJjY6mgoKBMx+Xm5tLgwYMJAGloaEh1gdNjx46RmpoaAaBu3brR24MHi80jRPXrfxxaLyP379/n1i5TUlKi1atXV6gjqKIRi8V09OhRMjIy4jq8jho1qtSzxDNVQ15eHh09epSsrKwkOj+3bduW9u3bV+bFwSuCdZaWA2VlZdSsWRMpKSkAAC0tLQiKflUyTDUkFovx9u1baGlpQUWl9F8Xubm5sLOzQ2BgIDQ1NXH27Fn07du3wvEQETZs2IDly5cDAEaNGgVPT8+Pa1ZNngxcufKxY7Sx8cfbYTJoCSIi7N+/HwsXLkRubi6MjIzg5eUltdt9iuDevXtYsGABdxusRYsW2L59O2xsbHiOjJGXZ8+eYd++ffjrr7+4/mCqqqoYNWoUnJyc8P3331eZ6yNLhD5T1OGvKBlimOpOSUkJDRo0KPWXXk5ODkaMGIF//vkHWlpauHDhglT6kRQWFmLevHn466+/AABLlizBxo0b/78vgrIyIOP+KhkZGZg9ezZ8fHwAADY2Njhy5AgMDQ1lWq+8fPjwAb/88gt27doFsVgMTU1NrFy5EkuWLIG6ujrf4TEyJhaLERgYiF27duHChQvcbfF69eph9uzZmDlzZpXsFM8Soc8IBAIYGxujbt26KCws5DschuGdmppaqTs+ZmdnY9iwYQgJCYGOjg4uXrwoldXu09PTYW9vj3/++QdKSkrYsmULFixYUOFyyyIyMhJjx47Ff//9B2VlZbi7u+PHH3+sVJ1Cv0QsFuPAgQNYvnw53r17BwCwt7fHH3/8gQYNGvAcHSNrKSkpOHDgAPbu3Ytnz55x2/v164d58+Zh2LBhZWoRrnSkeqOtEpDVPUaGqe4yMjKoZ8+eBIB0dXXp2rVrUik3ISGBzMzMCABpa2vLfbFSkUhEHh4epKqqSgCoQYMGdP36dbnGIEs3btygTp06cX0/zMzMpNqfi1FMYrGYwsLCaPz48dx7G/9b+sLZ2ZkePXrEd4jFsJmlpYQlQgwjfe/fv6cuXbpwX6Q3b96USrn//vsvt2K7iYmJ3GctfvPmDTcTNgCys7Oj9+/fyzUGWXn16hVNnjyZe226urq0adOmMneKZyqX9+/f09atW7kfF0WPzp0704EDBxR6LTyWCEkJS4QYRrpSUlKoffv2BIBq1aolteUkjh8/ThoaGgSA2rdvL/cVzAMDA8nQ0JAb9VZV1grLy8ujdevWcYvtAqBp06ZRUlIS36ExMiIWi+nGjRs0depU7jOF/y1zM3PmzEqzBAxLhKSEJUIMIz2vX7/mflkaGhrSvXv3KlymWCym3377jfuyHjJkiFwX8MzLy6OlS5dy9X/33Xd0//59udUvK2KxmE6fPk1NmzblXlvXrl3p1q1bfIfGyEhaWhrt3LmT2rVrJ9H6Y25uTjt37qS0tDS+QywTlghJCUuEGEY6nj9/Ts2aNSMAVK9ePan0KcjNzaUJEyZwX9iLFy8moRxXjo+NjaUOHTr8/+r1Tk6Uk5Mjt/pl5e7du9SnTx/udRkbG9ORI0eq1LxHzEdisZhu3rxJ06ZNIy0tLe7fXF1dnaZMmULXr1+vtC2bLBGSEpYIMUzFPX78mBo0aEAAqHHjxhQfH1/hMpOSkrh+RioqKrRv3z4pRFo6YrGYdu3aRZqamgSAateuTWfOnJFb/bKSkpJCs2fPJiUlJe5iuGLFCsrMzOQ7NEbK3r9/T9u3bydzc3OJ1h8zMzPaunUrpaam8h1ihbFESEpYIsQwFXP37l2u70yLFi2k0ncnOjqaS6z09fXp8uXLUoi0dJKTk2no0KHchcPGxoZev34tt/plIS8vjzZu3Eh6enrc67K3t5dKwsooDrFYTOHh4TR58mSJvj8aGho0ZcoUunr1aqVt/SkJS4SkhCVCDFN+169fp5o1axIAateuHb1586bCZZ48eZJrwm/evDnFxcVJIdLSOX/+PJfUqamp0ZYtWyr17SKxWEwnT56kJk2acBfF9u3bU2hoKN+hMVKUnJxMHh4e1KpVq2J9f7Zt21ZlRjZ+jiVCUsISIYYpn+DgYC5h6datG3348KFC5YlEInJzc+O+xPv37y+3L/CsrCyaM2cOV3ebNm3o7t27cqlbVm7fvk09evTgXpORkREdOHBArn2sGNkRCoUUEBBA9vb2EvP+aGtr0/Tp0+nmzZtVqvWnJCwRkhKWCDFM2Z06dYpb5NTGxqbCCy1mZWXRqFGjuC9zZ2dnKiwslFK0X3fz5k1q3ry5RIfs3NxcudQtC8+ePaOJEydyr0dTU5NWrlzJ+gFVEfHx8fTLL79Q/fr1i837s2/fvmp1LWOJkJSwRIhhyubAgQOkrKzMrT6el5dXofISEhK4eYdUVVVp//79Uor06woKCsjNzY17LfXq1avUMyinpaWRi4sLqaurcxfHiRMn0osXL/gOjamg3Nxc8vLyor59+0okP/r6+rRw4cJK33pZXiwRkhKWCDFM6W3YsEFi0r2KttpcunSJateuTQCobt26dPXqVSlF+nWxsbHUsWNH7rWMGzeu0vajKCgooB07dpCBgQH3eqytrSvNpHhMycRiMUVERNC8efO4fnhFj379+pG3t3elbrmUBpYISQlLhBjm20QikcSkgsuWLatQ/wOxWEybN2/mWmMsLS3p+fPnUoyYiIRCopAQIi+vj/8VCkkkEtGmTZu4VpOaNWvSsWPHpFuvnBR1hP70tl7Lli3p7NmzVb5vSFX29u1b2rJlC7Vt21Yi+WnQoAG5ublRQkIC3yEqDJYISQlLhBjm6woKCsjBwYH7Qt64cWOFysvJyaEpU6Zw5U2ePFn6kxT6+RGZmhIB3CPeyIis27Th6h0wYAC9fPlSuvXKyZUrV6hr167ca6lbty7t3LmTrQtWSRUUFNDZs2dp5MiREh2f1dXVafz48RQcHFypRy/KCkuEpIQlQgzzZdnZ2dycOsrKynTo0KEKlff8+XOytLTkytuyZYv0Wy/8/IgEAi4BEgO0ByCdolE1lXidsNjYWLK1teUulFpaWvTLL7/IdckRRnpiYmLohx9+4KZsKHpYWlrSrl27Ku3tWnlhiZCUsESIYUr29u1brtVBQ0ODzp07V6HygoODuf5AtWvXls0kiUKhREvQc4D6f3KB6Q7QU2Pjj/tVIomJiTR9+nRuRmglJSWaNWtWpZ/osTp6+/Ytbd26lSwsLCSSn7p169IPP/wglfX5qguWCEkJS4QYprj4+Hhq0aIFNzKlIp2YxWIxrVu3jruIW1pa0rNnz6QY7SdCQrhWoL8A0i2aWRegzQAJi26VhYTIpn4pe//+PS1btkxilmBbW1uKjY3lOzSmDPLz8+n06dNka2srcetLVVWV7Ozs6OzZs+y2ZjnI6vqtAoZhqrXo6GgMHjwYb968QYMGDRAQEIDWrVuXq6yMjAxMmzYNp06dAgA4Ojpi586d0NDQkGbI/y8pCS8AzAYQ8L9N3QAcBNDis/0UWXZ2NrZt24bff/8daWlpAIAePXpgw4YNsLKy4jc4plSICBEREThy5Ai8vb2RmprKPWdpaQkHBweMHz8eBgYGPEbJlIQlQgxTjQUHB2PkyJHIyspCu3btcPHiRZiYmJSrrNjYWIwaNQqPHj2CqqoqduzYgZkzZ0IgEEg56o+ICPtu38aPADIBqANwB+AMQPnznY2NZRJDRRUUFOCvv/7C6tWr8ebNGwDAd999h/Xr12Pw4MEyO3eM9Lx48QLHjh2Dp6cnHj58yG03NjbGxIkT4eDggO+++47HCJlvkmr7UiXAbo0xzEeHDh0iFRUVAkB9+vShtLS0cpd17NgxbvmNevXq0c2bN6UYaXH//fcf9enTh7vlYAXQw09GjHEPgYCofn2F6yMkFArJ09NTYk2wxo0bk6enJ1sSoxJIT0+n/fv3U69evST6/WhqatKECRMoICCA/TvKAOsjJCUsEWKqO7FYLLHG1/jx4yk/P79cZeXl5dG8efO4svr27UvJyclSjvj/CYVC2rp1K5d0aWpq0pZp0z72Bfpk5BiXBAkEH0eVKQixWEx+fn7U5pNh/YaGhrRjx45y/xsw8lFQUEDnzp2jsWPHSvThAkC9evWi/fv3s+uKjLFESEpYIsRUZ/n5+RJz+qxYsaLc85U8e/aMOnXqxJW1cuVKmf4Kvn//vsRcOr169aKnT59+fLKEeYSofn2FSYLEYjH5+/tzUwngf5M7rl27tsLrtjGyIxaL6caNG+Tk5CQxkzcAatWqFbm7u8tuIABTDEuEpIQlQkx19eHDB+rduzc3p8++ffvKXda5c+eoVq1aBIBq1apFFy9elGKkkvLy8sjNzY0bfaOrq0u7du0qnsCVMLO0IggJCaHu3btzF1BtbW36+eef6cOHD3yHxnzBw4cPaeXKldS0aVOJ5MfQ0JCcnZ3p9u3blXJeqsqOJUJSwhIhpjqKj48nMzMzAkA6OjoUEBBQrnIKCgoklt7o1KmTTH8RX79+nYsbAA0bNowSExNlVp80Xb16VaIfk7q6Oi1ZsoRSUlL4Do0pwatXr+iPP/4oNt+PtrY2TZ48mQICAiq81h5TMSwRkhKWCDHVzfXr16lOnTpcR+Y7d+6Uq5znz59L3JpatGiRzPq1pKenk5OTEwkEAgJAderUIR8fn0rxK/zff/+lAQMGSMwdM2/evEq7vEdVlpqaSvv27aPevXtz7zUApKKiQkOGDCEvLy9261KBKEQi9OzZMwoMDPzi7KavXr0qU+VhYWE0dOhQMjY2JgB0+vTpr+4fEhIikakXPR4+fFjqOlkixFQnx44d4xYc7dChQ7lbU86dO0f6+voEgPT09OjUqVNSjvT/nTp1ikxMTLjP95QpU+jdu3cyq09abt26RUOGDJG4mM6cOVP6i8syFZKVlUXe3t40fPhwickOAdD3339Pu3btordv3/IdJlMC3hMhLy8vUlFRIYFAQJqamnTkyBEi+pgcrVu3jjp37kzKysplqvzixYvk6upKfn5+ZUqE4uLiKCkpiXuUpYMmS4SY6uDzkWEjRoygzMzMMpeTl5dHzs7OErfC4uPjZRDxx2UlRowYwdXVrFkz+ueff2RSlzR9ngApKyuTg4MD/ffff3yHxvxPXl4e/f333zRu3DhuxGHRo23btrR+/XrW6bkS4D0Rat26NS1evJju379Pw4cPJ21tbVqxYgUpKytTy5Ytaf78+fT333+XP5AyJEIV6WTIEiGmqsvJyaHx48dzX/RLly4t12iuuLg4if4SsroVVlhYSJs3byYdHR2uJWXFihXSX6Feyv79919ugVrg43pgDg4O9OTJE75DY+hjf7aAgACaNm0a1axZUyL5adKkCa1YsYJiYmL4DpMpA94TITU1NS5jTkxMJIFAQL1795baGjhlSYQaNWpERkZG1KdPn28u5JiXl0fp6encIzExkSVCTJX16tUrbki7iooK/fnnn+Uq5/Dhw6StrU3AxwVTK7oA65fcvHmT2rdv//8TI1pZKfzF6fr16zRw4ECJBGjKlCn0+PFjvkOr9oRCIV2+fJlmz55dbLh7vXr1aMmSJXTr1q1K0deMKY73REggEEhMlKalpUWRkZHSC6QUidCjR49o3759FBkZSdevX6e5c+eSQCCgsLCwLx7z6e2BTx8sEWKqmlu3bnF9a2rVqkWXLl0qcxkZGRk0efJk7nNibW0tk06+Hz584D6/wMeFXvft21fuOY3kITw8nPr161fsFlhcXBzfoVVrIpGIwsPDaf78+WRkZCTxPV+nTh2aO3cuhYaGKvR7iykdhUiENm/ezHVM1tHRkWpfgdIkQiUZOnQoDRs27IvPsxYhpjo4duwYN9utmZnZ/080WAY3btzglnxQUlKi3377TeoTJIrFYjp8+DDVrVtXojO0LGejrgixWEyBgYHUs2dPiU7Q06dPL9c5ZqRDJBLRlStXaOHChdxgm6KHvr4+TZ8+nYKDg9lw9yqG90SoR48eVKNGDVJSUqLatWuTiooKLVq0iHx9fenBgwcVfsOVNxFas2YNtWrVqtT7sz5CTFUiEoloxYoV3EVg6NChZX5vC4VC+u2330hZWZkAUIMGDejKlStSj/Xu3bsSEwu2atWKQkJCpF6PNIhEIjpz5ozEzNlqamo0e/ZsSkhI4Du8aqmo5WfBggUSowqLRjJOnTqVLl68yJYqqcJ4T4SKPH78mLy9venHH3+kPn36kL6+PgkEAlJTUyNzc/PyB1LORGjUqFHUu3fvUu/PEiGmqvjw4YPEaKVly5aVuQUnISFBIjkZP3681Gc8Tk9PJ2dnZy7R0tLSovXr1yvkBauwsJCOHTtG5ubm3DnR1NQkZ2dnNg8QD4RCIYWGhtL8+fOLtfzUqFGDJk+eTOfOnaO8vDy+Q2XkQGESoZLEx8fT8ePHafny5WU6LjMzk6Kjoyk6OpoA0KZNmyg6Opqbd8PFxYUmT57M7b9582Y6ffo0PX78mO7fv08uLi4EgPzKsJ4QS4SYquDBgwfUvHlzAkAaGhrk6elZpuPFYjF5enpSjRo1CPi4bIWnp6dUO5GKRCI6cuSIRL8Ne3t7evHihdTqkJbc3Fzas2ePxGrwurq65OLiorC37aqqwsJCCg4OptmzZ0vcQi1q+ZkyZQpLfqophU6EyutLEyQ6ODgQEZGDgwNZW1tz+2/YsIGaNm1KGhoapK+vT927d6cLFy6UqU6WCDGV3enTp7mh5g0aNCjzoIXU1FQaPXo093nr2rWr1Oe8iYyMJCsrK66O5s2bl3tZD1lKT0+njRs3SrQ21K5dm1avXk3v37/nO7xqIy8vj86fP0/Tpk3j1rD7tM/PtGnT6Pz58yz5qeaqZCLEB5YIMZWVSCSiX375hbtA9OrVq8zrVgUEBHAXfRUVFVq9erVUO5S+ffuWZs2axY0G09bWpvXr1yvcBezNmze0fPly0tPT486nqakpbdmyhS2pICdZWVl08uRJGj9+POnq6kokPwYGBjRz5kwKDAykgoICvkNlFARLhKSEJUJMZZSamkqDBw+WmNywLBeI7Oxsmj9/Pnd8y5Yt6fbt21KLr6CggLZt28Ytw1HU30iu/WpKsfr806dPac6cOdyyI0XnYv/+/QrZZ6mqSU1NpUOHDtGIESO4UY5FDxMTE5o/fz5dvnyZjfZiSsQSISlhiRBT2URFRVGjRo24/kCHDx8u0/HXrl3j+hMBoAULFlB2drbU4gsICKDWrVtz5bdt2/arc3vJhJ8fkakpEfD/D1PTj9vp48SNo0aNklhYs0uXLnT69Gk2v4yMJSYm0vbt26lv375ch/miR5MmTeiHH36g69evs38H5ptYIiQlLBFiKpMDBw5wv5ybNGlC0dHRpT42NzeXfvzxR1JSUuJu/QQGBkottri4OIklJgwMDGj37t3y/zXv50ckEEgmQQCJADoLUI9PkjQANGjQIAoNDWWzC8uIWCym+/fv05o1a6hjx47F+oC2bduW3Nzc6O7du+zfgCkTlghJCUuEmMogNzeXZs2aJTE/UFk670ZERJCZmZnEAARpDYtPTU0lZ2dnUlFR4foaLV68WOrD7ktFKCzWEpQD0F6AWn1y8VVVVaWpU6cq/PIdlZVQKKSwsDBasmQJNW3aVCLxEQgE1L17d/Lw8GCTUDIVwhIhKWGJEKPonj59Sh06dOAuIqtXry71bYO8vDxydXXlbkEYGhpWaDHkT+Xn59OWLVsk+gENHjyYHj16JJXyyyUkhEuA3gD0C0AGn841A9AygF4eP85fjFVUZmYmnTp1iqZOnUq1a9eWSH7U1dVp8ODB9Oeff9KbN2/4DpWpImR1/VYBwzAKw8/PD46OjsjIyICBgQGOHTsGGxubUh1769YtTJs2DbGxsQCAMWPGYOfOnTAwMKhQTESEs2fP4scff8STJ08AAN999x3++OOPUscmM0lJiAGwBcBRAAX/29wQgDMARwA1AEAo5CG4qufVq1c4f/48zp49i0uXLiE/P597Tl9fH0OHDsWIESMwYMAA6Ojo8Bgpw5SBVNOqSoC1CDGKKD8/nxYtWsT9ou7evTslJiaW6ticnByJvkB169Yt0ySjX3Pz5k3q0aMHF1fdunVp3759Ul+DrKxEIhGdO3eO+lpYSLREdAHoOECFn/UXIgVdykPRicViioiIIDc3N7L47FwDoMaNG5OzszMb6cXIBbs1JiUsEWIUTXx8PHXu3Jm7uCxbtqzUQ+PDwsKoRYsW3LETJ06kd+/eVTimp0+fSky6qKGhQcuXL6eMjIwKl10RGRkZtH37dolRcEoA2QN07fPkB/jYibp+/RKH0jMly8rKorNnz9KsWbOKreklEAioS5cutHbtWrp//z7r7MzIFUuEpIQlQowiOX78OLfMhb6+Pp07d65Ux6WlpdHs2bMl5mA5e/ZsheNJSUmhhQsXkqqqKnfhmzp1aqlbp2TlyZMntGjRIomJ9/T09Gjp0qX0bPfujwnP5yPHirZJqXWsKnv27Bnt3LmTBg0aJDHHEvBxUkw7Ozs6cOAA6+/D8IolQlLCEiFGEWRnZ0uMCuvWrRs9e/asVMeePn1a4pf6zJkzKzxiKzMzk1atWiWRaAwcOJDu3r1boXIrQiQSUWBgIA0ZMkRi/p8WLVrQ9u3bKTMz8/93Lmkeofr1WRL0BQUFBRQaGko//vijxOjCokejRo1o/vz55O/vT7m5uXyHyzBExBIhqWGJEMO3+/fvU5s2bbgWlxUrVpSqf8WrV6/I3t6eu1g1b96cQirY9yU/P5+2b98usbilhYUFBQUFVajcivjw4QNt2bJF4vYX/jdCLSAg4Msj6Eoxs3R19vr1azpw4ADZ29tLLC0CgJSUlKh79+60fv16dsuLUVgsEZISlggxfBGLxbR7927S1NQkAGRkZETBwcHfPE4oFNKOHTu4W2jKysq0fPlyysnJKXcsQqGQjhw5Qo0bN+Yuhk2bNiUfHx/eZvi9d+8ezZ49m7S0tP5/+HuNGrRgwQJ6/PgxLzFVZoWFhXT16lVasWIFNx3Dpw8DAwOaNGkSeXt7swVmmUqBJUJSwhIhhg8pKSk0bNgw7iI0YMCAUvW3iI6OluhI3blz5zLNLv05sVhMfn5+ErdDDA0NadeuXbwsbpmXl0fHjh2j7t27S1yk27RpQ7t375a8/cV808uXL2n//v0ltvoAoI4dO9Ivv/xCN27c4H3kH8OUFUuEpIQlQoy8+fv7k6GhIQEgNTU12rJlyzdbXTIzM+mHH37gJkasUaMG7dixo9wXL7FYTAEBARJLHtSsWZPWrl3Ly2rr8fHx9NNPP1GdOnW4eFRUVMje3p4tf1EGubm5FBwcTEuXLiVzc/NiiU+tWrVo3LhxdPjwYdbRman0WCIkJSwRYuQlJydHYm6gNm3afLPzsVgspuPHj1O9evW440aPHk2vXr0qdxyXLl2i77//XmIU0M8//yz3JTEKCgro1KlTNGDAAInOz/Xq1aNVq1ZV6DVWF2KxmB48eECbN2+mgQMHcrdZPx3e3rVrV/r111/p5s2brNWHqVJYIiQlLBFi5CEiIkJiRfYFCxZ8s09PXFwc9e/fX2KyugsXLpQ7hrCwMOrVq5fEXECLFy+m5OTkcpdZHs+ePaOff/6ZjI2NJS7a/fv3p9OnT7OJ+L7h7du35OPjQ46OjmRqalqs1cfY2JimTp1KPj4+UplDimEUFUuEpIQlQowsFRYW0qpVq7gFSY2MjL6ZzGRnZ5OrqyupqakR8HGdJjc3t3J3hr5y5Qr17duXu1CqqanRggUL5NriUlBQQCdPnqSBAwdKtP7UqVOHfvrpJ7b45lcU3e766aefyMLCQuL8Fb0/+vfvT7///jvdu3eP3UZkqg2WCEkJS4QYWXn06JFEx+bRo0d/9Re6WCwmX19fql+/PnfMoEGD6MmTJ+WqPyQkhHr37s2VpaqqSnPmzKEXL16U9yWVWVxcHC1btkxiOD4A6tOnD/n6+lJ+fr7cYqkshEIhRURE0IYNG6h///6koaFRrNXH3NycfvjhBwoMDKzQaEGGqcxYIiQlLBFipE0kEtHmzZu5/ho1a9akY8eOffWX+t27d8na2pq70DVs2JBOnTpV5l/3YrGYLl26RD179pRIgGbNmkUJCQkVfGWlk5mZSQcPHpRYk6yoNWz58uXlTuyqKrFYTI8fP6bdu3eTvb091apVq1jiY2JiQg4ODnT06FFKSkriO2SGUQgsEZISlggx0vT48WOJod/9+/f/6nIU7969o/nz53MLpGpoaNCqVavK/CtfLBbT+fPnqWvXrhK3wObOnUvPnz+v6MsqVf3Xr1+nGTNmkI6OjsTEfIMHD6bTp0/zMhxfUb148YIOHz5MU6ZMKbGfj66uLg0fPpy2bdtGDx48YLe7GKYELBGSEpYIMdIgFApp06ZN3G0MHR0d2rt37xcvYAUFBbRlyxbS19fnLn729valXlbj03qPHz9O7du3l+gz4uTkJJf1wBITE2nt2rUSC70CoGbNmtHatWvp5cuXMo+hMkhKSiIvLy+aOXMmNWvWrFjio6amRr169aLffvuNbty4wTqMM0wpsERISlgixFTUo0ePJIaj9+vX74sJTVHLTcuWLSX6e1y6dKlMdebn59OBAwckytHW1qalS5fS69evpfGyvig7O5u8vLzIxsZGouOulpYWOTg4UHh4eLVvwXjz5g35+vrS3LlzJUYLftpS1qlTJ3JxcaHg4GDWz4dhyoElQlLCEiGmvAoKCsjd3Z1bnftbrUB3794lGxsbiRFTe/fuLdPcLhkZGfTHH39IzCtUs2ZN+uWXX2Q6VFokElFISAhNmzZNYiFWAGRtbU0HDx6kjIwMmdWv6JKSksjHx4fmzp1b4qKlAoGAOnToQEuWLKFz585RWloa3yEzTKUnq+u3ChiG+aaIiAhMnz4d9+7dAwAMHDgQe/bsQcOGDYvt++rVK6xcuRKHDh0CEUFNTQ3Ozs5YsWIF9PT0SlVfcnIyduzYgZ07d+LDhw8AAGNjYyxevBizZ89GjRo1pPfiPhEbG4tjx47h6NGjePHiBbe9UaNGmDx5MhwcHNC0aVOZ1K3IXr58ifDwcISFhSEsLAxxcXHF9mnXrh169eqFXr16oWfPnqhVqxYPkTIMU2ZSTasqAdYixJRFVlYW/fDDD1zn5tq1a5Onp2eJrUDp6enk6uoqMdvvmDFjyjRnzqNHj2jmzJlcqxMAatGiBf3555+Ul5cnzZfGefnyJXl4eEj0OwJAenp6NHPmTAoPD+dtIVY+FI3q2r9/Pzk4OEgsTItPWnzatWtHCxcuJD8/PzaRIcPIAWsRYhg5O3/+PObPn4/nz58DACZMmIAtW7agTp06EvsVFBRg7969WL16Nd6+fQsA6N69Ozw8PNClS5dv1kNEuHr1Kjw8PHD27Flue+fOnbFs2TLY2tpCWVlZiq8M+PDhA/z8/ODt7Y2QkBAQEQBARUUFgwYNwqRJkzBs2DBoampKtV6ZEomAK1eApCTA2Bjo0QMoxXkTCoW4e/curl69iitXruDq1atITk6W2EdZWRkdOnRAz549YW1tjR49ekBfX19Wr4RhGHmSalpVCbAWIeZbEhMTyc7OTmKOn/PnzxfbTygUkqenJzVq1Ijbt3nz5nT69OlSdR7Oz8+no0ePSiyEKhAIaMSIEXTlyhWpd0DOysoiLy8vGjZsGKmqqkq0cHz//fe0a9cuevv2rVTrlBs/PyJTUyLg/x+mph+3fyYzM5OCg4Pp119/pX79+kkM/y96qKurU48ePcjV1ZUCAwOrdX8ohlEUrLO0lLBEiPmSwsJC2rJlC3dhVFZWpmXLlhVbnb1oJNinq30bGxvTnj17SjV3zrt378jd3Z1MTEy44zU0NGjmzJn06NEjqb6mnJwc8vPzozFjxpCWllax2YrXrl1L8fHxUq1T7vz8iAQCySQI+LhNIKAXe/eSt7c3LViwgCwsLEhZWblY4lOjRg0aNGgQrV27lq5cuUK5ubl8vyqGYT7DEiEpYYkQU5IrV65Q27ZtuQujlZUV3bt3r9h+ly5dIisrK4l+NOvWraPs7Oxv1nH37l2aMWOGRB8iIyMjWr16NaWkpEjtteTm5tLff/9NEydOLNba0aRJE1qxYgXFxMRIrT5eCYUSLUH5AP0L0GaAxgBk+lnCU/Ro0KABTZgwgXbu3El3795lq7QzTCXA+ggxjAy8efMGy5Ytg6enJwBAX18f69evx4wZM6CkpMTtd/XqVaxcuRKhoaEAAE1NTSxYsAA//fTTV0cHCYVC/P3339i+fTvCwsK47R06dMDixYsxZswYqKurV/h15ObmIjAwECdOnMC5c+eQmZnJPdegQQOMGTMGY8aMQceOHSEQCCpcn6J4deoUbr58iZsAbgCIBJD32T7KADq0bIluAwagW7du6NatG+rXry/3WBmGUVBSTasqAdYixBB9nBNo8+bNVKNGDa5vzsyZM4v1kbl58yYNHDhQYkbgBQsWfHMSw6SkJFqzZo3EgqrKyso0evRoqfX/yczMpOPHj9PYsWOLtfzUq1ePFi1aRNevX68yI76ys7PpypUr5OHhQaNHjy5xqQoAVBugIQC5A3QZoCyAyMuL7/AZhqkg1iLEMFISGBiIxYsX4+HDhwCAjh07YteuXejUqRO3z40bN7Bq1SoEBgYC+DiaytHREa6urmjQoEGJ5RL9X3v3HlVVlfgB/HsfvMGLCsIl3oqogIAQSEqWNCg2vsrGylGbzIZMG+Xnykdr5dSaxt5ak9qLpsw1ZROamroSU8AHaSAgooIpb0Hk/ZC35/cHc09c7xVBL1zgfD9r7QWcu89l37128u3sffYRcOzYMWzduhVxcXFoa2sDANjb2+P5559HdHQ0nJ2d76ntlZWV2LdvH3bt2oWffvoJzc3N4muurq6YN28e5s2bh9DQUK0rWgNNe3s7srOzcfr0aZw6dQqnTp3C2bNn0d7erlVPLpdj/M2bmAhgIoAwAF4AdK55qdV90m4iGngYhEgycnJy8H//93/48ccfAQB2dnZ44403sGTJEvH29JMnT+K1117DoUOHAHTcNr1o0SK88sort91IsKqqCjt27MAnn3yCrKws8XhYWBiWLVuGefPmwdzc/K7bXVBQgD179uCHH35AYmKiVhgYOXIkHn/8cTz22GMICQkZkNNegiCgoKAAv/76K3799VecPn0aKSkpqK+v16mrVqsRGhqKkJAQhIWFITgwENa+vkBxcccqoVvJZICzc8et9EREejAI0aBXXV2Nf/zjH/jwww/R2toKpVKJFStW4NVXX4WtrS0EQcDPP/+MN954A0ePHgXQcQVo8eLFWL9+PTw9PXXeUxAEJCcn45NPPsF3332HpqaOlSmWlpZYsGABXnjhBQQGBt5VewVBQEZGBvbu3Ys9e/bgzJkzWq/7+fmJ4cfX13fAhZ+rV68iNTUVv/76K1JSUpCSkiLuv9SZlZUVgoKCEBISgtDQUISGhsLZ2Vn3837wATBvXkfo6RyGNPU2b+7WfkJEJFEGnWgbALhGSDqam5uFzZs3C8OGDRPXj8yYMUO4cOGCIAgdz9Pas2ePEBISIr6uVCqF55577ra3lF+/fl3YtGmT4Ovrq3Mr+r/+9S+hqqrqrtra1NQkHDx4UHjhhRe01hUBHQ/sDA8PF957770e7VLdH1y9elXYt2+f8Pe//12YOXOmoFar9a7rUSqVwoQJE4Tnn39eiI2NFTIzM3t2J5e+fYRcXPTuI0REAxPXCBF1kyAIiIuLw9q1a3H58mUAwLhx4/Duu+8iKioKra2t+Prrr/H222/j3LlzAABzc3MsXboUq1ev1lkD1N7ejvj4eMTGxmLPnj1obW0F0HHn2JNPPonnn38eoaGhPb4yc/XqVRw4cAA//vgjDh8+jIaGBvE1CwsLREZGYubMmZg5cyZGjBhxL13S6wRBQH5+PtLS0nDmzBmxlJaW6tSVy+UYO3YsgoODcf/99yM4OBj+/v73NH2Ixx4DZs++q52liUjaGIRoUDl+/DjWrFmDkydPAgAcHBzw+uuv49lnn0VjYyM2bdqETZs2obCwEABgY2ODF198EatWrdIJGzk5Ofjqq6+wfft2FBUViceDgoKwZMkSPPXUU7C1te1229rb23Hq1CkcPHgQ+/fvR1pamtbrTk5OYvCZOnVqv328RVtbG7Kzs5Geno4zZ84gLS0N6enp4sNhO9OEngkTJiA4OBhBQUEICAiAlZWV4RumUAAPPWT49yWiQY1BiAaFs2fPYv369di/fz+AjrU6q1evxurVq1FfX48NGzZg69atqK6uBtARkP72t78hOjpa65lR1dXV2LlzJ7766iskJyeLx4cOHYo///nPWLJkCfz9/bvdrtLSUvz00084ePAgDh06pBUWZDIZQkJC8Oijj+LRRx9FQEBAv7vTq7a2FmfPnkVGRgbS09ORnp6OzMxMrbvVNExMTODj44PAwEAEBQVhwoQJ8Pf3h6WlpRFaTkTUPQxCNKBduXIFr776Kv7zn/9AEAQoFAosWbIEGzZsQFlZGZYvX45vvvlGnM4aPXo0Vq9ejYULF4pTMS0tLTh48CB27NiBffv2iX/k5XI5pk+fjsWLF2PWrFndmrppbm7G8ePHcejQIfz000/IyMjQet3W1haRkZGYMWMGoqKi+s2UV3t7Oy5fvoyzZ88iMzMTGRkZyMjIQF5ent761tbWCAgIQEBAAAIDAxEYGIhx48YZZHNIIqK+xCBEA1JBQQH++c9/IjY2VtyvZ/78+fj73/+OnJwcLFiwQNwFGgAmTZqEmJgYzJ49GwqFAjdv3sSJEyewY8cOfPfdd6isrBTr+vj44JlnnsGCBQugvsP+M4Ig4Ny5czh8+DDi4+ORmJiIGzduaNUJCgpCVFQUoqKiEBISAqXSeP/ZCYKAa9euITMzE+fOnUNmZiYyMzORlZWFxsZGvee4uLhg/Pjx8Pf3R2BgIAICAuDp6dnvrl4REd0NBiEaUIqLi7Fx40Z89tlnaGlpAQBMmzYN69atQ0pKCh599FFcuXIFQMceQE888QRWrVqFkJAQCIKA9PR0fPPNN9i5cycKCgrE91Wr1Xj66aexYMECBAQEdLnwuaCgAEeOHMHhw4dx+PBhXLt2Tet1R0dHREZGYtq0aXjkkUeMdtWnsrISWVlZyMrKwrlz55CVlYXMzExUVFTorW9hYQEfHx/4+fnB398f/v7+GD9+fJePECEiGugYhGhAuHr1Kt5++218/PHH4tTV1KlTsWjRIpw4cQJRUVHiFQ1bW1ssXboUK1asgIuLC7KysrBhwwZ8++23yMnJEd/TxsYGc+fOxcKFC/Hwww+Lmyre6tq1azh69CiOHDmCI0eOiHeiaVhYWGDKlCmIiIhAZGQk/Pz8+nRvn4qKCpw/fx7nz59HVlaW+H1JSYne+jKZDKNGjYKfnx98fX3h5+eH8ePHY+TIkbftAyKiwYpBiPq1/Px8vPXWW4iNjRWvAE2aNAlTpkxBUlISnnnmGbGun58fVqxYgaeffhq5ubn4/PPP8d///ld8lAbQcZv8zJkz8eSTTyIqKkrvnVmlpaVITExEQkICEhIScPHiRa3XFQoFgoOD8cgjj+CRRx5BWFhYr6+NuXnzJoqKinDx4kVcuHBBq+jbjFDD1dUVvr6+8PHxgY+PD3x9fTF27FguYCYi+h8GIeqXLl26hDfffBPbt28X1wAFBQXBw8MDR44cwYkTJwB0hJK5c+di+fLlsLKywu7duxEcHKwVXkxNTREZGYknn3wSs2bNgo2NjfiaIAjIy8vDsWPHxJKdna3TnoCAAEydOhVTp05FeHg4hgwZ0iufu76+HpcuXUJ2djZycnJw8eJFXLx4EdnZ2Tprjzpzc3ODj48Pxo0bp1U6f1YiItLFIET9SmpqKt5++218//33uHnzJgDA19cXSqUSqampSE1NBQA4Ozvjueeeg6+vL5KSkrBo0SKtNT+mpqaYPn06nnjiCcycORMqlQpAx91R6enpOHHiBI4fP45jx46huLhYqw0ymQwBAQGYMmUKHnroIYSHhxt0nUxraytyc3ORk5OjU25tS2dKpRKjRo3C2LFjtYq3tzesra0N1j4iIilhECKjEwQBhw8fxltvvYWff/5ZPO7m5oaKigpx92eZTIY//OEPCAwMRFFRET788EOtu70sLS0RFRWFuXPn4o9//CNUKhWqq6tx6tQpJCcn48SJE/jll19QV1en9fuVSiWCg4MRHh6O8PBwTJ48WWtvobvR3NyM3NxcXL58Gb/99hsuXbokfs3Pz9d5inpndnZ28Pb2xujRozFmzBixeHh4wMTE5J7aRURE2mSCoO+RzYNXbW0tVCoVampqem16g7qnpaUF3333Hd5//31xl2W5XI4hQ4aIGx8CwH333Yfx48ejoaEBv/zyi7hWCOjY6HDWrFmYO3cuIiIikJeXJwaf5ORkXLhwAbcOcRsbG0ycOBGTJk1CeHg4QkNDe7zTsSAIqKysxJUrV8Ry+fJlsRQVFen83s6srKzg5eWF0aNHw8vLC15eXmL44V1aRES6euvvN4MQ9bny8nJ88skn2LJli3hnk2ZvH81wNDExgaenJxoaGrQebwEAXl5emDlzJkJCQgB0TKedPn0aKSkpWs/r0vD09MTEiRPxwAMPYPLkyfD19e3W3VF1dXXIz89HXl4ecnNzdUptbW2X51tbW2PkyJHw8vLCqFGjxK+jRo2CWq0ecE+NJyIyJgYhA2EQMp7MzEx89NFH2L59O5qamgB0THd1HoK2trZoaGgQd4IGOqau7r//fowePRqWlpbIzc1FSkoKysvLdX6HtbU1goODMXHiRISFhSE0NBQODg469QRBQEVFBQoKCpCfny+WgoIC5OXlIS8vT2va7XbUajVGjhwJT09PeHh4YOTIkRg1ahRGjhwJe3t7hh0iIgNhEDIQBqG+1dLSgt27d2PLli04duyY3joKhUJnzYxKpYKLiwvkcjmKior0hhKlUgk/Pz+EhIQgJCQEoaGhGDNmDORyOWpra1FYWIiioiIUFRWhsLBQLAUFBSgsLLztTsqdDR06FO7u7vDw8BC/aoq7uztvQyci6iODMgglJSXhnXfeQWpqKkpKSrB7927MmTOny3MSExMRExODrKwsODk54eWXX0Z0dHS3fyeDkIFUVgJTpgBXrwJOTkBiItBpbUthYSE+++wzbN269bY7GXcml8thbW2NxsZGratBGkqlEuPGjUNgYCC8vLygVqthZWWF8vJyFBcXo6ioCMXFxWKpr6/v1sdwdHSEm5sbXF1dxa/u7u5wd3eHm5sbx8hA0t4OHDsGlJQAajUQHt7xRHoiGhR66++3Ue8aa2hogL+/P/7yl7/g8ccfv2P93NxczJgxA0uXLsWOHTtw4sQJLFu2DPb29t06nwzE0RHo/FiJykpg+HC0jhiBvVu34p133sHp06e7XCx8q5s3b4prbkxNTaFWqzFs2DCYm5tDEATU19ejtLQU27dv7/b7Dhs2DM7OzmJxdXWFi4uL+NXZ2ZkPCR0sdu0C/vY3oPN6Mmdn4IMPgMceM167iKjf6zdTYzKZ7I5XhNasWYO9e/dq7RQcHR2NjIwMJCcnd+v38IrQPbo1BAH4DcAXAL4EoP+hDrenUCggCIK4Z1B3mJiYQK1Ww8nJCWq1Gs7Ozrjvvvt0Sk/vBKMBatcuYN484NZ/yjTrs77/nmGIaBAYlFeEeio5ORmRkZFax6ZNm4bY2Fi0trb2aI+VhoYGPlepGwRBQG1tLaqrq1F15Qoe+F8IqgXwHTrCz8lO9YcDuPNE2O86rw2ysbGBg4MDRowYgREjRsDR0REODg5wdHQUv1er1Rg+fHi3nnyu7w4yGmTa24EVK3RDEPD7sZdeAh55hNNkRANcb/2bPqCCUGlpqc4dQA4ODmhra0N5eTnUarXOOc3NzeJDOgGI0y9OTk6929hBaDmAagA7APwAoOl/x+UAIgEsATALwAcAXr6L96+rq0NdXR1+++23e24rkai4GPjfzuJERLe68/9W9zO33o6smdm73W3KGzduhEqlEouLi0uvt3Gw+hTAHwF8i44QNA7A2wAKARwEMA+AKQCu1iIiooFiQF0RcnR0RGlpqdaxsrIyKJVKDB8+XO8569atQ0xMjPhzbW0tXFxcsGHDBnEhLgBxnYrmq6a0t7ejvb1d6/u2tjaxaH5ubW1FS0uL+H1rayuam5vF45rvm5qa0NzcjJaWFvH7viCXyyGTybQ2LeypFgAOAP4EYBGAIAD64qfr2LGo//XXu24rUbclJQEzZty53oEDwIMP9n57iKjX1NbW9spszoAKQmFhYdi3b5/WsUOHDiE4OPi264PMzMz03hn02muv9Uob74VcLoeFhQUsLCxgaWkJCwsLmJubQ6lUQqlUiutibt68iba2NjFMNTQ0oK6uDvX19bcNOT1ZjHwrc3NzTJs2DcsWLsTUefPuOGiUx49DyYXK1BciIzvuDisu1r9OSCbreD0ykmuEiAa4rp7ReC+MGoTq6+u11oPk5uYiPT0dw4YNg6urK9atW4fi4mJs374dQMcdYh999BFiYmKwdOlSJCcnIzY2Ft98802Pf/ef/vQnmJqaAvh9Wk0ul2sVmUwGhUIhFrlcDoVCARMTEzGcaIqJiQlMTU1hYmIiFlNTU8hkMvFKUucrRU1NTWhqasKNGzdQX1+P+vr6jgXJVVWorKxERUUF8vLyenzFSCaTwcrKCgqFAq2trbhx40aP+wboeBbWrFmzMH/+fEyfPv33MOngoHPXmBYHB639hIh6lULRcYv8vHkdoadzGNJMl2/ezBBERLdl1NvnExIS8PDDD+scX7x4Mb788ks888wzyMvLQ0JCgvhaYmIiVq1aJW6ouGbNmrvaUHHbtm3i1JimaKa6NNNd7e3taGlpEcutIUZTGhsbcePGDdy4cQMNDQ3i1/r6erS1td1zP5mZmWHo0KGwtbWFhYWF+FyupqYm1NTU4Pr161oPIr2VUqkUp/q6MnToUMyZMwfz5s1DRETE7ffY0XMLPYCOEHTL1CVRn9C3j5CLS0cI4q3zRIPCoNxZ2hg0HdnXLC0tYWNjo7VwW6VSwcbGBtbW1uJ+Om1tbWhqakJdXR2qqqpQVlaG4uLiO+7OLJfLYWtrC4VCIYaxW936XC8AGDVqFGbPno3Zs2cjLCwMSmU3LxLeYWdpoj7HnaWJBjUGIQPRdGRERARMTEwgk8nEopnmUigU4lczMzNxmksz9aVZu9O5WFlZwdLSEmZmZlpreJqbm9HQ0ICqqiqUl5ejrKwM165dE79eu3at23sjqFQqjBgxAtbW1gA6phZLSkr0Pk5CJpPBwsICjY2NWuHHxMQEDz74IKZNm4aZM2fC29ubDwYlIqJ+jxsqGlh0dDTMzc3Fu6g6r+HRlJaWFjQ2NorTX42NjaitrRXX9GhKXV0dampqUF1dfdcbPqlUKnGnZJVKJbatoaEBFRUVyM/Px9WrV1FTU6NzrkKhgJ2dHQCgoqICbW1tEARBvCo0cuRITJs2DdOnT8fDDz8sBikiIiKpk+wVod5mZWWF4cOH65QRI0aIj35obW0Vg05BQQGuXLmC3NzcLhdIOzg4wN7eHgqFAlVVVSgqKtJZ+6NWqxEREYGpU6di6tSpcHNz69XPSkRE1Nt4RcjAAgICYGJionWH2K13fWmmwToXc3NzcV1P52JlZYWbN2+itbUVjY2NqKysRElJCUpKSnD16lWUlJQgLS0NhYWFaGxs7LJtSqUSnp6ecHFxgaWlJdra2nD9+nXk5OSI02mdeXp6Ijw8HJMnT0Z4eDhGjx7N6S4iIqJukGwQeu+992BhYaG1UaJmTY+maPbo0dwBVl9fj2vXrqG6ulosVVVVqKqq0jtl1RUHBwe4urrC1dUVjo6OMDU1RUtLC6qqqpCXl4ezZ88iJydH5zwLCwsEBwcjNDQUISEhmDRpEh8XQkREdJc4NWZAcrkcw4cPh52dHezt7bWekD5s2DAIgoDm5mZUVlYiLy8POTk5yM7OxvXr1/W+n7m5Ofz9/REYGIjAwECEhITA19e3+3d2ERERDRKcGjMwV1dXcbdmzUaJpqam4k7UZmZm4t1gmqkvzTSYra2tWIYOHQozMzNxvc+1a9dw9epVFBcXIy8vD0lJScjLy+vy9neZTAYPDw/4+PjA19cXPj4+CAgIgLe3N0MPERFRL5LsX9m9e/fC0tJSawPFzneHaXZ9rq2tRW1tLWpqalBTU4P8/HyUl5eL5fr1693evXno0KHw8vLC6NGjtb6OGTNGXEBNREREfUeyQSggIMCg72dpaYn77rsPTk5OYnFzc4O7uzvc3d3h5uZm0Et5REREdO8kG4QsLS3FTRM1Gyiam5uLd4Zp7hIbMmQIVCqV1ld7e3vY2dmJxd7eHjY2NrxTi4iIaICRbBAqKSnhFRoiIiKJkxu7AURERETGwiBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSZfQgtHXrVnh4eMDc3BxBQUE4duzYbesmJCRAJpPplIsXL/Zhi4mIiGiwMGoQ2rlzJ1auXIlXXnkFaWlpCA8PR1RUFAoKCro8Lzs7GyUlJWLx8vLqoxYTERHRYGLUIPT+++9jyZIleO655zB27Fhs3rwZLi4u2LZtW5fnjRgxAo6OjmJRKBR91GIiIiIaTIwWhFpaWpCamorIyEit45GRkTh58mSX5wYGBkKtViMiIgJHjx7tsm5zczNqa2u1ChERERFgxCBUXl6O9vZ2ODg4aB13cHBAaWmp3nPUajU+/fRTxMXFYdeuXfD29kZERASSkpJu+3s2btwIlUolFhcXF4N+DiIiIhq4lMZugEwm0/pZEASdYxre3t7w9vYWfw4LC0NhYSHeffddPPjgg3rPWbduHWJiYsSfa2trGYaIiIgIgBGvCNnZ2UGhUOhc/SkrK9O5StSViRMn4tKlS7d93czMDEOGDNEqRERERIARg5CpqSmCgoIQHx+vdTw+Ph4PPPBAt98nLS0NarXa0M0jIiIiCTDq1FhMTAwWLlyI4OBghIWF4dNPP0VBQQGio6MBdExrFRcXY/v27QCAzZs3w93dHT4+PmhpacGOHTsQFxeHuLg4Y34MIiIiGqCMGoTmz5+PiooKvP766ygpKYGvry8OHDgANzc3AEBJSYnWnkItLS1YvXo1iouLYWFhAR8fH+zfvx8zZsww1kcgIiKiAUwmCIJg7Eb0pdraWqhUKtTU1HC9EBER0QDRW3+/jf6IDSIiIiJjYRAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyWIQIiIiIsliECIiIiLJYhAiIiIiyTJ6ENq6dSs8PDxgbm6OoKAgHDt2rMv6iYmJCAoKgrm5OTw9PfHxxx/3UUuJiIhosDFqENq5cydWrlyJV155BWlpaQgPD0dUVBQKCgr01s/NzcWMGTMQHh6OtLQ0rF+/Hi+99BLi4uL6uOVEREQ0GMgEQRCM9ctDQ0MxYcIEbNu2TTw2duxYzJkzBxs3btSpv2bNGuzduxcXLlwQj0VHRyMjIwPJycnd+p21tbVQqVSoqanBkCFD7v1DEBERUa/rrb/fRrsi1NLSgtTUVERGRmodj4yMxMmTJ/Wek5ycrFN/2rRpSElJQWtra6+1lYiIiAYnpbF+cXl5Odrb2+Hg4KB13MHBAaWlpXrPKS0t1Vu/ra0N5eXlUKvVOuc0NzejublZ/LmmpgZAR7IkIiKigUHzd9vQE1lGC0IaMplM62dBEHSO3am+vuMaGzduxGuvvaZz3MXFpadNJSIiIiOrqKiASqUy2PsZLQjZ2dlBoVDoXP0pKyvTueqj4ejoqLe+UqnE8OHD9Z6zbt06xMTEiD9XV1fDzc0NBQUFBu1IKaqtrYWLiwsKCwu53uoesS8Ng/1oOOxLw2FfGkZNTQ1cXV0xbNgwg76v0YKQqakpgoKCEB8fj7lz54rH4+PjMXv2bL3nhIWFYd++fVrHDh06hODgYJiYmOg9x8zMDGZmZjrHVSoVB6SBDBkyhH1pIOxLw2A/Gg770nDYl4Yhlxt2ebNRb5+PiYnB559/ji+++AIXLlzAqlWrUFBQgOjoaAAdV3MWLVok1o+OjkZ+fj5iYmJw4cIFfPHFF4iNjcXq1auN9RGIiIhoADPqGqH58+ejoqICr7/+OkpKSuDr64sDBw7Azc0NAFBSUqK1p5CHhwcOHDiAVatWYcuWLXBycsKHH36Ixx9/3FgfgYiIiAYwoy+WXrZsGZYtW6b3tS+//FLn2JQpU3DmzJm7/n1mZmbYsGGD3uky6hn2peGwLw2D/Wg47EvDYV8aRm/1o1E3VCQiIiIyJqM/a4yIiIjIWBiEiIiISLIYhIiIiEiyGISIiIhIsgZlENq6dSs8PDxgbm6OoKAgHDt2rMv6iYmJCAoKgrm5OTw9PfHxxx/3UUv7v570ZUJCAmQymU65ePFiH7a4/0lKSsLMmTPh5OQEmUyGH3744Y7ncEzq19O+5JjUb+PGjbj//vthY2ODESNGYM6cOcjOzr7jeRyXuu6mLzkudW3btg3jx48XN50MCwvDwYMHuzzHUONx0AWhnTt3YuXKlXjllVeQlpaG8PBwREVFae1H1Flubi5mzJiB8PBwpKWlYf369XjppZcQFxfXxy3vf3ralxrZ2dkoKSkRi5eXVx+1uH9qaGiAv78/Pvroo27V55i8vZ72pQbHpLbExES8+OKL+OWXXxAfH4+2tjZERkaioaHhtudwXOp3N32pwXH5O2dnZ7z55ptISUlBSkoKpk6ditmzZyMrK0tvfYOOR2GQCQkJEaKjo7WOjRkzRli7dq3e+i+//LIwZswYrWN//etfhYkTJ/ZaGweKnvbl0aNHBQBCVVVVH7RuYAIg7N69u8s6HJPd052+5JjsnrKyMgGAkJiYeNs6HJfd052+5LjsnqFDhwqff/653tcMOR4H1RWhlpYWpKamIjIyUut4ZGQkTp48qfec5ORknfrTpk1DSkoKWltbe62t/d3d9KVGYGAg1Go1IiIicPTo0d5s5qDEMWl4HJNdq6mpAYAuH2bJcdk93elLDY5L/drb2/Htt9+ioaEBYWFheusYcjwOqiBUXl6O9vZ2nafXOzg46Dy1XqO0tFRv/ba2NpSXl/daW/u7u+lLtVqNTz/9FHFxcdi1axe8vb0RERGBpKSkvmjyoMExaTgck3cmCAJiYmIwefJk+Pr63rYex+WddbcvOS71y8zMhLW1NczMzBAdHY3du3dj3Lhxeusacjwa/REbvUEmk2n9LAiCzrE71dd3XIp60pfe3t7w9vYWfw4LC0NhYSHeffddPPjgg73azsGGY9IwOCbvbPny5Th79iyOHz9+x7ocl13rbl9yXOrn7e2N9PR0VFdXIy4uDosXL0ZiYuJtw5ChxuOguiJkZ2cHhUKhc8WirKxMJzlqODo66q2vVCoxfPjwXmtrf3c3fanPxIkTcenSJUM3b1DjmOxdHJO/W7FiBfbu3YujR4/C2dm5y7ocl13rSV/qw3EJmJqaYtSoUQgODsbGjRvh7++PDz74QG9dQ47HQRWETE1NERQUhPj4eK3j8fHxeOCBB/SeExYWplP/0KFDCA4OhomJSa+1tb+7m77UJy0tDWq12tDNG9Q4JnsXx2TH/zkvX74cu3btwpEjR+Dh4XHHczgu9bubvtSH41KXIAhobm7W+5pBx2OPl1f3c99++61gYmIixMbGCufPnxdWrlwpWFlZCXl5eYIgCMLatWuFhQsXivWvXLkiWFpaCqtWrRLOnz8vxMbGCiYmJsL3339vrI/Qb/S0Lzdt2iTs3r1byMnJEc6dOyesXbtWACDExcUZ6yP0C3V1dUJaWpqQlpYmABDef/99IS0tTcjPzxcEgWOyJ3ralxyT+r3wwguCSqUSEhIShJKSErHcuHFDrMNx2T1305ccl7rWrVsnJCUlCbm5ucLZs2eF9evXC3K5XDh06JAgCL07HgddEBIEQdiyZYvg5uYmmJqaChMmTNC6jXHx4sXClClTtOonJCQIgYGBgqmpqeDu7i5s27atj1vcf/WkL9966y1h5MiRgrm5uTB06FBh8uTJwv79+43Q6v5Fc6vsrWXx4sWCIHBM9kRP+5JjUj99fQhA+Pe//y3W4bjsnrvpS45LXc8++6z4t8be3l6IiIgQQ5Ag9O54lAnC/1YXEREREUnMoFojRERERNQTDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCREREJFkMQkRERCRZDEJEREQkWQxCRDRovfnmmwgLCzN2M4ioH2MQIqJBKyMjA/7+/sZuBhH1YwxCRDRoZWRkICAgwNjNIKJ+jEGIiAaFCxcu4KGHHoKFhQUCAwORkpKCnJwcXhEioi4xCBHRgHfx4kWEhoYiODgY586dw6uvvorZs2dDEASMHz/e2M0jon6MT58nogEvIiICTk5O+Prrr8VjTz31FM6cOYPs7GwjtoyI+julsRtARHQv8vPzceTIEZw5c0bruImJCafFiOiOODVGRANaeno6lEol/Pz8tI6fOXOGC6WJ6I4YhIhoQJPL5bh58yZaWlrEYwcOHEBWVhaDEBHdEYMQEQ1oQUFBMDExwerVq3HlyhXs3bsXS5cuBQBOjRHRHXGxNBENeDt27MC6devQ0NCAwMBAhIaG4rPPPsP169eN3TQi6ucYhIiIiEiyODVGREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESSxSBEREREksUgRERERJLFIERERESS9f8s/dMqNppv4AAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "let d = range(0,3,length=100), d₁=0.5, d₂=1.5, R₁=1, leg=[]\n", + " for R₂=1:0.2:2\n", + " x = [1 d₁^2; 1 d₂^2] \\ [R₁, R₂]\n", + " plot([d₁, d₂], [R₁, R₂], \"ro\", label=\"_nolegend_\")\n", + " plot(d, x[1] .+ x[2]*d.^2, \"k-\")\n", + " xlim(0,3)\n", + " ylim(0,3)\n", + " push!(leg, L\"$R_1 = %$R₁$, $x = %$(round.(x, digits=2))$\")\n", + " xlabel(L\"d\")\n", + " ylabel(L\"R\")\n", + " end\n", + " title(L\"fits through various $R_1$\")\n", + " legend(leg)\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In general, if you have $m$ points you can interpolate them in this way by a degree $m-1$ polynomial (called the [Lagrange interpolating polynomial](https://en.wikipedia.org/wiki/Lagrange_polynomial)) in this way: you set up an $m \\times m$ matrix system for the coefficients.\n", + "\n", + "Note, however, that this is neither the most efficient nor the most accurate (given roundoff errors) method to compute an exact interpolating polynomial. There is a much better method called [barycentric interpolation](https://people.maths.ox.ac.uk/trefethen/barycentric.pdf) that is outside the scope of 18.06." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inexact fits\n", + "\n", + "Suppose we do more than just the bare minimum number of measurements, however. Suppose that we do $m > 2$ measurements. This gives the following system of equations:\n", + "\n", + "\n", + "\n", + "$$\n", + "\\underbrace{\\begin{pmatrix} 1 & d_1^2 \\\\ 1 & d_2^2 \\\\\n", + " \\vdots & \\vdots \\\\ 1 & d_m^2 \\end{pmatrix}}_A\n", + "\\underbrace{\\begin{pmatrix} x_1 \\\\ x_2 \\end{pmatrix}}_x =\n", + "\\underbrace{\\begin{pmatrix} R_1 \\\\ R_2 \\\\ \\vdots \\\\ R_m \\end{pmatrix}}_b \\; ,\n", + "$$\n", + "\n", + "Now, $A$ is $m \\times 2$, and full column rank (assuming distinct voltages $|d_k|$), but of course it is not invertible for $m > 2$.\n", + "\n", + "It will still have a solution (a unique solution!) if all of the $R_k$ measurements fall *exactly* on a quadratic curve $x_1 + x_2 d^2$, but in a real experiment there would be some *measurement noise* that would spoil this.\n", + "\n", + "For example, let's suppose $x = (1,2)$ and we do $m=200$ measurements for $d \\in [0,2]$, but that each measurement has a random uncertainty $\\approx R \\pm 0.1$." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHLCAYAAADmwLMJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHYElEQVR4nO3deXhU5fn/8c/MAGELUTQoNGEREURFrSAJooAKuFGtyqIVQaNFi4oiVrCt4s8lICilLq1gChQuUFyw+lXhq20ALaAsca2iqCBTF9BKAlEiJOf3x/meZJYzk5kkM+fMzPt1XXPFOTkz85wk49w8z33fj8cwDEMAAAAu5HV6AAAAAJEQqAAAANciUAEAAK5FoAIAAFyLQAUAALgWgQoAAHAtAhUAAOBaBCoAAMC1CFQAAIBrEagAAADXIlABAACuRaACAEgrVVVVuuqqq5Sfn6927dqpoKBA69atc3pYaCACFQBAWjl48KC6deumf/3rX9qzZ4+uv/56/eIXv9APP/zg9NDQAB52TwYApLv27durtLRUJ554otNDQZyYUYGrLVy4UB6PR9u3b0/6a0rS6tWrk/76SIx169Zp+vTp2rNnT9yPTfTfxFNPPaXjjjtOrVq1ksfj0dtvvx3x3Jdfflkej6f21qxZM3Xt2lWTJ0/Wvn37mmxMdvbu3avf/va3GjZsmHJzc+XxeDR9+vSEvmYsampq1LZtW91666223//oo4/0448/qnv37kkeGZoCgQpc7fzzz9f69evVsWNHp4eCFLdu3TrdfffdDQpUEmn37t0aO3asunfvrpUrV2r9+vU65phjIp6/ZcsWSdKzzz6r9evXa9WqVTrzzDM1Z84c3XTTTQkd63fffad58+apqqpKF110UUJfKx4ffPCBKisr1a9fv7Dv/fDDDxo7dqx+//vfq23btg6MDo3VzOkBANHk5uYqNzfX6WFktB9++EGtW7d2ehhp6+OPP9aBAwd0xRVXaNCgQfWev2XLFrVs2VIXXnihfD6fJGnIkCEqLS3Viy++mNCxdunSRd9//708Ho++/fZbPfHEEw1+rsGDB6tr165auHBho8f11ltvSVJYoHLgwAGNGjVKvXv31h133NHo14EzmFFBk5o+fbo8Ho8++OADXXbZZcrJydERRxyhq6++WuXl5UHnvvHGGzrrrLOUnZ2t1q1ba8CAAXrppZeCzrFb+tm9e7d+/etfKz8/X1lZWcrNzdVpp52m1157TZL0+uuvy+PxaNmyZWHj+9vf/iaPx6ONGzc26vreffddjRw5Ujk5OWrfvr0mT56sgwcPauvWrTrnnHOUnZ2trl276oEHHrB9nk8++USXX365OnTooKysLB177LF69NFHg87Ztm2brrrqKvXo0UOtW7fWz372M40YMULvvfde0Hn1/Twkafz48eratWvE6wm9v2XLFl166aU69NBDg6bLYxl3Mn9Gsf69TZ8+XbfddpskqVu3brXLJqtXr47p59dQ9f2Njx8/XgMHDpQkjR49Wh6PR4MHD476nJs3b9axxx5bG6RIktfrVW5urpo1S+y/Pa2fm5Pmz5+vE044QS1bttTxxx+vVatW6a233gr7W62pqdGVV14pn8+nkpISx8eNhmNGBQlxySWXaPTo0SoqKtJ7772nadOmSZL++te/SpLWrFmjoUOHqk+fPiopKVFWVpYee+wxjRgxQsuWLdPo0aMjPvfYsWO1ZcsW3XfffTrmmGO0Z88ebdmyRd99950k6fTTT9fJJ5+sRx99VJdddlnQYx955BH169fPdorYMn78eI0fP16S+a8+u3zzUaNG6YorrtCECRP06quv6oEHHtCBAwf02muv6Te/+Y2mTJmipUuX6vbbb9fRRx+tiy++uPax//73vzVgwAB17txZDz74oI488kitWrVKN910k7799lvdddddkqQvv/xShx12mGbMmKHc3Fz997//1aJFi9S/f3+VlZWpZ8+eMf08GuLiiy/WmDFjdN1116mysjKucSfzZ2Sp7+/tmmuu0X//+189/PDDeu6552qXEnv37q1Ro0bV+/OL5W8iVCx/43/4wx906qmnauLEibr//vs1ZMgQtWvXLuJzfvfdd/riiy/CgplvvvlGH3zwgYqKiiI+1jAMVVdX1ztuSQkPeBrq5ptv1uOPP64pU6bozDPP1EcffaRx48apRYsW6tu3b9C5EyZM0FdffaWVK1e69noQIwNoQnfddZchyXjggQeCjv/mN78xWrZsadTU1BiGYRgFBQVGhw4djL1799aec/DgQeP444838vLyas9bsGCBIcn4/PPPa89r27atcfPNN0cdh/W4srKy2mNvvfWWIclYtGhRo6/vwQcfDDp+0kknGZKM5557rvbYgQMHjNzcXOPiiy8OOnf48OFGXl6eUV5eHnT8hhtuMFq2bGn897//tX3tgwcPGj/99JPRo0cP45Zbbqk9HsvPY9y4cUaXLl0iXk/o/TvvvDPs3FjHncyfUax/b4ZhGLNmzQr7WzKM2H5+DRHr33hpaakhyXj66afrfc7//d//NSQZM2bMMA4cOGD88MMPxoYNG4z+/fsbv/zlL4NeK5T1OrHcQn9Gdnbv3m1IMu666656z62pqTEOHDgQdDvjjDOMK6+8Mux4JM8884whyXjyySeDjt9///2GJOOOO+6oPbZ9+3ZDktGyZUujTZs2tbe1a9fWO1a4D0s/SIhf/OIXQff79Omj/fv3a9euXaqsrNSbb76pSy+9NCi5zefzaezYsfL7/dq6dWvE5z711FO1cOFC3XvvvdqwYYMOHDgQds5ll12mDh06BC0VPPzww8rNzY06WxOrCy64IOj+scceK4/Ho3PPPbf2WLNmzXT00Udrx44dtcf279+vf/zjH/rlL3+p1q1b6+DBg7W38847T/v379eGDRskmb0g7r//fvXu3VstWrRQs2bN1KJFC33yySf68MMP4/p5xOuSSy4Juh/PuJP5M7JE+3urTyJ+fo39G49k8+bNkqSpU6eqefPmat26tQoKCtSuXTs99dRTUZNFTznlFG3cuDGmW6dOneK/6CjWrFmj5s2bB93Wrl2rv/3tb2HHI1VT3XPPPerXr1/Y+7d3796SFDSj0qVLFxmGoR9//FH79u2rvZ1++ulNel1IDgIVJMRhhx0WdD8rK0uS9OOPP+r777+XYRi2lTzW/yCjLVs89dRTGjdunJ544gkVFhaqffv2uvLKK/X1118Hvd6ECRO0dOlS7dmzR7t379by5ct1zTXX1I6lMdq3bx90v0WLFmrdurVatmwZdnz//v2197/77jsdPHhQDz/8cNj/oM877zxJ0rfffitJmjx5sv7whz/ooosu0osvvqg333xTGzdu1Iknnqgff/wxrp9HvEJ/N/GMO5k/I0u0v7f6JOLn19i/8Ui2bNkin8+ndevWaePGjVq5cqXOPPNMvfrqq5o/f37Ux7Zt21YnnXRSTLcWLVrEPbZo7IKkn//857rgggtiCpK+/vprvfPOO7r88svDvuf3+yWFJ9IifbBwh6Q79NBD5fV69dVXX4V978svv5QkHX744REff/jhh+uPf/yj/vjHP+qLL77QCy+8oKlTp2rXrl1auXJl7XnXX3+9ZsyYob/+9a/av3+/Dh48qOuuu67pLygOhx56aO2/qidOnGh7Trdu3SRJS5Ys0ZVXXqn7778/6PvffvutDjnkkNr7sfw8WrZsqaqqqrDXCv3At4QmHsYz7sZK5mtJsf89xaOxf+ORbNmyRb1791ZhYWHtsf79+ysvL09PPPGEfvOb30R87Jo1azRkyJCYXufzzz+3Tb5uqOzs7LAckuzsbB122GFhx+1YwYhd4Ld06VIdeeSRysvLa5rBwnUIVJB0bdq0Uf/+/fXcc89p9uzZatWqlSQzS3/JkiXKy8uL2kciUOfOnXXDDTfoH//4h/71r38Ffa9jx44aOXKkHnvsMf30008aMWKEOnfu3OTXE4/WrVtryJAhKisrU58+faL+y9Xj8YTN/rz00kv6z3/+o6OPPtr2MZF+Hl27dtWuXbv0zTff6IgjjpAk/fTTT1q1alWTj7uxEvVascyyRPt7ikdT/o1bysvL9dlnn+mqq64KOn7IIYfo4osv1uLFi/XZZ5/pqKOOsn28NasRi6Ze+mksq0XB+++/H7T088wzz2jdunVhy4xILwQqcERxcbGGDh2qIUOGaMqUKWrRooUee+wxvf/++1q2bFnEUsLy8nINGTJEl19+uXr16qXs7OzaKfDAqhHLpEmT1L9/f0nSggULEnpNsZo7d64GDhyo008/Xddff726du2qvXv3atu2bXrxxRf1z3/+U5KZ47Fw4UL16tVLffr00ebNmzVr1qygfznG+vMYPXq07rzzTo0ZM0a33Xab9u/frz/96U8xV4HEM+5k/oziccIJJ9Q+97hx49S8eXP16NEjrr+neDT0bzySLVu2yDAMnXrqqWHfu/TSS7V48WKtWLEiYndWu1mNhnjllVdUWVmpvXv3SjIrtJ555hlJ0nnnnZeQnjudO3dWv379NGfOHOXm5qpPnz5au3at5s6dK4lln7TnbC4v0o1VhbF79+6g43bVO6+//rpx5plnGm3atDFatWplFBQUGC+++GLUx+3fv9+47rrrjD59+hjt2rUzWrVqZfTs2dO46667jMrKStsxde3a1Tj22GMTen3jxo0z2rRpE3b+oEGDjOOOOy7s+Oeff25cffXVxs9+9jOjefPmRm5urjFgwADj3nvvrT3n+++/N4qKiowOHToYrVu3NgYOHGi8/vrrxqBBg4xBgwYZhhHfz+Pll182TjrpJKNVq1bGUUcdZTzyyCMRq35Cry+ecSfzZxTP35thGMa0adOMTp06GV6v15BkrFy5Mu6/p3jE8jcea9XP7NmzDUnG5s2bw763f/9+Izs72xg4cGCjx1yfLl26NKpayDJo0CBj3LhxMZ//+eefG+ecc47Rtm1b45BDDjFGjBhhlJSUGJKMl156Kf4LQcpgU0KktXfffVcnnniiHn300ajr9wAAdyJQQVr69NNPtWPHDt1xxx364osvtG3bNtrAA0AKojwZaemee+7R0KFDtW/fPj399NMEKQCQophRAQAArsWMCgAAcC0CFQAA4FoEKgAAwLVSuuFbTU2NvvzyS2VnZ8fdPAkAADjDMAzt3btXnTp1ktcbfc4kpQOVL7/8Uvn5+U4PAwAANMDOnTvr3acppQOV7OxsSeaFtmvXzuHRAACAWFRUVCg/P7/2czyalA5UrOWedu3aEagAAJBiYknbIJkWAAC4FoEKAABwLQIVAADgWgQqAADAtQhUAACAaxGoAAAA1yJQAQAArkWgAgAAXItABQAAuJajgcrevXt18803q0uXLmrVqpUGDBigjRs3OjkkAADgIo4GKtdcc41effVVLV68WO+9956GDRums88+W//5z3+cHBYAAHAJj2EYhhMv/OOPPyo7O1t///vfdf7559ceP+mkk3TBBRfo3nvvrfc5KioqlJOTo/Lycvb6AQCgqfn90iefSD16SPXschyPeD6/HZtROXjwoKqrq9WyZcug461atdIbb7xh+5iqqipVVFQE3QAAQAKUlEhdukhnnml+LSlxZBiOBSrZ2dkqLCzUPffcoy+//FLV1dVasmSJ3nzzTX311Ve2jykuLlZOTk7tLT8/P8mjBgAgA/j90q9/LdXUmPdraqQJE8zjSeZojsrixYtlGIZ+9rOfKSsrS3/60590+eWXy+fz2Z4/bdo0lZeX19527tyZ5BEDAJABPvmkLkixVFdL27YlfSjNkv6KAbp37641a9aosrJSFRUV6tixo0aPHq1u3brZnp+VlaWsrKwkjxIAgAwQmI/So4fk9QYHKz6fdPTRSR+WK/qotGnTRh07dtT333+vVatW6cILL3R6SAAAZI7AfJTOnaW5c6WZM83gRDK/Pv54kybUxsqxqh9JWrVqlQzDUM+ePbVt2zbddtttysrK0htvvKHmzZvX+3iqfgAAaCS/3wxSQpd6vF5pxgypXz9zJsWhqh9Hl37Ky8s1bdo0+f1+tW/fXpdcconuu+++mIIUAADQBOzyUSTz2LRp0vbtjsykWBwNVEaNGqVRo0Y5OQQAADJb27bh+SgWK4HWwUDFFTkqAADAASUlUkGBfZAiOZZAG4hABQCATBTaK0WSPB5zdkVyNIE2kKNLPwAAwCF2uSmGIT31lJSb2+QJtA1FoAIAQKaIpVdKYaErAhQLSz8AAGSC0L17Vq2S5s1zRa+UaBzto9JY9FEBACAGdr1SfD6z9FgyK3uSuNSTMn1UAABAEkTbu2fwYNfNogRi6QcAgHRn5aMEckHpcSwIVAAASHd5eeH5KMXF5kyL3+/s2OrB0g8AAJmgqEgaPtxc7tm0Sbr9dnM5yOs1g5iiIqdHaItkWgAA0lVgObKVhxItsdaFybQs/QAAkI5Cy5FLSszj0RJrXYhABQCAdBPaHr+mRpowwTyeYom1BCoAAKSbSLMm69fbJ9a6sNGbhWRaAADSjV17fEkaM0aqqAhOrHXJnj6RMKMCAEC6sWZNQpd4ApeA8vJc3+xNIlABACC9+P1Saak5Y7JsWfj3XZw4a4dABQCAdBFa6bNjR0olztohUAEAIB3YVfpMmybNnJkyibN2SKYFACAdRKr06dvXbOaWAomzdghUAABIB3aVPtYyT15eygUoFpZ+AABIBynWHyVWzKgAAJAuUqg/SqwIVAAASAeBGxAOHuz0aJoMSz8AAKS6SBsQpgECFQAAUlm0DQjTAIEKAACpLFJZcgp1n42GQAUAgFRmlSUHSrHus9EQqAAAkMrStCzZQtUPAACpKLDKJw3Lki2OzqgcPHhQv//979WtWze1atVKRx11lP7f//t/qgldawMAIJNZOyJbCbJ2VT55eWZZchoFKZLDMyozZ87UX/7yFy1atEjHHXecNm3apKuuuko5OTmaNGmSk0MDAMAdSkrqqnq8XmnGDGnq1OAqn1//WurTR+rXz9mxJoDHMAzDqRe/4IILdMQRR6gkoN77kksuUevWrbV48eJ6H19RUaGcnByVl5erXbt2iRwqAADJ5/ebMyaBKw0ej2T30e31mrkqRUXJG18DxfP57ejSz8CBA/WPf/xDH3/8sSTpnXfe0RtvvKHzzjvP9vyqqipVVFQE3QAASFt2pceR5hfSrH+KxdGln9tvv13l5eXq1auXfD6fqqurdd999+myyy6zPb+4uFh33313kkcJAIBD7HZEjsbqn5JGeSqOzqg89dRTWrJkiZYuXaotW7Zo0aJFmj17thYtWmR7/rRp01ReXl5727lzZ5JHDABAkk2eHN4nxeLxBN9Po/4pFkdnVG677TZNnTpVY8aMkSSdcMIJ2rFjh4qLizVu3Liw87OyspSVlZXsYQIAkHyBSbRSeG6Kz1eXWFtdnXb9UyyOBio//PCDvCFRos/nozwZAJDZQvfvsfh8wUFJUZE0Zkxa9k+xOBqojBgxQvfdd586d+6s4447TmVlZXrooYd09dVXOzksAACcFSmJdtkyKTc3OCjJy0vLAMXiaHny3r179Yc//EErVqzQrl271KlTJ1122WW688471aJFi3ofT3kyACBlBXaWDQ007MqSfT5p+/a0CEri+fx2NFBpLAIVAEBKCm3iFtr/xO+X5s6V5swJX+pJAwQqAAC4VX2zJYFBjMcj3XqrNGlSWsykWFKm4RsAABnHLv/E6n8SmkRrGOasSgYjUAEAIJmsJm6BfD6pTRtp+fLIQUyGcrTqBwCAjJOXZ+akTJhgBiFer3T22VJBgX0H2jRs4hYPZlQAAEi2oiIzJ2XKFHN5Z9WqyEFKGjZxiwczKgAAOOWhhyJvMjhnjnTppRkdpEjMqAAA4Ay7pFqLz0eQ8n+YUQEAINECm7tJ5n+3bWu/MzLLPUEIVAAASKTQviiSudzj9Upjx0pLltQl1U6enHY9UxqLQAUAgESx64tiqakxg5T166XKyrTdVLCxCFQAAEiUaHkokjmTUlkpDR6ctCGlGpJpAQBIFCsPJZIM75ESCwIVAAASoaQkvImbx1MXuJA0GxOWfgAAaAqhlT2BuSmSGaBs2CB17Gi2xCcnJSYEKgAANFZgZY9VvROam1JTY+aj5OURoMSBpR8AABojtLKnpsbsOGu38SD5KHEjUAEAoDHsKntqasxZFZ/PvE8+SoOx9AMAQGP06BHeYdbnMxu3TZpEPkojMaMCAEBj5OVJ8+bZz57k5Zk9UghSGowZFQAAGquoSBo+nNmTBCBQAQCgKVDNkxAs/QAA0NT8fqm01PyKRiFQAQCgMUKDkpISqUsX6cwzza8lJc6OL8URqAAA0FChQcmsWeE9VSZMYGalEQhUAABoCLtGb1OnhvdUqa42k2zRIAQqAAA0RKRGb3SkbVIEKgAANITV6C2QzyfNnElH2iZEoAIAQENEavQ2ZYq0fbuZYLt9u9ljBQ3mMQzDcHoQDVVRUaGcnByVl5erXbt2Tg8HAJCJ/H4avcUpns9vGr4BANAYNHpLKEeXfrp27SqPxxN2mzhxopPDAgAALuHojMrGjRtVXV1de//999/X0KFDNXLkSAdHBQBADPx+s/KnRw9mVBLI0RmV3NxcHXnkkbW3//mf/1H37t01aNAgJ4cFAEB0dJ9NGtdU/fz0009asmSJrr76ank8HttzqqqqVFFREXQDACCp7Bq90X02YVwTqDz//PPas2ePxo8fH/Gc4uJi5eTk1N7y8/OTN0AAACT7Rm90n00Y15QnDx8+XC1atNCLL74Y8ZyqqipVVVXV3q+oqFB+fj7lyQCA5PH7zeWewGDF5zN7ppCrEpN4ypNdMaOyY8cOvfbaa7rmmmuinpeVlaV27doF3QAASLrJk+k+mySu6KOyYMECdejQQeeff77TQwEAILKSkrr8FI/H7EI7aRJBSgI5PqNSU1OjBQsWaNy4cWrWzBVxEwAAJr/fbIXv94cn0RqGNGeOs+PLAI5HBq+99pq++OILXX311U4PBQCQ6QJ7o6xaFTx7MnJk5CRaZlQSxvFAZdiwYXJJPi8AIJMFLutIZnBifT4ZhrR8efhjfD5zjx8kjONLPwAAOC50WUeqC1IiIYk2KRyfUQEAwHF2vVGimTNHuvRSgpQkYEYFAIAePSRvjB+JPh9BShIRqAAAMlNgRU9enjRvnn2w4vHUHWe5J+kIVAAAmcXvl267rW5Twc6dzfvDh0s7dpi9UQKbuc2fbx4vLTW7zxYVOTr8TOOaFvoNEU8LXgBAhvP7pblzpQcftE+U9XrNWZWiIvPcbdvMih5mT5pcPJ/fJNMCANJfSYl07bXRK3msXZCHDzeDEwIUV2DpBwCQ3qzS41gWENgF2XUIVAAA6S2e0mMauLkOgQoAIL1FKj32es1lHnZBdjUCFQBAerNKj62AxOs1K3t27JBWrjQreajocS2qfgAAmYFKHteg6gcAgFBU8qQkln4AAIBrEagAAADXIlABAKSfwH18kNIIVAAA6aWkJHwfHwKWlEWgAgBIH1YXWqvBm2FIs2ebgUtJibNjQ4MQqAAA0kekLrTWPj7MrKQcAhUAQPqI1IVWYh+fFEWgAgBIH1YXWrtghX18UhKBCgAgvRQVme3xp0xhH580QAt9AED6om2+K9FCHwAAibb5aYClHwBAarJr6kajt7TDjAoAIPWUlNT1S/F6pRkzpF27pIceqjs2b56Zr4KURo4KACC1+P1mAze7fimBfD5p+3aWflwons9vln4AAKklUlO3UPRNSQsEKgCA1BKtqVsg+qakBQIVAEBqsBJlJTP/xOqRYoe+KWnD8UDlP//5j6644goddthhat26tU466SRt3rzZ6WEBANwkdEfkjz6S1q83A5dZs+qCFq/XbPS2fTuJtGnC0WTa77//XieffLKGDBmi66+/Xh06dNCnn36qrl27qnv37vU+nmRaAMgAkZJnAyt7aOyWUlKm4dvMmTOVn5+vBQsW1B7r2rWrcwMCALhPfTsiDx9OY7c05ujSzwsvvKC+fftq5MiR6tChg04++WTNnz8/4vlVVVWqqKgIugEA0hw7Imc0RwOVzz77TH/+85/Vo0cPrVq1Stddd51uuukm/e1vf7M9v7i4WDk5ObW3/Pz8JI8YAJB07Iic0RzNUWnRooX69u2rdevW1R676aabtHHjRq1fvz7s/KqqKlVVVdXer6ioUH5+PjkqAJCK/H5zWadHD/O+9d+RlnD8fmnuXGnOHHMmxarsIWk25aRMjkrHjh3Vu3fvoGPHHnusnn32Wdvzs7KylJWVlYyhAQASKbAFvsdjHjMM879vvVWaNMkMWAKDmbw8s8Jn0iQSZzOIo0s/p512mrZu3Rp07OOPP1aXLl0cGhEAIOH8/rogRTIDFGty3zCk2bPNKp/x4+tKkrt0MYMbyQxOBg8mSMkQjgYqt9xyizZs2KD7779f27Zt09KlSzVv3jxNnDjRyWEBABIplhb4NTXSokV151kVPuyKnHEcDVT69eunFStWaNmyZTr++ON1zz336I9//KN+9atfOTksAEAixdoCPxQVPhmJ3ZMBAMlXUmLOkFRXB+eoRMNuyGmD3ZMBAO5WVGQGHaWl0hdfmLcpUyLv38PePRmLGRUAQHKFVvIE2rhRKigIzmHxeqUNG6R+/ZI7TiQMMyoAAHcK3FwwsJLHsm9feKJtTY1UWZm8McJVCFQAAMkRWpZsV8ljl2hL99mMRqACAEgOu7Lk0Eoeq12+latCbkrGc7QzLQAgg1izJYHBit1sSVGRuSMy3WchZlQAAMk0eXJssyV0n8X/YUYFAJB4oXv7TJlSt58PEAUzKgCAxLLb22fOHGfHhJRBoAIASKxYkmiBCFj6AQA0vcCmbrEm0QI2mFEBADSt0KZuq1ZRcowGo4U+AKDp+P1mcBI6e7J9u/nflBxD8X1+s/QDAGg60fJRKDdGA7D0AwBoOnYt8L1eadeu4Fb5QIwIVAAA8fH7pdJS+8AjtAW+x2OWI48ebb8JIVAPAhUAQOxCE2VnzQoPWoqKzJyU5cvrAhXJfhNCoB4EKgCA2Njtfvzb39YFLYGzJXl50uGH0z8FjUagAgCIjV2irMVutsQuX4X+KYgTgQoAIDZ2gUeg0NmS0HwV+qegAQhUAACxCQ08QtnNllj5KqWl5teiokSPEmmGQAUAELvAwGPWrPDZEik8uTYvjx4qaDACFQBAfKzAY8qU4NkSKbgiiFJkNAFa6AMAogvcYDDSrEi01vnMpCBEPJ/fzKgAACIL7ZsSaZYkWut8oBEIVAAA9uz6pkRq2Na2LaXISAgCFQCAvVhnSUpKpIKC8GUfSpHRBNg9GQBgz+qbEhqABM6ShM66SOZj1q+X+vVL3liRtphRAQDYi6Vhm92sS02NVFmZvHEirTGjAgCIrKhIGj7cXO45+ujwpZxYZl2ARmBGBQBQx++P3LBNsv8ebfKRQI4GKtOnT5fH4wm6HXnkkU4OCQAyV7RS5Gjfo00+EsjRhm/Tp0/XM888o9dee632mM/nU25ubkyPp+EbADSRaA3bJJq5oUnF8/nteI5Ks2bNYp5FqaqqUlVVVe39ioqKRA0LADKD1XV29277UuT166XDD49cpkygggRzPEflk08+UadOndStWzeNGTNGn332WcRzi4uLlZOTU3vLz89P4kgBIM0ELueMGSN5POHnjBkjbdpEMzc4xtGln1deeUU//PCDjjnmGH3zzTe699579dFHH+mDDz7QYYcdFna+3YxKfn4+Sz8AEC+7pR6Px7yFzp74fNKMGdLUqeZMipUwSy4KGihhSz87duzQ1q1bdcIJJ6hjx45h3//yyy/VqVOnmJ/v3HPPrf3vE044QYWFherevbsWLVqkyZMnh52flZWlrKyseIYMALBj1//EMKRJk6Q//jH4eHW11LevmZMSqUwZSJCYl36WLVumo48+Wuecc466d++uxYsXSzKDlxkzZqh///7q3LlzowbTpk0bnXDCCfrkk08a9TwAgHpY/U9CzZ0bvgRkLfNYZcoEKUiimAOVe+65RzfeeKPee+89DR06VNdff71+97vfqXv37lq4cKFOPfVUPffcc40aTFVVlT788EPb2RoAQBOy+p+EBitWNgB9UeASMS/9fPrpp5o0aZK6dOmiRx99VJ07d9b69ev13nvv6dhjj23Qi0+ZMkUjRoxQ586dtWvXLt17772qqKjQuHHjGvR8AAAbVmVPjx7BAUdRkZSdLY0eHXy+YUjLlkm5uSzzwHExByoHDhxQq1atJEl5eXlq1aqVZs+e3eAgRZL8fr8uu+wyffvtt8rNzVVBQYE2bNigLl26NPg5AQABSkrqNg30es1ZlMAk2AED7FvgFxYSoMAV4kqmXbp0qc455xz16tVLXq9Xhx56aKNe/Mknn2zU4wEAUYTubFxTY97v06duZ2NrCWjChOCKHoIUuETM5clnnHGG3nnnHe3bt0+HHnqoysvLNXHiRA0YMEDHH3+8jjnmGDVrltz+cXSmBYAoSkvNHimhPB7p1lvNCh8rIPH7qehB0sTz+R13H5VPPvlEmzdv1pYtW7R582aVlZVpz549at68uXr27Kl33323UYOPB4EKAERh1yslkN1SEJAECQ1U7Hz++efatGmTysrKdP/99zf26WJGoAIAUfj9ZrnxQw9FDlbYswcOSPpeP926dVO3bt00cuTIpng6AEBjBSbRSuZyj92/S9mzBy7n+F4/AIAmFppEa7Fr8MaePXA5AhUASAd+v5k8a/VMsWuP/+ST0pQpNHNDSklumQ4AoGmF5qF4POZsSqTeKCNHmtU+VPggRRCoAEAqsgKUBx8Mzj0xDHOWxOOpC1ZCZ07y8ghQkDIIVAAg1ZSUSNdea58cazEMM1hZvpwus0hp5KgAgJsE5ppE+v6vfx09SLHU1Jj79RCkIIURqACAW5SUmA3azjzT/FpSEn6OXaJsJFT0IA0QqACAG9jtyzNhQvDMit8v7d5tX2bs9UrDh1PRg7RDjgoAuIHdTInVjE0Kr+yxEmW9Xmny5Lp9e9izB2mGQAUA3KBHD/uS4k2bzKWg0MqeSImyVPQgzbD0AwBukJdnbhAYuHRTXCzdfrt94iyJssgQzKgAgFsUFZl5JtbSTbTEWRJlkSEIVADATUKXbkKXgyQSZZFRWPoBADebPLluOcjrNffq2b7dnH0BMgAzKgDgJGsTwR49gmdISkrqypU9HjNAsSp7gAzCjAoAOCVSg7fQniqGIc2Z49w4AQcRqACAE6I1eKuvpwqQQQhUAMAJ0YIRq6dKIKp8kKEIVADACXbBiNcrtWlj31OFKh9kKAIVAHBCaDAimTMsBQVmrkpRkVndU1pKlQ8ymscwYtkr3J0qKiqUk5Oj8vJytWvXzunhAED8Nm40g5PQ1vnbtzODgrQVz+c3MyoA4KR9+0icBaIgUAGApuD3m8s0fn98jyNxFoiKQAUAGitSP5RYkDgLREWOCgA0ht9vBieNzTHx++s2IyRIQZqL5/ObFvoA0BjR+qFYAYddm/zQY6GbEQKQ5KKln+LiYnk8Ht18881ODwUAYldfjkngslDnztJtt0mzZzd8qQjIMK4IVDZu3Kh58+apT58+Tg8FAOITLcfEbs+e2bPNYMWudT6AMI4HKvv27dOvfvUrzZ8/X4ceeqjTwwGA+EVqzma3LGSHcmQgIscDlYkTJ+r888/X2WefXe+5VVVVqqioCLoBgCvk5UmDBwfnmbRtG74sZIdyZCAiRwOVJ598Ulu2bFFxcXFM5xcXFysnJ6f2lp+fn+ARAkADlZSEd5y1QzkyEJVjgcrOnTs1adIkLVmyRC1btozpMdOmTVN5eXntbefOnQkeJQA0wMaNwbkpkuTx1M2u+HzSAw+wjw8QA8f6qDz//PP65S9/KV/AhlzV1dXyeDzyer2qqqoK+p4d+qgAcJ2SEunaa83E2VDLl0u5ufRKQcZLiT4qZ511lt57772gY1dddZV69eql22+/vd4gBQBcx6rysQtSfD6psJAABYiTY4FKdna2jj/++KBjbdq00WGHHRZ2HABcx66JW6QqH6+XPBSggRyv+gGAlGPXxM3vt2/+5vVKGzaQhwI0EHv9AEA87Pb2kcyAZN48878nTDB7o1gVPQQpQJCUyFEBgJQUaXnH6jC7fbt5Y4NBoEkQqABAPKzlHbtgxeowG9r4DUCDkaMCAPGw9vax6zhLh1mgyRGoAEC8ioqkHTukKVPsNyME0GRIpgWAxvD7yUcB4kQyLQAkS14eAQqQQCz9AEB9/H5zXx6/3+mRABmHQAUAogls7tali3kfQNIQqABAJNbePVYpstUrhZkVIGkIVABktmjLOnbN3aqrpaefJlgBkoRABUDmirSsYwUvbdva90uZPJllICBJKE8GkFmsXY/btpUKCoJnTHw+acYM6fbbzeMejzRsmPTaa+ZMSiifz2yXT9UPEJd4Pr+ZUQGQOQJnUPr3t1/WsYIUSTIMadUq8/6oUeHPZ7XMB5AwBCoAMkNoYqzdZLLHY7+Hj2FIzzwTvgxEy3wg4QhUAGSGSLseBwYf0VbCa2rM3BRa5gNJRaACIDNYux4H8nrN5SC7hNlQPp80aZKZk1Jaan4tKkrESAEEIFABkBmsXY+tGRHJnCW5+mr7mZbRo+1nT/LypMGDmUkBkoSqHwCZZePG8GqfUFY1j8SGg0ACsCkhAEjBpcj79pnLP/v2Rc5VqakJzz0hQAEcRaACID2VlARX+UhmMDJjRl1QYvH5pPXrpcpKZk8AlyFHBUBqiWUn49BSZEtNjTRtmjRzZnj+Sb9+5J4ALsSMCoDUEThL4vWaybF2lTeRSpEls0lb375mDgr5J4DrkUwLIDX4/WZX2dAlG7sW9nbn1vcYAElDC30A6SfSTsZ2LeztSpElmrQBKYilHwCpwWrYFjqjEqmFfVGRNHy4Gci0aUOiLJCiCFQApAZrlmTCBHMmxW52xK4cefBgx4YMoPEIVACkjsBZEmt2xApONm8O3vlYip5wCyAlkEwLIHXZ9UoJRfIs4Dok0wJIf5F6pYSKlHALICUQqABITdF6pQSKlnALwPUcDVT+/Oc/q0+fPmrXrp3atWunwsJCvfLKK04OCUCqaNvWzEGJhnJkIOU5mkybl5enGTNm6Oj/+9fOokWLdOGFF6qsrEzHHXeck0MD4DZW0myPHtKqVeHLPj6fVFxstsKnHBlIG65Lpm3fvr1mzZqlohiy9EmmBTJEYNKsx2MeC/xfl9crbdhgBikAXC+ez2/XlCdXV1fr6aefVmVlpQoLC23PqaqqUlVVVe39ioqKZA0PQDIFzp5IwbMndv+2qqkxZ1AApB3HA5X33ntPhYWF2r9/v9q2basVK1aod+/etucWFxfr7rvvTvIIASRV6MaDkyfXnzRLwiyQthxf+vnpp5/0xRdfaM+ePXr22Wf1xBNPaM2aNbbBit2MSn5+Pks/QLqw20zQSpgNPObxmMcDO9TS1A1IGSm19NOiRYvaZNq+fftq48aNmjt3rh5//PGwc7OyspSVlZXsIQJIpMBlnnXrwmdPamqk666T5s8PDkxCO9QCSEuOByqhDMMImjUBkIICg4/QICJS9Y7HY59/Iplt8GfMMJNlAwMTAhQg7TkaqNxxxx0699xzlZ+fr7179+rJJ5/U6tWrtXLlSieHBaAxQit0br1VmjTJDCqiVe9EW4WuqZGmTaMVPpCBHG349s0332js2LHq2bOnzjrrLL355ptauXKlhg4d6uSwADRUaFt7w5BmzzbzTn73u/DvxZMiRyt8ICM5OqNSUlLi5MsDaGqR2trX1Ej339+456ayB8hI7PUDoOn06FF/W/tAVvVO6H/7fNK4ceZX6z6t8IGMRKACoOnk5ZmJr7EGK9byz5Qp0hdfSDt2SKWlZi7KwoXmV+s+5cdARnK8j0pj0EIfcCm/X5o7V5ozx8wtqY/PR6IskEHi+fxmRgVA08vLk2bNqpsRmTWrbhnHbraFRFkAEbiujwqANJKXZ94GD5bGjDGDkTZtpIKC8J2PSZQFYINABUB8rIZtbdtK+/YFN3WL1ujNClokM49lwoTgTrMs+wCwQaACIHaBDdssXq/ZNXbXLumhh+o2E5w3L3ICbFERLfABxIRkWgCx2bgxfMkmGhJkAURAMi2AhvH7zeRXvz/4eEmJ1L9/7EGKRIIsgCZBoAJkmmjBSJcu0plnml+tztFWW/x4J19JkAXQBAhUgExSXzBizZjU1JjJrn6/tG5dfDMpEgmyAJoMgQqQKTZujByM2O3RU10t3XefWVYcyuuVXnzRvkfKlCl0kgXQZKj6ATJBSYl07bXhyzdWHom1R09osPKXv4Q/lzVbcsEF5v3AHilU8ABoYsyoAOkuWo6JlUcSzx49y5aFz5ZYTd0IUgA0MQIVIN3ZLetIZlASmEdSVGQGIdH4fFJhYdOPEQAiYOkHSHd2yzper7Rhg9SvX/C5AwbYLwFJJMgCcAQzKkC6s5Z1rIRXn8+8HxikWCXLUvi5Dzxgfo8EWQAOYEYFyATRWtYHtsW3Wt9v305yLABXoIU+kMn8frOfSuhOxrS+B5BAtNAHMk2kbrP1idQ/hdb3AFyCQAVIdZG6zVqiBTFWom0gWt8DcBECFSCVRWt9L9UfxNgl2lLZA8BFyFEBUllpqRmE2B0/+ujY80/8fpJnASRNPJ/fVP0AbmftxdOjR3gQYdcjxVq6iZZ/Evo8eXkEKABciaUfwM0as3RD/gmANMDSD+BW8ZQOR1q6KSkxc1aqq+uCGKtpW7SZGgBIIJZ+gFQRLViItHSzfr10+OHmY6zzevQwNwUMFanRm12TN7rOAnAhZlQAp9QXLGzcKBUUBAcrHo95q6kxv0rmrsihj48WANHkDYDDaPgGuF0sZcWhQYqVb2IdMwzzFvr4+vJaaPIGIIUQqABOiBYshAYxkhmk3HNPXWBip7pa+p//iR4ASSTZAkgpjgYqxcXF6tevn7Kzs9WhQwdddNFF2rp1q5NDApIjWrBgF8TU1Ei//3305/R4pN/8pv7ZEpq8AUghjgYqa9as0cSJE7Vhwwa9+uqrOnjwoIYNG6bKykonhwUkXmiw4PVKt9wiffWVtHt3eBAjhc+meDx151lf7WZc7GZLiorMnJTSUvMribQAXMpVybS7d+9Whw4dtGbNGp1xxhn1nk8yLVKe3y/NnSs99FDkpNnQhm6W5culwkJztmTXLmn06PBzqOgB4EIpW55cXl4uSWrfvr3t96uqqlRVVVV7v6KiIinjAhok1j4loUGKZM6MeDxmMNK1a3hirc9nBilWR1m/Pzyg8XqlDRukfv2a9LIAIJlck0xrGIYmT56sgQMH6vjjj7c9p7i4WDk5ObW3/Pz8JI8SiFF9lTcWu3wUS02NlJtrBhr15ZTY5Z3Mm0eQAiDluWbpZ+LEiXrppZf0xhtvKC/Cvz7tZlTy8/NZ+oG7xNtRNvTcSI+JZeNANhcEkAJSbunnxhtv1AsvvKC1a9dGDFIkKSsrS1lZWUkcGRCjwGWeeDcDnDevrs29JdKsSX3BB5sLAkgzjgYqhmHoxhtv1IoVK7R69Wp169bNyeEADRPaYXbGjMg7GtsJbHPfpo1UWcmMCAD8H0cDlYkTJ2rp0qX6+9//ruzsbH399deSpJycHLVq1crJoQHRWTMobduGN1ibNk2aOVOaOjV4M8BogQczIQBgy9EcFY+1V0mIBQsWaPz48fU+nvJkOCJwBsXjse9dUlpqzopYsyT79plBzb597FYMIOOlTI6KS/J4gdiFtreP1mAtL09atcq+Hf6MGVLfvgQtAFAP15QnAykhUjlxYIfYW24x/9tuzx7JvP/b39ZfugwAIFAB6uX3m0s5fr/9Hj1er/T3v0tTppj3Z882A5C5cyP3SLHYbRoIAKjlmj4qDUGOChIutKJn3jzzeGg5sZVvFfh2sgKa+oIVyQyEBg9ukiEDgNvF8/nNjAoQSejSjTX7MXy4tH598MyKYYTnq9TUSJMn13WLjSRa6TIAZDgCFSCSSI3b1q83q3fqmynx+aRJk+p2KX7rLfPrrFnR2+EDAGq5ojMt4CpWj5TKSvudi8eMsW/q5vGYx+x6pwQGIoMHm89Bq3sAqBeBChAoMCclkmhN3awOs/UFIDR4A4CYEKggswTuyZOXF3xfqj9IsVRXm31Qtm8PD0wIQACgyRCoIHOEVvCMHSstXlx3f/Lk2IIUKbipG4EJACQM5cnIDH6/2dskWiASrZzYLv+kqCgxYwWANEd5MhAqUkfZQDU15oxLaDmxzyfNn19XvbN9O0EKACQJSz9ITdFyTUKXYvx+afdu+wqeUPPmmRU9/fqZmwlWVpJ/AgAOIlBB6qkv1yRww7/ATQGt5ZuaGnOW5Ior6h5nsSp6tm8nKAEAFyBHBaklllwTS6S29k8+KRUWmoHI8uXS6NHhj6WlPQAkTDyf38yoIDmiLc3E89hYck0sdjF4TY2Um2v+d2mp1K1b+JIQLe0BwDVIpkXilZSYsyBnnml+LSmp+17gzsSxPHbTpvDdi+Ph85nPYT1nQYG5dERLewBwJZZ+kFh2SzU+n5kDEpg/Yu1MHFhNE+mxM2bUdYT1eqWhQ6XXXgvezdgSWlZcXGw+NvQ5168PT5wFACQE5clInvpmRKJt7Ge3M3Hg86xbZ/9YqyPslCnmsVWrzPOmTAnf8C+0rLhvX/vnrKw0c1IIUgDAVchRQcOFVt+EzohIZl6JXQ6IYdgHDNu2mcFCSYl07bXhr+n1Srt2maXDDz1U9xyGIc2ZYwYjdhv+BQYg5KQAQMpg6QcNE21JRzJnUtq2lfbtkzZvDt+8r08fMz8k8PFer7RsmdS6tXThheGBTGAVj8djnywbS7VOSYk5e0OXWQBwBFU/SLxISzpz5wbPdEh1vU2sJmrLl4dv/mcFHnalwoGs4MQuSAmdGYlUaVRUFPsuxwAAR5GjgoaxlnQCeb3hQYpU10Rt0yapf39p9uzwICXSDEngc9t93xpDaLVOtEojyTyPnBQAcD0CFcQmNGk2L8/MSQlMXI22+3B1tXT77fbBhl2+SiBrRiY0MPL5pA0bwvff8fvrT9QFAKQEApX61FfV4gZNPcbQ54s0O1FUFFxRM2lS5B4n0fbZ8XqjP27DBum228IDo8cfN5eTQmdGIi1LbdsWw8UDANyEQCWa+pYPEiWewKOpxxj6fLNmRZ+dCFxCCZ1lsVi9T+yCEZ/PfEykx82bZwYjUnhgFCkB1m5ZisoeAEhJVP1EEq2qJZF5DZFKfu0SQxsyxmit7DdutK/EsZsJ+fOfpZ49I+9WvG1b+O7DgdU2Xq+5VDRpUvD12D2uIajsAQDXiufzm0AlktJSc1bB7nhTb1ZnBQ9t24YHCtZsxO23Bwcvw4eb1TO33hp9jIGBSbROsFbfkkgJq9GWbez6p0S71mRV2yTztQAAMSNQaQqJmlEJndEInEGJVPkSGihYVTJ2wUPgGEOfWwrfSXjDBqljx8g7Enu9ZsVOcXHkYCW0f0pDNh4EAGQMWug3lcmTm3azuvryP+yCFLuAJFKVTOAYQytfDCP8+WtqzBmcuXMjByE1NWaQcs01ka/L6p/iRD4PACCtMaNiJ3Qm4tZbg3MpGsJuhibSkop1vL7eIoHmzJEuvbRujJGWruxYiaf1lQhHOsfue8nI5wEApKSUmVFZu3atRowYoU6dOsnj8ej55593cjgmu5mIOXPqf0x9VTp2G+xZuSKhDMNMBLWWawJ5veHHfb7gIMXvl3bvDn9uayfhUDU15uOt2aNI5wTOMAW+tl3/FMqBAQBNwNFApbKyUieeeKIeeeQRJ4cRLNpuv6WlZmWMFZT4/WZ/D7slDyt42bjRPGfMmPDX8vmkmTPDAwPDMHf9tZu9ePJJ83uRlqSs5aXRo83nCezcOn++mZNiF4gsX163A7HdOT6fOatklQe/9Vb0/imUAwMAmoLhEpKMFStWxPWY8vJyQ5JRXl7edAPZudMwvF4ro8O8eTz2xwLvWzefzzBmzQo/3+68J54wX/Opp+zPCX0On88cnzXO0tK6+4ZhGG+9Ff4Yr9cwli8PPu+JJ8znijSunTuDzwkcayTxng8AyFjxfH6nVDJtVVWVKioqgm5NLrRpWaTcjEi5I1ar+Gj5HpK5S7BV0jtggP2MxMyZkWdOQveqKSkx99GxW17KzTX/25oJshqnPfSQ/fi3bYu9uZol3vMBAIhBSgUqxcXFysnJqb3l5+cn5oUCP3SXLYs9oVWK3nPE4vNJhYV19+32zXn8cXMZJpYPfyuvJtKOwps2hS9P5eVJI0dGX7KJd+M+NvoDADSxlApUpk2bpvLy8trbzp07E/di1oeu3WxHJNFaxQeeY1fmHGlGIpYPf7u8GskcR3Fx8AxPYAv8SAESgQYAwCWaOT2AeGRlZSkrKyu5L2p9mFvt2C2BTddC28G3bx9+vl3LeLvXakiQYO1tE1r6vGGDtG9f5IqcvDwzIBo+nA6uAABXSqlAxTGBH+aB+9BIwR/wVqXP8OHmrEhT7VtTn9BgKnBnYb8/PIgJrchpaIAEAECCORqo7Nu3T9sCem18/vnnevvtt9W+fXt17tzZwZHZiPRhHpjMGmkfnWSINDMSKYghMAEApABHO9OuXr1aQ4YMCTs+btw4LVy4sN7HJ3Svn3g0dF+gaDsZN+VjrMexvAMAcIF4Pr8dnVEZPHiwHIyTmk6kJnFWHoidhszANGbWhuUdAEAKYq+fphDvjEpDZmAStZszAABJljJ7/aSNeMt8o83ARNKQxwAAkOKo+mkq8ZT52pUT17c3TkMeAwBAimNGpSnF2pm1IY3WaM4GAMhA5Kg4qSGVOFTvAABSXMpU/WS8hlTiUL0DAMggLP0AAADXIlABAACuRaACAABci0AFAAC4FoEKAABwLQIVAADgWgQqAADAtQhUAACAaxGoAAAA1yJQAQAArkWgAgAAXCul9/qx9lOsqKhweCQAACBW1ud2LPsip3SgsnfvXklSfn6+wyMBAADx2rt3r3JycqKe4zFiCWdcqqamRl9++aWys7Pl8Xia9LkrKiqUn5+vnTt31rsFdSri+lJful9jul+flP7XyPWlvkRdo2EY2rt3rzp16iSvN3oWSkrPqHi9XuXl5SX0Ndq1a5e2f4AS15cO0v0a0/36pPS/Rq4v9SXiGuubSbGQTAsAAFyLQAUAALgWgUoEWVlZuuuuu5SVleX0UBKC60t96X6N6X59UvpfI9eX+txwjSmdTAsAANIbMyoAAMC1CFQAAIBrEagAAADXIlABAACulTGBymOPPaZu3bqpZcuWOuWUU/T6669HPX/NmjU65ZRT1LJlSx111FH6y1/+EnbOs88+q969eysrK0u9e/fWihUrEjX8esVzfc8995yGDh2q3NxctWvXToWFhVq1alXQOQsXLpTH4wm77d+/P9GXElE817h69Wrb8X/00UdB56Xq73D8+PG213fcccfVnuOm3+HatWs1YsQIderUSR6PR88//3y9j0m192C815hq78N4ry/V3oPxXl+qvQeLi4vVr18/ZWdnq0OHDrrooou0devWeh/nhvdhRgQqTz31lG6++Wb97ne/U1lZmU4//XSde+65+uKLL2zP//zzz3Xeeefp9NNPV1lZme644w7ddNNNevbZZ2vPWb9+vUaPHq2xY8fqnXfe0dixYzVq1Ci9+eabybqsWvFe39q1azV06FC9/PLL2rx5s4YMGaIRI0aorKws6Lx27drpq6++Crq1bNkyGZcUJt5rtGzdujVo/D169Kj9Xir/DufOnRt0XTt37lT79u01cuTIoPPc8jusrKzUiSeeqEceeSSm81PtPSjFf42p9j6M9/osqfIejPf6Uu09uGbNGk2cOFEbNmzQq6++qoMHD2rYsGGqrKyM+BjXvA+NDHDqqaca1113XdCxXr16GVOnTrU9/7e//a3Rq1evoGMTJkwwCgoKau+PGjXKOOecc4LOGT58uDFmzJgmGnXs4r0+O7179zbuvvvu2vsLFiwwcnJymmqIjRbvNZaWlhqSjO+//z7ic6bT73DFihWGx+Mxtm/fXnvMbb9DiyRjxYoVUc9JtfdgqFiu0Y7b34eWWK4v1d6DgRry+0ul96BhGMauXbsMScaaNWsinuOW92Haz6j89NNP2rx5s4YNGxZ0fNiwYVq3bp3tY9avXx92/vDhw7Vp0yYdOHAg6jmRnjNRGnJ9oWpqarR37161b98+6Pi+ffvUpUsX5eXl6YILLgj7l16yNOYaTz75ZHXs2FFnnXWWSktLg76XTr/DkpISnX322erSpUvQcbf8DuOVSu/BpuL292FDpcJ7sCmk2nuwvLxcksL+3gK55X2Y9oHKt99+q+rqah1xxBFBx4844gh9/fXXto/5+uuvbc8/ePCgvv3226jnRHrORGnI9YV68MEHVVlZqVGjRtUe69WrlxYuXKgXXnhBy5YtU8uWLXXaaafpk08+adLxx6Ih19ixY0fNmzdPzz77rJ577jn17NlTZ511ltauXVt7Trr8Dr/66iu98soruuaaa4KOu+l3GK9Ueg82Fbe/D+OVSu/Bxkq196BhGJo8ebIGDhyo448/PuJ5bnkfpvTuyfHweDxB9w3DCDtW3/mhx+N9zkRq6FiWLVum6dOn6+9//7s6dOhQe7ygoEAFBQW190877TT9/Oc/18MPP6w//elPTTfwOMRzjT179lTPnj1r7xcWFmrnzp2aPXu2zjjjjAY9Z6I1dCwLFy7UIYccoosuuijouBt/h/FItfdgY6TS+zBWqfgebKhUew/ecMMNevfdd/XGG2/Ue64b3odpP6Ny+OGHy+fzhUV3u3btCosCLUceeaTt+c2aNdNhhx0W9ZxIz5koDbk+y1NPPaWioiItX75cZ599dtRzvV6v+vXr58i/BBpzjYEKCgqCxp8Ov0PDMPTXv/5VY8eOVYsWLaKe6+TvMF6p9B5srFR5HzYFt74HGyPV3oM33nijXnjhBZWWliovLy/quW55H6Z9oNKiRQudcsopevXVV4OOv/rqqxowYIDtYwoLC8PO/9///V/17dtXzZs3j3pOpOdMlIZcn2T+C278+PFaunSpzj///HpfxzAMvf322+rYsWOjxxyvhl5jqLKysqDxp/rvUDIz+bdt26aioqJ6X8fJ32G8Uuk92Bip9D5sCm59DzZGqrwHDcPQDTfcoOeee07//Oc/1a1bt3of45r3YZOl5brYk08+aTRv3twoKSkx/v3vfxs333yz0aZNm9rs7KlTpxpjx46tPf+zzz4zWrdubdxyyy3Gv//9b6OkpMRo3ry58cwzz9Se869//cvw+XzGjBkzjA8//NCYMWOG0axZM2PDhg2uv76lS5cazZo1Mx599FHjq6++qr3t2bOn9pzp06cbK1euND799FOjrKzMuOqqq4xmzZoZb775ZtKvzzDiv8Y5c+YYK1asMD7++GPj/fffN6ZOnWpIMp599tnac1L5d2i54oorjP79+9s+p5t+h3v37jXKysqMsrIyQ5Lx0EMPGWVlZcaOHTsMw0j996BhxH+NqfY+jPf6Uu09GO/1WVLlPXj99dcbOTk5xurVq4P+3n744Yfac9z6PsyIQMUwDOPRRx81unTpYrRo0cL4+c9/HlSSNW7cOGPQoEFB569evdo4+eSTjRYtWhhdu3Y1/vznP4c959NPP2307NnTaN68udGrV6+gN2CyxXN9gwYNMiSF3caNG1d7zs0332x07tzZaNGihZGbm2sMGzbMWLduXRKvKFw81zhz5kyje/fuRsuWLY1DDz3UGDhwoPHSSy+FPWeq/g4NwzD27NljtGrVypg3b57t87npd2iVqkb6m0uH92C815hq78N4ry/V3oMN+RtNpfeg3bVJMhYsWFB7jlvfh57/uwAAAADXSfscFQAAkLoIVAAAgGsRqAAAANciUAEAAK5FoAIAAFyLQAUAALgWgQoAAHAtAhUAAOBaBCoAAMC1CFQApIQZM2aosLDQ6WEASDICFQAp4Z133tGJJ57o9DAAJBmBCoCU8M477+ikk05yehgAkoxABYDrfPjhhxo8eLBatWqlk08+WZs2bdLHH3/MjAqQgQhUALjKRx99pP79+6tv3756//33deedd+rCCy+UYRjq06eP08MDkGQewzAMpwcBAJazzjpLnTp10uLFi2uPXXbZZdqyZYu2bt3q4MgAOKGZ0wMAAMuOHTv0z3/+U1u2bAk63rx5c5Z9gAzF0g8A13j77bfVrFkznXDCCUHHt2zZQiItkKEIVAC4htfrVU1NjX766afaYy+//LI++OADAhUgQxGoAHCNU045Rc2bN9eUKVP02Wef6YUXXtC1114rSSz9ABmKZFoArrJkyRJNmzZNlZWVOvnkk9W/f3/Nnz9fu3fvdnpoABxAoAIAAFyLpR8AAOBaBCoAAMC1CFQAAIBrEagAAADXIlABAACuRaACAABci0AFAAC4FoEKAABwLQIVAADgWgQqAADAtQhUAACAa/1/FmI/WvL4pSgAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'noisy \"measurements\" of $R = 1 + d^2$')" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = range(0,2,length=200) # 20 points from 1 to 4\n", + "b = 1 .+ 2*d.^2 + randn(200)*0.1 # measurements with Gaussian random noise\n", + "plot(d, b, \"r.\")\n", + "xlabel(L\"d\")\n", + "ylabel(L\"R\")\n", + "title(\"noisy \\\"measurements\\\" of \\$R = 1 + d^2\\$\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The corresponding matrix $A$ is:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "200×2 Matrix{Float64}:\n", + " 1.0 0.0\n", + " 1.0 0.000101008\n", + " 1.0 0.00040403\n", + " 1.0 0.000909068\n", + " 1.0 0.00161612\n", + " 1.0 0.00252519\n", + " 1.0 0.00363627\n", + " 1.0 0.00494937\n", + " 1.0 0.00646448\n", + " 1.0 0.00818161\n", + " 1.0 0.0101008\n", + " 1.0 0.0122219\n", + " 1.0 0.0145451\n", + " ⋮ \n", + " 1.0 3.57001\n", + " 1.0 3.60809\n", + " 1.0 3.64637\n", + " 1.0 3.68486\n", + " 1.0 3.72354\n", + " 1.0 3.76243\n", + " 1.0 3.80152\n", + " 1.0 3.84081\n", + " 1.0 3.88031\n", + " 1.0 3.92\n", + " 1.0 3.9599\n", + " 1.0 4.0" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [d.^0 d.^2]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rank(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$A$ doesn't have an inverse, of course:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "ename": "LoadError", + "evalue": "DimensionMismatch: matrix is not square: dimensions are (200, 2)", + "output_type": "error", + "traceback": [ + "DimensionMismatch: matrix is not square: dimensions are (200, 2)", + "", + "Stacktrace:", + " [1] checksquare", + " @ /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/LinearAlgebra.jl:232 [inlined]", + " [2] inv(A::Matrix{Float64})", + " @ LinearAlgebra /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/dense.jl:885", + " [3] top-level scope", + " @ In[20]:1", + " [4] eval", + " @ ./boot.jl:368 [inlined]", + " [5] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)", + " @ Base ./loading.jl:1428" + ] + } + ], + "source": [ + "inv(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if we blindly do `A \\ b`, it seems to give us quite a reasonable $x$, very close to the exact $x = (1,2)$ of the underlying data:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.9949711805197324\n", + " 1.9994117301241834" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x̂ = A \\ b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What is it doing? Let's plot the curve from the coefficients `A \\ b`:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHLCAYAAADmwLMJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYUElEQVR4nO3deZzN9eLH8df3zBjbMEW4NAwxWaIoe4oUKqXNWiHZKnUVKm3S8otKaK/hlKWILC1XkWpQ15CtvTQSOVcKyTLWmfP5/fE9Z+acmTMbM3OWeT8fj/PgfM/nnPP5npmv8/ZZLWOMQURERCQEOYJdAREREZHcKKiIiIhIyFJQERERkZCloCIiIiIhS0FFREREQpaCioiIiIQsBRUREREJWQoqIiIiErIUVERERCRkKaiIiIhIyFJQERERkZCloCIiIlLCjh07xqBBg6hduzaVK1embdu2rF69OtjVCkkKKiIiIiUsPT2devXq8d///pd//vmH22+/nR49enD48OFgVy3kWNo9WUREJPiqVKlCcnIy5513XrCrElLUohJmZsyYgWVZAW9jxozxK7Nt27bM561evZrx48fzzz//FPo9X3jhBSzLomnTpjkea9KkCaNHjw74vPHjx2NZFnv27Cn0e55KfUtaoM+7pN4TYMWKFSX+/lL0TvV3vrh/J+bNm8c555xD+fLlsSyLr7/+OteyH330kd+/TdHR0dStW5dRo0Zx6NChIqtTIAcPHuS+++6ja9euVKtWDcuyGD9+fLG+Z0G43W5iY2Nz/ffy559/5siRI9SvX7+Eaxb6FFTC1JtvvklKSorf7d///jcA3bt3JyUlhZo1a2aWX716NY899thJ/SP4xhtvAPDDDz+wdu1av8duuOEGFi1adPInkotTqW9JC/R5ixRWKP/O7969m/79+1O/fn2WLl1KSkoKZ599dq7lN27cCMDChQtJSUlh2bJldO7cmSlTpmT+O1Vc9u7dS1JSEseOHePaa68t1vcqjB9++IG0tDRatWqV47HDhw/Tv39/Hn74YWJjY4NQu9AWHewKyMlp2rQpLVu2DPhYtWrVqFatWpG8z/r16/nmm2/o3r07S5Yswel00qZNm8zHb7jhBp588kk2bNjABRdcUCTvGW6K8vOWk3P48GEqVKgQ7GpErF9++YUTJ05w880307Fjx3zLb9y4kXLlynHNNdcQFRUFwCWXXEJycjIffvhhsdY1ISGBffv2ZbbmTp8+/aRfq1OnTtStW5cZM2accr2++uorgBxB5cSJE/Tu3ZsmTZrw4IMPnvL7RCK1qESg7F0R48eP59577wWgXr16mc2xK1asyPe1nE4nABMnTqR9+/a88847foO9mjdvTv369Vm4cGGur7Fjxw6uv/56KleuTFxcHDfffDO7d+/OtXxB6vvll19y6aWXUqlSJSpUqED79u1ZsmRJvufj7Y764Ycf6NevH3FxcdSoUYNbb72V/fv35yhfkPcJ1PWze/duhg0bRu3atSlbtizVqlXjwgsv5NNPPwXgiy++wLIs5s6dm+M9Z82ahWVZrFu3Lt/zyescv/32W3r16kVcXBxVqlRh1KhRpKens3nzZi6//HIqVapE3bp1eeaZZwK+TmpqKjfeeCPVq1enbNmyNG7cmJdfftmvzJYtWxg0aBCJiYlUqFCBM888k6uvvprvvvvOr1x+nwfALbfcQt26dXM9n+z3N27cSM+ePTn99NP9mssLUu+S/IwK8juX3+98QT6/k5Xf7/gtt9xChw4dAOjTpw+WZdGpU6c8X3PDhg00btw4M6QAOBwOqlWrRnR08f7/2PvZBdO0adNo1qwZ5cqVo2nTpixbtoyvvvoqx++q2+1mwIABREVF4XQ6g17vkGUkrLz55psGMGvWrDEnTpzwu2Uv89tvvxljjNmxY4e56667DGAWLVpkUlJSTEpKitm/f3+e73X48GETFxdnWrVqZYwxZvr06QYwM2bM8Ct33333mbPPPjvH8x999FEDmISEBHPvvfeaZcuWmcmTJ5uKFSuaFi1amOPHjwd83/zqu2LFClOmTBlzwQUXmHnz5pn33nvPdO3a1ViWZd555508z8lbp4YNG5px48aZ5cuXm8mTJ5uyZcuaQYMG+ZUt6Ptk/7yNMaZbt26mWrVqJikpyaxYscK89957Zty4cX7Pa9Gihbnwwgtz1LFVq1aZn/nJ8D3HJ554wixfvtzcd999BjB33nmnadSokXnhhRfM8uXLzaBBgwxgFi5c6PcaP/zwg4mLizPNmjUzs2bNMp988okZPXq0cTgcZvz48ZnlVq5caUaPHm0WLFhgVq5caRYvXmyuvfZaU758efPzzz8X6vMYOHCgSUhIyPV8st9PSEgw999/v1m+fLl57733ClXvkvyMCvI7l9/vfEE+v5NRkN/xLVu2mJdfftkA5qmnnjIpKSnmhx9+yPU19+zZYwAzYMAAv+O7du0yFSpUMHfddVeuz3W73Tn+XcvtVhC7d+82gHn00UcLVD67jh07moEDBxbqOSNHjjTlypUzDz/8sPn888/NK6+8YmrUqGFq165tunTp4ld2yJAhpmPHjubIkSMnVb/SQkElzHi/FAPdvBdvoC/OZ599Nsex/MyaNcsA5rXXXjPGGHPw4EETGxtrLrroIr9ya9euNYD57rvv/I57/4G+5557/I6//fbbBjBvvfVWru+dV33btm1rqlevbg4ePJh5LD093TRt2tTEx8cbt9ud6+t66/TMM8/4Hb/jjjtMuXLl/J5b0PcJ9HnHxsaau+++O9d6+D5v06ZNmce++uorA5iZM2fm+dy8eM/xueee8zvevHnzzC9CrxMnTphq1aqZ66+/3q9st27dTHx8fI4we+edd5py5cqZv//+O+B7p6enm+PHj5vExES/n3tBPo/CBpVx48blKFvQepfkZ1TQ37m8fucL8vmdjIL+jicnJxvAvPvuu/m+5ieffGIAM3HiRHPixAlz+PBhs2bNGtOmTRtz3XXX+b1Xdt73KcitIP+WFSaoBApJF198sRkwYECBQ9KCBQsMkCNAPvXUUwYwDz74YOaxbdu2GcCUK1fOVKxYMfO2atWqfOta2qjrJ0zNmjWLdevW+d2KuknV6XRSvnx5+vbtC0BsbCy9evXiiy++IDU1NbNc69atqVOnTq7dPzfddJPf/d69exMdHU1ycnKh65SWlsbatWvp2bOn36CzqKgo+vfvj8vlYvPmzfm+To8ePfzun3vuuRw9epS//vqrSN6ndevWzJgxgyeffJI1a9Zw4sSJHGX69etH9erV/boKXnzxRapVq0afPn3yPYf8XHXVVX73GzdujGVZXHHFFZnHoqOjadCgAdu3b888dvToUT777DOuu+46KlSoQHp6eubtyiuv5OjRo6xZswaw14J46qmnaNKkCTExMURHRxMTE0Nqaio//fRToT6Pwrrhhhv87hem3iX5GXnl9zuXl+L4/IrqWspuw4YNAIwdO5YyZcpQoUIF2rZtS+XKlZk3b16eg0UvuOCCHP+u5XarVatW4U86DytXrqRMmTJ+t1WrVjFr1qwcx3ObTfXEE0/QqlWrHNdvkyZNAPzGFSYkJGCM4ciRIxw6dCjzdtFFFxXpeUUCBZUw1bhxY1q2bOl3K0pbtmxh1apVdO/eHWMM//zzD//88w89e/YEsmYCeV1//fW5BpV//etffvejo6OpWrUqe/fuLXS99u3bhzEm4Awb7z9cBXndqlWr+t0vW7YsAEeOHCmS95k3bx4DBw5k+vTptGvXjipVqjBgwAB27drl957Dhw9nzpw5/PPPP+zevZv58+czZMiQzPqciipVqvjdj4mJoUKFCpQrVy7H8aNHj2be37t3L+np6bz44os5/oG+8sorATKnnI8aNYpHHnmEa6+9lg8//JC1a9eybt06zjvvvMzPsqCfR2Fl/9kUpt4l+Rl55fc7l5fi+PyK6lrKbuPGjURFRbF69WrWrVvH0qVL6dy5M8uXL2fatGl5Pjc2NpbmzZsX6BYTE1PouuUlUEg6//zzueqqqwoUknbt2sU333zDjTfemOMxl8sF5BxIKwWjWT8S0BtvvIExhgULFrBgwYIcj8+cOZMnn3wyc7Bcz549mTp1KqmpqSQmJvqV3bVrF2eeeWbm/fT0dPbu3ZvjH+6COP3003E4HPzxxx85Htu5cycAZ5xxRqFft6jf54wzzmDq1KlMnTqV33//nQ8++ICxY8fy119/sXTp0sxyt99+OxMnTuSNN97g6NGjpKenc9ttt51y/U/F6aefnvm/6hEjRgQsU69ePQDeeustBgwYwFNPPeX3+J49ezjttNMy7xfk8yhXrhzHjh3L8V65rcOTfeBhYep9qkryvaDgv0+FUVzX0saNG2nSpAnt2rXLPNamTRvi4+OZPn06d9xxR67PXblyJZdcckmB3ue3334LOPj6ZFWqVCnHf/gqVapE1apVC/QfQW8YCRT85syZw7/+9S/i4+OLprKljIJKKVGY/71lZGQwc+ZM6tevH3Bq33/+8x+ee+45Pv7448ym8/bt21OzZk0WLlzI2LFj/cq//fbbflOX58+fT3p6ep4zB3Krb8WKFWnTpg2LFi1i0qRJlC9fHrBHz7/11lvEx8fnub5DQRXl+9SpU4c777yTzz77jP/+979+j9WsWZNevXrxyiuvcPz4ca6++mrq1KlzyvU/FRUqVOCSSy5h06ZNnHvuuXn+z9WyrBytP0uWLOF///sfDRo0CPic3D6PunXr8tdff/Hnn39So0YNAI4fP86yZcuKvN6nqjjeq6DXaF6/T4VRHNfS/v372bp1K4MGDfI7ftppp3H99dcze/Zstm7dyllnnRXw+d5WjYIo6q6fU+VdouD777/36/pZsGABq1evztHNKAWnoFJKNGvWDIDnn3+egQMHUqZMGRo2bEilSpVylP3444/ZuXMnTz/9dMAw0bRpU1566SWcTmfmxWdZFtddd13AoLJo0SKio6Pp0qULP/zwA4888gjnnXcevXv3Pqn6TpgwgS5dunDJJZcwZswYYmJieOWVV/j++++ZO3dukU3xO9n32b9/P5dccgk33ngjjRo1olKlSplN4Ndff32O8iNHjsxcm+bNN98skrqfqueff54OHTpw0UUXcfvtt1O3bl0OHjzIli1b+PDDD/n8888Be4zHjBkzaNSoEeeeey4bNmzg2Wef9fufY0E/jz59+jBu3Dj69u3Lvffey9GjR3nhhRfIyMgo8nqX5GdUULn9zrvd7kL9PhVGUV9LGzduxBhD69atczzWs2dPZs+ezeLFi3NdnTVQq8bJ+Pjjj0lLS+PgwYMA/Pjjj5ktw1deeWWxrLlTp04dWrVqxZQpU6hWrRrnnnsuq1at4vnnnwfU7XNKgjiQV06Cd6bIunXr8i2TfVT8Aw88YGrVqmUcDocBTHJycsDnX3vttSYmJsb89ddfub5H3759TXR0tNm1a1fmsc8//9wAZtu2bcaYrNkOGzZsMFdffbWJjY01lSpVMv369TN//vlnvueaV32/+OIL07lzZ1OxYkVTvnx507ZtW/Phhx/m+5reOu3evdvveG6fWUHeJ/tzjx49am677TZz7rnnmsqVK5vy5cubhg0bmkcffdSkpaUFrFfdunVN48aN861/QeR2jgMHDjQVK1bMUb5jx47mnHPOyXH8t99+M7feeqs588wzTZkyZUy1atVM+/btzZNPPplZZt++fWbw4MGmevXqpkKFCqZDhw7miy++MB07djQdO3Y0xhTu8/joo49M8+bNTfny5c1ZZ51lXnrppVxn/WQ/v8LUuyQ/o8L8zgX6nT+Z36fCKMjveEFn/UyaNCnzms/u6NGjplKlSqZDhw6nXOf8JCQknNJsIa/CTk/+7bffzOWXX25iY2PNaaedZq6++mrjdDoNYJYsWVL4ExFjjDHalFCKTEZGBjVr1mTs2LGMGjUq2NUJG99++y3nnXceL7/8cp799yIipZGCikiQ/Prrr2zfvp0HH3yQ33//nS1btmgZeBGRbDQ9WSRInnjiCbp06cKhQ4d49913FVJERAJQi4qIiIiELLWoiIiISMhSUBEREZGQpaAiIiIiISusF3xzu93s3LmTSpUqFdkiXyIiIlK8jDEcPHiQWrVq4XDk3WYS1kFl586d1K5dO9jVEBERkZOwY8eOfPdACuug4l3+fceOHVSuXDnItREREZGCOHDgALVr1w64jUt2YR1UvN09lStXVlAREREJMwUZtqHBtCIiIhKyFFREREQkZCmoiIiISMhSUBEREZGQpaAiIiIiIUtBRUREREKWgoqIiIiELAUVERERCVkKKiIiIhKyFFREREQkZCmoiIiISMhSUBEREZHAXC5ITrb/DBIFFREREcnJ6YSEBOjc2f7T6QxKNRRURERExJ/LBcOGgdtt33e7YfjwoLSsKKiIiIiIv9TUrJDilZEBW7aUeFUUVERERMRfYiJHLIu7gD+9x6KioEGDEq+KgoqIiIhkcbkgNZUHLryQl4CugHE44PXXIT6+xKsTXeLvKCIiIqHJ6YRhw/jM7eZ5z6GJEydi3XRTUEIKqEVFREREIHMA7T9uN7d4Dt1mWVwRxJACCioiIiICmQNo/w24gPrAs8YEZQCtLwUVERERgdhYFloWs7HDwWwgNkgDaH1pjIqIiEhp5Bk0S2wszJ/PrueeY7gxAIwF2kVFBW0ArS8FFRERkdLGM2jWu1aKAYYAe4HmwKOWBSkp0KpV8Orooa4fERGR0iT7qrNAErAEiMHu8okxBtLSglRBfwoqIiIipUm2VWc3A/d4/j4RaApBW9wtEAUVERGR0iQxERz21/8J4GbgCHApMBLskBICY1O8FFRERERKk/h4SEqCqCgeB9YDpwEzLAvHmDGwbRsMHhzUKvpSUBERESktXC5IToZu3Vi9YAFPeVpWXh83jvjff4dnnw2ZlhQvzfoREREpDXxm+hy0LG6uWhW3203//v3p/dhjwa5drtSiIiIiEumyzfQZaQy/7dlDQnw8L774YpArlzcFFRERkUjnM9NnEfAmYAGz772XuLi4YNYsX+r6ERERiVS+q886HOx0uxnqeWisZXHR9dcHtXoFoRYVERGRSOR0QkICdO4MbdvivvlmBgF/A+cD4199NeQGzgaiFhUREZFIk331Wbebl2fP5hOgXEwMby1dSswllwS1igWlFhUREZFIk2312R+B+zwbDk6aPJnGYRJSQEFFREQk8visPnscuAk4ClzeqRN33HFHMGtWaAoqIiIikcZn9dlxwNfAGbGxvDl3LpZlBblyhaOgIiIiEokGD2bl3Lk84wkm02bP5l//+leQK1V4CioiIiIR6J9//mHAmDEYYxjcty/XxsXZg2zDjIKKiIhIhDHGcNttt/H7779Tv1o1ps6bZ09TTkiwpy2HEQUVERGRSOJyMXPsWObNm0d0dDRz9uwh1jPjB7cbhg8Pq5YVBRUREZFI4HLBvffyS5063PnMMwA83q4drb0hxSsjA7ZsCUIFT44WfBMREQl3TicMHcpxY7gRSAMuAe778kt7mrLPmipERUGDBkGqaOGpRUVERCSceVehNYaHgQ1AFWA2EGUMjBplhxOw/3z99bBYOt9LLSoiIiLhzLMK7XLgWc8hJ3Am2MFk5Ej7tmWL3ZISRiEFFFRERETCW2Iiuy2LAZ6xKLcB10LO1pMwCyhe6voREREJY+bMMxnUrBm7gCbAc5YFY8bAtm0weHCQa3fq1KIiIiISxl566SWWfPstZcuWZe7LL1OhW7ewbT0JREFFREQkHLlcfLt0Kffeey8Azz77LOdGQAtKdgoqIiIi4cbp5PDQofQzhmNA93PP5c477wx2rYqFxqiIiIiEE8905NHG8CPwL+DN777DWr8+2DUrFgoqIiIioc7lguRk+8/UVN5zu3nN89AsoJox0LZt2O3jUxAKKiIiIqHM6bQ3E/RsKuj69FO8I1HGAF285cJwH5+CCGpQSU9P5+GHH6ZevXqUL1+es846i8cffxy371K/IiIipZV31VnP92KG203/p57ib+AC4P+ylw+zfXwKIqiDaZ9++mlee+01Zs6cyTnnnMP69esZNGgQcXFxjBw5MphVExERCT7PqrNeTwMrgIrlyjFn9mxi+vQJ6318CiKoLSopKSlcc801dO/enbp169KzZ0+6du3K+ggdECQiIlIoiYn2poLAl8A4z+EXn3ySs3v2hKSksN7HpyCCGlQ6dOjAZ599xi+//ALAN998w5dffsmVV14ZsPyxY8c4cOCA301ERCRixcdDUhJ7HQ76ARnATY0bc0vv3vbjgwfbK9AmJ0fMSrTZBTWo3H///fTr149GjRpRpkwZWrRowd13302/fv0Clp8wYQJxcXGZt9q1a5dwjUVEREqWufVWBnXujAtIBF796SesunWzZvjEx0OnThHXkuIV1KAyb9483nrrLebMmcPGjRuZOXMmkyZNYubMmQHLP/DAA+zfvz/ztmPHjhKusYiISMl6/vnn+fDTT4kB5gOVIGJn+AQS1MG09957L2PHjqVv374ANGvWjO3btzNhwgQGDhyYo3zZsmUpW7ZsSVdTREQkKNavX899990HwGSgue+D3hk+EdqS4hXUFpXDhw/jcPhXISoqStOTRUSk1Nu/fz99+vThxIkTXHf55dxhWf4FInCGTyBBbVG5+uqr+b//+z/q1KnDOeecw6ZNm5g8eTK33nprMKslIiJS8jyrzpKYiDGGYQMGsHXrVhISEnDOmYO1aJHd3ZOREbEzfAKxjDEmWG9+8OBBHnnkERYvXsxff/1FrVq16NevH+PGjSMmJibf5x84cIC4uDj2799P5cqVS6DGIiIixcDpzFrYzbJIMobh2K0JXzzwAG2fesou53LZ3T0NGoR1SCnM93dQg8qpUlAREZGw53LZS+R7hj18B7QGjgLPAPc6HLBmDbRqFcRKFq3CfH9rrx8REZFg8ll9Ng3ojR1SrgBGg/1YhG44WBAKKiIiIsHks/rsncDPQC1gJj5f0qVoOnJ2CioiIiLB5Fl9drZlMQP7i3kOUC17uQjccLAgFFRERESKm8tlL3OfS4vI5g4duL18eQDGjRpFx6++ymxlyVRKpiNnp6AiIiJSnJxOe7Bs5872n9nGmhzdsoU+3buTdvgwnTp14uFnnrEHzpaCDQcLQkFFRESkuLhcWdOOIedYE6eT0YmJfPPrr1QD3r7qKqK84aQUbDhYEAoqIiIixcVnRk+mjAx4911Yt455Q4fyiufwLKDW/ff7dw9F+IaDBRHUlWlFREQimndGT/awMmoUm4EhnrsPAJdDqdm/pzDUoiIiIlJcPDN6MseaeBwGegKHgI7A494HSumA2bwoqIiIiBQn71iTyZMzD40AvgdqAHPxdG+U4gGzeVFQERERKW7x8dCrFzgcvAGZ66W8A9T0lpk7t9QOmM2LgoqIiEhJiI/nm0ceYYTn7hNAJ+9jUVHQrl1QqhXqFFRERESKi89CbwcOHKDXnDn2Pj716jHWu6CbunzypFk/IiIixcHpzFxDxVgWg88/n9TUVGrXrs3sdetwHDliz/Bp0EAhJQ8KKiIiIkUt20JvLxrDgg0bKFOmDPPnz6dq1ap2OQWUfKnrR0REpKj5LPS2FhjjOfzssGG0bds2aNUKRwoqIiIiRc2z0NteoDdwArgB+Pf99we3XmFIQUVERKSoxcfjfu01BgC/Aw0A5wsvYNWuHeSKhR+NURERESlqLhdPf/UVHwHlYmJY8OGHxHXtGuxahSUFFRERkaLkdLJi6FAeNgaAl/r14zyFlJOmrh8REZGi4HLB/PnsGjqUfsbgBgYCt86e7b8jshSKgoqIiMipcjohIYETffrQ2xh2AU2BVwDL7bbXS5GToqAiIiJyKtaty1wz5T7gC6AysBCoANoR+RQpqIiIiJwspxPatAG3m3eAqZ7Ds4CzQcvjFwENphURETkZ3tVnjeF7wLvv8QPANQ4HvPOOvdGgQsopUVAREREpDJfLXnl2925wu9kPXA8cBi4DnrAsSEqCXr2CW88IoaAiIiJSUD4bDWJZmTN7UoE6wFzLImrtWmjVKrj1jCAaoyIiIlIQ2TYaxBieBt4HYoAFDgdnTJumkFLE1KIiIiJSED4bDQIsBx72/P3lrl1p5XRqPEoxUIuKiIhIQXg2GgTYDvQD3NiDaId89lkQKxbZFFREREQKIj4ekpI4aln0BPYCFwAvAWRkaFG3YqKgIiIiUlCDB3NXjx6sB6pgL+pWDrSoWzFSUBERESmg6dOnM/3997Esi7kOBwmgRd2KmQbTioiI5MflYv1//sOdd98NwJNPPknXAQPs7p4GDRRSipGCioiISF6cTvYMHcoNxnAM6NG8OWPHjrUH1iqgFDt1/YiIiOTG5SJ96FD6GcPvQANg1rff4ti5M9g1KzUUVERERHKTmsr9xvApUBFYBMS53ZrhU4IUVERERHIxe9UqJnv+PhNoBprhU8I0RkVERCSA9Y88wtAnnwTsFWhvAM3wCQIFFRERkWz+3LSJ6558kmPAVcBjYA+eTUnRXj4lTEFFRETEy+Xi+I8/0mvkSFxAQ+AtPOMk3G5ISwtq9UojBRURESndXC57w8ENG+D++7nH7eYLoDL2zshx3nIamxIUCioiIlJ6OZ0wbFjmrsjTgVcAC3gbu0UF0NiUIFJQERGR0snl8gspKcAdnoeewB6bAmhsSpBperKIiJROqamZIWUncD1wAnt2z4O+5TQ2JagUVEREpHRKTASHg2PYIWUX0BSYgd31k0ljU4JKQUVEREotc8893GFZrAVOB967/35ix4yxwwlobEoI0BgVEREpfTyDaF9xu3kDcFgW78yeTf2bbrIfHzlSOyOHCAUVEREpXdatg2HDWOl2c7fn0NNA144ds8rExyughAh1/YiISOnhdEKbNvzmdtMTSAduBEYbo40GQ5SCioiIlA6e6cgHjaEHsAc4H5gGWBowG7IUVEREpHRITSXD7eYm4HugJvbKsxUcDg2YDWEaoyIiIqVDYiIPAh8C5YD3gHiHA9as0WJuIUwtKiIiUirM+vxznvH8/Q2gdVQUJCUppIQ4taiIiEjk8W40GBsLhw6xev9+hg4dCsBDd91Fv+uv19TjMKGgIiIikSXbRoPbgeuA48B1113H41On2vv3SFjQT0pERCJHto0GDwHXAH8B5wGzJkzAoZASVvTTEhGRyLF6dWZIcQP9gW+AGsAHQOwffwSvbnJSFFRERCQyOJ3Qt2/m3UewZ/bEAIuBOlorJSwpqIiISPjzdvkYA8DbwFOeh6YD7bS5YNhSUBERkfCXmprZ5bMWGOw5fH/XrvRPToZt26BbN0hOtkONhA0FFRERCS8uV87AkZgIDgc7gGuBY8DVwFPTpkGnTrBsGSQkQOfO9p9OZzBqLidBQUVERMKH0xk4cMTHk/bii1wD7AKaAW+/9BKOOnVyzATC7Ybhw9WyEiYUVEREJDzkETgyMjK46ZNP2ARUO+00Pli9mkojRtjlfLqFMmVkaLfkMKEF30REJDzkETjumzKF999/n5iYGBb/5z/Ubdcuq4ynW8jvuZoBFDbUoiIiIuHBGzh8RUXxWkoKkydPBmDGjBlceOGF/mXi4+09faKiMp+jGUDhQ0FFRETCQ4DAseyuu7jzkUcAeOKJJ+jXr1/g5w4ebM/88c4AGjw4cDkJOZYxnknnYejAgQPExcWxf/9+KleuHOzqiIhISXC5YMsWvjtxggtvuIGDBw8ycOBA3nzzTSzLCnbtpAAK8/2tMSoiIhJe4uP5IyqK7m3acPDgQTp16kRSUpJCSoRS14+IiISVtLQ0evTowY4dOzg7Pp6FL7xATExMsKslxURBRUREwobb7aZ///6sX7+eqsBHLhdVmjfXAm4RTEFFRETCg8vF/f36sXjxYmKwNxysD1rALcIFPaj873//4+abb6Zq1apUqFCB5s2bs2HDhmBXS0REQoF3ufxJk3i9Th0mzZ8PwAygg285LeAWsYI6mHbfvn1ceOGFXHLJJXz88cdUr16dX3/9ldNOOy2Y1RIRkVDgdGauRLsM8Kwzy+NAjknIDgf89ZcdbLQ+SkQJ6vTksWPH8t///pcvvvjipJ6v6ckiIhHK5bL38nG7+R5oDxwEBmC3pliQtdqsd7aPMfaxpCStkxLiCvP9HdSunw8++ICWLVvSq1cvqlevTosWLZg2bVqu5Y8dO8aBAwf8biIiEoE8y+XvArpjh5SOQBKekBIVBWvWwPz5dlDx/p9b41UiTlCDytatW3n11VdJTExk2bJl3Hbbbfz73/9m1qxZActPmDCBuLi4zFvt2rVLuMYiIlIiEhM5ZFlcBfwOnA0sAspC1hL4rVrBGWdow8EIF9Sun5iYGFq2bMnq1aszj/373/9m3bp1pKSk5Ch/7Ngxjh07lnn/wIED1K5dW10/IiIR5sSJE1xz/vl8/P33nAGkOBw0mDjRDicNGmSNQ/HpIsoUFWUvk6+xKiErbFamrVmzJk2aNPE71rhxYxYuXBiwfNmyZSlbtmxJVE1ERIqLy2V37SQmBgwTxhhuv/12Pv7+e8qXK8d/nnuOBj16BA4e3v1/hg+3W1K04WDECWpQufDCC9m8ebPfsV9++YWEhIQg1UhERIqVz0yegANfXS4ef/hhnDNn4nA4mDd/Pm2uvjrv1xw8GLp1s7t7fFtbJCIEtetn3bp1tG/fnscee4zevXvz1VdfMXToUJKSkrjpppvyfb5m/YiIhJH8ummcTt4YOpTBnq+l1/r3Z3guYxYlvIXNrJ9WrVqxePFi5s6dS9OmTXniiSeYOnVqgUKKiIiEGc9MHj/ega8uFx8PHcowT0h5EBg+Z45m70jwd0++6qqruOqqq4JdDRERKW6JiVlrn3hFRUGDBmxYsoRexpAB9AeeBDvEpKRAr17Bqa+EhKAvoS8iIqXIqFF2OIHMga+/nThB90ceIQ24DJiOZ60UgL59teFgKaegIiIixc/ptMenTJpkt6iMGQPbtrH32mu54oor+HP3bs6rXZuFlkWM7/O0gFupp6AiIiLFy+XKmukD9iqyU6Zw5MgRevTowebNm6lduzYfrVlD5Xfeyfl8LeBWqimoiIhI8QowiDYjI4ObBg9m9erVnHbaaXz85pvU2rwZ6tWzx7H48oxjkdIp6INpRUQkwmUbRGuAuy2LxV98QUxMDO8NHco5Xbtmra3Svz+89ZYWcBNAQUVERIqD7+qzYA+inTIFMjKYZFm85JmGPHvqVDreeWdWi4vbbYeUlBRIS9MCbqKgIiIiRcx39VnLM3/HGLAsZl1xBfd9/DEAzz3yCL2PHAm8tkpaGnTqVLL1lpAU1JVpT5VWphURCTGBVp/1WAJcA2QAo7p0YdKnn2IF+grSpoIRL2xWphURkQgTaPVZYDXQCzuk3HzRRTybV0jRmBTxoaAiIiJFxztw1scPwFXAEeAK4I3bbsMRKKRMmWK3pPhuUiilnoKKiIgUnfh4e0dkz+qzvwPdgH1AW+Ddl1+mzMUXB56C3LOnWlIkBwUVEREpWoMHw7Zt7HnvPbo1aMD/gMYJCfzn22+peMcdOcKMunskLxpMKyIiRe7QoUNceumlfPXVV8THx7N69Wpq167tX8jlslec1RTkUqcw39+aniwiIkXq+PHj9OzZk6+++ooqVarwySef5AwpYIcTBRTJh7p+RESkyLjdbgYNGsSyZcuoUKECS5YsoXHjxsGuloQxBRURESkSxhhGjx7NnDlziI6OZsGCBbRt2zbY1ZIwp6AiIiJF4sknn2Tq1KkAvPnmm1xxxRXBrZBEBAUVERE5ZS88/jjjxo0DYOrUqdx8881BrpFECg2mFRGRUzJr8GBGvvEGAOMti5GxsUGukUQStaiIiMhJe2/6dG71hJS7gXHGwPDh9tRjkSKgoCIiIifls88+o88dd5AB3AI8B1hg7368ZUswqyYRREFFREQKbc2aNVxzzTUcP3GC64Fp+HyhOBxQsWLwKicRRUFFREQK5bvvvuPKK68kLS2NLsAcsg14dLuhbVtwOoNTQYkoCioiIlJgv/76K127dmXfvn20AxYDZQMVdLs1VkWKhIKKiIgUyP/+9z8uu+wydu3axblnncUSIM8OHo1VkSKgoCIiIvnavXs3XTt3Ztu2bTSoW5dPFizgdEc+XyFRUfaGgyKnQEFFRETytO/77+natCk//vIL8cCn27dTY+NGSEqywwjYfw4c6H//9de16aCcMssYY4JdiZNVmG2iRUQkAJcLUlMhMTFgqDjw0kt0uesuvgJqAKuAs8Ge2bNmDdSsaXfvNGhgP9/l8r8vEkBhvr/VoiIiUlo5nZCQAJ07239mm6WT9ssvdPeElKrAp3hCCmTN7Fm2DDp1ygol8fH+90VOkYKKiEhp5HLBsGF24IAcs3SObtnCNVddxZdAHPAJ0DT7a2hmj5QABRURkdIoNTUrpHhlZEBKCsdHjaJnYiKfpaYSCywFzs/tdTSzR4qZNiUUESmNEhPtcSa+YcWySO/dmxuBJUB54D9AW5/HAfAd2qiZPVLMCtWisn37dj755BP++OOPgI/v3LmzSColIiLFLD7ef9aOw0GGMQwEFgIxwHtAR2/5KVPg999h2jTN7JESVeBZP3PnzmXAgAFkZGRQrlw5Xn/9dfr378/27duZO3cuixcvZsOGDaSnpxd3nTNp1o+IyCnyzNJx79rFsH79cGI3tS8CrvaWiYqCbduyAolm9sgpKpZZP0888QR33XUX3333HV26dOH222/noYceon79+syYMYPWrVuzaNGiU668iIiUoPh4TMeOjFy2DCf2l8LbZAsp2VtNNLNHSlCBx6j8+uuvjBw5koSEBF5++WXq1KlDSkoK3333HY0bNy7OOoqISFHyWTvFnHkmo0aN4qUZM7AsizeB3sbY41dGjYKRIxVIJKgKHFROnDhB+fLlAYiPj6d8+fJMmjRJIUVEJJw4nZnTko1lMeayy5i6fDkAr99zDwP69oW0NHXrSMgo1GDaOXPm8PPPP9tPdDg4/fTTi6VSIiJSDHzWTjHA/cYw2RNSXrMshk6ebC/i9uuvCikSMgocVDp06MCjjz7KOeecwxlnnMHRo0d5/vnnmT9/Pj/++GOJDqIVEZGT4Fk7xQAPAM96Dr9iWQz3zqvQIm4SYgrc9bNq1SoAUlNT2bBhAxs3bmTDhg3MmjWLf/75hzJlytCwYUO+/fbbYqusiIgUQvZ9fBITMZbFw8bwtKfIS5bF7dknf3oXcVOrioSAQi/4lpiYSGJiIn379s089ttvv7F+/Xo2bdpUpJUTEZGT5DMWBYcDkpIwt97KuO7deeo//wHgectixNNPw9ix/gu/aRE3CSFFsjJtvXr1qFevHr169SqKlxMRkVORyz4+j/3wA096QsrkO+7g3w88YLeaVKlid/dkZGgRNwk5WkJfRCTSBNjH5/GMDB6bMgWASQ8/zD1PPJH14ODB0K2bFnGTkKSgIiISabLt4/N/wKOeh54BRj/1FNStawcUr/h4BRQJSdo9WUQk0vjs4/M48LDn8ATgXtDMHgkrCioiIhHI3Hor4265JbMl5SlgrG8B78wekRCnrh8RkQhjjOHBBx9kotMJ2OuljMleSDN7JEwoqIiIRBCzYwf3jh7Nc+++C8AUy+Lu7OukaGaPhBF1/YiIhDOXC5KTweXCTJ/OPXXqZIaUl268kbunTbODCdgDbMeMgW3b/AfSioQwy5jsUTt8HDhwgLi4OPbv30/lypWDXR0RkZLls6ibG7gLeMXz0OvAsKgoO5SAph5LSCnM97e6fkREwtG6dX4h5TZgGmAB04FbIWvAbKdOCigSttT1IyISbpxOaNMG3G4ygCHYIcUBzMQTUkADZiUiqEVFRCTU+W4uCHZLijFkAIOA2UCU589+3udowKxECAUVEZFQln1zwVGjwO3mOHAz8C72P+RzgMzd1hwOSEmBVq2CVGmRoqOgIiISqnzGoQD2n5Mnc8Sy6GUMS4AYYB5wre/z3G5ISyvp2ooUC41REREJRT7jUHwddLvpHh/PEqA88KFlca1l+T9XY1MkgiioiIiEGpcrcxyKr31AVyB5xw4qxcay7Pnn6fr77+C7VorGpkiEUdePiEgo8A6YjY2FL77I0ZKyGzukfA1UqVKFpUuX0so7BmXwYOjWTWulSERSUBERCTbfAbMB/A+4DPgZqFGjBsuXL6dZs2b+heLjFVAkIqnrR0QkmLzdPLmElN+Ai7BDSu1atVj1zDM0O/30kqyhSFApqIiIBFNqaq4h5Wfgorg4fgPqV6vGF3/8wdkDB0JCgt0KI1IKKKiIiARTYqK97kk2m4CLgf/t30+Ts8/miz17SPAOrnW7YfhwuzVGJMIpqIiIBFN8PCQlZc3aAVYBnbAH0LZo0YKVTz9Nzez7x3r38RGJcAoqIiLBNniwvctxcjIfTJpEt5gYDgAXX3wxycnJnNGyZc5WF62VIqWEgoqISCiIj2fm9u1cf//9HD1+nB49erB06VLi4uJytrporRQpRTQ9WUQkGHw3GoyPZ/LkyYwePRqAgQMHMn36dKKjff6J1lopUkopqIiIlDSfdVOMZfHwFVfw1EcfATBq1CieffZZHAEG2GqtFCmNFFREREqSz7opGcAdxpDkCSlPPfUUY8eOxcq+d49IKaagIiJSkjzrphwDbgYWABbw2qhRDHvggeDWTSQEKaiIiJSkxEQOWhbXG8OnQAzwtsNBz3vuCXbNREKSZv2IiJSgP8uU4ZI6dfgUqAgscTjomZSksSciuQiZoDJhwgQsy+Luu+8OdlVERIpFamoq7dq1Y8P27ZxRpQqfv/IKl23fbs/oEZGAQqLrZ926dSQlJXHuuecGuyoiIkXHZwryVzt30r17d/bs2cNZZ53F0qVLSUxMtMskJ2dOUxYRf0FvUTl06BA33XQT06ZN43TtCCoi4cobOLz77zid9uaBnTuzpE4dLrnoIvbs2cMFF1zA6tWr7ZDiU0YbDYoEFvSgMmLECLp3785ll12Wb9ljx45x4MABv5uISNBlDxwPPZQ5BdkJXGMMh48fp1vHjqxYsYIaNWr4TVMGtNGgSC6CGlTeeecdNm7cyIQJEwpUfsKECcTFxWXeateuXcw1FBHJx7p1OQPHU09h3G4eB4YAGcAA4MPhw4ldty6rS8j7HC9tNCiSQ9CCyo4dOxg5ciRvvfUW5cqVK9BzHnjgAfbv359527FjRzHXUkQkD04ntGmTI3CkA7cBj3ruPwjMAMrcfHNWq8v69dpoUKQALGOy7x1eMt577z2uu+46ony2Ns/IyMCyLBwOB8eOHfN7LJADBw4QFxfH/v37qVy5cnFXWUQki8tlB45sIeUw0A/4AHshtxeBEYGeHxUFEyfC2LF2S4p3o0HNAJJSoDDf30Gb9XPppZfy3Xff+R0bNGgQjRo14v777883pIiIBFWArps/gR7AV0BZYA5wfW7Pz8iAli1h2zZtNCiSh6AFlUqVKtG0aVO/YxUrVqRq1ao5jouIhAzv+JLYWLvrxhNWfgKuBLYBVYD3gQ4+j+fg7ebRRoMieQr6rB8RkbDhO7unbVvo3x+iokgG2mOHlPr165OyciUdkpNhzZqc41Agq5tHAUUkX0Ebo1IUNEZFREpMoDEpUVHMfOghhj71FCfS02nfvj3vv/8+Z5xxRlYZp9OedpyRYYeWUaNg5EiFFCnVCvP9raAiIlIQycl2S4qHAcYDj3vu9+nThxkzZgSexehyaRyKiI+wGEwrIhJWEhMzx6QcA4YCsz0PjR07lv/7v//DEaibBzQOReQUaIyKiEhBxMdDUhJ/Oxx0ww4pUZZF0tNPM2HChNxDioicEl1ZIiIF9GunTrSvV4+VQCXgI2MY+sAD2qNHpBgpqIiIFMDKlStp3bo1m3/9ldrAf4GuoD16RIqZgoqISD6cTieXXXYZf//9N60aNmQN0My3gPboESk2CioiIrnIyMhg1KhRDBkyhPT0dPr06cPKDz+klvboESkxCioiIgEcOHCAHl27MmXKFADGjx/P3LlzKZ+YCElJdjgBLd4mUsw0PVlEJJutW7dy9UUX8ePOnZQHZloWveLjwbLsAoMHQ7duWhtFpASoRUVExMeqVato3bIlP+7cSS1gFdDLmJwDZuPjoVMnhRSRYqagIiLi4R00u3ffPlpi74Lc0vugBsyKBIWCioiUeunp6dxzzz0MGTKEEydO0Puqq1hpWZzpW8jhgIoVg1VFkVJLQUVESrU9e/bQrVs3pk6dCsCjjz7KOx98QIVp07IGzIK9XkrbtlrcTaSEKaiISKn19ddf07JlSz7//HMqVqzIwoULGT9+PNb//gdnnQXvvWe3pHhpcTeREqegIiKl0jvvvEP79u3Zvn079evXZ81773H96afDpEmQkGDvlNyjhx1OfGmsikiJ0vRkESlVMjIyePDBB3nmmWcA6NaxI3ObNeP0bt1yhhJjcr6AFncTKVEKKiJSauzbt49+/fqxbNkyAO6//HL+b+lSolauzPuJDocdYrS4m0iJU1ARkcjncvHDJ59wzeOP8+v27ZQvW5Y3HnmEvuPG5f/cqChISYG0NC3uJhIECioiEt5cLkhNhcRE+773795A4XSycOhQBhpDGlAXWHzsGM0feSRw144vbwtKq1bFeAIikhcFFREJX04nDBtmd8t4l7c3xv776NGkX389Y4cM4TlP8c7APOAMb7lAoqJgwgQ7nKgFRSToLGPy+y9F6Dpw4ABxcXHs37+fypUrB7s6IlKSXC57dk72AbAeu4A+2EvgA4wBJpDH/84cDhg1CkaOVDgRKWaF+f5Wi4qIhKfU1FxDyhdAb+ywUgmYAVyf12s5HLBmjbp4REKQ1lERkfAUG+u/GBtggCnAJdgh5RxgHXC9t5xlZXUR+XK77cGyIhJyFFREJPw4nfZy9j4tKgexu3pGARnAjcBaoGFUlN1akpwMv/8Oa9fmCDhaG0UkdCmoiEh4cbmyBtB6/GhZtK5bl3eBaIeDFy2Lt4CKvrN2OnWyx560agVJSVn7+GhtFJGQpjEqIhJeso1NeQcYYgxp27Zx5pln8u6779Kudm17mfuKFeHQITvc+AaRwYOhWze7jGb2iIQ0taiISHhJTASHgyPAcKAfkAZc0r49GzdupF27dnbw+PVXu3uoc2d7dlD2XY/j47NaWUQkZCmoiEh4cLnscSbA5scfpy2QBFjAQ92788nKlVSvXj2rrG/3kHY9Fglb6voRkdDns7DbW5bFbTExpAHVTz+dt156iS433uhfPtDUZe+ux2pBEQkrCioiEto8rSOH3W7uAt4wBo4d45L27Xl7wQJq1qyZ8zme7iG/sKKZPSJhSV0/IhLaUlP50e2mNfAGdlfPo8Dyxx8PHFLAbjXRzB6RiKAWFREJaTM2bWIEcBioAcwBOkdFQcOGeT9RM3tEIoKCioiEpIMHDzJixAhmz54NwKXAW8C/HA64556CvUh8vAKKSJhT14+IhJy1a9fSvHlzZs+ejcPh4PHRo1m2bRv/GjPGLjBpUuApxyIScdSiIiLB5XLZs3QSE8nIyGDi44/z6MyZZGRkUAd42+2mw5QpUKMGTJ6cc8pxt25qNRGJYAoqInLqfMJGgUODywXPP58ZPnYANwOrPA/3AV4DTgM7lIwdqynHIqWQun5E5NQ4nXY3TG4rwOb2nDp17C4ct5sFwLnYIaUiMAOYiyekeLnd2kxQpBRSUBGRk3cyK8B6n2MMh4AhQC/gH6AV8DUwEHsasp+oKHj6aU05Fill1PUjIicvtxVgU1LgjDMCdwV5nrMBuBH4BTuUjAUeA8oEeh+Hww4lgwdD376acixSiiioiMjJC7QCrGXZYcLbVZOUZAcMjxN16zLBsnjCGNKBM7GnHXeyPG0oxvi/h8MBa9ZAq1b2fU05FilV1PUjIicv+wqw3jEkgbqCXC42z5zJhdddx6OekNIT+Nay6DRmDPz+u30bM8a/eycpKSukiEipYxmT/b8v4ePAgQPExcWxf/9+KleuHOzqiJReLpfdHfPXX9CnT46H3aNH8/LkydxnDEeB0ypU4OWJE+nXtClWoO4h7+upe0ckIhXm+1tBRUSKjstlz/zx6QraAQwCPvPc7wK8YVnEr12rlhKRUqow39/q+hGRouPTFWSA2UAz7JBSHngZWAbEGwNt22plWRHJl4KKiBStwYPZ8/HH9AQGAPuBNtjTju/AZ9pxQaYyi0ipp6AiIkVqwYIFnNOnD4uwpxU+CXwJnB2osHdlWRGRXGh6sogUiT///JMRI0awcOFCAM7B7vpp4S0QaPqxVpYVkXyoRUVETo7LBcnJmB07ePvtt2nSpAkLFy4kOiqKR0aOZMOrr9LCd5rxtGn2TSvLikghqEVFRLIUdHNBpxOGDWOn281twIeew82BNzMyaP7ii/ag2m3bck4z7tZNU49FpMA0PVlEbJ7wkduKsplcLkydOswwhnuwB8uWAR61LO4zJmsJ/KgoO6gojIhINpqeLCKFU4jNBX//4AOuMIZbsUNKK2AT8JBvSAENlBWRIqGgIiK5by7oEzQyMjJ4vl8/zhkxgmVAWeAZYDVwjsORtXy+lwbKikgR0BgVEQm8uaBP0Ni0aRPDbrqJ9T/9BMCFgBNo6C33+uv2c4YPtwOOBsqKSBFRUBGRrBVlswWNtNNP59Hhw5k6bRoZxhAHPA0Mxac5du5c6NXL/rsGyopIEVNQEYkkBZ21E8jgwX5B46Nvv+WOhAS2790LQG9gKlDT9zlRUdCuXdb9+HgFFBEpUhqjIhIpnE57Q8DOne0/T2Yfnfh4djVqRJ/Ro+nevTvb9+4lAVgCzCNbSHE41L0jIsVO05NFIkGAXYsLNT3Y5SLj55+Zvn4990+cyP79+3FYFvcYw2NAxezlHQ5Ys0a7H4vISSnM97e6fkQiQV6zdvILKk4n64YO5Q5jWO85dAGQZAznByrvHSirkCIiJUBdPyKRwDtrx1cBpgfv/e47hg8ZQhtPSKmEPQ5lDeQMKQ4HjBljt9IEWghORKQYKKiIRALvrJ289tHx7M2Dy4Xb7Sbp6ac5u21bkgAD3AxsBkYSoKl1yhTYvh2efVZjUkSkRGmMikgkcbkCTw/2WR5/HTCicmXWHTgAQDPgJeDi3F5TS+GLSBHTEvoipVV8PHTqlLMlZdgw9rrdDAfaAOsOHMjs5tmIT0iJioKBA7XDsYiEDA2mFYlwJ376idfdbh4F/vYcuxl7+Xu/6cZTpkDPnnYoefJJLdwmIiFBQUUkEnkWflvqcjHqiSf4yXM4126eqKiskAJauE1EQoaCikikcTr5eehQRhnDx55DZ5QvzxNHjzLEmJwXvbp3RCSEaYyKSAT5+7vvGDlkCE09IaUMMBpIPXKE24Dobt2yxp9ourGIhAG1qIiEi0D7+HiOnShXjtfmzOHRN99kn6d4D2ASkOh9vjHw6aeQkgJpaRp/IiJhQUFFJBz4TC/G4bDXTAHM0KF8YAxjgZ89RZsCU4DLAr1ORoYdUjp1Kolai4icMgUVkVDnmV6cuUS+2w3DhvFfY7jPGFZ7ip0BPAkMBqKjouxQkl0BVqsVEQklCioiocrb1bN7t98+Pj8BD7jdvO+5Xx64B7gPiPMWmjsXqlWD9eth7Fg7tGjQrIiEIQUVkVDk29VjWWBZ7DSGR4E3ADf2SPjBwHiglu9zo6KgXbusxd/69tWaKCIStoI662fChAm0atWKSpUqUb16da699lo2b94czCqJBJfLBfPn+3X17DeGh4yhATAdO6Rc26IF3z/+OElRUTlDSvZWk0Cr1YqIhImgtqisXLmSESNG0KpVK9LT03nooYfo2rUrP/74IxUrVgxm1USKV6AZPL6tKEAa9uJsz5C1omz7c87hmSee4MLrrrMPDBpkt5ZUrKiZPCISkUJqU8Ldu3dTvXp1Vq5cycUX57pFWiZtSihhKdAMnnPPhbZtwe3mCPAaMBH4y/OURsDE6dPpceutWJYVtKqLiBSFwnx/h9QYlf379wNQpUqVgI8fO3aMY8eOZd4/4Nn9VSRsBJrBM3QoAMeMwQn8H7DTU/ws4FHL4sbXXiNai7KJSCkUMivTGmMYNWoUHTp0oGnTpgHLTJgwgbi4uMxb7dq1S7iWIqcoNdVvBg/ACWOYbgxnAyOwQ0ptIMmy+HnOHAasXUt0YqIdcsD+Mzk5676ISAQLma6fESNGsGTJEr788kvic+ljD9SiUrt2bXX9SPhwuSAhAdxu0oE5wGPAVs/DNYGHgCGWRdlp0+yDvt1E/fvD7Nn+3UZqaRGRMFOYrp+QCCp33XUX7733HqtWraJevXoFfp7GqEhICzRgFjj22mvMuuMOJhqTGVCqAWOB24HyDgesWQM1a2aGmlxFRdl79WgArYiEkbAZo2KM4a677mLx4sWsWLGiUCFFJKQFGDB75OKLmf7CCzyzcCEuz/8PzsDeNPBOIBayphe3amV37+QVUsBeyG3LFgUVEYlYQQ0qI0aMYM6cObz//vtUqlSJXbt2ARAXF0f58uWDWTWRwvFtPQG/AbMH3W5eHTKE58iaxVOzYkXuTUtjGOA3EX/uXOjVy/57YqIdcvJrUdGS+CISwYI6mPbVV19l//79dOrUiZo1a2be5s2bF8xqiRSO02l30XTubP/5/PPgdrMPe/xJAnA/dkhJAF4Fth4+zD0Oh39I8a4o6xUfb49BiYrKenzgQP/7WhJfRCJcSIxROVkaoyJB5zM41ut3y+J5Y5gGHPQcOxt4ELgRKOMtOGYMTJnivw9PoIGxLpf/EvjZ74uIhJmwG0x7shRUpFjlMhjWz/z50KcPAJuA54B3AO++xc2wZ/H0BKJ8n+cdBAsKHSJS6hTm+ztk1lERCSnZu3OczoBlTJ8+LAUuA84H3sYOKZ0vvJCPZs3im9Gj6eNw5Awp3i4b7cMjIpIntaiIZBegOyf7NODjW7cyt0EDJhnD994iQB/LYvTDD3P+448Hfh3v1ONWrUrqbEREQk7YTE8WCUkBVo/1TgP+s0wZpk2bxqtTp7LTk/FjgaHA3UCdV16Bhg2zuo2yv47bbW8eKCIiBaKgIpJdgGnBax0OXnrxReb/5z8cP34cgFrASGAYcBqAZcGIEVlrp0ycmHN6saYTi4gUisaoiID//jmeacHHHA5mA62Btm43by1axPHjx2l71lm8ZVn8BtyHJ6Q4PJeS72aDDzwATz+t6cQiIqdALSoi2VaRdU2cyGv795N0+uns3rsXgJiYGPr168edvXrRskcP8B3a5XDASy/BHXf4v25GBrRsaY9t0cweEZGToqAikSvQ9OLsx1wuGDaMDLebpcA0t5v/3Hdf5vTi+Ph47rjjDoYMGUK1Y8fs6ciBxp2ccUbu3Tze2T0iIlJoCioSmQLstQPkOPZ7xYo43W7eAFw+T+8E3GlZXPPII0RfeSU88wxMnhx4OXvvirJJSTB8uP8CbgooIiKnRNOTJfQVZOG17OWzTwu2LPvmdnMC+BCYBiyzLLyXQFVgAPYMnsa+zwP/rh5f2VeU1aqxIiL50vRkiRyBWkZ8l5kPFGJWr87Z8mEMm41hBvAm8KfP8c5VqjB03z6uM4ay2d8/rxw/ZQr07OkfSNTNIyJSpNSiIqFr3Tpo2zb3hddy694ZOjQzYOwB5gGzgK98Xro6MAgYAjQAu+Vk2DCYNi3v3YoD1UNERApFLSoSnnxbR5Yt8wscmTIy4N13oUOHrJAC9p/DhgFwzBiWYIeTj4ATnqdGAd2AW4GrgRjf1zUGpk+3pxOPHWu/j8NhH89eB40/EREpMQoqEhp8W0fyGxcyapRdxudxA6xxu5mF3YKyz6f4+UB/oB9QI6/XDjSdeNmyrAGyDof93iNHKqSIiJQQdf1IcLlc9piSfv0K1uXiwwAbsYPJfGC7z2NnAjdjB5RzoqL8Z+KAf2uMV27dORogKyJSpNT1I6En0KBX31aU/HhaUAzwNXYwmQ9s9SlSsWxZbjj/fPqvXcslbjdR3mDSrVvOoNGtGzz/vD0gNr/pxBogKyISNGpRkeIXaNBrt245pxD7siy7bEYGxuHgu5EjmT9lCvOBVJ9iFYCrgN5jx3LFxRdToVkz+4GCtoCotUREpMQV5vtbQUVyKuy6Jfm9VvZAEhUFc+ZAnz6Bn+NwkH733fz37LN5/9NP+WDdOn7dntWxUw7oDvT2/FnR85xcpzCLiEhIUdePnLz81i0pCG/QiY2FL77I2WqSkZHVYuLz2EHL4pMuXXj/k09YMnkyf/s8pWzZslxxxRX0vuACrh43jtjs+dp39s/w4XaLjVpIRETCnoKKZPHse5Pnl35erS0ulz3uI7el5r0cDqhbF5KS2DFsGB+53bwPfOZwcPyTTzKLVQGusiyuef11uvbrR2xsrP1AzZr+M3ECBaEtWxRUREQigIJKuCnKbpnsUlPz/tLPbaxJaips2AD33Zf3Sq7AEWCV282y1q1ZVqsWP/q+X0YG9YFrPLf2QLQx9rl6QwrYLTzeAbIVKwZeFK5Bg1P7LEREJCQoqISTouiWyUtiYu47AAdqbRk6NHP/nNwY4Cdgmee2EjjqfXDnThwOB61bt6ZHjx5c06YNjS+7DMs37OQWOnxn4mgzQBGRiKWgEi7Wrcu/W+ZUxcf7f+k7HHDPPfZjgVpbAq3aCmzDDiQrgM+AHdnfBnuF2G7ApdOnU2XQoKwHp00rfOjwbWHR7B0RkYiiWT/hwOkMvJw8QHIydOpUtO+XfayJwwETJ9pLy2cLKwY7mKwgK5xsz/ZyZYGOZ59Nt9RULjeGxoDlfTC3jQYVOkREIpamJ4eSUx1TEmh6r1dRb4znO1sn0LiPiRPJuP9+fnS7WWNZfGkMK4Dfs71MNNCqVi06dulCpyZNuPi66yifmJj7Am/a4E9EpFTR9ORQURRjSgJ1uYD9ekU5FiP7Xjue/LobWAusycggZc4cvipfnkNpaX6tO9FAa6BT5850vPxy2vfoQWzDhjnfY/BgqFQp5/opmqUjIiK5UItKQRW2ZWTdusCtEr4tB9lfM9B7BHodhwPWrIFWrYru3BIS2O928w2wCVgPpAC/BigeGxtL69atadeuHZ3OOYd2p51GxWbNCva55LYAnFpURERKDbWoFKVA4zW8LSO5hZfcxpTkNdW3f3+YPTurRWP0aKhRA+6/P+eX+uuv+4eUwoQolwvzyy/8Ubkym/78k6+//ppNH37IJrfbb98cX42BthdeSNsBA2jXrh1NmjSx99E5GdkH7GqWjoiI5EEtKnnJLXB4xmtkhojs4SW/MSWQ9z43uQnUkpLH2iamQQP+ionhp59+sm8LFvDj55/zHfBXLm9RG2gBnG9ZtJ06ldb16nF6ixaBF3c71bE3GjArIlIqaTBtUQjU5eIr0Hoj27bZX96dOwcu7w0zycmByxSE7ywfTyg64nbzG/AbsBl73ZIfPX/uy+VlHEAj7FDSAmjuuVX1nsvrr+ecieMNJsuWFe96LiIiEtHU9XOq8poODHkv2x5o0bTsLSGByuThOLAL2O5wsHXTJrYmJ7N161Z++/prtrrd/JHHcy2gXuXKND5wgCbY3TjnAM2A8rk9ae5c6NUr6372gbaQ9dlobx0RESlGalHJLq+uG7BbGyZMyLmmiO+AUKcz5xiMbC0OZvp0Dgwfzl63m72WxZ/Nm7Pz66/5nzHsBL9bbt00vioDZwENsMNIY6AJcDZ5BJLczi/7gN+CdFMVx3ouIiISkdSicipSU3G73RwH0oEMz5/pQPrw4WQMGkR6tWqkHz9O+rhxHHa7SXM4SBsxgrSUFA4dOkTakSOk3Xcfh1wu0sqWZd+XX/L3vHns/eMP9h49yt8HDvD333+T7v3yNwY2bcqzWmXKlCE+Pp769etTr149zjrrLPv23XfU+7//o4oxWYuonaxAA1tzmx6d/XnaW0dERIqBWlSyc7l4u04dbi6hj6U89riQGkAtoJZlceawYdSqVIla555r32rVomrVqjgcDr96Zo4Z+eOPvMfTZGdZWXv0eFuIWrUKPLA1UIuKZdldV3m0GImIiORGLSqnIj6e6KFD7QGi2URHRRGdkUE09gcXFRtL+TJlqLhvHxWBWKBi06ZUbNSIihUrEhsbS0W3m9Nee40qxlAVO5RUdTioumYNVfbupfwVV/i/iTHQt2/e3SiBZvpk36Nn6FB735xAq8C+/nrB98bJbTqx9tYREZESoBaVAI4fP87RX38levt2os8+m+i6dXHs3JmzZcHbwpHX4mW5zfBJTra/5Au7+FleC6aBf3jwHSvjcMCoUTBypKYTi4hIUKlF5RTFxMQQ07gxNG6cdTDQWI1AXS0ZGZCSkjVrJrdZQBUrntziZ4Hq4Z1x1KmT/3OLclfh+HgFFBERKXGO/IsIkBU4fDkcOY+B3XXjdNp/94YR35Vc3W57TInTaYeJbdvsFpZt2/If6xGoHnkNZo2PzxlgREREwoSCSkFlDxxRUVljQ7IHB+/aIi6XfX/wYLuVxbecb5nChIlA9dAS9CIiEqHU9VMYuXWlFGRH4EOHcu+yKWzIKMouHRERkRCmoFJYgcZqtG8feEl93+6YQGNVTmX9EY0ZERGRUkBdP0WhIN0x6rIREREpNE1PLkoFmcKrab4iIlLKaXpysBSkO0ZdNiIiIgWmrh8REREJWQoqIiIiErIUVERERCRkKaiIiIhIyFJQERERkZCloCIiIiIhS0FFREREQpaCioiIiIQsBRUREREJWQoqIiIiErIUVERERCRkhfVeP979FA8cOBDkmoiIiEhBeb+3C7IvclgHlYMHDwJQu3btINdERERECuvgwYPExcXlWcYyBYkzIcrtdrNz504qVaqEZVlF+toHDhygdu3a7NixI98tqMORzi/8Rfo5Rvr5QeSfo84v/BXXORpjOHjwILVq1cLhyHsUSli3qDgcDuLj44v1PSpXrhyxv4Cg84sEkX6OkX5+EPnnqPMLf8Vxjvm1pHhpMK2IiIiELAUVERERCVkKKrkoW7Ysjz76KGXLlg12VYqFzi/8Rfo5Rvr5QeSfo84v/IXCOYb1YFoRERGJbGpRERERkZCloCIiIiIhS0FFREREQpaCioiIiISsUhNUXnnlFerVq0e5cuW44IIL+OKLL/Isv3LlSi644ALKlSvHWWedxWuvvZajzMKFC2nSpAlly5alSZMmLF68uLiqn6/CnN+iRYvo0qUL1apVo3LlyrRr145ly5b5lZkxYwaWZeW4HT16tLhPJVeFOccVK1YErP/PP//sVy5cf4a33HJLwPM755xzMsuE0s9w1apVXH311dSqVQvLsnjvvffyfU64XYOFPcdwuw4Le37hdg0W9vzC7RqcMGECrVq1olKlSlSvXp1rr72WzZs35/u8ULgOS0VQmTdvHnfffTcPPfQQmzZt4qKLLuKKK67g999/D1j+t99+48orr+Siiy5i06ZNPPjgg/z73/9m4cKFmWVSUlLo06cP/fv355tvvqF///707t2btWvXltRpZSrs+a1atYouXbrw0UcfsWHDBi655BKuvvpqNm3a5FeucuXK/PHHH363cuXKlcQp5VDYc/TavHmzX/0TExMzHwvnn+Hzzz/vd147duygSpUq9OrVy69cqPwM09LSOO+883jppZcKVD7crkEo/DmG23VY2PPzCpdrsLDnF27X4MqVKxkxYgRr1qxh+fLlpKen07VrV9LS0nJ9Tshch6YUaN26tbntttv8jjVq1MiMHTs2YPn77rvPNGrUyO/Y8OHDTdu2bTPv9+7d21x++eV+Zbp162b69u1bRLUuuMKeXyBNmjQxjz32WOb9N99808TFxRVVFU9ZYc8xOTnZAGbfvn25vmYk/QwXL15sLMsy27ZtyzwWaj9DL8AsXrw4zzLhdg1mV5BzDCTUr0OvgpxfuF2Dvk7m5xdO16Axxvz1118GMCtXrsy1TKhchxHfonL8+HE2bNhA165d/Y537dqV1atXB3xOSkpKjvLdunVj/fr1nDhxIs8yub1mcTmZ88vO7XZz8OBBqlSp4nf80KFDJCQkEB8fz1VXXZXjf3ol5VTOsUWLFtSsWZNLL72U5ORkv8ci6WfodDq57LLLSEhI8DseKj/Dwgqna7CohPp1eLLC4RosCuF2De7fvx8gx++br1C5DiM+qOzZs4eMjAxq1Kjhd7xGjRrs2rUr4HN27doVsHx6ejp79uzJs0xur1lcTub8snvuuedIS0ujd+/emccaNWrEjBkz+OCDD5g7dy7lypXjwgsvJDU1tUjrXxAnc441a9YkKSmJhQsXsmjRIho2bMill17KqlWrMstEys/wjz/+4OOPP2bIkCF+x0PpZ1hY4XQNFpVQvw4LK5yuwVMVbtegMYZRo0bRoUMHmjZtmmu5ULkOw3r35MKwLMvvvjEmx7H8ymc/XtjXLE4nW5e5c+cyfvx43n//fapXr555vG3btrRt2zbz/oUXXsj555/Piy++yAsvvFB0FS+Ewpxjw4YNadiwYeb9du3asWPHDiZNmsTFF198Uq9Z3E62LjNmzOC0007j2muv9Tseij/Dwgi3a/BUhNN1WFDheA2erHC7Bu+8806+/fZbvvzyy3zLhsJ1GPEtKmeccQZRUVE50t1ff/2VIwV6/etf/wpYPjo6mqpVq+ZZJrfXLC4nc35e8+bNY/DgwcyfP5/LLrssz7IOh4NWrVoF5X8Cp3KOvtq2betX/0j4GRpjeOONN+jfvz8xMTF5lg3mz7CwwukaPFXhch0WhVC9Bk9FuF2Dd911Fx988AHJycnEx8fnWTZUrsOIDyoxMTFccMEFLF++3O/48uXLad++fcDntGvXLkf5Tz75hJYtW1KmTJk8y+T2msXlZM4P7P/B3XLLLcyZM4fu3bvn+z7GGL7++mtq1qx5ynUurJM9x+w2bdrkV/9w/xmCPZJ/y5YtDB48ON/3CebPsLDC6Ro8FeF0HRaFUL0GT0W4XIPGGO68804WLVrE559/Tr169fJ9Tshch0U2LDeEvfPOO6ZMmTLG6XSaH3/80dx9992mYsWKmaOzx44da/r3759ZfuvWraZChQrmnnvuMT/++KNxOp2mTJkyZsGCBZll/vvf/5qoqCgzceJE89NPP5mJEyea6Ohos2bNmpA/vzlz5pjo6Gjz8ssvmz/++CPz9s8//2SWGT9+vFm6dKn59ddfzaZNm8ygQYNMdHS0Wbt2bYmfnzGFP8cpU6aYxYsXm19++cV8//33ZuzYsQYwCxcuzCwTzj9Dr5tvvtm0adMm4GuG0s/w4MGDZtOmTWbTpk0GMJMnTzabNm0y27dvN8aE/zVoTOHPMdyuw8KeX7hdg4U9P69wuQZvv/12ExcXZ1asWOH3+3b48OHMMqF6HZaKoGKMMS+//LJJSEgwMTEx5vzzz/ebkjVw4EDTsWNHv/IrVqwwLVq0MDExMaZu3brm1VdfzfGa7777rmnYsKEpU6aMadSokd8FWNIKc34dO3Y0QI7bwIEDM8vcfffdpk6dOiYmJsZUq1bNdO3a1axevboEzyinwpzj008/berXr2/KlStnTj/9dNOhQwezZMmSHK8Zrj9DY4z5559/TPny5U1SUlLA1wuln6F3qmpuv3ORcA0W9hzD7Tos7PmF2zV4Mr+j4XQNBjo3wLz55puZZUL1OrQ8JyAiIiISciJ+jIqIiIiELwUVERERCVkKKiIiIhKyFFREREQkZCmoiIiISMhSUBEREZGQpaAiIiIiIUtBRUREREKWgoqIiIiELAUVEQkLEydOpF27dsGuhoiUMAUVEQkL33zzDeedd16wqyEiJUxBRUTCwjfffEPz5s2DXQ0RKWEKKiIScn766Sc6depE+fLladGiBevXr+eXX35Ri4pIKaSgIiIh5eeff6ZNmza0bNmS77//nnHjxnHNNddgjOHcc88NdvVEpIRZxhgT7EqIiHhdeuml1KpVi9mzZ2ce69evHxs3bmTz5s1BrJmIBEN0sCsgIuK1fft2Pv/8czZu3Oh3vEyZMur2ESml1PUjIiHj66+/Jjo6mmbNmvkd37hxowbSipRSCioiEjIcDgdut5vjx49nHvvoo4/44YcfFFRESikFFREJGRdccAFlypRhzJgxbN26lQ8++IChQ4cCqOtHpJTSYFoRCSlvvfUWDzzwAGlpabRo0YI2bdowbdo0du/eHeyqiUgQKKiIiIhIyFLXj4iIiIQsBRUREREJWQoqIiIiErIUVERERCRkKaiIiIhIyFJQERERkZCloCIiIiIhS0FFREREQpaCioiIiIQsBRUREREJWQoqIiIiErL+H6CAWHXiScbuAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'Fit A\\\\b to noisy \"measurements\" of $R = 1 + d^2$')" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = range(0,2,length=200) # 20 points from 1 to 4\n", + "b = 1 .+ 2*d.^2 + randn(200)*0.1 # measurements with Gaussian random noise\n", + "plot(d, b, \"r.\")\n", + "plot(d, x̂[1] .+ x̂[2] * d.^2, \"k-\")\n", + "xlabel(L\"d\")\n", + "ylabel(L\"R\")\n", + "title(\"Fit A\\\\b to noisy \\\"measurements\\\" of \\$R = 1 + d^2\\$\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.021747113359024118" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm(b - A*x̂) / norm(b) # the length of the \"residual\" b - Ax̂ is not zero!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This $\\hat{x}$ is *not* an exact solution: $A\\hat{x} \\ne b$: the \"residual\" (the \"error\") $b - A\\hat{x}$ is not zero, as we can see by checking its norm $\\Vert b - A\\hat{x}\\Vert$ above.\n", + "\n", + "In the plot above, correspondingly, the black \"fit\" curve does *not* exactly match the data points. But it is pretty close!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Least-square fits\n", + "\n", + "What `A \\ b` is doing in Julia, for a non-square \"tall\" matrix $A$ as above, is computing a **least-square fit** that **minimizes the sum of the square of the errors**. This is an extremely important thing to do in many areas of linear algebra, statistics, engineering, science, finance, etcetera.\n", + "\n", + "Above, we have a bunch of measurements $(d_k, R_k)$, and we are trying to *fit* it to a function $R(x,d) = x_1 + x_2 d^2$. There is no exact fit, so instead we minimize the sum of the squares of the errors:\n", + "\n", + "$$\n", + "\\min_{x \\in \\mathbb{R}^2} \\sum_{k=1}^m (R_k - R(x, d_k))^2 \\;.\n", + "$$\n", + "\n", + "Let's write this in terms of linear-algebra operations. We have our $m \\times 2$ matrix $A$ above, and in terms of this we have $R(x, d_k) = (Ax)_k$: the \"fit\" function at $d_k$ is the $k$-th row of $Ax$. But then $R_k - R(x,d_k)$ is the $k$-th row of the **residual vector**\n", + "\n", + "$$\n", + "\\mbox{residual} = b - Ax\n", + "$$\n", + "\n", + "and we can see that our sum above is precisely the **sum of the squares of the residual components**, which is the **square of the length of the residual**:\n", + "\n", + "$$\n", + "\\sum_{k=1}^m (R_k - R(x, d_k))^2 = \\Vert b - Ax \\Vert^2 \\; .\n", + "$$\n", + "\n", + "Here, $\\Vert y \\Vert = \\sqrt{y^T y}$ is the *length* of a vector, also called the **norm of the vector**: the square root of the dot product with itself. (More specifically, this is the [Euclidean norm](https://en.wikipedia.org/wiki/Euclidean_distance), also called the $L^2$ norm. There are other ways to define a vector norm, but I think this is the only one we will use in 18.06.)\n", + "\n", + "So, what we are *really* doing is **minimizing the norm of the residual**:\n", + "\n", + "$$\n", + "\\boxed{\n", + "\\min_{x \\in \\mathbb{R}^2} \\Vert b - Ax \\Vert\n", + "}\n", + "$$\n", + "\n", + "(Note that minimizing the norm and minimizing the squared norm will give the same solution $x$; which one we write is a matter of convenience.)\n", + "\n", + "This is exactly what `A \\ b` does in Julia (and Matlab) for a non-square matrix $A$, which is why it gives us a good fit above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Least-squares fits and the normal equations\n", + "\n", + "As derived in section 4.3 of the Strang textbook, minimizing $\\Vert b - Ax\\Vert$ or (equivalently) $\\Vert b - Ax\\Vert^2$ leads to the so-called **\"normal equations\"** for the minimizer $\\hat{x}$:\n", + "\n", + "$$\n", + "\\boxed{ A^T A \\hat{x} = A^T b }\n", + "$$\n", + "\n", + "These *always* have a solution. If $A$ is an $m \\times n$ matrix, then $A^T A$ is $n \\times n$, and:\n", + "\n", + "* Usually in fitting problems, $A$ is a \"tall\" matrix with full column rank $n$, in which case $\\operatorname{rank}(A^T A) = \\operatorname{rank}(A) = n$ and $A^T A$ is *invertible*: the solution $\\hat{x}$ exists and is unique.\n", + "\n", + "* Even if $\\operatorname{rank}(A) < n$, we still have a (non-unique) solution, because $A^T b \\in C(A^T) = N(A)^\\perp = N(A^T A)^\\perp = C(A^T A)$.\n", + "\n", + "Now (on the blackboard), I will show that we can derive the normal equations directly by 18.02. If we just take the partial derivatives of $f(x) = \\Vert b - Ax \\Vert^2$ and set them to zero, we find that $0 = \\nabla_x f = 2A^T Ax - 2A^T b$ and the normal equations follow." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# More polynomial fitting examples.\n", + "\n", + "Suppose we are fitting m points $(a_k,b_k)$ to a degree-(n+1) polynomial of the form\n", + "\n", + "$$\n", + "p(a) = x_1 + x_2 a + x_3 a^2 + \\cdots + x_n a^{n-1} \\; ,\n", + "$$\n", + "\n", + "which leads to the $m \\times n$ matrix\n", + "\n", + "$$\n", + "A = \\begin{pmatrix}\n", + " 1 & a_1 & a_1^2 & \\cdots a_1^{n-1} \\\\\n", + " 1 & a_2 & a_2^2 & \\cdots a_2^{n-1} \\\\\n", + " 1 & a_3 & a_3^2 & \\cdots a_3^{n-1} \\\\\n", + " \\vdots & \\vdots & \\vdots & \\vdots \\\\\n", + " 1 & a_m & a_m^2 & \\cdots a_m^{n-1} \\\\\n", + " \\end{pmatrix}\n", + "$$\n", + "\n", + "and hence to the normal equations for the fit coefficients $\\hat{x}$.\n", + "\n", + "Let's generate 50 data points from a degree-3 polynomial $1 + 2a + 3a^2 + 4a^3$ plus noise, and see what happens as we change the fitting degree $n$." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+xklEQVR4nO3deXhTZf7+8TtdaKHQSlm6UCgIBdwABUFwkIKyVETFBYVRAatUERUZh0UcWb5qR1RGZ1AEreg4oIy74yiKyqID/gREUVAsSpEqBUFooUCx7fP7I1cj6Zq02c/7dV25Yk5P0s+T0JPbZznHZowxAgAAsJgwfxcAAADgD4QgAABgSYQgAABgSYQgAABgSYQgAABgSYQgAABgSYQgAABgSYQgAABgSYQgAABgSYQgBJz09HSlp6f7u4x6GzdunJo2berSvu3bt9e4ceO8Wo/NZtPs2bO9+jvqcvToUc2ePVurV6/2ax3B4sMPP1SvXr0UExMjm82mN954Q88995xsNpvy8vIc+y1btkyPPfaYV2q499571a5dO0VEROiUU05x+/njxo1T+/btPV5XIHrppZfUo0cPRUdHKzk5WZMnT9aRI0f8XRZcEOHvAoDKnnzySX+X4DOvv/66YmNj/V2G1x09elRz5syRpKAOuL5gjNGoUaPUuXNnvfXWW4qJiVGXLl1UWlqq9evXKykpybHvsmXL9PXXX2vy5MkereHNN9/UAw88oJkzZyojI0NRUVEeff1QsnTpUl133XW66aab9Le//U3fffedpk2bpm3btun999/3d3moAyEIAef000/3dwk+c/bZZ/u7BHjQsWPHFB0dLZvNVu/X+Pnnn/Xrr79q5MiRuvDCC51+1qpVq4aW6JKvv/5aknTHHXeodevWPvmdnuKJz8BVZWVl+vOf/6whQ4bo6aefliQNHDhQzZo10x//+Ee9++67ysjI8HodqD+Gw9Ags2fPls1m09atWzV69GjFxcUpISFBN954owoLC532PX78uGbMmKEOHTqoUaNGatOmjW677TYdOnTIab/qhsMWLlyo7t27q2nTpmrWrJm6du2qe+65R5KUl5eniIgIZWdnV6lv7dq1stlsevnll2ttx6FDh/SnP/1Jp556qqKiotS6dWtdfPHF+vbbbyVJq1evls1mqzKck5eXJ5vNpueee67Ka27dulUXXnihYmJi1KpVK02aNElHjx512qe64bC6avGEgoICZWVlKSUlRY0aNVKHDh00Z84clZaWOu03Z84c9enTR/Hx8YqNjdU555yjnJwcVb7u8kcffaT09HS1aNFCjRs3Vrt27XTllVfq6NGjysvLc3x5z5kzRzabTTabrc5hwKNHj+ruu+9Whw4dFB0drfj4ePXq1Usvvvii037PPfecunTpoqioKJ122mn65z//WWUoxp3Pb+PGjbr22mvVvn17NW7cWO3bt9fo0aO1a9euKr/XZrPp/fff14033qhWrVqpSZMmKikpkSQtX75cffv2VUxMjJo2baqhQ4dq8+bNtbZ59uzZSklJkSRNmzZNNpvN0Y7Kw2Hp6en673//q127djne07q++MvLyzVv3jx17drV8W/rhhtuUH5+vmOf9u3b695775UkJSQkuDScWt1nUJ0TJ07o/vvvd/z+Vq1aafz48frll1+c9ispKdGf/vQnJSYmqkmTJrrgggu0adOmKn8vnvoMNm7cqEsvvVTx8fGKjo7W2WefrX//+9+1tlmSPv30U+3Zs0fjx4932n711VeradOmev311+t8DfgXPUHwiCuvvFLXXHONMjMz9dVXX2nGjBmSpGeffVaSvYv/8ssv14cffqgZM2aof//+2rJli2bNmqX169dr/fr1NXa5v/TSS5o4caJuv/12PfLIIwoLC9OOHTu0bds2SfaD9qWXXqqnnnpKU6dOVXh4uOO5CxYsUHJyskaOHFlj7YcPH9Yf/vAH5eXladq0aerTp4+OHDmitWvXas+ePeratavb78dvv/2miy++WFlZWZo+fbrWrVun+++/X7t27dJ//vOfBtcybtw4Pf/889q5c6fb8y4KCgrUu3dvhYWF6b777lPHjh21fv163X///crLy9OSJUsc++bl5SkrK0vt2rWTZD/o33777frpp5903333OfYZPny4+vfvr2effVannHKKfvrpJ61YsUInTpxQUlKSVqxYoWHDhikzM1M33XSTpLp7NaZMmaIXXnhB999/v84++2wVFxfr66+/1oEDBxz7PPfccxo/frwuu+wyPfrooyosLNTs2bNVUlKisLD6/T9eXl6eunTpomuvvVbx8fHas2ePFi5cqHPPPVfbtm1Ty5Ytnfa/8cYbNXz4cL3wwgsqLi5WZGSkHnzwQd17770aP3687r33Xp04cUIPP/yw+vfvr88++6zG3s6bbrpJ3bt31xVXXKHbb79dY8aMqfHv4sknn9SECRP0/fffu/xle+utt2rx4sWaNGmSLrnkEuXl5ekvf/mLVq9erc8//1wtW7bU66+/rieeeEI5OTlasWKF4uLiHMGsOq5+BuXl5brsssv08ccfa+rUqerXr5927dqlWbNmKT09XRs3blTjxo0lSePHj9fy5cs1depUDRo0SNu2bdPIkSNVVFRUbQ0N+QxWrVqlYcOGqU+fPnrqqacUFxenl156Sddcc42OHj1aa1iv6DHr1q2b0/bIyEh17drV8XMEMAM0wKxZs4wkM2/ePKftEydONNHR0aa8vNwYY8yKFSuq3W/58uVGklm8eLFj24ABA8yAAQMcjydNmmROOeWUWutYtWqVkWRef/11x7affvrJREREmDlz5tT63Llz5xpJZuXKlXW+/qpVq5y279y500gyS5YscWwbO3askWQef/xxp30feOABI8l88sknjm2pqalm7NixbtVijDE33nijCQ8PN3l5ebXuZ4wxksysWbMcj7OyskzTpk3Nrl27nPZ75JFHjCSzdevWal+nrKzM/Pbbb2bu3LmmRYsWjs/2lVdeMZLMF198UWMNv/zyS5U66nLmmWeayy+/vMafl5WVmeTkZHPOOec4ajHGmLy8PBMZGWlSU1Md29z5/CorLS01R44cMTExMU6f6ZIlS4wkc8MNNzjt/+OPP5qIiAhz++23O20/fPiwSUxMNKNGjaql1b/X9PDDDzttr/h9O3fudGwbPny4Uztr88033xhJZuLEiU7b/9//+39Gkrnnnnsc2yr+rn/55ZdaX9Odz+DFF180ksyrr77q9BobNmwwksyTTz5pjDFm69atRpKZNm2a034Vzz/578UTn0HXrl3N2WefbX777TenfS+55BKTlJRkysrKamx/xd/0nj17qvxsyJAhpnPnzjU+F4GB4TB4xKWXXur0uFu3bjp+/Lj27dsnyT5cIqnK/1VdffXViomJ0Ycffljja/fu3VuHDh3S6NGj9eabb2r//v1V9klPT1f37t31xBNPOLY99dRTstlsmjBhQq21v/vuu+rcubMuuuiiWvdz1x//+Eenx2PGjJFk/z/PhtaSk5Oj0tJSpaamul3X22+/rYEDByo5OVmlpaWOW8XchTVr1jj2/eijj3TRRRcpLi5O4eHhioyM1H333acDBw44PtsePXqoUaNGmjBhgp5//nn98MMPbtVzcg2lpaWOobbevXvr3Xff1fTp07V69WodO3bM6Xnbt2/Xzz//rDFjxjgNA6Wmpqpfv35uvy8Vjhw5omnTpqlTp06KiIhQRESEmjZtquLiYn3zzTdV9r/yyiudHr/33nsqLS3VDTfc4NSu6OhoDRgwwG8r5Cr+3VX+G+zdu7dOO+20Wv8Ga+LOZ/D222/rlFNO0YgRI5zelx49eigxMdHxvlT8+xs1apTT86+66ipFRFQ/eFHfz2DHjh369ttvHX+rJ+978cUXa8+ePdq+fXud70NNw5C+mJeEhiEEwSNatGjh9LiiC7/ii+vAgQOKiIioMgRis9mUmJjoNMRR2fXXX69nn31Wu3bt0pVXXqnWrVurT58+WrlypdN+d9xxhz788ENt375dv/32m55++mldddVVSkxMrLX2X375pdbu/vqIiIio8p5U1FFbW71RS2V79+7Vf/7zH0VGRjrdzjjjDElyhMzPPvtMQ4YMkSQ9/fTT+t///qcNGzZo5syZkn7/bDt27KgPPvhArVu31m233aaOHTuqY8eOevzxx+usJS8vr0odFV+Cf//73zVt2jS98cYbGjhwoOLj43X55ZcrNzdX0u/vY3Wfb12feW3GjBmjBQsW6KabbtJ7772nzz77TBs2bFCrVq2qBDFJTqu1JPv7K0nnnntulbYtX7682hDvCxXvV+V6JSk5ObnWf5d1vaYrn8HevXt16NAhNWrUqMr7UlBQ4HhfKl4zISHB6fnV/U1VqO9nULHf3XffXWW/iRMnSlKtn1dFPdW9d7/++qvi4+NrfC4CA3OC4BMtWrRQaWmpfvnlF6cgZIxRQUGBzj333FqfP378eI0fP17FxcVau3atZs2apUsuuUTfffedozdkzJgxmjZtmp544gmdd955Kigo0G233VZnba1atXKaGFqd6OhoSXJMuKxQ0wGytLRUBw4ccDpoFxQUSKoaGN2tpaFatmypbt266YEHHqj258nJyZLsc7EiIyP19ttvO9ovSW+88UaV5/Tv31/9+/dXWVmZNm7cqH/84x+aPHmyEhISdO2119ZYS3JysjZs2OC0rUuXLpKkmJgYzZkzR3PmzNHevXsdvUIjRozQt99+63gfK97Xk1Xe5urnV1hYqLfffluzZs3S9OnTHdtLSkr066+/VtuGyv+3XzFn6JVXXqlXT523VLxfe/bsqRK0f/755ypzndx5TVc+g5YtW6pFixZasWJFta/VrFkzp9fcu3ev2rRp4/h5xd9Uder7GVTsN2PGDF1xxRXV7lPx77E6Z511liTpq6++cprnVVpaqm+//VajR4+u8bkIDPQEwScqlvr+61//ctr+6quvqri4uMpS4JrExMQoIyNDM2fO1IkTJ7R161bHz6Kjox1DMvPnz1ePHj10/vnn1/maGRkZ+u677xxDdtWpmHy8ZcsWp+1vvfVWjc9ZunSp0+Nly5ZJqv08Oa7U0lCXXHKJvv76a3Xs2FG9evWqcqsIQTabTREREU4TzY8dO6YXXnihxtcODw9Xnz59HMOSn3/+uaSqPYMVGjVqVOX3V3wZniwhIUHjxo3T6NGjtX37dh09elRdunRRUlKSXnzxRafVart27dK6deucnu/q52ez2WSMqTIZ+ZlnnlFZWVmN7T7Z0KFDFRERoe+//77a97dXr14uvY4roqKiqu2dqs6gQYMkVf0b3LBhg7755huX/wZP5s5ncMkll+jAgQMqKyur9j2pCBsXXHCBJPvKrpO98sorVVYv1sTVz6BLly5KS0vTl19+WeN+1f17rNCnTx8lJSVVWR36yiuv6MiRIzUGKwQOeoLgE4MHD9bQoUM1bdo0FRUV6fzzz3esDjv77LN1/fXX1/jcm2++WY0bN9b555+vpKQkFRQUKDs7W3FxcVV6kCZOnKh58+Zp06ZNeuaZZ1yqbfLkyVq+fLkuu+wyTZ8+Xb1799axY8e0Zs0aXXLJJRo4cKASExN10UUXKTs7W82bN1dqaqo+/PBDvfbaa9W+ZqNGjfToo4/qyJEjOvfccx2rwzIyMvSHP/yhQbVIUmZmpp5//nl9//33bvc2zJ07VytXrlS/fv10xx13qEuXLjp+/Ljy8vL0zjvv6KmnnlJKSoqGDx+u+fPna8yYMZowYYIOHDigRx55pEpAeOqpp/TRRx9p+PDhateunY4fP+5YFVgxt6lZs2ZKTU3Vm2++qQsvvFDx8fFq2bJlrSvb+vTpo0suuUTdunVT8+bN9c033+iFF15Q37591aRJE0nS//3f/+mmm27SyJEjdfPNN+vQoUOaPXt2laEYVz+/2NhYXXDBBXr44Ycd9a1Zs0Y5OTkunzW5ffv2mjt3rmbOnKkffvhBw4YNU/PmzbV371599tlnjh4uTzjrrLP02muvaeHCherZs6fCwsJqDFldunTRhAkT9I9//ENhYWHKyMhwrA5r27at7rrrLrd/f1hYmMufwbXXXqulS5fq4osv1p133qnevXsrMjJS+fn5WrVqlS677DKNHDlSZ5xxhkaPHq1HH31U4eHhGjRokLZu3apHH31UcXFxLq36c+czWLRokTIyMjR06FCNGzdObdq00a+//qpvvvlGn3/+ea2n1wgPD9e8efN0/fXXKysrS6NHj1Zubq6mTp2qwYMHa9iwYW6/p/Axv07LRtCraRVJdStZjh07ZqZNm2ZSU1NNZGSkSUpKMrfeeqs5ePCg03Mrrw57/vnnzcCBA01CQoJp1KiRSU5ONqNGjTJbtmyptqb09HQTHx9vjh496nI7Dh48aO68807Trl07ExkZaVq3bm2GDx9uvv32W8c+e/bsMVdddZWJj483cXFx5rrrrjMbN26sdnVYTEyM2bJli0lPTzeNGzc28fHx5tZbbzVHjhxx+r2VV4e5WkvFCrST39+aqJpVWb/88ou54447TIcOHUxkZKSJj483PXv2NDNnznSq8dlnnzVdunQxUVFR5tRTTzXZ2dkmJyfH6XevX7/ejBw50qSmppqoqCjTokULM2DAAPPWW285/c4PPvjAnH322SYqKqrKKp/qTJ8+3fTq1cs0b97c8fvvuusus3//fqf9nnnmGZOWlmYaNWpkOnfubJ599lkzduzYKqumXP388vPzzZVXXmmaN29umjVrZoYNG2a+/vrrKp9Vxb/xDRs2VFv/G2+8YQYOHGhiY2NNVFSUSU1NNVdddZX54IMPam23O6vDfv31V3PVVVeZU045xdhsNlPXIb2srMw89NBDpnPnziYyMtK0bNnSXHfddWb37t1O+7m6OqyCq5/Bb7/9Zh555BHTvXt3Ex0dbZo2bWq6du1qsrKyTG5urmO/48ePmylTppjWrVub6Ohoc95555n169ebuLg4c9ddd1V5Txr6GXz55Zdm1KhRpnXr1iYyMtIkJiaaQYMGmaeeesql9i9btsx069bNNGrUyCQmJpo77rjDHD582KXnwr9sxlQ66xkQxPbt26fU1FTdfvvtmjdvnr/LgZ+MGzdOq1evdrrOFoLbunXrdP7552vp0qWOlZZAQzEchpCQn5+vH374QQ8//LDCwsJ05513+rskAPW0cuVKrV+/Xj179lTjxo315Zdf6q9//avS0tKYZwOPIgQhJDzzzDOaO3eu2rdvr6VLlzqtKgEQXGJjY/X+++/rscce0+HDh9WyZUtlZGQoOzvbaaUi0FAMhwEAAEsKmCXyCxcuVLdu3RQbG6vY2Fj17dtX7777ruPnxhjNnj1bycnJaty4sdLT052WRwMAALgjYEJQSkqK/vrXv2rjxo3auHGjBg0apMsuu8wRdObNm6f58+drwYIF2rBhgxITEzV48GAdPnzYz5UDAIBgFNDDYfHx8Xr44Yd14403Kjk5WZMnT9a0adMk2c/gmpCQoIceekhZWVl+rhQAAASbgJwYXVZWppdfflnFxcXq27evdu7cqYKCAsd1jCT7mVIHDBigdevW1RqCSkpKnE6VX15erl9//VUtWrTg4nYAAAQJY4wOHz6s5ORkl06a6YqACkFfffWV+vbtq+PHj6tp06Z6/fXXdfrppztOv175gnoJCQnatWtXra+ZnZ3tsbOzAgAA/9q9e7fHLjQdUCGoS5cu+uKLL3To0CG9+uqrGjt2rOOK0lLVi+QZY+rszZkxY4amTJnieFxYWKh27dpp9+7dio2N9WwDAACAVxQVFalt27a1Xs/NXQEVgho1aqROnTpJknr16qUNGzbo8ccfd8wDKigoUFJSkmP/ffv2VekdqiwqKqrKtY4kOVahAQCA4OHJqSwBszqsOsYYlZSUqEOHDkpMTNTKlSsdPztx4oTWrFmjfv36+bFCAAAQrAKmJ+iee+5RRkaG2rZtq8OHD+ull17S6tWrtWLFCtlsNk2ePFkPPvig0tLSlJaWpgcffFBNmjThGjIAAKBeAiYE7d27V9dff7327NmjuLg4devWTStWrNDgwYMlSVOnTtWxY8c0ceJEHTx4UH369NH777/v0bFBAABgHQF9niBvKCoqUlxcnAoLC5kTBABAkPDG93dAzwkCAADwFkIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwJEIQAACwpIAJQdnZ2Tr33HPVrFkztW7dWpdffrm2b9/utM+4ceNks9mcbuedd56fKgYAAMEsYELQmjVrdNttt+nTTz/VypUrVVpaqiFDhqi4uNhpv2HDhmnPnj2O2zvvvOOnigEAQDCL8HcBFVasWOH0eMmSJWrdurU2bdqkCy64wLE9KipKiYmJvi4PAACEmIDpCaqssLBQkhQfH++0ffXq1WrdurU6d+6sm2++Wfv27av1dUpKSlRUVOR0AwAAsBljjL+LqMwYo8suu0wHDx7Uxx9/7Ni+fPlyNW3aVKmpqdq5c6f+8pe/qLS0VJs2bVJUVFS1rzV79mzNmTOnyvbCwkLFxsZ6rQ0AAMBzioqKFBcX59Hv74AMQbfddpv++9//6pNPPlFKSkqN++3Zs0epqal66aWXdMUVV1S7T0lJiUpKShyPi4qK1LZtW0IQAABBxBshKGDmBFW4/fbb9dZbb2nt2rW1BiBJSkpKUmpqqnJzc2vcJyoqqsZeIgAAICk/X8rNldLSpDq+e0NJwMwJMsZo0qRJeu211/TRRx+pQ4cOdT7nwIED2r17t5KSknxQIQAAISgnR0pNlQYNst/n5Pi7Ip8JmBB022236V//+peWLVumZs2aqaCgQAUFBTp27Jgk6ciRI7r77ru1fv165eXlafXq1RoxYoRatmypkSNH+rl6AACCUH6+NGGCVF5uf1xeLmVl2bdbQMCEoIULF6qwsFDp6elKSkpy3JYvXy5JCg8P11dffaXLLrtMnTt31tixY9W5c2etX79ezZo183P1AAAEodzc3wNQhbIyaccO/9TjYwEzJ6iu+dmNGzfWe++956NqAACwgLQ0KSzMOQiFh0udOvmvJh8KmJ4gAADgYykp0uLF9uAj2e8XLap5cnR+vrRqVcgMlxGCAACwssxMKS/PHm7y8uyPqxOCE6gD8jxB3uSN8wwAABDS8vPtwafysFlens+W1Hvj+5ueIAAAULsQnUBNCAIAALWrmEB9shCYQE0IAgAAtXN3AnWQCJgl8gAAIIBlZkpDh9qHwDp1CvoAJBGCAACAq1JSQiL8VGA4DAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCAAAWBIhCACAUJafL61aZb+HE0IQAAChKidHSk2VBg2y3+fk+LuigEIIAgAgFOXnSxMmSOXl9sfl5VJWFj1CJyEEAQAQinJzfw9AFcrKpB07/FNPACIEAQAQitLSpLBKX/Ph4VKnTv6pJwARggAACEUpKdLixfbgI9nvFy2yb4ckKcLfBQAAAC/JzJSGDrUPgXXqRACqhBAEAEAoS0kh/NSA4TAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJAROCsrOzde6556pZs2Zq3bq1Lr/8cm3fvt1pH2OMZs+ereTkZDVu3Fjp6enaunWrnyoGAADBLGBC0Jo1a3Tbbbfp008/1cqVK1VaWqohQ4aouLjYsc+8efM0f/58LViwQBs2bFBiYqIGDx6sw4cP+7FyAABclJ8vrVplv4ff2Ywxxt9FVOeXX35R69attWbNGl1wwQUyxig5OVmTJ0/WtGnTJEklJSVKSEjQQw89pKysLJdet6ioSHFxcSosLFRsbKw3mwAAwO9ycqQJE6TyciksTFq8WMrMrH7f/HwpN1dKS5NSUuq/Twjxxvd3wPQEVVZYWChJio+PlyTt3LlTBQUFGjJkiGOfqKgoDRgwQOvWrfNLjQAAuCQ///cAJNnvs7Kq7xHKyZFSU6VBg+z3OTn12wd1CsgQZIzRlClT9Ic//EFnnnmmJKmgoECSlJCQ4LRvQkKC42fVKSkpUVFRkdMNAACfys39PQBVKCuTduxw3uZKWHInUKFWARmCJk2apC1btujFF1+s8jObzeb02BhTZdvJsrOzFRcX57i1bdvW4/UCAFCrtDT7ENjJwsOlTp2ct7kSllwNVKhTwIWg22+/XW+99ZZWrVqllJPGOBMTEyWpSq/Pvn37qvQOnWzGjBkqLCx03Hbv3u2dwgEAqElKin0OUHi4/XF4uLRoUdW5PK6EJVcDFeoUMCHIGKNJkybptdde00cffaQOHTo4/bxDhw5KTEzUypUrHdtOnDihNWvWqF+/fjW+blRUlGJjY51uAAD4XGamlJdnXx2Wl1f9pGhXwpKrgQp1CpjVYRMnTtSyZcv05ptvqkuXLo7tcXFxaty4sSTpoYceUnZ2tpYsWaK0tDQ9+OCDWr16tbZv365mzZq59HtYHQYACHj5+fbhrU6dal8dVtc+IcQb398BE4JqmtezZMkSjRs3TpK9t2jOnDlatGiRDh48qD59+uiJJ55wTJ52BSEIAIDgE9IhyFcIQQAABB9LnScIAADAmwhBAADAkghBAADAkghBAADAkghBAADAkghBAADAkghBAAB4Qn6+/WzQXMg0aBCCAABoqJwcKTVVGjTIfp+T4++K4AJCEAAADZGfL02Y8PuV3cvLpawseoSCACEIAICGyM39PQBVKCuzX9cLAY0QBABAQ6SlSWGVvk7Dw+0XNkVAIwQBANAQKSnS4sX24CPZ7xctssSV3YNdhL8LAAAg6GVmSkOH2ofAOnUiAAUJQhAAAJ6QkkL4CTIMhwEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAAEsiBAEAUJv8fGnVKvs9QgohCAAQejwVXHJypNRUadAg+31OjmfqQ0AgBAEAQoungkt+vjRhglRebn9cXi5lZdEjFEIIQQCA0OFucKmtxyg39/fXqVBWJu3Y4dma4TeEIABA6HAnuNTVY5SWJoVV+poMD5c6dfJszfAbQhAAIHS4Glxc6TFKSZEWL7Y/v+J1Fi2yb0dIIAQBAEKHq8HF1R6jzEwpL88+ZJaXZ3+MkBHh7wIAAPCozExp6FB7oOnUqfqem4oeo5ODUE1DXSkp9P6EKHqCAAChJyVFSk+vObww1AXREwQAsCpXeowQ0ghBAADrYqjL0hgOAwAAlkQIAgAAlkQIAgAAlkQIAgAAlhRQIWjt2rUaMWKEkpOTZbPZ9MYbbzj9fNy4cbLZbE638847zz/FAgCAoBZQIai4uFjdu3fXggULatxn2LBh2rNnj+P2zjvv+LBCAAAQKgJqiXxGRoYyMjJq3ScqKkqJiYk+qggAAISqgOoJcsXq1avVunVrde7cWTfffLP27dvn75IAAEAQCqieoLpkZGTo6quvVmpqqnbu3Km//OUvGjRokDZt2qSoqKhqn1NSUqKSkhLH46KiIl+VCwAAAlhQhaBrrrnG8d9nnnmmevXqpdTUVP33v//VFVdcUe1zsrOzNWfOHF+VCAAAgkTQDYedLCkpSampqcrNza1xnxkzZqiwsNBx2717tw8rBAAAgSqoeoIqO3DggHbv3q2kpKQa94mKiqpxqAwAAFhXQIWgI0eOaMeOHY7HO3fu1BdffKH4+HjFx8dr9uzZuvLKK5WUlKS8vDzdc889atmypUaOHOnHqgEAQDAKqBC0ceNGDRw40PF4ypQpkqSxY8dq4cKF+uqrr/TPf/5Thw4dUlJSkgYOHKjly5erWbNm/ioZAAAEKZsxxvi7CF8qKipSXFycCgsLFRsb6+9yAADuys+XcnOltDQpJcXf1cBHvPH9HdQTowEAFpOTI6WmSoMG2e9zcvxdEYIYIQgAEBzy86UJE6Tycvvj8nIpK8u+HagHQhAAIDjk5v4egCqUlUknLagB3EEIAgAEh7Q0KazS11Z4uNSpk3/qQdAjBAEAgkNKirR4sT34SPb7RYuYHI16C6gl8gAA1CozUxo61D4E1qkTAQgNQggCAAQGV5e+p6QQfuARDIcBAPyPpe/wA0IQAMD78vOlVauqX87O0nf4CSEIAOBddfXysPQdfkIIAgB4jyu9PCx9h58QggAA3uNKLw9L3+EnrA4DAHhPRS/PyUGoul4elr7DD+gJAgB4jzu9PCkpUno6AQg+Q08QAKD+XDm3D708CFD0BAEA6sedc/vQy4MA1KAQtG/fPhUUFHiqFgBAsODcPggB9QpBW7Zs0RlnnKGkpCS1adNGbdq00b333qvi4mJP1wcACESc2wchoF4hKDMzUwkJCfrkk0+0efNm3X///Xr33XfVq1cvHTx40NM1AgACDef2QQiwGWOMu0+KiYnRpk2b1LVrV8c2Y4yuvvpqRUdH61//+pdHi/SkoqIixcXFqbCwULGxsf4uBwACV12TnnNy7ENgZWW/r/rKzPR9nbAEb3x/12t1WHU9PjabTQ8++KB69uzpkcIAAH6Uk/P7nJ+wMPsy98oBh1VfCHIu9wQNHz5c3bt3V48ePVRWVqbHH39cb775phISEhz7bNiwQVdeeaV+/PFHrxXcUPQEAUAd8vPtq70qn+AwL4+gA7/xa0/QWWedpc8//1xLlizR3r17JUmnnnqqRo0a5QhGS5Ys0d/+9jePFAYA8JPaJj0TghBC6jUnaO/evdq8ebO++OILx23Hjh0KDw9Xly5dtGXLFm/U6hH0BAFAHegJQgAKmDlBCQkJGjZsmIYNG+bYduzYMX355Zf68ssvPVIYAMBPKi51UXnSMwEIIaZePUHBjJ4gAHBRfj6TnhEwAqYnCABgASkphB+ENK4dBgAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALIkQBAAALCmgQtDatWs1YsQIJScny2az6Y033nD6uTFGs2fPVnJysho3bqz09HRt3brVP8UCAICgFlAhqLi4WN27d9eCBQuq/fm8efM0f/58LViwQBs2bFBiYqIGDx6sw4cP+7hSAAhQ+fnSqlX2ewC1ivB3ASfLyMhQRkZGtT8zxuixxx7TzJkzdcUVV0iSnn/+eSUkJGjZsmXKysryZakAEHhycqQJE6TyciksTFq8WMrM9HdVQMAKqJ6g2uzcuVMFBQUaMmSIY1tUVJQGDBigdevW1fi8kpISFRUVOd0AIOTk5/8egCT7fVYWPUJALYImBBUUFEiSEhISnLYnJCQ4flad7OxsxcXFOW5t27b1ap0A4Be5ub8HoAplZdKOHf6pBwgCQROCKthsNqfHxpgq2042Y8YMFRYWOm67d+/2dokA4HtpafYhsJOFh0udOvmnHiAIBE0ISkxMlKQqvT779u2r0jt0sqioKMXGxjrdACDkpKTY5wCFh9sfh4dLixbZtwOoVtCEoA4dOigxMVErV650bDtx4oTWrFmjfv36+bEyAAgQmZlSXp59dVheHpOigToE1OqwI0eOaMdJ49c7d+7UF198ofj4eLVr106TJ0/Wgw8+qLS0NKWlpenBBx9UkyZNNGbMGD9WDQABJCWF3h/ARQEVgjZu3KiBAwc6Hk+ZMkWSNHbsWD333HOaOnWqjh07pokTJ+rgwYPq06eP3n//fTVr1sxfJQNA8MnPt0+kTksjMMHSbMYY4+8ifKmoqEhxcXEqLCxkfhAA6+FcQghS3vj+Dpo5QQCABuJcQoATQhAABANPXA6DcwkBTghBABDocnKk1FRp0CD7fU5O/V6HcwkBTghBABDIPDmExbmEACcBtToMAFBJbUNY9QkvmZnS0KH253fqRACCpRGCACCQVQxhnRyEGjqExbmEAEkMhwFAYGMIC/AaeoIAwFs8dVJChrAAr6AnCAC8wZ0VXa4sf09JkdLTCUCABxGCAMDT3FnR5anl7wDcRggCAE9z9aSEnMEZ8CvLzgkqLi5WeMVEQwDwpDZtJJtNOvnSjGFhUnKyVFz8+7YtW6oPS199JTVv7ptagXpo0qSJbDabv8toMMteQBUAANTPkSNHFBMT49PfyQVUAQAAPMSyw2E///yzx5IkADTITz9J338vdexoH0oDAlyTJk38XYJHWDYExcTE+LwrD0AlnjqPTrDr3Nl+A+BTDIcB8A+WhgPwM0IQAN9jaTiAAEAIAuB7rp5HBwC8iBAEwPcqrox+soZeGR0A3EQIAuB7XBkdQACw7OowAH7GldEB+BkhCID/pKQQfgD4DcNhAADAkghBAADAkghBAADAkghBAFAf+fnSqlWc4BEIYoQgAHAXl/wAQgIhCEBo8FXPDJf8AEIGIQhA8PNlzwyX/ABCBiEIQHDzdc8Ml/wAQgYhCEBw83XPDJf8AEIGZ4wGENwqemZODkLe7pnhkh9ASKAnCEBwc6dnxpOTp1NSpPR0AhAQxAhBAIJfZqaUl2cPOHl59seVsawdQCU2Y4zxdxG+VFRUpLi4OBUWFio2Ntbf5QDwhfx8e/CpPGSWl0dPDhAkvPH9TU8QgNDHsnYA1SAEAQhsnpjHw7J2ANUgBAEIXJ6ax8OydgDVYE4QgMDkjXk8+fksaweClDe+vzlPEIDAVNs8nvoGmJSUup+bn2//3WlpBCUgxDEcBiAw+WMeD8voAUsJqhA0e/Zs2Ww2p1tiYqK/ywLgDb6ex8PV4QHLCbrhsDPOOEMffPCB43F4xQESQM08OcTjymt56vf58vIU3hh+AxDQgqonSJIiIiKUmJjouLVq1crfJQGBzZNDPK68lqeHlHx1eQqW0QOWE3QhKDc3V8nJyerQoYOuvfZa/fDDD7XuX1JSoqKiIqcbYBmeHOJx5bWCeUiJZfSA5QRVCOrTp4/++c9/6r333tPTTz+tgoIC9evXTwcOHKjxOdnZ2YqLi3Pc2rZt68OKAT/z5JmSXXmtYD8zsyvXIAMQMoL6PEHFxcXq2LGjpk6dqilTplS7T0lJiUpKShyPi4qK1LZtW84TBGvw5Ll2XHktrtEFwEu4dlglMTExOuuss5Sbm1vjPlFRUYqNjXW6AZbhySEeV16LISUAQSSoe4JKSkrUsWNHTZgwQffdd59Lz+GM0bAkT54p2ZXX4szMADzM8meMvvvuuzVixAi1a9dO+/bt0/3336+ioiKNHTvW36UBgc2VMyV78rU8+fsAwEuCKgTl5+dr9OjR2r9/v1q1aqXzzjtPn376qVJTU/1dGmDHJRcAIGgEVQh66aWX/F0CULOcnN+Xh4eF2efGsLoIAAJWUE+MBgJGMJ8fBwAsihAEeEKwnx9Hsge2VasIbgAsgxAEeII7l1wIxLDB1dMBWBAhCPAEV8+PE4hhg6E8ABZFCAI8pa5LLngjbHiiVykUhvIAoB4IQYAn1XbFc0+HDU/1KnH1dAAWRQgCfMXdsFFbL48ne5W41AUAiyIEAb7iTtioq5fH071KXD0dgAUF9bXD6oNrh8Hv6rquFldrB4AquIo8EApqmzckudbLwxAWADRYUF02A7CEirlDlXt5Ks8dysyUhg7lau0AUE/0BHlbIJ4YzyqC9b13p5enrl4lAECNCEHeFIgnxgt0ngouwf7eM1EZALyOidHewsRV93nqKuzuvvf5+fZ5OGlpNX82ruwDAPAaJkYHE87C6x5PnvfGnffelR6jYO9VAgBUixDkLZyF1z2eDI2uvveuBC+uqwUAIYsQ5C0sYXaPJ0Ojq++9K8GLHj0ACFkskfcmljC7riK4ZGXZQ0ZDQ6Mr770rS9FdXa4OAAg69AR5G0uYXefpFVF1vfeu9BjRowcAIYvVYQhOnlytVddlLFzdBwDgNd74/mY4DL7jqeDiqaX0FVJS6q7HlX0AAEGF4TD4hqeWmbNaCwDgIYQgeJ+/zgEEAEAtCEFW5cvravnjHEAAANSBEBRMgvW6Wv44BxAAAHUgBAWLYJ5T4+ngwsVFAQAewBL5YODJi7GuWmUPUtVtT09vSJV1Y5k5AKCeWCJvVbXNqXE3TPjzDMgsMwcABBCGw4IBc2oAAPA4QlAwYE4NAAAex5ygYOKPOTWevDwFAAD15I3vb3qCquPLc+i4w9cXY/X1UnoAAHyIEFRZKHzxeyLEcXkKAECIIwSdLBS++D0V4tw5y3Og9pwBAFAL64agn36qui3Yr0vlyRDn6oq0UOg5AwBYknVD0BlnVP3CDvbrUnkyxLmyIi0Ues4AAJZl3RBkTNUv7GA/h46nQ1xdS+mDvecMAGBp1g1BUvVf2MF8Dh1vhLjaVqQFe88ZAMDSrH3ZjJq+sP1xeQdPnY8nM1MaOtQ35xOqCF1ZWfZAGWw9ZwAAS7NuCAoLC5wv7Jyc3+fWhIXZg0VDeqB8GeJ8GboAAPAg654xets2xZ52mr/L8ewV4gEACFGcMdqT2rTxdwV2TC4GAMAvgjIEPfnkk+rQoYOio6PVs2dPffzxx/4uqf6YXAwAgF8EXQhavny5Jk+erJkzZ2rz5s3q37+/MjIy9OOPP/q7tPoJ9mX5AAAEqaCbE9SnTx+dc845WrhwoWPbaaedpssvv1zZ2dl1Pj9gryLvjyvEAwAQJLzx/R1Uq8NOnDihTZs2afr06U7bhwwZonXr1lX7nJKSEpWUlDgeFxUVebXGevPHsnwAACwsqIbD9u/fr7KyMiUkJDhtT0hIUEFBQbXPyc7OVlxcnOPWtm1bX5QKAAACXFCFoAo2m83psTGmyrYKM2bMUGFhoeO2e/duX5QIAAACXFANh7Vs2VLh4eFVen327dtXpXeoQlRUlKKionxRHgAACCJB1RPUqFEj9ezZUytXrnTavnLlSvXr189PVQEAgGAUVD1BkjRlyhRdf/316tWrl/r27avFixfrxx9/1C233OLv0gAAQBAJuhB0zTXX6MCBA5o7d6727NmjM888U++8845SU1P9XRoAAAgiQXeeoIYK2PMEAQCAGnHtMAAAAA8hBDVEfr60apX9HgAABBVCUH3l5EipqdKgQfb7nBx/VwQAANxACKqP/HxpwgSpvNz+uLxcysqiRwgAgCBCCKqP3NzfA1CFsjL7BVABAEBQIATVR1qaFFbprQsPt18BHgAABAVCUH2kpEiLF9uDj2S/X7SIq8ADABBEgu5kiQEjM1MaOtQ+BNapEwEIAIAgQwhqiJQUwg8AAEGK4TAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJhCAAAGBJQRWC2rdvL5vN5nSbPn26v8sCAABBKMLfBbhr7ty5uvnmmx2PmzZt6sdqAABAsAq6ENSsWTMlJib6uwwAABDkgmo4TJIeeughtWjRQj169NADDzygEydO+LskAAAQhIKqJ+jOO+/UOeeco+bNm+uzzz7TjBkztHPnTj3zzDM1PqekpEQlJSWOx4WFhZKkoqIir9cLAAA8o+J72xjjuRc1fjZr1iwjqdbbhg0bqn3uK6+8YiSZ/fv3N+j1uXHjxo0bN27Bcfv+++89lkFsxngyUrlv//792r9/f637tG/fXtHR0VW2//TTT0pJSdGnn36qPn36VPvcyj1Bhw4dUmpqqn788UfFxcU1rPggUlRUpLZt22r37t2KjY31dzk+Q7tptxXQbtptBYWFhWrXrp0OHjyoU045xSOv6ffhsJYtW6ply5b1eu7mzZslSUlJSTXuExUVpaioqCrb4+LiLPWPp0JsbCztthDabS2021qs2u6wMM9NZ/Z7CHLV+vXr9emnn2rgwIGKi4vThg0bdNddd+nSSy9Vu3bt/F0eAAAIMkETgqKiorR8+XLNmTNHJSUlSk1N1c0336ypU6f6uzQAABCEgiYEnXPOOfr0008b/DpRUVGaNWtWtUNkoYx2024roN202wpot+fa7feJ0QAAAP4QdCdLBAAA8ARCEAAAsCRCEAAAsCRCEAAAsKSQDEFPPvmkOnTooOjoaPXs2VMff/xxrfuvWbNGPXv2VHR0tE499VQ99dRTPqrUs9xp92uvvabBgwerVatWio2NVd++ffXee+/5sFrPcffzrvC///1PERER6tGjh3cL9BJ3211SUqKZM2cqNTVVUVFR6tixo5599lkfVes57rZ76dKl6t69u5o0aaKkpCSNHz9eBw4c8FG1Dbd27VqNGDFCycnJstlseuONN+p8Tigc09xtd6gc0+rzeVcI5mNafdrtiWNayIWg5cuXa/LkyZo5c6Y2b96s/v37KyMjQz/++GO1++/cuVMXX3yx+vfvr82bN+uee+7RHXfcoVdffdXHlTeMu+1eu3atBg8erHfeeUebNm3SwIEDNWLECMdZuIOFu+2uUFhYqBtuuEEXXnihjyr1rPq0e9SoUfrwww+Vk5Oj7du368UXX1TXrl19WHXDudvuTz75RDfccIMyMzO1detWvfzyy9qwYYNuuukmH1def8XFxerevbsWLFjg0v6hckxzt92hckxzt90Vgv2YVp92e+SY5rGrkAWI3r17m1tuucVpW9euXc306dOr3X/q1Kmma9euTtuysrLMeeed57UavcHddlfn9NNPN3PmzPF0aV5V33Zfc8015t577zWzZs0y3bt392KF3uFuu999910TFxdnDhw44IvyvMbddj/88MPm1FNPddr297//3aSkpHitRm+SZF5//fVa9wmVY9rJXGl3dYLxmHYyd9od7Me0k7nSbk8d00KqJ+jEiRPatGmThgwZ4rR9yJAhWrduXbXPWb9+fZX9hw4dqo0bN+q3337zWq2eVJ92V1ZeXq7Dhw8rPj7eGyV6RX3bvWTJEn3//feaNWuWt0v0ivq0+6233lKvXr00b948tWnTRp07d9bdd9+tY8eO+aJkj6hPu/v166f8/Hy98847MsZo7969euWVVzR8+HBflOwXoXBM84RgPKbVV7Af0+rDU8e0oDljtCv279+vsrIyJSQkOG1PSEhQQUFBtc8pKCiodv/S0lLt37+/1ouzBor6tLuyRx99VMXFxRo1apQ3SvSK+rQ7NzdX06dP18cff6yIiOD851+fdv/www/65JNPFB0drddff1379+/XxIkT9euvvwbNvKD6tLtfv35aunSprrnmGh0/flylpaW69NJL9Y9//MMXJftFKBzTPCEYj2n1EQrHtPrw1DEtpHqCKthsNqfHxpgq2+rav7rtgc7ddld48cUXNXv2bC1fvlytW7f2Vnle42q7y8rKNGbMGM2ZM0edO3f2VXle487nXV5eLpvNpqVLl6p37966+OKLNX/+fD333HNB1Rskudfubdu26Y477tB9992nTZs2acWKFdq5c6duueUWX5TqN6FyTKuvYD+muSrUjmnu8NQxLaRiY8uWLRUeHl7l/wr37dtX5f+MKiQmJla7f0REhFq0aOG1Wj2pPu2usHz5cmVmZurll1/WRRdd5M0yPc7ddh8+fFgbN27U5s2bNWnSJEn2PyRjjCIiIvT+++9r0KBBPqm9IerzeSclJalNmzaKi4tzbDvttNNkjFF+fr7S0tK8WrMn1Kfd2dnZOv/88/XnP/9ZktStWzfFxMSof//+uv/++0OyVyQUjmkNEczHNHeFyjGtPjx1TAupnqBGjRqpZ8+eWrlypdP2lStXql+/ftU+p2/fvlX2f//999WrVy9FRkZ6rVZPqk+7Jfv/LY0bN07Lli0LyjkS7rY7NjZWX331lb744gvH7ZZbblGXLl30xRdfqE+fPr4qvUHq83mff/75+vnnn3XkyBHHtu+++05hYWFKSUnxar2eUp92Hz16VGFhzoe58PBwSb/3joSaUDim1VewH9PcFSrHtPrw2DGtQdOqA9BLL71kIiMjTU5Ojtm2bZuZPHmyiYmJMXl5ecYYY6ZPn26uv/56x/4//PCDadKkibnrrrvMtm3bTE5OjomMjDSvvPKKv5pQL+62e9myZSYiIsI88cQTZs+ePY7boUOH/NWEenG33ZUF60oKd9t9+PBhk5KSYq666iqzdetWs2bNGpOWlmZuuukmfzWhXtxt95IlS0xERIR58sknzffff28++eQT06tXL9O7d29/NcFthw8fNps3bzabN282ksz8+fPN5s2bza5du4wxoXtMc7fdoXJMc7fdlQXrMc3ddnvqmBZyIcgYY5544gmTmppqGjVqZM455xyzZs0ax8/Gjh1rBgwY4LT/6tWrzdlnn20aNWpk2rdvbxYuXOjjij3DnXYPGDDASKpyGzt2rO8LbyB3P++TBesBwxj32/3NN9+Yiy66yDRu3NikpKSYKVOmmKNHj/q46oZzt91///vfzemnn24aN25skpKSzB//+EeTn5/v46rrb9WqVbX+rYbqMc3ddofKMa0+n/fJgvWYVp92e+KYZjMmRPuEAQAAahFSc4IAAABcRQgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCEBLmzp2rs846SzExMUpISNCtt96q3377zd9lAQhgEf4uAAAayhijsrIyLVq0SG3atNG2bdt0ww03qFu3brr11lv9XR6AAMUFVAGEpDFjxqhVq1Z6/PHH/V0KgADFcBiAoLdr1y5NmjRJZ555ppo3b66mTZvq3//+t1JSUvxdGoAARggCENT279+v3r17a//+/Zo/f74++eQTrV+/XuHh4erRo4e/ywMQwJgTBCCovfPOOyotLdWLL74om80mSXriiSd04sQJQhCAWhGCAAS1+Ph4FRUV6a233tLpp5+u//znP8rOzlabNm3UqlUrf5cHIIAxMRpAUDPG6NZbb9WyZcvUuHFjXXfddTp+/Lh27dqlt99+29/lAQhghCAAAGBJTIwGAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACWRAgCAACW9P8BCC+pJYD4asoAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbnklEQVR4nO3de3zO9f/H8ce1jTluzGEHY4ahE0JEySE5hJCS/JLDRISQnNl1LQyhr8gpiw5OpUglpUIJ35BDKIYNK3O2OY5tn98f+26ZzWxzbdd17Xreb7frdnV99vl89vpcl32uZ+/P+/3+mAzDMBARERFxMi62LkBERETEFhSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCxO40adKEJk2a2LqMHOvRowfFihXL0roVK1akR48euVqPyWTCbDbn6u+4m6tXr2I2m9m4caNN63AUP/74I3Xr1qVo0aKYTCZWr17N4sWLMZlMREVFpa63dOlS/vOf/+RKDWPHjqVChQq4ublRokSJbG/fo0cPKlasaPW67M1HH31Ely5dqFatGi4uLk5xzPmJm60LELndnDlzbF1Cnlm1ahUeHh62LiPXXb16FYvFAuDQATcvGIZB586dqVq1KmvWrKFo0aJUq1aNhIQEtm7diq+vb+q6S5cuZd++fQwePNiqNXz55ZdMnDiRMWPG0Lp1a9zd3a26//zk448/JiYmhnr16pGUlMTNmzdtXZJkg0KQ2J3777/f1iXkmYcfftjWJYgVXbt2jUKFCmEymXK8j3/++Yfz58/TsWNHnnzyyTQ/K1OmzL2WmCX79u0DYNCgQZQtWzZPfqe1WOMzyI7vvvsOF5fkiypt27ZNfe/EMehymNwTs9mMyWRi//79vPjii3h6euLt7U2vXr2IjY1Ns+7169cZNWoUgYGBFCxYkHLlyvHaa69x8eLFNOtldDls7ty51KxZk2LFilG8eHGqV6/O6NGjAYiKisLNzY2wsLB09f3888+YTCY+++yzTI/j4sWLvPHGG1SqVAl3d3fKli3L008/zV9//QXAxo0bMZlM6S7nREVFYTKZWLx4cbp97t+/nyeffJKiRYtSpkwZBgwYwNWrV9Osk9HlsLvVYg0xMTH07dsXf39/ChYsSGBgIBaLhYSEhDTrWSwW6tevj5eXFx4eHtSuXZvw8HBuv+/yTz/9RJMmTShVqhSFCxemQoUKdOrUiatXrxIVFZX65W2xWDCZTJhMprteBrx69SrDhg0jMDCQQoUK4eXlRd26dVm2bFma9RYvXky1atVwd3fnvvvu46OPPkp3KSY7n9+OHTvo0qULFStWpHDhwlSsWJEXX3yRY8eOpfu9JpOJ77//nl69elGmTBmKFClCfHw8ACtWrKBBgwYULVqUYsWK0bJlS3bt2pXpMZvNZvz9/QEYMWIEJpMp9ThuvxzWpEkTvvnmG44dO5b6nt7tiz8pKYmpU6dSvXr11H9bL7/8MtHR0anrVKxYkbFjxwLg7e2dpcupGX0GGblx4wYTJkxI/f1lypShZ8+enDlzJs168fHxvPHGG/j4+FCkSBGeeOIJdu7cme7vxVqfwY4dO3jmmWfw8vKiUKFCPPzww3z66aeZHnOKlAAkjkktQWIVnTp14oUXXiA4OJg//viDUaNGAfDBBx8AyU38HTp04Mcff2TUqFE0atSIvXv3EhISwtatW9m6desdm9yXL19O//79GThwINOmTcPFxYXDhw9z4MABIPmk/cwzzzBv3jyGDx+Oq6tr6razZ8/Gz8+Pjh073rH2S5cu8fjjjxMVFcWIESOoX78+ly9f5ueff+bkyZNUr1492+/HzZs3efrpp+nbty8jR45ky5YtTJgwgWPHjvHVV1/dcy09evTgww8/JDIyMtt9EFKa7l1cXBg/fjyVK1dm69atTJgwgaioKBYtWpS6blRUFH379qVChQoAbNu2jYEDB/L3338zfvz41HXatGlDo0aN+OCDDyhRogR///0369at48aNG/j6+rJu3TpatWpFcHAwvXv3Bu7eqjF06FA+/vhjJkyYwMMPP8yVK1fYt28f586dS11n8eLF9OzZk/bt2zN9+nRiY2Mxm83Ex8fn+MspKiqKatWq0aVLF7y8vDh58iRz587lkUce4cCBA5QuXTrN+r169aJNmzZ8/PHHXLlyhQIFCjBp0iTGjh1Lz549GTt2LDdu3ODtt9+mUaNG/Pbbb3ds7ezduzc1a9bk2WefZeDAgXTt2vWOfxdz5syhT58+HDlyhFWrVmXp2Pr168eCBQsYMGAAbdu2JSoqinHjxrFx40Z+//13SpcuzapVq3jvvfcIDw9n3bp1eHp6pgazjGT1M0hKSqJ9+/b88ssvDB8+nIYNG3Ls2DFCQkJo0qQJO3bsoHDhwgD07NmTFStWMHz4cJo1a8aBAwfo2LEjcXFxGdZwL5/Bhg0baNWqFfXr12fevHl4enqyfPlyXnjhBa5evZrrffbExgyRexASEmIAxtSpU9Ms79+/v1GoUCEjKSnJMAzDWLduXYbrrVixwgCMBQsWpC5r3Lix0bhx49TXAwYMMEqUKJFpHRs2bDAAY9WqVanL/v77b8PNzc2wWCyZbhsaGmoAxvr16++6/w0bNqRZHhkZaQDGokWLUpd1797dAIyZM2emWXfixIkGYGzevDl1WUBAgNG9e/ds1WIYhtGrVy/D1dXViIqKynQ9wzAMwAgJCUl93bdvX6NYsWLGsWPH0qw3bdo0AzD279+f4X4SExONmzdvGqGhoUapUqVSP9uVK1cagLF79+471nDmzJl0ddzNgw8+aHTo0OGOP09MTDT8/PyM2rVrp9ZiGIYRFRVlFChQwAgICEhdlp3P73YJCQnG5cuXjaJFi6b5TBctWmQAxssvv5xm/ePHjxtubm7GwIED0yy/dOmS4ePjY3Tu3DmTo/63prfffjvN8pTfFxkZmbqsTZs2aY4zM3/++acBGP3790+z/L///a8BGKNHj05dlvJ3febMmUz3mZ3PYNmyZQZgfP7552n2sX37dgMw5syZYxiGYezfv98AjBEjRqRZL2X7W/9erPEZVK9e3Xj44YeNmzdvplm3bdu2hq+vr5GYmJjpe3Cr7HweYh/UjidW8cwzz6R5XaNGDa5fv87p06eB5MslQLr/q3r++ecpWrQoP/744x33Xa9ePS5evMiLL77Il19+ydmzZ9Ot06RJE2rWrMl7772XumzevHmYTCb69OmTae3ffvstVatWpXnz5pmul13/93//l+Z1165dgeT/87zXWsLDw0lISCAgICDbdX399dc0bdoUPz8/EhISUh+tW7cGYNOmTanr/vTTTzRv3hxPT09cXV0pUKAA48eP59y5c6mfba1atShYsCB9+vThww8/5OjRo9mq59YaEhISUi+11atXj2+//ZaRI0eyceNGrl27lma7gwcP8s8//9C1a9c0l4ECAgJo2LBhtt+XFJcvX2bEiBFUqVIFNzc33NzcKFasGFeuXOHPP/9Mt36nTp3SvP7uu+9ISEjg5ZdfTnNchQoVonHjxjYbIZfy7+72v8F69epx3333Zfo3eCfZ+Qy+/vprSpQoQbt27dK8L7Vq1cLHxyf1fUn599e5c+c02z/33HO4uWV88SKnn8Hhw4f566+/Uv9Wb1336aef5uTJkxw8eDDb74s4DoUgsYpSpUqleZ3ShJ/yxXXu3Dnc3NzSXQIxmUz4+PikucRxu27duvHBBx9w7NgxOnXqRNmyZalfvz7r169Ps96gQYP48ccfOXjwIDdv3uT999/nueeew8fHJ9Paz5w5k2lzf064ubmle09S6sjsWHOjltudOnWKr776igIFCqR5PPDAAwCpIfO3336jRYsWALz//vv8+uuvbN++nTFjxgD/fraVK1fmhx9+oGzZsrz22mtUrlyZypUrM3PmzLvWEhUVla6OlC/Bd999lxEjRrB69WqaNm2Kl5cXHTp0ICIiAvj3fczo873bZ56Zrl27Mnv2bHr37s13333Hb7/9xvbt2ylTpky6IAakGa0Fye8vwCOPPJLu2FasWJFhiM8LKe/X7fUC+Pn5Zfrv8m77zMpncOrUKS5evEjBggXTvS8xMTGp70vKPr29vdNsn9HfVIqcfgYp6w0bNizdev379wew2ecleUN9giRPlCpVioSEBM6cOZMmCBmGQUxMDI888kim2/fs2ZOePXty5coVfv75Z0JCQmjbti2HDh1KbQ3p2rUrI0aM4L333uPRRx8lJiaG11577a61lSlTJk3H0IwUKlQIILXDZYo7nSATEhI4d+5cmpN2TEwMkD4wZreWe1W6dGlq1KjBxIkTM/y5n58fkNwXq0CBAnz99depxw+wevXqdNs0atSIRo0akZiYyI4dO5g1axaDBw/G29ubLl263LEWPz8/tm/fnmZZtWrVAChatCgWiwWLxcKpU6dSW4XatWvHX3/9lfo+pryvt7p9WVY/v9jYWL7++mtCQkIYOXJk6vL4+HjOnz+f4THc3hk5pc/QypUrc9RSl1tS3q+TJ0+mC9r//PNPur5O2dlnVj6D0qVLU6pUKdatW5fhvooXL55mn6dOnaJcuXKpP0/5m8pITj+DlPVGjRrFs88+m+E6Kf8eJX9SS5DkiZShvp988kma5Z9//jlXrlxJNxT4TooWLUrr1q0ZM2YMN27cYP/+/ak/K1SoUOolmRkzZlCrVi0ee+yxu+6zdevWHDp0KPWSXUZSOh/v3bs3zfI1a9bccZslS5akeb106VIg83lyslLLvUoZxlu5cmXq1q2b7pESgkwmE25ubmk6ml+7do2PP/74jvt2dXWlfv36qZclf//9dyB9y2CKggULpvv9KV+Gt/L29qZHjx68+OKLHDx4kKtXr1KtWjV8fX1ZtmxZmtFqx44dY8uWLWm2z+rnZzKZMAwjXWfkhQsXkpiYeMfjvlXLli1xc3PjyJEjGb6/devWzdJ+ssLd3T3D1qmMNGvWDEj/N7h9+3b+/PPPLP8N3io7n0Hbtm05d+4ciYmJGb4nKWHjiSeeAJJHdt1q5cqV6UYv3klWP4Nq1aoRFBTEnj177rheRv8eJf9QS5DkiaeeeoqWLVsyYsQI4uLieOyxx1JHhz388MN069btjtu+8sorFC5cmMceewxfX19iYmIICwvD09MzXQtS//79mTp1Kjt37mThwoVZqm3w4MGsWLGC9u3bM3LkSOrVq8e1a9fYtGkTbdu2pWnTpvj4+NC8eXPCwsIoWbIkAQEB/Pjjj3zxxRcZ7rNgwYJMnz6dy5cv88gjj6SODmvdujWPP/74PdUCEBwczIcffsiRI0ey3doQGhrK+vXradiwIYMGDaJatWpcv36dqKgo1q5dy7x58/D396dNmzbMmDGDrl270qdPH86dO8e0adPSBYR58+bx008/0aZNGypUqMD169dTRwWm9G0qXrw4AQEBfPnllzz55JN4eXlRunTpTEe21a9fn7Zt21KjRg1KlizJn3/+yccff0yDBg0oUqQIAG+99Ra9e/emY8eOvPLKK1y8eBGz2ZzuUkxWPz8PDw+eeOIJ3n777dT6Nm3aRHh4eJZnTa5YsSKhoaGMGTOGo0eP0qpVK0qWLMmpU6f47bffUlu4rOGhhx7iiy++YO7cudSpUwcXF5c7hqxq1arRp08fZs2ahYuLC61bt04dHVa+fHmGDBmS7d/v4uKS5c+gS5cuLFmyhKeffprXX3+devXqUaBAAaKjo9mwYQPt27enY8eOPPDAA7z44otMnz4dV1dXmjVrxv79+5k+fTqenp5ZGvWXnc9g/vz5tG7dmpYtW9KjRw/KlSvH+fPn+fPPP/n999/vOr3GgQMHUkeqxsTEcPXqVVauXAkkz3nmTPOeOSSbdssWh3enUSQZjWS5du2aMWLECCMgIMAoUKCA4evra/Tr18+4cOFCmm1vHx324YcfGk2bNjW8vb2NggULGn5+fkbnzp2NvXv3ZlhTkyZNDC8vL+Pq1atZPo4LFy4Yr7/+ulGhQgWjQIECRtmyZY02bdoYf/31V+o6J0+eNJ577jnDy8vL8PT0NF566SVjx44dGY4OK1q0qLF3716jSZMmRuHChQ0vLy+jX79+xuXLl9P83ttHh2W1lpQRaLe+v3dCBqOyzpw5YwwaNMgIDAw0ChQoYHh5eRl16tQxxowZk6bGDz74wKhWrZrh7u5uVKpUyQgLCzPCw8PT/O6tW7caHTt2NAICAgx3d3ejVKlSRuPGjY01a9ak+Z0//PCD8fDDDxvu7u7pRvlkZOTIkUbdunWNkiVLpv7+IUOGGGfPnk2z3sKFC42goCCjYMGCRtWqVY0PPvjA6N69e7pROln9/KKjo41OnToZJUuWNIoXL260atXK2LdvX7rPKuXf+Pbt2zOsf/Xq1UbTpk0NDw8Pw93d3QgICDCee+4544cffsj0uLMzOuz8+fPGc889Z5QoUcIwmUzG3U7piYmJxpQpU4yqVasaBQoUMEqXLm289NJLxokTJ9Ksl9XRYSmy+hncvHnTmDZtmlGzZk2jUKFCRrFixYzq1asbffv2NSIiIlLXu379ujF06FCjbNmyRqFChYxHH33U2Lp1q+Hp6WkMGTIk3Xtyr5/Bnj17jM6dOxtly5Y1ChQoYPj4+BjNmjUz5s2bd9djT3mvMnpkZzSk2IbJMG6b9UzEgZ0+fZqAgAAGDhzI1KlTbV2O2EiPHj3YuHFjmvtsiWPbsmULjz32GEuWLEkdaSlyr3Q5TPKF6Ohojh49yttvv42Liwuvv/66rUsSkRxav349W7dupU6dOhQuXJg9e/YwefJkgoKC7tiBWSQnFIIkX1i4cCGhoaFUrFiRJUuWpBlVIiKOxcPDg++//57//Oc/XLp0idKlS9O6dWvCwsLSjFQUuVe6HCYiIiJOyW6GyM+dO5caNWrg4eGBh4cHDRo04Ntvv039uWEYmM1m/Pz8KFy4ME2aNEkzPFpEREQkO+wmBPn7+zN58mR27NjBjh07aNasGe3bt08NOlOnTmXGjBnMnj2b7du34+Pjw1NPPcWlS5dsXLmIiIg4Iru+HObl5cXbb79Nr1698PPzY/DgwYwYMQJInsHV29ubKVOm0LdvXxtXKiIiIo7GLjtGJyYm8tlnn3HlyhUaNGhAZGQkMTExqfcxguSZUhs3bsyWLVsyDUHx8fFppspPSkri/PnzlCpVKt1U6yIiImKfDMPg0qVL+Pn5ZWnSzKywqxD0xx9/0KBBA65fv06xYsVYtWoV999/f+r067ffUM/b25tjx45lus+wsDCrzc4qIiIitnXixAmr3WjarkJQtWrV2L17NxcvXuTzzz+ne/fuqXeUhvQ3yTMM466tOaNGjWLo0KGpr2NjY6lQoQInTpzAw8PDugcgIiIiuSIuLo7y5ctb9X5udhWCChYsSJUqVQCoW7cu27dvZ+bMman9gGJiYvD19U1d//Tp0+lah27n7u6e7l5HQOooNBEREXEc1uzKYjejwzJiGAbx8fEEBgbi4+PD+vXrU39248YNNm3aRMOGDW1YoYiIiDgqu2kJGj16NK1bt6Z8+fJcunSJ5cuXs3HjRtatW4fJZGLw4MFMmjSJoKAggoKCmDRpEkWKFNE9ZERERCRH7CYEnTp1im7dunHy5Ek8PT2pUaMG69at46mnngJg+PDhXLt2jf79+3PhwgXq16/P999/b9VrgyIiIuI87HqeoNwQFxeHp6cnsbGx6hMkIiLiIHLj+9uu+wSJiIiI5BaFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKdhOCwsLCeOSRRyhevDhly5alQ4cOHDx4MM06PXr0wGQypXk8+uijNqpYREREHJndhKBNmzbx2muvsW3bNtavX09CQgItWrTgypUradZr1aoVJ0+eTH2sXbvWRhWLiIiII3OzdQEp1q1bl+b1okWLKFu2LDt37uSJJ55IXe7u7o6Pj09elyciIiL5jN20BN0uNjYWAC8vrzTLN27cSNmyZalatSqvvPIKp0+fznQ/8fHxxMXFpXmIiIiImAzDMGxdxO0Mw6B9+/ZcuHCBX375JXX5ihUrKFasGAEBAURGRjJu3DgSEhLYuXMn7u7uGe7LbDZjsVjSLY+NjcXDwyPXjkFERESsJy4uDk9PT6t+f9tlCHrttdf45ptv2Lx5M/7+/ndc7+TJkwQEBLB8+XKeffbZDNeJj48nPj4+9XVcXBzly5dXCBIREXEguRGC7KZPUIqBAweyZs0afv7550wDEICvry8BAQFERETccR13d/c7thKJiIgIEB0NEREQFAR3+e7NT+ymT5BhGAwYMIAvvviCn376icDAwLtuc+7cOU6cOIGvr28eVCgiIpIPhYdDQAA0a5b8HB5u64ryjN2EoNdee41PPvmEpUuXUrx4cWJiYoiJieHatWsAXL58mWHDhrF161aioqLYuHEj7dq1o3Tp0nTs2NHG1YuIiDig6Gjo0weSkpJfJyVB377Jy52A3YSguXPnEhsbS5MmTfD19U19rFixAgBXV1f++OMP2rdvT9WqVenevTtVq1Zl69atFC9e3MbVi4iIOKCIiH8DUIrERDh82Db15DG76RN0t/7ZhQsX5rvvvsujakRERJxAUBC4uKQNQq6uUKWK7WrKQ3bTEiQiIiJ5zN8fFixIDj6Q/Dx//p07R0dHw4YN+eZymUKQiIiIMwsOhqio5HATFZX8OiP5sAO1Xc4TlJtyY54BERGRfC06Ojn43H7ZLCoqz4bU58b3t1qCREREJHP5tAO1QpCIiIhkLqUD9a3yQQdqhSARERHJXHY7UDsIuxkiLyIiInYsOBhatky+BFalisMHIFAIEhERkazy988X4SeFLoeJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSAREZH8LDoaNmxIfpY0FIJERETyq/BwCAiAZs2Sn8PDbV2RXVEIEhERyY+io6FPH0hKSn6dlAR9+6pF6BYKQSIiIvlRRMS/AShFYiIcPmybeuyQQpCIiEh+FBQELrd9zbu6QpUqtqnHDikEiYiI5Ef+/rBgQXLwgeTn+fOTlwsAbrYuQERERHJJcDC0bJl8CaxKFQWg2ygEiYiI5Gf+/go/d6DLYSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnZDchKCwsjEceeYTixYtTtmxZOnTowMGDB9OsYxgGZrMZPz8/ChcuTJMmTdi/f7+NKhYRERFHZjchaNOmTbz22mts27aN9evXk5CQQIsWLbhy5UrqOlOnTmXGjBnMnj2b7du34+Pjw1NPPcWlS5dsWLmIiEgWRUfDhg3Jz2JzJsMwDFsXkZEzZ85QtmxZNm3axBNPPIFhGPj5+TF48GBGjBgBQHx8PN7e3kyZMoW+fftmab9xcXF4enoSGxuLh4dHbh6CiIjIv8LDoU8fSEoCFxdYsACCgzNeNzoaIiIgKAj8/XO+Tj6SG9/fdtMSdLvY2FgAvLy8AIiMjCQmJoYWLVqkruPu7k7jxo3ZsmWLTWoUERHJkujofwMQJD/37Ztxi1B4OAQEQLNmyc/h4TlbR+7KLkOQYRgMHTqUxx9/nAcffBCAmJgYALy9vdOs6+3tnfqzjMTHxxMXF5fmISIikqciIv4NQCkSE+Hw4bTLshKWshOoJFN2GYIGDBjA3r17WbZsWbqfmUymNK8Nw0i37FZhYWF4enqmPsqXL2/1ekVERDIVFJR8CexWrq5QpUraZVkJS1kNVHJXdheCBg4cyJo1a9iwYQP+t1zj9PHxAUjX6nP69Ol0rUO3GjVqFLGxsamPEydO5E7hIiIid+Lvn9wHyNU1+bWrK8yfn74vT1bCUlYDldyV3YQgwzAYMGAAX3zxBT/99BOBgYFpfh4YGIiPjw/r169PXXbjxg02bdpEw4YN77hfd3d3PDw80jxERETyXHAwREUljw6Lisq4U3RWwlJWA5Xcld2MDuvfvz9Lly7lyy+/pFq1aqnLPT09KVy4MABTpkwhLCyMRYsWERQUxKRJk9i4cSMHDx6kePHiWfo9Gh0mIiJ2Lzo6+fJWlSqZjw672zr5SG58f9tNCLpTv55FixbRo0cPILm1yGKxMH/+fC5cuED9+vV57733UjtPZ4VCkIiIiOPJ1yEorygEiYiI5IxhGNy8eZOCBQvm+e92qnmCRERExD4YhsGPP/5Io0aNUicszg8UgkREROSONm7cSOPGjWnevDm//vorH374IVevXrV1WVahECQiIiLp/PzzzzRt2pSmTZvyyy+/4O7uzsCBA9m3bx9FihSxdXlW4WbrAkRERMR+bN68mZCQEH766ScAChYsyCuvvMKoUaMoV66cjauzLoUgERERYcuWLYSEhPDDDz8AUKBAAXr37s2oUaPy7d0WFIJERESc2LZt2wgJCeH7778HwM3NjV69ejF69GgCAgJsXF3uUggSERGxhujo5Pt6BQU5xOSFv/32GyEhIaxbtw5IDj89evRgzJgxVKxY0bbF5RF1jBYREblX4eEQEADNmiU/h4fbuqI72rFjB23btqV+/fqsW7cOV1dXevXqxcGDB3n//fedJgCBQpCIiMi9iY6GPn3+vbN7UhL07Zu83I78/vvvPPPMMzzyyCN88803uLq60qNHDw4ePEh4eDiVKlWydYl5TiFIRETkXkRE/BuAUiQmJt/Xyw7s3r2bDh06UKdOHb766itcXFx4+eWX+euvv1i0aBGVK1e2dYk2oz5BIiIi9yIoCFxc0gYhV9fkG5va0N69ezGbzaxatQoAFxcXXnzxRcaNG5fmRuXOTC1BIiIi98LfHxYsSA4+kPw8f77NOkfv27eP5557jpo1a7Jq1SpMJhMvvvgi+/fv55NPPlEAuoVagkRERO5VcDC0bJl8CaxKFZsEoAMHDmCxWPjss88wDAOTyUTnzp0ZP348999/f57X4wgUgkRERKzB398m4efPP/8kNDSUFStWYBgGAM8//zzjx4/nwQcfzPN6HIlCkIiIiAM6ePAgoaGhLFu2LDX8PPvss4SEhFCjRg0bV+cYFIJEREQcSEREBKGhoSxdupSk/3XG7tChAyEhIdSqVcu2xTkYhSAREREHcPjwYd566y0++eST1PDzzDPPYDabefjhh21cnWNSCBIREbFjR48eZcKECXz00UckJiYC0LZtW8xmM3Xq1LFxdY5NIUhERMQORUVFMWHCBD788EMSEhIAePrppzGbzTzyyCM2ri5/UAgSERGxI8eOHWPixIksWrQoNfy0bNkSi8VC/fr1bVxd/qIQJCIiYgeOHz/OpEmT+OCDD7h58yYATz31FBaLhQYNGti4uvxJIUhERMSGoqOjmTRpEgsXLkwNP08++SQWi4XHHnvMxtXlbwpBIiIiNvDPP/8QFhbGggULuHHjBgBNmzbFYrHQqFEjG1fnHBSCRERE8tDJkyeZPHky8+fPJz4+HoAnnngCi8VCkyZNbFuck1EIEhERyQMxMTFMmTKFefPmcf36dQAef/xxLBYLTZs2xWQy2bhC56MQJCIikotOnTrF1KlTmTt3LteuXQOgYcOGWCwWnnzySYUfG1IIEhERyQVnzpxh6tSpzJkzh6tXrwLw6KOPYrFYeOqppxR+7IBCkIiISGaioyEiAoKCsnSX+LNnzzJt2jRmz57NlStXAKhXrx4Wi4WWLVsq/NgRF1sXICIiYnXR0bBhQ/LzvQgPh4AAaNYs+Tk8/I6rnjt3jtGjRxMYGMiUKVO4cuUKdevW5euvv2bbtm20atVKAcjOKASJiEj+ko3gkqnoaOjTB/53s1KSkqBv33TB6vz584wdO5bAwEDCwsK4fPkytWvXZs2aNfz222+0adNG4cdOKQSJiEj+kcXgkmb9O7UYRUT8u58UiYlw+DAAFy5cYPz48QQGBjJx4kQuXbpErVq1WL16NTt27KBdu3YKP3ZOIUhERPKPuwSXNO7WYhQUBC63fU26uhJbtiwWi4XAwEDeeust4uLiqFGjBl988QU7d+6kffv2Cj8OwmQYhmHrIvJSXFwcnp6exMbG4uHhYetyRETEmqKjkwPNrUHI1RWiotJ2as7qeuHhyS1JiYnEubgws107ZmzaxMWLFwF48MEHMZvNdOzYEZfbA5NYVW58f+sTExGR/MPfHxYsSA40kPw8f376UV1ZbTEKDubSvn1MDA6mYvHijP/ySy5evMj999/PihUr2LNnD506dVIAclAaIi8iIvlLcDC0bJkcaKpUyXhYe8qlrttbgqpUSX156dIlZs+ezbRp0zh//jwA1atXJyQkhOeffx7XlKAlDkshSERE8h9//8zn9ElpMfrfpa5bW4wuX77Me++9x9tvv825c+cAqFatGuPHj+eFF15Q+MlHFIJERMQ53dZidKVkSeZOm8bUqVM5c+YMAEFBQYwfP54XX3xR4ScfUggSERHn5e/PVS8v5s2bx5QpUzh9+jQAlStXZvz48XTt2hU3N31V5lf6ZEVExCldu3aN+fPnM3nyZE6dOgVAYGAg48aNo1u3bgo/TkCfsIiIOJXr16+zYMECJk+ezMmTJwGoWLEiY8eO5eWXX6ZAgQI2rlDyikKQiIg4hfj4eBYuXMikSZP4559/AKhQoQJjx46le/fuFCxY0MYVSl5TCBIRkXwtPj6eDz74gEmTJhH9v9tjlC9fnjFjxtCzZ0+FHydmV7M7/fzzz7Rr1w4/Pz9MJhOrV69O8/MePXpgMpnSPB599FHbFCsiInbtxo0bzJ8/n6CgIPr37090dDT+/v7MmTOHiIgI+vbtqwDk5OyqJejKlSvUrFmTnj170qlTpwzXadWqFYsWLUp9rX/AIiJyq5s3b7J48WImTpzIsWPHAPDz82P06NH07t0bd3d3G1co9sKuQlDr1q1p3bp1puu4u7vj4+OTRxWJiIijuHnzJh999BETJkwgKioKAB8fH0aNGkWfPn0oVKiQbQsUu2NXl8OyYuPGjZQtW5aqVavyyiuvpM7pICIizikhIYFFixZRvXp1evfuTVRUFN7e3rzzzjscPXqUQYMGKQBJhuyqJehuWrduzfPPP09AQACRkZGMGzeOZs2asXPnzjs2b8bHxxMfH5/6Oi4uLq/KFRGRXJSQkMDSpUsJDQ3lyJEjAJQtW5YRI0bw6quvUqRIERtXKPbOoULQCy+8kPrfDz74IHXr1iUgIIBvvvmGZ599NsNtwsLCsFgseVWiiIjkssTERJYtW0ZoaCgREREAlClThuHDh9OvXz+KFi1q4wrFUTjc5bBb+fr6EhAQkPpHkJFRo0YRGxub+jhx4kQeVigiItaSmJjI0qVLeeCBB+jWrRsRERGUKlWKyZMnc/ToUYYNG6YAJNniUC1Btzt37hwnTpzA19f3juu4u7trJICIiANLSkri008/JTQ0lD///BMALy8vhg0bxoABAyhevLiNKxRHZVch6PLlyxw+fDj1dWRkJLt378bLywsvLy/MZjOdOnXC19eXqKgoRo8eTenSpenYsaMNqxYRkdyQlJTEypUrsVgsHDhwAICSJUvyxhtvMHDgQDw8PGxcoTg6uwpBO3bsoGnTpqmvhw4dCkD37t2ZO3cuf/zxBx999BEXL17E19eXpk2bsmLFCv1fgIhIPpKUlMSqVaswm83s27cPgBIlSjB06FAGDRqEp6enjSuU/MJkGIZh6yLyUlxcHJ6ensTGxur/IkRE7IhhGKxevRqz2czevXsB8PDwYOjQobz++uuUKFEiecXoaIiIgKAg8Pe3XcGSp3Lj+9uuWoJERMT5GIbBmjVrMJvN7N69G4DixYszePBghgwZQsmSJf9dOTwc+vSBpCRwcYEFCyA42DaFi8NTS5CIiNiEYRh8/fXXmM1mfv/9dwCKFSvG66+/ztChQ/Hy8kq7QXQ0BAQkB6AUrq4QFaUWISegliAREXF4hmGwdu1azGYzO3bsAKBo0aIMGjSIN954g1KlSmW8YURE2gAEkJgIhw8rBEmOKASJiEieMAyD7777jpCQEH777TcAihQpwoABAxg2bBhlypTJfAdBQcmXwG5vCapSJRerlvzMoSdLFBER+2cYBt9//z0NGzakdevW/PbbbxQuXJhhw4YRGRnJlClT7h6AILm1Z8GC5OADyc/z56sVSHJMLUEiIpIrDMPgxx9/JCQkhC1btgBQqFAh+vfvz/Dhw/H29s7+ToODoWXL5EtgVaooAMk9UQgSERGr27BhA+PHj2fz5s1Acvh59dVXGTFiBD4+PhlvlNWh7/7+Cj9iFbocJiIiVrNp0yaaNGlCs2bN2Lx5M+7u7gwaNIijR4/yzjvv3DkAhYcnj/xq1iz5OTw8bwsXp6QQJCIi9+yXX36hWbNmNGnShE2bNlGwYEEGDBjAkSNHmDlzJr6JibBhQ3Jrz+2io/+d+weSn/v2zXhdEStSCBIRkRz79ddfad68OU888QQbNmygQIEC9OvXj8OHDzNr1izKlSt391aezIa+i+QihSAREcm2rVu30qJFCx5//HF+/PFHChQoQN++fTl8+DBz5syhfPnyyStmpZUnZej7rTT0XfKAQpCIiGTZf//7X1q1akXDhg1Zv349bm5uvPLKK0RERDBv3jwqVKiQdoOstPJo6LvYiEaHiYjIXW3fvh2z2czatWsBcHV1pUePHowZM4bAwMA7b5jVCQ419F1sQC1BIiJyRzt37qRdu3bUq1ePtWvX4urqSs+ePTl06BALFy7MPABB9lp5/P2hSRMFIMkzagkSEZF0du3ahdlsZs2aNQC4uLjw0ksvMW7cOKrc2oqTlbl91MojdkohSEREUu3Zswez2czq1auB5PDTtWtXxo0bR9WqVdOuHB7+b6dnF5fkFp/g4Ix3rAkOxQ7d0+Ww06dPExMTY61aRETERv744w86depErVq1WL16NSaTia5du7J//34+/vjj9AFIc/tIPpCjELR3714eeOABfH19KVeuHOXKlWPs2LFcuXLF2vWJiEgu2rdvH88//zw1atTgiy++wGQy0aVLF/bv38+SJUuoXr16xhtqbh/JB3IUgoKDg/H29mbz5s3s2rWLCRMm8O2331K3bl0uXLhg7RpFRMTKDhw4QJcuXahRowYrV64E4Pnnn+ePP/5g2bJl3HfffZnvQHP7SD5gMgzDyO5GRYsWZefOnWn+D8EwDJ5//nkKFSrEJ598YtUirSkuLg5PT09iY2Px8PCwdTkiInnqr7/+IjQ0lOXLl5Ny+u/UqRMhISE89NBDaVe+W6fn8PDkS2CJif+O+rpTnyCRe5Qb39856hidUYuPyWRi0qRJ1KlTxyqFiYiI9Rw6dIjQ0FCWLVtG0v8uY3Xs2JGQkBBq1qyZfoOsdHrWqC9xcFluCWrTpg01a9akVq1aJCYmMnPmTL788ku8vb1T19m+fTudOnXi+PHjuVbwvVJLkIg4k4iICN566y2WLFmSGn7at2+P2WymVq1aGW8UHZ18j6/bJziMilLQEZuxaUvQQw89xO+//86iRYs4deoUAJUqVaJz586pwWjRokW88847VilMRERy7siRI0yYMIGPP/6YxMREANq1a4fZbKZ27dqZb5xZp2eFIMlHctQn6NSpU+zatYvdu3enPg4fPoyrqyvVqlVj7969uVGrVaglSETys8jISCZMmMCHH36YGn6efvppzGYzjzzySNZ2opYgsUN20yfI29ubVq1a0apVq9Rl165dY8+ePezZs8cqhYmISNZFRUUxceJEFi9eTEJCAgCtWrXCbDZTv3797O0s5VYXt3d6VgCSfCZHLUGOTC1BIpKfHD9+nIkTJ7Jo0SJu3rwJQIsWLTCbzTRo0ODedh4drU7PYjfspiVIRERs68SJE0yaNInw8PDU8NO8eXMsFgsNGza0zi/RrS4kn1MIEhFxIH///TdhYWG8//773LhxA4BmzZphNptp1KiRjasTcSwKQSIiDuCff/5h8uTJLFiwgPj4eAAaN26MxWKhcePGNq5OxDEpBImI2LGTJ08yZcoU5s+fz/Xr1wFo1KgRFouFpk2b2rg6EcemECQiYodOnTrFlClTmDt3bmr4eeyxx7BYLDRr1gyTyWTjCkUcn0KQiIgdOX36NFOnTmXOnDlcu3YNgAYNGmCxWGjevLnCj4gVKQSJiNiBs2fP8vbbbzN79myuXr0KQL169bBYLLRs2VLhRyQXKASJiNjQuXPnmDZtGrNmzeLKlStA8k2qLRYLrVu3VvgRyUUKQSIiNnD+/HmmT5/Ou+++y+XLlwGoXbs2FouFNm3aKPyI5AGFIBGRPHThwgVmzJjBzJkzuXTpEgAPP/wwZrOZdu3aKfyI5CGFIBGRPHDx4kX+85//8M477xAXFwdAzZo1MZvNtG/fXuFHxAYUgkREclFsbCwzZ85kxowZxMbGAvDggw9iNpvp2LEjLi4uNq5QxHkpBImI5IK4uDjeffddpk+fzsWLFwF44IEHCAkJoVOnTgo/InZAIUhExIouXbrErFmzmD59OufPnwfgvvvuIyQkhOeff17hR8SOKASJiFjB5cuXmT17NtOmTePcuXMAVKtWjZCQEDp37oyrq6uNKxSR2ykEiYjcgytXrjBnzhymTp3K2bNnAQgKCiIkJIQuXboo/IjYMbtql/35559p164dfn5+mEwmVq9enebnhmFgNpvx8/OjcOHCNGnShP3799umWBFxalevXmX69OlUqlSJ4cOHc/bsWapUqcKHH37IgQMH+L//+z8FIBE7Z1ch6MqVK9SsWZPZs2dn+POpU6cyY8YMZs+ezfbt2/Hx8eGpp55KnWtDRCS3Xbt2jXfeeYdKlSoxbNgwTp8+TaVKlVi0aBF//vknL7/8Mm5uNmxkj46GDRuSn0UkU3Z1Oax169a0bt06w58ZhsF//vMfxowZw7PPPgvAhx9+iLe3N0uXLqVv3755WaqIOJlr166xYMECJk+eTExMDAAVK1Zk3LhxdOvWjQIFCti4QiA8HPr0gaQkcHGBBQsgONjWVYnYLbtqCcpMZGQkMTExtGjRInWZu7s7jRs3ZsuWLXfcLj4+nri4uDQPEZGsun79OrNmzaJy5coMHjyYmJgYAgICeP/99zl06BC9evWyjwAUHf1vAILk57591SIkkgmHCUEp/+fl7e2dZrm3t3fqzzISFhaGp6dn6qN8+fK5WqeI5A/x8fHMmTOHKlWqMGjQIE6ePEmFChWYP38+hw4donfv3vYRflJERPwbgFIkJsLhw7apR8QBOEwISnH71PKGYWQ63fyoUaOIjY1NfZw4cSK3SxQRB3bjxg3mzZtHUFAQr732Gn///Tf+/v7MnTuXQ4cO0adPHwoWLGjrMtMLCkq+BHYrV1eoUsU29Yg4ALvqE5QZHx8fILlFyNfXN3X56dOn07UO3crd3R13d/dcr09EHNuNGzdYvHgxEydO5Pjx4wD4+fkxevRoevfubf/nEX//5D5AffsmtwC5usL8+cnLRSRDDtMSFBgYiI+PD+vXr09dduPGDTZt2kTDhg1tWJmIOLKbN2+ycOFCqlWrRt++fTl+/Di+vr68++67HDlyhNdee83+A1CK4GCIikoeHRYVpU7RIndhVy1Bly9f5vAt168jIyPZvXs3Xl5eVKhQgcGDBzNp0iSCgoIICgpi0qRJFClShK5du9qwahFxRDdv3uTjjz9mwoQJREZGAsktziNHjqRPnz4ULlzYxhXmkL+/Wn9EssiuQtCOHTto2rRp6uuhQ4cC0L17dxYvXszw4cO5du0a/fv358KFC9SvX5/vv/+e4sWL26pkEXEwCQkJLFmyhLfeeosjR44AULZsWUaOHEnfvn0pUqSIjSvMA9HRyR2pg4IUmMSpmQzDMGxdRF6Ki4vD09OT2NhYPDw8bF2OiOSRhIQEli1bxltvvUVERAQAZcqUYcSIEfTr1885wg9oLiFxWLnx/a0QJCL5WmJiIsuXLyc0NJRDhw4BULp0ad58801ee+01ihYtauMK81B0NAQEpB1K7+qa3H9ILUJi53Lj+9uuLoeJiFhLYmIin376KaGhofz1118AeHl58eabbzJgwACKFStm4wqzyRqXsDKbS0ghSJyQQpCI5CtJSUl89tlnhIaGcuDAAQBKlizJsGHDGDhwoGP2IbTWJayUuYRubwnSXELipBxmiLyISGaSkpJYuXIlNWvWpEuXLhw4cIASJUrw1ltvERUVxejRox0zAFnzdhgpcwml3N1ecwmJk1NLkIg4tKSkJFavXo3FYmHv3r0AeHp6MmTIEAYPHoynp6eNK7xH1r6EFRwMLVsmb1+ligKQODWFIBFxSIZh8OWXX2I2m9mzZw8AHh4eDB48mCFDhlCiRAnbFmgtuXEJS3MJiQC6HCYiDsYwDNasWUOdOnXo2LEje/bsoXjx4owdO5bIyEgsFkv+CUCgS1giuUgtQSLiEAzD4JtvvsFsNrNz504AihUrxqBBgxg6dCilSpWycYUZsNakhLqEJZIrFIJExK4ZhsG3336L2Wxm+/btABQtWpQBAwYwbNgwSpcubeMK7yA7I7qyEpZ0CUvE6nQ5TETskmEYfPfddzRo0IA2bdqwfft2ihQpwptvvklkZCSTJ0+23wCUnRFd4eHJExg2a5b8HB6et7WKODGFIBGxK4ZhsH79eh577DFatWrFf//7XwoXLswbb7xBZGQkU6dOpUyZMrYuM3OZjei6lTWHv4tItulymIjYBcMw+OmnnwgJCeHXX38FoFChQvTr14/hw4fj4+Nj4wqzIasjujSDs4hNqSVIRGxu48aNNGnShObNm/Prr7/i7u7O66+/ztGjR5kxY4ZjBSDI+oiulLB0K83gLJJn1BIkIjbz888/ExISwsaNGwEoWLAgffr0YeTIkZQrV862xd2rrIzoSglLffsmtwBp+LtIntJd5EUkz23evJmQkBB++uknIDn89O7dm1GjRuHvjAEgOlrD30XuQneRFxGHtmXLFkJCQvjhhx8AKFCgAMGtWjF67FjK16tn4+psSMPfRWxCfYJEJNdt27aNli1b8thjj/HDDz/g5uZGnyeeICIhgblffUX5Bg00NFxE8pxCkIjkmt9++43WrVvToEEDvv/+e1xdXenduzcRP//M/M2bCUi5Gq+h4SJiAwpBImJ1O3bsoG3bttSvX59169bh6upKz549OXToEO+//z4Vr1/P2jw6IiK5SH2CRMRqfv/9d8xmM1999RUALi4udOvWjbFjx1Ll1mHfuXFndBGRbFJLkIjcs927d9OhQwfq1KnDV199lRp+/vrrLxYvXpw2AIHujC4idkEtQSKSY3v37sVsNrNq1SoATCYTXbt2Zdy4cVSrVi3zjXVndBGxMYUgEcm2ffv2YTab+fzzz4Hk8NOlSxfGjx9P9erVs74jDQ0XERtSCBKRLDtw4AAWi4XPPvsMwzAwmUw8//zzjB8/ngceeMDW5YmIZItCkIjc1Z9//kloaCgrVqwgZZL55557jpCQEB588EEbVycikjMKQSJyRwcPHiQ0NJRly5alhp9nn32WkJAQatSoYePqRETujUKQiKQTERFBaGgoS5cuJel/w9g7dOhASEgItWrVsm1x9iI6GiIikof7q1+TiEPSEHkRSXXkyBF69OhB9erV+eSTT0hKSqJdu3bs3LmTVatWKQClCA+HgABo1iz5Wbf8EHFICkEiwtGjR+nVqxfVqlXjww8/JCkpiTZt2rB9+3bWrFlD7dq1bV3i3UVHw4YNuX/rjeho6NPn34kedcsPEYelECTixKKioujduzfVqlVj0aJFJCYm0rp1a/773//y9ddfU7duXVuXmDV52TITEaFbfojkEwpBIk7o2LFj9OnTh6CgIMLDw0lISKBly5Zs3bqVtWvXUq9ePVuXmHV53TKTcsuPW+mWHyIOSSFIxIkcP36cV199laCgIN5//30SEhJ46qmn+PXXX1m3bh2PPvqorUvMvrxumdEtP0TyDY0OE3EC0dHRhIWF8f7773Pz5k0AnnzyScxmM48//riNq7tHtrgZq275IZIvqCVIJB/7559/GDhwIJUrV2bOnDncvHmTJk2asGnTJn744QfHD0CQvZYZa3ae9veHJk0UgEQcmFqCRPKhkydPMnnyZObPn098fDwATzzxBBaLhSZNmti2uNyQlZaZ8PB/+w65uCQHp+DgvK9VROyGyUiZBtZJxMXF4enpSWxsLB4eHrYuR8SqYmJimDJlCvPmzeP69esAPP7441gsFpo2bYrJZLJxhTYSHZ08auz2S2ZRUWrJEXEQufH9rZYgkXzg1KlTTJ06lblz53Lt2jUAGjRogMVioXnz5s4bflJk1nlaIUjEaSkEiTiwM2fOMHXqVObMmcPVq1cBqF+/PhaLhRYtWuSP8GON21PYovO0iNg9dYwWcUBnz55l5MiRBAYGMm3aNK5evcojjzzC2rVr2bp1Ky1btswfAchakyBqWLuIZEB9gkQcyLlz55g+fTqzZs3i8uXLANSpUweLxcLTTz+dP4JPitzoxxMdrWHtIg5KfYJEnNT58+eZMWMG7777LpcuXQLg4YcfxmKx0LZt2/wVflLkRj8ef/+7b6u7w4s4DYUgETt28eJF3nnnHf7zn/8QFxcHQM2aNTGbzbRv3z5/hp8UtujHo2H0Ik7FofoEmc1mTCZTmoePj4+tyxKxutjYWCwWCxUrViQ0NJS4uDgeeughPv/8c37//Xc6dOiQvwMQ5H0/Ht0dXsTpOFxL0AMPPMAPP/yQ+to15QQpkg/ExcUxc+ZMZsyYwcWLF4Hkf/Nms5lnn30Wl9tv3JlV1rzEk5V9Wev35eXtKTSMXsTpOFwIcnNzU+uP5DuXLl3i3XffZfr06Vy4cAGA+++/n5CQEJ577rmchx+w7iWerOzL2peUstKPxxo0jF7E6TjU5TCAiIgI/Pz8CAwMpEuXLhw9ejTT9ePj44mLi0vzELEXly5dIiwsjIoVKzJ27FguXLhA9erVWbZsGXv37qVz5873FoCseYknK/ty5EtKGkYv4nQcKgTVr1+fjz76iO+++47333+fmJgYGjZsyLlz5+64TVhYGJ6enqmP8uXL52HFIhm7fPkyU6ZMITAwkNGjR3P+/HmqVq3KkiVL2LdvH126dLHOpd7MLvHkxr6s+ftsITg4eQj+hg3Jz+oULZKvOfQ8QVeuXKFy5coMHz6coUOHZrhOfHx86g0kIbnPRfny5TVPkNjElStXmDt3LlOnTuXMmTMAVKlShfHjx/Piiy/i5mblK9TWnGsnK/vSPbpEJJfkxjxBDtUSdLuiRYvy0EMPERERccd13N3d8fDwSPMQyWtXr15lxowZVKpUiTfffJMzZ85QuXJlFi9ezJ9//km3bt2sH4DAupd4srIvXVISEQfi0C1B8fHxVK5cmT59+jB+/PgsbaMZoyUvXbt2jfnz5zNlyhRiYmIACAwMZNy4cbz00ksUKFAgbwqx5kzJWdmXZmYWEStz+hmjhw0bRrt27ahQoQKnT59mwoQJxMXF0b17d1uXJpLG9evXWbBgAZMnT+bkyZMAqZ2fX3755bwLPymsOcIqK/vKqxFdIiL3wKFCUHR0NC+++CJnz56lTJkyPProo2zbto2AgABblyYCQPyRIyx8910mrVjBP6dOAVChQgXGjh1L9+7dKViwoI0rFBGRFA4VgpYvX27rEkQyFB8fzwfBwUxasoSUweD+JUsyZtIkevXqpfAjImKHHCoEidibGzdusGjRIiaGhnLin38AKAeMBoJjY3Fv2xYUgERE7JJCkEgO3Lx5k8WLFzNx4kSOHTsGgB8wCugNFILkYeKOdMsF3T1dRJyMQw+RF8lrN2/eJDw8nKpVq9KnTx+OHTuGj48PMy0WjphMDOB/AQjufMuF6OjkyfjsaRbl8PDk+X2aNUt+Dg+3dUUiIrlOIUgkCxISEli8eDHVq1end+/eREVF4e3tzTvvvMPRo0cZNH48hd5//+7z49hj2HDkW12IiNwDh54nKCc0T5BkR0JCAkuXLuWtt97i8P9u/VCmTBlGjBhBv379KFKkSNoNMpsfJzdmU7bGJawNG5JDWUbLmzTJ2T5FRKzM6ecJEskriYmJLFu2jNDQ0NQZyUuXLs3w4cPp378/RYsWzXjDzObHyey+WjkJMNa6W7vuni4iTkqXw0RukZiYyNKlS3nggQfo1q0bERERlCpVismTJxMZGcmbb7555wB0Nylh41aZhY3M+g5Z8xKWbnUhIk5KIUgESEpKYvny5Tz00EP83//9HwcPHsTLy4tJkyYRGRnJiBEjKFas2L39kuyEjbv1HbL23dp193QRcULqEyROLSkpiZUrV2KxWDhw4AAAJUqU4I033mDQoEG582/kbvfV0t3aRUTSUZ8gEStJSkpi1apVmM1m9u3bB4CnpydDhw7l9ddfx9PTM/d++d3uq5WVvkMprUp9+yb/TJewRESyTSFInIphGKxevRqz2czevXsB8PDwYMiQIQwePJgSJUrYtkDIekfl4GBo2VJ3axcRySGFoNymWXht55b33ihXjjVr1mA2m9m9ezcAxYsXZ/DgwQwZMoSSJUvattZbZaeVR3drFxHJMYWg3GStIczOxFqh8X/vvZGUxNcmE+by5fn9+HEAihUrxqBBg3jjjTfw8vKyUuFWplYeEZFcp47RuUUdV7PPWqExOhqjQgXWGgZmYMf/FhctUoSB/ws/pUuXTrP+XYOXWvRERGwqN76/NUQ+t1h7CHN+Z6V5bwzDYN2SJTxqGLQlOQAVAYYDkUuWEBYWljYAZeU2FvZ4qwsREblnCkG5JbsT4zm7ewyNhmHw/fff07BhQ1qPHMlvQGFgGBAJTHF1pUzdumk3ykrw0n21RETyLYWg3KJZeLMnh6HRMAx++OEHHn/8cVq2bMm2bdsoVKgQQ596ikgXF94Gyt7pvc9K8FKLnohIvqWO0blJnVuzLgfz3mzYsIHx48ezefNmANzd3Xn11VcZMWIEvr6+d5+UMCtD0XVfLRGRfEshKLdpCHPWZTE0btq0iZCQEDZt2gQkh58+ffowcuRI/Pz8/l3xbu99VoKXJiUUEcm3NDpMHMYvv/xCSEgIGzZsAKBggQK80rUroyZOpFy5cjnf8d1ajLK6joiI5BrdNkMcWw6Hmf/666+EhITw448/AlDA1ZXeiYmMunmT8h9/DI0a3dv8S1lprVOLnohIvqOO0ZI3cjDMfOvWrbRo0YLHH3+cH3/8ETc3N/q+9BKHk5KYA5QHjdYSEZEcUwiS3JfNYeb//e9/adWqFQ0bNmT9+vW4ubnRu3dvIiIimNerFxVuv4Kr0VoiIpIDuhzmrPJyBuSs3BUd2L59O2azmbVr1wLg6upK9+7dGTt2LIGBgckrublptJaIiFiFWoIcSXQ0bNhw75d+8noG5LvMAbRz507atWtHvXr1WLt2La6urvTo0YODBw8SHh7+bwACzb8kIiJWo9FhjsKK99WyyT3NwsPTDTPfVbs2ZrOZNWvWAODi4sJLL73EuHHjqHK3lh2N1hIRcSq58f2tEOQIrBlcNmxIbgHKaHmTJvdS5d39L7jsuXED89y5rF69GkgOP127dmXcuHFUrVo1d2sQERGHpCHyziqLfWqyxIYzIP9x4QLmWbP44osvADCZTHTp0oXx48dTvXr1XP/9IiIit1KfIEdgzZux2qBPzf79++ncuTM1atTgiy++wGQy8cILL7Bv3z6WLl2qACQiIjahEOQIrB1cgoOTL6Vt2JD8fC8TDWbiwIEDdOnShYceeojPPvsMgOeff54//viD5cuXc//99+fK7xUREckK9QlyJLboDJyDofR//fUXoaGhLF++nJR/Xp06dSIkJISHHnooN6sVEZF8Kje+v9USlBFrDUW3Nn//5M7LeRWAsjmU/tChQ7z00ks88MADLFu2DMMw6NChA7t372blypUKQCIiYlcUgm6X13Po5AZrhLhszPJ8+PBhunfvzn333ceSJUtISkrimWee4ffff2fVqlXUrFkz53WIiIjkEoWgW2Xz9g52yVohLrMRaf9z5MgRevbsSfXq1fnoo49ISkqibdu27Nixgy+//JKHH374Hg5EREQkdzlvCPr77/TLsvDFb9esGeIyGZEWGRlJcHAw1apVY/HixSQmJvI08JvJxFcdOlCnTp17PhQREZHc5rwh6IEH0reSWHMoui1YM8RlMCItauJEXrFYqFq1Kh988AGJiYm0ArYB3wCPGIbjtZyJiIjTct4QlNEXtqPfl8raIe5/Q+mPL19O3y5dqDpuHAsXLiQhIYEWLVqwZdYsvgXq37qNI7WciYiIU3PeEAQZf2Hn0Rw6ucLKIe7EiRP0mziRKt26sWDJEm7evMmTTz7J5s2b+e6772jQoYNjt5yJiIhTc+7bZtzpC9vfP+9bf3IwH0+GgoOhZct7mk/o77//JiwsjPfff58bN24A0LRpUywWC40aNfp3xZTQdduNUR2m5UxERJya84YgFxf7+cK21h3iU+QwxP3zzz9MnjyZBQsWEB8fD8ATTzxBaGgojRs3zngjK4QuERERW3DeGaMPHMDjvvtsXY517xCfQzExMUyePJn58+dz/fp1AB5//HEsFgtNmzbFZDLlSR0iIiJ3orvIW1O5crauIJk17xCfTadOnWLKlCnMnTs3Nfw0bNgQi8XCk08+qfAjIiL5mkN2jJ4zZw6BgYEUKlSIOnXq8Msvv9i6pJyzwbD806dPM2zYMAIDA3nnnXe4fv06jz76KN999x2bN2+mefPmCkAiIpLvOVwIWrFiBYMHD2bMmDHs2rWLRo0a0bp1a44fP27r0nImD4flnz17lhEjRhAYGMj06dO5du0a9erV49tvv2XLli20aNFC4UdERJyGw/UJql+/PrVr12bu3Lmpy+677z46dOhAWFjYXbe327vI5+Id4s+dO8e0adOYNWsWV65cAaBu3bpYLBZat26t4CMiInbP6fsE3bhxg507dzJy5Mg0y1u0aMGWLVsy3CY+Pj51pBMkv4l2KReG5Z8/f57p06fz7rvvcvnyZQBq166N2Wymbdu2Cj8iIuLUHCoEnT17lsTERLy9vdMs9/b2JiYmJsNtwsLCsFgseVGe3bhw4QIzZsxg5syZXLp0CYBatWphNpt55plnFH5ERERwwD5BQLovccMw7vjFPmrUKGJjY1MfJ06cyIsSbeLixYuYzWYqVqzIhAkTuHTpEjVq1OCLL77g999/p3379gpAIiIi/+NQLUGlS5fG1dU1XavP6dOn07UOpXB3d8fd3T0vyrOZ2NhYZs6cyYwZM4iNjQXgwQcfxGw207FjR1xuH30mIiIijtUSVLBgQerUqcP69evTLF+/fj0NGza0UVW2ExcXx4QJEwgMDCQkJITY2FgeeOABPv30U/bs2UOnTp0UgERERO7AoVqCAIYOHUq3bt2oW7cuDRo0YMGCBRw/fpxXX33V1qXlmUuXLjFr1iymT5/O+fPngeQRciEhITz//PMKPiIiIlngcCHohRde4Ny5c4SGhnLy5EkefPBB1q5dS0BAgK1Ly3WXL19m9uzZTJs2jXPnzgFQrVo1xo8fzwsvvIBrylxDIiIiclcON0/QvbLbeYIyceXKFebMmcPUqVM5e/YsAEFBQYwfP54XX3xR4UdERPI9p58nyNlcvXqVuXPnMnXqVE6fPg1A5cqVGT9+PF27dsXNTR+fiIhITulb9F5ERyffADUoyKoTHV67do158+YxZcoUTp06BUClSpUYN24cL730ksKPiIiIFagHbU6Fh0NAADRrlvwcHn7Pu7x27RozZ86kUqVKDB06lFOnTlGxYkXCw8P566+/6NGjhwKQiIiIlahPUE5ERycHn6Skf5e5ukJUVI5ahK5fv87ChQuZNGkSJ0+eBKBChQqMHTuW7t27U7BgwZzVKSIikk+oT5C9iIhIG4AAEhOTb4CajRAUHx9PeHg4kyZN4u+//wagfPnyjBkzhp49eyr8iIiI5CKFoJwICgIXl/QtQVWqZGnzGzdu8MEHHzBp0qTU23j4+/szevRoevXqle9nuBYREbEH6hOUE/7+sGBBcvCB5Of58+/aCnTjxg0WLFhAUFAQ/fr148SJE/j5+TF79mwOHz5Mv379FIBERETyiFqCcio4GFq2TL4EVqVKpgHo5s2bfPjhh0ycOJGoqCgAfHx8GD16NK+88gqFChXKo6JFREQkhULQvfD3v2v4+fjjj5kwYQKRkZEAeHt7M3LkSPr27UvhwoXzqlIRERG5jUJQLkhISGDJkiW89dZbHDlyBICyZcsyYsQIXn31VYoUKWLjCkVEREQhyIoSEhJYtmwZb731FhEREQCUKVOG4cOH069fP4oWLWrjCkVERCSFQpAVJCYmsnz5ckJDQzl06BAApUqVYvjw4fTv359ixYrZuEIRERG5nULQPUhMTOTTTz8lNDSUv/76CwAvLy+GDRvGgAEDKF68uI0rFBERkTtRCMqBpKQkPvvsM0JDQzlw4AAAJUuW5I033mDgwIEOc3d6ERERZ6YQlA1JSUl88cUXWCwW9u3bB0CJEiUYOnQogwYNwtPT08YVioiISFYpBGVBUlISq1evxmKxsHfvXgA8PT0ZMmQIr7/+OiVKlLBtgSIiIpJtCkGZMAyDL7/8ErPZzJ49ewAoXrw4gwcPZsiQIZQsWdLGFYqIiEhOKQRlwDAMvvrqK8xmM7t27QKgWLFivP766wwdOhQvLy8bVygiIiL3SiHoFoZh8M0332A2m9m5cycARYsWZdCgQbzxxhuUKlXKxhWKiIiItSgEkRx+1q1bR0hICNu3bweSw8+AAQMYNmwYpUuXtnGFIiIiYm1OHYIMw+D7778nJCSE//73vwAUKVKE1157jTfffJMyZcrYuEIRERHJLU4bgn766SemTp3K1q1bAShcuDD9+vVj+PDheHt727g6ERERyW1OG4I6duwIQKFChXj11VcZMWIEPj4+Nq5KRERE8orThqCCBQvy6quvMnLkSHx9fW1djoiIiOQxpw1Be/bsoXr16rYuQ0RERGzExdYF2Iqfn5+tSxAREREbctoQJCIiIs5NIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTcqgQVLFiRUwmU5rHyJEjbV2WiIiIOCA3WxeQXaGhobzyyiupr4sVK2bDakRERMRROVwIKl68OD4+PrYuQ0RERBycQ10OA5gyZQqlSpWiVq1aTJw4kRs3bti6JBEREXFADtUS9Prrr1O7dm1KlizJb7/9xqhRo4iMjGThwoV33CY+Pp74+PjU17GxsQDExcXler0iIiJiHSnf24ZhWG+nho2FhIQYQKaP7du3Z7jtypUrDcA4e/bsPe1fDz300EMPPfRwjMeRI0eslkFMhmHNSJV9Z8+e5ezZs5muU7FiRQoVKpRu+d9//42/vz/btm2jfv36GW57e0vQxYsXCQgI4Pjx43h6et5b8Q4kLi6O8uXLc+LECTw8PGxdTp7Rceu4nYGOW8ftDGJjY6lQoQIXLlygRIkSVtmnzS+HlS5dmtKlS+do2127dgHg6+t7x3Xc3d1xd3dPt9zT09Op/vGk8PDw0HE7ER23c9FxOxdnPW4XF+t1Z7Z5CMqqrVu3sm3bNpo2bYqnpyfbt29nyJAhPPPMM1SoUMHW5YmIiIiDcZgQ5O7uzooVK7BYLMTHxxMQEMArr7zC8OHDbV2aiIiIOCCHCUG1a9dm27Zt97wfd3d3QkJCMrxElp/puHXczkDHreN2Bjpu6x23zTtGi4iIiNiCw02WKCIiImINCkEiIiLilBSCRERExCkpBImIiIhTypchaM6cOQQGBlKoUCHq1KnDL7/8kun6mzZtok6dOhQqVIhKlSoxb968PKrUurJz3F988QVPPfUUZcqUwcPDgwYNGvDdd9/lYbXWk93PO8Wvv/6Km5sbtWrVyt0Cc0l2jzs+Pp4xY8YQEBCAu7s7lStX5oMPPsijaq0nu8e9ZMkSatasSZEiRfD19aVnz56cO3cuj6q9dz///DPt2rXDz88Pk8nE6tWr77pNfjinZfe488s5LSefdwpHPqfl5LitcU7LdyFoxYoVDB48mDFjxrBr1y4aNWpE69atOX78eIbrR0ZG8vTTT9OoUSN27drF6NGjGTRoEJ9//nkeV35vsnvcP//8M0899RRr165l586dNG3alHbt2qXOwu0osnvcKWJjY3n55Zd58skn86hS68rJcXfu3Jkff/yR8PBwDh48yLJly6hevXoeVn3vsnvcmzdv5uWXXyY4OJj9+/fz2WefsX37dnr37p3HlefclStXqFmzJrNnz87S+vnlnJbd484v57TsHncKRz+n5eS4rXJOs9pdyOxEvXr1jFdffTXNsurVqxsjR47McP3hw4cb1atXT7Osb9++xqOPPpprNeaG7B53Ru6//37DYrFYu7RcldPjfuGFF4yxY8caISEhRs2aNXOxwtyR3eP+9ttvDU9PT+PcuXN5UV6uye5xv/3220alSpXSLHv33XcNf3//XKsxNwHGqlWrMl0nv5zTbpWV486II57TbpWd43b0c9qtsnLc1jqn5auWoBs3brBz505atGiRZnmLFi3YsmVLhtts3bo13fotW7Zkx44d3Lx5M9dqtaacHPftkpKSuHTpEl5eXrlRYq7I6XEvWrSII0eOEBISktsl5oqcHPeaNWuoW7cuU6dOpVy5clStWpVhw4Zx7dq1vCjZKnJy3A0bNiQ6Opq1a9diGAanTp1i5cqVtGnTJi9Kton8cE6zBkc8p+WUo5/TcsJa5zSHmTE6K86ePUtiYiLe3t5plnt7exMTE5PhNjExMRmun5CQwNmzZzO9Oau9yMlx32769OlcuXKFzp0750aJuSInxx0REcHIkSP55ZdfcHNzzH/+OTnuo0ePsnnzZgoVKsSqVas4e/Ys/fv35/z58w7TLygnx92wYUOWLFnCCy+8wPXr10lISOCZZ55h1qxZeVGyTeSHc5o1OOI5LSfywzktJ6x1TstXLUEpTCZTmteGYaRbdrf1M1pu77J73CmWLVuG2WxmxYoVlC1bNrfKyzVZPe7ExES6du2KxWKhatWqeVVersnO552UlITJZGLJkiXUq1ePp59+mhkzZrB48WKHag2C7B33gQMHGDRoEOPHj2fnzp2sW7eOyMhIXn311bwo1Wbyyzktpxz9nJZV+e2clh3WOqflq9hYunRpXF1d0/1f4enTp9P9n1EKHx+fDNd3c3OjVKlSuVarNeXkuFOsWLGC4OBgPvvsM5o3b56bZVpddo/70qVL7Nixg127djFgwAAg+Q/JMAzc3Nz4/vvvadasWZ7Ufi9y8nn7+vpSrlw5PD09U5fdd999GIZBdHQ0QUFBuVqzNeTkuMPCwnjsscd48803AahRowZFixalUaNGTJgwIV+2iuSHc9q9cORzWnbll3NaTljrnJavWoIKFixInTp1WL9+fZrl69evp2HDhhlu06BBg3Trf//999StW5cCBQrkWq3WlJPjhuT/W+rRowdLly51yD4S2T1uDw8P/vjjD3bv3p36ePXVV6lWrRq7d++mfv36eVX6PcnJ5/3YY4/xzz//cPny5dRlhw4dwsXFBX9//1yt11pyctxXr17FxSXtac7V1RX4t3Ukv8kP57SccvRzWnbll3NaTljtnHZP3art0PLly40CBQoY4eHhxoEDB4zBgwcbRYsWNaKiogzDMIyRI0ca3bp1S13/6NGjRpEiRYwhQ4YYBw4cMMLDw40CBQoYK1eutNUh5Eh2j3vp0qWGm5ub8d577xknT55MfVy8eNFWh5Aj2T3u2znqSIrsHvelS5cMf39/47nnnjP2799vbNq0yQgKCjJ69+5tq0PIkewe96JFiww3Nzdjzpw5xpEjR4zNmzcbdevWNerVq2erQ8i2S5cuGbt27TJ27dplAMaMGTOMXbt2GceOHTMMI/+e07J73PnlnJbd476do57Tsnvc1jqn5bsQZBiG8d577xkBAQFGwYIFjdq1axubNm1K/Vn37t2Nxo0bp1l/48aNxsMPP2wULFjQqFixojF37tw8rtg6snPcjRs3NoB0j+7du+d94fcou5/3rRz1hGEY2T/uP//802jevLlRuHBhw9/f3xg6dKhx9erVPK763mX3uN99913j/vvvNwoXLmz4+voa//d//2dER0fncdU5t2HDhkz/VvPrOS27x51fzmk5+bxv5ajntJwctzXOaSbDyKdtwiIiIiKZyFd9gkRERESySiFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIjkC6GhoTz00EMULVoUb29v+vXrx82bN21dlojYMTdbFyAicq8MwyAxMZH58+dTrlw5Dhw4wMsvv0yNGjXo16+frcsTETulG6iKSL7UtWtXypQpw8yZM21diojYKV0OExGHd+zYMQYMGMCDDz5IyZIlKVasGJ9++in+/v62Lk1E7JhCkIg4tLNnz1KvXj3Onj3LjBkz2Lx5M1u3bsXV1ZVatWrZujwRsWPqEyQiDm3t2rUkJCSwbNkyTCYTAO+99x43btxQCBKRTCkEiYhD8/LyIi4ujjVr1nD//ffz1VdfERYWRrly5ShTpoytyxMRO6aO0SLi0AzDoF+/fixdupTChQvz0ksvcf36dY4dO8bXX39t6/JExI4pBImIiIhTUsdoERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFP6f6VPsMhKXwedAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXxklEQVR4nO3deVhU5d8G8HvYEQFBZBMFksW03BOXFEURUcw119zCpNy1XndTzCQt/bW4F2plGuWeueGGK7lnohkqIJhoogKC7M/7x8TksMkyM2eGuT/XNRfOmTNnvmcGztw+yzkyIYQAERERkZ4xkLoAIiIiIikwBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBJHW6dSpEzp16iR1GZU2atQo1KxZs1zrurm5YdSoUWqtRyaTYcGCBWp9jRfJzMzEggULcOzYMUnr0BWHDx9Gq1atYGFhAZlMhp07d2Ljxo2QyWSIj49XrLd582Z8/vnnaqlh7ty5qF+/PoyMjFCrVq0KP3/UqFFwc3NTeV3a5N69e5g7dy7atm0LOzs7WFlZoWXLlli3bh3y8/OlLo/KwUjqAoiKWrVqldQlaMyOHTtgZWUldRlql5mZidDQUADQ6YCrCUIIDBw4EF5eXti9ezcsLCzg7e2NvLw8nDlzBk5OTop1N2/ejKtXr2LKlCkqrWHXrl34+OOPMWfOHAQGBsLU1FSl268uLly4gO+++w4jRozAvHnzYGxsjH379uG9995DdHQ01q9fL3WJ9AIMQaR1GjVqJHUJGtO8eXOpSyAVevbsGczMzCCTySq9jb///huPHj1C37590aVLF6XH6tSpU9USy+Xq1asAgEmTJsHe3l4jr6kqqvgMyqt9+/a4desWjI2NFcv8/f2Rk5ODlStXIjQ0FPXq1VN7HVR57A6jKlmwYAFkMhliYmIwZMgQWFtbw8HBAW+//TZSU1OV1s3KysKsWbPg7u4OExMT1K1bF+PHj8eTJ0+U1iupO2z16tVo2rQpatasCUtLSzRs2BCzZ88GAMTHx8PIyAhhYWHF6jt+/DhkMhl+/vnnMvfjyZMneP/99/HSSy/B1NQU9vb26NGjB/78808AwLFjxyCTyYp158THx0Mmk2Hjxo3FthkTE4MuXbrAwsICderUwYQJE5CZmam0TkndYS+qRRWSk5MREhICFxcXmJiYwN3dHaGhocjLy1NaLzQ0FD4+PrC1tYWVlRVatGiB8PBwFL3u8pEjR9CpUyfUrl0b5ubmqF+/Pvr374/MzEzEx8crvrxDQ0Mhk8kgk8le2A2YmZmJDz74AO7u7jAzM4OtrS1atWqFLVu2KK23ceNGeHt7w9TUFC+//DK+++67Yl0xFfn8zp8/j8GDB8PNzQ3m5uZwc3PDkCFDkJCQUOx1ZTIZDh48iLfffht16tRBjRo1kJ2dDQCIiIhA27ZtYWFhgZo1ayIgIACXLl0qc58XLFgAFxcXAMCMGTMgk8kU+1G0O6xTp0749ddfkZCQoHhPX/TFX1BQgKVLl6Jhw4aK360RI0YgKSlJsY6bmxvmzp0LAHBwcChXd2pJn0FJcnJysGjRIsXr16lTB6NHj8Y///yjtF52djbef/99ODo6okaNGujYsSMuXLhQ7O9FVZ/B+fPn8cYbb8DW1hZmZmZo3rw5fvrppzL3GQBsbGyUAlCh1q1bA4DS+0raiS1BpBL9+/fHoEGDEBwcjD/++AOzZs0CAEVzsBACffr0weHDhzFr1ix06NABV65cwfz583HmzBmcOXOm1Cb3H3/8EePGjcPEiRPx2WefwcDAADdv3sS1a9cAyA/ab7zxBtasWYPp06fD0NBQ8dwVK1bA2dkZffv2LbX29PR0vP7664iPj8eMGTPg4+ODp0+f4vjx47h37x4aNmxY4fcjNzcXPXr0QEhICGbOnInTp09j0aJFSEhIwC+//FLlWkaNGoVvv/0WcXFxFR53kZycjNatW8PAwAAffvghGjRogDNnzmDRokWIj4/Hhg0bFOvGx8cjJCQE9evXBwBER0dj4sSJuHv3Lj788EPFOj179kSHDh2wfv161KpVC3fv3sX+/fuRk5MDJycn7N+/H927d0dwcDDGjBkD4MWtGtOmTcP333+PRYsWoXnz5sjIyMDVq1eRkpKiWGfjxo0YPXo0evfujWXLliE1NRULFixAdnY2DAwq93+8+Ph4eHt7Y/DgwbC1tcW9e/ewevVqvPbaa7h27Rrs7OyU1n/77bfRs2dPfP/998jIyICxsTEWL16MuXPnYvTo0Zg7dy5ycnLw6aefokOHDjh79myprZ1jxoxB06ZN0a9fP0ycOBFDhw4t9e9i1apVGDt2LG7duoUdO3aUa9/ee+89rFu3DhMmTEBQUBDi4+Mxb948HDt2DBcvXoSdnR127NiBlStXIjw8HPv374e1tbUimJWkvJ9BQUEBevfujRMnTmD69Olo164dEhISMH/+fHTq1Annz5+Hubk5AGD06NGIiIjA9OnT4efnh2vXrqFv375IS0srsYaqfAZHjx5F9+7d4ePjgzVr1sDa2ho//vgjBg0ahMzMzEqN2Tty5AiMjIzg5eVV4eeShgmiKpg/f74AIJYuXaq0fNy4ccLMzEwUFBQIIYTYv39/ietFREQIAGLdunWKZb6+vsLX11dxf8KECaJWrVpl1nH06FEBQOzYsUOx7O7du8LIyEiEhoaW+dyFCxcKACIyMvKF2z969KjS8ri4OAFAbNiwQbFs5MiRAoD44osvlNb9+OOPBQBx8uRJxTJXV1cxcuTICtUihBBvv/22MDQ0FPHx8WWuJ4QQAMT8+fMV90NCQkTNmjVFQkKC0nqfffaZACBiYmJK3E5+fr7Izc0VCxcuFLVr11Z8tlu3bhUAxOXLl0ut4Z9//ilWx4u88sorok+fPqU+np+fL5ydnUWLFi0UtQghRHx8vDA2Nhaurq6KZRX5/IrKy8sTT58+FRYWFkqf6YYNGwQAMWLECKX179y5I4yMjMTEiROVlqenpwtHR0cxcODAMvb6v5o+/fRTpeWFrxcXF6dY1rNnT6X9LMv169cFADFu3Dil5b/99psAIGbPnq1YVvh3/c8//5S5zYp8Blu2bBEAxLZt25S2ce7cOQFArFq1SgghRExMjAAgZsyYobRe4fOf/3tRxWfQsGFD0bx5c5Gbm6u0blBQkHBychL5+fllvgdFHThwQBgYGIipU6dW6HkkDXaHkUq88cYbSvebNGmCrKwsPHjwAID8f0YAiv2v6s0334SFhQUOHz5c6rZbt26NJ0+eYMiQIdi1axcePnxYbJ1OnTqhadOmWLlypWLZmjVrIJPJMHbs2DJr37dvH7y8vNC1a9cy16uoYcOGKd0fOnQoAPn/PKtaS3h4OPLy8uDq6lrhuvbs2YPOnTvD2dkZeXl5iltgYCAAICoqSrHukSNH0LVrV1hbW8PQ0BDGxsb48MMPkZKSovhsmzVrBhMTE4wdOxbffvstbt++XaF6nq8hLy9P0dXWunVr7Nu3DzNnzsSxY8fw7NkzpefduHEDf//9N4YOHarUDeTq6op27dpV+H0p9PTpU8yYMQMeHh4wMjKCkZERatasiYyMDFy/fr3Y+v3791e6f+DAAeTl5WHEiBFK+2VmZgZfX1/JZsgV/t4V/Rts3bo1Xn755TL/BktTkc9gz549qFWrFnr16qX0vjRr1gyOjo6K96Xw92/gwIFKzx8wYACMjEruvKjsZ3Dz5k38+eefir/V59ft0aMH7t27hxs3bpT7/bh48SIGDhyINm3alNg9T9qHIYhUonbt2kr3C5vwC7+4UlJSYGRkVKwLRCaTwdHRUamLo6jhw4dj/fr1SEhIQP/+/WFvbw8fHx9ERkYqrTdp0iQcPnwYN27cQG5uLr7++msMGDAAjo6OZdb+zz//lNncXxlGRkbF3pPCOsraV3XUUtT9+/fxyy+/wNjYWOnWuHFjAFCEzLNnz6Jbt24AgK+//hqnTp3CuXPnMGfOHAD/fbYNGjTAoUOHYG9vj/Hjx6NBgwZo0KABvvjiixfWEh8fX6yOwi/BL7/8EjNmzMDOnTvRuXNn2Nraok+fPoiNjQXw3/tY0uf7os+8LEOHDsWKFSswZswYHDhwAGfPnsW5c+dQp06dYkEMgNJsLUD+/gLAa6+9VmzfIiIiSgzxmlD4fhWtFwCcnZ3L/L180TbL8xncv38fT548gYmJSbH3JTk5WfG+FG7TwcFB6fkl/U0VquxnULjeBx98UGy9cePGAUC5P69Lly7B398fnp6e2Lt3L2fU6QiOCSKNqF27NvLy8vDPP/8oBSEhBJKTk/Haa6+V+fzRo0dj9OjRyMjIwPHjxzF//nwEBQXhr7/+UrSGDB06FDNmzMDKlSvRpk0bJCcnY/z48S+srU6dOi8cwGhmZgYAigGXhUo7QObl5SElJUXpoJ2cnAygeGCsaC1VZWdnhyZNmuDjjz8u8XFnZ2cA8rFYxsbG2LNnj2L/AWDnzp3FntOhQwd06NAB+fn5OH/+PL766itMmTIFDg4OGDx4cKm1ODs749y5c0rLvL29AQAWFhYIDQ1FaGgo7t+/r2gV6tWrF/7880/F+1j4vj6v6LLyfn6pqanYs2cP5s+fj5kzZyqWZ2dn49GjRyXuQ9HByIVjhrZu3Vqpljp1KXy/7t27Vyxo//3338XGOlVkm+X5DOzs7FC7dm3s37+/xG1ZWloqbfP+/fuoW7eu4vHCv6mSVPYzKFxv1qxZ6NevX4nrFP4+luXSpUvo2rUrXF1dcfDgQVhbW7/wOaQd2BJEGlE41XfTpk1Ky7dt24aMjIxiU4FLY2FhgcDAQMyZMwc5OTmIiYlRPGZmZqboklm+fDmaNWuG9u3bv3CbgYGB+OuvvxRddiUpHHx85coVpeW7d+8u9Tk//PCD0v3NmzcDKPs8OeWppaqCgoJw9epVNGjQAK1atSp2KwxBMpkMRkZGSgPNnz17hu+//77UbRsaGsLHx0fRLXnx4kUAxVsGC5mYmBR7/cIvw+c5ODhg1KhRGDJkCG7cuIHMzEx4e3vDyckJW7ZsUZqtlpCQgNOnTys9v7yfn0wmgxCi2P/iv/nmm3Kf/C4gIABGRka4detWie9vq1atyrWd8jA1NS2xdaokfn5+AIr/DZ47dw7Xr18v99/g8yryGQQFBSElJQX5+fklvieFYaNjx44A5DO7nrd169ZisxdLU97PwNvbG56envj9999LXa+k38fnXb58GV27doWLiwsiIyNhY2NTrhpJO7AliDTC398fAQEBmDFjBtLS0tC+fXvF7LDmzZtj+PDhpT73nXfegbm5Odq3bw8nJyckJycjLCwM1tbWxVqQxo0bh6VLl+LChQv45ptvylXblClTEBERgd69e2PmzJlo3bo1nj17hqioKAQFBaFz585wdHRE165dERYWBhsbG7i6uuLw4cPYvn17ids0MTHBsmXL8PTpU7z22muK2WGBgYF4/fXXq1QLAAQHB+Pbb7/FrVu3KtzasHDhQkRGRqJdu3aYNGkSvL29kZWVhfj4eOzduxdr1qyBi4sLevbsieXLl2Po0KEYO3YsUlJS8NlnnxULCGvWrMGRI0fQs2dP1K9fH1lZWYpZgYVjmywtLeHq6opdu3ahS5cusLW1hZ2dXZkz23x8fBAUFIQmTZrAxsYG169fx/fff4+2bduiRo0aAICPPvoIY8aMQd++ffHOO+/gyZMnWLBgQbGumPJ+flZWVujYsSM+/fRTRX1RUVEIDw8v91mT3dzcsHDhQsyZMwe3b99G9+7dYWNjg/v37+Ps2bOKFi5VePXVV7F9+3asXr0aLVu2hIGBQakhy9vbG2PHjsVXX30FAwMDBAYGKmaH1atXD1OnTq3w6xsYGJT7Mxg8eDB++OEH9OjRA5MnT0br1q1hbGyMpKQkHD16FL1790bfvn3RuHFjDBkyBMuWLYOhoSH8/PwQExODZcuWwdraulyz/iryGaxduxaBgYEICAjAqFGjULduXTx69AjXr1/HxYsXyzy9xo0bNxS/4x9//DFiY2MV3bWAvKtYU+d2okqSdFg26bzSZpGUNJPl2bNnYsaMGcLV1VUYGxsLJycn8d5774nHjx8rPbfo7LBvv/1WdO7cWTg4OAgTExPh7OwsBg4cKK5cuVJiTZ06dRK2trYiMzOz3Pvx+PFjMXnyZFG/fn1hbGws7O3tRc+ePcWff/6pWOfevXtiwIABwtbWVlhbW4u33npLnD9/vsTZYRYWFuLKlSuiU6dOwtzcXNja2or33ntPPH36VOl1i84OK28thTPQnn9/S4MSZmX9888/YtKkScLd3V0YGxsLW1tb0bJlSzFnzhylGtevXy+8vb2FqampeOmll0RYWJgIDw9Xeu0zZ86Ivn37CldXV2Fqaipq164tfH19xe7du5Ve89ChQ6J58+bC1NS02CyfksycOVO0atVK2NjYKF5/6tSp4uHDh0rrffPNN8LT01OYmJgILy8vsX79ejFy5Mhis6bK+/klJSWJ/v37CxsbG2FpaSm6d+8url69WuyzKvwdP3fuXIn179y5U3Tu3FlYWVkJU1NT4erqKgYMGCAOHTpU5n5XZHbYo0ePxIABA0StWrWETCYTLzqk5+fniyVLlggvLy9hbGws7OzsxFtvvSUSExOV1ivv7LBC5f0McnNzxWeffSaaNm0qzMzMRM2aNUXDhg1FSEiIiI2NVayXlZUlpk2bJuzt7YWZmZlo06aNOHPmjLC2tlaadaWqz+D3338XAwcOFPb29sLY2Fg4OjoKPz8/sWbNmjL3u/D1S7uVNeuQtINMiCJnPSPSYQ8ePICrqysmTpyIpUuXSl0OSWTUqFE4duyY0nW2SLedPn0a7du3xw8//KCYaUlUVewOo2ohKSkJt2/fxqeffgoDAwNMnjxZ6pKIqJIiIyNx5swZtGzZEubm5vj999/xySefwNPTs9QBzESVwRBE1cI333yDhQsXws3NDT/88IPSrBIi0i1WVlY4ePAgPv/8c6Snp8POzg6BgYEICwtTmqlIVFXsDiMiIiK9pDVT5FevXo0mTZrAysoKVlZWaNu2Lfbt26d4XAiBBQsWwNnZGebm5ujUqZPS9GgiIiKiitCaEOTi4oJPPvkE58+fx/nz5+Hn54fevXsrgs7SpUuxfPlyrFixAufOnYOjoyP8/f2Rnp4uceVERESki7S6O8zW1haffvop3n77bTg7O2PKlCmYMWMGAPkZXB0cHLBkyRKEhIRIXCkRERHpGq0cGJ2fn4+ff/4ZGRkZaNu2LeLi4pCcnKy4jhEgP1Oqr68vTp8+XWYIys7OVjpVfkFBAR49eoTatWsXO9U6ERERaSchBNLT0+Hs7Fyuk2aWh1aFoD/++ANt27ZFVlYWatasiR07dqBRo0aK068XvaCeg4MDEhISytxmWFiYys7OSkRERNJKTExU2YWmtSoEeXt74/Lly3jy5Am2bduGkSNHKq4oDRS/SJ4Q4oWtObNmzcK0adMU91NTU1G/fn0kJibCyspKtTtAREREapGWloZ69eq98HpuFaFVIcjExAQeHh4AgFatWuHcuXP44osvFOOAkpOT4eTkpFj/wYMHxVqHijI1NS12rSMAilloREREpDtUOZRFa2aHlUQIgezsbLi7u8PR0RGRkZGKx3JychAVFYV27dpJWCERERHpKq1pCZo9ezYCAwNRr149pKen48cff8SxY8ewf/9+yGQyTJkyBYsXL4anpyc8PT2xePFi1KhRg9eQISIiokrRmhB0//59DB8+HPfu3YO1tTWaNGmC/fv3w9/fHwAwffp0PHv2DOPGjcPjx4/h4+ODgwcPqrRvkIiIiPSHVp8nSB3S0tJgbW2N1NRUjgkiIiLSEer4/tbqMUFERERE6sIQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHpJa0JQWFgYXnvtNVhaWsLe3h59+vTBjRs3lNYZNWoUZDKZ0q1NmzYSVUxERES6TGtCUFRUFMaPH4/o6GhERkYiLy8P3bp1Q0ZGhtJ63bt3x7179xS3vXv3SlQxERER6TIjqQsotH//fqX7GzZsgL29PS5cuICOHTsqlpuamsLR0VHT5REREVE1ozUtQUWlpqYCAGxtbZWWHzt2DPb29vDy8sI777yDBw8elLmd7OxspKWlKd2IiIiIZEIIIXURRQkh0Lt3bzx+/BgnTpxQLI+IiEDNmjXh6uqKuLg4zJs3D3l5ebhw4QJMTU1L3NaCBQsQGhpabHlqaiqsrKzUtg9ERESkOmlpabC2tlbp97dWhqDx48fj119/xcmTJ+Hi4lLqevfu3YOrqyt+/PFH9OvXr8R1srOzkZ2drbiflpaGevXqMQQRERHpEHWEIK0ZE1Ro4sSJ2L17N44fP15mAAIAJycnuLq6IjY2ttR1TE1NS20lIiIiIgBJSUBsLODpCbzgu7c60ZoxQUIITJgwAdu3b8eRI0fg7u7+wuekpKQgMTERTk5OGqiQiIioGgoPB1xdAT8/+c/wcKkr0hitCUHjx4/Hpk2bsHnzZlhaWiI5ORnJycl49uwZAODp06f44IMPcObMGcTHx+PYsWPo1asX7Ozs0LdvX4mrJyIi0kFJScDYsUBBgfx+QQEQEiJfrge0JgStXr0aqamp6NSpE5ycnBS3iIgIAIChoSH++OMP9O7dG15eXhg5ciS8vLxw5swZWFpaSlw9ERGRDoqN/S8AFcrPB27elKYeDdOaMUEvGp9tbm6OAwcOaKgaIiIiPeDpCRgYKAchQ0PAw0O6mjRIa1qCiIiISMNcXIB16+TBB5D/XLu29MHRSUnA0aPVpruMIYiIiEifBQcD8fHycBMfL79fkmo4gForzxOkTuo4zwAREVG1lpQkDz5Fu83i4zU2pV4d399sCSIiIqKy/TuAeh+A9MJl1WAANUMQERERlc3TE/tkMvQC0BFAKlAtBlAzBBEREVGZLj54gDdNTJAPoAkAKwODsgdQ6witmSJPRERE2ic+Ph49e/ZERnY2unbogK/nzYPs5Zd1PgABDEFERERUikePHiEwMBDJyclo0qQJtu3ZA5NqNKmI3WFERERUTFZWFvr06YM///wTLi4u2Lt3b7WbVc0QREREREry8/MxbNgwnDhxAlZWVti7dy/q1q0rdVkqxxBERERECkIITJ48Gdu3b4eJiQl27dqFV199Veqy1IIhiIiIiBQ++eQTrFy5EjKZDN9//z06deokdUlqwxBEREREAICNGzdi9uzZAIDPP/8cAwcOlLgi9WIIIiIiIuzbtw9jxowBAMyYMQOTJk2SuCL1YwgiIiLSc2fPnsWAAQOQn5+P4cOHIywsTOqSNIIhiIiISI/FxsaiZ8+eyMzMREBAAMLDwyGTyaQuSyMYgoiIiPTU/fv3ERAQgIcPH6Jly5bYunUrjI2NpS5LYxiCiIiI9FB6ejp69OiBuLg4NGjQAL/++itq1qwpdVkaxRBERESkZ3JyctC/f39cvHgRderUwf79++Hg4CB1WRrHEERERKRHCgoKEBwcjMjISFhYWGDv3r3w8PCQuixJMAQRERHpkVmzZmHTpk0wMjLC1q1b0apVK6lLkgyvIk9ERFSdJSUBsbGApyeWRURg6dKlAIDw8HB0795d4uKkxRBERERUXYWHA2PHAgUF2CiT4QMhAABLlizBiBEjJC5OeuwOIyIiqo6SkhQBaBeAMf8GoP97911Mnz5d2tq0BEMQERFRdRQbCxQUIArAIAD5AN4GsKSaXw+sIhiCiIiIqiNPT1ySydALQDaAPgDWGhhA5ukpbV1ahCGIiIioGop99gwBNWsiHYAvgC0GBjBatw5wcZG6NK3BgdFERETVzN27d+Hv749/0tPR4tVXsTssDGZNmzIAFcEQREREVI08evQIAQEBSEhIgKenJ/YdOgQre3upy9JK7A4jIiKqJjIyMtCzZ0/ExMTA2dkZBw8ehD0DUKkYgoiIiKqBwuuBRUdHw8bGBgcPHoSbm5vUZWk1hiAiIiIdl5+fjxEjRuDAgQOoUaMG9u7di8aNG0tdltZjCCIiItJhQghMmjQJERERMDY2xvbt29GmTRupy9IJDEFEREQ6bPbs2Vi1ahVkMhm+++47BAQESF2SzmAIIiIi0lFhYWH45JNPAABr1qzB4MGDJa5ItzAEERER6aAVK1Zg9uzZAIDPPvsMY8eOlbgi3cMQREREpGM2btyIiRMnAgA+/PBDvP/++xJXpJsYgoiIiHTI1q1bERwcDACYMmUKFixYIG1BOowhiIiISEfs27cPQ4cORUFBAYKDg7F8+XLIZDKpy9JZDEFEREQ6ICoqCv369UNubi4GDRqEtWvXMgBVEUMQERGRljt37hx69eqFrKwsBAUF4fvvv4ehoaHUZek8rQlBYWFheO2112BpaQl7e3v06dMHN27cUFpHCIEFCxbA2dkZ5ubm6NSpE2JiYiSqmIiISP2uXr2K7t27Iz09HZ07d8ZPP/0EY2NjqcuqFrQmBEVFRWH8+PGIjo5GZGQk8vLy0K1bN2RkZCjWWbp0KZYvX44VK1bg3LlzcHR0hL+/P9LT0yWsnIiIqJySkoCjR+U/yyE2NhZdu3bFo0eP4OPjg127dsHc3FzNReoPmRBCSF1ESf755x/Y29sjKioKHTt2hBACzs7OmDJlCmbMmAEAyM7OhoODA5YsWYKQkJBybTctLQ3W1tZITU2FlZWVOneBiIjoP+HhwNixQEEBYGAArFsH/DvLq5ikJCSeOoXX338fd+7eRZMmTXDs2DHY2NgorYPYWMDTE3Bx0cw+SEgd399a0xJUVGpqKgDA1tYWABAXF4fk5GR069ZNsY6pqSl8fX1x+vRpSWokIiIql6Sk/wIQIP8ZElJyi1B4OP6uXx9+gwfjzt278HJwwMGDB5UDUHg44OoK+PnJf4aHa2Y/qhmtDEFCCEybNg2vv/46XnnlFQBAcnIyAMDBwUFpXQcHB8VjJcnOzkZaWprSjYiISKNiY/8LQIXy84GbN5WXJSXh/jvvoIsQuAnADcChf/6BQ26u0jrlDlRUJq0MQRMmTMCVK1ewZcuWYo8VnQ4ohChzimBYWBisra0Vt3r16qm8XiIiojJ5esq7wJ5naAh4eCgtenj+PLoKgT8B1ANwBEC9ggLlsFTeQEUvpHUhaOLEidi9ezeOHj0Kl+f6OB0dHQGgWKvPgwcPirUOPW/WrFlITU1V3BITE9VTOBERUWlcXORjgAqntRsaAmvXKo3lefToEfznzsVVAM6QByD3wnWfD0vlDFT0YloTgoQQmDBhArZv344jR47A3d1d6XF3d3c4OjoiMjJSsSwnJwdRUVFo165dqds1NTWFlZWV0o2IiEjjgoOB+Hj57LD4eKVB0ampqQgICMDlmBg4WFnhsIEBPIASw1J5AhWVj5HUBRQaP348Nm/ejF27dsHS0lLR4mNtbQ1zc3PIZDJMmTIFixcvhqenJzw9PbF48WLUqFEDQ4cOlbh6IiKicnBxKRZW0tPT0b17d5w/fx61a9fGoWPH0LBWLXn3lodHyeEmOBgICCh7HXohrZkiX9q4ng0bNmDUqFEA5K1FoaGhWLt2LR4/fgwfHx+sXLlSMXi6PDhFnoiItEVGRgYCAwNx4sQJ2NjY4MiRI2jWrJnUZWkldXx/a00I0hSGICIi0gbPnj1DUFAQjhw5AisrKxw+fBitWrWSuiytpVfnCSIiIqqusrKy0LdvXxw5cgQ1a9bEgQMHGIAkwBBERESkQTk5OXjzzTdx4MAB1KhRA3v37kWbNm2kLksvMQQRERFpSG5uLoYMGYI9e/bAzMwMv/zyCzp06CB1WXqLIYiIiEgDcnNzMXToUGzfvh0mJibYuXMn/Pz8pC5Lr2nNFHkiIqLqqrAFaNu2bTAxMcG2bdsQEBAgdVl6jy1BREREalRSAAoKCpK6LAJDEBERkWokJcnPBv3chUyLBqDt27czAGkRhiAiIqKqCg8HXF0BPz/5z/Bw5ObmYvDgwYoAtGPHDvTs2VPqSuk5PFkiERFRVSQlyYPPc1d2zzUwwOCAAGzft08RgHr06CFhkbqPJ0skIiLSNrGxSgEoB8CgggIGIB3AEERERFQVnp6AgfzrNAfAYAA7AMU0eAYg7cUQREREVBUuLsC6dcgxMMAgyAOQqZERdu7cicDAQKmrozIwBBEREVVRzvDhGOTvj50ATE1NsfOXXxiAdABDEBERURVkZ2dj4MCB2HnggDwA7dyJ7t27S10WlQPPGE1ERFRJz549Q//+/bFv3z4GIB3EEERERFQJGRkZ6NOnDw4dOgRzc3Ps2rUL/v7+UpdFFcAQREREVEHp6ekICgrC8ePHYWFhgV9//RW+vr5Sl0UVxBBERERUAU+ePEFgYCCio6NhZWWFffv2oV27dlKXRZXAEERERFROKSkp6NatGy5evAgbGxscPHgQrVq1krosqiSGICIionJ48OAB/P39ceXKFdjZ2eHQoUNo2rSp1GVRFTAEERERvcC9e/fQpUsXXL9+HY6Ojjh8+DAaNWokdVlURQxBREREZUhMTISfnx9u3rwJFxcXHDlyBJ6enlKXRSrAkyUSERGVIi4uDh07dsTNmzfh5uaG48ePMwBVIwxBREREJYiNjUXHjh0RHx8PDw8PREVFwd3dXeqySIUYgoiIiIq4cuUKOnTogKSkJDRs2BBRUVGoX7++1GWRijEEERERPSc6Ohq+vr64f/8+mjZtiqioKDg7O0tdFqkBQxAREdG/Dh8+jK5du+LJkydo164djh07Bnt7e6nLIjVhCCIiIgKwa9cu9OjRAxkZGfD398fBgwdRq1YtICkJOHpU/pOqFYYgIiKqfioYXDZt2oT+/fsjJycHffv2xS+//AILCwsgPBxwdQX8/OQ/w8PVXDhpEkMQERFVLxUMLqtWrcLw4cORn5+PkSNH4qeffoKpqak8QI0dCxQUyFcsKABCQtgiVI0wBBERUfVRweASNnMmxo8fDwCYOHEi1q9fDyOjf88jHBv733YK5ecDN2+qq3rSMJ4xmoiIqo+ygouLi2KREAKzevTAkv37AQDzAIQ2aQKZwXNtA56egIGB8vYMDQEPDzXuAGkSW4KIiKj6KAwuzysSXPLz8/HeiBGKAPQZgIUAZO++q9xi5OICrFsnf37hdtauVQpTpNsYgoiIqPp4QXDJzc3FiBEjsHbTJsgAfA3g/cLnltTVFRwMxMfLB1nHx8vvU7XB7jAiIqpegoOBgAB5oPHwUASgjIwMvPnmm9i3bx+MjIywKT8fg4T473mldXW5uLD1p5piCCIiouqnSHBJSUlBUFAQoqOjYW5ujq1bt6LHvXvyQdP5+ezq0lMMQUREVK0lJiYiICAA169fh42NDX799Ve0bdtW/mAJLUakPxiCiIio2rp+/Tq6deuGpKQkuLi44MCBA2jUqNF/K7CrS69xYDQREVVL0dHReP311xVXgj99+rRyACK9xxBERETVzr59+9ClSxc8evQIPj4+OHnyJOrVqyd1WaRlGIKIiKha2bRpE9544w1kZmaie/fuOHz4MGrXri11WaSFGIKIiKjaWL58OYYPH468vDwMGzYMu3fvll8IlagEWhWCjh8/jl69esHZ2RkymQw7d+5UenzUqFGQyWRKtzZt2khTLBERaQ0hBGbMmIH335ef+nDq1Kn47rvvYGxsLHFlpM20KgRlZGSgadOmWLFiRanrdO/eHffu3VPc9u7dq8EKiYhI2+Tm5mL06NFYunQpAOCTTz7BsmXLYFD08hlERWjVFPnAwEAEBgaWuY6pqSkcHR01VBEREWmztLQ0DBgwAJGRkTA0NMS6devw9ttvS10W6Qidi8nHjh2Dvb09vLy88M477+DBgwdSl0RERBL4+++/4evri8jISFhYWGD37t0MQFQhWtUS9CKBgYF488034erqiri4OMybNw9+fn64cOECTE1NS3xOdnY2srOzFffT0tI0VS4REalJTEwMevTogTt37sDBwQG//vorWrZsKXVZpGN0KgQNGjRI8e9XXnkFrVq1gqurK3799Vf069evxOeEhYUhNDRUUyUSEZGaRUVFoU+fPnjy5Am8vb2xb98+uLu7S10W6SCd6w57npOTE1xdXREbG1vqOrNmzUJqaqrilpiYqMEKiYhIlSIiItCtWzc8efIE7dq1w6lTpxiAqNJ0qiWoqJSUFCQmJsLJyanUdUxNTUvtKiMiIt0ghMDy5cvxwQcfAAD69euHTZs2wdzcXOLKSJdpVQh6+vQpbt68qbgfFxeHy5cvw9bWFra2tliwYAH69+8PJycnxMfHY/bs2bCzs0Pfvn0lrJqIiNQpPz8f06ZNw5dffgkAmDRpEpYvXw5DQ0OJKyNdp1Uh6Pz58+jcubPi/rRp0wAAI0eOxOrVq/HHH3/gu+++w5MnT+Dk5ITOnTsjIiIClpaWUpVMRERq9OzZM7z11lvYvn07AGDZsmWYOnUqZDKZxJVRdSATQgipi9CktLQ0WFtbIzU1FVZWVlKXQ0REpfjnn3/Qu3dvnDlzBiYmJvj+++8xcOBAICkJiI0FPD0BFxepyyQNUcf3t04PjCYiourp+vXr8PHxwZkzZ1CrVi1ERkbKA1B4OODqCvj5yX+Gh0tdKukwhiAiItIqhw8fRtu2bREXF4eXXnoJ0dHR6Nixo7wFaOxYoKBAvmJBARASIl9OVAkMQUREpDXCw8PRvXt3pKamon379vjtt9/g7e0tfzA29r8AVCg/H3huQg1RRTAEERGR5AoKCjBz5kyMGTMGeXl5GDp0KA4dOgQ7O7v/VvL0BIpeFNXQEPDw0GyxVG0wBBERkaQyMzMxcOBALFmyBAAwf/58bNq0CWZmZsorurgA69bJgw8g/7l2LQdHU6Vp1RR5IiLSL8nJyejduzfOnj0LExMThIeH46233ir9CcHBQECAvAvMw4MBiKqEIYiIiCRx9epVBAUFISEhAba2tti5bh062NrKBzqXFW5cXBh+SCXYHUZERBp38OBBtG/fHgkJCfD09ET0+++jw8CBnPpOGsUQRERE6peUBBw9CpGYiK+++go9evRAWloafH19Eb1tGzznzePUd9I4docREZF6hYcDY8cip6AAEwB8/e/ikSNHYt26dTA5dar0qe/s9iI1YksQERGpz78nOHxYUAB/yAOQDMBnc+diw4YNMDEx4dR3kgxDEBERqU9sLK4WFOA1AMcBWAHYA+D9Ll3+uwgqp76TRNgdRkREarM7Lg7DADwF0ADAbgCNSmrl4dR3kgBDEBERqZwQAkuWLMHs2bMhAHQG8DOA2mW18nDqO2kYQxAREVVeUpL8ml6enooAk5WVhTFjxuCHH34AAIwbNw6ff/ABjBMS2MpDWoUhiIiIKuffWV8oKJAPbF63Dvd69ECfPn1w9uxZGBoa4quvvsJ7770nX9/dXdp6iYqoUgh68OABCgoK4OjoqKp6iIhIF/w76+v5c/ucGzsWfe3tcTc5Gba2tti6dSs6d+4sbZ1EZajU7LArV66gcePGcHJyQt26dVG3bl3MnTsXGRkZqq6PiIi0UWys0rl9NgDoUFCAu8nJePnll3H27FkGINJ6lQpBwcHBcHBwwMmTJ3Hp0iUsWrQI+/btQ6tWrfD48WNV10hERNrm33P75AAYD+BtANkAenfrhujoaDRo0EDa+ojKQSaEEBV9koWFBS5cuICGDRsqlgkh8Oabb8LMzAybNm1SaZGqlJaWBmtra6SmpsLKykrqcoiItFcJg56fl7x8Od58/32c/Pd+aO/emLt9OwyKnviQSAXU8f1dqd/Uklp8ZDIZFi9ejF27dqmkMCIiklB4uPxCpqVc0PS3335Dy2XLcBKAlYUFftmwAR/u3MkARDql3L+tPXv2xOzZs/HTTz/h3XffxdSpU3H//n2ldVJTU2FjY6PyIomISINKGPT8/AVNw8PD0bFjR/z99994+eWXce7iRQSNGiVdvUSVVO7ZYa+++iouXryIDRs2KMLPSy+9hIEDB6JZs2bIz8/Hhg0b8L///U9txRIRkQYUGfQMAMjPR87165j88cdYs2YNAKBv37749ttvYWlpKUGRRFVXqTFB9+/fx6VLl3D58mXF7ebNmzA0NIS3tzeuXLmijlpVgmOCiIheIClJ3gX2XBC6Z2CAAS1a4PT585DJZPjoo48wa9Ysdn+Rxqjj+7tS5wlycHBA9+7d0b17d8WyZ8+e4ffff8fvv/+uksKIiEgihRc0DQkB8vNx2sAAAywtce/8eVhbW2Pz5s3o0aOH1FUSVVmlWoJ0GVuCiIjKRyQm4sslS/DB2rXIy8tDo0aNsHPnTnh6ekpdGukhrWkJIiKi6i09PR1jPvgAP/30EwBg4MCB+Oabbzj+h6oVhiAiIlISExOD/v3748aNGzAyMsKyZcswceJEyGQyqUsjUimGICIiUti8eTPeeecdZGZmom7duvj555/Rtm1bqcsiUgsO6yciImRnZ2P8+PEYNmwYMjMz0bVrV1y6dIkBiKo1hiAiIj13584ddOzYEatWrQIAzJ07F/v370edOnUkroxIvdgdRkSkxw4cOIBhw4YhJSUFNjY22LRpE6e/k95gSxARkR7Kz8/H/PnzERgYiJSUFLRs2RIXL15kACK9wpYgIiI98/fff2PYsGE4duwYACAkJASff/45zMzMpC2MSMMYgoiI9Mj+/fsxfPhwPHz4EDVr1sSaNWswbNgwqcsikgS7w4iI9EBubi5mzpyJwMBAPHz4EM2aNcOFCxcYgEivsSWIiKiau3PnDgYPHowzZ84AAMaPH4/PPvuM3V+k9xiCiIiqsV27dmH06NF4/PgxrK2tER4ejv79+0tdFpFWYHcYEVE1lJ2djSlTpqBPnz54/PgxXnvtNVy8eJEBiOg5DEFERNXMrVu30L59e3zxxRcAgGnTpuHkyZN46aWXJK6MSLuwO4yIqBrZtGkTxo0bh/T0dNja2uLbb79FUFCQ1GURaSWGICKiaiA1NRXjxo3D5s2bAQCvv/46Nm/ejHr16klcGZH20qrusOPHj6NXr15wdnaGTCbDzp07lR4XQmDBggVwdnaGubk5OnXqhJiYGGmKJSLSEqdOnUKzZs2wefNmGBoaYuHChTh69CgDENELaFUIysjIQNOmTbFixYoSH1+6dCmWL1+OFStW4Ny5c3B0dIS/vz/S09M1XCkRkfTy8vKwYMECdOzYEfHx8XB3d8eJbdsw7/XXYZScLHV5RFpPq7rDAgMDERgYWOJjQgh8/vnnmDNnDvr16wcA+Pbbb+Hg4IDNmzcjJCREk6USEUkqLi4Ow4YNU5z7Z/jw4VjRujWs+vUDCgoAAwNg3TogOFjiSom0l1a1BJUlLi4OycnJ6Natm2KZqakpfH19cfr06VKfl52djbS0NKUbEZEu27RpE5o2bYozZ87AysoKmzdvxneLF8Nq8mR5AALkP0NCgKQkaYsl0mI6E4KS/23adXBwUFru4OCgeKwkYWFhsLa2VtzYR05Euio1NRXDhg3D8OHDkZ6ejvbt2+P333/HkCFDgNjY/wJQofx84OZNaYol0gE6E4IKyWQypftCiGLLnjdr1iykpqYqbomJieoukYhI5Y4dO4amTZsqBj+Hhobi2LFjcHNzk6/g6SnvAnueoSHg4aHxWol0hc6EIEdHRwAo1urz4MGDYq1DzzM1NYWVlZXSjYhIVzx79gzTpk1D586dkZCQIB/8fOIEPvzwQxgZPTes08VFPgbI0FB+39AQWLtWvpyISqQzIcjd3R2Ojo6IjIxULMvJyUFUVBTatWsnYWVEROpx4cIFtGzZEv/73/8AAGPHjsXvv/+Otm3blvyE4GAgPh44elT+k4OiicqkVbPDnj59ipvP9V/HxcXh8uXLsLW1Rf369TFlyhQsXrwYnp6e8PT0xOLFi1GjRg0MHTpUwqqJiFQrNzcXYWFh+Oijj5CXlwdHR0eEh4ejR48eL36yiwtbf4jKSatC0Pnz59G5c2fF/WnTpgEARo4ciY0bN2L69Ol49uwZxo0bh8ePH8PHxwcHDx6EpaWlVCUTEanUjRs3MHz4cJw7dw4A8Oabb2L16tWoXbu26l4kKUk+kNrTk4GJ9JpMCCGkLkKT0tLSYG1tjdTUVI4PIiKtUVBQgJUrV2L69OnIyspCrVq1sHLlSgwZMqTMyR8VFh4OjB3LcwmRzlHH9zdDEBGRxO7cuYO3334bhw8fBgD4+/tj/fr1cFF1K01SEuDqqjyV3tBQPn6ILUKk5dTx/a0zA6OJiKobIQTWrVuHV155BYcPH4a5uTlWrlyJAwcOFA9ASUnyAc9VOfkhzyVEpIQhiIhIAvHx8fD390dISAjS09PRtm1bXL58GePGjSve/RUeLm/B8fOT/wwPr9yL8lxCREoYgoiINKigoACrVq1Sav353//+hxMnTsDLy6v4E5KS/hvDI99A5S+HwXMJESnRqtlhRETV2a1btzBmzBgcO3YMANChQwesX78eHmW1xJTVhVWZ8BIcDAQEyJ/v4cEARHqNIYiISM0KCgqwYsUKzJo1C5mZmahRowaWLFmCcePGwaBo91RRhV1YRQczV6ULi+cSIgLA7jAiIrWKjY2Fr68vJk+ejMzMTHTu3Bl//PEHJkyY8OIABLALi0iN2BJERKQGubm5+N+CBZj/2WfIyslBzZo18emnn2Ls2LHlCz/PYxcWkVowBBERqdi5c+fwTv/++D0xEQDQFcA38+bB9d13S35Cec7gzC4sIpVjdxgRkYo8ffoUU6dORZs2bfB7YiJsAWwEcBCA6+zZJc/oUtX0dyKqMIYgIiIV2Lt3Lxo3bozPP/8cBQUFGAbgOoCRAGRAySclVOX0dyKqMIYgIqIqSE5OxuDBg9GzZ0/cuXMHbm5u2Pfdd9hkYAD751csaUYXz+BMJCmGICKiShBCIDw8HC+//DIiIiJgYGCA999/H1evXkX34cPLN6OLZ3AmkhQHRhMRVdC1a9cwbtw4REVFAQBatGiBr7/+Gi1atPhvpfLM6Cqc/h4SIm8B4vR3Io3iVeSJiMopIyMDH330EZYtW4a8vDzUqFEDCxcuxOTJk2FkVIX/UyYlcfo70Quo4/ubLUFEJJ3yTA3XAkII7Ny5E5MnT0biv9Pe33jjDXzxxRdwc3Or+gtw+juRJDgmiIikoSNTw2/fvo2goCD069cPiYmJcHNzw+7du7Fr1y7VBCAikgxDEBFpng5MDc/KysLChQvRqFEj7N27F8bGxpgzZw5iYmLQq1cvqcsjIhVgdxgRaZ6qr4yuYgcOHMCECRNw89+p6l27dsWKFSvg7e0tcWVEpEpsCSIizdPSqeHx8fEYMGAAunfvjps3b8LZ2Rk//vgjDh48yABEVA0xBBGR5mnZldEzMjIwb948NGzYENu2bYOhoSGmTZuGP//8E4MGDYJMJpOkLiJSL3aHEZE0tODK6EIIbNmyBdOnT8fdu3cBAH5+fvj888/x6quvarweItIshiAiko6EU8MvXLiAyZMn49SpUwAANzc3LFu2DH379mXLD5GeYHcYEemVBw8eYMyYMXjttddw6tQp1KhRA4sWLcL169fRr18/BiAiPcKWICLSCzk5OVixYgVCQ0ORlpYGABg2bBiWLFmCunXrSlwdEUmBIYiIqjUhBHbs2IEZM2Yopry3bNkSX375Jdq1aydxdUQkJXaHEVG19dtvv6FDhw7o378/bt68CXt7e4SHh+Ps2bNVD0BJScDRo1p1gkciqhiGICKqdm7fvo3BgwejTZs2OHXqFMzNzTFv3jzcvHkTb7/9NgyKnqOoonTkkh9EVDZeRZ6IqoekJDy6cAEf//orvtq4Ebm5uZDJZBg1ahQ++ugj1Y37SUqSB5/nz3htaAjEx2vF2a6JqiteRZ6IqATZa9Zg1bhx+EgIPP53WdeuXfHZZ5+hadOmqn0xLb/kBxGVH0MQEemsgoICRKxahbkTJ+L2v8teAfCpgQEC1q+HrF491b9o4SU/irYESXzJDyKqOI4JIiKdI4TAr7/+ihYtWmDovwHIEcA3AC4D6F5QANmtW+p5cS275AcRVR5bgohIp5w4cQKzZs1SnOnZytIS//f0KaYIgZqFK6m7ZUYLLvlBRFXHliAi0gmXLl1Cjx490LFjR5w6dQpmZmaYPn06bsfFYe7XX6NmeVpmVDmt3cUF6NSJAYhIh7EliIi0WmxsLObNm4eIiAgAgJGREcaMGYN58+bB2dlZvlJ5WmbCw4GxY+VjeQwM5F1awcEa3BMi0jacIk9EWikhIQEff/wx1q9fj/z8fMhkMgwZMgShoaHwqGhXF6e1E+k8TpEnomrvzp07WLx4MdavX4/c3FwAQFBQED7++GM0adKkchvltHYiKgFDEBFphTt37iAsLAzh4eGK8NOlSxeEjh+P9rVqAba2ld84p7UTUQk4MJqIJJWYmIhx48bBw8MDa9asQW5uLvz8/HD8+HEcGjIE7QcMqPrlKTitnYhKwDFBRCSJxMREhIWF4ZtvvlG0/Pj5+WH+/Pno2LGjesbxJCVxWjuRjuKYICLSebdu3cLSpUuxceNG5OTkAAA6d+6M+fPnw9fX978V1TGOx8Xlxc9NSpK/tqcngxJRNcfuMCLSiD/++APDhg2Dl5cX1q1bh5ycHHTu3BnHjh3DkSNHlAMQ8N84nuepexwPrw5PpFd0KgQtWLAAMplM6ebo6Ch1WURUhujoaLzxxhto0qQJNm/ejIKCAgQGBuL48eMlh59Cmh7Hk5T033mEAPnPkBDVnFiRiLSSznWHNW7cGIcOHVLcNyw8QBJR6VTZxVOObYnERBz68UeE7dyJo6dPAwBkMhnefPNNzJw5E82bNy/fa2ny8hScRk+kd3QuBBkZGbH1h6giVHmm5BdsKz8/HzsnTsQnq1fj/L/LjAwNMWLkSEyfPh3e3t4Vf83yjONRBU6jJ9I7OtUdBshPoe/s7Ax3d3cMHjwYt2/fLnP97OxspKWlKd2I9IYqu3jK2FZGRgZWrFgBr5dewoB/A5A5gMkAbguB8NDQygUgTeI0eiK9o1MtQT4+Pvjuu+/g5eWF+/fvY9GiRWjXrh1iYmJQu3btEp8TFhaG0NBQDVdKpCVU2cVTwrbu5efjqxkzsGbfPjx+/BgAYAvgPcgDUB1A/hxd6VLi1eGJ9IpOnycoIyMDDRo0wPTp0zFt2rQS18nOzkZ2drbiflpaGurVq8fzBJF+UOW5dp7b1h8AlgHYDCD334c9PDwwddQojJw3DxbPH1Z4jS4iUgF1nCdI57rDnmdhYYFXX30VsbGxpa5jamoKKysrpRuR3lBhF4+oWxcHJ09GAIAmAL6FPAC1b98eO3bswJ9//olxc+bA4uuv2aVERDpBp7rDisrOzsb169fRoUMHqUsh0l5V7OJJT0/Ht99+ixUrVuDGjRsAAAMDA/Tv0QPvz50LHx8flb4eEZGm6FQI+uCDD9CrVy/Ur18fDx48wKJFi5CWloaRI0dKXRqRdqvEDKsbN25g5cqV2LhxI9LT0wEAlpaWGD16NKZMmQJ3d3eVvh4RkabpVAhKSkrCkCFD8PDhQ9SpUwdt2rRBdHQ0XF1dpS6NSE7HL7mQn5+Pffv24auvvsLBgwcVy729vTFhwgSMGDGCXcpEVG3oVAj68ccfpS6BqHSqPB+Phj169AgbN27EypUrFaedkMlkCAoKwsSJE9G1a1fIZDKJqyQiUi2dnh1WGbyKPKmFOq54rmZCCJw8eRJr167F1q1bFbMobWxsEBwcjHHjxpXd5UVEpEG8ijyRttKhSy6kpKTgu+++w7p16/Dnn38qljdr3BjjAgIw7N13UcPTU8IKiYg0gyGISBUqcskFCcYNCSFw/PhxrFu3Dlu3bkVOTg4A+WkmhgwZghBHR7T8+GPIYmKAzz/Xqa48IqLKYggiUoXC8/GEhMhbgEo7P46Gxw3du3cPmzZtQnh4uGJ6OwA0b94cISEhGDJkCKzS0uRdeYU944WXwwgI0LpWLCIiVeKYICJVSkoq/fw46hg3VEKrUlZWFnbv3o2NGzfiwIEDKPj39WrWrImhQ4di7NixaNmy5X/bOHoU8PMrvu2jR4FOnSpXFxGRinFMEJG2K+v8OKoeN/Rcq5KQyXB21ixsfPQIP/74I548eaJYrV27dhg1ahQGDx4MS0vL4tvh1dOJSE8xBBFpSkXDRlljh/69ontSQQE2AfhWCPy5eLHi4Xr16mHEiBEYMWIEvLy8yq6rvF15RETVDEMQkaZUJGyUMXYoJSUFW5cvx5aCAhwHUNifbQ6gv78/Rs2Ygc6dO8PAoAKXBuSlLohID3FMEJGmlTVuqPDxImOHnhoYYNfnn2PLgQM4cOAA8vLyFI91ADAKwAADA1glJDDAEFG1xDFBRNXBi66r9e/YoWwA+wBsAfBLQQGeTZqkWKVZs2YY0qABBu3YAdeCAnZhERFVAkMQkRZ59uwZDty6he0AdgNIfe4xT3d3DBk+HEOGDEHDhg3lC1/UqkRERKViCFI3Hb+gpk7Tkfc+LS0Ne/fuxbZt27B3715kZmYqHqsLYLBMhiFz5qDFwoXFr9/Fq7UTEVUaQ5A66fAFNSWjquCi5e99SkoKdu/eje3bt+PgwYOKMzgDQP369dG/f3/0e/11tKtVCwZeXgw6RERqwIHR6qKDF9SUnKqCS0Xf+/IEryqGMyEE/vrrL+zZswd79uzBiRMnkJ+fr3jcy8sL/fv3R//+/dGiRQtesZ2IqAgOjNYlOnRBTa3w73lvFO9ZVS7dUJH3vjzBq5LhLCcnBydOnFAEn5s3byo93rRpU/Tr1w/9+/dHo0aNGHyIiDSMLUHqwpagilHlpRvK+96XZ70Kfo4PHjzAvn37sGfPHhw4cADp6emKx4yNjdGpUycEBQWhZ8+eaNCgQcX2i4hIj7ElSJfwLLwVo8pLN5T3vS9Pi9EL1snKysKpU6dw8OBBREZG4tKlS0qr2tvbo2fPnggKCoK/v3/Jl60gIiJJsCVI3TiFufzCw4sHl6oMZq7ESQlf1BIkAFw1MMDB2bMRee4cjh8/jmfPnilttnnz5ggKCkJQUBBatWpVsTM3ExFRidTx/c0QRNpF06HxBcFLCIHbn3yCqDlzcEwIRAJILrIJJycndOvWDf7+/ujatSscHBzUXzcRkZ5hCFIBhqBqQpXnAHoueIm6dfHXX38hKipKcbt7967S6ubm5ujUqRP8/f3RrVs3DmomItIAjgki3aaF5wDKy8tDTEoKTl27hqjVqxEVFYX79+8rrWNsbAwfHx907NgRXbp0Qfv27WFqalr5+omISCuwJYg0Q6pzABXx4MEDREdHK25nz55FRkaG0jqmpqZo27YtfH194evrizZt2sDc3LzitRIRkcqwJYh0k0TnAMrKysIff/yB3377DdHR0Thz5gxu375dbJNWVlaKlh5fX1+0bt2aLT1ERHqAIUhfafK6Wqo8cWQpU+nTHR3x+8mTuHjxouJ27do1pbMyF2rUqBHatm2LNm3aoG3btmjYsCEMDQ0rsWNERKTLGIJ0iRaOqSkXFZ4DSNSti8SwMMTMmoU/CgpwWSbDxTp18FejRiipZ9fOzg6tWrVShJ7WrVujVq1aVdgZIiKqLjgmSFdoyZiaSqvgOYCEEEhOTkZMTAyuXr2q9PP5szA/z8XFBc2bN0eLFi0Ut7p163LmFhFRNcAp8iqgkyFIlcFFlZenqKgSzgGUmpqK2NhYxMbG4q+//lL695MnT0rcjJGREby9vdG4cWM0a9YMLVq0QPPmzWFvb6/e+omISDIcGK1CK1asgLe3N1xdXeHq6go7OzvtbTHQwJiaSl2eohyys7Nx584dJCQk/HfbsAG3b9/GX3/9hQcPHpT6XAMDA3h4eKBx48Z45ZVXFD89PT1hYmKilnqJiEh/6G0ImjNnjtL9GjVqoH79+opQ5OzsDCcnJzg5OcHR0RFOTk5wcHCAsbGx5ouV4rpaLyCEQGpqKu7du1fsdvfuXUXguXfv3gu35eDgAC8vL3h6esLT01Pxbw8PD05NJyIitdHb7rB+/frh77//LvcXdSE7OztFMLKzs4OtrS1q165d4k8bGxtYWlrCxMSk6q1MaryuVr6TE54+fYr09HQ8evQIKSkpSElJKfHfDx8+VISdrKyscr2Uubk53NzcFAHT1dUV7u7u8PLygoeHh+50SxIRkWQ4JkgFSnoTs7OzkZiYqGi9uHPnjlLLRnJyMpKTk5GXl1ep1zQyMoKlpSVq1qypuBXer1GjBkxMTGBqagoTE5MSb4rp20+eACkpQO3awHMznIQQyMvLQ05ODrKzs5GTk1Piv58+faoIO8//zMzMrPT7aW1tXazFzNnZWSn0aHVXIxER6QSOCVITU1NTeHh4wKOwe6mEqegFBQVISUlBcnKyIhgVto6U9rNwFlNeXh4eP36Mx48fS7WL5WJoaKhoyapduzZsnz5F7d9/R20AtjIZar/1Fmq/8YZS6KlRo4bUZRMREVUKW4KKUvF1qTIyMpRaXYq2xmRkZCA3N1fRYvP8LTs7G9nZ2SWe/6YoIyOj/1qTsrNh+vQpTBwdYWJnp1huYWGhaIUqbIl6/qepqel/LTZSTaUnIiIqAVuC1E2Vl3eAPJhYW1vD2tpaxYWWQVUhriIz0jR59mkiIiIVMZC6AMncvVt8WVlf/LqgtBCXlFTxbRXOSHteSTPSwsPlLUZ+fvKf4eGVq52IiEjD9DcENW5c/Au7vF/82kqVIa5wKn3hoOySptKrMnQRERFpmP6GICGKf2GX54tfm6k6xAUHy8cAHT0q/1m0W03XW86IiEiv6W8IAkr+wn7RF782U0eIc3GRX06jpG3oessZERHpNf0eGF3aF7aLi+Zbf1Q1uDg4WD6Qu8g1utRCRWefJiIikoL+hiADA+35wlbhtHwAmg1xmgxdREREKqS/5wm6dg1WL78sdTk8Hw8REVE5qOM8Qfo7JqhuXakrkOPgYiIiIknoZAhatWoV3N3dYWZmhpYtW+LEiRNSl1R5HFxMREQkCZ0LQREREZgyZQrmzJmDS5cuoUOHDggMDMSdO3ekLq1ydH1aPhERkY7SuTFBPj4+aNGiBVavXq1Y9vLLL6NPnz4ICwt74fPV0aeoEklJHFxMRERUCr2/dlhOTg4uXLiAmTNnKi3v1q0bTp8+XeJzCi9CWigtLU2tNVaaFNPyiYiI9JhOdYc9fPgQ+fn5cHBwUFru4OCA5OTkEp8TFhamuIiptbU16tWrp4lSiYiISMvpVAgqJJPJlO4LIYotKzRr1iykpqYqbomJiZookYiIiLScTnWH2dnZwdDQsFirz4MHD4q1DhUyNTWFqampJsojIiIiHaJTLUEmJiZo2bIlIiMjlZZHRkaiXbt2ElVFREREukinWoIAYNq0aRg+fDhatWqFtm3bYt26dbhz5w7effddqUsjIiIiHaJzIWjQoEFISUnBwoULce/ePbzyyivYu3cvXF1dpS6NiIiIdIjOnSeoqrT2PEFERERUKl47jIiIiEhFGIKqIikJOHpU/pOIiIh0CkNQZYWHA66ugJ+f/Gd4uNQVERERUQUwBFVGUhIwdixQUCC/X1AAhISwRYiIiEiHMARVRmzsfwGoUH6+/AKoREREpBMYgirD0xMwKPLWGRrKrwBPREREOoEhqDJcXIB16+TBB5D/XLuWV4EnIiLSITp3skStERwMBATIu8A8PBiAiIiIdAxDUFW4uDD8EBER6Sh2hxEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC/pVAhyc3ODTCZTus2cOVPqsoiIiEgHGUldQEUtXLgQ77zzjuJ+zZo1JayGiIiIdJXOhSBLS0s4OjpKXQYRERHpOJ3qDgOAJUuWoHbt2mjWrBk+/vhj5OTkSF0SERER6SCdagmaPHkyWrRoARsbG5w9exazZs1CXFwcvvnmm1Kfk52djezsbMX91NRUAEBaWpra6yUiIiLVKPzeFkKobqNCYvPnzxcAyrydO3euxOdu3bpVABAPHz6s0vZ544033njjjTfduN26dUtlGUQmhCojVcU9fPgQDx8+LHMdNzc3mJmZFVt+9+5duLi4IDo6Gj4+PiU+t2hL0JMnT+Dq6oo7d+7A2tq6asXrkLS0NNSrVw+JiYmwsrKSuhyN4X5zv/UB95v7rQ9SU1NRv359PH78GLVq1VLJNiXvDrOzs4OdnV2lnnvp0iUAgJOTU6nrmJqawtTUtNhya2trvfrlKWRlZcX91iPcb/3C/dYv+rrfBgaqG84seQgqrzNnziA6OhqdO3eGtbU1zp07h6lTp+KNN95A/fr1pS6PiIiIdIzOhCBTU1NEREQgNDQU2dnZcHV1xTvvvIPp06dLXRoRERHpIJ0JQS1atEB0dHSVt2Nqaor58+eX2EVWnXG/ud/6gPvN/dYH3G/V7bfkA6OJiIiIpKBzJ0skIiIiUgWGICIiItJLDEFERESklxiCiIiISC9VyxC0atUquLu7w8zMDC1btsSJEyfKXD8qKgotW7aEmZkZXnrpJaxZs0ZDlapWRfZ7+/bt8Pf3R506dWBlZYW2bdviwIEDGqxWdSr6eRc6deoUjIyM0KxZM/UWqCYV3e/s7GzMmTMHrq6uMDU1RYMGDbB+/XoNVas6Fd3vH374AU2bNkWNGjXg5OSE0aNHIyUlRUPVVt3x48fRq1cvODs7QyaTYefOnS98TnU4plV0v6vLMa0yn3chXT6mVWa/VXFMq3YhKCIiAlOmTMGcOXNw6dIldOjQAYGBgbhz506J68fFxaFHjx7o0KEDLl26hNmzZ2PSpEnYtm2bhiuvmoru9/Hjx+Hv74+9e/fiwoUL6Ny5M3r16qU4C7euqOh+F0pNTcWIESPQpUsXDVWqWpXZ74EDB+Lw4cMIDw/HjRs3sGXLFjRs2FCDVVddRff75MmTGDFiBIKDgxETE4Off/4Z586dw5gxYzRceeVlZGSgadOmWLFiRbnWry7HtIrud3U5plV0vwvp+jGtMvutkmOayq5CpiVat24t3n33XaVlDRs2FDNnzixx/enTp4uGDRsqLQsJCRFt2rRRW43qUNH9LkmjRo1EaGioqktTq8ru96BBg8TcuXPF/PnzRdOmTdVYoXpUdL/37dsnrK2tRUpKiibKU5uK7venn34qXnrpJaVlX375pXBxcVFbjeoEQOzYsaPMdarLMe155dnvkujiMe15FdlvXT+mPa88+62qY1q1agnKycnBhQsX0K1bN6Xl3bp1w+nTp0t8zpkzZ4qtHxAQgPPnzyM3N1dttapSZfa7qIKCAqSnp8PW1lYdJapFZfd7w4YNuHXrFubPn6/uEtWiMvu9e/dutGrVCkuXLkXdunXh5eWFDz74AM+ePdNEySpRmf1u164dkpKSsHfvXgghcP/+fWzduhU9e/bURMmSqA7HNFXQxWNaZen6Ma0yVHVM05kzRpfHw4cPkZ+fDwcHB6XlDg4OSE5OLvE5ycnJJa6fl5eHhw8flnlxVm1Rmf0uatmyZcjIyMDAgQPVUaJaVGa/Y2NjMXPmTJw4cQJGRrr561+Z/b59+zZOnjwJMzMz7NixAw8fPsS4cePw6NEjnRkXVJn9bteuHX744QcMGjQIWVlZyMvLwxtvvIGvvvpKEyVLojoc01RBF49plVEdjmmVoapjWrVqCSokk8mU7gshii170folLdd2Fd3vQlu2bMGCBQsQEREBe3t7dZWnNuXd7/z8fAwdOhShoaHw8vLSVHlqU5HPu6CgADKZDD/88ANat26NHj16YPny5di4caNOtQYBFdvva9euYdKkSfjwww9x4cIF7N+/H3FxcXj33Xc1UapkqssxrbJ0/ZhWXtXtmFYRqjqmVavYaGdnB0NDw2L/K3zw4EGx/xkVcnR0LHF9IyMj1K5dW221qlJl9rtQREQEgoOD8fPPP6Nr167qLFPlKrrf6enpOH/+PC5duoQJEyYAkP8hCSFgZGSEgwcPws/PTyO1V0VlPm8nJyfUrVsX1tbWimUvv/wyhBBISkqCp6enWmtWhcrsd1hYGNq3b4//+7//AwA0adIEFhYW6NChAxYtWlQtW0WqwzGtKnT5mFZR1eWYVhmqOqZVq5YgExMTtGzZEpGRkUrLIyMj0a5duxKf07Zt22LrHzx4EK1atYKxsbHaalWlyuw3IP/f0qhRo7B582adHCNR0f22srLCH3/8gcuXLytu7777Lry9vXH58mX4+PhoqvQqqczn3b59e/z99994+vSpYtlff/0FAwMDuLi4qLVeVanMfmdmZsLAQPkwZ2hoCOC/1pHqpjoc0ypL149pFVVdjmmVobJjWpWGVWuhH3/8URgbG4vw8HBx7do1MWXKFGFhYSHi4+OFEELMnDlTDB8+XLH+7du3RY0aNcTUqVPFtWvXRHh4uDA2NhZbt26VahcqpaL7vXnzZmFkZCRWrlwp7t27p7g9efJEql2olIrud1G6OpOiovudnp4uXFxcxIABA0RMTIyIiooSnp6eYsyYMVLtQqVUdL83bNggjIyMxKpVq8StW7fEyZMnRatWrUTr1q2l2oUKS09PF5cuXRKXLl0SAMTy5cvFpUuXREJCghCi+h7TKrrf1eWYVtH9LkpXj2kV3W9VHdOqXQgSQoiVK1cKV1dXYWJiIlq0aCGioqIUj40cOVL4+voqrX/s2DHRvHlzYWJiItzc3MTq1as1XLFqVGS/fX19BYBit5EjR2q+8Cqq6Of9PF09YAhR8f2+fv266Nq1qzA3NxcuLi5i2rRpIjMzU8NVV11F9/vLL78UjRo1Eubm5sLJyUkMGzZMJCUlabjqyjt69GiZf6vV9ZhW0f2uLse0ynzez9PVY1pl9lsVxzSZENW0TZiIiIioDNVqTBARERFReTEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCKiamHhwoV49dVXYWFhAQcHB7z33nvIzc2Vuiwi0mJGUhdARFRVQgjk5+dj7dq1qFu3Lq5du4YRI0agSZMmeO+996Quj4i0FC+gSkTV0tChQ1GnTh188cUXUpdCRFqK3WFEpPMSEhIwYcIEvPLKK7CxsUHNmjXx008/wcXFRerSiEiLMQQRkU57+PAhWrdujYcPH2L58uU4efIkzpw5A0NDQzRr1kzq8ohIi3FMEBHptL179yIvLw9btmyBTCYDAKxcuRI5OTkMQURUJoYgItJptra2SEtLw+7du9GoUSP88ssvCAsLQ926dVGnTh2pyyMiLcaB0USk04QQeO+997B582aYm5vjrbfeQlZWFhISErBnzx6pyyMiLcYQRERERHqJA6OJiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeun/AcG/crLSuc74AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYj0lEQVR4nO3dd1hTZxsG8DusgChYVJYoDhD3VtQ60Lpw1lEVWycqdVate1SwVj5ttdW6LdpqXa0LtYjiQq1Y0eJWxIFKFVcFFBCEvN8flGhkyEhyEnL/risXzcnJ4TmJJHffdWRCCAEiIiIiA2MkdQFEREREUmAIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIp3j4eEBDw8PqcsosMGDB6N48eJ52rdChQoYPHiwRuuRyWTw9fXV6O94n6SkJPj6+uLYsWOS1qEvDh8+jIYNG8LS0hIymQy7d+/Gzz//DJlMhujoaOV+mzdvxg8//KCRGmbNmoXy5cvDxMQEJUuWzPfzBw8ejAoVKqi9Ll0zbNgw1KxZEyVLloSFhQWqVKmCyZMn4+nTp1KXRnlgInUBRO9asWKF1CVoza5du2BlZSV1GRqXlJQEPz8/ANDrgKsNQgj06dMHVapUwZ49e2BpaQk3NzekpaUhLCwMDg4Oyn03b96My5cvY/z48WqtITAwEN988w1mzpwJT09PyOVytR6/KElMTMSIESPg4uICc3NznD17Ft988w2CgoIQEREBMzMzqUukXDAEkc6pXr261CVoTb169aQugdQoOTkZ5ubmkMlkBT7GgwcP8O+//6JHjx746KOPVB4rU6ZMYUvMk8uXLwMAxo0bB1tbW638TnVRx3uQH1u2bFG536ZNG5QoUQKjRo3CyZMn0aZNG63UQQXD7jAqFF9fX8hkMly5cgVeXl6wtraGnZ0dhg4divj4eJV9X716henTp6NixYowMzND2bJlMXr0aMTFxansl1132MqVK1GnTh0UL14cJUqUQNWqVTFjxgwAQHR0NExMTODv75+lvuPHj0Mmk+H333/P9Tzi4uLw5ZdfolKlSpDL5bC1tUWnTp1w/fp1AMCxY8cgk8mydOdER0dDJpPh559/znLMK1eu4KOPPoKlpSXKlCmDMWPGICkpSWWf7LrD3leLOsTGxsLHxwdOTk4wMzNDxYoV4efnh7S0NJX9/Pz84O7uDhsbG1hZWaF+/foICAjAu9ddPnLkCDw8PFCqVClYWFigfPny6NWrF5KSkhAdHa388vbz84NMJoNMJntvN2BSUhImTZqEihUrwtzcHDY2NmjYsGGWL52ff/4Zbm5ukMvlqFatGjZs2JClKyY/79/Zs2fRr18/VKhQARYWFqhQoQK8vLxw9+7dLL9XJpPh4MGDGDp0KMqUKYNixYohJSUFALBt2zY0bdoUlpaWKF68ODp06ICIiIhcz9nX1xdOTk4AgKlTp0ImkynP493uMA8PD/zxxx+4e/eu8jV93xe/QqHAwoULUbVqVeW/rYEDByImJka5T4UKFTBr1iwAgJ2dXZ66U7N7D7KTmpqKefPmKX9/mTJlMGTIEDx58kRlv5SUFHz55Zewt7dHsWLF0LJlS5w7dy7L34u63oOzZ8+iW7dusLGxgbm5OerVq4fffvst13POTea/dxMTtjPoOr5DpBa9evVC37594e3tjUuXLmH69OkAgHXr1gHIaOL/+OOPcfjwYUyfPh0tWrTAxYsXMWfOHISFhSEsLCzHJvetW7di1KhRGDt2LL777jsYGRnh5s2buHr1KoCMD+1u3bph1apVmDJlCoyNjZXPXbZsGRwdHdGjR48ca3/x4gWaN2+O6OhoTJ06Fe7u7nj58iWOHz+Ohw8fomrVqvl+PV6/fo1OnTrBx8cH06ZNw6lTpzBv3jzcvXsXe/fuLXQtgwcPxi+//II7d+7ke9xFbGwsGjduDCMjI3z11VeoXLkywsLCMG/ePERHR2P9+vXKfaOjo+Hj44Py5csDAE6fPo2xY8fin3/+wVdffaXcp3PnzmjRogXWrVuHkiVL4p9//kFwcDBSU1Ph4OCA4OBgdOzYEd7e3hg2bBiA97dqTJw4ERs3bsS8efNQr149JCYm4vLly3j27Jlyn59//hlDhgxB9+7dsWjRIsTHx8PX1xcpKSkwMirY/+NFR0fDzc0N/fr1g42NDR4+fIiVK1eiUaNGuHr1KkqXLq2y/9ChQ9G5c2ds3LgRiYmJMDU1xfz58zFr1iwMGTIEs2bNQmpqKr799lu0aNECZ86cybG1c9iwYahTpw569uyJsWPHon///jn+XaxYsQIjRozArVu3sGvXrjyd28iRI7FmzRqMGTMGXbp0QXR0NGbPno1jx47h77//RunSpbFr1y4sX74cAQEBCA4OhrW1tTKYZSev74FCoUD37t1x4sQJTJkyBc2aNcPdu3cxZ84ceHh44OzZs7CwsAAADBkyBNu2bcOUKVPQpk0bXL16FT169EBCQkK2NRTmPTh69Cg6duwId3d3rFq1CtbW1ti6dSv69u2LpKSkPI/ZS0tLQ0pKCs6fP4/Zs2ejefPm+PDDD/P0XJKQICqEOXPmCABi4cKFKttHjRolzM3NhUKhEEIIERwcnO1+27ZtEwDEmjVrlNtatWolWrVqpbw/ZswYUbJkyVzrOHr0qAAgdu3apdz2zz//CBMTE+Hn55frc+fOnSsAiJCQkPce/+jRoyrb79y5IwCI9evXK7cNGjRIABBLlixR2febb74RAMTJkyeV25ydncWgQYPyVYsQQgwdOlQYGxuL6OjoXPcTQggAYs6cOcr7Pj4+onjx4uLu3bsq+3333XcCgLhy5Uq2x0lPTxevX78Wc+fOFaVKlVK+t9u3bxcAxPnz53Os4cmTJ1nqeJ+aNWuKjz/+OMfH09PThaOjo6hfv76yFiGEiI6OFqampsLZ2Vm5LT/v37vS0tLEy5cvhaWlpcp7un79egFADBw4UGX/e/fuCRMTEzF27FiV7S9evBD29vaiT58+uZz1m5q+/fZble2Zv+/OnTvKbZ07d1Y5z9xcu3ZNABCjRo1S2f7XX38JAGLGjBnKbZl/10+ePMn1mPl5D7Zs2SIAiB07dqgcIzw8XAAQK1asEEIIceXKFQFATJ06VWW/zOe//feijvegatWqol69euL169cq+3bp0kU4ODiI9PT0XF8DIYQICwsTAJS3Tp06iYSEhPc+j6TH7jBSi27duqncr127Nl69eoXHjx8DyOguAZDl/6o++eQTWFpa4vDhwzkeu3HjxoiLi4OXlxcCAwOznXXh4eGBOnXqYPny5cptq1atgkwmw4gRI3Ktff/+/ahSpQratm2b63759emnn6rc79+/P4CM//MsbC0BAQFIS0uDs7Nzvuvat28fWrduDUdHR6SlpSlvnp6eAIDQ0FDlvkeOHEHbtm1hbW0NY2NjmJqa4quvvsKzZ8+U723dunVhZmaGESNG4JdffsHt27fzVc/bNaSlpSm72ho3boz9+/dj2rRpOHbsGJKTk1WeFxkZiQcPHqB///4q3UDOzs5o1qxZvl+XTC9fvsTUqVPh4uICExMTmJiYoHjx4khMTMS1a9ey7N+rVy+V+wcOHEBaWhoGDhyocl7m5uZo1aqVZDPkMv/dvfs32LhxY1SrVi3Xv8Gc5Oc92LdvH0qWLImuXbuqvC5169aFvb298nXJ/PfXp08flef37t07x+6lgr4HN2/exPXr15V/q2/v26lTJzx8+BCRkZHvfR1q1aqF8PBwhIaGYsmSJYiIiEC7du2ydH+T7mEIIrUoVaqUyv3MJvzML65nz57BxMQkSxeITCaDvb29ShfHuwYMGIB169bh7t276NWrF2xtbeHu7o6QkBCV/caNG4fDhw8jMjISr1+/xtq1a9G7d2/Y29vnWvuTJ09ybe4vCBMTkyyvSWYduZ2rJmp516NHj7B3716Ympqq3GrUqAEAypB55swZtG/fHgCwdu1a/PnnnwgPD8fMmTMBvHlvK1eujEOHDsHW1hajR49G5cqVUblyZSxZsuS9tURHR2epI/NLcOnSpZg6dSp2796N1q1bw8bGBh9//DGioqIAvHkds3t/3/ee56Z///5YtmwZhg0bhgMHDuDMmTMIDw9HmTJlsgQxACqztYCM1xcAGjVqlOXctm3bJtnU6czX6916AcDR0THXf5fvO2Ze3oNHjx4hLi4OZmZmWV6X2NhY5euSeUw7OzuV52f3N5WpoO9B5n6TJk3Kst+oUaMAIE/vl6WlJRo2bIiWLVti3Lhx2LVrF/766y+sXr36vc8laXFMEGlFqVKlkJaWhidPnqgEISEEYmNj0ahRo1yfP2TIEAwZMgSJiYk4fvw45syZgy5duuDGjRvK1pD+/ftj6tSpWL58OZo0aYLY2FiMHj36vbWVKVNGZWBodszNzQFAOeAyU04fkGlpaXj27JnKh3ZsbCyArIExv7UUVunSpVG7dm1888032T7u6OgIIGMslqmpKfbt26c8fwDYvXt3lue0aNECLVq0QHp6Os6ePYsff/wR48ePh52dHfr165djLY6OjggPD1fZ5ubmBiDji8XPzw9+fn549OiRslWoa9euuH79uvJ1zHxd3/butry+f/Hx8di3bx/mzJmDadOmKbenpKTg33//zfYc3h2MnDlmaPv27QVqqdOUzNfr4cOHWYL2gwcPsox1ys8x8/IelC5dGqVKlUJwcHC2xypRooTKMR89eoSyZcsqH8/8m8pOQd+DzP2mT5+Onj17ZrtP5r/H/GjYsCGMjIxw48aNfD+XtIstQaQVmVN9f/31V5XtO3bsQGJiYpapwDmxtLSEp6cnZs6cidTUVFy5ckX5mLm5ubJLZvHixahbt26eBiZ6enrixo0byi677GQOPr548aLK9j179uT4nE2bNqnc37x5M4Dc18nJSy2F1aVLF1y+fBmVK1dGw4YNs9wyQ5BMJoOJiYnKQPPk5GRs3Lgxx2MbGxvD3d1d2S35999/A8jaMpjJzMwsy+/P/DJ8m52dHQYPHgwvLy9ERkYiKSkJbm5ucHBwwJYtW1Rmq929exenTp1SeX5e3z+ZTAYhRJbByD/99BPS09NzPO+3dejQASYmJrh161a2r2/Dhg3zdJy8kMvl2bZOZSdzqva7f4Ph4eG4du1anv8G35af96BLly549uwZ0tPTs31NMsNGy5YtAWTM7Hrb9u3bs8xezEle3wM3Nze4urriwoULOe6X3b/H9wkNDYVCoYCLi0u+n0vaxZYg0op27dqhQ4cOmDp1KhISEvDhhx8qZ4fVq1cPAwYMyPG5w4cPh4WFBT788EM4ODggNjYW/v7+sLa2ztKCNGrUKCxcuBDnzp3DTz/9lKfaxo8fj23btqF79+6YNm0aGjdujOTkZISGhqJLly5o3bo17O3t0bZtW/j7++ODDz6As7MzDh8+jJ07d2Z7TDMzMyxatAgvX75Eo0aNlLPDPD090bx580LVAgDe3t745ZdfcOvWrXy3NsydOxchISFo1qwZxo0bBzc3N7x69QrR0dEICgrCqlWr4OTkhM6dO2Px4sXo378/RowYgWfPnuG7777LEhBWrVqFI0eOoHPnzihfvjxevXqlnBWYObapRIkScHZ2RmBgID766CPY2NigdOnSuc5sc3d3R5cuXVC7dm188MEHuHbtGjZu3IimTZuiWLFiAICvv/4aw4YNQ48ePTB8+HDExcXB19c3S1dMXt8/KysrtGzZEt9++62yvtDQUAQEBOR51eQKFSpg7ty5mDlzJm7fvo2OHTvigw8+wKNHj3DmzBllC5c61KpVCzt37sTKlSvRoEEDGBkZ5Riy3NzcMGLECPz4448wMjKCp6encnZYuXLlMGHChHz/fiMjozy/B/369cOmTZvQqVMnfPHFF2jcuDFMTU0RExODo0ePonv37ujRowdq1KgBLy8vLFq0CMbGxmjTpg2uXLmCRYsWwdraOk+z/vLzHqxevRqenp7o0KEDBg8ejLJly+Lff//FtWvX8Pfff+e6vMa+ffuwdu1adOvWDc7Oznj9+jXOnj2LH374AS4uLsqZkKTDJB2WTXovp1kk2c1kSU5OFlOnThXOzs7C1NRUODg4iJEjR4rnz5+rPPfd2WG//PKLaN26tbCzsxNmZmbC0dFR9OnTR1y8eDHbmjw8PISNjY1ISkrK83k8f/5cfPHFF6J8+fLC1NRU2Nrais6dO4vr168r93n48KHo3bu3sLGxEdbW1uKzzz4TZ8+ezXZ2mKWlpbh48aLw8PAQFhYWwsbGRowcOVK8fPlS5fe+Ozssr7VkzkB7+/XNCbKZlfXkyRMxbtw4UbFiRWFqaipsbGxEgwYNxMyZM1VqXLdunXBzcxNyuVxUqlRJ+Pv7i4CAAJXfHRYWJnr06CGcnZ2FXC4XpUqVEq1atRJ79uxR+Z2HDh0S9erVE3K5PMssn+xMmzZNNGzYUHzwwQfK3z9hwgTx9OlTlf1++ukn4erqKszMzESVKlXEunXrxKBBg7LMmsrr+xcTEyN69eolPvjgA1GiRAnRsWNHcfny5SzvVea/8fDw8Gzr3717t2jdurWwsrIScrlcODs7i969e4tDhw7let75mR3277//it69e4uSJUsKmUwm3veRnp6eLhYsWCCqVKkiTE1NRenSpcVnn30m7t+/r7JfXmeHZcrre/D69Wvx3XffiTp16ghzc3NRvHhxUbVqVeHj4yOioqKU+7169UpMnDhR2NraCnNzc9GkSRMRFhYmrK2txYQJE7K8JoV9Dy5cuCD69OkjbG1thampqbC3txdt2rQRq1atyvW8r127Jnr37i2cnZ2Fubm5MDc3F1WrVhWTJ08Wz549y9NrR9KSCfHOqmdEeuzx48dwdnbG2LFjsXDhQqnLIYkMHjwYx44dU7nOFum3U6dO4cMPP8SmTZuUMy2JCovdYVQkxMTE4Pbt2/j2229hZGSEL774QuqSiKiAQkJCEBYWhgYNGsDCwgIXLlzA//73P7i6uuY4gJmoIBiCqEj46aefMHfuXFSoUAGbNm1SmVVCRPrFysoKBw8exA8//IAXL16gdOnS8PT0hL+/v8pMRaLCYncYERERGSSdmSK/cuVK1K5dG1ZWVrCyskLTpk2xf/9+5eNCCPj6+sLR0REWFhbw8PBQmR5NRERElB86E4KcnJzwv//9D2fPnsXZs2fRpk0bdO/eXRl0Fi5ciMWLF2PZsmUIDw+Hvb092rVrhxcvXkhcOREREekjne4Os7GxwbfffouhQ4fC0dER48ePx9SpUwFkrOBqZ2eHBQsWwMfHR+JKiYiISN/o5MDo9PR0/P7770hMTETTpk1x584dxMbGKq9jBGSslNqqVSucOnUq1xCUkpKislS+QqHAv//+i1KlSmVZap2IiIh0kxACL168gKOjY54WzcwLnQpBly5dQtOmTfHq1SsUL14cu3btQvXq1ZXLr797QT07OzvcvXs312P6+/urbXVWIiIiktb9+/fVdqFpnQpBbm5uOH/+POLi4rBjxw4MGjRIeUVpIOtF8oQQ723NmT59OiZOnKi8Hx8fj/Lly+P+/fuwsrJS7wkQERGRRiQkJKBcuXIFup5bTnQqBJmZmSkvONewYUOEh4djyZIlynFAsbGxcHBwUO7/+PHjLK1D75LL5VmudQRAOQuNiIiI9Ic6h7LozOyw7AghkJKSgooVK8Le3h4hISHKx1JTUxEaGopmzZpJWCERERHpK51pCZoxYwY8PT1Rrlw5vHjxAlu3bsWxY8cQHBwMmUyG8ePHY/78+XB1dYWrqyvmz5+PYsWK8RoyREREVCA6E4IePXqEAQMG4OHDh7C2tkbt2rURHByMdu3aAQCmTJmC5ORkjBo1Cs+fP4e7uzsOHjyo1r5BIiIiMhw6vU6QJiQkJMDa2hrx8fEcE0RERKQnNPH9rdNjgoiIiIg0hSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDJLOhCB/f380atQIJUqUgK2tLT7++GNERkaq7DN48GDIZDKVW5MmTSSqmIiIiPSZzoSg0NBQjB49GqdPn0ZISAjS0tLQvn17JCYmquzXsWNHPHz4UHkLCgqSqGIiIiLSZyZSF5ApODhY5f769etha2uLc+fOoWXLlsrtcrkc9vb22i6PiIiIihidaQl6V3x8PADAxsZGZfuxY8dga2uLKlWqYPjw4Xj8+HGux0lJSUFCQoLKjYiIiPIvLS1N6hLUSidDkBACEydORPPmzVGzZk3ldk9PT2zatAlHjhzBokWLEB4ejjZt2iAlJSXHY/n7+8Pa2lp5K1eunDZOgYiIqEh58eIF6tSpgyVLlkChUEhdjlrIhBBC6iLeNXr0aPzxxx84efIknJycctzv4cOHcHZ2xtatW9GzZ89s90lJSVEJSQkJCShXrhzi4+NhZWWl9tqJiIiKoqFDh2L9+vUoX748Ll26pPXv0ISEBFhbW6v1+1tnxgRlGjt2LPbs2YPjx4/nGoAAwMHBAc7OzoiKispxH7lcDrlcru4yiYiIio6YGCAqCnB1BbL57t2xYwfWr18PmUyGjRs3FplGBJ3pDhNCYMyYMdi5cyeOHDmCihUrvvc5z549w/379+Hg4KCFComIiIqggADA2Rlo0ybjZ0CAysP//PMPRowYAQCYNm2aymQlfacz3WGjRo3C5s2bERgYCDc3N+V2a2trWFhY4OXLl/D19UWvXr3g4OCA6OhozJgxA/fu3cO1a9dQokSJPP0eTTSnERER6aWYmIzg8/YYH2NjIDoacHKCQqFAhw4dcOjQIdSvXx9hYWEwMzOTpFRNfH/rTEvQypUrER8fDw8PDzg4OChv27ZtAwAYGxvj0qVL6N69O6pUqYJBgwahSpUqCAsLy3MAIiIiordERakGIABITwdu3gQALF26FIcOHYKFhQU2bdokWQDSFJ0ZE/S+BikLCwscOHBAS9UQEREZAFdXwMgoa0uQiwsuXLiAqVOnAgAWLVqEqlWrSlSk5uhMSxARERFpmZMTsGZNRvABMn6uXo0kGxv069cPqamp6NKlCz7//POMx2NigKNHM34WAQxBREREhszbO2MM0NGjGT+9vTFhwgRcv34dDg4Oyllh7xtArY90ZmC0tnBgNBERUc527tyJXr16QSaTISQkBB999NF7B1BrQ5EeGE1ERETSun//PoYNGwYAmDJlSkYAAt47gFpfMQQRERER0tPT8dlnn+H58+do1KgRvv766zcPZg6gftt/A6j1GUMQERERYf78+Th+/DiKFy+OLVu2wNTU9M2DOQyg1lZXmKbozBR5IiIiksapU6fg5+cHAFixYgUqV66cdSdvb6BDh4wuMBcXvQ9AAEMQERGRQYuLi0P//v2Rnp6OTz/9FAMGDMh5ZyenIhF+MrE7jIiIyEAJIfD555/j7t27qFSpElasWCF1SVrFEERERGSgfv75Z2zbtg0mJibYvHmzwS0dwxBERERkgK5du4YxY8YAAObOnQt3d3eJK9I+hiAiIiIDk5SUhD59+iApKQkfffQRpkyZInVJkmAIIiIiMjDjxo3D5cuXYWdnh02bNsE4c+q7gWEIIiIiMiCbNm1CQEAAZDIZNm3aBDs7O6lLkgxDEBERkYGIjIyEj48PAGD27NlvLothoBiCiIiIDEBycjL69OmDxMREeHh44KuvvpK6JMkxBBERERmACRMm4OLFi7C1tcXmzZsNdhzQ2xiCiIiIiritW7di9erVkMlk+PXXX+Hg4CB1STqBIYiIiKgIi4qKwvDhwwEAM2bMQLt27SSuSHcwBBERERVRr169Qp8+ffDy5Uu0aNECvr6+UpekUxiCiIiIiqgvv/wS58+fR+nSpbFlyxaYmPC66W9jCCIiIiqCNm3apLwg6sZJk1BWCIkr0j0MQUREREXM5cuXMWLECADAbAAdp00DnJ2BgABpC9MxDEFERERFSEJCAnr16oWkpCS0AzAn8wGFAvDxAWJiJKxOtzAEERERFRFCCHh7e+PGjRsoZ2uLzQBUVgNKTwdu3pSoOt3DEERERFRE/PDDD9i+fTtMTU3x+08/obTRO1/zxsaAi4s0xekghiAiIqIi4MSJE5g8eTIA4Pvvv4d7167AmjUZwQfI+Ll6NeDkJGGVukUmhGENF09ISIC1tTXi4+NhZWUldTlERESFFhsbi/r16+Phw4fo378/fv31V8hksowHY2IyusBcXPQ6AGni+5sLBhAREemxtLQ0eHl54eHDh6hRowbWrFnzJgABGcFHj8OPJrE7jIiISI/NmjULx44dQ/HixbFjxw5YWlpKXZLeYAgiIiLSU4GBgViwYAEAYP369XBzc5O4Iv3CEERERKSHrl+/jgEDBgAAJkyYgN69e0tckf5hCCIiItIzCQkJ+Pjjj/HixQu0bNlS2RpE+cMQREREpEcUCgUGDBiAyMhIODk54ffff4epqanUZeklhiAiIiI98vXXX2PPnj2Qy+XYtWsXbG1tpS5JbzEEERER6Yk9e/bA19cXALBq1So0bNhQ2oL0HEMQERGRHoiMjFQOhB4zZgwGDx4sbUFFAEMQERGRjsscCJ2QkIAWLVpg8eLFUpdUJDAEERER6TCFQoGBAwfi+vXrHAitZgxBREREOmzevHkIDAyEXC7Hzp07YWdnJ3VJRQZDEBERkY7au3cv5syZAwBYuXIlGjVqJHFFRYvOhCB/f380atQIJUqUgK2tLT7++GNERkaq7COEgK+vLxwdHWFhYQEPDw9cuXJFooqJiIg05/Lly+jfvz8AYPTo0RgyZIjEFRU9OhOCQkNDMXr0aJw+fRohISFIS0tD+/btkZiYqNxn4cKFWLx4MZYtW4bw8HDY29ujXbt2ePHihYSVExER5VFMDHD0aMbPXDx9+hTdunXDy5cv4eHhge+//15LBRoWmRBCSF1Edp48eQJbW1uEhoaiZcuWEELA0dER48ePx9SpUwEAKSkpsLOzw4IFC+Dj45On4yYkJMDa2hrx8fGwsrLS5CkQERG9ERAAjBgBKBSAkRGwZg3g7Z1lt9TUVLRv1Qqhp0+jUvnyOPP33yhVqlTW48XEAFFRgKsr4OSkhROQlia+v3WmJehd8fHxAAAbGxsAwJ07dxAbG4v27dsr95HL5WjVqhVOnTolSY1ERER5EhPzJgABGT99fLK0CAkhMKZdO4SePo0SAPbcv49Su3dnPV5AAODsDLRpk/EzIEDjp1AU6WQIEkJg4sSJaN68OWrWrAkAiI2NBYAso+Lt7OyUj2UnJSUFCQkJKjciIiKtiop6E4AypacDN2+qbFo2bx7WHj8OGYAtAGoIkTUs5TFQ0fvpZAgaM2YMLl68iC1btmR5TCaTqdwXQmTZ9jZ/f39YW1srb+XKlVN7vURERLlydc3oAnubsTHg4qK8GxISgvH/XRJjIYDOmQ+8G5byGKjo/XQuBI0dOxZ79uzB0aNH4fRWH6e9vT0AZGn1efz4ca5rJkyfPh3x8fHK2/379zVTOBERUU6cnDLGABkbZ9w3NgZWr1aO5blx4wb69OkDhUKBQQC+fPu574SlvAQqyhudCUFCCIwZMwY7d+7EkSNHULFiRZXHK1asCHt7e4SEhCi3paamIjQ0FM2aNcvxuHK5HFZWVio3IiIirfP2BqKjM2aHRUcrB0U/f/4cXbt2RVxcHJo2bYrVK1dClkNYAvDeQEV5ZyJ1AZlGjx6NzZs3IzAwECVKlFC2+FhbW8PCwgIymQzjx4/H/Pnz4erqCldXV8yfPx/FihVTrqNARESk05ycVMJKWloa+vXrhxs3bqBcuXLYtWsX5HZ2QJcuGd1bLi7Zhxtvb6BDh9z3offSmSnyOY3rWb9+vfJKuUII+Pn5YfXq1Xj+/Dnc3d2xfPly5eDpvOAUeSIi0hVjx47FsmXLUKxYMZw8eRL16tWTuiSdpYnvb50JQdrCEERERLpg6dKl+OKLLwAA27dvR69evSSuSLcZ1DpBRERERdXevXsxYcIEAMCCBQsYgCTCEERERKRFERER8PLygkKhwLBhwzB58mSpSzJYDEFERERaEhMTgy5duiAxMRFt27bFihUrcl3rjjSLIYiIiEgLXrx4ga5du+LBgweoXr06tm/fDlNTU6nLMmgMQURERBqWlpYGLy8vnD9/Hra2tvjjjz9gbW0tdVkGjyGIiIhIwyZOnIg//vgD5ubm2LNnDypUqCB1SQSGICIiIvWIiclYDfqdC5kuXboUP/74IwBg48aNcHd3l6I6ygZDEBERUWEFBADOzkCbNhk/AwIAqE6F/9///ofevXtLWSW9Q2cum0FERKSXYmKAESPeXNldoQB8fHC6TBn07ddPORV+ypQp0tZJWbAliIiIqDCiot4EoP/cSE9H14EDkZycDE9PT06F11EMQURERIXh6goYvfk6fQSgI4Cn8fFo0KABfvvtN06F11EMQURERIXh5ASsWQMYG+MlgM4A7gCoVKkS/vjjDxQvXlziAiknDEFERESF5e2N11FR+KRxY5wDULp0aQQHB8POzk7qyigXDEFERESFJISAz9dfI/jMGVhYWGDfvn1wdXWVuix6D4YgIiKiQvL19cX69ethZGSEbdu2cS0gPcEQREREVAhr1qzB3LlzAQArV65E165dJa6I8oohiIiIqID27NmDkSNHAgBmz56NESNGSFwR5QdDEBERUQGEhoaiT58+UCgUGDJkCPz8/KQuifKJIYiIiCifIiIi0K1bN6SkpKBbt25Ys2YNF0PUQwxBRERE+RAVFYWOHTsiISEBLVu2xNatW2FiwqtQ6SOGICIiojx68OAB2rdvj8ePH6Nu3brYs2cPLCwspC6LCoghiIiIKA/+/fdfdOjQAdHR0XBxcUFwcDCsra2lLosKgSGIiIjoPRITE9GlSxdcvnwZDg4OCAkJ4WrQRQBDEBERUS5SU1PRu3dvhIWFoWTJkjh48CAqVKggdVmkBgxBREREOVAoFBg8eDCCg4NRrFgxBAUFoWbNmlKXRWrCEERERJQNIQRGjRqFLVu2wMTEBDt27EDTpk2lLovUiCGIiIjoHUIIfPnll1i9ejVkMhk2btyIjh07Sl0WqRlDEBER0TvmzJmD77//HgDw08KF6GdnB8TESFwVqRtDEBERFT0xMcDRowUKLgsWLMDXX38NAPixf38MnToVaNMGcHYGAgLUXSlJiCGIiIiKloCAjMBSgOCybNkyTJs2DQDwv+nTMWbrVkChyHhQoQB8fNgiVIQwBBERUdEREwOMGJH34PJWi9G6deswduxYAMCsWbMwtV27N8fJlJ4O3LypwRMgbeLFToiIqOiIiso5uDg5qW4PCFAGpq0yGYb9t3nChAmYO3cu8M8/gJGR6vGMjQEXF42eAmkPW4KIiKjocHXNCC5vyy64vNViFAjgMyEghMCITz/FokWLMq4I7+QErFmT8fzM46xenTVMkd5iCCIioqIjr8Hlvxaj/QD6AEgH8BmAlUOHZgSgTN7eQHR0RpdZdHTGfSoy2B1GRERFi7c30KFDRheYi0v2LTeurgiWydBDCKQC6AlgvZERjKpUybqvkxNbf4oohiAiIip63hNcDl69io+NjZGSloYeALYaGcFkzRqGHQPDEERERAYlJCQE3bt3R0paGrq3b4+tkybBtFo1BiADxBBEREQG4/Dhw+jWrRtevXqFrl274rft22FmZiZ1WSQRDowmIiKDcOTIEXTt2hWvXr1Cly5d8PvvvzMAGTiGICIiKvKOHTuGLl26IDk5GZ06dcL27dshl8ulLoskxhBERERFWmhoKDp37ozk5GR4enpix44dDEAEgCGIiIiKsKNHj6JTp05ISkpCx44dsXPnTpibm0tdFukInQpBx48fR9euXeHo6AiZTIbdu3erPD548GDIZDKVW5MmTaQploiIdNqBAweUAahDhw7YtWsXAxCp0KkQlJiYiDp16mDZsmU57tOxY0c8fPhQeQsKCtJihUREpA/27dunnAXWpUsX7N69mwGIstCpKfKenp7w9PTMdR+5XA57e3stVURERPpm586d6Nu3L9LS0tCzZ09s2bKFs8AoWzrVEpQXx44dg62tLapUqYLhw4fj8ePHUpdEREQ6YuvWrejTpw/S0tLg5eWFbdu2MQBRjnSqJeh9PD098cknn8DZ2Rl37tzB7Nmz0aZNG5w7dy7Hkf4pKSlISUlR3k9ISNBWuUREpEW//PILhg4dCoVCgUGDBiEgIADGmRdSJcqGXoWgvn37Kv+7Zs2aaNiwIZydnfHHH3+gZ8+e2T7H398ffn5+2iqRiIgksHbtWvj4+EAIgeHDh2PVqlUwMtK7zg7SMr3+F+Lg4ABnZ2dERUXluM/06dMRHx+vvN2/f1+LFRIRkaYtW7YMI0aMgBACY8eOxerVqxmAKE/0qiXoXc+ePcP9+/fh4OCQ4z5yuZyLYhERFUFCCMyfPx+zZs0CAEyaNAkLFy6ETCaTuDLSFzoVgl6+fImbN28q79+5cwfnz5+HjY0NbGxs4Ovri169esHBwQHR0dGYMWMGSpcujR49ekhYNRERaZsQApMnT8aiRYsAALNnz4afnx8DEOWLToWgs2fPonXr1sr7EydOBAAMGjQIK1euxKVLl7BhwwbExcXBwcEBrVu3xrZt21CiRAmpSiYiIi1LT0+Hj48PAgICAACLFy/GhAkTJK6K9JFMCCGkLkKbEhISYG1tjfj4eFhZWUldDhER5UNKSgo+69UL2//4A0ZGRvjpp58wZMgQqcsiLdDE97dOtQQRERHlJDExET3d3XHwyhWYAdgiBHoqFFKXRXqMw+eJiEjnxcXFob2HBw5euYJiAPYB6CkE4OMDxMRIXR7pKYYgIiLSaY8ePYKHhwdOnT2LkgAOAWiX+WB6OvDWhBqi/GAIIiIinXX79m00b94cFy5cgL2tLY7LZGj69g7GxoCLi1TlkZ5jCCIiIp30999/o2nTprh58yYqVKiAE3/+iVpr12YEHyDj5+rVgJOTtIWS3uLAaCIi0jkhISHo2bMnXr58ibp16yIoKChjYVwXF6BDh4wuMBcXBiAqFIYgIiLSDTExQFQUNl2+jMETJyItLQ0fffQRdu7cqTol2smJ4YfUgiGIiIikFxAAjBiBRQoFJv23ycvLCz///DPMzMwkLY2KLo4JIiIizYuJAY4ezX46e0wMFMOHY+JbAWiiTIZf//c/BiDSKIYgIiLSrIAAwNkZaNMm4+d/l7vIlHLlCj4VAt//d/87AIuEgNHt21ovlQwLQxAREWlOTAwwYgSQubKzQqGywGF8fDw6z5uHrQBMAWwC8CXAqe+kFRwTREREmhMV9SYAZfpvgcO76eno3Lkzrly5guJyOXa9fo22CgWnvpPWMAQREZHmuLoCRkaqQcjYGOEvX6KruzsePXoER0dH7Nu3D/XKlOHUd9IqdocREZHmODkBa9aoLHC4y8cHrfr0waNHj1CnTh389ddfqFevXsa+Hh4MQKQ1DEFERFRwuc36yuTtDURHQxw5gsUzZqDXypVITk5Gp06dcOLECTgx9JBEGIKIiKhg3jPr621p9vYY/fvv+PLrryGEwKhRoxAYGIgSJUposWAiVYUKQY8fP0ZsbKy6aiEiIn3xnllfb0tISEDXrl2xcuVKyGQyfP/991i2bBlMTDgslaRVoBB08eJF1KhRAw4ODihbtizKli2LWbNmITExUd31ERGRLspl1tfb7t+/jxYtWiA4OBgWFhbYuXMnxo8fD5lMpsViibJXoBDk7e0NOzs7nDx5EhEREZg3bx7279+Phg0b4vnz5+qukYiIdE3mrK+3vbO2T1hYGBo1aoSLFy/C3t4ex48fx8cff6zdOolyIRNCiPw+ydLSEufOnUPVqlWV24QQ+OSTT2Bubo5ff/1VrUWqU0JCAqytrREfH696QT4iIlL13wVN4eqa/YytgICMLrD09Ddr+3h7AwB++eUXjBgxAqmpqahduzb27NkDZ2dnLZ8AFSWa+P4uUEtQdi0+MpkM8+fPR2BgoFoKIyIiCeVl0PN/s75w9GjGT29vpKenY9KkSRg8eDBSU1PRo0cP/PnnnwxApJPy3BLUuXNn1KlTB3Xr1kV6ejqWLFmCwMBA2NnZKfcJDw9Hr169cO/ePY0VXFhsCSIieo+YmIzg884Ch4iOznUNn/j4eHh5eWH//v0AgNmzZ8PX1xdG73abERWAJr6/8zw0v1atWvj777+xfv16PHr0CABQqVIl9OnTRxmM1q9fj++///49RyIiIp2W26DnHEJQVFQUunXrhuvXr8PCwgLr169H3759tVAsUcEVaEzQo0ePEBERgfPnzytvN2/ehLGxMdzc3HDx4kVN1KoWbAkiInqPfLYEHTp0CH369MHz58/h5OSE3bt3o0GDBtqrlwyCpC1Bb7Ozs0PHjh3RsWNH5bbk5GRcuHABFy5cUEthREQkkcxLXbw76PmdACSEwI8//oiJEyciPT0dTZo0wa5du2Bvby9R4UT5U6CWIH3GliAiojyKicnxgqZJSUn4/PPPsXHjRgDAwIEDsXr1apibm0tRKRkAnWkJIiIiA+DklG331507d9CzZ0+cP38exsbGWLBgASZOnMgFEEnvMAQREVGeHThwAF5eXnj+/DnKlCmDbdu2oXXr1lKXRVQgnLdIRETvpVAoMH/+fHh6euL58+do1KgRzp07xwBEeo0tQURElKuEhAQMGjQIu3fvBgAMHz4cS5cu5fgf0nsMQURElKOrV6+iZ8+eiIyMhJmZGZYvX45hw4ZJXRaRWjAEERFRtn777Td4e3vj5cuXcHJywo4dO9C4cWOpyyJSG44JIiIiFa9evcKoUaPQt29fvHz5Eh4eHjh37hwDEBU5DEFERKR069YtfPjhh1i5ciUAYMaMGQgJCYGtra3ElRGpH7vDiIgIALBjxw4MHToUCQkJKFWqFH799VeVKwMQFTVsCSIiMnCpqan44osv0Lt3byQkJKBZs2aIiIhgAKIijyGIiMiARUdHo3nz5li6dCkAYPLkyTh27BjKlSsncWVEmsfuMCIiA7V7924MGTIEcXFx+OCDD7BhwwZ06dJF6rKItIYtQUREBiY5ORmjRo1Cjx49EBcXB3d3d0RERDAAkcFhCCIiMiCXLl1Co0aNlLO/vvzySxw/fhzOzs4SV0akfewOIyIyAEIILF++HJMmTUJKSgrs7OywYcMGtG/fXurSiCTDEEREVMQ9ffoUQ4cOxd69ewEAnTp1wvr167n2Dxk8neoOO378OLp27QpHR0fIZDLlxfoyCSHg6+sLR0dHWFhYwMPDA1euXJGmWCIiPXDo0CHUrl0be/fuhZmZGZYsWYJ9+/YxABFBx0JQYmIi6tSpg2XLlmX7+MKFC7F48WIsW7YM4eHhsLe3R7t27fDixQstV0pEpKNiYoCjR5Fy6xamTp2K9u3b4+HDh6hWrRrOnDmDcePGQSaTSV0lkU7Qqe4wT09PeHp6ZvuYEAI//PADZs6ciZ49ewIAfvnlF9jZ2WHz5s3w8fHRZqlERLonIAAYMQIXFQoMAHDxv80+Pj5YvHgxihUrJmV1RDpHp1qCcnPnzh3ExsaqDOKTy+Vo1aoVTp06lePzUlJSkJCQoHIjIipyYmKQPnw4FioUaISMAFQawM41a7Bq1SoGIKJs6E0Iio2NBQDY2dmpbLezs1M+lh1/f39YW1srb1wFlYiKolvHjqGVEJgKIBVAVwCXAfRwdZW2MCIdpjchKNO7fdlCiFz7t6dPn474+Hjl7f79+5oukYhIa4QQWLNmDer4+OBPACUArAMQCMDO2BhwcZG2QCIdplNjgnJjb28PIKNFyMHBQbn98ePHWVqH3iaXyyGXyzVeHxGRtj18+BDDhg1DUFAQAKBVlSr4+eZNVFAoAGNjYPVqwMlJ4iqJdJfetARVrFgR9vb2CAkJUW5LTU1FaGgomjVrJmFlRETaJYTA1q1bUbNmTQQFBUEul2PRokU4cu0aKty9Cxw9CkRHA97eUpdKpNN0qiXo5cuXuHnzpvL+nTt3cP78edjY2KB8+fIYP3485s+fD1dXV7i6umL+/PkoVqwY+vfvL2HVRETa8/DhQ4wcORKBgYEAgHr16mHDhg2oWbNmxg5OTmz9IcojnQpBZ8+eRevWrZX3J06cCAAYNGgQfv75Z0yZMkV54b/nz5/D3d0dBw8eRIkSJaQqmYhIK4QQ2LBhA8aPH4+4uDiYmJhg1qxZmD59OszMzPJ3sJgYICoKcHVlYCKDJhNCCKmL0KaEhARYW1sjPj4eVlZWUpdDRPRe9+/fx4gRIxAcHAwAaNCgAdatW4fatWvn/2D/rSUEhQIwMgLWrGG3GekFTXx/682YICIiQ5M586tGjRoIDg6GXC6Hv78/Tp8+XbAAFBPzJgABGT99fDK2ExkgneoOIyKiDLdv38bw4cNx5MgRAECT+vWxbuxYVGvbFjAp4Ed3VNSbAJQpPR24eZPdYmSQ2BJERKRDXr9+jYULF6JmzZo4cuQILCwssLhPH5yMiEC1IUMAZ+eMLq2CcHXN6AJ7G9cSIgPGEEREpCP++usvNGzYEFOnTkVycjJatWqFiwcOYML27TDOHL5ZmC4sJ6eMMUDGxhn3uZYQGTiGICIiicXHx2PMmDFo2rQpLl68CBsbG6xbtw5Hjx6FS1pazl1YBeHtnbGGENcSIuKYICIiqQghsHPnTowbNw4PHjwAAAwYMACLFi1CmTJlMnbK7MJ6OwgVtguLawkRAWBLEBGRJO7du4du3bqhd+/eePDgAVxcXHDo0CFs2LDhTQAC2IVFpEFsCSIi0pRsFiVMTU3F999/j6+//hqJiYkwNTXFtGnTMGPGDJibm2d/HG9voEOHjC4wFxcGICI1YQgiItKEbBYlPFiuHMaOHYsbN24AAJo3b47Vq1ejupUVEBaW+wrO7MIiUjt2hxERqds7ixLeVSjQa9gwdOjQATdu3ICdnR1++eUXHD9+HNXDwjKmvbdpU7jp70SUbwxBRETq9t+ihK8AzANQDcBOAMZGRvjiiy8QGRmJgQMHQvbPP1zBmUhC7A4jIlI3V1cEyWQYJwRu/bepJYBlwcGo1a7dm/24gjORpNgSRESkRlFRUeg2ahQ6/xeAHABslslwbO1a1QAEcAVnIokxBBERqcHz588xceJE1KhRA3v37oWJiQkm+fgg8o8/4HXvHmTDhmV9Eqe/E0mK3WFERIXw+vVrrF69Gr6+vnj27BkAwNPTE4sWLUK1atXefwBOfyeSDEMQEUknm3V09IUQAvv378eXX36J69evAwCqV6+OxYsXo0OHDvk7GKe/E0mC3WFEJI2AAL2dGn7lyhV07NgRnTt3xvXr11G6dGmsWLECFy5cyH8AIiLJMAQRkfa9s46OvkwNj42NxciRI1G7dm0cPHgQpqammDRpEqKiojBy5EiYmLBxnUif8C+WiLRPz6aGx8fH49tvv8X333+PpKQkAEDPnj2xcOFCVK5cWeLqiKigGIKISPs0cWV0DUhJScGKFSvwzTffKAc9N2nSBAsWLEDLli0lro6ICovdYUSkfTo+NTw9PR0bNmyAm5sbJk6ciGfPnqFq1arYuXMnTp06xQBEVESwJYiIpKGDU8OFEAgKCsL06dNx6dIlAICjoyP8/PwwePBgjvkhKmL4F01E0tGhqeHHjh3D7NmzcfLkSQBAyZIlMW3aNIwdOxbFihWTuDoi0gSGICIyaCdPnsRXX32Fo0ePAgDkcjnGjRuHadOmwcbGRuLqiEiTGIKIyCCdPn0ac+bMwcGDBwEApqamGD58OGbMmIGyZctKXB0RaQNDEBEZlHPnzuGrr75CUFAQAMDExARDhw7FzJkzUb58eYmrIyJtYggiIoMQEREBPz8/BAYGAgCMjY0xcOBAzJo1C5UqVcr/AfX4kh9ElIFT5ImoSDt16hQ6d+6M+vXrIzAwEEZGRvjss89w7do1rFu3rmABSI8v+UFEbzAEEVHREBMDHD0KxMRACIHDhw+jTZs2+PDDDxEUFAQjIyN4eXnh8uXL2LhxI1xdXQv+e/Twkh9ElBW7w4hI/wUEACNGQCgU2CeT4ZuKFfHX7dsAMgY8Dxw4ENOmTYOLOlak1rNLfhBRzhiCiEi/xcQgffhw7BAC3wC4KARw+zbM5XIMGz4ckydPVu+AZz255AcRvR+7w4hIbyUnJ2P14sWoLgT6ArgIoDiAKQCiN2/Gjz/+qP4ZXzp+yQ8iyju2BBGR3nn69ClWrFiBZcuW4cmTJwCAkgC+ADAOgI2xMdC4seYK0MFLfhBR/jEEEZHeuHnzJr7//nusX78eycnJAIDy5ctjQtOm8P79d5RQKHJvmVHntHYduuQHERUMQxAR6bzTp0/j22+/xa5duyCEAADUr18fkydPRu/evTMubPrdd7m3zPw3eBoKRcaYnjVrMlp0iMhgyUTmJ4qBSEhIgLW1NeLj42FlZSV1OUSUg7S0NOzatQtLlizBn3/+qdzu6emJyZMnw8PDAzKZLG8Hi4nJWM/n3cHM0dFszSHSE5r4/mZLEBHplKdPn2Lt2rVYsWIFYv5be8fU1BSfffYZJk6ciJo1a+b/oJzWTkTZYAgiIp0QERGBH3/8EZs3b0ZKSgoAoEyZMvDx8sLI5s3h2LRpwQMLp7UTUTYYgohIMq9fv8bu3buxdOlSnDx5Urm9QYMGGDduHPokJcF89Ghg6dLCjePJnNbu45PRAsRp7UQEjgmSuhwig/TgwQMEBARgzZo1yi4vExMT9O7dG+PGjUOTJk0g++cf9Y/jiYnhtHYiPcUxQUSktxQKBQ4ePIjVq1dj7969SE9PBwDY2trCx8cHn3/+ORwdHd88QRPjePIyrZ1XhycyGAxBRKRRsbGxWLduHdauXYvo6Gjl9ubNm8PHxweffPIJ5HJ51idKMY6H0+iJDIpeXTbD19cXMplM5WZvby91WUT0DoVCgUOHDuGTTz5BuXLlMHPmTERHR6NkyZIYN24cLl++jBMnTuCzzz7LPgAB2r88Ba8OT2Rw9K4lqEaNGjh06JDyvnHmByQR5UydXTy5HOv+/fvYuHEj1q1Zg1t37yq3N23aVNnqU6xYsbz/Lm1enoLT6IkMjt6FIBMTE7b+EOWHOrt4sjnWq08/xe7du7F+/XqEhIQoV3S2AvAZAJ85c1Db17fg9Wvr8hScRk9kcPSqOwwAoqKi4OjoiIoVK6Jfv364fft2rvunpKQgISFB5UZkMNTZxfPWsQSAMwoFRg4fDgd7e3h5eeHgwYMQQqAVgPUAHgBYDqD2vHn60aXEq8MTGRy9CkHu7u7YsGEDDhw4gLVr1yI2NhbNmjXDs2fPcnyOv78/rK2tlbdy5cppsWIiieXWxVOAY8UqFPgOQE0A7gBWCYG4+HiUL18es2fPxs2NG3EMwGAAloX9fVLw9s6Ygn/0aMZPDoomKtL0ep2gxMREVK5cGVOmTMHEiROz3SclJUW5+iyQsc5AuXLluE4QGQY1XDMrISEBu3fvxqaAABw6fhyZRzIH0Esmw+BNm9Cmb18YGRnxGl1EpDFcJ+gdlpaWqFWrFqKionLcRy6X5zz7hKioK+BKyampqdi/fz82b96MPXv24NWrV8rHmgAYAqCvkRGs16wBvLwK/fuIiKSg1yEoJSUF165dQ4sWLaQuhUh35XGGlUKhwIkTJ7Bp0yZs374dz58/Vz7m5uaGTz/9FF5eXnAxN8/9WNqc0UVEVAh6FYImTZqErl27onz58nj8+DHmzZuHhIQEDBo0SOrSiHRbDjOshBA4d+4cfvvtN2zZskV5CQsAcHBwgJeXFz799FPUq1cPMplM9XgF+H1ERLpEr0JQTEwMvLy88PTpU5QpUwZNmjTB6dOn4ezsLHVpRBn04JILQgicOXMG27dvx/bt21VWcba2tkavXr3w6aefolWrVlyHi4iKNL0KQVu3bpW6BKKc6fAlFxQKBf766y9l8Ll3757ysWLFiqFz587o168fOnXqBHNzcwkrJSLSHr2eHVYQvIo8aYQOzopSKBQICwtTBp+3u7osLS3RtWtX9O7dG56envlbxZmISAKcHUakq3TkkgvJyck4cuQIAgMDsXfvXsTGxiofK168OLp164bevXujY8eOsLCwUH2yHnTlERGpE0MQkTrk55ILag4bz549w759+xAYGIgDBw4gKSlJ+ZiVlRW6deuGTz75BO3bt8+5q0uHu/KIiDSFIYhIHfK6Po6awsatW7cQGBiIwMBAnDx5Eoq3wpeTkxO6d++Obt26wcPDA2ZmZrkfLKdLa3TowBYhIirSOCaISJ1iYnJeH6cQ44ZSU1Px559/Yv/+/QgKCsKVK1dUHq9TvTq69+6N7t27Z53O/j5HjwJt2mS/3cMj78chItIgjgki0nW5rY+Tz3FDMTEx2L9/P/bv349Dhw7hxYsXyseMjY3RytUV3SMj0U0IVLh+HShfHqhfP/818+rpRGSgGIKItOU9YeP169cqrT2XL19WebqtrS06duwIT09PdKhZEx/UqQNkNuQWpguLl7ogIgPFEESkLe+EDWFkhFtz5+LQvn0ICQlBSEiISmuPDBnX6fKUyeA5cybq+/llXKQUyOiqUudsNF7qgogMEMcEEWnR48ePceT333EoKAiHLl7E3bfW7gGAMmXKoGPLlvDcuRPthUCpzAfeHTukg+sSERFpEscEEemZxMREnDhxAocOHcKhQ4dw4cIFlcdNTU3RrFkzfPTRR+jYsSMaNGgAo9BQYMcO1QO928rDLiwiokJjCCJSo1evXuHMmTMIDQ3F4cOHcerUKbx+/Vplnzp16qBt27Zo27YtWrRoAUtLS9WD5HWgMruwiIgKhSFI07gKr3S08NonJibi9OnTCA0NRWhoKP766y+kpKSo7FO+fHm0a9cObdu2RZs2bWBra5v7QfPTysOrtRMRFRhDkCZxFd78U1dw0dBr/+LFC/z555/K0BMeHo60tDSVfezs7NCqVSt4eHigXbt2qFy5cv7W7QHYykNEpAUcGK0pHLiaf+oKLvl97XMJXrGxsQgLC8OfwcEIDQ3F31FRKqszAxkrNLdq1Up5c3V1zX/oISKiXHFgtD7RkQtq6g11XrohP6/9W8ErXSbD5a++wik7O5w6dQqnTp3C7du3sxy+YunSaNWlizL0VKhQgaGHiEgPMQRpClfhzR91hsY8vvZxV67gr+HDcUoInAJwWgi89PNT2Ucmk6GmEGgKoAWAVgDKPX8OfP01wywRkZ5jCNIUTmHOH3WGxmxe+9fLl+PykycIDwpCeHg4Tp8+jStXruDd3uASAJo2bIimnTujWbNmcE9JgXW3bqrHZ4seEVGRwDFBmpbbBTVJVUBA1tBYgDFBQgjcvHkTZ4KDER4aijPR0Yi4cgWvXr3Ksq8LgGZv3aobGcH47l0uSkhEpGM4JkgfcQpz3hVwRtSDBw8QHh6OM2fOIDw8HOHh4YiLi8uyn7W1NRo1aoRGjRqhcePGaNq0Kez27cu9tY4tekRERRZbgkhvCCFw9+5dREREICI0FBF//YW/79zBg0ePsuwrl8tRr149NG7cWBl6XFxc3lx76215aa1jix4RkaTYEkT6LR9rAKWnpyMyMjIj8Lx1e/78eZZ9jWQy1KhZUxl2GjVqhFq1asHU1DRvdeWltY4tekRERQ5DEGlHLmsApaSk4PLly/j777+VYefixYtISkrKchhTU1PUeP0a9QDlra5MhuJBQQwpRESULwxBpHn/rQEkFArcBXBJocCl4cNxMTAQl27dQmRkJNLT07M8rVixYqhbty7q1aunvNV48gTyjh1Vd1QoOFuLiIjyjSHIUGn4ulpxcXG4dOlSxi04GBcVClwGkJC5gxDA3r3K/W1sbFCvXj3Ur19fGXhcXV1hbGyctW6uv0RERGrAEKRPdPC6Wqmpqbhx4wYuXryoDD0XL17E/fv3s93fFEA1ALVkMtSaNg21mjdHrVq14OTklLdVlzlbi4iI1ISzw/SFVNfV+k9ycjIiIyNx9epVXL16FdeuXcPVq1cRFRWVbVcWkHH19Fq1aqFWrVqo/ewZagUEoIpCAbNCrAGkch6crUVEZDA08f3NEKQP1Llg39GjQJs22W/38MDLly9x/fp1ZdjJvN2+fTvL6sqZrKys3oSd2rVRq1Yt1KxZEyVLlsx6HgwuRERUAJwib6g0cF2tOIUC1wBcBXBVJsNVPz9cGzwYd+/ezfGpNjY2qFGjBqpXr65yc3BwyHtXFsMPERHpCIYgfVDA62qlp6cjOjoakZGRqrcSJfAwPv7NjkIAx44p79rZ2WUJOtWrV0eZMmV4tXQiIioyGIL0wXsGA//7779Zg05kJG7evInU1NQcD1u2dGlUr1YN1evXVwadatWqoVSpUto6MyIiIskwBOmJ1AEDcKtSJUT++Scik5Iyfq5bh8jISDx79izH55mbm8PV1RVubm6oUqUK3Nzc4ObmhqpVq8La2vr9v1jDU+mJiIikwhCUHYm++IUQePToUbatOnfu3MlxFhYAODk5KQPO27fy5ctnf72svFDjVHoiIiJdwxD0Li188ScnJyMqKirbsJOQkJDj8ywtLbMNOq6urihevPibHTNDnIlJxjkUxH+rPCvHISkUGd1xHTqwRYiIiIoEhqC3qfGLX6FQ4P79+7hx4wYiIyOVPyMjI3Hv3r0cp5vLZDJUqFAh27Dj6Oj4/oHJ6gpx+ZmRxi4zIiLSQ4Ybgv75B3h3nYECTEV//vx5lqBz48YNREVFITk5OcdfX7JkyWyDjouLC8zNzQt2TupsvcnrjDR2mRERkZ4y3BBUowawdq3qF3YOX/wp5crh9rVrypact8POkydPcvwVpqamqFy5snJA8tsDkzUy3Vyd6wnl5fIU7DIjIiI9ZrghSAiVL2whBB7IZIicMAGRixfjhhCIBHDDxgZ3qlSB4t1w8RZHR8csQadKlSqoWLEiTEy0+BIXcD2hHHl7Z7w+Oa3yrM7QRUREpGUGG4K2AYhJT0fkwIG4EReHGzduIDExMeuO/7X0FC9eXKUlJ/O/XV1dUaJECe0WnxNNXFw0t1We1R26iIiItMhgrx2WHWNjY1SsWDFL0KlSpUreLw1RUOocXKzNa3QFBGQNXRwTREREasYLqKpB5ovYFECNFi1QpWtXZdCpVKkSzMzMtF+Uvg8u5oVRiYhIwxiC1ED5Il69Cqtq1aQuR71XiCciIiqiNBGCCriSXhFQtqzUFWTIbXAxERERaYxehqAVK1agYsWKMDc3R4MGDXDixAmpSyq4zMHFb+PgYiIiIo3TuxC0bds2jB8/HjNnzkRERARatGgBT09P3Lt3T+rSCiZzRpexccZ9dczoIiIiovfSuzFB7u7uqF+/PlauXKncVq1aNXz88cfw9/d/7/M10aeoFhxcTERElCNNfH/r1TpBqampOHfuHKZNm6ayvX379jh16lS2z0lJSUFKSoryfm4XKJVUbuvxEBERkdrpVXfY06dPkZ6eDjs7O5XtdnZ2iI2NzfY5/v7+sLa2Vt7KlSunjVKJiIhIx+lVCMr07qKFQogcFzKcPn064uPjlbf79+9ro0QiIiLScXrVHVa6dGkYGxtnafV5/PhxltahTHK5HHK5XBvlERERkR7Rq5YgMzMzNGjQACEhISrbQ0JC0KxZM4mqIiIiIn2kVy1BADBx4kQMGDAADRs2RNOmTbFmzRrcu3cPn3/+udSlERERkR7RuxDUt29fPHv2DHPnzsXDhw9Rs2ZNBAUFwdnZWerSiIiISI/o3TpBhaWz6wQRERFRjnjtMCIiIiI1YQgqjJgY4OjRjJ9ERESkVxiCCiogAHB2Btq0yfgZECB1RURERJQPDEEFERMDjBgBKBQZ9xUKwMeHLUJERER6hCGoIKKi3gSgTOnpGRdAJSIiIr3AEFQQrq6A0TsvnbFxxhXgiYiISC8wBBWEkxOwZk1G8AEyfq5ezavAExER6RG9WyxRZ3h7Ax06ZHSBubgwABEREekZhqDCcHJi+CEiItJT7A4jIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFB0qsQVKFCBchkMpXbtGnTpC6LiIiI9JCJ1AXk19y5czF8+HDl/eLFi0tYDREREekrvQtBJUqUgL29vdRlEBERkZ7Tq+4wAFiwYAFKlSqFunXr4ptvvkFqaqrUJREREZEe0quWoC+++AL169fHBx98gDNnzmD69Om4c+cOfvrppxyfk5KSgpSUFOX9+Ph4AEBCQoLG6yUiIiL1yPzeFkKo76BCYnPmzBEAcr2Fh4dn+9zt27cLAOLp06eFOj5vvPHGG2+88aYft1u3bqktg8iEUGekyr+nT5/i6dOnue5ToUIFmJubZ9n+zz//wMnJCadPn4a7u3u2z323JSguLg7Ozs64d+8erK2tC1e8HklISEC5cuVw//59WFlZSV2O1vC8ed6GgOfN8zYE8fHxKF++PJ4/f46SJUuq5ZiSd4eVLl0apUuXLtBzIyIiAAAODg457iOXyyGXy7Nst7a2Nqh/PJmsrKx43gaE521YeN6GxVDP28hIfcOZJQ9BeRUWFobTp0+jdevWsLa2Rnh4OCZMmIBu3bqhfPnyUpdHREREekZvQpBcLse2bdvg5+eHlJQUODs7Y/jw4ZgyZYrUpREREZEe0psQVL9+fZw+fbrQx5HL5ZgzZ062XWRFGc+b520IeN48b0PA81bfeUs+MJqIiIhICnq3WCIRERGROjAEERERkUFiCCIiIiKDxBBEREREBqlIhqAVK1agYsWKMDc3R4MGDXDixIlc9w8NDUWDBg1gbm6OSpUqYdWqVVqqVL3yc947d+5Eu3btUKZMGVhZWaFp06Y4cOCAFqtVn/y+35n+/PNPmJiYoG7dupotUEPye94pKSmYOXMmnJ2dIZfLUblyZaxbt05L1apPfs9706ZNqFOnDooVKwYHBwcMGTIEz54901K1hXf8+HF07doVjo6OkMlk2L1793ufUxQ+0/J73kXlM60g73cmff5MK8h5q+MzrciFoG3btmH8+PGYOXMmIiIi0KJFC3h6euLevXvZ7n/nzh106tQJLVq0QEREBGbMmIFx48Zhx44dWq68cPJ73sePH0e7du0QFBSEc+fOoXXr1ujatatyFW59kd/zzhQfH4+BAwfio48+0lKl6lWQ8+7Tpw8OHz6MgIAAREZGYsuWLahataoWqy68/J73yZMnMXDgQHh7e+PKlSv4/fffER4ejmHDhmm58oJLTExEnTp1sGzZsjztX1Q+0/J73kXlMy2/551J3z/TCnLeavlMU9tVyHRE48aNxeeff66yrWrVqmLatGnZ7j9lyhRRtWpVlW0+Pj6iSZMmGqtRE/J73tmpXr268PPzU3dpGlXQ8+7bt6+YNWuWmDNnjqhTp44GK9SM/J73/v37hbW1tXj27Jk2ytOY/J73t99+KypVqqSybenSpcLJyUljNWoSALFr165c9ykqn2lvy8t5Z0cfP9Pelp/z1vfPtLfl5bzV9ZlWpFqCUlNTce7cObRv315le/v27XHq1KlsnxMWFpZl/w4dOuDs2bN4/fq1xmpVp4Kc97sUCgVevHgBGxsbTZSoEQU97/Xr1+PWrVuYM2eOpkvUiIKc9549e9CwYUMsXLgQZcuWRZUqVTBp0iQkJydro2S1KMh5N2vWDDExMQgKCoIQAo8ePcL27dvRuXNnbZQsiaLwmaYO+viZVlD6/plWEOr6TNObFaPz4unTp0hPT4ednZ3Kdjs7O8TGxmb7nNjY2Gz3T0tLw9OnT3O9OKuuKMh5v2vRokVITExEnz59NFGiRhTkvKOiojBt2jScOHECJib6+c+/IOd9+/ZtnDx5Eubm5ti1axeePn2KUaNG4d9//9WbcUEFOe9mzZph06ZN6Nu3L169eoW0tDR069YNP/74ozZKlkRR+ExTB338TCuIovCZVhDq+kwrUi1BmWQymcp9IUSWbe/bP7vtui6/551py5Yt8PX1xbZt22Bra6up8jQmr+ednp6O/v37w8/PD1WqVNFWeRqTn/dboVBAJpNh06ZNaNy4MTp16oTFixfj559/1qvWICB/53316lWMGzcOX331Fc6dO4fg4GDcuXMHn3/+uTZKlUxR+UwrKH3/TMurovaZlh/q+kwrUrGxdOnSMDY2zvJ/hY8fP87yf0aZ7O3ts93fxMQEpUqV0lit6lSQ8860bds2eHt74/fff0fbtm01Waba5fe8X7x4gbNnzyIiIgJjxowBkPGHJISAiYkJDh48iDZt2mil9sIoyPvt4OCAsmXLwtraWrmtWrVqEEIgJiYGrq6uGq1ZHQpy3v7+/vjwww8xefJkAEDt2rVhaWmJFi1aYN68eUWyVaQofKYVhj5/puVXUflMKwh1faYVqZYgMzMzNGjQACEhISrbQ0JC0KxZs2yf07Rp0yz7Hzx4EA0bNoSpqanGalWngpw3kPF/S4MHD8bmzZv1coxEfs/bysoKly5dwvnz55W3zz//HG5ubjh//jzc3d21VXqhFOT9/vDDD/HgwQO8fPlSue3GjRswMjKCk5OTRutVl4Kcd1JSEoyMVD/mjI2NAbxpHSlqisJnWkHp+2dafhWVz7SCUNtnWqGGVeugrVu3ClNTUxEQECCuXr0qxo8fLywtLUV0dLQQQohp06aJAQMGKPe/ffu2KFasmJgwYYK4evWqCAgIEKampmL79u1SnUKB5Pe8N2/eLExMTMTy5cvFw4cPlbe4uDipTqFA8nve79LXmRT5Pe8XL14IJycn0bt3b3HlyhURGhoqXF1dxbBhw6Q6hQLJ73mvX79emJiYiBUrVohbt26JkydPioYNG4rGjRtLdQr59uLFCxERESEiIiIEALF48WIREREh7t69K4Qoup9p+T3vovKZlt/zfpe+fqbl97zV9ZlW5EKQEEIsX75cODs7CzMzM1G/fn0RGhqqfGzQoEGiVatWKvsfO3ZM1KtXT5iZmYkKFSqIlStXarli9cjPebdq1UoAyHIbNGiQ9gsvpPy+32/T1w8MIfJ/3teuXRNt27YVFhYWwsnJSUycOFEkJSVpuerCy+95L126VFSvXl1YWFgIBwcH8emnn4qYmBgtV11wR48ezfVvtah+puX3vIvKZ1pB3u+36etnWkHOWx2faTIhimibMBEREVEuitSYICIiIqK8YggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERFwty5c1GrVi1YWlrCzs4OI0eOxOvXr6Uui4h0mInUBRARFZYQAunp6Vi9ejXKli2Lq1evYuDAgahduzZGjhwpdXlEpKN4AVUiKpL69++PMmXKYMmSJVKXQkQ6it1hRKT37t69izFjxqBmzZr44IMPULx4cfz2229wcnKSujQi0mEMQUSk154+fYrGjRvj6dOnWLx4MU6ePImwsDAYGxujbt26UpdHRDqMY4KISK8FBQUhLS0NW7ZsgUwmAwAsX74cqampDEFElCuGICLSazY2NkhISMCePXtQvXp17N27F/7+/ihbtizKlCkjdXlEpMM4MJqI9JoQAiNHjsTmzZthYWGBzz77DK9evcLdu3exb98+qcsjIh3GEEREREQGiQOjiYiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAbp/7JoRZW6ud8QAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYuUlEQVR4nO3deXhM1/8H8PdMdpGEiGxCbCHELmInCBH71lDfWlPS2oq2lmpr+akUraUVW4VqUVo7tUUEVVFBBAkaJWoQexIhi2TO7480w2STZdbM+/U890nnzpmbz51p7ryde869EiGEABEREZGBkWq7ACIiIiJtYAgiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYgginePt7Q1vb29tl1FiI0eORPny5YvUtnr16hg5cqRa65FIJJgzZ45af8fbvHz5EnPmzMHx48e1Woe+CAsLg6enJywtLSGRSLB79278+OOPkEgkiI+PV7TbsmULli1bppYaPv/8c1SrVg3GxsaoUKFCsV8/cuRIVK9eXeV16bIHDx6gUqVKkEgk2L59u7bLoSIw1nYBRLmtXLlS2yVozK5du2Btba3tMtTu5cuXmDt3LgDodcDVBCEE/P39UadOHezduxeWlpaoW7cuMjMzERERAScnJ0XbLVu24MqVK5g8ebJKa9izZw+++uorzJo1C35+fjAzM1Pp9suq8ePHw9zcXNtlUDEwBJHOqV+/vrZL0JimTZtquwRSodTUVJibm0MikZR4G/fu3cPTp0/Rv39/dOnSRem5ypUrl7bEIrly5QoAYNKkSbC3t9fI71QVVXwGJbFjxw4cPnwYwcHBGDFihEZ/N5UcT4dRqcyZMwcSiQQxMTF49913YWNjAwcHB4wePRpJSUlKbdPS0jBz5kzUqFEDpqamqFKlCsaPH4/ExESldvmdDlu1ahUaN26M8uXLw8rKCu7u7vjss88AAPHx8TA2NkZQUFCe+k6ePAmJRILffvut0P1ITEzExx9/jJo1a8LMzAz29vbo0aMHrl27BgA4fvw4JBJJntM58fHxkEgk+PHHH/NsMyYmBl26dIGlpSUqV66MCRMm4OXLl0pt8jsd9rZaVCEhIQGBgYFwcXGBqakpatSogblz5yIzM1Op3dy5c9GyZUvY2trC2toazZo1Q0hICHLfd/nYsWPw9vZGpUqVYGFhgWrVqmHgwIF4+fIl4uPjFV/ec+fOhUQigUQieetpwJcvX+KTTz5BjRo1YG5uDltbW3h6euKXX35Ravfjjz+ibt26MDMzQ7169fDTTz/lORVTnM/v3LlzGDJkCKpXrw4LCwtUr14d7777Lm7fvp3n90okEhw5cgSjR49G5cqVUa5cOaSnpwMAtm3bhtatW8PS0hLly5eHr68voqKiCt3nOXPmwMXFBQAwffp0SCQSxX7kPh3m7e2N33//Hbdv31a8p2/74pfL5Vi0aBHc3d0V/28NHz4cMplM0aZ69er4/PPPAQAODg5FOp2a32eQn4yMDMyfP1/x+ytXroxRo0bh0aNHSu3S09Px8ccfw9HREeXKlUOHDh1w/vz5PH8vqvoMzp07hz59+sDW1hbm5uZo2rQpfv3110L3+U1Pnz7F+PHj8dVXX6FatWpFfh1pH3uCSCUGDhyIwYMHIyAgAJcvX8bMmTMBAOvXrweQ3cXfr18/hIWFYebMmWjfvj0uXbqE2bNnIyIiAhEREQV2uW/duhXjxo3DxIkT8c0330AqleLGjRuIjY0FkH3Q7tOnD1avXo1p06bByMhI8doVK1bA2dkZ/fv3L7D258+fo127doiPj8f06dPRsmVLpKSk4OTJk7h//z7c3d2L/X68evUKPXr0QGBgIGbMmIHTp09j/vz5uH37Nvbt21fqWkaOHImNGzfi1q1bxR53kZCQAC8vL0ilUnz55ZeoVasWIiIiMH/+fMTHx2PDhg2KtvHx8QgMDFQc2M+cOYOJEyfi7t27+PLLLxVtevbsifbt22P9+vWoUKEC7t69i0OHDiEjIwNOTk44dOgQunfvjoCAALz//vsA3t6rMXXqVPz888+YP38+mjZtihcvXuDKlSt48uSJos2PP/6IUaNGoW/fvvj222+RlJSEOXPmID09HVJpyf6NFx8fj7p162LIkCGwtbXF/fv3sWrVKrRo0QKxsbGws7NTaj969Gj07NkTP//8M168eAETExMsWLAAn3/+OUaNGoXPP/8cGRkZWLx4Mdq3b4+zZ88W2Nv5/vvvo3HjxhgwYAAmTpyIoUOHFvh3sXLlSowdOxb//PMPdu3aVaR9+/DDD7F27VpMmDABvXr1Qnx8PL744gscP34cFy5cgJ2dHXbt2oXg4GCEhITg0KFDsLGxUQSz/BT1M5DL5ejbty/++OMPTJs2DW3atMHt27cxe/ZseHt749y5c7CwsAAAjBo1Ctu2bcO0adPQuXNnxMbGon///khOTs63htJ8BuHh4ejevTtatmyJ1atXw8bGBlu3bsXgwYPx8uXLIo3ZmzRpEmrUqIEJEybg5MmTRfosSEcIolKYPXu2ACAWLVqktH7cuHHC3NxcyOVyIYQQhw4dyrfdtm3bBACxdu1axbqOHTuKjh07Kh5PmDBBVKhQodA6wsPDBQCxa9cuxbq7d+8KY2NjMXfu3EJfO2/ePAFAhIaGvnX74eHhSutv3bolAIgNGzYo1o0YMUIAEMuXL1dq+9VXXwkA4tSpU4p1rq6uYsSIEcWqRQghRo8eLYyMjER8fHyh7YQQAoCYPXu24nFgYKAoX768uH37tlK7b775RgAQMTEx+W4nKytLvHr1SsybN09UqlRJ8dlu375dABAXL14ssIZHjx7lqeNtGjRoIPr161fg81lZWcLZ2Vk0a9ZMUYsQQsTHxwsTExPh6uqqWFeczy+3zMxMkZKSIiwtLZU+0w0bNggAYvjw4Urt//33X2FsbCwmTpyotP758+fC0dFR+Pv7F7LXr2tavHix0vqc33fr1i3Fup49eyrtZ2GuXr0qAIhx48Yprf/rr78EAPHZZ58p1uX8XT969KjQbRbnM/jll18EALFjxw6lbURGRgoAYuXKlUIIIWJiYgQAMX36dKV2Oa9/8+9FFZ+Bu7u7aNq0qXj16pVS2169egknJyeRlZVV6Huwf/9+YWJiIi5fviyEeP3/2m+//Vbo60g38HQYqUSfPn2UHjdq1AhpaWl4+PAhgOzTJQDy/KvqnXfegaWlJcLCwgrctpeXFxITE/Huu+9iz549ePz4cZ423t7eaNy4MYKDgxXrVq9eDYlEgrFjxxZa+8GDB1GnTh34+PgU2q64/ve//yk9Hjp0KIDsf3mWtpaQkBBkZmbC1dW12HXt378fnTp1grOzMzIzMxWLn58fAODEiROKtseOHYOPjw9sbGxgZGQEExMTfPnll3jy5Inis23SpAlMTU0xduxYbNy4ETdv3ixWPW/WkJmZqTjV5uXlhYMHD2LGjBk4fvw4UlNTlV53/fp13Lt3D0OHDlU6DeTq6oo2bdoU+33JkZKSgunTp6N27dowNjaGsbExypcvjxcvXuDq1at52g8cOFDp8eHDh5GZmYnhw4cr7Ze5uTk6duyotRlyOf/f5f4b9PLyQr169Qr9GyxIcT6D/fv3o0KFCujdu7fS+9KkSRM4Ojoq3pec///8/f2VXj9o0CAYG+d/8qKkn8GNGzdw7do1xd/qm2179OiB+/fv4/r16wXuf1JSEgIDAzF9+nQ0aNDg7W8Y6RyGIFKJSpUqKT3O6cLP+eJ68uQJjI2N85wCkUgkcHR0VDrFkduwYcOwfv163L59GwMHDoS9vT1atmyJ0NBQpXaTJk1CWFgYrl+/jlevXuGHH37AoEGD4OjoWGjtjx49KrS7vySMjY3zvCc5dRS2r+qoJbcHDx5g3759MDExUVo8PDwAQBEyz549i27dugEAfvjhB/z555+IjIzErFmzALz+bGvVqoWjR4/C3t4e48ePR61atVCrVi0sX778rbXEx8fnqSPnS/C7777D9OnTsXv3bnTq1Am2trbo168f4uLiALx+H/P7fN/2mRdm6NChWLFiBd5//30cPnwYZ8+eRWRkJCpXrpwniAFQmq0FZL+/ANCiRYs8+7Zt27Z8Q7wm5LxfuesFAGdn50L/v3zbNovyGTx48ACJiYkwNTXN874kJCQo3pecbTo4OCi9Pr+/qRwl/Qxy2n3yySd52o0bNw4ACv28Zs2aBRMTE0yYMAGJiYlITExESkoKgOwxbYmJiXnGz5Fu4Zgg0ohKlSohMzMTjx49UgpCQggkJCSgRYsWhb5+1KhRGDVqFF68eIGTJ09i9uzZ6NWrF/7++29Fb8jQoUMxffp0BAcHo1WrVkhISMD48ePfWlvlypWVBobmJ2faa86AyxwFHSAzMzPx5MkTpYN2QkICgLyBsbi1lJadnR0aNWqEr776Kt/nnZ2dAWSPxTIxMcH+/fuVpv3u3r07z2vat2+P9u3bIysrC+fOncP333+PyZMnw8HBAUOGDCmwFmdnZ0RGRiqtq1u3LgDA0tISc+fOxdy5c/HgwQNFr1Dv3r1x7do1xfuY876+Kfe6on5+SUlJ2L9/P2bPno0ZM2Yo1qenp+Pp06f57kPuwcg5Y4a2b99eop46dcl5v+7fv58naN+7dy/PWKfibLMon4GdnR0qVaqEQ4cO5bstKysrpW0+ePAAVapUUTyf8zeVn5J+BjntZs6ciQEDBuTbJuf/x/xcuXIF8fHx+YbAnBliz549K9F1lkgzGIJII7p06YJFixZh06ZNmDJlimL9jh078OLFizxTgQtiaWkJPz8/ZGRkoF+/foiJiVEc5MzNzTF27FisWLECp0+fRpMmTdC2bdu3btPPzw9ffvkljh07hs6dO+fbJmfw8aVLl+Dr66tYv3fv3gK3u3nzZkyaNEnxeMuWLQAKv05OUWoprV69euHAgQOoVasWKlasWGA7iUQCY2NjpYHmqamp+Pnnnwt8jZGREVq2bAl3d3ds3rwZFy5cwJAhQ/L0DOYwNTWFp6fnW2t2cHDAyJEjER0djWXLluHly5eoW7cunJyc8Msvv2Dq1KmKL8Lbt2/j9OnTijAHFP3zk0gkEELkGYy8bt06ZGVlvbVOAPD19YWxsTH++eefPKdpVM3MzCzf3qn85Pz/tGnTJqV/dERGRuLq1auKHr7iKM5n0KtXL2zduhVZWVlo2bJlgdvs0KEDgOyZXc2aNVOs3759e57ZiwUp6mdQt25duLm5ITo6GgsWLCjStt+0bNmyPLNbL168iClTpmDOnDno2LFjkS+cStrBEEQa0bVrV/j6+mL69OlITk5G27ZtFbPDmjZtimHDhhX42jFjxsDCwgJt27aFk5MTEhISEBQUBBsbmzw9SOPGjcOiRYtw/vx5rFu3rki1TZ48Gdu2bUPfvn0xY8YMeHl5ITU1FSdOnECvXr3QqVMnODo6wsfHB0FBQahYsSJcXV0RFhaGnTt35rtNU1NTfPvtt0hJSUGLFi0Us8P8/PzQrl27UtUCAAEBAdi4cSP++eefYvc2zJs3D6GhoWjTpg0mTZqEunXrIi0tDfHx8Thw4ABWr14NFxcX9OzZE0uWLMHQoUMxduxYPHnyBN98802egLB69WocO3YMPXv2RLVq1ZCWlqaYFZgztsnKygqurq7Ys2cPunTpAltbW9jZ2RU6s61ly5bo1asXGjVqhIoVK+Lq1av4+eef0bp1a5QrVw4A8H//9394//330b9/f4wZMwaJiYmYM2dOnn+ZF/Xzs7a2RocOHbB48WJFfSdOnEBISEiR/zVfvXp1zJs3D7NmzcLNmzfRvXt3VKxYEQ8ePMDZs2cVPVyq0LBhQ+zcuROrVq1C8+bNIZVKCwyVdevWxdixY/H9999DKpXCz89PMTusatWqSv84KSqpVFrkz2DIkCHYvHkzevTogY8++gheXl4wMTGBTCZDeHg4+vbti/79+8PDwwPvvvsuvv32WxgZGaFz586IiYnBt99+CxsbmyLN+ivOZ7BmzRr4+fnB19cXI0eORJUqVfD06VNcvXoVFy5cKPTyGk2aNCnwOQ8PD14YVB9od1w26buCZpHkN5MlNTVVTJ8+Xbi6ugoTExPh5OQkPvzwQ/Hs2TOl1+aeHbZx40bRqVMn4eDgIExNTYWzs7Pw9/cXly5dyrcmb29vYWtrK16+fFnk/Xj27Jn46KOPRLVq1YSJiYmwt7cXPXv2FNeuXVO0uX//vhg0aJCwtbUVNjY24r333hPnzp3Ld3aYpaWluHTpkvD29hYWFhbC1tZWfPjhhyIlJUXp9+aeHVbUWnJmoL35/hYE+czKevTokZg0aZKoUaOGMDExEba2tqJ58+Zi1qxZSjWuX79e1K1bV5iZmYmaNWuKoKAgERISovS7IyIiRP/+/YWrq6swMzMTlSpVEh07dhR79+5V+p1Hjx4VTZs2FWZmZnlm+eRnxowZwtPTU1SsWFHx+6dMmSIeP36s1G7dunXCzc1NmJqaijp16oj169eLESNG5Jk1VdTPTyaTiYEDB4qKFSsKKysr0b17d3HlypU8n1XO/+ORkZH51r97927RqVMnYW1tLczMzISrq6sYNGiQOHr0aKH7XZzZYU+fPhWDBg0SFSpUEBKJRLztkJ6VlSUWLlwo6tSpI0xMTISdnZ147733xJ07d5TaFXV2WI6ifgavXr0S33zzjWjcuLEwNzcX5cuXF+7u7iIwMFDExcUp2qWlpYmpU6cKe3t7YW5uLlq1aiUiIiKEjY2NmDJlSp73pLSfQXR0tPD39xf29vbCxMREODo6is6dO4vVq1cXaf/fxNlh+kUiBEdtUdnx8OFDuLq6YuLEiVi0aJG2yyEtGTlyJI4fP650ny3Sb6dPn0bbtm2xefNmxUxLotLi6TAqE2QyGW7evInFixdDKpXio48+0nZJRFRCoaGhiIiIQPPmzWFhYYHo6Gh8/fXXcHNzK3AAM1FJMARRmbBu3TrMmzcP1atXx+bNm5VmlRCRfrG2tsaRI0ewbNkyPH/+HHZ2dvDz80NQUBBvUEoqxdNhREREZJB05mKJq1atQqNGjWBtbQ1ra2u0bt0aBw8eVDwvhMCcOXPg7OwMCwsLeHt7IyYmRosVExERkT7TmRDk4uKCr7/+GufOncO5c+fQuXNn9O3bVxF0Fi1ahCVLlmDFihWIjIyEo6MjunbtiufPn2u5ciIiItJHOn06zNbWFosXL8bo0aPh7OyMyZMnY/r06QCyr+Dq4OCAhQsXIjAwUMuVEhERkb7RyYHRWVlZ+O233/DixQu0bt0at27dQkJCguI+RkD2lVI7duyI06dPFxqC0tPTlS6VL5fL8fTpU1SqVCnPpdaJiIhINwkh8Pz5czg7OxfpoplFoVMh6PLly2jdujXS0tJQvnx57Nq1C/Xr18fp06cB5L2hnoODA27fvl3oNoOCglR2dVYiIiLSrjt37qjsRtM6FYLq1q2LixcvIjExETt27MCIESMUd5QG8t4kTwjx1t6cmTNnYurUqYrHSUlJqFatGu7cuQNra2vV7gARERGpRXJyMqpWraq42a4q6FQIMjU1Re3atQEAnp6eiIyMxPLlyxXjgBISEuDk5KRo//Dhwzy9Q7mZmZnludcRAMUsNCIiItIfqhzKojOzw/IjhEB6ejpq1KgBR0dHhIaGKp7LyMjAiRMn0KZNGy1WSERERPpKZ3qCPvvsM/j5+aFq1ap4/vw5tm7diuPHj+PQoUOQSCSYPHkyFixYADc3N7i5uWHBggUoV64c7yFDREREJaIzIejBgwcYNmwY7t+/DxsbGzRq1AiHDh1C165dAQDTpk1Damoqxo0bh2fPnqFly5Y4cuSISs8NEhERkeHQ6esEqUNycjJsbGyQlJTEMUFERER6Qh3f3zo9JoiIiIhIXRiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCDpTAgKCgpCixYtYGVlBXt7e/Tr1w/Xr19XajNy5EhIJBKlpVWrVlqqmIiIiPSZzoSgEydOYPz48Thz5gxCQ0ORmZmJbt264cWLF0rtunfvjvv37yuWAwcOaKliIiIi0mfG2i4gx6FDh5Qeb9iwAfb29jh//jw6dOigWG9mZgZHR0dNl0dERERljM70BOWWlJQEALC1tVVaf/z4cdjb26NOnToYM2YMHj58WOh20tPTkZycrLQQERERSYQQQttF5CaEQN++ffHs2TP88ccfivXbtm1D+fLl4erqilu3buGLL75AZmYmzp8/DzMzs3y3NWfOHMydOzfP+qSkJFhbW6ttH4iIiEh1kpOTYWNjo9Lvb50MQePHj8fvv/+OU6dOwcXFpcB29+/fh6urK7Zu3YoBAwbk2yY9PR3p6emKx8nJyahatSpDEBERkR5RRwjSmTFBOSZOnIi9e/fi5MmThQYgAHBycoKrqyvi4uIKbGNmZlZgLxEREREBkMmAuDjAzQ0o5Ls3KSkJNjY2GixMvXRmTJAQAhMmTMDOnTtx7Ngx1KhR462vefLkCe7cuQMnJycNVEhERFQGhYQArq5A587ZP0NC8m324MEDeHh4YMaMGcjMzNRwkeqhMyFo/Pjx2LRpE7Zs2QIrKyskJCQgISEBqampAICUlBR88skniIiIQHx8PI4fP47evXvDzs4O/fv313L1REREekgmA8aOBeTy7MdyORAYmL3+DZmZmRgyZAju3r2LvXv3Ii0tTQvFqp7OhKBVq1YhKSkJ3t7ecHJyUizbtm0DABgZGeHy5cvo27cv6tSpgxEjRqBOnTqIiIiAlZWVlqsnIiLSQ3FxrwNQjqws4MYNpVWzZs3C8ePHUb58eezcuRPly5fXYJHqozNjgt42PtvCwgKHDx/WUDVEREQGwM0NkEqVg5CREVC7tuLhrl27sGjRIgDA+vXr4e7urukq1UZneoKIiIhIw1xcgLVrs4MPkP1zzRrF4Ohr165hxIgRAIApU6bgndatgfDwPKfL9JXO9AQRERGRFgQEAL6+2afAatdWBKDnz5+jf//+eP78OTp06ICFdetmD5yWy7N7j9auzX6tHtPJ6wSpkzquM0BERFSWCCHwzjvvYMeOHXB2dsaF/fvh4OmZ97RZfHyhU+pVSR3f3zwdRkREREoWL16MHTt2wMTEBDt27IBDYmKRBlDrG54OIyIiIoWjR49i5syZAIDvv/8erVq1yh4D9JYB1PqIPUFEREQEALh9+zaGDBkCuVyO0aNHY+zYsdlPvGUAtb7imCAiIiJCamoq2rVrhwsXLsDT0xN//PEHzM3NlRvJZHkGUGuKQdw7jIiIiDRLCIHx48fjwoULsLOzw44dO/IGICA7+Oh578+beDqMiIjIwK1duxYbNmyAVCrF1q1bUa1aNW2XpBEMQURERAbszJkzmDhxIgAgKCgIXbp00XJFmsMQREREZKAePHiAgQMH4tWrVxg4cCA+/fRTbZekUQxBREREBujVq1fw9/fHvXv3UK9ePWzYsAESiUTbZWkUQxAREZEB+vTTT3Hy5ElYWVlh165dsLKy0nZJGscQREREZGA2btyI5cuXAwB++ukn1K1bV8sVaQdDEBERkQE5e/YsAgMDAQBffvkl+vXrp92CtIghiIiIyEDcv38f/fv3R3p6Ovr27YvZs2druyStYggiIiIyAOnp6RgwYADu3buH+vXr4+eff4ZUatgxwLD3noiIyADkXBH6zJkzqFChAvbs2WOQA6FzYwgiIiIq44KDgxESEgKpVIpt27ahtp7f/V1VGIKIiIjKsOPHj2Py5MkAgEWLFqFbt27aLUiHMAQRERGVUfHx8Rg0aBCysrLw3nvvYerUqdouSacwBBEREZVBL168QL9+/fDkyRM0r1MHa7/80uCuCP02DEFERERljBACo0aNQnR0NOwB7Pr7b1i4uwMhIdouTacwBBEREZUxX3/9NX777TeYANgBoCoAyOVAYCAgk2m3OB3CEERERFSG/P7775g1axYAYAWAdm8+mZUF3LihjbJ0EkMQERFRGREbG4uhQ4dCCIEPhw3D2NwXQzQyAjg9XoEhiIiIqAx4/PgxevfujeTkZHTo0AHL1q0D1q7NDj5A9s81awAXF+0WqkOMtV0AERERlU5GRgYGDRqEmzdvokaNGtixYwdMTU2BgADA1zf7FFjt2gxAuTAEERER6bGcW2KcOHECVlZW2LdvH+zs7F43cHFh+CkAT4cRERHpseXLl2PdunWQSqXYunUrPDw8tF2S3mAIIiIi0lMHDx7Exx9/DAD45ptv0KNHDy1XpF8YgoiIiPRQbGwshgwZArlcjoCAAMX9wajoGIKIiIj0TO6ZYCtXruQtMUqAIYiIiEiPZGRkYODAgXlnglGxMQQRERHpiZyZYCdPnsx/JhgVC0MQERGRnuBMMNViCCIiItIDnAmmegxBREREOu7SpUsYPHgwZ4KpGEMQERGRDrt//z569eqF58+fo2PHjpwJpkIMQURERDrqxYsX6N27N+7cuYO6deti586dnAmmQgxBREREOigrKwv/+9//cP78edjZ2eH333+Hra2ttssqU3QmBAUFBaFFixawsrKCvb09+vXrh+vXryu1EUJgzpw5cHZ2hoWFBby9vRETE6OliomIiNTn008/xZ49e2BmZoY9e/agVq1a2i6pzNGZEHTixAmMHz8eZ86cQWhoKDIzM9GtWze8ePFC0WbRokVYsmQJVqxYgcjISDg6OqJr1654/vy5FisnIiIqIpkMCA/P/lmIlStXYunSpQCAH3/8EW3atNFEdQZHIoQQ2i4iP48ePYK9vT1OnDiBDh06QAgBZ2dnTJ48GdOnTwcApKenw8HBAQsXLkRgYGCRtpucnAwbGxskJSXB2tpanbtARET0WkgIMHYsIJcDUimwdi0QEJCn2YEDB9C7d2/I5XJ8NW0aPlu4MP/tyWRAXBzg5ga4uKi5eO1Tx/e3zvQE5ZaUlAQAivOft27dQkJCArp166ZoY2Zmho4dO+L06dNaqZGIiKhIZLLXAQjI/hkYmKdHKDo6GoMHDIBcLscoADMXL84OT7mFhACurkDnztk/82tDb6WTIUgIgalTp6Jdu3Zo0KABACAhIQEA4ODgoNTWwcFB8Vx+0tPTkZycrLQQERFpVFzc6wCUIysLuHFD8fDevXvo5eeHlPR0dAKwGoBEiLxhqYiBit5OJ0PQhAkTcOnSJfzyyy95nst9bQQhRKHXSwgKCoKNjY1iqVq1qsrrJSIiKpSbW/YpsDcZGQG1awMAUlJS0KtXL8ju34c7gB0AFBPhc4WlogQqKhqdC0ETJ07E3r17ER4eDpc3znE6OjoCQJ5en4cPH+bpHXrTzJkzkZSUpFju3LmjnsKJiIgK4uKSPQbIyCj7sZERsGYN4OKCrKwsDB06FFFRUahcqRJ+l0hQ8c3XvhGWALw1UFHR6UwIEkJgwoQJ2LlzJ44dO4YaNWooPV+jRg04OjoiNDRUsS4jIwMnTpwodNS8mZkZrK2tlRYiIiKNCwgA4uOzZ4fFxwMBAYrhH/v27YO5uTn27t+Pmj/8kG9YUigkUFHxGGu7gBzjx4/Hli1bsGfPHlhZWSl6fGxsbGBhYQGJRILJkydjwYIFcHNzg5ubGxYsWIBy5cph6NChWq6eiIioCFxclMLKt99+i++++w4A8NNPP6FVq1ZAq1aAr2/26a3atfMPNwEBb29Db6UzU+QLGtezYcMGjBw5EkB2b9HcuXOxZs0aPHv2DC1btkRwcLBi8HRRcIo8ERHpgq1bt+Ldd98FkB2Gpk6dquWKdJs6vr91JgRpCkMQERFp2/Hjx+Hr64uMjAx89NFHWLp0KW+K+hYGdZ0gIiKisujKlSvo168fMjIyMGjQICxZsoQBSEsYgoiIiDREJpPBz88PSUlJaNeuHX7++WdIc8/0Io3hO09ERKQBSUlJ6NGjB2QyGdzd3bFnzx6Ym5truyyDxhBERESkZhkZGRgwYAAuX74MR0dHHDx4UHFbKNIehiAiIiI1ksvlGD16NI4dO4by5cvjwIEDqF69urbLIjAEERERqdVnn32GzZs3w9jYGDt27EDTpk21XRL9hyGIiIhIFWSy7KtBv3Ej0+DgYCxcuBAAsG7dOnTr1k1b1VE+dOaK0URERHorJOT1nd2lUmDtWvxmbY2JEycCAP7v//4PI0aM0HKRlBsvlkhERFQaMhng6qp0Z/cwqRQ9jI2RkZGBDz74ACtXruS1gEqJF0skIiLSNXFxSgHoPIB+crniYogrVqxgANJRDEFERESl4eaWfQoMQBwAPwApADq3bYtNmzbBKOdu76RzGIKIiIhKw8UFWLsW96RSdAPwCECzatWw68ABmJmZabs6KgRDEBERUSklDhyI7nXqIB5A7erVcTAykuNO9QBDEBERUSmkpqaid+/euHztGhwdHXHk2DHY29truywqAoYgIiKiEsrMzMTgwYNx6tQp2NjY4PDhw6hRo4a2y6IiYggiIiIqASEExo4di3379sHc3Bz79u1Do0aNtF0WFQNDEBERUQnMnDkTGzZsgJGREbZt24b27dtruyQqJoYgIiKiYlq0aJHidhhr165Fnz59tFwRlQRDEBERUTGsXr0a06dPBwAsXLgQo0eP1nJFVFIMQUREREW0adMmjBs3DkD23eGnTZum5YqoNBiCiIiIimDPnj0YOXIkhBCYMGEC5s+fr+2SqJQYgoiIiN7i6NGj8Pf3R1ZWFoYPH47ly5fzfmBlAEMQERFRISIiItC3b19kZGRgwIABCAkJgVTKr8+ygJ8iERFRAS5evIgePXrg5cuX6NatG7Zs2QJjY2Ntl0UqwhBERESUj+vXr6Nbt25ITExE27ZtsXPnTt4QtYxhCCIiIsrl9u3b8PHxwaNHj9CsWTP8/vvvsLS01HZZpGIMQURERG9ISEiAj48PZDIZ3N3dcejQIdjY2Gi7LFIDhiAiIqL/PHr0CF26dMGNGzdQvXp1HD16FJXT04HwcEAm03Z5pGIMQUREVPbIZMUOLk+ePIGPjw9iY2NRpUoVHD16FFUOHQJcXYHOnbN/hoSosWjSNIYgIiIqW0JCih1cEhMT0a1bN1y6dAmOjo44duwYapmZAWPHAnJ5diO5HAgMZI9QGcIQREREZYdMVrzgIpMhef9++HbqhAsXLqBy5coICwtDnTp1gLi419vJkZUF3Lih3n0gjeHFDoiIqOwoLLi4uCivDwlBypgx8BMCZwFUKl8eYWFhqF+/fvbzbm6AVKq8PSMjoHZtte4CaQ57goiIqOzICS5vyi+4yGR4OWYMegmB0wAqAAh9+RINK1Z83cbFBVi7Nvv1OdtZsyZvmCK9xRBERERlRxGDS+qVK+grBE4AsAZwBEBTuTzvqa6AACA+PnuQdXx89mMqM3g6jIiIypaAAMDXNzvQ1K6dJwClp6djwMKFOAqgPICDAFoABZ/qcnFh708ZxRBERERlTwHBJSMjA/7+/jh0/DjKmZri98xMtJHLearLQDEEERGRQcgJQHv37oW5uTn27t+PDnXrFthjRGUfQxAREZV56enpeOedd7Bv3z6YmZlh9+7d6NKlS/aTDD8GiyGIiIjKtPT0dAwaNAj79++Hubk59uzZg27dumm7LNIBDEFERFRmpaWlYeDAgThw4ADMzc2xb98++Pj4aLss0hEMQUREVCalpaWhf//+OHToECwsLLBv377Xp8CIwBBERERlUGpqKvr164cjR46gXLly2L9/Pzp16qTtskjH6NTFEk+ePInevXvD2dkZEokEu3fvVnp+5MiRkEgkSkurVq20UywREemk1NRU9O3bVxGADhw4wABE+dKpEPTixQs0btwYK1asKLBN9+7dcf/+fcVy4MABDVZIRES67OXLl+jTpw9CQ0NhaWmJgwcPomPHjtoui3SUTp0O8/Pzg5+fX6FtzMzM4OjoqKGKiIhIX7x48QJ9+vTBsWPHUL58eRw8eBDt2rXTdlmkw3SqJ6gojh8/Dnt7e9SpUwdjxozBw4cPtV0SERFpWXJyMrp3764IQIcOHWIAorfSqZ6gt/Hz88M777wDV1dX3Lp1C1988QU6d+6M8+fPw8zMLN/XpKenIz09XfE4OTlZU+USEZEGPH36FL6+vjh37hxsbGxw8OBBtG7dWttlkR7QqxA0ePBgxX83aNAAnp6ecHV1xe+//44BAwbk+5qgoCDMnTtXUyUSEZEGPXjwAF27dsXly5dhZ2eHI0eOoGnTptoui/SE3p0Oe5OTkxNcXV0RFxdXYJuZM2ciKSlJsdy5c0eDFRIRkbrIZDJ06NABly9fhpOTE06cOMEARMWiVz1BuT158gR37tyBk5NTgW3MzMwKPFVGRET66ebNm+jSpQvi4+NRrVo1hIWFoXbt2toui/SMToWglJQU3LhxQ/H41q1buHjxImxtbWFra4s5c+Zg4MCBcHJyQnx8PD777DPY2dmhf//+WqyaiIg06dq1a/Dx8cHdu3dRu3ZtHD16FK6urtoui/SQToWgc+fOKV3QaurUqQCAESNGYNWqVbh8+TJ++uknJCYmwsnJCZ06dcK2bdtgZWWlrZKJiEiDLl26BB8fHzx69Aj169fH0aNHCz0bQFQYiRBCaLsITUpOToaNjQ2SkpJgbW2t7XKIiKiIzp49i+7du+PZs2doWrs2Dm/fjsqNG2u7LNIQdXx/6/XAaCIiMgzh4eHw8fHBs2fP0ArAsRs3ULlZMyAkRNulkR5jCCIiIp22a9cudO/eHc+fP4c3gCMAKgCAXA4EBgIymTbLIz3GEERERDpr/fr1GDRoEDIyMtCvbVscBKA0CjQrC3hjQg1RcTAEERGRTlq8eDECAgIgl8sxevRo/LZpE8ylub62jIwATo2nEmIIIiIinSKEwPTp0zFt2jQAwKeffop169bBuHp1YO3a7OADZP9cswZwcdFesaTXdGqKPBERGbbMzEx88MEHCPlvwPPChQsVYQgAEBAA+PpmnwKrXZsBiEqFIYiIiHRC2o0bGDpqFHadOgWpVIq1a9ciICAgb0MXF4YfUgmGICIi0rrnwcHoN2ECjgEwBbD1gw/QP78ARKRCHBNERETqJ5MB4eH5Tmd/EBWFTv8FICsAhwD0X7OGU99J7RiCiIhIvUJCAFdXoHPn7J9vXODw77//RuuePXEegB2AcACdAE59J41gCCIiIvWRyYCxY7MvbAgoXeAwIiICbdq0wa3791ELQASA5jmv49R30gCGICIiUp+4uNcBKEdWFvb8+CM6d+6MJ0+eoEWLFji9ZAlqc+o7aRgHRhMRkfq4uQFSqVIQWiWRYMLs2ZDL5ejZsye2bdsGS0tL4J13OPWdNIo9QUREpD4uLooLHAoAn0kkGCcE5HI5xowZg927d2cHoJy23t4MQKQxDEFERFRyhcz6UggIQMbff2NE164IEgIAMG/ePKxZswbGxjwhQdrDEERERCVTyKyvNyUnJ6NnYCB+Dg2FkZER1q9fjy+++AISiUTDBRMpK1UIevjwIRISElRVCxER6YtCZn296c6dO2jfvj2OHj0KS0tL7N+/H6NGjdJCwUR5lSgEXbp0CR4eHnByckKVKlVQpUoVfP7553jx4oWq6yMiIl1UwKyvN6/tc+7cOXh5eeHSpUtwcHDAiRMn0L17dw0XSlSwEoWggIAAODg44NSpU4iKisL8+fNx8OBBeHp64tmzZ6qukYiIdE3OrK83vXFtn127dqFDhw5ISEhAw4YNcfbsWTRv3jyfDRFpj0SI/0apFYOlpSXOnz8Pd3d3xTohBN555x2Ym5tj06ZNKi1SlZKTk2FjY4OkpCRYW1truxwiIt0lk2X3+Li55T9jKyQk+xRYVpbi2j5i9Gh88803mD59OoQQ6N69O7Zt28bjLZWaOr6/SzQsP78eH4lEggULFjDpExGVBSEhr8f8SKXZ09xz39A0IADw9VVc2+eVgwPGBwbihx9+AACMHz8ey5Yt4www0llF7gnq2bMnGjdujCZNmiArKwvLly/Hnj174ODgoGgTGRmJgQMH4t9//1VbwaXFniAioreQybJne7055sfICIiPL/AaPomJiRg0aBDCwsIglUqxdOlSTJo0STP1kkHQak9Qw4YNceHCBWzYsAEPHjwAANSsWRP+/v6KYLRhwwYsXbpUJYUREZGWFDboOZ8QdPPmTfTs2RPXrl2DpaUltm7dil69emmoWKKSK9GYoAcPHiAqKgoXL15ULDdu3ICRkRHq1q2LS5cuqaNWlWBPEBHRWxSjJ+iPP/7AgAED8PjxY7i4uGDfvn1o0qSJRsslw6AzY4IcHBzQvXt3pamOqampiI6ORnR0tEoKIyIiLcm51UWuQc+5A9DatWsxfvx4ZGZmolmzZti3bx+cnZ21VDRR8ZWoJ0ifsSeIiKiIZLJ8b2j66tUrTJkyBcHBwQCAwYMHY/369ShXrpy2KiUDoDM9QUREZABcXPL0/jx+/Bj+/v4IDw8HAHz11VeYOXMmb4FBeokhiIiIiuTKlSvo06cPbt26hfLly2Pz5s3o06ePtssiKjHeQJWIiN5qz549aN26NW7duoWaNWvizJkzDECk9xiCiIioQEIIzJ8/H/369UNKSgo6deqEs2fPwsPDQ9ulEZUaT4cREVG+nj9/jlGjRmHHjh0AgAkTJmDJkiUwMTHRcmVEqsEQREREeVy7dg39+/fHtWvXYGJiguDgYIwZM0bbZRGpFEMQEREp2bFjB0aOHImUlBRUqVIF27dvR6tWrbRdFpHKcUwQEREBADIzMzFjxgwMGjQIKSkp6NixI86fP88ARGUWe4KIiAiPHj3Cu+++i7CwMADA1KlTsXDhQt4Bnso0/t9NRGTgIiMjMXDgQNy5cweWlpYICQnB4MGDtV0WkdrxdBgRkYESQmDdunVo164d7ty5Azc3N/z1118MQGQwGIKIiAxQSkoKhg8fjjFjxiAjIwN9+/ZFZGQkr/9DBoUhiIjIwFy5cgUtWrTApk2bYGRkhAULFmDnzp2wsbHRdmlEGsUxQUREBmTDhg0YP348UlNT4ezsjK1bt6J9+/baLotIK9gTRERkAF68eIGRI0di9OjRSE1NRbdu3RAVFcUARAaNIYiIqIyLjY2Fl5cXNm7cCKlUivnz5+PgwYOwt7fXdmlEWqVTIejkyZPo3bs3nJ2dIZFIsHv3bqXnhRCYM2cOnJ2dYWFhAW9vb8TExGinWCIiPfDTTz+hRYsWiI2NhaOjI8LCwjBr1ixIpTp1+CfSCp36K3jx4gUaN26MFStW5Pv8okWLsGTJEqxYsQKRkZFwdHRE165d8fz5cw1XSkSko2QyIDwcyVevYtiwYRgxYgRevnyJLl264OLFi/D29tZ2hUQ6Q6cGRvv5+cHPzy/f54QQWLZsGWbNmoUBAwYAADZu3AgHBwds2bIFgYGBmiyViEj3hIQAY8fiL7kcQwHcBCCVSjF79mzMmjULRkZG2q6QSKfoVE9QYW7duoWEhAR069ZNsc7MzAwdO3bE6dOnC3xdeno6kpOTlRYiojJHJkPWmDFYIJejLbIDkCuAk9u348svv2QAIsqH3oSghIQEAICDg4PSegcHB8Vz+QkKCoKNjY1iqVq1qlrrJCLSBtnp0/ARArMAZAEYDOAigLYVK2q1LiJdpjchKIdEIlF6LITIs+5NM2fORFJSkmK5c+eOukskItKoXbt2odHYsTgOwBLABgC/AKhgZATUrq3V2oh0md6EIEdHRwDI0+vz8OHDPL1DbzIzM4O1tbXSQkRUFrx8+RIffPABBgwYgGdJSfCsXh1RUilGApAYGQFr1gAuLtouk0hn6U0IqlGjBhwdHREaGqpYl5GRgRMnTqBNmzZarIyISPP++usvNG3aFGvWrIFEIsH06dPx5/XrcLt9GwgPB+LjgYAAbZdJpNN0anZYSkoKbty4oXh869YtXLx4Eba2tqhWrRomT56MBQsWwM3NDW5ubliwYAHKlSuHoUOHarFqIiLNycjIwP/93/9hwYIFkMvlcHZ2xk8//YQuXbpkN3BxYe8PURHpVAg6d+4cOnXqpHg8depUAMCIESPw448/Ytq0aUhNTcW4cePw7NkztGzZEkeOHIGVlZW2SiYi0piYmBgMHz4cFy5cAAAMHToUK1asQMXiDn6WyYC4OMDNjYGJDJpECCG0XYQmJScnw8bGBklJSRwfRER6ISsrS3GdtPT0dNja2mLVqlXw9/cv/sb+u5YQ5HJAKgXWruVpM9IL6vj+ZggiItJh8fHxGDFiBE6ePAkA6NGjB9atWwcnJ6fib0wmA1xdswNQDiOj7PFD7BEiHaeO72+9GRhNRGRIhBAICQlBw4YNcfLkSViWK4e1U6di/+rVJQtAQPYpsDcDEABkZQFvjMUkMiQMQUREOub27dvw9fXF+++/j5SUFLRzc8Ol1FSMWbIEkurVs09plYSbW/YpsDfxWkJkwBiCiIh0hFwuR3BwMBo0aIDQ0FCYm5tj8axZOH7jBmrmjFyQy4HAwOxTW8Xl4pI9BijnFhq8lhAZOIYgIiIdEBcXB29vb0yYMAEpKSlo3749oqOj8UmXLjDKPXSzNKewAgKyxwDxWkJEujVFnojI0GRlZWHp0qX44osvkJaWBktLSyxcuBAffvghpFIpUK5c9ims3IOZS3MKi9cSIgLAniAiIq2JiYlBmzZt8OmnnyItLQ0+Pj64cuUKxo8fnx2AAJ7CIlIj9gQREalLARclTEtLQ1BQEIKCgvDq1SvY2Njg22+/xejRo/O/IXRAAODrm30KrHZtBiAiFWFPEBGROoSEZF+Tp3Pn7J//zegKCwtDo0aNMG/ePLx69Qq9evVCTGgoAmrWhOTu3YK35+ICeHszABGpEHuCiIhUTSZ7fVVmAJDL8XDsWHx84AA27dwJAHBycsJ3332HgYmJkLRqxSs4E2kBe4KIiFTtjYsSygGsA+Aul2PTzp2QSCSYMGECrl69ikGtWkESGKgUlko8/Z2Iio09QUREqvbfRQlj5XIEAjj13+omHh5Ys349vLy8sldcuFDwFZx52otI7dgTRESkYikVKmCmry+aIDsAWQL41t8fkRcvvg5AAK/gTKRlDEFERCoihMDWrVvh7u6Orw8exCsAfdq0QeyZM5i6bRuMjXN1vnP6O5FW8XQYEZEKXL58GRMnTsSJEycAADVq1MCyZcvQp0+fwl/I6e9EWsMQRETaU8B1dPRJYmIiZs+ejeDgYGRlZcHCwgIzZ87Ep59+CnNz86JthFdwJtIKng4jIu0o4Do6+kIul2P9+vWoU6cOvvvuO2RlZWHgwIG4evUqvvjii6IHICLSGoYgItK8fK6jo09Tw0+fPo3WrVsjICAAjx49gru7O0JDQ7F9+3a4urpquzwiKiKGICLSvDeuo6NQmjuja8jNmzfh7++Ptm3b4uzZs7CyssI333yD6Oho+Pj4aLs8IiomjgkiIs3LmRquyjujq1FiYiIWLFiA5cuXIyMjA1KpFKNHj8a8efPg5OSk7fKIqITYE0REmqcnU8NfvXqF4OBg1K5dG4sXL0ZGRgZ8fHwQFRWFH374gQGISM+xJ4iItEOHp4YLIfD777/j008/xbVr1wAA9erVwzfffAM/P7/87/RORHqHIYiItEcHp4ZHRERg5syZiuv9VK5cGXPnzsWYMWPyXuyQiPQa/6KJiADExMRg1qxZ2LNnDwDAzMwMkydPxsyZM2FjY6Pl6ohIHRiCiMigxcfHY86cOfjpp58ghIBUKsWoUaMwe/ZsVK1aVdvlEZEaMQQRkUF6+PAhFixYgFWrViEjIwMAMHDgQMyfPx/u7u5aro6INIEhiIgMyrNnz7B06VIsXboUKSkpAIAuXbogKCgILVq0KPqGysAtP4gMHUMQERmEZ8+eYdmyZVi2bBmSk5MBAJ6enggKCir+hQ5DQl5f8VoqzZ7uHxCghqqJSJ0kQgih7SI0KTk5GTY2NkhKSoK1tbW2yyEiVSmgZyYxMVERfpKSkgAADRs2xOzZszFgwIDiT3eXybLvdZb7Qo/x8ewRIlIjdXx/syeIiPRfPj0ziQMHYvny5Vi6dKki/DRo0EARfqTSEl4rtrBbfjAEEekV9gQRkX7L1TPzDMB3EgmWWlkh6b/TXioJPwX8PgDsCSLSAHV8f/O2GUSk3/7rmbkP4FMA1QDMEQJJycnw8PDAr7/+iujoaAwaNKj0AQjQm1t+ENHb8XQYEem1f0xMsAjAjwAy/lvXCMCslSsxKDBQNcEnNx2+5QcRFR1DEBHppejoaHz99df49ddfkXNiqh2AmVIp/NasgeT99/O+SJXT2nXwlh9EVDwMQUSkN4QQOHnyJBYtWoQDBw4o1vfo0QMzAwLQzta24J4ZTmsnolw4MJqIdF5GRgZ+/fVXLF26FBcuXAAASKVS+Pv7Y8aMGWjcuHHhG+BgZiK9xynyRGRQnj59ijVr1mDFihW4d+8eAMDCwgLDhw/HJ598gtq1axdtQ5zWTkT5YAgiIp3z999/Y9myZdi4cSNevnwJAHC0t8eESZMQGBgIOzu74m3QzS37FFjunqCihigiKpMYgohIJ8jlcoSFheH777/Hvn37FOubAJgCYPCjRzBzdASKG4CA19PaAwOze4A4rZ2IwDFB2i6HyOA9e/YMGzduxMqVKxEXF6dY39vHB1PCwuAtBBQ3tijtOB6ZjNPaifQUxwQRUZkRFRWF4OBgbNmyBampqQAAa2trDB8+HBMnTkSdu3eBo0eVX1TacTxFmdbOu8MTGQyGICLSmLS0NGzfvh3BwcE4c+aMYn3Dhg0xfvx4/O9//0P58uWzV5Yrp/lxPJxGT2RQ9Oq2GXPmzIFEIlFaHB0dtV0WEb1FbGwsPv74Y1StWhXDhg3DmTNnYGJigiFDhuCPP/5AdHQ0AgMDXwcgQPO3p5DJXgcgIPtnYGD2eiIqk/SuJ8jDwwNH3+giN8o5QBJRwVR5iqco25LJkHLpEn6NjcW6nTsRERGheMrFxQWBgYF4//333/6PGE3enoLT6IkMjt6FIGNjY/b+EBWHKk/xvGVbQgj8NWsWQoKCsBVAyn/rjYyM0KtXLwQEBMDPzw/GxsU49Gjq9hScRk9kcPQuBMXFxcHZ2RlmZmZo2bIlFixYgJo1axbYPj09Henp6YrHycnJmiiTSDcUdIrH17f4waKQbSUYG2PLli1Yv2YNYv7+W/ESNwABEgmG//UXnJo3V80+qQun0RMZHL0KQS1btsRPP/2EOnXq4MGDB5g/fz7atGmDmJgYVKpUKd/XBAUFYe7cuRqulEhHqPIUT65tvQCwOysLPw8YgNDz5yH/7zkLAO8ACADQHoBECOD581LshAbx7vBEBkWvrxP04sUL1KpVC9OmTcPUqVPzbZNfT1DVqlV5nSAyDKq8Z5ZMhqxq1XBMCPwMYCeyg1CO1q1bY3jv3nh31izYvHlY4T26iEgFeJ2gXCwtLdGwYUOlC6zlZmZmBjMzMw1WRaRDVHCKRwiB6OhobNq0CVusrXE/KUnxXK3KlfHeuHF47733Xt/Hy96ep5SISC/odQhKT0/H1atX0b59e22XQqS7SnCKRwiBy5cv49dff8Wvv/6q9A8N2woVMLhDBwwbPRqt+vSBRCJRfjFPKRGRntCrEPTJJ5+gd+/eqFatGh4+fIj58+cjOTkZI0aM0HZpRLqtiDOsYmJiFMHn2rVrivXm5ubo0aMHhg0bhh49esDU1FQlv4+ISJv0KgTJZDK8++67ePz4MSpXroxWrVrhzJkzcHV11XZpRNn08JYLV69eVQSf2NhYxXpTU1P4+fnB398fvXv3hpWVlRarJCJSPb0KQVu3btV2CUQF05NbLsjlcvz111/YvXs39uzZg+vXryueMzExQffu3RXBx8bGRouVEhGpl17PDisJ3kWe1EKVs7DUIC0tDceOHcPu3buxd+9ePHjwQPGciYkJunbtCn9/f/Tt2xcVKlTQXqFERAXg7DAiXaWDt1x49uwZDhw4gD179uDgwYNISUlRPGdtbY0ePXqgX79+6N69e3aPj0wGREXp1ak8IqLSYAgiUoXi3HJBTeOGcqayHzx4EAcPHsTp06eRlZWleN7Z2Rl9+/ZFv3794O3trTy4WU9O5RERqRJDEJEqFPV6PCoOG0lJSTh69CgOHDiAQ4cO4d69e0rPe3h4oF+/fujbty+aN28OqVSadyOqvLUGEZEe4ZggIlWSyQq+Po4Kxg3J5XJcunQJhw8fxsGDB/Hnn38iMzNT8Xy5cuXQpUsX+Pn5wc/PD9WrV3/7RsPDgc6d81/v7V2kuoiI1I1jgoh0XWHXxynhuKFbt27h6NGjCAsLQ1hYGB4/fqz0fF0AfgB6TJmC9gsWwNzcvHg18+7pRGSgGIKINKWIYePx48c4duwYju7Zg6Ph4bh1/77S85aWlvBu1Qp+x47BTwjUzHniu++AqVOLfwqLd08nIgPFEESkKQWEjaflyuHU3r04efIkwsLCcPHiRaWXGQNo5eaGLkOHwsfHB15eXjD9808gLEx5+6WZjcZbXRCRAeKYICINu3/+PP7Yuxcnb9/GyQsXcPny5TxtGgLw+W9pD8Aq99ghHb8uERGRqnFMEJGeEULg9u3bOHnypGJ582akOdzd3dGhQwd07NgRXczM4DBokHKD3L08PIVFRFRqDEFEKpSWlobz588jIiICZ86cQURERJ5p6xKJBI0bN0aHDh3QoUMHtG/fHvb29q8byGRFG6jMU1hERKXCEKRuenhDzTJDze+9EAL//vsvIiIiFKEnKioKr169UmpnbGwMT09PRehp27Zt4bemKE4vD+/WTkRUYgxB6sSr8BafqoKLGt775ORkXLhwAZGRkYrgk5CQkKedvb09WrdurViaN28OS0vL4v0y9vIQEakdB0arCweuFp+qgktx3/t8gldKSgqioqJw7ty57OXMGfx982aelxobG6NJkyZo1aqVIvRUr14dEomk+HUTEVGBODBan+jgDTV1mipv3VCc9z4kBC/HjMFFIXBOIsG5Vq1wLjER165dQ37/PqgGwLNZM7QcPFjRy1OuXLni1UdERDqBIUhdeBXe4lFlaCzkvX/06BGio6Nx8eJFREdE4OLOnYgFIAcAIYCICMVLXFxc0Lx+fXiGhsJTCDQHUBkAoqOBPXsYZomI9BxDkLpwCnPxqDI0urgga/VqxH3wAS7K5YiWSBBdrx4uennhfq6rL+dwBOCZsyxYgOajRsHR0TH7/llHjig3Zo8eEVGZwBCkThzcWnSlCI3Jycm4dOkSoqOjFb08V65cQWpOoBICuHJF0b527dpo3LgxGlevjsZLlsBTCDjnPGlkBAwbBjg6Zj9mjx4RUZnFEKRunMJcdG8JjS9fvsTVq1cRExODK1euKH7++++/+W6uXLlyaNiwIZo0aZIdeho3RsOGDWFlZfW6Ub16hQcv9ugREZVZnB1GOic9PR3Xr1/PE3Zu3ryZ72BlIHv8Tk7Qady4MZo0aYJatWrByMjo7b9QJnt7b11R2hARkdpwdhjpt1xT0V+9eoUbN27kCTtxcXHIysrKdxN2dnZoUKkSPK5fRwMAHhIJPJYuhe1HH5W8rqL01rFHj4iozGEIIrXLysrCzYULEfv557giBGIAXKlSBdcfPUJGRka+r7GxsUGDBg3g4eGh9NM+IyP7GkA5hAA+/hgYOJAhhYiIioUhiFQmMzMT//zzD2JjYxEbG4uYmBjExsbi2rVrSE9PV2589y4AwNLSEh4eHnnCjrOzc/4XHAwP5/WXiIhIJRiCDFUpbk+Rcxord9i5fv16gT075gDqAfAAsk9jAWjwyy+o5u8PqVRa9F/O2VpERKQiDEH6RMP31crIyEBcXFyesPP333/nuUlojnLlyqFevXrw8PBA/fr1s5eKFVG9QwcYvTmo2cgIaNcu+/cXB2drERGRinB2mL5Q43210qVS/H3oEGKfPlUKO3FxccjMzMx3M5aWlqhfv75S2PHw8EC1atXy79kJCckbXEpzQ1PO1iIiMijq+P5mCNIHKroZa1ZWFv7ZvBmXR4zAFQCXAVwBcANA/nOxACsrK+Venf/CjouLS/FOY+XsB4MLERGVAKfIG6pi3ldLCIEHDx7g8uXLSktsbCxSU1Pz/RU21tbwaNBAKejUr18fVapUUd0d0TnNnIiIdAhDkD4oZDBwSkoKrly5kifwPHnyJN9NWVhYwMPBAQ1v30ZDIdBAKoXHokVwmjpVdWGHiIhIDzAE6YP/BgM/HDsWUXI5LkokiGrWDFFduiAuLi7fqyhLpVLUrl0bDRs2VFpq1qyZfRVlnpoiIiIDxxCkg4QQuHXrFi5evIioqCjFcu/NG4JGRiraOzo65gk79evXh4WFRcG/pKinplQ1I42IiEjHMATlR4Nf/EIIxMfHIzIyEmfPnsW5c+dw8eJFJCUl5WkrkUjg5uaGJk2aoGnTporF3t5ePcWpakYaERGRDuLssNzU/MX/8OFDREZGKkJPZGQkHj9+nKediYkJGjRooBR2GjVqpHwH9IKoIsSpaEYaERGRKnB2mLrJZK8DEJD9MzAQ8PUt0Rd/Wloazp07hzNnzigCT3x8fJ52JiYmaNy4MVq0aIEWLVqgWbNmqFevHkxNTYu/D6oKccWZkcZTZkREpIcMNwTdvQvkTpLFnIqe28OHD/Hnn38qlvPnz+d7ZWV3d3d4eXmhRYsW8PLyQqNGjWBubl6avcmmyhBX1NtT8JQZERHpKcMNQR4ewA8/KH9hF+O+VHK5HNeuXVMKPTdu3MjTzsHBAW3atIGXlxe8vLzQvHlz2NjYqGOPSh3ilBTl9hQq7jkjIiLSJMMNQULk/cIu5ItfCIHY2FiEh4cjPDwcJ06cyHMtHolEAg8PD7Rt21ax1KhRQ3PX31H1zUUDArLfn4Km0qsydBEREWmY4YYgIP8v7P+++EVcHK5LJAi/ehXh/v44fvw4Hj16pPRyCwsLtGzZUhF4WrdujQoVKmh2H96kjpuLFjaVnnd0JyIiPWbYISjXF/a9e/dw5MgRHDlyBOHh4UhISFBqbmFhgXbt2qFTp07w9vaGp6cnTExMVFOLqgYXv633RpV4R3ciItJjhjtFXiqFaXAwTtWujcOHD+Pw4cO4fPmyUlszMzO0adMGnTp1QqdOneDl5VWyGVtvo++Di3n1aSIiUjPeRV4Fct5En/bt8ee5c0o3FJVIJPD09ISvry98fHzQsmVL1czaKgyvx0NERPRWvE6QCh394w8AgJOTE3x9fRXBx87OTrOFcHAxERGRVki1XUBJrFy5EjVq1IC5uTmaN2+OP/4LNMUxb948REdH4+7du9iwYQOGDBmi+QAEvB5c/CYOLiYiIlI7vQtB27Ztw+TJkzFr1ixERUWhffv28PPzw7///lus7Xz00Udo1KiR5qavFyRncLGRUfZjDi4mIiLSCL0bE9SyZUs0a9YMq1atUqyrV68e+vXrh6CgoLe+Xh3nFFWCg4uJiIgKZPBjgjIyMnD+/HnMmDFDaX23bt1w+vTpfF+Tnp6O9PR0xePk5GS11lhihV2Ph4iIiFROr06HPX78GFlZWXBwcFBa7+DgkOeaPjmCgoJgY2OjWKpWraqJUomIiEjH6VUIypF7HI8QosCxPTNnzkRSUpJiuXPnjiZKJCIiIh2nV6fD7OzsYGRklKfX5+HDh3l6h3KYmZnBzMxME+URERGRHtGrniBTU1M0b94coaGhSutDQ0PRpk0bLVVFRERE+kiveoIAYOrUqRg2bBg8PT3RunVrrF27Fv/++y8++OADbZdGREREekTvQtDgwYPx5MkTzJs3D/fv30eDBg1w4MABuLq6ars0IiIi0iN6d52g0tLZ6wQRERFRgdTx/a1XY4KIiIiIVIUhqDRkMiA8PPsnERER6RWGoJIKCQFcXYHOnbN/hoRouyIiIiIqBoagkpDJgLFjAbk8+7FcDgQGskeIiIhIjzAElURc3OsAlCMrK/sGqERERKQXGIJKws0NkOZ664yMsu8AT0RERHqBIagkXFyAtWuzgw+Q/XPNGt4FnoiISI/o3cUSdUZAAODrm30KrHZtBiAiIiI9wxBUGi4uDD9ERER6iqfDiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkPQqBFWvXh0SiURpmTFjhrbLIiIiIj1krO0CimvevHkYM2aM4nH58uW1WA0RERHpK70LQVZWVnB0dNR2GURERKTn9Op0GAAsXLgQlSpVQpMmTfDVV18hIyND2yURERGRHtKrnqCPPvoIzZo1Q8WKFXH27FnMnDkTt27dwrp16wp8TXp6OtLT0xWPk5KSAADJyclqr5eIiIhUI+d7Wwihuo0KLZs9e7YAUOgSGRmZ72u3b98uAIjHjx+XavtcuHDhwoULF/1Y/vnnH5VlEIkQqoxUxff48WM8fvy40DbVq1eHubl5nvV3796Fi4sLzpw5g5YtW+b72tw9QYmJiXB1dcW///4LGxub0hWvR5KTk1G1alXcuXMH1tbW2i5HY7jf3G9DwP3mfhuCpKQkVKtWDc+ePUOFChVUsk2tnw6zs7ODnZ1diV4bFRUFAHByciqwjZmZGczMzPKst7GxMaj/eXJYW1tzvw0I99uwcL8Ni6Hut1SquuHMWg9BRRUREYEzZ86gU6dOsLGxQWRkJKZMmYI+ffqgWrVq2i6PiIiI9IzehCAzMzNs27YNc+fORXp6OlxdXTFmzBhMmzZN26URERGRHtKbENSsWTOcOXOm1NsxMzPD7Nmz8z1FVpZxv7nfhoD7zf02BNxv1e231gdGExEREWmD3l0skYiIiEgVGIKIiIjIIDEEERERkUFiCCIiIiKDVCZD0MqVK1GjRg2Ym5ujefPm+OOPPwptf+LECTRv3hzm5uaoWbMmVq9eraFKVas4+71z50507doVlStXhrW1NVq3bo3Dhw9rsFrVKe7nnePPP/+EsbExmjRpot4C1aS4+52eno5Zs2bB1dUVZmZmqFWrFtavX6+halWnuPu9efNmNG7cGOXKlYOTkxNGjRqFJ0+eaKja0jt58iR69+4NZ2dnSCQS7N69+62vKQvHtOLud1k5ppXk886hz8e0kuy3Ko5pZS4Ebdu2DZMnT8asWbMQFRWF9u3bw8/PD//++2++7W/duoUePXqgffv2iIqKwmeffYZJkyZhx44dGq68dIq73ydPnkTXrl1x4MABnD9/Hp06dULv3r0VV+HWF8Xd7xxJSUkYPnw4unTpoqFKVask++3v74+wsDCEhITg+vXr+OWXX+Du7q7BqkuvuPt96tQpDB8+HAEBAYiJicFvv/2GyMhIvP/++xquvORevHiBxo0bY8WKFUVqX1aOacXd77JyTCvufufQ92NaSfZbJcc0ld2FTEd4eXmJDz74QGmdu7u7mDFjRr7tp02bJtzd3ZXWBQYGilatWqmtRnUo7n7np379+mLu3LmqLk2tSrrfgwcPFp9//rmYPXu2aNy4sRorVI/i7vfBgweFjY2NePLkiSbKU5vi7vfixYtFzZo1ldZ99913wsXFRW01qhMAsWvXrkLblJVj2puKst/50cdj2puKs9/6fkx7U1H2W1XHtDLVE5SRkYHz58+jW7duSuu7deuG06dP5/uaiIiIPO19fX1x7tw5vHr1Sm21qlJJ9js3uVyO58+fw9bWVh0lqkVJ93vDhg34559/MHv2bHWXqBYl2e+9e/fC09MTixYtQpUqVVCnTh188sknSE1N1UTJKlGS/W7Tpg1kMhkOHDgAIQQePHiA7du3o2fPnpooWSvKwjFNFfTxmFZS+n5MKwlVHdP05orRRfH48WNkZWXBwcFBab2DgwMSEhLyfU1CQkK+7TMzM/H48eNCb86qK0qy37l9++23ePHiBfz9/dVRolqUZL/j4uIwY8YM/PHHHzA21s///Uuy3zdv3sSpU6dgbm6OXbt24fHjxxg3bhyePn2qN+OCSrLfbdq0webNmzF48GCkpaUhMzMTffr0wffff6+JkrWiLBzTVEEfj2klURaOaSWhqmNameoJyiGRSJQeCyHyrHtb+/zW67ri7neOX375BXPmzMG2bdtgb2+vrvLUpqj7nZWVhaFDh2Lu3LmoU6eOpspTm+J83nK5HBKJBJs3b4aXlxd69OiBJUuW4Mcff9Sr3iCgePsdGxuLSZMm4csvv8T58+dx6NAh3Lp1Cx988IEmStWasnJMKyl9P6YVVVk7phWHqo5pZSo22tnZwcjIKM+/Ch8+fJjnX0Y5HB0d821vbGyMSpUqqa1WVSrJfufYtm0bAgIC8Ntvv8HHx0edZapccff7+fPnOHfuHKKiojBhwgQA2X9IQggYGxvjyJEj6Ny5s0ZqL42SfN5OTk6oUqUKbGxsFOvq1asHIQRkMhnc3NzUWrMqlGS/g4KC0LZtW3z66acAgEaNGsHS0hLt27fH/Pnzy2SvSFk4ppWGPh/TiqusHNNKQlXHtDLVE2RqaormzZsjNDRUaX1oaCjatGmT72tat26dp/2RI0fg6ekJExMTtdWqSiXZbyD7X0sjR47Eli1b9HKMRHH329raGpcvX8bFixcVywcffIC6devi4sWLaNmypaZKL5WSfN5t27bFvXv3kJKSolj3999/QyqVwsXFRa31qkpJ9vvly5eQSpUPc0ZGRgBe946UNWXhmFZS+n5MK66yckwrCZUd00o1rFoHbd26VZiYmIiQkBARGxsrJk+eLCwtLUV8fLwQQogZM2aIYcOGKdrfvHlTlCtXTkyZMkXExsaKkJAQYWJiIrZv366tXSiR4u73li1bhLGxsQgODhb3799XLImJidrahRIp7n7npq8zKYq738+fPxcuLi5i0KBBIiYmRpw4cUK4ubmJ999/X1u7UCLF3e8NGzYIY2NjsXLlSvHPP/+IU6dOCU9PT+Hl5aWtXSi258+fi6ioKBEVFSUAiCVLloioqChx+/ZtIUTZPaYVd7/LyjGtuPudm74e04q736o6ppW5ECSEEMHBwcLV1VWYmpqKZs2aiRMnTiieGzFihOjYsaNS++PHj4umTZsKU1NTUb16dbFq1SoNV6waxdnvjh07CgB5lhEjRmi+8FIq7uf9Jn09YAhR/P2+evWq8PHxERYWFsLFxUVMnTpVvHz5UsNVl15x9/u7774T9evXFxYWFsLJyUn873//EzKZTMNVl1x4eHihf6tl9ZhW3P0uK8e0knzeb9LXY1pJ9lsVxzSJEGW0T5iIiIioEGVqTBARERFRUTEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCKiMmHevHlo2LAhLC0t4eDggA8//BCvXr3SdllEpMOMtV0AEVFpCSGQlZWFNWvWoEqVKoiNjcXw4cPRqFEjfPjhh9ouj4h0FG+gSkRl0tChQ1G5cmUsX75c26UQkY7i6TAi0nu3b9/GhAkT0KBBA1SsWBHly5fHr7/+ChcXF22XRkQ6jCGIiPTa48eP4eXlhcePH2PJkiU4deoUIiIiYGRkhCZNmmi7PCLSYRwTRER67cCBA8jMzMQvv/wCiUQCAAgODkZGRgZDEBEViiGIiPSara0tkpOTsXfvXtSvXx/79u1DUFAQqlSpgsqVK2u7PCLSYRwYTUR6TQiBDz/8EFu2bIGFhQXee+89pKWl4fbt29i/f7+2yyMiHcYQRERERAaJA6OJiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBun/AXchZz7PPXf+AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYPElEQVR4nO3dd1gUV9sG8HtpCyKgiDRRREWxNxQsKFZAItbYEltQscWWfHYj+qokMfHVxJ6gJrHH2AuKiiiKr2jsGisYMYCdJqyU8/1BWF2alIXdZe/fde1FdvbM7DO7Mtw5c86MRAghQERERKRldFRdABEREZEqMAQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQSR2nF3d4e7u7uqyyi2ESNGoGLFioVqW7NmTYwYMaJU65FIJPD39y/V9/iQN2/ewN/fH6dOnVJpHZrixIkTcHZ2hrGxMSQSCfbu3YtNmzZBIpEgKipK3m7r1q1Yvnx5qdQwd+5c1KhRA3p6eqhUqVKR1x8xYgRq1qyp9LrUTc2aNSGRSHI9xo4dq+rSqBD0VF0AUU6rV69WdQllZs+ePTA1NVV1GaXuzZs3WLBgAQBodMAtC0IIDBgwAHXr1sX+/fthbGyMevXqIT09HeHh4bCxsZG33bp1K27cuIEpU6YotYZ9+/Zh8eLFmDNnDry8vCCVSpW6/fKmXbt2+O677xSWWVlZqagaKgqGIFI7DRo0UHUJZaZ58+aqLoGUKCUlBYaGhpBIJMXexj///IOXL1+iT58+6NKli8JrVatWLWmJhXLjxg0AwKRJk2BpaVkm76ksyvgOiqpSpUpwdXUts/cj5eHpMCoRf39/SCQS3Lx5E4MHD4aZmRmsrKzw2WefIT4+XqFtamoqZs2aBQcHBxgYGKBatWqYMGECXr9+rdAur9Nha9asQdOmTVGxYkWYmJjAyckJs2fPBgBERUVBT08PAQEBueo7ffo0JBIJfv/99wL34/Xr1/jiiy9Qq1YtSKVSWFpaokePHvjrr78AAKdOnYJEIsl1OicqKgoSiQSbNm3Ktc2bN2+iS5cuMDY2RtWqVTFx4kS8efNGoU1ep8M+VIsyxMbGws/PD3Z2djAwMICDgwMWLFiA9PR0hXYLFiyAi4sLzM3NYWpqihYtWiAwMBA577t88uRJuLu7o0qVKjAyMkKNGjXQr18/vHnzBlFRUfI/3gsWLJCfLvjQacA3b97gyy+/hIODAwwNDWFubg5nZ2ds27ZNod2mTZtQr149SKVS1K9fH7/++muuUzFF+f4uXryIQYMGoWbNmjAyMkLNmjUxePBgPHr0KNf7SiQSHDt2DJ999hmqVq2KChUqQCaTAQB27NiBNm3awNjYGBUrVoSHhwcuX75c4D77+/vDzs4OADBjxgxIJBL5fuQ8Hebu7o5Dhw7h0aNHCqdhCpKZmYlvv/0WTk5O8n9bw4YNQ3R0tLxNzZo1MXfuXABZvRmFOZ2a13eQl7dv32LRokXy969atSpGjhyJZ8+eKbSTyWT44osvYG1tjQoVKqBDhw64dOlSrt8XZX0HFy9ehI+PD8zNzWFoaIjmzZtj586dBe4zlQ/sCSKl6NevHwYOHAhfX19cv34ds2bNAgBs2LABQFYXf+/evXHixAnMmjULbm5uuHbtGubPn4/w8HCEh4fn2+W+fft2jB8/Hp9//jm+++476Ojo4P79+7h16xaArIO2j48P1q5di+nTp0NXV1e+7sqVK2Fra4s+ffrkW3tiYiLat2+PqKgozJgxAy4uLkhKSsLp06cRExMDJyenIn8eaWlp6NGjB/z8/DBz5kycO3cOixYtwqNHj3DgwIES1zJixAj88ssviIyMLPK4i9jYWLRu3Ro6Ojr46quvULt2bYSHh2PRokWIiorCxo0b5W2joqLg5+eHGjVqAADOnz+Pzz//HE+ePMFXX30lb+Pt7Q03Nzds2LABlSpVwpMnTxAUFIS3b9/CxsYGQUFB8PT0hK+vL0aNGgXgw70a06ZNw2+//YZFixahefPmSE5Oxo0bN/DixQt5m02bNmHkyJHo1asXvv/+e8THx8Pf3x8ymQw6OsX7f7yoqCjUq1cPgwYNgrm5OWJiYrBmzRq0atUKt27dgoWFhUL7zz77DN7e3vjtt9+QnJwMfX19LFmyBHPnzsXIkSMxd+5cvH37FkuXLoWbmxsuXLiQb2/nqFGj0LRpU/Tt2xeff/45hgwZku/vxerVqzFmzBg8ePAAe/bsKdS+jRs3DuvXr8fEiRPx0UcfISoqCvPmzcOpU6fw559/wsLCAnv27MGqVasQGBiIoKAgmJmZyYNZXgr7HWRmZqJXr144c+YMpk+fjrZt2+LRo0eYP38+3N3dcfHiRRgZGQEARo4ciR07dmD69Ono3Lkzbt26hT59+iAhISHPGkryHYSEhMDT0xMuLi5Yu3YtzMzMsH37dgwcOBBv3rwp1Ji906dPw8TEBKmpqXB0dISvry+mTJmicCwiNSWISmD+/PkCgPj2228Vlo8fP14YGhqKzMxMIYQQQUFBebbbsWOHACDWr18vX9axY0fRsWNH+fOJEyeKSpUqFVhHSEiIACD27NkjX/bkyROhp6cnFixYUOC6CxcuFABEcHDwB7cfEhKisDwyMlIAEBs3bpQvGz58uAAgVqxYodB28eLFAoAICwuTL7O3txfDhw8vUi1CCPHZZ58JXV1dERUVVWA7IYQAIObPny9/7ufnJypWrCgePXqk0O67774TAMTNmzfz3E5GRoZIS0sTCxcuFFWqVJF/t7t27RIAxJUrV/Kt4dmzZ7nq+JBGjRqJ3r175/t6RkaGsLW1FS1atJDXIoQQUVFRQl9fX9jb28uXFeX7yyk9PV0kJSUJY2Njhe9048aNAoAYNmyYQvu///5b6Onpic8//1xheWJiorC2thYDBgwoYK/f1bR06VKF5dnvFxkZKV/m7e2tsJ8FuX37tgAgxo8fr7D8f//7nwAgZs+eLV+W/Xv97NmzArdZlO9g27ZtAoD4448/FLYREREhAIjVq1cLIYS4efOmACBmzJih0C57/fd/X5TxHTg5OYnmzZuLtLQ0hbYfffSRsLGxERkZGQV+BuPHjxcbNmwQoaGhYu/eveKTTz4RAMSnn35a4HqkHng6jJTCx8dH4XmTJk2QmpqKp0+fAsg6XQIg1/9VffzxxzA2NsaJEyfy3Xbr1q3x+vVrDB48GPv27cPz589ztXF3d0fTpk2xatUq+bK1a9dCIpFgzJgxBdZ+5MgR1K1bF127di2wXVF98sknCs+HDBkCIOv/PEtaS2BgINLT02Fvb1/kug4ePIhOnTrB1tYW6enp8oeXlxcAIDQ0VN725MmT6Nq1K8zMzKCrqwt9fX189dVXePHihfy7bdasGQwMDDBmzBj88ssvePjwYZHqeb+G9PR0+am21q1b48iRI5g5cyZOnTqFlJQUhfXu3LmDf/75B0OGDFE4DWRvb4+2bdsW+XPJlpSUhBkzZqBOnTrQ09ODnp4eKlasiOTkZNy+fTtX+379+ik8P3r0KNLT0zFs2DCF/TI0NETHjh1VNkMu+99dzt/B1q1bo379+gX+DuanKN/BwYMHUalSJfTs2VPhc2nWrBmsra3ln0v2v78BAwYorN+/f3/o6eV98qK438H9+/fx119/yX9X32/bo0cPxMTE4M6dOwV+BqtWrcLIkSPRoUMH9OrVC5s3b8bEiROxefPmD57+JNVjCCKlqFKlisLz7C787D9cL168gJ6eXq5TIBKJBNbW1gqnOHIaOnQoNmzYgEePHqFfv36wtLSEi4sLgoODFdpNmjQJJ06cwJ07d5CWloaffvoJ/fv3h7W1dYG1P3v2rMDu/uLQ09PL9Zlk11HQvpZGLTnFxcXhwIED0NfXV3g0bNgQAOQh88KFC+jevTsA4KeffsLZs2cRERGBOXPmAHj33dauXRvHjx+HpaUlJkyYgNq1a6N27dpYsWLFB2uJiorKVUf2H8EffvgBM2bMwN69e9GpUyeYm5ujd+/euHfvHoB3n2Ne3++HvvOCDBkyBCtXrsSoUaNw9OhRXLhwAREREahatWquIAZAYbYWkPX5AkCrVq1y7duOHTvyDPFlIfvzylkvANja2hb47/JD2yzMdxAXF4fXr1/DwMAg1+cSGxsr/1yyt5lzdlVev1PZivsdZLf78ssvc7UbP348ABTr+/r0008BZJ0+JvXGMUFUJqpUqYL09HQ8e/ZMIQgJIRAbG4tWrVoVuP7IkSMxcuRIJCcn4/Tp05g/fz4++ugj3L17V94bMmTIEMyYMQOrVq2Cq6srYmNjMWHChA/WVrVqVYWBoXkxNDQEAPmAy2z5HSDT09Px4sULhYN2bGwsgNyBsai1lJSFhQWaNGmCxYsX5/m6ra0tgKyxWPr6+jh48KB8/wFg7969udZxc3ODm5sbMjIycPHiRfz444+YMmUKrKysMGjQoHxrsbW1RUREhMKyevXqAQCMjY2xYMECLFiwAHFxcfJeoZ49e+Kvv/6Sf47Zn+v7ci4r7PcXHx+PgwcPYv78+Zg5c6Z8uUwmw8uXL/Pch5yDkbPHDO3atatYPXWlJfvziomJyRW0//nnn1xjnYqyzcJ8BxYWFqhSpQqCgoLy3JaJiYnCNuPi4lCtWjX569m/U3kp7neQ3W7WrFno27dvnm2y/z0WRXZvZnHHpVHZ4TdEZSJ7qu/mzZsVlv/xxx9ITk7ONRU4P8bGxvDy8sKcOXPw9u1b3Lx5U/6aoaGh/JTMsmXL0KxZM7Rr1+6D2/Ty8sLdu3flp+zykj34+Nq1awrL9+/fn+86W7ZsUXi+detWAAVfJ6cwtZTURx99hBs3bqB27dpwdnbO9cgOQRKJBHp6egqDO1NSUvDbb7/lu21dXV24uLjIT0v++eefAHL3DGYzMDDI9f7ZfwzfZ2VlhREjRmDw4MG4c+cO3rx5g3r16sHGxgbbtm1TmK326NEjnDt3TmH9wn5/EokEQohcg5F//vlnZGRk5Lvf7/Pw8ICenh4ePHiQ5+fr7OxcqO0UhlQqzbN3Ki+dO3cGkPt3MCIiArdv3y707+D7ivIdfPTRR3jx4gUyMjLy/Eyyw0aHDh0AZM3set+uXbtyzV7MT2G/g3r16sHR0RFXr17Nt11e/x4/JHt2HKfNqz/2BFGZ6NatGzw8PDBjxgwkJCSgXbt28tlhzZs3x9ChQ/Ndd/To0TAyMkK7du1gY2OD2NhYBAQEwMzMLFcP0vjx4/Htt9/i0qVL+PnnnwtV25QpU7Bjxw706tULM2fOROvWrZGSkoLQ0FB89NFH6NSpE6ytrdG1a1cEBASgcuXKsLe3x4kTJ7B79+48t2lgYIDvv/8eSUlJaNWqlXx2mJeXF9q3b1+iWgDA19cXv/zyCx48eFDk3oaFCxciODgYbdu2xaRJk1CvXj2kpqYiKioKhw8fxtq1a2FnZwdvb28sW7YMQ4YMwZgxY/DixQt89913uQLC2rVrcfLkSXh7e6NGjRpITU2VzwrMHttkYmICe3t77Nu3D126dIG5uTksLCwKnNnm4uKCjz76CE2aNEHlypVx+/Zt/Pbbb2jTpg0qVKgAAPjPf/6DUaNGoU+fPhg9ejRev34Nf3//XKdiCvv9mZqaokOHDli6dKm8vtDQUAQGBhb6qsk1a9bEwoULMWfOHDx8+BCenp6oXLky4uLicOHCBXkPlzI0btwYu3fvxpo1a9CyZUvo6OjkG7Lq1auHMWPG4Mcff4SOjg68vLzks8OqV6+OqVOnFvn9dXR0Cv0dDBo0CFu2bEGPHj0wefJktG7dGvr6+oiOjkZISAh69eqFPn36oGHDhhg8eDC+//576OrqonPnzrh58ya+//57mJmZFap3pSjfwbp16+Dl5QUPDw+MGDEC1apVw8uXL3H79m38+eefBV5eY+vWrdi9eze8vb1hb2+P169f4/fff8f27dsxYsQING3atMifKZUxVY7KJs2X3yySvGaypKSkiBkzZgh7e3uhr68vbGxsxLhx48SrV68U1s05O+yXX34RnTp1ElZWVsLAwEDY2tqKAQMGiGvXruVZk7u7uzA3Nxdv3rwp9H68evVKTJ48WdSoUUPo6+sLS0tL4e3tLf766y95m5iYGNG/f39hbm4uzMzMxKeffiouXryY5+wwY2Njce3aNeHu7i6MjIyEubm5GDdunEhKSlJ435yzwwpbS/YMtPc/3/wgj1lZz549E5MmTRIODg5CX19fmJubi5YtW4o5c+Yo1LhhwwZRr149IZVKRa1atURAQIAIDAxUeO/w8HDRp08fYW9vL6RSqahSpYro2LGj2L9/v8J7Hj9+XDRv3lxIpdJcs3zyMnPmTOHs7CwqV64sf/+pU6eK58+fK7T7+eefhaOjozAwMBB169YVGzZsEMOHD881a6qw3190dLTo16+fqFy5sjAxMRGenp7ixo0bub6r7H/jEREReda/d+9e0alTJ2FqaiqkUqmwt7cX/fv3F8ePHy9wv4syO+zly5eif//+olKlSkIikYgPHdIzMjLEN998I+rWrSv09fWFhYWF+PTTT8Xjx48V2hV2dli2wn4HaWlp4rvvvhNNmzYVhoaGomLFisLJyUn4+fmJe/fuydulpqaKadOmCUtLS2FoaChcXV1FeHi4MDMzE1OnTs31mZT0O7h69aoYMGCAsLS0FPr6+sLa2lp07txZrF27tsD9Dg8PF126dBHW1tZCX19fVKhQQbRq1UqsXr36g7PKSD1IhMhx1TMiDfb06VPY29vj888/x7fffqvqckhFRowYgVOnTincZ4s027lz59CuXTts2bJFPtOSqKR4OozKhejoaDx8+BBLly6Fjo4OJk+erOqSiKiYgoODER4ejpYtW8LIyAhXr17F119/DUdHx3wHMBMVB0MQlQs///wzFi5ciJo1a2LLli0Ks0qISLOYmpri2LFjWL58ORITE2FhYQEvLy8EBAQozFQkKimeDiMiIiKtpDZT5NesWYMmTZrA1NQUpqamaNOmDY4cOSJ/XQgBf39/2NrawsjICO7u7grTo4mIiIiKQm1CkJ2dHb7++mtcvHgRFy9eROfOndGrVy950Pn222+xbNkyrFy5EhEREbC2tka3bt2QmJio4sqJiIhIE6n16TBzc3MsXboUn332GWxtbTFlyhTMmDEDQNYVXK2srPDNN9/Az89PxZUSERGRplHLgdEZGRn4/fffkZycjDZt2iAyMhKxsbHy+xgBWVdK7dixI86dO1dgCJLJZAqXys/MzMTLly9RpUqVXJdaJyIiIvUkhEBiYiJsbW2VdksStQpB169fR5s2bZCamoqKFStiz549aNCggfzy6zlvqGdlZYVHjx4VuM2AgAClXZ2ViIiIVOvx48dKu9G0WoWgevXq4cqVK3j9+jX++OMPDB8+XH5HaSD3TfKEEB/szZk1axamTZsmfx4fH48aNWrg8ePHMDU1Ve4OEBERUalISEhA9erVi3U/t/yoVQgyMDBAnTp1AADOzs6IiIjAihUr5OOAYmNjYWNjI2//9OnTXL1DOUml0lz3OgIgn4VGREREmkOZQ1nUZnZYXoQQkMlkcHBwgLW1NYKDg+WvvX37FqGhoWjbtq0KKyQiIiJNpTY9QbNnz4aXlxeqV6+OxMREbN++HadOnUJQUBAkEgmmTJmCJUuWwNHREY6OjliyZAkqVKjAe8gQERFRsahNCIqLi8PQoUMRExMDMzMzNGnSBEFBQejWrRsAYPr06UhJScH48ePx6tUruLi44NixY0o9N0hERETaQ62vE1QaEhISYGZmhvj4eI4JIiIi0hCl8fdbrccEEREREZUWhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSmoTggICAtCqVSuYmJjA0tISvXv3xp07dxTajBgxAhKJROHh6uqqooqJiIhIk6lNCAoNDcWECRNw/vx5BAcHIz09Hd27d0dycrJCO09PT8TExMgfhw8fVlHFREREpMn0VF1AtqCgIIXnGzduhKWlJS5duoQOHTrIl0ulUlhbW5d1eURERFTOqE1PUE7x8fEAAHNzc4Xlp06dgqWlJerWrYvRo0fj6dOnBW5HJpMhISFB4UFEREQkEUIIVReRkxACvXr1wqtXr3DmzBn58h07dqBixYqwt7dHZGQk5s2bh/T0dFy6dAlSqTTPbfn7+2PBggW5lsfHx8PU1LTU9oGIiIiUJyEhAWZmZkr9+62WIWjChAk4dOgQwsLCYGdnl2+7mJgY2NvbY/v27ejbt2+ebWQyGWQymfx5QkICqlevzhBERESkQUojBKnNmKBsn3/+Ofbv34/Tp08XGIAAwMbGBvb29rh3716+baRSab69RERERAQgOhq4dw9wdAQ+8Le3PFGbMUFCCEycOBG7d+/GyZMn4eDg8MF1Xrx4gcePH8PGxqYMKiQiIiqHAgMBe3ugc+esn4GBqq6ozKhNCJowYQI2b96MrVu3wsTEBLGxsYiNjUVKSgoAICkpCV9++SXCw8MRFRWFU6dOoWfPnrCwsECfPn1UXD0REZEGio4GxowBMjOznmdmAn5+Wcu1gNqEoDVr1iA+Ph7u7u6wsbGRP3bs2AEA0NXVxfXr19GrVy/UrVsXw4cPR926dREeHg4TExMVV09ERKSB7t17F4CyZWQA9++rpp4ypjZjgj40PtvIyAhHjx4to2qIiIi0gKMjoKOjGIR0dYE6dVRXUxlSm54gIiIiKmN2dsD69VnBB8j6uW5dvoOjrxw9ijdHjpSb02UMQURERNrM1xeIigJCQrJ++vrm2ezkl1+ivacn+vfogbc1apSLAdQMQURERNrOzg5wd8+3B+jQL7+gx/ffIxlAOoA0IcrFAGqGICIiIsrXzp070dvXFzIAvQAcAGAMlIsB1AxBRERElKeNGzdi8ODBSM/IwBAAvwOQX364HAygZggiIiKiXFavXo3PPvsMmZmZGDNmDH5dvx76hRxArSnUZoo8ERERqYcff/wRkyZNAgBMnToV33//PSQSCeDllXUKrE4djQ9AAEMQERERvWf58uWYOnUqAGDGjBkICAjICkBAVvApB+EnG0+HEREREQBg2bJl8gA0e/ZsxQBUDjEEEREREZYuXYovvvgCADBv3jwsWrSoXAcggCGIiIhI63399deYPn06AMDf3x8LFy4s9wEIYAgiIiLSaosXL8asWbMAAAsXLsT8+fNVXFHZ4cBoIiIiLRUQEIC5c+cCyApDs2fPVnFFZYshiIiISAstW7ZMHnoCAgIwc+ZMFVdU9ng6jIiISMusWrVKPgh6wYIFWhmAAIYgIiIirRIYGIiJEycCAGbNmoV58+apuCLVYQgiIiLSEr/99htGjx4NAJg2bRoWL16sFbPA8sMQREREpAV27tyJESNGQAiB8ePH47vvvtPqAAQwBBEREZV7e/fuxZAhQ5CZmQlfX1/8+OOPWh+AAIYgIiKicu3w4cMYMGAAMjIy8Omnn2LdunXQ0eGff4AhiIiIqNwKCQlB3759kZaWho8//hgbN26Erq6uqstSGwxBRERE5dCFCxfg4+MDmUwGn7ZtseWbb6Cnx8sDvo8hiIiIqJy5efMmvLy8kJSUhM4Adpw7B/06dYDAQFWXplYYgoiIiMqRyMhIdO/eHS9fvkRrAHsBGAJAZibg5wdER6u0PnXCEERERFROxMTEoGvXrvjnn3/QsGZNHAFg8n6DjAzg/n0VVad+GIKIiIjKgZcvX6J79+54+PAhatWqhWO//w7znLPAdHWBOnVUU6AaYggiIiLScElJSejRowdu3LgBGxsbBAcHw9bZGVi/Piv4AFk/160D7OxUW6wa4TBxIiIiDSaTydC7d2/873//g7m5OY4dO4ZatWplvejrC3h4ZJ0Cq1OHASgHhiAiIiINlZ6ejsGDB+PEiROoWLEijhw5gkaNGik2srNj+MkHT4cRERFpoMzMTIwePRp79uyBVCrFvn370Lp1a1WXpVEYgoiIiDSMEAJffPEFNm3aBF1dXezYsQOdO3dWdVkahyGIiIhIw3z99ddYvnw5AGDDhg3o1auXagvSUAxBREREGmTjxo2YPXs2AGD58uUYNmyYiivSXAxBREREGuLgwYMYPXo0AGDGjBmYPHmyiivSbAxBREREGiA8PBwDBgxARkYGhg8fjoCAAFWXpPEYgoiIiNTc7du38dFHHyElJQU9evTATz/9BIlEouqyNB5DEBERkRqLjo6Gh4cHXr58CRcXF+zcuRP6+vqqLqtcYAgiIiJSU69evYKnpyceP36MevXq4eDBgzA2NlZ1WeUGQxAREZEaSklJgY+PD27evAlbW1scPXoUFhYWqi6rXGEIIiIiUjPp6ekYMmQIwsLCYGZmhqCgINjb26u6rHKHIYiIiEiNCCEwYcIE7N27F1KpFPv370fjxo1VXVa5pDYhKCAgAK1atYKJiQksLS3Ru3dv3LlzR6GNEAL+/v6wtbWFkZER3N3dcfPmTRVVTEREpHz+/v5Yv349dHR0sHXrVnTo0EHVJZVbahOCQkNDMWHCBJw/fx7BwcFIT09H9+7dkZycLG/z7bffYtmyZVi5ciUiIiJgbW2Nbt26ITExUYWVExERFVJ0NBASkvUzD2vXrsXChQsBAKtXr0bfvn3LsjqtIxFCCFUXkZdnz57B0tISoaGh6NChA4QQsLW1xZQpUzBjxgwAgEwmg5WVFb755hv4+fkVarsJCQkwMzNDfHw8TE1NS3MXiIiI3gkMBMaMATIzAR0dYP16wNdX/vLu3bvRv39/CCEwf+pU+PfsCTg6AnZ2eW8vOhq4d6/gNuVIafz9VpueoJzi4+MBAObm5gCAyMhIxMbGonv37vI2UqkUHTt2xLlz51RSIxERUaFER78LQEDWTz8/eY9QaGgohgwZAiEExnTogPnLlwOdOwP29lnhKafAwKzXCmpDH6SWIUgIgWnTpqF9+/Zo1KgRACA2NhYAYGVlpdDWyspK/lpeZDIZEhISFB5ERERl6t69dwEoW0YGcP8+rl+/jl69ekEmk6G3hwdWnzkDSfZJmhxhCcAHAxUVnlqGoIkTJ+LatWvYtm1brtdyXiZcCFHgpcMDAgJgZmYmf1SvXl3p9RIRERXI0THrFNj7dHURJZXCw8MD8fHxcHNzw9YpU6Cbc5TKv2FJroBARUWjdiHo888/x/79+xESEgK7985xWltbA0CuXp+nT5/m6h1636xZsxAfHy9/PH78uHQKJyIiyo+dXdYYIF3drOe6unj+3XfwGDECMTExaNSoEfbt2wejRo3yDEuoU+fd83wClUIbKhS1CUFCCEycOBG7d+/GyZMn4eDgoPC6g4MDrK2tERwcLF/29u1bhIaGom3btvluVyqVwtTUVOFBRERU5nx9gagoICQEybduwXvbNty9exc1atRAUFAQKleunGdYwrp1igOfC9OGCkVtZoeNHz8eW7duxb59+1CvXj35cjMzMxgZGQEAvvnmGwQEBGDjxo1wdHTEkiVLcOrUKdy5cwcmJiaFeh/ODiMiIlVKS0tDr169cOTIEZibm+Ps2bNwcnJSbBQdnXV6q06dgmeHfahNOVIaf7/VJgTlN65n48aNGDFiBICs3qIFCxZg3bp1ePXqFVxcXLBq1Sr54OnCYAgiIiJVEUJg5MiR+OWXX2BkZISTJ0/C1dVV1WVphHIdgsoKQxAREanKzJkz8c0330BXVxf79u2Dt7e3qkvSGFp1nSAiIqLyZPny5fjmm28AAD/99BMDkBpgCCIiIipl27Ztw9SpUwFkXbpl5MiRKq6IAIYgIiKiUhUcHIzhw4cDACZNmiS/9ROpHkMQERFRKbl06RL69u2LtLQ0DBw4EP/9738LvMAvlS2GICIiolLw4MED9OjRA0lJSejSpQt++eUX6OS8yCGpFL8NIiIiJYuLi0P37t3x9OlTNG/eHLt374ZUKlV1WZSDnqoLICIiKheio4F795BgbQ2vTz7Bw4cP4eDggMOHD/OSLGqKIYiIiKikAgOBMWMgy8xEXwCXAVStWhXHjh2T3/uS1A9PhxEREZVEdDQwZgwyMzMxHMAJABUBHNm0CXV4U1O1xhBERERUEvfuQWRmYiqAHQD0AewG0LJCBdXWRR/EEERERFQSjo74RiLBD/8+/QVAN13drBubklpjCCIiIiqBjcHBmPXvbTiXAxisqwusW6cVd3bXdBwYTUREVEwHDx7E6NGjAQAzxo/H5I8/zuoBYgDSCAxBRERExRAeHo4BAwYgIyMDw4cPR8DKlQCvBq1ReDqMiIioiG7dugVvb2+kpKSgR48e+Omnn3g7DA3EEERERFQEjx8/hoeHB169egVXV1fs3LkT+vr6qi6LioEhiIiIqJBevnwJT09PREdHw8nJCQcPHoSxsbGqy6JiYggiIiIqhDdv3sDHxwe3bt1CtWrVcPToUVSpUkXVZVEJMAQRERF9QHp6OgYNGoSzZ8+iUqVKCAoKQo0aNVRdFpUQQxAREVEBhBAYO3YsDhw4AENDQ+zfvx+NGjVSdVmkBAxBREREBZg3bx4CAwOho6OD7du3w83NTdUlkZIwBBEREeVj5cqVWLx4MQBg3bp16NWrl4orImViCCIiIsrDzp07MWnSJADAf/7zH4waNUrFFZGyMQQRERHlcPz4cQwdOhRCCEyYMAFz5sxRdUlUChiCiIiI3nPhwgX07t0bb9++Rf/+/bFixQpeDbqcYggiIiL6161bt+Dl5YXk5GR069YNmzdvhq6urqrLolLCEERERATg0aNH6N69O16+fAkXFxfs3r0bUqlU1WVRKWIIIiIirRcXF4du3brhyZMnaNCgAQ4dOoSKFStmvRgdDYSEZP2kcoUhiIiIyp8iBJf4+Hh4eXnh3r17sLe3x7Fjx97dDiMwELC3Bzp3zvoZGFjKhVNZYggiIqLypQjBJSUlBT4+Prh8+TIsLS0RHByMatWqZb0YHQ2MGQNkZmY9z8wE/PzYI1SOMAQREVH5UYTgkpaWhoE+Pjh9+jRMTUwQFBQER0fHdw3u3Xu3nWwZGcD9+6W4A1SWGIKIiKj8KGRwyczMhG/Hjjhw/DgMARxISkLzP/9UXM/REdDJ8WdSVxeoU0f5dZNKMAQREVH5UYjgIoTAtDFj8Ft4OHQB7ATQQYjcPUZ2dsD69VnrZ29n3bqs5VQuMAQREVH5UYjgsnjxYqz4d5zQJgA9s1/I61SXry8QFZU1yDoqKus5lRsSIYRQdRFlKSEhAWZmZoiPj4epqamqyyEiotIQHZ0VaOrUUQhAa9aswfjx4wEAKyQSTHr/T6CublbQYU+PWiqNv996StkKERGROrGzyxVmtm7digkTJgAAvvrqK0yqUSPrFFhGBk91aSmGICIiKvf27t2LYcOGyW+I6u/vD0gkgIdHnj1GpB0YgoiIqFw7duwYBg4ciIyMDAwfPhw//PDDuxui5tFjRNqDA6OJiKjcOnPmjMId4X/++Wfo5Jw9RlqL/xKIiKhcioiIgLe3N1JSUtCjRw9s2bIFeno8AULvMAQREVG5c/36dXh6eiIxMRGdOnXCrl27YGBgoOqySM0wBBERUbly9+5ddOvWDS9fvoSrqyv27dsHIyMjVZdFakitQtDp06fRs2dP2NraQiKRYO/evQqvjxgxAhKJROHh6uqqmmKJiEjtPHr0CF27dkVcXByaNWuGw4cPw8TERNVlkZpSqxCUnJyMpk2bYuXKlfm28fT0RExMjPxx+PDhMqyQiIjUVUxMDLp06YLHjx/DyckJx44dQ+XKlVVdFqkxtRoh5uXlBS8vrwLbSKVSWFtbl1FFRESkCZ4/f46uXbviwYMHcHBwwPHjx1G1alVVl0VqTq16ggrj1KlTsLS0RN26dTF69Gg8ffpU1SUREZEKvX79Gh4eHrh16xaqVauGEydOoFq1aqouizSAWvUEfYiXlxc+/vhj2NvbIzIyEvPmzUPnzp1x6dIlSKXSPNeRyWSQyWTy5wkJCWVVLhERlbL4+Hh4eHjgzz//RNWqVXH8+HE4ODiouizSEBoVggYOHCj/70aNGsHZ2Rn29vY4dOgQ+vbtm+c6AQEBWLBgQVmVSEREZSQxMRFeXl64cOECqlSpghMnTsDJyUnVZZEG0bjTYe+zsbGBvb097t27l2+bWbNmIT4+Xv54/PhxGVZIRESlISkpCT169EB4eDgqV66M48ePo3HjxqouizSMRvUE5fTixQs8fvwYNjY2+baRSqX5niojIiLNk5ycDG9vb4SFhaFSpUo4fvw4mjVrpuqySAOpVQhKSkrC/fv35c8jIyNx5coVmJubw9zcHP7+/ujXrx9sbGwQFRWF2bNnw8LCAn369FFh1UREVFbevHkDHx8fnD59Gqampjh27BhatGih6rJIQ6lVCLp48SI6deokfz5t2jQAwPDhw7FmzRpcv34dv/76K16/fg0bGxt06tQJO3bs4IWwiIi0QGpqKnr37o2TJ0/CxMQER48eRatWrVRdFmkwtQpB7u7uEELk+/rRo0fLsBoiIlIXMpkMffr0QXBwMIwrVMCRxYvhamen6rJIw2n0wGgiIir/3r59i379+iEoKAgVDAxwOCUF7SZNAuztgcBAVZdHGowhiIiI1Nbbt28xYMAAHDp0CEaGhjiYloYO2WcMMjMBPz8gOlq1RZLGYggiIiK1JJPJ0K9fP+zbtw9SqRT7Fi5Ep5xDJjIygPcm1BAVBUMQERGpnexB0AcPHoShoSEOHDiAboMHAzo5/mzp6gJ16qimSNJ4DEFERKRWsqfBBwUFoUKFCjh06BC6desG2NkB69dnBR8g6+e6dVnLiYpBrWaHERGRdktOTkbPnj0REhICY2NjHDp0CB07dnzXwNcX8PDIOgVWpw4DEJUIQxAREamFpDt34D1gAE5fu4aKFSviyJEjaN++fe6GdnYMP6QUPB1GREQql7ByJTydnHD62jWYAjj2+ed5ByAiJWIIIiKi0hcdDYSE5DmdPf7WLXh8/jnOAqgEIBhAm2+/5dR3KnUMQUREVLoCA7MubNi5c64LHL569Qrd+vbFeQCVARwH0Brg1HcqEwxBRERUeqKjgTFjsi5sCChc4DAuLg7u7u6IuHMHVQCcBNAyez1OfacywBBERESl5969dwEoW0YGHp87hw4dOuDatWuwsrJCiL8/mnHqO5Uxzg4jIqLS4+iYdYHD94LQfR0ddJk2DX8/eYIaNWrg+PHjcHR0zJr+zqnvVIbYE0RERKUnxwUOb+jowM3EBH8/eYK6desiLCwsKwBlt3V3ZwCiMsMQRERExVfArC85X18gKgoRa9ago6kpYuPj0aRJE5w+fRrVq1cvu1qJcmAIIiKi4ilg1ldOpx8+RJfp0/Hy9Wu4uLjg1KlTsLKyKsNiiXIrUQh6+vQpYmNjlVULERFpigJmfeUUFBQEDw8PJCYmolOnTggODkblypXLuGCi3IoVgq5du4aGDRvCxsYG1apVQ7Vq1TB37lwkJycruz4iIlJH+cz6ynltnx07dsDHxwepqanw9vbGoUOHYGJiUoaFEuWvWCHI19cXVlZWCAsLw+XLl7Fo0SIcOXIEzs7OePXqlbJrJCIidZM96+t9Oa7t8+OPP2Lw4MFIS0vDwIEDsWfPHhgZGZVxoUT5kwghRFFXMjY2xqVLl+Dk5CRfJoTAxx9/DENDQ2zevFmpRSpTQkICzMzMEB8fD1NTU1WXQ0SkvqKjs3p8HB3znrEVGJh1Ciwj4921fXx9IYTAvHnzsHjxYgDAxIkTsWLFCujkDE1ERVAaf7+LdZ2gvHp8JBIJlixZgpYtW+azFhERaYzAwHdjfnR0sqa5+/oqtvH1BTw8FK7tk56ejrFjxyLw30HSixYtwuzZsyGRSFSwE0QFK3RPkLe3N5o2bYpmzZohIyMDK1aswL59+xRG90dERKBfv374+++/S63gkmJPEBHRB0RHZ832en/Mj64uEBVV4DV8UlJSMHjwYOzbtw86OjpYu3YtRo8eXfr1klZQaU9Q48aN8eeff2Ljxo2Ii4sDANSqVQsDBgyQB6ONGzfiv//9r1IKIyIiFSlo0HM+IejVq1fw8fFBWFgYpFIptm/fjt69e5d+rUQlUKwxQXFxcbh8+TKuXLkif9y/fx+6urqoV68erl27Vhq1KgV7goiIPqCIPUH//PMPPDw8cOPGDZiZmWH//v3o0KFD2dVLWkFtxgRZWVnB09MTnp6e8mUpKSm4evUqrl69qpTCiIhIRbJvdZFz0HMeAej27dvw8vLCo0ePYGNjg6CgIDRp0kQFRRMVXbF6gjQZe4KIiAopOrrAG5qGhISgb9++eP36NRwdHXH06FE4ODiooFDSBmrTE0RERFrAzi7fMUCbN2/GZ599hrS0NLRt2xb79u2DhYVFGRdIVDK8aAMRERWaEAL/+c9/MHToUKSlpeHjjz/GiRMnGIBIIzEEERFRoaSlpWHUqFH46quvAAD/93//h+3bt8PQ0FDFlREVD0+HERHRByUkJKB///4IDg6Gjo4OVq5ciXHjxqm6LKISYQgiIqICPX78GN7e3rh+/TqMjY2xY8cOeHt7q7osohJjCCIionz973//Q69evRAXFwdra2scOnQILVq0UHVZRErBMUFERJSnrVu3omPHjoiLi0OTJk1w/vx5BiAqVxiCiIhIQWZmJubMmYNPPvkEMpkMvXr1wtmzZ2Fvb6/q0oiUiiGIiIjkkpKS0L9/fyxZsgQAMHPmTOzevRsVK1ZUcWVEyscxQUREBAD4+++/4ePjg6tXr8LAwAA///wzhg4dquqyiEoNQxAREeH8+fPo3bs34uLiYGlpib1796JNmzaqLouoVPF0GBGRlvv555/lA6CbNm2KCxcuMACRVmAIIiLSUjKZDH5+fhg9ejTevn2LPn36ICwsjAOgSWswBBERaaEnT57A3d0d69evh0QiweLFi7Fr1y4OgCatwjFBRERa5syZM/j4448RFxeHSpUqYevWrfDy8lJ1WURljj1BRERaQgiBH374AZ07d0ZcXBwaN26MixcvMgCR1lKrEHT69Gn07NkTtra2kEgk2Lt3r8LrQgj4+/vD1tYWRkZGcHd3x82bN1VTLBGRBklJScHw4cMxefJkpKenY9CgQQgPD0ft2rVVXRqRyqhVCEpOTkbTpk2xcuXKPF//9ttvsWzZMqxcuRIRERGwtrZGt27dkJiYWMaVEhGpqehoICQk6+e/7ty5AxcXF/z222/Q1dXF999/j61bt8LY2FiFhRKpnlqNCfLy8sq3W1YIgeXLl2POnDno27cvAOCXX36BlZUVtm7dCj8/v7IslYhI/QQGAmPGAJmZgI4OsH49thoZYcyYMUhOToalpSW2b9+OTp06qbpSIrWgVj1BBYmMjERsbCy6d+8uXyaVStGxY0ecO3cu3/VkMhkSEhIUHkRE5U509LsABCA1MxNjR4/GJ598guTkZLi7u+PKlSsMQETv0ZgQFBsbCwCwsrJSWG5lZSV/LS8BAQEwMzOTP6pXr16qdRIRqcS9e/IAdB9AGwDrhIBEIsHcuXMRHBwMGxsblZZIpG40JgRlk0gkCs/Fv7/k+Zk1axbi4+Plj8ePH5d2iUREZc/REdDRwe8AWgC4AsACwJFff8V//vMf6Omp1egHIrWgMSHI2toaAHL1+jx9+jRX79D7pFIpTE1NFR5EROVNSpUqmNixIwYASATQHsCVpUvh8emnKq6MSH1pTAhycHCAtbU1goOD5cvevn2L0NBQtG3bVoWVERGp1vXr19GqVSusCgkBAMwcMgQhkZGo9uWXKq6MSL2pVf9oUlIS7t+/L38eGRmJK1euwNzcHDVq1MCUKVOwZMkSODo6wtHREUuWLEGFChUwZMgQFVZNRKQaQgj8+OOPmD59OmQyGaysrLBp0yZ4enqqujQijaBWIejixYsKMxemTZsGABg+fDg2bdqE6dOnIyUlBePHj8erV6/g4uKCY8eOwcTERFUlExGpxNOnTzFy5EgcPnwYANCjRw9s3LgRlpaWH145OjprILWjI2BnV8qVEqkviRBCqLqIspSQkAAzMzPEx8dzfBARaaQjR45gxIgRePr0KaRSKb777jtMmDChwEkicnlcSwi+vqVfNFEJlcbfb40ZE0REpO3evHmDyZMno0ePHnj69CkaNWqEixcvYuLEiYULQDmuJYTMTMDPT+Hq0kTahCGIiEgDnN+/H83r1cMPP/wAAJg0aRIiIiLQqFGjwm/kvWsJyWVkAO+NxSTSJmo1JoiIiBTJZDIs6NsX3xw+jEwA1QD8PGUKPP/736Jv7N9rCSkEIV1doE4dZZVLpFHYE0REpKauXLmCVs2aIeDfADQUwHUAnj/+WLxTWHZ2WWOAdHWznuvqAuvWcXA0aS2GICIiNZOeno5FixahVatWuP7XX6gKYDeAXwFUBkp2CsvXF4iKyrrTfFQUB0WTVuPpMCIiNXL16lX4+vri0qVLAIC+Xl5YGxSEqu9P5C3pKSw7O/b+EIE9QUREaiE1NRVz5syBs7MzLl26hEqVKmHz5s3YdegQqv70E09hEZUC9gQREZWWQl6U8MyZMxg1ahTu3r0LAOjXrx9+/PHHd3d99/UFPDyyToHVqcMARKQk7AkiIioNgYGAvT3QuXPWz8DAXE0SEhIwbtw4dOjQAXfv3oWNpSV2796NXbt2vQtA2ezsAHd3BiAiJWIIIiJStkJclHD//v1o0KAB1q5dCwAYBeDWs2fo8/KlCgom0k4MQUREylbARQkjIyPh4+ODXr164cmTJ6gN4CSAnwBUEoJXcCYqQwxBRETKln1RwvfIdHSw+PBhNGjQAAcOHICenh5mDBqEawA6vd+QV3AmKjMMQUREypbjooTHdXTQpGpVzF26FKmpqXB3d8fVq1fx9dKlqJAjLPEKzkRlhyGIiKg0+Prin/PnMahTJ3TLzMTduDhYWVlhy5YtOHnyJBo0aMArOBOpGKfIExEpWWpqKlasWIFFixYhKSkJOjo6mDhxIhYuXAgzMzPFxpz+TqQyDEFEpDqFvI6OphBCYM+ePfjyyy8RGRkJAHB1dcXq1avRvHnz/FfkFZyJVIKnw4hINQpxHR1NcvnyZXTq1An9+vVDZGQkbG1t8euvv+Ls2bMFByAiUhmGICIqe4W4jo6miIuLw+jRo9GyZUuEhobC0NAQX331Fe7evYuhQ4dCJ+fAZyJSGzwdRkRlr4Dr6GjKaaE3b95gxYoVCAgIQGJiIgBg8ODB+Prrr1GjRg0VV0dEhcEQRERlL/s6Ou8HIQ2ZGp6WloYNGzZgwYIFiImJAQC0atUKy5cvR9u2bVVcHREVBftpiajsaeDUcCEEfv/9dzRs2BBjx45FTEwMHBwcsHnzZpw/f54BiEgDsSeIiFRDg6aGnzx5EjNnzkRERAQAoGrVqpg3bx78/PxgYGCg4uqIqLgYgohIddR8aviFCxcwb948HDt2DABgbGyML7/8El988QVMTExUXB0RlRRDEBFRDhEREfD398fhw4cBAHp6ehg7dizmzp0LKysrFVdHRMrCEERE9K+LFy/C398fhw4dAgDo6upi6NChmDt3LmrXrq3i6ohI2RiCiEjrXbp0CQsWLMCBAwcAADo6Ovj0008xb9481NGAGWtEVDwMQUSktc6ePYuAgAB5z4+Ojg4++eQTzJ07F3Xr1i145XJ2yw8ibcQp8kSkVYQQOHToENzc3NC+fXscOnRIHn5u3bqFX3/99cMBqJzd8oNIW0mEEELVRZSlhIQEmJmZIT4+Hqampqouh4iU5QM9M+np6di5cye+/vprXL9+HQBgYGCA4cOH4//+7//g6OhY+Pext899oceoKPYIEZWi0vj7zdNhRKT5AgPf3YtMRyfrQoy+vgCAlJQUbNq0CUuXLpXf2b1ixYoYO3Yspk6dCltb26K9Vzm45QcRZWEIIiLNls/NWP9p2hSr9+7F2rVr8eLFCwCAhYUFJk+ejAkTJqBy5crFez8NvuUHESliCCIizZajZ+YSgP9mZGCHqyvSMzIAAPb29vjiiy/g6+uLChUqlOz9sm/54eeX1QOkAbf8IKK8MQQRkWZzdES6RIJ9QmA5gLDs5RkZcHNzw5QpU+Dj4wM9PSUe7jTolh9ElD+GICLSWE+fPsXGLVuwxtwcj/495aUPYKCrK6asXImWLVsqrqDMae1qfssPIvowhiAi0ihCCJw5cwZr1qzBH3/8gbS0NABAlcqVMe6jjzBu0iTYOjvnXrGAwdNEpJ04RZ6INEJ8fDx+/fVXrF27Frdu3ZIvb926NcaOHYtBgwbByMgo75U5rZ1I43GKPBFpFSEEIiIisH79emzbtg1v3rwBAFSoUAGffPIJxo4dixYtWnx4Q5zWTkR5YAgiIrUTFxeHzZs3Y+PGjbh586Z8ecOGDTF27FgMHToUZmZmhd8gp7UTUR4YgohILaSlpeHw4cPYuHEjDh06hPT0dACAIYC+AMZKJGg/ZQoko0YVfeOc1k5EeeCYICJSqZs3b2Ljxo347bff8PTpU/ny1s2aYeTVqxgkBCplLyzpOJ7oaE5rJ9JQHBNEROXC48ePsX37dmzZsgVXr16VL7e0tMSwYcMwYsQINHz6NOsGpe8r6Tiewkxr593hibQGQxARlYmXL19i165d2Lp1K06fPo3sTmh9fX14e3tj5MiR8PLygr6+ftYKZmZlP46H0+iJtIqOqgsoCn9/f0gkEoWHtbW1qssionykpKRg586d6N27N6ytreHn54fQ0FAIIdChQwesW7cOMTEx2LNnD3x8fN4FIODdOB5d3aznpT2OJ597kCE6unTej4hUTuN6gho2bIjjx4/Ln+tmHyCJKH/KPMXzgW0lJyfjyObN2LVjBw7+739I/ndaOwA0bdoUQ4YMweDBg1G9evUPv1dZ3p6C0+iJtI7GhSA9PT32/hAVhTJP8eSzrcTERBw6dAi7du3C4QMHkPL2rXyVmhYWGDJmDIYMGYKGDRsW/T3L6vYUnEZPpHU0LgTdu3cPtra2kEqlcHFxwZIlS1CrVq1828tkMshkMvnzhISEsiiTSD3kd4rHw6PowSLHtuIzM3Fg9Gjs2rkTQaGhCr9ntQD0//fh/PIlJOPGqX9vCqfRE2kdjRoT5OLigl9//RVHjx7FTz/9hNjYWLRt2xYv/r1xYl4CAgJgZmYmfxSqC56ovCjoFE8xtvUkMxNrAfQAYAlgqBDYd+wYZDIZHB0dMfuTT/AngPsAvgHQCoAkM7N476cKvr5ZU/BDQrJ+clA0Ubmm0dcJSk5ORu3atTF9+nRMmzYtzzZ59QRVr16d1wki7VDCe2YJIXD16lXs378f+3ftwqXr1xVerw/g4ylT0P+zz9CoUSNInjzhPbqIqFTwOkE5GBsbo3Hjxrh3716+baRSKaRSaRlWRaRGinGKRyaT4dSpUzhw4AD279+Px48fy1+TSCRwFQI+AHx0dNAg5/ginlIiIg2i0SFIJpPh9u3bcHNzU3UpROqrEDOsYmJicPToURw6dAhBQUFISkqSv2ZkZITu3bvDx8cH3t7esEpLK3i2VlnO6CIiKgGNCkFffvklevbsiRo1auDp06dYtGgREhISMHz4cFWXRqTecsywSktLw7lz5xAUFIQjR44oXLUZAKytrdGzZ0/4+PigS5cuMDIyyr29IrwfEZE60qgQFB0djcGDB+P58+eoWrUqXF1dcf78edjb26u6NKIsanzLhcePH8tDz/Hjx5GYmKjwurOzMzw9PdGzZ084OztDR0ej5k0QERWZRoWg7du3q7oEovyp2S0XUlNTERYWJg8+t27dUnjdwsICHh4e8PLyQrdu3WBpaamiSomIVEOjZ4cVB+8iT6WihLOwlCEjIwOXL1/GiRMncPz4cYSFhSE1NVX+uo6ODlxdXeHp6QkvLy+0aNGCvT1EpDE4O4xIXanglgtCCNy7d08eekJCQvDq1SuFNjY2NvD09ISnpye6deuGypUr579BNT6VR0RUGhiCiJShKLdcKEHYiI2NlYeeEydOKExfBwBTU1O4u7uja9eu6Nq1K5ycnCCRSD68YTU7lUdEVBYYgoiUobDXxyli2Hj58iXOnDmDkJAQHD9+HDdv3lR43cDAAG3btkXXrl3RpUsXODs7Q0+viL/Wyry1BhGRBuGYICJlio7O//o4hRg39OLFC5w+fRqnTp1CaGgorl27hvd/RSUSCZo3b44uXbqga9euaO/ggArR0SU7hRUSAnTunPdyd/fibZOISMk4JohI3RV0fZw8xg09y8jA6cBAhL54gVOnTuF6jttSAICTkxM6duyILl26oFOnTrCwsMh6ITAQ8PIq+Sks3j2diLQUe4KIykp0NJ7WqIFQIRAK4BSAm3k0a9CgATp27Aj3xo3RwdIS1i4uxepVKpLAwNyn8jgmiIjUCHuCiDRMbGwsQkNDERoailOnTuF2Hv/P0bBhQ7i7u8Pd3R0dOnTIul7Ph8YOKXs2Gm91QURaiD1BREoihMCjR49w5swZhIWF4fTp0/jrr79ytWvs5AT3+vXR0dMTHfr0QdWqVRUbFKaXRw2uS0REVJbYE0SkRjIzM3Hz5k2cOXNGHnyio6NztWvatGnW6S13d7i5ub0b05OfwvTy8G7tREQlxhBEVEhv377FxYsX5aHn7NmzeP36tUIbPT09tGjRAm5ubvKHubl50d6osAOVeQqLiKhEGIJKG6/Cqzol/OwTEhIQHh4uDz0XLlxQuA0FAFSoUAFt2rSRBx4XFxcYGxuXrO6i9PLwbu1ERMXGEFSaeBXeolNWaCzGZx8bG4uwsDB56Ll69Soyc5yWsrCwgJubG9q3bw83Nzc0a9YM+vr6xa8zP+zlISIqdRwYXVo4cLXolBUaC/HZCyHw4MGDrMATFIQzZ8/i/pMnuTbl4OCQFXoaNoSblRXqde4MSfXqxdxBIiIqLg6M1iQquKGmRlPmrRvy+OwzMjJw9fBhhKWmygcxx8bGKrSRAGhsZwe3Xr3kPT3VqlVjjx4RUTnFnqDSwp6golHmrRuio5FSowYuCIEwAGcAnAOQmKOZgYEBWr19CzcA7QG0BVCZU9GJiNQSe4I0CacwF00Jb93w6tUrnD17Vj6m56KuLt6mpyu0MTU1Rdu2beWDmFu9eQNDT0/FDeXsrWOPHhFRucUQVJo4uLXwihgao6Oj5ae1zpw5gxs3biBnp6a1pSXc6teHW5cucOvZE40bN4auru77G/lw8OJ9tYiIyi2GoNLGKcyFl09oFELgr7/+Ugg9UVFRuVavW7eufCyPm5sbatWqBYlEkv/7FSZ4sUePiKjc4pggUjtpaWm4fPmyPPSEhYXh+fPnCm10dHTQvE4dtHdzg5uXF9q3bw8rK6vivWF09Id76wrThoiISg3HBJFmy+caQImJifjf//4nDzzh4eF48+aNwqqGhoZwdXXNmq6elIQ2y5fD5O7drGDSpg1Q3AAEFK63jj16RETlDkMQlY33pplHSyQ4O3o0zkqlCAsLy/OihJUrV5af2mrfvj1atmwJAwODd7O1sjswSzKVnoiItBpDEJWqjIwM3Dx5EmGjR+OsEDgL4JEQWeNs3mNvb4927drJQ0+DBg2go6OTe4OcrUVERErCEKStSumeZsnJybhw4QLCwsJw9uxZhIeHIyEhQaGNDoBmANr16YP2gwahXbt2WRclLAzO1iIiIiVhCNIkKryvVn5iYmJw9uxZ+TV6Ll++jIyMDIU2FY2N0SY5Ge0AtAPgAsBEVxf44Yei7wdnaxERkZJwdpimKMP7auUnIyMDN2/eRHh4uDz4PHz4MFc7Ozs7tGvXDu3bt0e7du3QuHFj6P3yS+7gUpJbT3C2FhGRVimNv98MQZpAmbduKMLtKZ49e4bz58/j/PnzCA8PR0REBJKSkhTaSCQSNGnSBO3atZMHnxo1auS/HwwuRERUDJwir62UORg4nzE1afb2uHbpEsLDw+XB58GDB7lWNzExQevWrdG2bVu0a9cOrq6uMDMzK9x7c5o5ERGpEYYgTaDMwcB2dhDr1uGJnx8uZGbivESC8Fq1cLFBA6SmpuZq3qBBA7i6usLV1RVt2rRB/fr1FW89QUREpKEYgjRBCQcDx8bG4uLFiwqPuOxAJURWTxOASpUqycOOq6srWrdujUqVKpXSThEREakWQ5CmKOTNWJ89e4ZLly4pBJ4nT57kaqerq4tGjRrJe3lcXV1Rt27d3NfmKaWp9ERERKrGEJQXdf3D/96YmoyMDNy7dw9Xr17F1atXce3aNVy9ehXR0dG5VpNIJGjQoAGcnZ3lj6ZNm8LIyKjg91PiVHoiIiJ1w9lhOanZH34hBOLi4nD79m1cv35dHnZu3LiR5xgeAKhXuzacHRzg3K4dnLt2RbNmzVCxYsWivbEyZ6QRERGVEGeHlbbo6HcBCCjT+1Klp6cjMjISt2/fxl9//SX/+ddff+H169d5rlOhQgU0btwYTZs2RZMmTbJ+XrkC08mTgQcPgJMngerVgfbti15QUWakqWvPGRERUQG0NwQ9eQLkTJKlfF+qV69e4eHDh4iMjMz1MyoqCmlpaXmup6OjAwcHBzRs2FAh8NSqVUtxplZ0NNCxo3JCXGFnpKlZzxkREVFhaW8IatgQ+OknxT/YRZyKnpmZiYSEBLx69Ur+ePbsGf755x/5IyYmRv7fOS80mJORkRHq1auH+vXrw8nJCU5OTqhfvz4cHR1haGj44X1SZogrzIw0FfacERERlZTWjgmyBWAKoGKTJqhobg6pVAodHR3oPHkCnWvXkD1HStaoEWRVqyI1NRUymQypqalISUnB69evER8fj8ycoeMDrKysUKtWLTg4OMh/Zv939erV875zemGVxjiegq7yXISrTxMREZUExwQp0T//PnDtWsENb9z44LaMjIxQuXJlVK5cGRYWFrC1tZU/bGxs5P9drVo1VKhQQRnl5600bi5a0FWeeUd3IiLSYFobgk4BgI4OkjZsQKJUirS0NGRmZuZ6SKVSGBoawtDQUOG/K1WqJA8+Uqm05AUpa3BxIa8npBS8ozsREWkwrT0dFq+jA1N1GcSr6YOLeWNUIiIqZbyLvBLIP8Rbt2Bav76qy+H1eIiIiAqhNEJQCUbharhq1VRdQZaCZnQRERFRqdHIELR69Wo4ODjA0NAQLVu2xJkzZ1RdUvFlDy5+HwcXExERlTqNC0E7duzAlClTMGfOHFy+fBlubm7w8vLC33//rerSiid7cHH2RQ85uJiIiKhMaNyYIBcXF7Ro0QJr1qyRL6tfvz569+6NgICAD65fGucUlYKDi4mIiPKl9dcJevv2LS5duoSZM2cqLO/evTvOnTuX5zoymQwymUz+PCEhoVRrLLaCrsdDRERESqdRp8OeP3+OjIwMWFlZKSy3srJCbGxsnusEBATAzMxM/qhevXpZlEpERERqTqNCUDaJRKLwXAiRa1m2WbNmIT4+Xv54/PhxWZRIREREak6jTodZWFhAV1c3V6/P06dPc/UOZZNKpcq5ojMRERGVKxrVE2RgYICWLVsiODhYYXlwcDDatm2roqqIiIhIE2lUTxAATJs2DUOHDoWzszPatGmD9evX4++//8bYsWNVXRoRERFpEI0LQQMHDsSLFy+wcOFCxMTEoFGjRjh8+DDs7e1VXRoRERFpEI27TlBJqe11goiIiChfvHcYERERkZIwBJVEdDQQEpL1k4iIiDQKQ1BxBQYC9vZA585ZPwMDVV0RERERFQFDUHFERwNjxgCZmVnPMzMBPz/2CBEREWkQhqDiuHfvXQDKlpGRdQNUIiIi0ggMQcXh6Ajo5PjodHWz7gBPREREGoEhqDjs7ID167OCD5D1c9063gWeiIhIg2jcxRLVhq8v4OGRdQqsTh0GICIiIg3DEFQSdnYMP0RERBqKp8OIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVNCoE1axZExKJROExc+ZMVZdFREREGkhP1QUU1cKFCzF69Gj584oVK6qwGiIiItJUGheCTExMYG1treoyiIiISMNp1OkwAPjmm29QpUoVNGvWDIsXL8bbt29VXRIRERFpII3qCZo8eTJatGiBypUr48KFC5g1axYiIyPx888/57uOTCaDTCaTP4+PjwcAJCQklHq9REREpBzZf7eFEMrbqFCx+fPnCwAFPiIiIvJcd9euXQKAeP78eYm2zwcffPDBBx98aMbjwYMHSssgEiGUGamK7vnz53j+/HmBbWrWrAlDQ8Ncy588eQI7OzucP38eLi4uea6bsyfo9evXsLe3x99//w0zM7OSFa9BEhISUL16dTx+/BimpqaqLqfMcL+539qA+8391gbx8fGoUaMGXr16hUqVKillmyo/HWZhYQELC4tirXv58mUAgI2NTb5tpFIppFJpruVmZmZa9Y8nm6mpKfdbi3C/tQv3W7to637r6ChvOLPKQ1BhhYeH4/z58+jUqRPMzMwQERGBqVOnwsfHBzVq1FB1eURERKRhNCYESaVS7NixAwsWLIBMJoO9vT1Gjx6N6dOnq7o0IiIi0kAaE4JatGiB8+fPl3g7UqkU8+fPz/MUWXnG/eZ+awPuN/dbG3C/lbffKh8YTURERKQKGnexRCIiIiJlYAgiIiIircQQRERERFqJIYiIiIi0UrkMQatXr4aDgwMMDQ3RsmVLnDlzpsD2oaGhaNmyJQwNDVGrVi2sXbu2jCpVrqLs9+7du9GtWzdUrVoVpqamaNOmDY4ePVqG1SpPUb/vbGfPnoWenh6aNWtWugWWkqLut0wmw5w5c2Bvbw+pVIratWtjw4YNZVSt8hR1v7ds2YKmTZuiQoUKsLGxwciRI/HixYsyqrbkTp8+jZ49e8LW1hYSiQR79+794Drl4ZhW1P0uL8e04nzf2TT5mFac/VbGMa3chaAdO3ZgypQpmDNnDi5fvgw3Nzd4eXnh77//zrN9ZGQkevToATc3N1y+fBmzZ8/GpEmT8Mcff5Rx5SVT1P0+ffo0unXrhsOHD+PSpUvo1KkTevbsKb8Kt6Yo6n5ni4+Px7Bhw9ClS5cyqlS5irPfAwYMwIkTJxAYGIg7d+5g27ZtcHJyKsOqS66o+x0WFoZhw4bB19cXN2/exO+//46IiAiMGjWqjCsvvuTkZDRt2hQrV64sVPvyckwr6n6Xl2NaUfc7m6Yf04qz30o5pintLmRqonXr1mLs2LEKy5ycnMTMmTPzbD99+nTh5OSksMzPz0+4urqWWo2loaj7nZcGDRqIBQsWKLu0UlXc/R44cKCYO3eumD9/vmjatGkpVlg6irrfR44cEWZmZuLFixdlUV6pKep+L126VNSqVUth2Q8//CDs7OxKrcbSBEDs2bOnwDbl5Zj2vsLsd1408Zj2vqLst6Yf095XmP1W1jGtXPUEvX37FpcuXUL37t0Vlnfv3h3nzp3Lc53w8PBc7T08PHDx4kWkpaWVWq3KVJz9zikzMxOJiYkwNzcvjRJLRXH3e+PGjXjw4AHmz59f2iWWiuLs9/79++Hs7Ixvv/0W1apVQ926dfHll18iJSWlLEpWiuLsd9u2bREdHY3Dhw9DCIG4uDjs2rUL3t7eZVGySpSHY5oyaOIxrbg0/ZhWHMo6pmnMFaML4/nz58jIyICVlZXCcisrK8TGxua5TmxsbJ7t09PT8fz58wJvzqouirPfOX3//fdITk7GgAEDSqPEUlGc/b537x5mzpyJM2fOQE9PM//5F2e/Hz58iLCwMBgaGmLPnj14/vw5xo8fj5cvX2rMuKDi7Hfbtm2xZcsWDBw4EKmpqUhPT4ePjw9+/PHHsihZJcrDMU0ZNPGYVhzl4ZhWHMo6ppWrnqBsEolE4bkQIteyD7XPa7m6K+p+Z9u2bRv8/f2xY8cOWFpallZ5paaw+52RkYEhQ4ZgwYIFqFu3blmVV2qK8n1nZmZCIpFgy5YtaN26NXr06IFly5Zh06ZNGtUbBBRtv2/duoVJkybhq6++wqVLlxAUFITIyEiMHTu2LEpVmfJyTCsuTT+mFVZ5O6YVhbKOaeUqNlpYWEBXVzfX/xU+ffo01/8ZZbO2ts6zvZ6eHqpUqVJqtSpTcfY7244dO+Dr64vff/8dXbt2Lc0yla6o+52YmIiLFy/i8uXLmDhxIoCsXyQhBPT09HDs2DF07ty5TGovieJ83zY2NqhWrRrMzMzky+rXrw8hBKKjo+Ho6FiqNStDcfY7ICAA7dq1w//93/8BAJo0aQJjY2O4ublh0aJF5bJXpDwc00pCk49pRVVejmnFoaxjWrnqCTIwMEDLli0RHByssDw4OBht27bNc502bdrkan/s2DE4OztDX1+/1GpVpuLsN5D1f0sjRozA1q1bNXKMRFH329TUFNevX8eVK1fkj7Fjx6JevXq4cuUKXFxcyqr0EinO992uXTv8888/SEpKki+7e/cudHR0YGdnV6r1Kktx9vvNmzfQ0VE8zOnq6gJ41ztS3pSHY1pxafoxrajKyzGtOJR2TCvRsGo1tH37dqGvry8CAwPFrVu3xJQpU4SxsbGIiooSQggxc+ZMMXToUHn7hw8figoVKoipU6eKW7duicDAQKGvry927dqlql0olqLu99atW4Wenp5YtWqViImJkT9ev36tql0olqLud06aOpOiqPudmJgo7OzsRP/+/cXNmzdFaGiocHR0FKNGjVLVLhRLUfd748aNQk9PT6xevVo8ePBAhIWFCWdnZ9G6dWtV7UKRJSYmisuXL4vLly8LAGLZsmXi8uXL4tGjR0KI8ntMK+p+l5djWlH3OydNPaYVdb+VdUwrdyFICCFWrVol7O3thYGBgWjRooUIDQ2VvzZ8+HDRsWNHhfanTp0SzZs3FwYGBqJmzZpizZo1ZVyxchRlvzt27CgA5HoMHz687AsvoaJ+3+/T1AOGEEXf79u3b4uuXbsKIyMjYWdnJ6ZNmybevHlTxlWXXFH3+4cffhANGjQQRkZGwsbGRnzyySciOjq6jKsuvpCQkAJ/V8vrMa2o+11ejmnF+b7fp6nHtOLstzKOaRIhymmfMBEREVEBytWYICIiIqLCYggiIiIircQQRERERFqJIYiIiIi0EkMQERERaSWGICIiItJKDEFERESklRiCiIiISCsxBBEREZFWYggiIiIircQQRETlwsKFC9G4cWMYGxvDysoK48aNQ1pamqrLIiI1pqfqAoiISkoIgYyMDKxbtw7VqlXDrVu3MGzYMDRp0gTjxo1TdXlEpKZ4A1UiKpeGDBmCqlWrYsWKFaouhYjUFE+HEZHGe/ToESZOnIhGjRqhcuXKqFixInbu3Ak7OztVl0ZEaowhiIg02vPnz9G6dWs8f/4cy5YtQ1hYGMLDw6Grq4tmzZqpujwiUmMcE0REGu3w4cNIT0/Htm3bIJFIAACrVq3C27dvGYKIqEAMQUSk0czNzZGQkID9+/ejQYMGOHDgAAICAlCtWjVUrVpV1eURkRrjwGgi0mhCCIwbNw5bt26FkZERPv30U6SmpuLRo0c4ePCgqssjIjXGEERERERaiQOjiYiISCsxBBEREZFWYggiIiIircQQRERERFqJIYiIiIi0EkMQERERaSWGICIiItJKDEFERESklRiCiIiISCsxBBEREZFWYggiIiIircQQRERERFrp/wHDBw2HUKOCPAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYoklEQVR4nO3dd1hT1x8G8DesgCgoogxRREXcE0VxgBNxr7raKoqKu9S2jmrrqJVqq/7a2joqzrpaV92KA1xYAWfVuiooKipUQBEChPP7gxINS0ZCEvJ+nicPzc1J8r2JXN6ee849EiGEABEREZGeMdB0AURERESawBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEWsfT0xOenp6aLqPIfHx8ULZs2QK1rV69Onx8fNRaj0Qiwdy5c9X6Hu/y+vVrzJ07F8HBwRqtQ1ccP34crq6uMDc3h0QiwZ49e7B+/XpIJBJERkYq2m3ZsgX/+9//1FLD7NmzUa1aNRgZGaF8+fKFfr6Pjw+qV6+u8rq0UWxsLD766CNUr14dUqkUNjY28Pb2xr///qvp0ugdjDRdAFF2P//8s6ZLKDG7d++GhYWFpstQu9evX2PevHkAoNMBtyQIITBo0CDUrl0be/fuhbm5OVxcXJCeno7Q0FDY2dkp2m7ZsgV//fUX/P39VVrDH3/8ga+//hqzZs2Ct7c3pFKpSl+/NHn8+DHatWsHIyMjfPHFF3B2dkZsbCxOnjyJ1NRUTZdH78AQRFqnXr16mi6hxDRt2lTTJZAKJScnw9TUFBKJpMiv8fjxY/z777/o168fOnXqpPRYpUqViltigfz1118AgClTpqBy5col8p6qoorvoDAmTJgAmUyG8PBwVKhQQbG9f//+JfL+VDw8HUbFMnfuXEgkEly/fh1Dhw6FpaUlbGxsMGrUKCQkJCi1TUlJwcyZM+Hk5AQTExNUqVIFEydORHx8vFK73E6HrVixAo0bN0bZsmVRrlw51KlTB59//jkAIDIyEkZGRggICMhR36lTpyCRSPD777/nux/x8fH45JNPUKNGDUilUlSuXBndu3fH33//DQAIDg6GRCLJcTonMjISEokE69evz/Ga169fR6dOnWBubo5KlSph0qRJeP36tVKb3E6HvasWVYiJiYGfnx8cHBxgYmICJycnzJs3D+np6Urt5s2bBzc3N1hZWcHCwgLNmjVDYGAgsq+7fOLECXh6eqJixYowMzNDtWrVMGDAALx+/RqRkZGKP97z5s2DRCKBRCJ552nA169f49NPP4WTkxNMTU1hZWUFV1dXbN26Vand+vXr4eLiAqlUirp162Ljxo05TsUU5vsLDw/HkCFDUL16dZiZmaF69eoYOnQooqKicryvRCLB0aNHMWrUKFSqVAllypSBTCYDAGzfvh2tW7eGubk5ypYtCy8vL1y6dCnffZ47dy4cHBwAANOnT4dEIlHsR/bTYZ6enjhw4ACioqIUn+m7/vBnZGRg8eLFqFOnjuLf1vDhwxEdHa1oU716dcyePRsAYGNjU6DTqbl9B7lJTU3FggULFO9fqVIljBw5Es+fP1dqJ5PJ8Mknn8DW1hZlypRB+/btERERkeP3RVXfQXh4OHr37g0rKyuYmpqiadOm+O233/LdZyDz38/evXsxZswYpQBEuoM9QaQSAwYMwODBg+Hr64tr165h5syZAIC1a9cCyOzi79u3L44fP46ZM2eiXbt2uHr1KubMmYPQ0FCEhobm2eW+bds2TJgwAZMnT8Z3330HAwMD3L17Fzdu3ACQedDu3bs3Vq5ciWnTpsHQ0FDx3OXLl8Pe3h79+vXLs/aXL1+ibdu2iIyMxPTp0+Hm5oZXr17h1KlTePLkCerUqVPozyMtLQ3du3eHn58fZsyYgXPnzmHBggWIiorCvn37il2Lj48PNmzYgPv37xd63EVMTAxatmwJAwMDfPnll6hZsyZCQ0OxYMECREZGYt26dYq2kZGR8PPzQ7Vq1QAA58+fx+TJk/Ho0SN8+eWXijY9evRAu3btsHbtWpQvXx6PHj3C4cOHkZqaCjs7Oxw+fBjdunWDr68vRo8eDeDdvRpTp07Fpk2bsGDBAjRt2hRJSUn466+/EBcXp2izfv16jBw5En369MGSJUuQkJCAuXPnQiaTwcCgaP+PFxkZCRcXFwwZMgRWVlZ48uQJVqxYgRYtWuDGjRuwtrZWaj9q1Cj06NEDmzZtQlJSEoyNjbFw4ULMnj0bI0eOxOzZs5Gamopvv/0W7dq1w4ULF/Ls7Rw9ejQaN26M/v37Y/LkyRg2bFievxc///wzxo4di3v37mH37t0F2rfx48dj9erVmDRpEnr27InIyEh88cUXCA4OxsWLF2FtbY3du3fjp59+QmBgIA4fPgxLS0tFMMtNQb+DjIwM9OnTB6dPn8a0adPg7u6OqKgozJkzB56enggPD4eZmRkAYOTIkdi+fTumTZuGjh074saNG+jXrx8SExNzraE438HJkyfRrVs3uLm5YeXKlbC0tMS2bdswePBgvH79Ot+wfvr0aQghYG9vj6FDh2Lfvn1IT09Hq1atEBAQgNatWxfoeyENEkTFMGfOHAFALF68WGn7hAkThKmpqcjIyBBCCHH48OFc223fvl0AEKtXr1Zs8/DwEB4eHor7kyZNEuXLl8+3jpMnTwoAYvfu3Yptjx49EkZGRmLevHn5Pnf+/PkCgAgKCnrn6588eVJp+/379wUAsW7dOsW2ESNGCADi+++/V2r79ddfCwDizJkzim2Ojo5ixIgRhapFCCFGjRolDA0NRWRkZL7thBACgJgzZ47ivp+fnyhbtqyIiopSavfdd98JAOL69eu5vo5cLhdpaWli/vz5omLFiorvdseOHQKAuHz5cp41PH/+PEcd79KgQQPRt2/fPB+Xy+XC3t5eNGvWTFGLEEJERkYKY2Nj4ejoqNhWmO8vu/T0dPHq1Sthbm6u9J2uW7dOABDDhw9Xav/gwQNhZGQkJk+erLT95cuXwtbWVgwaNCifvX5T07fffqu0Pev97t+/r9jWo0cPpf3Mz82bNwUAMWHCBKXtf/75pwAgPv/8c8W2rN/r58+f5/uahfkOtm7dKgCInTt3Kr1GWFiYACB+/vlnIYQQ169fFwDE9OnTldplPf/t3xdVfAd16tQRTZs2FWlpaUpte/bsKezs7IRcLs9z/wMCAgQAYWFhIfr06SMOHz4sdu7cKRo1aiRMTU3FlStX8nwuaQeeDiOV6N27t9L9Ro0aISUlBc+ePQOQeboEQI7/q3rvvfdgbm6O48eP5/naLVu2RHx8PIYOHYo//vgDsbGxOdp4enqicePG+OmnnxTbVq5cCYlEgrFjx+Zb+6FDh1C7dm107tw533aF9f777yvdHzZsGIDM//Msbi2BgYFIT0+Ho6Njoevav38/OnToAHt7e6Snpytu3t7eAICQkBBF2xMnTqBz586wtLSEoaEhjI2N8eWXXyIuLk7x3TZp0gQmJiYYO3YsNmzYgH/++adQ9bxdQ3p6uuJUW8uWLXHo0CHMmDEDwcHBSE5OVnrerVu38PjxYwwbNkzpNJCjoyPc3d0L/blkefXqFaZPn45atWrByMgIRkZGKFu2LJKSknDz5s0c7QcMGKB0/8iRI0hPT8fw4cOV9svU1BQeHh4amyGX9e8u++9gy5YtUbdu3Xx/B/NSmO9g//79KF++PHr16qX0uTRp0gS2traKzyXr39+gQYOUnj9w4EAYGeV+8qKo38Hdu3fx999/K35X327bvXt3PHnyBLdu3cpz/zMyMgAADg4O2LlzJ7y8vNC/f38cPnwYBgYGWLx48Ts+QdI0hiBSiYoVKyrdz+rCz/rDFRcXByMjoxynQCQSCWxtbZVOcWT34YcfYu3atYiKisKAAQNQuXJluLm5ISgoSKndlClTcPz4cdy6dQtpaWn45ZdfMHDgQNja2uZb+/Pnz/Pt7i8KIyOjHJ9JVh357as6asnu6dOn2LdvH4yNjZVu9evXBwBFyLxw4QK6du0KAPjll19w9uxZhIWFYdasWQDefLc1a9bEsWPHULlyZUycOBE1a9ZEzZo18f3337+zlsjIyBx1ZP0R/OGHHzB9+nTs2bMHHTp0gJWVFfr27Ys7d+4AePM55vb9vus7z8+wYcOwfPlyjB49GkeOHMGFCxcQFhaGSpUq5QhiAJRmawGZny8AtGjRIse+bd++PdcQXxKyPq/s9QKAvb19vv8u3/WaBfkOnj59ivj4eJiYmOT4XGJiYhSfS9Zr2tjYKD0/t9+pLEX9DrLaffrppznaTZgwAQDy/b6y6uncubPSaXg7Ozs0btwYFy9ezPO5pB04JohKRMWKFZGeno7nz58rBSEhBGJiYtCiRYt8nz9y5EiMHDkSSUlJOHXqFObMmYOePXvi9u3bit6QYcOGYfr06fjpp5/QqlUrxMTEYOLEie+srVKlSkoDQ3NjamoKAIoBl1nyOkCmp6cjLi5O6aAdExMDIGdgLGwtxWVtbY1GjRrh66+/zvVxe3t7AJljsYyNjbF//37F/gPAnj17cjynXbt2aNeuHeRyOcLDw/Hjjz/C398fNjY2GDJkSJ612NvbIywsTGmbi4sLAMDc3Bzz5s3DvHnz8PTpU0WvUK9evfD3338rPsesz/Vt2bcV9PtLSEjA/v37MWfOHMyYMUOxXSaT5XnNl+yDkbPGDO3YsaNIPXXqkvV5PXnyJEfQfvz4cY6xToV5zYJ8B9bW1qhYsSIOHz6c62uVK1dO6TWfPn2KKlWqKB7P+p3KTVG/g6x2M2fOzHM2V9a/x9w0atQoz8eEEEUel0Ylh98QlYisqb6//vqr0vadO3ciKSkpx1TgvJibm8Pb2xuzZs1Camoqrl+/rnjM1NRUcUpm6dKlaNKkCdq0afPO1/T29sbt27cVp+xykzX4+OrVq0rb9+7dm+dzNm/erHR/y5YtAPK/Tk5Baimunj174q+//kLNmjXh6uqa45YVgiQSCYyMjJT+Dzc5ORmbNm3K87UNDQ3h5uamOC2Z9X/C2XsGs5iYmOR4/6w/hm+zsbGBj48Phg4dilu3buH169dwcXGBnZ0dtm7dqjRbLSoqCufOnVN6fkG/P4lEAiFEjsHIa9asgVwuz3O/3+bl5QUjIyPcu3cv18/X1dW1QK9TEFKpNNfeqdx07NgRQM7fwbCwMNy8ebPAv4NvK8x30LNnT8TFxUEul+f6mWSFjfbt2wPInNn1th07duSYvZiXgn4HLi4ucHZ2xpUrV/Jsl9u/xyxubm5wcHDA0aNHlf59PH78GFeuXEGrVq0KVC9pDnuCqER06dIFXl5emD59OhITE9GmTRvF7LCmTZviww8/zPO5Y8aMgZmZGdq0aQM7OzvExMQgICAAlpaWOXqQJkyYgMWLFyMiIgJr1qwpUG3+/v7Yvn07+vTpgxkzZqBly5ZITk5GSEgIevbsiQ4dOsDW1hadO3dGQEAAKlSoAEdHRxw/fhy7du3K9TVNTEywZMkSvHr1Ci1atFDMDvP29kbbtm2LVQsA+Pr6YsOGDbh3716hexvmz5+PoKAguLu7Y8qUKXBxcUFKSgoiIyNx8OBBrFy5Eg4ODujRoweWLl2KYcOGYezYsYiLi8N3332XIyCsXLkSJ06cQI8ePVCtWjWkpKQoZgVmjW0qV64cHB0d8ccff6BTp06wsrKCtbV1vjPb3Nzc0LNnTzRq1AgVKlTAzZs3sWnTJrRu3RplypQBAHz11VcYPXo0+vXrhzFjxiA+Ph5z587NcSqmoN+fhYUF2rdvj2+//VZRX0hICAIDAwt81eTq1atj/vz5mDVrFv755x9069YNFSpUwNOnT3HhwgVFD5cqNGzYELt27cKKFSvQvHlzGBgY5BmyXFxcMHbsWPz4448wMDCAt7e3YnZY1apV8fHHHxf6/Q0MDAr8HQwZMgSbN29G9+7d8dFHH6Fly5YwNjZGdHQ0Tp48iT59+qBfv36oX78+hg4diiVLlsDQ0BAdO3bE9evXsWTJElhaWhaod6Uw38GqVavg7e0NLy8v+Pj4oEqVKvj3339x8+ZNXLx4Md/LaxgYGGDZsmUYNGgQ+vTpg/HjxyMpKQlfffUVTExMFLNkSYtpclQ26b68ZpHkNpMlOTlZTJ8+XTg6OgpjY2NhZ2cnxo8fL168eKH03OyzwzZs2CA6dOggbGxshImJibC3txeDBg0SV69ezbUmT09PYWVlJV6/fl3g/Xjx4oX46KOPRLVq1YSxsbGoXLmy6NGjh/j7778VbZ48eSIGDhworKyshKWlpfjggw9EeHh4rrPDzM3NxdWrV4Wnp6cwMzMTVlZWYvz48eLVq1dK75t9dlhBa8magfb255sX5DIr6/nz52LKlCnCyclJGBsbCysrK9G8eXMxa9YspRrXrl0rXFxchFQqFTVq1BABAQEiMDBQ6b1DQ0NFv379hKOjo5BKpaJixYrCw8ND7N27V+k9jx07Jpo2bSqkUmmOWT65mTFjhnB1dRUVKlRQvP/HH38sYmNjldqtWbNGODs7CxMTE1G7dm2xdu1aMWLEiByzpgr6/UVHR4sBAwaIChUqiHLlyolu3bqJv/76K8d3lfVvPCwsLNf69+zZIzp06CAsLCyEVCoVjo6OYuDAgeLYsWP57ndhZof9+++/YuDAgaJ8+fJCIpGIdx3S5XK5WLRokahdu7YwNjYW1tbW4oMPPhAPHz5UalfQ2WFZCvodpKWlie+++040btxYmJqairJly4o6deoIPz8/cefOHUW7lJQUMXXqVFG5cmVhamoqWrVqJUJDQ4WlpaX4+OOPc3wmxf0Orly5IgYNGiQqV64sjI2Nha2trejYsaNYuXJlgfZ/z549okWLFsLU1FRYWlqK3r175znLkrSLRIhsVz0j0mHPnj2Do6MjJk+ezJkZeszHxwfBwcFK62yRbjt37hzatGmDzZs3K2ZaEhUXT4dRqRAdHY1//vkH3377LQwMDPDRRx9puiQiKqKgoCCEhoaiefPmMDMzw5UrV/DNN9/A2dmZy1GQSjEEUamwZs0azJ8/H9WrV8fmzZuVZpUQkW6xsLDA0aNH8b///Q8vX76EtbU1vL29ERAQoDRTkai4eDqMiIiI9JLWTJFfsWIFGjVqBAsLC1hYWKB169Y4dOiQ4nEhBObOnQt7e3uYmZnB09NTaXo0ERERUWFoTQhycHDAN998g/DwcISHh6Njx47o06ePIugsXrwYS5cuxfLlyxEWFgZbW1t06dIFL1++1HDlREREpIu0+nSYlZUVvv32W4waNQr29vbw9/fH9OnTAWRewdXGxgaLFi2Cn5+fhislIiIiXaOVA6Plcjl+//13JCUloXXr1rh//z5iYmIU6xgBmVdK9fDwwLlz5/INQTKZTOlS+RkZGfj3339RsWLFHJdaJyIiIu0khMDLly9hb2+vsiVJtCoEXbt2Da1bt0ZKSgrKli2L3bt3o169eorLr2dfUM/GxgZRUVH5vmZAQIDKrs5KREREmvXw4UOVLTStVSHIxcUFly9fRnx8PHbu3IkRI0YoVpQGci6SJ4R4Z2/OzJkzMXXqVMX9hIQEVKtWDQ8fPoSFhYVqd4CIiIjUIjExEVWrVs13PbfC0qoQZGJiglq1agEAXF1dERYWhu+//14xDigmJgZ2dnaK9s+ePcvRO5SdVCrNsdYRAMUsNCIiItIdqhzKojWzw3IjhIBMJoOTkxNsbW0RFBSkeCw1NRUhISFwd3fXYIVERESkq7SmJ+jzzz+Ht7c3qlatipcvX2Lbtm0IDg7G4cOHIZFI4O/vj4ULF8LZ2RnOzs5YuHAhypQpwzVkiIiIqEi0JgQ9ffoUH374IZ48eQJLS0s0atQIhw8fRpcuXQAA06ZNQ3JyMiZMmIAXL17Azc0NR48eVem5QSIiItIfWn2dIHVITEyEpaUlEhISOCaIiIhIR6jj77dWjwkiIiIiUheGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLWhOCAgIC0KJFC5QrVw6VK1dG3759cevWLaU2Pj4+kEgkSrdWrVppqGIiIiLSZVoTgkJCQjBx4kScP38eQUFBSE9PR9euXZGUlKTUrlu3bnjy5InidvDgQQ1VTERERLrMSNMFZDl8+LDS/XXr1qFy5cqIiIhA+/btFdulUilsbW1LujwiIiIqZbSmJyi7hIQEAICVlZXS9uDgYFSuXBm1a9fGmDFj8OzZs3xfRyaTITExUelGREREJBFCCE0XkZ0QAn369MGLFy9w+vRpxfbt27ejbNmycHR0xP379/HFF18gPT0dERERkEqlub7W3LlzMW/evBzbExISYGFhobZ9ICIiItVJTEyEpaWlSv9+a2UImjhxIg4cOIAzZ87AwcEhz3ZPnjyBo6Mjtm3bhv79++faRiaTQSaTKe4nJiaiatWqDEFEREQ6RB0hSGvGBGWZPHky9u7di1OnTuUbgADAzs4Ojo6OuHPnTp5tpFJpnr1EREREBCA6GrhzB3B2Bt7xt7c00ZoxQUIITJo0Cbt27cKJEyfg5OT0zufExcXh4cOHsLOzK4EKiYiISqHAQMDREejYMfNnYKCmKyoxWhOCJk6ciF9//RVbtmxBuXLlEBMTg5iYGCQnJwMAXr16hU8//RShoaGIjIxEcHAwevXqBWtra/Tr10/D1RMREemg6Ghg7FggIyPzfkYG4OeXuV0PaE0IWrFiBRISEuDp6Qk7OzvFbfv27QAAQ0NDXLt2DX369EHt2rUxYsQI1K5dG6GhoShXrpyGqyciItJBd+68CUBZ5HLg7l3N1FPCtGZM0LvGZ5uZmeHIkSMlVA0REZEecHYGDAyUg5ChIVCrVo6mqampGDJkCEaPHo3u3buXYJHqozU9QURERFTCHByA1aszgw+Q+XPVqhyDozMyMjBq1Cjs3r0bwwYNQvz16xooVvUYgoiIiPSZry8QGQmcPJn509c3R5Np06Zh8+bNMAKwLSkJ5Rs1KhUDqLXyOkHqpI7rDBAREZVW3333HT777DMAwEYAH2Y9YGiYGZpKaEq9Ov5+syeIiIiIcrVp0yZFAPoWbwUgoFQMoGYIIiIiohwOHz6MUaNGAQCmjhmDTw2yRYY8BlDrEoYgIiIiUnLhwgUMGDAA6enpeP/99/HtypUFGkCta7RmijwRERFp3q1bt9CjRw+8fv0aXbt2xdq1a2FgYJA5YNrLK/MUWK1aOh+AAIYgIiIi+s/jx4/h5eWF2NhYuLq6YufOnTAxMXnTwMGhVISfLDwdRkREREhISIC3tzeioqLg7OyMAwcOoGzZspouS60YgoiIiPRcSkoK+vTpg6tXr8LW1hZHjhxB5cqVNV2W2jEEERER6TG5XI73338fISEhKFeuHA4dOgQnJydNl1UiGIKIiIj0lBACkydPxq5du2BiYoI//vgDTZo00XRZJYYhiIiISE8tWLAAK1asgEQiwebNm9GhQwdNl1SiGIKIiIj00OrVq/Hll18CAH788UcMHDhQwxWVPIYgIiIiPbNnzx6MHz8eADB79mxMnDhRwxVpBkMQERGRHjl9+jSGDh2KjIwMjB49GvPnz9d0SRrDEERERKQn/vrrL/Tu3RspKSno3bu3YjyQvmIIIiIi0gNRUVHw8vJCfHw82rRpg61bt8LISL8XjmAIIiIiKuXi4uLg5eWFx48fo169eti7dy/KlCmj6bI0jiGIiIioFEtKSkLPnj1x69YtODg44PDhw7CystJ0WVqBIYiIiKiUSktLw+DBg3H+/HlUqFABR44cQdWqVTVdltZgCCIiIiqFhBAYM2YMDhw4ADOpFPvXrkW9evU0XZZWYQgiIiIqhT7//HNs2LABhgC2y2RwHzAACAzUdFlahSGIiIiolPn+++/xzTffAABWAegFABkZgJ8fEB2tydK0CkMQERFRKbJt2zb4+/sDAL4G4Pv2g3I5cPeuBqrSTgxBREREpcSxY8cwfPhwAMAkHx/MzH4hRENDoFYtDVSmnRiCiIiISoGLFy+iX79+SEtLw3vvvYf/rVkDyS+/ZAYfIPPnqlWAg4NmC9Ui+n2pSCIiolLg3r178Pb2xqtXr9CxY0ds2rQJhoaGgK8v4OWVeQqsVi0GoGwYgoiIiHTY06dP0bVrVzx79gxNmjTB7t27IZVK3zRwcGD4yQNPhxEREemoxMREeHt7459//oGTkxMOHToECwsLTZelMxiCiIiIdJBMJkP//v1x6dIlVKpUCUeOHIGtra2my9IpDEFEREQ6JiMjAyNGjMDx48dhbm6OgwcPwtnZWdNl6RyGICIiIh0ihMDHH3+M7du3w8jICLt27YKrq6umy9JJDEFEREQ6ZNGiRfjhhx8AABs2bEDXrl01XJHuYggiIiLSEevWrcPMmTMBAEuXLsWwYcM0XJFuYwgiIiLSAfv378eYMWMAAJ999hk+/vhjDVek+xiCiIiItFxoaCgGDRoEuVyO4cOHKxZHpeJhCCIiItJiN27cQM+ePZGcnAxvb2+sWbMGBgb8860K/BSJiIi01MOHD+Hl5YV///0Xbm5u+P3332FsbKzpskoNhiAiIiItFBcXh65duyI6Ohp16tTBgQMHYG5urumyShWGICIiIi2TlJSEHj164O+//4aDgwOOHDmCihUrarqsUkdrQlBAQABatGiBcuXKoXLlyujbty9u3bql1EYIgblz58Le3h5mZmbw9PTE9evXNVQxERGR6qWlpeG9997Dn3/+iQoVKuDIkSOoVq2apssqlbQmBIWEhGDixIk4f/48goKCkJ6ejq5duyIpKUnRZvHixVi6dCmWL1+OsLAw2NraokuXLnj58qUGKyciIiqg6Gjg5MnMn7nIyMjAqFGjcOjQIZiZmeHAgQOoV69eCRepPyRCCKHpInLz/PlzVK5cGSEhIWjfvj2EELC3t4e/vz+mT58OIHPxOBsbGyxatAh+fn4Fet3ExERYWloiISGBK+0SEVHJCQwExo4FMjIAAwNg9WrA11fxsBACn3zyCZYtWwZDQ0Ps/eordP/wQ8DBIffXi44G7twBnJ3zblOKqOPvt9b0BGWXkJAAALCysgIA3L9/HzExMUqXB5dKpfDw8MC5c+c0UiMREVGBREe/CUBA5k8/P6UeocWLF2PZsmUAgHUZGej++eeAo2NmeMouMDDzsY4d825D76SVIUgIgalTp6Jt27Zo0KABACAmJgYAYGNjo9TWxsZG8VhuZDIZEhMTlW5EREQl6s6dNwEoi1wO3L0LIHM5jBkzZgAAvpNI8GHWSZpcwlJBAhUVjFaGoEmTJuHq1avYunVrjsckEonSfSFEjm1vCwgIgKWlpeJWtWpVlddLRESUL2fnzFNgbzM0BGrVwr59+94shzF4MD7JPkrlrbAE4J2BigpO60LQ5MmTsXfvXpw8eRIOb53jtLW1BYAcvT7Pnj3L0Tv0tpkzZyIhIUFxe/jwoXoKJyIiyouDQ+YYIEPDzPuGhsCqVTgTGalYDsPHxweLvv02z7CkkE+gosLRmhAkhMCkSZOwa9cunDhxAk5OTkqPOzk5wdbWFkFBQYptqampCAkJgbu7e56vK5VKYWFhoXQjIiIqcb6+QGRk5uywyEhca9kSvXr1QkpKCnr27IlffvkFkqpVcw1LSgOf8whU+jA4WtW0ZnbYhAkTsGXLFvzxxx9wcXFRbLe0tISZmRkAYNGiRQgICMC6devg7OyMhQsXIjg4GLdu3UK5cuUK9D6cHUZERJoWFRUFd3d3PH78GG3atMHRo0dRpkyZNw2iozNPb9Wqlf/ssHe1KUXU8fdba0JQXuN61q1bBx8fHwCZvUXz5s3DqlWr8OLFC7i5ueGnn35SDJ4uCIYgIiLSpOfPn6Nt27a4ffs26tevj9OnT6NChQqaLkvrleoQVFIYgoiISFNevnyJjh07Ijw8HNWqVcO5c+dQpUoVTZelE/TqOkFERESlSWpqKvr374/w8HBYW1vj6NGjDEAaxhBERESkZhkZGRgxYgSOHTsGc3NzHDx4UGn8K2kGQxAREZEaCSHg7++Pbdu2wdjYGLt27UKLFi00XRaBIYiIiEitFi5ciB9//BEAsGHDBqXln0izGIKIiIjU5JdffsHs2bMBAN9//z2GDh2q4YrobQxBREREarBr1y6MGzcOADBr1ixMmTJFwxVRdkaaLoCIiKhUiI7OXNfL2RnHb93C0KFDkZGRgdGjR+Orr77SdHWUC4YgIiKi4goMVKzsfkEiQR8TE6SmpmLAgAFYuXJlvgt9k+bwdBgREVFxREcrAtANAN5CIEkmQ+d27bB582YYZq3xRVqHIYiIiKg47twBMjIQCaArgH8BuAHYPXMmpFKpRkuj/DEEERERFYezM55KJOgC4BGAegAOGBigbMOGGi6M3oUhiIiIqBgSypVDNwcH3AVQHcBRAwNUXL1aL1Z213UcGE1ERFREr1+/Rq9evXD54UPYVKqEoGXLUMXDgwFIRzAEERERFUFaWhoGDRqE06dPw9LSEkeCglCrcWNNl0WFwNNhREREhZSRkQEfHx8cOHAAZmZm2L9/PxozAOkchiAiIqJCEELgo48+wpYtW2BkZIQdO3agbdu2mi6LioAhiIiIqBDmzZuH5cuXQyKRYOPGjejevbumS6IiYggiIiIqoB9++AHz5s0DACxfvpwLouo4hiAiIqIC2LRpEz766CMAwFdffYUJEyZouCIqLoYgIiKid9i3bx9GjhwJAPD398esWbM0XBGpAkMQERFRPkJCQjBo0CDI5XKMGDECS5Ys4YKopQRDEBERUR7+/PNP9OzZEykpKejduzfWrFkDAwP+6Swt+E0SERHl4urVq/D29sarV6/QqVMnbN++HUZGvMZwacIQRERElM3t27fRpUsXvHjxAu7u7tizZw9MTU01XRapGEMQERHRW6KiotC5c2c8e/YMTZo0wYEDB1C2bFlNl0VqwBBERET0nydPnqBTp054+PAh6tSpg6NHj6J8+fKaLovUhCGIiIgIQFxcHLp06YJ79+7ByckJx44dQ6VKlTRdFqkRQxAREem9xMREdOvWDdevX4e9vT2OHTuGKlWqZD4YHQ2cPJn5k0oVhiAiIip9ChFcXr9+jZ49eyI8PBzW1tY4duwYatSokflgYCDg6Ah07Jj5MzBQzYVTSWIIIiKi0qUQwUUmk6F///44ffo0LC0tcfToUdStWzfzwehoYOxYICMj835GBuDnxx6hUoQhiIiISo9CBJf09HQM7dsXR44cQRkzMxw8eBBNmzZ90+DOnTevk0UuB+7eVeMOUEliCCIiotKjgMElIyMDo9q3x+7Dh2EC4I+UFLjfvKn8PGdnIPvVoQ0NgVq1VF83aQRDEBERlR4FCC5CCEzy8cGm0FAYAvgdQGchcvYYOTgAq1dnPj/rdVatytxOpQJDEBERlR7vCC5CCEybNg0rNm2CBMAmAL2znpvbqS5fXyAyMnOQdWRk5n0qNbgIChERlS6+voCXV2agqVVLKQDNnj0b3333HQBglUSCoUK8eV5ep7ocHNj7U0oxBBERUemTS3D56quvsHDhQgDAjz/+iDFmZpmnwORynurSUwxBRERU6i1atAhz5swBACxZsgSTJk3KfCCXHiPSHwxBRERUqi1btgwzZswAACxcuBBTp0598yBPdek1DowmIqJS6+eff1aEnjlz5mDmzJkaroi0CUMQERGVSmvWrMHEiRMBADNmzFCcDiPKwhBERESlzsaNGzF27FgAwMcff4yFCxdCIpFouCrSNgxBRERUqmzfvh0jR46EEAITJ07EkiVLGIAoV1oVgk6dOoVevXrB3t4eEokEe/bsUXrcx8cHEolE6daqVSvNFEtERFpn165deP/995GRkYHRo0fjhx9+YACiPGlVCEpKSkLjxo2xfPnyPNt069YNT548UdwOHjxYghUSEZG22r9/P4YMGQK5XI7hw4dj1apVMMi+hAbRW7Rqiry3tze8vb3zbSOVSmFra1tCFRERkS44ePAgBgwYgLS0NAwZMgRr165lAKJ30rl/IcHBwahcuTJq166NMWPG4NmzZ5ouiYiINOjgwYPo168fUlNTMWDAAGzcuBGGWWuHEeVDq3qC3sXb2xvvvfceHB0dcf/+fXzxxRfo2LEjIiIiIJVKc32OTCaDTCZT3E9MTCypcomISM0OHDiA/v37KwLQ1q1bYWxsrOmySEfoVAgaPHiw4r8bNGgAV1dXODo6Kn4JchMQEIB58+aVVIlERFRC3g5AAwcOxJYtWxiAqFB07nTY2+zs7ODo6Ig7d+7k2WbmzJlISEhQ3B4+fFiCFRIRkTrs37+fAYiKTad6grKLi4vDw4cPYWdnl2cbqVSa56kyIiLSPVkBKC0tDe+99x42b97MAERFolUh6NWrV7h7967i/v3793H58mVYWVnBysoKc+fOxYABA2BnZ4fIyEh8/vnnsLa2Rr9+/TRYNRERlRQGIFIlrQpB4eHh6NChg+J+1qJ3I0aMwIoVK3Dt2jVs3LgR8fHxsLOzQ4cOHbB9+3aUK1dOUyUTEVEJ2bdvn2IaPAMQqYJECCE0XURJSkxMhKWlJRISEmBhYaHpcoiIqACUAlDPntjy0UcwqlMHcHDQdGlUQtTx91unB0YTEVHp93YAGuTqii0HDsCoSxfA0REIDNR0eaTDGIKIiEhr7dy5UzEGaFDPntgcEQGjrBMYGRmAnx8QHa3ZIklnMQQREZFW2rJlCwYPHoz09HQMGTIEmz/66E0AyiKXA29NqCEqDIYgIiLSOmvXrsUHH3wAuVwOHx8f/Prrr5ljgLKvB2ZoCNSqpZkiSecxBBERkVZZsWIFfH19IYTAuHHjEBgYmLkWmIMDsHp1ZvABMn+uWsXB0VRkWjVFnoiI9NuyZcsUl0fx9/fH0qVLIZFI3jTw9QW8vDJPgdWqxQBExcIQREREWmHh9OmYtXgxgMwlj77++mvlAJTFwYHhh1SCIYiIiDRKCIE5vXvjq/37AQDzJRLMrlEj9wBEpEIcE0REROoXHQ2cPJljOrsQAtPGj1cEoMUAvhACknHjOPWd1I4hiIiI1CswMPPChh07Kl3gMCMjA1OmTMF3q1YBAH4A8FnWczj1nUoAQxAREalPdDQwdmzmhQ0BxQUO0yMj4evri+XLl0MikWC1RILJbz+PU9+pBHBMEBERqc+dO28C0H9S5HIM/fBD7DlzBoaGhli/fj0+kMkyr/4sl3PqO5UYhiAiIlIfZ+fMCxz+F4ReAugL4MSZM5BKpfjtt9/Qu3fvzLac+k4ljKfDiIhIfd66wGEcgM4ATgAoW7YsDh069CYAZbX19GQAohLDEEREREWXx6wvJb6+eHz+PDyqV8cFABUrVsTJkyfRoUOHEiuTKDcMQUREVDR5zPrK7t69e2jz3nu4HhmJKlWq4NSpU3B1dS3hYolyKlYIevbsGWJiYlRVCxER6Yo8Zn1l7xG6du0a2rZti8jISNSsWRNnzpxBvXr1NFAwUU5FCkFXr15F/fr1YWdnhypVqqBKlSqYPXs2kpKSVF0fERFpo1xmfWW/ts/58+fh4eGBmJgYNGrUCGfOnEH16tVLtk6ifBQpBPn6+sLGxgZnzpzBpUuXsGDBAhw6dAiurq548eKFqmskIiJtkzXr621vXdvn0KFD6NSpE168eIHWrVsjODgYtra2GiiUKG8SIYQo7JPMzc0RERGBOnXqKLYJIfDee+/B1NQUv/76q0qLVKXExERYWloiISEBFhYWmi6HiEh7RUdn9vg4O+c+YyswMOe1fXx9sX79eowePRpyuRxdu3bFrl27YG5uXvL1U6mijr/fReoJyq3HRyKRYOHChfjjjz9UUhgREWlQQQY9+/oCkZGZs8MiIyFGjUJAQABGjhwJuVyODz74APv27WMAIq1V4J6gHj16oHHjxmjSpAnkcjm+//57/PHHH7CxsVG0CQsLw4ABA/DgwQO1FVxc7AkiInqH6OjM4PP2mB9Dw8zAk8c1fORyOfz9/bF8+XIAwLRp0xAQEACD7KfMiIpIHX+/C3zF6IYNG+LixYtYt24dnj59CgCoUaMGBg0apAhG69atw7Jly1RSGBERaUh+g55zCUEpKSn48MMPsWPHDgDAsmXL4O/vXwKFEhVPkcYEPX36FJcuXcLly5cVt7t378LQ0BAuLi64evWqOmpVCfYEERG9QyF6guLj49G3b1+EhITAxMQEGzduxODBg0u2XtILGu0JepuNjQ26deuGbt26KbYlJyfjypUruHLlikoKIyIiDcla6uIdC5o+evQI3t7euHbtGsqVK4c9e/agY8eOGiqaqPCK1BOky9gTRERUQNHReS5oeuPGDXh7e+PBgwewtbXFoUOH0KRJE83USXpBa3qCiIhIDzg45DoG6MSJE+jfvz8SEhJQu3ZtHDlyhBdBJJ3EYftERFRg69evh5eXFxISEtCmTRucPXuWAYh0FkMQERG9kxACX3zxBUaOHIn09HQMGTIEx44dg7W1taZLIyoyhiAiIsqXTCbDBx98gAULFgAAPv/8c2zevBmmpqYaroyoeDgmiIiI8hQXF4d+/frh9OnTMDIywqpVqzBq1ChNl0WkEgxBRESUq7t376J79+64c+cOLCwssHPnTnTu3FnTZRGpDEMQERHlcPr0afTr1w9xcXGoVq0aDh48iPr162u6LCKV4pggIiJSEhgYiE6dOiEuLg6urq74888/GYCoVGIIIiIiAEB6ejr8/f0xevRopKWlYdCgQQgJCYGtra2mSyNSC54OIyIixMfHY/DgwTh69CgAYP78+Zg9ezYkEomGKyNSH4YgIiI9d/v2bfTq1Qu3b99GmTJlsHHjRgwYMEDTZRGpHUMQEZEeCwoKwqBBgxAfH4+qVati7969XAOM9AbHBBER6SEhBH788Ud4e3sjPj4erVu3RlhYGAMQ6RWGICIiPZOcnIxRo0ZhypQpkMvlGDFiBE6ePAkbGxtNl0ZUong6jIhIj0RFRaF///64ePEiDAwMsGjRInzyySccAE16iSGIiEhPHDt2DEOGDEFcXBwqVqyI7du3o1OnTpoui0hjtOp02KlTp9CrVy/Y29tDIpFgz549So8LITB37lzY29vDzMwMnp6euH79umaKJSLSEUIILF68GF5eXoiLi0Pz5s0RERHBAER6T6tCUFJSEho3bozly5fn+vjixYuxdOlSLF++HGFhYbC1tUWXLl3w8uXLEq6UiEhLRUcDJ09m/gTw8uVLvPfee5g+fToyMjIwcuRInDlzBo6OjhoulEjztOp0mLe3N7y9vXN9TAiB//3vf5g1axb69+8PANiwYQNsbGywZcsW+Pn5lWSpRETaJzAQGDsWyMgADAxwa/589N+yBTdu3ICxsTF++OEH+Pn5cfwP0X+0qicoP/fv30dMTAy6du2q2CaVSuHh4YFz587l+TyZTIbExESlGxFRqRMd/SYAAdiWkQHX2bNx48YN2Nvb49SpUxg3bhwDENFbdCYExcTEAECOKZw2NjaKx3ITEBAAS0tLxa1q1apqrZOISCPu3AEyMpACYAKAoQBeAfBo3BgRERFo1aqVZusj0kI6E4KyZP+/GCFEvv9nM3PmTCQkJChuDx8+VHeJREQlz9kZ9yQSuANYAUACYJZEgmN79nABVKI8aNWYoPxk/RLHxMTAzs5Osf3Zs2f5XuBLKpVCKpWqvT4iIk3a+eefGGVqisTkZFgD+NXAAF6rVwPVq2u6NCKtpTM9QU5OTrC1tUVQUJBiW2pqKkJCQuDu7q7ByoiINEcmk2HKlCkYOHAgEpOT0bZFC1z67Td4RUUBvr6aLo9Iq2lVT9CrV69w9+5dxf379+/j8uXLsLKyQrVq1eDv74+FCxfC2dkZzs7OWLhwIcqUKYNhw4ZpsGoiIs24d+8ehg4dirCwMADAtGnTsGDBAhgbG2u4MiLdoFUhKDw8HB06dFDcnzp1KgBgxIgRWL9+PaZNm4bk5GRMmDABL168gJubG44ePYpy5cppqmQiohInhMCmTZswceJEvHr1ClZWVtiwYQN69uxZsBeIjs4cSO3sDDg4qLdYIi0mEUIITRdRkhITE2FpaYmEhARYWFhouhwiokJJSEjA+PHjsXXrVgBA+/bt8euvvxZ85mu2awlh9WqeNiOdoI6/3zozJoiISN+dPXsWjRs3xtatW2FoaIivv/4aJ06cKHgAynYtIWRkAH5+iqtLE+kbhiAiIi2Xnp6OuVOnon379oiKikKNGjVw9uxZfP755zA0NCz4C/13LSElcjnw1lhMIn2iVWOCiIhIWWRkJD7o0gVn/wsqwwH8+PHHsHBzK/yLOTtnngJ7OwgZGgK1aqmmWCIdw54gIiItJITAL7/8goYNGuDs3buwALAZwAYAFv7+RTuF5eCQOQYoq/fI0BBYtYqDo0lvsSeIiEjLPHr0CGPGjMGhQ4cAAG0BbATglNUg6xRWUcKLry/g5ZX5/Fq1GIBIr7EniIhISwghsHnzZjRo0ACHDh2CVCrFki++QLBE8iYAAcU/heXgAHh6MgCR3mNPEBGRFnj+/DnGjx+PnTt3AgBcXV2xceNG1K1bF3B0zJzFJZfzFBaRCjEEERGpSwEvSrh79274+fnh+fPnMDIywpw5czBjxgwYGf13iOYpLCK1YAgiIlKHAlyUMCYmBpMnT8aOHTsAAA3r1MHGrVvRpEmTnK/n4MDwQ6RiHBNERKRq77gooRACa9euRd26dbFjxw4YApgJIOzWLTSJiNBY2UT6hiGIiEjV8rko4b1799C5c2f4+voiPj4ezQFEAFgIQCoEr+BMVIIYgoiIVC3rooRvSTcwwLfHjqFhw4Y4ceIEzMzM8N24cTgPoPHbDXkFZ6ISwxBERKRq2S5KGGFggFZVq2La118jOTkZnTp1wrVr1/DJrFkwyhaWeAVnopLDEEREpA6+vnhx+TIm9umDFkIgIioKFSpUwNq1axEUFISaNWvyCs5EGsbZYUREKiaEwKZNm/Dpp5/i+fPnAIBhw4ZhyZIlsLW1VW7M6e9EGsMQRESaU8Dr6OiSa9euYeLEiTh9+jQAoG7duvjpp5/QoUOHvJ/E6e9EGsHTYUSkGYGBmVdC7tgx82dgoKYrKpbExER88sknaNq0KU6fPo0yZcrgm2++weXLl/MPQESkMRIhhNB0ESUpMTERlpaWSEhIgIWFhabLIdJP0dGZweftaeSGhkBkpM71iMjlcqxfvx6zZs3C06dPAQD9+/fHsmXLUK1aNQ1XR1R6qOPvN3uCiKjk5XMdHV0SEhICV1dXjB49Gk+fPoWzszMOHDiAnTt3MgAR6QCGICIqeblcR0eXpobfv38fAwcOhKenJy5fvgxLS0ssWbIEf/31F7p3767p8oiogBiCiKjk6ejU8MTERMycORN16tTBzp07YWBggHHjxuHOnTuYOnUqTExMNF0iERUCZ4cRkWbo0NRwmUyGFStW4Ouvv0ZsbCwAoFOnTli2bBkaNmyo4eqIqKgYgohIc7R8arhcLseWLVvwxRdfICoqCgBQu3ZtLF68GL1794ZEItFwhURUHAxBRETZCCFw6NAhzJgxA9euXQMA2NvbY+7cuRg5ciSMjHjoJCoN+JtMRPSW0NBQzJgxA6dOnQIAWFpaYubMmZg8eTLKlCmj4eqISJUYgoiIAJw/fx5z587FkSNHAABSqRRTpkzBjBkzYGVlpeHqiEgdGIKISK/9+eefmDt3Lg4fPgwAMDQ0hI+PD+bMmYOqVavm/cRSuOQHkb7hFHki0ksXLlxA9+7d0apVKxw+fBiGhoYYNWoUbt++jTVr1uQfgErZkh9E+oohiIhKh+ho4OTJzJ/5OHPmDHr06AE3NzccOnQIhoaGGDlyJG7fvo3AwEDUqFHj3e8zduybK15nZAB+fu98XyLSPgxBRKT73tEzk5GRgf3796Nt27Zo164dDh48qDjtdevWLaxdu/bd4SdLKVnyg4g4JoiIdF1ePTNeXkizscG2bduwaNEiXL9+HQBgYmKC4cOHY/r06ahVlGU6spb8yL74q44s+UFEbzAEEZFuy6VnJkkuR+CiRViydy8ePHgAAChXrhzGjRsHf39/2NvbF/39spb88PPL7AHSkSU/iCgniRBCaLqIkpSYmAhLS0skJCTAwsJC0+UQUXFFR2eeAsvIwAMAywH8AiD+v4crV64Mf39/jB8/HuXLl1ft++rAkh9EpYU6/n6zJ4iIdJqoUgVnP/sM3y9ahF0AsvqEatasiU8//RQjRoyAmZlZ5kZVTmvX8iU/iOjdGIKISCfJZDL89ttv+N///oeLFy8qtnds0wYfTZuGHj16wDBrlXogc7B01tghA4PMU1q+vhqonIi0BU+HEZFOiYyMxC+//ILAwEA8ffoUAGBqaooPPvgAU6ZMyX1V97dOmSkYGgKRkezNIdIRPB1GRHopPT0d+/fvx6pVq3DkyBFk/b+bvb09Jk6ciLFjx8La2jrvF8hvWjtDEJHeYggiIq314MEDrFm6FIG//orHcXGK7V26dIGfnx969+4NY2Pjd78Qp7UTUS4YgohIq8hkMuzfvx/r1q3DoYMHkfFfr08lACO7dcOYH38s/PV9OK2diHLBEEREGieEQHh4ONavX4+tW7fixYsXisc6APAD0BeANCgIMDUt2pv4+gJeXpzWTkQKDEFEpDGPHj3Cr7/+ig0bNuDmzZuK7VWqVMGH7dvDZ+tWuLz9hOKO4ynItHauDk+kNxiCiKhExcfHY8+ePdi6dSuOHTuGjP/G6ZiamqJ///7w8fFBx44dYfjkCbB9e8mO4+E0eiK9olMLqM6dOxcSiUTpZmtrq+myiOgdkpKSsG3bNvTt2xc2NjYYOXIkjh49ioyMDLRt2xa//PILYmJisHnzZnTp0iXz+j5Z43iyrvWj7nE8XB2eSO/oXE9Q/fr1cezYMcV9pYuhEVHuVHmKpyCvFR2NlOvXcfjhQ2w7dgz79u3D69evFQ/Xq1cPQ4cOxZAhQ/If5FyS43g4jZ5I7+hcCDIyMmLvD1FhqPIUzzte69WrVzj02WfYvXIlDgBIfOupNWvWxJAhQzBkyBA0aNCg4O9ZUstTcBo9kd7RuRB0584d2NvbQyqVws3NDQsXLkSNGjXybC+TySCTyRT3ExMT82xLVOrkdYrHy6vwwSKP14pt0QJ7w8Oxe/duBAUFKf2+OQAYLJFgyL59aN69OyQSiWr2Sx04jZ5I7+hUCHJzc8PGjRtRu3ZtPH36FAsWLIC7uzuuX7+OihUr5vqcgIAAzJs3r4QrJdISqjzF89ZrPQCwB8BuuRynmjZVDG4GgJoA+v13awXAQAjA3BzQ5gCUhdPoifSKTq8dlpSUhJo1a2LatGmYOnVqrm1y6wmqWrUq1w4j/aCiNbPS09MR+scfODBwIA4CuJbt8SZNmqBfv37o17o1Gnh5QfL2YYVrdBGRCnDtsGzMzc3RsGFD3LlzJ882UqkUUqm0BKsi0iLFOMXz7NkzHD58GAcOHMDRo0cRHx+veMwAQBsA/QYNQt9vvoGTk9ObJ/7yC08pEZFO0OkQJJPJcPPmTbRr107TpRBprwKe4pHL5YiIiMChQ4dw8OBBhIWF4e2O4ooVK6Jbt27o0aoVulatiorNm+f+WjylREQ6QqdC0KeffopevXqhWrVqePbsGRYsWIDExESMGDFC06URabdcZlgJIXDv3j0cO3YMQUFBOHHihFJvDwA0a9YM3bt3R/fu3dGyZcuCX5KipGZ0EREVg06FoOjoaAwdOhSxsbGoVKkSWrVqhfPnz8PR0VHTpRFl0vIlF2JjY3H8+HFF8ImKilJ63NLSEp06dUKPHj3QrVs32Nvba6hSIiL106kQtG3bNk2XQJQ3LVxy4eXLlzh79ixOnjyJoKAgXLp0SelxY2NjuLu7o3PnzujSpQuaN28OIyOdOiwQERWZTs8OKwp1jC4nUtUsrOJKSEjAmTNnEBISgpCQEEREREAulyu1adiwoSL0tGvXDmXLli2x+oiIioqzw4i0lYaWXHjx4gVOnz6N4OBghISE4PLly0rX7AGA6tWrw9PTE507d0anTp3yvuK6lp/KIyJSNYYgIlUozJILxQgbz58/x+nTpxU9PVevXkX2ztxatWrBw8NDcatWrdq7X1gLT+UREakbQxCRKhT0ejyFCBsZGRm4efMmzp49i3PnzuHcuXO5XhPLxcUFHh4e8PT0RPv27VGlSpXC1a7KpTWIiHQIxwQRqVJ0dN7Xx3nHuKFXr17hwoULOHfuHM6ePYvQ0FAkJCTkeIv69esrenna16oF24SE4p3COnkS6Ngx9+2enkV7TSIiFeOYICJtl9/1cd4aNyQAPARwVi7HuSlTcC4qCleuXMkxiLlMmTJwc3NDmzZt4O7ujlatWqFChQqZDwYGAi1aFP8UFldPJyI9xRBEVALS0tJwOSkJ5yQSnBUC5wA8ynpw925Fu2rVqsHd3R3u7u5oU6sWGhkbw6hOndx7lVR1CourpxORnmIIIlKDuLg4hIaGKsbyXLhwAcnJyUptDAE0rV4dbfr0UQQfh6zgERgI9OyZdy+PqmejcakLItJDHBNEVExCCNy6dUsxlufcuXP4+++/c7SrUKFCZtipXx9t7Ozg2r07zGvXzvmCBbnmkJZcl4iIqKRwTBCRFnj9+jXCwsIUvTznzp3Dv//+m6Odi4uLYixPmzZtULt2bRgYGLz7DQrSy8NTWERExcYQRPQOjx49UpqmfunSJaSnpyu1MTU1RcuWLZUGMFtbWxftDQs6UJmnsIiIioUhSN14FV7NKcJnn56ejqtXryqd2nrw4EGOdvb29ooenjZt2qBx48YwMTFRTd2F6eXhau1EREXGEKROvApv4akqNBbws3/x4gXOnz+v6OX5888/kZSUpNTGwMAAjRs3VvTyuLu7o1q1apBIJEWv713Yy0NEpHYcGK0uHLhaeKoKjXl89uL+fdxNSVE6tXX9+vUcT7e0tETr1q0VPT0tW7ZE2fh49ugREWkQB0brEg0tqKmzVHndm/8+ezmAywBCAITI5TjXsCFic7kCcy0AbQC4SyRwnzsX9WbPVh7AzB49IqJSiSFIXXgV3sJRQWhMT0/H5cuXEXz8OIIBnAaQ+HaDhARIpVK4urpm9vK4uKD1mDGonNUZKgQwfz4wapTyVHSuq0VEVCoxBKkLpzAXThFCY3p6Oi5evIiQkBAEBwfj9OnTePnypVIbCwDtAHgMHIi2U6eiWbNmkEqlmQ+ePJkZfN6WPXixR4+IqNRiCFInDm4tuAKExrS0NFy8eBHBwcEICQnBmTNncoQeS0tLtG/fPnNV9bp10UQqhaGLS+6ffUGCF3v0iIhKLYYgdeMU5oLLFhrTbGwQcf48goODERwcjLNnz+LVq1dKTylfvjzat28PT09PeHh4oHHjxjA0NCzY+xWkt449ekREpRZnh5HWSE1NRXh4uOL01tmzZ3NMV69QoUJm6GnSBJ5VqqBh164wdHQs3htHR7+7t64gbYiISG04O4x0W7ZrAKWmpiIsLExxeuvs2bN4/fq10lOsrKzg4eGReXrL0xMNGzaEwbp1qp2tVZDeOvboERGVOuwJopIRGAjZmDEIEwLBEgmC69TBucjIHCurV6xYURF4PD09Ub9+feXp6rz+EhGRXmJPEOkUmUyGP//8EyF79yJ4yRKcA5ACZM7IunkTAGBtba0Yz+Pp6Yl69erlv8goZ2sREZGKMATpKzWsaZaSkoI///xTcXorNDQUKSkpSm0qAfD87+axdi3q+fgUbvkJztYiIiIVYQjSJSW8rta7JCcn4/z584qBzOfPn4dMJlNqY2NjA48WLeB54AA8hUAdABIgM7h06QIUdv0tztYiIiIV4ZggXaHmdbUKMqYmOTkZoaGhip6e8+fPIzU1VamNra2t0uktFxeXzJ6ewMCcwaU4g5k5W4uISK+o4+83Q5AuUOVg4JMngY4dc9/u6am06fXr14rQExwcjAsXLuQIPXZ2dopBzJ6ennB2ds779BaDCxERFREHRusrVQ4GzmdMTVJSEs6dO6c4vXXhwgWkpaUpPb1KlSpKPT21atUq+JgeTjMnIiItwhCkC1Q5GPitMTXxcjnOGBjgVOfOODVwICIiIpCenp6tuYOil8fDwwM1a9Ys3EBmIiIiLcUQpAtUNBj4+fPnOHXqFE5dvYpTdergyo0bEBkZwJEjijbVqlVTuk6Pk5MTQw8REZVKDEG6opCLsQohcO/ePYSGhuLs2bM4deoUbv53bZ63OTs7w8PDA+3bt0f79u3hmH0JCjVMpSciItIGDEG50dY//PmMqUlKSkJYWBhCQ0MRGhqK8+fP4/nz5znaNWjQQLHKert27WBnZ5f3+6lqRhoREZEW4uyw7HTgD39aWhpu3ryJixcvIjw8HKGhobhy5QrkcrlSOxMTEzRr1gytW7dG+/bt0a5dO1SsWLFgb8LlKYiISItwdpi6RUe/CUBA5k8/v8zTUBr6wy+TyXD9+nVERETg4sWLuHjxIq5evZrjSsxA5syt1ra2aH3xIloLgaZpaTAdPbpoIa4wM9K0teeMiIgoH3obgu6ePYsmXl7K61RpcF2qlJQU3Lp1Czdu3MD169dx48YN3LhxA3fv3s3RwwMAFhYWaNq0KZo1a4ZWrVqhdevWqCqRZPbeZHXuCVH0EFfQGWk60HNGRESUG70NQc27d4elmRlc3d1Rv359uLi4wMXKCi4SCeyEgGFWQxWtS5WUlISnT5/iyZMnuH//Pv755x+ln9HR0cjrzKSVlRWaNWuG5s2bo1mzZmjWrBlq1KiRc6HRkydVF+IKMiNNC3vOiIiICkpvxwRJAcjyaGMIoDIAOwB2jRrBqnFjlC1bFmXLloW5uTmkUqnStHEhBJKTk/Hq1SvF7eXLl4iNjcXTp0/x9OlTJCUlvbO2ChUqoH79+qhXr57iZ7169WBnZ1ewaerqGMeT31WeC3H1aSIiouLgmCAVegTgAYCITz/FLQC3bt3CrVu3cO/ePcjlcjwB8AQArl7NvKmAmZkZbG1tUb16dTg5OaFGjRpwcnJS/HflypWLd00edSwumt9VnrmiOxER6TC97QlKAGCRSy9Jeno6nj17hidPnihuCQkJSr08MpksR1gpU6aMorcoq8eoYsWKsLGxUdzKli2b/7paqhpcXJJrdKl6YVQiIqJccAFVFVB8iAYGsNCWQby6PriYC6MSEZGaMQSpgOJDvHEDFnXrarocXo+HiIioANQRggze3aSUqlJF0xVkym9aPhEREamNToagn3/+GU5OTjA1NUXz5s1x+vRpTZdUdFmDi9/GwcVERERqp3MhaPv27fD398esWbNw6dIltGvXDt7e3njw4IGmSyuarBldhv9dmUgVM7qIiIjonXRuTJCbmxuaNWuGFStWKLbVrVsXffv2RUBAwDufr45ziirBwcVERER50vvrBKWmpiIiIgIzZsxQ2t61a1ecO3cu1+fIZDLIZG8ui5iYmKjWGossv+vxEBERkcrp1Omw2NhYyOVy2NjYKG23sbFBTExMrs8JCAiApaWl4la1atWSKJWIiIi0nE6FoCzZLzgohMjzIoQzZ85EQkKC4vbw4cOSKJGIiIi0nE6dDrO2toahoWGOXp9nz57l6B3KIpVKIZVKS6I8IiIi0iE61RNkYmKC5s2bIygoSGl7UFAQ3N3dNVQVERER6SKd6gkCgKlTp+LDDz+Eq6srWrdujdWrV+PBgwcYN26cpksjIiIiHaJzIWjw4MGIi4vD/Pnz8eTJEzRo0AAHDx6Eo6OjpksjIiIiHaJz1wkqLq29ThARERHliWuHEREREakIQ1BxREcDJ09m/iQiIiKdwhBUVIGBgKMj0LFj5s/AQE1XRERERIXAEFQU0dHA2LFARkbm/YwMwM+PPUJEREQ6hCGoKO7ceROAssjlmQugEhERkU5gCCoKZ2fAINtHZ2iYuQI8ERER6QSGoKJwcABWr84MPkDmz1WruAo8ERGRDtG5iyVqDV9fwMsr8xRYrVoMQERERDqGIag4HBwYfoiIiHQUT4cRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgv6VQIql69OiQSidJtxowZmi6LiIiIdJCRpgsorPnz52PMmDGK+2XLltVgNURERKSrdC4ElStXDra2tpoug4iIiHScTp0OA4BFixahYsWKaNKkCb7++mukpqZquiQiIiLSQTrVE/TRRx+hWbNmqFChAi5cuICZM2fi/v37WLNmTZ7PkclkkMlkivsJCQkAgMTERLXXS0RERKqR9XdbCKG6FxUaNmfOHAEg31tYWFiuz92xY4cAIGJjY4v1+rzxxhtvvPHGm27c7t27p7IMIhFClZGq8GJjYxEbG5tvm+rVq8PU1DTH9kePHsHBwQHnz5+Hm5tbrs/N3hMUHx8PR0dHPHjwAJaWlsUrXockJiaiatWqePjwISwsLDRdTonhfnO/9QH3m/utDxISElCtWjW8ePEC5cuXV8lravx0mLW1NaytrYv03EuXLgEA7Ozs8mwjlUohlUpzbLe0tNSrfzxZLCwsuN96hPutX7jf+kVf99vAQHXDmTUeggoqNDQU58+fR4cOHWBpaYmwsDB8/PHH6N27N6pVq6bp8oiIiEjH6EwIkkql2L59O+bNmweZTAZHR0eMGTMG06ZN03RpREREpIN0JgQ1a9YM58+fL/brSKVSzJkzJ9dTZKUZ95v7rQ+439xvfcD9Vt1+a3xgNBEREZEm6NzFEomIiIhUgSGIiIiI9BJDEBEREeklhiAiIiLSS6UyBP38889wcnKCqakpmjdvjtOnT+fbPiQkBM2bN4epqSlq1KiBlStXllClqlWY/d61axe6dOmCSpUqwcLCAq1bt8aRI0dKsFrVKez3neXs2bMwMjJCkyZN1FugmhR2v2UyGWbNmgVHR0dIpVLUrFkTa9euLaFqVaew+71582Y0btwYZcqUgZ2dHUaOHIm4uLgSqrb4Tp06hV69esHe3h4SiQR79ux553NKwzGtsPtdWo5pRfm+s+jyMa0o+62KY1qpC0Hbt2+Hv78/Zs2ahUuXLqFdu3bw9vbGgwcPcm1///59dO/eHe3atcOlS5fw+eefY8qUKdi5c2cJV148hd3vU6dOoUuXLjh48CAiIiLQoUMH9OrVS3EVbl1R2P3OkpCQgOHDh6NTp04lVKlqFWW/Bw0ahOPHjyMwMBC3bt3C1q1bUadOnRKsuvgKu99nzpzB8OHD4evri+vXr+P3339HWFgYRo8eXcKVF11SUhIaN26M5cuXF6h9aTmmFXa/S8sxrbD7nUXXj2lF2W+VHNNUtgqZlmjZsqUYN26c0rY6deqIGTNm5Np+2rRpok6dOkrb/Pz8RKtWrdRWozoUdr9zU69ePTFv3jxVl6ZWRd3vwYMHi9mzZ4s5c+aIxo0bq7FC9Sjsfh86dEhYWlqKuLi4kihPbQq7399++62oUaOG0rYffvhBODg4qK1GdQIgdu/enW+b0nJMe1tB9js3unhMe1th9lvXj2lvK8h+q+qYVqp6glJTUxEREYGuXbsqbe/atSvOnTuX63NCQ0NztPfy8kJ4eDjS0tLUVqsqFWW/s8vIyMDLly9hZWWljhLVoqj7vW7dOty7dw9z5sxRd4lqUZT93rt3L1xdXbF48WJUqVIFtWvXxqeffork5OSSKFklirLf7u7uiI6OxsGDByGEwNOnT7Fjxw706NGjJErWiNJwTFMFXTymFZWuH9OKQlXHNJ25YnRBxMbGQi6Xw8bGRmm7jY0NYmJicn1OTExMru3T09MRGxub7+Ks2qIo+53dkiVLkJSUhEGDBqmjRLUoyn7fuXMHM2bMwOnTp2FkpJv//Iuy3//88w/OnDkDU1NT7N69G7GxsZgwYQL+/fdfnRkXVJT9dnd3x+bNmzF48GCkpKQgPT0dvXv3xo8//lgSJWtEaTimqYIuHtOKojQc04pCVce0UtUTlEUikSjdF0Lk2Pau9rlt13aF3e8sW7duxdy5c7F9+3ZUrlxZXeWpTUH3Wy6XY9iwYZg3bx5q165dUuWpTWG+74yMDEgkEmzevBktW7ZE9+7dsXTpUqxfv16neoOAwu33jRs3MGXKFHz55ZeIiIjA4cOHcf/+fYwbN64kStWY0nJMKypdP6YVVGk7phWGqo5ppSo2Wltbw9DQMMf/FT579izH/xllsbW1zbW9kZERKlasqLZaVako+51l+/bt8PX1xe+//47OnTurs0yVK+x+v3z5EuHh4bh06RImTZoEIPMXSQgBIyMjHD16FB07diyR2oujKN+3nZ0dqlSpAktLS8W2unXrQgiB6OhoODs7q7VmVSjKfgcEBKBNmzb47LPPAACNGjWCubk52rVrhwULFpTKXpHScEwrDl0+phVWaTmmFYWqjmmlqifIxMQEzZs3R1BQkNL2oKAguLu75/qc1q1b52h/9OhRuLq6wtjYWG21qlJR9hvI/L8lHx8fbNmyRSfHSBR2vy0sLHDt2jVcvnxZcRs3bhxcXFxw+fJluLm5lVTpxVKU77tNmzZ4/PgxXr16pdh2+/ZtGBgYwMHBQa31qkpR9vv169cwMFA+zBkaGgJ40ztS2pSGY1pR6foxrbBKyzGtKFR2TCvWsGottG3bNmFsbCwCAwPFjRs3hL+/vzA3NxeRkZFCCCFmzJghPvzwQ0X7f/75R5QpU0Z8/PHH4saNGyIwMFAYGxuLHTt2aGoXiqSw+71lyxZhZGQkfvrpJ/HkyRPFLT4+XlO7UCSF3e/sdHUmRWH3++XLl8LBwUEMHDhQXL9+XYSEhAhnZ2cxevRoTe1CkRR2v9etWyeMjIzEzz//LO7duyfOnDkjXF1dRcuWLTW1C4X28uVLcenSJXHp0iUBQCxdulRcunRJREVFCSFK7zGtsPtdWo5phd3v7HT1mFbY/VbVMa3UhSAhhPjpp5+Eo6OjMDExEc2aNRMhISGKx0aMGCE8PDyU2gcHB4umTZsKExMTUb16dbFixYoSrlg1CrPfHh4eAkCO24gRI0q+8GIq7Pf9Nl09YAhR+P2+efOm6Ny5szAzMxMODg5i6tSp4vXr1yVcdfEVdr9/+OEHUa9ePWFmZibs7OzE+++/L6Kjo0u46qI7efJkvr+rpfWYVtj9Li3HtKJ832/T1WNaUfZbFcc0iRCltE+YiIiIKB+lakwQERERUUExBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiolJh/vz5aNiwIczNzWFjY4Px48cjLS1N02URkRYz0nQBRETFJYSAXC7HqlWrUKVKFdy4cQPDhw9Ho0aNMH78eE2XR0RaiguoElGpNGzYMFSqVAnff/+9pkshIi3F02FEpPOioqIwadIkNGjQABUqVEDZsmXx22+/wcHBQdOlEZEWYwgiIp0WGxuLli1bIjY2FkuXLsWZM2cQGhoKQ0NDNGnSRNPlEZEW45ggItJpBw8eRHp6OrZu3QqJRAIA+Omnn5CamsoQRET5YggiIp1mZWWFxMRE7N27F/Xq1cO+ffsQEBCAKlWqoFKlSpouj4i0GAdGE5FOE0Jg/Pjx2LJlC8zMzPDBBx8gJSUFUVFR2L9/v6bLIyItxhBEREREeokDo4mIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER66f8v8U8lyDtxlgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABX20lEQVR4nO3dd1hTZ/8G8DusgCAoIksUF+46qSgOQEVEcVuttu496mwdta3jbeVXW+1rX+uqaG2d1TpxIiJqXWgdddYFgoIKKigKSPL8/qBEwpKRcBJyf67rXDQnJ8n3JBLuPuvIhBACRERERAbGSOoCiIiIiKTAEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEQ6x9vbG97e3lKXUWRDhgyBlZVVgY6tWrUqhgwZotV6ZDIZ5s6dq9XXeJdXr15h7ty5OHr0qKR16IvQ0FC4u7vD0tISMpkMO3fuxC+//AKZTIbIyEjVcRs3bsR///tfrdTwxRdfoEqVKjAxMUG5cuUK/fghQ4agatWqGq9Llxw9ehQymSzPbcyYMVKXSO9gInUBRNktW7ZM6hJKzI4dO2BtbS11GVr36tUrzJs3DwD0OuCWBCEE+vbti1q1amH37t2wtLRE7dq1kZ6ejlOnTsHJyUl17MaNG3HlyhVMnjxZozXs2rUL33zzDWbPng1/f3/I5XKNPn9p0bRpU5w6dSrH/uXLl+PXX39Fz549JaiKCoMhiHROvXr1pC6hxDRp0kTqEkiDXr9+DXNzc8hksiI/x8OHD/H06VP07NkT7du3V7uvYsWKxS2xQK5cuQIAmDhxIuzt7UvkNTVFE59BQVlbW6NFixZq+4QQ+Oijj+Dq6gpfX1+t10DFw+4wKpa5c+dCJpPh6tWr6N+/P2xsbODg4IBhw4YhMTFR7diUlBTMmjUL1apVg5mZGSpVqoTx48fj+fPnasfl1h22fPlyNGrUCFZWVihbtizq1KmDzz//HAAQGRkJExMTBAYG5qjv2LFjkMlk2Lp1a77n8fz5c0ybNg3Vq1eHXC6Hvb09OnfujBs3bgB42+ydvTsnMjISMpkMv/zyS47nvHr1Ktq3bw9LS0tUrFgREyZMwKtXr9SOya077F21aEJcXBxGjx4NFxcXmJmZoVq1apg3bx7S09PVjps3bx48PDxga2sLa2trNG3aFEFBQch+3eUjR47A29sbFSpUgIWFBapUqYLevXvj1atXiIyMVP3xnjdvnqqr4F3dgK9evcKnn36KatWqwdzcHLa2tnB3d8emTZvUjvvll19Qu3ZtyOVy1K1bF7/++muOrpjCfH7nzp3Dhx9+iKpVq8LCwgJVq1ZF//79ERUVleN1ZTIZDh06hGHDhqFixYooU6YMUlNTAQBbtmxBy5YtYWlpCSsrK/j5+eHChQv5nvPcuXPh4uICAJgxYwZkMpnqPLJ3h3l7e2Pv3r2IiopS64LJj1KpxMKFC1GnTh3Vv61BgwYhJiZGdUzVqlXxxRdfAAAcHBwK1J2a22eQm7S0NHz99deq169YsSKGDh2KJ0+eqB2XmpqKadOmwdHREWXKlEHbtm1x/vz5HL8vmvoMzp07h27dusHW1hbm5uZo0qQJfv/993zPOS9hYWG4e/cuhg4dCiMj/onVdWwJIo3o3bs3+vXrh+HDh+Pvv//GrFmzAABr1qwBkPF/Rz169EBoaChmzZqFNm3a4PLly5gzZw5OnTqFU6dO5dnkvnnzZowbNw6ffPIJvv/+exgZGeH27du4du0agIwv7W7dumHFihWYPn06jI2NVY9dunQpnJ2d822WfvHiBVq3bo3IyEjMmDEDHh4eePnyJY4dO4bY2FjUqVOn0O/Hmzdv0LlzZ4wePRozZ87EyZMn8fXXXyMqKgp79uwpdi1DhgzBunXrcO/evUKPu4iLi0Pz5s1hZGSEr776CjVq1MCpU6fw9ddfIzIyEmvXrlUdGxkZidGjR6NKlSoAgNOnT+OTTz7BgwcP8NVXX6mO6dKlC9q0aYM1a9agXLlyePDgAQ4cOIC0tDQ4OTnhwIED6NSpE4YPH44RI0YAeHerxtSpU/Hbb7/h66+/RpMmTZCcnIwrV64gISFBdcwvv/yCoUOHonv37li0aBESExMxd+5cpKamFvkPUGRkJGrXro0PP/wQtra2iI2NxfLly/H+++/j2rVrsLOzUzt+2LBh6NKlC3777TckJyfD1NQUCxYswBdffIGhQ4fiiy++QFpaGr777ju0adMGZ8+ezbO1c8SIEWjUqBF69eqFTz75BAMGDMjz92LZsmUYNWoU7ty5gx07dhTo3MaOHYtVq1ZhwoQJCAgIQGRkJL788kscPXoUf/31F+zs7LBjxw789NNPCAoKwoEDB2BjY6MKZrkp6GegVCrRvXt3HD9+HNOnT4enpyeioqIwZ84ceHt749y5c7CwsAAADB06FFu2bMH06dPRrl07XLt2DT179kRSUlKuNRTnMwgLC0OnTp3g4eGBFStWwMbGBps3b0a/fv3w6tWrQo/ZCwoKgpGREYYOHVqox5FEBFExzJkzRwAQCxcuVNs/btw4YW5uLpRKpRBCiAMHDuR63JYtWwQAsWrVKtU+Ly8v4eXlpbo9YcIEUa5cuXzrCAsLEwDEjh07VPsePHggTExMxLx58/J97Pz58wUAERIS8s7nDwsLU9t/7949AUCsXbtWtW/w4MECgFiyZInasd98840AIE6cOKHa5+rqKgYPHlyoWoQQYtiwYcLY2FhERkbme5wQQgAQc+bMUd0ePXq0sLKyElFRUWrHff/99wKAuHr1aq7Po1AoxJs3b8T8+fNFhQoVVJ/ttm3bBABx8eLFPGt48uRJjjrepUGDBqJHjx553q9QKISzs7No2rSpqhYhhIiMjBSmpqbC1dVVta8wn1926enp4uXLl8LS0lLtM127dq0AIAYNGqR2/P3794WJiYn45JNP1Pa/ePFCODo6ir59++Zz1m9r+u6779T2Z77evXv3VPu6dOmidp75uX79ugAgxo0bp7b/zJkzAoD4/PPPVfsyf6+fPHmS73MW5jPYtGmTACD++OMPteeIiIgQAMSyZcuEEEJcvXpVABAzZsxQOy7z8Vl/XzTxGdSpU0c0adJEvHnzRu3YgIAA4eTkJBQKRb7vQVbPnj0T5ubmws/Pr8CPIWmxrY40olu3bmq3GzZsiJSUFDx+/BhARncJgBz/V/XBBx/A0tISoaGheT538+bN8fz5c/Tv3x+7du1CfHx8jmO8vb3RqFEj/PTTT6p9K1asgEwmw6hRo/Ktff/+/ahVqxY6dOiQ73GF9dFHH6ndHjBgAICM//Msbi1BQUFIT0+Hq6troesKDg6Gj48PnJ2dkZ6ertr8/f0BAOHh4apjjxw5gg4dOsDGxgbGxsYwNTXFV199hYSEBNVn27hxY5iZmWHUqFFYt24d7t69W6h6staQnp6u6mpr3rw59u/fj5kzZ+Lo0aN4/fq12uNu3ryJhw8fYsCAAWrdQK6urvD09Cz0+5Lp5cuXmDFjBmrWrAkTExOYmJjAysoKycnJuH79eo7je/furXb74MGDSE9Px6BBg9TOy9zcHF5eXpLNkMv8d5f9d7B58+aoW7duvr+DeSnMZxAcHIxy5cqha9euau9L48aN4ejoqHpfMv/99e3bV+3xffr0gYlJ7p0XRf0Mbt++jRs3bqh+V7Me27lzZ8TGxuLmzZsFfj82bNiAlJQUVWsn6T6GINKIChUqqN3ObMLP/MOVkJAAExOTHF0gMpkMjo6Oal0c2Q0cOBBr1qxBVFQUevfuDXt7e3h4eCAkJETtuIkTJyI0NBQ3b97Emzdv8PPPP6NPnz5wdHTMt/YnT57k29xfFCYmJjnek8w68jtXbdSS3aNHj7Bnzx6YmpqqbfXr1wcAVcg8e/YsOnbsCAD4+eef8eeffyIiIgKzZ88G8PazrVGjBg4fPgx7e3uMHz8eNWrUQI0aNbBkyZJ31hIZGZmjjsw/gj/++CNmzJiBnTt3wsfHB7a2tujRowdu3boF4O37mNvn+67PPD8DBgzA0qVLMWLECBw8eBBnz55FREQEKlasmCOIAVCbrQVkvL8A8P777+c4ty1btuQa4ktC5vuVvV4AcHZ2zvff5buesyCfwaNHj/D8+XOYmZnleF/i4uJU70vmczo4OKg9PrffqUxF/Qwyj/v0009zHDdu3DgAKNTnFRQUhIoVK6J79+4FfgxJi2OCqERUqFAB6enpePLkiVoQEkIgLi4O77//fr6PHzp0KIYOHYrk5GQcO3YMc+bMQUBAAP755x9Va8iAAQMwY8YM/PTTT2jRogXi4uIwfvz4d9ZWsWJFtYGhuTE3NwcA1YDLTHl9QaanpyMhIUHtSzsuLg5AzsBY2FqKy87ODg0bNsQ333yT6/3Ozs4AMsZimZqaIjg4WHX+ALBz584cj2nTpg3atGkDhUKBc+fO4X//+x8mT54MBwcHfPjhh3nW4uzsjIiICLV9tWvXBgBYWlpi3rx5mDdvHh49eqRqFeratStu3Liheh8z39essu8r6OeXmJiI4OBgzJkzBzNnzlTtT01NxdOnT3M9h+yDkTPHDG3btq1ILXXakvl+xcbG5gjaDx8+zDHWqTDPWZDPwM7ODhUqVMCBAwdyfa6yZcuqPeejR49QqVIl1f2Zv1O5KepnkHncrFmz0KtXr1yPyfz3+C4XLlzAhQsXMG3aNJiamhboMSQ9tgRRicic6rt+/Xq1/X/88QeSk5NzTAXOi6WlJfz9/TF79mykpaXh6tWrqvvMzc1VXTKLFy9G48aN0apVq3c+p7+/P/755x9Vl11uMgcfX758WW3/7t2783zMhg0b1G5v3LgRQP7r5BSkluIKCAjAlStXUKNGDbi7u+fYMkOQTCaDiYmJ2kDz169f47fffsvzuY2NjeHh4aHqlvzrr78A5GwZzGRmZpbj9TP/GGbl4OCAIUOGoH///rh58yZevXqF2rVrw8nJCZs2bVKbrRYVFYWTJ0+qPb6gn59MJoMQIsdg5NWrV0OhUOR53ln5+fnBxMQEd+7cyfX9dXd3L9DzFIRcLs+1dSo37dq1A5DzdzAiIgLXr18v8O9gVoX5DAICApCQkACFQpHre5IZNtq2bQsgY2ZXVtu2bcsxezEvBf0MateuDTc3N1y6dCnP43L795iboKAgAMDw4cMLdDzpBrYEUYnw9fWFn58fZsyYgaSkJLRq1Uo1O6xJkyYYOHBgno8dOXIkLCws0KpVKzg5OSEuLg6BgYGwsbHJ0YI0btw4LFy4EOfPn8fq1asLVNvkyZOxZcsWdO/eHTNnzkTz5s3x+vVrhIeHIyAgAD4+PnB0dESHDh0QGBiI8uXLw9XVFaGhodi+fXuuz2lmZoZFixbh5cuXeP/991Wzw/z9/dG6deti1QJkfNGuW7cOd+7cKXRrw/z58xESEgJPT09MnDgRtWvXRkpKCiIjI7Fv3z6sWLECLi4u6NKlCxYvXowBAwZg1KhRSEhIwPfff58jIKxYsQJHjhxBly5dUKVKFaSkpKhmBWaObSpbtixcXV2xa9cutG/fHra2trCzs8t3ZpuHhwcCAgLQsGFDlC9fHtevX8dvv/2Gli1bokyZMgCA//znPxgxYgR69uyJkSNH4vnz55g7d26OrpiCfn7W1tZo27YtvvvuO1V94eHhCAoKKvCqyVWrVsX8+fMxe/Zs3L17F506dUL58uXx6NEjnD17VtXCpQnvvfcetm/fjuXLl6NZs2YwMjLKM2TVrl0bo0aNwv/+9z8YGRnB399fNTuscuXKmDJlSqFf38jIqMCfwYcffogNGzagc+fOmDRpEpo3bw5TU1PExMQgLCwM3bt3R8+ePVG/fn30798fixYtgrGxMdq1a4erV69i0aJFsLGxKdCsv8J8BitXroS/vz/8/PwwZMgQVKpUCU+fPsX169fx119/vXN5DSBj+Y+NGzfC09MTdevWLfT7SBKSdFg26b28ZpHkNpPl9evXYsaMGcLV1VWYmpoKJycnMXbsWPHs2TO1x2afHbZu3Trh4+MjHBwchJmZmXB2dhZ9+/YVly9fzrUmb29vYWtrK169elXg83j27JmYNGmSqFKlijA1NRX29vaiS5cu4saNG6pjYmNjRZ8+fYStra2wsbERH3/8sTh37lyus8MsLS3F5cuXhbe3t7CwsBC2trZi7Nix4uXLl2qvm312WEFryZyBlvX9zQtymZX15MkTMXHiRFGtWjVhamoqbG1tRbNmzcTs2bPValyzZo2oXbu2kMvlonr16iIwMFAEBQWpvfapU6dEz549haurq5DL5aJChQrCy8tL7N69W+01Dx8+LJo0aSLkcnmOWT65mTlzpnB3dxfly5dXvf6UKVNEfHy82nGrV68Wbm5uwszMTNSqVUusWbNGDB48OMesqYJ+fjExMaJ3796ifPnyomzZsqJTp07iypUrOT6rzH/jERERuda/c+dO4ePjI6ytrYVcLheurq6iT58+4vDhw/med2Fmhz19+lT06dNHlCtXTshkMvGur3SFQiG+/fZbUatWLWFqairs7OzExx9/LKKjo9WOK+jssEwF/QzevHkjvv/+e9GoUSNhbm4urKysRJ06dcTo0aPFrVu3VMelpKSIqVOnCnt7e2Fubi5atGghTp06JWxsbMSUKVNyvCfF/QwuXbok+vbtK+zt7YWpqalwdHQU7dq1EytWrCjQ+W/YsEEAEGvWrCnQ8aQ7ZEJkW/WMSI89fvwYrq6u+OSTT7Bw4UKpyyGJDBkyBEePHlW7zhbpt5MnT6JVq1bYsGGDaqYlUXGxO4xKhZiYGNy9exffffcdjIyMMGnSJKlLIqIiCgkJwalTp9CsWTNYWFjg0qVL+L//+z+4ubnlOYCZqCgYgqhUWL16NebPn4+qVatiw4YNarNKiEi/WFtb49ChQ/jvf/+LFy9ewM7ODv7+/ggMDFSbqUhUXOwOIyIiIoOkM1Pkly9fjoYNG8La2hrW1tZo2bIl9u/fr7pfCIG5c+fC2dkZFhYW8Pb2VpseTURERFQYOhOCXFxc8H//9384d+4czp07h3bt2qF79+6qoLNw4UIsXrwYS5cuRUREBBwdHeHr64sXL15IXDkRERHpI53uDrO1tcV3332HYcOGwdnZGZMnT8aMGTMAZKzg6uDggG+//RajR4+WuFIiIiLSNzo5MFqhUGDr1q1ITk5Gy5Ytce/ePcTFxamuYwRkrJTq5eWFkydP5huCUlNT1ZbKVyqVePr0KSpUqJBjqXUiIiLSTUIIvHjxAs7OzgVaNLMgdCoE/f3332jZsiVSUlJgZWWFHTt2oF69eqrl17NfUM/BwQFRUVH5PmdgYKDGVmclIiIiaUVHR2vsQtM6FYJq166Nixcv4vnz5/jjjz8wePBg1RWlgZwXyRNCvLM1Z9asWZg6darqdmJiIqpUqYLo6GhYW1tr9gSIiIhIK5KSklC5cuUCX8+tIHQqBJmZmaFmzZoAAHd3d0RERGDJkiWqcUBxcXFwcnJSHf/48eMcrUPZyeXyHNc6AqCahUZERET6Q5NDWXRmdlhuhBBITU1FtWrV4OjoiJCQENV9aWlpCA8Ph6enp4QVEhERkb7SmZagzz//HP7+/qhcuTJevHiBzZs34+jRozhw4ABkMhkmT56MBQsWwM3NDW5ubliwYAHKlCnDa8gQERFRkehMCHr06BEGDhyI2NhY2NjYoGHDhjhw4AB8fX0BANOnT8fr168xbtw4PHv2DB4eHjh06JBG+waJiIjIcOj0OkHakJSUBBsbGyQmJnJMEBERkZ7Qxt9vnR4TRERERKQtDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkHQmBAUGBuL9999H2bJlYW9vjx49euDmzZtqxwwZMgQymUxta9GihUQVExERkT7TmRAUHh6O8ePH4/Tp0wgJCUF6ejo6duyI5ORkteM6deqE2NhY1bZv3z6JKiYiIiJ9ZiJ1AZkOHDigdnvt2rWwt7fH+fPn0bZtW9V+uVwOR0fHki6PiIiIShmdaQnKLjExEQBga2urtv/o0aOwt7dHrVq1MHLkSDx+/Djf50lNTUVSUpLaRkRERCQTQgipi8hOCIHu3bvj2bNnOH78uGr/li1bYGVlBVdXV9y7dw9ffvkl0tPTcf78ecjl8lyfa+7cuZg3b16O/YmJibC2ttbaORAREZHmJCUlwcbGRqN/v3UyBI0fPx579+7FiRMn4OLikudxsbGxcHV1xebNm9GrV69cj0lNTUVqaqrqdlJSEipXrswQREREpEe0EYJ0rjvsk08+we7duxEWFpZvAAIAJycnuLq64tatW3keI5fLYW1trbYRERFRFjExQFhYxs98LFu2DE+ePCmhorRPZ0KQEAITJkzA9u3bceTIEVSrVu2dj0lISEB0dDScnJxKoEIiIqJSKCgIcHUF2rXL+BkUlOthBw8exPjx41G/fn28fPmyhIvUDp0JQePHj8f69euxceNGlC1bFnFxcYiLi8Pr168BAC9fvsSnn36KU6dOITIyEkePHkXXrl1hZ2eHnj17Slw9ERGRHoqJAUaNApTKjNtKJTB6dI4WobS0NEyaNAkA8PHHH8PKyqqkK9UKnQlBy5cvR2JiIry9veHk5KTatmzZAgAwNjbG33//je7du6NWrVoYPHgwatWqhVOnTqFs2bISV09ERKSHbt16G4AyKRTA7dtqu77//nvcvHkT9vb2mDNnTgkWqF06s07Qu8ZnW1hY4ODBgyVUDRERkQFwcwOMjNSDkLExULOm6ubdu3fxn//8BwCwaNEi2NjYlHSVWqMzLUFERERUwlxcgFWrMoIPkPFz5cqM/chooBg/fjxSUlLQvn17fOTlVaAB1PpCZ1qCiIiISALDhwN+fhldYDVrqgIQAGzduhUHDhyAmZkZlvn4QFa1akarkZFRRngaPly6ujVAJ9cJ0iZtrDNARERU2iQmJqJOnTqIi4vDnClTMHfJkpzdZpGRaqFJmwxinSAiIiKS3uzZsxEXFwc3NzfM9PMr0ABqfcPuMCIiIlJz/PhxLFu2DEDGAonmdeq8cwC1PmJLEBEREakkJydj6NChEEJg2LBh6NChwzsHUOsrtgQRERGRyueff447d+7AxcUFixcvfntHPgOo9RVDEBEREQEAwsPD8eOPPwIAVq9enXNNIBeXUhF+MrE7jIiIiJCcnIxhw4YBAEaOHAk/Pz+JK9I+hiAiIiLCZ599hrt376JKlSr4/vvvpS6nRDAEERERGbjdu3dj+fLlAICgoCCDWUePIYiIiMiAPXz4UNUNNm3atIzZYAaCIYiIiMhAKZVKDB48GAkJCWjSpAm++eYbqUsqUQxBREREBmrx4sU4fPgwypQpg02bNkEul0tdUoliCCIiIjJA586dw+effw4A+O9//4vatWtLXFHJYwgiIiIyME+fPkWfPn3w5s0b9OrVCyNGjJC6JEkwBBERERkQpVKJgQMHIioqCjVq1EBQUBBkMpnUZUmCIYiIiMiABAYGYt++fTA3N8e2bdtQrlw5qUuSDEMQERGRgQgNDcVXX30FAPjpp5/QuHFjaQuSGEMQERGRAXjw4AH69+8PpVKJYcOGqdYGMmQMQURERKXc69ev0atXLzx58gSNGzfG0qVLpS5JJzAEERERlWIiOhoju3XD2bNnYWtri23btsHCwkLqsnQCQxAREVFpFRSE71xdseHwYRgD2DZsGGrUqCF1VTqDIYiIiKg0iolB8MiRmCkEAOBHAD4//ADExEhblw5hCCIiIiqFroWEYIAQEADGABgHAAoFcPu2tIXpEIYgIiKiUiY+Ph7d5s3DCwBeyGgFAgAYGwM1a0pXmI5hCCIiIipFXr9+je7du+NOVBSq2tlhm5ERTIGMALRyJeDiInWJOsNE6gKIiIhIMxQKBQYOHIiTJ0+iXLly2HfsGOzKls3oAqtZkwEoG4YgIiKiUuKzzz7DH3/8ATMzM+zatQt169bNuIPhJ1fsDiMiIioFlixZgh9++AEA8Msvv6Bt27YSV6T7GIKIiIj03Pbt2zFlyhQAwP/93/+hf//+ElekHxiCiIiI9NiJEyfw0UcfQQiBsWPHYvr06VKXpDcYgoiIiPTUpUuXEBAQgJSUFAQEBODHH3+ETCaTuiy9wRBERESkh27dugU/Pz8kJiaidevW2LJlC0xMON+pMBiCiIiI9MyDBw/g6+uLR48eoVGjRtizZw/KlCkjdVl6hyGIiIhIjyQkJKBjx46IiopCzZo1cfDgQZQrV07qsvQSQxAREZGeePHiBTp37oxr166hUqVKCAkJgYODg9Rl6S2GICIiIj2QmpqKnj174uzZs7C1tcWhQ4dQtWpVqcvSawxBREREOi4tLQ19+vRBaGgorKyssH//ftSrV0/qsvQeQxAREZEOe/PmDT788EMEBwfD3Nwcu3fvRvPmzaUuq1RgCCIiItJR6enpGDhwIHbs2KG6HpiPj4/UZZUaOhOCAgMD8f7776Ns2bKwt7dHjx49cPPmTbVjhBCYO3cunJ2dYWFhAW9vb1y9elWiiomIiLRHoVBg6NCh2LJlC0xNTbF9+3Z07NhR6rJKFZ0JQeHh4Rg/fjxOnz6NkJAQpKeno2PHjkhOTlYds3DhQixevBhLly5FREQEHB0d4evrixcvXkhYORERUQHFxABhYRk/86FUKjFy5EisX78eJiYm2Lp1K7p06VJCRRoOmRBCSF1Ebp48eQJ7e3uEh4ejbdu2EELA2dkZkydPxowZMwBkjJR3cHDAt99+i9GjRxfoeZOSkmBjY4PExERYW1tr8xSIiIjeCgoCRo0ClErAyAhYtQoYPjzHYUIIjBk4EKs2bICxsTE2b96MPn365Hy+mBjg1i3AzQ1wcSmBE5CWNv5+60xLUHaJiYkAAFtbWwDAvXv3EBcXp9YUKJfL4eXlhZMnT0pSIxERUYHExLwNQEDGz9Gjc7QICSEwsUMHrNqwATIAvyqV6PPv30M1QUGAqyvQrl3Gz6Ag7Z9DKaSTIUgIgalTp6J169Zo0KABACAuLg4AciwK5eDgoLovN6mpqUhKSlLbiIiIStStW28DUCaFArh9W3VTCIFpo0Zh6ZEjkAFYC2CAEDnDUgEDFb2bToagCRMm4PLly9i0aVOO+7JfHVcIke8VcwMDA2FjY6PaKleurPF6iYiI8uXmltEFlpWxMVCzJoCMv2WTJk3CD6tXAwBWAhiceVy2sFSQQEUFo3Mh6JNPPsHu3bsRFhYGlyx9nI6OjgCQo9Xn8ePH+S4ZPmvWLCQmJqq26Oho7RRORESUFxeXjDFAxsYZt42NgZUrARcXKJVKjBs3Dv/73/8gk8mwSibDyKyPzRKWALwzUFHB6UwIEkJgwoQJ2L59O44cOYJq1aqp3V+tWjU4OjoiJCREtS8tLQ3h4eHw9PTM83nlcjmsra3VNiIiohI3fDgQGZkxOywyEhg+HEqlEqNHj8aKFSsgk8mwZs0ajPz551zDkko+gYoKx0TqAjKNHz8eGzduxK5du1C2bFlVi4+NjQ0sLCwgk8kwefJkLFiwAG5ubnBzc8OCBQtQpkwZDBgwQOLqiYiICsDFRRVWFAoFhg8fjnXr1sHIyAjr1q3Dxx9/nHGcn19G91bNmrmHm+HD330MvZPOTJHPa1zP2rVrMWTIEAAZrUXz5s3DypUr8ezZM3h4eOCnn35SDZ4uCE6RJyIiqaWnp2Pw4MHYuHEjjI2NsWHDBvTr10/qsnSaNv5+60wIKikMQUREJKU3b97g448/xu+//w4TExNs3rwZvXv3lrosnaeNv9860x1GRERU2qWlpeHDDz/Ejh07YGpqiq1bt6J79+5Sl2WwGIKIiIhKQGpqKj744APs2bMHZmZm2L59Oy+FITGGICIiIi1LSUlBr169sH//fpibm2Pnzp3w8/OTuiyDxxBERESkRa9evUKPHj0QEhICCwsL7NmzB+3bt5e6LAJDEBERkdYkJyeja9euCAsLg6WlJfbu3QsvLy+py6J/MQQRERFpwYsXL9ClSxccP34cVlZW2L9/P1q3bi11WZQFQxAREZEmxMRkXNfLzQ1J1tbw9/fHyZMnYW1tjYMHD6JFixZSV0jZMAQREREVV1CQ6sruz2Uy+FWtirP37qFcuXIICQmBu7u71BVSLhiCiIiIiiMmRhWAngLwFQJ/3bsH23LlcPjIETRp0kTqCikPDEFERETFcesWoFQiHkAHAJcA2AEI/f57NGQA0mk6cxV5IiIiveTmhscyGXyQEYAcABw1MkJDrgOk8xiCiIiIiiHW2Bjejo64AsAJGQGo/qpVvLK7HmB3GBERURE9ePAA7dq1wz+xsXBxcsKRhQvh5u3NAKQnGIKIiIiKIDo6Gj4+Prhz5w6qVKmCsLAwVK9eXeqyqBDYHUZERFRIUVFR8PLywp07d1CtWjWEh4czAOkhtgQREREVQmRkJHx8fBAZGYnq1asjLCwMVapUkbosKgKGICIiogKKjIyEt7c3oqKiUKNGDRw9ehQuHP+jt9gdRkREVAD37t2Dl5cXoqKi4ObmhvDwcAYgPccQRERE9A53796Fl5cX7t+/j1q1aiEsLAyVKlWSuiwqJoYgIiKifNy5cwdeXl6Ijo5G7dq1GYBKEYYgIiKiPNy6dQteXl6IiYlBnTp1EBYWBmdnZ6nLIg1hCCIiIsrFP//8A29vbzx48AD16tVDWFgYnJycpC6LNIghiIiIKJubN2/C29sbDx8+RP369XHkyBE4OjpKXRZpGEMQERFRFjdu3IC3tzdiY2PRoEEDHDlyBA4ODlKXRVrAEERERPSv69evw9vbG3FxcXjvvfdw5MgR2NvbS10WaQlDEBEREYBr167B29sbjx49QsOGDXHkyBFUrFhR6rJIixiCiIjI4F25cgXe3t54/PgxGjdujCNHjsDOzk7qskjLGIKIiMig/f333/Dx8cGTJ0/QpEkThIaGokKFCm8PiIkBwsIyflKpwhBERESlTwGDy6VLl+Dj44P4+Hg0a9YMhw8fhq2t7dsDgoIAV1egXbuMn0FBWi6cShJDEBERlS4FDC4XL15E+/btkZCQAHd3d4SEhKgHoJgYYNQoQKnMuK1UAqNHs0WoFGEIIiKi0qOAweXChQuqAPR+7doI+eUXlC9fXv25bt16+zyZFArg9m0tngCVJIYgIiIqPQoQXP766y+0b98eT58+hQeAkJs3Ua5hw5wtRm5ugFG2P5PGxkDNmtqpnUocQxAREZUe7wgu58+fR/v27fHs2TO0AHAQgA2Qe4uRiwuwalXG4zOfZ+XKjP1UKjAEERFR6ZFPcImIiECHDh3w/PlzeNav/zYAZcqtq2v4cCAyMmOQdWRkxm0qNUykLoCIiEijhg8H/PwyAk3NmoCLC86cOQM/Pz8kJiaiVatW2L96NcrWr6/edZZXV5eLC1t/Sim2BBERUenj4gJ4ewMuLjh9+jQ6duyIxMREtGnTBvv370fZOnXY1UVsCSIiotLr1KlT8PPzw4sXL9C2bVvs3bsXVlZWGXfm0mJEhoUhiIiISqU///wTnTp1wsuXL+Ht7Y3g4GBYWlqqH8SuLoPG7jAiIip1Tpw4oQpAPj4+uQcgMngMQUREVKocP35cFYDat2/PAER5YggiIqJSIzw8HP7+/khOToavry/27NmDMmXKSF0W6SiGICIiKhWOHj2Kzp07Izk5GR07dsSuXbtgYWEhdVmkw3QqBB07dgxdu3aFs7MzZDIZdu7cqXb/kCFDIJPJ1LYWLVpIUywREemMI0eOoHPnznj16hU6derEAEQFolMhKDk5GY0aNcLSpUvzPKZTp06IjY1Vbfv27SvBComISNccPnwYXbp0wevXr+Hv748dO3bA3Nxc6rJID+jUFHl/f3/4+/vne4xcLoejo2MJVURERLosJCQE3bp1Q0pKCrp06YI//vgDcrlc6rJIT+hUS1BBHD16FPb29qhVqxZGjhyJx48fS10SERFJ4ODBg+jatStSUlLQtWtXBiAqNJ1qCXoXf39/fPDBB3B1dcW9e/fw5Zdfol27djh//nye//BTU1ORmpqqup2UlFRS5RIRkZYcOHAAPXr0QGpqKrp3747ff/8dZmZmUpdFekavQlC/fv1U/92gQQO4u7vD1dUVe/fuRa9evXJ9TGBgIObNm1dSJRIRkZbt27cPPXv2RFpaGnr06IEtW7YwAFGR6F13WFZOTk5wdXXFrVu38jxm1qxZSExMVG3R0dElWCEREWlScHCwKgD16tWLLUBULHrVEpRdQkICoqOj4eTklOcxcrmcfcRERKXAnj170Lt3b7x58wa9e/fGpk2bYGpqKnVZpMd0KgS9fPkSt2/fVt2+d+8eLl68CFtbW9ja2mLu3Lno3bs3nJycEBkZic8//xx2dnbo2bOnhFUTEZG27dq1Cx988AHevHmDDz74ABs2bGAAomLTqRB07tw5+Pj4qG5PnToVADB48GAsX74cf//9N3799Vc8f/4cTk5O8PHxwZYtW1C2bFmpSiYiIi3bsWMH+vbti/T0dPTr1w/r16+HiYlO/fkiPSUTQgipiyhJSUlJsLGxQWJiIqytraUuh4iI8rF9+3b069cP6enp6N+/P3799VeYxMUBt24Bbm6Ai4vUJVIJ0cbfb70eGE1ERKXXtm3bVC1AH330UUYAWrcOcHUF2rXL+BkUJHWZpMcYgoiISOds3boVH374IRQKBQYOHIh169ZltACNGgUolRkHKZXA6NFATIy0xZLeYggiIiKdsmXLFvTv3x8KhQKDBg3C2rVrYWxsnNEFlhmAMikUQJYJNUSFwRBEREQ6Y+PGjRgwYAAUCgWGDBmCNWvWZAQgIGMMkFG2P1vGxkDNmiVfKJUKDEFERKQTNmzYgIEDB0KpVGLYsGEICgp6G4CAjEHQq1ZlBB8g4+fKlRwcTUXGOYZERCS53377DUOGDIFSqcSIESOwcuVKGGVv9QGA4cMBP7+MLrCaNRmAqFgYgoiISFLr1q3D0KFDIYTAqIAALP/yy9wDUCYXF4Yf0gh2hxERkWSCgoJUAWgMgOXBwTCqVo1T36lEMAQREZH2xcQAYWFq09lXrVqFESNGQAiBCQCW4d8/Spz6TiWE3WFERKRdQUFv1/cxMgJWrcKy1FSMHz8eADCpVy/8sH07ZFkfkzn1nd1epEW8bAYREWlPTEzGys5Z1vf5USbDpH//9EybNg3fTZoEWdWq6msAGRsDkZEMQaTCy2YQEZF+ybbA4Q+AKgDNmDED3333HWSVK3PqO0mC3WFERKQ9mQscKpX4DsD0f3fP/uQT/CcwEDLZv51gnPpOEmBLEBERac+/CxwGymSqADSna1f8Z8mStwEo67He3gxAVGIYgoiIqOhymfWV3X8ePsTn/3aBzZ82DXN3784ZgIgkwBBERERFExSUMei5XbuMn9nW9hFCYM6cOfjqq68AAAsWLMCX338vRaVEuSpWCHr8+DHi4uI0VQsREemLmJi3096BHGv7CCHw5ZdfYv78+QCAhQsXYtasWVJVS5SrIoWgy5cvo379+nByckKlSpVQqVIlfPHFF0hOTtZ0fUREpIuyzfoCoFrbRwiBWbNm4ZtvvgEALF68GJ999pkERRLlr0ghaPjw4XBwcMCJEydw4cIFfP3119i/fz/c3d3x7NkzTddIRES6JnPWV1bGxlBWr47Jkyfj22+/BQD8+OOPmDJligQFEr1bkRZLtLS0xPnz51GnTh3VPiEEPvjgA5ibm2P9+vUaLVKTuFgiEVEBxcRktPi4ueU+YysoKKMLTKEAjI2hWL4co8+cQdC/Y4OWL1+OMWPGlHDRVFrpzGKJubX4yGQyLFiwALt27dJIYUREJKF3DHoGkLG2T2QkEBaGN7duYWBYGIKCgmBkZIR169YxAJHOK3BLUJcuXdCoUSM0btwYCoUCS5Yswa5du+Dg4KA6JiIiAr1798b9+/e1VnBxsSWIiOgdcrnURX6XsUhNTcWHH36InTt3wsTEBBs3bsQHH3xQcvWSQdDG3+8Crxj93nvv4a+//sLatWvx6NEjAED16tXRt29fVTBau3YtfvjhB40URkREEsln0HP2EPTq1Sv06tULBw8ehFwux7Zt2xAQEFCCxRIVXZHGBD169AgXLlzAxYsXVdvt27dhbGyM2rVr4/Lly9qoVSPYEkRE9A4FbAl68eIFAgICcOzYMZQpUwa7d+9G+/btS75eMgiStgRl5eDggE6dOqFTp06qfa9fv8alS5dw6dIljRRGREQS+fdSF1kHPWe/oOmzZ8/g7++PM2fOwNraGvv27UOrVq0kLJqo8IrUEqTP2BJERFRAMTG5XtD08ePH6NixIy5dugRbW1scPHgQ7u7uEhZKhkBnWoKIiMgAuLjkGAP04MED+Pr64vr163BwcEBISAjee+89iQokKh6GICIiKpB//vkHHTt2RFRUFFxcXBAaGopatWpJXRZRkfECqkRE9E4XLlxA69atERUVBTc3Nxw/fpwBiPQeQxAREeUrPDwc3t7eePLkCZo0aYITJ06gatWqUpdFVGwMQURElKfdu3fDz88PSUlJaNu2LcLCwmBvby91WUQawRBERES5WrduHXr16oXU1FR069YNBw4cgI2NjdRlEWkMQxAREeWwePFiDBkyBAqFAoMHD8Yff/wBCwsLqcsi0iiGICIiUhFCYPbs2Zg2bRoAYMqUKVizZg1MTDiZmEof/qsmIiIAQHp6OsaNG4eff/4ZALBgwQLMnDkTMplM4sqItIMhiIiIkJycjH79+mHv3r2QyWRYvnw5Ro8eLXVZRFrFEEREZOAeP36MgIAAREREwNzcHJs2bUKPHj2kLotI6xiCiIgM2O3bt9GpUyfcuXMHFSpUwJ49e9CyZUupyyIqEQxBREQG6syZMwgICEB8fDyqVauGAwcOcBVoMiicHUZEZIB2794NHx8fxMfHo1mzZjh16hQDEBkchiAiIgOzYsUK9OzZE69fv4a/vz+OHj0KBwcHqcsiKnEMQUREBkKhUODTTz/F2LFjoVQqMXz4cOzatQtWVlZSl0YkCZ0KQceOHUPXrl3h7OwMmUyGnTt3qt0vhMDcuXPh7OwMCwsLeHt74+rVq9IUS0SkR16+fIlevXph0aJFAIB58+bh559/hqmpqcSVEUlHp0JQcnIyGjVqhKVLl+Z6/8KFC7F48WIsXboUERERcHR0hK+vL168eFHClRIR6aiYGCAsLOOnalcM2rRpg927d0Mul2PTpk346quvuAgiGTydmh3m7+8Pf3//XO8TQuC///0vZs+ejV69egHIuLifg4MDNm7cyEW9iIiCgoBRowClEjAyAlatwrlGjdCtWzfExsbC3t4eu3btQosWLaSulEgn6FRLUH7u3buHuLg4dOzYUbVPLpfDy8sLJ0+ezPNxqampSEpKUtuIiEqdmJi3AQgAlEpsGzUKbdu0QWxsLBo0aIAzZ84wABFloTchKC4uDgByzGBwcHBQ3ZebwMBA2NjYqLbKlStrtU4iIkncuqUKQALAAgAfKJV4nZICf39//Pnnn6hataqUFRLpHL0JQZmy92ELIfLt1541axYSExNVW3R0tLZLJCIqeW5ugJERkgF8CGD2v7snDhuG3bt3w9raWsLiiHST3oQgR0dHAMjR6vP48eN817eQy+WwtrZW24iISh0XF9z75ht4AvgdGQM+l330EZYEBcHERKeGfxLpDL0JQdWqVYOjoyNCQkJU+9LS0hAeHg5PT08JKyMikl5oaCjcv/sOlwHYly+PI9u2Yez69VKXRaTTdOp/D16+fInbt2+rbt+7dw8XL16Era0tqlSpgsmTJ2PBggVwc3ODm5sbFixYgDJlymDAgAESVk1EJB0hBJYsWYJPP/0UCoUCzZo1w44dOzj+kagAdCoEnTt3Dj4+PqrbU6dOBQAMHjwYv/zyC6ZPn47Xr19j3LhxePbsGTw8PHDo0CGULVtWqpKJiCTz+vVrjB49Gr/99hsAYNCgQVixYgUsLCzyf2BMTMZAajc3wMWlBCol0k0yIYSQuoiSlJSUBBsbGyQmJnJ8EBHprTt37qBPnz64ePEijI2NsWjRIkycOPHdCyDmspYQhg8vmaKJikEbf7/1ZkwQERFl2LFjB5o2bYqLFy/Czs4Ohw4dwqRJk94dgHJZSwijR6utLk1kSHSqO4yIiPIQE4M3169j5tatWPzzzwAAT09PbNmyBS4F7dLKspaQikIB3L7NbjEySAxBRES6LigIMSNHop8QyFwff9q0aQgMDCzcBVD/XUtILQgZGwM1a2q0XCJ9we4wIiJdFhODQyNHosm/AcgGwA4jI3w/eXLhrwDv4pIxBsjYOOO2sTGwciVbgchgsSWIiEhHpaWl4avPPsNCISAANAGwFUANpbLoXVjDhwN+fhmPr1mTAYgMGkMQEZEOunXrFgYMGIBz584BAEYD+C8Ac6D4XVguLgw/RGB3GBGRThFCYN26dWjSpAnOnTuH8uXL44+xY7HC2PhtAGIXFpFGsCWIiEhbCrko4fPnzzF27Fhs3rwZAODt7Y3ffvstY/bX55+zC4tIw9gSRESkDUFBgKsr0K5dxs+goLyPjYnB0R9+QOP33sPmzZthbGyMBQsW4PDhw2+nv7u4AN7eDEBEGsQVo4mINC0mJiP4ZJ+KHhmZI8S8WrYMs8aPx4//3q5esSI27tkDDw+PEiuXSB9wxWgiIn2Q36KEWZzatQuNswSg0QAuJiTAo1KlEimTyNAxBBERaVrmooRZZZnRlZqaipkzZ6J1r164BaASgP0AVgAomzn9nYi0jiGIiEjT8lmU8MyZM2jWrBm+/fZbKJVKDAJwBUCnzMdyBWeiEsMQRESkDcOHZ4wBCgsDIiPxom9fTJw4ES1btsTVq1dhb2+PHTt2YN3q1SjHFZyJJMEp8kRE2vLvooTBwcEYN24coqOjAQCDBg3CokWLYGdnl3EcV3AmkgRDEBFJp5Dr6OibuLg4TJw4EVu3bgUAVK9eHStWrICvr6/6gVzBmUgS7A4jImkUZh0dPZOeno6lS5eibt262Lp1K4yNjTF9+nT8/fffOQMQEUmG6wQRUckrxDo6+ub48eOYMGECLl++DABo1qwZfv75ZzRp0kTiyoj0G9cJIqLSoYDr6OiTBw8e4KOPPkLbtm1x+fJllC9fHsuWLcOZM2cYgIh0FMcEEVHJy1xHJ3tLkB5ODU9NTcWSJUswf/58JCcnQyaTYdSoUfj666/fDnwmIp3EliAiKnn5rKOjL4QQ2Lx5M+rWrYsZM2YgOTkZLVq0QEREBFasWMEARKQH2BJERNIYPlxvp4YfO3YMn376KSIiIgAATk5OWLBgAQYNGgSj7CtFE5HOYggiIuno2dTwGzduYMaMGdi9ezcAwMrKCtOnT8fUqVNhaWkpcXVEVFgMQURE7xAZGYn//Oc/WLduHRQKBYyNjTFy5EjMnTsXDg4OUpdHREXEEERElIfo6Gh88803CAoKQnp6OgCgW7du+Pbbb1GnTh2JqyOi4mIIIiLKJjY2FgsWLMCqVauQlpYGAPD19cX8+fPRokULiasjIk1hCCIi+ldkZCQWLVqE1atXIyUlBQDg7e2N+fPno02bNuoHl/JLfhAZAk5jICKDd+XKFQwcOBA1a9bE0qVLkZKSAk9PT4SGhiIsLCxnACrFl/wgMiQMQURUOsTEAGFhGT8L6OTJk+jWrRvee+89rF+/HgqFAr6+vggNDcWJEyfQrl273F9n1Ki3Cz0qlcDo0YV6XSLSDQxBRKT/CtEyk56ejm3btqFNmzZo1aoV9uzZA5lMhj59+uDcuXM4dOgQ2rVrB5lMlvsTlMJLfhAZKo4JIiL9llfLjJ+f2lidhIQE/Pzzz1i2bBmio6MBAKamphg0aBCmT5+OWrVqFez1StElP4gMHUMQEem3/FpmXFzw999/48cff8T69etVg50rVqyIMWPGYMyYMXB2di7c62Ve8mP06IzX0cNLfhBRBoYgItJvubTMvDIywu9//YWfZ8/GyZMnVfubNGmCSZMmoV+/fjA3Ny/6a+rxJT+I6C2GICLSb1laZi4oFPhZJsMGuRxJ06YBAIyNjdGrVy9MnDgRrVxdIbt9G4iPL35w0bNLfhBRThwYTUR67enTp1jx5g3c69VDUwDLhUDS69eoXr06FixYgOjoaPz+++9offMmZFWrclo7EanIhBBC6iJKUlJSEmxsbJCYmAhra2upyyGiIkhJScHevXuxfv167N27F2/evAGQMdC5V69eGDlyJHx8fN5e0T0mJiP4ZB/MHBnJ1hwiPaGNv9/sDiMivaBUKnHixAmsX78eW7duxfPnz1X3NW7cGAMHDsSgQYNgZ2eX88HvGDxNRIaJIYiIdJZSqcSpXbuwbcMG/HHqFKIfPlTd5+Ligo8++ggff/wxGjRokP8TcVo7EeWCIYiIdIpCocCff/6Jbdu24Y/ffsPDLC0+Zc3N0ad/fwwcOBBt27aFsbFxwZ6U09qJKBccE0REkktLS0N4eDh27NiB7du349GjR6r7rAF0A9AHQEcjI1hERRU9vMTEcFo7kZ7imCAiKjUeP36Mffv2ITg4GIcOHcKLFy9U95UrVw49PDzQ5+BBdAAgz7xDqSzeOJ6CTGvn1eGJDAZDEBGVCCEELl++jODgYAQHB+PMmTPI2hDt6OiIgIAA9OnTBz4+PjB7/Dj3GV3aHMcTFPT2EhxGRhldaMOHa+/1iEhSehWC5s6di3nz5qntc3BwQFxcnEQVEVF+nj59itDQUISEhGD//v2IyXal9aZNm6Jr164ICAhA06ZN305pB0p+HE8Br0FGRKWHXoUgAKhfvz4OHz6sul3ggZFEhkyTXTz5PFdaWhpOnz6NQ9u2ISQkBBE3b6q19lhYWMDX1xcBAQHo3LkzKlWqlP9rleTlKTiNnsjg6F0IMjExgaOjo9RlEOkPTXbxZHsusXIlbrZujZCQEBw6dAhhYWFITk5We0g9Z2d07NsXHTt2hLe3NywsLAr3miV1eQpOoycyOHoXgm7dugVnZ2fI5XJ4eHhgwYIFqF69ep7Hp6amIjU1VXU7KSmpJMok0g2a7OKJiYEYORJ3hcBRAEeVSoSNHIkH2Q6rCMA3y1bp0SNg2jTdb03hNHoig6NXIcjDwwO//voratWqhUePHuHrr7+Gp6cnrl69igoVKuT6mMDAwBzjiIgMRjG7eIQQuHv3Lo4ePYqjmzfjqBCIyXaM3NQUrdu2RceOHdGxfHk0HDVK/aKE+tSlxKvDExkUvV4nKDk5GTVq1MD06dMxderUXI/JrSWocuXKXCeIDEMhr5mlFnr+3bIPZjYF0AKANwBvIyO0uHEDZdzcivR6REQFxXWCsrG0tMR7772HW7du5XmMXC6HXC7P836iUu0dXTwFCj2mpvDw8IC3tze8X79Gyx9+QBml8u1zZQagArweEZEu0esQlJqaiuvXr6NNmzZSl0Kku7J08YgaNXAnNRXhQUEFCz3e3mjZsiXKlCnz9oDJk/PvLmKXEhHpCb0KQZ9++im6du2KKlWq4PHjx/j666+RlJSEwYMHS10akU4SQuDmzZsIDw9XbQ+zXIQUKEDoya4gs7VKakYXEVEx6FUIiomJQf/+/REfH4+KFSuiRYsWOH36NFxdXaUujSiDxJdcEELg2rVraqEn63W4gIzQ07x5c3h5ecHHxwctW7aEpaVliddKRCQ1vQpBmzdvlroEorxJcMkFpVKJv//+WxV4jh07hvj4eLVj5HI5WrRoAS8vL3h5eaFFixb5t/QQERkIvZ4dVhS8ijxpRQnNilIoFLh06ZIq9Bw/fhxPnz5VO8bCwgKenp6q0NO8eXOYm5trrAYiIilwdhiRrtLSJReUSiWuXLmC0NBQHDlyBMePH0diYqLaMZaWlmjVqhW8vLzg7e0Nd3d3mJmZFf7FePV0IjIwDEFEmlCYSy7kEzaEELhz544q9ISFheHJkydqx1hbW6N169aqlp6mTZvC1NS0ePXz6ulEZIAYgog0oaDr4+QSNh76++PIkSOq4HP//n21h5QpUwZt27ZF+/bt4ePjg8aNG2v2wsG8ejoRGSiGICJNedf6OP+GjWdKJcIAHFEqETpiBG5kexpTU1O0bNkS7dq1Q/v27dG8efO8u7c00YXFq6cTkYFiCCLSpFzWx0lPT8fZs2dxcOVKHFQqEQEga+SQyWRo2rQp2rdvj/bt26NVq1YFm7KuqS4sXj2diAwUQxCRFty/fx8HDx7EwYMHERoaiufPn6vdXxdAewDtjIzgfekSyjdokPNJ8mvl0WQXFi91QUQGiiGISANevXqF8PBwVfC5cUO9k6t8+fLw9fWFX5ky6Pjrr3DJeu2t3ALQu1p5NN2FxUtdEJEB4jpBREUghMCNGzewb98+HDx4EMeOHUNqaqrqfiMjI3h4eMDPzw+dOnWCu7v728HMMTH5h42CrDnEq7UTkYHhOkFEEkpNTUV4eDiCg4MRHByMe/fuqd1fuXJl+Pn5wc/PD+3bt0f58uVzf6J3XVerIK087MIiIio2hiCifMTGxmLfvn3Yu3cvDh06hOTkZNV9ZmZm8PHxQadOneDn54c6depAJpMV/0ULOlCZXVhERMXCEKRtXIVXOkV475VKJS5cuKBq7Tl37pza/U5OTujSpQsCAgLQvn17WFlZab7uwrTy8GrtRERFxhCkTVyFt/A0FRoL8d6/fPkShw8fRnBwMPbt24fY2Fi1+99//30EBASgS5cuaNKkCYyMjIpeV0GxlYeISOs4MFpbOHC18DQVGgvw3t+7dw979+5FcHAwwsLCkJaWpjrUysoKvr6+CAgIQOfOneHo6MgWPSIiiXFgtD7hKryFo8l1b3J579MVCpzavh3BDx5g7969uHr1qtr91QB0BRAwZQraBgZCLpe/vZMtekREpRJbgrSFLUGFExYGtGuX+35v78I917/v/VOlEgcBBAPYD+BZlkOMjY3R+v330eXMGQQIgToAZBl3cCo6EZEO0sbf7xIY3GCgMge3Zq4NwynM+cucEZVVIS/dIITAtWvXsHDjRnjVrAl7AAMAbERGALK1tcVHH32ETZs24cmTJzi6YAE+EwJ18W8AAt621mXKr0WPiIj0GrvDtImDWwuuiOvevGvtngbVqiGgc2cE9O8PDw8PmJhk+SdfkKnovK4WEVGpxRCkbZzCXHAFDI2Za/cEBwcjJCREbe0euVwOHx8f1WyuqlWr5v16BQleXJSQiKjU4pgg0nlKpRJ//fWXajZXbmv3BAQEqNbuKdAV2LN612UsCnoMERFpDWeHkX4rxDTzxMREhIaGqlZrjouLU7u/OYAuAAJkMjSZPx+yESOKXldBWuvYokdEVOowBFHJeMc0c6VSifPnz+PAgQM4ePAgTp8+DYVCobrfysoKHTt2RICnJ/w/+wyOmQ2YQgBjxgCdOjGkEBFRoTAEkfblsQZQbOPGOHTlCg4ePIhDhw4hISFB7WG1a9dGp06dEBAQgDZt2mSs3RMWlhF8suL6S0REVAQMQYaqJFdA/nea+QsAxwGEAQhRKHDJ3V3tMGtra3To0EF1JXZXV9ecz8XZWkREpCEMQfpEgutqFcerV69w8uRJHNm5E2EAIgAostwvk8nQrFkz1VXYPTw8YGpqmv+TcrYWERFpCGeH6YsSvK5WUb18+RJnz57FsWPHcOTIEZw+fRpv3rxRO6Y6AB+ZDO1GjIDvN9+gYsWKRXsxztYiIjIonB1mqLR8Xa2ijqm5f/8+Tp48iT///BMnT57EpUuX1AYzA4CLiwt8fHzQrl07+NSpA9eUFM0EF87WIiKiYmII0geavBhrEcfUJCYm4sKFCzh//jzOnj2LkydPIiYmJsdxlStXRqtWrVTBp0aNGpDJZLk8IxERkbQYgvSBJgcDF2BMzbNnz1SBJ3O7ncu1soyNjdGkSRN4enqiVatWaNmyJSpXrlyUMyQiIipxDEH6QNODgf+9PEXixYu4mp6Oq0+e4Orkybh69SquXr2K2NjYXB/m6uqKZs2awd3dHZ6ennB3dy/86sxEREQ6giFIXxThYqxCCCQkJODOnTtq2927d3Hnzh08fPgwz8dWq1YNzZo1Q7OaNdHM1hZNO3VChffe0+QZERERSYohKDcluYZOYWQZDJySkoJnz57h0aNHiImJwYMHD/DgwQO1/46OjkZSUlK+T1mpUiXUr18f9evXR4MGDVC/fn3Uq1cPZcuWVZ+RNnOm1qbSExERSYFT5LMroTV0ACAtLQ3Pnj1T254+fZrv7cx9KSkpBX4dZ2dn1KhRI8dWq1YtlCtXLvcHaXEqPRERUWFxiry2FXEqukKhwJMnT5CQkJBji4+Px9OnT1VhJmuoSU5OLla5RkZGqFixIipVqvR2i4tDpV274CIEKslkqPbTT7AYO7bwT16YGWm62nJGRESUD8MNQQ8eANmTZB5/+NNv3sS9169x48YN3Lp1C9HR0YiJiVFtsbGxOdbHKYxy5cqhfPnyqs3W1jbP21n/u2zZsjAyMnr7RJmtN1kvLvrJJ0DXrtqbSl+CLWdERESaZLghqH594Oef1f9gu7khSSbDeSFwFsA5AFcA3PH3z7HycXYymQzly5dHhQoVYGdnhwoVKqhteQUZGxsbGBsba+acNLmeUEFmpGlyEUciIqISZrghSAhg9GgkeXoi/PZthISEIDQ0FNcB5Bgk9eYNLCwsUKtWLdSuXRtVq1aFi4uL2mZvb6+5MFNUmr646LtmpGkydBEREZUwgw1BPwMIVihw4r33kJ6tK8vVxQXv16iB91u1QmMvL9SpUwcuLi7qXU+6SBsXF83v8hS8ojsREekxg50dllWNGjXg6+sLX19ftG7dGvb29iVfmCYHF5fkxUWDgnKGLo4JIiIiDdPG7DCDDUHNAPT/4AP0/L//Q/Xq1aUtSt8HF/OK7kREpGUMQRqgehOvXYN13bpSl8P1eIiIiApAGyFIxwe5aFGlSlJXkCG/wcVERESkNXoZgpYtW4Zq1arB3NwczZo1w/Hjx6UuqegyBxdnxcHFREREWqd3IWjLli2YPHkyZs+ejQsXLqBNmzbw9/fH/fv3pS6taDJndGVOr9fEjC4iIiJ6J70bE+Th4YGmTZti+fLlqn1169ZFjx49EBgY+M7Ha6NPUSM4uJiIiChPBn/tsLS0NJw/fx4zZ85U29+xY0ecPHky18ekpqYiNTVVdftdV1WXTH7r8RAREZHG6VV3WHx8PBQKBRwcHNT2Ozg4IC4uLtfHBAYGwsbGRrVVrly5JEolIiIiHadXISiTTCZTuy2EyLEv06xZs5CYmKjaoqOjS6JEIiIi0nF61R1mZ2cHY2PjHK0+jx8/ztE6lEkul0Mul5dEeURERKRH9KolyMzMDM2aNUNISIja/pCQEHh6ekpUFREREekjvWoJAoCpU6di4MCBcHd3R8uWLbFq1Srcv38fY8aMkbo0IiIi0iN6F4L69euHhIQEzJ8/H7GxsWjQoAH27dsHV1dXqUsjIiIiPaJ36wQVl86uE0RERER54rXDiIiIiDSEIag4YmKAsLCMn0RERKRXGIKKKigIcHUF2rXL+BkUJHVFREREVAgMQUUREwOMGgUolRm3lUpg9Gi2CBEREekRhqCiuHXrbQDKpFBkXACViIiI9AJDUFG4uQFG2d46Y+OMK8ATERGRXmAIKgoXF2DVqozgA2T8XLmSV4EnIiLSI3q3WKLOGD4c8PPL6AKrWZMBiIiISM8wBBWHiwvDDxERkZ5idxgREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAySXoWgqlWrQiaTqW0zZ86UuiwiIiLSQyZSF1BY8+fPx8iRI1W3raysJKyGiIiI9JXehaCyZcvC0dFR6jKIiIhIz+lVdxgAfPvtt6hQoQIaN26Mb775BmlpaVKXRERERHpIr1qCJk2ahKZNm6J8+fI4e/YsZs2ahXv37mH16tV5PiY1NRWpqamq24mJiQCApKQkrddLREREmpH5d1sIobknFRKbM2eOAJDvFhERketjt23bJgCI+Pj4Yj0/N27cuHHjxk0/tjt37mgsg8iE0GSkKrz4+HjEx8fne0zVqlVhbm6eY/+DBw/g4uKC06dPw8PDI9fHZm8Jev78OVxdXXH//n3Y2NgUr3g9kpSUhMqVKyM6OhrW1tZSl1NieN48b0PA8+Z5G4LExERUqVIFz549Q7ly5TTynJJ3h9nZ2cHOzq5Ij71w4QIAwMnJKc9j5HI55HJ5jv02NjYG9Y8nk7W1Nc/bgPC8DQvP27AY6nkbGWluOLPkIaigTp06hdOnT8PHxwc2NjaIiIjAlClT0K1bN1SpUkXq8oiIiEjP6E0Iksvl2LJlC+bNm4fU1FS4urpi5MiRmD59utSlERERkR7SmxDUtGlTnD59utjPI5fLMWfOnFy7yEoznjfP2xDwvHnehoDnrbnzlnxgNBEREZEU9G6xRCIiIiJNYAgiIiIig8QQRERERAaJIYiIiIgMUqkMQcuWLUO1atVgbm6OZs2a4fjx4/keHx4ejmbNmsHc3BzVq1fHihUrSqhSzSrMeW/fvh2+vr6oWLEirK2t0bJlSxw8eLAEq9Wcwn7emf7880+YmJigcePG2i1QSwp73qmpqZg9ezZcXV0hl8tRo0YNrFmzpoSq1ZzCnveGDRvQqFEjlClTBk5OThg6dCgSEhJKqNriO3bsGLp27QpnZ2fIZDLs3LnznY8pDd9phT3v0vKdVpTPO5M+f6cV5bw18Z1W6kLQli1bMHnyZMyePRsXLlxAmzZt4O/vj/v37+d6/L1799C5c2e0adMGFy5cwOeff46JEyfijz/+KOHKi6ew533s2DH4+vpi3759OH/+PHx8fNC1a1fVKtz6orDnnSkxMRGDBg1C+/btS6hSzSrKefft2xehoaEICgrCzZs3sWnTJtSpU6cEqy6+wp73iRMnMGjQIAwfPhxXr17F1q1bERERgREjRpRw5UWXnJyMRo0aYenSpQU6vrR8pxX2vEvLd1phzzuTvn+nFeW8NfKdprGrkOmI5s2bizFjxqjtq1Onjpg5c2aux0+fPl3UqVNHbd/o0aNFixYttFajNhT2vHNTr149MW/ePE2XplVFPe9+/fqJL774QsyZM0c0atRIixVqR2HPe//+/cLGxkYkJCSURHlaU9jz/u6770T16tXV9v3444/CxcVFazVqEwCxY8eOfI8pLd9pWRXkvHOjj99pWRXmvPX9Oy2rgpy3pr7TSlVLUFpaGs6fP4+OHTuq7e/YsSNOnjyZ62NOnTqV43g/Pz+cO3cOb9680VqtmlSU885OqVTixYsXsLW11UaJWlHU8167di3u3LmDOXPmaLtErSjKee/evRvu7u5YuHAhKlWqhFq1auHTTz/F69evS6JkjSjKeXt6eiImJgb79u2DEAKPHj3Ctm3b0KVLl5IoWRKl4TtNE/TxO62o9P07rSg09Z2mNytGF0R8fDwUCgUcHBzU9js4OCAuLi7Xx8TFxeV6fHp6OuLj4/O9OKuuKMp5Z7do0SIkJyejb9++2ihRK4py3rdu3cLMmTNx/PhxmJjo5z//opz33bt3ceLECZibm2PHjh2Ij4/HuHHj8PTpU70ZF1SU8/b09MSGDRvQr18/pKSkID09Hd26dcP//ve/kihZEqXhO00T9PE7rShKw3daUWjqO61UtQRlkslkareFEDn2vev43PbrusKed6ZNmzZh7ty52LJlC+zt7bVVntYU9LwVCgUGDBiAefPmoVatWiVVntYU5vNWKpWQyWTYsGEDmjdvjs6dO2Px4sX45Zdf9Ko1CCjceV+7dg0TJ07EV199hfPnz+PAgQO4d+8exowZUxKlSqa0fKcVlb5/pxVUaftOKwxNfaeVqthoZ2cHY2PjHP9X+Pjx4xz/Z5TJ0dEx1+NNTExQoUIFrdWqSUU570xbtmzB8OHDsXXrVnTo0EGbZWpcYc/7xYsXOHfuHC5cuIAJEyYAyPhFEkLAxMQEhw4dQrt27Uqk9uIoyuft5OSESpUqwcbGRrWvbt26EEIgJiYGbm5uWq1ZE4py3oGBgWjVqhU+++wzAEDDhg1haWmJNm3a4Ouvvy6VrSKl4TutOPT5O62wSst3WlFo6jutVLUEmZmZoVmzZggJCVHbHxISAk9Pz1wf07JlyxzHHzp0CO7u7jA1NdVarZpUlPMGMv5vaciQIdi4caNejpEo7HlbW1vj77//xsWLF1XbmDFjULt2bVy8eBEeHh4lVXqxFOXzbtWqFR4+fIiXL1+q9v3zzz8wMjKCi4uLVuvVlKKc96tXr2BkpP41Z2xsDOBt60hpUxq+04pK37/TCqu0fKcVhca+04o1rFoHbd68WZiamoqgoCBx7do1MXnyZGFpaSkiIyOFEELMnDlTDBw4UHX83bt3RZkyZcSUKVPEtWvXRFBQkDA1NRXbtm2T6hSKpLDnvXHjRmFiYiJ++uknERsbq9qeP38u1SkUSWHPOzt9nUlR2PN+8eKFcHFxEX369BFXr14V4eHhws3NTYwYMUKqUyiSwp732rVrhYmJiVi2bJm4c+eOOHHihHB3dxfNmzeX6hQK7cWLF+LChQviwoULAoBYvHixuHDhgoiKihJClN7vtMKed2n5TivseWenr99phT1vTX2nlboQJIQQP/30k3B1dRVmZmaiadOmIjw8XHXf4MGDhZeXl9rxR48eFU2aNBFmZmaiatWqYvny5SVcsWYU5ry9vLwEgBzb4MGDS77wYirs552Vvn5hCFH4875+/bro0KGDsLCwEC4uLmLq1Kni1atXJVx18RX2vH/88UdRr149YWFhIZycnMRHH30kYmJiSrjqogsLC8v3d7W0fqcV9rxLy3daUT7vrPT1O60o562J7zSZEKW0TZiIiIgoH6VqTBARERFRQTEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCKiUmH+/Pl47733YGlpCQcHB4wdOxZv3ryRuiwi0mEmUhdARFRcQggoFAqsXLkSlSpVwrVr1zBo0CA0bNgQY8eOlbo8ItJRvIAqEZVKAwYMQMWKFbFkyRKpSyEiHcXuMCLSe1FRUZgwYQIaNGiA8uXLw8rKCr///jtcXFykLo2IdBhDEBHptfj4eDRv3hzx8fFYvHgxTpw4gVOnTsHY2BiNGzeWujwi0mEcE0REem3fvn1IT0/Hpk2bIJPJAAA//fQT0tLSGIKIKF8MQUSk12xtbZGUlITdu3ejXr162LNnDwIDA1GpUiVUrFhR6vKISIdxYDQR6TUhBMaOHYuNGzfCwsICH3/8MVJSUhAVFYXg4GCpyyMiHcYQRERERAaJA6OJiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBun/AcL8P8QUQ0+8AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXaUlEQVR4nO3deVhU5d8G8HvYBkRBEWURxQXE0lwSJTQTUEFEcyu3yl3JNTN3TcFUTFMzF9REs9K0zO1XiJIspuIbuJRbpgYqJeIKCgrCPO8fE6PDvsxwZpj7c11z4Zw5c/ieGRhun/MsMiGEABEREZGBMZK6ACIiIiIpMAQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQSRzvHy8oKXl5fUZZTb8OHDUb169VLt27BhQwwfPlyr9chkMgQFBWn1e5QkMzMTQUFBiImJkbQOfXHkyBG4u7vD0tISMpkM+/btw1dffQWZTIakpCTVfjt27MDnn3+ulRrmzZuHBg0awMTEBDVr1izz84cPH46GDRtqvC5dk56ejrlz56Jp06aoVq0a6tWrh7fffhsXLlyQujQqBROpCyDKb/369VKXUGn27t0LKysrqcvQuszMTAQHBwOAXgfcyiCEwIABA9C0aVMcOHAAlpaWcHNzQ05ODuLi4uDg4KDad8eOHTh//jymTJmi0Rr279+PxYsXY+7cufD394dcLtfo8auSXr16ISEhAUFBQXB3d0dycjIWLlwIT09PnDt3Ds7OzlKXSMVgCCKd8/LLL0tdQqVp06aN1CWQBj158gTm5uaQyWTlPsa///6L+/fvo2/fvujSpYvaY3Xq1KloiaVy/vx5AMDkyZNRt27dSvmemqKJ96C0rl69iqNHj2LevHmYPn26aruLiws6dOiAPXv24MMPP9R6HVR+vBxGFRIUFASZTIYLFy5g8ODBsLa2hp2dHUaOHIm0tDS1fZ8+fYrZs2ejUaNGMDMzQ7169TBhwgQ8fPhQbb/CLoeFhoaiVatWqF69OmrUqIFmzZphzpw5AICkpCSYmJggJCSkQH1Hjx6FTCbDDz/8UOx5PHz4EB999BEaN24MuVyOunXrokePHvjzzz8BADExMZDJZAUu5yQlJUEmk+Grr74qcMwLFy6gS5cusLS0RJ06dTBx4kRkZmaq7VPY5bCSatGElJQUBAYGwsnJCWZmZmjUqBGCg4ORk5Ojtl9wcDA8PDxgY2MDKysrvPrqqwgLC0P+dZejoqLg5eWF2rVrw8LCAg0aNED//v2RmZmJpKQk1R/v4OBgyGQyyGSyEi8DZmZmYtq0aWjUqBHMzc1hY2MDd3d3fPfdd2r7ffXVV3Bzc4NcLsdLL72Er7/+usClmLK8fwkJCRg0aBAaNmwICwsLNGzYEIMHD8b169cLfF+ZTIbDhw9j5MiRqFOnDqpVq4asrCwAwK5du+Dp6QlLS0tUr14dfn5+OHPmTLHnHBQUBCcnJwDAzJkzIZPJVOeR/3KYl5cXfv75Z1y/fl31mpb0h1+hUGDZsmVo1qyZ6mdr6NChSE5OVu3TsGFDzJs3DwBgZ2dXqsuphb0HhcnOzsaiRYtU379OnToYMWIE7ty5o7ZfVlYWPvroI9jb26NatWp44403cOrUqQK/L5p6DxISEvDmm2/CxsYG5ubmaNOmDb7//vtizxkATE1NAQDW1tZq2/MuH5qbm5d4DJIWW4JII/r374+BAwdi1KhROHfuHGbPng0A2LJlCwBlE3+fPn1w5MgRzJ49G506dcIff/yBBQsWIC4uDnFxcUU2ue/cuRPjx4/HpEmT8Nlnn8HIyAhXr17FxYsXASg/tN98801s2LABM2bMgLGxseq5a9euhaOjI/r27Vtk7Y8ePcLrr7+OpKQkzJw5Ex4eHnj8+DGOHj2KW7duoVmzZmV+PZ49e4YePXogMDAQs2bNwokTJ7Bo0SJcv34d//vf/ypcy/Dhw7Ft2zYkJiaWud9FSkoK2rdvDyMjI8yfPx9NmjRBXFwcFi1ahKSkJGzdulW1b1JSEgIDA9GgQQMAwMmTJzFp0iT8888/mD9/vmqfgIAAdOrUCVu2bEHNmjXxzz//ICIiAtnZ2XBwcEBERAS6d++OUaNGYfTo0QBKbtWYOnUqvvnmGyxatAht2rRBRkYGzp8/j3v37qn2+eqrrzBixAj07t0bK1asQFpaGoKCgpCVlQUjo/L9Hy8pKQlubm4YNGgQbGxscOvWLYSGhqJdu3a4ePEibG1t1fYfOXIkAgIC8M033yAjIwOmpqZYsmQJ5s2bhxEjRmDevHnIzs7G8uXL0alTJ/z2229FtnaOHj0arVq1Qr9+/TBp0iQMGTKkyN+L9evXY+zYsbh27Rr27t1bqnMbN24cNm3ahIkTJ6Jnz55ISkrCxx9/jJiYGJw+fRq2trbYu3cv1q1bh7CwMERERMDa2loVzApT2vdAoVCgd+/e+PXXXzFjxgx06NAB169fx4IFC+Dl5YWEhARYWFgAAEaMGIFdu3ZhxowZ8PHxwcWLF9G3b1+kp6cXWkNF3oPo6Gh0794dHh4e2LBhA6ytrbFz504MHDgQmZmZxYZ1Z2dn9O7dG6tWrULbtm3Rrl07JCcnY/LkyWjQoAEGDRpUqveFJCSIKmDBggUCgFi2bJna9vHjxwtzc3OhUCiEEEJEREQUut+uXbsEALFp0ybVts6dO4vOnTur7k+cOFHUrFmz2Dqio6MFALF3717Vtn/++UeYmJiI4ODgYp+7cOFCAUBERkaWePzo6Gi17YmJiQKA2Lp1q2rbsGHDBACxevVqtX0XL14sAIhjx46ptjk7O4thw4aVqRYhhBg5cqQwNjYWSUlJxe4nhBAAxIIFC1T3AwMDRfXq1cX169fV9vvss88EAHHhwoVCj5ObmyuePXsmFi5cKGrXrq16b3fv3i0AiLNnzxZZw507dwrUUZIWLVqIPn36FPl4bm6ucHR0FK+++qqqFiGESEpKEqampsLZ2Vm1rSzvX345OTni8ePHwtLSUu093bp1qwAghg4dqrb/jRs3hImJiZg0aZLa9kePHgl7e3sxYMCAYs76eU3Lly9X2573/RITE1XbAgIC1M6zOJcuXRIAxPjx49W2/9///Z8AIObMmaPalvd7fefOnWKPWZb34LvvvhMAxI8//qh2jPj4eAFArF+/XgghxIULFwQAMXPmTLX98p7/4u+LJt6DZs2aiTZt2ohnz56p7duzZ0/h4OAgcnNzi30NsrOzxZgxYwQA1a1ly5Zq7xPpLl4OI41488031e63bNkST58+RWpqKgDl5RIABf5X9fbbb8PS0hJHjhwp8tjt27fHw4cPMXjwYOzfvx93794tsI+XlxdatWqFdevWqbZt2LABMpkMY8eOLbb2gwcPomnTpujatWux+5XVO++8o3Z/yJAhAJT/86xoLWFhYcjJySlXp8uffvoJ3t7ecHR0RE5Ojurm7+8PAIiNjVXtGxUVha5du8La2hrGxsYwNTXF/Pnzce/ePdV727p1a5iZmWHs2LHYtm0b/v777zLV82INOTk5qktt7du3x8GDBzFr1izExMTgyZMnas+7fPky/v33XwwZMkTtMpCzszM6dOhQ5tclz+PHjzFz5ky4uLjAxMQEJiYmqF69OjIyMnDp0qUC+/fv31/t/qFDh5CTk4OhQ4eqnZe5uTk6d+4s2Qi5vJ+7/L+D7du3x0svvVTs72BRyvIe/PTTT6hZsyZ69eql9rq0bt0a9vb2qtcl7+dvwIABas9/6623YGJS+MWL8r4HV69exZ9//qn6XX1x3x49euDWrVu4fPlysa/BuHHj8OOPP2LVqlWIjY3Frl27YGZmBh8fnwKXUEn3MASRRtSuXVvtfl4Tft4frnv37sHExKTAJRCZTAZ7e3u1Sxz5vffee9iyZQuuX7+O/v37o27duvDw8EBkZKTafpMnT8aRI0dw+fJlPHv2DF9++SXeeust2NvbF1v7nTt3im3uLw8TE5MCr0leHcWdqzZqye/27dv43//+B1NTU7Vb8+bNAUAVMn/77Tf4+voCAL788kscP34c8fHxmDt3LoDn722TJk3wyy+/oG7dupgwYQKaNGmCJk2aYPXq1SXWkpSUVKCOvD+CX3zxBWbOnIl9+/bB29sbNjY26NOnD65cuQLg+etY2Ptb0ntenCFDhmDt2rUYPXo0Dh06hN9++w3x8fGoU6dOgSAGQG20FqB8fQGgXbt2Bc5t165dhYb4ypD3euWvFwAcHR2L/bks6ZileQ9u376Nhw8fwszMrMDrkpKSonpd8o5pZ2en9vzCfqfylPc9yNtv2rRpBfYbP348ABT7fkVERCAsLAwbN27ElClT8MYbb2DAgAGIjIzE/fv3JZ+agkrGPkFUKWrXro2cnBzcuXNHLQgJIZCSkoJ27doV+/wRI0ZgxIgRyMjIwNGjR7FgwQL07NkTf/31l6o1ZMiQIZg5cybWrVuH1157DSkpKZgwYUKJtdWpU0etY2hh8jo45nW4zFPUB2ROTg7u3bun9qGdkpICoGBgLGstFWVra4uWLVti8eLFhT7u6OgIQNkXy9TUFD/99JNaB899+/YVeE6nTp3QqVMn5ObmIiEhAWvWrMGUKVNgZ2dXbL8IR0dHxMfHq21zc3MDAFhaWiI4OBjBwcG4ffu2qlWoV69e+PPPP1WvY97r+qL820r7/qWlpeGnn37CggULMGvWLNX2rKws3L9/v9BzyN8ZOa/P0O7du3VqeHTe63Xr1q0CQfvff/8t0NepLMcszXtga2uL2rVrIyIiotBj1ahRQ+2Yt2/fRr169VSP5/1OFaa870HefrNnz0a/fv0K3Sfv57EwZ8+eBYACn181a9aEi4uLapQd6S62BFGlyBvq++2336pt//HHH5GRkVFgKHBRLC0t4e/vj7lz5yI7O1ttQjJzc3PVJZmVK1eidevW6NixY4nH9Pf3x19//aW6ZFeYvM7Hf/zxh9r2AwcOFPmc7du3q93fsWMHgOLnySlNLRXVs2dPnD9/Hk2aNIG7u3uBW14IkslkMDExUeto/uTJE3zzzTdFHtvY2BgeHh6qy5KnT58GULBlMI+ZmVmB75/3x/BFdnZ2GD58OAYPHozLly8jMzMTbm5ucHBwwHfffac2Wu369es4ceKE2vNL+/7JZDIIIQp0Rt68eTNyc3OLPO8X+fn5wcTEBNeuXSv09XV3dy/VcUpDLpcX2jpVGB8fHwAFfwfj4+Nx6dKlUv8Ovqgs70HPnj1x79495ObmFvqa5IWNN954A4ByZNeLdu/eXWD0YlFK+x64ubnB1dUVv//+e5H7FfbzmCfvd+XkyZNq2+/du4e//vpL6626VHFsCaJK0a1bN/j5+WHmzJlIT09Hx44dVaPD2rRpg/fee6/I544ZMwYWFhbo2LEjHBwckJKSgpCQEFhbWxf4H9j48eOxbNkynDp1Cps3by5VbVOmTMGuXbvQu3dvzJo1C+3bt8eTJ08QGxuLnj17wtvbG/b29ujatStCQkJQq1YtODs748iRI9izZ0+hxzQzM8OKFSvw+PFjtGvXTjU6zN/fH6+//nqFagGAUaNGYdu2bbh27VqZWxsWLlyIyMhIdOjQAZMnT4abmxuePn2KpKQkhIeHY8OGDXByckJAQABWrlyJIUOGYOzYsbh37x4+++yzAgFhw4YNiIqKQkBAABo0aICnT5+qRgXm9W2qUaMGnJ2dsX//fnTp0gU2NjawtbUtdmSbh4cHevbsiZYtW6JWrVq4dOkSvvnmG3h6eqJatWoAgE8++QSjR49G3759MWbMGDx8+BBBQUEFLsWU9v2zsrLCG2+8geXLl6vqi42NRVhYWKlnTW7YsCEWLlyIuXPn4u+//0b37t1Rq1Yt3L59G7/99puqhUsTXnnlFezZswehoaFo27YtjIyMigxZbm5uGDt2LNasWQMjIyP4+/urRofVr1+/XPPZGBkZlfo9GDRoELZv344ePXrggw8+QPv27WFqaork5GRER0ejd+/e6Nu3L5o3b47BgwdjxYoVMDY2ho+PDy5cuIAVK1bA2tq6VKP+yvIebNy4Ef7+/vDz88Pw4cNRr1493L9/H5cuXcLp06eLnV6jX79+mD9/PsaNG4fk5GS8+uqruHXrFpYvX47MzEx88MEHZX5NqZJJ2i2b9F5Ro0gKG8ny5MkTMXPmTOHs7CxMTU2Fg4ODGDdunHjw4IHac/OPDtu2bZvw9vYWdnZ2wszMTDg6OooBAwaIP/74o9CavLy8hI2NjcjMzCz1eTx48EB88MEHokGDBsLU1FTUrVtXBAQEiD///FO1z61bt8Rbb70lbGxshLW1tXj33XdFQkJCoaPDLC0txR9//CG8vLyEhYWFsLGxEePGjROPHz9W+775R4eVtpa8EWilGYGCQkZl3blzR0yePFk0atRImJqaChsbG9G2bVsxd+5ctRq3bNki3NzchFwuF40bNxYhISEiLCxM7XvHxcWJvn37CmdnZyGXy0Xt2rVF586dxYEDB9S+5y+//CLatGkj5HJ5gVE+hZk1a5Zwd3cXtWrVUn3/Dz/8UNy9e1dtv82bNwtXV1dhZmYmmjZtKrZs2SKGDRtWYNRUad+/5ORk0b9/f1GrVi1Ro0YN0b17d3H+/PkC71Xez3h8fHyh9e/bt094e3sLKysrIZfLhbOzs3jrrbfEL7/8Uux5l2V02P3798Vbb70latasKWQymSjpIz03N1d8+umnomnTpsLU1FTY2tqKd999V9y8eVNtv9KODstT2vfg2bNn4rPPPhOtWrUS5ubmonr16qJZs2YiMDBQXLlyRbXf06dPxdSpU0XdunWFubm5eO2110RcXJywtrYWH374YYHXpKLvwe+//y4GDBgg6tatK0xNTYW9vb3w8fERGzZsKPHcb926JSZOnChcXFyEubm5cHR0FAEBASIuLq5Urx1JSyZEvlnPiPRYamoqnJ2dMWnSJCxbtkzqckgiw4cPR0xMjNo6W6TfTpw4gY4dO2L79u2qkZZEFcXLYVQlJCcn4++//8by5cthZGTEZmgiPRYZGYm4uDi0bdsWFhYW+P3337F06VK4uroW2YGZqDwYgqhK2Lx5MxYuXIiGDRti+/btaqNKiEi/WFlZ4fDhw/j888/x6NEj2Nrawt/fHyEhIVyKgjSKl8OIiIjIIOnMEPnQ0FC0bNkSVlZWsLKygqenJw4ePKh6XAiBoKAgODo6wsLCAl5eXmrDo4mIiIjKQmdCkJOTE5YuXYqEhAQkJCTAx8cHvXv3VgWdZcuWYeXKlVi7di3i4+Nhb2+Pbt264dGjRxJXTkRERPpIpy+H2djYYPny5Rg5ciQcHR0xZcoUzJw5E4ByBlc7Ozt8+umnCAwMlLhSIiIi0jc62TE6NzcXP/zwAzIyMuDp6YnExESkpKSo1jEClDOldu7cGSdOnCg2BGVlZalNla9QKHD//n3Url27wFTrREREpJuEEHj06BEcHR1LNWlmaehUCDp37hw8PT3x9OlTVK9eHXv37sXLL7+smn49/4J6dnZ2Ja7SGxISorHZWYmIiEhaN2/e1NiSJDoVgtzc3HD27Fk8fPgQP/74I4YNG6ZaURoouEieEKLE1pzZs2dj6tSpqvtpaWlo0KABbt68CSsrK82eABEREWlFeno66tevX+x6bmWlUyHIzMwMLi4uAAB3d3fEx8dj9erVqn5AKSkpcHBwUO2fmppaoHUoP7lcXmCtIwCqUWhERESkPzTZlUVnRocVRgiBrKwsNGrUCPb29oiMjFQ9lp2djdjYWHTo0EHCComIiEhf6UxL0Jw5c+Dv74/69evj0aNH2LlzJ2JiYhAREQGZTIYpU6ZgyZIlcHV1haurK5YsWYJq1apxDRkiIiIqF50JQbdv38Z7772HW7duwdraGi1btkRERAS6desGAJgxYwaePHmC8ePH48GDB/Dw8MDhw4c1em2QiIiIDIdOzxOkDenp6bC2tkZaWhr7BBEREekJbfz91uk+QURERETawhBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBklnQlBISAjatWuHGjVqoG7duujTpw8uX76sts/w4cMhk8nUbq+99ppEFRMREZE+05kQFBsbiwkTJuDkyZOIjIxETk4OfH19kZGRobZf9+7dcevWLdUtPDxcooqJiIhIn5lIXUCeiIgItftbt25F3bp1cerUKbzxxhuq7XK5HPb29pVdHhEREVUxOtMSlF9aWhoAwMbGRm17TEwM6tati6ZNm2LMmDFITU0t9jhZWVlIT09XuxERERHJhBBC6iLyE0Kgd+/eePDgAX799VfV9l27dqF69epwdnZGYmIiPv74Y+Tk5ODUqVOQy+WFHisoKAjBwcEFtqelpcHKykpr50BERESak56eDmtra43+/dbJEDRhwgT8/PPPOHbsGJycnIrc79atW3B2dsbOnTvRr1+/QvfJyspCVlaW6n56ejrq16/PEERERKRHtBGCdO5y2KRJk3DgwAFER0cXG4AAwMHBAc7Ozrhy5UqR+8jlclhZWandiIiI6AXJyUB0tPJrEZ4+fYrXX38dX3/9NRQKRSUWpz06E4KEEJg4cSL27NmDqKgoNGrUqMTn3Lt3Dzdv3oSDg0MlVEhERFQFhYUBzs6Aj4/ya1hYobt9/vnnOH78OObMmYMnT55UcpHaoTMhaMKECfj222+xY8cO1KhRAykpKUhJSVG90I8fP8a0adMQFxeHpKQkxMTEoFevXrC1tUXfvn0lrp6IiEgPJScDY8cCeS07CgUQGFigRSglJQWLFy8GACxduhSWlpaVXalW6EwICg0NRVpaGry8vODg4KC67dq1CwBgbGyMc+fOoXfv3mjatCmGDRuGpk2bIi4uDjVq1JC4eiIiIj105crzAJQnNxe4elVt07x58/D48WO0b98eQ4YMqcQCtUtn5gkqqX+2hYUFDh06VEnVEBERGQBXV8DISD0IGRsDLi6quwkJCdiyZQsA5SUxIyOdaT+psKpzJkRERFQ2Tk7Apk3K4AMov27cqNwOIDc3F+PHj4cQAu+88w4869cvsQO1PtGZliAiIiKSwKhRgJ+f8hKYi4sqAAHA5s2bER8fDysrK3z26qvKjtMKhbL1aNMm5XP1mE7OE6RN2phngIiIqKq5c+cO3Nzc8ODBA3yxcCEmBQUVvGyWlKQWmrTJIOYJIiIiIunNnDkTDx48QOvWrTHO07NUHaj1DS+HERERkZpjx45h69atAID169fDpH79EjtQ6yO2BBEREZHK06dPMXr0aADA6NGj4enpWWIHan3FliAiIiJSCQ4OxuXLl+Hg4IDly5c/f6CYDtT6iiGIiIiIAACnTp1SBZ/Q0FDUrFlTfQcnpyoRfvLwchgREREhOzsbI0eORG5uLgYOHIjevXtLXZLWMQQRERERQkJC8Mcff8DW1hZr1qyRupxKwRBERERk4H777Td88sknAIA1a9agTp06EldUORiCiIiIDNjjx4/xzjvvIDc3F4MHD8agQYOkLqnSMAQREREZsI8++ghXr15F/fr1sW7dOqnLqVQMQURERAZq//792LRpE2QyGbZt24ZatWpJXVKlYggiIiIyQCkpKapJEadNmwZvb2+JK6p8DEFEREQGJq//z927d9GqVStVp2hDwxBERERkYIKCghATE4Pq1atj165dkMvlUpckCYYgIiIiAxIREYFFixYBADZt2gQ3NzeJK5IOQxAREZGBuHnzJt59910AwLhx4zB48GCJK5IWQxAREZEByM7OxqBBg3Dv3j20adMGK1eulLokyTEEERERGYAPPvgAJ06cgJWVFX744QeYm5tLXZLkGIKIiIiqsuRkbJw6FRs2bIBMJsOOHTvQpEkTqavSCSZSF0BERERaEhaGX8eMwUQhAACL+/ZFQECAxEXpDrYEERERVUXJybgxZgz6C4EcAAMBzNq3D0hOlrgw3cEQREREVAVlnjuHvkLgDoBWAMIAyBQK4OpViSvTHQxBREREVUxubi7e/eILnAZgC2AfAEsAMDYGXFykLE2nMAQRERFVMdOnT8feiAiYmZhgj5ERGgLKALRxI+DkJHF1uoMdo4mIiKqQNWvWYNWqVQCAbd98g06vv668BObiwgCUD0MQERFRFXHgwAFMmTIFABASEoJBgwYpH2D4KRQvhxEREVUBCQkJGDx4MBQKBcaMGYOZM2dKXZLOYwgiIiLSc1evXkVAQAAyMzPh5+eHdevWQSaTSV2WzmMIIiIi0mP//vsvunXrhtTUVLRu3Rrff/89TE1NpS5LLzAEERER6an79+/Dz88PSUlJcHFxQUREBKysrKQuS28wBBEREemhjIwM9OzZE+fPn4eDgwMiIyNhZ2cndVl6hSGIiIhIz2RnZ+Ott95CXFwcatasicOHD6Nhw4ZSl6V3GIKIiIj0SG5uLoYNG4aIiAhUq1YN4eHhaNGihdRl6SWGICIiIj2hUCgwevRo7Ny5EyYmJvjxxx/h6ekpdVl6iyGIiIhIDwghMH78eHz11VcwMjLCjh070L17d6nL0msMQURERDpOCIEpU6Zg48aNkMlk+Oabb/D2229LXZbeYwgiIiLSYUIIzJw5E1988QUAICwsDEOGDJG4qqqBIYiIiEiHzZ8/H8uXLwcAbNiwASNGjJC4oqpDZ0JQSEgI2rVrhxo1aqBu3bro06cPLl++rLaPEAJBQUFwdHSEhYUFvLy8cOHCBYkqJiIi0q5FixZh0aJFAIAvvvgCgYGBEldUtehMCIqNjcWECRNw8uRJREZGIicnB76+vsjIyFDts2zZMqxcuRJr165FfHw87O3t0a1bNzx69EjCyomIiEopORmIjlZ+LcHSpUvx8ccfAwCWL1+OSZMmabs6wyN0VGpqqgAgYmNjhRBCKBQKYW9vL5YuXara5+nTp8La2lps2LCh1MdNS0sTAERaWprGayYiIirS5s1CGBkJASi/bt5c6G4KhUIs+PBDAUAAEIsWLSr8eDdvChEVpfxqALTx91tnWoLyS0tLAwDY2NgAABITE5GSkgJfX1/VPnK5HJ07d8aJEyckqZGIiKhUkpOBsWMBhUJ5X6EAAgMLtAgJITAnIADBq1YBAEJkMsy1ty94vLAwwNkZ8PFRfg0L0/YZVEk6GYKEEJg6dSpef/111SyYKSkpAFBgXRQ7OzvVY4XJyspCenq62o2IiKhSXbnyPADlyc0Frl5V3RVC4KOxY7H04EEAwCoAs4QoGJZKGaioZDoZgiZOnIg//vgD3333XYHHZDKZ2n0hRIFtLwoJCYG1tbXqVr9+fY3XS0REVCxXV8Ao359cY2PAxQWAciboCRMmYNXmzQCA9QCm5O2XLyyVJlBR6ehcCJo0aRIOHDiA6OhoODk5qbbb/9ccmL/VJzU1tdhVc2fPno20tDTV7ebNm9opnIiIqChOTsCmTcrgAyi/btwIODkhNzcXY8eORWhoKGQyGTbLZBj34nNfCEsASgxUVHo6E4KEEJg4cSL27NmDqKgoNGrUSO3xRo0awd7eHpGRkapt2dnZiI2NRYcOHYo8rlwuh5WVldqNiIio0o0aBSQlKUeHJSUBo0YhJycHI0aMQFhYGIyMjPD1119j1JdfFhqWVIoJVFQ2JlIXkGfChAnYsWMH9u/fjxo1aqhafKytrWFhYQGZTIYpU6ZgyZIlcHV1haurK5YsWYJq1apx5kwiItIPTk6qsPLs2TO8++67+P7772FiYoIdO3Y8XwrDz095ecvFpfBwM2pUyftQiWRCCCF1EUDBvj55tm7diuHDhwNQthYFBwdj48aNePDgATw8PLBu3TpV5+nSSE9Ph7W1NdLS0tgqREREksjKysLAgQOxf/9+mJqa4ocffkDv3r2lLkunaePvt86EoMrCEERERFJ6+vQp+vfvj/DwcMjlcuzZswc9evSQuiydp42/3zpzOYyIiKiqy8zMRO/evfHLL7/AwsICBw4cQNeuXaUuy2AxBBEREVWCR48eoWfPnjh69CgsLS3x888/o3PnzlKXZdAYgoiIiLQsLS0N/v7+iIuLg5WVFQ4ePFjsyGaqHAxBREREWnT//n34+fkhISEBtWrVwuHDh+Hu7i51WQSGICIiIq25c+cOfH19cfbsWdja2iIyMhKtW7eWuiz6D0MQERGRFqSkpKBr1664cOEC7OzscOTIETRv3lzqsugFDEFERESakJysXNfL1RX/yGTw8fHBX3/9BUdHR0RFRcHNzU3qCikfhiAiIqKKCgtTrex+XSaDj60t/r5zBw0aNEBUVBSaNGkidYVUCIYgIiKiikhOVgWgawB8hMCNO3fQuEEDRB09CmdnZ6krpCLozAKqREREeunKFUChwGUAnQHcANAUQOxnnzEA6TiGICIioopwdcUFmQydAfwD4GUAsUZGcPL0lLgwKglDEBERUQX8fu8evCwtcRtAKwAxRkaw37SJK7vrAYYgIiKickpISIC3tzfuPn4M95YtEbV/P+pcvw6MGiV1aVQK7BhNRERUDnFxcejevTvS09Ph6emJgwcPwtraWuqyqAzYEkRERFRGR48eha+vL9LT0/HGG2/g0KFDDEB6iCGIiIioDKKiouDv74/Hjx+jS5cuCA8PR40aNaQui8qBIYiIiKiUDh06hICAAGRmZqJ79+743//+B0tLS6nLonJiCCIiIiqFn376CW+++SaePn2KXr16Yd++fbCwsJC6LKoAhiAiIqIS7N27F/369UN2djb69euH3bt3Qy6XS10WVRBDEBERUTG+//57vP3223j27BkGDRqEnTt3wszMTOqySAMYgoiIiIrw7bffYvDgwcjNzcV7772Hb7/9FqamplKXRRrCEERERFSIrVu3YujQoVAoFBg1ahS2bt0KY2NjqcsiDWIIIiIiymfjxo0YOXIkhBAYN24cNm3axABUBTEEERERvWDNmjV4//33AQAffPAB1q1bByMj/rmsiviuEhER/WfFihWYPHkyAGDGjBlYtWoVZDKZxFWRtjAEERERAViyZAmmTZsGAJg3bx6WLl3KAFTFMQQREZHBCw4Oxty5cwEACxcuxCeffMIAZAAYgoiIyKAFBwcjKCgIALB06VJ8/PHH6jskJwPR0cqvVKUwBBERUdVTyuCycOFCVQBavnw5Zs6cqb5DWBjg7Az4+Ci/hoVpqWCSAkMQERFVLaUMLgsXLsSCBQsAKANQXn8gleRkYOxYQKFQ3lcogMBAtghVIQxBRERUdZQyuHzyySeqALRs7FhMGzSo4LGuXHl+nDy5ucDVq9qonCTAEERERFVHKYLLokWLMH/+fADApzIZpm/aVHiLkasrkH9+IGNjwMVFG5WTBBiCiIio6ighuCxevFjV8XmpTIYZQij3KazFyMkJ2LRJ+fy842zcqNxOVQJDEBERVR3FBJclS5Zg3rx5AICQ0aMxMy8A5SnsUteoUUBSkrKTdVKS8j5VGTIh8v8UVG3p6emwtrZGWloarKyspC6HiIi0ITlZGWhcXAAnJ4SEhGDOnDkAlJMizn7vPeUlsBcvnRkbK4MOW3p0kjb+frMliIiIqh4nJ8DLC3BywtKlS1UBaPHixZg9ezYvdREAwETqAoiIiLRl6dKlytADZQDKC0MAlJe2/PzUWozIsDAEERFRlfTpp5+qAtCiRYvUA1AeJyeGHwPGy2FERFTlLFu2DLNmzQKgnBMob10wohcxBBERUZXy4vIXCxcuVI0II8qPIYiIiKqMzz77DDNmzACgXBi1wGKoRC9gCCIioiphxYoVmD59OgAgKChINSs0UVF0KgQdPXoUvXr1gqOjI2QyGfbt26f2+PDhwyGTydRur732mjTFEhGRzli5cqVqAdQFCxao1gUjKo5OhaCMjAy0atUKa9euLXKf7t2749atW6pbeHh4JVZIRES6ZuXKlfjoo48AKANQUFCQtAWR3tCpIfL+/v7w9/cvdh+5XA57e/tKqoiIiHTZqlWrVAFo/vz5DEBUJjrVElQaMTExqFu3Lpo2bYoxY8YgNTVV6pKIiEgCq1atwtSpUwEAH3/8MQMQlZlOtQSVxN/fH2+//TacnZ2RmJiIjz/+GD4+Pjh16hTkcnmhz8nKykJWVpbqfnp6emWVS0REWvL555+rAtC8efMQHBwMmUwmcVWkb/QqBA0cOFD17xYtWsDd3R3Ozs74+eef0a9fv0KfExISguDg4MoqkYiItGz16tX48MMPAQBz587FwoULGYCoXPTuctiLHBwc4OzsjCtXrhS5z+zZs5GWlqa63bx5sxIrJCIiTfriiy8wZcoUAMCcOXPwySefMABRuelVS1B+9+7dw82bN+Hg4FDkPnK5vMhLZUREpD/WrFmDDz74AIAyAC1atIgBiCpEp0LQ48ePcfXqVdX9xMREnD17FjY2NrCxsUFQUBD69+8PBwcHJCUlYc6cObC1tUXfvn0lrJqIiLRt7dq1mDx5MgBlCz8DEGmCToWghIQEeHt7q+7ndXobNmwYQkNDce7cOXz99dd4+PAhHBwc4O3tjV27dqFGjRpSlUxERFq2du1aTJo0CQAwa9YsLF68mAGINEImhBBSF1GZ0tPTYW1tjbS0NFhZWUldDhERFWPdunWYOHEiAGDmzJkICQmB7J9/gCtXAFdXwMlJ4gqpsmjj77ded4wmIqKqa/369aoANGPGDGUA2rIFcHYGfHyUX8PCJK6S9BlDEBER6ZzQ0FBMmDABADB9+nQsXbpU2QI0diygUCh3UiiAwEAgOVnCSkmfMQQREZFOCQ0Nxfjx4wEA06ZNw6effqrsA3TlyvMAlCc3F3hhQA1RWTAEERGRzsgfgJYtW/a8E7SrK2CU78+WsTHg4lLJVVJVwRBEREQ6odgABCg7QW/apAw+gPLrxo3sHE3lplND5ImIyDCVGIDyjBoF+PkpL4G5uDAAUYUwBBERkaTUAtCAAVg2eXLx8wA5OTH8kEbwchgREUlGLQABWPb995A1bMih71QpGIKIiEj7kpOB6Gi14ewFAhAAGcCh71RpeDmMiIi0Kyzs+fw+RkbApk0Izc5WvwT2/fdQuwCWN/Sdl71Ii7hsBhERaU9ysnJm5xfm9wmVyTD+vz8906ZNU/YBathQfQ4gY2MgKYkhiFS4bAYREemXfBMchgLqAWjZMsjq1+fQd5IEL4cREZH25E1wqFAoA9B/m6cFBqoPg+fQd5IAW4KIiEh7/pvgMFQmex6A/PywLDS04DB4JyfAy4sBiCoNQxAREZVfIaO+8gvNzn5+CSwwEMsOHix+HiCiSsIQRERE5RMWpuz07OOj/FrI3D6rV69Wnwm6sBYgIolUKASlpqYiJSVFU7UQEZG+SE5+PuwdKHRun+XLl2PKlCkAgJkzZxa9FAaRRMoVgv744w80b94cDg4OqFevHurVq4d58+YhIyND0/UREZEuyjfqC8DzuX0ALFq0CDNmzAAAzJ8/HyEhIQxApHPKFYJGjRoFOzs7HDt2DGfOnMGiRYtw8OBBuLu748GDB5qukYiIdE3eqK8XGRtDNGmC+fPn4+OPPwagDEPBwcEMQKSTyjVZoqWlJU6dOoVmzZqptgkh8Pbbb8Pc3BzffvutRovUJE6WSERUSsnJyhYfV9fCR2yFhSkvgeXmKgPQhg2YdeUKli1bBgBYtmwZpk+fXslFU1WlM5MlFtbiI5PJsGTJEuzfv18jhRERkYRK0ekZo0YpZ3WOjoZITMSH58+rAtDnn3/OAEQ6r9QtQQEBAWjVqhVat26N3NxcrF69Gvv374ednZ1qn/j4ePTv3x83btzQWsEVxZYgIqISFLLURXHLWCgUCkycOBGhoaEAlAujvv/++5VULBkKbfz9LvWM0a+88gpOnz6NrVu34vbt2wCAxo0bY8CAAapgtHXrVqxatUojhRERkUSK6/ScLwTl5uYiMDAQYWFhkMlk2Lx5M0aOHFmJxRKVX7n6BN2+fRtnzpzB2bNnVberV6/C2NgYbm5u+OOPP7RRq0awJYiIqASlbAnKycnByJEj8c0338DIyAjbtm3Du+++W/n1kkGQtCXoRXZ2dujevTu6d++u2vbkyRP8/vvv+P333zVSGBERSeS/pS5e7PScf0HT7OxsvPvuu/jhhx9gbGyM7du3Y+DAgRIWTVR25WoJ0mdsCSIiKqXk5EIXNM3MzET//v0REREBU1NT7Nq1C3379pWwUDIEOtMSREREBsDJqUAfoLS0NPTq1Qu//vorLCwssG/fPvj6+kpUIFHFMAQREVGp3LlzB927d8fp06dhZWWF8PBwdOzYUeqyiMqNIYiIiEr0zz//oGvXrvjzzz9Rp04dHDp0CG3atJG6LKIKYQgiIqJiXbt2DV27dkVSUhKcnJwQGRmptmIAkb6q0CryRERUtZ0/fx6dOnVCUlISXFxccOzYMQYgqjIYgoiIqFDx8fHo3Lkzbt26hVdeeQW//vornJ2dpS6LSGMYgoiIqIDDhw/D29sb9+/fx2uvvYaYmBjY29tLXRaRRjEEERGRmu3btyMgIAAZGRno2rUrIiMjYWNjI3VZRBrHEERERCorV67Eu+++i5ycHAwePBg///wzqlevLnVZRFrBEERERFAoFJg+fTo++ugjAMCUKVPw7bffwszMTOLKiLSHQ+SJiAzcs2fPMHLkSHz77bcAgE8//RTTp0+HTCaTuDIi7WIIIiIyYI8fP8Zbb72FQ4cOwdjYGFu2bMHQoUOlLouoUjAEEREZqNTUVPTs2RPx8fGoVq0adu/eDX9/f6nLIqo0DEFERAbozz//RI8ePZCYmIjatWvj559/hoeHh9RlEVUqdowmIjIwMTEx8PT0RGJiIho3bozjx48zAJFBYggiIjIgX3/9NXx9ffHw4UN4enri5MmTcHNzk7osIknoVAg6evQoevXqBUdHR8hkMuzbt0/tcSEEgoKC4OjoCAsLC3h5eeHChQvSFEtEpEfyPj+HDRuGZ8+e4e2338aRI0dQp04dqUsjkoxOhaCMjAy0atUKa9euLfTxZcuWYeXKlVi7di3i4+Nhb2+Pbt264dGjR5VcKRGRjkpOBqKjlV//k5WVhaFDhyI4OBgAMGvWLOzcuRMWFhZSVUmkE3SqY7S/v3+RIxOEEPj8888xd+5c9OvXDwCwbds22NnZYceOHQgMDKzMUomIdE9YGDB2LKBQAEZGwKZNuNenD/r374/Y2FgYGxsjNDQUY8aMkbpSIp2gUy1BxUlMTERKSgp8fX1V2+RyOTp37owTJ04U+bysrCykp6er3YiIqpzk5OcBCAAUClwYOxbtXn0VsbGxsLKywsGDBxmAiF6gNyEoJSUFAGBnZ6e23c7OTvVYYUJCQmBtba261a9fX6t1EhFJ4sqV5wEIwP8AvKZQIPHGDTRq1AjHjx9Ht27dpKuPSAfpTQjKk38adyFEsVO7z549G2lpaarbzZs3tV0iEVHlc3UFjIwgAIQA6A3gMQAvT0/89ttvaNGihbT1EekgvQlB9vb2AFCg1Sc1NbVA69CL5HI5rKys1G5ERFWOkxMy16zBEJkMcwAIAOO9vXE4Nha2trZSV0ekk/QmBDVq1Aj29vaIjIxUbcvOzkZsbCw6dOggYWVERNJLTk7GG1u2YKcQMDE2RuiSJVgXFQVTU1OpSyPSWTo1Ouzx48e4evWq6n5iYiLOnj0LGxsbNGjQAFOmTMGSJUvg6uoKV1dXLFmyBNWqVcOQIUMkrJqISFoxMTEYOHAgUlNTUbt2bfz444/o3Lmz1GUR6TydCkEJCQnw9vZW3Z86dSoAYNiwYfjqq68wY8YMPHnyBOPHj8eDBw/g4eGBw4cPo0aNGlKVTEQkGSEEPvvsM8yePRu5ublo2bIl9u3bh0aNGhX/xORkZUdqV1fAyalyiiXSQTIhhJC6iMqUnp4Oa2trpKWlsX8QEemt9PR0jBgxAnv27AEADB06FKGhoahWrVrxTyxkLiGMGlUJFRNVjDb+futNnyAiIlK6cOEC2rVrhz179sDU1BShoaH46quvSg5AhcwlhMBAtdmliQyJTl0OIyKiIvx3CWvnxYsYNWMGMjMz4eTkhN27d5d+Bfh8cwkBAHJzgatXeVmMDBJDEBGRrgsLw5MxY/CREAj9b1PXrl2xY8eOsi2A+t9cQmpByNgYcHHRaLlE+oKXw4iIdFlyMi6NGQOPFwLQHJkMEZs3l30FeCcnZR8gY2PlfWNjYONGtgKRwWJLEBGRjhJCYMvq1ZgkBJ4AqAvgGwC+QgCJiYCzc9kPOmoU4OenvATm4sIARAaNIYiISAelp6cjMDAQO3fuBAB0A/A1AHug4pewnJwYfojAy2FERDrn5MmTaNOmDXbu3AljY2OE9OuHCCOj5wGIl7CINIItQURE2lLGSQmzs7OxcOFChISEQKFQwNnZGd999x08PT2Vx+IlLCKNYggiItKGskxKmJyMi5GReG/VKpw+dw4AMGTIEKxduxa1atVS7sNLWEQaxxmjiYg0LTlZ2Wk5/1D0pKQCQUbx5Zf4IjAQs4RAFgAbS0uEbtmCAQMGVGrJRLqOM0YTEemD4iYlfMH1kyfRbexYfPhfAOoO4NyTJxjQoUOllUpkyBiCiIg0LW9Swhe9MKJLoVBgzZo1aO7tjSgA1QCEAggH4KhQFAhLRKQdDEFERJpWzKSEly5dQqdOnTB58mRkPH2KTgDOAngfgCxvX87gTFQpGIKIiLRh1ChlH6DoaCApCc+GDsXixYvRunVrnDhxAtWrV8f69esRs2kTXDmDM5EkODqMiEhb/hvR9dtvv2Fsz574/fffAQD+/v7YsGEDGjRogP82cPg7kQQYgohIOmWcR0ff3Lt3D3PmzMGXX34JIQRq166N1atXY8iQIZDJZM935PB3IknwchgRSSMsTDmM3MdH+TUsTOqKNEahUGDz5s1wc3PDpk2bIITAe++9h4sXL+Kdd95RD0BEJBnOE0REla8M8+jomzNnzmD8+PE4efIkAKBFixZYt24d3njjDYkrI9JvnCeIiKqGUs6jo09SU1Mxbtw4uLu74+TJk6hevTpWrFiB06dPMwAR6Sj2CSKiypc3j07+liA9HBr+9OlTrF69GosXL8ajR48AAAMHDsSKFStQr149iasjouKwJYiIKl8x8+joCyEEdu3ahWbNmmHWrFl49OgR2rZti9jYWOzcuZMBiEgPsCWIiKQxahTg56eXQ8OPHz+O6dOnIy4uDgBQr149hISE4J133oFR/pmiiUhnMQQRkXT0bGj4mTNnMG/ePISHhwMAqlWrhpkzZ+Kjjz6CpaWlxNURUVkxBBERleDPP//E/Pnz8cMPPwAAjI2NMXLkSAQFBcHR0VHi6oiovBiCiIiK8Pfff+OTTz7B119/DYVCAZlMhsGDByM4OBguetiJm4jUMQQREeVz6dIlhISEYMeOHcjNzQUA9O7dG5988gleeeUViasjIk1hCCIi+s/Zs2exePFi/Pjjj8ibR9bPzw/BwcHw8PBQ37mKL/lBZAg4jIGIDJoQAseOHUOvXr3Qpk0b7N69G0II9OnTB/Hx8YiIiCgYgKrwkh9EhoTLZhBR1VDGlplnz55h9+7dWLVqFeLj4wEARkZGGDhwIGbPnl30Za8qvOQHkS7Txt9vXg4jIv0XFgaMHasMJkZGyokYR40qdNeHDx/iyy+/xBdffIHk5GQAgFwux3vvvYcZM2bA1dW1+O9V3JIfDEFEeoUhiIj0W3Ly8wAEKL8GBionYnwhlFy6dAnr16/H1q1bkZGRAQCoW7cuJkyYgPfffx9169Yt3ferQkt+EBk6hiAi0m/FtMxk1amDvXv3YsOGDYiNjVU93KJFC0ydOhWDBw+Gubl52b5f3pIfgYHK76OHS34QkRJDEBHpt0JaZhKNjLBp926EDRiAO3fuAFD29+nVqxcmTJiArl27QiaTlf976vGSH0T0HDtGE5H+CwtD5tix2KtQYBuAX2Qy1RB3R0dHjBkzBqNHj4YTwGHtRHqKHaOJiF4ghMDx48fxVVwcvq9WDY8eP857AL6+vnj//ffRq1cvmJiYlKnzNBEZBrYEEZHe+fvvv7F9+3Zs27YN165dU21v1KgRhg4diqFDh6Jx48bPn8Bh7UR6jy1BRGSwbt68iR9++AE7d+5UzesDANWrV8fbb7+NYcOGoVOnTjAyKmQOWA5rJ6JCMAQRkc5KSUnB7s2bsXPXLhw/f1613cjICN7e3hg2bBj69esHS0vL4g/EYe1EVAiGICLSKdevX8f+/fuxb98+xMbEQPHfFXsZgNddXTFoyhT0798fdnZ2pT8oh7UTUSHYJ4iIJCWEwLlz57Bv3z7s27cPZ86cUXvcA8AgAG8DqFfRfjzJyRzWTqSn2CeIiKqEnJwcHD9+XBV8kpKSVI8ZGRnh9ddfR5/mzdE3NBQNX3xiRfvxODmV/FyuDk9kMBiCiKhS/Pvvv4iIiMDBgwcRGRmJtLQ01WPm5ubw9fVFnz590LNnT9SpU0cZRjZurNx+PBxGT2RQ9CoEBQUFITg4WG2bnZ0dUlJSJKqIiIry7NkzxMXF4eDBgzh48CB+//13tcdr166Nnj17ok+fPujWrVvBzs2V3Y+nlGuQEVHVoVchCACaN2+OX375RXXf2NhYwmqI9IQmL/EUc6ybN2/i8OHDCP/xR/xy9CjS/1uoFABkMhnc3d3h7+8Pf39/tGvXruTf38pcnoLD6IkMjt6FIBMTE9jb20tdBpH+0OQlnnzHur18OaIdHREVFYWoqCi1iQsBwBaAn4cHuk+cCD8/P+VlrrIqTT8eTeAweiKDo3ch6MqVK3B0dIRcLoeHhweWLFmiPjNsPllZWcjKylLdT09Pr4wyiXSDJi/xJCfj/pgxiBEC0QCiFApc/OgjtV2MjIzQTqGAPwB/AG0BGCckAF5eQHkCUGXiMHoig6NXIcjDwwNff/01mjZtitu3b2PRokXo0KEDLly4gNq1axf6nJCQkAL9iIgMRgUv8aSnp+PXX39FdHQ0ovbvx1kh8OKcGjIArVxc4PPmm/Dx8UEnIWDVq1e5v5/kuDo8kUHR63mCMjIy0KRJE8yYMQNTp04tdJ/CWoLq16/PeYLIMJRxzazMzEycOHECUVFRiI6ORnx8PHJzc9X2eQmAz3+3zkZGqH39+vNjcY0uItISzhOUj6WlJV555RVcuXKlyH3kcjnkcnklVkWkQ0q4xJOdnY3/+7//U/XpOXnyJLKzs9UO0aRJE3h7e8PHxwde//4Lh5kzi75cxEtKRKRH9DoEZWVl4dKlS+jUqZPUpRDprhcu8eQ0bIjTqamIWroUUVFROHbsGJ48eaK2u5OTE3x8fODt7Q1vb284OzurH2/gwOIvF/GSEhHpCb0KQdOmTUOvXr3QoEEDpKamYtGiRUhPT8ewYcOkLo1IJykUCvzxxx/KPj1RUTh69GiBwQF16tSBj4+PKvi4uLhAJpMVfdDSjNaqrBFdREQVoFchKDk5GYMHD8bdu3dRp04dvPbaazh58mTB/6kSSUXiJReEEPjzzz9VoScmJgb37t1T26dmzZrw8vJShZ7mzZsXH3qIiKoovQpBO3fulLoEoqJJtORCUlISoqKicOTIEURHR+PWrVtqj1evXh2dOnVStfa0atWKk4wSEUHPR4eVB1eRJ62oxFFRKSkpiI6OxpEjRxAVFYXExES1x83NzdGxY0dVZ2Z3d3eYmppqtAYiosrG0WFEukqLSy48ePAAsbGxqtBz8eJFtcdNTEzg4eGhurzl6ekJc3Pzsn8jrp5ORAaGIYhIE8qy5EIJYSMjIwPHjh1ThZ7Tp0/jxQZbmUyGNm3aqC5vvf7666hRo0bF6ufq6URkgBiCiDShtPPjFBI2coYNQ0JCAg4fPozIyEj83//9H549e6b2tJdeekkVejp37lzkDOnlwtXTichAsU8QkSYlJxc9P84L/YaSABz+73bE2hoP09LUdnV2dkaXLl1Ul7gcHR2L/n4VvYQVHQ34+BS+3curfMckItIw9gki0nVFzI/z6NEjxGzbhkMKBQ4DUJvjPC0NtWrVQteuXdGtWzd06dIFjRo1KnnYuqYuYXH1dCIyUAxBRFqQm5uL06dP4/Dhwzh8+DBOnDiBnJwc1ePGADwB+Mpk8N2/H+49ehQctl5cK48mL2FxqQsiMlAMQUQakpKSgoiICBw8eBC//PIL7t+/r/a4i4sLfOvXh29sLLwVCljlhY38q64DJbfyaHo0Gpe6ICIDxD5BROWkUCgQHx+P8PBw/Pzzzzh16pTa41ZWVujSpQv8/PzQrVs3NG7cWPlAcf2G8h4vac4hrtZORAaGfYKIJPbgwQMcOnQI4eHhiIiIwJ07d9Qed3d3h7+/P7p374727dvDxKSQX7GS1tUqTSsPL2EREVUYQxBRMYQQOHfunKq158SJE1C8EFCsrKzg6+uLgIAAdO/eHfb29hX/pqXtqMxLWEREFcIQpG2chVc65XztHz9+jCNHjiA8PBzh4eFITk5We7x58+bo0aMHAgIC0KFDB80vSVGWVh6u1k5EVG4MQdrEWXjLTlOhsYyv/ZUrV/Dzzz8jPDwcsbGxyM7OVj1mYWGBLl26oEePHujRowecnZ3LX1dpsZWHiEjr2DFaW9hxtew0FRpL8do/ffoUR48eVQafAwdwNSlJ7RCNGzdGQEAAevTogc6dO8Pi3j226BERSYgdo/WJFhfUrJI0Oe9NEa/9zRMnEP7gAcLDw/HLL78gMzNT9bApgDcA9BgwAAELF6Jp06bPJytkix4RUZXEliBtYUtQ2Why6Yb/XvschQJxAH4GEA7gXL7dHO3s0OP2bfQA0BVADYBD0YmIdBRbgvQJhzCXjYaWbkhNTUVEVBTC27bFofh4PHzhMSMjI3h4eCAgIAABAQFodf8+ZF26qB8gf2sdW/SIiKoshiBtYufW0itnaFQoFDh9+rSqU3N8fDxebNy0sbKCf5cu6PHWW/Dz81NffT05ueTgxXW1iIiqLIYgbeMQ5tIrZWh8+PAhIiMjER4ejoMHD+L27dtqj7dp00Y1hL19+/YF1+TKU5rgxRY9IqIqi32CSOflTVgYERGB8PBwHDt2DLm5uarHq1evjm7duiEgIAD+/v5wdHQs2zcoaRmL0u5DRERawz5BpN/KMAdQamoqIiMjcejQIURGRiIlJUXtcTcAAQB6yGTo9NlnMAsMLH9dpWmtY4seEVGVwxBElaOEYeZZWVk4fvw4Dh8+jMOHD+PMmTNqT7ewsICXlxf8PT3RY8ECNMlrwBQCmDABCAhgSCEiojJhCCLtK2QOIDF2LC44OyPq4kUcOnQIMTExavP2AEDr1q3h5+cHX19fdOzYEXK5XDlkPv8VXI7WIiKicmAIMlSVuabZlSsQCgX+BBANIAZAjEKBO926qe1mb28PX19f+Pr6omvXrrCzsyt4LI7WIiIiDWEI0icSratVHkIIXLlyBdHR0YgJD0cMgJR8+1SzsEDH119XBZ9XXnnl+SzNReFoLSIi0hCODtMXlbiuVnlkZWXhzJkzOH78OE6cOIETJ04U6MxsDqADAG+ZDN4zZqDdwoUwMzMr3zfkaC0iIoPC0WGGqhLW1Sprn5rU1FTExcXhxIkTOH78OBISEpCVlaW2j1wuh6enJ7y8vODt7Q2PevUgv3lTM8GFo7WIiKiCGIL0gSaXbihHn5o7d+7g1KlTqltCQgJu3rxZYL86deqgQ4cO6NChAzp27Ii2bdvC3NxcfacmTcpWLxERkZYwBOkDTXYGLqZPTW5uLhITE3HhwgWcO3cOp0+fxqlTp3Djxo0Ch5HJZHj55ZfRsWNHVfBxcXEpuU8PERGRjmAI0gca7gysGDECyS1a4GJsLM6np+P8r7/ifGgoLl68iCdPnhT6nKZNm8Ld3R1t27ZF27Zt0aZNG/3qU0VERJQPQ5C+KONirLm5uUhOTsaVK1dw9epVXL16VfXva9euFei/k0cul+Pll19G8+bN0bp1a7g3aIA2Fhawat2afXCIiKhKYQgqTGXOoVMW/3UGzs3Nxf07d3Dz5s0ib//88w9ycnKKPJSJiQlcXV3xyiuvoHnz5mjRogVatGiBJk2aPF9wNCwMGDRIq0PpiYiIpMIh8vlVwhw6+WVlZeHOnTu4e/cu7ty5o7q9eP/Ff9+/fx+K/B2lC2FqaoomTZrAxcUFLi4ucHV1Vf27QYMGMDEpJgNraSg9ERFReXCIvLZpaCh6ZmYmUlNTVbcXg01h4ebRo0flKtfOzg7169dXuzW4ehX1N21CfSHgkJMD42nTyhfiyjIiTVdbzoiIiIphuCHon3+A/EmyhD/8T58+VbvkdOPGDdy8eRO3b99WBZ7bt28jIyOjzOUYGxvD1tYWderUUd1evJ//sdq1a8PU1FT9IHmtNy8uLlre+YRKOyJNgpYzIiIiTTDcENS8OfDll+p/sF1dIWQyJAqBSwAuA/hTJsPlWbNwOSkJt2/fLvXhzczMYGdnh7p16xYZbF68X7NmzYoPL9fkfEKlGZGmyUkciYiIKpnhhqD/WklutGiB/7txAwkJCUhISMBpCws8fHE1cyGA//s/1d1q1aopLzs1aKC6BOXo6Ii6deuq3WrUqFH5c+ZoenHRkkakaTJ0ERERVTKDDUGTABzLzcXfr71W4DG5XA63evXg9vLLcGvdGs2aNYObmxsaNWoEGxsb3Z0QUBuLixa3PAVXdCciIj1msKPD8hgbG6N169Zo164d2rZtC3d3dzRv3rxgfxtt02Tn4spcXDQsrGDoYp8gIiLSMG2MDjPYEDQRgP/kyei0aBFq1KghbVH63rmYK7oTEZGWMQRpgOpFvHgRVi+9JHU5nI+HiIioFLQRgow0chR9VK+e1BUoFde5mIiIiLRGL0PQ+vXr0ahRI5ibm6Nt27b49ddfpS6p/PI6F7+InYuJiIi0Tu9C0K5duzBlyhTMnTsXZ86cQadOneDv748bN25IXVr55I3oyluvSxMjuoiIiKhEetcnyMPDA6+++ipCQ0NV21566SX06dMHISEhJT5fG9cUNYKdi4mIiIpk8GuHZWdn49SpU5g1a5badl9fX5w4caLQ52RlZSErK0t1Pz09Xas1lltx8/EQERGRxunV5bC7d+8iNzcXdnZ2atvt7OyQkpJS6HNCQkJgbW2tutWvX78ySiUiIiIdp1chKE/+GZuFEEXO4jx79mykpaWpbjdv3qyMEomIiEjH6dXlMFtbWxgbGxdo9UlNTS3QOpRHLpdDLpdXRnlERESkR/SqJcjMzAxt27ZFZGSk2vbIyEh06NBBoqqIiIhIH+lVSxAATJ06Fe+99x7c3d3h6emJTZs24caNG3j//felLo2IiIj0iN6FoIEDB+LevXtYuHAhbt26hRYtWiA8PBzOzs5Sl0ZERER6RO/mCaoonZ0niIiIiIrEtcOIiIiINIQhqCKSk4HoaOVXIiIi0isMQeUVFgY4OwM+PsqvYWFSV0RERERlwBBUHsnJwNixgEKhvK9QAIGBbBEiIiLSIwxB5XHlyvMAlCc3V7kAKhEREekFhqDycHUFjPK9dMbGyhXgiYiISC8wBJWHkxOwaZMy+ADKrxs3chV4IiIiPaJ3kyXqjFGjAD8/5SUwFxcGICIiIj3DEFQRTk4MP0RERHqKl8OIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQ9CoENWzYEDKZTO02a9YsqcsiIiIiPWQidQFltXDhQowZM0Z1v3r16hJWQ0RERPpK70JQjRo1YG9vL3UZREREpOf06nIYAHz66aeoXbs2WrdujcWLFyM7O1vqkoiIiEgP6VVL0AcffIBXX30VtWrVwm+//YbZs2cjMTERmzdvLvI5WVlZyMrKUt1PS0sDAKSnp2u9XiIiItKMvL/bQgjNHVRIbMGCBQJAsbf4+PhCn7t7924BQNy9e7dCx+eNN95444033vTjdu3aNY1lEJkQmoxUZXf37l3cvXu32H0aNmwIc3PzAtv/+ecfODk54eTJk/Dw8Cj0uflbgh4+fAhnZ2fcuHED1tbWFStej6Snp6N+/fq4efMmrKyspC6n0vC8ed6GgOfN8zYEaWlpaNCgAR48eICaNWtq5JiSXw6ztbWFra1tuZ575swZAICDg0OR+8jlcsjl8gLbra2tDeqHJ4+VlRXP24DwvA0Lz9uwGOp5Gxlprjuz5CGotOLi4nDy5El4e3vD2toa8fHx+PDDD/Hmm2+iQYMGUpdHREREekZvQpBcLseuXbsQHByMrKwsODs7Y8yYMZgxY4bUpREREZEe0psQ9Oqrr+LkyZMVPo5cLseCBQsKvURWlfG8ed6GgOfN8zYEPG/NnbfkHaOJiIiIpKB3kyUSERERaQJDEBERERkkhiAiIiIySAxBREREZJCqZAhav349GjVqBHNzc7Rt2xa//vprsfvHxsaibdu2MDc3R+PGjbFhw4ZKqlSzynLee/bsQbdu3VCnTh1YWVnB09MThw4dqsRqNaes73ee48ePw8TEBK1bt9ZugVpS1vPOysrC3Llz4ezsDLlcjiZNmmDLli2VVK3mlPW8t2/fjlatWqFatWpwcHDAiBEjcO/evUqqtuKOHj2KXr16wdHRETKZDPv27SvxOVXhM62s511VPtPK837n0efPtPKctyY+06pcCNq1axemTJmCuXPn4syZM+jUqRP8/f1x48aNQvdPTExEjx490KlTJ5w5cwZz5szB5MmT8eOPP1Zy5RVT1vM+evQounXrhvDwcJw6dQre3t7o1auXahZufVHW886TlpaGoUOHokuXLpVUqWaV57wHDBiAI0eOICwsDJcvX8Z3332HZs2aVWLVFVfW8z527BiGDh2KUaNG4cKFC/jhhx8QHx+P0aNHV3Ll5ZeRkYFWrVph7dq1pdq/qnymlfW8q8pnWlnPO4++f6aV57w18pmmsVXIdET79u3F+++/r7atWbNmYtasWYXuP2PGDNGsWTO1bYGBgeK1117TWo3aUNbzLszLL78sgoODNV2aVpX3vAcOHCjmzZsnFixYIFq1aqXFCrWjrOd98OBBYW1tLe7du1cZ5WlNWc97+fLlonHjxmrbvvjiC+Hk5KS1GrUJgNi7d2+x+1SVz7QXlea8C6OPn2kvKst56/tn2otKc96a+kyrUi1B2dnZOHXqFHx9fdW2+/r64sSJE4U+Jy4ursD+fn5+SEhIwLNnz7RWqyaV57zzUygUePToEWxsbLRRolaU97y3bt2Ka9euYcGCBdouUSvKc94HDhyAu7s7li1bhnr16qFp06aYNm0anjx5Uhkla0R5zrtDhw5ITk5GeHg4hBC4ffs2du/ejYCAgMooWRJV4TNNE/TxM6289P0zrTw09ZmmNzNGl8bdu3eRm5sLOzs7te12dnZISUkp9DkpKSmF7p+Tk4O7d+8WuzirrijPeee3YsUKZGRkYMCAAdooUSvKc95XrlzBrFmz8Ouvv8LERD9//Mtz3n///TeOHTsGc3Nz7N27F3fv3sX48eNx//59vekXVJ7z7tChA7Zv346BAwfi6dOnyMnJwZtvvok1a9ZURsmSqAqfaZqgj59p5VEVPtPKQ1OfaVWqJSiPTCZTuy+EKLCtpP0L267rynreeb777jsEBQVh165dqFu3rrbK05rSnndubi6GDBmC4OBgNG3atLLK05qyvN8KhQIymQzbt29H+/bt0aNHD6xcuRJfffWVXrUGAWU774sXL2Ly5MmYP38+Tp06hYiICCQmJuL999+vjFIlU1U+08pL3z/TSquqfaaVhaY+06pUbLS1tYWxsXGB/xWmpqYW+J9RHnt7+0L3NzExQe3atbVWqyaV57zz7Nq1C6NGjcIPP/yArl27arNMjSvreT969AgJCQk4c+YMJk6cCED5iySEgImJCQ4fPgwfH59Kqb0iyvN+Ozg4oF69erC2tlZte+mllyCEQHJyMlxdXbVasyaU57xDQkLQsWNHTJ8+HQDQsmVLWFpaolOnTli0aFGVbBWpCp9pFaHPn2llVVU+08pDU59pVaolyMzMDG3btkVkZKTa9sjISHTo0KHQ53h6ehbY//Dhw3B3d4epqanWatWk8pw3oPzf0vDhw7Fjxw697CNR1vO2srLCuXPncPbsWdXt/fffh5ubG86ePQsPD4/KKr1CyvN+d+zYEf/++y8eP36s2vbXX3/ByMgITk5OWq1XU8pz3pmZmTAyUv+YMzY2BvC8daSqqQqfaeWl759pZVVVPtPKQ2OfaRXqVq2Ddu7cKUxNTUVYWJi4ePGimDJlirC0tBRJSUlCCCFmzZol3nvvPdX+f//9t6hWrZr48MMPxcWLF0VYWJgwNTUVu3fvluoUyqWs571jxw5hYmIi1q1bJ27duqW6PXz4UKpTKJeynnd++jqSoqzn/ejRI+Hk5CTeeustceHCBREbGytcXV3F6NGjpTqFcinreW/dulWYmJiI9evXi2vXroljx44Jd3d30b59e6lOocwePXokzpw5I86cOSMAiJUrV4ozZ86I69evCyGq7mdaWc+7qnymlfW889PXz7SynremPtOqXAgSQoh169YJZ2dnYWZmJl599VURGxuremzYsGGic+fOavvHxMSINm3aCDMzM9GwYUMRGhpayRVrRlnOu3PnzgJAgduwYcMqv/AKKuv7/SJ9/cAQouznfenSJdG1a1dhYWEhnJycxNSpU0VmZmYlV11xZT3vL774Qrz88svCwsJCODg4iHfeeUckJydXctXlFx0dXezvalX9TCvreVeVz7TyvN8v0tfPtPKctyY+02RCVNE2YSIiIqJiVKk+QURERESlxRBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiqhIULF+KVV16BpaUl7OzsMG7cODx79kzqsohIh5lIXQARUUUJIZCbm4uNGzeiXr16uHjxIoYOHYqWLVti3LhxUpdHRDqKC6gSUZU0ZMgQ1KlTB6tXr5a6FCLSUbwcRkR67/r165g4cSJatGiBWrVqoXr16vj+++/h5OQkdWlEpMMYgohIr929exft27fH3bt3sXLlShw7dgxxcXEwNjZG69atpS6PiHQY+wQRkV4LDw9HTk4OvvvuO8hkMgDAunXrkJ2dzRBERMViCCIivWZjY4P09HQcOHAAL7/8Mv73v/8hJCQE9erVQ506daQuj4h0GDtGE5FeE0Jg3Lhx2LFjBywsLPDuu+/i6dOnuH79On766SepyyMiHcYQRERERAaJHaOJiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBun/AWnzwZJ+yLK5AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZRElEQVR4nO3dd1hT598G8DusgAgoIksUbAX3HiiKuFARrHtUW0dxr6rtz1mrWMdbrXZpHRVH6wD3Xri1YlVEW2dxgGJFnICIrDzvHynRsGRkkvtzXbloTp6E70nk5O4zzpEIIQSIiIiIDIyRtgsgIiIi0gaGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGINI5rVq1QqtWrbRdRpENGjQIpUuXLlBbNzc3DBo0SK31SCQSzJo1S62/431ev36NWbNm4cSJE1qtQ18cPXoUjRo1gqWlJSQSCXbu3Im1a9dCIpEgOjpa0W7jxo344Ycf1FLDV199hUqVKsHExARlypQp9PMHDRoENzc3ldela5KSkjBu3DhUqFABUqkUHh4eWLBgATIzM7VdGhWAibYLIMrul19+0XYJGrNjxw5YW1truwy1e/36NYKCggBArwOuJggh0Lt3b3h4eGD37t2wtLRE1apVkZGRgfDwcDg5OSnabty4EVevXsX48eNVWsOuXbswd+5cTJ8+HX5+fpBKpSp9/ZIiIyMDvr6++Oeff/DNN9/Aw8MDBw8exJQpUxAbG4uffvpJ2yXSezAEkc6pUaOGtkvQmPr162u7BFKhlJQUmJubQyKRFPk1/v33Xzx//hzdunVD27ZtlR4rX758cUsskKtXrwIAxo0bB3t7e438TlVRxWdQUFu3bsWff/6Jbdu2oXv37gAAX19fvHr1CkuXLsXo0aNRtWpVtddBRcfhMCqWWbNmQSKR4Nq1a/j4449hY2MDBwcHfPbZZ0hISFBq++bNG0ydOhWVK1eGmZkZKlSogNGjR+Ply5dK7XIbDlu2bBnq1q2L0qVLw8rKCtWqVcO0adMAANHR0TAxMcH8+fNz1Hfq1ClIJBJs2bIl3/14+fIlvvjiC3zwwQeQSqWwt7dHp06dcPPmTQDAiRMnIJFIcgznREdHQyKRYO3atTle89q1a2jbti0sLS1Rvnx5jBkzBq9fv1Zqk9tw2PtqUYW4uDgMHz4cLi4uMDMzQ+XKlREUFISMjAyldkFBQfD09IStrS2sra3RoEEDBAcHI/t1l48dO4ZWrVqhXLlysLCwQKVKldCjRw+8fv0a0dHRii/voKAgSCQSSCSS9w4Dvn79Gl9++SUqV64Mc3Nz2NraolGjRti0aZNSu7Vr16Jq1aqQSqWoXr06fvvttxxDMYX5/C5evIi+ffvCzc0NFhYWcHNzw8cff4yYmJgcv1cikeDw4cP47LPPUL58eZQqVQqpqakAgNDQUDRr1gyWlpYoXbo0OnTogMjIyHz3edasWXBxcQEATJ48GRKJRLEf2YfDWrVqhX379iEmJkbxnr7vi18mk2HBggWoVq2a4t/WgAEDEBsbq2jj5uaGr776CgDg4OBQoOHU3D6D3KSlpWHOnDmK31++fHkMHjwYT548UWqXmpqKL774Ao6OjihVqhRatmyJiIiIHH8vqvoMLl68iI8++gi2trYwNzdH/fr1sXnz5nz3GQD++OMPSCQS+Pn5KW0PCAiATCbDjh073vsapF3sCSKV6NGjB/r06YPAwED8/fffmDp1KgBg9erVAORd/F27dsXRo0cxdepUeHt746+//sLMmTMRHh6O8PDwPLvcQ0JCMGrUKIwdOxbfffcdjIyMcPv2bVy/fh2A/KD90UcfYfny5Zg0aRKMjY0Vz12yZAmcnZ3RrVu3PGtPSkpCixYtEB0djcmTJ8PT0xOvXr3CqVOn8OjRI1SrVq3Q70d6ejo6deqE4cOHY8qUKTh79izmzJmDmJgY7Nmzp9i1DBo0COvWrcO9e/cKPe8iLi4OTZo0gZGREb7++mt8+OGHCA8Px5w5cxAdHY01a9Yo2kZHR2P48OGoVKkSAODcuXMYO3YsHj58iK+//lrRxt/fH97e3li9ejXKlCmDhw8f4uDBg0hLS4OTkxMOHjyIjh07IjAwEEOGDAHw/l6NiRMn4vfff8ecOXNQv359JCcn4+rVq3j27Jmizdq1azF48GB06dIFixYtQkJCAmbNmoXU1FQYGRXt//Gio6NRtWpV9O3bF7a2tnj06BGWLVuGxo0b4/r167Czs1Nq/9lnn8Hf3x+///47kpOTYWpqinnz5uGrr77C4MGD8dVXXyEtLQ0LFy6Et7c3zp8/n2dv55AhQ1C3bl10794dY8eORb9+/fL8u/jll18wbNgw3Llzp8BftiNHjsTKlSsxZswYBAQEIDo6GjNmzMCJEydw6dIl2NnZYceOHVi6dCmCg4Nx8OBB2NjYKIJZbgr6GchkMnTp0gWnT5/GpEmT4OXlhZiYGMycOROtWrXCxYsXYWFhAQAYPHgwQkNDMWnSJLRp0wbXr19Ht27dkJiYmGsNxfkMjh8/jo4dO8LT0xPLly+HjY0NQkJC0KdPH7x+/TrfsJ6WlgYjIyOYmpoqbc/6zP76668CfS6kRYKoGGbOnCkAiAULFihtHzVqlDA3NxcymUwIIcTBgwdzbRcaGioAiJUrVyq2+fj4CB8fH8X9MWPGiDJlyuRbx/HjxwUAsWPHDsW2hw8fChMTExEUFJTvc2fPni0AiLCwsPe+/vHjx5W237t3TwAQa9asUWwbOHCgACB+/PFHpbZz584VAMSZM2cU21xdXcXAgQMLVYsQQnz22WfC2NhYREdH59tOCCEAiJkzZyruDx8+XJQuXVrExMQotfvuu+8EAHHt2rVcXyczM1Okp6eL2bNni3Llyik+261btwoA4vLly3nW8OTJkxx1vE+tWrVE165d83w8MzNTODs7iwYNGihqEUKI6OhoYWpqKlxdXRXbCvP5ZZeRkSFevXolLC0tlT7TNWvWCABiwIABSu3v378vTExMxNixY5W2JyUlCUdHR9G7d+989vptTQsXLlTanvX77t27p9jm7++vtJ/5uXHjhgAgRo0apbT9zz//FADEtGnTFNuy/q6fPHmS72sW5jPYtGmTACC2bdum9BoXLlwQAMQvv/wihBDi2rVrAoCYPHmyUrus57/796KKz6BatWqifv36Ij09XaltQECAcHJyEpmZmXnu/w8//CAAiNOnTyttnzFjhgAg2rdvn+dzSTdwOIxU4qOPPlK6X6dOHbx58wbx8fEA5MMlAHL8X1WvXr1gaWmJo0eP5vnaTZo0wcuXL/Hxxx9j165dePr0aY42rVq1Qt26dbF06VLFtuXLl0MikWDYsGH51n7gwAF4eHigXbt2+bYrrP79+yvd79evHwD5/3kWt5bg4GBkZGTA1dW10HXt3bsXrVu3hrOzMzIyMhS3rC79kydPKtoeO3YM7dq1g42NDYyNjWFqaoqvv/4az549U3y29erVg5mZGYYNG4Z169bh7t27harn3RoyMjIUQ21NmjTBgQMHMGXKFJw4cQIpKSlKz7t16xb+/fdf9OvXT2kYyNXVFV5eXoV+X7K8evUKkydPRpUqVWBiYgITExOULl0aycnJuHHjRo72PXr0ULp/6NAhZGRkYMCAAUr7ZW5uDh8fH62tkMv6d5f9b7BJkyaoXr16vn+DeSnMZ7B3716UKVMGnTt3Vnpf6tWrB0dHR8X7kvXvr3fv3krP79mzJ0xMch+8KOpncPv2bdy8eVPxt/pu206dOuHRo0e4detWnvvfv39/2NraYtiwYfjzzz/x8uVLbNq0STEhuqi9kaQ5/IRIJcqVK6d0P6s7OOuL69mzZzAxMckxBCKRSODo6Kg0xJHdp59+itWrVyMmJgY9evSAvb09PD09ERYWptRu3LhxOHr0KG7duoX09HT8+uuv6NmzJxwdHfOt/cmTJ/l29xeFiYlJjvckq4789lUdtWT3+PFj7NmzB6ampkq3mjVrAoAiZJ4/fx7t27cHAPz666/4448/cOHCBUyfPh3A28/2ww8/xJEjR2Bvb4/Ro0fjww8/xIcffogff/zxvbVER0fnqCPrS/Cnn37C5MmTsXPnTrRu3Rq2trbo2rUroqKiALx9H3P7fN/3meenX79+WLJkCYYMGYJDhw7h/PnzuHDhAsqXL58jiAFQWq0FyN9fAGjcuHGOfQsNDc01xGtC1vuVvV4AcHZ2zvff5ftesyCfwePHj/Hy5UuYmZnleF/i4uIU70vWazo4OCg9P7e/qSxF/Qyy2n355Zc52o0aNQoA8v287OzscPDgQQBA06ZNUbZsWYwdOxaLFy8GAFSoUCHP55Ju4Jwg0ohy5cohIyMDT548UQpCQgjExcWhcePG+T5/8ODBGDx4MJKTk3Hq1CnMnDkTAQEB+OeffxS9If369cPkyZOxdOlSNG3aFHFxcRg9evR7aytfvrzSxNDcmJubA4BiwmWWvA6QGRkZePbsmdJBOy4uDkDOwFjYWorLzs4OderUwdy5c3N93NnZGYB8LpapqSn27t2r2H8A2LlzZ47neHt7w9vbG5mZmbh48SJ+/vlnjB8/Hg4ODujbt2+etTg7O+PChQtK27JW01haWiIoKAhBQUF4/Pixoleoc+fOuHnzpuJ9zHpf35V9W0E/v4SEBOzduxczZ87ElClTFNtTU1Px/PnzXPch+2TkrDlDW7duLVJPnbpkvV+PHj3KEbT//fffHHOdCvOaBfkM7OzsUK5cOUVoyM7KykrpNR8/fqwUIrL+pnJT1M8gq93UqVMVq7uye9/qrqy5YtHR0UhOToa7uzsiIiIAAC1btsz3uaR97Akijcha6rt+/Xql7du2bUNycnKOpcB5sbS0hJ+fH6ZPn460tDRcu3ZN8Zi5ubliSGbx4sWoV68emjdv/t7X9PPzwz///KMYsstN1uTj7BMdd+/enedzNmzYoHR/48aNAPI/T05BaimugIAAXL16FR9++CEaNWqU45YVgiQSCUxMTJQmmqekpOD333/P87WNjY3h6empGJa8dOkSgJw9g1nMzMxy/P6sL8N3OTg4YNCgQfj4449x69YtvH79GlWrVoWTkxM2bdqktFotJiYGZ8+eVXp+QT8/iUQCIUSOycirVq0q8MnvOnToABMTE9y5cyfX97dRo0YFep2CkEqlufZO5aZNmzYAcv4NXrhwATdu3Cjw3+C7CvMZBAQE4NmzZ8jMzMz1PckKG1nBITQ0VOn5W7duzbF6MS8F/QyqVq0Kd3d3XLlyJc92uf17zI2bmxtq1qwJU1NTLFq0CM7OzujVq1eBnkvaw54g0ghfX1906NABkydPRmJiIpo3b65YHVa/fn18+umneT536NChsLCwQPPmzeHk5IS4uDjMnz8fNjY2OXqQRo0ahQULFiAiIgKrVq0qUG3jx49HaGgounTpgilTpqBJkyZISUnByZMnERAQgNatW8PR0RHt2rXD/PnzUbZsWbi6uuLo0aPYvn17rq9pZmaGRYsW4dWrV2jcuLFidZifnx9atGhRrFoAIDAwEOvWrcOdO3cK3dswe/ZshIWFwcvLC+PGjUPVqlXx5s0bREdHY//+/Vi+fDlcXFzg7++PxYsXo1+/fhg2bBiePXuG7777LkdAWL58OY4dOwZ/f39UqlQJb968UawKzJrbZGVlBVdXV+zatQtt27aFra0t7Ozs8l3Z5unpiYCAANSpUwdly5bFjRs38Pvvv6NZs2YoVaoUAOCbb77BkCFD0K1bNwwdOhQvX77ErFmzcgzFFPTzs7a2RsuWLbFw4UJFfSdPnkRwcHCBz5rs5uaG2bNnY/r06bh79y46duyIsmXL4vHjxzh//ryih0sVateuje3bt2PZsmVo2LAhjIyM8gxZVatWxbBhw/Dzzz/DyMgIfn5+itVhFStWxIQJEwr9+42MjAr8GfTt2xcbNmxAp06d8Pnnn6NJkyYwNTVFbGwsjh8/ji5duqBbt26oWbMmPv74YyxatAjGxsZo06YNrl27hkWLFsHGxqZA82wK8xmsWLECfn5+6NChAwYNGoQKFSrg+fPnuHHjBi5duvTe02tMnz4dtWvXhpOTE+7fv4/Vq1fjzz//xL59+xSr3UiHaXVaNum9vFaR5LaSJSUlRUyePFm4uroKU1NT4eTkJEaOHClevHih9Nzsq8PWrVsnWrduLRwcHISZmZlwdnYWvXv3Fn/99VeuNbVq1UrY2tqK169fF3g/Xrx4IT7//HNRqVIlYWpqKuzt7YW/v7+4efOmos2jR49Ez549ha2trbCxsRGffPKJuHjxYq6rwywtLcVff/0lWrVqJSwsLIStra0YOXKkePXqldLvzb46rKC1ZK1Ae/f9zQtyWZX15MkTMW7cOFG5cmVhamoqbG1tRcOGDcX06dOValy9erWoWrWqkEql4oMPPhDz588XwcHBSr87PDxcdOvWTbi6ugqpVCrKlSsnfHx8xO7du5V+55EjR0T9+vWFVCrNsconN1OmTBGNGjUSZcuWVfz+CRMmiKdPnyq1W7VqlXB3dxdmZmbCw8NDrF69WgwcODDHqqmCfn6xsbGiR48eomzZssLKykp07NhRXL16NcdnlfVv/MKFC7nWv3PnTtG6dWthbW0tpFKpcHV1FT179hRHjhzJd78Lszrs+fPnomfPnqJMmTJCIpGI9x3SMzMzxbfffis8PDyEqampsLOzE5988ol48OCBUruCrg7LUtDPID09XXz33Xeibt26wtzcXJQuXVpUq1ZNDB8+XERFRSnavXnzRkycOFHY29sLc3Nz0bRpUxEeHi5sbGzEhAkTcrwnxf0Mrly5Inr37i3s7e2FqampcHR0FG3atBHLly9/776PHDlSVKpUSZiZmQk7OzvRo0ePPI9NpHskQmQ76xmRHouPj4erqyvGjh2LBQsWaLsc0pJBgwbhxIkTStfZIv129uxZNG/eHBs2bFCstCQqLg6HUYkQGxuLu3fvYuHChTAyMsLnn3+u7ZKIqIjCwsIQHh6Ohg0bwsLCAleuXMH//d//wd3dPc8JzERFwRBEJcKqVaswe/ZsuLm5YcOGDVyaSqTHrK2tcfjwYfzwww9ISkqCnZ0d/Pz8MH/+fKWVikTFxeEwIiIiMkg6s0R+2bJlqFOnDqytrWFtbY1mzZrhwIEDiseFEJg1axacnZ1hYWGBVq1aKS2PJiIiIioMnQlBLi4u+L//+z9cvHgRFy9eRJs2bdClSxdF0FmwYAEWL16MJUuW4MKFC3B0dISvry+SkpK0XDkRERHpI50eDrO1tcXChQvx2WefwdnZGePHj8fkyZMByM/g6uDggG+//RbDhw/XcqVERESkb3RyYnRmZia2bNmC5ORkNGvWDPfu3UNcXJziOkaA/EypPj4+OHv2bL4hKDU1VelU+TKZDM+fP0e5cuVynGqdiIiIdJMQAklJSXB2dlbZxWl1KgT9/fffaNasGd68eYPSpUtjx44dqFGjhuL069kvqOfg4ICYmJh8X3P+/PkqOzsrERERadeDBw9UdqFpnQpBVatWxeXLl/Hy5Uts27YNAwcOVFxRGsh5kTwhxHt7c6ZOnYqJEycq7ickJKBSpUp48OABrK2tVbsDREREpBaJiYmoWLFiga/nVhA6FYLMzMxQpUoVAECjRo1w4cIF/Pjjj4p5QHFxcXByclK0j4+Pz9E7lJ1UKs1xrSMAilVoREREpD9UOZVFZ1aH5UYIgdTUVFSuXBmOjo4ICwtTPJaWloaTJ0/Cy8tLixUSERGRvtKZnqBp06bBz88PFStWRFJSEkJCQnDixAkcPHgQEokE48ePx7x58+Du7g53d3fMmzcPpUqV4jVkiIiIqEh0JgQ9fvwYn376KR49egQbGxvUqVMHBw8ehK+vLwBg0qRJSElJwahRo/DixQt4enri8OHDKh0bJCIiIsOh0+cJUofExETY2NggISGBc4KIiIj0hDq+v3V6ThARERGRujAEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUHSmRA0f/58NG7cGFZWVrC3t0fXrl1x69YtpTaDBg2CRCJRujVt2lRLFRMREZE+05kQdPLkSYwePRrnzp1DWFgYMjIy0L59eyQnJyu169ixIx49eqS47d+/X0sVExERkT4z0XYBWQ4ePKh0f82aNbC3t0dERARatmyp2C6VSuHo6Kjp8oiIiKiE0ZmeoOwSEhIAALa2tkrbT5w4AXt7e3h4eGDo0KGIj4/P93VSU1ORmJiodCMiIiKSCCGEtovITgiBLl264MWLFzh9+rRie2hoKEqXLg1XV1fcu3cPM2bMQEZGBiIiIiCVSnN9rVmzZiEoKCjH9oSEBFhbW6ttH4iIiEh1EhMTYWNjo9Lvb50MQaNHj8a+fftw5swZuLi45Nnu0aNHcHV1RUhICLp3755rm9TUVKSmpiruJyYmomLFigxBREREekQdIUhn5gRlGTt2LHbv3o1Tp07lG4AAwMnJCa6uroiKisqzjVQqzbOXiIiIiADExgJRUYC7O/Ce796SRGfmBAkhMGbMGGzfvh3Hjh1D5cqV3/ucZ8+e4cGDB3ByctJAhURERCVQcDDg6gq0aSP/GRys7Yo0RmdC0OjRo7F+/Xps3LgRVlZWiIuLQ1xcHFJSUgAAr169wpdffonw8HBER0fjxIkT6Ny5M+zs7NCtWzctV09ERKSHYmOBYcMAmUx+XyYDhg+Xb8/FihUrEBMTo8EC1UtnQtCyZcuQkJCAVq1awcnJSXELDQ0FABgbG+Pvv/9Gly5d4OHhgYEDB8LDwwPh4eGwsrLScvVERER6KCrqbQDKkpkJ3L6do+nPP/+MESNGwNvbGy9fvtRMfWqmM3OC3jc/28LCAocOHdJQNURERAbA3R0wMlIOQsbGQJUqSs3Wrl2LcePGAQAGDx6MMmXKaLBI9dGZniAiIiLSMBcXYOVKefAB5D9XrFCaHH3gwAEMGTIEADBx6FDM8vHJc7hM3+jkEnl1UscSOyIiIr0WGysfAqtSRSkAXbx4ET4+Pnj9+jUGNGuGtefOQSKEvPdo5UogMFBjJRrMeYLUiSGIiIjo/e7cuQMvLy/Ex8fD19sbe8+cgdm7kcHYGIiO1tiSenV8f3M4jIiIiJQ8ffoUHTt2RHx8POrXr49tkycrByAgzwnU+kRnJkYTERGR9mVkZKBv3764ffs23NzcsH//flhlZBRoArW+YU8QERERKUyfPh1Hjx6FpaUl9u7dC0dHxwJNoNZH7AkiIiIiAMCWLVuwYMECAMCaNWtQs2bNtw8GBgIdOuQ6gVpfMQQRERERrl27hsGDBwMA/ve//6FXr145G7m4lIjwk4XDYURERAbu5cuX6NatG5KTk9G2bVvMmzdP2yVpBEMQERGRAZPJZBgwYACioqJQqVIlhISEwMTEMAaKGIKIiIgM2Jw5c7Bnzx5IpVJs374ddnZ22i5JYxiCiIiIDNS+ffswa9YsAMDy5cvRsGFD7RakYQxBREREBuj27dvo378/hBAYNWoUBg0apO2SNI4hiIiIyMAkJyejW7duSEhIgJeXF77//nttl6QVDEFEREQGRAiBwMBAXL16FY6OjtiyZQvMzMy0XZZWMAQREREZkO+//x6hoaEwMTHBli1b4OzsrO2StIYhiIiIyEAcP34ckyZNAgD88MMPaNGihZYr0i6GICIiIgPw4MED9O7dG5mZmRgwYABGjRql7ZK0jiGIiIiohHvz5g26d++Op0+fon79+li+fDkkEom2y9I6hiAiIqISTAiB0aNH4+LFiyhXrhy2b98OCwsLbZelExiCiIiISrCVK1di9erVMDIywqZNm+Dm5qbtknQGQxAREVEJde7cOYwdOxYAMG/yZPj6+mq5It3CEERERFQCxcXFoYefH9LT09EDwKT/+z8gOFjbZekUhiAiIqISJj09Hb27dMG/L1+iOoA1ACRCAMOHA7Gx2i5PZzAEERERlTBffvklTp8/D2sAOwBYZT2QmQncvq29wnQMQxAREVEJsn79evz0008AgN8kElR990FjY6BKFa3UpYsYgoiIiEqIyMhIDBs2DADw1Vdfocuvv8qDDyD/uWIF4OKixQp1i4m2CyAiIqLie/r0Kbp164aUlBT4+flh1qxZ8uDToYN8CKxKFQagbBiCiIiI9FxGRgb69OmDmJgYVKlSBRs3boRxVg+QiwvDTx44HEZERKTnJk2ahGPHjqF06dLYuXMnypQpo+2S9AJDEBERkR5bv349vv/+ewDAunXrULNmTS1XpD8YgoiIiPTUpUuXMHToUADA9OnT0b17dy1XpF8YgoiIiPTQkydP0K1bN7x58wadOnVCUFCQtkvSOwxBREREeiZrIvT9+/fh7u6ODRs2vJ0ITQXGEERERKRnvvjiCxw/fpwToYuJIYiIiEiPLF++/O0ZoX/7DTVq1NByRfqLIYiIiEhPHDlyBGPGjAEAzJs3D926ddNyRfqNIYiIiEgP3Lp1C7169UJmZiY+/fRTTJkyRdsl6T2GICIiIh33/PlzBAQE4OXLl/Dy8sKvv/4KiUSi7bL0HkMQERGRDktPT0fPnj1x+/ZtuLq6YseOHZBKpdouq0RgCCIiItJRQgiMHj1asRJsz549sLe313ZZJYbOhKD58+ejcePGsLKygr29Pbp27Ypbt24ptRFCYNasWXB2doaFhQVatWqFa9euaaliIiIi9fr+++/x66+/wsjICCEhIahdu7a2SypRdCYEnTx5EqNHj8a5c+cQFhaGjIwMtG/fHsnJyYo2CxYswOLFi7FkyRJcuHABjo6O8PX1RVJSkhYrJyIiKqDYWOD4cfnP99i8eTO++OILAMB3330Hf39/dVdncCRCCKHtInLz5MkT2Nvb4+TJk2jZsiWEEHB2dsb48eMxefJkAEBqaiocHBzw7bffYvjw4QV63cTERNjY2CAhIQHW1tbq3AUiIqK3goOBYcMAmQwwMgJWrgQCA3NtemrrVvj264e09HSMGTMGP/30U86J0LGxQFQU4O4OuLhoYAe0Sx3f3zrTE5RdQkICAMDW1hYAcO/ePcTFxaF9+/aKNlKpFD4+Pjh79qxWaiQiIiqQ2Ni3AQiQ/xw+PNceoevffIMuvXohLT0dXQH8UKdOzgAUHAy4ugJt2sh/BgerfRdKIp0MQUIITJw4ES1atECtWrUAAHFxcQAABwcHpbYODg6Kx3KTmpqKxMREpRsREZFGRUW9DUBZMjOB27eVNv178SL8vv4aLwE0A7ARgPHIkcphqRCBivKnkyFozJgx+Ouvv7Bp06Ycj2VPw0KIfM+VMH/+fNjY2ChuFStWVHm9RERE+XJ3lw+BvcvYGKhSRXE3KSkJ/h9/jPsA3AHsBmAB5AxLBQxU9H46F4LGjh2L3bt34/jx43B5Z4zT0dERAHL0+sTHx+foHXrX1KlTkZCQoLg9ePBAPYUTERHlxcVFPgco60rvxsbAihWKuTxpaWno2bMnLt++DXsABwHYZT03W1gqSKCigtGZECSEwJgxY7B9+3YcO3YMlStXVnq8cuXKcHR0RFhYmGJbWloaTp48CS8vrzxfVyqVwtraWulGRESkcYGBQHS0fHVYdLRiUnRmZiYGDhyIw4cPo1SpUtg7fTo+yCMsAXhvoKKCM9F2AVlGjx6NjRs3YteuXbCyslL0+NjY2MDCwgISiQTjx4/HvHnz4O7uDnd3d8ybNw+lSpVCv379tFw9ERFRAbi4KIUVIQTGjh2LkJAQmJiYYOvWrWjs5weMGCEf3qpSJfdwExgIdOiQfxt6L51ZIp/XvJ41a9Zg0KBBAOT/WIKCgrBixQq8ePECnp6eWLp0qWLydEFwiTwREemKGTNmYM6cOZBIJNi4cSP69u2r7ZJ0ljq+v3UmBGkKQxAREemCxYsXK06GuGzZMowYMULLFek2gzpPEBERUUm1Zs0aRQCaO3cuA5CWMAQRERFp0I4dOzBkyBAAwBdffIGpU6dquSLDxRBERESkIfv370efPn0gk8nw2WefYeHChfme647UiyGIiIhIAw4fPozu3bsjPT0dvXr1wooVKxiAtIwhiIiISM2OHTuGLl26IDU1Fd26dcOGDRtgYqIzZ6kxWAxBREREanT69Gl07twZb968gb+/P0JCQmBqaqrtsggMQURERKoRGys/G/Q7FzINDw9Hp06d8Pr1a3To0AFbt26FmZmZFoukd7EvjoiIqLiCg99e2d3ICFi5Ehfq1EHHjh3x6tUrtGnTBjt27IC5ubm2K6V3MAQREREVR2zs2wAEADIZ/hw2DB1Kl0ZiYiJatmyJ3bt3w8LCQrt1Ug4cDiMiIiqOqKi3AQjAGQC+MhkSEhPRokUL7N27F5aWltqrj/LEEERERFQc7u7yITAAJwB0BJAEoLWXFw4cOAArKystFkf5YQgiIiIqDhcXYOVKHDEyQicAyQB8a9TA3rAwlC5dWtvVUT4YgoiIiIrpgLMzAkxNkQKgU5s22B0RgVKlSmm7LHoPhiAiIqJi2L17N7p27YrU1FR06dIF2/fv5yowPcEQREREVETbtm1Djx49kJaWhp49e2LLli2QSqXaLosKiCGIiIioCIKDg9G7d29kZGSgX79+2LRpE88ErWcYgoiIiAppwYIFGDJkCGQyGQIDA/Hbb7/xWmB6iCGIiIiogIQQmDRpEiZPngwAmDx5Mn799VcYGxtruTIqCsZWIiKiAsjIyMDw4cOxevVqAMDChQvx5ZdfarkqKg6GICIiovd48+YNPv74Y+zcuRNGRkZYtWoVBg8erO2yqJgYgoiIiPKRmJiILl264MSJE5BKpQgJCUHXrl21XRapAEMQERFRHuLj4+Hn54dLly7BysoKu3fvRqtWrbRdFqkIQxAREVEuYmJi4Ovri6ioKJQvXx4HDx5EgwYNtF0WqRBDEBERUTbXr19H+/bt8fDhQ1SqVAlhYWHw8PDQdlmkYlwiT0RE9I4///wT3t7eePjwIWrUqIE//viDAaiEYggiIiL6z+HDh9G2bVs8f/4cnp6eOHXqFFxcXLRdFqkJQxARERGAzZs3IyAgAMnJyWjfvj2OHDmCcuXKabssUiOGICIiMnjLli1D3759kZ6ejj59+mDPnj0oXbq0/MHYWOD4cflPKlEYgoiIqOQpYHARQmDOnDkYNWoUhBAYOXIkNmzYADMzM3mD4GDA1RVo00b+MzhYA8WTpjAEERFRyVLA4CKTyTBhwgTMmDEDADBjxgwsXbr07XXAYmOBYcMAmSzrCcDw4ewRKkEYgoiIqOQoYHBJT0/HwIED8eOPPwIAfpg1C7Nnz4ZEInnbKCrq7etkycwEbt9W5x6QBjEEERFRyVGA4PL69Wt069YN69evhzGA3wF8Pnt2zh4jd3fAKNvXpLExUKWKWkonzWMIIiKikuM9weXly5fo0KED9u3bB3MAuwB8AuTeY+TiAqxcKX9+1uusWCHfTiUCQxAREZUc+QSXuLg4+Pj44MyZM7CxtEQYAP93n5vbUFdgIBAdLZ9kHR0tv08lBi+bQUREJUtgINChgzzQVKkCuLjg7t278PX1xd27d+Ho6IhDv/2GOh07Kg+d5TXU5eLC3p8Sij1BRERU8ri4AK1aAS4u+Ouvv9C8eXPcvXsXH3zwAc6cOYM6vr4c6iL2BBERUcl15swZBAQEICEhAbVr18ahQ4fg5OQkfzCXHiMyLAxBRERUIu3btw+9evVCSkoKmjdvjj179qBs2bLKjTjUZdA4HEZERCXOhg0b0LVrV6SkpKBTp044fPhwzgBEBo8hiIiISpSff/4Zn3zyCTIyMvDJJ59g586dKFWqlLbLIh3EEERERCWCEAJBQUEYN24cAGDs2LFYt24dTE1NtVwZ6SrOCSIiIr2XdR2wn376CQAQFBSEGTNmKF8GgygbneoJOnXqFDp37gxnZ2dIJBLs3LlT6fFBgwZBIpEo3Zo2baqdYomISCdkXQcsKwD9/PPP+PrrrxmA6L10KgQlJyejbt26WLJkSZ5tOnbsiEePHilu+/fv12CFRESkS1JSUtCjRw/5dcCMjbF+/XqMGTNG22WRntCp4TA/Pz/4+fnl20YqlcLR0VFDFRERka5KSEjARx99hFOnTsHc3BxbtmxBQECAtssiPaJTPUEFceLECdjb28PDwwNDhw5FfHy8tksiIiINi4+PR+vWrXHq1ClYW1vj0KFDDEBUaDrVE/Q+fn5+6NWrF1xdXXHv3j3MmDEDbdq0QUREBKRSaa7PSU1NRWpqquJ+YmKipsolIiI1uH//Pnx9ffHPP/+gfPnyOHToEOrXr6/tskgP6VUI6tOnj+K/a9WqhUaNGsHV1RX79u1D9+7dc33O/PnzERQUpKkSiYhIjW7evAlfX1/ExsaiUqVKCAsLg4eHh7bLIj2ld8Nh73JycoKrqyuioqLybDN16lQkJCQobg8ePNBghUREpCoXL16Et7c3YmNjUb16dfzxxx8MQFQsetUTlN2zZ8/w4MGDtxfDy4VUKs1zqIyIiPTD8ePH8dFHH+HVq1do3Lgx9u/fDzs7O22XRXpOp0LQq1evcPv2bcX9e/fu4fLly7C1tYWtrS1mzZqFHj16wMnJCdHR0Zg2bRrs7OzQrVs3LVZNRETqtH//fnTv3h2pqalo06YNdu7cCSsrK22XRSWAToWgixcvonXr1or7EydOBAAMHDgQy5Ytw99//43ffvsNL1++hJOTE1q3bo3Q0FD+MRARlVA7duxAnz59kJ6eji5duiAkJATm5ubaLotKCIkQQmi7CE1KTEyEjY0NEhISYG1tre1yiIgoD5s2bcKnn36KzMxM9O3bF7/99pv8OmCxsUBUFODuDri4aLtM0hB1fH/r9cRoIiIqmVavXo3+/fsjMzMTgwYNwvr16+UBKDgYcHUF2rSR/wwO1nappMcYgoiISKcsXboUgYGBEEJg5MiRCA4OhrGxsbwHaNgwQCaTN5TJgOHD5duJioAhiIiIdMaiRYsU1/6aMGECli5dCiOj/76qoqLeBqAsmZnAOwtqiAqDIYiIiHTCnDlz8OWXXwIApk2bhkWLFilfCd7dHTDK9rVlbAxUqaLBKqkkYQgiIiKtEkJg+vTpmDFjBgB5GJo7d65yAALkk6BXrpQHH0D+c8UKTo6mItOpJfJERGRYhBCYOHEifvjhBwDy4bCs06PkKjAQ6NBBPgRWpQoDEBULQxAREWmFTCbDqFGjsGLFCgDAL3PnYmT9+vKJzvmFGxcXhh9SCYYgIiLSuMzMTAQGBmLdunWQSCQIHjgQg2fMkE98NjKSD3sFBmq7TCrhOCeIiIjULzYWOH4ciI1Feno6+vfvj3Xr1sHY2BgbfvoJg3/7jUvfSePYE0REROoVHKw4v0+qRII+deti1+XLMDU1RWhoKLqVKZP30ncOe5EaMQQREZH6vHOCw9cAuguBQ5cvQyqVYvv27ejUqZO8jZGRchDi0nfSAA6HERGR+vx3gsNXAPwBHAJQCsC+uXPlAQjg0nfSGvYEERGR+ri7I0EiQSchcBaAFYD9RkZo0aePcjsufSctYAgiIiK1eWZhgQ6VKiEiJgZlABwyMkKTlStzDzlc+k4axhBERERFFxsrH/Jyd88RYOLj49GuXTv8HRMDO1tbhH37Lep17MigQzqDIYiIiIrmnVVf2c/t8/DhQ7Rr1w43b96Eo6Mjjh49iho1ami5YCJlEiGEKOqT4+PjIZPJ4OjoqMqa1CoxMRE2NjZISEiAtbW1tsshItJPsbGAq2vOFV3R0YjJzETbtm1x584dVKxYEUePHoW7u7v2aqUSQR3f30VaHfbXX3+hZs2acHJyQoUKFVChQgV89dVXSE5OVklRRESk4/5b9aUkMxO3T55Ey5YtcefOHVSuXBmnTp1iACKdVaQQFBgYCAcHB5w5cwaRkZGYM2cODhw4gEaNGuHFixeqrpGIiHSNu7t8COwdN4yM0HLiRNy/fx9Vq1bF6dOn4ebmpp36iAqgSMNhlpaWiIiIQLVq1RTbhBDo1asXzM3NsX79epUWqUocDiMiKqB8Jj0DkM8JGj4cyMzEFSMj+Fpa4klSEmrVqoUjR47AwcFB8zVTiaUzw2G59fhIJBLMmzcPu3btUklhRESkRcHB8jk/bdrIfwYH52wTGAhER+PCsmVobWWFJ0lJaNCgAY4fP84ARHqhwCHI398f06ZNw+bNmzFixAhMmDABjx8/VmqTkJCAsmXLqrxIIiLSoHcudQEg3wua/hETg3aTJ+NFQgKaNm2Ko0ePws7OTsMFExVNgZfI165dG5cuXcKaNWsU4eeDDz5A7969Ua9ePWRmZmLNmjX4/vvv1VYsERFpQB6TnrNf0PTYsWPo3LkzXr9+jZYtW2Lv3r2wsrLScLFERVekOUGPHz9GZGQkLl++rLjdvn0bxsbGqFq1Kv766y911KoSnBNERPQe+Sx/zwpBBw4cQPfu3fHmzRv4+vpi586dKFWqlHbqJYOgju/vIp0s0cHBAR07dkTHjh0V21JSUnDlyhVcuXJFJYUREZGWZF3Q9L9Jz9kvaLpz50707t0b6enp6Ny5MzZv3gxzc3MtF01UeMU6WaI+Yk8QEVEBxcbmuKBpaGgo+vfvj8zMTPTq1Qvr16+HmZmZlgslQ6AzPUFERGQAsl3QdO3atQgMDIRMJsOnn36K1atXw8SEXyOkv4q0RJ6IiAzLL7/8gsGDB0Mmk2Ho0KFYu3YtAxDpPYYgIiLK13fffYfRo0cDAMaNG4fly5fDyIhfH6T/+K+YiIhyJYRAUFAQ/ve//wEApk6dih9++IEBiEoM9mUSEVEOQghMnjwZCxcuBADMnTsX06ZN03JVRKrFEEREREpkMhnGjRuHpUuXAgC+//57jB8/XrtFEakBQxARESlkZmZiyJAhWLt2LSQSCZYvX45hw4ZpuywitWAIIiIiAEB6ejo+/fRThIaGwtjYGGvXrsUnn3yi7bKI1IYhiIiI8ObNG/Tp0we7d++GqakpQkJC0L17d22XRaRWDEFERAbu9evX6Nq1K8LCwmBubo5t27ahU6dO2i6LSO0YgoiIDFhCQgI6d+6M06dPw9LSEnv27EHr1q21XRaRRjAEEREZqMePH6Njx464fPkybGxssH//fnh5eWm7LCKNYQgiIjJA0dHRaN++PaKiouDg4ICDBw+iXr162i6LSKMYgoiIDMz169fRvn17PHz4EG5ubggLC0OVKlW0XRaRxvHc50REBuT8+fPw9vbGw4cPUbNmTZw5c4YBiAwWQxARkYE4cuQI2rRpg+fPn8PT0xOnTp1ChQoVtF0WkdboVAg6deoUOnfuDGdnZ0gkEuzcuVPpcSEEZs2aBWdnZ1hYWKBVq1a4du2adoolItIj27dvh7+/P5KTk9GuXTscOXIEtra22i6LSKt0KgQlJyejbt26WLJkSa6PL1iwAIsXL8aSJUtw4cIFODo6wtfXF0lJSRqulIhIR8XGAsePy3/+Z9WqVejVqxfS0tLQs2dP7N27F6VLl9ZikUS6QacmRvv5+cHPzy/Xx4QQ+OGHHzB9+nTFWUzXrVsHBwcHbNy4EcOHD9dkqUREuic4GBg2DJDJACMjiBUrMPvhQ8yaNQsAMGTIECxfvhzGxsbarZNIR+hUCMrPvXv3EBcXh/bt2yu2SaVS+Pj44OzZs3mGoNTUVKSmpiruJyYmqr1WIiKNi419G4AAZMhkGDlsGFYJAQCYNm0a5syZA4lEos0qiXSKTg2H5ScuLg4A4ODgoLTdwcFB8Vhu5s+fDxsbG8WtYsWKaq2TiEgroqIUASgZQBcAq4SAkZERli1bhrlz5zIAEWWjNyEoS/Y/YiFEvn/YU6dORUJCguL24MEDdZdIRKR57u6AkRHiAbQCsB+ABYAdv/6KESNGaLU0Il2lNyHI0dERAHL0+sTHx+foHXqXVCqFtbW10o2IqMRxccHtb76BF4CLAMoBODZ1Kj767DMtF0aku/QmBFWuXBmOjo4ICwtTbEtLS8PJkyd5rRsiMnh//vknmn3/Pe4AqOzkhLMnT6LpvHnaLotIp+nUxOhXr17h9u3bivv37t3D5cuXYWtri0qVKmH8+PGYN28e3N3d4e7ujnnz5qFUqVLo16+fFqsmItKuzZs3Y+DAgXjz5g0aNmyIffv25dtDTkRyOhWCLl68iNatWyvuT5w4EQAwcOBArF27FpMmTUJKSgpGjRqFFy9ewNPTE4cPH4aVlZW2SiYi0hohBObOnYsZM2YAAPz9/RESEvL+cwDFxsonUru7Ay4uGqiUSDdJhPhv/aSBSExMhI2NDRISEjg/iIj0VmpqKoYMGYL169cDACZMmICFCxe+/xxA2c4lhJUrgcBADVRMVDzq+P5mCCIi0jPx8fHo1q0bzp49C2NjYyxdurRgJ4yNjQVcXRVL6QEAxsZAdDR7hEjnqeP7W6eGw4iIKA//DWFdk8kQMGQIoqOjUaZMGWzZsgXt2rUr2Gu8cy4hhcxM4PZthiAySAxBRES67r8hrL0yGfoDSATw4YcfYu/evahWrVrBX+e/cwnl6AmqUkXVFRPpBb1ZIk9EZJBiYyEbOhSzZTJ0hjwAtQTw544dhQtAgLy3Z+VKefAB5D9XrGAvEBks9gQREemwhMhIDBACu/+7PxrAYgBmz54V7QUDA4EOHeRDYFWqMACRQWMIIiLSUTdu3EC3CRNwC4AUwHIAg4DiD2G5uDD8EIHDYUREOmnHjh1o0qQJbt25A5eyZXHGyOhtAOIQFpFKsCeIiEhdinBSwvT0dHz11VdYsGABAMDHxwebN2+GfVoah7CIVIwhiIhIHQpzUsL/wtL9UqXQd8IEhIeHAwA+//xzLFy4EKampvJ2DD9EKsWTJRIRqVphTkr4X1jaI5NhEIDnAKytrREcHIyePXtqrmYiHaeO72/OCSIiUrX8Tkr4rthYpA8dii9lMnwEeQBqBCBy/34GICINYAgiIlK1rJMSviuXFV23T5yAtxBY9N/9cQDOAPggPV0TVRIZPIYgIiJVe89JCYUQWLlyJeoOG4Y/AdgA2AbgRwBSnsGZSGM4MZqISB3yOCnh48ePMXToUOzZswcA0KpqVayLikIlmYzL34k0jCGIiEhdsp2UcPfu3RgyZAiePHkCMzMzzJ07FxMnToTRv/9y+TuRFjAEEZH2FOE8Ovro+fPn+OKLL7B27VoAQO3atbF+/XrUqVNH3oBncCbSCs4JIiLtCA6WLyNv00b+MzhY2xWpxbZt21CjRg2sXbsWEokEX3zxBc6fP/82ABGR1vA8QUSkeYU5j46eevToEcaMGYPt27cDAKpVq4bg4GB4eXlpuTIi/cTzBBFRyVDQ8+joIZlMhlWrVqFGjRrYvn07TExM8NVXXyEyMpIBiEjHcE4QEWle1nl0svcE6fnS8IiICIwaNQrnz58HADRs2BDBwcGoW7eulisjotywJ4iINO8959HRN8+fP8fIkSPRuHFjnD9/HlZWVli0aBHOnTvHAESkw9gTRETakcd5dPRJRkYGgoODMX36dDx79gwA0L9/fyxcuBBOTk5aro6I3ochiIi0R0+XhgshsH//fvzvf//DjRs3AAC1atXCkiVL4OPjo+XqiKigOBxGRFQIly5dQtu2bREQEIAbN26gXLly+PHHH3Hp0iUGICI9w54gIqIC+OeffxAUFISNGzcCAKRSKT7//HNMnToVZcqU0W5xRFQkDEFERPmIiorCN998gw0bNkD232q2/v37Y+7cuXB1ddVydURUHBwOIyLKxZ07dzBo0CBUr14dv//+O2QyGTp37oyIiAisX78ersbGwPHj8hM/EpFeYggiInpHREQE+vTpAw8PD6xbtw6ZmZnw9/fHhQsXsHv3bjRo0MBgLvlBVNIxBBFRyRAbW+SeGSEEDh06hLZt26JRo0bYvHkzZDIZ/Pz88Oeff2Lv3r1o1KjR298zbNjbEz3KZMDw4ewRItJDDEFEpP+K2DPz6tUrrFy5EnXr1kXHjh1x7NgxGBsb45NPPsHly5exf/9+NGnSRPlJJfiSH0SGhhOjiUi/5dUz06FDnucgunHjBpYtW4Z169YhMTERAGBpaYmhQ4di/Pjx+U94LqGX/CAyRAxBRKTf8uuZeScEpaSkYNeuXVi5ciWOHz+u2F6lShWMGjUKgwYNQtmyZd//+7Iu+TF8uPz36PklP4gMGUMQEem3fHpmhBAIDw/HunXrEBoaioSEBACAkZEROnfujFGjRqFdu3YwMirkzIAScMkPIgIkQgih7SI0KTExETY2NkhISIC1tbW2yyEiVQgOVuqZiZo9G6EyGX777TdERUUpmlWqUAEDWrfG0DFjUMnTU4sFE1FhqeP7myGIiEqEqNOnsWXdOmw5dw6Xr11TbLe0tESPHj0wyN4ePosWwUgIec/RypXyHh0i0gvq+P7mcBgR6SUhBK5evYrdu3djy5YtuHLliuIxY2NjtG3bFh9//DF69uyJ0i9fyleNZf0/XwEmTxNRyccQRER6IyUlBSdOnMDevXuxd+9e3L9/X/FYVvDp1asXunbtCjs7u7dPvHChQJOniciwMAQRkc4SQuD2mTM4un079l+9iiN//IGUlBTF4+bm5mjTpg26d++Orl27oly5crm/EJe1E1EuGIKISKfExcXh6NGjOHr0KI7s2oUHz58rPe7i4oKAgAAEBASgdevWKFWq1PtflMvaiSgXDEFEpFVPnjzBH3/8gRMnTuDIkSO49s6kZgAwBeAFwBdAgJER6pw9C0nFioX/RVzWTkTZMAQRkcYIIXD37l2cOXNGcbt586ZSG4lEgnr16qGdhwfahoaiBQDLrAdlMuDOHaAoIQiQB5/3hZ/YWPkJGN3dGZSISjiGICJSm8zMTFy5ckUp9Dx69ChHuxo1asDb2xtt27ZF69at5ZOaY2OBLVs0O48nOPjtJTi4jJ6oxNOrEDRr1iwEBQUpbXNwcEBcXJyWKiKidyUlJeHPP/9EeHg4zpw5g/DwcCQlJSm1MTU1RaNGjdCiRQt4e3vDy8sr9wnNmp7HU4RrkBGRftOrEAQANWvWxJEjRxT3jY2NtVgNkZ5Q5RDPf68lqlTBvfR0nD17VnH7+++/Icu2FN3a2hpeXl7w9vZGixYt0LhxY1hYWBTsd2lyHk8Br0FGRCWH3oUgExMTODo6arsMIv2hoiGeN2/e4FJQEM5++y3OCoGzAB7n0s61XDl4PXsGLwDeEglqffcdjIcOLXr9BZnHowpcRk9kcPQuBEVFRcHZ2RlSqRSenp6YN28ePvjggzzbp6amIjU1VXE/MTFRE2US6YZiDPE8evQI4eHhil6eiIgIpKWlKbUxBdCwQQN4tWoFLy8vNHN1hfO71+QSAhg5EvDz0/3eFC6jJzI4ehWCPD098dtvv8HDwwOPHz/GnDlz4OXlhWvXruV5krT58+fnmEdEZDAKOMSTtWrr5MmTOHXqFE6dOoV79+7leDl7yJerZ90aAjBftAho1Ure4Phx/R5S4jJ6IoOi1xdQTU5OxocffohJkyZh4sSJubbJrSeoYsWKvIAqGYbYWPk1s7IN8Yh793Dz1Sul0PPw4UOlpxoZGaF27dryHp5mzeBVuTI+aNkSkncPGcbGQHT027CQx+9TakNEVAS8gGo2lpaWqF27NqKiovJsI5VKIZVKNVgVkQ75b4hHDBuGGzIZjkokOFmvHk41bIgnT54oNTU1NYWnpydatmyJli1bolmzZjkPNL/+mv9wEYeUiEiP6HUISk1NxY0bN+Dt7a3tUoh0zr///oujR48i7ORJHLGzw6P4ePkcnYgIAICFhQWaNWuGli1bwsfHB56enu9ftVWQ4SIOKRGRntCrEPTll1+ic+fOqFSpEuLj4zFnzhwkJiZi4MCB2i6NSOuSkpJw6tQphIWF5Xr5CXNzc3h7e6N169bw8fFBo0aNYGZmVvhfVJDVWppa0UVEVAx6FYJiY2Px8ccf4+nTpyhfvjyaNm2Kc+fOwdXVVdulEclp8JILQgj8888/2LdvH/bt24fTp08jPT1d8bhEIkHDhg3Rrl07+Pr6wsvLC+bm5mqtiYhIn+hVCAoJCdF2CUR508AlF1JTU3Hy5ElF8Llz547S45UrV4avry98fX3RunXrPFdNEhGRnq8OKwp1zC4nUueqqPj4eOzZswd79uzBkSNHkJycrHjM1NQUPj4+8Pf3R6dOneDh4VGs30VEpKu4OoxIV6n4kgsxMTHYsWMHduzYgTNnzihdisLJyQmdOnWCv78/2rVrBysrq+JWL8erpxORgWEIIlKFwlxyIZewIYTAjRs3sGPHDmzfvh2XLl1SekrDhg3RpUsX+Pv7o169ejAyMlJt/bx6OhEZIIYgIlUo6Plx3gkbQiJBxPTp2JaRgR07duDWrVuKZkZGRmjRogW6d++Orl27qnfyP6+eTkQGinOCiFQpNjbv8+P8N2/oqkyGEAAhAN6d1mxmZoZ27dqhW7du+Oijj2Bvb1+w31fcIazjx4E2bXLfnnU5DCIiLeOcICJdl8f5caKiohA6fz5CZDK8e/YeCwD+Pj7oMWIEOnXqVLg/bFUNYfHq6URkoNgTRKQmMTEx2Lx5M0JCQpTm+JgB8APQF0CAkRFKx8Tk3ouTXy+PqlejBQfnHMrjnCAi0iHsCSLScXFxcdiyZQtCQkJw9uxZxXZjY2O0a9cOfZ2d0XXdOpSRyfK/rtb7enlUvBqNl7ogIkPEniCiYnr27Bm2bduGkJAQnDhxAll/UhKJBD4+Pujbty+6d++O8uXLy5+Q37yhrMff18vDq7UTkYFhTxCRjkhISMCuXbsQEhKCsLAwZGRkKB5r2rQp+vbti169esHZ2Tnnk993Xa2C9PLwau1ERMXGEERUQK9fv8bevXsREhKC/fv3IzU1VfFY/fr10bdvX/Tu3Rtubm7F+0UFnajMISwiomJhCFI3noVXe1Tw3qelpeHQoUMICQnBrl27lC5ZUb16dfTt2xd9+vRB1apVVVV14Xp5eLV2IqIiYwhSJ56Ft/BUFRqL8d5nZGTgxIkTCAkJwbZt2/Dy5UvFY5UrV0bfvn3Rt29f1K5dGxKJpOg15oe9PEREaseJ0erCiauFp6rQWNj3PjYWslu3EJ6YiJBjx7B582bEx8crHnZyckKfTp3wcYMGaNy5MyQVKxa+JiIiKhZOjNYnql7CXNKp8tINBXzvZTIZwqdNw7Zvv8VWAA/eaV6uXDn06tULffv2RYt//oHxiBHykDZ2LHv0iIhKCIYgdeFZeAtHlaExn/c+IyMDp06dwrZt27Bj61Y8eqfHxxpAN4kEfdetQ9u+fWFqaioPZ23a8LpaREQlEEOQunAJc+GoMjRme+/TjIxwZPRobJs5E7t27cKzZ88UTW0AdAbQA0BHAOZCABUrAqam8gbs0SMiKrEYgtSJk1sLTsWh8VnXrjiQnIy9O3fiwMWLSPzpJ8Vj5cqVQ9euXdHDxwdtBw6E2bvT4rIHL/boERGVWAxB6sYlzAVXjNAohMC1a9ewd+9e7N27F+Hh4ZC9E1wcHR3RvXt39OjRAy1btoSJyX//9NPS8g9e7NEjIiqxuDqM9FNsLF5cuoQTjx8jLDISBw4cQHR0tFKTOnXqICAgAAEBAfD09ISRkVGer/Xe4FWQNkREpDZcHUb6rZjnAEpNTcXZs2dx5LvvcGT/flwE8O5sHalUirZt2yIgIAD+/v6oVKlSwV64IL117NEjIipxGIJIM4pwDqBXr17h3LlzOHPmDP744w/88ccfSElJUWpTHUA7iQS+wcFo07s3LC0t1bgTRERUkjAEkfoV4BxAQgjExsYqQs+ZM2dw5coVZGZmKr2Uo60t2j1/jnYA2gGoIH8yULkywABERESFwBBkqDR5TbNsy8wFgAeZmYhYswYRqamIiIhAREQEnjx5kuOprq6uaNGiBVq0aAFvb2/UsLaGxM2Nq7WIiKjYGIL0iQ5cV6uwXrx4gesvX+KaRILrQuAagCsAngDA118rtTU2NkatWrUUoad58+aomNslKrhai4iIVICrw/SFtq6r9R5CCMTHx+P+/fuIiYlBTEwMoqOjcePGDVy/fh2PHj3K9XnGRkaoWasWGjVqhIYNG6Jhw4aoU6cOLCwsCr4fXK1FRGQwuDrMUGnhulpZ0tPT8fDhQ0XAiYmJUQo89+/fx5s3b/L9lRUrVkTNmjVRo2JF1CxTBjW9vVGnXbuCB57ccLUWEREVE0OQPlDjdbWSAcQYGeH+gweIWbEiR9h5+PCh0kkHcyORSODs7IxKlSrB1dUVrq6uqFq1KmrUqIHq1avrV48bEREZDIYgfVCMSzckJCTg3r17uHfvHqKjo+W9OHXrIiYyEjEAngHy1x0wIM/XMDMzUwo4rq6uSvddXFxgZmZW7N0kIiLSJIYgfZDPpRtkMhnu37+Pmzdv4s6dO4qwkxV8Xrx48d6Xt7GxyRFs3r3Z29vnfbZlIiIiPcWJ0XoiPT0dN06cwI3Tp3Hj1Svc/Pdf3Lx5E7du3XrvnJzy5cujcuXKcHNzy7Unx8bGJu8na3IpPRERUR44MVpTtPzF/+rVK1y5cgWRkZG4fPkyIiMjcfXqVaSlpeXa3szMDO7u7qhSpQoqV66sdHNzc0Pp0qWLVogGl9ITERFpGkNQdhr+4pfJZLh58ybOnj2Ls2fPIjw8HLdu3UJuHXTW1taoVasWqlWrhmrVqqF69eqoVq0a3Nzc3l4VHXgb4sqUAYoagFS5Io2IiEgHMQS9SwNf/ElJSTh//rwi9Jw7dw4vX77M0c7Z2Rn169dH/fr1Ua9ePdSvXx9ubm7vn5ujqhBXmBVpHDIjIiI9ZLgh6OFDIPuYoiqXokN+IsHo6GhF4Dl79iz++uuvHEvOS5UqBU9PTzRr1gxeXl5o3Lgx7O3tC/37VBriCroijUNmRESkpww2BIkaNYBVq5S/sIuxFB0AUlJSEBERgfDwcISHh+Ps2bN4/Phxjnaurq7w8vJS3OrUqaM8nFVUqgxx+axIU+CQGRER6TGDDUFeAD4bOhTdqlXDB82byzcW5Iv/P69fv8bVq1dx5coVXLlyBRcuXEBkZCTS09OV2pmamqJBgwaKwNOsWTNUqFBBPTtVzBCXQ2CgPNDkdXkKFfecERERaZLBLpF/l7OzMxo3boxq1arBxcUFdhIJTJ4+hUmFCkixtMSLFy/w4sUL3L9/H3fv3lWcgye3Myk7ODgowo6XlxcaNmwIc3NzTe2efHgqe4hT1/CUiq9DRkRElBd1LJE32BC0AMBBACeNjZGZmVmk1ypfvjzq1auHunXrol69evDy8oKbmxskEknhX0yVk4s1eXFRTYYuIiIyWAxBKqB4E42MYL1yJZL79kVkZCQuXLiA6OhoPHz4EM+ePUNmZiYyMjJgbm6OsmXLokyZMnBxcVGcf8fDwwOOjo5FCzzZ6fvkYl7RnYiI1IwhSAUUb+L167CuXl3b5XBIiYiIqADUEYIM94JQ6pqcXFj5TS4mIiIitdHLEPTLL7+gcuXKMDc3R8OGDXH69Gltl1R0WSu63lWcFV1ERERUIHoXgkJDQzF+/HhMnz4dkZGR8Pb2hp+fH+7fv6/t0ooma1m+sbH8fj7L8omIiEh19G5OkKenJxo0aIBly5YptlWvXh1du3bF/Pnz3/t8nb2KPCcXExER5cngryKflpaGiIgITJkyRWl7+/btcfbs2Vyfk5qaitTUVMX9xMREtdZYZC4uDD9EREQapFfDYU+fPkVmZiYcHByUtjs4OCAuLi7X58yfPx82NjaKW8WKFTVRKhEREek4vQpBWbKfm0cIkef5eqZOnYqEhATF7cGDB5ookYiIiHScXg2H2dnZwdjYOEevT3x8fI7eoSxSqRRSqVQT5REREZEe0aueIDMzMzRs2BBhYWFK28PCwuDl5aWlqoiIiEgf6VVPEABMnDgRn376KRo1aoRmzZph5cqVuH//PkaMGKHt0oiIiEiP6F0I6tOnD549e4bZs2fj0aNHqFWrFvbv3w9XV1dtl0ZERER6RO/OE1RcOnueICIiIsoTrx1GREREpCIMQcURGwscPy7/SURERHqFIaiogoMBV1egTRv5z+BgbVdEREREhcAQVBSxscCwYYBMJr8vkwHDh7NHiIiISI8wBBVFVNTbAJQlM1N+AVQiIiLSCwxBReHuDhhle+uMjeVXgCciIiK9wBBUFC4uwMqV8uADyH+uWMGrwBMREekRvTtZos4IDAQ6dJAPgVWpwgBERESkZxiCisPFheGHiIhIT3E4jIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBkmvQpCbmxskEonSbcqUKdoui4iIiPSQibYLKKzZs2dj6NChivulS5fWYjVERESkr/QuBFlZWcHR0VHbZRAREZGe06vhMAD49ttvUa5cOdSrVw9z585FWlqatksiIiIiPaRXPUGff/45GjRogLJly+L8+fOYOnUq7t27h1WrVuX5nNTUVKSmpiruJyQkAAASExPVXi8RERGpRtb3thBCdS8qtGzmzJkCQL63Cxcu5PrcrVu3CgDi6dOnxXp93njjjTfeeONNP2537txRWQaRCKHKSFV4T58+xdOnT/Nt4+bmBnNz8xzbHz58CBcXF5w7dw6enp65Pjd7T9DLly/h6uqK+/fvw8bGpnjF65HExERUrFgRDx48gLW1tbbL0RjuN/fbEHC/ud+GICEhAZUqVcKLFy9QpkwZlbym1ofD7OzsYGdnV6TnRkZGAgCcnJzybCOVSiGVSnNst7GxMah/PFmsra253waE+21YuN+GxVD328hIddOZtR6CCio8PBznzp1D69atYWNjgwsXLmDChAn46KOPUKlSJW2XR0RERHpGb0KQVCpFaGgogoKCkJqaCldXVwwdOhSTJk3SdmlERESkh/QmBDVo0ADnzp0r9utIpVLMnDkz1yGykoz7zf02BNxv7rch4H6rbr+1PjGaiIiISBv07mSJRERERKrAEEREREQGiSGIiIiIDBJDEBERERmkEhmCfvnlF1SuXBnm5uZo2LAhTp8+nW/7kydPomHDhjA3N8cHH3yA5cuXa6hS1SrMfm/fvh2+vr4oX748rK2t0axZMxw6dEiD1apOYT/vLH/88QdMTExQr1499RaoJoXd79TUVEyfPh2urq6QSqX48MMPsXr1ag1VqzqF3e8NGzagbt26KFWqFJycnDB48GA8e/ZMQ9UW36lTp9C5c2c4OztDIpFg586d731OSTimFXa/S8oxrSifdxZ9PqYVZb9VcUwrcSEoNDQU48ePx/Tp0xEZGQlvb2/4+fnh/v37uba/d+8eOnXqBG9vb0RGRmLatGkYN24ctm3bpuHKi6ew+33q1Cn4+vpi//79iIiIQOvWrdG5c2fFWbj1RWH3O0tCQgIGDBiAtm3baqhS1SrKfvfu3RtHjx5FcHAwbt26hU2bNqFatWoarLr4CrvfZ86cwYABAxAYGIhr165hy5YtuHDhAoYMGaLhyosuOTkZdevWxZIlSwrUvqQc0wq73yXlmFbY/c6i78e0ouy3So5pKrsKmY5o0qSJGDFihNK2atWqiSlTpuTaftKkSaJatWpK24YPHy6aNm2qthrVobD7nZsaNWqIoKAgVZemVkXd7z59+oivvvpKzJw5U9StW1eNFapHYff7wIEDwsbGRjx79kwT5alNYfd74cKF4oMPPlDa9tNPPwkXFxe11ahOAMSOHTvybVNSjmnvKsh+50Yfj2nvKsx+6/sx7V0F2W9VHdNKVE9QWloaIiIi0L59e6Xt7du3x9mzZ3N9Tnh4eI72HTp0wMWLF5Genq62WlWpKPudnUwmQ1JSEmxtbdVRoloUdb/XrFmDO3fuYObMmeouUS2Kst+7d+9Go0aNsGDBAlSoUAEeHh748ssvkZKSoomSVaIo++3l5YXY2Fjs378fQgg8fvwYW7duhb+/vyZK1oqScExTBX08phWVvh/TikJVxzS9OWN0QTx9+hSZmZlwcHBQ2u7g4IC4uLhcnxMXF5dr+4yMDDx9+jTfi7PqiqLsd3aLFi1CcnIyevfurY4S1aIo+x0VFYUpU6bg9OnTMDHRz3/+Rdnvu3fv4syZMzA3N8eOHTvw9OlTjBo1Cs+fP9ebeUFF2W8vLy9s2LABffr0wZs3b5CRkYGPPvoIP//8syZK1oqScExTBX08phVFSTimFYWqjmklqicoi0QiUbovhMix7X3tc9uu6wq731k2bdqEWbNmITQ0FPb29uoqT20Kut+ZmZno168fgoKC4OHhoany1KYwn7dMJoNEIsGGDRvQpEkTdOrUCYsXL8batWv1qjcIKNx+X79+HePGjcPXX3+NiIgIHDx4EPfu3cOIESM0UarWlJRjWlHp+zGtoEraMa0wVHVMK1Gx0c7ODsbGxjn+rzA+Pj7H/xllcXR0zLW9iYkJypUrp7ZaVako+50lNDQUgYGB2LJlC9q1a6fOMlWusPudlJSEixcvIjIyEmPGjAEg/0MSQsDExASHDx9GmzZtNFJ7cRTl83ZyckKFChVgY2Oj2Fa9enUIIRAbGwt3d3e11qwKRdnv+fPno3nz5vjf//4HAKhTpw4sLS3h7e2NOXPmlMhekZJwTCsOfT6mFVZJOaYVhaqOaSWqJ8jMzAwNGzZEWFiY0vawsDB4eXnl+pxmzZrlaH/48GE0atQIpqamaqtVlYqy34D8/5YGDRqEjRs36uUcicLut7W1Nf7++29cvnxZcRsxYgSqVq2Ky5cvw9PTU1OlF0tRPu/mzZvj33//xatXrxTb/vnnHxgZGcHFxUWt9apKUfb79evXMDJSPswZGxsDeNs7UtKUhGNaUen7Ma2wSsoxrShUdkwr1rRqHRQSEiJMTU1FcHCwuH79uhg/frywtLQU0dHRQgghpkyZIj799FNF+7t374pSpUqJCRMmiOvXr4vg4GBhamoqtm7dqq1dKJLC7vfGjRuFiYmJWLp0qXj06JHi9vLlS23tQpEUdr+z09eVFIXd76SkJOHi4iJ69uwprl27Jk6ePCnc3d3FkCFDtLULRVLY/V6zZo0wMTERv/zyi7hz5444c+aMaNSokWjSpIm2dqHQkpKSRGRkpIiMjBQAxOLFi0VkZKSIiYkRQpTcY1ph97ukHNMKu9/Z6esxrbD7rapjWokLQUIIsXTpUuHq6irMzMxEgwYNxMmTJxWPDRw4UPj4+Ci1P3HihKhfv74wMzMTbm5uYtmyZRquWDUKs98+Pj4CQI7bwIEDNV94MRX2836Xvh4whCj8ft+4cUO0a9dOWFhYCBcXFzFx4kTx+vVrDVddfIXd759++knUqFFDWFhYCCcnJ9G/f38RGxur4aqL7vjx4/n+rZbUY1ph97ukHNOK8nm/S1+PaUXZb1Uc0yRClNA+YSIiIqJ8lKg5QUREREQFxRBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIhKhNmzZ6N27dqwtLSEg4MDRo4cifT0dG2XRUQ6zETbBRARFZcQApmZmVixYgUqVKiA69evY8CAAahTpw5Gjhyp7fKISEfxAqpEVCL169cP5cuXx48//qjtUohIR3E4jIj0XkxMDMaMGYNatWqhbNmyKF26NDZv3gwXFxdtl0ZEOowhiIj02tOnT9GkSRM8ffoUixcvxpkzZxAeHg5jY2PUq1dP2+URkQ7jnCAi0mv79+9HRkYGNm3aBIlEAgBYunQp0tLSGIKIKF8MQUSk12xtbZGYmIjdu3ejRo0a2LNnD+bPn48KFSqgfPny2i6PiHQYJ0YTkV4TQmDkyJHYuHEjLCws8Mknn+DNmzeIiYnB3r17tV0eEekwhiAiIiIySJwYTURERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJI/w+5bWqgIuHLYgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXp0lEQVR4nO3dd1hT1x8G8DdsBEERWaK4ALWuVgW3oKLixq2tqw7qrNpWtNo62kJr1S5bx0/Uti6qFrWtojgQrVhHtSooRQsKCuIEREFJzu8PJBKWjEzyfp4nD+bmJPneBJLXc8+5RyKEECAiIiLSMwaaLoCIiIhIExiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCSKO8vLzg5eWl6TLKbdy4cbC0tCxV27p162LcuHEqrUcikWDx4sUqfY5XefLkCRYvXoyIiAiN1qErDh8+jNatW8PCwgISiQS7d+/Gpk2bIJFIkJCQIG+3detWfP311yqpYeHChahTpw6MjIxQrVq1Mt9/3LhxqFu3rtLr0jY//fQTRowYAXd3dxgYGJS4z48fP8asWbPg5OQEMzMztGzZEtu3b1dfsVQqRpougPTbDz/8oOkS1CY0NBRWVlaaLkPlnjx5giVLlgCATgdcdRBCYNiwYXBzc8PevXthYWEBd3d35OTkICoqCo6OjvK2W7duxeXLlzFr1iyl1rBnzx589tlnWLBgAXx9fWFqaqrUx69Mfv75Z6SkpMDDwwMymQzPnz8vtu2gQYNw5swZfP7553Bzc8PWrVsxcuRIyGQyjBo1So1VU0kYgkijmjRpoukS1Ob111/XdAmkRE+fPoWZmRkkEkm5H+P27dt48OAB/Pz80K1bN4XbatasWdESS+Xy5csAgJkzZ8LOzk4tz6ksyngPyuLAgQMwMMg9gNK3b1/5a1fQvn37EB4eLg8+AODt7Y0bN27ggw8+wPDhw2FoaKiWmqlkPBxGpbZ48WJIJBJER0dj5MiRsLa2hr29Pd5++22kpaUptM3KysL8+fNRr149mJiYoFatWpg2bRoePXqk0K6ow2GrV69GixYtYGlpiapVq6JRo0b48MMPAQAJCQkwMjJCUFBQofoiIyMhkUiwY8eOEvfj0aNHeO+991C/fn2YmprCzs4OvXv3xtWrVwEAERERkEgkhQ7nJCQkQCKRYNOmTYUeMzo6Gt26dYOFhQVq1qyJ6dOn48mTJwptijoc9qpalCElJQX+/v5wdnaGiYkJ6tWrhyVLliAnJ0eh3ZIlS+Dp6QkbGxtYWVnhjTfeQHBwMAqusXzkyBF4eXmhRo0aMDc3R506dTB48GA8efIECQkJ8i/vJUuWQCKRQCKRvPIw4JMnT/D++++jXr16MDMzg42NDVq3bo1t27YptNu0aRPc3d1hamqKxo0b46effip0KKYs79/Zs2cxYsQI1K1bF+bm5qhbty5GjhyJGzduFHpeiUSCgwcP4u2330bNmjVRpUoVZGdnAwBCQkLQrl07WFhYwNLSEj179sT58+dL3OfFixfD2dkZABAQEACJRCLfj4KHw7y8vPDHH3/gxo0b8tf0VV/8MpkMy5YtQ6NGjeS/W2PGjEFSUpK8Td26dbFw4UIAgL29fakOpxb1HhTl2bNn+PTTT+XPX7NmTYwfPx53795VaJednY333nsPDg4OqFKlCjp37oxz584V+ntR1ntw9uxZ9O/fHzY2NjAzM8Prr7+OX375pcR9zpMXgF4lNDQUlpaWGDp0qML28ePH4/bt2/jrr79K9TikeuwJojIbPHgwhg8fjgkTJuDSpUuYP38+AGDDhg0Acrv4Bw4ciMOHD2P+/Pno1KkTLl68iEWLFiEqKgpRUVHFdrlv374dU6dOxYwZM7B8+XIYGBjg2rVriImJAZD7od2/f3+sWbMGc+fOVfjf1KpVq+Dk5AQ/P79ia8/IyEDHjh2RkJCAgIAAeHp64vHjx4iMjERycjIaNWpU5tfj+fPn6N27N/z9/TFv3jycPHkSn376KW7cuIHffvutwrWMGzcOP/74I+Lj48s87iKv697AwAAff/wxGjRogKioKHz66adISEjAxo0b5W0TEhLg7++POnXqAABOnTqFGTNm4NatW/j444/lbfr06YNOnTphw4YNqFatGm7duoWwsDA8e/YMjo6OCAsLQ69evTBhwgRMnDgRwKt7NebMmYOff/4Zn376KV5//XVkZmbi8uXLuH//vrzNpk2bMH78eAwYMAArVqxAWloaFi9ejOzs7FJ/ORWUkJAAd3d3jBgxAjY2NkhOTsbq1avRpk0bxMTEwNbWVqH922+/jT59+uDnn39GZmYmjI2NERgYiIULF2L8+PFYuHAhnj17hi+//BKdOnXC6dOni+3tnDhxIlq0aIFBgwZhxowZGDVqVLF/Fz/88AMmT56M69evIzQ0tFT7NmXKFKxbtw7Tp09H3759kZCQgI8++ggRERH4+++/YWtri9DQUHz//fcIDg5GWFgYrK2t5cGsKKV9D2QyGQYMGIDjx49j7ty5aN++PW7cuIFFixbBy8sLZ8+ehbm5OYDcYBASEoK5c+eia9euiImJgZ+fH9LT04usoSLvwdGjR9GrVy94enpizZo1sLa2xvbt2zF8+HA8efJEaWP2Ll++jMaNG8PISPErtnnz5vLb27dvr5TnogoSRKW0aNEiAUAsW7ZMYfvUqVOFmZmZkMlkQgghwsLCimwXEhIiAIh169bJt3Xp0kV06dJFfn369OmiWrVqJdZx9OhRAUCEhobKt926dUsYGRmJJUuWlHjfpUuXCgAiPDz8lY9/9OhRhe3x8fECgNi4caN829ixYwUA8c033yi0/eyzzwQAceLECfk2FxcXMXbs2DLVIoQQb7/9tjA0NBQJCQklthNCCABi0aJF8uv+/v7C0tJS3LhxQ6Hd8uXLBQARHR1d5ONIpVLx/PlzsXTpUlGjRg35e7tz504BQFy4cKHYGu7evVuojldp2rSpGDhwYLG3S6VS4eTkJN544w15LUIIkZCQIIyNjYWLi4t8W1nev4JycnLE48ePhYWFhcJ7unHjRgFAjBkzRqH9zZs3hZGRkZgxY4bC9oyMDOHg4CCGDRtWwl6/rOnLL79U2J73fPHx8fJtffr0UdjPkly5ckUAEFOnTlXY/tdffwkA4sMPP5Rvy/u7vnv3bomPWZb3YNu2bQKA2LVrl8JjnDlzRgAQP/zwgxBCiOjoaAFABAQEKLTLu3/+vxdlvAeNGjUSr7/+unj+/LlC2759+wpHR0chlUpLfA3yK+n9cHV1FT179iy0/fbt2wKACAwMLPXzkGrxcBiVWf/+/RWuN2/eHFlZWUhNTQWQe7gEQKH/VQ0dOhQWFhY4fPhwsY/t4eGBR48eYeTIkdizZw/u3btXqI2XlxdatGiB77//Xr5tzZo1kEgkmDx5com179+/H25ubujevXuJ7crqzTffVLieN/Dx6NGjFa4lODgYOTk5cHFxKXNdv//+O7y9veHk5IScnBz5xdfXFwBw7NgxedsjR46ge/fusLa2hqGhIYyNjfHxxx/j/v378ve2ZcuWMDExweTJk/Hjjz/iv//+K1M9+WvIycmRH2rz8PDA/v37MW/ePERERODp06cK94uNjcXt27cxatQohcNALi4uFfof9ePHjxEQEICGDRvCyMgIRkZGsLS0RGZmJq5cuVKo/eDBgxWuHzhwADk5ORgzZozCfpmZmaFLly4amyGX93tX8G/Qw8MDjRs3LvFvsDhleQ9+//13VKtWDf369VN4XVq2bAkHBwf565L3+zds2DCF+w8ZMqRQL0qe8r4H165dw9WrV+V/q/nb9u7dG8nJyYiNjS3z61Kckg5XqmsME70aQxCVWY0aNRSu53Xh531x3b9/H0ZGRoUOgUgkEjg4OCgc4iho9OjR2LBhA27cuIHBgwfDzs4Onp6eCA8PV2g3c+ZMHD58GLGxsXj+/Dn+97//YciQIXBwcCix9rt375bY3V8eRkZGhV6TvDpK2ldV1FLQnTt38Ntvv8HY2Fjh8tprrwGAPGSePn0aPXr0AAD873//w59//okzZ85gwYIFAF6+tw0aNMChQ4dgZ2eHadOmoUGDBmjQoAG++eabV9aSkJBQqI68L8Fvv/0WAQEB2L17N7y9vWFjY4OBAwciLi4OwMvXsaj391XveUlGjRqFVatWYeLEiThw4ABOnz6NM2fOoGbNmoWCGACF2VpA7usLAG3atCm0byEhIUWGeHXIe70K1gsATk5OJf5evuoxS/Me3LlzB48ePYKJiUmh1yUlJUX+uuQ9pr29vcL9i/qbylPe9yCv3fvvv1+o3dSpUwFAae9XjRo1inyNHzx4AACwsbFRyvNQxXFMECldjRo1kJOTg7t37yoEISEEUlJS0KZNmxLvP378eIwfPx6ZmZmIjIzEokWL0LdvX/z777/y3pBRo0YhICAA33//Pdq2bYuUlBRMmzbtlbXVrFlTYWBoUczMzABAPuAyT3EfkDk5Obh//77Ch3ZKSgqAwoGxrLVUlK2tLZo3b47PPvusyNudnJwA5I7FMjY2xu+//y7ffwDYvXt3oft06tQJnTp1glQqxdmzZ/Hdd99h1qxZsLe3x4gRI4qtxcnJCWfOnFHY5u7uDgCwsLDAkiVLsGTJEty5c0feK9SvXz9cvXpV/jrmva75FdxW2vcvLS0Nv//+OxYtWoR58+bJt2dnZ8u/rAoq+D/4vDFDO3fuLFdPnarkvV7JycmFgvbt27cLjXUqy2OW5j2wtbVFjRo1EBYWVuRjVa1aVeEx79y5g1q1aslvz/ubKkp534O8dvPnz8egQYOKbJP3+1hRzZo1w7Zt25CTk6PQo3Xp0iUAQNOmTZXyPFRx7Akipcub6rt582aF7bt27UJmZmahqcDFsbCwgK+vLxYsWIBnz54hOjpafpuZmZn8kMzKlSvRsmVLdOjQ4ZWP6evri3///Vd+yK4oeYOPL168qLB97969xd5ny5YtCte3bt0KoOTz5JSmlorKm8bboEEDtG7dutAlLwRJJBIYGRkpDDR/+vQpfv7552If29DQEJ6envLDkn///TeAwj2DeUxMTAo9f96XYX729vYYN24cRo4cidjYWDx58gTu7u5wdHTEtm3bFGar3bhxAydPnlS4f2nfP4lEAiFEocHI69evh1QqLXa/8+vZsyeMjIxw/fr1Il/f1q1bl+pxSsPU1LTI3qmidO3aFUDhv8EzZ87gypUrpf4bzK8s70Hfvn1x//59SKXSIl+TvLDRuXNnALkzu/LbuXNnodmLxSnte+Du7g5XV1f8888/xbYr6vexPPz8/PD48WPs2rVLYfuPP/4IJycneHp6KuV5qOLYE0RK5+Pjg549eyIgIADp6eno0KGDfHbY66+/jtGjRxd730mTJsHc3BwdOnSAo6MjUlJSEBQUBGtr60I9SFOnTsWyZctw7tw5rF+/vlS1zZo1CyEhIRgwYADmzZsHDw8PPH36FMeOHUPfvn3h7e0NBwcHdO/eHUFBQahevTpcXFxw+PBh/Prrr0U+pomJCVasWIHHjx+jTZs28tlhvr6+6NixY4VqAYAJEybgxx9/xPXr18vc27B06VKEh4ejffv2mDlzJtzd3ZGVlYWEhATs27cPa9asgbOzM/r06YOVK1di1KhRmDx5Mu7fv4/ly5cXCghr1qzBkSNH0KdPH9SpUwdZWVnyWYF5Y5uqVq0KFxcX7NmzB926dYONjQ1sbW1LnNnm6emJvn37onnz5qhevTquXLmCn3/+Ge3atUOVKlUAAJ988gkmTpwIPz8/TJo0CY8ePcLixYsLHYop7ftnZWWFzp0748svv5TXd+zYMQQHB5f6rMl169bF0qVLsWDBAvz333/o1asXqlevjjt37uD06dPyHi5laNasGX799VesXr0arVq1goGBQbEhy93dHZMnT8Z3330HAwMD+Pr6ymeH1a5dG7Nnzy7z8xsYGJT6PRgxYgS2bNmC3r17491334WHhweMjY2RlJSEo0ePYsCAAfDz88Nrr72GkSNHYsWKFTA0NETXrl0RHR2NFStWwNraulSz/sryHqxduxa+vr7o2bMnxo0bh1q1auHBgwe4cuUK/v7771eeXiMmJkY+UzUlJQVPnjzBzp07AeSe8yxvFpqvry98fHwwZcoUpKeno2HDhti2bRvCwsKwefNmniNIm2h0WDbplOJmkRQ1k+Xp06ciICBAuLi4CGNjY+Ho6CimTJkiHj58qHDfgrPDfvzxR+Ht7S3s7e2FiYmJcHJyEsOGDRMXL14ssiYvLy9hY2Mjnjx5Uur9ePjwoXj33XdFnTp1hLGxsbCzsxN9+vQRV69elbdJTk4WQ4YMETY2NsLa2lq89dZb4uzZs0XODrOwsBAXL14UXl5ewtzcXNjY2IgpU6aIx48fKzxvwdlhpa0lbwZa/te3OChiVtbdu3fFzJkzRb169YSxsbGwsbERrVq1EgsWLFCoccOGDcLd3V2YmpqK+vXri6CgIBEcHKzw3FFRUcLPz0+4uLgIU1NTUaNGDdGlSxexd+9ehec8dOiQeP3114WpqWmhWT5FmTdvnmjdurWoXr26/Plnz54t7t27p9Bu/fr1wtXVVZiYmAg3NzexYcMGMXbs2EKzdEr7/iUlJYnBgweL6tWri6pVq4pevXqJy5cvF3qv8n7Hz5w5U2T9u3fvFt7e3sLKykqYmpoKFxcXMWTIEHHo0KES97sss8MePHgghgwZIqpVqyYkEol41ce3VCoVX3zxhXBzcxPGxsbC1tZWvPXWWyIxMVGhXWlnh+Up7Xvw/PlzsXz5ctGiRQthZmYmLC0tRaNGjYS/v7+Ii4uTt8vKyhJz5swRdnZ2wszMTLRt21ZERUUJa2trMXv27EKvSUXfg3/++UcMGzZM2NnZCWNjY+Hg4CC6du0q1qxZ88p9z3utiroU/LvLyMgQM2fOFA4ODsLExEQ0b95cbNu27ZXPQeolEaLAmdCIdERqaipcXFwwY8YMLFu2TNPlkIaMGzcOERERCutskW47efIkOnTogC1btnCJCVIpHg4jnZOUlIT//vsPX375JQwMDPDuu+9quiQiKqfw8HBERUWhVatWMDc3xz///IPPP/8crq6uxQ5gJlIWhiDSOevXr8fSpUtRt25dbNmyRWFWCRHpFisrKxw8eBBff/01MjIyYGtrC19fXwQFBSnMVCRSBR4OIyIiIr2kNVPkV69ejebNm8PKygpWVlZo164d9u/fL79dCIHFixfDyckJ5ubm8PLyUpgyTURERFQWWhOCnJ2d8fnnn+Ps2bM4e/YsunbtigEDBsiDzrJly7By5UqsWrUKZ86cgYODA3x8fJCRkaHhyomIiEgXafXhMBsbG3z55Zd4++234eTkhFmzZiEgIABA7lld7e3t8cUXX8Df31/DlRIREZGu0cqB0VKpFDt27EBmZibatWuH+Ph4pKSkyNc2AnLPntqlSxecPHmyxBCUnZ2tcPp8mUyGBw8eoEaNGlzEjoiISEcIIZCRkQEnJ6dSnUizNLQqBF26dAnt2rVDVlYWLC0tERoaiiZNmshPyV5wkT17e3vcuHGjxMcMCgpS2hlbiYiISLMSExOVtvi0VoUgd3d3XLhwAY8ePcKuXbswduxY+SrTQOGF84QQr+zNmT9/PubMmSO/npaWhjp16iAxMRFWVlbK3QEiIiJSifT0dNSuXVtpa7wBWhaCTExM0LBhQwBA69atcebMGXzzzTfycUApKSlwdHSUt09NTS3UO1SQqalpofWPAMhnoREREZHuUOZQFq2ZHVYUIQSys7NRr149ODg4IDw8XH7bs2fPcOzYMbRv316DFRIREZGu0pqeoA8//BC+vr6oXbs2MjIysH37dkRERCAsLAwSiQSzZs1CYGAgXF1d4erqisDAQFSpUoXryhAREVG5aE0IunPnDkaPHo3k5GRYW1ujefPmCAsLg4+PDwBg7ty5ePr0KaZOnYqHDx/C09MTBw8eVOqxQSIiItIfWn2eIFVIT0+HtbU10tLSOCaIiIhIR6ji+1urxwQRERERqQpDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklrQlBQUFBaNOmDapWrQo7OzsMHDgQsbGxCm3GjRsHiUSicGnbtq2GKiYiIiJdpjUh6NixY5g2bRpOnTqF8PBw5OTkoEePHsjMzFRo16tXLyQnJ8sv+/bt01DFREREpMuMNF1AnrCwMIXrGzduhJ2dHc6dO4fOnTvLt5uamsLBwUHd5REREVElozU9QQWlpaUBAGxsbBS2R0REwM7ODm5ubpg0aRJSU1NLfJzs7Gykp6crXIiIiIgkQgih6SIKEkJgwIABePjwIY4fPy7fHhISAktLS7i4uCA+Ph4fffQRcnJycO7cOZiamhb5WIsXL8aSJUsKbU9LS4OVlZXK9oGIiIiUJz09HdbW1kr9/tbKEDRt2jT88ccfOHHiBJydnYttl5ycDBcXF2zfvh2DBg0qsk12djays7Pl19PT01G7dm2GICIiIh2iihCkNWOC8syYMQN79+5FZGRkiQEIABwdHeHi4oK4uLhi25iamhbbS0REREQAkpKAuDjA1RV4xXdvZaI1Y4KEEJg+fTp+/fVXHDlyBPXq1Xvlfe7fv4/ExEQ4OjqqoUIiIqJKKDgYcHEBunbN/RkcrOmK1EZrQtC0adOwefNmbN26FVWrVkVKSgpSUlLw9OlTAMDjx4/x/vvvIyoqCgkJCYiIiEC/fv1ga2sLPz8/DVdPRESkg5KSgMmTAZks97pMBvj7527XA1oTglavXo20tDR4eXnB0dFRfgkJCQEAGBoa4tKlSxgwYADc3NwwduxYuLm5ISoqClWrVtVw9URERDooLu5lAMojlQLXrhVq+vTpU8ycOVP+vVwZaOXAaFVSxcAqIiIinZSUlHsILH8QMjQEEhIUxgbFxsZi0KBBiImJQfXq1REfHw9ra2u1lqqK72+t6QkiIiIiNXN2Btatyw0+QO7PtWsVAtC+ffvg4eGBmJgYONjZYWtAAKwzMjRUsHKxJ4iIiEjfJSXlHgJr2FAhAP30008YP348ZDIZOrq6Yue1a7AXAjAwyA1PEyaorUT2BBEREZHyOTsDXl4KAWj16tUYO3YsZDIZxg4ZgsN5AQioNAOoGYKIiIhIwerVqzF16lQAuefv2/DOOzApeOComAHUuoQhiIiIiORCQkIwbdo0AMDcuXPxzTffwMDdPfcQWH6GhrmHz3QYQxAREREBAA4ePIjRo0dDCIEpU6bg888/h0QiKdUAal3EgdFERESECxcuoGPHjsjMzMTw4cOxZcsWGOaFnjzFDKBWB71YO4yIiIjU686dO+jfvz8yMzPh4+ODn376qXAAAnKDj473/uTHw2FERER6LDs7G35+fkhMTIS7uzt++eUXmJiYaLostWAIIiIi0lNCCLzzzjuIiopCtWrVsHfvXlSrVk3TZakNQxAREZGe+uqrr7Bp0yYYGBggJCQEbm5umi5JrRiCiIiI9NDx48cxd+5cALlhqEePHhquSP0YgoiIiPTM3bt3MXLkSEilUrz55puYMWOGpkvSCIYgIiIiPSKTyTBmzBjcunUL7u7uWLNmTe65gPQQQxAREZEeWbZsGcLCwmBmZoYdO3bA0tJS0yVpDEMQERGRnjh+/DgWLlwIAFi1ahWaNWum4Yo0iyGIiIhID+QfB/TWW2/h7bff1nRJGscQREREVMkVHAe0evVqvR0HlB9DEBERUSXHcUBFYwgiIiKqxDgOqHgMQURERJUUxwGVjCGIiIioElIYB1S7NlYvXMhxQAUwBBEREVVC8nFAAHYkJsKySRMgOFjTZWkVhiAiIqJKRmEcEIBmACCTAf7+QFKSJkvTKgxBRERElYjCOCAACqOApFLg2jUNVaZ9GIKIiIgqCYVxQA0aYLVEAoVRQIaGQMOGmipP6zAEERERVRIK5wMKDYXl//6XG3yA3J9r1wLOzpotUosYaboAIiIiqrjIyEgsWLAAAPDdd9/lng+oWTOgZ8/cQ2ANGzIAFcAQREREpONSU1MxYsQIyGQyjB49GhMmTHh5o7Mzw08xeDiMiIhIh0mlUrz55ptITk5G48aNuS5YGTAEERER6bDPPvsMhw4dQpUqVbBz505YWFhouiSdwRBERESkow4fPozFixcDAFavXo0mTZpotiAdwxBERESkg5KTkzFq1CgIITBhwgSMGTNG0yXpHIYgIiIiHZOTk4NRo0YhNTUVzZo1w3fffafpknQSQxAREZGOWbRoESIiImBpaYkdO3bA3Nxc0yXpJIYgIiIiHRIaGorAwEAAwP/+9z+4u7truCLdxRBERESkI65cuSIf+zN79myMGDFCwxXpNoYgIiIiHZCeng4/Pz88fvwYXl5eWLZsmaZL0nkMQURERFoub2HU2NhYODs7IyQkBEZGXPShohiCiIiItFxgYCD27NkDExMT7Nq1C3Z2dpouqVJgCCIiItJi+/btw8cffwwA+OGHH+Dh4aHhiioPrQlBQUFBaNOmDapWrQo7OzsMHDgQsbGxCm2EEFi8eDGcnJxgbm4OLy8vREdHa6hiIiIi1YqJicHIkSMhhIC/v7/iwqhUYVoTgo4dO4Zp06bh1KlTCA8PR05ODnr06IHMzEx5m2XLlmHlypVYtWoVzpw5AwcHB/j4+CAjI0ODlRMREZVSUhJw9Gjuz1e4d+8e+vbti/T0dHTq1AnffvutGgrULxIhhNB0EUW5e/cu7OzscOzYMXTu3BlCCDg5OWHWrFkICAgAAGRnZ8Pe3h5ffPEF/P39S/W46enpsLa2RlpaGqysrFS5C0RERC8FBwOTJwMyGWBgAKxbBxTTs5N9/Tp8/Pxw/NIl1K9fH3/99RdsbW0VGyUlAXFxgKsr4Oyshh3QLFV8f2tNT1BBaWlpAAAbGxsAQHx8PFJSUtCjRw95G1NTU3Tp0gUnT57USI1ERESlkpT0MgABuT/9/YvsERLr1+Odhg1x/NIlWAH4bdy4wgEoOBhwcQG6ds39GRys+n2ohLQyBAkhMGfOHHTs2BFNmzYFAKSkpAAA7O3tFdra29vLbytKdnY20tPTFS5ERERqFRf3MgDlkUqBa9cUtyUlYfnkydiE3C/oXwA0WbJEMSyVIVBRybQyBE2fPh0XL17Etm3bCt0mkUgUrgshCm3LLygoCNbW1vJL7dq1lV4vERFRiVxdcw+B5WdoCDRsqLApdMMGBLwYpfI1gJ5A4bBU2kBFr6R1IWjGjBnYu3cvjh49Cud8xzgdHBwAoFCvT2pqaqHeofzmz5+PtLQ0+SUxMVE1hRMRERXH2Tl3DJChYe51Q0Ng7VqFsTx//vknRgUGQgCYAmB63g0Fw1IpAxW9mtaEICEEpk+fjl9//RVHjhxBvXr1FG6vV68eHBwcEB4eLt/27NkzHDt2DO3bty/2cU1NTWFlZaVwISIiUrsJE4CEhNzZYQkJCoOir1y5gn79+iErOxv9W7bEtwYGkABFhqXSBCoqHa055/a0adOwdetW7NmzB1WrVpX3+FhbW8Pc3BwSiQSzZs1CYGAgXF1d4erqisDAQFSpUgWjRo3ScPVERESl4OxcKKwkJyfD19cXDx8+RNu2bbHt8GEYPXiQe3irYcOiw82ECUDPniW3oVfSminyxY3r2bhxI8aNGwcgt7doyZIlWLt2LR4+fAhPT098//338sHTpcEp8kREpC3S09PRpUsXXLhwAa6urjh58mThmWAEQDXf31oTgtSFIYiIiLRBdnY2+vbti0OHDsHOzg5RUVGoX7++psvSWnp1niAiIqLKKicnByNGjMChQ4dgYWGBffv2MQBpAEMQERGRGslkMowfPx67d++Gqakp9uzZg1atWmm6LL3EEERERKQmeTOhN2/eDCMjI+zYsQPdunXTdFl6iyGIiIhIDYQQmDdvHlavXg2JRIKff/4Z/fr103RZeo0hiIiISA0CAwOxbNkyAMC6deswYsQIDVdEDEFEREQq9vnnn2PhwoUAgJUrV2LixIkarogAhiAiIiLlSErKPRt0gYVMg4KCMH/+fADAJ598gtmzZ2uiOioCQxAREVFFBQcDLi5A1665P4ODAQCfffYZPvzwQwC5ASivN4i0g9Ysm0FERKSTkpKAyZNfruwukwH+/vjkyhV8vGIFAMUwRNqDIYiIiKgi4uJeBqAXlkqlWPQiAAUGBsoPh5F2YQgiIiKqCFdXwMAAkMkgACwC8MmLmz7//HMEBARosDgqCccEERERVYSzM7BuHWQGBpiFlwHoiy++YADScgxBREREFZQzdizeHjQI3764/t1332Hu3LkarYlejYfDiIiIKiA7OxsjR45EaGgoDA0NsWHDBowZM0bTZVEpMAQRERGV0+PHjzFo0CCEh4fDxMQEISEhGDhwoKbLolJiCCIiIiqHhw8fonfv3jh16hQsLCywZ88eLoaqYxiCiIiIyuj27dvw9fXFxYsXUb16dezfvx+enp6aLovKiCGIiIioDGJiYuDr64ubN2/CwcEBBw8eRLNmzTRdFpUDZ4cRERGVUmRkJDp06ICbN2/Czc0Nf/75JwOQDmMIIiIiKoVffvkFPj4+ePToEdq3b4+TJ0+ifv36mi6LKoAhiIiIqARCCKxcuRLDhw/Hs2fP4Ofnh0OHDqFGjRqaLo0qiCGIiIioGFKpFLNnz8Z7770HAJg5cyZ27NgBc3NzDVdGysCB0UREREV4+vQpRo8ejV27dgEAVqxYgdmzZ0MikWi4MlIWhiAiIqIC7t+/jwEDBuDPP/+EiYkJfvrpJwwfPlzTZZGSMQQRERHlEx8fD19fX8TGxqJatWrYs2cPOnfurOmySAUYgoiIiF44e/Ys+vTpg9TUVNSpUwf79+9HkyZNNF0WqQgHRhMREQHYt28fvLy8kJqaihYtWiAqKooBqJJjCCIiIr23fv169O/fH5mZmfDx8UFkZCScnJxyb0xKAo4ezf1JlQpDEBERVT6lDC5CCCxatAiTJk2CVCrF2LFj8ccff8DKyiq3QXAw4OICdO2a+zM4WA3Fk7owBBERUeVSyuDy/PlzvP3221i6dCkA4KOPPsLGjRthbGyc2yApCZg8GZDJcq/LZIC/P3uEKhGGICIiqjxKGVwyMjLQt29fbNq0CYYGBlj3xRdYunSp4jmA4uJePk4eqRS4dk3FO0HqwhBERESVRymCS3JyMjp37oyDBw+iCoA9MhkmzZ9fuMfI1RUwKPA1aWgINGyomtpJ7RiCiIio8nhFcLly5Qratm2LCxcuwA7AMQB9gKJ7jJydgXXrcu+f9zhr1+Zup0qBIYiIiCqPEoLLiRMn0KFDB9y8eROuzs6IAtA6/32LOtQ1YQKQkJA7yDohIfc6VRo8WSIREVUuEyYAPXvmBpqGDQFnZ+zatQtvvvkmsrOz0a5dO+xdswa2r7+ueOisuENdzs7s/amk2BNERESVj7Mz4OUFODvjm2++wdChQ5GdnY2BAwfi0KFDsG3enIe6iD1BRERUOclkMgQEBGD58uUAgKlTp+Lbb7+FYV7wKaLHiPQLQxAREVU62dnZGDduHLZv3w4ACAoKQkBAgOIUeICHuvQcQxAREVUqjx49gp+fHyIiImBkZIQNGzZg9OjRmi6LtBBDEBERVRqJiYno3bs3Ll++jKpVq+LXX39F9+7dNV0WaSmGICIiqhQuXboEX19f3Lp1C46Ojti3bx9atmyp6bJIi3F2GBER6bzjx4+jU6dOuHXrFho3boxTp04xANEraVUIioyMRL9+/eDk5ASJRILdu3cr3D5u3DhIJBKFS9u2bTVTLBERaYXffvsNPXr0QFpaGjp27IgTJ06gTp06mi6LdIBWhaDMzEy0aNECq1atKrZNr169kJycLL/s27dPjRUSEZE2+fHHH+Hn54esrCz069cPBw8ehI2NjabLIh2hVWOCfH194evrW2IbU1NTODg4qKkiIiLSVitWrMD7778PABg7dizWr18PIyOt+lojLadVPUGlERERATs7O7i5uWHSpElITU3VdElERKRGQgjMnz9fHoDee+89bNiwgQGIykynfmN8fX0xdOhQuLi4ID4+Hh999BG6du2Kc+fOwdTUtMj7ZGdnIzs7W349PT1dXeUSEZGS5eTkYMqUKVi/fj0A4PPPP8fcuXMLnwSRqBR0KgQNHz5c/u+mTZuidevWcHFxwR9//IFBgwYVeZ+goCAsWbJEXSUSEZGKZGVlYdSoUQgNDYWBgQHWrl2LiRMnaros0mE6dzgsP0dHR7i4uCAuLq7YNvPnz0daWpr8kpiYqMYKiYhIGdLT09G7d2+EhobCxMQEO3bsYACiCtOpnqCC7t+/j8TERDg6OhbbxtTUtNhDZUREpP3u3buHXr164dy5c6hatSr27NkDb29vTZdFlYBWhaDHjx/j2rVr8uvx8fG4cOECbGxsYGNjg8WLF2Pw4MFwdHREQkICPvzwQ9ja2sLPz0+DVRMRkaokJyfDx8cH0dHRsLW1RVhYGFq1aqXpsqiS0KoQdPbsWYV0P2fOHAC5Ux9Xr16NS5cu4aeffsKjR4/g6OgIb29vhISEoGrVqpoqmYiIVOTmzZvo1q0brl27BicnJxw6dAiNGzfWdFlUiUiEEELTRahTeno6rK2tkZaWBisrK02XQ0RERbh27Rq6deuGmzdvom7dujh8+DDq16+fe2NSEhAXB7i6As7Omi2U1EYV3986PTCaiIgqn5iYGHTu3Bk3b96Em5sbjh8//jIABQcDLi5A1665P4ODNVss6TSGICIi0hrnz59Hly5dkJycjGbNmiEyMhLOeb09SUnA5MmATJZ7XSYD/P1ztxOVA0MQERFphaioKHh7e+PevXto06YNIiIiYG9v/7JBXNzLAJRHKgXyTaghKguGICIi0riIiAj4+PjIV4I/dOhQ4YVQXV0BgwJfW4aGQMOG6iuUKhWGICIi0qj9+/fD19cXmZmZ8PHxQVhYWNEDX52dgXXrcoMPkPtz7VoOjqZy06op8kREpF/27NmDoUOH4vnz5+jfvz9CQkJgZmZW/B0mTAB69sw9BNawIQMQVQhDEBERaURoaCiGDRuGnJwcDB8+HD8HBcE4KurVU9+dnRl+SCl4OIyIiNRu165d8gA0atQobO7aFcYNG3LqO6kVe4KIiEj18p3g8JeTJzFq1ChIpVKMHj0aGz/5BIb16xee+t6zJ3t8SKUYgoiISLWCg+Xn99kukeAtiQRSmQxjx45FcHAwDCMji5/6zhBEKsTDYUREpDr5TnC4FcCbQkAqk2H8sGG5AcjQkFPfSWMYgoiISHVenOBwM4DRAGQAJgJY7++fG4AATn0njeHhMCIiUh1XV/wokWC8EBAAJgNYbWAAAzc3xXac+k4awBBEREQqs+HgQUwEIABMAbDKwAAG69YVHXI49Z3UjCGIiIjKL9+sr4IBZv369Zg0aRIAYNrYsfhu7FhIXnUOICI14pggIiIqn+Dg3HP6FHFun3Xr1skD0IwZM/Ddxo2QeHszAJFWkQghRHnvnJqaCplMBgcHB2XWpFLp6emwtrZGWlpa0WvTEBHRqyUl5Qaf/FPbDQ2BhASs/u03TJ06FQDw7rvv4quvvoJEItFQoVRZqOL7u1w9QRcvXsRrr70GR0dH1KpVC7Vq1cLChQuRmZmplKKIiEjLvZj1pUAqxfdffikPQHPmzGEAIq1WrhA0YcIE2Nvb48SJEzh//jw+/fRT7N+/H61bt8bDhw+VXSMREWmbIs7t851EgunffgsA+OCDD7B8+XIGINJq5TocZmFhgXPnzqFRo0bybUIIDB06FGZmZti8ebNSi1QmHg4jIiqlEgY9A8gdA+TvD0il+FYiwbsvvk4CAgIQFBTEAERKpTWHw4rq8ZFIJAgMDMSePXuUUhgREWlQCYOe5SZMABIS8M20afIANG/ePAYg0hmlDkF9+vTBhx9+iF9++QXvvPMOZs+ejTt37ii0SUtLQ/Xq1ZVeJBERqVG+pS4AvFzQNCmpUNOvd+7ErO+/BwB8+OGHCAwMZAAinVHq8wQ1a9YMf//9NzZu3CgPP/Xr18ewYcPQsmVLSKVSbNy4EV999ZXKiiUiIjUoZtBzwQVNv/76a8yePRsAsGDBAnzyyScMQKRTyjUm6M6dOzh//jwuXLggv1y7dg2GhoZwd3fHxYsXVVGrUnBMEBHRK5Qw/T0vBH311VeYM2cOAAYgUg9VfH+X64zR9vb26NWrF3r16iXf9vTpU/zzzz/4559/lFIYERFpSN6Cpi8GPRdc0HTlypV47733AAALFy7E0qVLGYBIJ1XoZIm6iD1BRESllJRUaEHT/AHoo48+wpIlSxiASC20pieIiIj0QIEFTVesWIH3338fAPDxxx9j8eLFDECk07h2GBERvdLy5csZgKjSYQgiIqISLV++HB988AEAYNGiRTwERpUGQxARERXryy+/VAhAixcv1mxBRErEEEREREVatmwZ5s6dCwBYvHgxAxBVOgxBRERUyLJlyxAQEAAgNwAtWrRIwxURKR9DEBERKQgMDJQHoCVLljAAUaXFEERERAAAIQQ+/vhjLFiwAACwdOlSfPzxxxquikh1eJ4gIiKCEALz5s3DsmXLAABffPGFfDwQUWXFEEREpOeEEJg1axa+/fZbAMA333yDmTNnargqItVjCCIi0mMymQxTp07F2rVrAQBr1qyBv7+/hqsiUg+GICIiPSWVSjFx4kRs2rQJEokEGzZswLhx4zRdFpHaMAQREemhnJwcjBkzBtu2bYOhoSF++uknjBo1StNlEakVQxARkZ559uwZRo0ahV27dsHIyAjbt2/H4MGDNV0WkdoxBBER6ZEnT55g2LBh+OOPP2BiYoKdO3eiX79+mi6LSCMYgoiI9ERaWhr69euH48ePw9zcHKGhoejZs6emyyLSGK06WWJkZCT69esHJycnSCQS7N69W+F2IQQWL14MJycnmJubw8vLC9HR0ZoplohIh6SmpsLb2xvHjx+HtbU1Dh48yABEek+rQlBmZiZatGiBVatWFXn7smXLsHLlSqxatQpnzpyBg4MDfHx8kJGRoeZKiYi0VFIScPRo7s8Xbt68iU6dOuH8+fOws7NDREQEOnbsqMEiibSDVh0O8/X1ha+vb5G3CSHw9ddfY8GCBRg0aBAA4Mcff4S9vT22bt3K81oQEQUHA5MnAzIZYGAArFuH2I4d4ePjg8TERNSpUwfh4eFwc3PTdKVEWkGreoJKEh8fj5SUFPTo0UO+zdTUFF26dMHJkyeLvV92djbS09MVLkRElU5S0ssABAAyGf6ePBkd27dHYmIiGjVqhD///JMBiCgfnQlBKSkpAAB7e3uF7fb29vLbihIUFARra2v5pXbt2iqtk4hII+LiXgYgAMcAeMlkuPfgAVq1aoXjx4/D2dlZc/URaSGdCUF5JBKJwnUhRKFt+c2fPx9paWnyS2JioqpLJCJSP1fX3ENgAH4B0ANABoAubdviyJEjsLW11WR1RFpJZ0KQg4MDABTq9UlNTS3UO5SfqakprKysFC5ERJWOszOwbh2+kkgwHMAzAH6vv479R47wc4+oGDoTgurVqwcHBweEh4fLtz179gzHjh1D+/btNVgZEZHmyWQyzL58GXOEAADMGD8eO86cgbm5uYYrI9JeWjU77PHjx7h27Zr8enx8PC5cuAAbGxvUqVMHs2bNQmBgIFxdXeHq6orAwEBUqVKF690QkV7LysrCmDFjsGPHDgC5pxN5//33SxwqQERaFoLOnj0Lb29v+fU5c+YAAMaOHYtNmzZh7ty5ePr0KaZOnYqHDx/C09MTBw8eRNWqVTVVMhGRRj18+BADBw5EZGQkjI2NsWnTplf/xzApKXcgtatr7mE0Ij0lEeJF36meSE9Ph7W1NdLS0nicnIh02rVr19C3b1/ExsbCysoKu3fvVviPZJGKOJcQJkxQT8FEFaCK72+dGRNEREQvRUREwNPTE7GxsXB2dsaJEydeHYCKOJcQ/P0Vzi5NpE8YgoiIdEG+5TCCg4Ph4+ODBw8ewMPDA2fOnEGzZs1e/RgFziUEAJBKgXxjMYn0iVaNCSIioiK8OIQllckwD8DyF5uHDx+OjRs3ln4GWN65hPIHIUNDoGFDZVdMpBPYE0REpM1eHMJKl8ngh5cBaNHs2di2bVvZpsC/OJcQDA1zrxsaAmvXcnA06S32BBERabO4OFx5EYBiAZgB2AhgRP/+QHmmwE+YAPTsmXsIrGFDBiDSawxBRERaLPTaNYwB8BhALQC/AvCo6CEsZ2eGHyLwcBgRkVaSSqWYP38+Bk2ejMcAugD4Gy8CEA9hESkFe4KIiFSlnCclvH//PkaOHClfJmjOnDn4YsYMGCUk8BAWkRIxBBERqUJZTkqYLyydvHkTI0eOxM2bN1GlShUEBwdjxIgRue3q1lVb+UT6gGeMJiJStqQkwMWl8FT0hITCvTgvwpJMJsMXEgk+kkgglcnQsGFD7Nq1C82bN1dr6UTaimeMJiLSBaU9KeGL6e93ZDL0AvChEJDKZBg1cCDOnTvHAESkYgxBRETKlndSwvyKmtEVF4dDMhlaAAgHYA4gGMDmmTPZU02kBgxBRETKVoqTEj558gTvbt4MHwB3ADQFcBbA24aGkLi6aqBoIv3DgdFERKpQwkkJT58+jTFjxiA2NhYAMEUiwQohYM7p70RqxRBERKQqBU5K+Pz5c3zyyScIDAyEVCqFk5MTgoOD0atpU57BmUgDGIKISHPKeR4dXXT+/HlMmDAB58+fBwCMHDkSq1atgo2NTW6DSr7/RNqIY4KISDOCg3OnkXftmvszOFjTFalEZmYmPvjgA7Rp0wbnz5+HjY0NQkJCsHXr1pcBiIg0giGIiNTvxdRw+TRymQzw98/dXokcPHgQzZo1w/LlyyGVSjF8+HBER0dj2LBhmi6NiMAQRESaUNrz6Oio5ORkvPXWW+jZsyfi4+NRp04d/P7779i+fTscHBw0XR4RvcAQRETqV9rz6OiY7OxsLFu2DG5ubtiyZQsMDAwwa9YsREdHo0+fPpouj4gKYAgiIvUrxXl0dIkQAr///juaNm2KgIAAPH78GJ6envjrr7/w1VdfwdLSUtMlElERODuMiDSjhPPo6JJLly5h7ty5CAsLAwA4ODjgiy++wFtvvQWDgr1dRKRVGIKISHMKnEdHl8THx2PRokXYvHkzhBAwNjbG7NmzsXDhQlStWlXT5RFRKTAEERGVQWpqKj777DOsXr0az58/BwAMHToUn332GVy53AWRTmEIIiIqhTt37uCrr77CqlWrkJmZCQDw8fFBYGAgWrdureHqiKg8GIKIiEqQlJSEL7/8EuvWrUNWVhYAoHXr1vj888/RrVs3DVdHRBXBUXtEREWIi4uDv78/6tevj2+//RZZWVnw8PDA3r17cfr0aXRzdweOHq10J3gk0icMQURELwghcOjQIfTt2xdubm5Yt24dnj9/ji5duiA8PBynTp1Cv379INmwQS+W/CCq7CRCCKHpItQpPT0d1tbWSEtLg5WVlabLISJlqcBirE+fPsXmzZvxzTffIDo6Wr69T58+CAgIQKdOnRSfx8VF8YzXhoZAQoLOznQj0gWq+P7mmCAi0n3BwS/XIjMwyD0R44QJr7zb5cuXsX79evz888948OABAMDCwgLjx4/HjBkz4ObmVvhOJS35wRBEpFMYgohItxW3GGvPnkWGkoyMDISEhGD9+vX466+/5NtdXFwwc+ZMvP3226hWrVrxz5e35EfBniAdX/KDSB8xBBGRbitFz0xOTg4OHz6Mbdu2YefOnfIp7kZGRujfvz8mTpyIHj16wDBvGY+S5C354e+f+zw6vuQHkT5jCCIi3VZMz4xo0ABRJ09i27Zt+OWXX5Camiq/2c3NDRMnTsSYMWNgb29f9uesJEt+EOk7hiAi0m35emZkUilOGRhgd/fu2NG5MxISEuTNbG1tMax3b4xq3RrtBw6EpHbtij8vww+RTuPsMCLSaVlZWThy5Ah2b9mCvfv3487Dh/LbLC0t4efnh5EjR6L7zZswnjq1zIOniUg7qOL7myGIiHTO7du3ceDAAezbtw9hYWF4/Pix/DYrKyv06dMHfn5+6NOnD6pUqcJp7USVAKfIE5Feys7OxokTJ3DgwAGEhYXh0qVLCrc7OTlhwIABGDhwILy8vGBiYqL4AJzWTkRFYAgiIq0jhEBMTAyOHj2KA3v24MiJE3jyYt0uAJBIJGjTpg169uyJvn37onXr1jAwKOEE+JzWTkRFYAgiIo0TQuDq1auIiIjA0aNHERERgbt37yq0sQfQq3179Jw+HT4+PrC1tS39E3BaOxEVgWOCiEjthBCIi4uTB56IiAikpKQotDE3M0OHrCx0A9ALQHMABhUdx5OUxGntRDqKY4KISCcJIfDvv/8iMjJSHnpu376t0MbMzAzt27eHl5cXvL290SYzE6a9eik+UEXH8ZRmWnsF1iAjIt3CEERESieTyRAdHY1jx44hMjISkZGRuHPnjkIbU1NTtGvXTh56PDw8YGZm9rJBUpL6x/GUcw0yItJNOhWCFi9ejCVLlihss7e3L9SNTkTqlZOTgwsXLshDz/Hjx/Ew3/l6gNzQ07ZtW3Tu3Bne3t5o27YtzM3Ni39QdY/jKeMaZESk+3QqBAHAa6+9hkOHDsmvl2qtHyJ9p8xDPElJyI6OxtknTxB59SqOHTuGP//8U+FcPQBgYWaGDh4e6NyjB7p06YI2bdrA1NS0bM+lzuUpOI2eSO/oXAgyMjKCg4ODpssg0h1KOMSTlZWFqKgoHPvqKxz77TecApBVoE21atXQqVMndDYzQ5edO/F6VhaMTpwAxowBOnYsf/3qWp6C0+iJ9I7OhaC4uDg4OTnB1NQUnp6eCAwMRP369Yttn52djezsbPn19PR0dZRJpB3KeYgnJycHZ8+exZEjR3DkyBH8+eefyMpSjD01AXQB0HnpUnTu3x/NmjWDwe3buWdmzpt0qkuHlDiNnkjv6FQI8vT0xE8//QQ3NzfcuXMHn376Kdq3b4/o6GjUqFGjyPsEBQUVGkdEpDdKeYgnbyDz4cOHcfjwYRw7dgwZGRkKd3OsUQPe9+/nBh8A7gAkANCpE9CiRZmeT2txdXgivaLT5wnKzMxEgwYNMHfuXMyZM6fINkX1BNWuXZvnCSL9UMKaWUkADhw4gPDwcBw5cqTQyQmrV68Ob29vdO3aFd26dYO7hQUkdeuWvP4W1+giIhXheYIKsLCwQLNmzRAXF1dsG1NT07IPxiSqLPId4smWSnHCwABh3bsjzNcXly9fVmhapUoVdO7cGd26dUPXrl3RokWLwhMPXnW4iIeUiEiH6HQIys7OxpUrV9CpUydNl0Kkla5fv46wrCyEeXu/XH/rwAEAgIGBATw9PdGzZ09069YNHh4ehRceLag0h4t4SImIdIROhaD3338f/fr1Q506dZCamopPP/0U6enpGDt2rKZLI9IKz58/R2RkJPbu3Yt9+/bh2rVrCrc7ODigV69e8PX1Rffu3WFjY1P2JynNbC11zegiIqoAnQpBSUlJGDlyJO7du4eaNWuibdu2OHXqFFxcXDRdGlEuDSy58OjRI4SFhWHPnj3Yv38/0tLS5LcZGRmhQ4cO8PX1Ra9evdC8eXNIJBK11EVEpO10KgRt375d0yUQFU+NSy4kJCRg79692Lt3L44dO4acnBz5bTVr1kS/fv3Qt29fdOvWjRMAiIiKodOzw8qDq8iTSqh4VpQQAufPn0doaCj27t2LixcvKtzeuHFj9O/fHwMGDICHhwfPpE5ElQ5nhxFpKxWcH0cIgdOnT2Pnzp3YuXMnEhIS5LcZGBigY8eOGDBgAPr16wdXV9cKFP8CV08nIj3DEESkDGVZcqGEsCGTyXDy5Ens3LkTv/76KxITE+W3mZubw9fXFwMHDkTv3r2LPUFouXD1dCLSQwxBRMpQ2vPjFBE2pOPG4fjx4/Lgk5ycLG9uaWmJvn37YsiQIejVqxcsLCyUXztXTyciPcUxQUTKlJRU/Plx8o0beg4gAsBOiQShNja4e/++vJmVlRUGDBiAIUOGoEePHjAzMyv5+Sp6COvoUaBr16K3e3mV7zGJiJSMY4KItF0J58d5FhODQzIZdgLYA+ABkLvQ6P37sLGxkQefbt26le4s58o6hMXV04lITzEEEanQs2fPcOjQIezYsQO7Q0PxKN9tNQH4SSQYsnkzvIYOhbGxseKdS+rlUeYhLC51QUR6iiGISMnygs8vv/yCPXv24NGjR/LbHKytMSg9HUOFQEcDAxitWweMGlX4QV7Vy6Ps2Whc6oKI9BDHBBEpwbNnzxAeHo4dO3YUDj4ODhg8eDCGDRuGDh06wDA5ueSwUZpzDnG1diLSMxwTRKRF8gef3bt3KyxX4eDggCFDhmDo0KG5wSf/yQtfta5WaXp5eAiLiKjCGIKIyqCk4OPo6IjBgwcXHXzKorQDlXkIi4ioQhiCVI1n4dUcJb32T548wYEDB+RLVhQMPvl7fAwMDCped1l6ebhaOxFRuTEEqRLPwlt2ygqNFXztHzx4gN9//x2hoaE4cOAAnj59Kr9NJcGnIPbyEBGpHAdGqwoHrpadskJjWV/7F8HrlqUldp8+jdDQUEREREAqlcqb1K1dG36envAbMQId/PxUE3yIiKhYHBitS1SwoGalpszz3pTytRdC4NKSJfhj6VLsFgKnCzxMs2bN4OfnBz8ALT75BJLERODXX9mjR0RUSTAEqQrPwls2ygyNJbz2mZmZOHLkCP744w/s++03JN6+LW8iAdAOgN+CBfAbPx4NGjR42auU12HKdbWIiCoNhiBV4RTmslFmaCzw2scbGOCP4cPxx6RJOHr0KLKzs+VNzQF0BdAPwAAADgDQvTvQoEFuA/boERFVWgxBqsTBraWnxNCYlpaGozVq4NBbb+HQkSOITUwEtm6V3163bl306dMHvT084D1uHMzzD4srGLzYo0dEVGkxBKkapzCXXjlDY3Z2Nk6dOoVDhw7h0KFDOH36NGT5QouhoSE6duyIPn36oE+fPmjcuDEkEknujc+flxy82KNHRFRpcXYY6ZysrCyc+eMPHN+/H5HXruH4mTN48uSJQht3d3d0794d3bt3h5eXF6pVq1b8AyYlvTp4laYNERGpDGeHkW4r5zmA0tLScPLkSRw/fhzHjx/HmVOnkJ2To9DGzs5OHnq6deuGOnXqlL6u0vTWsUePiKjSYQgi9SjlOYCkUiliYmJw+vRpnDlzBn/99RcuXryocHgLAOwAdHpx6WpggKZnz0JSu7ZadoWIiCoHhiBSvWLOASR69MBNmQynT5+WX86dO4fMzMxCD1G/fn106tQJnWrWRKfly+GK3Cnt8se7fh1gCCIiojJgCNJX6lzTLC4Oz2QyxAD4B8AFAP9IpfinaVM8SE8v1NzS0hKtW7eGh4cH2rRpg/bt28PJyell3StXcrYWERFVGEOQLtGSdbVKIoTArVu3cOXKFVy6dAkXLlzAP2fPIgZATsHG6ekwMjJC8+bN4eHhIb80atSo+BXYOVuLiIiUhLPDdIWm1tUqhlQqRXx8PK5cuYKYmBhcuXJFfsnIyCjyPtUAtADQQiJBi7Fj0XLGDDRp0gRmZmbl2w/O1iIi0hucHaavNLCuVp6srCzExcXh6tWrCmEnNjZW4czL+RkZGaFhw4Z47bXX0KJFC/mljoEBJNevKye4cLYWERFVEEOQLlDxulrCwADJlpa4euQIYmNjFS4JCQkorrPQzMwMjRo1QuPGjdGkSRM0btwYjRs3RsOGDWFiYlL083PwMhERaQmGIF2gpKUbnjx5grj79xE7aRJi163DVSEQC+BfExNktGlT7P2sra3RqFEjedDJ++ni4lL82B0iIiItxxCkC8owGFgIgZSUFMTExODq1avyHp2rV6/i5s2bRT9+VhYMDQ1Rr149uLu7o1GjRnB3d5df7OzsXi4zQUREVEkwBOmKAutqiVq1cCclBdHR0YiOjkZMTIz83w8fPiz2YWxsbOThJn/YadCgQdGHsJKSgIgI9UylJyIiUiOGoKKo8xw6pZCamioPOPkvDx48KLK9gYEBGjZsqBBy8v5ta2tb+idW4VR6IiIiTeMU+YI0+MX/4MEDREdH4/Lly7h8+bI87Ny7d6/I9hKJBA0aNMBrr72mcHG3sIBZYmLFQpySptITEREpA6fIq5oyp6KXIDMzEzExMfKwk3e5fft2ke0lEgnq1atXKOw0atQI5ubmio2VFeLKMiNNy3rOiIiISkN/Q9CtW0DBJKnMqegAMjIy5OfYyd/DEx8fX+y0cxcXFzRt2lQh7DRu3BhVqlR59RMqM8SVdkYaD5kREZGO0t8Q9NprwP/+p/iFXcap6EIIPHr0CImJibhx4wbi4uIQGxuLf//9F7GxsUhOTi726e3t7dG0aVOFS5MmTSrWxafMEFeaGWlq6jkjIiJSBb0NQQuEgMukSbB//BgWtWvD3NwcZmZmMHr/fTxfvhzPZDI8MzBA1sSJePD773jw4AHu37+PBw8eICUlBTdv3sTNmzfx+PHjEp+nZs2acHNzw2uvvaYQeGrWrKn8nVLS+YTkCsxIKxRslNxzRkREpE56OzBamWxtbVG7dm00bNgQ7u7ucHNzg7u7O1xdXVG9enWlPtcrBQcX7r1R1eEpDp4mIiI14cBoJZoO4IFEgtSOHfFEKkVWVhaePn2KnJwcmJiYyC+mpqaoXr06atSoARsbG9SoUQN2dnaoU6cO6tSpA2dn59KN13kVZQ0uflXvjTJxRXciItJhetsTlGZgACttGcSr64OLuaI7ERGpmCp6gvQ3BMXEwKpxY02Xw0NKREREpaCKEGSglEfRRbVqabqCXCUNLiYiIiKV0ckQ9MMPP6BevXowMzNDq1atcPz4cU2XVH55M7ryq8iMLiIiIioVnQtBISEhmDVrFhYsWIDz58+jU6dO8PX1LX6FdG2XN7jY0DD3OgcXExERqYXOjQny9PTEG2+8gdWrV8u3NW7cGAMHDkRQUNAr76+KY4pKwcHFRERExdL7KfLPnj3DuXPnMG/ePIXtPXr0wMmTJ4u8T3Z2NrKzs+XX09PTVVpjuTk7M/wQERGpkU4dDrt37x6kUins7e0Vttvb2yMlJaXI+wQFBcHa2lp+qV27tjpKJSIiIi2nUyEoj0QiUbguhCi0Lc/8+fORlpYmvyQmJqqjRCIiItJyOnU4zNbWFoaGhoV6fVJTUwv1DuUxNTWFqampOsojIiIiHaJTPUEmJiZo1aoVwsPDFbaHh4ejffv2GqqKiIiIdJFO9QQBwJw5czB69Gi0bt0a7dq1w7p163Dz5k288847mi6NiIiIdIjOhaDhw4fj/v37WLp0KZKTk9G0aVPs27cPLi4umi6NiIiIdIjOnSeoorT2PEFERERULK4dRkRERKQkDEEVkZQEHD2a+5OIiIh0CkNQeQUHAy4uQNeuuT+DgzVdEREREZUBQ1B5JCUBkycDMlnudZkM8PdnjxAREZEOYQgqj7i4lwEoj1SauwAqERER6QSGoPJwdQUMCrx0hoa5K8ATERGRTmAIKg9nZ2DdutzgA+T+XLuWq8ATERHpEJ07WaLWmDAB6Nkz9xBYw4YMQERERDqGIaginJ0ZfoiIiHQUD4cRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgv6VQIqlu3LiQSicJl3rx5mi6LiIiIdJCRpgsoq6VLl2LSpEny65aWlhqshoiIiHSVzoWgqlWrwsHBQdNlEBERkY7TqcNhAPDFF1+gRo0aaNmyJT777DM8e/ZM0yURERGRDtKpnqB3330Xb7zxBqpXr47Tp09j/vz5iI+Px/r164u9T3Z2NrKzs+XX09LSAADp6ekqr5eIiIiUI+97WwihvAcVGrZo0SIBoMTLmTNnirzvzp07BQBx7969Cj0+L7zwwgsvvPCiG5fr168rLYNIhFBmpCq7e/fu4d69eyW2qVu3LszMzAptv3XrFpydnXHq1Cl4enoWed+CPUGPHj2Ci4sLbt68CWtr64oVr0PS09NRu3ZtJCYmwsrKStPlqA33m/utD7jf3G99kJaWhjp16uDhw4eoVq2aUh5T44fDbG1tYWtrW677nj9/HgDg6OhYbBtTU1OYmpoW2m5tba1Xvzx5rKysuN96hPutX7jf+kVf99vAQHnDmTUegkorKioKp06dgre3N6ytrXHmzBnMnj0b/fv3R506dTRdHhEREekYnQlBpqamCAkJwZIlS5CdnQ0XFxdMmjQJc+fO1XRpREREpIN0JgS98cYbOHXqVIUfx9TUFIsWLSryEFllxv3mfusD7jf3Wx9wv5W33xofGE1ERESkCTp3skQiIiIiZWAIIiIiIr3EEERERER6iSGIiIiI9FKlDEE//PAD6tWrBzMzM7Rq1QrHjx8vsf2xY8fQqlUrmJmZoX79+lizZo2aKlWusuz3r7/+Ch8fH9SsWRNWVlZo164dDhw4oMZqlaes73eeP//8E0ZGRmjZsqVqC1SRsu53dnY2FixYABcXF5iamqJBgwbYsGGDmqpVnrLu95YtW9CiRQtUqVIFjo6OGD9+PO7fv6+maisuMjIS/fr1g5OTEyQSCXbv3v3K+1SGz7Sy7ndl+Uwrz/udR5c/08qz38r4TKt0ISgkJASzZs3CggULcP78eXTq1Am+vr64efNmke3j4+PRu3dvdOrUCefPn8eHH36ImTNnYteuXWquvGLKut+RkZHw8fHBvn37cO7cOXh7e6Nfv37ys3DrirLud560tDSMGTMG3bp1U1OlylWe/R42bBgOHz6M4OBgxMbGYtu2bWjUqJEaq664su73iRMnMGbMGEyYMAHR0dHYsWMHzpw5g4kTJ6q58vLLzMxEixYtsGrVqlK1ryyfaWXd78rymVbW/c6j659p5dlvpXymKW0VMi3h4eEh3nnnHYVtjRo1EvPmzSuy/dy5c0WjRo0Utvn7+4u2bduqrEZVKOt+F6VJkyZiyZIlyi5Npcq738OHDxcLFy4UixYtEi1atFBhhapR1v3ev3+/sLa2Fvfv31dHeSpT1v3+8ssvRf369RW2ffvtt8LZ2VllNaoSABEaGlpim8rymZZfafa7KLr4mZZfWfZb1z/T8ivNfivrM61S9QQ9e/YM586dQ48ePRS29+jRAydPnizyPlFRUYXa9+zZE2fPnsXz589VVqsylWe/C5LJZMjIyICNjY0qSlSJ8u73xo0bcf36dSxatEjVJapEefZ77969aN26NZYtW4ZatWrBzc0N77//Pp4+faqOkpWiPPvdvn17JCUlYd++fRBC4M6dO9i5cyf69OmjjpI1ojJ8pimDLn6mlZeuf6aVh7I+03TmjNGlce/ePUilUtjb2ytst7e3R0pKSpH3SUlJKbJ9Tk4O7t27V+LirNqiPPtd0IoVK5CZmYlhw4apokSVKM9+x8XFYd68eTh+/DiMjHTz1788+/3ff//hxIkTMDMzQ2hoKO7du4epU6fiwYMHOjMuqDz73b59e2zZsgXDhw9HVlYWcnJy0L9/f3z33XfqKFkjKsNnmjLo4mdaeVSGz7TyUNZnWqXqCcojkUgUrgshCm17Vfuitmu7su53nm3btmHx4sUICQmBnZ2dqspTmdLut1QqxahRo7BkyRK4ubmpqzyVKcv7LZPJIJFIsGXLFnh4eKB3795YuXIlNm3apFO9QUDZ9jsmJgYzZ87Exx9/jHPnziEsLAzx8fF455131FGqxlSWz7Ty0vXPtNKqbJ9pZaGsz7RKFRttbW1haGhY6H+Fqamphf5nlMfBwaHI9kZGRqhRo4bKalWm8ux3npCQEEyYMAE7duxA9+7dVVmm0pV1vzMyMnD27FmcP38e06dPB5D7hySEgJGREQ4ePIiuXbuqpfaKKM/77ejoiFq1asHa2lq+rXHjxhBCICkpCa6uriqtWRnKs99BQUHo0KEDPvjgAwBA8+bNYWFhgU6dOuHTTz+tlL0ileEzrSJ0+TOtrCrLZ1p5KOszrVL1BJmYmKBVq1YIDw9X2B4eHo727dsXeZ927doVan/w4EG0bt0axsbGKqtVmcqz30Du/5bGjRuHrVu36uQYibLut5WVFS5duoQLFy7IL++88w7c3d1x4cIFeHp6qqv0CinP+92hQwfcvn0bjx8/lm/7999/YWBgAGdnZ5XWqyzl2e8nT57AwEDxY87Q0BDAy96RyqYyfKaVl65/ppVVZflMKw+lfaZVaFi1Ftq+fbswNjYWwcHBIiYmRsyaNUtYWFiIhIQEIYQQ8+bNE6NHj5a3/++//0SVKlXE7NmzRUxMjAgODhbGxsZi586dmtqFcinrfm/dulUYGRmJ77//XiQnJ8svjx490tQulEtZ97sgXZ1JUdb9zsjIEM7OzmLIkCEiOjpaHDt2TLi6uoqJEydqahfKpaz7vXHjRmFkZCR++OEHcf36dXHixAnRunVr4eHhoaldKLOMjAxx/vx5cf78eQFArFy5Upw/f17cuHFDCFF5P9PKut+V5TOtrPtdkK5+ppV1v5X1mVbpQpAQQnz//ffCxcVFmJiYiDfeeEMcO3ZMftvYsWNFly5dFNpHRESI119/XZiYmIi6deuK1atXq7li5SjLfnfp0kUAKHQZO3as+guvoLK+3/np6geGEGXf7ytXroju3bsLc3Nz4ezsLObMmSOePHmi5qorrqz7/e2334omTZoIc3Nz4ejoKN58802RlJSk5qrL7+jRoyX+rVbWz7Sy7ndl+Uwrz/udn65+ppVnv5XxmSYRopL2CRMRERGVoFKNCSIiIiIqLYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURUKSxduhTNmjWDhYUF7O3tMWXKFDx//lzTZRGRFjPSdAFERBUlhIBUKsXatWtRq1YtxMTEYMyYMWjevDmmTJmi6fKISEtxAVUiqpRGjRqFmjVr4ptvvtF0KUSkpXg4jIh03o0bNzB9+nQ0bdoU1atXh6WlJX755Rc4OztrujQi0mIMQUSk0+7duwcPDw/cu3cPK1euxIkTJxAVFQVDQ0O0bNlS0+URkRbjmCAi0mn79u1DTk4Otm3bBolEAgD4/vvv8ezZM4YgIioRQxAR6TQbGxukp6dj7969aNKkCX777TcEBQWhVq1aqFmzpqbLIyItxoHRRKTThBCYMmUKtm7dCnNzc7z11lvIysrCjRs38Pvvv2u6PCLSYgxBREREpJc4MJqIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESkl/4P2FZEkFCs9E0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYgUlEQVR4nO3dd1hT1/8H8HfYiIAiWzRaxdW690YUEReoVautq6jUVbXDUa2rVlr91dbWUf0WZ91aRa0LdxVt1aLWWRxQsYLiAARZyfn9QYmEJSPJTcj79Tx5aG5OwucmcvPuueecKxNCCBAREREZGROpCyAiIiKSAkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQScrLywteXl5Sl1Fiw4cPR/ny5YvUtlq1ahg+fLhW65HJZJgzZ45Wf8frpKSkYM6cOThx4oSkdRiKo0ePolmzZrCxsYFMJsPu3buxdu1ayGQyREVFqdpt2rQJ3333nVZqmDlzJqpWrQozMzNUqFCh2M8fPnw4qlWrpvG69M369evxzjvvoHbt2jAxMSlwn5OSkjBlyhR07doVTk5OevF3Sfkzk7oAMm7Lly+XugSd2bVrF+zs7KQuQ+tSUlIwd+5cADDogKsLQggMGDAAtWrVwp49e2BjY4PatWsjMzMTZ8+ehZubm6rtpk2bcPXqVUyaNEmjNYSGhuLLL7/EjBkz4OfnB0tLS42+flmyYcMGxMbGokWLFlAqlcjIyMi33ZMnT7Bq1So0bNgQAQEB+Omnn3RcKRUVQxBJql69elKXoDONGzeWugTSoJcvX8LKygoymazEr/Hvv//i6dOn6NOnDzp37qz2mJOTU2lLLJKrV68CAD788EM4Ozvr5HdqiiY+g+I4dOgQTEyyTqD07NlT9d7lJpfL8ezZM8hkMsTHxzME6TGeDqMimzNnDmQyGa5du4ZBgwbB3t4eLi4ueP/995GQkKDWNjU1FdOnT0f16tVhYWGBypUrY9y4cXj+/Llau/xOh61YsQINGzZE+fLlYWtrizp16uCzzz4DAERFRcHMzAzBwcF56jt16hRkMhm2b99e6H48f/4cH3/8Md544w1YWlrC2dkZ3bt3x82bNwEAJ06cgEwmy3M6JyoqCjKZDGvXrs3zmteuXUPnzp1hY2MDJycnjB8/HikpKWpt8jsd9rpaNCE2NhZBQUHw8PCAhYUFqlevjrlz5yIzM1Ot3dy5c9GyZUs4ODjAzs4OTZo0QUhICHJfY/nYsWPw8vJCpUqVYG1tjapVq6Jfv35ISUlBVFSU6st77ty5kMlkkMlkrz0NmJKSgk8++QTVq1eHlZUVHBwc0KxZM2zevFmt3dq1a1G7dm1YWlqibt26WL9+fZ5TMcX5/C5cuIB33nkH1apVg7W1NapVq4ZBgwYhOjo6z++VyWQ4fPgw3n//fTg5OaFcuXJIS0sDAGzduhWtW7eGjY0NypcvD19fX0RERBS6z3PmzIGHhwcAYOrUqZDJZKr9yH06zMvLC7/++iuio6NV7+nrvviVSiUWLlyIOnXqqP5tDR06FDExMao21apVw8yZMwEALi4uRTptk99nkJ/09HTMnz9f9fudnJwwYsQIPH78WK1dWloaPv74Y7i6uqJcuXLo0KEDLl68mOfvRVOfwYULF9C7d284ODjAysoKjRs3xrZt2wrd52zZAeh1ivL5kH5gTxAVW79+/TBw4EAEBgbir7/+wvTp0wEAq1evBpDVxR8QEICjR49i+vTpaN++Pa5cuYLZs2fj7NmzOHv2bIFd7lu2bMHYsWMxYcIE/N///R9MTExw+/ZtXL9+HUDWQbt379748ccfMWXKFJiamqqeu3TpUri7u6NPnz4F1p6UlIR27dohKioKU6dORcuWLfHixQucOnUKDx8+RJ06dYr9fmRkZKB79+4ICgrCtGnTEB4ejvnz5yM6Ohp79+4tdS3Dhw/HunXrcO/evWKPu8juujcxMcGsWbNQo0YNnD17FvPnz0dUVBTWrFmjahsVFYWgoCBUrVoVAHDu3DlMmDABDx48wKxZs1RtevTogfbt22P16tWoUKECHjx4gIMHDyI9PR1ubm44ePAgunXrhsDAQIwcORLA63s1PvroI2zYsAHz589H48aNkZycjKtXr+LJkyeqNmvXrsWIESPg7++Pb775BgkJCZgzZw7S0tKK/OWUW1RUFGrXro133nkHDg4OePjwIVasWIHmzZvj+vXrcHR0VGv//vvvo0ePHtiwYQOSk5Nhbm6OBQsWYObMmRgxYgRmzpyJ9PR0LFq0CO3bt8cff/xRYG/nyJEj0bBhQ/Tt2xcTJkzA4MGDC/y7WL58OUaPHo07d+5g165dRdq3MWPGYNWqVRg/fjx69uyJqKgofP755zhx4gT+/PNPODo6YteuXVi2bBlCQkJw8OBB2Nvbq4JZfor6GSiVSvj7++O3337DlClT0KZNG0RHR2P27Nnw8vLChQsXYG1tDQAYMWIEtm7diilTpsDb2xvXr19Hnz59kJiYmG8NpfkMjh8/jm7duqFly5b48ccfYW9vjy1btmDgwIFISUnR+pg90kOCqIhmz54tAIiFCxeqbR87dqywsrISSqVSCCHEwYMH8223detWAUCsWrVKta1jx46iY8eOqvvjx48XFSpUKLSO48ePCwBi165dqm0PHjwQZmZmYu7cuYU+d968eQKACAsLe+3rHz9+XG37vXv3BACxZs0a1bZhw4YJAGLJkiVqbb/88ksBQJw+fVq1TS6Xi2HDhhWrFiGEeP/994WpqamIiooqtJ0QQgAQs2fPVt0PCgoS5cuXF9HR0Wrt/u///k8AENeuXcv3dRQKhcjIyBDz5s0TlSpVUn22O3bsEADEpUuXCqzh8ePHeep4nbfeeksEBAQU+LhCoRDu7u6iSZMmqlqEECIqKkqYm5sLuVyu2laczy+3zMxM8eLFC2FjY6P2ma5Zs0YAEEOHDlVr/88//wgzMzMxYcIEte1JSUnC1dVVDBgwoJC9flXTokWL1LZn/7579+6ptvXo0UNtPwtz48YNAUCMHTtWbfvvv/8uAIjPPvtMtS377/rx48eFvmZxPoPNmzcLAGLnzp1qr3H+/HkBQCxfvlwIIcS1a9cEADF16lS1dtnPz/n3oonPoE6dOqJx48YiIyNDrW3Pnj2Fm5ubUCgUhb4HORX18yjJ3wPpDk+HUbH17t1b7X6DBg2QmpqKR48eAcg6XQIgz/9V9e/fHzY2Njh69GiBr92iRQs8f/4cgwYNQmhoKOLj4/O08fLyQsOGDbFs2TLVth9//BEymQyjR48utPYDBw6gVq1a6NKlS6Htiuvdd99Vuz948GAAWf/nWdpaQkJCkJmZCblcXuy69u3bh06dOsHd3R2ZmZmqm5+fHwDg5MmTqrbHjh1Dly5dYG9vD1NTU5ibm2PWrFl48uSJ6rNt1KgRLCwsMHr0aKxbtw53794tVj05a8jMzFSdamvRogUOHDiAadOm4cSJE3j58qXa827duoV///0XgwcPVjvNIJfL0aZNm2K/L9levHiBqVOnombNmjAzM4OZmRnKly+P5ORk3LhxI0/7fv36qd0/dOgQMjMzMXToULX9srKyQseOHSWbIZf97y7332CLFi1Qt27dQv8GC1Kcz2Dfvn2oUKECevXqpfa+NGrUCK6urqr3Jfvf34ABA9Se//bbb8PMLP8TFSX9DG7fvo2bN2+q/lZztu3evTsePnyIW7duFft9IcPGEETFVqlSJbX72V342V9cT548gZmZWZ5TIDKZDK6urmqnOHIbMmQIVq9ejejoaPTr1w/Ozs5o2bIlwsLC1Np9+OGHOHr0KG7duoWMjAz873//w9tvvw1XV9dCa3/8+HGh3f0lYWZmluc9ya6jsH3VRi25xcXFYe/evTA3N1e7vfnmmwCgCpl//PEHunbtCgD43//+hzNnzuD8+fOYMWMGgFefbY0aNXDkyBE4Oztj3LhxqFGjBmrUqIElS5a8tpaoqKg8dWR/CX7//feYOnUqdu/ejU6dOsHBwQEBAQGIjIwE8Op9zO/zfd1nXpjBgwdj6dKlGDlyJA4dOoQ//vgD58+fh5OTU54gBkBtthaQ9f4CQPPmzfPs29atW/MN8bqQ/X7lrhcA3N3dC/13+brXLMpnEBcXh+fPn8PCwiLP+xIbG6t6X7Jf08XFRe35+f1NZSvpZ5Dd7pNPPsnTbuzYsQAg2edF0uGYINK4SpUqITMzE48fP1YLQkIIxMbGonnz5oU+f8SIERgxYgSSk5Nx6tQpzJ49Gz179sTff/+t6g0ZPHgwpk6dimXLlqFVq1aIjY3FuHHjXlubk5OT2sDQ/FhZWQGAasBltoIOkJmZmXjy5InaQTs2NhZA3sBY3FpKy9HREQ0aNMCXX36Z7+Pu7u4AssZimZubY9++far9B4Ddu3fneU779u3Rvn17KBQKXLhwAT/88AMmTZoEFxcXvPPOOwXW4u7ujvPnz6ttq127NgDAxsYGc+fOxdy5cxEXF6fqFerVqxdu3rypeh+z39eccm8r6ueXkJCAffv2Yfbs2Zg2bZpqe1paGp4+fZrvPuQe7Jo9ZmjHjh0l6qnTluz36+HDh3mC9r///ptnrFNxXrMon4GjoyMqVaqEgwcP5vtatra2aq8ZFxeHypUrqx7P/pvKT0k/g+x206dPR9++ffNtk/3vkYwHe4JI47Kn+v78889q23fu3Ink5OQ8U4ELYmNjAz8/P8yYMQPp6em4du2a6jErKyvVKZnFixejUaNGaNu27Wtf08/PD3///bfqlF1+sgcfX7lyRW37nj17CnzOxo0b1e5v2rQJQOHr5BSlltLKnsZbo0YNNGvWLM8tOwTJZDKYmZmpDTR/+fIlNmzYUOBrm5qaomXLlqrTkn/++SeAvD2D2SwsLPL8/uwvw5xcXFwwfPhwDBo0CLdu3UJKSgpq164NNzc3bN68WW22WnR0NMLDw9WeX9TPTyaTQQiRZzDyTz/9BIVCUeB+5+Tr6wszMzPcuXMn3/e3WbNmRXqdorC0tMy3dyo/3t7eAPL+DZ4/fx43btwo8t9gTsX5DHr27IknT55AoVDk+55kh40OHToAyJrZldOOHTvyzF4sSFE/g9q1a8PT0xOXL18usF1+/x6pbGNPEGmcj48PfH19MXXqVCQmJqJt27aq2WGNGzfGkCFDCnzuqFGjYG1tjbZt28LNzQ2xsbEIDg6Gvb19nh6ksWPHYuHChbh48WKR1+GYNGkStm7dCn9/f0ybNg0tWrTAy5cvcfLkSfTs2ROdOnWCq6srunTpguDgYFSsWBFyuRxHjx7FL7/8ku9rWlhY4JtvvsGLFy/QvHlz1ewwPz8/tGvXrlS1AEBgYCDWrVuHO3fuFLu3Yd68eQgLC0ObNm3w4Ycfonbt2khNTUVUVBT279+PH3/8ER4eHujRowcWL16MwYMHY/To0Xjy5An+7//+L09A+PHHH3Hs2DH06NEDVatWRWpqqmpWYPbYJltbW8jlcoSGhqJz585wcHCAo6NjoTPbWrZsiZ49e6JBgwaoWLEibty4gQ0bNqB169YoV64cAOCLL77AyJEj0adPH4waNQrPnz/HnDlz8pyKKernZ2dnhw4dOmDRokWq+k6ePImQkJAir5pcrVo1zJs3DzNmzMDdu3fRrVs3VKxYEXFxcfjjjz9UPVyaUL9+ffzyyy9YsWIFmjZtChMTkwJDVu3atTF69Gj88MMPMDExgZ+fn2p2WJUqVTB58uRi/34TE5MifwbvvPMONm7ciO7du2PixIlo0aIFzM3NERMTg+PHj8Pf3x99+vTBm2++iUGDBuGbb76BqakpvL29ce3aNXzzzTewt7cv0qy/4nwGK1euhJ+fH3x9fTF8+HBUrlwZT58+xY0bN/Dnn3++dnmN69evq2aqxsbGIiUlBTt27ACQteZZzpmABw4cQHJyMpKSklTPzW7bvXt31b9rkpikw7LJoBQ0iyS/mSwvX74UU6dOFXK5XJibmws3NzcxZswY8ezZM7Xn5p4dtm7dOtGpUyfh4uIiLCwshLu7uxgwYIC4cuVKvjV5eXkJBwcHkZKSUuT9ePbsmZg4caKoWrWqMDc3F87OzqJHjx7i5s2bqjYPHz4Ub7/9tnBwcBD29vbivffeExcuXMh3dpiNjY24cuWK8PLyEtbW1sLBwUGMGTNGvHjxQu335p4dVtRasmeg5Xx/C4J8ZqE8fvxYfPjhh6J69erC3NxcODg4iKZNm4oZM2ao1bh69WpRu3ZtYWlpKd544w0RHBwsQkJC1H732bNnRZ8+fYRcLheWlpaiUqVKomPHjmLPnj1qv/PIkSOicePGwtLSMs8sn/xMmzZNNGvWTFSsWFH1+ydPnizi4+PV2v3000/C09NTWFhYiFq1aonVq1eLYcOG5ZmlU9TPLyYmRvTr109UrFhR2Nraim7duomrV6/m+ayy/42fP38+3/p3794tOnXqJOzs7ISlpaWQy+Xi7bffFkeOHCl0v4szO+zp06fi7bffFhUqVBAymUy87vCtUCjE119/LWrVqiXMzc2Fo6OjeO+998T9+/fV2hV1dli2on4GGRkZ4v/+7/9Ew4YNhZWVlShfvryoU6eOCAoKEpGRkap2qamp4qOPPhLOzs7CyspKtGrVSpw9e1bY29uLyZMn53lPSvsZXL58WQwYMEA4OzsLc3Nz4erqKry9vcWPP/742n3Pfq/yu+X+u5PL5QW2LcrfMumGTIhcK6ERGYhHjx5BLpdjwoQJWLhwodTlkESGDx+OEydOqF1niwxbeHg42rZti40bN6pmWhJpA0+HkcGJiYnB3bt3sWjRIpiYmGDixIlSl0REJRQWFoazZ8+iadOmsLa2xuXLl/HVV1/B09OzwAHMRJrCEEQG56effsK8efNQrVo1bNy4UW1WCREZFjs7Oxw+fBjfffcdkpKS4OjoCD8/PwQHB6vNVCTSBp4OIyIiIqOkN1PkV6xYgQYNGsDOzg52dnZo3bo1Dhw4oHpcCIE5c+bA3d0d1tbW8PLyUpsyTURERFQcehOCPDw88NVXX+HChQu4cOECvL294e/vrwo6CxcuxOLFi7F06VKcP38erq6u8PHxUU0/JCIiIioOvT4d5uDggEWLFuH999+Hu7s7Jk2ahKlTpwLIWtXVxcUFX3/9NYKCgiSulIiIiAyNXg6MVigU2L59O5KTk9G6dWvcu3cPsbGxqmsbAVmrp3bs2BHh4eGFhqC0tDS15fOVSiWePn2KSpUq5Vl+nYiIiPSTEAJJSUlwd3cv0kKaRaFXIeivv/5C69atkZqaivLly2PXrl2oV6+eakn23BfZc3FxQXR0dKGvGRwcrLEVW4mIiEha9+/f19jFp/UqBNWuXRuXLl3C8+fPsXPnTgwbNkx1lWkg74XzhBCv7c2ZPn06PvroI9X9hIQEVK1aFffv34ednZ1md4CIiIi0IjExEVWqVNHoNd70KgRZWFigZs2aAIBmzZrh/PnzWLJkiWocUGxsLNzc3FTtHz16lKd3KDdLS8s81z8CoJqFRkRERIZDk0NZ9GZ2WH6EEEhLS0P16tXh6uqKsLAw1WPp6ek4efIk2rRpI2GFREREZKj0pifos88+g5+fH6pUqYKkpCRs2bIFJ06cwMGDByGTyTBp0iQsWLAAnp6e8PT0xIIFC1CuXDleV4aIiIhKRG9CUFxcHIYMGYKHDx/C3t4eDRo0wMGDB+Hj4wMAmDJlCl6+fImxY8fi2bNnaNmyJQ4fPqzRc4NERERkPPR6nSBtSExMhL29PRISEjgmiIiIyEBo4/tbr8cEEREREWkLQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJb0JQcHBwWjevDlsbW3h7OyMgIAA3Lp1S63N8OHDIZPJ1G6tWrWSqGIiIiIyZHoTgk6ePIlx48bh3LlzCAsLQ2ZmJrp27Yrk5GS1dt26dcPDhw9Vt/3790tUMRERERkyM6kLyHbw4EG1+2vWrIGzszMuXryIDh06qLZbWlrC1dVV1+URERFRGaM3PUG5JSQkAAAcHBzUtp84cQLOzs6oVasWRo0ahUePHhX6OmlpaUhMTFS7EREREcmEEELqInITQsDf3x/Pnj3Db7/9ptq+detWlC9fHnK5HPfu3cPnn3+OzMxMXLx4EZaWlvm+1pw5czB37tw82xMSEmBnZ6e1fSAiIiLNSUxMhL29vUa/v/UyBI0bNw6//vorTp8+DQ8PjwLbPXz4EHK5HFu2bEHfvn3zbZOWloa0tDTV/cTERFSpUoUhiIiIyIBoIwTpzZigbBMmTMCePXtw6tSpQgMQALi5uUEulyMyMrLANpaWlgX2EhERERGAmBggMhLw9ARe891blujNmCAhBMaPH49ffvkFx44dQ/Xq1V/7nCdPnuD+/ftwc3PTQYVERERlUEgIIJcD3t5ZP0NCpK5IZ/QmBI0bNw4///wzNm3aBFtbW8TGxiI2NhYvX74EALx48QKffPIJzp49i6ioKJw4cQK9evWCo6Mj+vTpI3H1REREBigmBhg9GlAqs+4rlUBQUNZ2I6A3IWjFihVISEiAl5cX3NzcVLetW7cCAExNTfHXX3/B398ftWrVwrBhw1CrVi2cPXsWtra2EldPRERkgCIjXwWgbAoFcPu2NPXomN6MCXrd+Gxra2scOnRIR9UQEREZAU9PwMREPQiZmgI1a6o1++eff7Bv3z7cuHEDTk5OmDVrlo4L1Q69CUFERESkYx4ewKpVWafAFIqsALRypWpw9M2bN/HZZ59h165dqqfUk8sx6/33y8QAar05HUZEREQSCAwEoqKA48ezfgYGQgiB77//Ho0aNcKuXbsgk8nQ3tMTUwF8HB1dZgZQ6+U6QdqkjXUGiIiIyorMzEwEBQVh9erVALKu2fnNp5+ino9P3tNmUVE66xHSxvc3e4KIiIgIAJCamoq+ffti9erVMDExwZIlS7B//37Uk8nK5ABqjgkiIiIiKBQKvPvuu9i7dy+srKywdetW9O7dO+vBIg6gNjTsCSIiIjJyQgiMHTsWv/zyCywsLLBv375XAQh4NYDa1DTrfq4B1IaKPUFERERGbsGCBVi1ahVkMhk2bdqEzp07520UGAj4+madAqtZ0+ADEMAQREREZNQOHDiAzz//HACwbNky9OvXr+DGHh5lIvxk4+kwIiIiI3Xnzh0MHjwYQggEBQVhzJgxUpekUwxBRERERiglJQX9+vXD8+fP0bJlSyxZskTqknSOIYiIiMgITZ06FZcvX4azszN27NgBS0tLqUvSOYYgIiIiI3P06FEsXboUALBhwwZ4lKFxPsXBEERERGREEhISMGLECADAmDFj0LVrV4krkg5DEBERkRGZOHEi7t+/jxo1amDRokVSlyMphiAiIiIjERoainXr1kEmk2HdunWwsbGRuiRJMQQREREZgcePH2P06NEAgE8//RRt27aVuCLpMQQRERGVcUIIjBkzBo8ePcKbb76JuXPnSl2SXmAIIiIiKuM2b96MnTt3wszMDBs2bICVlZXUJekFhiAiIqIy7MGDBxg3bhwAYNasWWjcuLHEFekPhiAiIqIySgiBkSNH4vnz52jevDmmT58udUl6hSGIiIiojFq1ahUOHjwIKysrrF+/HmZmvG56TgxBREREZdDdu3fx8ccfAwAWjBiBOuXLS1yR/mEIIiIiKmMUCgWGDx+O5ORkdAQwccUKQC4HQkKkLk2vMAQRERGVMd999x1+++03lAewBv992SuVQFAQEBMjbXF6hCGIiIioDLl27RpmzJgBAPgWQPWcDyoUwO3bUpSllxiCiIiIyoiMjAwMGzYMaWlp8OvUCYEymXoDU1OgZk1pitNDDEFERERlxIIFC3Dx4kVUrFgRP/38M2T/+19W8AGyfq5cCXh4SFukHuFcOSIiojLg4sWLmD9/PgBg+fLlcHd3BwIDAV/frFNgNWsyAOXCEERERGTgXr58iffeew+ZmZkYMGAA3nnnnVcPengw/BSAp8OIiIgM3LRp03Dz5k24ublh+fLlUpdjMBiCiIiIDFhYWBi+//57AMDq1atRqVIliSsyHAxBREREBurZs2cYMWIEAGDs2LHo1q2bxBUZFoYgIiIiAzVu3Dg8ePAAtWrVwsKFC6Uux+AwBBERERmgzZs3Y/PmzTA1NcWGDRtgY2MjdUkGhyGIiIjIwPzzzz8YO3YsAGDmzJlo0aKFxBUZJoYgIiIiA5KRkYFBgwbh+fPnaNGiheoSGVR8DEFEREQGZPbs2QgPD4ednR02b94Mc3NzqUsyWAxBREREBiIsLAxfffUVAOCnn37CG2+8IXFFho0hiIiIyADExsbivffegxACQUFB6N+/v9QlGTyGICIiIj2nUCjw3nvv4dGjR6hfvz6+/fZbqUsqExiCiIiI9NzcuXNx9OhRlCtXDlu3boW1tbXUJZUJehOCgoOD0bx5c9ja2sLZ2RkBAQG4deuWWhshBObMmQN3d3dYW1vDy8sL165dk6hiIiIi7QsNDcUXX3wBAPjxxx9Rt25diSsqO/QmBJ08eRLjxo3DuXPnEBYWhszMTHTt2hXJycmqNgsXLsTixYuxdOlSnD9/Hq6urvDx8UFSUpKElRMRERVRTAxw/HjWzyK4desWhgwZAgCYMGGC6r9JM2RCCCF1Efl5/PgxnJ2dcfLkSXTo0AFCCLi7u2PSpEmYOnUqACAtLQ0uLi74+uuvERQUVKTXTUxMhL29PRISEmBnZ6fNXSAiInolJAQYPRpQKgETE2DVKiAwMP+2MTFIunwZLSdPxo3ISLRr1w7Hjh1Tnw4fEwNERgKenoCHh272QULa+P7Wm56g3BISEgAADg4OAIB79+4hNjYWXbt2VbWxtLREx44dER4eLkmNRERERRIT8yoAAVk/g4Ly7xEKCYGyalUM79kTNyIj4V6hArZv364egEJCALkc8PbO+hkSopv9KGP0MgQJIfDRRx+hXbt2eOuttwBkTQ0EABcXF7W2Li4uqsfyk5aWhsTERLUbERGRTkVGvgpA2RQK4PZt9W3/haXPhcAvAMwB7EhMhGtmZp42RQpUVCi9DEHjx4/HlStXsHnz5jyPyWQytftCiDzbcgoODoa9vb3qVqVKFY3XS0REVChPz6xTYDmZmgI1a6pvi4zEOqUSC/67uwpAa6VSPSwVNVDRa+ldCJowYQL27NmD48ePwyPHOU5XV1cAyNPr8+jRozy9QzlNnz4dCQkJqtv9+/e1UzgREVFBPDyyxgCZmmbdNzUFVq7MM5bnZHw8Rv33358BGJ7dNmdYKmqgotfSmxAkhMD48ePxyy+/4NixY6hevbra49WrV4erqyvCwsJU29LT03Hy5Em0adOmwNe1tLSEnZ2d2o2IiEjnAgOBqKis2WFRUXkGRf/999/oExSEDAD9ZTJ8AeQflooYqOj1zKQuINu4ceOwadMmhIaGwtbWVtXjY29vD2tra8hkMkyaNAkLFiyAp6cnPD09sWDBApQrVw6DBw+WuHoiIqIi8PDIN6zExsbCz88Pz549Q8uWLbFuwwaYPHiQ1buTX7gJDAR8fbNOgRXUhl5Lb6bIFzSuZ82aNRg+fDiArN6iuXPnYuXKlap/KMuWLVMNni4KTpEnIiJ98vz5c3h5eeHy5ct44403EB4eXugwD2Olje9vvQlBusIQRERE+uLly5fo1q0bTp06BRcXF5w5cwY1atSQuiy9ZFTrBBEREZVlmZmZGDRoEE6dOgU7OzscPHiQAUjHGIKIiIh0TKFQYPjw4QgNDYWlpSX27NmDRo0aSV2W0WEIIiIi0iGFQoERI0Zg48aNMDMzw7Zt29CxY0epyzJKDEFEREQ6olQqMXLkSGzYsAGmpqbYsmULevfuLXVZRoshiIiISAeUSiVGjx6NtWvXwtTUFJs3b0a/fv2kLsuoMQQRERFpmUKhwKhRoxASEgITExP8/PPP6N+/v9RlGT29WSyRiIjIoMXEZF3Xy9NTbfHC9PR0vPfee9i+fTtMTEywfv16vPPOOxIWStnYE0RERFRaISGAXA54e2f9DAkBAKSkpCAgIADbt2+Hubk5tm3bhnfffVfiYikbQxAREVFpxMQAo0e/urK7UgkEBSHxxg1069YNBw4cgLW1Nfbu3csxQHqGp8OIiIhKIzLyVQD6zyOFAt0DAnDx779hZ2eH/fv3o23bthIVSAVhCCIiIioNT0/AxEQVhK4C6Akg+u+/4eTkhEOHDqFx48aSlkj54+kwIiKi0vDwAFatAkxNsR9AGwDRADw9PXH69GkGID3GEERERFRK4v33seTzz9HLxARJADp16oRz586hVq1aUpdGhWAIIiIiKoWMjAyMHTsWk+bMgVKpxKhRo3Do0CE4ODhIXRq9BscEERERldCzZ8/Qv39/HD16FDKZDN988w0mTZoEmUwmdWlUBAxBREREJXD79m307NkTt27dgo2NDTZv3oxevXpJXRYVA0MQERFRMZ08eRJ9+/bF06dPUaVKFezduxcNGzaUuiwqJo4JIiIiKobVq1fDx8cHT58+RYsWLfDHH38wABkohiAiIqIiUCgUmDJlCgIDA5GRkYGBAwfixIkTcHV1lbo0KiGGICIiotd48eIF+vXrh0WLFgEAZs+ejc2bN8Pa2lriyqg0OCaIiIioEDExMejVqxcuXboES0tLrFmzBoMGDZK6LNIAhiAiIqICnD9/Hv7+/nj48CGcnZ0RGhqKVq1aSV0WaQhPhxEREeVj+/bt6NChAx4+fIj69evjjz/+YAAqYxiCiIiIchBCYP78+RgwYABSU1PRo0cPnDlzBnK5XOrSSMMYgoiIiP6TmpqKIUOG4PPPPwcATJ48GaGhobC1tZW4MtIGjgkiIiIC8OjRI/Tp0wfh4eEwMzPDsmXLMHr0aKnLIi1iCCIiIqN39epV9OrVC1FRUahQoQJ27NiBzp07S10WaRlPhxERkVE7cOAA2rRpg6ioKNSsWRPnzp1TD0AxMcDx41k/qUxhCCIiorKniMFl6dKl6NmzJ5KSkuDl5YVz586hdu3arxqEhAByOeDtnfUzJETLhZMuMQQREVHZUoTgolAoMHHiREyYMAFKpRLvv/8+Dh06hEqVKr1qFBMDjB4NKJVZ95VKICiIPUJlCEMQERGVHUUILi9evEBAQAC+//57AMBXo0bhpzlzYGFhof5akZGvXiebQgHcvq3NPSAdYggiIqKy4zXB5cGDB+jQoQP27dsHK3NzbJPJMPV//4OsWrW8PUaenoBJrq9JU1OgZk3t1U86xRBERERlRyHB5dKlS2jZsiUiIiLg7OiI45mZ6C9EVpv8TnV5eACrVmU9P/t1Vq7M2k5lAkMQERGVHQUEl32XLqFdu3Z48OAB6tati3NLlqBVdgDKlt+prsBAICoqa5B1VFTWfSozGIKIiKhsyRVclqWmwt/fH8nJyejcuTPCw8NRvUOHop/q8vAAvLzYA1QGMQQREVHZ4+EB0bEjZqxYgfHjx0OpVGLkyJE4cOAAKlSowFNdBIArRhMRURmUkZGB0aNHY+3atQCAL774AjNmzIBMJnvVKDAQ8PXNOgVWsyYDkBFiCCIiojIlOTkZ/fv3x4EDB2BiYoKVK1di5MiR+Tf28GD4MWIMQUREVGY8fvwYPXv2xB9//AFra2ts3boVvXr1kros0lMMQUREVCbcu3cPvr6+iIyMhIODA/bt24fWrVtLXRbpMYYgIiIyeFevXoWPjw9iY2NRtWpVHDp0CHXq1JG6LNJznB1GREQG7fz58+jYsSNiY2NRv359nD17lgGIikSvQtCpU6fQq1cvuLu7QyaTYffu3WqPDx8+HDKZTO3WqlUraYolIiLJnTx5Et7e3nj69ClatmyJkydPwt3dXeqyyEDoVQhKTk5Gw4YNsXTp0gLbdOvWDQ8fPlTd9u/fr8MKiYhIX+zfvx/dunXDixcv0KlTJ4SFhaFixYpSl0UGRK/GBPn5+cHPz6/QNpaWlnB1ddVRRUREpI+2b9+OwYMHIzMzE7169cK2bdtgZWUldVlkYPSqJ6goTpw4AWdnZ9SqVQujRo3Co0ePpC6JiIh0aPXq1XjnnXeQmZmJQYMGYefOnQxAVCJ61RP0On5+fujfvz/kcjnu3buHzz//HN7e3rh48SIsLS3zfU5aWhrS0tJU9xMTE3VVLhERadj333+PiRMnAgBGjRqFFStWwDT70hdExWRQIWjgwIGq/37rrbfQrFkzyOVy/Prrr+jbt2++zwkODsbcuXN1VSIREWnJwoULMXXqVADAxx9/jEWLFqlfBoOomAzudFhObm5ukMvliIyMLLDN9OnTkZCQoLrdv39fhxUSEZEmfPXVV6oANGvWLAYg0giD6gnK7cmTJ7h//z7c3NwKbGNpaVngqTIiItJ/X375JWbOnAkAmDdvHj7//HOJK6KyQq9C0IsXL3D79m3V/Xv37uHSpUtwcHCAg4MD5syZg379+sHNzQ1RUVH47LPP4OjoiD59+khYNRERacu8efMwe/ZsAFlh6LPPPpO4IipL9CoEXbhwAZ06dVLd/+ijjwAAw4YNw4oVK/DXX39h/fr1eP78Odzc3NCpUyds3boVtra2UpVMRERaMmfOHNWYzuDgYEybNk3iiqiskQkhhNRF6FJiYiLs7e2RkJAAOzs7qcshIqJchBCYPXs2vvjiCwBZA6I//fTTVw1iYoDISMDTE/DwkKhK0jVtfH8b9MBoIiIqW4QQmDlzpioAffPNN+oBKCQEkMsBb++snyEhElVKZQFDEBER6YXsALRgwQIAwLfffqsaFgEgqwdo9GhAqcy6r1QCQUFZ24lKgCGIiIj0whdffKEKQEuWLMGkSZPUG0RGvgpA2RQKIMeEGqLiYAgiIiLJff3116pZYIsXL8aHH36Yt5GnJ2CS62vL1BSoWVMHFVJZxBBERESS+u6771QzvxYsWIDJkyfn39DDA1i1Kiv4AFk/V67k4GgqMb2aIk9ERMZlxYoVqtAze/ZsTJ8+vfAnBAYCvr5Zp8Bq1mQAolJhCCIiIkmsXr0aY8eOBQBMnToVswMDgePHXz/13cOD4Yc0gqfDiIhI537++WeMHDkSADBx4kQE16wJWbVqnPpOOsWeICIi0r4cCxxuP3sWw4YNgxACY8aMwbcff5wVgHJPfff1ZY8PaRVDEBERaVdIiGp9n1CZDINNTKBUKvH+++9j6dKlkJ08WfDUd4Yg0iKeDiMiIu3JscDhfgD9hUCmQoF3+/TBqlWrYGJiwqnvJBmGICIi0p7/Fjg8AqAvgAwA/QGsHTcOptlT3Tn1nSTC02FERKQ9np44JZOhtxBIA+APYKOJCcxq11Zvx6nvJAGGICIi0pqz9++jh4UFXqalwQ/AVhMTmK9alX/I4dR30jGeDiMiopKLicla2yefi5j++eef8PPzw4u0NHRu1w47Dx6EZXR0Vq8PkR5gTxAREZVMjllfMDHJGtfzX8C5evUqfHx8kJCQgHbt2iH04EFY29hIXDCROpkQQpT0yY8ePYJSqYSrq6sma9KqxMRE2NvbIyEhAXZ2dlKXQ0RkmGJishY1zDm13dQUiIrCreRkdOzYEXFxcWjRogXCwsJ4vKVS08b3d4lOh125cgVvvvkm3NzcULlyZVSuXBkzZ85EcnKyRooiIiI999+sLzUKBe799hs6d+6MuLg4NGrUCAcPHmQAIr1VohAUGBgIFxcXnD59GhEREZg/fz4OHDiAZs2a4dmzZ5qukYiI9E0+a/vcNzGB99SpePDgAerWrYvDhw+jYsWKEhVI9HolOh1mY2ODixcvok6dOqptQgj0798fVlZW+PnnnzVapCbxdBgRURHluNRFvrO2QkKyLm+hUCDWxAQdnJwQGReHmjVr4tSpU3Bzc9N9zVRm6c3psPx6fGQyGRYsWIDQ0FCNFEZERBIKCcka81PYBU0DA4GoKMTv3o0uNWsiMi4OcrkcR48eZQAig1DknqAePXqgYcOGaNSoERQKBZYsWYLQ0FC4uLio2pw/fx79+vXDP//8o7WCS4s9QUREr1HIoOfcPULPnj1D586dERERAXd3d5w6dQo1atTQbb1kFLTx/V3kKfL169fHn3/+iTVr1iAuLg4A8MYbb2DAgAGqYLRmzRp8++23GimMiIgkUsCg59wXNE1KSoKfnx8iIiLg7OyMo0ePMgCRQSnRmKC4uDhERETg0qVLqtvt27dhamqK2rVr48qVK9qoVSPYE0RE9BpF6AlKSUmBn58fTp06BQcHB5w4cQL169eXpl4yCpL2BOXk4uKCbt26oVu3bqptL1++xOXLl3H58mWNFEZERBLJvqDpf4Oec1/QNDU1FQEBATh16hTs7Oxw+PBhBiAySKVaLNEQsSeIiKiIYmLyXNA0PT0db7/9Nvbu3QsbGxscPnwYbdq0kbhQMgZ60xNERERGINcFTTMyMvDuu+9i7969sLKywr59+xiAyKDxAqpERPRamZmZeO+997Bjxw5YWFhg9+7d8PLykrosolJhCCIiokJlZmZiyJAh2LZtG8zNzfHLL7/A19dX6rKISo0hiIiICpSZmYmhQ4diy5YtMDc3x86dO9GjRw+pyyLSCIYgIiLKl0KhwPDhw7F582aYmZlh+/bt6NWrl9RlEWkMQxAREeWhUCgwYsQIbNy4EWZmZti2bRv8/f2lLotIoxiCiIhIjUKhQGBgIDZs2ABTU1Ns2bIFffr0kbosIo1jCCIiIhWlUolRo0Zh3bp1MDU1xebNm9GvXz+pyyLSCoYgIiICkNUDNGrUKKxZswYmJibYuHEj+vfvL3VZRFrDxRKJiAiZmZkYNmwYNm3aBBMTE/z8888YOHCg1GURaRVDEBGRkUtPT8fgwYOxc+dOmJmZYdOmTewBIqPAEEREZMRSU1MxYMAA7N27FxYWFti+fTt69+4tdVlEOsEQRERkpFJSUtCnTx8cPnwYVlZW2LVrF7p16yZ1WUQ6wxBERGSEXrx4gV69euHEiRMoV64c9u7dC29vb6nLItIphiAiIiPz/Plz9OzZE2fOnIGtrS3279+Pdu3aSV0Wkc4xBBERGZHY2Fh069YNly9fRoUKFXDo0CG0aNFC6rKIJKFX6wSdOnUKvXr1gru7O2QyGXbv3q32uBACc+bMgbu7O6ytreHl5YVr165JUywRkYG5e/cu2rVrh8uXL8PFxQXHjx9nACKjplchKDk5GQ0bNsTSpUvzfXzhwoVYvHgxli5divPnz8PV1RU+Pj5ISkrScaVERHoqJgY4fjzrZw5XrlxB27ZtcefOHVSvXh1nzpxBo0aNpKmRSE/o1ekwPz8/+Pn55fuYEALfffcdZsyYgb59+wIA1q1bBxcXF2zatAlBQUG6LJWISP+EhACjRwNKJWBiAqxaBQQG4syZM+jZsyeeP3+O+vXr49ChQ3Bzc5O6WiLJ6VVPUGHu3buH2NhYdO3aVbXN0tISHTt2RHh4eIHPS0tLQ2JiotqNiKjMiYl5FYCArJ9BQdi/fj18fHzw/PlztGnTBidPnmQAIvqPwYSg2NhYAICLi4vadhcXF9Vj+QkODoa9vb3qVqVKFa3WSUQkicjIVwHoP2sVCvi//z5evnwJPz8/hIWFoWLFihIVSKR/DCYEZZPJZGr3hRB5tuU0ffp0JCQkqG7379/XdolERLrn6Zl1CgyAADAbwAgAmQoF3n33XYSGhqJcuXJSVkikdwwmBLm6ugJAnl6fR48e5ekdysnS0hJ2dnZqNyKiMsfDA1i1CukmJhgOYN5/mz/77DOsX78e5ubmEhZHpJ8MJgRVr14drq6uCAsLU21LT0/HyZMn0aZNGwkrIyLSD8/79YNf69ZYD8DU1BSrVq3Cl19+CRMTgznUE+mUXs0Oe/HiBW7fvq26f+/ePVy6dAkODg6oWrUqJk2ahAULFsDT0xOenp5YsGABypUrh8GDB0tYNRGR9KKjo9GjRw9cu3YN5cuXx7Zt2wqcbUtEWfQqBF24cAGdOnVS3f/oo48AAMOGDcPatWsxZcoUvHz5EmPHjsWzZ8/QsmVLHD58GLa2tlKVTEQkufDwcPTt2xdxcXFwd3fHr7/+WvgaQDExWQOpPT2zTqMRGSmZEEJIXYQuJSYmwt7eHgkJCRwfREQGb/Xq1fjggw+QkZGB+vXr49dffy18FmwBawkR6TttfH/zRDERkQHKzMzEpEmTEBgYiIyMDPTt2xfh4eGFB6AC1hLKvbo0kbFgCCIiMgQ5Lofx9OlT+Pn5YcmSJQCAOXPmYPv27Shfvnzhr5HPWkJQKIAcYzGJjIlejQkiIqJ85DiFdU0mQ4CTE24/eoRy5cph/fr16NevX9FeJ3stoZxByNQUqFlTO3UT6Tn2BBER6bMcp7B+BtBCCNx+9AhyDw+Eh4cXPQABqrWEYGqadd/UFFi5koOjyWixJ4iISJ9FRiJVqcQkACv/2+QDYOMPP8CpYcPiv15gIODrm3UKrGZNBiAyagxBRER6LMrKCm8DuAhABmAWgM9NTGDarFnJX9TDg+GHCDwdRkSkt0JDQ9GkRw9cBFAJwH4Ac0xNYbpqFUMMkQawJ4iISFtKuChhSkoKPv74Y/z4448AgJYtW2LbkiWo+vIlT2ERaRBDEBGRNhRnUcIcYenykycYNGgQbty4AQD45JNP8OWXX8LCwkKHxRMZB64YTUSkaTExgFyedyp6VFTeXpz/wpJSqcT3MhmmmpoiPTMTbm5uWLduHXx8fHRaOpG+4orRRESGoKiLEv43/T1aqYQvgMlCID0zE726dMHly5cZgIi0jCGIiEjTshclzCmfRQnF339jlVKJ+gCOALACsBxA6GefwcnJSUfFEhkvhiAiIk0rwqKE0dHR6DpnDoIAJAFoC+AKgDGmppB5ekpQNJHx4cBoIiJtKGBRQqVSiZUrV2Lq1KlISkqClbk5FmRm4kMhYMoVnIl0iiGIiEhbci1KePnyZQQFBeH3338HALRp0wZr1qxBrXLluIIzkQQYgohIOiVcR8fQvHjxArNnz8aSJUugUChga2uL+fPnY9y4cVm9P0CZ3n8ifcUxQUQkjZCQrGnk3t5ZP0NCpK5I44QQ+OWXX1C3bl0sXrwYCoUC/fv3x40bN/Dhhx++CkBEJAmGICLSvRxXRgeQ9TMoKGt7GXHp0iV4e3ujX79+iImJQbVq1fDrr79i27ZtqFy5stTlEREYgohICkVdR8cAxcXFYfTo0WjSpAlOnDgBS0tLzJgxA9euXUP37t2lLo+IcuCYICLSvex1dHKvqJxrHR1Dkpqaiu+//x7z589HUlISAGDgwIH4+uuvIZfLJa6OiPLDniAi0r0irKNjKDIyMvC///0Pnp6eqmnvzZo1w+nTp7FlyxYGICI9xp4gIpJGAevoGAqlUolt27Zh1qxZiIyMBAB4eHhg/vz5GDJkCExyrxhNRHqHIYiIpJNrHR1DIITAvn37MHPmTFy5cgUA4OTkhBkzZiAoKAhWVlYSV0hERcUQRERUBAqFAjt37sSCBQtw+fJlAIC9vT0+/fRTTJw4EeXLl5e4QiIqLoYgIqJCZGRkYOPGjfjqq69w69YtAED58uUxfvx4fPrpp3BwcJC4QiIqKYYgIqJ8JCUlYc2aNVi8eDGio6MBABUrVsTEiRMxYcIEhh+iMoAhiIgoh6ioKPzwww/46aefkJiYCABwcXHBxx9/jA8++AC2trZZDY3kkh9EZRlDEBEZPSEEwsPD8e2332LXrl1Q/rd+Ue3atTFp0iQMGzYM1tbWr54QEvJqxWsTk6zp/oGBElVPRCUlE0IIqYvQpcTERNjb2yMhIQF2dnZSl0NEmlKCnpmkpCRs3LgRq1atQkREhGq7j48PJk+eDF9f37xT3WNisq51lnuhx6go9ggRaZE2vr/ZE0REhq+YPTMXL17EypUrsWnTJiQnJwMALC0t8d5772HSpEl46623Cv5dhV3ygyGIyKAwBBGRYSvoYqy+vmqhJCEhAVu3bsWqVatw8eJF1fbatWsjKCgIQ4cORaVKlV7/+8rgJT+IjBVDEBEZtkJ6ZjJcXHD48GGsX78eoaGhSEtLAwBYWFigX79+CAoKQocOHSCTyYr++7Iv+REUlPV7DPiSH0TGjiGIiAxbrp4ZAeCSiQnW//wzNg0ciEePHqma1qtXDyNGjMDw4cPh6OhY8t9p4Jf8IKIsDEFEZNj+65mJHD0a25VKbAZwVanMGieErEtaDB48GEOHDkVjJyfIbt8GUlM183sZfogMGkMQERmsyMhIbN++Hdu2bcPlHKfELC0t4e/vj6FDh6Jr164wNzfntHYiyoNT5InIoKgFn/+u4QUApqam6NKlC/r3749+/fqhQoUKr57Eae1EBo9T5InI6CiVSvz555/Ys2cPQkNDVVduB9SDT0BAQMGzuzitnYjywRBERHonNTUVx44dw549e7B39278GxeneqzIwScnTmsnonwwBBGRXoiPj8evv/6KPXv24NChQ6pFDAGgPIBuAHoHBqL7118XLfjkxGntRJQPjgkiIkmkpaUhPDwcYWFhCAsLw8WLF5HzcFTZ1RW9Y2PRG0AnAJZA6cfxxMRwWjuRgeKYICIyWEIIXL16VRV6Tp06hZSUFLU2DRs2hL+/P3r37o0mCQmQde6s/iKlHcdTlGntvDo8kdFgCCIirXn48KEq9Bw5cgSxsbFqj7u4uKBLly7w8fFBly5dULly5VcPxsTofhwPp9ETGRWDCkFz5szB3Llz1ba5uLjkObASkTSSk5Nx8uRJVfC5du2a2uPW1tbo0KEDfHx84OPjg/r16xd8yQpdj+Mp4jXIiKjsMKgQBABvvvkmjhw5orpvamoqYTVEBkKTp3hyvJbCzQ0XL15UhZ7w8HBkZGSomspkMjRp0kQVetq0aQMrK6ui/y5dXp6C0+iJjI7BhSAzMzO4urpKXQaR4dDkKZ6QENwdNQphQiAMwLFy5fAs17geeaVK8HnyBD4AvAE4jhlTulNKuro8BafRExkdE6kLKK7IyEi4u7ujevXqeOedd3D37t1C26elpSExMVHtRmQ0CjrFExNT5Jd49uwZdu7ciQ+GDEGNkSNRQwh8AGAngGcpKbCztUVAQACWLVuGv0+dwr2nT/E/AAMAOApR7N8nmezTb9m9y5xGT1TmGVRPUMuWLbF+/XrUqlULcXFxmD9/Ptq0aYNr164VuG5IcHBwnnFEREajBKd40tPTce7cORw+fBhhYWG4cOEClDlewwxAKwA+/92a79oFs+xZXMePA7lX3TCkU0q8OjyRUTHodYKSk5NRo0YNTJkyBR999FG+bdLS0pCWlqa6n5iYiCpVqnCdIDIORbhmlhACN27cUI3rOXHihNpChQBQp04d+LRuDZ+1a+ElBGwLeC1eo4uItIXrBOViY2OD+vXrIzIyssA2lpaWsLS01GFVRHqkgBlWsWZmOPLzz6qp6//++6/a05ycnFRT1318fOCRHWDati18thZXZiYiA2LQPUFpaWmoUaMGRo8ejVmzZhXpOVwxmoxRSmQkftu1C2F37iDs3Dm1i5ACgJWVFTp06KAKPg0aNICJSQFDBouy6jJXZiYiDTP6nqBPPvkEvXr1QtWqVfHo0SPMnz8fiYmJGDZsmNSlEekVpVKJiIgI1Smu06dPIz09Xa1Nzqnrbdu2LfrU9aLM1tLVjC4iolIwqBAUExODQYMGIT4+Hk5OTmjVqhXOnTsHuVwudWlEWSS85ML9+/dx+PBhHD58GEePHsWTJ0/UHq9ataoq9HTu3BmOjo46rY+ISN8YVAjasmWL1CUQFUzHl1xITk7GiRMnVMHn5s2bao/b2dmhU6dOquDj6elZ8OrMRERGyKDHBJUExwSRVuhgVpRSqcSlS5dUoef06dNqqzObmJigVatW8PHxQdeuXdGiRQuYmRnU/+cQERXI6McEEektLV1y4cGDBwgLC1Ot2RMfH6/2eLVq1eDr64uuXbvC29sbFSpUKPHv4tXTicjYMAQRaUJxLrlQSNhIT0/Hb7/9hv379+Pw4cO4evWq2uO2trbw9vZG165d0bVrV9SoUUMzp7h49XQiMkIMQUSaUNT1cfIJGw+6dcOBAwfw66+/4siRI3jx4oWquUwmQ/PmzVWhp1WrVjA3N9ds7bx6OhEZKYYgIk153SUX/gsbmUolfgewX6nEryNH4nKul3F1dYWfnx/8/Pzg7e1d4CVhVK9Z2lNYvHo6ERkphiAiTSpgfZz4+HgcXL4c+5VKHATwLMdjMpkMLVu2RI8ePdC9e3c0atSo4IUKc9LUKSxePZ2IjBRDEJEWZF+Pa/fu3di7dy9+//135JyIWRFANwA9ZDL4XroExwYN8r5IYb08mjyFxUtdEJGRYggi0hCFQoHff/8du3fvxu7du/Nc065Ro0bo7u6OHgcPooVSCbPssJFfAHpdL4+mT2Hx6ulEZIS4ThBRKaSmpuLYsWPYvXs39uzZg7i4ONVjlpaW6NKlC/z9/dG9e3dUrlw564HXXVerKGsO8WrtRGRkuE4QkR54/vw59u/fj927d+PAgQNqs7ns7e3Rs2dPBAQEwNfXF7a2tnlf4HXX1SpKLw9PYRERlRpDEFERPHjwAKGhodi9ezeOHz+OzMxM1WOVK1eGv78/+vTpgw4dOsDCwqJ0v6yoA5V5CouIqFQYgrSNq/BKpxTvvRACN2/eVI3v+eOPP9Qer1evHgICAhAQEICmTZsWbTZXURWnl4dXayciKjGGIG3iKrzFp6nQWIL3XqlUqg1s/vvvv1WPyWQytG7dGgEBAfD390etWrVKXltRsJeHiEjrODBaWzhwtfg0FRqL8d6npaXh2LZt2L1tG0J//x1xjx+rHrOwsEDnzp0REBCA3s2awTUhgT16REQS4cBoQ8JVeItHk+vevOa9T0hIUA1s3h8aihdpaapmdtbW6PHfaa5u3bpl/aGFhADNm7NHj4iojGEI0hauwls8mgyN+bz3D0xMsCc8HLuDg3H8+HFkZGSoHnMDEPDfzSstDRYLF6pPRed1tYiIyiQNjuYkNdmDW01Ns+5zCnPhsoNLTiUNjR4eECtX4qqJCb4E0AKAh1KJsTNm4PDhw8jIyECdOnUwbdAgnAMQA2A5gK4ALJTKrOCVrbBwRkREBo09QdrEwa1Fp4F1bxQKBc6cOYPQ0FCEhobiTq7w0qpVK/j7+yMgIAB16tTJ6uXZurXw3jr26BERlVkMQdrGKcxFV4LQmJKSgsOHDyM0NBT79u1DfHy86jFLS0vVwOZevXrB1dVV/clFCV5clJCIqMzi7DAyOFFRUdi/cSMO7NuHo5cu4WVqquqxihUromfPnvD394evry/Kly//+hd83WUsitqGiIi0hrPDyLCVcA2gtLQ0nD59Gvv378eBAwdw48YNtcerOTrC/9134e/vj3bt2sHc3Lx4dRWlt449ekREZQ5DEOlGMdYAEkLgzp07OHr0KA4cOIAjR44gOTlZ9bgpgDYAuv93q//0KWSffMKQQkRExcIQRNpXhGnmDx48wLFjx3D06FEcO3YM9+/fV3sJV1dX+Pn5wa9KFfjMm4cKOR/MntHFEERERMXAEGSsdHlNs1zTzAWA+woFwletwqn4eBw7dgy3bt1Se4qFhQVat24NHx8fdO/eHQ0bNsy6PldMDDB/PmdrERFRqTEEGRIJr6tVGhnVquGSTIZwIRAO4AyABwDwxReqNiYmJmjatCm8vb3RuXNntG3bFuXKlcv7YpytRUREGsLZYYZCgutqlURqair++usv/Pnnn/jzzz8RERGBK1euIC3HpSkAwNTEBI2bNEHbtm3RqVMndOzYERUqVCjefnC2FhGR0eDsMGOlw+tqFVVqaioiIyNx8+ZN3LhxAzdu3MC1a9dw/fp1KBSKPO0rVqyINk2aoE21amjr64tm3bvDxsameLXnxNlaRERUSgxBhkDL19XKb0yNEAJPnjxBVFSU2u3evXu4desW7t27B2Xumv7j6OiIJk2aqG6NGzfGG2+8kTWmh4iISE8wBBkCDV66Ic3JCXHBwYibPh1xSiXiZDLE9e6NuEWLEBcXp7r9888/atPS82Nvb4+6deuibt26qFOnDurWrYvGjRujcuXKkMlkxa6NiIhIlxiCDMFrBgOnp6erwktsbKzqljPUZN9PSEhQf20hgF27CvzV7u7uqFatmuoml8vh6emJunXrwsXFhWGHiIgMFgdG67nMzEw8ePAg63TUn38i+soVRKWkIDo+XhV2nj59WqzXNDc3h4uLS6G3KlWqoEqVKrCKj9fdVHoiIqICcGC0ruhyDZ3/pKen48aNG7h+/bra7fbt28jMzHzt883MzODq6gpXV1dVkMn53zm3VahQoWg9ODqeSk9ERKRL7AnKTQdf/EqlEjdv3sT58+dVt8uXL+eZRp7N3Nwccrlc7ZSUXC5H5cqVVcGmYsWKrwYeayLEaXkqPRERUXGwJ0jbNDkVPZe7d+/iyJEjOHLkCI4dO4YnT57kaWNvb4+33noL9erVU93q1q2LypUrF31mlaZCXHFmpEnQc0ZERFRaxhuCHjwAcidJDU5Ff/z4MY4dO6YKPlFRUWqPlytXDk2bNkXz5s3RvHlzNGvWDDVq1CjdQGNNhriizkjjKTMiIjJQRhuCRL16wE8/qX9hl2IqenJyMn777TdV6Ll8+bLa4+bm5mjVqhW6dOmCLl26oHnz5jA3N9fU7mTR5HpCRbk8hRZ7zoiIiLTNaEPQIABLRo+GZ84v7GJclyotLQ2///47jh8/jmPHjuHs2bPIyMhQa9OgQQNV6Gnfvj3Kly+v3Z3S4HpCALICoq9vwZen0GToIiIi0jGjHRgNAKYAerdvjyGTJ6NTp06vrl2V67pUQghER0cjIiICEREROHPmDMLDw5Gamqr22nK5XBV6vL294ezsrNudA7JOT+UOcdo6PcXB00REpCPaGBhttCGoK4DDuR6rWbMmPDw8YG9vD4VCgdTUVDx48AD379/Hixcv8ryWi4sLvLy80KlTJ3Tp0gVvvPFGycf0aHJwsS4vLqrL0EVEREaLIUgDVG+iiQmiZ83C+hcvsGvXLty5c6fQ55mbm+PNN99E48aN0bx5c3h5eaFOnTqaWTHZ0AcX84ruRESkZQxBGqB6E69fh13duqrtjx49wrVr1xAbG4vExESYm5vDwsICbm5u8PDwQPXq1WFhYaH5gnhKiYiI6LW4TpAmVa6sdtfZ2VmaMTwcXExERCSJIq7Ap1+WL1+O6tWrw8rKCk2bNsVvv/0mdUkllz2jK6fSzOgiIiKiIjG4ELR161ZMmjQJM2bMQEREBNq3bw8/Pz/8888/UpdWMtnT8k1Ns+4XMi2fiIiINMfgxgS1bNkSTZo0wYoVK1Tb6tati4CAAAQHB7/2+Xp7FXkOLiYiIiqQ0Y8JSk9Px8WLFzFt2jS17V27dkV4eHi+z0lLS1O7MGliYqJWaywxDw+GHyIiIh0yqNNh8fHxUCgUcHFxUdvu4uKC2NjYfJ8THBwMe3t71a1KlSq6KJWIiIj0nEGFoGy51+YRQhS4Xs/06dORkJCgut2/f18XJRIREZGeM6jTYY6OjjA1Nc3T6/Po0aM8vUPZLC0tYWlpqYvyiIiIyIAYVE+QhYUFmjZtirCwMLXtYWFhaNOmjURVERERkSEyqJ4gAPjoo48wZMgQNGvWDK1bt8aqVavwzz//4IMPPpC6NCIiIjIgBheCBg4ciCdPnmDevHl4+PAh3nrrLezfvx9yuVzq0oiIiMiAGNw6QaWlt+sEERERUYG08f1tUGOCiIiIiDSFIag0YmKA48ezfhIREZFBYQgqqZAQQC4HvL2zfoaESF0RERERFQNDUEnExACjRwNKZdZ9pRIICmKPEBERkQFhCCqJyMhXASibQpF1AVQiIiIyCAxBJeHpCZjkeutMTbOuAE9EREQGgSGoJDw8gFWrsoIPkPVz5UpeBZ6IiMiAGNxiiXojMBDw9c06BVazJgMQERGRgWEIKg0PD4YfIiIiA8XTYURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoGFYKqVasGmUymdps2bZrUZREREZEBMpO6gOKaN28eRo0apbpfvnx5CashIiIiQ2VwIcjW1haurq5Sl0FEREQGzqBOhwHA119/jUqVKqFRo0b48ssvkZ6eLnVJREREZIAMqido4sSJaNKkCSpWrIg//vgD06dPx7179/DTTz8V+Jy0tDSkpaWp7ickJAAAEhMTtV4vERERaUb297YQQnMvKiQ2e/ZsAaDQ2/nz5/N97o4dOwQAER8fX6rX54033njjjTfeDON2584djWUQmRCajFTFFx8fj/j4+ELbVKtWDVZWVnm2P3jwAB4eHjh37hxatmyZ73Nz9wQ9f/4ccrkc//zzD+zt7UtXvAFJTExElSpVcP/+fdjZ2Uldjs5wv7nfxoD7zf02BgkJCahatSqePXuGChUqaOQ1JT8d5ujoCEdHxxI9NyIiAgDg5uZWYBtLS0tYWlrm2W5vb29U/3iy2dnZcb+NCPfbuHC/jYux7reJieaGM0segorq7NmzOHfuHDp16gR7e3ucP38ekydPRu/evVG1alWpyyMiIiIDYzAhyNLSElu3bsXcuXORlpYGuVyOUaNGYcqUKVKXRkRERAbIYEJQkyZNcO7cuVK/jqWlJWbPnp3vKbKyjPvN/TYG3G/utzHgfmtuvyUfGE1EREQkBYNbLJGIiIhIExiCiIiIyCgxBBEREZFRYggiIiIio1QmQ9Dy5ctRvXp1WFlZoWnTpvjtt98KbX/y5Ek0bdoUVlZWeOONN/Djjz/qqFLNKs5+//LLL/Dx8YGTkxPs7OzQunVrHDp0SIfVak5xP+9sZ86cgZmZGRo1aqTdArWkuPudlpaGGTNmQC6Xw9LSEjVq1MDq1at1VK3mFHe/N27ciIYNG6JcuXJwc3PDiBEj8OTJEx1VW3qnTp1Cr1694O7uDplMht27d7/2OWXhmFbc/S4rx7SSfN7ZDPmYVpL91sQxrcyFoK1bt2LSpEmYMWMGIiIi0L59e/j5+eGff/7Jt/29e/fQvXt3tG/fHhEREfjss8/w4YcfYufOnTquvHSKu9+nTp2Cj48P9u/fj4sXL6JTp07o1auXahVuQ1Hc/c6WkJCAoUOHonPnzjqqVLNKst8DBgzA0aNHERISglu3bmHz5s2oU6eODqsuveLu9+nTpzF06FAEBgbi2rVr2L59O86fP4+RI0fquPKSS05ORsOGDbF06dIitS8rx7Ti7ndZOaYVd7+zGfoxrST7rZFjmsauQqYnWrRoIT744AO1bXXq1BHTpk3Lt/2UKVNEnTp11LYFBQWJVq1aaa1GbSjufuenXr16Yu7cuZouTatKut8DBw4UM2fOFLNnzxYNGzbUYoXaUdz9PnDggLC3txdPnjzRRXlaU9z9XrRokXjjjTfUtn3//ffCw8NDazVqEwCxa9euQtuUlWNaTkXZ7/wY4jEtp+Lst6Ef03Iqyn5r6phWpnqC0tPTcfHiRXTt2lVte9euXREeHp7vc86ePZunva+vLy5cuICMjAyt1apJJdnv3JRKJZKSkuDg4KCNErWipPu9Zs0a3LlzB7Nnz9Z2iVpRkv3es2cPmjVrhoULF6Jy5cqoVasWPvnkE7x8+VIXJWtESfa7TZs2iImJwf79+yGEQFxcHHbs2IEePXroomRJlIVjmiYY4jGtpAz9mFYSmjqmGcyK0UURHx8PhUIBFxcXte0uLi6IjY3N9zmxsbH5ts/MzER8fHyhF2fVFyXZ79y++eYbJCcnY8CAAdooUStKst+RkZGYNm0afvvtN5iZGeY//5Ls9927d3H69GlYWVlh165diI+Px9ixY/H06VODGRdUkv1u06YNNm7ciIEDByI1NRWZmZno3bs3fvjhB12ULImycEzTBEM8ppVEWTimlYSmjmllqicom0wmU7svhMiz7XXt89uu74q739k2b96MOXPmYOvWrXB2dtZWeVpT1P1WKBQYPHgw5s6di1q1aumqPK0pzuetVCohk8mwceNGtGjRAt27d8fixYuxdu1ag+oNAoq339evX8eHH36IWbNm4eLFizh48CDu3buHDz74QBelSqasHNNKytCPaUVV1o5pxaGpY1qZio2Ojo4wNTXN83+Fjx49yvN/RtlcXV3zbW9mZoZKlSpprVZNKsl+Z9u6dSsCAwOxfft2dOnSRZtlalxx9zspKQkXLlxAREQExo8fDyDrD0kIATMzMxw+fBje3t46qb00SvJ5u7m5oXLlyrC3t1dtq1u3LoQQiImJgaenp1Zr1oSS7HdwcDDatm2LTz/9FADQoEED2NjYoH379pg/f36Z7BUpC8e00jDkY1pxlZVjWklo6phWpnqCLCws0LRpU4SFhaltDwsLQ5s2bfJ9TuvWrfO0P3z4MJo1awZzc3Ot1apJJdlvIOv/loYPH45NmzYZ5BiJ4u63nZ0d/vrrL1y6dEl1++CDD1C7dm1cunQJLVu21FXppVKSz7tt27b4999/8eLFC9W2v//+GyYmJvDw8NBqvZpSkv1OSUmBiYn6Yc7U1BTAq96RsqYsHNNKytCPacVVVo5pJaGxY1qphlXroS1btghzc3MREhIirl+/LiZNmiRsbGxEVFSUEEKIadOmiSFDhqja3717V5QrV05MnjxZXL9+XYSEhAhzc3OxY8cOqXahRIq735s2bRJmZmZi2bJl4uHDh6rb8+fPpdqFEinufudmqDMpirvfSUlJwsPDQ7z99tvi2rVr4uTJk8LT01OMHDlSql0okeLu95o1a4SZmZlYvny5uHPnjjh9+rRo1qyZaNGihVS7UGxJSUkiIiJCRERECABi8eLFIiIiQkRHRwshyu4xrbj7XVaOacXd79wM9ZhW3P3W1DGtzIUgIYRYtmyZkMvlwsLCQjRp0kScPHlS9diwYcNEx44d1dqfOHFCNG7cWFhYWIhq1aqJFStW6LhizSjOfnfs2FEAyHMbNmyY7gsvpeJ+3jkZ6gFDiOLv940bN0SXLl2EtbW18PDwEB999JFISUnRcdWlV9z9/v7770W9evWEtbW1cHNzE++++66IiYnRcdUld/z48UL/VsvqMa24+11Wjmkl+bxzMtRjWkn2WxPHNJkQZbRPmIiIiKgQZWpMEBEREVFRMQQRERGRUWIIIiIiIqPEEERERERGiSGIiIiIjBJDEBERERklhiAiIiIySgxBREREZJQYgoiIiMgoMQQRERGRUWIIIqIyYd68eahfvz5sbGzg4uKCMWPGICMjQ+qyiEiPmUldABFRaQkhoFAosHLlSlSuXBnXr1/H0KFD0aBBA4wZM0bq8ohIT/ECqkRUJg0ePBhOTk5YsmSJ1KUQkZ7i6TAiMnjR0dEYP3483nrrLVSsWBHly5fHtm3b4OHhIXVpRKTHGIKIyKDFx8ejRYsWiI+Px+LFi3H69GmcPXsWpqamaNSokdTlEZEe45ggIjJo+/fvR2ZmJjZv3gyZTAYAWLZsGdLT0xmCiKhQDEFEZNAcHByQmJiIPXv2oF69eti7dy+Cg4NRuXJlODk5SV0eEekxDowmIoMmhMCYMWOwadMmWFtb47333kNqaiqio6Oxb98+qcsjIj3GEERERERGiQOjiYiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREbp/wH6AWS+L6IKGQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZb0lEQVR4nO3de1yO9/8H8NfdOVEkOogY0TDmlGOTkgqV82mHEJrTHL7mNBv2M22M7+bLjGmGOTSMckrRAcOQ83GxikwO0UGlVJ/fH61bdyeV+9j9ej4e96Pd13Xdd+/rvnXfr30O10cihBAgIiIi0jI6qi6AiIiISBUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgkilnJ2d4ezsrOoyqmz06NGoWbNmhY5t3LgxRo8erdB6JBIJFi1apNDf8TqZmZlYtGgRoqKiVFqHpjh69Cg6duwIExMTSCQS7N27F7/88gskEgni4+Olx23btg3fffedQmpYsGABGjVqBD09PdSuXbvSjx89ejQaN24s97rUzebNmzFixAi0aNECOjo6ZZ5zREQExo4dCwcHB5iYmKBBgwbw8fFBTEyMcgum19JTdQGk3X744QdVl6A0e/bsgampqarLULjMzEwsXrwYADQ64CqDEALDhg1D8+bNERISAhMTE7Ro0QK5ubk4deoUrK2tpcdu27YNV69exfTp0+VaQ3BwML766it89tln8PT0hKGhoVyfvzrZsmULkpKS4OjoiPz8fLx8+bLU49auXYvk5GRMmzYNLVu2xOPHj7FixQp06dIFhw8fhouLi5Irp7IwBJFKtWzZUtUlKE27du1UXQLJUVZWFoyMjCCRSKr8HP/88w+ePn2KgQMHwtXVVWZfvXr13rTECrl69SoA4JNPPkH9+vWV8jvlRR7vQWUcPnwYOjoFHSj9+/eXvnbFrVmzpsRr6eHhgWbNmmHp0qUMQWqE3WFUYYsWLYJEIsG1a9cwcuRImJmZwdLSEmPHjkVqaqrMsS9evMC8efPQpEkTGBgYoEGDBpg8eTJSUlJkjiutO2zt2rVo27YtatasiVq1asHBwQHz588HAMTHx0NPTw8BAQEl6jt27BgkEgl27txZ7nmkpKTgP//5D9566y0YGhqifv366Nu3L27evAkAiIqKgkQiKdGdEx8fD4lEgl9++aXEc167dg2urq4wMTFBvXr1MGXKFGRmZsocU1p32OtqkYekpCT4+/vD1tYWBgYGaNKkCRYvXozc3FyZ4xYvXozOnTvD3NwcpqamaN++PQIDA1F8jeWIiAg4Ozujbt26MDY2RqNGjTB48GBkZmYiPj5e+uW9ePFiSCQSSCSS13YDZmZmYtasWWjSpAmMjIxgbm6Ojh07Yvv27TLH/fLLL2jRogUMDQ3x9ttvY/PmzSW6Yirz/p07dw4jRoxA48aNYWxsjMaNG2PkyJFISEgo8XslEgnCwsIwduxY1KtXDzVq1EB2djYAICgoCF27doWJiQlq1qwJd3d3XLhwodxzXrRoEWxtbQEAc+bMgUQikZ5H8e4wZ2dnHDhwAAkJCdLX9HVf/Pn5+Vi2bBkcHByk/7Y++ugjJCYmSo9p3LgxFixYAACwtLSsUHdqae9BaXJycrBkyRLp769Xrx7GjBmDx48fyxyXnZ2N//znP7CyskKNGjXw3nvvISYmpsTfi7zeg3PnzsHb2xvm5uYwMjJCu3bt8Ntvv5V7zoUKA9DrlBYma9asiZYtW+LevXsVeg5SDrYEUaUNHjwYw4cPh5+fH65cuYJ58+YBAH7++WcABU38AwYMwNGjRzFv3jw4OTnh8uXLWLhwIU6dOoVTp06V2eS+Y8cOTJo0CVOnTsW3334LHR0d3L59G9evXwdQ8KHt7e2NH3/8EbNnz4aurq70satXr4aNjQ0GDhxYZu3p6eno0aMH4uPjMWfOHHTu3BnPnz/HsWPH8ODBAzg4OFT69Xj58iX69u0Lf39/zJ07FydPnsSSJUuQkJCAffv2vXEto0ePxqZNmxAXF1fpcReFTfc6Ojr44osv0LRpU5w6dQpLlixBfHw8Nm7cKD02Pj4e/v7+aNSoEQDg9OnTmDp1Ku7fv48vvvhCeky/fv3g5OSEn3/+GbVr18b9+/cRGhqKnJwcWFtbIzQ0FB4eHvDz88O4ceMAvL5VY+bMmdiyZQuWLFmCdu3aISMjA1evXkVycrL0mF9++QVjxoyBj48PVqxYgdTUVCxatAjZ2dkV/nIqLj4+Hi1atMCIESNgbm6OBw8eYO3atejUqROuX78OCwsLmePHjh2Lfv36YcuWLcjIyIC+vj6WLl2KBQsWYMyYMViwYAFycnKwfPlyODk54cyZM2W2do4bNw5t27bFoEGDMHXqVIwaNarMv4sffvgBEyZMwJ07d7Bnz54KndvEiROxfv16TJkyBf3790d8fDw+//xzREVF4fz587CwsMCePXuwZs0aBAYGIjQ0FGZmZtJgVpqKvgf5+fnw8fHB8ePHMXv2bHTr1g0JCQlYuHAhnJ2dce7cORgbGwMAxowZg6CgIMyePRsuLi64fv06Bg4ciLS0tFJreJP3IDIyEh4eHujcuTN+/PFHmJmZYceOHRg+fDgyMzMVOmYvNTUV58+fZyuQuhFEFbRw4UIBQCxbtkxm+6RJk4SRkZHIz88XQggRGhpa6nFBQUECgFi/fr10W8+ePUXPnj2l96dMmSJq165dbh2RkZECgNizZ4902/3794Wenp5YvHhxuY/98ssvBQARHh7+2uePjIyU2R4XFycAiI0bN0q3+fr6CgDi+++/lzn2q6++EgDEiRMnpNvs7OyEr69vpWoRQoixY8cKXV1dER8fX+5xQggBQCxcuFB639/fX9SsWVMkJCTIHPftt98KAOLatWulPk9eXp54+fKl+PLLL0XdunWl7+2uXbsEAHHx4sUya3j8+HGJOl6ndevWYsCAAWXuz8vLEzY2NqJ9+/bSWoQQIj4+Xujr6ws7Ozvptsq8f8Xl5uaK58+fCxMTE5n3dOPGjQKA+Oijj2SOv3v3rtDT0xNTp06V2Z6eni6srKzEsGHDyjnrVzUtX75cZnvh74uLi5Nu69evn8x5lufGjRsCgJg0aZLM9j///FMAEPPnz5duK/y7fvz4cbnPWZn3YPv27QKA2L17t8xznD17VgAQP/zwgxBCiGvXrgkAYs6cOTLHFT6+6N+LPN4DBwcH0a5dO/Hy5UuZY/v37y+sra1FXl5eua9BUZV5P4QQ4v333xd6enri3LlzFX4MKR67w6jSvL29Ze63adMGL168wKNHjwAUdJcAKPF/VUOHDoWJiQmOHj1a5nM7OjoiJSUFI0eORHBwMJ48eVLiGGdnZ7Rt2xZr1qyRbvvxxx8hkUgwYcKEcms/dOgQmjdvjt69e5d7XGW9//77MvdHjRoFoOD/PN+0lsDAQOTm5sLOzq7Sde3fvx+9evWCjY0NcnNzpTdPT08AQHR0tPTYiIgI9O7dG2ZmZtDV1YW+vj6++OILJCcnS9/bd999FwYGBpgwYQI2bdqEv//+u1L1FK0hNzdX2tXm6OiIQ4cOYe7cuYiKikJWVpbM427duoV//vkHo0aNkukGsrOzQ7du3Sr9uhR6/vw55syZg2bNmkFPTw96enqoWbMmMjIycOPGjRLHDx48WOb+4cOHkZubi48++kjmvIyMjNCzZ0+VzZAr/HdX/G/Q0dERb7/9drl/g2WpzHuwf/9+1K5dG15eXjKvy7vvvgsrKyvp61L472/YsGEyjx8yZAj09ErvqKjqe3D79m3cvHlT+rda9Ni+ffviwYMHuHXrVqVfl4r4/PPPsXXrVvz3v/9Fhw4dFPI7qGoYgqjS6tatK3O/sAm/8IsrOTkZenp6JbpAJBIJrKysZLo4ivvwww/x888/IyEhAYMHD0b9+vXRuXNnhIeHyxz3ySef4OjRo7h16xZevnyJn376CUOGDIGVlVW5tT9+/Ljc5v6q0NPTK/GaFNZR3rkqopbiHj58iH379kFfX1/m1qpVKwCQhswzZ86gT58+AICffvoJf/zxB86ePYvPPvsMwKv3tmnTpjhy5Ajq16+PyZMno2nTpmjatCm+//7719YSHx9foo7CL8FVq1Zhzpw52Lt3L3r16gVzc3MMGDAAsbGxAF69jqW9v697z8szatQorF69GuPGjcPhw4dx5swZnD17FvXq1SsRxADIzNYCCl5fAOjUqVOJcwsKCio1xCtD4etVvF4AsLGxKfff5euesyLvwcOHD5GSkgIDA4MSr0tSUpL0dSl8TktLS5nHl/Y3Vaiq70HhcbNmzSpx3KRJkwBAIe/X4sWLsWTJEnz11VeYMmWK3J+f3gzHBJHc1a1bF7m5uXj8+LFMEBJCICkpCZ06dSr38WPGjMGYMWOQkZGBY8eOYeHChejfvz/++usvaWvIqFGjMGfOHKxZswZdunRBUlISJk+e/Nra6tWrJzMwtDRGRkYAIB1wWaisD8jc3FwkJyfLfGgnJSUBKBkYK1vLm7KwsECbNm3w1VdflbrfxsYGQMFYLH19fezfv196/gCwd+/eEo9xcnKCk5MT8vLycO7cOfzvf//D9OnTYWlpiREjRpRZi42NDc6ePSuzrUWLFgAAExMTLF68GIsXL8bDhw+lrUJeXl64efOm9HUsfF2LKr6tou9famoq9u/fj4ULF2Lu3LnS7dnZ2Xj69Gmp51B8MHLhmKFdu3ZVqaVOUQpfrwcPHpQI2v/880+JsU6Vec6KvAcWFhaoW7cuQkNDS32uWrVqyTznw4cP0aBBA+n+wr+p0lT1PSg8bt68eRg0aFCpxxT+e5SXxYsXY9GiRVi0aJF0cgepF7YEkdwVTvX99ddfZbbv3r0bGRkZJaYCl8XExASenp747LPPkJOTg2vXrkn3GRkZSbtkVq5ciXfffRfdu3d/7XN6enrir7/+knbZlaZw8PHly5dltoeEhJT5mK1bt8rc37ZtG4Dyr5NTkVreVOE03qZNm6Jjx44lboUhSCKRQE9PT2ageVZWFrZs2VLmc+vq6qJz587Sbsnz588DKNkyWMjAwKDE7y/8MizK0tISo0ePxsiRI3Hr1i1kZmaiRYsWsLa2xvbt22VmqyUkJODkyZMyj6/o+yeRSCCEKDEYecOGDcjLyyvzvItyd3eHnp4e7ty5U+rr27Fjxwo9T0UYGhqW2jpVmsLBt8X/Bs+ePYsbN25U+G+wqMq8B/3790dycjLy8vJKfU0Kw8Z7770HoGBmV1G7du0qMXuxLBV9D1q0aAF7e3tcunSpzONK+/dYVf/3f/+HRYsWYcGCBVi4cKHcnpfkiy1BJHdubm5wd3fHnDlzkJaWhu7du0tnh7Vr1w4ffvhhmY8dP348jI2N0b17d1hbWyMpKQkBAQEwMzMr0YI0adIkLFu2DDExMdiwYUOFaps+fTqCgoLg4+ODuXPnwtHREVlZWYiOjkb//v3Rq1cvWFlZoXfv3ggICECdOnVgZ2eHo0eP4vfffy/1OQ0MDLBixQo8f/4cnTp1ks4O8/T0RI8ePd6oFgDw8/PDpk2bcOfOnUq3Nnz55ZcIDw9Ht27d8Mknn6BFixZ48eIF4uPjcfDgQfz444+wtbVFv379sHLlSowaNQoTJkxAcnIyvv322xIB4ccff0RERAT69euHRo0a4cWLF9JZgYVjm2rVqgU7OzsEBwfD1dUV5ubmsLCwKHdmW+fOndG/f3+0adMGderUwY0bN7BlyxZ07doVNWrUAFDwpTJu3DgMHDgQ48ePR0pKChYtWlSiK6ai75+pqSnee+89LF++XFpfdHQ0AgMDK3zV5MaNG+PLL7/EZ599hr///hseHh6oU6cOHj58iDNnzkhbuOThnXfewe+//461a9eiQ4cO0NHRKTNktWjRAhMmTMD//vc/6OjowNPTUzo7rGHDhpgxY0alf7+Ojk6F34MRI0Zg69at6Nu3L6ZNmwZHR0fo6+sjMTERkZGR8PHxwcCBA9GqVSuMHDkSK1asgK6uLlxcXHDt2jWsWLECZmZmFZr1V5n3YN26dfD09IS7uztGjx6NBg0a4OnTp7hx4wbOnz//2strXL9+XTpTNSkpCZmZmdi1axeAgmueFc5CW7FiBb744gt4eHigX79+OH36tMzzdOnSpWIvOimeSodlk0YpaxZJaTNZsrKyxJw5c4SdnZ3Q19cX1tbWYuLEieLZs2cyjy0+O2zTpk2iV69ewtLSUhgYGAgbGxsxbNgwcfny5VJrcnZ2Fubm5iIzM7PC5/Hs2TMxbdo00ahRI6Gvry/q168v+vXrJ27evCk95sGDB2LIkCHC3NxcmJmZiQ8++ECcO3eu1NlhJiYm4vLly8LZ2VkYGxsLc3NzMXHiRPH8+XOZ31t8dlhFaymcgVb09S0LSpmV9fjxY/HJJ5+IJk2aCH19fWFubi46dOggPvvsM5kaf/75Z9GiRQthaGgo3nrrLREQECACAwNlfvepU6fEwIEDhZ2dnTA0NBR169YVPXv2FCEhITK/88iRI6Jdu3bC0NCwxCyf0sydO1d07NhR1KlTR/r7Z8yYIZ48eSJz3IYNG4S9vb0wMDAQzZs3Fz///LPw9fUtMUunou9fYmKiGDx4sKhTp46oVauW8PDwEFevXi3xXhX+Gz979myp9e/du1f06tVLmJqaCkNDQ2FnZyeGDBkijhw5Uu55V2Z22NOnT8WQIUNE7dq1hUQiEa/7+M7LyxPffPONaN68udDX1xcWFhbigw8+EPfu3ZM5rqKzwwpV9D14+fKl+Pbbb0Xbtm2FkZGRqFmzpnBwcBD+/v4iNjZWetyLFy/EzJkzRf369YWRkZHo0qWLOHXqlDAzMxMzZswo8Zq86Xtw6dIlMWzYMFG/fn2hr68vrKyshIuLi/jxxx9fe+6Fr1Vpt6J/dz179izzOH7tqheJEMWuhEakIR49egQ7OztMnToVy5YtU3U5pCKjR49GVFSUzDpbpNlOnjyJ7t27Y+vWrdKZlkSKwO4w0jiJiYn4+++/sXz5cujo6GDatGmqLomIqig8PBynTp1Chw4dYGxsjEuXLuHrr7+Gvb19mQOYieSFIYg0zoYNG/Dll1+icePG2Lp1q8ysEiLSLKampggLC8N3332H9PR0WFhYwNPTEwEBATIzFYkUgd1hREREpJXUZor82rVr0aZNG5iamsLU1BRdu3bFoUOHpPuFEFi0aBFsbGxgbGwMZ2dnmSnTRERERJWhNiHI1tYWX3/9Nc6dO4dz587BxcUFPj4+0qCzbNkyrFy5EqtXr8bZs2dhZWUFNzc3pKenq7hyIiIi0kRq3R1mbm6O5cuXY+zYsbCxscH06dMxZ84cAAVXdbW0tMQ333wDf39/FVdKREREmkYtB0bn5eVh586dyMjIQNeuXREXF4ekpCTp2kZAwdVTe/bsiZMnT5YbgrKzs2Uun5+fn4+nT5+ibt26JS6/TkREROpJCIH09HTY2NhU6EKaFaFWIejKlSvo2rUrXrx4gZo1a2LPnj1o2bKl9JLsxRfZs7S0REJCQrnPGRAQILcrthIREZFq3bt3T26LT6tVCGrRogUuXryIlJQU7N69G76+vtJVpoGSC+cJIV7bmjNv3jzMnDlTej81NRWNGjXCvXv3YGpqKt8TICIiIoVIS0tDw4YN5brGm1qFIAMDAzRr1gwA0LFjR5w9exbff/+9dBxQUlISrK2tpcc/evSoROtQcYaGhiXWPwIgnYVGREREmkOeQ1nUZnZYaYQQyM7ORpMmTWBlZYXw8HDpvpycHERHR6Nbt24qrJCIiIg0ldq0BM2fPx+enp5o2LAh0tPTsWPHDkRFRSE0NBQSiQTTp0/H0qVLYW9vD3t7eyxduhQ1atTgujJERERUJWoTgh4+fIgPP/wQDx48gJmZGdq0aYPQ0FC4ubkBAGbPno2srCxMmjQJz549Q+fOnREWFibXvkEiIiLSHmp9nSBFSEtLg5mZGVJTUzkmiIiISEMo4vtbrccEERERESkKQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJbUJQQEBAejUqRNq1aqF+vXrY8CAAbh165bMMaNHj4ZEIpG5denSRUUVExERkSZTmxAUHR2NyZMn4/Tp0wgPD0dubi769OmDjIwMmeM8PDzw4MED6e3gwYMqqpiIiIg0mZ6qCygUGhoqc3/jxo2oX78+YmJi8N5770m3GxoawsrKStnlERERUTWjNi1BxaWmpgIAzM3NZbZHRUWhfv36aN68OcaPH49Hjx6V+zzZ2dlIS0uTuRERERFJhBBC1UUUJ4SAj48Pnj17huPHj0u3BwUFoWbNmrCzs0NcXBw+//xz5ObmIiYmBoaGhqU+16JFi7B48eIS21NTU2FqaqqwcyAiIiL5SUtLg5mZmVy/v9UyBE2ePBkHDhzAiRMnYGtrW+ZxDx48gJ2dHXbs2IFBgwaVekx2djays7Ol99PS0tCwYUOGICIiIg2iiBCkNmOCCk2dOhUhISE4duxYuQEIAKytrWFnZ4fY2NgyjzE0NCyzlYiIiIgAJCYCsbGAvT3wmu/e6kRtxgQJITBlyhT8/vvviIiIQJMmTV77mOTkZNy7dw/W1tZKqJCIiKgaCgwE7OwAF5eCn4GBqq5IadQmBE2ePBm//vortm3bhlq1aiEpKQlJSUnIysoCADx//hyzZs3CqVOnEB8fj6ioKHh5ecHCwgIDBw5UcfVEREQaKDERmDAByM8vuJ+fD/j7F2zXAmoTgtauXYvU1FQ4OzvD2tpaegsKCgIA6Orq4sqVK/Dx8UHz5s3h6+uL5s2b49SpU6hVq5aKqyciItJAsbGvAlChvDzg9u0Sh+bn52PWrFk4ceKEkopTPLUcGK1IihhYRUREpJESEwu6wIoGIV1dID5eZmxQTk4OfH19sWPHDpibm+P27duoU6eOUktVxPe32rQEERERkZLZ2gLr1xcEH6Dg57p1MgEoPT0d/fv3x44dO6Cvr4/VEyeiTrHVHDQVW4KIiIi0XWJiQRdYs2YyAejZs2dwd3fH2bNnYWJoiN9zctBHCEBHpyA8+fkprUStuU6QIjEEERERvd7Tp0/h5uaG8+fPo26dOjiYkgLHopGhlG4zRWJ3GBERESnckydP4OrqivPnz6NevXqI+vZb2QAElDmAWpOo3cUSiYiISHWSk5Ph6uqKy5cvw9LSEhEREWhpalrQBVZ8AHWzZqorVA7YEkREREQACgZB9+3bF5cvX4aVlRUiIyPRsmXLCg2g1kRsCSIiIiJkZ2dj0KBBOHPmDMzNzXH06FG8/fbbrw7w8wPc3UsdQK2pGIKIiIi0XF5eHj744AMcOXIEJiYmOHToUEELUHG2ttUi/BRidxgREZEWE0Jg0qRJ2LVrFwwMDBAcHAxHR0dVl6UUDEFERERa7JtvvsH69euho6OD7du3w9XVVdUlKQ1DEBERkZbavXs35s2bBwBYtWoVBg0apOKKlIshiIiISAudO3cOH374IQBg6tSpmDx5soorUj6GICIiIi1z7949eHl5ISsrC56enli5cqWqS1IJhiAiIiItkpGRAS8vLyQlJaF169bYsWMH9PS0c7I4QxAREZGWEELA398fly5dgqWlJfbv36/V62gyBBEREWmJ9evXY+vWrdDV1cXOnTthZ2en6pJUiiGIiIhIC8TExOCTTz4BAAQEBMDJyUnFFakeQxAREVE19+zZMwwdOhQ5OTnw8fHBrFmzVF2SWmAIIiIiqsby8/Ph6+uLuLg4NGnSBL/88gskEomqy1ILDEFERETV2Lfffot9+/bB0NAQu3btQu3atVVdktpgCCIiIqqmjh07hvnz5wMouCJ0+/btVVyRemEIIiIiqoaSkpIwfPjwghXie/fGeE9PVZekdhiCiIiIqpm8vDyMGjUKSUlJaAXgxyNHIGncGAgMVHVpaoUhiIiIqJpZuHAhIiMjYQJgFwATAMjPB/z9gcRE1RanRhiCiIiIqpEDBw7gq6++AgBsAOBQdGdeHnD7tirKUksMQURERNVEQkKCdGX4yb6+GKFT7GteVxdo1kwFlaknhiAiIqJqIDs7G8OGDcOzZ8/QqVMnrFi3Dli/viD4AAU/160DbG1VW6ga0c5lY4mIiKqZWbNm4cyZM6hTpw527twJQ0NDwM8PcHcv6AJr1owBqBiGICIiIg0XFBSE1atXAwC2bNkiuzCqrS3DTxnYHUZERKTBbt68iXHjxgEA5s+fj379+qm4Is3BEERERKShMjIyMGTIEDx//hzOzs5YvHixqkvSKAxBREREGkgIgYkTJ+LatWuwsrLC9u3boafHUS6VwRBERESkgTZs2IAtW7ZAV1cXQUFBsLKyUnVJGochiIiISMOcP38eU6dOBQB89dVXeO+991RckWZiCCIiItIgKSkpGDJkCLKzs+Hl5YVPP/1U1SVpLIYgIiIiDSGEwOjRoxEXF4fGjRtj06ZN0Cl+VWiqML5yREREGmL58uUIDg6GgYEBdu3ahTp16qi6JI3GEERERKQBoqKiMG/ePADAqlWr0KFDBxVXpPkYgoiIiNTcP//8g+HDhyM/Px++vr6YMGGCqkuqFhiCiIiI1NjLly8xbNgwPHr0CG3atMEPP/wAiUSi6rKqBYYgIiIiNTZnzhz88ccfMDU1xe7du1GjRg1Vl1RtqE0ICggIQKdOnVCrVi3Ur18fAwYMwK1bt2SOEUJg0aJFsLGxgbGxMZydnXHt2jUVVUxERKRYv/32G/773/8CADZv3oxmzZqpuKLqRW1CUHR0NCZPnozTp08jPDwcubm56NOnDzIyMqTHLFu2DCtXrsTq1atx9uxZWFlZwc3NDenp6SqsnIiIqIISE4HIyIKfr3Hjxg34+fkBKGgN8vHxUXR1WkcihBCqLqI0jx8/Rv369REdHY333nsPQgjY2Nhg+vTpmDNnDgAgOzsblpaW+Oabb+Dv71+h501LS4OZmRlSU1NhamqqyFMgIiJ6JTAQmDAByM8HdHSA9euBf0NOcSnXrqGzhwf+SkyEs7MzwsPDS64LlpgIxMYC9vaAra0STkC1FPH9rTYtQcWlpqYCAMzNzQEAcXFxSEpKQp8+faTHGBoaomfPnjh58qRKaiQiIqqQxMRXAQgo+OnvX2qLUN5PP2Fk69b4KzERDQHs8PIqGYACAwE7O8DFpeBnYKDiz6EaUssQJITAzJkz0aNHD7Ru3RoAkJSUBACwtLSUOdbS0lK6rzTZ2dlIS0uTuRERESlVbOyrAFQoLw+4fVt2W2Ii5k+YgFAAxgD2ArCcPVs2LFUiUFH51DIETZkyBZcvX8b27dtL7Cs+LVAIUe5UwYCAAJiZmUlvDRs2lHu9RERE5bK3L+gCK0pXFyg20Hnr2rVY9u9/bwTQHigZlioaqOi11C4ETZ06FSEhIYiMjIRtkT5OKysrACjR6vPo0aMSrUNFzZs3D6mpqdLbvXv3FFM4ERFRWWxtC8YA6eoW3NfVBdatkxnLc+7cOYxbsQIAMA/A8MIdxcNSBQMVvZ7ahCAhBKZMmYLff/8dERERaNKkicz+Jk2awMrKCuHh4dJtOTk5iI6ORrdu3cp8XkNDQ5iamsrciIiIlM7PD4iPL5gdFh8vMyg6KSkJAwYMwIvsbPRv0wZLCkNOKWGpIoGKKkbv9Ycox+TJk7Ft2zYEBwejVq1a0hYfMzMzGBsbQyKRYPr06Vi6dCns7e1hb2+PpUuXokaNGhg1apSKqyciIqoAW9sSYSUzMxMDBgzA/fv34eDggF+PHYNOenpB91azZqWHGz8/wN29/GPotdRminxZ43o2btyI0aNHAyhoLVq8eDHWrVuHZ8+eoXPnzlizZo108HRFcIo8ERGpi7y8PAwdOhR79uyBubk5Tp8+DXt7e1WXpZYU8f2tNiFIWRiCiIhIXfznP//BypUrYWBggKNHj6JHjx6qLkltadV1goiIiKqz1atXY+XKlQCATZs2MQCpAEMQERGRku3btw/Tpk0DUHAplxEjRqi4Iu3EEERERKREZ86cwYgRI5Cfn4/x48dLl4Ii5WMIIiIiUpJr167B09MTmZmZcHd3x5o1a8q94C8pFkMQERGREsTHx6NPnz54+vQpOnfujF27dkFfX1/VZWk1hiAiIiIFe/jwIdzc3PDPP/+gVatWOHDgAGrWrKnqsrQeQxAREZE8JCYWXA262EKmKSkpcHd3x+3bt9G4cWOEhYWhbt26KiqSimIIIiIielOBgYCdHeDiUvAzMBAA8Pz5c/Tv3x+XLl2CpaUlwsPDYWNjo+JiqRBDEBER0ZtITAQmTHi1snt+PuDvj+e3bqFv3774448/YGZmhsOHD6MZFzlVK2qzdhgREZFGio19FYD+lZGXh37DhuH45cswNTVFWFgY2rZtq6ICqSxsCSIiInoT9vaAzquv0wwA/QEcKxKAHB0dVVYelY0hiIiI6E3Y2gLr1wO6usgE4AUgCkCtWrVw+PBhdO7cWbX1UZkYgoiIiN6Unx/SrlyBZ5s2iMSrANSlSxdVV0bl4JggIiKiN/TkyRN4fPghYv7tAjt06BC6du2q6rLoNRiCiIiI3sD9+/fh5uaGGzduwMLCAocPH0b79u1VXRZVAEMQERFRFf3999/o3bs34uLi0KBBAxw5cgQODg6qLosqiGOCiIiIquDq1avo0aMH4uLi0LRpU5w4cYIBSMMwBBEREVVSdHQ0nJyc8ODBA7Ru3RrHjx9H48aNVV0WVRJDEBERUSXs2LEDffr0QUpKCrp164bo6GhYW1uruiyqAoYgIiKiChBCYPny5Rg5ciRycnIwePBgHDlyBObm5qoujaqIIYiIiOg18vLyMHXqVMyePRsAMG3aNAQFBcHY2FjFldGb4OwwIiKicmRmZuL999/H3r17AQArV67EjBkzVFsUyQVDEBERURkSExPh4+OD8+fPw9DQEFu2bMHQoUNVXRbJCUMQERFRKf78808MGDAASUlJsLCwwJ49e9CjRw9Vl0VyxDFBRERExWzbtg09e/ZEUlISWrdujTNnzjAAVUMMQURERP/Kz8/HggUL8P777yM7OxteXl44efIkmjRpourSSAHYHUZERATg+fPn+Oijj7Bnzx4AwOzZs7F06VLo6uqquDJSFIYgIiLSenfv3oW3tzcuXboEAwMDrF+/Hr6+vgU7ExOB2FjA3h6wtVVtoSRX7A4jIqLqJzERiIws+Pkap06dgqOjIy5duoT69esjMjLyVQAKDATs7AAXl4KfgYEKLpyUiSGIiIiql0oEly1btsDZ2RkPHz5EmzZtcObMGXTr1q1gZ2IiMGECkJ9fcD8/H/D3r1CwIs3AEERERNVHBYNLXl4eZs+ejY8++gg5OTkY4O6OP/74A3Z2dq8Oio199TyvHgjcvq3gkyBlYQgiIqLqowLBJTU1Fd7e3li+fDkA4DMAu8PCUDMoSPZx9vaATrGvSV1doFkzBRROqsAQRERE1cdrgktsbCy6dOmCgwcPwgjADgBLAOgIUbLFyNYWWL++4PGFz7NuHQdHVyMMQUREVH2UE1zCw8Ph6OiImzdvooGFBU4AGF70saV1dfn5AfHxBYOs4+ML7lO1wRBERETVS7HgIsaOxapVq+Dp6YmUlBR06dIF5w4fRoeKdnXZ2gLOzmwBqoYYgoiIqPr5N7hk16uH8ePHY9q0acjLy4Ovry8iIyNh1b49u7qIF0skIqLq6dGjRxg0aBD++OMP6OjoYPny5ZgxYwYkEknBAX5+gLt7QRdYs2YMQFqIIYiIiKqdixcvwsfHB3fv3oWZmRl27NgBDw+Pkgfa2jL8aDGGICIiqlb27duHkSNHIiMjA/b29ti3bx9atGih6rJIDXFMEBERVQtCCHz//ffw8fFBRkYGevfujT///JMBiMrEEERERBovNzcXU6dOxfTp0yGEwIQJE3Dw4EHUqVNH1aWRGmN3GBERabS0tDSMGDEChw4dgkQiwbJly/Cf//zn1QBoojKoVUvQsWPH4OXlBRsbG0gkEuzdu1dm/+jRoyGRSGRuXbp0UU2xRESkcvfu3UOPHj1w6NAhGBsbY/fu3Zg1axYDEFWIWoWgjIwMtG3bFqtXry7zGA8PDzx48EB6O3jwoBIrJCIidRETEwNHR0dcuXIFVlZWiI6OxsCBA1VdFmkQteoO8/T0hKenZ7nHGBoawsrKSkkVERGROgoNDcXgwYORmZmJd955B/v370ejRo1UXRZpGLVqCaqIqKgo1K9fH82bN8f48ePx6NEjVZdERERKtHnzZnh5eSEzMxN9+vTBiRMnGICoStSqJeh1PD09MXToUNjZ2SEuLg6ff/45XFxcEBMTA0NDw1Ifk52djezsbOn9tLQ0ZZVLRERyJITAsmXLMHfuXADABx98gMDAQBgYGKi4MtJUGhWChg9/td5v69at0bFjR9jZ2eHAgQMYNGhQqY8JCAjA4sWLlVUiEREpQH5+PmbMmIFVq1YBAD799FN8/fXX0Cm+CCpRJWj0vx5ra2vY2dkhNja2zGPmzZuH1NRU6e3evXtKrJCIiN5UdnY2Ro4cKQ1AK1euxLJlyxiA6I1pVEtQccnJybh37x6sra3LPMbQ0LDMrjIiIlJvaWlp8PHxQVRUFPT19bF582aMGDFC1WVRNaFWIej58+e4ffu29H5cXBwuXrwIc3NzmJubY9GiRRg8eDCsra0RHx+P+fPnw8LCglMiiYiqoeTkZLi7uyMmJga1atXCnj174OrqquqyqBpRqxB07tw59OrVS3p/5syZAABfX1+sXbsWV65cwebNm5GSkgJra2v06tULQUFBqFWrlqpKJiIiBXjw4AHc3Nxw7do1WFhY4PDhw2jfvr2qy6JqRiKEEKouQpnS0tJgZmaG1NRUmJqaqrocIiIqJj4+Hr1798adO3dgY2ODI0eO4O233351QGIiEBsL2NsDtraqK5SUShHf3xxVRkREauPWrVtwcnLCnTt30KRJExw/flw2AAUGAnZ2gItLwc/AQNUVSxqPIYiIiNTCpUuX4OTkhMTERLz99ts4fvw43nrrrVcHJCYCEyYA+fkF9/PzAX//gu1EVcAQREREKnf69Gk4Ozvj8ePHaNeuHaKjo9GgQQPZg2JjXwWgQnl5QJEJNUSVwRBEREQqdeLECbi5uSElJQXdunVDREQE6tWrV/JAe3ug+LWBdHWBZs2UUyhVOwxBRESkMidOnICHhweeP3+OXr16ISwsDLVr1y79YFtbYP36guADFPxct46Do6nK1GqKPBERaY/jx4/D09MTGRkZcHV1RUhICGrUqFH+g/z8AHf3gi6wZs0YgOiNMAQREZHSHTt2DH379kVGRgZ69+6N4OBg1Hj6FPjzz9dPfbe1ZfghuWB3GBERKVXRAOTm5lbQArR9O6e+k9LxYolERKR4/17gMPrJE/QdPRqZmZno06cP9u7dC+Pk5ILgU3Tml64uEB/PFh+SUsT3N7vDiIhIsQIDgQkTEJWfj34AMgG4u7tjz549MDY2Ln/qO0MQKRC7w4iISHH+vcDhsaIBCMDe1asLAhDAqe+kMgxBRESkOLGx+LNIAPIAsBeAUdGrPHPqO6kIu8OIiEhhLubkwAPAcwAuAPYAMCqtlYdT30kFGIKIiEghbty4AbcPPkAKgG4AgvFvACqrlYdT30nJGIKIiKjq/p31VfzaPnfu3IGrqyuePHmCDh064ODmzaj56BFbeUitcEwQERFVTWBgqdf2uXv3LlxdXfHgwQO0bt0ahw8fhlnLloCzMwMQqZU3CkGPHj1CUlKSvGohIiJN8e+sL+nU9vx8wN8fSefPo3fv3khISEDz5s0RHh6OunXrqrZWojJUKQRdvnwZrVq1grW1NRo0aIAGDRpgwYIFyMjIkHd9RESkjkq5ts+TvDz0HjwYsbGxsLOzw5EjR2BlZaWiAoler0ohyM/PD5aWljhx4gQuXLiAJUuW4NChQ+jYsSOePXsm7xqJiEjdFLu2TwoKrv9zLT4eNjY2iIiIQMOGDVVVHVGFVGnZDBMTE8TExMDBwUG6TQiBoUOHwsjICL/++qtci5QnLptBRFRBZQx6lgoMBPz98TwvD30AnAJQr149HDt2TOb7gUgeFPH9XaWWoNJafCQSCZYuXYrg4GC5FEZERCpUxqBnGX5+yLpxA97t2uEUgDp16iA8PJwBiDRGhUNQv379MH/+fPz222/4+OOPMWPGDDx8+FDmmNTUVNSpU0fuRRIRkRKVMegZRa/yDCAnJwdDpk9H5IULqFWrFkJDQ9G2bVsVFExUNRW+TtA777yD8+fPY+PGjdLw89Zbb2HYsGF49913kZeXh40bN+K///2vwoolIiIlqMCCprm5uRg1ahQOHjwIY2NjHDhwAI6OjioolqjqqjQm6OHDh7hw4QIuXrwovd2+fRu6urpo0aIFLl++rIha5YJjgoiIXiMxsaALrGgQ0tUF4uMBW1vk5+fD19cXv/76KwwMDLB//364ubmprFzSDor4/q7SFaMtLS3h4eEBDw8P6basrCxcunQJly5dkkthRESkIoULmvr7F7QAFVnqQgiBiRMn4tdff4Wenh527tzJAEQaq0otQZqMLUFERBWUmCizoKkQAjNnzsR3330HHR0dbNu2DcOHD1d1laQl1KYliIiItECxBU0///xzfPfddwCAwMBABiDSeFw7jIiIXisgIABfffUVAGDNmjUYPXq0agsikgOGICIiKtf333+P+fPnAwCWLVuGSZMmqbgiIvlgCCIiojKtX78e06dPBwAsWrQIn376qWoLIpIjhiAiIirVli1b8PHHHwMAZs+ejS+++ELFFRHJF0MQERGVsHPnTowePRpCCEyZMgVff/01JBKJqssikiuGICIikrF//36MGjUK+fn5GDt2LL7//nsGIKqWGIKIiEjqyJEjGDJkCHJzczFy5EisX78eOjr8qqDqif+yiYgIAHD8+HH4+PggOzsbAwcOxKZNm6Crq6vqsogUhiGIiIhw5swZ9OvXD5mZmfD09MT27duhr6+v6rKIFIohiIhIy128eBHu7u5IT09Hr169sHv3bhgaGqq6LCKFYwgiItJily5dgqurK1JSUtC1a1eEhITA2NhY1WURKQVDEBGRlioMQE+fPoWjoyMOHTqEmjVrqrosIqVhCCIi0kKXL1+Gq6srkpOT4ejoiLCwMJiZmam6LCKlYggiItIyV65ckQagTp064fDhwwxApJUYgoiItMiVK1fg4uKCJ0+eoFOnTggLC0Pt2rVVXRaRSqhVCDp27Bi8vLxgY2MDiUSCvXv3yuwXQmDRokWwsbGBsbExnJ2dce3aNdUUS0SkYYoGoI4dOzIAkdZTqxCUkZGBtm3bYvXq1aXuX7ZsGVauXInVq1fj7NmzsLKygpubG9LT05VcKRGRmkpMBCIjC34WcfHiRWkA6tChAwMQEQA9VRdQlKenJzw9PUvdJ4TAd999h88++wyDBg0CAGzatAmWlpbYtm0b/P39lVkqEZH6CQwEJkwA8vMBHR1g/XrAzw+nT5+Gp6cnUlJS0KFDB4SHh6NOnTqqrpZI5dSqJag8cXFxSEpKQp8+faTbDA0N0bNnT5w8ebLMx2VnZyMtLU3mRkRU7SQmvgpAQMFPf39E7dwJNzc3pKSkoHv37jh69CgDENG/NCYEJSUlAQAsLS1ltltaWkr3lSYgIABmZmbSW8OGDRVaJxGRSsTGvgpA/wrNy4PnBx/g+fPn6N27N2eBERWjMSGokEQikbkvhCixrah58+YhNTVVert3756iSyQiUj57+4IusH/tAeAN4EVODvr37499+/bBxMREZeURqSONCUFWVlYAUKLV59GjRyVah4oyNDSEqampzI2IqNqxtS0YA6Sriy0AhgJ4CWDYsGH4/fffYWRkpOICidSPxoSgJk2awMrKCuHh4dJtOTk5iI6ORrdu3VRYGRGRmvDzw7dz5+IjAHkAfH19sW3bNq4GT1QGtZod9vz5c9y+fVt6Py4uDhcvXoS5uTkaNWqE6dOnY+nSpbC3t4e9vT2WLl2KGjVqYNSoUSqsmohI9fLz8/Hpp59i5cqVAICZM2di+fLl0NHRmP/XJVI6tQpB586dQ69evaT3Z86cCaDg/2Z++eUXzJ49G1lZWZg0aRKePXuGzp07IywsDLVq1VJVyUREKpeTk4OxY8di69atAIDly5dj1qxZZT8gMbFgILW9fUE3GpGWkgghhKqLUKa0tDSYmZkhNTWV44OISOOlp6djyJAhCAsLg56eHn7++Wd8+OGHZT+gjGsJEak7RXx/s52UiEhD3b9/Hz179kRYWBhMTEywb9++8gNQGdcSKn51aSJtwRBERKQJii2HERMTA0dHR1y4cAH16tVDREQEPDw8yn+OUq4lhLw8oMhYTCJtwhBERKTuAgMBOzvAxQWws8PvkybByckJ//zzD1q1aoUzZ87A0dHx9c9T7FpCAABdXaBZM8XUTaTmGIKIiNRZkS4sAeCb/HwMXrsWWVlZ8PDwwMmTJ9G4ceOKPVeRawkBKPi5bh0HR5PWUqvZYUREVMy/XVhZACYC2PTv5ikDB+K/v/0GPb1Kfoz7+QHu7gVdYM2aMQCRVmMIIiJSZ/b2iJdIMFgInEdB8/33EgmmrFoFVDYAFbK1ZfghArvDiIjUWtj16+hQowbOA7AAEKajgyk//cQQQyQHDEFERIpSbEZXZQghEBAQAA8PDzzNyEDHNm0Qs2MHXBMSeF0fIjlhCCIiUoRiM7oQGFj2scXC0uPHj9G/f3/Mnz8fQgiMGzcOx//8E42GD2cLEJEcMQQREclbZS5KWCwsRcyahbZt2+LgwYMwNDTE+vXr8dNPP3EVeCIF4MBoIiJ5K++ihEVbcoqEpZcAFubn4+sVKyAAvP322wgKCsI777yjzMqJtApDEBGRvBVelLBoECrtooT/hqW/APgCOP3v5vH9+uG7335DjRo1lFQwkXZidxgRkbxV8KKEeW+9hf9KJGiLggBkBuA3HR2s//FHBiAiJWBLEBGRIrzmooSxsbEYM2YM/hACAOAGYIOODhqtX8/Bz0RKwhBERKQopVyUMDc3F6tWrcKCBQuQlZWFmjVrYsWCBRjv6AiJvT0DEJESMQQRkeokJhaMi9GSL/+TJ09i4sSJuHz5MgDA1dUVgYGBsLOzU3FlRNqJY4KISDUqcx0dDZecnIzx48eje/fuuHz5MszNzfHTTz8hPDycAYhIhRiCiEj5KnMdHQ2Wm5uLtWvXokWLFtiwYQMAYMyYMbh58ybGjRsHiUSi4gqJtBu7w4hI+Sp6HR0NJYTAwYMH8emnn+LGjRsAgNatW2Pt2rXo0aOHiqsjokJsCSIi5Su8jk5RpV1HRwNdvHgRbm5u6N+/P27cuIG6devif//7H86fP88ARKRmGIKISPkqeB0dTXL16lUMHToU7dq1w9GjR2FgYIBPP/0Ut2/fxpQpU6Cvr6/qEomoGHaHEZFqvOY6Oprixo0bWLx4MX777TcIISCRSDB8+HAsXboUTZo0UXV5RFQOhiAiUp1SrqOjKWJiYrB8+XJp+AGAIUOGYOHChWjdurWKqyOiimAIIiKqICEEDh8+jGXLliEyMlK6fcCAAVi0aBHatm2rwuqIqLIYgoiIXiMrKwtBQUFYuXIlrly5AgDQ1dXFyJEjMWvWLIYfIg3FEEREVIbY2Fj8+OOP2LhxI549ewYAqFmzJsaPH4/p06ejUaNGKq6QiN4EQxARUREvX77EgQMHsHbtWoSFhUm3N27cGB9//DEmTJiAOnXqFFzYMTJSa5b8IKqOGIKIiABcunQJv/zyC7Zt24ZHjx4BACQSCfr27YuJEyfCw8MDuoVT+gMDX13xWkenYLq/n58KqyeiqpCIwmkNWiItLQ1mZmZITU2FqampqsshInmpwmKsDx8+xLZt27Bp0yZcunRJur1+/foYO3YsJkyYUHKae2JiwVpnRa94rasLxMezRYhIgRTx/c2WICLSfJVomUlOTsbevXvx22+/4ejRo8jLywMAGBgYwNvbG6NHj4a7uzv09Mr4eKzmS34QaROGICLSbGUtxuruLg0lT58+xd69e7Fz504cOXIEubm50od37twZvr6+GD58OMzNzV//+wqX/CjeElQNlvwg0jYMQUSk2cpomXkSE4P9R47gt99+Q3h4uEzwadu2LYYNG4ahQ4fC3t6+cr+vcMkPf/+CFqBqsOQHkbbimCAi0mxFxujEAggBEAzgDx0d5BcJR23atJEGn+bNm8vn92r4kh9EmoRjgoiIisjLy8Ofd+8iuE8fhISG4mbRnfn5aNOmDYYMGYKhQ4fCwcHh1eDpGjXePLho8JIfRFSAIYiINEpGRgbCw8MREhKC/fv34/Hjx9J9erq6cO7WDT7DhsHLywt2dnavHshp7URUDLvDiEjtJSUlYd++fQgJCcGRI0fw4sUL6b7atWujb9++8Pb2hoeHB8zMzEo+Aae1E2k8docRkVYQQuD69esIDg5GSEgI/vzzT5n9jRs3ho+PD7y9veHk5AR9ff3yn5DT2omoFAxBRKQWcnNzceLECYSEhCA4OBh///23zP5ObdvCZ+hQ+Pj4oFWrVpBIJBV/ck5rJ6JSMAQRkcqkp6fj8OHDCA4OxoEDB6SLlAKAoaEhXJs3h8/Vq/ASAtZXrgBTpwKtW1f+F3FaOxGVgmOCiEip7t+/j5CQEISEhCAiIgI5OTnSfXXr1kX//v3h7e2NPq1aoWbLlvIdx8Np7UQai2OCiEjjCCFw+fJlaTdXTEyMzP5mzZrBx8cHPj4+6Nq166vlKiIj5T+OpyLT2quwBhkRaSaGICKSu5cvX+LYsWPSgc0JCQnSfRKJBF26dJEObHZwcCh9fI8qxvFwGj2RVtGoELRo0SIsXrxYZpulpSWSkpJUVBERFUpNTcWhQ4cQEhKCgwcPIjU1VbrP2NgYbm5u8Pb2Rv/+/WFpafn6J1T2OJ4KrEFGRNWLRoUgAGjVqhWOHDkiva+rq6vCaog0hDy7eIo81938fGk3V1RUlMz6XPVq14aXuzt8Ro1C7969UaNGjcr/Lj+/ghCijHE8nEZPpHU0LgTp6enByspK1WUQaQ45dvGIDRtwYcIEBAuBEAAXi+13cHCAT+PG8D58GJ1TUqC7cyfg5lawTEVVKWt5Ck6jJ9I6GheCYmNjYWNjA0NDQ3Tu3BlLly7FW2+9Vebx2dnZyM7Olt5PS0tTRplE6kEOXTzZ2dmIiopCyLZtCNm8GYlF9ukA6O7oCO+hQ+Ht7Y3mNWoUXJm5cNKpJnUpcRo9kdbRqBDUuXNnbN68Gc2bN8fDhw+xZMkSdOvWDdeuXUPdunVLfUxAQECJcUREWqOKXTzPnj3DwYMHERwcjNDQUKSnp0v31QDgDsAbQD8A9b75BnB2LtipiBldyqTM7jciUjmNvk5QRkYGmjZtitmzZ2PmzJmlHlNaS1DDhg15nSDSDpVYMysuLk46m+vYsWPIy8uT7rOysoKXiwt8tm+HixAwLuu5uEYXESkIrxNUjImJCd555x3ExsaWeYyhoSEMDQ2VWBWRGimniyc/Px/nzp2TDmy+evWqzENbtWolncbeqVMn6OjoAC4u5XcXsUuJiDSIRrcEZWdno2nTppgwYQK++OKLCj2GV4wmrfTvlZKzGjTA0Vu3sG/fPuzbtw8PHjyQHqKrqwsnJyd4e3vD29sbTZs2Lfe5yu0u4pWZiUjOtL4laNasWfDy8kKjRo3w6NEjLFmyBGlpafD19VV1aURq68GDB9h/6BD27duHI0eOICsrS7qvZs2a8PDwgI+PDzw9PcscWyejIrO1lDWji4joDWhUCEpMTMTIkSPx5MkT1KtXD126dMHp06dhZ2en6tKICqjBkgtCCFy8eFHa2nPu3DmZ/Q0bNoSXlxe8vLzQq1cvdhcTkdbSqBC0Y8cOVZdAVDYVLrnw4sULREREYN++fdi/fz8SExNl9js6OkqDT5s2bUpfpoKISMto9JigquCYIFIIFcyKunPnDg4dOoTQ0FBERkYiMzNTuq9wmQovLy/069cP1tbWCqmBiEhZtH5MEJHaUsKSCxkZGYiKikJoaChCQ0Nx+/Ztmf02NjbS1h4XFxcYGxuX8UxlUIOuPCIiZWIIIpKHyiy5UMGwIYTA9evXpaHn2LFjyMnJke7X09NDjx494OHhAQ8Pjzfr5uLq6USkhRiCiOShotfHeU3YSExMRGRkJI4ePYqjR4+WGNtjZ2cHT09PeHh4oFevXvJpEubq6USkpRiCiOTldUsulBI2Hk+YgKiXLxFx6RIiIiLw119/yTzEyMgIzs7O0tae5s2by7b2yKMLi6unE5GWYggikqfyro8TG4u0/HxEA4j493Y5Px+YOFF6iI6ODjp06ABXV1f06tULTk5OZY/tkVcXFldPJyItxRBEpECZmZk4efIkIiIiEBEainMA8ood846DA1zc3eHi4oL33nsPtWvXLtiRmAicPl16K488u7C41AURaSmGICI5ysnJwdmzZxEREYGjR4/i1KlTMoOZAcAegAsAF4kEzitWoP6MGSWf6HWtPPLuwuLq6USkhXidIKI3kJeXh4sXLxa09ERE4Pjx48jIyJA5pkGDBnB1dYWLiwtcXFzQUCIpP2xU5JpDXK2diLQMrxNEpGJCCNy8eRNHjx5FREQEoqKi8OzZM5ljLCwspIHHxcUFzZo1Kzl1vbygUpFWHnZhERG9MYYgotdISEiQdm9FRETIrLwOAKampujZs6c09LRu3Ro6OjpV/4UVHajMLiwiojfCEKRovAqv6lTxtX/06JH0Wj0RERG4c+eOzH4jIyN0795d2sXVoUMH6OnJ8U+pMq08XK2diKjKGIIUiVfhrTx5hcZKvPbZ2dk4ceIEDh8+jMOHD+Py5csy+3V1deHo6AgXFxe4urqia9euMDIyqnptFcFWHiIihePAaEXhwNXKk1dorMBrf/v2bRw+fBihoaGIOHoUmVlZMk/Rtm1baehxcnKCaVoaW/SIiFSIA6M1Ca/CWznyvO5NKa/987w8RG3ZgtD79xEaGlqii8sKgDsA9/Hj0furr1CvXr1XO9miR0RULbElSFHYElQ5kZGAi0vp252dK/dc/772/+TnIwTAXgCRAIperUdfXx/dO3aEx+nT8BACbQBIAE5FJyJSU2wJ0iScwlw5cli6QQiBGzduYO/evQi2s8OZuDiZ/U2aNJGuwdWrVy/UOneuZPAq3lrHFj0iomqLIUiROLi14qoYGvPy8nD69Gns3bsXe/fuxe3bt2X2d2nZEgN8fODz0Udo0aKF7PV6KhK8uK4WEVG1xRCkaJzCXHEVDI1ZWVk4cuQIgoODERISgsePH0v3GRgYoHfv3vDx8YGXlxesra3L/n0VCV5s0SMiqrY4Jog0QnJyMg4cOIDg4GCEhoYiMzNTus/MzAz9+/eHj48PPDw8UKtWrco9eWLi61vrKnIMEREpDMcEkWar5DWA4uPjERwcjL179+L48ePIy3u1/npDAD4ABkgkeO+bb6Dv71/1uirSWscWPSKiaochiJSjAtPMhRC4ePFiwcDm4GBcunRJZn+bNm0wwMUFPt9/j3ZCFMzmEgKYPBno148hhYiIKoXdYaR45Uwzz6lfH1FRUQgJCUFISAju3bsnPURHRwdOTk4YMGAAfHx80KRJE/lOpSciIo3B7jCSH2WuaVZsmvkzAIfy8hD84Yc4FBOD9PR06T5jY2O4u7tjwIAB6NevHywsLGSfi7O1iIhIThiCNIkK1tWSB9GsGa5JJAgTAgcAHAOQCwBRUQAAS0tLeHt7w9vbG66urjA2Ni77yThbi4iI5ITdYZpCietqyUNycjLCw8MRFhaGsLAw3L9/X2Z/KxsbePv6wsfHB506dYKOjk7lfgFnaxERaRV2h2krBa+rJY8rID9+/Bh//PEHjh8/jmPHjiEmJgZF87WRkRF6du4Mj9at4TViBJr26FHl3wWAs7WIiOiNMQRpAnkGFzmMqcnJycG1a9dw4cIFnD59GsePH8fNmzdLHNe6dWu4u7vD3d0dTk5OMDIyqlytRERECsQQpAnkORi4EmNqcnNzkZCQgL/++guxsbG4fPkyzp8/j6tXr+Lly5cljm/ZsiWcnJzQo0cPuLi4wMbGpvL1ERERKQlDkCZ4g8HAQgjk5+dLb3l5eUjr1w9pERFIvX4dqWZmSDUwwIPVq/HPP/9IbwkJCYiLiys17ABA7dq10a5dO3To0AFOTk7o3r076tatK+8zJyIiUhgOjFYDT58+xe3bt5GQkICEhATcu3cPycnJSElJkd6ysrKQm51dcAOQ+2+gKRpwit4Kw8+bMjI0RDMbGzR3cMDb7dujffv2aNeuHRo3biy7GCkREZECcWC0sijwGjovXrzAqVOnEB0djfPnz+PixYsyFwhUBolEAlNTU5iZmUl/WllZwcbGRnpr0KAB7GNiYDt3LnTi4oCEBGDwYGDQIKXWSkREpChsCSpOAdfQuXv3Lnbv3o19+/bh5MmTyM7OLnFMgwYNYGdnBzs7OzRq1Aj169dH7dq1YWZmBjMzM5iYmEBPT0/mpqurC11dXejo6MjcJA8eQCchATpNm0LH1vbVdokEurq6qFGjxuunpCtpKj0REVFFsCVI0eQ4FT09PR2bN2/G5s2bcebMGZl91tbW6NWrF7p06YJ3330Xbdq0gZmZmXzOQV4hrjIz0pR59WkiIiI50d4QdP8+UDxJymEq+p07d7B69Wr8/PPPSEtLA1DQ/eTk5IRBgwbBw8MDzZs3V8x4GnleT6iiM9KUfPVpIiIieankZXqrjwctWxZ8gRdV+MVfVAWmogshcOTIEXh7e8Pe3h7fffcd0tLS0Lx5c3z//ff4559/EB0djWnTpqFFixaKG1BcXoirrMIZabq6BfdLm5FWVuhKTKxa/UREREqktSFoEoD8CRNkv7Ar8sVfREZGBtatW4fWrVvDzc0N+/btgxACHh4eOHToEG7cuIFPPvkEVlZWij8hoMohrkx+fgVjgCIjC34Wb+GRZ+giIiJSMq3tDosAMDU/H6tjYyEpGnL8/Aq6j8pZlyohIQFr1qzBhg0b8OzZMwCAiYkJxowZgylTpqBFixZKOotiFLG4aHnLU3BFdyIi0mBaOzus0LiRI/G/n39+7ZIO+fn5CAsLw9q1a7F//37pNXjeeustTJ06FWPGjHmzwc3yHFyszMVFAwNLhi6OCSIiIjlTxOwwrQ1B3wGYIZFACAEHBwd88cUX8PHxQY0aNaTHZmVl4cyZMwgODsbvv/+OhIQE6T5XV1dMmzYNffv2hW5h91lVafrgYq7oTkRECsYQJAfSF/H6dZy+dw8ffPABHj9+DAAwNDSEvb09atWqJb2Kc15envSxtWvXxujRo+Hv7w8HBwf5FMTr8RAREb0WrxMkTw0aoM/bb+Ovv/7CqlWrEBgYiLt37+Lq1asyh9WrVw+enp4YMGAA3N3dZVqK5EKeK8QTERFRhWlkS9APP/yA5cuX48GDB2jVqhW+++47ODk5VeixZSVJIQTu3LmDuLg4ZGRkoFatWnBwcICNjY1i18hiSxAREdFrsSUIQFBQEKZPn44ffvgB3bt3x7p16+Dp6Ynr16+jUaNGVX5eiUSCZs2aoZmyZzYpYkYXERERvZbGtQR17twZ7du3x9q1a6Xb3n77bQwYMAABAQGvfbw6riIPgIOLiYiIyqH1LUE5OTmIiYnB3LlzZbb36dMHJ0+eLPUx2dnZMguWFi5loXbKux4PERERyZ1GXTH6yZMnyMvLg6Wlpcx2S0tLJCUllfqYgIAA6UrsZmZmaNiwoTJKJSIiIjWnUSGoUPGBykKIMgcvz5s3D6mpqdLbvXv3lFEiERERqTmN6g6zsLCArq5uiVafR48elWgdKmRoaAhDQ0NllEdEREQaRKNaggwMDNChQweEh4fLbA8PD0e3bt1UVBURERFpIo1qCQKAmTNn4sMPP0THjh3RtWtXrF+/Hnfv3sXHH3+s6tKIiIhIg2hcCBo+fDiSk5Px5Zdf4sGDB2jdujUOHjwIOzs7VZdGREREGkTjrhP0ptT2OkFERERUJkV8f2vUmCAiIiIieWEIehOJiUBkZMFPIiIi0igMQVUVGFiw8KmLS8HPwEBVV0RERESVwBBUFYmJwIQJr1Z+z88vWACVLUJEREQagyGoKmJjXwWgQnl5BQugEhERkUZgCKoKe3tAp9hLp6tbsAI8ERERaQSGoKqwtQXWry8IPkDBz3XruAo8ERGRBtG4iyWqDT8/wN29oAusWTMGICIiIg3DEPQmbG0ZfoiIiDQUu8OIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVNCoENW7cGBKJROY2d+5cVZdFREREGkhP1QVU1pdffonx48dL79esWVOF1RAREZGm0rgQVKtWLVhZWam6DCIiItJwGtUdBgDffPMN6tati3fffRdfffUVcnJyVF0SERERaSCNagmaNm0a2rdvjzp16uDMmTOYN28e4uLisGHDhjIfk52djezsbOn91NRUAEBaWprC6yUiIiL5KPzeFkLI70mFii1cuFAAKPd29uzZUh+7a9cuAUA8efLkjZ6fN95444033njTjNudO3fklkEkQsgzUlXekydP8OTJk3KPady4MYyMjEpsv3//PmxtbXH69Gl07ty51McWbwlKSUmBnZ0d7t69CzMzszcrXoOkpaWhYcOGuHfvHkxNTVVdjtLwvHne2oDnzfPWBqmpqWjUqBGePXuG2rVry+U5Vd4dZmFhAQsLiyo99sKFCwAAa2vrMo8xNDSEoaFhie1mZmZa9Y+nkKmpKc9bi/C8tQvPW7to63nr6MhvOLPKQ1BFnTp1CqdPn0avXr1gZmaGs2fPYsaMGfD29kajRo1UXR4RERFpGI0JQYaGhggKCsLixYuRnZ0NOzs7jB8/HrNnz1Z1aURERKSBNCYEtW/fHqdPn37j5zE0NMTChQtL7SKrznjePG9twPPmeWsDnrf8zlvlA6OJiIiIVEHjLpZIREREJA8MQURERKSVGIKIiIhIKzEEERERkVaqliHohx9+QJMmTWBkZIQOHTrg+PHj5R4fHR2NDh06wMjICG+99RZ+/PFHJVUqX5U5799//x1ubm6oV68eTE1N0bVrVxw+fFiJ1cpPZd/vQn/88Qf09PTw7rvvKrZABanseWdnZ+Ozzz6DnZ0dDA0N0bRpU/z8889KqlZ+KnveW7duRdu2bVGjRg1YW1tjzJgxSE5OVlK1b+7YsWPw8vKCjY0NJBIJ9u7d+9rHVIfPtMqed3X5TKvK+11Ikz/TqnLe8vhMq3YhKCgoCNOnT8dnn32GCxcuwMnJCZ6enrh7926px8fFxaFv375wcnLChQsXMH/+fHzyySfYvXu3kit/M5U972PHjsHNzQ0HDx5ETEwMevXqBS8vL+lVuDVFZc+7UGpqKj766CO4uroqqVL5qsp5Dxs2DEePHkVgYCBu3bqF7du3w8HBQYlVv7nKnveJEyfw0Ucfwc/PD9euXcPOnTtx9uxZjBs3TsmVV11GRgbatm2L1atXV+j46vKZVtnzri6faZU970Ka/plWlfOWy2ea3FYhUxOOjo7i448/ltnm4OAg5s6dW+rxs2fPFg4ODjLb/P39RZcuXRRWoyJU9rxL07JlS7F48WJ5l6ZQVT3v4cOHiwULFoiFCxeKtm3bKrBCxajseR86dEiYmZmJ5ORkZZSnMJU97+XLl4u33npLZtuqVauEra2twmpUJABiz5495R5TXT7TiqrIeZdGEz/TiqrMeWv6Z1pRFTlveX2mVauWoJycHMTExKBPnz4y2/v06YOTJ0+W+phTp06VON7d3R3nzp3Dy5cvFVarPFXlvIvLz89Heno6zM3NFVGiQlT1vDdu3Ig7d+5g4cKFii5RIapy3iEhIejYsSOWLVuGBg0aoHnz5pg1axaysrKUUbJcVOW8u3XrhsTERBw8eBBCCDx8+BC7du1Cv379lFGySlSHzzR50MTPtKrS9M+0qpDXZ5rGXDG6Ip48eYK8vDxYWlrKbLe0tERSUlKpj0lKSir1+NzcXDx58qTcxVnVRVXOu7gVK1YgIyMDw4YNU0SJClGV846NjcXcuXNx/Phx6Olp5j//qpz333//jRMnTsDIyAh79uzBkydPMGnSJDx9+lRjxgVV5by7deuGrVu3Yvjw4Xjx4gVyc3Ph7e2N//3vf8ooWSWqw2eaPGjiZ1pVVIfPtKqQ12datWoJKiSRSGTuCyFKbHvd8aVtV3eVPe9C27dvx6JFixAUFIT69esrqjyFqeh55+XlYdSoUVi8eDGaN2+urPIUpjLvd35+PiQSCbZu3QpHR0f07dsXK1euxC+//KJRrUFA5c77+vXr+OSTT/DFF18gJiYGoaGhiIuLw8cff6yMUlWmunymVZWmf6ZVVHX7TKsMeX2mVavYaGFhAV1d3RL/V/jo0aMS/2dUyMrKqtTj9fT0ULduXYXVKk9VOe9CQUFB8PPzw86dO9G7d29Flil3lT3v9PR0nDt3DhcuXMCUKVMAFPwhCSGgp6eHsLAwuLi4KKX2N1GV99va2hoNGjSAmZmZdNvbb78NIQQSExNhb2+v0JrloSrnHRAQgO7du+PTTz8FALRp0wYmJiZwcnLCkiVLqmWrSHX4THsTmvyZVlnV5TOtKuT1mVatWoIMDAzQoUMHhIeHy2wPDw9Ht27dSn1M165dSxwfFhaGjh07Ql9fX2G1ylNVzhso+L+l0aNHY9u2bRo5RqKy521qaoorV67g4sWL0tvHH3+MFi1a4OLFi+jcubOySn8jVXm/u3fvjn/++QfPnz+Xbvvrr7+go6MDW1tbhdYrL1U578zMTOjoyH7M6erqAnjVOlLdVIfPtKrS9M+0yqoun2lVIbfPtDcaVq2GduzYIfT19UVgYKC4fv26mD59ujAxMRHx8fFCCCHmzp0rPvzwQ+nxf//9t6hRo4aYMWOGuH79uggMDBT6+vpi165dqjqFKqnseW/btk3o6emJNWvWiAcPHkhvKSkpqjqFKqnseRenqTMpKnve6enpwtbWVgwZMkRcu3ZNREdHC3t7ezFu3DhVnUKVVPa8N27cKPT09MQPP/wg7ty5I06cOCE6duwoHB0dVXUKlZaeni4uXLggLly4IACIlStXigsXLoiEhAQhRPX9TKvseVeXz7TKnndxmvqZVtnzltdnWrULQUIIsWbNGmFnZycMDAxE+/btRXR0tHSfr6+v6Nmzp8zxUVFRol27dsLAwEA0btxYrF27VskVy0dlzrtnz54CQImbr6+v8gt/Q5V9v4vS1A8MISp/3jdu3BC9e/cWxsbGwtbWVsycOVNkZmYqueo3V9nzXrVqlWjZsqUwNjYW1tbW4v333xeJiYlKrrrqIiMjy/1bra6faZU97+rymVaV97soTf1Mq8p5y+MzTSJENW0TJiIiIipHtRoTRERERFRRDEFERESklRiCiIiISCsxBBEREZFWYggiIiIircQQRERERFqJIYiIiIi0EkMQERERaSWGICIiItJKDEFERESklRiCiKha+PLLL/HOO+/AxMQElpaWmDhxIl6+fKnqsohIjempugAiojclhEBeXh7WrVuHBg0a4Pr16/joo4/Qpk0bTJw4UdXlEZGa4gKqRFQtjRo1CvXq1cP333+v6lKISE2xO4yINF5CQgKmTJmC1q1bo06dOqhZsyZ+++032Nraqro0IlJjDEFEpNGePHkCR0dHPHnyBCtXrsSJEydw6tQp6Orq4t1331V1eUSkxjgmiIg02sGDB5Gbm4vt27dDIpEAANasWYOcnByGICIqF0MQEWk0c3NzpKWlISQkBC1btsS+ffsQEBCABg0aoF69eqouj4jUGAdGE5FGE0Jg4sSJ2LZtG4yNjfHBBx/gxYsXSEhIwP79+1VdHhGpMYYgIiIi0kocGE1ERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSv8PFqnTACjFNh4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbQklEQVR4nO3dd1hT1x8G8DesgCAoKksQF+46cYsideHeWlvrQMVZR62zLerPSqut1tZdcdRJa911oYKjagW3aBUHKFVUUEAQWTm/P1IiYclISELez/Pkobk5Cd+byM3bc8+5RyKEECAiIiLSMwaaLoCIiIhIExiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCSKPc3d3h7u6u6TIKbfjw4bCwsMhX28qVK2P48OFqrUcikWDevHlq/R3v8+bNG8ybNw9BQUEarUNXnDhxAq6urjA3N4dEIsHevXuxadMmSCQShIeHK9pt374dP/74o1pq+PLLL1GpUiUYGRmhTJkyBX7+8OHDUblyZZXXpW1+/fVXDB48GDVr1oSBgUGu+3z16lV069YNlSpVgpmZGaytrdGyZUts3bq1eAum9zLSdAGk31atWqXpEorNnj17YGlpqeky1O7NmzeYP38+AOh0wC0OQggMHDgQNWrUwP79+2Fubo6aNWsiLS0N58+fh729vaLt9u3bcfPmTUyZMkWlNezbtw/ffPMN5s6dC09PT0ilUpW+fkmyZcsWREVFoVmzZpDJZEhNTc2xXWxsLJycnPDRRx+hYsWKSExMxLZt2zB06FCEh4fjyy+/LObKKTcMQaRRderU0XQJxaZRo0aaLoFUKCkpCaamppBIJIV+jSdPnuDly5fo06cPPvzwQ6XHKlSoUNQS8+XmzZsAgM8++ww2NjbF8jtVRRWfQUEcPXoUBgbyEyjdu3dXvHdZ5dTD3b17dzx8+BDr1q1jCNIiPB1G+TZv3jxIJBKEhobio48+gpWVFWxtbTFy5EjExcUptX379i1mz56NKlWqwMTEBBUrVsSECRMQGxur1C6ng8Xq1avRoEEDWFhYoHTp0qhVqxbmzJkDAAgPD4eRkRF8fX2z1Xf69GlIJBL8/vvvee5HbGwsPv/8c1StWhVSqRQ2Njbo2rUr/vnnHwBAUFAQJBJJttM54eHhkEgk2LRpU7bXDA0NxYcffghzc3NUqFABEydOxJs3b5Ta5HQ67H21qEJUVBS8vb3h6OgIExMTVKlSBfPnz0daWppSu/nz56N58+awtraGpaUlGjduDD8/P2RdY/nkyZNwd3dHuXLlYGZmhkqVKqFfv3548+YNwsPDFV/e8+fPh0QigUQiee9pwDdv3mD69OmoUqUKTE1NYW1tDVdXV+zYsUOp3aZNm1CzZk1IpVLUrl0bv/76a7ZTMQX5/EJCQjB48GBUrlwZZmZmqFy5Mj766CNERERk+70SiQTHjh3DyJEjUaFCBZQqVQrJyckAAH9/f7Rs2RLm5uawsLBA586dceXKlTz3ed68eXB0dAQAzJw5ExKJRLEfWU+Hubu7488//0RERITiPX3fF79MJsPixYtRq1Ytxb+tTz/9FJGRkYo2lStXVnwh29ra5ut0ak6fQU5SUlKwcOFCxe+vUKECRowYgRcvXii1S05Oxueffw47OzuUKlUKbdu2xaVLl7L9vajqMwgJCUHPnj1hbW0NU1NTNGrUCL/99lue+5whIwAVVvny5WFkxL4HbcJPgwqsX79+GDRoELy8vHDjxg3Mnj0bALBhwwYA8i7+3r1748SJE5g9ezbc3Nxw/fp1+Pj44Pz58zh//nyuXe47d+7E+PHjMWnSJHz//fcwMDDAvXv3cOvWLQDyg3bPnj2xZs0azJgxA4aGhornrlixAg4ODujTp0+utb9+/Rpt2rRBeHg4Zs6ciebNmyMhIQGnT5/G06dPUatWrQK/H6mpqejatSu8vb0xa9YsnDt3DgsXLkRERAQOHDhQ5FqGDx+OzZs34+HDhwUed5HRdW9gYICvv/4a1apVw/nz57Fw4UKEh4dj48aNirbh4eHw9vZGpUqVAAAXLlzApEmT8O+//+Lrr79WtOnWrRvc3NywYcMGlClTBv/++y+OHDmClJQU2Nvb48iRI+jSpQu8vLwwatQoAO/v1Zg2bRq2bNmChQsXolGjRkhMTMTNmzcRExOjaLNp0yaMGDECvXr1wg8//IC4uDjMmzcPycnJhf5yCg8PR82aNTF48GBYW1vj6dOnWL16NZo2bYpbt26hfPnySu1HjhyJbt26YcuWLUhMTISxsTEWLVqEL7/8EiNGjMCXX36JlJQULFmyBG5ubrh48WKuvZ2jRo1CgwYN0LdvX0yaNAlDhgzJ9e9i1apVGDNmDO7fv489e/bka9/GjRuHdevWYeLEiejevTvCw8Px1VdfISgoCJcvX0b58uWxZ88erFy5En5+fjhy5AisrKwUwSwn+f0MZDIZevXqhTNnzmDGjBlo1aoVIiIi4OPjA3d3d4SEhMDMzAwAMGLECPj7+2PGjBnw8PDArVu30KdPH8THx+dYQ1E+g8DAQHTp0gXNmzfHmjVrYGVlhZ07d2LQoEF48+aNysfsyWQyyGQyvHr1Cr///juOHj2KFStWqPR3UBEJonzy8fERAMTixYuVto8fP16YmpoKmUwmhBDiyJEjObbz9/cXAMS6desU29q1ayfatWunuD9x4kRRpkyZPOsIDAwUAMSePXsU2/79919hZGQk5s+fn+dzFyxYIACIgICA975+YGCg0vaHDx8KAGLjxo2KbcOGDRMAxPLly5XafvPNNwKAOHv2rGKbs7OzGDZsWIFqEUKIkSNHCkNDQxEeHp5nOyGEACB8fHwU9729vYWFhYWIiIhQavf9998LACI0NDTH10lPTxepqaliwYIFoly5corPdteuXQKAuHr1aq41vHjxIlsd71OvXj3Ru3fvXB9PT08XDg4OonHjxopahBAiPDxcGBsbC2dnZ8W2gnx+WaWlpYmEhARhbm6u9Jlu3LhRABCffvqpUvtHjx4JIyMjMWnSJKXtr1+/FnZ2dmLgwIF57PW7mpYsWaK0PeP3PXz4ULGtW7duSvuZl9u3bwsAYvz48Urb//77bwFAzJkzR7Et4+/6xYsXeb5mQT6DHTt2CADijz/+UHqN4OBgAUCsWrVKCCFEaGioACBmzpyp1C7j+Zn/XlTxGdSqVUs0atRIpKamKrXt3r27sLe3F+np6Xm+B5nl5/Pw9vYWAAQAYWJiothv0h48HUYF1rNnT6X79evXx9u3b/H8+XMA8tMlALL9X9WAAQNgbm6OEydO5PrazZo1Q2xsLD766CPs27cP0dHR2dq4u7ujQYMGWLlypWLbmjVrIJFIMGbMmDxrP3z4MGrUqIEOHTrk2a6gPv74Y6X7Q4YMASD/P8+i1uLn54e0tDQ4OzsXuK6DBw+iffv2cHBwQFpamuLm6ekJADh16pSi7cmTJ9GhQwdYWVnB0NAQxsbG+PrrrxETE6P4bBs2bAgTExOMGTMGmzdvxoMHDwpUT+Ya0tLSFKfamjVrhsOHD2PWrFkICgpCUlKS0vPu3LmDJ0+eYMiQIUqngZydndGqVasCvy8ZEhISMHPmTFSvXh1GRkYwMjKChYUFEhMTcfv27Wzt+/Xrp3T/6NGjSEtLw6effqq0X6ampmjXrp3GZshl/LvL+jfYrFkz1K5dO8+/wdwU5DM4ePAgypQpgx49eii9Lw0bNoSdnZ3ifcn49zdw4ECl5/fv3z/X00aF/Qzu3buHf/75R/G3mrlt165d8fTpU9y5c6fA70te5syZg+DgYPz5558YOXIkJk6ciO+//16lv4OKhiGICqxcuXJK9zO68DO+uGJiYmBkZJTtFIhEIoGdnZ3SKY6shg4dig0bNiAiIgL9+vWDjY0NmjdvjoCAAKV2n332GU6cOIE7d+4gNTUVv/zyC/r37w87O7s8a3/x4kWe3f2FYWRklO09yagjr31VRy1ZPXv2DAcOHICxsbHSrW7dugCgCJkXL15Ep06dAAC//PIL/vrrLwQHB2Pu3LkA3n221apVw/Hjx2FjY4MJEyagWrVqqFatGpYvX/7eWsLDw7PVkfEl+NNPP2HmzJnYu3cv2rdvD2tra/Tu3RthYWEA3r2POX2+7/vM8zJkyBCsWLECo0aNwtGjR3Hx4kUEBwejQoUK2YIYAKXZWoD8/QWApk2bZts3f3//HEN8cch4v7LWCwAODg55/rt832vm5zN49uwZYmNjYWJiku19iYqKUrwvGa9pa2ur9Pyc/qYyFPYzyGg3ffr0bO3Gjx8PACr/vCpVqgRXV1d07doVq1evxpgxYzB79uxs46JIczgmiFSuXLlySEtLw4sXL5SCkBACUVFRaNq0aZ7PHzFiBEaMGIHExEScPn0aPj4+6N69O+7evavoDRkyZAhmzpyJlStXokWLFoiKisKECRPeW1uFChWUBobmxNTUFAAUAy4z5HaATEtLQ0xMjNJBOyoqCkD2wFjQWoqqfPnyqF+/Pr755pscH3dwcAAgH4tlbGyMgwcPKvYfAPbu3ZvtOW5ubnBzc0N6ejpCQkLw888/Y8qUKbC1tcXgwYNzrcXBwQHBwcFK22rWrAkAMDc3x/z58zF//nw8e/ZM0SvUo0cP/PPPP4r3MeN9zSzrtvx+fnFxcTh48CB8fHwwa9Ysxfbk5GS8fPkyx33IOhg5Y8zQrl27CtVTpy4Z79fTp0+zBe0nT55kG+tUkNfMz2dQvnx5lCtXDkeOHMnxtUqXLq30ms+ePUPFihUVj2f8TeWksJ9BRrvZs2ejb9++ObbJ+PeoLs2aNcOaNWvw4MGDYpv9R3ljTxCpXMZU36wXBvvjjz+QmJiYbSpwbszNzeHp6Ym5c+ciJSUFoaGhisdMTU0Vp2SWLl2Khg0bonXr1u99TU9PT9y9e1dxyi4nGYOPr1+/rrR9//79uT5n27ZtSve3b98OIO/r5OSnlqLKmMZbrVo1uLq6ZrtlhCCJRAIjIyOlgeZJSUnYsmVLrq9taGiI5s2bK05LXr58GUD2nsEMJiYm2X5/xpdhZra2thg+fDg++ugj3LlzB2/evEHNmjVhb2+PHTt2KM1Wi4iIwLlz55Sen9/PTyKRQAiRbTDy+vXrkZ6enut+Z9a5c2cYGRnh/v37Ob6/rq6u+Xqd/JBKpTn2TuXEw8MDQPa/weDgYNy+fTvff4OZFeQz6N69O2JiYpCenp7je5IRNtq2bQtAPrMrs127dmWbvZib/H4GNWvWhIuLC65du5Zru5z+PapSYGAgDAwMULVqVbX+Hso/9gSRynXs2BGdO3fGzJkzER8fj9atWytmhzVq1AhDhw7N9bmjR4+GmZkZWrduDXt7e0RFRcHX1xdWVlbZepDGjx+PxYsX49KlS1i/fn2+apsyZQr8/f3Rq1cvzJo1C82aNUNSUhJOnTqF7t27o3379rCzs0OHDh3g6+uLsmXLwtnZGSdOnMDu3btzfE0TExP88MMPSEhIQNOmTRWzwzw9PdGmTZsi1QIAXl5e2Lx5M+7fv1/g3oYFCxYgICAArVq1wmeffYaaNWvi7du3CA8Px6FDh7BmzRo4OjqiW7duWLp0KYYMGYIxY8YgJiYG33//fbaAsGbNGpw8eVJxNdy3b98qZgVmjG0qXbo0nJ2dsW/fPnz44YewtrZG+fLl85zZ1rx5c3Tv3h3169dH2bJlcfv2bWzZsgUtW7ZEqVKlAAD/+9//MGrUKPTp0wejR49GbGws5s2bl+1UTH4/P0tLS7Rt2xZLlixR1Hfq1Cn4+fnl+6rJlStXxoIFCzB37lw8ePAAXbp0QdmyZfHs2TNcvHhR0cOlCh988AF2796N1atXo0mTJjAwMMg1ZNWsWRNjxozBzz//DAMDA3h6eipmhzk5OWHq1KkF/v0GBgb5/gwGDx6Mbdu2oWvXrpg8eTKaNWsGY2NjREZGIjAwEL169UKfPn1Qt25dfPTRR/jhhx9gaGgIDw8PhIaG4ocffoCVlVW+Zv0V5DNYu3YtPD090blzZwwfPhwVK1bEy5cvcfv2bVy+fPm9l9e4deuWYqZqVFQU3rx5g127dgGQX/MsYxbamDFjYGlpiWbNmsHW1hbR0dH4/fff4e/vjy+++IK9QNpEo8OySafkNoskp5ksSUlJYubMmcLZ2VkYGxsLe3t7MW7cOPHq1Sul52adHbZ582bRvn17YWtrK0xMTISDg4MYOHCguH79eo41ubu7C2tra/HmzZt878erV6/E5MmTRaVKlYSxsbGwsbER3bp1E//884+izdOnT0X//v2FtbW1sLKyEp988okICQnJcXaYubm5uH79unB3dxdmZmbC2tpajBs3TiQkJCj93qyzw/JbS8YMtMzvb26Qw6ysFy9eiM8++0xUqVJFGBsbC2tra9GkSRMxd+5cpRo3bNggatasKaRSqahatarw9fUVfn5+Sr/7/Pnzok+fPsLZ2VlIpVJRrlw50a5dO7F//36l33n8+HHRqFEjIZVKs83yycmsWbOEq6urKFu2rOL3T506VURHRyu1W79+vXBxcREmJiaiRo0aYsOGDWLYsGHZZunk9/OLjIwU/fr1E2XLlhWlS5cWXbp0ETdv3sz2WWX8Gw8ODs6x/r1794r27dsLS0tLIZVKhbOzs+jfv784fvx4nvtdkNlhL1++FP379xdlypQREolEvO/wnZ6eLr777jtRo0YNYWxsLMqXLy8++eQT8fjxY6V2+Z0dliG/n0Fqaqr4/vvvRYMGDYSpqamwsLAQtWrVEt7e3iIsLEzR7u3bt2LatGnCxsZGmJqaihYtWojz588LKysrMXXq1GzvSVE/g2vXromBAwcKGxsbYWxsLOzs7ISHh4dYs2bNe/c9473K6Zb5727Dhg3Czc1NlC9fXhgZGYkyZcqIdu3aiS1btuTjHabiJBEiy5XQiHTE8+fP4ezsjEmTJmHx4sWaLoc0ZPjw4QgKClJaZ4t027lz59C6dWts27ZNMdOSSB14Oox0TmRkJB48eIAlS5bAwMAAkydP1nRJRFRIAQEBOH/+PJo0aQIzMzNcu3YN3377LVxcXHIdwEykKgxBpHPWr1+PBQsWoHLlyti2bZvSrBIi0i2WlpY4duwYfvzxR7x+/Rrly5eHp6cnfH19lWYqEqkDT4cRERGRXtKaKfKrV69G/fr1YWlpCUtLS7Rs2RKHDx9WPC6EwLx58+Dg4AAzMzO4u7srTZkmIiIiKgitCUGOjo749ttvERISgpCQEHh4eKBXr16KoLN48WIsXboUK1asQHBwMOzs7NCxY0e8fv1aw5UTERGRLtLq02HW1tZYsmQJRo4cCQcHB0yZMgUzZ84EIL+qq62tLb777jt4e3truFIiIiLSNVo5MDo9PR2///47EhMT0bJlSzx8+BBRUVGKtY0A+dVT27Vrh3PnzuUZgpKTk5Uuny+TyfDy5UuUK1cu2+XXiYiISDsJIfD69Ws4ODjk60Ka+aFVIejGjRto2bIl3r59CwsLC+zZswd16tRRXJI96yJ7tra2iIiIyPM1fX19VXbFViIiItKsx48fq2zxaa0KQTVr1sTVq1cRGxuLP/74A8OGDVOsMg1kXzhPCPHe3pzZs2dj2rRpivtxcXGoVKkSHj9+DEtLS9XuABEREalFfHw8nJycVLrGm1aFIBMTE1SvXh0A4OrqiuDgYCxfvlwxDigqKgr29vaK9s+fP8/WO5SVVCrNtv4RAMUsNCIiItIdqhzKojWzw3IihEBycjKqVKkCOzs7BAQEKB5LSUnBqVOn0KpVKw1WSERERLpKa3qC5syZA09PTzg5OeH169fYuXMngoKCcOTIEUgkEkyZMgWLFi2Ci4sLXFxcsGjRIpQqVYrryhAREVGhaE0IevbsGYYOHYqnT5/CysoK9evXx5EjR9CxY0cAwIwZM5CUlITx48fj1atXaN68OY4dO6bSc4NERESkP7T6OkHqEB8fDysrK8TFxXFMEBERkY5Qx/e3Vo8JIiIiIlIXhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSS1oTgnx9fdG0aVOULl0aNjY26N27N+7cuaPUZvjw4ZBIJEq3Fi1aaKhiIiIi0mVaE4JOnTqFCRMm4MKFCwgICEBaWho6deqExMREpXZdunTB06dPFbdDhw5pqGIiIiLSZUaaLiDDkSNHlO5v3LgRNjY2uHTpEtq2bavYLpVKYWdnV9zlERERUQmjNT1BWcXFxQEArK2tlbYHBQXBxsYGNWrUwOjRo/H8+fM8Xyc5ORnx8fFKNyIiIiKJEEJouoishBDo1asXXr16hTNnzii2+/v7w8LCAs7Oznj48CG++uorpKWl4dKlS5BKpTm+1rx58zB//vxs2+Pi4mBpaam2fSAiIiLViY+Ph5WVlUq/v7UyBE2YMAF//vknzp49C0dHx1zbPX36FM7Ozti5cyf69u2bY5vk5GQkJycr7sfHx8PJyYkhiIiISIeoIwRpzZigDJMmTcL+/ftx+vTpPAMQANjb28PZ2RlhYWG5tpFKpbn2EhERERGAyEggLAxwcQHe891bkmjNmCAhBCZOnIjdu3fj5MmTqFKlynufExMTg8ePH8Pe3r4YKiQiIiqB/PwAZ2fAw0P+089P0xUVG60JQRMmTMDWrVuxfft2lC5dGlFRUYiKikJSUhIAICEhAdOnT8f58+cRHh6OoKAg9OjRA+XLl0efPn00XD0REZEOiowExowBZDL5fZkM8PaWb9cDWnM6bPXq1QAAd3d3pe0bN27E8OHDYWhoiBs3buDXX39FbGws7O3t0b59e/j7+6N06dIaqJiIiEjHhYW9C0AZ0tOBe/eQWLYstmzZgrNnz8LY2Bi9evVCz549YWCgNf0nRaY1Ieh947PNzMxw9OjRYqqGiIhID7i4AAYGykHI0BCno6Pxca1aiMzUI7Rp0yb07t0b27ZtQ6lSpTRQrOqVnDhHREREBePoCKxbBxgayu8bGmLv2LH48KOPEBkZCWdnZ8yfPx9TpkyBiYkJ9u7di486dkR6RIRm61YRrekJIiIiIg3w8gI6dwbu3cOJqCgMGjYMaWlpGDBgADZt2qTo9eljYoJOixcj7tw5vKlSBaV/+UX+XB2mldcJUid1XGeAiIhI14WHh6Nx48Z49eoV+vXrh507d8LI6L++kshIwNkZ52UyNAYgBeS9R+HhxTalXh3f3zwdRkREpOdSU1MxYMAAvHr1Ck2bNsW2bdveBSBAMYC6Jf4LQIBiALUuYwgiIiLSc99++y1CQkJgbW2N33//PftFhjMGUGdmaAhUr158RaoBQxAREZEeu3nzJv73v/8BAFasWAFnZ+fsjXIYQI21a3X+6tIcGE1ERKSn0tLSMHLkSKSmpqJnz54YPHhw7o0zDaBG9eo6H4AAhiAiIiK9tWrVKgQHB8PKygqrV6+GRCLJ+wmOjiUi/GTg6TAiIiI9FB0dDR8fHwDAd999BwcHBw1XVPwYgoiIiPSQj48PYmNj0aBBA4waNUrT5WgEQxAREZGeuXnzJtasWQMA+PHHH2GYMeBZzzAEERER6REhBKZNmwaZTIa+fftmW7hcnzAEERER6ZGDBw8iICAAJiYmWLJkiabL0SiGICIiIj2RkpKCzz//HAAwdepUVK1aVcMVaRZDEBERkZ5YsWIFwsLCYGtri7lz52q6HI1jCCIiItIDL168wIIFCwAAixYtQunSpTVckeYxBBEREemBr776CnFxcWjUqBGGDRum6XK0AkMQERFRCXf9+nX88ssvAIDly5fr7ZT4rBiCiIiISjAhBKZMmQKZTIYBAwbAzc1N0yVpDYYgIiKiEmzv3r0IDAyEVCrF4sWLNV2OVmEIIiIiKqHevn2rmBL/xRdfoHLlypotSMswBBEREZVQy5Ytw8OHD1GxfHnMGjpU0+VoHYYgIiKiEujJkyf4Zv58AMC30dEwr10b8PPTcFXahSGIiIioBJozeTISk5PRAsAQAJDJAG9vIDJSw5VpD4YgIiKiEub8+fPYvGsXAGA5Mn3Zp6cD9+5pqiytwxBERERUgqSmpsLb2xsAMBxAs8wPGhoC1atroCrtxBBERERUgixfvhw3btyAtbU1lixbJg8+gPzn2rWAo6NmC9QiRpougIiIiFQjIiICPj4+AIAlS5ag/MiRQP/+8lNg1aszAGXBEERERFQCCCEwadIkvHnzBm5ubhgxYoT8AUdHhp9c8HQYERFRCbB7924cOHAAxsbGWLNmDSQSiaZL0noMQURERDruxYsXGDduHABgxowZqFOnjoYr0g0MQURERDpMCIHx48fjxYsXqFevHr766itNl6QzGIKIiIh0mL+/P3bt2gUjIyNs3rwZUqlU0yXpDIYgIiIiHfXkyRNMmDABADB37lw0btxYwxXpFoYgIiIiHZSeno6PP/4YL1++RKNGjTB37lxNl6RzGIKIiIh00MKFCxEUFARzc3Ps3LkTxsbGmi5J5zAEERER6ZhTp05hwYIFAIDVq1ejRo0aGq5INzEEERER6ZCnT59iyJAhkMlkGDZsGIYOHarpknQWQxAREZGOSE5ORr9+/fDkyRPUrl0bK1as0HRJOo0hiIiISAcIITBhwgScP38eZcqUwb59+2BhYaHpsnQaQxAREZEOWLlyJfz8/GBgYICdO3fCxcVF0yXpPK0JQb6+vmjatClKly4NGxsb9O7dG3fu3FFqI4TAvHnz4ODgADMzM7i7uyM0NFRDFRMRERWPffv2YfLkyQCAb7/9Fp07d9ZwRSWD1oSgU6dOYcKECbhw4QICAgKQlpaGTp06ITExUdFm8eLFWLp0KVasWIHg4GDY2dmhY8eOeP36tQYrJyIiyqfISCAwUP4zn86dO4fBgwdDJpPBy8sL06dPV2OB+kUihBCaLiInL168gI2NDU6dOoW2bdtCCAEHBwdMmTIFM2fOBCAfIGZra4vvvvsO3t7e+Xrd+Ph4WFlZIS4uDpaWlurcBSIionf8/IAxYwCZDDAwANatA7y8cm4bGQmEheEfiQSt+/XDy5cv0a1bN+zduxdGRkZKbeDiAjg6Ft9+aIg6vr+1picoq7i4OACAtbU1AODhw4eIiopCp06dFG2kUinatWuHc+fOaaRGIiKifImMfBeAAPlPb++ce4T8/ABnZ0R4eKBz+/Z4+fIlmjVrBn9//3cB6L828PCQ//TzK759KUG0MgQJITBt2jS0adMG9erVAwBERUUBAGxtbZXa2traKh7LSXJyMuLj45VuRERExSos7F0AypCeDty7p7ztv7D0SCZDewCPANQAcHDdOpibmyu1yVegojxpZQiaOHEirl+/jh07dmR7TCKRKN0XQmTblpmvry+srKwUNycnJ5XXS0RElCcXF/kpsMwMDYHq1ZW3hYUhUiaDB4CHAKoBOAmgwqtXSm3yFajovbQuBE2aNAn79+9HYGAgHDOd47SzswOAbL0+z58/z9Y7lNns2bMRFxenuD1+/Fg9hRMREeXG0VE+BsjQUH7f0BBYuzbbWJ4npUvDA8B9AFUABAKomDUs5TdQ0XtpTQgSQmDixInYvXs3Tp48iSpVqig9XqVKFdjZ2SEgIECxLSUlBadOnUKrVq1yfV2pVApLS0ulGxERUbHz8gLCw+Wzw8LDsw2Kvnv3LtwGDUIYgMqQByCnnMJSPgMVvZ+RpgvIMGHCBGzfvh379u1D6dKlFT0+VlZWMDMzg0QiwZQpU7Bo0SK4uLjAxcUFixYtQqlSpTBkyBANV09ERJQPjo45hpW//voLPXv2xMuXL1GlShWc3LYNzsnJ8t6dnMKNlxfQubP8FFhubei9tGaKfG7jejZu3Ijhw4cDkPcWzZ8/H2vXrsWrV6/QvHlzrFy5UjF4Oj84RZ6IiLTJH3/8gY8//hjJyclo2rQpDh48CBsbG02XpXXU8f2tNSGouDAEERGRtli2bBk+//xzCCHQs2dPbN++/d0sMFKiV9cJIiIiKqnS09MxefJkTJs2TbEw6u7duxmAipnWjAkiIiLSB2/evMEnn3yCPXv2AAC+//57TJs2Lc/LvZB6MAQREREVkxcvXqBnz564cOECTExMsGXLFgwcOFDTZekthiAiIqJiEBYWBk9PT9y/fx9ly5bFvn374Obmpumy9BpDEBERkZqdP38ePXr0QExMDKpUqYLDhw+jZs2ami5L73FgNBERkRrt3r0bHh4eiImJgaurK86fP88ApCUYgoiIiFQhMlJ+NehMC5kuX74c/fv3x9u3b9GjRw8EBQXludQTFS+eDiMiIioqP793K7sbGCB9zRpMv3ULP/74IwBg/Pjx+Omnn2CYsdQFaQWGICIioqKIjHwXgAAkyWT4ZMwY7P7v4cWLF2P69OmcAq+FGIKIiIiKIixMEYCiAfQEcB6AibExft2yBYMGDdJkdZQHhiAiIqKicHEBDAxwTyaDJ4B7AMoC2LdjB9z69dNwcZQXDowmIiIqCkdHXJg5Ey0hD0CVAfy1YAEDkA5gTxAREVER7N+/H4N//BFJAJrUqIGDO3bArnFjTZdF+cCeICIiokJau3Yt+vTpg6SkJHTt2hVBly4xAOkQhiAiIqICEkLg66+/xtixYyGTyeDl5YV9+/bBwsJC06VRAfB0GBERUQGkpqbC29sbGzduBAD4+PjAx8eHU+B1EEMQERFRPiUkJGDgwIE4fPgwDAwMsGbNGowePVrTZVEhMQQRERHlw/Pnz9GtWzeEhITAzMwM/v7+6NGjh6bLoiJgCCIiInqPx48fo2PHjrhz5w7KlSuHgwcPokWLFpoui4qIIYiIiCgPYWFh6NChAx49egQnJycEBARwFfgSgrPDiIiIcnH9+nW4ubnh0aNHqFGjBs6ePcsAVIIwBBEREeXg/PnzaNeuHZ49e4YGDRrg9OnTqFSpkqbLIhViCCIiIsri+PHj6NChA2JjY9GqVSsEBQXB1tZW02WRijEEERERZbJnzx5069YNb968QadOnXDs2DGUKVNG02WRGjAEERER/Wfbtm0YMGAAUlJS0K9fP+zfvx/m5uaaLovUhCGIiIgIwObNmzF06FCkp6dj+PDh2LlzJ6RSqabLIjViCCIiIr3n5+eHESNGQAiBsWPHws/PD0ZGvIpMSccQREREem3NmjUYNWoUhBCYOHEiVq1aBQODTF+PkZFAYKD8J5UoDEFERFTy5DO4rFixAuPGjQMATJkyBT/99JPyQqh+foCzM+DhIf/p56fOqqmYMQQREVHJks/g8uOPP2LSpEkAgC+++AJLly5VDkCRkcCYMYBMJr8vkwHe3uwRKkEYgoiIqOTIZ3BZsmQJpk6dCgCY8/HH+G7SJOUABABhYe9eJ0N6OnDvnrqqp2LGEERERCVHPoKLr68vZsyYAQD4GsDCbdsgqVw5e4+RiwtgkOVr0tAQqF5d9XWTRjAEERFRyfGe4LJgwQLMmTNH/t8SCeYDkAA59xg5OgLr1smfn/E6a9fKt1OJwBBEREQlRy7BRVSsiK+//ho+Pj4AAN9Ro/CVEMrPzelUl5cXEB4uH2QdHi6/TyWGRIis/wpKtvj4eFhZWSEuLg6WlpaaLoeIiNQhMlIeaKpXh6hYEXPnzoWvry8A+Xig6YMHywdNZz51ZmgoDzrs6dFK6vj+Zk8QERGVPI6OgLs7RMWKmD17tiIALVu2DNOnT+epLgIA8HKYRERUIgkhMGvWLCxevBgA8NNPPymmxAOQn9rq3FnRY8QApH8YgoiIqMQRQmDGjBn4/vvvAcgvijhhwoTsDR0dGX70GEMQERGVKEIITJ8+HUuXLgUArFy5EuPHj9dwVaSNGIKIiKjEEELg888/x7JlywAAq1evxtixYzVcFWkrhiAiIioRhBCYOnUqli9fDgBYu3YtxowZo+GqSJsxBBERkc4TQmDy5Mn4+eefAQDr1q3D6NGjNVwVaTutmiJ/+vRp9OjRAw4ODpBIJNi7d6/S48OHD4dEIlG6tWjRQjPFEhGRVhBC4LPPPsPPP/8MiUSC9evXMwBRvmhVCEpMTESDBg2wYsWKXNt06dIFT58+VdwOHTpUjBUSEZE2EUJg4sSJWLFihSIAefGqzpRPWnU6zNPTE56ennm2kUqlsLOzK6aKiIhIW8lkMkycOBGrV6+GRCKBn58fRowYoemySIdoVU9QfgQFBcHGxgY1atTA6NGj8fz5c02XRERExUwmk2H8+PGKALRx40YGICowreoJeh9PT08MGDAAzs7OePjwIb766it4eHjg0qVLkEqlOT4nOTkZycnJivvx8fHFVS4REamBTCbDuHHjsG7dOkgkEmzevBlDhw7VdFmkg3QqBA0aNEjx3/Xq1YOrqyucnZ3x559/om/fvjk+x9fXF/Pnzy+uEomISI1kMhm8vb2xfv16GBgYYPPmzfjkk080XRbpKJ07HZaZvb09nJ2dERYWlmub2bNnIy4uTnF7/PhxMVZIRESqkp6ejpEjRyoC0K+//soAREWiUz1BWcXExODx48ewt7fPtY1UKs31VBkREemG1NRUDB06FP7+/jA0NMTWrVsxePBgTZdFOk6rQlBCQgLu3bunuP/w4UNcvXoV1tbWsLa2xrx589CvXz/Y29sjPDwcc+bMQfny5dGnTx8NVk1EROqUnJyMwYMHY+/evTA2Noa/vz+P+6QSWhWCQkJC0L59e8X9adOmAQCGDRuG1atX48aNG/j1118RGxsLe3t7tG/fHv7+/ihdurSmSiYiIjVKSkpCv379cPjwYUilUuzevRtdu3bVdFlUQkiEEELTRRSn+Ph4WFlZIS4uDpaWlpouh4iIcpGYmIiePXvi5MmTMDMzw/79+9GhQwcgMhIICwNcXABHR02XScVEHd/fOj0wmoiISqb4+Hh06dIFJ0+ehIWFBY4cOSIPQH5+gLMz4OEh/+nnp+lSSYcxBBERkVZ59eoVOnbsiLNnz8LKygoBAQFo27atvAdozBhAJpM3lMkAb2/5dqJCYAgiIiKtER0dDQ8PD1y8eBHW1tY4efLku4Wyw8LeBaAM6elApgk1RAWhVQOjiYhIf0VFRaFDhw4IDQ2FjY0Njh8/jg8++OBdAxcXwMBAOQgZGgLVqxd/sVQisCeIiIg0LiIiAu3atUNoaCgcHBxw6tQp5QAEyAdBr1snDz6A/OfatRwcTYXGniAiItKo27dvo1OnToiMjESlSpVw8uRJVKtWLefGXl5A587yU2DVqzMAUZEwBBERkcYEBwfD09MTMTExqFW9OgK++QaO77vKv6Mjww+pBE+HERGRRpw4cQIeHh6IiYlB08qVceb+fTgOGsSp71RsGIKIiEj9IiOBwEDFdPY9e/aga9euSEhIgEfr1jgREYHyGdfu5dR3KiYMQUREpF5ZLnC4YcQI9O/fHykpKejTpw/+/OorlM66eAGnvlMxYAgiIiL1yXKBw+9lMnht2gSZTAYvLy/89ttvMK1bVz71PTNOfadiwBBERETq898FDgWA2QC++G/zF4MG4ZdffoGRkRGnvpPGcAFVIiJSn8hIpFeqhHFC4Jf/Nn0rkWDmo0fZQ05kJKe+U67U8f3NKfJERKQ2yRUqYGiTJvg9JAQSAGslEoz+5ZecQw6nvlMxYwgiIqLCi4yUn/JycckWYBISEtC3b18EhITA2NgY2+fORX8vLwYd0hoMQUREVDh+fu8GPRsYyMf1eHkBAF6+fImuXbvi77//hrm5Ofbs2YOOHTtquGAiZUUaE/T8+XPIZDLY2dmpsia14pggIiIViIyUT3vPuphpeDj+lUjQuXNnhIaGomzZsjh06NC7leCJCkkd39+Fmh12/fp11K1bF/b29qhYsSIqVqyIL7/8EomJiSopioiItNx/s76UpKfj3qlTaNOmjWIh1DNnzjAAkdYqVAjy8vKCra0tzp49iytXrmDhwoU4fPgwXF1d8erVK1XXSERE2sbFJdu1fa4ZGKDN1KkIDw9H9erVcfbsWdStW1dDBRK9X6FOh5mbm+PSpUuoVauWYpsQAgMGDICpqSm2bt2q0iJViafDiIjyKY9BzwDkY4K8vYH0dJw1MEB3qRRxSUlo0KABjh49Cltb2+KvmUosrTkdllOPj0QiwaJFi7Bv3z6VFEZERBqUZamLHBc09fICwsNxyNcXnUxMEJeUhDZt2iAoKIgBiHRCvkNQt27dMGfOHPz2228YO3Yspk6dimfPnim1iYuLQ9myZVVeJBERFaMsS13ktaDp9tOn0eurr5D09i26deuGo0ePokyZMsVbL1Eh5XuK/AcffIDLly9j48aNivBTtWpVDBw4EA0bNkR6ejo2btyIZcuWqa1YIiIqBrkMesa9e0qnxVauXIlJkyZBCIEhQ4Zg06ZNMDY2LuZiiQqvUGOCnj17hitXruDq1auK271792BoaIiaNWvi+vXr6qhVJTgmiIjoPfKY/g5HRwgh8L///Q8+Pj4AgIkTJ2L58uUwyLoIKpEKac2yGba2tujSpQu6dOmi2JaUlIRr167h2rVrKimMiIg0JGNB0/8GPWde0FQmk2Hq1Kn46aefAAA+Pj7w8fGBRCLRcNFEBccFVImIKGdZFjRNTU3FyJEjFTOAly9fjs8++0zDRZK+0JqeICIi0gOZFjRNSkrCoEGDcODAARgaGmLTpk345JNPNFwgUdEwBBERUZ7i4uLQs2dPnD59Gqampvj999/RvXt3TZdFVGQMQURElKvnz5+jS5cuuHLlCiwtLXHgwAG0bdtW02URqQRDEBER5SgiIgIdO3ZEWFgYbGxscOTIETRq1EjTZRGpDEMQERFlc+vWLXTq1An//vsvnJ2dERAQABcXF02XRaRSvKgDEREpuXjxItq2bYt///0XderUwdmzZxmAqERiCCIiIoXjx4/Dw8MDMTExaNasGU6fPg3HnBZPJSoBGIKIiAgAsGvXLnTt2hWJiYno2LEjTpw4gXLlymm6LCK1YQgiIiKsXbsWAwcORGpqKgYMGIADBw7AwsJC02URqRVDEBGRHhNCYNGiRRg7diyEEPD29saOHTsglUo1XRqR2jEEERHpKZlMhs8//xxz584FAMydOxerV6+GoaGhhisjKh6cIk9EpIdSU1MxatQo/PrrrwCApUuXYurUqRquiqh4MQQREemZrOuAbdiwAZ9++qmmyyIqdgxBRER6JC4uDj169MCZM2dgamqK3377DT169NB0WUQawRBERKQnoqKi0KVLF1y7dg2WlpY4ePAg3NzcNF0WkcYwBBER6YGHDx+iY8eOuH//PmxtbXHkyBE0bNhQ02URaZRWzQ47ffo0evToAQcHB0gkEuzdu1fpcSEE5s2bBwcHB5iZmcHd3R2hoaGaKZaISEfcuHEDrVu3xv3791GlShX89ddfDEBE0LIQlJiYiAYNGmDFihU5Pr548WIsXboUK1asQHBwMOzs7NCxY0e8fv26mCslItJSkZFAYKD8J4Bz586hbdu2ePr0KT744AP89ddfqFatmoaLJNIOWnU6zNPTE56enjk+JoTAjz/+iLlz56Jv374AgM2bN8PW1hbbt2+Ht7d3cZZKRKR9/PyAMWMAmQwwMMDhSZPQb906JCUloVWrVjh48CDKli2r6SqJtIZW9QTl5eHDh4iKikKnTp0U26RSKdq1a4dz587l+rzk5GTEx8cr3YiISpzIyHcBCMAOmQw9ly9HUlISPD09ERAQwABElIXOhKCoqCgAgK2trdJ2W1tbxWM58fX1hZWVleLm5OSk1jqJiDQiLEwRgFYA+BhAGoAhH36Iffv2oVSpUpqsjkgr6UwIyiCRSJTuCyGybcts9uzZiIuLU9weP36s7hKJiIqfiwuERIJ5ACYBEAAmSiTYsmEDjI2NNVsbkZbSmRBkZ2cHANl6fZ4/f56tdygzqVQKS0tLpRsRUUmTZmeHsW5umP/f/fkSCX5atw4GlSpptC4ibaYzIahKlSqws7NDQECAYltKSgpOnTqFVq1aabAyIiLNSkpKQv/+/bHu9GlIJBKsmjIFXz96BMmoUZoujUiradXssISEBNy7d09x/+HDh7h69Sqsra1RqVIlTJkyBYsWLYKLiwtcXFywaNEilCpVCkOGDNFg1UREmvPy5Uv06NED586dg1Qqxfbt2xUzaIkob1oVgkJCQtC+fXvF/WnTpgEAhg0bhk2bNmHGjBlISkrC+PHj8erVKzRv3hzHjh1D6dKlNVUyEZHGPHr0CF26dMHt27dRpkwZ7N+/P3/LYERGygdSu7gAjo7qL5RIS0mEEELTRRSn+Ph4WFlZIS4ujuODiEhn3bhxA126dMGTJ0/g6OiII0eOoG7duu9/YpZrCWHdOsDLS/0FExWROr6/dWZMEBERyZ06dQpubm548uQJ6tSpg3PnzuUvAGW5lhBkMsDbW3F1aSJ9o1Wnw4iIKBf/ncLadfcuPv7sM6SkpKBNmzbYv39//i+CmOlaQgrp6cC9ezwtRnqJIYiISNv5+UGMHo3lQmAa5NcA6tOnD7Zt2wYzM7P8v46Li/wUWOYgZGgIVK+u6oqJdAJPhxERabPISKSNHo1JQmAq5AFonESC35ctK1gAAuS9PevWyYMPIP+5di17gUhvsSeIiEiLvb52DYOFwCEAEgCLAXwuBCQPHwLOzgV/QS8voHNn+Smw6tUZgEivMQQREWmpyMhIdJ8xA9cAmAHYCqAvUPRTWI6ODD9E4OkwIiKtdOXKFTRv3hzXbt2CraUlggwM3gUgnsIiUgn2BBERqUshL0p44MABfPTRR0hMTETdunXx559/wtnQkKewiFSMPUFEROrg5ycfs+PhIf/p55d728hIIDAQ4vFjLFq0CL169UJiYiI6duyIv/76C87OzvLg4+7OAESkQrxiNBGRqkVGyoNP1qno4eHZQ8x/V3BOlMkwEsBv/20eO3YsfvrpJxgbGxdT0UTajVeMJiLSBXldlDCz/67gHC6ToTXkAcgIwBpfX6xevZoBiEjNOCaIiEjV8ntRwrAwBMlkGAAgGoANgD8AtGnRovhqJdJj7AkiIlK1fFyUUAiBZUFB6AB5AGoMIARAG17BmajYsCeIiEgd8rgoYWxsLEaOHIk9e/YAAIZIJPhFCJTi9HeiYsUQRESkLjlclDAkJAQDBw7Ew4cPYWJigmXLlmFcjx6Q3L/P6e9ExYwhiIg0p5DX0dFFQgisWrUK06ZNQ0pKCqpUqYLffvsNrq6u8gZOTpotkEgPcUwQEWlGQa6jo+Oio6PRr18/TJw4ESkpKejduzcuX778LgARkUYwBBFR8ftvarhi9pRMBnh7y7eXMIcOHUK9evWwZ88eGBsbY+nSpdi9ezfKlCmj6dKI9B5DEBEVv/xeR0eHvXnzBuPHj0e3bt3w7Nkz1KlTB3///TemTp0KiUSi6fKICAxBRKQJGdfRyawETQ0/e/YsGjVqhNWrVwMAJk+ejJCQEDRq1EjDlRFRZgxBRFT88nEdHV0UHx+P8ePHw83NDXfv3oWDgwOOHTuGH3/8EWZmZpouj4iy4OwwItKMPK6jo4sOHDiAcePG4d9//wUAeHl5YcmSJShbtqyGKyOi3DAEEZHm5HAdHV1z//59TJs2Dfv37wcAVKtWDevWrYOHh4eGKyOi9+HpMCKiQkhISMCcOXNQp04d7N+/H0ZGRpgxYwZu3LjBAESkI9gTRERUAGlpadi6dSvmzp2LJ0+eAAA6deqEH3/8EbVr19ZwdURUEAxBRET5IJPJsHv3bnz11Vf4559/AABVq1bF0qVL0bNnT057J9JBDEFERHkQQuDQoUP4+uuvcfnyZQBAuXLlMGvsWEx0c4Np3boAAxCRTmIIIiLKQWpqKvz9/fHdd9/h5s2bAAALCwt8/vnnmFa+PCwnTwa++UZ+vaN16+Sz3YhIpzAEEVHJoKLFWGNjY7Fp0yYsW7YMjx49AiAPP+PGjcMXX3yBCsnJ8rXOsi750bmzzs90I9I3DEFEpPv8/N6tRVbInpng4GCsWbMGO3bsQFJSEgDAxsYGkydPxrhx495d7ycwMPclPxiCiHQKQxAR6bbcFmPNR89MVFQUdu7ciS1btijG+wBAvXr1MGHCBAwbNiz7lZ4zlvzIHIRK0JIfRPqEIYiIdFtei7HmEIJevnyJgwcPYtu2bTh+/Dhk/z3XxMQEAwYMwLhx49CqVavcZ3tlLPnh7S3/PSVkyQ8ifcQQRES6LR89Mw8ePMD+/fuxb98+nDlzBunp6YrHWrRogY8//hiDBg1ChQoV8vc7S9iSH0T6iiGIiHRbDj0zL3/4AUEXL+Lkt9/ixIkTiuv6ZKhXsyYGDBmCIUOGoHphT2OVgCU/iPQdQxAR6bT09HTcbdUKl5ctQ8jp0zh95w6uTJ0KIYSijaGhIdq6uKDXnTvoIQSqhoUBFStyHA+RnmMIIiKdkZqailu3buHy5cuK29WrV/HmzZtsbevUqQMPDw94eHjA3cUFZRs0ADKCEae1ExEYgohIS719+xY3b95UhJ1Lly7hxo0bSE5Ozta2VKlSaNiwIRo3bowWLVrAw8MD9vb27xpwWjsR5YAhiIg0LjExEdeuXVPq4QkNDUVaWlq2tpaWlmjcuLHSrUaNGjA0NMz9F3BaOxHlgCGIiIpVQkICrly5gpCQEEXg+eeffxRT1TMrZ2GBxgkJaAygiUSCxt98gyozZ8LAwKBgv5TT2okoBxKRefSgHoiPj4eVlRXi4uJgaWmp6XKISrSkpCRcu3YNISEhCAkJQXBwMG7fvo2cDjv29vbKPTz29nBq2RKSzG0NDYHw8MKHl8hITmsn0lHq+P5mTxARqUxMTAzOnj2LM2fO4MyZM7h8+XKOp7QcHR3RpEkTNGnSRBF6lMbwAPJxPFnDUlHH8eRnWruK1iAjIu3HEEREhfbq1SscP34cJ06cwJkzZ3Dr1q1sbSpUqICmTZuiadOmcHV1RZMmTbIHnpxoYhyPCtYgIyLdoVMhaN68eZg/f77SNltbW0RFRWmoIiL9kpaWhuDgYBw9ehRHjx7FxYsXs43lqV27Ntzc3ODm5oY2bdrA2dk59yUo8lLc43iKsAYZEekmnQpBAFC3bl0cP35ccT/PGSFEJFeEUzwJCQk4cuQI9uzZg0OHDiE2Nlbp8dq1a6NTp05wd3dH69at5UtPZPw+IyOgMAEoQ3EuT1HANciISPfpXAgyMjKCnZ2dpssg0h2FOMUTExODAwcOYM+ePTh27Bjevn2reKwsgA4AOkkk6Pzdd3D64osi/748FdfyFJxGT6R3CjjPVPPCwsLg4OCAKlWqYPDgwXjw4EGe7ZOTkxEfH690I9IbuZ3iiYzM1jQhIQFbt25Fly5dYGtrixEjRmD//v14+/Ytqlatiune3jgrkeAFgN8AjBICTrNnK79WAX6f1sk4/ZbRu8xp9EQlnk71BDVv3hy//voratSogWfPnmHhwoVo1aoVQkNDUa5cuRyf4+vrm20cEZHeeM8pnrS0NAQEBGDr1q3Yu3ev0vIT9evXR9++fdGnTx988MEHkAQFyUNBLq+Vn9+n9bg6PJFe0enrBCUmJqJatWqYMWMGpk2blmOb5ORkpcvsx8fHw8nJidcJIv0QGQk4O2c7xXP98GH4HTyIHTt24MWLF4qHqlevjk8++QRDhgyBi4tLvl5L6bo9+WlDRFQIvE5QFubm5vjggw8QFhaWaxupVAqpVFqMVRFpkUwzrF6np2OnRIJfnJwQ3KmTokmFChUwePBgfPLJJ2jatGnuM7nyM1uLV2YmIh2i0yEoOTkZt2/fhpubm6ZLIdJKQgj8Xbcu1g8YgJ179yLx7VsgPBzGxsbo3bs3RowYgQ4dOsDY2Dh/L5if00U8pUREOkKnQtD06dPRo0cPVKpUCc+fP8fChQsRHx+PYcOGabo0Iq3y8uVLbNmyBevXr8fNmzcV22vWrInRo0dj6NChsLGxKdyL52e2VnHN6CIiKgKdCkGRkZH46KOPEB0djQoVKqBFixa4cOECnJ2dNV0akZwGl1wQQuD8+fNYs2YNfvvtN8VYOFNTUwwcOBCjR49G69atC3fhQiKiEkinQtDOnTs1XQJR7jS05EJcXBy2bt2KtWvX4saNG4rtDRs2xOjRozFkyBCUKVNG7XUQEekanZ4dVhhcRZ7UQgOzokJCQrB27Vps375dMbXdzMwMgwcPxtixY/Me5ExEpGM4O4xIWxXT9XESExOxY8cOrFmzBpcuXVJsr1OnDsaOHYuhQ4cWvteHq6cTkZ5hCCJShYIsuVCIsHHjxg2sXbsWW7ZsUVz13MTEBAMGDMDYsWOLPtaHq6cTkR7SuWUziLRSfpdc8POTnzbz8JD/9PPL9SVfvXqFVatWwdXVFfXr18fKlSsRHx+P6tWrY8mSJfj333+xdetWtGnTpmgBSJeXuiAiKgKOCSJSpcjI3K+Pk49xQ+np6Th+/Dg2btyIvXv3KmZ4GRsbo1evXhg7dizat28PAwODd69Z1FNYgYHyUJbTdnf3wr0mEZGKcUwQkbbL6/o4eYwbuhkbix07duDXX39FZKYemPr162PkyJH4+OOPUb58eeXnquoUFldPJyI9xZ4gouKSpSfoLgB/iQQ7XVxw6+5dRbOyZcvi448/xoiuXdFIKoWkRo1C9SoViJ9f9qUuOCaIiLSIOr6/OSaIqJiIihVxe948fCeRoAmAmgC+FgK37t6FiYkJevXqBX9/fzx58gQ/N2yIxt27Q/LhhzmPHcprNlpheHnJA1RgoPwnAxAR6QH2BBGpUUpKCs6cOYMDBw7gwIEDePDggeIxQ0NDdOzYEYMHD0avXr3eTW3nau1ERNlwTBCRlhNC4NatWzh58iQCAwNx4sQJxZR2QD6tvX379ujTpw/69euXfZwPkL9rDnG1diKiImMIIiqCtLQ0hIaG4sKFCwgMDERgYCCeP3+u1MbGxgbdunVDjx490LFjR1hYWOT9ovkdqMzV2omIioQhSN14FV7NUfF7L5PJ8OjRI1y+fBl///03/v77b4SEhCAxMVGpnZmZGVq3bg0PDw94eHigadOm76a050dBenm4WjsRUaExBKkTr8JbcKoKLkV471NTU3Hv3j3cvn0bt2/fxq1bt3D79m3cuXNHsUZXZhYWFmjatCnatm0LDw8PNG/eHFKptPC1A+zlISIqBhwYrS4cuFpwqgqN+Xzv37x5g3/++Qe3//oLt//+G7dfvsSthw9x7949pKWl5fjSxsbGqF27Npo3b6641a5dG4YZV4omIiK14MBoXVJMC2qWGLkt3dC5c8HfryzvfSyAW+npuL18OW7JZIoenoiICOT2/wDm5uaoVasW6tSpg9qJiai9Zw9qC4FqaWkw+uwz9ugREZUADEHqwqvwFowKQuPr169x69YthF66hJsAQgHcBPAko8H332d7TjkAtf+71QFQ28AAtc+dg2PGOJ6MXqWMsCRE4cMZERFpFYYgdeEU5oIpYGh88+YNrly5guDgYISEhCA4OBh3M111OauKZcuijqsrateurbjVefkSFfr2VW4okwFJSfJaAPboERGVYAxB6sTBrfn3ntD48uVLnD59GkFBQTh16hSuX78OWdZwAsDOzg716tVD3bp1UdfBAXVLlUJdDw9Y1amT/XdGRr4/eLFHj4ioxGIIUjdOYc6/TKExpVIlnH7wAH9OnYrAwEBcv3492/gde3t7NG3aFK6uroqfOV58MDf56a1jjx4RUYnF2WGkNZ4/f45Dhw7h4MGDOHbsGF6/fq30eO3ateHu7g53d3e0rlIFFRMSVHMNoMjI9/fW5acNERGpDWeHkW7L4RpAMTEx+OOPP7Bz504EBQUp9fbY2tqie/fu6NixI9zd3WFrayt/wM8PaNFCdddfyk9vHXv0iIhKHPYEUfHIdA2geIkEe0eMwM6nTxEQEKB0TZ7GjRuje/fu6N69O5o0aZL9Ssu8/hIRkV5iTxDppshIiNGjcUYI+AH4XQgkbdigeLhRo0YYPHgwBg4ciMqVK+f9WpytRUREKsIQpK+KaU2zp0+fYvP8+dggBMIyba8JYMjw4Rg0axZq1qyZ/xfkbC0iIlKRAqzqSBoXGQkEBsp/FoWfn/yUkoeH/Kefn2rq+09qair27duHnj17wsnJCbPXr0cYAAsAXgDOAbhtYICv//e/ggUg4N1srYxlKjhbi4iIColjgnRFMa+rVRhhYWHw8/PD5s2bERUVpdjeqlUreNWogYG//goLmexdcCnKYGbO1iIi0ivq+P5mCNIFqgwugYHyHqCctru7F7i0pKQk/PHHH1i/fj1OnTql2G5jY4NPP/0UI0eORO3atd/tB4MLEREVAgdG6ytVDgZW0Ziaq1evYv369di2bRtiY2MBAAYGBujSpQu8vLzQo0cPGBsbKz+J08yJiEiLMARpSFpaGuLi4mBgYABTU1OYmppCIpHk3FiVg4GLcAXkx48fY+fOndi+fTuuXr2q2O7s7AwvLy8MHz4cTk5OBa+JiIhIAxiCikFUVBSOHj2KoKAg3LhxA2FhYYiPj1dqI5VK4eTkhEqVKqFGjRpo0KABGjRogA8++AAWql66oQBrmj19+hT79+/H9u3bcfr0acV2Y2Nj9O7dG6NGjUKHDh2yX8+HiIhIy3FMkJqkp6dj3759WLduHY4dO5Zt3av8kkgkcHFxgaurK5pUq4Ym1tZo1LkzLDPG2ahYWloarl69qli+Ijg4WOnxtm3bYsiQIejfvz/KlSunlhqIiIiy4pig4lKEa+gIIbB371589dVXCA0NVWxv0qQJOnXqhKZNm6JWrVqoUKECypQpAyEEkpKSEBMTg8ePHyMiIgKhoaG4du0arl27hqdPn+Lu3bu4e/cutmf6PTVq1ECTJk0Ut4YNG6JMmTIFqlUmkyEiIgI3b97E1atXcfbsWZw/fz7bml1NAQyQSDD4u+/g9MUXBfodRERE2oo9QVkVYSp6eHg4xo8fj8OHDwMAypQpg3HjxsHLywvVqlUrVL3Pnz/H5cuXERISgkuXLuHSpUt4/Phxjm3LlCkDZ2dnOFWogLISCUrb26O0vT0MDAyQkpKClJQUxMbG4smTJ3j69CkePXqEhISEbK9jZWWF9i1aoMexY+gqBOwyHuDyFEREpCGcIq8Ceb6JRZiK/ttvv2HUqFF4/fo1TExMMH36dHzxxRcF7p3JjxcvXigCUcbt0aNHhXotExMT1K5dG3Xr1kWLFi3Qtm1b1KtXD4anT+d/Kn0xXX2aiIj0F0+HqVDygwdAw4bKGwsxFT0lJQVTp07FqlWrAACtW7fG+vXrUatWLTVULVehQgV06dIFXbp0UWx7/fo1Hl28iIiOHREpBOIAxAN4LZFAMnIkTMqVg4mJCSwsLODg4AAHBwc4OjqiatWq2aeyA/mfkaaqizgSEREVM70NQWcbNUKf9euVv7ALOBU9ISEB/fr1w7FjxwAAs2fPxoIFC2BkVPxva+nSpVHXwAB1s3bsCQF88knBL4SYnxlpkZHvAhAg/+ntLZ95xh4hIiLScno7r/koIP/CzrwOVwHWpYqOjsaHH36IY8eOoVSpUjhw4AAWLVqkkQCkkBHiMivK4qJeXvJTgYGB8p9Ze3jy6jkjIiLScnobgvZBPo092xf2+774AURERKBNmza4ePEiypUrh5MnT6J79+7FUXbe1LG4qKOjvBcpp9dQdegiIiIqRnobgqIAnDQwyPkLO48v/tDQULRu3Rp37tyBk5MTzp49i+bNmxe9IFWtEJ+PEKcyXNGdiIh0mN7ODgOAQU2bYufFi/l+7rlz59C9e3e8evUKderUwdGjR+Goii98XR9czIVRiYhIzThFXgUyhyADAwOEhYWhatWq733ewYMHMXDgQCQlJaFly5Y4ePAgrK2ti16QKleIJyIiKqHUEYL09nTYhx9+CJlMhv/973/vbbtq1Sr06tULSUlJ6Nq1K44fP66aAARwcDEREZGG6GQIWrVqFapUqQJTU1M0adIEZ86cKfBrzJ49GwCwadMmBAUF5dgmNTUV06ZNw4QJEyCTyTBixAjs3bsXpUqVKkr5yji4mIiISCN0LgT5+/tjypQpmDt3Lq5cuQI3Nzd4enoW+IrJTZs2xejRowEAAwcOVFrnCwCuX7+ONm3aYNmyZQCAb775Bn5+fjlfWLAoOLiYiIhII3RuTFDz5s3RuHFjrF69WrGtdu3a6N27N3x9fd/7/MznFA0MDNCuXTtcvnwZpUqVwogRI+Dk5IS//voLBw8ehBACZcqUwfr169GvXz917hYHFxMREeVB75fNSElJwaVLlzBr1iyl7Z06dcK5c+dyfE5ycjKSk5MV9+Pj4xX/bWFhgSNHjmDw4ME4efIkVq5cqfTcgQMH4vvvv4eTk5MK9yIXjo4MP0RERMVIp0JQdHQ00tPTYWtrq7Td1tYWUVFROT7H19cX8+fPz/U1K1SogICAABw5cgSHDh1CXFwcatSogb59+6Ju3boqrZ+IiIi0h06FoAwSiUTpvhAi27YMs2fPxrRp0xT34+Pjs/XsGBgYoGvXrujatavqiyUiIiKtpFMhqHz58jA0NMzW6/P8+fNsvUMZpFIppFJpcZRHREREOkSnZoeZmJigSZMmCAgIUNoeEBCAVq1aaagqIiIi0kU61RMEANOmTcPQoUPh6uqKli1bYt26dXj06BHGjh2r6dKIiIhIh+hcCBo0aBBiYmKwYMECPH36FPXq1cOhQ4fg7Oys6dKIiIhIh+jcdYKKSh3XGSAiIiL14tphRERERCrCEFQUkZFAYKD8JxEREekUhqDC8vMDnJ0BDw/5Tz8/TVdEREREBcAQVBiRkcCYMYBMJr8vkwHe3uwRIiIi0iEMQYURFvYuAGVIT5cvgEpEREQ6gSGoMFxcAIMsb52hoXwFeCIiItIJDEGF4egIrFsnDz6A/OfatVwFnoiISIfo3MUStYaXF9C5s/wUWPXqDEBEREQ6hiGoKBwdGX6IiIh0FE+HERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhIL+lUCKpcuTIkEonSbdasWZoui4iIiHSQkaYLKKgFCxZg9OjRivsWFhYarIaIiIh0lc6FoNKlS8POzk7TZRAREZGO06nTYQDw3XffoVy5cmjYsCG++eYbpKSkaLokIiIi0kE61RM0efJkNG7cGGXLlsXFixcxe/ZsPHz4EOvXr8/1OcnJyUhOTlbcj4uLAwDEx8ervV4iIiJSjYzvbSGE6l5UaJiPj48AkOctODg4x+fu2rVLABDR0dFFen3eeOONN9544003bvfv31dZBpEIocpIVXDR0dGIjo7Os03lypVhamqabfu///4LR0dHXLhwAc2bN8/xuVl7gmJjY+Hs7IxHjx7BysqqaMXrkPj4eDg5OeHx48ewtLTUdDnFhvvN/dYH3G/utz6Ii4tDpUqV8OrVK5QpU0Ylr6nx02Hly5dH+fLlC/XcK1euAADs7e1zbSOVSiGVSrNtt7Ky0qt/PBksLS2533qE+61fuN/6RV/328BAdcOZNR6C8uv8+fO4cOEC2rdvDysrKwQHB2Pq1Kno2bMnKlWqpOnyiIiISMfoTAiSSqXw9/fH/PnzkZycDGdnZ4wePRozZszQdGlERESkg3QmBDVu3BgXLlwo8utIpVL4+PjkeIqsJON+c7/1Afeb+60PuN+q22+ND4wmIiIi0gSdu1giERERkSowBBEREZFeYggiIiIivcQQRERERHqpRIagVatWoUqVKjA1NUWTJk1w5syZPNufOnUKTZo0gampKapWrYo1a9YUU6WqVZD93r17Nzp27IgKFSrA0tISLVu2xNGjR4uxWtUp6Oed4a+//oKRkREaNmyo3gLVpKD7nZycjLlz58LZ2RlSqRTVqlXDhg0biqla1Snofm/btg0NGjRAqVKlYG9vjxEjRiAmJqaYqi2606dPo0ePHnBwcIBEIsHevXvf+5yScEwr6H6XlGNaYT7vDLp8TCvMfqvimFbiQpC/vz+mTJmCuXPn4sqVK3Bzc4OnpycePXqUY/uHDx+ia9eucHNzw5UrVzBnzhx89tln+OOPP4q58qIp6H6fPn0aHTt2xKFDh3Dp0iW0b98ePXr0UFyFW1cUdL8zxMXF4dNPP8WHH35YTJWqVmH2e+DAgThx4gT8/Pxw584d7NixA7Vq1SrGqouuoPt99uxZfPrpp/Dy8kJoaCh+//13BAcHY9SoUcVceeElJiaiQYMGWLFiRb7al5RjWkH3u6Qc0wq63xl0/ZhWmP1WyTFNZauQaYlmzZqJsWPHKm2rVauWmDVrVo7tZ8yYIWrVqqW0zdvbW7Ro0UJtNapDQfc7J3Xq1BHz589XdWlqVdj9HjRokPjyyy+Fj4+PaNCggRorVI+C7vfhw4eFlZWViImJKY7y1Kag+71kyRJRtWpVpW0//fSTcHR0VFuN6gRA7NmzJ882JeWYlll+9jsnunhMy6wg+63rx7TM8rPfqjqmlaieoJSUFFy6dAmdOnVS2t6pUyecO3cux+ecP38+W/vOnTsjJCQEqampaqtVlQqz31nJZDK8fv0a1tbW6ihRLQq73xs3bsT9+/fh4+Oj7hLVojD7vX//fri6umLx4sWoWLEiatSogenTpyMpKak4SlaJwux3q1atEBkZiUOHDkEIgWfPnmHXrl3o1q1bcZSsESXhmKYKunhMKyxdP6YVhqqOaTpzxej8iI6ORnp6OmxtbZW229raIioqKsfnREVF5dg+LS0N0dHReS7Oqi0Ks99Z/fDDD0hMTMTAgQPVUaJaFGa/w8LCMGvWLJw5cwZGRrr5z78w+/3gwQOcPXsWpqam2LNnD6KjozF+/Hi8fPlSZ8YFFWa/W7VqhW3btmHQoEF4+/Yt0tLS0LNnT/z888/FUbJGlIRjmiro4jGtMErCMa0wVHVMK1E9QRkkEonSfSFEtm3va5/Tdm1X0P3OsGPHDsybNw/+/v6wsbFRV3lqk9/9Tk9Px5AhQzB//nzUqFGjuMpTm4J83jKZDBKJBNu2bUOzZs3QtWtXLF26FJs2bdKp3iCgYPt969YtfPbZZ/j6669x6dIlHDlyBA8fPsTYsWOLo1SNKSnHtMLS9WNafpW0Y1pBqOqYVqJiY/ny5WFoaJjt/wqfP3+e7f+MMtjZ2eXY3sjICOXKlVNbrapUmP3O4O/vDy8vL/z+++/o0KGDOstUuYLu9+vXrxESEoIrV65g4sSJAOR/SEIIGBkZ4dixY/Dw8CiW2ouiMJ+3vb09KlasCCsrK8W22rVrQwiByMhIuLi4qLVmVSjMfvv6+qJ169b44osvAAD169eHubk53NzcsHDhwhLZK1ISjmlFocvHtIIqKce0wlDVMa1E9QSZmJigSZMmCAgIUNoeEBCAVq1a5ficli1bZmt/7NgxuLq6wtjYWG21qlJh9huQ/9/S8OHDsX37dp0cI1HQ/ba0tMSNGzdw9epVxW3s2LGoWbMmrl69iubNmxdX6UVSmM+7devWePLkCRISEhTb7t69CwMDAzg6Oqq1XlUpzH6/efMGBgbKhzlDQ0MA73pHSpqScEwrLF0/phVUSTmmFYbKjmlFGlathXbu3CmMjY2Fn5+fuHXrlpgyZYowNzcX4eHhQgghZs2aJYYOHapo/+DBA1GqVCkxdepUcevWLeHn5yeMjY3Frl27NLULhVLQ/d6+fbswMjISK1euFE+fPlXcYmNjNbULhVLQ/c5KV2dSFHS/X79+LRwdHUX//v1FaGioOHXqlHBxcRGjRo3S1C4USkH3e+PGjcLIyEisWrVK3L9/X5w9e1a4urqKZs2aaWoXCuz169fiypUr4sqVKwKAWLp0qbhy5YqIiIgQQpTcY1pB97ukHNMKut9Z6eoxraD7rapjWokLQUIIsXLlSuHs7CxMTExE48aNxalTpxSPDRs2TLRr106pfVBQkGjUqJEwMTERlStXFqtXry7milWjIPvdrl07ASDbbdiwYcVfeBEV9PPOTFcPGEIUfL9v374tOnToIMzMzISjo6OYNm2aePPmTTFXXXQF3e+ffvpJ1KlTR5iZmQl7e3vx8ccfi8jIyGKuuvACAwPz/Fstqce0gu53STmmFebzzkxXj2mF2W9VHNMkQpTQPmEiIiKiPJSoMUFERERE+cUQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiISoQFCxbggw8+gLm5OWxtbTFu3DikpqZquiwi0mJGmi6AiKiohBBIT0/H2rVrUbFiRdy6dQuffvop6tevj3Hjxmm6PCLSUlxAlYhKpCFDhqBChQpYvny5pkshIi3F02FEpPMiIiIwceJE1KtXD2XLloWFhQV+++03ODo6aro0ItJiDEFEpNOio6PRrFkzREdHY+nSpTh79izOnz8PQ0NDNGzYUNPlEZEW45ggItJphw4dQlpaGnbs2AGJRAIAWLlyJVJSUhiCiChPDEFEpNOsra0RHx+P/fv3o06dOjhw4AB8fX1RsWJFVKhQQdPlEZEW48BoItJpQgiMGzcO27dvh5mZGT755BO8ffsWEREROHjwoKbLIyItxhBEREREeokDo4mIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER66f92wdCXrefebgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABarklEQVR4nO3deVhUZf/H8fewCIqCIrKJoilqmrnkXuaSG66ZpqW5ZWq5lPrrcS2XHlPT7DHTXArNyjXL0nKtUDO1tNRyzQVMUtwFcQGB8/sDmURQAQdmhvm8rutcOGfOHL5nRg4f7vs+9zEZhmEgIiIi4mCcrF2AiIiIiDUoBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBIlVNWzYkIYNG1q7jGzr2bMnBQsWzNS2pUqVomfPnjlaj8lkYty4cTn6Pe7n2rVrjBs3jk2bNlm1Dnvxww8/UKNGDTw8PDCZTHz99dd88sknmEwmIiMjzdstXryY6dOn50gNb7zxBiVLlsTFxYXChQtn+fU9e/akVKlSFq/L1nz66ac899xzlC9fHicnp0wf88cff4zJZMr0uUJyj4u1CxDH9uGHH1q7hFyzcuVKPD09rV1Gjrt27Rrjx48HsOuAmxsMw6BTp06UK1eOVatW4eHhQfny5UlMTGT79u0EBASYt128eDH79u1j8ODBFq3hm2++4e2332b06NGEhobi5uZm0f3nJZ999hnR0dHUqlWL5ORkbt68ed/X/PPPP7z++usEBgYSExOTC1VKVigEiVVVrFjR2iXkmmrVqlm7BLGg69ev4+7ujslkyvY+Tp06xcWLF2nfvj1PPfVUmueKFSv2oCVmyr59+wB49dVX8fX1zZXvaSmW+AyyYv369Tg5pXSgtG7d2vze3cvLL7/Mk08+ibe3NytWrMjpEiWL1B0mmTZu3DhMJhP79+/n+eefx8vLCz8/P1588cV0f+HcuHGDkSNHUrp0afLly0fx4sUZMGAAly9fTrNdRt1hs2fPpkqVKhQsWJBChQpRoUIFRo0aBUBkZCQuLi5MmjQpXX1btmzBZDLxxRdf3PM4Ll++zP/93//x0EMP4ebmhq+vLy1btuTQoUMAbNq0CZPJlK47JzIyEpPJxCeffJJun/v37+epp57Cw8ODYsWKMXDgQK5du5Zmm4y6w+5XiyVER0fTr18/goKCyJcvH6VLl2b8+PEkJiam2W78+PHUrl0bb29vPD09qV69OmFhYdx5j+Uff/yRhg0bUrRoUfLnz0/JkiXp0KED165dIzIy0vzLe/z48ZhMJkwm0327Aa9du8brr79O6dKlcXd3x9vbmxo1arBkyZI0233yySeUL18eNzc3Hn74YT799NN0XTFZ+fx27drFc889R6lSpcifPz+lSpXi+eef58SJE+m+r8lkYsOGDbz44osUK1aMAgUKEB8fD8CyZcuoW7cuHh4eFCxYkObNm7N79+57HvO4ceMICgoCYPjw4ZhMJvNx3Nkd1rBhQ7777jtOnDhhfk/v94s/OTmZKVOmUKFCBfP/re7duxMVFWXeplSpUrzxxhsA+Pn5Zao7NaPPICMJCQlMmDDB/P2LFStGr169OHfuXJrt4uPj+b//+z/8/f0pUKAATz75JL/99lu6nxdLfQa7du2ibdu2eHt74+7uTrVq1Vi+fPk9jzlVagDKrM8//5zNmzc7VIu3vVFLkGRZhw4d6Ny5M7179+bPP/9k5MiRAMyfPx9IaeJ/+umn+eGHHxg5ciT169fnjz/+YOzYsWzfvp3t27fftcl96dKl9O/fn0GDBvHuu+/i5OTE0aNHOXDgAJBy0m7bti1z5sxh2LBhODs7m187c+ZMAgMDad++/V1rv3LlCk888QSRkZEMHz6c2rVrExcXx5YtWzh9+jQVKlTI8vtx8+ZNWrZsSb9+/RgxYgTbtm1jwoQJnDhxgtWrVz9wLT179mThwoVERERkedxFatO9k5MTY8aMoUyZMmzfvp0JEyYQGRnJggULzNtGRkbSr18/SpYsCcCOHTsYNGgQ//zzD2PGjDFv06pVK+rXr8/8+fMpXLgw//zzD+vWrSMhIYGAgADWrVtHixYt6N27Ny+99BJw/1aNoUOH8tlnnzFhwgSqVavG1atX2bdvHxcuXDBv88knn9CrVy/atWvHtGnTiImJYdy4ccTHx2f5l9Ptx1y+fHmee+45vL29OX36NLNnz6ZmzZocOHAAHx+fNNu/+OKLtGrVis8++4yrV6/i6urKxIkTeeONN+jVqxdvvPEGCQkJTJ06lfr16/Prr7/etbXzpZdeokqVKjzzzDMMGjSILl263PXn4sMPP6Rv374cO3aMlStXZurYXnnlFebNm8fAgQNp3bo1kZGRvPnmm2zatInff/8dHx8fVq5cyaxZswgLC2PdunV4eXmZg1lGMvsZJCcn065dO3766SeGDRtGvXr1OHHiBGPHjqVhw4bs2rWL/PnzA9CrVy+WLVvGsGHDaNy4MQcOHKB9+/bExsZmWMODfAbh4eG0aNGC2rVrM2fOHLy8vFi6dCmdO3fm2rVrFh2zd/bsWQYPHszkyZPv+Z6KlRkimTR27FgDMKZMmZJmff/+/Q13d3cjOTnZMAzDWLduXYbbLVu2zACMefPmmdc1aNDAaNCggfnxwIEDjcKFC9+zjvDwcAMwVq5caV73zz//GC4uLsb48ePv+dq33nrLAIyNGzfed//h4eFp1kdERBiAsWDBAvO6Hj16GIDx/vvvp9n27bffNgBj69at5nXBwcFGjx49slSLYRjGiy++aDg7OxuRkZH33M4wDAMwxo4da37cr18/o2DBgsaJEyfSbPfuu+8agLF///4M95OUlGTcvHnTeOutt4yiRYuaP9sVK1YYgLFnz5671nDu3Ll0ddzPI488Yjz99NN3fT4pKckIDAw0qlevbq7FMAwjMjLScHV1NYKDg83rsvL53SkxMdGIi4szPDw80nymCxYsMACje/fuabb/+++/DRcXF2PQoEFp1l+5csXw9/c3OnXqdI+j/remqVOnplmf+v0iIiLM61q1apXmOO/l4MGDBmD0798/zfpffvnFAIxRo0aZ16X+XJ87d+6e+8zKZ7BkyRIDML788ss0+9i5c6cBGB9++KFhGIaxf/9+AzCGDx+eZrvU19/+82KJz6BChQpGtWrVjJs3b6bZtnXr1kZAQICRlJR0z/fgdvf7PDp06GDUq1fP/F716NHD8PDwyPT+JXeoO0yyrG3btmkeP/roo9y4cYOzZ88CKd0lQLq/qp599lk8PDz44Ycf7rrvWrVqcfnyZZ5//nm++eYbzp8/n26bhg0bUqVKFWbNmmVeN2fOHEwmE3379r1n7WvXrqVcuXI0adLknttlVdeuXdM87tKlC5Dyl+eD1hIWFkZiYiLBwcFZruvbb7+lUaNGBAYGkpiYaF5CQ0MB2Lx5s3nbH3/8kSZNmuDl5YWzszOurq6MGTOGCxcumD/bqlWrki9fPvr27cvChQs5fvx4luq5vYbExERzV1utWrVYu3YtI0aMYNOmTVy/fj3N6w4fPsypU6fo0qVLmm6g4OBg6tWrl+X3JVVcXBzDhw+nbNmyuLi44OLiQsGCBbl69SoHDx5Mt32HDh3SPF6/fj2JiYl07949zXG5u7vToEEDq10hl/r/7s6fwVq1avHwww/f82fwbrLyGXz77bcULlyYNm3apHlfqlatir+/v/l9Sf3/16lTpzSv79ixIy4uGXdUZPczOHr0KIcOHTL/rN6+bcuWLTl9+jSHDx/O8vuSkS+//JLVq1fz0Ucf5dp4JckehSDJsqJFi6Z5nNqEn/qL68KFC7i4uKTrAjGZTPj7+6fp4rhTt27dmD9/PidOnKBDhw74+vpSu3ZtNm7cmGa7V199lR9++IHDhw9z8+ZNPvroIzp27Ii/v/89az937pzFm6ZdXFzSvSepddzrWHOiljudOXOG1atX4+rqmmapVKkSgDlk/vrrrzRr1gyAjz76iJ9//pmdO3cyevRo4N/PtkyZMnz//ff4+voyYMAAypQpQ5kyZXj//ffvW0tkZGS6OlJ/Cc6YMYPhw4fz9ddf06hRI7y9vXn66ac5cuQI8O/7mNHne7/P/F66dOnCzJkzeemll1i/fj2//vorO3fupFixYumCGJDmai1IeX8Batasme7Yli1blmGIzw2p79ed9QIEBgbe8//l/faZmc/gzJkzXL58mXz58qV7X6Kjo83vS+o+/fz80rw+o5+pVNn9DFK3e/3119Nt179/fwCLfF5xcXEMGDCAQYMGERgYyOXLl7l8+TIJCQlAyjjAq1evPvD3EcvQmCCxuKJFi5KYmMi5c+fSBCHDMIiOjqZmzZr3fH2vXr3o1asXV69eZcuWLYwdO5bWrVvz119/mVtDunTpwvDhw5k1axZ16tQhOjqaAQMG3Le2YsWKpRkYmhF3d3cA84DLVHc7QSYmJnLhwoU0J+3o6GggfWDMai0PysfHh0cffZS33347w+cDAwOBlLFYrq6ufPvtt+bjB/j666/TvaZ+/frUr1+fpKQkdu3axQcffMDgwYPx8/Pjueeeu2stgYGB7Ny5M8268uXLA+Dh4cH48eMZP348Z86cMbcKtWnThkOHDpnfx9T39XZ3rsvs5xcTE8O3337L2LFjGTFihHl9fHw8Fy9ezPAY7vyrPnXM0IoVK7LVUpdTUt+v06dPpwvap06dSjfWKSv7zMxn4OPjQ9GiRVm3bl2G+ypUqFCafZ45c4bixYubn0/9mcpIdj+D1O1GjhzJM888k+E2qf8fH8T58+c5c+YM06ZNY9q0aemeL1KkCO3atcvwZ0tyn0KQWNxTTz3FlClT+PzzzxkyZIh5/ZdffsnVq1fTXQp8Nx4eHoSGhpKQkMDTTz/N/v37zSc5d3d3+vbty8yZM9m2bRtVq1bl8ccfv+8+Q0NDGTNmDD/++CONGzfOcJvUwcd//PEHzZs3N69ftWrVXfe7aNEiXn31VfPjxYsXA/eeJycztTyo1q1bs2bNGsqUKUORIkXuup3JZMLFxSXNQPPr16/z2Wef3fU1zs7O1K5dmwoVKrBo0SJ+//13nnvuuXQtg6ny5ctHjRo17luzn58fPXv2ZO/evUyfPp1r165Rvnx5AgICWLJkCUOHDjX/Ijxx4gTbtm0zhznI/OdnMpkwDCPdYOSPP/6YpKSk+9YJ0Lx5c1xcXDh27Fi6bhpLc3Nzy7B1KiOp/58+//zzNH907Ny5k4MHD5pb+LIiK59B69atWbp0KUlJSdSuXfuu+3zyySeBlCu7qlevbl6/YsWKdFcv3k1mP4Py5csTEhLC3r17mThxYqb2nR3+/v4ZdoNPnjyZzZs3s3bt2myFUMkZCkFicU2bNqV58+YMHz6c2NhYHn/8cfPVYdWqVaNbt253fW2fPn3Inz8/jz/+OAEBAURHRzNp0iS8vLzStSD179+fKVOm8Ntvv/Hxxx9nqrbBgwezbNky2rVrx4gRI6hVqxbXr19n8+bNtG7dmkaNGuHv70+TJk2YNGkSRYoUITg4mB9++IGvvvoqw33my5ePadOmERcXR82aNc1Xh4WGhvLEE088UC0AvXv3ZuHChRw7dizLrQ1vvfUWGzdupF69erz66quUL1+eGzduEBkZyZo1a5gzZw5BQUG0atWK9957jy5dutC3b18uXLjAu+++my4gzJkzhx9//JFWrVpRsmRJbty4Yb4qMHVsU6FChQgODuabb77hqaeewtvbGx8fn3te2Va7dm1at27No48+SpEiRTh48CCfffYZdevWpUCBAgD897//5aWXXqJ9+/b06dOHy5cvM27cuHRdMZn9/Dw9PXnyySeZOnWqub7NmzcTFhaW6VmTS5UqxVtvvcXo0aM5fvw4LVq0oEiRIpw5c4Zff/3V3MJlCZUrV+arr75i9uzZPPbYYzg5Od01VJYvX56+ffvywQcf4OTkRGhoqPnqsBIlSqT54ySznJycMv0ZPPfccyxatIiWLVvy2muvUatWLVxdXYmKiiI8PJx27drRvn17KlWqxPPPP8+0adNwdnamcePG7N+/n2nTpuHl5ZWpq/6y8hnMnTuX0NBQmjdvTs+ePSlevDgXL17k4MGD/P777/edXuPAgQPmK1Wjo6O5du2aee6fihUrUrFiRdzd3TP84+eTTz7B2dlZE4jaGisPzBY7crerSDK6kuX69evG8OHDjeDgYMPV1dUICAgwXnnlFePSpUtpXnvn1WELFy40GjVqZPj5+Rn58uUzAgMDjU6dOhl//PFHhjU1bNjQ8Pb2Nq5du5bp47h06ZLx2muvGSVLljRcXV0NX19fo1WrVsahQ4fM25w+fdro2LGj4e3tbXh5eRkvvPCCsWvXrgyvDvPw8DD++OMPo2HDhkb+/PkNb29v45VXXjHi4uLSfN87rw7LbC2pV6Dd/v7eDRlclXXu3Dnj1VdfNUqXLm24uroa3t7exmOPPWaMHj06TY3z5883ypcvb7i5uRkPPfSQMWnSJCMsLCzN996+fbvRvn17Izg42HBzczOKFi1qNGjQwFi1alWa7/n9998b1apVM9zc3NJd5ZORESNGGDVq1DCKFCli/v5Dhgwxzp8/n2a7jz/+2AgJCTHy5ctnlCtXzpg/f77Ro0ePdFfpZPbzi4qKMjp06GAUKVLEKFSokNGiRQtj37596T6r1P/jO3fuzLD+r7/+2mjUqJHh6elpuLm5GcHBwUbHjh2N77///p7HnZWrwy5evGh07NjRKFy4sGEymYz7nb6TkpKMd955xyhXrpzh6upq+Pj4GC+88IJx8uTJNNtl9uqwVJn9DG7evGm8++67RpUqVQx3d3ejYMGCRoUKFYx+/foZR44cMW9348YNY+jQoYavr6/h7u5u1KlTx9i+fbvh5eVlDBkyJN178qCfwd69e41OnToZvr6+hqurq+Hv7280btzYmDNnzn2PPfW9ymi539WQujrMNpkM446Z0ETsxNmzZwkODmbQoEFMmTLF2uWIlfTs2ZNNmzaluc+W2Ldt27bx+OOPs2jRIvOVliI5Qd1hYneioqI4fvw4U6dOxcnJiddee83aJYlINm3cuJHt27fz2GOPkT9/fvbu3cvkyZMJCQm56wBmEUtRCBK78/HHH/PWW29RqlQpFi1alOaqEhGxL56enmzYsIHp06dz5coVfHx8CA0NZdKkSWmuVBTJCeoOExEREYdkM5Mlzp49m0cffRRPT088PT2pW7cua9euNT9vGAbjxo0jMDCQ/Pnz07BhQ/bv32/FikVERMSe2UwICgoKYvLkyezatYtdu3bRuHFj2rVrZw46U6ZM4b333mPmzJns3LkTf39/mjZtypUrV6xcuYiIiNgjm+4O8/b2ZurUqbz44osEBgYyePBghg8fDqTM6urn58c777xDv379rFypiIiI2BubHBidlJTEF198wdWrV6lbty4RERFER0eb720EKbOnNmjQgG3btt0zBMXHx6eZPj85OZmLFy9StGhR3dhORETEThiGwZUrVwgMDMzURJqZYVMh6M8//6Ru3brcuHGDggULsnLlSipWrMi2bduA9DfZ8/Pz48SJE/fc56RJkyw2Y6uIiIhY18mTJy1282mbCkHly5dnz549XL58mS+//JIePXqY7zIN6W+cZxjGfVtzRo4cydChQ82PY2JiKFmyJCdPnsTT09OyByAiIiI5IjY2lhIlSphvwGsJNhWC8uXLR9myZQGoUaMGO3fu5P333zePA4qOjiYgIMC8/dmzZ9O1Dt3Jzc0t3f2PAPNVaCIiImI/LDmUxWauDsuIYRjEx8dTunRp/P392bhxo/m5hIQENm/eTL169axYoYiIiNgrm2kJGjVqFKGhoZQoUYIrV66wdOlSNm3axLp16zCZTAwePJiJEycSEhJCSEgIEydOpECBArqvjIiIiGSLzYSgM2fO0K1bN06fPo2XlxePPvoo69ato2nTpgAMGzaM69ev079/fy5dukTt2rXZsGGDRfsGRURExHHY9DxBOSE2NhYvLy9iYmI0JkhERMRO5MTvb5seEyQiIiKSUxSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCHZTAiaNGkSNWvWpFChQvj6+vL0009z+PDhNNv07NkTk8mUZqlTp46VKhYRERF7ZjMhaPPmzQwYMIAdO3awceNGEhMTadasGVevXk2zXYsWLTh9+rR5WbNmjZUqFhEREXvmYu0CUq1bty7N4wULFuDr68tvv/3Gk08+aV7v5uaGv79/bpcnIiIieYzNtATdKSYmBgBvb+806zdt2oSvry/lypWjT58+nD179p77iY+PJzY2Ns0iIiIid/fPP//w4osvUq9ePd566y0SEhKsXVKOMBmGYVi7iDsZhkG7du24dOkSP/30k3n9smXLKFiwIMHBwURERPDmm2+SmJjIb7/9hpubW4b7GjduHOPHj0+3PiYmBk9Pzxw7BhEREXt06NAhGjRokKaRoWPHjixfvhyTyWS1umJjY/Hy8rLo72+bDEEDBgzgu+++Y+vWrQQFBd11u9OnTxMcHMzSpUt55plnMtwmPj6e+Ph48+PY2FhKlCihECQiInKHuLg4atSoweHDh6lcuTIvvvgiw4cPJyEhgS+++IKOHTtarbacCEE2MyYo1aBBg1i1ahVbtmy5ZwACCAgIIDg4mCNHjtx1Gzc3t7u2EomIiAgQFQVHjjB+2TIOHz5MUFAQ33//Pb6+vly4cIEJEybw7rvvWjUE5QSbGRNkGAYDBw7kq6++4scff6R06dL3fc2FCxc4efIkAQEBuVChiIhIHhQWBsHBHG3cmOlz5wIwZ84cfH19gZTGiXz58vHLL7+wc+dOa1ZqcTYTggYMGMDnn3/O4sWLKVSoENHR0URHR3P9+nUgpYnu9ddfZ/v27URGRrJp0ybatGmDj48P7du3t3L1IiIidigqCvr2heRkJgKJQAugVZUq5k18fX3p0KEDAMuXL7dKmTnFZkLQ7NmziYmJoWHDhgQEBJiXZcuWAeDs7Myff/5Ju3btKFeuHD169KBcuXJs376dQoUKWbl6ERERO3TkCCQnEwF8dmvVWICjR9Ns1q5dOwDWrl2bm9XlOJsZE3S/8dn58+dn/fr1uVSNiIiIAwgJAScn/pecTCLQDKjj7Axly6bZrGnTpjg5ObF//35OnjxJiRIlrFKupdlMS5CIiIjksqAgrs+caW4F+j8nJ5g7F+64MMnb25vatWsD8P0HH6R0o+UBCkEiIiIO7CtPTy4DwX5+NImIgN69M9zuSS8vALZNnQrBwSkDqu2cQpCIiIgD+/jjjwHoPWAATiVLZrxRVBR1bw1J2Q6QnAz9+tl9i5BCkIiIiIM6cuQImzZtwsnJiZ49e95rQ+oaBm2AboABkJSUbgC1vbGZgdEiIiKSu+bPnw9AixYt7j3YOSQEXycnViUn/7sugwHU9kYtQSIiIg7o5s2bfPLJJwC89NJL9944KAjmzUsJPpDyNYMB1PZGLUEiIiIOaM2aNURHR+Pr60vr1q3v/4LevaF585QusLJl7T4AgUKQiIiIQ0odEN2zZ09cXV0z96KgoDwRflKpO0xERMTBREVFsWbNGgB63+WSeEegECQiIuJgPvnkE5KTk3nyyScpV66ctcuxGoUgERERB5KcnEzYrYkO7zsgOo9TCBIREXEgP/74I5GRkXh5eZnvDu+oFIJEREQcSOqA6K5du1KgQAErV2NdCkEiIiIO4vz586xcuRJQVxgoBImIiDiMzz//nISEBKpXr061atWsXY7VKQSJiIg4AMMwzF1hagVKoRAkIiLiALZv387+/fvJnz8/zz//vLXLsQkKQSIiIg5g7ty5AHTu3JnChQtbtxgboRAkIiKSx128eJHly5cD0K9fPytXYzsUgkRERPK4Tz/9lBs3blClShVq165t7XJshkKQiIhIHmYYhrkrrF+/fphMJitXZDsUgkRERPKwn778kkOHDuFRoABdu3a1djk2RSFIREQkrwoL4/1nnwWgy7VreH7xhZULsi0KQSIiInlRVBTH+vRh5a2HrwH06wdRUVYsyrYoBImIiORFR44wwzAwgBZAJYCkJDh61Lp12RCFIBERkTzosq8vYbf+/X+pK52doWxZK1VkexSCRERE8qB5333HVaAy8BSkBKC5cyEoyLqF2RAXaxcgIiIilnXt2jXee+89AIa8+y6mxx5LaQFSAEpDIUhERCSPmTt3LmfOnKFUqVK88Oqr4Opq7ZJskrrDRERE8pBr167xzjvvAPDGG2/gqgB0VwpBIiIiecisWbM4c+YMDz30EN27d7d2OTZNIUhERCSPOHfuHG+//TYAY8aMUSvQfSgEiYiI5BFvvvkmMTExVKtWjW7dulm7HJunECQiIpIH/PHHH3z00UcAvP/++zg56Vf8/egdEhERsXOJiYn07t2b5ORknn32WerXr2/tkuyCQpCIiIidmzZtGrt27aJw4cJMnz7d2uXYDYUgERERO7Zv3z7GjBkDwPTp0wkMDLRyRfZDIUhERMROxcbG0qFDBxISEmjZsqUuic8ihSARERE7ZBgGvXv35q+//qJEiRIsXLgQk8lk7bLsikKQiIiIHRo1ahQrVqzA1dWVL774Ah8fH2uXZHcUgkREROzM9OnTmTx5MpByn7DatWtbuSL7ZDMhaNKkSdSsWZNChQrh6+vL008/zeHDh9NsYxgG48aNIzAwkPz589OwYUP2799vpYpFRERy37vvvsuQIUOAlN+dvXr1snJF9stmQtDmzZsZMGAAO3bsYOPGjSQmJtKsWTOuXr1q3mbKlCm89957zJw5k507d+Lv70/Tpk25cuWKFSsXERHJpKgoCA9P+ZpFSUlJjBgxgv/85z8AjBgxguHDh1u6QodiMgzDsHYRGTl37hy+vr5s3ryZJ598EsMwCAwMZPDgweYPPT4+Hj8/P9555x369euXqf3Gxsbi5eVFTEwMnp6eOXkIIiIi/woLg759ITkZnJxg3jzo3TvjbaOi4MgRCAmBoCAuXrxI165dWbduHZDSAjTihRfSbJPX5cTvb5tpCbpTTEwMAN7e3gBEREQQHR1Ns2bNzNu4ubnRoEEDtm3bZpUaRUREMiUq6t8ABClf+/XLuEUoLAyCg6FxYwgOZsvw4Tz22GOsW7eO/Pnz89lnnzGiWLE02xAWlrvHk0e4WLuAjBiGwdChQ3niiSd45JFHAIiOjgbAz88vzbZ+fn6cOHHirvuKj48nPj7e/Dg2NjYHKhYREbmHI0f+DUCpkpLg6NG0rTi3haUrwOjkZD6YMgWA0qVLs3LlSqoULZoSfO4MVM2bO0SLkCXZZEvQwIED+eOPP1iyZEm65+6cA8EwjHvOizBp0iS8vLzMS4kSJSxer4iIyD2FhKR0gd3O2RnKlk277sgRkpKTCQPKAR/cWv1Sq1bs3r2bKlWq3DtQSZbYXAgaNGgQq1atIjw8nKDbEq2/vz/wb4tQqrNnz6ZrHbrdyJEjiYmJMS8nT57MmcJFRETuJigoZQyQs3PKY2dnmDs3XctN+Llz1ABeAqKBMsB6Jyc+mjMHLy+vlI0yG6jkvmwmBBmGwcCBA/nqq6/48ccfKV26dJrnS5cujb+/Pxs3bjSvS0hIYPPmzdSrV++u+3Vzc8PT0zPNIiIikut694bIyJSrwyIj0wyKPnLkCO3ataNx587sAbyAacABJyeazZuXNixlMlDJ/dnMmKABAwawePFivvnmGwoVKmRu8fHy8iJ//vyYTCYGDx7MxIkTCQkJISQkhIkTJ1KgQAG6dOli5epFREQyISgoTVi5ePEi//3vf5k5cyaJiYk4OzvzyiuvMLZPH3wuXkxp3cko3PTunTIG6OjRu28j92Uzl8jfbVzPggUL6NmzJ5DSWjR+/Hjmzp3LpUuXqF27NrNmzTIPns4MXSIvIiLWlpCQwOzZsxk/fjyXLl0CoGXLlrz77rs8/PDDVq7ONuXE72+bCUG5RSFIRESs6eeff6ZPnz4cPHgQgMqVKzNt2jSaNm1q5cpsm0PNEyQiIpKXxMbG0r9/f5544gkOHjxIsWLFmDdvHrt371YAshKbGRMkIiKSV23ZsoWuXbsSdWtyxBdffJGpU6eaJwQW61BLkIiISA5JTExk3LhxNGrUiKioKMqUKcMPP/xAWFiYApANUEuQiIhIDjh//jzPPvssmzZtAqBnz5588MEHFCxY0LqFiZlCkIiIiIXt27ePNm3aEBkZScGCBZkzZw5du3a1dllyB4UgERERC1qzZg2dO3cmLi6OMmXKsGrVKipWrGjtsiQDGhMkIiJiCVFRLBo9mrZt2xIXF0ejRo345ZdfFIBsmFqCREREHlRYGLP69GHgran3utWtS9j69bi6ulq5MLkXtQSJiIg8iKgoJt4WgAYBn/zyC65nzli3LrkvhSAREZEHMHn8eEbfCkBjgfcBp+TklPt6iU1Td5iIiEg2vf/++4z8+GMAJgPDU59wdk65sanYNLUEiYiIZMO8efMYPHgwAGPbtGG4s3PKE87OMHeu7uxuB9QSJCIikkVffPEFL7/8MgDDhg1j7OTJ8M8/KV1gZcsqANkJhSAREZEs+Omnn3jhhRcwDIP+/fszefJkTCZTSvBR+LEr6g4TERHJpIMHD9KuXTsSEhJo3749M2bMSAlAYpcUgkRERDLh9OnThIaGcunSJerWrcuiRYtwTh0HJHZJIUhEROQ+4uLiaN26NSdOnCAkJIRVq1aRP39+a5clD0ghSERE5B6Sk5N54YUX+P333ylWrBhr167Fx8fH2mWJBSgEiYiI3MPYsWP55ptvcHNzY/Xq1ZQpU8baJYmFKASJiIjcxfLly5kwYQIAH330EbVr17ZyRWJJCkEiIiIZ2L17Nz179gTg9ddfp1u3btYtSCxOIUhEROQOZ86coV27dly/fp0WLVowefJka5ckOUAhSERE5Dbx8fE888wznDx5kvLly7NkyRJdCp9HKQSJiIjckjoL9LZt2/Dy8mLVqlUULlzY2mVJDlEIEhERueWDDz5g/vz5ODk5sWzZMsqVK2ftkiQHKQSJiIgAP/zwA0OHDgVg6tSpNG/e3MoVSU5TCBIREYcXERFBp06dSEpKonv37gwZMsTaJUkuUAgSERGHFhcXR7t27bh48SI1a9Zk7ty5aW+KGhUF4eEpXyVPUQgSEZG8J5PBxTAMevXqxZ9//omfnx9fffUV7u7u/24QFgbBwdC4ccrXsLAcLlxyk0KQiIjkLVkILhMnTmTFihW4urry1VdfERQU9O+TUVHQty8kJ6c8Tk6Gfv3UIpSHKASJiEjekYXgsnr1at58800APnz7berVq5d2gyNH/t1PqqQkOHo0JyoXK1AIEhGRvCOTweXgwYN07dQpZV4g4KURI9K3GIWEgNMdvyadnaFsWcvXLVahECQiInlHJoLL5cuXadeqFVdu3OBJYDpk3GIUFATz5qW8PnU/c+emrJc8QSFIRETyjvsEl8TERLp06cKRiAhKAisA19TXZtTV1bs3REamDLKOjEx5LHmGi7ULEBERsajevaF585RAU7ZsmpaboUOHsnbtWvK7u/N1fDzFDOPf192tqysoSK0/eZRCkIiI5D0ZBJcPPviADz74AIDPFy2i2qVLKV1gSUnq6nJQCkEiIpLnrVmzhsGDBwMwefJknnnmmZQn7tJiJI5BIUhERPK0P/74g86dO5OcnMyLL77IsGHD/n1SXV0OTQOjRUQkz4qOjqZ169bExcXRqFEjZs+enfaWGOLQFIJERCRPio2NJTQ0lJMnT1KuXDlWrFhBvnz5rF2W2BCFIBERyXNu3LjB008/zZ49eyhWrBjfffcd3t7e1i5LbIxCkIiI5ClJSUm88MILhIeHU7BgQdauXUtZzfIsGbCpELRlyxbatGlDYGAgJpOJr7/+Os3zPXv2xGQypVnq1KljnWJFRMTmGIbBwIED+fLLL8mXLx9ff/01jz32mLXLEhtlUyHo6tWrVKlShZkzZ951mxYtWnD69GnzsmbNmlysUEREbNnYsWOZM2cOJpOJzz//nKeeesraJYkNs6lL5ENDQwkNDb3nNm5ubvj7++dSRSIiYi/efvtt/vvf/wIpEyM+++yzVq5IbJ1NtQRlxqZNm/D19aVcuXL06dOHs2fPWrskERGxsnfeeYc33ngDSJkMccCAAVauSOyBTbUE3U9oaCjPPvsswcHBRERE8Oabb9K4cWN+++033NzcMnxNfHw88fHx5sexsbG5Va6IiOSC9957jxEjRgAwYcIEhg8fbuWKxF7YVQjq3Lmz+d+PPPIINWrUIDg4mO++++7fKdDvMGnSJMaPH59bJYqISC6aNm0ar7/+OpAyHmj06NFWrkjsid11h90uICCA4OBgjhw5ctdtRo4cSUxMjHk5efJkLlYoIiI5wTAMxowZYw5Ao0ePZuzYsVauSuyNXbUE3enChQucPHmSgICAu27j5uZ2164yERGxP8nJyQwZMoQZM2YAMHHiREaOHGnlqsQe2VQIiouL4+jRo+bHERER7NmzB29vb7y9vRk3bhwdOnQgICCAyMhIRo0ahY+PD+3bt7di1SIiklsSExPp27cvCxYsAGDmzJkaBC3ZZlMhaNeuXTRq1Mj8eOjQoQD06NGD2bNn8+eff/Lpp59y+fJlAgICaNSoEcuWLaNQoULWKllERHLJlStX6NSpE+vWrcPZ2ZkFCxbQrVs3a5cldsymQlDDhg0xDOOuz69fvz4XqxEREVsRFRVF69at2bt3L/nd3Vk6ejRtb/ujWSQ77HpgtIiI5H179uyhdu3a7N27Fz9PTzbHx9P2zTchOBjCwqxdntgxhSAREbFZ33zzDfXr1+fUqVNULFeOHVeuUDO1xyA5Gfr1g6go6xYpdkshSEREbE5SUhJvvvkmTz/9NHFxcTRu3Jif332XUncOmUhKgtsuqBHJCpsaEyQiInLp0iW6du3K2rVrAXjttdeYOnUqrmfOgJNTSgtQKmdnKFvWSpWKvVNLkIiI2Iw///yTmjVrsnbtWtzd3fnss8+YPn06rq6uEBQE8+alBB9I+Tp3bsp6kWxQS5CIiFidYRjMnz+fQYMGcf36dYKDg1m5ciXVqlVLu2Hv3tC8eUoXWNmyCkDyQBSCRETEqmJiYnj55ZdZunQpAE3r12fxV1/h4+OT8QuCghR+xCLUHSYiIlbz66+/Uq1aNZYuXYozMBlYt3UrPt98Y+3SxAEoBImISM6LioLwcPPl7MnJyUydOpXHH3+ciIgIgoGfgOGAk2Ho0nfJFQpBIiKSs8LCUiY2bNwYgoM5+7//0bJlS4YNG0ZiYiLPNmjAHqDu7a/Rpe+SCzQmSEREck5UFPTta76s/fvkZLoNHUo04O7uzvvvv0+f0FBMpUrp0nfJdWoJEhGRnHPkCCQnkwD8B2gKRAOVSpVi586d9O3bF1OJErr0XaxCLUEiIpJzQkL4y2Sii2Hw261VL5tMTNuwgQIhIf9up0vfxQoUgkREJEcYhsEnGzcyKF8+rsbH4w2EOTnx9Lx5cHsASqVL3yWXKQSJiEj2RUWldHmFhKQJMJcvX6Zfv34sX74cgEb16vHZ4MEUr1tXQUdshsYEiYhI9txx1RdhYQBs3bqVKlWqsHz5clxcXJg0aRIbt2yh+LPPKgCJTXmglqCzZ8+SnJyMv7+/peoRERF7cMdVXyQnk9y3L5P/+os3332X5ORkypQpw+LFi6lVq5Z1axW5i2y1BP3xxx9UqlSJgIAAihcvTvHixXnjjTe4evWqpesTERFbdOuqr1QXgNbJyYyeMoXk5GS6devG7t27FYDEpmUrBPXu3Rs/Pz+2bt3K7t27mTBhAmvXrqVGjRpcunTJ0jWKiIitCQkBp5RfITuAasBawN3NjbCwMD799FMKFSpkzQpF7stkGIaR1Rd5eHjw22+/UaFCBfM6wzB49tlncXd35/PPP7dokZYUGxuLl5cXMTExeHp6WrscERHbdZdBz6mMjz9mRt++vG4YJAIhfn58sX49VapUyf1aJc/Lid/f2WoJyqjFx2QyMXHiRL7RTe9EROzfXQY9p7p27RpdfviBwbcCUMdWrdj1118KQGJXMh2CWrVqxahRo1i+fDkvv/wyQ4YM4cyZM2m2iYmJoUiRIhYvUkREclEGg55vv6HpyZMnqV+/PkuXLsXFxYX333+f5atXq3Vd7E6mrw6rXLkyv//+OwsWLDCHn4ceeohOnTpRtWpVkpKSWLBgAf/73/9yrFgREckFdwx6Bsw3NP35xAk6dOjAmTNn8PHxYcWKFTRo0MA6dYo8oGyNCTpz5gy7d+9mz5495uXo0aM4OztTvnx5/vjjj5yo1SI0JkhE5D6iolK6wO64oen8yZN5edQobt68yaOPPso333xDqVKlrFamOJac+P2drXmC/Pz8aNGiBS1atDCvu379Onv37mXv3r0WKUxERKwkKCjlhqb9+kFSEslOToxu1ozJ//kPAB06dGDhwoV4eHhYuVCRB5OtliB7ppYgEZFMiooi4eBBXpw9m0UrVwIwduxYxowZg5OTbjgguctmWoJERCTvu1ywIM9MmkR4eDguLi589NFH9OzZ09pliViMQpCIiKRz8uRJWrZsyb59+yhYsCBffvklzZo1s3ZZIhalECQiImn89ddfNGnShJMnTxIQEMCaNWuoWrWqtcsSsTiFIBERMdu7dy/NmjXj7NmzVKhQgfXr11OyZElrlyWSIzSyTUREANixYwcNGzbk7NmzVK1alS1btigASZ6mECQiIoSHh9OkSRMuX75MvXr1CA8Pp1ixYtYuSyRHKQSJiDi4tWvXEhoaytWrV3nqqafYsGEDhQsXtnZZIjlOIUhExIGtX7+e9u3bEx8fT9u2bfn22281CaI4DA2MFhFxUBs3bqRdu3bEx8fz9NNPs3z5clxdXa1dlkiuUUuQiIgD+uGHH2jbtq25BWjZsmUKQOJwFIJERBxMeHg4bdq04caNG7Ru3ZovvviCfPnyWbsskVynECQi4kA2b95M69atuX79Oi1btmTFihUKQOKwFIJERBzEL7/8QqtWrbh27RotWrTgyy+/xM3NzdpliViNQpCIiAPYt2+f+TL4Jk2asHLlStzd3a1dlohVKQSJiORxx48fp1mzZly6dIk6deooAIncohAkIpKHnTp1iiZNmnD69GkqV67MmjVrKFiwoLXLErEJNhWCtmzZQps2bQgMDMRkMvH111+ned4wDMaNG0dgYCD58+enYcOG7N+/3zrFiojYuAsXLtCsWTMiIiIoU6YMGzZsoEiRItYuS8Rm2FQIunr1KlWqVGHmzJkZPj9lyhTee+89Zs6cyc6dO/H396dp06ZcuXIllysVEbFRUVEQHk7c4cO0bNmS/fv3ExgYyMaNG/H397d2dSI2xaZmjA4NDSU0NDTD5wzDYPr06YwePZpnnnkGgIULF+Ln58fixYvp169fbpYqImJ7wsKgb19uJCfzNPAr4O3tzYYNGyhdurSVixOxPTbVEnQvERERREdH06xZM/M6Nzc3GjRowLZt2+76uvj4eGJjY9MsIiJ5TlQU9O1LYnIyzwM/AAWBdQsXUqlSJSsXJ2Kb7CYERUdHA+Dn55dmvZ+fn/m5jEyaNAkvLy/zUqJEiRytU0TEKo4cITk5mZeArwE3YBVQU4OgRe7KbkJQKpPJlOaxYRjp1t1u5MiRxMTEmJeTJ0/mdIkiIrnOKFuW/wMWAs7AcqCRszOULWvdwkRsmE2NCbqX1AF90dHRBAQEmNefPXs2XevQ7dzc3DQjqojkeRM++YTpt/79CdDW2RnmzoWgIOsVJWLj7KYlqHTp0vj7+7Nx40bzuoSEBDZv3ky9evWsWJmIiHV9+OGHjBkzBoAZb73FC+HhEBkJvXtbtzARG2dTLUFxcXEcPXrU/DgiIoI9e/bg7e1NyZIlGTx4MBMnTiQkJISQkBAmTpxIgQIF6NKlixWrFhGxniVLljBw4EAAxo4dy6A337RyRSL2w6ZC0K5du2jUqJH58dChQwHo0aMHn3zyCcOGDeP69ev079+fS5cuUbt2bTZs2EChQoWsVbKIiNWsWbOG7t27YxgGAwcOZOzYsZl7YVQUHDkCISHqLhOHZjIMw7B2EbkpNjYWLy8vYmJi8PT0tHY5IiLZsnXrVpo1a8b169fp2rUrn376KU5OmRjhcGsuIZKTwckJ5s1Tt5nYhZz4/W03Y4JERCTF3r17ad26NdevX6dVq1YsWLAgcwHo1lxCJCenPE5Ohn79UtaLOCCb6g4TEZG7uNWFddTFhebPPktMTAxPPPEEy5cvx9XVNXP7OHLk3wCUKikJjh5Vt5g4JIUgERFbd6sL61RyMk2BM0CVKlVYvXo1BQoUyPx+QkJSusBuD0KaS0gcmLrDRERs2a0urHO3AlAkUBZYv2ABhQsXztq+goJSxgA5O6c81lxC4uDUEiQiYsuOHOHirQB0ACgObAT8YmKyt7/evaF585QusLJlFYDEoSkEiYjYsBg/P5oDewE/4Eeg1IN2YQUFKfyIoO4wERGbdeXKFUJfeoldgA8pd4Yvpy4sEYtRS5CISE55gEkJr127Rps2bdi+fTtFihTh+6VLqZQvn7qwRCxIIUhEJCdkZVLCO8LStWvXaNeuHZs3b8bT05P169dTpWbN3K1fxAGoO0xExNKyMilhWBgEB0PjxhAcTNysWbRq1Yrvv/8eDw8P1q5dS00FIJEcoZYgERFLy+ykhHeEpZjkZFoOHMg2oFChQqxdu5Z69erlXt0iDkYhSETE0jI7KeFtYekS0BzYCRQuWJD1339PrVq1cqtiEYek7jAREUvL7KSEt8LSGaAxKQGoKPDjF18oAInkAoUgEZGc0Ls3REZCeHjK14wGRQcFcfS//6UesAfwBTaNH0+1Fi1ys1IRh6XuMBGRnHKfSQl37dpFy+nTOQeUDghg/bJlhNSvn3v1iTg4tQSJiPVERaW0lGR01VQet379eho2bMi5c+eoVq0a237/XQFIJJcpBImIddxxaThhYdauKFcYhsGMGTNo1aoVV69epUmTJmzevBl/f39rlybicBSCRCT3ZWUenTwkISGBPn368Nprr5GUlESPHj347rvvKFSokLVLE3FICkEikvvuNY9OHnX27FmeeuopwsLCcHJy4t1332XBggXky5fP2qWJOCwNjBaR3JfZeXTyiPDwcLp06UJ0dDSenp4sXbqU0NBQa5cl4vDUEiQiuS+z8+jYuaSkJMaPH0+TJk2Ijo6mYsWK7NixQwFIxEaoJUhErKN3b2jePKULLA/eGf3YsWP06tWLn376CYBevXrxwQcf4OHhYeXKRCSVQpCIWM995tGxR8nJycycOZMRI0Zw/fp1PDw8mD17Nt26dbN2aSJyB4UgEREL2bt3LwMHDmTr1q0ANGrUiLCwMEqXLm3lykQkIxoTJCLygC5cuED//v2pXr06W7duxcPDgw8//JDvv/9eAUjEhqklSEQkm+Li4pg5cyZTpkzh0qVLAHTq1ImpU6dSsmRJK1cnIvejECQikkVxcXHMnjyZKTNncj4mBoDKlSszY8YMGjZsaN3iRCTTFIJERDLp2LFjzJo1i7A5c4i9fh2AMsCYF1+ky9y5uLjolCpiT0yGYRjWLiI3xcbG4uXlRUxMDJ6entYuR0QsJSoqZSbqkBCLXnEWFxfH119/zaJFi1i/fj2pp8wQYCTQDXBxdobIyDx3pZuILcmJ39/6s0VE7F9Y2L/3InNySpmIsXfvbO/u7NmzrF+/nu+++47Vq1dz7do183MtatXi1V9/pTm3XVmSessPhSARu6KWIBGxb1FRKXehv/MWHFlomTlz5gw7duxg+/bt/Pjjj+zatYvbT41ly5blhRdeoGvXrpR1d3/g7yciWaeWIBGRO93rZqx3hJK4uDiOHTvG/v372b9/PwcOHGDv3r1ERESk223VqlVp2bIl7dq1o2bNmphMpn+fnDcv5a73SUl59pYfIo5AIUhE7Nutm7HGJSdzGjgNnDKZOPn99/z95Zf8/fff5uXixYsZ7sJkMlGxYkXq1q3L448/TvPmzQkICLj798zjt/wQcRQKQSJi8y5dusTx48eJiIjgxIkTnDp1itOnT5u/ns6Xjys3bvz7AsOAt9/OcF9FChWiYoUKVKpWjUqVKlGpUiVq1KiBl5dX1orKg7f8EHE0CkEiYhMMw+Dvv//mzz//NC+HDh3i+PHjxNyai+d+PNzdCQwIIKBECUqUKEHJkiXNS/CuXZQYNw7PK1fgt99SurMeYPC0iNg/DYwWEauIiYnhl19+Yfv27Wzbto1ffvnlnmHHz8+P0qVLU6pUKYoXL05gYCABAQHmrwEBARQqVCjjF1tg8LSIWJcGRouI3UpMTOTXX39l/fr1rFu3jp07d3Ln32Curq5UqFCBypUr88gjj1CpUiXKlClDqVKl8PDwyP43z8LgaRFxHApBIpJjbty4wYYNG1i+fDnfffcdly9fTvP8Qw89RL169ahbty5169alUqVK5MuXL+1OoqLg118fbBLEW4On07UElS2bvf2JSJ6gECQiFpWUlMT69etZsmQJ33zzDVeuXDE/V6RIEZo2bUrz5s1p1qwZQfcLNZaaBDEoSJe1i0g6GhMkIhYRERHB/PnzWbBgAf/88495fVBQEB07dqRjx47UqVMHZ2fnzO0wJ8bxREXpsnYRO6UxQSJiU5KSkli1ahWzZs3ihx9+MK8vWrQoXbt2pXPnztSpUwcnJ6d77OUucmIcT2Yua8+he5CJiO1RCBKRLIuNjWX+/PnMmDHDPNuyyWSiadOmvPTSS7Rt2xY3N7cH+ybWGMdj4XuQiYhty8afZ9Yzbtw4TCZTmsXf39/aZYk4jL///puhQ4dSokQJhgwZQkREBN7e3owaNYqIiAjWr1/Ps88+++ABCP4dx5PafZbT43iiov4NQJDytV+/lPUikifZXUtQpUqV+P77782PMz2+QMSRPWAXT2RkJJMmTWLBggXcvHkTgIdDQhj8+uu88MILFChQwKLfzyw3b0+hy+hFHI7dhSAXFxe1/ohkxQN08Rw/fpyJEyeycOFCEhMTAWgEDAOaHT2Kk7Mz3BmALN2llFu3p9Bl9CIOx666wwCOHDlCYGAgpUuX5rnnnuP48eP33D4+Pp7Y2Ng0i4jDyGYXz7Fjx3jxxRcpV64cYWFhJCYm0qR+fX4ymfgRaAE4GUb6fdlzl1Jud7+JiNXZVQiqXbs2n376KevXr+ejjz4iOjqaevXqceHChbu+ZtKkSXh5eZmXEiVK5GLFIlZ2ry6eDDc/Qs+ePSlfvjwLFiwgKSmJZs2a8fPPP7Nx/HieuHNGjTv3lcXvZ3N69065BD88POWrBkWL5Gl2PU/Q1atXKVOmDMOGDWPo0KEZbhMfH098fLz5cWxsLCVKlNA8QeIYMjnXzuHDh5kwYQKLFy8m+da2oaGhjBkzhjp16mR+X7pHl4jkkJyYJ8iuWoLu5OHhQeXKlTly5Mhdt3Fzc8PT0zPNIuIw7tPFc/DgQbp27UrFihX5/PPPSU5OplWrVvzyyy+sWbPm3wCUiX1lehsRERth1y1B8fHxlClThr59+zJmzJhMvUYzRotDumOm5H379vH222+zbNky801M27Rpw5gxY6hRo0aW9pXtbUREssDhZ4x+/fXXadOmDSVLluTs2bNMmDCB2NhYevToYe3SRGzbrSus9uzZw39fe42vvvrK/FS7du0YM2YM1atXz9K+HngbERErs6sQFBUVxfPPP8/58+cpVqwYderUYceOHQQHB1u7NJEUNnrLhZ07d/Lf//6X1atXm9d16NCBN954g6pVq1qvMBERK7KrELR06VJrlyBydzZ2ywXDMPjpp5+YNGkS69atA1JubfHcc88xevRoKlWqZLXaRERsgV2PCcoOjQmSHGFDV0XdvHmTFStW8N5777Fr165bpTjTtWtXRo0aRfny5XO1HhERS3D4MUEiNssGbrlw+fJlPv74Y2bMmMHJkycBcHd3p0ePHgwbNoyHHnro3juw0a48EZGcohAkYglZueWCBcOGYRhs27aNjz76iOXLl3P9+nUAfH19GThwIK+88go+Pj7335GNdeWJiOQGu54nSMRmZHZ+nLCwlG6zxo1TvoaFZevbnTlzhunTp/PII4/wxBNPsHDhQq5fv84jjzxCWFgYJ06c4M0338xcALLnW12IiDwAjQkSsaR7zY/zgOOGLly4wFdffcXSpUvZtGmTeWbn/G5uPNeuHX2HDKF27dqYTKas1RwenhLKMlrfsGHW9iUikkM0JkjE1t1rfpwsjhsyDIN9+/axdu1a1q1bx08//WS+kztAzVKl6HXiBF3i4/FasQKaNYPbZ3jOLN09XUQclEKQSG65T9hITk7mwIEDbNu2jZ9//pkfN24k6vTpNLuoWrUqnTt3plP9+jz05JOQ2pCb2oXVvHnWxxmlduX165cSynSrCxFxEApBIrnltrBxNSmJA05O/NmtG/vee48///yTnTt3EhMTk+Yl7kAjIPT552kxfjwhISEpT4SHW/ZqtN69UwKUbnUhIg5EY4JELCghIYELFy5w/vx5zp07Z/76999/ExkZmbIcP87Z8+czfL2Hhwe1q1al3s8/Ux+oD+QH3a1dRByexgSJ5CLDMLh48SKnTp3i/Pnz5nBz4cIF83L+/Pk0S2xsbKb37+vrS+XKlalcuTKPPPII1apV49FHH8Xlp5/SD1S+s5VHXVgiIg9MIUgc2s2bNzl27BgHDhzg4MGDHD16lJMnT5qX1Hl3ssLJyYmiRYvi4+NDsWLFKFq0KCVLlqRUqVLmJTg4mCJFimS8g8wOVFYXlojIA1EIymmahdd67njvk5OTOXjwIL/88gu//PILO3bs4MCBA2muuMpI0aJFzWHGx8cnzdfU53x8fMxL4cKFcXJ6gCm4stLKo7u1i4hkm0JQTtIsvFlnqdB4673/OzmZ9SYTG6pX54fjx7l06VK6TT08PHj44Yd5+OGHKV++PCVLliQoKIgSJUoQFBSEu7v7AxxQNqmVR0Qkx2lgdE7RwNWss1BoPLRpE8sbN+YLw2DfHc95eHhQo0YNateuTZ06dahevTolTCacjh27d/BSi56IiFVpYLQ9sYEbatqVu926IZPz3vzzzz8sXLiQpUuX8ueff5rXOwN1gGZAs1mzqNG3Ly4ut/23z0zwUoueiEiepJagnKKWoKzJxq0bEhMTWbt2LR999BHfffed+TYSLi4uNEtMpBPQFigCGb/3mfmM9DmKiNiEnPj9rRuo5pTM3lBTUqReEXW7u9y64erVq/zvf/+jdOnStG3bltWrV5OcnMwTTzxBWFgYZ86c4buPP6aHs/O/ASij9/5erXVZ2UZEROySusNykga3Zl4mroiKiYlh1qxZ/O9//+P8rckGfXx86NGjBy+99BIVKlT4d3+Zee8zcym67qslIpJnKQTlNF3CnHl3CS7nz59n+vTpzJw503xbiYceeogRI0bQvXt33NzcMt7f/d77zFyKrkkJRUTyLI0JEpt16tQppk2bxpw5c7h27RoAFStWZNSoUXR+/HFcIiIsc7VWVNT9W+sys42IiOQYXR0m9i2Tl5lHRkbyzjvvMH/+fBISEgB47LHHGD16NO3atcNpwQIoU8ZyV2tlprVOLXoiInmOBkZL7ggLS7nKqnHjlK9hYek2OXToED169KBs2bLMmTOHhIQEnnjiCdauXcvOnTtp3749TqdOZXwpfVRULh+QiIjYO4UgyXl3mwPoVnDZs2cPnTp1omLFinz66ackJSXRrFkzNm/ezE8//USLFi0wmUwpr9XVWiIiYiHqDnNUuTkD8l2Cy/ZvvuHttWv57rvvzKvbtWvH6NGjqVmzZsb70tVaIiJiIWoJsidRUSmTBz5o108muqYs6rY5gAxgA9AYqDdwIN999x1OTk48//zz/PHHH3z99dd3D0Cg+ZdERMRidHWYvbDUrRusNANy4rx5rHj5ZaYYBrtvrXNxcaF79+6MGDGCkJCQrO1QV2uJiDgUXR3mqB7wvlpp5PI9zS5fvszChQuZMWMGx2/l7QL589Onb1+GDh1KyZIls7djXa0lIiIPSCHIHhw5gpGczHVS+i9dAOekJEzZCS65MKbGMAx+//13Zs+ezeLFi7l+/TqQMrvzoEGDGDBgAEWLFrXY9xMREckOhSAbc+nSJbZs2cLOnTs5cOAAf/31F+fOnOEikHjbdq6A7/PP4xcYSEBAAOXKlaNChQqUL1+eChUq4Ovr++8VVbfLwRmQjx8/zpIlS1iyZAn79+83r69cuTKvvPIKPXr0oECBAg/8fURERCxBY4JswN9//83y5ctZvnw5u3btwhIfSdGiRalUqRKVKlXikUceMf/bx8cnZQMLjKlJSEhg27ZtrFu3jrVr1/LHH3+Yn8uXLx8dO3bklVde4fHHH884kImIiGSSxgTlIUlJSaxevZoZM2YQHh6e5rkKFSrw+OOPU7lyZSpUqIC/vz8+Pj54XrlC8tGjJAUHE+flxZkzZzhz5gxRUVH89ddfHDp0iMOHDxMREcGFCxfYsmULW7ZsSbNvPz+/NMGovMmE/9Wr+Pr6Urhw4XRhxTh5khv793O6UCEibtzg2LFj7Nmzh127drF3717zjM4ATk5ONG7cmC5dutC+fXsKFy6cY++fiIjIg1JLUEZycA6dxMRE5s+fz+TJk4mIiADAZDLRoEEDOnfuTLt27QgICHig73H9+nUOHTrE/v372b9/P/v27WP//v3m73c3Li4uFCpUCGdnZ5ydnUm+do2YK1dIuMdrfH19ad68OS1atKBp06YUK1bsgWoXERHJiFqCcoOlLkW/g2EYrFq1ihEjRnDo0CEAvL296devH6+88golSpR44O+RKv+FC1S7fJlqDRvCCy+Y18fFxXHw4ME0wejo0aOcO3eOmJgYEhMTuXTpUob7dANKA6UbNaJi9erUrFmTmjVrUrp0aXV1iYiIXVJL0O1yaA6dHTt28J///IetW7cCKeN13nzzTfr06WP5gcLZDHHx8fGcPXuWq1evkpSURNL27Zj69MEL8AIKcWtmzfBwaNgw7Ytzc/ZpERFxSGoJsqDkkyehUqW0Ky08h86RI0cYNWoUK1asAMDd3Z0hQ4YwfPhwvLy8slv63T3AfEJubm5pW6O8vDJ3KX0OtZyJiIjkNIe9bcYjjzzC9Oee4+rVq/+uvO32DmbZmEPn3LlzDBo0iIoVK7JixQpMJhO9evXiyJEjTJw4MWcCEFj25qKZuT3FfW6MKiIiYsscNgT9AwxZtozSwcG8//773Lhx44HvS3XlyhXGjx9PmTJlmDlzJomJiYSGhrJ3717mz59PUE53FVkoxJn17p3SFRgenvL1zhYe3dFdRETsmMOOCXofeB84fmt9iRIlGDduHN27d8clOjpLc+jExcXx0UcfMXHiRM6fPw9A9erVmTJlCk899VSOHUuGwsLST4SYU91TVroPmYiIOJ6cGBPksC1BPYFDTk7MnTyZ4sWLc/LkSXr37k2lSpVYvGULN+rUue8v8sOHD/Of//yHoKAghg4dyvnz5ylXrhzLli1j586dWQtAlrpD/P1abyxJd3QXERE75rAtQTFOTnjeGsR7/fp1Zs+ezcSJE7lw4QIAXl5etGrVirp16xISEoKXlxdXr17l1KlT7Nq1i/DwcP7880/zfsuWLcvw4cPp2bMnLi5ZHG9u74OLdUd3ERHJYTnREuS4IejAATwffjjdc++//z4fffQRJ0+evO++XFxcaNq0Kf3796dly5Y43TkeJzPUpSQiInJfCkEWkJk3MTk5ma1btxIeHs6vv/7KqVOnuHz5MgUKFMDX15fKlStTp04dWrRogbe394MVFB4OjRtnvP7O+XhEREQclOYJuuXDDz9k6tSpnD59mkqVKjF9+nTq169vsf07OTnx5JNP8uSTT1psn3eVekXX/ebjEREREYuyu4HRy5YtY/DgwYwePZrdu3dTv359QkND+fvvv61dWvZocLGIiIhV2F13WO3atalevTqzZ882r3v44Yd5+umnmTRp0n1fnxPNaRahwcUiIiJ35fDdYQkJCfz222+MGDEizfpmzZqxbdu2DF8THx9PfHy8+XFsbGyO1phtQUEKPyIiIrnIrrrDzp8/T1JSEn5+fmnW+/n5ER0dneFrJk2ahJeXl3mx5N3aRURExH7ZVQhKZTKZ0jw2DCPdulQjR44kJibGvGTm0ncRERHJ++yqO8zHxwdnZ+d0rT5nz55N1zqUys3NDTc3t9woT0REROyIXbUE5cuXj8cee4yNGzemWb9x40bq1atnpapERETEHtlVSxDA0KFD6datGzVq1KBu3brMmzePv//+m5dfftnapYmIiIgdsbsQ1LlzZy5cuMBbb73F6dOneeSRR1izZg3BwcHWLk1ERETsiN3NE/SgbHaeIBEREbmrnPj9bVdjgkREREQsRSHoQURFpdzoNCrK2pWIiIhIFikEZVdYGAQHp9wBPjg45bGIiIjYDYWg7IiKgr59/73ze3Iy9OunFiERERE7ohCUHUeO/BuAUiUlpdwAVUREROyCQlB2hISA0x1vnbNzyh3gRURExC4oBGVHUBDMm5cSfCDl69y5ugu8iIiIHbG7yRJtRu/e0Lx5ShdY2bIKQCIiInZGIehBBAUp/IiIiNgpdYeJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQh2VUIKlWqFCaTKc0yYsQIa5clIiIidsjF2gVk1VtvvUWfPn3MjwsWLGjFakRERMRe2V0IKlSoEP7+/tYuQ0REROycXXWHAbzzzjsULVqUqlWr8vbbb5OQkGDtkkRERMQO2VVL0GuvvUb16tUpUqQIv/76KyNHjiQiIoKPP/74rq+Jj48nPj7e/DgmJgaA2NjYHK9XRERELCP197ZhGJbbqWFlY8eONYB7Ljt37szwtStWrDAA4/z58w+0fy1atGjRokWLfSzHjh2zWAYxGYYlI1XWnT9/nvPnz99zm1KlSuHu7p5u/T///ENQUBA7duygdu3aGb72zpagy5cvExwczN9//42Xl9eDFW9HYmNjKVGiBCdPnsTT09Pa5eQaHbeO2xHouHXcjiAmJoaSJUty6dIlChcubJF9Wr07zMfHBx8fn2y9dvfu3QAEBATcdRs3Nzfc3NzSrffy8nKo/zypPD09ddwORMftWHTcjsVRj9vJyXLDma0egjJr+/bt7Nixg0aNGuHl5cXOnTsZMmQIbdu2pWTJktYuT0REROyM3YQgNzc3li1bxvjx44mPjyc4OJg+ffowbNgwa5cmIiIidshuQlD16tXZsWPHA+/Hzc2NsWPHZthFlpfpuHXcjkDHreN2BDpuyx231QdGi4iIiFiD3U2WKCIiImIJCkEiIiLikBSCRERExCEpBImIiIhDypMh6MMPP6R06dK4u7vz2GOP8dNPP91z+82bN/PYY4/h7u7OQw89xJw5c3KpUsvKynF/9dVXNG3alGLFiuHp6UndunVZv359LlZrOVn9vFP9/PPPuLi4ULVq1ZwtMIdk9bjj4+MZPXo0wcHBuLm5UaZMGebPn59L1VpOVo970aJFVKlShQIFChAQEECvXr24cOFCLlX74LZs2UKbNm0IDAzEZDLx9ddf3/c1eeGcltXjzivntOx83qns+ZyWneO2xDktz4WgZcuWMXjwYEaPHs3u3bupX78+oaGh/P333xluHxERQcuWLalfvz67d+9m1KhRvPrqq3z55Ze5XPmDyepxb9myhaZNm7JmzRp+++03GjVqRJs2bcyzcNuLrB53qpiYGLp3785TTz2VS5VaVnaOu1OnTvzwww+EhYVx+PBhlixZQoUKFXKx6geX1ePeunUr3bt3p3fv3uzfv58vvviCnTt38tJLL+Vy5dl39epVqlSpwsyZMzO1fV45p2X1uPPKOS2rx53K3s9p2Tlui5zTLHYXMhtRq1Yt4+WXX06zrkKFCsaIESMy3H7YsGFGhQoV0qzr16+fUadOnRyrMSdk9bgzUrFiRWP8+PGWLi1HZfe4O3fubLzxxhvG2LFjjSpVquRghTkjq8e9du1aw8vLy7hw4UJulJdjsnrcU6dONR566KE062bMmGEEBQXlWI05CTBWrlx5z23yyjntdpk57ozY4zntdlk5bns/p90uM8dtqXNanmoJSkhI4LfffqNZs2Zp1jdr1oxt27Zl+Jrt27en27558+bs2rWLmzdv5litlpSd475TcnIyV65cwdvbOydKzBHZPe4FCxZw7Ngxxo4dm9Ml5ojsHPeqVauoUaMGU6ZMoXjx4pQrV47XX3+d69ev50bJFpGd465Xrx5RUVGsWbMGwzA4c+YMK1asoFWrVrlRslXkhXOaJdjjOS277P2clh2WOqfZzYzRmXH+/HmSkpLw8/NLs97Pz4/o6OgMXxMdHZ3h9omJiZw/f/6eN2e1Fdk57jtNmzaNq1ev0qlTp5woMUdk57iPHDnCiBEj+Omnn3Bxsc///tk57uPHj7N161bc3d1ZuXIl58+fp3///ly8eNFuxgVl57jr1avHokWL6Ny5Mzdu3CAxMZG2bdvywQcf5EbJVpEXzmmWYI/ntOzIC+e07LDUOS1PtQSlMplMaR4bhpFu3f22z2i9rcvqcadasmQJ48aNY9myZfj6+uZUeTkms8edlJREly5dGD9+POXKlcut8nJMVj7v5ORkTCYTixYtolatWrRs2ZL33nuPTz75xK5agyBrx33gwAFeffVVxowZw2+//ca6deuIiIjg5Zdfzo1SrSavnNOyy97PaZmV185pWWGpc1qeio0+Pj44Ozun+6vw7Nmz6f4ySuXv75/h9i4uLhQtWjTHarWk7Bx3qmXLltG7d2+++OILmjRpkpNlWlxWj/vKlSvs2rWL3bt3M3DgQCDlB8kwDFxcXNiwYQONGzfOldofRHY+74CAAIoXL46Xl5d53cMPP4xhGERFRRESEpKjNVtCdo570qRJPP744/znP/8B4NFHH8XDw4P69eszYcKEPNkqkhfOaQ/Cns9pWZVXzmnZYalzWp5qCcqXLx+PPfYYGzduTLN+48aN1KtXL8PX1K1bN932GzZsoEaNGri6uuZYrZaUneOGlL+WevbsyeLFi+1yjERWj9vT05M///yTPXv2mJeXX36Z8uXLs2fPHmrXrp1bpT+Q7Hzejz/+OKdOnSIuLs687q+//sLJyYmgoKAcrddSsnPc165dw8kp7WnO2dkZ+Ld1JK/JC+e07LL3c1pW5ZVzWnZY7Jz2QMOqbdDSpUsNV1dXIywszDhw4IAxePBgw8PDw4iMjDQMwzBGjBhhdOvWzbz98ePHjQIFChhDhgwxDhw4YISFhRmurq7GihUrrHUI2ZLV4168eLHh4uJizJo1yzh9+rR5uXz5srUOIVuyetx3stcrKbJ63FeuXDGCgoKMjh07Gvv37zc2b95shISEGC+99JK1DiFbsnrcCxYsMFxcXIwPP/zQOHbsmLF161ajRo0aRq1atax1CFl25coVY/fu3cbu3bsNwHjvvfeM3bt3GydOnDAMI++e07J63HnlnJbV476TvZ7Tsnrcljqn5bkQZBiGMWvWLCM4ONjIly+fUb16dWPz5s3m53r06GE0aNAgzfabNm0yqlWrZuTLl88oVaqUMXv27Fyu2DKyctwNGjQwgHRLjx49cr/wB5TVz/t29nrCMIysH/fBgweNJk2aGPnz5zeCgoKMoUOHGteuXcvlqh9cVo97xowZRsWKFY38+fMbAQEBRteuXY2oqKhcrjr7wsPD7/mzmlfPaVk97rxyTsvO5307ez2nZee4LXFOMxlGHm0TFhEREbmHPDUmSERERCSzFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiUie8NZbb1G5cmU8PDzw8/PjlVde4ebNm9YuS0RsmIu1CxAReVCGYZCUlMTcuXMpXrw4Bw4coHv37jz66KO88sor1i5PRGyUbqAqInlSly5dKFasGO+//761SxERG6XuMBGxeydOnGDgwIE88sgjFClShIIFC7J8+XKCgoKsXZqI2DCFIBGxa+fPn6dWrVqcP3+e9957j61bt7J9+3acnZ2pWrWqtcsTERumMUEiYtfWrFlDYmIiS5YswWQyATBr1iwSEhIUgkTknhSCRMSueXt7Exsby6pVq6hYsSKrV69m0qRJFC9enGLFilm7PBGxYRoYLSJ2zTAMXnnlFRYvXkz+/Pl54YUXuHHjBidOnODbb7+1dnkiYsMUgkRERMQhaWC0iIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCH9P9klbpwTBh8UAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABaf0lEQVR4nO3dd1hTZ/8G8DtsRIiCshWoIq66F46KWxQVq7VqVVRUXHW1db91vK20rtbWXXHWQd3WjQr6qvgT91YcoFQRsQoIAkKe3x+RaGTISEhC7s915cKcnBy+J4Fw+6wjEUIIEBEREekZA00XQERERKQJDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEGkUV5eXvDy8tJ0GYU2cOBAlC5dOl/7urq6YuDAgWqtRyKRYObMmWr9Hh+TkpKCmTNnIiwsTKN16IqjR4+iQYMGsLCwgEQiwa5du7B27VpIJBJERUUp9tu0aRN+/fVXtdQwffp0VKxYEUZGRihTpkyBnz9w4EC4urqqvC5ts379evTu3RseHh4wMDDI9ZzDwsIgkUhyvJ05c6Z4i6Y8GWm6ANJvS5cu1XQJxWbnzp2wsrLSdBlql5KSglmzZgGATgfc4iCEQK9evVClShXs2bMHFhYW8PDwQEZGBsLDw+Hg4KDYd9OmTbh27RrGjRun0hp2796NH3/8EdOmTYO3tzdMTU1VevySZMOGDYiNjUWjRo0gk8nw5s2bPPefM2cOWrVqpbStZs2a6iyRCoghiDSqevXqmi6h2NStW1fTJZAKvX79GmZmZpBIJIU+xuPHj/Hvv/+ie/fuaNOmjdJj5cuXL2qJ+XLt2jUAwJgxY2Bra1ss31NVVPEeFMShQ4dgYCDvQPHx8VG8drlxd3dHkyZNiqM0KiR2h1G+zZw5ExKJBNevX0efPn0glUphZ2eHwYMHIyEhQWnf1NRUTJkyBW5ubjAxMYGTkxNGjRqFly9fKu2XU3fYsmXLULt2bZQuXRqWlpaoWrUqpk6dCgCIioqCkZERAgMDs9V34sQJSCQSbN26Nc/zePnyJb755ht88sknMDU1ha2tLTp16oRbt24BeNeU/WF3TlRUFCQSCdauXZvtmNevX0ebNm1gYWGB8uXLY/To0UhJSVHaJ6fusI/VogqxsbEICAiAs7MzTExM4ObmhlmzZiEjI0Npv1mzZqFx48awtraGlZUV6tWrh6CgIHx4jeVjx47By8sLNjY2MDc3R8WKFdGjRw+kpKQgKipK8cd71qxZii6Aj3UDpqSk4Ntvv4WbmxvMzMxgbW2NBg0aYPPmzUr7rV27Fh4eHjA1NUW1atWwfv36bF0xBXn/zp07h969e8PV1RXm5uZwdXVFnz59EB0dne37SiQSHD58GIMHD0b58uVRqlQppKWlAQCCg4Ph6ekJCwsLlC5dGh06dMDFixfzPOeZM2fC2dkZADBp0iRIJBLFeXzYHebl5YV9+/YhOjpaqWslLzKZDHPnzkXVqlUVP1sDBgxATEyMYh9XV1dMnz4dAGBnZ5ev7tSc3oOcpKen44cfflB8//Lly2PQoEF49uyZ0n5paWn45ptvYG9vj1KlSuGzzz7D+fPns/2+qOo9OHfuHLp27Qpra2uYmZmhbt26+Ouvv/I85yxZAYhKDrYEUYH16NEDX375Jfz9/XH16lVMmTIFALB69WoA8iZ+X19fHD16FFOmTEGLFi1w5coVzJgxA+Hh4QgPD8+1yX3Lli0YOXIkvv76a8yfPx8GBga4e/cubty4AUD+od21a1csX74cEydOhKGhoeK5ixcvhqOjI7p3755r7UlJSWjevDmioqIwadIkNG7cGK9evcKJEyfw5MkTVK1atcCvx5s3b9CpUycEBARg8uTJOH36NH744QdER0fj77//LnItAwcOxLp16/DgwYMCj7vIaro3MDDA999/j0qVKiE8PBw//PADoqKisGbNGsW+UVFRCAgIQMWKFQEAZ86cwddff41//vkH33//vWKfzp07o0WLFli9ejXKlCmDf/75BwcPHkR6ejocHBxw8OBBdOzYEf7+/hgyZAiAj7dqTJgwARs2bMAPP/yAunXrIjk5GdeuXcPz588V+6xduxaDBg1Ct27dsGDBAiQkJGDmzJlIS0sr9B+nqKgoeHh4oHfv3rC2tsaTJ0+wbNkyNGzYEDdu3EC5cuWU9h88eDA6d+6MDRs2IDk5GcbGxpgzZw6mT5+OQYMGYfr06UhPT8e8efPQokULnD17NtfWziFDhqB27dr4/PPP8fXXX6Nv3765/l4sXboUw4YNw71797Bz5858nduIESOwcuVKjB49Gj4+PoiKisJ//vMfhIWF4cKFCyhXrhx27tyJJUuWICgoCAcPHoRUKlUEs5zk9z2QyWTo1q0b/ve//2HixIlo2rQpoqOjMWPGDHh5eeHcuXMwNzcHAAwaNAjBwcGYOHEiWrdujRs3bqB79+5ITEzMsYaivAehoaHo2LEjGjdujOXLl0MqlWLLli348ssvkZKSovIxe6NGjULv3r1RqlQpeHp64j//+Q+aN2+u0u9BRSSI8mnGjBkCgJg7d67S9pEjRwozMzMhk8mEEEIcPHgwx/2Cg4MFALFy5UrFtpYtW4qWLVsq7o8ePVqUKVMmzzpCQ0MFALFz507Ftn/++UcYGRmJWbNm5fnc2bNnCwAiJCTko8cPDQ1V2v7gwQMBQKxZs0axzc/PTwAQixYtUtr3xx9/FADEyZMnFdtcXFyEn59fgWoRQojBgwcLQ0NDERUVled+QggBQMyYMUNxPyAgQJQuXVpER0cr7Td//nwBQFy/fj3H42RmZoo3b96I2bNnCxsbG8V7u23bNgFAXLp0Kdcanj17lq2Oj6lZs6bw9fXN9fHMzEzh6Ogo6tWrp6hFCCGioqKEsbGxcHFxUWwryPv3oYyMDPHq1SthYWGh9J6uWbNGABADBgxQ2v/hw4fCyMhIfP3110rbk5KShL29vejVq1ceZ/2upnnz5iltz/p+Dx48UGzr3Lmz0nnm5ebNmwKAGDlypNL2//u//xMAxNSpUxXbsn6vnz17lucxC/IebN68WQAQ27dvVzpGRESEACCWLl0qhBDi+vXrAoCYNGmS0n5Zz3//90UV70HVqlVF3bp1xZs3b5T29fHxEQ4ODiIzMzPP1+B9eb0fFy5cEGPHjhU7d+4UJ06cEKtXrxbVqlUThoaG4uDBg/n+HqR+bNujAuvatavS/Vq1aiE1NRVxcXEA5N0lALL9r+qLL76AhYUFjh49muuxGzVqhJcvX6JPnz7YvXs34uPjs+3j5eWF2rVrY8mSJYpty5cvh0QiwbBhw/Ks/cCBA6hSpQratm2b534F9dVXXynd79u3LwD5/zyLWktQUBAyMjLg4uJS4Lr27t2LVq1awdHRERkZGYqbt7c3AOD48eOKfY8dO4a2bdtCKpXC0NAQxsbG+P777/H8+XPFe1unTh2YmJhg2LBhWLduHe7fv1+get6vISMjQ9HV1qhRIxw4cACTJ09GWFgYXr9+rfS827dv4/Hjx+jbt69SN5CLiwuaNm1a4Ncly6tXrzBp0iRUrlwZRkZGMDIyQunSpZGcnIybN29m279Hjx5K9w8dOoSMjAwMGDBA6bzMzMzQsmVLjc2Qy/q5+/B3sFGjRqhWrVqev4O5Kch7sHfvXpQpUwZdunRRel3q1KkDe3t7xeuS9fPXq1cvpef37NkTRkY5d1QU9j24e/cubt26pfhdfX/fTp064cmTJ7h9+3aBX5ec1K1bF7/++it8fX3RokULDBo0CKdPn4aDgwMmTpyoku9BqsEQRAVmY2OjdD+rCT/rD9fz589hZGSUrQtEIpHA3t5eqYvjQ/3798fq1asRHR2NHj16wNbWFo0bN0ZISIjSfmPGjMHRo0dx+/ZtvHnzBn/88Qd69uwJe3v7PGt/9uxZns39hWFkZJTtNcmqI69zVUctH3r69Cn+/vtvGBsbK91q1KgBAIqQefbsWbRv3x4A8Mcff+DUqVOIiIjAtGnTALx7bytVqoQjR47A1tYWo0aNQqVKlVCpUiUsWrToo7VERUVlqyPrj+Bvv/2GSZMmYdeuXWjVqhWsra3h6+uLyMhIAO9ex5ze34+953np27cvFi9ejCFDhuDQoUM4e/YsIiIiUL58+WxBDIDSbC1A/voCQMOGDbOdW3BwcI4hvjhkvV4f1gsAjo6Oef5cfuyY+XkPnj59ipcvX8LExCTb6xIbG6t4XbKOaWdnp/T8nH6nshT2Pcja79tvv82238iRIwFAre9XmTJl4OPjgytXruT4s0WawTFBpHI2NjbIyMjAs2fPlIKQEAKxsbFo2LBhns8fNGgQBg0ahOTkZJw4cQIzZsyAj48P7ty5o2gN6du3LyZNmoQlS5agSZMmiI2NxahRoz5aW/ny5ZUGhubEzMwMABQDLrPk9gGZkZGB58+fK31ox8bGAsgeGAtaS1GVK1cOtWrVwo8//pjj446OjgDkY7GMjY2xd+9exfkDwK5du7I9p0WLFmjRogUyMzNx7tw5/P777xg3bhzs7OzQu3fvXGtxdHRERESE0jYPDw8AgIWFBWbNmoVZs2bh6dOnilahLl264NatW4rXMet1fd+H2/L7/iUkJGDv3r2YMWMGJk+erNielpaGf//9N8dz+HAwctaYoW3bthWqpU5dsl6vJ0+eZAvajx8/zjbWqSDHzM97UK5cOdjY2ODgwYM5HsvS0lLpmE+fPoWTk5Pi8azfqZwU9j3I2m/KlCn4/PPPc9wn6+dRXbJaPotrNht9HFuCSOWypvr++eefStu3b9+O5OTkbFOBc2NhYQFvb29MmzYN6enpuH79uuIxMzMzRZfMwoULUadOHTRr1uyjx/T29sadO3cUXXY5yRp8fOXKFaXte/bsyfU5GzduVLq/adMmAHmvk5OfWooqaxpvpUqV0KBBg2y3rBAkkUhgZGSkNND89evX2LBhQ67HNjQ0ROPGjRXdkhcuXACQvWUwi4mJSbbvn/XH8H12dnYYOHAg+vTpg9u3byMlJQUeHh5wcHDA5s2blWarRUdH4/Tp00rPz+/7J5FIIITINhh51apVyMzMzPW839ehQwcYGRnh3r17Ob6+DRo0yNdx8sPU1DTfLQitW7cGkP13MCIiAjdv3sz37+D7CvIe+Pj44Pnz58jMzMzxNckKG5999hkA+cyu923bti3b7MXc5Pc98PDwgLu7Oy5fvpzrfjn9PKrKixcvsHfvXtSpU0fpPxqkWWwJIpVr164dOnTogEmTJiExMRHNmjVTzA6rW7cu+vfvn+tzhw4dCnNzczRr1gwODg6IjY1FYGAgpFJpthakkSNHYu7cuTh//jxWrVqVr9rGjRuH4OBgdOvWDZMnT0ajRo3w+vVrHD9+HD4+PmjVqhXs7e3Rtm1bBAYGomzZsnBxccHRo0exY8eOHI9pYmKCBQsW4NWrV2jYsKFidpi3t3eeM0HyUwsA+Pv7Y926dbh3716BWxtmz56NkJAQNG3aFGPGjIGHhwdSU1MRFRWF/fv3Y/ny5XB2dkbnzp2xcOFC9O3bF8OGDcPz588xf/78bAFh+fLlOHbsGDp37oyKFSsiNTVVMSswa2yTpaUlXFxcsHv3brRp0wbW1tYoV65cnjPbGjduDB8fH9SqVQtly5bFzZs3sWHDBnh6eqJUqVIAgP/+978YMmQIunfvjqFDh+Lly5eYOXNmtq6Y/L5/VlZW+OyzzzBv3jxFfcePH0dQUFC+V012dXXF7NmzMW3aNNy/fx8dO3ZE2bJl8fTpU5w9e1bRwqUKn376KXbs2IFly5ahfv36MDAwyDVkeXh4YNiwYfj9999hYGAAb29vxeywChUqYPz48QX+/gYGBvl+D3r37o2NGzeiU6dOGDt2LBo1agRjY2PExMQgNDQU3bp1Q/fu3VGjRg306dMHCxYsgKGhIVq3bo3r169jwYIFkEql+Zr1V5D3YMWKFfD29kaHDh0wcOBAODk54d9//8XNmzdx4cKFjy6vcePGDcVM1djYWKSkpGDbtm0A5GueZc1C69u3LypWrIgGDRqgXLlyiIyMxIIFC/D06dMcl9ggDdLkqGzSLbnNIslpJsvr16/FpEmThIuLizA2NhYODg5ixIgR4sWLF0rP/XB22Lp160SrVq2EnZ2dMDExEY6OjqJXr17iypUrOdbk5eUlrK2tRUpKSr7P48WLF2Ls2LGiYsWKwtjYWNja2orOnTuLW7duKfZ58uSJ6Nmzp7C2thZSqVT069dPnDt3LsfZYRYWFuLKlSvCy8tLmJubC2trazFixAjx6tUrpe/74eyw/NaSNQPt/dc3N8hhVtazZ8/EmDFjhJubmzA2NhbW1taifv36Ytq0aUo1rl69Wnh4eAhTU1PxySefiMDAQBEUFKT0vcPDw0X37t2Fi4uLMDU1FTY2NqJly5Ziz549St/zyJEjom7dusLU1DTbLJ+cTJ48WTRo0ECULVtW8f3Hjx8v4uPjlfZbtWqVcHd3FyYmJqJKlSpi9erVws/PL9ssnfy+fzExMaJHjx6ibNmywtLSUnTs2FFcu3Yt23uV9TMeERGRY/27du0SrVq1ElZWVsLU1FS4uLiInj17iiNHjuR53gWZHfbvv/+Knj17ijJlygiJRCI+9vGdmZkpfv75Z1GlShVhbGwsypUrJ/r16ycePXqktF9+Z4dlye978ObNGzF//nxRu3ZtYWZmJkqXLi2qVq0qAgICRGRkpGK/1NRUMWHCBGFrayvMzMxEkyZNRHh4uJBKpWL8+PHZXpOivgeXL18WvXr1Era2tsLY2FjY29uL1q1bi+XLl3/03LNeq5xu7//eBQYGijp16gipVCoMDQ1F+fLlRffu3cXZs2fz8QpTcZII8cFKaEQ6Ii4uDi4uLvj6668xd+5cTZdDGjJw4ECEhYUpXWeLdNvp06fRrFkzbNy4UTHTkkgd2B1GOicmJgb379/HvHnzYGBggLFjx2q6JCIqpJCQEISHh6N+/fowNzfH5cuX8dNPP8Hd3T3XAcxEqsIQRDpn1apVmD17NlxdXbFx40alWSVEpFusrKxw+PBh/Prrr0hKSkK5cuXg7e2NwMBADiAmtWN3GBEREeklrZkiv2zZMtSqVQtWVlawsrKCp6cnDhw4oHhcCIGZM2fC0dER5ubm8PLyUpoyTURERFQQWhOCnJ2d8dNPP+HcuXM4d+4cWrdujW7duimCzty5c7Fw4UIsXrwYERERsLe3R7t27ZCUlKThyomIiEgXaXV3mLW1NebNm4fBgwfD0dER48aNw6RJkwDIV3W1s7PDzz//jICAAA1XSkRERLpGKwdGZ2ZmYuvWrUhOToanpycePHiA2NhYxbWNAPnqqS1btsTp06fzDEFpaWlKy+fLZDL8+++/sLGx4dLlREREOkIIgaSkJDg6OuZrIc380KoQdPXqVXh6eiI1NRWlS5fGzp07Ub16dcWS7B9eZM/Ozg7R0dF5HjMwMFBlK7YSERGRZj169EhlF5/WqhDk4eGBS5cu4eXLl9i+fTv8/PwUV5kGsl90Tgjx0dacKVOmYMKECYr7CQkJqFixIh49egQrKyvVngARERGpRWJiIipUqKDSa7xpVQgyMTFB5cqVAQANGjRAREQEFi1apBgHFBsbCwcHB8X+cXFx2VqHPmRqaprt+kcAFLPQiIiISHeociiL1swOy4kQAmlpaXBzc4O9vT1CQkIUj6Wnp+P48eNo2rSpBiskIiIiXaU1LUFTp06Ft7c3KlSogKSkJGzZsgVhYWE4ePAgJBIJxo0bhzlz5sDd3R3u7u6YM2cOSpUqxevKEBERUaFoTQh6+vQp+vfvjydPnkAqlaJWrVo4ePAg2rVrBwCYOHEiXr9+jZEjR+LFixdo3LgxDh8+rNK+QSIiItIfWr1OkDokJiZCKpUiISGBY4KIiIh0hDr+fmv1mCAiIiIidWEIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr2kNSEoMDAQDRs2hKWlJWxtbeHr64vbt28r7TNw4EBIJBKlW5MmTTRUMREREekyrQlBx48fx6hRo3DmzBmEhIQgIyMD7du3R3JystJ+HTt2xJMnTxS3/fv3a6hiIiKikisjIwMvXrzQdBlqZaTpArIcPHhQ6f6aNWtga2uL8+fP47PPPlNsNzU1hb29fXGXR0REpDf27NmDIUOG4NmzZ2jVqhWCg4NRvnx5TZelclrTEvShhIQEAIC1tbXS9rCwMNja2qJKlSoYOnQo4uLi8jxOWloaEhMTlW5ERESUsz179sDX1xfPnj0DAISGhqJXr14QQmi4MtXTyhAkhMCECRPQvHlz1KxZU7Hd29sbGzduxLFjx7BgwQJERESgdevWSEtLy/VYgYGBkEqliluFChWK4xSIiIh0TmxsLAYNGgQhBAYNGoQLFy7AwsICYWFh2Llzp6bLUzmJ0MJoN2rUKOzbtw8nT56Es7Nzrvs9efIELi4u2LJlCz7//PMc90lLS1MKSYmJiahQoQISEhJgZWWl8tqJiIh01dChQ7Fq1SrUrVsXZ86cgYmJCaZMmYKffvoJHTp0yDZ0pTglJiZCKpWq9O+31rUEff3119izZw9CQ0PzDEAA4ODgABcXF0RGRua6j6mpKaysrJRuRERE9J6YGNxZvx6rV68GACxevBgmJiYAAH9/fwBASEgInjx5orES1UFrQpAQAqNHj8aOHTtw7NgxuLm5ffQ5z58/x6NHj+Dg4FAMFRIREZVAQUGAiwsW+vlBJpPBp1YtNG3aVPFw5cqV0bRpU8hkMmzfvl2Dhaqe1oSgUaNG4c8//8SmTZtgaWmJ2NhYxMbG4vXr1wCAV69e4dtvv0V4eDiioqIQFhaGLl26oFy5cujevbuGqyciItJBMTHAsGGIk8mw7u2mideuybe/x8fHB4B8clJJojUhaNmyZUhISICXlxccHBwUt+DgYACAoaEhrl69im7duqFKlSrw8/NDlSpVEB4eDktLSw1XT0REpIMiIwGZDCsApAJoCKC5TAbcvau0W8uWLQHI1/TTwqHEhaY16wR97EU1NzfHoUOHiqkaIiIiPeDuDiGRYO3bv8FjAEgMDYHKlZV2a9CgAczNzREfH48bN26gRo0aGihW9bSmJYiIiIiKmbMzTk+ciPsASgPobmAArFgBfDAxycTEBJ6engCAU6tXZ+su01UMQURERHps/dtLY/Ts2BEW0dHA29lgH2r4drbYxYULARcX+YBqHccQREREpKdSU1Px119/AQD6f/ddthYghZgY1H07JOUCAMhkQECAzrcIMQQRERHpqb179+Lly5eoUKECvLy8ct8xMhL1hEBFAJ9kbcvMzDaAWtdozcBoIiIiKl7r168HAHz11VcwMMijXcTdHe4GBoiWyd5ty2EAta5hSxAREZEeevbsGQ4cOAAA6N+/f947OzsDK1fKgw8g/5rDAGpdw5YgIiIiPbRlyxZkZGSgfv36qF69+sef4O8PdOgg7wKrXFnnAxDAEERERKSXNmzYAAAYMGBA/p/k7Fwiwk8WdocRERHpmVu3biEiIgKGhobo3bu3psvRGIYgIiIiPZPVCuTt7Q1bW1sNV6M5DEFERER6RCaTFa4rrARiCCIiItIjx48fx6NHjyCVStGlSxdNl6NRDEFERER6JKsVqFevXjAzM9NwNZrFEERERKQnUlJSsHXrVgD5WBtIDzAEERER6Yndu3fj1atXcHNzQ7NmzTRdjsYxBBEREemJtWvXAgD69euX92Uy9ARfASIiIj3w6NEjhISEAAD8/Pw0XI12YAgiIiLSAxs2bIAQAp999hkqVaqk6XK0AkMQERFRCSeEwJo1awAAgwYN0nA12oMhiIiIqIQ7deoU7t69CwsLC/Ts2VPT5WgNhiAiIqISLqsVqFevXihdurSGq9EeDEFEREQlWOLNmwjetAkAu8I+xBBERERUUgUFYX2NGkhOTUU1AM1v39Z0RVqFIYiIiKgkiomBGDoUS4UAAIwEIBk+HIiJ0WxdWoQhiIiIqCSKjESoELgJoDSAAQCQmQncvavZurQIQxAREVFJ5O6OJW//2R+AFQAYGgKVK2uuJi3DEERERFQCRb5+jZ0SCQBgFCAPQCtWAM7OGq1LmxhpugAiIiJSvXnz5kEIAZ+2bVFj2jR5CxADkBKGICIiohLm8ePHWLduHQBg8syZAK8YnyN2hxEREZUwCxcuRHp6Opo3b45mDEC5YggiIiIqQWJiYrBkiXxI9JQpUzRcjXZjCCIiIipBZs2ahdTUVDRv3hze3t6aLkerMQQRERGVELdu3cLq1asBAD///DMkb2eHUc4YgoiIiEoAIQTGjh0LmUyGrl27omnTppouSesxBBEREZUAW7ZsweHDh2Fqaor58+druhydwBBERESk4168eIFx48YBAKZPnw53d3fNFqQjGIKIiIh0mBACQ4cORVxcHKpVq4bvvvtO0yXpDIYgIiIiHbZ8+XJs374dxsbGWLt2LUxNTTVdks5gCCIiItJRZ86cwfjx4wHIZ4M1atRIwxXpFoYgIiIiHXT79m34+PggLS0N3bp1U4wJovxjCCIiItIxDx48QMeOHfH8+XM0bNgQGzdu5JpAhaA1ISgwMBANGzaEpaUlbG1t4evri9u3byvtI4TAzJkz4ejoCHNzc3h5eeH69esaqpiIiKj43bhxA82bN0dUVBQqVaqEvXv3wsLCQtNl6SStCUHHjx/HqFGjcObMGYSEhCAjIwPt27dHcnKyYp+5c+di4cKFWLx4MSIiImBvb4927dohKSlJg5UTERHlU0wMEBoq/1oIe/fuRbNmzfD48WNUr14dJ06cgK2trYqL1B8SIYTQdBE5efbsGWxtbXH8+HF89tlnEELA0dER48aNw6RJkwAAaWlpsLOzw88//4yAgIB8HTcxMRFSqRQJCQmwsrJS5ykQERG9ExQEDBsGyGSAgQGwciXg75/zvjExQGQk4O4OODsjNTUVM2bMwNy5cwEAnp6e+HvFCtjExyv2KenU8fdba1qCPpSQkAAAsLa2BiDv/4yNjUX79u0V+5iamqJly5Y4ffq0RmokIiLKl5iYdwEIkH8NCMi5RSgoCHBxAVq3BlxccGLSJNSuXVsRgL7++muE+fnBpk4dxT4ICiq+cylBjDRdQE6EEJgwYQKaN2+OmjVrAgBiY2MBAHZ2dkr72tnZITo6OtdjpaWlIS0tTXE/MTFRDRUTERHlITLyXQDKkpkJ3L2r3IrzXli6AOB7mQz73oYfBwcHLF26FL4NGsiDz4eBqkMHvWgRUiWtbAkaPXo0rly5gs2bN2d77MPR70KIPEfEBwYGQiqVKm4VKlRQeb1ERER5cneXd4G9z9AQqFxZeVtkJK7KZPgcQH0A+wAYAhjetStu3LgBX1/fvAMVFYjWhaCvv/4ae/bsQWhoKJzfS7T29vYA3rUIZYmLi8vWOvS+KVOmICEhQXF79OiRegonIiLKjbOzfAyQoaH8vqEhsGKFUsvN7du30efXX1EbwE4AEgD9ANw0MMCyJUtQpkwZ+Y75DVT0UVoTgoQQGD16NHbs2IFjx47Bzc1N6XE3NzfY29sjJCREsS09PR3Hjx9H06ZNcz2uqakprKyslG5ERETFzt8fiIqSzw6LilIMio6KisLAgQNRvXp1bNmzBwLAFxIJrgHYYGgI95Urlbu58hGoKH+0ZkzQqFGjsGnTJuzevRuWlpaKFh+pVApzc3NIJBKMGzcOc+bMgbu7O9zd3TFnzhyUKlUKffv21XD1RERE+eDsrAgrT58+xY8//ojly5fjzZs3AIBu3bph1qxZqG1jI+/eqlw553Dj7y8fA5TXPvRRWjNFPrdxPWvWrMHAgQMByFuLZs2ahRUrVuDFixdo3LgxlixZohg8nR+cIk9ERJr05s0b/Prrr5g1a5ZiLbx27drhxx9/RMOGDTVcnfZSx99vrQlBxYUhiIiINOXkyZMYMWIErl27BgBo0KABfvrpJ7Rp00bDlWk/vVoniIiIqKRIS0vDd999hxYtWuDatWuwsbHB6tWr8X//938MQBqkNWOCiIiISqJbt26hb9++uHjxIgBg8ODBmDt3LmxsbDRcGTEEERERqcmuXbvQr18/JCcnw8bGBkFBQejWrZumy6K32B1GRESkYkII/Pjjj+jevTuSk5Ph5eWFK1euMABpGbYEERERqdCbN2/g7++PDRs2AJBfBWHhwoUwNjbWcGX0IYYgIiIiFXn9+jW+/PJL/P333zAyMsKSJUswbNgwTZdFuWAIIiIiUoHEmzfRtU8fHL98GWZmZti2bRs6d+6s6bIoDxwTREREVETJS5eiU/XqOH75MqwAHBozhgFIBzAEERERFUHq3bvoNmoUTgEoA+AYgM8WLABiYjRbGH0UQxAREVEhpaen44v+/XEUQGkABwHUB4DMTPl1vUirMQQREREVgkwmg5+fH/aeOQMzAHsBNM560NBQfmFT0moMQURERIUwZcoUbNmyBcbGxtg5bhxaGhrKHzA0BFas4JXddQBnhxERERXQ8uXLMXfuXADA6tWr0bFfP+Cbb+RdYJUrMwDpCIYgIiKiAti/fz9GjRoFAJg9ezb69esnf8DZmeFHx7A7jIiIKJ8uXbqEXr16QSaTYeDAgZg+fbqmS6IiYAgiIiLKh/j4eHTr1g3Jyclo06YNVqxYAYlEoumyqAgYgoiIiD4iIyMDvXv3xsOHD1G5cmVs3boVJiYmmi6LioghiIiI6COmTp2Ko0ePwsLCAjt37kTZsmU1XRKpAEMQERFRHoKDgzFv3jwA8plgNWvW1HBFpCoMQURERLm4evUqBg8eDACYOHEievXqpeGKSJUYgoiIiHLw4sULdO/eHSkpKWjbti1+/PFHTZdEKsYQRERE9IHMzEx89dVXuHfvHlxcXLBlyxYYGXFpvZKGIYiIiOgDM2fOxIEDB2BmZoadO3fCxsZG0yWRGjAEERERvWfXrl344YcfAAB//PEH6tatq+GKSF0YgoiIiN66desWBgwYAAAYM2bMu0tiUInEEERERAQgMTERvr6+SEpKwmeffYb58+druiRSM4YgIiLSezKZDH5+frh9+zacnJzw119/wdjYWNNlkZoxBBERkd6bM2cOdu3aBRMTE+zYsQN2dnbvHoyJAUJD5V+pRGEIIiKikqcAwWXfvn34/vvvAQBLlixBo0aN3j0YFAS4uACtW8u/BgWpq2LSAIYgIiIqWQoQXCIjI/HVV19BCIHhw4djyJAh7x6MiQGGDQNkMvl9mQwICGCLUAnCEERERCVHAYJLUlISfH18kJCQgGYNG2LRokXKO0RGvjtOlsxM4O5dNRVPxY0hiIiISo58BheZTAa/li1x484dOALYdu4cTDZsUH6euztg8MGfSUNDoHJl1ddNGsEQREREJUc+g8ucSZOw8+JFmADYAcBeiOwtRs7OwMqV8udnHWfFCvl2KhEYgoiIqOTIR3DZt28fvl+wAACwFEDjrAdy6ury9weiouSDrKOi5PepxJAIIYSmiyhOiYmJkEqlSEhIgJWVlabLISIidYiJkQeaypWVAtD169fRtGlTJCYmYgTkIUjB0FAedNjSo5XU8febLUFERFTyODsDXl5Kgebp06fo3LkzEhMT8dlnn+HX5cvZ1aXnjDRdABERkbq9fv0avr6+iI6ORuXKlbFjxw6Y2NgAnTvn2GJE+oEhiIiISjQhBAYPHowzZ86gTJky2Lt3L2xsbOQPOjsz/OgxdocREVGJNnPmTGzZsgVGRkbYsWMHPDw8NF0SaQmGICIiKrH++OMPzJ49GwCwYsUKtGrVSsMVkTZhCCIiohJp586dGD58OABg6tSpGDx4sIYrIm3DEERERCVOWFgY+vTpA5lMhiFDhuCHH37QdEmkhbQqBJ04cQJdunSBo6MjJBIJdu3apfT4wIEDIZFIlG5NmjTRTLFERKSVLl26hG7duiEtLQ3du3fHsmXLIJFINF0WaSGtCkHJycmoXbs2Fi9enOs+HTt2xJMnTxS3/fv3F2OFRESkza5du4Z27dohMTERLVu2xKZNm2BkxInQlDOt+snw9vaGt7d3nvuYmprC3t6+mCoiIiJdcf36dbRu3Rrx8fGoX78+du/eDTMzM02XRVpMq1qC8iMsLAy2traoUqUKhg4diri4OE2XREREGnbjxg20bt0az549Q7169RASEgKpVKrpskjLaVVL0Md4e3vjiy++gIuLCx48eID//Oc/aN26Nc6fPw9TU9Mcn5OWloa0tDTF/cTExOIql4iIisHNmzfRunVrxMXFoU6dOggJCUHZsmU1XRbpAJ0KQV9++aXi3zVr1kSDBg3g4uKCffv24fPPP8/xOYGBgZg1a1ZxlUhERMUoIiIC3t7eeP78OWrXro0jR47A2tpa02WRjtC57rD3OTg4wMXFBZGRkbnuM2XKFCQkJChujx49KsYKiYhIXY4ePYpWrVrh+fPnaNiwIY4ePfruchhE+aBTLUEfev78OR49egQHB4dc9zE1Nc21q4yIiHTTjh070KdPH6Snp6NNmzbYuXMnLC0tNV0W6Ritagl69eoVLl26hEuXLgEAHjx4gEuXLuHhw4d49eoVvv32W4SHhyMqKgphYWHo0qULypUrh+7du2u2cCIiKhZCCPz222/44osvkJ6ejh49emDfvn0MQFQoWtUSdO7cOaXrukyYMAEA4Ofnh2XLluHq1atYv349Xr58CQcHB7Rq1QrBwcH84Sci0gNv3rzB2LFjsWzZMgDA0KFDsWzZMhgaGmq4MtJVEiGE0HQRxSkxMRFSqRQJCQmwsrLSdDlERJQPL1++RK9evRASEgKJRIK5w4bhm2nTIKlQQdOlUTFRx99vreoOIyIi+tDNmzfh6emJkJAQlDIxwU4A365YAYmrKxAUpOnySIcxBBERkdb666+/0LBhQ9y6dQvODg44+eYNumV1YMhkQEAAEBOj2SJJZzEEERGR1nnz5g3GjRuHL7/8EsnJyfKFcRcvRt0PR3BkZgJ372qmSNJ5DEFERKRVoqOj0apVKyxatAiAfL23w4cPw7ZRI8Dggz9bhoZA5coaqJJKAoYgIiLSGhs3bkStWrVw6tQpWFlZYdeuXZgzZ458BpizM7BypTz4APKvK1bItxMVglZNkSciIv308uVLjBw5Eps3bwYAeHp6YsOGDahUqZLyjv7+QIcO8i6wypUZgKhIGIKIiEijwsLCMGDAADx69AiGBgb4fvx4TP3pJxgZ5fInytmZ4YdUgt1hRESkEenp6Zg0aRJat26NR48eoRKAkzIZvv/lFxitW6fp8kgPMAQREZH6xcQAoaGK6ew3b95EkyZNMHfuXAgh4A/gEoAmAKe+U7FhCCIiIvUKCgJcXIDWrSEqVsSSr75CvXr1cPHiRdjY2GDHrFlYBaD0+8/h1HcqBgxBRESkPjExwLBhgEyGpwB8hMDoTZuQmpqK9u3b48qVK+g+eDCnvpNGMAQREZH6REYCMhn2AvgUwH4ApgAWjR6NAwcOwNHRkVPfSWM4O4yIiNTmtbMzvgWw9O39WgA2Ghig5qRJyq0/nPpOGsAQREREanH58mX07dsXN97eHw8g0MAApitX5hxyOPWdihlDEBERFV5MjLzLy91dEWBkMhkWLVqEyZMnIz09Hfb29lg3fz7aOzmxlYe0CkMQEREVTlCQYtAzDAyAlSvx1McHfn5+OHToEACgS5cuCAoKQvny5TVcLFF2RQpBcXFxkMlksLe3V1U9RESkC96b9QUAkMnwv2HD8GW5cngSFwczMzMsXLgQw4cPh0Qi0WytRLko1OywK1euoEaNGnBwcICTkxOcnJwwffp0JCcnq7o+IiLSRm9nfQGAADAfQCuZDE/i4lCtWjWcO3cOI0aMYAAirVaoEOTv7w87OzucPHkSFy9exA8//IADBw6gQYMGePHihaprJCIibePuDhgY4CWAzwF8ByATQF9fX5w9exY1atTQaHlE+SERQoiCPsnCwgLnz59H1apVFduEEPjiiy9gZmaGP//8U6VFqlJiYiKkUikSEhJgZWWl6XKIiLRXDoOe33fjv/9F1++/xz0AJgAW9euHgPXr2fpDaqGOv9+FagnKqcVHIpFgzpw52L17t0oKIyIiDXrvUhdwcZHff8/+/fvRZN483APgYmeHU3v3YviGDQxApFPyHYI6d+6MqVOn4q+//sLw4cMxfvx4PH36VGmfhIQElC1bVuVFEhFRMcph0HPWBU2FEJg/fz58fHyQlJSEzz77DBFXr6JB586arZmoEPI9O+zTTz/FhQsXsGbNGkX4+eSTT9CrVy/UqVMHmZmZWLNmDX755Re1FUtERMXgvUHPCpmZSL95EwH/+Q/Wrl0LABg6dCgWL14MExOT4q+RSAUKNSbo6dOnuHjxIi5duqS43b17F4aGhvDw8MCVK1fUUatKcEwQEdFHxMTIu8DeC0IJBgbo0bQpjp48CUNDQ/zyyy8YPXo0u7+o2Kjj73eh1gmys7NDx44d0bFjR8W2169f4/Lly7h8+bJKCiMiIg3JuqBpQACQmYnHBgbwdnTElZMnUbp0aWzbtg0dOnTQdJVERVaoliBdxpYgIqJ8ionBzaNH0XHaNDz85x/Y2dnhwIEDqFu3rqYrIz2kNS1BRERU8p2JiUGn8ePx4sULVKlSBQcPHoSbm5umyyJSmUJNkSciopLt+PHjaNeuHV68eIEmTZrg1KlTDEBU4jAEERGRkkOHDqFjx4549eoV2rZtiyNHjqBcuXKaLotI5RiCiIhIYffu3ejatStSU1Ph4+ODv//+GxYWFpoui0gtGIKIiAgAsGXLFvTo0QPp6eno2bMntm/fDjMzM02XRaQ2DEFERITg4GB89dVXyMzMRP/+/bF582YugkglHkMQEZGe27FjB7766ivIZDL4+/tj7dq1MDLi5GEq+RiCiIj02N69e9G7d29kZmZiwIABWLlyJQwM+KeB9AN/0omI9NShQ4fQo0cPvHnzBr1798bq1asZgEiv8KediEgPHTt2DL6+vkhPT0ePHj2wfv16GBoaarosomLFEEREpGfCw8PRpUsXpKamokuXLti0aROMjY01XRZRsWMIIiLSI9evX0fnzp2RkpKCDh06YOvWrZwFRnqLIYiISE9ERUWhffv2ePHiBTw9PbF9+3aYmppquiwijWEIIiLSA3FxcWjXrh0eP36MGjVqYO/evVwJmvQeQxARUQmXmJiIjh074u7du3B1dcWhQ4dgbW2t6bKINI4hiIioBEtNTUW3bt1w8eJF2Nra4vDhw3ByctJ0WURaQatC0IkTJ9ClSxc4OjpCIpFg165dSo8LITBz5kw4OjrC3NwcXl5euH79umaKJSLSchkZGejTpw/CwsJgaWmJgwcPwt3dXdNlEWkNrQpBycnJqF27NhYvXpzj43PnzsXChQuxePFiREREwN7eHu3atUNSUlIxV0pEpKViYoDQUIhHjzB8+HDs2rULpqam2LNnD+rWravp6oi0ilZdHMbb2xve3t45PiaEwK+//opp06bh888/BwCsW7cOdnZ22LRpEwICAoqzVCIi7RMUBAwbBshkmAogCICBgQG2bNkCLy8vDRdHpH20qiUoLw8ePEBsbCzat2+v2GZqaoqWLVvi9OnTuT4vLS0NiYmJSjciohInJkYRgH4F8NPbzSt//hm+vr6aq4tIi+lMCIqNjQUA2NnZKW23s7NTPJaTwMBASKVSxa1ChQpqrZOISCMiIwGZDJsBjH+7KRCAf4MGGiyKSLvpTAjKIpFIlO4LIbJte9+UKVOQkJCguD169EjdJRIRFT93dxyWSOD39u4YAJMMDIDKlTVZFZFW06oxQXmxt7cHIG8RcnBwUGyPi4vL1jr0PlNTU66ISkQl3rnYWHxuYoI3aWn4EsAvBgaQrFwJODtrujQiraUzLUFubm6wt7dHSEiIYlt6ejqOHz+Opk2barAyIiLNioyMRKdOnZCcloa2LVpg3aFDMIiOBvz9NV0akVbTqpagV69e4e7du4r7Dx48wKVLl2BtbY2KFSti3LhxmDNnDtzd3eHu7o45c+agVKlS6Nu3rwarJiLSnCdPnqBDhw549uwZ6tevjx379sHU0lLTZRHpBK0KQefOnUOrVq0U9ydMmAAA8PPzw9q1azFx4kS8fv0aI0eOxIsXL9C4cWMcPnwYlvyFJyI9lJCQAG9vbzx48ACVKlXC/v378/d5GBMjH0jt7s7uMtJrEiGE0HQRxSkxMRFSqRQJCQmwsrLSdDlERIWSmpoKb29vhIWFwc7ODqdOnUKlSpU+/sT31hKCgQGwciW7zUgnqOPvt86MCSIiIrnMzEz069dPcTmMAwcO5C8AvbeWEAD514AA+XYiPcQQRESkC967HMbIkSOxfft2mJiYYNeuXfm/HMbbtYSUZGYC743FJNInWjUmiIiIcvC2C0vIZJgIYCXkl8P4888/0bp16/wfx91d3gX2fhAyNORaQqS32BJERKTN3uvC+hHA/LebV/78M7744ouCHcvZWT4GyNBQft/QEFixgoOjSW+xJYiISJu97cJaBOA/bzf9giJcDsPfH+jQQd4FVrkyAxDpNYYgIiJt5u6ONRIJxr2dyDsTwLiidmE5OzP8EIHdYUREWm1reDiGvP33BADfGxiwC4tIRdgSRESkLkVclPCvv/5C3759IRMCQ/r0wfyhQyHhAodEKsOWICIidQgKAlxcgNat5V+DgnLf9+309/fX68kKQJmZmfDz88PyDRsgadWKAYhIhbhiNBGRqsXEyIPPh1PRo6Kyh5gcVnAOLl0aX331FTIzMzFw4ECsWrUKhlkzuoj0lDr+frM7jIhI1fJalPD9EJTDCs5bhg5FPwMDZGZmYtCgQfjjjz8YgIjUhN1hRESqlrUo4ftymtH1QVhaCaCvEIoAxBYgIvViCCIiUrX8Lkr4NiwJAD8BCAAgAAT064dVq1bB4MMgRUQqxd8wIiJ18PeXjwEKDZV/zelK7c7OECtWYKJEgilvN03t1AnL1q9nACIqBhwTRESkLh9ZlDAtLQ1Djh/Hn2/np8yfPh3f/Pe/xVUdkd5jCCIizSniOjq6LD4+Ht27d8fJkydhaGiIlStXYvDgwZoui0ivsL2ViDSjIOvolDC3bt1C48aNcfLkSUilUhw4cIABiEgDGIKIqPjlMDUcAQFKiwWWVPv27YOnpyfu378PNzc3nD59Gu3atdN0WUR6iSGIiIpfXuvolFCZmZmYNm0afHx88PLlS3h6euLMmTOoXr26pksj0lsMQURU/PK7jk4J8fTpU3To0AFz5swBAIwaNQqhoaGwtbXVcGVE+o0hiIiKX37X0SkBdu7ciZo1a+Lo0aOwsLDApk2bsHjxYpiammq6NCK9x9lhRKQZ/v5Ahw7yLrDKlUtcAEpISMDYsWOxbt06AEDt2rWxadMmdn8RaRGGICLSnI+so6OLhBDYunUrxo8fj8ePH8PAwACTJk3CjBkz2PpDpGUYgoiIVOTOnTsYPXo0QkJCAADu7u5Ys2YNmjVrpuHKiCgnHBNERFRET548wciRI1GjRg2EhITA1NQUs2bNwpUrVxiAiLQYW4KIiArp6dOn+PXXX7Fo0SK8fv0aANCpUycsWrQIlUvoTDeikoQhiIiogG7evImF//0vNmzbhrQ3bwAAnp6eCAwMRMuWLTVcHRHlF0MQEVE+pKSkYMeOHVizZg2OHTum2N4YwLTRo+Hz22+QSCSaK5CICkwixNvLF+uJxMRESKVSJCQkwMrKStPlEJGqqOFirMnJyTh8+DB2796NnTt3IjExEQAgAdAVwHcAmgKQGBoCUVElbqYbkTZRx99vtgQRke4LCnp3LTIDA/lCjP7+BT5MZmYmrly5ghMnTuDIkSM4cuQIUlNTFY+7ublhYMuW8Fu7Fi7KT5Svd8QQRKRT2BJERLotJkZ+Ffr3r0WWj5aZzMxMREZG4vLly7h8+TIuXryI06dPK1p7sri5uaFbt27o3r07mjdvDoPHjwv1/YioaNgSRET0oVwuxioiI/GiVClERUUhKioK0dHRSv++c+eOYkbX+ywtLdG8eXO0bNkSnTp1Qs2aNZXH+mRd8iMgQN4CVIIv+UFU0jEEEZFOEkLg33//xYOUFERJJIgSAlEAogFEAYjq0gWvkpPzPIa5uTlq1aqF2rVro3bt2mjcuDHq1KkDw6xrmuWmhF/yg0hfMAQRkVZ78eIFrl+/juvXr+POnTt48OAB7t+/jwcPHmTrulLyNgDZ2dnB1dUVLi4ucLWxgYuJCVzr1UOlxo1RuXLljwee3JTAS34Q6RuGICLSGk+ePMGZM2dw5swZXL58GdeuXcM///yT53Ps7e3h5uYGV1tbuFpYwOXTT+Faty5cXV1RsWJFmJuby3fMafC0h0cxnBURaSsOjCYijbl//z5CQkIQFhaG8PBwREdH57hfhQoVULNmTVStWhWffPIJ3Nzc8Mknn8DV1fVdyMlLIQdPE5H24MBoItJpqampOHLkCPbv34/Dhw/j3r17So9LJBLUrFkTnp6eqF+/Pj799FNUr14dUqm0aN84l8HTnNZOpN8YgohIrVJSUnDgwAFs374de/fuRVJSkuIxIyMjeHp6om3btmjWrBkaNmyY/X94MTHAhQtFWwTR3V3eBfZhSxCv70Wk1xiCiEjlZDIZQkNDsWbNGuzcuRMpKSmKx5ycnNCtWzd07NgRXl5esLS0zP1AKloEkdPaiSgnHBNERCoTFRWFtWvXYu3atUrje1xdXdGjRw/07NkTjRo1goGBwccPpo5xPDExnNZOpKM4JoiItI4QAiEhIfj999+xb98+ZP2/SiqVok+fPhg4cCAaNWpU8IuLqmMcT36mtavhGmREpJ0YgoioUF69eoX169fj999/x61btxTb27Zti8GDB8PX1zd/M7dyo4lxPKrqfiMinZCPNmntMXPmTEgkEqWbvb29pssi0iuPHz/Gd999BycnJ4waNQq3bt2CpaUlxowZg9u3byMkJAR9+vQpWgAC3o3jyVrMUN3jeGJi3gUgQP41IEC+nYhKJJ1rCapRowaOHDmiuF/o1V6J9IkKunju37+PuXPnYs2aNUhPTwcAVKlSBaNHj4afn59yH72qupSK8/IUnEZPpHd0LgQZGRmx9YeoIIrYxXPt2jX89NNP2Lx5M2RvQ0IzAFMkEnh/+y0Mhg5V6ffLprguT8Fp9ER6R6e6wwAgMjISjo6OcHNzQ+/evXH//v08909LS0NiYqLSjUhvFKGL5//+7//QrVs3fPrpp9i4cSNkMhk6AjgB4CSAzkLAYMQI5WPpcpdScXe/EZHG6VQIaty4MdavX49Dhw7hjz/+QGxsLJo2bYrnz5/n+pzAwEBIpVLFrUKFCsVYMZGG5dXFkwMhBI4ePYo2bdqgSZMm2LNnDyQSCb744gucX74cBwC0yOtYBfx+WsffXz4FPzRU/pWDoolKNJ1eJyg5ORmVKlXCxIkTMWHChBz3SUtLQ1pamuJ+YmIiKlSowHWCSD/kc60dmUyGv//+G3PmzMHZs2cByLue+/fvj0mTJsHDwyN/x+I1uohITdSxTpBOtQR9yMLCAp9++ikiIyNz3cfU1BRWVlZKNyK98ZEunszMTGzevBm1a9eGr68vzp49C3Nzc4wZMwb37t3D6tWr5QEoH8fK9z5ERFpCp1uC0tLSUKlSJQwbNgzff/99vp7DFaNJL32wUnJ6ejrWr1+Pn3/+GXffdlVZWVlh1KhRGDduHGxtbfN9rELvQ0RUAHq/YvS3336LLl26oGLFioiLi8MPP/yAxMRE+Pn5abo0Iu32doZVSkoKVv32G+bNm4eYt4OVbWxsMG7cOIwePRplypTJ97GKvA8RkYbpVAiKiYlBnz59EB8fj/Lly6NJkyY4c+YMXFxcNF0akZyWXnIhNjYWS5cuxbJlyxAfHw8AcHR0xLfffouhQ4eidOnSGq6QiKj46VQI2rJli6ZLIMqdFl5y4erVq/jll1+wceNGxQKHbm5umDRpEgYOHAhTU1ON1kdEpEk6PSaoMDgmiNRCi2ZFZWRkYN++fVi8eLHS6upNmzbF+PHj4evrCyMjnfr/DxERxwQRaS0tuORCdHQ0Vq1ahdWrV+Px48cAAAMDA/Ts2RPjx49HkyZN8j6AlnblERGpC0MQkSoU5JILKgwbSUlJ2L17NzZu3IhDhw4hq2G3fPnyGDRoEEaMGAFXV9ePH0gLu/KIiNSNIYhIFbLWxwkIkLcA5bY+jgrCRlpaGg4ePIhNmzbh77//xuvXrxWPtWnTBsOGDYOvry9MTEzyd8DcLnXRoQNbhIioROOYICJVymt9nCKMG4qNjcX+/fuxd+9eHD58GMnJyYrH3J2d0adnT/QbORLu7u4Frzk0FGjdOuftXl4FPx4RkRpwTBCRtstrfZwCjBt68eIF/ve//+H48eMICwvDhQsXlB53dHRE7xo10PfIEdSLiYHkt9+AmjXlXWwFxaunE5GeYggiKi65hI0UJydcDg/HhQsXcP78eZw7dw7Xrl3Dh420DRo0gI+PD3x8fFC3fHkYuLkBWfsUpQsrv115REQlDEMQUTHIyMjAEyFw/5tvcHv+fNwRArcB3ClXDnerVoXswxYiAB4AWgJoKZGg1bx5cPjmm3cPhoaqdjaav788QPFSF0SkRzgmiKiIUlJS8M8//yAmJibXr0+fPs0x6GSxs7ND/fr1Ua9ePdSrWBGeAQGwf/9Xk1drJyI9xzFBRMUsOTkZ9+/fx/379xWh5vHjx0pfExIS8nUsIyMjVKhQAR4eHvDw8ECVKlXg4eGBatWqwdHR8d2OoaHvurmyfNjKwy4sIqIiYwgiAhAXF4fLly/jypUruHr1Ku7evYt79+4hNjY2X8+3sLCAs7MznJycFF8//LetrS0MDQ0/frD8DlRmFxYRUZEwBKkbV+HVnFxe+5SUFJw9exanTp3CqVOncOHCBTx9+jTXw5QtWxaVKlVCxYoV4eTkBEdHx2xfVdq1WpBWHl6tnYio0BiC1Imr8BacqkLje699pkSCs5Mn46CxMQ4dOoTz588jIyNDaXeJRILKlSujdu3a+PTTT+Hh4YFKlSqhUqVKKFu2bBFPqhDYykNEpHYcGK0uHLhacKoKjTExSK5YEfuFwHYAhwG8+GAXJycnNGvWDM2aNUNjNzfUNDSERa1aub83bNEjItIodfz9NlDJUSi7vBbGo+xyu3RDTEy+D5Gamort27fjy/79YSsEegEIhjwAlQHQy8sLq1evRlRUFB49eoTg4GCMsbBAY19fWHTuLA+tQUHZDxwUJH+sdevc9yEiIp3DliB1YUtQwRTh0g0XL15EUFAQNm7ciJcvXyq2uwH4AkA3AI0MDGAUHa382ufnPeL7SESkFThFXpdwCnPBFPDSDUlJSVi/fj1WrVqFS5cuKbZXqFABffr0wRcmJqg/Zw4kMlnur31+LmNRgEtdEBGRbmEIUicObs2/fIbGf/75B7/99htWrFihWJ/HxMQE3bt3x+DBg9GmTZt309ADAvJ+7fMTvHhdLSKiEoshSN04hTn/8giNly9fxoIFC7B582bFzC53d3eMGjUK/fr1g42NTfbjfey1z0/wYoseEVGJxTFBpLWEEDh48CAWLFiAo0ePKra3aNEC3/j5oYurKww8PIoeSGJiPt5al599iIhIbTgmiHRbPqeZp6amYuPGjVi4cCFu3LgBADA0NETPnj3xzTffoOGVK6pdfyk/rXVs0SMiKnEYgqh45GMNoPj4eCxbtgyLFy9GXFwcAMDS0hJDhgzB2LFj4eLiIg9STZpkn0rfoQNDChERFQhDEKlfbmsAvQ0ud+7cwS+//IJ169bh9evXAABnZ2eMHTsWQ4cOhVQqfXcsztYiIiIVYQjSV8W5AnIOwUVkZiJs61b8GhaGv//+G1lD0+rVq4dvvvkGX3zxBYyNjbMfi7O1iIhIRbhitC6JiZEvHliAVZRzVNwrIGcFFwCpANYCqAug9YQJ2LNnD4QQ8PHxQWhoKM6dO4e+ffvmHICAd7O1sqbBc7YWEREVEmeH6QoVXldLEysgP5o3D0GTJmGZEIh7u61UqVLw8/PDmDFjULVq1YIdkLO1iIj0CmeH6auPjKkpkGIcU/PmzRvs3bsXq1atwsGDByF7m7edHRww+u14H2tr68IdnLO1iIioiBiCdIEqg4uax9RkZmbi1KlT2Lp1K7Zu3YqnT58qHmvZsiWGDx+OHj165N7dRUREVEwYgrRUamoqHj58iNjYWMTeuoVkiQQZQuAN5AO5rCQSWEVFwerECZQvXx7Ozs6wtLT8+IHVsAJyUlISwsLCcOjQIezYsQNPnjxRPGZnZ4eBAwdi8ODBqFKlSqG/BxERkapxTJAWkMlkuHr1Ko4dO4bTp0/j2rVriIyMRGZmZoGOY2VlhQoVKsDZ2RkVK1aEi4uL0lcnJ6d3LTCFHFMjhMDDhw8RERGBiIgIhIeHIzw8XHEpCwCQSqXw9fXFF198gfbt27PVh4iIioxjgkqQjIwMhIaGIjg4GLt370Z8fHy2fUqXLg0HBwfY2dlBKpXC6M0bGKWmItPcHEkZGUhMTERCQgKePn2KhIQEJCYm4vr167h+/XqO39PAwACOjo6KYOTs7IwyZcrAysoKUqkUZmZmkMlkiltiYiKe37+P5w8eICY1FZExMbh79y6Sk5OzHbtSpUpo3749OnfujHbt2sHExETlrxkREZEqMQTlRI1r6Dx69AjLly/HqlWrFKsiA/LA06JFC7Rs2RJ169ZFzZo14eDgAIlEkq/jJiUlISYmBjExMXj06BEePnyIhw8fIjo6WvHv9PR0xT6nT58u9DkYGRnh008/RaNGjdCwYUN4eXmhUqVKhT4eERGRJjAEfUhVU9E/cObMGcydOxe7d++G7O2g5HLlyqFHjx7o1asXWrRoUaRuI0tLS1SrVg3VqlXLMcTJZDLExcUpQlF0dDQeP36saE1KTExEamoqDA0NIZFIIElPh9XJk7ABYAPAHoC7gQEqHzsG1yZNYGpqWuTXhIiISJM4Juh9alhD58yZM5g1axYOHjyo2NaqVSuMGjUKXbt2Vf14GVWFuNBQ+WKKOW338lLeVpyrTxMRkV5Sx5gg/V0x+p9/sm/Layp6AYWHh6Njx47w9PTEwYMHYWhoiEGDBuHatWs4duyYeqaJ57aeUGFWmH5vlWeFnKbSF/fq00RERCqityFoafXqEKtWKW/M7x/+PGSFn6ZNm+LQoUMwNDTE4MGDcefOHaxevRo1atRQQfW5UGGIy9flKVQZuoiIiIqZ3oagKQC+HjYM6ffvv9tYhOtSnTp1Cu3bt1eEHyMjI/j7++POnTsICgrCJ598op4TeZ8KQpwSf395V2BoqPzrh91qqgxdRERExUxvxwRlqVO5Mjbu3o3q1au/2ymfa+gIIRAaGorAwEAcOXIEgHzm1MCBAzF16lS4ubmp7TxyFRSUfSFEFQzszpGGrkNGRET6Rx1jgvQ2BG0GMBrAc8iDy4gRIzBt2jTY2dl99BjPnz9HcHAwFi9ejJs3bwJvjzFo0CBMnToVrq6uBS9MlYOLi/PiosUZuoiISG8xBKmA4kU0MMCruXMREBaGvXv3ApAHGR8fH3Tu3BkNGzaEvb09zM3N8e+//+LBgweIiIjAoUOHcPz4ccVqzhYWFvDz88N3331XuPADqG1afrHhFd2JiEjNGIJUQPEi3rgBq2rVAABHjx7F9OnTcebMmXwfp1atWhgyZAgGDBig1L1WYOxSIiIi+iheNkOVnJwU/2zTpg3atGmD69evY/PmzTh9+jQuXbqEFy9eAABMTU3h5OSEevXqwdPTE926dVPdCsmqvEI8ERER5ZtOtgQtXboU8+bNw5MnT1CjRg38+uuvaNGiRb6eW5AkKZPJkJqaCnNz83xfvqLA2BJERET0UVwsEUBwcDDGjRuHadOm4eLFi2jRogW8vb3x8OFDlX8vAwMDlCpVSn0BCCjStHwiIiIqPJ1rCWrcuDHq1auHZcuWKbZVq1YNvr6+CAwM/Ojz1ZEkVYKDi4mIiHKl92OC0tPTcf78eUyePFlpe/v27XO9KnpaWhrS0tIU9xMTE9VaY6E5OzP8EBERFSOd6g6Lj49HZmZmtrV87OzsEBsbm+NzAgMDIZVKFbcKFSoUR6lERESk5XQqBGX5cIyOECLXcTtTpkxBQkKC4vbo0aPiKJGIiIi0nE51h5UrVw6GhobZWn3i4uJyXenZ1NQUpqamxVEeERER6RCdagkyMTFB/fr1ERISorQ9JCQETZs21VBVREREpIt0qiUIACZMmID+/fujQYMG8PT0xMqVK/Hw4UMMHz5c06URERGRDtG5EPTll1/i+fPnmD17Np48eYKaNWti//79cHFx0XRpREREpEN0bp2gotLadYKIiIgoV1wxmoiIiEhFGIKKIiYGCA2VfyUiIiKdwhBUWEFB8guftm4t/xoUpOmKiIiIqAAYggojJgYYNuzdld9lMiAggC1CREREOoQhqDAiI98FoCyZmfILoBIREZFOYAgqDHd3wOCDl87QUH4FeCIiItIJDEGF4ewMrFwpDz6A/OuKFbwKPBERkQ7RucUStYa/P9Chg7wLrHJlBiAiIiIdwxBUFM7ODD9EREQ6it1hREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSwxBREREpJcYgoiIiEgvMQQRERGRXmIIIiIiIr3EEERERER6iSGIiIiI9BJDEBEREeklhiAiIiLSSzoVglxdXSGRSJRukydP1nRZREREpIOMNF1AQc2ePRtDhw5V3C9durQGqyEiIiJdpXMhyNLSEvb29poug4iIiHScTnWHAcDPP/8MGxsb1KlTBz/++CPS09M1XRIRERHpIJ1qCRo7dizq1auHsmXL4uzZs5gyZQoePHiAVatW5fqctLQ0pKWlKe4nJCQAABITE9VeLxEREalG1t9tIYTqDio0bMaMGQJAnreIiIgcn7tt2zYBQMTHxxfp+LzxxhtvvPHGm27c7t27p7IMIhFClZGq4OLj4xEfH5/nPq6urjAzM8u2/Z9//oGzszPOnDmDxo0b5/jcD1uCXr58CRcXFzx8+BBSqbRoxeuQxMREVKhQAY8ePYKVlZWmyyk2PG+etz7gefO89UFCQgIqVqyIFy9eoEyZMio5psa7w8qVK4dy5coV6rkXL14EADg4OOS6j6mpKUxNTbNtl0qlevXDk8XKyornrUd43vqF561f9PW8DQxUN5xZ4yEov8LDw3HmzBm0atUKUqkUERERGD9+PLp27YqKFStqujwiIiLSMToTgkxNTREcHIxZs2YhLS0NLi4uGDp0KCZOnKjp0oiIiEgH6UwIqlevHs6cOVPk45iammLGjBk5dpGVZDxvnrc+4HnzvPUBz1t1563xgdFEREREmqBziyUSERERqQJDEBEREeklhiAiIiLSSwxBREREpJdKZAhaunQp3NzcYGZmhvr16+N///tfnvsfP34c9evXh5mZGT755BMsX768mCpVrYKc944dO9CuXTuUL18eVlZW8PT0xKFDh4qxWtUp6Pud5dSpUzAyMkKdOnXUW6CaFPS809LSMG3aNLi4uMDU1BSVKlXC6tWri6la1SnoeW/cuBG1a9dGqVKl4ODggEGDBuH58+fFVG3RnThxAl26dIGjoyMkEgl27dr10eeUhM+0gp53SflMK8z7nUWXP9MKc96q+EwrcSEoODgY48aNw7Rp03Dx4kW0aNEC3t7eePjwYY77P3jwAJ06dUKLFi1w8eJFTJ06FWPGjMH27duLufKiKeh5nzhxAu3atcP+/ftx/vx5tGrVCl26dFGswq0rCnreWRISEjBgwAC0adOmmCpVrcKcd69evXD06FEEBQXh9u3b2Lx5M6pWrVqMVRddQc/75MmTGDBgAPz9/XH9+nVs3boVERERGDJkSDFXXnjJycmoXbs2Fi9enK/9S8pnWkHPu6R8phX0vLPo+mdaYc5bJZ9pKrsKmZZo1KiRGD58uNK2qlWrismTJ+e4/8SJE0XVqlWVtgUEBIgmTZqorUZ1KOh556R69epi1qxZqi5NrQp73l9++aWYPn26mDFjhqhdu7YaK1SPgp73gQMHhFQqFc+fPy+O8tSmoOc9b9488cknnyht++2334Szs7PaalQnAGLnzp157lNSPtPel5/zzokufqa9ryDnreufae/Lz3mr6jOtRLUEpaen4/z582jfvr3S9vbt2+P06dM5Pic8PDzb/h06dMC5c+fw5s0btdWqSoU57w/JZDIkJSXB2tpaHSWqRWHPe82aNbh37x5mzJih7hLVojDnvWfPHjRo0ABz586Fk5MTqlSpgm+//RavX78ujpJVojDn3bRpU8TExGD//v0QQuDp06fYtm0bOnfuXBwla0RJ+ExTBV38TCssXf9MKwxVfabpzIrR+REfH4/MzEzY2dkpbbezs0NsbGyOz4mNjc1x/4yMDMTHx+d5cVZtUZjz/tCCBQuQnJyMXr16qaNEtSjMeUdGRmLy5Mn43//+ByMj3fzxL8x5379/HydPnoSZmRl27tyJ+Ph4jBw5Ev/++6/OjAsqzHk3bdoUGzduxJdffonU1FRkZGSga9eu+P3334ujZI0oCZ9pqqCLn2mFURI+0wpDVZ9pJaolKItEIlG6L4TItu1j++e0XdsV9LyzbN68GTNnzkRwcDBsbW3VVZ7a5Pe8MzMz0bdvX8yaNQtVqlQprvLUpiDvt0wmg0QiwcaNG9GoUSN06tQJCxcuxNq1a3WqNQgo2HnfuHEDY8aMwffff4/z58/j4MGDePDgAYYPH14cpWpMSflMKyxd/0zLr5L2mVYQqvpMK1GxsVy5cjA0NMz2v8K4uLhs/zPKYm9vn+P+RkZGsLGxUVutqlSY884SHBwMf39/bN26FW3btlVnmSpX0PNOSkrCuXPncPHiRYwePRqA/BdJCAEjIyMcPnwYrVu3Lpbai6Iw77eDgwOcnJwglUoV26pVqwYhBGJiYuDu7q7WmlWhMOcdGBiIZs2a4bvvvgMA1KpVCxYWFmjRogV++OGHEtkqUhI+04pClz/TCqqkfKYVhqo+00pUS5CJiQnq16+PkJAQpe0hISFo2rRpjs/x9PTMtv/hw4fRoEEDGBsbq61WVSrMeQPy/y0NHDgQmzZt0skxEgU9bysrK1y9ehWXLl1S3IYPHw4PDw9cunQJjRs3Lq7Si6Qw73ezZs3w+PFjvHr1SrHtzp07MDAwgLOzs1rrVZXCnHdKSgoMDJQ/5gwNDQG8ax0paUrCZ1ph6fpnWkGVlM+0wlDZZ1qRhlVroS1btghjY2MRFBQkbty4IcaNGycsLCxEVFSUEEKIyZMni/79+yv2v3//vihVqpQYP368uHHjhggKChLGxsZi27ZtmjqFQinoeW/atEkYGRmJJUuWiCdPnihuL1++1NQpFEpBz/tDujqToqDnnZSUJJydnUXPnj3F9evXxfHjx4W7u7sYMmSIpk6hUAp63mvWrBFGRkZi6dKl4t69e+LkyZOiQYMGolGjRpo6hQJLSkoSFy9eFBcvXhQAxMKFC8XFixdFdHS0EKLkfqYV9LxLymdaQc/7Q7r6mVbQ81bVZ1qJC0FCCLFkyRLh4uIiTExMRL169cTx48cVj/n5+YmWLVsq7R8WFibq1q0rTExMhKurq1i2bFkxV6waBTnvli1bCgDZbn5+fsVfeBEV9P1+n65+YAhR8PO+efOmaNu2rTA3NxfOzs5iwoQJIiUlpZirLrqCnvdvv/0mqlevLszNzYWDg4P46quvRExMTDFXXXihoaF5/q6W1M+0gp53SflMK8z7/T5d/UwrzHmr4jNNIkQJbRMmIiIiykOJGhNERERElF8MQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIqESYPXs2Pv30U1hYWMDOzg4jRozAmzdvNF0WEWkxI00XQERUVEIIZGZmYsWKFXBycsKNGzcwYMAA1KpVCyNGjNB0eUSkpXgBVSIqkfr27Yvy5ctj0aJFmi6FiLQUu8OISOdFR0dj9OjRqFmzJsqWLYvSpUvjr7/+grOzs6ZLIyItxhBERDotPj4ejRo1Qnx8PBYuXIiTJ08iPDwchoaGqFOnjqbLIyItxjFBRKTT9u/fj4yMDGzevBkSiQQAsGTJEqSnpzMEEVGeGIKISKdZW1sjMTERe/bsQfXq1fH3338jMDAQTk5OKF++vKbLIyItxoHRRKTThBAYMWIENm3aBHNzc/Tr1w+pqamIjo7G3r17NV0eEWkxhiAiIiLSSxwYTURERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJL/w+VDXAEnhKWrQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcCklEQVR4nO3dd1hTZxsG8DuEqQKKyBLFheCoE/dC60KkrqrVulGwdVRt62yrWJVPbW1tHdWWuqoWtXUWUbTg3qLWjQpqFNwCgoCQ9/sjEo1sSEhC7t915aI5OTl5TiLh7jvOKxFCCBAREREZGCNtF0BERESkDQxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBpFWenp7w9PTUdhmFNmzYMJQpUyZf+1apUgXDhg3TaD0SiQSzZs3S6GvkJTk5GbNmzUJERIRW69AX+/fvh4eHB0qXLg2JRIJt27Zh9erVkEgkiImJUe63YcMG/Pjjjxqp4auvvkLlypVhbGyMsmXLFvj5w4YNQ5UqVdRel65Zu3YtPvroI7i5ucHIyCjPcz58+DC6deuGcuXKwcLCAq6urvj222+Lp1jKF2NtF0CGbdmyZdouodhs3boVVlZW2i5D45KTkxEQEAAAeh1wi4MQAv369UPNmjWxY8cOlC5dGm5ubkhPT8exY8fg6Oio3HfDhg24ePEiJkyYoNYatm/fjrlz52LGjBnw8vKCmZmZWo9fkqxbtw5xcXFo2rQp5HI5Xr16leO+GzZswODBg9GvXz+sXbsWZcqUwc2bN3H//v1irJjywhBEWlW7dm1tl1BsGjZsqO0SSI1evnwJc3NzSCSSQh/j/v37ePr0KXr16oX3339f5bEKFSoUtcR8uXjxIgBg/PjxsLOzK5bXVBd1fAYFsWfPHhgZKTpQunfvrnzv3nXv3j34+fnB399f5X/02rdvXyx1Uv6xO4zybdasWZBIJLh06RIGDBgAa2tr2NvbY8SIEYiPj1fZNyUlBdOmTUPVqlVhamqKihUrYsyYMXj+/LnKftl1hy1fvhz169dHmTJlYGlpCXd3d0yfPh0AEBMTA2NjYwQGBmap7+DBg5BIJNi8eXOu5/H8+XN8/vnnqFatGszMzGBnZ4du3brh6tWrAICIiAhIJJIs3TkxMTGQSCRYvXp1lmNeunQJ77//PkqXLo0KFSpg7NixSE5OVtknu+6wvGpRh7i4OPj7+8PZ2RmmpqaoWrUqAgICkJ6errJfQEAAmjVrBhsbG1hZWaFRo0YICgrCu2ss//vvv/D09ET58uVhYWGBypUro0+fPkhOTkZMTIzyj3dAQAAkEgkkEkme3YDJycn44osvULVqVZibm8PGxgYeHh7YuHGjyn6rV6+Gm5sbzMzMUKtWLaxduzZLV0xBPr/Tp0/jo48+QpUqVWBhYYEqVapgwIABuH37dpbXlUgk2Lt3L0aMGIEKFSqgVKlSSE1NBQAEBwejRYsWKF26NMqUKYMuXbogMjIy13OeNWsWnJ2dAQBTpkyBRCJRnse73WGenp74559/cPv2beV7mtcffrlcjgULFsDd3V35b2vIkCGQyWTKfapUqYKvvvoKAGBvb5+v7tTsPoPspKWlYc6cOcrXr1ChAoYPH45Hjx6p7JeamorPP/8cDg4OKFWqFNq2bYszZ85k+X1R12dw+vRpfPDBB7CxsYG5uTkaNmyITZs25XrOmTIDUF5+++03JCUlYcqUKfnan7SHLUFUYH369EH//v3h6+uL//77D9OmTQMA/P777wAUTfw9e/bE/v37MW3aNLRp0wYXLlzAzJkzcezYMRw7dizHJvc///wTn376KcaNG4fvvvsORkZGuHHjBi5fvgxA8aX9wQcf4JdffsHkyZMhlUqVz12yZAmcnJzQq1evHGtPTExE69atERMTgylTpqBZs2Z48eIFDh48iNjYWLi7uxf4/Xj16hW6desGf39/TJ06FUePHsWcOXNw+/Zt7Ny5s8i1DBs2DGvWrEF0dHSBx11kNt0bGRnhm2++QfXq1XHs2DHMmTMHMTExWLVqlXLfmJgY+Pv7o3LlygCA48ePY9y4cbh37x6++eYb5T7e3t5o06YNfv/9d5QtWxb37t1DaGgo0tLS4OjoiNDQUHTt2hW+vr4YOXIkgLxbNSZNmoR169Zhzpw5aNiwIZKSknDx4kU8efJEuc/q1asxfPhw9OjRA99//z3i4+Mxa9YspKam5vuP07tiYmLg5uaGjz76CDY2NoiNjcXy5cvRpEkTXL58Gba2tir7jxgxAt7e3li3bh2SkpJgYmKCefPm4auvvsLw4cPx1VdfIS0tDQsXLkSbNm1w8uTJHFs7R44cifr166N3794YN24cBg4cmOPvxbJly+Dn54ebN29i69at+Tq3Tz75BCtXrsTYsWPRvXt3xMTE4Ouvv0ZERATOnj0LW1tbbN26FUuXLkVQUBBCQ0NhbW2tDGbZye9nIJfL0aNHDxw6dAiTJ09Gy5Ytcfv2bcycOROenp44ffo0LCwsAADDhw9HcHAwJk+ejA4dOuDy5cvo1asXEhISsq2hKJ9BeHg4unbtimbNmuGXX36BtbU1/vzzT/Tv3x/JyclqG7N38OBB2NjY4OrVq+jRowcuXrwIGxsb9O7dGwsWLDCIbnG9IYjyaebMmQKAWLBggcr2Tz/9VJibmwu5XC6EECI0NDTb/YKDgwUAsXLlSuW2du3aiXbt2invjx07VpQtWzbXOsLDwwUAsXXrVuW2e/fuCWNjYxEQEJDrc2fPni0AiLCwsDyPHx4errI9OjpaABCrVq1Sbhs6dKgAIBYvXqyy79y5cwUAcfjwYeU2FxcXMXTo0ALVIoQQI0aMEFKpVMTExOS6nxBCABAzZ85U3vf39xdlypQRt2/fVtnvu+++EwDEpUuXsj1ORkaGePXqlZg9e7YoX7688rPdsmWLACDOnTuXYw2PHj3KUkde6tatK3r27Jnj4xkZGcLJyUk0atRIWYsQQsTExAgTExPh4uKi3FaQz+9d6enp4sWLF6J06dIqn+mqVasEADFkyBCV/e/cuSOMjY3FuHHjVLYnJiYKBwcH0a9fv1zO+k1NCxcuVNme+XrR0dHKbd7e3irnmZsrV64IAOLTTz9V2X7ixAkBQEyfPl25LfP3+tGjR7kesyCfwcaNGwUA8ddff6kc49SpUwKAWLZsmRBCiEuXLgkAYsqUKSr7ZT7/7d8XdXwG7u7uomHDhuLVq1cq+3bv3l04OjqKjIyMXN+Dt+X2ebi5uQlzc3NhaWkp5s2bJ8LDw8WCBQuEhYWFaNWqlcr7R9rF7jAqsA8++EDlfr169ZCSkoKHDx8CUHSXAMjyf1V9+/ZF6dKlsX///hyP3bRpUzx//hwDBgzA9u3b8fjx4yz7eHp6on79+li6dKly2y+//AKJRAI/P79ca9+9ezdq1qyJjh075rpfQX388ccq9wcOHAhA8X+eRa0lKCgI6enpcHFxKXBdu3btQvv27eHk5IT09HTlzcvLCwBw4MAB5b7//vsvOnbsCGtra0ilUpiYmOCbb77BkydPlJ9tgwYNYGpqCj8/P6xZswa3bt0qUD1v15Cenq7samvatCl2796NqVOnIiIiAi9fvlR53rVr13D//n0MHDhQpRvIxcUFLVu2LPD7kunFixeYMmUKatSoAWNjYxgbG6NMmTJISkrClStXsuzfp08flft79uxBeno6hgwZonJe5ubmaNeundZmyGX+u3v3d7Bp06aoVatWrr+DOSnIZ7Br1y6ULVsWPj4+Ku9LgwYN4ODgoHxfMv/99evXT+X5H374IYyNs++oKOxncOPGDVy9elX5u/r2vt26dUNsbCyuXbtW4PclO3K5HCkpKZg+fTqmTZsGT09PfPnllwgMDMSRI0cK9f6TZjAEUYGVL19e5X5mE37mH64nT57A2Ng4SxeIRCKBg4ODShfHuwYPHozff/8dt2/fRp8+fWBnZ4dmzZohLCxMZb/x48dj//79uHbtGl69eoVff/0VH374IRwcHHKt/dGjR7k29xeGsbFxlvcks47czlUTtbzrwYMH2LlzJ0xMTFRuderUAQBlyDx58iQ6d+4MAPj1119x5MgRnDp1CjNmzADw5rOtXr069u3bBzs7O4wZMwbVq1dH9erVsXjx4jxriYmJyVJH5h/Bn376CVOmTMG2bdvQvn172NjYoGfPnoiKigLw5n3M7vPN6zPPzcCBA7FkyRKMHDkSe/bswcmTJ3Hq1ClUqFAhSxADoDJbC1C8vwDQpEmTLOcWHBycbYgvDpnv17v1AoCTk1Ou/y7zOmZ+PoMHDx7g+fPnMDU1zfK+xMXFKd+XzGPa29urPD+736lMhf0MMvf74osvsuz36aefAoDaPq/M2rt06aKyPfN/Ps6ePauW16Gi45ggUrvy5csjPT0djx49UglCQgjExcWhSZMmuT5/+PDhGD58OJKSknDw4EHMnDkT3bt3x/Xr15WtIQMHDsSUKVOwdOlSNG/eHHFxcRgzZkyetVWoUEFlYGh2zM3NAUA54DJTTl+Q6enpePLkicqXdlxcHICsgbGgtRSVra0t6tWrh7lz52b7uJOTEwDFWCwTExPs2rVLef4AsG3btizPadOmDdq0aYOMjAycPn0aP//8MyZMmAB7e3t89NFHOdbi5OSEU6dOqWxzc3MDAJQuXRoBAQEICAjAgwcPlK1CPj4+uHr1qvJ9zHxf3/butvx+fvHx8di1axdmzpyJqVOnKrenpqbi6dOn2Z7Du4ORM8cMbdmypVAtdZqS+X7FxsZmCdr379/PMtapIMfMz2dga2uL8uXLIzQ0NNtjWVpaqhzzwYMHqFixovLxzN+p7BT2M8jcb9q0aejdu3e2+2T+eyyqevXq4fjx41m2Z7Z8FnYMG6kfPwlSu8ypvn/88YfK9r/++gtJSUlZpgLnpHTp0vDy8sKMGTOQlpaGS5cuKR8zNzdXdsksWrQIDRo0QKtWrfI8ppeXF65fv67ssstO5uDjCxcuqGzfsWNHjs9Zv369yv0NGzYAyP06Ofmppagyp/FWr14dHh4eWW6ZIUgikcDY2FhloPnLly+xbt26HI8tlUrRrFkzZbdk5v/dvtsymMnU1DTL62f+MXybvb09hg0bhgEDBuDatWtITk6Gm5sbHB0dsXHjRpXZardv38bRo0dVnp/fz08ikUAIkWUw8m+//YaMjIwcz/ttXbp0gbGxMW7evJnt++vh4ZGv4+SHmZlZtq1T2enQoQOArL+Dp06dwpUrV/L9O/i2gnwG3bt3x5MnT5CRkZHte5IZNtq2bQtAMbPrbVu2bMkyezEn+f0M3Nzc4OrqivPnz+e4X3b/Hgsjs8tu9+7dKttDQkIAAM2bN1fL61DRsSWI1K5Tp07o0qULpkyZgoSEBLRq1Uo5O6xhw4YYPHhwjs8dNWoULCws0KpVKzg6OiIuLg6BgYGwtrbO0oL06aefYsGCBThz5gx+++23fNU2YcIEBAcHo0ePHpg6dSqaNm2Kly9f4sCBA+jevTvat28PBwcHdOzYEYGBgShXrhxcXFywf/9+/P3339ke09TUFN9//z1evHiBJk2aKGeHeXl5oXXr1kWqBQB8fX2xZs0a3Lx5s8CtDbNnz0ZYWBhatmyJ8ePHw83NDSkpKYiJiUFISAh++eUXODs7w9vbG4sWLcLAgQPh5+eHJ0+e4LvvvssSEH755Rf8+++/8Pb2RuXKlZGSkqKcFZg5tsnS0hIuLi7Yvn073n//fdjY2MDW1jbXmW3NmjVD9+7dUa9ePZQrVw5XrlzBunXr0KJFC5QqVQoA8O2332LkyJHo1asXRo0ahefPn2PWrFlZumLy+/lZWVmhbdu2WLhwobK+AwcOICgoKN9XTa5SpQpmz56NGTNm4NatW+jatSvKlSuHBw8e4OTJk8oWLnV477338Pfff2P58uVo3LgxjIyMcgxZbm5u8PPzw88//wwjIyN4eXkpZ4dVqlQJEydOLPDrGxkZ5fsz+Oijj7B+/Xp069YNn332GZo2bQoTExPIZDKEh4ejR48e6NWrF+rUqYMBAwbg+++/h1QqRYcOHXDp0iV8//33sLa2zleLSUE+gxUrVsDLywtdunTBsGHDULFiRTx9+hRXrlzB2bNn87y8xuXLl5UzVePi4pCcnIwtW7YAUFzzLHMWWufOneHj44PZs2dDLpejefPmOH36NAICAtC9e/dcvxeomGlzVDbpl5xmkWQ3k+Xly5diypQpwsXFRZiYmAhHR0fxySefiGfPnqk8993ZYWvWrBHt27cX9vb2wtTUVDg5OYl+/fqJCxcuZFuTp6ensLGxEcnJyfk+j2fPnonPPvtMVK5cWZiYmAg7Ozvh7e0trl69qtwnNjZWfPjhh8LGxkZYW1uLQYMGidOnT2c7O6x06dLiwoULwtPTU1hYWAgbGxvxySefiBcvXqi87ruzw/JbS+YMtLff35wgm1lZjx49EuPHjxdVq1YVJiYmwsbGRjRu3FjMmDFDpcbff/9duLm5CTMzM1GtWjURGBgogoKCVF772LFjolevXsLFxUWYmZmJ8uXLi3bt2okdO3aovOa+fftEw4YNhZmZWZZZPtmZOnWq8PDwEOXKlVO+/sSJE8Xjx49V9vvtt9+Eq6urMDU1FTVr1hS///67GDp0aJZZOvn9/GQymejTp48oV66csLS0FF27dhUXL17M8lll/hs/depUtvVv27ZNtG/fXlhZWQkzMzPh4uIiPvzwQ7Fv375cz7sgs8OePn0qPvzwQ1G2bFkhkUhEXl/fGRkZYv78+aJmzZrCxMRE2NraikGDBom7d++q7Jff2WGZ8vsZvHr1Snz33Xeifv36wtzcXJQpU0a4u7sLf39/ERUVpdwvJSVFTJo0SdjZ2Qlzc3PRvHlzcezYMWFtbS0mTpyY5T0p6mdw/vx50a9fP2FnZydMTEyEg4OD6NChg/jll1/yPPfM9yq727u/d8nJyWLKlCmiUqVKwtjYWFSuXFlMmzZNpKSk5Pk6VHwkQrxzJTQiPfHw4UO4uLhg3LhxWLBggbbLIS0ZNmwYIiIiVNbZIv129OhRtGrVCuvXr1fOtCTSBHaHkd6RyWS4desWFi5cCCMjI3z22WfaLomICiksLAzHjh1D48aNYWFhgfPnz+N///sfXF1dcxzATKQuDEGkd3777TfMnj0bVapUwfr161VmlRCRfrGyssLevXvx448/IjExEba2tvDy8kJgYKDKTEUiTWB3GBERERkknZkiv3z5ctSrVw9WVlawsrJCixYtVKYXCiEwa9YsODk5wcLCAp6enipTpomIiIgKQmdCkLOzM/73v//h9OnTOH36NDp06IAePXoog86CBQuwaNEiLFmyBKdOnYKDgwM6deqExMRELVdORERE+kinu8NsbGywcOFCjBgxAk5OTpgwYQKmTJkCQHFVV3t7e8yfPx/+/v5arpSIiIj0jU4OjM7IyMDmzZuRlJSEFi1aIDo6GnFxccq1jQDF1VPbtWuHo0eP5hqCUlNTVS6fL5fL8fTpU5QvXz7L5deJiIhINwkhkJiYCCcnJ7UtPaJTIei///5DixYtkJKSgjJlymDr1q2oXbu28pLs7y6yZ29vj9u3b+d6zMDAQLVdsZWIiIi06+7du2pbfFqnQpCbmxvOnTuH58+f46+//sLQoUOVq0wDWRfOE0Lk2Zozbdo0TJo0SXk/Pj4elStXxt27d2FlZaXeEyAiIiKNSEhIQKVKldS2xhugYyHI1NQUNWrUAAB4eHjg1KlTWLx4sXIcUFxcHBwdHZX7P3z4MEvr0LvMzMyyrH8EQDkLjYiIiPSHOoey6MzssOwIIZCamoqqVavCwcEBYWFhysfS0tJw4MABtGzZUosVEhERkb7SmZag6dOnw8vLC5UqVUJiYiL+/PNPREREIDQ0FBKJBBMmTMC8efPg6uoKV1dXzJs3D6VKleK6MkRERFQoOhOCHjx4gMGDByM2NhbW1taoV68eQkND0alTJwDA5MmT8fLlS3z66ad49uwZmjVrhr1796q1b5CIiIgMh05fJ0gTEhISYG1tjfj4eI4JIiIi0hOa+Put02OCiIiIiDSFIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERCpSUlIwd+5cDBw4ELt379Z2ORpjrO0CiIiISHekp6fjo48+wvbt2wEAf/75J3bu3Alvb28tV6Z+OtMSFBgYiCZNmsDS0hJ2dnbo2bMnrl27prLPsGHDIJFIVG7NmzfXUsVEREQlz9KlS7F9+3aYmZnB09MTQgiMGzcO6enp2i5N7XQmBB04cABjxozB8ePHERYWhvT0dHTu3BlJSUkq+3Xt2hWxsbHKW0hIiJYqJiIiKlmePXuGgIAAAMCPP/6IXbt2wdbWFtHR0SWyW0xnusNCQ0NV7q9atQp2dnY4c+YM2rZtq9xuZmYGBweH4i6PiIioxAsKCsKzZ89Qp04djBo1ClKpFIMHD8YPP/yATZs2wcfHR9slqpXOtAS9Kz4+HgBgY2Ojsj0iIgJ2dnaoWbMmRo0ahYcPH+Z6nNTUVCQkJKjciIiISJVcLsfy5csBABMnToRUKgUA9O7dGwAQEhICuVyutfo0QSKEENou4l1CCPTo0QPPnj3DoUOHlNuDg4NRpkwZuLi4IDo6Gl9//TXS09Nx5swZmJmZZXusWbNmKZv23hYfHw8rKyuNnQMREZE+CQkJgbe3N8qWLYt79+6hVKlSAIBXr17BysoKKSkpuHLlCtzd3bVSX0JCAqytrdX691snW4LGjh2LCxcuYOPGjSrb+/fvD29vb9StWxc+Pj7YvXs3rl+/jn/++SfHY02bNg3x8fHK2927dzVdPhERkd4JCgoCAAwfPlwZgADAxMQEHh4eAIDjx49rpTZN0bkQNG7cOOzYsQPh4eFwdnbOdV9HR0e4uLggKioqx33MzMxgZWWlciMiIqI3XkZFIfT1RKNBgwZleTxzJvaJEyeKtS5N05kQJITA2LFj8ffff+Pff/9F1apV83zOkydPcPfuXTg6OhZDhURERCVQUBD2urkhOSUFlQE0PHs2yy6ZIYgtQRoyZswY/PHHH9iwYQMsLS0RFxeHuLg4vHz5EgDw4sULfPHFFzh27BhiYmIQEREBHx8f2NraolevXlqunoiISA/JZICfH7a9Hh7cE4Bk9GjF9rc0bNgQAHDlyhVkZGQUc5GaozMhaPny5YiPj4enpyccHR2Vt+DgYACAVCrFf//9hx49eqBmzZoYOnQoatasiWPHjsHS0lLL1RMREemhqCiky+XY+fpuLwDIyABu3FDZzcXFBWZmZkhNTcXt27eLu0qN0ZnrBOU1Sc3CwgJ79uwppmqIiIgMgKsrDkkkeCIEygNoDQBSKVCjhspuUqkUNWrUwKVLl3Dt2jVUq1ZNG9Wqnc60BBEREVExc3bGtg4dAAA+AIylUmDFCiCbiUlubm4AgOv//JOlu0xfMQQREREZKCEEtr2eYd1rzhwgJgbw9c12X7eUFADAtaVLARcX4PWUen3GEERERGSgzp49izt37qBUqVLoNGlSti1AAACZDDVfrx12DQDkcsDfX+9bhBiCiIiIDNS2bdsAKBYnt7CwyHnHqCi4vR67ey1zWzYDqPWNzgyMJiIiouK1detWAMj7UjOurqgvkeCkEKiZuS2bAdT6hi1BREREBigqKgqXLl2CsbExvL29c9/Z2Rmlfv0VTaRSWAOKAJTDAGp9wpYgIiIiA5TZFebp6Yly5crl/QRfX6BLF0UXWI0aeh+AAIYgIiIig5TvrrC3OTuXiPCTid1hREREBiY2NhbHjh0DAPTo0UPL1WgPQxAREZGB2bFjBwCgadOmqFixopar0R6GICIiIgNTqK6wEoghiIiIyIDEx8fj33//BQD07NlTu8VoGUMQERGRAQkJCcGrV6/g7u4Od3d3bZejVQxBREREBoRdYW8wBBERERmI5ORk/PPPPwCA3r17a7ka7WMIIiIiMhC7d+9GcnIyqlSpgsaNG2u7HK1jCCIiIjIQmzdvBgB8+OGHkEgkWq5G+xiCiIiIDMDLly+xa9cuAEDfvn21XI1uYAgiIiIyAKGhoUhKSoKLiwuaNGmi7XJ0AkMQERGRAWBXWFYMQURERCVccnIydu7cCUARgkiBq8gTERGVZDIZti5fjhcvXqBq1apo2rSptivSGQxBREREJVVQEODnh9VyOQBgWL16MDJiJ1AmvhNEREQlkUwG+PnhjlyO/a83Ddm5U7GdADAEERERlUxRUYBcjrUABID2AKrI5cCNG1ouTHcwBBEREZVErq7IkEiw6vXdYQAglQI1amivJh3DEERERFQSOTsjZMwY3AJQFkAfIyNgxQrA2VnLhekOhiAiIqISavGVKwCAUf37o/Tt24Cvr5Yr0i0MQURERCXQxYsXsX//fhgZGWHM/PlsAcoGQxAREVEJtHjxYgBAr1694OLiouVqdBNDEBERUQkTExOD1atXAwAmTpyo3WJ0GEMQERFRCTN37lykp6ejY8eOaNWqlbbL0VkMQURERCXItWvXlK1AAQEB2i1GxzEEERERlRBCCEyYMAHp6enw9vZGy5YttV2STmMIIiIiKiF27tyJ0NBQmJiY4IcfftB2OTqPIYiIiKgEePr0KUaPHg1AMRja1dVVyxXpPoYgIiIiPSeEwCeffILY2Fi4ublh1qxZ2i5JLzAEERER6blFixZh06ZNkEqlWLt2LSwsLLRdkl5gCCIiItJjW7duxeTJkwEAP/zwA5o2barlivQHQxAREZGe2r59O/r37w+5XI5Ro0Zh7Nix2i5JrzAEERER6RkhBBYvXozevXvj1atX+Oijj7B8+XJIJBJtl6ZXdCYEBQYGokmTJrC0tISdnR169uyJa9euqewjhMCsWbPg5OQECwsLeHp64tKlS1qqmIiIqPjFxcXhgw8+wIQJEyCXyzFy5EisXbsWUqlU26XpHZ0JQQcOHMCYMWNw/PhxhIWFIT09HZ07d0ZSUpJynwULFmDRokVYsmQJTp06BQcHB3Tq1AmJiYlarJyIiCifZDIgPFzxs4BevHiBOXPmwM3NDbt27YKpqSl+/PFHrFy5EiYmJhootuSTCCGEtovIzqNHj2BnZ4cDBw6gbdu2EELAyckJEyZMwJQpUwAAqampsLe3x/z58+Hv75+v4yYkJMDa2hrx8fGwsrLS5CkQERG9ERQE+PkBcjlgZASsXAn4+ma/r0wGREUBrq6QAVi5ciVWrFiBhw8fAgAaN26M1f/7H+pKpYCrK+DsXHznoSWa+PttrJajaEB8fDwAwMbGBgAQHR2NuLg4dO7cWbmPmZkZ2rVrh6NHj+Y7BBERERU7mexNAAIUP/39gS5dsgaYoCDIR43Cv0JgGYAdRkbIeP286tWrY86cOeiXmAijLl3yF6goRzoZgoQQmDRpElq3bo26desCUPSBAoC9vb3Kvvb29rh9+3aOx0pNTUVqaqryfkJCggYqJiIiykVU1JsAlCkjA7hxQyUEPb5wAatHjcIKIXAjc6NcjnbNm2PMpEno2bMnTB48AFxc8heoKFc6MybobWPHjsWFCxewcePGLI+9O/JdCJHraPjAwEBYW1srb5UqVVJ7vURERLlydVW02LxNKgVq1AAA3Lx5EyNHjkRFDw98+ToAWQL4FMBFABGBgejbt69i7E9ugYoKROdC0Lhx47Bjxw6Eh4fD+a1E6+DgAOBNi1Cmhw8fZmkdetu0adMQHx+vvN29e1czhRMREeXE2VnRZZU5g0sqBVasQEx6OoYOHQo3NzcEBQUh7dUrNALwK4D7AJYCqPNWWAKQZ6Ci/NOZECSEwNixY/H333/j33//RdWqVVUer1q1KhwcHBAWFqbclpaWhgMHDqBly5Y5HtfMzAxWVlYqNyIiomLn6wvExADh4Xh55QoCZDLUqlULa9euRUZGBry8vHDkyBGc+e03jJRKUQZQhiWVbq4cAhW7wgpOZ8YEjRkzBhs2bMD27dthaWmpbPGxtraGhYUFJBIJJkyYgHnz5sHV1RWurq6YN28eSpUqhYEDB2q5eiIionxwdsbpuDh83L07rl+/DgDw9PTEggUL0KRJE8U+LVsqxvfcuKFo3cku3Pj65r0P5UlnpsjnNK5n1apVGDZsGABFa1FAQABWrFiBZ8+eoVmzZli6dKly8HR+cIo8ERFpg1wux/z58/HNN98gPT0dTk5O+OGHH9C3b19e6TkfNPH3W2dCUHFhCCIiouL24sULDB48GNu2bQMA9O3bF7/88ovyMjCUN4O6ThAREVFJcPv2bfj4+OC///6Dqakpli1bhhEjRrD1RwcwBBEREWnI9evX8f7770Mmk8He3h7btm1D8+bNtV0WvcYQREREpAEXLlxA586d8eDBA7i7u2Pv3r28Vp2OYQgiIiJSs3PnzqFDhw549uwZGjRogD179sDOzk7bZdE7dOY6QURERCXB9evX0blzZzx79gzNmzdHeHg4A5COYksQERGRmty5cwcdO3bEo0eP0KhRI4SGhsLa2lrbZVEO2BJERESkBk//+w+dW7fG3bt34ebmxgCkBxiCiIiIiihtxQr0qVcP1+7eRSUAYb6+qFChgrbLojwwBBERERWBuHsXn4wejQgoVn4PAVBp2jRAJtNuYZQnhiAiIqIi+H7uXPwOxR/UPwHUBYCMDMW6XqTTGIKIiIgKaceOHZi8ciUA4AcA3TIfkEoVC5uSTmMIIiIiKoRr165h0KBBEELgE09PjDN6/SdVKgVWrODK7nqAU+SJiIgKKCkpCX369EFiYiLatm2LxXv3QvLggaILrEYNBiA9wRBERERUAEIIjB49GpcuXYKDgwOCg4NhYmKiCD4MP3qF3WFEREQF8Msvv+CPP/6AVCpFcHAwHBwctF0SFRJDEBERUT6dOnUKEyZMAAD873//Q9u2bbVbEBUJQxAREVE+PHnyBB9++CHS0tLQq1cvfP7559ouiYqIIYiIiCgPcrkcgwYNwp07d1CjRg2sWrUKEolE22VRETEEERER5WHOnDkIDQ2FhYUF/vrrL64JVkIwBBEREeVi7969mDVrFgBg+fLlqFevnnYLIrVhCCIiIsrBnTt3MHDgQAgh4Ofnh6FDh2q7JFIjhiAiIqJspKWloV+/fnjy5AkaNWqExYsXa7skUjOGICIiomxMmjQJJ06cQLly5bBlyxaYm5truyRSM4YgIiKid6xfvx5Lly4FAKxbtw5Vq1bVckWkCQxBREREb7l48SL8/PwAAF9//TW8vb21XBFpCkMQERHRawkJCejTpw+Sk5PRqVMnzJw5U9slkQYxBBEREUGxMOrw4cNx/fp1VKpUCRs2bIBUKtV2WaRBDEFEREQAFi1ahL///hsmJibYvHkzbG1tFQ/IZEB4uOInlSgMQUREVPIUMLhERERgypQpAIAff/wRzZo1UzwQFAS4uAAdOih+BgVpqmLSAoYgIiIqWQoYXG7duoU+ffogIyMDgwYNwieffKJ4QCYD/PwAuVxxXy4H/P3ZIlSCMAQREVHJUcDgknj1Kj54/308ffoUTZo0wcqVK98sjBoV9eY4mTIygBs3NHgCVJwYgoiIqOQoQHCR//orBtWqhUsxMXAEsLVfP1hYWLzZwdUVMHrnz6RUCtSoof66SSsYgoiIqOTIb3CRyfC1nx92ADADsA1AxalTVVuMnJ2BlSsVz888zooViu1UIjAEERFRyZHP4LJ++XLMe/3fQQCaAtm3GPn6AjExikHWMTGK+1RiSIQQQttFFKeEhARYW1sjPj4eVlZW2i6HiIg0QSZTBJoaNbIEoP3798PLywuvXr3CFAD/y3xAKlUEHbb06CRN/P02VstRiIiIdImzc7Zh5vz58+jVqxdevXqF/k2aYN6ZM4oxROzqMkgMQUREZBBu374NLy8vJCYmwtPTE2tCQ2H06FGOLUZU8jEEERFRiffkyRN4eXkhNjYWdevWxdatW2FmZpZjixEZBg6MJiKiEu3Zs2fo1KkTrly5AmdnZ+zevRtly5bVdlmkAxiCiIioxEpISEDXrl0RGRkJOzs77N27F85s+aHXGIKIiKhEevHiBbp164aTJ0/CxsYG+/btQ61atbRdFukQhiAiIipxEhMT4ePjgyNHjsDa2hphYWF47733tF0W6RidCkEHDx6Ej48PnJycIJFIsG3bNpXHhw0bBolEonJr3ry5doolIiKd9PTpU3Ts2BERERGwtLTEnj170KhRI22XRTpIp0JQUlIS6tevjyVLluS4T9euXREbG6u8hYSEFGOFRESky2JjY9GuXTtlF9j+/fvRrFkzbZdFOkqnpsh7eXnBy8sr133MzMzg4OBQTBUREZG+iI6ORqdOnXDz5k04OjoiLCwMderU0XZZpMN0qiUoPyIiImBnZ4eaNWti1KhRePjwobZLIiIiLTtx4gSaN2+Omzdvolq1ajh8+DADEOVJp1qC8uLl5YW+ffvCxcUF0dHR+Prrr9GhQwecOXNGcdGrbKSmpiI1NVV5PyEhobjKJSKiYrBlyxYMHjwYKSkpqF+/PkJCQuDk5KTtskgP6FUI6t+/v/K/69atCw8PD7i4uOCff/5B7969s31OYGAgAgICiqtEIiIqJkIIzJ8/H9OmTQMAdO/eHRs3bkSZMmW0XBnpC73rDnubo6MjXFxcEBUVleM+06ZNQ3x8vPJ29+7dYqyQiIg0ISkpCYMGDVIGoM8++wzbtm1jAKIC0auWoHc9efIEd+/ehaOjY477mJmZ5dhVRkRE+icqKgq9e/fGxYsXYWxsjB9//BFjxozRdlmkh3QqBL148QI3btxQ3o+Ojsa5c+dgY2MDGxsbzJo1C3369IGjoyNiYmIwffp02NraolevXlqsmoiIisv27dsxZMgQJCQkwMHBAZs2bUKbNm20XRbpKZ0KQadPn0b79u2V9ydNmgQAGDp0KJYvX47//vsPa9euxfPnz+Ho6Ij27dsjODgYlpaW2iqZiIiKQVpaGr766issXLgQANC6dWts2rQp154AorzoVAjy9PSEECLHx/fs2VOM1RARkS6IiorCwIEDcfr0aQDAZ76+WNi/P0wyMrRcGek7vR4YTUREJZcQAmvWrEHDhg1x+vRp2NjYYOuYMfhx1SqYdO4MuLgAQUHaLpP0GEMQERHpnPj4eAwcOBDDhg1DUlISPD09cT40FD2XLwfkcsVOcjng7w/IZNotlvQWQxAREemUY8eOoUGDBvjzzz8hlUoxd+5c7Nu3D84vXrwJQJkyMoC3JtQQFYROjQkiIiLDlZ6ejrlz5+Lbb79FRkYGqlatig0bNqB58+aKHVxdASMj1SAklQI1aminYNJ7bAkiIiKtu3XrFtq2bYtZs2YhIyMDAwcORGRk5JsABADOzsDKlYrgAyh+rlih2E5UCGwJIiIirRFCYO3atRg7dixevHgBKysrLF++HAMHDsz+Cb6+QJcuii6wGjUYgKhIGIKIiEgrnj17Bn9/f2zevBkA0KZpU6ybMAEueV380NmZ4YfUgt1hRERU7MLDw1GvXj1s3rwZxsbGmNurF8JPnYLLwIGc+k7FhiGIiIg0TyYDwsPxKjoaU6dOxfvvvw+ZTAZXV1cc3boV07dvhzTzYrmc+k7FhN1hRESkWUFBgJ8f7srl6A/g2OvNo0aNwqJFi1Dm1Kmcp76z24s0iCGIiIg0RyYD/PwQIpdjMICnAKwBBK1YgT5+fop9OPWdtITdYUREpDGvrlzBVLkc3lAEoMYAzgLoU7Pmm5049Z20hC1BRESkEbGxseg3YwYOv74/FsB3AMyya+Xh1HfSAoYgIiJSu1OnTqFXr164d+8erCwsEJSaig/l8txbeTj1nYoZQxARERWeTAZERSnG9bwOMGvXroWfnx9SU1Ph7u6O7du3o2apUmzlIZ3DEERERIXzetYX5HLAyAjpy5djyrVrWLRoEQDAx8cHf/zxB6ysrBT7M/yQjpEIkXlhhoJ7+PAh5HI5HBwc1FmTRiUkJMDa2hrx8fFvfjGJiKhgZDLFRQ1fz+hKBNAPQOjrh7/66isEBATAyIjzb0g9NPH3u1D/Oi9cuIA6derA0dERFStWRMWKFfHVV18hKSlJLUUREZGOi4pSBqD7ANpCEYBKmZtj06ZN+PbbbxmASOcV6l+or68v7O3tcfjwYURGRmLOnDnYvXs3PDw88OzZM3XXSEREuub1tX0uAWgO4BwAOwARmzejb9++Wi2NKL8K1R1WunRpnDlzBu7u7sptQgj07dsX5ubm+OOPP9RapDqxO4yIKJ+yGfT8tvAvv0Sv775DPAA3ALsDA1F16tRiL5MMg850h2XX4iORSDBv3jxs375dLYUREZEWBQUpxvx06JDtgqabNm1Cl8WLEQ+g9Xvv4ciFCwxApHfyHYK8vb0xffp0bNq0CaNHj8bEiRPx4MEDlX3i4+NRrlw5tRdJRETF6PVSF8plLN5Z0DQoKAgfffQRXr16hb59+yLs5EmUf+89LRZMVDj5niL/3nvv4ezZs1i1apUy/FSrVg39+vVDgwYNkJGRgVWrVuGHH37QWLFERFQM3hr0rPR6QdMft2zBxIkTAQD+/v5YunQppJnLXRDpmUKNCXrw4AEiIyNx7tw55e3GjRuQSqVwc3PDhQsXNFGrWnBMEBFRHt6Z/g4AwsgI306ciJnffw8A+PLLLzF//nxIJBJtVUkGRhN/vwt1sUR7e3t07doVXbt2VW57+fIlzp8/j/Pnz6ulMCIi0pLMBU39/YGMDAgjI3zZsSO+fx2A5syZg+nTpzMAkd4r0sUS9RFbgoiI8kkmg4iKwqT16/Hj64HRixcvxvjx47VcGBkinZkdRkREJZ+oWBFf7NqlDEArV65kAKIShSGIiIiyEEJgypQpynXAVqxYgVGjRmm5KiL1YggiIiIVQghMmzYNCxcuBAAsX74cfn5+Wq6KSP0YgoiISEkIgRkzZmD+/PkAgCVLlmD06NFaropIMxiCiIhIKSAgAIGBgQCAn376CWPGjNFyRUSawxBEREQAFDO/AgICAAA//PADxo0bp+WKiDSLIYiIiLB27VpMmDABgOI6QJn/TVSSMQQRERm47du3Y8SIEQCAiRMnYvr06VquiKh4MAQRERmwiIgI9O/fHxkZGRg2bBi+++47XgmaDAZDEBGRgTp9+jQ++OADpKamomfPnvj1119hZMQ/C2Q4+K+diMgAXblyBV27dkViYiI6dOiAjRs3wti4UMtJEukthiAiIgNz584ddO7cGU+ePEGTJk2wbds2mJuba7ssomLHEEREZEAePnyITp06QSaToVatWggJCYGlpaW2yyLSCoYgIiIDER8fj65du+L69euoXLky9u7dC1tbW22XRaQ1DEFERAbg5cuX8PHxQWRkJOzs7BAWFgZnZ2dtl0WkVQxBREQl3KtXr9CvXz8cOnQIVlZW2LNnD2rWrKntsoi0TqdC0MGDB+Hj4wMnJydIJBJs27ZN5XEhBGbNmgUnJydYWFjA09MTly5d0k6xRER6QC6XY/jw4di1axfMzc2xa9cuNGjQQNtlEekEnQpBSUlJqF+/PpYsWZLt4wsWLMCiRYuwZMkSnDp1Cg4ODujUqRMSExOLuVIiIh0lkwHh4YBMBiEEJkyYgPXr18PY2BhbtmxBmzZttF0hkc7QqYtCeHl5wcvLK9vHhBD48ccfMWPGDPTu3RsAsGbNGtjb22PDhg3w9/cvzlKJiHRPUBDg5wfI5YCREQK8vfHzzp2QSCRYu3YtvL29tV0hkU7RqZag3ERHRyMuLg6dO3dWbjMzM0O7du1w9OjRHJ+XmpqKhIQElRsRUYkjk70JQAB+lMsRsHMnAGDJkiUYMGCANqsj0kl6E4Li4uIAAPb29irb7e3tlY9lJzAwENbW1spbpUqVNFonEZFWREUpA9AqABNfb57j64tPP/1Ua2UR6TK9CUGZ3l3YTwiR62J/06ZNQ3x8vPJ29+5dTZdIRFT8XF0BIyP8DWDk602fSySYPnOmNqsi0ml6E4IcHBwAIEurz8OHD7O0Dr3NzMwMVlZWKjciohLH2Rlhn32GAQDkAHwlEixcuRIStn4T5UhvQlDVqlXh4OCAsLAw5ba0tDQcOHAALVu21GJlRETad+zYMfRcsQJpAD5s1w4roqMhGTkyz+cRGTKdmh324sUL3LhxQ3k/Ojoa586dg42NDSpXrowJEyZg3rx5cHV1haurK+bNm4dSpUph4MCBWqyaiEi7Lly4gG7duiE5ORmdO3fGHzt2QGpmpu2yiHSeToWg06dPo3379sr7kyZNAgAMHToUq1evxuTJk/Hy5Ut8+umnePbsGZo1a4a9e/dy8T8iMlg3btxA586d8fz5c7Rs2RJ///03zPIKQDKZYiC1qyvApTPIgEmEEELbRRSnhIQEWFtbIz4+nuODiEivRUdHo127drh79y7q1auHiIgIlCtXLvcnvXMtIaxcCfj6Fk/BREWgib/fejMmiIiI3rhz5w46dOiAu3fvombNmtizZ0/eAeidawlBLgf8/RXbiQyQTnWHERFRDt7qwpIBaN++PWJiYuDq6orw8HDlDNpcvXUtIaWMDODGDXaLkUFiCCIi0nVvdWHdl0jQvkIF3Hr4ENWqVcO///4LJyen/B3n9bWEVIKQVArUqKGZuol0HLvDiIh02VtdWHEAOgiBGw8fokqlSggPD4dzQVpwnJ0VY4CkUsV9qRRYsYKtQGSw2BJERKTLXndh3QPQEcA1AJUBhC9YgMqVKxf8eL6+QJcuii6wGjUYgMigMQQREekyV1dESyR4XwhEA6gE4F8jI1Rp3brwx3R2ZvghArvDiIh02rWkJLQpWxbRAKoDOGRkhOorVzLEEKkBQxARkabIZEB4eKGnoF+4cAFt27bFvWfPULtmTRzasgUut2/zuj5EasIQRESkCUFBgIsL0KGD4mdQUM77ZhOWjh8/Dk9PTzx8+BANGzZExOHDcOzThy1ARGrEK0YTEambTKYIPu9ORY+JyRpisrmC83ZbWwwYMAAvX75EixYtEBISgrJlyxbnGRDpHE38/ebAaCIidcvvRQmzuYLz0lGjMF4igVwuR7du3RAcHIwyZcoUX+1EBoTdYURE6pZ5UcK3ZXdRwrfCkhzAVABjhYBcLseoUaOwfft2BiAiDWIIIiJSt/xelPB1WEoCMADA/Neb53z5JVasWAFjYzbWE2kSQxARkSb4+irGAIWHK35mN6PL2Rkx8+ahFYBNAEwArB4+HDMWLIBEIinWcokMEf83g4hIU/K4KGFERAT6fvcdHgOwK1cOf/32G1r37l189REZOLYEEZH2FPE6OvpKLpdj4cKF6NixIx4/fozGjRvj9PnzDEBExYwhiIi0oyDX0SlBHj16hO7du2Py5MnIyMjAxx9/jEOHDqFSpUraLo3I4DAEEVHxy2ZqOPz9S3yLUEREBBo0aIDdu3fD3NwcK1aswLp162BhYaHt0ogMEkMQERW/3K6jUwIlJydj0qRJ6NChA+7fv49atWrh5MmT8PPz4wBoIi3iwGgiKn6Z19F594rK715HpwQ4cuQIhg8fjqioKACAr68vFi9ejNKlS2u5MiJiSxARFb/8XkdHjz1//hzjx49HmzZtEBUVhYoVKyIkJAS//fYbAxCRjmBLEBFph68v0KWLogusRo0SE4DkcjnWrFmDKVOm4NGjRwCAESNG4Pvvv+f6X0Q6hiGIiLQnj+vo6Jtjx45h4sSJOHHiBADA3d0dP//8Mzp27KjlyogoO+wOIyIqovPnz8PHxwctW7bEiRMnUKZMGXz33Xc4f/48AxCRDmNLEBFRIZ0/fx6BgYEIDg4GAEilUgwbNgyzZ8+Gk5OTlqsjorwwBBERFYAQAvv27cPChQsRFham3N6/f3/Mnj0bNWvW1GJ1RFQQDEFERPnw7Nkz/PHHH1i5ciUuXrwIADAyMkJfb29MnT0bDRo00G6BRFRgDEFERDlIT0/HgQMHsGbNGmzevBkpKSkAgFKmphiZloYJcjmq/vMP0KMHwBBEpHcYgoioZJDJFFeidnUt0oyzjIwMHDp0CMHBwfjrr7+U09wB4L333oNfv374+JtvUC5zY+aSH126lKiZbkSGgCGIiPRfUNCbtciMjBQXYvT1zffT4+LisHfvXoSGhmLv3r148uSJ8rHy5cujT58+GDFiBJo2bQpJRAQghOoBMpf8YAgi0isMQUSk33JajDWXlpm4uDgcOXIER44cQUREBCIjI1UeL1euHHr37o1+/fqhffv2MDExefOgAS35QVTSMQQRkX7LbTFWZ2e8fPkSFy9exNmzZ3Hs2DEcPnwYN2/ezHKYxo0bo2vXrujatSuaN28OY+Mcvh4zl/zw91e8Tglc8oPIUEiEeLddt2RLSEiAtbU14uPjYWVlpe1yiKioZDLAxQWQy/EMwDkAkRIJInv1QuS1a7h69SoyMjJUniKRSFC3bl20bt0arVq1QseOHWFvb1/w1y1hS34Q6TJN/P1mSxAR6R0hBG7fvo3z58/j3LlzOFe/PiIjI3H7zQ7A338r97e1tUXDhg3RxM0NrStWRAsfH5StU6doRZSwJT+IDBFDEBHptJcvX+LSpUs4d+4czp8/j/Pnz+PChQuIj4/Pdv8qlSqhoYcHGjZsqLw5OTlB8vvvb8YOzZhR4MHTRFTysDuMiHTGq1ev8N9//+HkyZM4ceIETp48iatXr0L+7pgfACYmJqhduzbq16+P+vXro2HDhmjQoAHKlSuX9cBvdZkpSaVATAxbc4j0BLvDiKhEefToEQ4ePIgjR47gxIkTOHv2rPKChG+ztbVVhp3MW61atWBqapq/F8pj8DQRGSaGICIqNpmhJyIiAhEREcrlJ95WtmxZNG3aVHlr7OgIx4QESGrWLHxg4bR2IsoGQxARaYxcLseZM2fwzz//ICQkBKdOncqyT926ddG2bVs0b94czZo1Q40aNWBkZKR4MCgI6Nmz0BdBVOK0diLKBscEEZFaJScnY/fu3di5cyd2796Nhw8fqjxet25deHp6wtPTE23btkWFChWyP5AmxvFwWjuR3uKYICLSSS9fvsTu3buxadMm7Nq1C0lJScrHLC0t0blzZ3Tr1g1eXl5wdHTM30E1MY4nP9Pa1bQGGRHpPoYgIiqU9PR07N27F+vWrcPOnTtVgo+Liwv69OmD7t27o1WrVvkfwPw2bYzjKeIaZESkX/QqBM2aNQsBAQEq2+zt7REXF6eliogMz+XLl7F69WqsW7dO5XevcuXK6NevH/r27YsmTZpAIpEU7YWKexxPIdYgIyL9plchCADq1KmDffv2Ke9LpVItVkOkJ4rYxRMfH48NGzZg1apVKoObbW1t8fHHH2PgwIGqwUddXUq+vooQUhzjeDiNnsjg6F0IMjY2hoODg7bLINIfRejiuXr1KpYsWYLVq1cru7uMAXgDGCaRoNucOTD191fb62WruJan4DR6IoNjpO0CCioqKgpOTk6oWrUqPvroI9y6dSvX/VNTU5GQkKByIzIYOXXxyGQ5PkUulyMkJARdu3ZFrVq1sHTpUiQlJaF2zZr4QSLBPQDbAPQUAqZjxqgeqxCvpzMyu98yW5c5jZ6oxNOrENSsWTOsXbsWe/bswa+//oq4uDi0bNkST548yfE5gYGBsLa2Vt4qVapUjBUTaVluXTzvSEhIwE8//QQ3Nzd4e3tjz549kEgk+OCDD7Bv3z5cXL4cE4SAXW7HKsDr6SRfX8UU/PBwxU8OiiYq0fT6OkFJSUmoXr06Jk+ejEmTJmW7T2pqKlJTU5X3ExISUKlSJV4niAxDPq61c/36dSxZsgSrVq3CixcvAADW1tbw9fXFmDFjUK1atXwfi2t0EZGmaOI6QXrVEvSu0qVL47333kNUVFSO+5iZmcHKykrlRmQwcujikTs5ITQ0FN26dYObmxt+/vlnvHjxArVq1cKyZcsgk8nw/fffvwlAuRxLJdywS4mI9IjeDYx+W2pqKq5cuYI2bdpouxQi3fXWDKsEe3us2bcPS2rVwvXr1wEAEokE3bt3x/jx4/H+++/nPrU9P7O1inNGFxFREehVCPriiy/g4+ODypUr4+HDh5gzZw4SEhIwdOhQbZdGpNOiXr7Ekq1bsWrVKiQmJgIArKyslF1e1atXz//B8jNbq7hmdBERFYFehSCZTIYBAwbg8ePHqFChApo3b47jx4/DxcVF26URKejQkgtyuRxhYWH46aefEBISotzu5uaG8ePHY8iQIShTpowWKyQi0i69CkF//vmntksgypmOLLkQHx+PNWvWYOnSpcouLwDw9vbG+PHj0bFjxzertBMRGTC9nh1WGFxFnjRCB2ZFXbp0CUuXLsXatWuVFza0tLTEiBEjMGbMGLi6uhZLHUREmsBV5Il0lZaWXEhPT8eOHTuwZMkShIeHK7fXrl0bY8eOxaBBg2BpaZm/g+lQVx4RUXFgCCJSh4IsuaCGsHHt2jWsWrUKa9asUS5iamRkhJ49e2Ls2LHw9PQs2AKmOtKVR0RUnDgwgEgd8nt9nKAgRbdZhw6Kn0FB+X6JFy9eYNWqVWjdujXc3d0xf/58xMXFoUKFCpg+fTqio6Px119/oX379gULQPq81AURURFwTBCROslkOV8fpxDjhlJSUrB7924EBwdj586dSE5OBqBo9enWrRt8e/SAt4sLTGrVKnwXVni4IpRlt93Ts3DHJCJSM44JItJ1uV0fJ5/jhpKTk7F//35s2rQJ27dvV17XBwBcXV0xYsQIDBkyBE67d6unC4urpxORgWJLEFFxyaUlKPrVK4SEhCAkJAT//vsvUlJSlLtUcnJCvwED0L9/f3h4eCi6utQ9Gy0oSNEFlpHxpiuPY4KISIewJYhIn70eNyT8/HBbLsdBiQSHWrbEgQ4dsqx/V8nGBr2ePkV/AM1jY2FUqxbQpMmbHdQ9G41LXRCRAWJLEJGGxcXFITIyEmfPnkVkZCROHjuGu/fvq+wjlUrRunVrdOvWDd0aNUKdzp0heftXk6u1E5GBY0sQkY5KSkpCTEwMoqKicP36deXPa9eu4cGDB1n2NzY2hoeHB9q2bYu2bduiVatWKFu2rOLB8HDg3f83ebeVJ3M22rtdWAxARET5xhBElIu0tDTExsbi/v37Krd79+6p3I+Pj8/xGBKJBG5ubmjUqBEaNmyIRo0aoVmzZihdunT2T8jvQGV2YRERFQlDkKbxKrzak8d7n5aWhujoaNy4cQMymSxLsLl//z4ePXqU75ezsrJCzZo14erqqvzp6uqK2rVrF2yh0oK08nC1diKiQmMI0iRehbfg1BUa33rvkyUSXJw2DedcXHD+/Hlcv34dN27cwJ07dyB/d3BxNkxMTODk5AQnJydUrFgxx//O9/IU+cFWHiIijePAaE3hwNWCU1NovHvyJA42b46DQuAwgKsAcoo6pUuXRg0XF1S2tkbF6tXhVLOmSrBxdHRE+fLlYXT/Plv0iIi0iAOj9YmWFtTUWzkt3dClS57vV0pKCsLDw7Fjxw6EhoYiJiYmyz52ABo2aYL67dujdu3aqFGjBqpXrw77Xbsg8fdXvN6JE9kHL7boERGVSGwJ0hS2BBVMAZduSElJwa5du7Bx40bs2bMHSUlJysekUikaZWSgLYC2AJoCcMjuvc/PZ8TPkYhIJ7AlSJ9wCnPB5GNGlBAChw4dwrp167B582aVGVkVK1aEj48PunfvjrZt28Jy06a83/v8tNaxRY+IqMRiCNIkDm7Nv1xCY2JiItasWYOlS5fi6tWryqdUqlQJH3/8Mfr27YuGDRuqrpyen/c+P1PRua4WEVGJxRCkaZzCnH/vBJcbKSlYPG4c1qxZo1xEtEyZMujbty8GDx6Mdu3awcjIKOfj5fXe56e1ji16REQlFscEkc65fv065syZg/Xr1yunsLu7u2Ps2LEYPHiw4nNT5/WXZLK8W+vysw8REWkMxwSRfssjuFy7dg1z5szBhg0blOHHy8sLkyZNwvvvv/+mu0vds7Xy01rHFj0iohInl74EIjUKClLMsurQQfEzKEj50JUrV/Dxxx+jdu3a+OOPPyCXy9G9e3ecPHkSISEh6Nix45sAlNNUeplMCydFRET6jC1BpHk5BJfLVavi219/RXBwMDJ7ZT/44AN88803aNy4cfbH4mwtIiJSE4YgQ1Wca5q9E1wuAvg2IwObO3ZUhp+ePXvim2++QcOGDXM/FmdrERGRmrA7TJ/IZIqLBxa16yeXrimNeB1c/gPQF8B7ADZBcd2f3r1749y5c9i6dWveAQh4M1tLKlXc52wtIiIqJIYgfaGu4KKFMTWRjx6hT4MGqAdgy+ttHzZujPPnz+Ovv/5C/fr1C3ZAX1/FFZvDwxU/uYQFEREVAkOQPlBncMltTI2aHT16FN26dUOjRo3w99mzkEgk6Ofpif/CwrD59GnUq1ev8Ad3dlYsp8EWICIiKiSOCdIxd+7cwYEDB/Dff/8hKioKz549Q8K9ezCSy2EJwAZADQCuGRmos307Go0cCTMzs/y/gIbH1MjlcoSFheF///sfIiIiAABGRkYYMGAApk2bhjp16qjldYiIiIqKF0vUATKZDOvWrcO6detw5cqVAj3X1NQUHh4eaNmyJTw9PdG6dWtYW1vn/qSgoKxXQC5il1JCQgLWrFmDJUuW4Pr16wAAExMTDB06FFOmTEENDlwmIqIi0MTfb4YgLbp8+TK+/fZblSniRkZGaNKkCTw8PODu7g47OztYWlpChIYi8eef8VAIREkkuF67Ns4+fIhHjx6pHNPIyAiNGzeGp6cn2rdvj9atW8PS0jLri6vhCshyuRwHDhzA+vXrsWnTJuXSFpaWlhgxYgQ+//xzVKpUqVDHJiIiehtDkBroQgh68OABJk+ejHXr1inDT7t27TB06FD07t0755acd4KLEAK3bt3C0aNHcejQIYSHh+PGO2N7pFIpPDw8lKGoVatWKFOmTP6LfWcqfXJyMiIiIhAaGoq///4b9+7dU+6aubTFkCFDsg9eREREhcQQpAb5ehM1dA0duVyO5cuXY8aMGYiPjwcA9OrVC9988w0aNGiglteQyWSIiIhAeHg4IiIicOvWLZXHjY2N0aRJE7Rt2xbu7u6oXr06KlWqhLJly8LS0hJSqRTp6elISUlB3E8/4c5XXyFaCEQCOF2tGiJlMqSlpSmPV7ZsWfTt2xcff/wx2rZtq7qSOxERkZowBKlBnm+iuteleu3evXsYNmwY9u3bBwBo3Lgxli1bhqZNmxb52Fm8FeLuyOXKUBQeHo7bt2/n+lQjIyPlul05cXFxQdeuXdGtWzd06dKlYAOziYiICoEhSA0y38QffvgB5ubm8PT0hLu7u+JBmUxxDZ53Z07FxBSpReivv/6Cn58fnj59CgsLCyxYsACffPIJpJkX/FOnPEJcTEwMwsPDceLECdy8eRM3b97EvXv3VFp3MpUCUPn17T0AjQF4rFuHGh9/rNriU5xXnyYiIoPEEKQGmW/i2/r27YsffvgBFa9fV1yM8F3h4Ypr0hTQixcvMH78eKxatQqAovVn/fr1cHNzK0zpeStCiEtNTUV8fDwyMjJgZmYGs8ePUcrdHZK3/3lkdywNtZwRERG9TRMhyGAvllgfwPu1asHIyAibN29GvXr1sC8uTvGH/G2FvIbOuXPn4OHhgVWrVkEikWD69Ok4evSo5gIQUKQLIZqZmcHOzg6Ojo6wsbFB6Zo1Ifn119yXp+CK7kREpMcMNgRFANh3/TrO7t6Nxo0b4+nTp+gyaBC+69MHIjMIFWJdKiEEfv75ZzRr1gzXrl1DxYoVER4ejrlz58LU1FQj56KUeSHEtxXlQoh5LU9RjFefJiIiUjeDDUFGAJCRgfqmpjh8+DCGDx8OuVyOLzdvxgBvb7wICSnwulT3799Hjx49MH78eKSlpcHHxwfnzp1Du3btNHUaqjSxuGhuy1OoO3QREREVI4MNQQCUf7DNzc0RFBSEJUuWwNjYGME7d6L5l1/i4vPn+TqMXC7HypUrUatWLezcuROmpqZYvHgxtm/fDltb2/zVoq4V4otzcVGu6E5ERHrMYAdGxxsZwSqbQbxHjhxB3759ERsbC2NjY3z++eeYMmUKypUrl+VY6enp2LFjB2bOnImLFy8CAJo0aYKgoCC89957+S9K3wcXq+Hq00RERLnh7DA1UL6Jly/DqlatbPeJi4vD6NGjsX37dgBAqVKl4OPjgxYtWqBChQp4/vw5IiMj8c8//yA2NhYAYG1tjZkzZ2L8+PEFm/quoWn5REREJQlDkBoU5E3csWMHvv76a1y4cCHHfWxtbeHv74/PP/8829aiPIWHq3VaPhERUUnEEPTasmXLsHDhQsTGxqJOnTr48ccf0aZNm3w9t6BvohACx44dw549e3Dx4kU8e/YM1tbWqFGjBjw9PdGpU6eizfpiSxAREVGeNBGCjNVylGIUHByMCRMmYNmyZWjVqhVWrFgBLy8vXL58GZUrV1b760kkErRs2RItW7ZU+7EBvBlc7O+vmF7OwcVERETFQu9agpo1a4ZGjRph+fLlym21atVCz549ERgYmOfzdWEV+WxxcDEREVGODL4lKC0tDWfOnMHUqVNVtnfu3BlHjx7N9jmpqalITU1V3k9ISNBojYXm7MzwQ0REVIz06jpBjx8/RkZGBuzt7VW229vbIy4uLtvnBAYGwtraWnmrVKlScZRKREREOk6vQlAmlRXMoRi8/O62TNOmTUN8fLzydvfu3eIokYiIiHScXnWH2draQiqVZmn1efjwYZbWoUxmZmYwMzMrjvKIiIhIj+hVS5CpqSkaN26MsLAwle1hYWGam71FREREJZJetQQBwKRJkzB48GB4eHigRYsWWLlyJe7cuYPRo0druzQiIiLSI3oXgvr3748nT55g9uzZiI2NRd26dRESEgIXFxdtl0ZERER6RO+uE1RUOnudICIiIsqRJv5+69WYICIiIiJ1YQgqCplMsdCpTKbtSoiIiKiAGIIKKyhIsfBphw6Kn0FB2q6IiIiICoAhqDBkMsDP783K73K5YgFUtggRERHpDYagwoiKehOAMmVkKBZAJSIiIr3AEFQYrq6A0TtvnVSqWAGeiIiI9AJDUGE4OwMrVyqCD6D4uWIFV4EnIiLSI3p3sUSd4esLdOmi6AKrUYMBiIiISM8wBBWFszPDDxERkZ5idxgREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAySXoWgKlWqQCKRqNymTp2q7bKIiIhIDxlru4CCmj17NkaNGqW8X6ZMGS1WQ0RERPpK70KQpaUlHBwctF0GERER6Tm96g4DgPnz56N8+fJo0KAB5s6di7S0NG2XRERERHpIr1qCPvvsMzRq1AjlypXDyZMnMW3aNERHR+O3337L8TmpqalITU1V3o+PjwcAJCQkaLxeIiIiUo/Mv9tCCPUdVGjZzJkzBYBcb6dOncr2uVu2bBEAxOPHj4t0fN5444033njjTT9uN2/eVFsGkQihzkhVcI8fP8bjx49z3adKlSowNzfPsv3evXtwdnbG8ePH0axZs2yf+25L0PPnz+Hi4oI7d+7A2tq6aMXrkYSEBFSqVAl3796FlZWVtsspNjxvnrch4HnzvA1BfHw8KleujGfPnqFs2bJqOabWu8NsbW1ha2tbqOdGRkYCABwdHXPcx8zMDGZmZlm2W1tbG9Q/nkxWVlY8bwPC8zYsPG/DYqjnbWSkvuHMWg9B+XXs2DEcP34c7du3h7W1NU6dOoWJEyfigw8+QOXKlbVdHhEREekZvQlBZmZmCA4ORkBAAFJTU+Hi4oJRo0Zh8uTJ2i6NiIiI9JDehKBGjRrh+PHjRT6OmZkZZs6cmW0XWUnG8+Z5GwKeN8/bEPC81XfeWh8YTURERKQNenexRCIiIiJ1YAgiIiIig8QQRERERAaJIYiIiIgMUokMQcuWLUPVqlVhbm6Oxo0b49ChQ7nuf+DAATRu3Bjm5uaoVq0afvnll2KqVL0Kct5///03OnXqhAoVKsDKygotWrTAnj17irFa9Sno553pyJEjMDY2RoMGDTRboIYU9LxTU1MxY8YMuLi4wMzMDNWrV8fvv/9eTNWqT0HPe/369ahfvz5KlSoFR0dHDB8+HE+ePCmmaovu4MGD8PHxgZOTEyQSCbZt25bnc0rCd1pBz7ukfKcV5vPOpM/faYU5b3V8p5W4EBQcHIwJEyZgxowZiIyMRJs2beDl5YU7d+5ku390dDS6deuGNm3aIDIyEtOnT8f48ePx119/FXPlRVPQ8z548CA6deqEkJAQnDlzBu3bt4ePj4/yKtz6oqDnnSk+Ph5DhgzB+++/X0yVqldhzrtfv37Yv38/goKCcO3aNWzcuBHu7u7FWHXRFfS8Dx8+jCFDhsDX1xeXLl3C5s2bcerUKYwcObKYKy+8pKQk1K9fH0uWLMnX/iXlO62g511SvtMKet6Z9P07rTDnrZbvNLWtQqYjmjZtKkaPHq2yzd3dXUydOjXb/SdPnizc3d1Vtvn7+4vmzZtrrEZNKOh5Z6d27doiICBA3aVpVGHPu3///uKrr74SM2fOFPXr19dghZpR0PPevXu3sLa2Fk+ePCmO8jSmoOe9cOFCUa1aNZVtP/30k3B2dtZYjZoEQGzdujXXfUrKd9rb8nPe2dHH77S3FeS89f077W35OW91faeVqJagtLQ0nDlzBp07d1bZ3rlzZxw9ejTb5xw7dizL/l26dMHp06fx6tUrjdWqToU573fJ5XIkJibCxsZGEyVqRGHPe9WqVbh58yZmzpyp6RI1ojDnvWPHDnh4eGDBggWoWLEiatasiS+++AIvX74sjpLVojDn3bJlS8hkMoSEhEAIgQcPHmDLli3w9vYujpK1oiR8p6mDPn6nFZa+f6cVhrq+0/TmitH58fjxY2RkZMDe3l5lu729PeLi4rJ9TlxcXLb7p6en4/Hjx7kuzqorCnPe7/r++++RlJSEfv36aaJEjSjMeUdFRWHq1Kk4dOgQjI31859/Yc771q1bOHz4MMzNzbF161Y8fvwYn376KZ4+fao344IKc94tW7bE+vXr0b9/f6SkpCA9PR0ffPABfv755+IoWStKwneaOujjd1phlITvtMJQ13daiWoJyiSRSFTuCyGybMtr/+y267qCnnemjRs3YtasWQgODoadnZ2mytOY/J53RkYGBg4ciICAANSsWbO4ytOYgnzecrkcEokE69evR9OmTdGtWzcsWrQIq1ev1qvWIKBg53358mWMHz8e33zzDc6cOYPQ0FBER0dj9OjRxVGq1pSU77TC0vfvtPwqad9pBaGu77QSFRttbW0hlUqz/F/hw4cPs/yfUSYHB4ds9zc2Nkb58uU1Vqs6Fea8MwUHB8PX1xebN29Gx44dNVmm2hX0vBMTE3H69GlERkZi7NixABS/SEIIGBsbY+/evejQoUOx1F4Uhfm8HR0dUbFiRVhbWyu31apVC0IIyGQyuLq6arRmdSjMeQcGBqJVq1b48ssvAQD16tVD6dKl0aZNG8yZM6dEtoqUhO+0otDn77SCKinfaYWhru+0EtUSZGpqisaNGyMsLExle1hYGFq2bJntc1q0aJFl/71798LDwwMmJiYaq1WdCnPegOL/loYNG4YNGzbo5RiJgp63lZUV/vvvP5w7d055Gz16NNzc3HDu3Dk0a9asuEovksJ83q1atcL9+/fx4sUL5bbr16/DyMgIzs7OGq1XXQpz3snJyTAyUv2ak0qlAN60jpQ0JeE7rbD0/TutoErKd1phqO07rUjDqnXQn3/+KUxMTERQUJC4fPmymDBhgihdurSIiYkRQggxdepUMXjwYOX+t27dEqVKlRITJ04Uly9fFkFBQcLExERs2bJFW6dQKAU97w0bNghjY2OxdOlSERsbq7w9f/5cW6dQKAU973fp60yKgp53YmKicHZ2Fh9++KG4dOmSOHDggHB1dRUjR47U1ikUSkHPe9WqVcLY2FgsW7ZM3Lx5Uxw+fFh4eHiIpk2bausUCiwxMVFERkaKyMhIAUAsWrRIREZGitu3bwshSu53WkHPu6R8pxX0vN+lr99pBT1vdX2nlbgQJIQQS5cuFS4uLsLU1FQ0atRIHDhwQPnY0KFDRbt27VT2j4iIEA0bNhSmpqaiSpUqYvny5cVcsXoU5LzbtWsnAGS5DR06tPgLL6KCft5v09cvDCEKft5XrlwRHTt2FBYWFsLZ2VlMmjRJJCcnF3PVRVfQ8/7pp59E7dq1hYWFhXB0dBQff/yxkMlkxVx14YWHh+f6u1pSv9MKet4l5TutMJ/32/T1O60w562O7zSJECW0TZiIiIgoFyVqTBARERFRfjEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCKiEmH27Nl47733ULp0adjb2+OTTz7Bq1evtF0WEekwY20XQERUVEIIZGRkYMWKFahYsSIuX76MIUOGoF69evjkk0+0XR4R6SguoEpEJdLAgQNRoUIFLF68WNulEJGOYncYEem927dvY+zYsahbty7KlSuHMmXKYNOmTXB2dtZ2aUSkwxiCiEivPX78GE2bNsXjx4+xaNEiHD58GMeOHYNUKkWDBg20XR4R6TCOCSIivRYSEoL09HRs3LgREokEALB06VKkpaUxBBFRrhiCiEiv2djYICEhATt27EDt2rWxc+dOBAYGomLFiqhQoYK2yyMiHcaB0USk14QQ+OSTT7BhwwZYWFhg0KBBSElJwe3bt7Fr1y5tl0dEOowhiIiIiAwSB0YTERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDNL/AakVHOyR/Wf4AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbJ0lEQVR4nO3dd1hT598G8DsMg6IgqCxRtIpYFzgq7oETR92zraKoWLe2r6PaiqPaauuvtm6L2qGIW2tFREVtHa0DFy6sgETFgRJQGUKe949IJDJkJCQh9+e6cmFOTg7fk0C4fc4zJEIIASIiIiIjY6LrAoiIiIh0gSGIiIiIjBJDEBERERklhiAiIiIySgxBREREZJQYgoiIiMgoMQQRERGRUWIIIiIiIqPEEERERERGiSGIdKpdu3Zo166drssoNB8fH5QtWzZf+1arVg0+Pj5arUcikcDf31+r3+NdXr58CX9/fxw7dkyndRiKI0eOoEmTJrC0tIREIsGePXuwadMmSCQSREdHq/bbsmULfvjhB63UMGfOHFStWhVmZmYoX758gZ/v4+ODatWqabwuffPrr79i8ODBcHNzg4mJSa7n7OPjA4lEkuvtzJkzxVs45cpM1wWQcVu1apWuSyg2u3fvhpWVla7L0LqXL19i3rx5AGDQAbc4CCEwcOBA1KpVC/v27YOlpSXc3NyQnp6O06dPw9HRUbXvli1bcPXqVUyZMkWjNezduxdff/01Zs+eDW9vb0ilUo0evyT57bffEBcXh6ZNm0KhUODVq1c57vfll19i7Nix2bb37NkTUqkUH3zwgbZLpXxiCCKdqlOnjq5LKDYNGzbUdQmkQcnJybCwsIBEIin0Me7fv4+nT5+iT58+6NChg9pjlSpVKmqJ+XL16lUAwKRJk2BnZ1cs31NTNPEeFERISAhMTJQXUHr06KF67d5Wo0YN1KhRQ23b8ePH8eTJE8yZMwempqZar5Xyh5fDKN/8/f0hkUgQERGBIUOGwNraGvb29hg5ciTkcrnavikpKZg1axaqV6+OUqVKoXLlyhg/fjwSEhLU9svpctjq1avh7u6OsmXLoly5cqhduza++OILAEB0dDTMzMywePHibPWdOHECEokE27dvz/M8EhIS8Nlnn+G9996DVCqFnZ0dunXrhhs3bgAAjh07BolEku1yTnR0NCQSCTZt2pTtmBEREejQoQMsLS1RqVIlTJgwAS9fvlTbJ6fLYe+qRRPi4uLg5+cHZ2dnlCpVCtWrV8e8efOQnp6utt+8efPg6ekJW1tbWFlZoVGjRggICMDbaywfPXoU7dq1Q4UKFVC6dGlUrVoV/fr1w8uXLxEdHa364z1v3jxV8/+7LgO+fPkSn3/+OapXrw4LCwvY2tqiSZMmCAwMVNtv06ZNcHNzg1Qqxfvvv49ff/0126WYgrx/586dw+DBg1GtWjWULl0a1apVw5AhQxATE5Pt+0okEhw6dAgjR45EpUqVUKZMGaSmpgIAgoKC0Lx5c1haWqJs2bLo0qULwsPD8zxnf39/ODs7AwBmzJgBiUSiOo+3L4e1a9cOf/75J2JiYtQuq+RFoVBgyZIlqF27tupna9iwYZDJZKp9qlWrhjlz5gAA7O3t83U5Naf3ICdpaWlYuHCh6vtXqlQJI0aMwOPHj9X2S01NxWeffQYHBweUKVMGbdq0wfnz57P9vmjqPTh37hw+/PBD2NrawsLCAg0bNsS2bdvyPOdMmQGoMAICAiCRSDBy5MhCH4M0jy1BVGD9+vXDoEGD4OvriytXrmDWrFkAgA0bNgBQNvH37t0bR44cwaxZs9C6dWtcvnwZc+fOxenTp3H69Olcm9y3bt2KcePGYeLEifjuu+9gYmKC27dv49q1awCUH9offvgh1qxZg+nTp6v9j2rFihVwcnJCnz59cq09KSkJrVq1QnR0NGbMmAFPT088f/4cJ06cwIMHD1C7du0Cvx6vXr1Ct27d4Ofnh5kzZ+LUqVNYuHAhYmJi8McffxS5Fh8fH/zyyy+IiooqcL+LzKZ7ExMTfPXVV6hRowZOnz6NhQsXIjo6Ghs3blTtGx0dDT8/P1StWhUAcObMGUycOBH37t3DV199pdqne/fuaN26NTZs2IDy5cvj3r17OHjwINLS0uDo6IiDBw+ia9eu8PX1xahRowC8u1Vj2rRp+O2337Bw4UI0bNgQL168wNWrVxEfH6/aZ9OmTRgxYgR69eqF77//HnK5HP7+/khNTS30H6fo6Gi4ublh8ODBsLW1xYMHD7B69Wp88MEHuHbtGipWrKi2/8iRI9G9e3f89ttvePHiBczNzbFo0SLMmTMHI0aMwJw5c5CWloalS5eidevW+Pfff3Nt7Rw1ahTc3d3Rt29fTJw4EUOHDs3192LVqlUYM2YM/vvvP+zevTtf5/bpp59i3bp1mDBhAnr06IHo6Gh8+eWXOHbsGC5cuICKFSti9+7dWLlyJQICAnDw4EFYW1urgllO8vseKBQK9OrVC3/99RemT5+OFi1aICYmBnPnzkW7du1w7tw5lC5dGgAwYsQIBAUFYfr06fDy8sK1a9fQp08fJCYm5lhDUd6DsLAwdO3aFZ6enlizZg2sra2xdetWDBo0CC9fvtRanz25XI4dO3agQ4cOqF69ula+BxWSIMqnuXPnCgBiyZIlatvHjRsnLCwshEKhEEIIcfDgwRz3CwoKEgDEunXrVNvatm0r2rZtq7o/YcIEUb58+TzrCAsLEwDE7t27Vdvu3bsnzMzMxLx58/J87vz58wUAERoa+s7jh4WFqW2PiooSAMTGjRtV24YPHy4AiOXLl6vt+/XXXwsA4u+//1Ztc3FxEcOHDy9QLUIIMXLkSGFqaiqio6Pz3E8IIQCIuXPnqu77+fmJsmXLipiYGLX9vvvuOwFARERE5HicjIwM8erVKzF//nxRoUIF1Xu7Y8cOAUBcvHgx1xoeP36crY53qVevnujdu3euj2dkZAgnJyfRqFEjVS1CCBEdHS3Mzc2Fi4uLaltB3r+3paeni+fPnwtLS0u193Tjxo0CgBg2bJja/nfv3hVmZmZi4sSJatuTkpKEg4ODGDhwYB5n/aampUuXqm3P/H5RUVGqbd27d1c7z7xcv35dABDjxo1T2/7PP/8IAOKLL75Qbcv8vX78+HGexyzIexAYGCgAiJ07d6od4+zZswKAWLVqlRBCiIiICAFAzJgxQ22/zOdn/X3RxHtQu3Zt0bBhQ/Hq1Su1fXv06CEcHR1FRkZGnq9BVgV5P1avXi0AiMDAwHwfn4oHL4dRgX344Ydq9xs0aICUlBQ8evQIgPJyCYBs/6saMGAALC0tceTIkVyP3bRpUyQkJGDIkCHYu3cvnjx5km2fdu3awd3dHStXrlRtW7NmDSQSCcaMGZNn7cHBwahVqxY6duyY534F9dFHH6ndHzp0KADl/zyLWktAQADS09Ph4uJS4Lr279+P9u3bw8nJCenp6aqbt7c3AGU/hUxHjx5Fx44dYW1tDVNTU5ibm+Orr75CfHy86r318PBAqVKlMGbMGPzyyy+4c+dOgerJWkN6errqUlvTpk0RHByMmTNn4tixY0hOTlZ73s2bN3H//n0MHTpU7TKQi4sLWrRoUeDXJdPz588xY8YM1KxZE2ZmZjAzM0PZsmXx4sULXL9+Pdv+/fr1U7sfEhKC9PR0DBs2TO28LCws0LZtW52NkMv8uXv7d7Bp06Z4//338/wdzE1B3oP9+/ejfPny6Nmzp9rr4uHhAQcHB9XrkvnzN3DgQLXn9+/fH2ZmOV+oKOx7cPv2bdy4cUP1u5p1327duuHBgwe4efNmgV+X/AgICECFChXybKUm3WAIogKrUKGC2v3MJvzMP1zx8fEwMzPLdglEIpHAwcFB7RLH2z755BNs2LABMTEx6NevH+zs7ODp6YnQ0FC1/SZNmoQjR47g5s2bePXqFdavX4/+/fvDwcEhz9ofP36cZ3N/YZiZmWV7TTLryOtctVHL2x4+fIg//vgD5ubmare6desCgCpk/vvvv+jcuTMAYP369Th58iTOnj2L2bNnA3jz3taoUQOHDx+GnZ0dxo8fr+oAunz58nfWEh0dna2OzD+CP/74I2bMmIE9e/agffv2sLW1Re/evREZGQngzeuY0/v7rvc8L0OHDsWKFSswatQohISE4N9//8XZs2dRqVKlbEEMgNpoLUD5+gLABx98kO3cgoKCcgzxxSHz9Xq7XgBwcnLK8+fyXcfMz3vw8OFDJCQkoFSpUtlel7i4ONXrknlMe3t7tefn9DuVqbDvQeZ+n3/+ebb9xo0bBwBaeb8uX76Mc+fO4eOPP+bIOz3EPkGkcRUqVEB6ejoeP36sFoSEEIiLi3vn8NARI0ZgxIgRePHiBU6cOIG5c+eiR48euHXrlqo1ZOjQoZgxYwZWrlyJZs2aIS4uDuPHj39nbZUqVVLrGJoTCwsLAFB1uMyU2wdkeno64uPj1T604+LiAGQPjAWtpagqVqyIBg0a4Ouvv87xcScnJwDKvljm5ubYv3+/6vwBYM+ePdme07p1a7Ru3RoZGRk4d+4cfvrpJ0yZMgX29vYYPHhwrrU4OTnh7Nmzatvc3NwAAJaWlpg3bx7mzZuHhw8fqlqFevbsiRs3bqhex8zXNau3t+X3/ZPL5di/fz/mzp2LmTNnqranpqbi6dOnOZ7D252RM/sM7dixo1AtddqS+Xo9ePAgW9C+f/9+tr5OBTlmft6DihUrokKFCjh48GCOxypXrpzaMR8+fIjKlSurHs/8ncpJYd+DzP1mzZqFvn375rhP5s+jJgUEBACAqn8c6Re2BJHGZQ71/f3339W279y5Ey9evMg2FDg3lpaW8Pb2xuzZs5GWloaIiAjVYxYWFqpLMsuWLYOHhwdatmz5zmN6e3vj1q1bqkt2OcnsfHz58mW17fv27cv1OZs3b1a7v2XLFgB5z5OTn1qKKnMYb40aNdCkSZNst8wQJJFIYGZmptbRPDk5Gb/99luuxzY1NYWnp6fqsuSFCxcAZG8ZzFSqVKls3z/zj2FW9vb28PHxwZAhQ3Dz5k28fPkSbm5ucHR0RGBgoNpotZiYGJw6dUrt+fl9/yQSCYQQ2f53/vPPPyMjIyPX886qS5cuMDMzw3///Zfj69ukSZN8HSc/pFJpjq1TOfHy8gKQ/Xfw7NmzuH79er5/B7MqyHvQo0cPxMfHIyMjI8fXJDNstGnTBoByZFdWO3bsyDZ6MTf5fQ/c3Nzg6uqKS5cu5bpfTj+PRZGamorff/8dTZs2Rb169TR6bNIMtgSRxnXq1AldunTBjBkzkJiYiJYtW6pGhzVs2BCffPJJrs8dPXo0SpcujZYtW8LR0RFxcXFYvHgxrK2ts7UgjRs3DkuWLMH58+fx888/56u2KVOmICgoCL169cLMmTPRtGlTJCcn4/jx4+jRowfat28PBwcHdOzYEYsXL4aNjQ1cXFxw5MgR7Nq1K8djlipVCt9//z2eP3+ODz74QDU6zNvbG61atSpSLQDg6+uLX375Bf/991+BWxvmz5+P0NBQtGjRApMmTYKbmxtSUlIQHR2NAwcOYM2aNXB2dkb37t2xbNkyDB06FGPGjEF8fDy+++67bAFhzZo1OHr0KLp3746qVasiJSVFNSows29TuXLl4OLigr1796JDhw6wtbVFxYoV8xzZ5unpiR49eqBBgwawsbHB9evX8dtvv6F58+YoU6YMAGDBggUYNWoU+vTpg9GjRyMhIQH+/v7ZLsXk9/2zsrJCmzZtsHTpUlV9x48fR0BAQL5nTa5WrRrmz5+P2bNn486dO+jatStsbGzw8OFD/Pvvv6oWLk2oX78+du3ahdWrV6Nx48YwMTHJNWS5ublhzJgx+Omnn2BiYgJvb2/V6LAqVapg6tSpBf7+JiYm+X4PBg8ejM2bN6Nbt26YPHkymjZtCnNzc8hkMoSFhaFXr17o06cP6tatiyFDhuD777+HqakpvLy8EBERge+//x7W1tb5GvVXkPdg7dq18Pb2RpcuXeDj44PKlSvj6dOnuH79Oi5cuPDO6TWuXbumGqkaFxeHly9fYseOHQCUc569PRJwz549ePr0KVuB9JlOu2WTQcltFElOI1mSk5PFjBkzhIuLizA3NxeOjo7i008/Fc+ePVN77tujw3755RfRvn17YW9vL0qVKiWcnJzEwIEDxeXLl3OsqV27dsLW1la8fPky3+fx7NkzMXnyZFG1alVhbm4u7OzsRPfu3cWNGzdU+zx48ED0799f2NraCmtra/Hxxx+Lc+fO5Tg6zNLSUly+fFm0a9dOlC5dWtja2opPP/1UPH/+XO37vj06LL+1ZI5Ay/r65gY5jMp6/PixmDRpkqhevbowNzcXtra2onHjxmL27NlqNW7YsEG4ubkJqVQq3nvvPbF48WIREBCg9r1Pnz4t+vTpI1xcXIRUKhUVKlQQbdu2Ffv27VP7nocPHxYNGzYUUqk02yifnMycOVM0adJE2NjYqL7/1KlTxZMnT9T2+/nnn4Wrq6soVaqUqFWrltiwYYMYPnx4tlE6+X3/ZDKZ6Nevn7CxsRHlypUTXbt2FVevXs32XmX+jJ89ezbH+vfs2SPat28vrKyshFQqFS4uLqJ///7i8OHDeZ53QUaHPX36VPTv31+UL19eSCQS8a6P74yMDPHtt9+KWrVqCXNzc1GxYkXx8ccfi9jYWLX98js6LFN+34NXr16J7777Tri7uwsLCwtRtmxZUbt2beHn5yciIyNV+6WkpIhp06YJOzs7YWFhIZo1ayZOnz4trK2txdSpU7O9JkV9Dy5duiQGDhwo7OzshLm5uXBwcBBeXl5izZo17zz3zNcqp1tOoyE7deokLC0tRWJi4juPTbohEeKtmdCIDMSjR4/g4uKCiRMnYsmSJbouh3TEx8cHx44dU1tniwzbqVOn0LJlS2zevFk10pJIG3g5jAyOTCbDnTt3sHTpUpiYmGDy5Mm6LomICik0NBSnT59G48aNUbp0aVy6dAnffPMNXF1dc+3ATKQpDEFkcH7++WfMnz8f1apVw+bNm9VGlRCRYbGyssKhQ4fwww8/ICkpCRUrVoS3tzcWL16sNlKRSBt4OYyIiIiMkt4MkV+9ejUaNGgAKysrWFlZoXnz5ggODlY9LoSAv78/nJycULp0abRr105tyDQRERFRQehNCHJ2dsY333yDc+fO4dy5c/Dy8kKvXr1UQWfJkiVYtmwZVqxYgbNnz8LBwQGdOnVCUlKSjisnIiIiQ6TXl8NsbW2xdOlSjBw5Ek5OTpgyZQpmzJgBQDkJlb29Pb799lv4+fnpuFIiIiIyNHrZMTojIwPbt2/Hixcv0Lx5c0RFRSEuLk61thGgnD21bdu2OHXqVJ4hKDU1VW36fIVCgadPn6JChQrZpl8nIiIi/SSEQFJSEpycnPI1kWZ+6FUIunLlCpo3b46UlBSULVsWu3fvRp06dVRTsr+9yJ69vT1iYmLyPObixYs1NmMrERER6VZsbKzGFp/WqxDk5uaGixcvIiEhATt37sTw4cNVq0wD2RfOE0K8szVn1qxZmDZtmuq+XC5H1apVERsbCysrK82eABEREWlFYmIiqlSpotE13vQqBJUqVQo1a9YEADRp0gRnz57F8uXLVf2A4uLi4OjoqNr/0aNH2VqH3iaVSrOtfwRANQqNiIiIDIcmu7LozeiwnAghkJqaiurVq8PBwQGhoaGqx9LS0nD8+HG0aNFChxUSERGRodKblqAvvvgC3t7eqFKlCpKSkrB161YcO3YMBw8ehEQiwZQpU7Bo0SK4urrC1dUVixYtQpkyZbiuDBERERWK3oSghw8f4pNPPsGDBw9gbW2NBg0a4ODBg+jUqRMAYPr06UhOTsa4cePw7NkzeHp64tChQxq9NkhERETGQ6/nCdKGxMREWFtbQy6Xs08QERGRgdDG32+97hNEREREpC0MQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiUpOQkIDRo0ejRYsWWLt2ra7L0RozXRdARERE+iMlJQU9evTAyZMnAQCnT5+GVCqFj4+PbgvTAr1pCVq8eDE++OADlCtXDnZ2dujduzdu3rypto+Pjw8kEonarVmzZjqqmIiIqORZsmQJTp48ifLly2PIkCEAgJkzZyI1NVXHlWme3oSg48ePY/z48Thz5gxCQ0ORnp6Ozp0748WLF2r7de3aFQ8ePFDdDhw4oKOKiYiISpa4uDh8++23AIA1a9bgl19+gbOzMx4+fIjdu3fruDrN05sQdPDgQfj4+KBu3bpwd3fHxo0bcffuXZw/f15tP6lUCgcHB9XN1tZWRxUTERGVLKtWrcLLly/RtGlTDBw4EObm5hg+fDgAYOfOnTquTvP0JgS9TS6XA0C2kHPs2DHY2dmhVq1aGD16NB49epTncVJTU5GYmKh2IyIiInWpqalYs2YNAODzzz+HRCIBAPTq1QsAEBISgoyMDJ3Vpw0SIYTQdRFvE0KgV69eePbsGf766y/V9qCgIJQtWxYuLi6IiorCl19+ifT0dJw/fx5SqTTHY/n7+2PevHnZtsvlclhZWWntHIiIiAzJjh07MGDAADg5OSE6Ohrm5uYAgIyMDJQvXx7Pnz/H5cuXUb9+fZ3Ul5iYCGtra43+/dbLlqAJEybg8uXLCAwMVNs+aNAgdO/eHfXq1UPPnj0RHByMW7du4c8//8z1WLNmzYJcLlfdYmNjtV0+ERGRwdm8eTMA4JNPPlEFIAAwNTVFkyZNAAD//POPTmrTFr0LQRMnTsS+ffsQFhYGZ2fnPPd1dHSEi4sLIiMjc91HKpXCyspK7UZERERvPL1yBX/u3w8A+Pjjj7M9njkSmyFIS4QQmDBhAnbt2oWjR4+ievXq73xOfHw8YmNj4ejoWAwVEhERlUABAdju7o5X6elwB1Avh6Dj6ekJgCFIa8aPH4/ff/8dW7ZsQbly5RAXF4e4uDgkJycDAJ4/f47PP/8cp0+fRnR0NI4dO4aePXuiYsWK6NOnj46rJyIiMkAyGTBmDHa+7h48BAD8/JTbs/Dw8AAA3Lhxo0R1jtabELR69WrI5XK0a9cOjo6OqltQUBAA5TXJK1euoFevXqhVqxaGDx+OWrVq4fTp0yhXrpyOqyciIjJAkZFIUCgQ9vpuXwDIyABu31bbrWrVqrCwsMCrV68QHR1dzEVqj94sm/GuQWqlS5dGSEhIMVVDRERkBFxdcUAiQboQqAPAFQBMTYGaNdV2MzExgaurK65cuYJbt26hRo0auqhW4/SmJYiIiIiKmbMz9jRuDADoDSgD0Nq1QA4Dk2rVqgUAuLl/f7bLZYaKIYiIiMhIpaSkIPjGDQBA79WrgehowNc3x31rve6je2vVKsDFBQgIKK4ytYYhiIiIyEgdPXoUz58/R+XKldF4zJgcW4AAADIZ3IKDAQC3AEChyLEDtaFhCCIiIjJSe/bsAaBcGsPEJI9IEBmJWq/77t7M3JZDB2pDozcdo4mIiKj4KBQK7Nu3D8Cb9cFy5eoKd4kEZ4SAW+a2HDpQGxq2BBERERmhf//9Fw8fPoSVlRXatWuX987Oziizfj08TU1RHsizA7UhYUsQERGREcpsBfL29kapUqXe/QRfX6BLF+UlsJo1DT4AAQxBRERERikzBH344Yf5f5Kzc4kIP5l4OYyIiMjI/Pfff4iIiICZmRm8vb11XY7OMAQREREZmcxWoDZt2sDGxkbH1egOQxAREZGRKdSlsBKIIYiIiMiIPH36FH/99RcAhiCGICIiIiMSHByMjIwM1K9fH9WrV9d1OTrFEERERGRE9u7dC4CtQABDEBERkdFITU3FwYMHATAEAQxBRERERuPIkSNISkqCo6MjmjRpoutydI4hiIiIyEhs27YNANCvX7+8F0w1EnwFiIiIjEBaWppq1fgBAwbothg9wRBERERkBEJDQyGXy+Ho6IiWLVvquhy9wBBERERkBLZv3w5AeSnM1NRUx9XoB4YgIiKiEi4lJUV1KWzgwIG6LUaPcBV5IiKikkwmw7716yGXy+Hs7MxLYVkwBBEREZVUAQHAmDHYpFAAAIa7u3NUWBZ8JYiIiEoimQwYMwb3FQqEvN40PDhYuZ0AMAQRERGVTJGRgEKB3wEoALQE4KpQALdv67gw/cEQREREVBK5ukIhkWDD67s+AGBqCtSsqbua9AxDEBERUUnk7IzQyZNxE0A5AANNTIC1awFnZ11XpjcYgoiIiEqo5TdvAgBG9O0Lq5gYwNdXxxXpF4YgIiKiEujmzZsIDg6GRCLBxG+/ZQtQDhiCiIiISqAff/wRANCjRw/UZD+gHDEEERERlTAymQwBAQEAgClTpui2GD3GEERERFTCLF68GKmpqWjdujXat2+v63L0FkMQERFRCXLnzh2sX78eADB//nxIJBIdV6S/GIKIiIhKkGnTpuHVq1fo2LEj2rVrp+ty9BpDEBERUQlx8OBB7N27F6ampli+fLmuy9F7DEFEREQlQEJCAkaPHg0AmDhxIurUqaPjivQfQxAREZGBE0JgwoQJkMlkqFGjBhYuXKjrkgwCQxAREZGB+/HHH7F582aYmJjg119/haWlpa5LMggMQURERAZs7969+OyzzwAAS5cuRYsWLXRckeFgCCIiIjJQ+/btw4ABA5CRkQEfHx9MnTpV1yUZFIYgIiIiAyOEwA8//IA+ffrg1atXGDhwINavX885gQpIb0LQ4sWL8cEHH6BcuXKws7ND7969cfP16reZhBDw9/eHk5MTSpcujXbt2iEiIkJHFRMRERW/+/fvo3v37pg6dSoUCgV8fX3x+++/w8zMTNelGRy9CUHHjx/H+PHjcebMGYSGhiI9PR2dO3fGixcvVPssWbIEy5Ytw4oVK3D27Fk4ODigU6dOSEpK0mHlRERE+SSTAWFhyq8FJJfL8eWXX6JWrVoIDg6GVCrF8uXLsX79epibm2uh2JJPIoQQui4iJ48fP4adnR2OHz+ONm3aQAgBJycnTJkyBTNmzAAApKamwt7eHt9++y38/PzyddzExERYW1tDLpfDyspKm6dARET0RkAAMGYMoFAAJibAunWAr2/O+8pkQGQk4OqK2ykpWLNmDTZs2IBnz54BAJo1a4YNixbhfQBwdQWcnYvtNHRFG3+/9bbtTC6XAwBsbW0BAFFRUYiLi0Pnzp1V+0ilUrRt2xanTp3KdwgiIiIqdjLZmwAEKL/6+QFdumQPMAEBSB89Gn8KgdUAQrI89P7772PhwoXo8/QpJB075i9QUa70MgQJITBt2jS0atUK9erVAwDExcUBAOzt7dX2tbe3R0xMTK7HSk1NRWpqqup+YmKiFiomIiLKQ2TkmwCUKSMDuH1bLQTdO3sWP48ejfVC4N7rbRIA3l5e+HTqVHh7e8P0wQPAxSV/gYrypDd9grKaMGECLl++jMDAwGyPvd3zXQiRZ2/4xYsXw9raWnWrUqWKxuslIiLKk6urssUmK1NToGZNAEBERASGDBkCl2bN4P86AFUEMB3AfwD+/PJL9OjRA6ampnkHKioQvQtBEydOxL59+xAWFgbnLInWwcEBwJsWoUyPHj3K1jqU1axZsyCXy1W32NhY7RRORESUG2dn5SUrU1PlfVNTYO1a3Hr5EgMGDEC9evWwdetWZCgUaANgCwAZgG8BVM8SlgC8M1BR/ulNCMpc92TXrl04evQoqlevrvZ49erV4eDggNDQUNW2tLQ0HD9+PM/ZMaVSKaysrNRuRERExc7XF4iOBsLC8OLaNcy6fRv16tXDjh07AAD9+vVDeHg4jv/8M4aYmkIKqMKS2mWuXAIVL4UVnN70CRo/fjy2bNmCvXv3oly5cqoWH2tra5QuXRoSiQRTpkzBokWL4OrqCldXVyxatAhlypTB0KFDdVw9ERFRPjg743RsLD729sadO3cAAN7e3liyZImqDyw8PJT9e27fVrbu5BRufH3fvQ+9k94Mkc+tX8/GjRvh4+MDQNlaNG/ePKxduxbPnj2Dp6cnVq5c+eYHJx84RJ6IiHRBoVBg4cKFmD9/PjIyMlC1alX89NNP6NmzJ2d6zgdt/P3WmxBUXBiCiIiouCUlJeGjjz7CH3/8AQD46KOPsHLlSlhbW+u4MsNhVPMEERERlQR3795F9+7dcfXqVUilUqxbtw7Dhg3TdVkEhiAiIiKtuXXrFjp27IjY2Fg4ODhg7969aNq0qa7LotcYgoiIiLTgypUr6NSpEx4+fIjatWvj0KFDnKtOzzAEERERadilS5fg5eWFp0+fwt3dHYcOHYKdnZ2uy6K36M08QURERCVBZGQkunTpgqdPn8LT0xNhYWEMQHqKLUFEREQacu/ePdUlMHd3dxw8eBDly5fXdVmUC7YEERERaUBCRAQ6t2yJmJgY1KxZEyEhIQxAeo4hiIiIqIjS163DwHr1cC0mBpUBhI4alee6lqQfGIKIiIiKQMTGYpKfH0IBWALYD6Da7NmATKbjyuhdGIKIiIiKYMWSJVgNQAJgMwAPAMjIUK7rRXqNIYiIiKiQDh48iCmrVgEAvgXQK/MBU1Plwqak1xiCiIiICuHOnTsYPHgwFAoFRrZqhc9NXv9JNTUF1q7lyu4GgEPkiYiICig5ORn9+/eHXC5H8+bNsfrIEUgePVJeAqtZkwHIQDAEERERFdDEiRMRHh6OSpUqYdu2bShVqpQy+DD8GBReDiMiIiqAgIAABAQEwMTEBIGBgXBm8DFYDEFERET5FB4ejvHjxwMAFixYgA4dOui4IioKhiAiIqJ8ePbsGfr374/U1FT06NEDM2fO1HVJVEQMQURERO+gUCgwfPhw3LlzB9WrV8evv/4KExP+CTV0fAeJiIje4dtvv8Uff/wBqVSKHTt2wMbGRtclkQYwBBEREeXh6NGjmDNnDgBg5cqVaNSokY4rIk1hCCIiIsrFvXv3VBMijhgxAr6+vrouiTSIIYiIiCgHr169wsCBA/H48WO4u7tj5cqVui6JNIwhiIiIKAfTp0/HqVOnYG1tjZ07d6J06dK6Lok0jCGIiIjoLdu2bcMPP/wAAPjll19Qo0YN3RZEWsEQRERElMWNGzdUfX9mzpyJXr16veMZZKgYgoiIiF57/vw5+vXrh+fPn6N9+/ZYsGCBrksiLWIIIiIiAiCEwJgxY3Dt2jU4OjoiMDAQZmZcZ7wkYwgiIiICsGrVKlXw2b59O+zt7ZUPyGRAWJjyK5UoDEFERFTyFDC4HD9+HFOmTAEALFmyBC1btlQ+EBAAuLgAXl7KrwEBWiqYdIEhiIiISpYCBpfo6Gj0798f6enpGDJkiCoMQSYDxowBFArlfYUC8PNji1AJwhBEREQlRwGDy/ObN9GrQwc8efIEjRs3RkBAACQSifLByMg3x8mUkQHcvq3FE6DixBBEREQlRwGCi2L9egyvXRuX79yBPYA9gwapT4jo6gq8vVK8qSlQs6bm6yadYAgiIqKSI7/BRSbDAj8/7AJQCsBuAM6zZqm3GDk7A+vWKZ+feZy1a5XbqURgCCIiopIjn8Hlt5Ur4S8EAGANgOZAzi1Gvr5AdLSyk3V0tPI+lRgSIV7/FBiJxMREWFtbQy6Xw8rKStflEBGRNshkykBTs2a2AHT48GF4e3sjPT0d/wdgSeYDpqbKoMOWHr2kjb/fnAWKiIhKHmfnHMPMpUuX0LdvX6Snp2Nw06b45tw5ZR8iXuoySgxBRERkFGJjY9GtWzckJSWhbdu22BQSApPHj3NtMaKSjyGIiIhKvEePHqFz5864f/8+6tSpg927d0MqlebaYkTGgR2jiYioRHv69Ck6deqEGzduwNnZGcHBwbCxsdF1WaQHGIKIiKjEksvl6NKlCy5fvgwHBwccPXoUVatW1XVZpCcYgoiIqER6/vw5unfvjnPnzqFChQo4fPgwXF1ddV0W6RGGICIiKnESEhLQpUsXnDx5EtbW1ggNDUXdunV1XRbpGb0KQSdOnEDPnj3h5OQEiUSCPXv2qD3u4+MDiUSidmvWrJluiiUiIr30+PFjeHl54dSpUyhfvjxCQkLQsGFDXZdFekivQtCLFy/g7u6OFStW5LpP165d8eDBA9XtwIEDxVghERHps3v37qFNmzYIDw9HpUqVEBYWBk9PT12XRXpKr4bIe3t7w9vbO899pFIpHBwciqkiIiIyFLdu3ULXrl0RFRUFZ2dnHD58GG5ubroui/SYXrUE5cexY8dgZ2eHWrVqYfTo0Xj06JGuSyIiIh07ceIEmjVrhqioKNSoUQN//fUXAxC9k161BL2Lt7c3BgwYABcXF0RFReHLL7+El5cXzp8/r5z0KgepqalITU1V3U9MTCyucomIqBhs3rwZI0eORFpaGjw9PbF3717Y29vruiwyAAYVggYNGqT6d7169dCkSRO4uLjgzz//RN++fXN8zuLFizFv3rziKpGIiIqJQqHAggUL4O/vDwDo168ffvvtN5QuXVq3hZHBMLjLYVk5OjrCxcUFkZGRue4za9YsyOVy1S02NrYYKyQiIm2Qy+Xo06ePKgBNnz4d27ZtYwCiAjGolqC3xcfHIzY2Fo6OjrnuI5VKc71URkREhiciIgJ9+vRBZGQkpFIpVq1ahZEjR+q6LDJAehWCnj9/jtu3b6vuR0VF4eLFi7C1tYWtrS38/f3Rr18/ODo6Ijo6Gl988QUqVqyIPn366LBqIiIqLtu3b8eIESPw4sULVKlSBbt27UKTJk10XRYZKL0KQefOnUP79u1V96dNmwYAGD58OFavXo0rV67g119/RUJCAhwdHdG+fXsEBQWhXLlyuiqZiIiKQXJyMj777DOsXr0aANChQwcEBgaiUqVKOq6MDJlehaB27dpBCJHr4yEhIcVYDRER6YOIiAgMHjwYV69eBQDMGDcOC/v0gVmWkb9EhWHQHaOJiKjkEkJg3bp1+OCDD3D16lXY29sjZOpUfLNmDcw6dQJcXICAAF2XSQaMIYiIiPTOs2fPMGDAAPj5+SE5ORldunTBpeBgdF6+HFAolDspFICfHyCT6bZYMlgMQUREpFdOnDgBDw8P7Ny5E+bm5vjuu+9w4MAB2CckvAlAmTIygCwDaogKQq/6BBERkfF69eoV/P39sXjxYgghUKNGDWzduvXN6C9XV8DERD0ImZoCNWvqpmAyeGwJIiIinbt16xZatGiBRYsWQQiBESNGIDw8XH34u7MzsG6dMvgAyq9r1yq3ExUCW4KIiEhnhBAICAjA5MmT8fLlS9jY2GDdunXo379/zk/w9QW6dFFeAqtZkwGIioQhiIiIdCI+Ph6jR4/G7t27AQDtW7TAr5Mnw7lZs7yf6OzM8EMawcthRERU7EJDQ1G/fn3s3r0b5ubmWNK/Pw6fPg3nQYM49J2KDUMQERFpn0wGhIXhVVQUpk+fjs6dO+PBgweoXbs2/tm3D/+3axdMMifL5dB3Kia8HEZERNoVEACMGYNYhQKDAJx+vXns2LH4/vvvUeaff3If+s7LXqRFDEFERKQ9MhkwZgz+VCgwDMBTANYANqxbh76jRyv34dB30hFeDiMiIq15df06ZigU6AFlAGoM4AKAvq6ub3bi0HfSEbYEERGRVjx69AgDvvwSJ17fnwhgKQBpTq08HPpOOsAQREREGnfhwgX07t0bsbGxKGdhgY1paeinUOTdysOh71TMGIKIiKjwZDIgMlLZr+d1gNmyZQt8fX2RkpICV1dX7N27F++XK8dWHtI7DEFERFQ4r0d9QaEATEyQsWYNZkVGYunSpQCAbt26YfPmzShfvrxyf4Yf0jNFCkGPHj2CQqGAg4ODpuohIiJD8HrUV+aIrhcKBYaOGYN9rx+eNWsWFixYANPMzs5EeqhQo8MuX76MunXrwtHREZUrV0blypUxZ84cvHjxQtP1ERGRPoqMVAWghwDaA9gHQGpujq1bt2LRokUMQKT3ChWCfH19YW9vj7///hvh4eFYuHAhgoOD0aRJEzx79kzTNRIRkb55PbfPDQDNAZwFUAHAkaAgDBo0SLe1EeWTRIjMecrzz9LSEufPn0ft2rVV24QQGDBgACwsLPD7779rtEhNSkxMhLW1NeRyOaysrHRdDhGR/sqh03NWJ2bMQO8lS/AMQA0AwV9/Ddcvvij2Msk4aOPvd6FagnJq8ZFIJFi0aBH27t2rkcKIiEiHAgKUC5l6eeW4oOm+ffvQeflyPAPQrE4dnL54kQGIDE6+Q1D37t3xxRdfYNu2bRg7diymTp2Khw8fqu0jl8thY2Oj8SKJiKgYvdXp+e0FTTdv3oy+ffsiNTUVvXr1wtFz51DJ3V2HBRMVTr5Hh9WvXx8XLlzAxo0bVeHnvffew8CBA+Hh4YGMjAxs3LgR//vf/7RWLBERFYMsnZ5VXi9ouvqPPzB+/HgIIfDJJ59gw4YNMDPjbCtkmArVJ+jhw4cIDw/HxYsXVbfbt2/D1NQUbm5uuHz5sjZq1Qj2CSIiegeZTHkJ7K0FTb/5v//DrG++AQBMmDABy5cvh4kJl6Ck4qGNv9+Fiu/29vbo2rUrunbtqtqWnJyMS5cu4dKlSxopjIiIdCRzQVM/PyAjA8LEBF927YqvXweg2bNnY8GCBZBIJDoulKhoCtUSZMjYEkRElE8yGURkJL7cvRtf//QTAGDJkiX4v//7Px0XRsZIb0aHERFRyScqV8aXR46oAtD//vc/BiAqURiCiIgoGyEEvvrqK3z99dcAlAFoypQpui2KSMMYgoiISE1mAFq4cCEABiAquRiCiIhIjb+/vyoALVu2jAGISiyGICIiUlm2bBnmz5+v+vfUqVN1XBGR9jAEERERAGDDhg347LPPAAALFy5kAKISjyGIiIiwa9cujB49GgDw2Wef4QuuA0ZGgCGIiMjIHT58GEOGDIFCocDIkSOxdOlSToRIRoEhiIjIiJ05cwa9e/dGWloa+vXrh3Xr1jEAkdFgCCIiMlJXrlxBt27d8OLFC3Tq1AmbN2+GqamprssiKjYMQURERujOnTvo3Lkznj17hmbNmmHXrl2QSqW6LouoWDEEEREZmfv376Njx46Ii4tD/fr1ceDAAZQtW1bXZREVO4YgIiIjEh8fj86dOyMqKgo1atRASEgIbGxsdF0WkU4wBBERGYnnz5+jW7duiIiIgKOjI0JDQ+Ho6Kjrsoh0hiGIiMgIpKSkoHfv3vj3339ha2uL0NBQVK9eXddlEekUQxARUQmXnp6OIUOG4MiRI7C0tERwcDDq1q2r67KIdE6vQtCJEyfQs2dPODk5QSKRYM+ePWqPCyHg7+8PJycnlC5dGu3atUNERIRuiiUiMgAKhQKjR4/Gnj17UKpUKezduxdNmzbVdVlEekGvQtCLFy/g7u6OFStW5Pj4kiVLsGzZMqxYsQJnz56Fg4MDOnXqhKSkpGKulIhIT8lkQFgYIJNBCIHPPvsMmzZtgomJCYKCgtChQwddV0ikN8x0XUBW3t7e8Pb2zvExIQR++OEHzJ49G3379gUA/PLLL7C3t8eWLVvg5+dXnKUSEemfgABgzBhAoQBMTLCwZ0/8sHcvAOXiqL1799ZtfUR6Rq9agvISFRWFuLg4dO7cWbVNKpWibdu2OHXqVK7PS01NRWJiotqNiKjEkcneBCAAKxQKfPU6AP3www8YPny4Lqsj0ksGE4Li4uIAAPb29mrb7e3tVY/lZPHixbC2tlbdqlSpotU6iYh0IjJSFYB+BTDx9eavhg3D5MmTdVYWkT4zmBCU6e2F/YQQeS72N2vWLMjlctUtNjZW2yUSERU/V1fAxAS7AYx4vWmSRAL/hQt1WRWRXjOYEOTg4AAA2Vp9Hj16lK11KCupVAorKyu1GxFRiePsjNDJkzEYgAKAj0SC/61dCwlbv4lyZTAhqHr16nBwcEBoaKhqW1paGo4fP44WLVrosDIiIt07deoUeq9dizQA/dq0wfo7d2AyerSuyyLSa3o1Ouz58+e4ffu26n5UVBQuXrwIW1tbVK1aFVOmTMGiRYvg6uoKV1dXLFq0CGXKlMHQoUN1WDURkW5dvHgR3bp1w8uXL9GlSxds3rsXZlwRnuid9CoEnTt3Du3bt1fdnzZtGgBg+PDh2LRpE6ZPn47k5GSMGzcOz549g6enJw4dOoRy5crpqmQiIp26efMmOnfuDLlcjlatWmHXrl2QvisAyWTKjtSuroCzc/EUSqSHJEIIoesiilNiYiKsra0hl8vZP4iIDFpUVBTatm2L2NhYNGzYEGFhYbC2ts77SW/NJYR16wBf3+IpmKgItPH322D6BBER0RvR0dFo3749YmNjUbt2bYSEhLw7AL01lxAUCsDPT7mdyAjp1eUwIiLKRZZLWHcVCrRv3x4xMTGoVasWjh49ikqVKr37GFnmElLJyABu3+ZlMTJKDEFERPouyyWsWIkE7StWRPTjx6hZsyaOHj0KR0fH/B3n9VxCakHI1BSoWVM7dRPpOV4OIyLSZ1kuYckAtBcCdx4/Rg0XF4SFhaFy5cr5P5azs7IPkKmp8r6pKbB2LVuByGixJYiISJ+9voQlA+AF4D8A7wEIW7IEzoUJL76+QJcuyktgNWsyAJFRYwgiItJnrq74TyJBByEQA6A6gDATE1QpyiSxzs4MP0Tg5TAiIr0WIZejtZUVYgC4AjhmYoKq69YxxBBpAEMQEZG2yGRAWFihh6CfPXsWbdq0wQO5HPVr18ZfO3eiakwM5/Uh0hCGICIibQgIAFxcAC8v5deAgNz3zSEsnThxAh06dMDTp0/h6emJYydPwr5vX7YAEWkQZ4wmItI0mUwZfN4eih4dnT3E5DCD83YrK3zyySdITU1F+/btsXfvXi4PREZPG3+/2TGaiEjT8jsp4VszOAuFAstGj8bnr/9v+uGHH2Lr1q0oXbp0cVVOZFR4OYyISNMyJyXMKqdJCbOEpQwAkwBVAJowYQJ27drFAESkRQxBRESalt9JCV+HpSQAfQGseL35+y+/xI8//gjTzOcTkVYwBBERaYOvr7IPUFiY8mtOI7qcnRG5YAGaAdgHQApg+9ixmDZ/PiQSSbGWS2SM2CeIiEhb3jEpYXBwMIYsWQI5AMcKFbBrwwY0+/DD4quPyMixJYiIdKeI8+gYKoVCga+//hrdu3eHXC5HixYtcP7KFQYgomLGEEREulGQeXRKkAcPHqBz586YM2cOhBDw8/NDWFhY/leCJyKNYQgiouL31tBwKBSAn1+JbxEKDg6Gu7s7jhw5gjJlymDDhg1Ys2YNSpUqpevSiIwSQxARFb+85tEpgZ4/f46JEyeiW7duePz4Mdzd3XH+/HmMGDFC16URGTWGICIqfvmdR6cEOHLkCOrXr48VK5QD4CdMmIAzZ86gdu3aOq6MiBiCiKj45XceHQP27Nkz+Pn5oWPHjoiOjkbVqlVx6NAh/PTTT7CwsNB1eUQEDpEnIl3x9QW6dFFeAqtZs8QEoIyMDAQEBOCLL75AfHw8AGDcuHH45ptvuP4XkZ5hCCIi3XnHPDqG5u+//8bkyZNx4cIFAEDdunWxcuVKtG3bVseVEVFOeDmMiKiIwsPD0b17d7Ru3RoXLlyAtbU1li9fjvDwcAYgIj3GliAiokK6fPky5s+fj507dwIATE1NMXLkSCxcuBB2dnY6ro6I3oUhiIioAIQQCA0NxXfffYfQ0FAAgEQiwdChQzF37ly4urrquEIiyi+GICKifEhISEBgYCBWr16NK1euAABMTEzQv1s3fPXNN6hbt66OKySigmIIIiLKhUKhwF9//YUNGzZg+/btSE5OBgBYSqUYlZqKyQoFqh84APTuDTAEERkchiAiKhlkMuVM1K6uRRpxlpGRgZMnT2L79u3YuXMnHjx4oHqsbt268O3XDz4LFsAmc2Pmkh9dupSokW5ExoAhiIgMX0DAm7XITEyUEzH6+ub76fHx8QgNDUVISAgOHjyIuLg41WPW1tbo378/Ro0aBU9PT0iOHQPmz1c/QOaSHwxBRAaFIYiIDFtui7Hm0TLz7NkznDlzBidPnkRoaCjOnj0LIYTqcWtra/Tu3RsDBgxAx44dIZVK3zw5c8mPrGufldAlP4hKOoYgIjJseS3G6uyM9PR03Lp1C+fOncPJkydx8uRJREREZDtMvXr10KVLF3Tp0gVt2rRRDz5ZZS754een/D4lcMkPImMhEVn/+2MEEhMTYW1tDblcDisrK12XQ0RFJZMBLi6AQoFEAJcBXJJIcHHwYFyMjMTVq1eRkpKS7Wmurq5o0aIF2rRpg86dO8O5oCFGJitxS34Q6TNt/P1mSxARGRwhBGQyGS5evIhLly7hYsOGuHj+PP57swMQGKjav2zZsnB3d0fzevXQsnJltOjZE3YeHkUrooQt+UFkjBiCiEivpaWl4fr168qwc/GiKvg8ffo0x/2dHR3h0bgx3N3d4eHhAQ8PD7z33nsw2bjxTd8hf/8Cd54mopKHl8OISG+kpaXh8uXL+Oeff3Du3DlcvHgRERERePXqVbZ9TU1NUadOHVXQcXd3h7u7OypWrJj9wFkumWU5ABAdzdYcIgPBy2FEVKI8ePAAf/31F/755x+cOXMGFy5cyLH/jrW1tSroZIaeOnXq5N55+W3v6DxNRMaJIYiIis2jR49w7NgxhIWFISwsDDdv3sy2j42NDTw9PdG0aVM0bNgQHvb2cElOhqRWrcIHFg5rJ6IcMAQRkdakp6fjzJkz2L9/Pw4cOKBacyuTRCKBh4cHmjdvjmbNmsHT0xOurq6QSCTKHQICgH79Cj0JogqHtRNRDtgniIg0KiEhAQcPHsT+/fsRHBycrQNzgwYN0L59e7Rv3x5t2rSBjY1NzgfSRj8eDmsnMljsE0REeikpKQn79u1DUFAQQkJCkJaWpnrMxsYG3bp1Q48ePdCxY8ecOy7nRBv9ePIzrF1Da5ARkf5jCCKiQklJScEff/yBoKAg/Pnnn2odmt9//318+OGH6NGjB5o1awYzs0J81OiiH08R1yAjIsNiUCHI398f8+bNU9tmb2+vttghEWmPEALh4eHYsGEDNm/ejISEBNVjtWrVwqBBgzBo0CDUrVu36N+suPvxFGINMiIybAYVggCgbt26OHz4sOq+qampDqshMhBFvMQTHx+PzZs3Y8OGDbh06ZJqe5UqVTB06FAMGjQIHh4ebzo0a+qSkq+vMoQURz8eDqMnMjoGF4LMzMzg4OCg6zKIDEcRLvGcP38ey5cvR1BQkKqfjxRAHwAjJRJ4ffklTEeP1tj3y1FxLU/BYfRERsdE1wUUVGRkJJycnFC9enUMHjwYd+7cyXP/1NRUJCYmqt2IjEZul3hkslyfkp6ejm3btqFly5Zo0qQJfvvtN6SlpaFR/fpYIZHgPoBAAJ2EgOmnn6ofqxDfT29kXn7LbF3mMHqiEs+gQpCnpyd+/fVXhISEYP369YiLi0OLFi0QHx+f63MWL14Ma2tr1a1KlSrFWDGRjuV1iect8fHx+Oabb1C9enUMGjQIp06dgrm5OT766CP8+++/OL98OcYLAdu8jlWA76eXfH2VQ/DDwpRf2SmaqEQz6HmCXrx4gRo1amD69OmYNm1ajvukpqYiNTVVdT8xMRFVqlThPEFkHPIx187Vq1exfPly/P7776oRXnZ2dhg7dizGjh0LR0fHfB+La3QRkbZoY54gg2oJepulpSXq16+PyMjIXPeRSqWwsrJSuxEZjVwu8WQ4OmLfvn3o0KED6tevj59//hkpKSlo2LAhNm3ahLt372LevHlvAlAex1ILN7ykREQGxOA6RmeVmpqK69evo3Xr1rouhUh/ZRlhJbezw4aQEKyoVUvVn87ExAR9+/bFpEmT0KpVqzcjvN5xrFxHaxXniC4ioiIwqBD0+eefo2fPnqhatSoePXqEhQsXIjExEcOHD9d1aUR67dbLl/hp505s2rQJz58/B6CcyXn06NEYP348qlatmv+D5We0VnGN6CIiKgKDCkEymQxDhgzBkydPUKlSJTRr1gxnzpyBi4uLrksjUtKjJRcUCgVCQ0OxfPlyBAcHq7bXqVMHkyZNwscffwxLS0sdVkhEpFsGFYK2bt2q6xKIcqcnSy4kJSXhl19+wYoVK3Dz5k0AytXau3fvjsmTJ6NDhw55X/IiIjISBj06rDC4ijxphR6Mirp16xZWrFiBTZs2ISkpCQBQrlw5jBgxAhMnTkRNTvpHRAaMq8gT6SsdLbmQkZGBgwcP4qeffkJISIhqu5ubGyZOnIhhw4ahXLly+TuYHl3KIyIqDgxBRJpQkCUXNBA2oqKisGHDBmzatAmy17MxZ17ymjhxIjp27AgTkwLMgKEnl/KIiIqTQc8TRKQ38js/TkCA8rKZl5fya0BAvr9FSkoKtm7dik6dOuG9997DwoULIZPJYGtri2nTpiEyMhJ//PEHOnfuXLAAZMhLXRARFQH7BBFpkkyW+/w4heg39OrVKxw+fBhbt27Fnj171Na+69SpE3x790bvGjUgrVu38JewwsKUoSyn7e3aFe6YREQaxj5BRPour/lx8tlvKDU1FSdOnMCOHTuwc+dOtbXxqlSpAh8fH4wYMQLVjx7VzCUsrp5OREaKLUFExSWPlqA4MzMcOHAA+/fvR2hoqGpCQwCwq1gRAwYNwuDBg9GiRQvlpS5Nj0YLCFBeAsvIeHMpj32CiEiPsCWIyJBl9hvy80NcRgaOSyQ43ro1TnTtioiICLVdHayt0UMuxyAA7eLjYdawIdCq1ZsdND0ajUtdEJERYksQkZbFx8cjPDwcFy5cwIULF3D+n39wOzo6234ffPABunfvjh4ffICGPXrAJOuvJldrJyIjx5YgIj0khEBCQgLu37+PqKgo3Lp1Czdv3lR9ffDgQbbnSCQSuLu7o23btmjTpg1at26NSpUqKR8MCwPe/r/J2608WVqV1C5hMQAREeUbQxBRLoQQkMvlePDgAe7fv4/79++r/Tvr/ZSUlDyPVaNGDTRq1AiNGjVC48aN0aRJE9jY2OS8c347KvMSFhFRkTAEaRtn4dWdd7z2crkckZGRiImJwb179yCTyXDv3j3Vv+/fv4/k5OR8fztbW1tUqVIFbm5uqFWrFmrVqgU3Nze4ubnB2to6/3UXpJWHq7UTERUaQ5A2cRbegtNUaMzy2sslElz8/HNccHTElStXcOvWLURGRuLRo0f5OlT58uXh6OgIJyenbLfM7Y6OjrCwsCh8vW9jKw8RkdaxY7S2sONqwWkgNAohEHXqFI61bo0wIXAGwO089re3t0f1ypVRuWxZOLu6orKbG5ydnVG5cmVV0ClTpgxb9IiIdIwdow2JjhbUNFi5Ld3Qpcs7X6/k5GSEhoZi7969OHz4MO7evZttn6oAGrVqBfcOHVC7dm24urrC1dUVVtu3v/m+f/+tDF5Dhqg/mS16REQlEluCtIUtQQVTwKUbkpOTsXfvXmzbtg0hISF4+fKl6jEzMzM0TU9HewCtATQGUDGn1z4/7xHfRyIivcCWIEPCIcwFk48RUUIInDp1Cr/88gu2bdsGuVyueqxq1aro3bs3unfvjpYtW8Jy69Z3v/b5aa1jix4RUYnFEKRN7Nyaf3mExufPn+PXX3/FTz/9hBs3bqie4uLigo8//hj9+vWDh4cHJBLJm+Pl57XPz1B0rqtFRFRi8XIY6Zcsq7BHp6djxYoV+Pnnn1WtPpaWlujfvz98fHzQpk0b5TpaRZGfNbO4rhYRkc5p4+83QxDpnRs3bmDBggXYunUrFK9bYGrWrIlJkybBx8cH5cqV0+xorSzBK9dj5WcfIiLSGvYJIsP2juCSGX4CAwORmc07duyIKVOmwNvb+02rj6ZHa+VnwkFOSkhEVOIU8VoCUT4FBChHWXl5Kb8GBKgeunHjBj766CPUqVMHW7ZsgRACvXv3xoULFxAaGoru3bu/CUC5DaWXyXRwUkREZMjYEkTal0twuVGjBhasX6/W8tO7d2989dVXaNiwYc7H4mgtIiLSEIYgY1WcMyC/FVxuAFiQkYFAL6/8h59MHK1FREQawsthhkQmU04eWNRLP3lcmtKK18HlOoCPANQBsAVQu+y1e/fudwcg4M1QelNT5X3Ov0RERIXEEGQoNBVcdNCn5mpCAgY3boy6eB1+APRu2LBg4ScrX1/ljM1hYcqvHK5ORESFwBBkCDQZXPLqU6NhFy9eRP/+/VG/fn0EnT2rDD+tWuFCcDB2X7hQ8PCTlbOzcjkNtgAREVEhsU+Qnnn8+DFOnjyJixcv4s6dO3j8+DES7t6FmUIBKQA7KBcDrZGRgYZ//ol6w4fDwsIi/99Ay31qhBAICwvD//73P+zfvx8AIJFI0L9/f8yZMwcNGjTQyPchIiIqKoYgPfD06VP8+uuvCAwMxNmzZ5Hv+SvHjoXZhAnw8PCAl5cXvLy80KpVK1haWub+HC2taZacnIzAwED88MMPuHLlCgDAxMQEgwYNwuzZs1G3bt0iHZ+IiEjTOGO0DkVHR2PBggXYvHkzUlNTVdvr16+Pxo0bo3bt2rCzs4ONjQ3SQ0KQsnYtHgqBGIkEN95/HxcePkR8fLzaMc3NzeHp6QkvLy906NABzZo1Q6lSpbJ/cw3MgJx1QdOgoCAkJiYCAMqUKYMRI0Zg8uTJcHV1LdSxiYiIsuKyGRqgDyEoISEBs2fPxvr16/Hq1SsAgIeHB0aNGoU+ffrAyckp5ye+FVyEEIiNjcWJEydw9OhRHDlyBHfv3lV7SpkyZdC6dWtVKPLw8IBp5siq/HhrKH1ycjL++usv7Nu3D/v370dMTIxqVxcXF4wfPx6jRo2CjY1NgV8XIiKi3DAEaUC+XkQtzqFz5MgR+Pj4QPa6U3Pnzp3h7++PZs2aqa+CXghCCERFRakC0dGjR/Ho0SO1fcqVK4cGDRrAw8MD9evXh4uLC6pUqQI7OzuULl0aFhYWePXqFZKSkpCwfj1ivvwSt4XAdQBnqlVDuEyG9PR01fE0vqApERFRDhiCNOCdL6Km16V6LTk5GbNmzcLy5csBKBcEXb9+Pdq1a1fkY2fzOsSJmjVxNSFBFYiOHTuGpKSkIh++cuXK6NatG3r27IkOHTqgTJkyGiiaiIgodwxBGpD5IgYGBqJcuXJo2bIlypcvr3xQJlPOwfP2yKno6CK1CJ0/fx6ffPIJrl+/DgD49NNPsXTp0rw7MBdWHiEuPT0dN2/exMWLF3Hx4kVcu3YNMpkMsbGxePbsWbZDlQNQBUDN17cPADQPDETVQYPUW62Kc/ZpIiIySgxBGpD5ImaSSqWYNGkSvvrqK5Q9e1Y5GeHbwsKUc9IUUHp6OhYvXoz58+cjPT0dDg4O2LBhA7y9vYtwBnkoQohTKBRISUlBcnIyzM3NUTYhASbVq7/7WFpqOSMiIspKGyHIaDtwuABwtbdHamoqli5dCnd3d1xMS1P+Ic+qkHPo3Lp1C61atcJXX32F9PR0DBgwAFevXtVeAAKKNBGiiYkJypQpgwoVKsDKygomVau+e3kKruhOREQGzGhDUDiAm48fY/+mTXBxccGdO3fQvHdv/DZiRJHWpRJCYPXq1WjYsCH++ecfWFtb4/fff0dQUBAqVKignZPJlDkRYlZFmQjxXctTFOPs00RERJpmtCHIFIBEoUB3FxdcuHAB3t7eSElJwbCAAIwdMgQpISEFXpcqOjoanTt3xrhx4/Dy5Ut4eXnhypUr+Oijj4o88itftLG4aF7LU2g6dBERERUjow1BAFR/sG1tbbF//37MnTsXEokEa3//HS1nzcLNFy/ydZi0tDQsX74c9erVw+HDh2FhYYH//e9/CA0NRZUqVfJXi6ZWiC/OxUW5ojsRERkwo+0YLTcxgVUOnXhDQkLw0UcfIT4+Hubm5vjss8/w+eef53gp68WLFwgKCsKiRYvw33//AQBat26NgICAgs2UbOidizUw+zQREVFeODpMA1Qv4rVrsHr//Rz3iY2NhZ+fH4KDgwEAFhYW6NKlCzw9PWFra4tnz57h/PnzOHTokGqpCAcHB8yfPx++vr4FmzBQS8PyiYiIShKGIA3I74sohMAff/wBf39/hIeH57rfe++9Bz8/P4wbNw5ly5YteEFhYRodlk9ERFQSMQS9tmrVKixduhQPHjxA3bp18cMPP6B169b5em5BX0QhBC5cuIDDhw/j2rVrSEhIgI2NDVxdXdGuXTs0b968aEtFsCWIiIjonbQRgsw0cpRiFBQUhClTpmDVqlVo2bIl1q5dC29vb1y7dg1Vq1bV+PeTSCRo3LgxGjdurPFjA3jTudjPTzm8nJ2LiYiIioXBtQR5enqiUaNGWL16tWrb+++/j969e2Px4sXvfL4+rCKfI3YuJiIiypXRtwSlpaXh/PnzmDlzptr2zp0749SpUzk+JzU1Fampqar7mR2Z9Y6zM8MPERFRMTKoeYKePHmCjIwM2Nvbq223t7dHXFxcjs9ZvHgxrK2tVbd8z9tDREREJZpBhaBMb8++LITIdUbmWbNmQS6Xq26xsbHFUSIRERHpOYO6HFaxYkWYmppma/V59OhRttahTFKpFFKptDjKIyIiIgNiUC1BpUqVQuPGjREaGqq2PTQ0FC1atNBRVURERGSIDKolCACmTZuGTz75BE2aNEHz5s2xbt063L17F2PHjtV1aURERGRADC4EDRo0CPHx8Zg/fz4ePHiAevXq4cCBA3BxcdF1aURERGRADG6eoKLS23mCiIiIKFfa+PttUH2CiIiIiDSFIagoZDLlQqcyma4rISIiogJiCCqsgADlwqdeXsqvAQG6roiIiIgKgCGoMGQyYMyYNyu/KxTKBVDZIkRERGQwGIIKIzLyTQDKlJGhXACViIiIDAJDUGG4ugImb710pqbKFeCJiIjIIDAEFYazM7BunTL4AMqva9dyFXgiIiIDYnCTJeoNX1+gSxflJbCaNRmAiIiIDAxDUFE4OzP8EBERGSheDiMiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVEyqBBUrVo1SCQStdvMmTN1XRYREREZIDNdF1BQ8+fPx+jRo1X3y5Ytq8NqiIiIyFAZXAgqV64cHBwcdF0GERERGTiDuhwGAN9++y0qVKgADw8PfP3110hLS9N1SURERGSADKolaPLkyWjUqBFsbGzw77//YtasWYiKisLPP/+c63NSU1ORmpqqui+XywEAiYmJWq+XiIiINCPz77YQQnMHFTo2d+5cASDP29mzZ3N87o4dOwQA8eTJkyIdnzfeeOONN954M4zbf//9p7EMIhFCk5Gq4J48eYInT57kuU+1atVgYWGRbfu9e/fg7OyMM2fOwNPTM8fnvt0SlJCQABcXF9y9exfW1tZFK96AJCYmokqVKoiNjYWVlZWuyyk2PG+etzHgefO8jYFcLkfVqlXx7NkzlC9fXiPH1PnlsIoVK6JixYqFem54eDgAwNHRMdd9pFIppFJptu3W1tZG9cOTycrKiudtRHjexoXnbVyM9bxNTDTXnVnnISi/Tp8+jTNnzqB9+/awtrbG2bNnMXXqVHz44YeoWrWqrssjIiIiA2MwIUgqlSIoKAjz5s1DamoqXFxcMHr0aEyfPl3XpREREZEBMpgQ1KhRI5w5c6bIx5FKpZg7d26Ol8hKMp43z9sY8Lx53saA562589Z5x2giIiIiXTC4yRKJiIiINIEhiIiIiIwSQxAREREZJYYgIiIiMkolMgStWrUK1atXh4WFBRo3boy//vorz/2PHz+Oxo0bw8LCAu+99x7WrFlTTJVqVkHOe9euXejUqRMqVaoEKysrNG/eHCEhIcVYreYU9P3OdPLkSZiZmcHDw0O7BWpJQc87NTUVs2fPhouLC6RSKWrUqIENGzYUU7WaU9Dz3rx5M9zd3VGmTBk4OjpixIgRiI+PL6Zqi+7EiRPo2bMnnJycIJFIsGfPnnc+pyR8phX0vEvKZ1ph3u9MhvyZVpjz1sRnWokLQUFBQZgyZQpmz56N8PBwtG7dGt7e3rh7926O+0dFRaFbt25o3bo1wsPD8cUXX2DSpEnYuXNnMVdeNAU97xMnTqBTp044cOAAzp8/j/bt26Nnz56qWbgNRUHPO5NcLsewYcPQoUOHYqpUswpz3gMHDsSRI0cQEBCAmzdvIjAwELVr1y7GqouuoOf9999/Y9iwYfD19UVERAS2b9+Os2fPYtSoUcVceeG9ePEC7u7uWLFiRb72LymfaQU975LymVbQ885k6J9phTlvjXymaWwVMj3RtGlTMXbsWLVttWvXFjNnzsxx/+nTp4vatWurbfPz8xPNmjXTWo3aUNDzzkmdOnXEvHnzNF2aVhX2vAcNGiTmzJkj5s6dK9zd3bVYoXYU9LyDg4OFtbW1iI+PL47ytKag57106VLx3nvvqW378ccfhbOzs9Zq1CYAYvfu3XnuU1I+07LKz3nnxBA/07IqyHkb+mdaVvk5b019ppWolqC0tDScP38enTt3VtveuXNnnDp1KsfnnD59Otv+Xbp0wblz5/Dq1Sut1apJhTnvtykUCiQlJcHW1lYbJWpFYc9748aN+O+//zB37lxtl6gVhTnvffv2oUmTJliyZAkqV66MWrVq4fPPP0dycnJxlKwRhTnvFi1aQCaT4cCBAxBC4OHDh9ixYwe6d+9eHCXrREn4TNMEQ/xMKyxD/0wrDE19phnMjNH58eTJE2RkZMDe3l5tu729PeLi4nJ8TlxcXI77p6en48mTJ3kuzqovCnPeb/v+++/x4sULDBw4UBslakVhzjsyMhIzZ87EX3/9BTMzw/zxL8x537lzB3///TcsLCywe/duPHnyBOPGjcPTp08Npl9QYc67RYsW2Lx5MwYNGoSUlBSkp6fjww8/xE8//VQcJetESfhM0wRD/EwrjJLwmVYYmvpMK1EtQZkkEonafSFEtm3v2j+n7fquoOedKTAwEP7+/ggKCoKdnZ22ytOa/J53RkYGhg4dinnz5qFWrVrFVZ7WFOT9VigUkEgk2Lx5M5o2bYpu3bph2bJl2LRpk0G1BgEFO+9r165h0qRJ+Oqrr3D+/HkcPHgQUVFRGDt2bHGUqjMl5TOtsAz9My2/StpnWkFo6jOtRMXGihUrwtTUNNv/Ch89epTtf0aZHBwcctzfzMwMFSpU0FqtmlSY884UFBQEX19fbN++HR07dtRmmRpX0PNOSkrCuXPnEB4ejgkTJgBQ/iIJIWBmZoZDhw7By8urWGovisK8346OjqhcuTKsra1V295//30IISCTyeDq6qrVmjWhMOe9ePFitGzZEv/3f/8HAGjQoAEsLS3RunVrLFy4sES2ipSEz7SiMOTPtIIqKZ9phaGpz7QS1RJUqlQpNG7cGKGhoWrbQ0ND0aJFixyf07x582z7Hzp0CE2aNIG5ubnWatWkwpw3oPzfko+PD7Zs2WKQfSQKet5WVla4cuUKLl68qLqNHTsWbm5uuHjxIjw9PYur9CIpzPvdsmVL3L9/H8+fP1dtu3XrFkxMTODs7KzVejWlMOf98uVLmJiof8yZmpoCeNM6UtKUhM+0wjL0z7SCKimfaYWhsc+0InWr1kNbt24V5ubmIiAgQFy7dk1MmTJFWFpaiujoaCGEEDNnzhSffPKJav87d+6IMmXKiKlTp4pr166JgIAAYW5uLnbs2KGrUyiUgp73li1bhJmZmVi5cqV48OCB6paQkKCrUyiUgp732wx1JEVBzzspKUk4OzuL/v37i4iICHH8+HHh6uoqRo0apatTKJSCnvfGjRuFmZmZWLVqlfjvv//E33//LZo0aSKaNm2qq1MosKSkJBEeHi7Cw8MFALFs2TIRHh4uYmJihBAl9zOtoOddUj7TCnrebzPUz7SCnremPtNKXAgSQoiVK1cKFxcXUapUKdGoUSNx/Phx1WPDhw8Xbdu2Vdv/2LFjomHDhqJUqVKiWrVqYvXq1cVcsWYU5Lzbtm0rAGS7DR8+vPgLL6KCvt9ZGeoHhhAFP+/r16+Ljh07itKlSwtnZ2cxbdo08fLly2KuuugKet4//vijqFOnjihdurRwdHQUH330kZDJZMVcdeGFhYXl+btaUj/TCnreJeUzrTDvd1aG+plWmPPWxGeaRIgS2iZMRERElIcS1SeIiIiIKL8YgoiIiMgoMQQRERGRUWIIIiIiIqPEEERERERGiSGIiIiIjBJDEBERERklhiAiIiIySgxBREREZJQYgoiIiMgoMQQRUYkwf/581K9fH5aWlrC3t8enn36KV69e6bosItJjZrougIioqIQQyMjIwNq1a1G5cmVcu3YNw4YNQ4MGDfDpp5/qujwi0lNcQJWISqShQ4eiUqVKWL58ua5LISI9xcthRGTwYmJiMGHCBNSrVw82NjYoW7Ystm3bBmdnZ12XRkR6jCGIiAzakydP0LRpUzx58gTLli3D33//jdOnT8PU1BQeHh66Lo+I9Bj7BBGRQTtw4ADS09MRGBgIiUQCAFi5ciXS0tIYgogoTwxBRGTQbG1tkZiYiH379qFOnTr4448/sHjxYlSuXBmVKlXSdXlEpMfYMZqIDJoQAp9++im2bNmC0qVL4+OPP0ZKSgpiYmKwf/9+XZdHRHqMIYiIiIiMEjtGExERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIzS/wMmKAjFI2XX3QAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeHElEQVR4nO3dd1xTVx8G8CfsoSCILBFUZGjr3rhABcS96modFUcdtWr7Ots6XitvtbVL66TUtq6qteJC0SJqRevWilocoCiIOECmQM77B5IaGRJMyHq+n08+NDcnN7+bSHh67jn3SIQQAkRERER6xkDdBRARERGpA0MQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQqZWvry98fX3VXUaFjRo1ClWqVClX29q1a2PUqFEqrUcikWD+/PkqfY1XycrKwvz583H48GG11qEtDh06hBYtWsDS0hISiQS///47fvzxR0gkEsTHx8vabdy4EV9//bVKavj444/h6uoKIyMjVKtWTeHnjxo1CrVr11Z6XZrmp59+wpAhQ+Dl5QUDA4Myj/ncuXPo27cvnJ2dYWFhAW9vbyxcuBBZWVmVVzC9kpG6CyD99v3336u7hEqzY8cOWFlZqbsMlcvKysKCBQsAQKsDbmUQQmDQoEHw9PREeHg4LC0t4eXlhfz8fMTExMDJyUnWduPGjfj7778xdepUpdawc+dOfPbZZ5g7dy6CgoJgamqq1P3rkp9//hnJyclo1aoVpFIp8vLySmwXGxsLHx8feHl54euvv4adnR2OHDmChQsX4syZM9i5c2clV06lYQgitWrQoIG6S6g0TZs2VXcJpETZ2dkwMzODRCKp8D7u3buHR48eoV+/fujSpYvcYzVq1HjdEsvl77//BgBMmTIF9vb2lfKayqKMz0AR+/fvh4FB4QmUnj17yt67l23cuBE5OTnYvn073N3dAQCdO3dGUlIS1qxZg8ePH8PGxqZSaqay8XQYldv8+fMhkUhw+fJlDB06FNbW1nBwcMDo0aORlpYm1zYnJwezZ89GnTp1YGJigpo1a2LSpEl48uSJXLuSToetXLkSjRs3RpUqVVC1alV4e3tjzpw5AID4+HgYGRkhJCSkWH1HjhyBRCLB1q1byzyOJ0+e4MMPP0TdunVhamoKe3t7dO/eHVevXgUAHD58GBKJpNjpnPj4eEgkEvz444/F9nn58mV06dIFlpaWqFGjBiZPnlys27uk02GvqkUZkpOTMX78eLi4uMDExAR16tTBggULkJ+fL9duwYIFaN26NWxtbWFlZYVmzZohNDQUL6+x/Mcff8DX1xfVq1eHubk5XF1dMWDAAGRlZSE+Pl72x3vBggWQSCSQSCSvPA2YlZWFjz76CHXq1IGZmRlsbW3RokULbNq0Sa7djz/+CC8vL5iamqJ+/fr46aefip2KUeTzO336NIYMGYLatWvD3NwctWvXxtChQ5GQkFDsdSUSCQ4cOIDRo0ejRo0asLCwQG5uLgBgy5YtaNu2LSwtLVGlShUEBgbi3LlzZR7z/Pnz4eLiAgCYOXMmJBKJ7DhePh3m6+uLPXv2ICEhQfaevuoPv1QqxZIlS+Dt7S37tzVixAgkJibK2tSuXRsff/wxAMDBwaFcp1NL+gxK8uzZMyxatEj2+jVq1MC7776LBw8eyLXLzc3Fhx9+CEdHR1hYWKBjx444c+ZMsd8XZX0Gp0+fRu/evWFrawszMzM0bdoUv/76a5nHXKQoAL2KsbExAMDa2lpue7Vq1WBgYAATE5Ny7YdUjz1BpLABAwZg8ODBCA4OxqVLlzB79mwAwA8//ACgsIu/b9++OHToEGbPno0OHTrg4sWLmDdvHmJiYhATE1Nql/vmzZsxceJEvP/++/jiiy9gYGCA69evIzY2FkDhl3bv3r2xatUqzJgxA4aGhrLnLl++HM7OzujXr1+ptT99+hTt27dHfHw8Zs6cidatWyMjIwNHjhxBUlISvL29FX4/8vLy0L17d4wfPx6zZs3C8ePHsWjRIiQkJGDXrl2vXcuoUaOwfv163Lp1S+FxF0Vd9wYGBvj000/h7u6OmJgYLFq0CPHx8QgLC5O1jY+Px/jx4+Hq6goAOHHiBN5//33cvXsXn376qaxNjx490KFDB/zwww+oVq0a7t69i4iICDx79gxOTk6IiIhAt27dEBwcjDFjxgB4da/G9OnT8fPPP2PRokVo2rQpMjMz8ffff+Phw4eyNj/++CPeffdd9OnTB19++SXS0tIwf/585ObmlvuP08vi4+Ph5eWFIUOGwNbWFklJSVi5ciVatmyJ2NhY2NnZybUfPXo0evTogZ9//hmZmZkwNjbG4sWL8fHHH+Pdd9/Fxx9/jGfPnmHp0qXo0KED/vrrr1J7O8eMGYPGjRujf//+eP/99zFs2LBSfy++//57jBs3Djdu3MCOHTvKdWwTJkzAmjVrMHnyZPTs2RPx8fH45JNPcPjwYZw9exZ2dnbYsWMHVqxYgdDQUERERMDa2loWzEpS3s9AKpWiT58+OHr0KGbMmAEfHx8kJCRg3rx58PX1xenTp2Fubg4AePfdd7FlyxbMmDEDnTt3RmxsLPr164f09PQSa3idzyAqKgrdunVD69atsWrVKlhbW2Pz5s0YPHgwsrKylDZmb+TIkfj6668xYcIEfP7556hRowaio6OxevVqTJo0CZaWlkp5HVICQVRO8+bNEwDEkiVL5LZPnDhRmJmZCalUKoQQIiIiosR2W7ZsEQDEmjVrZNs6deokOnXqJLs/efJkUa1atTLriIqKEgDEjh07ZNvu3r0rjIyMxIIFC8p87sKFCwUAERkZ+cr9R0VFyW2/deuWACDCwsJk20aOHCkAiG+++Uau7WeffSYAiGPHjsm2ubm5iZEjRypUixBCjB49WhgaGor4+Pgy2wkhBAAxb9482f3x48eLKlWqiISEBLl2X3zxhQAgLl++XOJ+CgoKRF5enli4cKGoXr267LPdtm2bACDOnz9fag0PHjwoVservPnmm6Jv376lPl5QUCCcnZ1Fs2bNZLUIIUR8fLwwNjYWbm5usm2KfH4vy8/PFxkZGcLS0lLuMw0LCxMAxIgRI+Ta3759WxgZGYn3339fbvvTp0+Fo6OjGDRoUBlH/W9NS5culdte9Hq3bt2SbevRo4fccZblypUrAoCYOHGi3PaTJ08KAGLOnDmybUW/1w8ePChzn4p8Bps2bRIAxPbt2+X2cerUKQFAfP/990IIIS5fviwAiJkzZ8q1K3r+i78vyvgMvL29RdOmTUVeXp5c2549ewonJydRUFBQ5nvwold9HleuXBHe3t4CgOw2ZcoUufeO1I+nw0hhvXv3lrvfqFEj5OTkICUlBUDh6RIAxf6v6q233oKlpSUOHTpU6r5btWqFJ0+eYOjQodi5cydSU1OLtfH19UXjxo2xYsUK2bZVq1ZBIpFg3LhxZda+b98+eHp6omvXrmW2U9Tbb78td3/YsGEACv/P83VrCQ0NRX5+Ptzc3BSua/fu3fDz84OzszPy8/Nlt6CgIABAdHS0rO0ff/yBrl27wtraGoaGhjA2Nsann36Khw8fyj7bJk2awMTEBOPGjcP69etx8+ZNhep5sYb8/HzZqbZWrVph3759mDVrFg4fPozs7Gy55127dg337t3DsGHD5E4Dubm5wcfHR+H3pUhGRgZmzpyJevXqwcjICEZGRqhSpQoyMzNx5cqVYu0HDBggd3///v3Iz8/HiBEj5I7LzMwMnTp1UtsMuaJ/dy//DrZq1Qr169cv83ewNIp8Brt370a1atXQq1cvufelSZMmcHR0lL0vRf/+Bg0aJPf8gQMHwsio5BMVFf0Mrl+/jqtXr8p+V19s2717dyQlJeHatWsKvy8liY+PR69evVC9enVs27YN0dHRWLJkCX788UdZ7yhpBp4OI4VVr15d7n5RF37RH66HDx/CyMio2CkQiUQCR0dHuVMcLxs+fDjy8/Oxdu1aDBgwAFKpFC1btsSiRYvg7+8vazdlyhSMGTMG165dQ926dbF27VoMHDgQjo6OZdb+4MED2ekeZTEyMir2nhTVUdaxqqKWl92/fx+7du2SjVF4WVHI/OuvvxAQEABfX1+sXbtWNn7o999/x2effSb7bN3d3XHw4EEsWbIEkyZNQmZmJurWrYspU6bggw8+KLOW+Ph41KlTR25bVFQUfH198e2338LFxQVbtmzB559/DjMzMwQGBmLp0qXw8PCQvY8lfb6Ojo5yU8kVMWzYMBw6dAiffPIJWrZsCSsrK0gkEnTv3r1YEAMgN1sLKHx/AaBly5Yl7r+ip+leV9H79XK9AODs7FxszJMi+yzPZ3D//n08efKk1LEvRf/uivbp4OAg93hJv1NFKvoZFLX76KOP8NFHH5VZ1+uaNWsW0tPTcf78edmpr44dO8LOzg6jR4/GiBEj0KlTJ6W8Fr0ehiBSuurVqyM/Px8PHjyQC0JCCCQnJ5f6ZVXk3XffxbvvvovMzEwcOXIE8+bNQ8+ePfHPP//IekOGDRuGmTNnYsWKFWjTpg2Sk5MxadKkV9ZWo0YNuYGhJTEzMwMA2YDLIqV9Qebn5+Phw4dyX9rJyckAigdGRWt5XXZ2dmjUqBE+++yzEh93dnYGUDgWy9jYGLt375YdPwD8/vvvxZ7ToUMHdOjQAQUFBTh9+jS+++47TJ06FQ4ODhgyZEiptTg7O+PUqVNy27y8vAAAlpaWWLBgARYsWID79+/LeoV69eqFq1evyt7Hovf1RS9vK+/nl5aWht27d2PevHmYNWuWbHtubi4ePXpU4jG8PBi5aMzQtm3bKtRTpypF71dSUlKxMT737t0rNtZJkX2W5zOws7ND9erVERERUeK+qlatKrfP+/fvo2bNmrLHi36nSlLRz6Co3ezZs9G/f/8S2xT9e3xd58+fR4MGDYqN/Sn67vv7778ZgjQET4eR0hVN9f3ll1/ktm/fvh2ZmZnFpgKXxtLSEkFBQZg7dy6ePXuGy5cvyx4zMzOTnZJZtmwZmjRpgnbt2r1yn0FBQfjnn39kp+xKUjT4+OLFi3Lbw8PDS33Ohg0b5O5v3LgRQNnXySlPLa+raBqvu7s7WrRoUexWFIIkEgmMjIzkBppnZ2fj559/LnXfhoaGaN26tey05NmzZwEU7xksYmJiUuz1i/4YvsjBwQGjRo3C0KFDce3aNWRlZcHLywtOTk7YtGmT3Gy1hIQEHD9+XO755f38JBIJhBDFBiOvW7cOBQUFpR73iwIDA2FkZIQbN26U+P62aNGiXPspD1NT0xJ7p0rSuXNnAMV/B0+dOoUrV66U+3fwRYp8Bj179sTDhw9RUFBQ4ntSFDY6duwIoHBm14u2bdtWbPZiacr7GXh5ecHDwwMXLlwotV1J/x4rwtnZGZcvX0ZGRobc9piYGAAoc/A5VS72BJHS+fv7IzAwEDNnzkR6ejratWsnmx3WtGlTDB8+vNTnjh07Fubm5mjXrh2cnJyQnJyMkJAQWFtbF+tBmjhxIpYsWYIzZ85g3bp15apt6tSp2LJlC/r06YNZs2ahVatWyM7ORnR0NHr27Ak/Pz84Ojqia9euCAkJgY2NDdzc3HDo0CH89ttvJe7TxMQEX375JTIyMtCyZUvZ7LCgoCC0b9/+tWoBgODgYKxfvx43btxQuLdh4cKFiIyMhI+PD6ZMmQIvLy/k5OQgPj4ee/fuxapVq+Di4oIePXpg2bJlGDZsGMaNG4eHDx/iiy++KBYQVq1ahT/++AM9evSAq6srcnJyZLMCi8Y2Va1aFW5ubti5cye6dOkCW1tb2NnZlTmzrXXr1ujZsycaNWoEGxsbXLlyBT///DPatm0LCwsLAMB///tfjBkzBv369cPYsWPx5MkTzJ8/v9jpmfJ+flZWVujYsSOWLl0qqy86OhqhoaHlvmpy7dq1sXDhQsydOxc3b95Et27dYGNjg/v37+Ovv/6S9XApQ8OGDfHbb79h5cqVaN68OQwMDEoNWV5eXhg3bhy+++47GBgYICgoSDY7rFatWpg2bZrCr29gYFDuz2DIkCHYsGEDunfvjg8++ACtWrWCsbExEhMTERUVhT59+qBfv3544403MHToUHz55ZcwNDRE586dcfnyZXz55ZewtrYu1+lERT6D1atXIygoCIGBgRg1ahRq1qyJR48e4cqVKzh79uwrL68RGxsrm6manJyMrKwsbNu2DUDhNc+KZqFNnToVffv2hb+/P6ZNmwY7OzucOHECISEhaNCggWxMHmkAtQ7LJq1S2iySkmayZGdni5kzZwo3NzdhbGwsnJycxIQJE8Tjx4/lnvvy7LD169cLPz8/4eDgIExMTISzs7MYNGiQuHjxYok1+fr6CltbW5GVlVXu43j8+LH44IMPhKurqzA2Nhb29vaiR48e4urVq7I2SUlJYuDAgcLW1lZYW1uLd955R5w+fbrE2WGWlpbi4sWLwtfXV5ibmwtbW1sxYcIEkZGRIfe6L88OK28tRTPQXnx/S4MSZmU9ePBATJkyRdSpU0cYGxsLW1tb0bx5czF37ly5Gn/44Qfh5eUlTE1NRd26dUVISIgIDQ2Ve+2YmBjRr18/4ebmJkxNTUX16tVFp06dRHh4uNxrHjx4UDRt2lSYmpoWm+VTklmzZokWLVoIGxsb2etPmzZNpKamyrVbt26d8PDwECYmJsLT01P88MMPYuTIkcVm6ZT380tMTBQDBgwQNjY2omrVqqJbt27i77//LvZZFf0bP3XqVIn1//7778LPz09YWVkJU1NT4ebmJgYOHCgOHjxY5nErMjvs0aNHYuDAgaJatWpCIpGIV319FxQUiM8//1x4enoKY2NjYWdnJ9555x1x584duXblnR1WpLyfQV5envjiiy9E48aNhZmZmahSpYrw9vYW48ePF3FxcbJ2OTk5Yvr06cLe3l6YmZmJNm3aiJiYGGFtbS2mTZtW7D153c/gwoULYtCgQcLe3l4YGxsLR0dH0blzZ7Fq1apXHnvRe1XS7eXfuz/++EMEBAQIR0dHYW5uLjw9PcWHH35Y7N80qZdEiJeuhEakJVJSUuDm5ob3338fS5YsUXc5pCajRo3C4cOHKzw4mjTP8ePH0a5dO2zYsEE205JIFXg6jLROYmIibt68iaVLl8LAwOCVs5KISHNFRkYiJiYGzZs3h7m5OS5cuID//e9/8PDwKHUAM5GyMASR1lm3bh0WLlyI2rVrY8OGDXKzSohIu1hZWeHAgQP4+uuv8fTpU9jZ2SEoKAghISFyMxWJVIGnw4iIiEgvacwU+ZUrV6JRo0awsrKClZUV2rZti3379skeF0Jg/vz5cHZ2hrm5OXx9feWmTBMREREpQmNCkIuLC/73v//h9OnTOH36NDp37ow+ffrIgs6SJUuwbNkyLF++HKdOnYKjoyP8/f3x9OlTNVdORERE2kijT4fZ2tpi6dKlGD16NJydnTF16lTMnDkTQOFVXR0cHPD5559j/Pjxaq6UiIiItI1GDowuKCjA1q1bkZmZibZt2+LWrVtITk5GQECArI2pqSk6deqE48ePlxmCcnNz5S6fL5VK8ejRI1SvXr3Y5deJiIhIMwkh8PTpUzg7OyttXT6NCkGXLl1C27ZtkZOTgypVqmDHjh1o0KCB7JLsLy+y5+Dg8MqFAENCQpR2xVYiIiJSrzt37iht6RGNCkFeXl44f/48njx5gu3bt2PkyJGIjo6WPf5yz40Q4pW9ObNnz8b06dNl99PS0uDq6oo7d+7AyspKuQdAREREKpGeno5atWopbY03QMNCkImJCerVqwcAaNGiBU6dOoVvvvlGNg4oOTkZTk5OsvYpKSnFeodeZmpqWmz9IwCyWWhERESkPZQ5lEVjZoeVRAiB3Nxc1KlTB46OjoiMjJQ99uzZM0RHR8PHx0eNFRIREZG20pieoDlz5iAoKAi1atXC06dPsXnzZhw+fBgRERGQSCSYOnUqFi9eDA8PD3h4eGDx4sWwsLDgujJERERUIRoTgu7fv4/hw4cjKSkJ1tbWaNSoESIiIuDv7w8AmDFjBrKzszFx4kQ8fvwYrVu3xoEDB5R6bpCIiIj0h0ZfJ0gV0tPTYW1tjbS0NI4JIiIi0hKq+Put0WOCiIiIiFSFIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiIiISC8xBBEREVExQgjcvn0bOTk56i5FZRiCiIiISI5UKsXQoUPh5uaGBg0aICkpSd0lqQRDEBEREcnZtGkTtmzZAgC4desWPv30UzVXpBoMQURERCQjhMBXX30FAAgICAAAbNy4EdnZ2eosSyUYgoiIiEjm1KlTOHPmDExNTfHLL7/A2dkZWVlZOH78uLpLUzqGICIiIpL57bffAAD9+vVDjRo10KVLFwBAdHS0OstSCYYgIiIikgkPDwcA9OnTBwDQsmVLAMC5c+fUVpOqMAQRERERAODmzZu4cuUKjIyM0K1bNwBA06ZNATAEERERkQ4rOuXVpk0bVKtWDQDwxhtvAADu3r2Lp0+fqqs0lWAIIiIiIgCQDX5u166dbJuNjQ3s7OwAADdu3FBLXarCEEREREQAgJiYGABA27Zt5bZ7eHgAAOLi4iq9JlViCCIiIiI8efIEly9fBlA8BNWtWxdA4YUTdYnGhKCQkBC0bNkSVatWhb29Pfr27Ytr167JtRk1ahQkEoncrU2bNmqqmIiISHecPHkSAODu7g57e3u5x2rWrAkAOrd8hsaEoOjoaEyaNAknTpxAZGQk8vPzERAQgMzMTLl23bp1Q1JSkuy2d+9eNVVMRESkO4rGA/n4+BR7zNnZGQBw7969Sq1J1YzUXUCRiIgIufthYWGwt7fHmTNn0LFjR9l2U1NTODo6VnZ5REREOk0fQ5DG9AS9LC0tDQBga2srt/3w4cOwt7eHp6cnxo4di5SUlDL3k5ubi/T0dLkbERER/augoEB2Ouzl8UDAvyHo7t27lVqXqmlkCBJCYPr06Wjfvj3efPNN2fagoCBs2LABf/zxB7788kucOnUKnTt3Rm5ubqn7CgkJgbW1texWq1atyjgEIiIirXH58mU8ffoUVapUkfu7W+TFniAhRGWXpzISoYFHM2nSJOzZswfHjh2Di4tLqe2SkpLg5uaGzZs3o3///iW2yc3NlQtJ6enpqFWrFtLS0mBlZaX02omIiLTN6tWr8d5776FLly44ePBgscdzcnJgbm4OAHj48GGxszSVIT09HdbW1kr9+60xY4KKvP/++wgPD8eRI0fKDEAA4OTkBDc3tzKvW2BqagpTU1Nll0lERKQzjj8PPj4l9AIBgJmZGWxtbfHo0SPcu3dPLSFIFTTmdJgQApMnT8Zvv/2GP/74A3Xq1Hnlcx4+fIg7d+7AycmpEiokIiLSQaGhOL5tGwCg7bffAqGhJTbTxcHRGhOCJk2ahF9++QUbN25E1apVkZycjOTkZGRnZwMAMjIy8NFHHyEmJgbx8fE4fPgwevXqBTs7O/Tr10/N1RMREWmhxEQ8GDsW15/fbSMEMH48kJhYrGlRh4MuXStIY0LQypUrkZaWBl9fXzg5OcluW7ZsAQAYGhri0qVL6NOnDzw9PTFy5Eh4enoiJiYGVatWVXP1REREWiguDjHPhwY3AGADAAUFwPXrxZoWrR/28OHDyqtPxTRmTNCrxmebm5tj//79lVQNERGRHvDwQMzz/5RNjDc0BOrVK9a0KASlpqZWSmmVQWN6goiIiKiSubjguKcnAMAHKAxAq1cDJUxMql69OgDg4aVLJZ4u00YMQURERHoqLy8Pp+7cAQC0/fFHID4eCA4usa3dP/8AAFJ37wbc3EodQK1NGIKIiIj01IULF5CdnQ0bGxt4DR9eYg8QACAxEdU3bQIAPAQAqbTUAdTahCGIiIhITxWtF9a2bVsYGJQRCeLiYPd87K5sWHQpA6i1icYMjCYiIqLKFRNTOCy6pPXC5Hh4wEsiwXwh4Fa0rZQB1NqEPUFERER66sWeoDK5uKDW2rWYZ2iIUUCZA6i1iUauHaZKqlh7hIiISNvcuXMHrq6uMDQ0xJMnT1ClSpVXPykxsfAUWL16lR6A9GLtMCIiIlK9P//8EwDQpEmT8gUgoDD4aHnvz4t4OoyIiEgPHTt2DADQvn17NVeiPgxBREREeoghiCGIiIhI76SlpeHSpUsAgHbt2qm5GvVhCCIiItIzJ06cgFQqhbu7u2x1eH3EEERERKRnik6F6XMvEMAQREREpHeOHj0KgCGIIYiIiEiPZGVlya4U7efnp+Zq1IshiIiISI8cO3YMz549Q61atVBPy5e9eF0MQURERHrk4MGDAICuXbtCIpGouRr1YggiIiLSI0UhqEuXLmquRP0YgoiIiPREamoqzp07B4AhCGAIIiIi0hv79u0DADRq1AiOjo5qrkb9GIKIiIj0RHh4OACgV69eaq5EM3AVeSIiIl2WmAjExSHX1RUREREAgN69e6u5KM3AEERERKSrQkOBceMAqRTREgkyhICjoyNatGih7so0Ak+HERER6aLERFkAAoDfhAAA9PTzg4EB//wDDEFERES6KS5OFoCeAfj1+ebBzZurrSRNwxBERESkizw8gOc9PvsAPAbgBMBv4EB1VqVRGIKIiIh0kYsLsGYNYGiIX55vGhYQAEM3N7WWpUkYgoiIiHRVcDDunzqFcGNjAMA7n3+u5oI0C0MQERGRDlsVHo5neXlo06YNmjRpou5yNApDEBERkY7Kzc3F999/DwCYOnWqeovRQAxBREREOurHH39ESkoKXFxc0L9/f3WXo3EYgoiIiHRQRkYG5s+fDwCYMWMGjJ+PC6J/MQQRERHpoC+++ALJyclwd3fH+PHj1V2ORmIIIiIi0jEXLlzA4sWLAQCLFy+GiYmJmivSTAxBREREOiQjIwNvv/028vLy0LdvX7z11lvqLkljMQQRERHpiGfPnqF///64fPkyHBwcsGbNGkgkEnWXpbEYgoiIiHTAw4cP0b17d0RGRsLS0hLh4eGoUaOGusvSaAxBREREWkwIge3bt6NJkyY4dOgQLC0tsWPHDrRq1UrdpWk8I3UXQERERIq7ffs2du7cibVr1+LSpUsAAHd3d+zYsQMNGzZUc3XagSGIiIhIS1y5cgW//fYbduzYgTNnzsi2W1paYtq0aZgzZw7Mzc3VWKF2YQgiIiLSYLdu3cL69euxdetWxMbGyrZLJBK0b98e/fv3x8iRI2FjY6PGKrWTxowJCgkJQcuWLVG1alXY29ujb9++uHbtmlwbIQTmz58PZ2dnmJubw9fXF5cvX1ZTxURERKpz8uRJDBgwAPXq1cOCBQsQGxsLY2NjdO/eHWvXrkVycjKOHDmCqVOnMgBVkMaEoOjoaEyaNAknTpxAZGQk8vPzERAQgMzMTFmbJUuWYNmyZVi+fDlOnToFR0dH+Pv74+nTp2qsnIiIqJwSE4GoqMKfpUhISMDgwYPRpk0b/Pbbb5BKpfD398f69euRkpKCPXv2YMyYMbC3t6/EwnWU0FApKSkCgIiOjhZCCCGVSoWjo6P43//+J2uTk5MjrK2txapVq8q937S0NAFApKWlKb1mIiKiUq1bJ4SBgRBA4c916+QelkqlIiwsTFSpUkUAEBKJRIx66y3x999/l7y/O3eE+OOPwp96QBV/vzWmJ+hlaWlpAABbW1sAhedEk5OTERAQIGtjamqKTp064fjx42qpkYiIqFwSE4Fx4wCptPC+VAqMHy/rEUpPT8egQYPw7rvvIiMjAz4AzgqBsO3b8caJE8X3FxoKuLkBnTsX/gwNrbxj0SEaGYKEEJg+fTrat2+PN998EwCQnJwMAHBwcJBr6+DgIHusJLm5uUhPT5e7ERERVaq4uH8DUJGCAuD6dSQkJKBdu3bYtm0bjIyMECKR4AiAJkCxsATglYGKyk8jQ9DkyZNx8eJFbNq0qdhjL1/+WwhR5iXBQ0JCYG1tLbvVqlVL6fUSERGVycMDMHjpT66hIc5kZaF169b4+++/4ejoiD+/+QazhIDhi+2ehyWZMgIVKUbjQtD777+P8PBwREVFwcXFRbbd0dERAIr1+qSkpBTrHXrR7NmzkZaWJrvduXNHNYUTERGVxsUFWLMGMHwebwwNcWLGDHQeOhT3799H48aN8ddff6FV794lhiXUq/fv/VIClVwbKheNCUFCCEyePBm//fYb/vjjD9SpU0fu8Tp16sDR0RGRkZGybc+ePUN0dDR8fHxK3a+pqSmsrKzkbkRERJUuOBiIjweionB0yxb4f/cd0tPT0aFDBxw9erTwTEUJYQmrVxduL1KeNlQuEiGEUHcRADBx4kRs3LgRO3fuhJeXl2y7tbW17OqXn3/+OUJCQhAWFgYPDw8sXrwYhw8fxrVr11C1atVyvU56ejqsra2RlpbGQERERJXuzJkz8PX1RUZGBjp37ozw8HBYWlrKN0pMLDy9Va9e6eGmPG10iCr+fmtMCCptXE9YWBhGjRoFoLC3aMGCBVi9ejUeP36M1q1bY8WKFbLB0+XBEEREROoSFxeHdu3a4cGDB/Dz88OePXu4zEU56XQIqiwMQUREpA737t1Du3btEB8fj2bNmiEqKop/hxSgir/fGjMmiIiISFelp6cjKCgI8fHxcHd3x969exmANABDEBERkQoVFBTg7bffxsWLF+Hg4IADBw6UOauZKg9DEBERkQrNnj0bu3fvhpmZGcLDw1G3bl11l0TPMQQRERGpyPr167F06VIAwA8//IBWrVqpuSJ6EUMQERGRChw/fhzjxo0DAHz88ccYOnSomiuilzEEERERKVlCQgL69euHZ8+eoV+/fliwYIG6S6ISGKm7ACIiIp2QmAjExSHD2Rl9Bg9GSkoKGjdujJ9++gkGLy9zQRqBIYiIiOh1hYYC48ZBKpViBIALAOzt7REeHo4qVaqouzoqBaMpERHR60hMBMaNA6RSzAOwA4AJgN/XrIGrq6uai6OyMAQRERG9jrg4QCrFJgCLnm9aC6CttbUai6LyYAgiIiJ6HR4eOCWRYPTzuzMAjDA0LFzYlDQaQxAREdFruCuRoI+VFXIA9ASw2MAAWL1aL1Z213YcGE1ERFRB2dnZ6Nu3L5LS0vCGpyc2LFsGw8aNGYC0BEMQERFRBQghMHr0aJw+fRrVq1dH+L59sOKSGFqFp8OIiIgqYPHixdi8eTOMjIywbds2rgmmhRiCiIiIFPTrr7/i448/BgCsWLECvr6+6i2IKoQhiIiISAFHjx7F8OHDAQBTpkyRrQ9G2ochiIiIqJyuXLmCPn36yNYEW7ZsmbpLotfAEERERFQOycnJCAoKwuPHj9GmTRts2LABhoaG6i6LXgNDEBER0StkZGSgR48eSEhIQL169RAeHg5zc3N1l0WviSGIiIioDM+ePcNbb72Fs2fPws7ODvv27UONGjXUXRYpAUMQERFRKQoKCvDOO+8gIiIC5ubm2L17N+pxOQydwRBERERUAiEExo8fj61bt8LY2Bg7duxA69at1V0WKRFDEBER0UuEEPjwww8RGhoKAwMDbNq0CYGBgeoui5SMIYiIiOglCxcuxFdffQUACA0NxYABA9RcEakCQxAREdELFi1ahPnz5wMAvv32W4waNUqt9ZDqMAQRERE999///heffPIJgMK1wd5//301V0SqxBBEREQEYMGCBfj0008BACEhIZg9e3bhA4mJQFRU4U/SKQxBRESkexQMLvPnz5edAvv8888xa9aswgdCQwE3N6Bz58KfoaEqKpjUgSGIiIh0iwLBRQiBefPmYcGCBQCAJUuWYMaMGYUPJiYC48YBUmnhfakUGD+ePUI6hCGIiIh0hwLBRQiBGRMmYOHChQCApUuX4j//+c+/DeLi/t1PkYIC4Pp1VVVPlcxI3QUQEREpTVnBxcXlhU0FeM/PD+uOHgUALJNIMM3GRv55Hh6AgYH8/gwNAV4xWmewJ4iIiHRHUXB50UvB5dmzZxjWty/WHT0KAwChAKYJUbzHyMUFWLOm8PlF+1m9Wi5MkXZjCCIiIt3xiuCSlZWFPn364Nfdu2EMYAuA0UXPLelUV3AwEB9fOMg6Pr7wPukMng4jIiLdEhwMBAYWBpp69WQBKC0tDT179sSxY8dgbmaGHbm5CBTi3+eVdqrLxYW9PzqKIYiIiHTPS8ElJSUF3bp1w7lz52BtbY09e/ag3dWrhafACgp4qktPMQQREZFOu3PnDvz9/XHt2jXUqFEDBw4cQJMmTYB27UrsMSL9wRBEREQ6659//oG/vz9u376NWrVq4eDBg/D09Py3AU916TUOjCYiIp104cIFdOjQAbdv34anpyeOHTsmH4BI7zEEERGRzjl+/Dg6deqElJQUNGnSBEePHoWrq6u6yyINwxBEREQ65cCBA/D390daWhratWuHqKgo2Nvbq7ss0kAMQUREpDO2b9+Onj17IisrC4GBgThw4ACqVaum7rJIQ2lUCDpy5Ah69eoFZ2dnSCQS/P7773KPjxo1ChKJRO7Wpk0b9RRLREQaJSwsDIMGDUJeXh7eeusthIeHw8LCQt1lkQbTqBCUmZmJxo0bY/ny5aW26datG5KSkmS3vXv3VmKFRESkib7++muMHj0aUqkUwcHB2LRpE0xMTNRdFmk4jZoiHxQUhKCgoDLbmJqawtHRsZIqIiIiTSaEwPz582UrwX/44YdYunQpJBKJmisjbaBRPUHlcfjwYdjb28PT0xNjx45FSkqKuksiIiI1kEqlmDp1qiwALVq0iAGIFKJRPUGvEhQUhLfeegtubm64desWPvnkE3Tu3BlnzpyBqalpic/Jzc1Fbm6u7H56enpllUtERCqSn5+PMWPGYP369QCA7777DpMnT1ZzVaRttCoEDR48WPbfb775Jlq0aAE3Nzfs2bMH/fv3L/E5ISEhWLBgQWWVSEREKpabm4uhQ4dix44dMDQ0RFhYGIYPH67uskgLad3psBc5OTnBzc0NcXFxpbaZPXs20tLSZLc7d+5UYoVERKRMGRkZ6NmzJ3bs2AETExNs376dAYgqTKt6gl728OFD3LlzB05OTqW2MTU1LfVUGRERaY/Hjx+je/fuOHHiBCwtLbFz50506dJF3WWRFtOoEJSRkYHr16/L7t+6dQvnz5+Hra0tbG1tMX/+fAwYMABOTk6Ij4/HnDlzYGdnh379+qmxaiIiUrXk5GQEBATg0qVLsLGxwb59+9C6dWt1l0VaTqNC0OnTp+Hn5ye7P336dADAyJEjsXLlSly6dAk//fQTnjx5AicnJ/j5+WHLli2oWrWqukomIiIVi4+Ph7+/P65fvw5HR0dERkbizTffVHdZpAMkQgih7iIqU3p6OqytrZGWlgYrKyt1l0NERGW4cuUK/P39cffuXdSpUweRkZFwNzUF4uIADw/AxUXdJVIlUcXfb60eGE1ERLrrzJkz6NixI+7evYsGDRrg6NGjcD98GHBzAzp3LvwZGqruMkmLMQQREZHGOXz4MPz8/JCamooWLVogOjoaNYUAxo0DpNLCRlIpMH48kJio3mJJazEEERGRRtmxYwe6deuGp0+folOnTjh06BDs7OwKT4EVBaAiBQXACxNqiBTBEERERBpj3bp1GDhwIHJzc9G3b19ERET8O/7DwwMweOnPlqEhUK9e5RdKOoEhiIiI1E4Igf/9738YO3asbCX4rVu3wszM7N9GLi7AmjWFwQco/Ll6NQdHU4Vp1BR5IiLSP1KpFB999BG++uorAIVX+v/ss89KXgg1OBgIDCw8BVavHgMQvRaGICIiUpu8vDyMHj0av/zyCwBg2YQJmDZxIlDWSvAuLgw/pBQ8HUZERGqRmZmJPn364JdffoGRoSF+lkgwbeVKTn2nSsMQREREqpeYCERFyaazp6SkoEuXLti3bx/MzcywUyrFO0XX7uXUd6okDEFERKRaoaFyFzj857PP0LZtW5w8eRI2NjY4uGQJur+8eAGnvlMl4LIZRESkOomJhQHo+fV9jgPoDeAhgDp16mDfvn3wsrSUawOgcOZXfDzH/pAMl80gIiLt8sIFDrcB6IzCANTS2xsxMTHw8vLi1HdSG84OIyIi1fHwgJBI8JUQ+AiAQGFP0MadO2Hp4PBvO059JzVgTxAREalMgZMTPvDzw4coDECTJBL8tmYNLD09izd2cQF8fRmAqNIwBBERUcW9NOvrRWlpaejZsye+++MPAMAXEybgu4QEGI4dW9lVEpWIIYiIiCrmpVlfL17b5/r162jTpg0iIiJgbm6OrVu34sPvv4ekVi01Fkwk77Vmh6WkpEAqlcLR0VGZNakUZ4cRESnBS7O+AMhmdEXFxWHgwIF49OgRatasiZ07d6J58+bqq5V0gsbMDrt48SLeeOMNODk5oWbNmqhZsyY+/vhjZGZmKqUoIiLScC/M+pIpKMDqZcsQEBCAR48eoWXLljh16hQDEGmsCoWg4OBgODg44NixYzh37hwWLVqEffv2oUWLFnj8+LGyayQiIk3j4QEY/PsnJB/AFIkE7331FfLz8zF06FBER0fDyclJfTUSvUKFTodZWlrizJkz8Pb2lm0TQuCtt96CmZmZbCE8TcTTYURE5ZSYWNjj4+FR8oyt0FBg/Hg8LijAYACRzzcvWrQIc+bMKXkVeKIK0pjTYSX1+EgkEixevBg7d+5USmFERKRGZQx6lgkOxj9//IE2tWohEoCFhQW2b9+OuXPnMgCRVij3xRJ79OiBxo0bo0mTJnjvvfcwbdo07Ny5Ew4vXOwqLS0NNjY2KimUiIgqSWIiMG7cv2N+ihY0DQyU6xE6cOAABg8ejCdPnqBWrVoIDw9HkyZN1FMzUQWUOwQ1bNgQZ8+eRVhYGO7fvw8AqFu3LgYNGoQmTZqgoKAAYWFh+Oqrr1RWLBERVYJSBj3j+nXAxQVCCHzzzTf48MMPIZVK0aZNG+zYsUOrZgoTARUcE3T//n2cO3cO58+fl92uX78OQ0NDeHl54eLFi6qoVSk4JoiI6BXKmP6eW6MGJkyYgLCwMADAqFGjsGrVKpiamqqpWNIXqvj7XaG1wxwcHNCtWzd069ZNti07OxsXLlzAhQsXlFIYERGpSdGCpuPHF/YAPV/QNNnICP39/BATEwMDAwN88cUXmDp1Ksf/kNZ6rYslaiP2BBERlVNiomxB0zP376Nv375ITExEtWrVsGXLFgQEBKi7QtIjGjM7jIiI9MDzBU03HzuG9u3bIzExEV5eXjh58iQDEOkEhiAiIiqRVCrF3LlzMXToUOTk5KB79+44efIkPEtaAZ5IC1VoTBAREem2p0+f4u2338auXbsAADNmzMDixYthaGio5sqIlIchiIiI5CQmJqJnz564cOECTE1NsW7dOrzzzjvqLotI6RiCiIhI5ty5c+jZsyfu3bsHBwcH7Ny5E61bt1Z3WUQqwTFBREQEANi1axc6dOiAe/fu4Y033sDJkycZgEinMQQRERG+/fZb9O3bF5mZmfD398eff/4JNzc3dZdFpFIMQUREeqygoABTpkzBBx98AKlUirFjx2LPnj2wtrZWd2lEKscxQUREeionJwfDhg3Djh07AABLlizBRx99xCtAk95gCCIi0kNpaWno06cPoqOjYWJigg0bNmDgwIHqLouoUjEEERHpmeTkZHTr1g0XLlxA1apVER4eDl9fX3WXRVTpGIKIiPTIjRs3EBAQgJs3b8LBwQH79u1D06ZN1V0WkVowBBER6YkLFy4gMDAQ9+/fR926dXHgwAG4u7uruywiteHsMCIiPXDq1Cn4+fnh/v37aNy4Mf78808GINJ7DEFERDru+PHj6Nq1Kx4/foy2bdvi8OHDcHR0VHdZRGrHEEREpMOio6MREBCA9PR0dOzYEfv370e1atXUXRaRRtCoEHTkyBH06tULzs7OkEgk+P333+UeF0Jg/vz5cHZ2hrm5OXx9fXH58mX1FEtEpOEOHjyIoKAgZGZmomvXrti3bx+qVq2q7rKINIZGhaDMzEw0btwYy5cvL/HxJUuWYNmyZVi+fDlOnToFR0dH+Pv74+nTp5VcKRGRhkpMBKKisPenn9CzZ09kZ2eje/fu2LVrFywsLNRdHZFG0ajZYUFBQQgKCirxMSEEvv76a8ydOxf9+/cHAKxfvx4ODg7YuHEjxo8fX5mlEhFpntBQYNw47JdK0Q/AMwB9+/bF5s2bYWpqqu7qiDSORvUEleXWrVtITk5GQECAbJupqSk6deqE48ePl/q83NxcpKeny92IiHROYiIwbhwOS6Xoi8IANBDAr8uWMQARlUJrQlBycjIAwMHBQW67g4OD7LGShISEwNraWnarVauWSuskIlKLuDickErRE0AOgJ4ANgAwTkhQb11EGkxrQlCRlxf2E0KUudjf7NmzkZaWJrvduXNH1SUSEVW6c7m56AYgE0BXAFsBmBgaAvXqqbcwIg2mUWOCylJ0TYvk5GQ4OTnJtqekpBTrHXqRqakpu4KJSKfFxsYiYPhwpAFoD+B3AGaGhsDq1YCLi3qLI9JgWtMTVKdOHTg6OiIyMlK27dmzZ4iOjoaPj48aKyMiUp/r16+ja9euSE1NRcuWLbEnNhaWUVFAfDwQHKzu8og0mkb1BGVkZOD69euy+7du3cL58+dha2sLV1dXTJ06FYsXL4aHhwc8PDywePFiWFhYYNiwYWqsmohIPRISEtClSxckJSWhUaNGiIiIgJWtLVC/vrpLI9IKGhWCTp8+DT8/P9n96dOnAwBGjhyJH3/8ETNmzEB2djYmTpyIx48fo3Xr1jhw4AAv/kVEeicpKQldu3bF7du34eXlhcjISNja2pbvyYmJQFwc4OHB02Wk1yRCCKHuIipTeno6rK2tkZaWBisrK3WXQ0SksAcPHsDX1xexsbGoU6cOjh49ipo1a5bvyc+vJQSpFDAwANas4Wkz0gqq+PutNWOCiIgIePLkCQIDAxEbGwsXFxccOnSo/AHo+bWEIJUW3pdKgfHjC7cT6SGGICIibZCYiKd79iCoSxecO3cO9vb2OHjwIOrUqVP+fcTF/RuAihQUAC+MxSTSJxo1JoiIiEoQGoqssWPRWwicAGBraYmDBw/Cy8tLsf14eBSeAnsxCPFaQqTH2BNERKTJEhORO3Ys+guBwwCsAOzPzkZDGxvF9+XiUjgGyNCw8D6vJUR6jj1BREQaLO/KFQwRAvsBWADYC6CFVFp4Cqsi4SU4GAgMLHx+vXoMQKTXGIKIiDRUQUEBRn3/PX4HYAogHEA74PVPYbm4MPwQgafDiIg0klQqxdixY7Hx999hZGiI7QYG6ALwFBaRErEniIhIVSp4UUIhBCZPnoywsDAYGBhg0+bN6NGmDU9hESkZQxARkSooclHCF8KSqFkT06dPx8qVKyGRSPDTTz9h4MCBhe0YfoiUileMJiJStsREwM2t+FT0+PjiQeaFsCQkEszp1g3/27fv+UOhGD16dOXVTaTBeMVoIiJtUN6LEr50Bef/CiELQCtWrGAAIlIxhiAiImUruijhi0qa0fVCWAoBMO/55mUTJ2LixIkqL5NI3zEEEREpW3kvSujhASGRYCGAOc83fSaRYNrs2ZVZLZHeYggiIlKF4ODCMUBRUYU/SxgULWrWxMdBQbIeoMUSCeasXcsB0ESVhLPDiIhUpYyLEgohMGPGDHyxdy8A4MsJEzB9zhwGIKJKxBBEROpTwevoaDupVIoPPvgAy5cvBwB89913mDx5spqrItI/PB1GROoRGlo4jbxz58KfoaHqrqhS5ObmYujQobIAtHr1agYgIjVhCCKiyvfS1HBIpcD48YXbdVh6ejq6d++OX3/9FcbGxti4cSPGjRun7rKI9BZPhxFR5SvrOjo6elosKSkJQUFBuHDhAqpUqYIdO3aga9eu6i6LSK+xJ4iIKl95r6OjI06fPo2WLVviwoULsLe3R3R0NAMQkQZgCCKiylfe6+jogE2bNqFDhw64e/cu6tevj+PHj6NZs2bqLouIwBBEROpSjuvoaLO8vDzMmDEDw4YNQ05ODnr06IGYmBi4u7uruzQieo5jgohIfcq4jo42u3XrFoYNG4YTJ04AAGbOnInPPvsMhkU9X0SkERiCiIiU6Ndff8XYsWORnp6OatWqYd26dRgwYIC6yyKiEjAEEREpQXJyMiZPnozt27cDAHx8fLBx40a4ubmpuTIiKg3HBBERvYaCggKsWbMG9evXx/bt22FkZIRPPvkE0dHRDEBEGo49QUREFZGYiAMbN+KjsDBcunoVANCiRQusW7cOjRs3VnNxRFQeDEFERAoQQuCP//wHn335JaKeb7OxsMC8xYsxadIkGBnxa5VIW/C3lYh0g4oXY83Ozsa2bduwfNky/HX+PIDCL9DJAD7JyYHtgAEAAxCRVuFvLBFpv9DQf9ciMzAovBCjEq47lJ+fj6NHj2Lbtm3YsGED0tLSAADmAMYC+BCAK1D4ujq85AeRrpIIIYS6i6hM6enpsLa2RlpaGqysrNRdDhG9rsTEwlXoX1yLzNCw8AKMCoYSqVSK2NhYHDt2DEeOHEFERAQeP34se7x27doIHjgQ4778EvYvfnVW8PWIqPxU8febPUFEpN0UWIxVCIGMjAwkJSUhOTkZSUlJuHPnDq5evYrY2FjExsbKenuK2NnZoXfv3hgyZAi6dOkCAwMDwNu7cNX7ggKdXvKDSNcxBBGRxsvMzERCQgJSUlLw4MEDpKamIjU1FRkZGchKSUE2gCwA2c9vWQCypkxBVn4+srKy5G6v6vy2sLBA27Zt0b59e3Tu3Bk+Pj7FBzsHBwOBgYVBq149BiAiLcUQREQaIzMzExcuXMCZM2dw7tw5XLt2DTdv3kRycrLiO7t0qdSHqlhawsnZGU5OTnBycoK3tzfq168vuxkbG796/zq65AeRPmEIIiK1yc7OxrFjx3Dw4EFERkbiwoULkL58aus5a2trODo6okaNGrCzs4OdnR2srKxgbm4OCwsLmOfmwuLpU5i7usLCxQUWFhbyt927YTFnDqoKAcvsbGDmTJ1btJWIFMOB0URUqdLT07Fr1y78+uuvOHDgAHJycuQed3R0RPPmzdG8eXO88cYbcHd3R926dWFjY1PxF1Xi4GkiUg8OjCYirVRQUICIiAiEhoZi7969yM3NlT3m7OwMf39/+Pv7w9fXFzVr1lR+AQoMniYi/cEQREQqc+/ePYSGhmLdunW4ffu2bLunpycGDx6MgQMHomHDhpBIJKXvRBkXQfTwKLx+0Ms9QfXqVWx/RKQTGIKISOmuXLmCJUuWYMOGDcjLywMA2NraYuTIkRgxYgQaN25cdvApoqyLILq4FD6X09qJ6AUcE0RESnP8+HF8/vnnCA8Pl21r164d3nvvPQwcOBBmZmbl35kqxvEkJnJaO5GW4pggItJIMTExmDt3LqKiCpcUlUgk6NOnD2bOnIk2bdpUbKeqGMdTnmntKl6DjIg0h4G6CyAi7XX+/Hn07NkTPj4+iIqKgrGxMUaPHo3Y2Fjs2LGj4gEI+Hccz4tUPY4nNLSw96lz58KfoaGqey0iUjutCkHz58+HRCKRuzk6Oqq7LCK9c/XqVQwaNAhNmzbFnj17YGhoiODgYFy/fh2hoaHw9vZ+/RcpGsdjaFh4X9XjeBIT/x1/BBT+HD++cDsR6SStOx32xhtv4ODBg7L7hkVfkERUOiWd4klISMD8//wHP23fDqlUColEgiFDhmD+/Pnw9PRU+utV6vIUnEZPpHe0LgQZGRmx94dIEUqYYZWamorFixdjxXff4Vl+PgCgD4D/zpuHhvPmKf315FTW8hScRk+kd7TqdBgAxMXFwdnZGXXq1MGQIUNw8+bNMtvn5uYiPT1d7kakN17zFE9mZiYWLVoEd3d3fPXVV3iWnw8/ACcA/A6g4X//K78vbT6lVNmn34hI7bQqBLVu3Ro//fQT9u/fj7Vr1yI5ORk+Pj54+PBhqc8JCQmBtbW17FarVq1KrJhIzco6xVOGvLw8fP/993B3d8cnn3yC9PR0NKlXDxEADgFoXdq+Kvh6GiM4uHAKflRU4U+uLUak07T6OkGZmZlwd3fHjBkzMH369BLb5Obmyl2iPz09HbVq1eJ1gkg/KHitHalUiq1bt2Lu3Lm4ceMGAKBu3bpYtGgRBrdrB4M6dcreF9foIiIVUcV1grSqJ+hllpaWaNiwIeLi4kptY2pqCisrK7kbkd4o5ykeqVSK7du3o2nTphgyZAhu3LgBe3t7LF++HFeuXMHQoUNh4Or66n3xlBIRaRGt7gnKzc2Fu7s7xo0bh08//bRcz+EVo0kvlXKl5KLws3DhQvz9998AgKpVq+I///kPpk2bhipVqpR7Xwq3ISJSgN5fMfqjjz5Cr1694OrqipSUFCxatAjp6ekYOXKkuksj0mwvzbDKy8vD1q1bsXjxYly+fBkAYGVlhQ8++ABTp06Fra1tufdV4TZERGqmVSEoMTERQ4cORWpqKmrUqIE2bdrgxIkTcHNzU3dpRIU0fMmFx48fY+3atfj2229x9+5dAIXhZ+rUqZg6dSpsbGzUXCERUeXRqhC0efNmdZdAVDplXx9Hic6ePYvQ0FCsX78emZmZAAAHBwdMmjQJkydPZvghIr2k1WOCKoJjgkglNHBW1KNHj7Bhwwb88MMPOH/+vGx7w4YNMX36dAwdOhSmpqZqqY2ISFF6PyaISGNpyJILDx8+xM6dO7Ft2zYcPHgQeXl5AAATExP0798fY8aMQefOnSGRSIo/WcNP5RERKRtDEJEyKLLkghLDRkFBAc6cOYPIyEhERkbi2LFjKCgokD3eqFEjBAcH4+2330b16tVL35EGn8ojIlIVhiAiZSi6Ps748YU9QKVdH+c1w8bTp09x+vRpnDx5EidPnkR0dDQeP34s16ZJkyYYMGAABgwYgPr16796p6UtdREYyB4hItJpHBNEpExlXR9HgXFDT548wT///CO7xcXF4dKlS4iNjcXLv7LWlpbo3KED/Hv3RmBgIOrWratYzVFRQOfOJW/39VVsX0REKsIxQUSarqzr47w0bigbwPWCAvwTGop/TExkYeeff/7BgwcPSn0JV1dXtG7dGq0AtNu2DS0zM2F04AAwcCCgaAACuHo6EekthiAiFZJKpbhz5w6uXr2KqydO4BqAfwDEAbhd1Gj+/BKf6+zgAE8nJ3g0aADPpk3h5eWFli1bwtHR8d9epaJeodc5hVXeU3lERDqGIYhISZKTk3H27FmcPXsWsbGxuHLlCq5du4bs7OxSn1PNwgJeDRvC09MTHh4e8PT0hKenJ+odP46qU6YA9+8DFy8Wnq7q1evfJyp7NlpwcGGA4lIXRKRHOCaIqALS0tJw/PhxnDhxAmfPnsWZM2eQlJRUYltjY2N4eHjA29sbXl5e8LSzg6eJCTw7dkT1hg2LT1cvz9ghDbwuERGRKnFMEJGaJCcn4+jRo7LbxYsXIX2pJ0YikcDb2xvNmjVDw4YNUb9+fXh7e6Nu3bowMlLgV608vTw8hUVE9NoYgohKkJubi2PHjmH//v3Yv38/Ll68WKyNu7s72rdvjxYtWqBZs2Zo1KhRyauuK6q8A5V5CouI6LUwBKkar8KrPgq+93FxcYiIiMD+/fsRFRWFrKws2WMSiQQNGzZEx44d0aFDB7Rv3x7Ozs6qqVuRXh6u1k5EVGEMQarEq/AqTlmhsRzvfV5eHo4dO4bdu3dj165diIuLk3vcwcEBgYGBCAwMhL+/P2rUqFHxehTFXh4iIpXjwGhV4cBVxSkrNJbx3j80N8e+ffuwe/duREREIC0tTdbE2NgY7du3R2BgILp164ZGjRr9O2iZPXpERGrFgdHaREMW1NQayly64YX3XgCIBbC7oAC7goIQExsrN6DZrkoV9MjIQE8AAfn5sHr77eLBiz16REQ6iSFIVXgVXsUoMTRmu7jgiESCPUJgN4BbRQ/8/TeAwkVFe/XqhZ6tWqFl374wLHpciOLBi+tqERHpLIYgVeEUZsW8RmgUQuDSpUs4cOAAIiMjceTIEeS8cJbXFECXhg3Rc8IE9OjRA66uroUPREX9e8XlIi8HL/boERHpLIYgVeLg1vJTMDTev38fkZGRsuCTnJz80u5cENSxI3q98QY6DxwIS0/P4jspT/Bijx4Rkc5iCFI1TmEuvzJCY1ZWFo4ePYpDhw7hwIEDuHDhgtxTLSws4Ovri4CAAAQEBMDb27v4lZhfVp7gxR49IiKdxdlhpJHy8/Nx+vRpHDx4EIcOHcLx48fx7NkzuTbNPDwKQ8+AAfDx8YGpqWnFXiwx8dW9deVpQ0REKsPZYaTdyphmLoTA1atXZaEnKioK6enpcm1q1aqFrl27oquREbquWwf7uDjgxg2gaVPAz6/idZWnt449ekREOochiCpHCdPMc995B9HR0di9ezd2796NW7duyT3FxsYGfn5+hcGna1fUq1cPkrt3C68BVNSBydlaRERUQQxBpHovTDN/AmCnVIqdY8bgwJQpyHxhaQoTExN06NBBFnqaNm0KQ0ND+X1xthYRESkJQ5C+qsQrIGdcvIhdUik2A4gAIBvZk5UFJycn9OjRAz179kSXLl1evQApZ2sREZGS6G0IysrKwsqVK/H06VNMmjQJTk5O6i7p1SpxXa3XJYTA4cOHsXr1aoTv3InsFx5rAGCQRIJee/agSWAgDAwMyr9jztYiIiIl0dvZYd27d8fevXsBAK6urjh37hxsbW3VUpNUKkVsbCxu3ryJtLQ0WFhYoG7duqhfvz7MzMwKG1XCulrKCBKPHj3C+vXrsWrVKvzzzz+y7fXs7THkwQMMFgJvFgWX1wlenK1FRKRXVDE7TG9DEAAYGBjA2toajx8/xtChQ7Fx48ZKreXy5ctYvnw5tmzZgsePHxd73MjICO3atUPvjh0xdNEiOL34UVU0uERFAZ07l7zd11exfT0nhMCJEyewatUqbNmyBbm5uQCAKlWq4J133kFwcDCaN29eOKiZwYWIiCqAIUgJXgxBwcHBGD9+PNq0aQOpVIrTp0+jefPmKq/hyZMnmDFjBkJDQ2WLeVpaWqJ+/fqoVq0aMjIycO3aNblgZASgN4D3AXQCIAEqFlyU2BOUnp6ODRs2YNWqVbh48aJse+PGjTFhwgQMGzYMVatWVaw+IiKiEqjkOn9Cz6SlpQkULi4uDh48KIQQ4p133hEARO/evVX++idPnhSurq6yGvr16ycOHjwo8vLy5NpJpVJx48YN8e233wqfFi1k7QGI1oD43cBAFCQkVKyIdeuEMDQUAij8uW6dQk8/e/asGDdunLC0tJTVZGZmJkaNGiVOnDghpFJpxeoiIiIqRdHf77S0NKXtU297gkxMTJCeng5TU1NcvXoV9evXh0QiwfXr11G3bl2VvPaePXvw1ltvITs7G3Xr1sX69evRvn37cj3374ULsWL+fPwoBHKeb6tfvz5mzpyJoUOHwsTERLFiFBxTk5GRgc2bN2Pt2rX466+/ZNu9vb3x3nvvYcSIEbCxsVGsBiIionJiT5ASFCXJtm3bym0PCAgQAMSMGTNU8rpbtmwRhoaGAoAICgqqWJK9c0ckb98uZk+aJKysrGS9ME5OTuK///2vSElJUWrNUqlU/LVrlxjbo4eo8kKvj7GxsRgyZIg4fPgwe32IiKhSsCdICYqS5JgxY7B27VrZ9vDwcPTp0wfVq1dH4okTMLtzR2nX0Dlw4AB69uyJvLw8DB8+HKGhoTA2Nn6tfaalpWHVqlX45ptvkJSUBAAwNTXF0KFDMWzYMPj5+cHISPErIAghcP78efz666/YGhqKGw8eyB7zcHDA2A8/xMiRI2Fvb/9a9RMRESmCA6OVoOhNXLp0KT766CPZ9oKCAtStWxe3b9/GTxIJhguhlGvonDt3Dh06dEBmZiYGDx6MjRs3KnZdnFd49uwZtm7diq+//hqnT5+WbbeztkYPf3906NYNbdq0gbu7+7/T7V+Qnp6O2NhYXLhwAYcPH8bhw4eRnJwse9wMQH8AYwF0MjCAJCGBM7uIiKjSMQQpQdGbGB4ejl69esk9tnjmTMxdsgStAZwo2vga19B59OgRmjdvjvj4eHTt2hW7d++u+ErnryCEQExMDH6aMwfbo6ORWkIbR0dHVKlSBaampsjOzkZqamqxRUoBwNzcHN1btsRbR46gBwC5aziXNCOtEq8+TURE+omryCuR9/Np8i8KbtUK8wGcBHAWQDOgwutSSaVSDB8+HPHx8ahbty62bt2qsgAEABKJBD6urvA5ehTLARwGEAXgGICzlpbIyMyU6+F5kbOzM9544w34+PjAz88Pbdq0gemDByVPpX95eYpKuPo0ERGRKuhtCLLv1AlYt07uD7ZD69Z4C8BGACsAhAIVXpdq0aJF2Lt3L8zMzLB9+3ZUq1ZNOYWX5fniokYAuj6/AYDYtQsPGzbE7du3kZWVhdzcXJiZmaFGjRpwcHCQXTdJTnmWp3hhYVQAXNGdiIi0it6eDksDYFXCqa4/Z81C+88/hxmAuwYGsK1Az0ZERAS6d+8OIQTCwsIwatQoZR5C6VSxJEZZU+lVcPVpIiKikqjidJjyRuhqo6JTXS/wCQlBo/r1kQPgh9mzFQ5ACQkJePvttyGEwLhx4yovAAH/9t4YGhbeV8bioi4uhYGmpH0Urej+Iq7oTkREWkK/Q1AJf7AlEgnenz4dAPBVWBhycnJKemaJcnJyMHDgQDx69AgtWrTAN998U/5aEhMLe1ASE8v/nJIEBxf2/ERFFf5U5fgcVYQuIiKiSqK/IcjAoNQ/2MOHD4eLiwvu3buHsLCwcu1OCIEJEybg9OnTsLW1xbZt20qckl6i0NDC01idOxf+DA1V5EiKK6v3RtkqM3QREREpkf6OCYqNhVX9+qW2W758Od5//33UqlULV69ehYWFRZn7XbFiBSZPngwDAwPs378fXbt2LbO9jCrG8RAREekYjglSppo1y3x4zJgxcHV1xZ07d7Bw4cIy2x46dAhTp04FACxZsqT8AQiQzeiSU8JYJSIiIlIurQxB33//PerUqQMzMzM0b94cR48eVfprmJmZYfny5QCAL774Qu5qzC+KiYlBnz59kJ+fj6FDh2L68/FE5cbBxURERGqhdSFoy5YtmDp1KubOnStbkiIoKAi3b99W+mv16tULAwYMQEFBAfr27YsbN27IPb5t2zZ06dIFmZmZCAgIQFhYGCQSiWIvwsHFREREaqF1Y4Jat26NZs2aYeXKlbJt9evXR9++fRESEvLK5yt6TvHJkyfw8fHBlStXYGNjg6lTp6JWrVrYuXMndu7cCQDo1q0btm3bBktLy4ofWFnX4yEiItJzer922LNnz2BhYYGtW7eiX79+su0ffPABzp8/j+jo6GLPyc3NRW5urux+eno6atWqpdCbmJSUhL59++Kvv/6S225gYIDp06cjJCSkQiu2ExERUfno/dphqampKCgogIODg9x2BweHUtfFCgkJwYIFC17rdZ2cnPDnn39iw4YN2L17N9LS0vDmm28iODgYb7zxxmvtm4iIiNRDq0JQkZfH3QghSh2LM3v2bLnBykU9QYoyMjLCyJEjMXLkSIWfS0RERJpHq0KQnZ0dDA0Ni/X6pKSkFOsdKmJqaqrS1duJiIhIO2nV7DATExM0b94ckZGRctsjIyPh4+OjpqqIiIhIG2lVTxAATJ8+HcOHD0eLFi3Qtm1brFmzBrdv38Z7772n7tKIiIhIi2hdCBo8eDAePnyIhQsXIikpCW+++Sb27t0LNzc3dZdGREREWkSrpsgrgyqm2BEREZFqce0wIiIiIiVhCHodiYlAVFThTyIiItIqDEEVFRoKuLkBnTsX/gwNVXdFREREpACGoIpITATGjQOk0sL7Uikwfjx7hIiIiLQIQ1BFxMX9G4CKFBQULoBKREREWoEhqCI8PACDl946Q8PCFeCJiIhIKzAEVYSLC7BmTWHwAQp/rl5duJ2IiIi0gtZdLFFjBAcDgYGFp8Dq1WMAIiIi0jIMQa/DxYXhh4iISEvxdBgRERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPSSVoWg2rVrQyKRyN1mzZql7rKIiIhICxmpuwBFLVy4EGPHjpXdr1KlihqrISIiIm2ldSGoatWqcHR0VHcZREREpOW06nQYAHz++eeoXr06mjRpgs8++wzPnj1Td0lERESkhbSqJ+iDDz5As2bNYGNjg7/++guzZ8/GrVu3sG7dulKfk5ubi9zcXNn9tLQ0AEB6errK6yUiIiLlKPq7LYRQ3k6Fms2bN08AKPN26tSpEp+7bds2AUCkpqa+1v5544033njjjTftuN24cUNpGUQihDIjleJSU1ORmppaZpvatWvDzMys2Pa7d+/CxcUFJ06cQOvWrUt87ss9QU+ePIGbmxtu374Na2vr1ytei6Snp6NWrVq4c+cOrKys1F1OpeFx87j1AY+bx60P0tLS4OrqisePH6NatWpK2afaT4fZ2dnBzs6uQs89d+4cAMDJyanUNqampjA1NS223draWq/+8RSxsrLicesRHrd+4XHrF309bgMD5Q1nVnsIKq+YmBicOHECfn5+sLa2xqlTpzBt2jT07t0brq6u6i6PiIiItIzWhCBTU1Ns2bIFCxYsQG5uLtzc3DB27FjMmDFD3aURERGRFtKaENSsWTOcOHHitfdjamqKefPmlXiKTJfxuHnc+oDHzePWBzxu5R232gdGExEREamD1l0skYiIiEgZGIKIiIhILzEEERERkV5iCCIiIiK9pJMh6Pvvv0edOnVgZmaG5s2b4+jRo2W2j46ORvPmzWFmZoa6deti1apVlVSpcily3L/99hv8/f1Ro0YNWFlZoW3btti/f38lVqs8in7eRf78808YGRmhSZMmqi1QRRQ97tzcXMydOxdubm4wNTWFu7s7fvjhh0qqVnkUPe4NGzagcePGsLCwgJOTE9599108fPiwkqp9fUeOHEGvXr3g7OwMiUSC33///ZXP0YXvNEWPW1e+0yryeRfR5u+0ihy3Mr7TdC4EbdmyBVOnTsXcuXNx7tw5dOjQAUFBQbh9+3aJ7W/duoXu3bujQ4cOOHfuHObMmYMpU6Zg+/btlVz561H0uI8cOQJ/f3/s3bsXZ86cgZ+fH3r16iW7Cre2UPS4i6SlpWHEiBHo0qVLJVWqXBU57kGDBuHQoUMIDQ3FtWvXsGnTJnh7e1di1a9P0eM+duwYRowYgeDgYFy+fBlbt27FqVOnMGbMmEquvOIyMzPRuHFjLF++vFztdeU7TdHj1pXvNEWPu4i2f6dV5LiV8p2mtFXINESrVq3Ee++9J7fN29tbzJo1q8T2M2bMEN7e3nLbxo8fL9q0aaOyGlVB0eMuSYMGDcSCBQuUXZpKVfS4Bw8eLD7++GMxb9480bhxYxVWqBqKHve+ffuEtbW1ePjwYWWUpzKKHvfSpUtF3bp15bZ9++23wsXFRWU1qhIAsWPHjjLb6Mp32ovKc9wl0cbvtBcpctza/p32ovIct7K+03SqJ+jZs2c4c+YMAgIC5LYHBATg+PHjJT4nJiamWPvAwECcPn0aeXl5KqtVmSpy3C+TSqV4+vQpbG1tVVGiSlT0uMPCwnDjxg3MmzdP1SWqREWOOzw8HC1atMCSJUtQs2ZNeHp64qOPPkJ2dnZllKwUFTluHx8fJCYmYu/evRBC4P79+9i2bRt69OhRGSWrhS58pymDNn6nVZS2f6dVhLK+07TmitHlkZqaioKCAjg4OMhtd3BwQHJyconPSU5OLrF9fn4+UlNTy1ycVVNU5Lhf9uWXXyIzMxODBg1SRYkqUZHjjouLw6xZs3D06FEYGWnnP/+KHPfNmzdx7NgxmJmZYceOHUhNTcXEiRPx6NEjrRkXVJHj9vHxwYYNGzB48GDk5OQgPz8fvXv3xnfffVcZJauFLnynKYM2fqdVhC58p1WEsr7TdKonqIhEIpG7L4Qotu1V7UvarukUPe4imzZtwvz587FlyxbY29urqjyVKe9xFxQUYNiwYViwYAE8PT0rqzyVUeTzlkqlkEgk2LBhA1q1aoXu3btj2bJl+PHHH7WqNwhQ7LhjY2MxZcoUfPrppzhz5gwiIiJw69YtvPfee5VRqtroyndaRWn7d1p56dp3miKU9Z2mU7HRzs4OhoaGxf6vMCUlpdj/GRVxdHQssb2RkRGqV6+uslqVqSLHXWTLli0IDg7G1q1b0bVrV1WWqXSKHvfTp09x+vRpnDt3DpMnTwZQ+IskhICRkREOHDiAzp07V0rtr6Min7eTkxNq1qwJa2tr2bb69etDCIHExER4eHiotGZlqMhxh4SEoF27dvjPf/4DAGjUqBEsLS3RoUMHLFq0SCd7RXThO+11aPN3mqJ05TutIpT1naZTPUEmJiZo3rw5IiMj5bZHRkbCx8enxOe0bdu2WPsDBw6gRYsWMDY2VlmtylSR4wYK/29p1KhR2Lhxo1aOkVD0uK2srHDp0iWcP39ednvvvffg5eWF8+fPo3Xr1pVV+mupyOfdrl073Lt3DxkZGbJt//zzDwwMDODi4qLSepWlIsedlZUFAwP5rzlDQ0MA//aO6Bpd+E6rKG3/TlOUrnynVYTSvtNea1i1Btq8ebMwNjYWoaGhIjY2VkydOlVYWlqK+Ph4IYQQs2bNEsOHD5e1v3nzprCwsBDTpk0TsbGxIjQ0VBgbG4tt27ap6xAqRNHj3rhxozAyMhIrVqwQSUlJstuTJ0/UdQgVouhxv0xbZ1IoetxPnz4VLi4uYuDAgeLy5csiOjpaeHh4iDFjxqjrECpE0eMOCwsTRkZG4vvvvxc3btwQx44dEy1atBCtWrVS1yEo7OnTp+LcuXPi3LlzAoBYtmyZOHfunEhISBBC6O53mqLHrSvfaYoe98u09TtN0eNW1neazoUgIYRYsWKFcHNzEyYmJqJZs2YiOjpa9tjIkSNFp06d5NofPnxYNG3aVJiYmIjatWuLlStXVnLFyqHIcXfq1EkAKHYbOXJk5Rf+mhT9vF+krV8YQih+3FeuXBFdu3YV5ubmwsXFRUyfPl1kZWVVctWvT9Hj/vbbb0WDBg2Eubm5cHJyEm+//bZITEys5KorLioqqszfVV39TlP0uHXlO60in/eLtPU7rSLHrYzvNIkQOtonTERERFQGnRoTRERERFReDEFERESklxiCiIiISC8xBBEREZFeYggiIiIivcQQRERERHqJIYiIiIj0EkMQERER6SWGICIiItJLDEFERESklxiCiEgnLFy4EA0bNoSlpSUcHBwwYcIE5OXlqbssItJgRuougIjodQkhUFBQgNWrV6NmzZqIjY3FiBEj0KhRI0yYMEHd5RGRhuICqkSkk4YNG4YaNWrgm2++UXcpRKSheDqMiLReQkICJk+ejDfffBM2NjaoUqUKfv31V7i4uKi7NCLSYAxBRKTVUlNT0apVK6SmpmLZsmU4duwYYmJiYGhoiCZNmqi7PCLSYBwTRERabe/evcjPz8emTZsgkUgAACtWrMCzZ88YgoioTAxBRKTVbG1tkZ6ejvDwcDRo0AC7du1CSEgIatasiRo1aqi7PCLSYBwYTURaTQiBCRMmYOPGjTA3N8c777yDnJwcJCQkYPfu3eouj4g0GEMQERER6SUOjCYiIiK9xBBEREREeokhiIiIiPQSQxARERHpJYYgIiIi0ksMQURERKSXGIKIiIhILzEEERERkV5iCCIiIiK9xBBEREREeokhiIiIiPQSQxARERHppf8DRfo/7SU/5AAAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdCUlEQVR4nO3deXxM9/7H8ddkkdgSIkQixBa0VUup1E7se9GiWktLaRVV1y2qt+ht5dLWr71FcYW2WktL7Tu1FhVKbaWxBCmxBEkEIcn5/ZFmiCQkMclMMu/n4zGPdM5858znzMjk3e/5fr/HZBiGgYiIiIidcbB2ASIiIiLWoBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkVtWkSROaNGli7TKyrG/fvhQqVChDbcuWLUvfvn2ztR6TycS4ceOy9TUe5ebNm4wbN44tW7ZYtY7cYtOmTdSuXZuCBQtiMplYunQpX3/9NSaTibCwMHO7efPm8fnnn2dLDe+//z5lypTBycmJIkWKZPr5ffv2pWzZshavy9Z8++239OjRg8qVK+Pg4PDQY96zZw+tWrWicOHCFCpUiKZNm/LLL7/kXLGSIU7WLkDs27Rp06xdQo5ZsmQJbm5u1i4j2928eZPx48cD5OqAmxMMw6Bbt25UqlSJ5cuXU7BgQSpXrkx8fDy7du3C29vb3HbevHkcPnyYYcOGWbSGZcuW8fHHHzNmzBjatGmDi4uLRfefl8ydO5eIiAjq1KlDYmIid+/eTbNdSEgIjRo1ok6dOsydOxfDMJg0aRLNmjVj8+bN1K1bN4crl/QoBIlVPfnkk9YuIcfUrFnT2iWIBd26dQtXV1dMJlOW93H+/HmuXr1K586dadasWYrHihcv/rglZsjhw4cBGDp0KCVKlMiR17QUS3wGmbFu3TocHJJOoLRv39783j3oX//6F0WKFGHt2rUUKFAAgObNm1O+fHlGjBihHiEbotNhkmHjxo3DZDJx5MgRXnrpJdzd3fHy8uK1114jKioqRdvbt28zevRoypUrR758+ShVqhRvvfUW169fT9EurdNhX331FdWrV6dQoUIULlyYKlWq8N577wEQFhaGk5MTQUFBqerbtm0bJpOJH3/88aHHcf36df7xj39Qvnx5XFxcKFGiBG3btuXYsWMAbNmyBZPJlOp0TlhYGCaTia+//jrVPo8cOUKzZs0oWLAgxYsXZ/Dgwdy8eTNFm7ROhz2qFkuIiIhg4MCB+Pr6ki9fPsqVK8f48eOJj49P0W78+PEEBATg4eGBm5sbzzzzDMHBwTx4jeWff/6ZJk2aUKxYMfLnz0+ZMmXo2rUrN2/eJCwszPzHe/z48ZhMJkwm0yNPA968eZMRI0ZQrlw5XF1d8fDwoHbt2syfPz9Fu6+//prKlSvj4uLCE088wbfffpvqVExmPr+9e/fSo0cPypYtS/78+SlbtiwvvfQSZ86cSfW6JpOJ9evX89prr1G8eHEKFChAXFwcAAsXLqRu3boULFiQQoUK0apVK/bv3//QYx43bhy+vr4AjBw5EpPJZD6OB0+HNWnShFWrVnHmzBnze/qoP/yJiYlMmjSJKlWqmP9t9e7dm/DwcHObsmXL8v777wPg5eWVodOpaX0Gablz5w4fffSR+fWLFy/Oq6++yuXLl1O0i4uL4x//+AclS5akQIECNGrUiH379qX6fbHUZ7B37146duyIh4cHrq6u1KxZkx9++OGhx5wsOQA9yi+//EKTJk3MAQigcOHCNGrUiJ07d3LhwoUM7Ueyn3qCJNO6du1K9+7d6devH4cOHWL06NEAzJ49G0jq4n/++efZtGkTo0ePpmHDhhw8eJCxY8eya9cudu3alW6X+4IFCxg0aBBDhgzh008/xcHBgRMnTnD06FEg6Uu7Y8eOTJ8+nXfffRdHR0fzc6dMmYKPjw+dO3dOt/aYmBgaNGhAWFgYI0eOJCAggBs3brBt2zYuXLhAlSpVMv1+3L17l7Zt2zJw4EBGjRrFzp07+eijjzhz5gwrVqx47Fr69u3LN998w+nTpzM97iK5697BwYEPPviAChUqsGvXLj766CPCwsKYM2eOuW1YWBgDBw6kTJkyAOzevZshQ4bw119/8cEHH5jbtGvXjoYNGzJ79myKFCnCX3/9xdq1a7lz5w7e3t6sXbuW1q1b069fP/r37w88uldj+PDhzJ07l48++oiaNWsSGxvL4cOHiYyMNLf5+uuvefXVV+nUqROfffYZUVFRjBs3jri4uAz/cXpQWFgYlStXpkePHnh4eHDhwgW++uornn32WY4ePYqnp2eK9q+99hrt2rVj7ty5xMbG4uzszIQJE3j//fd59dVXef/997lz5w6ffPIJDRs2ZM+ePen2dvbv35/q1avTpUsXhgwZQs+ePdP9vZg2bRoDBgzg5MmTLFmyJEPH9uabbzJz5kwGDx5M+/btCQsL41//+hdbtmzht99+w9PTkyVLljB16lSCg4NZu3Yt7u7u5mCWlox+BomJiXTq1Int27fz7rvvUq9ePc6cOcPYsWNp0qQJe/fuJX/+/AC8+uqrLFy4kHfffZfAwECOHj1K586diY6OTrOGx/kMNm/eTOvWrQkICGD69Om4u7uzYMECunfvzs2bNy02Zu/OnTtpfpbJ2w4dOpTiVKdYkSGSQWPHjjUAY9KkSSm2Dxo0yHB1dTUSExMNwzCMtWvXptlu4cKFBmDMnDnTvK1x48ZG48aNzfcHDx5sFClS5KF1bN682QCMJUuWmLf99ddfhpOTkzF+/PiHPvfDDz80AGPDhg2P3P/mzZtTbD99+rQBGHPmzDFv69OnjwEYX3zxRYq2H3/8sQEYO3bsMG/z8/Mz+vTpk6laDMMwXnvtNcPR0dEICwt7aDvDMAzAGDt2rPn+wIEDjUKFChlnzpxJ0e7TTz81AOPIkSNp7ichIcG4e/eu8eGHHxrFihUzf7aLFi0yAOPAgQPp1nD58uVUdTxK1apVjeeffz7dxxMSEgwfHx/jmWeeMddiGIYRFhZmODs7G35+fuZtmfn8HhQfH2/cuHHDKFiwYIrPdM6cOQZg9O7dO0X7s2fPGk5OTsaQIUNSbI+JiTFKlixpdOvW7SFHfa+mTz75JMX25Nc7ffq0eVu7du1SHOfD/PHHHwZgDBo0KMX2X3/91QCM9957z7wt+ff68uXLD91nZj6D+fPnG4CxePHiFPsICQkxAGPatGmGYRjGkSNHDMAYOXJkinbJz7//98USn0GVKlWMmjVrGnfv3k3Rtn379oa3t7eRkJDw0Pfgfg/7PGrUqGFUqlQpxf7u3r1rlC9f3gCMefPmZfh1JHvpdJhkWseOHVPcr1atGrdv3+bSpUtA0ukSINX/Vb344osULFiQTZs2pbvvOnXqcP36dV566SWWLVvGlStXUrVp0qQJ1atXZ+rUqeZt06dPx2QyMWDAgIfWvmbNGipVqkTz5s0f2i6zXn755RT3e/bsCST9n+fj1hIcHEx8fDx+fn6ZrmvlypU0bdoUHx8f4uPjzbc2bdoAsHXrVnPbn3/+mebNm+Pu7o6joyPOzs588MEHREZGmj/bGjVqkC9fPgYMGMA333zDqVOnMlXP/TXEx8ebT7XVqVOHNWvWMGrUKLZs2cKtW7dSPO/48eOcP3+enj17pjgN5OfnR7169TL9viS7ceMGI0eOpGLFijg5OeHk5EShQoWIjY3ljz/+SNW+a9euKe6vW7eO+Ph4evfuneK4XF1dady4sdVmyCX/u3vwd7BOnTo88cQTD/0dTE9mPoOVK1dSpEgROnTokOJ9qVGjBiVLljS/L8n//rp165bi+S+88AJOTmmfqMjqZ3DixAmOHTtm/l29v23btm25cOECx48fz/T7kpYhQ4bw559/MnjwYP766y/OnTvHG2+8YT7NmtWeS7E8fRKSacWKFUtxP7mLN/kPV2RkJE5OTqlOgZhMJkqWLJniFMeDevXqxezZszlz5gxdu3alRIkSBAQEsGHDhhTthg4dyqZNmzh+/Dh3797lf//7Hy+88AIlS5Z8aO2XL19+aHd/Vjg5OaV6T5LreNixZkctD7p48SIrVqzA2dk5xe2pp54CMIfMPXv20LJlSwD+97//8csvvxASEsKYMWOAe59thQoV2LhxIyVKlOCtt96iQoUKVKhQgS+++OKRtYSFhaWqI/mP4H//+19GjhzJ0qVLadq0KR4eHjz//POEhoYC997HtD7fR33mD9OzZ0+mTJlC//79WbduHXv27CEkJITixYunCmJAqlMYFy9eBODZZ59NdWwLFy5MM8TnhOT3K61TLj4+Pg/9d/mofWbkM7h48SLXr18nX758qd6XiIgI8/uSvE8vL68Uz0/rdypZVj+D5HYjRoxI1W7QoEEAFvu8XnvtNf7zn/8wd+5cfH19KVOmDEePHmXEiBEAlCpVyiKvI49PY4LE4ooVK0Z8fDyXL19OEYQMwyAiIoJnn332oc9/9dVXefXVV4mNjWXbtm2MHTuW9u3b8+eff5p7Q3r27MnIkSOZOnUqzz33HBEREbz11luPrK148eIpBoamxdXVFcA84DJZel+Q8fHxREZGpvjSjoiIAFIHxszW8rg8PT2pVq0aH3/8cZqP+/j4AEljsZydnVm5cqX5+AGWLl2a6jkNGzakYcOGJCQksHfvXr788kuGDRuGl5cXPXr0SLcWHx8fQkJCUmyrXLkyAAULFmT8+PGMHz+eixcvmnuFOnTowLFjx8zvY/L7er8Ht2X084uKimLlypWMHTuWUaNGmbfHxcVx9erVNI/hwcHIyWOGFi1alKWeuuyS/H5duHAhVdA+f/58qrFOmdlnRj4DT09PihUrxtq1a9PcV+HChVPs8+LFiymCQfLvVFqy+hkktxs9ejRdunRJs03yv0dLGDlyJMOGDSM0NJTChQvj5+fHwIEDKViwILVq1bLY68jjUU+QWFzyVN/vvvsuxfbFixcTGxubaipwegoWLEibNm0YM2YMd+7c4ciRI+bHXF1dzadkJk+eTI0aNahfv/4j99mmTRv+/PNP8ym7tCQPPj548GCK7cuXL0/3Od9//32K+/PmzQMevk5ORmp5XMnTeCtUqEDt2rVT3ZJDkMlkwsnJKcVA81u3bjF37tx09+3o6EhAQID5tORvv/0GpO4ZTJYvX75Ur5/8x/B+Xl5e9O3bl5deeonjx49z8+ZNKleujLe3N/Pnz08xW+3MmTPs3LkzxfMz+vmZTCYMw0g1gHXWrFkkJCSke9z3a9WqFU5OTpw8eTLN97d27doZ2k9GuLi4pNk7lZbAwEAg9e9gSEgIf/zxR4Z/B++Xmc+gffv2REZGkpCQkOZ7khw2GjVqBCTN7LrfokWLUs1eTE9GP4PKlSvj7+/P77//nm67tP49Pg4XFxeqVq2Kn58fZ8+eZeHChbz++uvmQeFifeoJEotr0aIFrVq1YuTIkURHR1O/fn3z7LCaNWvSq1evdJ+b/AVRv359vL29iYiIICgoCHd391Q9SIMGDWLSpEns27ePWbNmZai2YcOGsXDhQjp16sSoUaOoU6cOt27dYuvWrbRv356mTZtSsmRJmjdvTlBQEEWLFsXPz49Nmzbx008/pbnPfPny8dlnn3Hjxg2effZZ8+ywNm3a0KBBg8eqBaBfv3588803nDx5MtO9DR9++CEbNmygXr16DB06lMqVK3P79m3CwsJYvXo106dPx9fXl3bt2jF58mR69uzJgAEDiIyM5NNPP00VEKZPn87PP/9Mu3btKFOmDLdv3zbPCkwe25T8f73Lli2jWbNmeHh44Onp+dCZbQEBAbRv355q1apRtGhR/vjjD+bOnUvdunXN04z//e9/079/fzp37szrr7/O9evXGTduXKpTMRn9/Nzc3GjUqBGffPKJub6tW7cSHByc4VWTy5Yty4cffsiYMWM4deoUrVu3pmjRoly8eJE9e/aYe7gs4emnn+ann37iq6++olatWjg4OKQbsipXrsyAAQP48ssvcXBwoE2bNubZYaVLl+add97J9Os7ODhk+DPo0aMH33//PW3btuXtt9+mTp06ODs7Ex4ezubNm+nUqROdO3fmqaee4qWXXuKzzz7D0dGRwMBAjhw5wmeffYa7u3uGxs5k5jOYMWMGbdq0oVWrVvTt25dSpUpx9epV/vjjD3777bdHLq9x9OhR80zViIgIbt68yaJFi4CkNc+SZ6EdPnyYxYsXU7t2bVxcXPj999/5z3/+g7+/P//+978z/d5LNrLqsGzJVdKbRZLWTJZbt24ZI0eONPz8/AxnZ2fD29vbePPNN41r166leO6Ds8O++eYbo2nTpoaXl5eRL18+w8fHx+jWrZtx8ODBNGtq0qSJ4eHhYdy8eTPDx3Ht2jXj7bffNsqUKWM4OzsbJUqUMNq1a2ccO3bM3ObChQvGCy+8YHh4eBju7u7GK6+8YuzduzfN2WEFCxY0Dh48aDRp0sTInz+/4eHhYbz55pvGjRs3Urzug7PDMlpL8gy0+9/f9JDGrKzLly8bQ4cONcqVK2c4OzsbHh4eRq1atYwxY8akqHH27NlG5cqVDRcXF6N8+fJGUFCQERwcnOK1d+3aZXTu3Nnw8/MzXFxcjGLFihmNGzc2li9fnuI1N27caNSsWdNwcXFJNcsnLaNGjTJq165tFC1a1Pz677zzjnHlypUU7WbNmmX4+/sb+fLlMypVqmTMnj3b6NOnT6pZOhn9/MLDw42uXbsaRYsWNQoXLmy0bt3aOHz4cKrPKvnfeEhISJr1L1261GjatKnh5uZmuLi4GH5+fsYLL7xgbNy48aHHnZnZYVevXjVeeOEFo0iRIobJZDIe9fWdkJBgTJw40ahUqZLh7OxseHp6Gq+88opx7ty5FO0yOjssWUY/g7t37xqffvqpUb16dcPV1dUoVKiQUaVKFWPgwIFGaGioud3t27eN4cOHGyVKlDBcXV2N5557zti1a5fh7u5uvPPOO6nek8f9DH7//XejW7duRokSJQxnZ2ejZMmSRmBgoDF9+vRHHnvye5XW7f7fu+PHjxuNGjUyPDw8jHz58hkVK1Y03n///VTfCWJ9JsN4YCU0kVzi0qVL+Pn5MWTIECZNmmTtcsRK+vbty5YtW1JcZ0tyt507d1K/fn2+//5780xLkeyg02GS64SHh3Pq1Ck++eQTHBwcePvtt61dkohk0YYNG9i1axe1atUif/78KU4dpTeAWcRSFIIk15k1axYffvghZcuW5fvvv9d0U5FczM3NjfXr1/P5558TExODp6cnbdq0ISgoKMVMRZHsoNNhIiIiYpdsZor8V199RbVq1XBzc8PNzY26deuyZs0a8+OGYTBu3Dh8fHzInz8/TZo0STFlWkRERCQzbCYE+fr68p///Ie9e/eyd+9eAgMD6dSpkznoTJo0icmTJzNlyhRCQkIoWbIkLVq0ICYmxsqVi4iISG5k06fDPDw8+OSTT3jttdfw8fFh2LBhjBw5Ekha1dXLy4uJEycycOBAK1cqIiIiuY1NDoxOSEjgxx9/JDY2lrp163L69GkiIiLM1zaCpJU4GzduzM6dOx8aguLi4lIsn5+YmMjVq1cpVqxYquXXRURExDYZhkFMTAw+Pj4WuwitTYWgQ4cOUbduXW7fvk2hQoVYsmQJTz75pHlJ9gcvsufl5WW+Km96goKCLLZiq4iIiFjXuXPnLHbxaZsKQZUrV+bAgQNcv36dxYsX06dPH/NVpiH1hfMMw3hkb87o0aMZPny4+X5UVBRlypTh3LlzuLm5WfYAREREJFtER0dTunRpi17jzaZCUL58+ahYsSIAtWvXJiQkhC+++MI8DigiIgJvb29z+0uXLqXqHXqQi4tLqusfAeZZaCIiIpJ7WHIoi83MDkuLYRjExcVRrlw5SpYsyYYNG8yP3blzh61bt1KvXj0rVigiIiK5lc30BL333nu0adOG0qVLExMTw4IFC9iyZQtr167FZDIxbNgwJkyYgL+/P/7+/kyYMIECBQroujIiIiKSJTYTgi5evEivXr24cOEC7u7uVKtWjbVr19KiRQsA3n33XW7dusWgQYO4du0aAQEBrF+/3qLnBkVERMR+2PQ6QdkhOjoad3d3oqKiNCZIREQkl8iOv982PSZIREREJLsoBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREUlTXFwchmFYu4xsoxAkIiIiqfzzn/8kf/78PPPMM0RGRlq7nGyhECQiIiIprFy5kk8//RTDMDhw4AAffPCBtUvKFgpBIiIiksKECRMAqF69OgBz584lLi7OmiVlC4UgERERMTt58iS7du3CwcGBNWvWULJkSWJiYti1a5e1S7M4hSARERExW7BgAQDNmjXD29ubZs2aAbBlyxYrVpU9FIJERETEbPHixQD06NEDgDp16gDw22+/Wa2m7KIQJCIiIgBcunSJ/fv3A9CuXTsAatasCWDenpcoBImIiAgAmzZtApIGRHt5eQHw9NNPAxAeHk5MTIzVassOCkEiIiICwIYNGwBo2bKleVuRIkXw9PQE4MSJE1apK7soBImIiAgAO3bsAKBp06Yptvv7+wMKQSIiIpIHXb58mdDQUACee+65FI9VqFABgNOnT+d4XdnJZkJQUFAQzz77LIULF6ZEiRI8//zzHD9+PEWbvn37YjKZUtwe/KBEREQk83bv3g3Ak08+SdGiRVM8VqpUKQDOnz+f43VlJ5sJQVu3buWtt95i9+7dbNiwgfj4eFq2bElsbGyKdq1bt+bChQvm2+rVq61UsYiISN6xc+dOAOrWrZvqMR8fHyDvhSAnaxeQbO3atSnuz5kzhxIlSrBv3z4aNWpk3u7i4kLJkiVzujwREZE8LTkE1atXL9VjeTUE2UxP0IOioqIA8PDwSLF9y5YtlChRgkqVKvH6669z6dKlh+4nLi6O6OjoFDcRERG55+7du4SEhAD21RNkkyHIMAyGDx9OgwYNqFq1qnl7mzZt+P777/n555/57LPPCAkJITAw8KEXdQsKCsLd3d18K126dE4cgoiISK7x+++/c+vWLYoWLUrlypVTPX5/CDIMI6fLyzY2czrsfoMHD+bgwYPmqXrJunfvbv7vqlWrUrt2bfz8/Fi1ahVdunRJc1+jR49m+PDh5vvR0dEKQiIiIvdJvjjqc889h4ND6v4Rb29vIOnsytWrVylWrFiO1pddbC4EDRkyhOXLl7Nt2zZ8fX0f2tbb2xs/Pz/zlL60uLi44OLiYukyRURE8oydGzcCUO+pp9J83MXFhWLFihEZGcn58+fzTAiymdNhhmEwePBgfvrpJ37++WfKlSv3yOdERkZy7tw5c0IVERGRTAoOZufy5QDU/ewzCA5Os1leHBdkMyHorbfe4rvvvmPevHkULlyYiIgIIiIiuHXrFgA3btxgxIgR7Nq1i7CwMLZs2UKHDh3w9PSkc+fOVq5eREQkFwoP56/XX+csSYGgjmHAwIEQHp6qaXKHw4ULF3K2xmxkMyHoq6++IioqiiZNmuDt7W2+LVy4EABHR0cOHTpEp06dqFSpEn369KFSpUrs2rWLwoULW7l6ERGRXCg0lF1/D3R+GigMkJAAaVweI/n6YZGRkTlXXzazmTFBjxptnj9/ftatW5dD1YiIiNgBf392/f2f5onxjo5QsWKqpsnjgPJSCLKZniARERHJYb6+7Pr7umB1ISkAzZgBaUxMSu4JunLwYJqny3IjhSARERE7FRcXx75z5wCo9913EBYG/fql2bbY39fzjFy1Cvz80h1AnZsoBImIiNip3377jTt37uDp6UmFnj3T7AECIDwcz/nzAYgESExMdwB1bqIQJCIiYqeSF0msW7cuJpMp/YahoRT7e+zuleRt6Qygzk1sZmC0iIiI5Kz7Q9BD+ftTxWTiY8OgTPK2dAZQ5ybqCRIREbFTGQ5Bvr74/u9/vOfoyCvw0AHUuYnJyEtXQsuA6Oho3N3diYqKws3NzdrliIiIWMW5c+coU6YMjo6OREVFUbBgwUc/KTw86RRYxYo5HoCy4++3ToeJiIjYoeReoGrVqmUsAEFS8MnlvT/30+kwERERO5QcgurVq2flSqxHIUhERMQOZXg8UB6mECQiImJnbty4wd69ewGoX7++lauxHoUgERERO7Njxw4SEhIoW7YsZcuWtXY5VqMQJCIiYme2bNkCQNOmTa1biJUpBImIiNiZzZs3A9CkSRPrFmJlCkEiIiJ2JDo6mn379gEKQQpBIiIiduSXX34hISGB8uXLU6ZMmUc/IQ9TCBIREbEjOhV2j0KQiIiIHVm/fj2gQdGgECQiImI3wsPD+f333zGZTLRq1cra5VidQpCIiIidWL16NQABAQEUL17cytVYn0KQiIiInVi1ahUA7dq1s3IltkFXkRcREcnLwsMhNJTbpUuzceNGQCEomUKQiIhIXhUcDAMGQGIia00mbhoGvr6+1KhRw9qV2QSdDhMREcmLwsPNAQhggWEA0L1tW0wmkzUrsxkKQSIiInlRaKg5AMUCK/7e3OOZZ6xWkq1RCBIREcmL/P3BIenP/ArgJlAeqNW2rTWrsikKQSIiInmRry/MnAmOjvzv700927fHVLq0VcuyJQpBIiIieVW/fhzbuJGfAQcHB16fOtXaFdkUhSAREZE8bPrSpQC0b9/e7i+Y+iCFIBERkTwqMjKS4OBgAN58800rV2N7FIJERETyqE8//ZQbN25Qs2ZNXSssDQpBIiIiedDFixf58ssvARg/frzWBkqDQpCIiEge9M477xAbG8uzzz5L+/btrV2OTVIIEhERyWNWrlzJ/PnzcXBw4KuvvlIvUDoUgkRERPKQEydO0Lt3byCpN6hWrVpWrsh2KQSJiIjkEefPn6d9+/Zcu3aNgIAAPvroI2uXZNMUgkRERPKAw4cP06BBA44fP46vry9LlizB1dXV2mXZNIUgERGRXOzGjRt8/PHH1K5dm9OnT1OhQgW2bduGt7e3tUuzeU7WLkBEREQy748//mDevHnMmDGDy5cvA9CuXTtmz55NiRIlrFxd7qAQJCIikkuEh4ezYMEC5s2bx/79+83bK1SowLhx43j55Zc1EywTFIJERERs2K1bt1i6dClz5sxh48aNGIYBgJOTE61ateLll1/mhRdewNnZ2cqV5j42MyYoKCiIZ599lsKFC1OiRAmef/55jh8/nqKNYRiMGzcOHx8f8ufPT5MmTThy5IiVKhYREck+0dHRTJgwgdKlS9OzZ082bNiAYRg0bNiQ6dOnc+HCBVauXMlLL72kAJRFNhOCtm7dyltvvcXu3bvZsGED8fHxtGzZktjYWHObSZMmMXnyZKZMmUJISAglS5akRYsWxMTEWLFyERGRDAoPh82bk36mIyEhgalTp1K2bFnGjBlDZGQkZcqU4YMPPuDUqVNs27aNgQMH4unpmYOF500mI7lfzcZcvnyZEiVKsHXrVho1aoRhGPj4+DBs2DBGjhwJQFxcHF5eXkycOJGBAwdmaL/R0dG4u7sTFRWFm5tbdh6CiIjIPcHBMGAAJCaCgwPMnAn9+qVocujQIfr378+ePXsAqFKxIu+PG0ePHj1wdHRMub/wcAgNBX9/8PXNqaOwmuz4+20zPUEPioqKAsDDwwOA06dPExERQcuWLc1tXFxcaNy4MTt37rRKjSIiIhkSHn4vAEHSz4EDzT1ChmEwa9Ysnn32Wfbs2YMbMBU4fPIkL9++nToABQeDnx8EBib9DA7O0cPJK2wyBBmGwfDhw2nQoAFVq1YFICIiAgAvL68Ubb28vMyPpSUuLo7o6OgUNxERkRwVGnovACVLSIATJ4iLi+PVV1/l9ddfJy4ujrbAH8AgwNEwUoQl4JGBSjLOJkPQ4MGDOXjwIPPnz0/12INT/wzDeOh0wKCgINzd3c230qVLW7xeERGRh/L3TzoFdj9HR64XL06rVq345ptvcHBwIKh/f1YAPve3+zssmT0kUEnm2FwIGjJkCMuXL2fz5s343neOs2TJkgCpen0uXbqUqnfofqNHjyYqKsp8O3fuXPYULiIikh5f36QxQMmntRwdOT9xIg179GDr1q0ULlyYdevWMWrsWBzSCEtUrHjvfjqBKkUbyRCbCUGGYTB48GB++uknfv75Z8qVK5fi8XLlylGyZEk2bNhg3nbnzh22bt1KvXr10t2vi4sLbm5uKW4iIiI5rl8/CAuDzZs5v3s3TWbM4PDhw3h7e7N9+3aaN2+eZlhixoyUA58z0kYyxGYWS3zrrbeYN28ey5Yto3DhwuYeH3d3d/Lnz4/JZGLYsGFMmDABf39//P39mTBhAgUKFKBnz55Wrl5ERCQDfH254OhI0yZNCA0Nxc/Pjy1btlC2bNl7bfr1g1atkk5vVayYdrjJSBt5JJuZIp/euJ45c+bQt29fIKm3aPz48cyYMYNr164REBDA1KlTzYOnM0JT5EVExFouX75Mw4YNOX78OGXKlGHr1q0pA5CkKzv+fttMCMopCkEiImINt27dolmzZuzatYvSpUuzdevWVEM/JH12tU6QiIhIXpGYmEjfvn3ZtWsXRYsWZcOGDQpANkAhSEREJJu9//77/PDDDzg7O/PTTz9RuXJla5ckKASJiIhkq9mzZxMUFATArFmzaNKkiXULEjOFIBERkWyyadMm87Ut//Wvf9G7d28rVyT3UwgSERHJBkePHqVr167Ex8fTs2dPxo8fb+2S5AEKQSIiIhZ28eJF2rVrR1RUFA0aNCA4OPihl3gS67CZxRJFRERytfBwCA3lpq8vHV95hbCwMCpWrMiSJUtwdXW1dnWSBoUgERGRxxUcDAMGkJiYSG9gD+Dh4cHq1avx9PS0dnWSDp0OExEReRzh4TBgACQmMhpYDOQDls6cib+/v5WLk4dRCBIREXkcoaGQmMhMYNLfm4KBhsWKWbEoyQiFIBERkcfh7896k4lBf98dB7zi6Jh0YVOxaQpBIiIij+Hw9eu84OJCAvAK8IGDA8yYoSu75wIaGC0iIpJFFy5coF27dsTcvk2jgABmffghpiefVADKJRSCREREsiA2NpaOHTty9uxZKlWqxJLVq3Hx8LB2WZIJOh0mIiKSSfHx8fTo0YO9e/dSrFgxVq1ahYcCUK6jECQiIpIJhmEwdOhQVq5ciaurKytWrKCiBkHnSgpBIiIimfDpp5/y1VdfYTKZ+O6776hbt661S5IsUggSERHJoB9++IF3330XgMmTJ9O1a1crVySPQyFIREQkA7Zv306vXr0AePvttxk2bJh1C5LHphAkIiLyCIcOHaJTp07cuXOHzp0789lnn1m7JLEAhSAREZGHOHXqFC1btuTatWvUrVuX7777DkdHR2uXJRagECQiIpKOCxcu0KJFCyIiInj66adZtWoVBQoUsHZZYiEKQSIiImm4evUqLVu25NSpU5QvX55169ZRtGhRa5clFqQQJCIi8oDY2FjatWvH4cOH8fb2ZsOGDXh7e1u7LLEwhSAREZH73L59my5durB7926KFi3K+vXrKV++vLXLkmygECQiIvK3uLg4XnjhBdavX0+BAgVYtWoVVatWtXZZkk0UgkRERIA7d+7QrVs3Vq1aZb4chlaDztsUgkRExO7dvXuXHj16sHz5cnMACgwMTHowPBw2b076KXmKQpCIiOQ9mQgu8fHx9OzZkyVLlpAvXz6WLl1K8+bNkx4MDgY/PwgMTPoZHJzNhUtOUggSEZG8JRPBJT4+nl69erFo0SKcnZ1ZsmQJrVq1SnowPBwGDIDExKT7iYkwcKB6hPIQhSAREck7MhFc4uPj6dutGwsWLMDZ2ZnFixfTtm3bew1CQ+/tJ1lCApw4kY0HIDlJIUhERPKODAaXu3fv8nLduny/ZAlOwML4eDpcupTyef7+4PDAn0lHR6hY0fJ1i1UoBImISN6RgeASFxfHi+3b88PevTgDPwCdDSN1j5GvL8ycmfT85P3MmJG0XfIEhSAREck7HhFcbt26RefOnVm2fj0uwBKgc/Jz0zrV1a8fhIUlDbIOC0u6L3mGk7ULEBERsah+/aBVq6RAU7GiOQDFxsbSqVMnNm3aRH5XV5bHxdHcMO49L71TXb6+6v3JoxSCREQk73kguERHR9O+fXu2b99OoUKFWLVqFY1CQ5NOgSUk6FSXnVIIEhGRPO369eu0bt2aX3/9FTc3N9auXZu0EnSjRmn2GIn9UAgSEZE8KzIykpYtW/Lbb7/h4eHB+vXrqVWr1r0GOtVl1xSCREQkT7p48SItWrTg0KFDFC9enI0bN1KtWjVrlyU2RCFIRETynL/++ovmzZtz7NgxvL292bRpE0888YS1yxIboxAkIiJ5ytmzZwkMDOTkyZOULl2an3/+mYpa4FDSoHWCREQkzzhx4gSNGjXi5MmTlCtXjm3btikASbpsKgRt27aNDh064OPjg8lkYunSpSke79u3LyaTKcXtueees06xIiJiUw4fPkzDhg05c+YM/v7+bNu2jbJly1q7LLFhNhWCYmNjqV69OlOmTEm3TevWrblw4YL5tnr16hysUEREbFFISAiNGzcmIiKCp59+mu3bt+OrWV/yCDY1JqhNmza0adPmoW1cXFwoWbJkDlUkIiK2buvWrXTo0IGYmBgCAgJYvXo1Hh4e1i5LcgGb6gnKiC1btlCiRAkqVarE66+/zqUHr/orIiJ2Y/Xq1bRu3ZqYmBiaNm3Khg0bFIAkw2yqJ+hR2rRpw4svvoifnx+nT5/mX//6F4GBgezbtw8XF5c0nxMXF0dcXJz5fnR0dE6VKyIi2eiHH37g5ZdfJj4+ng4dOvDDDz/g6upq7bIkF8lVIah79+7m/65atSq1a9fGz8+PVatW0aVLlzSfExQUxPjx43OqRBERyQGzZ8/m9ddfJzExkZdeeolvvvkGZ2dna5cluUyuOx12P29vb/z8/AgNDU23zejRo4mKijLfzp07l4MVioiIpX3++ef069ePxMREBgwYwNy5cxWAJEtyVU/QgyIjIzl37hze3t7ptnFxcUn3VJmIiOQehmHw73//m7FjxwIwYsQIJk2ahMlksnJlklvZVAi6ceMGJ06cMN8/ffo0Bw4cwMPDAw8PD8aNG0fXrl3x9vYmLCyM9957D09PTzp37mzFqkVEJLsZhsGIESOYPHkyAP/+978ZM2aMApA8FpsKQXv37qVp06bm+8OHDwegT58+fPXVVxw6dIhvv/2W69ev4+3tTdOmTVm4cCGFCxe2VskiIpLN4uPjGThwILNnzwbgiy++YOjQoVauSvICk2EYhrWLyEnR0dG4u7sTFRWFm5ubtcsREZGHuHnzJj169GDFihU4ODgwa9YsXm3RAkJDwd8ftCCi3ciOv9+5emC0iIjkXdeuXaNly5asWLECV1dXlixZwquJieDnB4GBST+Dg61dpuRiNnU6TEREBOCvv/6iVatWHDlyBHd3d1asWEHDcuWSgk9iYlKjxEQYOBBatVKPkGSJeoJERMSmHDt2jHr16nHkyBG8vb3Zvn07DRs2TDoFlhyAkiUkwH0TakQyQyFIRERsxp49e2jQoAFnz56lUqVK7Ny5k6effjrpQX9/cHjgz5ajI1SsmPOFSp6gECQiIjZhzZo1NG3alMjISGrXrs2OHTsoW7bsvQa+vjBzZlLwgaSfM2boVJhkmcYEiYiI1c2YMYO33nqLhIQEWrRowU8//UShQoVSN+zXL2kM0IkTST1ACkDyGBSCRETEahITExk9ejSTJk0CoE+rVsycNo18aQWgZL6+Cj9iETodJiIiVnH79m169OhhDkDjTSbmrFtHPn9/TX2XHKEQJCIi2S88HDZvTvoJXLlyhWbNmvHjjz/i7OzMtyYTHxgGJrg39f3vtiLZRSFIRESyV3BwigUOQydMoG7duuzcuRN3d3fW/ec/9Hrw4gWa+i45QJfNEBGR7BMenmKBw5+BF4GrQNmyZVm9ejVPFC6cchFESJr5FRamsT9ipstmiIhI7vL3AocGMAVoSVIAqlOlCrt37+aJJ57Q1HexGs0OExGR7OPvT5zJxFuGQfJQ514mEzNXrMDVy+teO019FytQCBIRkWxz0dmZLuXLs/PkSRyASSYTw2fOxJTWKs+a+i45TKfDREQk6x6Y9XW/ffv2Ubt2bXaePIm7mxurJ07kH2fPYurf3wqFiqSmECQiIlnzwKyv+9f2mT9/Pg0aNCA8PJzKlSuzJySEVu++q54esSmPFYIuXbpERESEpWoREZHcIjwcBgy4N6Pr77V9Es6cYdSoUfTs2ZPbt2/Ttm1bfv31VypVqmTdekXSkKUQdPDgQZ566im8vb0pVaoUpUqV4v333yc2NtbS9YmIiC36e9bX/aISEujYvTsTJ04EYNSoUSxfvhx3d3drVCjySFkKQf369cPLy4sdO3awf/9+PvroI9asWUPt2rW5du2apWsUERFb4+8PDvf+hPwJBACrf/0VV1dX5s2bR1BQEI7J095FbFCWFkssWLAg+/bto0qVKuZthmHw4osv4urqynfffWfRIi1JiyWKiGRQeHhSj4+/f9pjeYKDYeBA1iYk0AOIAnx9fVm6dCm1atXK6Wolj7OZxRLT6vExmUxMmDCBZcuWWaQwERGxoocMek5mvPYan44aRTsHB6KA+vXrs3fvXgUgyTUyHILatWvHe++9xw8//MAbb7zBO++8w8WLF1O0iYqKomjRohYvUkREclA6g57vnwZ/+/Zt+vTpwz8//pjExET69+/Ppk2b8Lp/AUQRG5fhxRKffvppfvvtN+bMmWMOP+XLl6dbt27UqFGDhIQE5syZw//93/9lW7EiIpID0hj0bL6gqa8v58+fp3PnzuzZswdHR0e++OILBg0ahMlksk69IlmUpTFBFy9eZP/+/Rw4cMB8O3HiBI6OjlSuXJmDBw9mR60WoTFBIiKP8MBFTwHzBU33nD/P888/z4ULF/Dw8ODHH38kMDDQerWK3ciOv98Wu4r8rVu3+P333/n9998ZOHCgJXaZLRSCREQy4O9BzyQkmC9o+p2LC/379ycuLo4nn3yS5cuXU6FCBWtXKnbCpkNQbqEQJCKSQeHhcOIECeXK8d60aUyaNAmADh068N133+k7VHJUdvz91gVURUQkbb6+RBUuTM+ePVm9ejUA7733Hv/+979xcNBVlyT3UwgSEZE0hYWF0a5dO44ePYqrqyuzZ8/mpZdesnZZIhajECQiIqns3buX9u3bc/HiRXx8fFi2bBm1a9e2dlkiFqX+TBERSWH58uU0btyYixcvUq1aNX799VcFIMmTFIJERMTsyy+/5Pnnn+fmzZu0bt2a7du345vWJTNE8gCFIBERISEhgXfeeYehQ4diGAYDBgxgxYoVmgEmeZrGBImI2Lm4uDheeeUVFi1aBMDEiRP55z//qRWgJc9TCBIRsWM3btygS5cubNiwgXz58vHtt9/SvXt3a5clkiMUgkRE7FRkZCTt2rXj119/pWDBgixdupTmzZtbuyyRHKMQJCJih/766y9atmzJ0aNH8fDwYPXq1QQEBFi7LJEcpRAkImJnTpw4QfPmzTlz5gw+Pj6sX7+ep556ytplieQ4hSARETty7NgxAgMDuXDhAhUrVmTDhg2ULVvW2mWJWIVCkIiInTh69CiBgYFcvHiRqlWrsnHjRry8vKxdlojVaJ0gERE7cPjwYZo2bcrFixepXr06mzdvVgASu6cQJCKSxx08eJCmTZty6dIlatasyaZNm/D09LR2WSJWpxAkIpKHHThwgKZNm3LlyhVq167Npk2bKFasmLXLErEJNhWCtm3bRocOHfDx8cFkMrF06dIUjxuGwbhx4/Dx8SF//vw0adKEI0eOWKdYEREb9/vvvxMYGMjVq1epU6cOGzZsoGjRotYuS8Rm2FQIio2NpXr16kyZMiXNxydNmsTkyZOZMmUKISEhlCxZkhYtWhATE5PDlYqI2KjwcNi8meNbt9KyZUuuXbvGc889x/r16ylSpIi1qxOxKTY1O6xNmza0adMmzccMw+Dzzz9nzJgxdOnSBYBvvvkGLy8v5s2bx8CBA3OyVBER2xMcDAMGcCYxkebAJaBmzZqsWbMGd3d3a1cnYnNsqifoYU6fPk1ERAQtW7Y0b3NxcaFx48bs3Lkz3efFxcURHR2d4iYikueEh8OAAVxITKQZEA48AaybM0c9QCLpyDUhKCIiAiDVlE4vLy/zY2kJCgrC3d3dfCtdunS21ikiYhWhoUQmJtICOAmUAzYAxa9ds25dIjYs14SgZCaTKcV9wzBSbbvf6NGjiYqKMt/OnTuX3SWKiOS46JIlaQ0cAXyAjUApR0eoWNG6hYnYMJsaE/QwJUuWBJJ6hLy9vc3bL1269NAFv1xcXHBxccn2+kRErOXmzZu0HziQvYAnSQGovKMjzJgBvr5Wrk7EduWanqBy5cpRsmRJNmzYYN52584dtm7dSr169axYmYiI9cTFxdGlSxe2b9+Ou7s769es4YnNmyEsDPr1s3Z5IjbNpnqCbty4wYkTJ8z3T58+zYEDB/Dw8KBMmTIMGzaMCRMm4O/vj7+/PxMmTKBAgQL07NnTilWLiFhHfHw8L7/8MuvWraNAgQKsWrWKmvXrW7sskVzDpkLQ3r17adq0qfn+8OHDAejTpw9ff/017777Lrdu3WLQoEFcu3aNgIAA1q9fT+HCha1VsoiIVSQmJtK/f38WL15Mvnz5WLZsGfUzGoDCwyE0FPz9dbpM7JrJMAzD2kXkpOjoaNzd3YmKisLNzc3a5YiIZJphGAwZMoSpU6fi6OjI4sWL6dSpU8ae/PdaQiQmgoMDzJyp02aSK2TH3+9cMyZIRESSjBkzhqlTp2Iymfjmm28yHoD+XkuIxMSk+4mJMHBg0nYRO2RTp8NERCQdf5/CClq3jqCJEwGYPn06L7/8csb3ERp6LwAlS0iAEyd0WkzskkKQiIit+/sU1pTERN77e9Onn37KgAEDMrcff/+kU2D3ByGtJSR2TKfDRERs2d+nsL5OTGTI35s+MJn4R/fumd+Xr2/SGCBHx6T7WktI7Jx6gkREbFloKD8kJpI8dHkYMM4wsn4Kq18/aNUq6fkVKyoAiV1TCBIRsWErwsJ4GUgEBgCTAdPjnsLy9VX4EUGnw0REbNbGjRt54Y03iAdeNpmYxt8BSKewRCxCPUEiItnlMRYl3LFjB506deLOnTt07tyZrydPxjEsTKewRCxIPUEiItkhOBj8/CAwMOlncHD6bcPDYfNm83o9e/fupW3btty8eZPWrVszf/58nMqWhSZNFIBELEghSETE0jKzKOEDYen3ceNo1aoVMTExNGnShJ9++gkXF5ecrV/ETigEiYhY2sMWJbzfA2Fpf2IigePHc/XqVQICAli+fDn58+fPoaJF7I9CkIiIpSUvSni/tGZ03ReW9gHNgKtAwBNPsG7dOl0cWiSbKQSJiFhaRhcl/DsshQDNgWtAXWD94sW4u7vnbM0idkghSEQkO/TrB2FhSQOew8LSvlK7ry+7R46kOXAdaACsmzIFtyeeyMlKReyWpsiLiGSXRyxKuHbtWrp+8QU3gUbVqrHqhx8oVLlyztUnYufUEyQi1vPA1HB7Mm/ePDp06GCeBr96504FIJEcphAkItaRmXV08pgvv/ySl19+mfj4eF566SWWLVtGwYIFrV2WiN1RCBKRnJeZdXTykISEBIYPH87QoUMBGDJkCN999x358uWzcmUi9kkhSERyXkbX0clDoqOj6dSpE//3f/8HwEcffcQXX3yBw4NT6UUkx2hgtIjkvOR1dO4PQo97ZXQbdvr0aTp27Mjhw4dxdXXlm2++oVu3btYuS8Tu6X9BRCTnZXQdnTxg2bJlPPPMMxw+fBhvb2+2bdumACRiI9QTJCLW0a8ftGqVdAosD14Z/e7du4waNYrJkycD8Nxzz/Hjjz/im8eOUyQ3UwgSEet5xDo6udXRo0fp27cvISEhAAwfPpygoCANgBaxMTodJiJiIfHx8fznP/+hZs2ahISE4O7uzk8//cRnn32mACRig9QTJCJiAbt372bIkCHs3bsXgLZt2zJz5kxKlSpl5cpEJD3qCRIReQx//fUXvXv3pm7duuzduxd3d3e+/vprVq5cqQAkYuMUgkREsuD83r283bUrFSpUYO7cuQC8+uqrHDt2jD59+mAymaxcoYg8ik6HiYhkwsGDB5k6ZAjfbtvG7b+31a9Ykf+bN49nn33WqrWJSOYoBIlI3hAenrQStb+/xWecXb16lZ9++olvv/2W7du3m7fXA8YDzU6dwuTtbdHXFJHspxAkIrlfcPC9a5E5OCQtxNivX5Z3ZxgGJ0+eZOPGjaxcuZJ169YRHx8PgKODA10SE3kLaASYIOl1T5zIk9P9RfIyk2EYhrWLyEnR0dG4u7sTFRWFm5ubtcsRkccVHp50FfoHL8ERFpbhUHLt2jUOHjzIb7/9xr59+9i+fTtnz55N0aZ69ep0796dXs2b4/vcc4/1eiKSednx91s9QSKSu6VzMVYjNJQYNzeuXLlivl2+fJkrV65w6dIlwsLCOHXqFCdPnuTatWupduvs7Ey9evVo0aIFXbt2pUqVKvcenDkz6ar3CQl5+pIfInmdQpCI5BoJCQlcuHCBs2fPcvbsWc6fP8+VU6eIBPPtSvLPVq24e/duhvddpkwZatWqxTPPPMOzzz5LgwYNKFiwYNqN8/glP0TshUKQiNicO3fucPjw4RS3P/74g3PnzpGQkJCxnfwdgAoUKICnp2fSrVAhPJ2d8fTzw++pp6hQoQLly5enfPny6Qee9OTRS36I2BOFIBGxuhs3brBlyxZ27NjBzp07CQkJ4fbt22m2dXJywtfXlzJlylCqVCk8PT0pVqwYxRwd8bxzh2JVqlCsShVz8ClQoEDSE9MaPN2pUw4epYjYGg2MFhGrOHbsGCtXrmTNmjVs37491akrDw8PqlWrRtWqVXnqqad46qmnKF++PCVLlsTR0TFzL2aBwdMiYl0aGC0iudrp06dZsGABCxYs4ODBgykeq1ChAk2bNqVevXrUr18ff39/y626nM7gaU1rF7FvCkEikq1iY2NZsGABs2bNYvfu3ebtTk5OBAYG0q5dO9q0aYO/v3/aO7DEIoj+/kmnwB7sCapYMWv7E5E8QSFIRLLFoUOHmDFjBnPnziU6OhoABwcHmjZtSo8ePejSpQseHh4P34mlFkH09dW0dhFJRWOCRMRiDMNg3bp1BAUFsW3bNvP2ChUqMGDAAHr37k3JkiUztrPsGMcTHq5p7SK5lMYEiYhNSkxMZMmSJUyYMIHffvsNAEdHR55//nkGDhxIs2bNcHBwyNxOs2McT0amtWfjNchExLYoBIlIlt29e5d58+bxn//8h2PHjgFJ6/IMHDiQ4cOH4/s4IcIa43gsfA0yEbFtmfxfM+saN24cJpMpxS3DXesiYjG3bt1i2rRp+Pv707dvX44dO0aRIkX417/+xZkzZ5g8efLjBSC4N44neTp8do/jCQ+/F4Ag6efAgUnbRSRPynU9QU899RQbN24038/0eiEi9shCp3hiYmKYPnEin02bxsW/r7dVokQJhg8fzptvvnnvPL2lTinl5OUpNI1exO7kuhDk5OSk3h+RzLDAKZ7IyEj++9//8uWnn3Lt5k0ASgPv9uxJv1mzyJ8/v0VfL4WcujyFptGL2J1cdToMIDQ0FB8fH8qVK0ePHj04derUQ9vHxcURHR2d4iZiNx7zFM/58+cZMWIEfn5+fPjhh1y7eZNKwBzgBDB44ULyR0Za7PWsKqdPv4mI1eWqEBQQEMC3337LunXr+N///kdERAT16tUj8v4v4QcEBQXh7u5uvpUuXToHKxaxsoed4nmI06dP8+abb1KuXDk+++wzYmNjqVGxIj8AR4G+QL609pXF17MZ/folTcHfvDnppwZFi+RpuXqdoNjYWCpUqMC7777L8OHD02wTFxdHXFyc+X50dDSlS5fWOkFiHzK51s7BgweZOHEiCxcuNF+tvX79+owZM4bWVatiKlv24fvSNbpEJJtkxzpBuaon6EEFCxbk6aefJjQ0NN02Li4uuLm5pbiJ2I0MnOIxDINt27bRtm1bqlevzrx580hISKBly5Zs3bqVHTt20KZNG0ylSz/6dJFOKYlILpKre4Li4uLMK9F+8MEHGXqOVowWu5TGSskJCQmsXLmSiRMnsmvXLiDpshYvvvgiI0eOpGbNmhneV5baiIhkgt2vGD1ixAg6dOhAmTJluHTpEh999BHR0dH06dPH2qWJ2Lb7ZlhdvXqV2bNnM23aNE6fPg0k9Zj27duXESNGUPFRs6EyMlsrp2Z0iYg8hlwVgsLDw3nppZe4cuUKxYsX57nnnmP37t34+flZuzSRJDZ8yYWDBw8yZcoUvvvuO27dugVA0aJFGTBgAMOGDdPSEyJid3JVCFqwYIG1SxBJnw1ecuHq1avMnz+fb775hpCQEPP26tWrM3jwYHr27EmBAgWsWKGIiPXk6jFBWaExQZItbGhW1O3bt1m/fj1z585l+fLl3LlzB0haaLRLly4MGTKE+vXrYzKZcrQuEZHHYfdjgkRslpUvuRAbG8vatWtZvHgxK1euJCYmxvxYjRo16Nu3Lz179qR48eLp78SGT+WJiGQHhSARS8jMJRcsEDYMwyA0NJT169ezbt06Nm3aZB7nA1CqVClefPFF+vTpQ40aNR69Qxs8lScikt0UgkQsIXl9nIEDk3qA0lsf5zHCxl9//cUvv/zCzz//zLp16wgLC0vxeNmyZXnhhRfo2rUrderUwcEhg8uApXepi1at1CMkInmaxgSJWNLD1sfJxLihu3fvcvToUX755Rfz7cyZMynaODs70+DZZ2n11FO06tqV6i1bZm2cz+bNEBiY9vYmTTK/PxGRbKAxQSK27mHr46Qzbij69985GBbGgQMHOHDgAPv37+fw4cPmAc3JHBwcqF69Og0bNqRly5Y0Dguj0NChsHNnUg9TVk9h6erpImKn1BMkkkOMc+c47+fHAcPgAHAA2A+cTKe9W+HCBFSqRP3Gjanfpg0BAQEULlw46UFLz0YLDk59Kk9jgkTEhqgnSCSXSEhI4M8//2T//v3mHp4DBw5wOZ3/5/D19aVGjRrUrFmTGjVqUOPPPyn73ns47NsH+/fDk09C8+b3nmDp2Wj9+iWNAdKlLkTEjqgnSOQx3bp1i0OHDpkDz/79+zl48GCK2VrJHB0dqVKhAjXKlKHmc89Ro0kTqlevjqen571GGenlsaF1iUREcoJ6gkSs7NatW/z222/s2bOHffv2ceDAAY4dO0ZCQkKqtgULFqRatWrm3p2aNWvy1FNPkT9//oe/SEZ6eTI6G01ERNKlECSSjsTERP78809+/fVX8+3gwYPEx8enalu8eHFq1qyZIvBUrFgRR0fHzL9wRgcq6xSWiMhjUQjKblqF13oy+d5fu3aNnTt3snv3bn799VdCQkK4fv16qnZeXl4EBARQu3Ztc/Dx8fGx3GUoMtPLo6u1i4hkmUJQdtIqvJlnqdCYgff+7Nmz7Nixg+3bt7Njxw4OHz6cajf58+enVq1a1KlTh4CAAAICAihTpkz2X3dLvTwiItlOA6OziwauZp6lQmMa732igwNH161je2ioOficO3cu1VMrVapEvXr1zIGnatWqODs7q0dPRMTKNDA6N7HyBTVzHUteuiE0lITERH4HNgNbgF8SE7nWokWKZo6OjtQqU4YGp0/TAKhvMlHi3XdTBy/16ImI5EkKQdlFq/BmzmOGRsMwOHr0KD///DObV69mC3DtgTYFCxSgbr16NGjQgIYNGxLg60vBJ564fyepg5euqyUikmcpBGUXTWHOnCyExr/++os1a9awceNGNm/ezKVLl1I8XhhoDDQ1mWg0Zgw1xo7Fyem+f/KbNz86eKlHT0Qkz1IIyk4a3JpxGQiNd+/eZdeuXaxevZo1a9Zw8ODBFLvInz8/DRo0IDAwkKZNm1LLywunsLD03/uMBC/16ImI5FkKQdlNU5gzLo3QGBUVxcqVK1m6dCnr168nOjra3NxkMlGnTh1at25NYGAgAQEBuLi4pNxn2bLpv15GeuvUoycikmdpdpjYnMjISJYtW8bixYvZuHFjiqupe3p60qpVK9oEBNCqdGk8a9d+/EASHv7o3rqMtBERkWyj2WGSuz1kmvnNmzdZsmQJ3377LZs2bUpxGYoqVarQtWtXOnbsSK1atXD8+mvLztbKSG+devRERPIc9QRJzkhjmnniq6+yfft2vvnmG3788Udu3Lhhbl69enW6du1K165defLJJ+/tR+sviYjYJfUESe70wDTziMREgl9/nVnjxxN234KF5cqVo3fv3rz88sv4+/unvS/N1hIREQtRCLJXObkCcmgoRmIiO4BpwGLgrmHAuXO4ubnRrVs3evfuTf369XFwcHj4vjRbS0RELOQRf3HEpoSHJ61tEx7+ePsJDk46pRQYmPQzONgy9aUhJiaGr3btohrQCFgA3AXqAt9+/jkRERH873//o2HDho8OQHBvtlby1dk1W0tERLJIY4Jyi2y8rlZ2jKn5888/+fLLL/n666/NY30KAC8Dbzo4UPNxBzNrtpaIiF3RmKA8LCoqil27dnHw4EEuXbrErVu3KFSoEF5eXjxRvDjPvP46Xsl59TGvq5VdY2oSExNZv349//3vf1mzZo15e5UqVXjzzTfp3awZRS5ftkxw0WwtERF5TApBVpSQkMCyZcuYNWsW69atI/HBcPKAp4AWwIvAcwkJOGQluGTDmJqYmBi+/fZbvvzyS44fPw4kLWTYvn17hg4dSrNmzTCZTFnev4iISHZQCLKSDRs2MGLEiBSXfqhQoQJ16tTBx8eHAgUKcOPGDcLDwzl84AB/hIZyBDgCfA6UAbovXMjLRYtSrVq1jIcMC66AfOzYMWbOnElwcLB5JWc3Nzf69evHW2+9RYUKFTK9TxERkRxj2JmoqCgDMD788EOjWLFiRunSpY25c+fm2OvHxMQY/fr1MwADMIoUKWKMGjXKCA0NfejzLv/f/xk/OjgYvcAo/Pdzk29Vq1Y1Jk6caJw7dy7jhZw7ZxibNyf9zIQbN24Yc+bMMerXr5+ihkqVKhlTpkwxoqOjM7U/ERGRjEj++x0VFWWxfdrtwOgHffLJJ4wYMSJbX/vPP/+kQ4cO/Pnnn5hMJgYPHszYsWMpVqxYxnbw92DgW6VKsebQIebNm8eKFSvMl5UwmUw0adKEXr160bVrV8sMHAsP5/aRI2w4f55FW7awZMkSYmJiAHB0dKRt27YMGjSIli1bZmx2l4iISBZkx8Bouw5BI0eOxMHBgaCgIEwmE+vXr6d58+bZsobOjh076NSpE1evXsXX15e5c+fSpEmTx97v9evXWbRoEXPnzmXbtm3m7a6urrRu3ZrmzZvTvHlzKlWqlOFTZoZhcPz4cTZ/9BE/f/8964CY+x6vUKEC/fv3p0+fPnh7ez/2MYiIiDyKQpAFJL+JXl5enD17FmdnZwYMGMCsWbPw8/Pj0D//SeGhQy13XSpg2bJldOvWjTt37lCnTh2WL1+Ol5eXhY7onjNnzjBv3jzmzpnDH6GhKR4rUqQIVatW5amnnsLHx4fixYvj6uqKYRjcunWLS5cucf78eY4cOcLhw4fNvT3JSgEvmEy8sGgR9Tt31kBnERHJUQpBFpD8Jr7xxht89dVXANy4cYOnn36asLAw3gKm3P+Ex1xDZ8WKFXTt2pW7d+/SqVMn5s2bR4ECBR73MNIXHIzx+uscMAzWmkxsrFyZHadOpbgSe0a4ODtT7+5dAoHmQB3+Xllz82Z4sAcrJ1efFhERu6R1giyoxTPPmP+7UKFCzJo1i+bNmzMN6AUEJD/4GGvorFq1yhyAunfvznfffYeTUza+5X9fo8tkGNQEahoGo0NDiTt+nOOxsRw6dIg//viDS5cucfnyZXMwcnFxwcvLCy8vL6pUqcLTTz9NpQIFcK5Y8dFT6S21iKOIiEgOs9ueoItAiVmzUvzB7vvii3yzaBHVgL2AM2S5J2jNmjU8//zz3LlzhxdffJF58+ZlbwCCpF6awMC0t2dl/FFwcOqp9PcHHF3RXUREckh29ATZ7XQeV0j6A3/fdbg+/eorihUqxEHgC8jyGjqbNm2ic+fO3Llzh65du/L9999nfwCCewsh3u9xFkLs1y8p0GzenPTzwR6eh60+LSIiYuPsNgQBqf5ge3p68umXXwIw1tWVsO3bM31qZ8eOHXTs2JG4uDg6duzIvHnzcHZ2tmjZ6cqOi4v6+ib1IqW1D0uHLhERkRxk3yEojT/Yffr0oXHjxty8fZu3PvqIzJwt3LNnD23btuXmzZu0atWKH374gXz58mXsyZa6Qvyjem8sSVd0FxGRXMx+Q5CDQ5p/sE0mEzNmzCBfvnysXr2azz//PEO727ZtGy1btiQmJoYmTZrw008/4eLikrFagoOTxtYEBib9DA7O5ME84GG9N5aWk6FLRETEgux2YHTU0aO4PfFEuu2mTp3K4MGDcXR0ZOXKlbRu3TrdtkuWLKFnz57cvn2bhg0bsnr1agoVKpSxgjS4WERE5JE0MNqSSpV66MODBg2iV69eJCQk0KlTJ5YsWZKqTWxsLP/4xz/o0qULt2/fpmPHjqxbty7jAQg0uFhERMRKcmUImjZtGuXKlcPV1ZVatWqxfft2i7+GyWRi1qxZdOnShTt37tClSxe6d+/OsmXL+PnnnwkKCqJSpUpMnjwZgLfffpvFixeTP3/+zL2QBheLiIhYRa47HbZw4UJ69erFtGnTqF+/PjNmzGDWrFkcPXqUMmXKPPL5me1Oi4+P55///Ge6Y4PKlSvH559/TseOHTN7KPc8aj0eERERO6fLZgABAQE888wz5kteADzxxBM8//zzBAUFPfL5WX0TDxw4wPTp0/n111+5desWlSpVolOnTrzyyisZHwD9MH9fIZ6KFTUWSERE5AF2f9mMO3fusG/fPkaNGpVie8uWLdm5c2eaz4mLiyMuLs58Pzo6OkuvXaNGDaZPn56l52aIr6/Cj4iISA7KVWOCrly5QkJCQqorsHt5eREREZHmc4KCgnB3dzffSpcunROlioiIiI3LVSEomclkSnHfMIxU25KNHj2aqKgo8+3cuXM5UaKIiIjYuFx1OszT0xNHR8dUvT6XLl1K1TuUzMXFxTJjdkRERCRPyVU9Qfny5aNWrVps2LAhxfYNGzZQr149K1UlIiIiuVGu6gkCGD58OL169aJ27drUrVuXmTNncvbsWd544w1rlyYiIiK5SK4LQd27dycyMpIPP/yQCxcuULVqVVavXo2fn5+1SxMREZFcJNetE/S4smOdAREREcleunaYiIiIiIUoBD2O8HDYvDnpp4iIiOQqCkFZFRwMfn4QGJj0MzjY2hWJiIhIJigEZUV4OAwYAImJSfcTE5MugKoeIRERkVxDISgrQkPvBaBkCQlJF0AVERGRXEEhKCv8/cHhgbfO0THpCvAiIiKSKygEZYWvL8ycmRR8IOnnjBm6CryIiEgukusWS7QZ/fpBq1ZJp8AqVlQAEhERyWUUgh6Hr6/Cj4iISC6l02EiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLuSoElS1bFpPJlOI2atQoa5clIiIiuZCTtQvIrA8//JDXX3/dfL9QoUJWrEZERERyq1wXggoXLkzJkiWtXYaIiIjkcrnqdBjAxIkTKVasGDVq1ODjjz/mzp071i5JREREcqFc1RP09ttv88wzz1C0aFH27NnD6NGjOX36NLNmzUr3OXFxccTFxZnvR0VFARAdHZ3t9YqIiIhlJP/dNgzDcjs1rGzs2LEG8NBbSEhIms9dtGiRARhXrlx5rP3rpptuuummm26543by5EmLZRCTYVgyUmXelStXuHLlykPblC1bFldX11Tb//rrL3x9fdm9ezcBAQFpPvfBnqDr16/j5+fH2bNncXd3f7zic5Ho6GhKly7NuXPncHNzs3Y5OUbHreO2BzpuHbc9iIqKokyZMly7do0iRYpYZJ9WPx3m6emJp6dnlp67f/9+ALy9vdNt4+LigouLS6rt7u7udvWPJ5mbm5uO247ouO2Ljtu+2OtxOzhYbjiz1UNQRu3atYvdu3fTtGlT3N3dCQkJ4Z133qFjx46UKVPG2uWJiIhILpNrQpCLiwsLFy5k/PjxxMXF4efnx+uvv867775r7dJEREQkF8o1IeiZZ55h9+7dj70fFxcXxo4dm+YpsrxMx63jtgc6bh23PdBxW+64rT4wWkRERMQact1iiSIiIiKWoBAkIiIidkkhSEREROySQpCIiIjYpTwZgqZNm0a5cuVwdXWlVq1abN++/aHtt27dSq1atXB1daV8+fJMnz49hyq1rMwc908//USLFi0oXrw4bm5u1K1bl3Xr1uVgtZaT2c872S+//IKTkxM1atTI3gKzSWaPOy4ujjFjxuDn54eLiwsVKlRg9uzZOVSt5WT2uL///nuqV69OgQIF8Pb25tVXXyUyMjKHqn1827Zto0OHDvj4+GAymVi6dOkjn5MXvtMye9x55TstK593stz8nZaV47bEd1qeC0ELFy5k2LBhjBkzhv3799OwYUPatGnD2bNn02x/+vRp2rZtS8OGDdm/fz/vvfceQ4cOZfHixTlc+ePJ7HFv27aNFi1asHr1avbt20fTpk3p0KGDeRXu3CKzx50sKiqK3r1706xZsxyq1LKyctzdunVj06ZNBAcHc/z4cebPn0+VKlVysOrHl9nj3rFjB71796Zfv34cOXKEH3/8kZCQEPr375/DlWddbGws1atXZ8qUKRlqn1e+0zJ73HnlOy2zx50st3+nZeW4LfKdZrGrkNmIOnXqGG+88UaKbVWqVDFGjRqVZvt3333XqFKlSoptAwcONJ577rlsqzE7ZPa40/Lkk08a48ePt3Rp2Sqrx929e3fj/fffN8aOHWtUr149GyvMHpk97jVr1hju7u5GZGRkTpSXbTJ73J988olRvnz5FNv++9//Gr6+vtlWY3YCjCVLljy0TV75TrtfRo47LbnxO+1+mTnu3P6ddr+MHLelvtPyVE/QnTt32LdvHy1btkyxvWXLluzcuTPN5+zatStV+1atWrF3717u3r2bbbVaUlaO+0GJiYnExMTg4eGRHSVmi6we95w5czh58iRjx47N7hKzRVaOe/ny5dSuXZtJkyZRqlQpKlWqxIgRI7h161ZOlGwRWTnuevXqER4ezurVqzEMg4sXL7Jo0SLatWuXEyVbRV74TrOE3PidllW5/TstKyz1nZZrVozOiCtXrpCQkICXl1eK7V5eXkRERKT5nIiIiDTbx8fHc+XKlYdenNVWZOW4H/TZZ58RGxtLt27dsqPEbJGV4w4NDWXUqFFs374dJ6fc+c8/K8d96tQpduzYgaurK0uWLOHKlSsMGjSIq1ev5ppxQVk57nr16vH999/TvXt3bt++TXx8PB07duTLL7/MiZKtIi98p1lCbvxOy4q88J2WFZb6TstTPUHJTCZTivuGYaTa9qj2aW23dZk97mTz589n3LhxLFy4kBIlSmRXedkmo8edkJBAz549GT9+PJUqVcqp8rJNZj7vxMRETCYT33//PXXq1KFt27ZMnjyZr7/+Olf1BkHmjvvo0aMMHTqUDz74gH379rF27VpOnz7NG2+8kROlWk1e+U7Lqtz+nZZRee07LTMs9Z2Wp2Kjp6cnjo6Oqf6v8NKlS6n+zyhZyZIl02zv5OREsWLFsq1WS8rKcSdbuHAh/fr148cff6R58+bZWabFZfa4Y2Ji2Lt3L/v372fw4MFA0i+SYRg4OTmxfv16AgMDc6T2x5GVz9vb25tSpUrh7u5u3vbEE09gGAbh4eH4+/tna82WkJXjDgoKon79+vzzn/8EoFq1ahQsWJCGDRvy0Ucf5clekbzwnfY4cvN3Wmblle+0rLDUd1qe6gnKly8ftWrVYsOGDSm2b9iwgXr16qX5nLp166Zqv379emrXro2zs3O21WpJWTluSPq/pb59+zJv3rxcOUYis8ft5ubGoUOHOHDggPn2xhtvULlyZQ4cOEBAQEBOlf5YsvJ5169fn/Pnz3Pjxg3ztj///BMHBwd8fX2ztV5Lycpx37x5EweHlF9zjo6OwL3ekbwmL3ynZVVu/07LrLzynZYVFvtOe6xh1TZowYIFhrOzsxEcHGwcPXrUGDZsmFGwYEEjLCzMMAzDGDVqlNGrVy9z+1OnThkFChQw3nnnHePo0aNGcHCw4ezsbCxatMhah5AlmT3uefPmGU5OTsbUqVONCxcumG/Xr1+31iFkSWaP+0G5dSZFZo87JibG8PX1NV544QXjyJEjxtatWw1/f3+jf//+1jqELMnscc+ZM8dwcnIypk2bZpw8edLYsWOHUbt2baNOnTrWOoRMi4mJMfbv32/s37/fAIzJkycb+/fvN86cOWMYRt79TsvsceeV77TMHveDcut3WmaP21LfaXkuBBmGYUydOtXw8/Mz8uXLZzzzzDPG1q1bzY/16dPHaNy4cYr2W7ZsMWrWrGnky5fPKFu2rPHVV1/lcMWWkZnjbty4sQGkuvXp0yfnC39Mmf2875dbvzAMI/PH/ccffxjNmzc38ufPb/j6+hrDhw83bt68mcNVP77MHvd///tf48knnzTy589veHt7Gy+//LIRHh6ew1Vn3ebNmx/6u5pXv9Mye9x55TstK5/3/XLrd1pWjtsS32kmw8ijfcIiIiIiD5GnxgSJiIiIZJRCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARyRM+/PBDnn76aQoWLIiXlxdvvvkmd+/etXZZImLDnKxdgIjI4zIMg4SEBGbMmEGpUqU4evQovXv3plq1arz55pvWLk9EbJQuoCoieVLPnj0pXrw4X3zxhbVLEREbpdNhIpLrnTlzhsGDB1O1alWKFi1KoUKF+OGHH/D19bV2aSJiwxSCRCRXu3LlCnXq1OHKlStMnjyZHTt2sGvXLhwdHalRo4a1yxMRG6YxQSKSq61evZr4+Hjmz5+PyWQCYOrUqdy5c0chSEQeSiFIRHI1Dw8PoqOjWb58OU8++SQrVqwgKCiIUqVKUbx4cWuXJyI2TAOjRSRXMwyDN998k3nz5pE/f35eeeUVbt++zZkzZ1i5cqW1yxMRG6YQJCIiInZJA6NFRETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidun/ATqQqORQm5GhAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABe1ElEQVR4nO3deXhM5//G8fdktyXEkoQQW1Bqae1Ui9qXWqqULpZYaqmi/dXWFq3Saql+VS1tUK0lrZZqay1B1VLUUkuJJSoqliAhCEnO74/IVGSRxCSTydyv6zpXzJkzZz5nRmbuPM9znmMyDMNARERExM44WLsAEREREWtQCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBKraty4MY0bN7Z2GZnWq1cv8ufPn65tS5cuTa9evbK0HpPJxPjx47P0OR7kxo0bjB8/nk2bNlm1DluxYcMGatWqRb58+TCZTKxYsYIFCxZgMpkIDQ01b7d48WKmT5+eJTW89dZblCpVCicnJwoWLJjhx/fq1YvSpUtbvK6c5Ny5c7z11lvUr1+fIkWK4O7uTs2aNZk7dy5xcXHJtr9+/TrDhg2jePHiuLm5UaNGDZYuXWqFyiUtTtYuQOzb559/bu0Sss3y5ctxd3e3dhlZ7saNG0yYMAHApgNudjAMg65du1KhQgVWrlxJvnz5qFixIrGxsWzfvh0fHx/ztosXL+bgwYMMGzbMojX8+OOPvP/++4wdO5bWrVvj6upq0f3nFnv27GHhwoW8/PLLvP322zg7O7N69WoGDhzIjh07mDdvXpLtO3fuzK5du/jggw+oUKECixcvpnv37sTHx9OjRw8rHYXcTyFIrKpy5crWLiHbPPbYY9YuQSzo5s2buLm5YTKZMr2Pf//9l8uXL9OpUyeefvrpJPcVLVr0YUtMl4MHDwIwdOhQihUrli3PaSmWeA/Sq2HDhpw4cQJnZ2fzuubNm3P79m1mzpzJhAkTKFmyJACrVq1i/fr15uAD0KRJE06fPs3//d//0a1bNxwdHbO8ZnkwdYdJuo0fPx6TycShQ4fo3r07Hh4eeHl50adPHyIjI5Nse+vWLUaPHk2ZMmVwcXGhRIkSDB48mKtXrybZLqXusFmzZlG9enXy589PgQIFqFSpEmPGjAEgNDQUJycnJk+enKy+LVu2YDKZ+O6779I8jqtXr/L6669TtmxZXF1dKVasGG3atOHvv/8GYNOmTZhMpmTdOaGhoZhMJhYsWJBsn4cOHeLpp58mX758FC1alCFDhnDjxo0k26TUHfagWiwhPDycAQMG4Ovri4uLC2XKlGHChAnExsYm2W7ChAnUrVsXT09P3N3defzxxwkMDOT+ayxv3LiRxo0bU7hwYfLkyUOpUqV49tlnuXHjBqGhoeYv7wkTJmAymTCZTA/sBrxx4wZvvPEGZcqUwc3NDU9PT2rVqsWSJUuSbLdgwQIqVqyIq6srjzzyCAsXLkzWFZOR92/37t08//zzlC5dmjx58lC6dGm6d+/O6dOnkz2vyWRi3bp19OnTh6JFi5I3b15iYmIACAoKon79+uTLl4/8+fPTsmVL9u7dm+Yxjx8/Hl9fXwBGjhyJyWQyH8f93WGNGzfml19+4fTp0+bX9EFf/PHx8UyZMoVKlSqZ/2+9/PLLhIWFmbcpXbo0b731FgBeXl7p6k5N6T1Iye3bt5k4caL5+YsWLUrv3r25ePFiku1iYmJ4/fXX8fb2Jm/evDz55JPs2bMn2e+Lpd6D3bt388wzz+Dp6YmbmxuPPfYY3377bZrHDFCoUKEkAShRnTp1AJK8rsuXLyd//vw899xzSbbt3bs3//77Lzt37nzg80n2UEuQZNizzz5Lt27dCAgI4K+//mL06NEA5uZgwzDo2LEjGzZsYPTo0TRq1IgDBw4wbtw4tm/fzvbt21Ntcl+6dCmDBg3i1Vdf5eOPP8bBwYHjx49z+PBhIOFD+5lnnmH27Nm8+eabSf6a+uyzzyhevDidOnVKtfZr167xxBNPEBoaysiRI6lbty7Xr19ny5YtnDt3jkqVKmX49bhz5w5t2rRhwIABjBo1im3btjFx4kROnz7NTz/99NC19OrVi6+++opTp05leNxFeHg4derUwcHBgXfeeYdy5cqxfft2Jk6cSGhoKPPnzzdvGxoayoABAyhVqhQAO3bs4NVXX+Xs2bO888475m3atm1Lo0aNmDdvHgULFuTs2bOsWbOG27dv4+Pjw5o1a2jVqhUBAQH07dsXeHCrxogRI/j666+ZOHEijz32GNHR0Rw8eJCIiAjzNgsWLKB379506NCBqVOnEhkZyfjx44mJicHBIXN/z4WGhlKxYkWef/55PD09OXfuHLNmzaJ27docPnyYIkWKJNm+T58+tG3blq+//pro6GicnZ2ZNGkSb731Fr179+att97i9u3bfPTRRzRq1Ig//vgj1dbOvn37Ur16dTp37syrr75Kjx49Uv29+Pzzz+nfvz8nTpxg+fLl6Tq2gQMHMnfuXIYMGUK7du0IDQ3l7bffZtOmTfz5558UKVKE5cuXM3PmTAIDA1mzZg0eHh7mYJaS9L4H8fHxdOjQgd9++40333yTBg0acPr0acaNG0fjxo3ZvXs3efLkARKCQVBQEG+++SZNmzbl8OHDdOrUiaioqBRreJj3IDg4mFatWlG3bl1mz56Nh4cHS5cupVu3bty4cSNTY/Y2btyIk5MTFSpUMK87ePAgjzzyCE5OSb9iq1WrZr6/QYMGGX4uyQKGSDqNGzfOAIwpU6YkWT9o0CDDzc3NiI+PNwzDMNasWZPidkFBQQZgzJ0717zuqaeeMp566inz7SFDhhgFCxZMs47g4GADMJYvX25ed/bsWcPJycmYMGFCmo999913DcBYv379A/cfHBycZP2pU6cMwJg/f755Xc+ePQ3A+PTTT5Ns+/777xuAsXXrVvM6Pz8/o2fPnhmqxTAMo0+fPoajo6MRGhqa5naGYRiAMW7cOPPtAQMGGPnz5zdOnz6dZLuPP/7YAIxDhw6luJ+4uDjjzp07xrvvvmsULlzY/N4uW7bMAIx9+/alWsPFixeT1fEgjz76qNGxY8dU74+LizOKFy9uPP744+ZaDMMwQkNDDWdnZ8PPz8+8LiPv3/1iY2ON69evG/ny5Uvyns6fP98AjJdffjnJ9v/884/h5ORkvPrqq0nWX7t2zfD29ja6du2axlH/V9NHH32UZH3i8506dcq8rm3btkmOMy1HjhwxAGPQoEFJ1u/cudMAjDFjxpjXJf5eX7x4Mc19ZuQ9WLJkiQEY33//fZJ97Nq1ywCMzz//3DAMwzh06JABGCNHjkyyXeLj7/19scR7UKlSJeOxxx4z7ty5k2Tbdu3aGT4+PkZcXFyar8H91q5dazg4OBjDhw9Pst7f399o2bJlsu3//fdfAzAmTZqUoeeRrKPuMMmwZ555JsntatWqcevWLS5cuAAk/GUEJPur6rnnniNfvnxs2LAh1X3XqVOHq1ev0r17d3788UcuXbqUbJvGjRtTvXp1Zs6caV43e/ZsTCYT/fv3T7P21atXU6FCBZo1a5bmdhn1wgsvJLmdOPAxODj4oWsJDAwkNjYWPz+/DNf1888/06RJE4oXL05sbKx5ad26NQCbN282b7tx40aaNWuGh4cHjo6OODs788477xAREWF+b2vUqIGLiwv9+/fnq6++4uTJkxmq594aYmNjzV1tderUYfXq1YwaNYpNmzZx8+bNJI87evQo//77Lz169EjSDeTn5/dQf1Ffv36dkSNHUr58eZycnHByciJ//vxER0dz5MiRZNs/++yzSW6vXbuW2NhYXn755STH5ebmxlNPPWW1M+QS/9/d/ztYp04dHnnkkTR/B1OTkffg559/pmDBgrRv3z7J61KjRg28vb3Nr0vi/7+uXbsmeXyXLl2StaIkyux7cPz4cf7++2/z7+q927Zp04Zz585x9OjRdL8ef/75J127dqVevXopds+n1V2ZHWOYJH0UgiTDChcunOR2YhN+4hdXREQETk5OybpATCYT3t7eSbo47vfSSy8xb948Tp8+zbPPPkuxYsWoW7cu69evT7Ld0KFD2bBhA0ePHuXOnTt88cUXdOnSBW9v7zRrv3jxYprN/Znh5OSU7DVJrCOtY82KWu53/vx5fvrpJ5ydnZMsVapUATCHzD/++IMWLVoA8MUXX/D777+za9cuxo4dC/z33pYrV45ff/2VYsWKMXjwYMqVK0e5cuX49NNPH1hLaGhosjoSvwT/97//MXLkSFasWEGTJk3w9PSkY8eOhISEAP+9jim9vw96z9PSo0cPPvvsM/r27cvatWv5448/2LVrF0WLFk0WxIAkZ2tBwusLULt27WTHFhQUlGKIzw6Jr9f99QIUL148zf+XD9pnet6D8+fPc/XqVVxcXJK9LuHh4ebXJXGfXl5eSR6f0u9Uosy+B4nbvfHGG8m2GzRoEEC636+9e/fSvHlz/P39WbVqVbJuzMKFC6f4Gl++fBkAT0/PdD2PZD2NCRKLK1y4MLGxsVy8eDFJEDIMg/DwcGrXrp3m43v37k3v3r2Jjo5my5YtjBs3jnbt2nHs2DFza0iPHj0YOXIkM2fOpF69eoSHhzN48OAH1la0aNEkAxhT4ubmBmAecJkotQ/I2NhYIiIiknxoh4eHA8kDY0ZreVhFihShWrVqvP/++yneX7x4cSBhLJazszM///yz+fgBVqxYkewxjRo1olGjRsTFxbF7925mzJjBsGHD8PLy4vnnn0+1luLFi7Nr164k6ypWrAhAvnz5mDBhAhMmTOD8+fPmVqH27dvz999/m1/HxNf1XvevS+/7FxkZyc8//8y4ceMYNWqUeX1MTIz5y+p+9/8FnzhmaNmyZZlqqcsqia/XuXPnkgXtf//9N9lYp4zsMz3vQZEiRShcuDBr1qxJcV8FChRIss/z589TokQJ8/2Jv1Mpyex7kLjd6NGj6dy5c4rbJP5/TMvevXtp1qwZfn5+rFu3Dg8Pj2TbVK1alSVLlhAbG5ukReuvv/4C4NFHH33g80j2UEuQWFziqb7ffPNNkvXff/890dHRyU4FTk2+fPlo3bo1Y8eO5fbt2xw6dMh8n5ubm7lLZtq0adSoUYOGDRs+cJ+tW7fm2LFj5i67lCQOPj5w4ECS9StXrkz1MYsWLUpye/HixUDa8+Skp5aH1a5dOw4ePEi5cuWoVatWsiUxBJlMJpycnJIMNL958yZff/11qvt2dHSkbt265m7JP//8E0jeMpjIxcUl2fMnfhney8vLi169etG9e3eOHj3KjRs3qFixIj4+PixZsiTJ2WqnT59m27ZtSR6f3vfPZDJhGEayv+K//PLLFCe/S0nLli1xcnLixIkTKb6+tWrVStd+0sPV1TXF1qmUNG3aFEj+O7hr1y6OHDmS7t/Be2XkPWjXrh0RERHExcWl+Jokho0nn3wSSDiz617Lli1LdvZiatL7HlSsWBF/f3/279+f6nYp/X+81759+2jWrBm+vr6sX7+eQoUKpbhdp06duH79Ot9//32S9V999RXFixenbt266To2yXpqCRKLa968OS1btmTkyJFERUXRsGFD89lhjz32GC+99FKqj+3Xrx958uShYcOG+Pj4EB4ezuTJk/Hw8EjWgjRo0CCmTJnCnj17+PLLL9NV27BhwwgKCqJDhw6MGjWKOnXqcPPmTTZv3ky7du1o0qQJ3t7eNGvWjMmTJ1OoUCH8/PzYsGEDP/zwQ4r7dHFxYerUqVy/fp3atWubzw5r3bo1TzzxxEPVAhAQEMBXX33FiRMnMtza8O6777J+/XoaNGjA0KFDqVixIrdu3SI0NJRVq1Yxe/ZsfH19adu2LdOmTaNHjx7079+fiIgIPv7442QBYfbs2WzcuJG2bdtSqlQpbt26ZT4rMHFsU4ECBfDz8+PHH3/k6aefxtPTkyJFiqR5ZlvdunVp164d1apVo1ChQhw5coSvv/6a+vXrkzdvXgDee+89+vbtS6dOnejXrx9Xr15l/Pjxybpi0vv+ubu78+STT/LRRx+Z69u8eTOBgYHpnjW5dOnSvPvuu4wdO5aTJ0/SqlUrChUqxPnz5/njjz/MLVyWULVqVX744QdmzZpFzZo1cXBwSDVkVaxYkf79+zNjxgwcHBxo3bq1+eywkiVLMnz48Aw/v4ODQ7rfg+eff55FixbRpk0bXnvtNerUqYOzszNhYWEEBwfToUMHOnXqRJUqVejevTtTp07F0dGRpk2bcujQIaZOnYqHh0e6zvrLyHswZ84cWrduTcuWLenVqxclSpTg8uXLHDlyhD///DPN6TWOHj1q/j/+/vvvExISYu6uhYSu4sSW79atW9O8eXMGDhxIVFQU5cuXZ8mSJaxZs4ZvvvlGcwTlJFYdli02JbWzSFI6k+XmzZvGyJEjDT8/P8PZ2dnw8fExBg4caFy5ciXJY+8/O+yrr74ymjRpYnh5eRkuLi5G8eLFja5duxoHDhxIsabGjRsbnp6exo0bN9J9HFeuXDFee+01o1SpUoazs7NRrFgxo23btsbff/9t3ubcuXNGly5dDE9PT8PDw8N48cUXjd27d6d4dli+fPmMAwcOGI0bNzby5MljeHp6GgMHDjSuX7+e5HnvPzssvbUknoF27+ubGlI4K+vixYvG0KFDjTJlyhjOzs6Gp6enUbNmTWPs2LFJapw3b55RsWJFw9XV1ShbtqwxefJkIzAwMMlzb9++3ejUqZPh5+dnuLq6GoULFzaeeuopY+XKlUme89dffzUee+wxw9XVNdlZPikZNWqUUatWLaNQoULm5x8+fLhx6dKlJNt9+eWXhr+/v+Hi4mJUqFDBmDdvntGzZ89kZ02l9/0LCwsznn32WaNQoUJGgQIFjFatWhkHDx5M9l4l/h/ftWtXivWvWLHCaNKkieHu7m64uroafn5+RpcuXYxff/01zePOyNlhly9fNrp06WIULFjQMJlMxoM+vuPi4owPP/zQqFChguHs7GwUKVLEePHFF40zZ84k2S69Z4clSu97cOfOHePjjz82qlevbri5uRn58+c3KlWqZAwYMMAICQkxb3fr1i1jxIgRRrFixQw3NzejXr16xvbt2w0PD48kZ11Z6j3Yv3+/0bVrV6NYsWKGs7Oz4e3tbTRt2tSYPXt2msed+PypLfefdXjt2jVj6NChhre3t+Hi4mJUq1bNWLJkSTpeYclOJsO4byY0ERtx4cIF/Pz8ePXVV5kyZYq1yxEr6dWrF5s2bUpynS2xbdu2baNhw4YsWrRIl5iQLKXuMLE5YWFhnDx5ko8++ggHBwdee+01a5ckIpm0fv16tm/fTs2aNcmTJw/79+/ngw8+wN/fP9UBzCKWohAkNufLL7/k3XffpXTp0ixatCjJWSUiYlvc3d1Zt24d06dP59q1axQpUoTWrVszefLkJGcqimQFdYeJiIiIXcoxp8jPmjWLatWq4e7ujru7O/Xr12f16tXm+w3DYPz48RQvXpw8efLQuHHjJKdMi4iIiGREjglBvr6+fPDBB+zevZvdu3fTtGlTOnToYA46U6ZMYdq0aXz22Wfs2rULb29vmjdvzrVr16xcuYiIiNiiHN0d5unpyUcffUSfPn0oXrw4w4YNY+TIkUDCrK5eXl58+OGHDBgwwMqVioiIiK3JkQOj4+Li+O6774iOjqZ+/fqcOnWK8PBw87WNIGH21Keeeopt27alGYJiYmKSTJ8fHx/P5cuXKVy4sC5iJyIiYiMMw+DatWsUL148XRNppkeOCkF//fUX9evX59atW+TPn5/ly5dTuXJl85Ts919kz8vLi9OnT6e5z8mTJ1tsxlYRERGxrjNnzljs4tM5KgRVrFiRffv2cfXqVb7//nt69uxpvso0JL9wnmEYD2zNGT16NCNGjDDfjoyMpFSpUpw5cwZ3d3fLHoCIiIhkiaioKEqWLPnAa7xlRI4KQS4uLpQvXx6AWrVqsWvXLj799FPzOKDw8HB8fHzM21+4cCFZ69D9XF1dk13/CDCfhSYiIiK2w5JDWXLM2WEpMQyDmJgYypQpg7e3N+vXrzffd/v2bTZv3kyDBg2sWKGIiIjYqhzTEjRmzBhat25NyZIluXbtGkuXLmXTpk2sWbMGk8nEsGHDmDRpEv7+/vj7+zNp0iTy5s2r68qIiIhIpuSYEHT+/Hleeuklzp07h4eHB9WqVWPNmjU0b94cgDfffJObN28yaNAgrly5Qt26dVm3bp1F+wZFRETEfuToeYKyQlRUFB4eHkRGRmpMkIiIiI3Iiu/vHD0mSERERCSrKASJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXcoxIWjy5MnUrl2bAgUKUKxYMTp27MjRo0eTbNOrVy9MJlOSpV69elaqWERERGxZjglBmzdvZvDgwezYsYP169cTGxtLixYtiI6OTrJdq1atOHfunHlZtWqVlSoWERERW+Zk7QISrVmzJsnt+fPnU6xYMfbs2cOTTz5pXu/q6oq3t3d2lyciIiK5TI5pCbpfZGQkAJ6enknWb9q0iWLFilGhQgX69evHhQsX0txPTEwMUVFRSRYRERFJWVhYGJ999hlff/01169ft3Y5WcpkGIZh7SLuZxgGHTp04MqVK/z222/m9UFBQeTPnx8/Pz9OnTrF22+/TWxsLHv27MHV1TXFfY0fP54JEyYkWx8ZGYm7u3uWHYOIiIit2bhxI88884x5KErp0qXZtGkTfn5+Vq4MoqKi8PDwsOj3d44MQYMHD+aXX35h69at+Pr6prrduXPn8PPzY+nSpXTu3DnFbWJiYoiJiTHfjoqKomTJkgpBIiIi9/j77795/PHHuXnzJo8//jiXLl3in3/+4ZFHHmH37t3kzZvXqvVlRQjKcd1hr776KitXriQ4ODjNAATg4+ODn58fISEhqW7j6uqKu7t7kkVERET+E//PP/R59llu3rxJkyZN2LZtG7///js+Pj4cOXKEjz76yNolZokcE4IMw2DIkCH88MMPbNy4kTJlyjzwMREREZw5cwYfH59sqFBERCQXCgxkeenSbD98mPzAglatcHV1xdfXl+nTpwPwwQcfcP78eauWmRVyTAgaPHgw33zzDYsXL6ZAgQKEh4cTHh7OzZs3Abh+/TpvvPEG27dvJzQ0lE2bNtG+fXuKFClCp06drFy9iIiIDQoLw+jXj3fvjowZDpQaMwbCwgB47rnnqFu3Lrdu3eKTTz6xYqFZI8eEoFmzZhEZGUnjxo3x8fExL0FBQQA4Ojry119/0aFDBypUqEDPnj2pUKEC27dvp0CBAlauXkRExAaFhLDZMDgA5AOGAcTFwfHjAJhMJsaOHQvA559/nuvOFssx8wQ9aHx2njx5WLt2bTZVIyIiYgf8/Zl9958vAp4Ajo5Qvrx5k7Zt2+Lv709ISAiLFy+mf//+Vig0a+SYliARERHJXhdcXPjB0RGAAZAQgObMgXtOTHJwcGDgwIEAfP7ppxgbN5q7y2ydQpCIiIidWrx4MXfi4qhdvTqPBQdDaCgEBCTbrmfPnrg5O7P/8GF2PP00+PlBYGD2F2xhCkEiIiJ26ocffgDgxT59oHHjJC1A9/K8cYPn79wBYBZAfDwMGGDzLUIKQSIiInbowoULbN26FYCOHTumvXFICIPu/nMtEANJBlDbKoUgERERO7Ry5UoMw6BmzZqUKlUq7Y39/ant4MC3wEnAFZINoLZFCkEiIiJ2aPny5QDpm2vP1xfmzuU5R0fyQYoDqG1Rjrx2WFbKimuPiIiI2JKoqCiKFi3K7du3OXToEJUrV07fA8PCErrAypfP9gCUFd/fOWaeIBEREckeq1ev5vbt21SoUIFHHnkk/Q/09bX51p97qTtMRETEztzbFWYymaxcjfUoBImIiNiRmJgYVq1aBaRzPFAuphAkIiJiRzZs2MC1a9coXrw4tWvXtnY5VqUQJCIiYkcSu8I6duyIg4N9xwD7PnoRERE7EhcXx48//gioKwwUgkREROzGtm3buHjxIgULFuSpp56ydjlWpxAkIiJiJxK7wtq1a4ezs7OVq7E+hSARERE7YBhGxmaJtgMKQSIiInZg//79hIaG4ubmRsuWLa1dTo6gECQiImIHEluBWrZsSb58+axcTc6gECQiImIH1BWWnEKQiIhILnfixAn++usvHB0dad++vbXLyTEUgkRERHK5xFagp556Ck9PTytXk3MoBImIiORmYWEsmzcPgM6dO1u5mJxFIUhERCS3Cgzkn1Kl2HnkCCbg2ZgYa1eUoygEiYiI5EZhYdC/P98bBgCNAO8330xYL4BCkIiISO4UEgLx8Xx39+ZzAHFxcPy4FYvKWRSCREREciN/f86YTGwHTEBnAEdHKF/eunXlIApBIiIiuZGvL0FdugDQECju6Ahz5oCvr3XrykEUgkRERHIhwzBYcPgwAC+NGAGhoRAQYN2ichgnaxcgIiIilvfnn39y6NAh3Nzc6Pr221CwoLVLynHUEiQiIpILLViwAEi4TEZBBaAUKQSJiIjkMjExMSxevBiAXr16WbeYHEwhSEREJJdZtmwZly9fpkSJEjz99NPWLifHUggSERHJRQzDYPr06QC88sorODo6WregHEwhSEREJBfZvn07u3fvxtXVlQEDBli7nBxNIUhERCQXmTJlCgA9evSgaNGiVq4mZ1MIEhERySV2797Njz/+iIODA//3f/9n7XJyPIUgERGRXOKdd94B4MUXX+SRRx6xcjU5n0KQiIhILvDzzz+zevVqnJyczGFI0qYQJCIiYuOio6MZPHgwAK+//jrlypWzckW2QSFIRETEhhmGwZAhQ/jnn3/w8/Pj7bfftnZJNkMhSERExIbNnj2bBQsW4ODgwLx588iXL5+1S7IZOSYETZ48mdq1a1OgQAGKFStGx44dOXr0aJJtDMNg/PjxFC9enDx58tC4cWMOHTpkpYpFRESsa968eeZusPfff5+mTZtauSLbkmNC0ObNmxk8eDA7duxg/fr1xMbG0qJFC6Kjo83bTJkyhWnTpvHZZ5+xa9cuvL29ad68OdeuXbNi5SIiIukUFgbBwQk/H8L169d5/fXXCQgIwDAMBg0axMiRIy1UpP0wGYZhWLuIlFy8eJFixYqxefNmnnzySQzDoHjx4gwbNsz8RsfExODl5cWHH36Y7lkxo6Ki8PDwIDIyEnd396w8BBERkf8EBkL//hAfDw4OMHcuBASkvG1YGISEgL8/+PoCEB8fz5EjR1i+fDmff/45586dA+DNgQP5YOZMTCZTdh2JVWTF97eTRfaSBSIjIwHw9PQE4NSpU4SHh9OiRQvzNq6urjz11FNs27ZNU4OLiEjOFRb2XwCChJ8DBkDLluDri2EYnD59mr179xKyaBEXvv+eC8Al4GLp0lw0DC5cuMDNmzfNuywLTAfaz5kDNWumHqgkVTkyBBmGwYgRI3jiiSd49NFHAQgPDwfAy8srybZeXl6cPn061X3FxMQQExNjvh0VFZUFFYuIiKQhJOS/AJQoLo5Tv/3GnP37WbZsGSdOnEj5saGh5n/mzZuXhjVr8uLWrXQzDFwhWaCS9MuRIWjIkCEcOHCArVu3Jrvv/uY+wzDSbAKcPHkyEyZMsHiNIiIi6ebvn9AFdjcInQXGmkx889JLxMXFAeDs7Myjfn5UPn4cH6DoPUuRmTMp2rIlfn5+OP32G9w/ADouDo4fVwjKoBwzMDrRq6++ysqVKwkODsb3njfT29sb+K9FKNGFCxeStQ7da/To0URGRpqXM2fOZE3hIiIiqfH1TRgD5OjIfKAy8JVhEBcXR4sWLQgKCuLy5cv8GRzMNw4OfAS8CfQG2jk6Uu+ZZyhXrhxOTk7/Bap7OTpC+fLZfli2LseEoMTJnn744Qc2btxImTJlktxfpkwZvL29Wb9+vXnd7du32bx5Mw0aNEh1v66urri7uydZREREslvMiy8y4Pnn6QNEAXXr1mXnzp2sXbuWrl27kj9//iRhCUj4OWdO0hae9Gwj6ZJjusMGDx7M4sWL+fHHHylQoIC5xcfDw4M8efJgMpkYNmwYkyZNwt/fH39/fyZNmkTevHnp0aOHlasXERFJ3fXr13nmmWcIDg7GZDLx3nvvMWrUKBwTg8y9AgISxvccP57QupNSuEnPNvJAOeYU+dTG9cyfP59evXoBCa1FEyZMYM6cOVy5coW6desyc+ZM8+Dp9NAp8iIikp2ioqJo06YNv//+OwUKFODbb7+lVatW1i7L5mTF93eOCUHZRSFIRESyy+3bt2nVqhXBwcEULFiQtWvXUqdOHWuXZZPsap4gERERW2YYBgEBAQQHB5M/f35+/fVXatasae2y5B45ZmC0iIhIbjJu3Di++eYbHB0dWbZsmQJQDqQQJCIiYmErV67kvffeA2Du3Lm0bNnSyhVJShSCRERELOjkyZO8/PLLALz22mv06dPHyhVJahSCRERELCQmJoYuXboQGRlJ/fr1mTJlirVLkjQoBImIiFjIhAkT2Lt3L0WKFCEoKAgXFxdrlyRpUAgSERGxgF0//8yHH34IJIwDKlmypJUrkgdRCBIREXlIMbNn06t9e+Lj43ke6HT5srVLknRQCBIREXkYYWFMGDiQw0AxYAbAgAEQFmbduuSBFIJEREQewq6ffuLDu/+eDRQBiItLuK6X5GgKQSIiIpkUExNDr+nTiYeEbrDEOxwdEy5sKjmaQpCIiEgmTZgwgcPHjlGsQAFmONz9SnV0hDlzdGV3G6Brh4mIiGTCrl27zGeDzf7qK4rUrp3QBVa+vAKQjVAIEhERyaBbt27Rq1cv4uPj6d69O5063e0IU/ixKeoOExERyaB3332Xw4cPU6xYMf73v/9ZuxzJJIUgERGRDEjSDTZ7NkWKFLFyRZJZCkEiIiLplGo3mNgkhSAREZF0urcbbMaMGdYuRx6SQpCIiEg67Ny5M0k3WOHCha1ckTwshSAREZEHuHnzJj179iQ+Pp4ePXqoGyyXUAgSERF5gLFjx3L06FF8fHzUDZaLKASJiIikYcuWLUyfPh2AL7/8Ek9PT+sWJBajECQiIpKK69ev06tXLwzDICAggDZt2li7JLEghSAREZFUvP7665w6dYpSpUoxbdo0a5cjFqYQJCIikoLvvvuOuXPnAjB//nzc3d2tXJFYmkKQiIjIfU6dOkW/fv0AGDVqFE2bNrVyRZIVFIJERETucefOHbp3705kZCT169fn3XfftXZJkkUUgkRERO4xcuRIdu7cScGCBVmyZAnO589DcDCEhVm7NLEwhSAREcl9wsIyFVwWLlzIJ598AsC8efPw+/VX8PODpk0TfgYGZkW1YiUKQSIikrsEBmYquOzatYv+/fsD8NZbb9Gpdm3o3x/i4xM2iI+HAQPUIpSLKASJiEjuERaWseByt8Xo39276dSpEzExMbRv354JEyZASMh/+0kUFwfHj2ftMUi2cbJ2ASIiIhaTVnDx9U26PjAQ+vfnanw8rYCzQKVKlfjmm29wcHAAf39wcEi6P0dHKF8+q49CsolagkREJPdIDC73Sim43G0xuhkfzzPAX4A38MuXX/43H5CvL8ydm/D4xP3MmZM8TInNUggSEZHcI73BJSSEO/HxdAd+A9yBNUDZO3eSbhcQAKGhCYOsQ0MTbkuuoe4wERHJXQICoGXLhC6w8uVTbLm57efH88CPgCvwE1A9ta4uX1+1/uRSCkEiIpL7pBFcbt26xXOvvcbPJASgH4An1dVllxSCRETEbly+fJlOnTqxZcsW3Nzc+PHLL2lRokSqLUaSuykEiYiIXTh58iRt2rTh6NGjuLu7s2LFCpo0aWLtssSKNDBaRERyveDgYOrVq8fRo0cpWbIkW7duVQAShSAREcm94uPjmTRpEs2aNePixYvUqFGDHTt2ULVqVWuXJjmAQpCIiORKFy9epH379owdO5b4+Hh69erF77//TvHixa1dmuQQCkEiIpKrGIZBUFAQlStXZtWqVbi5uREYGMj8+fPJmzevtcuTHCRHhaAtW7bQvn17ihcvjslkYsWKFUnu79WrFyaTKclSr1496xQrIiI5zrlz53j22Wd5/vnnuXTpElWrVmXHjh306dPH2qVJDpSjQlB0dDTVq1fns88+S3WbVq1ace7cOfOyatWqbKxQRERyIsMwWLhwIVWqVGH58uU4OTkxfvx4du/eTfXq1a1dnuRQOeoU+datW9O6des0t3F1dcXb2zubKhIRkZwuLCyMAQMGmP8orlmzJvPmzaNatWpWrkxyuhzVEpQemzZtolixYlSoUIF+/fpx4cIFa5ckIiJWYBgGX3zxBVWqVGHVqlW4uroyefJkduzYoQAk6ZKjWoIepHXr1jz33HP4+flx6tQp3n77bZo2bcqePXtwdXVN8TExMTHExMSYb0dFRWVXuSIikkVCQ0Pp27cvGzZsAKBevXrMmzePRx55xMqViS2xqRDUrVs3878fffRRatWqhZ+fH7/88gudO3dO8TGTJ09mwoQJ2VWiiIhkofj4eObMmcP//d//ER0dTZ48eXj//fcZOnQojolXjhdJJ5vrDruXj48Pfn5+hISEpLrN6NGjiYyMNC9nzpzJxgpFRMRSTp48ydNPP82gQYOIjo6mUaNGHDhwgOHDhysASabYVEvQ/SIiIjhz5gw+Pj6pbuPq6ppqV5mIiOR8iWN/hg8fzo0bN8ibNy8ffvghgwYNwsHBpv+WFyvLUSHo+vXrHD9+3Hz71KlT7Nu3D09PTzw9PRk/fjzPPvssPj4+hIaGMmbMGIoUKUKnTp2sWLWIiGSVK1eu0L9/f5YtWwZA48aNCQwMpGzZslauTHKDHBWCdu/eneSCdiNGjACgZ8+ezJo1i7/++ouFCxdy9epVfHx8aNKkCUFBQRQoUMBaJYuISBbZtm0b3bt3559//sHJyYnJkyczYsQItf6IxZgMwzCsXUR2ioqKwsPDg8jISNzd3a1djoiI3McwDGbMmMGIESOIi4ujXLlyLFmyhNq1aydsEBYGISHg7w++vtYtVrJNVnx/K06LiEiOcevWLfr06cNrr71GXFwc3bt3588///wvAAUGgp8fNG2a8DMw0LoFi01TCBIRkRzh33//pXHjxixYsAAHBwemTZvGokWL/vurPywM+veH+PiE2/HxMGBAwnqRTMhRY4JERMQ+HThwgNatW/Pvv/9SqFAhvv32W5o1a5Z0o5CQ/wJQorg4OH5c3WKSKWoJEhERqwoODqZRo0b8+++/VK5cmV27diUPQJAwBuj+QdGOjlC+fPYUKrmOQpCIiFhNUFAQrVq1IioqiieffJLff/+dcuXKpbyxry/MnZsQfCDh55w5agWSTFN3mIiIWMWMGTMYOnQoAF26dOHrr7/Gzc0t7QcFBEDLlgldYOXLKwDJQ1EIEhGRbDdlyhRGjhwJwKuvvsonn3yC47lz6Tv13ddX4UcsQt1hIiKSrd577z1zABo3bhyffvopjgsW6NR3yXaaLFFERLJeWBjGsWO8vWIF78+YAcD777/PmDFjEk5x9/NLeuaXoyOEhqrFR8yy4vtb3WEiIpK1AgMx+vVjlGEw5e6qjz/+mNdffz3hhk59FytRCBIRkaxzd4LDCfcEoBkmE0O6dftvm8RT3+9vCdKp75LFNCZIRESyTkgIH8XHM+Huzf8BQwwjoZUnkU59FytRS5CIiGSZz7dt4827/54MvAopt/Lo1HexAoUgERHJEl999RWD33oLgLEmE6MMI+1WHp36LtlMIUhERDIvLCzFuX2WLVtGnz59AHjttdd47/XX4cQJtfJIjqIQJCIimRMY+N9V3R0cEsb1BATwyy+/0L17d+Lj4+nbty+ffPIJJpMJSpa0dsUiSTxUCLpw4QLx8fF4e3tbqh4REbEFd8/6Mp/RFR8PAwawMX9+nu3Zk9jYWLp3787s2bMTApBIDpSps8MOHDhAlSpV8PHxoUSJEpQoUYK33nqL6OhoS9cnIiI5UQpz+2yLi+OZXr2IiYmhQ4cOfPXVVzgmnvElkgNlKgQFBATg5eXF1q1b2bt3LxMnTmT16tXUqlWLK1euWLpGERHJaRLn9rnrT6ANEH3rFi1atCAoKAhnZ2erlSeSHpm6bEa+fPnYs2cPlSpVMq8zDIPnnnsONzc3vvnmG4sWaUm6bIaISDqlMujZLDAQBgzgcFwcTwGXgEaNGrFmzRry5s2b3dVKLpcV39+ZaglKqcXHZDIxadIkfvzxR4sUJiIiVhQY+OALmgYEcGLTJpoVLswlEr4bfv75ZwUgsRnpDkFt27ZlzJgxfPvtt7zyyisMHz6c8+fPJ9kmMjKSQoUKWbxIERHJRqkMeiYsLMlmZ86c4ekXX+RcRARVq1Zl7dq1amEXm5Lus8OqVq3Kn3/+yfz5883hp2zZsnTt2pUaNWoQFxfH/Pnz+eSTT7KsWBERyQbpuKBpeHg4Tz/9NKdPn6ZChQqsX78eT09PKxQrknmZGhN0/vx59u7dy759+8zL8ePHcXR0pGLFihw4cCArarUIjQkSEXmAsLCELrD7L2gaGgq+vkRERNC4cWMOHjyIn58fv/32GyU1B5Bksaz4/s7UPEFeXl60atWKVq1amdfdvHmT/fv3s3//fosUJiIiVpJ4QdMBAxJagO651EVUVBStWrXi4MGD+Pj48OuvvyoAic3KVEuQLVNLkIhIOoWFJbmgaXR0NK1atWLr1q0ULlyYLVu2ULlyZWtXKXYix7QEiYiIHbjngqY3btygQ4cObN26FQ8PD9atW6cAJDZPIUhERNJ048YN2rdvz8aNG8mfPz+rVq3i8ccft3ZZIg8tU/MEiYiIfYiOjqZdu3bmALRmzRoaNGhg7bJELEItQSIikqLEALRp0yYKFCigACS5jkKQiIgkEx0dTdu2bdm8eTMFChRg7dq11K9f39pliViUusNERCSJyMhIWrVqxebNm3F3d2fdunUKQJIrqSVIRETMzp8/T6tWrdi3bx8eHh6sXbuWunXrWrsskSyhECQiIgCcPn2a5s2bExISgpeXF2vXrqV69erWLkskyygEiYgIR44coUWLFoSFheHn58f69evx9/e3dlkiWUpjgkRE7Nzu3btp1KgRYWFhVK5cmd9//10BSOyCQpCIiB1buXIljRs3JiIigtq1a7NlyxZKlChh7bJEsoVCkIiIHTIMg48//piOHTsSHR1N8+bN2bBhA4ULF7Z2aSLZRiFIRMTO3L59m379+vF///d/GIbBwIED+eWXXyhQoIC1SxPJVhoYLSJiRyIiInj22WfZvHkzDg4OTJ8+nSFDhmAymaxdmki2UwgSEbETR48epV27dhw/fpwCBQoQFBRE69atrV2WiNUoBImI2IENGzbQpUsXrl69SunSpfnpp5949NFHrV2WiFXlqDFBW7ZsoX379hQvXhyTycSKFSuS3G8YBuPHj6d48eLkyZOHxo0bc+jQIesUKyJiI+bMmUPLli25evUqDRo0YOfOnQpAIuSwEBQdHU316tX57LPPUrx/ypQpTJs2jc8++4xdu3bh7e1N8+bNuXbtWjZXKiKSQ4WFQXAwhIURFxfH8OHDeeWVV4iLi+PFF19kw4YNFCtWzNpViuQIOao7rHXr1qn2TxuGwfTp0xk7diydO3cG4KuvvsLLy4vFixczYMCA7CxVRCTnCQyE/v0hPp4ok4keVavyy4EDAEycOJExY8ZoALTIPXJUS1BaTp06RXh4OC1atDCvc3V15amnnmLbtm2pPi4mJoaoqKgki4hIrhMWZg5AoUBDw+CXAwfI4+bGd999x9ixYxWARO5jMyEoPDwcAC8vryTrvby8zPelZPLkyXh4eJiXkiVLZmmdIiJWERIC8fFsB+oCBwEfYMv06XTp0sW6tYnkUDYTghLd/5eMYRhp/nUzevRoIiMjzcuZM2eyukQRkezn789ik4kmwAWgBvCHgwO12ra1bl0iOViOGhOUFm9vbyChRcjHx8e8/sKFC8lah+7l6uqKq6trltcnImIt8fHxjJ87l/cMA4COwNcODuSfOxd8fa1am0hOZjMtQWXKlMHb25v169eb192+fZvNmzfToEEDK1YmImI9N27c4Pnnn+e9994DYOSgQXy/YQP5T5+GgAArVyeSs+WolqDr169z/Phx8+1Tp06xb98+PD09KVWqFMOGDWPSpEn4+/vj7+/PpEmTyJs3Lz169LBi1SIi1hEeHs4zzzzDrl27cHZ2Zu7cufTq1cvaZYnYjBwVgnbv3k2TJk3Mt0eMGAFAz549WbBgAW+++SY3b95k0KBBXLlyhbp167Ju3Tpd9E9E7M5ff/1Fu3bt+Oeff/D09GT58uU8+eST6XtwWFjCQGp/f3WXiV0zGcbdTmQ7ERUVhYeHB5GRkbi7u1u7HBGRDFuzZg1du3bl2rVrVKhQgV9++YXy5cun78H3zCWEgwPMnatuM7EJWfH9bTNjgkREBGbNmkXbtm25du0ajRs3Zvv27ekPQPfMJQQk/BwwIGG9iB1SCBIRsQFxp08z4rnnGDRoEPHx8fTs2ZO1a9fi6emZ/p3cnUso6Y7j4J6xmCL2JEeNCRIRkeSuz5zJC0OGsPLu7fc7dWL0/PkZnwHa3z+hC+zeIOToCOltSRLJZdQSJCKSg13cv58mdwOQK7AUGLNyJaazZzO+M1/fhDFAjo4Jtx0dYc4cDY4Wu6WWIBGRHCo0NJQW7doRAhQGVgIN4L8urMyEl4AAaNky4fHlyysAiV1TCBIRyYEOHDhAq1atOHfuHKWAdUDFxDsftgvL11fhRwR1h4mI5Di//fYbTz75JOfOnePRRx9l20cfUVFdWCIWp5YgEZGskolJCX/88Ueef/55bt26RcOGDfnpp58oVKgQPP+8urBELEwhSEQkK2RkUsK7YSlwzx76jxxJfHw87du3Z+nSpeTNmzdhG3VhiVicZowWEbG0sDDw80t+KnpoaPIgExiI0a8fHxgGY+6u6tOnD3PmzMHJSX+niiTSjNEiIrYgvZMShoUR368fw+4JQKNMJr4cP14BSCQbKASJiFha4qSE90rhjK7bhw/zomHwv7u3PwEmGwamEyeypUwRe6cQJCJiaemYlPD69eu0f/99lpAwOHMRMCxxW83gLJIt1N4qIpIV0piU8OLFi7Rt25Zdu3aRz9WV7+/coWV8vE5/F8lmCkEiIlklhTO6QkNDadmyJceOHaNw4cKsWrWKOsWL6/R3EStQCBIR68nEPDq2LMks0KVKsW7dOipWvDsPtB0cv0hOozFBImIdgYEJp5E3bZrwMzDQ2hVlqU2bNtGoUSPOnTtHlSpV2LZt238BSESsQiFIRLJfWNh/EwlCws8BAxLW50LLli2jZcuWREVF0ahRI3777TdKlChh7bJE7J5CkIhkv/TOo5MLfPbZZ3Tt2pXbt2/TuXNn1q1bl3AZDBGxOoUgEcl+6ZxHx5YZhsHYsWN59dVXMQyDgQMH8u233+Lm5mbt0kTkLoUgEcl+6ZhHx5bdvHmTF154gUmTJgEwceJEZs6ciWPi8YpIjqCzw0TEOtKYR8eWhYeH07FjR3bu3ImTkxNz5syhT58+1i5LRFKgECQi1pPLrox+4MAB2rVrx5kzZyhUqBDff/89TZo0sXZZIpIKdYeJiFjADz/8QMOGDTlz5gwVKlRg586dCkAiOZxCkIjIQ7hz5w6vv/46zz77LNevX6dp06bs2LEDf39/a5cmIg+gECQikklnz56lSZMmTJs2DYA33niDNWvW6BR4ERuhECQikglBn39O1Uce4ffff8fd3Z0ffviBjz76CGdnZ2uXJiLppIHRIiIZcPnyZQa3bs3SP/4AoCawdORIynfqZN3CRCTD1BIkIrlDWBgEB2fZpTcMw+Drr7+mcqVKLP3jDxyBccB2oPw77+TaS36I5GYKQSJi+7L4Yqx//vknTz75JC+//DLnL16kEgnhZzzgDLn2kh8iuZ1CkIjYtiy8GOtff/1F586dqVmzJlu3biVv3rxMHjWKfSYTte/dMJdd8kPEXigEiYhts/DFWOPj41m1ahXt2rWjWrVqLF++HJPJRI8ePfj7778ZNXkyrl98kWsv+SFiTzQwWkRsW+LFWO8NQhlsmTEMgz179vD9998TFBTEqVOnzPc999xzjBs3jipVqvz3gFx6yQ8Re6MQJCJWcfHiRf7++29OnDjBqVOniIiIIDIyksjISO7cuYODgwOOjo64uLhQsGBBChUqZP7p6elJkSJFKFy4cMIyYwZ5X30VU3x82i0zYWEYx44RUaQIIdHR7Nmzh61bt7J161bOnj1r3szDw4PevXszcOBAKlSokPIB5LJLfojYI4UgEckWZ8+e5eeff2bTpk3s3LkzSWuLJbi6ulKkQAEKFy1K4UWLcP/pJ/N9sbGxXD16lCvHj3MOuJLC4/Ply0ebNm3o1KkTzzzzDPny5bNofSKS8ygEiUiWCQ8P5+uvv2bp0qX8+eefye4vU6YM5cqVo2zZshQrVgwPDw88PDxwdXUlLi6OuLg4bt26RWRkJFevXuXKlStcuXKFiIiIJMvt27eJiYnhbEwMZy9dgiNHHlhbSaBK48Y0fPppGjZsSL169ciTJ08WvAoiklMpBImIRRmGwebNm/nkk0/45ZdfiIuLA8BkMlG3bl1at25N/fr1qV27NgULFrTI812/fj1ZMLp27RomkwkAh2PHKPjxx3gCRYGyQF6AceOgceOHrkFEbJNCkIhYRHx8PD/99BOTJ09m586d5vX169enV69edOzYkWLFimV8x2FhCWeA+funOAbHZDJRoEABChQoQOnSpVPfx7RpDzV4WkRyH50iLyIPbePGjdSqVYuOHTuyc+dOXF1dGThwIIcOHWLbtm30798/cwHIUpMg+vrC3Lk6rV1EkjAZhmFYu4jsFBUVhYeHB5GRkbi7u1u7HBGbduTIEd58801+/vlnAAoUKMDgwYMZNmwYXl5eD7fzsLCE4HN/601oaObDS1iYTmsXsVFZ8f2t7jARybDY2Fg+/PBDJkyYwJ07d3BycuKVV17hnXfeoWjRopZ5krQmQcxsgEnPae0P6H4TkdxDIUhEMuTQoUP06tWL3bt3A9CmTRumTZtGxYoVLftEFpgEMcMCA/+7BIeDQ0IXWkBA1j2fiFiVTY0JGj9+PCaTKcni7e1t7bJE7EJsbCwffPABjz/+OLt376ZgwYIsXLiQn3/+2fIBCLJ/HE8WXoNMRHImm2sJqlKlCr/++qv5tmPiB6SIpO4hu3iOHDlCr169+OOPPwBoV68ec2bMoHitWlnyfGbZeXmKrOh+E5EczaZaggCcnJzw9vY2LxYbfyCSWz3EGVZxcXFMmTKFxx57jD/++AOPPHlYYDKxcscOitetm/K+LHVGVyJf34S5fLI6iCR2v91Lp9GL5Go2F4JCQkIoXrw4ZcqU4fnnn+fkyZNpbh8TE0NUVFSSRcRuPEQXz99//80TTzzByJEjiYmJoXWTJhy6dYuehoEptX3ZcpeSTqMXsTs2FYLq1q3LwoULWbt2LV988QXh4eE0aNCAiIiIVB8zefJk81T8Hh4elCxZMhsrFrGytLp4UhEXF8fUqVOpUaMGO3bswN3dncDAQH556y1K3D+jxv37ysTz5SgBAQmn4AcHJ/zUoGiRXM2m5wmKjo6mXLlyvPnmm4wYMSLFbWJiYoiJiTHfjoqKomTJkponSOxDBufaOXbsGL1792bbtm0AtGzZki+++CLhj4f07Csr5vYRESFr5gmyqZag++XLl4+qVasSEhKS6jaurq64u7snWUTsRjq7eOLi4vjkk0+oXr0627Zto0CBAnzxxResXr36v9bT9OxLXUoiYkNsuiUoJiaGcuXK0b9/f9555510PUYzRotdSmOm5KNHjxIQEMDvv/8OQLNmzQgMDKRUqVIZ3leGthERyQC7nzH6jTfeoH379pQqVYoLFy4wceJEoqKi6Nmzp7VLE8nZUpgp+c6dO0ydOpXx48cTExND/vz5mTp1Kv369TNffT29+8rUNiIiVmZTISgsLIzu3btz6dIlihYtSr169dixYwd+fn7WLk0kgY1ccmHfvn306dOHvXv3Agljf+bMmaPfJRGxKzYVgpYuXWrtEkRSZwOXXLh8+TLjxo1j1qxZxMXFUahQIaZPn85LL72UduuPiEguZNMDo0VyjBw+P05sbCxz5syhQoUKfPbZZ8TFxfHcc89x+PBhXn75ZQUgEbFLCkEilpBD58eJi4tj0aJFVK5cmVdeeYWIiAiqVKnChg0b+Pbbb5Neey8sLGF+nBwS3EREsppCkIglZOSSC9kQNm7dusVXX31F1apVefHFFwkJCaFw4cJ8+umn7Nu3j6ZNmyZ9gKUvdSEiYgMUgkQsIb3z42Rx2AgJCeGtt96iVKlS9OrViyNHjlCoUCHef/99Tp06xdChQ3Fyum8oYA7vyhMRySo2PU9QZmieIMlSac2PkwWzKRtnznBw3TrWnDpF0Jo17Nmzx3yfr68vgwYNYtCgQXh4eKS+k+DghFCW0vrGjTNVl4iIpdn9PEEiOd7d+XFiY2O5feMG8fHxxMfHYxgGbocO4RIfT5IhyInjhtIRgm7evMnZs2c5duwY+/btY+8PP/Dbnj2cv2cbR0dHnn76afr160fHjh2Tt/qkJLEr7/5wpquni0gupxAkkgnR0dHs3buXffv2cfLkSU6ePEloaCgRERFcvXqV69evp/g4E5AXyHN3yQu4DhqEc968uLi4mBeTycTNq1e5cfUqN4ELly9z6dKlFPeZF3gSaGcy8dzu3RSrUSNjB5PYlTdgQEIo06UuRMROKASJpMONGzcIDg5m9erVbN26lYMHDxIXF5fh/RhA9N3F7MiRdD8+b968lC5dmho+PtTYsIE6QD3AFcAw4OrVDNcEJMxn1LKlLnUhInZFIUgkFdHR0axYsYLFixezYcMGYmJiktzv4+NDrVq18Pf3p1y5cpQuXZpixYpRsGBBChYsiJubGw4ODjjcPWvs1q1b3Lx5k5snT3Lz2DFuFC3KTXd3bt++nXQJDyd+2DDyGoa51aiwgwMl9++nYJUqCXP6pDa+6GG6sHSpCxGxMwpBIvf5448/mDFjBsuXLyc6+r82Gz8/P1q3bk2zZs2oV68eJUqUyNB+3dzcKFiwIPj4QMOGqW8YHJzQqnOv+Hi4dAkSJzVUF5aIyENTCBIBDMNg7dq1fPjhh2zatMm8vnz58rz44ot06dKFypUrZ8/MyukdqKwuLBGRh6IQlNVs5IKauVI6XvvY2FiCgoKYMmUKBw4cAMDJyYkXXniBgQMHUqdOney/pERGWnnUhSUikmkKQVnJBi6omeNYKjQ+4LWPjo5m3rx5TJ06ldOnTwOQP39++vfvz/Dhw/G1drBQK4+ISJbTZIlZJQsmxsv1LBUa03jtL7m5MXPmTGbMmEFERAQARQsX5rUOHRg0fDiFHn009X2qRU9ExGqy4vtbl83IKjn0gpo5liUv3ZDCa386Lo6hQ4fi5+fH+PHjiYiIoGzZsnz+wgucvnyZsfPmUah69ZQvY6HraomI5EoKQVklIxfUFMuGxnte+wPAi0A5YMby5dy4cYPHHnuMpUuXcnTDBgYuWUKexMbQlIKXrqslIpJr2W0IunHjBr1796Z58+bs27fP8k+Q3gtqSgILhkajRAnWDh1KS6A6sAiIA5o1a8b69evZs2cP3bp1w+nUqQcHL7XoiYjkWnY7MHrKlCksWLAAgDZt2nDs2DHy589v2SfR4Nb0s8C8Nzdv3mTJkiVMmzaNQ4cOAeDg4ECXNm14c/x4atasmfQB6TkVXdfVEhHJtex2YHTBggW5es8lBqZOncqIESOsV5gkSOsq7KnYu3cvgYGBLFq0yPye5s+fn4CAAF577TXKlCmT+oMDA5MHr/sHY6dnGxERyVJZMTDabkMQQKFChZg4cSKDBw+mevXqWdMtJlni6ObN/PDNN3y3Ywd7Dx40ry9VqhRDhgyhX79+CbMzp0d6glcmwpmIiFiOQpAF3BuCOnfuzBdffIGPjw+3b9/mwIEDVK1a1coV5mIPcZr5lStX2LJlC5s2bWJtUBBHzp0z3+fi5ETHzp0JCAjg6aefxjFxHJaIiOQaWRGC7HZMEECtWrXw9PSkTZs2rFixguXLlysEZZV0zgF0+/ZtwsLCOHHiBPv372ffvn3s3buXI0eOcG9edwaeBjoDnePjKTx1qlpoREQkQ+w6BFWvXh2Atm3bsmLFCtatW8c777xj5apyoXtOM78JhMbHE9q/P6cvXOB0VBSnT582L//++y+pNU5WrFiRxhUq0OSnn2gFeCTeER+f0FWlECQiIhlg1yHokUceAaB58+YA7Nixg8jISHN3Wa6WxTMgnz9/nv3793PgwAEOrFtHSHw8oUB44gbx8TBmTIqPdXNzw8/Pj2rVqlGjRg1q1KjB448/jre3d0Ldv/yis7VEROSh2W0IcnR0pGTJkgD4+flRsWJFjh49ysaNG+nUqVOWP39ERASzZ8/ml19+4cCBA8TGxuLt7U3t2rXp0qULHTp0wM3NLemDsum6Wplx+fJl1q5dy6ZNm9i0aRPHjh1Lddv8QBnAr1kz/CpWpHTp0vj5+ZmXYsWKpX7RUgucSi8iIgJ2PDC6bNmynDhxwrz+tdde43//+x+vvPIKs2bNyrLnNwyDL7/8kuHDhxMdHZ3qdsWLF2fs2LH07dsXFxeXbLmuVkaDREREBMuXL+e7775j48aNxMbGmu8zmUz4+/tTvXp1qlWrRqWzZykzdy6l4+PxdHDA9LDBS2driYjYFZ0dZgGJL2KTJk3YuHGjef0vv/xCu3btkoUjS4qNjSUgIICFCxcCUKNGDYYMGULDhg3Jmzcvp06dYt26dXz11VecPXsWgCpVqvDlpEnU69TJMhdjDQ5OuAZWSusbN37gww3DYPv27cyaNYvvvvuOmJgY831Vq1alefPmNG7cmEaNGiU/RV3BRUREMilLLoBu2JnIyEgDMLp165ZkfVRUlOHo6GgARmhoqMWfNzY21njuuecMwHB0dDQ++ugjIy4uLsVtb926ZcyYMcMoUqSIARgmk8kYBkY0GMa9S3Bwxgs5c8YwHByS7sfRMWH9A+pfvHixUb16dQMwL9WqVTMmTZpkHDt2LOO1iIiIpFPi93dkZKTF9mm31w7z8vJKcrtAgQLUqVMHgODgYIs/36hRo/juu+9wcXHh+++/54033sDh/mtl3eXq6sqQIUM4cuQIL730EoZhMB14HNiZuFFmBwNn8Jpmt2/fJjAwkEqVKtGjRw/279+Pm5sbvXv3ZufOnezbt4/Ro0fj7++f8VpERESsyG5DULFixZKta3q3m+jebjJLWLp0KR9//DEACxcupEOHDul6XJEiRVi4cCGrVq3Cx8ODo0AD4C2TidszZ2a+SykgIKErLTg44WcKY3Nu3rzJjBkzKF++PH379uX48eN4enry7rvvcvbsWebNm0edOnVSH8AsIiKSwykE3aNJkyZAQggyLDRU6uzZswwcOBCAsWPH0q1btwzvo3Xr1hw8eZIXOnUiHnjfMKgzaxYHDhzIfGG+vgljgO4LUtHR0UydOpUyZcowdOhQzpw5g7enJx+/9RanT5/m7bffxtPTM/PPKyIikkMoBN2jQYMGuLi4cPbsWUK+/jphIO9DMAyDvn37cvXqVWrXrs348eMzvS9PT0+++eEHvvvuOwoXLsz+/fupVasWH3zwAXfu3HmoOiFhwNnkyZMpXbo0b7zxBufPn8evcGE+N5k4dfkyr0+aRP6goId+HhERkZzCbkPQ/WOCAPLkyUODu1cc39izZ8Kp5IGBmX6ORYsWsWbNGtzc3Fi4cCFOTg8/LVOXLl04dOgQzzzzDHfu3GH06NFUqVKFpUuXEp949lhYWEJXVzpC3NGjRxk6dCi+vr6MGTOGS5cuUbZsWQI/+oiQy5cZaBi4QcKZaQMGPHQwFBERySkUgu4VFkbTu5P8bYSH+uK/ceMGo0ePBuCdd96hUqVKD1FtUl5eXqxYsYIFCxZQtGhRQkJC6N69O5UqVWJKly6cLFUq4TT4FEKcYRicPHmS6dOn88QTT1CpUiVmzJjBtWvXqFSpEgsXLuTo0aP0qVkT5/u7BOPiEk5xv18GQpeIiEhOYbfzBF05eJCCVaokvTM4mN+bNuUJoAhwnrspMZ1z6Nxr4sSJvP322/j5+fH3338nn/3ZQq5du8b06dP5+OOPiYqKMq8vA1QBSppMOPXqxU1HR/755x8OHDhAeLj54hWYTCbatWvHkCFDaNas2X9nrKV3UsUsmH1aRETkfpos0QLML6LJhPsXXyT9wg4L43apUngaBtHAfqBaJiYlPHfuHP7+/kRHR7N06dJMDYbOqOvXr7N0/Hi+njqVbUBsGts6OztTr149unTpQufOnfFN7dgCA5NfnuK+18tSs0+LiIikRSHIAswvIuCeSstG6759WQNMM5kYfn9QSoe+ffsSGBhIvXr12LZtW/adRn43lFyLj2cncBz412QibvBgXIsWpWTJkvj7+1OzZk3y5MmT/n2mNsvzQ84+LSIikl5ZEYLs9gKqwH9jXO79cg8IoFloKGsmTmRNo0YMz2AA2r9/P/PmzQNg2rRp2TuPzt2JEAsMGECzuDiapdR6k5l9ptaq4++f0AWmK7qLiIgNstuB0UCqX9jtX3oJgODt24mMjEz37gzD4PXXX8cwDLp160b9+vXTX4ulBhenYyJEi8ng7NMiIiI5if2GIAeHVL+wK1SoQKVKlbhz5w6rV69O9y5XrVrFhg0bcHFxYfLkyemvJTAwYWxNKmd0ZVgqEyFmiewMXSIiIhZkvyHo4ME0v7ATL23x448/pmt3d+7c4Y033gBg2LBhlLk739ADhYX9d3YV2OZ8PNkZukRERCzEfkNQiRJp3p0YglatWsXNmzcfuLvZs2fz999/U6RIEcaMGZP+OkJCko6pgdTn4xERERGLsckQ9Pnnn1OmTBnc3NyoWbMmv/32m8Wfo27duvj5+REVFcWKFSvS3PbChQu88847ALz33nt4eHik/4kSBxffS4OLRUREspzNhaCgoCCGDRvG2LFj2bt3L40aNaJ169b8888/Fn0eBwcHevXqBUDgA8bojBkzhqtXr/LYY4/Rr1+/jD2RBheLiIhYhc3NE1S3bl0ef/xxZs2aZV73yCOP0LFjx3QNRs7IPAOhoaGUK1eO+Ph49u7dS40aNZJt8/vvv/PEE08AsHXrVho2bJixA0qU1nw8IiIidi4r5gmyqZag27dvs2fPHlq0aJFkfYsWLdi2bVuKj4mJiSEqKirJkl6lS5ema9euQMJlMO4XGRnJCy+8AEDv3r0zH4BAg4tFRESymU2FoEuXLhEXF5fs4qdeXl5Jrod1r8mTJ+Ph4WFeSpYsmaHnHDNmDA4ODnz//fesWrXKvD42NpaXX36Z06dPU7ZsWaZPn57h4xERERHrsakQlOj+WZgNw0h1ZubRo0cTGRlpXs6cOZOh56patSqvvfYaAC+88ALr16/n9OnTPPvss6xcuRJXV1cWL15ssaY5ERERyR42ddmMIkWK4OjomKzV58KFC8lahxK5urri6ur6UM87ceJEdu7cybZt25J0xbm4uBAUFETdunUfav8iIiKS/WyqJcjFxYWaNWuyfv36JOvXr19PgwYNsux58+bNy+rVq+nXrx8uLi4ANGrUiG3btpnnExIRERHbYnNnhwUFBfHSSy8xe/Zs6tevz9y5c/niiy84dOgQfn5+D3z8w44uv3PnDnfu3CFv3ryZKV9EREQyQVeRB7p160ZERATvvvsu586d49FHH2XVqlXpCkCW4OzsjLOzc7Y8l4iIiGQdm2sJelhZkSRFREQka9n9PEEiIiIilqIQ9DDCwiA42Lau+C4iIiKAQlDmBQaCnx80bZrw8wHXFxMREZGcRSEoM8LCoH9/iI9PuB0fDwMGqEVIRETEhigEZUZIyH8BKFFcXMIFUEVERMQmKARlhr8/ONz30jk6JlwBXkRERGyCQlBm+PrC3LkJwQcSfs6ZoyvAi4iI2BCbmywxxwgIgJYtE7rAypdXABIREbExCkEPw9dX4UdERMRGqTtMRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2yaZCUOnSpTGZTEmWUaNGWbssERERsUFO1i4go95991369etnvp0/f34rViMiIiK2yuZCUIECBfD29rZ2GSIiImLjbKo7DODDDz+kcOHC1KhRg/fff5/bt29buyQRERGxQTbVEvTaa6/x+OOPU6hQIf744w9Gjx7NqVOn+PLLL1N9TExMDDExMebbkZGRAERFRWV5vSIiImIZid/bhmFYbqeGlY0bN84A0lx27dqV4mOXLVtmAMalS5ceav9atGjRokWLFttYTpw4YbEMYjIMS0aqjLt06RKXLl1Kc5vSpUvj5uaWbP3Zs2fx9fVlx44d1K1bN8XH3t8SdPXqVfz8/Pjnn3/w8PB4uOJtSFRUFCVLluTMmTO4u7tbu5xso+PWcdsDHbeO2x5ERkZSqlQprly5QsGCBS2yT6t3hxUpUoQiRYpk6rF79+4FwMfHJ9VtXF1dcXV1Tbbew8PDrv7zJHJ3d9dx2xEdt33RcdsXez1uBwfLDWe2eghKr+3bt7Njxw6aNGmCh4cHu3btYvjw4TzzzDOUKlXK2uWJiIiIjbGZEOTq6kpQUBATJkwgJiYGPz8/+vXrx5tvvmnt0kRERMQG2UwIevzxx9mxY8dD78fV1ZVx48al2EWWm+m4ddz2QMet47YHOm7LHbfVB0aLiIiIWIPNTZYoIiIiYgkKQSIiImKXFIJERETELikEiYiIiF3KlSHo888/p0yZMri5uVGzZk1+++23NLffvHkzNWvWxM3NjbJlyzJ79uxsqtSyMnLcP/zwA82bN6do0aK4u7tTv3591q5dm43VWk5G3+9Ev//+O05OTtSoUSNrC8wiGT3umJgYxo4di5+fH66urpQrV4558+ZlU7WWk9HjXrRoEdWrVydv3rz4+PjQu3dvIiIisqnah7dlyxbat29P8eLFMZlMrFix4oGPyQ2faRk97tzymZaZ9zuRLX+mZea4LfGZlutCUFBQEMOGDWPs2LHs3buXRo0a0bp1a/75558Utz916hRt2rShUaNG7N27lzFjxjB06FC+//77bK784WT0uLds2ULz5s1ZtWoVe/bsoUmTJrRv3948C7etyOhxJ4qMjOTll1/m6aefzqZKLSszx921a1c2bNhAYGAgR48eZcmSJVSqVCkbq354GT3urVu38vLLLxMQEMChQ4f47rvv2LVrF3379s3myjMvOjqa6tWr89lnn6Vr+9zymZbR484tn2kZPe5Etv6ZlpnjtshnmsWuQpZD1KlTx3jllVeSrKtUqZIxatSoFLd/8803jUqVKiVZN2DAAKNevXpZVmNWyOhxp6Ry5crGhAkTLF1alsrscXfr1s146623jHHjxhnVq1fPwgqzRkaPe/Xq1YaHh4cRERGRHeVlmYwe90cffWSULVs2ybr//e9/hq+vb5bVmJUAY/ny5Wluk1s+0+6VnuNOiS1+pt0rI8dt659p90rPcVvqMy1XtQTdvn2bPXv20KJFiyTrW7RowbZt21J8zPbt25Nt37JlS3bv3s2dO3eyrFZLysxx3y8+Pp5r167h6emZFSVmicwe9/z58zlx4gTjxo3L6hKzRGaOe+XKldSqVYspU6ZQokQJKlSowBtvvMHNmzezo2SLyMxxN2jQgLCwMFatWoVhGJw/f55ly5bRtm3b7CjZKnLDZ5ol2OJnWmbZ+mdaZljqM81mZoxOj0uXLhEXF4eXl1eS9V5eXoSHh6f4mPDw8BS3j42N5dKlS2lenDWnyMxx32/q1KlER0fTtWvXrCgxS2TmuENCQhg1ahS//fYbTk62+d8/M8d98uRJtm7dipubG8uXL+fSpUsMGjSIy5cv28y4oMwcd4MGDVi0aBHdunXj1q1bxMbG8swzzzBjxozsKNkqcsNnmiXY4mdaZuSGz7TMsNRnWq5qCUpkMpmS3DYMI9m6B22f0vqcLqPHnWjJkiWMHz+eoKAgihUrllXlZZn0HndcXBw9evRgwoQJVKhQIbvKyzIZeb/j4+MxmUwsWrSIOnXq0KZNG6ZNm8aCBQtsqjUIMnbchw8fZujQobzzzjvs2bOHNWvWcOrUKV555ZXsKNVqcstnWmbZ+mdaeuW2z7SMsNRnWq6KjUWKFMHR0THZX4UXLlxI9pdRIm9v7xS3d3JyonDhwllWqyVl5rgTBQUFERAQwHfffUezZs2yskyLy+hxX7t2jd27d7N3716GDBkCJPwiGYaBk5MT69ato2nTptlS+8PIzPvt4+NDiRIl8PDwMK975JFHMAyDsLAw/P39s7RmS8jMcU+ePJmGDRvyf//3fwBUq1aNfPny0ahRIyZOnJgrW0Vyw2faw7Dlz7SMyi2faZlhqc+0XNUS5OLiQs2aNVm/fn2S9evXr6dBgwYpPqZ+/frJtl+3bh21atXC2dk5y2q1pMwcNyT8tdSrVy8WL15sk2MkMnrc7u7u/PXXX+zbt8+8vPLKK1SsWJF9+/ZRt27d7Cr9oWTm/W7YsCH//vsv169fN687duwYDg4O+Pr6Zmm9lpKZ475x4wYODkk/5hwdHYH/Wkdym9zwmZZZtv6ZllG55TMtMyz2mfZQw6pzoKVLlxrOzs5GYGCgcfjwYWPYsGFGvnz5jNDQUMMwDGPUqFHGSy+9ZN7+5MmTRt68eY3hw4cbhw8fNgIDAw1nZ2dj2bJl1jqETMnocS9evNhwcnIyZs6caZw7d868XL161VqHkCkZPe772eqZFBk97mvXrhm+vr5Gly5djEOHDhmbN282/P39jb59+1rrEDIlo8c9f/58w8nJyfj888+NEydOGFu3bjVq1apl1KlTx1qHkGHXrl0z9u7da+zdu9cAjGnTphl79+41Tp8+bRhG7v1My+hx55bPtIwe9/1s9TMto8dtqc+0XBeCDMMwZs6cafj5+RkuLi7G448/bmzevNl8X8+ePY2nnnoqyfabNm0yHnvsMcPFxcUoXbq0MWvWrGyu2DIyctxPPfWUASRbevbsmf2FP6SMvt/3stUPDMPI+HEfOXLEaNasmZEnTx7D19fXGDFihHHjxo1srvrhZfS4//e//xmVK1c28uTJY/j4+BgvvPCCERYWls1VZ15wcHCav6u59TMto8edWz7TMvN+38tWP9Myc9yW+EwzGUYubRMWERERSUOuGhMkIiIikl4KQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJEJFd49913qVq1Kvny5cPLy4uBAwdy584da5clIjmYk7ULEBF5WIZhEBcXx5w5cyhRogSHDx/m5Zdfplq1agwcONDa5YlIDqULqIpIrtSjRw+KFi3Kp59+au1SRCSHUneYiNi806dPM2TIEB599FEKFSpE/vz5+fbbb/H19bV2aSKSgykEiYhNu3TpEnXq1OHSpUtMmzaNrVu3sn37dhwdHalRo4a1yxORHExjgkTEpq1atYrY2FiWLFmCyWQCYObMmdy+fVshSETSpBAkIjbN09OTqKgoVq5cSeXKlfnpp5+YPHkyJUqUoGjRotYuT0RyMA2MFhGbZhgGAwcOZPHixeTJk4cXX3yRW7ducfr0aX7++WdrlyciOZhCkIiIiNglDYwWERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2KX/B4wU2UV7Jf99AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdBklEQVR4nO3deVxU1f/H8dewu4HiAiiKG2plarmlZu575lZu5VIu5FZm5dKm9k0t/VpWmqmRZqmZftPMcsvc+qnlbqkZLliYSJqCKwic3x/EJLIIODAM834+HvPAuXPvnc+dgZm359x7jsUYYxARERFxMi72LkBERETEHhSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCxK6aNm1K06ZN7V1GtvXv35/ChQtnat3y5cvTv3//HK3HYrEwYcKEHH2O27l69SoTJkxg8+bNdq3DUWzcuJE6depQqFAhLBYLK1euZMGCBVgsFsLDw63rLV68mBkzZuRIDa+88grlypXDzc2NokWLZnn7/v37U758eZvXlZecOXOGV155hQYNGlCiRAm8vb2pXbs2c+fOJSEhIcW6ly5dYvTo0bRu3ZqSJUvmib9LSZubvQsQ5/bBBx/Yu4Rcs2LFCry9ve1dRo67evUqEydOBHDogJsbjDF0796dKlWqsGrVKgoVKkTVqlWJj49nx44dBAQEWNddvHgxv/zyCyNHjrRpDV999RWTJk3i5Zdfpl27dnh6etp0//nFnj17WLhwIX379uXVV1/F3d2dNWvWMGTIEHbu3MnHH39sXff8+fPMnTuXmjVr0rlzZz766CM7Vi4ZUQgSu7r77rvtXUKuue++++xdgtjQtWvX8PLywmKxZHsff/75J3///TddunShRYsWKR4rWbLknZaYKb/88gsAzzzzDKVKlcqV57QVW7wHmdWoUSOOHz+Ou7u7dVmrVq2Ii4tj1qxZTJw4kbJlywIQFBTEhQsXsFgsnDt3TiEoD1N3mGTahAkTsFgsHDp0iF69euHj44Ofnx9PPfUU0dHRKda9fv0648aNo0KFCnh4eFCmTBmGDRvGxYsXU6yXVnfY7NmzqVmzJoULF6ZIkSJUq1aNl156CYDw8HDc3NyYMmVKqvq2bt2KxWJh2bJlGR7HxYsXef7556lYsSKenp6UKlWK9u3b8+uvvwKwefNmLBZLqu6c8PBwLBYLCxYsSLXPQ4cO0aJFCwoVKkTJkiUZPnw4V69eTbFOWt1ht6vFFiIjIwkJCSEwMBAPDw8qVKjAxIkTiY+PT7HexIkTqV+/Pr6+vnh7e3P//fcTGhrKrXMsf//99zRt2pTixYtToEABypUrR7du3bh69Srh4eHWL++JEydisViwWCy37Qa8evUqL7zwAhUqVMDLywtfX1/q1KnDkiVLUqy3YMECqlatiqenJ3fddRcLFy5M1RWTlfdv9+7d9OzZk/Lly1OgQAHKly9Pr169OHXqVKrntVgsrF+/nqeeeoqSJUtSsGBBYmNjAVi6dCkNGjSgUKFCFC5cmDZt2rBv374Mj3nChAkEBgYCMGbMGCwWi/U4bu0Oa9q0Kd988w2nTp2yvqa3++JPTExk6tSpVKtWzfq71bdvXyIiIqzrlC9fnldeeQUAPz+/THXbpPUepCUuLo433njD+vwlS5bkySef5K+//kqxXmxsLM8//zz+/v4ULFiQhx56iD179qT6e7HVe7B7924eeeQRfH198fLy4r777uOLL77I8JgBihUrliIAJatXrx5Aitc1M++P5A1qCZIs69atGz169GDAgAH8/PPPjBs3DsDaHGyMoXPnzmzcuJFx48bRuHFjDh48yPjx49mxYwc7duxIt8n9888/Z+jQoYwYMYL//ve/uLi4cOzYMQ4fPgwkfWg/8sgjfPjhh4wePRpXV1frtjNnzqR06dJ06dIl3dovXbrEgw8+SHh4OGPGjKF+/fpcvnyZrVu3cubMGapVq5bl1+PGjRu0b9+ekJAQxo4dy/bt23njjTc4deoUX3/99R3X0r9/fz755BNOnjyZ5fMuIiMjqVevHi4uLrz22mtUqlSJHTt28MYbbxAeHs78+fOt64aHhxMSEkK5cuUA2LlzJyNGjOD06dO89tpr1nU6dOhA48aN+fjjjylatCinT59m7dq1xMXFERAQwNq1a2nbti0DBgxg4MCBwO1bNUaNGsWnn37KG2+8wX333ceVK1f45ZdfOH/+vHWdBQsW8OSTT9KpUyemT59OdHQ0EyZMIDY2FheX7P1/Ljw8nKpVq9KzZ098fX05c+YMs2fPpm7duhw+fJgSJUqkWP+pp56iQ4cOfPrpp1y5cgV3d3cmT57MK6+8wpNPPskrr7xCXFwc06ZNo3Hjxvz000/ptnYOHDiQmjVr0rVrV0aMGEHv3r3T/bv44IMPGDx4MMePH2fFihWZOrYhQ4Ywd+5chg8fzsMPP0x4eDivvvoqmzdvZu/evZQoUYIVK1Ywa9YsQkNDWbt2LT4+PtZglpbMvgeJiYl06tSJbdu2MXr0aBo2bMipU6cYP348TZs2Zffu3RQoUACAJ598kqVLlzJ69GiaN2/O4cOH6dKlCzExMWnWcCfvwaZNm2jbti3169fnww8/xMfHh88//5wePXpw9erVbJ2z9/333+Pm5kaVKlWyvK3kAUYkk8aPH28AM3Xq1BTLhw4dary8vExiYqIxxpi1a9emud7SpUsNYObOnWtd1qRJE9OkSRPr/eHDh5uiRYtmWMemTZsMYFasWGFddvr0aePm5mYmTpyY4bavv/66AcyGDRtuu/9NmzalWH7y5EkDmPnz51uX9evXzwDm3XffTbHupEmTDGB++OEH67KgoCDTr1+/LNVijDFPPfWUcXV1NeHh4RmuZ4wxgBk/frz1fkhIiClcuLA5depUivX++9//GsAcOnQozf0kJCSYGzdumNdff90UL17c+t4uX77cAGb//v3p1vDXX3+lquN2qlevbjp37pzu4wkJCaZ06dLm/vvvt9ZijDHh4eHG3d3dBAUFWZdl5f27VXx8vLl8+bIpVKhQivd0/vz5BjB9+/ZNsf7vv/9u3NzczIgRI1Isv3TpkvH39zfdu3fP4Kj/rWnatGkplic/38mTJ63LOnTokOI4M3LkyBEDmKFDh6ZY/uOPPxrAvPTSS9ZlyX/Xf/31V4b7zMp7sGTJEgOY//3vfyn2sWvXLgOYDz74wBhjzKFDhwxgxowZk2K95O1v/nuxxXtQrVo1c99995kbN26kWPfhhx82AQEBJiEhIcPX4Fbr1q0zLi4u5rnnnkt3nez8PUjuUXeYZNkjjzyS4n6NGjW4fv06UVFRQNL/jIBU/6t67LHHKFSoEBs3bkx33/Xq1ePixYv06tWLr776inPnzqVap2nTptSsWZNZs2ZZl3344YdYLBYGDx6cYe1r1qyhSpUqtGzZMsP1surxxx9Pcb93795A0v8877SW0NBQ4uPjCQoKynJdq1evplmzZpQuXZr4+HjrrV27dgBs2bLFuu73339Py5Yt8fHxwdXVFXd3d1577TXOnz9vfW9r1aqFh4cHgwcP5pNPPuHEiRNZqufmGuLj461dbfXq1WPNmjWMHTuWzZs3c+3atRTbHT16lD///JPevXun6GYICgqiYcOGWX5dkl2+fJkxY8ZQuXJl3NzccHNzo3Dhwly5coUjR46kWr9bt24p7q9bt474+Hj69u2b4ri8vLxo0qSJ3a6QS/69u/VvsF69etx1110Z/g2mJyvvwerVqylatCgdO3ZM8brUqlULf39/6+uS/PvXvXv3FNs/+uijuLml3VGR3ffg2LFj/Prrr9a/1ZvXbd++PWfOnOHo0aOZfj327t1L9+7deeCBB9LsnhfHoBAkWVa8ePEU95Ob8JO/uM6fP4+bm1uqLhCLxYK/v3+KLo5b9enTh48//phTp07RrVs3SpUqRf369dmwYUOK9Z555hk2btzI0aNHuXHjBvPmzePRRx/F398/w9r/+uuvDJv7s8PNzS3Va5JcR0bHmhO13Ors2bN8/fXXuLu7p7jdc889ANaQ+dNPP9G6dWsA5s2bx//93/+xa9cuXn75ZeDf97ZSpUp89913lCpVimHDhlGpUiUqVarEu+++e9tawsPDU9WR/CX43nvvMWbMGFauXEmzZs3w9fWlc+fOhIWFAf++jmm9v7d7zzPSu3dvZs6cycCBA1m3bh0//fQTu3btomTJkqmCGJDiai1Ien0B6tatm+rYli5dmmaIzw3Jr9et9QKULl06w9/L2+0zM+/B2bNnuXjxIh4eHqlel8jISOvrkrxPPz+/FNun9TeVLLvvQfJ6L7zwQqr1hg4dCpDp92vfvn20atWK4OBgvv32W11R58B0TpDYXPHixYmPj+evv/5KEYSMMURGRlK3bt0Mt3/yySd58sknuXLlClu3bmX8+PE8/PDD/Pbbb9bWkN69ezNmzBhmzZrFAw88QGRkJMOGDbttbSVLlkxxAmNavLy8AKwnXCZL7wMyPj6e8+fPp/jQjoyMBFIHxqzWcqdKlChBjRo1mDRpUpqPly5dGkg6F8vd3Z3Vq1dbjx9g5cqVqbZp3LgxjRs3JiEhgd27d/P+++8zcuRI/Pz86NmzZ7q1lC5dml27dqVYVrVqVQAKFSrExIkTmThxImfPnrW2CnXs2JFff/3V+jomv643u3VZZt+/6OhoVq9ezfjx4xk7dqx1eWxsLH///Xeax3Drya7J5wwtX748Wy11OSX59Tpz5kyqoP3nn3+mOtcpK/vMzHtQokQJihcvztq1a9PcV5EiRVLs8+zZs5QpU8b6ePLfVFqy+x4krzdu3Di6du2a5jrJv48Z2bdvHy1btiQoKIj169fj4+Nz220k71JLkNhc8qW+n332WYrl//vf/7hy5UqqS4HTU6hQIdq1a8fLL79MXFwchw4dsj7m5eVl7ZJ5++23qVWrFo0aNbrtPtu1a8dvv/1m7bJLS/LJxwcPHkyxfNWqVelus2jRohT3Fy9eDGQ8Tk5marlTDz/8ML/88guVKlWiTp06qW7JIchiseDm5pbiRPNr167x6aefprtvV1dX6tevb+2W3Lt3L5C6ZTCZh4dHqudP/jK8mZ+fH/3796dXr14cPXqUq1evUrVqVQICAliyZEmKq9VOnTrF9u3bU2yf2ffPYrFgjEn1v/iPPvoo1eB36WnTpg1ubm4cP348zde3Tp06mdpPZnh6eqbZOpWW5s2bA6n/Bnft2sWRI0cy/Td4s6y8Bw8//DDnz58nISEhzdckOWw89NBDQNKVXTdbvnx5qqsX05PZ96Bq1aoEBwdz4MCBdNdL6/fxZvv376dly5YEBgayYcMGihUrlqkaJe9SS5DYXKtWrWjTpg1jxowhJiaGRo0aWa8Ou+++++jTp0+62w4aNIgCBQrQqFEjAgICiIyMZMqUKfj4+KRqQRo6dChTp05lz549mR6HY+TIkSxdupROnToxduxY6tWrx7Vr19iyZQsPP/wwzZo1w9/fn5YtWzJlyhSKFStGUFAQGzdu5Msvv0xznx4eHkyfPp3Lly9Tt25d69Vh7dq148EHH7yjWgAGDBjAJ598wvHjx7Pc2vD666+zYcMGGjZsyDPPPEPVqlW5fv064eHhfPvtt3z44YcEBgbSoUMH3n77bXr37s3gwYM5f/48//3vf1MFhA8//JDvv/+eDh06UK5cOa5fv269KjD53KYiRYoQFBTEV199RYsWLfD19aVEiRIZXtlWv359Hn74YWrUqEGxYsU4cuQIn376KQ0aNKBgwYIA/Oc//2HgwIF06dKFQYMGcfHiRSZMmJCqKyaz75+3tzcPPfQQ06ZNs9a3ZcsWQkNDMz1qcvny5Xn99dd5+eWXOXHiBG3btqVYsWKcPXuWn376ydrCZQv33nsvX375JbNnz6Z27dq4uLikG7KqVq3K4MGDef/993FxcaFdu3bWq8PKli3Lc889l+Xnd3FxyfR70LNnTxYtWkT79u159tlnqVevHu7u7kRERLBp0yY6depEly5duOeee+jVqxfTp0/H1dWV5s2bc+jQIaZPn46Pj0+mrvrLynswZ84c2rVrR5s2bejfvz9lypTh77//5siRI+zduzfD4TWOHj1q/R2fNGkSYWFh1u5aSOoqvrnle82aNVy5coVLly4BcPjwYZYvXw5A+/btrb/XYmd2PS1bHEp6V5GkdSXLtWvXzJgxY0xQUJBxd3c3AQEBZsiQIebChQsptr316rBPPvnENGvWzPj5+RkPDw9TunRp0717d3Pw4ME0a2ratKnx9fU1V69ezfRxXLhwwTz77LOmXLlyxt3d3ZQqVcp06NDB/Prrr9Z1zpw5Yx599FHj6+trfHx8zBNPPGF2796d5tVhhQoVMgcPHjRNmzY1BQoUML6+vmbIkCHm8uXLKZ731qvDMltL8hVoN7++6SGNq1D++usv88wzz5gKFSoYd3d34+vra2rXrm1efvnlFDV+/PHHpmrVqsbT09NUrFjRTJkyxYSGhqZ47h07dpguXbqYoKAg4+npaYoXL26aNGliVq1aleI5v/vuO3PfffcZT0/PVFf5pGXs2LGmTp06plixYtbnf+6558y5c+dSrPfRRx+Z4OBg4+HhYapUqWI+/vhj069fv1RXTWX2/YuIiDDdunUzxYoVM0WKFDFt27Y1v/zyS6r3Kvl3fNeuXWnWv3LlStOsWTPj7e1tPD09TVBQkHn00UfNd999l+FxZ+XqsL///ts8+uijpmjRosZisZjbfXwnJCSYt956y1SpUsW4u7ubEiVKmCeeeML88ccfKdbL7NVhyTL7Hty4ccP897//NTVr1jReXl6mcOHCplq1aiYkJMSEhYVZ17t+/boZNWqUKVWqlPHy8jIPPPCA2bFjh/Hx8Ulx1ZWt3oMDBw6Y7t27m1KlShl3d3fj7+9vmjdvbj788MMMjzv5+dO73XrVYVBQULrrZuZvWXKHxZhbRkITcRBRUVEEBQUxYsQIpk6dau9yxE769+/P5s2bU8yzJY5t+/btNGrUiEWLFlmvtBTJCeoOE4cTERHBiRMnmDZtGi4uLjz77LP2LklEsmnDhg3s2LGD2rVrU6BAAQ4cOMCbb75JcHBwuicwi9iKQpA4nI8++ojXX3+d8uXLs2jRohRXlYiIY/H29mb9+vXMmDGDS5cuUaJECdq1a8eUKVNSXKkokhPUHSYiIiJOKc9cIj979mxq1KiBt7c33t7eNGjQgDVr1lgfN8YwYcIESpcuTYECBWjatGmKS6ZFREREsiLPhKDAwEDefPNNdu/eze7du2nevDmdOnWyBp2pU6fy9ttvM3PmTHbt2oW/vz+tWrWyXn4oIiIikhV5ujvM19eXadOm8dRTT1G6dGlGjhzJmDFjgKRRXf38/HjrrbcICQmxc6UiIiLiaPLkidEJCQksW7aMK1eu0KBBA06ePElkZKR1biNIGj21SZMmbN++PcMQFBsbm2L4/MTERP7++2+KFy+eavh1ERERyZuMMVy6dInSpUtnaiDNzMhTIejnn3+mQYMGXL9+ncKFC7NixQruvvtu65Dst06y5+fnx6lTpzLc55QpU2w2YquIiIjY1x9//GGzyafzVAiqWrUq+/fv5+LFi/zvf/+jX79+1lmmIfXEecaY27bmjBs3jlGjRlnvR0dHU65cOf744w+8vb1tewAiIiKSI2JiYihbtuxt53jLijwVgjw8PKhcuTIAderUYdeuXbz77rvW84AiIyMJCAiwrh8VFZWqdehWnp6eqeY/AqxXoYmIiIjjsOWpLHnm6rC0GGOIjY2lQoUK+Pv7s2HDButjcXFxbNmyhYYNG9qxQhEREXFUeaYl6KWXXqJdu3aULVuWS5cu8fnnn7N582bWrl2LxWJh5MiRTJ48meDgYIKDg5k8eTIFCxbUvDIiIiKSLXkmBJ09e5Y+ffpw5swZfHx8qFGjBmvXrqVVq1YAjB49mmvXrjF06FAuXLhA/fr1Wb9+vU37BkVERMR55OlxgnJCTEwMPj4+REdH65wgERERB5ET3995+pwgERERkZyiECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOKc+EoClTplC3bl2KFClCqVKl6Ny5M0ePHk2xTv/+/bFYLCluDzzwgJ0qFhEREUeWZ0LQli1bGDZsGDt37mTDhg3Ex8fTunVrrly5kmK9tm3bcubMGevt22+/tVPFIiIi4sjc7F1AsrVr16a4P3/+fEqVKsWePXt46KGHrMs9PT3x9/fP7fJEREQkn8kzLUG3io6OBsDX1zfF8s2bN1OqVCmqVKnCoEGDiIqKynA/sbGxxMTEpLiJiIiIWIwxxt5F3MoYQ6dOnbhw4QLbtm2zLl+6dCmFCxcmKCiIkydP8uqrrxIfH8+ePXvw9PRMc18TJkxg4sSJqZZHR0fj7e2dY8cgIiIithMTE4OPj49Nv7/zZAgaNmwY33zzDT/88AOBgYHprnfmzBmCgoL4/PPP6dq1a5rrxMbGEhsba70fExND2bJlFYJEREQcSE6EoDzXHTZixAhWrVrFpk2bMgxAAAEBAQQFBREWFpbuOp6ennh7e6e4iYiIyE0iIji/ciUDe/Xi7rvvpmfPnpw6dcreVeW4PHNitDGGESNGsGLFCjZv3kyFChVuu8358+f5448/CAgIyIUKRURE8qHQUKIGDaK+MYT/s+jIkSOsX7+ebdu2cc8999izuhyVZ1qChg0bxmeffcbixYspUqQIkZGRREZGcu3aNQAuX77MCy+8wI4dOwgPD2fz5s107NiREiVK0KVLFztXLyIi4oAiIjCDBvHEPwGoArDEYqH2vfdy4cIFOnXqxKVLl+xcZM7JMyFo9uzZREdH07RpUwICAqy3pUuXAuDq6srPP/9Mp06dqFKlCv369aNKlSrs2LGDIkWK2Ll6ERERBxQWxpfGsAEoAKwGehrD2v/8h3LlynH8+HHGjx9v5yJzTp48MTon5cSJVSIiIo4o8fffuTsoiKPAa8BEAFdXCA9nzc8/0759e1xdXdmzZw81a9a0a61OcWK0iIiI5I5vDhzgKFAUeAGSAtCcORAYSLt27ejWrRsJCQmEhISQkJAAERGwaVPSz3xAIUhERMRJvfvuuwAMevppimzaBOHhMGBAiseLFCnCjz/+yId9+xJVrhzXmjeHoCAIDbVT1baj7jAREREnFB4eToUKFbBYLJw4cYLy5cunud6sWbMYPnw4rkAh4DHgI7B2m3Gb4WxsRd1hIiIiYhOLFi0CoFmzZukGIICnn36a9vXrkwDEANuBaICEBDh2LOcLzUEKQSIiIk7GGMPChQsB6NOnT4brurq6smLxYuZYLEwHfgJ8kh6AypVzutQcpRAkIiLiZHbv3s1vv/1GgQIF6Nat223X96hYkcHz5jHK1ZXCkOIEakeWZ0aMFhERkdyxcuVKAB5++OHMj7U3YAC0aZPUBVa5ssMHIFAIEhERcTqrVq0CoFOnTlnbMDAwX4SfZOoOExERcSInTpzgl19+wdXVlfbt29u7HLtSCBIREXEiX3/9NQAPPfQQxYoVs3M19qUQJCIi4kS++uorAB555BE7V2J/CkEiIiJO4sKFC2zduhWAjh072rka+1MIEhERcRJr1qwhISGBe+65h0qVKtm7HLtTCBIREXESyVeFqSssiUKQiIiIE4iLi2PNmjWAQlAyhSAREREnsHXrVmJiYihVqhT16tWzdzl5gkKQiIiIE0juCuvYsSMuLvr6B4UgERGRfM8YY700PsujROdjCkEiIiL53MGDB/n9998pUKAALVq0sHc5eYZCkIiISD6X3BXWsmVLChYsaOdq8g6FIBERkXwuedb4zp0727WOvEYhSEREJB/7/ccf2bt3Ly4uLhol+hYKQSIiIvlVaChfNWgAQKPEREr+0y0mSRSCRERE8qOICBg8mK+MAaAzQEhI0nIBFIJERETyp7AwLiQmsvmfu50AEhLg2DH71ZTHKASJiIjkR8HBfGOxkABUByoBuLpC5cr2rSsPUQgSERHJjwIDWXn//cA/XWGurjBnDgQG2rOqPMXN3gWIiIiI7cXExPDNoUMAdJkzB9q3VwC6hUKQiIhIPrRixQquX79O1apVuW/QILBY7F1SnqPuMBERkXxo8eLFADz++ONYFIDSpBAkIiKSz0RGRvLdd98B0KtXLztXk3cpBImIiOQzS5cuJTExkfr161NZV4OlSyFIREQkHzHG8PHHHwNJXWGSPoUgERGRfGT79u0cPHiQAgUK8MQTT9i7nDxNIUhERCQf+eCDDwDo3bs3xYoVs3M1eZtCkIiISD5x+vRpli1bBsDQoUPtXE3epxAkIiKST0ybNo0bN27QuHFj7v9ntGhJn0KQiIhIPhAZGcmcOXMAeO211+xcjWNQCBIREckHJk6cyPXr13nggQdo0aKFvctxCApBIiIiDm7Xrl3WVqA333xTI0RnkkKQiIiIA4uNjWXw4MEYY3jiiSdo0qSJvUtyGHkmBE2ZMoW6detSpEgRSpUqRefOnTl69GiKdYwxTJgwgdKlS1OgQAGaNm3KoX9myBUREXE2xhhGjBjB/v37KV68ONOmTbN3SQ4lz4SgLVu2MGzYMHbu3MmGDRuIj4+ndevWXLlyxbrO1KlTefvtt5k5cya7du3C39+fVq1acenSJTtWLiIikkkREbBpU9LPO2SMYdy4ccybNw+LxcLChQvx9/e3QZHOw2KMMfYuIi1//fUXpUqVYsuWLTz00EMYYyhdujQjR45kzJgxQFIToJ+fH2+99RYhISGZ2m9MTAw+Pj5ER0fj7e2dk4cgIiLyr9BQGDwYEhPBxQXmzoUBA9JeNyICwsIgOBgCA1M9fPr0aUY9/TRfrF4NwJw5cxg8eHBOVm93OfH97WaTveSA6OhoAHx9fQE4efIkkZGRtG7d2rqOp6cnTZo0Yfv27ZkOQSIiIrkuIuLfAARJP0NCoE0bznl5sXXrVsLCwjh9+jTxP/+M2+bNFAaKWCx49+pFkTZtKFSoEFFRUWzZsoVVK1ZwLS4ON+A9i4XBrq72PDqHlSdDkDGGUaNG8eCDD1K9enUgafwDAD8/vxTr+vn5cerUqXT3FRsbS2xsrPV+TExMDlQsIiKSgbCwfwMQYIA1CQm826ULG/bsId1OGWNg8eKk2y0aAe8AdY2xBqq0Wo0kfXkyBA0fPpyDBw/yww8/pHrs1sv+jDEZXgo4ZcoUJk6caPMaRUREMi04OKkLLDGRMGAwsBlg924Aqlevzn333UdgQgKeixcTB1wBYoBLQEydOlz28KBEiRJUL1KERxYtoh5g/fZLSIBjxxSCsijPhaARI0awatUqtm7dSuBNb2byyV6RkZEEBARYl0dFRaVqHbrZuHHjGDVqlPV+TEwMZcuWzYHKRURE0hEYCHPnsmTQIAYZwxXA082N4c8+y9ChQ6lYsWLSehER8PnnKVqNcHWFFSv+DTgREbBkSep1KlfOtcPJL/LM1WHGGIYPH86XX37J999/T4UKFVI8XqFCBfz9/dmwYYN1WVxcHFu2bKFhw4bp7tfT0xNvb+8UNxERkdxkjGHq+fP0/icANW3QgF/Dwvjvf//7bwACa1gi+RwfV1eYMydlC09m1pFMyTMtQcOGDWPx4sV89dVXFClSxHoOkI+PDwUKFMBisTBy5EgmT55McHAwwcHBTJ48mYIFC9K7d287Vy8iIpK+l19+mSlTpgDw/PPP89Zbb+Ga3snMAwYknd9z7FhS605a4SYz68ht5ZlL5NM7r2f+/Pn0798fSErSEydOZM6cOVy4cIH69esza9Ys68nTmaFL5EVEJDdNnz6dF154wfrvm0/RkMzLie/vPBOCcotCkIiI5JYlS5ZYeyvefPNN6zh3knU58f2dZ84JEhERyU/279/PgH8GQxw1ahSjR4+2c0VyK4UgERERG/v777/p0qUL165do23btkydOlUzu+dBCkEiIiI2ZIwhJCSE8PBwKlasyOLFi9M/CVrsSiFIRETEhhYuXMjy5ctxc3Pjiy++oFixYvYuSdKhECQiImIjJ06cYPjw4QC8/vrr1K5d284VSUYUgkRERGzAGMOAAQO4fPkyjRs31onQDkAhSERExAYWvP02mzdvpoCXF5988onOA3IACkEiIiJ36K8ZM6wDIk6MjaXC99/buSLJDIUgERGROxERwajnnuNvoCYw0hgICUma6FTyNIUgERGRO7BhyRI+AyzAXMAdICEhaV4vydMUgkRERLLp2rVrDJk1C4DhQL3kB1xdkyY2lTxNIUhERCSb/vOf/3D81CnKFCvGGy7/fKW6usKcOZrZ3QG42bsAERERR/Tzzz8zbdo0AGZ+/DHedeokdYFVrqwA5CAUgkRERLIoMTGRkJAQ4uPj6dy5M507d056QOHHoag7TEREJIvmzp3Ljh07KFy4MO+99569y5FsUggSERHJgjNnzjB27FgAJk2aRNmyZe1ckWSXQpCIiEgWPPPMM0RHR1O3bl2GDRtm73LkDigEiYiIZNKqVatYvnw5rq6uzJ07V1NjODiFIBERkUyIiYlh6NChADz//PPUqlXLvgXJHVMIEhERyYSXXnqJ06dPU7FiRcaPH2/vcsQGFIJERERuY8eOHXzwwQcAzJkzh4IFC9q5IrEFhSAREZEMxMXFMWjQIIwx9OvXj5YtW9q7JLERhSAREZEM/Oc//+HQoUOULFmS6dOn27scsSGFIBERkXTs3LmTyZMnAzBz5kyKFy9u54rElhSCRERE0nDlyhX69OlDYmIijz/+ON27d7d3SWJjCkEiIiJpePHFFzl27BiBgYHMnDnT3uVIDlAIEhERucWKFSuYPXs2AAsWLKBo0aL2LUhyhEKQiIjITY4fP07//v2BpEERW1StCps2QUSEfQsTm1MIEhGR/CciIlvB5fr16zz22GPExMTQsGFDpgQHQ1AQNG+e9DM0NIcKFntQCBIRkfwlNDRbwcUYw+DBg9m3bx8lSpRg6YwZuA8dComJSSskJkJIiFqE8hGFIBERyT8iImDw4MwHl5tajKZMmcKnn36Kq6srixcvJvDy5X/3kywhAY4dy9ljkFzjZu8CREREbCYsLP3gEhiYcnloqDUwLbNYeNkYAN5//31atWqVFJBcXFLuz9UVKlfO4YOQ3KKWIBERyT+Cg5OCy83SCi43tRitBR7/JwA9O2AAQ4YMSVonMBDmzk3aPnk/c+akDlPisBSCREQk/8hscPmnxWgz0AW4ATwGTO/VK+V6AwZAeHhSl1l4eNJ9yTfUHSYiIvnLgAHQpk1SF1jlymm33AQH853FQmdjuA48DHzm4oJr1aqp1w0MVOtPPqUQJCIi+c9tgsvynTt53NWVuPh4WgHLXFzwmDtXYcfJqDtMRESchjGGd955h+7duxMXH8+jHTrw9bp1eJ06pa4uJ6SWIBERcQrXr18nJCSEhQsXAjB48GA++OADXJPPHxKnoxAkIiL53pEjR+jduzf79+/H1dWV6dOn88wzz2CxWOxdmtiRQpCIiORbxhg+/PBDRo0axfXr1ylevDhLly6lRYsW9i5N8gCFIBERyZd+++03hg4dysaNGwFo3bo1CxYsICAgwM6VSV6hE6NFRCRfuX79OhMnTuTee+9l48aNeHl58c4777BmzRoFIEkhT4WgrVu30rFjR0qXLo3FYmHlypUpHu/fvz8WiyXF7YEHHrBPsSIikud8//331KxZkwkTJhAXF0ebNm345ZdfGDlyJC63jiQtTi9P/UZcuXKFmjVrMnPmzHTXadu2LWfOnLHevv3221ysUERE8qKIiAh69uxJixYt+O233/D392fp0qWsWbOGSpUq2bs8yaPy1DlB7dq1o127dhmu4+npib+/fy5VJCIieVlcXBwzZszg9ddf58qVK7i4uDBkyBAmTZqEj4+PvcuTPC5PtQRlxubNmylVqhRVqlRh0KBBREVF2bskERGxgw0bNlCjRg3GjBnDlStXaNiwIbt372bmzJkKQJIpeaol6HbatWvHY489RlBQECdPnuTVV1+lefPm7NmzB09PzzS3iY2NJTY21no/JiYmt8oVEZEcEBUVxTPPPMPSpUsBKFWqFFOnTqVPnz4670eyxKFCUI8ePaz/rl69OnXq1CEoKIhvvvmGrl27prnNlClTmDhxYm6VKCIiOcQYw+eff86IESM4f/48Li4uDB8+nIkTJ1K0aFF7lycOyKEjc0BAAEFBQYSFhaW7zrhx44iOjrbe/vjjj1ysUEREbOHs2bN06dKF3r17c/78eWrUqMGuXbt49913FYAk2xyqJehW58+f548//shw3AdPT890u8pERCTv++6773jiiSc4e/Ys7u7uvPLKK4wdOxYPDw97lyYOLk+FoMuXL3Ps2DHr/ZMnT7J//358fX3x9fVlwoQJdOvWjYCAAMLDw3nppZcoUaIEXbp0sWPVIiKSE+Lj45kwYQKTJ0/GGEP16tVZvHgx9957r71Lk3wiT4Wg3bt306xZM+v9UaNGAdCvXz9mz57Nzz//zMKFC7l48SIBAQE0a9aMpUuXUqRIEXuVLCIiOeD8+fM89thjbNq0CYCQkBDeeecdChQoYOfKJD+xGGOMvYvITTExMfj4+BAdHY23t7e9yxERkVscPnyYjh07cuLECYoUKcK8efNSXBhDRASEhUFwMAQG2q9QyVU58f3t0CdGi4hI/rJmzRoaNGjAiRMnqFChAjt27EgZgEJDISgImjdP+hkaar9ixeEpBImISJ4wf/58Hn74YWJiYnjooYf46aefuOeee/5dISICBg+GxMSk+4mJEBKStFwkGxSCRETE7qZNm8ZTTz1FYmIi/fv3Z8OGDZQoUSLlSmFh/wagZAkJcNMFNSJZoRAkIiJ2Y4xhzJgxjB49GoAXX3yRjz/+OO3L34OD4dYRoV1doXLlXKhU8iOFIBERsQtjDM8++yxTp04FYOrUqUydOhWLxZL2BoGBMHduUvCBpJ9z5ujkaMm2PHWJvIiIOIfkAPT+++9jsViYO3cuAwcOvP2GAwZAmzZJXWCVKysAyR1RCBIRkVxljGHkyJG8//77AHz00Uc89dRTmb/0PTBQ4UdsQt1hIiKSa4wxjBo1ivfeew+4KQDp0nexAw2WKCIiOe+fVp6Jq1cz4e23AZg3b15SF1hERFLwufnKL1dXCA9Xi49Y5cT3t7rDREQkZ4WGwuDBzExMZMI/i2bOnPnvOUAZXfquECQ5SN1hIiKSc/4Z4HBxYiIj/lk00WJhWKdO/66jS9/FThSCREQk54SFsSYxkX7/3B0OvGpMygEOdem72Im6w0REJMdsj46mGxAP9ALeBSxptfLo0nexA4UgERHJET///DMdnnySa0A7YAHgklErjy59l1ymECQiItmXztg+J0+epE2bNly8eJGGDRuyfMECPE6fViuP5Ck6J0hERLInnbF9zp49S6tWrThz5gzVq1dn9erVFAwOhqZNFYAkT7mjEBQVFUVkZKStahEREUfxz1Vf1kvbExMhJITow4dp06YNx48fp3z58qxbt45ixYrZt1aRdGQrBB08eJB77rmHgIAAypQpQ5kyZXjllVe4cuWKresTEZG8KI2xfa4lJNCxVy8OHDhAqVKl2LBhA6VLl7ZTgSK3l60QNGDAAPz8/Pjhhx/Yt28fb7zxBmvWrKFOnTpcuHDB1jWKiEhec8vYPvFAD2DbwYN4e3uzbt06KmucH8njsjVtRqFChdizZw/VqlWzLjPG8Nhjj+Hl5cVnn31m0yJtSdNmiIhk0u0mNA0NhZAQEhMSeMpi4RNj8PLyYt26dTz00EO5X6/kaznx/Z2tlqC0WnwsFguTJ0/mq6++sklhIiJiR5mZ0HTAAMzJk7z42GN8Ygyurq4sXbpUAUgcRqZDUIcOHXjppZf44osvePrpp3nuuec4e/ZsinWio6N1ApyIiKNL56RnIiJSrfrWokW8vWwZAB9//DGPPPJIblYqckcyPU7Qvffey969e5k/f741/FSsWJHu3btTq1YtEhISmD9/Pu+8806OFSsiIrkgkxOazps3j3HjxgEwffp0+vbtm5tVityxbJ0TdPbsWfbt28f+/futt2PHjuHq6krVqlU5ePBgTtRqEzonSETkNiIikrrAbg5Crq4QHm4NQcuWLaNnz54kJiYybtw4Jk+ebJ9axWnkxPd3tkaM9vPzo23btrRt29a67Nq1axw4cIADBw7YpDAREbGT5AlNQ0KSWoBumepixYoV9OrVi8TERAYNGsSkSZPsXLBI9mSrJciRqSVIRCSTIiJSTWi6evVqunbtyo0bN3jiiSdYsGABrsmzv4vkoDzTEiQiIk7glglN161bR7du3bhx4wY9evRg/vz5CkDi0DR3mIiI3NbGjRvp3LkzcXFxdO3alU8//RQ3N/0/WhybQpCIiGRo/fr1dOzYkevXr9OxY0eWLFmCu7u7vcsSuWMKQSIikq6VK1fSsWNHrl27Rvv27Vm2bBkeHh72LkvEJhSCREQkTYsXL+bRRx8lLi6Obt26sWLFCjw9Pe1dlojNKASJiEgq8+bN44knniAhIYG+ffvy+eefqwVI8h2FIBERsTLGMGXKFAYPHowxhiFDhjB//nydBC35kn6rRUQEgPj4eEaMGMGHH34IwOjRo3nzzTexWCx2rkwkZygEiYgIV65coVevXnz99ddYLBbeffddRowYYe+yRHKUQpCIiJOLioqiY8eO/PTTT3h5ebFo0SK6du1q77JEcpxCkIiIE9u9ezddunQhIiICX19fVq1aRaNGjexdlkiu0InRIiJOasGCBTz44INERERQtWpVtm/frgAkTkUhSETEydy4cYMRI0bw5JNPEhsbS8eOHfnxxx+pWrWqvUsTyVUKQSIiTuTs2bO0aNGCmTNnAjB+/HhWrlyJj4+PnSsTyX06J0hExEns2rWLrl27EhERQZEiRfjss8945JFH7F2WiN2oJUhExAnMnz+fxo0bW8//+emnnxSAxOnlqRC0detWOnbsSOnSpbFYLKxcuTLF48YYJkyYQOnSpSlQoABNmzbl0KFD9ilWRMQB3Lhxg+HDh/PUU08RGxvLI488wo8//ki1atXsXZqI3eWpEHTlyhVq1qxp7au+1dSpU3n77beZOXMmu3btwt/fn1atWnHp0qVcrlREJI+KiIBNmyAiwnr+z6xZswCYMGECK1as0Pk/Iv/IU+cEtWvXjnbt2qX5mDGGGTNm8PLLL1sH8frkk0/w8/Nj8eLFhISE5GapIiJ5T2goDB4MiYn8ZLHQtWhRTl+4gLe3N59++qm6v0RukadagjJy8uRJIiMjad26tXWZp6cnTZo0Yfv27eluFxsbS0xMTIqbiEi+ExFhDUAfA42N4fSFC1SrXFnn/4ikw2FCUGRkJAB+fn4plvv5+VkfS8uUKVPw8fGx3sqWLZujdYqI2EVYGDcSExkGDADigEeAH2fM0Pg/IulwmBCU7NbZjI0xGc5wPG7cOKKjo623P/74I6dLFBHJdX/5+tIS+OCf+xOBFS4ueNesaceqRPK2PHVOUEb8/f2BpBahgIAA6/KoqKhUrUM38/T0xNPTM8frExGxl/3799OpUyd+B4oAnwGPuLrCnDkQGGjn6kTyLodpCapQoQL+/v5s2LDBuiwuLo4tW7bQsGFDO1YmImI/X3zxBQ0bNuT333+ncuXK/Pj99zyyaROEh8OAAfYuTyRPy1MtQZcvX+bYsWPW+ydPnmT//v34+vpSrlw5Ro4cyeTJkwkODiY4OJjJkydTsGBBevfubceqRURyX0JCAq+++ipTpkwBoE2bNixZsoRixYrZuTIRx5GnQtDu3btp1qyZ9f6oUaMA6NevHwsWLGD06NFcu3aNoUOHcuHCBerXr8/69espUqSIvUoWEcl1V69e5fHHH7cOKPviiy8yZcoUXF1dM7eDiAgIC4PgYHWXiVOzGGOMvYvITTExMfj4+BAdHY23t7e9yxERyZKzZ8/SsWNHdu3ahaenJ6GhoTz++OOZ38FNYwnh4gJz56rbTBxCTnx/O8w5QSIizu7IkSM88MAD7Nq1i+LFi7Nx48asBaCbxhICkn6GhCQtF3FCCkEiIg5g0xdf0LBePcLDw6lcuTI7duygUaNGWdtJWNi/AShZQgLcdC6miDNRCBIRyeMWDx5Mmx49uHj5Mo2AHcOGERwcnPUdBQcndYHdzNUVKle2SZ0ijkYhSEQkD5v71ls8MW8eN4AewHdAiRdeyF4XVmBg0jlAySdQaywhcXJ56uowERH519tvv83zY8cCMBx4l3/+55rchZWd8DJgALRpk7R95coKQOLUFIJERPIYYwz/+c9/GD9+PABjgcmAdYKgO+3CCgxU+BFB3WEiInmKMYYxY8ZYA9CkSZOY8tFHWNSFJWJzagkSEckpWRyUMDExkeHDhzN79mwAZsyYwbPPPpv0oLqwRGxOIUhEJCdkZVDCiAjif/2VAXPmsHD5ciwWC3PnzmXgwIH/rqMuLBGb04jRIiK2FhEBQUEpx+RxdU2a1PTWIBMaStygQfQ2hv8Bri4ufPrZZ/Tq1Ss3KxbJ8zRitIiII8jsoIQREVwbNIgu/wQgD+B/QK/GjXOpUBHnphAkImJrmRyU8NKBA3Qwhm+BAsBqoFNiokZwFsklCkEiIraWiUEJL1y4QOvXXmMTUARYB7RKXlcjOIvkCp0YLSKSEzIYlPCvv/6idevW7N+/H99ChVh37Rp1EhN1+btILlMIEhHJKWlc0XX69GlatmzJr7/+ip+fHxs2bODeYsV0+buIHSgEiYj9ZHEcHUcXHh5OixYtOHHiBGXLluW7776jSpUqSQ86wfGL5DU6J0hE7CM0NOky8ubNk36Ghtq7ohx19OhRGjduzIkTJ6hUqRLbtm37NwCJiF0oBIlI7ouI+HcgQUj6GRKSvZnRHcDevXtp3LgxERER3H333Wzbto2goCB7lyXi9BSCRCT3ZXYcnXxg27ZtNGvWjL/++ovatWuzefNmAgIC7F2WiKAQJCL2kMlxdBzdt99+S+vWrYmJieGhhx7i+++/p2TJkvYuS0T+oRAkIrkvE+PoOLqlS5fSqVMnrl+/TocOHVi7dq2m6hHJY3R1mIjYRwbj6DgyYwwzZszg+eefxxhD7969WbBgAe7u7vYuTURuoRAkIvaTz2ZGj4+PZ+TIkcyaNQuAoUOH8v777+Nya9efiOQJCkEiIjZw+fJlevbsyTfffIPFYmHatGmMGjUKi8Vi79JEJB0KQSIid+jEiRN07dqVAwcO4OXlxWeffUa3bt3sXZaI3IZCkIjIHfjmm2944oknuHjxIiVLlmTVqlU88MAD9i5LRDJBHdUiItkQHx7Oa3378vDDD3Px4kXq16/P3r17FYBEHIhagkREsihs8mT6vvwyO/+5P7RZM95eswZPT0+71iUiWaOWIBHJHyIiYNOmHJ16IyEhgZlvvEGtfwKQN7AImLV1K55//ZVjzysiOUMhSEQcXy5Mxrp9+3bq1q3LiFdf5SrQAvgZ6A35dsoPkfxOIUhEHFsOT8Z66NAhevbsSaNGjdi3bx9FfXyYZbGwHiiXvFI+nPJDxBkoBImIY8uByViNMezYsYPu3btz7733snTpUiwWCwMHDuS3sDCGzpuHSz6e8kPEWejEaBHJE65du8a5c+c4d+4c165dwxiDMQY3Nzd8fHwoWrQoxYoVw8vLK+WGyZOx3hyEstkyc+zYMVauXMknn3zCL7/8Yl3erVs3XnnlFWrVqpW0IJ9O+SHibBSCRCTXhYeHs2XLFn788UcOHz7MkSNHiIqKytS2hQsXJjAwMOXt8ccps2gR/omJ+Lm4UGrmTDzTCiYRERAWhqlcmb8LFuTkyZPs37+fnTt38n//93/8+uuv1lULFChA9+7deeGFF6hevXrqfeWzKT9EnJHFGGPsXURuiomJwcfHh+joaM3oLJJLEhMT2blzJ8uWLWPFihWcOnUqzfXc3d0pUaIEBQsWxGKxYLFYiI+PJzo6mosXL5J4a7dXBooWLYqvry9eXl54enrieuECV8PDuQKcBy6nsY2bmxtNmjShW7du9OrVi6JFi2bncEUkB+TE97dagkQkx0RFRfHRRx8xZ84cfv/9d+tyNzc36tSpQ+PGjbn33nu56667qFy5Mj4+PunOtZWYmMilS5eIiorijz/+ICIiItXt7NmzREVFER8fz8WLF7l48WKG9QWUKkW1e+7hgQce4IEHHqBx48YUK1bMli+BiORhCkEiYnPHjh1j0qRJLF68mLi4OACKFClCp06deOyxx2jRogWFChXK0j5dXFzw8fHBx8eH4ODgdNdLTEzkwoULnD17losXLxIbG0vsTz8RP3YsBYFCQDGSruzyWroUmjbN7mGKiINTCBIRmzlx4gRvvPEGCxcuJCEhAYD69eszbNgwHnvssdQnNWfGP+fxEBycqXNwXFxcKF68OMWLF/93YXAwvPSSTU6eFpH8Q5fIi8gdu3TpEqNHj6ZatWrMnz+fhIQE2rdvz86dO9m5cyd9+vTJXgCy1SCIgYEwd25S8AFd1i4igE6Mtnc5Ig7NGMPixYt58cUXOXPmDACtWrXiP//5D/Xr17+znUdEJAWfW1tvwsOzH14iInRZu4iD0onRIpJnHD9+nAEDBrBlyxYAKleuzIwZM+jQoYNtniCjQRCzG2Ayc1l7FrvfRMRxqTtMRLLEGMOHH35IzZo12bJlCwULFmTy5Mn88ssvtgtA8O8giDfL6fN4cmEOMhHJOxwqBE2YMME6dkjyzd/f395liTiNiIgI2rZty5AhQ7hy5QpNmzbl0KFDjBs3Dk9PT9s+WW6fx5PDc5CJSN7jcN1h99xzD9999531vmvyB6SIpO8Ou3iMMXz22WeMGDGC6OhovDw8ePOllxjx6qu43NpaY4Pns8rN6SlyovtNRPI0hwtBbm5uav0RyYrQ0H9bOFxcklpXBgzI9OZRUVGEhISwcuVKAOoDn8TFUfX115PCwa37usPnSyW3pqew4RxkIuIYHKo7DCAsLIzSpUtToUIFevbsyYkTJzJcPzY2lpiYmBQ3Eadxh108X375Jffccw8rV67E3d2dSRYLPwBV09uXI3cp6TJ6EafjUCGofv36LFy4kHXr1jFv3jwiIyNp2LAh58+fT3ebKVOmWEeZ9fHxoWzZsrlYsYidZdTFk4ELFy7Qp08funXrxrlz56hRowa7PviAl4xJ2Xx8676y+Xx5xoABSZfgb9qU9PNOWrBEJM9z6HGCrly5QqVKlRg9ejSjRo1Kc53Y2FhiY2Ot92NiYihbtqzGCRLnkI2xdtauXcuAAQP4888/cXFxYezYsbz22mt4/vXX7feVE2P7iIiQM+MEOVRL0K0KFSrEvffeS1hYWLrreHp64u3tneIm4jSy0MVz8eJFBgwYQLt27fjzzz+pUqUK27dvZ9KkSUlXfmVmX+pSEhEH4tAtQbGxsVSqVInBgwfz2muvZWobjRgtTuk2IyWvWbOGQYMGcfr0aSwWC88++yyTJk2iYMGCWd5XptcREckCpx8x+oUXXqBjx46UK1eOqKgo3njjDWJiYujXr5+9SxPJ29K5wurvv//mhRdeYP78+UDSqM/z58/nwQcfzPK+sryOiIidOVR3WEREBL169aJq1ap07doVDw8Pdu7cSVBQkL1LE0kSEZF0Um0evxoqMTGRjz76iCpVqjB//nwsFgsjR47kwIEDGQcgEZF8xKFagj7//HN7lyCSPluPj5NDdu3axfDhw/npp58AqF69OrNnz1b4ERGn41AtQSJ5lgOMj3PkyBEee+wx6tWrx08//USRIkV455132Lt3rwKQiDglhSARW8jD4+McOnSIfv36Ub16dZYvX47FYqFPnz4cPXqUkSNH4u7unrSig3TliYjYikKQiC1kZcbzXAgb8fHxrFmzhrZt21K9enUWLlxIYmIinTt35uDBgyxcuJCAgIB/N9Ds6SLihBSCRGwhs+Pj5GDYSEhI4Mcff2TUqFGULVuW9u3bs27dOlxcXOjatSs//vgjK1asoHr16ik3dICuPBGRnODQ4wRlh8YJkhyV0fg4Nh5NOS4ujp+/+47d333H1pMnWbdtW4opZIoXL06fPn0YMWIEFStWTH9HmzYlhbK0ljdtmuW6RERygtOPEySS5wUGEleqFH/++SeRO3dy6dIlLl26xOXLl4k7eDDVeUMuCQm4zJyJy9134+LikupmjOHSpUtER0dz8eJFoqKiOHnyZNLt+HFuJCSk2J+3tzdt27bl8ccfp23btnh4eNy+Zs2eLiJOSiFIJJtu3LjBvn372LdvHwcPHuTgwYMcO3aMs2fPkqUG1rfeynYNxYA6QH2gtYsLD+zfj3uFClnbSXJXXkhI0sncmupCRJyEQpBIJhljOHToEKtXr2bz5s388MMPXLlyJc11PTw8CAgIwNvbmyJFilCkSJGk+bd+/x3270/aH2Bq1CAxMJDExMSUt9OnSTx6FAMUBorWq4fP/fdTvHhxKlSoQIWLF6n4wgsEAZbkJ01MhFOnIKshCJLGM2rTRlNdiIhT0TlBIrexb98+lixZwooVKzh2yyXvvr6+1K1bl5o1a1KjRg2qVatG2bJlKVmyJBaLJe0d3m5ercycO6TZ2kXEyeicIJFccu7cORYtWsT8+fM5cOCAdbmnpyetWrWidevWNGnShOrVq+Ny66Xxt3O7ebUyGnMoeTt1YYmI3DGFIJGb7N27lxkzZvD5559z48YNIKlrq1OnTjz22GO0bduWIkWK5GwRmT1RWV1YIiJ3RCEop0VEJP3PPjhYX1K5LZOvfUJCAl9//TXvvPMOW7dutS6vU6cOTz75JD179sTX1zc3Kk6SlVYezdYuIpJtCkE5yUEm1MxTbBUaM/HaX7p0ifnz5/Pee+9x/PhxANzc3OjevTvPPfccderUuZMjuTNq5RERyXE6MTqn6MTVrLNVaLzNa3/q1Cnef/995s2bR0xMDADFihQhpG9fho8bR5kyZdLep1r0RETsJie+vzVtRk7JwxNq5km2nLohndd+x1df0b17dypWrMj06dOJiYmhqr8/sy0W/rh0iSmzZ1Nm7drU+9O8WiIi+ZJCUE7JyoSaYtvQeNNrHw8sBR4AGg4fzrJly0hMTKRFixasXrCAw2fP8rQxFIK0g5fm1RIRybcUgnJKZifUlCS2DI2BgYRPnsxrFgvlgZ7AjyRd5fXkk09y4MABvvvuOzqUK4fLrb3BtwYvteiJiORbOjE6J+nk1syzwbg3V69eZfXq1YSGhrJhwwbr1BUlixdnyLBhDB06FD8/v383yMyl6JpXS0Qk31IIymm6hDnzshEaL1++zJo1a1i2bBnffPMNV69etT7WsmVLBg4cSOfOnZOmrLhVZoKXBiUUEcm3dHWYOJTY2Fj27NnDd19+yXfr17PjyBHi4+Otj1eoUIFevXoxYMAAKlasmLmd3m4ai8yuIyIiOUbTZthQVFQUvXr14sSJE0yZMoXOnTvbu6T8LwuXmRtjiIqK4rfffuPo0aPs2bOHXbt2cfDgQetIzskqlSzJo089xWOPPcb999+f/pxd6clMa51a9ERE8h2nbQnq3LkzK1euBMDd3Z39+/dz991327e4/CydMYAuXrxIWFgYv/32m/Vn8r+Tx/C5VQmgGdDyn1tFjb8kIpLv5URLkNOGoGQBAQGcOXOGHj168Pnnn9uxsnwsIoKL5cqxzxj2AIeA34Cw4sX56/z5dDezWCwEBQURHBxMrVq1qFu3LnVu3KD844+Tqq1n0yZo2jTHDkFEROxL3WE21qBBA2bPnk2tWrVYvnw54eHhlC9f3t5l5Y4cHgE5MjKSjRs3snHjRrauW8fxtLL2PwEoICCA4OBgqlatSnBwMFWqVCE4OJiKFSvi5eWVum5drSUiIjbg1CGobdu21KxZkxYtWrBx40bmz5/PxIkTc7WGEydOsHnzZo4ePUpiYiL+/v7cd999PPjgg3h4eKRcORfn1cqOkydP8sUXX/DFF1+wd+/eVI9XAO4HagFVLBaCv/2Wyo0aZW1Wdl2tJSIitmKcTHR0tAEMYL777jtjjDELFy40gKlWrZpJTEzMlTp2795tWrRoYa3l1lvRokXNiBEjzIkTJ5I2+OgjY1xcjIGknx99lL0n/uOPf/eTfHN1TVqeDZcvXzahoaGmfv36Keq3WCzm/vvvNy+++KJZs2aNOT9jRtLzJD9fduu/+Tg2bcp23SIi4liSv7+jo6Nttk+nPifo3LlzFC9enJiYGEqVKkVsbCwHDhygRo0aOfb8CQkJvPrqq7z11lskJiZisVho3LgxNWvWxMPDg1OnTrFt2zbOnj0LgIuLCwN79eKNxYspefNbld2TgTdtSpoDK63lWTin5uTJk7zzzjssXLiQ6Ohoa63NmjWje/fudO7cmVKlSqXcSJeZi4hINuXIEDc2i1MOIjlJ+vn5pVjeuXNnA5iXXnopx5772rVrplOnTtbWkt69e5uTJ0+mWi8+Pt6sX7/etG7d2rquD5gZYG7c3IKzaVPWi7jDlqBDhw6ZJ554wri6ulprq1Spkpk6daqJjIzMej0iIiKZkBMtQU47d1i1atVS3O/evTsAy5Yts063YEs3btygR48efPXVV3h6erJo0SIWLVqU5onYrq6utGrVinXr1rF161buq16daGAkUA/4KWmlbM+rlZ05zXbv3k3Xrl255557+Oyzz0hISKBNmzasW7eO3377jRdffDHllBQiIiJ5nNOGoHLlyqW436FDBzw8PAgLC+Pw4cM2f74RI0awatUqPD09+fbbb+ndu3emtmvcuDG79u/nwz59KArsI2lG9GEPPcTFwoWzV8yAAUldaZs2Jf3M4KToH374gTZt2lC3bl1WrFiBxWKhW7du7N69m7Vr19K6dWtcbp34VERExAE47bdX4C0tH97e3rRs2RKAFStW2PS55s+fz5w5c7BYLCxbtozmaZ2TkwFXV1dCFi7k6L599GnVCgN8sGkTd911F59//nn2Wq4CA5POAUqjBcgYw8aNG2natCmNGzdm/fr1uLq60rdvXw4dOsTy5cupXbt21p9TREQkD1EIukmXLl0AWPHFF0mtJBERd/w8Bw4cYMiQIQBMnDiRjh07ZntfpWrVYuH69WzcuJGqVasSGRlJr169aNOmDceOHbvjWhMSEli5ciWNGjWiZcuWbNmyBXcgBAhLTOSThx7irrvuuuPnERERyQuc9uqwr776ikceeSTFY1FRUQT4+5NoDOFA0B2OoZOQkED9+vXZs2cPHTp0YNWqVTbrOoqNjWXq1KlMmjSJ2NhYPDw86NevH88//zxVCxXK0nhCf/75J5999hkffPABp06dAsDL05NBsbGMBqx70PQUIiJiJ5o2wwaSX8S9e/dy3333pXwwIoKHypZlGzADeBbu6It/xowZPPfcc/j4+PDrr7/i7+9/x/Xf6tixYwwbNoz169cDSVNNNDWG7kAzi4Uqc+diGTgwxTbx8fHs37+frVu3snr1ajZv3mztUvP19WXQoEGMrFsX/0cfTf2EaV1Kn8OjT4uIiGjaDBsqndbCsDC6AtuAFfwTghISksa2yeKX+6lTp3jllVcAmDZtWo4EIIDKlSuzdu1a/u///o9pr7/Oqg0b2ARsAjAG70GDCJw2jWIlSxIfH8/58+c5depUqpnYGzRowMCBA+nVqxcFChTI/PQUOTT6tIiISE5z2pagaIsF73nzUn5hR0QQXq4cFYzBBYgESmajJcgYQ8eOHfnmm29o3Lgxmzdvzp0rqDZtIrx5c5YBq4DdwPV0Vi1atCiNGzemSZMmdOvWLe0500JDU09PccvrRVBQ6qCkLjMREbExdYfZgPVFBLzT+sIODeX+gQPZB4RaLDx1a1DKhC+++IIePXrg4eHB/v37c+9k4ltCyQ0gzMWFM4sWEe3hgbu7Oz4+PlSoUIEyZcpkLphlNMqzjUafFhERuR11h9laWl1dAwbQ5cgR9k2fzooWLXgqiwHowoULPPPMMwC89NJLuXs11S2Ti7q7unL3nDnc3bPnne0zvVad4GDN6C4iIg7LaS+RB9L9wu7Svz8AG7Zt4+LFi1na5ZgxYzh79izVqlVj7Nixmd8wIsI2l+VnYSDEO5bN0adFRETyAucNQS4u6X5h33PPPdxzzz3ExsayePHiTO9y69atzJs3D4C5c+fi6emZuQ1DQ5O6sZo3T/oZGprp50xTBgMh2lxuhi4REREbct4Q9Msv6X5hWywWBg0aBMC8efMyNSLz9evXGTx4MACDBw+mcePGmasjIuLfq6sg6WdIiE0Gasw1uRm6REREbMR5Q1CZMhk+3KdPHzw9Pdm/fz979uy57e7Gjx/P0aNH8ff3580338x8HWFhKc+pgX/PVRIREZEc45Ah6IMPPqBChQp4eXlRu3Zttm3bZvPn8PX15dF/BgucPn16huv++OOP/Pe//wVgzpw5FCtWLPNPlHxy8c10crGIiEiOc7gQtHTpUkaOHMnLL7/Mvn37aNy4Me3ateP333+3+XO9+OKL1udMb2b56Oho+vTpQ2JiIk888USqqThuSycXi4iI2IXDjRNUv3597r//fmbPnm1ddtddd9G5c2emTJly2+2zOs5A165dWbFiBc2aNWPjxo1YLBbrY4mJiXTp0oVVq1ZRtmxZ9u/fj6+vb/YOLKPxeERERJxcTowT5FAtQXFxcezZs4fWrVunWN66dWu2b9+e5jaxsbHExMSkuGXF9OnTKVCgAJs2bWLSpEnW5Tdu3GDQoEGsWrUKT09Pvvzyy+wHINDJxSIiIrnMoULQuXPnSEhIwM/PL8VyPz8/IiMj09xmypQp+Pj4WG9ly5bN0nNWqFCBd955B4BXX32VPn368P7779OwYUM+/vhjXFxc+OSTT6hTp072DkpERETswqFCULKbu6Qgaa6uW5clGzduHNHR0dbbH3/8keXnCwkJYeLEiQB89tlnPPPMM+zevRtvb2/+97//0aNHj6wfhIiIiNiVQ02bUaJECVxdXVO1+kRFRaVqHUrm6emZ+UELM/Daa6/RvHlzFixYwNmzZ7nvvvt4+umnKV06zfnoRUREJI9zqBDk4eFB7dq12bBhA126dLEu37BhA506dcrx53/wwQd58MEHc/x5REREJOc5VAgCGDVqFH369KFOnTo0aNCAuXPn8vvvv/P000/buzQRERFxIA4Xgnr06MH58+d5/fXXOXPmDNWrV+fbb78lKCjI3qWJiIiIA3G4cYLuVE6MMyAiIiI5y+nHCRIRERGxFYWgOxERAZs2OdaM7yIiIgIoBGVfaCgEBUHz5kk/Q0PtXZGIiIhkgUJQdkREwODBkJiYdD8xEUJC1CIkIiLiQBSCsiMs7N8AlCwhIWkCVBEREXEICkHZERwMLre8dK6uSTPAi4iIiENQCMqOwECYOzcp+EDSzzlzNAO8iIiIA3G4wRLzjAEDoE2bpC6wypUVgERERByMQtCdCAxU+BEREXFQ6g4TERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTcqgQVL58eSwWS4rb2LFj7V2WiIiIOCA3exeQVa+//jqDBg2y3i9cuLAdqxERERFH5XAhqEiRIvj7+9u7DBEREXFwDtUdBvDWW29RvHhxatWqxaRJk4iLi7N3SSIiIuKAHKol6Nlnn+X++++nWLFi/PTTT4wbN46TJ0/y0UcfpbtNbGwssbGx1vvR0dEAxMTE5Hi9IiIiYhvJ39vGGNvt1NjZ+PHjDZDhbdeuXWluu3z5cgOYc+fO3dH+ddNNN9100003x7gdP37cZhnEYowtI1XWnTt3jnPnzmW4Tvny5fHy8kq1/PTp0wQGBrJz507q16+f5ra3tgRdvHiRoKAgfv/9d3x8fO6seAcSExND2bJl+eOPP/D29rZ3OblGx63jdgY6bh23M4iOjqZcuXJcuHCBokWL2mSfdu8OK1GiBCVKlMjWtvv27QMgICAg3XU8PT3x9PRMtdzHx8epfnmSeXt767idiI7buei4nYuzHreLi+1OZ7Z7CMqsHTt2sHPnTpo1a4aPjw+7du3iueee45FHHqFcuXL2Lk9EREQcjMOEIE9PT5YuXcrEiROJjY0lKCiIQYMGMXr0aHuXJiIiIg7IYULQ/fffz86dO+94P56enowfPz7NLrL8TMet43YGOm4dtzPQcdvuuO1+YrSIiIiIPTjcYIkiIiIitqAQJCIiIk5JIUhERESckkKQiIiIOKV8GYI++OADKlSogJeXF7Vr12bbtm0Zrr9lyxZq166Nl5cXFStW5MMPP8ylSm0rK8f95Zdf0qpVK0qWLIm3tzcNGjRg3bp1uVit7WT1/U72f//3f7i5uVGrVq2cLTCHZPW4Y2NjefnllwkKCsLT05NKlSrx8ccf51K1tpPV4160aBE1a9akYMGCBAQE8OSTT3L+/PlcqvbObd26lY4dO1K6dGksFgsrV6687Tb54TMtq8edXz7TsvN+J3Pkz7TsHLctPtPyXQhaunQpI0eO5OWXX2bfvn00btyYdu3a8fvvv6e5/smTJ2nfvj2NGzdm3759vPTSSzzzzDP873//y+XK70xWj3vr1q20atWKb7/9lj179tCsWTM6duxoHYXbUWT1uJNFR0fTt29fWrRokUuV2lZ2jrt79+5s3LiR0NBQjh49ypIlS6hWrVouVn3nsnrcP/zwA3379mXAgAEcOnSIZcuWsWvXLgYOHJjLlWfflStXqFmzJjNnzszU+vnlMy2rx51fPtOyetzJHP0zLTvHbZPPNJvNQpZH1KtXzzz99NMpllWrVs2MHTs2zfVHjx5tqlWrlmJZSEiIeeCBB3KsxpyQ1eNOy913320mTpxo69JyVHaPu0ePHuaVV14x48ePNzVr1szBCnNGVo97zZo1xsfHx5w/fz43yssxWT3uadOmmYoVK6ZY9t5775nAwMAcqzEnAWbFihUZrpNfPtNulpnjTosjfqbdLCvH7eifaTfLzHHb6jMtX7UExcXFsWfPHlq3bp1ieevWrdm+fXua2+zYsSPV+m3atGH37t3cuHEjx2q1pewc960SExO5dOkSvr6+OVFijsjucc+fP5/jx48zfvz4nC4xR2TnuFetWkWdOnWYOnUqZcqUoUqVKrzwwgtcu3YtN0q2iewcd8OGDYmIiODbb7/FGMPZs2dZvnw5HTp0yI2S7SI/fKbZgiN+pmWXo3+mZYetPtMcZsTozDh37hwJCQn4+fmlWO7n50dkZGSa20RGRqa5fnx8POfOnctwcta8IjvHfavp06dz5coVunfvnhMl5ojsHHdYWBhjx45l27ZtuLk55q9/do77xIkT/PDDD3h5ebFixQrOnTvH0KFD+fvvvx3mvKDsHHfDhg1ZtGgRPXr04Pr168THx/PII4/w/vvv50bJdpEfPtNswRE/07IjP3ymZYetPtPyVUtQMovFkuK+MSbVstutn9byvC6rx51syZIlTJgwgaVLl1KqVKmcKi/HZPa4ExIS6N27NxMnTqRKlSq5VV6Oycr7nZiYiMViYdGiRdSrV4/27dvz9ttvs2DBAodqDYKsHffhw4d55plneO2119izZw9r167l5MmTPP3007lRqt3kl8+07HL0z7TMym+faVlhq8+0fBUbS5Qogaura6r/FUZFRaX6n1Eyf3//NNd3c3OjePHiOVarLWXnuJMtXbqUAQMGsGzZMlq2bJmTZdpcVo/70qVL7N69m3379jF8+HAg6Q/JGIObmxvr16+nefPmuVL7ncjO+x0QEECZMmXw8fGxLrvrrrswxhAREUFwcHCO1mwL2TnuKVOm0KhRI1588UUAatSoQaFChWjcuDFvvPFGvmwVyQ+faXfCkT/Tsiq/fKZlh60+0/JVS5CHhwe1a9dmw4YNKZZv2LCBhg0bprlNgwYNUq2/fv166tSpg7u7e47VakvZOW5I+t9S//79Wbx4sUOeI5HV4/b29ubnn39m//791tvTTz9N1apV2b9/P/Xr18+t0u9Idt7vRo0a8eeff3L58mXrst9++w0XFxcCAwNztF5byc5xX716FReXlB9zrq6uwL+tI/lNfvhMyy5H/0zLqvzymZYdNvtMu6PTqvOgzz//3Li7u5vQ0FBz+PBhM3LkSFOoUCETHh5ujDFm7Nixpk+fPtb1T5w4YQoWLGiee+45c/jwYRMaGmrc3d3N8uXL7XUI2ZLV4168eLFxc3Mzs2bNMmfOnLHeLl68aK9DyJasHvetHPVKiqwe96VLl0xgYKB59NFHzaFDh8yWLVtMcHCwGThwoL0OIVuyetzz5883bm5u5oMPPjDHjx83P/zwg6lTp46pV6+evQ4hyy5dumT27dtn9u3bZwDz9ttvm3379plTp04ZY/LvZ1pWjzu/fKZl9bhv5aifaVk9blt9puW7EGSMMbNmzTJBQUHGw8PD3H///WbLli3Wx/r162eaNGmSYv3Nmzeb++67z3h4eJjy5cub2bNn53LFtpGV427SpIkBUt369euX+4Xfoay+3zdz1A8MY7J+3EeOHDEtW7Y0BQoUMIGBgWbUqFHm6tWruVz1ncvqcb/33nvm7rvvNgUKFDABAQHm8ccfNxEREblcdfZt2rQpw7/V/PqZltXjzi+fadl5v2/mqJ9p2TluW3ymWYzJp23CIiIiIhnIV+cEiYiIiGSWQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgEckXXn/9de69914KFSqEn58fQ4YM4caNG/YuS0TyMDd7FyAicqeMMSQkJDBnzhzKlCnD4cOH6du3LzVq1GDIkCH2Lk9E8ihNoCoi+VLv3r0pWbIk7777rr1LEZE8St1hIuLwTp06xfDhw6levTrFihWjcOHCfPHFFwQGBtq7NBHJwxSCRMShnTt3jnr16nHu3DnefvttfvjhB3bs2IGrqyu1atWyd3kikofpnCARcWjffvst8fHxLFmyBIvFAsCsWbOIi4tTCBKRDCkEiYhD8/X1JSYmhlWrVnH33Xfz9ddfM2XKFMqUKUPJkiXtXZ6I5GE6MVpEHJoxhiFDhrB48WIKFCjAE088wfXr1zl16hSrV6+2d3kikocpBImIiIhT0onRIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaf0/1/itA3QCVvuAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdBElEQVR4nO3deXxM9/7H8ddktyVESEQIteti32utnVpq1160tku1VdWiWkt/yu1Cq5fWlupGua1a2lpLUEXteykqKip2CUEime/vjzRTISKJJJPJvJ+PxzxiznznzOfMJGfevt9zvsdijDGIiIiIOBkXexcgIiIiYg8KQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQWJXjRo1olGjRvYuI9369OlD3rx5U9W2RIkS9OnTJ1PrsVgsjBs3LlNf436uX7/OuHHjWL9+vV3rcBRr166levXq5MmTB4vFwpIlS/jss8+wWCyEhYXZ2s2fP58PP/wwU2p44403KF68OG5ubuTPnz/Nz+/Tpw8lSpTI8LqykzNnzvDGG29Qp04d/Pz88Pb2plq1asyaNYv4+PgkbdetW8dzzz1H+fLlyZMnD0WLFqV9+/bs3LnTTtXLvbjZuwBxbh9//LG9S8gyixcvxtvb295lZLrr168zfvx4AIcOuFnBGEPXrl0pW7Ysy5YtI0+ePJQrV464uDi2bNlCkSJFbG3nz5/PgQMHGDp0aIbWsHTpUt5++21Gjx5Nq1at8PT0zND15xQ7d+7kiy++oFevXrz55pu4u7uzYsUKBg0axNatW/n0009tbT/55BMuXrzISy+9RMWKFTl//jyTJ0+mdu3arFq1iiZNmthxS+R2CkFiVxUrVrR3CVmmSpUq9i5BMtCNGzfw8vLCYrGkex1//fUXly5domPHjjzxxBNJHitUqNCDlpgqBw4cAODFF1+kcOHCWfKaGSUjPoPUqlevHsePH8fd3d22rFmzZsTGxjJ9+nTGjx9PsWLFAJg+ffpd72XLli0pXbo0EydOVAjKRjQcJqk2btw4LBYLBw8epEePHvj4+ODv789zzz1HZGRkkrY3b95k1KhRlCxZEg8PD4oWLcrzzz/PlStXkrRLbjjsk08+oVKlSuTNm5d8+fJRvnx5Xn/9dQDCwsJwc3Nj0qRJd9W3ceNGLBYL33zzTYrbceXKFV555RUeeughPD09KVy4MK1bt+bw4cMArF+/HovFctdwTlhYGBaLhc8+++yudR48eJAnnniCPHnyUKhQIYYMGcL169eTtEluOOx+tWSEiIgIBg4cSFBQEB4eHpQsWZLx48cTFxeXpN348eOpVasWvr6+eHt7U7VqVUJCQrjzGsvr1q2jUaNGFCxYkFy5clG8eHE6derE9evXCQsLs315jx8/HovFgsViue8w4PXr1xk+fDglS5bEy8sLX19fqlevztdff52k3WeffUa5cuXw9PSkQoUKfPHFF3cNxaTl89uxYwfdu3enRIkS5MqVixIlStCjRw9Onjx51+taLBZWr17Nc889R6FChcidOzcxMTEALFy4kDp16pAnTx7y5s1LixYt2L17d4rbPG7cOIKCggAYMWIEFovFth13Doc1atSIH3/8kZMnT9re0/t98VutVt59913Kly9v+93q1asX4eHhtjYlSpTgjTfeAMDf3z9Vw6nJfQbJiY2NZcKECbbXL1SoEM8++yznz59P0i4mJoZXXnmFgIAAcufOTYMGDdi5c+ddfy8Z9Rns2LGDdu3a4evri5eXF1WqVOF///tfitsMUKBAgSQBKFHNmjUBkryvyYXJvHnzUrFiRU6dOnXf15Kso54gSbNOnTrRrVs3+vbty/79+xk1ahSArTvYGEOHDh1Yu3Yto0aNon79+uzbt4+xY8eyZcsWtmzZcs8u9wULFjB48GBeeOEF3n//fVxcXDh27BiHDh0CEnba7dq1Y8aMGbz22mu4urranjtt2jQCAwPp2LHjPWu/evUqjz/+OGFhYYwYMYJatWpx7do1Nm7cyJkzZyhfvnya349bt27RunVrBg4cyMiRI9m8eTMTJkzg5MmTfP/99w9cS58+ffj88885ceJEmo+7iIiIoGbNmri4uDBmzBhKlSrFli1bmDBhAmFhYcydO9fWNiwsjIEDB1K8eHEAtm7dygsvvMDp06cZM2aMrU2bNm2oX78+n376Kfnz5+f06dOsXLmS2NhYihQpwsqVK2nZsiV9+/alX79+wP17NYYNG8aXX37JhAkTqFKlCtHR0Rw4cICLFy/a2nz22Wc8++yztG/fnsmTJxMZGcm4ceOIiYnBxSV9/58LCwujXLlydO/eHV9fX86cOcMnn3xCjRo1OHToEH5+fknaP/fcc7Rp04Yvv/yS6Oho3N3dmThxIm+88QbPPvssb7zxBrGxsbz33nvUr1+fbdu23bO3s1+/flSqVImnnnqKF154gZ49e97z7+Ljjz9mwIABHD9+nMWLF6dq2wYNGsSsWbMYMmQIbdu2JSwsjDfffJP169eza9cu/Pz8WLx4MdOnTyckJISVK1fi4+NjC2bJSe1nYLVaad++PT///DOvvfYadevW5eTJk4wdO5ZGjRqxY8cOcuXKBcCzzz7LwoULee2112jSpAmHDh2iY8eOREVFJVvDg3wGoaGhtGzZklq1ajFjxgx8fHxYsGAB3bp14/r16+k6Zm/dunW4ublRtmzZFNtFRkaya9cu9QJlN0YklcaOHWsA8+677yZZPnjwYOPl5WWsVqsxxpiVK1cm227hwoUGMLNmzbIta9iwoWnYsKHt/pAhQ0z+/PlTrCM0NNQAZvHixbZlp0+fNm5ubmb8+PEpPvett94ygFmzZs191x8aGppk+YkTJwxg5s6da1vWu3dvA5ipU6cmafv2228bwGzatMm2LDg42PTu3TtNtRhjzHPPPWdcXV1NWFhYiu2MMQYwY8eOtd0fOHCgyZs3rzl58mSSdu+//74BzMGDB5NdT3x8vLl165Z56623TMGCBW2f7bfffmsAs2fPnnvWcP78+bvquJ9HHnnEdOjQ4Z6Px8fHm8DAQFO1alVbLcYYExYWZtzd3U1wcLBtWVo+vzvFxcWZa9eumTx58iT5TOfOnWsA06tXryTt//zzT+Pm5mZeeOGFJMuvXr1qAgICTNeuXVPY6n9qeu+995IsT3y9EydO2Ja1adMmyXam5LfffjOAGTx4cJLlv/76qwHM66+/bluW+Hd9/vz5FNeZls/g66+/NoBZtGhRknVs377dAObjjz82xhhz8OBBA5gRI0YkaZf4/Nv/XjLiMyhfvrypUqWKuXXrVpK2bdu2NUWKFDHx8fEpvgd3WrVqlXFxcTEvv/zyfds+/fTTxs3NzezYsSNNryGZS8Nhkmbt2rVLcv+xxx7j5s2bnDt3Dkj4nxFw1/+qunTpQp48eVi7du09112zZk2uXLlCjx49WLp0KRcuXLirTaNGjahUqRLTp0+3LZsxYwYWi4UBAwakWPuKFSsoW7YsTZs2TbFdWj399NNJ7vfs2RNI+J/ng9YSEhJCXFwcwcHBaa7rhx9+oHHjxgQGBhIXF2e7tWrVCoANGzbY2q5bt46mTZvi4+ODq6sr7u7ujBkzhosXL9o+28qVK+Ph4cGAAQP4/PPP+eOPP9JUz+01xMXF2YbaatasyYoVKxg5ciTr16/nxo0bSZ535MgR/vrrL3r27JlkGCg4OJi6deum+X1JdO3aNUaMGEHp0qVxc3PDzc2NvHnzEh0dzW+//XZX+06dOiW5v2rVKuLi4ujVq1eS7fLy8qJhw4Z2O0Mu8ffuzr/BmjVrUqFChRT/Bu8lLZ/BDz/8QP78+XnyySeTvC+VK1cmICDA9r4k/v517do1yfM7d+6Mm1vyAxXp/QyOHTvG4cOHbX+rt7dt3bo1Z86c4ciRI6l+P3bt2kXXrl2pXbt2ssPzt3vzzTeZN28eH3zwAdWqVUv1a0jmUwiSNCtYsGCS+4ld+IlfXBcvXsTNze2uIRCLxUJAQECSIY47/etf/+LTTz/l5MmTdOrUicKFC1OrVi3WrFmTpN2LL77I2rVrOXLkCLdu3WL27Nl07tyZgICAFGs/f/58it396eHm5nbXe5JYR0rbmhm13Ons2bN8//33uLu7J7k9/PDDALaQuW3bNpo3bw7A7Nmz+eWXX9i+fTujR48G/vlsS5UqxU8//UThwoV5/vnnKVWqFKVKlWLq1Kn3rSUsLOyuOhK/BD/66CNGjBjBkiVLaNy4Mb6+vnTo0IGjR48C/7yPyX2+9/vMU9KzZ0+mTZtGv379WLVqFdu2bWP79u0UKlToriAGJDlbCxLeX4AaNWrctW0LFy5MNsRnhcT36856AQIDA1P8vbzfOlPzGZw9e5YrV67g4eFx1/sSERFhe18S1+nv75/k+cn9TSVK72eQ2G748OF3tRs8eDBAqj+v3bt306xZM8qUKcPy5ctTPKNu/PjxTJgwgbfffpshQ4akav2SdXRMkGS4ggULEhcXx/nz55MEIWMMERER1KhRI8XnP/vsszz77LNER0ezceNGxo4dS9u2bfn9999tvSE9e/ZkxIgRTJ8+ndq1axMREcHzzz9/39oKFSqU5ADG5Hh5eQHYDrhMdK8dZFxcHBcvXkyy046IiADuDoxpreVB+fn58dhjj/H2228n+3hgYCCQcCyWu7s7P/zwg237AZYsWXLXc+rXr0/9+vWJj49nx44d/Pe//2Xo0KH4+/vTvXv3e9YSGBjI9u3bkywrV64cAHny5GH8+PGMHz+es2fP2nqFnnzySQ4fPmx7HxPf19vduSy1n19kZCQ//PADY8eOZeTIkbblMTExXLp0KdltuPNg5MRjhr799tt09dRllsT368yZM3cF7b/++uuuY53Sss7UfAZ+fn4ULFiQlStXJruufPnyJVnn2bNnKVq0qO3xxL+p5KT3M0hsN2rUKJ566qlk2yT+PqZk9+7dNG3alODgYFavXo2Pj889244fP55x48Yxbtw428kdkr2oJ0gyXOKpvl999VWS5YsWLSI6OvquU4HvJU+ePLRq1YrRo0cTGxvLwYMHbY95eXnZhmSmTJlC5cqVqVev3n3X2apVK37//XfbkF1yEg8+3rdvX5Lly5Ytu+dz5s2bl+T+/PnzgZTnyUlNLQ+qbdu2HDhwgFKlSlG9evW7bokhyGKx4ObmluRA8xs3bvDll1/ec92urq7UqlXLNiy5a9cu4O6ewUQeHh53vX7il+Ht/P396dOnDz169ODIkSNcv36dcuXKUaRIEb7++uskZ6udPHmSzZs3J3l+aj8/i8WCMeau/8XPmTPnrsnv7qVFixa4ublx/PjxZN/f6tWrp2o9qeHp6Zls71RyEg++vfNvcPv27fz222+p/hu8XVo+g7Zt23Lx4kXi4+OTfU8Sw0aDBg2AhDO7bvftt9/edfbivaT2MyhXrhxlypRh796992yX3O/j7fbs2UPTpk0JCgpizZo1FChQ4J5t/+///o9x48bxxhtvMHbs2FRti2Q99QRJhmvWrBktWrRgxIgRREVFUa9ePdvZYVWqVOFf//rXPZ/bv39/cuXKRb169ShSpAgRERFMmjQJHx+fu3qQBg8ezLvvvsvOnTuZM2dOqmobOnQoCxcupH379owcOZKaNWty48YNNmzYQNu2bWncuDEBAQE0bdqUSZMmUaBAAYKDg1m7di3fffddsuv08PBg8uTJXLt2jRo1atjODmvVqhWPP/74A9UC0LdvXz7//HOOHz+e5t6Gt956izVr1lC3bl1efPFFypUrx82bNwkLC2P58uXMmDGDoKAg2rRpw5QpU+jZsycDBgzg4sWLvP/++3cFhBkzZrBu3TratGlD8eLFuXnzpu2swMRjm/Lly0dwcDBLly7liSeewNfXFz8/vxTPbKtVqxZt27blscceo0CBAvz22298+eWX1KlTh9y5cwMJXyr9+vWjY8eO9O/fnytXrjBu3Li7hmJS+/l5e3vToEED3nvvPVt9GzZsICQkJNWzJpcoUYK33nqL0aNH88cff9CyZUsKFCjA2bNn2bZtm62HKyM8+uijfPfdd3zyySdUq1YNFxeXe4ascuXKMWDAAP773//i4uJCq1atbGeHFStWjJdffjnNr+/i4pLqz6B79+7MmzeP1q1b89JLL1GzZk3c3d0JDw8nNDSU9u3b07FjRx5++GF69OjB5MmTcXV1pUmTJhw8eJDJkyfj4+OTqrP+0vIZzJw5k1atWtGiRQv69OlD0aJFuXTpEr/99hu7du1KcXqNI0eO2H7H3377bY4ePWobroWEoeLEnu/JkyczZswYWrZsSZs2bdi6dWuSddWuXTt1b7pkPrseli0O5V5nkSR3JsuNGzfMiBEjTHBwsHF3dzdFihQxgwYNMpcvX07y3DvPDvv8889N48aNjb+/v/Hw8DCBgYGma9euZt++fcnW1KhRI+Pr62uuX7+e6u24fPmyeemll0zx4sWNu7u7KVy4sGnTpo05fPiwrc2ZM2dM586dja+vr/Hx8THPPPOM2bFjR7Jnh+XJk8fs27fPNGrUyOTKlcv4+vqaQYMGmWvXriV53TvPDkttLYlnoN3+/t4LyZyVdf78efPiiy+akiVLGnd3d+Pr62uqVatmRo8enaTGTz/91JQrV854enqahx56yEyaNMmEhIQkee0tW7aYjh07muDgYOPp6WkKFixoGjZsaJYtW5bkNX/66SdTpUoV4+npeddZPskZOXKkqV69uilQoIDt9V9++WVz4cKFJO3mzJljypQpYzw8PEzZsmXNp59+anr37n3XWVOp/fzCw8NNp06dTIECBUy+fPlMy5YtzYEDB+76rBJ/x7dv355s/UuWLDGNGzc23t7extPT0wQHB5vOnTubn376KcXtTsvZYZcuXTKdO3c2+fPnNxaLxdxv9x0fH2/eeecdU7ZsWePu7m78/PzMM888Y06dOpWkXWrPDkuU2s/g1q1b5v333zeVKlUyXl5eJm/evKZ8+fJm4MCB5ujRo7Z2N2/eNMOGDTOFCxc2Xl5epnbt2mbLli3Gx8cnyVlXGfUZ7N2713Tt2tUULlzYuLu7m4CAANOkSRMzY8aMFLc78fXvdbv996phw4YptpXsw2LMHTOhiTiIc+fOERwczAsvvMC7775r73LETvr06cP69euTXGdLHNvmzZupV68e8+bNs51pKZIZNBwmDic8PJw//viD9957DxcXF1566SV7lyQi6bRmzRq2bNlCtWrVyJUrF3v37uU///kPZcqUuecBzCIZRSFIHM6cOXN46623KFGiBPPmzUtyVomIOBZvb29Wr17Nhx9+yNWrV/Hz86NVq1ZMmjQpyZmKIplBw2EiIiLilLLNKfKffPIJjz32GN7e3nh7e1OnTh1WrFhhe9wYw7hx4wgMDCRXrlw0atQoySnTIiIiImmRbUJQUFAQ//nPf9ixYwc7duygSZMmtG/f3hZ03n33XaZMmcK0adPYvn07AQEBNGvWjKtXr9q5chEREXFE2Xo4zNfXl/fee4/nnnuOwMBAhg4dyogRI4CEWV39/f155513GDhwoJ0rFREREUeTLQ+Mjo+P55tvviE6Opo6depw4sQJIiIibNc2goTZUxs2bMjmzZtTDEExMTFJps+3Wq1cunSJggUL3jX9uoiIiGRPxhiuXr1KYGBgqibSTI1sFYL2799PnTp1uHnzJnnz5mXx4sVUrFjRNiX7nRfZ8/f35+TJkymuc9KkSRk2Y6uIiIjY16lTpzLs4tPZKgSVK1eOPXv2cOXKFRYtWkTv3r1tV5mGuy+cZ4y5b2/OqFGjGDZsmO1+ZGQkxYsX59SpU3h7e2fsBoiIiEimiIqKolixYve9xltaZKsQ5OHhQenSpQGoXr0627dvZ+rUqbbjgCIiIihSpIit/blz5+7qHbqTp6fnXdc/AmxnoYmIiIjjyMhDWbLN2WHJMcYQExNDyZIlCQgIYM2aNbbHYmNj2bBhA3Xr1rVjhSIiIuKosk1P0Ouvv06rVq0oVqwYV69eZcGCBaxfv56VK1disVgYOnQoEydOpEyZMpQpU4aJEyeSO3duXVdGRERE0iXbhKCzZ8/yr3/9izNnzuDj48Njjz3GypUradasGQCvvfYaN27cYPDgwVy+fJlatWqxevXqDB0bFBEREeeRrecJygxRUVH4+PgQGRmpY4JEREQcRGZ8f2frY4JEREREMotCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDilbBOCJk2aRI0aNciXLx+FCxemQ4cOHDlyJEmbPn36YLFYktxq165tp4pFRETEkWWbELRhwwaef/55tm7dypo1a4iLi6N58+ZER0cnadeyZUvOnDljuy1fvtxOFYuIiIgjc7N3AYlWrlyZ5P7cuXMpXLgwO3fupEGDBrblnp6eBAQEZHV5IiIiksNkm56gO0VGRgLg6+ubZPn69espXLgwZcuWpX///pw7dy7F9cTExBAVFZXkJiIiImIxxhh7F3EnYwzt27fn8uXL/Pzzz7blCxcuJG/evAQHB3PixAnefPNN4uLi2LlzJ56ensmua9y4cYwfP/6u5ZGRkXh7e2faNoiIiEjGiYqKwsfHJ0O/v7NlCHr++ef58ccf2bRpE0FBQfdsd+bMGYKDg1mwYAFPPfVUsm1iYmKIiYmx3Y+KiqJYsWIKQSIiIg4kM0JQtjkmKNELL7zAsmXL2LhxY4oBCKBIkSIEBwdz9OjRe7bx9PS8Zy+RiIiIAOHhcPQolCkD9/nuzUmyzTFBxhiGDBnCd999x7p16yhZsuR9n3Px4kVOnTpFkSJFsqBCERGRHCgkBFO8OGuaNOGj4sXZN26cvSvKMtkmBD3//PN89dVXzJ8/n3z58hEREUFERAQ3btwA4Nq1awwfPpwtW7YQFhbG+vXrefLJJ/Hz86Njx452rl5ERMQBhYdj7d+fp42hOfCSMVQeP56pyRxLmxNlmxD0ySefEBkZSaNGjShSpIjttnDhQgBcXV3Zv38/7du3p2zZsvTu3ZuyZcuyZcsW8uXLZ+fqRUREHNDRo0wyhq8Bd6A+YICXx49nzZo19q0tC2SbY4Lud3x2rly5WLVqVRZVIyIikvP94eHBuL//PRN4FhhgsTDbGPr168eRI0fw8vKyX4GZLNv0BImIiEjWGjdzJnFAcxICEK6ufDhtGkFBQfz555989NFHSZ8QHg6hoQk/cwCFIBERESd0+vRp5s+fD8DbP/yQEG7Cwsg9eDATJkwA4J133rFNMmzmzOFG8eLQpAkEB0NIiN1qzygKQSIiIk5o1qxZxMfHU79+faq3aQONGtlOj3/mmWcoX748ly5dYurUqRAezvEBA/AxhqaAsVph4ECH7xFSCBIREXEyVquVTz/9FEg4O/tOrq6ujPv7VPnJkydzedcu1hvDLSAGsADEx8OxY1lVcqZQCBIREXEymzdvJjw8HG9vb9q3b59smy5duvDII48QGRnJB+vWsfbv5Y0TG7i6QunSWVFuplEIEhERcTILFiwAoGPHjvc8+8vFxcV27c3/mzqVBX8vbw0JAWjmTIefXVohSERExInExcXxzTffANC9e/cU23bo0IFGjRrZ7teqUoVa69ZBWBj07ZuJVWaNbDNPkIiIiGS+n3/+mXPnzlGwYEGeeOKJFNu6uLiwePFixo8fT1RUFG+99RaWokWzqNLMpxAkIiLiRH788UcA2rZti7u7+33b58+fnw8++CCzy7ILDYeJiIg4kcQQ1Lp1aztXYn8KQSIiIk7ijz/+4PDhw7i6utK8eXN7l2N3CkEiIiJOYvny5QA8/vjj5M+f377FZAMKQSIiIk4icSisTZs2dq4ke1AIEhERcQLR0dGEhoYCOh4okUKQiIiIE1i3bh0xMTEEBwdTsWJFe5eTLSgEiYiIOIHE44HatGmDxWKxczXZg0KQiIhIDmeM0fFAyVAIEhERyeEOHDjAqVOn8PLySnIZDGenECQiIpLDJfYCNWnShNy5c9u5muxDIUhERCSHu/14IPmHQpCIiEgOdvnyZTZv3gwoBN1JIUhERCQHWzV/PvHx8TxctizBwcH2LidbUQgSERHJqUJCWD5kCACtf/8dQkLsXFD2ohAkIiKSE4WHE9+/Pyv+vtsGYOBACA+3Y1HZi0KQiIhITnT0KNuN4QLgA9QFiI+HY8fsW1c2ohAkIiKSE5Upw/K//9kccAdwdYXSpe1XUzajECQiIpITBQXxfbFiwN9DYa6uMHMmBAXZtazsxM3eBYiIiEjGO378OHtOncLV1ZU2ixZBtWoKQHdQCBIREcmBFi1aBEDjxo3xa9/eztVkTxoOExERyYG+/fZbADp37mznSrIvhSAREZEc5uTJk2zfvh0XFxc6dOhg73KyLYUgERGRHCZxKKxBgwb4+/vbuZrsSyFIREQkh5k3bx6gobD7UQgSERHJQfbu3cuuXbtwd3enW7du9i4nW1MIEhERyUHmzp0LQPv27fHz87NzNdmbQpCIiEgOcfPmTb766isAnn32WTtXk/0pBImIiOQQX331FRcvXiQoKIjmzZvbu5xsTyFIREQkB7BarUyePBmAoUOH4uam+ZDvRyFIREQkB/jhhx84fPgw3t7e9O/f397lOASFIBEREQcXFxfHyJEjARg0aBDe3t52rsgxKASJiIg4uFmzZvHbb79RsGBBWxiS+8s2IWjSpEnUqFGDfPnyUbhwYTp06MCRI0eStDHGMG7cOAIDA8mVKxeNGjXi4MGDdqpYRETE/k6dOsXo0aMBGD9+PPnz57dvQQ4k24SgDRs28Pzzz7N161bWrFlDXFwczZs3Jzo62tbm3XffZcqUKUybNo3t27cTEBBAs2bNuHr1qh0rFxERSaXwcAgNTfiZAW7evEn37t25cuUKtWrVYuDAgRmyXmdhMcYYexeRnPPnz1O4cGE2bNhAgwYNMMYQGBjI0KFDGTFiBAAxMTH4+/vzzjvvpPqDj4qKwsfHh8jISI2ZiohI1gkJgQEDwGoFFxeYNQv69k2+bXg4HD0KZcpAUFCyTa4fPUq3Xr34YetWfHx82LFjB6VLl87EDbCvzPj+zrbnz0VGRgLg6+sLwIkTJ4iIiEgy74GnpycNGzZk8+bNSr8iIpJ9hYf/E4AArFZiBgzg+7g4lv3yC7t37yY8PByr1UohT09KnD9PBeBRi4VHR47kkVGjyJcvHwCxsbGsefVVXv3oI34DvIDF/fvn6ACUWbJlT5Axhvbt23P58mV+/vlnADZv3ky9evU4ffo0gYGBtrYDBgzg5MmTrFq1Ktl1xcTEEBMTY7sfFRVFsWLF1BMkIiJZJzQUmjQBwACfAuOAtAyKBQcH4+XlxZ8nT3Lj5k0A/IFvgcddXSEs7J69RjmB0/QEDRkyhH379rFp06a7HrNYLEnuG2PuWna7SZMmMX78+AyvUUREJNXKlAEXF85ZrTwN/PT34iKFC/NM7940atSIEiVK4Lp9O2f79OEP4CCw/+/bX8DJkydtq/MD+gCjAF+A+Hg4dixHh6DMkO1C0AsvvMCyZcvYuHEjQbd9mAEBAQBERERQpEgR2/Jz587h7+9/z/WNGjWKYcOG2e4n9gSJiIhkmaAgDo0bR5sxYwgDcgFvdenCkC++wMvL65923t6Uc3GhQeKwGYCrK5d27+ZQZCRWq5XCVivlmjTBcvtAjqsraDgszbLN2WHGGIYMGcJ3333HunXrKFmyZJLHS5YsSUBAAGvWrLEti42NZcOGDdStW/ee6/X09MTb2zvJTUREJCsdOXKExtOmEQaULlqUXaGhDP/f/5IGIEjoyZk1KyHUQMLPmTPxffRRHn/8cRo0aED5Ro2wzJ59Vxv1AqVdtukJev7555k/fz5Lly4lX758REREAODj40OuXLmwWCwMHTqUiRMnUqZMGcqUKcPEiRPJnTs3PXv2tHP1IiIiyTtx4gRPPPEE586do3Llyvz0008ULFjw3k/o2xdatEgY3ipdOvlwk5o2cl/Z5sDoex3XM3fuXPr06QMk9BaNHz+emTNncvnyZWrVqsX06dN55JFHUv06OkVeRESyyrVr16hTpw4HDhygYsWKbNiwAT8/P3uX5ZAy4/s724SgrKIQJCIiWcEYQ5cuXVi0aBEBAQHs2LGDokWL2rssh5UZ39/Z5pggERGRnGTq1KksWrQId3d3Fi1apACUDSkEiYiIZLADBw7YLmT6wQcfpHgCj9iPQpCIiEgGiomJ4ZlnniEmJobWrVszePBge5ck96AQJCIikoHeeust9u7di5+fHyEhISlO6Cv2pRAkIiKSQQ4dOsS7774LwKxZs2wT/Ur2pBAkIiKSARIn/Y2Li6Ndu3Z07NjR3iXJfSgEiYiIZIAF06cTGhpKLi8vpk6dau9yJBUUgkRERB5Q1LRpvPLCCwCMjomhxNq1dq5IUkMhSERE5EGEhzP2hRc4A5QBhhsDAwdCeLi9K5P7UAgSERF5APtWruS/f/97GuAJEB+fcF0vydYUgkRERNLJGMPgWbOIBzoDzRMfcHVNuLCpZGsKQSIiIun0xRdf8Mv27eTx9OQDl7+/Ul1dYeZMXdndAbjZuwARERFHdPnyZV599VUAxv7f/xHUo0fCEFjp0gpADkIhSEREJB3eeOMNzp8/T4UKFXjppZfAw0Phx8FoOExERCSNdu7cySeffALAxx9/jIeHh50rkvRQCBIREUkDq9XK4MGDMcbQs2dPGjVqZO+SJJ0UgkRERNJgzpw5bNu2jXz58vH+++/buxx5AApBIiIiqXTu3DlGjhwJJFwtvkiRInauSB6EQpCIiEgqvfrqq1y+fJnKlSszZMgQe5cjD0ghSEREJBVCQ0P54osvsFgszJw5Ezc3nWDt6BSCRERE7iMmJoZBgwYBMGjQIGrWrGnniiQjKASJiIjcx3vvvceRI0cICAjg7bfftnc5kkEUgkRERFJw4MAB/u///g+ADz74gPz589u3IMkwCkEiIiL3cOvWLXr37k1sbCxt27alW7du9i5JMpBCkIiIyD1MnDiRXbt24evry6xZs7BYLPYuSTKQQpCIiEgydu3axYQJEwCYPn265gTKgRSCRERE7nD16lV69OhBXFwcXbp00TBYDqUQJCIichtjDAMGDOD3338nKCiIj994A8v69RAebu/SJIMpBImISM4THg6hoekKLjNmzGDBggW4ubmx8Jln8KtSBZo0geBgCAnJhGLFXhSCREQkZwkJSQgs6QguGzdu5KWXXgLgPyNHUvfdd8FqTXjQaoWBA9UjlIMoBImISM4RHg4DBqQ+uNzWY/T777/ToUMHbt26RZcuXRjWuPE/60kUHw/HjmXuNkiW0YVPREQk5zh69N7BJSgo6fKQEFtgOm+x0KZQIS5fvkytWrX4/PPPsVy8CC4uSdfn6gqlS2f+dkiWUE+QiIjkHGXKJASX2yUXXG7rMboINDWGY+fOERwUxNKlS8mVK1dCaJo1K+H5ieuZOfPuMCUOSyFIRERyjtQGl797jC4DzYB9gD+w6u238ff3/6dd374QFpYwZBYWlnBfcgyLMcbYu4isFBUVhY+PD5GRkXh7e9u7HBERyQzh4QlDYKVLJ99zEx5OePHitDaG/UAhYL2LCxVPnlRPTzaVGd/fOiZIRERynqCgFMPMvkuXaJ0/P6cvXyYAWO3iQsVZsxSAnIyGw0RExKksWLCAevXqcfryZSqUKcPWr7/m0ZMnNdTlhNQTJCIiTuHGjRu88sorfPLJJwA0btyYRYsWUaBAATtXJvainiAREcnxNm3aRKVKlWwBaPTo0axevVoByMmpJ0hERHKsK1euMGbMGKZNm4YxhsDAQEJCQmjZsqW9S5NsQD1BIiKS48THxzNjxgzKlCnDf//7X4wxPPfccxw8eFABSGzUEyQiIjnKunXrGDp0KPv37wegQoUKTJ06lWbNmtm5MsluslVP0MaNG3nyyScJDAzEYrGwZMmSJI/36dMHi8WS5Fa7dm37FCsiItnKsWPH6NixI0888QT79++nQIEC/Pe//2Xv3r0KQJKsbBWCoqOjqVSpEtOmTbtnm5YtW3LmzBnbbfny5VlYoYiIZDdXrlxh+PDhVKxYkSVLluDq6sqQIUM4evQoQ4YMwd3d3d4lSjaVrYbDWrVqRatWrVJs4+npSUBAQBZVJCIi2VV8fDyzZs1izJgxXLhwAUj4Hnn//fepWLGinasTR5CteoJSY/369RQuXJiyZcvSv39/zp07Z++SREQki+3evZtatWoxePBgLly4QMWKFVmxYgXLly9XAJJUy1Y9QffTqlUrunTpQnBwMCdOnODNN9+kSZMm7Ny5E09Pz2SfExMTQ0xMjO1+VFRUVpUrIiIZLDo6mnHjxvHBBx8QHx9P/vz5mTBhAgMHDsTNzaG+0iQbcKjfmG7dutn+/cgjj1C9enWCg4P58ccfeeqpp5J9zqRJkxg/fnxWlSgiIplk165d9OjRg99//x1I+E748MMPdYiEpJvDDYfdrkiRIgQHB3P06NF7thk1ahSRkZG226lTp7KwQhEReVBWq5XJkydTu3Ztfv/9d4oWLcoPP/zAggULFIDkgThUT9CdLl68yKlTpyhSpMg923h6et5zqExERLK3K1eu0LNnT1asWAFAx44dmT17NgULFrRzZZITZKsQdO3aNY4dO2a7f+LECfbs2YOvry++vr6MGzeOTp06UaRIEcLCwnj99dfx8/OjY8eOdqxaREQyw5EjR2jXrh2///47uXLl4sMPP6R///5YLBZ7lyY5RLYKQTt27KBx48a2+8OGDQOgd+/efPLJJ+zfv58vvviCK1euUKRIERo3bszChQvJly+fvUoWEZFMsGrVKrp160ZkZCTFihVj2bJlVK5c2d5lSQ5jMcYYexeRlaKiovDx8SEyMhJvb297lyMiIneYO3cu/fr1w2q1UrduXb777jv8/f3/aRAeDkePQpkyEBRkv0IlS2XG97dDHxgtIiI5y/vvv89zzz2H1WqlV69erFu3LmkACgmB4GBo0iThZ0iI/YoVh6cQJCIidmeMYeTIkbz66qsADB8+nM8++yzpiS3h4TBgAFitCfetVhg4MGG5SDooBImIiF0ZYxg6dCjvvPMOAP/5z39477337j4A+ujRfwJQovh4uO2EGpG0yFYHRouIiHMxxjB8+HA++ugjAGbOnMmAAQOSb1ymDLi4JA1Crq5QunQWVCo5kXqCRETELhKHwKZMmQLcJwBBwkHQs2YlBB9I+Dlzpg6OlnRTT5CIiNjFm2++ybvvvgvA9OnTUw5Aifr2hRYtEobASpdWAJIHohAkIiJZbvLkybz99tsATJ06lcGDB6f+1PegIIUfyRAaDhMRkSw1f/58hg8fDiRc5PrFF1/Uqe9iF5osUUREMt/fvTxrzpyhTZ8+3Lp1i5deeokPPvgAy+nTCcHnzgOew8LU4yM2mfH9reEwERHJXCEhMGAAO61WngJuAd26dWPKlCkJp8GndOq7QpBkIg2HiYhI5vl7gsPjViutgWtAE+Dzt9/GxeXvr6DEU99vp1PfJQsoBImISOY5epRzVistgHNAZWAx4Hnq1D9tdOq72ImGw0REJNNcCwykNXAcKAmsALyT6+XRqe9iBwpBIiKSKWJjY+n04ovsBPyAlUBASr08OvVdsphCkIiIpN895vaxWq307duX1atXkzt3bpYvXEjZvHnVyyPZikKQiIikz99nfWG1JhzYPGtWwrAWMHLkSL766ivc3NxYtGgRNVq2tHOxInd7oAOjz507R0REREbVIiIijuLvs75sp7ZbrTBwIISH88EHH/Dee+8BEBISQksFIMmm0hWC9u3bx8MPP0yRIkUoWrQoRYsW5Y033iA6Ojqj6xMRkezoHnP7zJ8xg2HDhgHwzjvv0KtXLzsUJ5I66ZoxukaNGuTLl4+3336bPHnysHPnTqZNm8b169fZvHkzBQoUyIxaM4RmjBYRyQDh4XfN8rzGxYU2rq7cunWLoUOH/jMZokgGyIzv73SFoMTgU758edsyYwxdunTBy8uLr776KkOKywwKQSIiqXS/C5qGhCQMgcXHs9PFhUbu7lyLiaFHjx589dVX/0yGKJIBMuP7O12/odWrV+fy5ctJllksFiZOnMjSpUszpDAREbGj1FzQtG9fCAvj2Fdf0apAAa7FxNC0aVM+++wzBSBxCKnuCWrTpg2VKlWicuXKxMfHM3XqVJYuXYq/v7+tzfbt2+nUqRN//vlnphX8oNQTJCJyH8kMdd3rgqZ//fUX9evX548//qBKlSqsX79e+1bJFHa9gOqjjz7Krl27mDt3LmfPngXgoYceomvXrrZgNHfuXD744IMMKUxEROwklRc0PX/+PE2bNuWPP/7goYceYsWKFQpA4lDSdUzQ2bNn2b17N3v27LHdjh07hqurK+XKlWPfvn2ZUWuGUE+QiMh9pKIn6PLlyzRu3Ji9e/cSFBTEzz//TIkSJexSrjgHu/YE3c7f35+WLVsmmfvhxo0b7N27l71792ZIYSIiYieJFzT9+6DnOy9oGhUVRcuWLdm7dy/+/v6sXbtWAUgcUrp6ghyZeoJERFIpPPyuC5pGR0fTqlUrfv75ZwoWLMj69et55JFH7FyoOINs0xMkIiJO4I4LmkZFRdGmTRs2bdqEj48Pq1evVgASh6YQJCIi93X58mVatmzJtm3b8PHxYeXKlVStWtXeZYk8EIUgERFJ0fnz52nevDl79uyhYMGCrF69WgFIcgSFIBERuadTp07RsmVLDh06ROHChVm7dq2GwCTH0JSeIiKSrP3791OnTh0OHTpEYGAgGzZsUACSHEUhSERE7hIaGsrjjz/O6dOnqVChAlu2bElyvUiRnEAhSEREkliwYAEtW7YkKiqK+vXr88svv1C8eHF7lyWS4RSCREQEgPj4eEaPHk2PHj2IjY2lc+fOrF69mgIFCti7NJFMoQOjRUSE8+fP06NHD9auXQvAsGHDeO+993Q1eMnRFIJERJzcr7/+SufOnQkPDydPnjzMmTOH7t2727sskUyniC8i4qSMMXz88cfUr1+f8PBwypUrx6+//qoAJE5DIUhExAlFR0fTq1cvnn/+eW7dukWnTp3Ytm0bDz/8sL1LE8kyGg4TEXEyv//+O506deLAgQO4urryzjvvMGzYMCwWi71LE8lSCkEiIk5k8eLF9OnTh6ioKAICAli4cCENGjSwd1kidqHhMBERJxAXF8eIESN46qmniIqK4vHHH2fXrl0KQOLU1BMkIpLDnT17lh49ehAaGgrAyy+/zDvvvIO7u7udKxOxr2zVE7Rx40aefPJJAgMDsVgsLFmyJMnjxhjGjRtHYGAguXLlolGjRhw8eNA+xYqIOIDNmzdTtWpVQkNDyZs3L//73/+YMmWKApAI2SwERUdHU6lSJaZNm5bs4++++y5Tpkxh2rRpbN++nYCAAJo1a8bVq1ezuFIRkWwqPBxCQzGnTvHRRx/RsGFD/vrrLypUqMC2bdvo0qWLvSsUyTay1XBYq1ataNWqVbKPGWP48MMPGT16NE899RQAn3/+Of7+/syfP5+BAwdmZakiItlPSAgMGEC01Up/4Ou/F3ft2pWQkBDy5s1rz+pEsp1s1ROUkhMnThAREUHz5s1tyzw9PWnYsCGbN2++5/NiYmKIiopKchMRyXHCw2HAAI5brdQhIQC5AR+MHcuCBQsUgESS4TAhKCIiAgB/f/8ky/39/W2PJWfSpEn4+PjYbsWKFcvUOkVE7OLoUVZYrVQH9gP+wDpgaKNGmv9H5B4cJgQluvOP2RiT4h/4qFGjiIyMtN1OnTqV2SWKiGQpq9XK2ytW0Aa4AtQGdgL1XV2hdGm71iaSnWWrY4JSEhAQACT0CBUpUsS2/Ny5c3f1Dt3O09MTT0/PTK9PRMQerl27Rq9evVi8eDEAAy0WphqDp6srzJwJQUF2rlAk+3KYnqCSJUsSEBDAmjVrbMtiY2PZsGEDdevWtWNlIiL2cfr0aRo0aMDixYvx8PBg9uzZzPjzTzxDQyEsDPr2tXeJItlatuoJunbtGseOHbPdP3HiBHv27MHX15fixYszdOhQJk6cSJkyZShTpgwTJ04kd+7c9OzZ045Vi4hkvb1799KmTRtOnz5N4cKFWbp0KbVr1054UL0/IqmSrULQjh07aNy4se3+sGHDAOjduzefffYZr732Gjdu3GDw4MFcvnyZWrVqsXr1avLly2evkkVEstzy5cvp1q0b165do0KFCvz444+ULFky9SsID4ejR6FMGQUmcWoWY4yxdxFZKSoqCh8fHyIjI/H29rZ3OSIiaTJjxgyef/55rFYrTZo0YdGiReTPnz/1K/h7LiGsVnBxgVmzNGwmDiEzvr8d5pggERFnZozh//7v/xg0aBBWq5XnnnuOFStWpC0A/T2XEFZrwn2rFQYOTFgu4oQUgkREsjmr1cqw/v0ZM2YMAGPHjmXOnDl4eHikbUVHj/4TgBLFx8Ntx2KKOJNsdUyQiIgkFRcXR7+GDfn875nxp1osvFisGKRnAsQyZRKGwG4PQppLSJyYeoJERLKpmzdv0rlNGz7fvBlX4AvgRWPSP4QVFJRwDJCra8J9zSUkTk49QSIi2dCNGzfo0KEDq1evxhP4H9Au8cHEIaz0hJe+faFFi4Tnly6tACROTSFIRCSbuXHjBu3bt2fNmjXkyZ2b72/coPHtJ/I+6BBWUJDCjwgaDhMRyVauX79Ou3btEgJQnjysWLmSxrNnawhLJBOoJ0hEJLOkcVLCxAC0du3ahAC0YgX169eH+vU1hCWSCdQTJCKSGUJCIDgYmjRJ+BkScu+24eFcX7GCJ5s3Z+3ateTNm5eVK1cmBKBEQUHQqJECkEgG0ozRIiIZLTw8IfjceSp6WNjdISYkhOv9+/OkMawD8np6snLtWurVq5eVFYtke5oxWkTEEaR2UsLwcK7370/bxAAErLx1i3rBwVlVqYhTUwgSEcloiZMS3i6ZM7puHDhAO2MIBfIBq4B6VqtmcBbJIgpBIiIZLRWTEt68eZP2Eyeylr97gIC6iW01g7NIltDZYSIimSGFSQlv3rxJx44dWfPzz+Tx9GTFrVvUtVp1+rtIFlMIEhHJLMlMShgTE0OnTp1YuXIluXPnZvmKFTz+0EM6/V3EDhSCRMR+0jiPjqOLjY2lS5cuLF++nFy5cvHjjz/SoEGDhAedYPtFshsdEyQi9pGWeXRygFu3btG1a1e+//57vLy8+P7772nUqJG9yxJxagpBIpL1wsNhwIB/TiO3WtN/ZXQHEBsbS/fu3Vm6dCmenp4sXbqUJ554wt5liTg9hSARyXqpnUcnB7h58yZPPfUU3333HR4eHixZsoTmzZvbuywRQccEiYg9JM6jc+eMyjns1PDo6Gjat2/P2rVr8fLyYsmSJbRo0cLeZYnI39QTJCJZLxXz6Di6yMhIWrRokeRaYApAItmLeoJExD5SmEfH0Z0/f57WrVuzY8cO8ufPz8qVK6lVq5a9yxKROygEiYj9JDOPjqM7duwYrVq14tixY/j5+bFmzRoqV65s77JEJBkaDhMRySBbt26lTp06HDt2jBIlSrBp0yYFIJFsTCFIRCQDfPPNNzRu3JgLFy5QrVo1tmzZQrly5exdloikQCFIROQBxMXFMWLECLp27crNmzdp3bo169evJyAgwN6lich96JggEZH0CA/n7K+/8szUqfz0888AvPrqq0ycOBE3N+1aRRyB/lJFRNIqJIRl/fvTzxjOA7k9PJj75Zd07drV3pWJSBpoOExEcobwcAgNzfRLb1zav5/+/frR/u8A9CiwLS6OrnXrZurrikjGUwgSEceXBRdjtVqthISEUK5+feYAFmA4sB142GrNkZf8EMnpFIJExLFl8sVYjTF8//331KhRg379+nEhMpKKQCjwHuAJOfKSHyLOQCFIRBxbJl2M9fr163z66adUq1aNdu3asWvXLvLly8fkyZPZM2MGDXPwJT9EnIUOjBYRu7t+/ToHDx7k+PHjnDlzhjNnznD16lViY2OJjY3F09OT3LlzkydPHnx9fQkICKBIkSIJNz8/ClgsWIz5Z4Xp7Jm5du0aP/30E0uWLGHJkiVERkYCkCdPHl544QVeeeUV/Pz8Ehq3aZMjL/kh4kwUgkQky509e5a1a9fy008/8csvv3D06FHM7SEmjbzc3Qm8dYuiQFGLhaJPPEHRb74hMDCQokWL4uvri4eHB56XLsGJE1wtVIirefJw5swZjh07xrFjx9i2bRt79+7Feluv0kMPPcTAgQN57rnn/gk/iXLgJT9EnI3FPMiexwFFRUXh4+NDZGQk3t7e9i5HxGlcvHiRb7/9lnnz5vHz3/Pq3M7f359y5coRGBhIQEAA+fPnx8PDA3d3d2JjY4mOjiY6OpqLFy/aeosiIiK4dOlShtZZokQJ2rdvT8eOHalfvz4uLjpqQCQ7yIzvb/UEiUim2r17N1OnTuXrr78mNjbWtrxKlSo0bdqUxo0bU7VqVfz9/dO1/ps3b/LXX3/x119/cfr0advt9vuRly8Te/kyMYAVyAd4A4Uee4xSFSpQunRpHn30UerWrUuxYsUyYrNFxAEoBIlIpti0aRNjxowhNDTUtqxSpUo8/fTTdO/ePcPChpeXFw899BAPPfTQvRuFhiacPn+nqVOhUaMMqUNEHI9CkIhkqB07dvDGG2+watUqANzc3OjSpQsvvfQStWrVSvsKw8MTzgArUyb9x+CUKQMuLknPItNp7SJOT4PdIpIhIiIi6N27NzVq1GDVqlW4ubkxYMAAjh8/zvz589MXgDJqEsSgIJg1KyH4gE5rFxFAB0bbuxwRh3fr1i2mTZvG2LFjuXr1KhaLhaeffppx48ZRqlSp9K84PDwh+NzZexMWlv7wEh6u09pFHJQOjBaRbGXHjh08++yzHDhwAIAaNWowbdo0atas+eArT2kSxPQGmNSc1p4Rw28i4hA0HCYiaRYTE8Prr79O7dq1OXDgAAULFmT27Nls3bo1YwIQ/HMcz+0y+zieLLgGmYhkHw4VgsaNG4fFYklyCwgIsHdZIk5l+/btVK1alUmTJhEfH0/37t05fPgw/fr1y9g5dbL6OJ5MvgaZiGQ/Djcc9vDDD/PTTz/Z7rsm7iBF5N4yYIgnJiaG8ePH8+677xIfH09hPz8+mTmTp556KlNeD4C+faFFi6w5jiczht9EJFtzuBDk5uam3h+RtAgJ+aeHw8UloXelb980rWL79u306dOHQ4cOAdAT+OjiRQpevpwpr5dEVl2eQqfRizgdhxoOAzh69CiBgYGULFmS7t2788cff6TYPiYmhqioqCQ3EafxgEM8N2/eZNSoUdSuXZtDhw7hDywG5gEFjbl7XY48pKTT6EWcjkOFoFq1avHFF1+watUqZs+eTUREBHXr1uXixYv3fM6kSZPw8fGx3TQlvjiVlIZ47uPXX3+latWq/Oc//8FqtdLziSc4CHRIaV0P8HrZQt++Cafgh4Ym/HyQHiwRyfYcep6g6OhoSpUqxWuvvcawYcOSbRMTE0NMTIztflRUFMWKFdM8QeIc0jHXzo0bN3jzzTf54IMPsFqt+Pv7M2PGDDpUr37/dWXG3D4iImTOPEEO1RN0pzx58vDoo49y9OjRe7bx9PTE29s7yU3EaaRxiGfTpk1UqlSJyZMnY7Va+de//sWhQ4fo0KFD6talISURcSAO3RMUExNDqVKlGDBgAGPGjEnVczRjtDil+8yUfOnSJd544w1mzJiBMYbAwEBmzpxJ27Zt07yuVLcREUkDp58xevjw4Tz55JMUL16cc+fOMWHCBKKioujdu7e9SxPJ3u5xhpXVauWzzz5jxIgRXLhwAYBnn32WKVOmkD9//jStK81tRETszKFCUHh4OD169ODChQsUKlSI2rVrs3XrVoKDg+1dmkgCB7rkwubNmxk+fDhbtmwBoGLFikyfPp1GjRrZtzARkSziUCFowYIF9i5B5N4yen6cTHLw4EFef/11li1bBkDevHkZN24cL774Iu7u7nauTkQk6zj0gdEi2YYDzI+zY8cOunXrxmOPPcayZctwcXGhX79+HD58mFdeeUUBSEScjkP1BIlkW9n0kguxsbH8+OOPTJ06lQ0bNtiWd+rUiQkTJlC+fPl/GjvQUJ6ISEZQCBLJCGm55EImhw2r1cq2bdv43//+x5dffmk74NnNzY2ePXsyfPhwHn300aRPcpChPBGRjKQQJJIREufHGTgwoQfoXvPjZELYMMZw/PhxfvnlFzZu3MgPP/zAuXPnbI8HBATQu3dvnn/++eRnTL/XUF6LFuoREpEczaHnCUoPzRMkmSql+XEeYDblW7duce7cOSIiIjh79ixhYWEcPnyYw3v2sPfAAc7dcSFTb29vWrduzTPPPEOLFi1wc0vh/zuhodCkSfLLdaaYiGQTTj9PkEi2d9v8ODExMYSFhREeHs6FCxe4sHkzF6xWLgE3gJvAzfh4bnTtys08ebhx44btdvPmzST3Y2NjU3xZD6BaqVLU69iRFi1a0KBBAzw8PFJXs66eLiJOSiFI5AFZrVaOHj3Kzp072bFjB3v37uXYsWOcOnWKVHW0/j1Pz/24urri7+9PQEAAQQULUn7NGsoDFYDKgFdYGLz0UtqHsFI7lCciksMoBImkkTGG33//nZ9++omffvqJ0NBQIiMjk22bJ08egoODKVSoEH5+fvhduECBjRvJbQy5LBa8evQgV5MmeHl5kStXLtvPXGvW4PWf/5Dr73a5p0zB98UXcXH5e1aL0FBYsybpiz3I2Wh9+yYcA6RLXYiIE9ExQSKpYIxh27ZtfPvttyxatIgTJ04kedzLy4sqVapQrVo1qlatSrly5ShVqhSFCxfGYrEkXdn9rquVmmOHdLV2EXEyOiZIJIsdOHCAuXPn8s0333Dq1Cnbcg8PD+rVq0fTpk1p2rQpVatWTfng49vd77paqZlzSENYIiIPTCFI5A7Xrl1j4cKFzJkzh61bt9qW582bl7Zt29K5c2datmxJnjx5MqeA1B6orCEsEZEHohCU2TQLr/2k4b03xrBjxw5mz57N119/zbVr14CECQaffPJJevXqRYsWLciVK1fm152WXh5drV1EJN0UgjKTZuFNu4wKjal87y9fvsy8efOYPXs2+/btsy0vU6YM/fr1o1evXgQEBKS/jvRSL4+ISKbTgdGZRQeupl1Ghcb7vPfGGDZs2EBISAjffvstN2/eBMDT05POnTvTv39/GjRokPSAZvXoiYjYlQ6MdiTZ9IKa2VZGXrrhHu/96S1b+Oz335k7dy7Hjx+3PfQo0B94JjaWAo0bQ8OGSZ+rHj0RkRxJPUGZRT1BaZORl2647b2/AfwIzAVWurhg/fvzyJcvH92ffJJ+X39NDWOw9fnoVHQRkWwpM76/XTJkLXK3xINbXV0T7usU5pQlnhF1u3ReuiGmUCGWDR7M0xYLhYEuwHISZnauX78+n332GWfOnGFWv37UvD0AwT+9dYlS6tETERGHpuGwzKSDW1PvAee9OX36NCtWrGDFihWsWbOGq1ev2h4LDgqixzPP8Oyzz1K2bNl/npSaU9F1XS0RkRxLISiz6RTm1EtlaLx+/Tr79u1j165d7Nq1i19//ZUDBw4kaVO0aFG6dOlC9+7dqVmz5t2zNkPqgpcmJRQRybF0TJBka1evXmXPnj22wLNz505+++0327E9iSwWC7Vq1aJVq1a0atWKatWq/XOdrfu532UsUttGREQyjc4OE8d2n9PML1++zO7du9m5c6ct9Bw9ejTZK7EXBqr9fasyaBAN3noLPz+/9NWVmt469eiJiOQ4CkGSNe44zfzaRx+x85FH2LZtG9u2bWPnzp13XZQ0UbFixahatWrCrXhxqj73HEVuP6B51ix4/fUs2xQREckZFIIk84WHE92/PxuMYQ2wzmrlwJAhWJNp+tBDD9kCT7Vq1ahSpQqFChX6p0FoKNzZM6T5l0REJB0UgpxVFsyAfPbsWb777ju+nT2bn43h1h2PBxUqRK0GDahZsyY1atSgcuXKFChQIOWV6mwtERHJIE4bgn777TcGDRrE2bNnGTt2LAMGDLB3SfeXxdfVSo/Y2FgWLFjA559/zvr165McwFwCaAY0BR53cSFw1660b4fO1hIRkQzitGeHlS5dmmO3TXi3dOlS2rVrl+X17Nmzh6+//potW7Zw/Phxbt26RcGCBalQoQJPPPEEbdu2JTg4OMuuq5Vely9fZubMmXz00UecOXPGtrxGjRp07dqV9rGxlH7zTSxW6z/B5UGCl87WEhFxKplxdpjThiAAX19fmjVrxsKFCwkODua3334jV65cWVLHgQMHePXVV1m5cuV927Zo2JAXNm6kdUqXd0itjLw8BXDixAk+/PBDQkJCiI6OBiAwMJDBgwfTs2dPSpYs+U9jBRcREUknnSKfwfr378+YMWP45ZdfOHnyJDNnzmTo0KGZ+prGGKZOncqIESOIjY3Fzc2N9u3b065dOypUqICXlxcRERHs2LGDlStXsnHjRlZt2MAqoBbwFglDSpb0HgycQcfU/Prrr7z//vt89913tiGvxx57jFdeeYXu3bvj4eFx95N0mrmIiGQnxslERkYawABm69atxhhjZsyYYQDz0EMPmbi4uEx77Vu3bpl+/frZXr9t27bm2LFjKT7n+PHjZvjAgSb3388BTEMwW11cjDl1Kn2FzJljjKurMZDwc86cVD0tLi7OfPfdd6ZevXq2WgDTokULs2bNGmO1WtNXj4iIyH0kfn9HRkZm2DqdNgTlyZPH3Lp1yxhjTHR0tPH19TWAWbJkSaa8blxcnOnevbsBjIuLi5k6dWqaQkPE5MlmqMViPG8LH506dTKHDx9OX0GnThkTGpqqIBUdHW2mT59uSpcubXttd3d306dPH7Nv3770vb6IiEgaKARlgMQ3sUGDBkmWjxw50gCmcePGGf6aVqvVDB482BYeFi9enL4VnTplTi5YYPp06WIsFosBjKurqxk4cKD566+/MrRmY4w5ffq0eePFF01Bb29b+ClQoIAZNWqUOX36dIa/noiIyL0oBGWAxDdx4MCBSZb/+eefxsXFxQDm8Pr1xqxbl/7hpju8//77BjAWi8UsWLAgQ9a5f/9+8+STT9rCSa5cuczrr79uLl269EDrtVqtZtOmTaZbt27GzdXVtv6SYD7q0cNcvXo1Q+oXERFJi8wIQam8wmTOU7Zs2ST3ixUrRps2bQCY1ahRwhlUiaemP4Bt27YxcuRIAD788EO6dev2QOtL9Mgjj7Bs2TI2btxInTp1uHHjBhMnTqRo0aI8160bmz76iPiTJ1O1LmMMhw8fZty4cVSoUIHHH3+chQsXEhcfz+PAN8BR4IX//Y+8V65kSP0iIiL25rSnyH///fe0bds2yWM/fv45bfv0wRc4DXjBA82hExkZSZUqVThx4gRdunRh4cKFWCyW+z8xjYwxLF26lLFjx7Jv3z7b8oJA85o1qda1K+XLl8fPzw8vLy9iYmL466+/OHbsGHv27GHDhg2Eh4fbnufl5UXPxo0ZsmIFVe58seROpc+C2adFRMS56RT5DFQumTewZdGiFAf+BL4FnoF0X5fKGEP//v05ceIEJUuWZPbs2ZkSgAAsFgsdOnSgfbVqbAkOZqYxLAMuAl9v28bX27bddx3u7u40a9aMHj160K5dO7yjopKfVPHOU+kzcfZpERGRzOS0Iahww4YwZ06SL2zX8uXpZ7Ewxhhm8ncISud1qWbPns0333yDm5sbCxYssE3QmJksx45R1xjqAnHAZmA9sL9hQ45HRXHp0iVu3ryJl5cXhQoVonTp0pQvX57HH3+cOnXqkDt37n9W5u19/8tThIf/E4Ag4efAgdCihXqEREQk23Pa4bBIwDuZoa6/Jk+m+PDhxAMHXFx4OB09G/v376dmzZrcvHmT999/n1deeSVDt+GeMuOSGCnN8pzBs0+LiIjcS2YMhzntgdHAP0Ndtwl85RXatWwJwMzevdMcgKKjo+nWrRs3b96kVatWvPzyyxlW7n0lXlzU1TXhfkZcXDQoKCHQJLeOxNmnb6cruouIiINw7hB0jy/sgX9fOuOL777j6tWraVrliy++yG+//UZgYCCff/45LneGhHsJD0/oQbntAOV06ds3oecnNDThZ2Yen5MZoUtERCSLOG8IcnG55xd2s2bNKFu2LJGRkUyfPj3Vq5w/fz6ffvopFouFefPmUahQodQ9MSQkYRgrg07LT7H3JqNlZegSERHJQM57TNChQ3hXqHDPdl9++SW9evXCz8+PEydOkDdv3hTXe+jQIWrUqMH169cZM2YM48ePT11BmXEcj4iISA6jY4IyUtGiKT7co0cPSpcuzYULF5gyZUqKba9evUqnTp24fv06TZs2ZcyYMamv4+jRpAEIkj1WSURERDKWQ4agjz/+mJIlS+Ll5UW1atX4+eefM/w13NzcmDBhAgATJ07k6NGjybaLjY2lc+fOHD58mKJFizJ//nxcE4+RSQ0dXCwiImIXDheCFi5cyNChQxk9ejS7d++mfv36tGrVij///DPDX6tr1640bdqUmJgYunTpQnR0dJLHb9y4QY8ePVi9ejW5c+fmu+++S/1xQIl0cLGIiIhdONwxQbVq1aJq1ap88skntmUVKlSgQ4cOTJo06b7PT+uY4unTp6lSpQrnz5+nTp06fPnll5QqVYpdu3bx73//m+3bt+Pu7s6yZcto+fep9emS0nw8IiIiTs7pL5sRGxvLzp07bRckTdS8eXM2b96c7HNiYmKIiYmx3Y+KikrTaxYtWpTvv/+eli1bsmXLFkqXLk2BAgW4fPkyAAUKFGDx4sU0bNgwjVtzh6AghR8REZEs5FDDYRcuXCA+Ph5/f/8ky/39/YmIiEj2OZMmTcLHx8d2K1asWJpft1atWvz666+0aNECgMuXL+Pu7k737t3Zs2fPgwcgERERyXIO1ROU6M4LkRpj7nlx0lGjRjFs2DDb/aioqHQFobJly7Jy5UrOnz/PuXPnKFasWIZ1x4mIiEjWc6gQ5Ofnh6ur6129PufOnburdyiRp6cnnp6eGVZDoUKF0n7ws4iIiGQ7DjUc5uHhQbVq1VizZk2S5WvWrKFu3bp2qkpEREQckUP1BAEMGzaMf/3rX1SvXp06deowa9Ys/vzzT/7973/buzQRERFxIA4Xgrp168bFixd56623OHPmDI888gjLly8nODjY3qWJiIiIA3G4eYIeVGbMMyAiIiKZS9cOExEREckgCkEPIjwcQkMTfoqIiIhDUQhKr5AQCA6GJk0SfoaE2LsiERERSQOFoPQID4cBA8BqTbhvtcLAgeoREhERcSAKQelx9Og/AShRfHzCBVBFRETEISgEpUeZMuByx1vn6ppwBXgRERFxCApB6REUBLNmJQQfSPg5c6auAi8iIuJAHG6yxGyjb19o0SJhCKx0aQUgERERB6MQ9CCCghR+REREHJSGw0RERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQcKgSVKFECi8WS5DZy5Eh7lyUiIiIOyM3eBaTVW2+9Rf/+/W338+bNa8dqRERExFE5XAjKly8fAQEB9i5DREREHJxDDYcBvPPOOxQsWJDKlSvz9ttvExsba++SRERExAE5VE/QSy+9RNWqVSlQoADbtm1j1KhRnDhxgjlz5tzzOTExMcTExNjuR0ZGAhAVFZXp9YqIiEjGSPzeNsZk3EqNnY0dO9YAKd62b9+e7HO//fZbA5gLFy480Pp100033XTTTTfHuB0/fjzDMojFmIyMVGl34cIFLly4kGKbEiVK4OXlddfy06dPExQUxNatW6lVq1ayz72zJ+jKlSsEBwfz559/4uPj82DFO5CoqCiKFSvGqVOn8Pb2tnc5WUbbre12BtpubbcziIyMpHjx4ly+fJn8+fNnyDrtPhzm5+eHn59fup67e/duAIoUKXLPNp6ennh6et613MfHx6l+eRJ5e3tru52Ittu5aLudi7Nut4tLxh3ObPcQlFpbtmxh69atNG7cGB8fH7Zv387LL79Mu3btKF68uL3LExEREQfjMCHI09OThQsXMn78eGJiYggODqZ///689tpr9i5NREREHJDDhKCqVauydevWB16Pp6cnY8eOTXaILCfTdmu7nYG2W9vtDLTdGbfddj8wWkRERMQeHG6yRBEREZGMoBAkIiIiTkkhSERERJySQpCIiIg4pRwZgj7++GNKliyJl5cX1apV4+eff06x/YYNG6hWrRpeXl489NBDzJgxI4sqzVhp2e7vvvuOZs2aUahQIby9valTpw6rVq3KwmozTlo/70S//PILbm5uVK5cOXMLzCRp3e6YmBhGjx5NcHAwnp6elCpVik8//TSLqs04ad3uefPmUalSJXLnzk2RIkV49tlnuXjxYhZV++A2btzIk08+SWBgIBaLhSVLltz3OTlhn5bW7c4p+7T0fN6JHHmflp7tzoh9Wo4LQQsXLmTo0KGMHj2a3bt3U79+fVq1asWff/6ZbPsTJ07QunVr6tevz+7du3n99dd58cUXWbRoURZX/mDSut0bN26kWbNmLF++nJ07d9K4cWOefPJJ2yzcjiKt250oMjKSXr168cQTT2RRpRkrPdvdtWtX1q5dS0hICEeOHOHrr7+mfPnyWVj1g0vrdm/atIlevXrRt29fDh48yDfffMP27dvp169fFleeftHR0VSqVIlp06alqn1O2aeldbtzyj4trdudyNH3aenZ7gzZp2XYVciyiZo1a5p///vfSZaVL1/ejBw5Mtn2r732milfvnySZQMHDjS1a9fOtBozQ1q3OzkVK1Y048ePz+jSMlV6t7tbt27mjTfeMGPHjjWVKlXKxAozR1q3e8WKFcbHx8dcvHgxK8rLNGnd7vfee8889NBDSZZ99NFHJigoKNNqzEyAWbx4cYptcso+7Xap2e7kOOI+7XZp2W5H36fdLjXbnVH7tBzVExQbG8vOnTtp3rx5kuXNmzdn8+bNyT5ny5Ytd7Vv0aIFO3bs4NatW5lWa0ZKz3bfyWq1cvXqVXx9fTOjxEyR3u2eO3cux48fZ+zYsZldYqZIz3YvW7aM6tWr8+6771K0aFHKli3L8OHDuXHjRlaUnCHSs91169YlPDyc5cuXY4zh7NmzfPvtt7Rp0yYrSraLnLBPywiOuE9LL0ffp6VHRu3THGbG6NS4cOEC8fHx+Pv7J1nu7+9PREREss+JiIhItn1cXBwXLlxI8eKs2UV6tvtOkydPJjo6mq5du2ZGiZkiPdt99OhRRo4cyc8//4ybm2P++qdnu//44w82bdqEl5cXixcv5sKFCwwePJhLly45zHFB6dnuunXrMm/ePLp168bNmzeJi4ujXbt2/Pe//82Kku0iJ+zTMoIj7tPSIyfs09Ijo/ZpOaonKJHFYkly3xhz17L7tU9ueXaX1u1O9PXXXzNu3DgWLlxI4cKFM6u8TJPa7Y6Pj6dnz56MHz+esmXLZlV5mSYtn7fVasVisTBv3jxq1qxJ69atmTJlCp999plD9QZB2rb70KFDvPjii4wZM4adO3eycuVKTpw4wb///e+sKNVucso+Lb0cfZ+WWjltn5YWGbVPy1Gx0c/PD1dX17v+V3ju3Lm7/meUKCAgINn2bm5uFCxYMNNqzUjp2e5ECxcupG/fvnzzzTc0bdo0M8vMcGnd7qtXr7Jjxw52797NkCFDgIQ/JGMMbm5urF69miZNmmRJ7Q8iPZ93kSJFKFq0KD4+PrZlFSpUwBhDeHg4ZcqUydSaM0J6tnvSpEnUq1ePV199FYDHHnuMPHnyUL9+fSZMmJAje0Vywj7tQTjyPi2tcso+LT0yap+Wo3qCPDw8qFatGmvWrEmyfM2aNdStWzfZ59SpU+eu9qtXr6Z69eq4u7tnWq0ZKT3bDQn/W+rTpw/z5893yGMk0rrd3t7e7N+/nz179thu//73vylXrhx79uyhVq1aWVX6A0nP512vXj3++usvrl27Zlv2+++/4+LiQlBQUKbWm1HSs93Xr1/HxSXpbs7V1RX4p3ckp8kJ+7T0cvR9WlrllH1aemTYPu2BDqvOhhYsWGDc3d1NSEiIOXTokBk6dKjJkyePCQsLM8YYM3LkSPOvf/3L1v6PP/4wuXPnNi+//LI5dOiQCQkJMe7u7ubbb7+11yakS1q3e/78+cbNzc1Mnz7dnDlzxna7cuWKvTYhXdK63Xdy1DMp0rrdV69eNUFBQaZz587m4MGDZsOGDaZMmTKmX79+9tqEdEnrds+dO9e4ubmZjz/+2Bw/ftxs2rTJVK9e3dSsWdNem5BmV69eNbt37za7d+82gJkyZYrZvXu3OXnypDEm5+7T0rrdOWWfltbtvpOj7tPSut0ZtU/LcSHIGGOmT59ugoODjYeHh6latarZsGGD7bHevXubhg0bJmm/fv16U6VKFePh4WFKlChhPvnkkyyuOGOkZbsbNmxogLtuvXv3zvrCH1BaP+/bOeoOw5i0b/dvv/1mmjZtanLlymWCgoLMsGHDzPXr17O46geX1u3+6KOPTMWKFU2uXLlMkSJFzNNPP23Cw8OzuOr0Cw0NTfFvNafu09K63Tlln5aez/t2jrpPS892Z8Q+zWJMDu0TFhEREUlBjjomSERERCS1FIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiUiO8NZbb/Hoo4+SJ08e/P39GTRoELdu3bJ3WSKSjbnZuwARkQdljCE+Pp6ZM2dStGhRDh06RK9evXjssccYNGiQvcsTkWxKF1AVkRypZ8+eFCpUiKlTp9q7FBHJpjQcJiIO7+TJkwwZMoRHHnmEAgUKkDdvXv73v/8RFBRk79JEJBtTCBIRh3bhwgVq1qzJhQsXmDJlCps2bWLLli24urpSuXJle5cnItmYjgkSEYe2fPly4uLi+Prrr7FYLABMnz6d2NhYhSARSZFCkIg4NF9fX6Kioli2bBkVK1bk+++/Z9KkSRQtWpRChQrZuzwRycZ0YLSIODRjDIMGDWL+/PnkypWLZ555hps3b3Ly5El++OEHe5cnItmYQpCIiIg4JR0YLSIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFK/w+xCjEpQ3KK7AAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdkUlEQVR4nO3dfXzN9f/H8cfZNWNjho0xykZXUomQXF8nlIsoFzVMRFK5rFz8KiX5JnI9RCmllEpYLnNViJLK9WSxXG8MYzvv3x9rJ7Nhm7OdnZ3n/XY7tzmf8z7nvD7nbOc8vd/vz/tjMcYYRERERFyMm6MLEBEREXEEhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSBxqPr161O/fn1Hl5FjPXr0oEiRIllqW6FCBXr06JGr9VgsFkaNGpWrz3Ej58+fZ9SoUaxZs8ahdTiLlStXUr16dXx9fbFYLHz55ZfMnTsXi8VCTEyMrd2CBQt49913c6WGl19+mfLly+Ph4UGxYsWyff8ePXpQoUIFu9eVnxw9epSXX36ZWrVqERgYiJ+fH/fddx8zZswgJSUlXdsdO3bQqlUrypcvT6FChQgICKBWrVp8+OGHDqpersXD0QWIa5syZYqjS8gzixcvxs/Pz9Fl5Lrz588zevRoAKcOuHnBGEPHjh0JDw9nyZIl+Pr6UrlyZZKTk9m0aRPBwcG2tgsWLOC3335j4MCBdq3hq6++4vXXX2fEiBG0aNECb29vuz5+QbFt2zbmzZtHt27deOWVV/D09OS7777jmWeeYfPmzcyePdvW9syZM5QrV47OnTtTtmxZEhMT+eijj+jatSsxMTG8/PLLDtwTuZJCkDjU7bff7ugS8sw999zj6BLEji5cuICPjw8WiyXHj3HkyBFOnTpFu3btaNSoUbrbSpYsebMlZslvv/0GwIABAyhVqlSePKe92OM9yKo6deqwf/9+PD09bduaNGnCpUuXeP/99xk9ejTlypUDMu/hfvjhhzl48CAzZsxQCMpHNBwmWTZq1CgsFgu7du2ic+fO+Pv7U7p0aZ5++mni4+PTtb148SLDhg2jYsWKeHl5UbZsWfr168eZM2fStcvsw2Lq1KncfffdFClShKJFi1KlShWGDx8OQExMDB4eHowdOzZDfevWrcNisfDZZ59ddz/OnDnDCy+8wC233IK3tzelSpWiZcuW/PnnnwCsWbMGi8WSYTgnJiYGi8XC3LlzMzzmrl27aNSoEb6+vpQsWZJnn32W8+fPp2uT2XDYjWqxh7i4OCIjIwkJCcHLy4uKFSsyevRokpOT07UbPXo0NWvWJCAgAD8/P+69916ioqK4+hzLq1aton79+pQoUYJChQpRvnx5HnvsMc6fP09MTIzty3v06NFYLBYsFssNhwHPnz/Piy++SMWKFfHx8SEgIIDq1avz8ccfp2s3d+5cKleujLe3N7fddhvz5s3LMBSTnfdv69atPP7441SoUIFChQpRoUIFOnfuzKFDhzI8r8ViYcWKFTz99NOULFmSwoULk5SUBMDChQupVasWvr6+FClShGbNmrF9+/br7vOoUaMICQkBYMiQIVgsFtt+XD0cVr9+fb799lsOHTpke01v9MVvtVoZN24cVapUsf1udevWjdjYWFubChUq2L6QS5cunaXh1Mzeg8xcunSJ1157zfb8JUuW5KmnnuL48ePp2iUlJfHCCy8QFBRE4cKFeeihh9i2bVuGvxd7vQdbt27lkUceISAgAB8fH+655x4+/fTT6+4zQPHixdMFoDQ1atQASPe6XktgYCAeHup7yE/0bki2PfbYY3Tq1ImIiAh27tzJsGHDAGzdwcYY2rZty8qVKxk2bBh169bl119/ZeTIkWzatIlNmzZds8v9k08+oW/fvvTv35/x48fj5ubGvn37+P3334HUD+1HHnmEadOmMXjwYNzd3W33nTx5MmXKlKFdu3bXrP3s2bM8+OCDxMTEMGTIEGrWrMm5c+dYt24dR48epUqVKtl+PS5fvkzLli2JjIxk6NChbNy4kddee41Dhw7x9ddf33QtPXr04IMPPuDgwYPZnncRFxdHjRo1cHNz49VXX+XWW29l06ZNvPbaa8TExDBnzhxb25iYGCIjIylfvjwAmzdvpn///vz999+8+uqrtjatWrWibt26zJ49m2LFivH333+zbNkyLl26RHBwMMuWLaN58+ZERETQs2dP4Ma9GoMGDWL+/Pm89tpr3HPPPSQmJvLbb79x8uRJW5u5c+fy1FNP0aZNG9555x3i4+MZNWoUSUlJuLnl7P9zMTExVK5cmccff5yAgACOHj3K1KlTuf/++/n9998JDAxM1/7pp5+mVatWzJ8/n8TERDw9PXnjjTd4+eWXeeqpp3j55Ze5dOkSb7/9NnXr1uWnn366Zm9nz549ufvuu3n00Ufp378/Xbp0uebfxZQpU+jduzf79+9n8eLFWdq3Z555hhkzZvDss8/y8MMPExMTwyuvvMKaNWv4+eefCQwMZPHixbz//vtERUWxbNky/P39bcEsM1l9D6xWK23atOGHH35g8ODB1K5dm0OHDjFy5Ejq16/P1q1bKVSoEABPPfUUCxcuZPDgwTRs2JDff/+ddu3akZCQkGkNN/MerF69mubNm1OzZk2mTZuGv78/n3zyCZ06deL8+fM5mrO3atUqPDw8CA8Pz3Cb1WrFarVy+vRpPvvsM5YvX87kyZOz/RySi4xIFo0cOdIAZty4cem29+3b1/j4+Bir1WqMMWbZsmWZtlu4cKEBzIwZM2zb6tWrZ+rVq2e7/uyzz5pixYpdt47Vq1cbwCxevNi27e+//zYeHh5m9OjR173vmDFjDGCio6Nv+PirV69Ot/3gwYMGMHPmzLFt6969uwHMxIkT07V9/fXXDWDWr19v2xYaGmq6d++erVqMMebpp5827u7uJiYm5rrtjDEGMCNHjrRdj4yMNEWKFDGHDh1K1278+PEGMLt27cr0cVJSUszly5fNmDFjTIkSJWzv7aJFiwxgduzYcc0ajh8/nqGOG7nzzjtN27Ztr3l7SkqKKVOmjLn33ntttRhjTExMjPH09DShoaG2bdl5/66WnJxszp07Z3x9fdO9p3PmzDGA6datW7r2f/31l/Hw8DD9+/dPt/3s2bMmKCjIdOzY8Tp7/V9Nb7/9drrtac938OBB27ZWrVql28/r+eOPPwxg+vbtm277jz/+aAAzfPhw27a0v+vjx49f9zGz8x58/PHHBjCff/55usfYsmWLAcyUKVOMMcbs2rXLAGbIkCHp2qXd/8q/F3u8B1WqVDH33HOPuXz5crq2Dz/8sAkODjYpKSnXfQ2utnz5cuPm5maef/75TG+PjIw0gAGMl5eXbb8l/9BwmGTbI488ku561apVuXjxIseOHQNS/2cEZPhfVYcOHfD19WXlypXXfOwaNWpw5swZOnfuzFdffcWJEycytKlfvz53330377//vm3btGnTsFgs9O7d+7q1f/fdd4SHh9O4cePrtsuuJ554It31Ll26AKn/87zZWqKiokhOTiY0NDTbdX3zzTc0aNCAMmXKkJycbLu0aNECgLVr19rarlq1isaNG+Pv74+7uzuenp68+uqrnDx50vbeVqtWDS8vL3r37s0HH3zAgQMHslXPlTUkJyfbhtpq1KjBd999x9ChQ1mzZg0XLlxId7/du3dz5MgRunTpkm4YKDQ0lNq1a2f7dUlz7tw5hgwZQqVKlfDw8MDDw4MiRYqQmJjIH3/8kaH9Y489lu768uXLSU5Oplu3bun2y8fHh3r16jnsCLm037ur/wZr1KjBbbfddt2/wWvJznvwzTffUKxYMVq3bp3udalWrRpBQUG21yXt969jx47p7t++fftrDhvl9D3Yt28ff/75p+1v9cq2LVu25OjRo+zevTvLr8fPP/9Mx44deeCBBzIdngcYPnw4W7Zs4dtvv+Xpp5/m2WefZfz48Vl+Dsl9CkGSbSVKlEh3Pa0LP+2L6+TJk3h4eGQYArFYLAQFBaUb4rha165dmT17NocOHeKxxx6jVKlS1KxZk+jo6HTtBgwYwMqVK9m9ezeXL19m5syZtG/fnqCgoOvWfvz48et29+eEh4dHhtckrY7r7Wtu1HK1f/75h6+//hpPT890lzvuuAPAFjJ/+uknmjZtCsDMmTPZsGEDW7ZsYcSIEcB/7+2tt97K999/T6lSpejXrx+33nort956KxMnTrxhLTExMRnqSPsSfO+99xgyZAhffvklDRo0ICAggLZt27J3717gv9cxs/f3Ru/59XTp0oXJkyfTs2dPli9fzk8//cSWLVsoWbJkhiAGpDtaC1JfX4D7778/w74tXLgw0xCfF9Jer6vrBShTpsx1fy9v9JhZeQ/++ecfzpw5g5eXV4bXJS4uzva6pD1m6dKl090/s7+pNDl9D9Lavfjiixna9e3bFyDL79f27dtp0qQJYWFhLF269JrDmOXLl6d69eq0bNmSqVOn0rt3b4YNG5ZhXpQ4juYEid2VKFGC5ORkjh8/ni4IGWOIi4vj/vvvv+79n3rqKZ566ikSExNZt24dI0eO5OGHH2bPnj223pAuXbowZMgQ3n//fR544AHi4uLo16/fDWsrWbLkDScw+vj4ANgmXKa51gdkcnIyJ0+eTPehHRcXB2QMjNmt5WYFBgZStWpVXn/99UxvL1OmDJA6F8vT05NvvvnGtv8AX375ZYb71K1bl7p165KSksLWrVuZNGkSAwcOpHTp0jz++OPXrKVMmTJs2bIl3bbKlSsD4Ovry+jRoxk9ejT//POPrVeodevW/Pnnn7bXMe11vdLV27L6/sXHx/PNN98wcuRIhg4datuelJTEqVOnMt2Hqycjp80ZWrRoUY566nJL2ut19OjRDEH7yJEjGeY6Zecxs/IeBAYGUqJECZYtW5bpYxUtWjTdY/7zzz+ULVvWdnva31RmcvoepLUbNmwYjz76aKZt0n4fr2f79u00btyY0NBQVqxYgb+//w3vk6ZGjRpMmzaNAwcO5NnRf3J96gkSu0s71PfqhcE+//xzEhMTMxwKfC2+vr60aNGCESNGcOnSJXbt2mW7zcfHxzYkM2HCBKpVq0adOnVu+JgtWrRgz549tiG7zKRNPv7111/TbV+yZMk17/PRRx+lu75gwQLg+uvkZKWWm/Xwww/z22+/ceutt1K9evUMl7QQZLFY8PDwSDfR/MKFC8yfP/+aj+3u7k7NmjVtw5I///wzkLFnMI2Xl1eG50/7MrxS6dKl6dGjB507d2b37t2cP3+eypUrExwczMcff5zuaLVDhw6xcePGdPfP6vtnsVgwxmT4X/ysWbMyLH53Lc2aNcPDw4P9+/dn+vpWr149S4+TFd7e3pn2TmWmYcOGQMa/wS1btvDHH39k+W/wStl5Dx5++GFOnjxJSkpKpq9JWth46KGHgNQju660aNGiDEcvXktW34PKlSsTFhbGL7/8cs12mf0+XmnHjh00btyYkJAQoqOjKV68eJZqTLN69Wrc3Ny45ZZbsnU/yT3qCRK7a9KkCc2aNWPIkCEkJCRQp04d29Fh99xzD127dr3mfXv16kWhQoWoU6cOwcHBxMXFMXbsWPz9/TP0IPXt25dx48axbds2Zs2alaXaBg4cyMKFC2nTpg1Dhw6lRo0aXLhwgbVr1/Lwww/ToEEDgoKCaNy4MWPHjqV48eKEhoaycuVKvvjii0wf08vLi3feeYdz585x//33244Oa9GiBQ8++OBN1QIQERHBBx98wP79+7Pd2zBmzBiio6OpXbs2AwYMoHLlyly8eJGYmBiWLl3KtGnTCAkJoVWrVkyYMIEuXbrQu3dvTp48yfjx4zMEhGnTprFq1SrbargXL160HRWYNrepaNGihIaG8tVXX9GoUSMCAgIIDAy87pFtNWvW5OGHH6Zq1aoUL16cP/74g/nz51OrVi0KFy4MwP/93//Rs2dP2rVrR69evThz5gyjRo3KMBST1ffPz8+Phx56iLfffttW39q1a4mKisryqskVKlRgzJgxjBgxggMHDtC8eXOKFy/OP//8w08//WTr4bKHu+66iy+++IKpU6dy33334ebmds2QVblyZXr37s2kSZNwc3OjRYsWtqPDypUrx/PPP5/t53dzc8vye/D444/z0Ucf0bJlS5577jlq1KiBp6cnsbGxrF69mjZt2tCuXTvuuOMOOnfuzDvvvIO7uzsNGzZk165dvPPOO/j7+2fpqL/svAfTp0+nRYsWNGvWjB49elC2bFlOnTrFH3/8wc8//3zd5TV2795t+x1//fXX2bt3r224FlKHitN6d3r37o2fnx81atSgdOnSnDhxgs8++4yFCxfy0ksvqRcoP3HotGxxKtc6iiSzI1kuXLhghgwZYkJDQ42np6cJDg42zzzzjDl9+nS6+159dNgHH3xgGjRoYEqXLm28vLxMmTJlTMeOHc2vv/6aaU3169c3AQEB5vz581nej9OnT5vnnnvOlC9f3nh6eppSpUqZVq1amT///NPW5ujRo6Z9+/YmICDA+Pv7myeffNJs3bo106PDfH19za+//mrq169vChUqZAICAswzzzxjzp07l+55rz46LKu1pB2BduXrey1kclTW8ePHzYABA0zFihWNp6enCQgIMPfdd58ZMWJEuhpnz55tKleubLy9vc0tt9xixo4da6KiotI996ZNm0y7du1MaGio8fb2NiVKlDD16tUzS5YsSfec33//vbnnnnuMt7d3hqN8MjN06FBTvXp1U7x4cdvzP//88+bEiRPp2s2aNcuEhYUZLy8vEx4ebmbPnm26d++e4aiprL5/sbGx5rHHHjPFixc3RYsWNc2bNze//fZbhvcq7Xd8y5Ytmdb/5ZdfmgYNGhg/Pz/j7e1tQkNDTfv27c33339/3f3OztFhp06dMu3btzfFihUzFovF3OjjOyUlxbz11lsmPDzceHp6msDAQPPkk0+aw4cPp2uX1aPD0mT1Pbh8+bIZP368ufvuu42Pj48pUqSIqVKliomMjDR79+61tbt48aIZNGiQKVWqlPHx8TEPPPCA2bRpk/H390931JW93oNffvnFdOzY0ZQqVcp4enqaoKAg07BhQzNt2rTr7nfa81/rcuXv1ezZs03dunVNYGCg8fDwMMWKFTP16tUz8+fPz9JrLHnHYsxVK6GJOIljx44RGhpK//79GTdunKPLEQfp0aMHa9asSXeeLXFuGzdupE6dOnz00Ue2Iy1FcoOGw8TpxMbGcuDAAd5++23c3Nx47rnnHF2SiORQdHQ0mzZt4r777qNQoUL88ssvvPnmm4SFhV1zArOIvSgEidOZNWsWY8aMoUKFCnz00UfpjioREefi5+fHihUrePfddzl79iyBgYG0aNGCsWPHpjtSUSQ3aDhMREREXFK+OUR+6tSpVK1aFT8/P/z8/KhVqxbfffed7XZjDKNGjaJMmTIUKlSI+vXrpztkWkRERCQ78k0ICgkJ4c0332Tr1q1s3bqVhg0b0qZNG1vQGTduHBMmTGDy5Mls2bKFoKAgmjRpwtmzZx1cuYiIiDijfD0cFhAQwNtvv83TTz9NmTJlGDhwIEOGDAFSV3UtXbo0b731FpGRkQ6uVERERJxNvpwYnZKSwmeffUZiYiK1atXi4MGDxMXF2c5tBKmrp9arV4+NGzdeNwQlJSWlWz7farVy6tQpSpQokWH5dREREcmfjDGcPXuWMmXKZGkhzazIVyFo586d1KpVi4sXL1KkSBEWL17M7bffbluS/eqT7JUuXZpDhw5d9zHHjh1rtxVbRURExLEOHz5st5NP56sQVLlyZXbs2MGZM2f4/PPP6d69u+0s05DxxHnGmBv25gwbNoxBgwbZrsfHx1O+fHkOHz6Mn5+ffXdAREREckVCQgLlypW74TnesiNfhSAvLy8qVaoEQPXq1dmyZQsTJ060zQOKi4sjODjY1v7YsWMZeoeu5u3tneH8R4DtKDQRERFxHvacypJvjg7LjDGGpKQkKlasSFBQENHR0bbbLl26xNq1a6ldu7YDKxQRERFnlW96goYPH06LFi0oV64cZ8+e5ZNPPmHNmjUsW7YMi8XCwIEDeeONNwgLCyMsLIw33niDwoUL67wyIiIikiP5JgT9888/dO3alaNHj+Lv70/VqlVZtmwZTZo0AWDw4MFcuHCBvn37cvr0aWrWrMmKFSvsOjYoIiIiriNfrxOUGxISEvD39yc+Pl5zgkRERJxEbnx/5+s5QSIiIiK5RSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXFK+CUFjx47l/vvvp2jRopQqVYq2bduye/fudG169OiBxWJJd3nggQccVLGIiIg4s3wTgtauXUu/fv3YvHkz0dHRJCcn07RpUxITE9O1a968OUePHrVdli5d6qCKRURExJl5OLqANMuWLUt3fc6cOZQqVYpt27bx0EMP2bZ7e3sTFBSU1+WJiIhIAZNveoKuFh8fD0BAQEC67WvWrKFUqVKEh4fTq1cvjh07dt3HSUpKIiEhId1FRERExGKMMY4u4mrGGNq0acPp06f54YcfbNsXLlxIkSJFCA0N5eDBg7zyyiskJyezbds2vL29M32sUaNGMXr06Azb4+Pj8fPzy7V9EBEREftJSEjA39/frt/f+TIE9evXj2+//Zb169cTEhJyzXZHjx4lNDSUTz75hEcffTTTNklJSSQlJdmuJyQkUK5cOYUgERERJ5IbISjfzAlK079/f5YsWcK6deuuG4AAgoODCQ0NZe/evdds4+3tfc1eIhEREQFiY7nw229MXLuW7QcOUL9+fSIiIvDy8nJ0Zbkq34QgYwz9+/dn8eLFrFmzhooVK97wPidPnuTw4cMEBwfnQYUiIiIFUFQUp3r1or4x7Px306effsrHH3/MsmXLKFy4sEPLy035ZmJ0v379+PDDD1mwYAFFixYlLi6OuLg4Lly4AMC5c+d48cUX2bRpEzExMaxZs4bWrVsTGBhIu3btHFy9iIiIE4qNxfTqxRP/BqDSwGCLBb+iRfnhhx/o0aMH+XDWjN3kmxA0depU4uPjqV+/PsHBwbbLwoULAXB3d2fnzp20adOG8PBwunfvTnh4OJs2baJo0aIOrl5ERMQJ7d3LImNYBvgAy4G3jGHp66/j4eHBZ599ZvseLojy5cTo3JQbE6tEREScUXJMDFUqVmQ/MBIYBeDuDjExjI6KYtSoUZQqVYo///yT4sWLO7TW3Pj+zjc9QSIiIpK3vty6lf1AIPASpAag6dMhJIRhw4Zx++23c+zYMYYOHZp6h9hYWL069WcBoBAkIiLiov73v/8B0HfgQHxXr4aYGIiIAMDLy4tp06YBMGPGDDYOG0ZM+fJYGzaE0FCIinJU2Xaj4TAREREXtHv3bqpUqYK7uzuxsbHXPCVVREQEs2fPJhC4BLQFZpM6V5eYGLjBcjb2ouEwERERsYt58+YB0KJFi+uek3PcuHGUDQzkBJAA7AISAVJSYN++PKg09ygEiYiIuBir1cr8+fMB6Nat23XblihRgvVLltAb6A+sAPwgdf5QpUq5XGnuUggSERFxMT/88AOHDx/G39+f1q1b37B9hVq1mD5rFu+5uxMA6SZQO7N8s2K0iIiI5I0vvvgCgHbt2uHj45O1O0VEQLNmqUNglSo5fQAChSARERGXYozhyy+/BMj+GRdCQgpE+Emj4TAREREXsmPHDv766y8KFy5MkyZNHF2OQykEiYiIuJC0XqBmzZpRqFAhxxbjYApBIiIiLmTx4sVADobCCiCFIBERERexf/9+du7cibu7O61atXJ0OQ6nECQiIuIivvrqKwDq1atHQECAg6txPIUgERERF7FkyRIA2rRp4+BK8geFIBERERdw+vRp1q9fD5ClBRJdgUKQiIiIC1i2bBkpKSnccccdVKxY0dHl5AsKQSIiIi7g66+/BtQLdCWFIBERkQLu8uXLfPfddwA8/PDDDq4m/1AIEhERKeA2btzImTNnKFGiBA888ICjy8k3FIJEREQKuLShsJYtW+Lu7u7gavIPhSAREZEC7ptvvgE0H+hqCkEiIiIF2N4ffmD37t14eHjQrFkzR5eTrygEiYiIFFRRUXxdrx4A9ZKT8fvsMwcXlL8oBImIiBREsbHQuzdfGwNAa4DIyNTtAigEiYiIFEx793LcauWHf6+2BkhJgX37HFhU/qIQJCIiUhCFhfGVxUIKcA9wC4C7O1Sq5Ni68hGFIBERkYIoJIRFt98OQHtIDUDTp0NIiEPLyk88HF2AiIiI2N+pU6dYuXs3AO3nzYMGDRSArqIQJCIiUgB99dVXJCcnU7VqVcK7dnV0OfmShsNEREQKoE8//RSA9u3bO7iS/EshSEREpIA5evQoK1asAKBTp04Orib/UggSEREpYD788EOsViu1a9cmPDzc0eXkWwpBIiIiBYgxhg8++ACA7t27O7ia/E0hSEREpADZvHkzu3btwtvbm44dOzq6nHxNIUhERKQAee+99wDo0qULxYoVc2wx+ZxCkIiISAHx999/s2jRIgAGDBjg4GryP4UgERGRAuK9994jOTmZhx56iGrVqjm6nHxPIUhERKQAiIuLY9KkSQC89NJLDq7GOSgEiYiIFABjx47lwoUL1KxZk1atWjm6HKegECQiIuLkfv31V6ZMmQLA66+/jsVicXBFzkEhSERExImlpKTQs2dPkpOTadu2LY0aNXJ0SU4j34SgsWPHcv/991O0aFFKlSpF27Zt2f3v2W/TGGMYNWoUZcqUoVChQtSvX59du3Y5qGIRERHHGzJkCFu2bMHf35/333/f0eU4lXwTgtauXUu/fv3YvHkz0dHRJCcn07RpUxITE21txo0bx4QJE5g8eTJbtmwhKCiIJk2acPbsWQdWLiIikkWxsbB6depPO5g4cSLvvPMOANOnT6dMmTJ2eVyXYfKpY8eOGcCsXbvWGGOM1Wo1QUFB5s0337S1uXjxovH39zfTpk3L8uPGx8cbwMTHx9u9ZhERkWuaNcsYNzdjIPXnrFnXbnv4sDGrVqX+zERiYqLp/9RTBjCAGT16dC4VnX/kxve3h0MT2HXEx8cDEBAQAMDBgweJi4ujadOmtjbe3t7Uq1ePjRs3EhkZ6ZA6RUREbig2Fnr3Bqs19brVCpGR0KwZ+5OS+OGHH9i7dy8nT57E8uefeK1diz/gZ7Hg37Urfi1b4u/vz8WLF9mwYQPzZ8zgn4QEAP7PYmGEeoByJF+GIGMMgwYN4sEHH+TOO+8EUtc/AChdunS6tqVLl+bQoUPXfKykpCSSkpJs1xP+/aURERHJM3v3/heAgGTgw5QUJjdqxLY9e659P2Ng3rzUy1XKA+8DDxsDffpA8+YQEmL30guyfBmCnn32WX799VfWr1+f4barD/szxlz3UMCxY8cyevRou9coIiKSZWFh4OYGVis/AU8DuwD27MHT05MaNWpw9913UyoxET74gCQgAYhP+3n33cRbLLi7u3NnYCBtly+nFeCZ9vgpKbBvn0JQNuW7ENS/f3+WLFnCunXrCLnizQwKCgJSe4SCg4Nt248dO5ahd+hKw4YNY9CgQbbrCQkJlCtXLhcqFxERuYaQEMz06Uzo3ZshxpACBPj6MuTVV3n66acJDAxMbRcbC/Pnp+s1wt0dvvnmv4ATGwuhoRnbVKqUZ7tTUOSbo8OMMTz77LN88cUXrFq1iooVK6a7vWLFigQFBREdHW3bdunSJdauXUvt2rWv+bje3t74+fmlu4iIiOSllJQUBu7cyYv/BqDHH3mEfYcPM3jw4P8CEKQGnRkzUkMNpP6cPj19D09W2kiW5JueoH79+rFgwQK++uorihYtapsD5O/vT6FChbBYLAwcOJA33niDsLAwwsLCeOONNyhcuDBdunRxcPUiIiKZM8bQq1cv5syZA8A777zD888/f+2pHBER0KxZ6vBWpUqZh5ustJEbshhjjKOLgIxzfdLMmTOHHj16AKm/SKNHj2b69OmcPn2amjVr8v7779smT2dFQkIC/v7+xMfHq1dIRERy3UsvvcT48eNxd3dn/vz5dO7c2dElOaXc+P7ONyEorygEiYhIXnn//fd59tlngfT/qZfsy43v73wzJ0hERKQg2bhxIwMHDgTgzTffVADKhxSCRERE7Oyff/6hQ4cOJCcn07FjRwYPHuzokiQTCkEiIiJ2ZIyhW7duHDlyhNtuu42oqKjrrmcnjqMQJCIiYkcffvghK1aswMfHh88//5wiRYo4uiS5BoUgEREROzlx4gTPP/88ACNHjuS2225zcEVyPQpBIiIidvLCCy9w8uRJ7rrrLl544QVHlyM3oBAkIiJiB99//DHz5s3DYrEwc+ZMPD09b3wncSiFIBERkZt0fsoUIv89e0F/Y6j5228OrkiyQiFIRETkZsTGMqZfPw4AIcBrAJGRqSc6lXxNIUhEROQm/LJsGeP//fcUoChASkrqeb0kX1MIEhERyaGUlBR6TZ5MCtAeaJ12g7t76olNJV9TCBIREcmhyZMns+WXX/AvVIj33P79SnV3h+nTdWZ3J+Dh6AJERESc0V9//cWIESMAGPfuuwS3bJk6BFapkgKQk1AIEhERySZjDH379iUxMZEHH3yQnj17gpubwo+T0XCYiIhINi1atIhvv/0WT09PZsyYgZubvk6dkd41ERGRbDh9+jT9+/cHYPjw4To1hhNTCBIREcmGIUOG8M8//1ClShWGDRvm6HLkJigEiYiIZNG6deuYOXMmADNmzMDb29vBFcnNUAgSERHJgqSkJHr37g1A7969qVu3roMrkpulECQiIpIFr7/+Ort37yYoKIi33nrL0eWIHSgEiYiI3MCOHTsYO3YsAJMmTaJYsWKOLUjsQiFIRETkOi5fvszTTz9NcnIyjz32GO3bt3d0SWInCkEiIiLXMW7cOLZv305AQACTJ092dDliRwpBIiIi17Br1y7GjBkDwMSJEwkKCnJwRWJPCkEiIiKZuHTpEj169ODSpUu0atWKJ554wtEliZ0pBImIiGTi5ZdfZuvWrRQvXpxp06ZhsVgcXZLYmUKQiIjIVaKjo3n77bcBiIqKIkQnRi2QFIJERESucOzYMbp16wZAnz59aHf//bB6NcTGOrgysTeFIBERKXhiY3MUXJKTk+ncuTNxcXHcfvvtvHPXXRAaCg0bpv6MisqlgsURFIJERKRgiYrKcXB58cUXWbVqFb6+vnz63nsU7t8frNbUG61WiIxUj1ABohAkIiIFR2ws9O6d9eByRY/R3LlzmThxIgDz58/nDje3/x4nTUoK7NuXizsgecnD0QWIiIjYzd691w4uV09ujoqyBablFgu93FL7BV599VXatWuXGpCuDkLu7lCpUi7vhOQV9QSJiEjBERaWGlyulFlwuaLH6EfgMWNITkmhU+vWjBw5MrVNSAjMmJF6/7THmT49Y5gSp6UQJCIiBUdWg8u/PUa/AK2ARKApMK9/f9yuDFERERATkzpkFhOTel0KDA2HiYhIwRIRAc2apQ6BVaqUec9NWBg/WSw0M4YzQA3gczc3vG67LWPbkBD1/hRQCkEiIlLw3CC4rNm3j0e8vTl78SK1gaVubhSZMUNhx8VoOExERFxKVFQUTZo04ezFi9SvVYvlS5fif+iQhrpckHqCRETEJVy6dInBgwfbDoPv1KkTc+bMoVChQg6uTBxFPUEiIlLg7du3jzp16tgC0MiRI/n4448VgFyceoJERKTAslqtREVFMWjQIM6dO0dAQACzZ8+mTZs2ji5N8gGFIBERKZC2bdtG3759+emnnwB46KGH+Oijj3RGeLHRcJiIiBQop06d4plnnuH+++/np59+omjRokyYMIGVK1cqAEk6+SoErVu3jtatW1OmTBksFgtffvllutt79OiBxWJJd3nggQccU6yIiOQrVquV2bNnU7lyZaZNm4YxhieeeILdu3fz/PPP4+GhwQ9JL1+FoMTERO6++24mT558zTbNmzfn6NGjtsvSpUvzsEIREcmPfv75Z+rUqUNERAQnTpzgjjvuYM2aNXz44YcEBwc7ujzJp/JVLG7RogUtWrS4bhtvb2+CgoLyqCIREcnPTp8+zSuvvMLUqVOxWq0UKVKEUaNGMWDAADw9PR1dnuRz+aonKCvWrFlDqVKlCA8Pp1evXhw7dszRJYmISB4zxvDhhx9SuXJl3n//faxWK48//jh//vknL7zwggKQZEm+6gm6kRYtWtChQwdCQ0M5ePAgr7zyCg0bNmTbtm14e3tnep+kpCSSkpJs1xMSEvKqXBERyQV79+7lmWeeYeXKlQDcdtttTJ48mYYNGzq4MnE2ThWCOnXqZPv3nXfeSfXq1QkNDeXbb7/l0UcfzfQ+Y8eOZfTo0XlVooiI5JLk5GTGjRvHmDFjSEpKwsfHh1dffZUXXngBLy8vR5cnTsjphsOuFBwcTGhoKHv37r1mm2HDhhEfH2+7HD58OA8rFBERe9i/fz9169ZlxIgRJCUl0aRJE3777TeGDRumACQ55lQ9QVc7efIkhw8fvu7Mf29v72sOlYmISP5mjGHOnDkMGDCAxMRE/P39mTRpEk8++SQWi8XR5YmTy1ch6Ny5c+zbt892/eDBg+zYsYOAgAACAgIYNWoUjz32GMHBwcTExDB8+HACAwNp166dA6sWEZHccOHCBSIjI5k/fz6QuuLzvHnzCA0NdXBlUlDkqxC0detWGjRoYLs+aNAgALp3787UqVPZuXMn8+bN48yZMwQHB9OgQQMWLlxI0aJFHVWyiIjkgpiYGB599FG2b9+Ou7s7r732Gi+99BLu7u6OLk0KEIsxxji6iLyUkJCAv78/8fHx+Pn5ObocERG5ypo1a2jfvj0nT54kMDCQTz/9NN1/kImNhb17ISwMdBoMl5Eb399OPTFaREQKlk8++YSmTZty8uRJ7rvvPrZt25Y+AEVFQWgoNGyY+jMqynHFitNTCBIRkXzhnXfeoXPnzly+fJn27dvzww8/UL58+f8axMZC795gtaZet1ohMjJ1u0gOKASJiIhDGWN48cUXefHFFwEYMGAAn3zyCYUKFUrfcO/e/wJQmpQUuOKAGpHsyFcTo0VExLVYrVb69+/PlClTAHj77bd54YUXMj/8PSwM3NzSByF3d6hUKY+qlYJGPUEiIuIQVquVZ555hilTpmCxWIiKiuLFF1+89vo/ISEwY0Zq8IHUn9Ona3K05Jh6gkREJM9ZrVZ69erF7NmzcXNzY86cOXTr1u3Gd4yIgGbNUofAKlVSAJKbohAkIiJ5yhhDZGSkLQDNnz+fLl26ZP3Q95AQhR+xCw2HiYhInhoxYgSzZs3Czc2NBQsWpAYgHfouDqDFEkVEJPf928vzvzVrGDRmDAAzZ86kZ8+eqbeFhmac8BwTox4fscmN728Nh4mISO6KioLevZlvtTLo301jx45NDUBw/UPfFYIkF2k4TEREcs+/Cxx+a7Xy1L+bnrdYGPLEE/+1STv0/Uo69F3ygEKQiIjknr172Wi10gFIAZ4ExhuDZf/+/9ro0HdxEA2HiYhIrvktJYVWwAWgJTAbcMusl0eHvosDKASJiEiuiImJoVn37pwBagOfAZ7X6+XRoe+SxxSCREQk566xts+xY8do2rQpR44c4Y477uDrjz+m8MmT6uWRfEUhSEREcubfo76wWlMnNs+YARERnD17lpYtW7J3715CQ0NZvnw5AWXLOrpakQxuamL0sWPHiIuLs1ctIiLiLP496st2aLvVCpGRJO3fT9u2bdm2bRuBgYGsWLGCsgpAkk/lKAT9+uuv3HHHHQQHB1O2bFnKli3Lyy+/TGJior3rExGR/CiTtX1SUlJ4MiKCVatWUaRIEb777jvCw8MdVKDIjeUoBEVERFC6dGnWr1/P9u3bee211/juu++oXr06p0+ftneNIiKS31y1to8B+lksLFq7Fi8vL7788kuqV6/uuPpEsiBHp83w9fVl27ZtVKlSxbbNGEOHDh3w8fHhww8/tGuR9qTTZoiIZNGNTmgaFQWRkZCSwisWC68Zg8Vi4dNPP6V9+/Z5X68UaLnx/Z2jnqDMenwsFgtvvPEGX331lV0KExERB8rKCU0jIiAmhv/17ctr//5/esqUKQpA4jSyHIJatWrF8OHD+fTTT+nTpw/PP/88//zzT7o28fHxFC9e3O5FiohIHrrGpGdiYzM0nRMdzaApUwB47bXX6NOnT15WKnJTsnyI/F133cXPP//MnDlzbOHnlltuoWPHjlSrVo2UlBTmzJnD//73v1wrVkRE8kAWT2j6xRdf2E6C+sILLzB8+PC8rFLkpuVoTtA///zD9u3b2bFjh+2yb98+3N3dqVy5Mr/++mtu1GoXmhMkInIDsbGpQ2BXBiF3d4iJsYWg77//nlatWnHp0iUiIiKYOXMmFovFMfWKS8iN7+8cLZZYunRpmjdvTvPmzW3bLly4wC+//MIvv/xil8JERMRB0k5o+u+k56tPaPrjjz/Stm1bLl26xGOPPcb06dMVgMQp5agnyJmpJ0hEJItiYzOc0HTbtm00btyYM2fO0KRJE77++mu8vb0dXKi4gnzTEyQiIi7gqhOaXhmA6tSpwxdffKEAJE7tpk6bISIiruHnn3+mSZMmtgD03XffUaRIEUeXJXJTFIJEROS6fv75Zxo3bszp06epXbs23333HUWLFnV0WSI3TSFIRESuafPmzbYAVKtWLQUgKVAUgkREJFPR0dE0atTIFoCWLVumA0qkQFEIEhGRDBYtWkSrVq04f/48TZs2JTo6WgFIChyFIBERSScqKopOnTpx+fJlOnTowJIlS/D19XV0WSJ2pxAkIiIAGGMYNWoUPXv2xGq10qtXLz7++GMdBi8FltYJEhERkpKSiIiI4KOPPgJg2LBhvP7661oJWgo0hSARERd34sQJ2rVrx/r16/Hw8GDq1Km2E6OKFGQKQSIiLmzPnj20bNmS/fv34+/vz6JFi2jcuLGjyxLJE5oTJCLior755htq1KjB/v37qVChAhs3blQAEpeiECQi4mKsVisjR46kdevWxMfHU7t2bX788Uduv/12R5cmkqc0HCYi4kJOnz7Nk08+ydKlSwHo168fEyZMwMvLy8GVieQ9hSARERfxyy+/8Oijj3LgwAF8fHyYMWMGXbt2dXRZIg6j4TARERfw4YcfUqtWLQ4cOGCb/6MAJK4uX4WgdevW0bp1a8qUKYPFYuHLL79Md3vaQl5lypShUKFC1K9fn127djmmWBERJ3D58mUGDBhA165duXDhAs2bN2fbtm3cc889ji5NxOHyVQhKTEzk7rvvZvLkyZnePm7cOCZMmMDkyZPZsmULQUFBNGnShLNnz+ZxpSIi+VRsLKxeDbGxHD16lIYNGzJp0iQAXnnlFb755hsCAgIcXKRI/pCv5gS1aNGCFi1aZHqbMYZ3332XESNG8OijjwLwwQcfULp0aRYsWEBkZGRelioikv9ERUHv3mC1st5ioYOfH3Hx8fj5+TF//nweeeQRR1cokq/kq56g6zl48CBxcXE0bdrUts3b25t69eqxcePGa94vKSmJhISEdBcRkQInNhZ698ZYrbwHNDCGuPh47ggPZ8uWLQpAIplwmhAUFxcHQOnSpdNtL126tO22zIwdOxZ/f3/bpVy5crlap4iIQ+zdS6LVypPAc0Ay8Djw47vvEh4e7tjaRPIppwlBaa4+mZ8x5ron+Bs2bBjx8fG2y+HDh3O7RBGRPLfXw4MHgAWAO/AusMDNDd+77nJoXSL5Wb6aE3Q9QUFBQGqPUHBwsG37sWPHMvQOXcnb2xtvb+9cr09ExFG++eYbnnzySeKB0sBnQF13d5g+HUJCHFydSP7lND1BFStWJCgoiOjoaNu2S5cusXbtWmrXru3AykREHMMYw7hx43jkkUeIj4+nTp06/LxlC3VXr4aYGIiIcHSJIvlavuoJOnfuHPv27bNdP3jwIDt27CAgIIDy5cszcOBA3njjDcLCwggLC+ONN96gcOHCdOnSxYFVi4jkvaSkJCIjI/nggw8AiIyM5L333tPpL0SyIV+FoK1bt9KgQQPb9UGDBgHQvXt35s6dy+DBg7lw4QJ9+/bl9OnT1KxZkxUrVlC0aFFHlSwikueOHTvGo48+yoYNG3Bzc2PixIn069fvuvMj04mNhb17ISxMw2Xi0izGGOPoIvJSQkIC/v7+xP+7doaIiDPZuXMnrVu35tChQ/j7+/Ppp5+mWzrkhq5YSwg3N5gxQ8Nm4hRy4/vbaeYEiYi4ulWrVlGnTh0OHTpEpUqV2Lx5c/YC0L9rCWG1pl63WiEyMnW7iAtSCBIRcQILp0yhebNmnD17loceeojNmzdTpUqV7D3I3r3/BaA0KSlwxVxMEVeSr+YEiYhIRhM7d2bgJ58A0B6Y37kzPiVKZP+BwsJSh8CuDELu7lCpkn0KFXEy6gkSEcmnrFYrQ/r2tQWgZ4FPAJ9nn83ZEFZISOocIHf31OtaS0hcnHqCRETyoeTkZCIiIpg3bx4AY4EhgAX+G8LKSXiJiIBmzVLvX6mSApC4NIUgEZF85tKlS3Tp0oXPP/8cd3d3Zlmt9LjyQN6bHcIKCVH4EUHDYSIi+UpSUhLt27fn888/x8vLiy+++IIeM2dqCEskF6gnSEQkt2RzUcILFy7Qrl07li9fjo+PD4sXL6Z58+apN2oIS8Tu1BMkIpIboqIgNBQaNkz9GRV17baxsSQuXUqrxo1Zvnw5hQsX5ttvv/0vAEFq8KlfXwFIxI60YrSIiL3FxqYGn6sPRY+JyRhioqJI6NWLVsawHijq48PS6GgefPDBvKxYJN/TitEiIs4gq4sSxsZyplcvmv4bgPyB6EuXeLBChTwqVMS1KQSJiNhb2qKEV8rkiK6TW7fSyBh+BAKAVUBNq1UrOIvkEYUgERF7y8KihMeOHaPBsGH8DJQE1gD3prXVCs4ieUJHh4mI5IbrLEp45MgRGjVqxJ9//kmwvz8rz57lNqtVh7+L5DGFIBGR3JLJooSHDx+mYcOG7Nu3j3LlyrFq1Soq+fjo8HcRB1AIEhHHyeY6Os7uwIEDNGrUiJiYGCpWrMiqVauokDYJ2gX2XyS/0ZwgEXGM7KyjUwDs3r2bhx56iJiYGMLCwli7du1/AUhEHEIhSETyXmws9O7932HkVitERubszOhOYOfOnTz00EP8/fff3HHHHaxbt45y5co5uiwRl6cQJCJ5L6vr6BQAP//8M/Xr1+fYsWNUq1aNNWvWEBQU5OiyRASFIBFxhCyuo+PsNm3aRMOGDTl16hQ1atRg1apVBAYGOrosEfmXQpCI5L0srKPj7JYuXUrjxo2Jj4+nbt26REdHU7x4cUeXJSJX0NFhIuIY11lHx9nNnTuXnj17kpKSQrNmzfj888/x9fV1dFkichWFIBFxnEzW0XFmxhjeeusthg0bBkDXrl2JiorC09PTwZWJSGY0HCYiYgeXL1+mb9++tgA0ePBg5s6dqwAkko+pJ0hE5CadOHGCDh06sGbNGiwWCxMmTGDgwIGOLktEbkAhSETkJuzcuZM2bdpw8OBBihYtyoIFC3j44YcdXZaIZIGGw0REcsAcPszMF16gZo0aHDx4kFtuuYVNmzYpAIk4EfUEiYhkU/ykSUQOGMDCf683veMOFqxdS4kSJRxal4hkj3qCRKRgiI2F1atz/dQbX86axe3/BiAP4C3guz/+oMSFC7n6vCJifwpBIuL88uBkrH/99RcdOnSgXa9eHAEqAT8AgwE3q7VAnvJDpKBTCBIR55bLJ2M9deoUL730EuHh4SxatAh3d3eGAb8CD6Q1KoCn/BBxBQpBIuLcculkrIcOHeLFF1+kYsWKjB8/nqSkJOrXr8/WrVt5Y9YsChXgU36IuApNjBYRh7t8+TKHDh3iyJEjnDlzhjNnzpCcnIy7uzseHh74+PgQGBhou5QoUQIPj38/vtJOxnplEMphz0xCQgJLlizho48+Ijo6mpSUFADuuusu3nrrLZo3b47FYoFq1QrsKT9EXIlCkIjkKavVys8//8yGDRvYsGEDP//8MzExMbbAkRVubm6UKlWK4OBggoODKVOnDsHr1xNsDGXc3AgeMoRgYwi6fDn9is2xsak9R2FhJJUsyf79+9m5cye//PILa9eu5ccff0xXR6NGjXj++edp0aIFblef9b6AnfJDxBVZjDHG0UXkpYSEBPz9/YmPj8fPz8/R5Yi4hJSUFFatWsXnn3/OV199RVxcXIY2hQoVoly5chQvXhx/f388PT1JSUkhOTmZ8+fPc/LkSU6cOMGpU6fIzsdWyZIlKVWqFG5nzmD9+28uAMeBs9doX7lyZTp37kznzp0JDw/P0f6KiP3lxve3eoJEJNccO3aM2bNnM336dGJiYmzb/fz8qFu3LrVr16ZmzZpUqVKF4ODgjL0tmUhJSeH48eMcPXqUo0ePcuTIkUz/ffToUZKTkzl+/DjHjx/P9LGK+Ppy5113cdddd1GzZk0aN25MaGiovXZfRPI5hSARsbu///6bcePGMWPGDC5evAhAsWLF6NixI48++igNGjTAy8srR4/t7u5OUFAQQUFB3HPPPddsZ7VaOXnyJEePHuV4dDS8+CJugBdQEigF+H/9NZYGDXJUh4g4P4UgEbGbY8eO8X//93/MnDmTpKQkAGrUqEHfvn3p2LEjhQoVyv6DXjGPJztzcNzc3ChZsiQlS5aEgAAYPDjj5OmwsOzXIyIFhg6RF5GbdvnyZf73v/8RHh7O5MmTSUpKom7dunz//fds3ryZ7t275ywA2WsRxJAQmDEjNfiADmsXEUATox1djojTi46OZsCAAfz5558A3Hvvvbz99ts0aNAg9XDynIqNTQ0+V/fexMTkPLzExuqwdhEnpYnRIpJvJCQk8MILLzBr1iwg9SissWPH0qNHD9zTelxuxvUWQcxpgMnKYe05HH4TEeej4TARybbVq1dTtWpVZs2ahcViYcCAAezdu5eIiAj7BCD4bxHEK+X26Sny4BxkIpJ/OFUIGjVqFBaLJd0lKCjI0WWJuIzz58/z3HPP0bBhQw4dOkTFihVZs2YNEydOxN/f375PltfzeHL5HGQikv843XDYHXfcwffff2+7brf/dYoUZHYY4kmb4Lxnzx4A+jz5JG9PnUqRIkVy5fkAiIjIu9NT5Mbwm4jka07VEwTg4eFhWyMkKCgo9fBXEbm2mxziSUpKYvjw4dSpU4c9e/ZQFlgGTF2wgCILF9r9+TIICYH69XM/iDhi+E1EHMrpQtDevXspU6YMFStW5PHHH+fAgQPXbZ+UlERCQkK6i4jLuMkhnh07dnD//fczduxYrFYrXYGdQLNrPZYzDynpMHoRl+NUIahmzZrMmzeP5cuXM3PmTOLi4qhduzYnT5685n3Gjh2Lv7+/7VKuXLk8rFjEwa43xHMdycnJvPbaa9x///3s3LmTkiVL8sXo0cwDil/vsXL4fPlGRETqIfirV6f+jIhwdEUikoucep2gxMREbr31VgYPHsygQYMybZOUlGRbuRZSD+stV66c1gkS15CDtXZ+//13evTowZYtWwB49NFHmTZtGiWTkm78WLmxto+ICLmzTpBT9QRdzdfXl7vuuou9e/des423tzd+fn7pLiIuIxtDPMnJybz55pvcc889bNmyhWLFivHhhx+yaNGi1Ll3WXksDSmJiBNx6p6gpKQkbr31Vnr37s2rr76apftoxWhxSTdYKXnXrl089dRTtt6fVq1aMX36dMqWLZvtx8pyGxGRbHD5FaNffPFFWrduTfny5Tl27BivvfYaCQkJdO/e3dGlieRv11gpOSkpifHjxzNmzBguXbqEv78/EydOpFu3btc+5UVWVl3OShsREQdzqhAUGxtL586dOXHiBCVLluSBBx5g8+bNhIaGOro0kVROdMqFZcuW2VZ6hhv0/oiIFEBOFYI++eQTR5cgcm1RUf8dHu7mljo3Jh8eXbR//35eeuklFi9eDEBQUBDjx4+nS5cuN3fCUxERJ+PUE6NF8g0nWB8nNjaWPn36UKVKFRYvXoy7uzuDBg1i9+7dPPHEEwpAIuJynKonSCTfysenXNi3bx8TJ05k5syZtuUimjVrxvjx47nzzjv/a+hEQ3kiIvagniARe8jOKRdiY1MX48vFXqLLly+zdOlS2rRpQ3h4OJMnTyYpKYmHHnqIdevWsWzZsvQBSGdPFxEXpBAkYg9ZXR8nF8NGUlIS33//PQMGDKBs2bK0atWKJUuWYIyhVatWfP/996xZs4a6deumv6MTDOWJiOQGp14nKCe0TpDkquutj2PH1ZStVit///03v65axZZVq/jxr79Y99NPnD9/3tamVKlSdO7cmWeeeYbKlStf+8FWr04NZZltr18/W3WJiOQWl18nSCTfCwnhYmAgR48e5ciGDRw9epT4+HgSExM59+uvnL8iAFkAUlKwDB8OFSpkOjHZGMPFixc5c+YMZ86c4fTp0/z111/ExMRw6dKlDO2Dg4Np1qwZHTp0oEmTJnh6et645rShvKvDmc6eLiIFnEKQyE04cuQI69evZ+vWrfz+++/s2rWLmJiY7D3I/Pk5em4PIAy4/99LXTc3qv74I5bsniQ4bSgvMjJ1MrdOdSEiLkIhSCQbzp07x4oVK/jmm29Ys2YNBw8ezLSdt7c3ZcuWJTg4mGLFilGkSBF8fX0pdPAgbmvWYIwBiwVTvz7cfjvGmPQ9Qb//njocBXgDxdu2xb9hQ4oVK0ZISAi3xMVRtkuX9H/AVivs3w/ZDUGQup5Rs2Y61YWIuBSFIJEbOHfuHIsXL2bBggWsWrUq3TCUm5sb1apV44EHHuDOO+/kjjvuoEqVKpQsWfLa6+7c6LxaaXOHrvT11zBpUvqztdt7CEunuhARF6MQJJIJq9XK6tWrmTdvHp9//jmJiYm22ypVqkTr1q1p1qwZtWrVyv4EvRuFjaysOaQhLBGRm6YQJHKFhIQE5s6dy+TJk23n1AK49dZb6datGx06dKBKlSq5u7pyVicqawhLROSmKATlNq3C6zjZeO13797N5MmTmTt3LufOnQPAz8+PLl260LVrV2rVqpV3p5XITi+PhrBERHJMISg3OckJNfMVe4XGLLz2VquV5cuX895777Fs2TLb9ttuu43+/fvTtWtXihQpkvMaboZ6eUREcp0WS8wtdlwYz2XYKzTe4LU/d+4c8+bNY+LEiezZswcAi8VC68aN6T94MI0aNcrY66MePRERh8qN72+dNiO3XG9yq2Rkz1M3XOO1/2vDBgYPHky5cuXo168fe/bswa9QIZ4H9hnDVytX0vjQoYwBSOfVEhEpkBSCckt2Tqgp9g2NV7z2VmA10NFi4ZYnnuDtt9/mzJkzVKpUiUn/93/EXrzIBOAWyDx46bxaIiIFlkJQbsnqCTUllT1DY0gIR8eNY6zFQjjQEPjMGFJSUmjUqBFff/01u3fv5tk6dSh69Wjw1cFLPXoiIgWWJkbnJk1uzTo7rHtz+vRpvvrqKz777DOWL19Oyr8Bp2iRInR54gn69evHXXfd9d8dsnIous6rJSJSYCkE5TYdwpx12QyNxhj279/PihUr+Pbbb4mOjuby5cu222vXrk3Pnj3p2LEjvr6+GR8gK8FLixKKiBRYOjpMnEZycjK///47P/30Ez+uWsXKNWs4ePRoujZ33nknHTp0oGPHjlSpUiVrD3yj01hktY2IiOSa3Pj+Vk+Q5J0sHmZ++fJlDhw4wO7du9m9ezd79uzhjz/+YPv27Zw/fz5dW0/gwSpVaNKtG23btuW2227Lfl1Z6a1Tj56ISIHjsiHIarUyZ84cYmJiiIyMpEyZMo4uqWC7ag0gM306J9q0Yffu3fz555+2wLN7924OHDhAcnJypg9TtEgR7j93jhrAg0A9oMjevdC1q0KKiIhki8sOhw0dOpQ333wTgPLly7N9+3YCAgIcXF3BZA4fZn9oKFuNYQuwFfgNOHWd+/j6+hIeHk54eDiVK1emcuXK3HvvvYT//TdujRtnvMPq1VC/fq7ULyIijqfhMDt69913bf/+66+/GD16NBMnTnRcQXktl1dAPn78OMuXLyc6Oprvv/2WI5lkbYvFQvny5alSpYot6KRdypYtm/m5uooU0dFaIiJiFy7bEwSp54iaOHEiTZs2xcfHh4MHDxIUFJSn9Rhj2LVrF7t27eLs2bMULlyY22+/nTvvvBMPj6syah6eVysnTp06xRdffMHChQtZtWoV1iuCihdQDagO3A9Uc3Mj/M8/KRwWlrP6rz5aS+dkExEp0HLlwCbjYuLj4w1gADNixAhjtVpNzZo1DWDGjBmTZ3VcvHjRjB8/3txyyy22eq68lChRwvTq1cv8+uuvqXeYNcsYNzdjIPXnrFk5e+LDh/97nLSLu3vq9hywWq1mw4YN5oknnjBeXl7p9uHuu+82gwcPNtHR0eb8lCmpz5P2fDmt/8r9WL06x3WLiIhzSfv+jo+Pt9tjunRP0MqVK2nYsCHz5s2je/fuVKpUiT179mQ+DGNHP/74I126dOHAgQMAFC5cmGrVqhEYGMjp06f59ddfiY+Pt7Vv0aAB49as4c4r36qcnox19erUc2Bltj0bc2ouXbrEhx9+yKRJk9ixY4dte9WqVenUqRMdO3ak0tVDVDrMXEREckg9QXZwZU9QWpo8e/asKVy4sAHMxo0bc/X5P/jgA+Pp6WkAU6ZMGTNz5kxz7ty5dG0uX75sVq5caTp06GDc3NwMYNzARII5dmUPzurV2S/gJnuCzp8/byZNmmTKlStnex19fHzMU089ZX766afs1yMiIpIFudET5LIhqGLFium2d+3a1QAmMjIy1557+vTptuDw6KOPZumN3Lt3r3msZUvb/YqDmQIm2c0t50NBs2Zle2gqISHBjBs3zpQuXdpWS1BQkBk3bpw5efJkzuoQERHJIoUgO0h7EZs3b55ue3R0tAFMQECAuXTpkt2fd/HixcZisRjAPPfcc8ZqtWbr/usGDzbVrphvc2/58mbTpk05LyiLc2pOnTplRo8ebQICAmzPXb58eTNlyhRz4cKFnD+/iIhINigE2UHai3h1j8/ly5dNqVKlDGCWLl1q1+fcsWOH8fX1NYDp06dPtgOQrcaDB82kAQOMv5+fLZA8/fTT5tixY3at1xhjjh8/boYPH278iha1PVdYWJiZM2dOroREERGR68mNEORmn5lFzqdChQrprnt4eNChQwcAFs6enTpRODb2pp/n7NmztG3blsTERBo3bsykSZNyPPHao0IFnp04kT1799KjRw8AZs+eTXh4OFOmTCElJeWm6z1w4ACDBg0iNDSUN954g4SzZ7kT+Nhi4Y+XXqJHjx54enre9POIiIg4msuGoNDQ0AzbOnXqBMDiRYu42LAhhIamrklzE4YMGUJMTAwVKlTg008/zbj2Tw6UKlWKOXPmsGHDBqpVq8aZM2fo168ft99+O9OmTeP83r3ZCnFJSUl8/fXXtG7dmkqVKvG///2P8+fPcx+wGPgFeNwY3J95xi7BUEREJD9w2UPkN2zYQO3atdPdZv3rL8qHhvI38CXQBnJ+KDqwevVqGv57OHra4fj2lpKSwrRp03jllVc4ffo0AH6k1v6wxUKtt94i5MUX0/U+paSksH//fjZs2MDq1atZsmRJukPymzVrxnP169N82DAy9Flldih9Lq8+LSIikhuHyLtsCIrdsoWy1aunv3H1agY1bMj/gMeBj6/Ynt3zUp07d46qVaty8OBB+vTpw9SpU2+++Bs83+wJE3h35EgOXnVb4UKFCAoOxsPDg4sXL3LkyJEMJygNDg7m8ccfp0+fPoSHh6cGm9DQjKenuDoQ5tLq0yIiIldSCLID24toseA3c2b6L+zYWH4sX54HjMEXOAYUzmFPUP/+/Zk8eTLly5fnt99+o2jRovbcjcytXo21YUM2AouAdcCvQGYzhby9valRowZ16tShRYsWPPjgg7i5XTU6eqPTU2Q1KImIiNwkhSA7sL2IgF8mX9hm1ixu6dWLGOBTNzc65KBnY+3atdT/t+coOjqaxpmd9Tw3ZBJKLri58feaNfzj5obVasXT05OQkBCCg4Nxd3fP2mNea5VnO60+LSIiciM6i7y9paSkfsFf8eVu6dmTTtu389aUKXzSrBkdshmAEhMTefrppwHo3bt33gUgSN2PGTPS9d4Umj6dSnXrkuNzrIeEXLtXJyxMZ3QXERGn5bJHhwHX/MLu1LMnAEtXr7ZNNs6q4cOHc+DAAcqVK8fbb7+d9TvGxtrnsPyIiNTerdWrU3/m5vyctNCV1qOUNmSmoTAREXECrhuC3Nyu+YVdrVo17rrrLi5evMjcuXOz/JA//PADkyZNAmDmzJlZ766LikodxrLTYfmEhKQOR+VFGMnL0CUiImJHrjsn6Pff8bvttmu2mzFjBpGRkdx6663s2bMn46Thq5w7d4577rmHffv2ERERwaxZs7JWkCYXi4iI3FBuzAly3Z6gsmWve/MTTzyBv78/+/fvZ9myZTd8uBdeeIF9+/YREhLCO++8k/U69u5NH4Dgv7lKIiIikmucMgRNmTKFihUr4uPjw3333ccPP/xg9+fw9fWl579zg0aNGsX1OsyWLFnCjBkzsFgszJs3D39//6w/Udrk4itpcrGIiEiuc7oQtHDhQgYOHMiIESPYvn07devWpUWLFvz11192f67Bgwfj6+vLli1b+OSTTzJts2fPHrp37w7AoEGDaNCgQfaeRJOLRUREHMLp5gTVrFmTe++9N90KzLfddhtt27Zl7NixN7x/dscUx4wZw8iRIwkMDOSXX36hTJkyttuOHj3KQw89xL59+3jggQdYs2YN3t7eOdux663HIyIi4uJcfk7QpUuX2LZtG02bNk23vWnTpmzcuDHT+yQlJZGQkJDukh1Dhw6latWqnDhxgmbNmnHgwAEANm3axIMPPsi+ffsIDQ3lyy+/zHkAgrw9oktEREScKwSdOHGClJQUSpcunW576dKliYuLy/Q+Y8eOxd/f33YpV65ctp7Ty8uLxYsXExwczG+//UZ4eDghISHUrl2bAwcOULFiRVauXJmhJhEREcnfnCoEpbnyjOgAxpgM29IMGzaM+Ph42+Xw4cPZfr5bbrmFDRs20KBBA1JSUvj777/x8PCge/fubN26lVtvvTVH+yEiIiKO41SnzQgMDMTd3T1Dr8+xY8eu2RPj7e19c8NU/6pYsSKrVq3i4MGDxMXFERYWRmBg4E0/roiIiDiGU/UEeXl5cd999xEdHZ1ue3R0NLVr186TGipWrEitWrUUgERERJycU/UEQeph6F27dqV69erUqlWLGTNm8Ndff9GnTx9HlyYiIiJOxOlCUKdOnTh58iRjxozh6NGj3HnnnSxdupTQ0FBHlyYiIiJOxOnWCbpZubHOgIiIiOQul18nSERERMReFIJuRmwsrF6d+lNEREScikJQTkVFQWgoNGyY+jMqytEViYiISDYoBOVEbCz07g1Wa+p1qxUiI9UjJCIi4kQUgnJi797/AlCalJTUE6CKiIiIU1AIyomwMHC76qVzd089A7yIiIg4BYWgnAgJgRkzUoMPpP6cPl1ngBcREXEiTrdYYr4REQHNmqUOgVWqpAAkIiLiZBSCbkZIiMKPiIiIk9JwmIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJThaAKFSpgsVjSXYYOHeroskRERMQJeTi6gOwaM2YMvXr1sl0vUqSIA6sRERERZ+V0Iaho0aIEBQU5ugwRERFxck41HAbw1ltvUaJECapVq8brr7/OpUuXHF2SiIiIOCGn6gl67rnnuPfeeylevDg//fQTw4YN4+DBg8yaNeua90lKSiIpKcl2PT4+HoCEhIRcr1dERETsI+172xhjvwc1DjZy5EgDXPeyZcuWTO+7aNEiA5gTJ07c1OProosuuuiiiy7Ocdm/f7/dMojFGHtGquw7ceIEJ06cuG6bChUq4OPjk2H733//TUhICJs3b6ZmzZqZ3vfqnqAzZ84QGhrKX3/9hb+//80V70QSEhIoV64chw8fxs/Pz9Hl5Bntt/bbFWi/td+uID4+nvLly3P69GmKFStml8d0+HBYYGAggYGBObrv9u3bAQgODr5mG29vb7y9vTNs9/f3d6lfnjR+fn7abxei/XYt2m/X4qr77eZmv+nMDg9BWbVp0yY2b95MgwYN8Pf3Z8uWLTz//PM88sgjlC9f3tHliYiIiJNxmhDk7e3NwoULGT16NElJSYSGhtKrVy8GDx7s6NJERETECTlNCLr33nvZvHnzTT+Ot7c3I0eOzHSIrCDTfmu/XYH2W/vtCrTf9ttvh0+MFhEREXEEp1ssUURERMQeFIJERETEJSkEiYiIiEtSCBIRERGXVCBD0JQpU6hYsSI+Pj7cd999/PDDD9dtv3btWu677z58fHy45ZZbmDZtWh5Val/Z2e8vvviCJk2aULJkSfz8/KhVqxbLly/Pw2rtJ7vvd5oNGzbg4eFBtWrVcrfAXJLd/U5KSmLEiBGEhobi7e3NrbfeyuzZs/OoWvvJ7n5/9NFH3H333RQuXJjg4GCeeuopTp48mUfV3rx169bRunVrypQpg8Vi4csvv7zhfQrCZ1p297ugfKbl5P1O48yfaTnZb3t8phW4ELRw4UIGDhzIiBEj2L59O3Xr1qVFixb89ddfmbY/ePAgLVu2pG7dumzfvp3hw4czYMAAPv/88zyu/OZkd7/XrVtHkyZNWLp0Kdu2baNBgwa0bt3atgq3s8jufqeJj4+nW7duNGrUKI8qta+c7HfHjh1ZuXIlUVFR7N69m48//pgqVarkYdU3L7v7vX79erp160ZERAS7du3is88+Y8uWLfTs2TOPK8+5xMRE7r77biZPnpyl9gXlMy27+11QPtOyu99pnP0zLSf7bZfPNLudhSyfqFGjhunTp0+6bVWqVDFDhw7NtP3gwYNNlSpV0m2LjIw0DzzwQK7VmBuyu9+Zuf32283o0aPtXVquyul+d+rUybz88stm5MiR5u67787FCnNHdvf7u+++M/7+/ubkyZN5UV6uye5+v/322+aWW25Jt+29994zISEhuVZjbgLM4sWLr9umoHymXSkr+50ZZ/xMu1J29tvZP9OulJX9ttdnWoHqCbp06RLbtm2jadOm6bY3bdqUjRs3ZnqfTZs2ZWjfrFkztm7dyuXLl3OtVnvKyX5fzWq1cvbsWQICAnKjxFyR0/2eM2cO+/fvZ+TIkbldYq7IyX4vWbKE6tWrM27cOMqWLUt4eDgvvvgiFy5cyIuS7SIn+127dm1iY2NZunQpxhj++ecfFi1aRKtWrfKiZIcoCJ9p9uCMn2k55eyfaTlhr880p1kxOitOnDhBSkoKpUuXTre9dOnSxMXFZXqfuLi4TNsnJydz4sSJ656cNb/IyX5f7Z133iExMZGOHTvmRom5Iif7vXfvXoYOHcoPP/yAh4dz/vrnZL8PHDjA+vXr8fHxYfHixZw4cYK+ffty6tQpp5kXlJP9rl27Nh999BGdOnXi4sWLJCcn88gjjzBp0qS8KNkhCsJnmj0442daThSEz7ScsNdnWoHqCUpjsVjSXTfGZNh2o/aZbc/vsrvfaT7++GNGjRrFwoULKVWqVG6Vl2uyut8pKSl06dKF0aNHEx4enlfl5ZrsvN9WqxWLxcJHH31EjRo1aNmyJRMmTGDu3LlO1RsE2dvv33//nQEDBvDqq6+ybds2li1bxsGDB+nTp09elOowBeUzLaec/TMtqwraZ1p22OszrUDFxsDAQNzd3TP8r/DYsWMZ/meUJigoKNP2Hh4elChRItdqtaec7HeahQsXEhERwWeffUbjxo1zs0y7y+5+nz17lq1bt7J9+3aeffZZIPUPyRiDh4cHK1asoGHDhnlS+83IyfsdHBxM2bJl8ff3t2277bbbMMYQGxtLWFhYrtZsDznZ77Fjx1KnTh1eeuklAKpWrYqvry9169bltddeK5C9IgXhM+1mOPNnWnYVlM+0nLDXZ1qB6gny8vLivvvuIzo6Ot326Ohoateunel9atWqlaH9ihUrqF69Op6enrlWqz3lZL8h9X9LPXr0YMGCBU45RyK7++3n58fOnTvZsWOH7dKnTx8qV67Mjh07qFmzZl6VflNy8n7XqVOHI0eOcO7cOdu2PXv24ObmRkhISK7Way852e/z58/j5pb+Y87d3R34r3ekoCkIn2k55eyfadlVUD7TcsJun2k3Na06H/rkk0+Mp6eniYqKMr///rsZOHCg8fX1NTExMcYYY4YOHWq6du1qa3/gwAFTuHBh8/zzz5vff//dREVFGU9PT7No0SJH7UKOZHe/FyxYYDw8PMz7779vjh49arucOXPGUbuQI9nd76s565EU2d3vs2fPmpCQENO+fXuza9cus3btWhMWFmZ69uzpqF3Ikezu95w5c4yHh4eZMmWK2b9/v1m/fr2pXr26qVGjhqN2IdvOnj1rtm/fbrZv324AM2HCBLN9+3Zz6NAhY0zB/UzL7n4XlM+07O731Zz1My27+22vz7QCF4KMMeb99983oaGhxsvLy9x7771m7dq1ttu6d+9u6tWrl679mjVrzD333GO8vLxMhQoVzNSpU/O4YvvIzn7Xq1fPABku3bt3z/vCb1J23+8rOesHhjHZ3+8//vjDNG7c2BQqVMiEhISYQYMGmfPnz+dx1Tcvu/v93nvvmdtvv90UKlTIBAcHmyeeeMLExsbmcdU5t3r16uv+rRbUz7Ts7ndB+UzLyft9JWf9TMvJftvjM81iTAHtExYRERG5jgI1J0hEREQkqxSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBIlIgTBmzBjuuusufH19KV26NM888wyXL192dFkiko95OLoAEZGbZYwhJSWF6dOnU7ZsWX7//Xe6detG1apVeeaZZxxdnojkUzqBqogUSF26dKFkyZJMnDjR0aWISD6l4TARcXqHDh3i2Wef5c4776R48eIUKVKETz/9lJCQEEeXJiL5mEKQiDi1EydOUKNGDU6cOMGECRNYv349mzZtwt3dnWrVqjm6PBHJxzQnSESc2tKlS0lOTubjjz/GYrEA8P7773Pp0iWFIBG5LoUgEXFqAQEBJCQksGTJEm6//Xa+/vprxo4dS9myZSlZsqSjyxORfEwTo0XEqRljeOaZZ1iwYAGFChXiySef5OLFixw6dIhvvvnG0eWJSD6mECQiIiIuSROjRURExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi7p/wGJ4jbFBqhOiAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdTElEQVR4nO3de3zO9f/H8ce1M2Nz3sEYMSShyKmcQyMhhSiHhomS1DcUOXyLUunwI4ec+iryRQ75Fi0N+cbXWVKKGFaGOWyOO75/f6xdmc1sc23Xrl3P++123db1uT7X53p9rqtde3q/35/322KMMYiIiIg4GRd7FyAiIiJiDwpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBYletWrWiVatW9i4jz/r370+JEiVytG+VKlXo379/vtZjsViYMGFCvr7GrVy5coUJEyawceNGu9bhKDZs2EDDhg3x9vbGYrGwatUqFi5ciMViISoqyrrf4sWLef/99/OlhrFjx1K5cmXc3NwoVapUrp/fv39/qlSpYvO6CpOTJ08yduxYmjZtSrly5fDx8aFBgwbMmTOHlJSUbJ87d+5cLBZLjr8rpOC42bsAcW4fffSRvUsoMCtXrsTHx8feZeS7K1euMHHiRACHDrgFwRhDjx49qFGjBmvWrMHb25uaNWuSnJzM1q1bCQgIsO67ePFifvrpJ0aMGGHTGlavXs0bb7zBq6++SmhoKJ6enjY9flGxa9cu/vWvf9G3b1/GjRuHu7s7X3/9Nc888wzbtm1j/vz5WT7vjz/+4KWXXiIwMJC4uLgCrlpuRSFI7Kp27dr2LqHA3HPPPfYuQWzo6tWreHl5YbFY8nyMP//8k3PnztGtWzfatm2b4bHy5cvfbok58tNPPwEwfPhwKlSoUCCvaSu2+Axy6v777+f333/H3d3duq1du3YkJiYyY8YMJk6cSKVKlTI9b8iQIbRo0YIyZcqwfPnyfK9TckfdYZJjEyZMwGKxcODAAZ544gl8fX3x8/Pj6aefzvQvnGvXrjFmzBiqVq2Kh4cHFStWZNiwYVy4cCHDfll1h82cOZN69epRokQJSpYsSa1atXjllVcAiIqKws3NjSlTpmSqb/PmzVgsFpYtW5bteVy4cIEXX3yRO+64A09PTypUqEDHjh05ePAgABs3bsRisWTqzomKisJisbBw4cJMxzxw4ABt27bF29ub8uXL8+yzz3LlypUM+2TVHXarWmwhJiaG8PBwgoKC8PDwoGrVqkycOJHk5OQM+02cOJHGjRtTpkwZfHx8uPfee5k3bx43rrH83Xff0apVK8qWLUuxYsWoXLky3bt358qVK0RFRVn/eE+cOBGLxYLFYrllN+CVK1d46aWXqFq1Kl5eXpQpU4aGDRuyZMmSDPstXLiQmjVr4unpyZ133sm//vWvTF0xufn8du7cSa9evahSpQrFihWjSpUqPPHEExw7dizT61osFr755huefvppypcvT/HixUlISABg6dKlNG3aFG9vb0qUKEGHDh3Ys2dPtuc8YcIEgoKCABg1ahQWi8V6Hjd2h7Vq1Yr//Oc/HDt2zPqe3uoPf2pqKlOnTqVWrVrW/7f69u1LdHS0dZ8qVaowduxYAPz8/HLUnZrVZ5CVxMREXn/9devrly9fngEDBnDmzJkM+yUkJPDiiy/i7+9P8eLFadGiBbt27cr0+2Krz2Dnzp088sgjlClTBi8vL+655x7+/e9/Z3vOAKVLl84QgNI1atQIIMP7mu7TTz9l06ZNTtXi7WjUEiS51r17d3r27ElYWBj79+9nzJgxANbmYGMMXbt2ZcOGDYwZM4bmzZvz448/Mn78eLZu3crWrVtv2uT++eefM3ToUJ577jneeecdXFxcOHz4MD///DOQ9qX9yCOPMGvWLF5++WVcXV2tz50+fTqBgYF069btprVfvHiRBx54gKioKEaNGkXjxo25dOkSmzdv5uTJk9SqVSvX70dSUhIdO3YkPDyc0aNH88MPP/D6669z7Ngxvvzyy9uupX///nzyySccPXo01+MuYmJiaNSoES4uLrz22mtUq1aNrVu38vrrrxMVFcWCBQus+0ZFRREeHk7lypUB2LZtG8899xx//PEHr732mnWfTp060bx5c+bPn0+pUqX4448/WLduHYmJiQQEBLBu3ToeeughwsLCGDhwIHDrVo2RI0eyaNEiXn/9de655x4uX77MTz/9xNmzZ637LFy4kAEDBtClSxfeffdd4uLimDBhAgkJCbi45O3fc1FRUdSsWZNevXpRpkwZTp48ycyZM7nvvvv4+eefKVeuXIb9n376aTp16sSiRYu4fPky7u7uTJ48mbFjxzJgwADGjh1LYmIib7/9Ns2bN2f79u03be0cOHAg9erV49FHH+W5556jd+/eN/29+Oijjxg8eDC///47K1euzNG5PfPMM8yZM4dnn32Whx9+mKioKMaNG8fGjRvZvXs35cqVY+XKlcyYMYN58+axbt06fH19rcEsKzn9DFJTU+nSpQvff/89L7/8Ms2aNePYsWOMHz+eVq1asXPnTooVKwbAgAEDWLp0KS+//DJt2rTh559/plu3bsTHx2dZw+18BpGRkTz00EM0btyYWbNm4evry+eff07Pnj25cuVKnsbsfffdd7i5uVGjRo0M20+fPs2IESN48803s31Pxc6MSA6NHz/eAGbq1KkZtg8dOtR4eXmZ1NRUY4wx69aty3K/pUuXGsDMmTPHuq1ly5amZcuW1vvPPvusKVWqVLZ1REZGGsCsXLnSuu2PP/4wbm5uZuLEidk+d9KkSQYwERERtzx+ZGRkhu1Hjx41gFmwYIF1W79+/QxgPvjggwz7vvHGGwYwW7ZssW4LDg42/fr1y1Utxhjz9NNPG1dXVxMVFZXtfsYYA5jx48db74eHh5sSJUqYY8eOZdjvnXfeMYA5cOBAlsdJSUkxSUlJZtKkSaZs2bLWz3b58uUGMHv37r1pDWfOnMlUx63UqVPHdO3a9aaPp6SkmMDAQHPvvfdaazHGmKioKOPu7m6Cg4Ot23Lz+d0oOTnZXLp0yXh7e2f4TBcsWGAA07dv3wz7Hz9+3Li5uZnnnnsuw/aLFy8af39/06NHj2zO+u+a3n777Qzb01/v6NGj1m2dOnXKcJ7Z+eWXXwxghg4dmmH7//73PwOYV155xbot/ff6zJkz2R4zN5/BkiVLDGBWrFiR4Rg7duwwgPnoo4+MMcYcOHDAAGbUqFEZ9kt//vW/L7b4DGrVqmXuuecek5SUlGHfhx9+2AQEBJiUlJRs34MbrV+/3ri4uJgXXngh02Pdu3c3zZo1s75X/fr1M97e3rk6vuQ/dYdJrj3yyCMZ7tetW5dr165x+vRpIO1fRkCmf1U9/vjjeHt7s2HDhpseu1GjRly4cIEnnniC1atXExsbm2mfVq1aUa9ePWbMmGHdNmvWLCwWC4MHD8629q+//poaNWrw4IMPZrtfbvXp0yfD/d69ewNp//K83VrmzZtHcnIywcHBua5r7dq1tG7dmsDAQJKTk6230NBQADZt2mTd97vvvuPBBx/E19cXV1dX3N3dee211zh79qz1s61fvz4eHh4MHjyYTz75hCNHjuSqnutrSE5Otna1NWrUiK+//prRo0ezceNGrl69muF5v/76K3/++Se9e/fO0A0UHBxMs2bNcv2+pLt06RKjRo2ievXquLm54ebmRokSJbh8+TK//PJLpv27d++e4f769etJTk6mb9++Gc7Ly8uLli1b2u0KufT/7278HWzUqBF33nlntr+DN5Obz2Dt2rWUKlWKzp07Z3hf6tevj7+/v/V9Sf//r0ePHhme/9hjj+HmlnVHRV4/g8OHD3Pw4EHr7+r1+3bs2JGTJ0/y66+/5vj92L17Nz169KBJkyaZuudXrFjBl19+yccff1wg45Uk7xSCJNfKli2b4X56E376H66zZ8/i5uaWqQvEYrHg7++foYvjRk899RTz58/n2LFjdO/enQoVKtC4cWMiIiIy7Dd8+HA2bNjAr7/+SlJSEh9//DGPPfYY/v7+2dZ+5swZmzdNu7m5ZXpP0uvI7lzzo5YbnTp1ii+//BJ3d/cMt7vuugvAGjK3b99O+/btAfj444/573//y44dO3j11VeBvz/batWq8e2331KhQgWGDRtGtWrVqFatGh988MEta4mKispUR/ofwQ8//JBRo0axatUqWrduTZkyZejatSuHDh0C/n4fs/p8b/WZZ6d3795Mnz6dgQMHsn79erZv386OHTsoX758piAGZLhaC9LeX4D77rsv07ktXbo0yxBfENLfrxvrBQgMDMz2/8tbHTMnn8GpU6e4cOECHh4emd6XmJgY6/uSfkw/P78Mz8/qdypdXj+D9P1eeumlTPsNHToUIMef1549e2jXrh0hISF89dVXGboxL126xLBhw3juuecIDAzkwoULXLhwgcTERCBtHODly5dz9DqS/zQmSGyubNmyJCcnc+bMmQxByBhDTEwM9913X7bPHzBgAAMGDODy5cts3ryZ8ePH8/DDD/Pbb79ZW0N69+7NqFGjmDFjBk2aNCEmJoZhw4bdsrby5ctnOYDxel5eXgDWAZfpbvYFmZyczNmzZzN8acfExACZA2Nua7ld5cqVo27durzxxhtZPh4YGAikjcVyd3dn7dq11vMHWLVqVabnNG/enObNm5OSksLOnTv5v//7P0aMGIGfnx+9evW6aS2BgYHs2LEjw7aaNWsC4O3tzcSJE5k4cSKnTp2ytgp17tyZgwcPWt/H9Pf1ejduy+nnFxcXx9q1axk/fjyjR4+2bk9ISODcuXNZnsON/6pPHzO0fPnyPLXU5Zf09+vkyZOZgvaff/6ZaaxTbo6Zk8+gXLlylC1blnXr1mV5rJIlS2Y45qlTp6hYsaL18fTfqazk9TNI32/MmDE8+uijWe6T/v9jdvbs2cODDz5IcHAw33zzDb6+vhkej42N5dSpU7z77ru8++67mZ5funRpunTpkuXvlhQ8hSCxubZt2zJ16lQ+/fRTXnjhBev2FStWcPny5UyXAt+Mt7c3oaGhJCYm0rVrVw4cOGD9kvPy8mLw4MFMnz6dH374gfr163P//fff8pihoaG89tprfPfdd7Rp0ybLfdIHH//444906NDBun3NmjU3Pe5nn33G8OHDrfcXL14MZD9PTk5quV0PP/wwX331FdWqVaN06dI33c9iseDm5pZhoPnVq1dZtGjRTZ/j6upK48aNqVWrFp999hm7d++mV69emVoG03l4eNCwYcNb1uzn50f//v3Zt28f77//PleuXKFmzZoEBASwZMkSRo4caf1DeOzYMX744QdrmIOcf34WiwVjTKbByHPnzr3l5HfpOnTogJubG7///numbhpb8/T0zLJ1Kivp/z99+umnGf7RsWPHDn755RdrC19u5OYzePjhh/n8889JSUmhcePGNz1mixYtgLQru+69917r9uXLl2e6evFmcvoZ1KxZk5CQEPbt28fkyZNzdOwb7d27lwcffJCgoCAiIiKy/J3y9/fPshv8zTffZNOmTXz99dd5CqGSPxSCxObatWtHhw4dGDVqFPHx8dx///3Wq8PuuecennrqqZs+d9CgQRQrVoz777+fgIAAYmJimDJlCr6+vplakIYOHcrUqVPZtWsXc+fOzVFtI0aMYOnSpXTp0oXRo0fTqFEjrl69yqZNm3j44Ydp3bo1/v7+PPjgg0yZMoXSpUsTHBzMhg0b+OKLL7I8poeHB++++y6XLl3ivvvus14dFhoaygMPPHBbtQCEhYXxySef8Pvvv+e6tWHSpElERETQrFkzhg8fTs2aNbl27RpRUVF89dVXzJo1i6CgIDp16sS0adPo3bs3gwcP5uzZs7zzzjuZAsKsWbP47rvv6NSpE5UrV+batWvWqwLTxzaVLFmS4OBgVq9eTdu2bSlTpgzlypXL9sq2xo0b8/DDD1O3bl1Kly7NL7/8wqJFi2jatCnFixcH4J///CcDBw6kW7duDBo0iAsXLjBhwoRMXTE5/fx8fHxo0aIFb7/9trW+TZs2MW/evBzPmlylShUmTZrEq6++ypEjR3jooYcoXbo0p06dYvv27dYWLlu4++67+eKLL5g5cyYNGjTAxcXlpqGyZs2aDB48mP/7v//DxcWF0NBQ69VhlSpVyvCPk5xycXHJ8WfQq1cvPvvsMzp27Mjzzz9Po0aNcHd3Jzo6msjISLp06UK3bt246667eOKJJ3j33XdxdXWlTZs2HDhwgHfffRdfX98cXfWXm89g9uzZhIaG0qFDB/r370/FihU5d+4cv/zyC7t37852eo1ff/3V+v/4G2+8waFDh6zdtZDWVVy+fHm8vLyy/MfPwoULcXV11QSihY2dB2aLA7nZVSRZXcly9epVM2rUKBMcHGzc3d1NQECAeeaZZ8z58+czPPfGq8M++eQT07p1a+Pn52c8PDxMYGCg6dGjh/nxxx+zrKlVq1amTJky5sqVKzk+j/Pnz5vnn3/eVK5c2bi7u5sKFSqYTp06mYMHD1r3OXnypHnsscdMmTJljK+vr3nyySfNzp07s7w6zNvb2/z444+mVatWplixYqZMmTLmmWeeMZcuXcrwujdeHZbTWtKvQLv+/b0Zsrgq68yZM2b48OGmatWqxt3d3ZQpU8Y0aNDAvPrqqxlqnD9/vqlZs6bx9PQ0d9xxh5kyZYqZN29ehtfeunWr6datmwkODjaenp6mbNmypmXLlmbNmjUZXvPbb78199xzj/H09Mx0lU9WRo8ebRo2bGhKly5tff0XXnjBxMbGZthv7ty5JiQkxHh4eJgaNWqY+fPnm379+mW6aiqnn190dLTp3r27KV26tClZsqR56KGHzE8//ZTps0r/f3zHjh1Z1r9q1SrTunVr4+PjYzw9PU1wcLB57LHHzLfffpvteefm6rBz586Zxx57zJQqVcpYLBZzq6/vlJQU89Zbb5kaNWoYd3d3U65cOfPkk0+aEydOZNgvp1eHpcvpZ5CUlGTeeecdU69ePePl5WVKlChhatWqZcLDw82hQ4es+127ds2MHDnSVKhQwXh5eZkmTZqYrVu3Gl9f3wxXXdnqM9i3b5/p0aOHqVChgnF3dzf+/v6mTZs2ZtasWdmed/rr3+yW3VWHxujqsMLKYswNM6GJOIjTp08THBzMc889x9SpU+1djthJ//792bhxY4Z1tsSx/fDDD9x///189tln1istRfKDusPE4URHR3PkyBHefvttXFxceP755+1dkojkUUREBFu3bqVBgwYUK1aMffv28eabbxISEnLTAcwitqIQJA5n7ty5TJo0iSpVqvDZZ59luKpERByLj48P33zzDe+//z4XL16kXLlyhIaGMmXKlAxXKorkB3WHiYiIiFMqNJMlzpw5k7p16+Lj44OPjw9Nmzbl66+/tj5ujGHChAkEBgZSrFgxWrVqxYEDB+xYsYiIiDiyQhOCgoKCePPNN9m5cyc7d+6kTZs2dOnSxRp0pk6dyrRp05g+fTo7duzA39+fdu3acfHiRTtXLiIiIo6oUHeHlSlThrfffpunn36awMBARowYwahRo4C0WV39/Px46623CA8Pt3OlIiIi4mgK5cDolJQUli1bxuXLl2natClHjx4lJibGurYRpM2e2rJlS3744YdsQ1BCQkKG6fNTU1M5d+4cZcuW1cJ2IiIiDsIYw8WLFwkMDMzRRJo5UahC0P79+2natCnXrl2jRIkSrFy5ktq1a/PDDz8AmRfZ8/Pz49ixY9kec8qUKTabsVVERETs68SJEzZbfLpQhaCaNWuyd+9eLly4wIoVK+jXr591lWnIvHCeMeaWrTljxoxh5MiR1vtxcXFUrlyZEydO4OPjY9sTEBERkXwRHx9PpUqVrAvw2kKhCkEeHh5Ur14dgIYNG7Jjxw4++OAD6zigmJgYAgICrPufPn06U+vQjTw9PTOtfwRYr0ITERERx2HLoSyF5uqwrBhjSEhIoGrVqvj7+xMREWF9LDExkU2bNtGsWTM7VigiIiKOqtC0BL3yyiuEhoZSqVIlLl68yOeff87GjRtZt24dFouFESNGMHnyZEJCQggJCWHy5MkUL15c68qIiIhInhSaEHTq1CmeeuopTp48ia+vL3Xr1mXdunW0a9cOgJdffpmrV68ydOhQzp8/T+PGjfnmm29s2jcoIiIizqNQzxOUH+Lj4/H19SUuLk5jgkRERBxEfvz9LtRjgkRERETyi0KQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOKVCE4KmTJnCfffdR8mSJalQoQJdu3bl119/zbBP//79sVgsGW5NmjSxU8UiIiLiyApNCNq0aRPDhg1j27ZtREREkJycTPv27bl8+XKG/R566CFOnjxpvX311Vd2qlhEREQcmZu9C0i3bt26DPcXLFhAhQoV2LVrFy1atLBu9/T0xN/fv6DLExERkSKm0LQE3SguLg6AMmXKZNi+ceNGKlSoQI0aNRg0aBCnT5/O9jgJCQnEx8dnuImIiIhYjDHG3kXcyBhDly5dOH/+PN9//711+9KlSylRogTBwcEcPXqUcePGkZyczK5du/D09MzyWBMmTGDixImZtsfFxeHj45Nv5yAiIiK2Ex8fj6+vr03/fhfKEDRs2DD+85//sGXLFoKCgm6638mTJwkODubzzz/n0UcfzXKfhIQEEhISrPfj4+OpVKmSQpCIiIgDyY8QVGjGBKV77rnnWLNmDZs3b842AAEEBAQQHBzMoUOHbrqPp6fnTVuJREREBIiO5uK+fUxcs4Yf9u+nTp06TJo0qciPwS00IcgYw3PPPcfKlSvZuHEjVatWveVzzp49y4kTJwgICCiACkVERIqgefM4N2gQDxjDL39t2rp1K6tXr2bz5s3UrFnTruXlp0IzMHrYsGF8+umnLF68mJIlSxITE0NMTAxXr14F4NKlS7z00kts3bqVqKgoNm7cSOfOnSlXrhzdunWzc/UiIiIOKDoaM2gQ/f4KQIHAHIuFOjVrcvr0aTp37szFixftXWW+KTQhaObMmcTFxdGqVSsCAgKst6VLlwLg6urK/v376dKlCzVq1KBfv37UqFGDrVu3UrJkSTtXLyIi4oAOHWK1MawFPIH/AIOM4dvJk6lUqRKHDh1i3Lhxdi4y/xTKgdH5KT8GVomIiDii1OPHqR0czK/Aq8DrAK6uEBXFNz//TIcOHbBYLGzbto1GjRrZtdb8+PtdaFqCREREpGB9vX8/vwKlgFGQFoBmz4agINq3b0+fPn0wxjBw4EASExMhOhoiI9N+FgEKQSIiIk5q+vTpAIQNHkzJyEiIioKwMOvj7733HmXLlmX//v1M7dmTc5Urc6FNGwgOhnnz7FS17ag7TERExAkdOnSIGjVqYLFYOHToENWqVctyv08//ZSnnnoKgOLA48BCsHabcYvpbGxF3WEiIiJiEwsXLgTSFia/WQAC6NOnD0+HhgJwBfgfEA+QkgKHD+d3mflKIUhERMTJGGNYsmQJAH379s12X4vFwtzZs1ljsbAQ2A34QFpLUPXq+Vxp/lIIEhERcTL/+9//OHr0KN7e3nTu3PmW+1sqVaLzxx/Tz9WVYpBhALUjKzQzRouIiEjBSG8F6tKlC97e3jl7UlgYdOiQ1gVWvbrDByBQCBIREXEqxhi++OILAHr16pW7JwcFFYnwk07dYSIiIk5k7969REdHU7x4cdq1a2fvcuxKIUhERMSJrFmzBoD27dvj5eVl52rsSyFIRETEiaSHoEceecTOldifQpCIiIiTiI6OZvfu3VgsFjp16mTvcuxOIUhERMRJrF27FoAmTZpQoUIFO1djfwpBIiIiTkJdYRkpBImIiDiBS5cusWHDBkAhKJ1CkIiIiBOIiIggMTGRatWqceedd9q7nEJBIUhERMQJpHeFde7cGYvFYudqCgeFIBERkSIuJSXFOihaXWF/UwgSEREp4rZt20ZsbCylSpXigQcesHc5hYZCkIiISBGX3hUWGhqKu7u7naspPBSCREREirhVq1YBaavGy98UgkRERIqwgxs38ttvv+Hu7k5oaKi9yylUFIJERESKqnnzWNWmDQBtk5LwWbbMzgUVLgpBIiIiRVF0NAwezGpjAOgCEB6etl0AhSAREZGi6dAhTqamsu2vu48ApKTA4cN2LKpwUQgSEREpikJCWPPXpIiNgEAAV1eoXt2eVRUqCkEiIiJFUVAQq+66C4CukBaAZs+GoCB7VlWouNm7ABEREbG92NhYvj14EIBun3wCbdooAN1AIUhERKQIWrZsGcnJydx7773U6tvX3uUUSuoOExERKYIWL14MQO/eve1cSeGlECQiIlLEHDt2jC1btmCxWOjZs6e9yym0FIJERESKmM8//xyAli1bEqRxQDelECQiIlKEGGOYP38+AH369LFzNYWbQpCIiEgREhkZyW+//UbJkiXVFXYLCkEiIiJFyMyZMwF48sknKVmypJ2rKdwUgkRERIqI48ePs2rVKgCGDBli32IcgEKQiIhIEfH222+TnJxM69atqVu3rr3LKfQUgkRERIqAmJgYPv74YwDGjRtn52ocg0KQiIhIETBx4kQSEhJo2rQprVq1snc5DkEhSERExMHt2bOH2bNnAzBlyhQsf60eL9lTCBIREXFgiYmJDBkyBGMMvXr1omXLlvYuyWEUmhA0ZcoU7rvvPkqWLEmFChXo2rUrv/76a4Z9jDFMmDCBwMBAihUrRqtWrThw4ICdKhYREbG/0aNHs337dnx9fXn77bftXY5DKTQhaNOmTQwbNoxt27YRERFBcnIy7du35/Lly9Z9pk6dyrRp05g+fTo7duzA39+fdu3acfHiRTtWLiIikkPR0RAZmfbTBmbOnMl7770HwCeffKIlMnLLFFKnT582gNm0aZMxxpjU1FTj7+9v3nzzTes+165dM76+vmbWrFk5Pm5cXJwBTFxcnM1rFhERuam5c41xcTEG0n7OnXvzfU+cMOa779J+ZuHatWvm5WeeMYABzLhx4/Kp6MIjP/5+u9k1gWUjLi4OgDJlygBw9OhRYmJiaN++vXUfT09PWrZsyQ8//EB4eLhd6hQREbml6GgYPBhSU9Pup6ZCeDh06EBUcjJbtmzh999/59KlS6Tu20fpb7/Fzxj8LBbKjx5N2f79Afjjjz/YvHkz8z/8kOPnzgHwCjCxcmX7nJeDK5QhyBjDyJEjeeCBB6hTpw6QNv8BgJ+fX4Z9/fz8OHbs2E2PlZCQQEJCgvV+fHx8PlQsIiKSjUOH/g5AQCKwMCWF6S1bsv/IkZs/zxiYMiXtdgN/YDrQHWDIEHjoIVB3WK4UyhD07LPP8uOPP7Jly5ZMj9142Z8xJttLAadMmcLEiRNtXqOIiEiOhYSAiwukprIBGAr8BnDkCG5ubjRq1IjatWtTKj4ey7//zTng1F+3WOCstzcWNzfKli1LvcBAum3ZwmNAsfTjp6TA4cMKQblU6ELQc889x5o1a9i8eXOGAV7+/v5AWotQQECAdfvp06cztQ5db8yYMYwcOdJ6Pz4+nkqVKuVD5SIiIjcRFETqrFmMDw/nDWMwgJ+PDy+PH8+AAQMoXbp02n7R0bB8eYZWI1xd4eDBvwNOdDQEB2fep3r1AjudoqLQXB1mjOHZZ5/liy++4LvvvqNq1aoZHq9atSr+/v5ERERYtyUmJrJp0yaaNWt20+N6enri4+OT4SYiIlKQkpKS6Ld5M6//FYAG9+nDbydOMHLkyL8DEKQFnTlz0kINpP2cPTtjC09O9pEcKTQtQcOGDWPx4sWsXr2akiVLWscA+fr6UqxYMSwWCyNGjGDy5MmEhIQQEhLC5MmTKV68OL1797Zz9SIiIllLSkri8ccfZ/Xq1bi5uTFv3jz69u178yeEhUGHDmndW9WrZx1ucrKP3JLFGGPsXQRkHuuTbsGCBfT/a1S8MYaJEycye/Zszp8/T+PGjZkxY4Z18HROxMfH4+vrS1xcnFqFREQkXxljCAsLY8GCBXh5ebF8+XI6depk77IcUn78/S40IaigKASJiEhBmThxIhMmTMDFxYXVq1fz8MMP27skh5Uff78LzZggERGRouTLL79kwoQJQNrMzgpAhY9CkIiIiI0dPXrUOu5n+PDhDB482M4VSVYUgkRERGwoOTmZXr16ceHCBZo0aaJFTQsxhSAREREbmjJlCtu3b6dUqVIsXboUDw8Pe5ckN6EQJCIiYiO7du1i0qRJAEyfPp3KWtOrUFMIEhERsYGEhAT69etHcnIy3bt31xx2DkAhSERExAbeHjuWAwcOUKFcOWbOnJntupZSOCgEiYiI3KbDkyfz+jvvAPDe2bOUX7PGzhVJTigEiYiI3AZz4gTPvvoqCUBb4AljIDw8baFTKdQUgkRERG7D8rlzWQ94AB8BFoCUlLR1vaRQUwgSERHJo/j4eJ6fNQuAMUCN9AdcXdMWNpVCTSFIREQkj8aNG8fJ06epXqECo13++pPq6gqzZ2tldwfgZu8CREREHNHu3buZPn06AB99+iled96Z1gVWvboCkINQCBIREcmllJQUhgwZQmpqKr169aJdu3ZpDyj8OBR1h4mIiOTS7Nmz2bFjBz4+PkybNs3e5UgeKQSJiIjkQkxMDK+88goAkydPJiAgwM4VSV4pBImIiOTCyJEjiYuLo2HDhgwZMsTe5chtUAgSERHJofXr17NkyRJcXFyYNWsWrq6u9i5JboNCkIiISA5cuXKFZ555BoDhw4fToEEDO1ckt0shSEREJAf++c9/cvToUYKCgpg0aZK9yxEbUAgSERG5hf379/POXwukTp8+nZIlS9q5IrEFhSAREZFspKamEh4eTnJyMt26daNLly72LklsRCFIREQkGzNmzGDr1q2UKFGCDz/80N7liA0pBImIiNzEb7/9xqhRowB48803CdKM0EWKQpCIiEgWkpOT6du3L1evXuXBBx+0XhkmRYdCkIiISBamTp3K//73P3x8fJg/fz4uLvqTWdToExUREbnBjh07mDBhAgAffvghlSpVsm9Bki8UgkRERK5z/vx5evToQVJSEo8++ih927SByEiIjrZ3aWJjCkEiIlL0REfnKbgYYxgwYABRUVFUrVqVea1aYalSBdq0geBgmDcvf+oVu1AIEhGRomXevLTAkofg8tZbb7F69Wo8PDxYNn06pUaMgNTUtAdTUyE8XC1CRYhCkIiIFB3R0TB4cM6Dy3UtRitXrmTMmDEAfPDBBzQoVuzv46RLSYHDh/PxBKQgudm7ABEREZs5dOjmweXGOX7mzbMGpt0WC0+6uwPw7LPPMmTIkLSA5OKS8XiurlC9ej6fhBQUtQSJiEjRERKSFlyul1Vwua7F6FegozFcSUykQ8uWvPfee2n7BAXBnDlpz08/zuzZmcOUOCyFIBERKTpyGlz+ajE6CrQFTgH1gaUvvYSb23WdJGFhEBWV1mUWFZV2X4oMdYeJiEjREhYGHTqkdYFVr551y01ICL9bLDxoDH8AtYFvXFzwrV8/875BQWr9KaIUgkREpOi5RXDZc+YMoSVLcio+nurAty4ulJ8zR2HHyag7TEREnMq6deto2bIlp+LjqX/XXXy/YgUBx46pq8sJqSVIREScQmpqKpMnT+a1117DGEOrVq1YtWoVvr6+9i5N7EQtQSIiUuSdPHmSzp07M27cOIwxhIeHs27dOgUgJ6eWIBERKdKWLVvGkCFDOHfuHJ6ensyYMYMwdX0JCkEiIlJERUVFMXLkSFauXAnAPffcw6JFi7jrrrvsXJkUFuoOExGRIuXatWv885//5M4772TlypW4uroyduxYtm3bpgAkGRSqELR582Y6d+5MYGAgFouFVatWZXi8f//+WCyWDLcmTZrYp1gRESlUjDF8+eWX1KlTh9dee41r167RsmVL9u7dyz//+U88PDzsXaIUMoUqBF2+fJl69eoxffr0m+7z0EMPcfLkSevtq6++KsAKRUSkMNq/fz/t27fnkUce4ffffycwMJAlS5YQGRlJnTp17F2eFFKFakxQaGgooaGh2e7j6emJv79/AVUkIiKF2ZkzZxg/fjyzZ88mNTUVDw8PXnjhBV599VVKlixp7/KkkCtULUE5sXHjRipUqECNGjUYNGgQp0+ftndJIiJSwJKSkpg2bRohISHMnDmT1NRUunfvzi+//MKbb76pACQ5Uqhagm4lNDSUxx9/nODgYI4ePcq4ceNo06YNu3btwtPTM8vnJCQkkJCQYL0fHx9fUOWKiEg+2LZtG4MHD2b//v0A1K9fn/fee49WrVrZtzBxOA4Vgnr27Gn97zp16tCwYUOCg4P5z3/+w6OPPprlc6ZMmcLEiRMLqkQREcknFy9e5JVXXmHGjBkYYyhbtixvvvkmAwYMwDV91XiRXHC47rDrBQQEEBwczKFDh266z5gxY4iLi7PeTpw4UYAVioiILWzdupX69eszffp0jDH07duXgwcPMnDgQAUgyTOHagm60dmzZzlx4gQBAQE33cfT0/OmXWUiIlK4JScnM3nyZCZNmkRKSgrBwcHMnTuXBx980N6lSRFQqELQpUuXOHz4sPX+0aNH2bt3L2XKlKFMmTJMmDCB7t27ExAQQFRUFK+88grlypWjW7dudqxaRETyw+nTp3n88cfZvHkzAH369GHGjBla70tsplCFoJ07d9K6dWvr/ZEjRwLQr18/Zs6cyf79+/nXv/7FhQsXCAgIoHXr1ixdulRXAYiIFDG7d++ma9eunDhxgpIlSzJz5kz69Olj77KkiLEYY4y9iyhI8fHx+Pr6EhcXh4+Pj73LERGRGyxZsoSnn36aa9euUaNGDVavXk2tWrX+3iE6Gg4dgpAQCAqyX6FSoPLj77dDD4wWEZGiwxjDW2+9Re/evbl27RodO3bkf//7X8YANG8eBAdDmzZpP+fNs1/B4vAUgkRExO5SU1N58cUXGT16NAAvvvgia9asoVSpUn/vFB0NgwdDamr6kyA8PG27SB4UqjFBIiLifJKSkhgwYACfffYZAO+88w4vvvhi5h0PHfo7AKVLSYHDh9UtJnmiECQiInaTlJREz549WblyJW5ubixYsIAnn3wy651DQsDFJWMQcnWF6tULplgpctQdJiIidpGUlESvXr1YuXIlHh4erFq16uYBCNJae+bMSQs+kPZz9my1AkmeqSVIREQKXFJSEk888QRffPGFNQCFhobe+olhYdChQ1oXWPXqCkByWxSCRESkQKWkpNCnTx9WrFiBh4cHK1euTAtAOb30PShI4UdsQt1hIiJSYIwxDB06lGXLluHh4cEXX3xBx44ddem72IUmSxQRkfz3VyvPhC+/ZOJ772GxWFi+fDmPPvpo2mPBwZkHPEdFqcVHrPLj77e6w0REJH/NmweDBzMrNZWJf2366KOP0gIQ6NJ3sRt1h4mISP75a4LDlampDPtr02sWC0MefvjvfdIvfb+eLn2XAqAQJCIi+efQIb5PTeUJIBUYBEwwJq2VJ50ufRc7UXeYiIjkm59SUngESAAeAT4CLFm18ujSd7EDhSAREckXx48f56H+/bkA3A98Drhl18qjS9+lgCkEiYhI3t1kbp+zZ8/SoUMH/vjjD2rXrs2azz+n2NmzauWRQkUhSERE8uavq75ITU0b2DxnDoSFceXKFR5++GEOHjxIUFAQ69ato0ylSvauViST2xoYffr0aWJiYmxVi4iIOIq/rvqyXtqemgrh4SRHRdGzZ0+2bdtG6dKlWb9+PZUUgKSQylMI+vHHH7nrrrsICAigYsWKVKxYkbFjx3L58mVb1yciIoVRFnP7mJQUwocOZe3atXh5ebF27Vpq165tpwJFbi1PISgsLAw/Pz+2bNnCnj17eP311/n6669p2LAh58+ft3WNIiJS2GQxt89Yi4X5X3+Ni4sLS5cupVmzZnYqTiRn8rRshre3N7t27aJWrVrWbcYYHn/8cby8vPj0009tWqQtadkMEZEcutWCpvPmQXg4pKTwgcXCiL/+nHz88ccMHDiwgIuVoi4//n7nqSUoqxYfi8XC5MmTWb16tU0KExERO8rJgqZhYRAVxWevvGINQG+88YYCkDiMHIegTp068corr/Dvf/+bIUOG8MILL3Dq1KkM+8TFxVG6dGmbFykiIgXoJoOeiY7OtOvX+/fTf+pUAJ5//nnGjBlTkJWK3JYcXyJ/9913s3v3bhYsWGANP3fccQc9evSgfv36pKSksGDBAt577718K1ZERApADhc03bp1K927dyc5OZk+ffowbdo0LBZLARcrknd5GhN06tQp9uzZw969e623w4cP4+rqSs2aNfnxxx/zo1ab0JggEZFbiI5O6wK7Pgi5ukJUlDUEHThwgObNm3P+/HlCQ0NZvXo17u7u9qlXnEJ+/P3O02SJfn5+PPTQQzz00EPWbVevXmXfvn3s27fPJoWJiIidpC9o+teg5xsXND18+DDt27fn/PnzNGnShGXLlikAiUPKU0uQI1NLkIhIDkVHZ1rQ9OjRo7Ro0YLo6GjuuusuNm/eTJkyZexcqDiDQtMSJCIiTuCGBU2PHTtG69atiY6OplatWmzYsEEBSBzabS2bISIiziE6Opo2bdpw7NgxQkJC+O677/Dz87N3WSK3RSFIRESydeLECdq0acORI0e44447+O677wgICLB3WSK3TSFIRERu6tChQzzwwAMcOnSI4OBgvvvuO4Kymj1axAEpBImISJb2799P8+bNOX78ODVq1OD7778nODjY3mWJ2IxCkIiIZLJ9+3ZatmzJqVOnqFevHps3b6ZSpUr2LkvEphSCREQkg7Vr19K6dWvOnz9P48aNiYyM1CBoKZIUgkRExOqjjz6iS5cuXLlyhXbt2hEREaE1IaXIUggSERFSU1P5xz/+wbBhw0hNTSUsLIz//Oc/lCxZ0t6lieQbTZYoIuLkLl26xIABA1i+fDkAr7/+Oq+88ooWQ5UiTyFIRMSJHTx4kO7du/Pzzz/j7u7OggUL6NOnj73LEikQ6g4TEXFSy5cv57777uPnn38mMDCQyMhIBSBxKgpBIiJOJikpiRdffJHHH3+cS5cu0apVK3bv3s39999v79JECpRCkIiIEzl58iRt27Zl2rRpAIwaNYqIiAhdAi9OSWOCREScxObNm+nZsycxMTH4+PjwySef0LVrV3uXJWI3agkSESnijDG8++67tGnThpiYGOrUqcPOnTsVgMTpFaoQtHnzZjp37kxgYCAWi4VVq1ZleNwYw4QJEwgMDKRYsWK0atWKAwcO2KdYEREHEB8fz+OPP85LL71ESkoKffr0Ydu2bYSEhNi7NBG7K1Qh6PLly9SrV4/p06dn+fjUqVOZNm0a06dPZ8eOHfj7+9OuXTsuXrxYwJWKiBRS0dEQGQnR0Rw4cIBGjRqxYsUK3N3dmTFjBosWLcLb29veVYoUCoVqTFBoaCihoaFZPmaM4f333+fVV1/l0UcfBeCTTz7Bz8+PxYsXEx4eXpCliogUPvPmweDBkJrKEouFge7uXElMJCgoiGXLltGkSRN7VyhSqBSqlqDsHD16lJiYGNq3b2/d5unpScuWLfnhhx9u+ryEhATi4+Mz3EREipzoaBg8mMTUVIYDvY3hSmIibR94gN27dysAiWTBYUJQTEwMQKbLOP38/KyPZWXKlCn4+vpab5UqVcrXOkVE7OLQIU6mptIG+L+/Nr0CrJ8wgfLly9uxMJHCy2FCULob17IxxmS7vs2YMWOIi4uz3k6cOJHfJYqIFLgf4uJoAPwX8AFWA2+4uuJas6Z9CxMpxArVmKDs+Pv7A2ktQgEBAdbtp0+fznaSL09PTzw9PfO9PhERezDGMGvWLJ5//nmSgNrAKiDE1RVmz4agIPsWKFKIOUxLUNWqVfH39yciIsK6LTExkU2bNtGsWTM7ViYiYh/Xrl0jLCyMoUOHkpSUxGOPPcb/Dh4kJDISoqIgLMzeJYoUaoWqJejSpUscPnzYev/o0aPs3buXMmXKULlyZUaMGMHkyZMJCQkhJCSEyZMnU7x4cXr37m3HqkVECt7p06fp0qUL27Ztw8XFhSlTpvCPf/wjbXiAusBEcqRQhaCdO3fSunVr6/2RI0cC0K9fPxYuXMjLL7/M1atXGTp0KOfPn6dx48Z88803lCxZ0l4li4gUuAMHDvDwww8TFRVF6dKlWbp0Ke3atcv5AaKj4dAhCAlRd5k4NYsxxti7iIIUHx+Pr68vcXFx+Pj42LscEZFciYiI4LHHHiM+Pp5q1arxn//8h5q5afm5bi4hXFxgzhx1m4lDyI+/3w4zJkhExNnNmTOH0NBQ4uPjad68Odu2bctdAPprLiFSU9Pup6ZCeHjadhEnpBAkIlLIGWMY9/zzhIeHk5KSwlNPPUVERATlypXL3YEOHfo7AKVLSYHrxmKKOJNCNSZIREQySklJYVjbtszetAmACRYLr7VogSUvU3+EhKR1gV0fhFxdoXp1G1Ur4ljUEiQiUkglJCTQq0sXZm/ahAWYBYw3BsuQIXnrwgoKShsD5Oqadl9zCYmTU0uQiEghdPHiRbp168aGDRtwBz4DHk9/ML0LKy/hJSwMOnRIe3716gpA4tQUgkRECpnz58/z0EMPsX37dryLF2fV1as8eP2FvLfbhRUUpPAjgrrDREQKlbNnz9K2bVu2b99O2bJlidy4kQc//lhdWCL5QC1BIiL5JZeTEp45c4Z27dqxb98+ypcvz4YNG7j77rvhvvvUhSWSD9QSJCKSH+bNg+BgaNMm7ee8eTffNzqa0198QZvmzdm3bx9+fn5s3LgxLQClCwqCVq0UgERsSDNGi4jYWnR0WvC58VL0qKjMIWbePGIGDaKNMfwCBJYqxXe5nQRRxAloxmgREUeQ00kJo6P5c9AgWv0VgIKATfHx1PT2LqhKRZyaQpCIiK2lT0p4vSyu6Drx3//S0hh+BSoDm4DqqamawVmkgCgEiYjYWg4mJTx+/DitXn6Zw0BV0gLQHen7agZnkQKhq8NERPJDNpMSHjt2jNatW3P0+HGqlS9P5NmzVEpN1eXvIgVMIUhEJL9kMSlhVFQUrVu3JioqiurVqxMZGUkQ6PJ3ETtQCBIR+8nlPDqO7ujRo7Ru3Zpjx44REhJCZGQkFStWTHvQCc5fpLDRmCARsY/czKNTBBw5coRWrVpx7NgxatSokTEAiYhdKASJSMGLjobBg/++jDw1FcLD87YyugNID0DHjx+nZs2aCkAihYRCkIgUvJzOo1MEHD58mJYtW3LixAlq1apFZGQkgYGB9i5LRFAIEhF7yOE8Oo7uxx9/5IEHHiA6Opo777yTyMhIAgIC7F2WiPxFIUhECl4O5tFxdFu3bqVly5acOnWKevXqERkZib+/v73LEpHr6OowEbGPbObRcXQRERF07dqVK1eucP/997N27VpKlSpl77JE5AYKQSJiP1nMo+Poli9fTp8+fUhMTKRDhw6sWLECb60FJlIoqTtMRMQGjDG89dZbPP744yQmJvL444+zZs0aBSCRQkwhSETkNiUmJjJo0CBGjx4NwPPPP8+SJUvw8PCwc2Uikh11h4mI3IZTp07Rq1cvNm7ciIuLCx9++CHDhg2zd1kikgMKQSIieREdzfcrVtBz8mROnj5NiRIlWLp0KR07drR3ZSKSQwpBIiK5lDxnDm8PGcI4Y0gBagcGsmLDBmrVqmXv0kQkFzQmSESKhuhoiIzM96U3Dm7cyAPh4bzyVwDqDfwvJoZaJUrk6+uKiO0pBImI4yuAxVivXLnCpEmTuKdDB/4H+AILgU+BEqmpRXLJD5GiTiFIRBxbPi/GmpKSwuLFi6lVqxbjx4/nWmIi7YGfgH6ABYrkkh8izkAhSEQcWz4txnrt2jXmz5/PXXfdRZ8+fThx4gTBwcEsXbqUdR9/TFARXvJDxFloYLSI2FVqairHjx/nl19+4eTJk5w+fZqzZ8+SnJxMSkoKLi4u+Pj44Ovri6+vLxUrViQoKIhKlSrh6+uLJX0x1uuDUB5bZlJSUti+fTuLFy/ms88+4/z58wCUKlWKl156iZEjR1KsWLG0nR96qEgu+SHiTBSCRKRAJSQksHXrVjZs2EBkZCT79u3j0qVLeTpWiRIlqFy5MpVr16bygQNUNobKFgvBL75I5eRkKiYl4e7u/vcToqPTWo5CQkjy8+PkyZMcOXKEXbt2sWPHDr799lvOnj1r3T0oKIjnn3+e8PBwSpYsmfHFi+CSHyLOxmKMMfYuoiDFx8fj6+tLXFwcPj4+9i5HxCmkpKSwadMmFi9ezPLly4mLi8vwuIeHBzVr1qRSpUpUqFCBsmXL4u7ujqurKykpKcTHxxMXF8f58+f5448/OHHiBOfOnbvl61osFry9vSlZsmTa4OVTp0gArgFnLBay+vrz9fWlY8eO9O/fn7Zt2+Ka3u0lInaVH3+/1RIkIvnm4sWLzJ8/nw8//JAjR45Yt/v5+dG2bVvatm1LkyZNCAkJydhikwOXL18mOjqa48ePc+LECY4fP86xY8c4fvy49ZaYmMilS5eybmkyBnd3dypVqkS9evVo0KABLVq0oGnTpri56atRxBnoN11EbC4uLo5p06bx/vvvEx8fD6SNq+nRowe9e/emefPmuLjc3nUZ3t7e1KxZk5o1a2b5eGpqKrGxscTHx3MpMpKLgwdjATwAT8AfKL9uHS5t2txWHSLiuBSCRMRmrl69yowZM5gyZYq1u6pWrVqMGDGCp556iuLFi+f+oNeN48nNGBwXFxcqVKhAhQoVwMsr68HTNWrkvh4RKTJ0ibyI2MSaNWu48847+cc//sG5c+eoVasWy5cv58CBA4SHh+ctANlqEsSgIJgzJy34gC5rFxFAA6PtXY6Iwzt69CjDhw9n7dq1QNoVVZMmTeKpp566vbE10dFpwefG1puoqLyHl+hoXdYu4qA0MFpECo2UlBTee+89xo0bx7Vr13B3d+fFF19k7NixeHt73/4LZDcJYl4DTE4ua89j95uIOB6FIBHJtd9//53+/fuzZcsWAFq3bs2MGTO48847bfciNpwEMcfmzft7CQ4Xl7QutLCw/Hs9EbErhxoTNGHCBCwWS4abv7+/vcsScRrGGGbOnEndunXZsmULJUqU4OOPP2bDhg22DUBQ8ON48nkNMhEpfByuJeiuu+7i22+/td7XRGYiOWCDLp7o6GiefvppIiIiAGjVtCkLFi+mSpUq+fJ6QForTIcOBTOOJz+630SkUHOoliAANzc3/P39rbfy5cvbuySRwu02r7AyxrBo0SLq1KlDREQEXsD7wIZt26iyYYPNXy+ToCBo1Sr/g0h699v1tDq8SJHmcCHo0KFDBAYGUrVqVXr16pVhFtqsJCQkEB8fn+Em4jRus4vnzJkzdO/enb59+xIXF0djYC/wPOBiTOZjOXKXki6jF3E6DhWCGjduzL/+9S/Wr1/Pxx9/TExMDM2aNcuw4OGNpkyZYl192tfXl0qVKhVgxSJ2ll0Xzy2sWbOGOnXqsHLlStzd3XkjLIwtQIb5mW881m28XqEQFpZ2CX5kZNpPDYoWKdIcep6gy5cvU61aNV5++WVGjhyZ5T4JCQkkJCRY78fHx1OpUiXNEyTOIQ9z7cTHx/PCCy8wf/58AOrUqcOiRYuoX67crY+VH3P7iIiQP/MEOVRL0I28vb25++67OXTo0E338fT0xMfHJ8NNxGnksotn48aN1K1bl/nz52OxWHj55ZfZuXMn9evXz9mx1KUkIg7EoVuCEhISqFatGoMHD+a1117L0XM0Y7Q4pVvMlHzhwgVGjRrFnDlzAKhatSqffPIJzZs3z/WxcryPiEguOP2M0S+99BKdO3emcuXKnD59mtdff534+Hj69etn79JECrebzJRsjGH58uUMHz6cmJgYAAYPHsw777xDyZIlc3WsXO8jImJnDhWCoqOjeeKJJ4iNjaV8+fI0adKEbdu2ERwcbO/SRNI40JILv/zyCy+++CJff/01ADVr1mTOnDm0aNHCzpWJiBQMhwpBn3/+ub1LELk5B1lyITY2lgkTJjBr1ixSUlJwd3dnzJgxjBkzBi8vL3uXJyJSYBx6TFBeaEyQ5AsHuCoqNjaW9957j+nTp1vny+rSpQtvv/02ISEhdq5ORCR7Tj8mSKTQKsRLLhw5coQZM2Ywa9Ysrly5AkD9+vV59913adOmzd87OlBXnoiILSgEidhCblY8L4CwceXKFb7++ms+/vhj1q9fb93eoEEDxo4dyyOPPILL9UtEOEhXnoiILTn0PEEihUZO58ex9bpa1zlx4gSLFi2iR48elC9fnscee8wagNq3b89XX33Fjh076Nq1a8YA5MhLXYiI3AaNCRKxpezmx7HBuKHU1FTOnj3LyZMn+f333/npv//lp1272HHkCEePH8+wb3BwML169WLQoEFUq1bt5geNjEwLZVltb9UqR3WJiOQ3jQkSKeyCgjAVK3L69GkO//e/nDx5ktOnT3PmzBli9+7lamoqCWC9JaakkNy1Kyk+PiQnJ5OcnExKSkqW/3316lVOnz5NcnJyli/t6uJCg4YNadOmDd27d6dBgwZYLJZb15ybrjwRkSJEIUjkNqSkpHDgwAF27NjB9u3b2b17N7/99pv16qsc2bUr169brkwZgs+dow5QB6gLNAVKrliR+3FG6V154eFpg7m11IWIOAmFIJFc+vPPP1m/fj3r168nIiKCc+fOZdrHYrFQuXJlgoKCqFChAuXLl6dcuXIU//lnPFevxssYPC0WPPr3x61tW9zc3HB1dcXNzS3tv7/9FrcPP8TNGFwtFtxGjcLzscfw9/enQoUKuG/ZkrkLKzU171ejhYVBhw5a6kJEnIrGBInkwJ9//smyZcv4/PPP2bZtW4bHSpYsScOGDWnUqBENGzakdu3a3HHHHTefePBW62rlZOyQA8xLJCJiSxoTJFKAEhIS+OKLL/j444/ZuHEj6f9esFgs3HfffXTo0IEOHTrQuHFj3Nxy8at0q3W1cjLnkLqwRERum0KQyA1+/fVX5syZwyeffMLZs2et25s1a0bPnj15/PHHCQgIyL8CcjpQWV1YIiK3RSEov2kWXvvJxXuflJTEF198waxZs9i4caN1e1BQEAMHDqR///4Ft1Bvblp5tFq7iEieKQTlJ83Cm3u2Co05fO9jYmKYM2cOs2bN4uTJkwC4uLjQqVMnBg8eTGhoKK7pEyAWJLXyiIjkOw2Mzi8auJp7tgqNt3jvjTFs3bqV6dOns3z5cpKSkgDwr1CBwUOGMHDgQCpVqpT5mGrRExGxm/z4+61lM/JLdoNbJTNbLt1wk/f+yk8/MX/+fBo0aMD999/PkiVLSEpK4n5gCXDszBkmVq6cOQDl41IXIiJiPwpB+SV9cOv1NAvvzdkyNF733hvgf0C4xUJAjx6EhYWxZ88evLy8eLpnT3ZZLGwBegEexmQOXlpXS0SkyFIIyi85XVBT0tgyNAYFcXzKFN6xWKgDNAHmGEP8xYtUrVqVqVOnEh0dzbzwcO69sTf4xuClFj0RkSJLA6Pzkwa35txtzntjjOHQoUOsWrWK5cuXs2PHDutjXp6ePPb44zz99NO0bNny7xXUc3IputbVEhEpshSC8psuYc65XIRGYwzR0dFs3bqViIgIIiIiOHbsmPVxi8VC8+bN6d27N7169cLX1zfzQXISvDQpoYhIkaWrw6TQu3DhAvv377fefvrpJ/b/+CNxNyxS6u7uTsuWLXnsscfo2rUrfn5+OXuBWy1jkdN9REQk32jZDHFst7jMPCEhgYMHD2YIPPv37yf6JoOQ3YDaQNt27Wj3wgu0aNECb2/v3NeVk9Y6teiJiBQ5CkFSMG6YA+jMu++yp3Ztdu/ezZ49e9i/fz+//fYbKSkpWT69cuXK3H333dQJDubumTO52xhqAp4A330H8+dDXgKQiIg4LYUgyXfmxAkODRrEd8bwHbA1NZXoF17Ict9SpUpx9913Z7jVqVPn7zE9kZHw0UcZn3Tj4qIiIiI54LQhKCkpienTpxMdHc2QIUOoUqWKvUsqWPk8A3JSUhKbNm1i+fLlrF2xgj+yGHpWo1Il7r3/fu655x7q1q3L3XffTWBgIBaL5eYH1tVaIiJiI04bgkaPHs3cuXMBWLBgATt27KBy5cp2qycxMZHY2FiSk5Px8/PD09Mz804FvK5WXuzevZs5c+awbNkyzp07Z93uATQD2gAtgHtcXPD54Yfcn4eu1hIRERtx2qvD0pUuXZrz58/z6KOPsmLFigKtJS4ujkWLFrF48WJ27dpFYmKi9bE777yTdu3a8dRTT9GgQQMs8+cXyLpaeXH58mUWL17M7Nmz2bVrl3V7uXLl6NatG48++igtjx6l2HPPZQwutxO8dLWWiIhTyY+rw5w6BLVv355p06ZRt25dUlNT+e9//0uzZs3yvQZjDAsWLGDUqFHExsZat7u4uODq6mpd0DPdPXXqMO7AAboY8/cU33kNLpGRaWtgZbW9VatcHerChQvMmDGD999/33oeHh4ePProo4SFhdGqVSvc3K5rbFRwERGRPNICqjbWs2dP7rrrLgYMGADAtGnT8v01L126RM+ePQkLCyM2NpaaNWvy4YcfcvjwYZKTk0lISCAmJoYvvviCJ554Ai8vL/b89BOPGkMD4Lv0A9lgXS2rXI6pOXPmDK+++irBwcGMHTuW2NhY7rjjDt555x2io6NZsmQJDz74YMYABGnBp1UrBSARESkcjJOJi4szpK2raU6cOGGMMWb//v0GMK6urtZt+eHChQumcePGBjBubm5m6tSpJjExMdvnxMbGmlefe86U+KtmwHQHc9TFxZi81jp3rjGursZA2s+5c3P0tBMnTpgRI0aY4sWLW2upXbu2+fTTT01SUlLeahEREcmB9L/fcXFxNjum04agwMDADNtbtGhhADNu3Lh8ed3rA1CZMmXMli1bcvX82PffN8MsFuPyV/jwcnc348ePN5cvX85bQSdOGBMZmaMgdfjwYTNo0CDj7u5uDT8NGzY0K1euNCkpKXl7fRERkVxQCLKB9DcxNDQ0w/alS5cawPj7+9u8VSMpKcm0a9fOGoD27NmTtwOdOGH2zZ1rWjZpYg0jFStWNAsXLsyXMLJ3717T65FHjIuLi/X1WrRoYdavX29SU1Nt/noiIiI3kx8hyGnHBNWoUSPD/a5du1K+fHliYmL4zyefpA0UvslyDbn10ksvERERQfHixYmIiKB+/fp5O1BQEHXDwoj84QeWLl1KcHAwf/zxB/3796dBgwZ8/fXXmNsc556amsq3335Lp06dqF+/Pp+vWUNqaioPAd+PGsWmTZto37599nP5iIiIOACnDUHVbxgI7OHhQb9+/QCYO3Bg2hVUwcFpc+rchs8++4wPPvgAgEWLFnHvvffe1vEgbYX0Hj16cPDgQd566y18fHzYu3cvHTt2pF69eix4913i167NVYg7evQob775JjVq1KBdu3Z89dVXuAC9gD3A18AD77xjs2AoIiJib057ify6devo0KFDhsd+3bSJWq1a4QIcByrCbc2hExUVRb169YiPj+e1115j4sSJNjiDzGJjY5kyZQpz5szh0qVLQNqaWqFAmyee4L7hw6latSrly5fHYrFw8eJF/vzzT/bt28eOHTv49ttv2bdvn/V4Pj4+PNW6NSNWrybTNWNZXUqfz7NPi4iIaJ4gG0h/E3/fsoU77r8/44ORkbRo04bvgX8CY6/bnts5dFJSUmjdujXff/89zZo1Y9OmTZkvGbex8z/9xOy6dVloDL/m8rkuLi60aNGCvn370qNHD7zPn8/ZpIr5OPu0iIhIOs0TZENlH3ggc1dXSAiD/hrrMg9IhTyvS/X222/z/fffU6JECRYtWpTvAQig9JkzjDaGX4C9wCTSWoMCy5XLNIanZMmSNGzYkKFDh7Jo0SJOnz5NZGQkAwYMwNvb++/lKVxd056Q1fIU0dF/ByBI+xkeri4zERFxCE7bEhQH+GTRsnHlo48IHDaMOCDCxYUH89CysXv3bho3bkxycjILFiygf//+tjyFm8tmSYwkPz8uXLiAMYbixYtTokSJnB/zZrM823D2aRERkeyoJcjWsph1ufjQoTz51wDpjzt2zHUAunLlCn369CE5OZnu3btbB1sXiGxab9zd3SlfvjwVKlTIeQBKP+bNZnm2wezTIiIi9uLcIegmf7AHjhgBwMr16zOs7ZUT//jHPzh48CABAQHMnj0755eSR0fb5rL8sLC01q3IyLSf+Tk+JyddZiIiIoWU84YgF5eb/sGuX78+DRs2JCkpifnz5+f4kF9++SUfffQRAAsXLqRs2bI5e+K8eWndWDa6LL9A1+gqyNAlIiJiQ847Jujnn/G5886b7rdw4UIGDBhA+fLlOXLkyC27kE6ePEndunWJjY1l5MiRvPvuuzkrKJtxPGpRERERSaMxQbZUsWK2Dz/55JNUq1aNM2fOMH369Gz3TUlJoW/fvsTGxlK/fn0mT56c8zoOHcoYgNIOmLcV4kVERCTHHDIEffTRR1StWhUvLy8aNGjA999/b/PXcHNzY/z48QC8+eabnDx58qb7jho1im+//ZZixYqxePFiPD09c/5CGlwsIiJiFw4XgpYuXcqIESN49dVX2bNnD82bNyc0NJTjx4/b/LV69+5NgwYNiIuLY9CgQaTe2GIDvPPOO9aur08++YQ7s+liy5IGF4uIiNiFw40Jaty4Mffeey8zZ860brvzzjvp2rUrU6ZMueXzc9un+OOPP3LfffeRmJjIM888w4cffoibmxtJSUmMGzeOt956C4B//vOfjB079hZHy0Z28/GIiIg4OadfNiMxMZHixYuzbNkyunXrZt3+/PPPs3fvXjZt2pTpOQkJCSQkJFjvx8fHU6lSpVy9iYsXL6ZPnz4A1KxZk0aNGvH9998TFRUFwKRJkxg3btxtnJmIiIhkJz9CUP6v5WBDsbGxpKSk4Ofnl2G7n58fMTExWT5nypQpt71wae/evfH09CQsLIxff/2VX39NW5mrfPnyTJ8+nR49etzW8UVERKTgOVQISnfjBITGmJtOSjhmzBhGjhxpvZ/eEpRb3bt3p127dqxcuZLo6GhCQkJ4+OGHKV68eK6PJSIiIvbnUCGoXLlyuLq6Zmr1OX36dKbWoXSenp65u1orGz4+PgW7DIaIiIjkG4e6OszDw4MGDRoQERGRYXtERATNmjWzU1UiIiLiiByqJQhg5MiRPPXUUzRs2JCmTZsyZ84cjh8/zpAhQ+xdmoiIiDgQhwtBPXv25OzZs0yaNImTJ09Sp04dvvrqK4KDg+1dmoiIiDgQh7pE3hby4xI7ERERyV9aO0xERETERhSCbkd0NERGpv0UERERh6IQlFfz5kFwMLRpk/Zz3jx7VyQiIiK5oBCUF9HRMHgwpC+ompoK4eFqERIREXEgCkF5cejQ3wEoXUpK2gKoIiIi4hAUgvIiJARcbnjrXF3TVoAXERERh6AQlBdBQTBnTlrwgbSfs2enbRcRERGH4HCTJRYaYWHQoUNaF1j16gpAIiIiDkYh6HYEBSn8iIiIOCh1h4mIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCk5VAiqUqUKFoslw2306NH2LktEREQckJu9C8itSZMmMWjQIOv9EiVK2LEaERERcVQOF4JKliyJv7+/vcsQERERB+dQ3WEAb731FmXLlqV+/fq88cYbJCYm2rskERERcUAO1RL0/PPPc++991K6dGm2b9/OmDFjOHr0KHPnzr3pcxISEkhISLDej4uLAyA+Pj7f6xURERHbSP+7bYyx3UGNnY0fP94A2d527NiR5XOXL19uABMbG3tbx9dNN91000033Rzj9vvvv9ssg1iMsWWkyr3Y2FhiY2Oz3adKlSp4eXll2v7HH38QFBTEtm3baNy4cZbPvbEl6MKFCwQHB3P8+HF8fX1vr3gHEh8fT6VKlThx4gQ+Pj72LqfA6Lx13s5A563zdgZxcXFUrlyZ8+fPU6pUKZsc0+7dYeXKlaNcuXJ5eu6ePXsACAgIuOk+np6eeHp6Ztru6+vrVP/zpPPx8dF5OxGdt3PReTsXZz1vFxfbDWe2ewjKqa1bt7Jt2zZat26Nr68vO3bs4IUXXuCRRx6hcuXK9i5PREREHIzDhCBPT0+WLl3KxIkTSUhIIDg4mEGDBvHyyy/buzQRERFxQA4Tgu699162bdt228fx9PRk/PjxWXaRFWU6b523M9B567ydgc7bdudt94HRIiIiIvbgcJMlioiIiNiCQpCIiIg4JYUgERERcUoKQSIiIuKUimQI+uijj6hatSpeXl40aNCA77//Ptv9N23aRIMGDfDy8uKOO+5g1qxZBVSpbeXmvL/44gvatWtH+fLl8fHxoWnTpqxfv74Aq7Wd3H7e6f773//i5uZG/fr187fAfJLb805ISODVV18lODgYT09PqlWrxvz58wuoWtvJ7Xl/9tln1KtXj+LFixMQEMCAAQM4e/ZsAVV7+zZv3kznzp0JDAzEYrGwatWqWz6nKHyn5fa8i8p3Wl4+73SO/J2Wl/O2xXdakQtBS5cuZcSIEbz66qvs2bOH5s2bExoayvHjx7Pc/+jRo3Ts2JHmzZuzZ88eXnnlFYYPH86KFSsKuPLbk9vz3rx5M+3ateOrr75i165dtG7dms6dO1tn4XYUuT3vdHFxcfTt25e2bdsWUKW2lZfz7tGjBxs2bGDevHn8+uuvLFmyhFq1ahVg1bcvt+e9ZcsW+vbtS1hYGAcOHGDZsmXs2LGDgQMHFnDleXf58mXq1avH9OnTc7R/UflOy+15F5XvtNyedzpH/07Ly3nb5DvNZquQFRKNGjUyQ4YMybCtVq1aZvTo0Vnu//LLL5tatWpl2BYeHm6aNGmSbzXmh9yed1Zq165tJk6caOvS8lVez7tnz55m7NixZvz48aZevXr5WGH+yO15f/3118bX19ecPXu2IMrLN7k977ffftvccccdGbZ9+OGHJigoKN9qzE+AWblyZbb7FJXvtOvl5Lyz4ojfadfLzXk7+nfa9XJy3rb6TitSLUGJiYns2rWL9u3bZ9jevn17fvjhhyyfs3Xr1kz7d+jQgZ07d5KUlJRvtdpSXs77RqmpqVy8eJEyZcrkR4n5Iq/nvWDBAn7//XfGjx+f3yXmi7yc95o1a2jYsCFTp06lYsWK1KhRg5deeomrV68WRMk2kZfzbtasGdHR0Xz11VcYYzh16hTLly+nU6dOBVGyXRSF7zRbcMTvtLxy9O+0vLDVd5rDzBidE7GxsaSkpODn55dhu5+fHzExMVk+JyYmJsv9k5OTiY2NzXZx1sIiL+d9o3fffZfLly/To0eP/CgxX+TlvA8dOsTo0aP5/vvvcXNzzP/983LeR44cYcuWLXh5ebFy5UpiY2MZOnQo586dc5hxQXk572bNmvHZZ5/Rs2dPrl27RnJyMo888gj/93//VxAl20VR+E6zBUf8TsuLovCdlhe2+k4rUi1B6SwWS4b7xphM2261f1bbC7vcnne6JUuWMGHCBJYuXUqFChXyq7x8k9PzTklJoXfv3kycOJEaNWoUVHn5Jjefd2pqKhaLhc8++4xGjRrRsWNHpk2bxsKFCx2qNQhyd94///wzw4cP57XXXmPXrl2sW7eOo0ePMmTIkIIo1W6KyndaXjn6d1pOFbXvtNyw1XdakYqN5cqVw9XVNdO/Ck+fPp3pX0bp/P39s9zfzc2NsmXL5luttpSX8063dOlSwsLCWLZsGQ8++GB+lmlzuT3vixcvsnPnTvbs2cOzzz4LpP0iGWNwc3Pjm2++oU2bNgVS++3Iy+cdEBBAxYoV8fX1tW678847McYQHR1NSEhIvtZsC3k57ylTpnD//ffzj3/8A4C6devi7e1N8+bNef3114tkq0hR+E67HY78nZZbReU7LS9s9Z1WpFqCPDw8aNCgARERERm2R0RE0KxZsyyf07Rp00z7f/PNNzRs2BB3d/d8q9WW8nLekPavpf79+7N48WKHHCOR2/P28fFh//797N2713obMmQINWvWZO/evTRu3LigSr8tefm877//fv78808uXbpk3fbbb7/h4uJCUFBQvtZrK3k57ytXruDikvFrztXVFfi7daSoKQrfaXnl6N9puVVUvtPywmbfabc1rLoQ+vzzz427u7uZN2+e+fnnn82IESOMt7e3iYqKMsYYM3r0aPPUU09Z9z9y5IgpXry4eeGFF8zPP/9s5s2bZ9zd3c3y5cvtdQp5ktvzXrx4sXFzczMzZswwJ0+etN4uXLhgr1PIk9ye940c9UqK3J73xYsXTVBQkHnsscfMgQMHzKZNm0xISIgZOHCgvU4hT3J73gsWLDBubm7mo48+Mr///rvZsmWLadiwoWnUqJG9TiHXLl68aPbs2WP27NljADNt2jSzZ88ec+zYMWNM0f1Oy+15F5XvtNye940c9Tstt+dtq++0IheCjDFmxowZJjg42Hh4eJh7773XbNq0yfpYv379TMuWLTPsv3HjRnPPPfcYDw8PU6VKFTNz5swCrtg2cnPeLVu2NECmW79+/Qq+8NuU28/7eo76hWFM7s/7l19+MQ8++KApVqyYCQoKMiNHjjRXrlwp4KpvX27P+8MPPzS1a9c2xYoVMwEBAaZPnz4mOjq6gKvOu8jIyGx/V4vqd1puz7uofKfl5fO+nqN+p+XlvG3xnWYxpoi2CYuIiIhko0iNCRIRERHJKYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSJSJEyaNIm7774bb29v/Pz8eOaZZ0hKSrJ3WSJSiLnZuwARkdtljCElJYXZs2dTsWJFfv75Z/r27UvdunV55pln7F2eiBRSWkBVRIqk3r17U758eT744AN7lyIihZS6w0TE4R07doxnn32WOnXqULp0aUqUKMG///1vgoKC7F2aiBRiCkEi4tBiY2Np1KgRsbGxTJs2jS1btrB161ZcXV2pX7++vcsTkUJMY4JExKF99dVXJCcns2TJEiwWCwAzZswgMTFRIUhEsqUQJCIOrUyZMsTHx7NmzRpq167Nl19+yZQpU6hYsSLly5e3d3kiUohpYLSIODRjDM888wyLFy+mWLFiPPnkk1y7do1jx46xdu1ae5cnIoWYQpCIiIg4JQ2MFhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDil/we6emBc01DC9AAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcKUlEQVR4nO3de3zO9f/H8ce1s9PGsANjxBwqh5wPySFyPiaVyiE5RITKIQolilL9kqJGpWilSDklOYavM4U0MRnmbGMY296/P9auzGa2ubZr167n/Xa7blyf6/35XK/PdW3X9dz78/68PxZjjEFERETEybjYuwARERERe1AIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIErtq0qQJTZo0sXcZWdarVy8KFiyYobZlypShV69e2VqPxWJh/Pjx2foct3P58mXGjx/PmjVr7FqHo1i1ahW1atWiQIECWCwWFi1axGeffYbFYiEiIsLabt68ebz33nvZUsPYsWMpXbo0bm5uFC5cONPr9+rVizJlyti8rtzkxIkTjB07lvr161OsWDG8vb2pWbMms2bNIiEhIUXbNWvWYLFY0rxt3rzZTnsgaXGzdwHi3GbMmGHvEnLMwoUL8fb2tncZ2e7y5ctMmDABwKEDbk4wxtCtWzcqVKjA4sWLKVCgABUrViQ+Pp5NmzYRGBhobTtv3jz++OMPhg4datMafvjhB9544w3GjBlD69at8fT0tOn284rt27fzxRdf0KNHD1555RXc3d1ZtmwZzz77LJs3b2b27Nmp1pk0aRJNmzZNsezee+/NqZIlAxSCxK7uvvtue5eQY+677z57lyA2dOXKFby8vLBYLFnexvHjxzl37hydO3fmwQcfTPFY8eLF77TEDPnjjz8AGDJkCH5+fjnynLZii/cgoxo2bMjff/+Nu7u7dVmLFi24du0aH374IRMmTKBUqVIp1gkJCaFevXrZXptknQ6HSYaNHz8ei8XC3r17efzxx/Hx8cHf35+nn36a6OjoFG2vXr3K6NGjKVu2LB4eHpQsWZJBgwZx4cKFFO3SOhz20UcfUa1aNQoWLEihQoWoVKkSL7/8MgARERG4ubkxefLkVPWtW7cOi8XCt99+m+5+XLhwgRdeeIG77roLT09P/Pz8aNOmDX/++SfwX1f2zYdzIiIisFgsfPbZZ6m2uXfvXh588EEKFChA8eLFee6557h8+XKKNmkdDrtdLbYQFRVF//79CQoKwsPDg7JlyzJhwgTi4+NTtJswYQJ169bF19cXb29vatSoQWhoKDdfY/nXX3+lSZMmFC1alHz58lG6dGkefvhhLl++TEREhPXLe8KECdZDALc7DHj58mVefPFFypYti5eXF76+vtSqVYv58+enaPfZZ59RsWJFPD09qVy5Ml988UWqQzGZef+2bdvGY489RpkyZciXLx9lypTh8ccf58iRI6me12Kx8PPPP/P0009TvHhx8ufPT1xcHABhYWHUr1+fAgUKULBgQVq2bMnOnTvT3efx48cTFBQEwMiRI7FYLNb9uPlwWJMmTViyZAlHjhxJcWglPYmJiUyZMoVKlSpZf7Z69OhBZGSktU2ZMmUYO3YsAP7+/hk6nJrWe5CWa9euMXHiROvzFy9enN69e3P69OkU7eLi4njhhRcICAggf/78PPDAA2zfvj3V74ut3oNt27bRoUMHfH198fLy4r777uObb75Jd58BihQpkiIAJatTpw5AitdVHId6giTTHn74YR599FH69OnD77//zujRowGs3cHGGDp16sSqVasYPXo0jRo1Ys+ePYwbN45NmzaxadOmW3a5f/311wwcOJDBgwfz9ttv4+LiwsGDB9m3bx+Q9KHdoUMHPv74Y0aMGIGrq6t13enTp1OiRAk6d+58y9ovXrzI/fffT0REBCNHjqRu3bpcunSJdevWceLECSpVqpTp1+P69eu0adOG/v37M2rUKDZu3MjEiRM5cuQIP/744x3X0qtXLz7//HMOHz6c6XEXUVFR1KlTBxcXF1599VXKlSvHpk2bmDhxIhEREcyZM8faNiIigv79+1O6dGkANm/ezODBgzl27BivvvqqtU3btm1p1KgRs2fPpnDhwhw7dozly5dz7do1AgMDWb58Oa1ataJPnz4888wzwO17NYYPH87cuXOZOHEi9913H7Gxsfzxxx+cPXvW2uazzz6jd+/edOzYkXfeeYfo6GjGjx9PXFwcLi5Z+3suIiKCihUr8thjj+Hr68uJEyf46KOPqF27Nvv27aNYsWIp2j/99NO0bduWuXPnEhsbi7u7O5MmTWLs2LH07t2bsWPHcu3aNaZOnUqjRo3YsmXLLXs7n3nmGapVq0aXLl0YPHgw3bt3v+XvxYwZM+jXrx9///03CxcuzNC+Pfvss8yaNYvnnnuOdu3aERERwSuvvMKaNWvYsWMHxYoVY+HChXz44YeEhoayfPlyfHx8rMEsLRl9DxITE+nYsSPr169nxIgRNGjQgCNHjjBu3DiaNGnCtm3byJcvHwC9e/cmLCyMESNG0KxZM/bt20fnzp2JiYlJs4Y7eQ9Wr15Nq1atqFu3Lh9//DE+Pj58/fXXPProo1y+fDlLY/Z+/fVX3NzcqFChQqrHBg0axGOPPUb+/PmpX78+r7zyCvfff3+mn0OykRHJoHHjxhnATJkyJcXygQMHGi8vL5OYmGiMMWb58uVptgsLCzOAmTVrlnVZ48aNTePGja33n3vuOVO4cOF061i9erUBzMKFC63Ljh07Ztzc3MyECRPSXfe1114zgFm5cuVtt7969eoUyw8fPmwAM2fOHOuynj17GsC8//77Kdq+8cYbBjAbNmywLgsODjY9e/bMVC3GGPP0008bV1dXExERkW47Y4wBzLhx46z3+/fvbwoWLGiOHDmSot3bb79tALN37940t5OQkGCuX79uXnvtNVO0aFHre7tgwQIDmF27dt2yhtOnT6eq43buvfde06lTp1s+npCQYEqUKGFq1KhhrcUYYyIiIoy7u7sJDg62LsvM+3ez+Ph4c+nSJVOgQIEU7+mcOXMMYHr06JGi/T///GPc3NzM4MGDUyy/ePGiCQgIMN26dUtnr/+raerUqSmWJz/f4cOHrcvatm2bYj/Ts3//fgOYgQMHplj+v//9zwDm5Zdfti5L/r0+ffp0utvMzHswf/58A5jvvvsuxTa2bt1qADNjxgxjjDF79+41gBk5cmSKdsnr3/j7Yov3oFKlSua+++4z169fT9G2Xbt2JjAw0CQkJKT7GtxsxYoVxsXFxQwbNizF8h07dpjnn3/eLFy40Kxbt87Mnj3bVK5c2bi6uprly5dn6jkke+lwmGRahw4dUtyvWrUqV69e5dSpU0DSX0ZAqr+qHnnkEQoUKMCqVatuue06depw4cIFHn/8cX744QfOnDmTqk2TJk2oVq0aH374oXXZxx9/jMVioV+/funWvmzZMipUqEDz5s3TbZdZTzzxRIr73bt3B5L+8rzTWkJDQ4mPjyc4ODjTdf300080bdqUEiVKEB8fb721bt0agLVr11rb/vrrrzRv3hwfHx9cXV1xd3fn1Vdf5ezZs9b3tnr16nh4eNCvXz8+//xzDh06lKl6bqwhPj7eeqitTp06LFu2jFGjRrFmzRquXLmSYr0DBw5w/PhxunfvnuIwUHBwMA0aNMj065Ls0qVLjBw5kvLly+Pm5oabmxsFCxYkNjaW/fv3p2r/8MMPp7i/YsUK4uPj6dGjR4r98vLyonHjxnY7Qy755+7m38E6depQuXLldH8HbyUz78FPP/1E4cKFad++fYrXpXr16gQEBFhfl+Sfv27duqVYv2vXrri5pX2gIqvvwcGDB/nzzz+tv6s3tm3Tpg0nTpzgwIEDGX49duzYQbdu3ahXr16qw/P33Xcf7733Hp06daJRo0b07t2bjRs3EhgYyIgRIzL8HJL9FIIk04oWLZrifnIXfvIX19mzZ3Fzc0t1CMRisRAQEJDiEMfNnnrqKWbPns2RI0d4+OGH8fPzo27duqxcuTJFuyFDhrBq1SoOHDjA9evX+eSTT+jatSsBAQHp1n769Ol0u/uzws3NLdVrklxHevuaHbXc7OTJk/z444+4u7unuN1zzz0A1pC5ZcsWHnroIQA++eQTfvvtN7Zu3cqYMWOA/97bcuXK8csvv+Dn58egQYMoV64c5cqV4/33379tLREREanqSP4S/L//+z9GjhzJokWLaNq0Kb6+vnTq1Inw8HDgv9cxrff3du95erp378706dN55plnWLFiBVu2bGHr1q0UL148VRADUpytBUmvL0Dt2rVT7VtYWFiaIT4nJL9eN9cLUKJEiXR/Lm+3zYy8BydPnuTChQt4eHikel2ioqKsr0vyNv39/VOsn9bvVLKsvgfJ7V588cVU7QYOHAiQ4fdr586dtGjRgpCQEJYuXZqhM+oKFy5Mu3bt2LNnT5o/W2IfGhMkNle0aFHi4+M5ffp0iiBkjCEqKoratWunu37v3r3p3bs3sbGxrFu3jnHjxtGuXTv++usva29I9+7dGTlyJB9++CH16tUjKiqKQYMG3ba24sWL33YAo5eXF4B1wGWyW31AxsfHc/bs2RQf2lFRUUDqwJjZWu5UsWLFqFq1Km+88Uaaj5coUQJIGovl7u7OTz/9ZN1/gEWLFqVap1GjRjRq1IiEhAS2bdvGBx98wNChQ/H39+exxx67ZS0lSpRg69atKZZVrFgRgAIFCjBhwgQmTJjAyZMnrb1C7du3588//7S+jsmv641uXpbR9y86OpqffvqJcePGMWrUKOvyuLg4zp07l+Y+3DwYOXnM0IIFC7LUU5ddkl+vEydOpArax48fTzXWKTPbzMh7UKxYMYoWLcry5cvT3FahQoVSbPPkyZOULFnS+njy71RasvoeJLcbPXo0Xbp0SbNN8s9jenbu3Enz5s0JDg7m559/xsfH57brJEvu+cyJs9kkY9QTJDaXfKrvl19+mWL5d999R2xsbKpTgW+lQIECtG7dmjFjxnDt2jX27t1rfczLy8t6SGbatGlUr16dhg0b3nabrVu35q+//rIesktL8uDjPXv2pFi+ePHiW67z1Vdfpbg/b948IP15cjJSy51q164df/zxB+XKlaNWrVqpbskhyGKx4ObmlmKg+ZUrV5g7d+4tt+3q6krdunWthyV37NgBpO4ZTObh4ZHq+ZO/DG/k7+9Pr169ePzxxzlw4ACXL1+mYsWKBAYGMn/+/BRnqx05coSNGzemWD+j75/FYsEYk+qv+E8//TTV5He30rJlS9zc3Pj777/TfH1r1aqVoe1khKenZ4Z7EJo1awak/h3cunUr+/fvz/Dv4I0y8x60a9eOs2fPkpCQkOZrkhw2HnjgASDpzK4bLViwINXZi7eS0fegYsWKhISEsHv37lu2S+vn8Ua7du2iefPmBAUFsXLlSooUKZKhGgHOnz/PTz/9RPXq1VP8oSH2pZ4gsbkWLVrQsmVLRo4cSUxMDA0bNrSeHXbffffx1FNP3XLdvn37ki9fPho2bEhgYCBRUVFMnjwZHx+fVD1IAwcOZMqUKWzfvp1PP/00Q7UNHTqUsLAwOnbsyKhRo6hTpw5Xrlxh7dq1tGvXjqZNmxIQEEDz5s2ZPHkyRYoUITg4mFWrVvH999+nuU0PDw/eeecdLl26RO3ata1nh7Vu3TrdM0EyUgtAnz59+Pzzz/n7778z3dvw2muvsXLlSho0aMCQIUOoWLEiV69eJSIigqVLl/Lxxx8TFBRE27ZtmTZtGt27d6dfv36cPXuWt99+O1VA+Pjjj/n1119p27YtpUuX5urVq9azApPHNhUqVIjg4GB++OEHHnzwQXx9fSlWrFi6Z7bVrVuXdu3aUbVqVYoUKcL+/fuZO3cu9evXJ3/+/AC8/vrrPPPMM3Tu3Jm+ffty4cIFxo8fn+pQTEbfP29vbx544AGmTp1qrW/t2rWEhoZmeNbkMmXK8NprrzFmzBgOHTpEq1atKFKkCCdPnmTLli3WHi5bqFKlCt9//z0fffQRNWvWxMXF5ZYhq2LFivTr148PPvgAFxcXWrdubT07rFSpUgwbNizTz+/i4pLh9+Cxxx7jq6++ok2bNjz//PPUqVMHd3d3IiMjWb16NR07dqRz587cc889PP7447zzzju4urrSrFkz9u7dyzvvvIOPj0+GzvrLzHswc+ZMWrduTcuWLenVqxclS5bk3Llz7N+/nx07dqQ7vcaBAwesP+NvvPEG4eHh1sO1kHSoOLnnu3v37pQuXZpatWpRrFgxwsPDeeeddzh58mSaU2yIHdlzVLY4lludRZLWmSxXrlwxI0eONMHBwcbd3d0EBgaaZ5991pw/fz7FujefHfb555+bpk2bGn9/f+Ph4WFKlChhunXrZvbs2ZNmTU2aNDG+vr7m8uXLGd6P8+fPm+eff96ULl3auLu7Gz8/P9O2bVvz559/WtucOHHCdO3a1fj6+hofHx/z5JNPmm3btqV5dliBAgXMnj17TJMmTUy+fPmMr6+vefbZZ82lS5dSPO/NZ4dltJbkM9BufH1vhTTOyjp9+rQZMmSIKVu2rHF3dze+vr6mZs2aZsyYMSlqnD17tqlYsaLx9PQ0d911l5k8ebIJDQ1N8dybNm0ynTt3NsHBwcbT09MULVrUNG7c2CxevDjFc/7yyy/mvvvuM56enqnO8knLqFGjTK1atUyRIkWszz9s2DBz5syZFO0+/fRTExISYjw8PEyFChXM7NmzTc+ePVOdNZXR9y8yMtI8/PDDpkiRIqZQoUKmVatW5o8//kj1XiX/jG/dujXN+hctWmSaNm1qvL29jaenpwkODjZdu3Y1v/zyS7r7nZmzw86dO2e6du1qChcubCwWi7ndx3dCQoJ56623TIUKFYy7u7spVqyYefLJJ83Ro0dTtMvo2WHJMvoeXL9+3bz99tumWrVqxsvLyxQsWNBUqlTJ9O/f34SHh1vbXb161QwfPtz4+fkZLy8vU69ePbNp0ybj4+OT4qwrW70Hu3fvNt26dTN+fn7G3d3dBAQEmGbNmpmPP/443f1Ofv5b3W78uZo8ebKpXr268fHxMa6urqZ48eKmc+fOZsuWLRl6jSXnWIy5aSY0EQdx6tQpgoODGTx4MFOmTLF3OWInvXr1Ys2aNSmusyWObePGjTRs2JCvvvrKeqalSHbQ4TBxOJGRkRw6dIipU6fi4uLC888/b++SRCSLVq5cyaZNm6hZsyb58uVj9+7dvPnmm4SEhNxyALOIrSgEicP59NNPee211yhTpgxfffVVirNKRMSxeHt78/PPP/Pee+9x8eJFihUrRuvWrZk8ebIGEEu20+EwERERcUq55hT5jz76iKpVq+Lt7Y23tzf169dn2bJl1seNMYwfP54SJUqQL18+mjRpkuKUaREREZHMyDUhKCgoiDfffJNt27axbds2mjVrRseOHa1BZ8qUKUybNo3p06ezdetWAgICaNGiBRcvXrRz5SIiIuKIcvXhMF9fX6ZOncrTTz9NiRIlGDp0KCNHjgSSZnX19/fnrbfeon///nauVERERBxNrhwYnZCQwLfffktsbCz169fn8OHDREVFWa9tBEmzpzZu3JiNGzemG4Li4uJSTJ+fmJjIuXPnKFq0qKYuFxERcRDGGC5evEiJEiUyNJFmRuSqEPT7779Tv359rl69SsGCBVm4cCF33323dUr2my+y5+/vz5EjR9Ld5uTJk202Y6uIiIjY19GjR2128elcFYIqVqzIrl27uHDhAt999x09e/a0XmUaUl90zhhz296c0aNHM3z4cOv96OhoSpcuzdGjR/H29rbtDoiIiEi2iImJoVSpUre9xltm5KoQ5OHhQfny5QGoVasWW7du5f3337eOA4qKiiIwMNDa/tSpU6l6h27m6emZ6vpHgPUsNBEREXEcthzKkmvODkuLMYa4uDjKli1LQEAAK1eutD527do11q5dS4MGDexYoYiIiDiqXNMT9PLLL9O6dWtKlSrFxYsX+frrr1mzZg3Lly/HYrEwdOhQJk2aREhICCEhIUyaNIn8+fPrujIiIiKSJbkmBJ08eZKnnnqKEydO4OPjQ9WqVVm+fDktWrQAYMSIEVy5coWBAwdy/vx56taty88//2zTY4MiIiLiPHL1PEHZISYmBh8fH6KjozUmSERExEFkx/d3rh4TJCIiIpJdFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKeWaEDR58mRq165NoUKF8PPzo1OnThw4cCBFm169emGxWFLc6tWrZ6eKRURExJHlmhC0du1aBg0axObNm1m5ciXx8fE89NBDxMbGpmjXqlUrTpw4Yb0tXbrUThWLiIiII3OzdwHJli9fnuL+nDlz8PPzY/v27TzwwAPW5Z6engQEBOR0eSIiIpLH5JqeoJtFR0cD4Ovrm2L5mjVr8PPzo0KFCvTt25dTp06lu524uDhiYmJS3EREREQsxhhj7yJuZoyhY8eOnD9/nvXr11uXh4WFUbBgQYKDgzl8+DCvvPIK8fHxbN++HU9PzzS3NX78eCZMmJBqeXR0NN7e3tm2DyIiImI7MTEx+Pj42PT7O1eGoEGDBrFkyRI2bNhAUFDQLdudOHGC4OBgvv76a7p06ZJmm7i4OOLi4qz3Y2JiKFWqlEKQiIiIA8mOEJRrxgQlGzx4MIsXL2bdunXpBiCAwMBAgoODCQ8Pv2UbT0/PW/YSiYiICBAZCeHhEBICt/nuzUtyzZggYwzPPfcc33//Pb/++itly5a97Tpnz57l6NGjBAYG5kCFIiIieVBoKPGlS0OzZhAcDKGh9q4ox+SaEDRo0CC+/PJL5s2bR6FChYiKiiIqKoorV64AcOnSJV588UU2bdpEREQEa9asoX379hQrVozOnTvbuXoRERHHc/6PP2j7zDO4G0NdICIxEfr3T+oZcgK5JgR99NFHREdH06RJEwIDA623sLAwAFxdXfn999/p2LEjFSpUoGfPnlSoUIFNmzZRqFAhO1cvIiLiWIwxPDNwIMmz7W0BOgLXExLg4EE7VpZzcs2YoNuNz86XLx8rVqzIoWpERETytsWLF/P9+vW4A18Ag4E9wOcWC8+UL2/f4nJIrukJEhERkZzz1ltvATC8VSsec3Vl1L/LZ5QqhSlZMu2VIiNh9eo8c7hMIUhERMTJbN26lU2bNuHh4cHQOXMgIoJeixbh6enJzn/+Ydu2banWMZ9+isljA6gVgkRERJzM/PnzAejatWvSpaiCgijasaP1RKPvvvsu5QqRkWzu1498xtAAII8MoFYIEhERcSKJiYksWLAAgG7duqV4rGPHjgD8+OOPKVcKD+eMMcQB8cnL8sAAaoUgERERJ7JlyxaOHj1KoUKFaNmyZYrHWrZsiaurK/v27ePQoUP/PRASwlmLBYCiyctcXcHBB1ArBImIiDiRb7/9FoD27dvj5eWV4rEiRYpw//33A7B8+fL/HggK4kzXrgAUg6QANHOmw88urRAkIiLiRJLDza0mGm7RogUAK1euTLH8zF13AVD04YchIgL69Mm+InOIQpCIiIiTiIqKYt++fVgsFpo2bZpmm+QQtHr1auLjrSOAOHPmDADFqld3+B6gZApBIiIiTmLNmjUAVKtWjaJFi6bZpmbNmhQpUoTo6OgUp8qfPXsW4JbrOSKFIBERESfx66+/AtCsWbNbtnF1dbU+fuMhsaioKAD8/PyyscKcpRAkIiLiJFavXg1wy0NhyZo3bw6kDEHHjh0DICiPHAoDhSARERGncPToUQ4ePIirqysPPPBAum2TxwVt2rSJixcvkpCQwPHjxwGFIBEREXEwyb1ANWvWxNvbO9225cqVo2zZssTHx7N27VpOnjxJQkICrq6uSTNM5xEKQSIiIk4gI+OBbpTcG/TLL79w5MgRAEqUKIGrq2v2FGgHCkEiIiJ5nDHG2hOU0RB047igvXv3AlCpUqXsKdBOFIJERETyuEOHDvHPP//g7u5Ow4YNM7ROs2bNsFgs7Nu3zzpA+p577snOMnOcQpCIiEgel9wLVK9ePfLnz5+hdYoWLUrNmjUB+Oabb4Ck+YXyEoUgERGRPC55PNDtTo2/WatWrVLcv/mCq45OIUhERCQPy8p4oGSDBw+mePHiAHTr1o3AwECb12dPbvYuQERERLLPn3/+SVRUFF5eXtSrVy9T6/r5+bFr1y42bNhAhw4dsqlC+1EIEhERycOSe4EaNmyIp6dnptcvUaIE3bp1s3VZuYIOh4mIiORhvy5ZAkCzfwc5y38UgkRERPKoxE8+Yc3SpQA0nToVQkPtXFHuohAkIiKSF0VG8nv//pwFCgK1jIH+/SEy0t6V5RoKQSIiInlReDirjAGgEeAOkJAABw/as6pcRSFIREQkLwoJYeW//22RvMzVFcqXt1NBuY9CkIiISB50tVgx1np4AP+GIFdXmDkTgoLsWlduolPkRURE8qCNGzdy5do1Av38uOfrryEkRAHoJgpBIiIieVDyRU+bt2yJJZOXy3AWOhwmIiKSByWHoBYtWtympfNSCBIREcljzp49y44dOwBo3ry5navJvRSCRERE8phly5ZhjKFKlSp57qKntqQQJCIikscsWrQIgI4dO9q3kFxOIUhERCQPuXr1KsuXLwegU6dO9i0ml1MIEhERyUNWrVpFbGwsQUFB1KhRw97l5GoKQSIiInnId999ByQdCrNYLHauJndTCBIREckjYmNj+fbbbwF49NFH7VxN7qcQJCIikkcsXLiQS5cucdddd3H//ffbu5xcTyFIREQkj/j8888B6NGjhw6FZYBCkIiISB4QHh7OqlWrAHjqqafsXI1jUAgSERHJA959912MMbRt25a77rrL3uU4hFwTgiZPnkzt2rUpVKgQfn5+dOrUiQMHDqRoY4xh/PjxlChRgnz58tGkSRP27t1rp4pFRERyh6NHjzJ79mwAXnjhBTtX4zhyTQhau3YtgwYNYvPmzaxcuZL4+HgeeughYmNjrW2mTJnCtGnTmD59Olu3biUgIIAWLVpw8eJFO1YuIiKSQZGRsHp10r//unz5Mjt27GDjxo0cOHCAxMTETG/21VdfJS4ujgceeIAmTZrYsOC8zWKMMfYuIi2nT5/Gz8+PtWvX8sADD2CMoUSJEgwdOpSRI0cCEBcXh7+/P2+99Rb9+/fP0HZjYmLw8fEhOjoab2/v7NwFERGR/4SGQr9+kJgILi6sGjaMd//8k+XLl5OQkGBt5u3tTYfmzXm6YUOaPPIIllKl0t5eZCSEh7PyxAkeeuIJADZt2kS9evVyYm9yXHZ8f+eanqCbRUdHA+Dr6wvA4cOHiYqK4qGHHrK28fT0pHHjxmzcuNEuNYqIiGRIZKQ1AF0AHktMpPk777BkyRISEhIoVqwY5cqVI3/+/MTExPDl99/T7IUXuKd0aWb16MGVK1dSbi80FIKD+btZM574NwANGjQozwag7JIrQ5AxhuHDh3P//fdz7733AhAVFQWAv79/irb+/v7Wx9ISFxdHTExMipuIiEiOCg+HxEQOAfWBMJK+gAd16sSff/7J6dOnOXjwINF797LRYqE/UAjYD/SfO5dSJUsyduxYjh07BpGRJPbty0+JiTQETgP3AW8NGWKvvXNYuTIEPffcc+zZs4f58+eneuzmeQ+MMenOhTB58mR8fHyst1K36lYUERHJLiEhHLFYaAL8CQQBm11cmP7BB1SsWNHazO3wYeobw8dAJDANKAOcPX+eN954g6CgIAKqVqWoMbQHTgJVgCVAgePHc3af8oBcF4IGDx7M4sWLWb16NUFBQdblAQEBAKl6fU6dOpWqd+hGo0ePJjo62no7evRo9hQuIiJyC+fy56eFnx9HgUrA/1xcqD1rFtzwPQdASAi4JH01ewPDgHAXFxbMnGmdAfrk+fNcAAoCLwEbgUBXVyhfPof2Ju/INSHIGMNzzz3H999/z6+//krZsmVTPF62bFkCAgJYuXKlddm1a9dYu3YtDRo0uOV2PT098fb2TnETERHJKYmJiTz55JOEnzxJcFAQK7/5hhJHjkCfPqkbBwXBrFng6pp039UVt1mzeLhfP9avX090dDRbt25l17hxnHVxYQpQ0NUVZs5MHajktnLN2WEDBw5k3rx5/PDDDym6Bn18fMiXLx8Ab731FpMnT2bOnDmEhIQwadIk1qxZw4EDByhUqFCGnkdnh4mISE6aMGEC48ePx8vLi02bNlG9evXbrxQZCQcPJvXu3CrcZKRNHpId39+5JgTdalzPnDlz6NWrF5DUWzRhwgRmzpzJ+fPnqVu3Lh9++KF18HRGKASJiEhO+d///keDBg1ITEzks88+o2fPnvYuyWHl6RCUUxSCREQkJ1y9epUaNWqwf/9+nnjiCb788kt7l+TQnGqeIBEREUf22muvsX//fvz9/Xn//fftXY6kQSFIRETExnbt2sWUKVMAmDFjBkWLFrVzRZIWhSAREREbMsYwbNgwEhISePjhh+nSpYu9S5JbUAgSERGxoR9++IE1a9bg6enJO++8Y+9yJB0KQSIiIjZy7do1XnrpJQCGDx9OcHCwnSuS9CgEiYiI2Mj06dM5ePAg/v7+jB492t7lyG0oBImIiNjAmT17eO3VVwGYOHFihifxFftRCBIREblToaGMr1aN6NhYqgG9nWsKPoelECQiInInIiPZ17cvH/97dxrg+uyzSZe1kFxNIUhEROROhIfzkjEkAB2AZgAJCUnX9ZJcTSFIRETkDvx8/DhLATdgavJCV9ekC5tKrqYQJCIikkXx8fEMnzwZgOcsFipAUgCaOdMpruzu6NzsXYCIiIij+vTTT9m7dy++vr68unYtnDmT1AOkAOQQFIJERESyIDo6mlf/PSV+/PjxFLn3XjtXJJmlw2EiIiJZMHHiRE6fPk3FihUZMGCAvcuRLFAIEhERyaS//vqL999/H4B3330Xd3d3O1ckWaEQJCIikknDhw/n+vXrtGnThtatW9u7HMkihSAREZFMWLZsGUuWLMHNzY1p06bZuxy5AwpBIiIiGXT9+nWGDRsGwJAhQ6hYsaKdK5I7oRAkIiKSQR988AEHDhygePHivPLKK/YuR+6QQpCIiEgGREREWIPPpEmTKFy4sH0LkjumECQiInIbxhgGDhzI5cuXadSoEU8//bS9SxIbUAgSERG5jbCwMJYtW4aHhwezZs3CxUVfn3mB3kUREZF0REVFMXjwYADGjBlDpUqV7FyR2IpCkIiIyC0YY+jduzdnzpyhatWqjBw50t4liQ0pBImIiNzC9OnTWb58OV5eXsybNw9PT097lyQ2pBAkIiKShh07dvDSSy8B8Pbbb3PPPffYuSKxNYUgERGRm5w8eZJOnToRFxdHu+bNGVi5MkRG2rsssTGFIBERyXsiI2H16iwFl2vXrtG1a1eOHj1KxYAAvly1CsuDD0JwMISGZkOxYi8KQSIikreEhiYFlmbNMh1cEhMTeeaZZ9iwYQPehQrxw8mT+BiT/CD0768eoTxEIUhERPKOyEjo1y8psMDtg8sNPUbGGJ5//nnmzp2Lq6srX7/8MhWTA1CyhAQ4eDB790FyjEKQiIjkHeHh/wWgZLcKLjf0GCWWLs3zzZszffp0LBYLX3zxBa2ffBJunhTR1RXKl8+++iVHKQSJiEjeERKSseByQ4/RNeBJY/jg11+xWCx8/PHHdO/eHYKCYNaspPWTtzNzZtJyyRMUgkREJO/IaHD5t8foJNASmA+4AV+NGUO/fv3+a9enD0REJB0yi4hIui95hsWYmw945m0xMTH4+PgQHR2Nt7e3vcsREZHsEBmZdAisfPm0e24iI9lQujTdjOEEUBD41sWFVkeOqKcnl8qO7283m2xFREQkNwkKumWYuXz5Mq+8+y7vAYnA3cB3Li5UmjVLAcjJKASJiIjTWLlyJQMGDODQoUMA9OjalQ+ffpqCVaooADkhhSAREcnz9uzZw8iRI1m+fDkAQUFBzJw5kzZt2ti5MrEnDYwWEZE869ixYzz99NNUr16d5cuX4+7uzvPPP8/evXsVgEQ9QSIikvdER0czZcoU3n33Xa5cuQLAI488wuTJkylXrpydq5PcQiFIRETyjLi4OD7++GNef/11zp49C0DDhg15++23qVevnp2rk9xGIUhERByeMYbvv/+el156icOHDwNQsWJF3nzzTTp27IjFYrFzhZIb5aoxQevWraN9+/aUKFECi8XCokWLUjzeq1cvLBZLipuSvYiIczt06BBt27ala9euHD58mICAAGbOnMkff/xBp06dFIDklnJVCIqNjaVatWpMnz79lm1atWrFiRMnrLelS5fmYIUiIpJbJCQk8Oabb3LPPfewbNkyPDw8GDt2LAcPHqRfv364uelgh6QvV/2EtG7dmtatW6fbxtPTk4CAgByqSEREcqMjR47w1FNPsX79egCaNWvGjBkzqFixop0rE0eSq3qCMmLNmjX4+flRoUIF+vbty6lTp+xdkoiI5KBvv/2WqlWrsn79egoWLMicOXP45ZdfFIAk03JVT9DttG7dmkceeYTg4GAOHz7MK6+8QrNmzdi+fTuenp5prhMXF0dcXJz1fkxMTE6VKyIiNpSQkMCYMWN46623AKhfvz5ffvkld911l50rE0flUCHo0Ucftf7/3nvvpVatWgQHB7NkyRK6dOmS5jqTJ09mwoQJOVWiiIhkgwsXLtC9e3eWLVsGwEsvvcSkSZM07kfuiMMdDrtRYGAgwcHBhIeH37LN6NGjiY6Ott6OHj2agxWKiMidOn78OA888ADLli3Dy8uLefPmMWXKFAUguWMO/RN09uxZjh49SmBg4C3beHp63vJQmYiI5G5//fUXLVu2JCIigoCAAJYsWUKNGjXsXZbkEbkqBF26dImDBw9a7x8+fJhdu3bh6+uLr68v48eP5+GHHyYwMJCIiAhefvllihUrRufOne1YtYiIZIfdu3fTokULTp8+Tfny5fn5558pW7asvcuSPCRXhaBt27bRtGlT6/3hw4cD0LNnTz766CN+//13vvjiCy5cuEBgYCBNmzYlLCyMQoUK2atkERHJBrt37+bBBx/k7Nmz1KxZk6VLl+Ln52fvsiSPsRhjjL2LyEkxMTH4+PgQHR2Nt7e3vcsREZGb7Nmzh2bNmnH27Fnq1KnDzz//jI+Pz38NIiMhPBxCQiAoyH6FSo7Kju9vhx4YLSIiecsff/xh7QGqXbs2K1asSBmAQkMhOBiaNUv6NzTUfsWKw1MIEhGRXOGff/6hZcuWnDlzhlq1avHzzz9TuHDh/xpERkK/fpCYmHQ/MRH6909aLpIFCkEiImJ358+fp3Xr1hw/fpy7776bFStWpAxAkHQILDkAJUtIgBtOqBHJDIUgERGxq6tXr9KxY0f27dtHyZIlWb58Ob6+vqkbhoSAy01fW66uUL58zhQqeY5CkIiI2E1CQgJPPvkk69evx8fHh2XLllGqVKm0GwcFwaxZScEHkv6dOVODoyXLctUp8iIi4jyMMQwdOpTvvvsODw8PFi1aRJUqVdJfqU8faNky6RBY+fIKQHJHFIJERMQupk6dyvTp0wGYO3cuTcqXh9Wrb3/qe1CQwo/YhA6HiYhIjvvyyy8ZOXIkAO+++y7dLl7Uqe+S49QTJCIi2e+GCQ5X7t9P7969AXjhhRcY2rVrUvC5+dT3li3V4yPZSiFIRESyV2iodX6fnRYLXTw8iI+P5/HHH2fKlCmwdu2tT31XCJJspMNhIiKSfW6Y4DACaGMMl+LiaNawIXPmzMHFxUWnvovdKASJiEj2+XeCw7NAKyAKqAp8P2oUnp6eSW106rvYiQ6HiYhI9gkJ4bLFQntjOACUBpa5uOBTvXrKdjr1XexAIUhERLJNfEAAj1apwqY9eygCLHdxocSsWWmHHJ36LjlMIUhERLLuhrO+bg4wxhj69evHT3v24OXpyY9Tp1K5c2cFHck1NCZIRESyJjQ03bl9Xn75ZebMmYOrqyvffPstDQcPVgCSXOWOQtCpU6eIioqyVS0iIuIobjjrC/hvbp/ISADee+893nzzTQBmzZpF+/bt7VWpyC1lKQTt2bOHe+65h8DAQEqWLEnJkiUZO3YssbGxtq5PRERyo3/P+krh37l95s+fz7BhwwCYNGkSTz/9tB0KFLm9LIWgPn364O/vz4YNG9i5cycTJ05k2bJl1KpVi/Pnz9u6RhERyW1uMbfPooMHeeqppwAYMmQIo0aNskNxIhljMcaYzK5UoEABtm/fTqVKlazLjDE88sgjeHl58eWXX9q0SFuKiYnBx8eH6OhovL297V2OiEjulc6gZyBpDFD//kk9QK6uLBk0iM4ffcT169d58skn+fzzz5MmQxSxgez4/s7S2WFp9fhYLBYmTZpEzZo1bVKYiIjY0Q2XusDFJWkywz59Ura5YW6fFZGRdOnTh+vXr/Poo4/+Nxu0SC6W4Z/Qtm3b8vLLL/PNN98wYMAAhg0bxsmTJ1O0iY6OpkiRIjYvUkREctBtBj2nEBTEqoQEOvXty7Vr1+jSpQtz587FzU0zsEjul+Gf0ipVqrBjxw7mzJljDT933XUX3bp1o3r16iQkJDBnzhzefffdbCtWRERyQDqDnm8+LPbjjz/yyCOPEBcXR/v27Zk/fz7u7u45WKxI1mVpTNDJkyfZuXMnu3btst4OHjyIq6srFStWZM+ePdlRq01oTJCIyG1ERibN+3NjEHJ1hYiIFCFo3rx59OjRg4SEBDp16sTXX3/93/XARGws14wJ8vf3p1WrVrRq1cq67MqVK+zevZvdu3fbpDAREbGT5Aua3jDo+eYLms6aNYsBAwZgjOGpp55i9uzZOgQmDidLPUGOTD1BIiIZFBmZ6oKmxhhef/11xo0bB8DAgQP54IMPNAhasl2u6QkSEREncNMFTePi4ujbty9z584Fki6LMXHiRCwWi70qFLkjCkEiInJb586do3Pnzqxbtw5XV1dmzJhBv3797F2WyB1RCBIRkXTt2bOHrl27Eh4ejre3N99++y0PPfSQvcsSuWM6iCsiImkyxvDJJ59Qt25dwsPDKV26NL/99psCkOQZCkEiIpLKxYsXefLJJ+nXrx9Xr16lTZs2bN++nXvvvdfepYnYjEKQiIiksHv3bmrVqsW8efNwdXVlypQp/PjjjxQrVszepYnYlMYEiYgI8N/hryFDhhAXF0epUqX4+uuvadCggb1LE8kWCkEiIsLFixfp378/8+fPB5KuF/n5559TtGhRO1cmkn10OExExMnt3r2bmjVrMn/+fNzc3Jg6dSqLFy9WAJI8Tz1BIiJOyhjDrFmzeP75562Hv8LCwqhfv769SxPJEQpBIiJOKCYmhn79+hEWFgZAu3bt+Oyzz9T7I05Fh8NERJzMzp07qVmzJmFhYbi5ufH222/r8Jc4JfUEiYg4iZsPf5UuXZqwsDDq1atn79JE7EI9QSIiTiA2NpaePXsyYMAA4uLiaN++PTt37lQAEqemECQikscdOHCAevXqMXfuXOvkhz/88AO+vr72Lk3ErnQ4TEQkD1uwYAFPP/00Fy9eJCAggLCwMB544AF7lyWSK+SqnqB169bRvn17SpQogcViYdGiRSkeN8Ywfvx4SpQoQb58+WjSpAl79+61T7EiIrlYYmIiY8eO5ZFHHuHixYs88MAD7NixQwFI5Aa5KgTFxsZSrVo1pk+fnubjU6ZMYdq0aUyfPp2tW7cSEBBAixYtuHjxYg5XKiKSS0VGErt0Kd3at+eNN94A4IUXXmDVqlUEBgbauTiR3CVXHQ5r3bo1rVu3TvMxYwzvvfceY8aMoUuXLgB8/vnn+Pv7M2/ePPr375+TpYqI5D6hoRzr25cOxrADcHd1Zdann9KrVy97VyaSK+WqnqD0HD58mKioKB566CHrMk9PTxo3bszGjRtvuV5cXBwxMTEpbiIieU5kJLv69qXOvwGoGPCrMfRq3tzelYnkWg4TgqKiogDw9/dPsdzf39/6WFomT56Mj4+P9VaqVKlsrVNExB7WLlhAY2M4DtwN/A+4PzERDh60c2UiuZfDhKBkFoslxX1jTKplNxo9ejTR0dHW29GjR7O7RBGRHLV48WJajhpFDPAAsBG4C8DVFcqXt2ttIrmZw4SggIAAgFS9PqdOnUrVO3QjT09PvL29U9xERPKKzz77jC5duhAXF0eH6tVZ7uKCDyQFoJkzISjI3iWK5FoOE4LKli1LQEAAK1eutC67du0aa9eupUGDBnasTETEPt5//3169+5NQkICvXr14rutW8l35AisXg0REdCnj71LFMnVctXZYZcuXeLgDcevDx8+zK5du/D19aV06dIMHTqUSZMmERISQkhICJMmTSJ//vx0797djlWLiOS8adOm8cILLwBJp8BPnTo1aWhAUJB6f0QyKFeFoG3bttG0aVPr/eHDhwPQs2dPPvvsM0aMGMGVK1cYOHAg58+fp27duvz8888UKlTIXiWLiOS4GwPQK6+8woQJE9IdG5lKZCSEh0NIiAKTODWLMcbYu4icFBMTg4+PD9HR0RofJCIO55133uHFF18E4NVXX2X8+PGZC0ChodCvHyQmgosLzJqlw2biELLj+9thxgSJiDi7adOmWQPQuHHjstYDlByAIOnf/v2Tlos4IYUgEREH8MmUKdZDYOPGjWP8+PGZ30h4+H8BKFlCguYSEqeVq8YEiYhIat8MGED/mTMBGAmMz+qkryEhSYfAbgxCmktInJh6gkREcrHlc+fy5MyZGKA/MBmyfggrKChpDJCra9J9zSUkTk49QSIiudRvv/1Gl759uQ48CnwIWOC/Q1hZCS99+kDLlknrly+vACROTSFIRCQX2rVrF23btuVKXBytgS8A1+QH7/QQluYSEgF0OExEJNf566+/aNmyJdHR0TRq1IgFH36Ihw5hidiceoJERLJLFiYlPHr0KC1atODUqVNUr16dH3/8kfw+PtChgw5hidiYQpCISHbIzKSE/4al076+tHj0Uf755x8qVKjAihUr8PHxSWqjQ1giNqcZo0VEbC0yEoKDU5+KHhGROsj8G5aiExNpBuwASpUqxYYNGyhdunQOFi2Su2nGaBERR5DRSQn/ncH5SmIiHUgKQMWBlXPnKgCJ5ACFIBERW0uelPBGaZ3RFR7O9cREHgHWAd7AcqCic3XQi9iNQpCIiK1lcFLChLvuogewBPACfgJqaAZnkRyjgdEiItnhNpMSGmMYNHkyX5P0Qfwd0Einv4vkKIUgEZHsks4ZXS+//DIzZ87EYrHw5fTptLn7bp3+LpLDFIJExH6yMI9OXvDWW2/x5ptvAjBz5kwe7dvXzhWJOCeNCRIR+wgNTTqNvFmzpH9DQ+1dUY54++23GTVqFJAUhvoqAInYjUKQiOS8f08Nt55GnpiY9SujO5B33nmHl156CYBx48YxYsQIO1ck4twUgkQk52V0Hp08ZNq0abz44osAvPrqq4wfP96+BYmIQpCI2EFG59HJA4wxvPXWW7zwwgsAvPLKKwpAIrmEQpCI5LwMzqPj6IwxvPTSS9YxQGPHjmXChAlYLBY7VyYioLPDRMRebjOPjqOLj4+nb9++fPbZZwBMnTrVejhMRHIHhSARsZ88emX0mJgYunfvzpIlS3B1deXTTz+lV69e9i5LRG6iECQiYkOHDh2iffv27Nu3Dy8vL8LCwujQoYO9yxKRNGhMkIiIjaxcuZLatWuzb98+AgMDWbdunQKQSC6mECQicoeuX7/O6NGjadmyJefOnaNWrVps3bqV2rVr27s0EUmHDoeJiGTFv5f8+NNioffo0WzevBmA/v378+6775IvXz47Fygit6MQJCKSWaGhXO3bl8nG8CZwDShcuDCffPIJXbt2tXd1IpJBCkEikjfk0MVYE//5h2/79mWsMSTPb90GmLFsGcH16mXb84qI7WlMkIg4vhy4GOv169eZP38+NR98kMf+DUCBwLfAT0Dw1as2f04RyV4WY4yxdxE5KSYmBh8fH6Kjo/H29rZ3OSJypyIjk4LPjdcic3WFiAib9Ajt27eP+fPnM3v2bI4fPw5AIeBFYNi//7fl84lI2rLj+1uHw0TEsaV3MdZMhhJjDCdOnGDz5s2sXr2aX3/9lX379lkf9/f359lnn+W5woUp+sILSc+TRy/5IeIMFIJEJNc5f/48u3bt4u+//+bIkSMcOXKEkydPEhMTQ0xMDLGxsVgsFiwWCy6JibgA7oDnvzcPwPPVV/H08cHT0xMPDw88PT1T/d/FxYVz585x6tQpjh49yv79+4mOjk5Ri7u7O61ateLxxx+nS5cueHp6Jj3w8MN59pIfIs5CIUhE7O7vv//m559/ZvXq1Wzbto3Dhw/f+UbXr8/Sai4uLlSuXJkmTZrQtGlTmjVrRpEiRVI3zKOX/BBxJgpBIpLjjDFs27aN+fPns2jRojRDT9myZalcuTLBwcEEBwcTGBiIt7c33t7eFChQwLqdxMREEhMTuX78OHEREcQVLUpcoUJcu3aNuLg46+3ab78R9/33xBlDHHCtWTPiK1bE19cXPz8/AgICqFy5MiEhIXh5eeXwKyIi9qCB0SKSY06cOMGnn37KF198wcGDB63L3d3dadCgAS1atKBBgwZUr1497d6XrMrmwdMikv00MFpEHI4xho0bNzJ9+nQWLFhAfHw8APny5aNDhw489thjPPjggxQqVCj7irDh4GkRyTsUgkQkWxhjWLp0Ka+//jr/+9//rMsbNGjAs88+S6dOnShYsODtN2SLSRBDQsDFJXVPUPnyWdueiOQJmixRRGwqMTGRhQsXUqtWLdq1a8f//vc/vLy86NOnDzt27OC3337jySefzFgAstUkiEFBMGtWUvABndYuIoDGBNm7HJE8ZeXKlYwYMYJdu3YBUKBAAQYOHMgLL7yAv79/5jaWHeN4IiN1WruIg9KYIBHJlXbt2sWIESNYuXIlAIUKFWLw4MEMGzaMYsWKZW2j2TGOJyOntefQNchExP50OExEsuzIkSP06NGDGjVqsHLlStzd3Rk6dCiHDh3ijTfeyHoAgv/G8dwou8fx5MA1yEQk93CoEDR+/HjrLLHJt4CAAHuXJeJ0zp8/z4gRI6hYsSJz587FGMNjjz3Gn3/+ybvvvntn4SdZTo/jiYyEfv3+631KTIT+/ZOWi0ie5HCHw+655x5++eUX633X5A9IEbk1Gx3iuXbtGh9Nnsxr06ZxLiYGgCZNmjB16lRq1apl8+ejTx9o2TJnxvHoNHoRp+NwIcjNzU29PyKZERr6Xw+Hi0tS70qfPpnahDGGRYsWMWLAAA6eOgXA3cCUIUNo8957WCwWmz5fCjl1eQqdRi/idBzqcBhAeHg4JUqUoGzZsjz22GMcOnQo3fZxcXHWiy4m30Schg0O8WzdupXGjRvTpUsXDp46hR/wMbAbaPvhh1iOHbPp89mNTqMXcToOFYLq1q3LF198wYoVK/jkk0+IioqiQYMGnD179pbrTJ48GR8fH+utVKlSOVixiJ2ld4jnNo4cOcITTzxBnTp1WL9+PV4eHowBDgL9+bcb+eZt3cHz5Qp9+iSdgr96ddK/d9KDJSK5nkPPExQbG0u5cuUYMWIEw4cPT7NN8sUTk8XExFCqVCnNEyTOIQtz7Zw4cYJJkyYxa9Ysrl27BsBTTz3FG889R6n69dPflq7RJSLZJDvmCXKonqCbFShQgCpVqhAeHn7LNp6entYrTyffRJxGJg7xnD17lhEjRlCuXDmmT5/OtWvXaNq0Kdu2beOLL76gVJ06t9+WDimJiANx6J6guLg4ypUrR79+/Xj11VcztI5mjBanlM5MySdOnOC9997jo48+4uLFiwDUq1ePN954g2bNmmVqW5lqIyKSCU4/Y/SLL75I+/btKV26NKdOnWLixInExMTQs2dPe5cmkrulcYbVX3/9xdSpU/niiy+sh72qV6/OxIkTadOmTcozvm6zrSy1ERGxM4cKQZGRkTz++OOcOXOG4sWLU69ePTZv3kxwcLC9SxNJkssvuZCQkMCyZcv4+OOPWbp0KckdwQ0bNmTEiBG0a9cOl5tnaRYRyaMcKgR9/fXX9i5B5NZsPT+ODUVGRvLZZ58xa9Ysjh49al3eoUMHRowYQcOGDe1YnYiIfTj0mKCs0JggyRa58KyoU6dOsWDBAr7++ms2bNhg7fXx9fWld+/e9OvXjwoVKtilNhGRzHL6MUEiuVYuuOSCMYZ9+/axbNkyli5dytq1a0m8oaZGjRrRr18/unbtipeXV+oN5PJDeSIitqYQJGILmbnkgo3ChjGGv//+m99++40NGzawYsWKFIe6AGrXrs2jjz5Kt27d0p8oNBcfyhMRyS4KQSK2kDw/Tv/+ST1At5ofJ4thwxjDyZMn+f3339m9ezcbN27kt99+49S/1/FK5uXlRZMmTWjVqhXt2rWjXLlyt6/9Vpe6aNlSPUIikqdpTJCILaU3P04Gxw3Fxsayd+9efv/9d37//Xf27NnD77//zpkzZ1I9nYeHB7VCQmhw//0069iRxo0bkz9//szVvHo1pDUf0OrV0KRJ5rYlIpJNNCZIJLdLb36cm8YNJQAHExL4PTSU3xMTrYHn0KFDpPW3icViISQkhCpVqlCnTh0anjtHzSlT8Nq7F/bvh9q1IbMBCHT1dBFxWgpBIjng3Llz7Dlzhj0WC7uNYQ/wB3AVYPz4VO39/f2pUqECVfz9qVKvHlUaN+buu+/+r5cnuVcpOSzdySGsjB7KExHJYxSCRGzs+PHjbNmyha1bt7Jr1y727NlDZGRkmm3zeXhwb7VqVKlSJcXN78cf/xun8/33SSGlVq3/VrT12Wh9+iQFKF3qQkSciMYEidyB6Ohotm3bxpYtW6zB59ixY2m2LVu2LFWrVqVqmTJUK1KEKk2bUq5hQ1yTLzaaLCNjh3LhvEQiItlJY4JE7MgYQ0REBBs2bGD9+vVs2LCB/fv3p2rn4uLCvffeS+3atalZsyZVq1bl3nvvxcfHJ2NPlJFeHh3CEhG5YwpBIreQmJjIH3/8YQ0869evT7OXp2zZstSpU4c6depQu3ZtatSoQYECBbL+xBkdqKxDWCIid0QhKLtpFl77yeRrHxcXx9atW62B57fffiM6OjpFGzc3N2rVqkWjRo24//77qV+/PsWLF7dt3Znp5dHV2kVEskwhKDtpFt7Ms1VozMBrHx0dzcaNG609PVu2bCEuLi5Fm4IFC1K/fn0aNWpEo0aNqFOnTubn4ckK9fKIiGQ7DYzOLhq4mnm2Co23eO2Pb97MhkOHWL9+PevXr2fPnj2p5uPx8/Oz9vI0atSIatWq4ebmph49ERE708BoR5ILLqjpUGx56YbwcExiIn8B64ENwPqEBA7Vrp2qabnixWl0+jSNgPstFkLeeAPLM8+kbKQePRGRPEkhKLtoFt7MucPQaIzh4MGDrF69mjVLl7IGOHFTGxcXF6pVq2bt6bn/rrsIrFPnxo3AgAHQqlXKU9F1XS0RkTxJISi76BTmzMlCaIyIiOCXX35hzZo1rF69muPHj6d43BOoCzSyWGj0/PPUnzAhZRfq6tW3D17q0RMRybMUgrKTBrdmXAZCY1xcHOvXr2fZsmUsXbqUP//8M8UmPDw8qF+/Pk2aNKFp06bULVkSr8jIW7/2GQle6tETEcmzFIKym05hzrg0QuP58+f54YcfWLhwIatWrSI2Ntba3NXVlXr16tGsWTOaNGlC/fr1yZcvX8ptphdWMtJbpx49EZE8S2eHSa5z9uxZFi1axIIFC/jll1+Ij4+3PhYQEEDr1q1pXacOLUqWpPB99915IImMvH1vXUbaiIhIttHZYeLY0jnN/Nq1ayxZsoQ5c+awdOlSEhISrI9VqVKFhx9+mA4dOlC9enUss2fb9mytjPTWqUdPRCTPUU+Q5IxbnGa+e/du5syZw1dffcWZM2eszatXr07Xrl3p2rUrFStW/G87mn9JRMQpqSdIHNNNp5lfT0zku759eX/GDDbv2GFtFhAQQI8ePejVqxeVK1dOe1s6W0tERGxEIchZ5eQMyP8GlzPALGAGcMwY2LEDd3d3OnToQO/evWnZsmXS7Mzp0dlaIiJiIy72LkAyITIyaW6byMg7205oaNIhpWbNkv4NDbVNfbfwe3w8fYFSwBjgGOAHjBs2jH/++YcFCxbQtm3b2wcg+O9sLVfXpPs6W0tERLJIY4IcRTZfV8vWY2oSEhJYsmQJ77//Pr/++qt1eQ3geYuFR2fMwHPAgKw/gc7WEhFxKhoT5GSMMVgsFptfVys7x9RER0czZ84cPvjgAw4dOgQkXa6iS5cuPP/44zQsUgSLLQ7B6WwtERG5QwpBucS+ffv46aef2LRpE3/88QcnTpywTgxYuGBBSicmUhaoBdQBGiYkUCArwSWbxtT8+eefTJ8+nc8//5xLly4l1V24MH379mXQoEEEBwff0fZFRERsTSHIjuLi4vjiiy/44IMP+P3332/Z7sKlS1wA9gA//LvMA3jg1Vdp3akTbdu2TXkaeXpsOANyQkICy5cv54MPPmDFihXW5ZUrV2bIkCE89dRTFChQINPbFRERyQkaE2QHxhjmzZvHyJEjOXbsGADu7u489NBDNGnShBo1alCqVCl8fHxITEzk3LlzHJk1iwP/939sMYaNwJGbtlmhQgU6duxIhw4dqF+/Pq7JA4dv5Q7G1Bw4cIDPP/+cL774wlq/xWKhffv2DBkyhGbNmiUdxhMREbGR7Pj+VgjKYeHh4fTr1481a9YAULJkSYYPH07v3r0pUqRI+iv/G1xMuXIciI1l2bJlLFmyhHXr1nH9+nVrs6JFi9KuXTs6dOjAQw89RMGCBbNecGQk5q+/2A8s3rKFhQsXsmXLFuvDRYoU4emnn2bgwIHcddddWX8eERGRdCgE2UCGXsRsmkNn6dKlPP7448TExJAvXz7Gjh3LCy+8gKen5x1tNzo6mhUrVrB48WKWLFnChQsXrI95eHjQpEkTGjRoQJ06dahevToBAQHp9tTExsZy8OBBtkybxqYvvmAtcOiGx11dXWnVqhW9evWiffv2d1y/iIjI7SgE2UDyi/j+++9z6tQpqlSpQpcuXXB3d09qYKtT0W9gjOHNN99kzJgxGGO4//77mTt3LmXKlLnzHbrJ9evX+W3RIhZ/8w2Lt27l7yM3HzgDLy8vgoODKVasGF5eXnh5eXHlyhViYmI4duwYJ06cSLWOB/Ag0GHSJDr26kVgYKDNaxcREbkVhSAbSH4Rb1SpUiXCwsKo6utr8zl0YmNj6dOnD2FhYQAMGDCA999/Hw8Pj6zuQvpuCHHGYmH/hAmsKlyYrVu3smXLFsLDw0m8+RT5NBQpVIjqFy/SAKgPNAYKQtJkjU2apGyck7NPi4iIU1IIsoHkF7GYry8dO3dm8eLFnD59moIFC/LT66/TeNiw1Cul9cWfAREREXTq1Indu3fj5ubG9OnT6d+//53vxK1kYCLE69evExkZyeHDh7lw4QJXrlzh6tWr5M+fn0KFCuHn50f58uXxvXw5Y4EwG3rOREREbqYQZAPJL+JKoPmnn3K2UyceeeQRVq9ejZenJz9eu0bzG1+SLPYErVmzhkceeYQzZ87g5+fHd999x/3332/TfUll9eqkS2GktTwLIY7Q0NSn0t8YcHRFdxERySHZEYKc9tphdQD696folSssXbqUdu3acTUujvZubvzq8u/LkoU5dIwxTJ8+nebNm3PmzBlq1KjBtm3bsj8AwX8TId7oTiZC7NMnKdCsXp307809POnNPi0iIpLLOW0IAqxf2F5eXixYsCApCF2/TjsPD9a8+27aX/zpuHLlCs888wyDBw8mISGBJ554gg0bNlCqVKns24cbZcfFRYOCknqR0tqGrUOXiIhIDnLuEHTDF7anpycLFiygTZs2XLl6lbZjxrD2778zvKmDBw/SoEEDZs+ejYuLC1OnTmXu3Lnky5cvYxuw1RXib9d7Y0u6oruIiDgw5w1BLi6pvrA9PT357rvvaNWqFZcvX6ZVq1bMnTs33c0kJiYya9Ysatasya5duyhevDjLly/nxRdfzPisyaGhSWNrmjVL+jc09E72LP3eG1vLydAlIiJiQ047MDp63z68K1dOs83Vq1fp1q0bP/74IwCdO3fmjTfeoPIN7RMSEli6dCkTJ060zqDcsGFDwsLCKFmyZMYL0uBiERGR29LZYTaQ0RcxMTGR1157jYkTJ5KQkADAvffeS/ny5YmNjWXbtm2cP38egEKFCvH6668zaNAg3NwyeU1aW5/RJSIikgfp7LB/zZgxg7Jly+Ll5UXNmjVZv369zZ/DxcWF8ePHs3v3bjp06ICrqyt//PEHixYtYuXKlZw/fx5fX19GjBjBgQMHeP755zMfgECDi0VEROwkC9/a9hUWFsbQoUOZMWMGDRs2ZObMmbRu3Zp9+/ZRunRpmz/fPffcww8//MDp06fZvHkz//zzD4UKFSIkJITatWtnLfjcKHlw8c3z8ehQmIiISLZyuMNhdevWpUaNGnz00UfWZZUrV6ZTp05Mnjz5tuvb+yryt/TvFeIpX14BSERE5CbZ8f3tUD1B165dY/v27YwaNSrF8oceeoiNGzemuU5cXBxxcXHW+zExMdlaY5YFBSn8iIiI5CCHGhN05swZEhIS8Pf3T7Hc39+fqKioNNeZPHkyPj4+1luOTVwoIiIiuZpDhaBkN8+/Y4y55Zw8o0ePJjo62no7evRoTpQoIiIiuZxDHQ4rVqwYrq6uqXp9Tp06lap3KJmnpyeenp45UZ6IiIg4EIfqCfLw8KBmzZqsXLkyxfKVK1fSoEEDO1UlIiIijsiheoIAhg8fzlNPPUWtWrWoX78+s2bN4p9//mHAgAH2Lk1EREQciMOFoEcffZSzZ8/y2muvceLECe69916WLl1KcHCwvUsTERERB+Jw8wTdqVw7T5CIiIjcki6bISIiImIjCkF3IjIy6UKnkZH2rkREREQySSEoq0JDITg46QrwwcFJ90VERMRhKARlRWQk9OsHiYlJ9xMTky6Aqh4hERERh6EQlBXh4f8FoGQJCUkXQBURERGHoBCUFSEh4HLTS+fqmnQFeBEREXEICkFZERQEs2YlBR9I+nfmTF0FXkRExIE43GSJuUafPtCyZdIhsPLlFYBEREQcjELQnQgKUvgRERFxUDocJiIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp+RQIahMmTJYLJYUt1GjRtm7LBEREXFAbvYuILNee+01+vbta71fsGBBO1YjIiIijsrhQlChQoUICAiwdxkiIiLi4BzqcBjAW2+9RdGiRalevTpvvPEG165ds3dJIiIi4oAcqifo+eefp0aNGhQpUoQtW7YwevRoDh8+zKeffnrLdeLi4oiLi7Pej46OBiAmJibb6xURERHbSP7eNsbYbqPGzsaNG2eAdG9bt25Nc90FCxYYwJw5c+aOtq+bbrrppptuujnG7e+//7ZZBrEYY8tIlXlnzpzhzJkz6bYpU6YMXl5eqZYfO3aMoKAgNm/eTN26ddNc9+aeoAsXLhAcHMw///yDj4/PnRXvQGJiYihVqhRHjx7F29vb3uXkGO239tsZaL+1384gOjqa0qVLc/78eQoXLmyTbdr9cFixYsUoVqxYltbduXMnAIGBgbds4+npiaenZ6rlPj4+TvXDk8zb21v77US0385F++1cnHW/XVxsN5zZ7iEoozZt2sTmzZtp2rQpPj4+bN26lWHDhtGhQwdKly5t7/JERETEwThMCPL09CQsLIwJEyYQFxdHcHAwffv2ZcSIEfYuTURERByQw4SgGjVqsHnz5jvejqenJ+PGjUvzEFlepv3WfjsD7bf22xlov22333YfGC0iIiJiDw43WaKIiIiILSgEiYiIiFNSCBIRERGnpBAkIiIiTilPhqAZM2ZQtmxZvLy8qFmzJuvXr0+3/dq1a6lZsyZeXl7cddddfPzxxzlUqW1lZr+///57WrRoQfHixfH29qZ+/fqsWLEiB6u1ncy+38l+++033NzcqF69evYWmE0yu99xcXGMGTOG4OBgPD09KVeuHLNnz86ham0ns/v91VdfUa1aNfLnz09gYCC9e/fm7NmzOVTtnVu3bh3t27enRIkSWCwWFi1adNt18sJnWmb3O698pmXl/U7myJ9pWdlvW3ym5bkQFBYWxtChQxkzZgw7d+6kUaNGtG7dmn/++SfN9ocPH6ZNmzY0atSInTt38vLLLzNkyBC+++67HK78zmR2v9etW0eLFi1YunQp27dvp2nTprRv3946C7ejyOx+J4uOjqZHjx48+OCDOVSpbWVlv7t168aqVasIDQ3lwIEDzJ8/n0qVKuVg1Xcus/u9YcMGevToQZ8+fdi7dy/ffvstW7du5ZlnnsnhyrMuNjaWatWqMX369Ay1zyufaZnd77zymZbZ/U7m6J9pWdlvm3ym2ewqZLlEnTp1zIABA1Isq1Spkhk1alSa7UeMGGEqVaqUYln//v1NvXr1sq3G7JDZ/U7L3XffbSZMmGDr0rJVVvf70UcfNWPHjjXjxo0z1apVy8YKs0dm93vZsmXGx8fHnD17NifKyzaZ3e+pU6eau+66K8Wy//u//zNBQUHZVmN2AszChQvTbZNXPtNulJH9TosjfqbdKDP77eifaTfKyH7b6jMtT/UEXbt2je3bt/PQQw+lWP7QQw+xcePGNNfZtGlTqvYtW7Zk27ZtXL9+PdtqtaWs7PfNEhMTuXjxIr6+vtlRYrbI6n7PmTOHv//+m3HjxmV3idkiK/u9ePFiatWqxZQpUyhZsiQVKlTgxRdf5MqVKzlRsk1kZb8bNGhAZGQkS5cuxRjDyZMnWbBgAW3bts2Jku0iL3ym2YIjfqZllaN/pmWFrT7THGbG6Iw4c+YMCQkJ+Pv7p1ju7+9PVFRUmutERUWl2T4+Pp4zZ86ke3HW3CIr+32zd955h9jYWLp165YdJWaLrOx3eHg4o0aNYv369bi5OeaPf1b2+9ChQ2zYsAEvLy8WLlzImTNnGDhwIOfOnXOYcUFZ2e8GDRrw1Vdf8eijj3L16lXi4+Pp0KEDH3zwQU6UbBd54TPNFhzxMy0r8sJnWlbY6jMtT/UEJbNYLCnuG2NSLbtd+7SW53aZ3e9k8+fPZ/z48YSFheHn55dd5WWbjO53QkIC3bt3Z8KECVSoUCGnyss2mXm/ExMTsVgsfPXVV9SpU4c2bdowbdo0PvvsM4fqDYLM7fe+ffsYMmQIr776Ktu3b2f58uUcPnyYAQMG5ESpdpNXPtOyytE/0zIqr32mZYatPtPyVGwsVqwYrq6uqf4qPHXqVKq/jJIFBASk2d7NzY2iRYtmW622lJX9ThYWFkafPn349ttvad68eXaWaXOZ3e+LFy+ybds2du7cyXPPPQck/SIZY3Bzc+Pnn3+mWbNmOVL7ncjK+x0YGEjJkiXx8fGxLqtcuTLGGCIjIwkJCcnWmm0hK/s9efJkGjZsyEsvvQRA1apVKVCgAI0aNWLixIl5slckL3ym3QlH/kzLrLzymZYVtvpMy1M9QR4eHtSsWZOVK1emWL5y5UoaNGiQ5jr169dP1f7nn3+mVq1auLu7Z1uttpSV/Yakv5Z69erFvHnzHHKMRGb329vbm99//51du3ZZbwMGDKBixYrs2rWLunXr5lTpdyQr73fDhg05fvw4ly5dsi7766+/cHFxISgoKFvrtZWs7Pfly5dxcUn5Mefq6gr81zuS1+SFz7SscvTPtMzKK59pWWGzz7Q7GladC3399dfG3d3dhIaGmn379pmhQ4eaAgUKmIiICGOMMaNGjTJPPfWUtf2hQ4dM/vz5zbBhw8y+fftMaGiocXd3NwsWLLDXLmRJZvd73rx5xs3NzXz44YfmxIkT1tuFCxfstQtZktn9vpmjnkmR2f2+ePGiCQoKMl27djV79+41a9euNSEhIeaZZ56x1y5kSWb3e86cOcbNzc3MmDHD/P3332bDhg2mVq1apk6dOvbahUy7ePGi2blzp9m5c6cBzLRp08zOnTvNkSNHjDF59zMts/udVz7TMrvfN3PUz7TM7retPtPyXAgyxpgPP/zQBAcHGw8PD1OjRg2zdu1a62M9e/Y0jRs3TtF+zZo15r777jMeHh6mTJky5qOPPsrhim0jM/vduHFjA6S69ezZM+cLv0OZfb9v5KgfGMZkfr/3799vmjdvbvLly2eCgoLM8OHDzeXLl3O46juX2f3+v//7P3P33XebfPnymcDAQPPEE0+YyMjIHK4661avXp3u72pe/UzL7H7nlc+0rLzfN3LUz7Ss7LctPtMsxuTRPmERERGRdOSpMUEiIiIiGaUQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhE8oTXXnuNKlWqUKBAAfz9/Xn22We5fv26vcsSkVzMzd4FiIjcKWMMCQkJzJw5k5IlS7Jv3z569OhB1apVefbZZ+1dnojkUrqAqojkSd27d6d48eK8//779i5FRHIpHQ4TEYd35MgRnnvuOe69916KFClCwYIF+eabbwgKCrJ3aSKSiykEiYhDO3PmDHXq1OHMmTNMmzaNDRs2sGnTJlxdXalevbq9yxORXExjgkTEoS1dupT4+Hjmz5+PxWIB4MMPP+TatWsKQSKSLoUgEXFovr6+xMTEsHjxYu6++25+/PFHJk+eTMmSJSlevLi9yxORXEwDo0XEoRljePbZZ5k3bx758uXjySef5OrVqxw5coSffvrJ3uWJSC6mECQiIiJOSQOjRURExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk7p/wEq/9TUo91uxQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdl0lEQVR4nO3dd1hT1/8H8HfYyJIhSxCp4qite1sroKi4V7VaLVZU6mrVWner+KtSZ8fXrTjr1jpqXVRwo0XFbRVQUBBUHExBIOf3ByU1MmQkJCHv1/Pkwdyc3HxuAjdvzz3nXokQQoCIiIhIy+iougAiIiIiVWAIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIpVyd3eHu7u7qssotaFDh8LU1LRYbatXr46hQ4cqtR6JRILZs2cr9TXeJT09HbNnz8aJEydUWoemOH78OJo2bQoTExNIJBLs27cPGzZsgEQiQXR0tKzd1q1b8fPPPyulhpkzZ6JatWrQ09ND5cqVS/z8oUOHonr16gqvS53Ex8dj5syZaNWqFWxsbGBubo4mTZpg9erVyMnJKfA5Z86cQZcuXWBpaQljY2O4ubnh//7v/8q5ciqKnqoLIO22fPlyVZdQbvbu3Qtzc3NVl6F06enp8Pf3BwCNDrjlQQiB/v37o1atWjhw4ABMTExQu3ZtZGdnIzQ0FA4ODrK2W7duxY0bNzB+/HiF1rB//37MnTsXM2bMgLe3NwwNDRW6/ori0qVL2LRpEz7//HN899130NfXx+HDhzFq1CicP38e69atk2u/detWDBkyBP3798emTZtgamqKqKgoPHr0SEVbQAVhCCKVev/991VdQrlp1KiRqksgBXr16hWMjIwgkUhKvY5Hjx7h+fPn6N27N9q3by/3WJUqVcpaYrHcuHEDAPDVV1/B1ta2XF5TURTxGRRXmzZtEBUVBX19fdkyLy8vvH79GsuWLYO/vz+cnZ0BAHFxcRg5ciT8/Pzk/qPn4eGh9DqpZHg4jIpt9uzZkEgkuHnzJgYOHAgLCwvY2dlh2LBhSEpKkmubkZGBadOmwdXVFQYGBqhatSrGjBmDly9fyrUr6HDYihUr0KBBA5iamsLMzAx16tTB9OnTAQDR0dHQ09NDQEBAvvpOnToFiUSCXbt2FbkdL1++xDfffIP33nsPhoaGsLW1RZcuXfDPP/8AAE6cOAGJRJLvcE50dDQkEgk2bNiQb503b95E+/btYWJigipVqmDs2LFIT0+Xa1PQ4bB31aIICQkJ8PPzg5OTEwwMDODq6gp/f39kZ2fLtfP390eLFi1gZWUFc3NzNG7cGIGBgXj7GsvBwcFwd3eHtbU1jI2NUa1aNfTt2xfp6emIjo6WfXn7+/tDIpFAIpG88zBgeno6Jk2aBFdXVxgZGcHKygpNmzbFtm3b5Npt2LABtWvXhqGhIerWrYtNmzblOxRTks/v4sWL+PTTT1G9enUYGxujevXqGDhwIGJiYvK9rkQiwbFjxzBs2DBUqVIFlSpVQmZmJgBgx44daNWqFUxMTGBqaopOnTohPDy8yG2ePXs2nJycAABTpkyBRCKRbcfbh8Pc3d3x559/IiYmRvaevuuLXyqVYsGCBahTp47sd+vzzz9HbGysrE316tUxc+ZMAICdnV2xDqcW9BkU5PXr1/jhhx9kr1+lShV88cUXePr0qVy7zMxMfPPNN7C3t0elSpXw8ccf49KlS/n+XhT1GVy8eBE9evSAlZUVjIyM0KhRI+zcubPIbQYAS0tLuQCUp3nz5gAg976uXbsWaWlpmDJlyjvXS6rFniAqsb59+2LAgAHw9fXF9evXMW3aNACQdQcLIdCrVy8cP34c06ZNQ9u2bXHt2jXMmjULoaGhCA0NLbTLffv27Rg9ejTGjRuHRYsWQUdHB5GRkbh16xaA3J12jx49sHLlSkyePBm6urqy5y5duhSOjo7o3bt3obWnpKTgo48+QnR0NKZMmYIWLVogNTUVp06dQnx8POrUqVPi9yMrKwtdunSBn58fpk6dinPnzuGHH35ATEwM/vjjjzLXMnToUGzcuBH3798v8biLhIQENG/eHDo6Ovj+++9Ro0YNhIaG4ocffkB0dDTWr18vaxsdHQ0/Pz9Uq1YNAHD+/HmMGzcOcXFx+P7772VtunbtirZt22LdunWoXLky4uLicOTIEbx+/RoODg44cuQIOnfuDF9fXwwfPhzAu3s1Jk6ciM2bN+OHH35Ao0aNkJaWhhs3buDZs2eyNhs2bMAXX3yBnj17YvHixUhKSsLs2bORmZkJHZ3S/X8uOjoatWvXxqeffgorKyvEx8djxYoVaNasGW7dugUbGxu59sOGDUPXrl2xefNmpKWlQV9fH/PmzcPMmTPxxRdfYObMmXj9+jUWLlyItm3b4u+//y60t3P48OFo0KAB+vTpg3HjxmHQoEGF/l0sX74cI0eORFRUFPbu3VusbRs1ahRWr16NsWPHolu3boiOjsZ3332HEydO4PLly7CxscHevXuxbNkyBAYG4siRI7CwsJAFs4IU9zOQSqXo2bMnTp8+jcmTJ6N169aIiYnBrFmz4O7ujosXL8LY2BgA8MUXX2DHjh2YPHkyPD09cevWLfTu3RvJyckF1lCWzyAkJASdO3dGixYtsHLlSlhYWGD79u0YMGAA0tPTSzVmLzg4GHp6eqhVq5Zs2alTp2BlZYV//vkHPXv2xI0bN2BlZYU+ffpgwYIFWnFYXGMIomKaNWuWACAWLFggt3z06NHCyMhISKVSIYQQR44cKbDdjh07BACxevVq2bJ27dqJdu3aye6PHTtWVK5cucg6QkJCBACxd+9e2bK4uDihp6cn/P39i3zunDlzBAARFBT0zvWHhITILb9//74AINavXy9b5uPjIwCIX375Ra7t3LlzBQBx5swZ2TIXFxfh4+NTolqEEGLYsGFCV1dXREdHF9lOCCEAiFmzZsnu+/n5CVNTUxETEyPXbtGiRQKAuHnzZoHrycnJEVlZWWLOnDnC2tpa9tnu3r1bABBXrlwptIanT5/mq+NdPvjgA9GrV69CH8/JyRGOjo6icePGslqEECI6Olro6+sLFxcX2bKSfH5vy87OFqmpqcLExETuM12/fr0AID7//HO59g8ePBB6enpi3LhxcstTUlKEvb296N+/fxFb/V9NCxculFue93r379+XLevatavcdhbl9u3bAoAYPXq03PILFy4IAGL69OmyZXl/10+fPi1ynSX5DLZt2yYAiD179sitIywsTAAQy5cvF0IIcfPmTQFATJkyRa5d3vPf/HtRxGdQp04d0ahRI5GVlSXXtlu3bsLBwUHk5OQU+R687ejRo0JHR0dMmDBBbnnt2rWFkZGRMDMzE/PmzRMhISFiwYIFwtjYWLRp00bu/SPV4uEwKrEePXrI3a9fvz4yMjLw5MkTALn/MwKQ739Vn3zyCUxMTHD8+PFC1928eXO8fPkSAwcOxP79+5GYmJivjbu7Oxo0aIBly5bJlq1cuRISiQQjR44ssvbDhw+jVq1a6NChQ5HtSuqzzz6Tuz9o0CAAuf/zLGstgYGByM7OhouLS4nrOnjwIDw8PODo6Ijs7GzZzdvbGwBw8uRJWdvg4GB06NABFhYW0NXVhb6+Pr7//ns8e/ZM9tk2bNgQBgYGGDlyJDZu3Ih79+6VqJ43a8jOzpYdamvevDkOHz6MqVOn4sSJE3j16pXc8+7cuYNHjx5h0KBBcoeBXFxc0Lp16xK/L3lSU1MxZcoU1KxZE3p6etDT04OpqSnS0tJw+/btfO379u0rd//o0aPIzs7G559/LrddRkZGaNeuncpmyOX93r39N9i8eXPUrVu3yL/BwpTkMzh48CAqV66M7t27y70vDRs2hL29vex9yfv969+/v9zz+/XrBz29gg9UlPYziIyMxD///CP7W32zbZcuXRAfH487d+4U+/24fPky+vfvj5YtW+Y7PC+VSpGRkYHp06dj2rRpcHd3x7fffouAgACcPXu2VO8/KQdDEJWYtbW13P28Lvy8L65nz55BT08v3yEQiUQCe3t7uUMcbxsyZAjWrVuHmJgY9O3bF7a2tmjRogWCgoLk2n311Vc4fvw47ty5g6ysLKxZswb9+vWDvb19kbU/ffq0yO7+0tDT08v3nuTVUdS2KqOWtz1+/Bh//PEH9PX15W716tUDAFnI/Pvvv9GxY0cAwJo1a3D27FmEhYVhxowZAP77bGvUqIG//voLtra2GDNmDGrUqIEaNWrgl19+eWct0dHR+erI+xL89ddfMWXKFOzbtw8eHh6wsrJCr169EBERAeC/97Ggz/ddn3lRBg0ahKVLl2L48OE4evQo/v77b4SFhaFKlSr5ghgAudlaQO77CwDNmjXLt207duwoMMSXh7z36+16AcDR0bHI38t3rbM4n8Hjx4/x8uVLGBgY5HtfEhISZO9L3jrt7Ozknl/Q31Se0n4Gee0mTZqUr93o0aMBoNifV3h4OLy8vODm5oZDhw7lO4yZV3unTp3kluf95+Py5cvFeh1SPo4JIoWztrZGdnY2nj59KheEhBBISEhAs2bNinz+F198gS+++AJpaWk4deoUZs2ahW7duuHu3buy3pBBgwZhypQpWLZsGVq2bImEhASMGTPmnbVVqVJFbgBjQYyMjABANuAyT2E7yOzsbDx79kxup52QkAAgf2AsaS1lZWNjg/r162Pu3LkFPu7o6AggdyyWvr4+Dh48KNt+ANi3b1++57Rt2xZt27ZFTk4OLl68iP/9738YP3487Ozs8OmnnxZai6OjI8LCwuSW1a5dGwBgYmICf39/+Pv74/Hjx7Jeoe7du+Off/6RvY957+ub3l5W3M8vKSkJBw8exKxZszB16lTZ8szMTDx//rzAbXh7MHLemKHdu3eXqqdOWfLer/j4+HxB+9GjR/nGOpVkncX5DGxsbGBtbY0jR44UuC4zMzO5dT5+/BhVq1aVPZ73N1WQ0n4Gee2mTZuGPn36FNgm7/exKOHh4ejQoQNcXFxw7NgxWFhY5GtTv359nD9/Pt/yvJ7P0o5hI8XjJ0EKlzfV97fffpNbvmfPHqSlpeWbClwYExMTeHt7Y8aMGXj9+jVu3rwpe8zIyEh2SGbJkiVo2LAh2rRp8851ent74+7du7JDdgXJG3x87do1ueUHDhwo9DlbtmyRu79161YARZ8npzi1lFW3bt1w48YN1KhRA02bNs13ywtBEokEenp6cgPNX716hc2bNxe6bl1dXbRo0UJ2WDLvf7dv9wzmMTAwyPf6eV+Gb7Kzs8PQoUMxcOBA3LlzB+np6ahduzYcHBywbds2udlqMTExOHfunNzzi/v5SSQSCCHy/S9+7dq1hZ787m2dOnWCnp4eoqKiCnx/mzZtWqz1FIehoWGBvVMF8fT0BJD/bzAsLAy3b98u9t/gm0ryGXTr1g3Pnj1DTk5Oge9JXtj4+OOPAeTO7HrT7t27881eLExxP4PatWvDzc0NV69eLbRdQb+Pb7py5Qo6dOgAJycnBAUFwdLSssB2eYfsDh8+LLf80KFDAICWLVsWa9tI+dgTRArn5eWFTp06YcqUKUhOTkabNm1ks8MaNWqEIUOGFPrcESNGwNjYGG3atIGDgwMSEhIQEBAACwuLfD1Io0ePxoIFC3Dp0iWsXbu2WLWNHz8eO3bsQM+ePTF16lQ0b94cr169wsmTJ9GtWzd4eHjA3t4eHTp0QEBAACwtLeHi4oLjx4/j999/L3CdBgYGWLx4MVJTU9GsWTPZ7DBvb2989NFHZaoFAHx9fbFx40ZERUWVuLdhzpw5CAoKQuvWrfHVV1+hdu3ayMjIQHR0NA4dOoSVK1fCyckJXbt2xZIlSzBo0CCMHDkSz549w6JFi/IFhJUrVyI4OBhdu3ZFtWrVkJGRIZsVmDe2yczMDC4uLti/fz/at28PKysr2NjYFDmzrUWLFujWrRvq168PS0tL3L59G5s3b0arVq1QqVIlAMD//d//Yfjw4ejduzdGjBiBly9fYvbs2fkOxRT38zM3N8fHH3+MhQsXyuo7efIkAgMDi33W5OrVq2POnDmYMWMG7t27h86dO8PS0hKPHz/G33//LevhUoQPP/wQv//+O1asWIEmTZpAR0en0JBVu3ZtjBw5Ev/73/+go6MDb29v2ewwZ2dnTJgwocSvr6OjU+zP4NNPP8WWLVvQpUsXfP3112jevDn09fURGxuLkJAQ9OzZE71790a9evUwcOBALF68GLq6uvD09MTNmzexePFiWFhYFKvHpCSfwapVq+Dt7Y1OnTph6NChqFq1Kp4/f47bt2/j8uXLRZ5e486dO7Lf8blz5yIiIkJ2uBbIPVSc1/PdsWNHdO/eHXPmzIFUKkXLli1x8eJF+Pv7o1u3bkXuF6icqXJUNmmWwmaRFDST5dWrV2LKlCnCxcVF6OvrCwcHBzFq1Cjx4sULuee+PTts48aNwsPDQ9jZ2QkDAwPh6Ogo+vfvL65du1ZgTe7u7sLKykqkp6cXeztevHghvv76a1GtWjWhr68vbG1tRdeuXcU///wjaxMfHy/69esnrKyshIWFhRg8eLC4ePFigbPDTExMxLVr14S7u7swNjYWVlZWYtSoUSI1NVXudd+eHVbcWvJmoL35/hYGBczKevr0qfjqq6+Eq6ur0NfXF1ZWVqJJkyZixowZcjWuW7dO1K5dWxgaGor33ntPBAQEiMDAQLnXDg0NFb179xYuLi7C0NBQWFtbi3bt2okDBw7IveZff/0lGjVqJAwNDfPN8inI1KlTRdOmTYWlpaXs9SdMmCASExPl2q1du1a4ubkJAwMDUatWLbFu3Trh4+OTb9ZUcT+/2NhY0bdvX2FpaSnMzMxE586dxY0bN/J9Vnm/42FhYQXWv2/fPuHh4SHMzc2FoaGhcHFxEf369RN//fVXkdtdktlhz58/F/369ROVK1cWEolEvGv3nZOTI+bPny9q1aol9PX1hY2NjRg8eLB4+PChXLvizg7LU9zPICsrSyxatEg0aNBAGBkZCVNTU1GnTh3h5+cnIiIiZO0yMjLExIkTha2trTAyMhItW7YUoaGhwsLCQm7WlaI+g6tXr4r+/fsLW1tboa+vL+zt7YWnp6dYuXJlkdud9/qF3d6edZieni6mTJkinJ2dhZ6enqhWrZqYNm2ayMjIKMa7TOVFIsRbZ0Ij0hBPnjyBi4sLxo0bhwULFqi6HFKRoUOH4sSJE3LX2SLNdu7cObRp0wZbtmyRzbQkUgYeDiONExsbi3v37mHhwoXQ0dHB119/reqSiKiUgoKCEBoaiiZNmsDY2BhXr17Fjz/+CDc3t0IHMBMpCkMQaZy1a9dizpw5qF69OrZs2SI3q4SINIu5uTmOHTuGn3/+GSkpKbCxsYG3tzcCAgLkZioSKQMPhxEREZFWUpsp8itWrED9+vVhbm4Oc3NztGrVSm56oRACs2fPhqOjI4yNjeHu7i43ZZqIiIioJNQmBDk5OeHHH3/ExYsXcfHiRXh6eqJnz56yoLNgwQIsWbIES5cuRVhYGOzt7eHl5YWUlBQVV05ERESaSK0Ph1lZWWHhwoUYNmwYHB0dMX78eEyZMgVA7lld7ezsMH/+fPj5+am4UiIiItI0ajkwOicnB7t27UJaWhpatWqF+/fvIyEhQXZtIyD37Knt2rXDuXPnigxBmZmZcqfPl0qleP78OaytrfOdfp2IiIjUkxACKSkpcHR0VNilR9QqBF2/fh2tWrVCRkYGTE1NsXfvXrz//vuyU7K/fZE9Ozs7xMTEFLnOgIAAhZ2xlYiIiFTr4cOHCrv4tFqFoNq1a+PKlSt4+fIl9uzZAx8fH9lVpoH8F84TQryzN2fatGmYOHGi7H5SUhKqVauGhw8fwtzcXLEbQEREREqRnJwMZ2fnd17jrSTUKgQZGBigZs2aAICmTZsiLCwMv/zyi2wcUEJCAhwcHGTtnzx5kq936G2Ghob5rn8EQDYLjYiIiDSHIoeyqM3ssIIIIZCZmQlXV1fY29sjKChI9tjr169x8uRJtG7dWoUVEhERkaZSm56g6dOnw9vbG87OzkhJScH27dtx4sQJHDlyBBKJBOPHj8e8efPg5uYGNzc3zJs3D5UqVeJ1ZYiIiKhU1CYEPX78GEOGDEF8fDwsLCxQv359HDlyBF5eXgCAyZMn49WrVxg9ejRevHiBFi1a4NixYwo9NkhERETaQ63PE6QMycnJsLCwQFJSEscEERERaQhlfH+r9ZggIiIiImVhCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtpDYhKCAgAM2aNYOZmRlsbW3Rq1cv3LlzR67N0KFDIZFI5G4tW7ZUUcVERESkydQmBJ08eRJjxozB+fPnERQUhOzsbHTs2BFpaWly7Tp37oz4+HjZ7dChQyqqmIiIiDSZnqoLyHPkyBG5++vXr4etrS0uXbqEjz/+WLbc0NAQ9vb25V0eERERVTBq0xP0tqSkJACAlZWV3PITJ07A1tYWtWrVwogRI/DkyZMi15OZmYnk5GS5GxERERXuxYsXuHPnDqRSqapLUSq1DEFCCEycOBEfffQRPvjgA9lyb29vbNmyBcHBwVi8eDHCwsLg6emJzMzMQtcVEBAACwsL2c3Z2bk8NoGIiEjjpKenY9iwYbCxsUGdOnVQr1493Lx5U9VlKY1ECCFUXcTbxowZgz///BNnzpyBk5NToe3i4+Ph4uKC7du3o0+fPgW2yczMlAtJycnJcHZ2RlJSEszNzRVeOxERkSbKzs5Gp06dEBwcDADQ09NDdnY2LCwscPnyZbz33nsqrS85ORkWFhYK/f5Wu56gcePG4cCBAwgJCSkyAAGAg4MDXFxcEBERUWgbQ0NDmJuby92IiIjoDbGxmDV0KIKDg2FiYoLg4GDEx8ejWbNmSEpKwpAhQyrkoTG1CUFCCIwdOxa///47goOD4erq+s7nPHv2DA8fPoSDg0M5VEhERFQBBQbin2rVsHDLFgDAusGD4eHhARsbG+zcuROmpqY4d+4c9u7dq+JCFU9tQtCYMWPw22+/YevWrTAzM0NCQgISEhLw6tUrAEBqaiomTZqE0NBQREdH48SJE+jevTtsbGzQu3dvFVdPRESkgWJjgZEj8Z0QyALQFUD/tWtzlwOoXr06JkyYAACYPXs21HAETZmoTQhasWIFkpKS4O7uDgcHB9ltx44dAABdXV1cv34dPXv2RK1ateDj44NatWohNDQUZmZmKq6eiIhIA0VE4K5Uij3/3v0RAHJygMhIWZOJEyfCxMQEN27cwJkzZ1RRpdKozXmC3pUujY2NcfTo0XKqhoiISAu4uWERAAGgG4APAEBXF6hZU9akcuXKGDhwINauXYtVq1ahbdu2qqlVCdSmJ4iIiIjK1wsTE2zSy+0PmQLkBqBVq4C3JiaNGDECAPD7nj1IO3RIdrhM0zEEERERaant27cjMzsbDd5/Hx+FhADR0YCvb752zZo1g6uNDV5lZOBI166AiwsQGFj+BSsYQxAREZGWWr9+PQBg6IgRgLt7vh6gPJK4OPRNTASA3PFDUing56fxPUIMQURERFro5s2bCAsLg56eHgYNGlR044gI9P33n0cBZAP5BlBrIoYgIiIiLbRx40YAQNeuXWFra1t0Yzc3NJdIsBVAJP6dVfXWAGpNxBBERESkZaRSKbZu3QoA8PHxefcTnJygs2YNBurqwhIodAC1plGbKfJERERUPi5cuIC4uDiYmZmhS5cuxXuSry/QqVPuIbCaNTU+AAEMQURERFpnz57c0yN269YNhoaGxX+ik1OFCD95eDiMiIhIiwghsHv3bgBAv379VFyNajEEERERaZHLly8jJiYGlSpVQufOnVVdjkoxBBEREWmRvENh3t7eqFSpkoqrUS2GICIiIi0hhJCFoL59+76jdcXHEERERKQlbt68ibt378LAwABdu3ZVdTkqxxBERESkJfJ6gTp16gRzc3MVV6N6DEFERERa4vfffwcA9OnTR8WVqAeGICIiIi0QFRWFa9euQVdXFz169FB1OWqBIYiIiEgL7N27FwDg7u4OKysrFVejHhiCiIiItEBeCOrdu7eKK1EfDEFEREQVXHx8PM6dOwcA6NWrl2qLUSMMQURERBXc/v37AQAtWrRA1apVVVyN+mAIIiIiquDyZoXxUJg8hiAiIqIK7MWNGwgJDgbAEPQ2hiAiIqKKKjAQB+vXR3ZODuoBqHX6tKorUisMQURERBVRbCwwciT2CgEA6AMAfn65ywkAQxAREVHFFBGBZKkUh/+92xsAcnKAyEgVFqVeGIKIiIgqIjc37JdIkAGgNoCGAKCrC9SsqdKy1AlDEBERUUXk5ISt9eoBAAYCkOjqAqtWAU5Oqq1LjeipugAiIiJSvKdPnyLo9m0AwMBNmwAPDwagtzAEERERVUC7du1CTk4OmjZtilpDhqi6HLXEw2FEREQV0KZNmwAAAwcOVHEl6oshiIiIqIK5du0aLly4AD09PQwaNEjV5agthiAiIqIKZs2aNQByL5Zqb2+v4mrUF0MQERFRBZKeno7NmzcDAEaOHKniatQbQxAREVEFsnPnTiQlJeG9995D+/btVV2OWmMIIiIiqiCEEPjpp58AACNGjICODr/mi8J3h4iIqII4cuQIrl27BlNTU/j5+am6HLXHEERERFQBCCEQEBAAAPDz84OlpaWKK1J/DEFEREQVwJEjR3D69GkYGBhgwoQJqi5HIzAEERERabjs7GxMmjQJADBu3DhUrVpVxRVpBoYgIiIiDbds2TLcunULVlZWmDFjhqrL0RgMQURERBrsn3/+wdSpUwEA8+bN41igElCbEBQQEIBmzZrBzMwMtra26NWrF+7cuSPXRgiB2bNnw9HREcbGxnB3d8fNmzdVVDEREZFqJScno3///sjIyECnTp14csQSUpsQdPLkSYwZMwbnz59HUFAQsrOz0bFjR6SlpcnaLFiwAEuWLMHSpUsRFhYGe3t7eHl5ISUlRYWVExERFVNsLBASkvuzjNLT09GnTx9cv34ddnZ2CAwMhEQiUUCR2kMihBCqLqIgT58+ha2tLU6ePImPP/4YQgg4Ojpi/PjxmDJlCgAgMzMTdnZ2mD9/frHPh5CcnAwLCwskJSXB3NxcmZtARET0n8BAYORIQCoFdHSA1asBX9+C28bGAhERgJsb4OSU7+H79+/jk549cen6dZhUqoSTp06hSZMmSt4A1VLG97fa9AS9LSkpCQBgZWUFIPcDT0hIQMeOHWVtDA0N0a5dO5w7d04lNRIRERVLbOx/AQjI/ennJ+sRyszMRGRkJK5fv47r/v64W60aHnp6IrFaNaQtXw6pVIr09HScPXsWY8eORZ1atXDp+nXYADjy6hWaXLmisk3TZHqqLqAgQghMnDgRH330ET744AMAQEJCAgDAzs5Orq2dnR1iYmIKXVdmZiYyMzNl95OTk5VQMRERUREiIv4LQP8Ky8nBxnHjcOzmTURERBT8PCGAMWNyb29pD2ANAFchcgNVp04F9hpR4dSyJ2js2LG4du0atm3blu+xt493CiGKPAYaEBAACwsL2c3Z2Vnh9RIRERXJzS33EBiAcADuAJoDWLZvnywAVapUCXaWlqgCwByAfgGrqVKlCgZ6euIogCAArnkP5OQAkZFK3YSKSO1C0Lhx43DgwAGEhITA6Y1Ea29vD+C/HqE8T548ydc79KZp06YhKSlJdnv48KFyCiciIiqMkxNyVq6Ev0SCpgBOAjDQ08PgwYOxf/9+PH78GKmpqUi4dg1PdHSQBOA1gGwAKTo6eHLlChITE/HkyRNs3bgRHXV0IPfff11doGZNFWyYZlObECSEwNixY/H7778jODgYrq6uco+7urrC3t4eQUFBsmWvX7/GyZMn0bp160LXa2hoCHNzc7kbERFReXr16hV6HTiA2UJACuCTbt0QERWFzZs3o0ePHrC1tc09quHklDtgWlcXAKCrqwvT1atRpUEDWFtb567srTbQ1QVWreKhsFJQmzFBY8aMwdatW7F//36YmZnJenwsLCxgbGwMiUSC8ePHY968eXBzc4ObmxvmzZuHSpUqYdCgQSqunoiIqGBJSUno3r07Tp8+DSMjI6xatQqff/554U/w9c0d3xMZmdu7U1C4KU4beie1mSJf2Lie9evXY+jQoQBye4v8/f2xatUqvHjxAi1atMCyZctkg6eLg1PkiYiovGRkZKBz5844efIkzM3NcfDgQbRt21bVZWkkZXx/q00IKi8MQUREVB6kUikGDhyInTt3wtzcHCEhIWjcuLGqy9JYWnWeICIiIk32f//3f9i5cyf09fWxd+9eBiA1xBBERESkYMePH4e/vz8AYM2aNfD09FRxRVQQhiAiIiIFio+Px6BBgyCEgK+vL3x8fFRdEhWCIYiIiEhBhBDw8fHBkydP8OGHH+J///ufqkuiIjAEERERKciaNWsQFBQEIyMj7Ny5E8bGxqouiYrAEERERKQAMTEx+OabbwAA8+bNQ506dVRcEb0LQxAREVEZCSEwYsgQpKamonXTpvjqq69UXRIVA0MQERFRGW3380PQ6dMwArDu0iXobtig6pKoGBiCiIiIyiD59m18s2YNAGAGgNpCAH5+QGysagujd2IIIiIiKoPZ33+PeAA1AUzKW5iTk3tdL1JrDEFERESldP36dfy6dy8A4H8AjPIe0NXNvbApqTWGICIiolIQQmD06NHIyclBn8aN0VlXN/cBXV1g1Spe2V0D6Km6ACIiIk20efNmnDlzBpUqVcLP+/YBEknuIbCaNRmANARDEBERUQm9fPkS3377LQDg+++/h7Ozc+4DDD8ahYfDiIiISui7777DkydPUKdOHUyYMEHV5VApMQQRERGVQHh4OJYvXw4AWLp0KQwMDFRcEZUWQxAREVExSaVSjB49GlKpFAMGDED79u1VXRKVAUMQERFRMa1btw7nz5+HqakpFi9erOpyqIwYgoiIiIohMTERU6ZMAQDMmTMHVatWVXFFVFYMQURERMUwbdo0PH/+HPXr18e4ceNUXQ4pAEMQERHRO4SGhmLt2rUAgOXLl0NPj2eYqQgYgoiIiIqQnZ2NUaNGAQC++OILtGnTRsUVkaIwBBERERXh559/xtWrV2FpaYn58+eruhxSIIYgIiKiQty9exffffcdAGDhwoWoUqWKiisiRWIIIiIiKkBOTg6GDRuGjIwMeHl5YdiwYaouiRSMIYiIiKgAy5Ytw9mzZ2Fqaoo1a9ZAIpGouiRSMIYgIiKit9y5cwfTpk0DACxYsAAuLi4qroiUgSGIiIjoDZmZmRg4cCDS09Ph6ekJv65dgZAQIDZW1aWRgjEEERFRxRMbW+rgMm3aNISHh8Pa2hqbvL2h4+oKeHoCLi5AYKASiiVVYQgiIqKKJTAwN7CUIrj88ccf+OmnnwAAGxYtQtUpUwCpNPdBqRTw82OPUAXCEERERBVHbCwwcmTxg8sbPUa3bt3CZ599BgD4+uuv0c3F5b/15MnJASIjlbgBVJ543m8iIqo4IiIKDy5OTvLLAwNlgem5RIIeNjZISUlBu3btsHDhQuDxY0BHR359urpAzZrK3w4qF+wJIiKiisPNLTe4vKmg4PJGj1EGgL5CIOrpU7g4OWHXrl3Q19fPDU2rV+c+P289q1blD1OksRiCiIio4ihucPm3xygLQH8AJwCYAtg/a5b8WaF9fYHo6NxDZtHRufepwpAIIYSqiyhPycnJsLCwQFJSEszNzVVdDhERKUNsbO4hsJo1C+65iY1FdrVq8BECWwEYATiio4N2MTHs6VFTyvj+5pggIiKqeJycigwzGTY2GNiwIfaFh0MPwG4dHbRbvZoBSMswBBERkVZ5+fIlevfujRPh4TA0NMS2GTPQ9YsvGIC0EEMQERFpjevXr6NPnz6IjIyEmZkZDhw4AHd3d1WXRSrCgdFERFThCSGwceNGtGzZEpGRkXBxccGpU6cYgLQcQxAREVVocXFx6N69O4YOHYr09HR4eXnh0qVLaNiwoapLIxVjCCIiogopMzMTv/zyC+rVq4c///wTBgYGmDdvHg4fPgxra2tVl0dqgGOCiIioQpFKpdi2bRtmzpyJ6OhoAEDz5s2xfv16vP/++6otjtSKWvUEnTp1Ct27d4ejoyMkEgn27dsn9/jQoUMhkUjkbi1btlRNsUREpFaEEDh69CgaN26MwYMHIzo6Gg4ODli5ciXOnj3LAET5qFUISktLQ4MGDbB06dJC23Tu3Bnx8fGy26FDh8qxQiIiUkdhYWHo0KEDOnfujKtXr8Lc3Bzz5s1DZGQk/Pz8oKfHAx+Un1r9Vnh7e8Pb27vINoaGhrC3ty+nioiISJ1FRUVh+vTp2LlzJwDAwMAAY8eOxfTp0znuh95JrXqCiuPEiROwtbVFrVq1MGLECDx58kTVJRERUTl7/vw5JkyYgLp162Lnzp2QSCT4/PPPcffuXSxevJgBiIpFrXqC3sXb2xuffPIJXFxccP/+fXz33Xfw9PTEpUuXYGhoWOBzMjMzkZmZKbufnJxcXuUSEZGCZWVlYenSpZgzZw5evnwJIHeYxPz581G/fn3VFkcaR6NC0IABA2T//uCDD9C0aVO4uLjgzz//RJ8+fQp8TkBAAPz9/curRCIiUpKLFy9i+PDhuHr1KgDgww8/xKJFi9CxY0cVV0aaSuMOh73JwcEBLi4uiIiIKLTNtGnTkJSUJLs9fPiwHCskIqKyyszMxLfffosWLVrg6tWrsLS0xOrVqxEeHs4ARGWiUT1Bb3v27BkePnwIBweHQtsYGhoWeqiMiIjU2927d/Hpp58iPDwcADBw4ED8/PPPsLW1VXFlVBGoVQhKTU1FZGSk7P79+/dx5coVWFlZwcrKCrNnz0bfvn3h4OCA6OhoTJ8+HTY2Nujdu7cKqyYiImXYsmUL/Pz8kJaWBmtra6xbtw49evRQdVlUgahVCLp48SI8PDxk9ydOnAgA8PHxwYoVK3D9+nVs2rQJL1++hIODAzw8PLBjxw6YmZmpqmQiIlKwnJwcTJ8+HQsWLAAAeHh4YPPmzahataqKK6OKRiKEEKouojwlJyfDwsICSUlJMDc3V3U5RET0hpSUFAwaNAgHDx4EAEyfPh1z5syBrq7uf41iY4GICMDNDXByUlGlVN6U8f2t0QOjiYio4khMTISHhwcOHjwIQ0NDbNmyBXPnzpUPQIGBgIsL4OmZ+zMwUHUFk8ZjTxAREalcXFwcvLy8cPv2bdjY2ODPP/9E8+bN5RvFxuYGH6n0v2W6ukB0NHuEtAB7goiIqMKJjIzERx99hNu3b8PJyQmnT5/OH4CA3ENgbwYgAMjJAd6YUENUEmo1MJqIiLTLvXv34O7ujri4ONSsWRN//fUXXFxcCm7s5gbo6OTvCapZs3yKpQqHPUFERKQSDx8+hKenJ+Li4vD+++/j9OnThQcgIPeQ1+rVucEHyP25ahUPhVGpsSeIiIjKXXx8PDw9PRETEwM3NzccP34c9vb2736iry/QqVPuIbCaNRmAqEwYgoiIqFy9ePECHTp0QGRkJKpXr/5fACru1HcnJ4YfUggeDiMionKTmZmJ3r1749atW6hatSqCg4Ph7OzMqe+kEgxBRESkfLGxEMHB8B04ECdPnoS5uTkOHz4MV1fX3B6gkSP/G/AslQJ+frnLiZSIh8OIiEi5AgOBkSPxnVSKLQD0dHWxZ88efPjhh7mPFzX1nYe9SInYE0RERMrzby/PWqkUc/9dtFoqRYc6df5rkzf1/U2c+k7lgCGIiIiUJyICR6VSfPnv3e8AfCGE/AkOOfWdVISHw4iISGmuZmWhH4AcAEMA+AMF9/Jw6jupAEMQEREpRWxsLLoOG4ZUAB4A1gKQFNXLw6nvVM4YgoiIqPQKObdPcnIyunbtiri4ONStWxd7du6EQWIie3lIrTAEERFR6fw76wtSae7A5tWrAV9fZGVl4ZNPPsG1a9dgZ2eHQ4cOwbJ6dVVXS5RPmQZGP3nyBAkJCYqqhYiINEUh5/YRDx9i1KhROHbsGCpVqoSDBw+iOgMQqalShaBr166hXr16cHBwQNWqVVG1alXMnDkTaWlpiq6PiIjUUSHn9pnn74/AwEDo6Ohg+/btaNq0qWrqIyqGUoUgX19f2NnZ4cyZMwgPD8cPP/yAw4cPo2nTpnjx4oWiayQiInVTwLl9fpNIMPPfy138+uuv6N69uyoqIyo2iRBClPRJJiYmuHTpEuq8cbIrIQQ++eQTGBkZ4bffflNokYqUnJwMCwsLJCUlwdzcXNXlEBGpr3dd0DQwMPfyFjk5CNbRQWeJBFk5OZg0aRIWLlxY/vVShaaM7+9S9QQV1OMjkUgwb9487N+/XyGFERGRChXngqa+vkB0NG6sW4feJibIysnBgAEDMH/+/PKvl6gUit0T1LVrVzRo0AANGzZETk4OfvnlF+zfvx92dnayNmFhYejbty8ePHigtILLij1BRETvEBubG3zeHPOjqwtER+frEYqLi0PLli0RGxuLtm3b4tixYzAyMirfekkrKOP7u9hT5D/88ENcvnwZ69evx+PHjwEA7733Hvr37y8LRuvXr8dPP/2kkMKIiEhFinlB07xzAcXGxqJOnTrYt28fAxBplFKNCXr8+DHCw8Nx5coV2S0yMhK6urqoXbs2rl27poxaFYI9QURE71CMnqBXr16hS5cuOHHiBOzs7HD+/HlOhSelUmlP0Jvs7OzQuXNndO7cWbbs1atXuHr1Kq5evaqQwoiISEXyLmj676Dnty9ompWVhQEDBuDEiRMwMzPDn3/+yQBEGqlUPUGajD1BRETFFBub74KmUqkUQ4YMwdatW2FkZIQjR46gXbt2Ki6UtIHa9AQREZEWeOuCpkIIjBs3Dlu3boWenh52797NAEQarUyXzSAiIu0ghMD48eOxfPlySCQSbN68GV27dlV1WURlwp4gIiIqklQqxdixY7FixQpIJBKsXr0an376qarLIiozhiAiIiqUVCqFn58f1q5dC4lEgnXr1mHo0KGqLotIIRiCiIioQFlZWRg+fDg2bdoEHR0dbNy4EYMHD1Z1WUQKwxBERET5pKamon///jh8+DB0dXXx22+/8RAYVTgMQUREJOfJkyfo2rUrLl68CGNjY+zYsYNXhKcKiSGIiIhkIiMj0blzZ0RFRcHa2hoHDx5Ey5YtVV0WkVJwijwREQEAgoKC0Lx5c0RFRaF69eo4e/YsAxBVaAxBRERaTgiBn376CZ07d8aLFy/QvHlzhIaGonbt2qoujUipGIKIiLTYq1ev4OPjg4kTJ0IqlWLo0KE4efIk7O3tVV0akdJxTBARkZa6efMmBgwYgJs3b0JXVxdLlizBuHHjIJFIVF0aUblgCCIi0jJCCKxevRrjx49HRkYG7OzssHXrVnh6eqq6NKJyxRBERKRFXrx4gREjRmDPnj0AgE6dOmHjxo2ws7NTcWVE5Y9jgoiItMS5c+fQsGFD7NmzB3p6eli0aBEOHTrEAERaiyGIiKiCy8nJwdy5c/Hxxx/jwYMHqFGjBs6dO4dvvvkGOjr8GiDtpVa//adOnUL37t3h6OgIiUSCffv2yT0uhMDs2bPh6OgIY2NjuLu74+bNm6oplohIAzx69AheXl6YOXMmcnJyMGjQIFy+fBnNmjVTdWlEKqdWISgtLQ0NGjTA0qVLC3x8wYIFWLJkCZYuXYqwsDDY29vDy8sLKSkp5VwpEZGaio0FQkKA2Fj8+eefaNCgAUJCQmBiYoINGzbgt99+g7m5uaqrJFILajUw2tvbG97e3gU+JoTAzz//jBkzZqBPnz4AIBvMt3XrVvj5+ZVnqURE6icwEBg5Eq+lUkwDsOTfxQ0bNsT27dt58kOit6hVT1BR7t+/j4SEBHTs2FG2zNDQEO3atcO5c+cKfV5mZiaSk5PlbkREFU5sLDByJO5LpfgI/wWgr4YNw/nz5xmAiAqgMSEoISEBAPLNYrCzs5M9VpCAgABYWFjIbs7Ozkqtk4hIJSIisFsqRSMAYQAsAewD8MuQITA0NFRpaUTqSmNCUJ63z2QqhCjy7KbTpk1DUlKS7Pbw4UNll0hEVK4yMzMxev16fAIgCUArAFcA9NTVBWrWVGltROpMrcYEFSXvOjYJCQlwcHCQLX/y5EmR57gwNDTk/4KIqMJ69OgR+vTpgwsXLgAApkokmCME9HV1gVWrACcnFVdIpL40pifI1dUV9vb2CAoKki17/fo1Tp48idatW6uwMiIi1QgNDUWTJk1w4cIFVK5cGYcOHULAgwfQDwkBoqMBX19Vl0ik1tSqJyg1NRWRkZGy+/fv38eVK1dgZWWFatWqYfz48Zg3bx7c3Nzg5uaGefPmoVKlShg0aJAKqyYiKn9r167F6NGjkZWVhXr16mHfvn2omXfoi70/RMWiViHo4sWL8PDwkN2fOHEiAMDHxwcbNmzA5MmT8erVK4wePRovXrxAixYtcOzYMZiZmamqZCKiciWVSjFp0iT89NNPAIA+ffpgw4YNJdsPxsYCERGAmxsDE2k1iRBCqLqI8pScnAwLCwskJSXxhGFEpFEyMjIwZMgQ7N69GwAwZ84czJgxo2SXvvj3XEKQSgEdHWD1ah42I42gjO9vhiAiIg3w7Nkz9OzZE2fPnoW+vj42btyIgQMHlmwlsbGAi0tuAMqjq5s7fog9QqTmlPH9rVaHw4iIKL/79+/D28sLd6KiYGFujn3798Pd3b3kK4qIkA9AAJCTA0RGMgSRVtKY2WFERNron3/+wUeNG+NOVBScAZxNSYF7VFTpVubmlnsI7E08lxBpMYYgIiI1de3aNXz80Ud49PIl3gcQCqCeEICfX+6hrZJycsodA6Srm3uf5xIiLcfDYUREaujvv/9G586d8eLFCzQCcAyATd6DZTmE5esLdOqU+/yaNRmASKsxBBERqZnTp0+ja9euSElJQasmTXDo8mVUfnMOS1kPYTk5MfwQgYfDiIjUytmzZ+Ht7Y2UlBR4eHjg2IkTqLxmDQ9hESkBe4KIiJSlhCclvHDhAry9vZGWlgYvLy/s378fxsbGPIRFpCTsCSIiUobAwNxz8nh65v4MDCy8bWwsLq9ahU4dO8p6gPbt25cbgPI4OQHu7gxARArEkyUSESlaSU5KGBiIayNGwEMIPAfQpmZNHAkPh6mpaXlWTKT2lPH9zZ4gIiJFK+qkhG+KjcWtESPQ4d8A1ALAoXv3YPryZTkVSqTdGIKIiBStmCclvBscjPZC4CmAxgCOADCXSvOHJSJSCoYgIiJFK8ZJCe/duwfPKVOQAKA+cs8DVDmvLc/gTFQuODuMiEgZipjR9eDBA3h6eiIuIQHvOzoiKCEB1lIpp78TlTOGICIiZSngpIRxcXHw9PRETEwM3Nzc8NfJk7DNGy/E6e9E5YohiIhUp4Tn0dF0jx8/Rvv27REVFQVXV1cEBwfDwcEh90Et2H4idcMxQUSkGiU5j04FkJiYiA4dOuDOnTtwdnZGcHAwnBh8iFSKIYiIyl9sLDBy5H/TyKXS0l8ZXQO8ePECXl5euHHjBhwcHBAcHIzq1auruiwirccQRETlr7jn0akAkpOT0alTJ1y5cgW2trYIDg5GTc7+IlILDEFEVP6KeR4dTZeUlARvb2+EhYXB2toaf/31F+rUqaPqsojoXwxBRFT+inEeHU33/PlzdOjQAefOnUPlypVx7NgxfPjhh6oui4jewNlhRKQaFfjK6E+fPoWXlxeuXr0Ka2trBAUFoVGjRqoui4jewhBERKpTwHl0NF18fDw6dOiAW7duwc7ODsePH0e9evVUXRYRFYCHw4iIFOSff/5B69atcevWLTg5OeHUqVMMQERqjCGIiEgBTp8+jdatWyM6Oho1a9bEqVOnUKtWLVWXRURFYAgiIiqj7du3o0OHDnjx4gVatWqF0NBQuLq6qrosInoHjgkiIiqN2Fhk//MPpu7ahcWrVwMAevfujS1btsDY2FjFxRFRcTAEERGVVGAgEkaMwKdC4OS/iyZPnox58+ZBN2/aPxGpPR4OI6KKITYWCAlR/qU3YmOxc8QIfPBvADIDsFtHB/PHjWMAItIwDEFEpPnK6WKsCQkJ6D94MAYIgWcAGgD4G0BfqbRCXvKDqKJjCCIizVYOF2PNyMjAjz/+CDc3N+w6eRK6AL5HbgCqA1TIS34QaQOGICLSbEq8GGtycjIWLlyI9957D9OmTUNqaiqaNWuGCzNnwl9XFwZAhbzkB5G24MBoIlKpmJgYnDlzBjdv3sSdO3cQGRmJ58+f48WLF0hLS4OOjg50dHRQqVIl2NjYoEqVKrC1tYWrqytq1KiBGhYWqCGRoLoQMMpbaRl6ZrKysnDmzBls3rwZu3btQmpqKgDA2dkZ8+bNw6BBg6Cjo5Pb21QBL/lBpE0YgoioXGVnZyM4OBg7d+7EX3/9hZiYmCLbS6VSSKVSJCcnIzk5Gffu3SuwnQSAE4AaAGq2bo0av/2GGjVq4L333oOtrS2srKxQ6flzSCIjATc3iKpVkZKSgsePH+Pu3bu4fv06QkNDERISgpSUFNl669SpgylTpmDQoEEwMDD47wUr4CU/iLSNRAghVF1EeUpOToaFhQWSkpJgbm6u6nKItEZERASWLl2KrVu3IjExUbZcV1cXTZs2RePGjVG7dm24ubnB1tYWlpaWMDU1hRACOTk5SE1NRWJiIhITE/Ho0SPcv38fUVFRsltej01RDADoA5ACyNbVRVZOToHtrKys0LdvX/j4+KB169aQSCSKeROIqNSU8f3NniAiUqrTp0/jxx9/xKFDh2TLbGxs0K9fP/Tq1Qtt2rSBqalpsdZVu3btApcLIZCYmIjIyEhZKMr79/379/Hs2TNkZWXhNYDXeU/6NwCZmpqievXq+PDDD9GwYUO0b98ejRo1yj3kRUQVGkMQESlFWFgYZs6ciWPHjgEAJBIJunbtitGjR8PLywt6eorb/UgkElSpUgVVqlRBq1at8j0ugoOR1r49ngPIQe6hM10A1ocPo1Lnzgqrg4g0C0MQESlUTEwMvvnmG+zZswcAoKenB19fX0yaNAk1SzNYOTY2dwaYm1upx+BIatWCqY4OTN+cRaarC3zwQanWR0QVA/t7iUghMjMzMXfuXNStWxd79uyBjo4OfHx8cPfuXaxcubJ0AUhRJ0F0cgJWr84NPgCntRMRAA6MVnU5RBVCcHAwvvzyS0RERAAA2rVrh6VLl+KDsvS0xMbmBp+3e2+io0sfXmJjOa2dSEMp4/ubPUFEVGqpqakYM2YM2rdvj4iICNjb22PLli0ICQkpWwAClHMSRCcnwN296ABUXtcgIyKVYwgiolI5deoUGjRogOXLlwMARo0ahTt37mDQoEGKmVLu5ga8PUNL2ZenKKdrkBGRetCoEDR79mxIJBK5m729varLItIqr169woQJE+Du7o579+6hWrVqCAoKwvLlyxV7iLm8x/GUwzXIiEi9aNzssHr16uGvv/6S3dfN20ESUeEUMMMKAM6fPw+fzz7D3X/P2jx8+HAsXrw4f/hR0OvB1xfo1Kl8xvEUdfiN44eIKiSN6gkCcqfb2tvby25VqlRRdUlE6k0Bh3gyMzMxdepUtGndGnfv3YMjgEMSCda0bJk/ACn6kFJxxvEogioOvxGRSmlcCIqIiICjoyNcXV3x6aefFnodoTyZmZmyaw7l3Yi0hgIO8Vy+fBlNmzbF/PnzIRUCQwDcAOAtRP51afIhJU6jJ9I6GhWCWrRogU2bNuHo0aNYs2YNEhIS0Lp1azx79qzQ5wQEBMDCwkJ2c3Z2LseKiVSsDDOssrKyMGfOHLRo0QI3btyAraUl9gLYBMCysHUpY0ZXefL1zZ2CHxKS+9PXV9UVEZESafR5gtLS0lCjRg1MnjwZEydOLLBNZmYmMjMzZfeTk5Ph7OzM8wSRdijluXZu3rwJHx8fXLp0CQDQt29frPjuO1Rp3LjodSnj3D5EROB5gvIxMTHBhx9+KDtBW0EMDQ1hbm4udyPSGiU8xJOZmYk5c+agcePGuHTpEiwtLbF161bs2rULVRo0ePe6eEiJiDSIRvcEZWZmokaNGhg5ciS+//77Yj2HZ4wmrVSMMyWfPHkSfn5+uHPnDgCgS5cuWLNmDRwdHUu8Lp6ZmYgUTRnf3xo1RX7SpEno3r07qlWrhidPnuCHH35AcnIyfHx8VF0akXpzcio0jDx69AjTp0/Hxo0bAQB2dnb45Zdf0L9//4JPeljEukrUhohIxTQqBMXGxmLgwIFITExElSpV0LJlS5w/fx4uLi6qLo0ol6LOj1MOUlNTsXDhQixatAjp6ekAAD8/P/z444+oXLmyaosjIioHGhWCtm/fruoSiAoXGPjf9HAdndyxMWo4uyg1NRWrVq3CokWLkJCQAABo1aoVlixZgpYtW6q4OiKi8qPRY4JKg2OCSCk0YFbU06dPsXLlSvzyyy+y00q4urpi/vz56Nevn2Ku90VEpCRaPyaISG2p6SUXcnJycPLkSaxevRq///47srKyAAA1a9bE1KlTMWTIEBgYGOQ21qBDeUREisAQRKQIeZdceLsnqKBLLig5bKSmpuLMmTPYv38/fv/9dzx58kT2WLNmzTBx4kR88skn8tfd05BDeUREisQQRKQIeefH8fPL7QEq7Pw4Cg4br1+/xp07d3D9+nVcvXoVp0+fRlhYGLKzs2VtKleujAEDBsDPzw+NGjXKv5LCLnXRqRN7hIioQuOYICJFKur8OAWMG5Lq6ODV7dtIq1wZ6enpSEtLk91SU1ORnJyMlJQU2S05ORnx8fGIi4tDbGws4uLi5AJPHhcXF3h5eaFfv37w8PD475BXQUJCci92WtByd/dSvhFERIrFMUFE6u6N8+NkZmbi7t27iIqKyr2dOoU4qRRPAdktSSoFatcu00uaA/gQwAft2qHl0KFwd3dH9erVi7+CkhzKIyKqQBiCiBRACIGbN2/i1KlTuHz5Mi5duoQbN24U2EtTGGNjY5iYmKBSpUowMTGBmaEhzHR0YFalCsxsbWFubg4zMzPY29ujqpERnEaNgrMQcAQgAYAzZ4Dffiv5IaziHsojIqpgGIKISikhIQEHDx7EX3/9hZCQELkByHkqV66MmjVrokaNGqhRowacHzxAla1bYSuVooqODqwWLYLJyJEwNjaGjs4bl/J719ihkBDg7SPZZZmN5uubOwaIl7ogIi3CMUFEJRAVFYW9e/di7969CA0NxZt/PsbGxvjoo4/QokULNG7cGE2aNIGzs3P+8++867paxTnnkAacl4iISJE4JohIBZ4/f44dO3Zg48aNuHDhgtxjzZs3h7e3N9q3b4/mzZvD0NDw3St813W1inPOIR7CIiIqM4YgogJkZWXh6NGj2LhxIw4cOIDXr18DAHR1deHh4YFevXqhZ8+ecFJG6CjuQGUewiIiKhOGIGXjWXhVpxTv/dWrV7Fx40Zs2bJFboxPgwYN4OPjg0GDBsHOzk5ZFecqSS8Pr9ZORFRqDEHKxLPwlpyiQmMJ3vuEhARs27YNGzduxNWrV2XLbW1t8dlnn8HHxwcNGjQofS2lwV4eIiKl48BoZeHA1ZJTVGgsxnv/6tUr7N+/H5s2bcKxY8eQk5MDADAwMECPHj3g4+ODTp06QV9f/791skePiEhlODBak6jpBTXVliIv3VDIe5995w5O3b2Lbdu2YefOnUhOTpY93ArAEIkEAxYsgNXXX8s/lz16REQVEnuClIU9QSWjyEs3vPHeZwL4C8AeiQQHKlfGsxcvZM1cnJzweWwshgBwy1vIqehERGpJGd/fOu9uQqWSN7g170rdnMJctLwZUW8qxaUbhBC4m56OZZ9+il4AqgDoBmC9EHj24gWsra0xfPhwnDhxAvc2bMAcvBGAgP966/IU1aNHREQajYfDlImDW4uvlOe9efHiBcLDw3Hp0iVcvnwZoaGhiImJkWvjaGeHPp98gj59+qBt27bQ0/v31z429t1T0XldLSKiCoshSNk4hbn43hEaExMTZdflyvt5//79fKvR19fHRx99BC8vL3h5eaFx48byl6TIU5zgxZMSEhFVWBwTRGopISEhX+B5+PBhgW1dXV3RpEkT2aUq2rRpAxMTk+K/2LsuY1HcNkREpDScHUaarZBp5qmpqbh48SIuXLiACxcu4O+//0ZcXFyBq3Bzc0MTS0s0DgtDEyHQSCKB5YwZZZutVZzeOvboERFVOAxBVD7emGaeKZHg3DffIEhfH3/99RcuXboE6VuDj3V0dFCnTh00btxY1sPTsGFDmCcn587WyuvAFKL0U+mJiEirMQSR8sXGIm3ECBwSArsA/CkE0hctkmvi7OyMFi1ayG6NGjWCqalp/nVdusTzLxERkUIwBGmrcjgDslQqRUhICNbOnYsDQiD9jcfsAXTw8oLX4MFo3749qlatWryVcrYWEREpCEOQJlHBdbVK48mTJ1i/fj3WrFmDqKgo2XJXAJ/8e2uiowPJunUl3w7O1iIiIgXh7DA1ERcXh4sXL+L+/fvIyMiAlZUVXFxc0KxZM1hZWZXrdbVKKyIiAosXL8aGDRuQmZkJADA3N8fgwYMx1NISTQMCIJFK/wsuZQlenK1FRKRVODusgsnKysLWrVuxbNkyhIWFFdhGIpGg0QcfYOCNGxgiBOwApVxXqyxjai5cuIAFCxZg7969yMvUTZs2xejRo9G/f///pqt/+aXiggtnaxERURlpbQh6+PAhlixZgtTUVIwfPx6tWrUq19c/ceIE/Pz8cPfuXQC5YadBgwaoVasWjI2NkZiYiMjISNy5cweXr1/HZQBTAfQFMA1Aw9IGFwWNqRFCICQkBD/88ANCQkJky7t27YrJkyejbdu2kEgk8k9icCEiInUitExSUpIAIJydnQUAAUAYGBiIoKCgcnn9nJwc8d1338le29bWVvz4448iISGhwPbx8fFi9fz5otW/7fNuXQBxdu/e0hWxdq0QurpCALk/164t9lOlUqn4888/RatWrWS16OnpiaFDh4obN26Urh4iIqJ3yPv+TkpKUtg6tTYEARAuLi7Cy8tLABAWFhYiLi5Oqa+dlpYmunfvLnv9ESNGiBcvXhTvyWvXiqs6OmIgIHTeCEOenp7ixIkTJS/m4UMhQkJyfxZDTk6O2LNnj2jUqJHstQ0NDcXYsWNFTExMyV+fiIioBBiCFODNELRjxw6RkZEhmjZtKgCIvn37Ku11U1NThYeHhyw8bNy4seQr+Te4RJw6JXx9fYWenp5sWz7++GMRFBQkpFKpYuu+c0esGD9e1KlZU/ZaJiYmYtKkSeLRo0cKfS0iIqLCKCMEae3ssMqVK+PJkyfQ19fHtWvX0KhRI0ilUpw7dw6tnJ0Veg6dzMxMdO7cGSdOnICZmRkOHz6MNm3alHm9MTExmD9/PgIDA/H69WsAQMuWLTFhwgT07NkThoaGpV73jRs3sHHSJKw9ehQv/11mYWyMcd98g6+//ho2NjZlrp+IiKi4lDK7W2FxSkPkJcm3e32GDRsmAIh2tWoJqUSSO15GR6dE42UKIpVKxZAhQwQAYW5uLkJDQ8u0voLExsaKr776ShgZGcl6a6zNzcVXw4aJ48ePi4yMjHeuIzs7W4SFhYm5c+eK+vXry40/qgGInwGRpKNT7MNnREREisSeIAXIS5ILFizAt99+K1v+4MEDuLm54fXr1zgCoFPeA2U8h05AQACmT58OXV1dHD58GF5eXmXdhEIlJCRg6fDhWP/nn3j0xvJKlSqhYcOGqFu3LqpXrw5zc3NIpVIkJycjPj4et27dwrVr1/Dy5UvZc/T19NAlOxu+ALoA0M17ICQEcHeXf+FyOPs0ERFpN2X0BGltCDqxaxfa9esn99jETz7BT7t3ozGAMAA6eQ8U9MVfDHv27EG/f19j+fLlGDVqVFlKf7d/T4SYI5XiKIAdAI4BSCjm083MzODh4YGuXbuiX6tWsGrY8N0nVVTy2aeJiIgAhiCFyHsTEwFYr10r94X99OpVvNewIVIB7ALQDyh1T9ClS5fQtm1bvHr1CuPGjcOvv/6quI0oTEgI4Okpt0gAuLVuHa4bG+P27duIi4tDSkoKdHR0YGFhASsrK9StWxf16tVD/fr1oaf3xqmjAgPzX57izYCjxLNPExERvYkhSAFkbyIA8wK+sGf16IE5f/yB2gBu6OhArxQ9G3FxcWjevDkePXqEzp07448//pAPF8qijFBS1OUpCghdsuWl6DkjIiIqjDJCkM67m1RgeWddfsM3v/0Gq8qVcQfA5gULShyA0tLS0KNHDzx69Ajvv/8+tm/fXj4BCPjv4qK6/47gUcTFRZ2ccgNNQevIO/v0m3hFdyIi0hDaHYIK+MI2NzfHtBkzAACzf/0V6enpxV5dTk4OBg8ejMuXL8PGxgYHDx6EhYVF8Z4cG5vbgxIbW+zXK5Cvb27PT0hI7k9ljs9RRugiIiIqJ9obgnR0Cv3CHjNmDJycnPDgwQP83//9X7FX+c0332Dfvn0wNDTE3r174erqWrwnBgbmHsby9Mz9GRhY7NcsUFG9N4pWnqGLiIhIgbR3TNCtWzCvW7fQdvv370evXr2gp6eHsLAwNGzYsMj1/vTTT5g4cSIAYPv27RgwYEDxCuLgYiIionfimCBFqlq1yId79uyJPn36IDs7G3369MGzZ88KbfvLL7/IAtD8+fOLH4CA3PPrvBmAgALHKhEREZFiaWQIWr58OVxdXWFkZIQmTZrg9OnTSnmd1atXw9XVFffv30fPnj3lTiYIAK9fv8bXX3+N8ePHAwAmT54sdwLGYuHgYiIiIpXQuBC0Y8cOjB8/HjNmzEB4eDjatm0Lb29vPHjwQOGvZW1tjf3798Pc3Bxnz55Fw4YNERgYiAsXLiAwMBCNGjWSnf/H398fP/74IyQSSclehIOLiYiIVELjxgS1aNECjRs3xooVK2TL6tati169eiEgIOCdzy/NMcWrV6+iZ8+eiImJyfeYtbU11q1bhx49ehR/IwpS1Pl4iIiItJwyxgSV0wlsFOP169e4dOkSpk6dKre8Y8eOOHfuXIHPyczMRGZmpux+cnJyiV+3QYMGuHHjBpYuXYq9e/fi0aNHcHJyQo8ePTBq1ChUrly5xOvMx8mJ4YeIiKgcaVQISkxMRE5ODuzs7OSW29nZISGh4CtkBQQEwN/fv8yvbWpqiqlTp+YLYERERKSZNG5MEIB8426EEIWOxZk2bRqSkpJkt4cPH5ZHiURERKTmNKonyMbGBrq6uvl6fZ48eZKvdyiPoaEhDA0Ny6M8IiIi0iAa1RNkYGCAJk2aICgoSG55UFAQWrduraKqiIiISBNpVE8QAEycOBFDhgxB06ZN0apVK6xevRoPHjzAl19+qerSiIiISINoXAgaMGAAnj17hjlz5iA+Ph4ffPABDh06BBcXF1WXRkRERBpE484TVFbKOM8AERERKRevHUZERESkIAxBZREbC4SE5P4kIiIijcIQVFqBgYCLC+DpmfszMFDVFREREVEJMASVRmwsMHIkIJXm3pdKAT8/9ggRERFpEIag0oiI+C8A5cnJyb0AKhEREWkEhqDScHMDdN5663R1c68AT0RERBqBIag0nJyA1atzgw+Q+3PVKl4FnoiISINo3MkS1YavL9CpU+4hsJo1GYCIiIg0DENQWTg5MfwQERFpKB4OIyIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVmIIIiIiIq3EEERERERaiSGIiIiItBJDEBEREWklhiAiIiLSSgxBREREpJUYgoiIiEgrMQQRERGRVtKoEFS9enVIJBK529SpU1VdFhEREWkgPVUXUFJz5szBiBEjZPdNTU1VWA0RERFpKo0LQWZmZrC3t1d1GURERKThNOpwGADMnz8f1tbWaNiwIebOnYvXr1+ruiQiIiLSQBrVE/T111+jcePGsLS0xN9//41p06bh/v37WLt2baHPyczMRGZmpux+UlISACA5OVnp9RIREZFi5H1vCyEUt1KhYrNmzRIAiryFhYUV+Nzdu3cLACIxMbFM6+eNN95444033jTjFhUVpbAMIhFCkZGq5BITE5GYmFhkm+rVq8PIyCjf8ri4ODg5OeH8+fNo0aJFgc99uyfo5cuXcHFxwYMHD2BhYVG24jVIcnIynJ2d8fDhQ5ibm6u6nHLD7eZ2awNuN7dbGyQlJaFatWp48eIFKleurJB1qvxwmI2NDWxsbEr13PDwcACAg4NDoW0MDQ1haGiYb7mFhYVW/fLkMTc353ZrEW63duF2axdt3W4dHcUNZ1Z5CCqu0NBQnD9/Hh4eHrCwsEBYWBgmTJiAHj16oFq1aqouj4iIiDSMxoQgQ0ND7NixA/7+/sjMzISLiwtGjBiByZMnq7o0IiIi0kAaE4IaN26M8+fPl3k9hoaGmDVrVoGHyCoybje3Wxtwu7nd2oDbrbjtVvnAaCIiIiJV0LiTJRIREREpAkMQERERaSWGICIiItJKDEFERESklSpkCFq+fDlcXV1hZGSEJk2a4PTp00W2P3nyJJo0aQIjIyO89957WLlyZTlVqlgl2e7ff/8dXl5eqFKlCszNzdGqVSscPXq0HKtVnJJ+3nnOnj0LPT09NGzYULkFKklJtzszMxMzZsyAi4sLDA0NUaNGDaxbt66cqlWckm73li1b0KBBA1SqVAkODg744osv8OzZs3KqtuxOnTqF7t27w9HRERKJBPv27XvncyrCPq2k211R9mml+bzzaPI+rTTbrYh9WoULQTt27MD48eMxY8YMhIeHo23btvD29saDBw8KbH///n106dIFbdu2RXh4OKZPn46vvvoKe/bsKefKy6ak233q1Cl4eXnh0KFDuHTpEjw8PNC9e3fZWbg1RUm3O09SUhI+//xztG/fvpwqVazSbHf//v1x/PhxBAYG4s6dO9i2bRvq1KlTjlWXXUm3+8yZM/j888/h6+uLmzdvYteuXQgLC8Pw4cPLufLSS0tLQ4MGDbB06dJita8o+7SSbndF2aeVdLvzaPo+rTTbrZB9msKuQqYmmjdvLr788ku5ZXXq1BFTp04tsP3kyZNFnTp15Jb5+fmJli1bKq1GZSjpdhfk/fffF/7+/oouTalKu90DBgwQM2fOFLNmzRINGjRQYoXKUdLtPnz4sLCwsBDPnj0rj/KUpqTbvXDhQvHee+/JLfv111+Fk5OT0mpUJgBi7969RbapKPu0NxVnuwuiifu0N5VkuzV9n/am4my3ovZpFaon6PXr17h06RI6duwot7xjx444d+5cgc8JDQ3N175Tp064ePEisrKylFarIpVmu98mlUqRkpICKysrZZSoFKXd7vXr1yMqKgqzZs1SdolKUZrtPnDgAJo2bYoFCxagatWqqFWrFiZNmoRXr16VR8kKUZrtbt26NWJjY3Ho0CEIIfD48WPs3r0bXbt2LY+SVaIi7NMUQRP3aaWl6fu00lDUPk1jzhhdHImJicjJyYGdnZ3ccjs7OyQkJBT4nISEhALbZ2dnIzExsciLs6qL0mz32xYvXoy0tDT0799fGSUqRWm2OyIiAlOnTsXp06ehp6eZv/6l2e579+7hzJkzMDIywt69e5GYmIjRo0fj+fPnGjMuqDTb3bp1a2zZsgUDBgxARkYGsrOz0aNHD/zvf/8rj5JVoiLs0xRBE/dppVER9mmloah9WoXqCcojkUjk7gsh8i17V/uClqu7km53nm3btmH27NnYsWMHbG1tlVWe0hR3u3NycjBo0CD4+/ujVq1a5VWe0pTk85ZKpZBIJNiyZQuaN2+OLl26YMmSJdiwYYNG9QYBJdvuW7du4auvvsL333+PS5cu4ciRI7h//z6+/PLL8ihVZSrKPq20NH2fVlwVbZ9WEorap1Wo2GhjYwNdXd18/yt88uRJvv8Z5bG3ty+wvZ6eHqytrZVWqyKVZrvz7NixA76+vti1axc6dOigzDIVrqTbnZKSgosXLyI8PBxjx44FkPuHJISAnp4ejh07Bk9Pz3KpvSxK83k7ODigatWqsLCwkC2rW7cuhBCIjY2Fm5ubUmtWhNJsd0BAANq0aYNvv/0WAFC/fn2YmJigbdu2+OGHHypkr0hF2KeVhSbv00qqouzTSkNR+7QK1RNkYGCAJk2aICgoSG55UFAQWrduXeBzWrVqla/9sWPH0LRpU+jr6yutVkUqzXYDuf9bGjp0KLZu3aqRYyRKut3m5ua4fv06rly5Irt9+eWXqF27Nq5cuYIWLVqUV+llUprPu02bNnj06BFSU1Nly+7evQsdHR04OTkptV5FKc12p6enQ0dHfjenq6sL4L/ekYqmIuzTSkvT92klVVH2aaWhsH1amYZVq6Ht27cLfX19ERgYKG7duiXGjx8vTExMRHR0tBBCiKlTp4ohQ4bI2t+7d09UqlRJTJgwQdy6dUsEBgYKfX19sXv3blVtQqmUdLu3bt0q9PT0xLJly0R8fLzs9vLlS1VtQqmUdLvfpqkzKUq63SkpKcLJyUn069dP3Lx5U5w8eVK4ubmJ4cOHq2oTSqWk271+/Xqhp6cnli9fLqKiosSZM2dE06ZNRfPmzVW1CSWWkpIiwsPDRXh4uAAglixZIsLDw0VMTIwQouLu00q63RVln1bS7X6bpu7TSrrditqnVbgQJIQQy5YtEy4uLsLAwEA0btxYnDx5UvaYj4+PaNeunVz7EydOiEaNGgkDAwNRvXp1sWLFinKuWDFKst3t2rUTAPLdfHx8yr/wMirp5/0mTd1hCFHy7b59+7bo0KGDMDY2Fk5OTmLixIkiPT29nKsuu5Ju96+//iref/99YWxsLBwcHMRnn30mYmNjy7nq0gsJCSnyb7Wi7tNKut0VZZ9Wms/7TZq6TyvNditinyYRooL2CRMREREVoUKNCSIiIiIqLoYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURUIcyZMwcffvghTExMYGdnh1GjRiErK0vVZRGRGtNTdQFERGUlhEBOTg5WrVqFqlWr4tatW/j8889Rv359jBo1StXlEZGa4gVUiahCGjRoEKpUqYJffvlF1aUQkZri4TAi0ngxMTEYO3YsPvjgA1haWsLU1BQ7d+6Ek5OTqksjIjXGEEREGi0xMRHNmzdHYmIilixZgjNnziA0NBS6urpo2LChqssjIjXGMUFEpNEOHTqE7OxsbNu2DRKJBACwbNkyvH79miGIiIrEEEREGs3KygrJyck4cOAA3n//ffzxxx8ICAhA1apVUaVKFVWXR0RqjAOjiUijCSEwatQobN26FcbGxhg8eDAyMjIQExODgwcPqro8IlJjDEFERESklTgwmoiIiLQSQxARERFpJYYgIiIi0koMQURERKSVGIKIiIhIKzEEERERkVZiCCIiIiKtxBBEREREWokhiIiIiLQSQxARERFpJYYgIiIi0koMQURERKSV/h/kKiyV/AVzaAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdLUlEQVR4nO3de3zO9f/H8ce1o+PGHLYxRgypnHNMDjkfc46EkFMpfPvmWA4VX0rf6kdESyVKCaGQHBO+IZJD5TSsDHPYCZtt798fa1dmM9tc27Vr1/N+u123dX2u9/W5Xp/ratee3ofPx2KMMYiIiIg4GRd7FyAiIiJiDwpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBYldNmzaladOm9i4jywYMGEChQoUy1LZcuXIMGDAgW+uxWCxMmTIlW1/jbq5du8aUKVPYunWrXetwFJs2baJOnToULFgQi8XCqlWr+Oijj7BYLISEhFjbLV26lLfffjtbapg0aRJly5bFzc2NIkWKZPr5AwYMoFy5cjavKzc5d+4ckyZNokGDBhQvXhwvLy9q167NggULSEhISNF2wIABWCyWO952795tp6OQ27nZuwBxbu+99569S8gxK1euxMvLy95lZLtr164xdepUAIcOuDnBGEPPnj2pVKkSq1evpmDBglSuXJn4+Hh27dqFv7+/te3SpUs5dOgQo0aNsmkNX3/9Na+//joTJ06kbdu2eHp62nT/ecW+ffv45JNP6NevHy+//DLu7u6sW7eO4cOHs3v3bj788ENr25dffplhw4al2kfHjh3x9PTk4YcfzsnSJR0KQWJXVatWtXcJOaZmzZr2LkFs6Pr16+TLlw+LxZLlffz1119cvnyZLl268Nhjj6V4rESJEvdaYoYcOnQIgOeff56SJUvmyGvaii0+g4xq1KgRJ06cwN3d3bqtZcuWxMXFMXfuXKZOnUqZMmUAqFChAhUqVEjx/G3bthEeHs6kSZNwdXXN9nolYzQcJhk2ZcoULBYLhw8fpnfv3nh7e+Pr68vAgQOJiIhI0fbGjRuMHz+e8uXL4+HhQenSpXn22We5evVqinZpDYfNmzeP6tWrU6hQIQoXLkyVKlWYMGECACEhIbi5uTFjxoxU9W3fvh2LxcKXX36Z7nFcvXqVf/3rX9x33314enpSsmRJ2rVrx2+//QbA1q1bsVgsqYZzQkJCsFgsfPTRR6n2efjwYR577DEKFixIiRIleO6557h27VqKNmkNh92tFlsICwtj6NChBAQE4OHhQfny5Zk6dSrx8fEp2k2dOpV69erh4+ODl5cXtWrVIjg4mNuvsbx582aaNm1KsWLFyJ8/P2XLlqVbt25cu3aNkJAQ6x/vqVOnWrv/7zYMeO3aNV588UXKly9Pvnz58PHxoU6dOnz22Wcp2n300UdUrlwZT09P7r//fj755JNUQzGZ+fz27t3LE088Qbly5cifPz/lypWjd+/enD59OtXrWiwWvvvuOwYOHEiJEiUoUKAAsbGxACxbtowGDRpQsGBBChUqROvWrdm/f3+6xzxlyhQCAgIAGDt2LBaLxXoctw+HNW3alG+++YbTp0+nGFZJT2JiIrNmzaJKlSrW/7f69etHaGiotU25cuWYNGkSAL6+vhkaTk3rM0hLXFwcr732mvX1S5QowdNPP83FixdTtIuNjeVf//oXfn5+FChQgEcffZR9+/al+n2x1Wewd+9eOnXqhI+PD/ny5aNmzZp88cUX6R4zQNGiRVMEoGR169YFSPG+piU4OBiLxcLAgQPv+lqSc9QTJJnWrVs3evXqxaBBg/j1118ZP348gLU72BjD448/zqZNmxg/fjyNGzfm4MGDTJ48mV27drFr1647drl//vnnjBgxgpEjR/Lmm2/i4uLC8ePHOXLkCJD0pd2pUyfmz5/PSy+9lOJfVHPmzKFUqVJ06dLljrVHRUXxyCOPEBISwtixY6lXrx7R0dFs376dc+fOUaVKlUy/Hzdv3qRdu3YMHTqUcePGsXPnTl577TVOnz7NmjVr7rmWAQMG8PHHH3Pq1KlMz7sICwujbt26uLi48Morr1ChQgV27drFa6+9RkhICIsWLbK2DQkJYejQoZQtWxaA3bt3M3LkSP78809eeeUVa5v27dvTuHFjPvzwQ4oUKcKff/7J+vXriYuLw9/fn/Xr19OmTRsGDRrE4MGDgbv3aowZM4bFixfz2muvUbNmTWJiYjh06BCXLl2ytvnoo494+umn6dy5M7NnzyYiIoIpU6YQGxuLi0vW/j0XEhJC5cqVeeKJJ/Dx8eHcuXPMmzePhx9+mCNHjlC8ePEU7QcOHEj79u1ZvHgxMTExuLu7M336dCZNmsTTTz/NpEmTiIuL44033qBx48b89NNPd+ztHDx4MNWrV6dr166MHDmSPn363PH34r333mPIkCGcOHGClStXZujYhg8fzoIFC3juuefo0KEDISEhvPzyy2zdupWff/6Z4sWLs3LlSubOnUtwcDDr16/H29vbGszSktHPIDExkc6dO/PDDz/w0ksv0bBhQ06fPs3kyZNp2rQpe/fuJX/+/AA8/fTTLFu2jJdeeonmzZtz5MgRunTpQmRkZJo13MtnsGXLFtq0aUO9evWYP38+3t7efP755/Tq1Ytr165lac7e5s2bcXNzo1KlSndsExERwfLly3nssccoX758pl9DspERyaDJkycbwMyaNSvF9hEjRph8+fKZxMREY4wx69evT7PdsmXLDGAWLFhg3dakSRPTpEkT6/3nnnvOFClSJN06tmzZYgCzcuVK67Y///zTuLm5malTp6b73GnTphnAbNy48a7737JlS4rtp06dMoBZtGiRdVv//v0NYN55550UbV9//XUDmB07dli3BQYGmv79+2eqFmOMGThwoHF1dTUhISHptjPGGMBMnjzZen/o0KGmUKFC5vTp0ynavfnmmwYwhw8fTnM/CQkJ5ubNm2batGmmWLFi1s92+fLlBjAHDhy4Yw0XL15MVcfdPPjgg+bxxx+/4+MJCQmmVKlSplatWtZajDEmJCTEuLu7m8DAQOu2zHx+t4uPjzfR0dGmYMGCKT7TRYsWGcD069cvRfszZ84YNzc3M3LkyBTbo6KijJ+fn+nZs2c6R/1PTW+88UaK7cmvd+rUKeu29u3bpzjO9Bw9etQAZsSIESm2/+9//zOAmTBhgnVb8u/1xYsX091nZj6Dzz77zADmq6++SrGPPXv2GMC89957xhhjDh8+bAAzduzYFO2Sn3/r74stPoMqVaqYmjVrmps3b6Zo26FDB+Pv728SEhLSfQ9ut2HDBuPi4mJGjx6dbrt58+YZwHz22WeZ2r9kPw2HSaZ16tQpxf1q1apx48YNLly4ACT9ywhI9a+qHj16ULBgQTZt2nTHfdetW5erV6/Su3dvvv76a8LDw1O1adq0KdWrV2fu3LnWbfPnz8disTBkyJB0a1+3bh2VKlWiRYsW6bbLrCeffDLF/T59+gBJ//K811qCg4OJj48nMDAw03WtXbuWZs2aUapUKeLj4623tm3bAknzFJJt3ryZFi1a4O3tjaurK+7u7rzyyitcunTJ+tnWqFEDDw8PhgwZwscff8zJkyczVc+tNcTHx1uH2urWrcu6desYN24cW7du5fr16yme9/vvv/PXX3/Rp0+fFMNAgYGBNGzYMNPvS7Lo6GjGjh1LxYoVcXNzw83NjUKFChETE8PRo0dTte/WrVuK+xs2bCA+Pp5+/fqlOK58+fLRpEkTu62QS/7/7vbfwbp163L//fen+zt4J5n5DNauXUuRIkXo2LFjivelRo0a+Pn5Wd+X5P//evbsmeL53bt3x80t7YGKrH4Gx48f57fffrP+rt7atl27dpw7d47ff/89w+/Hzz//TM+ePalfv36aw/O3Cg4OplixYun2Uot9KARJphUrVizF/eQu/OQ/XJcuXcLNzS3VEIjFYsHPzy/FEMftnnrqKT788ENOnz5Nt27dKFmyJPXq1WPjxo0p2j3//PNs2rSJ33//nZs3b7Jw4UK6d++On59furVfvHgx3e7+rHBzc0v1niTXkd6xZkcttzt//jxr1qzB3d09xe2BBx4AsIbMn376iVatWgGwcOFCfvzxR/bs2cPEiROBfz7bChUq8P3331OyZEmeffZZ6wTQd9555661hISEpKoj+Y/gu+++y9ixY1m1ahXNmjXDx8eHxx9/nGPHjgH/vI9pfb53+8zT06dPH+bMmcPgwYPZsGEDP/30E3v27KFEiRKpghiQYrUWJL2/AA8//HCqY1u2bFmaIT4nJL9ft9cLUKpUqXT/v7zbPjPyGZw/f56rV6/i4eGR6n0JCwuzvi/J+/T19U3x/LR+p5Jl9TNIbvfiiy+majdixAiADH9e+/fvp2XLlgQFBfHtt9+mu6Lu4MGD7N27l759+2rlXS6kOUFic8WKFSM+Pp6LFy+mCELGGMLCwu66PPTpp5/m6aefJiYmhu3btzN58mQ6dOjAH3/8Ye0N6dOnD2PHjmXu3LnUr1+fsLAwnn322bvWVqJEibtOYMyXLx+AdcJlsjt9QcbHx3Pp0qUUX9phYWFA6sCY2VruVfHixalWrRqvv/56mo+XKlUKSJqL5e7uztq1a63HD7Bq1apUz2ncuDGNGzcmISGBvXv38n//93+MGjUKX19fnnjiiTvWUqpUKfbs2ZNiW+XKlQEoWLAgU6dOZerUqZw/f97aK9SxY0d+++036/uY/L7e6vZtGf38IiIiWLt2LZMnT2bcuHHW7bGxsVy+fDnNY7h9MnLynKHly5dnqacuuyS/X+fOnUsVtP/6669Uc50ys8+MfAbFixenWLFirF+/Ps19FS5cOMU+z58/T+nSpa2PJ/9OpSWrn0Fyu/Hjx9O1a9c02yT//5ie/fv306JFCwIDA/nuu+/w9vZOt31wcDCAdX6c5C7qCRKbS17q++mnn6bY/tVXXxETE5NqKfCdFCxYkLZt2zJx4kTi4uI4fPiw9bF8+fJZh2TeeustatSoQaNGje66z7Zt2/LHH39Yh+zSkjz5+ODBgym2r169+o7PWbJkSYr7S5cuBdI/T05GarlXHTp04NChQ1SoUIE6deqkuiWHIIvFgpubW4qJ5tevX2fx4sV33Lerqyv16tWzDkv+/PPPQOqewWQeHh6pXj/5j+GtfH19GTBgAL179+b333/n2rVrVK5cGX9/fz777LMUq9VOnz7Nzp07Uzw/o5+fxWLBGJPqX+cffPBBqpPf3Unr1q1xc3PjxIkTab6/derUydB+MsLT0zPN3qm0NG/eHEj9O7hnzx6OHj2a4d/BW2XmM+jQoQOXLl0iISEhzfckOWw8+uijQNLKrlstX7481erFO8noZ1C5cmWCgoL45Zdf7tgurf8fb3XgwAFatGhBQEAAGzdupGjRoum2j42N5dNPP6Vu3bo8+OCDGToeyVnqCRKba9myJa1bt2bs2LFERkbSqFEj6+qwmjVr8tRTT93xuc888wz58+enUaNG+Pv7ExYWxowZM/D29k7VgzRixAhmzZrFvn37+OCDDzJU26hRo1i2bBmdO3dm3Lhx1K1bl+vXr7Nt2zY6dOhAs2bN8PPzo0WLFsyYMYOiRYsSGBjIpk2bWLFiRZr79PDwYPbs2URHR/Pwww9bV4e1bduWRx555J5qARg0aBAff/wxJ06cyHRvw7Rp09i4cSMNGzbk+eefp3Llyty4cYOQkBC+/fZb5s+fT0BAAO3bt+ett96iT58+DBkyhEuXLvHmm2+mCgjz589n8+bNtG/fnrJly3Ljxg3rqsDkuU2FCxcmMDCQr7/+msceewwfHx+KFy+e7sq2evXq0aFDB6pVq0bRokU5evQoixcvpkGDBhQoUACAV199lcGDB9OlSxeeeeYZrl69ypQpU1INxWT08/Py8uLRRx/ljTfesNa3bds2goODM3zW5HLlyjFt2jQmTpzIyZMnadOmDUWLFuX8+fP89NNP1h4uW3jooYdYsWIF8+bNo3bt2ri4uNwxZFWuXJkhQ4bwf//3f7i4uNC2bVvr6rAyZcowevToTL++i4tLhj+DJ554giVLltCuXTteeOEF6tati7u7O6GhoWzZsoXOnTvTpUsXHnjgAXr37s3s2bNxdXWlefPmHD58mNmzZ+Pt7Z2hVX+Z+Qzef/992rZtS+vWrRkwYAClS5fm8uXLHD16lJ9//jnd02v8/vvv1v/HX3/9dY4dO2YdroWkoeLbpwCsWrWKy5cvqxcoN7PrtGxxKHdaRZLWSpbr16+bsWPHmsDAQOPu7m78/f3N8OHDzZUrV1I89/bVYR9//LFp1qyZ8fX1NR4eHqZUqVKmZ8+e5uDBg2nW1LRpU+Pj42OuXbuW4eO4cuWKeeGFF0zZsmWNu7u7KVmypGnfvr357bffrG3OnTtnunfvbnx8fIy3t7fp27ev2bt3b5qrwwoWLGgOHjxomjZtavLnz298fHzM8OHDTXR0dIrXvX11WEZrSV6Bduv7eyeksSrr4sWL5vnnnzfly5c37u7uxsfHx9SuXdtMnDgxRY0ffvihqVy5svH09DT33XefmTFjhgkODk7x2rt27TJdunQxgYGBxtPT0xQrVsw0adLErF69OsVrfv/996ZmzZrG09Mz1SqftIwbN87UqVPHFC1a1Pr6o0ePNuHh4SnaffDBByYoKMh4eHiYSpUqmQ8//ND0798/1aqpjH5+oaGhplu3bqZo0aKmcOHCpk2bNubQoUOpPqvk/8f37NmTZv2rVq0yzZo1M15eXsbT09MEBgaa7t27m++//z7d487M6rDLly+b7t27myJFihiLxWLu9vWdkJBgZs6caSpVqmTc3d1N8eLFTd++fc3Zs2dTtMvo6rBkGf0Mbt68ad58801TvXp1ky9fPlOoUCFTpUoVM3ToUHPs2DFruxs3bpgxY8aYkiVLmnz58pn69eubXbt2GW9v7xSrrmz1Gfzyyy+mZ8+epmTJksbd3d34+fmZ5s2bm/nz56d73Mmvf6dbWqsOW7ZsaQoWLGgiIyPv8q6KvViMue1MaCIO4sKFCwQGBjJy5EhmzZpl73LETgYMGMDWrVtTXGdLHNvOnTtp1KgRS5Yssa60FMkOGg4ThxMaGsrJkyd54403cHFx4YUXXrB3SSKSRRs3bmTXrl3Url2b/Pnz88svv/Cf//yHoKCgO05gFrEVhSBxOB988AHTpk2jXLlyLFmyJMWqEhFxLF5eXnz33Xe8/fbbREVFUbx4cdq2bcuMGTNSrFQUyQ4aDhMRERGnlGuWyM+bN49q1arh5eWFl5cXDRo0YN26ddbHjTFMmTKFUqVKkT9/fpo2bZpiybSIiIhIZuSaEBQQEMB//vMf9u7dy969e2nevDmdO3e2Bp1Zs2bx1ltvMWfOHPbs2YOfnx8tW7YkKirKzpWLiIiII8rVw2E+Pj688cYbDBw4kFKlSjFq1CjGjh0LJJ2EytfXl5kzZzJ06FA7VyoiIiKOJldOjE5ISODLL78kJiaGBg0acOrUKcLCwqzXNoKks6c2adKEnTt3phuCYmNjU5w+PzExkcuXL1OsWLFUp18XERGR3MkYQ1RUFKVKlcrQiTQzIleFoF9//ZUGDRpw48YNChUqxMqVK6latar1lOy3X2TP19eX06dPp7vPGTNm2OyMrSIiImJfZ8+etdnFp3NVCKpcuTIHDhzg6tWrfPXVV/Tv3996lWlIfeE8Y8xde3PGjx/PmDFjrPcjIiIoW7YsZ8+excvLy7YHICIiItkiMjKSMmXK3PUab5mRq0KQh4cHFStWBKBOnTrs2bOHd955xzoPKCwsDH9/f2v7CxcupOodup2np2eq6x8B1lVoIiIi4jhsOZUl16wOS4sxhtjYWMqXL4+fnx8bN260PhYXF8e2bdto2LChHSsUERERR5VreoImTJhA27ZtKVOmDFFRUXz++eds3bqV9evXY7FYGDVqFNOnTycoKIigoCCmT59OgQIFdF0ZERERyZJcE4LOnz/PU089xblz5/D29qZatWqsX7+eli1bAvDSSy9x/fp1RowYwZUrV6hXrx7fffedTccGRURExHnk6vMEZYfIyEi8vb2JiIjQnCAREREHkR1/v3P1nCARERGR7KIQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk4p14SgGTNm8PDDD1O4cGFKlizJ448/zu+//56izYABA7BYLClu9evXt1PFIiIiedPly5cZNmwY9erVY/Lkydy8edPeJWULN3sXkGzbtm08++yzPPzww8THxzNx4kRatWrFkSNHKFiwoLVdmzZtWLRokfW+h4eHPcoVERHJk8LDw2nSpAlHjhwB4KeffuLcuXMsWLDAzpXZXq7pCVq/fj0DBgzggQceoHr16ixatIgzZ86wb9++FO08PT3x8/Oz3nx8fOxUsYiISN5ijGHQoEEcOXKE0qVL8/rrr2OxWFi4cCH79++3d3k2l2tC0O0iIiIAUoWcrVu3UrJkSSpVqsQzzzzDhQsX0t1PbGwskZGRKW4iIiKS2vLly1m9ejUeHh588803TJgwgd69ewMwZ84cO1dnexZjjLF3EbczxtC5c2euXLnCDz/8YN2+bNkyChUqRGBgIKdOneLll18mPj6effv24enpmea+pkyZwtSpU1Ntj4iIwMvLK9uOQURExJHExcVRtWpVTpw4weTJk5kyZQoAP/zwA48++iheXl6Eh4fj7u5ul/oiIyPx9va26d/vXBmCnn32Wb755ht27NhBQEDAHdudO3eOwMBAPv/8c7p27Zpmm9jYWGJjY633IyMjKVOmjEKQiIjILT755BP69++Pr68vx48fp1ChQgAkJibi5+fHxYsX2bZtG48++qhd6suOEJTrhsNGjhzJ6tWr2bJlS7oBCMDf35/AwECOHTt2xzaenp54eXmluImIiMg/zNmzvPn3qMmoUaOsAQjAxcWFFi1aAEmLmPKSXBOCjDE899xzrFixgs2bN1O+fPm7PufSpUucPXsWf3//HKhQREQkDwoO5vvAQH49eZKCwNACBVI1efjhhwFSLVZydLkmBD377LN8+umnLF26lMKFCxMWFkZYWBjXr18HIDo6mhdffJFdu3YREhLC1q1b6dixI8WLF6dLly52rl5ERMQBhYbCkCHM+XtmzCCg6JgxSdtvUbt2bUAhKNvMmzePiIgImjZtir+/v/W2bNkyAFxdXfn111/p3LkzlSpVon///lSqVIldu3ZRuHBhO1cvIiLigI4dIywxkW/+vjsMICEBjh9P0axmzZpYLBZCQ0PvuirbkeSakyXebX52/vz52bBhQw5VIyIi4gSCglhssZBgDA2A+wFcXaFixRTNChcuTKVKlfj999/Zt28fbdu2tUe1NpdreoJEREQkZ5nSpQn29QVgICQFoPffhzQWJlWrVg2Ao2vWpBouc1QKQSIiIk5q165d/B4WRoH8+en1zTcQEgKDBqXZttK1awD8MW8eBAZCcHAOVpo9FIJERESc1JIlSwDo3qMHhdu1S7MHCIDQUIK+/RaAYwCJiTB0qMP3CCkEiYiIOKGEhAS++uorAOulMe7o2DEq/T13949/dpBqArWjyTUTo0VERCTn/PDDD5w/f56iRYvy2GOPpd84KIjqFgu7jCEoeVsaE6gdjXqCREREnNAXX3wBQJcuXe5+PbCAAAosXEh9V1eKQboTqB2JeoJERESczK1DYT179szYkwYNgtatk4bAKlZ0+AAECkEiIiJOZ/v27Vy4cAEfHx+aN2+e8ScGBOSJ8JNMw2EiIiJOJlNDYXmYQpCIiIgTiY+Pz/xQWB6lECQiIuJEtm/fzsWLFylWrBjNmjWzdzl2pRAkIiLiRJKHwrp27erUQ2GgECQiIuI0bh0K69Gjh52rsT+FIBERESexbds2wsPDNRT2N4UgERERJ5E8FNatWzfc3HSWHIUgERERJxAfH8+KFSsArQpLphAkIiLiBLZs2UJ4eDjFixenSZMm9i4nV1AIEhERcQLJQ2Hdu3fXUNjfFIJERETyuJs3b2ooLA0KQSIiInncpk2buHz5Mr6+vjz66KP2LifXUAgSERHJ424dCnN1dbVzNbmHQpCIiEgeFnfyJCu//BLQUNjtFIJERETyquBgNlasyNXoaPyBRr//bu+KchWFIBERkbwoNBSGDOELYwDoDrgOH560XQCFIBERkbzp2DGuJSay8u+7PQESEuD4cTsWlbsoBImIiORFQUF8bbEQBZQHGgK4ukLFivatKxdRCBIREcmLAgL45IEHAHgKcHF1hfffh4AA+9aVi+iUkSIiInnQuXPn+O7IEQCe+vRTaNJEAeg2CkEiIiJ50JIlS0hMTKRRo0ZUfPJJe5eTK2k4TEREJI8xxvDhhx8C0K9fPztXk3spBImIiOQxW7du5ejRoxQqVIgnnnjC3uXkWgpBIiIieczcuXMBeOqpp/Dy8rJzNbmXQpCIiEge8ueff7Jq1SoARowYYd9icjmFIBERkTzk/fffJyEhgUcffZQHH3zQ3uXkagpBIiIieURUVBRz5swB4LnnnrNzNbmfQpCIiEgeMW/ePK5cuULlypXp2rWrvcvJ9RSCRERE8oDo6GjeeustAMaNG4erq6udK8r9FIJERETygFmzZnH+/Hnuu+8+ntTJETNEIUhERMTBhYaG8uabbwIwc+ZM3N3d7VyRY1AIEhERcWDGGEaMGMH169dp1KgR3bp1s3dJDkMhSERExIF98sknrFmzBg8PD+bPn4/FYrF3SQ4j14SgGTNm8PDDD1O4cGFKlizJ448/zu+//56ijTGGKVOmUKpUKfLnz0/Tpk05fPiwnSoWERGxr3379jF8+HAApk6dqvMCZVKuCUHbtm3j2WefZffu3WzcuJH4+HhatWpFTEyMtc2sWbN46623mDNnDnv27MHPz4+WLVsSFRVlx8pFREQyKDQUtmxJ+nmPfvvtNzp27Mj169dp06YNL774og0KdC4WY4yxdxFpuXjxIiVLlmTbtm08+uijGGMoVaoUo0aNYuzYsQDExsbi6+vLzJkzGTp0aIb2GxkZibe3NxEREbqeioiI5JzgYBgyBBITwcUFFiyAQYPSbhsaCseOQVAQBASkenjTpk306tGDS1eu8EClSvz40094e3tn8wHYV3b8/c41PUG3i4iIAMDHxweAU6dOERYWRqtWraxtPD09adKkCTt37rRLjSIiIhkSGvpPAIKkn0OHpt0jFBwMgYHQvHnSz+Dgv5+SyE8//cSTTz5JixYtuHTlCg8DW44dw3v58pw7ljzEzd4FpMUYw5gxY3jkkUes45thYWEA+Pr6pmjr6+vL6dOn77iv2NhYYmNjrfcjIyOzoWIREZF0HDv2TwD629mEBFa/8QY7LlzgxIkThIWFYeLjsZw7Rz6gAFAgMZH8gwcTM3cuf4SEcOXKFevzhwOzgELGJAWq1q3T7DWSO8uVIei5557j4MGD7NixI9Vjt896N8akOxN+xowZTJ061eY1ioiIZFhQUNIQWGIih4BJwBog8d13M/b8/fsBKFCgAF0aNmTU999T59bHExLg+HGFoEzKdSFo5MiRrF69mu3btxNwy4fp5+cHJPUI+fv7W7dfuHAhVe/QrcaPH8+YMWOs9yMjIylTpkw2VC4iInIHAQHcfO89Jg0fzpvGkNwn1LhxY1q3bk3VqlUpXbo0LhcvktixI7HGcB24BlyzWCi4cCFlatbkoYcewv38+aRhslt7llxdoWJFOxyYY8s1IcgYw8iRI1m5ciVbt26lfPnyKR4vX748fn5+bNy4kZo1awIQFxfHtm3bmDlz5h336+npiaenZ7bWLiIikp7w8HA6ffwxu/5ei9S1bVtemz2b+++/P3XjhQuThrcSEpLCzfvvp5xAHRCQNKn69jbqBcq0XBOCnn32WZYuXcrXX39N4cKFrXOAvL29yZ8/PxaLhVGjRjF9+nSCgoIICgpi+vTpFChQgD59+ti5ehERkbSFhobSsmVLfvvtN4oUKcKHH35Ily5d7vyEQYOS5vccP57Uu5NWuMlIG7mrXLNE/k7zehYtWsSAAQOApN6iqVOn8v7773PlyhXq1avH3LlzM3VyKC2RFxGRnBIWFkbDhg05deoUZcqU4bvvvqNKlSr2LsshZcff71wTgnKKQpCIiOSE6OhomjRpws8//0yFChXYvHkzZcuWtXdZDsupzhMkIiLiqIwx9O3bl59//pnixYuzfv16BaBcSCFIRETExv773//y9ddf4+npyZo1a6iolVu5kkKQiIiIDf3000/Wyzv997//pX79+nauSO5EIUhERMRGIiMjeeKJJ4iPj6d79+4MGzbM3iVJOhSCREREbGTs2LGcOnWKcuXKsXDhwnSvaCD2pxAkIiJiA1u3bmX+/PkAfPjhhxQpUsS+BcldKQSJiIjco2vXrjH473PaDe3bl2bNmtm3IMkQhSAREZF7NLVbN06cPk0AMGvJEggOtndJkgEKQSIiIvfgt61b+e/69QDMBbyMSbquV2iofQuTu1IIEhERySJjDM+/+CI3gfZAp+QHEhKSrusluZpCkIiISBatWrWKjfv24QG8fesDrq5JFzaVXE0hSEREJAuuXbvG6NGjAfh3+/ZUdHVNesDVFd5/X1d2dwBu9i5ARETEEf3nP//h9OnTlC1blglffAGXLycNgVWsqADkIBSCREREMunEiRPMmjULgLfeeosCBQpAgQIKPw5Gw2EiIiKZNHr0aGJjY2nZsiVdu3a1dzmSRQpBIiIimbBu3TrWrFmDm5sb77zzji6N4cAUgkRERDIoNjaWF154AYAXXniB+++/384Vyb1QCBIREcmgt99+m2PHjuHn58crr7xi73LkHikEiYiIZMBff/3Fq6++CsDMmTPx8vKyc0VyrxSCREREMuCll14iJiaGBg0a0LdvX3uXIzagECQiInIXO3bsYMmSJVgsFv7v//4PFxf9+cwL9CmKiIik4+bNmzz33HMADB48mNq1a9u5IrEVhSAREZF0vP322/zyyy/4+Pjw+uuv27scsSGFIBERkTs4efIkkydPBmD27NmUKFHCzhWJLSkEiYiIpMEYw/Dhw7l+/TrNmjWjf//+9i5JbEwhSEREJA1Llizhu+++w9PTk/nz5+vM0HmQQpCIiMht/vzzT0aOHAnApEmTqFSpkp0rkuygECQiInKLxMREnn76aa5evUqdOnUY++STsGULhIbauzSxMYUgERHJe0JDsxxc5s6dy8aNG8mfPz+fPv447hUrQvPmEBgIwcHZUKzYi0KQiIjkLcHBSYElC8Hl559/5t///jcAb0yYQOVXXoHExKQHExNh6FD1COUhCkEiIpJ3hIbCkCEZDy639BhdunSJbt26ERsbS/v27RnRsOE/+0mWkADHj2fvMUiOcbN3ASIiIjZz7Nidg0tAQMrtwcHWwJRgsdD3gQcICQnhvvvuY/HixVhiYsDFJeX+XF2hYsXsPw7JEeoJEhGRvCMoKCm43Cqt4HJLj5EBxhjD+kOHyJ8vHytWrKBo0aJJoWnBgqTnJ+/n/fdThylxWApBIiKSd2Q0uNzSYzQLePfvzYv+/W+qV6/+T7tBgyAkJGnILCQk6b7kGRZjjLF3ETkpMjISb29vIiIi8PLysnc5IiKSHUJDk4bAKlZMu+cmNBQCA/kgMZFn/t70X4uFUWfOqKcnl8qOv9/qCRIRkbwnIACaNr1zoAkI4N2ePa0B6N8WC6MWLlQAcjIKQSIi4lSMMUybNo0XPv8cgDE9ejDz9GkNdTkhrQ4TERGnER0dzaBBg/jiiy8AmDx5MpMnT9Z1wZyUQpCIiDiFQ4cO0bt3bw4dOoSbmxvvvvsuw4cPt3dZYkcaDhMRkTwtPj6e6dOnU6tWLQ4dOoSfnx9btmxRABKFIBERyZsSEhJYsmQJVatWZeLEidy8eZNOnTqxf/9+HnnkEXuXJ7mAQpCIiOQpiYmJfPnll1SrVo2+ffty7NgxihcvzuLFi1m1ahV+fn72LlFyiVwVgrZv307Hjh0pVaoUFouFVatWpXh8wIABWCyWFLf69evbp1gREclVjDF8/fXX1KpVi549e3LkyBGKFCnC66+/zsmTJ+nbt68mQEsKuWpidExMDNWrV+fpp5+mW7duabZp06YNixYtst738PDIqfJERCQXMsawfv16XnnlFfbu3QtA4cKFGTNmDKNHj8bb29vOFUpulatCUNu2bWnbtm26bTw9PdWVKSIiAGzevJmXX36ZnTt3AlCgQAGef/55XnzxRYoVK2bn6iS3y1XDYRmxdetWSpYsSaVKlXjmmWe4cOGCvUsSEZEctn//flq2bMljjz3Gzp07yZcvH//61784deoUM2bMUACSDMlVPUF307ZtW3r06EFgYCCnTp3i5Zdfpnnz5uzbtw9PT880nxMbG0tsbKz1fmRkZE6VKyIiNnbmzBkmTJjAkiVLAHB3d2fo0KFMmDABf39/O1cnjsahQlCvXr2s//3ggw9Sp04dAgMD+eabb+jatWuaz5kxYwZTp07NqRJFRCQbJCQkMGfOHCZOnEhMTAwAffr04dVXX+W+++6zc3XiqBxuOOxW/v7+BAYGcuzYsTu2GT9+PBEREdbb2bNnc7BCERG5V0ePHqVBgwaMGjWKmJgYGjVqxN69e1myZIkCkNwTh+oJut2lS5c4e/Zsul2gnp6edxwqExGR3MsYw8cff8yzzz7LtWvX8PLyYtasWTzzzDO4uDj0v+Ell8hVISg6Oprjx49b7586dYoDBw7g4+ODj48PU6ZMoVu3bvj7+xMSEsKECRMoXrw4Xbp0sWPVIiJia9euXWPYsGEsXrwYgMcee4xPPvmEUqVK2bkyyUtyVQjau3cvzZo1s94fM2YMAP3792fevHn8+uuvfPLJJ1y9ehV/f3+aNWvGsmXLKFy4sL1KFhERGwsLC6NTp07s2bMHV1dXpk2bxtixY3F1dbV3aZLHWIwxxt5F5KTIyEi8vb2JiIjAy8vL3uWIiMgtfv31Vzp06MCZM2fw8fFhxYoVNGnSJGWj0FA4dgyCgiAgwD6FSo7Ljr/fGlQVEZFcYefOnTzyyCOcOXOGSpUq8b///S91AAoOhsBAaN486WdwsH2KlTxBIUhEROxuy5YttGrVisjISBo3bsyuXbuoWLFiykahoTBkCCQmJt1PTIShQ5O2i2SBQpCIiNjVhg0baNeuHTExMbRs2ZL169fj4+OTuuGxY/8EoGQJCXDLghqRzFAIEhERu9m2bRuPP/44N27coGPHjqxevZoCBQqk3TgoCG5fGu/qCrf3GIlkkEKQiIjYxZ49e+jQoYM1AC1fvpx8+fLd+QkBAbBgQVLwgaSf77+vydGSZblqibyIiDiHw4cP06ZNG6Kjo2nWrBlffPEFHh4ed3/ioEHQunXSEFjFigpAck8UgkREJEedPXuWVq1acfnyZerWrcvXX3+d1AOU0aXvAQEKP2ITGg4TEZEcEx0dTceOHfnrr7+oWrUq69atSzrhrZa+ix0oBImISPYLDSXh++/p06ULv/zyCyVLluTbb79NWgWmpe9iJxoOExGR7BUcDEOG8FJiImsATzc3vv76awIDA5MeT2/pu4a9JBupJ0hERLLP3708CxITeevvTR8nJFD/1nCjpe9iJwpBIiKSfY4d4/vEREb8fXca0MuYlCc41NJ3sRMNh4mISLY5CnQHEoAngUmQdi+Plr6LHSgEiYhItggPD6fD4MFEAA2BDwBLer08WvouOUwhSEREsu4O5/aJjY2lS5cunDx5kvLly7Nq5UryXbmiXh7JVRSCREQka/5e9UViYtLE5gULYNAgjDE888wz7NixAy8vL9auXUuJqlXtXa1IKvc0MfrChQuEhYXZqhYREXEU6ZzbZ/r06SxevBhXV1eWL19OVQUgyaWyFIIOHjzIAw88gL+/P6VLl6Z06dJMmjSJmJgYW9cnIiK50R3O7fPFwoVMmjQJgDlz5tCyZUs7FCeSMVkKQYMGDcLX15cdO3awf/9+XnvtNdatW0edOnW4cuWKrWsUEZHcJo1z++xycaHfzJkAjBo1imHDhtmjMpEMsxhjTGafVLBgQfbt20eVKlWs24wx9OjRg3z58vHpp5/atEhbioyMxNvbm4iICLy8vOxdjohI7nW3C5oGBycNgSUkcNLFhfoFC3IxKopOnTqxYsUKXJPP+yNiA9nx9ztLPUFp9fhYLBamT5/O119/bZPCRETEjjJyQdNBgyAkhCurV9P+vvu4GBVFrVq1WLJkiQKQOIQMh6D27dszYcIEvvjiC4YNG8bo0aM5f/58ijYREREULVrU5kWKiEgOysQFTeNKlqT722/z2/HjBAQEsGbNGgoVKpTDBYtkTYaXyD/00EP8/PPPLFq0yBp+7rvvPnr27EmNGjVISEhg0aJF/Pe//822YkVEJAdk8IKmxhiGDx/O5s2bKVSoEGvXrqVUqVI5XKxI1mVpTtD58+fZv38/Bw4csN6OHz+Oq6srlStX5uDBg9lRq01oTpCIyF2EhiYNgd0ahFxdISQkRQiaMGECM2bMwMXFhTVr1tCuXbucr1WcRnb8/c7SyRJ9fX1p06YNbdq0sW67fv06v/zyC7/88otNChMRETtJvqDp35Oe07qg6ezZs5kxYwYA8+fPVwASh5SlniBHpp4gEZEMCg1N84KmixYtYuDAgQDMmDGDcePG2atCcSK5pidIREScQBoXNF21ahWDBw8G4MUXX2Ts2LH2qEzEJu7pshkiIuI8vv76a3r27EliYiIDBw5k1qxZWCwWe5clkmUKQSIiclcrV66ke/fu3Lx5k169evH+++8rAInDUwgSEZF0ffXVV/Ts2ZP4+Hh69+7Np59+ipubZlOI41MIEhGROwoODqZXr17Ex8fz5JNP8sknnygASZ6hECQiIqkYY3j99dcZPHgwCQkJPP3003z88ccKQJKnKASJiEgKCQkJjBw5kkmTJgEwfvx4goODdT0wyXMU6UVExOrKlSv06dOH9evXY7FYeOeddxg5cqS9yxLJFgpBIiICwNGjR+nUqRPHjx8nf/78fPLJJ3Tv3t3eZYlkG4UgERFhzZo1PPnkk0RFRREYGMiqVauoUaOGvcsSyVaaEyQi4sSuX7/OyJEj6dSpE1FRUTRp0oQ9e/YoAIlTUAgSEXFSBw4coE6dOsyZMweAF154gY0bN1KiRAk7VyaSMxSCREScTGJiIm+++Sb16tXjyJEj+Pn5sX79et5++23c3d3tXZ5IjtGcIBERJxIaGkr//v3ZvHkzAJ07d2bhwoXq/RGnpJ4gEREnsXz5cqpVq8bmzZspUKAACxYsYOXKlQpA4rTUEyQiksdFRUXx/PPP89FHHwFQp04dlixZQqVKlexbmIid5aqeoO3bt9OxY0dKlSqFxWJh1apVKR43xjBlyhRKlSpF/vz5adq0KYcPH7ZPsSIiDmDXrl3UqFGDjz76CBcXFyZOnMjOnTsVgETIZSEoJiaG6tWrW1cq3G7WrFm89dZbzJkzhz179uDn50fLli2JiorK4UpFRHKp0FDYsoX4kBCmTJlC48aNOXnyJIGBgWzdupXXXntNk59F/parhsPatm1L27Zt03zMGMPbb7/NxIkT6dq1KwAff/wxvr6+LF26lKFDh+ZkqSIiuU9wMAwZQkhiIk8CO//e3LdvX+bMmYO3t7c9qxPJdXJVT1B6Tp06RVhYGK1atbJu8/T0pEmTJuzcufOOz4uNjSUyMjLFTUQkzwkNhSFDWJaYSA2SApAXsOTdd1m8eLECkEgaHCYEhYWFAeDr65tiu6+vr/WxtMyYMQNvb2/rrUyZMtlap4iIPUQfPMjAxESeACKABsABoM9DD9m1LpHczGFCUDKLxZLivjEm1bZbjR8/noiICOvt7Nmz2V2iiEiO+u2336g7ahSLSPpSfxnYDpR3dYWKFe1bnEgulqvmBKXHz88PSOoR8vf3t26/cOFCqt6hW3l6euLp6Znt9YmI2MOqVavo168fUVFRlC5alCURETRJTARXV3j/fQgIsHeJIrmWw/QElS9fHj8/PzZu3GjdFhcXx7Zt22jYsKEdKxMRyXkJCQlMnDiRLl26WC98uu/oUZqcPg1btkBICAwaZO8yRXK1XNUTFB0dzfHjx633T506xYEDB/Dx8aFs2bKMGjWK6dOnExQURFBQENOnT6dAgQL06dPHjlWLiOSsmJgYevfuzZo1awAYPXo0M2fO/Gfpu3p/RDIkV4WgvXv30qxZM+v9MWPGANC/f38++ugjXnrpJa5fv86IESO4cuUK9erV47vvvqNw4cL2KllEJEeFhYXRoUMH9u3bR758+QgODs78PwRDQ+HYMQgKUmASp2Yxxhh7F5GTIiMj8fb2JiIiAi8vL3uXIyKSYYcPH6Z9+/acPn2a4sWLs2bNGurXr5+5nfx9LiESE8HFBRYs0LCZOITs+PvtMHOCRESc2Y4dO2jUqBGnT58mKCiI3bt3Zz4A/X0uIRITk+4nJsLQoUnbRZyQQpCISC63ceNGWrVsSUREBI0efphdu3ZRoUKFzO/o2LF/AlCyhAS4ZS6miDNRCBIRycVWrVpFh3btuH7jBm2BjXv3Uuy2i0tnWFBQ0hDYrXQuIXFiCkEiIrnUkiVL6N69O3Hx8XQHVgH5jcn6EFZAQNIcIFfXpPs6l5A4uVy1OkxERJIsW7aMp556CmMMA4CF3PKFnTyElZXwMmgQtG6d9PyKFRWAxKmpJ0hEJJdZs2YNffv2xRjDkCefJNhiSfkv1nsdwgoIgKZNFYDE6SkEiYjkIps2baJHjx7Ex8fz5JNPMu+TT3BZuFBDWCLZQMNhIiLZJZMnJdy1axedO3cmNjaWxx9/nI8++ggXFxcNYYlkE/UEiYhkh+BgCAyE5s2TfgYH37ltaCj7FyygbZs2xMTE0KpVKz7//HPc3G75d6qGsERsTmeMFhGxtdDQpOBz6zl5XF2TLmp6e4gJDuboM8/wqDGEA48EBbHhwAEKFCiQkxWL5Ho6Y7SIiCPI6EkJQ0M5+cwztPg7ANUG1p44QYHLl3OqUhGnphAkImJrGTwp4Z87d9LCGP4CHgA2AN6JiTqDs0gOUQgSEbG1DJyU8MKFC7SYOJFTQEVgI1Asua3O4CySI7Q6TEQkO6Szouvq1au0bt2a344fp4yPD99fvYp/YqKWv4vkMIUgEZHsEhCQKtBER0fTtm1bDhw4gK+vL99v305ggQJa/i5iBwpBImI/mTyPjqO7ceMGnTt3Zvfu3RQtWpSNGzdSqVKlpAed4PhFchvNCRIR+8jMeXTygLi4OHr06MHmzZspVKgQ69ev56GHHrJ3WSJOTSFIRHJeaCgMGfLPMvLExKxfGd0BxMfH06dPH9auXUu+fPlYu3YtdevWtXdZIk5PIUhEcl5Gz6OTByQkJNC/f3+++uorPDw8WLlyJU2aNLF3WSKCQpCI2EMGz6Pj6BITExkyZAhLly7Fzc2NL7/8kjZt2ti7LBH5m0KQiOS8DJxHx9EZYxg5ciQffvghLi4uLF26lE6dOtm7LBG5hVaHiYh95OEroycmJvLss88yf/58LBYLH3/8MT169LB3WSJyG4UgEbGfNM6j4+ji4+MZOHAgixcvxmKxEBwcTN++fe1dloikQSFIRMRG4uLiePLJJ1m+fDmurq4sXryY3r1727ssEbkDhSARERuIiIige/fufP/993h4ePDFF1/QuXNne5clIulQCBIRuUenT5+mffv2HD58mIIFC7JixQpatWpl77JE5C4UgkREsuLvS378ePUq3UeMICwsjFKlSrF27Vpq1qxp7+pEJAMUgkREMis4GPPMM8w2hnFAAlCtWjW++eYbAvLYRG+RvEznCRKRvCE0FLZsyf5Lb4SGcv6ZZ3jcGP5NUgDqbbHw4xdfKACJOBiFIBFxfDl0MVZjDJ++9x5VjWE14AHMA5YYQ6Fz57LlNUUk+ygEiYhjy6GLsf700080adKEp2bM4DJQA/gfMAyw5MFLfog4A80JEpFcJzIyktDQUKKjo4mLi+PmzZsUKFAAb29vvLy8KF68OB4eHkmN07sY6z0OTxlj+PHHH5k9ezarVq0CIF++fExq04aXVq/GPTExT17yQ8RZKASJiN0YY/jjjz/YunUr+/btY9++fRw7doyoqKh0n2exWPD39ycwMJByJUtyH1ABqPj3T38XFyz30DNz9uxZvvjiC5YsWcL+/futr9mvXz9effVVypQpk9TTlAcv+SHiTCzGGGPvInJSZGQk3t7eRERE4OXlZe9yRJyOMYY9e/awdOlS1q5dy4kTJ9Js5+3tTZEiRfDw8MDNzY1r164RGRlJREQEibf3/NymgIcH91WqRMWKFalQoYL1Z6CnJwXDwihQtSqULk10dDRRUVGcPXuWY8eOceDAAX744Qf++OMP6748PT3p168fo0eP5v7777fpeyEiGZcdf7/VEyQiOSIqKooPP/yQDz74gEOHDlm3u7u788gjj1C/fn1q167Ngw8+SEBAAAULFkxzP8YYLly4wOnTpzl9+jQhISGcPHmSE4cPc/z4cU6fP8+1uDgOHTqU4nUyw2Kx0LhxY3r16kWPHj0oUaJElvYjIrmbQpCIZKvw8HDeeecd5syZw9WrV4GkeTVdu3ale/futGjRgsKFC2d4fxaLBV9fX3x9falbt26qx+Pi4jh9+jQnTpzg+PHjnDhxghOHDnH8++8JBa4D8X+39fDwoFChQvj7+xMUFESVKlVo1KgRjRo1omjRovd87CKSuykEiUi2iImJYfbs2cyaNYuYmBgAKleuzPPPP0+fPn0oUqRItryuh4cHQUFBBAUF/bNxyxb4/nvr3XggEfDYsAGaNs2WOkQk91MIEhGbSkxM5KOPPmLSpEmc+/vcObVq1WLChAk8/vjjuLq6Zm6Hf1+egqCgrE9ADgoCFxfrKjI3SFrVpWXtIk5N5wkSEZs5duwYTZo0YdCgQZw7d47y5cvz+eefs3fvXrp165b5AGSrkyAGBMCCBUnBB7SsXUQArQ6zdzkieUJCQgJvv/02kyZN4saNGxQqVIgpU6bw3HPP4enpmbWdhoYmBZ9bV4K5ukJISNbDi5a1izgsrQ4TkVzn6NGjDBw4kN27dwPQsmVLFi5cSGBg4L3tODtOghgQcPfn2mL4TUQcgobDRCRL4uPj+c9//kPNmjXZvXs3Xl5eLFy4kA0bNtx7AIJ/5vHcKrvn8eTQNchEJHdwqBA0ZcoULBZLipufn5+9yxJxOocOHaJBgwaMHz+e2NhY2rVrx+HDhxk8eDAWi8U2L5LT83hy6BpkIpJ7ONxw2AMPPMD3tyx1zfRESxFnZKMhnps3b/Kf8eN59Z13uBkfT5EiRXjnnXd46qmnUoYfWw0pDRoErVvnzDyebLwGmYjkTg4Xgtzc3NT7I5IZwcH/9HC4uCT1rgwalOndHDhwgKc7deLA2bMAdALmT5qEf79+2fJ6VhmZx2MLty2jB7SMXiSPc6jhMEhagluqVCnKly/PE088wcmTJ9NtHxsbS2RkZIqbiNOwwRBPXFwcr7zyCg8//DAHzp7FB1gCrAL8x45NuS9HHlLSMnoRp+NQIahevXp88sknbNiwgYULFxIWFkbDhg25dOnSHZ8zY8YMvL29rbcyZcrkYMUidpbeEE8G/PTTT9SuXZtXX32V+Ph4ugFHgD6AJa193ePr2d2gQUlL8LdsSfp5Lz1YIpLrOfR5gmJiYqhQoQIvvfQSY8aMSbNNbGwssbGx1vuRkZGUKVNG5wkS55DFc+1ER0fz8ssv884772CMoUSJEsydNo0ezz6b/r6y49w+IiJkz3mCHKon6HYFCxbkoYce4tixY3ds4+npiZeXV4qbiNPIwhDPhg0bePDBB3n77bcxxvDUU09x9OhRegwbdvd9aUhJRByIQ/cExcbGUqFCBYYMGcIrr7ySoefojNHilDJwpuSTJ0/yr3/9i1WrVgEQGBjI/PnzadOmTab3pTMzi4itOf0Zo1988UU6duxI2bJluXDhAq+99hqRkZH079/f3qWJ5G7prLCKjo5m+vTpzJ49m7i4OFxdXXnuued47bXXKFSoUKb2lak2IiJ25lAhKDQ0lN69exMeHk6JEiWoX78+u3fvts3ZaUVswYEuuXDt2jXmzZvHrFmzuHDhAgAtWrTg7bff5oEHHrBzdSIi2c+hQtDnn39u7xJE7szW58fJJlevXuWDDz7gjTfesIafChUqMHv2bDp16mS7Mz6LiORyDj0nKCs0J0iyhQOsijp8+DBz5szhk08+4dq1awCUL1+eSZMm8dRTT+Hu7m7nCkVE7szp5wSJ5Fq59JILISEhLFu2jGXLlrF//37r9gceeIDRo0fTr1+/f8KPAw3liYjYgkKQiC1k5pIL2Rg2Ll++zI4dO9i0aRObNm3i8OHDt5TjSufOnRk5ciRNmjRJOezlIEN5IiK2pBAkYgvJ58cZOjSpB+hO58exQdiIjY3lr7/+IiQkhFOnTnHy5El+/fVXDhw4wJkzZ1K0dXFxoWnTpvTq1YuuXbtSvHjx1Du806UuWrdWj5CI5GkKQSK2crcrnt8WNhISE7kwZAiXAgO57OHB5cuXU90uXbqU6mfyfJ47CQoKonnz5jz22GM0a9Ys7eBzq1w6lCcikt0UgkRs6bbz49y8eZMTJ05w+PBhDq9dy++JiZwBzgJ/AvGJidCyZaZfxsPDg3JFi1L+/HnKAfdbLNT897+pNn48RYoUydzOdPV0EXFSCkEiNhQaGsrOnTutt19++YW4uLg7tncBihUrRtFixfDx8bHeihYtSjF3d4rdvIlPUBDFKlWyPlasWDG8IiNxKV/+nx0ZA7Nnw8iRkNkQlNGhPBGRPEYhSOQeXLt2ja1bt/Ltt9+ybt06Tp48mapNwYIFqVq1Kg888AD3R0VRbsUKyhhDGRcX/ObNw23IkNQ7TmvuUOvW/zy+f79th7DuNpQnIpIH6TxBIpl0+fJlvvrqK1asWMHWrVu5ceOG9TEXFxdq1KhBw4YNadiwIfXr1ycwMBAXl1uuVXy362pl5JxDDnBeIhERW9J5gkTsJCoqitWrV/PZZ5+xYcMG4uPjrY+VLVuWtm3b0q5dO5o1a0bhwoXT39ndrquVkYnKGsISEblnCkEid3Djxg2+/fZbPv/8c9auXcv169etj1WvXp1evXrRqVMnqlatattLTWR0orKGsERE7olCUHbTWXjtJwvv/c2bN9m0aROfffYZK1euJCoqyvpYUFAQvXv35oknnuD+++/Prqoz18ujq7WLiGSZQlB20ll4M89WoTET731CQgLbtm1j2bJlrFixgvDwcOtjZcqU4YknnuCJJ56gZs2aOXdxUfXyiIhkO02Mzi6auJp5tgqNGXjvExMT+fHHH1m2bBnLv/iC8xcvWpuWLFmSHj160Lt3bxo0aJA0qVk9eiIidqWJ0Y5EZ+HNHFteuuEO7/31w4fZ/MsvrF27ltWrV/PXX39ZH/YBugK9xoyh6cyZuLnd8quhHj0RkTxJPUHZRT1BmbNlCzRvnvb2pk0zt6+/33uTmMhvwBZgHbApXz6u37Kc3atwYbpERdELaAG4g5aii4jkUuoJciRawpw5Nrh0Q3x8PEePHuWHH35ga61abNu7lwu3NrhxgzJlytCxY0fat29Pc1dX8rVpk3Int/fWqUdPRCTPUgjKTprcmnGZDI03b97kyJEj7Nu3j3379vHzzz/zyy+/pFjGDpDf05OGDz9M87Zt6dixIw8++OA/k5tDQ+8evHRdLRGRPEshKLtpCXPG3SE0xsXFcfjwYWvg2bdvHwcPHiQ2NjbVLgoXLkzdunVp2rQpTZs25eGHH8bT0zPt18tI8FKPnohInqU5QZKrJCYmcvjwYf73v/9ZA8+dLkLqVbAgtapVo3bDhtSuXZvatWtTsWLFlJeoyIi7XcYio21ERCTbaE6QOLY0lpkbYzh06BCbN29m27ZtbNu2jcuXL6d6apEiRahVqxZ16tSh1tWr1F64kPtiYnD53/+SepB69856XRnprVOPnohInqMQJDnjlmXmcRYL20aNYvXNm6xevZozZ86kaFqgQAHq1atHnTp1qFOnDrVr1+a+++5LmsuTvForuQPzXpbSi4iIU1MIkuwXGop55hl+MoZPgM+N4fJ//2t9OH/+/DRp0oQmTZrQtGlTateujbu7e9r70motERGxEYUgZ5VDZ0COjo7mgxkzmG8Mv9+y3Rfo2L49nYYOpUWLFuTPnz9jO9RqLRERsZFMziAVuwoNTTp5YGjove0nODhpSKl586SfwcG2qe8W4eHhTJ48mcDAQEa/9x6/A/mBJ4HvgD9dXFg4fz4dO3bMeACCf1Zrubom3ddqLRERySKtDstlwsPDuXjxIsYYSpQoQbFixZJWO+XgdbXuRUhICLNnzyY4ONh6zp6KFSvyYoMG9FmyhMKJif8El3u59IRWa4mIOBWtDsuDEhISWLt2LcuWLWPTpk1cuJDiHMcUKlSIutWr02znTnoaQyXIlutq3eucmoMHDzJr1iw+//xzEhISAKhduzZjx46la9euuLq6wvTptgsuWq0lIiL3SCHITowxrFy5kpdeeokTJ05Yt1ssFooUKQLAlStXiI6OZvOPP7IZeBmoAYwAnkxIoEBWgosN59QYY9i+fTszZ85k3bp11u0tW7Zk7NixNG/e/J+zM4OCi4iI5CpOPSfoypUraZ6TJruFhYXRoUMHunXrxokTJyhatCj/+te/+OGHH4iKiuLy5ctcvnyZuLg4Dh48yLzp02lDUmI9AAwBAoBxX35JaGbnB9lgTk1iYiIrV66kQYMGNG3alHXr1uHi4kLPnj3Zu3cv3333HY899ljKACQiIpLbGCcTERFhAPP8888bFxcXY7FYzMCBA01sbGyOvP6PP/5oSpUqZQDj7u5uJk2aZKKjo+/+xA8+MOEuLmY2mPJg+Pvm5uZm+vbta37++efMFXL2rDFbtiT9zKBr166ZhQsXmipVqlhf39PT0wwbNswcO3Ysc68vIiKSCcl/vyMiImy2T6edGH27Tp06sXLlysxfciETVq5cyRNPPEFcXBz3338/y5cvp2rVqhnfwd+TgRPKl2ftgQP897//Zdu2bdaHmzVrxpgxY2jXrp3tjiM0lPP/+x/v7djBe59+Snh4OADe3t6MGDGC559/Hj8/P9u8loiIyB1ky8Imm8UpB5GcJAEzc+ZMs379epMvXz4DmNdffz2p0dmzxmzenKlekrtZvHixcXV1NYB5/PHHTWRkpE32u3fvXtOnTx/rvgFTuXJlM3/+/HtKy3FxcWbNyJGmOxiPW3qeypYta9544w2bJnEREZG7UU+QDSQnyRIlShAaGoqHhweLFi1i4MCBuLu788vLL3P/lCn3vhT9FosXL6Z///4YY+jfvz8ffPABbm62nZN+9uxZ3n33XRYsWEBkZCQAnp6etG7dmg4dOtC4cWMqV658x3k6xhhCQkLYtWsX69atY90333DpyhXr4/WAMRYLXU+exK1cOZvWLiIicjfZ0RPktCFo6NChzJ8/H0gKAJ06dWLt2rU0AbYA1qhwj+fQ+fbbb+nUqRMJCQkMHz6cOXPmZOuQW9TcuXw4ciTzbjtDMyQNYd13330EBgaSP39+3NzciIiIICwsjGPHjnHlltADUBLoA/QDaiZv3LIFmjZNueMcOvu0iIg4L4UgG0h+E5e//z7dhgyxbg8JCaFqlSpcj43lI6D/rU9K6w9/BuzevZvHHnuMa9eu0bdvXz7++ONsDUC3ngjRAIeArywWttarx/8OHODGjRvpPt3d3Z2HHnqIli1b0rZ2bRr26oX7rf97pBUIbXUSRxERkXQoBNlA8psYBvh+8EGKP9izJk5k7PTpFAd+B3wgyz1BR48e5ZFHHuHy5cu0adOG1atX3/mioLayZUvSpTDS2B7boAHHjx/n1KlTnD17ltjYWG7evImXlxd+fn6ULVuWBx54AA8Pj3+eFxycdFLGhIS0z/KczWefFhERSaYQZAPWNxHwuu0P9s2bN6lZrhyH//qLIcD7Wby8Q2hoKI0aNeLMmTPUrVuXTZs2UahQIZsfSxovbPtQkt7lKdIJXVnpORMREbmT7AhBTn2yROvlIv7m7u7OvM8/B2ABsOurrzIdgC5fvkzr1q05c+YMlStX5ptvvsmZAATZc3HRgICkQJPWPpLPPn0rXdFdREQchHOHoDT+YDdu3Jinn34agGGvvEJcXFyGdxcTE0OHDh04cuQIpUuXZsOGDRQvXjxjT7bVFeIHDUrq+dmyJelnds7P0RXdRUTEgTlvCHJxueMf7FmzZlGsWDEOHjzI+PHjM7S769ev0717d3bt2kXRokXZsGEDgYGBGaslODhpGKt586SfwcGZOZLU0uu9sbWcDF0iIiI25Lxzgo4cwev+++/YbvXq1XTu3BmAL7/8ku7du9+xbVRUFJ06dWLr1q3kz5+fTZs20aBBg4wVpMnFIiIid6U5QbZUunS6D3fq1IkXXngBgD59+rB+/fo02x0/fpxHH32UrVu3UrhwYTZs2JDxAARJ59e5NQBBqrlKIiIiYnsOGYLee+89ypcvT758+ahduzY//PBDtrzO7Nmz6dGjBzdv3qRDhw5MnjzZekLBS5cu8eqrr1KzZk0OHDhA8eLF2bx5M40bN87ci2hysYiIiF04XAhatmwZo0aNYuLEiezfv5/GjRvTtm1bzpw5Y/PXcnV15dNPP6Vv374kJCQwbdo0SpQoga+vLyVKlOCVV14hOjqaxo0bc+DAAerUqZP5F9HkYhEREbtwuDlB9erVo1atWsybN8+67f777+fxxx9nxowZd31+VsYUjTEsX76cV199lV9//dW6vUaNGowbN44ePXrc+5mg0zsfj4iIiJPLjjlBtr2KZzaLi4tj3759jBs3LsX2Vq1asXPnzjSfExsbS2xsrPV+8sVFM8NisdCjRw969OjBuXPnOH/+PKVKlaJkyZKZ3tcdBQQo/IiIiOQghxoOCw8PJyEhAV9f3xTbfX19CQsLS/M5M2bMwNvb23orU6bMPdXg7+9PjRo1bBuAREREJMc5VAhKZrFYUtw3xqTalmz8+PFERERYb2fPns2JEkVERCSXc6jhsOLFi+Pq6pqq1+fChQupeoeSeXp64unpmRPliYiIiANxqJ4gDw8PateuzcaNG1Ns37hxIw0bNrRTVSIiIuKIHKonCGDMmDE89dRT1KlThwYNGrBgwQLOnDnDsGHD7F2aiIiIOBCHC0G9evXi0qVLTJs2jXPnzvHggw/y7bffZvw6XSIiIiI44HmC7lV2nGdAREREspeuHSYiIiJiIwpB9yI0FLZsSfopIiIiDkUhKKuCgyEwEJo3T/oZHGzvikRERCQTFIKyIjQUhgyBxMSk+4mJMHSoeoREREQciEJQVhw79k8ASpaQkHQBVBEREXEICkFZERQEt1813tU16QrwIiIi4hAUgrIiIAAWLEgKPpD08/33dRV4ERERB+JwJ0vMNQYNgtatk4bAKlZUABIREXEwCkH3IiBA4UdERMRBaThMREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOyaFCULly5bBYLClu48aNs3dZIiIi4oDc7F1AZk2bNo1nnnnGer9QoUJ2rEZEREQclcOFoMKFC+Pn52fvMkRERMTBOdRwGMDMmTMpVqwYNWrU4PXXXycuLs7eJYmIiIgDcqieoBdeeIFatWpRtGhRfvrpJ8aPH8+pU6f44IMP7vic2NhYYmNjrfcjIiIAiIyMzPZ6RURExDaS/24bY2y3U2NnkydPNkC6tz179qT53OXLlxvAhIeH39P+ddNNN9100003x7idOHHCZhnEYowtI1XmhYeHEx4enm6bcuXKkS9fvlTb//zzTwICAti9ezf16tVL87m39wRdvXqVwMBAzpw5g7e3970V70AiIyMpU6YMZ8+excvLy97l5Bgdt47bGei4ddzOICIigrJly3LlyhWKFClik33afTisePHiFC9ePEvP3b9/PwD+/v53bOPp6Ymnp2eq7d7e3k71P08yLy8vHbcT0XE7Fx23c3HW43Zxsd10ZruHoIzatWsXu3fvplmzZnh7e7Nnzx5Gjx5Np06dKFu2rL3LExEREQfjMCHI09OTZcuWMXXqVGJjYwkMDOSZZ57hpZdesndpIiIi4oAcJgTVqlWL3bt33/N+PD09mTx5cppDZHmZjlvH7Qx03DpuZ6Djtt1x231itIiIiIg9ONzJEkVERERsQSFIREREnJJCkIiIiDglhSARERFxSnkyBL333nuUL1+efPnyUbt2bX744Yd022/bto3atWuTL18+7rvvPubPn59DldpWZo57xYoVtGzZkhIlSuDl5UWDBg3YsGFDDlZrO5n9vJP9+OOPuLm5UaNGjewtMJtk9rhjY2OZOHEigYGBeHp6UqFCBT788MMcqtZ2MnvcS5YsoXr16hQoUAB/f3+efvppLl26lEPV3rvt27fTsWNHSpUqhcViYdWqVXd9Tl74TsvsceeV77SsfN7JHPk7LSvHbYvvtDwXgpYtW8aoUaOYOHEi+/fvp3HjxrRt25YzZ86k2f7UqVO0a9eOxo0bs3//fiZMmMDzzz/PV199lcOV35vMHvf27dtp2bIl3377Lfv27aNZs2Z07NjRehZuR5HZ404WERFBv379eOyxx3KoUtvKynH37NmTTZs2ERwczO+//85nn31GlSpVcrDqe5fZ496xYwf9+vVj0KBBHD58mC+//JI9e/YwePDgHK4862JiYqhevTpz5szJUPu88p2W2ePOK99pmT3uZI7+nZaV47bJd5rNrkKWS9StW9cMGzYsxbYqVaqYcePGpdn+pZdeMlWqVEmxbejQoaZ+/frZVmN2yOxxp6Vq1apm6tSpti4tW2X1uHv16mUmTZpkJk+ebKpXr56NFWaPzB73unXrjLe3t7l06VJOlJdtMnvcb7zxhrnvvvtSbHv33XdNQEBAttWYnQCzcuXKdNvkle+0W2XkuNPiiN9pt8rMcTv6d9qtMnLctvpOy1M9QXFxcezbt49WrVql2N6qVSt27tyZ5nN27dqVqn3r1q3Zu3cvN2/ezLZabSkrx327xMREoqKi8PHxyY4Ss0VWj3vRokWcOHGCyZMnZ3eJ2SIrx7169Wrq1KnDrFmzKF26NJUqVeLFF1/k+vXrOVGyTWTluBs2bEhoaCjffvstxhjOnz/P8uXLad++fU6UbBd54TvNFhzxOy2rHP07LSts9Z3mMGeMzojw8HASEhLw9fVNsd3X15ewsLA0nxMWFpZm+/j4eMLDw9O9OGtukZXjvt3s2bOJiYmhZ8+e2VFitsjKcR87doxx48bxww8/4ObmmP/7Z+W4T548yY4dO8iXLx8rV64kPDycESNGcPnyZYeZF5SV427YsCFLliyhV69e3Lhxg/j4eDp16sT//d//5UTJdpEXvtNswRG/07IiL3ynZYWtvtPyVE9QMovFkuK+MSbVtru1T2t7bpfZ40722WefMWXKFJYtW0bJkiWzq7xsk9HjTkhIoE+fPkydOpVKlSrlVHnZJjOfd2JiIhaLhSVLllC3bl3atWvHW2+9xUcffeRQvUGQueM+cuQIzz//PK+88gr79u1j/fr1nDp1imHDhuVEqXaTV77TssrRv9MyKq99p2WGrb7T8lRsLF68OK6urqn+VXjhwoVU/zJK5ufnl2Z7Nzc3ihUrlm212lJWjjvZsmXLGDRoEF9++SUtWrTIzjJtLrPHHRUVxd69e9m/fz/PPfcckPSLZIzBzc2N7777jubNm+dI7fciK5+3v78/pUuXxtvb27rt/vvvxxhDaGgoQUFB2VqzLWTluGfMmEGjRo3497//DUC1atUoWLAgjRs35rXXXsuTvSJ54TvtXjjyd1pm5ZXvtKyw1XdanuoJ8vDwoHbt2mzcuDHF9o0bN9KwYcM0n9OgQYNU7b/77jvq1KmDu7t7ttVqS1k5bkj619KAAQNYunSpQ86RyOxxe3l58euvv3LgwAHrbdiwYVSuXJkDBw5Qr169nCr9nmTl827UqBF//fUX0dHR1m1//PEHLi4uBAQEZGu9tpKV47527RouLim/5lxdXYF/ekfymrzwnZZVjv6dlll55TstK2z2nXZP06pzoc8//9y4u7ub4OBgc+TIETNq1ChTsGBBExISYowxZty4ceapp56ytj958qQpUKCAGT16tDly5IgJDg427u7uZvny5fY6hCzJ7HEvXbrUuLm5mblz55pz585Zb1evXrXXIWRJZo/7do66kiKzxx0VFWUCAgJM9+7dzeHDh822bdtMUFCQGTx4sL0OIUsye9yLFi0ybm5u5r333jMnTpwwO3bsMHXq1DF169a11yFkWlRUlNm/f7/Zv3+/Acxbb71l9u/fb06fPm2MybvfaZk97rzynZbZ476do36nZfa4bfWdludCkDHGzJ071wQGBhoPDw9Tq1Yts23bNutj/fv3N02aNEnRfuvWraZmzZrGw8PDlCtXzsybNy+HK7aNzBx3kyZNDJDq1r9//5wv/B5l9vO+laN+YRiT+eM+evSoadGihcmfP78JCAgwY8aMMdeuXcvhqu9dZo/73XffNVWrVjX58+c3/v7+5sknnzShoaE5XHXWbdmyJd3f1bz6nZbZ484r32lZ+bxv5ajfaVk5blt8p1mMyaN9wiIiIiLpyFNzgkREREQySiFIREREnJJCkIiIiDglhSARERFxSgpBIiIi4pQUgkRERMQpKQSJiIiIU1IIEhEREaekECQiIiJOSSFIREREnJJCkIjkCdOmTeOhhx6iYMGC+Pr6Mnz4cG7evGnvskQkF3OzdwEiIvfKGENCQgLvv/8+pUuX5siRI/Tr149q1aoxfPhwe5cnIrmULqAqInlSnz59KFGiBO+88469SxGRXErDYSLi8E6fPs1zzz3Hgw8+SNGiRSlUqBBffPEFAQEB9i5NRHIxhSARcWjh4eHUrVuX8PBw3nrrLXbs2MGuXbtwdXWlRo0a9i5PRHIxzQkSEYf27bffEh8fz2effYbFYgFg7ty5xMXFKQSJSLoUgkTEofn4+BAZGcnq1aupWrUqa9asYcaMGZQuXZoSJUrYuzwRycU0MVpEHJoxhuHDh7N06VLy589P3759uXHjBqdPn2bt2rX2Lk9EcjGFIBEREXFKmhgtIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUr/Dx6ZE98676TJAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABctUlEQVR4nO3dZ3hU1f728e+kQyCBUFIIhJZQVIpSBKRKixQBFQSld1BE9I8gSjtIFNRHUUSQ2AVBkXLoKP0ACkiRaigBAoROQkvfz4uYkZBCEiaZTOb+XNdcOHvW7PntmWRyu9baa5sMwzAQERERsTMO1i5ARERExBoUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgsSqmjVrRrNmzaxdRo716dOHIkWKZKlt+fLl6dOnT67WYzKZmDhxYq6+xv3cvn2biRMnsnHjRqvWYSt+++036tSpg7u7OyaTiSVLlvD1119jMpkIDw83t5s3bx4fffRRrtTw1ltvUa5cOZycnChWrFi2n9+nTx/Kly9v8bryk/Pnz/PWW2/RoEEDSpYsiYeHB4899hhz5swhMTExTfs9e/bQqVMn/Pz8KFy4MFWrVmXy5Mncvn3bCtVLRpysXYDYt88++8zaJeSZxYsX4+HhYe0yct3t27eZNGkSgE0H3LxgGAZdu3YlKCiIZcuW4e7uTpUqVUhISGD79u34+vqa286bN48DBw4wcuRIi9awdOlS3nnnHcaNG0dwcDCurq4W3X9BsXv3br799lt69erF22+/jbOzM6tWrWLo0KHs2LGDL7/80tz20KFDNGzYkCpVqvDRRx9RsmRJNm/ezOTJk9m9ezdLly614pHI3RSCxKqqV69u7RLyTO3ata1dgljQnTt3cHNzw2Qy5Xgf586d4+rVq3Tu3Jknn3wy1WOlSpV60BKz5MCBAwCMGDGC0qVL58lrWoolPoOsatSoEcePH8fZ2dm8rVWrVsTFxTFz5kwmTZpE2bJlgeTAGhMTw6JFi6hUqRIALVq04Pz588yZM4dr165RvHjxXK9Z7k/DYZJlEydOxGQycfDgQbp3746npyfe3t7069ePqKioVG1jYmIYO3YsFSpUwMXFhTJlyjB8+HCuX7+eql16w2GzZs2iZs2aFClShKJFi1K1alXefPNNAMLDw3FyciIkJCRNfZs3b8ZkMvHTTz9lehzXr1/ntddeo2LFiri6ulK6dGmeeuopjhw5AsDGjRsxmUxphnPCw8MxmUx8/fXXafZ58OBBnnzySdzd3SlVqhQvvfRSmm7v9IbD7leLJURGRjJ48GD8/f1xcXGhQoUKTJo0iYSEhFTtJk2aRP369fHy8sLDw4NHH32U0NBQ7r3G8vr162nWrBklSpSgUKFClCtXjmeeeYbbt28THh5u/uM9adIkTCYTJpPpvsOAt2/f5vXXX6dChQq4ubnh5eVFnTp1mD9/fqp2X3/9NVWqVMHV1ZVq1arx7bffphmKyc7nt2vXLp5//nnKly9PoUKFKF++PN27d+fUqVNpXtdkMrF27Vr69etHqVKlKFy4MLGxsQAsWLCABg0a4O7uTpEiRWjTpg179uzJ9JgnTpyIv78/AG+88QYmk8l8HPcOhzVr1owVK1Zw6tQp83t6vz/8SUlJTJs2japVq5p/tnr16kVERIS5Tfny5XnrrbcA8Pb2ztJwanqfQXri4uKYMmWK+fVLlSpF3759uXTpUqp2sbGxvPbaa/j4+FC4cGGaNGnC7t270/y+WOoz2LVrFx07dsTLyws3Nzdq167NwoULMz1mgOLFi6cKQCnq1asHkOp9TWnn6emZqm2xYsVwcHDAxcXlvq8neUM9QZJtzzzzDN26daN///789ddfjB07FsDcHWwYBp06deK3335j7NixNG7cmP379zNhwgS2b9/O9u3bM+xy//HHHxk2bBgvv/wy77//Pg4ODhw7doxDhw4ByV/aHTt25PPPP2f06NE4Ojqan/vpp5/i5+dH586dM6z9xo0bPPHEE4SHh/PGG29Qv359bt68yebNmzl//jxVq1bN9vsRHx/PU089xeDBgxkzZgzbtm1jypQpnDp1iv/+978PXEufPn345ptvOHnyZLbnXURGRlKvXj0cHBwYP348lSpVYvv27UyZMoXw8HC++uorc9vw8HAGDx5MuXLlANixYwcvv/wyZ8+eZfz48eY27dq1o3Hjxnz55ZcUK1aMs2fPsnr1auLi4vD19WX16tW0bduW/v37M2DAAOD+vRqjRo3iu+++Y8qUKdSuXZtbt25x4MABrly5Ym7z9ddf07dvX55++mk++OADoqKimDhxIrGxsTg45Oz/58LDw6lSpQrPP/88Xl5enD9/nlmzZlG3bl0OHTpEyZIlU7Xv168f7dq147vvvuPWrVs4OzszdepU3nrrLfr27ctbb71FXFwc06dPp3Hjxvzxxx8Z9nYOGDCAmjVr0qVLF15++WV69OiR4e/FZ599xqBBgzh+/DiLFy/O0rENHTqUOXPm8NJLL9G+fXvCw8N5++232bhxI3/++SclS5Zk8eLFzJw5k9DQUFavXo2np6c5mKUnq59BUlISTz/9NFu2bGH06NE0bNiQU6dOMWHCBJo1a8auXbsoVKgQAH379mXBggWMHj2aFi1acOjQITp37kx0dHS6NTzIZ7Bhwwbatm1L/fr1+fzzz/H09OTHH3+kW7du3L59O0dz9tavX4+TkxNBQUHmbb179+ajjz5i6NChvPfee5QqVYpNmzYxe/Zshg8fjru7e7ZfR3KJIZJFEyZMMABj2rRpqbYPGzbMcHNzM5KSkgzDMIzVq1en227BggUGYMyZM8e8rWnTpkbTpk3N91966SWjWLFimdaxYcMGAzAWL15s3nb27FnDycnJmDRpUqbPnTx5sgEY69atu+/+N2zYkGr7yZMnDcD46quvzNt69+5tAMbHH3+cqu0777xjAMbWrVvN2wICAozevXtnqxbDMIx+/foZjo6ORnh4eKbtDMMwAGPChAnm+4MHDzaKFClinDp1KlW7999/3wCMgwcPprufxMREIz4+3pg8ebJRokQJ82f7888/G4Cxd+/eDGu4dOlSmjru5+GHHzY6deqU4eOJiYmGn5+f8eijj5prMQzDCA8PN5ydnY2AgADztux8fvdKSEgwbt68abi7u6f6TL/66isDMHr16pWq/enTpw0nJyfj5ZdfTrX9xo0bho+Pj9G1a9dMjvrfmqZPn55qe8rrnTx50rytXbt2qY4zM4cPHzYAY9iwYam2//777wZgvPnmm+ZtKb/Xly5dynSf2fkM5s+fbwDGokWLUu1j586dBmB89tlnhmEYxsGDBw3AeOONN1K1S3n+3b8vlvgMqlatatSuXduIj49P1bZ9+/aGr6+vkZiYmOl7cK81a9YYDg4OxquvvprmscOHDxtVq1Y1APNtxIgRqd47sT4Nh0m2dezYMdX9GjVqEBMTw8WLF4Hk/zMC0vxf1XPPPYe7uzu//fZbhvuuV68e169fp3v37ixdupTLly+nadOsWTNq1qzJzJkzzds+//xzTCYTgwYNyrT2VatWERQURMuWLTNtl10vvPBCqvs9evQAkv/P80FrCQ0NJSEhgYCAgGzXtXz5cpo3b46fnx8JCQnmW3BwMACbNm0yt12/fj0tW7bE09MTR0dHnJ2dGT9+PFeuXDF/trVq1cLFxYVBgwbxzTffcOLEiWzVc3cNCQkJ5qG2evXqsWrVKsaMGcPGjRu5c+dOqucdPXqUc+fO0aNHj1TDQAEBATRs2DDb70uKmzdv8sYbb1C5cmWcnJxwcnKiSJEi3Lp1i8OHD6dp/8wzz6S6v2bNGhISEujVq1eq43Jzc6Np06ZWO0Mu5efu3t/BevXqUa1atUx/BzOSnc9g+fLlFCtWjA4dOqR6X2rVqoWPj4/5fUn5+evatWuq5z/77LM4OaU/UJHTz+DYsWMcOXLE/Lt6d9unnnqK8+fPc/To0Sy/H3/++Sddu3bl8ccfTzM8Hx4eTocOHShRogQ///wzmzZtYtq0aXz99dfm3lHJHzQcJtlWokSJVPdTuvBT/nBduXIFJyenNEMgJpMJHx+fVEMc9+rZsycJCQl88cUXPPPMMyQlJVG3bl2mTJlCq1atzO1GjBjBgAEDOHr0KBUrVuSLL77g2WefxcfHJ9PaL126ZB7usRQnJ6c070lKHZkda27Ucq8LFy7w3//+N925DIA5ZP7xxx+0bt2aZs2a8cUXX5jnDy1ZsoR33nnH/NlWqlSJX3/9lWnTpjF8+HBu3bpFxYoVGTFiBK+88kqmtYSHh1OhQoVU2zZs2ECzZs2YMWMG/v7+LFiwgPfeew83NzfatGnD9OnTCQwMNL+P6X2+Pj4+qU4lz44ePXrw22+/8fbbb1O3bl08PDwwmUw89dRTaYIYkOpsLUh+fwHq1q2b7v5zOkz3oFLer3vrBfDz80sz5yk7+8zKZ3DhwgWuX7+e4dyXlJ+7lH16e3unejy936kUOf0MUtq9/vrrvP7665nWdT979uyhVatWBAYGsnLlyjTDmGPGjCE6Opq9e/eah76aNGlCyZIl6devH7169aJp06ZZei3JXQpBYnElSpQgISGBS5cupQpChmEQGRmZ4ZdVir59+9K3b19u3brF5s2bmTBhAu3bt+fvv/8294b06NGDN954g5kzZ/L4448TGRnJ8OHD71tbqVKlUk1gTI+bmxuAecJlioy+IBMSErhy5UqqL+3IyEggbWDMbi0PqmTJktSoUYN33nkn3cf9/PyA5LlYzs7OLF++3Hz8AEuWLEnznMaNG9O4cWMSExPZtWsXn3zyCSNHjsTb25vnn38+w1r8/PzYuXNnqm1VqlQBwN3dnUmTJjFp0iQuXLhg7hXq0KEDR44cMb+PKe/r3e7dltXPLyoqiuXLlzNhwgTGjBlj3h4bG8vVq1fTPYZ7JyOnzBn6+eefc9RTl1tS3q/z58+nmeNz7ty5NHOdsrPPrHwGJUuWpESJEqxevTrdfRUtWjTVPi9cuECZMmXMj6f8TqUnp59BSruxY8fSpUuXdNuk/DxmZs+ePbRs2ZKAgADWrl2bZvIzwN69e6levXqauT8p330HDhxQCMonNBwmFpdyqu/333+favuiRYu4detWmlOBM+Lu7k5wcDDjxo0jLi6OgwcPmh9zc3MzD8l8+OGH1KpVi0aNGt13n8HBwfz999/mIbv0pEw+3r9/f6rty5Yty/A5P/zwQ6r78+bNAzJfJycrtTyo9u3bc+DAASpVqkSdOnXS3FJCkMlkwsnJKdVE8zt37vDdd99luG9HR0fq169vHpb8888/gbQ9gylcXFzSvH7KH8O7eXt706dPH7p3787Ro0e5ffs2VapUwdfXl/nz56c6W+3UqVNs27Yt1fOz+vmZTCYMw0jzf/Fz585Nd/G79LRp0wYnJyeOHz+e7vtbp06dLO0nK1xdXdPtnUpPixYtgLS/gzt37uTw4cNZ/h28W3Y+g/bt23PlyhUSExPTfU9SwkaTJk2A5DO77vbzzz+nOXsxI1n9DKpUqUJgYCD79u3LsF16P49327t3Ly1btsTf359169ZleJq7n58fBw8e5ObNm6m2b9++HSDTyeeSt9QTJBbXqlUr2rRpwxtvvEF0dDSNGjUynx1Wu3ZtevbsmeFzBw4cSKFChWjUqBG+vr5ERkYSEhKCp6dnmh6kYcOGMW3aNHbv3s3cuXOzVNvIkSNZsGABTz/9NGPGjKFevXrcuXOHTZs20b59e5o3b46Pjw8tW7YkJCSE4sWLExAQwG+//cYvv/yS7j5dXFz44IMPuHnzJnXr1jWfHRYcHMwTTzzxQLUA9O/fn2+++Ybjx49nu7dh8uTJrFu3joYNGzJixAiqVKlCTEwM4eHhrFy5ks8//xx/f3/atWvHhx9+SI8ePRg0aBBXrlzh/fffTxMQPv/8c9avX0+7du0oV64cMTEx5rMCU+Y2FS1alICAAJYuXcqTTz6Jl5cXJUuWzPTMtvr169O+fXtq1KhB8eLFOXz4MN999x0NGjSgcOHCAPznP/9hwIABdO7cmYEDB3L9+nUmTpyYZngmq5+fh4cHTZo0Yfr06eb6Nm3aRGhoaJZXTS5fvjyTJ09m3LhxnDhxgrZt21K8eHEuXLjAH3/8Ye7hsoRHHnmEX375hVmzZvHYY4/h4OCQYciqUqUKgwYN4pNPPsHBwYHg4GDz2WFly5bl1VdfzfbrOzg4ZPkzeP755/nhhx946qmneOWVV6hXrx7Ozs5ERESwYcMGnn76aTp37sxDDz1E9+7d+eCDD3B0dKRFixYcPHiQDz74AE9PzywNJ2bnM5g9ezbBwcG0adOGPn36UKZMGa5evcrhw4f5888/M11e4+jRo+af8XfeeYewsDDCwsLMj1eqVMnc8z1y5Eg6depEq1atePXVVylZsiQ7duwgJCSE6tWrm+fkST5g1WnZYlMyOoskvTNZ7ty5Y7zxxhtGQECA4ezsbPj6+hpDhw41rl27luq5954d9s033xjNmzc3vL29DRcXF8PPz8/o2rWrsX///nRratasmeHl5WXcvn07y8dx7do145VXXjHKlStnODs7G6VLlzbatWtnHDlyxNzm/PnzxrPPPmt4eXkZnp6exosvvmjs2rUr3bPD3N3djf379xvNmjUzChUqZHh5eRlDhw41bt68mep17z07LKu1pJyBdvf7mxHSOSvr0qVLxogRI4wKFSoYzs7OhpeXl/HYY48Z48aNS1Xjl19+aVSpUsVwdXU1KlasaISEhBihoaGpXnv79u1G586djYCAAMPV1dUoUaKE0bRpU2PZsmWpXvPXX381ateubbi6uqY5yyc9Y8aMMerUqWMUL17c/Pqvvvqqcfny5VTt5s6dawQGBhouLi5GUFCQ8eWXXxq9e/dOc9ZUVj+/iIgI45lnnjGKFy9uFC1a1Gjbtq1x4MCBNJ9Vys/4zp07061/yZIlRvPmzQ0PDw/D1dXVCAgIMJ599lnj119/zfS4s3N22NWrV41nn33WKFasmGEymYz7fX0nJiYa7733nhEUFGQ4OzsbJUuWNF588UXjzJkzqdpl9eywFFn9DOLj443333/fqFmzpuHm5mYUKVLEqFq1qjF48GAjLCzM3C4mJsYYNWqUUbp0acPNzc14/PHHje3btxuenp6pzrqy1Gewb98+o2vXrkbp0qUNZ2dnw8fHx2jRooXx+eefZ3rcKa+f0e3esw7Xr19vtG7d2vDx8TEKFSpkBAUFGa+99lqan2mxLpNh3LMSmoiNuHjxIgEBAbz88stMmzbN2uWIlfTp04eNGzfmeHK05D/btm2jUaNG/PDDD+YzLUVyg4bDxOZERERw4sQJpk+fjoODw33PShKR/GvdunVs376dxx57jEKFCrFv3z7effddAgMDM5zALGIpCkFic+bOncvkyZMpX748P/zwQ6qzSkTEtnh4eLB27Vo++ugjbty4QcmSJQkODiYkJCTVmYoiuUHDYSIiImKX8s0p8rNmzaJGjRp4eHjg4eFBgwYNWLVqlflxwzCYOHEifn5+FCpUiGbNmqU6ZVpEREQkO/JNCPL39+fdd99l165d7Nq1ixYtWvD000+bg860adP48MMP+fTTT9m5cyc+Pj60atWKGzduWLlyERERsUX5ejjMy8uL6dOn069fP/z8/Bg5ciRvvPEGkLyqq7e3N++99x6DBw+2cqUiIiJia/LlxOjExER++uknbt26RYMGDTh58iSRkZG0bt3a3MbV1ZWmTZuybdu2TENQbGxsquXzk5KSuHr1KiVKlEiz/LqIiIjkT4ZhcOPGDfz8/Cx2Xb58FYL++usvGjRoQExMDEWKFGHx4sVUr17dvCT7vRfZ8/b2vu+FAENCQiy2YquIiIhY15kzZyx26ZF8FYKqVKnC3r17uX79OosWLaJ3795s2rTJ/Pi9PTeGYdy3N2fs2LGMGjXKfD8qKopy5cpx5swZPDw8LHsAIiIikiuio6MpW7bsfa/xlh35KgS5uLhQuXJlAOrUqcPOnTv5+OOPzfOAIiMj8fX1Nbe/ePFimt6he7m6uqa5/hFgPgtNREREbIclp7Lkm7PD0mMYBrGxsVSoUAEfHx/WrVtnfiwuLo5NmzbRsGFDK1YoIiIitirf9AS9+eabBAcHU7ZsWW7cuMGPP/7Ixo0bWb16NSaTiZEjRzJ16lQCAwMJDAxk6tSpFC5cWNeVERERkRzJNyHowoUL9OzZk/Pnz+Pp6UmNGjVYvXo1rVq1AmD06NHcuXOHYcOGce3aNerXr8/atWstOjYoIiIi9iNfrxOUG6Kjo/H09CQqKkpzgkRERGxEbvz9ztdzgkRERERyi0KQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2KV8E4JCQkKoW7cuRYsWpXTp0nTq1ImjR4+matOnTx9MJlOq2+OPP26likVERMSW5ZsQtGnTJoYPH86OHTtYt24dCQkJtG7dmlu3bqVq17ZtW86fP2++rVy50koVi4iIFExHjhyhXbt2BAUF8dprrxETE2PtknKFk7ULSLF69epU97/66itKly7N7t27adKkiXm7q6srPj4+eV2eiIiIXfj9999p2bIlN2/eBODDDz/k/PnzzJs3z8qVWV6+6Qm6V1RUFABeXl6ptm/cuJHSpUsTFBTEwIEDuXjxYqb7iY2NJTo6OtVNRERE0rp06RKdO3fm5s2bNGnShLlz5+Lo6Mj8+fPZuHGjtcuzuHwZggzDYNSoUTzxxBM8/PDD5u3BwcH88MMPrF+/ng8++ICdO3fSokULYmNjM9xXSEgInp6e5lvZsmXz4hBERERszuuvv8758+epXr06y5cvp3///gwaNAiAjz/+2MrVWZ7JMAzD2kXca/jw4axYsYKtW7fi7++fYbvz588TEBDAjz/+SJcuXdJtExsbmyokRUdHU7ZsWaKiovDw8LB47SIiIrbojz/+oH79+phMJnbs2EG9evUAOHz4MNWrV8fJyYmLFy9SvHhxq9QXHR2Np6enRf9+57ueoJdffplly5axYcOGTAMQgK+vLwEBAYSFhWXYxtXVFQ8Pj1Q3ERERuUtEBJNGjACgV69e5gAEUK1aNapXr05CQgJr1qyxVoW5It+EIMMweOmll/jll19Yv349FSpUuO9zrly5wpkzZ/D19c2DCkVERAqg0FB2livHyt9/xwEYFxSUpknr1q0B2Lp1ax4Xl7vyTQgaPnw433//PfPmzaNo0aJERkYSGRnJnTt3ALh58yavv/4627dvJzw8nI0bN9KhQwdKlixJ586drVy9iIiIDYqIgEGDmP7PzJgXgMDx45O336V+/fpA8pljBUm+CUGzZs0iKiqKZs2a4evra74tWLAAAEdHR/766y+efvppgoKC6N27N0FBQWzfvp2iRYtauXoREREbFBbGuaQkFv9z93WAxEQ4dixVs5SFifft21eg1gzKN+sE3W9+dqFChQrcWKSIiIhVBQYyB0gAngBqADg6QuXKqZoFBARQunRpLl68yJ49e2jQoEHe15oL8k1PkIiIiOStRF9fvihWDIDhkByAZs+Ge05MMplM1K1bF4A9CxakGS6zVQpBIiIidmrz5s2cu36d4p6edFm7FsLDoX//dNtWT0gA4MjHH0NAAISG5mGluUMhSERExE4tXLgQgC7PPotLq1ZpeoDMIiKotnYtAIcBkpJg8GCb7xFSCBIREbFDCQkJLFq0CIBu3bpl3jgsjKr/zN09krItnQnUtibfTIwWERGRvLNhwwYuXbpEyZIlad68eeaNAwOpaTKx2TComrItnQnUtkY9QSIiInYoZQmaZ555Bien+/SJ+PtT+IsvaOzoSCnIcAK1rVFPkIiIiJ2Jj4/nl19+AbIwFJaif39o0yZ5CKxyZZsPQKAQJCIiYnd+/fVXrl27hre3N02aNMn6E/39C0T4SaHhMBERETuTMhT27LPP4ujoaOVqrEchSERExI7ExsayZMkSIBtDYQWUQpCIiIgdWbt2LVFRUfj5+dGoUSNrl2NVCkEiIiJ2JGUo7LnnnsPBwb5jgH0fvYiIiB25c+cOS5cuBTQUBgpBIiIidmP16tXcvHmTcuXK8fjjj1u7HKtTCBIREbETKUNhXbt2xWQyWbka61MIEhERsQO3bt3iv//9L5AcgkQhSERExC6sWLGC27dvU7FiRerUqWPtcvIFhSARERE7sHDhQkBDYXdTCBIRESngbty4wYoVKwANhd1NIUhERKSA++9//0tMTAyBgYHUqlXL2uXkGwpBIiIiBVzKUFi3bt00FHYXhSAREZECLOrQIVatXAlogcR7KQSJiIgUVKGhLH34YeLi46kGPLRjh7UrylcUgkRERAqiiAgYNIh5hgHA84BpyJDk7QIoBImIiBRMYWFcSEpi3T93ewAkJsKxY1YsKn9RCBIRESmIAgNZaDKRBNQDKgM4OkLlytatKx9RCBIRESmI/P2ZV6ECAC9AcgCaPRv8/a1aVn7iZO0CRERExPKOHz/OjhMncHBwoOtPP0G9egpA91AIEhERKYDmz58PwJNPPolPly5WriZ/0nCYiIhIAZOUlMQ333wDwAsvvGDlavIvhSAREZECZsOGDRw7dgwPDw+effZZa5eTbykEiYiIFDCzZ88G4MUXX8Td3d3K1eRfCkEiIiIFyIULF1i8eDEAgwYNsnI1+ZtCkIiISAHy1VdfkZCQQP369alZs6a1y8nXFIJEREQKiNjYWGbMmAHA0KFDrVxN/qcQJCIiUkB8//33nD9/njJlytC9e3drl5PvKQSJiIgUAImJiUyfPh2AV199FRcXFytXlP8pBImIiBQA33zzDUePHqV48eKaEJ1FCkEiIiI27s6dO4wfPx6AcePGUbRoUStXZBsUgkRERGxcSEgIZ8+epVy5cgwfPtza5dgMhSAREREbtnfvXkJCQgB4//33cXNzs3JFtiPfhKCQkBDq1q1L0aJFKV26NJ06deLo0aOp2hiGwcSJE/Hz86NQoUI0a9aMgwcPWqliERER64qOjuaFF14gISGBLl266BIZ2ZRvQtCmTZsYPnw4O3bsYN26dSQkJNC6dWtu3bplbjNt2jQ+/PBDPv30U3bu3ImPjw+tWrXixo0bVqxcREQkiyIiYMOG5H8fUHx8PN27d+fQoUP4+voyc+ZMTCaTBYq0HybDMAxrF5GeS5cuUbp0aTZt2kSTJk0wDAM/Pz9GjhzJG2+8ASQvCuXt7c17773H4MGDs7Tf6OhoPD09iYqKwsPDIzcPQURE5F+hoTBoECQlgYMDzJkD/fun3zYiAsLCIDAQ/P3TPHzjxg2e69CBNZs24ebqypatW6lTp04uH4B15cbf73zTE3SvqKgoALy8vAA4efIkkZGRtG7d2tzG1dWVpk2bsm3bNqvUKCIikiUREf8GIEj+d/BgiIggMTGRS5cuERYWxqlTp7gxcyZGuXLQogUEBCSHp3/Exsbyww8/UD0ggDWbNlEY+CUujjr79lnnuGyck7ULSI9hGIwaNYonnniChx9+GIDIyEgAvL29U7X19vbm1KlTGe4rNjaW2NhY8/3o6OhcqFhERCQTYWH/BiDgKvB9YiKL2rVjZ1gYd+7cSdXcFfABfJKS8B0wAJclS7hw4wZ79uwx/x2rAPwI1DOM5EDVpk26vUaSsXwZgl566SX279/P1q1b0zx273inYRiZjoGGhIQwadIki9coIiKSZYGB4OBAXFIS04H3gBsA+/ebmxQtWpTYmBji4uOJBU79cwNg+XJzuzIlSzLo8mVeBwqnbExMhGPHFIKyKd8Nh7388sssW7aMDRs24H/Xh+nj4wP82yOU4uLFi2l6h+42duxYoqKizLczZ87kTuEiIiIZ8fcn7D//oQHwFskB6JEyZfj44485fPgwCQkJREdHE3P8OLdMJk4C24BfgJkmEzMmT+bbb7/lzz//5NSuXYx3cPg3AAE4OkLlynl/XDYu3/QEGYbByy+/zOLFi9m4cSMVKlRI9XiFChXw8fFh3bp11K5dG4C4uDg2bdrEe++9l+F+XV1dcXV1zdXaRUREMrNt2zY6fPABVwEvDw9mTJlC9+HDcXBI3RdhKluWwl98QfnBgymfmJgcbmbPTjuBes6c5CGwu9uoFyjb8k0IGj58OPPmzWPp0qUULVrU3OPj6elJoUKFMJlMjBw5kqlTpxIYGEhgYCBTp06lcOHC9OjRw8rVi4iIpG/btm20atWK27dvU69ePX755RfKlCmT8RP690+e33PsWHLvTnrhJitt5L7yzSnyGc3r+eqrr+jTpw+Q3Fs0adIkZs+ezbVr16hfvz4zZ840T57OCp0iLyIieeWvv/6iSZMmXL9+ndatW/PLL7/g7u5u7bJsUm78/c43ISivKASJiEheuHjxIo899hgRERE0bNiQdevWUbhw4fs/UdJlV+sEiYiI2KqEhAS6d+9OREQEVapUYfny5QpA+ZBCkIiIiIVNnDiR9evX4+7uzi+//ELx4sWtXZKkQyFIRETEgrZv326+qvvcuXOpXr26lSuSjCgEiYiIWMjt27fp3bs3SUlJ9OzZk+eff97aJUkmFIJEREQs5M033yQsLAw/Pz8+/vhja5cj96EQJCIiYgF//PEHM2bMACA0NFTzgGyAQpCIiMgDSkpK4uXBgzEMgxe7dKFt27bWLkmyQCFIRETkAX07YAB/7N1LEWDa4sUQGmrtkiQLFIJEREQeQNShQ4z56isAxgO+hpF8Xa+ICOsWJvelECQiIvIA/jNxIheAIOCVlI2JicnX9ZJ8TSFIREQkh44cOcLHixcD8BHgkvKAo2PyhU0lX1MIEhERyQHDMHjllVdISEigQ82aBDs6Jj/g6AizZ+vK7jbAydoFiIiI2KJly5axdu1aXFxc+PDnn8HNLXkIrHJlBSAboRAkIiKSTTExMbz66qsAvPbaa1ROGfpS+LEpGg4TERHJpg8++ICTJ0/i5+fHm2++ae1yJIcUgkRERLLhzJkzTJ06FYDp06dTpEgRK1ckOaUQJCIikg2jR4/m9u3bPPHEE3Tv3t3a5cgDUAgSERHJos2bN/Pjjz/i4ODAJ598gslksnZJ8gAUgkRERLIgPj6e4cOHAzBw4EBq1apl3YLkgSkEiYiIZMHMmTM5cOAAXl5evPPOO9YuRyxAIUhEROQ+zp8/z4QJEwB49913KVGihJUrEktQCBIREbmP0aNHEx0dTd26denfv7+1yxELUQgSERHJxObNm/n+++8xmUzMnDkTBwf96Swo9EmKiIhkIDY2lmHDhgEwaNAg6tata+WKxJIUgkRERDIwdepUDh48SKlSpTQZugBSCBIREUnHvn37zCtDz5w5U5OhCyCFIBERkXvEx8fTv39/EhIS6Ny5M88++6y1S5JcoBAkIiJyjwkTJrB7926KFy/OzHHjMG3cCBER1i5LLEwhSERECp6ICNiwIUfB5bfffuPdd98FYHa3bvjWqwctWkBAAISGWrpSsSKFIBERKVhCQ5MDSw6Cy6VLl+jZsyeGYTCwRw+emzMHkpKSH0xKgsGD1SNUgCgEiYhIwRERAYMGZT243NVjFBcXx3PPPcf58+epVq0aH7344r/7SZGYCMeO5e4xSJ5xsnYBIiIiFhMWlnFw8fdPvT001ByYDJOJlxs3ZtPmzRQtWpSffvqJwp6e4OCQen+OjlC5cu4fh+QJ9QSJiEjBERiYHFzull5wuafHaIZhMGfzZkwmE/Pnz+ehhx5KDk1z5iQ/P2U/s2enDVNisxSCRESk4MhqcLmrx+gbYOQ/m6cNHky7du3+bde/P4SHJw+ZhYcn35cCw2QYhmHtIvJSdHQ0np6eREVF4eHhYe1yREQkN0REJA+BVa6cfs9NRAQEBDA/KYkXgSRghMnER6dOYSpbNq+rlSzIjb/f6gkSEZGCx98fmjXLeOjK35+Zzz/PCyQHoAEmEx/NmaMAZGcUgkRExK7Ex8fz2muv8dK8eRjA8E6d+PzkSUwDBli7NMljOjtMRETsRmRkJF27dmXLli0ATJo0ibfffhuTyWTlysQaFIJERKTAMwyD+fPnM2LECK5cuULRokX5+uuv6dKli7VLEytSCBIRkQLtwIEDjBkzhhUrVgBQo0YNFi5cSJUqVaxcmVib5gSJiEiBdPjwYZ5//nlq1KjBihUrcHZ2ZvLkyezcuVMBSAD1BImISAFz9OhRJk+ezPz580lZBea5555j0qRJVKtWzcrVSX6Sr3qCNm/eTIcOHfDz88NkMrFkyZJUj/fp0weTyZTq9vjjj1unWBERyVeOHTtG7969qV69OvPmzcMwDLp06cK+fftYuHChApCkka9C0K1bt6hZsyaffvpphm3atm3L+fPnzbeVK1fmYYUiIpLfnDx5kv79+1O1alW+/fZbkpKS6NixI3/++SeLFi2iRo0a1i5R8ql8NRwWHBxMcHBwpm1cXV3x8fHJo4pERCS/unDhAlOmTGH27NnEx8cD8NRTTzFp0iTq1Klj5erEFuSrnqCs2LhxI6VLlyYoKIiBAwdy8eJFa5ckIiJ56Pbt20yYMIFKlSrx6aefEh8fT6tWrdixYwcrVqxQAJIsy1c9QfcTHBzMc889R0BAACdPnuTtt9+mRYsW7N69G1dX13SfExsbS2xsrPl+dHR0XpUrIiIWtnLlSoYPH054eDgA9erV491336V58+bWLUxskk2FoG7dupn/++GHH6ZOnToEBASwYsWKDBe8CgkJYdKkSXlVooiI5IKrV68ybNgwFixYAEC5cuX48MMP6dKli1Z7lhyzueGwu/n6+hIQEEBYWFiGbcaOHUtUVJT5dubMmTysUEREHtSWLVuoVasWCxYswNHRkddff52DBw/yzDPPKADJA7GpnqB7XblyhTNnzuDr65thG1dX1wyHykREJP8yDIOpU6cyfvx4kpKSCAwMZP78+Tz22GPWLk0KiHwVgm7evMmxY8fM90+ePMnevXvx8vLCy8uLiRMn8swzz+Dr60t4eDhvvvkmJUuWpHPnzlasWkRELC0mJoZ+/foxf/58AHr37s0nn3xC0aJFrVyZFCT5KgTt2rUr1eS2UaNGAck//LNmzeKvv/7i22+/5fr16/j6+tK8eXMWLFigXwoRkQLkwoULdOrUiR07duDk5MRnn33GwIEDrV2WFEAmI2VNcTsRHR2Np6cnUVFReHh4WLscERG5y+nTp3nyySc5duwYxYsXZ9GiRWnP/IqIgLAwCAwEf3/rFCp5Ljf+ftv0xGgRESk4jh07RuPGjTl27BgBAQHs2LEjbQAKDYWAAGjRIvnf0FDrFCsFgkKQiIhY3ZEjR2jcuDGnT58mKCiILVu2EBQUlLpRRAQMGgRJScn3k5Jg8ODk7SI5oBAkIiJWdfLkSZ588kkiIyN55JFH2Lx5M2XLlk3bMCzs3wCUIjER7jqhRiQ78tXEaBERsS/nzp2jZcuWnDt3jurVq7N+/XpKliyZfuPAQHBwSB2EHB2hcuW8KVYKHPUEiYiIVVy+fJlWrVpx4sQJKlasyLp16zIOQJA8CXrOnOTgA8n/zp6tydGSY+oJEhGRPHfnzh3at2/PoUOHKFOmDL/++it+fn73f2L//tCmTfIQWOXKCkDyQBSCREQkTyUlJdGnTx9+//13ihcvzrp166hQoULWT33391f4EYvQcJiIiOSpCRMmsHDhQpycnPjll1+oVq2aTn0Xq9BiiSIikvv+6eX5dt8+er/6KgBffvklffv2TX4sICDthOfwcPX4iFlu/P3WcJiIiOSu0FAYNIjNSUkM+GfT2LFjkwMQZH7qu0KQ5CINh4mISO75Z4HDsKQkOgPxwLPAlCFD/m2Tcur73XTqu+QBhSAREck9YWFcTUqiHXAVqAd8CzicOPFvG536Llai4TAREck1cQEBdAHCgHLAUqBQer08OvVdrEAhSEREcoVhGAyaPJlNQFFgOeCTWS+PTn2XPKYQJCIiOZfJ2j7vvvsu33zzDQ4ODiz8+mseKVtWvTySrygEiYhIzvxz1hdJSckTm+fMSR7WAn766SfefPNNAD755BPa9uxpzUpF0vVA6wRdvHiRpKQkfHx8LFlTrtI6QSIiFpDJ2j47IiJo3rw5MTExvPLKK3z00UdWK1MKjtz4+52js8P279/PQw89hK+vL2XKlKFMmTK89dZb3Lp1yyJFiYhIPpfB2j4nNm+mY8eOxMTE0L59ez744APr1CeSBTkKQf3798fb25utW7eyZ88epkyZwqpVq6hTpw7Xrl2zdI0iIpLfpLO2zzUHB9pNmMClS5eoXbs28+fPxzHltHeRfChHw2Hu7u7s3r2bqlWrmrcZhsFzzz2Hm5sb33//vUWLtCQNh4mIZNH9LmgaGgqDB0NiInEODrQJDGTj0aP4+/vz+++/Z+2q8CJZlG+Gw9Lr8TGZTEydOpWlS5dapDAREbGirFzQtH9/CA/HWL+egV26sPHoUYoWLcqKFSsUgMQmZDkEtWvXjjfffJOFCxcyZMgQXn31VS5cuJCqTVRUFMWLF7d4kSIikof+udSFec5PUlJyj09ERNq2/v5M3LiRb3/+GUdHR3766Sdq1KiRt/WK5FCWT5F/5JFH+PPPP/nqq6/M4adixYp07dqVWrVqkZiYyFdffcX/+3//L9eKFRGRPJCNC5rOmDGDyZMnA/DZZ5/Rpk2bvKpS5IHlaE7QhQsX2LNnD3v37jXfjh07hqOjI1WqVGH//v25UatFaE6QiMh9ZHL6+90h6LvvvqNXr14ATJ48mbfffjuPCxV7kht/v3O0WKK3tzdt27albdu25m137txh37597Nu3zyKFiYiIlaRc0PSfSc/pXdB02bJl9O3bF4CRI0fy1ltvWatakRx7oMUSbZF6gkREsigiIt0Lmv7666+0b9+e2NhYevfuzZdffomDQ47OsxHJsnzTEyQiInYgnQuarlmzhk6dOhEbG8vTTz/N3LlzFYDEZuknV0REsmTlypU8/fTTxMTE0LFjRxYsWICTk/5fWmyXQpCIiNzX0qVL6dy5M7GxsXTu3JmffvoJV1dXa5cl8kAUgkREJFNz5syhS5cuxMXF8eyzz7JgwQJcXFysXZbIA1MIEhGRdBmGwYQJExg8eDBJSUn069eP+fPn4+zsbO3SRCxCIUhERNKIjY1lwIAB5oUQ3377bebOnas5QFKg6KdZRERSOX/+PM888wzbt2/HwcGBmTNnMmTIEGuXJWJxCkEiImL2+++/06VLF86dO4enpyfz588nODjY2mWJ5AoNh4mICIZhMHv2bJo0acK5c+eoVq0aO3fuVACSAk0hSETEzl26dIlOnToxZMgQ4uLi6NixIzt27CAwMNDapYnkKoUgERE7tmbNGmrUqMGyZctwdnbm/fffZ/HixbqskNgFzQkSEbFDMTExjBkzho8//hiAatWqMW/ePGrVqmXdwkTykEKQiIid+euvv+jRowcHDhwAYPjw4UybNo3ChQtbuTKRvKXhMBERO5GUlMTHH39M3bp1OXDgAKVLl2b58uV8+umnCkBil9QTJCJiB86fP0/fvn1Zs2YNAE899RRffvkl3t7eVq5MxHrUEyQiUsAtW7aMGjVqsGbNGtzc3Jg5cybLly9XABK7l69C0ObNm+nQoQN+fn6YTCaWLFmS6nHDMJg4cSJ+fn4UKlSIZs2acfDgQesUKyKSz925c4dhw4bx9NNPc/nyZWrVqsXu3bsZNmwYJpPJ2uWJWF2+CkG3bt2iZs2afPrpp+k+Pm3aND788EM+/fRTdu7ciY+PD61ateLGjRt5XKmISD4VEQEbNnDwt9+oV68es2bNAuC1115jx44dVK9e3coFiuQf+WpOUHBwcIarkxqGwUcffcS4cePo0qULAN988w3e3t7MmzePwYMH52WpIiL5T2goxsCBzDYMXgViAG9vb7799ltat25t7epE8p181ROUmZMnTxIZGZnqF9nV1ZWmTZuybdu2DJ8XGxtLdHR0qpuISIETEUH0wIE8ZxgMJTkAtQX2r16tACSSAZsJQZGRkQBpJvJ5e3ubH0tPSEgInp6e5lvZsmVztU4REWs48ttv1DcMFgHOwAfACqD09etWrUskP7OZEJTi3sl8hmFkOsFv7NixREVFmW9nzpzJ7RJFRPLU0qVLqffSSxwBygBbgFGAg6MjVK5s3eJE8jGbCUE+Pj4AaXp9Ll68mOlpnq6urnh4eKS6iYgUBIZhMHnyZDp16sSNmzdpEhTEbgcH6gM4OsLs2eDvb+0yRfItmwlBFSpUwMfHh3Xr1pm3xcXFsWnTJho2bGjFykRE8l5cXBx9+/ZlwoQJAIwYMYJfDxzA+9Qp2LABwsOhf3/rFimSz+Wrs8Nu3rzJsWPHzPdPnjzJ3r178fLyoly5cowcOZKpU6cSGBhIYGAgU6dOpXDhwvTo0cOKVYuI5K2oqCieeeYZfvvtNxwdHfnss88YNGhQ8oP+/ur9EcmifBWCdu3aRfPmzc33R40aBUDv3r35+uuvGT16tHnxr2vXrlG/fn3Wrl1L0aJFrVWyiEieOnv2LG3btuXAgQO4u7vz008/Zbi0SIYiIiAsDAIDFZjErpkMwzCsXUReio6OxtPTk6ioKM0PEhGbcuLECZ588knCw8Px9fVl+fLlPProo9nbSWgoDBoESUng4ABz5mjYTGxCbvz9tpk5QSIi9uzIkSM0adKE8PBwKleuzPbt27MfgCIi/g1AkPzv4MHJ20XskEKQiEg+t3//fpo88QRnz56lelAQmzdvJiAgIPs7Cgv7NwClSEyEu+ZiitgThSARkXxs3759NGvQgEtXrlAb2BQWhu/KlTnbWWBg8hDY3bSWkNgxhSARkXzq77//pnXLlly7fZvHgfVAScPI+RCWv3/yHCBHx+T7WktI7Fy+OjtMRESSnT59mpYtW3Lx8mVqAauAYikPpgxh5SS89O8PbdokP79yZQUgsWsKQSIi+cyFCxdo1aoVZ86coUqlSqw5cYJid5/I+6BDWFpLSATQcJiISL5y7do12rRpw99//025cuVYt2EDpb/4QkNYIrlAPUEiIrklm4sS3rp1i3bt2rFv3z68vb359ddfKVu2rIawRHKJeoJERHJDaCgEBECLFsn/hoZm3DYigtg1a+gcHMz27dspVqwYa9euJTAw8N82/v7QrJkCkIgFacVoERFLi4hIDj53r8nj6Jh8UdN7Q0xoKAkDB9LVMFgMuLu68uvGjTz++ON5WbFIvqcVo0VEbEFWFyWMiCBp4ED6/xOAXIFl8fE8rt4ekTyhECQiYmlZXJTQ+PtvXjEMvgUcgYVAi6QkreAskkcUgkRELC2LixK+vWQJnwIm4FugY0pbreAskid0dpiISG64zxld06dP551PPgHgM5OJHoah099F8phCkIhIbslgUcI5c+YwevRoAN59912GvPCCTn8XsQKFIBGxnmyuo1MQzJ8/nyFDhgAwduxY3njjjeQH7OT4RfITzQkSEevIzjo6BcSSJUvo2bMnhmEwfPhw3nnnHWuXJGLXFIJEJO9FRMCgQf+eRp6UlPMro9uI1atX061bNxITE+nVqxczZszAZDJZuywRu6YQJCJ5L6vr6BQQGzdupHPnzsTFxfHcc88RGhqKw72n0ItIntNvoYjkvSyuo1MQbN++nfbt2xMTE0OHDh34/vvvcXLSdEyR/EAhSETyXhbX0bF1W7dupU2bNty6dYtWrVqxcOFCXFxcrF2WiPxD/zsiItZRwK+Mvn79ejp06MDt27dp1qwZixcvxs3NzdplichdFIJExHoyWEfH1q1cuZIuXboQGxtL69atWbx4MYULF7Z2WSJyDw2HiYhY0Pfff0+nTp2IjY2lY8eOLFu2TAFIJJ9SCBIRsQDDMJgyZQo9e/YkPj6ebt268fPPP+Pq6mrt0kQkAwpBIiIPKCYmhv79+/P2228D8PrrrzNv3jycnZ2tXJmIZEZzgkREcuKfS36cdHXl2Zdf5s8//8TBwYFPPvmEYcOGWbs6EckChSARkewKDYVBg1ialERf4BpQokQJfvjhB9q0aWPt6kQkixSCRKRgyKuLsUZEcHXgQF4xDL7/Z1N9YOGKFZSrXz/3XldELE5zgkTE9uXRxVgTExOZ+9FHVP8nADkAo4HNQLk7d3LlNUUk9ygEiYhty4OLsSYmJrJo0SIeffRRBn7wAReAqsD/gPcAlwJ6yQ+Rgk7DYSKSbyUkJHDz5k1u3rzJ7du3cXJywtXVFVdXVzw9PZPPvsrsYqwPOCx24cIFfvzxR2bOnElYWBgAxYoVY3zr1gz/+WdckpIK7CU/ROyBQpCIWF18fDz79+9n586d7Nq1i7///pvw8HDOnj1L0r0B5y5eXl6U9vKiNOAHlEn512TC78oVypw4gZ+fX5YvV3Hnzh3++usvNmzYwLp169i4cSOJiYkAFC9enOHDhzNy5EhKlCiR3NNUQC/5IWIvTIZhGNYuIi9FR0fj6elJVFQUHh4e1i5HxG5dvXqVZcuWsXLlStauXUtUVFSGbZ2cnChcuDCJiYnExcURHx+frdfy8vKiTJky+Hl54VeoEIVKl4YiRUhMTOTq1atcvnyZM2fOcOLEiTSh6/HHH6dnz5706tWLIkWK5OhYReTB5cbfb/UEiUieSUxMZPXq1Xz99dcsW7aMuLg482PFihWjbt261K1bl0ceeYTy5csTEBBAiRIl0lx5PSkpiWvXrnHhwgUuXrxIZGQk5w4d4uyRI5yLjeXstWucO3eOs2fPEhMTw9WrV7l69Sp/ZaHGEiVK0KhRI1q2bElwcDCVNddHpMBSCBKRXHf79m2++eYbPvzwQ44dO2be/sgjj9CpUyfatWtHnTp1cHR0zNL+HBwcKFGiBCVKlKB69eoZtjMMg2vXrnHuzz8527o15wyDc0A8YJhMmEaOxKt8eUqVKoWPjw/Vq1endOnSmEymBzxiEbEFCkEikmtu3brFjBkz+OCDD7hy5QqQPLemd+/e9O7dm1q1auXq65tMJry8vPBydOThe0f+DQM6doRmzXK1BhHJvxSCRMTi4uPjmTt3LpMnTyYyMhKA8uXLM2rUKPr164e7u3vWd2aJRRADA8HBIfVZZDqtXcTuaZ0gEbGo5cuXU61aNYYNG0ZkZCQVKlTgu+++IywsjJdffjl7AchSiyD6+8OcOcnBB3Rau4gAOjvM2uWIFBhnzpzhlVdeYfHixQCULl2a8ePHM3DgwDQTm7MkIiI5+NzbexMenvPwotPaRWyWzg4TkXwnISGBGTNmMH78eG7duoWTkxOjRo3i7bfffrBTynNjEUR///s/N6+uQSYiVqcQJCI5tmPHDoYMGcK+ffsAaNSoEbNmzeKRRx558J1bYx7PP1eHJykp+bXnzIH+/XPv9UTEqmxqTtDEiRMxmUypbj4+PtYuS8TuXLt2jSFDhtCwYUP27duHl5cXc+fOZfPmzZYJQJD383jy4BpkIpK/2FxP0EMPPcSvv/5qvp/VdUVE7JqFhngMw+CHTz5h1IQJXLp+HYA+ffowbdo0SpUqZfHXo39/aNMmb+bx5OI1yEQkf7K5EOTk5KTeH5HssNAQz5EjRxjWuTMbjhwBoDowa/Romrz3Xq68nllW5vFYgk6jF7E7NjUcBhAWFoafnx8VKlTg+eef58SJE5m2j42NJTo6OtVNxG5YYIjn9u3bjBs3jho1arDhyBEKASHAHqDJBx+k3pctDynpNHoRu2NTIah+/fp8++23rFmzhi+++ILIyEgaNmxoXok2PSEhIXh6eppvZcuWzcOKRawssyGeLFi2bBnVq1dn6tSpxMfH8xRwEBgDuKS3rwd8Pavr3z/5FPwNG5L/1aRokQLNptcJunXrFpUqVWL06NGMGjUq3TaxsbHExsaa70dHR1O2bFmtEyT2IYdr7Zw8eZIRI0awfPlyAMqVK8eM8ePpOHAgpru/Mu7dV26s7SMiQu6sE2RTPUH3cnd355FHHiEsLCzDNq6urnh4eKS6idiNbA7xREVFMWbMGKpXr87y5ctxdnZm7NixHDp0iKf798f0xReZ70tDSiJiQ2y6Jyg2NpZKlSoxaNAgxo8fn6XnaMVosUv3WSk5Li6OWbNm8Z///Mc8vPzkk0/y6aefUrVq1WztK8ttRESywe5XjH799dfp0KED5cqV4+LFi0yZMoXo6Gh69+5t7dJE8rcMzrCKjY3l66+/5t133yU8PByAatWqMW3aNNq1a4fJZMryvrLdRkTEymwqBEVERNC9e3cuX75MqVKlePzxx9mxYwcBAQHWLk0kmY1ccuHWrVvMnTuXadOmce7cOQB8fHyYNGkS/fr1w8nJpr4aRERyxKa+6X788UdrlyCSMRu45MKRI0eYNWsW33zzDVFRUQCUKVOG0aNHM2DAAAoXLmzlCkVE8o5NzwnKCc0JklyRj8+Kunz5Mj///DPz589n8+bN5u0pZ1b27t0bV1dXK1YoInJ/dj8nSCTfykeXXDAMg6NHj7J69WpWrVrFb7/9RmJiIgAODg60b9+eYcOG0apVKxwc7jpB1EaG8kRELEUhSMQSsnPJBQuHjfj4eP766y9+//13fv/9dzZs2MDp06dTtXn00Ufp3r073bp1S3/BUBsYyhMRsTSFIBFLSFkfZ/Dg5B6gjNbHyWHYiI2NJTw8nOPHj3PixAnz7fjx4xw7doyYmJhU7V1dXWncuDFt27alQ4cOBAUFZbzzjC510aaNeoREpEDTnCARS8psfZxM5g0ZZcpw+fLldEPOiRMnOHv2LJn9qhbz9KRe/frUq1ePhg0b0rRp06xPct6wAVq0SH97s2ZZ24eISC7TnCCR/C6z9XHCwriclMTfwN9AGBCWmMjfzZpx/MIFbt68memuixQpQsWKFalUqRIVK1akYmQkFefNo7JhUDE6GoeuXXM2hKWrp4uInVIIEskFhmFw7Ngx9u7dy549e5L/3b2byPQaHz8OgMlkokyZMv+GnBIlqOjqSqX69an4+OOULFny38ULU3qVUnqHDCPnQ1hZHcoTESlgFIJELCA+Pp4///yTrVu3smXLFrZu3Wq+/MS9ygGBQJDJROBzzxHYsyeVK1emfPnyuLm5JTe639whS5+N1r9/coDSpS5ExI5oTpBIDhiGwcGDB1m1ahVr1qxh+/bt3L59O1UbV1dXHnnkEWrXrk3t2rWpVasWNWrUwP3atczDRlbWHMrH6xKJiOQGzQkSsaKoqCh+/fVXVq9ezerVq4mIiEj1uJeXF0888QRPPPEEjRs35tFHH8XFxSXtjtzdMw8qWenl0RCWiMgDUwgSyYBhGOzbt49Vq1axatUqtm3bZl50EMDNzY3mzZvTtm1bnnzySapVq5Z68cGcyupEZQ1hiYg8EIWg3KZVeK0nB+/91atXWbdunbm3JzIy9VTmKlWqEBwcTNu2bWnSpAmFChWyfN3Z6eXR1dpFRHJMISg3aRXe7LNUaMzie5+UlMTu3bvNl5j4/fffSbqrB8bd3Z0WLVqYg0+FChVyXlN2qJdHRCTXaWJ0btHE1eyzVGi8z3t/5swZNm3axOrVq1mzZg2XL19O9fSHHnqItm3bEhwczBNPPJF8cVH16ImIWJUmRtuSfHRBTZtgyUs33PXeGyQvTLg5MZEt/fqxJSyM8PDwVM2LAi2BYJOJtu+9R9n/+7/U+1OPnohIgaQQlFu0Cm/2WCg0JiYmsj82ls0mE1sMgy3AxZQH160Dkq+kXrt2bVrWr0/wrFk0NAycIXnBwbFjoXv31Kei67paIiIFkkJQbtEpzNmTw9AYGxvLzp072bJlC1u2bOF///sf0dHRqdq4AvWDgmj83HM0adKEBg0aULRo0eRrY332Weod3hu81KMnIlJgKQTlJk1uzboshsbbt2+zbds2Nm3axObNm/n999+JjY1N1aZo0aI0atSIJjVr0rhMGeo+9RSulSqlfc2sBC/16ImIFFgKQblNpzBnXTqhMSX0bNy4kY0bN/LHH38QHx+f6mmlSpWiSZMmNG7cmCZNmlCjRg0cHR3v/3pZCV7q0RMRKbB0dpjkO8eOHWPFihWsWLGCTZs2ERcXl+pxf39/mtWrR9MKFWjcoQNBTZr8e2HRnIiIuH9vXVbaiIhIrsmNv98KQZJ3MjjN3DAM9uzZw4IFC1iyZAl///13qqf5+/vTvHlzmjVrRrNmzaiwfj2mwYN1tpaIiB1RCLIAhSArSec08yONGjFv3jx+/PFHwsLCzE2dnJxo3Lgx7dq1o127dlSpUuXfnh6tvyQiYpe0TpDYprtOM08CViUl8fGAAay7q4mbmxsdOnTgueeeo02bNhn/gOtsLRERsRCFIHuVlysgh4VxIymJr4FPgJQ+H5PJRHBwMD169KBjx47Jp63fj87WEhERC1EIsiV5fF0tSzhx4gSfzptHKJCyeo8n0N9k4qWtW6nQsGH2dqiztURExEI0J8hW5NF1tSzBMAw2bdrERx99xLJly0j5EQsCRgC9HRwo8qDBS2driYjYFc0JKuAMw+D06dMcPnyY69evExsbi6enJz4ODlQfOBCPlLxqoetqmVloTk1MTAzz5s3j448/Zv/+/ebtrVu35pVXXqHtww/jcOKEZYKL1l8SEZEHpBBkZUlJSaxZs4YFCxawfPlyrly5kmHbykBjoD3QKjGRojkJLrkwp+bcuXN89tlnzJ4923xF9sKFC9OrVy9GjBhBtWrV/m1crlyOX0dERMSSFIKsxDAM5s+fz5QpUzh8+LB5u7OzM0FBQZQuXRoXFxeioqI4Ex7O2chIjgHHgK8AZ6DtO+/Q89IlOnTogJubW9Ze2EJzagzD4I8//mDGjBksXLiQhIQEAMqVK8dLL73EgAEDKF68eLb2KSIikpc0J8gKDh48yJAhQ9i6dSsAHh4e9O7dmy5dutCoUSOcnZ3TPOfyRx+x67XXWJOUxAr+PcMKwNPTk+eee44XX3yRxo0b4+DgcP8icjin5tatW8yfP59Zs2bx559/mrc/8cQTvPLKK3Tq1AknJ2VrERGxLC2WaAHWDEGGYTBnzhxGjhxJTEwMhQsXZuzYsbz88st4enrefwd3BZeDUVF8//33/PDDD5w5c8bcxN/fn+eff54ePXpQq1atB7ucxD+vmXjkCJuvXuXH335jwYIFREVFAeDq6kq3bt145ZVXePTRRx/sdURERDKhEGQBKW/i1q1b2blzJ5UrVyY4ODj1BTdzYQ2dmJgY+vbty48//ghA27ZtmTNnDmXLln2g/SYlJbF582a+++47Fi1aZA4oAFWqVKF9+/a0bt2axo0bU6hQoSzv99q1a2wYN45fZ81iCXD+rscqVqzI0KFD6du3LyVKlHig+kVERLJCIcgCUt7Euz388MMsWrSIoKCgXFlD5/r163Ts2JEtW7bg5ORESEgIo0aNytqwVTbExMSwatUq5n/5Jf9du5aYuy486uTkRNWqValZsyZBQUF4e3tTvHhxTCYTSUlJXL58mfPnzxMWFsb+/fs5evQod/9oFAOeMZnoPm8ezbt2tXjtIiIimVEIsoC7Q1CLFi3Ys2cP165do2TJkmxeuJBqLVtadA2ds2fP0rZtWw4cOICHhwdLly6lWbNmD34gGfknxEUnJbHKZGJdo0asCQ8nIiIi27uqBjwJtAFaAa4AGzbAvfXn5erTIiJilxSCLCDlTXz+6aeZv2QJkZGRtG/fnt27d1OmZEn+d/kyAfc+Kb0//Flw5MgR2rRpw+nTp/H19WX16tXUqFHDEoeRvgwWQjROniQC2LdvH/v27ePUqVNcuHCBa9euAeDg4ECJEiXw8fGhfPny1KhRg5qlSuFTt+79A2Eerj4tIiL2SyHIAlLexH1AjblzoX9/rly5QpMmTTh06BAPAf8j+dIOQI57gnbs2EH79u25cuUKQUFBrFmzhvLly1vyUNLasAFatEh/e056n0JD055Kf3fA0RXdRUQkj+RGCLLbiR3lIfkPfEQEJUqUYPXq1fj5+XEQeAaIgxyvobNy5UpatGjBlStXqFevHlu3bs39AAT/LoR4twdZCLF//+RAs2FD8r/39vBktvq0iIhIPme3IQhI9Qe7bNmyLF++HHd3d34DhrRti3HyZLaHdkJDQ+nYsSN37tyhbdu2rF+/nlKlSuVC8elIWQgx5Uw3S1xc1N8/uRcpvX1YOnSJiIjkIfsOQff8wa5duzYLFy7EwcGBr1av5p1vvsnyrgzDYPz48QwYMIDExER69uzJsmXLcHd3z9oOIiKSe1xyMIE5lfv13lhSboQuERGRPGK3c4KiHBzwyGAS7+eff87QoUMBmDlzJsOGDct0n9euXaNfv34sWbIEgLfeeovJkydnfaFCW59crCu6i4hILtPEaAswv4mHDuFx94U97/HGG28wbdo0AEaMGEFISAiFCxdO1cYwDJYvX85LL73E6dOncXFxYebMmQwYMCDrBWlysYiIyH3lRgiy34s8lSmT6cPvvvsuRYsW5e2332bGjBksXbqUoUOH0rRpU0wmE7t37+bbb7/l999/B6BSpUosWLCAxx57LHt1ZDa5WCFIREQk19hkT9Bnn33G9OnTOX/+PA899BAfffQRjRs3ztJzs5skly9fztChQzNcbNDFxYVXX32VcePGUbRo0WwdB6CeIBERkSzQKfLAggULGDlyJOPGjWPPnj00btyY4OBgTp8+nSuv1759e44cOcLcuXNp1aoV/v7+lClThlatWhESEsLp06fNvUY5osnFIiIiVmFzPUH169fn0UcfZdasWeZt1apVo1OnToSEhNz3+da8inymNLlYREQkQ3Y/JyguLo7du3czZsyYVNtbt27Ntm3b0n1ObGwssbGx5vvR0dG5WmOO+fsr/IiIiOQhmxoOu3z5MomJiXh7e6fa7u3tTWRkZLrPCQkJwdPT03wrW7ZsXpQqIiIi+ZxNhaAU966/YxhGhmvyjB07lqioKPPtzJkzeVGiiIiI5HM2NRxWsmRJHB0d0/T6XLx4MU3vUApXV1dcXV3zojwRERGxITbVE+Ti4sJjjz3GunXrUm1ft24dDRs2tFJVIiIiYotsqicIYNSoUfTs2ZM6derQoEED5syZw+nTpxkyZIi1SxMREREbYnMhqFu3bly5coXJkydz/vx5Hn74YVauXElAQIC1SxMREREbYnPrBD2ofLtOkIiIiGRIK0aLiIiIWIhC0IOIiIANG5L/FREREZuiEJRToaHJFz5t0SL539BQa1ckIiIi2aAQlBMRETBo0L9Xfk9KgsGD1SMkIiJiQxSCciIs7N8AlCIxMfkCqCIiImITFIJyIjAQHO556xwdk68ALyIiIjZBISgn/P1hzpzk4APJ/86eravAi4iI2BCbWywx3+jfH9q0SR4Cq1xZAUhERMTGKAQ9CH9/hR8REREbpeEwERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJZsKQeXLl8dkMqW6jRkzxtpliYiIiA1ysnYB2TV58mQGDhxovl+kSBErViMiIiK2yuZCUNGiRfHx8bF2GSIiImLjbGo4DOC9996jRIkS1KpVi3feeYe4uDhrlyQiIiI2yKZ6gl555RUeffRRihcvzh9//MHYsWM5efIkc+fOzfA5sbGxxMbGmu9HRUUBEB0dnev1ioiIiGWk/N02DMNyOzWsbMKECQaQ6W3nzp3pPvfnn382AOPy5csPtH/ddNNNN9100802bsePH7dYBjEZhiUjVfZdvnyZy5cvZ9qmfPnyuLm5pdl+9uxZ/P392bFjB/Xr10/3uff2BF2/fp2AgABOnz6Np6fngxVvQ6KjoylbtixnzpzBw8PD2uXkGR23jtse6Lh13PYgKiqKcuXKce3aNYoVK2aRfVp9OKxkyZKULFkyR8/ds2cPAL6+vhm2cXV1xdXVNc12T09Pu/rhSeHh4aHjtiM6bvui47Yv9nrcDg6Wm85s9RCUVdu3b2fHjh00b94cT09Pdu7cyauvvkrHjh0pV66ctcsTERERG2MzIcjV1ZUFCxYwadIkYmNjCQgIYODAgYwePdrapYmIiIgNspkQ9Oijj7Jjx44H3o+rqysTJkxId4isINNx67jtgY5bx20PdNyWO26rT4wWERERsQabWyxRRERExBIUgkRERMQuKQSJiIiIXVIIEhEREbtUIEPQZ599RoUKFXBzc+Oxxx5jy5YtmbbftGkTjz32GG5ublSsWJHPP/88jyq1rOwc9y+//EKrVq0oVaoUHh4eNGjQgDVr1uRhtZaT3c87xf/+9z+cnJyoVatW7haYS7J73LGxsYwbN46AgABcXV2pVKkSX375ZR5VaznZPe4ffviBmjVrUrhwYXx9fenbty9XrlzJo2of3ObNm+nQoQN+fn6YTCaWLFly3+cUhO+07B53QflOy8nnncKWv9NyctyW+E4rcCFowYIFjBw5knHjxrFnzx4aN25McHAwp0+fTrf9yZMneeqpp2jcuDF79uzhzTffZMSIESxatCiPK38w2T3uzZs306pVK1auXMnu3btp3rw5HTp0MK/CbSuye9wpoqKi6NWrF08++WQeVWpZOTnurl278ttvvxEaGsrRo0eZP38+VatWzcOqH1x2j3vr1q306tWL/v37c/DgQX766Sd27tzJgAED8rjynLt16xY1a9bk008/zVL7gvKdlt3jLijfadk97hS2/p2Wk+O2yHeaxa5Clk/Uq1fPGDJkSKptVatWNcaMGZNu+9GjRxtVq1ZNtW3w4MHG448/nms15obsHnd6qlevbkyaNMnSpeWqnB53t27djLfeesuYMGGCUbNmzVysMHdk97hXrVpleHp6GleuXMmL8nJNdo97+vTpRsWKFVNtmzFjhuHv759rNeYmwFi8eHGmbQrKd9rdsnLc6bHF77S7Zee4bf077W5ZOW5LfacVqJ6guLg4du/eTevWrVNtb926Ndu2bUv3Odu3b0/Tvk2bNuzatYv4+Phcq9WScnLc90pKSuLGjRt4eXnlRom5IqfH/dVXX3H8+HEmTJiQ2yXmipwc97Jly6hTpw7Tpk2jTJkyBAUF8frrr3Pnzp28KNkicnLcDRs2JCIigpUrV2IYBhcuXODnn3+mXbt2eVGyVRSE7zRLsMXvtJyy9e+0nLDUd5rNrBidFZcvXyYxMRFvb+9U2729vYmMjEz3OZGRkem2T0hI4PLly5lenDW/yMlx3+uDDz7g1q1bdO3aNTdKzBU5Oe6wsDDGjBnDli1bcHKyzR//nBz3iRMn2Lp1K25ubixevJjLly8zbNgwrl69ajPzgnJy3A0bNuSHH36gW7duxMTEkJCQQMeOHfnkk0/yomSrKAjfaZZgi99pOVEQvtNywlLfaQWqJyiFyWRKdd8wjDTb7tc+ve35XXaPO8X8+fOZOHEiCxYsoHTp0rlVXq7J6nEnJibSo0cPJk2aRFBQUF6Vl2uy83knJSVhMpn44YcfqFevHk899RQffvghX3/9tU31BkH2jvvQoUOMGDGC8ePHs3v3blavXs3JkycZMmRIXpRqNQXlOy2nbP07LasK2ndadljqO61AxcaSJUvi6OiY5v8KL168mOb/jFL4+Pik297JyYkSJUrkWq2WlJPjTrFgwQL69+/PTz/9RMuWLXOzTIvL7nHfuHGDXbt2sWfPHl566SUg+RfJMAycnJxYu3YtLVq0yJPaH0ROPm9fX1/KlCmDp6eneVu1atUwDIOIiAgCAwNztWZLyMlxh4SE0KhRI/7v//4PgBo1auDu7k7jxo2ZMmVKgewVKQjfaQ/Clr/TsqugfKflhKW+0wpUT5CLiwuPPfYY69atS7V93bp1NGzYMN3nNGjQIE37tWvXUqdOHZydnXOtVkvKyXFD8v8t9enTh3nz5tnkHInsHreHhwd//fUXe/fuNd+GDBlClSpV2Lt3L/Xr18+r0h9ITj7vRo0ace7cOW7evGne9vfff+Pg4IC/v3+u1mspOTnu27dv4+CQ+mvO0dER+Ld3pKApCN9pOWXr32nZVVC+03LCYt9pDzStOh/68ccfDWdnZyM0NNQ4dOiQMXLkSMPd3d0IDw83DMMwxowZY/Ts2dPc/sSJE0bhwoWNV1991Th06JARGhpqODs7Gz///LO1DiFHsnvc8+bNM5ycnIyZM2ca58+fN9+uX79urUPIkewe971s9UyK7B73jRs3DH9/f+PZZ581Dh48aGzatMkIDAw0BgwYYK1DyJHsHvdXX31lODk5GZ999plx/PhxY+vWrUadOnWMevXqWesQsu3GjRvGnj17jD179hiA8eGHHxp79uwxTp06ZRhGwf1Oy+5xF5TvtOwe971s9Tstu8dtqe+0AheCDMMwZs6caQQEBBguLi7Go48+amzatMn8WO/evY2mTZumar9x40ajdu3ahouLi1G+fHlj1qxZeVyxZWTnuJs2bWoAaW69e/fO+8IfUHY/77vZ6heGYWT/uA8fPmy0bNnSKFSokOHv72+MGjXKuH37dh5X/eCye9wzZswwqlevbhQqVMjw9fU1XnjhBSMiIiKPq865DRs2ZPq7WlC/07J73AXlOy0nn/fdbPU7LSfHbYnvNJNhFNA+YREREZFMFKg5QSIiIiJZpRAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEQKhMmTJ/PII4/g7u6Ot7c3Q4cOJT4+3tpliUg+5mTtAkREHpRhGCQmJjJ79mzKlCnDoUOH6NWrFzVq1GDo0KHWLk9E8ildQFVECqQePXpQqlQpPv74Y2uXIiL5lIbDRMTmnTp1ipdeeomHH36Y4sWLU6RIERYuXIi/v7+1SxORfEwhSERs2uXLl6lXrx6XL1/mww8/ZOvWrWzfvh1HR0dq1apl7fJEJB/TnCARsWkrV64kISGB+fPnYzKZAJg5cyZxcXEKQSKSKYUgEbFpXl5eREdHs2zZMqpXr85///tfQkJCKFOmDKVKlbJ2eSKSj2litIjYNMMwGDp0KPPmzaNQoUK8+OKLxMTEcOrUKZYvX27t8kQkH1MIEhEREbukidEiIiJilxSCRERExC4pBImIiIhdUggSERERu6QQJCIiInZJIUhERETskkKQiIiI2CWFIBEREbFLCkEiIiJilxSCRERExC4pBImIiIhdUggSERERu/T/AZhzMzM7ZcOqAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABb3UlEQVR4nO3deXhMZ//H8fdkD5LYswixxVJqKbVWLbU0lqJUixa1pVVV9XgsrRb9aT10X2gtQVu1FEWpau2trbWrPVQQYi2JBIkk5/dHZCqySGKSyWQ+r+uaK+bMmTPfM5Oc+bjvc9/HZBiGgYiIiIidcbB2ASIiIiLWoBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkVtWsWTOaNWtm7TKyrU+fPhQqVChT65YtW5Y+ffrkaD0mk4lx48bl6Gvcz40bNxg3bhwbN260ah22Yt26ddStW5eCBQtiMplYtmwZc+bMwWQyERYWZl5v3rx5fPLJJzlSw5gxYyhTpgxOTk4ULlw4y8/v06cPZcuWtXhdeUlERARjxoyhYcOGFC9eHE9PT+rUqcP06dNJSEhItf6ff/5JmzZt8PDwoFChQjRv3pwtW7ZYoXLJiJO1CxD7NnXqVGuXkGuWLl2Kp6entcvIcTdu3GD8+PEANh1wc4NhGHTr1o1KlSrx448/UrBgQSpXrkx8fDzbtm3D19fXvO68efM4cOAAQ4cOtWgNy5cv59133+XNN98kKCgIV1dXi24/v9i1axfffPMNvXr14q233sLZ2Zmff/6Zl19+me3btzNr1izzujt27ODxxx+nXr16fPvttxiGweTJk3niiSfYsGEDDRs2tOKeyN0UgsSqHnroIWuXkGtq165t7RLEgm7evImbmxsmkynb2zh37hz//PMPnTt35oknnkjxWIkSJR60xEw5cOAAAEOGDKFkyZK58pqWYonPILMaN27MiRMncHZ2Ni9r1aoVcXFxTJkyhfHjx1O6dGkA3nrrLQoXLszq1aspUKAAAC1btqR8+fIMHz5cLUJ5iLrDJNPGjRuHyWTi4MGDdO/eHS8vL7y9venbty+RkZEp1r116xajR4+mXLlyuLi4UKpUKV555RWuXbuWYr20usO+/PJLatasSaFChfDw8KBKlSq88cYbAISFheHk5MTEiRNT1ffbb79hMplYtGhRhvtx7do1/vOf/1C+fHlcXV0pWbIkbdu25ciRIwBs3LgRk8mUqjsnLCwMk8nEnDlzUm3z4MGDPPHEExQsWJASJUowePBgbty4kWKdtLrD7leLJZw/f57g4GD8/f1xcXGhXLlyjB8/nvj4+BTrjR8/nvr161O0aFE8PT155JFHCAkJ4d5rLK9fv55mzZpRrFgx3N3dKVOmDF26dOHGjRuEhYWZv7zHjx+PyWTCZDLdtxvwxo0bDB8+nHLlyuHm5kbRokWpW7cu8+fPT7HenDlzqFy5Mq6urlStWpVvvvkmVVdMVj6/nTt38txzz1G2bFnc3d0pW7Ys3bt359SpU6le12Qy8euvv9K3b19KlChBgQIFiI2NBWDhwoU0bNiQggULUqhQIdq0acOePXsy3Odx48bh7+8PwMiRIzGZTOb9uLc7rFmzZvz000+cOnXK/J7e74s/MTGRyZMnU6VKFfPvVq9evQgPDzevU7ZsWcaMGQOAt7d3prpT0/oM0hIXF8eECRPMr1+iRAlefPFFLl26lGK92NhY/vOf/+Dj40OBAgV4/PHH2bVrV6q/F0t9Bjt37uSpp56iaNGiuLm5Ubt2bb7//vsM9xmgSJEiKQJQsnr16gGkeF+3bNlCs2bNzAEIwMPDg8cff5ytW7cSERFx39eT3KGWIMmyLl268Oyzz9KvXz/++usvRo8eDWBuDjYMg06dOrFu3TpGjx5NkyZN2L9/P2PHjmXbtm1s27Yt3Sb3BQsWMGjQIF599VU++OADHBwcOH78OIcOHQKSDtpPPfUUX331FSNGjMDR0dH83C+++AI/Pz86d+6cbu3Xr1/nscceIywsjJEjR1K/fn2io6P57bffiIiIoEqVKll+P27fvk3btm0JDg5m1KhRbN26lQkTJnDq1ClWrFjxwLX06dOHr7/+mpMnT2b5vIvz589Tr149HBwcePvtt6lQoQLbtm1jwoQJhIWFMXv2bPO6YWFhBAcHU6ZMGQC2b9/Oq6++ytmzZ3n77bfN67Rr144mTZowa9YsChcuzNmzZ1m9ejVxcXH4+vqyevVqnnzySfr160f//v2B+7dqDBs2jG+//ZYJEyZQu3ZtYmJiOHDgAFeuXDGvM2fOHF588UU6duzIhx9+SGRkJOPGjSM2NhYHh+z9fy4sLIzKlSvz3HPPUbRoUSIiIvjyyy959NFHOXToEMWLF0+xft++fWnXrh3ffvstMTExODs789577zFmzBhefPFFxowZQ1xcHO+//z5NmjThzz//TLe1s3///tSsWZOnn36aV199lR49eqT7dzF16lQGDhzIiRMnWLp0aab27eWXX2b69OkMHjyY9u3bExYWxltvvcXGjRvZvXs3xYsXZ+nSpUyZMoWQkBBWr16Nl5eXOZilJbOfQWJiIh07duT3339nxIgRNGrUiFOnTjF27FiaNWvGzp07cXd3B+DFF19k4cKFjBgxghYtWnDo0CE6d+5MVFRUmjU8yGewYcMGnnzySerXr89XX32Fl5cXCxYs4Nlnn+XGjRvZOmdv/fr1ODk5UalSJfOyuLi4ND/L5GV//fVXiq5OsSJDJJPGjh1rAMbkyZNTLB80aJDh5uZmJCYmGoZhGKtXr05zvYULFxqAMX36dPOypk2bGk2bNjXfHzx4sFG4cOEM69iwYYMBGEuXLjUvO3v2rOHk5GSMHz8+w+e+8847BmCsWbPmvtvfsGFDiuUnT540AGP27NnmZb179zYA49NPP02x7rvvvmsAxubNm83LAgICjN69e2epFsMwjL59+xqOjo5GWFhYhusZhmEAxtixY833g4ODjUKFChmnTp1Ksd4HH3xgAMbBgwfT3E5CQoJx+/Zt45133jGKFStm/mwXL15sAMbevXvTreHSpUup6rif6tWrG506dUr38YSEBMPPz8945JFHzLUYhmGEhYUZzs7ORkBAgHlZVj6/e8XHxxvR0dFGwYIFU3yms2fPNgCjV69eKdY/ffq04eTkZLz66qspll+/ft3w8fExunXrlsFe/1vT+++/n2J58uudPHnSvKxdu3Yp9jMjhw8fNgBj0KBBKZb/8ccfBmC88cYb5mXJf9eXLl3KcJtZ+Qzmz59vAMaSJUtSbGPHjh0GYEydOtUwDMM4ePCgARgjR45MsV7y8+/+e7HEZ1ClShWjdu3axu3bt1Os2759e8PX19dISEjI8D241y+//GI4ODgYr7/+eorltWrVMipVqpRie7dv3zbKly9vAMa8efOy9DqSc9QdJln21FNPpbhfo0YNbt26xcWLF4Gk/xkBqf5X9cwzz1CwYEHWrVuX7rbr1avHtWvX6N69O8uXL+fy5cup1mnWrBk1a9ZkypQp5mVfffUVJpOJgQMHZlj7zz//TKVKlWjZsmWG62VVz549U9zv0aMHkPQ/zwetJSQkhPj4eAICArJc18qVK2nevDl+fn7Ex8ebb0FBQQBs2rTJvO769etp2bIlXl5eODo64uzszNtvv82VK1fMn22tWrVwcXFh4MCBfP311/z9999ZqufuGuLj481dbfXq1ePnn39m1KhRbNy4kZs3b6Z43tGjRzl37hw9evRI0Q0UEBBAo0aNsvy+JIuOjmbkyJFUrFgRJycnnJycKFSoEDExMRw+fDjV+l26dElx/5dffiE+Pp5evXql2C83NzeaNm1qtRFyyb939/4N1qtXj6pVq2b4N5ierHwGK1eupHDhwnTo0CHF+1KrVi18fHzM70vy71+3bt1SPL9r1644OaXdUZHdz+D48eMcOXLE/Ld697pt27YlIiKCo0ePZvr92L17N926daNBgwapuudfffVVjh07xuDBgzl79ixnzpzhpZdeMnezZrflUixPn4RkWbFixVLcT27iTf7iunLlCk5OTqm6QEwmEz4+Pim6OO71wgsvMGvWLE6dOkWXLl0oWbIk9evXZ82aNSnWGzJkCOvWrePo0aPcvn2bGTNm0LVrV3x8fDKs/dKlSxk292eHk5NTqvckuY6M9jUnarnXhQsXWLFiBc7Ozilu1apVAzCHzD///JPWrVsDMGPGDLZs2cKOHTt48803gX8/2woVKrB27VpKlizJK6+8QoUKFahQoQKffvrpfWsJCwtLVUfyl+Bnn33GyJEjWbZsGc2bN6do0aJ06tSJ0NBQ4N/3Ma3P936feUZ69OjBF198Qf/+/fnll1/4888/2bFjByVKlEgVxIBUXRgXLlwA4NFHH021bwsXLkwzxOeG5PcrrS4XPz+/DH8v77fNzHwGFy5c4Nq1a7i4uKR6X86fP29+X5K36e3tneL5af1NJcvuZ5C83vDhw1OtN2jQIIBMf1579uyhVatWBAYGsmrVqlRdX3379uV///sf3377Lf7+/pQpU4ZDhw4xfPhwAEqVKpWp15Gcp3OCxOKKFStGfHw8ly5dShGEDMPg/PnzPProoxk+/8UXX+TFF18kJiaG3377jbFjx9K+fXuOHTtmbg3p0aMHI0eOZMqUKTRo0IDz58/zyiuv3Le2EiVKpDiBMS1ubm4A5hMuk6V3gIyPj+fKlSspDtrnz58HUgfGrNbyoIoXL06NGjV4991303zcz88PSDoXy9nZmZUrV5r3H2DZsmWpntOkSROaNGlCQkICO3fu5PPPP2fo0KF4e3vz3HPPpVuLn58fO3bsSLGscuXKABQsWJDx48czfvx4Lly4YG4V6tChA0eOHDG/j8nv693uXZbZzy8yMpKVK1cyduxYRo0aZV4eGxvLP//8k+Y+3HsycvI5Q4sXL85WS11OSX6/IiIiUgXtc+fOpTrXKSvbzMxnULx4cYoVK8bq1avT3JaHh0eKbV64cCFFMEj+m0pLdj+D5PVGjx7N008/neY6yb+PGdmzZw8tW7YkICCAX3/9FS8vrzTXGzlyJEOHDiU0NBQPDw8CAgIIDg6mYMGC1KlT576vI7lDLUFicclDfefOnZti+ZIlS4iJiUk1FDg9BQsWJCgoiDfffJO4uDgOHjxofszNzc3cJfPRRx9Rq1YtGjdufN9tBgUFcezYMXOXXVqSTz7ev39/iuU//vhjus/57rvvUtyfN28ekPE8OZmp5UG1b9+eAwcOUKFCBerWrZvqlhyCTCYTTk5OKU40v3nzJt9++22623Z0dKR+/frmbsndu3cDqVsGk7m4uKR6/eQvw7t5e3vTp08funfvztGjR7lx4waVK1fG19eX+fPnpxitdurUKbZu3Zri+Zn9/EwmE4ZhpPpf/MyZM9Oc/C4tbdq0wcnJiRMnTqT5/tatWzdT28kMV1fXNFun0tKiRQsg9d/gjh07OHz4cKb/Bu+Wlc+gffv2XLlyhYSEhDTfk+Sw8fjjjwNJI7vutnjx4lSjF9OT2c+gcuXKBAYGsm/fvnTXS+v38W579+6lZcuW+Pv7s2bNGooUKZLh+q6urlSvXp2AgABOnz7NwoULGTBggPmkcLE+tQSJxbVq1Yo2bdowcuRIoqKiaNy4sXl0WO3atXnhhRfSfW7yAaJx48b4+vpy/vx5Jk6ciJeXV6oWpEGDBjF58mR27drFzJkzM1Xb0KFDWbhwIR07dmTUqFHUq1ePmzdvsmnTJtq3b0/z5s3x8fGhZcuWTJw4kSJFihAQEMC6dev44Ycf0tymi4sLH374IdHR0Tz66KPm0WFBQUE89thjD1QLQL9+/fj66685ceJEllsb3nnnHdasWUOjRo0YMmQIlStX5tatW4SFhbFq1Sq++uor/P39adeuHR999BE9evRg4MCBXLlyhQ8++CBVQPjqq69Yv3497dq1o0yZMty6dcs8KjD53Kbk//UuX76cJ554gqJFi1K8ePEMR7bVr1+f9u3bU6NGDYoUKcLhw4f59ttvadiwoXmY8f/93//Rv39/OnfuzIABA7h27Rrjxo1L1RWT2c/P09OTxx9/nPfff99c36ZNmwgJCcn0rMlly5blnXfe4c033+Tvv//mySefpEiRIly4cIE///zT3MJlCQ8//DA//PADX375JXXq1MHBwSHdkFW5cmUGDhzI559/joODA0FBQebRYaVLl+b111/P8us7ODhk+jN47rnn+O6772jbti2vvfYa9erVw9nZmfDwcDZs2EDHjh3p3Lkz1apVo3v37nz44Yc4OjrSokULDh48yIcffoiXl1emzp3Jymcwbdo0goKCaNOmDX369KFUqVL8888/HD58mN27d2c4vcbRo0fNv+PvvvsuoaGh5u5aSOoqTm75PnDgAEuWLKFu3bq4urqyb98+/ve//xEYGMj//d//Zfm9lxxk1dOyxaakN4okrZEsN2/eNEaOHGkEBAQYzs7Ohq+vr/Hyyy8bV69eTfHce0eHff3110bz5s0Nb29vw8XFxfDz8zO6detm7N+/P82amjVrZhQtWtS4ceNGpvfj6tWrxmuvvWaUKVPGcHZ2NkqWLGm0a9fOOHLkiHmdiIgIo2vXrkbRokUNLy8v4/nnnzd27tyZ5uiwggULGvv37zeaNWtmuLu7G0WLFjVefvllIzo6OsXr3js6LLO1JI9Au/v9TQ9pjMq6dOmSMWTIEKNcuXKGs7OzUbRoUaNOnTrGm2++maLGWbNmGZUrVzZcXV2N8uXLGxMnTjRCQkJSvPa2bduMzp07GwEBAYarq6tRrFgxo2nTpsaPP/6Y4jXXrl1r1K5d23B1dU01yicto0aNMurWrWsUKVLE/Pqvv/66cfny5RTrzZw50wgMDDRcXFyMSpUqGbNmzTJ69+6datRUZj+/8PBwo0uXLkaRIkUMDw8P48knnzQOHDiQ6rNK/h3fsWNHmvUvW7bMaN68ueHp6Wm4uroaAQEBRteuXY21a9dmuN9ZGR32zz//GF27djUKFy5smEwm436H74SEBGPSpElGpUqVDGdnZ6N48eLG888/b5w5cybFepkdHZYss5/B7du3jQ8++MCoWbOm4ebmZhQqVMioUqWKERwcbISGhprXu3XrljFs2DCjZMmShpubm9GgQQNj27ZthpeXV4pRV5b6DPbt22d069bNKFmypOHs7Gz4+PgYLVq0ML766qsM9zv59dO73f17dfToUePxxx83ihYtari4uBgVK1Y0xowZk+qYINZnMox7ZkITsREXL14kICCAV199lcmTJ1u7HLGSPn36sHHjxhTX2RLbtnXrVho3bsx3331nHmkpkhPUHSY2Jzw8nL///pv3338fBwcHXnvtNWuXJCLZtGbNGrZt20adOnVwd3dP0XWU3gnMIpaiECQ2Z+bMmbzzzjuULVuW7777TsNNRWyYp6cnv/76K5988gnXr1+nePHiBAUFMXHixBQjFUVygrrDRERExC7lmSHyX375JTVq1MDT0xNPT08aNmzIzz//bH7cMAzGjRuHn58f7u7uNGvWLMWQaREREZGsyDMhyN/fn//973/s3LmTnTt30qJFCzp27GgOOpMnT+ajjz7iiy++YMeOHfj4+NCqVSuuX79u5cpFRETEFuXp7rCiRYvy/vvv07dvX/z8/Bg6dCgjR44EkmZ19fb2ZtKkSQQHB1u5UhEREbE1efLE6ISEBBYtWkRMTAwNGzbk5MmTnD9/3nxtI0iaibNp06Zs3bo1wxAUGxubYvr8xMRE/vnnH4oVK5Zq+nURERHJmwzD4Pr16/j5+VnsIrR5KgT99ddfNGzYkFu3blGoUCGWLl3KQw89ZJ6S/d6L7Hl7e5uvypueiRMnWmzGVhEREbGuM2fOWOzi03kqBFWuXJm9e/dy7do1lixZQu/evc1XmYbUF84zDOO+rTmjR49m2LBh5vuRkZGUKVOGM2fO4OnpadkdEBERkRwRFRVF6dKl73uNt6zIUyHIxcWFihUrAlC3bl127NjBp59+aj4P6Pz58/j6+prXv3jxYqrWoXu5urqmuv4RYB6FJiIiIrbDkqey5JnRYWkxDIPY2FjKlSuHj48Pa9asMT8WFxfHpk2baNSokRUrFBEREVuVZ1qC3njjDYKCgihdujTXr19nwYIFbNy4kdWrV2MymRg6dCjvvfcegYGBBAYG8t5771GgQAFdV0ZERESyJc+EoAsXLvDCCy8QERGBl5cXNWrUYPXq1bRq1QqAESNGcPPmTQYNGsTVq1epX78+v/76q0X7BkVERMR+5Ol5gnJCVFQUXl5eREZG6pwgERERG5ET3995+pwgERERkZyiECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2Kc+EoIkTJ/Loo4/i4eFByZIl6dSpE0ePHk2xTp8+fTCZTCluDRo0sFLFIiIiYsvyTAjatGkTr7zyCtu3b2fNmjXEx8fTunVrYmJiUqz35JNPEhERYb6tWrXKShWLiIiILXOydgHJVq9eneL+7NmzKVmyJLt27eLxxx83L3d1dcXHxye3yxMREZF8Js+0BN0rMjISgKJFi6ZYvnHjRkqWLEmlSpUYMGAAFy9ezHA7sbGxREVFpbiJiIiImAzDMKxdxL0Mw6Bjx45cvXqV33//3bx84cKFFCpUiICAAE6ePMlbb71FfHw8u3btwtXVNc1tjRs3jvHjx6daHhkZiaenZ47tg4iIiFhOVFQUXl5eFv3+zpMh6JVXXuGnn35i8+bN+Pv7p7teREQEAQEBLFiwgKeffjrNdWJjY4mNjTXfj4qKonTp0gpBIiIiNiQnQlCeOSco2auvvsqPP/7Ib7/9lmEAAvD19SUgIIDQ0NB013F1dU23lUhERESA8HAIDYXAQLjPd29+kmfOCTIMg8GDB/PDDz+wfv16ypUrd9/nXLlyhTNnzuDr65sLFYqIiORDISEklCnDhy1aUKZ0aUoXLcqECROIj4+3dmU5Ls90hw0aNIh58+axfPlyKleubF7u5eWFu7s70dHRjBs3ji5duuDr60tYWBhvvPEGp0+f5vDhw3h4eGTqdXKiOU1ERMQmhYdjlCnDQMNg5j0PdezYkSVLluDo6GiV0u6VE9/feaYl6MsvvyQyMpJmzZrh6+trvi1cuBAAR0dH/vrrLzp27EilSpXo3bs3lSpVYtu2bZkOQCIiInKX0FC+uROAHIApwGzAzcWF5cuX8/bbb1u3vhyWZ1qCcotagkRERJJEHT5MpYce4gIwAXgTwNGRBZ9+SvfBg3FwcOCPP/6gbt261i2UfN4SJCIiIrnri6VLuQAEAv8FcHSEadN47pVXeO6550hMTKRfv37cvn076Qnh4bBhQ9LPfEAhSERExA7dvn2bqVOnAjDm449x2bABwsKgXz8APv30U4oVK8b+/ft57733ICSEM2XKQIsWEBAAISFWrN4y1B0mIiJihxYtWkS3bt0oWbIkp0+fTnM6mXnz5tGzZ08cHR0JSUxkiGHQAZgGFHR0TApNuTSkXt1hIiIiYhFTpkwBYODAgenOp9e9e3d69OhBQkICfQyDKOAE4AqQkADHj+dWuTlCIUhERMTOnD59mk2bNmEymRg4cGC665lMJmbMmEGXtm2BpHOHvuPOTMuOjlCxYm6Um2MUgkREROxM8vQzTZo0oXTp0hmuW6BAARb/9BORn3/OUQcHyoP5BGpbn106z102Q0RERHLWggULgKTurszyHDwYOnVK6gKrWNHmAxAoBImIiNiV0NBQdu/ejZOTE127ds3ak/3980X4SabuMBERETuyfPlyAJo3b07x4sWtXI11KQSJiIjYkRUrVgDw1FNPWbkS61MIEhERsRP//PMPW7ZsAaB9+/ZWrsb6FIJERETsxM8//0xCQgLVq1enbNmy1i7H6hSCRERE7ERyV1iHDh2sXEneoBAkIiJiB27fvs3q1asBhaBkCkEiIiJ2YPPmzURGRlKiRAnq1atn7XLyBIUgERERO5DcFdauXTscHR2tXE3eoBAkIiKSzxmGYQ5BGhX2L4UgERGRfO7YsWMcP34cFxcXWrdube1y8gyFIBERkXxu5cqVADRt2hQPDw8rV5N3KASJiIjkc8khSF1hKSkEiYiI5GPXrl1j8+bNQNJJ0fIvhSAREZF87Nf584mPj6dqYCAVKlSwdjl5ikKQiIhIfhUSwspBgwBoHxoKISFWLihvUQgSERHJj8LDSRgwgFV37rYDCA6G8HArFpW3KASJiIjkR6Gh/GEYXAEKA40AEhLg+HGrlpWXKASJiIjkR4GBrLzzzycBZwBHR6hY0Xo15TEKQSIiIvmRvz8rSpUC7nSFOTrCtGng72/VsvISJ2sXICIiIpZ35MgRDpw9i7OzM+2WLIHatRWA7qEQJCIikg8tWrQIgJYtW1KkQwcrV5M3qTtMREQkH1q8eDEAzzzzjJUrybsUgkRERPKZY8eOsX//fpycnOjYsaO1y8mzFIJERETymbu7wooWLWrlavIuhSAREZF8xDAM5s6dC6gr7H4UgkRERPKR7du3c+TIEQoUKEDXrl2tXU6ephAkIiKSj8yaNQtIagXy9PS0cjV5m0KQiIhIPnH9+nUWLlwIwIsvvmjlavI+hSAREZF8IiQkhOvXr1OpUiWaNGli7XLyPIUgERGRfCA+Pp5PPvkEgP/85z84OOgr/n70DomIiOQD33//PadOnaJEiRK88MIL1i7HJigEiYiI2LjY2FjGjBkDwJAhQ3B3d7dyRbZBIUhERMTGTZkyhZMnT+Lr68vrr79u7XJsRp4JQRMnTuTRRx/Fw8ODkiVL0qlTJ44ePZpiHcMwGDduHH5+fri7u9OsWTMOHjxopYpFRESs7+TJk4wdOxaACRMmULBgQStXZDvyTAjatGkTr7zyCtu3b2fNmjXEx8fTunVrYmJizOtMnjyZjz76iC+++IIdO3bg4+NDq1atuH79uhUrFxERyaTwcNiwIemnBdy6dYuePXsSHR1N48aN6d27t0W2ay9MhmEY1i4iLZcuXaJkyZJs2rSJxx9/HMMw8PPzY+jQoYwcORJI6gP19vZm0qRJBAcHZ2q7UVFReHl5ERkZqUmkREQk94SEwMCBkJgIDg4wfTr06wck9XQkJCRgMplwdHRMCkmhoRAYCP7+aW4u9sQJuvfpw9LNmylcuDA7d+6kQoUKublHuSonvr/zTEvQvSIjIwHMF347efIk58+fp3Xr1uZ1XF1dadq0KVu3brVKjSIiIpkSHv5vAAJITOTkwIGM/89/qF+/Pp6enjg7O+Pi4kLZ4sVpWbo0w1q04OsyZdg7dixxcXEpNrfrrbdoUrEiSzdvxgVY3K9fvg5AOSVPtgQZhkHHjh25evUqv//+OwBbt26lcePGnD17Fj8/P/O6AwcO5NSpU/zyyy9pbis2NpbY2Fjz/aioKEqXLq2WIBERyT0bNkCLFgBcBd4AZgLxmXy6k5MTVatWxc/Pj5OhoRz7+28ACgOLgJaOjhAWlm6rUX6QEy1BThbZioUNHjyY/fv3s3nz5lSPmUymFPcNw0i17G4TJ05k/PjxFq9RREQk0wIDwcGBbYmJPAecvrP4icce4/l+/ahfvz7e3t7cWreOsG7dOALsA/be+RkZH89ff/3FX3/9BSR9eT8HTAT8ARIS4PjxfB2CckKeC0GvvvoqP/74I7/99hv+d32YPj4+AJw/fx5fX1/z8osXL+Lt7Z3u9kaPHs2wYcPM95NbgkRERHKNvz/LX36Z56ZM4RZQAQj5739pOnlyyvUaNsTPwYFGyd1mgOHgwOktW9h38SKXL1/Gz9mZBr17U/jujhxHR6hYMVd2JT/JMyHIMAxeffVVli5dysaNGylXrlyKx8uVK4ePjw9r1qyhdu3aAMTFxbFp0yYmTZqU7nZdXV1xdXXN0dpFREQysnLlSrp89RUJQIdGjfguJASPKlVSr+jvn3TCdHBwUuuOoyOmadMIaNCAgLvXi4tLsQ7TpqkVKBvyzDlBgwYNYt68eSxfvpzKlSubl3t5eZlnvpw0aRITJ05k9uzZBAYG8t5777Fx40aOHj2Kh4dHpl5Ho8NERCQ3bd++nRYtWnDz5k2ef/55Zs+ejZPTfdogwsOTurcqVkw/3GRmnXwkJ76/80wISu+8ntmzZ9OnTx8gqbVo/PjxTJs2jatXr1K/fn2mTJlC9erVM/06CkEiIpJbwsPDqV27NpcvX6Zt27YsW7YMZ2dna5dlk/J1CMotCkEiIpIbbt++TbNmzdi6dSu1a9fm999/12zOD8Cu5gkSERGxZW+++SZbt27Fy8uLxYsXKwDlQQpBIiIiFrZ582Y++OADAGbNmkX58uWtXJGkRSFIRETEgm7cuEHfvn0xDIO+ffvy9NNPW7skSYdCkIiIiAWNGTOG0NBQSpUqxYcffmjtciQDCkEiIiIWsmPHDj755BMAZsyYQeHCha1aj2RMIUhERMQCEhMTGTx4MIZh8PzzzxMUFGTtkuQ+FIJEREQs4JtPPuHPP//Eo1AhJt97OQzJkxSCREREHlDk558z8j//AeDtmBh8V62yckWSGQpBIiIiDyI8nPFDhnARqAwMMYyk63qFh1u7MrkPhSAREZEHcGjNGj6/8+9PARdIurDp8ePWK0oyRSFIREQkmwzDYMisWcQDHYE2yQ84OiZd2FTyNIUgERGRbPrhhx9Yt3kzrk5OfORw5yvV0RGmTbOLK7vbOidrFyAiImKLbty4wbBhwwAYMXo05QcOTOoCq1hRAchGKASJiIhkw+TJkzl9+jRlypRh1KhRUKCAwo+NUXeYiIhIFp08eZJJkyYB8OGHH1KgQAErVyTZoRAkIiKSRcOGDePWrVu0aNGCLl26WLscySaFIBERkSz45ZdfWLZsGY6Ojnz22WeYTCZrlyTZpBAkIiKSSXFxcQwZMgSAV199lWrVqlm5InkQCkEiIiKZ9Omnn3Ls2DFKlizJuHHjrF2OPCCFIBERkUw4d+4c77zzDgCTJk3Cy8vLyhXJg1IIEhERyYShQ4cSHR1NgwYN6NWrl7XLEQtQCBIREbmP5cuXs2jRIhwdHZk6dSoODvr6zA/0KYqIiGQgMjKSQYMGATB8+HBq165t5YrEUhSCREREMjBy5EjOnTtHYGAgY8eOtXY5YkEKQSIiIulYv34906ZNA2DGjBm4u7tbuSKxJIUgERGRNFy5coUXXngBgODgYJo2bWrlisTSFIJERETuYRgG/fv359y5c1SuXJkPP/zQ2iVJDlAIEhERuceXX37JsmXLcHZ2Zv4nn1Dwzz8hPNzaZYmFKQSJiEj+Ex4OGzZkK7hs3ryZ1157DYCJnTpRu107aNECAgIgJMTSlYoVKQSJiEj+EhKSFFiyEVzOnDlDly5diI+P55n27Rm2eDEkJiY9mJgIwcFqEcpHFIJERCT/CA+HgQMzH1zuajGKioqiY8eOXLx4kRo1ajD75ZcxGUbK9RMS4PjxnN0HyTVO1i5ARETEYkJD/w1AyZKDi79/yuUhIebAdNNkokNgIHuOHaN48eIsX76cgk5O4OCQcnuOjlCxYs7vh+QKtQSJiEj+ERiYFFzullZwuavFKA7oZhj8duwYnh4e/PLLL5QtWzYpNE2fnvT85O1Mm5Y6TInNUggSEZH8I7PB5U6LUTTQHlgJuAErJ0zgkUce+Xe9fv0gLCypyywsLOm+5Bsmw7i3wzN/i4qKwsvLi8jISDw9Pa1djoiI5ITw8KQusIoV0265CQ/nUpkytDMMdgAFgaUODrQ6dUotPXlUTnx/65wgERHJf/z9MwwzOyIi6FqkCKf/+YdiwCoHB+pNn64AZGfUHSYiInbDMAymTp3KY489xul//iGwXDk2f/019U6dUleXHVJLkIiI2IWwsDD69+/PunXrAOjUqRNz5szBy8vLypWJtaglSERE8rW4uDg+/vhjqlevzrp163B3d+fjjz/mhx9+UACyc2oJEhGRfMkwDJYvX85///tfjt+Z4LBJkybMmjWLiprrR1BLkIiI5EO7d++mefPmdO7cmePHj+Pj48PMmTPZuHGjApCYqSVIRETyjdOnTzNmzBjmzp2LYRi4ubkxfPhwRowYgYeHh7XLkzwmT7UE/fbbb3To0AE/Pz9MJhPLli1L8XifPn0wmUwpbg0aNLBOsSIikmdERkYyatQoKlWqxLfffothGPTs2ZNjx47xf//3fwpAkqY8FYJiYmKoWbMmX3zxRbrrPPnkk0RERJhvq1atysUKRUQkL0lISOCLL76gQoUKTJo0idjYWJo1a8aOHTuYO3cupUuXtnaJkoflqe6woKAggoKCMlzH1dUVHx+fXKpIRETyql27dhEcHMyuXbsAqFq1KpMnT6Zdu3aYTCYrVye2IE+1BGXGxo0bKVmyJJUqVWLAgAFcvHjR2iWJiEguiomJYejQodSrV49du3bh5eXF1KlT2b9/P+3bt1cAkkzLUy1B9xMUFMQzzzxDQEAAJ0+e5K233qJFixbs2rULV1fXNJ8TGxtLbGys+X5UVFRulSsiIha2e/duevTowdGjRwHo3r07H330kXoIJFtsKgQ9++yz5n9Xr16dunXrEhAQwE8//cTTTz+d5nMmTpzI+PHjc6tEERHJAYZh8NFHHzF69Ghu376Nr68vs2bN4sknn7R2aWLDbK477G6+vr4EBAQQGhqa7jqjR48mMjLSfDtz5kwuVigiIg8qJiaGZ599luHDh3P79m06d+7MX3/9pQAkD8ymWoLudeXKFc6cOYOvr2+667i6uqbbVSYiInnbyZMn6dSpE/v378fZ2ZlPP/2Ul156Sef9iEXkqRAUHR1tntockn759+7dS9GiRSlatCjjxo2jS5cu+Pr6EhYWxhtvvEHx4sXp3LmzFasWEZGcsGvXLoKCgrh06RLe3t4sXryYxx57zNplST6Sp0LQzp07ad68ufn+sGHDAOjduzdffvklf/31F9988w3Xrl3D19eX5s2bs3DhQk2CJSKSz6xbt45OnToRHR1NrVq1WLFiBf7+/tYuS/IZk2EYhrWLyE1RUVF4eXkRGRmJp6entcsREZF7LFq0iOeff564uDiaN2/OsmXLUh6vw8MhNBQCA0HByG7kxPe3TZ8YLSIi+ct3333Hs88+S1xcHF27dmXVqlUpv/BCQiAgAFq0SPoZEmK9YsXmKQSJiEiesGDBAnr16oVhGPTv358FCxbg5ub27wrh4TBwICQmJt1PTITg4KTlItmgECQiIlaX3AWWmJhI//79mTZtGo6OjilXCg39NwAlS0iAuwbUiGSFQpCIiFjV0qVL6d69OwkJCfTp04dp06bh4JDG11NgINy73NERKlbMnUIl31EIEhERq1m/fj3PPfccCQkJvPDCC8ycOTPtAARJJ0FPn54UfCDp57RpOjlasi1PDZEXERH7sXv3bjp16mQ+CXr27Nmpu8Du1a8ftGmT1AVWsaICkDwQhSAREcl1J06cICgoiOvXr9OiRQvmzp2LY0RE5oa++/sr/IhFqDtMRERy1fnz52ndujUXL16kVq1aLF26FNe5czX0XXKdJksUEZGcd2eCwygfH5r26MHevXspX748W7ZswSc+Pin43D3yy9ERwsLU4iNmOfH9re4wERHJWSEhMHAgsYmJdAb2AiVLluSXX37Bx8cHNmxIf+i7QpDkIHWHiYhIzrkzwWFiYiIvAuuBQsDPc+ZQMXlou4a+i5UoBImISM65M8HhSGA+Sd0PPwCPuLv/u46GvouVqDtMRERyTmAgn5lMfHDn9NNZQKu0Wnk09F2sQCFIRERyzJI//mDonX+/C7yQUSuPhr5LLlMIEhGR7Lsz6iutuX1+//13evbsiWEYvPT884zu2/f+cwCJ5CKFIBERyZ47o75ITEw6sXn69KRuLeDw4cN07NiR2NhYnnrqKb6YMwfT/WaDFsllDzRP0MWLF0lMTEwa4mgjNE+QiIgFhIenO7fPOQcHGjZsyOnTp2nQoAHr1q2jQIEC1qtV8oWc+P7O1uiw/fv3U61aNXx9fSlVqhSlSpVizJgxxMTEWKQoERHJ4+6M+kohIYFre/fStm1bTp8+TWBgICtWrFAAkjwrWyGoX79+eHt7s3nzZvbs2cOECRP4+eefqVu3LlevXrV0jSIiktekMbdPjIMD7caPZ9++fZQsWZLVq1dTvHhxKxUocn/Z6g4rWLAgu3btokqVKuZlhmHwzDPP4Obmxty5cy1apCWpO0xEJJMyOOkZSDonKDgYEhKIdXDgqapV+fXgQQoXLsymTZuoUaNG7tcs+Vae6Q5Lq8XHZDLx3nvvsXz5cosUJiIiVhQScv8LmvbrB2FhxK9dS88nn+TXgwcpUKAAq1atUgASm5DpENSuXTveeOMNvv/+e1566SVef/11Lly4kGKdyMhIihQpYvEiRUQkF9251IX5nJ/ExKQWn/DwVKsm+vkRPG8eS1atwsXFhWXLltGwYcNcLlgkezI9RP7hhx9m9+7dzJ492xx+ypcvT7du3ahVqxYJCQnMnj2bjz/+OMeKFRGRXJDOSc/3XtA0MTGR4OBgZs2ahYODAwsWLKBVq1a5XKxI9mXrnKALFy6wZ88e9u7da74dP34cR0dHKleuzP79+3OiVovQOUEiIveRwfD35BCUmJjIgAEDzAHom2++oWfPntapV+xCTnx/Z2uyRG9vb5588kmefPJJ87KbN2+yb98+9u3bZ5HCRETESpIvaHrnpOd7L2iakJBA//79mTNnDg4ODsydO5fu3btbuWiRrHugyRJtkVqCREQyKTw81QVNb9++Td++fZk7dy6Ojo589913PPvss1YuVOxBnmkJEhERO3DPBU1jYmLo1q0bq1atwtHRkfnz5/PMM89YsUCRB6MQJCIi93XlyhXat2/P9u3bcXd3Z9GiRbRr187aZYk8EIUgERHJ0JkzZ2jTpg2HDx+mSJEirFy5kkaNGlm7LJEHlq3JEkVExD788ccfPProoxw+fJhSpUrx+++/KwBJvqEQJCIiaZo3bx5NmzblwoULVK9enS1btlCtWjVrlyViMQpBIiKSQmJiIm+++SY9e/YkNjaWDh06sHXrVgICAqxdmohFKQSJiIjZtWvXePrpp3nvvfcAGDFiBEuXLsXDw8PKlYlYnk6MFhERAHbv3s0zzzzD33//jYuLC9OnT6d3797WLkskx6glSETEzhmGwYwZM2jUqBF///03ZcuWZevWrQpAku8pBImI2LGYmBj69OnDwIEDiY2NpX379uzevZs6depYuzSRHKcQJCJip44ePUr9+vX55ptvcHBw4H//+x/Lly+nSJEi1i5NJFfonCARETu0cOFC+vfvT3R0NN7e3ixYsIBmzZpZuyyRXKWWIBERO3Lr1i0GDRrEc889R3R0NE2bNmXPnj0KQGKXFIJEROzEiRMnaNy4MV9++SUAb7zxBmvXrsXX19fKlYlYh7rDRETswA8//MCLL75IVFQUxYoV49tvvyUoKMjaZYlYlVqCRETysbi4OIYOHUqXLl2IioqiUaNG7NmzRwFIhDwWgn777Tc6dOiAn58fJpOJZcuWpXjcMAzGjRuHn58f7u7uNGvWjIMHD1qnWBGRPC4iIoJmzZrx6aefAjB8+HA2btxI6dKlrVyZSN6Qp0JQTEwMNWvW5Isvvkjz8cmTJ/PRRx/xxRdfsGPHDnx8fGjVqhXXr1/P5UpFRPKo8HDYsIE/Vqygbt26bNu2jcKFC7N8+XLef/99nJ2drV2hSJ6Rp84JCgoKSreJ1jAMPvnkE958802efvppAL7++mu8vb2ZN28ewcHBuVmqiEjeExICAwcyJzGRYCAOeOihh1i+fDkVK1a0dnUieU6eagnKyMmTJzl//jytW7c2L3N1daVp06Zs3bo13efFxsYSFRWV4iYiku+EhxM/YACvJSbyIkkBqCOwfckSBSCRdNhMCDp//jwA3t7eKZZ7e3ubH0vLxIkT8fLyMt/UFy4i+VH0/v10MAw+u3N/LPAD4JHB8VHE3tlMCEpmMplS3DcMI9Wyu40ePZrIyEjz7cyZMzldoohIrjp//jxNR41iNeAOLAHGAQ6OjqBWIJF05alzgjLi4+MDJP2x3z2x18WLF1O1Dt3N1dUVV1fXHK9PRMQaDh8+TFBQEKdOnaKEhwcrYmKon5gIjo4wbRr4+1u7RJE8y2ZagsqVK4ePjw9r1qwxL4uLi2PTpk00atTIipWJiFjH5s2bady4MadOnSIwMJBte/ZQ/9Qp2LABwsKgXz9rlyiSp+WplqDo6GiOHz9uvn/y5En27t1L0aJFKVOmDEOHDuW9994jMDCQwMBA3nvvPQoUKECPHj2sWLWISO779ddf6dSpEzdv3qRhw4b8+OOPFC9ePOlBtf6IZEqeCkE7d+6kefPm5vvDhg0DoHfv3syZM4cRI0Zw8+ZNBg0axNWrV6lfvz6//vorHh4e1ipZRCTXLV26lOeee464uDjatm3L4sWLcXd3z/wGwsMhNBQCAxWYxK6ZDMMwrF1EboqKisLLy4vIyEg8PT2tXY6ISJbMnTuXPn36kJCQwDPPPMPcuXNxcXHJ/AbuzCVEYiI4OMD06eo2E5uQE9/fNnNOkIiIvZs+fTq9evUiISGB3r17M2/evKwFoPDwfwMQJP0MDk5aLmKHFIJERGzA7A8/JDg4GMMweOWVV5g1axZOTlk8oyE09N8AlCwhAe46F1PEnuSpc4JERCS1+QMH0m/GDABeAz6uVQuTQzb+DxsYmNQFdncQ0lxCYsfUEiQikof9MGMGL8yYgQEEAx8Dppdeyl4Xlr9/0jlAjo5J9zWXkNg5tQSJiORRP/30E88NGkQC0BuYCpjg3y6s7ISXfv2gTZuk51esqAAkdk0hSEQkD1q7di1dunThdnw8zwIh3NV0/6BdWP7+Cj8iqDtMRCTP+e2333jqqaeIjY2lU6dOfPvVVziqC0vE4tQSJCKSU7IxKeH27dtp164dN2/eJCgoiAULFuDs6grt2qkLS8TCFIJERHJCViYlvBOWdt+6xZPduxMdHU2LFi1YsmTJvxeAVheWiMVpxmgREUsLD4eAgNRD0cPCUgeZO2HpQGIizYArwGOPPcbq1aspWLBg7tUsksdpxmgREVuQ2UkJ78zgfDQxkSdICkD1gJ+mT1cAEskFCkEiIpaWPCnh3dIa0RUayt93AtBFoBawGvC8cCFXyhSxdwpBIiKWlslJCU8XKEAL4CxQDVgDFNEMziK5RidGi4jkhPtMSnj27Fla9OzJKaASsBYoruHvIrlKIUhEJKekM6IrIiKC5s2bc+LECcqXL8+6BQvwiYnR8HeRXKYQJCLWk415dGzdhQsXaNGiBaGhoQQEBLB+/Xr8AwKsXZaIXdI5QSJiHSEhScPIW7RI+hkSYu2KctylS5d44oknOHLkCP7+/qxfv54ABSARq1EIEpHcd2douHkYeWIiBAdn78roNuLSpUu0bNmSgwcP4ufnx4YNGyhfvry1yxKxawpBIpL7MjuPTj5x9uxZHn/8cfbv34+3tzfr16+nokaAiVidQpCI5L7MzqOTD5w8eZImTZqYu8A2bdpE5cqVrV2WiKAQJCLWkMl5dGzd0aNHadKkCSdPnqRChQr8/vvvCkAieYhGh4mIddxnHh1bt3nzZjp16sSVK1d46KGHWLNmDX5+ftYuS0TuohAkItaTT6+MvmDBAnr37k1cXByPPvooq1atonjx4tYuS0Tuoe4wERELMQyD9957j+7duxMXF0fnzp3ZuHGjApBIHqWWIBERC4iMjKRPnz4sW7YMgGHDhjF58mQck897EpE8RyFIROQB7d27l65du3LixAlcXFz47LPPCA4OtnZZInIfCkEiItkRHk78kSNM+vVXxn/yCbdv3yYgIIDFixdTt25da1cnIpmgECQiklUhIewfMIB+hsHOO4s6duxISEgIxYoVs2ppIpJ5OjFaRPKH8HDYsCHHL71xce9egvv3p/adAFQY+NZkYunnnysAidgYhSARsX25cDHWixcvMmbMGCo2bsx0IBF4BjgIPG8YmE6csPhrikjOMhmGYVi7iNwUFRWFl5cXkZGReHp6WrscEXlQ4eFJwefua5E5OkJY2APPQWQYBtu3b2fWrFnMnTuXW7duAVAX+Bh4zMKvJyLpy4nvb50TJCK2LaOLsWYjlMTGxrJ582ZWrVrFihUrCA0NNT9Wr149Ro8ezVOXLuHw8stJr5NPL/khYg8UgkQkT7p27Rpnz57l3LlznD9/nujoaG7evMnNmzeJi4vD2dkZZ2dnXG7cwNlkwtUwcAfcAHcHB9zOn8d961bc3Nxwd3c3/3R0dCQmJobo6GgiIyMJDw/n9OnTHDt2jF27dnHgwAFu375trsPd3Z1nnnmG/v3789hjj2EymZIeCArKt5f8ELEXCkEiYnWnT59m06ZN7Ny5kwMHDnDgwAEuXryY/Q0mJkL37tl+ure3N23btqVt27a0bt067ab3fHrJDxF7ohAkIrkuNjaWdevWsXTpUtatW8fJkyfTXK9IkSL4+fnh6+uLh4cH7u7uuLu74+LiQnx8PLdv3yYuLi7pFhnJzatXueXgwM3ERG7dumVuObp16xY3o6O5FReHAbgDhTw8KFS8OP7+/pQpU4Zy5cpRu3Zt6tSpQ5kyZf5t8RGRfEshSERyRWJiIuvXr+frr7/mxx9/JCoqyvyYo6MjdevWpVGjRtSoUYPq1atTpUoVChUqZJkXv3PytAEY3BkWe+MG/PabWnNE7JhCkIjkqAsXLhASEkJISAh///23ebmvry9PP/007dq147HHHsPDwyPnirhz8rQJMLfvPMDJ0yKSPygEiUiOOHbsGB9++CFff/01sbGxAHh6evL888/Ts2dPGjRogINDJqYqCw9PCjGBgdkPLIGB4OCQehh9xYrZ256I5AuaLFFELOrAgQN06dKFKlWqMH36dGJjY6lXrx5z5swhIiKCKVOm0KhRo8wFIEtNgujvD9OnJwUf0LB2EQE0WaK1yxHJN86ePcvYsWOZPXs2iXdaXNq3b8+IESNSDi3PrJyYBDE8XMPaRWyUJksUkTwnKiqKyZMn89FHH3Hz5k0Aunbtyrhx46hWrVr2N2zhSRCBzA1rt0T3m4jYBHWHiUi23L59mylTplCxYkXeffddbt68SePGjdm6dSuLFi16sAAE/57Hc7ecPo8nF65BJiJ5h02FoHHjxmEymVLcfHx8rF2WiF0xDIMlS5ZQrVo1Bg8ezKVLl6hUqRJLly7l999/p2HDhpZ5odw+jyc8HAYO/Lf1KTERgoNz/Kr0ImI9NtcdVq1aNdauXWu+75h8gBSR9Fmoi2fLli3897XX2LZrFwAlS5Zk/Pjx9OvXD2dnZ4u/Hv36QZs2uXMeT050v4lInmZzIcjJyUmtPyJZERLybwuHg0NS60q/flnaxNGjRxk9ejRLly4FoAAwHBj+9tt4vPSSxV8vhdy6PIWG0YvYHZvqDgMIDQ3Fz8+PcuXK8dxzz6WYfC0tsbGxREVFpbiJ2I0H7OK5cOECr7zyCtWqVWPp0qU4AAOA48B4wOO111Juy5a7lDSMXsTu2FQIql+/Pt988w2//PILM2bM4Pz58zRq1IgrV66k+5yJEyfi5eVlvpUuXToXKxaxsoy6eDIQExPDhAkTqFixIlOnTiUhIYEODRvyFzAd8E1vW9l8vTyjX7+kIfgbNiT9fJAWLBHJ82x6nqCYmBgqVKjAiBEjGDZsWJrrxMbGmmerhaThvKVLl9Y8QWIfsjjXzu3bt5kxYwbvvPMOFy5cAKBu3bq8//77NKtY8f7byom5fUREyJl5gmyqJeheBQsW5OGHHyY0NDTddVxdXfH09ExxE7EbmeziSUxMZMGCBVStWpVXXnmFCxcuUL58eebPn88ff/xBs2bNMrctdSmJiA2x6Zag2NhYKlSowMCBA3n77bcz9RzNGC12KZ2Zkg3DYMWKFYwfP57du3cDSSO+3n77bQYMGICLi0umt5XldUREssDuZ4wePnw4HTp0oEyZMly8eJEJEyYQFRVF7969rV2aSN52zwirhIQEfvjhByZMmMD+/fsB8PDwYMSIEQwdOpRChQplelvZXkdExMpsKgSFh4fTvXt3Ll++TIkSJWjQoAHbt28nICDA2qWJJMnjl1y4efMm8+bN44MPPuDIkSMAFCpUiMGDB/Of//yH4sWLW7lCEZHcY1MhaMGCBdYuQSR9lp4fx4LOnDnD1KlTmT59Ov/88w8AhQsXZujQobz66qsULVrUyhWKiOQ+mz4nKDt0TpDkiDw4Kio2NpaffvqJb775hpUrV5KQkABA2bJleeWVVxg4cKD+BkTEZtj9OUEieVYeueRCQkIC27dvZ968eSxYsMDc6gPQvHlzhgwZQocOHdK+3Ewe78oTEbE0hSARS8jKJRcsHDZu3LjB2rVrWb58OStXruTixYvmx/z8/Hj++efp1atXxld1z8NdeSIiOUUhSMQSkufHCQ5OagFKb34cC4SN2NhY/vjjDzZs2MDGjRvZtm1biglBvby8aN++Pb169eKJJ564/0WG07vURZs2ahESkXxN5wSJWFJG8+Nk47yh+Ph4Dh8+zM6dO823ffv2pQg9AGVKleKpzp3p2LEjjz/+eNrz+6RnwwZo0SLt5c2aZX47IiI5SOcEieR1Gc2Pk8F5Q3ElS3L8+HEOHz6c4nbkyBFu3ryZalMlS5akeUAAzXbupLlhUOncOUy1akHLllmvWVdPFxE7pRAkkksSK1TgrMlEqGEQCubb0f79OR4WZh69da9CBQtSp25d6t651alTh4pubpjKloXkhlzDyH4XVma78kRE8hmFIBELMgyDCxcucOzYMUJDQ1Pcjh8/zs20ep9PnACSZmyuUqUKVatWpWp0NFWXLqWqYVDxxg0cXngh5blDGzZYdjRav35JAUqXuhARO6IQJJINhmFw8eJFDh48aL4dOHCAgwcPcu3atXSf5+TkRLnSpQksWZLA6tWp9MgjVKpUiapVq+Ln54fJZPr33KGMWnlyogtLl7oQETujECRyH4ZhcOLECXbt2sXOnTvZtWsX+/fv58qVK2mu7+DgQEBAAIGBgeZbpUqVCAwMJCAgAGdn54xfMDNzDqkLS0TkgSkEidwjIiKCLVu28Oeff7Jr1y527dpFZGRkqvVMJhPly5enWrVqVK9enWrVqlGtWjUqV66Mm5tb9gvIbCuPurBERB6IQlBO0yy81pOJ9z4xMZEjR46wZcsWNm/ezObNm/n7779Trefq6kqNGjWoU6cOdevWpVatWlStWpUCBQpYvu6stPKoC0tEJNsUgnKSZuHNOkuFxnTee8MwOHr0KGvXrmXt2rX8/vvvKS4tAUktPDVq1KBhw4bm0VjVqlW7fzeWJamVR0Qkx2myxJySBy+omedZKjTe895HAOtMJtZ26cLabds4e/ZsitULuLtTv3JlHmvalMZBQTRo0AAvL6/U21SLnoiI1WiyRFuSRy6oaTMseOmGxKNH+TMxkRXASmA/JI2wWrwYSOraatKkCS1btqR5VBS1J07Eee9e2L8fHn4Y7g1AatETEcmXFIJyimbhzZoHDI3R0dGsWbOGFStW8NOKFVy86zETUAdo+cortOzcmUaNGuHu7p56KHpawUvX1RIRybcUgnKKhjBnTTZC4/Xr11mxYgXff/89q1evTnE9LU93d568dYsOhkGQgwPF0mq9yUzwUoueiEi+pRCUk3Rya+ZlMjTGxMSwcuVKvv/+e1atWsWtW7fMj1WoUIEOHTrQoUMHmjRpgvOFCxm/95kJXmrRExHJtxSCcpqGMGdeOqExMTGRjRs3MnPmTJYtW5bigqKBgYE8++yzdOvWjerVqyfNuJzsfu99ZoKXWvRERPItjQ6TPOv8+fPMmTOHmTNncuLO9bUAypcvz7NBQXSrWZOaTz6JqXTpB3uh8PD7t9ZlZh0REckxGh0mti0Tw8wTEhL49ddfmTFjBitWrCA+Ph5Iurhoz5496du3L3X37cMUHGy50VqZaa1Ti56ISL6jECS54z7DzM+cOcOsWbOYNWsWp0+fNi9v2LAhAwYMoFu3bhQsWDApSDVooNFaIiLywBSCJOelM8w8/okn+GnfPmbMmMHPP/9M4p3HixQpwgsvvMCAAQOoXr16ym1ptJaIiFiIQpC9ys0ZkO8JLieBkIQEZtWtS8RdV2Jv2rQpAwYMoEuXLulfgFSjtURExEIcrF2AZEF4OGzYkPTzQYSEJE0S2KJF0s+QEMvUl57AQOJMJhYBrYHywLtAxJUrlChRgv/+978cPXqUjRs30rNnz4yvwJ48WsvRMem+RmuJiEg2aXSYrcih62oBOXpNs6NHjzJz5ky+njaNS9evm5e3eughBo4fz1NPPYWLi0vWN6zRWiIidkWjw+yVJS/dkAvn1Fy/fp1FixYxa9YstmzZYl7uW7IkfVu3pt/LL1OuUaMHexGN1hIRkQekEGQLLBlccuicmsTERDZv3sycOXP4/vvviYmJAcDBwYG2bdsyYMAA2rZti5OTfuVERCRv0DdSHhEVFcWmTZvYt28fhw4dIiwsjKtXrxIVFYUj4AIUAXwBPyDQZOKhM2eodvo0pUuXTjlTckYsOANyYmIiW7du5fvvv2fJkiWcO3fO/FilSpXo27cvL7zwAn5+flnetoiISE7TOUFW9M8//zB//nzmz5/P9u3bSUhIyNZ2PDw8qFGjBjVr1jTfHn74YQoUKJD+k7J5Ts2lS5dYu3Yta9asYfXq1URERJgf8/T0pEuXLvTr149GjRplPpiJiIjcR058fysEWcGhQ4eYNGkSCxYsIC4uzry8YsWKNGrUiGrVqlGhQgWKFSuGp6cniYmJxMXFceXoUSIOHCA8IYEj585x8OBBjh07Zp5V+W4ODg4EBgaaQ1GtWrWoWbMmvr6+ODjcf1CgYRhcvnyZE9u2sWf9enaeP8+OQ4f466+/Uqzn6elJx44deeaZZ2jdujWurq4P/gaJiIjcQyHIAjL1JubQHDqnTp3iv//9L4sWLTIvq1mzJn369KFjx46UK1cuy9u8ffs2R48eZd++febb3r17uXjxYprrOzs74+Pjg5+fH15eXri5ueHm5oZhGERHR3P9+nWuXr1KWFiY+byee9WsWZNWrVrRqlUrmjZtquAjIiI5TiHIAu77JlpqKPpdbt++zaeffsrYsWO5ceMGAJ07d2bUqFHUq1fvgbadpvBwzv/xB/tu3mTv2bPmcHT06NEsdbmZSDr/qAZQB6jr4ECDnTvxrl3b8jWLiIhkQEPkc5olh6LfsX37doKDg9m/fz8ATZo0YcqUKTz88MOWqjqlOyHOJzERHwcH2kyfDvPmARAXF8eFCxc4d+4cERERXL9+ndjYWG7duoVhGHh4eODh4YGnpycBEREE9O5NijaexESIjEz9mrk5+7SIiIiF2G0IWv/997Tv0yflkG0LDkW/evUqb7zxBtOmTcMwDIoVK8b7779Pnz59cu6E4fuEOBcXF0qXLk3p0qUzt63MDKXPgZYzERGR3GC3l83oPGAAVUuVYt68eZh7BJPn0LlbFufQMQyDefPmUaVKFb766isMw6BPnz4cOXKEF198MWdHTGUU4rIqM5enSC90PehlPURERHKB3YagIsDxixfp2bMnQUFBnD59+oGvSxUaGkrr1q3p2bMnFy9epEqVKmzcuJHZs2dTvHjxnNuZZBYIcSn065d0OY0NG5J+3tvCY8nQJSIiksvsNgQdAP4PcHV25pdffqFatWp8/vnnJPTpk/EXfxquX7/OqFGjqF69OmvXrsXNzY0JEyawd+9emjZtmrM7crecuLiovz80a5b2NiwdukRERHKR3YagQsAYR0f2rVlD48aNiY6OZsiQITz22GPsvngx/S/+u8TGxjJjxgwqV67MpEmTiIuLo02bNhw4cIA333wza0PHLXWF+Pu13liSruguIiI2zH6HyDs44HnnJN7ExES++uorRo0axfU7Vzrv2LEjgwcPpnnz5jgmf8mTdM7PsWPHmD9/PjNnzuTs2bMAVKhQgY8//pj27dtn/bwfWz+5WFd0FxGRHKZ5gizA/CYeOoRn1aopHgsPD2fkyJHMnz/ffLK0h4cHDz/8MEWLFiU6OpqjR4+muFSEn58fw4cPZ9CgQdmbNDA8HAICUo/CCgtToBAREblDIcgCMvMmHj58mE8//ZRFixbxzz//pHrcycmJVq1a0aNHD5555pkHmzF5wwZo0SLt5c2aZX+7IiIi+YhC0B1Tp07l/fffJyIigmrVqvHJJ5/QpEmTTD03K29ifHw8R44c4fDhw0RGRlKwYEHKlClD7dq1M744aVaoJUhEROS+NGM0sHDhQoYOHcrUqVNp3Lgx06ZNIygoiEOHDlGmTBmLvpaTkxPVq1enevXqFt1uCsknFwcHJw0v18nFIiIiucLmWoLq16/PI488wpdffmleVrVqVTp16sTEiRPv+/y8cBX5NOnkYhERkXTZfUtQXFwcu3btYtSoUSmWt27dmq1bt6b5nNjYWGJjY833o6KicrTGbPP3V/gRERHJRTY1T9Dly5dJSEjA29s7xXJvb2/Onz+f5nMmTpyIl5eX+Zap62aJiIhIvmdTISjZvfPwGIaR7tw8o0ePJjIy0nw7c+ZMbpQoIiIieZxNdYcVL14cR0fHVK0+Fy9eTNU6lMzV1fXBhrCLiIhIvmRTLUEuLi7UqVOHNWvWpFi+Zs0aGjVqZKWqRERExBbZVEsQwLBhw3jhhReoW7cuDRs2ZPr06Zw+fZqXXnrJ2qWJiIiIDbG5EPTss89y5coV3nnnHSIiIqhevTqrVq0iICDA2qWJiIiIDbG5eYIeVJ6dJ0hERETSlRPf3zZ1TpCIiIiIpSgEPYjw8KQLnYaHW7sSERERySKFoOwKCUm68GmLFkk/Q0KsXZGIiIhkgUJQdoSHw8CB/175PTEx6QKoahESERGxGQpB2REa+m8ASpaQkHQBVBEREbEJCkHZERgIDve8dY6OSVeAFxEREZugEJQd/v4wfXpS8IGkn9Om6SrwIiIiNsTmJkvMM/r1gzZtkrrAKlZUABIREbExCkEPwt9f4UdERMRGqTtMRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQiIiJ2yaZCUNmyZTGZTCluo0aNsnZZIiIiYoOcrF1AVr3zzjsMGDDAfL9QoUJWrEZERERslc2FIA8PD3x8fKxdhoiIiNg4m+oOA5g0aRLFihWjVq1avPvuu8TFxVm7JBEREbFBNtUS9Nprr/HII49QpEgR/vzzT0aPHs3JkyeZOXNmus+JjY0lNjbWfD8yMhKAqKioHK9XRERELCP5e9swDMtt1LCysWPHGkCGtx07dqT53MWLFxuAcfny5Qfavm666aabbrrpZhu3EydOWCyDmAzDkpEq6y5fvszly5czXKds2bK4ubmlWn727Fn8/f3Zvn079evXT/O597YEXbt2jYCAAE6fPo2Xl9eDFW9DoqKiKF26NGfOnMHT09Pa5eQa7bf22x5ov7Xf9iAyMpIyZcpw9epVChcubJFtWr07rHjx4hQvXjxbz92zZw8Avr6+6a7j6uqKq6trquVeXl529cuTzNPTU/ttR7Tf9kX7bV/sdb8dHCx3OrPVQ1Bmbdu2je3bt9O8eXO8vLzYsWMHr7/+Ok899RRlypSxdnkiIiJiY2wmBLm6urJw4ULGjx9PbGwsAQEBDBgwgBEjRli7NBEREbFBNhOCHnnkEbZv3/7A23F1dWXs2LFpdpHlZ9pv7bc90H5rv+2B9tty+231E6NFRERErMHmJksUERERsQSFIBEREbFLCkEiIiJilxSCRERExC7lyxA0depUypUrh5ubG3Xq1OH333/PcP1NmzZRp04d3NzcKF++PF999VUuVWpZWdnvH374gVatWlGiRAk8PT1p2LAhv/zySy5WazlZ/byTbdmyBScnJ2rVqpWzBeaQrO53bGwsb775JgEBAbi6ulKhQgVmzZqVS9VaTlb3+7vvvqNmzZoUKFAAX19fXnzxRa5cuZJL1T643377jQ4dOuDn54fJZGLZsmX3fU5+OKZldb/zyzEtO593Mls+pmVnvy1xTMt3IWjhwoUMHTqUN998kz179tCkSROCgoI4ffp0muufPHmStm3b0qRJE/bs2cMbb7zBkCFDWLJkSS5X/mCyut+//fYbrVq1YtWqVezatYvmzZvToUMH8yzctiKr+50sMjKSXr168cQTT+RSpZaVnf3u1q0b69atIyQkhKNHjzJ//nyqVKmSi1U/uKzu9+bNm+nVqxf9+vXj4MGDLFq0iB07dtC/f/9crjz7YmJiqFmzJl988UWm1s8vx7Ss7nd+OaZldb+T2foxLTv7bZFjmsWuQpZH1KtXz3jppZdSLKtSpYoxatSoNNcfMWKEUaVKlRTLgoODjQYNGuRYjTkhq/udloceesgYP368pUvLUdnd72effdYYM2aMMXbsWKNmzZo5WGHOyOp+//zzz4aXl5dx5cqV3Cgvx2R1v99//32jfPnyKZZ99tlnhr+/f47VmJMAY+nSpRmuk1+OaXfLzH6nxRaPaXfLyn7b+jHtbpnZb0sd0/JVS1BcXBy7du2idevWKZa3bt2arVu3pvmcbdu2pVq/TZs27Ny5k9u3b+dYrZaUnf2+V2JiItevX6do0aI5UWKOyO5+z549mxMnTjB27NicLjFHZGe/f/zxR+rWrcvkyZMpVaoUlSpVYvjw4dy8eTM3SraI7Ox3o0aNCA8PZ9WqVRiGwYULF1i8eDHt2rXLjZKtIj8c0yzBFo9p2WXrx7TssNQxzWZmjM6My5cvk5CQgLe3d4rl3t7enD9/Ps3nnD9/Ps314+PjuXz5coYXZ80rsrPf9/rwww+JiYmhW7duOVFijsjOfoeGhjJq1Ch+//13nJxs89c/O/v9999/s3nzZtzc3Fi6dCmXL19m0KBB/PPPPzZzXlB29rtRo0Z89913PPvss9y6dYv4+HieeuopPv/889wo2SrywzHNEmzxmJYd+eGYlh2WOqblq5agZCaTKcV9wzBSLbvf+mktz+uyut/J5s+fz7hx41i4cCElS5bMqfJyTGb3OyEhgR49ejB+/HgqVaqUW+XlmKx83omJiZhMJr777jvq1atH27Zt+eijj5gzZ45NtQZB1vb70KFDDBkyhLfffptdu3axevVqTp48yUsvvZQbpVpNfjmmZZetH9MyK78d07LCUse0fBUbixcvjqOjY6r/FV68eDHV/4yS+fj4pLm+k5MTxYoVy7FaLSk7+51s4cKF9OvXj0WLFtGyZcucLNPisrrf169fZ+fOnezZs4fBgwcDSX9IhmHg5OTEr7/+SosWLXKl9geRnc/b19eXUqVK4eXlZV5WtWpVDMMgPDycwMDAHK3ZErKz3xMnTqRx48b897//BaBGjRoULFiQJk2aMGHChHzZKpIfjmkPwpaPaVmVX45p2WGpY1q+aglycXGhTp06rFmzJsXyNWvW0KhRozSf07Bhw1Tr//rrr9StWxdnZ+ccq9WSsrPfkPS/pT59+jBv3jybPEciq/vt6enJX3/9xd69e823l156icqVK7N3717q16+fW6U/kOx83o0bN+bcuXNER0eblx07dgwHBwf8/f1ztF5Lyc5+37hxAweHlIc5R0dH4N/WkfwmPxzTssvWj2lZlV+OadlhsWPaA51WnQctWLDAcHZ2NkJCQoxDhw4ZQ4cONQoWLGiEhYUZhmEYo0aNMl544QXz+n///bdRoEAB4/XXXzcOHTpkhISEGM7OzsbixYuttQvZktX9njdvnuHk5GRMmTLFiIiIMN+uXbtmrV3Ilqzu971sdSRFVvf7+vXrhr+/v9G1a1fj4MGDxqZNm4zAwECjf//+1tqFbMnqfs+ePdtwcnIypk6dapw4ccLYvHmzUbduXaNevXrW2oUsu379urFnzx5jz549BmB89NFHxp49e4xTp04ZhpF/j2lZ3e/8ckzL6n7fy1aPaVndb0sd0/JdCDIMw5gyZYoREBBguLi4GI888oixadMm82O9e/c2mjZtmmL9jRs3GrVr1zZcXFyMsmXLGl9++WUuV2wZWdnvpk2bGkCqW+/evXO/8AeU1c/7brZ6wDCMrO/34cOHjZYtWxru7u6Gv7+/MWzYMOPGjRu5XPWDy+p+f/bZZ8ZDDz1kuLu7G76+vkbPnj2N8PDwXK46+zZs2JDh32p+PaZldb/zyzEtO5/33Wz1mJad/bbEMc1kGPm0TVhEREQkA/nqnCARERGRzFIIEhEREbukECQiIiJ2SSFIRERE7JJCkIiIiNglhSARERGxSwpBIiIiYpcUgkRERMQuKQSJiIiIXVIIEhEREbukECQi+cI777zDww8/TMGCBfH29ubll1/m9u3b1i5LRPIwJ2sXICLyoAzDICEhgWnTplGqVCkOHTpEr169qFGjBi+//LK1yxORPEoXUBWRfKlHjx6UKFGCTz/91NqliEgepe4wEbF5p06dYvDgwVSvXp0iRYpQqFAhvv/+e/z9/a1dmojkYQpBImLTLl++TL169bh8+TIfffQRmzdvZtu2bTg6OlKrVi1rlycieZjOCRIRm7Zq1Sri4+OZP38+JpMJgClTphAXF6cQJCIZUggSEZtWtGhRoqKi+PHHH3nooYdYsWIFEydOpFSpUpQoUcLa5YlIHqYTo0XEphmGwcsvv8y8efNwd3fn+eef59atW5w6dYqVK1dauzwRycMUgkRERMQu6cRoERERsUsKQSIiImKXFIJERETELikEiYiIiF1SCBIRERG7pBAkIiIidkkhSEREROySQpCIiIjYJYUgERERsUsKQSIiImKXFIJERETELikEiYiIiF36f0quEdPLFdygAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcAElEQVR4nO3dd1hTZxsG8DusgAgoIksEB6B1VkVx1FkX7lVX66pVXLXWWke1ddRKq622bq1o/VpX654oWkCtWsVZxSIqoLEg4mCDQN7vj0g0MmQkJCH377pyaU5ODs9JJLl9zzskQggBIiIiIgNjpO0CiIiIiLSBIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYi0ql27dmjXrp22yyi2kSNHonz58oXat1q1ahg5cqRG65FIJJg3b55Gf8abpKamYt68eQgODtZqHfrixIkT8PLygqWlJSQSCfbu3YtffvkFEokEUVFRyv22bt2KH3/8USM1zJkzB66urjAxMUGFChWK/PyRI0eiWrVqaq9L13z00UeoV68eKlSoAAsLC3h6euLzzz9HfHx8rn2Tk5MxZcoUODs7w9zcHG+//Ta2b9+uhaqpICbaLoAM2+rVq7VdQqnZs2cPrK2ttV2GxqWmpmL+/PkAoNcBtzQIITBw4EB4enpi//79sLS0RK1atZCVlYWzZ8/CyclJue/WrVtx/fp1TJkyRa017Nu3D9988w1mz54NHx8fSKVStR6/LElJScHYsWPh7u4Oc3NzhIaG4ptvvsHhw4dx+fJlmJmZKfft168fLly4gG+//Raenp7YunUrhgwZArlcjqFDh2rxLOhVDEGkVXXq1NF2CaWmUaNG2i6B1CgtLQ3m5uaQSCTFPsZ///2HJ0+eoG/fvnj33XdVHqtcuXJJSyyU69evAwAmT54Me3v7UvmZ6qKO96Aotm3bpnK/Q4cOsLKywoQJE3D69Gl06NABAHD48GEEBgYqgw8AtG/fHtHR0fj8888xaNAgGBsbl0rNVDBeDqNCmzdvHiQSCW7cuIEhQ4bAxsYGDg4O+PDDD5GQkKCyb3p6OmbNmoXq1avDzMwMVapUwcSJE/Hs2TOV/fK6HLZmzRo0bNgQ5cuXh5WVFWrXro0vvvgCABAVFQUTExP4+fnlqu/kyZOQSCT4448/CjyPZ8+e4bPPPkONGjUglUphb2+Pbt264d9//wUABAcHQyKR5LqcExUVBYlEgl9++SXXMW/cuIF3330XlpaWqFy5MiZNmoTU1FSVffK6HPamWtQhNjYWvr6+cHFxgZmZGapXr4758+cjKytLZb/58+fD29sbtra2sLa2RuPGjeHv74/X11j+888/0a5dO1SqVAkWFhZwdXVF//79kZqaiqioKOWX9/z58yGRSCCRSN54GTA1NRXTpk1D9erVYW5uDltbW3h5eeX60vnll19Qq1YtSKVSvPXWW/jf//6X61JMUd6/0NBQDB48GNWqVYOFhQWqVauGIUOGIDo6OtfPlUgkOHbsGD788ENUrlwZ5cqVQ0ZGBgBgx44daNGiBSwtLVG+fHl06dIFly9fLvCc582bBxcXFwDAjBkzIJFIlOfx+uWwdu3a4dChQ4iOjla+pm/64pfL5Vi8eDFq166t/Lc1fPhwyGQy5T7VqlXDnDlzAAAODg6Fupya13uQl+fPn2PhwoXKn1+5cmWMGjUKjx49UtkvIyMDn332GRwdHVGuXDm0adMGFy9ezPX7oq73IDQ0FL169YKtrS3Mzc3RqFEj/P777wWec0Fy/r2bmLxsU9izZw/Kly+P9957T2XfUaNG4b///sPff/9d7J9H6sWWICqy/v37Y9CgQRg9ejT++ecfzJo1CwCwceNGAIom/j59+uDEiROYNWsWWrdujWvXrmHu3Lk4e/Yszp49m2+T+/bt2zFhwgR8/PHH+P7772FkZITbt28jLCwMgOJDu1evXli7di2mT5+u8r+plStXwtnZGX379s239qSkJLzzzjuIiorCjBkz4O3tjeTkZJw8eRIxMTGoXbt2kV+PzMxMdOvWDb6+vpg5cybOnDmDhQsXIjo6GgcOHChxLSNHjsTmzZsRGRlZ5H4XsbGxaNasGYyMjPDVV1+hZs2aOHv2LBYuXIioqChs2rRJuW9UVBR8fX3h6uoKADh37hw+/vhjPHjwAF999ZVyn+7du6N169bYuHEjKlSogAcPHiAgIADPnz+Hk5MTAgIC0LVrV4wePRofffQRgDe3akydOhW//vorFi5ciEaNGiElJQXXr1/H48ePlfv88ssvGDVqFHr37o0ffvgBCQkJmDdvHjIyMmBkVLz/z0VFRaFWrVoYPHgwbG1tERMTgzVr1qBp06YICwuDnZ2dyv4ffvghunfvjl9//RUpKSkwNTXFokWLMGfOHIwaNQpz5szB8+fPsWTJErRu3Rrnz5/Pt7Xzo48+QsOGDdGvXz98/PHHGDp0aL6/F6tXr8bYsWNx584d7Nmzp1DnNn78eKxfvx6TJk1Cjx49EBUVhS+//BLBwcG4dOkS7OzssGfPHqxatQr+/v4ICAiAjY2NMpjlpbDvgVwuR+/evXHq1ClMnz4dLVu2RHR0NObOnYt27dohNDQUFhYWABTBYMeOHZg+fTo6dOiAsLAw9O3bF4mJiXnWUJL3ICgoCF27doW3tzfWrl0LGxsbbN++HYMGDUJqamqh++xlZWUhIyMDV65cwZdffol33nkHrVq1Uj5+/fp1vPXWWyrBCAAaNGigfLxly5aF+lmkYYKokObOnSsAiMWLF6tsnzBhgjA3NxdyuVwIIURAQECe++3YsUMAEOvXr1dua9u2rWjbtq3y/qRJk0SFChUKrCMoKEgAEHv27FFue/DggTAxMRHz588v8LkLFiwQAERgYOAbjx8UFKSyPTIyUgAQmzZtUm4bMWKEACB++uknlX2/+eYbAUCcPn1auc3NzU2MGDGiSLUIIcSHH34ojI2NRVRUVIH7CSEEADF37lzlfV9fX1G+fHkRHR2tst/3338vAIgbN27keZzs7GyRmZkpFixYICpVqqR8b3fu3CkAiCtXruRbw6NHj3LV8Sb16tUTffr0yffx7Oxs4ezsLBo3bqysRQghoqKihKmpqXBzc1NuK8r797qsrCyRnJwsLC0tVd7TTZs2CQBi+PDhKvvfu3dPmJiYiI8//lhle1JSknB0dBQDBw4s4Kxf1rRkyRKV7Tk/LzIyUrmte/fuKudZkJs3bwoAYsKECSrb//77bwFAfPHFF8ptOb/Xjx49KvCYRXkPtm3bJgCIXbt2qRzjwoULAoBYvXq1EEKIGzduCABixowZKvvlPP/V3xd1vAe1a9cWjRo1EpmZmSr79ujRQzg5OYns7OwCXwMhhDh79qwAoLx169ZNJCYmquzj4eEhunTpkuu5//33nwAgFi1a9MafQ6WDl8OoyHr16qVyv0GDBkhPT0dcXBwAxeUSALn+V/Xee+/B0tISJ06cyPfYzZo1w7NnzzBkyBDs27cvz1EX7dq1Q8OGDbFq1SrltrVr10IikWDs2LEF1n7kyBF4enqiY8eOBe5XVO+//77K/ZyOj0FBQSWuxd/fH1lZWXBzcytyXQcPHkT79u3h7OyMrKws5c3HxwcAEBISotz3zz//RMeOHWFjYwNjY2OYmpriq6++wuPHj5Xv7dtvvw0zMzOMHTsWmzdvxt27d4tUz6s1ZGVlKS+1NWvWDEeOHMHMmTMRHByMtLQ0leeFh4fjv//+w9ChQ1UuA7m5uZXof9TJycmYMWMG3N3dYWJiAhMTE5QvXx4pKSm4efNmrv379++vcv/o0aPIysrC8OHDVc7L3Nwcbdu21doIuZx/d6//DjZr1gxvvfVWgb+D+SnKe3Dw4EFUqFABPXv2VHld3n77bTg6Oipfl5x/fwMHDlR5/oABA3K1ouQo7ntw+/Zt/Pvvv8rf1Vf37datG2JiYhAeHv7G16F+/fq4cOECQkJC8NNPP+Hy5cvo1KlTrsvfBV2uLK0+TPRmDEFUZJUqVVK5n9OEn/PF9fjxY5iYmOS6BCKRSODo6KhyieN1w4YNw8aNGxEdHY3+/fvD3t4e3t7eCAwMVNlv8uTJOHHiBMLDw5GZmYmff/4ZAwYMgKOjY4G1P3r0qMDm/uIwMTHJ9Zrk1FHQuWqiltc9fPgQBw4cgKmpqcqtbt26AKAMmefPn0fnzp0BAD///DP++usvXLhwAbNnzwbw8r2tWbMmjh8/Dnt7e0ycOBE1a9ZEzZo18dNPP72xlqioqFx15HwJLl++HDNmzMDevXvRvn172Nraok+fPoiIiADw8nXM6/1903tekKFDh2LlypX46KOPcPToUZw/fx4XLlxA5cqVcwUxACqjtQDF6wsATZs2zXVuO3bsyDPEl4ac1+v1egHA2dm5wH+XbzpmYd6Dhw8f4tmzZzAzM8v1usTGxipfl5xjOjg4qDw/r9+pHMV9D3L2mzZtWq79JkyYAACFer8sLS3h5eWFNm3aYPLkydizZw/+/vtvrFu3TrlPpUqV8nyNnzx5AgCwtbV948+h0sE+QaR2lSpVQlZWFh49eqQShIQQiI2NRdOmTQt8/qhRozBq1CikpKTg5MmTmDt3Lnr06IFbt24pW0OGDh2KGTNmYNWqVWjevDliY2MxceLEN9ZWuXJllY6heTE3NwcAZYfLHPl9QGZlZeHx48cqH9qxsbEAcgfGotZSUnZ2dmjQoAG++eabPB93dnYGoOiLZWpqioMHDyrPHwD27t2b6zmtW7dG69atkZ2djdDQUKxYsQJTpkyBg4MDBg8enG8tzs7OuHDhgsq2WrVqAVB8scyfPx/z58/Hw4cPla1CPXv2xL///qt8HXNe11e9vq2w719CQgIOHjyIuXPnYubMmcrtGRkZyi+r173+P/icPkM7d+4sVkudpuS8XjExMbmC9n///Zerr1NRjlmY98DOzg6VKlVCQEBAnseysrJSOebDhw9RpUoV5eM5v1N5Ke57kLPfrFmz0K9fvzz3yfn3WBReXl4wMjLCrVu3lNvq16+Pbdu2ISsrS6VF659//gEA1KtXr8g/hzSDLUGkdjlDfX/77TeV7bt27UJKSkquocD5sbS0hI+PD2bPno3nz5/jxo0bysfMzc2Vl2SWLl2Kt99+W6VjYn58fHxw69Yt5SW7vOR0Pr527ZrK9v379+f7nC1btqjc37p1K4CC58kpTC0l1aNHD1y/fh01a9aEl5dXrltOCJJIJDAxMVHpaJ6WloZff/0132MbGxvD29tbeVny0qVLAHK3DOYwMzPL9fNzvgxf5eDggJEjR2LIkCEIDw9HamoqatWqBScnJ2zbtk1ltFp0dDTOnDmj8vzCvn8SiQRCiFydkTds2IDs7Ox8z/tVXbp0gYmJCe7cuZPn6+vl5VWo4xSGVCrNs3UqLzlDtV//Hbxw4QJu3rxZ6N/BVxXlPejRowceP36M7OzsPF+TnLDRpk0bAIqRXa/auXNnrtGL+Snse1CrVi14eHjg6tWr+e6X17/HNwkJCYFcLoe7u7tyW9++fZGcnIxdu3ap7Lt582Y4OzvD29u7yD+HNIMtQaR2nTp1QpcuXTBjxgwkJiaiVatWytFhjRo1wrBhw/J97pgxY2BhYYFWrVrByckJsbGx8PPzg42NTa4WpAkTJmDx4sW4ePEiNmzYUKjapkyZgh07dqB3796YOXMmmjVrhrS0NISEhKBHjx5o3749HB0d0bFjR/j5+aFixYpwc3PDiRMnsHv37jyPaWZmhh9++AHJyclo2rSpcnSYj48P3nnnnRLVAgCjR4/G5s2bcefOnSK3NixYsACBgYFo2bIlJk+ejFq1aiE9PR1RUVE4fPgw1q5dCxcXF3Tv3h1Lly7F0KFDMXbsWDx+/Bjff/99roCwdu1a/Pnnn+jevTtcXV2Rnp6uHBWY07fJysoKbm5u2LdvH959913Y2trCzs6uwJFt3t7e6NGjBxo0aICKFSvi5s2b+PXXX9GiRQuUK1cOAPD111/jo48+Qt++fTFmzBg8e/YM8+bNy3UpprDvn7W1Ndq0aYMlS5Yo6wsJCYG/v3+hZ02uVq0aFixYgNmzZ+Pu3bvo2rUrKlasiIcPH+L8+fPKFi51qF+/Pnbv3o01a9agSZMmMDIyyjdk1apVC2PHjsWKFStgZGQEHx8f5eiwqlWr4tNPPy3yzzcyMir0ezB48GBs2bIF3bp1wyeffIJmzZrB1NQUMpkMQUFB6N27N/r27Yu6detiyJAh+OGHH2BsbIwOHTrgxo0b+OGHH2BjY1OoUX9FeQ/WrVsHHx8fdOnSBSNHjkSVKlXw5MkT3Lx5E5cuXSpweo2DBw/i559/Rq9eveDm5obMzEyEhobixx9/hLu7u3IkJKD4D06nTp0wfvx4JCYmwt3dHdu2bUNAQAB+++03zhGkS7TaLZv0Sn6jSPIayZKWliZmzJgh3NzchKmpqXBychLjx48XT58+VXnu66PDNm/eLNq3by8cHByEmZmZcHZ2FgMHDhTXrl3Ls6Z27doJW1tbkZqaWujzePr0qfjkk0+Eq6urMDU1Ffb29qJ79+7i33//Ve4TExMjBgwYIGxtbYWNjY344IMPRGhoaJ6jwywtLcW1a9dEu3bthIWFhbC1tRXjx48XycnJKj/39dFhha0lZwTaq69vfpDHqKxHjx6JyZMni+rVqwtTU1Nha2srmjRpImbPnq1S48aNG0WtWrWEVCoVNWrUEH5+fsLf31/lZ589e1b07dtXuLm5CalUKipVqiTatm0r9u/fr/Izjx8/Lho1aiSkUmmuUT55mTlzpvDy8hIVK1ZU/vxPP/1UxMfHq+y3YcMG4eHhIczMzISnp6fYuHGjGDFiRK5RU4V9/2Qymejfv7+oWLGisLKyEl27dhXXr1/P9V7l/Bu/cOFCnvXv3btXtG/fXlhbWwupVCrc3NzEgAEDxPHjxws876KMDnvy5IkYMGCAqFChgpBIJOJNH9/Z2dniu+++E56ensLU1FTY2dmJDz74QNy/f19lv8KODstR2PcgMzNTfP/996Jhw4bC3NxclC9fXtSuXVv4+vqKiIgI5X7p6eli6tSpwt7eXpibm4vmzZuLs2fPChsbG/Hpp5/mek1K+h5cvXpVDBw4UNjb2wtTU1Ph6OgoOnToINauXVvged+8eVMMGDBAuLm5CXNzc2Fubi5q164tPv/8c/H48eNc+yclJYnJkycLR0dHYWZmJho0aCC2bdv2ppeXSplEiNdmQiPSE3FxcXBzc8PHH3+MxYsXa7sc0pKRI0ciODhYZZ0t0m9nzpxBq1atsGXLFi4xQRrFy2Gkd2QyGe7evYslS5bAyMgIn3zyibZLIqJiCgwMxNmzZ9GkSRNYWFjg6tWr+Pbbb+Hh4ZFvB2YidWEIIr2zYcMGLFiwANWqVcOWLVtURpUQkX6xtrbGsWPH8OOPPyIpKQl2dnbw8fGBn5+fykhFIk3g5TAiIiIySDozRH7NmjVo0KABrK2tYW1tjRYtWuDIkSPKx4UQmDdvHpydnWFhYYF27dqpDJkmIiIiKgqdCUEuLi749ttvERoaitDQUHTo0AG9e/dWBp3Fixdj6dKlWLlyJS5cuABHR0d06tQJSUlJWq6ciIiI9JFOXw6ztbXFkiVL8OGHH8LZ2RlTpkzBjBkzAChmdXVwcMB3330HX19fLVdKRERE+kYnO0ZnZ2fjjz/+QEpKClq0aIHIyEjExsYq1zYCFLOntm3bFmfOnCkwBGVkZKhMny+Xy/HkyRNUqlSJi9gRERHpCSEEkpKS4OzsXKiJNAtDp0LQP//8gxYtWiA9PR3ly5fHnj17UKdOHeWU7K8vsufg4IDo6OgCj+nn56e2GVuJiIhIu+7fv6+2xad1KgTVqlULV65cwbNnz7Br1y6MGDFCuco0kHvhPCHEG1tzZs2ahalTpyrvJyQkwNXVFffv34e1tbV6T4CIiIg0IjExEVWrVi3WGm/50akQZGZmplyEzsvLCxcuXMBPP/2k7AcUGxsLJycn5f5xcXG5WodeJ5VKc61/BEA5Co2IiIj0hzq7sujM6LC8CCGQkZGB6tWrw9HREYGBgcrHnj9/jpCQELRs2VKLFRIREZG+0pmWoC+++AI+Pj6oWrUqkpKSsH37dgQHByMgIAASiQRTpkzBokWL4OHhAQ8PDyxatAjlypXjujJERERULDoTgh4+fIhhw4YhJiYGNjY2aNCgAQICAtCpUycAwPTp05GWloYJEybg6dOn8Pb2xrFjx9R6bZCIiIgMh07PE6QJiYmJsLGxQUJCAvsEERER6QlNfH/rdJ8gIiIiIk1hCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDpDMhyM/PD02bNoWVlRXs7e3Rp08fhIeHq+wzcuRISCQSlVvz5s21VDERERHpM50JQSEhIZg4cSLOnTuHwMBAZGVloXPnzkhJSVHZr2vXroiJiVHeDh8+rKWKiYiISJ+ZaLuAHAEBASr3N23aBHt7e1y8eBFt2rRRbpdKpXB0dCzt8oiIiKiM0ZmWoNclJCQAAGxtbVW2BwcHw97eHp6enhgzZgzi4uIKPE5GRgYSExNVbkREREQSIYTQdhGvE0Kgd+/eePr0KU6dOqXcvmPHDpQvXx5ubm6IjIzEl19+iaysLFy8eBFSqTTPY82bNw/z58/PtT0hIQHW1tYaOwciIiJSn8TERNjY2Kj1+1snQ9DEiRNx6NAhnD59Gi4uLvnuFxMTAzc3N2zfvh39+vXLc5+MjAxkZGQo7ycmJqJq1aoMQURERHpEEyFIZ/oE5fj444+xf/9+nDx5ssAABABOTk5wc3NDREREvvtIpdJ8W4mIiIgIgEwGREQAHh7AG757yxKd6RMkhMCkSZOwe/du/Pnnn6hevfobn/P48WPcv38fTk5OpVAhERFRGeTvD7i5Ia1DB2S7uiruGwidCUETJ07Eb7/9hq1bt8LKygqxsbGIjY1FWloaACA5ORnTpk3D2bNnERUVheDgYPTs2RN2dnbo27evlqsnIiLSQzIZEsaMwQC5HOUAOAqBrWPGKFqGDIDOhKA1a9YgISEB7dq1g5OTk/K2Y8cOAICxsTH++ecf9O7dG56enhgxYgQ8PT1x9uxZWFlZabl6IiIi/SMPD8f7QmDXi/vxAIYJgcDt27VZVqnRmT5Bb+qfbWFhgaNHj5ZSNURERGXfxkuXcAiAFEAggA0A/gdgxJIluD1hAsqVK6fV+jRNZ1qCiIiIqPSkp6dj/vLlAIBFEglaA1hnZIRqdnaIiYvD8hePqZDJgKCgMnO5jCGIiIjIAG3duhUymQxVqlTBhFu3gKAgmEdHY8HSpQCAZcuWqUwxI//5Z2S5ugIdOgBubmWiAzVDEBERkQHauHEjAGDSpEkwd3cH2rUDXFwwePBgVKlSBXFxcfjjjz8UO8tkuOHrC0sh0BYA5HLA11fvW4QYgoiIiAxMeHg4/vrrLxgZGWH48OEqj5mammL8+PEAgJUrVyo2RkTghhB4DiArZ8fsbOD27VKrWRMYgoiIiAzML7/8AgDw8fGBs7NzrsfHjBkDMzMz/P333zh//jzg4YHrLx6rm7OTsTHg7l4a5WoMQxAREZGBybnMNWLEiDwft7e3x5AhQwAAP/74I+Dign/efhsAUA9QBKB16/R+dmmGICIiIgMSERGBO3fuwNTUFF27ds13v08++QSAIjDdu3cPp+/dAwB4rVgBREUBo0eXRrkaxRBERERkQI4cOQIAeOeddwqcbLhRo0Zo27YtsrKy0Lt3bzx58gTly5dHU19fvW8BysEQREREZEByQpCPj88b950zZw4A4MqVKwCA9957D6amphqrrbQxBBERERmItLQ0BAcHAyhcCOrYsSNmz54NAKhWrRrmzp2ryfJKHUMQERGRgQgJCUF6ejpcXFxQt27dNz8BwMKFCxEfH487d+7Azc1NwxWWLp1ZO4yIiIg069VLYRKJpNDPq1SpkqZK0iq2BBERERmIovQHMgQMQURERAbgzp07iIiIgImJCd59911tl6MTGIKIiIgMQE4rUKtWrWBtba3lanQDQxAREZEB4KWw3BiCiIiIyrj09HQEBQUBYAh6FUMQERFRGXfy5EmkpaWhSpUqqF+/vrbL0RkMQURERGVczqWwrl27FmlofFnHEERERFTGsT9Q3hiCiIiIyrDIyEiEh4fD2NiYQ+NfwxBERERUhh3ZuhUA0LJJE1SoUEG7xegYhiAiIqKyyt8fR16sBO9z4QLg76/lgnQLQxAREVFZJJMhfcwY/Pniro8QgK8vIJNptSxdwhBERERUFkVE4JQQSAXgBKAhAGRnA7dva7cuHcIQREREVBZ5eODgi7/6AJAAgLEx4O6uvZp0DEMQERFRGSSqVMEBOzsAQE9AEYDWrQNcXLRaly4x0XYBREREpH5hYWGIjI+HVCpFpz17gPr1GYBewxBERERUBh04cAAA0KFDB1hyksQ88XIYERFRGbR//34AQM+ePbVcie5iCCIiIipj4uLicO7cOQBAjx49tFyN7mIIIiIiKmN2794NIQQaN26MqlWrarscncUQREREVMZs374dADB48GAtV6LbGIKIiIjKkAcPHuDkyZMAgEGDBmm5Gt3GEERERFSG/P777xBCoFWrVnB1ddV2OTqNIYiIiKiMEEJgw4YNAIChQ4dquRrdxxBERERURpw+fRphYWEoV64c3n//fW2Xo/MYgoiIiMqINWvWAFC0AtnY2Gi5Gt3HEERERFQG3Lt3Dzt37gQAjBs3TsvV6AeGICIiojJg0aJFyMzMRLt27dCkSRNtl6MXGIKIiIj0XFRUFDZu3AgAWLBggZar0R86E4L8/PzQtGlTWFlZwd7eHn369EF4eLjKPkIIzJs3D87OzrCwsEC7du1w48YNLVVMRESkGz799FNkZmbi3XffRevWrbVdjt7QmRAUEhKCiRMn4ty5cwgMDERWVhY6d+6MlJQU5T6LFy/G0qVLsXLlSly4cAGOjo7o1KkTkpKStFg5ERFRIclkQFCQ4k81+e2337B3716YmJjgxx9/VNtxDYFECCG0XUReHj16BHt7e4SEhKBNmzYQQsDZ2RlTpkzBjBkzAAAZGRlwcHDAd999B19f30IdNzExETY2NkhISIC1tbUmT4GIiOglf39g7FhALgeMjID16yE+/BBXr17FlStXEBMTAzMzM1SvXh0N7e1R4/lzSDw9AReXvI8nk+HMnj3oOH060tLTMW/ePMydO7d0z6kUaeL720QtR9GAhIQEAICtrS0AIDIyErGxsejcubNyH6lUirZt2+LMmTOFDkFERESlTiZ7GYAAZMjl2DBmDJYuWIC79+7l+RRXAD0A9PjkE7Tz84OFhYXyMfnPP+M3X19MFAJpAHzq1cOcOXM0fx5ljE6GICEEpk6dinfeeQf16tUDAMTGxgIAHBwcVPZ1cHBAdHR0vsfKyMhARkaG8n5iYqIGKiYiIipARIQyAF0FMATATSGAe/dgYWGBli1bwsXFBc+fPcOtfftwHcA9AKsBrP7pJ5iuXg0vLy/UrFkTSE3Fmd27cffFoTsB2BkWBuOYmPxbjShPOhmCJk2ahGvXruH06dO5HpNIJCr3hRC5tr3Kz88P8+fPV3uNREREhebhARgZYadcjg8AZABwAPDVwoUYMWUKLC0tFfsFBQH79iEVQBCAAwAOAZBlZuLs2bM4e/as8pDWAGYAmA7ARC4Hbt9mCCoinQtBH3/8Mfbv34+TJ0/C5ZU309HREYCiRcjJyUm5PS4uLlfr0KtmzZqFqVOnKu8nJiaiatWqGqiciIgoHy4u+GXECHy4aRMEgG4ANi9bBrspU1T3exGWysnl6A6gOwBhZITIkydxNioKMTExkD99ilp+fuggBKxynmdsDLi7l+IJlQ06E4KEEPj444+xZ88eBAcHo3r16iqPV69eHY6OjggMDESjRo0AAM+fP0dISAi+++67fI8rlUohlUo1WjsREVFBDh8+jI/+9z8IAGN79MDqlSth7OaWe0cXF2D9esDXF8jOBoyNIVm3DjVatUKNVq1e7lejhso+WLeOrUDFoDOjwyZMmICtW7di3759qFWrlnK7jY2NsjPYd999Bz8/P2zatAkeHh5YtGgRgoODER4eDisrq/wOrYKjw4iIqDRdvHgRbdq0QWpqKkaMGIFNmzYV2I0DgKIj9e3bitadAkaHvXGfMkQT3986E4Ly+wexadMmjBw5EoCitWj+/PlYt24dnj59Cm9vb6xatUrZebowGIKIiKi0PHv2DI0aNUJUVBQ6d+6MgwcPwtTUVNtl6aUyHYJKC0MQERGVBiEE+vfvjz179qB69eq4fPkyV3YvAU18f+vMjNFERERlyfr167Fnzx6Ympri999/ZwDSQQxBREREanbv3j18/vnnAIBvv/0WXl5eWq6I8sIQREREpEZCCPj6+iIpKQktWrTAJ598ou2SKB8MQURERGr0v//9DwEBAZBKpdi4cSOMjY21XRLlgyGIiIhITZ48eYLPPvsMADBv3jzUrl1byxVRQRiCiIiI1OSrr77C48ePUadOHWUYIt3FEERERKQGV48dw5o1awAAK1as4HxAeoAhiIiIqITEhg2Y1KUL5HI53gPQITJS2yVRITAEERERlYRMhq1jx+I0gHIAvgcU63rJZNqti96IIYiIiKgEkq5execvFl/4AoAroFjY9PZtbZZFhcAQREREVAJfHzyIGAA1ASi7QhsbKxY2JZ3GEERERFRM4eHh+NHfHwDwo5ERzAFFAFq3ziBWdtd3JtougIiISB8JITBlyhRkZmaie/fu6LF2reISmLs7A5CeYAgiIiIqhkOHDiEgIACmpqZYtmyZIvgw/OgVXg4jIiIqooyMDEyZMgUAMHXqVHh4eGi3ICoWhiAiIqIiWrZsGe7cuQMnJyfMnj1b2+VQMTEEERERFcGDBw+wcOFCAMDixYthZWWl5YqouBiCiIiIimDGjBlISUlBixYt8P7772u7HCoBhiAiIqJCCgoKwpYtWyCRSLBixQpIJBJtl0QlwBBERERUCOnp6fD19QUAjBs3Dk2aNNFyRVRSDEFERESF8M033yAiIgLOzs7w8/PTdjmkBgxBREREb3D9+nV8++23AIAVK1bAxsZGyxWROjAEERERFSArKwtjxoxBVlYWevfujb59+2q7JFIThiAiIqICfPvttzh37hysra3ZGbqMYQgiIiLKR2hoKObPnw8AWLlyJapWrarlikidGIKIiIjykJKSgg8++ABZWVl477338MEHH2i7JFIzhiAiIqLXCCEwduxYhIeHw9nZGWvXruVlsDKIIYiIiOg1K1euxNatW2FsbIzty5fD9upVQCbTdlmkZgxBRERU9shkQFBQsYLLqVOnMHXqVADA9wMGoPXAgUCHDoCbG+Dvr+5KSYsYgoiIqGzx91cElmIElxs3bqBXr17IysrCoJ498cnvvwNyueJBuRzw9WWLUBnCEERERGWHTAaMHVv44PJKi5FMJkPXrl3x7NkztGjRAhvHj4dECNX9s7OB27c1ew5Uaky0XQAREZHaRES8DEA5coKLi4vqdn9/ZWD6TyJBJwcHyGJjUbt2bRw4cADl0tIAIyPV4xkbA+7umj8PKhVsCSIiorLDw0MRXF6VV3B5pcUoGkAbIfBvbCxcnJwQEBCASpUqKULT+vWK5+ccZ9263GGK9BZDEBERlR2FDS4vWoyuA2gD4A6A6gBO/vAD3NzcXu43ejQQFaW4ZBYVpbhPZYZEiNcveJZtiYmJsLGxQUJCAqytrbVdDhERaYJMprgE5u6ed8uNTIb9rq54XwgkA/AEcMLICC7R0Wzp0VGa+P5mnyAiIip7XFzyDTOZmZmYv3YtFgEQADoA+N3ICJXWr2cAMjAMQUREZDAiIiLw/vvv48KFCwCA8cOG4afhw2FauzYDkAFiCCIiojIvIyMDy5Ytw9dff43U1FRUqFAB69atw8CBA7VdGmkRQxAREZVpR44cwSeffIKIiAgAQPv27bF582auCE8cHUZERGXTnTt30KtXL3Tr1g0RERFwcHDA//73P5w4cYIBiAAwBBERURmTmpqKL7/8EnXr1sWBAwdgYmKCzz77DLdu3cKwYcO4Gjwp8XIYERGVCUII7N69G59++inu378PAOjYsSOWL1+Ot956S8vVkS7SqZagkydPomfPnnB2doZEIsHevXtVHh85ciQkEonKrXnz5toploiIdEZERAS6du2KAQMG4P79+3Bzc8OuXbtw7NgxBiDKl06FoJSUFDRs2BArV67Md5+uXbsiJiZGeTt8+HApVkhERLokLS0NX375JerVq4djx47BzMwMX375JcLCwtCvXz9e+qIC6dTlMB8fH/j4+BS4j1QqhaOjYylVREREuio0NBTDhw/HzZs3ASj+k7xixQq4c4FTKiSdagkqjODgYNjb28PT0xNjxoxBXFyctksiIqJSlJmZiblz56J58+a4efMmHB0dsXPnThw+fJgBiIpEp1qC3sTHxwfvvfce3NzcEBkZiS+//BIdOnTAxYsXIZVK83xORkYGMjIylPcTExNLq1wiIlKz+/fv47333sPff/8NABg0aBBWrVqlWPWdqIj0KgQNGjRI+fd69erBy8sLbm5uOHToEPr165fnc/z8/DB//vzSKpGIiDTkxIkTGDx4MOLj41GhQgWsXbtW5XuBqKj07nLYq5ycnODm5qacBTQvs2bNQkJCgvKWM2ySiIj0gxAC3377LTp37oz4+Hg0atQIly5dYgCiEtOrlqDXPX78GPfv34eTk1O++0il0nwvlRERkW7LzMzE+PHj4e/vDwD48MMPsXLlSlhYWGi5MioLdCoEJScn4/bt28r7kZGRuHLlCmxtbWFra4t58+ahf//+cHJyQlRUFL744gvY2dmhb9++WqyaiIg0ISkpCQMHDkRAQACMjIywfPlyTJw4UdtlURmiUyEoNDQU7du3V96fOnUqAGDEiBFYs2YN/vnnH/zvf//Ds2fP4OTkhPbt22PHjh2wsrLSVslERKQBcXFx6Nq1Ky5fvgwLCwts374dvXr10nZZVMZIhBBC20WUpsTERNjY2CAhIQHW1tbaLoeIiF4TExODd999Fzdv3kTlypVx8OBBNGvW7OUOMhkQEQF4eAAuLtorlEqVJr6/9bpjNBERlS0ymQxt27bFzZs3UaVKFZw+fVo1APn7A25uQIcOij9f9BUiKg6GICIi0gnR0dFo27YtIiIi4ObmhpMnT8LT0/PlDjIZMHYsIJcr7svlgK+vYjtRMTAEERGR1j148ADt2rXD3bt3UaNGDYSEhKBGjRqqO0VEvAxAObKzgVcG1BAVBUMQERFp1ZMnT9C5c2dERUXB3d0dISEhcHNzy72jhwdg9NrXlrExwKUyqJgYgoiISGuSk5PRrVs3hIWFoUqVKggMDIRLfp2dXVyA9esVwQdQ/LluHTtHU7Hp1BB5IiIyHBkZGejXrx/+/vtv2Nra4tixY6hWrVrBTxo9GujSRXEJzN2dAYhKhCGIiIhKXXZ2NoYNG4bAwEBYWlri8OHDqGNtDQQFvXnou4sLww+pBS+HERFRqRJCYMKECfjjjz9gamqKPXv2wPv6dQ59p1LHEERERJonkylaeWQyzJkzB+vXr4dEIsGWLVvQ6a23OPSdtIKXw4iISLP8/ZUhZ6lEgkUvFipYt24d3nvvPUU4ym/oOy97kQaxJYiIiDTnlQkOfwHw2YsA5DdzJsaMGaPYh0PfSUsYgoiISHNeTHC4D8BHLzZ9BmBG584v9+HQd9ISXg4jIiLN8fBAsESCQUIgG8AoAEuMjCDx8FDdj0PfSQsYgoiISGMuxcWhl1SKjPR09AGw3sgIkvXr8w45HPpOpYyXw4iIqPheGfX1ups3b6JLly5ISk9H+5Ytse3oUZhERytafYh0AFuCiIioeF4Z9QUjI0W/nhcBJyoqCp06dUJ8fDy8vLyw98gRmFtba7lgIlUSIV501S+GuLg4yOVyODo6qrMmjUpMTISNjQ0SEhJgzV9IIqLikckUkxq+OrTd2BiIikKMsTFat26NO3fuoE6dOjh58iQqVaqkvVqpTNDE93exLoddu3YNdevWhZOTE6pUqYIqVapgzpw5SElJUUtRRESk416M+lKRnY0nly6hc+fOuHPnDqpXr47AwEAGINJZxQpBo0ePhoODA06fPo3Lly9j4cKFOHLkCLy8vPD06VN110hERLomj7l9koyM4DN3Lq5fvw4nJyccP34czs7OWiqQ6M2KdTnM0tISFy9eRO3atZXbhBB47733YG5ujt9++02tRaoTL4cRERWSTKZo8clvQVN/f8XyFtnZSDEyQg8PDwSHh8PW1hYnT55E3bp1S79mKrN05nJYXi0+EokEixYtwr59+9RSGBERaZG//5sXNB09GoiKQsrhw+jerBmCw8NhZWWFgIAABiDSC4VuCerevTsaNmyIt99+G9nZ2fjpp5+wb98+ODg4KPe5cOEC+vfvj3v37mms4JJiSxAR0RsU0On59Rah5ORkdO/eHSdPnoS1tTWOHj2K5s2bl269ZBA08f1d6CHy9evXx6VLl7Bp0yY8fPgQAFCjRg0MHDhQGYw2bdqEZcuWqaUwIiLSknw6Pb++oGlycjK6deuGU6dOwdraGseOHYO3t3cpF0tUfMXqE/Tw4UNcvnwZV65cUd5u374NY2Nj1KpVC9euXdNErWrBliAiojcoREvQs2fP0KNHD/z111+wsbHBsWPH0KxZM+3USwZBqy1Br3JwcEDXrl3RtWtX5ba0tDRcvXoVV69eVUthRESkJTkLmr7o9Pz6gqaxsbHo2rUrrl69ChsbGwQGBqJp06ZaLpqo6Eo0WaI+YksQEVEhyWS5FjS9c+cOOnfujLt378LR0REBAQFo2LChlgslQ6AzLUFERGQAXlvQ9OrVq+jSpQsePnyIGjVq4NixY6hZs6YWCyQqGS6gSkREb3TkyBG0bdsWDx8+RIMGDXD69GkGINJ7DEFERJQvIQT8/PzQvXt3JCQkoHXr1ggJCYGTk5O2SyMqMYYgIiLKU3JyMgYOHIgvvvgCQgiMGzcOx48fR4UKFbRdGpFasE8QERHlcufOHfTp0wfXr1+HqakpVq5cibFjx2q7LCK1YggiIiIVR48exZAhQ/D06VM4Ojpi165daNmypbbLIlI7Xg4jIiIAiv4/ixcvRrdu3fD06VN4e3vj4sWLDEBUZjEEERERUlJSMGTIEMyYMQNyuRyjR49GSEgInJ2dtV0akcbwchgRkYGLjIxEnz59cO3aNZiYmGD58uUYN24cJBKJtksj0iiGICIiA3b8+HEMGjQIT548gb29PXbu3InWrVtruyyiUsHLYUREBkgIgR9++AFdunTBkydP4OXlhYsXLzIAkUFhCCIiMjCpqan44IMPMG3aNMjlcowYMQKnTp2CyytLZBAZAl4OIyIyINHR0ejTpw+uXLkCY2NjLFu2DJMmTWL/HzJIDEFERAYiKCgIAwcORHx8POzs7PDHH3+gXbt22i6LSGt4OYyIqIwTQmDFihXo1KkT4uPj0bhxY1y8eJEBiAweQxARURn2/PlzjB07FpMnT0Z2djbef/99nD59Gq6urtoujUjrdCoEnTx5Ej179oSzszMkEgn27t2r8rgQAvPmzYOzszMsLCzQrl073LhxQzvFEhHpuEePHqFjx47YsGEDJBIJlixZgl9//RUWFhbaLo1IJ+hUCEpJSUHDhg2xcuXKPB9fvHgxli5dipUrV+LChQtwdHREp06dkJSUVMqVEhHpKJkMCArC1WPH0LRpU5w6dQrW1tY4ePAgpk2bxg7QRK/QqY7RPj4+8PHxyfMxIQR+/PFHzJ49G/369QMAbN68GQ4ODti6dSt8fX1Ls1QiIt3j7w+MHYv9cjmGAkgB4O7ujv379+Ott97SdnVEOkenWoIKEhkZidjYWHTu3Fm5TSqVom3btjhz5ky+z8vIyEBiYqLKjYiozJHJgLFjsUYuR18oAlBHAOf37GEAIsqH3oSg2NhYAICDg4PKdgcHB+VjefHz84ONjY3yVrVqVY3WSUSkDeLWLcySyzEBgBzARwCOAKgYH6/dwoh0mN6EoByvX88WQhR4jXvWrFlISEhQ3u7fv6/pEomIStXz588xfNUqfPvi/nwA6wGYGBsD7u5arIxIt+lUn6CCODo6AlC0CDk5OSm3x8XF5WodepVUKoVUKtV4fURE2pCUlIR+/frh+PHjMDYyws9CYJQQgLExsG4dwKUwiPKlNy1B1atXh6OjIwIDA5Xbnj9/jpCQELRs2VKLlRERacfTp0/RqVMnHD9+HJaWljh46BBG3bsHBAUBUVHA6NHaLpFIp+lUS1BycjJu376tvB8ZGYkrV67A1tYWrq6umDJlChYtWgQPDw94eHhg0aJFKFeuHIYOHarFqomISl9cXBw6d+6Mq1evwtbWFgEBAWjatKniQbb+EBWKToWg0NBQtG/fXnl/6tSpAIARI0bgl19+wfTp05GWloYJEybg6dOn8Pb2xrFjx2BlZaWtkomISt2DBw/QsWNH/Pvvv3BwcEBgYCDq169f+APIZEBEBODhwcBEBk0ihBDaLqI0JSYmwsbGBgkJCbC2ttZ2OURERRIZGYl3330XkZGRqFq1Ko4fPw5PT8/CH+DFXEKQywEjI2D9el42I72gie9vvekTRERk6O7evYs2bdogMjISNWvWxKlTp4oWgF7MJQS5XHFfLgd8fRXbiQwQQxARkR6IPncOHVq2hEwmQ+3atXHy5Em4ubkV7SARES8DUI7sbOCVvphEhoQhiIhIx8mWLEGHFi0Q/fAhPAD8+dFHcHZ2LvqBPDwUl8BexbmEyIAxBBER6bD/QkPRfvp03AVQA8CfAJxmzCjeJSwXF0UfIGNjxX3OJUQGTqdGhxER0UuxsbHo0K8fbgOoBiAIgAvw8hJWccLL6NFAly6K57u7MwCRQWMIIiLSQY8ePcK7776L8Pv3URWKFiDXnAdLegnLxYXhhwi8HEZEpHMeP36Mjh07IiwsDM7Ozvjzm29QnZewiNSOLUFERJpSjEkJc5bCuHbtGhwdHREUFAR3T09g+HBewiJSM4YgIiJNKMqkhC/C0jN7e3QeORKXL19G5cqV8eeff76cB4iXsIjUjjNGExGpm0wGuLmpzsljbKxY1PT1IPMiLCXK5egC4ByASpUqITg4GPXq1SvFool0G2eMJiLSB4WdlPDFDM7Jcjm6QRGAKgI4vmULAxBRKWAIIiJSt8JOShgRgRS5HN0B/AXABkAggLel0tKpk8jAMQQREalbISclTHVxQU8AJwFYAzgGoAlncCYqNewYTUSkCW+YlDAtLQ29J0xAEAArAEcBNOPwd6JSxRBERKQp+YzoSk9PR79+/XD8+HFYWlriyK+/onnFihz+TlTKGIKISHuKMY+OvktLS0P//v0REBCAcuXK4fDhw2jVpo22yyIySOwTRETa4e+vGEbeoYPiT39/bVekcUlJSejevTuOHDkCCwsLHDhwAG0YgIi0hiGIiErfi6HhymHkcjng61u8ldH1xLNnz9C5c2cEBQXBysoKAQEB6NChg7bLIjJoDEFEVPoKO49OGfHo0SO0b98e586dQ8WKFXH8+HG2ABHpAIYgIip9hZ1HpwyIiopCmzZtcOXKFdjb2yM4OBjNmjXTdllEBIYgItKGQs6jo+8uXryI5s2b499//4WLiwtOnjyJBg0aaLssInqBo8OISDveMI+Ovjt06BAGDhyI1NRUNGjQAIcOHYJLGTtHIn3HEERE2lMGV0YXQuD777/HzJkzIZfL0alTJ+zcuZMLNhPpIIYgIiI1SUpKwocffoidO3cCAD788EOsXbsWpqamWq6MiPLCEEREpAY3btzAe++9h5s3b8LU1BTLly+Hr68vJBKJtksjonywYzQRUQnI5XIsXboUTZo0wc2bN+Hs7IyQkBCMGzeOAYhIx7EliIioOGQy3PrzT/iuXYvgs2cBAN26dcPGjRvh4OCg5eKIqDAYgoiIiihl9Wp8M3EivgeQCaCcmRmWrViBMWPGsPWHSI/wchgRlQ0yGRAUpNGlNzIyMrBq4UJ4TpwIPygCkA+Aa1lZGNutGwMQkZ5hCCIi/afhxVifPXuG5cuXw93dHZO+/BL/AagGYC+AQwBqyuVldskPorJMIoQQ2i6iNCUmJsLGxgYJCQmct4OoLJDJFMHn1bXIjI2BqKgSzUGUlZWFU6dO4bfffsO2bduQlpYGAKji6IhZDx/iIyEgVePPI6KCaeL7m32CiEi/FbQYaxFCiRACERER+OuvvxAcHIyDBw/iyZMnysfr16+P8ePHY9SoUTDfskWx6n12dpld8oPIEDAEEZFeeP78OZKSkpCRkYH09HRkZGQgMzMTRtnZMJZIYCQEjKC4xm9sZAQjCwvg3j1kZWUpb5mZmUhISMDjx4/x+PFjxMXFISIiAuHh4fj333/x9OlTlZ9pZ2eHXr16YfTo0WjRosXLPj9lfMkPIkPBEEREOiErKwthYWG4fv06IiIiEBERgaioKMTFxeHRo0d49uxZ4Q8mlwPNmxe5BqlUiqZNm6JVq1bw8fFBq1atYGKSz8dkGVzyg8jQMAQRkVakp6fj1KlTCAwMxLlz53Dx4kWkpqa+8XnGxsYwNzeHVCqFiYkJ5HK54padDXlWFrKFgFwIyOVyCCFgamoKExMTmGRnwyQ5GdYAKgGo1KABKjdujJo1a8LT0xOenp546623IJVK31QCEZURDEFEVGqePHmC3bt3Y9euXQgODkZ6errK41ZWVmjYsKEylNSoUQOOjo6oXLky7O3tYW1tnX/LTEFyOk+/6sYN4NAhtuYQGTCGICLSqIyMDOzZswdbtmzB0aNHkZmZqXzM2dkZXbp0QZs2beDt7Y1atWrByEgDM3eoqfM0EZUtDEFEpBFRUVFYt24d/P398ejRI+X2Bg0aYNCgQejVqxfq1q375gkGZTJFiPHwKH5g8fAAjIxyD6N3dy/e8YioTGAIIiK1Onv2LL799lscOHAAOdOQubi4YOTIkRgyZAjq1KlT+IP5+wNjxyrCi5ERsH69YmRWUbm4KJ7LYe1E9ApOlkhEJSaEQGBgIBYtWoSQkBDl9k6dOmHChAno0aNH0fvyaGISRJmMw9qJ9BQnSyQinRMYGIgvvvgCoaGhAABTU1MMGzYMn3/+OWrXrl38A2uiH09hhrWr4/IbEekFrh1GRMUSGhqKjh07onPnzggNDUW5cuUwZcoU3LlzB/7+/iULQMDLfjyv0nQ/Hg2vQUZEukWvQtC8efMgkUhUbo6Ojtoui8ig3Lp1CwMHDkTTpk1x4sQJmJmZYcqUKYiKisKyZctQtWpV9fygnH48xsaK+5ruxyOTvex/BCj+9PXV6Kr0RKRdenc5rG7dujh+/LjyvnHOByQR5U8Nl3hiYmIwf/58bNiwAdnZ2ZBIJBg2bBgWLFgAt9fn4FHXJaXSXJ6Cw+iJDI7ehSATExO2/hAVRQlHWCUkJGDx4sVYtmyZciX1HgAWAajfpk3uSQjVNaIrR2ktT8Fh9EQGR68uhwFAREQEnJ2dUb16dQwePBh3794tcP+MjAwkJiaq3IgMRgku8aSnp+OHH35AjRo1sGjRIqSlpaEFgJMADgCoL0TuY+nzJaXSvvxGRFqnVyHI29sb//vf/3D06FH8/PPPiI2NRcuWLfH48eN8n+Pn5wcbGxvlTW39FYj0QUGXePKRlZWFTZs2wdPTE9OmTcOTJ09Qp04d7P36a/wFoHVBxyrGz9Mpo0crhuAHBSn+LEkLFhHpPL2eJyglJQU1a9bE9OnTMXXq1Dz3ycjIQEZGhvJ+YmIiqlatynmCyDAUYa4dIQT27t2L2bNn4+bNmwAUkxwuWLAAw4cPh3FMzJuPpYm5fYiIoJl5gvSqJeh1lpaWqF+/PiIiIvLdRyqVwtraWuVGZDAKeYknKCgIzZs3R79+/XDz5k3Y2tpiyZIluHXrFkaNGqUYgFCYY/GSEhHpEb1uCcrIyEDNmjUxduxYfPXVV4V6DmeMJoOUz0zJFy5cwJw5c3Ds2DEAQLly5TB16lRMmzYNNjY2RTpWkfchIioCg58xetq0aejZsydcXV0RFxeHhQsXIjExESNGjNB2aUS67bURVn/99Re+/vprHD16FIBiludx48Zh9uzZcHBwKNKxir0PEZGW6VUIkslkGDJkCOLj41G5cmU0b94c586dyz1HCZG26PCSC0IIBAcH4+uvv0ZQUBAAxTxb77//PubNm4fq1atruUIiotKlVyFo+/bt2i6BKH/qnh9HTZ4/f44dO3bgp59+wsWLFwEoWn5GjhyJmTNnokaNGlqukIhIO/S6T1BxsE8QaYQOjoqKiYnBhg0bsHr1asTGxgIAzM3NMXr0aEyfPh2urq5aqYuIqDgMvk8Qkc7SkSUXnj9/jkOHDmHjxo04cuQIsrOzAQDOzs6YOHEixo4dCzs7u7yfrMOX8oiINIEhiEgdirLkgprDRlZWFk6dOoXdu3dj+/btiI+PVz7WokULfPzxxxgwYABMTU3zP4iOXsojItIkhiAidciZH8fXV9EClN/8OGoKG0lJSQgODsa+ffuwb98+leDj6OiIESNGYOTIkahdu/abD5bfUhddurBFiIjKNPYJIlKngubHKUG/odTUVFy8eBF//vknAgMD8ffffyMrK0v5eKWKFdG7b1/0798fnTt3holJEf5/ExQEdOiQ9/Z27Qp/HCIiDWKfICJdV9D8OIXsN5SWlobw8HBcvnwZf//9N/7++2/8888/yv49OWpWrowujx6hH4C2z57BpGVLoFu3otfM1dOJyEAxBBGVllfCRiYAGYAoIyNEX7qE8KNHERYWhrCwMNy9exfy18MSACcnJ7zzzjvo1KkTOtati+qtX1nKNGdF9+JcwirspTwiojKGIYhIAzIyMnDv3j1ERUUhOjr65Z81ayI6IgIPAMgBRevLZ5/len7FcuXQIDUVzQB4SyRo9t13cJk2DRKJRLFDUJB6R6ONHq0IUFzqgogMCPsEERVDamoqIiMjVQJOzi0qKko5L09BpFIp3Nzc4Obmhpo1a6Ju3bqoU6cO6lasCPsmTSB59VeTq7UTkYFjnyCiUiSEQExMDMLCwvDvv/8iPDwc4eHh+Pfff3H//v03Pr9cuXJwc3NDtWrVUK1aNeXfc/60t7eHkZFR7icGBSkub73q9VYeXsIiIioxhiAiKAJPVFQULl68iEuXLuHy5cu4dOkS4uLi8n2OjY2NMtTk3F69b2dn9/LyVVEUtqMyL2EREZUIQ5CmcRZe7Sngtc/Ozsb169dx6tQpnDp1CqdPn8Z///2X6xBGRkZwd3dH7dq1UatWLeWftWrVyn/m5ZIqSisPV2snIio2hiBN4iy8Raeu0JjHa/+ga1ccPXoUR44cwfHjx/Hs2TOVp5iamqJBgwZo3LgxGjVqhMaNG6N+/fooV65cyc6pONjKQ0SkcewYrSnsuFp06gqNL157IZfjPIA9AI4AuPbabuXLl0fLli3RukEDvOPsjGY9eqCch0f+x2SLHhGR1mji+zuPXpmkFgVNjEe55bd0g0xWpMPI5XL8tWcPPpXL4QagOYDvoAhAEokE3t7emDt3Ls6ePYunT5/i6MCBmLN0KdpNnYpytWsrgtjr/P0VgbZDB8Wfee1DRER6hy1BmsKWoKIp4dIN//zzDzZv3oxt27ap9O0pD6AHgJ4SCTpfuQK7Bg1ePqkw7xHfRyIincAh8vqEQ5iLphhLN8THx2Pr1q3YvHkzLl26pNxubW2NXnXqYMD58+gil8M857V/NQABhVvGopBLXRARkf5hCNIkdm4tvEKGxuzsbBw9ehQbNmzAwYMHkZmZCUDRqblHjx4YMWIEunbtCqlUWvBipkDhghfX1SIiKrMYgjSNQ5gLr4DQGB8fj40bN2Lt2rWIjIxUbm/SpAlGjBiBIUOG5B6y/qbXvjDBiy16RERlFvsEkc4SQuD8+fNYtWoVfv/9d2RkZAAAKlSogFEDBuDDFi1Qr3PnkgeSN7UYFXYfIiLSGE18fzMEUekp5DDz1NRUbNu2DatXr1bp69O4cWNMnDgRg9PTUe7jjzn/EhGRAWHHaNJfhZgD6NatW1izZg1++eUX5USGUqkUgwcPxoQJE9C0aVNIHjxQHa2VM5S+Sxe20BARUZEwBJHm5TcHUJcuyHJ0xMGDB7F69WoEBgYqn1KjRg2MHz8eo0aNQqVKlV4ei6O1iIhITRiCDFVpzoCcR3B5mJ2Nn+fOxbpjxyB7MSGiRCJBt27dMHHiRHTp0iXvFdY5WouIiNSEM0brE5lMMXlgEWdRzqW0Z0B+EVwEgFMAhgCoCuDLjRshk8lgZ2eHmTNn4u7duzh48CB8fHzyDkDAy9FaxsaK+xytRURExcSO0fpCzetqleYMyDExMfht8mT8snMnwl7Z3qJFC0yYMAEDBgyAubl50Q7K0VpERAaFHaMNVQF9aoocAEqpT01GRgYOHDiATZs2ISAgAPIXP9NCKsX7/fph/LRpaNy4cfF/AOdfIiKiEmII0gfqDC4a7FOTmpqKo0ePYteuXThw4AASExOVj7Vs2RIjR47EwIEDYWNjU+KfRUREVFIMQTpICIEnT57g0aNHiI+PR8qDBxASCYQQsABgA8DGyAh2Dg4ocoOgGmdAFkLg7t27CAwMxLFjx3D06FGkpqa+8qNcMHz4cIwYMQKenp5FPj4REZEmsU+QDoiKisKff/6JM2fO4MaNGwgLC1NpRSmIlZUVXFxcULVqVbi4uMDV1RWurq5wc3ODq6srqlatqlhH63XF6FOTmpqKK1euIDQ0FKGhoTh16hSioqJU9nFzc0P//v0xYMAAeHt759/BmYiIqAjYJ6iMEELg6tWr2Lp1K3bt2oW7d+/muZ+NjQ0qV64MS0tLGBkZQZKVhdSEBCSkpyMhORmpqalISkrCzZs3cfPmzXx/nqOjo0owcnR0hLW1NaytrWGVkgKLW7cgl8uRnZ2N7OxsJCUl4fHjx4iPj8d/ERG4c/MmbsfF4d6DB8q+PTlMTU3RsmVLdOzYET4+PmjcuDEkEolaXy8iIiJNYAjKi4bm0ElNTcWvv/6KFStW4MaNG8rtJiYmaNasGdq1a4eGDRuibt26cHd3z7sF5xXJycl48OAB7t+/D5lMhvv37+P+/fuIjo7GvXv3EB0djbS0NMTGxiI2Nhbnz58v8Tk4OjqiadOm8PLyQrNmzfDOO++gfPnyJT4uERFRaWMIep26hqK/4tGjR1i2bBnWrVuHJ0+eAFAsB9GjRw8MGTIEXbp0KVaQKF++PGrVqoVatWqpPvAixAl3dzy2sMC9e/eUoSg6Ohrx8fFISkpCYmIiEhMTkZaWBmNjYxgZGcHY2BiWlpaws7REpSNH4ACgJgB3AO5GRnA4fx6SqlVL9HoQERHpAvYJepWa59BJSEjADz/8gGXLliE5ORmAYjmIyZMnY+TIkZoZJaWuEBcUpJhMMa/t7dqpbivN2aeJiMggaaJPkOH2Wn3wIPe2goaiF0FqaiqWLFmCGjVq4Ouvv0ZycjK8vLywZ88e3Lp1C5988olmAlB+8wkVZ4bpnKH0r8prKH1pzz5NRESkJgYbgvzq1IHYsEF1Y2G/+PORmZmJtWvXwt3dHdOnT8eTJ09Qp04d7N69G+fPn0efPn1gnLPcgyaoKcQBKNzyFOoMXURERKXMYEPQtwA+GjsWGXfuvNxYzHWphBD4/fffUbduXYwfPx4xMTGoVq0aNm/ejGvXrqFv376lM2KqhCEul9GjFZcCg4IUf75+WU2doYuIiKiUGWwIkgDYKARa+vjgzqtB6E1f/K8QQuDIkSNo1qwZBg0ahIiICNjb22PFihUIDw/H8OHDNdvy8zpNLC7q4qLoA5TXMdQduoiIiEqRwXaM3gnAF8BjAOXKlcMXX3yBzz77rFALeWZkZOCPP/7A4sWL8c8//wBQjNT6/PPP8emnn8LKyqrohamzc3FpLi7q75979ukSjqYjIiJ6nSY6RhtsCEowMkLit9/ig0OHEBISAgBwcnKCr68v+vXrh7p166rMdvz06VOcPXsWe/fuxR9//IFnz54BUISfsWPHYsaMGbC3ty9eURoYll+quKI7ERFpGEOQGihfxLAwWL/1FoQQ2LZtG6ZPn44Hr4wYs7S0RNWqVWFiYoK4uDjExcWpHMfZ2RkTJ07E+PHjUbFixeIXpOZh+URERGURQ5Aa5PciPn/+HDt37sTWrVtx4sQJpKen53qup6cn2rZti8GDB6Nt27bq6e9TlPl4iIiIDBRD0AurV6/GkiVLEBMTg7p16+LHH39E69atC/XcwryIWVlZuH37Nh4+fIjMzExUrlwZVatWha2trTpPQ4EtQURERG/EBVQB7NixA1OmTMHq1avRqlUrrFu3Dj4+PggLC4Orq6tafoaJiQlq166N2rVrq+V4BcoZ0fV652IGICIiIo3Su5Ygb29vNG7cGGvWrFFue+utt9CnTx/4+fm98fmaSJJqwc7FRERE+TL4lqDnz5/j4sWLmDlzpsr2zp0748yZM3k+JyMjAxkZGcr7iYmJGq2x2FxcGH6IiIhKkV5NlhgfH4/s7Gw4ODiobHdwcEBsbGyez/Hz84ONjY3yVpUroBMRERH0LATleH0JCiFEvstSzJo1CwkJCcrb/fv3S6NEIiIi0nF6dTnMzs4OxsbGuVp94uLicrUO5ZBKpZBKpaVRHhEREekRvWoJMjMzQ5MmTRAYGKiyPTAwEC1bttRSVURERKSP9KolCACmTp2KYcOGwcvLCy1atMD69etx7949jBs3TtulERERkR7RuxA0aNAgPH78GAsWLEBMTAzq1auHw4cPw83NTdulERERkR7Ru3mCSkpn5wkiIiKifGni+1uv+gQRERERqQtDUEnIZIqFTmUybVdCRERERcQQVFz+/oqFTzt0UPzp76/tioiIiKgIGIKKQyYDxo59ufK7XK5YAJUtQkRERHqDIag4IiJeBqAc2dmKBVCJiIhILzAEFYeHB2D02ktnbKxYAZ6IiIj0AkNQcbi4AOvXK4IPoPhz3TquAk9ERKRH9G6yRJ0xejTQpYviEpi7OwMQERGRnmEIKgkXF4YfIiIiPcXLYURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkh6FYKqVasGiUSicps5c6a2yyIiIiI9ZKLtAopqwYIFGDNmjPJ++fLltVgNERER6Su9C0FWVlZwdHTUdhlERESk5/TqchgAfPfdd6hUqRLefvttfPPNN3j+/Lm2SyIiIiI9pFctQZ988gkaN26MihUr4vz585g1axYiIyOxYcOGfJ+TkZGBjIwM5f2EhAQAQGJiosbrJSIiIvXI+d4WQqjvoELL5s6dKwAUeLtw4UKez925c6cAIOLj40t0fN5444033njjTT9ud+7cUVsGkQihzkhVdPHx8YiPjy9wn2rVqsHc3DzX9gcPHsDFxQXnzp2Dt7d3ns99vSXo2bNncHNzw71792BjY1Oy4vVIYmIiqlativv378Pa2lrb5ZQanjfP2xDwvHnehiAhIQGurq54+vQpKlSooJZjav1ymJ2dHezs7Ir13MuXLwMAnJyc8t1HKpVCKpXm2m5jY2NQ/3hyWFtb87wNCM/bsPC8DYuhnreRkfq6M2s9BBXW2bNnce7cObRv3x42Nja4cOECPv30U/Tq1Quurq7aLo+IiIj0jN6EIKlUih07dmD+/PnIyMiAm5sbxowZg+nTp2u7NCIiItJDehOCGjdujHPnzpX4OFKpFHPnzs3zEllZxvPmeRsCnjfP2xDwvNV33lrvGE1ERESkDXo3WSIRERGROjAEERERkUFiCCIiIiKDxBBEREREBqlMhqDVq1ejevXqMDc3R5MmTXDq1KkC9w8JCUGTJk1gbm6OGjVqYO3ataVUqXoV5bx3796NTp06oXLlyrC2tkaLFi1w9OjRUqxWfYr6fuf466+/YGJigrfffluzBWpIUc87IyMDs2fPhpubG6RSKWrWrImNGzeWUrXqU9Tz3rJlCxo2bIhy5crByckJo0aNwuPHj0up2pI7efIkevbsCWdnZ0gkEuzdu/eNzykLn2lFPe+y8plWnPc7hz5/phXnvNXxmVbmQtCOHTswZcoUzJ49G5cvX0br1q3h4+ODe/fu5bl/ZGQkunXrhtatW+Py5cv44osvMHnyZOzatauUKy+Zop73yZMn0alTJxw+fBgXL15E+/bt0bNnT+Us3PqiqOedIyEhAcOHD8e7775bSpWqV3HOe+DAgThx4gT8/f0RHh6Obdu2oXbt2qVYdckV9bxPnz6N4cOHY/To0bhx4wb++OMPXLhwAR999FEpV158KSkpaNiwIVauXFmo/cvKZ1pRz7usfKYV9bxz6PtnWnHOWy2faWpbhUxHNGvWTIwbN05lW+3atcXMmTPz3H/69Omidu3aKtt8fX1F8+bNNVajJhT1vPNSp04dMX/+fHWXplHFPe9BgwaJOXPmiLlz54qGDRtqsELNKOp5HzlyRNjY2IjHjx+XRnkaU9TzXrJkiahRo4bKtuXLlwsXFxeN1ahJAMSePXsK3KesfKa9qjDnnRd9/Ex7VVHOW98/015VmPNW12damWoJev78OS5evIjOnTurbO/cuTPOnDmT53POnj2ba/8uXbogNDQUmZmZGqtVnYpz3q+Ty+VISkqCra2tJkrUiOKe96ZNm3Dnzh3MnTtX0yVqRHHOe//+/fDy8sLixYtRpUoVeHp6Ytq0aUhLSyuNktWiOOfdsmVLyGQyHD58GEIIPHz4EDt37kT37t1Lo2StKAufaeqgj59pxaXvn2nFoa7PNL2ZMbow4uPjkZ2dDQcHB5XtDg4OiI2NzfM5sbGxee6flZWF+Pj4Ahdn1RXFOe/X/fDDD0hJScHAgQM1UaJGFOe8IyIiMHPmTJw6dQomJvr5z78453337l2cPn0a5ubm2LNnD+Lj4zFhwgQ8efJEb/oFFee8W7ZsiS1btmDQoEFIT09HVlYWevXqhRUrVpRGyVpRFj7T1EEfP9OKoyx8phWHuj7TylRLUA6JRKJyXwiRa9ub9s9ru64r6nnn2LZtG+bNm4cdO3bA3t5eU+VpTGHPOzs7G0OHDsX8+fPh6elZWuVpTFHeb7lcDolEgi1btqBZs2bo1q0bli5dil9++UWvWoOAop13WFgYJk+ejK+++goXL15EQEAAIiMjMW7cuNIoVWvKymdacen7Z1phlbXPtKJQ12damYqNdnZ2MDY2zvW/wri4uFz/M8rh6OiY5/4mJiaoVKmSxmpVp+Kcd44dO3Zg9OjR+OOPP9CxY0dNlql2RT3vpKQkhIaG4vLly5g0aRIAxS+SEAImJiY4duwYOnToUCq1l0Rx3m8nJydUqVIFNjY2ym1vvfUWhBCQyWTw8PDQaM3qUJzz9vPzQ6tWrfD5558DABo0aABLS0u0bt0aCxcuLJOtImXhM60k9PkzrajKymdacajrM61MtQSZmZmhSZMmCAwMVNkeGBiIli1b5vmcFi1a5Nr/2LFj8PLygqmpqcZqVafinDeg+N/SyJEjsXXrVr3sI1HU87a2tsY///yDK1euKG/jxo1DrVq1cOXKFXh7e5dW6SVSnPe7VatW+O+//5CcnKzcduvWLRgZGcHFxUWj9apLcc47NTUVRkaqH3PGxsYAXraOlDVl4TOtuPT9M62oyspnWnGo7TOtRN2qddD27duFqamp8Pf3F2FhYWLKlCnC0tJSREVFCSGEmDlzphg2bJhy/7t374py5cqJTz/9VISFhQl/f39hamoqdu7cqa1TKJainvfWrVuFiYmJWLVqlYiJiVHenj17pq1TKJainvfr9HUkRVHPOykpSbi4uIgBAwaIGzduiJCQEOHh4SE++ugjbZ1CsRT1vDdt2iRMTEzE6tWrxZ07d8Tp06eFl5eXaNasmbZOociSkpLE5cuXxeXLlwUAsXTpUnH58mURHR0thCi7n2lFPe+y8plW1PN+nb5+phX1vNX1mVbmQpAQQqxatUq4ubkJMzMz0bhxYxESEqJ8bMSIEaJt27Yq+wcHB4tGjRoJMzMzUa1aNbFmzZpSrlg9inLebdu2FQBy3UaMGFH6hZdQUd/vV+nrB4YQRT/vmzdvio4dOwoLCwvh4uIipk6dKlJTU0u56pIr6nkvX75c1KlTR1hYWAgnJyfx/vvvC5lMVspVF19QUFCBv6tl9TOtqOddVj7TivN+v0pfP9OKc97q+EyTCFFG24SJiIiIClCm+gQRERERFRZDEBERERkkhiAiIiIySAxBREREZJAYgoiIiMggMQQRERGRQWIIIiIiIoPEEEREREQGiSGIiIiIDBJDEBERERkkhiAiKhMWLFiA+vXrw9LSEg4ODhg/fjwyMzO1XRYR6TATbRdARFRSQghkZ2dj3bp1qFKlCsLCwjB8+HA0aNAA48eP13Z5RKSjuIAqEZVJQ4cOReXKlfHTTz9puxQi0lG8HEZEei86OhqTJk1CvXr1ULFiRZQvXx6///47XFxctF0aEekwhiAi0mvx8fFo1qwZ4uPjsXTpUpw+fRpnz56FsbEx3n77bW2XR0Q6jH2CiEivHT58GFlZWdi2bRskEgkAYNWqVXj+/DlDEBEViCGIiPSara0tEhMTsX//ftSpUwcHDhyAn58fqlSpgsqVK2u7PCLSYewYTUR6TQiB8ePHY+vWrbCwsMAHH3yA9PR0REdH4+DBg9ouj4h0GEMQERERGSR2jCYiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZpP8DC8MVKZM9nl8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbCUlEQVR4nO3dd3zM9x8H8NdlRyQhIksIJZLaKsTeK7ZSs2bsVVTtWm2ltX6ldgWt0saoUUWlRFBRiVkUMRKODAkZkkgk9/n9cXLNyZDEXW69no/HPbjvfb+X9/dO7l6+nyURQggQERERGRgjTRdAREREpAkMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQaRRrVu3RuvWrTVdRrENHz4cpUuXLtS+lStXxvDhw9Vaj0QiwaJFi9T6M94mNTUVixYtwqlTpzRah644ceIEvLy8YGVlBYlEggMHDmD79u2QSCSIiIhQ7Ldr1y58++23aqlh/vz5qFSpEkxMTFCmTJkiHz98+HBUrlxZ5XVpm1GjRqFWrVooU6YMLC0tUb16dXz22WeIi4tT2i85ORkzZ85Ex44dUb58ea34vaS8mWi6ADJs69ev13QJJWb//v2wsbHRdBlql5qaisWLFwOATgfckiCEQL9+/VC9enUcOnQIVlZW8PDwQGZmJkJCQuDs7KzYd9euXbh+/TqmTp2q0hoOHjyIr776CvPmzYOPjw/Mzc1V+vz6JCUlBWPGjEG1atVgYWGBsLAwfPXVVzhy5AguX74MMzMzAEB8fDw2b96MunXrolevXtiyZYuGK6f8MASRRtWoUUPTJZSY+vXra7oEUqG0tDRYWFhAIpEU+zmePHmCZ8+eoXfv3mjXrp3SY+XLl3/XEgvl+vXrAIApU6bAwcGhRH6mqqjiPSiKn3/+Wel+27ZtYW1tjQkTJuDs2bNo27YtAMDNzQ3Pnz+HRCJBXFwcQ5AWY3MYFdqiRYsgkUhw48YNDBw4ELa2tnB0dMTIkSORmJiotO/Lly8xZ84cVKlSBWZmZqhQoQImTpyIhIQEpf3yag7bsGED6tati9KlS8Pa2hqenp6YO3cuACAiIgImJibw8/PLVd/p06chkUiwZ8+eAs8jISEBn376Kd577z2Ym5vDwcEBXbp0wa1btwAAp06dgkQiydWcExERAYlEgu3bt+d6zhs3bqBdu3awsrJC+fLlMWnSJKSmpirtk1dz2NtqUYXo6GiMHTsWrq6uMDMzQ5UqVbB48WJkZmYq7bd48WJ4e3vDzs4ONjY2+OCDD+Dv748311g+efIkWrdujXLlysHS0hKVKlVCnz59kJqaioiICMWX9+LFiyGRSCCRSN7aDJiamooZM2agSpUqsLCwgJ2dHby8vHJ96Wzfvh0eHh4wNzfH+++/jx9//DFXU0xR3r+wsDAMGDAAlStXhqWlJSpXroyBAwciMjIy18+VSCQ4fvw4Ro4cifLly6NUqVJIT08HAAQEBKBJkyawsrJC6dKl0alTJ1y+fLnAc160aBFcXV0BALNmzYJEIlGcx5vNYa1bt8bvv/+OyMhIxWv6ti9+mUyGZcuWwdPTU/Fva+jQoZBKpYp9KleujPnz5wMAHB0dC9Vsk9d7kJeMjAx8+eWXip9fvnx5jBgxAk+fPlXaLz09HZ9++imcnJxQqlQptGzZEhcvXsz1+6Kq9yAsLAw9evSAnZ0dLCwsUL9+fezevbvAcy5I9r93E5P/rikU5v0h7cArQVRkffr0Qf/+/eHr64t//vkHc+bMAQBs3boVgPwSf69evXDixAnMmTMHLVq0wLVr17Bw4UKEhIQgJCQk30vuv/zyCyZMmIDJkydjxYoVMDIywt27d3Hz5k0A8g/tHj16YOPGjZg5cyaMjY0Vx65duxYuLi7o3bt3vrUnJyejefPmiIiIwKxZs+Dt7Y0XL17g9OnTiIqKgqenZ5Ffj1evXqFLly4YO3YsZs+ejXPnzuHLL79EZGQkfvvtt3euZfjw4fjhhx/w4MGDIve7iI6ORqNGjWBkZIQFCxagatWqCAkJwZdffomIiAhs27ZNsW9ERATGjh2LSpUqAQDOnz+PyZMn4/Hjx1iwYIFin65du6JFixbYunUrypQpg8ePH+PYsWPIyMiAs7Mzjh07hs6dO8PX1xejRo0C8ParGtOnT8eOHTvw5Zdfon79+khJScH169cRHx+v2Gf79u0YMWIEevbsiZUrVyIxMRGLFi1Ceno6jIyK9/+5iIgIeHh4YMCAAbCzs0NUVBQ2bNiAhg0b4ubNm7C3t1faf+TIkejatSt27NiBlJQUmJqaYunSpZg/fz5GjBiB+fPnIyMjA8uXL0eLFi1w4cKFfK92jho1CnXr1sWHH36IyZMnY9CgQfn+Xqxfvx5jxozBvXv3sH///kKd2/jx47F582ZMmjQJ3bp1Q0REBD7//HOcOnUKly5dgr29Pfbv349169bB398fx44dg62trSKY5aWw74FMJkPPnj1x5swZzJw5E02bNkVkZCQWLlyI1q1bIywsDJaWlgCAESNGICAgADNnzkTbtm1x8+ZN9O7dG0lJSXnW8C7vQVBQEDp37gxvb29s3LgRtra2+OWXX9C/f3+kpqYWus9eZmYm0tPTceXKFXz++edo3rw5mjVrVqhjScsIokJauHChACCWLVumtH3ChAnCwsJCyGQyIYQQx44dy3O/gIAAAUBs3rxZsa1Vq1aiVatWivuTJk0SZcqUKbCOoKAgAUDs379fse3x48fCxMRELF68uMBjlyxZIgCIwMDAtz5/UFCQ0vYHDx4IAGLbtm2KbcOGDRMAxOrVq5X2/eqrrwQAcfbsWcU2Nzc3MWzYsCLVIoQQI0eOFMbGxiIiIqLA/YQQAoBYuHCh4v7YsWNF6dKlRWRkpNJ+K1asEADEjRs38nyerKws8erVK7FkyRJRrlw5xXu7d+9eAUBcuXIl3xqePn2aq463qVWrlujVq1e+j2dlZQkXFxfxwQcfKGoRQoiIiAhhamoq3NzcFNuK8v69KTMzU7x48UJYWVkpvafbtm0TAMTQoUOV9n/48KEwMTERkydPVtqenJwsnJycRL9+/Qo46/9qWr58udL27J/34MEDxbauXbsqnWdB/v33XwFATJgwQWn733//LQCIuXPnKrZl/14/ffq0wOcsynvw888/CwBi3759Ss8RGhoqAIj169cLIYS4ceOGACBmzZqltF/28Tl/X1TxHnh6eor69euLV69eKe3brVs34ezsLLKysgp8DYQQIiQkRABQ3Lp06SKSkpLy3b84vw9UctgcRkXWo0cPpft16tTBy5cvERsbC0DeXAIg1/+qPvroI1hZWeHEiRP5PnejRo2QkJCAgQMH4uDBg7lGXQDypoG6deti3bp1im0bN26ERCLBmDFjCqz96NGjqF69Otq3b1/gfkU1ePBgpfuDBg0CIP+f57vW4u/vj8zMTLi5uRW5rsOHD6NNmzZwcXFBZmam4ubj4wMACA4OVux78uRJtG/fHra2tjA2NoapqSkWLFiA+Ph4xXtbr149mJmZYcyYMfjhhx9w//79ItWTs4bMzExFU1ujRo1w9OhRzJ49G6dOnUJaWprScbdv38aTJ08waNAgpWYGNzc3NG3atMivS7YXL15g1qxZqFatGkxMTGBiYoLSpUsjJSUF//77b679+/Tpo3T/jz/+QGZmJoYOHap0XhYWFmjVqpXGRshl/7t783ewUaNGeP/99wv8HcxPUd6Dw4cPo0yZMujevbvS61KvXj04OTkpXpfsf3/9+vVTOr5v375KzUs5Ffc9uHv3Lm7duqX4Xc25b5cuXRAVFYXbt2+/9XWoXbs2QkNDERwcjNWrV+Py5cvo0KFDruZv0g0MQVRk5cqVU7qffQk/+4srPj4eJiYmuZpAJBIJnJyclJo43jRkyBBs3boVkZGR6NOnDxwcHODt7Y3AwECl/aZMmYITJ07g9u3bePXqFb7//nv07dsXTk5OBdb+9OnTAi/3F4eJiUmu1yS7joLOVR21vCkmJga//fYbTE1NlW41a9YEAEXIvHDhAjp27AgA+P777/HXX38hNDQU8+bNA/Dfe1u1alX8+eefcHBwwMSJE1G1alVUrVoVq1evfmstERERuerI/hJcs2YNZs2ahQMHDqBNmzaws7NDr169EB4eDuC/1zGv9/dt73lBBg0ahLVr12LUqFH4448/cOHCBYSGhqJ8+fK5ghgApdFagPz1BYCGDRvmOreAgIA8Q3xJyH693qwXAFxcXAr8d/m25yzMexATE4OEhASYmZnlel2io6MVr0v2czo6Oiodn9fvVLbivgfZ+82YMSPXfhMmTACAQr1fVlZW8PLyQsuWLTFlyhTs378ff//9NzZt2vTWY0n7sE8QqVy5cuWQmZmJp0+fKgUhIQSio6PRsGHDAo8fMWIERowYgZSUFJw+fRoLFy5Et27dcOfOHcXVkEGDBmHWrFlYt24dGjdujOjoaEycOPGttZUvX16pY2heLCwsAEDR4TJbfh+QmZmZiI+PV/rQjo6OBpA7MBa1lndlb2+POnXq4KuvvsrzcRcXFwDyvlimpqY4fPiw4vwB4MCBA7mOadGiBVq0aIGsrCyEhYXhu+++w9SpU+Ho6IgBAwbkW4uLiwtCQ0OVtnl4eACQf7EsXrwYixcvRkxMjOKqUPfu3XHr1i3F65j9uub05rbCvn+JiYk4fPgwFi5ciNmzZyu2p6en49mzZ3mew5udXbP7DO3du7dYV+rUJfv1ioqKyhW0nzx5kquvU1GeszDvgb29PcqVK4djx47l+VzW1tZKzxkTE4MKFSooHs/+ncpLcd+D7P3mzJmDDz/8MM99sv89FoWXlxeMjIxw586dIh9LmscrQaRy2UN9f/rpJ6Xt+/btQ0pKSq6hwPmxsrKCj48P5s2bh4yMDNy4cUPxmIWFhaJJZtWqVahXr16hOib6+Pjgzp07iia7vGR3Pr527ZrS9kOHDuV7zM6dO5Xu79q1C0DB8+QUppZ31a1bN1y/fh1Vq1aFl5dXrlt2CJJIJDAxMVHqaJ6WloYdO3bk+9zGxsbw9vZWNEteunQJQO4rg9nMzMxy/fzsL8OcHB0dMXz4cAwcOBC3b99GamoqPDw84OzsjJ9//llptFpkZCTOnTundHxh3z+JRAIhRK7OyFu2bEFWVla+551Tp06dYGJignv37uX5+np5eRXqeQrD3Nw8z6tTeckeqv3m72BoaCj+/fffQv8O5lSU96Bbt26Ij49HVlZWnq9Jdtho2bIlAPnIrpz27t2ba/Rifgr7Hnh4eMDd3R1Xr17Nd7+8/j2+TXBwMGQyGapVq1bkY0nzeCWIVK5Dhw7o1KkTZs2ahaSkJDRr1kwxOqx+/foYMmRIvseOHj0alpaWaNasGZydnREdHQ0/Pz/Y2trmuoI0YcIELFu2DBcvXiz0PBxTp05FQEAAevbsidmzZ6NRo0ZIS0tDcHAwunXrhjZt2sDJyQnt27eHn58fypYtCzc3N5w4cQK//vprns9pZmaGlStX4sWLF2jYsKFidJiPjw+aN2/+TrUAgK+vL3744Qfcu3evyFcblixZgsDAQDRt2hRTpkyBh4cHXr58iYiICBw5cgQbN26Eq6srunbtilWrVmHQoEEYM2YM4uPjsWLFilwBYePGjTh58iS6du2KSpUq4eXLl4pRgdl9m6ytreHm5oaDBw+iXbt2sLOzg729fYEj27y9vdGtWzfUqVMHZcuWxb///osdO3agSZMmKFWqFADgiy++wKhRo9C7d2+MHj0aCQkJWLRoUa6mmMK+fzY2NmjZsiWWL1+uqC84OBj+/v6FnjW5cuXKWLJkCebNm4f79++jc+fOKFu2LGJiYnDhwgXFFS5VqF27Nn799Vds2LABDRo0gJGRUb4hy8PDA2PGjMF3330HIyMj+Pj4KEaHVaxYEdOmTSvyzzcyMir0ezBgwADs3LkTXbp0wSeffIJGjRrB1NQUUqkUQUFB6NmzJ3r37o2aNWti4MCBWLlyJYyNjdG2bVvcuHEDK1euhK2tbaFG/RXlPdi0aRN8fHzQqVMnDB8+HBUqVMCzZ8/w77//4tKlSwVOr3H48GF8//336NGjB9zc3PDq1SuEhYXh22+/RbVq1RQjIbMdPXoUKSkpSE5OBgDcvHkTe/fuBQB06dJF8e+aNEyj3bJJp+Q3iiSvkSxpaWli1qxZws3NTZiamgpnZ2cxfvx48fz5c6Vj3xwd9sMPP4g2bdoIR0dHYWZmJlxcXES/fv3EtWvX8qypdevWws7OTqSmphb6PJ4/fy4++eQTUalSJWFqaiocHBxE165dxa1btxT7REVFib59+wo7Oztha2srPv74YxEWFpbn6DArKytx7do10bp1a2FpaSns7OzE+PHjxYsXL5R+7pujwwpbS/YItJyvb36QxyiUp0+fiilTpogqVaoIU1NTYWdnJxo0aCDmzZunVOPWrVuFh4eHMDc3F++9957w8/MT/v7+Sj87JCRE9O7dW7i5uQlzc3NRrlw50apVK3Ho0CGln/nnn3+K+vXrC3Nz81yjfPIye/Zs4eXlJcqWLav4+dOmTRNxcXFK+23ZskW4u7sLMzMzUb16dbF161YxbNiwXKOmCvv+SaVS0adPH1G2bFlhbW0tOnfuLK5fv57rvcr+Nx4aGppn/QcOHBBt2rQRNjY2wtzcXLi5uYm+ffuKP//8s8DzLsrosGfPnom+ffuKMmXKCIlEIt728Z2VlSW++eYbUb16dWFqairs7e3Fxx9/LB49eqS0X2FHh2Ur7Hvw6tUrsWLFClG3bl1hYWEhSpcuLTw9PcXYsWNFeHi4Yr+XL1+K6dOnCwcHB2FhYSEaN24sQkJChK2trZg2bVqu1+Rd34OrV6+Kfv36CQcHB2FqaiqcnJxE27ZtxcaNGws873///Vf07dtXuLm5CQsLC2FhYSE8PT3FZ599JuLj43Pt7+bmpjSKLOetML/LVDIkQrwxExqRjoiNjYWbmxsmT56MZcuWaboc0pDhw4fj1KlTSutskW47d+4cmjVrhp07dypGWhKpA5vDSOdIpVLcv38fy5cvh5GRET755BNNl0RExRQYGIiQkBA0aNAAlpaWuHr1Kr7++mu4u7vn24GZSFUYgkjnbNmyBUuWLEHlypWxc+dOpVElRKRbbGxscPz4cXz77bdITk6Gvb09fHx84OfnpzRSkUgd2BxGREREBklrhshv2LABderUgY2NDWxsbNCkSRMcPXpU8bgQAosWLYKLiwssLS3RunVrpSHTREREREWhNSHI1dUVX3/9NcLCwhAWFoa2bduiZ8+eiqCzbNkyrFq1CmvXrkVoaCicnJzQoUMHxfBDIiIioqLQ6uYwOzs7LF++HCNHjoSLiwumTp2KWbNmAZDP6uro6IhvvvkGY8eO1XClREREpGu0smN0VlYW9uzZg5SUFDRp0gQPHjxAdHS0Ym0jQD57aqtWrXDu3LkCQ1B6errS9PkymQzPnj1DuXLlck2/TkRERNpJCIHk5GS4uLgUaiLNwtCqEPTPP/+gSZMmePnyJUqXLo39+/ejRo0aiinZ31xkz9HREZGRkQU+p5+fn8pmbCUiIiLNevTokcoWn9aqEOTh4YErV64gISEB+/btw7BhwxSrTAO5F84TQrz1as6cOXMwffp0xf3ExERUqlQJjx49go2NjWpPgIiIiNQiKSkJFStWLNYab/nRqhBkZmamWITOy8sLoaGhWL16taIfUHR0NJydnRX7x8bG5ro69CZzc/Nc6x8BUIxCIyIiIt2hyq4sWjM6LC9CCKSnp6NKlSpwcnJCYGCg4rGMjAwEBwejadOmGqyQiIiIdJXWXAmaO3cufHx8ULFiRSQnJ+OXX37BqVOncOzYMUgkEkydOhVLly6Fu7s73N3dsXTpUpQqVYrryhAREVGxaE0IiomJwZAhQxAVFQVbW1vUqVMHx44dQ4cOHQAAM2fORFpaGiZMmIDnz5/D29sbx48fV2nbIBERERkOrZ4nSB2SkpJga2uLxMRE9gkiIiLSEer4/tbqPkFERERE6sIQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAZJa0KQn58fGjZsCGtrazg4OKBXr164ffu20j7Dhw+HRCJRujVu3FhDFRMREZEu05oQFBwcjIkTJ+L8+fMIDAxEZmYmOnbsiJSUFKX9OnfujKioKMXtyJEjGqqYiIiIdJmJpgvIduzYMaX727Ztg4ODAy5evIiWLVsqtpubm8PJyamkyyMiIiI9ozVXgt6UmJgIALCzs1PafurUKTg4OKB69eoYPXo0YmNjC3ye9PR0JCUlKd2IiIiIJEIIoeki3iSEQM+ePfH8+XOcOXNGsT0gIAClS5eGm5sbHjx4gM8//xyZmZm4ePEizM3N83yuRYsWYfHixbm2JyYmwsbGRm3nQERERKqTlJQEW1tblX5/a2UImjhxIn7//XecPXsWrq6u+e4XFRUFNzc3/PLLL/jwww/z3Cc9PR3p6emK+0lJSahYsSJDEBERkQ5RRwjSmj5B2SZPnoxDhw7h9OnTBQYgAHB2doabmxvCw8Pz3cfc3Dzfq0REREQEQCoFwsMBd3fgLd+9+kRr+gQJITBp0iT8+uuvOHnyJKpUqfLWY+Lj4/Ho0SM4OzuXQIVERER6yN8fzypVQmbbtoCbG+Dvr+mKSozWhKCJEyfip59+wq5du2BtbY3o6GhER0cjLS0NAPDixQvMmDEDISEhiIiIwKlTp9C9e3fY29ujd+/eGq6eiIhI9yTfuoXuo0ahnBCoDOC8TAaMHSu/MmQAtCYEbdiwAYmJiWjdujWcnZ0Vt4CAAACAsbEx/vnnH/Ts2RPVq1fHsGHDUL16dYSEhMDa2lrD1RMREeme6Z9+isOv//4YQE8ACVlZwN27Gqyq5GhNn6C39c+2tLTEH3/8UULVEBER6bfz589jy+sJhw8BmAngFoDVEgkWVqumydJKjNZcCSIiIqKSs3LlSgDAsKZN0d3YGAteb/++TBlk5jcpsVQKBAXpTXMZQxAREZGBkUql2L9/PwDg040bgYgIfPjHHyhfrhweP3+Oo0eP5j7I31/ecVqPOlAzBBERERmYgIAAZGVloUWLFqhduzbg6grzjh0xcPBgAMDBgweVD5BKETJ6NKxlMrQAAD3pQM0QREREZGD27dsHAOjfv7/S9m7dugEAfv/9d8hksv8eCA9HvBB4ASAte5sedKBmCCIiIjIgT548QUhICACgV69eSo+1bNkSpUuXRnR0NC5duvTfA+7uiJdIAADlsrcZGwM63oGaIYiIiMiAZPcFatKkCSpUqKD0mLm5Odq2bQtAvmC5gqsr4j/6CMDrEGRsDGzapPOzSzMEERERGZDffvsNAPJdc7NVq1YAgNOnTyttj3991adc795ARATg66u+IksIQxAREZGByMjIwJkzZwAAnTt3znOfFi1aAADOnDmj1C8oPj4eAFCuTh2dvwKUjSGIiIjIQFy4cAGpqakoX748atasmec+9evXh5WVFRISEnD9+nXFdkUIKlcuz+N0EUMQERGRgQgKCgIAtGnTBpLXHZ3fZGJigmbNmgFQbhKLi4sDwBBEREREOujkyZMA5CGoIC1btgSgHIIeP34MALk6U+syrVk7jIiIiNQnLS0N586dAwDFCLD8ZIegM2fOKNb21McQxCtBREREBiAkJAQZGRmoUKEC3N3dC9y3YcOGMDc3R3R0NO7cuYPExESkpqYCYAgiIiIiHZOzKSy//kDZLCws0KRJE8Vx0tfLY5QtWxaWlpbqLbQEMQQREREZgOxO0W9rCsvWrl07AMCJEydw584dAEDVqlXVU5yGMAQRERHpueTkZFy4cAHA2ztFZ8sOQUFBQbhx4wYA4P3331dPgRrCEERERKTnzp49i8zMTFSpUgWVK1cu1DFeXl6wtbXFs2fPsH79egAMQURERKRjitoUBgCmpqbo3bs3ACA6OhrAf0tq6AuGICIiIj1X2PmB3jRx4kTF352dneHt7a3SujSNIYiIiEiPPX/+HJcvXwZQ9BDk5eWFTZs2oVWrVtizZw+MjY3VUaLGcLJEIiIiPXb69GnIZDJ4eHjAxcWlyMePGTMGY8aMUUNlmscrQURERHrsxMGDAIC2jRppuBLtwxBERESkr/z9cXLbNgBAu59+Avz9NVyQdmEIIiIi0kdSKaJHj8YNABIArYUAxo4FXs/+TAxBRERE+ik8HCdfL35aD0A5AMjKAu7e1WBR2oUhiIiISB+5u+PE67+2y95mbAxUq6ahgrQPQxAREZE+cnXFSXt7AK9DkLExsGkT4Oqq0bK0CYfIExER6aH79+8jIi4OJiYmaH7oEFC7NgPQGxiCiIiI9NCxY8cAAE2aNEFpHx8NV6Od2BxGRESkh44cOQIA6NKli4Yr0V4MQURERHomLS1NsV5Y165dNVyN9mIIIiIi0jNBQUFIS0tDxYoVUatWLU2Xo7UYgoiIiPTM77//DkB+FUgikWi4Gu3FEERERKRHsrKysG/fPgBAjx49NFyNdmMIIiIi0iPBwcGIiYmBnZ0d2rdvr+lytBpDEBERkR4JCAgAAHz44YcwNTXVcDXajSGIiIhIT2RkZCiawgYMGKDharQfQxAREZGe+PXXXxEfHw9nZ2e0atVK0+VoPYYgIiIiPbF27VoAwNixY2FiwkUh3oYhiIiISA9cvXoVf/31F0xMTDBmzBhNl6MTGIKIiIj0wNKlSwEAffr0gbOzs4ar0Q1aE4L8/PzQsGFDWFtbw8HBAb169cLt27eV9hFCYNGiRXBxcYGlpSVat26NGzduaKhiIiIi7XD58mXs3r0bEokEc+fO1XQ5OkNrQlBwcDAmTpyI8+fPIzAwEJmZmejYsSNSUlIU+yxbtgyrVq3C2rVrERoaCicnJ3To0AHJyckarJyIiKiQpFIgKEj+5xvS09Px4sWLIj9lVlYWxo4dC0A+IqxOnTrvXKahkAghhKaLyMvTp0/h4OCA4OBgtGzZEkIIuLi4YOrUqZg1axYA+T8YR0dHfPPNN4p/AG+TlJQEW1tbJCYmwsbGRp2nQERE9B9/f2DMGEAmA4yMIDZtwskqVfD9998jKCgIsbGxAAAbGxt4162LzrVqodfgwXivWbO8n08qBcLDMXvvXnyzfj1sbW1x8+ZNuLi4lOBJlRx1fH9rbQi6e/cu3N3d8c8//6BWrVq4f/8+qlatikuXLqF+/fqK/Xr27IkyZcrghx9+KNTzMgQREVGJk0oBNzd5AAJwD8BIAKcLcWjDypXRf9Ik9OvXDxUrVpRv9PdH1ujR+EIILH69365duzBw4EA1FK8d1PH9rZXj54QQmD59Opo3b65Y/TY6OhoA4OjoqLSvo6MjIiMj832u9PR0pKenK+4nJSWpoWIiIqIChIcrAtBBAIMBpACwMDOD7+jR6N+/P2rVqgWTmBjcr1EDJ4XAYQCnAIRGRCB0xgzMmDEDTZo0QacmTZCxahUOAsjuFbtEIsHAFi00cGK6TStD0KRJk3Dt2jWcPXs212NvroYrhChwhVw/Pz8sXrw438eJiIjUzt0dMDLCVpkMowHIALQCsP3UKVRu0uS//a5cQV0hUBfANAAxAPYBCKhTB2f++QchISEICQlR7G4LYBWAkUIAd+8Crq4ld056QGs6RmebPHkyDh06hKCgILjmeDOdnJwA/HdFKFtsbGyuq0M5zZkzB4mJiYrbo0eP1FM4ERFRflxdsX/cOEUAGiWR4M9Nm5QDEKAIS9kcAUwwNkbw77/j0aNHWL16NXwHDMA4AJsA3Ie8WQ3GxkC1aiV0MvpDa0KQEAKTJk3Cr7/+ipMnT6JKlSpKj1epUgVOTk4IDAxUbMvIyEBwcDCaNm2a7/Oam5vDxsZG6UZERFSSzp49i4H+/pABGNOtGzZHRsIkrwkNXV2BzZvloQaQ/7lpE+DqigoVKmDKlCnY8vPP2LBlC8YYG8PujX2oaLSmY/SECROwa9cuHDx4EB4eHorttra2sLS0BAB888038PPzw7Zt2+Du7o6lS5fi1KlTuH37NqytrQv1c9gxmoiISlJMTAzq1auH6Oho9OrVC3v27Hn7khZSqbx5q1q1/MNNYfbRI3o9Oiy/fj3btm3D8OHDAcivFi1evBibNm3C8+fP4e3tjXXr1ik6TxcGQxAREZWUrKwsdOzYESdPnkTNmjXx999/w8rKStNl6SS9DkElhSGIiIhKip+fH+bOnQsrKyuEhYXB09NT0yXpLHV8f2tNnyAiIiJ9cuPGDSxatAgAsG7dOgYgLcQQREREpGKZmZkYMWIEMjIy0K1bNwwdOlTTJVEeGIKIiIhUbNWqVQgNDYWtrS02btxY4Hx2pDkMQURERCoUGRmpaAb73//+hwoVKmi2IMoXQxAREZEKTZ8+HWlpaWjZsqVidDNpJ4YgIiIiFTl+/Dh+/fVXGBsbY+3atWwG03IMQURERCqQcf8+Jvv6ApCvgVm7dm0NV0RvwxBERET0rvz98b9q1XBHKoUDgMVVq2q6IioEhiAiIqJ3IZVCOno0vng99/AyALbTpsmXtSCtxhBERET0LsLD8akQSAHQFMAQAMjKkq/rRVqNIYiIiOgdnIyNxW7Iv1DXvf4TxsbyhU1JqzEEERERFdOrV68w5YsvAADjJBLUA+QBaNMmg1jZXdeZaLoAIiIiXbVu3TrcuHED5cqVwxdBQUB8vPwKEAOQTmAIIiIiKoaYmBgsXLgQgHy1eDsOidc5bA4jIiIqhtmzZyMpKQleXl4YOXKkpsuhYmAIIiIiKqKQkBBs374dALB27VoYGxtrtiAqFoYgIiKiIsjKysKkSZMAACNGjIC3t7eGK6LiYggiIiIqgnXr1uHSpUuwtbWFn5+fpsuhd8AQREREVEiRkZGYO3cuAOCbb76Bo6Ojhiuid8EQREREVAhCCIwfPx4pKSlo0aIFRo8eremS6B0xBBERERXCzz//jKNHj8LMzAzff/89jIz4Farr+A4SERG9RVRUFKZMmQIAWLBgATw8PDRcEakCQxAREVEBZDIZRowYgfj4eNSrVw+fffaZpksiFWEIIiIiKsC6devwxx9/wMLCArt27YKZmZmmSyIVYQgiIiLKx7Vr1xRXflasWIH3339fwxWRKjEEERER5eH58+fo3bs30tPT4ePjgwkTJmi6JFIxhiAiIqI3yGQyDB48GPfv30flypWxY8cOSCQSTZdFKsYQRERE9IZ58+bh6NGjsLCwwK8bNqDctWuAVKrpskjFGIKIiEj/SKVAUFCxgsvatWvx9ddfAwA2Dx6M+l27Am3bAm5ugL+/qislDWIIIiIi/eLvLw8sxQgue/fuVcwH9MWMGRiybRsgk8kflMmAsWN5RUiPMAQREZH+kEqBMWMKH1xyXDHav38/Bg0aBCEExo0bh3k+Pv89T7asLODuXfWeA5UYE00XQEREpDLh4fkHF1dX5e3+/orAFCCRYLBEgiyZDAMGDMDatWshiYoCjIyUn8/YGKhWTf3nQSWCV4KIiEh/uLvLg0tOeQWXHFeM1gIYJASyZDIM6dMHP/30E4yNjeWhafNm+fHZz7NpU+4wRTqLIYiIiPRHYYNLeDgyZTJMATAZgAzAaADbxo+XB6Bsvr5ARIS8ySwiQn6f9Aabw4iISL/4+gKdOsmbwKpVy/PKTZSNDQYDCHp93w/ALCMjSPJaGNXVlVd/9BRDEBER6Z8Cgsvx48fx8ccf4ykAKwDbAfRlU5dBYggiIiKD8OLFC8yZMwdr164FANSpUwcBq1fDE8j3ihHpN4YgIiLSe4GBgRg9ejQiIyMBAOPGjcOqVatgaWmp4cpIk9gxmoiI9FZCQgJ8fX3RsWNHREZGws3NDX/88Qc2bNjAAEQMQUREpH+EEAgICICnpye2bt0KAJg0aRKuX7+Ojh07arg60hZsDiMiIr0SGRmJCRMm4MiRIwAADw8PfP/992jRooWGKyNtwytBRESkFzIzM7Fy5UrUqFEDR44cgZmZGRYtWoSrV68yAFGetCoEnT59Gt27d4eLiwskEgkOHDig9Pjw4cMhkUiUbo0bN9ZMsUREpDVu3LgBb29vzJgxA6mpqWjZsiWuXr2KhQsXwtzcXNPlkZbSqhCUkpKCunXrKoYv5qVz586IiopS3LIvdxIRkeGRyWRYuXIlGjRogEuXLqFs2bLYsmULgoKC4OnpqenySMtpVZ8gHx8f+Pj4FLiPubk5nJycSqgiIiLSVpGRkRg2bBiCg4MBAF26dMGWLVvg7Oys4cpIV2jVlaDCOHXqFBwcHFC9enWMHj0asbGxmi6JiIhK2OHDh1GvXj0EBwfDysoKmzZtwuHDhxmAqEi06krQ2/j4+OCjjz6Cm5sbHjx4gM8//xxt27bFxYsX823zTU9PR3p6uuJ+UlJSSZVLREQqlpmZiQULFsDPzw8A4O3tjZ07d6Jq1aoarox0kU6FoP79+yv+XqtWLXh5ecHNzQ2///47PvzwwzyP8fPzw+LFi0uqRCIiUpNnz57ho48+wsmTJwEAkydPxooVK2BmZqbhykhX6VxzWE7Ozs5wc3NDeHh4vvvMmTMHiYmJitujR49KsEIiIlKF8PBwNG7cGCdPnoSVlRV+/vlnrFmzhgGI3olOXQl6U3x8PB49elRgG7C5uTmHRxIR6bAzZ86gV69eePbsGSpVqoTDhw+jdu3ami6L9IBWhaAXL17g7t27ivsPHjzAlStXYGdnBzs7OyxatAh9+vSBs7MzIiIiMHfuXNjb26N3794arJqIiNRlz549+Pjjj5GRkYGGDRvi0KFDHCFMKqNVISgsLAxt2rRR3J8+fToAYNiwYdiwYQP++ecf/Pjjj0hISICzszPatGmDgIAAWFtba6pkIiJSk++//x5jx46FEAIffvghduzYgVKlSmm6LNIjEiGE0HQRJSkpKQm2trZITEyEjY2NpsshIqI8rFixAp999hkAYOzYsVi3bh2MjY3lD0qlQHg44O4OuLpqsEoqSer4/tbpjtFERKRfhBCYP3++IgDNmjULGzZs+C8A+fsDbm5A27byP/39NVgt6TqGICIi0hqff/45vvrqKwDyKU6+/vprSCQS+YNSKTBmDCCTye/LZMDYsfLtRMXAEERERFrhyy+/VASg1atXY/bs2co7hIf/F4CyZWUBOQbUEBUFQxAREWncihUr8PnnnwMAli9fjilTpuTeyd0dMHrja8vYGKhWrQQqJH3EEERERBq1du1aRR+gL774AjNmzMh7R1dXYPNmefAB5H9u2sTO0VRsWjVEnoiIDMuWLVswefJkAMDcuXMxf/78gg/w9QU6dZI3gVWrxgBE74QhiIiINOKnn37CmDFjAMjnhfty3DggKOjtQ99dXRl+SCXYHEZERCVuz549GDZsGIQQmDBhAla8/z4klStz6DuVKF4JIiIi9csxweHBixcxaNAgyGQy+Pr64rtZsyCpUiX30PdOnXjFh9SKIYiIiNTL318xv88xiQT9jI2RmZmJwYMHY9OmTTA6fTr/oe8MQaRGbA4jIiL1yTHB4UkAvYVARmYm+nbtiu3bt8tngubQd9IQhiAiIlKf1xMcngXQHcBLAD0A7Jo6FSYmrxsjOPSdNITNYUREpD7u7rggkaCLEEgF0AnAbiMjmHp6Ku/Hoe+kAQxBRESkNpdiY9HJ0hLJqaloA+BXIyOYb96cd8jh0HcqYWwOIyKi4pNK5XP75LGI6dWrV9GhQwckpKaiWcOGOHTkCEpFRsqv+hBpAV4JIiKi4skx6gtGRvJ+Pa8DzvXr19G+fXs8e/YM3t7eOHL8OErb2Gi4YCJlEiGEKO7BsbGxkMlkcHJyUmVNapWUlARbW1skJibChr+QRETFI5XKJzXMObTd2BiIiMDNpCS0bt0aT58+hZeXF/7880/Y2tpqrlbSC+r4/i5Wc9i1a9dQs2ZNODs7o0KFCqhQoQLmz5+PlJQUlRRFRERa7vWoLyVZWbh98iTatm2Lp0+fon79+jh+/DgDEGmtYoUgX19fODo64uzZs7h8+TK+/PJLHD16FF5eXnj+/LmqayQiIm2Tx9w+d42M0HbmTMTExKBu3boIDAxE2bJlNVQg0dsVqznMysoKFy9ehGeOIY5CCHz00UewsLDATz/9pNIiVYnNYUREhZRjqYs8R235+8uXt8jKwi0jI7SzscGThATUqlULJ0+eRPny5Uu+ZtJbWtMcltcVH4lEgqVLl+LgwYMqKYyIiDTI31/e56egBU19fYGICFz9/nu0LFsWTxISULNmTZw4cYIBiHRCoUNQ165dMXfuXOzevRvjxo3DtGnTEBMTo7RPYmIiL30SEem6HEtdAPhvQdM8hsFfePIErT/7DE/j4/HBBx8gODgYDg4OJVwwUfEUeoh87dq1cenSJWzbtk0Rft577z3069cP9erVQ1ZWFrZt24b//e9/aiuWiIhKQD6dnt9c0PT06dPo1q0bkpOT0bRpUxw5coSdoEmnFKtPUExMDC5fvowrV64obnfv3oWxsTE8PDxw7do1ddSqEuwTRET0FgUMf88OQUePHkWfPn2QlpaGtm3b4uDBgyhdurRm6iWDoI7v72JNlujo6IjOnTujc+fOim1paWm4evUqrl69qpLCiIhIQ7IXNH3d6fnNBU23b9+OUaNGISsrC126dMHevXthaWmp4aKJiu6dJkvURbwSRERUSFKp0oKmQggsXboU8+fPBwAMGTIEW7ZsgZmZmYYLJUOgNVeCiIjIAORY0DQrKwuTJ0/Ghg0bAACzZ8/G0qVLIZFINFkh0TthCCIiogKlpaVh0KBBOHDgACQSCdasWYNJkyZpuiyid8YQRERE+YqKikKvXr1w4cIFmJub46effkLfvn01XRaRSjAEERFRni5fvowePXpAKpWibNmyOHDgAFq2bKnpsohUplgzRhMRkX7bv38/mjdvDqlUCk9PT1y4cIEBiPQOQxARESkIIeDn54cPP/wQqamp6NixI0JCQlCtWjVNl0akcgxBREQEAHj58iWGDh2KuXPnAgAmT56M33//HWXKlNFsYURqwj5BRESEmJgY9O7dGyEhITA2NsbatWsxbtw4TZdFpFYMQUREBu7q1avo0aMHHj58iDJlymDv3r1o166dpssiUjs2hxERGbD9+/ejadOmePjwIdzd3fH3338zAJHBYAgiIjJAQgh88cUXig7QHTp0wN9//43q1atrujSiEsPmMCIiA5OamoqRI0ciICAAAPDJJ59gxYoVMDHhVwIZFv6LJyIyIFKpFL169cLFixdhamqK9evXY9SoUZoui0gjGIKIiAzE33//jV69eiE6Ohr29vbYt28fJ0Akg8Y+QUREBmDnzp1o1aoVoqOjUatWLc4ATQSGICIivZbdAfrjjz9Geno6evTogXPnzqFKlSqaLo1I47QqBJ0+fRrdu3eHi4sLJBIJDhw4oPS4EAKLFi2Ci4sLLC0t0bp1a9y4cUMzxRIRablXr17B19cXCxYsAAB89tln2L9/P6ytrTVcGZF20KoQlJKSgrp162Lt2rV5Pr5s2TKsWrUKa9euRWhoKJycnNChQwckJyeXcKVERFpKKgWCgpB48ya6dOmCbdu2wcjICBs2bMCyZctgZKRVH/tEGqVVHaN9fHzg4+OT52NCCHz77beYN28ePvzwQwDADz/8AEdHR+zatQtjx44tyVKJiLSPvz8wZgweyWToCuAfAFZWVti9eze6dOmi6eqItI7O/JfgwYMHiI6ORseOHRXbzM3N0apVK5w7dy7f49LT05GUlKR0IyLSO1IpMGYMrslkaAx5AHICcHrPHgYgonzoTAiKjo4GADg6Oiptd3R0VDyWFz8/P9ja2ipuFStWVGudREQaER6Ov2QytATwBEBNAH8D+MDSUrN1EWkxnQlB2SQSidJ9IUSubTnNmTMHiYmJitujR4/UXSIRUYk7JpWiA4BEAM0AnAVQydgYqFZNs4URaTGt6hNUECcnJwDyK0LOzs6K7bGxsbmuDuVkbm4Oc3NztddHRKQpAQEBGOLri1cAfADsBVDK2BjYtAlwddVwdUTaS2euBFWpUgVOTk4IDAxUbMvIyEBwcDCaNm2qwcqIiDRn06ZNGDhwIF69eoUBAwbgwL17KBUUBEREAL6+mi6PSKtp1ZWgFy9e4O7du4r7Dx48wJUrV2BnZ4dKlSph6tSpWLp0Kdzd3eHu7o6lS5eiVKlSGDRokAarJiLSjK+//hpz5swBAIwfPx7fffcdjI2Ngffe03BlRLpBq0JQWFgY2rRpo7g/ffp0AMCwYcOwfft2zJw5E2lpaZgwYQKeP38Ob29vHD9+nBN/EZFByZ44dsmSJQCAefPm4Ysvviiwf6QSqRQIDwfc3dlcRgZNIoQQmi6iJCUlJcHW1haJiYmwsbHRdDlEREUihMDnn3+Or776CgDwzTffYObMmYV/gtdzCUEmA4yMgM2b2WxGOkEd39860yeIiMjQCSEwd+5cRQBatWpV0QLQ67mEIJPJ78tkwNix8u1EBoghiIhIB4hHjzBr4EB8/fXXAIDVq1dj2rRpRXuS8PD/AlC2rCwgR19MIkOiVX2CiIgoN7FlCz4dPRr/e31/7aBBmDhlStGfyN1d3gSWMwhxLiEyYLwSRESkxcSjR5iaIwBtADAxIKB4TViurvI+QMbG8vucS4gMHK8EERFpKSEEJk+ejHWv728GMBr4rwmrOOHF1xfo1El+fLVqDEBk0BiCiIi0kEwmw8SJE7Hx4EFIAGwBMDL7wXdtwnJ1ZfghApvDiIi0jkwmw/jx47Fx40ZIJBJsGzECI9mERaRyDEFEROoilQJBQUXqv5MdgDZv3gyJRIIffvgBw7ZulS+DweUwiFSKIYiISB38/QE3N6BtW/mf/v757/s6LMkePsS4ceOwefNmGBkZ4ccff8SQIUPk+7i6Aq1b8woQkQpxxmgiIlWTSuXB582h6BERuUPM6xmcZTIZxkLe9yc7AA0ePLgEiybSbpwxmohIFxR2UsLXMzgrBSAAO779lgGIqAQwBBERqVr2pIQ55TWiKzwcMpkMY5AjAAEYVLt2ydRJZOAYgoiIVK2QkxLKqlbFaAD+yBGAOIMzUYnhPEFEROrwlkkJMzMzMXL+fOyAPAD9BGAgh78TlSiGICIidclnUsL09HQMHDgQ+/fvh7GxMX5avRoDatbkDM5EJYwhiIg0RyqVdyJ2dzeYL/+UlBT07t0bgYGBMDc3x549e9C9e3dNl0VkkNgniIg0oyjz6OiJhIQEdOzYEYGBgbCyssKRI0cYgIg0iCGIiEre66HhimHkMhkwdmzxVkbXEVFRUWjTpg3OnTuHMmXK4M8//0Tbtm01XRaRQWMIIqKSV9h5dPTEzZs30bhxY1y5cgUODg44deoUGjdurOmyiAweQxARlbzCzqOjB4KCgtC0aVM8fPgQ7u7uOHfuHOrWravpsogIDEFEpAmFnEdH1+3YsQOdOnVCYmIimjVrhnPnzqFq1aqaLouIXuPoMCLSjLfMo6PLXr16hc8++wyrV68GAHz00Uf48ccfYWFhoeHKiCgnhiAi0px85tHRZTExMejXrx9Onz4NAJg3bx6WLFkCozeb/4hI4xiCiIhU5OTJkxgyZAiePHkCa2tr/Pjjj+jVq5emyyKifPC/JkRE7yg9PR0zZsxAu3bt8OTJE3h6euLChQsMQERajiGIiOgdXLp0Cd7e3li5ciUAYMyYMQgLC4Onp6eGKyOit2EIIiIqhuRbtzCtb180bNgQV69ehb29PQ4cOIBNmzbByspK0+URUSGwTxARURFkZmZiu68vFv74I5683jagUSP87+BBODk5abQ2IioaXgkiIv0glQJBQWpbeiMzMxO7d+9GLU9PjH4dgN4DcAzAzxcvwikzUy0/l4jUhyGIiHSfGhdjTU5Oxpo1a1C9enX0798ft+/dQzkA/wNwE0AnQK+X/CDSZwxBRKTb1LAY66tXr3Ds2DEMHjwYjo6O+OSTT/DgwQOUK1cOC6dNwz2JBFMBmGcfoKdLfhDpO/YJIiLdVtBirIWciDErKwv//vsvQkJCcOzYMQQGBiI5OVnxuKenJz755BMMHToUpUqVAmrWlAetrCy9XfKDyBAwBBGRbstejDVHEBJGRsioWBFpCQlIS0tDWloaUlNTFX+Pi4vDvXv3cPfuXdy6dQsXL15ESkqK0tOWL18e/fr1w9ChQ9GwYUNIJJL/HtTjJT+IDAlDEBFplVevXuHx48dKt4SEBCQnJyM5ORlJSUl48eKFUqhJK18eaTExSAPkNyEgitg8Vbp0aTRo0ABt2rRBly5d0KBBg4KXutDDJT+IDA1DEBFpzPPnz3Hu3DmEhYXhxo0buHHjBu7cuYPMdx1pJYTir0ZGRrC0tISlRALLFy9QCoAtgKqNGqFap06oVq0aGjRoAE9PTxhnr2pPRAaBIYiISkxaWhpOnDiBI0eO4OzZs7h+/TpEjsCSzczMDBUqVFDc7OzsYG1tDRsbG1hbW6N06dIoVaqUPNzkuOW1zdTUFJLHj+WjxnK6eBHYt49Xc4gMGEMQEalVcnIyfv31V+zfvx/Hjx9HWlqa0uPVq1dHkyZNULt2bdSoUQM1a9ZExYoVlfvgvCsVdJ4mIv3DEEREKieTyXDq1Cls374d+/btQ2pqquKxihUronv37mjXrh2aNWsGR0fHgp9MKpWHGHf34geWPDpPc1g7ETEEEZHKJCUlYdu2bVizZg3u37+v2O7h4YGBAweiZ8+eqFu3buGv8vj7/zcHkJERsHmzfGRWUbm6yo/lsHYiykEi8mqQ12NJSUmwtbVFYmIibGxsNF0OkV548OAB1qxZA39/f8X8Ora2thg4cCCGDx+ORo0aFb15SyqV9+N58+pNRETxw4tUymHtRDpKHd/fvBJERMX25MkTLFmyBFu2bEFWVhYA+cSCU6dOxZAhQ+QTCxaXOvrxFGZYuyqa34hIJzAEEVGRPX/+HMuWLcPq1asVHZ3bt2+PTz/9FB07dix4fp3C0kQ/HlU1vxGRTtCptcMWLVoEiUSidHNyctJ0WUQGIy0tDcuWLUPVqlXx9ddfIy0tDU2aNEFwcDACAwPRuXNn1QQg4L9+PNlz96i7H48a1iAjIu2mc1eCatasiT///FNxn5ObERXCOzbxZGZmYtu2bVi0aBGePHkCAKhZvTqWLl+O7t275+7vo6ompZJcnoLD6IkMjs6FIBMTE179ISqKd2jiEUJg3759mDdvHu7cuQMAqARgCYCPw8Nh/PQp8GYAUnWTUkktT8Fh9EQGR6eawwAgPDwcLi4uqFKlCgYMGKA0DDcv6enpSEpKUroRGYx3aOI5ceIEGjVqhI8++gh37tyBvZ0d/ieR4A6AYQCMhcj9XLrcpFTSzW9EpHE6FYK8vb3x448/4o8//sD333+P6OhoNG3aFPHx8fke4+fnB1tbW8WtYsWKJVgxkYYV1MSTj4sXL6Jjx45o3749wsLCYGVlhQULFuDeDz9gqhAwL+i5ivHztIqvr3wIflCQ/E92iibSazo9T1BKSgqqVq2KmTNnYvr06Xnuk56ejvT0dMX9pKQkVKxYkfMEkWEowlw7d+7cweeff47du3cDAExNTTFu3DjMnz8fDg4OhXsudcztQ0QE9cwTpFNXgt5kZWWF2rVrIzw8PN99zM3NYWNjo3QjMhiFaOJ58uQJxo0bhxo1amD37t2QSCT4+OOPcfv2baxZs0YegAr5XGxSIiJdotNXgtLT01G1alWMGTMGCxYsKNQxnDGaDFIeMyU/e/YMy5Ytw5o1axRz/XTt2hVLly5FnTp1ivRcxdqHiKgIDH7G6BkzZqB79+6oVKkSYmNj8eWXXyIpKQnDhg3TdGlE2i3HCKukpCT873//w6pVqxQDBZo2bYqvv/4aLVq0KNJzvdM+REQaplMhSCqVYuDAgYiLi0P58uXRuHFjnD9/Hm5ubpoujUhOi5dcSE1Nxbp16/DNN98oBhPUrVsXX3zxBbp161b0tb2IiHScToWgX375RdMlEOVPS5dcSEhIwIYNG/Dtt98iNjYWgHxV9yVLlqBv376qm+GZiEjH6HSfoOJgnyBSCy0cFRUdHY1vv/0WGzZsUDR7Va5cGQsXLsTHH38MExOd+j8QERk4g+8TRKS1tGTJBSEE/vrrL6xfvx579+7Fq1evAMiXm5k9ezb69+8PU1PTvA/W4qY8IiJ1YAgiUoWiLLmghrDx/PlzBAQEYMOGDbh27Zpie9OmTTF79mx07dq14GYvLW3KIyJSJ3YGIFKFws6P4+8vbzZr21b+p79/sX9kWloa9uzZg169esHR0RHjx4/HtWvXYGlpCV9fX4SFheGvv/5C9+7dCw5AurzUBRHRO2CfICJVKmh+HBX0G3r8+DGOHDmCw4cP488//0RqaqrisTp16mD48OEYPnw4ypYtW/iag4LkoSyv7a1bF/55iIjUiH2CiLRdQfPjFLHfkBACDx8+xNmzZ3HmzBmcOXMGN2/eVNqnEoBBAAZLJKg1ZUrxmrC4ejoRGSiGIKKSkk/YEFWrIjYmBvfv38ft27dx9epVXL16FdeuXEH88+dKTyGRSODt7Y2uzZuj28qVqCsEJACQvaJ7p05F72eU3ZQ3dqw8lHGpCyIyEAxBRGqSlZWF+Ph4xMbGIjY2FjExMYjt1w+xAQGIEQIxACKcnHDf01OpWSsnYwAfAGjRoQNaTJiA5s2bw97eXt5UtWLFmz+w+KPRfH3lAYpLXRCRAWEIIiqCly9fQiqV4tGjR5BKpYiNjUVcXJzi9vTpU8Xfnz17hrd2uXv8GID8Ck/FihVRtWpV1HnvPdTduhV1hEBNABYAcPIksHUrYG8vP04dTVhc6oKIDAxDENEbMjIycOfOHdy6dUvpFhkZibi4uCI9l0QiQbly5eDg4AAHBwc4Ojoq/u7g4AA3Nze89957cHNzg5mZmfygoKDco8bevMrDJiwionfGEEQGTQiBO3fu4Pz587hw4QJCQ0Nx9epVZGRk5HuMpaUlKlasCFdXVzg7O8Pe3h729vYoX7684u/29vYoV64c7O3tiz4zc2Gv8rAJi4jonTAEqRtn4dWcfF57qVSKP//8EydPnsSJEyfw5MmTXIfa2tri/fffh6enJzw9PeHh4YH33nsPrq6uKFu2rHoXGy3KVR42YRERFRtDkDpxFt6iU1VozPHaC4kE/yxYgANGRjhw4AAuX76stKu5uTkaNWqERo0aoWHDhmjYsCGqVKmi2VXVeZWHiEjtOFmiumjhgppaT1Wh8fVrf0smww4AvwC4n+NhIyMjNGzYEO3atUO7du3QtFIlWDx6VHDw4hU9IiKNUsf3N5fNUJeCJsaj3FS0dMPTp0/x3TffoJFMhvcBLIU8AFkA6NG0KbZu3Yro6GicP38eX331Fdo+eAALD4+Cl7FQ4VIXRESkPXglSF14Jaho3nHphkuXLmH16tX45ZdfFJ2ajQF0BjAEQFcjI5SOjFR+7QvzHvF9JCLSCrwSpEsKu6AmyWWPiMrpLfPeZGZmYu/evWjRogUaNGiAH3/8ERkZGfjggw/w7YABeGJkhMMA+hsbo/Tmzblf+8JcreMVPSIivcWO0erEzq2FV4QRUc+ePcOWLVuwbt06PHz4EABgYmKCfv36YcqUKfD29pbvuHx5wa99YYaic10tIiK9xRCkbhzCXHhvCY03b97EmjVrsGPHDsUyE/b29hg3bhzGjx8PFxcX5ed722tfmODFSQmJiPQW+wSRVpPJZDh69CjWrFmD48ePK7bXef99fNKtGwaNGQOLd70qI5W+/WpdYfYhIiK1Ucf3N0MQlZwiDDNPTk7G9u3b8d133yE8PByAfAmKnj174pNq1dBq5UpIhOD8S0REBkId399sDqOSUcg5gO7fv4+1a9fC398fSUlJAOSzN/v6+mLSpEmoYmoqH62Vnd2zh9J36sQrNEREVCQMQaR++c0B9Dq4CCFw4sQJrF27FocOHVKsvF69enVMmTIFw4YNQ+nSpeXHBgXlP1qLIYiIiIqAIchQleQMyPkMM0++dg0/HjyItWvX4tatW4qHOnXqhE8++QSdOnWC0ZvD5jlai4iIVIQhSJeoYV2tEulT80Zw+QfA9xIJtvfvj+QXLwAApUuXxvDhwzFx4kR4enrm/1wcrUVERCrCjtG6QsXrapX0DMjPVq/GrmnTsE0IXMqx3cPDA5MmTcLQoUOL9n5wtBYRkUFhx2hD9ZY+NUVS0AzIKg4TSUlJOHLkCPbu3YvffvsNGa/ztqmpKbp3745x48ahffv2xVutnfMvERHRO2II0gWqDC5q7lMjlUpx/Phx7N+/H8ePH1es4wUA9evXx/DhwzFo0CDY29ur5OcREREVF0OQLlBlcFFhnxohBCIiIhAaGorg4GD8+eefuHPnjtI+1atXR58+fdC/f3/UrVu36PUSERGpCUOQlhBC4PHjx7h16xbu3r2Le/fu4fHjx3j27BmePXuGJAcHZEVHIwuADIBR2bIo3aULrKysYGVlhdKlS8Pa2hplypSBra2t4pbzvuLvAwfCsmNHSO7de2ufGiEEUlNTER0djfv37+Pu3bu4e/curl+/jrCwMDx79kxpfyMjI3h5eaFbt2748MMPUaNGjeI1dxEREakZQ5CGCCFw9epV/PHHHzh//jz+/vtvREVFFf4J4uLkt2IyMTFRCkg2NjaQyWR49eoVMjIykJGRgYSEBDyNjcXL9PR8n8fU1BR16tRBkyZN0K5dO7Ru3RplypQpdl1EREQlhSEoL2qaQ0cmkyEoKAi7d+/G77//jsePHys9bmxsDHd3d1SrVg1Vq1ZFpUqVUK5cOdjZ2cHW1hYmJiYwMjKCkZERMjMzkZKSori9ePECSUlJSExMRGJiIhISEhR/z3k/KSkJMpkMmZmZiIuLQ1whg5QFgPdcXFDNywvVqlVD9erV0aBBA9SuXRvm5uYqe42IiIhKCkPQm9Qwh869e/ewdetW7NixA48ePVJsL1WqFNq3b4+WLVvC29sbH3zwAUqVKvWuZ1BgiBNC4MWLF7lCUlJSEoyNjWFqagozMzOYJiSgzMcfw14IlAdgBUASEwOsW8dRWUREpBcYgnJS5VB0AFeuXMHXX3+NPXv2QPb6OcuUKYP+/fujV69eaN26NSwsLFR5Bm8NcRKJBNbW1rC2tkbFihXzf56goP/W58qW34i0kpx9moiISEWM3r6LnnqjKQpAwUPRC0kIgdOnT8PHxwf169dHQEAAZDIZOnXqhN27dyMqKgobN25E586dVR+A8gtxUmnRnyt7RFpOeY1I8/eXT77Ytq38T3//4tVORERUwgw2BP1do0buL+zCfvHnQQiBw4cPo3nz5mjVqhWOHTsGIyMjDBw4EFevXsWxY8fw0UcfqT745KSCEKeQPZTe2Fh+P6+h9KoMXURERCXMYEPQaADPxoxR/sIuzBf/GzIzM7Fz507UqVMH3bt3x7lz52BmZoaxY8fizp072LVrF+rUqaPek8n2DiEuT76+8uU0goLkf77ZN0qVoYuIiKiEGWyfoEgA3WUyBF6/jlI5Q46vr7wP0FvWpUpNTcUPP/yA5cuX48GDBwAAa2trjB8/HlOnToWzs3MJnMUb1LG4aEHLU3BFdyIi0mEGu4CqLYBEAI0/+AC/Hj5c6NASHR2NdevWYcOGDYiPjwcAlC9fHlOnTsWECROKP0eOKjsXl+Tiov7+uUOXOlekJyIig6SOBVQNNgQdl0jQz9ISCampKF++PL788ksMHTo0zz47qampOHbsGH766SccPnwYr169AgBUqVIF06dPx8iRI99taLsahuWXKK7oTkREasYQpAKKF/HmTcSYmKB37964ceMGAPnw9TZt2sDd3R2mpqaIiorCrVu3EBoaqgg+ANCkSRN8+umn6NWrF4yz+w8Vl1QqH1X1ZpNSRAQDBRER0WvqCEEG2ycIFSrA3cYGly5dwrp167Bq1SpIpVLs378/z93d3NzQv39/DB48WLUdnVW5QjwREREVmk5eCVq/fj2WL1+OqKgo1KxZE99++y1atGhRqGPzS5IymQznzp1DaGgoHj16hFevXsHR0RGVK1dG06ZNUaVKFfUsBMorQURERG/FK0EAAgICMHXqVKxfvx7NmjXDpk2b4OPjg5s3b6JSpUrFfl4jIyM0b94czZs3V2G1haCOEV1ERET0Vjp3JSh7ja0NGzYotr3//vvo1asX/Pz83nq8OpKkSrBzMRERUb4M/kpQRkYGLl68iNmzZytt79ixI86dO5fnMenp6UhPT1fcT0pKUmuNxVbQfDxERESkcjo1Y3RcXByysrLg6OiotN3R0RHR0dF5HuPn5yefF+j1rcBFQ4mIiMhg6FQIyvZmB2UhRL6dlufMmYPExETF7dGjRyVRIhEREWk5nWoOs7e3h7Gxca6rPrGxsbmuDmUzNzeHubl5SZRHREREOkSnrgSZmZmhQYMGCAwMVNoeGBiIpk2baqgqIiIi0kU6dSUIAKZPn44hQ4bAy8sLTZo0webNm/Hw4UOMGzdO06URERGRDtG5ENS/f3/Ex8djyZIliIqKQq1atXDkyBG4ublpujQiIiLSITo3T9C70tp5goiIiChf6vj+1qk+QURERESqwhD0LqRSIChI/icRERHpFIag4vL3ly982rat/E9/f01XREREREXAEFQcUikwZsx/K7/LZPIFUHlFiIiISGcwBBVHePh/AShbVpZ8AVQiIiLSCQxBxeHuDhi98dIZG8tXgCciIiKdwBBUHK6uwObN8uADyP/ctImrwBMREekQnZssUWv4+gKdOsmbwKpVYwAiIiLSMQxB78LVleGHiIhIR7E5jIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBokhiIiIiAwSQxAREREZJIYgIiIiMkgMQURERGSQGIKIiIjIIDEEERERkUFiCCIiIiKDxBBEREREBkmnQlDlypUhkUiUbrNnz9Z0WURERKSDTDRdQFEtWbIEo0ePVtwvXbq0BqshIiIiXaVzIcja2hpOTk6aLoOIiIh0nE41hwHAN998g3LlyqFevXr46quvkJGRoemSiIiISAfp1JWgTz75BB988AHKli2LCxcuYM6cOXjw4AG2bNmS7zHp6elIT09X3E9MTAQAJCUlqb1eIiIiUo3s720hhOqeVGjYwoULBYACb6GhoXkeu3fvXgFAxMXFvdPz88Ybb7zxxhtvunG7d++eyjKIRAhVRqqii4uLQ1xcXIH7VK5cGRYWFrm2P378GK6urjh//jy8vb3zPPbNK0EJCQlwc3PDw4cPYWtr+27F65CkpCRUrFgRjx49go2NjabLKTE8b563IeB587wNQWJiIipVqoTnz5+jTJkyKnlOjTeH2dvbw97evljHXr58GQDg7Oyc7z7m5uYwNzfPtd3W1tag/vFks7Gx4XkbEJ63YeF5GxZDPW8jI9V1Z9Z4CCqskJAQnD9/Hm3atIGtrS1CQ0Mxbdo09OjRA5UqVdJ0eURERKRjdCYEmZubIyAgAIsXL0Z6ejrc3NwwevRozJw5U9OlERERkQ7SmRD0wQcf4Pz58+/8PObm5li4cGGeTWT6jOfN8zYEPG+etyHgeavuvDXeMZqIiIhIE3RuskQiIiIiVWAIIiIiIoPEEEREREQGiSGIiIiIDJJehqD169ejSpUqsLCwQIMGDXDmzJkC9w8ODkaDBg1gYWGB9957Dxs3biyhSlWrKOf966+/okOHDihfvjxsbGzQpEkT/PHHHyVYreoU9f3O9tdff8HExAT16tVTb4FqUtTzTk9Px7x58+Dm5gZzc3NUrVoVW7duLaFqVaeo571z507UrVsXpUqVgrOzM0aMGIH4+PgSqvbdnT59Gt27d4eLiwskEgkOHDjw1mP04TOtqOetL59pxXm/s+nyZ1pxzlsVn2l6F4ICAgIwdepUzJs3D5cvX0aLFi3g4+ODhw8f5rn/gwcP0KVLF7Ro0QKXL1/G3LlzMWXKFOzbt6+EK383RT3v06dPo0OHDjhy5AguXryINm3aoHv37opZuHVFUc87W2JiIoYOHYp27dqVUKWqVZzz7tevH06cOAF/f3/cvn0bP//8Mzw9PUuw6ndX1PM+e/Yshg4dCl9fX9y4cQN79uxBaGgoRo0aVcKVF19KSgrq1q2LtWvXFmp/fflMK+p568tnWlHPO5uuf6YV57xV8pmmslXItESjRo3EuHHjlLZ5enqK2bNn57n/zJkzhaenp9K2sWPHisaNG6utRnUo6nnnpUaNGmLx4sWqLk2tinve/fv3F/PnzxcLFy4UdevWVWOF6lHU8z569KiwtbUV8fHxJVGe2hT1vJcvXy7ee+89pW1r1qwRrq6uaqtRnQCI/fv3F7iPvnym5VSY886LLn6m5VSU89b1z7ScCnPeqvpM06srQRkZGbh48SI6duyotL1jx444d+5cnseEhITk2r9Tp04ICwvDq1ev1FarKhXnvN8kk8mQnJwMOzs7dZSoFsU9723btuHevXtYuHChuktUi+Kc96FDh+Dl5YVly5ahQoUKqF69OmbMmIG0tLSSKFklinPeTZs2hVQqxZEjRyCEQExMDPbu3YuuXbuWRMkaoQ+faaqgi59pxaXrn2nFoarPNJ2ZMbow4uLikJWVBUdHR6Xtjo6OiI6OzvOY6OjoPPfPzMxEXFxcgYuzaovinPebVq5ciZSUFPTr108dJapFcc47PDwcs2fPxpkzZ2Biopv//Itz3vfv38fZs2dhYWGB/fv3Iy4uDhMmTMCzZ890pl9Qcc67adOm2LlzJ/r374+XL18iMzMTPXr0wHfffVcSJWuEPnymqYIufqYVhz58phWHqj7T9OpKUDaJRKJ0XwiRa9vb9s9ru7Yr6nln+/nnn7Fo0SIEBATAwcFBXeWpTWHPOysrC4MGDcLixYtRvXr1kipPbYryfstkMkgkEuzcuRONGjVCly5dsGrVKmzfvl2nrgYBRTvvmzdvYsqUKViwYAEuXryIY8eO4cGDBxg3blxJlKox+vKZVly6/plWWPr2mVYUqvpM06vYaG9vD2Nj41z/K4yNjc31P6NsTk5Oee5vYmKCcuXKqa1WVSrOeWcLCAiAr68v9uzZg/bt26uzTJUr6nknJycjLCwMly9fxqRJkwDIf5GEEDAxMcHx48fRtm3bEqn9XRTn/XZ2dkaFChVga2ur2Pb+++9DCAGpVAp3d3e11qwKxTlvPz8/NGvWDJ999hkAoE6dOrCyskKLFi3w5Zdf6uVVEX34THsXuvyZVlT68plWHKr6TNOrK0FmZmZo0KABAgMDlbYHBgaiadOmeR7TpEmTXPsfP34cXl5eMDU1VVutqlSc8wbk/1saPnw4du3apZN9JIp63jY2Nvjnn39w5coVxW3cuHHw8PDAlStX4O3tXVKlv5PivN/NmjXDkydP8OLFC8W2O3fuwMjICK6urmqtV1WKc96pqakwMlL+mDM2Ngbw39URfaMPn2nFpeufaUWlL59pxaGyz7R36lathX755Rdhamoq/P39xc2bN8XUqVOFlZWViIiIEEIIMXv2bDFkyBDF/vfv3xelSpUS06ZNEzdv3hT+/v7C1NRU7N27V1OnUCxFPe9du3YJExMTsW7dOhEVFaW4JSQkaOoUiqWo5/0mXR1JUdTzTk5OFq6urqJv377ixo0bIjg4WLi7u4tRo0Zp6hSKpajnvW3bNmFiYiLWr18v7t27J86ePSu8vLxEo0aNNHUKRZacnCwuX74sLl++LACIVatWicuXL4vIyEghhP5+phX1vPXlM62o5/0mXf1MK+p5q+ozTe9CkBBCrFu3Tri5uQkzMzPxwQcfiODgYMVjw4YNE61atVLa/9SpU6J+/frCzMxMVK5cWWzYsKGEK1aNopx3q1atBIBct2HDhpV84e+oqO93Trr6gSFE0c/733//Fe3btxeWlpbC1dVVTJ8+XaSmppZw1e+uqOe9Zs0aUaNGDWFpaSmcnZ3F4MGDhVQqLeGqiy8oKKjA31V9/Uwr6nnry2dacd7vnHT1M604562KzzSJEHp6TZiIiIioAHrVJ4iIiIiosBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBGRXliyZAlq164NKysrODo6Yvz48Xj16pWmyyIiLWai6QKIiN6VEAJZWVnYtGkTKlSogJs3b2Lo0KGoU6cOxo8fr+nyiEhLcQFVItJLgwYNQvny5bF69WpNl0JEWorNYUSk8yIjIzFp0iTUqlULZcuWRenSpbF79264urpqujQi0mIMQUSk0+Li4tCoUSPExcVh1apVOHv2LEJCQmBsbIx69eppujwi0mLsE0REOu3IkSPIzMzEzz//DIlEAgBYt24dMjIyGIKIqEAMQUSk0+zs7JCUlIRDhw6hRo0a+O233+Dn54cKFSqgfPnymi6PiLQYO0YTkU4TQmD8+PHYtWsXLC0t8fHHH+Ply5eIjIzE4cOHNV0eEWkxhiAiIiIySOwYTURERAaJIYiIiIgMEkMQERERGSSGICIiIjJIDEFERERkkBiCiIiIyCAxBBEREZFBYggiIiIig8QQRERERAaJIYiIiIgMEkMQERERGSSGICIiIjJI/wfpS1mt4ft+0wAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABa+UlEQVR4nO3de3zO9f/H8ce18xw25rCDMacZkkPO5JjTnIsvUaGcoki+FaIcEr9U4vt1iCxKTt8KqRxzTBQTKSRiMm1OsTGMbZ/fH7OL2cE213Zd167n/Xa7buv6XJ/rs9fnuuy6nr0/74PJMAwDEREREQfjZO0CRERERKxBIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUisqnnz5jRv3tzaZeRYv379KFSoUJb2LVu2LP369cvVekwmExMmTMjV33E/165dY8KECWzbts2qddiLzZs3U6dOHQoWLIjJZGL16tUsWrQIk8lERESEeb+lS5cyY8aMXKlh3LhxlClTBhcXF4oUKZLt5/fr14+yZctavC5bM2DAAKpVq0aRIkXw9PSkUqVKvPrqq1y4cCHVflu2bOG5556jcuXKFCxYkFKlStGlSxf27dtnpcolIy7WLkAc25w5c6xdQp5ZtWoVXl5e1i4j1127do2JEycC2HXAzQuGYdCjRw8qVarEmjVrKFiwICEhISQkJLB79278/f3N+y5dupTffvuNESNGWLSGr776irfffpuxY8cSGhqKu7u7RY+fn8TFxTFo0CAqVqyIh4cH4eHhvP3226xdu5b9+/fj5uYGwNy5c7l48SIvvfQSVatW5fz587z//vs0aNCADRs20LJlSyufiaRQCBKrqlq1qrVLyDO1atWydgliQdevX8fDwwOTyZTjY/z999/8888/PP744zz22GOpHitRosSDlpglv/32GwDDhw+nZMmSefI7LcUS70F2LFu2LNX9li1bUrhwYYYOHcrOnTvN4Wb27NlpXst27dpRsWJFpkyZohBkQ3Q5TLJswoQJmEwmDh06RK9evfD29sbX15fnnnuOmJiYVPveuHGDMWPGUK5cOdzc3ChVqhQvvPACly9fTrVfepfD5s6dS40aNShUqBCFCxemcuXKvP766wBERETg4uLC1KlT09S3Y8cOTCYTn3/+eabncfnyZf79739Tvnx53N3dKVmyJO3bt+f3338HYNu2bZhMpjSXcyIiIjCZTCxatCjNMQ8dOsRjjz1GwYIFKVGiBC+++CLXrl1LtU96l8PuV4slREdHM3jwYAIDA3Fzc6NcuXJMnDiRhISEVPtNnDiR+vXr4+Pjg5eXF4888ghhYWHcu8byli1baN68OcWKFcPT05MyZcrQrVs3rl27RkREhPnLe+LEiZhMJkwm030vA167do1XXnmFcuXK4eHhgY+PD3Xq1EnzpbNo0SJCQkJwd3enSpUqfPrpp2kuxWTn/QsPD+fJJ5+kbNmyeHp6UrZsWXr16sWpU6fS/F6TycTGjRt57rnnKFGiBAUKFCA+Ph6AFStW0LBhQwoWLEihQoVo27Yt+/fvz/ScJ0yYQGBgIACjRo3CZDKZz+Pey2HNmzfn22+/5dSpU+bX9H5f/ElJSUybNo3KlSub/2316dOHyMhI8z5ly5Zl3LhxAPj6+mbpcmp670F6bt68yeTJk82/v0SJEjz77LOcP38+1X7x8fH8+9//xs/PjwIFCtC0aVP27duX5u/FUu9BeHg4nTt3xsfHBw8PD2rVqsX//ve/TM85Myn/3l1c7rQppBcmCxUqRNWqVTl9+nSOf5dYnlqCJNu6detGz5496d+/P7/++itjxowB4OOPPwaSm/i7du3K5s2bGTNmDE2aNOHgwYOMHz+e3bt3s3v37gyb3JcvX87QoUMZNmwY7733Hk5OThw/fpzDhw8DyR/anTt35sMPP+S1117D2dnZ/NxZs2YREBDA448/nmHtV65c4dFHHyUiIoJRo0ZRv359rl69yo4dO4iKiqJy5crZfj1u3bpF+/btGTx4MKNHj2bXrl1MnjyZU6dO8fXXXz9wLf369eOTTz7h5MmT2e53ER0dTb169XBycuLNN9+kQoUK7N69m8mTJxMREcHChQvN+0ZERDB48GDKlCkDwI8//siwYcM4c+YMb775pnmfDh060KRJEz7++GOKFCnCmTNnWL9+PTdv3sTf35/169fTrl07+vfvz4ABA4D7t2qMHDmSxYsXM3nyZGrVqkVcXBy//fYbFy9eNO+zaNEinn32Wbp06cL7779PTEwMEyZMID4+HiennP3/XEREBCEhITz55JP4+PgQFRXF3LlzqVu3LocPH6Z48eKp9n/uuefo0KEDixcvJi4uDldXV6ZMmcK4ceN49tlnGTduHDdv3uTdd9+lSZMm7NmzJ8PWzgEDBlCjRg2eeOIJhg0bRu/evTP8u5gzZw6DBg3izz//ZNWqVVk6tyFDhjB//nxefPFFOnbsSEREBG+88Qbbtm3j559/pnjx4qxatYrZs2cTFhbG+vXr8fb2Ngez9GT1PUhKSqJLly58//33vPbaazRq1IhTp04xfvx4mjdvTnh4OJ6engA8++yzrFixgtdee42WLVty+PBhHn/8cWJjY9Ot4UHeg61bt9KuXTvq16/Phx9+iLe3N8uXL6dnz55cu3Yty332EhISiI+P58CBA7zxxhs8+uijNG7cONPnxMTE8PPPP6sVyNYYIlk0fvx4AzCmTZuWavvQoUMNDw8PIykpyTAMw1i/fn26+61YscIAjPnz55u3NWvWzGjWrJn5/osvvmgUKVIk0zq2bt1qAMaqVavM286cOWO4uLgYEydOzPS5kyZNMgBj06ZN9z3+1q1bU20/efKkARgLFy40b+vbt68BGDNnzky179tvv20Axs6dO83bgoKCjL59+2arFsMwjOeee85wdnY2IiIiMt3PMAwDMMaPH2++P3jwYKNQoULGqVOnUu333nvvGYBx6NChdI+TmJho3Lp1y5g0aZJRrFgx83v7xRdfGIBx4MCBDGs4f/58mjrup1q1akbXrl0zfDwxMdEICAgwHnnkEXMthmEYERERhqurqxEUFGTelp33714JCQnG1atXjYIFC6Z6TxcuXGgARp8+fVLt/9dffxkuLi7GsGHDUm2/cuWK4efnZ/To0SOTs75T07vvvptqe8rvO3nypHlbhw4dUp1nZo4cOWIAxtChQ1Nt/+mnnwzAeP31183bUv6uz58/n+kxs/MeLFu2zACML7/8MtUx9u7dawDGnDlzDMMwjEOHDhmAMWrUqFT7pTz/7r8XS7wHlStXNmrVqmXcunUr1b4dO3Y0/P39jcTExExfA8MwjN27dxuA+da+fXsjNjb2vs976qmnDBcXFyM8PPy++0re0eUwybbOnTunul+9enVu3LjBuXPngOTLJUCa/6v617/+RcGCBdm8eXOGx65Xrx6XL1+mV69efPXVV2lGXUDypYEaNWowe/Zs87YPP/wQk8nEoEGDMq193bp1VKpUiVatWmW6X3Y99dRTqe737t0bSP4/zwetJSwsjISEBIKCgrJd1zfffEOLFi0ICAggISHBfAsNDQVg+/bt5n23bNlCq1at8Pb2xtnZGVdXV958800uXrxofm9r1qyJm5sbgwYN4pNPPuHEiRPZqufuGhISEsyX2urVq8e6desYPXo027Zt4/r166med/ToUf7++2969+6d6jJQUFAQjRo1yvbrkuLq1auMGjWKihUr4uLigouLC4UKFSIuLo4jR46k2b9bt26p7m/YsIGEhAT69OmT6rw8PDxo1qyZ1UbIpfy7u/dvsF69elSpUiXTv8GMZOc9+OabbyhSpAidOnVK9brUrFkTPz8/8+uS8u+vR48eqZ7fvXv3VJeX7pbT9+D48eP8/vvv5r/Vu/dt3749UVFRHD169L6vw8MPP8zevXvZvn07M2fOZP/+/bRu3TrN5e+7vfHGGyxZsoQPPviA2rVr3/d3SN5RCJJsK1asWKr7KU34KV9cFy9exMXFJc0lEJPJhJ+fX6pLHPd65pln+Pjjjzl16hTdunWjZMmS1K9fn02bNqXab/jw4WzevJmjR49y69YtPvroI7p3746fn1+mtZ8/fz7T5v6ccHFxSfOapNSR2bnmRi33Onv2LF9//TWurq6pbg899BCAOWTu2bOHNm3aAPDRRx/xww8/sHfvXsaOHQvceW8rVKjAd999R8mSJXnhhReoUKECFSpUYObMmfetJSIiIk0dKV+C//nPfxg1ahSrV6+mRYsW+Pj40LVrV44dOwbceR3Te3/v955npnfv3syaNYsBAwawYcMG9uzZw969eylRokSaIAakGq0Fya8vQN26ddOc24oVK9IN8Xkh5fW6t16AgICATP9d3u+YWXkPzp49y+XLl3Fzc0vzukRHR5tfl5Rj+vr6pnp+en9TKXL6HqTs98orr6TZb+jQoQBZer8KFixInTp1aNq0KcOHD2fVqlX89NNPzJs3L939J06cyOTJk3n77bd58cUX73t8yVvqEyQWV6xYMRISEjh//nyqIGQYBtHR0dStWzfT5z/77LM8++yzxMXFsWPHDsaPH0/Hjh35448/zK0hvXv3ZtSoUcyePZsGDRoQHR3NCy+8cN/aSpQokapjaHo8PDwAzB0uU2T0AZmQkMDFixdTfWhHR0cDaQNjdmt5UMWLF6d69eq8/fbb6T4eEBAAJPfFcnV15ZtvvjGfP8Dq1avTPKdJkyY0adKExMREwsPD+e9//8uIESPw9fXlySefzLCWgIAA9u7dm2pbSEgIkPzFMnHiRCZOnMjZs2fNrUKdOnXi999/N7+OKa/r3e7dltX3LyYmhm+++Ybx48czevRo8/b4+Hj++eefdM/h3s7IKX2Gvvjiixy11OWWlNcrKioqTdD++++/0/R1ys4xs/IeFC9enGLFirF+/fp0j1W4cOFUxzx79iylSpUyP57yN5WenL4HKfuNGTOGJ554It19Uv49ZkedOnVwcnLijz/+SPPYxIkTmTBhAhMmTDAP7hDbopYgsbiUob6fffZZqu1ffvklcXFxaYYCZ6RgwYKEhoYyduxYbt68yaFDh8yPeXh4mC/JTJ8+nZo1a963YyJAaGgof/zxh/mSXXpSOh8fPHgw1fY1a9Zk+JwlS5akur906VIg83lyslLLg+rYsSO//fYbFSpUoE6dOmluKSHIZDLh4uKSqqP59evXWbx4cYbHdnZ2pn79+ubLkj///DOQtmUwhZubW5rfn/JleDdfX1/69etHr169OHr0KNeuXSMkJAR/f3+WLVuWarTaqVOn2LVrV6rnZ/X9M5lMGIaRpjPyggULSExMzPC879a2bVtcXFz4888/031969Spk6XjZIW7u3u6rVPpSel8e+/f4N69ezly5EiW/wbvlp33oGPHjly8eJHExMR0X5OUsNG0aVMgeWTX3b744os0oxczktX3ICQkhODgYH755ZcM90vv3+P9bN++naSkJCpWrJhq+1tvvcWECRMYN24c48ePz/ZxJW+oJUgsrnXr1rRt25ZRo0YRGxtL48aNzaPDatWqxTPPPJPhcwcOHIinpyeNGzfG39+f6Ohopk6dire3d5oWpKFDhzJt2jT27dvHggULslTbiBEjWLFiBV26dGH06NHUq1eP69evs337djp27EiLFi3w8/OjVatWTJ06laJFixIUFMTmzZtZuXJlusd0c3Pj/fff5+rVq9StW9c8Oiw0NJRHH330gWoB6N+/P5988gl//vlntlsbJk2axKZNm2jUqBHDhw8nJCSEGzduEBERwdq1a/nwww8JDAykQ4cOTJ8+nd69ezNo0CAuXrzIe++9lyYgfPjhh2zZsoUOHTpQpkwZbty4YR4VmNK3qXDhwgQFBfHVV1/x2GOP4ePjQ/HixTMd2Va/fn06duxI9erVKVq0KEeOHGHx4sU0bNiQAgUKAMlfKgMGDODxxx9n4MCBXL58mQkTJqS5FJPV98/Ly4umTZvy7rvvmuvbvn07YWFhWZ41uWzZskyaNImxY8dy4sQJ2rVrR9GiRTl79ix79uwxt3BZwsMPP8zKlSuZO3cutWvXxsnJKcOQFRISwqBBg/jvf/+Lk5MToaGh5tFhpUuX5uWXX87273dycsrye/Dkk0+yZMkS2rdvz0svvUS9evVwdXUlMjKSrVu30qVLFx5//HEeeughevXqxfvvv4+zszMtW7bk0KFDvP/++3h7e2dp1F923oN58+YRGhpK27Zt6devH6VKleKff/7hyJEj/Pzzz5lOr/HNN9/w0Ucf0blzZ4KCgrh16xbh4eHMmDGDihUrmkdCArz//vu8+eabtGvXjg4dOvDjjz+mOlaDBg2y89JLbrJqt2yxKxmNIklvJMv169eNUaNGGUFBQYarq6vh7+9vDBkyxLh06VKq5947OuyTTz4xWrRoYfj6+hpubm5GQECA0aNHD+PgwYPp1tS8eXPDx8fHuHbtWpbP49KlS8ZLL71klClTxnB1dTVKlixpdOjQwfj999/N+0RFRRndu3c3fHx8DG9vb+Ppp582wsPD0x0dVrBgQePgwYNG8+bNDU9PT8PHx8cYMmSIcfXq1VS/997RYVmtJWUE2t2vb0ZIZ1TW+fPnjeHDhxvlypUzXF1dDR8fH6N27drG2LFjU9X48ccfGyEhIYa7u7tRvnx5Y+rUqUZYWFiq3717927j8ccfN4KCggx3d3ejWLFiRrNmzYw1a9ak+p3fffedUatWLcPd3T3NKJ/0jB492qhTp45RtGhR8+9/+eWXjQsXLqTab8GCBUZwcLDh5uZmVKpUyfj444+Nvn37phk1ldX3LzIy0ujWrZtRtGhRo3Dhwka7du2M3377Lc17lfJvfO/evenWv3r1aqNFixaGl5eX4e7ubgQFBRndu3c3vvvuu0zPOzujw/755x+je/fuRpEiRQyTyWTc7+M7MTHReOedd4xKlSoZrq6uRvHixY2nn37aOH36dKr9sjo6LEVW34Nbt24Z7733nlGjRg3Dw8PDKFSokFG5cmVj8ODBxrFjx8z73bhxwxg5cqRRsmRJw8PDw2jQoIGxe/duw9vb23j55ZfTvCYP+h788ssvRo8ePYySJUsarq6uhp+fn9GyZUvjww8/zPS8jxw5YnTv3t0ICgoyPDw8DA8PD6Ny5crGq6++aly8eDHVvs2aNUs1guzem9gOk2HcMxOaiJ04d+4cQUFBDBs2jGnTplm7HLGSfv36sW3btlTrbIl927VrF40bN2bJkiXmkZYiuUGXw8TuREZGcuLECd59912cnJx46aWXrF2SiOTQpk2b2L17N7Vr18bT05NffvmF//u//yM4ODjDDswilqIQJHZnwYIFTJo0ibJly7JkyZJUo0pExL54eXmxceNGZsyYwZUrVyhevDihoaFMnTo11UhFkdygy2EiIiLikGxmiPzcuXOpXr06Xl5eeHl50bBhQ9atW2d+3DAMJkyYQEBAAJ6enjRv3jzVkGkRERGR7LCZEBQYGMj//d//ER4eTnh4OC1btqRLly7moDNt2jSmT5/OrFmz2Lt3L35+frRu3ZorV65YuXIRERGxRzZ9OczHx4d3332X5557joCAAEaMGMGoUaOA5FldfX19eeeddxg8eLCVKxURERF7Y5MdoxMTE/n888+Ji4ujYcOGnDx5kujoaPPaRpA8e2qzZs3YtWtXpiEoPj4+1fT5SUlJ/PPPPxQrVizN9OsiIiJimwzD4MqVKwQEBGRpIs2ssKkQ9Ouvv9KwYUNu3LhBoUKFWLVqFVWrVjVPyX7vInu+vr6cOnUq02NOnTrVYjO2ioiIiHWdPn3aYotP21QICgkJ4cCBA1y+fJkvv/ySvn37mleZhrQL5xmGcd/WnDFjxjBy5Ejz/ZiYGMqUKcPp06fx8vKy7AmIiIhIroiNjaV06dI5WuMtIzYVgtzc3MyL0NWpU4e9e/cyc+ZMcz+g6Oho/P39zfufO3cuTevQvdzd3dOsfwSYR6GJiIiI/bBkVxabGR2WHsMwiI+Pp1y5cvj5+bFp0ybzYzdv3mT79u00atTIihWKiIiIvbKZlqDXX3+d0NBQSpcuzZUrV1i+fDnbtm1j/fr1mEwmRowYwZQpUwgODiY4OJgpU6ZQoEABrSsjIiIiOWIzIejs2bM888wzREVF4e3tTfXq1Vm/fj2tW7cG4LXXXuP69esMHTqUS5cuUb9+fTZu3GjRa4MiIiLiOGx6nqDcEBsbi7e3NzExMeoTJCIiYidy4/vbpvsEiYiIiOQWhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIiIiDgkhSARERFxSDYTgqZOnUrdunUpXLgwJUuWpGvXrhw9ejTVPv369cNkMqW6NWjQwEoVi4iIiD2zmRC0fft2XnjhBX788Uc2bdpEQkICbdq0IS4uLtV+7dq1Iyoqynxbu3atlSoWERERe+Zi7QJSrF+/PtX9hQsXUrJkSfbt20fTpk3N293d3fHz88vr8kRERCSfsZmWoHvFxMQA4OPjk2r7tm3bKFmyJJUqVWLgwIGcO3cu0+PEx8cTGxub6iYiIiJiMgzDsHYR9zIMgy5dunDp0iW+//578/YVK1ZQqFAhgoKCOHnyJG+88QYJCQns27cPd3f3dI81YcIEJk6cmGZ7TEwMXl5euXYOIiIiYjmxsbF4e3tb9PvbJkPQCy+8wLfffsvOnTsJDAzMcL+oqCiCgoJYvnw5TzzxRLr7xMfHEx8fb74fGxtL6dKlFYJERETsSG6EIJvpE5Ri2LBhrFmzhh07dmQagAD8/f0JCgri2LFjGe7j7u6eYSuRiIiIAJGRcOwYBAfDfb578xOb6RNkGAYvvvgiK1euZMuWLZQrV+6+z7l48SKnT5/G398/DyoUERHJh8LCICgIWrZM/hkWZu2K8ozNhKAXXniBzz77jKVLl1K4cGGio6OJjo7m+vXrAFy9epVXXnmF3bt3ExERwbZt2+jUqRPFixfn8ccft3L1IiIidigykl8GDqRJUhKlgNeSkrg1aFByy5ADsJnLYXPnzgWgefPmqbYvXLiQfv364ezszK+//sqnn37K5cuX8ff3p0WLFqxYsYLChQtboWIRERH7FvH997QwDC7dvv8ucDUpiTnHjzvEZTGbCUH365/t6enJhg0b8qgaERGR/G/kp59yCagL9AeeB+YC/a9do7ZVK8sbNnM5TERERPLOrl27WLV+PU4mEwudnBgMPGUyAfD6zJnpPykyErZuzTeXyxSCREREHNDM20Gnb79+PHTqFGzdyls7d2Iymdi4cWOakdfGggUYZcrkqw7UCkEiIiIOJjo6mpUrVwIwfPjw5P4/zZtTrlEjQkNDAZg/f/6dJ0RG8vOgQRQ0DJoCJCXB4MF23yKkECQiIuJgVqxYQUJCAvXr16dmzZqpHhs8eDAAn332GQkJCckbjx3jlGFwHbiZsmNiIhw/nlcl5wqFIBEREQfzxRdfANCrV680j4WGhlKsWDGio6PZsmVL8sbgYE7d7i8UlLKjszNUrJgH1eYehSAREREHEhUVxQ8//ACQ7pJTrq6u9OzZE4AlS5YkbwwM5NRjjwFQBpID0Lx5dj+MXiFIRETEgaxatQrDMGjQoAGlS5dOd5+nnnoKgJUrV3Lt2jUA/ro9J1/Q8OEQEQH9++dJvblJIUhERMSBrF69GoBu3bpluE/Dhg0pV64cV69eZc2aNQD8/vvvAFQMDbX7FqAUCkEiIiIO4tq1a+zYsQOADh06ZLifyWQytwZ99tlnxMfH88cffwDw8MMP536heUQhSERExEF8//33xMfHU7p0aSpXrpzpvikhaMOGDWzZsoXExESKFi1KQEBAXpSaJxSCREREHETK8lNt2rTBdHu0V0YqV65M7dq1SUhIoE+fPgA0bdr0vs+zJwpBIiIiDmLjxo1AcgjKiueeew6ACxcuANCxY8fcKcxKFIJEREQcwJkzZzh06BAmk4lWrVpl6TkDBw6kSZMmANSsWZNnnnkmN0vMczaziryIiIjknpRWoLp16+Lj45Ol57i6uvLdd9+xb98+atasibu7e26WmOcUgkRERBxAdi+FpXBzc6Nhw4a5UZLV6XKYiIhIPpeUlMSmTZsAaNu2rZWrsR0KQSIiIvncgQMHuHjxIoULF6Z+/frWLsdmKASJiIjkc9999x0AzZs3x9XV1crV2A6FIBERkXwuJQRldVSYo1AIEhERycdu3LjB999/DygE3UshSEREJB/74YcfuHHjBgEBAVSpUsXa5dgUhSAREZF87LtVqwBo1ahRvlrywhIUgkRERPKrsDC+mz0bgFZffglhYVYuyLYoBImIiORHkZH8M3Ag+27ffcwwYPBgiIy0alm2RCFIREQkPzp2jK2GgQFUBQIAEhPh+HHr1mVDFIJERETyo+Bgvrv9n61Ttjk7Q8WKVirI9igEiYiI5ENGqVKsL14cgMcgOQDNmweBgVaty5ZoAVUREZF86PDhw0RcuIC7uzstV62Chx9WALqHQpCIiEg+9PXXXwPw2GOPUTA01MrV2CZdDhMREcmHUkJQp06drFyJ7VIIEhERyWfOnz/P7t27AejQoYOVq7FdCkEiIiL5zLp16zAMg5o1a1K6dGlrl2OzFIJERETyma+++grQpbD7UQgSERHJR2JiYvj2228BeOKJJ6xcjW1TCBIREclHVq1aRXx8PFWrVqVGjRrWLsemKQSJiIjkI0uXLgWgd+/eWjX+PhSCRERE8onIyEg2b94MQK9evaxcje1TCBIREckn5s6dS1JSEs2bN6d8+fLWLsfmKQSJiIjkAzdu3GD+/PkADBs2zMrV2AeFIBERkXxg6dKlXLhwgdKlS9O5c2drl2MXFIJERETs3M2bN5k8eTIAw4cPx8VFS4Nmhc2EoKlTp1K3bl0KFy5MyZIl6dq1K0ePHk21j2EYTJgwgYCAADw9PWnevDmHDh2yUsUiIiK2Yc6cOZw8eRJfX1+GDh1q7XLshs2EoO3bt/PCCy/w448/smnTJhISEmjTpg1xcXHmfaZNm8b06dOZNWsWe/fuxc/Pj9atW3PlyhUrVi4iIpJFkZGwdWvyTws5deoUb7zxBgCTJk2iQIECFjt2fmcyDMOwdhHpOX/+PCVLlmT79u00bdoUwzAICAhgxIgRjBo1CoD4+Hh8fX155513GDx4cJaOGxsbi7e3NzExMXh5eeXmKYiIiNwRFgaDBkFSEjg5wfz5HGnUiC+//JLdu3dz7tw5PDw8KFOmDI2rVuWxwEBCHnsMAgPTP15kJHEHD9Js9Gj2/forjRs3ZseOHTg52Uz7hkXlxve3zV40jImJAcDHxweAkydPEh0dTZs2bcz7uLu706xZM3bt2pXlECQiIpLnIiPvBCAgIimJkQMGsCqD3Zfe/hkCdG3Xji5vvkn9+vXvBJywMP4eOJAehsE+oHihQixZsiTfBqDcYpMhyDAMRo4cyaOPPkq1atUAiI6OBsDX1zfVvr6+vpw6dSrDY8XHxxMfH2++HxsbmwsVi4iIZOLYMXMAWgEMBK4AJpOJ9u3bExoaSpkyZYj/+2+ODBnCNsPge+Ao8M769byzfj1+fn507NiRQC8vIqZP5wvgKuANfH3tGkHOzlY6OftlkyHoxRdf5ODBg+zcuTPNY/dOAW4YRqbTgk+dOpWJEydavEYREZEsCw4GJyfeT0rildubGgPzv/uOqi1b3tlv61YwDN4AYoF1wFfAtwULEh0dzYIFC1Idtg7wKVAlKQmOH8/40pmky+bazYYNG8aaNWvYunUrgXe9mX5+fsCdFqEU586dS9M6dLcxY8YQExNjvp0+fTp3ChcREclIYCAfdO9uDkAvm0xsnz8/dQACc1gC8AJ6AkudnTl/8CAbNmzglVde4fmnn2YMsBnYA1QBcHaGihXz6GTyD5tpCTIMg2HDhrFq1Sq2bdtGuXLlUj1erlw5/Pz82LRpE7Vq1QKS50XYvn0777zzTobHdXd3x93dPVdrFxERycyyZcsY+b//ATDp2Wd5Y9Kk9FttAgNh/nwYPBgSE5PDzbx5uJUvT5vy5e/0i23ePM0+agXKPpsZHTZ06FCWLl3KV199RUhIiHm7t7c3np6eALzzzjtMnTqVhQsXEhwczJQpU9i2bRtHjx6lcOHCWfo9Gh0mIiJ56eDBgzRo0IDr168zYsQIpk+ffv/V3SMjky9vVayY6eiw++6Tj+TG97fNhKCM/kEsXLiQfv36AcmtRRMnTmTevHlcunSJ+vXrM3v2bHPn6axQCBIRkbwSExNDnTp1OH78OG3atGHt2rU4qwNzjuTrEJRXFIJERCSv9OnTh8WLF1OmTBn27dtH8eLFrV2S3cqN72+b6xgtIiKSH3z99dcsXrwYJycnli1bpgBkgxSCRERELOyff/5h0KBBAIwcOZJGjRpZuSJJj0KQiIiIhb388stER0dTuXJlJk2aZO1yJAMKQSIiIhb0/fff8+mnn2IymVi4cKF5hLPYHoUgERERC0lISOCFF14AYODAgTRo0MDKFUlmFIJEREQsZO7cufz666/4+PgwZcoUa5cj96EQJCIiYgFn9+/njTFjAJgyZQrFihWzckVyPwpBIiIiDyosjNGPPEJMXByPAAOc9PVqD/QuiYiIPIjISHYPHMii23dnA85DhiQvayE2TSFIRETkASQdPcrw24svPAs0gOSFTY8ft2ZZkgUKQSIiIg9g0f79hANewNSUjc7OyQubik1TCBIREcmhmJgYxrz7LgBvmkz4QnIAmjfPIVZ2t3cu1i5ARETEXr311lucO3eOkJAQhq1dC3/9ldwCpABkFxSCREREcuDo0aPMnDkTgA8++AC38uWhfHkrVyXZocthIiIiOTBy5EgSEhJo3749oaGh1i5HckAhSEREJJvWrl3L2rVrcXV15YMPPrB2OZJDCkEiIiLZcPPmTV5++WUAXnrpJSpVqmTliiSnFIJERESy4d133+WPP/6gZMmSjBs3ztrlyANQCBIREcmi48eP89ZbbwHJnaG9vb2tXJE8CIUgERGRLDAMgyFDhhAfH0+rVq3o1auXtUuSB6QQJCIikgXLli3ju+++w93dnblz52IymaxdkjwghSAREZH7OH/+PCNGjADgjTfeoKKWxMgXFIJEREQyYRgGgwcP5vz581SrVo1XX33V2iWJhSgEiYiIZGLx4sWsWrUKV1dXFi9ejJubm7VLEgtRCBIREclAREQEw4YNA2DChAnUrFnTugWJRSkEiYiIpOPGjRt0796d2NhYGjRowGuvvWbtksTCFIJERETSMWLECPbt24ePjw/Lly/HxUVrjuc3CkEiIiL3WLRoEfPmzcNkMrFkxgyCTpyAyEhrlyUWphAkIiL5T2QkbN2ao+CyefNmBg4cCMCbHTvSrl8/aNkSgoIgLMzChYo1KQSJiEj+EhaWHFhyEFx+/fVXnnjiCRISEniyc2fe/OYbSEpKfjApCQYPVotQPqIQJCIi+UdkJAwalPXgcleL0dGjR2nbti2xsbE0a9aMRUOH4mQYqfdPTITjx3P3HCTPqJeXiIjkH8eO3QlAKVKCS2Bg6u1hYebAdNhkomXhwpyNjeXhhx9m1apVuMfFgZNT6uM5O4Nmi8431BIkIiL5R3BwcnC5W3rB5a4Wo71Ac8PgbGwsNapWZcuWLRQtWjQ5NM2fn/z8lOPMm5c2TIndUggSEZH8I6vB5XaL0edAU+A88AiwZepUihcvfme//v0hIiL5kllERPJ9yTd0OUxERPKX/v2hbdvkS2AVK6bbcnOrbFkmAm/fvt8eWObkhNcjj6Q9XmCgWn/yKYUgERHJfzIJLhEREfR+6il2377/EvC+kxPO8+cr7DgYhSAREXEISUlJfPTRR4waNYqYmBi8vLyYP3UqPatWzbDFSPI3hSAREcn3fv75Z4YMGcKePXsAaNiwIUuXLqVs2bLWLUysSh2jRUQk37p8+TLDhg2jbt267NmzBy8vL2bOnMmOHTsUgEQtQSIikv8YhsHSpUv597//zdmzZwHo3bs37733Hv7+/lauTmyFQpCIiOQrR44cYejQoWzbtg2AkJAQ5syZQ8uWLa1bmNgcXQ4TEZF84fr164wdO5YaNWqwbds2PD09mTJlCgcPHlQAknTZVAjasWMHnTp1IiAgAJPJxOrVq1M93q9fP0wmU6pbgwYNrFOsiIjYjA0bNlCtWjWmTJnCrVu36NixI4cPH2bMmDG4ublZuzyxUTYVguLi4qhRowazZs3KcJ927doRFRVlvq1duzYPKxQREVsSExNDv379aNeuHSdOnCAwMJBVq1axZs0adXyW+7KpPkGhoaGEhoZmuo+7uzt+fn55VJGIiNiq7du307dvX06dOoWTkxPDhw9n0qRJFC5c2NqliZ2wqZagrNi2bRslS5akUqVKDBw4kHPnzlm7JBERyUMJCQmMGTOGFi1acOrUKcqXL8+OHTv44IMPFIAkW2yqJeh+QkND+de//kVQUBAnT57kjTfeoGXLluzbtw93d/d0nxMfH098fLz5fmxsbF6VKyIiFnb+/HmefPJJtmzZAsCAAQOYPn26wo/kiF2FoJ49e5r/u1q1atSpU4egoCC+/fZbnnjiiXSfM3XqVCZOnJhXJYqISC7Zu3cv3bp14/Tp0xQsWJCPP/6YHj16WLsssWN2dznsbv7+/gQFBXHs2LEM9xkzZgwxMTHm2+nTp/OwQhERsYQvv/ySJk2acPr0aSpVqsRPP/2kACQPzK5agu518eJFTp8+nensn+7u7hleKhMREds3Y8YMRo4ciWEYdOzYkc8++wxvb29rlyX5gE2FoKtXr3L8+HHz/ZMnT3LgwAF8fHzw8fFhwoQJdOvWDX9/fyIiInj99dcpXrw4jz/+uBWrFhGR3JCUlMQrr7zCBx98AMDQoUP5z3/+g7Ozs5Urk/zCpkJQeHg4LVq0MN8fOXIkAH379mXu3Ln8+uuvfPrpp1y+fBl/f39atGjBihUr1CFORCSfSUxMZMCAASxatAiAd955h1dffRWTyWTdwiRfMRmGYVi7iLwUGxuLt7c3MTExeHl5WbscERG5R0JCAn369GHZsmU4OzvzySef8NRTT93ZITISjh2D4GAIDLReoZKncuP72647RouISP5y8+ZNnnzySZYtW4aLiwsrVqxIHYDCwiAoCFq2TP4ZFma9YsXuKQSJiIhNuHnzJv/617/48ssvcXNzY+XKlXTr1u3ODpGRMGgQJCUl309KgsGDk7eL5IBCkIiIWF1CQgJPP/00a9aswcPDgzVr1tCpU6fUOx07dicApUhMhLsG1Ihkh0KQiIhYVVJSEgMHDuTzzz/H1dWV1atX07Zt27Q7BgeD0z1fW87OULFi3hQq+Y5CkIiIWI1hGLz00kssWrQIZ2dnli9fnn4AguRO0PPnJwcfSP45b546R0uO2dQQeRERcSxjx45l1qxZACxcuDDDJZDM+veHtm2TL4FVrKgAJA9EIUhERKxi6tSpTJ06FYA5c+bwTIsWsHXr/Ye+BwYq/IhF6HKYiIjkuVmzZvH6668DMG3aNIa4uWnou+Q5tQSJiEjuu2uCw0+3bGHYsGEAvPHGG7zaq1dy8Ll36HvbtmrxkVylECQiIrkrLMw8v89XJhPP3V76Yvjw4UycOBG2bct46LtCkOQiXQ4TEZHcc9cEh1uBnoZBYlISfbt354MPPkheC0xD38VKFIJERCT33J7gcC/QGYgHugILnn8ep5Tgo6HvYiW6HCYiIrknOJjDJhOhhsFVoCWwzMkJl5CQ1Ptp6LtYgUKQiIjkmoiEBNoUKcLFS5eoB6x2csJj/vz0Q46GvkseUwgSEZGcu2vU170BJjo6mtatW3Pm0iWqVqrE2mnTKFy7toKO2Az1CRIRkZwJC8twbp9//vmHtm3bcvz4ccqWLcvGLVso1qWLApDYlAcKQefOnSM6OtpStYiIiL24a9QXcGdun8hILl26ROvWrTl48CC+vr5s2rSJUqVKWbdekXTkKAQdPHiQhx56CH9/f0qVKkWpUqUYN24ccXFxlq5PRERs0e1RX6kkJnL5wAHatGnDzz//TIkSJdiyZQsVNdRdbFSOQlD//v3x9fVl586d7N+/n8mTJ7Nu3Trq1KnDpUuXLF2jiIjYmnTm9ol1cqLdm28SHh5O8eLF2bJlC1WrVrVSgSL3ZzIMw8jukwoWLMi+ffuoXLmyeZthGPzrX//Cw8ODzz77zKJFWlJsbCze3t7ExMTg5eVl7XJERGxXJp2egeQ+QIMHQ2IiV5ycaFeuHLv+/BMfHx+2bNlCjRo18r5mybdy4/s7Ry1B6bX4mEwmpkyZwldffWWRwkRExIoy6fRs1r8/REQQ8/XXhNauza4//6RIkSJs2rRJAUjsQpZbgjp06ECNGjWoWbMmiYmJzJw5k6+++gpfX1/zPnv37qVbt2789ddfuVbwg1JLkIjIfURGpl7QFJJncY6ISNMidP78edq2bcv+/fspUqQIGzdupG7dunlbrziE3Pj+zvI8QQ8//DA///wzCxcu5OzZswCUL1+eHj16mIPRwoUL+eCDDyxSmIiIWEkGnZ7vXdD077//plWrVhw5coQSJUqoBUjsTo76BJ09e5b9+/dz4MAB8+348eM4OzsTEhLCwYMHc6NWi1BLkIjIfWShJejkyZO0atWKEydOEBgYyHfffUfIvUthiFiQVVuC7ubr60u7du1o166dedv169f55Zdf+OWXXyxSmIiIWEnKgqa3Oz3fu6DpgQMHaN++PVFRUVSoUIHvvvuOsmXLWrdmkRzIUUuQPVNLkIhIFkVGplnQdMOGDXTv3p2rV69SrVo1Nm7ciL+/v5ULFUdgMy1BIiLiAO5Z0DQsLIzBgweTmJhIy5Yt+fLLLylSpIj16hN5QFo7TEREMmUYBm+++SYDBgwgMTGRZ555hnXr1ikAid1TS5CIiGTo2rVrDBgwgGXLlgEwbtw4Jk2ahMlksnJlIg9OIUhERNL1119/0bVrV/bv34+Liwtz5sxh4MCB1i5LxGIUgkREJI3vv/+ebt26cf78eYoXL84XX3xBs2bNrF2WiEWpT5CIiKTy4Ycf0rJlS86fP0/NmjUJDw9XAJJ8SSFIREQAuHnzJs8//zxDhgwhISGBnj178sMPPxAUFGTt0kRyhS6HiYgIZ8+epXv37uzcudO8IPaoUaPUAVryNYUgEREHt3fvXp544gkiIyPx8vJi2bJltG/f3tplieQ6XQ4TEXFgixYtokmTJkRGRlK5cmX27NmjACQOQyFIRMQB3bp1i2HDhvHss88SHx9P586d+emnn7QIqjgUhSAREQdz9uxZHnvsMWbNmgXAxIkTWbVqldZTFIejPkEiIg5kz549PPHEE5w5cwYvLy8+++wzOnXqZO2yRKxCLUEiIg5i0aJFNG3alDNnzpj7/ygAiSNTCBIRyeeSkpIYNWqU+v+I3EMhSEQkH4uLi6N79+5MmzYNgDfeeEP9f0Rus6kQtGPHDjp16kRAQAAmk4nVq1enetwwDCZMmEBAQACenp40b96cQ4cOWadYEREb9/fff9OsWTNWrVqFm5sbn332GZMmTcLJyaY++kWsxqb+EuLi4qhRo4Z5xMK9pk2bxvTp05k1axZ79+7Fz8+P1q1bc+XKlTyuVETERkVGwtat7F+/nnr16rFv3z6KFy/Oli1beOqpp6xdnYhNsanRYaGhoYSGhqb7mGEYzJgxg7Fjx/LEE08A8Mknn+Dr68vSpUsZPHhwXpYqImJ7wsJg0CA2JSXxOBAHVKlShW+++Yby5ctbuzoRm2NTLUGZOXnyJNHR0bRp08a8zd3dnWbNmrFr164MnxcfH09sbGyqm4hIvhMZCYMGsSwpiQ4kB6DHgF2ff64AJJIBuwlB0dHRAPj6+qba7uvra34sPVOnTsXb29t8K126dK7WKSJiFceO8Z+kJHoDt4AngbVAkfPnrVuXiA2zmxCU4t4VjQ3DyHSV4zFjxhATE2O+nT59OrdLFBHJU4ZhMHblSl66fX8YsARwc3aGihWtWJmIbbOpPkGZ8fPzA5JbhPz9/c3bz507l6Z16G7u7u64u7vnen0iItaQlJTE0KFDmTdvHgCTTSZeNwxMzs4wbx4EBlq5QhHbZTctQeXKlcPPz49NmzaZt928eZPt27fTqFEjK1YmImIdSUlJDBkyhHnz5uHk5MT8+fMZ+9dfmLZuhYgI6N/f2iWK2DSbagm6evUqx48fN98/efIkBw4cwMfHhzJlyjBixAimTJlCcHAwwcHBTJkyhQIFCtC7d28rVi0ikvdSWoDmz5+Pk5MTn3zyCU8//XTyg2r9EckSmwpB4eHhtGjRwnx/5MiRAPTt25dFixbx2muvcf36dYYOHcqlS5eoX78+GzdupHDhwtYqWUQkzxmGwYsvvsi8efMwmUwsWrToTgDKishIOHYMgoMVmMShmQzDMKxdRF6KjY3F29ubmJgYTRsvInYnJQDNmTPHHID69OmT9QPcnkuIpCRwcoL583XZTOxCbnx/202fIBERR2cYBsOHDzcHoIULF2YvAN2eS4ikpOT7SUkweHDydhEHpBAkImIHjNOnealbN2bNmoXJZCIsLIy+fftm7yDHjt0JQCkSE+GuvpgijsSm+gSJiEhaxoIFvDxwIP+9fX9B3748++yz2T9QcHDyJbC7g5DmEhIHppYgEREbZpw+zciBA5l5+/4C4LnFi3N2CSswMLkPkLNz8n3NJSQOTi1BIiI2yjAMXvn3v5lx+/58oD/cuYSVk/DSvz+0bZv8/IoVFYDEoSkEiYjYIMMwePXVV5n++ecAzAMGpjz4oJewAgMVfkTQ5TAREZtjGAajRo3i/fffB+DDZ55hkC5hiVicQpCISG6JjIStW7PVf8cwDEaPHs27774LwJw5cxj86afJy2BoOQwRi9LlMBGR3JCdSQlvz+BsVKzI63PmMG3aNABmz57NkCFDkvfRJSwRi9OM0SIilhYZCUFBaYeiR0SkDTK3w5KRlMQ4YMrtzbNmzeKFF17Io4JFbJ9mjBYRsQdZnZTw9gzORlISb3AnAP1n0iQFIJE8oBAkImJpKZMS3i29EV3HjmEkJfEm8PbtTTOBYU2a5EGRIqIQJCJiaVmclNCoWJGxwOTb9z8AhmsGZ5E8o47RIiK54T6TEhqGwehZs5h2+/4M4CUNfxfJUwpBIiK5JYMRXSkTIabMA/Tft97ixUcf1QzOInlMIUhErOf20HCCgx3my98wDP7973/zwQcfAMnzAJmHwYtInlKfIBGxjrCw5GHkLVsm/wwLs3ZFuS4xMZFBgwaZA9CHH36oACRiRQpBIpL3bg8NNw8jT0qCwYNztjK6nYiPj6dnz54sWLAAJycnFixYwODBg61dlohD0+UwEcl7mc2jkw8vi125coXHH3+czZs34+bmxtKlS+nWrZu1yxJxeApBIpL3UubRuXdG5Xw4NDwqKorOnTsTHh5OoUKF+Oqrr2jZsqW1yxIRdDlMRKwhi/Po2LsDBw5Qr149wsPDKVasGFu2bFEAErEhagkSEeu4zzw69m7NmjX07t2buLg4KleuzDfffEOFChWsXZaI3EUtQSJiPYGB0Lx5vgpAiYmJjB8/nq5duxIXF0fr1q3ZvXu3ApCIDVJLkIiIhURHR/PUU0+xZcsWAIYOHcqMGTNwdXW1cmUikh6FIBERC9iwYQP9+vUjOjqaggULMn/+fHr37m3tskQkE7ocJiLyAGJiYhgwYADt2rUjOjqahx56iPDwcAUgETugECQikgPG6dP8b/x4qlWpQtjt2a6HDx/Onj17qFy5spWrE5Gs0OUwEZFs2j9+PCMmTWLH7fsVSpTg4y++oGnTplatS0SyRy1BIpI/REbC1q25uvTGvn376Nq2LY/cDkCewATg4MWLNC1fPtd+r4jkDoUgEbF/ubgY682bN/n8889p1aoVderU4auNGzEBvYHfgfFAgaSk5PmORMSumAzDMKxdRF6KjY3F29ubmJgYvLy8rF2OiDyoyMjk4HPvEhwRETmef+jWrVvs2LGD1atX87///Y9z587dPqwzvbt25fWVK6l890fnA/4+Ebm/3Pj+Vp8gEbFvFliM9cqVKxw6dIgffviB77//nh07dnDp0iXz435+fvTv358BAwZQtmzZ5JamwYOTf08+XfJDxBEoBImIXUssX54bJhPxhsENIB6Id3LiRnw88T/9RHx8PDdu3DD/PH/+PFFRUURFRREZGcnhw4c5ffp0muMWL16czp078/jjj9O2bdvUEx7m8yU/RByFQpCI2JQbN27w559/cuzYMf7880+ioqI4d+6c+RYTE8P169e5du0a169f5+bNm2kPkpQE7dpl6/f6+flRp04dmjRpQpMmTahbty4uLpl8RAYGKvyI2DmFIBGxmvj4eMLDw9m7dy979uwhPDyc48ePk9Ouik5OTni4u+Pu4YGHhwfu7u7mn+6xsbifPEkxwB/w79KFgE6dqFy5MlWqVMHHx8ei5yYitk8hSETyjGEY/P7772zYsIGNGzeybds2rl+/nmY/Ly8vgoODqVixIqVLl6ZkyZLmm7e3NwUKFKBAgQJ4enqab+7u7hm33KR0nr7bN9/ArFlqzRFxYApBIpLrfv/9d1asWMGKFSs4cuRIqsdKlixJgwYNqFu3LnXr1qVmzZqULFkSk8lkuQIs0HlaRPIfhSARyRVXrlxhyZIlzJ8/n/3795u3u7m50axZM9q2bUubNm2oVq1a5oEnMjI5xAQH5zywBAeDk1PaYfQVK+bseCKSLygEiYhF7d+/nw8//JAlS5YQFxcHgIuLC23atKFnz5506dIFb2/vrB0sLAwGDUoOL05OMH9+8sis7AoMTH6uhrWLyF00WaKIPDDDMNiwYQPvvPMO27ZtM28PCQnh+eef55lnnqFYsWLZO2guTIJIZKSGtYvYKU2WKCI2JSEhgf/9739MmzaNX375BUhu9enWrRtDhgyhadOmOe/bkxv9eLIyrN0Sl99ExC4oBIlItiUmJrJ06VImTJjAiRMnAChYsCCDBg1ixIgRlClT5sF/iTX68Vjq8puI2AW7WkB1woQJmEymVDc/Pz9rlyXiMAzDYOXKlVSvXp0+ffpw4sQJSpQowVtvvcVff/3F9OnTLROA4E4/Hmfn5Pu53Y8nMvJOAILkn4MH5+qq9CJiXXbXEvTQQw/x3Xffme87p3xAikjGHvASj2EYbNq0ibFjxxIeHg5AEW9vRo0ezbBhwyhYsKBFf59ZXi5PoWH0Ig7H7kKQi4uLWn9EsuMBL/Hs3LmTsWPHsmPHDgAKAi8D/46NpUiJEnBvALL0JaW8Wp5Cw+hFHI5dXQ4DOHbsGAEBAZQrV44nn3zS3B8hI/Hx8cTGxqa6iTiMB7jEs3//fjp06ECTJk3YsWMHbm5ujABOAG8BRQwj7bHs+ZJSXl9+ExGrs6sQVL9+fT799FM2bNjARx99RHR0NI0aNeLixYsZPmfq1Kl4e3ubb6VLl87DikWsLLNLPBn4/fff6dGjB4888ghr167F2dmZgQMHcvzTT/kAKJnZsXLw+2xK//7JQ/C3bk3+qU7RIvmaXc8TFBcXR4UKFXjttdcYOXJkuvvEx8cTHx9vvh8bG0vp0qU1T5A4hmzMtXPy5EkmTZrEp59+SlJSEiaTiSeffJKJEycSHByctWPlxtw+IiLkzjxBdtUSdK+CBQvy8MMPc+zYsQz3cXd3x8vLK9VNxGFk4RLP33//zdChQwkJCWHRokUkJSXRuXNnDhw4wNKlS5MDUBaPpUtKImJP7LolKD4+ngoVKjBo0CDefPPNLD1HM0aLQ0pnpuTz58/zf//3f8yZM4cbN24A0KpVKyZPnkz9+vWzdawc7SMikg0OP2P0K6+8QqdOnShTpgznzp1j8uTJxMbG0rdvX2uXJmLb7hphdeHCBWbMmMHMmTO5evUqAI0bN2by5Mk0b948W8d6oH1ERKzMrkJQZGQkvXr14sKFC5QoUYIGDRrw448/EhQUZO3SRJLZ8JILp0+f5v333+ejjz7i2rVrANSuXZvJkyfTtm3bnC9vISJip+wqBC1fvtzaJYhkzEaXXPjjjz945513WLx4Mbdu3QLgkUceYdy4cXTt2lXhR0Qcll33CcoJ9QmSXGFjo6KSkpLYsGEDs2bNYt26daT8mTdv3pwxY8bQunVrhR8RsSsO3ydIxGbZyJILFy9eZPHixcyePZvjd83N06lTJ8aMGUPDhg0zfrINX8oTEckNCkEilpCdJRcsHDZu3rzJ2rVr+eSTT/j222/Nl7y8vb157rnnGDp0KBXvt/SDjV7KExHJTQpBIpaQMj/O4MHJLUAZzY9jobBx48YNNm/ezOrVq1m1alWqWdNr1arF4MGDefrpp9MubJqejJa6aNtWLUIikq+pT5CIJWU2P84D9hs6deoUW7du5dtvv2XdunXExcWZH/MvWZKn+/alT58+VKtWLXs1b90KLVumvz0rQ+ZFRPKA+gSJ2LrM5sfJRr+hxMREjh49Snh4ODt27GDr1q1pFgsuVbQoXS9doivQ/Px5XEJCILsBCLR6uog4LIUgkbySTtgwnJy4ULQoR3fu5OjRoxw6dIjw8HB+/vnnVC09AM7OztSrV4/HHnuMLg0aULtTJ8zju1JWdM/JJaysXsoTEclnFIJEctGNGzeIiorizJkzybfu3fn78885YxhEAEc9PLhUs2a6zy0I1AIaAC2GD6fJ5MkULlw4+cGtW5ODz90eZDRa//7JAUpLXYiIA1GfIJEcMAyDixcvmsNNZGSk+b///vtv83/f3WE5IyaTiTJlyhASEkLlypWpXa4cdUaOJMQwcE7ZSau1i4iDU58gkTwUExPDsWPHOH78uPlnRESEOfDEx8dn6Tju7u6UKlXKfAsICKBUqVKULl2akJAQgoOD8fT0vPOErLTy6BKWiMgDUwgSh5eUlMSxY8c4cOBAqlt0dPR9n1uiRAkCAwNThZy7g06pUqUoWrRo9mZnzmpHZV3CEhF5IApBuU2z8FpPBq/9zZs3CQ8PZ+fOnXz//ff88MMPXLp0Kd1D+Pr6EhwcTMWKFQkODqZ8+fLm0BMQEIC7u7vl685OK49WaxcRyTGFoNykWXizz1Kh8Z7XPmLKFNZ5ebF27Vo2b97M9evXU+3u6elJ9erVqVmzJjVr1qRGjRo89NBD1us3plYeEZFcp47RuUUdV7PPUqExMhKjTBl+MQxWAGuAw/fsUrx4cZo0acKjjz5Kk0qVqOnujmuVKhm/N2rRExGxKnWMtic2sqCm3bDQ0g2///47y6dOZblhcPSu7c5Ao+rVad+rF6GhoVSvXj25n05YGHTpknnwUoueiEi+pJag3KKWoOx5gKUbrly5wvLly1mwYAF79uwxb3cHOgDdgXZOThQ9dSr1a5+V90jvo4iITVBLkD3REObsyebSDYZh8OOPP7JgwQJWrFhhnl3ZxcWFNm3a8KS/P10WLsQrKSnj1z4rrXVq0RMRybcUgnKTOrdmXRZDY3x8PMuXL2fGjBkcOHDAvD0kJIQBAwbQp08fSpYsmbxxwoTMX/usBC+tqyUikm8pBOU2DWHOukxC47lz55g7dy5z5szh3LlzAHh4eNCjRw8GDhxI48aN087Fc7/XPivBSy16IiL5lvoEiU07ePAgM2fOZMmSJeYZmkuVKsWLzzzDoAYN8Kld+8EDSWTk/VvrsrKPiIjkGvUJEvuWxWHmSUlJrF27lg8++IAtW7aYt9erV4+XX36ZbjExuA4darnRWllprVOLnohIvuNk7QLEQYSFJY+yatky+WdYWJpdrl69yuzZs6lcuTKdOnViy5YtODs706NHD3bt2sVPP/3Ek48+eicAwZ2h9JGReXxCIiJi79QSJLnvPnMAnTp1ilmzZvHRRx8RExMDgLe3N4MGDeLFF1+kTJkyd46l0VoiImIhCkGOKi9nQE4nuBiJiexatYoZO3awcuVKkm4/HhwczEsvvUTfvn0pVKhQ2mNptJaIiFiILofZk8jI5MkDH/TSTxYuTVlUSnABrgOLgXrAo8OH88UXX5CUlESrVq345ptv+P3333nhhRfSD0BwZ7SWs3PyfY3WEhGRHNLoMHthwXW1rDED8m+TJvHRhAl8ahhcvr3N3d2dZ555hpdeeolq1apl74AarSUi4lA0OsxRWWhdLSBP+9RcuHCBL7/8kk8//ZRdu3aZtwcFBjLw+ecZNGgQJUqUyNnBNVpLREQekEKQPbBkcMnlPjWXL19mzZo1LF++nE2bNpGQkHD7VzjTuXNnBg0aROvWrXFOuZwlIiJiJQpBNswwDC5evMhlFxdumEzcMAwSgQKAp5MTBQoVosi1axQoUCDrB7XwDMhJSUkcPHiQdevWsW7dOnbt2kViYqL58Vq1atGzZ0/69OmDv79/jn6HiIhIblCfIBtgGAZ//vknP/zwAwcPHuTgwYMcO3aMqKgobt68ed/nFypUCD8/P3x9ffHz88Pf35+AgIA0tyJFitxZWiIHfWoSEhI4efIkR44cYe/evfz444/s2bOH2NjYVPtVqVKFnj170rNnTypXrpzt10NERORe6hOUj8THx7Nx40ZWrlzJ5s2bOX36dIb7Fi5cGA8PDzxcXXFKTOR6YiLXbtzg2rVrJCUlcfXqVY4fP87x48cz/Z0eHh6pQpGvry8FChTA09MTT09P3N3duXXrFvHx8cTHx3P16lWiT5zg7F9/cSY2lhN//cWtW7fSHLdgwYK0bNmS0NBQQkNDKVu27IO+PCIiIrlOISg9uTSHjmEY/PTTT8ybN4+VK1emakFxdXWlfv36PPLII1SvXp0qVaoQGBiIn58fbm5uGR4vNjaWs2fPcvbsWaKjo4mOjiYqKoq///471e3SpUvcuHGDEydOcOLEiRyfg6enJ5UqVaJWrVo0aNCABg0a8NBDD+Hion9KIiJiX/TNdS9LDUW/y40bN1i8eDFz5szhwIED5u2lSpWie/fudOjQgcaNG2evbw9gMpnw9vbG29ubSpUq3XkgnRB3/fr1NOHo3LlzXL9+nRs3bnD9+nXi4+NxdXXF3d0d91u3KPjJJ/gCfrdvFZ2cCPz9d5zunsFZRETETqlP0N0sPIfOtWvXmD9/PtOmTSMqKgpIviTVs2dP+vfvT+PGjXFysvB8lZYKcVu3Jk+mmN725s1Tb8vL2adFRMQh5UafIMedMfrMmbTbMhuKng1xcXG89957lCtXjpdffpmoqCjKlCnD+++/z5kzZ1i0aBFNmjSxfADKaD6hnMwwfdcsz2bpDaXP69mnRURELMRhQ9CXVaum/cLO6hd/Bq5cucI777xD2bJlefXVVzl37hxly5blo48+4tixY4wcORIfHx8LnUE6LBTigKwtT2HJ0CUiIpLHHDYEDQS+HjQo9Rd2DteliomJ4e2336ZcuXKMHj2aCxcuUKFCBT7++GP++OMPBgwYkGHnZot6wBCXRv/+yZcCt25N/nnvZTVLhi4REZE85rB9giA5Af5n+HCGzphxZ/4cyPIcOhcvXmTGjBn897//JSYmBoBKlSoxbtw4evXqZZ0RU2FhaSdCfMCO3Rmy0jpkIiLieHKjT5DDhqCngCW3t3Xp0oWZM2cSFBSUpWOEh4czd+5cli1bxvXr1wGoWrUq48aNo0ePHjlbEsKSnYvzcnHRvAxdIiLisBSCLCDlRbxsMrGge3fGrF7NrVu3cHNz4+mnn+bpp5+mQYMGeHp6mp9z9epVDhw4wLp161izZg2//fab+bFatWoxbtw4unbtmvOOzrkwLD9PaUV3ERHJZQpBFmB+EQ8fxqtKFQ4ePMiIESPYunWreR8XFxf8/f3x8PDgypUrREdHpzqGm5sb//rXv3j++edp3Lhx6ktp2aVLSiIiIvelZTMsqVQpAKpXr87mzZvZuXMnCxcuZO3atZw9ezbNMhZ+fn40bdqUTp060b59e8uN8rLkCvEiIiKSZXYZgubMmcO7775LVFQUDz30EDNmzKBJkyY5Pp7JZKJJkyY0adIEwzA4c+YMZ86c4ebNmxQqVIjAwEBKlChhwTO4S8qIrntbgnI6oktERESyxO5C0IoVKxgxYgRz5syhcePGzJs3j9DQUA4fPkwZCyznYDKZCAwMJDCvWmFShuXf27lYrUAiIiK5yu76BKUsMjp37lzztipVqtC1a1emTp163+fnxjVFi1DnYhERkQw5fJ+gmzdvsm/fPkaPHp1qe5s2bdi1a1e6z4mPjyc+Pt58/+6V221KYKDCj4iISB6yqxmjL1y4QGJiIr6+vqm2+/r6phnBlWLq1Knmlda9vb0pXbp0XpQqIiIiNs6uQlCKe4ekG4aR4TD1MWPGEBMTY77dO+pLREREHJNdXQ4rXrw4zs7OaVp9zp07l6Z1KIW7uzvu7u55UZ6IiIjYEbtqCXJzc6N27dps2rQp1fZNmzbRqFEjK1UlIiIi9siuWoIARo4cyTPPPEOdOnVo2LAh8+fP56+//uL555+3dmkiIiJiR+wuBPXs2ZOLFy8yadIkoqKiqFatGmvXrs3y4qciIiIiYIfzBD0om50nSERERDKUG9/fdtUnSERERMRSFIIeRGQkbN2a/FNERETsikJQToWFQVAQtGyZ/DMszNoViYiISDYoBOVEZCQMGnRn5fekpOQFUNUiJCIiYjcUgnLi2LE7AShFYmLyAqgiIiJiFxSCciI4GJzueemcnZNXgBcRERG7oBCUE4GBMH9+cvCB5J/z5mkVeBERETtid5Ml2oz+/aFt2+RLYBUrKgCJiIjYGYWgBxEYqPAjIiJip3Q5TERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDsmuQlDZsmUxmUypbqNHj7Z2WSIiImKHXKxdQHZNmjSJgQMHmu8XKlTIitWIiIiIvbK7EFS4cGH8/PysXYaIiIjYObu6HAbwzjvvUKxYMWrWrMnbb7/NzZs3rV2SiIiI2CG7agl66aWXeOSRRyhatCh79uxhzJgxnDx5kgULFmT4nPj4eOLj4833Y2JiAIiNjc31ekVERMQyUr63DcOw3EENKxs/frwBZHrbu3dvus/94osvDMC4cOHCAx1fN91000033XSzj9uff/5psQxiMgxLRqrsu3DhAhcuXMh0n7Jly+Lh4ZFm+5kzZwgMDOTHH3+kfv366T733pagy5cvExQUxF9//YW3t/eDFW9HYmNjKV26NKdPn8bLy8va5eQZnbfO2xHovHXejiAmJoYyZcpw6dIlihQpYpFjWv1yWPHixSlevHiOnrt//34A/P39M9zH3d0dd3f3NNu9vb0d6h9PCi8vL523A9F5Oxadt2Nx1PN2crJcd2arh6Cs2r17Nz/++CMtWrTA29ubvXv38vLLL9O5c2fKlClj7fJERETEzthNCHJ3d2fFihVMnDiR+Ph4goKCGDhwIK+99pq1SxMRERE7ZDch6JFHHuHHH3984OO4u7szfvz4dC+R5Wc6b523I9B567wdgc7bcudt9Y7RIiIiItZgd5MlioiIiFiCQpCIiIg4JIUgERERcUgKQSIiIuKQ8mUImjNnDuXKlcPDw4PatWvz/fffZ7r/9u3bqV27Nh4eHpQvX54PP/wwjyq1rOyc98qVK2ndujUlSpTAy8uLhg0bsmHDhjys1nKy+36n+OGHH3BxcaFmzZq5W2Auye55x8fHM3bsWIKCgnB3d6dChQp8/PHHeVSt5WT3vJcsWUKNGjUoUKAA/v7+PPvss1y8eDGPqn1wO3bsoFOnTgQEBGAymVi9evV9n5MfPtOye9755TMtJ+93Cnv+TMvJeVviMy3fhaAVK1YwYsQIxo4dy/79+2nSpAmhoaH89ddf6e5/8uRJ2rdvT5MmTdi/fz+vv/46w4cP58svv8zjyh9Mds97x44dtG7dmrVr17Jv3z5atGhBp06dzLNw24vsnneKmJgY+vTpw2OPPZZHlVpWTs67R48ebN68mbCwMI4ePcqyZcuoXLlyHlb94LJ73jt37qRPnz7079+fQ4cO8fnnn7N3714GDBiQx5XnXFxcHDVq1GDWrFlZ2j+/fKZl97zzy2dads87hb1/puXkvC3ymWaxVchsRL169Yznn38+1bbKlSsbo0ePTnf/1157zahcuXKqbYMHDzYaNGiQazXmhuyed3qqVq1qTJw40dKl5aqcnnfPnj2NcePGGePHjzdq1KiRixXmjuye97p16wxvb2/j4sWLeVFersnueb/77rtG+fLlU237z3/+YwQGBuZajbkJMFatWpXpPvnlM+1uWTnv9NjjZ9rdsnPe9v6ZdresnLelPtPyVUvQzZs32bdvH23atEm1vU2bNuzatSvd5+zevTvN/m3btiU8PJxbt27lWq2WlJPzvldSUhJXrlzBx8cnN0rMFTk974ULF/Lnn38yfvz43C4xV+TkvNesWUOdOnWYNm0apUqVolKlSrzyyitcv349L0q2iJycd6NGjYiMjGTt2rUYhsHZs2f54osv6NChQ16UbBX54TPNEuzxMy2n7P0zLScs9ZlmNzNGZ8WFCxdITEzE19c31XZfX1+io6PTfU50dHS6+yckJHDhwoVMF2e1FTk573u9//77xMXF0aNHj9woMVfk5LyPHTvG6NGj+f7773Fxsc9//jk57xMnTrBz5048PDxYtWoVFy5cYOjQofzzzz920y8oJ+fdqFEjlixZQs+ePblx4wYJCQl07tyZ//73v3lRslXkh880S7DHz7ScyA+faTlhqc+0fNUSlMJkMqW6bxhGmm332z+97bYuu+edYtmyZUyYMIEVK1ZQsmTJ3Cov12T1vBMTE+nduzcTJ06kUqVKeVVersnO+52UlITJZGLJkiXUq1eP9u3bM336dBYtWmRXrUGQvfM+fPgww4cP580332Tfvn2sX7+ekydP8vzzz+dFqVaTXz7TcsreP9OyKr99pmWHpT7T8lVsLF68OM7Ozmn+r/DcuXNp/s8ohZ+fX7r7u7i4UKxYsVyr1ZJyct4pVqxYQf/+/fn8889p1apVbpZpcdk97ytXrhAeHs7+/ft58cUXgeQ/JMMwcHFxYePGjbRs2TJPan8QOXm//f39KVWqFN7e3uZtVapUwTAMIiMjCQ4OztWaLSEn5z116lQaN27Mq6++CkD16tUpWLAgTZo0YfLkyfmyVSQ/fKY9CHv+TMuu/PKZlhOW+kzLVy1Bbm5u1K5dm02bNqXavmnTJho1apTucxo2bJhm/40bN1KnTh1cXV1zrVZLysl5Q/L/LfXr14+lS5faZR+J7J63l5cXv/76KwcOHDDfnn/+eUJCQjhw4AD169fPq9IfSE7e78aNG/P3339z9epV87Y//vgDJycnAgMDc7VeS8nJeV+7dg0np9Qfc87OzsCd1pH8Jj98puWUvX+mZVd++UzLCYt9pj1Qt2obtHz5csPV1dUICwszDh8+bIwYMcIoWLCgERERYRiGYYwePdp45plnzPufOHHCKFCggPHyyy8bhw8fNsLCwgxXV1fjiy++sNYp5Eh2z3vp0qWGi4uLMXv2bCMqKsp8u3z5srVOIUeye973steRFNk97ytXrhiBgYFG9+7djUOHDhnbt283goODjQEDBljrFHIku+e9cOFCw8XFxZgzZ47x559/Gjt37jTq1Klj1KtXz1qnkG1Xrlwx9u/fb+zfv98AjOnTpxv79+83Tp06ZRhG/v1My+5555fPtOye973s9TMtu+dtqc+0fBeCDMMwZs+ebQQFBRlubm7GI488Ymzfvt38WN++fY1mzZql2n/btm1GrVq1DDc3N6Ns2bLG3Llz87hiy8jOeTdr1swA0tz69u2b94U/oOy+33ez1w8Mw8j+eR85csRo1aqV4enpaQQGBhojR440rl27lsdVP7jsnvd//vMfo2rVqoanp6fh7+9vPPXUU0ZkZGQeV51zW7duzfRvNb9+pmX3vPPLZ1pO3u+72etnWk7O2xKfaSbDyKdtwiIiIiKZyFd9gkRERESySiFIREREHJJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkIjkC5MmTeLhhx+mYMGC+Pr6MmTIEG7dumXtskTEhrlYuwARkQdlGAaJiYnMmzePUqVKcfjwYfr06UP16tUZMmSItcsTERulBVRFJF/q3bs3JUqUYObMmdYuRURslC6HiYjdO3XqFC+++CLVqlWjaNGiFCpUiP/9738EBgZauzQRsWEKQSJi1y5cuEC9evW4cOEC06dPZ+fOnezevRtnZ2dq1qxp7fJExIapT5CI2LW1a9eSkJDAsmXLMJlMAMyePZubN28qBIlIphSCRMSu+fj4EBsby5o1a6hatSpff/01U6dOpVSpUpQoUcLa5YmIDVPHaBGxa4ZhMGTIEJYuXYqnpydPP/00N27c4NSpU3zzzTfWLk9EbJhCkIiIiDgkdYwWERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOKT/Bz33g31AY9PuAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcyUlEQVR4nO3deVhUdf/G8fewIwqKC6AommuZW5qm5lpumVv6s7TFXUpbrKdS21yyfNKyzdQsXFos09LKyiVzydTUHkxTMy0hUXEXFFmE+f7+ICaRRcCBYZj7dV1z4Zw558znzMDM7Xc5x2KMMYiIiIi4GDdHFyAiIiLiCApBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpB4lDt27enffv2ji6jwAYPHkzp0qXztG716tUZPHhwodZjsViYOHFioT7H1Vy8eJGJEyeyfv16h9bhLNauXUuzZs3w8/PDYrGwfPlyFixYgMViISoqyrbeokWLeOONNwqlhueee45q1arh4eFB2bJl87394MGDqV69ut3rKm6GDx/OjTfeSNmyZfH19aVOnTo89dRTnDp1KtN6O3fupHv37lSrVg1fX18CAwNp2bIlH330kYMql5x4OLoAcW2zZs1ydAlFZtmyZfj7+zu6jEJ38eJFJk2aBODUAbcoGGPo378/derU4auvvsLPz4+6deuSmprKli1bCAkJsa27aNEifvvtN8aMGWPXGr788kteeuklnn32Wbp164a3t7dd91+SJCQkMHLkSGrVqoWPjw87duzgpZde4ttvvyUyMhIvLy8Azp07R9WqVRkwYABVqlQhISGBjz/+mPvvv5+oqCiee+45Bx+JZFAIEoe64YYbHF1CkWnSpImjSxA7SkxMxMfHB4vFUuB9HD16lDNnztCnTx9uu+22TI9VrFjxWkvMk99++w2ARx99lEqVKhXJc9qLPd6D/Pjkk08y3e/YsSNlypRh1KhRbNq0iY4dOwLZt3DfeeedHDp0iLlz5yoEFSPqDpM8mzhxIhaLhT179jBgwAACAgIICgpi6NChxMXFZVo3KSmJ8ePHU6NGDby8vKhSpQqjR4/m3LlzmdbL7sNi9uzZNGrUiNKlS1OmTBnq1avHM888A0BUVBQeHh5MnTo1S30bN27EYrGwZMmSXI/j3Llz/Oc//+G6667D29ubSpUqcccdd/D7778DsH79eiwWS5bunKioKCwWCwsWLMiyzz179nDbbbfh5+dHxYoVefjhh7l48WKmdbLrDrtaLfYQGxtLeHg4oaGheHl5UaNGDSZNmkRqamqm9SZNmkSLFi0IDAzE39+fm266iYiICK68xvIPP/xA+/btKV++PL6+vlSrVo2+ffty8eJFoqKibF/ekyZNwmKxYLFYrtoNePHiRZ588klq1KiBj48PgYGBNGvWLMuXzoIFC6hbty7e3t5cf/31fPDBB1m6YvLz/u3YsYN77rmH6tWr4+vrS/Xq1RkwYADR0dFZntdisbB69WqGDh1KxYoVKVWqFMnJyQAsXryYli1b4ufnR+nSpenSpQuRkZG5HvPEiRMJDQ0FYOzYsVgsFttxXNkd1r59e7755huio6Ntr+nVvvitVivTpk2jXr16tt+tBx54gJiYGNs61atXt30hBwUF5ak7Nbv3IDspKSlMmTLF9vwVK1ZkyJAhnDx5MtN6ycnJ/Oc//yE4OJhSpUrRtm1bfvnllyx/L/Z6D3bs2EHPnj0JDAzEx8eHJk2a8Nlnn+V6zLnJ+H338Lh6m0KFChXytJ4UHb0bkm99+/bl7rvvZtiwYezevZvx48cDMG/ePCC9ib93796sXbuW8ePH06ZNG3bt2sWECRPYsmULW7ZsybHJ/dNPP2XUqFE88sgjvPrqq7i5uXHw4EH27t0LpH9o9+zZkzlz5vD000/j7u5u23bmzJlUrlyZPn365Fj7+fPnufXWW4mKimLs2LG0aNGCCxcusHHjRo4dO0a9evXy/XpcunSJO+64g/DwcMaNG8fmzZuZMmUK0dHRfP3119dcy+DBg1m4cCGHDh3K97iL2NhYmjdvjpubGy+88AI1a9Zky5YtTJkyhaioKObPn29bNyoqivDwcKpVqwbA1q1beeSRRzhy5AgvvPCCbZ3u3bvTpk0b5s2bR9myZTly5AgrV64kJSWFkJAQVq5cSdeuXRk2bBjDhw8Hrt6q8cQTT/Dhhx8yZcoUmjRpQkJCAr/99hunT5+2rbNgwQKGDBlCr169eO2114iLi2PixIkkJyfj5law/89FRUVRt25d7rnnHgIDAzl27BizZ8/m5ptvZu/evVSoUCHT+kOHDqV79+58+OGHJCQk4Onpycsvv8xzzz3HkCFDeO6550hJSWH69Om0adOGbdu25djaOXz4cBo1asRdd93FI488wsCBA3P8u5g1axYjR47kzz//ZNmyZXk6toceeoi5c+fy8MMPc+eddxIVFcXzzz/P+vXr+d///keFChVYtmwZ77zzDhEREaxcuZKAgABbMMtOXt8Dq9VKr169+PHHH3n66adp1aoV0dHRTJgwgfbt27Njxw58fX0BGDJkCIsXL+bpp5+mY8eO7N27lz59+hAfH59tDdfyHqxbt46uXbvSokUL5syZQ0BAAJ9++il33303Fy9ezPOYvdTUVJKTk9m5cyfPP/88t956K61bt86yntVqxWq1cvbsWZYsWcKqVauYOXNmnp5DiogRyaMJEyYYwEybNi3T8lGjRhkfHx9jtVqNMcasXLky2/UWL15sADN37lzbsnbt2pl27drZ7j/88MOmbNmyudaxbt06A5hly5bZlh05csR4eHiYSZMm5brt5MmTDWDWrFlz1f2vW7cu0/JDhw4ZwMyfP9+2bNCgQQYwb775ZqZ1X3rpJQOYTZs22ZaFhYWZQYMG5asWY4wZOnSocXd3N1FRUbmuZ4wxgJkwYYLtfnh4uCldurSJjo7OtN6rr75qALNnz55s95OWlmYuXbpkJk+ebMqXL297b5cuXWoAs3PnzhxrOHnyZJY6rubGG280vXv3zvHxtLQ0U7lyZXPTTTfZajHGmKioKOPp6WnCwsJsy/Lz/l0pNTXVXLhwwfj5+WV6T+fPn28A88ADD2Ra/++//zYeHh7mkUceybT8/PnzJjg42PTv3z+Xo/63punTp2danvF8hw4dsi3r3r17puPMzb59+wxgRo0alWn5zz//bADzzDPP2JZl/F2fPHky133m5z345JNPDGA+//zzTPvYvn27AcysWbOMMcbs2bPHAGbs2LGZ1svY/vK/F3u8B/Xq1TNNmjQxly5dyrTunXfeaUJCQkxaWlqur4ExxmzZssUAttsdd9xh4uPjs103PDzctp6Xl5ftuKX4UHeY5FvPnj0z3W/YsCFJSUmcOHECSO8uAbL8r+r//u//8PPzY+3atTnuu3nz5pw7d44BAwbw5ZdfZpl1AeldA40aNeKdd96xLZszZw4Wi4WRI0fmWvt3331HnTp1uP3223NdL7/uvffeTPcHDhwIpP/P81priYiIIDU1lbCwsHzXtWLFCjp06EDlypVJTU213bp16wbAhg0bbOv+8MMP3H777QQEBODu7o6npycvvPACp0+ftr23jRs3xsvLi5EjR7Jw4UL++uuvfNVzeQ2pqam2rrbmzZvz3XffMW7cONavX09iYmKm7fbv38/Ro0cZOHBgpm6gsLAwWrVqle/XJcOFCxcYO3YstWrVwsPDAw8PD0qXLk1CQgL79u3Lsn7fvn0z3V+1ahWpqak88MADmY7Lx8eHdu3aOWyGXMbv3ZV/g82bN+f666/P9W8wJ/l5D1asWEHZsmXp0aNHptelcePGBAcH216XjN+//v37Z9q+X79+OXYbFfQ9OHjwIL///rvtb/Xyde+44w6OHTvG/v37r/o6NGjQgO3bt7NhwwbefPNNIiMj6dSpU5bub4BnnnmG7du388033zB06FAefvhhXn311as+hxQdhSDJt/Lly2e6n9GEn/HFdfr0aTw8PLJ0gVgsFoKDgzN1cVzp/vvvZ968eURHR9O3b18qVapEixYtWLNmTab1Hn30UdauXcv+/fu5dOkS7733Hv369SM4ODjX2k+ePJlrc39BeHh4ZHlNMurI7VgLo5YrHT9+nK+//hpPT89Mt/r16wPYQua2bdvo3LkzAO+99x4//fQT27dv59lnnwX+fW9r1qzJ999/T6VKlRg9ejQ1a9akZs2avPnmm1etJSoqKksdGV+Cb731FmPHjmX58uV06NCBwMBAevfuzYEDB4B/X8fs3t+rvee5GThwIDNnzmT48OGsWrWKbdu2sX37dipWrJgliAGZZmtB+usLcPPNN2c5tsWLF2cb4otCxut1Zb0AlStXzvX38mr7zMt7cPz4cc6dO4eXl1eW1yU2Ntb2umTsMygoKNP22f1NZSjoe5Cx3pNPPpllvVGjRgHk6f3y8/OjWbNmtG3blkcffZRly5bx888/8+6772ZZt1q1ajRr1ow77riD2bNnM3LkSMaPH59lXJQ4jsYEid2VL1+e1NRUTp48mSkIGWOIjY3l5ptvznX7IUOGMGTIEBISEti4cSMTJkzgzjvv5I8//rC1hgwcOJCxY8fyzjvvcMsttxAbG8vo0aOvWlvFihUzDQzNjo+PD4BtwGWGnD4gU1NTOX36dKYP7djYWCBrYMxvLdeqQoUKNGzYkJdeeinbxytXrgykj8Xy9PRkxYoVtuMHWL58eZZt2rRpQ5s2bUhLS2PHjh28/fbbjBkzhqCgIO65554ca6lcuTLbt2/PtKxu3bpA+hfLpEmTmDRpEsePH7e1CvXo0YPff//d9jpmvK6Xu3JZXt+/uLg4VqxYwYQJExg3bpxteXJyMmfOnMn2GK4cjJwxZmjp0qUFaqkrLBmv17Fjx7IE7aNHj2YZ65SffeblPahQoQLly5dn5cqV2e6rTJkymfZ5/PhxqlSpYns8428qOwV9DzLWGz9+PHfddVe262T8PuZHs2bNcHNz448//rjqus2bN2fOnDn89ddfRTb7T3KnliCxu4ypvleeGOzzzz8nISEhy1TgnPj5+dGtWzeeffZZUlJS2LNnj+0xHx8fW5fMjBkzaNy4cbYDE6/UrVs3/vjjD1uXXXYyBh/v2rUr0/Kvvvoqx20+/vjjTPcXLVoE5H6enLzUcq3uvPNOfvvtN2rWrEmzZs2y3DJCkMViwcPDI9NA88TERD788MMc9+3u7k6LFi1s3ZL/+9//gKwtgxm8vLyyPH/Gl+HlgoKCGDx4MAMGDGD//v1cvHiRunXrEhISwieffJJptlp0dDSbN2/OtH1e3z+LxYIxJstg5Pfff5+0tLQcj/tyXbp0wcPDgz///DPb17dZs2Z52k9eeHt7Z9s6lZ2MqdpX/g1u376dffv25flv8HL5eQ/uvPNOTp8+TVpaWravSUbYaNu2LZA+s+tyS5cuzTJ7MSd5fQ/q1q1L7dq1+fXXX3NcL7vfx6vZsGEDVquVWrVqXXXddevW4ebmxnXXXZfv55HCoZYgsbtOnTrRpUsXxo4dS3x8PK1bt7bNDmvSpAn3339/jtuOGDECX19fWrduTUhICLGxsUydOpWAgIAsLUijRo1i2rRp/PLLL7z//vt5qm3MmDEsXryYXr16MW7cOJo3b05iYiIbNmzgzjvvpEOHDgQHB3P77bczdepUypUrR1hYGGvXruWLL77Idp9eXl689tprXLhwgZtvvtk2O6xbt27ceuut11QLwLBhw1i4cCF//vlnvlsbJk+ezJo1a2jVqhWPPvoodevWJSkpiaioKL799lvmzJlDaGgo3bt3Z8aMGQwcOJCRI0dy+vRpXn311SwBYc6cOfzwww+2s+EmJSXZZgVmjG0qU6YMYWFhfPnll9x2220EBgZSoUKFXGe2tWjRgjvvvJOGDRtSrlw59u3bx4cffkjLli0pVaoUAC+++CLDhw+nT58+jBgxgnPnzjFx4sQsXTF5ff/8/f1p27Yt06dPt9W3YcMGIiIi8nzW5OrVqzN58mSeffZZ/vrrL7p27Uq5cuU4fvw427Zts7Vw2UODBg344osvmD17Nk2bNsXNzS3HkFW3bl1GjhzJ22+/jZubG926dbPNDqtatSqPP/54vp/fzc0tz+/BPffcw8cff8wdd9zBY489RvPmzfH09CQmJoZ169bRq1cv+vTpQ/369RkwYACvvfYa7u7udOzYkT179vDaa68REBCQp1l/+XkP3n33Xbp160aXLl0YPHgwVapU4cyZM+zbt4///e9/uZ5eY8WKFbz33nv07NmTsLAwLl26xI4dO3jjjTeoVauWbSYkwMiRI/H396d58+YEBQVx6tQplixZwuLFi3nqqafUClScOHRYtjiVnGaRZDeTJTEx0YwdO9aEhYUZT09PExISYh566CFz9uzZTNteOTts4cKFpkOHDiYoKMh4eXmZypUrm/79+5tdu3ZlW1P79u1NYGCguXjxYp6P4+zZs+axxx4z1apVM56enqZSpUqme/fu5vfff7etc+zYMdOvXz8TGBhoAgICzH333Wd27NiR7ewwPz8/s2vXLtO+fXvj6+trAgMDzUMPPWQuXLiQ6XmvnB2W11oyZqBd/vrmhGxmZZ08edI8+uijpkaNGsbT09MEBgaapk2bmmeffTZTjfPmzTN169Y13t7e5rrrrjNTp041ERERmZ57y5Ytpk+fPiYsLMx4e3ub8uXLm3bt2pmvvvoq03N+//33pkmTJsbb2zvLLJ/sjBs3zjRr1syUK1fO9vyPP/64OXXqVKb13n//fVO7dm3j5eVl6tSpY+bNm2cGDRqUZdZUXt+/mJgY07dvX1OuXDlTpkwZ07VrV/Pbb79lea8yfse3b9+ebf3Lly83HTp0MP7+/sbb29uEhYWZfv36me+//z7X487P7LAzZ86Yfv36mbJlyxqLxWKu9vGdlpZmXnnlFVOnTh3j6elpKlSoYO677z5z+PDhTOvldXZYhry+B5cuXTKvvvqqadSokfHx8TGlS5c29erVM+Hh4ebAgQO29ZKSkswTTzxhKlWqZHx8fMwtt9xitmzZYgICAszjjz+e5TW51vfg119/Nf379zeVKlUynp6eJjg42HTs2NHMmTMn1+Pet2+f6devnwkLCzM+Pj7Gx8fH1KtXzzz11FPm9OnTmdadN2+eadOmjalQoYLx8PAwZcuWNe3atTMffvhhXl5iKUIWY644E5qIkzhx4gRhYWE88sgjTJs2zdHliIMMHjyY9evXZ7rOlji3zZs307p1az7++GPbTEuRwqDuMHE6MTEx/PXXX0yfPh03Nzcee+wxR5ckIgW0Zs0atmzZQtOmTfH19eXXX3/lv//9L7Vr185xALOIvSgEidN5//33mTx5MtWrV+fjjz/ONKtERJyLv78/q1ev5o033uD8+fNUqFCBbt26MXXq1EwzFUUKg7rDRERExCUVmynys2fPpmHDhvj7++Pv70/Lli357rvvbI8bY5g4cSKVK1fG19eX9u3bZ5oyLSIiIpIfxSYEhYaG8t///pcdO3awY8cOOnbsSK9evWxBZ9q0acyYMYOZM2eyfft2goOD6dSpE+fPn3dw5SIiIuKMinV3WGBgINOnT2fo0KFUrlyZMWPGMHbsWCD9rK5BQUG88sorhIeHO7hSERERcTbFcmB0WloaS5YsISEhgZYtW3Lo0CFiY2Nt1zaC9LOntmvXjs2bN+cagpKTkzOdPt9qtXLmzBnKly+f5fTrIiIiUjwZYzh//jyVK1fO04k086JYhaDdu3fTsmVLkpKSKF26NMuWLeOGG26wnZL9yovsBQUFER0dnes+p06darcztoqIiIhjHT582G4Xny5WIahu3brs3LmTc+fO8fnnnzNo0CDbVaYh64XzjDFXbc0ZP348TzzxhO1+XFwc1apV4/Dhw/j7+9v3AERERKRQxMfHU7Vq1QJd4y0nxSoEeXl52S5C16xZM7Zv386bb75pGwcUGxtLSEiIbf0TJ05kaR26kre3d5brHwG2WWgiIiLiPOw5lKXYzA7LjjGG5ORkatSoQXBwMGvWrLE9lpKSwoYNG2jVqpUDKxQRERFnVWxagp555hm6detG1apVOX/+PJ9++inr169n5cqVWCwWxowZw8svv0zt2rWpXbs2L7/8MqVKldJ1ZURERKRAik0IOn78OPfffz/Hjh0jICCAhg0bsnLlSjp16gTA008/TWJiIqNGjeLs2bO0aNGC1atX27VvUERERFxHsT5PUGGIj48nICCAuLg4jQkSERFxEoXx/V2sxwSJiIiIFBaFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEREXFJxSYETZ06lZtvvpkyZcpQqVIlevfuzf79+zOtM3jwYCwWS6bbLbfc4qCKRURExJkVmxC0YcMGRo8ezdatW1mzZg2pqal07tyZhISETOt17dqVY8eO2W7ffvutgyoWERERZ+bh6AIyrFy5MtP9+fPnU6lSJX755Rfatm1rW+7t7U1wcHBRlyciIiIlTLFpCbpSXFwcAIGBgZmWr1+/nkqVKlGnTh1GjBjBiRMnct1PcnIy8fHxmW4iIiIiFmOMcXQRVzLG0KtXL86ePcuPP/5oW7548WJKly5NWFgYhw4d4vnnnyc1NZVffvkFb2/vbPc1ceJEJk2alGV5XFwc/v7+hXYMIiIixZ3VauXEiRMEBQVhsVgcXU6u4uPjCQgIsOv3d7EMQaNHj+abb75h06ZNhIaG5rjesWPHCAsL49NPP+Wuu+7Kdp3k5GSSk5Nt9+Pj46latapCkIiIuLSzZ8/SuXNnduzYQZcuXfj666/x9PR0dFk5KowQVOy6wx555BG++uor1q1bl2sAAggJCSEsLIwDBw7kuI63tzf+/v6ZbiIiIq5u3Lhx7NixA4BVq1Yx+4knICbGwVUVrWITgowxPPzww3zxxRf88MMP1KhR46rbnD59msOHDxMSElIEFYqIiJQMsbGxzJ8/H4C7b74ZgFkzZ2KqVYOICEeWVqSKTQgaPXo0H330EYsWLaJMmTLExsYSGxtLYmIiABcuXODJJ59ky5YtREVFsX79enr06EGFChXo06ePg6sXERFxHp999hmXLl2ieePGzN2xA29gP/C7MRAe7jItQsUmBM2ePZu4uDjat29PSEiI7bZ48WIA3N3d2b17N7169aJOnToMGjSIOnXqsGXLFsqUKePg6kVERJzHsmXLALi7ZUv8jaHNP8tXA6SlwcGDjiqtSBWb8wRdbXy2r68vq1atKqJqRERESqbTp0+zceNGAPrcdx+8+y7trFa+B7YDuLtDrVqOLLHIFJuWIBERESl8GzZswGq1Ur9+fWq0agVz53KTW3oc+B/Au+9CThOTYmJg3boS012mECQiIuJCtm3bBkCrVq3SFwwbRpN/lu13c+PigAHZbxgRAWFh0LFj+s8SMIBaIUhERMSFZISg5s2b25aFNG1KUFAQVquVXbt2Zd0oJoYfR4ygrNWaPn7Iai0RA6gVgkRERFxEWlqa7dxAl4cggJtuugmAnTt3Zt3wwAEuGkMccOHfnTn9AGqFIBERERexf/9+zp8/T6lSpbjhhhsyPXb99dcD8Mcff2TdsHZtUv65rIZXxrISMIBaIUhERMRFZHSFNW3aFA+PzBPEa/0TaP7888+sG4aGkhweDoA3pAeg3AZQOwmFIBERERfx888/A9CiRYssj9WsWROAgzl0cSXfeisA3k2bQlQUDBtWOEUWIYUgERERF5HdoOgMl7cEWa3WLI9nXIzcKyjI6VuAMigEiYiIuIDExETbzK/sQlC1atXw8PAgOTmZo0ePZnk8JSUFSL8weUmhECQiIuICdu7cSWpqKpUqVaJatWpZHvfw8KB69epA9l1iGS1BCkEiIiLiVC7vCrP8M9PrShnjgv76668sjykEiYiIiFPKCEHZDYrOkNFCdPjw4SyP2cYEeXllecxZKQSJiIi4gIyZYdmNB8pQtWpVIPsQpDFBIiIi4nROnz5tO/9Ps2bNclwv9J9ZX7m1BCkEiYiIiNPYvn07ALVr1yYwMDDH9TJagmKyuSaYQpCIiIg4ndzOD3S53LrDNCZIREREnE5eBkXDv91h58+fJy4uLtNjGhMkIiIiTsUYk+eWID8/P8qVKwdk7RJTd5iIiIg4laioKE6ePImnpyeNGjW66vo5dYkpBImIiIhTyWgFatSoET4+Plddv0qVKgAcOXIk0/KM7jCNCRIRERGnkNeusAw5hSC1BImIiIhT2fbjjwC0qF07T+vnFIKSkpIA8tSa5CwUgkREREqo1Llz+eWfcwQ1f+IJiIi46jaVK1cGyHIl+YsXLwJQqlQpO1fpOApBIiIiJVFMDHsefJBEwB+oYwyEh0M2J0K8XE4tQYmJiQD4+voWRrUOoRAkIiJSEh04wFZjALiZf77w09Lg4MFcN8spBGW0BCkEiYiISPFWuzZb/vlny4xl7u5Qq1aum2WEoBMnTnDp0iXb8oyWIHWHiYiISPEWGsrmoCAAWkF6AHr3XfjnrNA5KV++PJ6engAcO3bMtlzdYSIiIuIUTp06xYHjxwG45auvICoKhg276nZubm62wdGXd4mpO0xEREScwpYt6Z1h119/PeV69LhqC9DlrhwXlJaWZusaU3eYiIiIFGsZIahly5ZXWTOrK6fJZ3SFgVqCREREpJj76aefgIKFoCtbgjK6wkAnSxQREZFiLCEhwdYS1L59+3xvf2UIymgJ8vHxwc2t5ESHknMkIiIiAsCmTZu4dOkS1apVo2bNmvnePqfusJLUFQYKQSIiIiXO999/D8Dtt9+OxWLJ9/Y5dYcpBImIiEixtnbtWgBuu+22Am1/eQgyxnD+/HkAypQpY58CiwmFIBERkRLk5MmTREZGAtCxY8cC7SOjOywhIYH4+Hji4+MB8Pf3t0+RxYRCkIiISAnyzTffANCoUSOCg4MLtA8/Pz8CAgKA9HFBCkEiIiJS7C1btgyAPn36XNN+Lu8Sy+gOUwgSERGRYun8+fOsXr0asG8IKqktQR6OLkBERETsY8mSJSQlJVG3bl0aNGhwTfu6fJp8QkICoBAkIiIixdSCBQsAGDx4cIGmxl/u8pagjBMklrQQVGy6w6ZOncrNN99MmTJlqFSpEr1792b//v2Z1jHGMHHiRCpXroyvry/t27dnz549DqpYRETEfmJiYti8eTM//fQTJ0+ezPf2kZGR/Pjjj7i5uXHfffddcz2u0B1WbELQhg0bGD16NFu3bmXNmjWkpqbSuXNnWxMcwLRp05gxYwYzZ85k+/btBAcH06lTJ9uALRERkWItJgbWrUv/SfrV2SMiImjUqBFVq1aldevW3HrrrVSqVImmTZsya9YskpOT87TrV155BYC7776b0HxcMT4nGd1hR44c4cyZMwCULVv2mvdbrJhi6sSJEwYwGzZsMMYYY7VaTXBwsPnvf/9rWycpKckEBASYOXPm5Hm/cXFxBjBxcXF2r1lERCRH779vjJubMWCMm5s5+PLLpkmTJgYwgHF3dzc1atQw1atXNxaLxbY8LCzMfPDBByYtLS3z/g4fNuaHH4w5fNj89NNPtvV37txpl3K3bdtmAFOlShXTvHlzA5jly5fbZd8FURjf38WmJehKcXFxAAQGBgJw6NAhYmNj6dy5s20db29v2rVrx+bNmx1So4iISJ7ExMDIkWC1ArDBaqXpM88QGRlJuXLleO211zhx4gR//fUXh557jhPAm0BlIDo6mgceeICWLVuydevW9P1FREBYGHTsyLlq1RjWty8AQ4cOpVGjRnYpOaM7LDY21nb5jIKed6i4KpYDo40xPPHEE9x6663ceOONQPqbABAUFJRp3aCgIKKjo3PcV3JycqamxIx+TRERkSJz4IAtAK0HugMXgZb167Nk1Spb4MgISxWM4VFgBPCmxcJLpUqxbds2WrZsyb19+jBu+XLqG8N+YJAx/B4bS5XgYFuXmD0EBQXh4eFBamqqLQRd+R3s7IplS9DDDz/Mrl27+OSTT7I8duVod2NMriPgp06dSkBAgO1WtWpVu9crIiKSq9q1wc2NvUAv0gNQV+CH5cv/DUCQKSwB+ALjjOGPhQsZMmQIFouFj5cto4ExeAHXA9uAssDXkydToUIFu5Xs7u5OrVq1Mi1TCCpkjzzyCF999RXr1q3LNLArowkuo0Uow4kTJ3J9U8aPH09cXJztdvjw4cIpXEREJCehoZx67TV6APFAG2DZ7Nn4XBEyMsJSJu7uhLRowbx589i+fTu9OnfGC0gl/Uu8J/A/NzeadOtm97Lr169v+3e5cuV0FfnCYozh4Ycf5osvvuCHH36gRo0amR6vUaMGwcHBrFmzxrYsJSWFDRs20KpVqxz36+3tjb+/f6abiIhIUbJardz73Xf8BdQICeHznTvxefDBrCuGhsLcueDunn7f3R3efTd9OdC0aVOWr1rF+TlziHJzIw740t2dGnPn2taxp8vHFzVp0sTu+3e0YhOCRo8ezUcffcSiRYsoU6YMsbGxxMbGkpiYCKR3g40ZM4aXX36ZZcuW8dtvvzF48GBKlSrFwIEDHVy9iIhIzt5++21Wr16Nj48PX61eTcXcBi8PGwZRUelT6aOi0u9fwSs8nLDoaErnso493HHHHbZ/N23atFCew5Esxhjj6CIg61ifDPPnz2fw4MFAemvRpEmTePfddzl79iwtWrTgnXfesQ2ezov4+HgCAgKIi4tTq5CIiBS6Xbt2cfPNN5OSksKsWbN46KGHHF1SnhljGD16NIcPH+btt9+mevXqDqulML6/i00IKioKQSIiUlRSUlJo1qwZu3fv5s477+Srr7665stZuKrC+P4uNt1hIiIiJc1rr73G7t27qVChAhEREQpAxYxCkIiISCH4888/mTx5MgCvv/46lSpVcnBFciWFIBERETvLGEuTlJTEbbfdxr333uvokiQbCkEiIiJ29tlnn7Fq1Sq8vb2ZNWuWusGKKYUgEREROzp37hxjxowB4JlnnqFOnTqOLUhypBAkIiJiR8888wyxsbHUrVuXsWPHOrocyUWxvICqiIiI04mJ4eevvmLOnDkAzJkzB29vbwcXJblRCBIREblWERGkjhhBuDEYYFCrVrRv397RVclVqDtMRETkWsTEwMiRvGkMvwKBwKtbt6Yvl2JNIUhERORaHDhAtNXKC//cnQ5UsFrh4EFHViV5oBAkIiJyDUytWjwMXATaAkMg/ervtWo5tC65OoUgERGRa7Bs+3ZWAJ7Au4DF3R3efRdCQx1cmVyNBkaLiIgUUHx8PI888ggA4x57jHq9e6e3ACkAOQWFIBERkQJ67rnnOHr0KLVq1eKZ//4XfHwcXZLkg7rDRERECuDnn39m5syZQPo5gXwUgJyOQpCIiEg+JSYmMmjQIIwx3H///dx2222OLkkKQCFIREQkn55//nn2799PSEgIb775pqPLkQJSCBIREcmHTZs2MWPGDADee+89ypUr5+CKpKAUgkRERPLo/PnzDB48GGMMQ4YMoXv37o4uSa6BQpCIiEgeGGN46KGH+PPPP6latSqvv/66o0uSa6QQJCIikgfz58/n448/xt3dnU8++YSAgABHlyTXSCFIRETkKvbs2cPDDz8MwJQpU2jdurWDKxJ7UAgSERHJRVxcHP369SMxMZHOnTvz9NNPO7oksROFIBERkRykpqZyzz338Pvvv1OlShU+/PBD3Nz01VlS6J0UERHJwVNPPcXKlSvx9fXlq6++olKlSo4uSexIIUhERCQbc+bM4Y033gDggw8+4KabbnJsQWJ3CkEiIiJXWLx4MaNGjQJg0qRJ9OvXz8EVSWFQCBIREbnMt99+y3333YcxhvDwcJ4fMgTWrYOYGEeXJnamECQiIiVPTEyBgssPP/xA3759SU1NZcCAAbzTtCmW6tWhY0cIC4OIiMKpVxxCIUhEREqWiIj0wJLP4PLNN99wxx13kJSURPfu3Vn40ku4P/ggWK3pK1itEB6uFqESRCFIRERKjpgYGDky78HlnxajJXPm0Lt3b5KTk+nZsydLly7FMyrq3/1kSEuDgwcL9RCk6Hg4ugARERG7OXAg5+ASGpp5eUQEjBzJTKuVxwArMGDAABYuXIinpyfUrg1ubpn35+4OtWoV9lFIEVFLkIiIlBwZweVy2QWXmBjSRoxgjNXKI6QHoBEWCx9OnZoegCA9NM2dm759xn7efTdrmBKnpRAkIiIlRx6Dy4Vdu+hjDG/+c38q8K4xuB86lHl/w4ZBVFT6IOuoqPT7UmKoO0xEREqWYcOgS5f0LrBatbIEoH379tF3zBj2Ad7AB0B/yLmrKzRUrT8llEKQiIiUPDkEl8WLFzNs2DASEhIICQjg8/PnaWm1qqvLRSkEiYhIiZeSksJTTz3FW2+9BUCHDh345JNPCLp0KccWIyn5FIJERKREi4mJ4f/+7//YunUrAOPGjePFF1/Ew+Ofr0CFH5elECQiIiXWmjVrGDhwIKdOnSIgIIAPPviAnj17OrosKSY0O0xEREocq9XKiy++SJcuXTh16hRNmjThf//7nwKQZKKWIBERKVFOnz7N/fffz3fffQfA8OHDeeutt/D19XVwZVLcKASJiEiJsWPHDvr160d0dDQ+Pj7MmjWLIUOGOLosKaaKVXfYxo0b6dGjB5UrV8ZisbB8+fJMjw8ePBiLxZLpdssttzimWBERKVbef/99WrduTXR0NDVr1mTLli0KQJKrYhWCEhISaNSoETNnzsxxna5du3Ls2DHb7dtvvy3CCkVEpLhJTExk2LBhjBgxgpSUFHr27MmOHTto3Lixo0uTYq5YdYd169aNbt265bqOt7c3wcHBRVSRiIgUZ4cOHaJv375ERkbi5ubGlClTGDt2LG5XXj9MJBtO91uyfv16KlWqRJ06dRgxYgQnTpxwdEkiIuIA3333HU2bNiUyMpIKFSqwatUqxo8frwAkeVasWoKuplu3bvzf//0fYWFhHDp0iOeff56OHTvyyy+/4O3tne02ycnJJCcn2+7Hx8cXVbkiIlIIjDG88sorPPPMMxhjaN68OUuXLqVq1aqOLk2cjFOFoLvvvtv27xtvvJFmzZoRFhbGN998w1133ZXtNlOnTmXSpElFVaKIiBSipKQkRowYwUcffQTAgw8+yBtvvJHjf4RFcuPUbYYhISGEhYVx4MCBHNcZP348cXFxttvhw4eLsEIREbGX2NhY2rdvz0cffYS7uzuzZs1i9uzZCkBSYE7VEnSl06dPc/jwYUJCQnJcx9vbW38gIiJOLjIykp49exITE0O5cuVYunQpHTt2dHRZ4uSKVQi6cOECBw8etN0/dOgQO3fuJDAwkMDAQCZOnEjfvn0JCQkhKiqKZ555hgoVKtCnTx8HVi0iIoXpiy++4P777+fixYvUq1ePr7/+mlq1ajm6LCkBilV32I4dO2jSpAlNmjQB4IknnqBJkya88MILuLu7s3v3bnr16kWdOnUYNGgQderUYcuWLZQpU8bBlYuISGF444036NevHxcvXqRLly5s2bJFAUjsxmKMMY4uoijFx8cTEBBAXFwc/v7+ji5HRESyYbVaefLJJ3n99dcBGD16NG+88QYeHh4QEwMHDkDt2hAa6uBKpagUxvd3sWoJEhERSUpKYsCAAbYA9Morr/D222+nB6CICAgLg44d039GRDi4WnFmagkSEZFi4+zZs/Tu3ZuNGzfi6enJggULGDhwYPqDMTHpwcdq/XcDd3eIilKLkAsojO/vYjUwWkREXNfff/9N165d2bdvH/7+/ixfvpwOHTr8u8KBA5kDEEBaGhw8qBAkBaIQJCIiDrdv3z5uv/12jh49SpUqVfjuu+9o0KBB5pVq1wY3t6wtQRooLQWkMUEiIuJQkZGRtG3blqNHj3LDDTewZcuWrAEI0lt75s5NDz6Q/vPdd9UKJAWmliAREXGYLVu20K1bN+Li4mjWrBkrV66kfPnyOW8wbBh06ZLeBVarlgKQXBOFIBERcYi1a9fSq1cvEhISuPXWW/lm7lz8d+26+tT30FCFH7ELdYeJiEiR+/rrr+nevTsJCQl07tyZlQMG4H/jjZr6LkVKLUEiIlL4LjvB4eKffuK+++4jNTWVPn368Mn06XjXqfPvgGerFcLD07u91OIjhUghSERECldEBIwcCVYrERYLIwBjDPfeey8LFizA48cfNfVdHELdYSIiUnhiYmwB6E1guDEYYwi/7z4++OCD9LNAZ0x9v5ymvksRUAgSEZHCc+AAxmrlJWDMP4v+A8weOhS3jOCjqe/iIOoOExGRQmNq1WI88Mo/9ycBz7u5YaldO/OKmvouDqAQJCIihcJqtfLIf//LrH/uvwY8kVsrj6a+SxFTCBIRkYK7bNbX5QEmNTWVYcOG8cEHH2CxWJgzdSojW7RQK48UKwpBIiJSMJfN+sLNLX1cz7BhpKSkMHDgQD7//HPc3d1ZuHAh9957r6OrFcnimgZGnzhxgtjYWHvVIiIizuKyWV+A7dw+Fw8coFevXnz++ed4eXmxdOlSBSAptgoUgnbt2kX9+vUJCQmhSpUqVKlSheeee46EhAR71yciIsXRgQNZzu0Tn5ZGt379WLlyJb6+vqxYsYLevXs7pj6RPChQCBo2bBhBQUFs2rSJyMhIpkyZwnfffUezZs04e/asvWsUEZHi5opz+5wBbgc27tqFv78/q1evplOnTg4rTyQvLMYYk9+N/Pz8+OWXX6hXr55tmTGG//u//8PHx4ePPvrIrkXaU3x8PAEBAcTFxeHv7+/ockREiq8cBj3bRERAeDjH09LoBOwGypcvz6pVq2jatGlRVyslXGF8fxeoJSi7Fh+LxcLLL7/Ml19+aZfCRETEgSIi0i9kmtsFTYcN4++ffqJNaCi7geDgYDZs2KAAJE4jzyGoe/fuPPPMM3z22Wc8+OCDPP744xw/fjzTOnFxcZQrV87uRYqISBHKYdAzMTGZVjt48CBt+vfnQEwM1apV48cff6R+/foOKFikYPI8Rb5Bgwb873//Y/78+bbwc91119G/f38aN25MWloa8+fP5/XXXy+0YkVEpAhkM+j5ygua/vbbb3Tq1InY2Fjq1KnD999/T9WqVR1QrEjBFWhM0PHjx4mMjGTnzp2228GDB3F3d6du3brs2rWrMGq1C40JEhG5ipiY9C6wy4OQuztERUFoKNu2baNbt26cOXOGBg0asGbNGoKCghxWrriGwvj+LtDJEoOCgujatStdu3a1LUtMTOTXX3/l119/tUthIiLiIBkXNA0PT28BuuxSF+vXr6dHjx5cuHCBFi1a8O233xIYGOjoikUKpEAtQc5MLUEiInkUE5PpgqYrVqygX79+JCcn07FjR5YvX06ZMmUcXaW4iGLTEiQiIi7gsguafvrpp9x///2kpqbSo0cPPvvsM3x8fBxcoMi1uabLZoiISMk3d+5cBg4cSGpqqu2aYApAUhIoBImISI5effVVwsPDMcbw4IMP8uGHH+Lp6enoskTsQiFIRESyMMbw/PPP89RTTwEwduxYZs2ahZubvjak5NCYIBERycRqtfL444/z1ltvATB16lTGjRvn4KpE7E8hSEREbFJSUhg6dCgff/wxAO+88w6jRo1ycFUihUMhSEREALhw4QJ9+/Zl9erVeHh4MH/+fO677z5HlyVSaBSCRESEEydO0L17d3bs2EGpUqX4/PPPM50QV6QkUggSEXFxhw4donPnzhw8eJDy5cvzzTff0KJFC0eXJVLoFIJERFzYzp076datG7GxsYSFhbFq1Srq1q3r6LJEioTmOoqIuKj169fTrl07YmNjadCgAZs3b1YAEpeiECQi4oKWLl1Kly5diI+Pp23btmzcuJHKlSs7uiyRIqUQJCLiYmbNmkX//v1JSUmhT58+rFq1irJlyzq6LJEipxAkIuIijDG88MILjB49GmMM4eHhLFmyRNcBE5elgdEiIi4gNTWVUaNG8d577wEwceJEXnjhBSwWi4MrE3EchSARkRIuMTGRAQMG8OWXX+Lm5sY777zDgw8+6OiyRByuWHWHbdy4kR49elC5cmUsFgvLly/P9LgxhokTJ1K5cmV8fX1p3749e/bscUyxIiJO4OzZs3Tu3Jkvv/wSb29vlixZogAk8o9iFYISEhJo1KgRM2fOzPbxadOmMWPGDGbOnMn27dsJDg6mU6dOnD9/vogrFREppmJiYN06iInhyJEjtG3blk2bNuHv78+qVau46667HF2hSLFRrLrDunXrRrdu3bJ9zBjDG2+8wbPPPmv7I164cCFBQUEsWrSI8PDwoixVRKT4iYiAkSPBauV3i4Uu5crx95kzhISEsHLlSho2bOjoCkWKlWLVEpSbQ4cOERsbS+fOnW3LvL29adeuHZs3b85xu+TkZOLj4zPdRERKnJgYWwDaCrQ2hr/PnKHOddexefNmBSCRbDhNCIqNjQUgKCgo0/KgoCDbY9mZOnUqAQEBtlvVqlULtU4REYc4cACsVr4FOgJngObAptdeo3r16g4tTaS4cpoQlOHK6ZzGmFyneI4fP564uDjb7fDhw4VdoohI0atdmw8sFnoCiUAXYK2bGxWbNXNwYSLFV7EaE5Sb4OBgIL1FKCQkxLb8xIkTWVqHLuft7Y23t3eh1yci4kivfvopTxkDwH3APDc3POfOhdBQxxYmUow5TUtQjRo1CA4OZs2aNbZlKSkpbNiwgVatWjmwMhERx7FarTz55JM89dRTADwxYgQL167FMzoahg1zcHUixVuxagm6cOECBw8etN0/dOgQO3fuJDAwkGrVqjFmzBhefvllateuTe3atXn55ZcpVaoUAwcOdGDVIiKOcenSJYYOHcpHH30EwPTp03nyyScdXJWI8yhWIWjHjh106NDBdv+JJ54AYNCgQSxYsICnn36axMRERo0axdmzZ2nRogWrV6+mTJkyjipZRMQhEhIS6NevHytXrsTd3Z158+bxwAMP5G3jmJj0gdS1a6u7TFyaxZh/OpFdRHx8PAEBAcTFxeHv7+/ockRE8u3UqVN0796dbdu2UapUKZYsWcIdd9yRt40vO5cQbm4wd666zcQpFMb3t9OMCRIREYiOjubWW29l27ZtBAYGsnbt2rwHoMvOJQSk/wwPT18u4oIUgkREnEFMDL/Nm0erFi3Yv38/VatWZdOmTdxyyy1538c/5xLKJC0NLhuLKeJKitWYIBERyUZEBD+OGEFPYzgH1K9cmZWbNxOa3/E8tWund4FdHoTc3aFWLXtWK+I01BIkIlKcxcTw5YgRdP4nALUGfoyNpUDDmUND08cAubun33d3h3ff1eBocVlqCRIRKcbmvfUWI4zBCvQAPgVKWa3pXVgFCS/DhkGXLunb16qlACQuTSFIRKQYMsYwbdo0xk2fDsBQ4F3++dC+1i6s0FCFHxHUHSYiUuxknAV63LhxAIzr1o333dz+DUDqwhKxC7UEiYgUlgKclPDSpUsMHz6cDz74AIDXXnst/cSxMTHqwhKxM4UgEZHCkJ+TEv4Tli6GhtL/8cf55ptvsp4FWl1YInanM0aLiNhbTAyEhWWdih4VlTXI/BOWzlqt3AlsBnx9fVmyZAndu3cvwqJFijedMVpExBnk9aSE/5zB+ajVSlvSA1BZYM3HHysAiRQBdYeJiNhbXk9KeOAAf1itdAaigRBgFdCgXLmiq1XEhaklSETE3vJ4UsJfEhO5lfQAVJv0lqAGOoOzSJFRS5CISGG4ykkJv//+e+665x7OAzcB3wGVNP1dpEgpBImIFJYcZnQtXLiQ4cOHk5qaSocOHVj+zjv4Hz+u6e8iRUwhSEQcpwDn0XFmxhimTJnCCy+8AMCAAQOYP38+3t7ecP31Dq5OxPVoTJCIOEZERPo08o4d039GRDi6okJ16dIlRowYYQtA48aN46OPPkoPQCLiEDpPkIgUvfycR6cEOH/+PP3792flypW4ubkxc+ZMHnroIUeXJeJUCuP7W91hIlL0cjuPTgkLQX///Te9evVi586dlCpVisWLF3PnnXc6uiwRQSFIRBwhr+fRcXKbNm3irrvu4uTJk1SqVIkVK1Zw8803O7osEfmHxgSJSNHL43l0nNn7779Px44dOXnyJI0bN2b79u0KQCLFjFqCRMQxrnIeHWeVkpLCf/7zH2bOnAnA//3f/zF//nz8/PwcXJmIXEkhSEQcp4RdGT06Opq7776bn3/+GYAXX3yRZ599FovF4uDKRCQ7CkEiInbw9ddfM2jQIM6ePUvZsmVZuHAhPXv2dHRZIpILjQkSEbkGiYmJPP744/Ts2ZOzZ8/SvHlzIiMjFYBEnIBCkIhIAf388880adKEN954A4DHH3+cH3/8kerVqzu0LhHJG4UgEZF8unjxIuNGj6ZVq1bs37+fkJAQVqxYwYwZM/Dy8nJ0eSKSRxoTJCKSR8YYvvjiC54YOZK/z5wB4F7grbFjCeze3bHFiUi+qSVIREqGmBhYty79ZyGIjIykc+fO9OvXj7/PnKEasAz4CAj8z38K7XlFpPAoBImI8yvEi7Hu3r2bu+66i5tuuonvv/8eb09Pngf2Ab0zVsq45IeIOBWFIBFxbjExMHLkv5fgsFohPPyaWmasVivffPMNXbp0oWHDhixbtgyLxcLAgQPZ88MPTHZzo9TlG5TAS36IuAKNCRIR52bHi7Hu3buXRYsWsWjRIg4dOgSAxWKhX79+TJgwgfr166evOHduetBKSyuRl/wQcRUKQSLi3K7hYqynTp1iy5YtrFmzhtWrV7N//37bYwEBAQwfPpzRo0dTo0aNzBuW0Et+iLgahSARKTaMMSQmJnLhwgXbzWq1YrFYbDc3Nzfc3Nzw8PDA3d09/fbf/+I+bhzuVivubm64v/46bv7+JBw7RlxcHOfOneP06dNERUZyaNcu/oyPJ/L334mOjs70/J6ennTr1o2BAwfSo0cPSpUqlUOllLhLfoi4Iosxxji6iKIUHx9PQEAAcXFx+Pv7O7ocEZd09OhRdu3axe7du/ntt9+Ijo4mJiaGI0eOkJSUVKS11KlTh44dO9K5c2c6dOhA2bJli/T5RSRvCuP7Wy1BIlLoTpw4werVq1m3bh3r1q2zjbfJjZ+fH35+fri7u2OMsd2sVitWq5W0tDRSU1NJS0uz3axXjA1yc3MjICCAgNKlKXf4MGFAjX9uDdzcaLJ7NwE33FAoxywixZ9CkIgUihMnTvD555+zZMkSNmzYkCmguLm5UadOHRo0aECDBg2oVasWVapUITQ0lIoVK+Ln54ebW/4nr2aEpIxQ5OPjk34F93Xr0qfPX85qhRMnQCFIxGUpBImI3Rhj2LBhA7Nnz2bZsmVcunTJ9thNN93E7bffTvv27WndunXem7NjYtJngNWufdUxOBaLxTZOKJNrGDwtIiWXQpCIXLNLly7x0UcfMW3aNH7//Xfb8qZNm3L33XfTr1+/rDOs8iIi4t9zALm5pU9NHzYs//sJDdW0dhHJQgOjRaTAkpKSmDdvHtOmTbPNtCpdujT33Xcf4eHhNG7cuOA7j4lJP/vzla03UVEFDy8xMZrWLuKkNDBaRIqFtLQ0PvjgA55//nmOHDkCQFBQEP/5z38IDw+3zweUHU+CaJOXae356H4TEeemECQi+bJq1Sqeeuopdu/eDUDVqlUZO3YsQ4cOxdfX135P5IhxPPbqfhMRp+BU1w6bOHFippOmWSwWgoODHV2WiEvYv38/Xbp0oWvXruzevZuyZcsyffp0/vjjD0aPHm3fAAT/juPJGORc2ON4CuEaZCJSvDldS1D9+vX5/vvvbfezzAIRkayuoYvn4sWLvPzyy0ybNo1Lly7h6enJw7168ewLL1C+QQO7P18mRXl5isLofhORYs2pWoIAPDw8CA4Ott0qVqzo6JJEireIiPQBxh07pv+MiMjzpitWrKB+/fq89NJLXLp0iW433sje1FRmLF1K+caNs9/XNTxftkJDoX37wg8iGd1vl9M0epESzelC0IEDB6hcuTI1atTgnnvu4a+//sp1/eTkZOLj4zPdRFxGAbt4oqOj6d27Nz169CAqKoqqVavyxdy5fLNnD7UyJpRmty9n7lIq6u43EXE4pwpBLVq04IMPPmDVqlW89957xMbG0qpVK06fPp3jNlOnTk0/bf4/t6pVqxZhxSIOllsXTzZSUlJ45ZVXuOGGG/jyyy/x8PDg6aefZu/evfSpVQvLlWfUuHJf+Xy+YmfYsPQp+OvWpf/UoGiREs2pzxOUkJBAzZo1efrpp3niiSeyXSc5OZnk5GTb/fj4eKpWrarzBIlryMe5djZu3MhDDz3E3r17AWjbti2zZs2ifv36ed9XYZzbR0SEwjlPkFO1BF3Jz8+PBg0acODAgRzX8fb2xt/fP9NNxGXkoYvn5MmTDBkyhHbt2rF3714qVqzIwoULWb9+/b8BKI/7UpeSiDgTp24JSk5OpmbNmowcOZIXXnghT9vojNHikrI5U7LVamXevHmMHTuWM2fOABAeHs7LL79MYGBgvvZVoHVERPLB5c8Y/eSTT9KjRw+qVavGiRMnmDJlCvHx8QwaNMjRpYkUb1ecKfnXX39l1KhRbN68GYBGjRoxZ84cbrnllnzvq8DriIg4mFN1h8XExDBgwADq1q3LXXfdhZeXF1u3biUsLMzRpYmki4lJH1RbTGdDHT9+nBEjRtCkSRM2b96Mn58fM2bMYMeOHXkLQCIiJYhTtQR9+umnji5BJGfF+JILSUlJvPnmm7z00kucP38egP79+/Pqq69qxqSIuCynHhNUEBoTJIWimM6KSklJYcGCBUyZMoXDhw8DcPPNN/P666/TunVrh9UlIpJfmh0mUlwVs/PjXLp0ifnz51O3bl3Cw8M5fPgwVapU4YMPPmDr1q3ZB6Bi3pUnImJvCkEi9pCfSy4UYtg4e/Ysr7zyCtdddx1Dhw4lKiqKoKAg3njjDQ4cOMD999+P25V1gv0vdSEi4gQUgkTsIa/nxymEsGGMYfPmzYwcOZLQ0FDGjRtHTEwMlSpV4tVXX+Wvv/7isccey/kq7858qQsRkWugMUEi9pTb+XHsOG7IGMOuXbv48sMP+WjxYg5cFlgaNmzI448/zoABA/D29r76ztatSw9l2S1v3z5fdYmIFBaXP0+QSLGX2/lxchs3lIcQdPjwYX766Sc2btzIihUrbAOdAfyAfq1aMeTll2nbti0WiyXvNWd05V0ZznT1dBEp4RSCRIpKHsJGSkoKx44d48iRI/y5fTt7tm5l76lT7Ny/P1PoAfAFOgF3AX2B0j//DDVrQn4CEPzblRcenh7KdKkLEXERCkEi+ZSWlsbp06eJjY3l+PHjxMfHk5CQwMWLF0lISCAhIYGkpCSSkpJsF/DN+HfSjTeSvGsXyUASkFy5MsmdOpGUlERCQgInT57M8Xnd3d1p3LgxrVu3pnNwMB2feYZMo3zy0aqUxbBh0KWLLnUhIi5FIUgkBydPnmTHjh3s2bOHP/74g/3793PgwAGOHz+O9cpurYK6onUHwMvLi8opKYQBNwD1gfpubjTbs4fSdeumrxQTA889Z98uLF3qQkRcjEKQCOkDjQ8ePMjq1av58ccf2bZtG4cOHcpxfYvFQoUKFQgKCqJs2bL4+flRqlQp209fX198fHzw9vbG29vb9u/clvn6+hISEkKF3bux3HZb5ie0WuHYMcgIQerCEhG5ZgpB4rIuXbrE2rVrWbZsGatXryYqKirLOvXq1aNhw4bUrVuXunXrUrt2bapWrUrFihXx8CikP586dfI2UFldWCIi10QhqLDFxKTPCqpdW19SRS2b1z41NZV169bx2Wef8cUXX3DmzBnb6p6entx6663cdttt3HLLLTRt2pSyZcsWfd35aeVRF5aISIEpBBWmYnxBzWLLXqHxitc+eupUIi5cICIigqNHj9pWq1SpEn379uXOO++kbdu2lC5d2g4HYQdq5RERKXQ6WWJhKaYX1CzW7BUa/3nt06xWvgbmAiuBjF/08uXL069fP/r370+7du1wP3bs6sFLLXoiIg6lC6g6k2J2Qc1iz46XbkjYtYuZViu1gT7Ad6QHoNtuuonFixdz5MgR5syZQ8eOHXFfsODql7HQdbVEREoktQQVFrUE5Y8dLt1w4sQJZs6cyTtvv82Zc+cAKA8MB4a7uVErOjrza5+X90jvo4hIsaCWIGeS1wtqSrr8XIX9Cn/88QcPPvggYWFhvPjii5w5d46aFSvyjsXC38B/3d2pNXdu1tc+L611atETESmxNDC6MGlwa94V4Lw3mzdvZvr06Xz55ZdkNGi2aNGCp556it69e6eP9cnttc/LNbN0XS0RkRJLIaiwaQpz3uUhNFqtVr766iumT5/O5s2bbct79OjBU089xa233vrvxUOv9trnJXjppIQiIiWWxgSJU7h48SILFy7k9ddf58CBAwB4eXpyf9++/OeFF7j++usLvvOYmKu31uVlHRERKTSF8f2tliApOgWYZn78+HFmzpzJ7NmzOX36NABlS5Vi1MWLPHLpEsGffQa33w7XEoLy0lqnFj0RkRJHA6OlaORzmvmuXbsYPnw41apVY8qUKZw+fZoaNWrw9osvcjgxkZeAYLimqfQiIuLaFIKk8OXxHEBJSUl8+OGHtGrVikaNGhEREUFKSgq33HILS5cu5cCBAzzcujWlr+zB1WwtEREpAHWHuaqiPANyLtPMTZUq7Nq1iw8++IAFCxbYruXl4eFBnz59GDNmDK1atfp3O83WEhERO1EIciaFdF2tQr+mWTbBJdrNjUUrV/Lxww+zZ88e2/Jq1aoRHh7O0KFDCQ4OzrovzdYSERE70ewwZ2Hn62oV9RmQzfvvExkeztf/XM/rl8se8/LyokePHgwePJhu3brhnnGCydxotpaIiEvR7DBXldOYmi5d8h8AcjsDsh3DhDGGv/76i40bN7Jhwwa+//57jlz2vBaLhXbt2nHffffRt29fypYtm78n0GwtERG5RgpBzsCewaUQxtQYYzh27BiRkZFERkayc+dOtm7dypEjRzKtV6pUKTp37kyPHj3o3r07QUFBBX5OERGRa6UQ5AzsGVwKMKbGGMOZM2eIjY0lNjaWmJgYDh48yJ9//snBgwc5ePAgZ8+ezbKdp6cnzZs3p23btrRr14527drh4+OT/5pFREQKgcYEOYuIiKzB5bIxQcYYUlJSSE5OJikpieTk5Ez/zrLs6FGSDx/mor8/8e7uxMfHEx8fT1xcXKZ/nzhxguPHj3Pp0qVcy3N3d6devXo0adKExo0b07RpU1q0aIGvr29hvzIiIuICCuP7WyHIwbVERUVx7Ngxjh49yrFjxzh79iznz58nPj6e8+fPc/78eRITE0lJSSHl4kVSEhJIAZJTU9OX/XO7Wkixh8DAQIKDgwkJCaFWrVrUqlWLmjVr2v6twCMiIoVFA6OLSiGcQyc2NpaffvqJzZs3s2vXLvbt25dlzIw9eXp64uPjg7e3t+3n5f/O+Onr64u/vz8BAQH4+/tn/veWLVR8+22CjaGSxYL3tGmFO5VeRESkCKkl6Ep2mopujGH79u18+eWXLF++nL1792a7Xvny5alcuTKVK1cmJCSE8uXLU6ZMGfz9/SlTpgxlypTB19cXb29vvLy88PLyyvTvK2/e3t54nzyJ259/XluIc9BUehERkeyoJaiw2WEq+smTJ1mwYAFz587l4GWXcrBYLDRo0IDWrVvTtGlTrr/+eq6//nrKlStn32Ow1/mE8jMjrSjPPi0iImInrhuCjhyBK5PkNUxFj4qKYurUqSxYsICUlBQA/Pz86N69O71796Zr1672DzxXsuf5hPI6I62ozz4tIiJiJy57AdVDN9yQ9UrmGV/8l7vKVPRjx44xfPhwateuzdy5c0lJSaFZs2a89957xMbGsnjxYgYMGFD4AQhyD3H5lTGVPuPszdlNpc/jhVFFRESKI5cNQfMh6xd2Xr74/3Hp0iVee+016tSpQ0REBKmpqXTq1ImNGzeyfft2hg8fTunSpYvkWGwKEOJyNWxY+higdevSf17ZwmPP0CUiIlLEXDYERQCns/vCvtoXP7B27VoaNWrEk08+yYULF2jRogU//fQTq1evpk2bNkVRfvbyEeLytc/27bPfh71Dl4iISBFy2RB0AZhqsWT/hZ3DF//hw4fp378/t99+O/v27aNChQpERESwefNmWrVqdW0FxcSkB69r7UrKQ4izm8IIXSIiIkXEZafIA7i7ubH1559p1qxZrtskJiYyY8YMXn75ZS5evIibmxujRo1i8uTJ9hnr4+yDi3VFdxERKWQ6Y7QdZLyId3XtyhcrVxIaGspPP/1EtWrVsqxrtVr5/PPPefrpp4mKigLg1ltvZebMmTRq1Mg+Bel8PCIiIldVGCHIZbvDZsyZw/XXX09MTAzNmzdn0aJFJCYmYowhOjqat99+mxtuuIH+/fsTFRVFaGgoixYtYuPGjfYLQKDBxSIiIg7ilCFo1qxZ1KhRAx8fH5o2bcqPP/6Y732UK1eOVatW0bBhQ44fP869995L6dKl8fHxoXr16jz66KPs37+fgIAAJkyYwO+//86AAQOwWCz2PRgNLhYREXEIpwtBixcvZsyYMTz77LNERkbSpk0bunXrxt9//53vfVWtWpUtW7YwefJkqlSpgtVqJSUlBTc3N1q1asUbb7zB4cOHmThxIn5+foVwNGhwsYiIiIM43ZigFi1acNNNNzF79mzbsuuvv57evXszderUq26fU5+iMYbjx4+TlJRE5cqV8fLyKpT6c6TBxSIiIjly+WuHpaSk8MsvvzBu3LhMyzt37szmzZuz3SY5OZnk5GTb/fj4+GzXs1gsBAcH26/Y/AoNVfgREREpQk7VHXbq1CnS0tIICgrKtDwoKIjY2Nhst5k6dSoBAQG2W9WqVYuiVBERESnmnCoEZbhycLIxJscBy+PHjycuLs52O3z4cFGUKCIiIsWcU3WHVahQAXd39yytPidOnMjSOpTB29sbb2/voihPREREnIhTtQR5eXnRtGlT1qxZk2n5mjVrrv2yFSIiIuJSnKolCOCJJ57g/vvvp1mzZrRs2ZK5c+fy999/8+CDDzq6NBEREXEiTheC7r77bk6fPs3kyZM5duwYN954I99++y1hYWGOLk1ERESciNOdJ+haFcZ5BkRERKRw6dphIiIiInaiEHQtYmJg3br0nyIiIuJUFIIKKiICwsKgY8f0nxERjq5IRERE8kEhqCBiYmDkSLBa0+9brRAerhYhERERJ6IQVBAHDvwbgDKkpaVfAFVEREScgkJQQdSuDW5XvHTu7ulXgBcRERGnoBBUEKGhMHduevCB9J/vvqurwIuIiDgRpztZYrExbBh06ZLeBVarlgKQiIiIk1EIuhahoQo/IiIiTkrdYSIiIuKSFIJERETEJSkEiYiIiEtSCBIRERGXpBAkIiIiLkkhSERERFySQpCIiIi4JIUgERERcUkKQSIiIuKSFIJERETEJSkEiYiIiEtSCBIRERGXpBAkIiIiLkkhSERERFySQpCIiIi4JIUgERERcUkKQSIiIuKSFIJERETEJSkEiYiIiEtSCBIRERGXpBAkIiIiLkkhSERERFySQpCIiIi4JIUgERERcUkKQSIiIuKSFIJERETEJSkEiYiIiEtSCBIRERGXpBAkIiIiLkkhSERERFySQpCIiIi4JIUgERERcUlOFYKqV6+OxWLJdBs3bpyjyxIREREn5OHoAvJr8uTJjBgxwna/dOnSDqxGREREnJXThaAyZcoQHBzs6DJERETEyTlVdxjAK6+8Qvny5WncuDEvvfQSKSkpji5JREREnJBTtQQ99thj3HTTTZQrV45t27Yxfvx4Dh06xPvvv5/jNsnJySQnJ9vux8XFARAfH1/o9YqIiIh9ZHxvG2Pst1PjYBMmTDBArrft27dnu+3SpUsNYE6dOnVN+9dNN91000033Zzj9ueff9otg1iMsWekyr9Tp05x6tSpXNepXr06Pj4+WZYfOXKE0NBQtm7dSosWLbLd9sqWoHPnzhEWFsbff/9NQEDAtRXvROLj46latSqHDx/G39/f0eUUGR23jtsV6Lh13K4gLi6OatWqcfbsWcqWLWuXfTq8O6xChQpUqFChQNtGRkYCEBISkuM63t7eeHt7Z1keEBDgUr88Gfz9/XXcLkTH7Vp03K7FVY/bzc1+w5kdHoLyasuWLWzdupUOHToQEBDA9u3befzxx+nZsyfVqlVzdHkiIiLiZJwmBHl7e7N48WImTZpEcnIyYWFhjBgxgqefftrRpYmIiIgTcpoQdNNNN7F169Zr3o+3tzcTJkzItousJNNx67hdgY5bx+0KdNz2O26HD4wWERERcQSnO1miiIiIiD0oBImIiIhLUggSERERl6QQJCIiIi6pRIagWbNmUaNGDXx8fGjatCk//vhjrutv2LCBpk2b4uPjw3XXXcecOXOKqFL7ys9xf/HFF3Tq1ImKFSvi7+9Py5YtWbVqVRFWaz/5fb8z/PTTT3h4eNC4cePCLbCQ5Pe4k5OTefbZZwkLC8Pb25uaNWsyb968IqrWfvJ73B9//DGNGjWiVKlShISEMGTIEE6fPl1E1V67jRs30qNHDypXrozFYmH58uVX3aYkfKbl97hLymdaQd7vDM78mVaQ47bHZ1qJC0GLFy9mzJgxPPvss0RGRtKmTRu6devG33//ne36hw4d4o477qBNmzZERkbyzDPP8Oijj/L5558XceXXJr/HvXHjRjp16sS3337LL7/8QocOHejRo4ftLNzOIr/HnSEuLo4HHniA2267rYgqta+CHHf//v1Zu3YtERER7N+/n08++YR69eoVYdXXLr/HvWnTJh544AGGDRvGnj17WLJkCdu3b2f48OFFXHnBJSQk0KhRI2bOnJmn9UvKZ1p+j7ukfKbl97gzOPtnWkGO2y6faXa7Clkx0bx5c/Pggw9mWlavXj0zbty4bNd/+umnTb169TItCw8PN7fcckuh1VgY8nvc2bnhhhvMpEmT7F1aoSrocd99993mueeeMxMmTDCNGjUqxAoLR36P+7vvvjMBAQHm9OnTRVFeocnvcU+fPt1cd911mZa99dZbJjQ0tNBqLEyAWbZsWa7rlJTPtMvl5biz44yfaZfLz3E7+2fa5fJy3Pb6TCtRLUEpKSn88ssvdO7cOdPyzp07s3nz5my32bJlS5b1u3Tpwo4dO7h06VKh1WpPBTnuK1mtVs6fP09gYGBhlFgoCnrc8+fP588//2TChAmFXWKhKMhxf/XVVzRr1oxp06ZRpUoV6tSpw5NPPkliYmJRlGwXBTnuVq1aERMTw7fffosxhuPHj7N06VK6d+9eFCU7REn4TLMHZ/xMKyhn/0wrCHt9pjnNGaPz4tSpU6SlpREUFJRpeVBQELGxsdluExsbm+36qampnDp1KteLsxYXBTnuK7322mskJCTQv3//wiixUBTkuA8cOMC4ceP48ccf8fBwzl//ghz3X3/9xaZNm/Dx8WHZsmWcOnWKUaNGcebMGacZF1SQ427VqhUff/wxd999N0lJSaSmptKzZ0/efvvtoijZIUrCZ5o9OONnWkGUhM+0grDXZ1qJagnKYLFYMt03xmRZdrX1s1te3OX3uDN88sknTJw4kcWLF1OpUqXCKq/Q5PW409LSGDhwIJMmTaJOnTpFVV6hyc/7bbVasVgsfPzxxzRv3pw77riDGTNmsGDBAqdqDYL8HffevXt59NFHeeGFF/jll19YuXIlhw4d4sEHHyyKUh2mpHymFZSzf6blVUn7TMsPe32mlajYWKFCBdzd3bP8r/DEiRNZ/meUITg4ONv1PTw8KF++fKHVak8FOe4MixcvZtiwYSxZsoTbb7+9MMu0u/we9/nz59mxYweRkZE8/PDDQPofkjEGDw8PVq9eTceOHYuk9mtRkPc7JCSEKlWqEBAQYFt2/fXXY4whJiaG2rVrF2rN9lCQ4546dSqtW7fmqaeeAqBhw4b4+fnRpk0bpkyZUiJbRUrCZ9q1cObPtPwqKZ9pBWGvz7QS1RLk5eVF06ZNWbNmTabla9asoVWrVtlu07Jlyyzrr169mmbNmuHp6VlotdpTQY4b0v+3NHjwYBYtWuSUYyTye9z+/v7s3r2bnTt32m4PPvggdevWZefOnbRo0aKoSr8mBXm/W7duzdGjR7lw4YJt2R9//IGbmxuhoaGFWq+9FOS4L168iJtb5o85d3d34N/WkZKmJHymFZSzf6blV0n5TCsIu32mXdOw6mLo008/NZ6eniYiIsLs3bvXjBkzxvj5+ZmoqChjjDHjxo0z999/v239v/76y5QqVco8/vjjZu/evSYiIsJ4enqapUuXOuoQCiS/x71o0SLj4eFh3nnnHXPs2DHb7dy5c446hALJ73FfyVlnUuT3uM+fP29CQ0NNv379zJ49e8yGDRtM7dq1zfDhwx11CAWS3+OeP3++8fDwMLNmzTJ//vmn2bRpk2nWrJlp3ry5ow4h386fP28iIyNNZGSkAcyMGTNMZGSkiY6ONsaU3M+0/B53SflMy+9xX8lZP9Pye9z2+kwrcSHIGGPeeecdExYWZry8vMxNN91kNmzYYHts0KBBpl27dpnWX79+vWnSpInx8vIy1atXN7Nnzy7iiu0jP8fdrl07A2S5DRo0qOgLv0b5fb8v56wfGMbk/7j37dtnbr/9duPr62tCQ0PNE088YS5evFjEVV+7/B73W2+9ZW644Qbj6+trQkJCzL333mtiYmKKuOqCW7duXa5/qyX1My2/x11SPtMK8n5fzlk/0wpy3Pb4TLMYU0LbhEVERERyUaLGBImIiIjklUKQiIiIuCSFIBEREXFJCkEiIiLikhSCRERExCUpBImIiIhLUggSERERl6QQJCIiIi5JIUhERERckkKQiIiIuCSFIBEpESZPnkyDBg3w8/MjKCiIhx56iEuXLjm6LBEpxjwcXYCIyLUyxpCWlsa7775LlSpV2Lt3Lw888AANGzbkoYcecnR5IlJM6QKqIlIiDRw4kIoVK/Lmm286uhQRKabUHSYiTi86OpqHH36YG2+8kXLlylG6dGk+++wzQkNDHV2aiBRjCkEi4tROnTpF8+bNOXXqFDNmzGDTpk1s2bIFd3d3Gjdu7OjyRKQY05ggEXFq3377LampqXzyySdYLBYA3nnnHVJSUhSCRCRXCkEi4tQCAwOJj4/nq6++4oYbbuDrr79m6tSpVKlShYoVKzq6PBEpxjQwWkScmjGGhx56iEWLFuHr68t9991HUlIS0dHRrFixwtHliUgxphAkIiIiLkkDo0VERMQlKQSJiIiIS1IIEhEREZekECQiIiIuSSFIREREXJJCkIiIiLgkhSARERFxSQpBIiIi4pIUgkRERMQlKQSJiIiIS1IIEhEREZekECQiIiIu6f8BrO/tpOBhns0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdD0lEQVR4nO3deVxU1f/H8dewKwqKKKAobqiZZe6mmcs3U9wt0zRLzdytzG+5ZN9cfhWttppLki2uWZqZS1kuZWq5tpiZmqiYSG4gqCBwfn8gkwgiy8AwzPv5eNwHzp17L587ozNvzzn3XIsxxiAiIiLiZFzsXYCIiIiIPSgEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiV21adOGNm3a2LuMPBs4cCClSpXK0bZVq1Zl4MCBBVqPxWJhypQpBfo7buTChQtMmTKFjRs32rUOR/Htt9/SuHFjvL29sVgsfP7553zwwQdYLBYiIyOt2y1cuJA33nijQGp45plnqFKlCm5ubpQpUybX+w8cOJCqVavavK6i5pFHHqFevXqUKVOGEiVKUKtWLZ566ilOnTqV7X5z587FYrHk+LNCCo+bvQsQ5/buu+/au4RCs3z5cnx8fOxdRoG7cOECU6dOBXDogFsYjDH07t2bWrVq8cUXX+Dt7U3t2rVJTk5m69atBAUFWbdduHAhv/32G2PGjLFpDStWrOD5559n0qRJhIWF4enpadPjFycJCQkMHTqUmjVr4uXlxY4dO3j++edZvXo1u3fvxsPDI9M+x48f58knn6RixYrExsbaoWrJjkKQ2FXdunXtXUKhadCggb1LEBu6ePEiXl5eWCyWPB/j77//5syZM/Ts2ZP//Oc/GZ4rX758fkvMkd9++w2Axx57jAoVKhTK77QVW7wHubFo0aIMj9u1a0fp0qUZOXIkmzdvpl27dpn2GT58OHfeeSd+fn58+umnhVKn5Jy6wyTHpkyZgsViYe/evfTt2xdfX18CAgJ4+OGHM/0P59KlS0ycOJFq1arh4eFBpUqVGDVqFOfOncuwXVbdYTNnzqR+/fqUKlWK0qVLU6dOHZ5++mkAIiMjcXNzIzw8PFN93333HRaLhaVLl2Z7HufOneO///0v1atXx9PTkwoVKtCpUyf++OMPADZu3IjFYsnUnRMZGYnFYuGDDz7IdMy9e/fyn//8B29vb8qXL8/o0aO5cOFChm2y6g67US22EB0dzbBhwwgODsbDw4Nq1aoxdepUkpOTM2w3depUmjVrhp+fHz4+PjRs2JCIiAiuvcfy+vXradOmDeXKlaNEiRJUqVKFe++9lwsXLhAZGWn98p46dSoWiwWLxXLDbsALFy7w5JNPUq1aNby8vPDz86Nx48aZvnQ++OADateujaenJzfddBMfffRRpq6Y3Lx/O3bs4P7776dq1aqUKFGCqlWr0rdvX44cOZLp91osFr7++msefvhhypcvT8mSJUlMTARgyZIl3H777Xh7e1OqVCk6dOjA7t27sz3nKVOmEBwcDMD48eOxWCzW87i2O6xNmzasWrWKI0eOWF/TG33xp6am8vLLL1OnTh3r362HHnqIqKgo6zZVq1blmWeeASAgICBH3alZvQdZSUpK4rnnnrP+/vLlyzNo0CD++eefDNslJiby3//+l8DAQEqWLMmdd97Jzp07M/17sdV7sGPHDrp164afnx9eXl40aNCATz75JNtzzk7633c3t8xtCvPnz2fTpk1O1eLtaNQSJLl277330qdPHwYPHsyvv/7KxIkTAXj//feBtCb+Hj168O233zJx4kRatWrFL7/8wuTJk9m6dStbt269bpP74sWLGTlyJI8++iivvvoqLi4uHDx4kN9//x1I+9Du1q0bs2bNYty4cbi6ulr3feedd6hYsSI9e/a8bu3nz5/njjvuIDIykvHjx9OsWTPi4+P57rvvOHHiBHXq1Mn163H58mU6derEsGHDmDBhAlu2bOG5557jyJEjrFy5Mt+1DBw4kA8//JDDhw/netxFdHQ0TZs2xcXFhWeffZYaNWqwdetWnnvuOSIjI5k3b55128jISIYNG0aVKlUA2LZtG48++ijHjx/n2WeftW7TuXNnWrVqxfvvv0+ZMmU4fvw4a9euJSkpiaCgINauXUvHjh0ZPHgwjzzyCHDjVo2xY8fy8ccf89xzz9GgQQMSEhL47bffOH36tHWbDz74gEGDBtG9e3dee+01YmNjmTJlComJibi45O3/c5GRkdSuXZv7778fPz8/Tpw4wcyZM2nSpAm///47/v7+GbZ/+OGH6dy5Mx9//DEJCQm4u7vzwgsv8MwzzzBo0CCeeeYZkpKSeOWVV2jVqhU//fTTdVs7H3nkEerXr88999zDo48+Sr9+/a777+Ldd99l6NChHDp0iOXLl+fo3EaMGMGcOXMYPXo0Xbp0ITIykv/9739s3LiRXbt24e/vz/Lly5kxYwYRERGsXbsWX19fazDLSk7fg9TUVLp3787333/PuHHjaNGiBUeOHGHy5Mm0adOGHTt2UKJECQAGDRrEkiVLGDduHO3ateP333+nZ8+exMXFZVlDft6DDRs20LFjR5o1a8asWbPw9fVl8eLF9OnThwsXLuR4zF5ycjKJiYns2bOH//3vf9xxxx20bNkywzYxMTGMGTOGF198MdvXVOzMiOTQ5MmTDWBefvnlDOtHjhxpvLy8TGpqqjHGmLVr12a53ZIlSwxg5syZY13XunVr07p1a+vj0aNHmzJlymRbx4YNGwxgli9fbl13/Phx4+bmZqZOnZrtvtOmTTOAWbdu3Q2Pv2HDhgzrDx8+bAAzb94867oBAwYYwLz55psZtn3++ecNYDZv3mxdFxISYgYMGJCrWowx5uGHHzaurq4mMjIy2+2MMQYwkydPtj4eNmyYKVWqlDly5EiG7V599VUDmL1792Z5nJSUFHP58mUzbdo0U65cOet7++mnnxrA7Nmz57o1/PPPP5nquJF69eqZHj16XPf5lJQUU7FiRdOwYUNrLcYYExkZadzd3U1ISIh1XW7ev2slJyeb+Ph44+3tneE9nTdvngHMQw89lGH7o0ePGjc3N/Poo49mWH/+/HkTGBhoevfunc1Z/1vTK6+8kmF9+u87fPiwdV3nzp0znGd29u3bZwAzcuTIDOt//PFHA5inn37aui793/U///yT7TFz8x4sWrTIAOazzz7LcIzt27cbwLz77rvGGGP27t1rADN+/PgM26Xvf/W/F1u8B3Xq1DENGjQwly9fzrBtly5dTFBQkElJScn2NTDGmK1btxrAunTq1MnExcVl2u7ee+81LVq0sL5WAwYMMN7e3jc8vhQudYdJrnXr1i3D41tvvZVLly4RExMDpHWXAJn+V3Xffffh7e3Nt99+e91jN23alHPnztG3b19WrFiR5VUXbdq0oX79+syYMcO6btasWVgsFoYOHZpt7WvWrKFWrVrcdddd2W6XWw888ECGx/369QPS/ueZ31oiIiJITk4mJCQk13V9+eWXtG3blooVK5KcnGxdwsLCANi0aZN12/Xr13PXXXfh6+uLq6sr7u7uPPvss5w+fdr63t522214eHgwdOhQPvzwQ/76669c1XN1DcnJydautqZNm7JmzRomTJjAxo0buXjxYob99u/fz99//02/fv0ydAOFhITQokWLXL8u6eLj4xk/fjw1a9bEzc0NNzc3SpUqRUJCAvv27cu0/b333pvh8VdffUVycjIPPfRQhvPy8vKidevWdrtCLv3v3bX/Bps2bcpNN92U7b/B68nNe/Dll19SpkwZunbtmuF1ue222wgMDLS+Lul//3r37p1h/169emXZvQR5fw8OHjzIH3/8Yf23evW2nTp14sSJE+zfv/+Gr8Mtt9zC9u3b2bRpE2+++Sa7d++mffv2Gbq/P/vsM1auXMl7771XaOOVJG8UgiTXypUrl+FxehN++hfX6dOncXNzy9QFYrFYCAwMzNDFca0HH3yQ999/nyNHjnDvvfdSoUIFmjVrxrp16zJs99hjj/Htt9+yf/9+Ll++zHvvvUevXr0IDAzMtvZ//vnH5k3Tbm5umV6T9DqyO9eCqOVaJ0+eZOXKlbi7u2dYbr75ZgBryPzpp5+4++67AXjvvff44Ycf2L59O5MmTQL+fW9r1KjBN998Q4UKFRg1ahQ1atSgRo0avPnmmzesJTIyMlMd6V+Cb731FuPHj+fzzz+nbdu2+Pn50aNHDw4cOAD8+zpm9f7e6D3PTr9+/XjnnXd45JFH+Oqrr/jpp5/Yvn075cuXzxTEgAxXa0Ha6wvQpEmTTOe2ZMmSG146XVDSX69r6wWoWLFitn8vb3TMnLwHJ0+e5Ny5c3h4eGR6XaKjo62vS/oxAwICMuyf1b+pdHl9D9K3e/LJJzNtN3LkSIAcvV/e3t40btyYO++8k8cee4zly5fz448/Mnv2bCAtWI8aNYpHH32UihUrcu7cOc6dO0dSUhKQNg4wISHhhr9HCofGBInNlStXjuTkZP75558MQcgYQ3R0NE2aNMl2/0GDBjFo0CASEhL47rvvmDx5Ml26dOHPP/+0tob069eP8ePHM2PGDJo3b050dDSjRo26YW3ly5fPMDA0K15eXgDWAZfprvcBmZyczOnTpzN8aEdHRwOZA2Nua8kvf39/br31Vp5//vksn69YsSKQNhbL3d2dL7/80nr+AJ9//nmmfVq1akWrVq1ISUlhx44dvP3224wZM4aAgADuv//+69ZSsWJFtm/fnmFd7dq1gbQvlqlTpzJ16lROnjxpbRXq2rUrf/zxh/V1TH9dr3btupy+f7GxsXz55ZdMnjyZCRMmWNcnJiZy5syZLM/h2v/Vp48Z+vTTT/PUUldQ0l+vEydOZAraf//9d6axTrk5Zk7eA39/f8qVK8fatWuzPFbp0qUzHPPkyZNUqlTJ+nz6v6ms5PU9SN9u4sSJ3HPPPVluk/73MTcaN26Mi4sLf/75J5D29+zkyZO89tprvPbaa5m2L1u2LN27d8/y35YUPoUgsbn//Oc/vPzyy8yfP58nnnjCuv6zzz4jISEh06XA1+Pt7U1YWBhJSUn06NGDvXv3Wj/kvLy8GDp0KO+88w5btmzhtttuyzQwMSthYWE8++yzrF+/PsvLWQHr4ONffvmFDh06WNd/8cUX1z3uggULeOyxx6yPFy5cCGQ/T05OasmvLl26sHr1amrUqEHZsmWvu53FYsHNzS3DQPOLFy/y8ccfX3cfV1dXmjVrRp06dViwYAG7du3i/vvvz9QymM7Dw4PGjRvfsOaAgAAGDhzIzz//zBtvvMGFCxeoXbs2QUFBLFq0iLFjx1q/CI8cOcKWLVusYQ5y/v5ZLBaMMZkGI8+dO5eUlJQb1gnQoUMH3NzcOHToUKZuGlvz9PTMsnUqK+l/n+bPn5/hPx3bt29n37591ha+3MjNe9ClSxcWL15MSkoKzZo1u+4x77zzTiDtyq6GDRta13/66aeZrl68npy+B7Vr1yY0NJSff/6ZF154IUfHzolNmzaRmppKzZo1gbRWsay6wV988UU2bdrEmjVr8hRCpWAoBInNtW/fng4dOjB+/Hji4uJo2bKl9eqwBg0a8OCDD1533yFDhlCiRAlatmxJUFAQ0dHRhIeH4+vrm6kFaeTIkbz88svs3LmTuXPn5qi2MWPGsGTJErp3786ECRNo2rQpFy9eZNOmTXTp0oW2bdsSGBjIXXfdRXh4OGXLliUkJIRvv/2WZcuWZXlMDw8PXnvtNeLj42nSpIn16rCwsDDuuOOOfNUCMHjwYD788EMOHTqU69aGadOmsW7dOlq0aMFjjz1G7dq1uXTpEpGRkaxevZpZs2YRHBxM586dmT59Ov369WPo0KGcPn2aV199NVNAmDVrFuvXr6dz585UqVKFS5cuWa8KTB/bVLp0aUJCQlixYgX/+c9/8PPzw9/fP9sr25o1a0aXLl249dZbKVu2LPv27ePjjz/m9ttvp2TJkgD83//9H4888gg9e/ZkyJAhnDt3jilTpmTqisnp++fj48Odd97JK6+8Yq1v06ZNRERE5HjW5KpVqzJt2jQmTZrEX3/9RceOHSlbtiwnT57kp59+srZw2cItt9zCsmXLmDlzJo0aNcLFxeW6obJ27doMHTqUt99+GxcXF8LCwqxXh1WuXDnDf05yysXFJcfvwf3338+CBQvo1KkTjz/+OE2bNsXd3Z2oqCg2bNhA9+7d6dmzJzfffDN9+/bltddew9XVlXbt2rF3715ee+01fH19c3TVX27eg9mzZxMWFkaHDh0YOHAglSpV4syZM+zbt49du3ZlO73Gl19+yXvvvUe3bt0ICQnh8uXL7NixgzfeeIOaNWtar4T08vLK8j8/H3zwAa6urppAtKix88BscSDXu4okqytZLl68aMaPH29CQkKMu7u7CQoKMiNGjDBnz57NsO+1V4d9+OGHpm3btiYgIMB4eHiYihUrmt69e5tffvkly5ratGlj/Pz8zIULF3J8HmfPnjWPP/64qVKlinF3dzcVKlQwnTt3Nn/88Yd1mxMnTphevXoZPz8/4+vra/r372927NiR5dVh3t7e5pdffjFt2rQxJUqUMH5+fmbEiBEmPj4+w++99uqwnNaSfgXa1a/v9ZDFVVn//POPeeyxx0y1atWMu7u78fPzM40aNTKTJk3KUOP7779vateubTw9PU316tVNeHi4iYiIyPC7t27danr27GlCQkKMp6enKVeunGndurX54osvMvzOb775xjRo0MB4enpmusonKxMmTDCNGzc2ZcuWtf7+J554wpw6dSrDdnPnzjWhoaHGw8PD1KpVy7z//vtmwIABma6ayun7FxUVZe69915TtmxZU7p0adOxY0fz22+/ZXqv0v+Ob9++Pcv6P//8c9O2bVvj4+NjPD09TUhIiOnVq5f55ptvsj3v3FwddubMGdOrVy9TpkwZY7FYzI0+vlNSUsxLL71katWqZdzd3Y2/v7/p37+/OXbsWIbtcnp1WLqcvgeXL182r776qqlfv77x8vIypUqVMnXq1DHDhg0zBw4csG536dIlM3bsWFOhQgXj5eVlmjdvbrZu3Wp8fX3NE088kek1ye978PPPP5vevXubChUqGHd3dxMYGGjatWtnZs2ale1579u3z/Tq1cuEhIQYLy8v4+XlZerUqWOeeuopc/r06Ru+bro6rGiyGHPNTGgiDiImJoaQkBAeffRRXn75ZXuXI3YycOBANm7cmOE+W+LYtmzZQsuWLVmwYIH1SkuRgqDuMHE4UVFR/PXXX7zyyiu4uLjw+OOP27skEcmjdevWsXXrVho1akSJEiX4+eefefHFFwkNDb3uAGYRW1EIEoczd+5cpk2bRtWqVVmwYEGGq0pExLH4+Pjw9ddf88Ybb3D+/Hn8/f0JCwsjPDw8w5WKIgVB3WEiIiLilIrMZIkzZ87k1ltvxcfHBx8fH26//XbWrFljfd4Yw5QpU6hYsSIlSpSgTZs27N27144Vi4iIiCMrMiEoODiYF198kR07drBjxw7atWtH9+7drUHn5ZdfZvr06bzzzjts376dwMBA2rdvz/nz5+1cuYiIiDiiIt0d5ufnxyuvvMLDDz9MxYoVGTNmDOPHjwfSZnUNCAjgpZdeYtiwYXauVERERBxNkRwYnZKSwtKlS0lISOD222/n8OHDREdHW+9tBGmzp7Zu3ZotW7ZkG4ISExMzTJ+fmprKmTNnKFeunG5sJyIi4iCMMZw/f56KFSvmaCLNnChSIejXX3/l9ttv59KlS5QqVYrly5dTt25dtmzZAmS+yV5AQABHjhzJ9pjh4eE2m7FVRERE7OvYsWM2u/l0kQpBtWvXZs+ePZw7d47PPvuMAQMGWO8yDZlvnGeMuWFrzsSJExk7dqz1cWxsLFWqVOHYsWP4+PjY9gRERESkQMTFxVG5cmXrDXhtoUiFIA8PD+tN6Bo3bsz27dt58803reOAoqOjCQoKsm4fExOTqXXoWp6enpnufwRYr0ITERERx2HLoSxF5uqwrBhjSExMpFq1agQGBrJu3Trrc0lJSWzatIkWLVrYsUIRERFxVEWmJejpp58mLCyMypUrc/78eRYvXszGjRtZu3YtFouFMWPG8MILLxAaGkpoaCgvvPACJUuW1H1lREREJE+KTAg6efIkDz74ICdOnMDX15dbb72VtWvX0r59ewDGjRvHxYsXGTlyJGfPnqVZs2Z8/fXXNu0bFBEREedRpOcJKghxcXH4+voSGxurMUEiIiIOoiC+v4v0mCARERGRgqIQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk6pyISg8PBwmjRpQunSpalQoQI9evRg//79GbYZOHAgFoslw9K8eXM7VSwiIiKOrMiEoE2bNjFq1Ci2bdvGunXrSE5O5u677yYhISHDdh07duTEiRPWZfXq1XaqWERERByZm70LSLd27doMj+fNm0eFChXYuXMnd955p3W9p6cngYGBhV2eiIiIFDNFpiXoWrGxsQD4+fllWL9x40YqVKhArVq1GDJkCDExMdkeJzExkbi4uAyLiIiIQEpKyg2/R4uzIhmCjDGMHTuWO+64g3r16lnXh4WFsWDBAtavX89rr73G9u3badeuHYmJidc9Vnh4OL6+vtalcuXKhXEKIiIiRVpkZCShoaEEBATwxBNP2Lscu7AYY4y9i7jWqFGjWLVqFZs3byY4OPi62504cYKQkBAWL17MPffck+U2iYmJGUJSXFwclStXJjY2Fh8fH5vXLiIi4gi6dOnCqlWrrI9/+OEHWrRoYceKshcXF4evr69Nv7+LXEvQo48+yhdffMGGDRuyDUAAQUFBhISEcODAgetu4+npiY+PT4ZFRETEme3bt49Vq1bh4uLCHXfcAcDsqVMhKsrOlRWuIhOCjDGMHj2aZcuWsX79eqpVq3bDfU6fPs2xY8cICgoqhApFRESKh6VLlwJpw0yeu/12AL78+mtSqlSBiAh7llaoikwIGjVqFPPnz2fhwoWULl2a6OhooqOjuXjxIgDx8fE8+eSTbN26lcjISDZu3EjXrl3x9/enZ8+edq5eRETEcaxYsQKAe9q0oeWrr1IKOAPsNQaGDXOaFqEiE4JmzpxJbGwsbdq0ISgoyLosWbIEAFdXV3799Ve6d+9OrVq1GDBgALVq1WLr1q2ULl3aztWLiIg4hmPHjrFr1y4sFgtdqlfHzRjSpx3eApCSAgcP2rHCwlNk5gm60fjsEiVK8NVXXxVSNSIiIsXT+vXrAWjatCkVmjYFFxeapKbyDbAHwNUVata0Y4WFp8i0BImIiEjB+/777wFo3bo1BAfDnDnUtVgA2Acwe3ba+qxERcGGDcWmu0whSERExImkh6BWrVqlrRg8mLpXLpXfV64cDB6c9Y4RERASAu3apf0sBgOoi+Q8QQWpIOYZEBERcQQxMTEEBARgsVg4ffo0ZcuWBSAhIYFSpUoB8M8//+Dv759xx6goNlWpQjdjuAXYDGndZpGR1281sjGnmCdIRERECsb27dsBuOmmm6wBCMDb25uQkBAgbQ6hTA4c4JIxxAHx6euKwQBqhSAREREnsWPHDgCaNGmS6bm6desC1wlBoaEkXRk35JG+rhgMoFYIEhERcRLpIahx48aZnqt5JdAcPnw4847BwVwePhy4EoJcXbMfQO0gFIJEREScgDEm2xBUpUoVAI4ePZrl/kl33gmA+223pY0Fut4AageiECQiIuIE/v77b6Kjo3F1daV+/fqZnr9hCEpKAsCjQgWHbwFKpxAkIiLiBNJbgW6++WZKlCiR6fn0EHTkyJEs9798+TIAHh4eWT7viBSCREREnEB2XWGA9eqw48ePk5ycnOn59JYgd3f3Aqqw8CkEiYiIOIFdu3YB0LBhwyyfDwgIwN3dndTUVI4fP57peWt3mFqCRERExJHcKAS5uLhQuXJlIOtxQeoOExEREYcTHR1NdHQ0FouFW2+99brbZTc4Wt1hIiIi4nB2794NQO3atfH29r7udhUrVgTgxIkTmZ5TS5CIiIg4nPQQ1KBBg2y3CwwMBODkyZOZntOYIBEREXE4NxoPlC49BEVHR2d6Tt1hIiIi4nBy2hIUEBAAZB2C1B0mIiIiDiU2Npa//voLyHl3mFqCRERExOHt2bMHSLvyy8/PL9ttNSZIREREio2cjgeCf0PQqVOnrN1f6dQdJiIiIg4lp+OBAMqVK4eLiwvGGP75558Mz6k7TERERBzK7p9+AqDBldmgs+Pq6kqFChWAzOOC1B0mIiIiDuPizJns278fgAaDB0NExA33ud64IHWHiYiIiGOIiuLXUaNIAcoDlYyBYcMgKirb3a53hZi6w0RERMQxHDjATmMAaABYAFJS4ODBbHe73lxBiYmJgFqCREREpKgLDeXHK39slr7O1RVq1sx2t+u1BKWHoBIlStiwSPtSCBIRESmOgoPZdiXQNIO0ADR7NgQHZ7vb9cYEXbp0CQAvLy+bl2ovbvYuQERERGzv7Nmz7L/SmtN0+XJo3PiGAQj+7Q679k7yCkEiIiLiELZv3w5A9erVKd+jR473Sw9B184TVBxDkLrDREREiqFt27YB0Lx581ztlz5PkDN0hykEiYiIFEPpIahZs2Y32DKj9JagM2fOZLh1hkKQiIiIFHnJycls3rwZgJYtW+ZqXz8/P1xc0uLBqVOnrOsVgkRERKTI27lzJ+fPn6dMmTLcdtttudrX1dUVf39/AGJiYgAwxigEiYiISNG3YcMGANq0aYOrq2uu908fF5Qegi5fvoy5MvGiQpCIiIgUWevXrwegbdu2edr/2sHR6a1AoBAkIiIiRVRSUhI//PADAO3atcvTMdIHR6e3BKXPFg3g6emZzwqLDoUgERGRYuT777/nwoULVKhQgZtvvjlPx7i2Oyy9JcjT0xOLxWKbQosAhSAREZFiZMWKFQB06dIlz4EluxBUnCgEiYiIFBPGGGsI6t69e56Pc70QVJzGA4FCkIiISLGxbds2jh49SsmSJbnrrrvyfJxrQ9CFCxeA4nUHeVAIEhERKTY++OADAHr16kXJkiXzfJz0gdHpV4clJCQAUKpUqfwVWMQUmRAUHh5OkyZNKF26NBUqVKBHjx7s378/wzbGGKZMmULFihUpUaIEbdq0Ye/evXaqWERExDYuXbrEN998wyuvvMJLL73E0qVLM93A9EbOnz/P4sWLARg4cGC+6rm6JcgYQ3x8PKAQVGA2bdrEqFGj2LZtG+vWrSM5OZm7777bmj4BXn75ZaZPn84777zD9u3bCQwMpH379pw/f96OlYuIiORQVBRs2JD2k7Rupueff56goCDat2/PuHHjmDBhAr179yYoKIgePXqwZ8+eHB169uzZxMXFUatWLVq3bp2vMtND0KVLl4iPj7eGIG9v73wdt8gxRVRMTIwBzKZNm4wxxqSmpprAwEDz4osvWre5dOmS8fX1NbNmzcrxcWNjYw1gYmNjbV6ziIjIdc2da4yLizFgjIuL2fd//2fq1atnAAOYihUrmj59+pj+/fub+nXrWtcDZtCgQebkyZMZj3fsmDHr1xtz7Jg5e/asqVChggFMRESETcotWbKkAczBgwfN7NmzDWC6detmk2PnRUF8fxeZlqBrxcbGAmk3cgM4fPgw0dHR3H333dZtPD09ad26NVu2bLFLjSIiIjkSFQVDh0JqKgDbUlNp/r//8dtvvxEQEMCCBQs4evQoixcv5uM2bdjzxx/sBfpc2X3evHnUqlWLt956i+TkZIiIgJAQaNcOU6UKT3btSkxMDLVq1aJ///42KfnqCRM1JqgQGWMYO3Ysd9xxB/Xq1QMgOjoa+PdNSRcQEGB9LiuJiYnExcVlWERERArVgQPWALQdaA/EAi1uvpk9e/bQr1+/tHt8XRWW6gKLgR9cXGhQrx6xsbE8/vjjNKhXj01DhkBqKsnAs8YQceWO8bNnz8bDw8MmJV996wyNCSpEo0eP5pdffmHRokWZnrt24idjTLaTQYWHh+Pr62tdKleubPN6RUREshUaCi4uHAW6AfFAW+DrZcsIDAz8d7urwlK6FqmpbH/jDWbNmoWfnx+/7d9PG2OoBgQCz13Z7pXhw2nTpo3NSr56cHRxHRNU5ELQo48+yhdffMGGDRsIDg62rk//S3Jtq09MTEym1qGrTZw4kdjYWOty7NixgilcRETkeoKDSXj7bboC0cAtwOdvv413rVoZt7sSljJwdcW1dm2GDRvGn3/+yfD+/XEFIoHTgB/wgcXCk5Mm2bTkrEKQWoIKiDGG0aNHs2zZMtavX0+1atUyPF+tWjUCAwNZt26ddV1SUhKbNm2iRYsW1z2up6cnPj4+GRYREZHCNvbnn/kFCChbli+3bcNn9OjMGwUHw5w54Oqa9tjVFWbPTlsPlCtXjpkff8ypt95io4sLW4ATLi4MeO896za24gwhyM3eBaQbNWoUCxcuZMWKFZQuXdra4uPr60uJEiWwWCyMGTOGF154gdDQUEJDQ3nhhRcoWbIk/fr1s3P1IiIi17ds2TLmzJmDxWJh4aefUqVZs+tvPHgwdOgABw9CzZpZhpsyjz5K6549s90mv9J7YE6cOJE2GBsoXbq0zX+PPRWZEDRz5kyATP2Z8+bNs076NG7cOC5evMjIkSM5e/YszZo14+uvvy52b4qIiBQfUVFRPPLII0Da91i7du1uvFNw8I2DTU62yYf0ISnHjx/HzS0tLpQrV67Afp89FJkQZIy54TYWi4UpU6YwZcqUgi9IREQkn4wxDB8+nLNnz9K4cWOmTZtm75JyrFKlSkBaiEvvBvP397dnSTZXZEKQiIhIcfPpp5+yatUq3N3d+eijj2x2+XphSG8J+vvvv/H19QWKXwgqMgOjRUREipNz587x2GOPAWlXKt900012rih3AgMDcXNzIyUlhTNnzgAKQSIiIpIDEydOJDo6mlq1ajFx4kR7l5Nrrq6uVK1aNcO64jYmSCFIRETExrZs2cKsWbOAtFmcvby87FxR3oSGhlr/7Ovri6enpx2rsT2FIBERERtKSkpi6NChAAwaNMimszgXtqtDUJ06dexYScFQCBIREbGhV199lb179+Lv788rr7xi73LypXnz5tY/161b146VFAxdHSYiImILUVEc3LjRehn866+/7vBjaO666y48PT1JTEykQ4cO9i7H5hSCRERE8isiAjNkCCOMIRG466abeOCBB+xdVb6VL1+eb7/9lri4ODp27GjvcmzOYnIyS2ExEhcXh6+vL7GxsbqPmIiI5F9UFISE8HFqKg8BXsCvLi7UPHKkQGd0djYF8f2tMUEiIiL5ceAAp1JTGXvl4bNAzdTUtPt6SZGmECQiIpIfoaE8BZwC6gFPQtrd32vWtGtZcmMKQSIiIvmw4cABPgAswBzA3dUVZs9WV5gD0MBoERGRPLp06RLDhg0DYPiDD3L7ww+ntQApADkEhSAREZE8euGFFzhw4ABBQUGEv/02XLnRqDgGdYeJiIjkwa5duwgPDwfgrbfest5pXRyHQpCIiEguJSYm8tBDD5GcnMx9993Hvffea++SJA8UgkRERHJp8uTJ7N27lwoVKvDuu+9isVjsXZLkgUKQiIhILmzZssV6T7DZs2fj7+9v54okrxSCREREcujs2bP069eP1NRUHnroIXr06GHvkiQfFIJERERywBjD4MGDOXLkCNWrV+ett96yd0mSTwpBIiIiOfDOO++wfPly3N3dWbJkia4GKwYUgkRERG5g+/btPPnkkwC8+uqrNG7c2M4ViS0oBImIiGTj+PHj9OjRg6SkJHr06MGjjz5q75LERhSCREREruPixYv06NGDv//+m7p16/Lhhx/qcvhiRCFIREQkC8YYHn74YXbs2EG5cuVYuXIlPj4+9i5LbEghSERE5BrGGJ588kkWL16Mm5sbn332GdWrV7d3WWJjCkEiIiLXCA8PZ/r06QDMnTuX1q1b27kiKQgKQSIiIleZNWsWkyZNAmD69OkM+M9/YMMGiIqyc2ViawpBIiJS/ERF5Sm4zJw5kxEjRgAwadIknvDxgZAQaNcu7WdEREFUK3aiECQiIsVLRESegsvrr7/OyJEjAXj88cf5v2HDYOhQSE1N2yA1FYYNU4tQMaIQJCIixUdUVO6Cy5UWoxfGj2fs2LEATJgwgddffx3LwYP/HiddSgocPFiAJyCFyc3eBYiIiNjMgQPXDy7BwRnXR0SQMmQIY40h/S5gU6dO5X//+1/aXEChoeDikvF4rq5Qs2aBnoIUHrUEiYhI8ZEeXK6WVXCJiiJhyBDuvSoAvWqx8OzDD/87GWJwMMyZk7Z/+nFmz84cpsRhKQSJiEjxkcPgcvLHH2lrDCsAT+AT4L/GZO7qGjwYIiPTBllHRqY9lmLDYowx9i6iMMXFxeHr60tsbKxm/hQRKa6iotICTc2amQLQzp07uad7d44eP0454AugBaQFpshItfQUUQXx/a0xQSIiUvwEB2cZZubNm8eIESNITEwkNCCA1f/8Q83UVHV1OSmFIBERKfYSExMZM2YMs2bNAqBbt2589NFH+J4/f90WIyn+FIJERKRYi4qKolevXvz4449YLBamTZvG008/jYuLC/j6Kvw4MYUgEREptjZu3EifPn2IiYmhbNmyLFiwgLCwMHuXJUWErg4TEZFixxjD66+/zl133UVMTAy33XYbO3bsUACSDBSCRESkWElISKBv376MHTuWlJQUHnzwQX744QeqV69u79KkiFF3mIiIFBsHDhzgnnvu4bfffsPNzY3XX3+dUaNG/TsBoshVilRL0HfffUfXrl2pWLEiFouFzz//PMPzAwcOxGKxZFiaN29un2JFRKRI+fLLL2nSpAm//fYbQUFBbNy4kdGjRysAyXUVqRCUkJBA/fr1eeedd667TceOHTlx4oR1Wb16dSFWKCIiRU1qaipTpkyha9euxMbG0rJlS3bu3EnLli3tXZoUcUWqOywsLOyGg9Y8PT0JDAwspIpERKQoO3fuHP3792fVqlUAjB49mtdeew0PDw87VyaOoEi1BOXExo0bqVChArVq1WLIkCHExMTYuyQREbGD3377jSZNmrBq1Sq8vLz48MMPefvttxWAJMeKVEvQjYSFhXHfffcREhLC4cOH+d///ke7du3YuXMnnp6eWe6TmJhIYmKi9XFcXFxhlSsiIgXkk08+YdCgQVy4cIGQkBCWLVtGw4YN7V2WOBiHCkF9+vSx/rlevXo0btyYkJAQVq1axT333JPlPuHh4UydOrWwShQRkQKUkpLCpEmTeOmllwC46667WLRoEf7+/nauTByRw3WHXS0oKIiQkBAOHDhw3W0mTpxIbGysdTl27FghVigiIrZy/vx57rnnHmsAGj9+PGvXrlUAkjxzqJaga50+fZpjx44RFBR03W08PT2v21UmIiKO4ciRI3Tr1o1ffvkFT09P5s2bR9++fe1dlji4IhWC4uPjOXjwoPXx4cOH2bNnD35+fvj5+TFlyhTuvfdegoKCiIyM5Omnn8bf35+ePXvasWoRESlIW7dupUePHsTExBAQEMCKFSto1qyZvcuSYqBIhaAdO3bQtm1b6+OxY8cCMGDAAGbOnMmvv/7KRx99xLlz5wgKCqJt27YsWbKE0qVL26tkEREpQPPnz2fw4MEkJSVRv359vvjiC6pUqWLvsqSYsBhjjL2LKExxcXH4+voSGxuLj4+PvcsREZEsGGOYPHky//d//wdA9+7dmT9/PqVKlYKoKDhwAEJDITjYzpVKYSmI72+HHhgtIiLFz+XLlxk0aJA1AE2YMIFly5alBaCICAgJgXbt0n5GRNi5WnFkagkSEZEiIy4ujl69erFu3TpcXV2ZNWsWjzzySNqTUVFpwSc19d8dXF0hMlItQk6gIL6/i9SYIBERcV5///03nTt3Zs+ePZQsWZKlS5fSqVOnfzc4cCBjAAJISYGDBxWCJE8UgkRExO727dtHx44dOXr0KBUqVGDVqlU0btw440ahoeDikrklqGbNwi1Wig2NCRIREbvavHkzLVu25OjRo4SGhrJ169bMAQjSWnvmzEkLPpD2c/ZstQJJnqklSERE7Gbt2rX07NmTS5cu0bx5c1auXJn9DNCDB0OHDmldYDVrKgBJvqglSERE7GLZsmV069aNS5cu0blzZ7796CP8f/01bQB0doKDoU0bBSDJN4UgEREpdPPnz6d3795cvnyZ++67j2Vdu1KyTh1d+i6FSt1hIiJS8K6a4HD2qlWMGDECYwwDBw5k7pQpuFav/u+A59RUGDYsrdtLrT1SgBSCRESkYEVEwNChkJrKaxYLT16Znm706NG8+eabuGzapEvfxS7UHSYiIgUnKgqGDsWkpjIVrAFowqhRvPXWW7i4uPx76fvVdOm7FAKFIBERKTgHDmBSU3kKmHJl1fNAeK9eWCyWtBW69F3sRN1hIiJSYFJr1GAUMOvK4zeAx7Nq5dGl72IHCkEiIlIgkpOTefiZZ/gYsADvAYOza+UJDlb4kUKlECQiInl31VVfVweYpKQk+vXrx2effYarqysfv/EGfevVUyuPFCkKQSIikjdXXfWFi0vauJ7Bg7l48SL33nsva9aswcPDg08++YTu3bvbu1qRTPI1MDomJobo6Ghb1SIiIo7iylVf187tc/6PPwgLC2PNmjWULFmSL7/8UgFIiqw8haBffvmFm2++maCgICpVqkSlSpV45plnSEhIsHV9IiJSFB04kGlun7MpKbS/5x42bdpE6dKl+eqrr2jfvr2dChS5sTyFoMGDBxMQEMDmzZvZvXs3zz33HGvWrKFx48acPXvW1jWKiEhRc83cPjFAW+DHffvw8/Nj/fr13HHHHXYrTyQnLMZcmbkqF7y9vdm5cyd16tSxrjPGcN999+Hl5cX8+fNtWqQtxcXF4evrS2xsLD4+PvYuR0Sk6LrOoGeriAgYNoyolBTuAvYDAQEBfPPNN9SrV6+wq5ViriC+v/PUEpRVi4/FYuGFF15gxYoVNilMRETsKCIi7Uam2d3QdPBg/tq0iVaBgewHKleuzPfff68AJA4jxyGoc+fOPP3003zyyScMHz6cJ554gpMnT2bYJjY2lrJly9q8SBERKUTXGfRMVFSGzfbt20er3r2JjI6mZs2afP/994SGhtqhYJG8yfEl8rfccgu7du1i3rx51vBTvXp1evfuzW233UZKSgrz5s3j9ddfL7BiRUSkEGQx6PnaG5ru2bOH9u3bc+rUKW6++WbWrVtHUFCQHYoVybs8jQk6efIku3fvZs+ePdbl4MGDuLq6Urt2bX755ZeCqNUmNCZIROQGoqLSusCuDkKurhAZCcHBbNu2jbCwMM6dO0fDhg356quv8Pf3t1u54hwK4vs7T5MlBgQE0LFjRzp27Ghdd/HiRX7++Wd+/vlnmxQmIiJ2kn5D02HD0lqArrrVxYYNG+jatSsJCQm0bNmSVatW4evra++KRfIkTy1BjkwtQSIiORQVleGGpqtWraJXr15cunSJu+66i88//xxvb297VylOosi0BImIiBO46oamS5YsoX///iQnJ9O1a1c++eQTvLy87FygSP7k67YZIiJS/M2dO5e+ffuSnJxsvSmqApAUBwpBIiJyXdOnT2fIkCEYYxg+fDgff/wx7u7u9i5LxCYUgkREJBNjDJMnT+a///0vAOPGjePdd9/FxUVfG1J8aEyQiIhkkJqaytixY3nzzTcBeP7555k4cSIWi8XOlYnYlkKQiIhYpaSkMHToUN5//30A3n77bUaPHm3nqkQKhkKQiIgAkJSURP/+/Vm6dCkuLi7MmzePhx56yN5liRQYhSARESE+Pp57772Xr7/+Gg8PDxYvXkzPnj3tXZZIgVIIEhFxcjExMXTu3JkdO3ZQsmRJli9fzt13323vskQKnEKQiIgTO3ToEB06dODQoUP4+/uzatUqmjZtau+yRAqFQpCIiJPatWsXYWFhxMTEUK1aNb766itCQ0PtXZZIodGEDyIiTuibb76hdevWxMTEcNttt7FlyxYFIHE6CkEiIk5m0aJFdOrUifj4eNq1a8emTZsIDAy0d1kihU4hSETEibz++uv069ePy5cv06dPH1avXm2zO3KLOBqFIBERJ5CamspTTz3F2LFjAXj88cdZuHAhnp6edq5MxH40MFpEpJi7fPkyDz/8MPPnzwfgpZde4qmnntJtMMTpFamWoO+++46uXbtSsWJFLBYLn3/+eYbnjTFMmTKFihUrUqJECdq0acPevXvtU6yIiAOIj4+na9euzJ8/H1dXVz788EPGjRunACRCEQtBCQkJ1K9fn3feeSfL519++WWmT5/OO++8w/bt2wkMDKR9+/acP3++kCsVESmioqJgwwaIiiImJoa2bdvy1VdfUbJkSVauXKnbYIhcpUh1h4WFhREWFpblc8YY3njjDSZNmsQ999wDwIcffkhAQAALFy5k2LBhhVmqiEjRExEBQ4dCaip/WSx0KF+egzExmgRR5DqKVEtQdg4fPkx0dHSGqdw9PT1p3bo1W7Zsue5+iYmJxMXFZVhERIqdqChrANoFtDCGgzExVK1cmR9++EEBSCQLDhOCoqOjAQgICMiwPiAgwPpcVsLDw/H19bUulStXLtA6RUTs4sABSE3lG6A1cBKoD2x5/XVq1apl39pEiiiHCUHprh3MZ4zJdoDfxIkTiY2NtS7Hjh0r6BJFRApfaCiLLRY6AfFAO2CTiwtBzZrZuTCRoqtIjQnKTvpsptHR0QQFBVnXx8TEZGodupqnp6fmwRCRYu+NTz/lCWMA6A185OKC55w5EBxs38JEijCHaQmqVq0agYGBrFu3zrouKSmJTZs20aJFCztWJiJiP8YYxo8fzxNPPAHAYw8/zKJvv8XzyBEYPNjO1YkUbUWqJSg+Pp6DBw9aHx8+fJg9e/bg5+dHlSpVGDNmDC+88AKhoaGEhobywgsvULJkSfr162fHqkVE7OPy5cs88sgjfPTRR0DaGMjx48drDiCRHCpSIWjHjh20bdvW+jh9evcBAwbwwQcfMG7cOC5evMjIkSM5e/YszZo14+uvv6Z06dL2KllExC4SEhK47777WLNmDa6ursydO5eBAwfmbOeoqLSB1KGh6i4Tp2Yx5konspOIi4vD19eX2NhY3TRQRBzSqVOn6Ny5Mz/99BMlSpRg6dKldO7cOWc7XzWXEC4uMGeOus3EIRTE97fDjAkSERGIjIykZcuW/PTTT/j5+bF+/fqcB6Cr5hIC0n4OG5a2XsQJKQSJiDiCqCh+njuX25s1488//6RKlSr88MMPNG/ePOfHuDKXUAYpKXDVWEwRZ1KkxgSJiEgWIiLYOGQI3Y0hDrilUiXWbt1KxYoVc3ec0NC0LrCrg5CrK9SsadNyRRyFWoJERIqyqCg+HTKEDlcC0J3AdydOUPHaFp2cCA5OGwPk6pr22NUVZs/W4GhxWmoJEhEpwt599VVGG4MB7gEWAF6pqWldWHkJL4MHQ4cOafvXrKkAJE5NIUhEpAgyxjBlyhSmvfkmAMOBdwBXyH8XVnCwwo8I6g4TESlyUlJSGDFiBNOmTQNgavfuvOvi8m8AUheWiE2oJUhEpKDkYVLCxMREHnjgAT777DMsFgvvvvsuw4cPTzuWurBEbEohSESkIORmUsIrYSkuMJAeo0axYcMGPDw8WLBgAb169UrbRl1YIjanGaNFRGwtKgpCQjJfih4ZmTnIXAlLJ1NTCQN2A6VKlWLFihW0a9euEIsWKdo0Y7SIiCPI6aSEV2ZwPpyayh2kBaDywMYlSxSARAqBQpCIiK2lT0p4tayu6DpwgF9SU2kBHASqAj8AjUqWLJQyRZydQpCIiK3lcFLC706f5k4gGriFtAAUqhmcRQqNBkaLiBSEG0xKuGLFCvr0708i0Ar4Aiijy99FCpVCkIhIQbnOFV1z5sxhxIgRpKam0q1bNxa/+ioljh/X5e8ihUwhSETsJw/z6Diy1NRUnnnmGcLDwwF4+OGHmT17Nm5ubmmvgYgUKo0JEhH7iIhIu4y8Xbu0nxER9q6oQCUmJvLggw9aA9CUKVOYO3duWgASEbvQPEEiUvhyM49OMXD27Fl69uzJpk2bcHNz47333mPgwIH2LkvEoRTE97f+CyIihS+7eXSKWQg6fPgwnTt3Zt++fZQuXZrPPvuM9u3b27ssEUHdYSJiDzmdR8fBbdy4kSZNmrBv3z4qVarE5s2bFYBEihCFIBEpfDmcR8dRGWN49913ad++PadPn6ZRo0Zs27aNW2+91d6lichV1B0mIvZxg3l0HFVSUhKPPvooc+bMAaBv375ERERQokQJO1cmItdSCBIR+ylmd0Y/cuQI999/P9u2bcNisRAeHs64ceOwWCz2Lk1EsqAQJCJiAytWrGDQoEGcPXsWX19f5s+fT5cuXexdlohkQ2OCRETyITExkbFjx9KjRw/Onj1LkyZN2L17twKQiANQCBIRyaMdO3bQqFEjXn/9dQCeeOIJNm/eTLVq1excmYjkhEKQiEguJSYm8sxjj9G8WTP27t1LhQoVWLFiBdOnT8fDw8Pe5YlIDmlMkIhILqxatYoxDz/MwZgYAO4H3p44Ef9u3exbmIjkmlqCRKR4iIqCDRvSfhaAP/74g06dOtGlSxcOxsQQCHwGLAL8n3yywH6viBQchSARcXwFeDPW/fv38+CDD3LzzTezZs0a3N3cGAf8CdyTvlH6LT9ExKEoBImIY4uKgqFD/70XWWoqDBuWr5YZYwzr16+nV69e1K1bl/nz55Oamkq3bt347dtvecnFhdJX71AMb/kh4gw0JkhEHJsNb8Z68OBBPvnkE+bPn8++ffus67t168azzz5Lo0aN0lbMmZMWtFJSit0tP0SciUKQiDi29JuxXh2Ectgyc/78eX744QfWr1/PunXr2LNnj/U5b29vHnroIUaOHEm9evUy7lhMb/kh4mwUgkSkyDDGcPbsWeLj40lISCAhIYHExERcXFwyLW5ubv8uzz+P26RJuKWm4ubigtv06aSWKEHC0aPEx8dz/vx5Tp48ybFffuHY3r0ciI3l5z//5NChQxl+v6urK+3ataN3797cd999+Pr6Xr/YYnbLDxFnZDHGGHsXUZji4uLw9fUlNjYWHx8fe5cj4pROnjzJ7t27+e233/jtt984cOAAx48f58SJEyQlJRVqLVWrVqVdu3a0a9eOu+++m/Llyxfq7xeRnCmI72+1BIlIgYuLi2PNmjVs2LCBjRs3sn///my39/T0xNvbG29vbzw9PTHGkJqaSkpKivVnSkoKycnJmZbUq7rFPD09KVWqFKVKlMA/KorKQGWgGnCriwv1d+/G/9ZbC/TcRaToUggSkQIRFxfHsmXL+PTTT1m3bl2GFh6LxULt2rW55ZZbqFevHnXq1KFy5cpUrFiRoKCgfM26nB6SANzd3dNWbtiQdvl8xg3hzJk8/x4RcXwKQSJiM8YYdu7cyezZs1m0aBEJCQnW5+rUqUNYWBitW7emVatW+Pn55eygUVFpV4CFhuZoDE76mKEM8jF4WkSKL4UgEcm31NRUVq5cSXh4OD/++KN1fZ06dejbt691vp1ci4j4dw4gF5e0S9MHD879cYKDdVm7iGSigdEikmfJycksXryYF198kb179wJp43B69erFsGHDuOOOO7BYLHk7eFRU2uzP17beREbmPbxERemydhEHpYHRIlIkGGNYuXIlEyZMsE4q6OPjw8iRIxkzZgwBAQH5/yU2nATRKieXteey+01EHJdCkIjkytatWxk3bhybN28GwM/Pj//+97+MHDmSMmXK2O4X2WMcj62630TEITjUvcOmTJmCxWLJsAQGBtq7LBGncPz4ce6//35atGjB5s2b8fLyYsKECRw6dIinn37atgEI/h3H4+qa9rigx/EUwD3IRKRoc7iWoJtvvplvvvnG+tg1/QNSRK4vH108ly9f5u2332by5MnEx8fj4uLCwA4dmDp1KsFNmtj892VQmLenKIjuNxEp0hyqJQjAzc2NwMBA66LZXUVuICIibYBxu3ZpPyMicrzr999/T8OGDfnvf/9LfHw8zatXZ4cxRKxZQ3Dz5lkfKx+/L0vBwdCmTcEHkfTut6vpMnqRYs3hQtCBAweoWLEi1apV4/777+evv/7KdvvExETi4uIyLCJOI49dPCdPnmTAgAHceeed/Pbbb5QrV465r7zCD4cP0yD9gtKsjuXIXUqF3f0mInbnUCGoWbNmfPTRR3z11Ve89957REdH06JFC06fPn3dfcLDw/H19bUulStXLsSKRewsuy6eLKSkpDBjxgxq167NRx99hMViYejQoezfv5/BjRrhcu2MGtceK5e/r8gZPDjtEvwNG9J+alC0SLHm0PMEJSQkUKNGDcaNG8fYsWOz3CYxMZHExETr47i4OCpXrqx5gsQ55GKunR9//JGRI0eya9cuABo2bMjMmTNp2rRpzo9VEHP7iIhQMPMEOVRL0LW8vb255ZZbOHDgwHW38fT0xMfHJ8Mi4jRy0MVz6tQphgwZQvPmzdm1axdlypRhxowZ/PTTT/8GoBweS11KIuJIHLolKDExkRo1ajB06FCeffbZHO2jGaPFKWUxU3Jqaipz585l4sSJnLlyI9GBAwfy0ksvUaFChVwdK0/biIjkgtPPGP3kk0/StWtXqlSpQkxMDM899xxxcXEMGDDA3qWJFG3XzJS8c+dORo4cyU8//QTArbfeyowZM7jjjjtyfaw8byMiYmcO1R0WFRVF3759qV27Nvfccw8eHh5s27aNkJAQe5cmkiYqKm1QbRG9GioqKooBAwbQpEkTfvrpJ0qXLs0bb7zBzp07cxaARESKEYdqCVq8eLG9SxC5viJ8y4Xz58/z0ksv8dprr3Hp0iUAHnjgAV555RWCgoLsXJ2IiH049JigvNCYICkQRfSqqISEBGbNmsXLL79MTEwMAK1ateLVV1/NOOhZRKSIc/oxQSJFVhG75UJ8fDwzZszg1Vdf5dSpUwCEhoby8ssv0717dywWS+addPd0EXEyCkEitpCbO54XYNg4fPgwM2bMICIignPnzgFQo0YNJk2aRP/+/XF3d896xyLclSciUlAcamC0SJGV0/lxbH1fLdKmili2bBndunWjRo0avPbaa5w7d45atWrx0Ucf8ccffzBo0KDrByBHvtWFiEg+aEyQiC1lNz+ODccNXbp0iY0bN7J8/nw+WbGCc/Hx1ufuvvtuHnvsMcLCwnC59oagWdmwIS2UZbW+TZtc1SUiUlA0JkikqMtufpx8jBtKSkpiz549bN26lW+++YZvv/2WixcvWp+vBPTr0IGH33iDOnXq5K7m3HTliYgUIwpBIoXlBmEjNTWV06dPc+LECY4cOcK+bdvYt3Mn+2Ji+HnfPuul7ekqAZ2A+4HWgOs330CpUrmvK70rb9iwtFCmW12IiJNQCBLJA2MM8fHxnD17ltjYWM6dO8e5c+eIj4/n0qVL1hv3Xv3nxMRELrZuTcLGjcQbQzyQUL068V27curUKaKjo0lOTr7u7/Tz86NFixa0bNmSMH9/bh0yhAzXeOXnarTBg6FDB93qQkScikKQyHWkpqYSGRnJ3r172bt3LwcOHODYsWPWJSEhIf+/JIub//r7+RF85gx1gJuuLPVdXAjdswdL5cppG0VF2b4LS7e6EBEnoxAkcsWZM2fYunUrW7ZsYcuWLWzfvv2GQcfd3Z2yZctSpkwZypQpQ6lSpfD09MTLywtPT0/rkv7Yy8uLUqVKWRdvb29KlSpF2bJlCQoKIiAgAI8ffsg8UDk1FQ4dgvQQpC4sEZF8UwgSp5WSksKOHTtYs2YNa9asYfv27Vx7saSHhwd16tTh5ptvpk6dOlSpUoXKlStTuXJlKlasiLe3d9YTD+ZHTgcqqwtLRCRfFIIKmmbhtZ8sXvvU1FS2bdvG4sWLWbp0KdHR0Rl2qVWrFi1btqRly5Y0b96c2rVr4+ZWyP9MctPKoy4sEZE8UwgqSJqFN/dsFRqvee0P/N//EREXx6JFizh69Kh1Mx8fH9q3b09YWBgdO3akUqVKNjgJG1Arj4hIgdNkiQWliN5Qs0izVWi88tonpqayHJgDbLjq6VKlStGjRw/uv/9+2rdvj0dMzI2Dl1r0RETsqiC+v3XbjIKS3cR4kpkNb90QtWULE1JTqQT0JS0AWYBOzZqxdOlSYmJi+Pjjj+ncuTMeH39849tYFMCtLkRExP7UElRQ1BKUOza4dcOuXbuYPn06S5Yssc63UwkYDAx2caHKkSMZX/ucvEd6H0VEigS1BDmSnN5QU9KkXxF1tRzMe5OamsrKlStp27YtjRo1YsGCBSQnJ9O6Vi2Wu7gQCUx1daXKnDmZX/uctNapRU9EpNjSwOiCpMGtOZfLeW8uXLjAhx9+yOuvv86BKxMOurm50adPH5544gkaNWqU/c1MIWeXouu+WiIixZZCUEHTJcw5l4PQePLkSd555x1mzpzJ6dOnAfD19WXYsGE8+uijBF+9z41e+5wEL01KKCJSbGlMkDiE33//nenTp/Pxxx+TlJQEQPWgIMaMGMGgJ56gVF5uHJruRi1GOd1GREQKTEF8fysESeHJ5WXmxhg2btzIq6++yurVq63rb69Rgyf/+ovuxuCq+ZdERJyCBkaL48rFZeaXLl3io48+onHjxrRr147Vq1djsVi45557+GH5crYcPsw9xuAK+bqUXkREnJtCkBS8HM4BdOjQIZ566ikqVarEgAED2LVrFyVLlmTUqFH8+eeffPbZZ7Tw9dXVWiIiYhMaGO2sCnMG5GwuM08sX54vv/ySuXPnsnbtWuvTISEhDBs2jKFDh1KuXLl/99PVWiIiYiMKQY6kgO6rVeBjaq4JLgb4wcWFj+fO5ZOePTl37hwAFouFjh07MnLkSMLCwnBNn2PparpaS0REbEQDox2Fje+rVdgzIKe89x4/DB/Oiiv38zp81XOVKlWif//+DBkyhBo1auTsgLpaS0TEqRTE97daghzB9cbUdOiQ+wCQ3QzINg4TJ06cYOPGjXz11Vd8+eWXnL7q95YqVYpevXrx4IMP0rp166xbfbKj+ZdERCSfFIIcgS2DSwGNqUlJSeGPP/5g165dbNmyhQ0bNrB///4M25QtW5bOnTvTvXt3OnXqRMmSJfP1O0VERPJDIcgR2DK45HNMzaVLl/jrr784cOAABw8e5MCBA/zyyy/8/PPPXLhwIcO2FouFBg0a0KZNG7p06UKrVq1wc9NfORERKRr0jVSEGWNISEggwd2dpBdfJGnCBBJTU0lycSFp/Hj4+28sJ04AaYHj6uXadampqaSkpJCSkkLqzTeTsnQpKUePkhIURIqfHxe++IL4+PgMy9mzZzl58mSG5dSpU9et19vbmwYNGtCkSRNat27NnXfeSdmyZQvltRIREcktDYy2o7Nnz/Lzzz+zf/9+jhw5wpEjRzh69Cj//PMPZ86c4ezZsyQnJ9u1xqz4+PgQGhpKzZo1CQ0NpU6dOjRq1IjQ0NDcj+0RERHJAQ2MLiwFMIeOMYZ9+/bx7bffsmHDBnbu3MnRo0dzvL+HhwceHh54enri4eGBu7t7hmOnZ9n0P1/72MXFBVdXV1xdXTP8OX0pWbIkpUqVyrCUjowk8OuvCTCGQIuFgMmTCRo1inLlyllbm0RERByVQtC1bDiHTkpKCps3b+aTTz5h+fLlnLjSdXW1atWqUbduXapWrUpISAghISEEBARQtmxZ/Pz8KFu2LCVLlsxd6LBFiEu/lD69odAY+L//S3stFIBERKQYUAi6mo0uRT9x4gRz5szhvffe4/jx49b1Xl5e3HHHHbRr144WLVpQv359ypQpY9tzsFWIy80VaYU5+7SIiIiNOG8IOn4cru1TzOel6D///DPh4eF89tln1rE8ZcqUoWfPnvTu3Zs2bdrg5eVlqzPIzJbzCeX0irTCnn1aRETERpz2BqqH6tbNfCfz9C/+q+XgUvRDhw7xwAMP0KBBA5YsWUJycjItW7Zk4cKFREdH8/7779OxY8eCDUCQfYjLrfRL6dMHOmd1KX0Ob4wqIiJSFDltCHoVMn9h5+SL/yonTpxg5MiR1KlTh4ULF2KMoU+fPuzevZvNmzfTt29fPD09C/xcrPIY4q5r8OC022ls2JD289oWHluGLhERkULmtCFoIbAzqy/sG33xk3Zp+8SJE6lRowYzZ84kOTmZjh07smvXLhYvXsxtt91WCGeQhVyGuBwfs02brI9h69AlIiJSiJx2niCAW4EfDxzAK4df2hcuXOCtt97ipZdest75/Pbbbyc8PJzWrVvnrzBbDi4uzJuLRkRknn1aY4JERMTGCmKeIKcNQeWA00Dfvn35+OOPs53k78KFC8yePZuXXnqJkydPAlCvXj2ef/55unbtmv85cxx9cLHu6C4iIgVMIcgG0l/E5e+9x30jRpCcnEzXrl2ZM2cOgYGBGbY9duwYH3zwATNmzLCGn2rVqjFt2jT69u1rm9mR0+fjufYqrMhIBQoREZErNGO0DbXr3ZtFZcrQv39/Vq5cSbVq1Wjfvj3VqlUjISGB3bt3s3v3buvMy1WrVuWZZ57hoYceyjBbc77Z8g7xIiIikmMOGYLeffddXnnlFU6cOMHNN9/MG2+8QatWrXJ9nF69elG9enVGjhzJjz/+yMqVKzNt06ZNGx555BF69+5t2/CTzpZ3iBcREZEcc7gQtGTJEsaMGcO7775Ly5YtmT17NmFhYfz+++9UqVIl18dr2LAhW7duZdeuXWzevJm///6b0qVLU6NGDdq0aUNQUFABnMVV0q/ounZwsVqBRERECpTDjQlq1qwZDRs2ZObMmdZ1N910Ez169CA8PPyG+xelu8hnoMHFIiIi1+X0Y4KSkpLYuXMnEyZMyLD+7rvvZsuWLVnuk5iYSGJiovVxXFxcgdaYZ8HBCj8iIiKFyKEmSzx16hQpKSkEBARkWB8QEEB0dHSW+4SHh+Pr62tdKleuXBilioiISBHnUCEo3bXz8hhjrjtXz8SJE4mNjbUux44dK4wSRUREpIhzqO4wf39/XF1dM7X6xMTEZGodSufp6Vm49+8SERERh+BQLUEeHh40atSIdevWZVi/bt06WrRoYaeqRERExBE5VEsQwNixY3nwwQdp3Lgxt99+O3PmzOHo0aMMHz7c3qWJiIiIA3G4ENSnTx9Onz7NtGnTOHHiBPXq1WP16tWEhITYuzQRERFxIA43T1B+Fdl5gkREROS6CuL726HGBImIiIjYikJQfkRFwYYNaT9FRETEoSgE5VVEBISEQLt2aT8jIuxdkYiIiOSCQlBeREXB0KH/3vk9NTXtBqhqERIREXEYCkF5ceDAvwEoXUpK2g1QRURExCEoBOVFaCi4XPPSubqm3QFeREREHIJCUF4EB8OcOWnBB9J+zp6tu8CLiIg4EIebLLHIGDwYOnRI6wKrWVMBSERExMEoBOVHcLDCj4iIiINSd5iIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQ4WgqlWrYrFYMiwTJkywd1kiIiLigNzsXUBuTZs2jSFDhlgflypVyo7ViIiIiKNyuBBUunRpAgMD7V2GiIiIODiH6g4DeOmllyhXrhy33XYbzz//PElJSfYuSURERByQQ7UEPf744zRs2JCyZcvy008/MXHiRA4fPszcuXOvu09iYiKJiYnWx7GxsQDExcUVeL0iIiJiG+nf28YY2x3U2NnkyZMNkO2yffv2LPf99NNPDWBOnTqVr+Nr0aJFixYtWhxjOXTokM0yiMUYW0aq3Dt16hSnTp3KdpuqVavi5eWVaf3x48cJDg5m27ZtNGvWLMt9r20JOnfuHCEhIRw9ehRfX9/8Fe9A4uLiqFy5MseOHcPHx8fe5RQanbfO2xnovHXeziA2NpYqVapw9uxZypQpY5Nj2r07zN/fH39//zztu3v3bgCCgoKuu42npyeenp6Z1vv6+jrVX550Pj4+Om8novN2Ljpv5+Ks5+3iYrvhzHYPQTm1detWtm3bRtu2bfH19WX79u088cQTdOvWjSpVqti7PBEREXEwDhOCPD09WbJkCVOnTiUxMZGQkBCGDBnCuHHj7F2aiIiIOCCHCUENGzZk27Zt+T6Op6cnkydPzrKLrDjTeeu8nYHOW+ftDHTetjtvuw+MFhEREbEHh5ssUURERMQWFIJERETEKSkEiYiIiFNSCBIRERGnVCxD0Lvvvku1atXw8vKiUaNGfP/999luv2nTJho1aoSXlxfVq1dn1qxZhVSpbeXmvJctW0b79u0pX748Pj4+3H777Xz11VeFWK3t5Pb9TvfDDz/g5ubGbbfdVrAFFpDcnndiYiKTJk0iJCQET09PatSowfvvv19I1dpObs97wYIF1K9fn5IlSxIUFMSgQYM4ffp0IVWbf9999x1du3alYsWKWCwWPv/88xvuUxw+03J73sXlMy0v73c6R/5My8t52+IzrdiFoCVLljBmzBgmTZrE7t27adWqFWFhYRw9ejTL7Q8fPkynTp1o1aoVu3fv5umnn+axxx7js88+K+TK8ye35/3dd9/Rvn17Vq9ezc6dO2nbti1du3a1zsLtKHJ73uliY2N56KGH+M9//lNIldpWXs67d+/efPvtt0RERLB//34WLVpEnTp1CrHq/MvteW/evJmHHnqIwYMHs3fvXpYuXcr27dt55JFHCrnyvEtISKB+/fq88847Odq+uHym5fa8i8tnWm7PO52jf6bl5bxt8plms7uQFRFNmzY1w4cPz7CuTp06ZsKECVluP27cOFOnTp0M64YNG2aaN29eYDUWhNyed1bq1q1rpk6dauvSClRez7tPnz7mmWeeMZMnTzb169cvwAoLRm7Pe82aNcbX19ecPn26MMorMLk971deecVUr149w7q33nrLBAcHF1iNBQkwy5cvz3ab4vKZdrWcnHdWHPEz7Wq5OW9H/0y7Wk7O21afacWqJSgpKYmdO3dy9913Z1h/9913s2XLliz32bp1a6btO3TowI4dO7h8+XKB1WpLeTnva6WmpnL+/Hn8/PwKosQCkdfznjdvHocOHWLy5MkFXWKByMt5f/HFFzRu3JiXX36ZSpUqUatWLZ588kkuXrxYGCXbRF7Ou0WLFkRFRbF69WqMMZw8eZJPP/2Uzp07F0bJdlEcPtNswRE/0/LK0T/T8sJWn2kOM2N0Tpw6dYqUlBQCAgIyrA8ICCA6OjrLfaKjo7PcPjk5mVOnTmV7c9aiIi/nfa3XXnuNhIQEevfuXRAlFoi8nPeBAweYMGEC33//PW5ujvnXPy/n/ddff7F582a8vLxYvnw5p06dYuTIkZw5c8ZhxgXl5bxbtGjBggUL6NOnD5cuXSI5OZlu3brx9ttvF0bJdlEcPtNswRE/0/KiOHym5YWtPtOKVUtQOovFkuGxMSbTuhttn9X6oi63551u0aJFTJkyhSVLllChQoWCKq/A5PS8U1JS6NevH1OnTqVWrVqFVV6Byc37nZqaisViYcGCBTRt2pROnToxffp0PvjgA4dqDYLcnffvv//OY489xrPPPsvOnTtZu3Ythw8fZvjw4YVRqt0Ul8+0vHL0z7ScKm6fablhq8+0YhUb/f39cXV1zfS/wpiYmEz/M0oXGBiY5fZubm6UK1euwGq1pbycd7olS5YwePBgli5dyl133VWQZdpcbs/7/Pnz7Nixg927dzN69Ggg7R+SMQY3Nze+/vpr2rVrVyi150de3u+goCAqVaqEr6+vdd1NN92EMYaoqChCQ0MLtGZbyMt5h4eH07JlS5566ikAbr31Vry9vWnVqhXPPfdcsWwVKQ6fafnhyJ9puVVcPtPywlafacWqJcjDw4NGjRqxbt26DOvXrVtHixYtstzn9ttvz7T9119/TePGjXF3dy+wWm0pL+cNaf9bGjhwIAsXLnTIMRK5PW8fHx9+/fVX9uzZY12GDx9O7dq12bNnD82aNSus0vMlL+93y5Yt+fvvv4mPj7eu+/PPP3FxcSE4OLhA67WVvJz3hQsXcHHJ+DHn6uoK/Ns6UtwUh8+0vHL0z7TcKi6faXlhs8+0fA2rLoIWL15s3N3dTUREhPn999/NmDFjjLe3t4mMjDTGGDNhwgTz4IMPWrf/66+/TMmSJc0TTzxhfv/9dxMREWHc3d3Np59+aq9TyJPcnvfChQuNm5ubmTFjhjlx4oR1OXfunL1OIU9ye97XctQrKXJ73ufPnzfBwcGmV69eZu/evWbTpk0mNDTUPPLII/Y6hTzJ7XnPmzfPuLm5mXfffdccOnTIbN682TRu3Ng0bdrUXqeQa+fPnze7d+82u3fvNoCZPn262b17tzly5Igxpvh+puX2vIvLZ1puz/tajvqZltvzttVnWrELQcYYM2PGDBMSEmI8PDxMw4YNzaZNm6zPDRgwwLRu3TrD9hs3bjQNGjQwHh4epmrVqmbmzJmFXLFt5Oa8W7dubYBMy4ABAwq/8HzK7ft9NUf9wDAm9+e9b98+c9ddd5kSJUqY4OBgM3bsWHPhwoVCrjr/cnveb731lqlbt64pUaKECQoKMg888ICJiooq5KrzbsOGDdn+Wy2un2m5Pe/i8pmWl/f7ao76mZaX87bFZ5rFmGLaJiwiIiKSjWI1JkhEREQkpxSCRERExCkpBImIiIhTUggSERERp6QQJCIiIk5JIUhERESckkKQiIiIOCWFIBEREXFKCkEiIiLilBSCRERExCkpBIlIsTBt2jRuueUWvL29CQgIYMSIEVy+fNneZYlIEeZm7wJERPLLGENKSgqzZ8+mUqVK/P777zz00EPceuutjBgxwt7liUgRpRuoikix1K9fP8qXL8+bb75p71JEpIhSd5iIOLwjR44wevRo6tWrR9myZSlVqhSffPIJwcHB9i5NRIowhSARcWinTp2iadOmnDp1iunTp7N582a2bt2Kq6srt912m73LE5EiTGOCRMShrV69muTkZBYtWoTFYgFgxowZJCUlKQSJSLYUgkTEofn5+REXF8cXX3xB3bp1WblyJeHh4VSqVIny5cvbuzwRKcI0MFpEHJoxhhEjRrBw4UJKlChB//79uXTpEkeOHOHLL7+0d3kiUoQpBImIiIhT0sBoERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFNSCBIRERGnpBAkIiIiTkkhSERERJySQpCIiIg4JYUgERERcUoKQSIiIuKUFIJERETEKSkEiYiIiFP6f7Xy5MTWDG/rAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdX0lEQVR4nO3deVxU1f/H8dewIwrugKK4oVbukqbmWua+lWn6rdRMzSU1K5es1DJt0+yXSy5ki3ulaWYu5Vap5ZpluQuJiuYGAso29/cHMoksAg4Mw7yfj8c8cO7cO3zuDAxvzzn3HJNhGAYiIiIiDsbJ1gWIiIiI2IJCkIiIiDgkhSARERFxSApBIiIi4pAUgkRERMQhKQSJiIiIQ1IIEhEREYekECQiIiIOSSFIREREHJJCkNhUixYtaNGiha3LyLG+fftSuHDhLO1boUIF+vbtm6v1mEwmJk6cmKvf405iY2OZOHEiW7dutWkd9uLHH38kODgYLy8vTCYT33zzDZ9++ikmk4nQ0FDLfkuWLGHGjBm5UsOrr75K+fLlcXFxoWjRotk+vm/fvlSoUMHqdeU3zz77LDVq1KBo0aJ4enpStWpVXn75ZS5evJhqv61bt2IymdK97dq1y0bVS3pcbF2AOLbZs2fbuoQ8s2rVKry9vW1dRq6LjY1l0qRJAHYdcPOCYRj06NGDqlWrsmbNGry8vKhWrRqJiYns3LkTf39/y75Llizhzz//ZOTIkVatYfXq1bz11luMHz+edu3a4e7ubtXnL0hiYmIYOHAgVapUwcPDgz179vDWW2+xbt069u/fj5ubW6r9p0yZQsuWLVNtq1GjRl6WLHegECQ2de+999q6hDxTt25dW5cgVnT9+nU8PDwwmUw5fo6zZ89y+fJlunXrxkMPPZTqsVKlSt1tiVny559/AjB8+HBKly6dJ9/TWqzxHmTH0qVLU91v1aoVRYoUYciQIfz888+0atUq1eNBQUE88MADeVKb5Iy6wyTLJk6ciMlk4tChQ/Tq1QsfHx98fX155plniIyMTLXvjRs3GDduHBUrVsTNzY2yZcsydOhQrl69mmq/9LrD5syZQ+3atSlcuDBFihShevXqvPLKKwCEhobi4uLC1KlT09S3fft2TCYTX375ZabncfXqVV588UUqVaqEu7s7pUuXpn379hw+fBj4ryn79u6c0NBQTCYTn376aZrnPHToEA899BBeXl6UKlWKYcOGERsbm2qf9LrD7lSLNURERDBo0CACAgJwc3OjYsWKTJo0icTExFT7TZo0iYYNG1K8eHG8vb2pV68eISEh3L7G8ubNm2nRogUlSpTA09OT8uXL89hjjxEbG0toaKjlj/ekSZMsXQB36gaMjY3lpZdeomLFinh4eFC8eHGCg4PT/NH59NNPqVatGu7u7txzzz18/vnnabpisvP+7dmzhyeeeIIKFSrg6elJhQoV6NWrF2FhYWm+r8lkYuPGjTzzzDOUKlWKQoUKERcXB8Dy5ctp1KgRXl5eFC5cmDZt2rB///5Mz3nixIkEBAQAMGbMGEwmk+U8bu8Oa9GiBd999x1hYWGpulYyYzabeffdd6levbrlZ+vpp58mPDzcsk+FChV49dVXAfD19c1Sd2p670F64uPjmTx5suX7lypVin79+vHvv/+m2i8uLo4XX3wRPz8/ChUqRLNmzdi7d2+a3xdrvQd79uyhc+fOFC9eHA8PD+rWrcuKFSsyPefMpPy8u7ioTcEe6V2TbHvsscfo2bMn/fv3548//mDcuHEAfPLJJ0ByE3/Xrl358ccfGTduHE2bNuXgwYNMmDCBnTt3snPnzgyb3JctW8aQIUN4/vnnef/993FycuL48eP89ddfQPKHdufOnfn4448ZPXo0zs7OlmNnzpxJmTJl6NatW4a1X7t2jQcffJDQ0FDGjBlDw4YNiY6OZvv27Zw7d47q1atn+/VISEigffv2DBo0iLFjx7Jjxw4mT55MWFgY33777V3X0rdvXz777DNOnTqV7XEXERERNGjQACcnJ15//XUqV67Mzp07mTx5MqGhoSxcuNCyb2hoKIMGDaJ8+fIA7Nq1i+eff54zZ87w+uuvW/bp0KEDTZs25ZNPPqFo0aKcOXOG9evXEx8fj7+/P+vXr6dt27b079+fZ599Frhzq8aoUaP44osvmDx5MnXr1iUmJoY///yTS5cuWfb59NNP6devH126dGHatGlERkYyceJE4uLicHLK2f/nQkNDqVatGk888QTFixfn3LlzzJkzh/vvv5+//vqLkiVLptr/mWeeoUOHDnzxxRfExMTg6urKlClTePXVV+nXrx+vvvoq8fHxvPfeezRt2pTffvstw9bOZ599ltq1a/Poo4/y/PPP07t37wx/L2bPns3AgQM5ceIEq1atytK5DR48mHnz5jFs2DA6duxIaGgor732Glu3bmXfvn2ULFmSVatWMWvWLEJCQli/fj0+Pj6WYJaerL4HZrOZLl268NNPPzF69GgaN25MWFgYEyZMoEWLFuzZswdPT08A+vXrx/Llyxk9ejStWrXir7/+olu3bkRFRaVbw928B1u2bKFt27Y0bNiQjz/+GB8fH5YtW0bPnj2JjY3N8pi9xMRE4uLiOHDgAK+99hoPPvggTZo0SbPf0KFDeeKJJyhUqBCNGjWy7Cv5iCGSRRMmTDAA49133021fciQIYaHh4dhNpsNwzCM9evXp7vf8uXLDcCYN2+eZVvz5s2N5s2bW+4PGzbMKFq0aKZ1bNmyxQCMVatWWbadOXPGcHFxMSZNmpTpsW+88YYBGJs2bbrj82/ZsiXV9lOnThmAsXDhQsu2Pn36GIDx4Ycfptr3rbfeMgDj559/tmwLDAw0+vTpk61aDMMwnnnmGcPZ2dkIDQ3NdD/DMAzAmDBhguX+oEGDjMKFCxthYWGp9nv//fcNwDh06FC6z5OUlGQkJCQYb7zxhlGiRAnLe/vVV18ZgHHgwIEMa/j333/T1HEnNWrUMLp27Zrh40lJSUaZMmWMevXqWWoxDMMIDQ01XF1djcDAQMu27Lx/t0tMTDSio6MNLy+vVO/pwoULDcB4+umnU+3/zz//GC4uLsbzzz+favu1a9cMPz8/o0ePHpmc9X81vffee6m2p3y/U6dOWbZ16NAh1Xlm5u+//zYAY8iQIam2//rrrwZgvPLKK5ZtKb/X//77b6bPmZ33YOnSpQZgfP3116meY/fu3QZgzJ492zAMwzh06JABGGPGjEm1X8rxt/6+WOM9qF69ulG3bl0jISEh1b4dO3Y0/P39jaSkpExfA8MwjJ07dxqA5da+fXsjKioq1T779u0zRowYYaxatcrYvn278cknnxj33HOP4ezsbKxfv/6O30PyjrrDJNs6d+6c6n6tWrW4ceMGFy5cAJK7S4A0/6t6/PHH8fLy4scff8zwuRs0aMDVq1fp1asXq1evTnPVBSR3DdSuXZtZs2ZZtn388ceYTCYGDhyYae3ff/89VatW5eGHH850v+z63//+l+p+7969geT/ed5tLSEhISQmJhIYGJjtutauXUvLli0pU6YMiYmJllu7du0A2LZtm2XfzZs38/DDD+Pj44OzszOurq68/vrrXLp0yfLe1qlTBzc3NwYOHMhnn33GyZMns1XPrTUkJiZautoaNGjA999/z9ixY9m6dSvXr19PddyRI0c4e/YsvXv3TtUNFBgYSOPGjbP9uqSIjo5mzJgxVKlSBRcXF1xcXChcuDAxMTH8/fffafZ/7LHHUt3fsGEDiYmJPP3006nOy8PDg+bNm9vsCrmUn7vbfwcbNGjAPffck+nvYEay8x6sXbuWokWL0qlTp1SvS506dfDz87O8Lik/fz169Eh1fPfu3TPsXsrpe3D8+HEOHz5s+V29dd/27dtz7tw5jhw5csfXoWbNmuzevZtt27bx4Ycfsn//flq3bp2q+7tu3brMmDGDrl270rRpU/r168eOHTvw9/dn9OjRd/wekncUgiTbSpQokep+ShN+yh+uS5cu4eLikqYLxGQy4efnl6qL43ZPPfUUn3zyCWFhYTz22GOULl2ahg0bsmnTplT7DR8+nB9//JEjR46QkJDA/Pnz6d69O35+fpnW/u+//2ba3J8TLi4uaV6TlDoyO9fcqOV258+f59tvv8XV1TXV7b777gOwhMzffvuNRx55BID58+fzyy+/sHv3bsaPHw/8995WrlyZH374gdKlSzN06FAqV65M5cqV+fDDD+9YS2hoaJo6Uv4I/t///R9jxozhm2++oWXLlhQvXpyuXbty7Ngx4L/XMb33907veWZ69+7NzJkzefbZZ9mwYQO//fYbu3fvplSpUmmCGJDqai1Ifn0B7r///jTntnz58nRDfF5Ieb1urxegTJkymf5c3uk5s/IenD9/nqtXr+Lm5pbmdYmIiLC8LinP6evrm+r49H6nUuT0PUjZ76WXXkqz35AhQwCy9H55eXkRHBxMs2bNGD58OKtWreLXX39l7ty5mR5XtGhROnbsyMGDB9P92RLb0JggsboSJUqQmJjIv//+myoIGYZBREQE999/f6bH9+vXj379+hETE8P27duZMGECHTt25OjRo5bWkN69ezNmzBhmzZrFAw88QEREBEOHDr1jbaVKlUo1MDQ9Hh4eAJYBlyky+oBMTEzk0qVLqT60IyIigLSBMbu13K2SJUtSq1Yt3nrrrXQfL1OmDJA8FsvV1ZW1a9dazh/gm2++SXNM06ZNadq0KUlJSezZs4ePPvqIkSNH4uvryxNPPJFhLWXKlGH37t2ptlWrVg1I/sMyadIkJk2axPnz5y2tQp06deLw4cOW1zHldb3V7duy+v5FRkaydu1aJkyYwNixYy3b4+LiuHz5crrncPtg5JQxQ1999VWOWupyS8rrde7cuTRB++zZs2nGOmXnObPyHpQsWZISJUqwfv36dJ+rSJEiqZ7z/PnzlC1b1vJ4yu9UenL6HqTsN27cOB599NF090n5ecyO4OBgnJycOHr06B33TWn5zKur2eTO1BIkVpdyqe+iRYtSbf/666+JiYlJcylwRry8vGjXrh3jx48nPj6eQ4cOWR7z8PCwdMlMnz6dOnXqpDsw8Xbt2rXj6NGjli679KQMPj548GCq7WvWrMnwmMWLF6e6v2TJEiDzeXKyUsvd6tixI3/++SeVK1cmODg4zS0lBJlMJlxcXFINNL9+/TpffPFFhs/t7OxMw4YNLd2S+/btA9K2DKZwc3NL8/1T/hjeytfXl759+9KrVy+OHDlCbGws1apVw9/fn6VLl6a6Wi0sLIwdO3akOj6r75/JZMIwjDSDkRcsWEBSUlKG532rNm3a4OLiwokTJ9J9fYODg7P0PFnh7u6e5RaElEu1b/8d3L17N3///XeWfwdvlZ33oGPHjly6dImkpKR0X5OUsNGsWTMg+cquW3311Vdprl7MSFbfg2rVqhEUFMTvv/+e4X7p/TzeybZt2zCbzVSpUiXT/a5cucLatWupU6dOqv9oiG2pJUisrnXr1rRp04YxY8YQFRVFkyZNLFeH1a1bl6eeeirDYwcMGICnpydNmjTB39+fiIgIpk6dio+PT5oWpCFDhvDuu++yd+9eFixYkKXaRo4cyfLly+nSpQtjx46lQYMGXL9+nW3bttGxY0datmyJn58fDz/8MFOnTqVYsWIEBgby448/snLlynSf083NjWnTphEdHc39999vuTqsXbt2mV4JkpVaAPr3789nn33GiRMnst3a8MYbb7Bp0yYaN27M8OHDqVatGjdu3CA0NJR169bx8ccfExAQQIcOHZg+fTq9e/dm4MCBXLp0iffffz9NQPj444/ZvHkzHTp0oHz58ty4ccNyVWDK2KYiRYoQGBjI6tWreeihhyhevDglS5bM9Mq2hg0b0rFjR2rVqkWxYsX4+++/+eKLL2jUqBGFChUC4M033+TZZ5+lW7duDBgwgKtXrzJx4sQ0XTFZff+8vb1p1qwZ7733nqW+bdu2ERISkuVZkytUqMAbb7zB+PHjOXnyJG3btqVYsWKcP3+e3377zdLCZQ01a9Zk5cqVzJkzh/r16+Pk5JRhyKpWrRoDBw7ko48+wsnJiXbt2lmuDitXrhwvvPBCtr+/k5NTlt+DJ554gsWLF9O+fXtGjBhBgwYNcHV1JTw8nC1bttClSxe6devGfffdR69evZg2bRrOzs60atWKQ4cOMW3aNHx8fLJ01V923oO5c+fSrl072rRpQ9++fSlbtiyXL1/m77//Zt++fZlOr7F27Vrmz59P586dCQwMJCEhgT179jBjxgyqVKliuRISkluqy5cvT3BwMCVLluTYsWNMmzaN8+fPpzvFhtiQLUdli33J6CqS9K5kuX79ujFmzBgjMDDQcHV1Nfz9/Y3BgwcbV65cSXXs7VeHffbZZ0bLli0NX19fw83NzShTpozRo0cP4+DBg+nW1KJFC6N48eJGbGxsls/jypUrxogRI4zy5csbrq6uRunSpY0OHToYhw8ftuxz7tw5o3v37kbx4sUNHx8f48knnzT27NmT7tVhXl5exsGDB40WLVoYnp6eRvHixY3Bgwcb0dHRqb7v7VeHZbWWlCvQbn19M0I6V2X9+++/xvDhw42KFSsarq6uRvHixY369esb48ePT1XjJ598YlSrVs1wd3c3KlWqZEydOtUICQlJ9b137txpdOvWzQgMDDTc3d2NEiVKGM2bNzfWrFmT6nv+8MMPRt26dQ13d/c0V/mkZ+zYsUZwcLBRrFgxy/d/4YUXjIsXL6bab8GCBUZQUJDh5uZmVK1a1fjkk0+MPn36pLlqKqvvX3h4uPHYY48ZxYoVM4oUKWK0bdvW+PPPP9O8Vyk/47t37063/m+++cZo2bKl4e3tbbi7uxuBgYFG9+7djR9++CHT887O1WGXL182unfvbhQtWtQwmUzGnT6+k5KSjHfeeceoWrWq4erqapQsWdJ48sknjdOnT6faL6tXh6XI6nuQkJBgvP/++0bt2rUNDw8Po3Dhwkb16tWNQYMGGceOHbPsd+PGDWPUqFFG6dKlDQ8PD+OBBx4wdu7cafj4+BgvvPBCmtfkbt+D33//3ejRo4dRunRpw9XV1fDz8zNatWplfPzxx5me999//210797dCAwMNDw8PAwPDw+jevXqxssvv2xcunQp1b5Tp0416tSpY/j4+BjOzs5GqVKljG7duhm//fZbVl5iyUMmw7htJjQRO3HhwgUCAwN5/vnneffdd21djthI37592bp1a6p1tsS+7dixgyZNmrB48WLLlZYiuUHdYWJ3wsPDOXnyJO+99x5OTk6MGDHC1iWJSA5t2rSJnTt3Ur9+fTw9Pfn99995++23CQoKynAAs4i1KASJ3VmwYAFvvPEGFSpUYPHixamuKhER++Lt7c3GjRuZMWMG165do2TJkrRr146pU6dqALHkOnWHiYiIiEPKN5fIz5kzh1q1auHt7Y23tzeNGjXi+++/tzxuGAYTJ06kTJkyeHp60qJFi1SXTIuIiIhkR74JQQEBAbz99tvs2bOHPXv20KpVK7p06WIJOu+++y7Tp09n5syZ7N69Gz8/P1q3bs21a9dsXLmIiIjYo3zdHVa8eHHee+89nnnmGcqUKcPIkSMZM2YMkDyrq6+vL++88w6DBg2ycaUiIiJib/LlwOikpCS+/PJLYmJiaNSoEadOnSIiIsKythEkz57avHlzduzYkWkIiouLSzV9vtls5vLly5QoUUJTl4uIiNgJwzC4du0aZcqUydJEmlmRr0LQH3/8QaNGjbhx4waFCxdm1apV3HvvvZYp2W9fZM/X15ewsLBMn3Pq1KlWm7FVREREbOv06dNWW3w6X4WgatWqceDAAa5evcrXX39Nnz59LKtMQ9pF5wzDuGNrzrhx4xg1apTlfmRkJOXLl+f06dN4e3tb9wREREQkV0RFRVGuXLkcrfGWkXwVgtzc3CyL0AUHB7N7924+/PBDyzigiIgI/P39LftfuHAhTevQ7dzd3dOsfwRYrkITERER+2HNoSz55uqw9BiGQVxcHBUrVsTPz49NmzZZHouPj2fbtm00btzYhhWKiIiIvco3LUGvvPIK7dq1o1y5cly7do1ly5axdetW1q9fj8lkYuTIkUyZMoWgoCCCgoKYMmUKhQoV0royIiIikiP5JgSdP3+ep556inPnzuHj40OtWrVYv349rVu3BmD06NFcv36dIUOGcOXKFRo2bMjGjRut2jcoIiIijiNfzxOUG6KiovDx8SEyMlJjgkREROxEbvz9ztdjgkRERERyi0KQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOKR8E4KmTp3K/fffT5EiRShdujRdu3blyJEjqfbp27cvJpMp1e2BBx6wUcUiIiJiz/JNCNq2bRtDhw5l165dbNq0icTERB555BFiYmJS7de2bVvOnTtnua1bt85GFYuIiIg9c7F1ASnWr1+f6v7ChQspXbo0e/fupVmzZpbt7u7u+Pn55XV5IiIiBYrZbGbhwoWcPXuWESNG4O3tbeuS8ly+CUG3i4yMBKB48eKptm/dupXSpUtTtGhRmjdvzltvvUXp0qUzfJ64uDji4uIs96OionKnYBERETvyzjvv8MorrwDw66+/snbtWhtXlPdMhmEYti7idoZh0KVLF65cucJPP/1k2b58+XIKFy5MYGAgp06d4rXXXiMxMZG9e/fi7u6e7nNNnDiRSZMmpdkeGRnpkKlXRETk+vXr+Pv7WxocAA4cOEDt2rVtWFXmoqKi8PHxserf73wzJuhWw4YN4+DBgyxdujTV9p49e9KhQwdq1KhBp06d+P777zl69Cjfffddhs81btw4IiMjLbfTp0/ndvkiIiL52qpVq4iMjKRChQp069YNgBUrVti4qryX70LQ888/z5o1a9iyZQsBAQGZ7uvv709gYCDHjh3LcB93d3e8vb1T3URERBzZokWLAOjTpw9dunQBYMs330B4uA2rynv5JgQZhsGwYcNYuXIlmzdvpmLFinc85tKlS5w+fRp/f/88qFBERMT+xcfHs23bNgC6d+9Os3PnANj9119cL18eQkJsWV6eyjchaOjQoSxatIglS5ZQpEgRIiIiiIiI4Pr16wBER0fz0ksvsXPnTkJDQ9m6dSudOnWiZMmSlqY8ERERydxvv/1GbGwspUqV4j4fHyq88golgUTgL8OAQYMcpkUo34SgOXPmEBkZSYsWLfD397fcli9fDoCzszN//PEHXbp0oWrVqvTp04eqVauyc+dOihQpYuPqRURE7MPmzZsBaNmyJabjxzEZBrVuPvY7QFISHD9uq/LyVL65RP5OF6l5enqyYcOGPKpGRESkYPrll18AaNGiBQQFgZMTNcxmNgN/ATg7Q5UqNqww7+SbliARERHJXYZhsH//fgCCg4MhIADmzaOKyQTAKYC5c5O3pyc8HLZsKTDdZQpBIiIiDiIiIoJ///0XJycnatSokbyxf38qLVwIwMn77oP+/dM/OCQEAgOhVavkrwVgALVCkIiIiIM4cOAAANWrV8fT09OyvVKDBgCcPH06/eEp4eFsGzCAImYzjQDM5gIxgFohSERExEGkhKDbZ4auUKECkDwr8+XLl9MeeOwYNwyDaOB6yrYCMIBaIUhERMRBpISgOnXqpNru6elJmTJlADh58mTaA4OCSLw5bshyRVUBGECtECQiIuIgMgpBAJUqVQLgxIkTaQ8MCCBhyBAAXCE5AGU2gNpOKASJiIg4gOjoaMsyU+ktlJrSJRYWFpbu8QnNmwPgWqsWhIZmPIDajigEiYiIOIA//vgDwzDw9/fH19c3zeMp3WHnbi6jcbvExEQAXEqUsPsWoBQKQSIiIg4gs64wuHMISkhIAMDV1dXqtdmKQpCIiIgD+P3334GMQ1DKYuQKQSIiIlKg3KklKCUEnT17Nt3HLd1hLvlmxa27phAkIiJSwCUlJXHw4EEg/UHRkLolKL0JE9USJCIiInbn2LFjXL9+nUKFClElg7l9UkJQbGws165dS/N4SkuQQpCIiIjYjZSusFq1auHs7JzuPl5eXhQpUgRIf1xQSkuQusNERETEbtxpPFCKzAZHqztMRERE7E5WQ1Bml8mrO0xERETsTlZDUOnSpQH4999/0zym7jARERGxKxEREZw/fx4nJydq1qyZ6b4lSpQA4NKlS2keU3eYiIiI2JWUSRKrVq1KoUKFMt23ZMmSAFy8eDHNY+oOExEREbuS0hWW0fxAt8osBKk7TEREROxKVscDQdZCkFqCRERExC4c2LMHgDply95x36x0h6klSERERPK96FmzOHL8OAB1+/SBkJBM99fAaBEREbF/4eEceP55DKAs4GsYMGgQhIdneMitLUG3rx+mECQiIiL24dgx9t0MMvVStiUlwc2WofSkhKC4uDhiYmJSPabuMBEREbEPQUHsvflPSwhydoYMFlAFKFSoEB4eHkDacUFqCRIRERH7EBDAvpuDoetDcgCaOxcCAjI8xGQyZTg4uiCGoILTpiUiIiIWsbGx/HVzDbB6K1ZAo0aZBqAUJUqUIDw8PM3g6ILYHVZwzkREREQsfv/9d8xmM76+vpTp3h1Mpiwd50gtQeoOExERKYB27twJwP33348piwEIMg5B8fHxALi5uVmpQttTCBIRESmAduzYAUCTJk2yddydQpC7u7sVqssfFIJEREQKGMMw+OWXX4Dsh6CUCRNvD0FxcXGAWoJEREQkHzt16hQRERG4uroSHBycrWPVEiQiIiJ2K6UVqH79+nh6embr2IxCkFqCREREJN/LaVcY/Ncddvny5VTb1RIkIiIi+d4PP/wAQLNmzbJ9bEaLqKolSERERPK1EydOcOLECVxcXGjRokW2jy9evDigliARERGxMxs3bgSgcePGeHt7Z/v4lJag69evc/36dcv2lJYghSARERHJl9asWQNAmzZtcnR8kSJFLEtj3NolpskSRUREJN+6fPmyZTzQo48+mqPnMJlMabrEzGazZe0wtQSJiIhIvrN69WoSExOpWbMm1atXz/HzpISglJaglFYgUEtQrpg6dSr3338/RYoUoXTp0nTt2pUjR46k2scwDCZOnEiZMmXw9PSkRYsWHDp0yEYVi4iIWEdoaCjvvvsunTt3pnnz5vTq1Yu5c+emGZx8JwsWLACgZ8+ed1XP7ZfJp4wHArUE5Ypt27YxdOhQdu3axaZNm0hMTOSRRx4hJibGss+7777L9OnTmTlzJrt378bPz4/WrVtz7do1G1YuIiKSReHhsGVL8lcgKiqKESNGUKVKFcaMGcO3337L9u3bWbZsGc899xzly5fnlVdeITY29o5PfeDAAXbs2IGLiwvPPPPMXZWZWUtQQVpF3sXWBaRYv359qvsLFy6kdOnS7N27l2bNmmEYBjNmzGD8+PGWfs7PPvsMX19flixZwqBBg2xRtoiISNaEhMDAgWA2g5MTR994gy6LFnH48GEAWrRoQbdu3fD19eXI7t18vWoVB0+eZOrUqXz55ZcsWLCA5s2b//d84eFw7BgEBUFAAG+++SYAjz32GP7+/ndVakYtQa6urjg55Zv2k7uWb88kMjIS+C+NpqyD8sgjj1j2cXd3p3nz5paVckVERPKl8PD/AhDwh9lM41df5fDhwwQEBLBp0ya2bNnC8OHD6RkdzesffMCBkydZaTJRtlgxjh8/TosWLXjhhReSL1sPCYHAQGjVCgID2fzSS6xcuRInJydee+21uy739gkTC+KVYZBPQ5BhGIwaNYoHH3yQGjVqABAREQGAr69vqn19fX0tj6UnLi6OqKioVDcREZE8deyYJQAdBx4CLgHB1aqxe/duHn744eT9bglLJqCbYXAoMpIBvXsDMGPGDOrWrMnOAQMsz3fUbKb3tGkADBgwgPvuu++uy7396rCCOEcQ5NMQNGzYMA4ePMjSpUvTPGYymVLdNwwjzbZbTZ06FR8fH8utXLlyVq9XREQkU0FB4OREJNAZ+BeoC2z86iv8/Pz+2++WsJTCx2xm3oABrFu3Dn9/f46cOEFjw6AJ8NjN5zkP1KhYkWk3w9DdUkuQjTz//POsWbOGLVu2EBAQYNme8kNye6vPhQsX0rQO3WrcuHFERkZabqdPn86dwkVERDISEID544/5H/A3UBZYN20axW72dljcDEupODtDlSq0a9eOP//8kz7du+ME7ABWArFAU2DTV1/h5eVllXJvbwm6ceMGAB4eHlZ5/vwi34QgwzAYNmwYK1euZPPmzVSsWDHV4xUrVsTPz49NmzZZtsXHx7Nt2zYaN26c4fO6u7vj7e2d6iYiIpLX5sTH8x3g4ebGN2vX4jdqVNqdAgJg3rzk4APJX+fOTd5Ocjj59MsvCX33XUJMJqYDW5yc2DpvHn716lmt1ttbglKuTitUqJDVvkd+kG+uDhs6dChLlixh9erVFClSxNLi4+Pjg6enJyaTiZEjRzJlyhSCgoIICgpiypQpFCpUiN43+0pFRETyo7CwMMaOHQvA+9OnE9yhQ8Y79+8PbdrA8eNQpYolAN2q3Msv80yvXpnuczdubwlSCMplc+bMAUiz4u3ChQvp27cvAKNHj+b69esMGTKEK1eu0LBhQzZu3EiRIkXyuFoREZGsMQyD5557jujoaB588EEGDx5854MCAu4cbLKyTw7d2hJkGIYlBHl6eubK97OVfBOCDMO44z4mk4mJEycyceLE3C9IRETEChYtWsT69etxd3dnwYIFdjHPTkoISkhIICYmxrKafEFrCcr/74SIiIidOn/+PCNHjgRg4sSJVKtWzbYFZZGnp6flcvhLly4V2O4whSAREZFcMnz4cC5fvkzdunV58cUXbV1OlplMplRdYgW1O0whSEREJBd88803rFixAmdnZ0JCQuxuza1bB0erO0xERESy5OrVqwwZMgRIvqinbt26Nq4o+9JrCVIIEhERkUy9/PLLnDt3jqpVq/L666/bupwcubUlSN1hIiIickc//vgjCxYsACAkJMRuZ1m+tSWooHaH5ZtL5EVEROxaeDgxBw8y8OY8QEOHDuXBBx+0cVE5l15LkEKQiIiIpBYSAgMH8rrZzEmgXPHiTJ061dZV3ZWUlqCLFy8SHR0NKASJiIjIrcLDYeBAfjWbmXFz09yrVykSGQl2vKJByuLkFy5cICEhAYCiRYvasCLr05ggERGRu3HsGPFmM88CZuApoJ3ZnLyulx1LCUERERFcvXoVgGLFitmwIutTS5CIiMjdCAribZOJPw2DUsAHkLz6e5UqNi7s7vj5+QHJs16ndIMVtJYghSAREZG7cPDyZSY7OUFSEh8BJZydYe7cXFvcNK/c2h2WslC5QpCIiIgAyQuM9u3bl4SkJLq2aUOPMWMgKMjuAxBAqVKlMJlMmM1mIiMjAYUgERERuentt99m//79FC9enDmfforpZhdSQeDi4oK/vz9nz561bCtoIUgDo0VERHLg4MGDvPnmmwDMnDnTMoamIAkMDLT8283NzW4nfsyIQpCIiEg2WbrBEhLo1q0bTzzxhK1LyhW3hqBy5cphMplsWI31KQSJiIhk02uvvfZfN9icOQUuHKSoWLGi5d+VKlWyYSW5QyFIREQkGzZt2sQ777wDwPz58y1XURVE999/v+XflStXtmEluUMhSEREJIvOnz/PU089BcDgwYN59NFHbVxR7mrcuDFOTslRoVmzZjauxvp0dZiIiEgWmM1m+vTpw/nz56lRowbTpk2zdUm5ztfXl2XLlpGQkFAgxz0pBImIiGTBhAkT2LBhAx4eHixbtgxPT09bl5QnHn/8cVuXkGvUHSYiInIHX3/9NZMnTwZgwYIF3HfffTauSKxBIUhERCQTf/75J3369AFg1KhR/O9//7NxRWItCkEiIiIZiIiIoHPnzsTExPDQQw9ZrgqTgkEhSEREJB3Xrl2jQ4cOnDp1iipVqrBs2TJcXDSUtiBRCBIREblNQkIC3bt3Z9++fZQqVYr169dTsmRJW5clVqYQJCIicoukpCT69OnDxo0bKVSoEN99912BnChQFIJEREQskpKS6NevH0uXLsXFxYUvv/yS+/39YcsWCA+3dXliZQpBIiJS8ISHZzu4mM1mBgwYwBdffIGzszPLly+n/blzEBgIrVolfw0JycWiJa8pBImISMESEpLt4JKUlMTAgQNZuHAhTk5OLFmyhEcbNICBA8FsTt7JbIZBg9QiVIAoBImISMERHp694BIeTtyGDTzRpQshISE4OTnxxRdf0KNHDzh27L/nSZGUBMeP5+45SJ7RtX4iIlJwZBZcAgJSbw8JIXrAALoZBj8Abi4uLF66lO7duyc/HhQETk6pn8/ZGapUydVTkLyjliARESk4UoLLrdILLuHhXBwwgIduBqDCwDqzme4PPPDfPgEBMG9e8vEpzzN3btowJXZLIUhERAqOLAaXg+vX08Aw+A0oAWwGHjKb03Z19e8PoaHJg6xDQ5PvS4FhMgzDsHUReSkqKgofHx8iIyPx9va2dTkiIpIbwsOTA02VKmkC0FdffUWfp58m9vp1KgHfAdUhOTCFhqqlJ5/Kjb/fagkSEZGCJyAAWrRIFWjMZjOvvfYajz/+OLHXr9P63nvZ7eT0XwBSV5fD0cBoEREp8KKionjyySf59ttvAXjxxRd5++23cYmIyLDFSAo+hSARESnQjh49SpcuXTh8+DDu7u4sWLCAJ598MvnBgACFHwemECQiIgXW999/T69evYiMjCQgIIBVq1YRHBxs67Ikn9CYIBERKXAMw+Cdd96hQ4cOREZG0qRJE/bs2aMAJKkoBImISIESGxtL7969GTt2LIZhMGjQIDZv3oyvr6+tS5N8Rt1hIiJSYISFhdGtWzf279+Pi4sLH330Ec8995yty5J8Kl+1BG3fvp1OnTpRpkwZTCYT33zzTarH+/bti8lkSnV74NbZPUVExGFt27aN4OBg9u/fT6lSpdi8ebMCkGQqX4WgmJgYateuzcyZMzPcp23btpw7d85yW7duXR5WKCIi+Y1hGMyaNYuHH36YixcvUq9ePfbs2UPTpk1tXZrkc/mqO6xdu3a0a9cu033c3d3x8/PLo4pERCQ/i4uLY+jQoYSEhADQu3dv5s+fT6FChWxcmdiDfNUSlBVbt26ldOnSVK1alQEDBnDhwgVblyQiIjZw7tw5WrZsSUhICE5OTrz33nssWrRIAUiyLF+1BN1Ju3btePzxxwkMDOTUqVO89tprtGrVir179+Lu7p7uMXFxccTFxVnuR0VF5VW5IiKSS3777Te6devG2bNnKVq0KMuWLaNNmza2LkvsjF2FoJ49e1r+XaNGDYKDgwkMDOS7777j0UcfTfeYqVOnMmnSpLwqUUREctnnn3/OwIEDiYuL495772X16tVUqVLF1mWJHbK77rBb+fv7ExgYyLFjxzLcZ9y4cURGRlpup0+fzsMKRUTEWpKSknjppZfo06cPcXFxdOnShV27dikASY7ZVUvQ7S5dusTp06fx9/fPcB93d/cMu8pERMQ+XL16lV69erF+/XoAXn31VSZNmoSTk13/X15sLF+FoOjoaI4fP265f+rUKQ4cOEDx4sUpXrw4EydO5LHHHsPf35/Q0FBeeeUVSpYsSbdu3WxYtYiI5KajR4/SuXNnjhw5gqenJ59++ik9evSwdVlSAOSrELRnzx5atmxpuT9q1CgA+vTpw5w5c/jjjz/4/PPPuXr1Kv7+/rRs2ZLly5dTpEgRW5UsIiK5aMOGDfTs2dOyAOrq1aupV6+ercuSAsJkGIZh6yLyUlRUFD4+PkRGRuLt7W3rckREJB2GYTBjxgxeeuklzGYzjRs3ZuXKlcnrf4WHw7FjEBQEAQG2LlXySG78/VZnqoiI5CuJiYkMGTKEUaNGYTab6dev338LoIaEQGAgtGqV/PXmJIkiOaEQJCIi+ca1a9fo3LkzH3/8MSaTiWnTphESEpJ8gUt4OAwcCGZz8s5mMwwalLxdJAfy1ZggERFxXGfOnKFjx44cOHAAT09PlixZQteuXf/b4dix/wJQiqQkOH5c3WKSIwpBIiJicwcPHqR9+/acOXOG0qVL8+2339KgQYPUOwUFgZNT6iDk7AyaJ0hySN1hIiJiUxs2bODBBx/kzJkz3HPPPezatSttAILk1p5585KDDyR/nTtXrUCSY2oJEhERm/n888955plnSEpKokWLFqxcuZJixYplfED//tCmTXIXWJUqCkByV9QSJCIiNjFt2jT69OlDUlISTz75JOsXLKDYgQN3HugcEAAtWigAyV1TCBIRkTxlGAZjx47lpZdeAuDFF1/ks2bNcK9aVZe+S55Sd5iIiOS+mxMcJlasyHOTJxNyM+S8/fbbjO7dG1OFCmkvfW/TRq09kqsUgkREJHeFhMDAgdwwm+kFfAM4OTkxb948+vfvD1u26NJ3sQmFIBERyT03JziMMpvpAmwF3IFlc+fStX//5H106bvYiMYEiYhI7jl2jCtmM61JDkBFgPVA11sDji59FxtRS5CIiOSaiyVK0Bo4AJQANgL10mvl0aXvYgMKQSIikisiIiJ4uHdvDgGlgR+BGpm18gQEKPxInlIIEhGRnLt51RdBQakCzJkzZ2jVqhVHjx6lTJky/Lh4MdVBrTySrygEiYhIzty86guzOXlg87x50L8/YWFhtGrVipMnT1K+fHk2b95M5cqVbV2tSBp3NTD6woULREREWKsWERGxFzev+rp9bp/jP/1E06ZNOXnyJJUrV2b79u0KQJJv5SgEHTx4kPvuuw9/f3/Kli1L2bJlefXVV4mJibF2fSIikh8dO5Zmbp+/k5Jo1q0bp0+fpnr16mzbto3AwEAbFShyZzkKQf3798fX15eff/6Z/fv3M3nyZL7//nuCg4O5cuWKtWsUEZH8JmVun5sOAs2Bc5cuUaNGDbZu3UrZsmVtVp5IVpgMwzCye5CXlxd79+6levXqlm2GYfD444/j4eHBokWLrFqkNUVFReHj40NkZCTe3t62LkdEJP/KYNCzRUgIDBrE3qQkHgEuA3Xr1mXjxo2ULFkyr6uVAi43/n7nqCUovRYfk8nElClTWL16tVUKExERGwoJSV7INLMFTfv3Z9fKlTzk5cVloGHDhmzevFkBSOxGlkNQhw4deOWVV1ixYgXPPfccL7zwAufPn0+1T2RkJMWKFbN6kSIikocyGPRMeHiq3X766Sda/+9/RMbE8OCDD7Jp0yaKFi2a9/WK5FCWL5GvWbMm+/btY+HChZbwU6lSJXr06EGdOnVISkpi4cKFfPDBB7lWrIiI5IF0Bj3fvqDp5s2b6dSpE7GxsbRq1Yo1a9bg5eVlg2JFci5HY4LOnz/P/v37OXDggOV2/PhxnJ2dqVatGgcPHsyNWq1CY4JERO4gPDy5C+z2BU1DQyEggA0bNtC1a1du3LhBmzZtWLVqFZ6enjYrVxxDbvz9ztFkib6+vrRt25a2bdtatl2/fp3ff/+d33//3SqFiYiIjaQsaDpoUHIL0C1LXaxdu5bHHnuM+Ph4OnbsyJdffomHh4etKxbJkRy1BNkztQSJiGRReHiqBU1XrVpFz549SUhIoFu3bixbtgw3NzdbVykOIt+0BImIiAO4ZUHTFStW0Lt3b5KSkujZsydffPEFrq6uNi5Q5O7c1bIZIiJS8C1atIhevXqRlJTEU089xaJFixSApEBQCBIRkQx98sknPP3005jNZp555hkWLlyIi4s6EaRgUAgSEZF0zZ49m/79+2MYBoMHD2b+/Pk4OzvbuiwRq1EIEhGRVAzDYMqUKQwdOhSAESNGMGvWLJyc9CdDChb9RIuIiIVhGIwZM4bx48cD8Prrr/PBBx9gMplsXJmI9aljV0REAEhKSrJ0ewFMmzaNUaNG2bgqkdyjECQiIsTHx/P000+zfPlynJycmDdvHv3797d1WSK5SiFIRMTBxcbG8vjjj7Nu3TpcXV1ZvHgxjz/+uK3LEsl1CkEiIg4sMjKSzp07s337djw9PVm5cmWqJZFECjKFIBERB3X27FnatWvHwYMH8fb25rvvvuPBBx+0dVkieUYhSETEAR0+fJi2bdsSFhaGr68v33//PXXr1rV1WSJ5SpfIi4g4mJ07d9KkSRPCwsIICgpix44dCkDikBSCREQcyJo1a3jooYe4fPkyDRo04JdffqFSpUq2LkvEJhSCREQcxPz58+nWrRvXr1+nffv2bN68mVKlStm6LBGbUQgSESngDMNg4sSJDBw40LIQ6urVq/Hy8rJ1aSI2la9C0Pbt2+nUqRNlypTBZDLxzTffpHo85Re5TJkyeHp60qJFCw4dOmSbYkVE7EBiYiKDBg1i0qRJALz66qssWLBAK8GLkM9CUExMDLVr12bmzJnpPv7uu+8yffp0Zs6cye7du/Hz86N169Zcu3YtjysVEcmnwsNhyxYIDyc2NpbHHnuM+fPn4+TkxJw5c3jzzTe1DpjITfnqvwLt2rWjXbt26T5mGAYzZsxg/PjxPProowB89tln+Pr6smTJEgYNGpSXpYqI5D8hITBwIJjNXDKZ6FSpEjtPnMDDw4OlS5fStWtXW1cokq/kq5agzJw6dYqIiAgeeeQRyzZ3d3eaN2/Ojh07MjwuLi6OqKioVDcRkQInPNwSgMKAJobBzhMnKObjw6ZNmxSARNJhNyEoIiICAF9f31TbfX19LY+lZ+rUqfj4+Fhu5cqVy9U6RURs4tgxMJs5CDQCjgDlgJ9nzNAs0CIZsJsQlOL2vmzDMDLt3x43bhyRkZGW2+nTp3O7RBGRvBcUxFaTiabAOaAGsMPJiXsfftjGhYnkX/lqTFBm/Pz8gOQWIX9/f8v2CxcupGkdupW7uzvu7u65Xp+IiC2t2LGDp5ydiU9MpCmw2smJYvPmQUCArUsTybfspiWoYsWK+Pn5sWnTJsu2+Ph4tm3bRuPGjW1YmYiIbX300Uc88cQTxCcm8lj79mzcsIFiYWHQv7+tSxPJ1/JVS1B0dDTHjx+33D916hQHDhygePHilC9fnpEjRzJlyhSCgoIICgpiypQpFCpUiN69e9uwahER2zAMg3HjxvHOO+8AMHToUD788EOcnZ1tXJmIfchXIWjPnj20bNnScn/UqFEA9OnTh08//ZTRo0dz/fp1hgwZwpUrV2jYsCEbN26kSJEitipZRMQmEhISePbZZ/n8888BeOuttxg3blzW5gAKD08eSB0UpO4ycWgmwzAMWxeRl6KiovDx8SEyMhJvb29blyMikm3R0dF0796dDRs24OzszPz58+nXr1/WDr5lLiGcnGDePHWbiV3Ijb/fCkEiInbkwoULdOjQgT179lCoUCG+/PJL2rdvn7WDw8MhMDA5AKVwdobQULUISb6XG3+/7WZgtIiIQwsP58SiRTRp2JA9e/ZQokQJNm/enPUABJa5hFJJSoJbxmKKOJJ8NSZIRETSERLC3gEDaG8YXAAqlCzJhl9+oWrVqtl7nqCg5C6w21uCqlSxarki9kItQSIi+Vl4OJsGDKDFzQBUB9h5+TJVCxXK/nMFBCSPAUq5eszZGebOVVeYOCy1BImI5GOLZs+mn2GQCDwErAS8zebkLqychJf+/aFNm+Tjq1RRABKHphAkIpIPGYbBtGnTeHnqVAB6AZ8CbnD3XVgBAQo/Iqg7TEQk3zGbzbz44ou8/PLLAIxq3ZpFTk7/BSB1YYlYhVqCRERySw4mJYyLi6Nv374sW7YMgPfff58XX3wx+bnUhSViVQpBIiK5ITuTEt4MS1F+fnQbNozNmzfj6urKwoUL+d///pe8j7qwRKxOkyWKiFhbdiYlvBmWzpnNtAN+BwoXLszKlStp3bp1HhYtkr9pskQREXuQ1UkJw8Nh4ECOmM00JjkA+QLbVqxQABLJAwpBIiLWljIp4a3Su6Lr2DF+NZtpAoQCVYAdQD1PzzwpU8TRKQSJiFhbFicl/O6ff2gJXALuB34BKmkGZ5E8o4HRIiK54Q6TEn7yyScMHDiQJKAt8CVQWJe/i+QphSARkdySzhVdhmEwefJkXn/9dQD69OnD/AkTcA0L0+XvInlMIUhEbCcH8+jYs4SEBAYPHkxISAgAY8eOZcqUKZhMJqhY0cbViTgejQkSEdsICUm+jLxVq+SvN4NBQXXt2jU6d+5MSEgITk5OzJkzh6lTpyYHIBGxCc0TJCJ5Lzvz6BQA586do0OHDuzfv59ChQqxbNkyOnXqZOuyROyK5gkSkYIhq/PoFAB///03jRo1Yv/+/ZQqVYqtW7cqAInkEwpBIpL3sjqPjp3bsGEDjRo1IiwsjKCgIHbu3Mn9999v67JE5CaFIBHJe1mcR8deGYbB9OnTad++PZGRkTRp0oQdO3ZQuXJlW5cmIrfQ1WEiYht3mEfHXt24cYPnnnuOzz77DID+/fsza9Ys3N3dbVyZiNxOIUhEbKeArYz+zz//0KNHD3799VecnZ354IMPGDZsmK4AE8mnFIJERKxgzZo19O3blytXrlCsWDFWrFjBww8/bOuyRCQTGhMkInIX4uPjGTVqFF26dOHKlSvcf//97N27VwFIxA4oBImI5NAff/xBo0aN+OCDDwAYOXIkP//8MxU1+7OIXVAIEhHJpoSEBCa//DL169Vj3759FCtWjFWrVvHBBx/g5uZm6/JEJIs0JkhEJBt++eUXnu/dm/3//ANAZ+Dj8ePx79rVpnWJSPapJUhECobwcNiyJflrrjx9OE8++SQPPvgg+//5h+LAYuAbwH/MmFz7viKSexSCRMT+5eJirOfOnWPEiBFUqVKFxYsXYzKZGAD8DfQGTFBgl/wQKegUgkTEvoWHw8CB/61FZjbDoEF33TLzxx9/8Nxzz1GpUiX+7//+j7i4OJo2bcrutWuZ5+RE6Vt3LoBLfog4AoUgEbFvVlyM9dKlSyxYsIBmzZpRq1Yt5s6dy40bN2jcuDGbNm1i27Zt1G/fvkAv+SHiSDQwWkTsW8pirLcGoSy2zCQmJrJ37162bNnCDz/8wNatW0lKSrr5FM5069aNoUOH0rx589SzPhfQJT9EHI1CkIjkG7GxsVy8eJGLFy8SExNDfHw88fHxJCQk4OzsjJubG25ubri6ulq+urq64vrmm7i+9hquZjOuTk64Tp8OXl7EnjlDbGwssbGxXLhwgTN//MGZQ4c4ER3NwRMnOHToEDdu3EhVQ926dXn88cd5+umnKVu2bMbFFrAlP0QckckwDMPWReSlqKgofHx8iIyMxNvb29bliDikM2fOsGvXLvbt28fRo0c5duwYx48fJyYmJs9rKVq0KC1atKBly5a0a9eOoKCgPK9BRO4sN/5+qyVIRHJdZGQkGzZsYO3atWzdupXTp09nuK+bmxslSpTA29vb0vLj4uJCUlISCQkJltahW1uJEhISSExMtHxN4ezsjJeXF57u7pT491/KAgFAIFDTyYlaW7dSqUkTnJw0PFLEESkEiUiuiImJYeXKlXzxxRds2bIlVThxcnKiZs2aNGzYkHvuuYegoCCqVKlCmTJlKFy48F2tum4YBomJiRiGgaura/JzbdmSfPn8rczm5AHUCkAiDkshSESs6sCBA8ycOZPly5cTHR1t2V69enU6duxI27ZtadiwIYULF87aE4aHJ18BFhSUpTE4JpMJV1fX1BvvYvC0iBRcCkEictfMZjPr169n2rRpbN682bK9UqVK9O3bl169elElJ4EjJOS/OYCcnJIvTe/fP/vPExCQfOygQcmtP7qsXUTQwGhblyNi1wzDYO3atbz++uscOHAASB6H8/jjjzN48GCaNm2a866t8PDk2Z9vb70JDc15eAkP12XtInZKA6NFJF8wDIMffviBV199ld9++w2AwoULM3DgQIYPH05gYODdf5PMJkHMaYDJymXt2ex+ExH7pRAkItly/PhxRowYwbp16wAoVKgQzz//PC+//DIlSpSw3jeyxTgea3W/iYhdsKvLIiZOnIjJZEp18/Pzs3VZIg4hNjaW1157jfvuu49169bh6urKiBEjOHnyJG+//bZ1AxD8N44nr5anyKU1yEQk/7K7lqD77ruPH374wXLfOeUDUkQydhddPIZhsHr1akaOHElYWBgArevX56Np06jWvLnVv18qebk8RW50v4lIvmZXLUEALi4u+Pn5WW6lSpWydUki+VtISPIA41atkr+GhGT50GPHjtG+fXu6detGWFgY5YoX5yuTiQ1791KtVav0n+suvl+6AgKgRYvcDyIp3W+30mX0IgWa3YWgY8eOUaZMGSpWrMgTTzzByZMnM90/Li6OqKioVDcRh5HDLp6YmBjGjx9PjRo1WL9+PW5ubrwybBh/X7nCY4aBKaPnsucupbzufhMRm7OrENSwYUM+//xzNmzYwPz584mIiKBx48ZcunQpw2OmTp2Kj4+P5VauXLk8rFjExjLr4kmHYRh8/fXX3HPPPUyZMoX4+Hjatm3Ln3/+yVuPPorX7TNq3P5c2fx++U7//smX4G/ZkvxVg6JFCjS7nicoJiaGypUrM3r0aEaNGpXuPnFxccTFxVnuR0VFUa5cOc0TJI4hG3PtHDlyhOeff55NmzYBEBgYyIwZM+jSpUvyXD9Zea7cmNtHRITcmSfIrlqCbufl5UXNmjU5duxYhvu4u7vj7e2d6ibiMLLQxRMdHc3YsWOpWbMmmzZtwt3dnddee42//vqLrl27/jfZYVa6i9SlJCJ2xK5bguLi4qhcuTIDBw7k9ddfz9IxmjFaHFI6MyUbhsGSJUsYPXo0Z8+eBaB9+/Z8+OGHmS9xkZVZlzUzs4hYmcPPGP3SSy/RqVMnypcvz4ULF5g8eTJRUVH06dPH1qWJ5G+3zZS8b98+hg8fzi+//AIkr/H1wQcf0KlTpzsvc5GVWZezso+IiI3ZVQgKDw+nV69eXLx4kVKlSvHAAw+wa9cu60zRL2IN+XzJhQsXLvDaa68xf/58DMOgUKFCjB8/nlGjRuHh4WHr8kRE8pRdhaBly5bZugSRjOXjJRciIyN5//33+eCDD4iJiQGgV69evPvuuwTkw7AmIpIX7HpMUE5oTJDkinx6VVRsbCyzZs3i7bff5vLlywAEBwczffp0mjZtarO6RESyy+HHBInkW/lsyYXLly8za9YsPvroI/79918A7rnnHiZPnky3bt3SH/eTz7vyRESsTSFIxBqys+J5LoaNo0ePMnv2bBYsWGDp9qpQoQITJkzgqaeeynitvXzclSciklvsep4gkXwjq/PjWHtdLZK7vBYtWkTz5s2pVq0aH374ITExMdSpU4clS5Zw7Ngx+vbtm3EAsuelLkRE7oLGBIlYU2bz41hx3FBUVBTfffcdXy9axLoff+T6zVnRnZycaN++PcOHD+fhhx++8+XukLxERKtW6W9v0SJbdYmI5BaNCRLJ7zKbH+cuxg1dunSJffv2sXXrVjZv3szu3btJSkqyPF4J6Ne1K/1mzqRs2bLZqzk7XXkiIgWIQpBIXskkbBiGQVxcHGfPnuXUqVPJt99/56/9+9kXGso/Z86kebpqwGNAd6AOYPr2W/joo+zXldKVN2hQcijTUhci4iAUgkRyyDAMrl27xtWrV4mMjLR8jYyMJDo6mmvXrhEdHW25Xbt2jehatYg+cIBrQDQQ7ePDtZo1iY6OJjExMdPvV6lSJRo1asRDDz1EKw8PAnv3Tr3D3VyN1r8/tGmjpS5ExKEoBIlkIjo6msOHD/P3339z+PBhTp48yZkzZzh79ixnzpzhxo0bd/cNbs7dk8LDw4MKAQFUPH6cCkAQUA+o4+SEz7ZtqVdrt3YXlpa6EBEHoxAkclN8fDz79u3j119/ZdeuXfz666+cOnXqjse5ublRtGhRfHx88PHxwdvbG29vbwoXLkzhwoUpUqRImn+nt61w4cJ4e3tj2ro17UBlszl1K4+6sERE7ppCkDi048ePs2HDBjZs2MCWLVuIjo5Os0/p0qWpXr0699xzD0FBQQQEBFC2bFnKli2Ln58fnp6e1i0qqwOV1YUlInJXFIJym2bhtZ10XnvDMPjjjz9YsWIFX375JUePHk11SIkSJWjUqBENGzbkgQceoG7dupQoUSJv685OK4+6sEREckwhKDdpFt7ss1ZovO21D50yhU+vX2fZsmUcOXLEspurqytNmjShTZs2tGnThtq1a+PklA/mEFUrj4hIrtNkibklny6oma9ZKzTefO3jzGa+AUKAH4CUH3R3d3fatWtHjx496NixI0UiI+8cvNSiJyJiU7nx9zsf/Je3gMpsYjxJy4pLN5zYupVRZjNlgSeATSQHoIfr1+eLL77gwoULrFq1il69elFkxYo7L2ORC0tdiIiI7aklKLeoJSh77nLpBsMw+Omnn/jggw9YvXo1KT/WZYF+wDNOTlQMC0v92mflPdL7KCKSL6glyJ5kdUFNSZZyRdStsjDvTXx8PIsXLyY4OJjmzZvzzTffYBgGbWvUYK2TE2HAm87OVJw3L+1rn5XWOrXoiYgUWBoYnZs0uDXrsjnvzeXLl5k7dy4zZ87k7NmzQPJEg08//TQjRozg3nvvzXwxU8japehaV0tEpMBSCMptuoQ567IQGo8ePcqMGTP47LPPiI2NBcDPz49hw4YxaNAgSpYs+d/Od3rtsxK8NCmhiEiBpTFBku8ZhsHmzZv54IMP+O677yzb61SpwgtDh9Jz8GDc3d1z/g3u1GKU1X1ERCTX5Mbfb7UESd7J5mXmN27cYOnSpcyYMYODBw8CYDKZ6FS7Ni/8/jvNjx/H9OKLUKTI3c2/lJXWOrXoiYgUOBoYLXkjG5eZnz9/nkmTJhEYGMgzzzzDwYMH8fLyYtiwYRzZto3VBw/SwjAwwV1dSi8iIo5NLUGS+zKaA6hNm1TLWfz888/MnTuXr776iri4OADKlSvH888/z7PPPkuxYsWSL5nP6GottdSIiEg2KAQ5qrycATmTy8wveXry+eefM2/ePA4fPmx5+IEHHuCFF17g0UcfxcXllh9TXa0lIiJWohBkT3JpXa1cX9PstuByA/jeyYml06axZtMmS6uPl5cXvXv3ZuDAgQQHB6f/XLpaS0RErERXh9kLK6+rldczIMfPncu2IUNYZjbzNRB5y2N16tRh0KBB9O7dO+vvia7WEhFxKLo6zFFlYUxNlmU2A7KVw8SFCxf4/vvvWbt2LRs3biTqlu9btmxZevXqRa9evahbty4mkyl7T66rtURE5C4pBNkDawaXXBxTc/bsWbZv385PP/3ETz/9xB9//JHq8dKlS9O1a1d69+5N06ZNcbp9mQwREZE8pBBkD6wZXKwwpubatWucPHmSw4cPc+DAAX7//XcOHDjAuXPn0uxbr149OnToQMeOHQkODlbwERGRfEMhKB9KSkri0qVLREVFERkZSWRkJNFDhpA4ezZJZjNmk4mkZ57BvHUrLi4uuLq6prndut3FxQWTyYSTk1PyrWlTTFu24PTPP5gqVCC+RAmu79/P9evXLbfo6Gj+/fffVLfTp09z8uRJLl68mG7dTk5O1K5dm2bNmtGsWTMefPBBSpcuncevnoiISNZoYLSNGIZBeHg4v//+OwcPHuTQoUP8888//PPPP5w9e5bExESb1ZYVJUqUoEqVKtSpU4fatWtTu3ZtatasSZEiRWxdmoiIFEAaGJ1XcmkOnbCwMDZt2sSWLVvYunWrZfXzjBQpUgQfHx+8vb0pUqQILi4uODs74+zsbGnVSUxMJCEhIdOb2WzGbDZjGIbl37fed3Nzw9PTEw8PDzw9PfH09MTLy4tS0dGU2ruXUkApk4kyzz1HpYEDqVixIj4+PlZ7XURERGxBIeh2Vp5DJywsjC+//JIVK1awe/fuVI+5uLhQvXp1ateuTY0aNahUqRLlypWjfPny+Pn54ezsnLNvao0Ql3IpfQrDSH4tXnkFFIBERKQAUAi6lZUuRU9MTOS7775j9uzZbNy40bLdycmJRo0a0apVK1q2bMkDDzyAp6endc/BWiEuO1ek5eXs0yIiIlbiuCHozBm4vU/xLi9Fv3HjBnPnzmXatGmcPn0aSF71vHnz5vTo0YNHH30UX19fa51BWtacTyirV6Tl9ezTIiIiVuKw1ysfuffetCuZp/zhv1UWLkWPi4tj1qxZVK5cmZEjR3L69GlKlizJmDFjOHHiBFu2bGHw4MG5G4Ag8xCXXSmX0qd0yaV3KX1GoUsruouIiB1w2BA0EdL+wc7KH/5bxMfHM2/ePIKCghg2bBhnz56lXLlyzJ07l9OnT/P2229TsWLF3D6V/+QwxGWof//k5TS2bEn+ensLjzVDl4iISB5z2O6wdcCqpCS63d7V1b9/cvdRJutSJSQk8MUXX/Dmm28SGhoKQJkyZRg/fjz9+/fH3d09b07idrmxuGhmy1NoRXcREbFjDhuCAPoDtV1dqXT7Axn84U9ISGDp0qW88cYbnDhxAgBfX1/GjRvHoEGD8PDwyHkx1hpcnIUQZzVa0V1EROyYw06WWB/YC1SsWJEffviBSpXSRCGLuLg4PvvsM95++21OnToFQKlSpRgzZgyDBw+mUKFCd1eUvQ8u1oruIiKSy3JjskSHDUF/b95MxwEDOHHiBD4+PkyaNIknn3ySEiVKAMnB59dff2XVqlV88cUXXLp0CUgOPy+++CJDhw6lcOHCd19Qynw8t3cphYYqUIiIiNykEGQFt76I165d4/HHH2fnzp1A8jw+AQEBuLi4cObMGeLi4izHBQQE8NJLLzFgwIC7b/m51ZYt0KpV+ttbtLDe9xEREbFjuRGC7PLqsNmzZ1OxYkU8PDyoX78+P/30U46ep2zZsmzbto05c+ZQq1YtzGYz//zzDydPniQuLo7SpUvTq1cvvvvuO0JDQxkxYoR1AxBY/4ouERERyRK7awlavnw5Tz31FLNnz6ZJkybMnTuXBQsW8Ndff1G+fPk7Hp9Zkjx79iynT58mMTGRMmXKUKFCBUwmU26dyn9CQtIOLranMUEiIiK5TN1hQMOGDalXrx5z5syxbLvnnnvo2rUrU6dOvePx+WUV+TQ0uFhERCRDDr+KfHx8PHv37mXs2LGptj/yyCPs2LEj3WPi4uJSje2JiorK1RpzLLP5eERERMTq7GpM0MWLF0lKSkqz/ISvry8RERHpHjN16lR8fHwst3LlyuVFqSIiIpLP2VUISnH7OB3DMDIcuzNu3DgiIyMtt5SFTUVERMSx2VV3WMmSJXF2dk7T6nPhwoUMFyd1d3e33TIWIiIikm/ZVUuQm5sb9evXZ9OmTam2b9q0icaNG9uoKhEREbFHdtUSBDBq1CieeuopgoODadSoEfPmzeOff/7hueees3VpIiIiYkfsLgT17NmTS5cu8cYbb3Du3Dlq1KjBunXrCAwMtHVpIiIiYkfsbp6gu5Vv5wkSERGRDGnZDBERERErUQi6G+HhyQudhofbuhIRERHJJoWgnAoJgcDA5BXgAwOT74uIiIjdUAjKifBwGDgQzObk+2Zz8gKoahESERGxGwpBOXHs2H8BKEVSUvICqCIiImIXFIJyIigInG576Zydk1eAFxEREbugEJQTAQEwb15y8IHkr3PnahV4ERERO2J3kyXmG/37Q5s2yV1gVaooAImIiNgZhaC7ERCg8CMiImKn1B0mIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHZFchqEKFCphMplS3sWPH2rosERERsUMuti4gu9544w0GDBhguV+4cGEbViMiIiL2yu5CUJEiRfDz87N1GSIiImLn7Ko7DOCdd96hRIkS1KlTh7feeov4+HhblyQiIiJ2yK5agkaMGEG9evUoVqwYv/32G+PGjePUqVMsWLAgw2Pi4uKIi4uz3I+MjAQgKioq1+sVERER60j5u20YhvWe1LCxCRMmGECmt927d6d77FdffWUAxsWLF+/q+XXTTTfddNNNN/u4nThxwmoZxGQY1oxU2Xfx4kUuXryY6T4VKlTAw8MjzfYzZ84QEBDArl27aNiwYbrH3t4SdPXqVQIDA/nnn3/w8fG5u+LtSFRUFOXKleP06dN4e3vbupw8o/PWeTsCnbfO2xFERkZSvnx5rly5QtGiRa3ynDbvDitZsiQlS5bM0bH79+8HwN/fP8N93N3dcXd3T7Pdx8fHoX54Unh7e+u8HYjO27HovB2Lo563k5P1hjPbPARl1c6dO9m1axctW7bEx8eH3bt388ILL9C5c2fKly9v6/JERETEzthNCHJ3d2f58uVMmjSJuLg4AgMDGTBgAKNHj7Z1aSIiImKH7CYE1atXj127dt3187i7uzNhwoR0u8gKMp23ztsR6Lx13o5A522987b5wGgRERERW7C7yRJFRERErEEhSERERBySQpCIiIg4JIUgERERcUgFMgTNnj2bihUr4uHhQf369fnpp58y3X/btm3Ur18fDw8PKlWqxMcff5xHlVpXds575cqVtG7dmlKlSuHt7U2jRo3YsGFDHlZrPdl9v1P88ssvuLi4UKdOndwtMJdk97zj4uIYP348gYGBuLu7U7lyZT755JM8qtZ6snveixcvpnbt2hQqVAh/f3/69evHpUuX8qjau7d9+3Y6depEmTJlMJlMfPPNN3c8piB8pmX3vAvKZ1pO3u8U9vyZlpPztsZnWoELQcuXL2fkyJGMHz+e/fv307RpU9q1a8c///yT7v6nTp2iffv2NG3alP379/PKK68wfPhwvv766zyu/O5k97y3b99O69atWbduHXv37qVly5Z06tTJMgu3vcjueaeIjIzk6aef5qGHHsqjSq0rJ+fdo0cPfvzxR0JCQjhy5AhLly6levXqeVj13cvuef/88888/fTT9O/fn0OHDvHll1+ye/dunn322TyuPOdiYmKoXbs2M2fOzNL+BeUzLbvnXVA+07J73ins/TMtJ+dtlc80q61Clk80aNDAeO6551Jtq169ujF27Nh09x89erRRvXr1VNsGDRpkPPDAA7lWY27I7nmn59577zUmTZpk7dJyVU7Pu2fPnsarr75qTJgwwahdu3YuVpg7snve33//veHj42NcunQpL8rLNdk97/fee8+oVKlSqm3/93//ZwQEBORajbkJMFatWpXpPgXlM+1WWTnv9NjjZ9qtsnPe9v6ZdqusnLe1PtMKVEtQfHw8e/fu5ZFHHkm1/ZFHHmHHjh3pHrNz5840+7dp04Y9e/aQkJCQa7VaU07O+3Zms5lr165RvHjx3CgxV+T0vBcuXMiJEyeYMGFCbpeYK3Jy3mvWrCE4OJh3332XsmXLUrVqVV566SWuX7+eFyVbRU7Ou3HjxoSHh7Nu3ToMw+D8+fN89dVXdOjQIS9KtomC8JlmDfb4mZZT9v6ZlhPW+kyzmxmjs+LixYskJSXh6+ubaruvry8RERHpHhMREZHu/omJiVy8eDHTxVnzi5yc9+2mTZtGTEwMPXr0yI0Sc0VOzvvYsWOMHTuWn376CRcX+/zxz8l5nzx5kp9//hkPDw9WrVrFxYsXGTJkCJcvX7abcUE5Oe/GjRuzePFievbsyY0bN0hMTKRz58589NFHeVGyTRSEzzRrsMfPtJwoCJ9pOWGtz7QC1RKUwmQypbpvGEaabXfaP73t+V12zzvF0qVLmThxIsuXL6d06dK5VV6uyep5JyUl0bt3byZNmkTVqlXzqrxck53322w2YzKZWLx4MQ0aNKB9+/ZMnz6dTz/91K5agyB75/3XX38xfPhwXn/9dfbu3cv69es5deoUzz33XF6UajMF5TMtp+z9My2rCtpnWnZY6zOtQMXGkiVL4uzsnOZ/hRcuXEjzP6MUfn5+6e7v4uJCiRIlcq1Wa8rJeadYvnw5/fv358svv+Thhx/OzTKtLrvnfe3aNfbs2cP+/fsZNmwYkPyLZBgGLi4ubNy4kVatWuVJ7XcjJ++3v78/ZcuWxcfHx7LtnnvuwTAMwsPDCQoKytWarSEn5z116lSaNGnCyy+/DECtWrXw8vKiadOmTJ48uUC2ihSEz7S7Yc+fadlVUD7TcsJan2kFqiXIzc2N+vXrs2nTplTbN23aROPGjdM9plGjRmn237hxI8HBwbi6uuZardaUk/OG5P8t9e3blyVLltjlGInsnre3tzd//PEHBw4csNyee+45qlWrxoEDB2jYsGFelX5XcvJ+N2nShLNnzxIdHW3ZdvToUZycnAgICMjVeq0lJ+cdGxuLk1PqjzlnZ2fgv9aRgqYgfKbllL1/pmVXQflMywmrfabd1bDqfGjZsmWGq6urERISYvz111/GyJEjDS8vLyM0NNQwDMMYO3as8dRTT1n2P3nypFGoUCHjhRdeMP766y8jJCTEcHV1Nb766itbnUKOZPe8lyxZYri4uBizZs0yzp07Z7ldvXrVVqeQI9k979vZ65UU2T3va9euGQEBAUb37t2NQ4cOGdu2bTOCgoKMZ5991lankCPZPe+FCxcaLi4uxuzZs40TJ04YP//8sxEcHGw0aNDAVqeQbdeuXTP2799v7N+/3wCM6dOnG/v37zfCwsIMwyi4n2nZPe+C8pmW3fO+nb1+pmX3vK31mVbgQpBhGMasWbOMwMBAw83NzahXr56xbds2y2N9+vQxmjdvnmr/rVu3GnXr1jXc3NyMChUqGHPmzMnjiq0jO+fdvHlzA0hz69OnT94Xfpey+37fyl4/MAwj++f9999/Gw8//LDh6elpBAQEGKNGjTJiY2PzuOq7l93z/r//+z/j3nvvNTw9PQ1/f3/jf//7nxEeHp7HVefcli1bMv1dLaifadk974LymZaT9/tW9vqZlpPztsZnmskwCmibsIiIiEgmCtSYIBEREZGsUggSERERh6QQJCIiIg5JIUhEREQckkKQiIiIOCSFIBEREXFICkEiIiLikBSCRERExCEpBImIiIhDUggSERERh6QQJCIFwhtvvEHNmjXx8vLC19eXwYMHk5CQYOuyRCQfc7F1ASIid8swDJKSkpg7dy5ly5blr7/+4umnn6ZWrVoMHjzY1uWJSD6lBVRFpEDq3bs3pUqV4sMPP7R1KSKST6k7TETsXlhYGMOGDaNGjRoUK1aMwoULs2LFCgICAmxdmojkYwpBImLXLl68SIMGDbh48SLTp0/n559/ZufOnTg7O1OnTh1blyci+ZjGBImIXVu3bh2JiYksXboUk8kEwKxZs4iPj1cIEpFMKQSJiF0rXrw4UVFRrFmzhnvvvZdvv/2WqVOnUrZsWUqVKmXr8kQkH9PAaBGxa4ZhMHjwYJYsWYKnpydPPvkkN27cICwsjLVr19q6PBHJxxSCRERExCFpYLSIiIg4JIUgERERcUgKQSIiIuKQFIJERETEISkEiYiIiENSCBIRERGHpBAkIiIiDkkhSERERBySQpCIiIg4JIUgERERcUgKQSIiIuKQFIJERETEIf0/5+bBf4sB/u8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeI0lEQVR4nO3dd3xN9/8H8Ne9GTeRRIjIEkIlVo3aGlQoIvYq6lerIVGraItUzbaiWr6lWqOCVqm0itKaJYIKEqNqlBjBRYyQLYnc+/n9EffKzZJxb+56PR+P+4ice87N+9yb3PvyWUcihBAgIiIiMjNSfRdAREREpA8MQURERGSWGIKIiIjILDEEERERkVliCCIiIiKzxBBEREREZokhiIiIiMwSQxARERGZJYYgIiIiMksMQaRXfn5+8PPz03cZpTZy5EjY29sXa9+aNWti5MiROq1HIpFg7ty5Ov0ZL5Oeno65c+fi0KFDeq3DWBw4cAAtWrSAnZ0dJBIJtm/fjvXr10MikSAuLk6936ZNm/D111/rpIZPPvkENWrUgKWlJSpVqlTi40eOHImaNWtqvS5DM3r0aDRs2BCVKlWCra0t6tSpg48++giPHj0qcP+jR4+ie/fuqFy5MmxtbeHj44NPP/20nKumoljquwAyb999952+Syg327ZtQ8WKFfVdhs6lp6dj3rx5AGDUAbc8CCEwaNAg1KlTBzt27ICdnR3q1q2L7OxsREVFwd3dXb3vpk2bcP78eUyePFmrNfz+++/4/PPPMXPmTAQEBEAmk2n18U1JWloagoKC4O3tDRsbG8TExODzzz/Hrl27cObMGVhbW6v33bRpE4YNG4ZBgwbhxx9/hL29Pa5du4a7d+/q8QwoL4Yg0qsGDRrou4Ry07RpU32XQFr09OlT2NjYQCKRlPox7t69i8ePH6Nfv3548803Ne6rWrVqWUsslvPnzwMAJk2aBBcXl3L5mdqijdegJH7++WeN7zt16gQHBweMGzcOR48eRadOnQAAd+7cQVBQEIKDgzX+o9exY8dyqZOKj91hVGxz586FRCLBhQsX8Pbbb8PR0RGurq549913kZSUpLFvRkYGQkJCUKtWLVhbW6NatWoYP348EhMTNfYrqDtsxYoVaNKkCezt7eHg4IB69erh448/BgDExcXB0tISoaGh+eo7fPgwJBIJfv311yLPIzExER988AFeeeUVyGQyuLi4oHv37vjvv/8AAIcOHYJEIsnXnRMXFweJRIL169fne8wLFy7gzTffhJ2dHapWrYoJEyYgPT1dY5+CusNeVos2xMfHIzg4GJ6enrC2tkatWrUwb948ZGdna+w3b948tG7dGk5OTqhYsSKaNWuGsLAw5L3G8sGDB+Hn54cqVarA1tYWNWrUwIABA5Ceno64uDj1h/e8efMgkUggkUhe2g2Ynp6ODz/8ELVq1YKNjQ2cnJzQokWLfB8669evR926dSGTyVC/fn38+OOP+bpiSvL6xcTEYMiQIahZsyZsbW1Rs2ZNvP3227h582a+nyuRSLBv3z68++67qFq1KipUqIDMzEwAQHh4OF5//XXY2dnB3t4e/v7+OHPmTJHnPHfuXHh6egIApk+fDolEoj6PvN1hfn5++PPPP3Hz5k31c/qyD36lUolFixahXr166t+t4cOHQy6Xq/epWbMmPvnkEwCAq6trsbpTC3oNCpKVlYXPPvtM/fOrVq2KUaNG4eHDhxr7ZWZm4oMPPoCbmxsqVKiAN954A6dOncr396Kt1yAmJga9e/eGk5MTbGxs0LRpU/zyyy9FnnNRVL/vlpYv2hTWrFmDtLQ0TJ8+vdSPS+WDLUFUYgMGDMDgwYMRGBiIf//9FyEhIQCAtWvXAshp4u/bty8OHDiAkJAQtG/fHufOncOcOXMQFRWFqKioQpvcN2/ejHHjxmHixIn46quvIJVKcfXqVVy8eBFAzpt27969sXLlSkybNg0WFhbqY5cvXw4PDw/069ev0NpTUlLQrl07xMXFYfr06WjdujVSU1Nx+PBh3Lt3D/Xq1Svx8/Hs2TN0794dwcHBmDFjBo4dO4bPPvsMN2/exM6dO8tcy8iRI/HDDz/gxo0bJR53ER8fj1atWkEqlWL27NmoXbs2oqKi8NlnnyEuLg7r1q1T7xsXF4fg4GDUqFEDAHD8+HFMnDgRd+7cwezZs9X79OjRA+3bt8fatWtRqVIl3LlzB3v27EFWVhbc3d2xZ88edOvWDYGBgRg9ejSAl7dqTJ06FRs2bMBnn32Gpk2bIi0tDefPn0dCQoJ6n/Xr12PUqFHo06cPFi9ejKSkJMydOxeZmZmQSkv3/7m4uDjUrVsXQ4YMgZOTE+7du4cVK1agZcuWuHjxIpydnTX2f/fdd9GjRw9s2LABaWlpsLKywoIFC/DJJ59g1KhR+OSTT5CVlYUvv/wS7du3x8mTJwtt7Rw9ejSaNGmC/v37Y+LEiRg6dGihfxffffcdgoKCcO3aNWzbtq1Y5/bee+9h9erVmDBhAnr27Im4uDjMmjULhw4dwunTp+Hs7Ixt27bh22+/RVhYGPbs2QNHR0d1MCtIcV8DpVKJPn364MiRI5g2bRp8fX1x8+ZNzJkzB35+foiJiYGtrS0AYNSoUQgPD8e0adPQqVMnXLx4Ef369UNycnKBNZTlNYiIiEC3bt3QunVrrFy5Eo6Ojti8eTMGDx6M9PT0Yo/Zy87ORmZmJs6ePYtZs2ahXbt2aNu2rfr+w4cPw8nJCf/99x/69OmD8+fPw8nJCf3798eiRYvMolvcaAiiYpozZ44AIBYtWqSxfdy4ccLGxkYolUohhBB79uwpcL/w8HABQKxevVq9rUOHDqJDhw7q7ydMmCAqVapUZB0RERECgNi2bZt62507d4SlpaWYN29ekcfOnz9fABD79+9/6eNHRERobL9x44YAINatW6feNmLECAFALF26VGPfzz//XAAQR48eVW/z8vISI0aMKFEtQgjx7rvvCgsLCxEXF1fkfkIIAUDMmTNH/X1wcLCwt7cXN2/e1Njvq6++EgDEhQsXCnwchUIhnj17JubPny+qVKmifm23bNkiAIizZ88WWsPDhw/z1fEyDRs2FH379i30foVCITw8PESzZs3UtQghRFxcnLCyshJeXl7qbSV5/fLKzs4Wqampws7OTuM1XbdunQAghg8frrH/rVu3hKWlpZg4caLG9pSUFOHm5iYGDRpUxFm/qOnLL7/U2K76eTdu3FBv69Gjh8Z5FuXSpUsCgBg3bpzG9hMnTggA4uOPP1ZvU/1dP3z4sMjHLMlr8PPPPwsA4rffftN4jOjoaAFAfPfdd0IIIS5cuCAAiOnTp2vspzo+99+LNl6DevXqiaZNm4pnz55p7NuzZ0/h7u4uFApFkc+BEEJERUUJAOpb9+7dRXJyssY+devWFTY2NsLBwUEsWLBAREREiEWLFglbW1vRtm1bjeeP9IvdYVRivXv31vi+cePGyMjIwIMHDwDkdJcAyPe/qrfeegt2dnY4cOBAoY/dqlUrJCYm4u2338bvv/9e4KwLPz8/NGnSBN9++61628qVKyGRSBAUFFRk7bt370adOnXQuXPnIvcrqf/7v//T+H7o0KEAcv7nWdZawsLCkJ2dDS8vrxLX9ccff6Bjx47w8PBAdna2+hYQEAAAiIyMVO978OBBdO7cGY6OjrCwsICVlRVmz56NhIQE9Wv72muvwdraGkFBQfjhhx9w/fr1EtWTu4bs7Gx1V1urVq2we/duzJgxA4cOHcLTp081jrt8+TLu3r2LoUOHanQDeXl5wdfXt8TPi0pqaiqmT58Ob29vWFpawtLSEvb29khLS8OlS5fy7T9gwACN7/fu3Yvs7GwMHz5c47xsbGzQoUMHvc2QU/3e5f0bbNWqFerXr1/k32BhSvIa/PHHH6hUqRJ69eql8by89tprcHNzUz8vqt+/QYMGaRw/cOBAje6l3Er7Gly9ehX//fef+m81977du3fHvXv3cPny5Zc+D40aNUJ0dDQiIyOxdOlSnDlzBl26dNHo/lYqlcjIyMDHH3+MkJAQ+Pn54aOPPkJoaCj+/vvvUj3/pBsMQVRiVapU0fhe1YSv+uBKSEiApaVlvi4QiUQCNzc3jS6OvIYNG4a1a9fi5s2bGDBgAFxcXNC6dWvs379fY79JkybhwIEDuHz5Mp49e4bvv/8eAwcOhJubW5G1P3z4sMjm/tKwtLTM95yo6ijqXHVRS17379/Hzp07YWVlpXF79dVXAUAdMk+ePImuXbsCAL7//nv8/fffiI6OxsyZMwG8eG1r166Nv/76Cy4uLhg/fjxq166N2rVrY+nSpS+tJS4uLl8dqg/BZcuWYfr06di+fTs6duwIJycn9O3bF7GxsQBePI8Fvb4ve82LMnToUCxfvhyjR4/G3r17cfLkSURHR6Nq1ar5ghgAjdlaQM7zCwAtW7bMd27h4eGFTp3WNdXzlbdeAPDw8Cjy9/Jlj1mc1+D+/ftITEyEtbV1vuclPj5e/byoHtPV1VXj+IL+plRK+xqo9vvwww/z7Tdu3DgAKNbrZWdnhxYtWuCNN97ApEmTsG3bNpw4cQKrVq1S76Oq3d/fX+NY1X8+Tp8+/dKfQ+WDY4JI66pUqYLs7Gw8fPhQIwgJIRAfH4+WLVsWefyoUaMwatQopKWl4fDhw5gzZw569uyJK1euqFtDhg4diunTp+Pbb79FmzZtEB8fj/Hjx7+0tqpVq2oMDC2IjY0NAKgHXKoU9gaZnZ2NhIQEjTft+Ph4APkDY0lrKStnZ2c0btwYn3/+eYH3e3h4AMgZi2VlZYU//vhDff4AsH379nzHtG/fHu3bt4dCoUBMTAy++eYbTJ48Ga6urhgyZEihtXh4eCA6OlpjW926dQHkfLDMmzcP8+bNw/3799WtQr169cJ///2nfh5Vz2tuebcV9/VLSkrCH3/8gTlz5mDGjBnq7ZmZmXj8+HGB55B3MLJqzNCWLVtK1VKnK6rn6969e/mC9t27d/ONdSrJYxbnNXB2dkaVKlWwZ8+eAh/LwcFB4zHv37+PatWqqe9X/U0VpLSvgWq/kJAQ9O/fv8B9VL+PJdGiRQtIpVJcuXJFva1x48Y4fvx4vn1VLZ+lHcNG2sdXgrRONdX3p59+0tj+22+/IS0tLd9U4MLY2dkhICAAM2fORFZWFi5cuKC+z8bGRt0ls2TJErz22msaAxMLExAQgCtXrqi77AqiGnx87tw5je07duwo9JiNGzdqfL9p0yYARa+TU5xayqpnz544f/48ateujRYtWuS7qUKQRCKBpaWlxkDzp0+fYsOGDYU+toWFBVq3bq3ullT97zZvy6CKtbV1vp+v+jDMzdXVFSNHjsTbb7+Ny5cvIz09HXXr1oW7uzt+/vlnjdlqN2/exLFjxzSOL+7rJ5FIIITINxh5zZo1UCgUhZ53bv7+/rC0tMS1a9cKfH5btGhRrMcpDplMVmDrVEFUU7Xz/g1GR0fj0qVLxf4bzK0kr0HPnj2RkJAAhUJR4HOiChtvvPEGgJyZXblt2bIl3+zFwhT3Nahbty58fHzwzz//FLpfQb+PLxMZGQmlUglvb2/1NlWX3e7duzX23bVrFwCgTZs2Jf45pBtsCSKt69KlC/z9/TF9+nQkJyejbdu26tlhTZs2xbBhwwo9dsyYMbC1tUXbtm3h7u6O+Ph4hIaGwtHRMV8L0rhx47Bo0SKcOnUKa9asKVZtkydPRnh4OPr06YMZM2agVatWePr0KSIjI9GzZ0907NgRbm5u6Ny5M0JDQ1G5cmV4eXnhwIED2Lp1a4GPaW1tjcWLFyM1NRUtW7ZUzw4LCAhAu3btylQLAAQGBuKHH37AtWvXStzaMH/+fOzfvx++vr6YNGkS6tati4yMDMTFxWHXrl1YuXIlPD090aNHDyxZsgRDhw5FUFAQEhIS8NVXX+ULCCtXrsTBgwfRo0cP1KhRAxkZGepZgaqxTQ4ODvDy8sLvv/+ON998E05OTnB2di5yZlvr1q3Rs2dPNG7cGJUrV8alS5ewYcMGvP7666hQoQIA4NNPP8Xo0aPRr18/jBkzBomJiZg7d26+rpjivn4VK1bEG2+8gS+//FJdX2RkJMLCwoq9anLNmjUxf/58zJw5E9evX0e3bt1QuXJl3L9/HydPnlS3cGlDo0aNsHXrVqxYsQLNmzeHVCotNGTVrVsXQUFB+OabbyCVShEQEKCeHVa9enVMmTKlxD9fKpUW+zUYMmQINm7ciO7du+P9999Hq1atYGVlBblcjoiICPTp0wf9+vXDq6++irfffhuLFy+GhYUFOnXqhAsXLmDx4sVwdHQsVotJSV6DVatWISAgAP7+/hg5ciSqVauGx48f49KlSzh9+nSRy2v88ccf+P7779G7d294eXnh2bNniImJwddffw1vb2/1TEgA6Nq1K3r16oX58+dDqVSiTZs2iImJwbx589CzZ88i3xeonOlzVDYZl8JmkRQ0k+Xp06di+vTpwsvLS1hZWQl3d3fx3nvviSdPnmgcm3d22A8//CA6duwoXF1dhbW1tfDw8BCDBg0S586dK7AmPz8/4eTkJNLT04t9Hk+ePBHvv/++qFGjhrCyshIuLi6iR48e4r///lPvc+/ePTFw4EDh5OQkHB0dxTvvvCNiYmIKnB1mZ2cnzp07J/z8/IStra1wcnIS7733nkhNTdX4uXlnhxW3FtUMtNzPb2FQwKyshw8fikmTJolatWoJKysr4eTkJJo3by5mzpypUePatWtF3bp1hUwmE6+88ooIDQ0VYWFhGj87KipK9OvXT3h5eQmZTCaqVKkiOnToIHbs2KHxM//66y/RtGlTIZPJ8s3yKciMGTNEixYtROXKldU/f8qUKeLRo0ca+61Zs0b4+PgIa2trUadOHbF27VoxYsSIfLOmivv6yeVyMWDAAFG5cmXh4OAgunXrJs6fP5/vtVL9jkdHRxdY//bt20XHjh1FxYoVhUwmE15eXmLgwIHir7/+KvK8SzI77PHjx2LgwIGiUqVKQiKRiJe9fSsUCvHFF1+IOnXqCCsrK+Hs7Czeeecdcfv2bY39ijs7TKW4r8GzZ8/EV199JZo0aSJsbGyEvb29qFevnggODhaxsbHq/TIyMsTUqVOFi4uLsLGxEW3atBFRUVHC0dFRTJkyJd9zUtbX4J9//hGDBg0SLi4uwsrKSri5uYlOnTqJlStXFnnely5dEgMHDhReXl7CxsZG2NjYiHr16omPPvpIJCQk5Ns/PT1dTJ8+XVSvXl1YWlqKGjVqiJCQEJGRkfGyp5jKkUSIPCuhERmJBw8ewMvLCxMnTsSiRYv0XQ7pyciRI3Ho0CGN62yRcTt27Bjatm2LjRs3qmdaEukCu8PI6Mjlcly/fh1ffvklpFIp3n//fX2XRESltH//fkRFRaF58+awtbXFP//8g4ULF8LHx6fQAcxE2sIQREZnzZo1mD9/PmrWrImNGzdqzCohIuNSsWJF7Nu3D19//TVSUlLg7OyMgIAAhIaGasxUJNIFdocRERGRWTKYKfIrVqxA48aNUbFiRVSsWBGvv/66xvRCIQTmzp0LDw8P2Nraws/PT2PKNBEREVFJGEwI8vT0xMKFCxETE4OYmBh06tQJffr0UQedRYsWYcmSJVi+fDmio6Ph5uaGLl26ICUlRc+VExERkTEy6O4wJycnfPnll3j33Xfh4eGByZMnY/r06QByVnV1dXXFF198geDgYD1XSkRERMbGIAdGKxQK/Prrr0hLS8Prr7+OGzduID4+Xn1tIyBn9dQOHTrg2LFjRYagzMxMjeXzlUolHj9+jCpVquRbfp2IiIgMkxACKSkp8PDw0NqlRwwqBP377794/fXXkZGRAXt7e2zbtg0NGjRQL8me9yJ7rq6uuHnzZpGPGRoaqrUVW4mIiEi/bt++rbWLTxtUCKpbty7Onj2LxMRE/PbbbxgxYoT6KtNA/gvnCSFe2poTEhKCqVOnqr9PSkpCjRo1cPv2bVSsWFG7J0BEREQ6kZycjOrVq5fqGm+FMagQZG1trb4IXYsWLRAdHY2lS5eqxwHFx8fD3d1dvf+DBw/ytQ7lJZPJ8l3/CIB6FhoREREZD20OZTGY2WEFEUIgMzMTtWrVgpubG/bv36++LysrC5GRkfD19dVjhURERGSsDKYl6OOPP0ZAQACqV6+OlJQUbN68GYcOHcKePXsgkUgwefJkLFiwAD4+PvDx8cGCBQtQoUIFXleGiIiISsVgQtD9+/cxbNgw3Lt3D46OjmjcuDH27NmDLl26AACmTZuGp0+fYty4cXjy5Alat26Nffv2abVvkIiIiMyHQa8TpAvJyclwdHREUlISxwQREREZCV18fhv0mCAiIiIiXWEIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGZIblcjmHDhmHhwoVQKBT6LkcvLPVdABEREZUvIQQGDRqEqKgoAEClSpUwduxYPVdV/gymJSg0NBQtW7aEg4MDXFxc0LdvX1y+fFljn5EjR0IikWjc2rRpo6eKiYiIjNOJEyfUAQgAVq9ercdq9MdgQlBkZCTGjx+P48ePY//+/cjOzkbXrl2RlpamsV+3bt1w79499W3Xrl16qpiIiMg47dy5EwDQuXNnSKVSnDlzBnfu3NFzVeXPYLrD9uzZo/H9unXr4OLiglOnTuGNN95Qb5fJZHBzcyvv8oiIiEzG3r17AQDDhg3DgwcPcO7cOURHR6NatWp6rqx8GUxLUF5JSUkAACcnJ43thw4dgouLC+rUqYMxY8bgwYMHRT5OZmYmkpOTNW5ERETm6uHDhzh9+jQAoGvXrmjZsiUAIDo6Wp9l6YVBhiAhBKZOnYp27dqhYcOG6u0BAQHYuHEjDh48iMWLFyM6OhqdOnVCZmZmoY8VGhoKR0dH9a169erlcQpEREQG6dixYxBCoGHDhnBzc0OTJk0AABcvXtRzZeXPYLrDcpswYQLOnTuHo0ePamwfPHiw+t8NGzZEixYt4OXlhT///BP9+/cv8LFCQkIwdepU9ffJyckMQkREZLZOnToFAOoWoDp16gBAvslI5sDgQtDEiROxY8cOHD58GJ6enkXu6+7uDi8vL8TGxha6j0wmg0wm03aZRERERkkVgpo1awYAqFu3LgDgamwsFDdvwsLLS2+1lTeD6Q4TQmDChAnYunUrDh48iFq1ar30mISEBNy+fRvu7u7lUCEREZFxE0KoQ1Dz5s0BANX374cFgGfZ2YivVQsIC9NjheXLYELQ+PHj8dNPP2HTpk1wcHBAfHw84uPj8fTpUwBAamoqPvzwQ0RFRSEuLg6HDh1Cr1694OzsjH79+um5eiIiIsN39+5d3L9/H1KpNGcskFwOi7FjoWpKkAsBBAcDcrle6ywvBhOCVqxYgaSkJPj5+cHd3V19Cw8PBwBYWFjg33//RZ8+fVCnTh2MGDECderUQVRUFBwcHPRcPRERkeG7cOECAMDHxwcVKlQAYmMBpRKqwSd3AEChAK5e1VeJ5cpgxgQJIYq839bWVr2uAREREZXcpUuXAAD169fP2eDjA0ilqKZUAngegiwsAG9v/RRYzgymJYiIiIh067///gOQKwR5egKrV6OaRAIAuCORAKtW5WwviFwORESYTHcZQxAREZGZULUE1atX78XGwEBUCwkBAMj79gUCAws+OCwM8PICOnXK+WoCA6gZgoiIiMxEvpag56o1aAAAuPPkScEHyuU4PGYMKimVaAcASqVJDKBmCCIiIjIDT548wf379wHkaQkC1OvyFXoR1dhYZAqBJAApqm0mMICaIYiIiMgMqFqBqlWrlm9WterCqfLCWnZ8fJD9fNyQhWqbCQygZggiIiIyA/lmhuXi4uICAHj69CnS09PzH+zpCcWECQCeTyu3sCh6ALWRYAgiIiIyA0WFIAcHB1ha5qyak5CQUODxijffBABYNGgAxMUVPoDaiDAEERERmQFVd1je8UAAIJFIUKVKFQBFhCCFAgBgUbmy0bcAqTAEERERmYGiWoIAwNnZGQDw6NGjAu9XhyALiwLvN0YMQURERCYuIyMDN27cAFB4CCp2SxBDEBERERmL2NhYKJVKODo6wtXVtcB9GIKIiIjI5OReJFHyfKp7XqruMIYgIiIiMhkvGw8EvGgJ4pggIiIiMhkFXjMsD3aHERERkckp7Jphub2sOyw7OxsAQxAREREZCaVSicuXLwNgS1BeDEFEREQmLC4uDk+fPoVMJsMrr7xS6H4cE0REREQmRTUeqG7dukUGGCcnJwA5V5svCEMQERERGZWLFy8CABo0aFDkfo6OjgCA5ORkCCHy3a8KQaprjJkChiAiIiITVtIQpFQqkZqamu9+tgQRERGRUSluCLK1tYWVlRUAIDExMd/9DEFERERkNIQQuHjhAgCgfuXKRe4rkUjUrUFJSUn57mcIIiIiIqMh/+orpKalwRKAd+fOQFhYkfszBBEREZHxk8txafp0AIAPAGshgOBgQC4v9BCGICIiIjJ+sbG4+HyWl3o0kEIBXL1a6CFFhSCuGE1ERETGwccHF5//Ux2CLCwAb+9CD1GFIA6MJiIiIuPl6YmLzwNPfSAnAK1aBXh6FnpIpUqVAJhPd5jprHhEREREakqlEv/ExwMAGq1dC3TpUmQAAsxvTBBDEBERkQm6evUqUlNTYWNjg3rDhgHFWOnZ3EIQu8OIiIhM0OnTpwEATZo0KfalLjgmiIiIiIzemTNnAADNmjUr9jFsCSIiIiKjp2oJatq0abGPMbeB0QxBREREJkYIoQ5B2m4J4lXkiYiIyGDdunULjx8/hqWlJRo2bFjs4xwcHAAAKSkp+e5jSxAREREZvOPHjwMAGjVqBJlMVuzjigpBXDGaiIiIDN7Ro0cBAO3bty/RcWwJIiIiIqOmCkHt2rUr0XGqEPTs2TNkZmZq3McQRERERAYtKSkJ586dAwC0bdu2RMfa29ur/52amqpxH0MQERERGbSDBw9CqVTC29sbHh4eJTrW0tISNjY2APJ3iTEEERERkUHbvXs3ACAgIKBUxxc2LsgUQ5DpTPYnIiIyYhkZGYiIiMC///4LiUSCV199FZ06dVK3zBSHEEIrIejhw4dmEYIMpiUoNDQULVu2hIODA1xcXNC3b19cvnxZYx8hBObOnQsPDw/Y2trCz88PFy5c0FPFREREZadUKvHdd9+hRo0a6N69O6ZPn45p06ahR48eqF69Or7++ms8e/asWI8VHR0NuVyu/owsDdW4IIagchQZGYnx48fj+PHj2L9/P7Kzs9G1a1ekpaWp91m0aBGWLFmC5cuXIzo6Gm5ubujSpUuBU/mIiIgMjlwORETkfAXw5MkT+Pv7Y/z48Xj48CE8PDzw9ttvY+jQoahWrRoePXqEKVOmoEOHDrh169ZLH37Dhg0AgH79+sHW1rZUJaq6w/IOjFatE2RlZVWqxzVIwkA9ePBAABCRkZFCCCGUSqVwc3MTCxcuVO+TkZEhHB0dxcqVK4v9uElJSQKASEpK0nrNREREhVqzRgipVAhACKlU3P3qK9GwYUMBQFSoUEEsW7ZMPHv2LGff27dF1r59YtXChcLR0VEAEM7OzurPRNU+4uDBnK9CiLS0NFGlShUBQOzevbvUZXbr1k0AEOvWrdPY3q5dOwFAbNmypdSPXRa6+Pw22DFBquuWODk5AQBu3LiB+Ph4dO3aVb2PTCZDhw4dcOzYMQQHB+ulTiIiopeSy4GgIECpBAAkKZXo9uGHOA/A3d0de/bsQePGjXP2DQsDgoJgpVQiSCpFl88/x8Bff8Xp06fRuXNnrFixAoHAi8eTSoHVq/F9aioSEhLg5eWFzp07l7rUwgZGq7rkTOnaYQZ5JkIITJ06Fe3atVNf8yQ+Ph4A4OrqqrGvq6srbt68WehjZWZmaiz4lJycrIOKiYiIihAbqw5ACgADAJwD4Fq5Mo4cOYLatWvn7JcnLEGpRK1PPsGRS5cw6pNP8Msvv2D06NH4F8BXeP4hrlTiQVAQFjxvNPj444/LFFQKGxNkit1hBjMmKLcJEybg3Llz+Pnnn/PdJ5FINL4XQuTblltoaCgcHR3Vt+rVq2u9XiIioiL5+OS02ACYA+AAADsAuzdtehGAAI2wpKZQoMKdO9i8eTPmz58PAFgKoAeA6wDuAhioVOLBo0do0KABRowYUaZSXzYmyJRaggwuBE2cOBE7duxAREQEPD091dvd3NwAvGgRUnnw4EG+1qHcQkJCkJSUpL7dvn1bN4UTEREVxtMTWL0au6VSfP580/djxqBpt26a++UKS2oWFoC3NyQSCWbNmoUtq1ahAoB9AGoDqAbgCAC7ChWwefPmEl0wtSDm1B1mMCFICIEJEyZg69atOHjwIGrVqqVxf61ateDm5ob9+/ert2VlZSEyMhK+vr6FPq5MJkPFihU1bkREROXtbkAA3nn+GfTesGF4e/Xq/Ds9D0tQTUO3sABWrcrZ/tyAoCAcmzMHnXId1rJmTUQdP45GjRqVuc7CQpApdocZTJwbP348Nm3ahN9//x0ODg7qFh9HR0fY2tpCIpFg8uTJWLBgAXx8fODj44MFCxagQoUKGDp0qJ6rJyIiKpwQAkFBQXicmIhmzZrhf99/X/jOgYGAvz9w9Srg7a0RgFSazJ2LA6NHI/38eTytVg1VtBB+VF4WgkypJchgzmTFihUAkG9xp3Xr1mHkyJEAgGnTpuHp06cYN24cnjx5gtatW2Pfvn3qF4yIiMgQbdiwAX/++Sesra3x448/vrzLytOzwPCTd58Knp6ooL0yAbwYGG0OY4IM5kyEEC/dRyKRYO7cuZg7d67uCyIiItKCu3fv4v333wcAzJ07F6+++qqeKyray8YEmVJ3mMGMCSIiIjI1qm6wxMREtGjRAh999JG+S3opc+oOYwgiIiLSkdzdYOvXrzeKAMEQRERERGVy7949o+oGUylsTBC7w4iIiOilhBAYP348Ep/PBjOGbjAVtgQRERFRqW3ZsgXbtm2DpaUl1q5da1TBQRWCsrKykJWVpd7OEERERERFSkhIwIQJEwDkXLWgSZMmeq6oZFTdYcCL1iAhhEkulsgQREREpA1yORARgSnBwXjw4AEaNGiAmTNn6ruqErOyslKvY6QKQQqFQn2/KbUEmc6ZEBER6UtYGBAUhF1KJTYAkEokWLt2bZmv46UvDg4OyMzMVA+OVrUCAaYVgtgSREREVBZyORAUhGSlEsHPN00G0LpaNT0WVTZ5B0erZoYB7A4jIiIildhYQKnEBwDkyLmy+6dC5Fz7y0jlDUFsCSIiIqL8fHywQyLBGgASAGEAKlhY5Fz81EgxBBEREdFL3beywujnM6o+ANDBwgJYterlF0A1YHkXTFR1h1lYWEAikeitLm0znThHRERUzoQQCAwMxMOUFDSuXx+fff010KCBUQcgoPCWIFNqBQIYgoiIiEpt1apV6muD/RQeDlmjRvouSSsKC0GmNCgaYHcYERFRqfzzzz+YMmUKAGDhwoVoZCIBCCh8dpiptQQxBBEREZVQUlISBg4ciIyMDAQEBKgvlGoq8o4JMtXuMIYgIiKiEhBC4N1338XVq1dRo0YNbNiwAVKpaX2csjuMiIiI8lm6dCm2bt0KKysr/Prrr6hSpYq+S9I6docRERGRhoiICHz00UcAgCVLlqBVq1Z6rkg38oYg1dXkjfUyIIVhCCIiIiqG2NhYDBgwANnZ2Rg6dCjGjx+v75J0Ju+YoMzMTACAtbW13mrSBYYgIiKil0hMTESvXr3w5MkTtG7dGmvWrDGpRQPzYksQERERITs7G4MHD8bly5fh6emJ7du3w9bWVt9l6VTeEMSWICIiIjMjhMDYsWOxb98+VKhQATt27ICbm5u+y9K5wlqCGIKIiIjMxKxZsxAWFgapVIpNmzahadOm+i6pXKjGBOVtCWJ3GBERkRn45ptv8PnnnwMAVq5ciT59+ui5ovKjagnKyspS3wC2BBEREZm8X375Rb0K9KeffooxY8bouaLypQpBQM4MMbYEERERmYFdu3bhnXfegRAC48ePx8yZM/VdUrmzsrJSB56UlBS2BBEREZm6ffv2oX///nj27BkGDx6MpUuXQnLnDhARAcjl+i6vXOUeF8Qp8kRERMZCLi9xcImIiECfPn2QmZmJfv36YcOGDbBYvx7w8gI6dcr5Ghamu5oNjKpLLHd3GFuCiIiIDFlYWImDy5EjR9CzZ09kZGSgZ8+e2Lx5M6zu3weCggClMmcnpRIIDjabFqHc0+TZHUZERGTo5PKSBRe5HMe//RbdAwKQnp4Of39//Prrrzkf9rGxLx5HRaEArl7V7TkYiNwhyFQHRpvW5WCJiMi8FRVcPD01t4eF4fCYMeghBFIBdKpXD9u2bYONjU3O/T4+gFSq+XgWFoC3t05PwVCwJYiIiMiYqIJLbgUFF7kc+8aMQTdVAAKw48oV2CYkvNjH0xNYvTrneNXjrFqVP0yZqNwXUTXVliCGICIiMh3FDC471q9HLyHwFEB3AH8AsFMq83d1BQYCcXE5g6zj4nK+NxPm0BLE7jAiIjItgYGAv39OoPH2zheAwsPD8c68ecgGMADAJgDWQOFdXZ6eZtP6k1tBIYgtQURERIbO0xPw88sXXtavX4+hQ4ciOzsb/9e6NTZLpS8CkBl1dRVHQQOj2RJERERkZIQQ+OKLLxASEgIAGD16NFauXAmLe/cKbTEyd7kXS0xPTwcA2Nra6rMkrWMIIiIik6ZQKDB58mQsX74cAPDRRx/hiy++gEQiMduuruKoVKkSACApKUkdguzs7PRYkfYxBBERkcnKyMjAsGHDsGXLFgDA//73P0yePFm/RRmJgkJQhQoV9FiR9jEEERGRSUpMTESfPn1w+PBhWFtb48cff8TgwYP1XZbRUIWgxMREPHv2DABbgoiIiAxebGwsevXqhcuXL6NixYrYvn07OnbsqO+yjEruECSRSAAwBBERERm0gwcPYuDAgXjy5AmqV6+OnTt3okmTJvouy+jkDkGqWWGm1h1mUFPkDx8+jF69esHDwwMSiQTbt2/XuH/kyJGQSCQatzZt2uinWCIiMjirVq2Cv78/njx5gtatW+PkyZMMQKWUOwSlpqYCML2WIIMKQWlpaWjSpIl6BH9BunXrhnv37qlvu3btKscKiYjIED179gyTJk3C2LFjkZ2djaFDh+LQoUNwc3PTd2lGSxWClEqlyYYgg+oOCwgIQEBAQJH7yGQy/lITEZHavXv3MHjwYBw5cgQA8PnnnyMkJEQ9joVKx8bGBjKZTL1QIsDuML07dOgQXFxcUKdOHYwZMwYPHjzQd0lERKQnhw8fRtOmTXHkyBE4ODhg69at+PjjjxmAtEAikaBq1aoa20ytJcioQlBAQAA2btyIgwcPYvHixYiOjkanTp00UmpemZmZSE5O1rgREZFxE0Lgq6++QqdOnXD//n00bNgQMTEx6Nevn75LMym5Q5CVlRWsrKz0WI32GVR32MvkXt+hYcOGaNGiBby8vPDnn3+if//+BR4TGhqKefPmlVeJRESkY8nJyXj33Xfx22+/AQDeeecdrFy50uRaKQxB7hCkGiNkSoyqJSgvd3d3eHl5ITY2ttB9QkJCkJSUpL7dvn27HCskIiJtOn/+PFq2bInffvsNVlZW+O677/Djjz8yAOlI7hDk6uqqx0p0w6hagvJKSEjA7du34e7uXug+MpkMMpmsHKsiIiJd+OmnnxAcHIz09HR4enpiy5YtaN26tb7LMmkuLi7qfzME6VhqaiquXr2q/v7GjRs4e/YsnJyc4OTkhLlz52LAgAFwd3dHXFwcPv74Yzg7O7MPmIjIhGVkZOD999/H6tWrAQCdO3fGpk2b8g3aJe2rWbOm+t8MQToWExOjsaz51KlTAQAjRozAihUr8O+//+LHH39EYmIi3N3d0bFjR4SHh8PBwUFfJRMRkQ5du3YNAwcOxNmzZyGRSDB79mzMmjULFhYW+i7NLNSrV0/9b4YgHfPz84MQotD79+7dW47VEBGRPm3duhWjRo1CcnIynJ2dsXHjRnTt2hWQy4HYWMDHB/D01HeZJi13CGrYsKEeK9ENgwpBREREz549w/Tp0/G///0PANC2bVuEh4ejWrVqQFgYEBQEKJWAVAqsXg0EBuq5YtNVvXp1vP/++8jOzsaIESP0XY7WSURRTS8mKDk5GY6OjkhKSkLFihX1XQ4REeVy7949DBw4EMeOHQMAfPjhh1iwYEHO+jRyOeDllROAVCwsgLg4tgiZAV18frMliIiIDMKJEyfQv39/3L17F46Ojli/fj369u37YofYWM0ABAAKBXD1KkMQlYpRrxNERESmYf369XjjjTdw9+5dNGjQADExMZoBCMgZAyTN87FlYQF4e5dbnWRaGIKIiEhvsrOzMXnyZIwaNQpZWVno27cvjh8/Du+Cgo2nZ84YINXMMAsLYNUqtgJRqbE7jIiI9CI5ORkDBw7E/v37AQBz5szB7NmzIc3b2pNbYCDg75/TBebtzQBEZcIQRERE5U4ul6NHjx44d+4c7OzssGHDBvRr2RKIjHz51HdPT4Yf0gp2hxERUbk6d+4c2rRpg3PnzsHNzQ2HDx9Gv8ePc2Z+deqU8zUsTN9lkhngFHkiItK95wsc/hUfj/7BwUhJSUH9+vWxa9cu1LS05NR3eilOkSciIuPzfIHD35RKvA3gGYAOHTpg27ZtqFy5MhARwanvpBfsDiMiIt2Ry4GgIPygVGIQcgLQWxIJ9oaF5QQggFPfSW8YgoiISHdiY/GtUomRAJQA3gXwsxCQ3b79Yh9OfSc9YXcYERHpzMJ9+xDy/N/vA1gCQFpQKw+nvpMeMAQREZFOzJkzB/MXLgQAzJJIME8ISIpq5eHUdypnDEFERFR6z2d95V3bZ968eZg/fz4AYNGiRfjo7bfZykMGhyGIiIhK5/msLyiVOQObV68GAgPx6aefYu7cuQCAxYsXY+rUqTn7M/yQgSlTCHrw4AGUSiXc3Ny0VQ8RERmD57O+1FPblUogOBgLrlzB7EWLAOS0AKkDEJEBKtXssHPnzuHVV1+Fu7s7qlWrhmrVquGTTz5BWlqatusjIiJDFBubb22fLxQKzHwegEJDQ/HRRx/pozKiYitVCAoMDISrqyuOHj2KM2fO4LPPPsPu3bvRokULPHnyRNs1EhGRocmzts9XAGY8//dnn32GGTNmFHgYkSEp1WUz7OzscOrUKdSrV0+9TQiBt956CzY2Nvjpp5+0WqQ28bIZRETFVMigZ7WwMCA4GF8rFJjyfNPcuXMxZ86cci2TzIMuPr9L1RJUUIuPRCLBggUL8Pvvv2ulMCIi0qOwsJdf0DQwECvmz1cHoFmzZjEAkVEpdktQjx490KRJE7z22mtQKBRYunQpfv/9d7i6uqr3iY6OxoABA3Dr1i2dFVxWbAkiInoJubxYFzRdv349Ro0aBQCYPn06QkNDIZFIyrlYMhd6vYBqo0aNcPr0aaxbtw73798HALzyyisYNGiQOhitW7cO//vf/7RSGBER6UkBg57zXtB08+bNCAwMBABMmjSJAYiMUqnGBN2/fx9nzpzB2bNn1berV6/CwsICdevWxblz53RRq1awJYiI6CVe0hK0bds2vPXWW1AoFAgKCsLKlSsZgEjn9NoSlJurqyu6deuGbt26qbc9ffoU//zzD/755x+tFEZERHqiuqBpcHBOC1CuS13s2rULgwcPhkKhwLBhw7BixQoGIDJapWoJMmZsCSIiKia5XONSFwcOHECPHj2QmZmJt956C5s2bYKlJS88QOXDYFqCiIjIDOS6oOmRI0fQu3dvZGZmonfv3ti4cSMDEBm9Uk2RJyIi83Hy5En06NED6enp8Pf3xy+//AIrKyt9l0VUZgxBRERUqDNnzsDf3x8pKSnw8/PD1q1bIZPJ9F0WkVYwBBERUYFOnz6NN998E4mJifD19cXOnTtRoUIFfZdFpDUMQURElM+pU6fw5ptv4smTJ2jTpg127doFe3t7fZdFpFUMQUREpCE6OhqdO3dWtwDt3bsXjo6O+i6LSOsYgoiISO3kyZPo0qULEhMT0bZtW+zZs4fLiZDJYggiIiIAwPHjx9GlSxckJSWhffv22L17NxwcHPRdFpHOMAQRERH++usvdO7cGcnJyejQoQN27drFAEQmjyGIiMjMbd26FT169EBaWhq6du2KP//8k4OgySwwBBERmbG1a9firbfeQlZWFt566y3s2LEDdnZ2+i6LqFwwBBERmaklS5YgMDAQSqUSo0ePxs8//8yFEMmsMAQREZkZpVKJkJAQfPDBBwCAjz76CKtXr4aFhYWeKyMqX7z6HRGRGUlPT8fw4cPx22+/AQAWLFiAGTNmQCKR6LkyovLHEEREZCbu3r2L3r1749SpU7CyssKaNWswfPhwfZdFpDcMQUREZuDMmTPo1asX7ty5A2dnZ2zbtg3t2rXTd1lEemVQY4IOHz6MXr16wcPDAxKJBNu3b9e4XwiBuXPnwsPDA7a2tvDz88OFCxf0UywRkZHYvn072rVrhzt37qB+/fo4ceIEAxARDCwEpaWloUmTJli+fHmB9y9atAhLlizB8uXLER0dDTc3N3Tp0gUpKSnlXCkRkYGSy4GICEAuhxACX375Jfr374/09HR06dIFx44dwyuvvKLvKokMgkF1hwUEBCAgIKDA+4QQ+PrrrzFz5kz0798fAPDDDz/A1dUVmzZtQnBwcHmWSkRkeMLCgKAgQKlElkSC99q2xdqjRwEA7733HpYtWwZLS4N62yfSK4NqCSrKjRs3EB8fj65du6q3yWQydOjQAceOHSv0uMzMTCQnJ2vciIhMjlyuDkAJALoKgbVHj0IqlWLZsmX49ttvGYCI8jCaEBQfHw8AcHV11dju6uqqvq8goaGhcHR0VN+qV6+u0zqJiPQiNhZQKnEZQBsAkQAcAPyxYAEmTpzIKfBEBTCaEKSS9w9ZCFHkH3dISAiSkpLUt9u3b+u6RCKi8ufjg4MSCdoAuArAC8AxqRQB//d/ei6MyHAZTduom5sbgJwWIXd3d/X2Bw8e5Gsdyk0mk3EZeCIyed/v3o1xUimyFQq8DmC7VAqX1asBT099l0ZksIymJahWrVpwc3PD/v371duysrIQGRkJX19fPVZGRKQ/CoUCH3zwAYKCgpCtUGBo3744uHcvXG7eBAID9V0ekUEzqJag1NRUXL16Vf39jRs3cPbsWTg5OaFGjRqYPHkyFixYAB8fH/j4+GDBggWoUKEChg4dqseqiYj0IzU1FUOHDsXOnTsBAPPmzcOsWbM4/oeomAwqBMXExKBjx47q76dOnQoAGDFiBNavX49p06bh6dOnGDduHJ48eYLWrVtj3759cHBw0FfJRER6cfv2bfTq1Qv//PMPZDIZ1q9fjyFDhhTvYLk8ZyC1jw+7y8isSYQQQt9FlKfk5GQ4OjoiKSkJFStW1Hc5REQlFhMTg169eiE+Ph6urq7Yvn072rRpU7yDc60lBKkUWL2a3WZkFHTx+W00Y4KIiAjYtm0b3njjDcTHx6NRo0Y4ceJE8QNQrrWEAOR8DQ7O2U5khhiCiIiMgLh9G4vfew8DBgzA06dP0a1bNxw9ehReXl7Ff5DnawlpUCiAXGMxicyJQY0JIiKi/LJXr8aE4GCsev79uI4dsXTnzpKvAO3jk9MFljsIWVgA3t5aq5XImLAliIjIgCVfuoSezwOQBMD/ACyPjIRlESvlF8rTM2cMkIVFzvcWFsCqVRwcTWaLLUFERAbq1q1b6NGjB84DqADgZwC9gZyWnKtXSxdeAgMBf/+c4729GYDIrDEEEREZoPPnz8Pf3x93796FO4CdAJqr7ixrF5anJ8MPEdgdRkRkcI4cOYL27dvj7t27aNCgAU4sWoTm7MIi0jq2BBER6UopFiX8/fffMWTIEGRkZKBt27bYsWMHnJycgLffZhcWkZYxBBER6UJJFiV8Hpa+j47G2JAQKJVK9O7dG5s3b4atrW3OPuzCItI6rhhNRKRtcjng5ZV/KnpcXP4gExYGMWYMPhMCs59vGj16NFasWFHyKfBEJowrRhMRGYPiLkool0MxZgzG5wpAn0gkWD17NgMQUTlgCCIi0jbVooS5FTCjK+PCBQwWAiuQswbQcgCfCgHJtWvlVSmRWWMIIiLStmIsSpicnIyAefPwGwBrAOEAxqv25QrOROWC7a1ERLpQxKKE9+/fR0BAAM6cOQMHGxtsz8pCJ6WS09+JyhlDEBGRrhQwo+v69evo2rUrrl27BhcXF+zZswdNq1bl9HciPWAIIiL9KcU6Osbs3Llz8Pf3R3x8PGrVqoV9+/bBW9X1ZQbnT2RoOCaIiPQjLCxnGnmnTjlfw8L0XZFOHTlyBG+88Qbi4+PRqFEj/P333y8CEBHpBUMQEZU/ufzFQoJAztfg4JztJmjnzp3o2rUrkpKS0K5dOxw+fBju7u76LovI7DEEEVH5K+46OiZg3bp16NevHzIyMtCrVy/s27cPlSpV0ndZRASGICLSh2Kuo2PMhBCYM2cO3n33XSgUCowcORJbt259cRkMItI7hiAiKn/FWEfHmGVlZWHEiBGYP38+AGDGjBlYu3YtV4EmMjD8iyQi/ShiHR1j9uTJE/Tv3x+HDh2ChYUFVqxYgTFjxui7LCIqAEMQEemPiV0Z/fLly+jbty/+++8/ODg44Ndff4W/v7++yyKiQrA7jIhIC3bs2IFWrVrhv//+Q7Vq1XDkyBEGICIDxxBERFQGSqUSc+bMQZ8+fZCcnIx27dohJiYGTZo00XdpRPQS7A4jIiql+/fvY9SoUdi9ezcAYMKECVi8eDGsra31XBkRFQdDEBFRKfyxfj3enTIFDxMTIZPJsGrVKowYMULfZRFRCTAEERGVQHJyMqb37o2VkZEAgMYANn78MRoyABEZHY4JIiLTIJcDERE6u/SGEAJbtmxB/Tp11AFoCoATABrOn2+yl/wgMmUMQURk/HR8MdbTp0+jW7dueOutt3D3/n14AzgAYAkAG8BkL/lBZOoYgojIuOnwYqwXL17EkCFD0Lx5c+zbtw9WVlaYPXky/pVI0Cn3jiZ2yQ8ic8EQRETGTcsXY1UoFPjzzz/RtWtXvPrqqwgPDwcADB06FJcuXcK8//0PNt9/b7KX/CAyJxwYTUTGTXUx1txBqIQtM5mZmTh27Bi2bNmCLVu24MGDBwAAqVSKPn36YPbs2XjttddeHGCil/wgMjcMQUSkN0qlEjdu3MCVK1dw9+5d3L17F/fv30d6ejoyMzORmZkJCwsLyGQyyGQy2NraonLlyqhcuTKcnJxe3ObNQ+U5c+CgVMJWKoWkkJaZ7Lg4JJw6hVsyGf578gSXLl1CVFQUoqKikJmZqd7PyckJI0eOxIQJE1CrVq2CizexS34QmSOJEELou4jylJycDEdHRyQlJaFixYr6LofIrCQlJeHo0aOIiIjA33//jX///RdpaWla/RkSiQT29vawt7eHtbU1FAoFsrOzkZmcjCfp6YUe5+LigoCAAAwZMgRvvvkmrKystFoXEZWNLj6/2RJERDr16NEjbNu2DVu2bMHBgweRnZ2tcb9MJkOdOnXg6ekJDw8PuLm5wd7eXt36o1QqkZGRgYyMDDx9+hSJiYl4/Pixxu3JkydITEyEEAJCCKSkpCAlJaXAeiQAXAHUA1DvnXfwWrt26NChA+rWrQuJRKLz54OIDAdDEBFpnRAChw8fxooVK7B161Y8e/ZMfZ+3tzc6duyIDh06oFmzZvDx8YGlZdnfipRKJdLT05GWlobU1FSkpqYiMzMTlpaWsDh9GtZjxqAKgCoALFQHBQYCfn5l/tlEZJwYgohIa549e4affvoJX375JS5duqTe3rRpU7z11lsYOHAgfHx8SvagcnnODDAfnyLH4EilUnU3mKurq+adLi5lHjxNRKaHIYiIyiwzMxNr167FF198gZs3bwIA7Ozs8M477yA4OBhNmzYt3QOHhb1YA0gqBVavzmm9KSlPz5xjg4Nzps9zWjsRgQOj9V0OkVETQiA8PBwhISGIi4sDALi6uuLDDz9EUFBQ2f7G5PKc1Z/ztt7ExZU+vMjlnNZOZKQ4MJqIDMbff/+NDz74ACdOnAAAuLu7IyQkBKNHj4atrW3Zf0BRiyCWNsAUZ1p7MbvfiMj4ccVoIiqRe/fuYciQIWjXrh1OnDgBOzs7zJs3D7GxsZg4caJ2AhDwYhHE3HQ9jkfH1yAjIsNiVCFo7ty5kEgkGjc3Nzd9l0VkFpRKJVauXIn69esjPDwcUqkUY8aMQWxsLGbPng07Ozvt/kDVOJ7yujyFDq9BRkSGyei6w1599VX89ddf6u8tLCyK2JuIAJS5i+fff/9FcHAwoqKiAAAt6tbF6q+/RtNu3XTy89TK8/IUuuh+IyKDZlQtQQBgaWkJNzc39a1q1ar6LonIsJWhiyc9PR0hISFo1qwZoqKiYC+TYZlEguOXL6Npjx4FP5a2u5Q8PXPW8tF1ENFH9xsR6ZXRhaDY2Fh4eHigVq1aGDJkCK5fv17k/pmZmUhOTta4EZmNMnTx7N27F40aNcLChQuRnZ2Nft264VJWFiYKkbPYYEGPZcxdSuXd/UZEemdUIah169b48ccfsXfvXnz//feIj4+Hr68vEhISCj0mNDQUjo6O6lv16tXLsWIiPSuqi6cQ9+/fx9ChQ9GtWzdcv34dnp6e2L59O7ZOmwbPvCtq5H2sUvw8gxIYmDMFPyIi52tp1iQiIqNh1OsEpaWloXbt2pg2bRqmTp1a4D6qK1GrJCcno3r16lwniMxDCdbaUSqVWLNmDaZPn47ExERIpVJMnDgRn376KRwcHIr3WLpY24eICLpZJ8ioWoLysrOzQ6NGjRAbG1voPjKZDBUrVtS4EZmNYnbxnD9/Hu3bt0dwcDASExPRtGlTnDhxAl9//XVOACruY7FLiYiMiFG3BGVmZqJ27doICgrC7Nmzi3UMV4wms1TISsnp6en49NNP8dVXXyE7Oxv29vb49NNPMWHChMIvalqcVZe5MjMRaZnZrxj94YcfolevXqhRowYePHiAzz77DMnJyRgxYoS+SyMybHlWShZCYPv27fjggw9w48YNAEDfvn2xbNmyl4+bK86qy8XZh4hIz4wqBMnlcrz99tt49OgRqlatijZt2uD48ePw8vLSd2lEOYzgkgtnzpzBlClTEBkZCQDw9PTE8uXL0adPHz1XRkRUvowqBG3evFnfJRAVTltXPNeRO3fuYO7cuQgLC4MQAjY2Nvjwww8xffp02Nvb67s8IqJyZ9RjgkqDY4JIJwx4VtTdu3cRGhqK1atXIysrCwAwZMgQLFy4kK2oRGQ0zH5MEJHBMsBLLly/fh1ff/01Vq9erV4mon379li4cCF8fX3zH2AEXXlERNpk1FPkiQxGSS65IJfnLMang1WUhRA4ePAg+vTpA29vb3zzzTfIzMxEu3btcODAAURGRhYcgHj1dCIyQwxBRNpQ3PVxdBQ2rly5glmzZuGVV17Bm2++iR07dkAIgW7duuGvv/7C4cOH0alTJ0gkkvwHG/OlLoiIyoBjgoi0qaj1cbQ4big7OxvHjx/Hn5s348/du/Fvrmvo2dvbY/jw4Zg4cSLq1av38geLiMgJZQVt9/MrUV1ERLrCMUFEhq6o9XFKOW5IoVDgxo0buHjxIk6ePImoqCicPHkSqamp6n0sAHRt2BDDPv4Yffr0QYUKFYpfs6orL28449XTicjEMQQRlRcfHzyTSJAmBNKAnJtUirTHj5G2dy/S0tLw6NEj3Lt3L+d2/TquX72KK3fuqGd15VYZQDcAPQD4A3C+dAlo3x4oSQACXnTlBQfnhDJe6oKIzARDEFEJCSHw8OFDXL16Fffu3cODBw/Ut4cPHyIlJQVpaWlIS0tDamqqxtfsvL3PSiUwYMBLf6aNlRXq1K+Ppk2bwtfXF69bWKDB6NGwyL1TWWajBQYC/v681AURmRWGIKIiJCQk4PTp0zh9+jTOnDmDK1eu4OrVq0hJSSnT41pIpbCzs4OdvX3O1+e3KlWqwL1iRbhv3Ag3ADUA1AdQQ6GAxZ9/al6tXdtdWLzUBRGZGYYgolzu3LmDiIgIRERE4NChQ7iea8BxXp6enqhRowZcXFzg6uoKFxcXVK1aFQ4ODrDPFW7s8wQdOzs7WFlZFTxTC8gZkLxxo+Y2pVKzlYddWEREZcYQRGZNoVDgxIkT2L59O3bs2IHLly/n28fHxwfNmjVD06ZN0aBBA3h7e6NWrVqwsbHRTVHFHajMLiwiojJhCNI1rsKrP4U890qlEocPH8amTZuwY8cO3L9/X32fVCpFs2bN0LFjR3Ts2BG+vr5wdHQs37pL0srDLiwiolJjCNIlA7+gpkHSVmgs4Lm/3K4dNmzYgA0bNuDWrVvqXR0dHdGjRw/07dsXXbp0QaVKlcp+HmXFVh4iIp3jYom6YsAX1DRY2gqNuZ77dAA/A/gewIlcuzg6OuKtt97CoEGD0KF2bVjfvFl08GKLHhGRXuni85uXzdCVohbGo/y0eemG2FjEKpX4AIAngNHICUAWUil69OiB8PBw3Lt3D99//z263LoFax+foi9jwetqERGZJHaH6QpX4S0ZLVyFXaFQ4M8//8R3S5Zgb67trwAYK5FgeEwMXJs2fXFHYcHL319zKvrL9iEiIqPEliBdKe4FNSlHSa7CnkdCQgK++OIL1K5dG3369MHeyEhIJBL0APAngFipFB99/71mAAKK11rHFj0iIpPFliBd4uDW4ivFujfnzp3DN998g59++gkZGRkAACcnJwQGBmLs2LF4xdq66Oe+OK11bNEjIjJZDEG6xinMxVeM0KhQKLBjxw4sW7YMhw4dUm9v2rQpJk2ahMGDB8PW1vbFAUU998UJXlyUkIjIZHF2GBmFJ0+eICwsDMuXL8fNmzcB5Ax07t+9O96fMQO+vr6Fr8D8MnL5y1vrirMPERHpjC4+v9kSROWnFNPMz549i5UrV2LDhg1IT08HAFSxt0dQaireUypRfdcuoG9foG3b0tdVnNY6tugREZkcDoym8lGCaeapqalYs2YNWrVqhaZNm2LVqlVIT09H48aNsebLL3E7LQ0LAFQHyjaVnoiIzBpDEOleMdYAEkIgOjoaY8eOhbu7O8aMGYPo6GhYWVlh0KBBiIiIwNmzZxHYvDls8/bgcrYWERGVArvDzFV5roBcxDTzqxkZ2LhxIzZu3IjY2Fj13d7e3ggKCsKIESPg4uLy4jjO1iIiIi1hCDImOryulk6vaZYnuFwHsEMiwc9TpuDk2bPq3WxtbdGnTx8EBQXBz8+v4IHOnK1FRERawtlhxkIH19VS0/E1zZRKJWJmzcKO0FD8LgTO57pPKpWiS5cu+L//+z/07dsXDg4OxXtQztYiIjIrnB1mrrR56QYtXJ7iZYQQuHz5Mg4ePIiDBw8iIiICjx8/Vt9vYWGB9u3bo1+/fhg8eDBcXV1L/kM4W4uIiMqIIcgYaDO46GBMzePHjxETE4Po6GicPHkSJ0+eRHx8vMY+Dg4O6NatG3r37o3u3bvDycmp1D+PiIhIGxiCjIE2g0spx9QIIfDw4UNcuXIFly5d0ripFi/MzcbGBr6+vujUqRM6deqEFi1awMrKquT1EhER6QhDkIETQiDb1RXPvvkG0okTYaFUQiqVQrpyJSSl6A4SQiB7+HA89fVFxn//IcPDA6kODkg4cgSPHz/G48ePkZCQgISEBNy5cwe3b9/G7du3IZfLkZmZWejjent7o2XLlmjVqhVatmyJ5s2bw8bGpiynTkREpFMcGK0n8fHxuHTpEq5cuYIrV65ALpfj0aNHePjwIR49eoT09HRkZmYiMzMThb1EEokEFhYWOaFIKlXPppJIJBr/Vn1VKBTIyMiAMm/XWjFJJBJUr14d9evX17i9+uqr7N4iIiKd4sDo8qKDNXRu3bqFP/74A4cPH0ZUVBRu3bpV5scUQiA7O7tMjyGTyVChQgVUqVIFVapUgZOTk/qru1yO6tu2oboQqC6RoNqKFbAODi5z3URERIaAISgvLa6hI5fLsX79evz66684d+6cxn1SqRS1a9eGj48P6tSpAy8vL7i4uMDZ2RnOzs6wt7eHTCaDtbU1ZDIZrKysIISAQqGAUqlUf839b1WLkbh7F+LGDaBmTQg3N/V2qVQKW1tb2NjYwMbGBjKZDFJpIYuGq6bSq1qhhADGjwd69OCsLCIiMgkMQblpYSq6EAJ79uzBsmXLsG/fPnXXk1Qqha+vL/z9/eHr64uWLVsWf02cktBWiCvJjLTyXH2aiIhIS8w3BN25A+TtUyzDVHSFQoFffvkFCxcu1Gj1eeONNzBy5Ej06tULzs7O2qq+YNpcT6i4M9LKe/VpIiIiLTHbC6j+16BB/iuZqz74c3vJVHQhBPbu3YtmzZph6NChOHfuHOzs7DB16lRcuXIFkZGRGDVqlO4DEFB0iCsp1VR6C4uc7wuaSl+MC6MSEREZKrMNQUuA/B/Yxfngz+Xs2bPo2rUrunXrhnPnzqFSpUqYP38+bt26hcWLF8PHx0fn56GhFCGuSIGBOZfTiIjI+Zq3hUeboYuIiKicmW0ICgdwuqAP7Jd98AN48OABxowZg2bNmuGvv/6CtbU1pk6dimvXrmHWrFn6my5ewhBX7Mf08yv4MbQduoiIiMqR2a4TBAAtABy7fh1WtWoV69isrCwsX74c8+bNQ3JyMgBgyJAhWLBgAWoV8zEKpc3BxeV5cdGwsPyrT3NMEBERaZku1gky2xBUCUAigAkTJmDZsmXqRQULIoTAzp07MW3aNFy+fBkA0Lx5cyxduhRt27Yte1HGPriYV3QnIiId00UIMtvusG+WLgUALF++HJMmTUJWVla+fbKzs7F9+3a0bNkSffr0weXLl+Hi4oKwsDCcPHlSOwHIFAYXF9VlRkREZKDMdop875EjsUwiwaRJk7B8+XLs2rULI0aMgLe3N1JTU3H69Gls27YNDx48AADY2dlh4sSJmDFjhro7TSu0eYV4IiIiKjaj7A777rvv8OWXX+LevXt49dVX8fXXX6N9+/bFOjZvc9rvv/+OsWPHIj4+vsD9q1atinfffRcffPABqlatqs3TyKFamTnvejxxcQxBREREz/HaYQDCw8MxefJkfPfdd2jbti1WrVqFgIAAXLx4ETVq1Cjx4/Xp0wdvvvkmwsPDceDAAcTHx8PGxgYNGjSAn58f/P39YWVlpYMzeU41oyvv4GIGICIiIp0yupag1q1bo1mzZlixYoV6W/369dG3b1+Ehoa+9HhDuYp8PhxcTEREVCizbwnKysrCqVOnMGPGDI3tXbt2xbFjxwo8JjMzE5mZmervVVPbDY6nJ8MPERFROTKq2WGPHj2CQqGAq6urxnZXV9dCx/SEhobC0dFRfatevXp5lEpEREQGzqhCkEreNX2EEIWu8xMSEoKkpCT17fbt2+VRIhERERk4o+oOc3Z2hoWFRb5WnwcPHuRrHVKRyWSQyWTlUR4REREZEaNqCbK2tkbz5s2xf/9+je379++Hr6+vnqoiIiIiY2RULUEAMHXqVAwbNgwtWrTA66+/jtWrV+PWrVsYO3asvksjIiIiI2J0IWjw4MFISEjA/Pnzce/ePTRs2BC7du2Cl5eXvksjIiIiI2J06wSVlcGuE0RERESF4gVUiYiIiLSEIags5HIgIsK4rvhOREREABiCSi8sLOfCp5065XwNC9N3RURERFQCDEGlIZcDQUEvrvyuVOZcAJUtQkREREaDIag0YmNfBCAVhSLnAqhERERkFBiCSsPHB5DmeeosLHKuAE9ERERGgSGoNDw9gdWrc4IPkPN11SpeBZ6IiMiIGN1iiQYjMBDw98/pAvP2ZgAiIiIyMgxBZeHpyfBDRERkpNgdRkRERGaJIYiIiIjMEkMQERERmSWGICIiIjJLDEFERERklhiCiIiIyCwxBBEREZFZYggiIiIis8QQRERERGaJIYiIiIjMEkMQERERmSWGICIiIjJLDEFERERklhiCiIiIyCwxBBEREZFZYggiIiIis8QQRERERGaJIYiIiIjMEkMQERERmSWGICIiIjJLDEFERERklhiCiIiIyCwxBBEREZFZYggiIiIis8QQRERERGaJIYiIiIjMEkMQERERmSWGICIiIjJLDEFERERklhiCiIiIyCwxBBEREZFZYggiIiIis2RUIahmzZqQSCQatxkzZui7LCIiIjJClvouoKTmz5+PMWPGqL+3t7fXYzVERERkrIwuBDk4OMDNzU3fZRAREZGRM6ruMAD44osvUKVKFbz22mv4/PPPkZWVpe+SiIiIyAgZVUvQ+++/j2bNmqFy5co4efIkQkJCcOPGDaxZs6bQYzIzM5GZman+PikpCQCQnJys83qJiIhIO1Sf20II7T2o0LM5c+YIAEXeoqOjCzx2y5YtAoB49OhRmR6fN95444033ngzjtu1a9e0lkEkQmgzUpXco0eP8OjRoyL3qVmzJmxsbPJtv3PnDjw9PXH8+HG0bt26wGPztgQlJibCy8sLt27dgqOjY9mKNyLJycmoXr06bt++jYoVK+q7nHLD8+Z5mwOeN8/bHCQlJaFGjRp48uQJKlWqpJXH1Ht3mLOzM5ydnUt17JkzZwAA7u7uhe4jk8kgk8nybXd0dDSrXx6VihUr8rzNCM/bvPC8zYu5nrdUqr3hzHoPQcUVFRWF48ePo2PHjnB0dER0dDSmTJmC3r17o0aNGvouj4iIiIyM0YQgmUyG8PBwzJs3D5mZmfDy8sKYMWMwbdo0fZdGRERERshoQlCzZs1w/PjxMj+OTCbDnDlzCuwiM2U8b563OeB587zNAc9be+et94HRRERERPpgdIslEhEREWkDQxARERGZJYYgIiIiMksMQURERGSWTDIEfffdd6hVqxZsbGzQvHlzHDlypMj9IyMj0bx5c9jY2OCVV17BypUry6lS7SrJeW/duhVdunRB1apVUbFiRbz++uvYu3dvOVarPSV9vVX+/vtvWFpa4rXXXtNtgTpS0vPOzMzEzJkz4eXlBZlMhtq1a2Pt2rXlVK32lPS8N27ciCZNmqBChQpwd3fHqFGjkJCQUE7Vlt3hw4fRq1cveHh4QCKRYPv27S89xhTe00p63qbynlaa11vFmN/TSnPe2nhPM7kQFB4ejsmTJ2PmzJk4c+YM2rdvj4CAANy6davA/W/cuIHu3bujffv2OHPmDD7++GNMmjQJv/32WzlXXjYlPe/Dhw+jS5cu2LVrF06dOoWOHTuiV69e6lW4jUVJz1slKSkJw4cPx5tvvllOlWpXac570KBBOHDgAMLCwnD58mX8/PPPqFevXjlWXXYlPe+jR49i+PDhCAwMxIULF/Drr78iOjoao0ePLufKSy8tLQ1NmjTB8uXLi7W/qbynlfS8TeU9raTnrWLs72mlOW+tvKdp7SpkBqJVq1Zi7NixGtvq1asnZsyYUeD+06ZNE/Xq1dPYFhwcLNq0aaOzGnWhpOddkAYNGoh58+ZpuzSdKu15Dx48WHzyySdizpw5okmTJjqsUDdKet67d+8Wjo6OIiEhoTzK05mSnveXX34pXnnlFY1ty5YtE56enjqrUZcAiG3bthW5j6m8p+VWnPMuiDG+p+VWkvM29ve03Ipz3tp6TzOplqCsrCycOnUKXbt21djetWtXHDt2rMBjoqKi8u3v7++PmJgYPHv2TGe1alNpzjsvpVKJlJQUODk56aJEnSjtea9btw7Xrl3DnDlzdF2iTpTmvHfs2IEWLVpg0aJFqFatGurUqYMPP/wQT58+LY+StaI05+3r6wu5XI5du3ZBCIH79+9jy5Yt6NGjR3mUrBem8J6mDcb4nlZaxv6eVhraek8zmhWji+PRo0dQKBRwdXXV2O7q6or4+PgCj4mPjy9w/+zsbDx69KjIi7MaitKcd16LFy9GWloaBg0apIsSdaI05x0bG4sZM2bgyJEjsLQ0zl//0pz39evXcfToUdjY2GDbtm149OgRxo0bh8ePHxvNuKDSnLevry82btyIwYMHIyMjA9nZ2ejduze++eab8ihZL0zhPU0bjPE9rTRM4T2tNLT1nmZSLUEqEolE43shRL5tL9u/oO2GrqTnrfLzzz9j7ty5CA8Ph4uLi67K05ninrdCocDQoUMxb9481KlTp7zK05mSvN5KpRISiQQbN25Eq1at0L17dyxZsgTr1683qtYgoGTnffHiRUyaNAmzZ8/GqVOnsGfPHty4cQNjx44tj1L1xlTe00rL2N/TisvU3tNKQlvvaSYVG52dnWFhYZHvf4UPHjzI9z8jFTc3twL3t7S0RJUqVXRWqzaV5rxVwsPDERgYiF9//RWdO3fWZZlaV9LzTklJQUxMDM6cOYMJEyYAyPlDEkLA0tIS+/btQ6dOncql9rIozevt7u6OatWqwdHRUb2tfv36EEJALpfDx8dHpzVrQ2nOOzQ0FG3btsVHH30EAGjcuDHs7OzQvn17fPbZZybZKmIK72llYczvaSVlKu9ppaGt9zSTagmytrZG8+bNsX//fo3t+/fvh6+vb4HHvP766/n237dvH1q0aAErKyud1apNpTlvIOd/SyNHjsSmTZuMcoxESc+7YsWK+Pfff3H27Fn1bezYsahbty7Onj2L1q1bl1fpZVKa17tt27a4e/cuUlNT1duuXLkCqVQKT09PndarLaU57/T0dEilmm9zFhYWAF60jpgaU3hPKy1jf08rKVN5TysNrb2nlWlYtQHavHmzsLKyEmFhYeLixYti8uTJws7OTsTFxQkhhJgxY4YYNmyYev/r16+LChUqiClTpoiLFy+KsLAwYWVlJbZs2aKvUyiVkp73pk2bhKWlpfj222/FvXv31LfExER9nUKplPS88zLWmRQlPe+UlBTh6ekpBg4cKC5cuCAiIyOFj4+PGD16tL5OoVRKet7r1q0TlpaW4rvvvhPXrl0TR48eFS1atBCtWrXS1ymUWEpKijhz5ow4c+aMACCWLFkizpw5I27evCmEMN33tJKet6m8p5X0vPMy1ve0kp63tt7TTC4ECSHEt99+K7y8vIS1tbVo1qyZiIyMVN83YsQI0aFDB439Dx06JJo2bSqsra1FzZo1xYoVK8q5Yu0oyXl36NBBAMh3GzFiRPkXXkYlfb1zM9Y3DCFKft6XLl0SnTt3Fra2tsLT01NMnTpVpKenl3PVZVfS8162bJlo0KCBsLW1Fe7u7uL//u//hFwuL+eqSy8iIqLIv1VTfU8r6XmbyntaaV7v3Iz1Pa00562N9zSJECbaJkxERERUBJMaE0RERERUXAxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgojIJMyfPx+NGjWCnZ0dXF1d8d577+HZs2f6LouIDJilvgsgIiorIQQUCgVWrVqFatWq4eLFixg+fDgaN26M9957T9/lEZGB4gVUicgkDR06FFWrVsXSpUv1XQoRGSh2hxGR0bt58yYmTJiAhg0bonLlyrC3t8cvv/wCT09PfZdGRAaMIYiIjNqjR4/QqlUrPHr0CEuWLMHRo0cRFRUFCwsLvPbaa/ouj4gMGMcEEZFR27VrF7Kzs/Hzzz9DIpEAAL799ltkZWUxBBFRkRiCiMioOTk5ITk5GTt27ECDBg2wc+dOhIaGolq1aqhataq+yyMiA8aB0URk1IQQeO+997Bp0ybY2trinXfeQUZGBm7evIk//vhD3+URkQFjCCIiIiKzxIHRREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrP0/9FT+jEycTRfAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeVUlEQVR4nO3deXhM598G8HuyTSIbsWQRIiKCqjUELYJaYt+3Vu2Joi2q1v5qeVtaWtVWbRVLW1RbtVYRRFBRsZWihCZkVESCbGKSzDzvH2NGJpskZjLb/bmuuWLOnDP5nkwyc3uW80iEEAJEREREFsbK0AUQERERGQJDEBEREVkkhiAiIiKySAxBREREZJEYgoiIiMgiMQQRERGRRWIIIiIiIovEEEREREQWiSGIiIiILBJDEBlUcHAwgoODDV1GmY0aNQpOTk4l2rdWrVoYNWqUXuuRSCSYP3++Xr/H8zx+/Bjz58/H0aNHDVqHqTh8+DACAwPh6OgIiUSCnTt3YuPGjZBIJIiPj9fst2XLFixfvlwvNXzwwQeoWbMmbGxsULFixVIfP2rUKNSqVUvndRmbcePGoWHDhqhYsSIcHBxQt25dvP/++0hOTtbab9SoUZBIJEXeTp06ZaAzoPxsDF0AWbaVK1cauoRys2PHDri4uBi6DL17/PgxFixYAAAmHXDLgxACgwcPRt26dbF79244OjoiICAAubm5iI6Ohqenp2bfLVu24O+//8aUKVN0WsOuXbvw8ccfY+7cuQgJCYFUKtXp85uTzMxMhIaGok6dOrC3t8eZM2fw8ccfY9++fTh//jzs7OwAAP/73/8wYcKEAsf36tULUqkULVq0KO/SqQgMQWRQDRo0MHQJ5aZp06aGLoF0KCsrC/b29pBIJGV+jv/++w8PHjxAv3790KlTJ63Hqlat+qIllsjff/8NAHjnnXdQrVq1cvmeuqKL16A0tm7dqnW/Y8eOcHZ2xsSJE3HixAl07NgRAODn5wc/Pz+tfaOiopCcnIwPPvgA1tbW5VIvPR+7w6jE5s+fD4lEgsuXL2PYsGFwdXWFu7s7xowZg9TUVK19nzx5gtmzZ8PX1xd2dnaoXr06Jk2ahEePHmntV1h32KpVq9C4cWM4OTnB2dkZ9erVw5w5cwAA8fHxsLGxweLFiwvUd+zYMUgkEvz888/FnsejR4/w3nvvoXbt2pBKpahWrRq6d++Of/75BwBw9OhRSCSSAt058fHxkEgk2LhxY4HnvHz5Mjp16gRHR0dUrVoVkydPxuPHj7X2Kaw77Hm16EJiYiLCwsLg7e0NOzs7+Pr6YsGCBcjNzdXab8GCBQgKCoKbmxtcXFzQrFkzhIeHI/8ay0eOHEFwcDAqV64MBwcH1KxZEwMGDMDjx48RHx+v+fBesGCBpvn/ed2Ajx8/xvTp0+Hr6wt7e3u4ubkhMDCwwIfOxo0bERAQAKlUivr16+O7774r0BVTmtfvzJkzGDp0KGrVqgUHBwfUqlULw4YNw61btwp8X4lEgoMHD2LMmDGoWrUqKlSoALlcDgDYtm0bWrduDUdHRzg5OaFr1644f/58sec8f/58eHt7AwBmzpwJiUSiOY/83WHBwcH47bffcOvWLa1uleIolUosWbIE9erV0/xuvfnmm5DJZJp9atWqhQ8++AAA4O7uXqLu1MJeg8JkZ2fjo48+0nz/qlWrYvTo0bh//77WfnK5HO+99x48PDxQoUIFtGvXDmfPni3w96Kr1+DMmTPo3bs33NzcYG9vj6ZNm+Knn34q9pyLo/59t7Epvk0hPDwcEokEY8aMKfP3It1jSxCV2oABAzBkyBCMHTsWly5dwuzZswEA69evB6Bq4u/bty8OHz6M2bNno23btrh48SLmzZuH6OhoREdHF9nk/uOPP2LixIl4++238dlnn8HKygo3btzAlStXAKjetHv37o3Vq1djxowZWv+jWrFiBby8vNCvX78ia09PT8err76K+Ph4zJw5E0FBQcjIyMCxY8dw9+5d1KtXr9Q/j5ycHHTv3h1hYWGYNWsWTp48iY8++gi3bt3Cnj17XriWUaNGYdOmTYiLiyv1uIvExES0bNkSVlZW+PDDD+Hn54fo6Gh89NFHiI+Px4YNGzT7xsfHIywsDDVr1gQAnDp1Cm+//Tbu3LmDDz/8ULNPjx490LZtW6xfvx4VK1bEnTt3sH//fmRnZ8PT0xP79+9Ht27dMHbsWIwbNw7A81s1pk2bhu+//x4fffQRmjZtiszMTPz9999ISUnR7LNx40aMHj0affr0weeff47U1FTMnz8fcrkcVlZl+/9cfHw8AgICMHToULi5ueHu3btYtWoVWrRogStXrqBKlSpa+48ZMwY9evTA999/j8zMTNja2mLRokX44IMPMHr0aHzwwQfIzs7G0qVL0bZtW5w+fbrI1s5x48ahcePG6N+/P95++20MHz68yL+LlStXIjQ0FDdv3sSOHTtKdG5vvfUW1q5di8mTJ6Nnz56Ij4/H//73Pxw9ehTnzp1DlSpVsGPHDnzzzTcIDw/H/v374erqqglmhSnpa6BUKtGnTx8cP34cM2bMQJs2bXDr1i3MmzcPwcHBOHPmDBwcHAAAo0ePxrZt2zBjxgx07NgRV65cQb9+/ZCWllZoDS/yGkRGRqJbt24ICgrC6tWr4erqih9//BFDhgzB48ePSzxmLzc3F3K5HBcuXMD//vc/vPrqq3jllVeK3D81NRW//PILOnXqBF9f3xJ9DyongqiE5s2bJwCIJUuWaG2fOHGisLe3F0qlUgghxP79+wvdb9u2bQKAWLt2rWZb+/btRfv27TX3J0+eLCpWrFhsHZGRkQKA2LFjh2bbnTt3hI2NjViwYEGxxy5cuFAAEBEREc99/sjISK3tcXFxAoDYsGGDZtvIkSMFAPHll19q7fvxxx8LAOLEiROabT4+PmLkyJGlqkUIIcaMGSOsra1FfHx8sfsJIQQAMW/ePM39sLAw4eTkJG7duqW132effSYAiMuXLxf6PAqFQuTk5IiFCxeKypUra17bX375RQAQFy5cKLKG+/fvF6jjeRo2bCj69u1b5OMKhUJ4eXmJZs2aaWoRQoj4+Hhha2srfHx8NNtK8/rll5ubKzIyMoSjo6PWa7phwwYBQLz55pta+9++fVvY2NiIt99+W2t7enq68PDwEIMHDy7mrJ/VtHTpUq3t6u8XFxen2dajRw+t8yzO1atXBQAxceJEre1//vmnACDmzJmj2ab+u75//36xz1ma12Dr1q0CgNi+fbvWc8TExAgAYuXKlUIIIS5fviwAiJkzZ2rtpz4+79+LLl6DevXqiaZNm4qcnBytfXv27Ck8PT2FQqEo9mcghBDR0dECgObWvXt3kZaWVuwxq1atEgDE1q1bn/v8VL7YHUal1rt3b637jRo1wpMnT5CUlARA1V0CoMD/qgYNGgRHR0ccPny4yOdu2bIlHj16hGHDhmHXrl0FZl0Aqq6Bxo0b45tvvtFsW716NSQSCUJDQ4ut/ffff0fdunXx2muvFbtfab3++uta94cPHw5A9T/PF60lPDwcubm58PHxKXVde/fuRYcOHeDl5YXc3FzNLSQkBIBqnILakSNH8Nprr8HV1RXW1tawtbXFhx9+iJSUFM1r26RJE9jZ2SE0NBSbNm3Cv//+W6p68taQm5ur6Wpr2bIlfv/9d8yaNQtHjx5FVlaW1nHXrl3Df//9h+HDh2t1A/n4+KBNmzal/rmoZWRkYObMmahTpw5sbGxgY2MDJycnZGZm4urVqwX2HzBggNb9AwcOIDc3F2+++abWednb26N9+/YGmyGn/r3L/zfYsmVL1K9fv9i/waKU5jXYu3cvKlasiF69emn9XJo0aQIPDw/Nz0X9+zd48GCt4wcOHFhk91JZX4MbN27gn3/+0fyt5t23e/fuuHv3Lq5du/bcn8PLL7+MmJgYREVF4csvv8T58+fRuXPnAt3feYWHh6Ny5crFtlKTYTAEUalVrlxZ6766CV/9wZWSkgIbG5sCXSASiQQeHh5aXRz5jRgxAuvXr8etW7cwYMAAVKtWDUFBQYiIiNDa75133sHhw4dx7do15OTk4Ntvv8XAgQPh4eFRbO33798vtrm/LGxsbAr8TNR1FHeu+qglv3v37mHPnj2wtbXVur300ksAoAmZp0+fRpcuXQAA3377Lf744w/ExMRg7ty5AJ69tn5+fjh06BCqVauGSZMmaQaAfvnll8+tJT4+vkAd6g/Br776CjNnzsTOnTvRoUMHuLm5oW/fvoiNjQXw7OdY2Ov7vNe8OMOHD8eKFSswbtw4HDhwAKdPn0ZMTAyqVq1aIIgB0JqtBah+vgDQokWLAue2bdu2QkN8eVD/vPLXCwBeXl7F/l4+7zlL8hrcu3cPjx49gp2dXYGfS2Jioubnon5Od3d3reML+5tSK+troN5v+vTpBfabOHEiAJTo9XJ0dERgYCDatWuHd955Bzt27MCff/6JNWvWFLr/xYsXcebMGbzxxhuceWeEOCaIdK5y5crIzc3F/fv3tYKQEAKJiYnPnR46evRojB49GpmZmTh27BjmzZuHnj174vr165rWkOHDh2PmzJn45ptv0KpVKyQmJmLSpEnPra1q1apaA0MLY29vDwCaAZdqRb1B5ubmIiUlRetNOzExEUDBwFjaWl5UlSpV0KhRI3z88ceFPu7l5QVANRbL1tYWe/fu1Zw/AOzcubPAMW3btkXbtm2hUChw5swZfP3115gyZQrc3d0xdOjQImvx8vJCTEyM1raAgAAAqg+WBQsWYMGCBbh3756mVahXr174559/ND9H9c81r/zbSvr6paamYu/evZg3bx5mzZql2S6Xy/HgwYNCzyH/YGT1mKFffvmlTC11+qL+ed29e7dA0P7vv/8KjHUqzXOW5DWoUqUKKleujP379xf6XM7OzlrPee/ePVSvXl3zuPpvqjBlfQ3U+82ePRv9+/cvdB/172NpBAYGwsrKCtevXy/08fDwcADQjI8j48KWINI59VTfH374QWv79u3bkZmZWWAqcFEcHR0REhKCuXPnIjs7G5cvX9Y8Zm9vr+mSWbZsGZo0aVLswES1kJAQXL9+XdNlVxj14OOLFy9qbd+9e3eRx2zevFnr/pYtWwAUf52cktTyonr27Im///4bfn5+CAwMLHBThyCJRAIbGxutgeZZWVn4/vvvi3xua2trBAUFabolz507B6Bgy6CanZ1dge+v/jDMy93dHaNGjcKwYcNw7do1PH78GAEBAfD09MTWrVu1ZqvdunULJ0+e1Dq+pK+fRCKBEKLA/87XrVsHhUJR5Hnn1bVrV9jY2ODmzZuF/nwDAwNL9DwlIZVKC22dKox6qnb+v8GYmBhcvXq1xH+DeZXmNejZsydSUlKgUCgK/Zmow0a7du0AqGZ25fXLL78UmL1YlJK+BgEBAfD398dff/1V5H6F/T4+T1RUFJRKJerUqVPgMblcjh9++AEtW7ZEw4YNS/3cpH9sCSKd69y5M7p27YqZM2ciLS0Nr7zyimZ2WNOmTTFixIgijx0/fjwcHBzwyiuvwNPTE4mJiVi8eDFcXV0LtCBNnDgRS5YswdmzZ7Fu3boS1TZlyhRs27YNffr0waxZs9CyZUtkZWUhKioKPXv2RIcOHeDh4YHXXnsNixcvRqVKleDj44PDhw/j119/LfQ57ezs8PnnnyMjIwMtWrTQzA4LCQnBq6+++kK1AMDYsWOxadMm3Lx5s9StDQsXLkRERATatGmDd955BwEBAXjy5Ani4+Oxb98+rF69Gt7e3ujRoweWLVuG4cOHIzQ0FCkpKfjss88KBITVq1fjyJEj6NGjB2rWrIknT55oZgWqxzY5OzvDx8cHu3btQqdOneDm5oYqVaoUO7MtKCgIPXv2RKNGjVCpUiVcvXoV33//PVq3bo0KFSoAAP7v//4P48aNQ79+/TB+/Hg8evQI8+fPL9AVU9LXz8XFBe3atcPSpUs19UVFRSE8PLzEV02uVasWFi5ciLlz5+Lff/9Ft27dUKlSJdy7dw+nT5/WtHDpwssvv4xff/0Vq1atQvPmzWFlZVVkyAoICEBoaCi+/vprWFlZISQkRDM7rEaNGpg6dWqpv7+VlVWJX4OhQ4di8+bN6N69O9599120bNkStra2kMlkiIyMRJ8+fdCvXz+89NJLGDZsGD7//HNYW1ujY8eOuHz5Mj7//HO4urqWaNZfaV6DNWvWICQkBF27dsWoUaNQvXp1PHjwAFevXsW5c+eKvbzG3r178e2336J3797w8fFBTk4Ozpw5g+XLl6NOnTqFtvTs3LkTDx48YCuQMTPosGwyKUXNIilsJktWVpaYOXOm8PHxEba2tsLT01O89dZb4uHDh1rH5p8dtmnTJtGhQwfh7u4u7OzshJeXlxg8eLC4ePFioTUFBwcLNzc38fjx4xKfx8OHD8W7774ratasKWxtbUW1atVEjx49xD///KPZ5+7du2LgwIHCzc1NuLq6ijfeeEOcOXOm0Nlhjo6O4uLFiyI4OFg4ODgINzc38dZbb4mMjAyt75t/dlhJa1HPQMv78y0KCpmVdf/+ffHOO+8IX19fYWtrK9zc3ETz5s3F3LlztWpcv369CAgIEFKpVNSuXVssXrxYhIeHa33v6Oho0a9fP+Hj4yOkUqmoXLmyaN++vdi9e7fW9zx06JBo2rSpkEqlBWb5FGbWrFkiMDBQVKpUSfP9p06dKpKTk7X2W7dunfD39xd2dnaibt26Yv369WLkyJEFZk2V9PWTyWRiwIABolKlSsLZ2Vl069ZN/P333wVeK/XveExMTKH179y5U3To0EG4uLgIqVQqfHx8xMCBA8WhQ4eKPe/SzA578OCBGDhwoKhYsaKQSCTieW/fCoVCfPrpp6Ju3brC1tZWVKlSRbzxxhsiISFBa7+Szg5TK+lrkJOTIz777DPRuHFjYW9vL5ycnES9evVEWFiYiI2N1ez35MkTMW3aNFGtWjVhb28vWrVqJaKjo4Wrq6uYOnVqgZ/Ji74Gf/31lxg8eLCoVq2asLW1FR4eHqJjx45i9erVxZ731atXxcCBA4WPj4+wt7cX9vb2ol69euL9998XKSkphR7TuXNn4ejo+NzZY2Q4EiHyXQmNyEQkJSXBx8cHb7/9NpYsWWLocshARo0ahaNHj2qts0Wm7eTJk3jllVewefNmzUxLIn1gdxiZHJlMhn///RdLly6FlZUV3n33XUOXRERlFBERgejoaDRv3hwODg7466+/8Mknn8Df37/IAcxEusIQRCZn3bp1WLhwIWrVqoXNmzdrzSohItPi4uKCgwcPYvny5UhPT0eVKlUQEhKCxYsXa81UJNIHdocRERGRRTKaKfKrVq1Co0aN4OLiAhcXF7Ru3Rq///675nEhBObPnw8vLy84ODggODhYa8o0ERERUWkYTQjy9vbGJ598gjNnzuDMmTPo2LEj+vTpowk6S5YswbJly7BixQrExMTAw8MDnTt3Rnp6uoErJyIiIlNk1N1hbm5uWLp0KcaMGQMvLy9MmTIFM2fOBKC6CJW7uzs+/fRThIWFGbhSIiIiMjVGOTBaoVDg559/RmZmJlq3bo24uDgkJiZq1jYCVFdPbd++PU6ePFlsCJLL5VqXz1cqlXjw4AEqV65c4PLrREREZJyEEEhPT4eXl1eJLqRZEkYVgi5duoTWrVvjyZMncHJywo4dO9CgQQPNJdnzL7Ln7u6OW7duFfucixcv1tkVW4mIiMiwEhISdLb4tFGFoICAAFy4cAGPHj3C9u3bMXLkSM0q00DBhfOEEM9tzZk9ezamTZumuZ+amoqaNWsiISEBLi4uuj0BIiIi0ou0tDTUqFGjTGu8FcWoQpCdnZ1mEbrAwEDExMTgyy+/1IwDSkxMhKenp2b/pKSkAq1D+Uml0gLrHwHQzEIjIiIi06HLoSxGMzusMEIIyOVy+Pr6wsPDAxEREZrHsrOzERUVhTZt2hiwQiIiIjJVRtMSNGfOHISEhKBGjRpIT0/Hjz/+iKNHj2L//v2QSCSYMmUKFi1aBH9/f/j7+2PRokWoUKEC15UhIiKiMjGaEHTv3j2MGDECd+/ehaurKxo1aoT9+/ejc+fOAIAZM2YgKysLEydOxMOHDxEUFISDBw/qtG+QiIiILIdRXydIH9LS0uDq6orU1FSOCSIiIjIR+vj8NuoxQURERET6whBEREREFokhiIiIiCwSQxARERFZJIYgIiIiskgMQURERGSRGIKIiIjIIjEEERERkUViCCIiIiKLxBBEREREFokhiIiIiCwSQxARERFZJIYgIiIiskgMQURERGSRGIKIiIjIIjEEERERkUViCCIiIiKLxBBEREREFokhiIiIiCwSQxARERFZJIYgIiIiskgMQURERGSRGIKIiIjIIjEEERERkUViCCIiIiKLxBBEREREFokhiIiIiCwSQxARERFZJIYgIiIiskgMQURERGSRGIKIiIjIIjEEERERkUViCCIiIiKLxBBEREREFokhiIiIiCwSQxARERFZJIYgIiIiskgMQURERGSRGIKIiIgskFKpxNGjR3H37l1Dl2IwDEFEREQWaMaMGejQoQNeeukl3Lp1y9DlGARDEBERkYWRyWRYvnw5AODhw4f47LPPDFuQgTAEERERWZidO3dCoVBo7v/2228GrMZwjCYELV68GC1atICzszOqVauGvn374tq1a1r7jBo1ChKJROvWqlUrA1VMRERkmg4dOgQAmDNnDmxsbBAXF4fbt28buKryZzQhKCoqCpMmTcKpU6cQERGB3NxcdOnSBZmZmVr7devWDXfv3tXc9u3bZ6CKiYiITE9ubi4iIyMBAP369UP9+vUBABcvXjRkWQZhY+gC1Pbv3691f8OGDahWrRrOnj2Ldu3aabZLpVJ4eHiUd3lERERm4dy5c0hLS0OlSpXQtGlTNG7cGJcuXcJff/2Fnj17Grq8cmU0LUH5paamAgDc3Ny0th89ehTVqlVD3bp1MX78eCQlJRX7PHK5HGlpaVo3IiIiS3Xu3DkAQMuWLWFtbY0GDRoAQIEhKJbAKEOQEALTpk3Dq6++ioYNG2q2h4SEYPPmzThy5Ag+//xzxMTEoGPHjpDL5UU+1+LFi+Hq6qq51ahRozxOgYiIyChduHABANC0aVMAgJ+fHwDg33//NVRJBmM03WF5TZ48GRcvXsSJEye0tg8ZMkTz74YNGyIwMBA+Pj747bff0L9//0Kfa/bs2Zg2bZrmflpaGoMQERFZrPPnzwMAmjRpAgCoXbs2AODmzZuGKslgjC4Evf3229i9ezeOHTsGb2/vYvf19PSEj48PYmNji9xHKpVCKpXqukwiIiKTk5ubqxkArW4JUoegxMREZMXGwsHf32D1lTej6Q4TQmDy5Mn49ddfceTIEfj6+j73mJSUFCQkJMDT07McKiQiIjJtN27cwJMnT1ChQgVNN1ilX3+F/dPHEwMCgPBwwxVYzowmBE2aNAk//PADtmzZAmdnZyQmJqpSaVYWACAjIwPTp09HdHQ04uPjcfToUfTq1QtVqlRBv379DFw9ERGR8fvnn38AAPXq1YO1tTUgk0ESFgb1nOtEIYCwMEAmM1yR5choQtCqVauQmpqK4OBgeHp6am7btm0DAFhbW+PSpUvo06cP6tati5EjR6Ju3bqIjo6Gs7OzgasnIiIyfuoZYAEBAaoNsbGAUvksBAGAQgHcuGGI8sqd0YwJEkIU+7iDgwMOHDhQTtUQERGZn+vXrwPIE4L8/QErK3golQCehiBra6BOHcMUWM6MpiWIiIiI9KtAS5C3N7B2LTwkEgBAokQCrFmj2l4YmQyIjDSb7jKGICIiIgtRIAQBwNix8Jg6FQCQOHw4MHZs4QeHhwM+PkDHjqqvZjCAmiGIiIjIAjx48ADJyckAAP980+A96tYFACSmpxd+sEyGqPHj4aZUoi0AKJVmMYCaIYiIiMgCqFuBqlevDicnJ63H1GtyJiYmFn5wbCzkQuAhAM3iU2YwgJohiIiIyAIUGBSdhzoE3bt3r/CD/f2hfDpuyFq9zQwGUDMEERERWYBCxwM95e7uDkDVElTobG1vbyjefhvA0+BgbV38AGoTwRBERERkAYoLQW5ubgAAuVyuuUhxfopOnQAA1vXqAfHxRQ+gNiEMQURERBaguBDk7OysuoI0gIcPHxZ6vPLptYSsK1Uy+RYgNYYgIiIiM6dQKHDj6SDmwkKQRCJBxYoVARQdghQKBQDAysp8ooP5nAkREREV6vbt25DL5ZBKpahZs2ah+1SqVAnA80OQusXIHDAEERERmTl1V1idOnWKDDHqcUEMQURERGQ2ihsPpPa8liD1mCB2hxEREZHJKE0IevDgQaGPsyWIiIiITI4uWoIYgoiIiMjk6LI7jCGIiIiITEJGRgbu3LkDAKj7dKHUwpS0JYhjgoiIiMgkqNcMq1KlimYGWGHYHUZERERmpbiFU/NidxgRERGZlZKMBwLYHUZERERmRtchiC1BREREZBLUIai4QdEA4OLiAgBIT08v9HF2hxEREZHJEELgurolyNW12H3VIejx48fIzc0t8Di7w4iIiMhk/Pf558jIzIQ1AL9OnYDw8CL3dXZ21vw7IyOjwOPsDiMiIiLTIJPh2owZAABfAHZCAGFhgExW6O5SqRS2trYAgLS0tAKPszuMiIiITENsLK4IAQCop96mUAA3bhR5SHHjgtgdRkRERKbB3x+Xnv7zZfU2a2ugTp0iD1F3iRUXgtgSRERERMbN2xuX/PwAPA1B1tbAmjWAt3eRh6hbggrrDjPHEGRj6AKIiIhI94QQ+DspCQDw8vr1QOfOxQYgoPiWIPWYIHPqDmMIIiIiMkO3bt1Ceno6bG1tEfDGG8DTQc/FUYcgS2kJMp84R0RERBqXLqlGBNWrV08z6+t5SjIwmiGIiIiIjNrFixcBAI0aNSrxMSXpDmMIIiIiIqOmbgl6+eWXn7PnMyUZGG1OY4LM50yIiIhI4/z58wCAxo0bl/gYTpEnIiIik/bw4UNcv34dANCiRYsSH8fuMCIiIjJpZ86cAQD4+fmhcuXKJT6O3WFERERk0k6fPg2gdK1AALvDiIiIyMRFR0cDAFq2bFmq44prCWJ3GBERERm13NxcHD9+HADQrl27Uh1bkpYgdocRERGRUTp//jzS0tJQsWJFNGnSpFTHOjo6AgAyMzMLPMbuMCIiIjJqkZGRAFStQKUNLMWFIHPsDuPaYUREREYgMzMTu3btwqlTp/D48WP4+fmhd+/eeOmll0r1PPv27QMAdOrUqdQ1ODk5aWrJj91herR48WK0aNECzs7OqFatGvr27Ytr165p7SOEwPz58+Hl5QUHBwcEBwfj8uXLBqqYiIjoxQkhsGHDBvj4+OD111/H119/jfDwcMyZMwcNGzbEoEGDcPv27RI91/379zXjgfr06VPqWtQtQTk5OcjOztZ6jN1hehQVFYVJkybh1KlTiIiIQG5uLrp06aKVRpcsWYJly5ZhxYoViImJgYeHBzp37lzoAC4iIiKjI5MBkZGqrwCysrIwZMgQjBkzBikpKfD19cW0adOwYMEC9OrVC1ZWVvjll1/QuHFjHDhw4LlPv2vXLiiVSjRr1gw+Pj6lLk8dgoCCrUHmGIIgjFRSUpIAIKKiooQQQiiVSuHh4SE++eQTzT5PnjwRrq6uYvXq1SV+3tTUVAFApKam6rxmIiKiIq1bJ4SVlRCAEFZWIuObb0Tbtm0FAGFnZyeWLFkicnJyVPsmJAhx5Ij46+BB0bJlSwFAWFlZiRUrVjx7vqf7iIQEzaagoCABQCxatKjMZdrY2AgAIiHP8wohRO/evQUAsWbNmjI/94vQx+e30Y4JSk1NBQC4ubkBAOLi4pCYmIguXbpo9pFKpWjfvj1OnjyJsLAwg9RJRET0XDIZEBoKPB1cnKNUYsikSTgOwNXVFbt27UL79u1V+4aHa/ZtZGWFY998g4kNG2L9+vWYPHkybt++jcV16sBqwgTV81lZAWvXIqZRI/z555+ws7PD2LFjy1yqk5MTHj16ZBEtQUYZgoQQmDZtGl599VU0bNgQAJCYmAgAcHd319rX3d0dt27dKvK55HI55HK55n5hF4AiIiLSq9hYTQASACYC+A2AvZ0d9u3bhzZt2qj2yxeWoFRCOnky1sXFwc/PD3PnzsWSJUtwG8BGANKn+4jQUMwICgIADBkyBNWqVStzqY6Ojnj06BEyMjK0tptjCDKaMUF5TZ48GRcvXsTWrVsLPCaRSLTuCyEKbMtr8eLFcHV11dxq1Kih83qJiIiK5e+varEBsB7AOqg+gLetWvUsAAFaYUlDoYDk5k3MmTMH3333HWysrfEjgK4A7j7dZbFSiaPR0XBwcMDChQtfqNSipsmb4xR5owtBb7/9Nnbv3o3IyEh4e3trtnt4eAB41iKklpSUVKB1KK/Zs2cjNTVVc0tISNBP4UREREXx9gbWrsUFKytMerrpo/790XvMGO398oQlDWtroE4dAMCIESPw+/ffwxlAFIBaALwBzH266yeffIJatWq9UKlFhSBOkdcjIQQmT56MX3/9FUeOHIGvr6/W476+vvDw8EBERIRmW3Z2NqKiorRTdD5SqRQuLi5aNyIiovKWNXw4htWuDTmAHp06YebPPxfc6WlYgrq1xdoaWLNGtf2p14YNwx/z56MNgGwAdwDYWltj6dKleOedd164zqKuFZSbmwsAsLExypE0ZWI0ZzJp0iRs2bIFu3btgrOzs6bFx9XVFQ4ODpBIJJgyZQoWLVoEf39/+Pv7Y9GiRahQoQKGDx9u4OqJiIiK98EHH+CfGzfg4eGBTdu2Fd2iMnYs0LUrcOOGqgUoTwBSe3nePJwYMwY3oqJwRypF49deQ6VKlXRSp7olqKgxQQxBerBq1SoAQHBwsNb2DRs2YNSoUQCAGTNmICsrCxMnTsTDhw8RFBSEgwcPahZ8IyIiMkYnTpzAF198AQBYt24dKleuXPwB3t6Fhp+8JDVqwP+NN+CvqyKfKqo7jC1BeiSEeO4+EokE8+fPx/z58/VfEBERkQ5kZmZi1KhREEJg9OjR6NGjh6FLKpYlhSCjGRNERERkjmbNmoWbN2/C29tb0xpkzCxpTBBDEBERkZ5ERkZixYoVAIDw8HC4uroauKLne96YIE6RJyIiomKlp6djzNMp8GFhYVorHhgzdocRERHRC3n//fcRHx+PWrVqYenSpYYup8QYgoiIiKjMDh06hDVr1gAA1q9fb1KzmDkmiIiIiMokLS1Ns4DppEmT0KFDBwNXVDpFjQkyxxBkPmdCRERkSDIZEBuL98PDcfv2bfj6+uKTTz4xdFWl9rxlM8xpYDRDEBER0YsKDwdCQxGhVGLt003r16/XdC2ZEo4JIiIiopKRyYDQUKQplRj7dNNkiQTBTxc9NTUcE0REREQlExsLKJWYAiABQG0AnwihWvvLBFnSmCCGICIiohfh74+fJBJsACABsAGAo7W1avFTE/S8MUEMQURERAQAuK1UItTeHgAwB0A7a2tgzZrnLoBqrPKGoLzreqpbgjgwmoiIiKBQKPDGG28gNSsLQU2bYt6SJUC9eiYbgIBnY4KUSiXkcjnsnwY8c+wOM58zISIiKmeLFy/G8ePH4eTkhM0//wxbPz9Dl/TC1C1BgGpckL29PYQQ7A4jIiIilSNHjmDevHkAgG+++QZ+ZhCAAFV3l1QqBfBsXJBSqdQ8zhBERERkwe7cuYOhQ4dCqVRi1KhRGDFihKFL0qn8g6PVXWEAQxAREZHFys7OxqBBg3D//n00btwYK1euhEQiMXRZOpX/WkF5Q5A5DYxmCCIiIiqF6dOnIzo6Gq6urti+fTscHBwMXZLO5b9WEFuCiIiILFx4eDi+/vprAMD3339vNuOA8mN3GBEREWlERUVhwoQJAIB58+ahV69eBq5If/KHIPXMMACwsjKf6GA+Z0JERKQnN2/eRP/+/ZGbm4shQ4ZoZoWZq6JagmxsbMxq/BNDEBERUTEePXqEnj174sGDB2jRogU2bNhgVkGgMOqB0fnHBJnToGiAIYiIiKhI6plg//zzD6pXr45du3aZ5UDo/IprCTInDEFERESFUF8D6NChQ3B0dMSePXvg6elp6LLKRVFjghiCiIiIzJwQAu+99x62bt0KGxsbbN++HU2bNjV0WeWGLUFEREQWaunSpVi+fDkAYOPGjejatathCypnDEFEREQWaNOmTZg5cyYA4LPPPsPrr79u4IrKHwdGExERWZi9e/di7NixAFRXhn7vvfcAmQyIjFR9tRBsCSIiIjJVZQguBw8exIABA6BQKPDGG2/g008/BcLDAR8foGNH1dfwcD0WbTzyh6Ds7GwAgJ2dncFq0geGICIiMi9lCC5RUVHo27cvsrOz0a9fP6xfvx5W//0HhIYCSqVqJ6USCAuziBYhhiAiIiJTI5OVLrjIZIhesQI9undHVlYWunfvjh9//BG2trZAbOyz51FTKIAbN/R7DkYgfwjKyckBYH4hyLw694iIyLIVF1y8vbW3h4fj7Pjx6CYEMgG8Vr8+tm/f/uyD3t8fsLLSfj5ra6BOHb2egjHIPzBa3RJka2trsJr0gS1BRERkPtTBJa/CgotMhrPjx6OLEEgD0BbAzmvXYJ+c/Gwfb29g7VrV8ernWbOmYJgyQ+wOIyIiMjUlDC7RO3eikxB4AKAVgN8AOCqVBbu6xo4F4uNVg6zj41X3LQC7w4iIiEzR2LFA166qQFOnToEAdOzYMfSYNQsZULUA/QbAGSi6q8vb2yJaf/JSh6DHjx9DCGG23WEMQUREZH6KCC6HDh1C7969kZWVhU7162PXtWuqFiAL6uoqCfWYICEEsrKy2BJERERkynbu3ImhQ4dCLpcjJCQE27dvh0NKSpEtRpasQoUKmn9nZGSwJYiIiMhUrVmzBhMnToRSqUSfPn2wbds2SKVSi+zqKgkrKys4ODggKysLmZmZHBhNRERkaoQQmDdvHiZMmAClUolx48bhl19+UQUgKlbewdHm2h3GEERERGYpNzcXoaGhWLhwIQDgww8/xNq1a81u/St9yRuC2B1GRERkIh49eoShQ4fiwIEDsLKywsqVKxEWFmboskyKenC0OXeHMQQREZFZuX79Onr37o1r166hQoUK2Lx5M/r27WvoskyOuiUoIyOD3WHl4dixY+jVqxe8vLwgkUiwc+dOrcdHjRoFiUSidWvVqpVhiiUiIqMTERGBoKAgXLt2DTVq1MCJEycYgMrIErrDjCoEZWZmonHjxlixYkWR+3Tr1g13797V3Pbt21eOFRIRkTESQmDZsmUICQnBo0eP0Lp1a5w+fRpNmzY1dGkmq7AQZG4tQUbVHRYSEoKQkJBi95FKpfDw8CinioiIyNg9ePAAo0ePxu7duwEAI0eOxJo1azgD7AVxdpgROnr0KKpVq4a6deti/PjxSEpKMnRJRERkIKdOnULTpk2xe/du2NnZYcWKFdiwYQMDkA7kXUneXLvDjKol6HlCQkIwaNAg+Pj4IC4uDv/73//QsWNHnD17tshfeLlcDrlcrrmflpZWXuUSEZGeKJVKLFu2DLNnz0Zubi78/Pzw008/oVmzZoYuzWxYQkuQSYWgIUOGaP7dsGFDBAYGwsfHB7/99hv69+9f6DGLFy/GggULyqtEIiLSs5SUFIwcORK//fYbANVnw9q1a+Hi4mLgyswLB0YbOU9PT/j4+CA2NrbIfWbPno3U1FTNLSEhoRwrJCIiXTp58iSaNGmC3377DVKpFKtXr8bWrVsZgPQgbwhS96iYWzejSbUE5ZeSkoKEhAR4enoWuY9UKjW7F42IyNIolUosXboUc+fOhUKhgL+/P3766Sc0adLE0KWZLWdnZwBAeno6Hj9+DABwcHAwZEk6Z1QhKCMjAzdu3NDcj4uLw4ULF+Dm5gY3NzfMnz8fAwYMgKenJ+Lj4zFnzhxUqVIF/fr1M2DVRESkT/fv38fIkSPx+++/AwCGDx+O1atXaz6kST/UrWtpaWnIysoCoL26vDkwqhB05swZdOjQQXN/2rRpAFTTHVetWoVLly7hu+++w6NHj+Dp6YkOHTpg27Zt/EMgIjJTf/zxB4YMGYI7d+7A3t4eX3/9NcaOHQuJRGLo0syeOgSlp6drBkazJUiPgoODIYQo8vEDBw6UYzVERGQoQgh8/vnnmDVrFhQKBQICAvDTTz+hUaNGgEwGxMYC/v6At7ehSzVbeVuC1J/N5tYSZNIDo4mIyPw8ePAAffr0wfvvvw+FQoHhw4fjzJkzqgAUHg74+AAdO6q+hocbulyzVVh3mLm1BDEEERGR0Th9+jSaNWuGPXv2aGZ//fDDD6oL98lkQGgooFSqdlYqgbAw1XbSubwhyFwHRjMEERGRUdi4cSPatm2LW7duwc/PD9HR0QgLC3s2/ic29lkAUlMogDwTakh3CgtB7A4jIiLSodzcXEybNg2jR49GdnY2+vbti7NnzxZc/NTfH7DK97FlbQ3UqVN+xVoQdQhSKBRITU0FwJYgIiIinXn06BF69uyJL774AgDw4YcfYvv27XB1dS24s7c3sHatKvgAqq9r1nBwtJ44OjrCKl/oNLcQZFSzw4iIyHLcvHkT3bt3x/Xr1+Hg4IBNmzZh0KBBxR80dizQtauqC6xOHQYgPZJIJKhUqRJSUlI028ytO4whiIiIyt3Zs2fRvXt3JCUloUaNGti1axeaVq0KREY+f+q7tzfDTzlxc3PTCkHm1hLE7jAiIipXERERCA4ORlJSEpo0aYI///wTTc+d49R3I1S5cmXNv+3s7Ap0j5k68zobIiIyTjIZEBmJzV9/je7duyMjIwOdOnVCVFQUPBUKTn03UnlDUKVKlQxYiX6wO4yIiPQrPBwIDcVqpRJvPd00bNgwbNy4EXZ2dsDZs0VPfWe3l0G5ublp/l2lShUDVqIfbAkiIiL9eXqBw/A8AWiKRIIfPvlEFYAATn03YnlbghiCiIiISiM2Ft8plRj/9O5UAMuEgNW//z7bh1PfjZanp6fm3+YYgtgdRkREevPjlSsYDUAAmATgcwCSwlp5OPXdKPn5+Wn+zRBERERUQtu3b8cb774LJYDxEgm+EkIVgIpq5eHUd6NTu3Ztzb+rVq1qwEr0g91hRERUdk9nfeWfybV7924MHToUCoUCo0aNwur4eFhFRgLx8apWHzIJ/v7+mgsk9u/f38DV6B5bgoiIqGyezvqCUqka2Lx2LTB2LH7//XcMHDgQubm5GD58ONatWwcra2ugZk1DV0yl5OTkhKNHj8LKyqrgWm5m4IVCUFJSEpRKJTw8PHRVDxERmYKns77yX9vnUIUK6Dd6NHJycjBo0CBs2rQJ1uoBz2SSWrRoYegS9KZM3WEXL17ESy+9BE9PT1SvXh3Vq1fHBx98gMzMTF3XR0RExig2tsC1faIUCvQePRpyuRx9+vTB5s2bYWPDDgcyXmUKQWPHjoW7uztOnDiB8+fP46OPPsLvv/+OwMBAPHz4UNc1EhGRscl3bZ8/APQAkCWXo3v37ti2bRtsbW0NVh5RSUiEEKK0Bzk6OuLs2bOoV6+eZpsQAoMGDYK9vT1++OEHnRapS2lpaXB1dUVqaipcXFwMXQ4RkfGSyVQtPkUtaBoeDoSF4U+FAp0BpAPo3Lkzdu/eDXt7+/KulsycPj6/y9QSVFiLj0QiwaJFi7Br1y6dFEZERAYUHv78BU3HjsXZ3bvR1dER6QA6dOiAnTt3MgCRyShxCOrRowfmzJmDn376CRMmTMDUqVNx7949rX1SU1PNcoE1IiKLUsSg5/zT4P/66y90GTECqZmZePXVV7Fnzx7NdGoiU1DiEWsvv/wyzp07hw0bNmjCT+3atTF48GA0adIECoUCGzZswBdffKG3YomIqBwUMug5/4Kmly9fxmuvvYYHDx6gVatW2LdvHxwdHQ1QLFHZlWlM0L1793D+/HlcuHBBc7tx4wasra0REBCAixcv6qNWneCYICKi55DJVF1geYOQtbXqQofe3rh27Rrat2+Pe/fuoXnz5jh06BAqVqxoqGrJQujj87tMcxfd3d3RrVs3dOvWTbMtKysLf/31F/766y+dFEZERAaiXtA0LEzVApRnqYsbN26gY8eOuHfvHho3boyDBw8yAJHJKlNLkCljSxARUQnJZFoLmsbHx6Ndu3ZISEhAw4YNERkZaZaLapJxMpqWICIisgB5FjRNSEhAhw4dkJCQgHr16uHQoUMMQGTyuIAqEREVSyaToUOHDoiPj0edOnVw+PBhuLu7G7osohfGEEREREWSyWQIDg7GzZs3Ubt2bRw5cgReXl6GLotIJxiCiIioUHfu3EGHDh1w8+ZN+Pr6IjIyEjVq1DB0WUQ6wxBEREQF3LlzB8HBwbhx4wZ8fX1x9OhR1KxZ09BlEekUQxAREWlRtwDduHEDtWrVQmRkJAMQmSWGICIi0oiPj0f79u0RGxsLHx8fREZGwsfHx9BlEekFQxAREQEArl69ildffRU3b95ErVq1cPToUdSqVcvQZRHpDUMQERHh3LlzaNeuHe7cuYMGDRrgxIkTDEBk9hiCiIgs3PHjx9GhQwckJyejefPmiIqKQvXq1Q1dFpHeMQQREVmw3bt3o2vXrkhLS0O7du1w5MgRXgmaLAZDEBGRBRJCYMmSJejbty+ysrIQEhKC33//nWsqkkVhCCIisjByuRxjxozBzJkzIYTAhAkTsGvXLlSoUMHQpRGVKy6gSkRkQZKTk9G/f38cP34cVlZWWL58OSZPngyJRGLo0ojKHUMQEZGFuHLlCnr27Im4uDi4uLhg27Zt6Natm6HLIjIYdocREVmA/fv3o3Xr1oiLi0Pt2rURHR3NAEQWz6hC0LFjx9CrVy94eXlBIpFg586dWo8LITB//nx4eXnBwcEBwcHBuHz5smGKJSIyAUIIfPXVV+jRowfS0tLQtm1b/Pnnn2jQoIGhSyMyOKMKQZmZmWjcuDFWrFhR6ONLlizBsmXLsGLFCsTExMDDwwOdO3dGenp6OVdKRGSkZDIgMhKQyZCTk4OJEyfi3XffhVKpxOjRoxEREcEp8ERPGdWYoJCQEISEhBT6mBACy5cvx9y5c9G/f38AwKZNm+Du7o4tW7YgLCysPEslIjI+4eFAaCigVOKhRIJB9erh8NWrkEgk+PTTTzF9+nQOgCbKw6hagooTFxeHxMREdOnSRbNNKpWiffv2OHnyZJHHyeVypKWlad2IiMyOTKYJQLEAWgmBw1evwrFCBezcuRPvv/8+AxBRPiYTghITEwEA7u7uWtvd3d01jxVm8eLFcHV11dxq1Kih1zqJiAwiNhZQKnEEQBCA6wBqAPjjyy/Ru3dvw9ZGZKRMJgSp5f+fjBCi2P/dzJ49G6mpqZpbQkKCvkskIip//v5YK5GgK4CHAFoBOG1lhcacAUZUJKMaE1QcDw8PAKoWIU9PT832pKSkAq1DeUmlUkilUr3XR0RkKAqFAu999hm+FAIAMBxAuJUV7NeuBby9DVsckREzmZYgX19feHh4ICIiQrMtOzsbUVFRaNOmjQErIyIynLS0NPTq1QtffvklAOD/pk/HD0eOwP7WLWDsWANXR2TcjKolKCMjAzdu3NDcj4uLw4ULF+Dm5oaaNWtiypQpWLRoEfz9/eHv749FixahQoUKGD58uAGrJiIyjLi4OPTq1QuXL1+Gg4MDNm3ahEGDBhm6LCKTYVQh6MyZM+jQoYPm/rRp0wAAI0eOxMaNGzFjxgxkZWVh4sSJePjwIYKCgnDw4EE4OzsbqmQiIoM4efIk+vTpg+TkZHh5eWHXrl0IDAws2cEymWogtb8/u8vIokmEeNqJbCHS0tLg6uqK1NRUuLi4GLocIqJS+/HHHzFq1CjI5XI0a9YMu3fvRvXq1Ut2cJ5rCcHKCli7lt1mZBL08fltMmOCiIgsnRACH3/8MYYNGwa5XI4+ffrg2LFjJQ9Aea4lBED1NSxMtZ3IAjEEERGZgOx//8XokBB88MEHAFTDBbZv3w5HR8eSP8nTawlpUSiAPGMxiSyJUY0JIiKigh58+SUGTJmCowCsAXz9+ut46/PPS/9E/v6qLrC8QcjaGqhTR0eVEpkWtgQRERmxW6dOoc3TAOQMYC+At378sWxdWN7eqjFA1taq+9bWwJo1HBxNFostQURERurKlSvo0qsX7kC1BMZvAF4GnnVhlSW8jB0LdO2qOr5OHQYgsmgMQURERuj06dMICQnBgwcP0ADAAQCauPKiXVje3gw/RGB3GBGR0Tl06BA6duyIBw8eoGXLlji2fDm82YVFpHNsCSIi0pcyXJRw+/btGD58OLKzs9GpUyfs2LFDdUHYAQPYhUWkYwxBRET6UJqLEj4NS+vOnEHYrFlQKpUYMGAANm/e/GwBaHZhEekcrxhNRKRrMhng41NwKnp8fMEg8zQsLVEqMfPppnHjxmH16tWwVneBERGvGE1EZBJKelFCmQxi/HjMyBOAZkokWPvhhwxAROWAIYiISNfUFyXMq5AZXYp//sF4IbD06f0lAD4RApKbN8ulTCJLxxBERKRrJbgooVwux+BlyxAO1RvxOgDvq/flFZyJygUHRhMR6UMxFyVMT09Hv379cPjwYdjZ2GCrUon+SiWnvxOVM4YgIiJ9KWRGV0pKCkJCQhATEwMnJyfs3LkTnQICOP2dyAAYgojIcMpwHR1TJpPJ0KVLF1y9ehWVK1fG77//jhYtWqgetIDzJzI2HBNERIYRHq6aRt6xo+preLihK9Krf/75B23atMHVq1dRvXp1HD9+/FkAIiKDYAgiovInkz27kCCg+hoWVraV0U3A6dOn8eqrryIhIQF169bFH3/8gfr16xu6LCKLxxBEROWvpNfRMQMHDx5Ex44dkZKSghYtWuDEiRPw8fExdFlEBIYgIjKEEl5Hx9Rt3boVPXr0QGZmJjp37owjR46gatWqhi6LiJ5iCCKi8leC6+iYMiEEli9fjuHDhyM3NxdDhw7F3r174eTkZOjSiCgPzg4jIsMo5jo6piw3NxfvvPMOVq1aBQCYPHkyvvzyS1jlb/kiIoNjCCIiwzGzldFTU1MxePBgHDx4EBKJBJ9++immT58OiURi6NKIqBAMQUREOnDz5k307t0bV65cQYUKFbB582b07dvX0GURUTHYPktE9IJ27tyJ5s2b48qVK/Dy8sLx48cZgIhMAEMQEVEZ5ebmYsaMGejXrx9SU1PRpk0bnD59Gs2aNTN0aURUAgxBRERlEHv8ONo1boylS5cCAKZOnYqjR4+ievXqBq6MiEqKY4KIiEpBqVRi1YgRmLFlCx4DcAEQPmECBi5bZujSiKiU2BJEROZBJgMiI/W69MaFCxfQNigIk58GoI4ALgEY+O23ZrvkB5E5YwgiItOn58VYExMTMWnSJDRv3hwnz5yBI4CvAEQAqAmY7ZIfROaOIYiITJseF2NNTEzEtGnTULt2baxcuRJKpRJDevXCPxIJ3kaeN1AzXPKDyBIwBBGRadPxYqxCCBw9ehTDhg2Dj48PvvjiC2RlZSEoKAhHjhzBj7t3w/vbb812yQ8iS8KB0URk2tSLseYNQqVsmXny5An++OMP7N69G7t370Z8fLzmsdatW2PevHno0qXLsys/m+mSH0SWhiGIiAxGCIGkpCRcunQJN2/exH///Ye7d+8iKSkJWVlZePLkCbKzs2FtbQ17e3tIpVLY29ujQoUKcHZ2hrOzM5ycnOA8aBCcfvoJzkLA2coKTu+9B+f79+H85AmcnJzg4OCAx48fIz02FmlXruC2tTXi0tIQGxuLmJgYXLx4Ebm5uZq6nJyc8PrrryM0NLToa/6Y2ZIfRJZIIoQQhi6iPKWlpcHV1RWpqalwcXExdDlEFkWpVOLcuXOIiopCVFQUoqOjkZycbOiyAAAeHh7o0aMHevXqhddeew2Ojo6GLomI8tDH5zdbgohIr5RKJY4ePYrt27dj586d+O+//7Qel0gkqFOnDgICAlC9enV4eXmhWrVqcHR0hL29Pezs7KBQKPDkyRPI5XJkZWWpWnXS05GRkVHo1/zbhBCwAuD89FYdgK9EAt+JE9EsOBgtW7ZEjRo1uNApkYVhCCIivbh79y42bNiAdevWIS4uTrPd2dkZwcHBaN++Pdq2bYuGDRuiQoUKeqtDCAH5wYOQdusGifYDwMCBQHCw3r43ERk3hiAi0qnLly/jk08+wdatW6FQKAAALi4uGDRoEAYMGICOHTtCKpWW/AllMtUMMH//Mo3BkUgksH/ppRcePE1E5ochiIh04vTp01i0aBF27dql2fbKK69g/PjxGDRoUNlae8LDn10DyMoKWLtWNTOrtLy9VceGhammz3NaOxGBA6MNXQ6Rybt+/Tpmz56NX3/9FYCq5WXAgAGYNWsWmjdvXvYnlslUV3/O33oTH1/28CKTcVo7kYniwGgiMhpJSUlYsGAB1qxZA4VCASsrK4wYMQKzZs1CvXr1XvwbFHcRxLIGmJJMa3/B7jciMh28YjQRlUpOTg6WLVuGOnXqYOXKlVAoFOjZsycuXryIjRs36iYAAc8ugpiXvsfx6HkNMiIyLiYVgubPnw+JRKJ18/DwMHRZRBbjjz/+QPPmzfHee+8hPT0dzZs3x5EjR7Bnzx689NJLuv1m6nE85bU8hR7XICMi42Ry3WEvvfQSDh06pLlvrX6DJKKivWAXT3JyMmbOnIn169cDANxcXLDkf//D6GnTYJW/tUYH30+jPJen0Ef3GxEZNZNqCQIAGxsbeHh4aG5Vq1Y1dElExu0FuniUSiW+/fZbBAQEaALQWADX0tIwduZMWG3YoNPvVyhvb9W1fPQdRAzR/UZEBmVyISg2NhZeXl7w9fXF0KFD8e+//xa7v1wuR1pamtaNyGK8QBfP+fPn0aZNG4SGhuLBgwdoVL8+/pBIsA5AlaKey5S7lMq7+42IDM6kQlBQUBC+++47HDhwAN9++y0SExPRpk0bpKSkFHnM4sWL4erqqrnVqFGjHCsmMrDiuniKkJaWhilTpiAwMBB//vknnJyc8MUXX+DsV1+hTf4rauR/rjJ8P6MydqxqCn5kpOprWa5JREQmw6SvE5SZmQk/Pz/MmDED06ZNK3QfuVwOuVyuuZ+WloYaNWrwOkFkGUpxrR0hBH766SdMnToVd+/eBQAMGjQIX3zxBapXr16y59LHtX2IiKCf6wSZVEtQfo6Ojnj55ZcRGxtb5D5SqRQuLi5aNyKLUcIuntjYWHTr1g1Dhw7F3bt3UadOHRw4cAA//fSTKgCV9LnYpUREJsSkW4Lkcjn8/PwQGhqKDz/8sETH8IrRZJGKuFJyVlYWPv30U3zyySeQy+WQSqWYPXs2Zs6cCXt7+1I9V6n3ISIqBYu/YvT06dPRq1cv1KxZE0lJSfjoo4+QlpaGkSNHGro0IuOW70rJSqUSW7duxezZs5GQkAAA6NKlC1asWAF/f/9SPVeZ9yEiMjCTCkEymQzDhg1DcnIyqlatilatWuHUqVPw8fExdGlEKiaw5MKJEycwbdo0xMTEAABq1qyJpUuXYtCgQZBIJAaujoio/JhUCPrxxx8NXQJR0XS14rmenDt3DvPnz8eePXsAAE5OTpgzZw6mTJkCBwcHA1dHRFT+THpgNJHRMOLr41y4cAH9+vVD8+bNsWfPHlhZWWHcuHGIjY3F7NmzGYCIyGIxBBHpgpFdH0epVGLv3r3o3LkzmjZtip07d0IikWD48OG4cuUKvv3224Lr7slkquvjGEFwIyIqDybVHUZktNRLLuS/Pk5hSy7ocdxQUlIStmzZgpUrV2ouHWFlZYXBgwfjww8/RP369Qs/0Mi78oiI9IEtQUS6UNLr4+h6XS0Aqamp+PHHH9GzZ094eXlh6tSpiI2NhaurK6ZPn46bN29i69atRQcgI+7KIyLSJ5O+TlBZ8DpBpFfFXR9HR1dTVigUuHTpEo4ePYo9v/yCY6dOIVeh0DzesmVLjBo1CiNGjICTk9PznzAyUhXKCtseHFziuoiI9MnirxNEZPSKuz5OceOGijgmJycHN27cwOXLl/H3338jOjoa0dHRSE9P19ovAMCA7t3x5rJlCAgIKF3NpenKIyIyIwxBROXladjIUSrxEFDdrKzwKCEBD7duxcOHD3H37l0kJCSobnFxiE9IQE5uboGncnZyQuuMDHQD0BOAPwAcOAA4Opa+LnVXXliYKpRxqQsishAMQURllJ2dDZlMhsTERNy7d09zu3//PtLS0gq/2dggKzv72ZMolcCbbxb7fZwANPD1xUvBwWjevDleffVVNLx/H9adO2vv+JxWpWKNHQt07cqlLojIojAEET3Hw4cP8ddff+HChQu4evUqbty4gZs3byIhIQHK/N1bpeDi7IxKbm6oVKkSKlasiEqVKsHd3R01XFxQY+lS1BACvgBqApDcvg0sXKi9Wruuu7C41AURWRiGIKI8lEolLl26hKioKBw7dgxnzpzBrVu3itzf3t4eHh4ecHd319yqVauGihUrwsXFpdCbs7MzXF1dYWNTxJ9fZCSwZIn2tvytPOzCIiJ6YQxBZPFkMhl+++037Nu3D8eOHcOjR48K7FOrVi00adIEL7/8MurUqQM/Pz/4+fnB3d1d9+ttlXSgMruwiIheCEOQvpnAgppmq4ifvRACly5dws8//4y9e/fiwoULWoc5OTnhlVdeQbt27dCmTRs0btwYlSpVKr+6S9PKwy4sIqIyYwjSJ16Ft/R0FRoL+dnfaN8eW7duxdatW3H16lXNrhKJBK1atULPnj01y0wU2VVVXtjKQ0Skd7xYor7o6MJ4FkVXoTHPz/4xgG0AVgM4nWcXOzs7dO/eHf3790e3Ro1Q9cGD4oMXW/SIiAxKH5/fXDZDX4xsQU2jp8ulG2JjcU2pxFQA1QGMgSoAWVtZoWvXrtiwYQOSkpKwY8cOjMjORtVmzYpfxkIPS10QEZHhsTtMX3gV3tIpw9WU88vJycHu3bux8osvcCTPdl8AYRIJRp89i2pNmjx7oKjg1bWr9lT05+1DREQmiS1B+lLSBTVJRR0a8yphaJTJZJg3bx58fHwwcOBAHPnjD0gkEvQCsA/ADSsrzPz2W+0ABJSstY4tekREZostQfrEwa0lV8rr3iiVShw6dAirVq3Cnj17oHi6gGi1atUwbtw4hIaGwsfauviffUla69iiR0RkthiC9I1TmEuuBKExJSUFGzZswJo1a3AjT2tMu3btMHHiRPTr1w92dnbPDijuZ1+S4MWLEhIRmS3ODiOjJ4TAn3/+iVWrVmHbtm2Qy+UAABdHR7w5aBAmTJ+Ol156qezfQCZ7fmtdSfYhIiK90cfnN1uCqPyUcpp5eno6tmzZgjVr1uD8+fOa7U1q1MBEmQzDMjPh9N13wKuvAi8SgkrSWscWPSIis8OB0VQ+SjHN/OzZswgNDYWnpycmTJiA8+fPQyqV4s0330T0rl04J5NhvBBwAl5sKj0REVk0tgSR/pVgmnl6ejq2bt2KNWvW4Ny5c5pD69ati7CwMLz55puoUqWKanHR/D24pZxKT0REBDAEWa7yvAJyEdPMc69dQ8SlS/j++++xc+dOZGVlAVBdzXnAgAEICwtDu3bttBco5WwtIiLSEYYgU6LHdbX0uqZZnuCiBBADYKtEgq1DhyIpOVmzW926dREaGoqRI0eqWn0Kw9laRESkI5wdZir0sK6Whp7XNMvJycGx2bPx67Jl2CUE7uR5rEqVKhg2bBjeeOMNtGjRQrvVpzicrUVEZFE4O8xS6XLpBh0sT1ES8fHxOHToECIiIhAREYGHDx9qHnNydETPXr3wxhtvoEuXLrC1tS39N+BsLSIiekEMQaZAl8FFD2NqlEolrl27hj///BPR0dE4fPgwbt68qbVP1apV0bt3b/Tr1w+dOnWCvb19mb8fERGRLjAEmQJdBpcXHFOTkZGBq1ev4sqVK7hy5QrOnTuHmJgYpKamau1nbW2NVq1a4bXXXkPnzp3RqlUrWKvXUSMiIjICDEFGRgiB1NRUJCcnIy0tDTk5OcjJyUH21KlQfvEFbJRK2FpZwXbmTNjevw/bR49gZ2dX6M3W1rbw4JFveQqllxceZ2Tg4cOHWrf//vsPCQkJuH37NhISEhAfH4+EhIRC63ZwcEBgYCCCgoLQrl07tG/f3rTGXBERkcXhwGgDSUpKwp9//omLFy8iNjYW169fR1xcHJKTk5Gbm6uz72NtbQ1bW1utYJSbm4vs7GxkZ2cjJyen1N/P3d0dDRo0QP369fHyyy8jKCgIDRs2LNvYHiIiohLgwOjyoodr6GRkZODw4cP47bffcPjwYfz777/F7u/k5AQXFxdNcLGzs4OVlRVyc3M1rUM5OTmaIKP+d/5Ao1AooFAo8OTJk+fWaGtri0qVKmluHnI5apw/jxoAakgkqDlzJgKmT0flypVf5EdBRERkFBiC8tPhNXRyc3Nx4MABbNq0Cbt379Ys/KnWoEEDNG/eHAEBAahbty78/Pzg7u6OypUrl3ngsFKpRE5cHLL/+QfZNWsiu0oVTVBSt/7Y2toWaB1ycHCAo6Pjsynq6qn0akIAS5cCkyaVqS4iIiJjwxCUl46moj948ACrV6/GihUrcPfuXc12X19f9OjRA927d0fr1q1RsWJFHZ8AYLVhA6ShoZC+aIgrzYy08rz6NBERkY5Ybgi6cwfI36f4glPRZTIZlixZgvDwcDx+/BiAamr48OHDMXLkSDRp0qTkFwMsC11eT6ikM9LK++rTREREOmKxq8ifb9Cg4Erm6g/+vEowFf3hw4eYNWsW/P398fXXX+Px48do0qQJfvjhB8hkMixfvhxNmzbVbwACig9xpaWeSq+eXVbYVPqiQhdXdCciIhNgsSFoAVDwA7skH/x5PHnyBJ999hn8/Pzw6aef4smTJ2jbti0OHTqEc+fO4fXXX4ednZ3ez0WjjCGuSGPHqpbTiIxUfc3fwqPL0EVERFTOLDYERQLYUdgH9vM++KGacbVx40bUrVsX77//Ph4+fIiGDRtiz549iIqKQqdOnfTf6lOYUoa4Ej9ncHDhz6Hr0EVERFSOLDYEAUAogFuFzcIq4oNfCIFdu3ahUaNGGD16NBISElCjRg1s3LgRFy5cQM+ePcsefmQyVfB60a6kEoQ4ndFH6CIiIionFnuxxJcBXIJqmnpERAS8vLyKPEYIgcOHD+PDDz9EdHQ0AKBSpUqYM2cOJk+e/OLrYJn64GKu6E5ERHqmj4slWmwIunz4MDqPGIH//vsP1atXx9dff40+ffrAKk/3zr1797Bz50588803uHTpEgDV8hBTpkzBjBkzdDPFXX09nvyzsOLjGSiIiIie4hWjdcg7MBDHjx9H9+7dce3aNfTv3x/VqlVDs2bNYGtri7i4OFy+fBnqjOjo6IgxY8Zg9uzZ8PT01F0hulwhnoiIiErMJMcErVy5Er6+vrC3t0fz5s1x/PjxMj1P7dq1ce7cOcyZMwcuLi5ISkrC/v37sWfPHvz9998QQiAwMBBLly5FQkICvvrqK90GIICDi4mIiAzE5LrDtm3bhhEjRmDlypV45ZVXsGbNGqxbtw5XrlxBzZo1n3t8Uc1pcrkcp0+fxvXr15Gbmwtvb280bdq02LFCOhMerpqur1A8G1xsSmOCiIiI9IxjggAEBQWhWbNmWLVqlWZb/fr10bdvXyxevPi5xxvLKvIFcHAxERFRkSx+TFB2djbOnj2LWbNmaW3v0qULTp48Wegxcrlca+HStLQ0vdZYZt7eDD9ERETlyKTGBCUnJ0OhUMDd3V1ru7u7OxITEws9ZvHixXB1ddXcatSoUR6lEhERkZEzqRCklv+ChEKIIi9SOHv2bKSmpmpuCQkJ5VEiERERGTmT6g6rUqUKrK2tC7T6JCUlFWgdUpNKpZBKpeVRHhEREZkQk2oJsrOzQ/PmzREREaG1PSIiAm3atDFQVURERGSKTKolCACmTZuGESNGIDAwEK1bt8batWtx+/ZtTJgwwdClERERkQkxuRA0ZMgQpKSkYOHChbh79y4aNmyIffv2wcfHx9ClERERkQkxuesEvSijvU4QERERFUkfn98mNSaIiIiISFcYgl6ETAZERqq+EhERkUlhCCqr8HDAxwfo2FH1NTzc0BURERFRKTAElYVMBoSGAkql6r5SqVoAlS1CREREJoMhqCxiY58FIDWFQrUAKhEREZkEhqCy8PcHrPL96KytVSvAExERkUlgCCoLb29g7VpV8AFUX9es4SrwREREJsTkLpZoNMaOBbp2VXWB1anDAERERGRiGIJehLc3ww8REZGJYncYERERWSSGICIiIrJIDEFERERkkRiCiIiIyCIxBBEREZFFYggiIiIii8QQRERERBaJIYiIiIgsEkMQERERWSSGICIiIrJIDEFERERkkRiCiIiIyCIxBBEREZFFYggiIiIii8QQRERERBaJIYiIiIgsEkMQERERWSSGICIiIrJIDEFERERkkRiCiIiIyCIxBBEREZFFYggiIiIii8QQRERERBaJIYiIiIgsEkMQERERWSSGICIiIrJIDEFERERkkRiCiIiIyCIxBBEREZFFYggiIiIii8QQRERERBaJIYiIiIgskkmFoFq1akEikWjdZs2aZeiyiIiIyATZGLqA0lq4cCHGjx+vue/k5GTAaoiIiMhUmVwIcnZ2hoeHh6HLICIiIhNnUt1hAPDpp5+icuXKaNKkCT7++GNkZ2cbuiQiIiIyQSbVEvTuu++iWbNmqFSpEk6fPo3Zs2cjLi4O69atK/IYuVwOuVyuuZ+amgoASEtL03u9REREpBvqz20hhO6eVBjYvHnzBIBibzExMYUe+8svvwgAIjk5+YWenzfeeOONN954M43bzZs3dZZBJELoMlKVXnJyMpKTk4vdp1atWrC3ty+w/c6dO/D29sapU6cQFBRU6LH5W4IePXoEHx8f3L59G66uri9WvAlJS0tDjRo1kJCQABcXF0OXU2543jxvS8Dz5nlbgtTUVNSsWRMPHz5ExYoVdfKcBu8Oq1KlCqpUqVKmY8+fPw8A8PT0LHIfqVQKqVRaYLurq6tF/fKoubi48LwtCM/bsvC8LYulnreVle6GMxs8BJVUdHQ0Tp06hQ4dOsDV1RUxMTGYOnUqevfujZo1axq6PCIiIjIxJhOCpFIptm3bhgULFkAul8PHxwfjx4/HjBkzDF0aERERmSCTCUHNmjXDqVOnXvh5pFIp5s2bV2gXmTnjefO8LQHPm+dtCXjeujtvgw+MJiIiIjIEk7tYIhEREZEuMAQRERGRRWIIIiIiIovEEEREREQWySxD0MqVK+Hr6wt7e3s0b94cx48fL3b/qKgoNG/eHPb29qhduzZWr15dTpXqVmnO+9dff0Xnzp1RtWpVuLi4oHXr1jhw4EA5Vqs7pX291f744w/Y2NigSZMm+i1QT0p73nK5HHPnzoWPjw+kUin8/Pywfv36cqpWd0p73ps3b0bjxo1RoUIFeHp6YvTo0UhJSSmnal/csWPH0KtXL3h5eUEikWDnzp3PPcYc3tNKe97m8p5WltdbzZTf08py3rp4TzO7ELRt2zZMmTIFc+fOxfnz59G2bVuEhITg9u3bhe4fFxeH7t27o23btjh//jzmzJmDd955B9u3by/nyl9Mac/72LFj6Ny5M/bt24ezZ8+iQ4cO6NWrl+Yq3KaitOetlpqaijfffBOdOnUqp0p1qyznPXjwYBw+fBjh4eG4du0atm7dinr16pVj1S+utOd94sQJvPnmmxg7diwuX76Mn3/+GTExMRg3blw5V152mZmZaNy4MVasWFGi/c3lPa20520u72mlPW81U39PK8t56+Q9TWerkBmJli1bigkTJmhtq1evnpg1a1ah+8+YMUPUq1dPa1tYWJho1aqV3mrUh9Ked2EaNGggFixYoOvS9Kqs5z1kyBDxwQcfiHnz5onGjRvrsUL9KO15//7778LV1VWkpKSUR3l6U9rzXrp0qahdu7bWtq+++kp4e3vrrUZ9AiB27NhR7D7m8p6WV0nOuzCm+J6WV2nO29Tf0/IqyXnr6j3NrFqCsrOzcfbsWXTp0kVre5cuXXDy5MlCj4mOji6wf9euXXHmzBnk5OTorVZdKst556dUKpGeng43Nzd9lKgXZT3vDRs24ObNm5g3b56+S9SLspz37t27ERgYiCVLlqB69eqoW7cupk+fjqysrPIoWSfKct5t2rSBTCbDvn37IITAvXv38Msvv6BHjx7lUbJBmMN7mi6Y4ntaWZn6e1pZ6Oo9zWSuGF0SycnJUCgUcHd319ru7u6OxMTEQo9JTEwsdP/c3FwkJycXuzirsSjLeef3+eefIzMzE4MHD9ZHiXpRlvOOjY3FrFmzcPz4cdjYmOavf1nO+99//8WJEydgb2+PHTt2IDk5GRMnTsSDBw9MZlxQWc67TZs22Lx5M4YMGYInT54gNzcXvXv3xtdff10eJRuEObyn6YIpvqeVhTm8p5WFrt7TzKolSE0ikWjdF0IU2Pa8/QvbbuxKe95qW7duxfz587Ft2zZUq1ZNX+XpTUnPW6FQYPjw4ViwYAHq1q1bXuXpTWleb6VSCYlEgs2bN6Nly5bo3r07li1bho0bN5pUaxBQuvO+cuUK3nnnHXz44Yc4e/Ys9u/fj7i4OEyYMKE8SjUYc3lPKytTf08rKXN7TysNXb2nmVVsrFKlCqytrQv8rzApKanA/4zUPDw8Ct3fxsYGlStX1lutulSW81bbtm0bxo4di59//hmvvfaaPsvUudKed3p6Os6cOYPz589j8uTJAFR/SEII2NjY4ODBg+jYsWO51P4iyvJ6e3p6onr16nB1ddVsq1+/PoQQkMlk8Pf312vNulCW8168eDFeeeUVvP/++wCARo0awdHREW3btsVHH31klq0i5vCe9iJM+T2ttMzlPa0sdPWeZlYtQXZ2dmjevDkiIiK0tkdERKBNmzaFHtO6desC+x88eBCBgYGwtbXVW626VJbzBlT/Wxo1ahS2bNlikmMkSnveLi4uuHTpEi5cuKC5TZgwAQEBAbhw4QKCgoLKq/QXUpbX+5VXXsF///2HjIwMzbbr16/DysoK3t7eeq1XV8py3o8fP4aVlfbbnLW1NYBnrSPmxhze08rK1N/TSstc3tPKQmfvaS80rNoI/fjjj8LW1laEh4eLK1euiClTpghHR0cRHx8vhBBi1qxZYsSIEZr9//33X1GhQgUxdepUceXKFREeHi5sbW3FL7/8YqhTKJPSnveWLVuEjY2N+Oabb8Tdu3c1t0ePHhnqFMqktOedn6nOpCjteaenpwtvb28xcOBAcfnyZREVFSX8/f3FuHHjDHUKZVLa896wYYOwsbERK1euFDdv3hQnTpwQgYGBomXLloY6hVJLT08X58+fF+fPnxcAxLJly8T58+fFrVu3hBDm+55W2vM2l/e00p53fqb6nlba89bVe5rZhSAhhPjmm2+Ej4+PsLOzE82aNRNRUVGax0aOHCnat2+vtf/Ro0dF06ZNhZ2dnahVq5ZYtWpVOVesG6U57/bt2wsABW4jR44s/8JfUGlf77xM9Q1DiNKf99WrV8Vrr70mHBwchLe3t5g2bZp4/PhxOVf94kp73l999ZVo0KCBcHBwEJ6enuL1118XMpmsnKsuu8jIyGL/Vs31Pa20520u72lleb3zMtX3tLKcty7e0yRCmGmbMBEREVExzGpMEBEREVFJMQQRERGRRWIIIiIiIovEEEREREQWiSGIiIiILBJDEBEREVkkhiAiIiKySAxBREREZJEYgoiIiMgiMQQRERGRRWIIIiKzsHDhQrz88stwdHSEu7s73nrrLeTk5Bi6LCIyYjaGLoCI6EUJIaBQKLBmzRpUr14dV65cwZtvvolGjRrhrbfeMnR5RGSkuIAqEZml4cOHo2rVqvjyyy8NXQoRGSl2hxGRybt16xYmT56Mhg0bolKlSnBycsJPP/0Eb29vQ5dGREaMIYiITFpycjJatmyJ5ORkLFu2DCdOnEB0dDSsra3RpEkTQ5dHREaMY4KIyKTt27cPubm52Lp1KyQSCQDgm2++QXZ2NkMQERWLIYiITJqbmxvS0tKwe/duNGjQAHv27MHixYtRvXp1VK1a1dDlEZER48BoIjJpQgi89dZb2LJlCxwcHPDGG2/gyZMnuHXrFvbu3Wvo8ojIiDEEERERkUXiwGgiIiKySAxBREREZJEYgoiIiMgiMQQRERGRRWIIIiIiIovEEEREREQWiSGIiIiILBJDEBEREVkkhiAiIiKySAxBREREZJEYgoiIiMgiMQQRERGRRfp/2+pBD8Q7oRcAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeg0lEQVR4nO3dd1hT598G8DusMAQUUYYgYkFQa9UW90IciHW2alt/dVSqtHVUra3a5aij1Wq1tXVU6mhddY+6UBH1ddSBe+FAjQIqskFWnvePmJSwZCQkIffnunJhTs4J35NocvusIxFCCBAREREZGRNdF0BERESkCwxBREREZJQYgoiIiMgoMQQRERGRUWIIIiIiIqPEEERERERGiSGIiIiIjBJDEBERERklhiAiIiIySgxBpFP+/v7w9/fXdRllNnToUFSpUqVE+9apUwdDhw7Vaj0SiQRTp07V6u94mfT0dEydOhWHDx/WaR2G4uDBg/Dz84ONjQ0kEgm2bduGlStXQiKRIDo6WrXf2rVrsWDBAq3U8PXXX6N27dowMzND1apVS3380KFDUadOHY3XpW8+/PBDvPrqq6hatSqsrKxQr149fP7553j69GmBfSMjI9GnTx+4urrC2toavr6+mD59OtLT03VQORXFTNcFkHH77bffdF1Chdm6dSvs7Ox0XYbWpaenY9q0aQBg0AG3IgghMGDAANSrVw87duyAjY0NfHx8kJOTgxMnTsDFxUW179q1a3H58mWMHTtWozVs374dM2fOxFdffYWgoCBIpVKNPn9lkpaWhhEjRsDLywuWlpY4c+YMZs6cid27dyMyMhIWFhYAgKtXr6J169bw8fHBggUL4OjoiCNHjmD69Ok4e/Ystm/fruMzISWGINKpBg0a6LqECtO0aVNdl0AalJGRAUtLS0gkkjI/x6NHj/Ds2TP07dsXnTp1UnusRo0a5S2xRC5fvgwAGDNmDGrWrFkhv1NTNPEelMa6devU7gcEBMDW1haffPIJjh07hoCAAACKwPr8+XNs3rwZr7zyimrfmJgYLFu2DAkJCahWrVqF1EzFY3cYldjUqVMhkUhw5coVvPfee7C3t4eTkxOGDRuGpKQktX2fP3+OyZMnw9PTExYWFqhVqxZGjhyJxMREtf0K6w5bvHgxGjdujCpVqsDW1ha+vr748ssvAQDR0dEwMzPD7NmzC9R35MgRSCQSbNy4sdjzSExMxGeffYa6detCKpWiZs2a6N69O65fvw4AOHz4MCQSSYHunOjoaEgkEqxcubLAc165cgWdOnWCjY0NatSogVGjRhVo9i6sO+xltWhCbGwsQkJC4ObmBgsLC3h6emLatGnIyclR22/atGlo0aIFHBwcYGdnh9dffx2hoaHIf43lQ4cOwd/fH9WrV4eVlRVq166Nt99+G+np6YiOjlZ9eU+bNg0SiQQSieSl3YDp6emYMGECPD09YWlpCQcHB/j5+RX40lm5ciV8fHwglUpRv359rF69ukBXTGnevzNnzuDdd99FnTp1YGVlhTp16uC9997DvXv3CvxeiUSC/fv3Y9iwYahRowasra2RmZkJANiwYQNatWoFGxsbVKlSBYGBgYiMjCz2nKdOnQo3NzcAwMSJEyGRSFTnkb87zN/fH//88w/u3bunek1f9sUvl8sxZ84c+Pr6qv5uDR48GDKZTLVPnTp18PXXXwMAnJycStSdWth7UJisrCzMmDFD9ftr1KiBDz74AE+ePFHbLzMzE5999hmcnZ1hbW2N9u3b4+zZswX+vWjqPThz5gx69eoFBwcHWFpaomnTpvj777+LPefiKP++m5n916Zgbm4OALC3t1fbt2rVqjAxMVG1GJEeEEQlNGXKFAFA+Pj4iG+//VaEhYWJ+fPnC6lUKj744APVfnK5XAQGBgozMzPxzTffiP3794sff/xR2NjYiKZNm4rnz5+r9u3QoYPo0KGD6v66desEADF69Gixf/9+ceDAAbFkyRIxZswY1T59+/YVtWvXFjk5OWr19e/fX7i6uors7OwizyE5OVk0bNhQ2NjYiOnTp4t9+/aJzZs3i08//VQcOnRICCFEeHi4ACDCw8PVjr17964AIFasWKHaNmTIEGFhYSFq164tZs6cKfbv3y+mTp0qzMzMRI8ePdSO9/DwEEOGDClVLcrfAUDcvXu3yPNSAiCmTJmiuh8TEyPc3d2Fh4eHWLp0qThw4ID47rvvhFQqFUOHDlU7dujQoSI0NFSEhYWJsLAw8d133wkrKysxbdo0tdfA0tJSdOnSRWzbtk0cPnxYrFmzRgwaNEgkJCSI58+fi7179woAIjg4WJw4cUKcOHFC3Lp1q9i6Q0JChLW1tZg/f74IDw8Xu3btEt9//7345ZdfVPusWLFCABC9e/cWO3fuFH/99Zfw8vJSnZ9Sad6/jRs3im+//VZs3bpVREREiPXr14sOHTqIGjVqiCdPnhT43bVq1RIjRowQe/bsEZs2bRI5OTli5syZQiKRiGHDholdu3aJLVu2iFatWgkbGxtx5cqVIs/5wYMHYsuWLaq/7ydOnBDnzp1T+33K9/zKlSuiTZs2wtnZWfWanjhxotjXdMSIEQKAGDVqlNi7d69YsmSJqFGjhnB3d1ed27lz50RwcLAAIPbu3StOnDghHjx4UORzlvQ9yM3NFd26dRM2NjZi2rRpIiwsTCxfvlzUqlVLNGjQQKSnp6v2fe+994SJiYmYNGmS2L9/v1iwYIFwd3cX9vb2av9eNPEeHDp0SFhYWIh27dqJDRs2iL1794qhQ4cW+HvxMtnZ2SI1NVUcO3ZM+Pr6irZt26p9Ht29e1dUrVpV9OvXT9y+fVskJyeLnTt3Cnt7ezF69OgS/x7SPoYgKjFlCJozZ47a9k8++URYWloKuVwuhBCqL8H8+23YsEEAEMuWLVNtyx+CRo0aJapWrVpsHcovua1bt6q2PXz4UJiZmal9YRdm+vTpAoAICwt76fOXNAQBEAsXLlTbd+bMmQKAOHbsmGpb/hBUklqEEGLYsGHC1NRUREdHF7ufEAVDUEhIiKhSpYq4d++e2n4//vijAFDkl3Rubq7Izs4W06dPF9WrV1e9t5s2bRIAxPnz54us4cmTJwXqeJlXX31V9OnTp8jHc3Nzhaurq3j99ddVtQghRHR0tDA3Ny9zCMovJydHpKamChsbG7X3VPkFPHjwYLX979+/L8zMzAp8saWkpAhnZ2cxYMCAYs76v5rmzp2rtj1/CBJCiDfffFPtPItz7do1AUB88sknattPnTolAIgvv/xStU357zpv6CtMad4D5X9mNm/erPYcp0+fFgDEb7/9JoRQhDsAYuLEiWr7KY8vLASV5z3w9fUVTZs2LfAfpR49eggXFxeRm5tb7GsghBAnTpwQAFS37t27i+Tk5AL7Xbt2Tfj6+qrtO2bMGLXXjnSP3WFUar169VK7/9prr+H58+d4/PgxAEV3CYACXSD9+/eHjY0NDh48WORzN2/eHImJiXjvvfewffv2Qmdd+Pv7o3Hjxvj1119V25YsWQKJRIIRI0YUW/uePXtQr149dO7cudj9Sut///uf2v2BAwcCAMLDw8tdS2hoKHJycuDh4VHqunbt2oWOHTvC1dUVOTk5qltQUBAAICIiQrXvoUOH0LlzZ9jb28PU1BTm5ub49ttvER8fr3pvmzRpAgsLC4wYMQKrVq3CnTt3SlVP3hpycnJUXW3NmzfHnj17MGnSJBw+fBgZGRlqx924cQOPHj3CwIED1bqBPDw80Lp161K/LkqpqamYOHEivLy8YGZmBjMzM1SpUgVpaWm4du1agf3ffvtttfv79u1DTk4OBg8erHZelpaW6NChg85myCn/3uX/N9i8eXPUr1+/2H+DRSnNe7Br1y5UrVoVPXv2VHtdmjRpAmdnZ9Xrovz7N2DAALXj+/Xrp9a9lFdZ34Nbt27h+vXrqn+refft3r07YmJicOPGjZe+Do0aNcLp06cRERGBhQsXIjIyEl26dFHr/o6OjkbPnj1RvXp1bNq0CREREZgzZw5WrlyJDz/88KW/gyoOB0ZTqVWvXl3tvnI2ifKLKz4+HmZmZgUGdkokEjg7OyM+Pr7I5x40aBBycnLw+++/4+2334ZcLkezZs0wY8YMdOnSRbXfmDFj8OGHH+LGjRuoW7cufv/9d/Tr1w/Ozs7F1v7kyRPUrl27VOf7MmZmZgVeE2UdxZ2rNmrJLy4uDjt37lSNUchPGTL//fdfdO3aFf7+/vj9999V44e2bduGmTNnqt7bV155BQcOHMCcOXMwcuRIpKWloW7duhgzZgw+/fTTYmuJjo6Gp6en2rbw8HD4+/vj559/hpubGzZs2IAffvgBlpaWCAwMxNy5c+Ht7a16HQt7f52dndWmkpfGwIEDcfDgQXzzzTdo1qwZ7OzsIJFI0L179wJBDIDabC1A8foCQLNmzQp9fhMT3fw/U/l65a8XAFxdXQuMeSrNc5bkPYiLi0NiYmKRY1+Uf++Uz+nk5KT2eGH/ppTK+h4o95swYQImTJhQbF3FsbGxgZ+fHwCgffv2aNGiBVq2bImlS5di3LhxAIBJkyYhOTkZ58+fh42NjWpfR0dHDBs2DIMHD0aHDh1e+rtI+xiCSOOqV6+OnJwcPHnyRC0ICSEQGxtb5IeV0gcffIAPPvgAaWlpOHLkCKZMmYIePXrg5s2bqtaQgQMHYuLEifj111/RsmVLxMbGYuTIkS+trUaNGmoDQwtjaWkJAKoBl0pFfUDm5OQgPj5e7UM7NjYWQMHAWNpaysvR0RGvvfYaZs6cWejjrq6uAID169fD3Nwcu3btUp0/AGzbtq3AMe3atUO7du2Qm5uLM2fO4JdffsHYsWPh5OSEd999t8haXF1dcfr0abVtPj4+ABRfLNOmTcO0adMQFxenahXq2bMnrl+/rnodla9rXvm3lfT9S0pKwq5duzBlyhRMmjRJtT0zMxPPnj0r9BzyD0Z2dHQEAGzatKlMLXXaony9YmJiVIOvlR49eqSquyzPWZL3wNHREdWrV8fevXsLfS5bW1u154yLi0OtWrVUjyv/TRWmrO+Bcr/JkyfjrbfeKnQf5d/H0vDz84OJiQlu3ryp2nb+/Hk0aNBAFYCUlJ99ly9fZgjSE+wOI41TTvX966+/1LZv3rwZaWlpBaYCF8XGxgZBQUH46quvkJWVhStXrqges7S0VHXJzJ8/H02aNEGbNm1e+pxBQUG4efOmqsuuMMoZOhcvXlTbvmPHjiKPWbNmjdr9tWvXAih+nZyS1FJePXr0wOXLl/HKK6/Az8+vwE0ZgiQSCczMzGBqaqo6NiMjA3/++WeRz21qaooWLVqouiXPnTsHoGDLoJKFhUWB36/8MszLyckJQ4cOxXvvvYcbN24gPT0dPj4+cHFxwbp169Rmq927dw/Hjx9XO76k759EIoEQosC6OMuXL0dubm6R551XYGAgzMzMcPv27UJfX2WLgSZIpdJCW6cKo5yqnf/f4OnTp3Ht2rUS/xvMqzTvQY8ePRAfH4/c3NxCXxNl2Gjfvj0AxcyuvDZt2lRg9mJRSvoe+Pj4wNvbGxcuXChyv8L+Pr5MREQE5HI5vLy8VNtcXV1x5coVpKamqu174sQJACgQTEl32BJEGtelSxcEBgZi4sSJSE5ORps2bXDx4kVMmTIFTZs2xaBBg4o8dvjw4bCyskKbNm3g4uKC2NhYzJ49G/b29gVakD755BPMmTMHZ8+exfLly0tU29ixY7Fhwwb07t0bkyZNQvPmzZGRkYGIiAj06NEDHTt2hLOzMzp37ozZs2ejWrVq8PDwwMGDB7Fly5ZCn9PCwgLz5s1DamoqmjVrhuPHj2PGjBkICgpC27Zty1ULAAQHB2PVqlW4fft2qVsbpk+fjrCwMLRu3RpjxoyBj48Pnj9/jujoaOzevRtLliyBm5sb3nzzTcyfPx8DBw7EiBEjEB8fjx9//LFAQFiyZAkOHTqEN998E7Vr18bz58/xxx9/AIBqbJOtrS08PDywfft2dOrUCQ4ODnB0dCx2ReEWLVqgR48eeO2111CtWjVcu3YNf/75J1q1agVra2sAwHfffYcPP/wQffv2xfDhw5GYmIipU6cW6J4p6ftnZ2eH9u3bY+7cuar6IiIiEBoaWuJVk+vUqYPp06fjq6++wp07d9CtWzdUq1YNcXFx+Pfff1UtXJrQqFEjbNmyBYsXL8Ybb7wBExOTIkOWj48PRowYgV9++QUmJiYICgpCdHQ0vvnmG7i7u6u6bUrDxMSkxO/Bu+++izVr1qB79+749NNP0bx5c5ibm0MmkyE8PBy9e/dG37590bBhQ7z33nuYN28eTE1NERAQgCtXrmDevHmwt7cvUXdiad6DpUuXIigoCIGBgRg6dChq1aqFZ8+e4dq1azh37lyxy2vs2rULv//+O3r16gUPDw9kZ2fjzJkzWLBgAby8vNTG+owdOxZ9+vRBly5dMG7cODg6OuLkyZOYPXs2GjRooBqTR3pAp8OyyaAUNYuksJksGRkZYuLEicLDw0OYm5sLFxcX8fHHH4uEhAS1Y/PPDlu1apXo2LGjcHJyEhYWFsLV1VUMGDBAXLx4sdCa/P39hYODg9qU25dJSEgQn376qahdu7YwNzcXNWvWFG+++aa4fv26ap+YmBjRr18/4eDgIOzt7cX7778vzpw5U+jsMBsbG3Hx4kXh7+8vrKyshIODg/j4449Famqq2u/NPzuspLWUZ4q8EIrZWmPGjBGenp7C3NxcODg4iDfeeEN89dVXajX+8ccfwsfHR0ilUlG3bl0xe/ZsERoaqva7T5w4Ifr27Ss8PDyEVCoV1atXFx06dBA7duxQ+50HDhwQTZs2FVKptMAsn8JMmjRJ+Pn5iWrVqql+/7hx48TTp0/V9lu+fLnw9vYWFhYWol69euKPP/4QQ4YMKTBrqqTvn0wmE2+//baoVq2asLW1Fd26dROXL18u8F4p/46fPn260Pq3bdsmOnbsKOzs7IRUKhUeHh6iX79+4sCBA8Wed2lmhz179kz069dPVK1aVUgkEvGyj+/c3Fzxww8/iHr16glzc3Ph6Ogo3n///QJT4Es6O0yppO9Bdna2+PHHH0Xjxo2FpaWlqFKlivD19RUhISEiKipKtd/z58/F+PHjRc2aNYWlpaVo2bKlOHHihLC3txfjxo0r8JqU9z24cOGCGDBggKhZs6YwNzcXzs7OIiAgQCxZsqTY87527Zro16+f8PDwEJaWlsLS0lL4+vqKzz//XMTHxxfY/9ChQ6Jr167C2dlZWFlZiXr16onPPvuswN9p0i2JEPlWQiMyEI8fP4aHhwdGjx6NOXPm6Loc0pGhQ4fi8OHDZR4cTfrn+PHjaNOmDdasWaOaaUmkDewOI4Mjk8lw584dzJ07FyYmJi+dlURE+issLAwnTpzAG2+8ASsrK1y4cAHff/89vL29ixzATKQpDEFkcJYvX47p06ejTp06WLNmjdqsEiIyLHZ2dti/fz8WLFiAlJQUODo6IigoCLNnz1abqUikDewOIyIiIqOkN1PkFy9ejNdeew12dnaws7NDq1atsGfPHtXjQghMnToVrq6usLKygr+/v9qUaSIiIqLS0JsQ5Obmhu+//x5nzpzBmTNnEBAQgN69e6uCzpw5czB//nwsWrQIp0+fhrOzM7p06YKUlBQdV05ERESGSK+7wxwcHDB37lwMGzYMrq6uGDt2LCZOnAhAsaqrk5MTfvjhB4SEhOi4UiIiIjI0ejkwOjc3Fxs3bkRaWhpatWqFu3fvIjY2Fl27dlXtI5VK0aFDBxw/frzYEJSZmam2fL5cLsezZ89QvXr1AsuvExERkX4SQiAlJQWurq4auy6fXoWgS5cuoVWrVnj+/DmqVKmCrVu3okGDBqol2fNfZM/JyemlFwKcPXu2xlZsJSIiIt168OCBxi49olchyMfHB+fPn0diYiI2b96MIUOGICIiQvV4/pYbIcRLW3MmT56M8ePHq+4nJSWhdu3aePDgAezs7DR7AkRERKQVycnJcHd3L9M13oqiVyHIwsJCdRE6Pz8/nD59GgsXLlSNA4qNjYWLi4tq/8ePHxdoHcpPKpUWuP4RANUsNCIiIjIcmhzKojezwwojhEBmZiY8PT3h7OyMsLAw1WNZWVmIiIhA69atdVghERERGSq9aQn68ssvERQUBHd3d6SkpGD9+vU4fPgw9u7dC4lEgrFjx2LWrFnw9vaGt7c3Zs2aBWtra15XhoiIiMpEb0JQXFwcBg0ahJiYGNjb2+O1117D3r170aVLFwDAF198gYyMDHzyySdISEhAixYtsH//fo32DRIREZHx0Ot1grQhOTkZ9vb2SEpK4pggIiIiA6GN72+9HhNEREREpC0MQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREZGRunnzJpKSknRdhs4wBBERERmhhQsXwsfHB/Xq1cOdO3d0XY5OMAQREREZmcTERHz11VcAgMePH2PGjBk6rkg39CYEzZ49G82aNYOtrS1q1qyJPn364MaNG2r7DB06FBKJRO3WsmVLHVVMRERkmDZt2oS0tDTV/R07diA3N1eHFemG3oSgiIgIjBw5EidPnkRYWBhycnLQtWtXtTcJALp164aYmBjVbffu3TqqmIiIyDDt3LkTADBlyhTY2toiPj4ely9f1nFVFc9M1wUo7d27V+3+ihUrULNmTZw9exbt27dXbZdKpXB2dq7o8oiIiCoFuVyOo0ePAgC6d++Ow4cPIyIiAufOnUPjxo11XF3F0puWoPyUo9UdHBzUth8+fBg1a9ZEvXr1MHz4cDx+/LjY58nMzERycrLajYiIyFjdvHkTCQkJsLS0RJMmTfDGG28AACIjI3VcWcXTyxAkhMD48ePRtm1bvPrqq6rtQUFBWLNmDQ4dOoR58+bh9OnTCAgIQGZmZpHPNXv2bNjb26tu7u7uFXEKREREeunEiRMAAD8/P1hYWKB+/foAFOHI2OhNd1heo0aNwsWLF3Hs2DG17e+8847qz6+++ir8/Pzg4eGBf/75B2+99VahzzV58mSMHz9edT85OZlBiIiIjNbJkycBAK1atQIAeHt7AwCioqJ0VpOu6F0IGj16NHbs2IEjR47Azc2t2H1dXFzg4eFR7BsnlUohlUo1XSYREZFBunDhAgBFSxDwXwiKjo5G1p07sKhbV2e1VTS96Q4TQmDUqFHYsmULDh06BE9Pz5ceEx8fjwcPHsDFxaUCKiQiIjJsQghcu3YNANCgQQMAgMvu3TCHYsB0rJcXEBqqwworlt6EoJEjR+Kvv/7C2rVrYWtri9jYWMTGxiIjIwMAkJqaigkTJuDEiROIjo7G4cOH0bNnTzg6OqJv3746rp6IiEj/xcbGIjk5GSYmJooWIJkMkpAQKJsSHgkBhIQAMplO66woehOCFi9ejKSkJPj7+8PFxUV127BhAwDA1NQUly5dQu/evVGvXj0MGTIE9erVw4kTJ2Bra6vj6omIiPSfshWobt26iqEiUVGAXA7XF48/AoDcXODWLV2VWKH0ZkyQEKLYx62srLBv374KqoaIiKjyUYYg5YwweHsDJiZwlcsBvAhBpqaAl5duCqxgetMSRERERNp1/fp1AHlCkJsbsGwZXCUSAMAjiQRYulSxvTAyGRAeXmm6yxiCiIiIjISyJcjX1/e/jcHBcP3iCwDAo7ffBoKDCz84NBTw8AACAhQ/K8EAaoYgIiIiI1GgO+wF1xf3Y4q6qoJMhsPDh8NWLkdrAJDLK8UAaoYgIiIiI5CcnIxHjx4BKCQEuSqGRisfLyAqCllCIBWA6rLmlWAANUMQERGREVCOB3JxcYG9vb3aY8r19h4+fFj4wd7eyH0xbshUua0SDKBmCCIiIjIChY4HesHJyQkAkJCQgOzs7IIHu7khd9QoAC9CkKlp8QOoDQRDEBERkREoMDMsj2rVqqn+nJiYWOjxuZ06AQBM69cHoqOLHkBtQBiCiIiIjEBRg6IBwMzMTNVFFh8fX+jxubm5AADTatUMvgVIiSGIiIjICBTXHQYADg4OAIBnz54V+rj8xYKKJiaVJzpUnjMhIiKiQmVlZeH27dsACm8JAoDq1asDKDoEqVqCTE0LfdwQMQQRERFVcrdu3UJubi5sbW1V0+HzU7YEvbQ7jCGIiIiIDEXerjDJi6nu+b2sO4whiIiIiAxOcTPDlJTdYWwJIiIiokqjuJlhSmwJIiIiokrnZTPDAA6MJiIiokpGLpeXqDvsZQOjlVPkGYKIiIjIIMhkMqSnp8Pc3Bx169Ytcr+SdodxnSAiIiIyCMquMC8vL5ibmxe5HwdGExERUaVSkkHRAFC1alUAxVw7jCGIiIiIDMnVq1cBAA0aNCh2P+W1w5KTkyGEKPA4QxAREREZFGUIatiwYbH72dnZAQCEEEhLSyvwOEMQERERGQwhBK5evgwAaPBizE9RrK2tVQEnKSmpwOMMQURERGQw4n76CQlJSTABUC8wEAgNLXJfiUSiag1KTk4u8DhDEBERERkGmQxXJkwAALwCwFIIICQEkMmKPKS4EKRcJ4hT5ImIiEi/RUXh6osBzqoh0bm5wK1bRR6iHBzN7jAiIiIyXN7euPrij6oh0aamgJdXkYewO4yIiIgMn5sbrnh7A3jREmRqCixdCri5FXmIsYUgM10XQERERJonl8txIS4OAPDq778D3boVG4AA4+sOYwgiIiKqhO7evYvk5GRIpVI0GDIEKOaSGUrG1hLE7jAiIqJK6Ny5cwCARo0aFXvNsLwYgoiIiMjgRUZGAgCaNm1a4mOK6w7jFHkiIiIyCMqWoNdff73Ex7AliIiIiAyaEIIhqAQYgoiIiCqZR48e4cmTJzA1NUWjRo1KfJyxzQ5jCCIiIqpkTp48CUBx5XgrK6sSH8eWICIiIjJox44dAwC0bdu2VMfZ2toCAFJTUws8xhBEREREeq+sIahKlSoAGIKIiIjIAKWmpqqmx2syBCmnyDMEERERkV4KDw9Hbm4uPD094e7uXqpjlSEoKysLWVlZao8pW4K4ThARERHppd27dwMAgoKCSn2sjY2N6s9paWlqj1XG7jBeO4yIiEhP3Lt3DxcvXkROTg58fHxQv359SCSSEh8vhMCePXsAAN27dy/177ewsICFhQWysrKQmpqKatWqqR6rjCFIb1qCZs+ejWbNmsHW1hY1a9ZEnz59cOPGDbV9hBCYOnUqXF1dYWVlBX9/f1y5ckVHFRMREWnG0aNH0aZNG9SpUwe9evXCW2+9hYYNG8LX1xd//vmnajzOy5w9exb37t2DpaUlOnbsWKZaihoXxBCkRRERERg5ciROnjyJsLAw5OTkoGvXrmrNcXPmzMH8+fOxaNEinD59Gs7OzujSpQtSUlJ0WDkREVEJyWRAeLjiJ4Ds7GyMGjUK7du3x/Hjx2FqaoomTZqgefPmsLKyws2bNzF48GAEBAQgNjb2pU+/evVqAEDfvn1hbW1dphKNKQRB6KnHjx8LACIiIkIIIYRcLhfOzs7i+++/V+3z/PlzYW9vL5YsWVLi501KShIARFJSksZrJiIiKtLy5UKYmAgBCGFiIlJ//VUEBAQIAEIikYiQkBDx6NEjxb4PHojkXbvErIkThY2NjQAgnJ2dxbFjx/57vgcPhDh0SPFTCJGWliaqV68uAIg9e/aUucwGDRoIAOLQoUNq27t27SoAiFWrVpX5uctDG9/fejsmSLlkt4ODAwDg7t27iI2NRdeuXVX7SKVSdOjQAcePH0dISIhO6iQiInopmQwYMQJ40a2VLpej58iRCIdigcI1a9agZ8+ein1DQ4ERI2Arl2OyiQnenj4db61bhytXriAgIAC///47Bmdn//d8JibAsmVYkpSE+Ph4eHp6onPnzmUu1ZhagvQyBAkhMH78eLRt2xavvvoqAKiaAZ2cnNT2dXJywr1794p8rszMTGRmZqruF7YUOBERkVZFRakCkADwAaAIQNbWCAsLQ4sWLRT75QtLkMtRb8oUnLp6FUO+/BKbN2/GkCFDcBPAdLwY0yKX4+GIEZj14rpfX3/9NczMyv71/rIQVJ7n1jd6MyYor1GjRuHixYtYt25dgcfyj5IXQhQ7cn727Nmwt7dX3Uq7ZgIREVG5eXsrWmwAzADwNwBzADtXrvwvAAFqYUklNxc2jx7h77//xpdffgkAmAmgM4AIAKcB9JLLEZ+QgKZNm2LQoEHlKrWoEJSTkwOAIUirRo8ejR07diA8PBxubm6q7c7OzgBQYGDY48ePC7QO5TV58mQkJSWpbg8ePNBO4UREREVxcwOWLcN+ExN8+2LTb4MHo0P//ur75QlLKqamgJcXTExMMHPmTKz66SdYQdGS5A+gOYBzAByqVsWGDRtgbm5erlIZgnRACIFRo0Zhy5YtOHToEDw9PdUe9/T0hLOzM8LCwlTbsrKyEBERgdatWxf5vFKpFHZ2dmo3IiKiipb49tsIfvGf9o/efx8frlpVcKcXYQnKcTempsDSpYrtLwweOxaXZs3CUIkE1QFYAejVpAnORkbC29u73HUaUwjSmzMZOXIk1q5di+3bt8PW1lbV4mNvbw8rKytIJBKMHTsWs2bNgre3N7y9vTFr1ixYW1tj4MCBOq6eiIioeGPHjoUsJgZeXl74ccmSoncMDgYCA4FbtwAvL7UApPTK5MlYMWgQcOsWxCuvQKLBoR4MQTqwePFiAIC/v7/a9hUrVmDo0KEAgC+++AIZGRn45JNPkJCQgBYtWmD//v2wtbWt4GqJiIhKbseOHVi1ahUkEglWrlypdnmKQrm5FRp+Ctun5OtJlwxDkA4IIV66j0QiwdSpUzF16lTtF0RERKQB8fHxGDFiBADgs88+Q5s2bXRcUfGMKQTpzZggIiKiymjUqFGIi4tD/fr18d133+m6nJdiCCIiIqJy27hxI9avXw9TU1OsXr0alpaWui7ppRiCiIiIqFzi4uLw8ccfA1As1+Ln56fjikqGIYiIiIjKTAiBjz76CPHx8WjcuDG++eYbXZdUYgxBREREVGZr1qzBtm3bYG5ujtWrV8PCwkLXJZXYy0JQeRdj1CcMQURERBr08OFDjBo1CgAwZcoUvPbaazquqHTYEkRERESlI5NBHDqED99/H0lJSWjWrBkmTpyo66pKzZhCUOU5EyIiIl0JDQVGjECoXI69AKRmZli1apVBBgZlCEpPT0dubi5MX1zCozKGILYEERERlYdMBowYgWi5HONfbJqZm4v6Bno1A2UIAhRBSIkhiIiIiNRFRSFXLsdgACkA2gIYK4Ti2l8GyNLSEiYvrmSv7BITQjAEERERUT7e3pgvkeAogCoAVgGKLiQvLx0XVjYSiaTAuCC5XK56nCGIiIiIAAAXnz3D1y/GzfwEoK6pKbB06csvgKrH8ocgZSsQULlCUOU5EyIiogqWmZmJQYMGISsnBz07d0bwl18C3t4GHYCA/0JQSkoKAIYgIiIiyufbb7/FxYsXUaNGDfz+11+QODnpuiSNUIagtLQ0AEB2drbqscoUgtgdRkREVAb79u3DnDlzAABLly6FUyUJQIDxdIcxBBEREZXSw4cP8f777wMAPv74Y/Tt21fHFWlWUSFIIpGoZo5VBpXnTIiIiCpATk4OBg4ciKdPn6JJkyaYP3++rkvSuKJCUGVqBQIYgoiIiEpl6tSpOHLkCKpUqYK///4blpaWui5J4xiCiIiISM3OnTsxc+ZMAMDvv/8Ob29vHVekHQxBREREpHLt2jX873//AwB88sknePfdd3VckfYwBBEREREAIDExEb1790ZKSgrat2+PBQsW6LokrWIIIiIiIuTm5mLgwIGIiopC7dq1sWnTJpibm+u6LK2ysbEBUDAEVbbzZggiIiIqghAC48ePx549e2BlZYVt27ahRo0aui5L6/K3BCkXSzR9cXmQyoIhiIiIqAg//fQTfv75ZwDAqlWr0LRpUx1XVDGKCkFSqVRnNWkDQxAREVEhNm7ciM8++wwA8OOPP6J///46rqji5A9BWVlZAAALCwud1aQNDEFERET5HDt2DIMGDQIAjBo1CuPHj9dxRRUr/7XDGIKIiIiMwKVLl9CrVy9kZmaid+/eWLBgASQSia7LqlD5W4IyMzMBMAQRERFVWjdv3kSXLl2QkJCAli1bYu3atTCNiQHCwwGZTNflVRh2hxERERkqmazUweXevXvo3Lkz4uLi0LhxY+zevRvW69YBHh5AQIDiZ2ioFovWH3lDkBCCIYiIiMgghIaWOrjExMSgc+fOePDgAXx8fLB//35US0sDRowA5HLFTnI5EBJiFC1CyhCUm5uLzMxMhiAiIiK9J5OVLrjIZIjZtAmdOnTArVu3UKdOHRw4cAA1a9YEoqL+ex6l3Fzg1i3tnoMeUC6WCChagyprCKpc618TEZFxKy64uLmpbw8NhWz4cAQIgSgAbtWq4eDBg3BT7uftDZiYqD+fqSng5aXVU9AHpqamsLKyQkZGRqUOQWwJIiKiykMZXPIqLLjIZLg3fDg6vAhAHgCOJCWhbt4veTc3YNkyxfHK51m6tGCYqqTyjgtiCCIiItJ3JQwutw8fRnshcAdAXQARADzl8oJdXcHBQHS0YpB1dLTivpEwhhDE7jAiIqpcgoOBwEBFoPHyKhCALl26hG4TJuARgHoADgGoBRTd1eXmZjStP3kxBBERERmiIoJLREQEevfujaSkJDR0dcWB2Fg4y+VG19VVEnmvJM8QREREZMA2b96M//3vf8jMzETbtm2xY8cOxTT4IlqMjB1bgoiIiCqBX3/9FaNHj4YQAn379sWaNWtgZWUFVKvG8FMEYwhBHBhNRESVVk5ODj799FOMGjUKQgh89NFH2LhxoyIAUbGMIQSxJYiIiCqlhIQEvPPOOwgLCwMAzJgxA19++aXRXQy1rPJeSV4ZgqRSqS5L0jiGICIiqnRu3ryJnj174ubNm7C2tsaff/6Jt956S9dlGRS2BBERERmYsLAwDBgwAImJiXB3d8eOHTvQpEkTXZdlcAoLQebm5rosSeP0akzQkSNH0LNnT7i6ukIikWDbtm1qjw8dOhQSiUTt1rJlS90US0REekUul+O7775DYGAgEhMT0apVK5w+fZoBqIyUISg5ORnPnz8HgEo3lkqvQlBaWhoaN26MRYsWFblPt27dEBMTo7rt3r27AiskIiJ9FB8fjzfffBPffvsthBAIDg7GoUOH4OTkpOvSDJa9vT0ARQhKS0sDAFhbW+uyJI3Tq+6woKAgBAUFFbuPVCqFs7NzBVVERET67t9//0X//v1x//59WFpaYvHixRg6dKiuyzJ4yhCUlJQE+YuLyFa2EKRXLUElcfjwYdSsWRP16tXD8OHD8fjxY12XREREOiCEwK+//oq2bdvi/v378PLywqlTpxiANMTOzg6AIgSlp6cDqHwhSK9agl4mKCgI/fv3h4eHB+7evYtvvvkGAQEBOHv2bJHT9jIzM5GZmam6n5ycXFHlEhGRlqSmpmLEiBFYt24dAOCtt97CH3/8oWq9oPLL2x2m/I5lCNKhd955R/XnV199FX5+fvDw8MA///xT5NTH2bNnY9q0aRVVIhERadmlS5fQv39/3LhxA2ZmZpgzZw7Gjh3L9X80LG93mHKQdGULQQbXHZaXi4sLPDw8EBUVVeQ+kydPRlJSkur24MGDCqyQiIg0aeXKlWjRogVu3LiBWrVq4fDhwxg3bhwDkBZwYLSei4+Px4MHD+Di4lLkPlKptNKtcElEZGzS09MxatQorFixAgAQGBiIP//8EzVq1NBxZZWXMgTl5ubi2bNnABiCtCo1NRW3bt1S3b979y7Onz8PBwcHODg4YOrUqXj77bfh4uKC6OhofPnll3B0dETfvn11WDUREWnTjRs30K9fP1y+fBkmJiaYPn06Jk+eDBMTg+7M0HvW1tYwMzNDTk6O2rbKRK9C0JkzZ9CxY0fV/fHjxwMAhgwZgsWLF+PSpUtYvXo1EhMT4eLigo4dO2LDhg2wtbXVVclERKRF69atw4gRI5CamgpnZ2esXbtW7XuCtEcikaB69eqIi4tTbWMI0iJ/f38IIYp8fN++fRVYDRER6Up2djY+//xzLFy4EADQsWNHrF27VrFOnEwGREUB3t6Am5uOK63c8ocgrhhNRESkRU+fPkVgYKAqAH311VcICwtTBKDQUMDDAwgIUPwMDdVxtZWbo6Oj6s9SqRSmpqY6rEbzGIKIiEhvnD9/Hn5+fggPD0eVKlWwdetWzJgxQ/HlK5MBI0YAL1YvhlwOhIQotpNWVK9eXfVnBwcHHVaiHQxBRESkFzZs2IDWrVvj3r178PLywsmTJ9GnT5//doiK+i8AKeXmAnkm1JBm5W0Jqlmzpg4r0Q6GICIi0ikhBGbOnIl3330XGRkZCAwMxL///ouGDRuq7+jtDeSfEWZqCnh5VVyxRibvEgQMQURERBqUnZ2N4cOH4+uvvwagmBX8zz//oFq1agV3dnMDli1TBB9A8XPpUg6O1iJPT0/VnytjCNKr2WFERGQ8kpOT0b9/f+zfvx8mJib4+eefMXLkyOIPCg4GAgMVXWBeXgxAWubt7a36c2VcmJIhiIiIKlxMTAy6deuGixcvwtraGuvXr0fPpk2B8PCXT313c2P4qSBeeboaGzRooMNKtIMhiIiIKlR0dDQ6d+6M27dvw8nJCbt27YLfhQuKKe9yuWLcz7JlilYf0qlatWrh888/R1ZWFj744ANdl6NxElHc6oSVUHJyMuzt7ZGUlAQ7Oztdl0NEZBxeLHB4DUCXQYPw8OFDeHp64sCBA6hrYfFfAFIyNQWio9niQyra+P5mSxAREWlXaCgwYgTOyOXoBiAeiq6VsLAwuLq6KrrAipr6zhBEWsTZYUREpD0vFjg8IpcjAIoA1AzAkfXrFQEI4NR30hmGICIi0p6oKETI5QgCkALAH8BBANXj4//bh1PfSUfYHUZERFoT8fQpugNIB9ANwBYAVoW18nDqO+kAQxAREWlFREQEug8dqgpAWwFYFtfKw6nvVMEYgoiIqOxezPrKv7bPkSNH0L17d6SnpyMwMBBbFy2CpUzGVh7SKwxBRERUNi9mfeVf2+fo0aOqANS1a1ds27YNlpaWHOhMeqdcIejx48eQy+VwdnbWVD1ERGQIXsz6Uk1tl8uBkBAcrVoVQUOGIC0tDV26dPkvABHpoTLNDrt48SIaNmwIFxcX1KpVC7Vq1cLXX3+NtLQ0TddHRET6KCqqwNo+x3JzEfT++6oAtH37dlhZWemoQKKXK1MICg4OhpOTE44dO4bIyEjMmDEDe/bsgZ+fHxISEjRdIxER6Zt8a/ucABAEIO35cwYgMhhlumyGjY0Nzp49C19fX9U2IQT69+8PS0tL/PXXXxotUpN42QwiohIqYtCzSmgoEBKCf3Nz0QVAMoBOnTph586dDECkcdr4/i5TS1BhLT4SiQSzZs3C9u3bNVIYERHpUGio4npeAQGKn6GhBfcJDsa5nTsRWKUKkgF06NABO3bsYAAig1HiEPTmm2/iyy+/xN9//42PPvoI48aNQ1xcnNo+SUlJqFatmsaLJCKiClTEoGfIZGq7XbhwAV3efx+Jqalo06YNdu3aBWtrax0UTFQ2JZ4d1qhRI5w7dw4rVqxQhZ+6detiwIABaNKkCXJzc7FixQr89NNPWiuWiIgqQCGDnvNf0PTKlSvo3Lkznj17hpYtW2L37t2oUqWKDoolKrsyjQmKi4tDZGQkzp8/r7rdunULpqam8PHxwcWLF7VRq0ZwTBAR0UvIZIousLxByNQUiI4G3Nxw/fp1+Pv7Iy4uDn5+fggLC0PVqlV1VS0ZCW18f5dpnSAnJyd069YN3bp1U23LyMjAhQsXcOHCBY0URkREOqK8oGlIiKIFKM+lLqKiohAQEIC4uDg0adIE+/btYwAig1WmliBDxpYgIqISksnULmh6584ddOjQATKZDI0aNUJ4eDiqV6+u6yrJSOhNSxARERmBPBc0vXv3Ljp27AiZTIYGDRrgwIEDDEBk8Mo0RZ6IiIxHVFQU2rdvj/v378PHxwcHDx5EzZo1dV0WUbkxBBERUZGuXbum6gJr0KABwsPDeb1IqjQYgoiIqFCXL1+Gv78/YmJiVGOAXFxcdF0WkcYwBBERUQGRkZHw9/fH48eP0bRpU4SHh7MLjCodhiAiIlJz+vRpBAQEID4+Hs2bN8fBgwc5CJoqJYYgIiJSOXjwIAICApCYmIjWrVtj//79vBwSVVoMQUREBADYtGkTunfvjtTUVAQEBGDv3r2wt7fXdVlEWsMQREREWLp0KQYMGICsrCz069cPu3fvhq2tra7LItIqhiAiIiMmhMCMGTPw0UcfQQiBkJAQrF+/HlKpVNelEWkdQxARkZGSy+UYO3YsvvnmGwDAN998g8WLF8PU1FTHlRFVDF42g4jICKWnp2Pw4MHYvHkzAGDhwoUYM2aMjqsiqlgMQURERiY2Nha9evXC6dOnYWFhgZUrV+K9997TdVlEFY4hiIjIiFy6dAk9evTA/fv3Ub16dWzbtg1t27bVdVlEOsExQURERmLv3r1o06YN7t+/j3r16uHkyZMMQGTUGIKIiIzAb7/9hjfffBMpKSnw9/fHiRMn4OXlpeuyiHRKr0LQkSNH0LNnT7i6ukIikWDbtm1qjwshMHXqVLi6usLKygr+/v64cuWKboolIjIAubm5GDduHEaOHAm5XI6hQ4di3759cHBw0HVpRDqnVyEoLS0NjRs3xqJFiwp9fM6cOZg/fz4WLVqE06dPw9nZGV26dEFKSkoFV0pEpKdkMiA8HJDJkJqair59+2LBggUAgFmzZuGPP/6AhYWFbmsk0hN6NTA6KCgIQUFBhT4mhMCCBQvw1Vdf4a233gIArFq1Ck5OTli7di1CQkIqslQiIv0TGgqMGAHI5XgokaCnuzsi79+HVCrF6tWrMWDAAF1XSKRX9KolqDh3795FbGwsunbtqtomlUrRoUMHHD9+vMjjMjMzkZycrHYjIqp0ZDJVAIoE0FwIRN6/jxrVq+Pw4cMMQESFMJgQFBsbCwBwcnJS2+7k5KR6rDCzZ8+Gvb296ubu7q7VOomIdCIqCpDLsRNAOwCPADQAcOqXX9CyZUvd1kakpwwmBClJJBK1+0KIAtvymjx5MpKSklS3Bw8eaLtEIqKK5+2NnyUS9AaQBqALgP8zMYFnu3Y6LoxIf+nVmKDiODs7A1C0CLm4uKi2P378uEDrUF5SqZQXAiSiSi0nJwfjfvgBi4QAAAwH8KuJCcyXLQPc3HRbHJEeM5iWIE9PTzg7OyMsLEy1LSsrCxEREWjdurUOKyMi0p2UlBT07t1bNat2zldfYemhQzC/dw8IDtZxdUT6Ta9aglJTU3Hr1i3V/bt37+L8+fNwcHBA7dq1MXbsWMyaNQve3t7w9vbGrFmzYG1tjYEDB+qwaiIi3ZDJZOjRowcuXLgAS0tL/PXXX3j77bd1XRaRwdCrEHTmzBl07NhRdX/8+PEAgCFDhmDlypX44osvkJGRgU8++QQJCQlo0aIF9u/fD1tbW12VTESkE+fOnUPPnj3x6NEj1KxZEzt37kTz5s1LdrBMphhI7e3N7jIyahIhXnQiG4nk5GTY29sjKSkJdnZ2ui6HiKjUdu3ahXfffRdpaWlo0KAB/vnnH9SpU6dkB+dZSwgmJsCyZew2I4Ogje9vgxkTREREwIoVK9C7d2+kpaWhS5cuOH78eMkDUJ61hAAofoaEKLYTGSGGICIiQyCTYW5ICIYNGwa5XI4PPvgA//zzD+zt7Uv+HC/WElKTmwvkGYtJZEz0akwQEREVJJYvx6ThwzHnxf3PAwPxQ2hosWukFcrbW9EFljcImZoCvJo8GSm2BBER6bGc6GgMzxOAfgAw58ABSB4+LP2TubkpxgCZmirum5oCS5dycDQZLbYEERHpqefPn2PgoEHYCsX/WJcBCAb+68IqS3gJDgYCAxXHe3kxAJFRYwgiItJDKSkp6NOnDw4dOwYLAOsB9FU+WN4uLDc3hh8isDuMiEjvPHnyBAEBATh06BCqVKmCPZ99hr7swiLSOLYEERFpSxkWJbx//z66du2KGzduwNHREXv27IGfnx8wdiy7sIg0jCGIiEgbSrMo4YuwdA1A18GDIZPJ4O7ujrCwMPj4+Cj2YRcWkcZxxWgiIk2TyQAPj4JT0aOjCwaZF2HptFyOIADxAHx9fbF//364u7tXYNFE+o0rRhMRGYKSLkr4YgXnA3I5OkIRgJoBOLphAwMQUQVgCCIi0jTlooR5FTajKyoKm+VyvAkgDUAnAAcBOD57VjF1Ehk5hiAiIk0r4aKEv58+jQEAsgC8DeAfALZcwZmownBgNBGRNhSzKKEQAj/88AMmT54MABgukWCxEDDl9HeiCsUQRESkLYXM6JLL5fjiiy8wb948AMDkyZMx8+OPIbl9m9PfiSoYQxAR6U4Z1tExZNnZ2QgODsaff/4JAPjxxx/x2WefKR7kQGiiCscxQUSkG6GhimnkAQGKn6Ghuq5Iq9LS0tC7d2/8+eefMDU1xYoVK/4LQESkE1wniIgqXmnW0akEnj59ih49euDUqVOwsrLCxo0b8eabb+q6LCKDwnWCiKhyKOk6OpXAvXv30LZtW5w6dQoODg44ePAgAxCRnuCYICKqeMp1dPK3BFWyqeEXLlxA9+7d8ejRI7i7u2Pfvn2oX7++rssiohfYEkREFa+E6+gYsp07d6JNmzZ49OgRGjRogOPHjzMAEekZhiAi0o3gYMUYoPBwxc+iLi5qYIQQmDdvHnr37o20tDR06tQJx44dg1slCnhElQW7w4hIdyrZldEzMzMxcuRIhL6Y6RYSEoJffvkF5ubmOq6MiArDEEREpAHR0dHo168fzp49CxMTE8ybNw+ffvopJBKJrksjoiIwBBERldM///yDQYMGISEhAQ4ODlizZg26deum67KI6CU4JoiIqIwyMjIwduxY9OjRAwkJCWjWrBnOnTvHAERkIBiCiIjK4N+dO9HUxwcLFy4EAIwcORJHjx6Fh4eHjisjopJidxgRUSmkpKTgu/79MX/fPuQCcAEQ+umnCFqwQMeVEVFpsSWIiCoHmUwx3V4m08rTCyGwbt06+Hp7Y+6LAPQugMsAghYt0trvJSLtYQgiIsOnxYuxCiGwa9cuvPHGGxg4cCAexcWhLoCdANYBcAAq7SU/iCo7hiAiMmwyGTBixH+X4JDLgZCQcrfMPH/+HH/++SeaNWuGnj17IjIyEjY2Npj+2We4IpGgR96dK+ElP4iMAccEEZFhK+5irKVciFEul+PUqVPYuHEjVq9ejfj4eACAtbU1Ro8ejQkTJsDR0RGoX18RtHJzK+UlP4iMBUMQERm2clyMVQiB6OhoHD16FEePHsWePXvw8OFD1ePu7u4ICQnB8OHDUbNmzf8ODA4GAgMVQcvLiwGIyEAxBBGRXsjIyEB0dDTu37+PhIQEJCYmIjExEampqRBCqG4AYGpqCjMzM9VPs7fegunmzTATAqYSCcwGDoTp3r2Kx17sJ5fL8fjmTcTdvImYnBzcePAA165dQ3Jyslodtra26NGjB9599110794dZmZFfExWskt+EBkjiVB+qhiJ5ORk2NvbIykpCXZ2drouh8goPXr0CCdPnsSZM2dw5swZXLp0CbGxsTqpxczMDH5+fmjXrh06dOiATp06wdLSUie1EFHRtPH9zZYgItK6nJwcHD58GHv27MG+fftw5cqVQveztbVFnTp14OjoiKpVq6Jq1aqwsbGBiYkJJBKJ6jpcubm5yM3NRU5Ojupn3j8XeCwtDZL/+z84AnB6cfM2MUGD/fvh1bYtpFJphb0WRKQ/GIKISCuEEDh16hTWrl2LDRs24PHjx6rHJBIJGjdujGbNmsHPzw9NmjTBK6+8AgcHB+1ccDQ8XDF9Pi+5XDF2iAGIyGgxBBGRRqWlpWHNmjVYtGgRLl26pNru6OiInj17IjAwEJ07d0b16tVL9oQymWIGmLd32cfglGPwNBFVXgxBRKQRjx8/xvz587F06VIkJiYCAKysrPDWW29h4MCB6NKlC8zNzUv3pKGh/60BZGICLFummJlVWm5uimM5rZ2I8uDAaCIql0ePHmHu3LlYunQpMjIyAACvvPIKRo4ciaFDh6JatWple2KZTLH6c/7Wm+josocXmYzT2okMFAdGE5HeSE5OxsyZM7Fw4UJkZmYCAJo1a4avv/4aPXr0gIlJORek1+AiiColmdauie43IjIIvGwGEZWKXC7HihUrUK9ePcyZMweZmZlo06YN9u7di1OnTqFXr17lD0DAf+N48tL2OB4tXoOMiPSPQYWgqVOnqqbJKm/Ozs66LovIaBw/fhzNmzfHsGHDEBcXB29vb+zcuRNHjx5FYGCgZmd2KcfxmJoq7mt7HI+WrkFGRPrL4LrDGjZsiAMHDqjumyo/IImoaOXs4pHJZJg4cSLWrl0LALCzscG348Zh9DffwMLCQuO/T6UiL0+hje43ItJrBtUSBChWd3V2dlbdatSooeuSiPRbObp4MjIy8N1338HHxwdr166FRCLBhwBupqXhs1mzYPHnnxr9fYVycwP8/bUfRHTR/UZEOmVwISgqKgqurq7w9PTEu+++izt37hS7f2ZmJpKTk9VuREajjF08Qghs3LgRvr6++Pbbb5Geno62zZrhDIDfoVhxudDnMuQupYrufiMinTOoENSiRQusXr0a+/btw++//47Y2Fi0bt0a8fHxRR4ze/Zs2Nvbq27u7u4VWDGRjhXXxVOE8+fPw9/fHwMGDMD9+/fh7u6O9evX48j33+P1/Ctq5H+uMvw+vRIcrJiCHx6u+FmWNYmIyGAY9DpBaWlpeOWVV/DFF19g/Pjxhe6TmZmpmr4LKKb1uru7c50gMg6lWGvnyZMn+Prrr/H7779DCAErKytMnDgRn3/+OaytrUv2XNpY24eICNpZJ8igWoLys7GxQaNGjRAVFVXkPlKpFHZ2dmo3IqNRgi6erKws/PTTT/D29sayZcsghMA777yD69evY8qUKYoAVMLnYpcSERkSg24JyszMxCuvvIIRI0bg22+/LdExXDGajFIhKyULIbB9+3Z8/vnnuPWiu6pp06ZYuHAh2rVrV6rnKtM+RESlYPQrRk+YMAE9e/ZE7dq18fjxY8yYMQPJyckYMmSIrksj0m/5Vko+d+4cxo8fj4iICABAzZo1MWPGDAwbNuzly06UZNXlkuxDRKRjBhWCZDIZ3nvvPTx9+hQ1atRAy5YtcfLkSXh4eOi6NCIFPb/kwv379/Htt99i9erVEEJAKpXis88+w6RJk2Bra6vr8oiIKpRBhaD169frugSiomnqiudaIJPJMGvWLCxfvhzZ2dkAgIEDB2LWrFn8TwQRGS2DHhNUFhwTRFqhp7OiZDIZfvjhByxbtgxZWVkAgI4dO2L27Nlo0aKFzuoiIiotox8TRKS39OySC2fOnMFPP/2Ev//+Gzk5OQCA9u3bY9q0afD39y/8ID3vyiMi0jSDniJPpDdKc8kFmUyxGJ+GV1FOT0/HX3/9hfbt26NZs2ZYu3YtcnJy0KFDBxw8eBCHDx8uOgDx6ulEZIQYgog0oaTr42g4bOTm5uLYsWMYPnw4nJ2dMWjQIBw9ehRmZmYYNGgQzp49i8OHDyMgIKDoK7wb8qUuiIjKgWOCiDSpuPVxNDRuKD09HQcOHMD27duxa8cOPH76VPWYp6cnhg4dig8//BCurq4le8LwcEUoK2x7US1HREQVjGOCiPRdcevjlHHcUFxcHM6cOYOjR4/iyJEjOH36tGqcDwDYA+gD4IPPP0e777+HSf5uuZdRduXlD2e8ejoRVXIMQUQVpZiwkZKSgujoaERHR+PevXu4c+cOLp85gwuXL+NxQkKBp6pdqxZ6PXyI3gA6ADAHgPnzgTFjSj+oWdmVFxKiCGW81AURGQmGICINyc7ORkJCAp49e4Znz54hISGhwC2xZUskHD+OBEBxs7NDgq8v0tLSinxeCYB6zs5o07072rdvj/bt26PO3buQdOqkvmN5ZqMFBwOBgbzUBREZFYYgopcQQiAmJgY3btzA/fv3IZPJ8ODBA8hkMsTExODZs2eIj49HSkpK6Z88TyuPg4MD6tSpgzpOTvDYswcNADQG0BCA9ZMnwLRp/4UTc3PNd2HxUhdEZGQYgojyyMzMxIULF/Dvv//i7NmzuHr1Kq5fv47k5OQSP0fVqlVRrVo1ODg4oFq1aqhWrZpqW1G3mjVr/nfZivBwYM8e9SfN38rDLiwionJjCCKjlp6ejqNHjyIsLAxHjhzB+fPnVZeVyMvExAR169aFp6cn3Nzc4O7uDjc3N7i6usLR0REODg5wcHBA1apVX34B0pcp6UBldmEREZULQ5C2cRVe3Snitb99+za2bNmCPXv24P/+7/9Ul5NQcnR0RPPmzdGsWTO8+uqr8PX1hbe3N6RSacXUXZpWHnZhERGVGUOQNunxBTX1lqZCY77X/trUqdgoBLZs2YILFy6o7eru7o4uXbogICAArVq1gqenZ9ELC1YUtvIQEWkdF0vUFj29oKZe01RofPHaP5XLsQ7AKgBn8zxsamoKf39/9O7dG4GBgfC2soLk1q3igxdb9IiIdEob39+8bIa2FLcwHhWkoUs3yOVy7PnrL7wll8MVwBgoApAZgDdbtsQff/yBuLg4HDhwAKNHj0a9o0chqVOn+MtY8LpaRESVEluCtIUtQaVTzks3pKamYtWqVfj5559x8+ZN1fbXAQwB8J6JCWrcu6f+2pfkPeL7SESkF9gSZEhKekFNUijNVdjziI6OxoQJE+Dm5oZRo0bh5s2bsLOzw9jOnXHJxARnAYwxNUWNZcsKvvYlaa1jix4RUaXFgdHaxMGtJVeKGVFCCBw5cgQLFy7E9u3bIX8RUry9vTFmzBgMGTJEseZOcRczVRzw8qnovK4WEVGlxRCkbZzCXHIvCY3Pnz/H+vXrsXDhQpw/f161vUuXLvj0008RFBSkfvHQl732JQleXJSQiKjS4pgg0nsxMTFYvHgxlixZgidPngAArCwtMbhLF4wZOxYNChtLVBovazEq6T5ERKQ12vj+ZgiiilPKaeZnzpzBwoULsWHDBtUqzm5ubhjVogWGb9kCByG4/hIRkZHgwGgyXCWcZp6dnY3169ejTZs2aNasGf766y9kZ2ejdevW+Pvvv3H36FFM3LpVEYCAMk+lJyIi4pgg0r6i1gAKDFS1CMXFxWHp0qVYsmQJYmJiAADm5uZ455138Omnn8LPz09xbHh40bO12E1FRESlwBBkrCpyBeQippmLqCj8+/AhFi1apNbl5ezsjJCQEISEhMDFxUX9OM7WIiIiDWEIMiRauq6W1sfU5AsuTwD8KZHgj48+wpU8Cxu2bNkSo0ePRr9+/WBhYVH4c3G2FhERaQgHRhsKDV9Xq6JXQM5YvBj7Ro3Cn3I5dgDIebHd0tISAwYMwOjRo//r8ioJztYiIjIq2vj+ZkuQISjBmJoSK24FZA2HiYyMDOzbtw9///03du7cidQ8v7dZs2YYNmwY3n33XVStWrX0T871l4iIqJwYggyBJoOLFsfUCCFw7do17Nu3D/v27UNERASeP3+uetzd3R39+/fH0KFD0ahRo3L/PiIiovJgCDIEmgwuGhxTk5qaisjISJw8eRKnTp3CiRMn8OjRI7V93N3d0a9fPwwYMADNmzdXX9GZiIhIhzgmSI/k5uYiOjoa169fh0wmQ0xMDGJjY5GYmIiMGzeQfv48ngOQADDz9YV57dowMzODhYUF7OzsYGdnB3t7+wI/bW1tUaVKFbWbTUICTO7cKXRMjRACz58/R2pqKpKTkxETE4NHjx7h4cOHuHfvHq5du4Zr167hwYMHBc5BKpWiffv2CAwMRGBgIBo2bAiJRFIxLyAREVVaHBNUyTx48ABHjx7F0aNHcerUKVy7dk2t+6hY168rbuVgbW0Nc3Nz1X2JRAK5XI60tDTk5uaW6DlcXV3RsmVLtGjRAi1btoSfnx+sra3LVRcREVFFYAgqjJbW0JHL5Thz5gy2bt2Kbdu24XohIUYqlcLHxwd16tSBs7MzXFxc4ODgACsrK1hbW8PS0hJCCOTk5CA7OxvZ2dnIzMxESkoKkpOTkZSUhOTkZLU/p6amIiUlBampqUhNTVVddT09Pf2lNVsDcAbgCqBWs2Zwa98evr6+qF+/PurXrw8HBweNvT5EREQViSEoPy2soRMdHY0VK1Zg5cqVuH//vmq7qakpmjZtinbt2qFNmzZo3LgxPD09YWpqWr5zKCbE5e3qSklJQW5uLoQQUPaKSiQS2NjYwDY5GTYNG8I0b2/puXPAli2clUVERJUCQ1BeGpyKLoTA/v37MW/ePBw4cEAVMqpUqYLu3bujb9++CAoKgr29vWbP4SUhTiKRwMrKClZWVqhRo0bRz3PzJpB/uFhRM9IqcvVpIiIiDTHeEPTwIZB/YJUGpqLn5uZi8+bN+P777xEZGana3qlTJwQHB6Nv376wtLQsb/WF0+R6QiWdkVbRq08TERFpiNHOVz7boEHBK5krv/jzKuFU9MzMTCxfvhz169fHO++8g8jISFhbW2Ps2LG4c+cODhw4gPfee097AQgoPsSVlnIqvbJrrrCp9EWFLl7RnYiIDIDRhqARAFJGjFD/wi7JF38+KSkpmDdvHurWrYvhw4cjKioKDg4OmDJlCu7fv4+ffvoJnp6e2j0ZpXKEuEIFBysupxEerviZv4VHk6GLiIioghltd9gtAP3kcuy8dg0WeUNOcLCi++gl16V6/PgxFi1ahEWLFiEhIQEAUKtWLXz22WcYPnw4qlSpUgFnkY82Li5a3OUpeEV3IiIyYEa7WKI1gHQA3fz9sX7bthIPUL5+/Trmz5+P1atXIzMzEwBQr149TJw4Ef/73/8glUrLVpgmBxdX5MVFQ0MLhi6OCSIiIg3TxmKJRhuCtkgk+J+5OTKysuDp6Ym5c+eiT58+hU5Pj4+Px7Zt27B69WocOXJEtb158+b4/PPP0bdv3/JNazf0wcW8ojsREWkZQ5AGqF7Eq1dxKyMDffr0UV3+wdXVFQEBAahTpw6EEHjw4AEuXbqE8+fPq62j06tXL0yYMAFt2rQp/yUhZDLAw6Ngl1J0NAMFERHRC7xshibVqoXX7exw9epV/PDDD1i0aBEePXqEv/76q9DdGzVqhIEDB+L999+HmybDiSavEE9EREQlZpAtQb/99hvmzp2LmJgYNGzYEAsWLEC7du1KdGxRSTIzMxOHDh1CZGQkHj58CABwc3ODl5cX2rZtCxcXF62cC1uCiIiIXo7dYQA2bNiAQYMG4bfffkObNm2wdOlSLF++HFevXkXt2rVferxeXkWeg4uJiIiKxRAEoEWLFnj99dexePFi1bb69eujT58+mD179kuP18sQBHBwMRERUTGMfkxQVlYWzp49i0mTJqlt79q1K44fP17oMZmZmaqp7IDiRdRLxa3HQ0RERBpnUCtGP336FLm5uXByclLb7uTkhNjY2EKPmT17Nuzt7VU3d3f3iiiViIiI9JxBhSCl/NPShRBFTlWfPHkykpKSVDfldHgiIiIybgbVHebo6AhTU9MCrT6PHz8u0DqkJJVKy76KMxEREVVaBtUSZGFhgTfeeANhYWFq28PCwtC6dWsdVUVERESGyKBaggBg/PjxGDRoEPz8/NCqVSssW7YM9+/fx0cffaTr0oiIiMiAGFwIeueddxAfH4/p06cjJiYGr776Knbv3g0PDw9dl0ZEREQGxODWCSovvV0niIiIiIqkje9vgxoTRERERKQpDEHlIZMB4eGKn0RERGRQGILKKjRUceHTgADFz9BQXVdEREREpcAQVBYyGTBixH9XfpfLFRdAZYsQERGRwWAIKouoqP8CkFJuruICqERERGQQGILKwtsbMMn30pmaKq4AT0RERAaBIags3NyAZcsUwQdQ/Fy6lFeBJyIiMiAGt1ii3ggOBgIDFV1gXl4MQERERAaGIag83NwYfoiIiAwUu8OIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUDCoE1alTBxKJRO02adIkXZdFREREBshM1wWU1vTp0zF8+HDV/SpVquiwGiIiIjJUBheCbG1t4ezsrOsyiIiIyMAZVHcYAPzwww+oXr06mjRpgpkzZyIrK0vXJREREZEBMqiWoE8//RSvv/46qlWrhn///ReTJ0/G3bt3sXz58iKPyczMRGZmpup+UlISACA5OVnr9RIREZFmKL+3hRCae1KhY1OmTBEAir2dPn260GM3bdokAIinT5+W6/l544033njjjTfDuN2+fVtjGUQihCYjVek9ffoUT58+LXafOnXqwNLSssD2hw8fws3NDSdPnkSLFi0KPTZ/S1BiYiI8PDxw//592Nvbl694A5KcnAx3d3c8ePAAdnZ2ui6nwvC8ed7GgOfN8zYGSUlJqF27NhISElC1alWNPKfOu8McHR3h6OhYpmMjIyMBAC4uLkXuI5VKIZVKC2y3t7c3qr88SnZ2djxvI8LzNi48b+NirOdtYqK54cw6D0EldeLECZw8eRIdO3aEvb09Tp8+jXHjxqFXr16oXbu2rssjIiIiA2MwIUgqlWLDhg2YNm0aMjMz4eHhgeHDh+OLL77QdWlERERkgAwmBL3++us4efJkuZ9HKpViypQphXaRVWY8b563MeB587yNAc9bc+et84HRRERERLpgcIslEhEREWkCQxAREREZJYYgIiIiMkoMQURERGSUKmUI+u233+Dp6QlLS0u88cYbOHr0aLH7R0RE4I033oClpSXq1q2LJUuWVFClmlWa896yZQu6dOmCGjVqwM7ODq1atcK+ffsqsFrNKe37rfR///d/MDMzQ5MmTbRboJaU9rwzMzPx1VdfwcPDA1KpFK+88gr++OOPCqpWc0p73mvWrEHjxo1hbW0NFxcXfPDBB4iPj6+gasvvyJEj6NmzJ1xdXSGRSLBt27aXHlMZPtNKe96V5TOtLO+3kiF/ppXlvDXxmVbpQtCGDRswduxYfPXVV4iMjES7du0QFBSE+/fvF7r/3bt30b17d7Rr1w6RkZH48ssvMWbMGGzevLmCKy+f0p73kSNH0KVLF+zevRtnz55Fx44d0bNnT9Uq3IaitOetlJSUhMGDB6NTp04VVKlmleW8BwwYgIMHDyI0NBQ3btzAunXr4OvrW4FVl19pz/vYsWMYPHgwgoODceXKFWzcuBGnT5/Ghx9+WMGVl11aWhoaN26MRYsWlWj/yvKZVtrzriyfaaU9byVD/0wry3lr5DNNY1ch0xPNmzcXH330kdo2X19fMWnSpEL3/+KLL4Svr6/atpCQENGyZUut1agNpT3vwjRo0EBMmzZN06VpVVnP+5133hFff/21mDJlimjcuLEWK9SO0p73nj17hL29vYiPj6+I8rSmtOc9d+5cUbduXbVtP//8s3Bzc9NajdoEQGzdurXYfSrLZ1peJTnvwhjiZ1pepTlvQ/9My6sk562pz7RK1RKUlZWFs2fPomvXrmrbu3btiuPHjxd6zIkTJwrsHxgYiDNnziA7O1trtWpSWc47P7lcjpSUFDg4OGijRK0o63mvWLECt2/fxpQpU7RdolaU5bx37NgBPz8/zJkzB7Vq1UK9evUwYcIEZGRkVETJGlGW827dujVkMhl2794NIQTi4uKwadMmvPnmmxVRsk5Uhs80TTDEz7SyMvTPtLLQ1GeawawYXRJPnz5Fbm4unJyc1LY7OTkhNja20GNiY2ML3T8nJwdPnz4t9uKs+qIs553fvHnzkJaWhgEDBmijRK0oy3lHRUVh0qRJOHr0KMzMDPOvf1nO+86dOzh27BgsLS2xdetWPH36FJ988gmePXtmMOOCynLerVu3xpo1a/DOO+/g+fPnyMnJQa9evfDLL79URMk6URk+0zTBED/TyqIyfKaVhaY+0ypVS5CSRCJRuy+EKLDtZfsXtl3flfa8ldatW4epU6diw4YNqFmzprbK05qSnndubi4GDhyIadOmoV69ehVVntaU5v2Wy+WQSCRYs2YNmjdvju7du2P+/PlYuXKlQbUGAaU776tXr2LMmDH49ttvcfbsWezduxd3797FRx99VBGl6kxl+UwrK0P/TCupyvaZVhqa+kyrVLHR0dERpqamBf5X+Pjx4wL/M1JydnYudH8zMzNUr15da7VqUlnOW2nDhg0IDg7Gxo0b0blzZ22WqXGlPe+UlBScOXMGkZGRGDVqFADFPyQhBMzMzLB//34EBARUSO3lUZb328XFBbVq1YK9vb1qW/369SGEgEwmg7e3t1Zr1oSynPfs2bPRpk0bfP755wCA1157DTY2NmjXrh1mzJhRKVtFKsNnWnkY8mdaaVWWz7Sy0NRnWqVqCbKwsMAbb7yBsLAwte1hYWFo3bp1oce0atWqwP779++Hn58fzM3NtVarJpXlvAHF/5aGDh2KtWvXGuQYidKet52dHS5duoTz58+rbh999BF8fHxw/vx5tGjRoqJKL5eyvN9t2rTBo0ePkJqaqtp28+ZNmJiYwM3NTav1akpZzjs9PR0mJuofc6ampgD+ax2pbCrDZ1pZGfpnWmlVls+0stDYZ1q5hlXrofXr1wtzc3MRGhoqrl69KsaOHStsbGxEdHS0EEKISZMmiUGDBqn2v3PnjrC2thbjxo0TV69eFaGhocLc3Fxs2rRJV6dQJqU977Vr1wozMzPx66+/ipiYGNUtMTFRV6dQJqU97/wMdSZFac87JSVFuLm5iX79+okrV66IiIgI4e3tLT788ENdnUKZlPa8V6xYIczMzMRvv/0mbt++LY4dOyb8/PxE8+bNdXUKpZaSkiIiIyNFZGSkACDmz58vIiMjxb1794QQlfczrbTnXVk+00p73vkZ6mdaac9bU59plS4ECSHEr7/+Kjw8PISFhYV4/fXXRUREhOqxIUOGiA4dOqjtf/jwYdG0aVNhYWEh6tSpIxYvXlzBFWtGac67Q4cOAkCB25AhQyq+8HIq7fudl6F+YAhR+vO+du2a6Ny5s7CyshJubm5i/PjxIj09vYKrLr/SnvfPP/8sGjRoIKysrISLi4v43//+J2QyWQVXXXbh4eHF/lutrJ9ppT3vyvKZVpb3Oy9D/Uwry3lr4jNNIkQlbRMmIiIiKkalGhNEREREVFIMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIqFKYPn06GjVqBBsbGzg5OeHjjz9Gdna2rssiIj1mpusCiIjKSwiB3NxcLF26FLVq1cLVq1cxePBgvPbaa/j44491XR4R6SleQJWIKqWBAweiRo0aWLhwoa5LISI9xe4wIjJ49+7dw6hRo/Dqq6+iWrVqqFKlCv7++2+4ubnpujQi0mMMQURk0J4+fYrmzZvj6dOnmD9/Po4dO4YTJ07A1NQUTZo00XV5RKTHOCaIiAza7t27kZOTg3Xr1kEikQAAfv31V2RlZTEEEVGxGIKIyKA5ODggOTkZO3bsQIMGDbBz507Mnj0btWrVQo0aNXRdHhHpMQ6MJiKDJoTAxx9/jLVr18LKygrvv/8+nj9/jnv37mHXrl26Lo+I9BhDEBERERklDowmIiIio8QQREREREaJIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERERGaX/B7Ktpa9aW7KsAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABepElEQVR4nO3dd3xN9/8H8NfNuhmSEGQJEQRVNSrEHjFjU7VaqyGprdpa1RrV5lt+RVtqprRqBLWqNklQVKgdIyUJIcNMIoms+/n9cd0rN0sS9+au1/PxuI+4555z8z73cu/LZx2JEEKAiIiIyMiYaLsAIiIiIm1gCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCKtat++Pdq3b6/tMkpt5MiRKFeuXLH2rV69OkaOHKnReiQSCebOnavR3/E6aWlpmDt3LkJDQ7Vah744evQovLy8YGNjA4lEgl27dmH9+vWQSCSIjo5W7rdp0yYsXbpUIzXMnj0b1apVg5mZGcqXL1/i40eOHInq1aurvS5dM3r0aNSvXx/ly5eHlZUVateujc8//xyPHj3Kt+/Zs2fRtWtX2Nraoly5cujQoQP+/vtvLVRNRTHTdgFk3H7++Wdtl1Bmdu7cCTs7O22XoXFpaWmYN28eAOh1wC0LQggMHDgQtWvXxp49e2BjY4M6deogOzsbp0+fhouLi3LfTZs24erVq5gyZYpaa9i9eze++eYbfPHFF/D19YVUKlXr8xuS1NRU+Pv7o1atWrC0tMS5c+fwzTffYN++fbhw4QIsLCwAAOHh4Wjbti2aNWuGDRs2QAiBhQsXomPHjggJCUGLFi20fCakwBBEWlWvXj1tl1BmGjdurO0SSI3S09NhaWkJiURS6ud48OABnjx5gn79+qFjx44qj1WuXPlNSyyWq1evAgAmTZoER0fHMvmd6qKO96AkNm/erHLfx8cHtra2GDduHE6ePAkfHx8AwJdffony5cvjwIEDsLa2BgB06tQJNWrUwGeffcYWIR3C7jAqtrlz50IikeDatWsYMmQI7O3t4eTkhI8++ghJSUkq+7548QIzZ86Eh4cHLCwsUKVKFYwfPx7Pnj1T2a+g7rAVK1agYcOGKFeuHGxtbVG3bl3MmjULABAdHQ0zMzMEBgbmq+/48eOQSCTYtm1bkefx7NkzfPrpp6hRowakUikcHR3RvXt33LhxAwAQGhoKiUSSrzsnOjoaEokE69evz/ec165dQ8eOHWFjY4PKlStjwoQJSEtLU9mnoO6w19WiDvHx8QgICICbmxssLCzg4eGBefPmITs7W2W/efPmwdvbGw4ODrCzs8O7776LoKAg5L3G8rFjx9C+fXtUrFgRVlZWqFatGt577z2kpaUhOjpa+eU9b948SCQSSCSS13YDpqWl4bPPPoOHhwcsLS3h4OAALy+vfF8669evR506dSCVSvHWW2/ht99+y9cVU5L379y5cxg8eDCqV68OKysrVK9eHUOGDEFMTEy+3yuRSHDo0CF89NFHqFy5MqytrZGRkQEACA4ORosWLWBjY4Ny5cqha9euuHDhQpHnPHfuXLi5uQEApk+fDolEojyPvN1h7du3x19//YWYmBjla/q6L36ZTIaFCxeibt26yr9bw4cPR2xsrHKf6tWrY/bs2QAAJyenYnWnFvQeFCQzMxMLFixQ/v7KlStj1KhRePjwocp+GRkZ+PTTT+Hs7Axra2u0bdsW58+fz/fvRV3vwblz59C7d284ODjA0tISjRs3xtatW4s856Io/r6bmb1qU/j777/Rvn17ZQACAFtbW7Rt2xanTp1CXFxcqX8fqRdbgqjE3nvvPQwaNAh+fn64cuUKZs6cCQD45ZdfAMib+Pv27YujR49i5syZaNOmDS5fvow5c+bg9OnTOH36dKFN7lu2bMG4ceMwceJE/N///R9MTEzw33//ISIiAoD8Q7t3795YuXIlpk2bBlNTU+Wxy5Ytg6urK/r161do7SkpKWjdujWio6Mxffp0eHt74/nz5zh+/Dji4uJQt27dEr8eWVlZ6N69OwICAjBjxgycOnUKCxYsQExMDP788883rmXkyJH49ddfERUVVeJxF/Hx8WjWrBlMTEzw1VdfoWbNmjh9+jQWLFiA6OhorFu3TrlvdHQ0AgICUK1aNQDAmTNnMHHiRNy/fx9fffWVcp8ePXqgTZs2+OWXX1C+fHncv38fBw4cQGZmJlxcXHDgwAF069YNfn5+GD16NIDXt2pMnToVGzZswIIFC9C4cWOkpqbi6tWrePz4sXKf9evXY9SoUejTpw++//57JCUlYe7cucjIyICJSen+PxcdHY06depg8ODBcHBwQFxcHFasWIGmTZsiIiIClSpVUtn/o48+Qo8ePbBhwwakpqbC3Nwc3377LWbPno1Ro0Zh9uzZyMzMxKJFi9CmTRucPXu20NbO0aNHo2HDhujfvz8mTpyIoUOHFvrv4ueff4a/vz9u376NnTt3Fuvcxo4di9WrV2PChAno2bMnoqOj8eWXXyI0NBT//vsvKlWqhJ07d2L58uUICgrCgQMHYG9vrwxmBSnueyCTydCnTx+cOHEC06ZNQ8uWLRETE4M5c+agffv2OHfuHKysrAAAo0aNQnBwMKZNmwYfHx9ERESgX79+SE5OLrCGN3kPQkJC0K1bN3h7e2PlypWwt7fHli1bMGjQIKSlpRV7zF52djYyMjJw8eJFfPnll2jdujVatWqlfDwzM7PA91Kx7cqVKypdnaRFgqiY5syZIwCIhQsXqmwfN26csLS0FDKZTAghxIEDBwrcLzg4WAAQq1evVm5r166daNeunfL+hAkTRPny5YusIyQkRAAQO3fuVG67f/++MDMzE/PmzSvy2Pnz5wsA4vDhw699/pCQEJXtUVFRAoBYt26dctuIESMEAPHDDz+o7PvNN98IAOLkyZPKbe7u7mLEiBElqkUIIT766CNhamoqoqOji9xPCCEAiDlz5ijvBwQEiHLlyomYmBiV/f7v//5PABDXrl0r8HlycnJEVlaWmD9/vqhYsaLyvd2+fbsAIC5evFhoDQ8fPsxXx+vUr19f9O3bt9DHc3JyhKurq3j33XeVtQghRHR0tDA3Nxfu7u7KbSV5//LKzs4Wz58/FzY2Nirv6bp16wQAMXz4cJX97969K8zMzMTEiRNVtqekpAhnZ2cxcODAIs76VU2LFi1S2a74fVFRUcptPXr0UDnPoly/fl0AEOPGjVPZ/s8//wgAYtasWcptin/XDx8+LPI5S/IebN68WQAQf/zxh8pzhIeHCwDi559/FkIIce3aNQFATJ8+XWU/xfG5/72o4z2oW7euaNy4scjKylLZt2fPnsLFxUXk5OQU+RoIIcTp06cFAOWte/fuIjk5WWWfRo0aidq1a6s8X1ZWlqhRo4YAIDZt2vTa30Nlg91hVGK9e/dWud+gQQO8ePECiYmJAOTdJQDy/a/q/fffh42NDY4ePVroczdr1gzPnj3DkCFDsHv37gJnXbRv3x4NGzbE8uXLldtWrlwJiUQCf3//Imvfv38/ateujU6dOhW5X0l98MEHKveHDh0KQP4/zzetJSgoCNnZ2XB3dy9xXXv37kWHDh3g6uqK7Oxs5c3X1xcAEBYWptz32LFj6NSpE+zt7WFqagpzc3N89dVXePz4sfK9bdSoESwsLODv749ff/0Vd+7cKVE9uWvIzs5WdrU1a9YM+/fvx4wZMxAaGor09HSV427evIkHDx5g6NChKt1A7u7uaNmyZYlfF4Xnz59j+vTpqFWrFszMzGBmZoZy5cohNTUV169fz7f/e++9p3L/4MGDyM7OxvDhw1XOy9LSEu3atdPaDDnF37u8/wabNWuGt956q8h/g4UpyXuwd+9elC9fHr169VJ5XRo1agRnZ2fl66L4+zdw4ECV4wcMGKDSvZRbad+D//77Dzdu3FD+W829b/fu3REXF4ebN2++9nV45513EB4ejrCwMPzwww+4cOECOnfurNL9PXHiRNy6dQsTJkzA/fv3ce/ePXz88cfKbtbStlyS+vGdoBKrWLGiyn1FE6/ii+vx48cwMzPL1wUikUjg7Oys0sWR17Bhw/DLL78gJiYG7733HhwdHeHt7Y3Dhw+r7Ddp0iQcPXoUN2/eRFZWFtasWYMBAwbA2dm5yNofPnxYZHN/aZiZmeV7TRR1FHWumqglr4SEBPz5558wNzdXub399tsAoAyZZ8+eRZcuXQAAa9aswd9//43w8HB88cUXAF69tzVr1sSRI0fg6OiI8ePHo2bNmqhZsyZ++OGH19YSHR2drw7Fl+CPP/6I6dOnY9euXejQoQMcHBzQt29fREZGAnj1Ohb0/r7uPS/K0KFDsWzZMowePRoHDx7E2bNnER4ejsqVK+cLYgDydWEkJCQAAJo2bZrv3IKDgwsM8WVB8XoV1OXi6upa5N/L1z1ncd6DhIQEPHv2DBYWFvlel/j4eOXronhOJycnleML+jelUNr3QLHfZ599lm+/cePGAUCx3i8bGxt4eXmhbdu2mDRpEnbu3Il//vkHq1atUu7z0Ucf4X//+x82bNgANzc3VKtWDREREfjss88AAFWqVHnt76GywTFBpHYVK1ZEdnY2Hj58qBKEhBCIj49H06ZNizx+1KhRGDVqFFJTU3H8+HHMmTMHPXv2xK1bt5StIUOHDsX06dOxfPlyNG/eHPHx8Rg/fvxra6tcubLKwNCCWFpaAoBywKVCYR+Q2dnZePz4scqHdnx8PID8gbGktbypSpUqoUGDBvjmm28KfNzV1RWAfCyWubk59u7dqzx/ANi1a1e+Y9q0aYM2bdogJycH586dw08//YQpU6bAyckJgwcPLrQWV1dXhIeHq2yrU6cOAPkXy7x58zBv3jwkJCQoW4V69eqFGzduKF9HxeuaW95txX3/kpKSsHfvXsyZMwczZsxQbs/IyMCTJ08KPIe8g5EVY4a2b99eqpY6TVG8XnFxcfmC9oMHD/KNdSrJcxbnPahUqRIqVqyIAwcOFPhctra2Ks+ZkJCgEgwU/6YKUtr3QLHfzJkz0b9//wL3Ufx9LAkvLy+YmJjg1q1bKtunT5+OKVOmIDIyEra2tnB3d0dAQABsbGzQpEmTEv8e0gy2BJHaKab6/v777yrb//jjD6SmpuabClwYGxsb+Pr64osvvkBmZiauXbumfMzS0lLZJbN48WI0atRIZWBiYXx9fXHr1i1ll11BFIOPL1++rLJ9z549hR6zceNGlfubNm0CUPQ6OcWp5U317NkTV69eRc2aNeHl5ZXvpghBEokEZmZmKgPN09PTsWHDhkKf29TUFN7e3spuyX///RdA/pZBBQsLi3y/X/FlmJuTkxNGjhyJIUOG4ObNm0hLS0OdOnXg4uKCzZs3q8xWi4mJwalTp1SOL+77J5FIIITIN4B17dq1yMnJKfS8c+vatSvMzMxw+/btAl9fLy+vYj1PcUil0gJbpwqimKqd999geHg4rl+/Xux/g7mV5D3o2bMnHj9+jJycnAJfE0XYaNu2LQD5zK7ctm/fnm/2YmGK+x7UqVMHnp6euHTpUqH7FfT38XXCwsIgk8lQq1atfI9JpVLUr18f7u7uuHv3LoKDgzFmzBjloHDSPrYEkdp17twZXbt2xfTp05GcnIxWrVopZ4c1btwYw4YNK/RYxQdEq1at4OLigvj4eAQGBsLe3j5fC9K4ceOwcOFCnD9/HmvXri1WbVOmTEFwcDD69OmDGTNmoFmzZkhPT0dYWBh69uyJDh06wNnZGZ06dUJgYCAqVKgAd3d3HD16FDt27CjwOS0sLPD999/j+fPnaNq0qXJ2mK+vL1q3bv1GtQCAn58ffv31V9y+fbvErQ3z58/H4cOH0bJlS0yaNAl16tTBixcvEB0djX379mHlypVwc3NDjx49sHjxYgwdOhT+/v54/Pgx/u///i9fQFi5ciWOHTuGHj16oFq1anjx4oVyVqBibJPif727d+9Gx44d4eDggEqVKhU5s83b2xs9e/ZEgwYNUKFCBVy/fh0bNmxAixYtlNOMv/76a4wePRr9+vXDmDFj8OzZM8ydOzdfV0xx3z87Ozu0bdsWixYtUtYXFhaGoKCgYq+aXL16dcyfPx9ffPEF7ty5g27duqFChQpISEjA2bNnlS1c6vDOO+9gx44dWLFiBZo0aQITE5NCQ1adOnXg7++Pn376CSYmJvD19VXODqtatSo++eSTEv9+ExOTYr8HgwcPxsaNG9G9e3dMnjwZzZo1g7m5OWJjYxESEoI+ffqgX79+ePvttzFkyBB8//33MDU1hY+PD65du4bvv/8e9vb2xRo7U5L3YNWqVfD19UXXrl0xcuRIVKlSBU+ePMH169fx77//Frm8xt69e7FmzRr07t0b7u7uyMrKwrlz57B06VLUqlVLORMSkK+99Mcff8DLywtSqRSXLl3C//73P3h6euLrr78u8WtPGqTVYdmkVwqbRVLQTJb09HQxffp04e7uLszNzYWLi4sYO3asePr0qcqxeWeH/frrr6JDhw7CyclJWFhYCFdXVzFw4EBx+fLlAmtq3769cHBwEGlpacU+j6dPn4rJkyeLatWqCXNzc+Ho6Ch69Oghbty4odwnLi5ODBgwQDg4OAh7e3vx4YcfinPnzhU4O8zGxkZcvnxZtG/fXlhZWQkHBwcxduxY8fz5c5Xfm3d2WHFrUcxAy/36FgYFzMp6+PChmDRpkvDw8BDm5ubCwcFBNGnSRHzxxRcqNf7yyy+iTp06QiqViho1aojAwEARFBSk8rtPnz4t+vXrJ9zd3YVUKhUVK1YU7dq1E3v27FH5nUeOHBGNGzcWUqk03yyfgsyYMUN4eXmJChUqKH//J598Ih49eqSy39q1a4Wnp6ewsLAQtWvXFr/88osYMWJEvllTxX3/YmNjxXvvvScqVKggbG1tRbdu3cTVq1fzvVeKv+Ph4eEF1r9r1y7RoUMHYWdnJ6RSqXB3dxcDBgwQR44cKfK8SzI77MmTJ2LAgAGifPnyQiKRiNd9fOfk5IjvvvtO1K5dW5ibm4tKlSqJDz/8UNy7d09lv+LODlMo7nuQlZUl/u///k80bNhQWFpainLlyom6deuKgIAAERkZqdzvxYsXYurUqcLR0VFYWlqK5s2bi9OnTwt7e3vxySef5HtN3vQ9uHTpkhg4cKBwdHQU5ubmwtnZWfj4+IiVK1cWed7Xr18XAwYMEO7u7sLS0lJYWlqKunXris8//1w8fvxYZd+bN2+Ktm3bCgcHB2FhYSFq1aolZs+ene8zgbRPIkSeldCI9ERiYiLc3d0xceJELFy4UNvlkJaMHDkSoaGhKtfZIv126tQptGrVChs3blTOtCTSBHaHkd6JjY3FnTt3sGjRIpiYmGDy5MnaLomISunw4cM4ffo0mjRpAisrK5Wuo8IGMBOpC0MQ6Z21a9di/vz5qF69OjZu3MjppkR6zM7ODocOHcLSpUuRkpKCSpUqwdfXF4GBgSozFYk0gd1hREREZJR0Zor8ihUr0KBBA9jZ2cHOzg4tWrTA/v37lY8LITB37ly4urrCysoK7du3V5kyTURERFQSOhOC3Nzc8L///Q/nzp3DuXPn4OPjgz59+iiDzsKFC7F48WIsW7YM4eHhcHZ2RufOnZGSkqLlyomIiEgf6XR3mIODAxYtWoSPPvoIrq6umDJlCqZPnw5Avqqrk5MTvvvuOwQEBGi5UiIiItI3OjkwOicnB9u2bUNqaipatGiBqKgoxMfHK69tBMhX4mzXrh1OnTpVZAjKyMhQWT5fJpPhyZMnqFixYr7l14mIiEg3CSGQkpICV1dXtV2EVqdC0JUrV9CiRQu8ePEC5cqVw86dO1GvXj3lkux5L7Ln5OSkvCpvYQIDA9W2YisRERFp171799R28WmdCkF16tTBxYsX8ezZM/zxxx8YMWKE8irTQP4L5wkhXtuaM3PmTEydOlV5PykpCdWqVcO9e/dgZ2en3hMgIiIijUhOTkbVqlVLdY23wuhUCLKwsFBehM7Lywvh4eH44YcflOOA4uPj4eLiotw/MTExX+tQXlKpNN/1jwAoZ6ERERGR/lDnUBadmR1WECEEMjIy4OHhAWdnZxw+fFj5WGZmJsLCwtCyZUstVkhERET6SmdagmbNmgVfX19UrVoVKSkp2LJlC0JDQ3HgwAFIJBJMmTIF3377LTw9PeHp6Ylvv/0W1tbWvK4MERERlYrOhKCEhAQMGzYMcXFxsLe3R4MGDXDgwAF07twZADBt2jSkp6dj3LhxePr0Kby9vXHo0CG19g0SERGR8dDpdYI0ITk5Gfb29khKSuKYICIiIj2hie9vnR4TRERERKQpDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERGREUpLS8OSJUtw9OhRbZeiNWbaLoCIiIjK3ujRo7F582YAwJEjR9CxY0ctV1T22BJERERkZP777z9lAAKAxYsXa7Ea7dGZEBQYGIimTZvC1tYWjo6O6Nu3L27evKmyz8iRIyGRSFRuzZs311LFRERE+mn37t0AAGdnZwDAsWPHkJ6ers2StEJnQlBYWBjGjx+PM2fO4PDhw8jOzkaXLl2Qmpqqsl+3bt0QFxenvO3bt09LFRMREemnI0eOAAA+//xzODk54cWLF7h06ZKWqyp7OjMm6MCBAyr3161bB0dHR5w/fx5t27ZVbpdKpcrkSkRERCWTkZGBsLAwAEDnzp1x5MgR7N+/H//++6/R9a7oTEtQXklJSQAABwcHle2hoaFwdHRE7dq1MWbMGCQmJhb5PBkZGUhOTla5ERERGavw8HCkp6fDyckJ9evXR6NGjQAAly9f1m5hWqCTIUgIgalTp6J169aoX7++cruvry82btyIY8eO4fvvv0d4eDh8fHyQkZFR6HMFBgbC3t5eeatatWpZnAIREZFOOn/+PADA29sbEokEderUASAfLG1sdKY7LLcJEybg8uXLOHnypMr2QYMGKf9cv359eHl5wd3dHX/99Rf69+9f4HPNnDkTU6dOVd5PTk5mECIiIqN14cIFAEDjxo0BALVq1QLAEKQTJk6ciD179uD48eNwc3Mrcl8XFxe4u7sjMjKy0H2kUimkUqm6yyQiItJLhYWgu3fvIuP2bUhr1tRabWVNZ7rDhBCYMGECduzYgWPHjsHDw+O1xzx+/Bj37t2Di4tLGVRIRESk3zIyMhAREQHgVQhy/PNPWED+PRzn6QkEBWmxwrKlMyFo/Pjx+P3337Fp0ybY2toiPj4e8fHxynULnj9/js8++wynT59GdHQ0QkND0atXL1SqVAn9+vXTcvVERES67/r168jOzkaFChXkQ0NiYyEJCICiKSFOCCAgAIiN1WqdZUVnQtCKFSuQlJSE9u3bw8XFRXkLDg4GAJiamuLKlSvo06cPateujREjRqB27do4ffo0bG1ttVw9ERGR7rtx4wYAoF69epBIJEBkJCCTvQpBAJCTAxjJ+CCdGRMkhCjycSsrKxw8eLCMqiEiIjI8ihBUt25d+QZPT8DEBC4yGYCXIcjUFHg5TsjQ6UxLEBEREWmWIgQppsXDzQ1YvRouEgkAIE4iAVatkm8vSGwsEBJiMN1lDEFERERGIl9LEAD4+cHl008BAHEDBwJ+fgUfHBQEuLsDPj7ynwYwgJohiIiIyAjIZDLcunULQJ4QBMDl5f0HL6/WkE9sLMLGjIG9TIZW8icziAHUDEFERERG4N69e0hPT4e5uXm+ZWhcXV0BAHFxcQUfHBmJDCGQDOC5YpsBDKBmCCIiIjICiq4wT09PmJmpzotSrLdXaAjy9ETOy3FDpoptBjCAmiGIiIjICBQ4HuglJycnAMDDhw8hezlTTIWbG2QTJwJ4GYJMTYseQK0nGIKIiIiMQL6ZYbk4ODgAkC9Xk1TIuKCcjh0BACZ16wLR0YUPoNYjDEFERERG4ObNmwAKbgmSSqWwtrYGADx58qTA43NycgAAphUq6H0LkAJDEBERkREoqjsMeNUa9NoQZGpa4OP6iCGIiIjIwCUlJSkHPRfUHQa8CkFPnz4t8HHFWCGGICIiItIbiq4wFxcX2NvbF7hPcVuCTEwMJzoYzpkQERFRgV7XFQawO4yIiIgMkKIlqLCuMIAhiIiIiAyQoiXorbfeKnSfChUqACg8BHFMEBEREekddXaHcUwQERER6YXs7GxERkYC4JigvBiCiIiIDFhUVBSysrJgbW0NtyIWOXzdFHmGICIiItIruS+XUVRX1utagjgmiIiIiPRKccYDAa8fGM0xQURERKRXrl+/DuD1IUixiGJycnKBj7M7jIiIiPRKcVuC7OzsAABpaWnIzs7O9zhDEBEREekNIQRuREQAAOq+7O4qjK2trfLPKSkp+R7nmCAiIiLSGw+XLsXTpCRIAHh27QoEBRW6r1QqhVQqBVBwlxjHBBEREZF+iI3FjU8/BQBUB2AlBBAQAMTGFnqIokusqBDEliAiIiLSbZGRiBACAKAcDZSTA/z3X6GHMAQRERGR/vP0xKWXf2yg2GZqCtSqVeghihDEMUFERESkv9zccKlmTQBAQ0AegFatAopYNbo4LUGGNCbITNsFEBERkfrJZDJcSUgAADT45Regc+ciAxBgfN1hDEFEREQGKCoqCs+fP4dUKkWdYcMAs9d/5SumyRtLCDKcNi0iIiJSunz5MgDg7bffhlkxAhBQdEsQxwQRERGRXrh0ST4sukGDBq/Z8xVjGxNkOGdCRERESooQ1LBhw2IfY2xjghiCiIiIDFB4eDgAoHHjxsU+hiGIiIiI9FpsbCzu378PU1NTeHl5Ffs4jgkiIiIivfbPP/8AAN555x3Y2NgU+ziOCSIiIiK9dubMGQCAt7d3iY5jdxgRERHptRMnTgAAWrRoUaLjypUrBwB4/vx5vscYgoiIiEinJSUlKQdFd+jQoUTHKkJQampqvsc4JoiIiIh02vHjxyGTyVCrVi1Uq1atRMcqxg8V1RLEMUFERESkk44cOQIA8PHxKfGxipagFy9eKEOPgiF2h/HaYURERDoiJSUFERERyMrKQs2aNeHi4lKi44UQ2LVrFwDA19e3xL8/90yy1NRU5UBpwDBDkM60BAUGBqJp06awtbWFo6Mj+vbti5s3b6rsI4TA3Llz4erqCisrK7Rv3x7Xrl3TUsVERETqcfnyZQwePBgVK1ZE8+bN0aZNG7i6uqJVq1bYtm0bhBDFep5z587h7t27sLGxQdeuXUtch6WlpbK7K2+XGMcEaVBYWBjGjx+PM2fO4PDhw8jOzkaXLl1UBmctXLgQixcvxrJlyxAeHg5nZ2d07twZKSkpWqyciIiomGJjgZAQ+U/Ig8W8efPQpEkTBAcHIysrC66urqhRowZMTExw6tQpDBw4EF27dsWDBw9e+/SbNm0CAHTv3h1WVlYlLk8ikRQ6ONoQxwRB6KjExEQBQISFhQkhhJDJZMLZ2Vn873//U+7z4sULYW9vL1auXFns501KShIARFJSktprJiIiKtTatUKYmAgBCGFiItJXrBADBgwQAAQA0a9fP/Hvv//K9713TzzYtk18OXmykEqlAoBwdnYWp06devV89+4JceyY/KcQIiUlRdjb2wsAYu/evaUu08XFRQB4VctLPXr0EADE2rVrS/3cb0IT3986OyYoKSkJAODg4AAAiIqKQnx8PLp06aLcRyqVol27djh16hQCAgK0UicREdFrxcYC/v7Ayy6lbJkMA8eOxZ8AzM3NsXbtWgwfPly+b1AQ4O8PF5kM801M8OH8+XhvyxZcvXoV7dq1w8qVK/GREK+ez8QEWL0aa5KTkZSUhFq1apVqPJDC61qCDKk7TCdDkBACU6dORevWrVG/fn0AQHx8PADAyclJZV8nJyfExMQU+lwZGRnIyMhQ3i9oFUwiIiKNioxUBiABYAyAPwFYWlhg77596Nixo3y/PGEJMhlqz5mD09euYdTs2di+fTv8/PxwFcBCvPwSl8lw398fc18Oav7888/fqMuqsGnyHBNURiZMmIDLly9j8+bN+R6TSCQq94UQ+bblFhgYCHt7e+WtatWqaq+XiIioSJ6e8hYbAP8DsB6AKYDgFSteBSBAJSwp5eSgXFwctm7dinnz5gEAlgDwArAHwDEAnWUyJKekwMvLC35+fm9UamGrRhvimCCdO5OJEydiz549CAkJgZubm3K7s7MzgFctQgqJiYn5WodymzlzJpKSkpS3e/fuaaZwIiKiwri5AatXI8TEBLNfblr24Yfo/dFHqvvlCktKpqZArVqQSCT46quvsG3lSpQHcAlAHwAdAVwH4OrkhC1btrxxS01h3WHZ2dkA5N13hkJnQpAQAhMmTMCOHTtw7NgxeHh4qDzu4eEBZ2dnHD58WLktMzMTYWFhaNmyZaHPK5VKYWdnp3IjIiIqa/e7dcNgBwfIAIx8/30E/PZb/p1ehiUogoypKbBqlXz7SwMCAhC5ZAkmSyTwAOACYFiLFjj1zz+oWbPmG9dZWHeYIgSZmenkSJpS0ZkzGT9+PDZt2oTdu3fD1tZW2eJjb28PKysrSCQSTJkyBd9++y08PT3h6emJb7/9FtbW1hg6dKiWqyciIiqcTCbDsGHDkPjoERo0aIDl69cXPpTDzw/o2hX47z+gVi2VAKRQacoULB0wAEuL2Ke0XtcSxBCkAStWrAAAtG/fXmX7unXrMHLkSADAtGnTkJ6ejnHjxuHp06fw9vbGoUOHYGtrW8bVEhERFd/PP/+MkJAQWFtbY9u2bbC2ti76ADe31web4uxTCoWNCVKEIEMaGK0zIUgUYzVMiUSCuXPnYu7cuZoviIiISA0iIyMxbdo0AMB3332H2rVra7miohXWHaYYGG1ILUE6MyaIiIjI0OTk5GDkyJFIT0+Hj48Pxo0bp+2SXsuYusMYgoiIiDRkyZIlOHXqFGxtbfHLL7/oxfRyYxoYrfvvBhERkR6KiIjA7NnyCfGLFy+Gu7u7lisqnteNCWIIIiIiokJlZ2dj5MiRyMjIgK+v7xsvYFiW2B1GREREpfbdd98hPDwc5cuXx9q1a4u8soGuYXcYERERlcqlS5eUl7f46aef4OrqquWKSsaYWoIM50yIiIi0KTYWmRERGDl1KrKystC3b1988MEH2q6qxIypJchwzoSIiEhbgoIAf398K5PhIoCK5cph5cqVetUNpvC6C6gaUghidxgREdGbiI0F/P3xr0yGb15uWp6aCqesLK2WVVrG1B3GEERERPQmIiORIZNhJIBsAAMADBRCfu0vPaToDktPT1e2/gCGedkMhiAiIqI34emJ+QCuAKgM4GcAElNT+YVN9ZCiJQgA0tLSlH9mSxARERGpOPvgAf73cuzPCgCVTU2BVas0cnHTsmBpaalc2Tr3uCCGICIiIlJKSUnB0KFDIRMCg3v3xnshIUB0NKBHiyPmJZFI8s0Qk8lkygudG1IIMpwzISIiKmMTJkzA7du3Ua1aNfy8fj1QoYK2S1KLcuXKISUlRTk4WtEKBBhWCGJLEBERUSls2rQJv/32G0xMTLBx40ZUMJAABORfK4ghiIiIiAAAUVFRGDt2LADgyy+/ROvWrbVckXrlnSafe5YYQxAREZGRysrKwgcffIDk5GS0atVKeaV4Q8KWICIiIspn+vTpOH36NOzt7bFx40aDCgUKeVuCcocgrhNERERkhLZu3YolS5YAAH799Ve4u7truSLNKKwlyNTUVC8vBVIYhiAiIqJiiIiIwEcffQQAmDFjBvr06aPlijSnsJYgQ2oFAhiCiIiIXis5ORn9+/dHamoqfHx88PXXX2u7JI0qrCXI0Lr+GIKIiIiKkJOTg6FDh+LmzZtwc3PD5s2bDS4M5FVYS5ChnTdDEBERURE+++wz/PXXX7C0tMSOHTvg6Oio7ZI0ji1BRERERm7lypVYunQpAGDDhg1o2rSpdgsqI4WtE8QQREREZAQOHTqECRMmAAC++eYbDBgwQMsVlR22BBERERmpS5cu4f3330dOTg6GDx+OmTNnarukMpW3JSgrKwsAQxAREZFBu337Nrp27Yrk5GS0bdsWq1evNqi1cYojb0tQZmYmAMDCwkJrNWkCQxAREdFLcXFx6Ny5MxISEtCwYUPs3r0b0ocPgZAQIDZW2+WVmbwtQQxBRERE+iI2tsTB5enTp+jatSuioqJQs2ZNHDhwAOX/+ANwdwd8fOQ/g4I0WLTuyNsSpOgOYwgiIiLSZUFBJQ4uycnJ6NGjB65cuQJnZ2ccOnQIztnZgL8/IJPJd5LJgIAAo2gRYksQERGRvomNLVlwiY1F8t696Objg9OnT6N8+fI4ePAgatSoAURGvnoehZwc4L//NHsOOsBYxgQZ1jBvIiIybkUFFzc31e1BQUgeMwbdhMBpABWsrXHk6FE0aNBA/rinJ2Biovp8pqZArVoaPQVdoGgJSktLg0wmU4Ygc3NzbZaldmwJIiIiw6EILrkVFFxiY1UDEIAjL17g3dyrQbu5AatXy49XPM+qVfnDlAFStAQJIZCenm6wLUEMQUREZDiKGVwSz56FT+4ABOBdmSx/V5efHxAdLR9kHR0tv28ErK2tlX9OTU012IHR7A4jIiLD4ucHdO0qDzS1auULQDExMejy+ee4BaAygIMAGgOFd3W5uRlF609uJiYmsLa2RlpaGp4/f26wLUEMQUREZHgKCS7Xrl1Dly5d8ODBA1RzcMDhZ89QWyYzqq6u4rKxsUFaWhpSU1MZgoiIiPTZ8ePH0bdvXzx9+hT16tXDoUOHUEWIQluMjF25cuXw8OFDlZYgQxsYzRBEREQGb/369fD390dWVhaaN2+Ov/76Cw4ODvIHGX4KpBgcbcgtQRwYTUREBksmk2HGjBkYNWoUsrKy8P777+Po0aOvAhAVSjFN3pDHBDEEERGRQXr+/DkGDBiA7777DgAwe/ZsbNmyRWXmExUud0sQZ4cRERHpiYiICAwYMADXr1+HhYUFgoKC8OGHH2q7LL3CliAiIiI9s2HDBjRt2hTXr1+Hi4sLQkJCGIBKoaAxQYY2MFqnQtDx48fRq1cvuLq6QiKRYNeuXSqPjxw5EhKJROXWvHlz7RRLREQ6JT09Hf7+/hg+fDjS0tLQqVMnXLx4ES1bttR2aXop90VU2RJUBlJTU9GwYUMsW7as0H26deuGuLg45W3fvn1lWCEREemiyMhItGjRAmvWrIFEIsHcuXNx4MABOOa+DAaVSO6LqBpqCNKpMUG+vr7w9fUtch+pVApnZ+cyqoiIiHTdtm3b4Ofnh5SUFFSuXBmbNm1Cp06dtF2W3svdEmSoA6N1qiWoOEJDQ+Ho6IjatWtjzJgxSExM1HZJRESkBRkZGZg4cSIGDhyIlJQUtGnTBhcvXmQAUhNFS1BKSgoyMjIAGN6YIJ1qCXodX19fvP/++3B3d0dUVBS+/PJL+Pj44Pz585BKpQUek5GRoXzzACA5ObmsyiUiIg2JiorCwIEDce7cOQDAjBkz8PXXX8PMTK++1nSanZ0dAHkIUrQEGdryAnr1t2XQoEHKP9evXx9eXl5wd3fHX3/9hf79+xd4TGBgIObNm1dWJRIRkYbt2bMHI0aMwLNnz1ChQgVs2LABPXr00HZZBkcRgpKTkyGEAGB4IUjvusNyc3Fxgbu7OyIjIwvdZ+bMmUhKSlLe7t27V4YVEhGRumRlZeHzzz9Hnz598OzZM3h7e+PChQsMQBpib28PQB6C0tPTAQBWVlbaLEnt9KolKK/Hjx/j3r17cHFxKXQfqVRaaFcZERHphwcPHmDQoEE4efIkAGDKlCn47rvvDG6gri7J3RJkaWkJwPBagnQqBD1//hz//fef8n5UVBQuXrwIBwcHODg4YO7cuXjvvffg4uKC6OhozJo1C5UqVUK/fv20WDUREWlSWFgYBg0ahISEBNja2mLdunV47733tF2WwcsdgmQyGQCGII06d+4cOnTooLw/depUAMCIESOwYsUKXLlyBb/99huePXsGFxcXdOjQAcHBwbC1tdVWyUREpCFCCCxatAizZs1CTk4O3nnnHWzfvh21a9fWdmlGQRGCkpKSYGIiHz3D7jANat++vXLwVUEOHjxYhtUQEZG2JCcnY8SIEcorBwwfPhwrVqyQt0TExgKRkYCnJ+Dmpt1CDZhiTFBaWppy1p2htQTp9cBoIiIyPHfu3EGLFi2wa9cuWFhYYNWqVVi/fr38CzgoCHB3B3x85D+DgrRdrsHK3cuiWF6GIYiIiEhDwsLC0KxZM0RERMDFxQUnTpyAv78/JBKJvAXI3x94OT4FMhkQECDfTmpnYWGRL/QwBBEREWnAmjVr0KlTJzx+/BheXl4IDw9Hs2bNXu0QGfkqACnk5AC5JtSQejk4OKjcN7QxQQxBRESkVTKZDNOmTYO/vz+ys7MxePBgHD9+HFWqVFHd0dMTMMnztWVqCtSqVXbFGpmKFSuq3GcIIiIiUpPMzEwMHz4cixYtAgDMnz8fmzZtKvjL1s0NWL1aHnwA+c9Vqzg4WoNyhyALCwuYKl57A6FTs8OIiMh4pKSk4L333sPhw4dhZmaGoKAgDB8+vOiD/PyArl3lXWC1ajEAaVju7rC8XWOGgCGIiIjKXEJCArp3745///0XNjY22L59O7rVrw+EhLx+6rubG8NPGcndElS5cmUtVqIZ7A4jIqIyFRcXh/bt2+Pff/9F5cqVERoaim7373Pquw7KHXwMMQSxJYiIiDTv5QKHcXZ28PnwQ9y4cQNVq1bFsWPHUMvSEvD2zj/1vWtXtvhoWfXq1ZV/dnR01F4hGsIQREREmhUUBPj7I14mgw+AGwCqVq2K0NBQ1KhRQ94FVtjUd4YgrapRo4byz4bYEsTuMCIi0pyXCxzGy2TogJcBCEDo5s2vvmA59V1n1axZU/lnDw8PLVaiGWwJIiIizYmMzBeAQgDUyMp6tY9i6ntAgLwFiFPfdUbVqlUxYMAAZGRkwM/PT9vlqB1DEBERaUy8vb2yC8wN8gBUs6BWHk5910kSiQTbtm3TdhkawxBEREQaER8fD58PP8R1yANQKF4GoMJaeTj1ncoYQxAREZXey1lfedf2SUhIgI+PD65fvw43NzeEbt6MmtnZbOUhncIQREREpfNy1hdkMvnA5tWrAT8/JCQkoEOHDsoAFBISgpoc5Ew66I1mhyUmJiI+Pl5dtRARkb54Oesr79o+CRcuKANQlSpVEBISgloMQKSjShWCLl++jLfffhsuLi6oUqUKqlSpgtmzZyM1NVXd9RERkS6KjMy3tk9CTg58+vVTBqDQ0FAGINJppQpBfn5+cHJywsmTJ3HhwgUsWLAA+/fvh5eXF54+faruGomISNfkWdsnAYAPgIiYGAYg0hsSIYQo6UE2NjY4f/486tatq9wmhMD7778PS0tL/P7772otUp2Sk5Nhb2+PpKQk2NnZabscIiLdVcigZ6WgICAgAIk5OegAIAJQdoF5enqWdbVk4DTx/V2qlqCCWnwkEgm+/fZb7N69Wy2FERGRFgUFvf6Cpn5+SDx3Dh3c3REBwNXVlQGI9EqxQ1CPHj0wa9YsbN26FR9//DE++eQTJCQkqOyTlJSEChUqqL1IIiIqQ4UMekZsrMpuiYmJ6PDBB4iIiYGrqytCQ0MZgEivFHuK/DvvvIN///0X69atU4afGjVqYODAgWjUqBFycnKwbt06LFmyRGPFEhFRGShg0HPeC5omJibCx8cHERERDECkt0o1JighIQEXLlzAxYsXlbf//vsPpqamqFOnDi5fvqyJWtWCY4KIiF4jNlbeBZY7CJmaAtHRgJubMgBdu3aNAYjKjCa+v0u1WKKTkxO6deuGbt26Kbelp6fj0qVLuHTpkloKIyIiLSnigqbx8fHo2LGjsgWIY4BIn5WqJUifsSWIiKiYYmNVLmgaFxcHHx8f3LhxA1WqVMGxY8dQu3ZtbVdJRkJnWoKIiMgI5Lqg6f379+Hj44Nbt26hatWq8kth1Kyp5QKJ3gxDEBERFenevXvo0KEDbt++DXd3d4SEhMDDw0PbZRG9sTe6dhgRERm2mJgYtGvXDrdv34aHhwdCQ0MZgMhgMAQREVGBIiMj0a5dO0RFRaFmzZoIDQ1F9erVtV0WkdowBBERUT6XLl1CmzZtEBMTA09PT4SGhqJatWraLotIrRiCiIhIxd9//4127dohISEBjRo1wsmTJ+FW0LXDiPQcQxARESnt378fnTt3RlJSElq3bo3Q0FA4OjpquywijWAIIiIiAEBwcDB69+6N9PR0+Pr64uDBg7C3t9d2WUQawxBERERYunQphgwZguzsbAwePBi7du2CtbW1tssi0iiGICIiI5aTk4PJkyfjk08+gRAC48ePx++//w4LCwttl0akcVwskYjISKWlpeGDDz7Arl27AACLFi3Cp59+ColEot3CiMoIQxARkRFKTExE79698c8//0AqleK3337DwIEDtV0WUZliCCIiMjK3bt2Cr68v7ty5AwcHB+zevRutW7fWdllEZY5jgoiIjMjJkyfRokUL3LlzBx4eHjh16hQDEBkthiAiIiPx+++/o2PHjnjy5AmaNWuGM2fOoE6dOtoui0hrGIKIiAycTCbDl19+iWHDhiEzMxP9+/dHSEgIF0Eko6dTIej48ePo1asXXF1dIZFIlDMWFIQQmDt3LlxdXWFlZYX27dvj2rVr2imWiEgPpKenY8iQIViwYAEAYMaMGdi2bRvXACKCjoWg1NRUNGzYEMuWLSvw8YULF2Lx4sVYtmwZwsPD4ezsjM6dOyMlJaWMKyUi0lGxsUBICBAbi/j4eLRv3x5bt26Fubk5fvnlFwQGBsLERKc++om0Rqdmh/n6+sLX17fAx4QQWLp0Kb744gv0798fAPDrr7/CyckJmzZtQkBAQFmWSkSke4KCAH9/QCbDZYkEvSpUwN0nT+Dg4IAdO3agXbt22q6QSKfozX8HoqKiEB8fjy5duii3SaVStGvXDqdOnSr0uIyMDCQnJ6vciIgMTmysMgDtA9BKCNx98gSeHh44c+YMAxBRAfQmBMXHxwMAnJycVLY7OTkpHytIYGAg7O3tlbeqVatqtE4iIq2IjISQyfAjgF4AngNoD+DM0qXw9PTUamlEukpvQpBC3uXchRBFLvE+c+ZMJCUlKW/37t3TdIlERGUu28MDEwBMBiAD8BGAgyYmcHj3Xe0WRqTDdGpMUFGcnZ0ByFuEXFxclNsTExPztQ7lJpVKIZVKNV4fEZG2JCcn4/2AABwCIAHwHYDPTEwgWb0acHPTcnVEuktvWoI8PDzg7OyMw4cPK7dlZmYiLCwMLVu21GJlRETac//+fbRp0waHDh2CtbU1dqxZg89DQiCJiQH8/LRdHpFO06mWoOfPn+O///5T3o+KisLFixfh4OCAatWqYcqUKfj222/h6ekJT09PfPvtt7C2tsbQoUO1WDURkXZcu3YNvr6+uHfvHpycnPDXX3+hSZMm2i6LSG/oVAg6d+4cOnTooLw/depUAMCIESOwfv16TJs2Denp6Rg3bhyePn0Kb29vHDp0CLa2ttoqmYhIK8LCwtC3b188e/YMderUwf79++Hh4VG8g2NjgchIwNOT3WVk1CRCCKHtIspScnIy7O3tkZSUBDs7O22XQ0RUYlu3blVeAqNly5bYs2cPKlasWLyDc60lBBMTYPVqdpuRXtDE97fejAkiIiJgyZIlGDRoEDIzM9GvXz8cOXKk+AEo11pCAOQ/AwLk24mMEEMQEZEekN29i08HDlQOE5g4cSK2bdsGKyur4j9JZOSrAKSQkwPkGotJZEx0akwQERHll7NmDcb4+2Pdy/sLBwzAZz/8UOQaaQXy9JR3geUOQqamQK1aaquVSJ+wJYiISIdl3L6NwS8DkAmAXwF8vnMnJPfvl/zJ3NzkY4BMTeX3TU2BVas4OJqMFluCiIh0VFpaGvoPGYKDACwAbAHQD3jVhVWa8OLnB3TtKj++Vi0GIDJqDEFERDooKSkJPXv2xMnwcFgD2AWgs+LBN+3CcnNj+CECu8OIiHROYmIiOnTogJMnT6J8+fI4PGMGOrMLi0jt2BJERKQppViUMDY2Fp06dcLNmzfh6OiIQ4cOoWHDhsD48ezCIlIzhiAiIk0oyaKEL8NSpJkZOg8bhpiYGFStWhVHjhxB7dq15fuwC4tI7bhiNBGRusXGAu7u+aeiR0fnDzIvw9IVmQydASQA8PT0xJEjR1CtWrUyLJpIt3HFaCIifVDcRQlfruB8RiZDO8gDUEMAJ4KDGYCIygBDEBGRuikWJcytoBldkZE4JpOhE4CnAFoACAHglJRUNnUSGTmGICIidSvmooS779yBL4BUAJ0AHAJQgSs4E5UZDowmItKE1yxKuGHDBowKCEAO5AsgbgYg5fR3ojLFEEREpCmFzOhavnw5JkyYAAAYMWIE1s6dC7PoaE5/JypjDEFEpD2lWEdHnwkhEBgYiC+++AKA/ErwS5cuhYmJCVC9unaLIzJCHBNERNoRFCSfRu7jI/8ZFKTtijRKCIHp06crA9BXX32FH374QR6AiEgruE4QEZW9kqyjYwCysrIQEBCAdevWAQC+//57TJ06VctVEekXTXx/szuMiMpeUevoGFgISklJwfvvv4+DBw/CxMQEq1evhl9hK0cTUZliCCKisqdYRydvS5CBTQ2Pi4tD9+7dcfHiRVhbWyM4OBg9e/bUdllE9BI7o4mo7BVzHR19FhERgebNm+PixYtwdHREaGgoAxCRjmFLEBFpx2vW0dFnf/75Jz744AOkpKTA09MTBw4cQI0aNbRdFhHlwZYgItIeNzegfXuDCUAymQxff/01evfujZSUFLRp0wanTp1iACLSUWwJIiJSg5SUFIwcORI7duwAAIwfPx5LliyBubm5lisjosIwBBERvaHw8HAMGTIEt2/fhoWFBZYvX47Ro0druywieg12hxERlZJMJsN3332Hli1b4vbt26hatSpCQ0MZgIj0BFuCiIhK4UZoKPwnTcKJK1cAAO+//z5WrVqFChUqaLkyIiouhiAiohLIyMjAd4MG4Zvdu5EJwAbAjyNHYtQvv0AikWi7PCIqAXaHEZFhiI0FQkLkPzVAJpNhy5YteKt2bcx5GYB8AVwD8NGGDZDcv6+R30tEmsMQRET6T4MXY5XJZNi9eze8vb0xZMgQRN29CxcAmwD8BcAdeHXJDyLSKwxBRKTfYmMBf/9Xl+CQyYCAgDduEUpOTsbq1atRr1499O3bF+fOnUO5cuUw/9NPESmRYAgAZeeXAV7yg8gYcEwQEek3NV6M9fnz5zh27Bi2bNmCnTt34sWLFwAAe3t7jB07FlOmTIGTkxPw1lvyoJWTY5CX/CAyFgxBRKTfSnkxViEEEhMTcf78eYSHh+PEiRM4ceIEMjMzlfu89dZbGD16NMaMGQNbW9tXBxvwJT+IjAlDEBHpBCEEHj58iPv37yMuLg5xcXFISkpCamoqUlNTkZ6eDgAwMTGBiYkJJBKJ8s+m3brBdP9+mAoBE4kEpr17w3TjRuV+z58/R1JSEpLj4vDw7l1EP32K6Pv3kZKSkq8ODw8P9OrVC8OGDUOTJk0Kn/Hl5sbwQ6TnGIKIqMzJZDJcv34dJ0+exLlz5xAREYGIiAg8e/bszZ9cCGDnTvntNSQSCerWrQsvLy80a9YMXbp0gaenJ6e6ExkJhiAiKhMPHz7EX3/9hT179iA0NBRPnz7Nt49EIoGjoyNcXFzg4uKCChUqwMbGBjY2NrCysoJEIoFMJoMQAjKZTHnLyclRueXeJoRAOQD2v/8OOwAOAKoD8DAxQbUbN2Dl6Vm2LwQR6QyGICLSmKSkJGzduhUbNmzAyZMnIYRQPmZtbQ1vb2+0aNEC77zzDurVq4fatWvD0tJS/YWEhAC//666TSYD7t+XjykiIqPEEEREaiWEwOnTp7F8+XLs2LFDOcMKAN5991307t0bvr6+aNy4cfGusB4bK58B5ulZ+jE4pRw8TUSGjSGIiNQiKysLf/zxB5YsWYKzZ88qt9erVw8jR47E4MGDUbVq1ZI9aVDQqzWATEyA1avlM7NKys1NfiyntRNRLhKRu33aCCQnJ8Pe3h5JSUmws7PTdjlEei8zMxPr1q3Dt99+i7t37wIApFIpPvjgA3z88cfw8vIq3UDj2Fj56s95W2+io0sfXmJjOa2dSE9p4vubLUFEVCpZWVn49ddfsWDBAsTExAAAHB0dMW7cOIwdOxaOjo5v9gvUuAiiUnGmtauj+42I9AJDEBGViBACwcHBmDVrFqKiogAAzs7OmDVrFsaMGaO+gc3aGMejru43ItILenXtsLlz50IikajcnJ2dtV0WkdE4ffo0WrZsKb+QaFQUHB0dsWTJEty5cwcTJ05U78wuxTgeU1P5fU2P49HQNciISHfpXUvQ22+/jSNHjijvmyo+IImocG/YxRMVFYUZM2Zg69atAAAbS0vMmDABn8ydCxsbG7X/PqWyvDyFJrrfiEin6VVLEACYmZnB2dlZeatcubK2SyLSbUFB8gHGPj7yn0FBxT40KSkJ06dPR926dbF161ZIJBL4AYh88QKzFy+GzZYtav19BXJzA9q313wQUXS/5cZp9EQGTe9CUGRkJFxdXeHh4YHBgwfjzp07Re6fkZGB5ORklRuR0ShlF09OTg5Wr14NT09PLFy4EJmZmejYujUuAFgLwKWw59LnLqWy7n4jIq3TqxDk7e2N3377DQcPHsSaNWsQHx+Pli1b4vHjx4UeExgYCHt7e+WtxOuUEOmzorp4ChEWFoYmTZogICAADx8+RN26dbF3714cnjcPDfOuqJH3uUrx+3SKn598Cn5IiPwnB0UTGTS9XicoNTUVNWvWxLRp0zB16tQC98nIyEBGRobyfnJyMqpWrcp1gsg4lGCtnejoaHz++efYvn07AKB8+fKYN28exo4dK1/ZuTjPpYm1fYiIoJl1gvSqJSgvGxsbvPPOO4iMjCx0H6lUCjs7O5UbkdEoRhfP8+fPMXv2bNStWxfbt2+HiYkJxo4di8jISEyaNOnVpS2K013ELiUi0iN63RKUkZGBmjVrwt/fH1999VWxjuGK0WSUClgpOScnBxs3bsTMmTPx4MEDAECHDh2wdOlSNGjQoETPVap9iIhKwOhXjP7ss8/Qq1cvVKtWDYmJiViwYAGSk5MxYsQIbZdGpNtyrZQshMC+ffswY8YMXL16FQDg4eGB77//Hn379n39JS6Ks+pycfYhItIyvQpBsbGxGDJkCB49eoTKlSujefPmOHPmDNzd3bVdGpGcjl9y4cyZM5g+fTqOHz8OQD7uZ8aMGZg8ebJ6FzokItIDehWCthS0JgmRrtDhSy6cOnUK33zzDfbt2wdAPlZu0qRJmDFjBhwcHLRcHRGRduj1mKDS4Jgg0ggdnBUlhEBISAgWLFiAkJAQAICJiQlGjBiBefPmcbkIItIrRj8miEhn6dAlF168eIEtW7Zg2bJlOH/+PADA3NwcI0aMwPTp01GrsBWQdbwrj4hI3RiCiNShJFc811DYuHXrFtatW4c1a9YoFxCVSqUYPXo0pk2bhmrVqhV+sA535RERaQpDEJE6KNbHCQiQtwAVtj6OmsNGYmIigoOD8fvvv+Ps2bPK7VWrVsW4ceMwevRoVKpUqegnKexSF127skWIiAwaxwQRqVNR6+OoYdyQEAJXr17F3r17sXfvXpw+fRqKf8Kmpqbo2rUr/Pz80Lt3b5iZFfP/OCEh8oudFrS9ffviPQcRkYZxTBCRritqfZxSjBvKyMjA1atXcfLkSeUtPj5eZR8vAB9KJBi8cCGcCrl8TJFK0pVHRGRAGIKIykohYUPUrInEhARER0cjJiYGkZGRuHLlCq5cuICb//2HnDzBydLSEh1btULPY8fQQwhUBQAhgGnTgIEDS96FVdyuPCIiA8MQRKRmWVlZePr0KZ48eYInT57g8ePHePz4MR49eoRHXbrg0cGDeCQEHgFIrFQJ92rXxosXLwp9vgoAWrzzDloPGYLWrVvDy8sLVmfOAEePqu74JrPR/PzkY4B4qQsiMiIMQUTFIIRAYmIioqKicP/+fZVbQkKCMuw8efIEKSkpxX/ihAQAgEQiQZUqVeDu7g4PJye8s3Mn3hEC7wCoAkASEQEMG/YqnGiiC4uXuiAiI8MQRJRHQkICzp07hwsXLuDmzZu4efMmbt26haSkpGI/h0QiQfny5eHg4AAHBwdUqlSp0Jubmxvc3NxgYWEhPzgkBNixQ/UJ87bysAuLiOiNMQSRUZPJZLh06RKOHTuGv//+G+Hh4YiNjS1wX4lEogwsVapUUd5cXFxQsWJFZeCpWLEi7O3tYWpqWrqiitvKwy4sIqI3whCkaVyFV3sKee0fPHiAPXv24NChQwgNDcXTp09VDpNIJKhbty6aNGmCevXqoU6dOqhTpw5q1qxZNhcZLUkrD7uwiIhKjSFIk7gKb8mpKzTmee2vz52LHSYm2L17N8LDw1V2tbW1Rdu2bdGuXTt4e3ujcePGsLW1fcMTeUNs5SEi0jgulqgpOnhBTZ2nrtD48rWPk8mwGcDvAC7kelgikaB58+bo2bMnOnbsiCZOTjCLiio6eLFFj4hIqzTx/W2ilmeh/IpaGI/yK+zSDYWMzylMVlYWtq5Zgy4yGdwAfAp5ADIH0N3bG6tXr8aDBw9w6tQpzJo1C95Xr8KsZk35isnu7vIglldQkPyxovYhIiK9w5YgTWFLUMm84aUbHj58iDVr1uDnn3/G/fv3ldtbAvgQwEATE1SMiVF97YvzHvF9JCLSCWwJ0ieKwa2KGUKcwlw0xYyo3Iqx7s3Fixfx0UcfoWrVqvjiiy9w//59ODk54cuePfGfiQn+BjDW1BQVV6/O/9oXp7WOLXpERAaLA6M1iYNbi68EM6Kys7Oxa9cu/Pjjjzhx4oRyu5eXFyZPnoz3338fUqm06IuZAsWbis7rahERGSyGIE3jFObie01ofPz4MdauXYvly5fj3r17AAAzMzMMGDAAkydPhre3NyQSyasDXvfaFyd4cVFCIiKDxTFBpPMuX76Mn376Cb///rvyGluVK1ZEgK8vPp40CVWaNn2zX/C6FqPi7kNERBqjie9vhiAqOyWYZp6Tk4M9e/bgxx9/RGhoqHJ748aNMblRIwxavx6WQnD9JSIiI6GJ7292h1HZKOYaQE+fPkVQUBCWLVuGmJgYAICpqSn69++PyZMno2W1apBUrw4osrtiKn3XrmyhISKiEmEIIs0rbA2gXMHl4sWLWL58OTZu3Ij09HQAQMWKFeHv74+xY8eiatWq8mNDQgqfrcUQREREJcAQZKzKcgXkQqaZZ16/ju3Hj2P58uU4deqU8qEGDRpg0qRJGDp0KKysrFSP42wtIiJSE4YgfaKh62ppfExNnuASCWC9RIKgDz5AwsOHAOSzvPr374/x48ejTZs2qrO8cuNsLSIiUhMOjNYXar6uVlmvgJz0008InjwZvwqBU7m2u7q6IiAgAGPGjIGLi0vxn5CztYiIjAoHRhurYoypKbaiVkBWc5h49uwZ/vrrL+zYsQP79u3Di5d528TEBN26dcOoUaPQp08fmJubl/zJuf4SERG9IYYgfaDO4KLBMTVCCNy6dQtHjhzB3r17cfToUWRlZSkff/vttzFy5Eh88MEHJWv1ISIi0gCGIH2gzuCixjE1mZmZuHr1KsLDw3Hq1CkcPXpU5eKlAFCvXj30798f/fv3R6NGjQof60NERFTGGIJ0yOPHj3Hr1i3cunULt2/fRmJiIh49eoTHjx8jzd0d2VFRyAaQA8CiShVYDRoEKysrWFlZwdraGra2trCzs4Otra3Kn/Nt69ULtm3bwjI2FpLXDLJ+/vw5EhMTkZCQgOjoaERGRuLWrVu4efMmrly5goyMDJX9pVIpWrVqhc6dO6Nfv36oU6eOZl80IiKiUmII0hIhBC5duoTQ0FCcPn0aZ86cwd27d4v/BHfvym9vwMzMTCUcmZmZ4cWLF0hPT8eLFy+QkpKCtLS0Ip+jQoUK8PLyQtOmTdGhQwe0atUq/7R2IiIiHcQQVBANraGTk5ODo0ePYteuXdi7d6/yIqC5ubm5wdPTE56ennBxcUGlSpVQsWJF2NrawszMDGZmZjAxMUFmZibS09ORnp6OtLQ0pKWlISUlBcnJyUhJSSnyz8+fPwcgvxr706dP8fTp0yLrtgLgBMDN0xO127RR1teoUSPUqFGDXVxERKSXGILy0sAaOjdv3sT69evx22+/4cGDB8rtVlZWytaT5s2bo2nTprC1tX3TM3htiMvJyUFqamq+cJSVlQUrKytYWlrCKjkZNl27wlEIlAMgAYA7d4Bjxzgri4iIDAJDUG7qnIoO4O+//0ZgYCD++usv5TYHBwcMGDAAvXv3ho+Pj/q7jooR4kxNTWFnZwc7OztUqVKl4OcJCXl1fS6FwmakleXq00RERGpivCHo/n0g72JLapiKLoTAgQMHEBgYiBMnTgCQr4vj6+uLUaNGoWfPnpBKpeo4g/zUGeKKOyOtrFefJiIiUhMTbRegLf/Uqyf/As9N8cWfWzGnoufk5GDr1q1499130b17d5w4cQLm5uYYPXo0bty4gb179+K9997TXAACig5xJaWYSm9qKr9f0FT6wkJXbGzp6iciIipDRhuC/AE89fdX/cIuzhd/HhkZGVi7di3eeustDBo0CBcvXoSNjQ2mTp2KqKgorFmzBp6enpo9GYU3CHEF8vOTX04jJET+M28LjzpDFxERURkz2u6waAB9ZDIcvHYNVrlDjp+fvPvoNdelSklJwdq1a/H9998rFwisUKECJk2ahIkTJ6JixYqaP4m8NHFx0aIuT8EruhMRkR4z2guo2gFIBtCmWTP8sXcvKleuXKzj79+/jx9//BGrVq1CUlISAPlFQD/99FP4+/ujXLlypStMnYOLy/LiokFB+UMXxwQREZGaaeICqkYbgvZJJBhsaYnk9HS4uroiMDAQQ4YMKfBinqmpqdi/fz9+++037N+/H9nZ2QCAOnXq4NNPP8Xw4cPfbKyPvg8u5hXdiYhIwxiC1ED5IkZE4D6APn36IDIyEgBQuXJl+Pj4oFatWjAzM8P9+/dx/fp1nD17VuVCoO3atcNnn32G7t27wyTvGJySio0F3N3zdylFRzNQEBERvaSJEGS0Y4JQpQresrPD5cuXsWTJEixduhSJiYkIDg4ucPfq1atjyJAhGDZsGN566y311aHOK8QTERFRsellS9DPP/+MRYsWIS4uDm+//TaWLl2KNm3aFOvYwpJkdnY2wsLCcO7cOdy7dw/Z2dlwcXGBh4cHWrduDQ8PD81cHoItQURERK/FliAAwcHBmDJlCn7++We0atUKq1atgq+vLyIiIlCtWrVSP6+ZmRk6duyIjh07qrHaYtDEjC4iIiJ6Lb1rCfL29sa7776LFStWKLe99dZb6Nu3LwIDA197vCaSpFpwcDEREVGhjL4lKDMzE+fPn8eMGTNUtnfp0gWnTp0q8JiMjAxkZGQo7ycnJ2u0xlIraj0eIiIiUju9WjH60aNHyMnJgZOTk8p2JycnxMfHF3hMYGAg7O3tlbeqVauWRalERESk4/QqBCnkHaAshCh00PLMmTORlJSkvN27d68sSiQiIiIdp1fdYZUqVYKpqWm+Vp/ExMR8rUMKUqlUsxctJSIiIr2kVy1BFhYWaNKkCQ4fPqyy/fDhw2jZsqWWqiIiIiJ9pFctQQAwdepUDBs2DF5eXmjRogVWr16Nu3fv4uOPP9Z2aURERKRH9C4EDRo0CI8fP8b8+fMRFxeH+vXrY9++fXB3d9d2aURERKRH9G6doDels+sEERERUaE08f2tV2OCiIiIiNSFIehNxMYCISHyn0RERKRXGIJKKyhIfuFTHx/5z6AgbVdEREREJcAQVBqxsYC//6srv8tk8gugskWIiIhIbzAElUZk5KsApJCTI78AKhEREekFhqDS8PQETPK8dKam8ivAExERkV5gCCoNNzdg9Wp58AHkP1et4lXgiYiI9IjeLZaoM/z8gK5d5V1gtWoxABEREekZhqA34ebG8ENERKSn2B1GRERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjpFchqHr16pBIJCq3GTNmaLssIiIi0kNm2i6gpObPn48xY8Yo75crV06L1RAREZG+0rsQZGtrC2dnZ22XQURERHpOr7rDAOC7775DxYoV0ahRI3zzzTfIzMzUdklERESkh/SqJWjy5Ml49913UaFCBZw9exYzZ85EVFQU1q5dW+gxGRkZyMjIUN5PSkoCACQnJ2u8XiIiIlIPxfe2EEJ9Tyq0bM6cOQJAkbfw8PACj92+fbsAIB49evRGz88bb7zxxhtvvOnH7fbt22rLIBIh1BmpSu7Ro0d49OhRkftUr14dlpaW+bbfv38fbm5uOHPmDLy9vQs8Nm9L0LNnz+Du7o67d+/C3t7+zYrXI8nJyahatSru3bsHOzs7bZdTZnjePG9jwPPmeRuDpKQkVKtWDU+fPkX58uXV8pxa7w6rVKkSKlWqVKpjL1y4AABwcXEpdB+pVAqpVJpvu729vVH95VGws7PjeRsRnrdx4XkbF2M9bxMT9Q1n1noIKq7Tp0/jzJkz6NChA+zt7REeHo5PPvkEvXv3RrVq1bRdHhEREekZvQlBUqkUwcHBmDdvHjIyMuDu7o4xY8Zg2rRp2i6NiIiI9JDehKB3330XZ86ceePnkUqlmDNnToFdZIaM583zNgY8b563MeB5q++8tT4wmoiIiEgb9G6xRCIiIiJ1YAgiIiIio8QQREREREaJIYiIiIiMkkGGoJ9//hkeHh6wtLREkyZNcOLEiSL3DwsLQ5MmTWBpaYkaNWpg5cqVZVSpepXkvHfs2IHOnTujcuXKsLOzQ4sWLXDw4MEyrFZ9Svp+K/z9998wMzNDo0aNNFughpT0vDMyMvDFF1/A3d0dUqkUNWvWxC+//FJG1apPSc9748aNaNiwIaytreHi4oJRo0bh8ePHZVTtmzt+/Dh69eoFV1dXSCQS7Nq167XHGMJnWknP21A+00rzfivo82daac5bHZ9pBheCgoODMWXKFHzxxRe4cOEC2rRpA19fX9y9e7fA/aOiotC9e3e0adMGFy5cwKxZszBp0iT88ccfZVz5mynpeR8/fhydO3fGvn37cP78eXTo0AG9evVSrsKtL0p63gpJSUkYPnw4OnbsWEaVqldpznvgwIE4evQogoKCcPPmTWzevBl169Ytw6rfXEnP++TJkxg+fDj8/Pxw7do1bNu2DeHh4Rg9enQZV156qampaNiwIZYtW1as/Q3lM62k520on2klPW8Fff9MK815q+UzTW1XIdMRzZo1Ex9//LHKtrp164oZM2YUuP+0adNE3bp1VbYFBASI5s2ba6xGTSjpeRekXr16Yt68eeouTaNKe96DBg0Ss2fPFnPmzBENGzbUYIWaUdLz3r9/v7C3txePHz8ui/I0pqTnvWjRIlGjRg2VbT/++KNwc3PTWI2aBEDs3LmzyH0M5TMtt+Kcd0H08TMtt5Kct75/puVWnPNW12eaQbUEZWZm4vz58+jSpYvK9i5duuDUqVMFHnP69Ol8+3ft2hXnzp1DVlaWxmpVp9Kcd14ymQwpKSlwcHDQRIkaUdrzXrduHW7fvo05c+ZoukSNKM1579mzB15eXli4cCGqVKmC2rVr47PPPkN6enpZlKwWpTnvli1bIjY2Fvv27YMQAgkJCdi+fTt69OhRFiVrhSF8pqmDPn6mlZa+f6aVhro+0/RmxejiePToEXJycuDk5KSy3cnJCfHx8QUeEx8fX+D+2dnZePToUZEXZ9UVpTnvvL7//nukpqZi4MCBmihRI0pz3pGRkZgxYwZOnDgBMzP9/OtfmvO+c+cOTp48CUtLS+zcuROPHj3CuHHj8OTJE70ZF1Sa827ZsiU2btyIQYMG4cWLF8jOzkbv3r3x008/lUXJWmEIn2nqoI+faaVhCJ9ppaGuzzSDaglSkEgkKveFEPm2vW7/grbrupKet8LmzZsxd+5cBAcHw9HRUVPlaUxxzzsnJwdDhw7FvHnzULt27bIqT2NK8n7LZDJIJBJs3LgRzZo1Q/fu3bF48WKsX79er1qDgJKdd0REBCZNmoSvvvoK58+fx4EDBxAVFYWPP/64LErVGkP5TCstff9MKy5D+0wrCXV9phlUbKxUqRJMTU3z/a8wMTEx3/+MFJydnQvc38zMDBUrVtRYrepUmvNWCA4Ohp+fH7Zt24ZOnTppsky1K+l5p6Sk4Ny5c7hw4QImTJgAQP4PSQgBMzMzHDp0CD4+PmVS+5sozfvt4uKCKlWqwN7eXrntrbfeghACsbGx8PT01GjN6lCa8w4MDESrVq3w+eefAwAaNGgAGxsbtGnTBgsWLDDIVhFD+Ex7E/r8mVZShvKZVhrq+kwzqJYgCwsLNGnSBIcPH1bZfvjwYbRs2bLAY1q0aJFv/0OHDsHLywvm5uYaq1WdSnPegPx/SyNHjsSmTZv0coxESc/bzs4OV65cwcWLF5W3jz/+GHXq1MHFixfh7e1dVqW/kdK8361atcKDBw/w/Plz5bZbt27BxMQEbm5uGq1XXUpz3mlpaTAxUf2YMzU1BfCqdcTQGMJnWmnp+2daSRnKZ1ppqO0z7Y2GVeugLVu2CHNzcxEUFCQiIiLElClThI2NjYiOjhZCCDFjxgwxbNgw5f537twR1tbW4pNPPhEREREiKChImJubi+3bt2vrFEqlpOe9adMmYWZmJpYvXy7i4uKUt2fPnmnrFEqlpOedl77OpCjpeaekpAg3NzcxYMAAce3aNREWFiY8PT3F6NGjtXUKpVLS8163bp0wMzMTP//8s7h9+7Y4efKk8PLyEs2aNdPWKZRYSkqKuHDhgrhw4YIAIBYvXiwuXLggYmJihBCG+5lW0vM2lM+0kp53Xvr6mVbS81bXZ5rBhSAhhFi+fLlwd3cXFhYW4t133xVhYWHKx0aMGCHatWunsn9oaKho3LixsLCwENWrVxcrVqwo44rVoyTn3a5dOwEg323EiBFlX/gbKun7nZu+fmAIUfLzvn79uujUqZOwsrISbm5uYurUqSItLa2Mq35zJT3vH3/8UdSrV09YWVkJFxcX8cEHH4jY2Ngyrrr0QkJCivy3aqifaSU9b0P5TCvN+52bvn6mlea81fGZJhHCQNuEiYiIiIpgUGOCiIiIiIqLIYiIiIiMEkMQERERGSWGICIiIjJKDEFERERklBiCiIiIyCgxBBEREZFRYggiIiIio8QQREREREaJIYiIiIiMEkMQERmE+fPn45133oGNjQ2cnJwwduxYZGVlabssItJhZtougIjoTQkhkJOTg1WrVqFKlSqIiIjA8OHD0aBBA4wdO1bb5RGRjuIFVInIIA0dOhSVK1fGDz/8oO1SiEhHsTuMiPReTEwMJkyYgPr166NChQooV64ctm7dCjc3N22XRkQ6jCGIiPTao0eP0KxZMzx69AiLFy/GyZMncfr0aZiamqJRo0baLo+IdBjHBBGRXtu3bx+ys7OxefNmSCQSAMDy5cuRmZnJEERERWIIIiK95uDggOTkZOzZswf16tXDn3/+icDAQFSpUgWVK1fWdnlEpMM4MJqI9JoQAmPHjsWmTZtgZWWFDz/8EC9evEBMTAz27t2r7fKISIcxBBEREZFR4sBoIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVFiCCIiIiKjxBBERERERokhiIiIiIwSQxAREREZJYYgIiIiMkoMQURERGSUGIKIiIjIKDEEERERkVH6f+wqQxmnLORkAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "let a = range(0,1.5,length=50),\n", + " afine = range(0,1.5,length=1000),\n", + " b = 1 .+ 2a + 3a.^2 + 4a.^3 + randn(length(a)),\n", + " fig = figure()\n", + " #@manipulate for n=slider(1:40, value=2)\n", + " for n=1:40\n", + " display(\n", + " withfig(fig) do\n", + " plot(a, b, \"r.\")\n", + " A = a .^ (0:n-1)'\n", + " x̂ = A \\ b\n", + " plot(afine, (afine .^ (0:n-1)') * x̂, \"k-\")\n", + " xlabel(L\"a\")\n", + " ylabel(L\"b\")\n", + " xlim(0,1.6)\n", + " ylim(-5,30)\n", + " title(\"noisy cubic: least-square fit of degree $(n-1)\")\n", + " end\n", + " )\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Increasing the degree of the fit at first seems to improve things, up to about degree 6, but then it becomes more and more wiggly. It is still reducing the residual, but clearly it is \"fitting noise\" and the error actually becomes worse compared to the \"real\" underlying cubic model. This problem is called [overfitting](https://en.wikipedia.org/wiki/Overfitting).\n", + "\n", + "In between the fitted points, especially near the edges, the wiggles can actually diverge as we increase the degree, an effect related to what is known as a [Runge phenomenon](https://en.wikipedia.org/wiki/Runge's_phenomenon). Even if there is *no noise*, fitting *equally spaced points* to high-degree polynomials can lead to disaster if the underlying data is not exactly polynomial. Let's demonstrate this by fitting the *smooth* function $b(a) = 1/(1+25a^2)$ to polynomials at 50 points:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEdUlEQVR4nO3deXQUVeL28afJTiCRNQQCAQwCEmQJsg7DoobFfQNEISIqARUF9ScMKosoboPbsA4BdETNuIALKMYxuAxxg4AI6IACIUqIoCSIsiX3/aPftNV0J3RC0t3pfD/n5DS5uV11q6uq66HurSqbMcYIAAAAkqRavm4AAACAPyEcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIByhWvvpp580Y8YMbdq0yeVvN954o+rUqVPhaR8/flypqamKjY1VUFCQOnfuXPGGVoL58+dr+fLlLuW7d++WzWZz+7dAYrPZNGPGDF83o1LMmDFDNputyt/73HPPKSEhQaGhobLZbDp06JBuvPFGtWzZ0qneI488olWrVlWoPWX55ZdfNGLECDVu3Fg2m01XXHFFuafRsmVL3XjjjZXeNn9z4sQJzZw5Uy1btlRYWJjatWun5557ztfNqrGCfd0A4Ez89NNPji+Uyg4vCxYs0KJFi/Tcc88pKSnpjIJWZZg/f74aNmzocqCIjY1VVlaWzj77bN80DOV28803a/DgwVU6j02bNmnixIm6+eablZKSouDgYNWtW1cPPPCA7rzzTqe6jzzyiK655poKhZeyPPTQQ1q5cqWWLl2qs88+W/Xr16/U6QeSCRMm6F//+pceeughnX/++Vq7dq3uvPNOHT58WH/729983bwah3AElOKbb75RRESEbr/9dl83pUxhYWHq2bOnr5uBcoiLi1NcXFyVzmPr1q2SpFtuuUXdu3d3lHszRH/zzTc6++yzdf3113ttnpXl999/V+3atb0yr61btyotLU0PP/yw7r33XklS//79dfDgQc2ePVupqakESy+jWw0OP//8s2699VY1b95cYWFhatSokfr06aMPPvjAUad///5KTExUVlaWevfurYiICLVs2VLLli2TJK1evVpdu3ZV7dq11bFjR7333nsu8/n00091wQUXqG7duqpdu7Z69+6t1atXu9T75ptvdPnll6tevXoKDw9X586d9fzzzzv+vm7dOp1//vmSpDFjxshms7ntetm5c6eGDh2qOnXqqHnz5rr77rt17NixMj8Lm82mJUuW6I8//nBMd/ny5WV2YZ0675Luj61bt+q6665TdHS0YmJidNNNN6mgoMDpvcXFxXruuefUuXNnRURE6KyzzlLPnj311ltvSbJ3LWzdulUfffSRoz0lXSOltcmTz3n58uWy2WzKzMzU+PHj1bBhQzVo0EBXXXWVfvrppzI/o7K0bNlSl1xyiVauXKnzzjtP4eHhat26tZ599lmXujk5ObrhhhvUuHFjhYWFqX379vr73/+u4uLiUqe/e/duBQcHa86cOS5/+/jjj2Wz2fTqq69KKt96OHr0qKZOnapWrVopNDRUzZo102233aZDhw65Xb533nlHXbp0UUREhNq3b6933nlHkv1zbd++vSIjI9W9e3d99dVXTu931zWWnp6u5ORkxcbGOqY3ZcoUHTlypPQPuhT9+/fXDTfcIEnq0aOHbDab44zjqd1qNptNR44c0fPPP+/Ytvr371/m9H/55RdNmDBBzZo1U2hoqFq3bq1p06Y59quSbfKDDz7Q9u3bHdNdt25dqdM8ceKE/u///k9NmjRR7dq19Ze//EVffPGF27p5eXkaN26c4uLiFBoaqlatWmnmzJk6efKkU73c3Fxdc801qlu3rs466yxdf/31+vLLL132l5Iu+C1btig5OVl169bVBRdcIMnevT579my1a9fO8b04ZswY/fzzzy7tSk9PV69evRQZGak6depo0KBBys7OLvOzlKRVq1bJGKMxY8Y4lY8ZM0Z//PGH2+9RVDED/H+DBg0yjRo1MosXLzbr1q0zq1atMg8++KB55ZVXHHX69etnGjRoYNq2bWvS0tLM2rVrzSWXXGIkmZkzZ5qOHTual19+2axZs8b07NnThIWFmR9//NHx/nXr1pmQkBCTlJRk0tPTzapVq0xycrKx2WxO8/n2229N3bp1zdlnn21eeOEFs3r1anPdddcZSeaxxx4zxhhTUFBgli1bZiSZ+++/32RlZZmsrCyzd+9eY4wxKSkpJjQ01LRv3948+eST5oMPPjAPPvigsdlsZubMmWV+FllZWWbo0KEmIiLCMd38/Hyza9cuI8ksW7bM5T2SzPTp0x2/T58+3Ugybdu2NQ8++KDJyMgwc+fONWFhYWbMmDFO7x01apSx2Wzm5ptvNm+++aZ59913zcMPP2yeeeYZY4wxGzduNK1btzZdunRxtGfjxo3GGOO2TZ5+ziWfX+vWrc0dd9xh1q5da5YsWWLq1atnBgwY4NTGkrrulv1U8fHxplmzZqZFixZm6dKlZs2aNeb66683kswTTzzhqJefn2+aNWtmGjVqZBYuXGjee+89c/vttxtJZvz48WV+vldeeaVp0aKFOXnypFO9a6+91jRt2tScOHGiXOuhuLjYDBo0yAQHB5sHHnjAvP/+++bJJ580kZGRpkuXLubo0aNOyxcXF2cSExMd23uPHj1MSEiIefDBB02fPn3MG2+8YVauXGnOOeccExMTY37//XfH+0vaZPXQQw+Zp556yqxevdqsW7fOLFy40LRq1cplPbh776m2bt1q7r//fsf6ysrKMjt37jTG2PeL+Ph4R92srCwTERFhhg4d6ti2tm7dWuq0//jjD3PeeeeZyMhI8+STT5r333/fPPDAAyY4ONgMHTrUGGPM0aNHTVZWlunSpYtp3bq1Y7oFBQWlTjclJcXYbDZz7733mvfff9/MnTvXNGvWzERFRZmUlBRHvX379pnmzZub+Ph4s2jRIvPBBx+Yhx56yISFhZkbb7zRUe+3334zCQkJpn79+mbevHlm7dq1ZtKkSaZVq1Yu23FKSooJCQkxLVu2NHPmzDH/+c9/zNq1a01RUZEZPHiwiYyMNDNnzjQZGRlmyZIlplmzZubcc891WqcPP/ywsdls5qabbjLvvPOOeeONN0yvXr1MZGRkmZ+nMcaMGDHCNGrUyKX8t99+M5LM1KlTy3w/Kh/hCA516tQxd911V5l1+vXrZySZr776ylF28OBBExQUZCIiIpyC0KZNm4wk8+yzzzrKevbsaRo3bmwOHz7sKDt58qRJTEw0cXFxpri42Bhj/7IICwszOTk5TvMfMmSIqV27tjl06JAxxpgvv/yy1AN2SkqKkWT+/e9/O5UPHTrUtG3b9jSfhv39kZGRTmUVCUePP/64U70JEyaY8PBwx7J+/PHHRpKZNm1ame3p0KGD6devn0u5uzZ5+jmXBJ4JEyY4TfPxxx83ksy+ffscZc8//7wJCgoyzz//fJntNMYeHmw2m9m0aZNT+UUXXWSioqLMkSNHjDHGTJkyxUgyn3/+uVO98ePHG5vNZr777jtH2amfb2ZmppFkVq5c6Sj78ccfTXBwsFP49XQ9vPfee27rpaenG0lm8eLFTssXERFhcnNzHWUl23tsbKxj+YwxZtWqVUaSeeutt1zaVJri4mJz4sQJ89FHHxlJZvPmzR6/t0TJuv3yyy+dyk8NR8YYExkZ6RRAyrJw4UK3+9Vjjz1mJJn333/fUdavXz/ToUOH005z+/btRpKZNGmSU/mKFSuMJKe2jRs3ztSpU8fs2bPHqe6TTz5pJDmCyLx584wk8+677zrVGzdunNtwJMksXbrUqe7LL79sJJnXX3/dqbzke2f+/PnGGGNycnJMcHCwueOOO5zqHT582DRp0sQMGzaszOW/6KKLSv1OCg0NNbfeemuZ70flo1sNDt27d9fy5cs1e/ZsffbZZzpx4oTberGxsUpKSnL8Xr9+fTVu3FidO3dW06ZNHeXt27eXJO3Zs0eSdOTIEX3++ee65pprnAY3BwUFadSoUcrNzdV3330nSfrwww91wQUXqHnz5k7zvvHGG/X7778rKyvLo2Wy2Wy69NJLncrOO+88R5u84bLLLnOZ/9GjR5Wfny9JevfddyVJt912W6XMrzyfc1ltlOT0OY0ePVonT57U6NGjPWpHhw4d1KlTJ6eykSNHqrCwUBs3bpRkX8/nnnuu05gYyb6ejTH68MMPS51+//791alTJ82bN89RtnDhQtlsNt16660u9U+3HkrmdeqA92uvvVaRkZH6z3/+41TeuXNnNWvWzPF7yfbev39/p7Eqp+4Hpfnhhx80cuRINWnSREFBQQoJCVG/fv0kSdu3by/zvd704YcfKjIyUtdcc41Tecnndurn5InMzExJchmbNGzYMAUHOw+NfeeddzRgwAA1bdpUJ0+edPwMGTJEkvTRRx85XuvWresy8P26664rtR1XX321y7zOOussXXrppU7z6ty5s5o0aeLoJly7dq1j37DWCw8PV79+/crsTixR1hWIFb2yERXHgGw4pKena/bs2VqyZIkeeOAB1alTR1deeaUef/xxNWnSxFHP3cDA0NBQl/LQ0FBJ9nEckvTrr7/KGKPY2FiX95eEqoMHDzpePal3OrVr11Z4eLhTWVhYmKNN3tCgQQOX+UvSH3/8Ick+1isoKMjpMz4T5fmcPW1jRbhbnpIy63o+9bLystp5qpKrsb777ju1bt1a//znP3XNNde4nffplvHgwYMKDg5Wo0aNnOrZbDY1adLEpS2lbe+n2w/c+e2339S3b1+Fh4dr9uzZOuecc1S7dm3t3btXV1111Rmth8p28OBBNWnSxOWA3bhxYwUHB3u8b546Tcl1mwkODnZZb/v379fbb7+tkJAQt9M6cOCAY5oxMTEuf3dXJtm/K6KiolzmdejQIcc6LG1e+/fvlyTHGMhT1apV9nmIBg0auL0dyZEjR3T8+HEGY/sA4QgODRs21NNPP62nn35aOTk5euuttzRlyhTl5+dXyoDAevXqqVatWtq3b5/L30oG/zZs2FCS/cvCk3reVhK0Th3QXZEDQolGjRqpqKhIeXl5bgNNeZXnc65KeXl5pZaVHPDOdD2PHDlS9913n+bNm6eePXsqLy+vwmfgGjRooJMnT+rnn392CkjGGOXl5ZV64KsMH374oX766SetW7fOcbZIkstAcH/QoEEDff755zLGOAWk/Px8nTx5skLbVsn2kJeX53Q27uTJky77VsOGDXXeeefp4YcfdjutkmDdoEEDtwO63W2XkvuzMyUXKJT2/Ve3bl1HPUl67bXXFB8f77ZuWTp27KhXXnlFeXl5TgFxy5YtkqTExMRyTxNnhm41uNWiRQvdfvvtuuiiixxdIGcqMjJSPXr00BtvvOH0P+Hi4mK9+OKLiouL0znnnCNJuuCCCxwHDKsXXnhBtWvXdly6XhlnOMojJiZG4eHh+vrrr53K33zzzQpPs6Q7YMGCBWXWCwsL82g5y/M5V6WtW7dq8+bNTmUvvfSS6tatq65du0qyr+dt27a5bGMvvPCCbDabBgwYUOY8wsPDdeutt+r555/X3Llz1blzZ/Xp06dC7S25OunFF190Kn/99dd15MgRx9+rQsmBuWR7LrFo0aIqm6eVp9uWZP+cfvvtN5ebRr7wwguOv5dXydVxK1ascCr/97//7XIF2iWXXOK4RUC3bt1cfkrCUb9+/XT48GFHt3WJV155xeN2XXLJJTp48KCKiorczqtt27aSpEGDBik4OFjff/+923rdunUrcz6XX365bDab09W4kv2qx4iIiCq/JxZcceYIkqSCggINGDBAI0eOVLt27VS3bl19+eWXeu+993TVVVdV2nzmzJmjiy66SAMGDNA999yj0NBQzZ8/X998841efvllx0Fi+vTpjrEFDz74oOrXr68VK1Zo9erVevzxxxUdHS3Jfs+WiIgIrVixQu3bt1edOnXUtGlTp7FPlclms+mGG25w3NSuU6dO+uKLL/TSSy9VeJp9+/bVqFGjNHv2bO3fv1+XXHKJwsLClJ2drdq1a+uOO+6Q9Of/LtPT09W6dWuFh4erY8eObqfp6edcHi+88IJuuukmLV261KNxR02bNtVll12mGTNmKDY2Vi+++KIyMjL02GOPOcbkTJo0SS+88IIuvvhizZo1S/Hx8Vq9erXmz5+v8ePHexTiJkyYoMcff1wbNmzQkiVLyr1cJS666CINGjRI9913nwoLC9WnTx99/fXXmj59urp06aJRo0ZVeNqn07t3b9WrV0+pqamaPn26QkJCtGLFCpdwWVU6duyodevW6e2331ZsbKzq1q3rOPCfavTo0Zo3b55SUlK0e/dudezYUZ9++qkeeeQRDR06VBdeeGG559++fXvdcMMNevrppxUSEqILL7xQ33zzjZ588kmXrq5Zs2YpIyNDvXv31sSJE9W2bVsdPXpUu3fv1po1a7Rw4ULFxcUpJSVFTz31lG644QbNnj1bCQkJevfdd7V27VpJp+/qkqQRI0ZoxYoVGjp0qO688051795dISEhys3NVWZmpi6//HJdeeWVatmypWbNmqVp06bphx9+0ODBg1WvXj3t379fX3zxhSIjIzVz5sxS59OhQweNHTtW06dPV1BQkM4//3y9//77Wrx4sWbPnk23mi/4dDg4/MbRo0dNamqqOe+880xUVJSJiIgwbdu2NdOnT3e68qa0q0/i4+PNxRdf7FIuydx2221OZZ988okZOHCgiYyMNBEREaZnz57m7bffdnnvli1bzKWXXmqio6NNaGio6dSpk9urxF5++WXTrl07ExIS4nRFk7urzYzx/Gqf0t5fUFBgbr75ZhMTE2MiIyPNpZdeanbv3l3q1Wo///yz0/tLriLatWuXo6yoqMg89dRTJjEx0YSGhpro6GjTq1cvp89l9+7dJjk52dStW9dIclxxVNoVdJ58zqVd0VRyJVhmZqZLXU8v5b/44ovNa6+9Zjp06GBCQ0NNy5Ytzdy5c13q7tmzx4wcOdI0aNDAhISEmLZt25onnnjCFBUVOdU79fO16t+/v6lfv77TpdUlyrMe/vjjD3PfffeZ+Ph4ExISYmJjY8348ePNr7/+6nb5TuVuey9ZP9ZbGLjbBtevX2969eplateubRo1amRuvvlms3HjRpfPvCquVtu0aZPp06ePqV27tpHk9qpIq4MHD5rU1FQTGxtrgoODTXx8vJk6darT7Q6M8fxqNWOMOXbsmLn77rtN48aNTXh4uOnZs6fJysoy8fHxLlfS/fzzz2bixImmVatWJiQkxNSvX98kJSWZadOmmd9++81RLycnx1x11VWmTp06pm7duubqq682a9asMZLMm2++6fSZuNvXjTHmxIkT5sknnzSdOnUy4eHhpk6dOqZdu3Zm3LhxZseOHU51V61aZQYMGGCioqJMWFiYiY+PN9dcc4354IMPTrv8x48fN9OnTzctWrQwoaGh5pxzznG60hfeZTPGGG+GMQCBr2XLlkpMTHTcFLEq5efnKz4+XnfccYcef/zxKp8fqrdHHnlE999/v3Jycqr8LuWovuhWA1At5ebm6ocfftATTzyhWrVquTwvDPjHP/4hSWrXrp1OnDihDz/8UM8++6xuuOEGghHKRDgCUC0tWbJEs2bNUsuWLbVixQqnq5wAyX55/lNPPaXdu3fr2LFjatGihe677z7df//9vm4a/BzdagAAABY+v5T/448/1qWXXqqmTZvKZrO5XB7qzkcffaSkpCTHwywXLlxY9Q0FAAA1gs/D0ZEjR9SpUydH3/Dp7Nq1S0OHDlXfvn2VnZ2tv/3tb5o4caJef/31Km4pAACoCfyqW81ms2nlypW64oorSq1z33336a233nJ61lBqaqo2b97s8fO2AAAASlPtBmRnZWUpOTnZqWzQoEFKS0vTiRMn3D5v59ixY06PeyguLtYvv/yiBg0a8EA/AACqCWOMDh8+rKZNm3p0I8+KqnbhKC8vz+XBgTExMTp58qQOHDjg9tlUc+bMKfPupAAAoPrYu3dvld6OodqFI8n1AYElPYOlnQWaOnWqJk+e7Pi9oKBALVq00N69e11uTQ+gGvnxR+n776Wzz5bKupTf03oA/FphYaGaN2/ueOhvVal24ahJkyYuT1XOz89XcHCw48nOpwoLC3N5oKMkRUVFEY6A6iotTbr1Vqm4WKpVS1q8WBo7tuL1AFQbVT0kxudXq5VXr169lJGR4VT2/vvvq1u3bm7HGwEIQLm5fwYeyf46bpy9vCL1AMDC5+Hot99+06ZNm7Rp0yZJ9kv1N23apJycHEn2LjHrE8BTU1O1Z88eTZ48Wdu3b9fSpUuVlpame+65xxfNB+ALO3b8GXhKFBVJO3dWrB4AWPi8W+2rr77SgAEDHL+XjA1KSUnR8uXLtW/fPkdQkqRWrVppzZo1mjRpkubNm6emTZvq2Wef1dVXX+31tgPwkTZt7F1k1uATFCQlJFSsHgBY+NV9jrylsLBQ0dHRKigoYMwRUF2lpdm7yIqK7IFn0aLSxxx5Ug+A3/PW8ZtwRDgCqq/cXHsXWUKCVNZlvZ7WA+DXvHX89nm3GgBUWFycZ2HH03oAID8YkA0AAOBPCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIgP/JzZUyM+2vNWneAPwC4QiAf0lLk+LjpYED7a9paTVj3gD8hs0YY3zdCG8rLCxUdHS0CgoKFBUV5evmACiRm2sPJcXFf5YFBUm7d0txcYE7bwAe8dbxmzNHAPzHjh3O4USSioqknTsDe94A/ArhCID/aNNGqnXK11JQkJSQENjzBuBXCEcA/EdcnLR4sT2USPbXRYu8063ly3kD8CuMOWLMEeB/cnPt3VkJCd4PJ76cN4Ayeev4HVxlUwaAioqL810w8eW8AfgFutUAAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACz8IhzNnz9frVq1Unh4uJKSkvTJJ5+UWX/FihXq1KmTateurdjYWI0ZM0YHDx70UmsBAEAg83k4Sk9P11133aVp06YpOztbffv21ZAhQ5STk+O2/qeffqrRo0dr7Nix2rp1q1599VV9+eWXuvnmm73ccgAAEIh8Ho7mzp2rsWPH6uabb1b79u319NNPq3nz5lqwYIHb+p999platmypiRMnqlWrVvrLX/6icePG6auvvvJyywEAQCDyaTg6fvy4NmzYoOTkZKfy5ORkrV+/3u17evfurdzcXK1Zs0bGGO3fv1+vvfaaLr744lLnc+zYMRUWFjr9APCB3FwpM9P+Wt0F0rIAcOLTcHTgwAEVFRUpJibGqTwmJkZ5eXlu39O7d2+tWLFCw4cPV2hoqJo0aaKzzjpLzz33XKnzmTNnjqKjox0/zZs3r9TlAOCBtDQpPl4aOND+mpbm6xZVXCAtCwAXPu9WkySbzeb0uzHGpazEtm3bNHHiRD344IPasGGD3nvvPe3atUupqamlTn/q1KkqKChw/Ozdu7dS2w/gNHJzpVtvlYqL7b8XF0vjxlXPsy6BtCwA3Ar25cwbNmyooKAgl7NE+fn5LmeTSsyZM0d9+vTRvffeK0k677zzFBkZqb59+2r27NmKjY11eU9YWJjCwsIqfwEAeGbHjj/DRImiImnnTikuzjdtqqhAWhYAbvn0zFFoaKiSkpKUkZHhVJ6RkaHevXu7fc/vv/+uWrWcmx0UFCTJfsYJgB9q00Y6Zb9VUJCUkOCb9pyJQFoWAG75vFtt8uTJWrJkiZYuXart27dr0qRJysnJcXSTTZ06VaNHj3bUv/TSS/XGG29owYIF+uGHH/Tf//5XEydOVPfu3dW0aVNfLQaAssTFSYsX20OEZH9dtKh6nmkJpGUB4JZPu9Ukafjw4Tp48KBmzZqlffv2KTExUWvWrFF8fLwkad++fU73PLrxxht1+PBh/eMf/9Ddd9+ts846SwMHDtRjjz3mq0UA4ImxY6VBg+zdTwkJ1TtMBNKyAHBhMzWwL6qwsFDR0dEqKChQVFSUr5sDAAA84K3jt8+71QAAAPwJ4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIwJnLzZUyM+2vcMZnA1Q7hCMAZyYtTYqPlwYOtL+mpfm6Rf6DzwaolmzGGOPrRnhbYWGhoqOjVVBQoKioKF83B6i+cnPtB/3i4j/LgoKk3buluDifNcsv8NkAlc5bx2/OHAGouB07nA/+klRUJO3c6Zv2+BM+G6DaIhwBqLg2baRap3yNBAVJCQm+aY8/4bMBqi3CEYCKi4uTFi+2H/Ql++uiRXQbSXw2QDXGmCPGHAFnLjfX3l2UkMDB/1R8NkCl8dbxO7jKpgyg5oiL48BfGj4boNqhWw0AAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFn4RjubPn69WrVopPDxcSUlJ+uSTT8qsf+zYMU2bNk3x8fEKCwvT2WefraVLl3qptQAAIJAF+7oB6enpuuuuuzR//nz16dNHixYt0pAhQ7Rt2za1aNHC7XuGDRum/fv3Ky0tTQkJCcrPz9fJkye93HIAABCIbMYY48sG9OjRQ127dtWCBQscZe3bt9cVV1yhOXPmuNR/7733NGLECP3www+qX79+heZZWFio6OhoFRQUKCoqqsJtBwAA3uOt47dPu9WOHz+uDRs2KDk52ak8OTlZ69evd/uet956S926ddPjjz+uZs2a6ZxzztE999yjP/74o9T5HDt2TIWFhU4/AAAA7vi0W+3AgQMqKipSTEyMU3lMTIzy8vLcvueHH37Qp59+qvDwcK1cuVIHDhzQhAkT9Msvv5Q67mjOnDmaOXNmpbcfAAAEHr8YkG2z2Zx+N8a4lJUoLi6WzWbTihUr1L17dw0dOlRz587V8uXLSz17NHXqVBUUFDh+9u7dW+nLAAAAAoNPzxw1bNhQQUFBLmeJ8vPzXc4mlYiNjVWzZs0UHR3tKGvfvr2MMcrNzVWbNm1c3hMWFqawsLDKbTwAAAhIPj1zFBoaqqSkJGVkZDiVZ2RkqHfv3m7f06dPH/3000/67bffHGX/+9//VKtWLcXFxVVpewEAQODzebfa5MmTtWTJEi1dulTbt2/XpEmTlJOTo9TUVEn2LrHRo0c76o8cOVINGjTQmDFjtG3bNn388ce69957ddNNNykiIsJXiwEAAAKEz+9zNHz4cB08eFCzZs3Svn37lJiYqDVr1ig+Pl6StG/fPuXk5Djq16lTRxkZGbrjjjvUrVs3NWjQQMOGDdPs2bN9tQgAACCA+Pw+R77AfY4AAKh+asR9jgAAAPwN4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AlC63FwpM9P+iqrFZw34DcIRAPfS0qT4eGngQPtrWpqvWxS4+KwBv2IzxhhfN8LbvPVUX6Days21H6SLi/8sCwqSdu+W4uJ81qyAxGcNeMxbx2/OHAFwtWOH88FakoqKpJ07fdOeQMZnDfgdwhEAV23aSLVO+XoICpISEnzTnkDGZw34HcIRAFdxcdLixfaDtGR/XbSIbp6qwGcN+B3GHDHmCChdbq69eychgYN1VeOzBk7LW8fv4CqbMoDqLy6OA7W38FkDfoNuNQAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALM4oHOXn5ysvL6+y2gIAAOBzFQpHX3/9tTp06KDY2Fg1a9ZMzZo10/33368jR45UdvsAAAC8qkLhaOzYsYqJidGnn36q7OxszZ49W++++666deumX3/9tbLbCAAA4DUVerZaZGSkNmzYoHbt2jnKjDG69tprFR4erhdffLFSG1nZeLYaAADVj18/W83dGSKbzaZHHnlESUlJldIwAAAAX/A4HF188cXq1KmTOnfurNTUVE2aNElvvvmmYmJiHHUKCgpUr169KmkoAACAN3gcjjp27KiNGzdq2bJl2r9/vySpdevWGjZsmDp37qyioiItW7ZMTz31VJU1FgAAoKpVaMzR/v37lZ2drU2bNjl+du7cqaCgILVt21Zff/11VbS10jDmCACA6sevxxzFxMRo8ODBGjx4sKPsjz/+0ObNm7V58+ZKaxwAAIC3VejMUXXHmSMAAKofbx2/eXwIAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAE1UW6ulJlpf0X1wroDqhzhCKhp0tKk+Hhp4ED7a1qar1sET7HuAK+wGWOMrxvhbYWFhYqOjlZBQYGioqJ83RzAe3Jz7QfV4uI/y4KCpN27pbg4nzULHmDdAV47fnPmCKhJduxwPrhKUlGRtHOnb9oDz7HuAK8hHAE1SZs2Uq1TdvugICkhwTftgedYd4DXEI6AmiQuTlq82H5QleyvixbRLVMdsO4Ar2HMEWOOUBPl5tq7YxISOLhWN6w71GDeOn4HV9mUAfivuDgOrNUV6w6ocnSrAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABg4RfhaP78+WrVqpXCw8OVlJSkTz75xKP3/fe//1VwcLA6d+5ctQ0EAAA1hs/DUXp6uu666y5NmzZN2dnZ6tu3r4YMGaKcnJwy31dQUKDRo0frggsu8FJLAQBATeDzx4f06NFDXbt21YIFCxxl7du31xVXXKE5c+aU+r4RI0aoTZs2CgoK0qpVq7Rp0yaP58njQwAAqH68dfz26Zmj48ePa8OGDUpOTnYqT05O1vr160t937Jly/T9999r+vTpHs3n2LFjKiwsdPoBAABwx6fh6MCBAyoqKlJMTIxTeUxMjPLy8ty+Z8eOHZoyZYpWrFih4GDPHg03Z84cRUdHO36aN29+xm0HAACByedjjiTJZrM5/W6McSmTpKKiIo0cOVIzZ87UOeec4/H0p06dqoKCAsfP3r17z7jNAAAgMHl26qWKNGzYUEFBQS5nifLz813OJknS4cOH9dVXXyk7O1u33367JKm4uFjGGAUHB+v999/XwIEDXd4XFhamsLCwqlkIAAAQUHx65ig0NFRJSUnKyMhwKs/IyFDv3r1d6kdFRWnLli3atGmT4yc1NVVt27bVpk2b1KNHD281HQAABCifnjmSpMmTJ2vUqFHq1q2bevXqpcWLFysnJ0epqamS7F1iP/74o1544QXVqlVLiYmJTu9v3LixwsPDXcoBAAAqwufhaPjw4Tp48KBmzZqlffv2KTExUWvWrFF8fLwkad++fae95xEAAEBl8fl9jnyB+xwBAFD91Ij7HAEAAPgbwhEAAIAF4QgAAMCCcAQAAGBBOAICSW6ulJlpf0XNxrYAVBjhCAgUaWlSfLw0cKD9NS3N1y2Cr7AtAGeES/m5lB+BIDfXfhAsLv6zLChI2r1biovzWbPgA2wLCGBcyg/Aczt2OB8MJamoSNq50zftge+wLQBnjHAEBII2baRap+zOQUFSQoJv2gPfYVsAzhjhCAgEcXHS4sX2g6Bkf120iG6UmohtAThjjDlizBECSW6uvfskIYGDYU3HtoAA5K3jt88fPAugEsXFcSCEHdsCUGF0qwEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgC/F1urpSZaX8FKhvbF+CCcAT4s7Q0KT5eGjjQ/pqW5usWIZCwfQFu2YwxxteN8LbCwkJFR0eroKBAUVFRvm4O4F5urv2AVVz8Z1lQkLR7txQX57NmIUCwfaEa8tbxmzNHgL/ascP5wCVJRUXSzp2+aQ8CC9sXUCrCEeCv2rSRap2yiwYFSQkJvmkPAgvbF1AqwhHgr+LipMWL7Qcsyf66aBFdHqgcbF9AqRhzxJgj+LvcXHtXR0ICBy5UPrYvVCPeOn4HV9mUAVSOuDgOWqg6bF+AC7rVAAAALAhHAAAAFoQjAAAAC8IRAACARY0ekH3kyBEFlVzGCgAA/NqRI0e8Mp8aHY6aNm3q6yYAAAA/Q7caAACARY0+c/TTTz9xE0gAAKqJwsJCr/T61OhwFBkZqcjISF83AwAAeKCoqMgr86FbDQAAwIJwBAAAYEE4AnwlN1fKzLS/Av6O7RU1COEI8IW0NCk+Xho40P6alubrFgGlY3tFDWMzxhhfN8LbCgsLFR0drYKCAq5Wg/fl5toPMMXFf5YFBUm7d/N0dPgftlf4EW8dvzlzBHjbjh3OBxpJKiqSdu70TXuAsrC9ogYiHAHe1qaNVOuUXS8oSEpI8E17gLKwvaIGIhwB3hYXJy1ebD/ASPbXRYvoooB/YntFDcSYI8YcwVdyc+1dEwkJHGjg/9he4Qe8dfyu0XfIBnwqLo6DDKoPtlfUIHSrAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEVDaeXo6ajn0A1RzhCKhMPL0cNR37AAIAd8jmDtmoLDy9HDUd+wCqmLeO335x5mj+/Plq1aqVwsPDlZSUpE8++aTUum+88YYuuugiNWrUSFFRUerVq5fWrl3rxdYCpeDp5ajp2AcQIHwejtLT03XXXXdp2rRpys7OVt++fTVkyBDl5OS4rf/xxx/roosu0po1a7RhwwYNGDBAl156qbKzs73ccuAUPL0cNR37AAKEz7vVevTooa5du2rBggWOsvbt2+uKK67QnDlzPJpGhw4dNHz4cD344IMe1adbDVUmLU0aN87+v+WSp5ePHevrVgHewz6AKlQjHjx7/PhxbdiwQVOmTHEqT05O1vr16z2aRnFxsQ4fPqz69euXWufYsWM6duyY4/fCwsKKNRg4nbFjpUGDeHo5ai72AQQAn4ajAwcOqKioSDExMU7lMTExysvL82gaf//733XkyBENGzas1Dpz5szRzJkzz6itgMd4ejlqOvYBVHM+H3MkSTabzel3Y4xLmTsvv/yyZsyYofT0dDVu3LjUelOnTlVBQYHjZ+/evWfcZgAAEJh8euaoYcOGCgoKcjlLlJ+f73I26VTp6ekaO3asXn31VV144YVl1g0LC1NYWNgZtxcAAAQ+n545Cg0NVVJSkjIyMpzKMzIy1Lt371Lf9/LLL+vGG2/USy+9pIsvvriqmwkAAGoQn545kqTJkydr1KhR6tatm3r16qXFixcrJydHqampkuxdYj/++KNeeOEFSfZgNHr0aD3zzDPq2bOn46xTRESEoqOjfbYcAAAgMPg8HA0fPlwHDx7UrFmztG/fPiUmJmrNmjWKj4+XJO3bt8/pnkeLFi3SyZMnddttt+m2225zlKekpGj58uXebj5qktxc+03u2rRhsClQGdin4Kd8fp8jX+A+Ryi3tDTp1lvtd/+tVUtavJh7twBngn0KFeCt4zfhiHCE0+F5UUDlYp9CBdWoZ6sBfo3nRQGVi30Kfo5wBJwOz4sCKhf7FPwc4Qg4nbg4+3iIoCD77yXPi+L0P1Ax7FPwc4w5YswRPJWby/OigMrEPoVyqhEPngWqFZ4XBVQu9in4KbrVAAAALAhHQG6ulJlpfwXgf9hH4WWEI9RsaWn2+60MHGh/TUvzdYsAWLGPwgcYkM2A7JqLG9EB/o19FKfgJpBAVeNGdIB/Yx+FjxCOUHNxIzrAv7GPwkcIR6i5uBEd4N/YR+EjjDlizBG4ER3g39hH8f9xE0jgTOXm2scstGlT9hcqN6ID/Jun+6in+zxwGnSrITBx+S9Qs7DPoxLRrUa3WuDh8l+gZmGfrzG4lB+oKC7/BWoW9nlUMsIRAg+X/wI1C/s8KhnhCIGHy3+BmoV9HpWMMUeMOQpcXP4L1Czs8wGPS/mB0nCJPgB3uOQflYRuNVQvXK4L4EzwHQIP0K1Gt1r1weW6AM4E3yHVHpfyA6ficl0AZ4LvEHiIcITqg8t1AZwJvkPgIcIR/EdurpSZaX91h8t1AZyJ8n6HnO47CQGLMUeMOfIPaWnSrbfaT3nXqmX/Ahs71n1dLtcFcCY8+Q4pz3cSvMZbx2/CEeHI9xgkCcCf8J3ktxiQjZqDQZIA/AnfSTUe4QhV73T99gySBOBPyvudxNikgEM4QtXy5IZrDLQG4E/K853ETSUDEmOOGHNUdcrbb89AawD+5HTfSYxN8jqerYbqr6x+e3dfHDwLDYA/Od13Unm/41Bt0K2GivGkj52xRAACGWOTAhbhCOXnaR87Y4kABDLGJgUsxhwx5qh8KtLHzlgiAIGMsUlew5gj+EZurr0fvU0b9zttRfrYGUsEIJBVxdik030Xo0rRrYY/eXLal3FEAFA+5f3epAvO5whHNcXpBgLm5v75HCHJ/jpunGt9xhEBQPmU53vT0+9ia30GeVc6wlFN4Mn/Qspzu/yxY+195ZmZ9lcexggAZfP0e7M838WcYaoyDMgO9AHZng4EZMAgAPge39ll4sGz8MzpTql6+r8QussAwPc8/S4u78Nx6X4rF8JRdVbZA6jpLgMA3/Pku7g83+10v5Ub3Wr+2q12uss4y3NKNS3NPqCvqOjP/4UQfACgevPku70iz7j041sI0K0WqDw5tckAagDA6Xjy3V5VA7wDvJuOM0fePHOUlvbnJZq1atn7lSua8mvoYDwAQDlUxTHFk2NZFeHMUXVTWfcRYgA1AKCyVPYA7xpyHybC0el4uxuMAdQAgMpUmQO8a0g3HeGoLJ6sWE9TtKcbXnnPCMXFSf37c8YIAFC60x0rPD32eHosK88ZJj+8mq5mh6Mffyz9b77sBuOMEADA2zw59vi6m66s43YlCvbKXPxVhw7SP/9Z/hH+1o2gJEWfOoittG6wQYPs00hIKPtsD0+yBwB4myfHHk+OZZ4eGz091kr2M0q33OL5spyBmn3myJjSEyrdYAAAuOerbjovXWBfs8ORVPpAMrrBAACouKrupqtCNfs+R5KiTndvoNxcz7rBAABAxZzuWPv/78NUWFysaKnK73NUs8cc1ap1+nsDMfYHAICqdbpjbckZJuvg7SpUs88cbdumqPbtfd0cAADggcLt2xV97rncIbtKNWvm6xYAAABPeem4XbPDEQAAwCkIRwAAABaEIwAAAAvCEQAAgIVfhKP58+erVatWCg8PV1JSkj755JMy63/00UdKSkpSeHi4WrdurYULF3qppQAAIND5PBylp6frrrvu0rRp05Sdna2+fftqyJAhysnJcVt/165dGjp0qPr27avs7Gz97W9/08SJE/X66697ueUAACAQ+fw+Rz169FDXrl21YMECR1n79u11xRVXaM6cOS7177vvPr311lvavn27oyw1NVWbN29WVlaWR/N03Oeoiu+TAAAAKo+3jt8+PXN0/PhxbdiwQcnJyU7lycnJWr9+vdv3ZGVludQfNGiQvvrqK504caLK2goAAGoGnz4+5MCBAyoqKlJMTIxTeUxMjPLy8ty+Jy8vz239kydP6sCBA4qNjXV5z7Fjx3Ts2DHH7wUFBZLsCRQAAFQPJcftqu708otnq9lsNqffjTEuZaer7668xJw5czRz5kyX8ubNm5e3qQAAwMcOHjyo6OjoKpu+T8NRw4YNFRQU5HKWKD8/3+XsUIkmTZq4rR8cHKwGDRq4fc/UqVM1efJkx++HDh1SfHy8cnJyqvTD9TeFhYVq3ry59u7dW6PGWrHcLHdNwHKz3DVBQUGBWrRoofr161fpfHwajkJDQ5WUlKSMjAxdeeWVjvKMjAxdfvnlbt/Tq1cvvf32205l77//vrp166aQkBC37wkLC1NYWJhLeXR0dI3aqEpERUWx3DUIy12zsNw1S01d7lq1qnbItM8v5Z88ebKWLFmipUuXavv27Zo0aZJycnKUmpoqyX7WZ/To0Y76qamp2rNnjyZPnqzt27dr6dKlSktL0z333OOrRQAAAAHE52OOhg8froMHD2rWrFnat2+fEhMTtWbNGsXHx0uS9u3b53TPo1atWmnNmjWaNGmS5s2bp6ZNm+rZZ5/V1Vdf7atFAAAAAcTn4UiSJkyYoAkTJrj92/Lly13K+vXrp40bN1Z4fmFhYZo+fbrbrrZAxnKz3DUBy81y1wQsd9Uut89vAgkAAOBPfD7mCAAAwJ8QjgAAACwIRwAAABaEIwAAAIuADUcPP/ywevfurdq1a+uss87y6D3GGM2YMUNNmzZVRESE+vfvr61btzrVOXbsmO644w41bNhQkZGRuuyyy5Sbm1sFS1Axv/76q0aNGqXo6GhFR0dr1KhROnToUJnvsdlsbn+eeOIJR53+/fu7/H3EiBFVvDSeq8hy33jjjS7L1LNnT6c6gba+T5w4ofvuu08dO3ZUZGSkmjZtqtGjR+unn35yqudv63v+/Plq1aqVwsPDlZSUpE8++aTM+h999JGSkpIUHh6u1q1ba+HChS51Xn/9dZ177rkKCwvTueeeq5UrV1ZV8yusPMv9xhtv6KKLLlKjRo0UFRWlXr16ae3atU51li9f7nZfP3r0aFUvSrmUZ7nXrVvndpm+/fZbp3qBtr7dfX/ZbDZ16NDBUcff1/fHH3+sSy+9VE2bNpXNZtOqVatO+x6v7dsmQD344INm7ty5ZvLkySY6Otqj9zz66KOmbt265vXXXzdbtmwxw4cPN7GxsaawsNBRJzU11TRr1sxkZGSYjRs3mgEDBphOnTqZkydPVtGSlM/gwYNNYmKiWb9+vVm/fr1JTEw0l1xySZnv2bdvn9PP0qVLjc1mM99//72jTr9+/cwtt9ziVO/QoUNVvTgeq8hyp6SkmMGDBzst08GDB53qBNr6PnTokLnwwgtNenq6+fbbb01WVpbp0aOHSUpKcqrnT+v7lVdeMSEhIeaf//yn2bZtm7nzzjtNZGSk2bNnj9v6P/zwg6ldu7a58847zbZt28w///lPExISYl577TVHnfXr15ugoCDzyCOPmO3bt5tHHnnEBAcHm88++8xbi3Va5V3uO++80zz22GPmiy++MP/73//M1KlTTUhIiNm4caOjzrJly0xUVJTLPu9PyrvcmZmZRpL57rvvnJbJuo8G4vo+dOiQ0/Lu3bvX1K9f30yfPt1Rx9/X95o1a8y0adPM66+/biSZlStXllnfm/t2wIajEsuWLfMoHBUXF5smTZqYRx991FF29OhREx0dbRYuXGiMsW+MISEh5pVXXnHU+fHHH02tWrXMe++9V+ltL69t27YZSU4bQVZWlpFkvv32W4+nc/nll5uBAwc6lfXr18/ceeedldXUSlXR5U5JSTGXX355qX+vKev7iy++MJKcvoT9aX13797dpKamOpW1a9fOTJkyxW39//u//zPt2rVzKhs3bpzp2bOn4/dhw4aZwYMHO9UZNGiQGTFiRCW1+syVd7ndOffcc83MmTMdv3v6fehL5V3uknD066+/ljrNmrC+V65caWw2m9m9e7ejrDqs7xKehCNv7tsB261WXrt27VJeXp6Sk5MdZWFhYerXr5/Wr18vSdqwYYNOnDjhVKdp06ZKTEx01PGlrKwsRUdHq0ePHo6ynj17Kjo62uP27d+/X6tXr9bYsWNd/rZixQo1bNhQHTp00D333KPDhw9XWtvPxJks97p169S4cWOdc845uuWWW5Sfn+/4W01Y35L9QY42m82l+9kf1vfx48e1YcMGp3UgScnJyaUuY1ZWlkv9QYMG6auvvtKJEyfKrOMP61Wq2HKfqri4WIcPH3Z5QOdvv/2m+Ph4xcXF6ZJLLlF2dnaltftMnclyd+nSRbGxsbrggguUmZnp9LeasL7T0tJ04YUXOp4uUcKf13d5eXPf9os7ZPuDvLw8SVJMTIxTeUxMjPbs2eOoExoaqnr16rnUKXm/L+Xl5alx48Yu5Y0bN/a4fc8//7zq1q2rq666yqn8+uuvV6tWrdSkSRN98803mjp1qjZv3qyMjIxKafuZqOhyDxkyRNdee63i4+O1a9cuPfDAAxo4cKA2bNigsLCwGrG+jx49qilTpmjkyJFOD6/0l/V94MABFRUVud0vS1vGvLw8t/VPnjypAwcOKDY2ttQ6/rBepYot96n+/ve/68iRIxo2bJijrF27dlq+fLk6duyowsJCPfPMM+rTp482b96sNm3aVOoyVERFljs2NlaLFy9WUlKSjh07pn/961+64IILtG7dOv31r3+VVPo2ESjre9++fXr33Xf10ksvOZX7+/ouL2/u29UqHM2YMUMzZ84ss86XX36pbt26VXgeNpvN6XdjjEvZqTypcyY8XW7Jtf1S+dq3dOlSXX/99QoPD3cqv+WWWxz/TkxMVJs2bdStWzdt3LhRXbt29Wja5VXVyz18+HDHvxMTE9WtWzfFx8dr9erVLuGwPNM9U95a3ydOnNCIESNUXFys+fPnO/3NF+u7LOXdL93VP7W8Ivu6t1W0jS+//LJmzJihN9980ylA9+zZ0+migz59+qhr16567rnn9Oyzz1Zew89QeZa7bdu2atu2reP3Xr16ae/evXryyScd4ai80/SVirZx+fLlOuuss3TFFVc4lVeX9V0e3tq3q1U4uv322097xUzLli0rNO0mTZpIsifT2NhYR3l+fr4jhTZp0kTHjx/Xr7/+6nQ2IT8/X717967QfD3h6XJ//fXX2r9/v8vffv75Z5ck7c4nn3yi7777Tunp6aet27VrV4WEhGjHjh1VdrD01nKXiI2NVXx8vHbs2CEpsNf3iRMnNGzYMO3atUsffvih01kjd7yxvt1p2LChgoKCXP7XZ90vT9WkSRO39YODg9WgQYMy65Rne6lKFVnuEunp6Ro7dqxeffVVXXjhhWXWrVWrls4//3zHNu9rZ7LcVj179tSLL77o+D2Q17cxRkuXLtWoUaMUGhpaZl1/W9/l5dV9u1wjlKqh8g7Ifuyxxxxlx44dczsgOz093VHnp59+8rsBup9//rmj7LPPPvN4gG5KSorLVUul2bJli5FkPvroowq3t7Kc6XKXOHDggAkLCzPPP/+8MSZw1/fx48fNFVdcYTp06GDy8/M9mpcv13f37t3N+PHjncrat29f5oDs9u3bO5Wlpqa6DNocMmSIU53Bgwf73QDd8iy3Mca89NJLJjw8/LQDW0sUFxebbt26mTFjxpxJUytVRZb7VFdffbUZMGCA4/dAXd/G/DkgfcuWLaedhz+u7xLycEC2t/btgA1He/bsMdnZ2WbmzJmmTp06Jjs722RnZ5vDhw876rRt29a88cYbjt8fffRREx0dbd544w2zZcsWc91117m9lD8uLs588MEHZuPGjWbgwIF+d2n3eeedZ7KyskxWVpbp2LGjy6Xdpy63McYUFBSY2rVrmwULFrhMc+fOnWbmzJnmyy+/NLt27TKrV6827dq1M126dKm2y3348GFz9913m/Xr15tdu3aZzMxM06tXL9OsWbOAXt8nTpwwl112mYmLizObNm1yurz32LFjxhj/W98llzinpaWZbdu2mbvuustERkY6rsqZMmWKGTVqlKN+yeW+kyZNMtu2bTNpaWkul/v+97//NUFBQebRRx8127dvN48++qjfXtrt6XK/9NJLJjg42MybN6/UWzDMmDHDvPfee+b777832dnZZsyYMSY4ONgpYPtaeZf7qaeeMitXrjT/+9//zDfffGOmTJliJJnXX3/dUScQ13eJG264wfTo0cPtNP19fR8+fNhxbJZk5s6da7Kzsx1Xzvpy3w7YcJSSkmIkufxkZmY66kgyy5Ytc/xeXFxspk+fbpo0aWLCwsLMX//6V5c0/scff5jbb7/d1K9f30RERJhLLrnE5OTkeGmpTu/gwYPm+uuvN3Xr1jV169Y1119/vcslrqcutzHGLFq0yERERLi9l01OTo7561//aurXr29CQ0PN2WefbSZOnOhyTyBfKu9y//777yY5Odk0atTIhISEmBYtWpiUlBSXdRlo63vXrl1u9wvrvuGP63vevHkmPj7ehIaGmq5duzqdwUpJSTH9+vVzqr9u3TrTpUsXExoaalq2bOk29L/66qumbdu2JiQkxLRr187pYOovyrPc/fr1c7teU1JSHHXuuusu06JFCxMaGmoaNWpkkpOTzfr16724RJ4pz3I/9thj5uyzzzbh4eGmXr165i9/+YtZvXq1yzQDbX0bYz+7HRERYRYvXux2ev6+vkvOepW2zfpy37YZ8/9HMwEAACBwHx8CAABQEYQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhGAgDJr1ix17NhRkZGRiomJ0fjx43XixAlfNwtANRLs6wYAQGUxxqioqEiLFi1Ss2bNtG3bNo0ePVrnnXeexo8f7+vmAagmePAsgIA2cuRINWrUSM8884yvmwKgmqBbDUDA2LNnj26//XYlJiaqXr16qlOnjv79738rLi7O100DUI0QjgAEhAMHDqh79+46cOCA5s6dq08//VRZWVkKCgpS586dfd08ANUIY44ABIQ1a9bo5MmTevnll2Wz2SRJ8+bN0/HjxwlHAMqFcAQgINSvX1+FhYV66623dO655+rtt9/WnDlz1KxZMzVq1MjXzQNQjTAgG0BAMMZo/PjxeumllxQREaEbbrhBR48e1Z49e/TOO+/4unkAqhHCEQAAgAUDsgEAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACAxf8DexIzr7yNeFYAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDuElEQVR4nO3dd3hUVeL/8c+QTkgiNYQEAhgEJAgSlrosRQ1FsAuIUhSVYEFBd4UvKmVRbAuWpS4BdEXMKmADS1wD6hIbBBvoggIhSoiwkiBKS87vj/llvMNMwiQkM5PJ+/U8eYacnJl7bpv74Z5z77UZY4wAAAAgSarj6wYAAAD4E8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhFqtB9//FEzZ87Utm3bXP42btw41atXr9KffeLECaWlpSkuLk5BQUHq3Llz5RtaBRYuXKiVK1e6lO/Zs0c2m83t3wKJzWbTzJkzfd2MKjFz5kzZbLZqf+8zzzyjpKQkhYaGymaz6fDhwxo3bpxatmzpVO/hhx/WK6+8Uqn2lOd///ufRo4cqSZNmshms+mKK66o8Ge0bNlS48aNq/K2+Zv7779fQ4cOVXx8vGw2W62YZ39GOEKN9uOPP2rWrFluw9HZWrRokZYsWaLp06frww8/1D//+c8qn0ZFlBWO4uLilJ2drUsvvdT7jUKl3HzzzcrOzq7WaWzbtk2TJk1S//799d577yk7O1tRUVF64IEHtG7dOqe61RWO/vrXv2rdunWaP3++srOz9dhjj1X5NALF/PnzdejQIV122WUKDQ31dXNqvWBfNwDwV1999ZUiIiJ0xx13+Lop5QoLC1OPHj183QxUQEJCghISEqp1Gl9//bUk6ZZbblG3bt0c5eeee261Ttfqq6++0rnnnqvrr7/ea9OsKr/++qvq1q3rtekdOXJEderYz1f4+j9i4MwRLH766Sfdeuutat68ucLCwtS4cWP17t1b7777rqNOv379lJycrOzsbPXq1UsRERFq2bKlVqxYIUlav369unTporp166pjx4566623XKbz4Ycf6qKLLlJUVJTq1q2rXr16af369S71vvrqK11++eWqX7++wsPD1blzZz377LOOv2/cuFF/+MMfJEk33nijbDab266XXbt2aciQIapXr56aN2+ue+65R8ePHy93WdhsNi1btky//fab43NXrlxZbhfW6dMu7f74+uuvdd111ykmJkaxsbG66aabVFhY6PTekpISPfPMM+rcubMiIiJ0zjnnqEePHnrttdck2bsWvv76a23atMnRntKukbLa5MlyXrlypWw2m7KysjRx4kQ1atRIDRs21FVXXaUff/yx3GVUnpYtW2ro0KFat26dLrjgAoWHh6t169Z6+umnXerm5ubqhhtuUJMmTRQWFqb27dvrb3/7m0pKSsr8/D179ig4OFhz5851+dv7778vm82ml156SVLF1sOxY8c0bdo0tWrVSqGhoYqPj9ftt9+uw4cPu52/N954QxdeeKEiIiLUvn17vfHGG5Lsy7V9+/aKjIxUt27d9Nlnnzm9313XWEZGhlJTUxUXF+f4vKlTp+ro0aNlL+gy9OvXTzfccIMkqXv37k7dNKd3q9lsNh09elTPPvusY9vq169fuZ//v//9T7fddpvi4+MVGhqq1q1ba/r06Y79qnSbfPfdd7Vjxw7H527cuLHMzzx58qT+8pe/qGnTpqpbt67++Mc/6pNPPnFbNz8/XxMmTFBCQoJCQ0PVqlUrzZo1S6dOnXKql5eXp2uuuUZRUVE655xzdP311+vTTz912V9Ku+C//PJLpaamKioqShdddJEke/f6nDlz1K5dO8f34o033qiffvrJpV0ZGRnq2bOnIiMjVa9ePQ0cOFA5OTnlLstSpcEIfsIA/9/AgQNN48aNzdKlS83GjRvNK6+8Yh588EHz4osvOur07dvXNGzY0LRt29akp6ebt99+2wwdOtRIMrNmzTIdO3Y0q1evNhs2bDA9evQwYWFh5ocffnC8f+PGjSYkJMSkpKSYjIwM88orr5jU1FRjs9mcpvPNN9+YqKgoc+6555rnnnvOrF+/3lx33XVGknn00UeNMcYUFhaaFStWGEnm/vvvN9nZ2SY7O9vs27fPGGPM2LFjTWhoqGnfvr154oknzLvvvmsefPBBY7PZzKxZs8pdFtnZ2WbIkCEmIiLC8bkFBQVm9+7dRpJZsWKFy3skmRkzZjh+nzFjhpFk2rZtax588EGTmZlp5s2bZ8LCwsyNN97o9N7Ro0cbm81mbr75ZvPqq6+aN9980zz00EPmqaeeMsYYs3XrVtO6dWtz4YUXOtqzdetWY4xx2yZPl3Pp8mvdurW58847zdtvv22WLVtm6tevb/r37+/UxtK67ub9dImJiSY+Pt60aNHCLF++3GzYsMFcf/31RpJ5/PHHHfUKCgpMfHy8ady4sVm8eLF56623zB133GEkmYkTJ5a7fK+88krTokULc+rUKad61157rWnWrJk5efJkhdZDSUmJGThwoAkODjYPPPCAeeedd8wTTzxhIiMjzYUXXmiOHTvmNH8JCQkmOTnZsb13797dhISEmAcffND07t3brF271qxbt86cd955JjY21vz666+O95e2yeqvf/2rmT9/vlm/fr3ZuHGjWbx4sWnVqpXLenD33tN9/fXX5v7773esr+zsbLNr1y5jjH2/SExMdNTNzs42ERERZsiQIY5t6+uvvy7zs3/77TdzwQUXmMjISPPEE0+Yd955xzzwwAMmODjYDBkyxBhjzLFjx0x2dra58MILTevWrR2fW1hYWObnjh071thsNvPnP//ZvPPOO2bevHkmPj7eREdHm7Fjxzrq7d+/3zRv3twkJiaaJUuWmHfffdf89a9/NWFhYWbcuHGOer/88otJSkoyDRo0MAsWLDBvv/22mTx5smnVqpXLdjx27FgTEhJiWrZsaebOnWv+/e9/m7ffftsUFxebQYMGmcjISDNr1iyTmZlpli1bZuLj483555/vtE4feughY7PZzE033WTeeOMNs3btWtOzZ08TGRlZ7vJ0JzIy0mme4X2EIzjUq1fP3H333eXW6du3r5FkPvvsM0fZoUOHTFBQkImIiHAKQtu2bTOSzNNPP+0o69Gjh2nSpIk5cuSIo+zUqVMmOTnZJCQkmJKSEmOMMSNHjjRhYWEmNzfXafqDBw82devWNYcPHzbGGPPpp5+WecAeO3askWT+9a9/OZUPGTLEtG3b9gxLw/7+yMhIp7LKhKPHHnvMqd5tt91mwsPDHfP6/vvvG0lm+vTp5banQ4cOpm/fvi7l7trk6XIuDTy33Xab02c+9thjRpLZv3+/o+zZZ581QUFB5tlnny23ncbYw4PNZjPbtm1zKr/kkktMdHS0OXr0qDHGmKlTpxpJ5uOPP3aqN3HiRGOz2cy3337rKDt9+WZlZRlJZt26dY6yH374wQQHBzuFX0/Xw1tvveW2XkZGhpFkli5d6jR/ERERJi8vz1FWur3HxcU55s8YY1555RUjybz22msubSpLSUmJOXnypNm0aZORZD7//HOP31uqdN1++umnTuWnhyNjKnYwXrx4sdv96tFHHzWSzDvvvOMo69u3r+nQocMZP3PHjh1Gkpk8ebJT+apVq4wkp7ZNmDDB1KtXz+zdu9ep7hNPPGEkOYLIggULjCTz5ptvOtWbMGGC23AkySxfvtyp7urVq40ks2bNGqfy0u+dhQsXGmOMyc3NNcHBwebOO+90qnfkyBHTtGlTM3z48DMuAyvCke9xHg8O3bp108qVKzVnzhx99NFHOnnypNt6cXFxSklJcfzeoEEDNWnSRJ07d1azZs0c5e3bt5ck7d27V5J09OhRffzxx7rmmmucriILCgrS6NGjlZeXp2+//VaS9N577+miiy5S8+bNnaY9btw4/frrrx4PZrXZbBo2bJhT2QUXXOBokzdcdtllLtM/duyYCgoKJElvvvmmJOn222+vkulVZDmX10ZJTstpzJgxOnXqlMaMGeNROzp06KBOnTo5lY0aNUpFRUXaunWrJPt6Pv/8853GxEj29WyM0XvvvVfm5/fr10+dOnXSggULHGWLFy+WzWbTrbfe6lL/TOuhdFqnXyV07bXXKjIyUv/+97+dyjt37qz4+HjH76Xbe79+/ZzGqpy+H5Tl+++/16hRo9S0aVMFBQUpJCREffv2lSTt2LGj3Pd603vvvafIyEhdc801TuWly+305eSJrKwsSXIZmzR8+HAFBzsPjX3jjTfUv39/NWvWTKdOnXL8DB48WJK0adMmx2tUVJQGDRrk9P7rrruuzHZcffXVLtM655xzNGzYMKdpde7cWU2bNnV0E7799tuOfcNaLzw8XH379i23OxH+iQHZcMjIyNCcOXO0bNkyPfDAA6pXr56uvPJKPfbYY2ratKmjXoMGDVzeGxoa6lJeesXFsWPHJEk///yzjDGKi4tzeX9pqDp06JDj1ZN6Z1K3bl2Fh4c7lYWFhTna5A0NGzZ0mb4k/fbbb5LsY72CgoKclvHZqMhy9rSNleFufkrLrOv59MvKy2vn6SZNmqSbb75Z3377rVq3bq1//OMfuuaaa9xO+0zzeOjQIQUHB6tx48ZO9Ww2m5o2berSlrK29zPtB+788ssv6tOnj8LDwzVnzhydd955qlu3rvbt26errrrqrNZDVTt06JCaNm3qMmaqSZMmCg4O9njfPP0zJddtJjg42GW9HThwQK+//rpCQkLcftbBgwcdnxkbG+vyd3dlkv27Ijo62mVahw8fLvPqsdJpHThwQJIcYyBPx3iimodwBIdGjRrpySef1JNPPqnc3Fy99tprmjp1qgoKCtwOrK6o+vXrq06dOtq/f7/L30oH/zZq1EiS/UDmST1vKw1apw/orswBoVTjxo1VXFys/Px8t4GmoiqynKtTfn5+mWWlB7yzXc+jRo3SfffdpwULFqhHjx7Kz8+v9Bm4hg0b6tSpU/rpp5+cApIxRvn5+WUe+KrCe++9px9//FEbN250nC2S5DIQ3B80bNhQH3/8sYwxTgGpoKBAp06dqtS2Vbo95OfnO52NO3XqlMu+1ahRI11wwQV66KGH3H5WabBu2LCh2wHd7rZLSW7vHVV6gUJZ339RUVGOepL08ssvKzEx0W1d1CzEWbjVokUL3XHHHbrkkkscXSBnKzIyUt27d9fatWud/idcUlKi559/XgkJCTrvvPMkSRdddJHjgGH13HPPqW7duo5L16viDEdFxMbGKjw8XF988YVT+auvvlrpzyztDli0aFG59cLCwjyaz4os5+r09ddf6/PPP3cqe+GFFxQVFaUuXbpIsq/n7du3u2xjzz33nGw2m/r371/uNMLDw3Xrrbfq2Wef1bx589S5c2f17t27Uu0tvTrp+eefdypfs2aNjh496vh7dSg9MJduz6WWLFlSbdO08nTbkuzL6ZdffnG5L9Jzzz3n+HtFlV4dt2rVKqfyf/3rXy5XoA0dOtRxi4CuXbu6/JSGo759++rIkSOObutSL774osftGjp0qA4dOqTi4mK302rbtq0kaeDAgQoODtZ3333ntl7Xrl0rukjgY5w5giSpsLBQ/fv316hRo9SuXTtFRUXp008/1VtvvaWrrrqqyqYzd+5cXXLJJerfv7/uvfdehYaGauHChfrqq6+0evVqx0FixowZjrEFDz74oBo0aKBVq1Zp/fr1euyxxxQTEyPJfs+WiIgIrVq1Su3bt1e9evXUrFkzp7FPVclms+mGG27Q8uXLde6556pTp0765JNP9MILL1T6M/v06aPRo0drzpw5OnDggIYOHaqwsDDl5OSobt26uvPOOyVJHTt21IsvvqiMjAy1bt1a4eHh6tixo9vP9HQ5V8Rzzz2nm266ScuXL/do3FGzZs102WWXaebMmYqLi9Pzzz+vzMxMPfroo44xOZMnT9Zzzz2nSy+9VLNnz1ZiYqLWr1+vhQsXauLEiR6FuNtuu02PPfaYtmzZomXLllV4vkpdcsklGjhwoO677z4VFRWpd+/e+uKLLzRjxgxdeOGFGj16dKU/+0x69eql+vXrKy0tTTNmzFBISIhWrVrlEi6rS8eOHbVx40a9/vrriouLU1RUlOPAf7oxY8ZowYIFGjt2rPbs2aOOHTvqww8/1MMPP6whQ4bo4osvrvD027dvrxtuuEFPPvmkQkJCdPHFF+urr77SE0884dLVNXv2bGVmZqpXr16aNGmS2rZtq2PHjmnPnj3asGGDFi9erISEBI0dO1bz58/XDTfcoDlz5igpKUlvvvmm3n77bUmedXWNHDlSq1at0pAhQ3TXXXepW7duCgkJUV5enrKysnT55ZfryiuvVMuWLTV79mxNnz5d33//vQYNGqT69evrwIED+uSTTxQZGalZs2aVO61NmzY5bg9QXFysvXv36uWXX5ZkD3qnd/eimvl0ODj8xrFjx0xaWpq54IILTHR0tImIiDBt27Y1M2bMcLrypqyrTxITE82ll17qUi7J3H777U5lH3zwgRkwYICJjIw0ERERpkePHub11193ee+XX35phg0bZmJiYkxoaKjp1KmT26vEVq9ebdq1a2dCQkKcrmhyd7WZMZ5f7VPW+wsLC83NN99sYmNjTWRkpBk2bJjZs2dPmVer/fTTT07vL72KaPfu3Y6y4uJiM3/+fJOcnGxCQ0NNTEyM6dmzp9Ny2bNnj0lNTTVRUVFGkuOKo7KuoPNkOZd1RVPplWBZWVkudT29lP/SSy81L7/8sunQoYMJDQ01LVu2NPPmzXOpu3fvXjNq1CjTsGFDExISYtq2bWsef/xxU1xc7FTv9OVr1a9fP9OgQQOnS6tLVWQ9/Pbbb+a+++4ziYmJJiQkxMTFxZmJEyean3/+2e38nc7d9l66fqy3MHC3DW7evNn07NnT1K1b1zRu3NjcfPPNZuvWrS7LvDquVtu2bZvp3bu3qVu3rpHk9qpIq0OHDpm0tDQTFxdngoODTWJiopk2bZrT7Q6M8fxqNWOMOX78uLnnnntMkyZNTHh4uOnRo4fJzs42iYmJLldu/fTTT2bSpEmmVatWJiQkxDRo0MCkpKSY6dOnm19++cVRLzc311x11VWmXr16Jioqylx99dVmw4YNRpJ59dVXnZaJu33dGGNOnjxpnnjiCdOpUycTHh5u6tWrZ9q1a2cmTJhgdu7c6VT3lVdeMf379zfR0dEmLCzMJCYmmmuuuca8++67Z5z/0iuB3f1Y90N4h80YY7wTwwDUFi1btlRycrLjpojVqaCgQImJibrzzjt5PAXO6OGHH9b999+v3Nzcar9LOWouutUA1Eh5eXn6/vvv9fjjj6tOnTq66667fN0k+Jm///3vkqR27drp5MmTeu+99/T000/rhhtuIBihXIQjADXSsmXLNHv2bLVs2VKrVq1yusoJkOyX58+fP1979uzR8ePH1aJFC9133326//77fd00+Dm61QAAACx8fin/+++/r2HDhqlZs2ay2Wwul4e6s2nTJqWkpDgeZrl48eLqbygAAKgVfB6Ojh49qk6dOjn6hs9k9+7dGjJkiPr06aOcnBz93//9nyZNmqQ1a9ZUc0sBAEBt4FfdajabTevWrdMVV1xRZp377rtPr732mtOzhtLS0vT55597/LwtAACAstS4AdnZ2dlKTU11Khs4cKDS09N18uRJt8/bOX78uNPjHkpKSvS///1PDRs2rNTN8AAAgPcZY3TkyBE1a9asWp9ZV+PCUX5+vsuDA2NjY3Xq1CkdPHjQ7bOp5s6de8a7kwIAgJph37591Xo7hhoXjiTXBwSW9gyWdRZo2rRpmjJliuP3wsJCtWjRQvv27XO5NT2AGuSHH6TvvpPOPVcq71J+T+sB8GtFRUVq3ry546G/1aXGhaOmTZu6PFW5oKBAwcHBjic7ny4sLMzlgY6SFB0dTTgCaqr0dOnWW6WSEqlOHWnpUmn8+MrXA1BjVPeQGJ9frVZRPXv2VGZmplPZO++8o65du7odbwQgAOXl/R54JPvrhAn28srUAwALn4ejX375Rdu2bdO2bdsk2S/V37Ztm3JzcyXZu8SsTwBPS0vT3r17NWXKFO3YsUPLly9Xenq67r33Xl80H4Av7Nz5e+ApVVws7dpVuXoAYOHzbrXPPvtM/fv3d/xeOjZo7NixWrlypfbv3+8ISpLUqlUrbdiwQZMnT9aCBQvUrFkzPf3007r66qu93nYAPtKmjb2LzBp8goKkpKTK1QMAC7+6z5G3FBUVKSYmRoWFhYw5Amqq9HR7F1lxsT3wLFlS9pgjT+oB8HveOn4TjghHQM2Vl2fvIktKksq7rNfTegD8mreO3z7vVgOASktI8CzseFoPAOQHA7IBAAD8CeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAfA/eXlSVpb9tTZNG4BfIBwB8C/p6VJiojRggP01Pb12TBuA37AZY4yvG+FtRUVFiomJUWFhoaKjo33dHACl8vLsoaSk5PeyoCBpzx4pISFwpw3AI946fnPmCID/2LnTOZxIUnGxtGtXYE8bgF8hHAHwH23aSHVO+1oKCpKSkgJ72gD8CuEIgP9ISJCWLrWHEsn+umSJd7q1fDltAH6FMUeMOQL8T16evTsrKcn74cSX0wZQLm8dv4Or7ZMBoLISEnwXTHw5bQB+gW41AAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALvwhHCxcuVKtWrRQeHq6UlBR98MEH5dZftWqVOnXqpLp16youLk433nijDh065KXWAgCAQObzcJSRkaG7775b06dPV05Ojvr06aPBgwcrNzfXbf0PP/xQY8aM0fjx4/X111/rpZde0qeffqqbb77Zyy0HAACByOfhaN68eRo/frxuvvlmtW/fXk8++aSaN2+uRYsWua3/0UcfqWXLlpo0aZJatWqlP/7xj5owYYI+++wzL7ccAAAEIp+GoxMnTmjLli1KTU11Kk9NTdXmzZvdvqdXr17Ky8vThg0bZIzRgQMH9PLLL+vSSy8tczrHjx9XUVGR0w8AH8jLk7Ky7K81XSDNCwAnPg1HBw8eVHFxsWJjY53KY2NjlZ+f7/Y9vXr10qpVqzRixAiFhoaqadOmOuecc/TMM8+UOZ25c+cqJibG8dO8efMqnQ8AHkhPlxITpQED7K/p6b5uUeUF0rwAcOHzbjVJstlsTr8bY1zKSm3fvl2TJk3Sgw8+qC1btuitt97S7t27lZaWVubnT5s2TYWFhY6fffv2VWn7AZxBXp50661SSYn995ISacKEmnnWJZDmBYBbwb6ceKNGjRQUFORylqigoMDlbFKpuXPnqnfv3vrzn/8sSbrgggsUGRmpPn36aM6cOYqLi3N5T1hYmMLCwqp+BgB4ZufO38NEqeJiadcuKSHBN22qrECaFwBu+fTMUWhoqFJSUpSZmelUnpmZqV69erl9z6+//qo6dZybHRQUJMl+xgmAH2rTRjptv1VQkJSU5Jv2nI1AmhcAbvm8W23KlClatmyZli9frh07dmjy5MnKzc11dJNNmzZNY8aMcdQfNmyY1q5dq0WLFun777/Xf/7zH02aNEndunVTs2bNfDUbAMqTkCAtXWoPEZL9dcmSmnmmJZDmBYBbPu1Wk6QRI0bo0KFDmj17tvbv36/k5GRt2LBBiYmJkqT9+/c73fNo3LhxOnLkiP7+97/rnnvu0TnnnKMBAwbo0Ucf9dUsAPDE+PHSwIH27qekpJodJgJpXgC4sJla2BdVVFSkmJgYFRYWKjo62tfNAQAAHvDW8dvn3WoAAAD+hHAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBODs5eVJWVn2Vzhj2QA1DuEIwNlJT5cSE6UBA+yv6em+bpH/YNkANZLNGGN83QhvKyoqUkxMjAoLCxUdHe3r5gA1V16e/aBfUvJ7WVCQtGePlJDgs2b5BZYNUOW8dfzmzBGAytu50/ngL0nFxdKuXb5pjz9h2QA1FuEIQOW1aSPVOe1rJChISkryTXv8CcsGqLEIRwAqLyFBWrrUftCX7K9LltBtJLFsgBqMMUeMOQLOXl6evbsoKYmD/+lYNkCV8dbxO7jaPhlA7ZGQwIG/LCwboMahWw0AAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFn4RjhYuXKhWrVopPDxcKSkp+uCDD8qtf/z4cU2fPl2JiYkKCwvTueeeq+XLl3uptQAAIJAF+7oBGRkZuvvuu7Vw4UL17t1bS5Ys0eDBg7V9+3a1aNHC7XuGDx+uAwcOKD09XUlJSSooKNCpU6e83HIAABCIbMYY48sGdO/eXV26dNGiRYscZe3bt9cVV1yhuXPnutR/6623NHLkSH3//fdq0KBBpaZZVFSkmJgYFRYWKjo6utJtBwAA3uOt47dPu9VOnDihLVu2KDU11ak8NTVVmzdvdvue1157TV27dtVjjz2m+Ph4nXfeebr33nv122+/lTmd48ePq6ioyOkHAADAHZ92qx08eFDFxcWKjY11Ko+NjVV+fr7b93z//ff68MMPFR4ernXr1ungwYO67bbb9L///a/McUdz587VrFmzqrz9AAAg8PjFgGybzeb0uzHGpaxUSUmJbDabVq1apW7dumnIkCGaN2+eVq5cWebZo2nTpqmwsNDxs2/fviqfBwAAEBh8euaoUaNGCgoKcjlLVFBQ4HI2qVRcXJzi4+MVExPjKGvfvr2MMcrLy1ObNm1c3hMWFqawsLCqbTwAAAhIPj1zFBoaqpSUFGVmZjqVZ2ZmqlevXm7f07t3b/3444/65ZdfHGX//e9/VadOHSUkJFRrewEAQODzebfalClTtGzZMi1fvlw7duzQ5MmTlZubq7S0NEn2LrExY8Y46o8aNUoNGzbUjTfeqO3bt+v999/Xn//8Z910002KiIjw1WwAAIAA4fP7HI0YMUKHDh3S7NmztX//fiUnJ2vDhg1KTEyUJO3fv1+5ubmO+vXq1VNmZqbuvPNOde3aVQ0bNtTw4cM1Z84cX80CAAAIID6/z5EvcJ8jAABqnlpxnyMAAAB/QzgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgCULS9Pysqyv6J6sawBv0E4AuBeerqUmCgNGGB/TU/3dYsCF8sa8Cs2Y4zxdSO8zVtP9QVqrLw8+0G6pOT3sqAgac8eKSHBZ80KSCxrwGPeOn5z5giAq507nQ/WklRcLO3a5Zv2BDKWNeB3CEcAXLVpI9U57eshKEhKSvJNewIZyxrwO4QjAK4SEqSlS+0Hacn+umQJ3TzVgWUN+B3GHDHmCChbXp69eycpiYN1dWNZA2fkreN3cLV9MoCaLyGBA7W3sKwBv0G3GgAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFmcVjgoKCpSfn19VbQEAAPC5SoWjL774Qh06dFBcXJzi4+MVHx+v+++/X0ePHq3q9gEAAHhVpcLR+PHjFRsbqw8//FA5OTmaM2eO3nzzTXXt2lU///xzVbcRAADAayr1bLXIyEht2bJF7dq1c5QZY3TttdcqPDxczz//fJU2sqrxbDUAAGoev362mrszRDabTQ8//LBSUlKqpGEAAAC+4HE4uvTSS9WpUyd17txZaWlpmjx5sl599VXFxsY66hQWFqp+/frV0lAAAABv8DgcdezYUVu3btWKFSt04MABSVLr1q01fPhwde7cWcXFxVqxYoXmz59fbY0FAACobpUac3TgwAHl5ORo27Ztjp9du3YpKChIbdu21RdffFEdba0yjDkCAKDm8esxR7GxsRo0aJAGDRrkKPvtt9/0+eef6/PPP6+yxgEAAHhbpc4c1XScOQIAoObx1vGbx4cAAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEVAb5eVJWVn2V9QsrDug2hGOgNomPV1KTJQGDLC/pqf7ukXwFOsO8AqbMcb4uhHeVlRUpJiYGBUWFio6OtrXzQG8Jy/PflAtKfm9LChI2rNHSkjwWbPgAdYd4LXjN2eOgNpk507ng6skFRdLu3b5pj3wHOsO8BrCEVCbtGkj1Tlttw8KkpKSfNMeeI51B3gN4QioTRISpKVL7QdVyf66ZAndMjUB6w7wGsYcMeYItVFenr07JimJg2tNw7pDLeat43dwtX0yAP+VkMCBtaZi3QHVjm41AAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAs/CIcLVy4UK1atVJ4eLhSUlL0wQcfePS+//znPwoODlbnzp2rt4EAAKDW8Hk4ysjI0N13363p06crJydHffr00eDBg5Wbm1vu+woLCzVmzBhddNFFXmopAACoDXz++JDu3burS5cuWrRokaOsffv2uuKKKzR37twy3zdy5Ei1adNGQUFBeuWVV7Rt2zaPp8njQwAAqHm8dfz26ZmjEydOaMuWLUpNTXUqT01N1ebNm8t834oVK/Tdd99pxowZHk3n+PHjKioqcvoBAABwx6fh6ODBgyouLlZsbKxTeWxsrPLz892+Z+fOnZo6dapWrVql4GDPHg03d+5cxcTEOH6aN29+1m0HAACByedjjiTJZrM5/W6McSmTpOLiYo0aNUqzZs3Seeed5/HnT5s2TYWFhY6fffv2nXWbAQBAYPLs1Es1adSokYKCglzOEhUUFLicTZKkI0eO6LPPPlNOTo7uuOMOSVJJSYmMMQoODtY777yjAQMGuLwvLCxMYWFh1TMTAAAgoPj0zFFoaKhSUlKUmZnpVJ6ZmalevXq51I+OjtaXX36pbdu2OX7S0tLUtm1bbdu2Td27d/dW0wEAQIDy6ZkjSZoyZYpGjx6trl27qmfPnlq6dKlyc3OVlpYmyd4l9sMPP+i5555TnTp1lJyc7PT+Jk2aKDw83KUcAACgMnwejkaMGKFDhw5p9uzZ2r9/v5KTk7VhwwYlJiZKkvbv33/Gex4BAABUFZ/f58gXuM8RAAA1T624zxEAAIC/IRwBAABYEI4AAAAsCEcAAAAWhCMgkOTlSVlZ9lfUbmwLQKURjoBAkZ4uJSZKAwbYX9PTfd0i+ArbAnBWuJSfS/kRCPLy7AfBkpLfy4KCpD17pIQEnzULPsC2gADGpfwAPLdzp/PBUJKKi6Vdu3zTHvgO2wJw1ghHQCBo00aqc9ruHBQkJSX5pj3wHbYF4KwRjoBAkJAgLV1qPwhK9tclS+hGqY3YFoCzxpgjxhwhkOTl2btPkpI4GNZ2bAsIQN46fvv8wbMAqlBCAgdC2LEtAJVGtxoAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjwN/l5UlZWfZXoKqxfQEuCEeAP0tPlxITpQED7K/p6b5uEQIJ2xfgls0YY3zdCG8rKipSTEyMCgsLFR0d7evmAO7l5dkPWCUlv5cFBUl79kgJCT5rFgIE2xdqIG8dvzlzBPirnTudD1ySVFws7drlm/YgsLB9AWUiHAH+qk0bqc5pu2hQkJSU5Jv2ILCwfQFlIhwB/iohQVq61H7AkuyvS5bQ5YGqwfYFlIkxR4w5gr/Ly7N3dSQlceBC1WP7Qg3ireN3cLV9MoCqkZDAQQvVh+0LcEG3GgAAgAXhCAAAwIJwBAAAYEE4AgAAsKjVA7KPHj2qoNLLWAEAgF87evSoV6ZTq8NRs2bNfN0EAADgZ+hWAwAAsKjVZ45+/PFHbgIJAEANUVRU5JVen1odjiIjIxUZGenrZgAAAA8UFxd7ZTp0qwEAAFgQjgAAACwIR4Cv5OVJWVn2V8Dfsb2iFiEcAb6Qni4lJkoDBthf09N93SKgbGyvqGVsxhjj60Z4W1FRkWJiYlRYWMjVavC+vDz7Aaak5PeyoCBpzx6ejg7/w/YKP+Kt4zdnjgBv27nT+UAjScXF0q5dvmkPUB62V9RChCPA29q0keqctusFBUlJSb5pD1AetlfUQoQjwNsSEqSlS+0HGMn+umQJXRTwT2yvqIUYc8SYI/hKXp69ayIpiQMN/B/bK/yAt47ftfoO2YBPJSRwkEHNwfaKWoRuNQAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOgKrG08tR27EPoIYjHAFViaeXo7ZjH0AA4A7Z3CEbVYWnl6O2Yx9ANfPW8dsvzhwtXLhQrVq1Unh4uFJSUvTBBx+UWXft2rW65JJL1LhxY0VHR6tnz556++23vdhaoAw8vRy1HfsAAoTPw1FGRobuvvtuTZ8+XTk5OerTp48GDx6s3Nxct/Xff/99XXLJJdqwYYO2bNmi/v37a9iwYcrJyfFyy4HT8PRy1HbsAwgQPu9W6969u7p06aJFixY5ytq3b68rrrhCc+fO9egzOnTooBEjRujBBx/0qD7daqg26enShAn2/y2XPr18/HhftwrwHvYBVKNa8eDZEydOaMuWLZo6dapTeWpqqjZv3uzRZ5SUlOjIkSNq0KBBmXWOHz+u48ePO34vKiqqXIOBMxk/Xho4kKeXo/ZiH0AA8Gk4OnjwoIqLixUbG+tUHhsbq/z8fI8+429/+5uOHj2q4cOHl1ln7ty5mjVr1lm1FfAYTy9Hbcc+gBrO52OOJMlmszn9boxxKXNn9erVmjlzpjIyMtSkSZMy602bNk2FhYWOn3379p11mwEAQGDy6ZmjRo0aKSgoyOUsUUFBgcvZpNNlZGRo/Pjxeumll3TxxReXWzcsLExhYWFn3V4AABD4fHrmKDQ0VCkpKcrMzHQqz8zMVK9evcp83+rVqzVu3Di98MILuvTSS6u7mQAAoBbx6ZkjSZoyZYpGjx6trl27qmfPnlq6dKlyc3OVlpYmyd4l9sMPP+i5556TZA9GY8aM0VNPPaUePXo4zjpFREQoJibGZ/MBAAACg8/D0YgRI3To0CHNnj1b+/fvV3JysjZs2KDExERJ0v79+53uebRkyRKdOnVKt99+u26//XZH+dixY7Vy5UpvNx+1SV6e/SZ3bdow2BSoCuxT8FM+v8+RL3CfI1RYerp06632u//WqSMtXcq9W4CzwT6FSvDW8ZtwRDjCmfC8KKBqsU+hkmrVs9UAv8bzooCqxT4FP0c4As6E50UBVYt9Cn6OcAScSUKCfTxEUJD999LnRXH6H6gc9in4OcYcMeYInsrL43lRQFVin0IF1YoHzwI1Cs+LAqoW+xT8FN1qAAAAFoQjIC9PysqyvwLwP+yj8DLCEWq39HT7/VYGDLC/pqf7ukUArNhH4QMMyGZAdu3FjegA/8Y+itNwE0igunEjOsC/sY/CRwhHqL24ER3g39hH4SOEI9Re3IgO8G/so/ARxhwx5gjciA7wb+yj+P+4CSRwtvLy7GMW2rQp/wuVG9EB/s3TfdTTfR44A7rVEJi4/BeoXdjnUYXoVqNbLfBw+S9Qu7DP1xpcyg9UFpf/ArUL+zyqGOEIgYfLf4HahX0eVYxwhMDD5b9A7cI+jyrGmCPGHAUuLv8Fahf2+YDHpfxAWbhEH4A7XPKPKkK3GmoWLtcFcDb4DoEH6FajW63m4HJdAGeD75Aaj0v5gdNxuS6As8F3CDxEOELNweW6AM4G3yHwEOEI/iMvT8rKsr+6w+W6AM5GRb9DzvSdhIDFmCPGHPmH9HTp1lvtp7zr1LF/gY0f774ul+sCOBuefIdU5DsJXuOt4zfhiHDkewySBOBP+E7yWwzIRu3BIEkA/oTvpFqPcITqd6Z+ewZJAvAnFf1OYmxSwCEcoXp5csM1BloD8CcV+U7ippIBiTFHjDmqPhXtt2egNQB/cqbvJMYmeR3PVkPNV16/vbsvDp6FBsCfnOk7qaLfcagx6FZD5XjSx85YIgCBjLFJAYtwhIrztI+dsUQAAhljkwIWY44Yc1QxleljZywRgEDG2CSvYcwRfCMvz96P3qaN+522Mn3sjCUCEMiqY2zSmb6LUa3oVsPvPDntyzgiAKiYin5v0gXnc4Sj2uJMAwHz8n5/jpBkf50wwbU+44gAoGIq8r3p6XextT6DvKsc4ag28OR/IRW5Xf748fa+8qws+ysPYwSA8nn6vVmR72LOMFUbBmQH+oBsTwcCMmAQAHyP7+xy8eBZeOZMp1Q9/V8I3WUA4HuefhdX9OG4dL9VCOGoJqvqAdR0lwGA73nyXVyR73a63yqMbjV/7VY702WcFTmlmp5uH9BXXPz7/0IIPgBQs3ny3V6ZZ1z68S0E6FYLVJ6c2mQANQDgTDz5bq+uAd4B3k3HmSNvnjlKT//9Es06dez9ypVN+bV0MB4AoAKq45jiybGsmnDmqKapqvsIMYAaAFBVqnqAdy25DxPh6Ey83Q3GAGoAQFWqygHetaSbjnBUHk9WrKcp2tMNr6JnhBISpH79OGMEACjbmY4Vnh57PD2WVeQMkx9eTVe7w9EPP5T9N192g3FGCADgbZ4ce3zdTVfecbsKBXtlKv6qQwfpH/+o+Ah/60ZQmqJPH8RWVjfYwIH2z0hKKv9sD0+yBwB4myfHHk+OZZ4eGz091kr2M0q33OL5vJyF2n3myJiyEyrdYAAAuOerbjovXWBfu8ORVPZAMrrBAACovOrupqtGtfs+R5Kiz3RvoLw8z7rBAABA5ZzpWPv/78NUVFKiGKna73NUu8cc1alz5nsDMfYHAIDqdaZjbekZJuvg7WpUu88cbd+u6Pbtfd0cAADggaIdOxRz/vncIbtaxcf7ugUAAMBTXjpu1+5wBAAAcBrCEQAAgAXhCAAAwIJwBAAAYOEX4WjhwoVq1aqVwsPDlZKSog8++KDc+ps2bVJKSorCw8PVunVrLV682EstBQAAgc7n4SgjI0N33323pk+frpycHPXp00eDBw9Wbm6u2/q7d+/WkCFD1KdPH+Xk5Oj//u//NGnSJK1Zs8bLLQcAAIHI5/c56t69u7p06aJFixY5ytq3b68rrrhCc+fOdal/33336bXXXtOOHTscZWlpafr888+VnZ3t0TQd9zmq5vskAACAquOt47dPzxydOHFCW7ZsUWpqqlN5amqqNm/e7PY92dnZLvUHDhyozz77TCdPnqy2tgIAgNrBp48POXjwoIqLixUbG+tUHhsbq/z8fLfvyc/Pd1v/1KlTOnjwoOLi4lzec/z4cR0/ftzxe2FhoSR7AgUAADVD6XG7uju9/OLZajabzel3Y4xL2ZnquysvNXfuXM2aNculvHnz5hVtKgAA8LFDhw4pJiam2j7fp+GoUaNGCgoKcjlLVFBQ4HJ2qFTTpk3d1g8ODlbDhg3dvmfatGmaMmWK4/fDhw8rMTFRubm51bpw/U1RUZGaN2+uffv21aqxVsw3810bMN/Md21QWFioFi1aqEGDBtU6HZ+Go9DQUKWkpCgzM1NXXnmlozwzM1OXX3652/f07NlTr7/+ulPZO++8o65duyokJMTte8LCwhQWFuZSHhMTU6s2qlLR0dHMdy3CfNcuzHftUlvnu06d6h0y7fNL+adMmaJly5Zp+fLl2rFjhyZPnqzc3FylpaVJsp/1GTNmjKN+Wlqa9u7dqylTpmjHjh1avny50tPTde+99/pqFgAAQADx+ZijESNG6NChQ5o9e7b279+v5ORkbdiwQYmJiZKk/fv3O93zqFWrVtqwYYMmT56sBQsWqFmzZnr66ad19dVX+2oWAABAAPF5OJKk2267Tbfddpvbv61cudKlrG/fvtq6dWulpxcWFqYZM2a47WoLZMw3810bMN/Md23AfFfvfPv8JpAAAAD+xOdjjgAAAPwJ4QgAAMCCcAQAAGBBOAIAALAI2HD00EMPqVevXqpbt67OOeccj95jjNHMmTPVrFkzRUREqF+/fvr666+d6hw/flx33nmnGjVqpMjISF122WXKy8urhjmonJ9//lmjR49WTEyMYmJiNHr0aB0+fLjc99hsNrc/jz/+uKNOv379XP4+cuTIap4bz1VmvseNG+cyTz169HCqE2jr++TJk7rvvvvUsWNHRUZGqlmzZhozZox+/PFHp3r+tr4XLlyoVq1aKTw8XCkpKfrggw/Krb9p0yalpKQoPDxcrVu31uLFi13qrFmzRueff77CwsJ0/vnna926ddXV/EqryHyvXbtWl1xyiRo3bqzo6Gj17NlTb7/9tlOdlStXut3Xjx07Vt2zUiEVme+NGze6nadvvvnGqV6grW933182m00dOnRw1PH39f3+++9r2LBhatasmWw2m1555ZUzvsdr+7YJUA8++KCZN2+emTJliomJifHoPY888oiJiooya9asMV9++aUZMWKEiYuLM0VFRY46aWlpJj4+3mRmZpqtW7ea/v37m06dOplTp05V05xUzKBBg0xycrLZvHmz2bx5s0lOTjZDhw4t9z379+93+lm+fLmx2Wzmu+++c9Tp27evueWWW5zqHT58uLpnx2OVme+xY8eaQYMGOc3ToUOHnOoE2vo+fPiwufjii01GRob55ptvTHZ2tunevbtJSUlxqudP6/vFF180ISEh5h//+IfZvn27ueuuu0xkZKTZu3ev2/rff/+9qVu3rrnrrrvM9u3bzT/+8Q8TEhJiXn75ZUedzZs3m6CgIPPwww+bHTt2mIcfftgEBwebjz76yFuzdUYVne+77rrLPProo+aTTz4x//3vf820adNMSEiI2bp1q6POihUrTHR0tMs+708qOt9ZWVlGkvn222+d5sm6jwbi+j58+LDT/O7bt880aNDAzJgxw1HH39f3hg0bzPTp082aNWuMJLNu3bpy63tz3w7YcFRqxYoVHoWjkpIS07RpU/PII484yo4dO2ZiYmLM4sWLjTH2jTEkJMS8+OKLjjo//PCDqVOnjnnrrbeqvO0VtX37diPJaSPIzs42ksw333zj8edcfvnlZsCAAU5lffv2NXfddVdVNbVKVXa+x44day6//PIy/15b1vcnn3xiJDl9CfvT+u7WrZtJS0tzKmvXrp2ZOnWq2/p/+ctfTLt27ZzKJkyYYHr06OH4ffjw4WbQoEFOdQYOHGhGjhxZRa0+exWdb3fOP/98M2vWLMfvnn4f+lJF57s0HP38889lfmZtWN/r1q0zNpvN7Nmzx1FWE9Z3KU/CkTf37YDtVquo3bt3Kz8/X6mpqY6ysLAw9e3bV5s3b5YkbdmyRSdPnnSq06xZMyUnJzvq+FJ2drZiYmLUvXt3R1mPHj0UExPjcfsOHDig9evXa/z48S5/W7VqlRo1aqQOHTro3nvv1ZEjR6qs7WfjbOZ748aNatKkic477zzdcsstKigocPytNqxvyf4gR5vN5tL97A/r+8SJE9qyZYvTOpCk1NTUMucxOzvbpf7AgQP12Wef6eTJk+XW8Yf1KlVuvk9XUlKiI0eOuDyg85dfflFiYqISEhI0dOhQ5eTkVFm7z9bZzPeFF16ouLg4XXTRRcrKynL6W21Y3+np6br44osdT5co5c/ru6K8uW/7xR2y/UF+fr4kKTY21qk8NjZWe/fuddQJDQ1V/fr1XeqUvt+X8vPz1aRJE5fyJk2aeNy+Z599VlFRUbrqqqucyq+//nq1atVKTZs21VdffaVp06bp888/V2ZmZpW0/WxUdr4HDx6sa6+9VomJidq9e7ceeOABDRgwQFu2bFFYWFitWN/Hjh3T1KlTNWrUKKeHV/rL+j548KCKi4vd7pdlzWN+fr7b+qdOndLBgwcVFxdXZh1/WK9S5eb7dH/729909OhRDR8+3FHWrl07rVy5Uh07dlRRUZGeeuop9e7dW59//rnatGlTpfNQGZWZ77i4OC1dulQpKSk6fvy4/vnPf+qiiy7Sxo0b9ac//UlS2dtEoKzv/fv3680339QLL7zgVO7v67uivLlv16hwNHPmTM2aNavcOp9++qm6du1a6WnYbDan340xLmWn86TO2fB0viXX9ksVa9/y5ct1/fXXKzw83Kn8lltucfw7OTlZbdq0UdeuXbV161Z16dLFo8+uqOqe7xEjRjj+nZycrK5duyoxMVHr1693CYcV+dyz5a31ffLkSY0cOVIlJSVauHCh0998sb7LU9H90l3908srs697W2XbuHr1as2cOVOvvvqqU4Du0aOH00UHvXv3VpcuXfTMM8/o6aefrrqGn6WKzHfbtm3Vtm1bx+89e/bUvn379MQTTzjCUUU/01cq28aVK1fqnHPO0RVXXOFUXlPWd0V4a9+uUeHojjvuOOMVMy1btqzUZzdt2lSSPZnGxcU5ygsKChwptGnTpjpx4oR+/vlnp7MJBQUF6tWrV6Wm6wlP5/uLL77QgQMHXP72008/uSRpdz744AN9++23ysjIOGPdLl26KCQkRDt37qy2g6W35rtUXFycEhMTtXPnTkmBvb5Pnjyp4cOHa/fu3Xrvvfeczhq544317U6jRo0UFBTk8r8+6355uqZNm7qtHxwcrIYNG5ZbpyLbS3WqzHyXysjI0Pjx4/XSSy/p4osvLrdunTp19Ic//MGxzfva2cy3VY8ePfT88887fg/k9W2M0fLlyzV69GiFhoaWW9ff1ndFeXXfrtAIpRqoogOyH330UUfZ8ePH3Q7IzsjIcNT58ccf/W6A7scff+wo++ijjzweoDt27FiXq5bK8uWXXxpJZtOmTZVub1U52/kudfDgQRMWFmaeffZZY0zgru8TJ06YK664wnTo0MEUFBR4NC1fru9u3bqZiRMnOpW1b9++3AHZ7du3dypLS0tzGbQ5ePBgpzqDBg3yuwG6FZlvY4x54YUXTHh4+BkHtpYqKSkxXbt2NTfeeOPZNLVKVWa+T3f11Veb/v37O34P1PVtzO8D0r/88sszTsMf13cpeTgg21v7dsCGo71795qcnBwza9YsU69ePZOTk2NycnLMkSNHHHXatm1r1q5d6/j9kUceMTExMWbt2rXmyy+/NNddd53bS/kTEhLMu+++a7Zu3WoGDBjgd5d2X3DBBSY7O9tkZ2ebjh07ulzaffp8G2NMYWGhqVu3rlm0aJHLZ+7atcvMmjXLfPrpp2b37t1m/fr1pl27dubCCy+ssfN95MgRc88995jNmzeb3bt3m6ysLNOzZ08THx8f0Ov75MmT5rLLLjMJCQlm27ZtTpf3Hj9+3Bjjf+u79BLn9PR0s337dnP33XebyMhIx1U5U6dONaNHj3bUL73cd/LkyWb79u0mPT3d5XLf//znPyYoKMg88sgjZseOHeaRRx7x20u7PZ3vF154wQQHB5sFCxaUeQuGmTNnmrfeest89913Jicnx9x4440mODjYKWD7WkXne/78+WbdunXmv//9r/nqq6/M1KlTjSSzZs0aR51AXN+lbrjhBtO9e3e3n+nv6/vIkSOOY7MkM2/ePJOTk+O4ctaX+3bAhqOxY8caSS4/WVlZjjqSzIoVKxy/l5SUmBkzZpimTZuasLAw86c//ckljf/222/mjjvuMA0aNDARERFm6NChJjc310tzdWaHDh0y119/vYmKijJRUVHm+uuvd7nE9fT5NsaYJUuWmIiICLf3ssnNzTV/+tOfTIMGDUxoaKg599xzzaRJk1zuCeRLFZ3vX3/91aSmpprGjRubkJAQ06JFCzN27FiXdRlo63v37t1u9wvrvuGP63vBggUmMTHRhIaGmi5dujidwRo7dqzp27evU/2NGzeaCy+80ISGhpqWLVu6Df0vvfSSadu2rQkJCTHt2rVzOpj6i4rMd9++fd2u17Fjxzrq3H333aZFixYmNDTUNG7c2KSmpprNmzd7cY48U5H5fvTRR825555rwsPDTf369c0f//hHs379epfPDLT1bYz97HZERIRZunSp28/z9/VdetarrG3Wl/u2zZj/P5oJAAAAgfv4EAAAgMogHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAASU2bNnq2PHjoqMjFRsbKwmTpyokydP+rpZAGqQYF83AACqijFGxcXFWrJkieLj47V9+3aNGTNGF1xwgSZOnOjr5gGoIXjwLICANmrUKDVu3FhPPfWUr5sCoIagWw1AwNi7d6/uuOMOJScnq379+qpXr57+9a9/KSEhwddNA1CDEI4ABISDBw+qW7duOnjwoObNm6cPP/xQ2dnZCgoKUufOnX3dPAA1CGOOAASEDRs26NSpU1q9erVsNpskacGCBTpx4gThCECFEI4ABIQGDRqoqKhIr732ms4//3y9/vrrmjt3ruLj49W4cWNfNw9ADcKAbAABwRijiRMn6oUXXlBERIRuuOEGHTt2THv37tUbb7zh6+YBqEEIRwAAABYMyAYAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFv8PHtUOMIliFBAAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmqElEQVR4nO3dd1gUV9sG8HvZpTc7giigIBq7+FqjWCL2EntBsRBFYy9RY6Lia03sBUvAjga7xk4itkis2NFoogIqEjSCWKjn+2M/9t2VIiAwy+79u669Ng5nd57Z2dm5M3PmjEwIIUBEREREAAADqQsgIiIi0iYMR0RERERqGI6IiIiI1DAcEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGoYjIiIiIjUMR1SkPX36FLNmzcK1a9cy/G3QoEGwsLDI83snJSXBx8cHtra2kMvlqF27dt4LzQd+fn7YtGlThumPHj2CTCbL9G+6RCaTYdasWVKXkS9mzZoFmUxW4K9duXIlnJ2dYWRkBJlMhlevXmHQoEFwdHTUaDdv3jzs378/T/Vk5+XLl+jTpw/KlCkDmUyGrl275vo9HB0dMWjQoHyvTZtcuXIFX3/9NWrUqAFLS0vY2Njgiy++wMmTJ6UuTW8ppC6A6FM8ffoUvr6+cHR0zPfwsmbNGqxbtw4rV66Em5vbJwWt/ODn54dSpUpl2FHY2toiNDQUlSpVkqYwyjVvb2+0bdu2QOdx7do1jBkzBt7e3vDy8oJCoYClpSW+//57jB07VqPtvHnz0KNHjzyFl+z897//xb59+7BhwwZUqlQJJUqUyNf31xU7duzAxYsXMWTIENSqVQtv3rzB2rVr0apVK2zevBkDBw6UukS9w3BElIVbt27B1NQUo0aNkrqUbBkbG6Nhw4ZSl0G5YG9vD3t7+wKdx+3btwEAX331FerXr6+aXpgh+tatW6hUqRL69+9faPPML2/fvoWZmVmhzOubb77BokWLNKa1b98edevWxezZsxmOJMDTaqTyzz//YNiwYShfvjyMjY1RunRpNGnSBL/++quqTfPmzVG9enWEhoaicePGMDU1haOjIzZu3AgAOHz4MOrWrQszMzPUqFEDx44dyzCfc+fOoVWrVrC0tISZmRkaN26Mw4cPZ2h369YtdOnSBcWLF4eJiQlq166NzZs3q/5+6tQp/Oc//wEADB48GDKZLNNTLw8ePED79u1hYWGB8uXLY+LEiUhMTMz2s5DJZPD398e7d+9U77tp06ZsT2F9OO/00x+3b99G3759YW1tDRsbGwwZMgRxcXEar01LS8PKlStRu3ZtmJqaolixYmjYsCEOHjwIQHlq4fbt2zh9+rSqnvRTI1nVlJPPedOmTZDJZAgJCcGIESNQqlQplCxZEt26dcPTp0+z/Yyy4+joiI4dO2Lfvn2oWbMmTExMULFiRaxYsSJD24iICHh6eqJMmTIwNjZG1apVsXjxYqSlpWX5/o8ePYJCocD8+fMz/O3MmTOQyWTYtWsXgNyth/fv32PatGlwcnKCkZERypUrh6+//hqvXr3KdPkOHTqEOnXqwNTUFFWrVsWhQ4cAKD/XqlWrwtzcHPXr18fly5c1Xp/ZqbGgoCB4eHjA1tZW9X5Tp07Fmzdvsv6gs9C8eXN4enoCABo0aACZTKY64vjhaTWZTIY3b95g8+bNqu9W8+bNs33/ly9fYuTIkShXrhyMjIxQsWJFTJ8+XbVdpX8nf/31V4SHh6ve99SpU1m+Z3JyMr755huULVsWZmZm+Pzzz3Hx4sVM20ZHR2P48OGwt7eHkZERnJyc4Ovri5SUFI12UVFR6NGjBywtLVGsWDH0798fly5dyrC9pJ+Cv3nzJjw8PGBpaYlWrVoBUJ5enzNnDqpUqaL6XRw8eDD++eefDHUFBQWhUaNGMDc3h4WFBdq0aYOwsLBsP0sAKFOmTIZpcrkcbm5uiIyM/OjrqQAIov/Xpk0bUbp0abF+/Xpx6tQpsX//fjFjxgzx888/q9q4u7uLkiVLCldXVxEQECCOHz8uOnbsKAAIX19fUaNGDbFjxw5x5MgR0bBhQ2FsbCyePHmiev2pU6eEoaGhcHNzE0FBQWL//v3Cw8NDyGQyjfncvXtXWFpaikqVKoktW7aIw4cPi759+woAYuHChUIIIeLi4sTGjRsFAPHdd9+J0NBQERoaKiIjI4UQQnh5eQkjIyNRtWpVsWjRIvHrr7+KGTNmCJlMJnx9fbP9LEJDQ0X79u2Fqamp6n1jYmLEw4cPBQCxcePGDK8BIGbOnKn698yZMwUA4erqKmbMmCGCg4PFkiVLhLGxsRg8eLDGawcMGCBkMpnw9vYWBw4cEEePHhVz584Vy5cvF0IIcfXqVVGxYkVRp04dVT1Xr14VQohMa8rp55z++VWsWFGMHj1aHD9+XPj7+4vixYuLFi1aaNSY3jazZf+Qg4ODKFeunKhQoYLYsGGDOHLkiOjfv78AIH788UdVu5iYGFGuXDlRunRpsXbtWnHs2DExatQoAUCMGDEi28/3yy+/FBUqVBApKSka7Xr27Cns7OxEcnJyrtZDWlqaaNOmjVAoFOL7778XJ06cEIsWLRLm5uaiTp064v379xrLZ29vL6pXr676vjdo0EAYGhqKGTNmiCZNmoi9e/eKffv2icqVKwsbGxvx9u1b1evTa1L33//+VyxdulQcPnxYnDp1Sqxdu1Y4OTllWA+ZvfZDt2/fFt99951qfYWGhooHDx4IIZTbhYODg6ptaGioMDU1Fe3bt1d9t27fvp3le797907UrFlTmJubi0WLFokTJ06I77//XigUCtG+fXshhBDv378XoaGhok6dOqJixYqq942Li8vyfb28vIRMJhOTJ08WJ06cEEuWLBHlypUTVlZWwsvLS9Xu2bNnonz58sLBwUGsW7dO/Prrr+K///2vMDY2FoMGDVK1S0hIEM7OzqJEiRJi9erV4vjx42L8+PHCyckpw/fYy8tLGBoaCkdHRzF//nzx22+/iePHj4vU1FTRtm1bYW5uLnx9fUVwcLDw9/cX5cqVE5999pnGOp07d66QyWRiyJAh4tChQ2Lv3r2iUaNGwtzcPNvPMyvJycnC2dlZ1KlTJ9evpU/HcEQqFhYWYty4cdm2cXd3FwDE5cuXVdNevHgh5HK5MDU11QhC165dEwDEihUrVNMaNmwoypQpI16/fq2alpKSIqpXry7s7e1FWlqaEEKIPn36CGNjYxEREaEx/3bt2gkzMzPx6tUrIYQQly5dynKH7eXlJQCInTt3akxv3769cHV1/cinoXy9ubm5xrS8hKMffvhBo93IkSOFiYmJalnPnDkjAIjp06dnW0+1atWEu7t7humZ1ZTTzzk98IwcOVLjPX/44QcBQDx79kw1bfPmzUIul4vNmzdnW6cQyvAgk8nEtWvXNKa3bt1aWFlZiTdv3gghhJg6daoAIC5cuKDRbsSIEUImk4l79+6ppn34+YaEhAgAYt++fappT548EQqFQiP85nQ9HDt2LNN2QUFBAoBYv369xvKZmpqKqKgo1bT077utra1q+YQQYv/+/QKAOHjwYIaaspKWliaSk5PF6dOnBQBx/fr1HL82Xfq6vXTpksb0D8OREEKYm5trBJDsrF27NtPtauHChQKAOHHihGqau7u7qFat2kffMzw8XAAQ48eP15geGBgoAGjUNnz4cGFhYSEeP36s0XbRokUCgCqIrF69WgAQR48e1Wg3fPjwTMMRALFhwwaNtjt27BAAxJ49ezSmp//u+Pn5CSGEiIiIEAqFQowePVqj3evXr0XZsmVFr169PvoZfGj69OkCgNi/f3+uX0ufjqfVSKV+/frYtGkT5syZgz/++APJycmZtrO1tYWbm5vq3yVKlECZMmVQu3Zt2NnZqaZXrVoVAPD48WMAwJs3b3DhwgX06NFDo3OzXC7HgAEDEBUVhXv37gEATp48iVatWqF8+fIa8x40aBDevn2L0NDQHC2TTCZDp06dNKbVrFlTVVNh6Ny5c4b5v3//HjExMQCAo0ePAgC+/vrrfJlfbj7n7GoEoPE5DRw4ECkpKTnu/1CtWjXUqlVLY1q/fv0QHx+Pq1evAlCu588++0yjTwygXM9CiGyv1mnevDlq1aqF1atXq6atXbsWMpkMw4YNy9D+Y+shfV4fdnjv2bMnzM3N8dtvv2lMr127NsqVK6f6d/r3vXnz5hp9VT7cDrLy999/o1+/fihbtizkcjkMDQ3h7u4OAAgPD8/2tYXp5MmTMDc3R48ePTSmp39uH35OORESEgIAGfom9erVCwqFZtfYQ4cOoUWLFrCzs0NKSorq0a5dOwDA6dOnVc+WlpYZOr737ds3yzq6d++eYV7FihVDp06dNOZVu3ZtlC1bVnWa8Pjx46ptQ72diYkJ3N3dsz2dmBl/f3/MnTsXEydORJcuXXL1Wsof7JBNKkFBQZgzZw78/f3x/fffw8LCAl9++SV++OEHlC1bVtUusytOjIyMMkw3MjICoOzHAQD//vsvhBCwtbXN8Pr0UPXixQvVc07afYyZmRlMTEw0phkbG6tqKgwlS5bMMH8AePfuHQBlXy+5XK7xGX+K3HzOOa0xLzJbnvRp6uv5w8vKs6vzQ+lXY927dw8VK1bETz/9hB49emQ6748t44sXL6BQKFC6dGmNdjKZDGXLls1QS1bf949tB5lJSEhA06ZNYWJigjlz5qBy5cowMzNDZGQkunXr9knrIb+9ePECZcuWzdBnqkyZMlAoFDneNj98TyDjd0ahUGRYb8+fP8cvv/wCQ0PDTN8rNjZW9Z42NjYZ/p7ZNED5W2FlZZVhXq9evVKtw6zm9fz5cwBQ9YH8kIFBzo9DbNy4EcOHD8ewYcPw448/5vh1lL8YjkilVKlSWLZsGZYtW4aIiAgcPHgQU6dORUxMTKYdq3OrePHiMDAwwLNnzzL8Lb3zb6lSpQAod2Q5aVfY0oPWhx2687JDSFe6dGmkpqYiOjo600CTW7n5nAtSdHR0ltPSd3ifup779euHKVOmYPXq1WjYsCGio6PzfASuZMmSSElJwT///KMRkIQQiI6OznLHlx9OnjyJp0+f4tSpU6qjRQAydATXBiVLlsSFCxcghNAISDExMUhJScnTdyv9+xAdHa1xNC4lJSXDtlWqVCnUrFkTc+fOzfS90oN1yZIlM+3Qndn3EkCmY0elX6CQ1e+fpaWlqh0A7N69Gw4ODpm2zYmNGzeqhl5IPwpK0uBpNcpUhQoVMGrUKLRu3Vp1CuRTmZubo0GDBti7d6/G/wmnpaVh27ZtsLe3R+XKlQEArVq1Uu0w1G3ZsgVmZmaqS9fz4whHbtjY2MDExAQ3btzQmH7gwIE8v2f66YA1a9Zk287Y2DhHy5mbz7kg3b59G9evX9eYtn37dlhaWqJu3boAlOv5zp07Gb5jW7ZsgUwmQ4sWLbKdh4mJCYYNG4bNmzdjyZIlqF27Npo0aZKnetOvTtq2bZvG9D179uDNmzeqvxeE9J1g+vc53bp16wpsnupy+t0ClJ9TQkJChkEjt2zZovp7bqVfHRcYGKgxfefOnRmuQOvYsaNqiIB69epleKSHI3d3d7x+/Vp12jrdzz//nOO6OnbsiBcvXiA1NTXTebm6ugIA2rRpA4VCgb/++ivTdvXq1fvovDZt2gRvb294enrC39+fwUhiPHJEAIC4uDi0aNEC/fr1Q5UqVWBpaYlLly7h2LFj6NatW77NZ/78+WjdujVatGiBSZMmwcjICH5+frh16xZ27Nih+kGYOXOmqm/BjBkzUKJECQQGBuLw4cP44YcfYG1tDUA5ZoupqSkCAwNRtWpVWFhYwM7OTqPvU36SyWTw9PRUDWpXq1YtXLx4Edu3b8/zezZt2hQDBgzAnDlz8Pz5c3Ts2BHGxsYICwuDmZkZRo8eDQCoUaMGfv75ZwQFBaFixYowMTFBjRo1Mn3PnH7OubFlyxYMGTIEGzZsyFG/Izs7O3Tu3BmzZs2Cra0ttm3bhuDgYCxcuFDVJ2f8+PHYsmULOnTogNmzZ8PBwQGHDx+Gn58fRowYkaMQN3LkSPzwww+4cuUK/P39c71c6Vq3bo02bdpgypQpiI+PR5MmTXDjxg3MnDkTderUwYABA/L83h/TuHFjFC9eHD4+Ppg5cyYMDQ0RGBiYIVwWlBo1auDUqVP45ZdfYGtrC0tLS9WO/0MDBw7E6tWr4eXlhUePHqFGjRo4d+4c5s2bh/bt2+OLL77I9fyrVq0KT09PLFu2DIaGhvjiiy9w69YtLFq0KMOprtmzZyM4OBiNGzfGmDFj4Orqivfv3+PRo0c4cuQI1q5dC3t7e3h5eWHp0qXw9PTEnDlz4OzsjKNHj+L48eMAcnaqq0+fPggMDET79u0xduxY1K9fH4aGhoiKikJISAi6dOmCL7/8Eo6Ojpg9ezamT5+Ov//+G23btkXx4sXx/PlzXLx4Eebm5vD19c1yPrt27cLQoUNRu3ZtDB8+PMMRrzp16mQIzlTAJO0OTlrj/fv3wsfHR9SsWVNYWVkJU1NT4erqKmbOnKlx5U1WV584ODiIDh06ZJgOQHz99dca086ePStatmwpzM3NhampqWjYsKH45ZdfMrz25s2bolOnTsLa2loYGRmJWrVqZXqV2I4dO0SVKlWEoaGhxhVNmV1tJkTOr/bJ6vVxcXHC29tb2NjYCHNzc9GpUyfx6NGjLK9W++effzRen34V0cOHD1XTUlNTxdKlS0X16tWFkZGRsLa2Fo0aNdL4XB49eiQ8PDyEpaWlAKC64iirK+hy8jlndUVT+pVgISEhGdrm9FL+Dh06iN27d4tq1aoJIyMj4ejoKJYsWZKh7ePHj0W/fv1EyZIlhaGhoXB1dRU//vijSE1N1Wj34eerrnnz5qJEiRIal1any816ePfunZgyZYpwcHAQhoaGwtbWVowYMUL8+++/mS7fhzL7vqevH/UhDDL7Dp4/f140atRImJmZidKlSwtvb29x9erVDJ95QVytdu3aNdGkSRNhZmYmAGR6VaS6Fy9eCB8fH2FraysUCoVwcHAQ06ZN0xjuQIicX60mhBCJiYli4sSJokyZMsLExEQ0bNhQhIaGCgcHhwxX0v3zzz9izJgxwsnJSRgaGooSJUoINzc3MX36dJGQkKBqFxERIbp16yYsLCyEpaWl6N69uzhy5IgAIA4cOKDxmWS2rQuhvKR+0aJFolatWsLExERYWFiIKlWqiOHDh4v79+9rtN2/f79o0aKFsLKyEsbGxsLBwUH06NFD/Prrr9kue/rVclk91L+jVDhkQghRKCmMiPSGo6MjqlevrhoUsSDFxMTAwcEBo0ePxg8//FDg86Oibd68efjuu+8QERFR4KOUU9HF02pEVCRFRUXh77//xo8//ggDA4MM9wsjWrVqFQCgSpUqSE5OxsmTJ7FixQp4enoyGFG2GI6IqEjy9/fH7Nmz4ejoiMDAQI2rnIgA5eX5S5cuxaNHj5CYmIgKFSpgypQp+O6776QujbQcT6sRERERqZH8Uv4zZ86gU6dOsLOzg0wmy3B5aGZOnz4NNzc31c0s165dW/CFEhERkV6QPBy9efMGtWrVUp0b/piHDx+iffv2aNq0KcLCwvDtt99izJgx2LNnTwFXSkRERPpAq06ryWQy7Nu3D127ds2yzZQpU3Dw4EGNew35+Pjg+vXrOb7fFhEREVFWilyH7NDQUHh4eGhMa9OmDQICApCcnJzp/XYSExM1bveQlpaGly9fomTJkhyFlIiIqIgQQuD169ews7PL1T3rcqvIhaPo6OgMNw60sbFBSkoKYmNjM7031fz587MdnZSIiIiKjsjIyAIdjqHIhSMg4w0C088MZnUUaNq0aZgwYYLq33FxcahQoQIiIyMzDE1PREXIkyfAX38BlSoB2V3Kn9N2RKTV4uPjUb58edVNfwtKkQtHZcuWzXBX5ZiYGCgUCtWdnT9kbGyc6X1prKysGI6IiqqAAGDYMCAtDTAwANavB4YOzXs7IioyCrpLjORXq+VWo0aNEBwcrDHtxIkTqFevXqb9jYhIB0VF/S/wAMrn4cOV0/PSjohIjeThKCEhAdeuXcO1a9cAKC/Vv3btGiIiIgAoT4mp3wHcx8cHjx8/xoQJExAeHo4NGzYgICAAkyZNkqJ8IpLC/fv/CzzpUlOBBw/y1o6ISI3kp9UuX76MFi1aqP6d3jfIy8sLmzZtwrNnz1RBCQCcnJxw5MgRjB8/HqtXr4adnR1WrFiB7t27F3rtRCQRFxflKTL14COXA87OeWtHRKRGq8Y5Kizx8fGwtrZGXFwc+xwRFVUBAcpTZKmpysCzbl3WfY5y0o6ItF5h7b8ZjhiOiIquqCjlKTJnZyC7y3pz2o6ItFph7b8lP61GRJRn9vY5Czs5bUdEBC3okE1ERESkTRiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRETaJyoKCAlRPuvTvIlIKzAcEZF2CQgAHByAli2VzwEB+jFvItIaMiGEkLqIwhYfHw9ra2vExcXByspK6nKIKF1UlDKUpKX9b5pcDjx6BNjb6+68iShHCmv/zSNHRKQ97t/XDCcAkJoKPHig2/MmIq3CcERE2sPFBTD44GdJLgecnXV73kSkVRiOiEh72NsD69crQwmgfF63rnBOa0k5byLSKuxzxD5HRNonKkp5OsvZufDDiZTzJqJsFdb+W1Fg70xElFf29tIFEynnTURagafViIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNRoRTjy8/ODk5MTTExM4ObmhrNnz2bbPjAwELVq1YKZmRlsbW0xePBgvHjxopCqJSIiIl0meTgKCgrCuHHjMH36dISFhaFp06Zo164dIiIiMm1/7tw5DBw4EEOHDsXt27exa9cuXLp0Cd7e3oVcOREREekiycPRkiVLMHToUHh7e6Nq1apYtmwZypcvjzVr1mTa/o8//oCjoyPGjBkDJycnfP755xg+fDguX75cyJUTERGRLpI0HCUlJeHKlSvw8PDQmO7h4YHz589n+prGjRsjKioKR44cgRACz58/x+7du9GhQ4cs55OYmIj4+HiNBxFJICoKCAlRPhd1urQsRKRB0nAUGxuL1NRU2NjYaEy3sbFBdHR0pq9p3LgxAgMD0bt3bxgZGaFs2bIoVqwYVq5cmeV85s+fD2tra9WjfPny+bocRJQDAQGAgwPQsqXyOSBA6oryTpeWhYgykPy0GgDIZDKNfwshMkxLd+fOHYwZMwYzZszAlStXcOzYMTx8+BA+Pj5Zvv+0adMQFxenekRGRuZr/UT0EVFRwLBhQFqa8t9pacDw4UXzqIsuLQsRZUoh5cxLlSoFuVye4ShRTExMhqNJ6ebPn48mTZpg8uTJAICaNWvC3NwcTZs2xZw5c2Bra5vhNcbGxjA2Ns7/BSCinLl//39hIl1qKvDgAWBvL01NeaVLy0JEmZL0yJGRkRHc3NwQHBysMT04OBiNGzfO9DVv376FgYFm2XK5HIDyiBMRaSEXF+CD7RZyOeDsLE09n0KXloWIMiX5abUJEybA398fGzZsQHh4OMaPH4+IiAjVabJp06Zh4MCBqvadOnXC3r17sWbNGvz999/4/fffMWbMGNSvXx92dnZSLQYRZcfeHli/XhkiAOXzunVF80iLLi0LEWVK0tNqANC7d2+8ePECs2fPxrNnz1C9enUcOXIEDg4OAIBnz55pjHk0aNAgvH79GqtWrcLEiRNRrFgxtGzZEgsXLpRqEYgoJ4YOBdq0UZ5+cnYu2mFCl5aFiDKQCT08FxUfHw9ra2vExcXByspK6nKIiIgoBwpr/y35aTUiIiIibcJwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRESfLioKCAlRPpMmfjZERQ7DERF9moAAwMEBaNlS+RwQIHVF2oOfDVGRJBNCCKmLKGzx8fGwtrZGXFwcrKyspC6HqOiKilLu9NPS/jdNLgcePQLs7SUrSyvwsyHKd4W1/+aRIyLKu/v3NXf+AJCaCjx4IE092oSfDVGRxXBERHnn4gIYfPAzIpcDzs7S1KNN+NkQFVkMR0SUd/b2wPr1yp0+oHxet46njQB+NkRFGPscsc8R0aeLilKeLnJ25s7/Q/xsiPJNYe2/FQX2zkSkP+ztuePPCj8boiKHp9WIiIiI1DAcEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGoYjIiIiIjUMR0RERERqGI6IiIiI1DAcEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGq0IR35+fnBycoKJiQnc3Nxw9uzZbNsnJiZi+vTpcHBwgLGxMSpVqoQNGzYUUrVERESkyxRSFxAUFIRx48bBz88PTZo0wbp169CuXTvcuXMHFSpUyPQ1vXr1wvPnzxEQEABnZ2fExMQgJSWlkCsnIiIiXSQTQggpC2jQoAHq1q2LNWvWqKZVrVoVXbt2xfz58zO0P3bsGPr06YO///4bJUqUyNM84+PjYW1tjbi4OFhZWeW5diIiIio8hbX/lvS0WlJSEq5cuQIPDw+N6R4eHjh//nymrzl48CDq1auHH374AeXKlUPlypUxadIkvHv3Lsv5JCYmIj4+XuNBRERElBlJT6vFxsYiNTUVNjY2GtNtbGwQHR2d6Wv+/vtvnDt3DiYmJti3bx9iY2MxcuRIvHz5Mst+R/Pnz4evr2++109ERES6Rys6ZMtkMo1/CyEyTEuXlpYGmUyGwMBA1K9fH+3bt8eSJUuwadOmLI8eTZs2DXFxcapHZGRkvi8DERER6QZJjxyVKlUKcrk8w1GimJiYDEeT0tna2qJcuXKwtrZWTatatSqEEIiKioKLi0uG1xgbG8PY2Dh/iyciIiKdJOmRIyMjI7i5uSE4OFhjenBwMBo3bpzpa5o0aYKnT58iISFBNe3PP/+EgYEB7O3tC7ReIiIi0n2Sn1abMGEC/P39sWHDBoSHh2P8+PGIiIiAj48PAOUpsYEDB6ra9+vXDyVLlsTgwYNx584dnDlzBpMnT8aQIUNgamoq1WIQERGRjpB8nKPevXvjxYsXmD17Np49e4bq1avjyJEjcHBwAAA8e/YMERERqvYWFhYIDg7G6NGjUa9ePZQsWRK9evXCnDlzpFoEIiIi0iGSj3MkBY5zREREVPToxThHRERERNqG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyLKWlQUEBKifKaCxc+aSGswHBFR5gICAAcHoGVL5XNAgNQV6S5+1kRaRSaEEFIXUdgK666+REVWVJRyJ52W9r9pcjnw6BFgby9ZWTqJnzVRjhXW/ptHjogoo/v3NXfWAJCaCjx4IE09uoyfNZHWYTgiooxcXACDD34e5HLA2VmaenQZP2sircNwREQZ2dsD69crd9KA8nndOp7mKQj8rIm0Dvscsc8RUdaiopSnd5ydubMuaPysiT6qsPbfigJ7ZyIq+uztuaMuLPysibQGT6sRERERqWE4IiIiIlLDcERERESkhuGIiIiISA3DEREREZEahiMiIiIiNQxHRERERGo+KRzFxMQgOjo6v2ohIiIiklyewtGNGzdQrVo12Nraoly5cihXrhy+++47vHnzJr/rIyLKFSEEkpOTkfbhzVyJiHIoTyNkDx06FDY2NvD394e5uTmuXLmCVatWYc+ePTh//jyKFy+e33USkR5JTk5GdHQ0oqKiEBUVhSdPnuDJkyd48eIF/v33X7x69Ur1nJCQgKSkJCQnJyM5ORmpqamq91EoFDAyMlI9zMzMUKJECRQvXhzFixdHiRIlUKJECdjZ2aF8+fKwt7dH+fLlUbp0aRh8eDNYItIbebq3WnogqlKlimqaEAI9e/aEiYkJtm3blq9F5jfeW41IekIIPH36FOHh4bh37x7u3buHP//8E/fu3cPjx48h5W0fjYyM4OjoiCpVqsDV1RVVqlRRPUqUKCFZXUT6TqvvrVavXj38+++/GtNkMhnmzZsHNze3fCmMiHSHEAKPHj3C1atXNR4xMTFZvsbQ0BB2dnawt7eHvb09ypUrh9KlS6NYsWIoVqwYihcvjmLFisHS0hKGhoYaD4VCgdTUVCQlJWk8EhIS8O+//6oeL1++xIsXL/DkyRNERkYiKioKz549Q1JSEv7880/8+eefGeqqUKEC3NzcNB6lS5cuyI+PiApZjsNRhw4dUKtWLdSuXRs+Pj4YP348Dhw4ABsbG1WbuLg4nlIjIqSmpuLmzZs4e/Yszp49izNnzuD58+cZ2hkYGMDZ2Rmurq4aDxcXF5QpU0aSU1vJycl4+vQp/vrrL9y9e1fjERkZiYiICERERGDfvn2q1zg5OcHd3R3NmjWDu7s7nJycIJPJCr12IsofOT6tNnXqVFy7dg3Xr19X/ciZmpqiV69eqF27NlJTU7Fx40bMmjUL3bt3L9CiPxVPqxHlv7///htHjx7FsWPHcPbsWcTFxWn83dDQEDVq1EDdunVVjxo1asDMzEyiinMvLi4OYWFhuHLliuqR2dGlcuXKwd3dHW3atEHbtm1RpkwZCaol0j2Ftf/OU5+j58+fIywsDNeuXVM9Hjx4ALlcDldXV9y4caMgas03DEdEny4xMREhISGqQPRhSLC0tETjxo3RtGlTNGvWDP/5z39gYmIiUbUFJy4uDqGhoThz5gxOnz6NS5cuITk5WfV3mUyGevXqoX379mjXrh3q1asHuVwuYcVERZdWh6PMvHv3DtevX8f169cxfPjw/HjLAsNwRJQ37969w/Hjx7F792788ssviI+PV/1NoVCgSZMmaNu2Lb744gvUrl0bCkWeujUWaW/fvsUff/yB3377DUePHkVYWJjG38uWLYtu3bqhZ8+eaNq0KYMSUS4UuXBUlDAcEeVcYmIiDh8+jJ07d+LQoUMa45nZ2dmpjoi0atUK1tbWElaqnZ49e4Zjx47hyJEjCA4O1jjdaGNjg27duqFXr15o1qwZhw8g+giGowLEcESUPSEELl26hM2bN+Pnn3/Gy5cvVX+rUKECevTogR49eqBBgwbcoedCUlISfvvtN+zatQv79+/XuOq3QoUK8PLygpeXFypVqiRhlUTai+GoADEcEWXu+fPn2LRpEzZv3ozw8HDV9HLlyqFfv37o2bMn6tWrxyux8kFSUhJOnjyJXbt2Yc+ePRpHlJo2bYpBgwahZ8+esLS0lLBKIu3CcFSAGI6I/kcIgd9//x2rV6/Gnj17VJ2JTUxM0K1bNwwaNAgtW7Zk35gC9O7dOxw4cACbNm3CiRMnVANgWlpaYtCgQRg5cqTGoLtE+orhqAAxHBEBCQkJCAwMhJ+fn8YVpg0aNIC3tzd69uzJPkQSiIqKwrZt27Bhwwbcv39fNb1Vq1YYNWoUOnbsqJcd3YkAhqMCxXBE+iw6OhorV66En58fXr16BUA5Zlm/fv0wcuRI1K1bV9oCCQCQlpaG3377DatWrcKhQ4dUN9KtUKECxo8fD29vb1hYWEhcJVHhYjgqQAxHpI/u3buHxYsXY/PmzUhKSgIAuLi4YOTIkfDy8uLo9lrs0aNHWLt2Lfz9/fHixQsAQPHixfH1119jzJgxvH0J6Q2GowLEcET65MqVK5g7dy7279+v6svSqFEjfPPNN+jcuTOvNitC3r9/jy1btuDHH3/EgwcPACj7hg0ZMgSTJ0+Go6OjtAUSFbDC2n/zV5FIR4WFhaFLly6oV68e9u3bByEEOnfujHPnzuH8+fPo2rUrg1ERY2JigmHDhuHu3bvYvXs3/vOf/+D9+/fw8/ODi4sLfHx8EBERIXWZREUefxmJdMz169fx5Zdfom7dujh48CAMDAzg6emJO3fu4MCBA2jSpInUJdInksvl6N69Oy5cuICQkBC0bt0aKSkpWLduHVxcXDBq1Cg8efJE6jKJiiyGIyIdcf/+ffTs2RO1a9fG/v37IZPJ0K9fP9y5cwdbt25F1apVpS6R8plMJkPz5s1x4sQJnD17Fi1btkRSUhJWr16NSpUqYdy4cfjnn3+kLpOoyGE4Iiri/vnnH4wePRqfffYZdu/eDZlMhj59+uD27dsIDAyEq6ur1CVSIfj888/x22+/ISQkBE2bNkViYiKWL18OZ2dnLFiwAO/evZO6RKIig+GIqIh6+/Yt5s2bh0qVKmHVqlVISUlB+/btcf36dezYsYNHivRU8+bNcfr0aZw4cQJ16tRBfHw8pk2bBldXV2zdulU1JAARZY3hiKiIEUIgMDAQlStXxvTp0/H69WvUrVsXv/32Gw4fPowaNWp8/E2iooCQEOUzFS05WHcymQytW7fG5cuXsXXrVlSoUAGRkZEYOHAg6tWrh9OnTxdiwURFD8MRURFy/fp1uLu7w9PTE0+ePIGDgwMCAwNx6dIltGzZMmdvEhAAODgALVsqnwMCCrZoyj+5XHfpnfHv3r2LBQsWwMrKCmFhYWjevDn69evHTttEWeA4RxzniIqAly9fYsaMGVizZg3S0tJgZmaG6dOnY8KECTAxMcn5G0VFKXeq6qdW5HLg0SPA3j7f66Z8lA/rLjY2FjNnzsTatWuRlpYGCwsLzJgxA2PHjoWRkVHB1E2UjzjOERFBCIGAgAC4urpi9erVSEtLQ69evXD37l18++23uQtGAHD/vubOFQBSU4H/H1CQtFg+rLtSpUph9erVuHz5Mho1aoSEhAR88803qFmzJoKDg/O5YKKii+GISEv9+eefaNGiBby9vREbG4tq1arh5MmTCAoKQvny5fP2pi4uwIcDP8rlgLPzpxdMBSsf112dOnVw7tw5bNq0CWXKlMG9e/fg4eGBgQMHIjY2Np8KJiq6GI6ItExycjLmzZuHmjVr4vTp0zAzM8OiRYsQFhaGFi1afNqb29sD69crd6qA8nndOp5SKwryed0ZGBjAy8sL9+7dw+jRoyGTyVTjYQUGBkIPe1wQqbDPEfsckRa5cOECvvrqK9y8eRMA0KZNG6xZswZOTk75O6OoKOXpGGdnBqOipoDW3YULF+Dt7Y1bt24BANq2bYs1a9bwfm2kVdjniEiPvHv3DhMmTECjRo1w8+ZNlCxZElu3bsXRo0fzPxgByp1q8+YMRkVRAa27Bg0a4MqVK5gzZw6MjIxw7NgxVKtWDatWreLYSKR3GI6IJHb58mXUrVsXS5cuhRACnp6eCA8Ph6enJ2QymdTlkR4xMjLC9OnTcf36dTRt2hRv377F6NGj0aZNG0RGRkpdHlGhYTgikkhycjJmzZqFhg0b4u7duyhbtiwOHTqErVu3onTp0lKXR3qsSpUqOHXqFFauXAlTU1P8+uuvqFGjBrZu3cq+SKQXGI6IJBAeHo5GjRrB19cXqamp6NWrF27duoUOHTpIXRoRAGWH7VGjRuHatWto0KAB4uLiMHDgQPTo0YM3syWdx3BEVIiEEFixYgXq1KmDK1euoHjx4tixYweCgoJQsmRJqcsjyqBy5co4d+4c5syZA4VCgb1796J69eo4cuSI1KURFRiGI6JCEhsbiy5dumDs2LFITExE27ZtcevWLfTp00fq0oiypVAoMH36dFy8eBHVq1dHTEwMOnTogIkTJyIpKUnq8ojyHcMRUSE4ffo0ateujV9++QVGRkZYuXIljhw5Ajs7O6lLI8qxOnXq4PLlyxg7diwAYMmSJWjcuDEecIR10jEMR0QFKDU1FbNmzULLli3x5MkTuLq64sKFCxg1ahSvRKMiydjYGMuWLcOBAwdQokQJXLlyBXXq1MH27dulLo0o32hFOPLz84OTkxNMTEzg5uaGs2fP5uh1v//+OxQKBWrXrl2wBRLlwZMnT9CyZUv4+voiLS0NgwYNwuXLl/l9JZ3QuXNn1SX/CQkJ6N+/P4YMGYI3b95IXRrRJ5M8HAUFBWHcuHGYPn06wsLC0LRpU7Rr1w4RERHZvi79yolWrVoVUqVEORcSEoI6dergzJkzsLCwwNatW7Fx40ZYWFhIXRpRvrG3t8fJkycxc+ZMyGQybNy4EQ0bNsT9+/elLo3ok0h++5AGDRqgbt26WLNmjWpa1apV0bVrV8yfPz/L1/Xp0wcuLi6Qy+XYv38/rl27luN58vYhVFCEEFi0aBGmTp2KtLQ01KpVC7t27YKLi4vUpREVqFOnTqFPnz54/vw5rKyssGXLFnTp0kXqskjH6MXtQ5KSknDlyhV4eHhoTPfw8MD58+ezfN3GjRvx119/YebMmTmaT2JiIuLj4zUeRPnt9evX6NmzJ7755hukpaVh4MCBOH/+PIMR6YXmzZvj6tWraNKkCeLj49G1a1dMnz4dqampUpdGlGuShqPY2FikpqbCxsZGY7qNjQ2io6Mzfc39+/cxdepUBAYGQqFQ5Gg+8+fPh7W1tepRvnz5T66dSF14eDjq16+PPXv2wNDQEGvWrMGmTZtgZmYmdWlEhcbOzg4hISGqq9nmzZuHdu3aITY2VuLKiHJH8j5HADJctSOEyPRKntTUVPTr1w++vr6oXLlyjt9/2rRpiIuLUz14jyDKT3v37kX9+vVx9+5dlCtXDmfPnoWPjw+vRiO9ZGhoiGXLlmH79u0wMzNDcHAw3NzccPXqValLI8oxScNRqVKlIJfLMxwliomJyXA0CVCetrh8+TJGjRoFhUIBhUKB2bNn4/r161AoFDh58mSm8zE2NoaVlZXGg+hTCSHw3//+F927d0dCQgJatGiBq1evokGDBlKXRiS5vn374sKFC3BxcUFERAQ+//xz7Nq1S+qyiHJE0nBkZGQENzc3BAcHa0wPDg5G48aNM7S3srLCzZs3ce3aNdXDx8cHrq6uqvv/EBWGt2/fom/fvpgxYwYAYNy4cThx4gTKlCkjcWVE2qN69eq4dOkS2rZti3fv3qFXr17w9fXlzWtJ6+Ws004BmjBhAgYMGIB69eqhUaNGWL9+PSIiIuDj4wNAeUrsyZMn2LJlCwwMDFC9enWN15cpUwYmJiYZphMVlCdPnqBLly64cuUKFAoF1qxZA29vb6nLItJK1tbWOHToECZPnoylS5di1qxZuHPnDjZu3Mg+eaS1JA9HvXv3xosXLzB79mw8e/ZMdUNDBwcHAMCzZ88+OuYRUWG5dOkSunTpgmfPnqFkyZLYs2cP3N3dpS6LSKvJ5XIsWbIE1apVw4gRI7Bz5048ePAABw4cgL29vdTlEWUg+ThHUuA4R5QXO3fuhJeXF96/f49q1arh4MGDqFixotRlERUpZ86cQffu3REbG4uyZcvil19+Qb169aQui4oIvRjniKgoSB/YsXfv3nj//j06dOiA8+fPMxgR5UGzZs1w8eJFVKtWDdHR0XB3d8fhw4elLotIA8MRUTZSU1MxZswYTJ48GQAwevRoHDhwgEcciT6Bk5MTzp8/j9atW+Pt27fo3Lkz1q9fL3VZRCoMR0RZePv2Lbp3745Vq1YBABYvXozly5dDLpdLXBlR0WdlZYXDhw9j8ODBSEtLw/Dhw/Htt9/ySjbSCgxHRJn4559/0LJlSxw4cADGxsbYuXMnJkyYwIEdifKRoaEhAgICMGvWLADKuxkMGDAASUlJ0hZGeo/hiOgDDx48QKNGjXDhwgWUKFECv/76K3r27Cl1WTkTFQWEhCifSb8Vke+CTCbDzJkzsWHDBigUCgQGBqJt27aIi4uTujTSYwxHRGquXbuGJk2a4K+//lL1i/j888+lLitnAgIABwegZUvlc0CA1BWRVIrgd2Hw4ME4fPgwLCwsEBISgubNm+P58+dSl0V6ipfys2Mt/b+zZ8+iY8eOiI+PR+3atXHs2LFMb2OjlaKilDvBtLT/TZPLgUePAI4jo1+K+Hfh2rVraNOmDWJiYuDs7Izg4GA4OjpKXRZpCV7KT1SIDh06BA8PD8THx6Np06Y4depU0QlGAHD/vubOEABSU4EHD6Sph6RTxL8LtWvXxrlz5+Dg4IAHDx6gSZMmuH37ttRlkZ5hOCK9FxgYiK5du+L9+/fo2LEjjh8/Dmtra6nLyh0XF8Dgg81ZLgecnaWph6SjA98FFxcX/P7776hWrRqePn2KZs2a4cKFC1KXRXqE4Yj02sqVK+Hp6YnU1FR4enpi7969MDU1lbqs3LO3B9avV+4EAeXzunVF4jQK5TMd+S6UK1cOZ86cQYMGDfDy5Uu0atUqw03KiQoK+xyxz5HemjNnDr7//nsAwJgxY7B06VIYfPh/3EVNVJTy9Imzc5HbGVI+05HvQkJCArp164bg4GAYGhpi586d6Nq1q9RlkUQKa//NcMRwpHeEEJgxYwbmzJkDAJg1axZmzJjBMYyItFRiYiI8PT2xe/duyOVybN++Hb169ZK6LJJAYe2/FQX2zkRaSAiBadOmYeHChQCAH3/8EZMmTZK4KiLKjrGxMXbs2AETExNs27YNffv2RXJyMvr37y91aaSjGI5IbwghMGHCBCxbtgwAsHz5cowZM0baoogoRxQKBTZt2gRDQ0Ns3LhRNZL24MGDpS6NdFAR72BBlDNpaWkYNWqUKhitWbOGwYioiJHL5fD394ePjw+EEBgyZAjWrVsndVmkgxiOSOelpaXBx8cHfn5+kMlkCAgIgI+Pj9RlEVEeGBgYwM/PT/U/Nz4+Pli5cqXEVZGuYTginZaWlgZvb2/89NNPMDAwwObNmzFkyBCpyyKiTyCTybBs2TJMnjwZgPJq0xUrVkhcFekShiPSWWlpaRg+fDg2btwIuVyOwMBADBgwQOqyiCgfyGQyLFy4EN9++y0AYOzYsVizZo3EVZGuYDginSSEwOjRo+Hv7w8DAwMEBgaiT58+UpdFRPlIJpNhzpw5+OabbwAAI0eOREARuMkuaT+GI9I5QghMnDhR1cdo8+bN6N27t9RlEVEBkMlkWLBgAcaNGwcA+Oqrr7BlyxZpi6Iij+GIdIoQAt9++y2WLl0KAPD394enp6fEVRFRQZLJZFiyZAm+/vprCCEwePBg7NixQ+qyqAhjOCKd4uvriwULFgAA/Pz82PmaSE/IZDKsWLECw4YNQ1paGgYMGIDdu3dLXRYVUQxHpDPmz58PX19fAMDSpUsxYsQIiSsiosJkYGCANWvWYNCgQUhNTUXfvn1x8OBBqcuiIojhiHTC8uXLVVetqPc/ICL9YmBgAH9/f/Tv3x8pKSno2bMnTp48KXVZVMQwHFGRt2XLFlUYmjVrFqZMmSJtQUQkKblcjk2bNqFbt25ISkpCly5dcOnSJanLoiKE4YiKtIMHD6r6FY0bNw4zZsyQuCIi0gYKhQLbt29Hq1atkJCQgHbt2uHOnTtSl0VFBMMRFVmnTp1Cr169kJqaCi8vLyxevBgymUzqsohISxgbG2P//v1o0KABXrx4AQ8PDzx69EjqsqgIYDiiIunKlSvo3LkzEhMT0blzZ9VgjzopKgoICVE+E+U3Hf9+WVhY4PDhw6hWrRqePHmC1q1b4/nz51KXRVpOR/cmpMvu3buHtm3b4vXr12jevDmCgoKgUCikLqtgBAQADg5Ay5bKZ47+S/lJT75fJUuWxIkTJ+Do6IgHDx6gTZs2ePXqldRlkRaTCSGE1EUUtvj4eFhbWyMuLg5WVlZSl0O5EBkZiSZNmiAyMhJubm44efKk7q7DqCjlDist7X/T5HLg0SPA3l6yskhH6OH366+//sLnn3+O6OhoNGnSBCdOnICZmZnUZVEuFNb+m0eOqMh4+fIlPDw8EBkZCVdXVxw9elR3gxEA3L+vueMCgNRU4MEDaeoh3aKH369KlSrh+PHjKFasGH7//Xf0798fqampUpdFWojhiIqE9+/fo0uXLrh79y7s7e1x4sQJlC5dWuqyCpaLC/BhPyq5HHB2lqYe0i16+v2qWbMmfvnlF1Vn7TFjxkAPT6DQRzAckdZLvxXAuXPnYG1tjaNHj6JChQpSl1Xw7O2B9euVOyxA+bxunc6e8qBCpsffr88//xyBgYGQyWTw8/PDwoULpS6JtAz7HOnyaRkdMWHCBCxduhSGhoY4fvw4WrRoIXVJhSsqSnmqw9lZL3ZcVMj0+Pu1YsUKjB07FoByMNkBAwZIXBF9TGHtvxmOGI602tKlSzFhwgQAwPbt29G3b1+JKyIiXTJ58mQsWrQICoUCR48exRdffCF1SZQNdsgmvbdr1y5MnDgRAPDDDz8wGBFRvlu4cCH69OmDlJQUdOvWDdeuXZO6JNICDEeklc6cOQNPT08IITBq1ChMmjRJ6pKISAcZGBhg06ZNaNGiBV6/fo327dvj8ePHUpdFEmM4Iq1z9+5ddOnSBUlJSejatSuWLVvG24IQUYExNjbG3r17Ub16dTx79gwdOnRAXFyc1GWRhBiOSKvExsaiY8eOePXqFRo1aoTt27dDnn41DRFRASlWrBiOHj0KOzs73L59G71790ZKSorUZZFEGI5IayQmJqJbt27466+/4OTkhAMHDsDU1FTqsohIT9jb2+PgwYMwMzPD8ePHMW7cOKlLIokwHJFWEEJg+PDhOHv2LKysrHDo0CHdH+SRiLSOm5sbtm3bBplMhtWrV2PlypVSl0QSYDgirbBw4UJs3rwZcrkcO3fuxGeffSZ1SUSkp7788kssWLAAADBu3DgcOXJE4oqosDEckeT27NmDadOmAVAOytamTRuJKyIifTd58mQMGTIEaWlp6N27N27cuCF1SVSIGI5IUpcvX1aNSjtmzBiMHDlS4oqIiACZTIY1a9agRYsWSEhIQMeOHREdHS11WVRIGI5IMlFRUejcuTPevXuHdu3aYfHixVKXRESkYmRkhN27d6Ny5cqIjIxEly5d8O7dO6nLokLAcESSePv2Lbp06YJnz56hWrVq+Pnnn6FQKKQui4hIQ4kSJXDo0CGUKFECFy9exLBhw6CHd93SOwxHVOiEEPD29sbVq1dRqlQpHDp0SD/vcRcVBYSEKJ+JtJ0ef19dXFywc+dOyOVybNu2DUuXLpW6JCpgDEdU6BYtWoQdO3ZAoVBg9+7dcHR0lLqkwhcQADg4AC1bKp8DAqSuiChr/L6iVatWWLJkCQBlZ+0TJ05IXBEVJJnQw+ODhXVXX8ro2LFjaN++PYQQWL16tX52wI6KUu5g0tL+N00uBx49AuztJSuLKFP8vqoIITBkyBBs2rQJxYsXx8WLF+Hs7Cx1WXqlsPbfPHJEheb+/fvo06eP6rTaiBEjpC5JGvfva+5oACA1FXjwQJp6iLLD76tK+hVsDRo0wL///osuXbrg9evXUpdFBYDhiApFfHw8unTpgri4ODRq1AirVq3S35vJurgABh9senI5wP8DJW3E76sGExMT7N27F7a2trhz5w4GDBiAtA/DIxV5DEdU4NLS0jBgwACEh4fDzs4Oe/bsgbGxsdRlScfeHli/XrmDAZTP69bp3SkKKiL4fc3Azs4O+/btg5GREQ4cOABfX1+pS6J8xj5H7HNU4GbOnInZs2fD2NgYZ86cQf369aUuSTtERSlPTTg76/WOhooIfl8z2Lx5MwYNGgRAOdJ/t27dpC1IDxTW/pvhiOGoQB04cABdu3YFoPwhGThwoLQFERHlo/Hjx2PZsmWwtLTEpUuX4OrqKnVJOo0dsqnIe/DggSoMjR07lsGIiHTOjz/+iGbNmuH169fo1q0bEhISpC6J8gHDERWIt2/fonv37oiPj0eTJk3w448/Sl0SEVG+UygUCAoKUnXQ9vb25gjaOoDhiPKdEAI+Pj64ceMGbGxssHPnThgaGkpdFhFRgShbtix27dqlCkorVqyQuiT6RAxHlO/WrVuHrVu3Qi6XIygoCHZ2dlKXRERUoJo0aaK6efakSZNw7tw5iSuiT8FwRPnq4sWLGDt2LABg/vz5cHd3l7giIqLCMXr0aPTt2xcpKSno1asXoqOjpS6J8ojhiPJNbGwsevTogaSkJHz55ZeYNGmS1CURERUamUyG9evXo1q1anj27Bl69+6N5ORkqcuiPGA4onyRmpqKfv36ITIyEi4uLti4caP+joCtx3cvJwKg19uAhYUF9u7dC0tLS5w5cwZTp06VuiTKA4Yjyhe+vr4IDg6Gqakp9uzZA2tra6lLkgbvXk76jtsAKleujM2bNwMAlixZgv3790tbEOUaB4HkIJCf7NixY2jXrh0AYNu2bejfv7/EFUmEdy8nfcdtQMOkSZOwePFiFCtWDGFhYXB0dJS6pCJPrwaB9PPzg5OTE0xMTODm5oazZ89m2Xbv3r1o3bo1SpcuDSsrKzRq1AjHjx8vxGpJ3dOnTzFgwAAAgI+Pj/4GI4B3LyfiNqBh/vz5aNCgAV69eoXevXsjKSlJ6pIohyQPR0FBQRg3bhymT5+OsLAwNG3aFO3atUNERESm7c+cOYPWrVvjyJEjuHLlClq0aIFOnTohLCyskCun9H5GsbGxqFWrFpYuXSp1SdLi3ctJ33Eb0GBoaIigoCAUK1YMFy9exLRp06QuiXJKSKx+/frCx8dHY1qVKlXE1KlTc/wen332mfD19c1x+7i4OAFAxMXF5fg1lNHMmTMFAGFubi7u3bsndTnawd9fCLlcCED57O8vdUVEhYvbQAb79+8XAAQAceDAAanLKdIKa/8t6ZGjpKQkXLlyBR4eHhrTPTw8cP78+Ry9R1paGl6/fo0SJUpk2SYxMRHx8fEaD/o0J0+exOzZswEoB32sXLmyxBVpiaFDlf0rQkKUz0OHSl0RUeHiNpBBly5dMH78eADAoEGD8PjxY4kroo+RNBzFxsYiNTUVNjY2GtNtbGxyPHjW4sWL8ebNG/Tq1SvLNvPnz4e1tbXqUb58+U+qW989f/4c/fv3hxACQ4cO1e9+RpmxtweaN9fLDqhEALgNZGLBggWoX78+/v33X/Tp04fjH2k5yfscAcgwHo4QIkdj5OzYsQOzZs1CUFAQypQpk2W7adOmIS4uTvWIjIz85Jr1VVpaGgYMGIDo6Gh89tlnvIcQEVEOGBkZ4eeff0axYsXwxx9/4Ntvv5W6JMqGpOGoVKlSkMvlGY4SxcTEZDia9KGgoCAMHToUO3fuxBdffJFtW2NjY1hZWWk8KG8WLlyoGs9o586dMDMzk7okIqIiwcnJCRs3bgQALFq0CIcOHZK4IsqKpOHIyMgIbm5uCA4O1pgeHByMxo0bZ/m6HTt2YNCgQdi+fTs6dOhQ0GXS/zt37hy+//57AMCqVatQrVo1iSsiIipaunbtqrr/pJeXF548eSJxRZQZyU+rTZgwAf7+/tiwYQPCw8Mxfvx4REREwMfHB4DylNjAgQNV7Xfs2IGBAwdi8eLFaNiwIaKjoxEdHY24uDipFkEvvHz5En379kVqaio8PT0xePBgqUsiIiqSfvjhB7i5ueHly5cYMGAAUlNTpS6JPiB5OOrduzeWLVuG2bNno3bt2jhz5gyOHDkCBwcHAMCzZ880xjxat24dUlJS8PXXX8PW1lb1SE/ilP+EEBg2bBiioqLg4uICPz8//bxvmh7fL4qoQOjpNmVkZITt27fDzMwMISEhWLRokdQl0Qd4+xD2P/qogIAAeHt7w9DQEKGhoXBzc5O6pMIXEAAMG6Yc/dfAAFi/npcoE30KblPYsGEDhg4dCoVCgdDQUNSrV0/qkrReYe2/GY4YjrL1559/ok6dOnj79i0WLlyIb775RuqSCh/vF0WUv7hNAVAele/Vqxd2794NFxcXXL16FRYWFlKXpdX06t5qpJ2SkpLQr18/vH37Fi1btsSkSZOkLkkavF8UUf7iNgVAOYzN+vXrUb58edy/f5/dQ7QIwxFlaebMmbhy5QqKFy+OzZs3w+DDeybpC94viih/cZtSKV68OLZt2waZTIYNGzZg586dUpdEYDiiLISEhGDhwoUAAH9/f9jr0aHuDOztlf0h5HLlv+VyYN06vTr8T5SvuE1paNasmWpQyGHDhmV543UqPOxzxD5HGbx8+RI1a9bEkydP4O3tjZ9++knqkrRDVJTysL+zs97+iBPlK25TKsnJyWjatCkuXLiApk2bIiQkBPL08Egq7HNEkki/bP/JkydwcXHB0qVLpS5Je/B+UUT5i9uUiqGhIbZv3w5LS0ucPXsW8+bNk7okvcZwRBo2btyIPXv2QKFQYPv27bxygoiokFSsWBGrV68GAPj6+uLSpUsSV6S/GI5I5cGDBxgzZgwAYM6cOfoz5oaeDkRHVGTo0Tbq6emJ3r17IzU1FQMGDMC7d++kLkkvMRwRACA1NRVeXl548+YN3N3d9eey/YAA5XgrLVsqnwMCpK6IiNTp2TYqk8ng5+cHW1tb3Lt3D1OnTpW6JL3EDtnskA0AWLhwIaZOnQpLS0vcvHlTdfsWncaB6Ii0mx5vo8eOHUO7du0AAL/++itatWolcUXagR2yqdDcuHEDM2bMAAAsX75cP4IRwIHoiLSdHm+jbdu2Vd2AfdCgQXj16pW0BekZhiM9l5SUhIEDByIpKQmdOnXCoEGDpC6p8HAgOiLtpufb6KJFi+Ds7IyoqCiMHj1a6nL0CsORnvP19cX169dRqlQp/PTTT5DJZFKXVHg4EB2RdtPzbdTc3BxbtmyBgYEBtm3bht27d0tdkt5gnyM97nMUGhqKzz//HGlpadi9eze6d+8udUnS4EB0RNpNz7fR6dOnY968eShZsiRu3rwJW1tbqUuSTGHtvxmO9DQcvXnzBrVr18aDBw/g6emJrVu3Sl1S/ouKUvZZcHHRyx9UIr2jo9t8UlISGjRogGvXrqF9+/Y4dOiQfh3lV8MO2VSgpkyZggcPHqBcuXJYuXKl1OXkPz27/JdI7+nwNm9kZIStW7fCyMgIR44c4S2dCgGPHOnhkaPg4GB4eHgAAE6cOIHWrVtLXFE+0+PLf4n0kp5s84sXL8akSZNgYWGBmzdvwtHRUeqSCh2PHFGBiIuLw5AhQwAAX3/9te4FI0CvL/8l0kt6ss2PHz8eTZs2RUJCAry9vaGHxzYKDcORnpk4cSKioqLg7OyMhQsXSl1OwdDzy3+J9I6ebPMGBgYICAiAqakpfvvtN55eK0AMR3rkxIkTCAgIgEwmw4YNG2Bubi51SQVDzy//JdI7erTNu7i4YN68eQCU/7P7+PFjiSvSTexzpCd9juLj41G9enVERkZi9OjRWLFihdQlFTw9v/yXSO/oyTafmpoKd3d3/P7772jdujWOHz+uN1ev8VL+AqSP4cjHxwfr1q2Dk5MTbt68WbSPGuno5bpEVEh04Dfkzz//RK1atfD+/Xv89NNP8Pb2lrqkQsEO2ZRvTp48iXXr1gEAAgICinYw0uHLdYmoEOjIb0jlypUxd+5cAMCECRMQEREhcUW6hUeOdPzIUUJCAmrUqIFHjx7Bx8cHa9askbqkvNOTy3WJqIDo2G9IamoqmjZtitDQULRp0wZHjx7V+dNrPHJE+WLatGl49OgRKlSogB9++EHqcj6NnlyuS0QFRMd+Q+RyOTZu3AhjY2McP34cGzdulLokncFwpMNOnz6NVatWAQD8/f1haWkpcUWfSE8u1yWiAqKDvyGurq6YM2cOAOU4SFFRURJXpBsYjnTU27dvMXToUACAt7d30RjsMSoKCAlRPmdGjy7XJaICkNvfkI/9JmmJ8ePHo2HDhoiPj8ewYcM4OGQ+YJ8jHe1zNH78eCxbtgz29va4desWrK2tpS4pewEBwLBhykPeBgbKH7D/D3cZ6MnlukRUQHLyG5Kb3yQtEB4ejtq1ayMpKQmBgYHo16+f1CUVCF7KX4B0PRz98ccfaNy4MYQQOHLkCNq1ayd1SdnTsU6SRFTEFdHfpLlz5+K7775DqVKlEB4ejlKlSkldUr5jh2zKk+TkZHz11VcQQmDAgAHaH4wAneskSURFXBH9TZo8eTJq1KiB2NhYTJgwQepyijSGIx3z448/4tatWyhVqhSWLFkidTlKHztvr4OdJImoCMvtb5KW9E0yMjKCv78/ZDIZtm7diuPHj0taT1HGcKRD/vzzT8yePRsAsHTpUu04pJqTAdfY0ZqItElufpO0bFDJ+vXrY8yYMQCA4cOHIyEhQdJ6iir2OdKRPkdCCLRs2RKnTp2Ch4cHjh07Jv1gYLk9b8+O1kSkTT72m6SlfZMSEhJQrVo1REREYPz48dpzFiEfsM8R5cqGDRtw6tQpmJqaYs2aNdIHIyD35+3t7YHmzRmMiEg7fOw3SUv7JllYWGDt2rUAgOXLl+PSpUuS1lMUMRzpgOjoaEyaNAkAMHv2bFSsWLHgZ5qTc+zsS0REukyL+ya1a9cO/fv3R1paGry9vZGcnFzg89QlDEc6YOzYsXj16hXq1q2LcePGFfwMc3qOnX2JiEiXaXnfpKVLl6JkyZK4ceMGFi1aVODz0yXsc1TE+xwdOnQInTp1glwux8WLF1G3bt2CnWFezrGzLxER6TIt7pu0bds2DBgwAMbGxrhx4wYqV65coPMraOxzRB/1+vVrjBgxAoByROx8CUYfO+ybl3Ps7EtERLqsIPom5dMpuP79+6NNmzZITEzkrUVygeGoCJs+fTqioqLg5OQEX1/fT3/DnBz2ZT8iIqLcye3vZj6egpPJZFi7di3MzMxw+vRpbN26Nc/vpU8YjoqoCxcuYNWqVQCg+uJn62P/FxIV9b/7CAHK5+HDM7ZnPyIiotzJze9mTn+L1dt/5AiTo6MjZs6cCQCYOHEiXr58+SlLoxcYjoqglJQUDB8+HEIIeHp6wsPDI/sX5OT/QnJz2HfoUOW58pAQ5bMW34yRiEgr5PR3Mze/xbk4wjR+/HhUq1YNsbGxmDp1ap4XQ1+wQ3YR7JC9fPlyjBs3DsWLF8fdu3dRpkyZrBvntCOglg5mRkSkVwrwN/vcuXNo2rQpAOD3339H48aN87/+AsYO2ZSpp0+f4vvvvwcAzJ8/H2WSkvKnAzVPlxERSS+nv8W57eQdFYXPk5MxtE8fAICPjw/HPsoGw1ERM378eLx+/RoNGjTAVwYG+duBmqfLiIikl5Pf4tz8tqudflsYFISSFha4efMmli9fXhDV6wSeVtPW02pRUcr/M3BxUf0fw4kTJ9CmTRsYGBjg8uHDqNOhQ84OqQYEKDv0pab+7/9CGHyIiIq2nPy2Z3L6bZNMhsFCwMzMDOHh4ahQoYJm+w/2PdqEp9V0VU7Grsikk9379+/x9ddfAwBGjx6NOsbG7EBNRKTPcvLbnsnpNy8h0KxmTbx9+xZjxoz53x9yM4RAId4KRQo8clSYR44CAv53iaaBgfK8cg5SPuRyzBozBr5Ll8LOzg7h4eGwio9nB2oiIspeFvuUOydOoFabNkhJScH+/fvRxc0t5/uUnOzLCgiPHBU1+TWOUCYp/35qKub//5hGS5cuVX4h2IGaiIg+Jot9xWctW2Ly5MkAlGcjEm7cyNnZiAIYh0kbMRx9TB5Pg2WQ0ysLPuhkJwB8DSApORkeHh7o2bPn/9rydBkREX1MFvuK7777Do6OjoiMjITvwYM56+BdQOMwaV2IEnooLi5OABBxcXHZN/T3F8LAQAhA+ezvn7FNZOT/2qQ/5HLl9Ly0S5+vXC4EIH6WyQQAYWxsLO7fv5/3hSYiIvrA4cOHBQAhl8vFjVmzVPseIZcX7j7vY/va/5fj/fcn0u8jR0+eZP23TzgN9snjCP1/yo8/dAjjS5cGAEybNg3OvH8ZERHlo/bt26Nbt25ITU3FqJMnIR4+zP5sRH6Pw5Tb03TZ7bfzkX6Ho2rVsj7Ml8fTYADyZxwhe3vMCA7Gs5gYODs7Y8qUKR9bGiIiolxbunQpTE1NcebMGfx87hzQvHn2/Vfzcxym3J6mq1YtB0v06fQ7HAmRdULN6YrNbcdoe/uPf/EA3LhxAytXrgQArF69GiYmJjlYICIiotypUKECpk+fDgCYNGkSXr9+/fEXfWxfltN9Y073telHmArpAnv9DkdA1gk1D6fB8qtjtBACo0ePRlpaGnr06PHxG8sSERF9gokTJ6JSpUp4+vQp/vvf/+bPm+Zk3/gpp+kKkH6PcwTA6mNjA0VFKcOTs3OhXSb/888/o2/fvjA1NcXdu3c1Ry8lIiIqAEeOHEGHDh2gUChw48YNVK1atfBm/rF97f+P1xSflgZrgOMcFSgDg4+PDZTD02D5JSEhARMnTgSg7ITNYERERIWhffv26NSpE1JSUjBmzBgU6rGTnJ6m+/AUXAHR73B065bWjQ00d+5cPH36FBUrVlQN0EVERFQYli1bBmNjY/z666/Ys2eP1OVoGjpUud8uBPodjsqVk7oCDffv38fixYsBKK8eYCdsIiIqTBUrVlRdHT1hwgS8efNG4oo+UEj7bf0OR1pECIGxY8ciOTkZbdu2RadOnaQuiYiI9NCUKVPg4OCAyMhIzJs3T+pyJMFwpCUOHTqEo0ePwtDQEMuXL4dMJpO6JCIi0kNmZmZYtmwZAGDRokW4f/++tAVJgOFIC7x//x7jxo0DoDyMWblyZWkLIiIivdalSxe0adMGSUlJGDt2bOF2ztYCDEdaYPHixfj7779hZ2eH7777TupyiIhIz8lkMqxYsQKGhoY4evQoDh48KHVJhUorwpGfnx+cnJxgYmICNzc3nD17Ntv2p0+fhpubG0xMTFCxYkWsXbu2kCrNfxEREZg7dy4A5eFLCwsLiSsiIiICKleurBpaZsKECUhMTJS4osIjeTgKCgrCuHHjMH36dISFhaFp06Zo164dIiIiMm3/8OFDtG/fHk2bNkVYWBi+/fZbjBkzRvsuOcyhSZMm4d27d2jWrBn69OkjdTlEREQq06dPh62tLf7++29VPyR9IPkI2Q0aNEDdunWxZs0a1bSqVauia9eumD9/fob2U6ZMwcGDBxEeHq6a5uPjg+vXryM0NDRH81SNkF3AI2x+TEhICFq2bAkDAwNcvXoVtWrVkqwWIiKizGzZsgVeXl6wsLDA/fv3UbZsWclqKaz9t6RHjpKSknDlypUM9w7z8PDA+fPnM31NaGhohvZt2rTB5cuXkZycXGC15rfU1FRVJ+wRI0YwGBERkVby9PRE/fr1kZCQoLpBra5TSDnz2NhYpKamwsbGRmO6jY0NoqOjM31NdHR0pu1TUlIQGxsLW1vbDK9JTEzUOFcaFxcHQJlApbJp0ybcuHED1tbWmDRpkqS1EBERZWfu3Llo3bo1NmzYgIEDB6JOnTqS1JG+ryzok16ShqN0H47pI4TIdpyfzNpnNj3d/Pnz4evrm2F6+fLlc1tqvouLi4OTk5PUZRAREeVI8+bNpS4BL168gLW1dYG9v6ThqFSpUpDL5RmOEsXExGQ4OpSubNmymbZXKBQoWbJkpq+ZNm0aJkyYoPr3q1ev4ODggIiIiAL9cLVNfHw8ypcvj8jISEn7WhU2LjeXWx9wubnc+iAuLg4VKlRAiRIlCnQ+koYjIyMjuLm5ITg4GF9++aVqenBwMLp06ZLpaxo1aoRffvlFY9qJEydQr149GBoaZvoaY2NjGBsbZ5hubW2tV1+qdFZWVlxuPcLl1i9cbv2ir8ttYFCwXaYlv5R/woQJ8Pf3x4YNGxAeHo7x48cjIiICPj4+AJRHfQYOHKhq7+Pjg8ePH2PChAkIDw/Hhg0bEBAQgEmTJkm1CERERKRDJO9z1Lt3b7x48QKzZ8/Gs2fPUL16dRw5cgQODg4AgGfPnmmMeeTk5IQjR45g/PjxWL16Nezs7LBixQp0795dqkUgIiIiHSJ5OAKAkSNHYuTIkZn+bdOmTRmmubu74+rVq3men7GxMWbOnJnpqTZdxuXmcusDLjeXWx9wuQt2uSUfBJKIiIhIm0je54iIiIhImzAcEREREalhOCIiIiJSw3BEREREpEZnw9HcuXPRuHFjmJmZoVixYjl6jRACs2bNgp2dHUxNTdG8eXPcvn1bo01iYiJGjx6NUqVKwdzcHJ07d0ZUVFQBLEHe/PvvvxgwYACsra1hbW2NAQMG4NWrV9m+RiaTZfr48ccfVW2aN2+e4e99+vQp4KXJubws96BBgzIsU8OGDTXa6Nr6Tk5OxpQpU1CjRg2Ym5vDzs4OAwcOxNOnTzXaadv69vPzg5OTE0xMTODm5oazZ89m2/706dNwc3ODiYkJKlasiLVr12Zos2fPHnz22WcwNjbGZ599hn379hVU+XmWm+Xeu3cvWrdujdKlS8PKygqNGjXC8ePHNdps2rQp0239/fv3Bb0ouZKb5T516lSmy3T37l2Ndrq2vjP7/ZLJZKhWrZqqjbav7zNnzqBTp06ws7ODTCbD/v37P/qaQtu2hY6aMWOGWLJkiZgwYYKwtrbO0WsWLFggLC0txZ49e8TNmzdF7969ha2trYiPj1e18fHxEeXKlRPBwcHi6tWrokWLFqJWrVoiJSWlgJYkd9q2bSuqV68uzp8/L86fPy+qV68uOnbsmO1rnj17pvHYsGGDkMlk4q+//lK1cXd3F1999ZVGu1evXhX04uRYXpbby8tLtG3bVmOZXrx4odFG19b3q1evxBdffCGCgoLE3bt3RWhoqGjQoIFwc3PTaKdN6/vnn38WhoaG4qeffhJ37twRY8eOFebm5uLx48eZtv/777+FmZmZGDt2rLhz54746aefhKGhodi9e7eqzfnz54VcLhfz5s0T4eHhYt68eUKhUIg//vijsBbro3K73GPHjhULFy4UFy9eFH/++aeYNm2aMDQ0FFevXlW12bhxo7CyssqwzWuT3C53SEiIACDu3bunsUzq26guru9Xr15pLG9kZKQoUaKEmDlzpqqNtq/vI0eOiOnTp4s9e/YIAGLfvn3Zti/MbVtnw1G6jRs35igcpaWlibJly4oFCxaopr1//15YW1uLtWvXCiGUX0ZDQ0Px888/q9o8efJEGBgYiGPHjuV77bl1584dAUDjSxAaGioAiLt37+b4fbp06SJatmypMc3d3V2MHTs2v0rNV3ldbi8vL9GlS5cs/64v6/vixYsCgMaPsDat7/r16wsfHx+NaVWqVBFTp07NtP0333wjqlSpojFt+PDhomHDhqp/9+rVS7Rt21ajTZs2bUSfPn3yqepPl9vlzsxnn30mfH19Vf/O6e+hlHK73Onh6N9//83yPfVhfe/bt0/IZDLx6NEj1bSisL7T5SQcFea2rbOn1XLr4cOHiI6OhoeHh2qasbEx3N3dcf78eQDAlStXkJycrNHGzs4O1atXV7WRUmhoKKytrdGgQQPVtIYNG8La2jrH9T1//hyHDx/G0KFDM/wtMDAQpUqVQrVq1TBp0iS8fv0632r/FJ+y3KdOnUKZMmVQuXJlfPXVV4iJiVH9TR/WN6C8kaNMJstw+lkb1ndSUhKuXLmisQ4AwMPDI8tlDA0NzdC+TZs2uHz5MpKTk7Ntow3rFcjbcn8oLS0Nr1+/znCDzoSEBDg4OMDe3h4dO3ZEWFhYvtX9qT5luevUqQNbW1u0atUKISEhGn/Th/UdEBCAL774QnV3iXTavL5zqzC3ba0YIVsbREdHAwBsbGw0ptvY2ODx48eqNkZGRihevHiGNumvl1J0dDTKlCmTYXqZMmVyXN/mzZthaWmJbt26aUzv378/nJycULZsWdy6dQvTpk3D9evXERwcnC+1f4q8Lne7du3Qs2dPODg44OHDh/j+++/RsmVLXLlyBcbGxnqxvt+/f4+pU6eiX79+Gjev1Jb1HRsbi9TU1Ey3y6yWMTo6OtP2KSkpiI2Nha2tbZZttGG9Anlb7g8tXrwYb968Qa9evVTTqlSpgk2bNqFGjRqIj4/H8uXL0aRJE1y/fh0uLi75ugx5kZfltrW1xfr16+Hm5obExERs3boVrVq1wqlTp9CsWTMAWX8ndGV9P3v2DEePHsX27ds1pmv7+s6twty2i1Q4mjVrFnx9fbNtc+nSJdSrVy/P85DJZBr/FkJkmPahnLT5FDldbiBj/UDu6tuwYQP69+8PExMTjelfffWV6r+rV68OFxcX1KtXD1evXkXdunVz9N65VdDL3bt3b9V/V69eHfXq1YODgwMOHz6cIRzm5n0/VWGt7+TkZPTp0wdpaWnw8/PT+JsU6zs7ud0uM2v/4fS8bOuFLa817tixA7NmzcKBAwc0AnTDhg01Ljpo0qQJ6tati5UrV2LFihX5V/gnys1yu7q6wtXVVfXvRo0aITIyEosWLVKFo9y+p1TyWuOmTZtQrFgxdO3aVWN6UVnfuVFY23aRCkejRo366BUzjo6OeXrvsmXLAlAmU1tbW9X0mJgYVQotW7YskpKS8O+//2ocTYiJiUHjxo3zNN+cyOly37hxA8+fP8/wt3/++SdDks7M2bNnce/ePQQFBX20bd26dWFoaIj79+8X2M6ysJY7na2tLRwcHHD//n0Aur2+k5OT0atXLzx8+BAnT57UOGqUmcJY35kpVaoU5HJ5hv/rU98uP1S2bNlM2ysUCpQsWTLbNrn5vhSkvCx3uqCgIAwdOhS7du3CF198kW1bAwMD/Oc//1F956X2KcutrmHDhti2bZvq37q8voUQ2LBhAwYMGAAjI6Ns22rb+s6tQt22c9VDqQjKbYfshQsXqqYlJiZm2iE7KChI1ebp06da10H3woULqml//PFHjjvoenl5ZbhqKSs3b94UAMTp06fzXG9++dTlThcbGyuMjY3F5s2bhRC6u76TkpJE165dRbVq1URMTEyO5iXl+q5fv74YMWKExrSqVatm2yG7atWqGtN8fHwydNps166dRpu2bdtqXQfd3Cy3EEJs375dmJiYfLRja7q0tDRRr149MXjw4E8pNV/lZbk/1L17d9GiRQvVv3V1fQvxvw7pN2/e/Og8tHF9p0MOO2QX1rats+Ho8ePHIiwsTPj6+goLCwsRFhYmwsLCxOvXr1VtXF1dxd69e1X/XrBggbC2thZ79+4VN2/eFH379s30Un57e3vx66+/iqtXr4qWLVtq3aXdNWvWFKGhoSI0NFTUqFEjw6XdHy63EELExcUJMzMzsWbNmgzv+eDBA+Hr6ysuXbokHj58KA4fPiyqVKki6tSpU2SX+/Xr12LixIni/Pnz4uHDhyIkJEQ0atRIlCtXTqfXd3JysujcubOwt7cX165d07i8NzExUQihfes7/RLngIAAcefOHTFu3Dhhbm6uuipn6tSpYsCAAar26Zf7jh8/Xty5c0cEBARkuNz3999/F3K5XCxYsECEh4eLBQsWaO2l3Tld7u3btwuFQiFWr16d5RAMs2bNEseOHRN//fWXCAsLE4MHDxYKhUIjYEstt8u9dOlSsW/fPvHnn3+KW7duialTpwoAYs+ePao2uri+03l6eooGDRpk+p7avr5fv36t2jcDEEuWLBFhYWGqK2el3LZ1Nhx5eXkJABkeISEhqjYAxMaNG1X/TktLEzNnzhRly5YVxsbGolmzZhnS+Lt378SoUaNEiRIlhKmpqejYsaOIiIgopKX6uBcvXoj+/fsLS0tLYWlpKfr375/hEtcPl1sIIdatWydMTU0zHcsmIiJCNGvWTJQoUUIYGRmJSpUqiTFjxmQYE0hKuV3ut2/fCg8PD1G6dGlhaGgoKlSoILy8vDKsS11b3w8fPsx0u1DfNrRxfa9evVo4ODgIIyMjUbduXY0jWF5eXsLd3V2j/alTp0SdOnWEkZGRcHR0zDT079q1S7i6ugpDQ0NRpUoVjZ2ptsjNcru7u2e6Xr28vFRtxo0bJypUqCCMjIxE6dKlhYeHhzh//nwhLlHO5Ga5Fy5cKCpVqiRMTExE8eLFxeeffy4OHz6c4T11bX0LoTy6bWpqKtavX5/p+2n7+k4/6pXVd1bKbVsmxP/3ZiIiIiIi3b19CBEREVFeMBwRERERqWE4IiIiIlLDcERERESkhuGIiIiISA3DEREREZEahiMiIiIiNQxHRERERGoYjoiIiIjUMBwRERERqWE4IiKdMnv2bNSoUQPm5uawsbHBiBEjkJycLHVZRFSEKKQugIgovwghkJqainXr1qFcuXK4c+cOBg4ciJo1a2LEiBFSl0dERQRvPEtEOq1fv34oXbo0li9fLnUpRFRE8LQaEemMx48fY9SoUahevTqKFy8OCwsL7Ny5E/b29lKXRkRFCMMREemE2NhY1K9fH7GxsViyZAnOnTuH0NBQyOVy1K5dW+ryiKgIYZ8jItIJR44cQUpKCnbs2AGZTAYAWL16NZKSkhiOiChXGI6ISCeUKFEC8fHxOHjwID777DP88ssvmD9/PsqVK4fSpUtLXR4RFSHskE1EOkEIgREjRmD79u0wNTWFp6cn3r9/j8ePH+PQoUNSl0dERQjDEREREZEadsgmIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkZr/A5iwDBCyBL/+AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABm2UlEQVR4nO3dd1wT9/8H8FdI2MvNVEBBtG7x66ziqLhH3QPFVUXrHlVrq2Kto3UPHBU3Wqy7ioNWXJU6ce9WBVSkaAVxMD+/P/IjTWQICFxIXs/HI4/U45Pc+3K53Kv3+dydTAghQEREREQAAAOpCyAiIiLSJgxHRERERGoYjoiIiIjUMBwRERERqWE4IiIiIlLDcERERESkhuGIiIiISA3DEREREZEahiMiIiIiNQxHVKQ9efIEM2fOxOXLlzP8bcCAAbCwsMjzeyclJcHX1xd2dnaQy+WoWbNm3gvNB/7+/ti4cWOG6Q8fPoRMJsv0b7pEJpNh5syZUpeRL2bOnAmZTFbgr12+fDlcXV1hZGQEmUyGly9fYsCAAXB2dtZoN2fOHOzduzdP9WTnxYsX6NWrF8qUKQOZTIbOnTvn+j2cnZ0xYMCAfK9Nm0RGRuLzzz9H+fLlYW5uDmtra9SqVQsrVqxASkqK1OXpJYXUBRB9jCdPnsDPzw/Ozs75Hl5WrVqFNWvWYPny5fDw8PiooJUf/P39UapUqQw7Cjs7O4SFhaFChQrSFEa5NmTIELRu3bpA53H58mWMHj0aQ4YMgY+PDxQKBSwtLfHtt99izJgxGm3nzJmDbt265Sm8ZOe7777Dnj17sH79elSoUAElSpTI1/fXFa9fv4aVlRW+/fZblCtXDklJSQgODsaoUaNw+fJlrFu3TuoS9Q7DEVEWrl+/DlNTU4wcOVLqUrJlbGyM+vXrS10G5YKjoyMcHR0LdB43btwAAHzxxReoW7euanphhujr16+jQoUK6Nu3b6HNM7+8efMGZmZmhTKvSpUqYdOmTRrT2rRpg5iYGGzatAkrV66EsbFxodRCSuxWI5V//vkHQ4cORdmyZWFsbIzSpUujUaNG+O2331RtmjZtiqpVqyIsLAwNGzaEqakpnJ2dsWHDBgDAwYMHUbt2bZiZmaFatWo4fPhwhvmcPn0aLVq0gKWlJczMzNCwYUMcPHgwQ7vr16+jU6dOKF68OExMTFCzZk2NH5Djx4/jf//7HwBg4MCBkMlkmXa93L9/H23btoWFhQXKli2LCRMmIDExMdvPQiaTYd26dXj79q3qfTdu3JhtF9b7807v/rhx4wZ69+4Na2tr2NjYYNCgQYiLi9N4bVpaGpYvX46aNWvC1NQUxYoVQ/369bF//34Ayq6FGzdu4MSJE6p60rtGsqopJ5/zxo0bIZPJEBoaiuHDh6NUqVIoWbIkunTpgidPnmT7GWXH2dkZ7du3x549e1C9enWYmJigfPnyWLZsWYa2ERER8Pb2RpkyZWBsbIzKlStj4cKFSEtLy/L9Hz58CIVCgblz52b428mTJyGTyfDLL78AyN16ePfuHaZOnQoXFxcYGRnBwcEBX375JV6+fJnp8h04cAC1atWCqakpKleujAMHDgBQfq6VK1eGubk56tatiwsXLmi8PrOusaCgIHh5ecHOzk71flOmTMHr16+z/qCz0LRpU3h7ewMA6tWrB5lMpjri+H63mkwmw+vXr7Fp0ybVd6tp06bZvv+LFy8wYsQIODg4wMjICOXLl8e0adNU21X6d/K3337DrVu3VO97/PjxLN8zOTkZX331FWxtbWFmZoZPP/0U586dy7RtdHQ0hg0bBkdHRxgZGcHFxQV+fn4ZuqCioqLQrVs3WFpaolixYujbty/Onz+fYXtJ74K/du0avLy8YGlpiRYtWgBQdq/Pnj0blSpVUv0uDhw4EP/880+GuoKCgtCgQQOYm5vDwsICrVq1Qnh4eLafZXZKly4NAwMDyOXyPL8H5ZEg+n+tWrUSpUuXFmvXrhXHjx8Xe/fuFdOnTxc///yzqo2np6coWbKkcHd3FwEBAeLIkSOiffv2AoDw8/MT1apVE9u3bxfBwcGifv36wtjYWDx+/Fj1+uPHjwtDQ0Ph4eEhgoKCxN69e4WXl5eQyWQa87l9+7awtLQUFSpUEJs3bxYHDx4UvXv3FgDE/PnzhRBCxMXFiQ0bNggA4ptvvhFhYWEiLCxMREZGCiGE8PHxEUZGRqJy5cpiwYIF4rfffhPTp08XMplM+Pn5ZftZhIWFibZt2wpTU1PV+8bExIgHDx4IAGLDhg0ZXgNAzJgxQ/XvGTNmCADC3d1dTJ8+XYSEhIhFixYJY2NjMXDgQI3X9uvXT8hkMjFkyBCxb98+cejQIfH999+LpUuXCiGEuHTpkihfvryoVauWqp5Lly4JIUSmNeX0c07//MqXLy9GjRoljhw5ItatWyeKFy8umjVrplFjetvMlv19Tk5OwsHBQZQrV06sX79eBAcHi759+woA4scff1S1i4mJEQ4ODqJ06dJi9erV4vDhw2LkyJECgBg+fHi2n+/nn38uypUrJ1JSUjTade/eXdjb24vk5ORcrYe0tDTRqlUroVAoxLfffiuOHj0qFixYIMzNzUWtWrXEu3fvNJbP0dFRVK1aVfV9r1evnjA0NBTTp08XjRo1Ert37xZ79uwRFStWFDY2NuLNmzeq16fXpO67774TixcvFgcPHhTHjx8Xq1evFi4uLhnWQ2avfd+NGzfEN998o1pfYWFh4v79+0II5Xbh5OSkahsWFiZMTU1F27ZtVd+tGzduZPneb9++FdWrVxfm5uZiwYIF4ujRo+Lbb78VCoVCtG3bVgghxLt370RYWJioVauWKF++vOp94+LisnxfHx8fIZPJxKRJk8TRo0fFokWLhIODg7CyshI+Pj6qdk+fPhVly5YVTk5OYs2aNeK3334T3333nTA2NhYDBgxQtUtISBCurq6iRIkSYuXKleLIkSNi3LhxwsXFJcP32MfHRxgaGgpnZ2cxd+5c8fvvv4sjR46I1NRU0bp1a2Fubi78/PxESEiIWLdunXBwcBCffPKJxjr9/vvvhUwmE4MGDRIHDhwQu3fvFg0aNBDm5ubZfp7q0tLSRHJysnjx4oX4+eefhbm5uZg6dWqOXkv5i+GIVCwsLMTYsWOzbePp6SkAiAsXLqimPX/+XMjlcmFqaqoRhC5fviwAiGXLlqmm1a9fX5QpU0a8evVKNS0lJUVUrVpVODo6irS0NCGEEL169RLGxsYiIiJCY/5t2rQRZmZm4uXLl0IIIc6fP5/lDtvHx0cAEDt27NCY3rZtW+Hu7v6BT0P5enNzc41peQlHP/zwg0a7ESNGCBMTE9Wynjx5UgAQ06ZNy7aeKlWqCE9PzwzTM6spp59zeuAZMWKExnv+8MMPAoB4+vSpatqmTZuEXC4XmzZtyrZOIZThQSaTicuXL2tMb9mypbCyshKvX78WQggxZcoUAUCcPXtWo93w4cOFTCYTd+7cUU17//MNDQ0VAMSePXtU0x4/fiwUCoVG+M3pejh8+HCm7YKCggQAsXbtWo3lMzU1FVFRUapp6d93Ozs71fIJIcTevXsFALF///4MNWUlfSd54sQJAUBcuXIlx69Nl75uz58/rzH9/XAkhBDm5uYaASQ7q1evznS7mj9/vgAgjh49qprm6ekpqlSp8sH3vHXrlgAgxo0bpzE9MDBQANCobdiwYcLCwkI8evRIo+2CBQsEAFUQWblypQAgDh06pNFu2LBhmYYjAGL9+vUabbdv3y4AiF27dmlMT//d8ff3F0IIERERIRQKhRg1apRGu1evXglbW1vRo0ePD34GQggxd+5cAUAAEDKZ7IO/CVRw2K1GKnXr1sXGjRsxe/Zs/Pnnn0hOTs60nZ2dHTw8PFT/LlGiBMqUKYOaNWvC3t5eNb1y5coAgEePHgFQDjo8e/YsunXrpjG4WS6Xo1+/foiKisKdO3cAAMeOHUOLFi1QtmxZjXkPGDAAb968QVhYWI6WSSaToUOHDhrTqlevrqqpMHTs2DHD/N+9e4eYmBgAwKFDhwAAX375Zb7MLzefc3Y1AtD4nPr374+UlBT0798/R3VUqVIFNWrU0JjWp08fxMfH49KlSwCU6/mTTz7RGBMDKNezEALHjh3L8v2bNm2KGjVqYOXKlappq1evhkwmw9ChQzO0/9B6SJ/X+wPeu3fvDnNzc/z+++8a02vWrAkHBwfVv9O/702bNtUYq/L+dpCVv//+G3369IGtrS3kcjkMDQ3h6ekJALh161a2ry1Mx44dg7m5Obp166YxPf1ze/9zyonQ0FAAyDA2qUePHlAoNIfGHjhwAM2aNYO9vT1SUlJUjzZt2gAATpw4oXq2tLTMMPC9d+/eWdbRtWvXDPMqVqwYOnTooDGvmjVrwtbWVtVNeOTIEdW2od7OxMQEnp6e2XYnqhswYADOnz+PI0eO4KuvvsKPP/6IUaNG5ei1lL84IJtUgoKCMHv2bKxbtw7ffvstLCws8Pnnn+OHH36Ara2tql1mZ5wYGRllmG5kZARAOY4DAP79918IIWBnZ5fh9emh6vnz56rnnLT7EDMzM5iYmGhMMzY2VtVUGEqWLJlh/gDw9u1bAMqxXnK5XOMz/hi5+ZxzWmNeZLY86dPU1/P7p5VnV+f70s/GunPnDsqXL4+ffvoJ3bp1y3TeH1rG58+fQ6FQoHTp0hrtZDIZbG1tM9SS1ff9Q9tBZhISEtC4cWOYmJhg9uzZqFixIszMzBAZGYkuXbp81HrIb8+fP4etrW2GMVNlypSBQqHI8bb5/nsCGb8zCoUiw3p79uwZfv31VxgaGmb6XrGxsar3tLGxyfD3zKYByt8KKyurDPN6+fKlah1mNa9nz54BgGoM5PsMDHJ2HMLW1lb1GXh5eaF48eKYMmUKBg0ahFq1auXoPSh/MByRSqlSpbBkyRIsWbIEERER2L9/P6ZMmYKYmJhMB1bnVvHixWFgYICnT59m+Fv64N9SpUoBUO7IctKusKUHrfcHdOdlh5CudOnSSE1NRXR0dKaBJrdy8zkXpOjo6Cynpe/wPnY99+nTB5MnT8bKlStRv359REdH5/kIXMmSJZGSkoJ//vlHIyAJIRAdHZ3lji8/HDt2DE+ePMHx48dVR4sAZBgIrg1KliyJs2fPQgihEZBiYmKQkpKSp+9W+vchOjpa42hcSkpKhm2rVKlSqF69Or7//vtM3ys9WJcsWTLTAd2ZfS8BZHrtqPQTFLL6/bO0tFS1A4CdO3fCyckp07Z5kX5E9e7duwxHhYzdapSpcuXKYeTIkWjZsqWqC+RjmZubo169eti9e7fG/wmnpaVh69atcHR0RMWKFQEALVq0UO0w1G3evBlmZmaqU9fz4whHbtjY2MDExARXr17VmL5v3748v2d6d8CqVauybWdsbJyj5czN51yQbty4gStXrmhM27ZtGywtLVG7dm0AyvV88+bNDN+xzZs3QyaToVmzZtnOw8TEBEOHDsWmTZuwaNEi1KxZE40aNcpTvelnJ23dulVj+q5du/D69WvV3wtC+o75/dO116xZU2DzVJfT7xag/JwSEhIyXDRy8+bNqr/nVvrZcYGBgRrTd+zYkeEMtPbt26suEVCnTp0Mj/Rw5OnpiVevXqm6rdP9/PPPOa6rffv2eP78OVJTUzOdl7u7OwCgVatWUCgU+OuvvzJtV6dOndx+JAD+6250dXXN0+sp73jkiAAAcXFxaNasGfr06YNKlSrB0tIS58+fx+HDh9GlS5d8m8/cuXPRsmVLNGvWDBMnToSRkRH8/f1x/fp1bN++XbWTmDFjhmpswfTp01GiRAkEBgbi4MGD+OGHH2BtbQ1Aec0WU1NTBAYGonLlyrCwsIC9vb3G2Kf8JJPJ4O3trbqoXY0aNXDu3Dls27Ytz+/ZuHFj9OvXD7Nnz8azZ8/Qvn17GBsbIzw8HGZmZqoxB9WqVcPPP/+MoKAglC9fHiYmJqhWrVqm75nTzzk3Nm/ejEGDBmH9+vU5Gndkb2+Pjh07YubMmbCzs8PWrVsREhKC+fPnq8bkjBs3Dps3b0a7du0wa9YsODk54eDBg/D398fw4cNzFOJGjBiBH374ARcvXvyoi+W1bNkSrVq1wuTJkxEfH49GjRrh6tWrmDFjBmrVqoV+/frl+b0/pGHDhihevDh8fX0xY8YMGBoaIjAwMEO4LCjVqlXD8ePH8euvv8LOzg6WlpaqHf/7+vfvj5UrV8LHxwcPHz5EtWrVcPr0acyZMwdt27bFZ599luv5V65cGd7e3liyZAkMDQ3x2Wef4fr161iwYEGGrq5Zs2YhJCQEDRs2xOjRo+Hu7o53797h4cOHCA4OxurVq+Ho6AgfHx8sXrwY3t7emD17NlxdXXHo0CEcOXIEQM66unr16oXAwEC0bdsWY8aMQd26dWFoaIioqCiEhoaiU6dO+Pzzz+Hs7IxZs2Zh2rRp+Pvvv9G6dWsUL14cz549w7lz52Bubg4/P78s5zNjxgw8e/YMTZo0gYODA16+fInDhw/jp59+Qvfu3TXGeFIhkXQ4OGmNd+/eCV9fX1G9enVhZWUlTE1Nhbu7u5gxY4bGmTdZnX3i5OQk2rVrl2E6APHll19qTDt16pRo3ry5MDc3F6ampqJ+/fri119/zfDaa9euiQ4dOghra2thZGQkatSokelZYtu3bxeVKlUShoaGGmc0ZXa2mRA5P9snq9fHxcWJIUOGCBsbG2Fubi46dOggHj58mOXZav/884/G69PPInrw4IFqWmpqqli8eLGoWrWqMDIyEtbW1qJBgwYan8vDhw+Fl5eXsLS0FABUZxxldQZdTj7nrM5oSj8TLDQ0NEPbnJ7K365dO7Fz505RpUoVYWRkJJydncWiRYsytH306JHo06ePKFmypDA0NBTu7u7ixx9/FKmpqRrt3v981TVt2lSUKFFC49TqdLlZD2/fvhWTJ08WTk5OwtDQUNjZ2Ynhw4eLf//9N9Ple19m3/f09aN+CYPMvoNnzpwRDRo0EGZmZqJ06dJiyJAh4tKlSxk+84I4W+3y5cuiUaNGwszMTADI9KxIdc+fPxe+vr7Czs5OKBQK4eTkJKZOnapxuQMhcn62mhBCJCYmigkTJogyZcoIExMTUb9+fREWFiacnJwynEn3zz//iNGjRwsXFxdhaGgoSpQoITw8PMS0adNEQkKCql1ERITo0qWLsLCwEJaWlqJr164iODhYABD79u3T+Ewy29aFECI5OVksWLBA1KhRQ5iYmAgLCwtRqVIlMWzYMHHv3j2Ntnv37hXNmjUTVlZWwtjYWDg5OYlu3bqJ3377Ldtl379/v/jss8+EjY2NUCgUwsLCQtStW1csW7ZMdUkKKlwyIYQozDBGRLrP2dkZVatWVV0UsSDFxMTAyckJo0aNwg8//FDg86Oibc6cOfjmm28QERFR4Fcpp6KL3WpEVCRFRUXh77//xo8//ggDA4MM9wsjWrFiBQDl7TmSk5Nx7NgxLFu2DN7e3gxGlC2GIyIqktatW4dZs2bB2dkZgYGBGmc5EQHK0/MXL16Mhw8fIjExEeXKlcPkyZPxzTffSF0aaTl2qxERERGpkfxU/pMnT6JDhw6wt7eHTCbLcHpoZk6cOAEPDw/VzSxXr15d8IUSERGRXpA8HL1+/Ro1atRQ9Q1/yIMHD9C2bVs0btwY4eHh+PrrrzF69Gjs2rWrgCslIiIifaBV3WoymQx79uxB586ds2wzefJk7N+/X+NeQ76+vrhy5UqO77dFRERElJUiNyA7LCwMXl5eGtNatWqFgIAAJCcnZ3q/ncTERI3bPaSlpeHFixcoWbJkni6GR0RERIVPCIFXr17B3t4+x/esy4siF46io6Mz3DjQxsYGKSkpiI2NzfTeVHPnzs326qRERERUdERGRhbo5RiKXDgCMt4gML1nMKujQFOnTsX48eNV/46Li0O5cuUQGRmZ4dL0RFSEPH4M/PUXUKECkN2p/DltR0RaLT4+HmXLllXd9LegFLlwZGtrm+GuyjExMVAoFKo7O7/P2Ng4ww0dAcDKyorhiKioCggAhg4F0tIAAwNg7Vpg8OC8tyOiIqOgh8RIfrZabjVo0AAhISEa044ePYo6depkOt6IiHRQVNR/gQdQPg8bppyel3ZERGokD0cJCQm4fPkyLl++DEB5qv7ly5cREREBQNklpn4HcF9fXzx69Ajjx4/HrVu3sH79egQEBGDixIlSlE9EUrh377/Aky41Fbh/P2/tiIjUSN6tduHCBTRr1kz17/SxQT4+Pti4cSOePn2qCkoA4OLiguDgYIwbNw4rV66Evb09li1bhq5duxZ67UQkETc3ZReZevCRywFX17y1IyJSo1XXOSos8fHxsLa2RlxcHMccERVVAQHKLrLUVGXgWbMm6zFHOWlHRFqvsPbfDEcMR0RFV1SUsovM1RXI7rTenLYjIq1WWPtvybvViIjyzNExZ2Enp+2IiKAFA7KJiIiItAnDEREREZEahiMiIiIiNQxHRERERGoYjoiIiIjUMBwRERERqWE4IiIiIlLDcERERESkhuGIiIiISA3DEREREZEahiMiIiIiNQxHRERERGoYjoiIiIjUMBwRERERqWE4IiIiIlLDcERERESkhuGIiIiISA3DEREREZEahiMiIiIiNQxHRERERGoYjohI+0RFAaGhymd9mjcRaQWGIyLSLgEBgJMT0Ly58jkgQD/mTURaQyaEEFIXUdji4+NhbW2NuLg4WFlZSV0OEaWLilKGkrS0/6bJ5cDDh4Cjo+7Om4hypLD23zxyRETa4949zXACAKmpwP37uj1vItIqDEdEpD3c3ACD936W5HLA1VW3501EWoXhiIi0h6MjsHatMpQAyuc1awqnW0vKeRORVuGYI445ItI+UVHK7ixX18IPJ1LOm4iyVVj7b0WBvTMRUV45OkoXTKScNxFpBXarEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGoYjIiIiIjUMR0RERERqGI6IiIiI1DAcEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGoYjIiIiIjUMR0RERERqGI6IiIiI1DAcEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGoYjIiIiIjUMR0RERERqGI6IiIiI1DAcEREREalhOCIiIiJSw3BEREREpIbhiIiIiEgNwxERERGRGoYjIiIiIjUMR0RERERqGI6IiIiI1DAcEREREanRinDk7+8PFxcXmJiYwMPDA6dOncq2fWBgIGrUqAEzMzPY2dlh4MCBeP78eSFVS0RERLpM8nAUFBSEsWPHYtq0aQgPD0fjxo3Rpk0bREREZNr+9OnT6N+/PwYPHowbN27gl19+wfnz5zFkyJBCrpyIiIh0keThaNGiRRg8eDCGDBmCypUrY8mSJShbtixWrVqVafs///wTzs7OGD16NFxcXPDpp59i2LBhuHDhQiFXTkRERLpI0nCUlJSEixcvwsvLS2O6l5cXzpw5k+lrGjZsiKioKAQHB0MIgWfPnmHnzp1o165dlvNJTExEfHy8xoOIJBAVBYSGKp+LOl1aFiLSIGk4io2NRWpqKmxsbDSm29jYIDo6OtPXNGzYEIGBgejZsyeMjIxga2uLYsWKYfny5VnOZ+7cubC2tlY9ypYtm6/LQUQ5EBAAODkBzZsrnwMCpK4o73RpWYgoA8m71QBAJpNp/FsIkWFaups3b2L06NGYPn06Ll68iMOHD+PBgwfw9fXN8v2nTp2KuLg41SMyMjJf6yeiD4iKAoYOBdLSlP9OSwOGDSuaR110aVmIKFMKKWdeqlQpyOXyDEeJYmJiMhxNSjd37lw0atQIkyZNAgBUr14d5ubmaNy4MWbPng07O7sMrzE2NoaxsXH+LwAR5cy9e/+FiXSpqcD9+4CjozQ15ZUuLQsRZUrSI0dGRkbw8PBASEiIxvSQkBA0bNgw09e8efMGBgaaZcvlcgDKI05EpIXc3ID3tlvI5YCrqzT1fAxdWhYiypTk3Wrjx4/HunXrsH79ety6dQvjxo1DRESEqpts6tSp6N+/v6p9hw4dsHv3bqxatQp///03/vjjD4wePRp169aFvb29VItBRNlxdATWrlWGCED5vGZN0TzSokvLQkSZkrRbDQB69uyJ58+fY9asWXj69CmqVq2K4OBgODk5AQCePn2qcc2jAQMG4NWrV1ixYgUmTJiAYsWKoXnz5pg/f75Ui0BEOTF4MNCqlbL7ydW1aIcJXVoWIspAJvSwLyo+Ph7W1taIi4uDlZWV1OUQERFRDhTW/lvybjUiIiIibcJwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwREQfLyoKCA1VPpMmfjZERQ7DERF9nIAAwMkJaN5c+RwQIHVF2oOfDVGRJBNCCKmLKGzx8fGwtrZGXFwcrKyspC6HqOiKilLu9NPS/psmlwMPHwKOjpKVpRX42RDlu8Laf/PIERHl3b17mjt/AEhNBe7fl6YebcLPhqjIYjgiorxzcwMM3vsZkcsBV1dp6tEm/GyIiiyGIyLKO0dHYO1a5U4fUD6vWcNuI4CfDVERxjFHHHNE9PGiopTdRa6u3Pm/j58NUb4prP23osDemYj0h6Mjd/xZ4WdDVOSwW42IiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGp0Ypw5O/vDxcXF5iYmMDDwwOnTp3Ktn1iYiKmTZsGJycnGBsbo0KFCli/fn0hVUtERES6TCF1AUFBQRg7diz8/f3RqFEjrFmzBm3atMHNmzdRrly5TF/To0cPPHv2DAEBAXB1dUVMTAxSUlIKuXIiIiLSRTIhhJCygHr16qF27dpYtWqValrlypXRuXNnzJ07N0P7w4cPo1evXvj7779RokSJPM0zPj4e1tbWiIuLg5WVVZ5rJyIiosJTWPtvSbvVkpKScPHiRXh5eWlM9/LywpkzZzJ9zf79+1GnTh388MMPcHBwQMWKFTFx4kS8ffs2y/kkJiYiPj5e40FERESUGUm71WJjY5GamgobGxuN6TY2NoiOjs70NX///TdOnz4NExMT7NmzB7GxsRgxYgRevHiR5bijuXPnws/PL9/rJyIiIt2jFQOyZTKZxr+FEBmmpUtLS4NMJkNgYCDq1q2Ltm3bYtGiRdi4cWOWR4+mTp2KuLg41SMyMjLfl4GIiIh0g6RHjkqVKgW5XJ7hKFFMTEyGo0np7Ozs4ODgAGtra9W0ypUrQwiBqKgouLm5ZXiNsbExjI2N87d4IiIi0kmSHjkyMjKCh4cHQkJCNKaHhISgYcOGmb6mUaNGePLkCRISElTT7t69CwMDAzg6OhZovURERKT7JO9WGz9+PNatW4f169fj1q1bGDduHCIiIuDr6wtA2SXWv39/Vfs+ffqgZMmSGDhwIG7evImTJ09i0qRJGDRoEExNTaVaDCIiItIRkl/nqGfPnnj+/DlmzZqFp0+fomrVqggODoaTkxMA4OnTp4iIiFC1t7CwQEhICEaNGoU6deqgZMmS6NGjB2bPni3VIhAREZEOkfw6R1LgdY6IiIiKHr24zhERERGRtmE4IiIiIlLDcERERESkhuGIiIiISA3DEREREZEahiMiIiIiNQxHRERERGoYjoiIiIjUMBwRERERqWE4IiIiIlLDcERERESkhuGIiLIWFQWEhiqfqWDxsybSGgxHRJS5gADAyQlo3lz5HBAgdUW6i581kVaRCSGE1EUUtsK6qy9RkRUVpdxJp6X9N00uBx4+BBwdJStLJ/GzJsqxwtp/88gREWV0757mzhoAUlOB+/elqUeX8bMm0joMR0SUkZsbYPDez4NcDri6SlOPLuNnTaR1GI6IKCNHR2DtWuVOGlA+r1nDbp6CwM+aSOtwzBHHHBFlLSpK2b3j6sqddUHjZ030QYW1/1YU2DsTUdHn6MgddWHhZ02kNditRkRERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGp+ahwFBMTg+jo6PyqhYiIiEhyeQpHV69eRZUqVWBnZwcHBwc4ODjgm2++wevXr/O7PiKiXBFCIDk5GWnv38yViCiH8nSF7MGDB8PGxgbr1q2Dubk5Ll68iBUrVmDXrl04c+YMihcvnt91EpEeSU5ORnR0NKKiohAVFYXHjx/j8ePHeP78Of7991+8fPlS9ZyQkICkpCQkJycjOTkZqampqvdRKBQwMjJSPczMzFCiRAkUL14cxYsXR4kSJVCiRAnY29ujbNmycHR0RNmyZVG6dGkYvH8zWCLSG3m6t1p6IKpUqZJqmhAC3bt3h4mJCbZu3ZqvReY33luNSHpCCDx58gS3bt3CnTt3cOfOHdy9exd37tzBo0ePIOVtH42MjODs7IxKlSrB3d0dlSpVUj1KlCghWV1E+k6r761Wp04d/PvvvxrTZDIZ5syZAw8Pj3wpjIh0hxACDx8+xKVLlzQeMTExWb7G0NAQ9vb2cHR0hKOjIxwcHFC6dGkUK1YMxYoVQ/HixVGsWDFYWlrC0NBQ46FQKJCamoqkpCSNR0JCAv7991/V48WLF3j+/DkeP36MyMhIREVF4enTp0hKSsLdu3dx9+7dDHWVK1cOHh4eGo/SpUsX5MdHRIUsx+GoXbt2qFGjBmrWrAlfX1+MGzcO+/btg42NjapNXFwcu9SICKmpqbh27RpOnTqFU6dO4eTJk3j27FmGdgYGBnB1dYW7u7vGw83NDWXKlJGkays5ORlPnjzBX3/9hdu3b2s8IiMjERERgYiICOzZs0f1GhcXF3h6eqJJkybw9PSEi4sLZDJZoddORPkjx91qU6ZMweXLl3HlyhXVj5ypqSl69OiBmjVrIjU1FRs2bMDMmTPRtWvXAi36Y7FbjSj//f333zh06BAOHz6MU6dOIS4uTuPvhoaGqFatGmrXrq16VKtWDWZmZhJVnHtxcXEIDw/HxYsXVY/Mji45ODjA09MTrVq1QuvWrVGmTBkJqiXSPYW1/87TmKNnz54hPDwcly9fVj3u378PuVwOd3d3XL16tSBqzTcMR0QfLzExEaGhoapA9H5IsLS0RMOGDdG4cWM0adIE//vf/2BiYiJRtQUnLi4OYWFhOHnyJE6cOIHz588jOTlZ9XeZTIY6deqgbdu2aNOmDerUqQO5XC5hxURFl1aHo8y8ffsWV65cwZUrVzBs2LD8eMsCw3BElDdv377FkSNHsHPnTvz666+Ij49X/U2hUKBRo0Zo3bo1PvvsM9SsWRMKRZ6GNRZpb968wZ9//onff/8dhw4dQnh4uMbfbW1t0aVLF3Tv3h2NGzdmUCLKhSIXjooShiOinEtMTMTBgwexY8cOHDhwQON6Zvb29qojIi1atIC1tbWElWqnp0+f4vDhwwgODkZISIhGd6ONjQ26dOmCHj16oEmTJrx8ANEHMBwVIIYjouwJIXD+/Hls2rQJP//8M168eKH6W7ly5dCtWzd069YN9erV4w49F5KSkvD777/jl19+wd69ezXO+i1Xrhx8fHzg4+ODChUqSFglkfZiOCpADEdEmXv27Bk2btyITZs24datW6rpDg4O6NOnD7p37446derwTKx8kJSUhGPHjuGXX37Brl27NI4oNW7cGAMGDED37t1haWkpYZVE2oXhqAAxHBH9RwiBP/74AytXrsSuXbtUg4lNTEzQpUsXDBgwAM2bN+fYmAL09u1b7Nu3Dxs3bsTRo0dVF8C0tLTEgAEDMGLECI2L7hLpK4ajAsRwRAQkJCQgMDAQ/v7+GmeY1qtXD0OGDEH37t05hkgCUVFR2Lp1K9avX4979+6pprdo0QIjR45E+/bt9XKgOxHAcFSgGI5In0VHR2P58uXw9/fHy5cvASivWdanTx+MGDECtWvXlrZAAgCkpaXh999/x4oVK3DgwAHVjXTLlSuHcePGYciQIbCwsJC4SqLCxXBUgBiOSB/duXMHCxcuxKZNm5CUlAQAcHNzw4gRI+Dj48Or22uxhw8fYvXq1Vi3bh2eP38OAChevDi+/PJLjB49mrcvIb3BcFSAGI5In1y8eBHff/899u7dqxrL0qBBA3z11Vfo2LEjzzYrQt69e4fNmzfjxx9/xP379wEox4YNGjQIkyZNgrOzs7QFEhWwwtp/81eRSEeFh4ejU6dOqFOnDvbs2QMhBDp27IjTp0/jzJkz6Ny5M4NREWNiYoKhQ4fi9u3b2LlzJ/73v//h3bt38Pf3h5ubG3x9fRERESF1mURFHn8ZiXTMlStX8Pnnn6N27drYv38/DAwM4O3tjZs3b2Lfvn1o1KiR1CXSR5LL5ejatSvOnj2L0NBQtGzZEikpKVizZg3c3NwwcuRIPH78WOoyiYoshiMiHXHv3j10794dNWvWxN69eyGTydCnTx/cvHkTW7ZsQeXKlaUukfKZTCZD06ZNcfToUZw6dQrNmzdHUlISVq5ciQoVKmDs2LH4559/pC6TqMhhOCIq4v755x+MGjUKn3zyCXbu3AmZTIZevXrhxo0bCAwMhLu7u9QlUiH49NNP8fvvvyM0NBSNGzdGYmIili5dCldXV8ybNw9v376VukSiIoPhiKiIevPmDebMmYMKFSpgxYoVSElJQdu2bXHlyhVs376dR4r0VNOmTXHixAkcPXoUtWrVQnx8PKZOnQp3d3ds2bJFdUkAIsoawxFRESOEQGBgICpWrIhp06bh1atXqF27Nn7//XccPHgQ1apV+/CbREUBoaHKZypacrDuZDIZWrZsiQsXLmDLli0oV64cIiMj0b9/f9SpUwcnTpwoxIKJih6GI6Ii5MqVK/D09IS3tzceP34MJycnBAYG4vz582jevHnO3iQgAHByApo3Vz4HBBRs0ZR/crnu0gfj3759G/PmzYOVlRXCw8PRtGlT9OnTh4O2ibLA6xzxOkdUBLx48QLTp0/HqlWrkJaWBjMzM0ybNg3jx4+HiYlJzt8oKkq5U1XvWpHLgYcPAUfHfK+b8lE+rLvY2FjMmDEDq1evRlpaGiwsLDB9+nSMGTMGRkZGBVM3UT7idY6ICEIIBAQEwN3dHStXrkRaWhp69OiB27dv4+uvv85dMAKAe/c0d64AkJoK/P8FBUmL5cO6K1WqFFauXIkLFy6gQYMGSEhIwFdffYXq1asjJCQknwsmKroYjoi01N27d9GsWTMMGTIEsbGxqFKlCo4dO4agoCCULVs2b2/q5ga8f+FHuRxwdf34gqlg5eO6q1WrFk6fPo2NGzeiTJkyuHPnDry8vNC/f3/ExsbmU8FERRfDEZGWSU5Oxpw5c1C9enWcOHECZmZmWLBgAcLDw9GsWbOPe3NHR2DtWuVOFVA+r1nDLrWiIJ/XnYGBAXx8fHDnzh2MGjUKMplMdT2swMBA6OGICyIVjjnimCPSImfPnsUXX3yBa9euAQBatWqFVatWwcXFJX9nFBWl7I5xdWUwKmoKaN2dPXsWQ4YMwfXr1wEArVu3xqpVq3i/NtIqHHNEpEfevn2L8ePHo0GDBrh27RpKliyJLVu24NChQ/kfjADlTrVpUwajoqiA1l29evVw8eJFzJ49G0ZGRjh8+DCqVKmCFStW8NpIpHcYjogkduHCBdSuXRuLFy+GEALe3t64desWvL29IZPJpC6P9IiRkRGmTZuGK1euoHHjxnjz5g1GjRqFVq1aITIyUuryiAoNwxGRRJKTkzFz5kzUr18ft2/fhq2tLQ4cOIAtW7agdOnSUpdHeqxSpUo4fvw4li9fDlNTU/z222+oVq0atmzZwrFIpBcYjogkcOvWLTRo0AB+fn5ITU1Fjx49cP36dbRr107q0ogAKAdsjxw5EpcvX0a9evUQFxeH/v37o1u3bryZLek8hiOiQiSEwLJly1CrVi1cvHgRxYsXx/bt2xEUFISSJUtKXR5RBhUrVsTp06cxe/ZsKBQK7N69G1WrVkVwcLDUpREVGIYjokISGxuLTp06YcyYMUhMTETr1q1x/fp19OrVS+rSiLKlUCgwbdo0nDt3DlWrVkVMTAzatWuHCRMmICkpSeryiPIdwxFRIThx4gRq1qyJX3/9FUZGRli+fDmCg4Nhb28vdWlEOVarVi1cuHABY8aMAQAsWrQIDRs2xH1eYZ10DMMRUQFKTU3FzJkz0bx5czx+/Bju7u44e/YsRo4cyTPRqEgyNjbGkiVLsG/fPpQoUQIXL15ErVq1sG3bNqlLI8o3WhGO/P394eLiAhMTE3h4eODUqVM5et0ff/wBhUKBmjVrFmyBRHnw+PFjNG/eHH5+fkhLS8OAAQNw4cIFfl9JJ3Ts2FF1yn9CQgL69u2LQYMG4fXr11KXRvTRJA9HQUFBGDt2LKZNm4bw8HA0btwYbdq0QURERLavSz9zokWLFoVUKVHOhYaGolatWjh58iQsLCywZcsWbNiwARYWFlKXRpRvHB0dcezYMcyYMQMymQwbNmxA/fr1ce/ePalLI/ookt8+pF69eqhduzZWrVqlmla5cmV07twZc+fOzfJ1vXr1gpubG+RyOfbu3YvLly/neJ68fQgVFCEEFixYgClTpiAtLQ01atTAL7/8Ajc3N6lLIypQx48fR69evfDs2TNYWVlh8+bN6NSpk9RlkY7Ri9uHJCUl4eLFi/Dy8tKY7uXlhTNnzmT5ug0bNuCvv/7CjBkzcjSfxMRExMfHazyI8turV6/QvXt3fPXVV0hLS0P//v1x5swZBiPSC02bNsWlS5fQqFEjxMfHo3Pnzpg2bRpSU1OlLo0o1yQNR7GxsUhNTYWNjY3GdBsbG0RHR2f6mnv37mHKlCkIDAyEQqHI0Xzmzp0La2tr1aNs2bIfXTuRulu3bqFu3brYtWsXDA0NsWrVKmzcuBFmZmZSl0ZUaOzt7REaGqo6m23OnDlo06YNYmNjJa6MKHckH3MEIMNZO0KITM/kSU1NRZ8+feDn54eKFSvm+P2nTp2KuLg41YP3CKL8tHv3btStWxe3b9+Gg4MDTp06BV9fX56NRnrJ0NAQS5YswbZt22BmZoaQkBB4eHjg0qVLUpdGlGOShqNSpUpBLpdnOEoUExOT4WgSoOy2uHDhAkaOHAmFQgGFQoFZs2bhypUrUCgUOHbsWKbzMTY2hpWVlcaD6GMJIfDdd9+ha9euSEhIQLNmzXDp0iXUq1dP6tKIJNe7d2+cPXsWbm5uiIiIwKeffopffvlF6rKIckTScGRkZAQPDw+EhIRoTA8JCUHDhg0ztLeyssK1a9dw+fJl1cPX1xfu7u6q+/8QFYY3b96gd+/emD59OgBg7NixOHr0KMqUKSNxZUTao2rVqjh//jxat26Nt2/fokePHvDz8+PNa0nr5WzQTgEaP348+vXrhzp16qBBgwZYu3YtIiIi4OvrC0DZJfb48WNs3rwZBgYGqFq1qsbry5QpAxMTkwzTiQrK48eP0alTJ1y8eBEKhQKrVq3CkCFDpC6LSCtZW1vjwIEDmDRpEhYvXoyZM2fi5s2b2LBhA8fkkdaSPBz17NkTz58/x6xZs/D06VPVDQ2dnJwAAE+fPv3gNY+ICsv58+fRqVMnPH36FCVLlsSuXbvg6ekpdVlEWk0ul2PRokWoUqUKhg8fjh07duD+/fvYt28fHB0dpS6PKAPJr3MkBV7niPJix44d8PHxwbt371ClShXs378f5cuXl7osoiLl5MmT6Nq1K2JjY2Fra4tff/0VderUkbosKiL04jpHREVB+oUde/bsiXfv3qFdu3Y4c+YMgxFRHjRp0gTnzp1DlSpVEB0dDU9PTxw8eFDqsog0MBwRZSM1NRWjR4/GpEmTAACjRo3Cvn37eMSR6CO4uLjgzJkzaNmyJd68eYOOHTti7dq1UpdFpMJwRJSFN2/eoGvXrlixYgUAYOHChVi6dCnkcrnElREVfVZWVjh48CAGDhyItLQ0DBs2DF9//TXPZCOtwHBElIl//vkHzZs3x759+2BsbIwdO3Zg/PjxvLAjUT4yNDREQEAAZs6cCUB5N4N+/fohKSlJ2sJI7zEcEb3n/v37aNCgAc6ePYsSJUrgt99+Q/fu3aUuK2eiooDQUOUz6bci8l2QyWSYMWMG1q9fD4VCgcDAQLRu3RpxcXFSl0Z6jOGISM3ly5fRqFEj/PXXX6pxEZ9++qnUZeVMQADg5AQ0b658DgiQuiKSShH8LgwcOBAHDx6EhYUFQkND0bRpUzx79kzqskhP8VR+Dqyl/3fq1Cm0b98e8fHxqFmzJg4fPpzpbWy0UlSUcieYlvbfNLkcePgQ4HVk9EsR/y5cvnwZrVq1QkxMDFxdXRESEgJnZ2epyyItwVP5iQrRgQMH4OXlhfj4eDRu3BjHjx8vOsEIAO7d09wZAkBqKnD/vjT1kHSK+HehZs2aOH36NJycnHD//n00atQIN27ckLos0jMMR6T3AgMD0blzZ7x79w7t27fHkSNHYG1tLXVZuePmBhi8tznL5YCrqzT1kHR04Lvg5uaGP/74A1WqVMGTJ0/QpEkTnD17VuqySI8wHJFeW758Oby9vZGamgpvb2/s3r0bpqamUpeVe46OwNq1yp0goHxes6ZIdKNQPtOR74KDgwNOnjyJevXq4cWLF2jRokWGm5QTFRSOOeKYI701e/ZsfPvttwCA0aNHY/HixTB4//+4i5qoKGX3iatrkdsZUj7Tke9CQkICunTpgpCQEBgaGmLHjh3o3Lmz1GWRRApr/81wxHCkd4QQmD59OmbPng0AmDlzJqZPn85rGBFpqcTERHh7e2Pnzp2Qy+XYtm0bevToIXVZJIHC2n8rCuydibSQEAJTp07F/PnzAQA//vgjJk6cKHFVRJQdY2NjbN++HSYmJti6dSt69+6N5ORk9O3bV+rSSEcxHJHeEEJg/PjxWLJkCQBg6dKlGD16tLRFEVGOKBQKbNy4EYaGhtiwYYPqStoDBw6UujTSQUV8gAVRzqSlpWHkyJGqYLRq1SoGI6IiRi6XY926dfD19YUQAoMGDcKaNWukLot0EMMR6by0tDT4+vrC398fMpkMAQEB8PX1lbosIsoDAwMD+Pv7q/7nxtfXF8uXL5e4KtI1DEek09LS0jBkyBD89NNPMDAwwKZNmzBo0CCpyyKijyCTybBkyRJMmjQJgPJs02XLlklcFekShiPSWWlpaRg2bBg2bNgAuVyOwMBA9OvXT+qyiCgfyGQyzJ8/H19//TUAYMyYMVi1apXEVZGuYDginSSEwKhRo7Bu3ToYGBggMDAQvXr1krosIspHMpkMs2fPxldffQUAGDFiBAKKwE12SfsxHJHOEUJgwoQJqjFGmzZtQs+ePaUui4gKgEwmw7x58zB27FgAwBdffIHNmzdLWxQVeQxHpFOEEPj666+xePFiAMC6devg7e0tcVVEVJBkMhkWLVqEL7/8EkIIDBw4ENu3b5e6LCrCGI5Ip/j5+WHevHkAAH9/fw6+JtITMpkMy5Ytw9ChQ5GWloZ+/fph586dUpdFRRTDEemMuXPnws/PDwCwePFiDB8+XOKKiKgwGRgYYNWqVRgwYABSU1PRu3dv7N+/X+qyqAhiOCKdsHTpUtVZK+rjD4hIvxgYGGDdunXo27cvUlJS0L17dxw7dkzqsqiIYTiiIm/z5s2qMDRz5kxMnjxZ2oKISFJyuRwbN25Ely5dkJSUhE6dOuH8+fNSl0VFCMMRFWn79+9XjSsaO3Yspk+fLnFFRKQNFAoFtm3bhhYtWiAhIQFt2rTBzZs3pS6LigiGIyqyjh8/jh49eiA1NRU+Pj5YuHAhZDKZ1GURkZYwNjbG3r17Ua9ePTx//hxeXl54+PCh1GVREcBwREXSxYsX0bFjRyQmJqJjx46qiz3qpKgoIDRU+UyU33T8+2VhYYGDBw+iSpUqePz4MVq2bIlnz55JXRZpOR3dm5Auu3PnDlq3bo1Xr16hadOmCAoKgkKhkLqsghEQADg5Ac2bK5959V/KT3ry/SpZsiSOHj0KZ2dn3L9/H61atcLLly+lLou0mEwIIaQuorDFx8fD2toacXFxsLKykrocyoXIyEg0atQIkZGR8PDwwLFjx3R3HUZFKXdYaWn/TZPLgYcPAUdHycoiHaGH36+//voLn376KaKjo9GoUSMcPXoUZmZmUpdFuVBY+28eOaIi48WLF/Dy8kJkZCTc3d1x6NAh3Q1GAHDvnuaOCwBSU4H796Wph3SLHn6/KlSogCNHjqBYsWL4448/0LdvX6SmpkpdFmkhhiMqEt69e4dOnTrh9u3bcHR0xNGjR1G6dGmpyypYbm7A++Oo5HLA1VWaeki36On3q3r16vj1119Vg7VHjx4NPexAoQ9gOCKtl34rgNOnT8Pa2hqHDh1CuXLlpC6r4Dk6AmvXKndYgPJ5zRqd7fKgQqbH369PP/0UgYGBkMlk8Pf3x/z586UuibQMxxzpcreMjhg/fjwWL14MQ0NDHDlyBM2aNZO6pMIVFaXs6nB11YsdFxUyPf5+LVu2DGPGjAGgvJhsv379JK6IPqSw9t8MRwxHWm3x4sUYP348AGDbtm3o3bu3xBURkS6ZNGkSFixYAIVCgUOHDuGzzz6TuiTKBgdkk9775ZdfMGHCBADADz/8wGBERPlu/vz56NWrF1JSUtClSxdcvnxZ6pJICzAckVY6efIkvL29IYTAyJEjMXHiRKlLIiIdZGBggI0bN6JZs2Z49eoV2rZti0ePHkldFkmM4Yi0zu3bt9GpUyckJSWhc+fOWLJkCW8LQkQFxtjYGLt370bVqlXx9OlTtGvXDnFxcVKXRRJiOCKtEhsbi/bt2+Ply5do0KABtm3bBnn62TRERAWkWLFiOHToEOzt7XHjxg307NkTKSkpUpdFEmE4Iq2RmJiILl264K+//oKLiwv27dsHU1NTqcsiIj3h6OiI/fv3w8zMDEeOHMHYsWOlLokkwnBEWkEIgWHDhuHUqVOwsrLCgQMHdP8ij0SkdTw8PLB161bIZDKsXLkSy5cvl7okkgDDEWmF+fPnY9OmTZDL5dixYwc++eQTqUsiIj31+eefY968eQCAsWPHIjg4WOKKqLAxHJHkdu3ahalTpwJQXpStVatWEldERPpu0qRJGDRoENLS0tCzZ09cvXpV6pKoEDEckaQuXLiguirt6NGjMWLECIkrIiICZDIZVq1ahWbNmiEhIQHt27dHdHS01GVRIWE4IslERUWhY8eOePv2Ldq0aYOFCxdKXRIRkYqRkRF27tyJihUrIjIyEp06dcLbt2+lLosKAcMRSeLNmzfo1KkTnj59iipVquDnn3+GQqGQuiwiIg0lSpTAgQMHUKJECZw7dw5Dhw6FHt51S+8wHFGhE0JgyJAhuHTpEkqVKoUDBw7o5z3uoqKA0FDlM5G20+Pvq5ubG3bs2AG5XI6tW7di8eLFUpdEBYzhiArdggULsH37digUCuzcuRPOzs5Sl1T4AgIAJyegeXPlc0CA1BURZY3fV7Ro0QKLFi0CoBysffToUYkrooIkE3p4fLCw7upLGR0+fBht27aFEAIrV67UzwHYUVHKHUxa2n/T5HLg4UPA0VGysogyxe+rihACgwYNwsaNG1G8eHGcO3cOrq6uUpelVwpr/80jR1Ro7t27h169eqm61YYPHy51SdK4d09zRwMAqanA/fvS1EOUHX5fVdLPYKtXrx7+/fdfdOrUCa9evZK6LCoADEdUKOLj49GpUyfExcWhQYMGWLFihf7eTNbNDTB4b9OTywH+HyhpI35fNZiYmGD37t2ws7PDzZs30a9fP6S9Hx6pyGM4ogKXlpaGfv364datW7C3t8euXbtgbGwsdVnScXQE1q5V7mAA5fOaNXrXRUFFBL+vGdjb22PPnj0wMjLCvn374OfnJ3VJlM845ohjjgrcjBkzMGvWLBgbG+PkyZOoW7eu1CVph6goZdeEq6te72ioiOD3NYNNmzZhwIABAJRX+u/SpYu0BemBwtp/MxwxHBWoffv2oXPnzgCUPyT9+/eXtiAionw0btw4LFmyBJaWljh//jzc3d2lLkmncUA2FXn3799XhaExY8YwGBGRzvnxxx/RpEkTvHr1Cl26dEFCQoLUJVE+YDiiAvHmzRt07doV8fHxaNSoEX788UepSyIiyncKhQJBQUGqAdpDhgzhFbR1AMMR5TshBHx9fXH16lXY2Nhgx44dMDQ0lLosIqICYWtri19++UUVlJYtWyZ1SfSRGI4o361ZswZbtmyBXC5HUFAQ7O3tpS6JiKhANWrUSHXz7IkTJ+L06dMSV0Qfg+GI8tW5c+cwZswYAMDcuXPh6ekpcUVERIVj1KhR6N27N1JSUtCjRw9ER0dLXRLlEcMR5ZvY2Fh069YNSUlJ+PzzzzFx4kSpSyIiKjQymQxr165FlSpV8PTpU/Ts2RPJyclSl0V5wHBE+SI1NRV9+vRBZGQk3NzcsGHDBv29ArYe372cCIBebwMWFhbYvXs3LC0tcfLkSUyZMkXqkigPGI4oX/j5+SEkJASmpqbYtWsXrK2tpS5JGrx7Oek7bgOoWLEiNm3aBABYtGgR9u7dK21BlGu8CCQvAvnRDh8+jDZt2gAAtm7dir59+0pckUR493LSd9wGNEycOBELFy5EsWLFEB4eDmdnZ6lLKvL06iKQ/v7+cHFxgYmJCTw8PHDq1Kks2+7evRstW7ZE6dKlYWVlhQYNGuDIkSOFWC2pe/LkCfr16wcA8PX11d9gBPDu5UTcBjTMnTsX9erVw8uXL9GzZ08kJSVJXRLlkOThKCgoCGPHjsW0adMQHh6Oxo0bo02bNoiIiMi0/cmTJ9GyZUsEBwfj4sWLaNasGTp06IDw8PBCrpzSxxnFxsaiRo0aWLx4sdQlSYt3Lyd9x21Ag6GhIYKCglCsWDGcO3cOU6dOlbokyikhsbp16wpfX1+NaZUqVRJTpkzJ8Xt88sknws/PL8ft4+LiBAARFxeX49dQRjNmzBAAhLm5ubhz547U5WiHdeuEkMuFAJTP69ZJXRFR4eI2kMHevXsFAAFA7Nu3T+pyirTC2n9LeuQoKSkJFy9ehJeXl8Z0Ly8vnDlzJkfvkZaWhlevXqFEiRJZtklMTER8fLzGgz7OsWPHMGvWLADKiz5WrFhR4oq0xODByvEVoaHK58GDpa6IqHBxG8igU6dOGDduHABgwIABePTokcQV0YdIGo5iY2ORmpoKGxsbjek2NjY5vnjWwoUL8fr1a/To0SPLNnPnzoW1tbXqUbZs2Y+qW989e/YMffv2hRACgwcP1u9xRplxdASaNtXLAahEALgNZGLevHmoW7cu/v33X/Tq1YvXP9Jyko85ApDhejhCiBxdI2f79u2YOXMmgoKCUKZMmSzbTZ06FXFxcapHZGTkR9esr9LS0tCvXz9ER0fjk08+4T2EiIhywMjICD///DOKFSuGP//8E19//bXUJVE2JA1HpUqVglwuz3CUKCYmJsPRpPcFBQVh8ODB2LFjBz777LNs2xobG8PKykrjQXkzf/581fWMduzYATMzM6lLIiIqElxcXLBhwwYAwIIFC3DgwAGJK6KsSBqOjIyM4OHhgZCQEI3pISEhaNiwYZav2759OwYMGIBt27ahXbt2BV0m/b/Tp0/j22+/BQCsWLECVapUkbgiIqKipXPnzqr7T/r4+ODx48cSV0SZkbxbbfz48Vi3bh3Wr1+PW7duYdy4cYiIiICvry8AZZdY//79Ve23b9+O/v37Y+HChahfvz6io6MRHR2NuLg4qRZBL7x48QK9e/dGamoqvL29MXDgQKlLIiIqkn744Qd4eHjgxYsX6NevH1JTU6Uuid4jeTjq2bMnlixZglmzZqFmzZo4efIkgoOD4eTkBAB4+vSpxjWP1qxZg5SUFHz55Zews7NTPdKTOOU/IQSGDh2KqKgouLm5wd/fXz/vm6bH94siKhB6uk0ZGRlh27ZtMDMzQ2hoKBYsWCB1SfQe3j6E448+KCAgAEOGDIGhoSHCwsLg4eEhdUmFLyAAGDpUefVfAwNg7Vqeokz0MbhNYf369Rg8eDAUCgXCwsJQp04dqUvSeoW1/2Y4YjjK1t27d1GrVi28efMG8+fPx1dffSV1SYWP94siyl/cpgAoj8r36NEDO3fuhJubGy5dugQLCwupy9JqenVvNdJOSUlJ6NOnD968eYPmzZtj4sSJUpckDd4viih/cZsCoLyMzdq1a1G2bFncu3ePw0O0CMMRZWnGjBm4ePEiihcvjk2bNsHg/Xsm6QveL4oof3GbUilevDi2bt0KmUyG9evXY8eOHVKXRGA4oiyEhoZi/vz5AIB169bBUY8OdWfg6KgcDyGXK/8tlwNr1ujV4X+ifMVtSkOTJk1UF4UcOnRoljdep8LDMUccc5TBixcvUL16dTx+/BhDhgzBTz/9JHVJ2iEqSnnY39VVb3/EifIVtymV5ORkNG7cGGfPnkXjxo0RGhoKeXp4JBWOOSJJpJ+2//jxY7i5uWHx4sVSl6Q9eL8oovzFbUrF0NAQ27Ztg6WlJU6dOoU5c+ZIXZJeYzgiDRs2bMCuXbugUCiwbds2njlBRFRIypcvj5UrVwIA/Pz8cP78eYkr0l8MR6Ry//59jB49GgAwe/Zs/bnmhp5eiI6oyNCjbdTb2xs9e/ZEamoq+vXrh7dv30pdkl5iOCIAQGpqKnx8fPD69Wt4enrqz2n7AQHK6600b658DgiQuiIiUqdn26hMJoO/vz/s7Oxw584dTJkyReqS9BIHZHNANgBg/vz5mDJlCiwtLXHt2jXV7Vt0Gi9ER6Td9HgbPXz4MNq0aQMA+O2339CiRQuJK9IOHJBNhebq1auYPn06AGDp0qX6EYwAXoiOSNvp8TbaunVr1Q3YBwwYgJcvX0pbkJ5hONJzSUlJ6N+/P5KSktChQwcMGDBA6pIKDy9ER6Td9HwbXbBgAVxdXREVFYVRo0ZJXY5eYTjSc35+frhy5QpKlSqFn376CTKZTOqSCg8vREek3fR8GzU3N8fmzZthYGCArVu3YufOnVKXpDc45kiPxxyFhYXh008/RVpaGnbu3ImuXbtKXZI0eCE6Iu2m59votGnTMGfOHJQsWRLXrl2DnZ2d1CVJprD23wxHehqOXr9+jZo1a+L+/fvw9vbGli1bpC4p/0VFKccsuLnp5Q8qkd7R0W0+KSkJ9erVw+XLl9G2bVscOHBAv47yq+GAbCpQkydPxv379+Hg4IDly5dLXU7+07PTf4n0ng5v80ZGRtiyZQuMjIwQHBzMWzoVAh450sMjRyEhIfDy8gIAHD16FC1btpS4onymx6f/EuklPdnmFy5ciIkTJ8LCwgLXrl2Ds7Oz1CUVOh45ogIRFxeHQYMGAQC+/PJL3QtGgF6f/kukl/Rkmx83bhwaN26MhIQEDBkyBHp4bKPQMBzpmQkTJiAqKgqurq6YP3++1OUUDD0//ZdI7+jJNm9gYICAgACYmpri999/Z/daAWI40iNHjx5FQEAAZDIZ1q9fD3Nzc6lLKhh6fvovkd7Ro23ezc0Nc+bMAaD8n91Hjx5JXJFu4pgjPRlzFB8fj6pVqyIyMhKjRo3CsmXLpC6p4On56b9EekdPtvnU1FR4enrijz/+QMuWLXHkyBG9OXuNp/IXIH0MR76+vlizZg1cXFxw7dq1on3USEdP1yWiQqIDvyF3795FjRo18O7dO/z0008YMmSI1CUVCg7Ipnxz7NgxrFmzBgAQEBBQtIORDp+uS0SFQEd+QypWrIjvv/8eADB+/HhERERIXJFu4ZEjHT9ylJCQgGrVquHhw4fw9fXFqlWrpC4p7/TkdF0iKiA69huSmpqKxo0bIywsDK1atcKhQ4d0vnuNR44oX0ydOhUPHz5EuXLl8MMPP0hdzsfRk9N1iaiA6NhviFwux4YNG2BsbIwjR45gw4YNUpekMxiOdNiJEyewYsUKAMC6detgaWkpcUUfSU9O1yWiAqKDvyHu7u6YPXs2AOV1kKKioiSuSDcwHOmoN2/eYPDgwQCAIUOGFI2LPUZFAaGhyufM6NHpukRUAHL7G/Kh3yQtMW7cONSvXx/x8fEYOnQoLw6ZDzjmSEfHHI0bNw5LliyBo6Mjrl+/Dmtra6lLyl5AADB0qPKQt4GB8gfs/8NdBnpyui4RFZCc/Ibk5jdJC9y6dQs1a9ZEUlISAgMD0adPH6lLKhA8lb8A6Xo4+vPPP9GwYUMIIRAcHIw2bdpIXVL2dGyQJBEVcUX0N+n777/HN998g1KlSuHWrVsoVaqU1CXlOw7IpjxJTk7GF198ASEE+vXrp/3BCNC5QZJEVMQV0d+kSZMmoVq1aoiNjcX48eOlLqdIYzjSMT/++COuX7+OUqVKYdGiRVKXo/ShfnsdHCRJREVYbn+TtGRskpGREdatWweZTIYtW7bgyJEjktZTlDEc6ZC7d+9i1qxZAIDFixdrxyHVnFxwjQOtiUib5OY3ScsuKlm3bl2MHj0aADBs2DAkJCRIWk9RxTFHOjLmSAiB5s2b4/jx4/Dy8sLhw4elvxhYbvvtOdCaiLTJh36TtHRsUkJCAqpUqYKIiAiMGzdOe3oR8gHHHFGurF+/HsePH4epqSlWrVolfTACct9v7+gING3KYERE2uFDv0laOjbJwsICq1evBgAsXboU58+fl7SeoojhSAdER0dj4sSJAIBZs2ahfPnyBT/TnPSxcywREekyLR6b1KZNG/Tt2xdpaWkYMmQIkpOTC3yeuoThSAeMGTMGL1++RO3atTF27NiCn2FO+9g5loiIdJmWj01avHgxSpYsiatXr2LBggUFPj9dwjFHRXzM0YEDB9ChQwfI5XKcO3cOtWvXLtgZ5qWPnWOJiEiXafHYpK1bt6Jfv34wNjbG1atXUbFixQKdX0HjmCP6oFevXmH48OEAlFfEzpdg9KHDvnnpY+dYIiLSZQUxNimfuuD69u2LVq1aITExkbcWyQWGoyJs2rRpiIqKgouLC/z8/D7+DXNy2JfjiIiIcie3v5v52AUnk8mwevVqmJmZ4cSJE9iyZUue30ufMBwVUWfPnsWKFSsAQPXFz9aH/i8kKuq/+wgByudhwzK25zgiIqLcyc3vZk5/i9Xbf+AIk7OzM2bMmAEAmDBhAl68ePExS6MXGI6KoJSUFAwbNgxCCHh7e8PLyyv7F+Tk/0Jyc9h38GBlX3loqPJZi2/GSESkFXL6u5mb3+JcHGEaN24cqlSpgtjYWEyZMiXPi6EvOCC7CA7IXrp0KcaOHYvixYvj9u3bKFOmTNaNczoQUEsvZkZEpFcK8Df79OnTaNy4MQDgjz/+QMOGDfO//gLGAdmUqSdPnuDbb78FAMydOxdlkpLyZwA1u8uIiKSX09/i3A7yjorCp8nJGNyrFwDA19eX1z7KBsNRETNu3Di8evUK9erVwxcGBvk7gJrdZURE0svJb3FuftvVut/mBwWhpIUFrl27hqVLlxZE9TqB3Wra2q0WFaX8PwM3N9X/MRw9ehStWrWCgYEBLhw8iFrt2uXskGpAgHJAX2rqf/8XwuBDRFS05eS3PZPut40yGQYKATMzM9y6dQvlypXTbP/evkebsFtNV+Xk2hWZDLJ79+4dvvzySwDAqFGjUMvYmAOoiYj0WU5+2zPpfvMRAk2qV8ebN28wevTo//6Qm0sIFOKtUKTAI0eFeeQoIOC/UzQNDJT9yjlI+ZDLMXP0aPgtXgx7e3vcunULVvHxHEBNRETZy2KfcvPoUdRo1QopKSnYu3cvOnl45HyfkpN9WQHhkaOiJr+uI5RJyr+Xmoq5/39No8WLFyu/EBxATUREH5LFvuKT5s0xadIkAMreiISrV3PWG1EA12HSRgxHH5LHbrAMcnpmwXuD7ASALwEkJSfDy8sL3bt3/68tu8uIiOhDsthXfPPNN3B2dkZkZCT89u/P2QDvAroOk9aFKKGH4uLiBAARFxeXfcN164QwMBACUD6vW5exTWTkf23SH3K5cnpe2qXPVy4XAhA/y2QCgDA2Nhb37t3L+0ITERG95+DBgwKAkMvl4urMmap9j5DLC3ef96F97f/L8f77I+n3kaPHj7P+20d0g330dYT+P+XHHziAcaVLAwCmTp0KV96/jIiI8lHbtm3RpUsXpKamYuSxYxAPHmTfG5Hf12HKbTdddvvtfKTf4ahKlawP8+WxGwxA/lxHyNER00NC8DQmBq6urpg8efKHloaIiCjXFi9eDFNTU5w8eRI/nz4NNG2a/fjV/LwOU2676apUycESfTz9DkdCZJ1Qc7piczsw2tHxw188AFevXsXy5csBACtXroSJiUkOFoiIiCh3ypUrh2nTpgEAJk6ciFevXn34RR/al+V035jTfW36EaZCOsFev8MRkHVCzUM3WH4NjBZCYNSoUUhLS0O3bt0+fGNZIiKijzBhwgRUqFABT548wXfffZc/b5qTfePHdNMVIP2+zhEAqw9dGygqShmeXF0L7TT5n3/+Gb1794apqSlu376tefVSIiKiAhAcHIx27dpBoVDg6tWrqFy5cuHN/EP72v+/XlN8WhqsAV7nqEAZGHz42kA57AbLLwkJCZgwYQIA5SBsBiMiIioMbdu2RYcOHZCSkoLRo0ejUI+d5LSb7v0uuAKi3+Ho+nWtuzbQ999/jydPnqB8+fKqC3QREREVhiVLlsDY2Bi//fYbdu3aJXU5mgYPVu63C4F+hyMHB6kr0HDv3j0sXLgQgPLsAQ7CJiKiwlS+fHnV2dHjx4/H69evJa7oPYW039bvcKRFhBAYM2YMkpOT0bp1a3To0EHqkoiISA9NnjwZTk5OiIyMxJw5c6QuRxIMR1riwIEDOHToEAwNDbF06VLIZDKpSyIiIj1kZmaGJUuWAAAWLFiAe/fuSVuQBBiOtMC7d+8wduxYAMrDmBUrVpS2ICIi0mudOnVCq1atkJSUhDFjxhTu4GwtwHCkBRYuXIi///4b9vb2+Oabb6Quh4iI9JxMJsOyZctgaGiIQ4cOYf/+/VKXVKi0Ihz5+/vDxcUFJiYm8PDwwKlTp7Jtf+LECXh4eMDExATly5fH6tWrC6nS/BcREYHvv/8egPLwpYWFhcQVERERARUrVlRdWmb8+PFITEyUuKLCI3k4CgoKwtixYzFt2jSEh4ejcePGaNOmDSIiIjJt/+DBA7Rt2xaNGzdGeHg4vv76a4wePVr7TjnMoYkTJ+Lt27do0qQJevXqJXU5REREKtOmTYOdnR3+/vtv1TgkfSD5FbLr1auH2rVrY9WqVapplStXRufOnTF37twM7SdPnoz9+/fj1q1bqmm+vr64cuUKwsLCcjRP1RWyC/gKmx8SGhqK5s2bw8DAAJcuXUKNGjUkq4WIiCgzmzdvho+PDywsLHDv3j3Y2tpKVkth7b8lPXKUlJSEixcvZrh3mJeXF86cOZPpa8LCwjK0b9WqFS5cuIDk5OQCqzW/paamqgZhDx8+nMGIiIi0kre3N+rWrYuEhATVDWp1nULKmcfGxiI1NRU2NjYa021sbBAdHZ3pa6KjozNtn5KSgtjYWNjZ2WV4TWJiokZfaVxcHABlApXKxo0bcfXqVVhbW2PixImS1kJERJSd77//Hi1btsT69evRv39/1KpVS5I60veVBd3pJWk4Svf+NX2EENle5yez9plNTzd37lz4+fllmF62bNnclprv4uLi4OLiInUZREREOdK0aVOpS8Dz589hbW1dYO8vaTgqVaoU5HJ5hqNEMTExGY4OpbO1tc20vUKhQMmSJTN9zdSpUzF+/HjVv1++fAknJydEREQU6IerbeLj41G2bFlERkZKOtaqsHG5udz6gMvN5dYHcXFxKFeuHEqUKFGg85E0HBkZGcHDwwMhISH4/PPPVdNDQkLQqVOnTF/ToEED/PrrrxrTjh49ijp16sDQ0DDT1xgbG8PY2DjDdGtra736UqWzsrLicusRLrd+4XLrF31dbgODgh0yLfmp/OPHj8e6deuwfv163Lp1C+PGjUNERAR8fX0BKI/69O/fX9Xe19cXjx49wvjx43Hr1i2sX78eAQEBmDhxolSLQERERDpE8jFHPXv2xPPnzzFr1iw8ffoUVatWRXBwMJycnAAAT58+1bjmkYuLC4KDgzFu3DisXLkS9vb2WLZsGbp27SrVIhAREZEOkTwcAcCIESMwYsSITP+2cePGDNM8PT1x6dKlPM/P2NgYM2bMyLSrTZdxubnc+oDLzeXWB1zugl1uyS8CSURERKRNJB9zRERERKRNGI6IiIiI1DAcEREREalhOCIiIiJSo7Ph6Pvvv0fDhg1hZmaGYsWK5eg1QgjMnDkT9vb2MDU1RdOmTXHjxg2NNomJiRg1ahRKlSoFc3NzdOzYEVFRUQWwBHnz77//ol+/frC2toa1tTX69euHly9fZvsamUyW6ePHH39UtWnatGmGv/fq1auAlybn8rLcAwYMyLBM9evX12ija+s7OTkZkydPRrVq1WBubg57e3v0798fT5480Winbevb398fLi4uMDExgYeHB06dOpVt+xMnTsDDwwMmJiYoX748Vq9enaHNrl278Mknn8DY2BiffPIJ9uzZU1Dl51lulnv37t1o2bIlSpcuDSsrKzRo0ABHjhzRaLNx48ZMt/V3794V9KLkSm6W+/jx45ku0+3btzXa6dr6zuz3SyaToUqVKqo22r6+T548iQ4dOsDe3h4ymQx79+794GsKbdsWOmr69Oli0aJFYvz48cLa2jpHr5k3b56wtLQUu3btEteuXRM9e/YUdnZ2Ij4+XtXG19dXODg4iJCQEHHp0iXRrFkzUaNGDZGSklJAS5I7rVu3FlWrVhVnzpwRZ86cEVWrVhXt27fP9jVPnz7VeKxfv17IZDLx119/qdp4enqKL774QqPdy5cvC3pxciwvy+3j4yNat26tsUzPnz/XaKNr6/vly5fis88+E0FBQeL27dsiLCxM1KtXT3h4eGi006b1/fPPPwtDQ0Px008/iZs3b4oxY8YIc3Nz8ejRo0zb//3338LMzEyMGTNG3Lx5U/z000/C0NBQ7Ny5U9XmzJkzQi6Xizlz5ohbt26JOXPmCIVCIf7888/CWqwPyu1yjxkzRsyfP1+cO3dO3L17V0ydOlUYGhqKS5cuqdps2LBBWFlZZdjmtUlulzs0NFQAEHfu3NFYJvVtVBfX98uXLzWWNzIyUpQoUULMmDFD1Ubb13dwcLCYNm2a2LVrlwAg9uzZk237wty2dTYcpduwYUOOwlFaWpqwtbUV8+bNU0179+6dsLa2FqtXrxZCKL+MhoaG4ueff1a1efz4sTAwMBCHDx/O99pz6+bNmwKAxpcgLCxMABC3b9/O8ft06tRJNG/eXGOap6enGDNmTH6Vmq/yutw+Pj6iU6dOWf5dX9b3uXPnBACNH2FtWt9169YVvr6+GtMqVaokpkyZkmn7r776SlSqVElj2rBhw0T9+vVV/+7Ro4do3bq1RptWrVqJXr165VPVHy+3y52ZTz75RPj5+an+ndPfQynldrnTw9G///6b5Xvqw/res2ePkMlk4uHDh6ppRWF9p8tJOCrMbVtnu9Vy68GDB4iOjoaXl5dqmrGxMTw9PXHmzBkAwMWLF5GcnKzRxt7eHlWrVlW1kVJYWBisra1Rr1491bT69evD2to6x/U9e/YMBw8exODBgzP8LTAwEKVKlUKVKlUwceJEvHr1Kt9q/xgfs9zHjx9HmTJlULFiRXzxxReIiYlR/U0f1jegvJGjTCbL0P2sDes7KSkJFy9e1FgHAODl5ZXlMoaFhWVo36pVK1y4cAHJycnZttGG9Qrkbbnfl5aWhlevXmW4QWdCQgKcnJzg6OiI9u3bIzw8PN/q/lgfs9y1atWCnZ0dWrRogdDQUI2/6cP6DggIwGeffaa6u0Q6bV7fuVWY27ZWXCFbG0RHRwMAbGxsNKbb2Njg0aNHqjZGRkYoXrx4hjbpr5dSdHQ0ypQpk2F6mTJlclzfpk2bYGlpiS5dumhM79u3L1xcXGBra4vr169j6tSpuHLlCkJCQvKl9o+R1+Vu06YNunfvDicnJzx48ADffvstmjdvjosXL8LY2Fgv1ve7d+8wZcoU9OnTR+PmldqyvmNjY5GamprpdpnVMkZHR2faPiUlBbGxsbCzs8uyjTasVyBvy/2+hQsX4vXr1+jRo4dqWqVKlbBx40ZUq1YN8fHxWLp0KRo1aoQrV67Azc0tX5chL/Ky3HZ2dli7di08PDyQmJiILVu2oEWLFjh+/DiaNGkCIOvvhK6s76dPn+LQoUPYtm2bxnRtX9+5VZjbdpEKRzNnzoSfn1+2bc6fP486derkeR4ymUzj30KIDNPel5M2HyOnyw1krB/IXX3r169H3759YWJiojH9iy++UP131apV4ebmhjp16uDSpUuoXbt2jt47twp6uXv27Kn676pVq6JOnTpwcnLCwYMHM4TD3Lzvxyqs9Z2cnIxevXohLS0N/v7+Gn+TYn1nJ7fbZWbt35+el229sOW1xu3bt2PmzJnYt2+fRoCuX7++xkkHjRo1Qu3atbF8+XIsW7Ys/wr/SLlZbnd3d7i7u6v+3aBBA0RGRmLBggWqcJTb95RKXmvcuHEjihUrhs6dO2tMLyrrOzcKa9suUuFo5MiRHzxjxtnZOU/vbWtrC0CZTO3s7FTTY2JiVCnU1tYWSUlJ+PfffzWOJsTExKBhw4Z5mm9O5HS5r169imfPnmX42z///JMhSWfm1KlTuHPnDoKCgj7Ytnbt2jA0NMS9e/cKbGdZWMudzs7ODk5OTrh37x4A3V7fycnJ6NGjBx48eIBjx45pHDXKTGGs78yUKlUKcrk8w//1qW+X77O1tc20vUKhQMmSJbNtk5vvS0HKy3KnCwoKwuDBg/HLL7/gs88+y7atgYEB/ve//6m+81L7mOVWV79+fWzdulX1b11e30IIrF+/Hv369YORkVG2bbVtfedWoW7buRqhVATldkD2/PnzVdMSExMzHZAdFBSkavPkyROtG6B79uxZ1bQ///wzxwN0fXx8Mpy1lJVr164JAOLEiRN5rje/fOxyp4uNjRXGxsZi06ZNQgjdXd9JSUmic+fOokqVKiImJiZH85JyfdetW1cMHz5cY1rlypWzHZBduXJljWm+vr4ZBm22adNGo03r1q21boBubpZbCCG2bdsmTExMPjiwNV1aWpqoU6eOGDhw4MeUmq/ystzv69q1q2jWrJnq37q6voX4b0D6tWvXPjgPbVzf6ZDDAdmFtW3rbDh69OiRCA8PF35+fsLCwkKEh4eL8PBw8erVK1Ubd3d3sXv3btW/582bJ6ytrcXu3bvFtWvXRO/evTM9ld/R0VH89ttv4tKlS6J58+Zad2p39erVRVhYmAgLCxPVqlXLcGr3+8sthBBxcXHCzMxMrFq1KsN73r9/X/j5+Ynz58+LBw8eiIMHD4pKlSqJWrVqFdnlfvXqlZgwYYI4c+aMePDggQgNDRUNGjQQDg4OOr2+k5OTRceOHYWjo6O4fPmyxum9iYmJQgjtW9/ppzgHBASImzdvirFjxwpzc3PVWTlTpkwR/fr1U7VPP9133Lhx4ubNmyIgICDD6b5//PGHkMvlYt68eeLWrVti3rx5Wntqd06Xe9u2bUKhUIiVK1dmeQmGmTNnisOHD4u//vpLhIeHi4EDBwqFQqERsKWW2+VevHix2LNnj7h79664fv26mDJligAgdu3apWqji+s7nbe3t6hXr16m76nt6/vVq1eqfTMAsWjRIhEeHq46c1bKbVtnw5GPj48AkOERGhqqagNAbNiwQfXvtLQ0MWPGDGFrayuMjY1FkyZNMqTxt2/fipEjR4oSJUoIU1NT0b59exEREVFIS/Vhz58/F3379hWWlpbC0tJS9O3bN8Mpru8vtxBCrFmzRpiammZ6LZuIiAjRpEkTUaJECWFkZCQqVKggRo8eneGaQFLK7XK/efNGeHl5idKlSwtDQ0NRrlw54ePjk2Fd6tr6fvDgQabbhfq2oY3re+XKlcLJyUkYGRmJ2rVraxzB8vHxEZ6enhrtjx8/LmrVqiWMjIyEs7NzpqH/l19+Ee7u7sLQ0FBUqlRJY2eqLXKz3J6enpmuVx8fH1WbsWPHinLlygkjIyNRunRp4eXlJc6cOVOIS5QzuVnu+fPniwoVKggTExNRvHhx8emnn4qDBw9meE9dW99CKI9um5qairVr12b6ftq+vtOPemX1nZVy25YJ8f+jmYiIiIhId28fQkRERJQXDEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiEinzJo1C9WqVYO5uTlsbGwwfPhwJCcnS10WERUhCqkLICLKL0IIpKamYs2aNXBwcMDNmzfRv39/VK9eHcOHD5e6PCIqInjjWSLSaX369EHp0qWxdOlSqUshoiKC3WpEpDMePXqEkSNHomrVqihevDgsLCywY8cOODo6Sl0aERUhDEdEpBNiY2NRt25dxMbGYtGiRTh9+jTCwsIgl8tRs2ZNqcsjoiKEY46ISCcEBwcjJSUF27dvh0wmAwCsXLkSSUlJDEdElCsMR0SkE0qUKIH4+Hjs378fn3zyCX799VfMnTsXDg4OKF26tNTlEVERwgHZRKQThBAYPnw4tm3bBlNTU3h7e+Pdu3d49OgRDhw4IHV5RFSEMBwRERERqeGAbCIiIiI1DEdEREREahiOiIiIiNQwHBERERGpYTgiIiIiUsNwRERERKSG4YiIiIhIDcMRERERkRqGIyIiIiI1DEdEREREahiOiIiIiNQwHBERERGp+T8bxxJqojvzSQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABty0lEQVR4nO3dd1gUV9sG8HtZOgKKIF1QsfdgrJ+xBns0Go2xobFh77EX7BpjLLFgBEtiS+yJFV97IDFRNBY0NkRUVFABRann+2PDZldAF9jdWdj7d11cK8OZOc/s7Ow8njnnjEwIIUBEREREAAATqQMgIiIiMiRMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6oUHv48CFmzZqFixcvZvtb3759UaxYsXxvOzU1FQEBAXB1dYVcLketWrXyH6gWrF69Ghs3bsy2PCoqCjKZLMe/FSUymQyzZs2SOgytmDVrFmQymc7XXblyJXx8fGBubg6ZTIYXL16gb9++8Pb2Vis3f/587N27N1/xvMuzZ8/QvXt3lCpVCjKZDJ06dcrzNry9vdG3b1+tx2bIjh07BplMBplMhri4OKnDMUqmUgdAVBAPHz5EYGAgvL29tZ68rFmzBkFBQVi5ciV8fX0LlGhpw+rVq+Ho6JjtQuHq6orw8HCUK1dOmsAozwYMGIDWrVvrtI6LFy9i5MiRGDBgAPz9/WFqagpbW1tMnz4do0aNUis7f/58fPbZZ/lKXt5lzpw52LNnD0JCQlCuXDk4ODhodftF0cuXLzFw4EC4ubnh4cOHUodjtJgcEeXiypUrsLKywvDhw6UO5Z0sLCxQv359qcOgPPDw8ICHh4dO67h69SoAYODAgahbt65yuT6T6CtXrqBcuXLo2bOn3urUluTkZFhbW+u93kmTJqFEiRJo164d5s6dq/f6SYG31Ujp6dOnGDRoEDw9PWFhYQEnJyc0atQIx44dU5Zp2rQpqlWrhvDwcDRs2BBWVlbw9vbGhg0bAAAHDhzABx98AGtra1SvXh2HDx/OVs/Zs2fRokUL2NrawtraGg0bNsSBAweylbty5Qo6duyIEiVKwNLSErVq1cKmTZuUfz958iQ+/PBDAEC/fv2UzdBv33q5desW2rZti2LFisHT0xPjxo1DSkrKO98LmUyG9evX4/Xr18rtbty48Z23sN6uO+v2x9WrV/HFF1/A3t4ezs7O+PLLL5GQkKC2bmZmJlauXIlatWrBysoKxYsXR/369bF//34AilsLV69exalTp5TxZN0ayS0mTd7njRs3QiaT4cSJExgyZAgcHR1RsmRJdO7cuUD/a/X29kb79u2xZ88e1KhRA5aWlihbtixWrFiRrWx0dDR69eqFUqVKwcLCApUrV8Y333yDzMzMXLcfFRUFU1NTLFiwINvfTp8+DZlMhp9//hlA3o7DmzdvMHnyZJQpUwbm5uZwd3fHsGHD8OLFixz379dff0Xt2rVhZWWFypUr49dffwWgeF8rV64MGxsb1K1bF3/99Zfa+jndGtuxYwf8/Pzg6uqq3N6kSZPw6tWr3N/oXDRt2hS9evUCANSrVw8ymUzZ4vj2bTWZTIZXr15h06ZNys9W06ZN37n9Z8+eYejQoXB3d4e5uTnKli2LqVOnKs+rrM/ksWPHEBkZqdzuyZMnc91mWloavvrqK7i4uMDa2hr/93//h3PnzuVYNjY2FoMHD4aHhwfMzc1RpkwZBAYGIj09Xa1cTEwMPvvsM9ja2qJ48eLo2bMn/vzzz2znS9Yt+MuXL8PPzw+2trZo0aIFAMXt9blz56JSpUrK78V+/frh6dOn2eLasWMHGjRoABsbGxQrVgytWrVCRETEO99LVWfOnMG6deuwfv16yOVyjdcjHRBE/2rVqpVwcnIS69atEydPnhR79+4VM2bMENu3b1eWadKkiShZsqSoWLGiCA4OFkeOHBHt27cXAERgYKCoXr262LZtmzh48KCoX7++sLCwEA8ePFCuf/LkSWFmZiZ8fX3Fjh07xN69e4Wfn5+QyWRq9Vy/fl3Y2tqKcuXKic2bN4sDBw6IL774QgAQixYtEkIIkZCQIDZs2CAAiGnTponw8HARHh4u7t+/L4QQwt/fX5ibm4vKlSuLJUuWiGPHjokZM2YImUwmAgMD3/lehIeHi7Zt2worKyvldp88eSLu3r0rAIgNGzZkWweAmDlzpvL3mTNnCgCiYsWKYsaMGSI0NFQsXbpUWFhYiH79+qmt27t3byGTycSAAQPEvn37xKFDh8S8efPE8uXLhRBCXLhwQZQtW1bUrl1bGc+FCxeEECLHmDR9n7Pev7Jly4oRI0aII0eOiPXr14sSJUqIZs2aqcWYVTanfX+bl5eXcHd3F6VLlxYhISHi4MGDomfPngKA+Prrr5Xlnjx5Itzd3YWTk5NYu3atOHz4sBg+fLgAIIYMGfLO9/fTTz8VpUuXFunp6WrlunbtKtzc3ERaWlqejkNmZqZo1aqVMDU1FdOnTxdHjx4VS5YsETY2NqJ27drizZs3avvn4eEhqlWrpvy816tXT5iZmYkZM2aIRo0aid27d4s9e/aIChUqCGdnZ5GcnKxcPysmVXPmzBHffvutOHDggDh58qRYu3atKFOmTLbjkNO6b7t69aqYNm2a8niFh4eLW7duCSEU54WXl5eybHh4uLCyshJt27ZVfrauXr2a67Zfv34tatSoIWxsbMSSJUvE0aNHxfTp04Wpqalo27atEEKIN2/eiPDwcFG7dm1RtmxZ5XYTEhJy3a6/v7+QyWRiwoQJ4ujRo2Lp0qXC3d1d2NnZCX9/f2W5R48eCU9PT+Hl5SWCgoLEsWPHxJw5c4SFhYXo27evstzLly+Fj4+PcHBwEKtWrRJHjhwRY8aMEWXKlMn2Ofb39xdmZmbC29tbLFiwQPzvf/8TR44cERkZGaJ169bCxsZGBAYGitDQULF+/Xrh7u4uqlSponZM582bJ2Qymfjyyy/Fr7/+Knbv3i0aNGggbGxs3vl+ZklOThbly5cXEyZMEEL8d5yfPn363nVJ+5gckVKxYsXE6NGj31mmSZMmAoD466+/lMvi4+OFXC4XVlZWaonQxYsXBQCxYsUK5bL69euLUqVKiaSkJOWy9PR0Ua1aNeHh4SEyMzOFEEJ0795dWFhYiOjoaLX627RpI6ytrcWLFy+EEEL8+eefuV6w/f39BQDx008/qS1v27atqFix4nveDcX6NjY2asvykxwtXrxYrdzQoUOFpaWlcl9Pnz4tAIipU6e+M56qVauKJk2aZFueU0yavs9ZCc/QoUPVtrl48WIBQDx69Ei5bNOmTUIul4tNmza9M04hFMmDTCYTFy9eVFv+8ccfCzs7O/Hq1SshhBCTJk0SAMQff/yhVm7IkCFCJpOJGzduKJe9/f6eOHFCABB79uxRLnvw4IEwNTVVS341PQ6HDx/OsdyOHTsEALFu3Tq1/bOyshIxMTHKZVmfd1dXV+X+CSHE3r17BQCxf//+bDHlJjMzU6SlpYlTp04JAOLSpUsar5sl69j++eefasvfTo6EEMLGxkYtAXmXtWvX5nheLVq0SAAQR48eVS5r0qSJqFq16nu3GRkZKQCIMWPGqC3fsmWLAKAW2+DBg0WxYsXEvXv31MouWbJEAFAmIqtWrRIAxKFDh9TKDR48OMfkCIAICQlRK7tt2zYBQOzatUttedb3zurVq4UQQkRHRwtTU1MxYsQItXJJSUnCxcVFdOvW7b3vwbhx40TZsmWVCReTI2nxthop1a1bFxs3bsTcuXPx+++/Iy0tLcdyrq6u8PX1Vf7u4OCAUqVKoVatWnBzc1Mur1y5MgDg3r17AIBXr17hjz/+wGeffabWuVkul6N3796IiYnBjRs3AADHjx9HixYt4OnpqVZ33759kZycjPDwcI32SSaToUOHDmrLatSooYxJHz755JNs9b958wZPnjwBABw6dAgAMGzYMK3Ul5f3+V0xAlB7n/r06YP09HT06dNHoziqVq2KmjVrqi3r0aMHEhMTceHCBQCK41ylShW1PjGA4jgLIXD8+PFct9+0aVPUrFkTq1atUi5bu3YtZDIZBg0alK38+45DVl1vd3jv2rUrbGxs8L///U9tea1ateDu7q78Pevz3rRpU7W+Km+fB7m5c+cOevToARcXF8jlcpiZmaFJkyYAgMjIyHeuq0/Hjx+HjY0NPvvsM7XlWe/b2++TJk6cOAEA2fomdevWDaam6l1jf/31VzRr1gxubm5IT09X/rRp0wYAcOrUKeWrra1tto7vX3zxRa5xdOnSJVtdxYsXR4cOHdTqqlWrFlxcXJS3CY8cOaI8N1TLWVpaokmTJu+8nQgA586dw7JlyxAUFAQrK6t3liX9YIdsUtqxYwfmzp2L9evXY/r06ShWrBg+/fRTLF68GC4uLspyOY04MTc3z7bc3NwcgKIfBwA8f/4cQgi4urpmWz8rqYqPj1e+alLufaytrWFpaam2zMLCQhmTPpQsWTJb/QDw+vVrAIq+XnK5XO09Loi8vM+axpgfOe1P1jLV4/z2sPJ3xfm2rNFYN27cQNmyZfH999/js88+y7Hu9+1jfHw8TE1N4eTkpFZOJpPBxcUlWyy5fd7fdx7k5OXLl2jcuDEsLS0xd+5cVKhQAdbW1rh//z46d+5coOOgbfHx8XBxccnWZ6pUqVIwNTXV+Nx8e5tA9s+MqalptuP2+PFj/PLLLzAzM8txW1lD3+Pj4+Hs7Jzt7zktAxTfFXZ2dtnqevHihfIY5lbX48ePAUDZB/JtJibvbof48ssv0blzZ9SpU0fZvy3r85KYmAgLCwvY2tq+cxukXUyOSMnR0RHLli3DsmXLEB0djf3792PSpEl48uRJjh2r86pEiRIwMTHBo0ePsv0tq/Ovo6MjAMWFTJNy+paVaL3doTs/F4QsTk5OyMjIQGxsbI4JTV7l5X3WpdjY2FyXZV3wCnqce/TogYkTJ2LVqlWoX78+YmNj890CV7JkSaSnp+Pp06dqCZIQArGxsble+LTh+PHjePjwIU6ePKlsLQKQrSO4IShZsiT++OMPCCHUEqQnT54gPT09X5+trM9DbGysWmtcenp6tnPL0dERNWrUwLx583LcVlZiXbJkyRw7dOf0uQSQ49xRWQMUcvv+y0pYsvZ5586d8PLyyrHsu1y9ehVXr15VDiJQVa5cOdSsWTPHudxId3hbjXJUunRpDB8+HB9//LHyFkhB2djYoF69eti9e7fa/4QzMzPx448/wsPDAxUqVAAAtGjRQnnBULV582ZYW1srh65ro4UjL5ydnWFpaYm///5bbfm+ffvyvc2s2wFr1qx5ZzkLCwuN9jMv77MuXb16FZcuXVJbtnXrVtja2uKDDz4AoDjO165dy/YZ27x5M2QyGZo1a/bOOiwtLTFo0CBs2rQJS5cuRa1atdCoUaN8xZs1OunHH39UW75r1y68evVK+XddyLowZ32eswQFBemsTlWafrYAxfv08uXLbJNGbt68Wfn3vMoaHbdlyxa15T/99FO2EWjt27dXThFQp06dbD9ZyVGTJk2QlJSkvG2dZfv27RrH1b59e8THxyMjIyPHuipWrAgAaNWqFUxNTXH79u0cy9WpU+ed9Zw4cSLbj7+/PwBg7969WL9+vcYxk3aw5YgAAAkJCWjWrBl69OiBSpUqwdbWFn/++ScOHz6Mzp07a62eBQsW4OOPP0azZs0wfvx4mJubY/Xq1bhy5Qq2bdumvEjMnDlT2bdgxowZcHBwwJYtW3DgwAEsXrwY9vb2ABT/q7KyssKWLVtQuXJlFCtWDG5ubmp9n7RJJpOhV69eykntatasiXPnzmHr1q353mbjxo3Ru3dvzJ07F48fP0b79u1hYWGBiIgIWFtbY8SIEQCA6tWrY/v27dixYwfKli0LS0tLVK9ePcdtavo+58XmzZvx5ZdfIiQkRKN+R25ubvjkk08wa9YsuLq64scff0RoaCgWLVqk7JMzZswYbN68Ge3atcPs2bPh5eWFAwcOYPXq1RgyZIhGSdzQoUOxePFinD9/vkAXkY8//hitWrXCxIkTkZiYiEaNGuHvv//GzJkzUbt2bfTu3Tvf236fhg0bokSJEggICMDMmTNhZmaGLVu2ZEsudaV69eo4efIkfvnlF7i6usLW1lZ54X9bnz59sGrVKvj7+yMqKgrVq1fH2bNnMX/+fLRt2xYtW7bMc/2VK1dGr169sGzZMpiZmaFly5a4cuUKlixZku1W1+zZsxEaGoqGDRti5MiRqFixIt68eYOoqCgcPHgQa9euhYeHB/z9/fHtt9+iV69emDt3Lnx8fHDo0CEcOXIEwPtvdQFA9+7dsWXLFrRt2xajRo1C3bp1YWZmhpiYGJw4cQIdO3bEp59+Cm9vb8yePRtTp07FnTt30Lp1a5QoUQKPHz/GuXPnYGNjg8DAwFzryWnqhKx+So0aNZKspdyoSdodnAzGmzdvREBAgKhRo4aws7MTVlZWomLFimLmzJlqI29yG33i5eUl2rVrl205ADFs2DC1ZWfOnBHNmzcXNjY2wsrKStSvX1/88ssv2da9fPmy6NChg7C3txfm5uaiZs2aOY4S27Ztm6hUqZIwMzNTG9GU02gzITQf7ZPb+gkJCWLAgAHC2dlZ2NjYiA4dOoioqKhcR6u9PdokaxTR3bt3lcsyMjLEt99+K6pVqybMzc2Fvb29aNCggdr7EhUVJfz8/IStra0AoBxxlNsIOk3e59xGNGWNBDtx4kS2spoO5W/Xrp3YuXOnqFq1qjA3Nxfe3t5i6dKl2creu3dP9OjRQ5QsWVKYmZmJihUriq+//lpkZGSolXv7/VXVtGlT4eDgoDa0OktejsPr16/FxIkThZeXlzAzMxOurq5iyJAh4vnz5znu39ty+rxnHR/VKQxy+gyGhYWJBg0aCGtra+Hk5CQGDBggLly4kO0918VotYsXL4pGjRoJa2trASDHUZGq4uPjRUBAgHB1dRWmpqbCy8tLTJ48WW26AyE0H60mhBApKSli3LhxolSpUsLS0lLUr19fhIeHCy8vr2wj6Z4+fSpGjhwpypQpI8zMzISDg4Pw9fUVU6dOFS9fvlSWi46OFp07dxbFihUTtra2okuXLuLgwYMCgNi3b5/ae5LTuS6EEGlpaWLJkiWiZs2awtLSUhQrVkxUqlRJDB48WNy8eVOt7N69e0WzZs2EnZ2dsLCwEF5eXuKzzz4Tx44d0+g9UMXRatKSCSGEHnMxIjIC3t7eqFatmnJSRF168uQJvLy8MGLECCxevFjn9VHhNn/+fEybNg3R0dE6n6WcCi/eViOiQikmJgZ37tzB119/DRMTk2zPCyP67rvvAACVKlVCWloajh8/jhUrVqBXr15MjOidmBwRUaG0fv16zJ49G97e3tiyZYvaKCciQDE8/9tvv0VUVBRSUlJQunRpTJw4EdOmTZM6NDJwvK1GREREpELyofynT59Ghw4d4ObmBplMlm14aE5OnToFX19f5cMs165dq/tAiYiIyChInhy9evUKNWvWVN4bfp+7d++ibdu2aNy4MSIiIjBlyhSMHDkSu3bt0nGkREREZAwM6raaTCbDnj170KlTp1zLTJw4Efv371d71lBAQAAuXbqk8fO2iIiIiHJT6Dpkh4eHw8/PT21Zq1atEBwcjLS0tByft5OSkqL2uIfMzEw8e/YMJUuWzNdkeERERKR/QggkJSXBzc1No4k886vQJUexsbHZHhzo7OyM9PR0xMXF5fhsqgULFrxzdlIiIiIqPO7fv6/T6RgKXXIEZH9AYNadwdxagSZPnoyxY8cqf09ISEDp0qVx//79bFPTE1Eh8uABcPs2UK4c8K6h/JqWIyKDlpiYCE9PT+VDf3Wl0CVHLi4u2Z6q/OTJE5iamiqf7Pw2CwuLbA90BAA7OzsmR0SFVXAwMGgQkJkJmJgA69YB/fvnvxwRFRq67hIj+Wi1vGrQoAFCQ0PVlh09ehR16tTJsb8RERVBMTH/JTyA4nXwYMXy/JQjIlIheXL08uVLXLx4ERcvXgSgGKp/8eJFREdHA1DcElN9AnhAQADu3buHsWPHIjIyEiEhIQgODsb48eOlCJ+IpHDz5n8JT5aMDODWrfyVIyJSIflttb/++gvNmjVT/p7VN8jf3x8bN27Eo0ePlIkSAJQpUwYHDx7EmDFjsGrVKri5uWHFihXo0qWL3mMnIomUL6+4Raaa+MjlgI9P/soREakwqHmO9CUxMRH29vZISEhgnyOiwio4WHGLLCNDkfAEBeXe50iTckRk8PR1/WZyxOSIqPCKiVHcIvPxAd41rFfTckRk0PR1/Zb8thoRUb55eGiW7GhajogIBtAhm4iIiMiQMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IyPDExAAnTihejaluIjIITI6IyLAEBwNeXkDz5orX4GDjqJuIDIZMCCGkDkLfEhMTYW9vj4SEBNjZ2UkdDhFliYlRJCWZmf8tk8uBqCjAw6Po1k1EGtHX9ZstR0RkOG7eVE9OACAjA7h1q2jXTUQGhckRERmO8uUBk7e+luRywMenaNdNRAaFyRERGQ4PD2DdOkVSAiheg4L0c1tLyrqJyKCwzxH7HBEZnpgYxe0sHx/9JydS1k1E76Sv67epzrZMRJRfHh7SJSZS1k1EBoG31YiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVBhEcrR69WqUKVMGlpaW8PX1xZkzZ95ZfsuWLahZsyasra3h6uqKfv36IT4+Xk/REhERUVEmeXK0Y8cOjB49GlOnTkVERAQaN26MNm3aIDo6OsfyZ8+eRZ8+fdC/f39cvXoVP//8M/78808MGDBAz5ETERFRUSR5crR06VL0798fAwYMQOXKlbFs2TJ4enpizZo1OZb//fff4e3tjZEjR6JMmTL4v//7PwwePBh//fWXniMnIiKiokjS5Cg1NRXnz5+Hn5+f2nI/Pz+EhYXluE7Dhg0RExODgwcPQgiBx48fY+fOnWjXrl2u9aSkpCAxMVHth4gkEBMDnDiheC3sitK+EJEaSZOjuLg4ZGRkwNnZWW25s7MzYmNjc1ynYcOG2LJlCz7//HOYm5vDxcUFxYsXx8qVK3OtZ8GCBbC3t1f+eHp6anU/iEgDwcGAlxfQvLniNThY6ojyryjtCxFlI/ltNQCQyWRqvwshsi3Lcu3aNYwcORIzZszA+fPncfjwYdy9excBAQG5bn/y5MlISEhQ/ty/f1+r8RPRe8TEAIMGAZmZit8zM4HBgwtnq0tR2hciypGplJU7OjpCLpdnayV68uRJttakLAsWLECjRo0wYcIEAECNGjVgY2ODxo0bY+7cuXB1dc22joWFBSwsLLS/A0SkmZs3/0smsmRkALduAR4e0sSUX0VpX4goR5K2HJmbm8PX1xehoaFqy0NDQ9GwYcMc10lOToaJiXrYcrkcgKLFiYgMUPnywFvnLeRywMdHmngKoijtCxHlSPLbamPHjsX69esREhKCyMhIjBkzBtHR0crbZJMnT0afPn2U5Tt06IDdu3djzZo1uHPnDn777TeMHDkSdevWhZubm1S7QUTv4uEBrFunSCIAxWtQUOFsaSlK+0JEOZL0thoAfP7554iPj8fs2bPx6NEjVKtWDQcPHoSXlxcA4NGjR2pzHvXt2xdJSUn47rvvMG7cOBQvXhzNmzfHokWLpNoFItJE//5Aq1aK208+PoU7mShK+0JE2ciEEd6LSkxMhL29PRISEmBnZyd1OERERKQBfV2/Jb+tRkRERGRImBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBFRwcXEACdOKF5JHd8bokLHVOoAiKiQCw4GBg0CMjMBExNg3Tqgf3+9VS+EQGJiIp48eYKnT58iLS0NmZmZAABbW1uULFkSjo6OsLW11VtMShK/N0SUPzIhhJA6CH1LTEyEvb09EhISYGdnJ3U4RIVXTAzg5aW4+GeRy4GoKMDDQ+vVpaam4q+//sLZs2dx+fJlXLt2DdevX0dycvJ71y1ZsiQqVqyIihUrok6dOmjUqBGqVasGuVyu9TgB6P29ITIG+rp+s+WIiPLv5k31iz8AZGQAt25pLQGIiYnBnj17sG/fPvz222948+ZNjuWKFSsGR0dHWFpaQiaTAVB8kcbHx+PNmzeIj49HWFgYwsLCsGHDBgCAnZ0d/Pz80LFjR7Rr1w4lSpTQSswA9PLeEJFuMDkiovwrX15xu+jt1hEfnwJt9uXLl9ixYweCg4MRHh6u9jcnJyc0btwYvr6+qFq1KipXrgwPDw9YW1vnur2kpCTcvn0bN27cwNWrVxEeHo7ff/8diYmJ2LlzJ3bu3Am5XI527dqhf//+aNu2LUxNC/j1qKP3hoh0j7fVeFuNqGCCg4HBgxWtInI5EBSU7341t2/fxtKlS/HDDz8gKSkJACCTydCwYUN07twZrVu3RuXKlZUtQwWRnp6OCxcuYP/+/di3bx+uXLmi/JuLiwuGDh2KYcOGwcHBIf+VaPG9ISL9Xb+ZHDE5Iiq4mBjF7SIfn3zdMrp69SoWLFiAbdu2KTtTlytXDoMGDUKvXr3g5uam7YiziYyMREhICDZt2oSnT58CAGxsbDBw4EB89dVXcHV1zd+GC/jeENF/mBzpEJMjIsMQExOD6dOnY9OmTcj6KmrdujXGjx+PZs2awcRE/7ONpKamYufOnVi8eDEuXboEALC2tsbYsWMxYcIEfmcQSUhf12/Oc0REevf69WvMmDEDFSpUwMaNGyGEQOfOnXH+/HkcOnQILVq0kCQxAgBzc3P06NEDEREROHLkCBo0aIDk5GTMnTsXPj4+WL9+vbJ1i4iKJiZHRKRX//vf/1C9enXMmTMHr1+/RuPGjfHHH39g165d+OCDD6QOT0kmk8HPzw+//fYbdu/ejQoVKuDp06cYOHAgPvroI1y+fFnqEIlIR5gcEZFePHv2DF9++SVatmyJ27dvw93dHbt27cKpU6dQt25dqcPLlUwmw6effoorV65g6dKlsLGxwW+//YYPPvgAs2bNQnp6utQhEpGWMTkiIp07deoUatSogQ0bNkAmk2HYsGG4du0aOnfurJWRZ/pgZmaGMWPGIDIyEp06dUJ6ejoCAwPRqFEj3Lx5U+rwiEiLmBwRkc6kp6djxowZaNasGR48eIAKFSrg7Nmz+O677wptx2ZPT0/s2bMHW7Zsgb29Pc6dO4datWph/fr1MMLxLURFEpMjItKJhw8fomnTppgzZw6EEPjyyy9x/vx5NGzYUOrQtKJHjx74+++/0axZMyQnJ2PgwIEYMGBArjN4E1HhweSIiLTujz/+QJ06dfDbb7/Bzs4O27dvR3BwMIoVKyZ1aFpVunRpHDt2DAsWLICJiQlCQkLwf//3f7h3757UoRFRATA5IiKt2rhxIz766CM8evQIVatWxfnz5/H5559LHZbOmJiYYNKkSThy5AhKliyJ8+fPw9fXF6dOnZI6NCLKJyZHRKQVmZmZmDBhAvr164fU1FR06tQJ4eHh8DGSZ4m1bNlSmRjFx8fDz88PW7dulTosIsoHJkdEVGCpqano3bs3lixZAgCYOXMmdu3aBVtbW4kj0y8vLy+cOXMGXbp0QWpqKnr27In58+ezozZRIcPkiIgKJDExEe3atcPWrVthamqKzZs3Y9asWZLNcC01Kysr/PTTTxg3bhwAYOrUqQgICEBGRobEkRGRpozz24uItCIuLg7NmjXDsWPHYGNjgwMHDqB3795ShyU5ExMTLFmyBCtXroSJiQnWrVuH3r17Iy0tTerQiEgDTI6IKF+ePHmCZs2a4cKFCyhVqhROnToFPz8/qcMyKMOHD8f27dthamqKbdu2oWvXrkhJSZE6LCJ6DyZHRJRnjx49QtOmTXHlyhW4ubnh9OnT8PX1lTosg9S1a1fs2bMHFhYW2LdvHz755BMkJydLHRYRvYNBJEerV69GmTJlYGlpCV9fX5w5c+ad5VNSUjB16lR4eXnBwsIC5cqVQ0hIiJ6iJTJuDx48QNOmTREZGQlPT0+cOnUKFStWlDosg9a+fXscOHAANjY2OHr0KD799FNOFklkwCRPjnbs2IHRo0dj6tSpiIiIQOPGjdGmTRtER0fnuk63bt3wv//9D8HBwbhx4wa2bduGSpUq6TFqIuP09OlTtGzZEv/88w+8vLxw6tQpoxmqX1AtWrTAkSNHlAlSt27d2AeJyEDJhMRjTOvVq4cPPvgAa9asUS6rXLkyOnXqhAULFmQrf/jwYXTv3h137tyBg4NDvupMTEyEvb09EhISCu3znYj0LSEhAc2aNUNERAQ8PT1x5swZeHl5SR1WoXPixAm0bdsWb968QdeuXZWj/Ijo/fR1/Za05Sg1NRXnz5/P1onTz88PYWFhOa6zf/9+1KlTB4sXL4a7uzsqVKiA8ePH4/Xr17nWk5KSgsTERLUfItJccnIy2rdvj4iICDg5OSE0NJSJUT41a9YMe/bsgbm5OX7++Wf079+f8yARGRhJk6O4uDhkZGTA2dlZbbmzszNiY2NzXOfOnTs4e/Ysrly5gj179mDZsmXYuXMnhg0blms9CxYsgL29vfLH09NTq/tBVJSlpqaiS5cuOHv2LOzt7XH06FH2MSqg1q1b46effoJcLsfmzZsxZcoUqUMiIhWS9zkCAJlMpva7ECLbsiyZmZmQyWTYsmUL6tati7Zt22Lp0qXYuHFjrq1HkydPRkJCgvLn/v37Wt8HoqJICIF+/frh8OHDsLa2xoEDB1CrVi2pwyoSOnbsiPXr1wMAFi5ciO+++07iiIgoi6TJkaOjI+RyebZWoidPnmRrTcri6uoKd3d32NvbK5dVrlwZQgjExMTkuI6FhQXs7OzUfojo/WbMmKHsE7N79240atRI6pCKlL59+2Lu3LkAgJEjR2L37t0SR0REgMTJkbm5OXx9fREaGqq2PDQ0FA0bNsxxnUaNGuHhw4d4+fKlctk///wDExMTeHh46DReImOyYcMG5YU7KCgIrVq1kjiiomnKlCkICAiAEAI9evR471QmRKR7kt9WGzt2LNavX4+QkBBERkZizJgxiI6ORkBAAADFLbE+ffooy/fo0QMlS5ZEv379cO3aNZw+fRoTJkzAl19+CSsrK6l2g6hIOXbsGAYNGgRA8WywL7/8UuKIii6ZTIbvvvsOHTt2REpKCjp16oTbt29LHRaRUZM8Ofr888+xbNkyzJ49G7Vq1cLp06dx8OBB5UiYR48eqc15VKxYMYSGhuLFixeoU6cOevbsiQ4dOmDFihVS7QJRkXLt2jV06dIF6enp+OKLLzBnzhypQyry5HI5tm7dig8//BDPnj3DJ598wlG1RBKSfJ4jKXCeI6KcPX/+HB9++CFu376Nxo0bIzQ0FBYWFlKHZTQePnyIDz/8EA8fPkS7du2wb98+yOVyqcMiMhhGMc8RERmOjIwMdO/eHbdv34a3tzd2797NxEjP3NzcsG/fPlhaWuLAgQMc4k8kESZHRARA0TH46NGjsLKywt69e+Ho6Ch1SEapTp062LBhAwBg8eLF+OGHHySOiMj4MDkiImzfvh2LFy8GoBilVrNmTYkjMm7du3fH1KlTAQCDBg3CxYsXpQ2IyMgwOSIycpcuXVKORps4cSI+//xziSMiAJg9ezbatWuHN2/eoEuXLnjx4oXUIREZDSZHREYsMTERn332GV6/fo1WrVph3rx5UodE/zIxMcHmzZvh7e2NO3fuwN/fH5mZmVKHRWQUmBwRGSkhBAYNGoRbt26hdOnS2Lp1K0dGGRgHBwfs3LkT5ubm2L9/P77++mupQyIyCkyOiIxUUFAQduzYAVNTU2zfvh0ODg5Sh0Q58PX1xcqVKwEoOs2fOHFC4oiIij4mR0RGKCIiAqNHjwageOhpgwYNpA2I3mngwIHK22o9evTA06dPpQ6JqEhjckRkZBITE9GtWzekpKSgQ4cOGDt2rNQh0XvIZDKsXr0aVapUQWxsLPr16wcjnL+XSG+YHBEZkbf7GW3cuBEymUzqsEgD1tbW2LZtGywsLHDgwAHlrTYi0j4mR0RG5IcffmA/o0KsRo0aWLJkCQBgwoQJuHTpksQRERVNTI6IjMTdu3cxfPhwAEBgYKBm/YxiYoATJxSvpFsavtfDhg1Dhw4dkJqaiu7duyM5OVlPARIZDyZHREYgIyMDvXv3RlJSEho1aoSJEye+f6XgYMDLC2jeXPEaHKz7QI1VHt5rmUyGkJAQuLq64vr16xgzZoweAyUyDjJhhL369PVUXyJDMX/+fEydOhW2tra4dOkSypQp8+4VYmIUF2nVSQflciAqCvDw0GmsRief7/X//vc/fPzxxxBCYO/evejYsaPuYyWSmL6u32w5Iiri/vrrL8ycORMA8N13370/MQKAmzfVL9YAkJEB3LqlgwiNXD7f6xYtWmD8+PEAFM9fi4uL01WEREaHyRFREfbq1Sv07NkT6enp6Nq1K3r37q3ZiuXLAyZvfT3I5YCPj/aDNHYFeK9nz56NqlWr4smTJxgyZAiH9xNpCZMjoiJs8uTJ+Oeff+Du7o61a9dqPmzfwwNYt05xkQYUr0FBvKWmCwV4ry0tLbF582aYmppi586d2L59u46DJTIO7HPEPkdURJ0+fRpNmjQBABw5cgR+fn5530hMjOL2jo8PEyNdK8B7PXv2bMycORMlSpTAlStX4ObmpqMgiaSlr+s3kyMmR1QEJScno0aNGrh9+zYGDBiA77//XuqQSIfS0tLQoEEDnD9/Hm3btsWvv/7KyT2pSGKHbCLKt2nTpuH27dvw8PBQThpIRZeZmRk2bdoECwsLHDx4ECEhIVKHRFSoMTkiKmLCwsKwbNkyAMC6detgb28vbUCkF1WrVsXcuXMBAGPHjsXDhw8ljoio8GJyRFSEvH79Gl9++SWEEOjbty/atGkjdUikR2PGjEHdunWRmJiIYcOGcfQaUT4xOSIqQmbOnIkbN27A1dUVS5culToc0jO5XI7169fD1NQUe/fuxe7du6UOiahQYnJEVEScO3cO33zzDQAgKCgIJUqUkDgikkL16tUxadIkAMDw4cPx/PlziSMiKnyYHBEVAenp6Rg0aBAyMzPRs2dPdOjQQeqQSELTpk1DpUqVEBsbiwkTJkgdDlGhw+SIqAhYvnw5Ll26BAcHB3z77bdSh0MSs7CwUE7fEBwcjOPHj0scEVHhUqDk6MmTJ4iNjdVWLESUD/fu3cOMGTMAAEuWLIGTk5PEEZEh+L//+z8MHToUgOLZa8nJyRJHRFR45Cs5+vvvv1G1alW4urrC3d0d7u7umDZtGl69eqXt+IjoHYQQGDZsGJKTk/HRRx+hb9++UodEBmTBggXw8PDA7du3ERgYKHU4RIVGvpKj/v37w9nZGWfPnkVERATmzp2LQ4cOoU6dOuz8R6RHu3fvxoEDB2BmZoagoCDOikxq7OzssHr1agDA0qVLcfXqVYkjIioc8vX4EBsbG5w/fx6VKlVSLhNCoGvXrrC0tMSPP/6o1SC1jY8PoaIgISEBlStXxqNHjzBjxgy2DFCuPv30U+zduxcfffQRTp48ySSaCi2DfnxITi1EMpkM8+fPx759+7QSGBG927Rp0/Do0SOUL18ekydPljocMmDLli2DtbU1Tp8+bfD/eSUyBBonR+3atcOUKVPw008/ISAgAGPGjMHjx4/VyiQkJHBuFSI9OHfuHFatWgUAWLNmDSwtLSWOiAyZl5eXstP++PHj2f2B6D1MNS1YvXp1XLhwARs2bFAmRWXLlkW3bt1Qq1YtZGRkYMOGDRxGTKRjmZmZykdD9OrVCy1atJA6JCoExowZg02bNiEyMhLTpk1TJtdElF2++hw9fvwYERERuHjxovLn1q1bkMvlqFixIv7++29dxKo17HNEhdn69esxcOBA2Nra4p9//oGLi4vUIVEhcfLkSTRr1gwymQznzp1DnTp1pA6JKE/0df3OV3KUk9evX+PSpUu4dOkSBg8erI1N6gyTIyqsnj9/jgoVKiAuLg5Lly7FmDFjpA6JCpnevXvjxx9/RJ06dfD7779DLpdLHRKRxgpdclSYMDmiwmrEiBH47rvvUKVKFVy8eBFmZmZSh0SFTGxsLCpVqoSEhASsXr0aQ4YMkTokIo0Z9Gg1ItK/S5cuKeesWblyJRMjyhcXFxfMnTsXgGLE47NnzySOiMjwMDkiKgSEEBg+fDgyMzPRrVs3NG/eXOqQqBALCAhA9erV8ezZM8ycOVPqcIgMDpMjokJg69atOHv2LKytrbFkyRKpw6FCztTUFMuXLwegmAriypUrEkdEZFiYHBEZuMTERIwfPx4AMHXqVHh6ekocERUFzZo1Q5cuXZCRkYFRo0bBCLufEuWKyRGRgZszZw5iY2Ph4+ODcePGSR0OFSFff/01LCwscPz4cezdu1fqcIgMBpMjIgN28+ZN5e2PZcuWwcLCQuKIqCgpU6YMJkyYAAAYN24c3rx5I3FERIaByRGRAZs4cSLS0tLQunVrtGvXTupwqAiaNGkS3N3dcffuXSxdulTqcIgMApMjIgN18uRJ7NmzB3K5nJ2wSWdsbGywaNEiAMD8+fPx4MEDiSMikh6TIyIDlJGRgbFjxwIABg0ahKpVq0ocERVlPXr0QMOGDfHq1StMmjRJ6nCIJMfkiMgA/fDDD4iIiICdnR0CAwOlDoeKOJlMhuXLl0Mmk+HHH3/EH3/8IXVIRJJickRkYF6+fIkpU6YAUMxg7OTkJHFEZAzq1KkDf39/AMD48eM5tJ+MGpMjIgOzePFiPHr0CGXLlsXIkSOlDoeMyJw5c2BlZYWzZ89yaD8ZNSZHRAbk/v37ys7Xixcv1t3Q/ZgY4MQJxSsVLjo8dh4eHsq5tL766iukpqZqvQ6iwoDJEZEBmTJlCl6/fo3GjRujc+fOuqkkOBjw8gKaN1e8Bgfrph7SPj0cu6+++gqlSpXCrVu3EBQUpPXtExUGMmGEN5YTExNhb2+PhIQE2NnZSR0OEQDg3LlzqFevHgDgzz//RJ06dbRfSUyM4qKamfnfMrkciIoCPDy0Xx9pjx6PXVBQEAICAlCyZEncunULxYsX1+r2ifJLX9dvthwRGQAhhPJ2Rp8+fXSTGAHAzZvqF1cAyMgAbt3STX2kPXo8dv3790flypURHx+PBQsWaH37RIaOyRGRAfjll19w9uxZWFpaYt68ebqrqHx5wOSt014uB3x8dFcnaYcej52pqSm+/vprAMDy5ctx7949rddBZMiYHBFJLD09HZMnTwYAjB49Gh66vL3l4QGsW6e4qAKK16Ag3lIrDPR87Nq2bYvmzZsjJSUFU6dO1UkdRIaKfY7Y54gkFhISgv79+8PBwQG3b9/WT/+OmBjF7RgfHyZGhY0ej11ERAR8fX0hhNBdPziiPGCfIyIjkJycjBkzZgAApk6dqr+Orx4eQNOmTIwKIz0eu9q1a6N3794AgHHjxnFiSDIaTI6IJLRy5Uo8ePAApUuXxtChQ6UOhyibuXPnwtLSEqdPn8bBgwelDodIL5gcEUnk2bNnypFAWRcgIkPj6empnKl98uTJyHx7xBxREcTkiEgi8+fPR0JCAmrUqIEePXpIHQ5RriZOnIjixYvj8uXL2Lp1q9ThEOkckyMiCdy7dw8rV64EACxatAjyrBFIRAbIwcEBEydOBABMnz6djxWhIo/JEZEEZsyYgdTUVDRr1gytWrWSOhyi9xo5ciRcXV0RFRWFdevWSR0OkU4xOSLSs7///hs//PADAEWrkUwmkzgioveztrZWjqycM2cOXr58KXFERLrD5IhIzyZPngwhBLp164YPP/xQ6nCINNa/f3/4+PjgyZMn+Pbbb6UOh0hnDCI5Wr16NcqUKQNLS0v4+vrizJkzGq3322+/wdTUFLVq1dJtgERacurUKRw8eBCmpqa6fUwIkQ6YmZlh7ty5AICvv/4aT58+lTgiIt2QPDnasWMHRo8ejalTpyIiIgKNGzdGmzZtEB0d/c71EhIS0KdPH7Ro0UJPkRIVjBBC+RiGgQMHwofPM6NCqGvXrqhduzaSkpL4UFoqsiR/fEi9evXwwQcfYM2aNcpllStXRqdOnd554nXv3h3ly5eHXC7H3r17cfHiRY3r5ONDSAqHDh1C27ZtYWlpidu3b8PNzU3qkIjy5ciRI2jdujXMzc1x8+ZNlC5dWuqQyEgYxeNDUlNTcf78efj5+akt9/PzQ1hYWK7rbdiwAbdv38bMmTM1qiclJQWJiYlqP0T6lJmZqWw1Gj58OBMjKtT8/PzQrFkzpKamavw9TFSYSJocxcXFISMjA87OzmrLnZ2dERsbm+M6N2/exKRJk7BlyxaYmppqVM+CBQtgb2+v/PH09Cxw7ER5sXv3bkRERMDW1lY5XwxRYSWTyZQt+5s3b8bVq1cljohIuyTvcwQg21BmIUSOw5szMjLQo0cPBAYGokKFChpvf/LkyUhISFD+3L9/v8AxE2kqIyNDOQR6zJgxcHR0lDgiooKrV68ePv30U2RmZmL69OlSh0OkVZImR46OjpDL5dlaiZ48eZKtNQkAkpKS8Ndff2H48OEwNTWFqakpZs+ejUuXLsHU1BTHjx/PsR4LCwvY2dmp/RDpy5YtWxAZGYkSJUpg7NixUodDpDVz5syBTCbDnj17cP78eanDIdIaSZMjc3Nz+Pr6IjQ0VG15aGgoGjZsmK28nZ0dLl++jIsXLyp/AgICULFiRVy8eBH16tXTV+hEGklNTcWsWbMAKJ5PZW9vL21ARFpUtWpV5XMBs1pHiYoCzTrt6NDYsWPRu3dv1KlTBw0aNMC6desQHR2NgIAAAIpbYg8ePMDmzZthYmKCatWqqa1fqlQpWFpaZltOZAhCQkJw9+5dODs7Y/jw4VKHQ6R1M2fOxPbt23Hw4EGEh4ejQYMGUodEVGCS9zn6/PPPsWzZMsyePRu1atXC6dOncfDgQXh5eQEAHj169N45j4gM0evXrzFnzhwAwLRp02BjYyNxRETaV758efj7+wMA+x5RkSH5PEdS4DxHpA/ffPMNxo8fj9KlS+Off/6BhYWF1CER6URUVBQqVKiAtLQ0nDhxAk2bNpU6JCqijGKeI6KiKikpCQsXLgSguO3AxIiKMm9vbwwcOBCAovXICP/PTUUMkyMiHVi2bBni4uJQoUIF9OnTR+pwiHRuypQpsLCwwNmzZ3H06FGpwyEqECZHRFr27NkzLFmyBAAQGBio8WSlRIWZu7s7hg4dCoCtR1T4MTki0rKvv/4aiYmJqFGjBrp16yZ1OER6M2nSJFhbW+PPP//EL7/8InU4RPnG5IhIi+Li4rBy5UoAignyTEz0fIrFxAAnTiheybhJ8FkoVaoURo4cCUDRepSZmam3uom0ickRkRZ98803ePXqFT744AN06NBBv5UHBwNeXkDz5orX4GD91k+GQ8LPwoQJE2BnZ4e///4bu3bt0lu9RNrEofwcyk9aEh8fD29vb7x8+RL79u3DJ598or/KY2IUF0HV/6nL5UBUFODhob84SHoG8FmYNWsWAgMDUblyZVy+fBlyuVwv9VLRx6H8RIXM0qVL8fLlS9SuXVv/rUY3b6pfDAEgIwO4dUu/cZD0DOCzMGbMGJQoUQKRkZHYtm2b3uol0hYmR0RaEB8fjxUrVgBQzGskk8n0G0D58sDb/ZvkcsDHR79xkPQM4LNgb2+Pr776CoCiFSktLU1vdRNpA5MjIi349ttv8fLlS9SqVUu/t9OyeHgA69YpLoKA4jUoiLfUjJGBfBZGjBgBJycn3L59G1u2bNFr3UQFxT5H7HNEBfTs2TN4e3sjKSkJu3fvxqeffipdMDExitsnPj5MjIydAXwWlixZggkTJqBcuXK4fv065/yiAmOfI6JC4ttvv0VSUhJq1qyJjh07ShuMhwfQtCkTIzKIz8KQIUOUrUc//vijZHEQ5RWTI6ICeP78ubKv0YwZM/Q/rxGRAbOxsVH2PZo7dy7S09MljohIM/wmJyqAZcuWITExEdWrV0enTp2kDofI4LD1iAojJkdE+fT8+XMsW7YMgGKEGluNiLJj6xEVRvw2J8qn5cuXIzExEdWqVZO2EzaRgWPrERU2TI6I8uHFixfKViP2NSJ6N7YeUWHDb3SifFi+fDkSEhJQtWpVdOnSRepwiAweW4+oMGFyRJRHCQkJbDUiyiO2HlFhwm91ojxasWIFXrx4gSpVquCzzz6TOhyiQoOtR1RYMDkiyoOEhAQsXboUAFuNiPKKrUdUWPCbnSgPVq5ciRcvXqBy5cpsNSLKB7YeUWHA5IhIQ4mJicpWo+nTp0Oe9WBPItIYW4+oMGByRKShlStX4vnz56hUqRK6desmdThEhRZbj8jQMTki0kBSUhJbjYi0hK1HZOiYHBFp4LvvvsOzZ89QsWJFfP7551KHQ1TosfWIDBmTI6L3SEpKwpIlSwCw1YhIW9h6RIaMyRHRe6xatQrPnj1DhQoV0L17d/0HEBMDnDiheCXSNgk/X6qtRz/88IPe6yfKDZMjond4+fKlstVo2rRp+m81Cg4GvLyA5s0Vr8HB+q2fijaJP182NjaYMGECAGDevHlsPSKDweSI6B1WrVqF+Ph4lC9fHl988YV+K4+JAQYNAjIzFb9nZgKDB7MFibTDQD5fQ4cOhaOjI27fvo0tW7botW6i3DA5IsrF261Gpqam+g3g5s3/LlxZMjKAW7f0GwcVTQby+VJtPZozZw5bj8ggMDkiysWaNWsQFxcHHx8f9OjRQ/8BlC8PvP14Erkc8PHRfyxU9BjQ50u19Wjr1q16r5/obUyOiHLw6tUrfP311wAkajUCAA8PYN06xQULULwGBSmWExWUAX2+ihUrhnHjxgHgyDUyDDIhhJA6CH1LTEyEvb09EhISYGdnJ3U4ZICWLFmCCRMmoFy5crh+/bo0yVGWmBjFrQ4fHyZGpH0G8vlKSkqCt7c3nj17hs2bN6N3796SxUKGS1/Xb7YcEb1FtdVo6tSp0iZGgOKC1bQpEyPSDQP5fNna2mL8+PEAFK1HGRkZksZDxo3JEdFb1q5diydPnqBs2bLo1auX1OEQGY3hw4fDwcEB//zzD7Zv3y51OGTEmBwRqUhOTsbixYsBKFqNzMzMJI6IyHjY2tpi7NixABQj19h6RFJhckSkIigoCE+ePEGZMmXY54FIAiNGjECJEiVw48YN7NixQ+pwyEgxOSL6V3JyMhYtWgSArUZEUrGzs2PrEUmOyRHRv9atW4fHjx/D29sbffr0kTocIqM1YsQIFC9eHNevX8fPP/8sdThkhJgcEQF4/fq1stVoypQpbDUikpC9vb2y9Wj27NlsPSK9Y3JEBEWrUWxsLLy8vODv7y91OERGb+TIkShevDgiIyOxc+dOqcMhI8PkiIzemzdv1FqNzM3NJY6IiOzt7TF69GgAir5HmW8/B45Ih5gckdH7/vvv8ejRI5QuXRp9+/aVOhwi+teoUaNgb2+Pq1evYteuXVKHQ0aEyREZtTdv3mDhwoUA2GpEZGiKFy+ubD0KDAxk6xHpDZMjMmrr16/Hw4cP4enpiX79+kkdDhG9ZdSoUbCzs8PVq1exe/duqcMhI8HkiIyWaqvR5MmT9d9qFBMDnDiheCUydBJ9XkuUKIFRo0YBUIxcY+sR6QOTIzJawcHBePDgATw8PPDll1/qu3LAywto3lzxGhys3/qJ8kLiz+vo0aNhZ2eHy5cvY8+ePXqtm4wTkyMySikpKWqtRhYWFvqrPCYGGDQIyPofcGYmMHgwW5DIMBnA59XBwQEjR44EwNYj0g8mR2SUQkJCEBMTA3d3d/Tv31+/ld+8+d+FJktGBnDrln7jINKEgXxex4wZA1tbW/z999/Yt2+fXusm48PkiIxOSkoK5s+fDwCYNGmSfluNAKB8ecDkrVNPLgd8fPQbB5EmDOTz6uDggBEjRgBQtB4JIfRaPxkXJkdkdDZs2ICYmBi4ublhwIAB+g/AwwNYt05xgQEUr0FBiuVEhsaAPq9jx45FsWLFcPHiRbYekU7JhBGm34mJibC3t0dCQgLs7OykDof0KDU1FT4+Prh//z5WrFih/J+oJGJiFLcmfHyYGJHhM5DP65QpU7BgwQLUrl0b58+fh0wmkywW0j99Xb+ZHDE5MipBQUEICAiAq6sr7ty5A0tLS6lDIqI8iIuLg7e3N169eoV9+/bhk08+kTok0iN9Xb95W42MRmpqKhYsWABA0deIiRFR4ePo6Khs8Z01axb7HpFOMDkio7Fx40bcu3cPLi4uGDhwoNThEFE+jRs3DjY2NoiIiMCvv/4qdThUBDE5IqOQmpqKefPmAVDMa2RlZSVxRESUX46Ojhg2bBgAxTPX2HpE2sbkiIzCxo0bER0dDVdXV7YaERUB48ePh7W1Nc6fP4+DBw9KHQ4VMUyOqMhTbTWaNGkSW42IigAnJydl6xH7HpG2MTmiIm/Dhg1sNSIqgrJaj/766y8cOnRI6nCoCGFyREWaJH2NJHp6OZHB0NM5UKpUKQwZMgQA+x6RdjE5oiJtw4YNuH//vv5ajSR+ejmR5PR8DkyYMAFWVlY4d+4cDh8+rNO6yHgwOaIi6+1WI53Pa2QATy8nkpQE54CzszNbj0jrDCI5Wr16NcqUKQNLS0v4+vrizJkzuZbdvXs3Pv74Yzg5OcHOzg4NGjTAkSNH9BgtFRYhISH6bTUykKeXE0lGonNgwoQJsLS0xB9//IGjR4/qtC4yDpInRzt27MDo0aMxdepUREREoHHjxmjTpg2io6NzLH/69Gl8/PHHOHjwIM6fP49mzZqhQ4cOiIiI0HPkZMhSUlIwf/58AHpqNQIM5unlRJKR6BxwcXFBQEAAAI5cIy0REqtbt64ICAhQW1apUiUxadIkjbdRpUoVERgYqHH5hIQEAUAkJCRovA4VLmvWrBEAhJubm3j9+rX+Kl6/Xgi5XAhA8bp+vf7qJjIEEp0DDx8+FJaWlgKAOHLkiF7qJP3T1/Vb0paj1NRUnD9/Hn5+fmrL/fz8EBYWptE2MjMzkZSUBAcHh1zLpKSkIDExUe2Hii5JWo2y9O8PREUpRupERSl+JzImEp0Drq6uGDx4MAD2PaKCkzQ5iouLQ0ZGBpydndWWOzs7IzY2VqNtfPPNN3j16hW6deuWa5kFCxbA3t5e+ePp6VmguMmwZfU1cnNzw4ABA/QfgIcH0LSp4pXIGEl0Dnz11VewsLBAWFgY/ve//+m1bipaJO9zBAAymUztdyFEtmU52bZtG2bNmoUdO3agVKlSuZabPHkyEhISlD/3798vcMxkmCRtNSIiSbm5uSlbj9j3iApC0uTI0dERcrk8WyvRkydPsrUmvW3Hjh3o378/fvrpJ7Rs2fKdZS0sLGBnZ6f2Q0VTSEgIYmJi4O7uLk2rERFJauLEibCwsMBvv/2G48ePSx0OFVKSJkfm5ubw9fVFaGio2vLQ0FA0bNgw1/W2bduGvn37YuvWrWjXrp2uw6RCgq1GROTm5qacuoN9jyi/JL+tNnbsWKxfvx4hISGIjIzEmDFjEB0drRyWOXnyZPTp00dZftu2bejTpw+++eYb1K9fH7GxsYiNjUVCQoJUu0AGQrXVqD87QhMZrUmTJsHc3BxnzpzBiRMnpA6HCiHJk6PPP/8cy5Ytw+zZs1GrVi2cPn0aBw8ehJeXFwDg0aNHanMeBQUFIT09HcOGDYOrq6vyZ9SoUXmu+/bt21rbD5LWmzdvdN9qxGemEWmXjs4pd3d3tdYjKjpOnTqll3pkwgjbHBMTE2Fvb4958+ZhypQpUodDWrBixQqMGjUKHh4euHnzpvaTo+Dg/x6LYGICrFvHYfpEBaHjcyomJgblypVDamoqTpw4gaZNm2pt2ySdbt264eeff0ZCQoJO+w9L3nIkpWPHjkkdAmnBq1evlK1G06dP135ixGemEWmXHs4pDw8P5e11th4VDZmZmXqbosGok6PffvsNycnJUodBBfTdd9/h8ePHKFu2LPr166f9CvjMNCLt0tM5NXnyZJiZmeHkyZPse1QEXLx4Ec+ePdNLXUadHKWmpurt/iXpRkJCAhYtWgRAMa+JmZmZ9ivhM9OItEtP55Snp6ey79G0adM4cq2Q0+dD5o06OQL0+2aT9i1btgzPnz9HpUqV0KNHD91U4uGh6A8hlyt+l8uBoCDOgE2UX3o8p6ZOnQpLS0uEhYXh0KFDWt8+6c/Ro0f1VpdRd8gGgIoVK+L69esSR0T5ER8fj7JlyyIxMRE//fQTunbtqtsKY2IUzf4+PkyMiLRBT+fUhAkTsGTJEtSqVQvnz5+HydutVmTwXr58CQcHB6SlpQEAO2TrkomJCW7cuIGoqCipQ6F8WLJkCRITE1GzZk106dJF9xXymWlE2qWnc2rixImwtbXFxYsXsWvXLp3WRbpx8uRJpKWlKaf50TWjTo7q1q0LgLfWCqPY2FisWLECADBnzhz+T5CIcuXo6IgxY8YAAGbMmIGMjAyJI6K8yrpOt2jRQi/1GfUVJetNZnJU+CxcuBDJycmoV68e2rdvX7CNcXJHIsOmhXN07NixcHBwwPXr1/Hjjz9qMTjSNSEEDhw4AADvfZaqthh1cpT1Jh87dkx5H5MM3/3797FmzRoAwNy5cyGTyfK/seBgwMsLaN5c8RocrKUoiUgrtHSO2tvbY+LEiQAUI1tTU1O1GSXpUGRkJO7evQsLCws0adJEL3UadXJUq1YtODo6IikpCb///rvU4ZCG5s2bh9TUVDRp0qRgTayc3JHIsGn5HB0+fDhcXFwQFRWF9evXazFQ0qWsVqOmTZuiWLFieqnTqJMjExMT+Pn5AfjvzSfDdufOHQT/+z/HOXPmFKzViJM7Ehk2LZ+j1tbWmDp1KgBFqzMnAS4csq7PBe5CkQdGnRwBQIcOHQAAv/zyi8SRkCYCAwORnp6OVq1aoXHjxgXbGCd3JDJsOjhHBw4ciNKlS+PRo0dYvXp1AQMkXXv+/DnOnj0LAGjXrp3e6jX65Kh169YwNTXFtWvXcPv2banDoXe4cuUKfvjhBwCKVqMC4+SORIZNB+eohYUFZs2aBUAxsCMxMVELgZKuHD16FBkZGahSpQrKlCmjt3qNPjkqXrw4PvroIwBsPTJ0U6ZMgRACXbp0wYcffqidjfbvD0RFKUbCREVp9angRKQFOjhHe/fujYoVKyI+Ph7Lli0r8PZId3799VcA+m01ApgcAfjv1tr+/fsljoRyc/bsWfzyyy+Qy+WYN2+eZitpOvyXkzsSGTZNz1ENz3lTU1MEBgYCUEwmGx8fr6VASZsyMjKUj3xhciSBrOTo9OnTeP78ucTR0NuEEMohuP3790fFihXfvxKH6BMZlzye8127dkXNmjWRlJSk+X+4SK/++OMPxMfHo3jx4mjYsKFe62ZyBKBcuXKoUqUKMjIycPjwYanDobf88ssvCAsLg5WVFWbOnPn+FThEn8i45OOcNzExwaJFiwAAq1at4mOkDFDWLbVWrVrBzMxMr3UzOfrXJ598AoC31gxNRkYGJk+eDAAYPXo03Nzc3r8Sh+gTGZd8nvN+fn5o0aIFUlNTMW3aNB0GSPmxd+9eAP/d3dEnJkf/ynrzDx06xNmyDcjmzZtx7do1lChRAl999ZVmK3GIPpFxyec5L5PJlK1HW7ZsQUREhK4ipDyKjIxEZGQkzMzM9Dq/URYmR/+qV68enJyckJCQgNOnT0sdDgF4/fo1ZsyYAQCYOnUqihcvrtmKHKJPZFwKcM77+vriiy++AABl30aS3p49ewAoHvNlb2+v9/qZHP1LLpcrs9Pdu3dLHA0Bin4AMTEx8PT0xLBhw/K2MofoExmXApzz8+bNg5mZGUJDQxEaGqqzEElzWdfhzp07S1I/kyMVn332GQDFQcnIyJA4GuP24sULzJ8/H4BiVmxLS8v//sgh+kSUk3wO+S9TpgyGDh0KQNF6lPl2/yXSq3v37uH8+fMwMTFBx44dJYmByZGKli1bonjx4oiNjcVvv/0mdThGbdGiRXj+/DmqVq2KPn36/PcHDtEnooLI5Ttk2rRpsLOzQ0REBLZt2yZxkMYtq9Xoo48+gpOTkyQxMDlSYW5ursxSd+7cKXE0xis6Olo5a+38+fMhz+pHwCH6RFQQ7/gOcXR0VPY5mjZtGlJSUiQM1LhJfUsNYHKUTdattV27drFpVSJTpkzBmzdv0KRJE/UhnByiT0QF8Z7vkKzpQqKiovhQWomo3rnp1KmTZHEwOXrLxx9/DDs7Ozx8+BBhYWFSh2N0zp07hy1btgAAvvnmG8hksv/+yCH6RFQQ7/kOsba2Vj5WZO7cuXjx4oWeA6R9+/ZBCIG6devC09NTsjiYHL3FwsKCt9YkIu7fx7gBAwAAffr0ga+vr3oBDtEnooLQ4Dukb9++qFKlCp49e4a5EydqNviDtGbHjh0AgC5dukgah0wIISSNQAKJiYmwt7dHQkIC7Ozssv19//796NixI9zd3REdHQ2Tt/+nQdoXHIxdAwfiMyFgBeCfxYvhMWFCzmVjYhTN4D4+TIyIKO/e8x1y+PBhtGnTBmYArgIob2KiSKo4JYhOPXz4EB4eHhBCICoqCl5eXtnKvO/6rS286ufAz88Ptra2ePDgAX7//Xepwyn6YmKQMnAgvvo3T58AwGPy5Nz/t8Yh+kRUEO/5DmldrRraAEiD4vuIgz/046effoIQAg0bNswxMdInJkc5sLS0VN5a27p1q8TRGIGbN7FKCNwB4Ip/v4zY0ZqIpHLzJr4BIAewD8BxgN9JepB1vc2asVxKTI5y0bNnTwDA9u3bkZqaKnE0hdx7Jm2MK1kSs//991wAxQB2tCYi6ZQvj8omJhjy769jAGSYmOT+naTpxLSUq1u3buHPP/+EiYkJunbtKnU4TI5y07JlSzg7OyM+Ph5HjhyROpzCS4NJG2evX48EADUB+APsaE1E0vq34/YsExMUB/A3gJBevXL+TuLEtFqxfft2AP9de6XG5CgXpqam6NGjBwDghx9+kDiaQkqDSRuvXLminE/km23bIOez0IjIEPTvj5L37mHWv891nHroEBISEtTLcGJarRBCGNQtNYDJ0Tv17t0bgGL0Gue7yIf3TLgmhMDIkSORkZGBzp07o0X37uxoTUSGw8MDQ7/9FhUqVMDTp0+Vz3tU4sS0WnHhwgVERkbCwsICn376qdThAGBy9E61atVC1apVkZKSwjmP3qbJPfb3TLi2c+dOnDhxApaWlvjmm290GCwRUf6YmZkpv5+WLVuGmzdv/vfHvE5My75JOdqwYQMAxYzY9vb2EkejwOToHWQyGXr16gWAt9bUaHqP/R0Trr169Qrjxo0DoHgKtre3t35iJyLKo3bt2sHPzw+pqakYNWoUlNMD5mViWvZNylFKSoryllq/fv0kjuY/nATyPZNI3b9/H15eXhBC4O7du7yIx8QoTmzVpmS5XNFPKLfbYTlMuDZ9+nTMnTsXXl5eiIyMhJWVle5jJyLKp3/++QfVqlVDWloa9u7dq5zuBcD7J6bNz/emkfj555/RrVs3uLu74969e/89aDwXnATSQHh6eqJp06YAgE2bNkkbjD68r9k3P/fY35pw7c6dO/j6668BAEuXLmViREQGr0KFChg/fjwAYNSoUUhOTv7vj++bmDY/35tGcgtu48aNABSPjHpfYqRPTI40MODf530FBwcjIyND4mh0SJNmXy08/HXMmDFISUlBy5YtDabzHRHR+0ydOhWenp64d+8eFi5cqPmKef3eNJJbcA8fPsThw4cBKJ5pZ0iYHGmgc+fOcHBwwP379wvvnEfv+1+IpkNSC/jw10OHDmH//v0wNTXFihUrIJPJ8rlDRET6ZWNjg2+//RYAsGjRItzSdFRaXr438zo9QCFuYfrhhx+QmZmJhg0bokKFClKHo4bJkQYsLS3Rp08fAMD3338vcTT5oMn/QvLS7Nu/v+JeeR7nJEpOTsbQoUMBKJqlK1eunLf9ICKSWOfOnZWds0eOHAmNu+1q+r2Zl+/iQtzClJmZiXXr1gEA+hvgvHbskK1hh65r166hatWqkMvluH//PlxdXXUcpZZo2hFQDx0GJ02ahEWLFqF06dK4evUqihUrppXtEhHpk2rn7D179qBTp07a27gBfWfr0uHDh9GmTRsUL14cDx48gLW1tUbrsUO2galSpQoaNWqEjIwM5ZwMBkFbHagLeLvsfS5fvqycK+S7775jYkREhVaFChUwYcIEAMCIESOQmJiovY1r+l2c107eBnb7bc2aNQAAf39/jRMjvRJGKCEhQQAQCQkJeVpv06ZNAoDw8vISaWlpOoouD9avF8LERAhA8bp+ffYy9+//VybrRy5XLM/J/ftCnDiR+9/zISMjQzRo0EAAEJ07d9badomIpPLq1StRtmxZAUAMHz5c+xW877s4L9/tmlwr9OjevXvCxMREABCRkZF5Wje/1++8YnKUB8nJyaJkyZICgNi9e7eOovvX/ftCHD+uvRNDLv+vjJ5PjLVr1woAwtbWVsTExOi1biIiXQkNDRUAhEwmE2FhYfoPQJPv9vz8B/ld1x4tmDZtmgAgmjVrlud19ZUc8bZaHlhZWWHw4MEAgOXLl+dvI5o0bRpIB2ptiI2NxaRJkwAAc+fOhbu7u97qJiLSpZYtW8Lf3x9CCAwcOBCpqan6DUCT73ZddfDO52261NRUrF+/HgAwZMiQPK2rVzpNvQxUQTLP+/fvC7lcLgCIiIiIvK2szdtgef3fgES6d+8uAAhfX1+Rnp4udThERFoVFxcnnJycBAAxZ84cqcPJThfXlALcptu4caMAINzc3ERqamqed4ctRwbKw8MDn332GQBgxYoV//1BW/MIGUgHam3Ys2cPtm/fDrlcjnXr1hnU7KdERNpQsmRJLFu2DAAwZ84c3LhxQ9qA3qbtDt4FmIdJCIGlS5cCUHRkNzMzK+DO6ZBOUy8DlafMM4f7r2FhYQKAsLCwEI8fP9Ysiz5+XD0jz/o5cSJ7fRJ3oNaGuLg4UapUKQFATJkyRepwiIh0JjMzU7Ru3VoAEB999JHIyMiQOqTstNXBW9NrmRDZro2hY8cKAMLGxkY8e/Yse/0a9HVih2wd0vjNzSXpyczMFB9++KEAIKaPGqWbJksJO1BrQ48ePQQAUaVKFfHmzRupwyEi0qmoqChhY2MjAIjly5dLHU7+aLODdw7lWgMCgBgxYkT2ejW8TcfkSIeUb+61a7kXes8H4OeffxYARPFixURiXrJoTZMeA20R0sSePXsEAGFiYiLOnTsndThERHqxevVqAUBYWlqK69evSx1O/mhy7dHkWvZWC9OVfxMjmUwmbt26pV5fHu6WJFy7xuRIV5TJkUyWe4LynqbD9PR0UaFCBQFAfC2TFfrbYNoSFxcnnJ2dBQAxadIkqcMhItKbzMxM8fHHHwsAol69eoYxH56u5PE2XZ9/k6PObdqol8vjbboEmYzJka4ok6N3JTIaZLPBwcECgHCxtxevs8oW0ttg2vLFF18IAKJy5cri9evXUodDRKRX9+/fF/b29gKAmD9/vtThSOvfFqabgJD/mxz9+eef6mXyeJsu4d/tcLSaruU234MGPfx79eoFDw8PxCYkYNO8eZLMI2RItmzZgm3btkEul2PDhg2wtLSUOiQiIr3y8PDAypUrAQAzZ87EpUuXJI5IQv/OwzS/dWtkAGjbti3q1KmjXqYgo+l0yLgfPAvA7n0P6ouJUSRPPj45llm+fDlGjx4NLy8v3LhxAxYWFjqN3VBFRUWhZs2aSExMRGBgIGbMmCF1SEREkhBCoHPnzti7dy9q1KiBP/74w2j/s3j37l2UL18eGRkZCA8PR/369XMu+J5rbdaDdhMzM2EP8MGzOmVi8v65gTw8gKZNcy0zcOBAuLi44N69e8pZP41Neno6evXqhcTERDRs2BBTpkyROiQiIsnIZDIEBQXByckJf//9NyZOnCh1SJJZsGABMjIy4Ofnl3tiBLz3WqtsYTLRT9pi3MnRlSsFvgVmbW2N6dOnA1BMAPbq1SttRFaoLFy4EL/99htsbW3x448/wtTUVOqQiIgkVapUKWzatAmAYsLg/fv3SxyR/t26dQsbNmwAAO3cTejfX3Hd1gPjTo609JyvAQMGwNvbG48fP8Z3332nlW0WFmFhYZg1axYAYPXq1ShTpoy0ARERGYg2bdpg7NixAIB+/fohJo/PISvspkyZgvT0dLRu3RqNGjXSzkb19HxO406OtMTc3ByBgYEAgEWLFuHFixfSBqQnT58+Rbdu3ZCRkYEePXqgZ8+eUodERGRQFixYAF9fXzx79gy9evVCRkaG1CHpxR9//IGff/4ZMpkMixcvljqcPGNypCU9e/ZElSpV8Pz5c8yZM0fqcHQuIyMDPXv2xIMHD1CpUiWsXbsWMplM6rCIiAyKubk5tm/fjmLFiuHUqVPKlvaiTAiBr776CgDg7++P6tWrSxxR3jE50hK5XI5vvvkGgOL+8vXr1yWOSLfmzp2L0NBQWFtbY+fOnbC1tZU6JCIig+Tj44OgoCAAiu/Offv2SRyRbv3yyy84ffo0LC0tMXv2bKnDyRcmR1rUunVrtG/fHunp6RgzZgyK6iwJR48eVd5GXLt2LapWrSpxREREhq1Hjx4YOXIkAKB37964ceOGxBHpRnJyMkaNGgUAGD16NDw9PSWOKH8MIjnK6shraWkJX19fnDlz5p3lT506BV9fX1haWqJs2bJYu3atniJ9v6VLl8LMzAyHDx/GwYMHpQ5H627evInu3btDCIFBgwahd+/eUodERFQoLFmyBI0bN0ZSUhI+/fRTJCUlSR2S1i1YsABRUVHw9PTE1KlTpQ4n/3Q6/7YGtm/fLszMzMT3338vrl27JkaNGiVsbGzEvXv3cix/584dYW1tLUaNGiWuXbsmvv/+e2FmZiZ27typcZ26fqrvV199JQCIMmXKiJcvX+qkDik8f/5cVKxYUQAQ9evX5+NBiIjy6NGjR8LNzU3xnLHOnUVGRobUIWnNjRs3hLm5uQAgdu3apZM6dH39ziJ5clS3bl0REBCgtqxSpUq5PrT0q6++EpUqVVJbNnjwYFG/fn2N69T1m5uYmChKly4tAIjRo0frpA59S0tLE35+fgKA8PT0FLGxsVKHRERUKIWFhQkzMzMBQEycOFHqcLQiMzNTtGzZUgAQbdq0EZmZmTqpR1/JkaS31VJTU3H+/Hn4+fmpLffz80NYWFiO64SHh2cr36pVK/z1119IS0vTWax5YWtri3Xr1gFQPF4kt30pTMaOHYujR4/C2toa+/fvh7Ozs9QhEREVSg0aNFA+UWHRokXKztqF2bp163Ds2DFYWlpi5cqVhX70sqRTGcfFxSEjIyPbhdbZ2RmxsbE5rhMbG5tj+fT0dMTFxcHV1TXbOikpKUhJSVH+npCQAEDxjDVdadCgAb744gts27YNffv2xdmzZwvts3VWrlypfJDiunXrULZsWZ2+d0RERV2nTp0wadIkLFy4EEOHDoWjoyM+/vhjqcPKlzt37ignu5w5cyacnJx0do3I2q7Q8YAng3jOw9sZphDinVlnTuVzWp5lwYIFytFVqvTVi/7mzZtFpqWlV69eUodARFSkZGZm4rPPPpM6DK2YPHkyJk+erPN64uPjYW9vr7PtS5ocOTo6Qi6XZ2slevLkSa7JhIuLS47lTU1NUbJkyRzXmTx5sjKrBYAXL17Ay8sL0dHROn1zDU1iYiI8PT1x//59nT7N2NBwv7nfxoD7zf02BgkJCShdujQcHBx0Wo+kyZG5uTl8fX0RGhqKTz/9VLk8NDQUHTt2zHGdBg0a4JdfflFbdvToUdSpUwdmZmY5rmNhYQELC4tsy+3t7Y3qQ5XFzs6O+21EuN/GhfttXIx1v01MdNtlWvJ5jsaOHYv169cjJCQEkZGRGDNmDKKjoxEQEABA0erTp08fZfmAgADcu3cPY8eORWRkJEJCQhAcHIzx48dLtQtERERUhEje5+jzzz9HfHw8Zs+ejUePHqFatWo4ePAgvLy8AACPHj1CdHS0snyZMmVw8OBBjBkzBqtWrYKbmxtWrFiBLl26SLULREREVIRInhwBwNChQzF06NAc/7Zx48Zsy5o0aYILFy7kuz4LCwvMnDkzx1ttRRn3m/ttDLjf3G9jwP3W7X7LhK7HwxEREREVIpL3OSIiIiIyJEyOiIiIiFQwOSIiIiJSweSIiIiISEWRTY7mzZuHhg0bwtraGsWLF9doHSEEZs2aBTc3N1hZWaFp06a4evWqWpmUlBSMGDECjo6OsLGxwSeffIKYmBgd7EH+PH/+HL1794a9vT3s7e3Ru3dvvHjx4p3ryGSyHH++/vprZZmmTZtm+3v37t11vDeay89+9+3bN9s+1a9fX61MUTveaWlpmDhxIqpXrw4bGxu4ubmhT58+ePjwoVo5Qzveq1evRpkyZWBpaQlfX1+cOXPmneVPnToFX19fWFpaomzZsli7dm22Mrt27UKVKlVgYWGBKlWqYM+ePboKP9/yst+7d+/Gxx9/DCcnJ9jZ2aFBgwY4cuSIWpmNGzfmeK6/efNG17uSJ3nZ75MnT+a4T9evX1crV9SOd07fXzKZDFWrVlWWMfTjffr0aXTo0AFubm6QyWTYu3fve9fR27ktiqgZM2aIpUuXirFjxwp7e3uN1lm4cKGwtbUVu3btEpcvXxaff/65cHV1FYmJicoyAQEBwt3dXYSGhooLFy6IZs2aiZo1a4r09HQd7UnetG7dWlSrVk2EhYWJsLAwUa1aNdG+fft3rvPo0SO1n5CQECGTycTt27eVZZo0aSIGDhyoVu7Fixe63h2N5We//f39RevWrdX2KT4+Xq1MUTveL168EC1bthQ7duwQ169fF+Hh4aJevXrC19dXrZwhHe/t27cLMzMz8f3334tr166JUaNGCRsbG3Hv3r0cy9+5c0dYW1uLUaNGiWvXronvv/9emJmZiZ07dyrLhIWFCblcLubPny8iIyPF/Pnzhampqfj999/1tVvvldf9HjVqlFi0aJE4d+6c+Oeff8TkyZOFmZmZuHDhgrLMhg0bhJ2dXbZz3pDkdb9PnDghAIgbN26o7ZPqOVoUj/eLFy/U9vf+/fvCwcFBzJw5U1nG0I/3wYMHxdSpU8WuXbsEALFnz553ltfnuV1kk6MsGzZs0Cg5yszMFC4uLmLhwoXKZW/evBH29vZi7dq1QgjFh9HMzExs375dWebBgwfCxMREHD58WOux59W1a9cEALUPQXh4uAAgrl+/rvF2OnbsKJo3b662rEmTJmLUqFHaClWr8rvf/v7+omPHjrn+3ViO97lz5wQAtS9hQzredevWFQEBAWrLKlWqJCZNmpRj+a+++kpUqlRJbdngwYNF/fr1lb9369ZNtG7dWq1Mq1atRPfu3bUUdcHldb9zUqVKFREYGKj8XdPvQynldb+zkqPnz5/nuk1jON579uwRMplMREVFKZcVhuOdRZPkSJ/ndpG9rZZXd+/eRWxsLPz8/JTLLCws0KRJE4SFhQEAzp8/j7S0NLUybm5uqFatmrKMlMLDw2Fvb4969eopl9WvXx/29vYax/f48WMcOHAA/fv3z/a3LVu2wNHREVWrVsX48eORlJSktdgLoiD7ffLkSZQqVQoVKlTAwIED8eTJE+XfjOF4A4oHOcpksmy3nw3heKempuL8+fNqxwAA/Pz8ct3H8PDwbOVbtWqFv/76C2lpae8sYwjHFcjffr8tMzMTSUlJ2R7Q+fLlS3h5ecHDwwPt27dHRESE1uIuqILsd+3ateHq6ooWLVrgxIkTan8zhuMdHByMli1bKp8ukcWQj3de6fPcNogZsg1BbGwsAMDZ2VltubOzM+7du6csY25ujhIlSmQrk7W+lGJjY1GqVKlsy0uVKqVxfJs2bYKtrS06d+6strxnz54oU6YMXFxccOXKFUyePBmXLl1CaGioVmIviPzud5s2bdC1a1d4eXnh7t27mD59Opo3b47z58/DwsLCKI73mzdvMGnSJPTo0UPt4ZWGcrzj4uKQkZGR43mZ2z7GxsbmWD49PR1xcXFwdXXNtYwhHFcgf/v9tm+++QavXr1Ct27dlMsqVaqEjRs3onr16khMTMTy5cvRqFEjXLp0CeXLl9fqPuRHfvbb1dUV69atg6+vL1JSUvDDDz+gRYsWOHnyJD766CMAuX8misrxfvToEQ4dOoStW7eqLTf0451X+jy3C1VyNGvWLAQGBr6zzJ9//ok6derkuw6ZTKb2uxAi27K3aVKmIDTdbyB7/EDe4gsJCUHPnj1haWmptnzgwIHKf1erVg3ly5dHnTp1cOHCBXzwwQcabTuvdL3fn3/+ufLf1apVQ506deDl5YUDBw5kSw7zst2C0tfxTktLQ/fu3ZGZmYnVq1er/U2K4/0ueT0vcyr/9vL8nOv6lt8Yt23bhlmzZmHfvn1qCXT9+vXVBh00atQIH3zwAVauXIkVK1ZoL/ACyst+V6xYERUrVlT+3qBBA9y/fx9LlixRJkd53aZU8hvjxo0bUbx4cXTq1ElteWE53nmhr3O7UCVHw4cPf++IGW9v73xt28XFBYAiM3V1dVUuf/LkiTILdXFxQWpqKp4/f67WmvDkyRM0bNgwX/VqQtP9/vvvv/H48eNsf3v69Gm2TDonZ86cwY0bN7Bjx473lv3ggw9gZmaGmzdv6uxiqa/9zuLq6govLy/cvHkTQNE+3mlpaejWrRvu3r2L48ePq7Ua5UQfxzsnjo6OkMvl2f7Xp3pevs3FxSXH8qampihZsuQ7y+Tl86JL+dnvLDt27ED//v3x888/o2XLlu8sa2Jigg8//FD5mZdaQfZbVf369fHjjz8qfy/Kx1sIgZCQEPTu3Rvm5ubvLGtoxzuv9Hpu56mHUiGU1w7ZixYtUi5LSUnJsUP2jh07lGUePnxocB10//jjD+Wy33//XeMOuv7+/tlGLeXm8uXLAoA4depUvuPVloLud5a4uDhhYWEhNm3aJIQousc7NTVVdOrUSVStWlU8efJEo7qkPN5169YVQ4YMUVtWuXLld3bIrly5stqygICAbJ0227Rpo1amdevWBtdBNy/7LYQQW7duFZaWlu/t2JolMzNT1KlTR/Tr168goWpVfvb7bV26dBHNmjVT/l5Uj7cQ/3VIv3z58nvrMMTjnQUadsjW17ldZJOje/fuiYiICBEYGCiKFSsmIiIiREREhEhKSlKWqVixoti9e7fy94ULFwp7e3uxe/ducfnyZfHFF1/kOJTfw8NDHDt2TFy4cEE0b97c4IZ216hRQ4SHh4vw8HBRvXr1bEO7395vIYRISEgQ1tbWYs2aNdm2eevWLREYGCj+/PNPcffuXXHgwAFRqVIlUbt27UK730lJSWLcuHEiLCxM3L17V5w4cUI0aNBAuLu7F+njnZaWJj755BPh4eEhLl68qDa8NyUlRQhheMc7a4hzcHCwuHbtmhg9erSwsbFRjsqZNGmS6N27t7J81nDfMWPGiGvXrong4OBsw31/++03IZfLxcKFC0VkZKRYuHChwQ7t1nS/t27dKkxNTcWqVatynYJh1qxZ4vDhw+L27dsiIiJC9OvXT5iamqol2FLL635/++23Ys+ePeKff/4RV65cEZMmTRIAxK5du5RliuLxztKrVy9Rr169HLdp6Mc7KSlJeW0GIJYuXSoiIiKUI2elPLeLbHLk7+8vAGT7OXHihLIMALFhwwbl75mZmWLmzJnCxcVFWFhYiI8++ihbNv769WsxfPhw4eDgIKysrET79u1FdHS0nvbq/eLj40XPnj2Fra2tsLW1FT179sw2xPXt/RZCiKCgIGFlZZXjXDbR0dHio48+Eg4ODsLc3FyUK1dOjBw5MtucQFLK634nJycLPz8/4eTkJMzMzETp0qWFv79/tmNZ1I733bt3czwvVM8NQzzeq1atEl5eXsLc3Fx88MEHai1Y/v7+okmTJmrlT548KWrXri3Mzc2Ft7d3jkn/zz//LCpWrCjMzMxEpUqV1C6mhiIv+92kSZMcj6u/v7+yzOjRo0Xp0qWFubm5cHJyEn5+fiIsLEyPe6SZvOz3okWLRLly5YSlpaUoUaKE+L//+z9x4MCBbNssasdbCEXrtpWVlVi3bl2O2zP0453V6pXbZ1bKc1smxL+9mYiIiIio6D4+hIiIiCg/mBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERcrs2bNRvXp12NjYwNnZGUOGDEFaWprUYRFRIWIqdQBERNoihEBGRgaCgoLg7u6Oa9euoU+fPqhRowaGDBkidXhEVEjwwbNEVKT16NEDTk5OWL58udShEFEhwdtqRFRk3Lt3D8OHD0e1atVQokQJFCtWDD/99BM8PDykDo2IChEmR0RUJMTFxaFu3bqIi4vD0qVLcfbsWYSHh0Mul6NWrVpSh0dEhQj7HBFRkXDw4EGkp6dj27ZtkMlkAIBVq1YhNTWVyRER5QmTIyIqEhwcHJCYmIj9+/ejSpUq+OWXX7BgwQK4u7vDyclJ6vCIqBBhh2wiKhKEEBgyZAi2bt0KKysr9OrVC2/evMG9e/fw66+/Sh0eERUiTI6IiIiIVLBDNhEREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpOL/AQ4X17t07BZyAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABt40lEQVR4nO3dd1QUVxsG8GdZOgKKIF1QsfdgrJ+xBns0GkuwoLFhL9FYo2LXGGOJNYIlsSX2xIqxB6JG0VjQ2BUVEVRAUer9/tiw2RXQBXZ3Fvb5ncNZGe7MfWdnZ+f1zr13ZEIIASIiIiICAJhIHQARERGRIWFyRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckQF2qNHjzBt2jRcuHAhy9969+6NIkWK5HnbKSkpCAwMhKurK+RyOWrUqJH3QLVg+fLlWLduXZbld+/ehUwmy/ZvhYlMJsO0adOkDkMrpk2bBplMpvN1ly5dCh8fH5ibm0Mmk+HFixfo3bs3vL291crNnj0bu3btylM87/Ls2TN069YNJUqUgEwmQ4cOHXK9DW9vb/Tu3VvrsRmSzHM4u58tW7ZIHZ5RMpU6AKL8ePToEYKCguDt7a315GXFihVYtWoVli5dCl9f33wlWtqwfPlyODo6ZrlQuLq6Ijw8HGXKlJEmMMq1fv36oWXLljqt48KFCxg+fDj69euHgIAAmJqawtbWFl9//TVGjBihVnb27Nn47LPP8pS8vMuMGTOwc+dOhISEoEyZMnBwcNDq9gubYcOGwd/fX21Z2bJlJYrGuDE5IsrB5cuXYWVlhaFDh0odyjtZWFigbt26UodBueDh4QEPDw+d1nHlyhUAQP/+/VG7dm3lcn0m0ZcvX0aZMmXQvXt3vdWpLUlJSbC2ttZrnSVLluS5bCB4W42Unj59igEDBsDT0xMWFhZwcnJCgwYNcPjwYWWZxo0bo0qVKggPD0f9+vVhZWUFb29vrF27FgCwd+9efPDBB7C2tkbVqlVx4MCBLPWcOnUKzZo1g62tLaytrVG/fn3s3bs3S7nLly+jffv2KFasGCwtLVGjRg2sX79e+fdjx47hww8/BAD06dNH2Qz99q2XmzdvonXr1ihSpAg8PT3x5ZdfIjk5+Z3vhUwmw5o1a/D69WvldtetW/fOW1hv1515++PKlSv4/PPPYW9vD2dnZ3zxxReIj49XWzcjIwNLly5FjRo1YGVlhaJFi6Ju3brYs2cPAMWthStXruD48ePKeDJvjeQUkybv87p16yCTyXD06FEMGjQIjo6OKF68ODp27IhHjx698z16F29vb7Rt2xY7d+5EtWrVYGlpidKlS2PJkiVZyt6/fx89evRAiRIlYGFhgYoVK+Lbb79FRkZGjtu/e/cuTE1NMWfOnCx/O3HiBGQyGX755RcAuTsOb968wYQJE1CqVCmYm5vD3d0dQ4YMwYsXL7Ldv99++w01a9aElZUVKlasiN9++w2A4n2tWLEibGxsULt2bfz1119q62d3a2zr1q3w8/ODq6urcnvjx4/Hq1evcn6jc9C4cWP06NEDAFCnTh3IZDJli+Pbt9VkMhlevXqF9evXKz9bjRs3fuf2nz17hsGDB8Pd3R3m5uYoXbo0Jk2apDyvMj+Thw8fRmRkpHK7x44dy3Gbqamp+Oqrr+Di4gJra2v873//w5kzZ7ItGx0djYEDB8LDwwPm5uYoVaoUgoKCkJaWplYuKioKn332GWxtbVG0aFF0794dZ8+ezXK+ZN6Cv3TpEvz8/GBra4tmzZoBUNxenzlzJipUqKD8XuzTpw+ePn2aJa6tW7eiXr16sLGxQZEiRdCiRQtERES8870kAyWI/tWiRQvh5OQkVq9eLY4dOyZ27dolpkyZIrZs2aIs06hRI1G8eHFRvnx5ERwcLA4ePCjatm0rAIigoCBRtWpVsXnzZrFv3z5Rt25dYWFhIR4+fKhc/9ixY8LMzEz4+vqKrVu3il27dgk/Pz8hk8nU6rl27ZqwtbUVZcqUERs2bBB79+4Vn3/+uQAg5s2bJ4QQIj4+Xqxdu1YAEJMnTxbh4eEiPDxcPHjwQAghREBAgDA3NxcVK1YUCxYsEIcPHxZTpkwRMplMBAUFvfO9CA8PF61btxZWVlbK7cbExIg7d+4IAGLt2rVZ1gEgpk6dqvx96tSpAoAoX768mDJliggNDRULFy4UFhYWok+fPmrr9uzZU8hkMtGvXz+xe/dusX//fjFr1iyxePFiIYQQ58+fF6VLlxY1a9ZUxnP+/HkhhMg2Jk3f58z3r3Tp0mLYsGHi4MGDYs2aNaJYsWKiSZMmajFmls1u39/m5eUl3N3dRcmSJUVISIjYt2+f6N69uwAgvvnmG2W5mJgY4e7uLpycnMTKlSvFgQMHxNChQwUAMWjQoHe+v59++qkoWbKkSEtLUyvXuXNn4ebmJlJTU3N1HDIyMkSLFi2Eqamp+Prrr8WhQ4fEggULhI2NjahZs6Z48+aN2v55eHiIKlWqKD/vderUEWZmZmLKlCmiQYMGYseOHWLnzp2iXLlywtnZWSQlJSnXz4xJ1YwZM8R3330n9u7dK44dOyZWrlwpSpUqleU4ZLfu265cuSImT56sPF7h4eHi5s2bQgjFeeHl5aUsGx4eLqysrETr1q2Vn60rV67kuO3Xr1+LatWqCRsbG7FgwQJx6NAh8fXXXwtTU1PRunVrIYQQb968EeHh4aJmzZqidOnSyu3Gx8fnuN2AgAAhk8nE2LFjxaFDh8TChQuFu7u7sLOzEwEBAcpyjx8/Fp6ensLLy0usWrVKHD58WMyYMUNYWFiI3r17K8u9fPlS+Pj4CAcHB7Fs2TJx8OBBMWrUKFGqVKksn+OAgABhZmYmvL29xZw5c8Tvv/8uDh48KNLT00XLli2FjY2NCAoKEqGhoWLNmjXC3d1dVKpUSe2Yzpo1S8hkMvHFF1+I3377TezYsUPUq1dP2NjYvPP9FOK/c7h48eLCzMxMWFlZiQYNGojdu3e/cz3SHSZHpFSkSBExcuTId5Zp1KiRACD++usv5bK4uDghl8uFlZWVWiJ04cIFAUAsWbJEuaxu3bqiRIkSIjExUbksLS1NVKlSRXh4eIiMjAwhhBDdunUTFhYW4v79+2r1t2rVSlhbW4sXL14IIYQ4e/ZsjhfsgIAAAUD8/PPPastbt24typcv/553Q7G+jY2N2rK8JEfz589XKzd48GBhaWmp3NcTJ04IAGLSpEnvjKdy5cqiUaNGWZZnF5Om73NmwjN48GC1bc6fP18AEI8fP1YuW79+vZDL5WL9+vXvjFMIRfIgk8nEhQsX1JZ//PHHws7OTrx69UoIIcT48eMFAHH69Gm1coMGDRIymUxcv35duezt9/fo0aMCgNi5c6dy2cOHD4Wpqala8qvpcThw4EC25bZu3SoAiNWrV6vtn5WVlYiKilIuy/y8u7q6KvdPCCF27dolAIg9e/ZkiSknGRkZIjU1VRw/flwAEBcvXtR43UyZx/bs2bNqy99OjoQQwsbGRi0BeZeVK1dme17NmzdPABCHDh1SLmvUqJGoXLnye7cZGRkpAIhRo0apLd+4caMAoBbbwIEDRZEiRcS9e/fUyi5YsEAAUCYiy5YtEwDE/v371coNHDgw2+QIgAgJCVEru3nzZgFAbN++XW155vfO8uXLhRBC3L9/X5iamophw4aplUtMTBQuLi6iS5cu79z/R48eif79+4uff/5ZnDx5UmzcuFHUrVtXABA//PDDO9cl3eBtNVKqXbs21q1bh5kzZ+LPP/9EampqtuVcXV3h6+ur/N3BwQElSpRAjRo14ObmplxesWJFAMC9e/cAAK9evcLp06fx2WefqXVulsvl6NmzJ6KionD9+nUAwJEjR9CsWTN4enqq1d27d28kJSUhPDxco32SyWRo166d2rJq1aopY9KHTz75JEv9b968QUxMDABg//79AIAhQ4Zopb7cvM/vihGA2vvUq1cvpKWloVevXhrFUblyZVSvXl1tmb+/PxISEnD+/HkAiuNcqVIltT4xgOI4CyFw5MiRHLffuHFjVK9eHcuWLVMuW7lyJWQyGQYMGJCl/PuOQ2Zdb3d479y5M2xsbPD777+rLa9Rowbc3d2Vv2d+3hs3bqzWV+Xt8yAnt2/fhr+/P1xcXCCXy2FmZoZGjRoBACIjI9+5rj4dOXIENjY2+Oyzz9SWZ75vb79Pmjh69CgAZOmb1KVLF5iaqneN/e2339CkSRO4ubkhLS1N+dOqVSsAwPHjx5Wvtra2WTq+f/755znG0alTpyx1FS1aFO3atVOrq0aNGnBxcVHeJjx48KDy3FAtZ2lpiUaNGr3zdiKg+E5dvXo1OnfujP/973/w9/fHiRMnULNmTYwfPz7L7ULSPSZHpLR161YEBARgzZo1qFevHhwcHNCrVy9ER0erlctuxIm5uXmW5ebm5gAU/TgA4Pnz5xBCwNXVNcv6mUlVXFyc8lWTcu9jbW0NS0tLtWUWFhbKmPShePHiWeoHgNevXwNQ9PWSy+VwcXHRSn25eZ81jTEvstufzGXaOs7Dhw/H77//juvXryM1NRU//PADPvvss2zrft8+xsXFwdTUFE5OTmrlZDIZXFxcssSS0+f9fedBdl6+fImGDRvi9OnTmDlzJo4dO4azZ89ix44dajEagri4OLi4uGTpM1WiRAmYmppqfG6+vU0g62fG1NQ0y3F78uQJfv31V5iZman9VK5cGQAQGxur3Kazs3OWurJbBii+K+zs7LLU9eLFC5ibm2epLzo6WlnXkydPAAAffvhhlnJbt25VlssNMzMzdO3aFXFxcbhx40au16f84Wg1UnJ0dMSiRYuwaNEi3L9/H3v27MH48eMRExOTbcfq3CpWrBhMTEzw+PHjLH/L7Pzr6OgIQHEh06ScvmUmWm936M7LBSGTk5MT0tPTER0dnW2ikFu5eZ916e2kWnVZ5gUvv8fZ398f48aNw7Jly1C3bl1ER0fnuQWuePHiSEtLw9OnT9USJCEEoqOjlZ3/deHIkSN49OgRjh07pmwtApClI7ghKF68OE6fPg0hhFqCFBMTg7S0tDx9tjI/D9HR0WqtcWlpaVnOLUdHR1SrVg2zZs3KdluZiXXx4sWz7dCd3ecSQLZzR2UOUMjp+8/W1lZZDgC2bdsGLy+vbMvmhRACAGBiwnYMfeM7TtkqWbIkhg4dio8//lh5CyS/bGxsUKdOHezYsUPtf8IZGRn46aef4OHhgXLlygEAmjVrprxgqNqwYQOsra2Vw1210cKRG87OzrC0tMTff/+ttnz37t153mbm7YAVK1a8s5yFhYVG+5mb91mXrly5gosXL6ot27RpE2xtbfHBBx8AUBznq1evZvmMbdiwATKZDE2aNHlnHZaWlhgwYADWr1+PhQsXokaNGmjQoEGe4s0cnfTTTz+pLd++fTtevXql/LsuZF6YMz/PmVatWqWzOlVp+tkCFO/Ty5cvs0wauWHDBuXfcytzdNzGjRvVlv/8889Zbim1bdtWOUVArVq1svxkJkeNGjVCYmKi8rZ1ptxMqti2bVvExcUhPT0927rKly8PAGjRogVMTU1x69atbMvVqlUrt28JUlNTsXXrVjg6OsLHxyfX61P+sOWIAADx8fFo0qQJ/P39UaFCBdja2uLs2bM4cOAAOnbsqLV65syZg48//hhNmjTBmDFjYG5ujuXLl+Py5cvYvHmz8iIxdepUZd+CKVOmwMHBARs3bsTevXsxf/582NvbA1DM2WJlZYWNGzeiYsWKKFKkCNzc3NT6PmmTTCZDjx49lJPaVa9eHWfOnMGmTZvyvM2GDRuiZ8+emDlzJp48eYK2bdvCwsICERERsLa2xrBhwwAAVatWxZYtW7B161aULl0alpaWqFq1arbb1PR9zo0NGzbgiy++QEhIiEb9jtzc3PDJJ59g2rRpcHV1xU8//YTQ0FDMmzdP2Sdn1KhR2LBhA9q0aYPp06fDy8sLe/fuxfLlyzFo0CCNkrjBgwdj/vz5OHfuHNasWZPr/cr08ccfo0WLFhg3bhwSEhLQoEED/P3335g6dSpq1qyJnj175nnb71O/fn0UK1YMgYGBmDp1KszMzLBx48YsyaWuVK1aFceOHcOvv/4KV1dX2NraKi/8b+vVqxeWLVuGgIAA3L17F1WrVsWpU6cwe/ZstG7dGs2bN891/RUrVkSPHj2waNEimJmZoXnz5rh8+TIWLFiQ5VbX9OnTERoaivr162P48OEoX7483rx5g7t372Lfvn1YuXIlPDw8EBAQgO+++w49evTAzJkz4ePjg/379+PgwYMANGuN6datGzZu3IjWrVtjxIgRqF27NszMzBAVFYWjR4+iffv2+PTTT+Ht7Y3p06dj0qRJuH37Nlq2bIlixYrhyZMnOHPmDGxsbBAUFJRjPaNHj0ZqaioaNGgAFxcXPHjwAEuXLsWFCxewdu1ayOXyXL+nlE9S9gYnw/HmzRsRGBgoqlWrJuzs7ISVlZUoX768mDp1qtrIm5xGn3h5eYk2bdpkWQ5ADBkyRG3ZyZMnRdOmTYWNjY2wsrISdevWFb/++muWdS9duiTatWsn7O3thbm5uahevXq2o8Q2b94sKlSoIMzMzNRGNGU32kwIzUf75LR+fHy86Nevn3B2dhY2NjaiXbt24u7duzmOVnv69Kna+pmjiO7cuaNclp6eLr777jtRpUoVYW5uLuzt7UW9evXU3pe7d+8KPz8/YWtrKwAoRxzlNIJOk/c5pxFNmSPBjh49mqWspkP527RpI7Zt2yYqV64szM3Nhbe3t1i4cGGWsvfu3RP+/v7KYczly5cX33zzjUhPT1cr9/b7q6px48bCwcFBbWh1ptwch9evX4tx48YJLy8vYWZmJlxdXcWgQYPE8+fPs92/t2X3ec88PqpTGGT3GQwLCxP16tUT1tbWwsnJSfTr10+cP38+y3uui9FqFy5cEA0aNBDW1tYCQLajIlXFxcWJwMBA4erqKkxNTYWXl5eYMGGC2nQHQmg+Wk0IIZKTk8WXX34pSpQoISwtLUXdunVFeHi48PLyyjKS7unTp2L48OGiVKlSwszMTDg4OAhfX18xadIk8fLlS2W5+/fvi44dO4oiRYoIW1tb0alTJ7Fv3z4BQG2YfE7nuhBCpKamigULFojq1asLS0tLUaRIEVGhQgUxcOBAcePGDbWyu3btEk2aNBF2dnbCwsJCeHl5ic8++0wcPnz4nfseHBwsateuLRwcHISpqakoVqyYaNGihTh48KBG7x1pn0yIf29qEhFpibe3N6pUqaKcFFGXYmJi4OXlhWHDhmH+/Pk6r48KttmzZ2Py5Mm4f/++zmcpp4KLt9WIqECKiorC7du38c0338DExCTL88KIvv/+ewBAhQoVkJqaiiNHjmDJkiXo0aMHEyN6JyZHRFQgrVmzBtOnT4e3tzc2btyoNsqJCFAMz//uu+9w9+5dJCcno2TJkhg3bhwmT54sdWhk4HhbjYiIiEiF5EP5T5w4gXbt2sHNzQ0ymSzL8NDsHD9+HL6+vsqHWa5cuVL3gRIREZFRkDw5evXqFapXr668N/w+d+7cQevWrdGwYUNERERg4sSJGD58OLZv367jSImIiMgYGNRtNZlMhp07d6JDhw45lhk3bhz27Nmj9qyhwMBAXLx4UePnbRERERHlpMB1yA4PD4efn5/ashYtWiA4OBipqakwMzPLsk5ycrLa4x4yMjLw7NkzFC9ePE+T4REREZH+CSGQmJgINzc3nT5WpcAlR9HR0VkeHOjs7Iy0tDTExsZm+2yqOXPmvHN2UiIiIio4Hjx4oNPpGApccgRkfUBg5p3BnFqBJkyYgNGjRyt/j4+PR8mSJfHgwYMsU9MTUQHy8CFw6xZQpgzwrqH8mpYjIoOWkJAAT09P5UN/daXAJUcuLi5ZnqocExMDU1NT5ZOd32ZhYZHlgY4AYGdnx+SIqKAKDgYGDAAyMgATE2D1aqBv37yXI6ICQ9ddYiQfrZZb9erVQ2hoqNqyQ4cOoVatWtn2NyKiQigq6r+EB1C8DhyoWJ6XckREKiRPjl6+fIkLFy7gwoULABRD9S9cuID79+8DUNwSU30CeGBgIO7du4fRo0cjMjISISEhCA4OxpgxY6QIn4ikcOPGfwlPpvR04ObNvJUjIlIh+W21v/76C02aNFH+ntk3KCAgAOvWrcPjx4+ViRIAlCpVCvv27cOoUaOwbNkyuLm5YcmSJejUqZPeYyciiZQtq7hFppr4yOWAj0/eyhERqTCoeY70JSEhAfb29oiPj2efI6KCKjhYcYssPV2R8KxalXOfI03KEZHB09f1m8kRkyOigisqSnGLzMcHeNewXk3LEZFB09f1W/LbakREeebhoVmyo2k5IiIYQIdsIiIiIkPC5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiwxMVBRw9qng1prqJyCAwOSIiwxIcDHh5AU2bKl6Dg42jbiIyGDIhhJA6CH1LSEiAvb094uPjYWdnJ3U4RJQpKkqRlGRk/LdMLgfu3gU8PApv3USkEX1dv9lyRESG48YN9eQEANLTgZs3C3fdRGRQmBwRkeEoWxYweetrSS4HfHwKd91EZFCYHBGR4fDwAFavViQlgOJ11Sr93NaSsm4iMijsc8Q+R0SGJypKcTvLx0f/yYmUdRPRO+nr+m2qsy0TEeWVh4d0iYmUdRORQeBtNSIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFQaRHC1fvhylSpWCpaUlfH19cfLkyXeW37hxI6pXrw5ra2u4urqiT58+iIuL01O0REREVJhJnhxt3boVI0eOxKRJkxAREYGGDRuiVatWuH//frblT506hV69eqFv3764cuUKfvnlF5w9exb9+vXTc+RERERUGEmeHC1cuBB9+/ZFv379ULFiRSxatAienp5YsWJFtuX//PNPeHt7Y/jw4ShVqhT+97//YeDAgfjrr7/0HDkREREVRpImRykpKTh37hz8/PzUlvv5+SEsLCzbderXr4+oqCjs27cPQgg8efIE27ZtQ5s2bXKsJzk5GQkJCWo/RCSBqCjg6FHFa0FXmPaFiNRImhzFxsYiPT0dzs7OasudnZ0RHR2d7Tr169fHxo0b0bVrV5ibm8PFxQVFixbF0qVLc6xnzpw5sLe3V/54enpqdT+ISAPBwYCXF9C0qeI1OFjqiPKuMO0LEWUh+W01AJDJZGq/CyGyLMt09epVDB8+HFOmTMG5c+dw4MAB3LlzB4GBgTluf8KECYiPj1f+PHjwQKvxE9F7REUBAwYAGRmK3zMygIEDC2arS2HaFyLKlqmUlTs6OkIul2dpJYqJicnSmpRpzpw5aNCgAcaOHQsAqFatGmxsbNCwYUPMnDkTrq6uWdaxsLCAhYWF9neAiDRz48Z/yUSm9HTg5k3Aw0OamPKqMO0LEWVL0pYjc3Nz+Pr6IjQ0VG15aGgo6tevn+06SUlJMDFRD1sulwNQtDgRkQEqWxZ467yFXA74+EgTT34Upn0homxJfltt9OjRWLNmDUJCQhAZGYlRo0bh/v37yttkEyZMQK9evZTl27Vrhx07dmDFihW4ffs2/vjjDwwfPhy1a9eGm5ubVLtBRO/i4QGsXq1IIgDF66pVBbOlpTDtCxFlS9LbagDQtWtXxMXFYfr06Xj8+DGqVKmCffv2wcvLCwDw+PFjtTmPevfujcTERHz//ff48ssvUbRoUTRt2hTz5s2TaheISBN9+wItWihuP/n4FOxkojDtCxFlIRNGeC8qISEB9vb2iI+Ph52dndThEBERkQb0df2W/LYaERERkSFhckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRET5FxUFHD2qeCV1fG+IChxTqQMgogIuOBgYMADIyABMTIDVq4G+ffVWvRACCQkJiImJwdOnT5GamoqMjAwAgK2tLYoXLw5HR0fY2trqLSYlid8bIsobmRBCSB2EviUkJMDe3h7x8fGws7OTOhyigisqCvDyUlz8M8nlwN27gIeH1qtLSUnBX3/9hVOnTuHSpUu4evUqrl27hqSkpPeuW7x4cZQvXx7ly5dHrVq10KBBA1SpUgVyuVzrcQLQ+3tDZAz0df1myxER5d2NG+oXfwBITwdu3tRaAhAVFYWdO3di9+7d+OOPP/DmzZtsyxUpUgSOjo6wtLSETCYDoPgijYuLw5s3bxAXF4ewsDCEhYVh7dq1AAA7Ozv4+fmhffv2aNOmDYoVK6aVmAHo5b0hIt1gckREeVe2rOJ20dutIz4++drsy5cvsXXrVgQHByM8PFztb05OTmjYsCF8fX1RuXJlVKxYER4eHrC2ts5xe4mJibh16xauX7+OK1euIDw8HH/++ScSEhKwbds2bNu2DXK5HG3atEHfvn3RunVrmJrm8+tRR+8NEekeb6vxthpR/gQHAwMHKlpF5HJg1ao896u5desWFi5ciB9//BGJiYkAAJlMhvr166Njx45o2bIlKlasqGwZyo+0tDScP38ee/bswe7du3H58mXl31xcXDB48GAMGTIEDg4Oea9Ei+8NEenv+s3kiMkRUf5FRSluF/n45OmW0ZUrVzBnzhxs3rxZ2Zm6TJkyGDBgAHr06AE3NzdtR5xFZGQkQkJCsH79ejx9+hQAYGNjg/79++Orr76Cq6tr3jacz/eGiP7D5EiHmBwRGYaoqCh8/fXXWL9+PTK/ilq2bIkxY8agSZMmMDHR/2wjKSkp2LZtG+bPn4+LFy8CAKytrTF69GiMHTuW3xlEEtLX9ZvzHBGR3r1+/RpTpkxBuXLlsG7dOggh0LFjR5w7dw779+9Hs2bNJEmMAMDc3Bz+/v6IiIjAwYMHUa9ePSQlJWHmzJnw8fHBmjVrlK1bRFQ4MTkiIr36/fffUbVqVcyYMQOvX79Gw4YNcfr0aWzfvh0ffPCB1OEpyWQy+Pn54Y8//sCOHTtQrlw5PH36FP3798dHH32ES5cuSR0iEekIkyMi0otnz57hiy++QPPmzXHr1i24u7tj+/btOH78OGrXri11eDmSyWT49NNPcfnyZSxcuBA2Njb4448/8MEHH2DatGlIS0uTOkQi0jImR0Skc8ePH0e1atWwdu1ayGQyDBkyBFevXkXHjh21MvJMH8zMzDBq1ChERkaiQ4cOSEtLQ1BQEBo0aIAbN25IHR4RaRGTIyLSmbS0NEyZMgVNmjTBw4cPUa5cOZw6dQrff/99ge3Y7OnpiZ07d2Ljxo2wt7fHmTNnUKNGDaxZswZGOL6FqFBickREOvHo0SM0btwYM2bMgBACX3zxBc6dO4f69etLHZpW+Pv74++//0aTJk2QlJSE/v37o1+/fjnO4E1EBQeTIyLSutOnT6NWrVr4448/YGdnhy1btiA4OBhFihSROjStKlmyJA4fPow5c+bAxMQEISEh+N///od79+5JHRoR5QOTIyLSqnXr1uGjjz7C48ePUblyZZw7dw5du3aVOiydMTExwfjx43Hw4EEUL14c586dg6+vL44fPy51aESUR0yOiEgrMjIyMHbsWPTp0wcpKSno0KEDwsPD4WMkzxJr3ry5MjGKi4uDn58fNm3aJHVYRJQHTI6IKN9SUlLQs2dPLFiwAAAwdepUbN++Hba2thJHpl9eXl44efIkOnXqhJSUFHTv3h2zZ89mR22iAobJERHlS0JCAtq0aYNNmzbB1NQUGzZswLRp0ySb4VpqVlZW+Pnnn/Hll18CACZNmoTAwECkp6dLHBkRaco4v72ISCtiY2PRpEkTHD58GDY2Nti7dy969uwpdViSMzExwYIFC7B06VKYmJhg9erV6NmzJ1JTU6UOjYg0wOSIiPIkJiYGTZo0wfnz51GiRAkcP34cfn5+UodlUIYOHYotW7bA1NQUmzdvRufOnZGcnCx1WET0HkyOiCjXHj9+jMaNG+Py5ctwc3PDiRMn4OvrK3VYBqlz587YuXMnLCwssHv3bnzyySdISkqSOiwiegeDSI6WL1+OUqVKwdLSEr6+vjh58uQ7yycnJ2PSpEnw8vKChYUFypQpg5CQED1FS2TcHj58iMaNGyMyMhKenp44fvw4ypcvL3VYBq1t27bYu3cvbGxscOjQIXz66aecLJLIgEmeHG3duhUjR47EpEmTEBERgYYNG6JVq1a4f/9+jut06dIFv//+O4KDg3H9+nVs3rwZFSpU0GPURMbp6dOnaN68Of755x94eXnh+PHjRjNUP7+aNWuGgwcPKhOkLl26sA8SkYGSCYnHmNapUwcffPABVqxYoVxWsWJFdOjQAXPmzMlS/sCBA+jWrRtu374NBweHPNWZkJAAe3t7xMfHF9jnOxHpW3x8PJo0aYKIiAh4enri5MmT8PLykjqsAufo0aNo3bo13rx5g86dOytH+RHR++nr+i1py1FKSgrOnTuXpROnn58fwsLCsl1nz549qFWrFubPnw93d3eUK1cOY8aMwevXr3OsJzk5GQkJCWo/RKS5pKQktG3bFhEREXByckJoaCgTozxq0qQJdu7cCXNzc/zyyy/o27cv50EiMjCSJkexsbFIT0+Hs7Oz2nJnZ2dER0dnu87t27dx6tQpXL58GTt37sSiRYuwbds2DBkyJMd65syZA3t7e+WPp6enVveDqDBLSUlBp06dcOrUKdjb2+PQoUPsY5RPLVu2xM8//wy5XI4NGzZg4sSJUodERCok73MEADKZTO13IUSWZZkyMjIgk8mwceNG1K5dG61bt8bChQuxbt26HFuPJkyYgPj4eOXPgwcPtL4PRIWREAJ9+vTBgQMHYG1tjb1796JGjRpSh1UotG/fHmvWrAEAzJ07F99//73EERFRJkmTI0dHR8jl8iytRDExMVlakzK5urrC3d0d9vb2ymUVK1aEEAJRUVHZrmNhYQE7Ozu1HyJ6vylTpij7xOzYsQMNGjSQOqRCpXfv3pg5cyYAYPjw4dixY4fEERERIHFyZG5uDl9fX4SGhqotDw0NRf369bNdp0GDBnj06BFevnypXPbPP//AxMQEHh4eOo2XyJisXbtWeeFetWoVWrRoIXFEhdPEiRMRGBgIIQT8/f3fO5UJEeme5LfVRo8ejTVr1iAkJASRkZEYNWoU7t+/j8DAQACKW2K9evVSlvf390fx4sXRp08fXL16FSdOnMDYsWPxxRdfwMrKSqrdICpUDh8+jAEDBgBQPBvsiy++kDiiwksmk+H7779H+/btkZycjA4dOuDWrVtSh0Vk1CRPjrp27YpFixZh+vTpqFGjBk6cOIF9+/YpR8I8fvxYbc6jIkWKIDQ0FC9evECtWrXQvXt3tGvXDkuWLJFqF4gKlatXr6JTp05IS0vD559/jhkzZkgdUqEnl8uxadMmfPjhh3j27Bk++eQTjqolkpDk8xxJgfMcEWXv+fPn+PDDD3Hr1i00bNgQoaGhsLCwkDoso/Ho0SN8+OGHePToEdq0aYPdu3dDLpdLHRaRwTCKeY6IyHCkp6ejW7duuHXrFry9vbFjxw4mRnrm5uaG3bt3w9LSEnv37uUQfyKJMDkiIgCKjsGHDh2ClZUVdu3aBUdHR6lDMkq1atXC2rVrAQDz58/Hjz/+KHFERMaHyRERYcuWLZg/fz4AxSi16tWrSxyRcevWrRsmTZoEABgwYAAuXLggbUBERobJEZGRu3jxonI02rhx49C1a1eJIyIAmD59Otq0aYM3b96gU6dOePHihdQhERkNJkdERiwhIQGfffYZXr9+jRYtWmDWrFlSh0T/MjExwYYNG+Dt7Y3bt28jICAAGRkZUodFZBSYHBEZKSEEBgwYgJs3b6JkyZLYtGkTR0YZGAcHB2zbtg3m5ubYs2cPvvnmG6lDIjIKTI6IjNSqVauwdetWmJqaYsuWLXBwcJA6JMqGr68vli5dCkDRaf7o0aMSR0RU+DE5IjJCERERGDlyJADFQ0/r1asnbUD0Tv3791feVvP398fTp0+lDomoUGNyRGRkEhIS0KVLFyQnJ6Ndu3YYPXq01CHRe8hkMixfvhyVKlVCdHQ0+vTpAyOcv5dIb5gcERmRt/sZrVu3DjKZTOqwSAPW1tbYvHkzLCwssHfvXuWtNiLSPiZHREbkxx9/ZD+jAqxatWpYsGABAGDs2LG4ePGixBERFU5MjoiMxJ07dzB06FAAQFBQkGb9jKKigKNHFa+kWxq+10OGDEG7du2QkpKCbt26ISkpSU8BEhkPJkdERiA9PR09e/ZEYmIiGjRogHHjxr1/peBgwMsLaNpU8RocrPtAjVUu3muZTIaQkBC4urri2rVrGDVqlB4DJTIOMmGEvfr09VRfIkMxe/ZsTJo0Cba2trh48SJKlSr17hWiohQXadVJB+Vy4O5dwMNDp7EanTy+17///js+/vhjCCGwa9cutG/fXvexEklMX9dvthwRFXJ//fUXpk6dCgD4/vvv358YAcCNG+oXawBITwdu3tRBhEYuj+91s2bNMGbMGACK56/FxsbqKkIio8PkiKgQe/XqFbp37460tDR07twZPXv21GzFsmUBk7e+HuRywMdH+0Eau3y819OnT0flypURExODQYMGcXg/kZYwOSIqxCZMmIB//vkH7u7uWLlypebD9j08gNWrFRdpQPG6ahVvqelCPt5rS0tLbNiwAaampti2bRu2bNmi42CJjAP7HLHPERVSJ06cQKNGjQAABw8ehJ+fX+43EhWluL3j48PESNfy8V5Pnz4dU6dORbFixXD58mW4ubnpKEgiaenr+s3kiMkRFUJJSUmoVq0abt26hX79+uGHH36QOiTSodTUVNSrVw/nzp1D69at8dtvv3FyTyqU2CGbiPJs8uTJuHXrFjw8PJSTBlLhZWZmhvXr18PCwgL79u1DSEiI1CERFWhMjogKmbCwMCxatAgAsHr1atjb20sbEOlF5cqVMXPmTADA6NGj8ejRI4kjIiq4mBwRFSKvX7/GF198ASEEevfujVatWkkdEunRqFGjULt2bSQkJGDIkCEcvUaUR0yOiAqRqVOn4vr163B1dcXChQulDof0TC6XY82aNTA1NcWuXbuwY8cOqUMiKpCYHBEVEmfOnMG3334LAFi1ahWKFSsmcUQkhapVq2L8+PEAgKFDh+L58+cSR0RU8DA5IioE0tLSMGDAAGRkZKB79+5o166d1CGRhCZPnowKFSogOjoaY8eOlTocogKHyRFRIbB48WJcvHgRDg4O+O6776QOhyRmYWGhnL4hODgYR44ckTgiooIlX8lRTEwMoqOjtRULEeXBvXv3MGXKFADAggUL4OTkJHFEZAj+97//YfDgwQAUz15LSkqSOCKigiNPydHff/+NypUrw9XVFe7u7nB3d8fkyZPx6tUrbcdHRO8ghMCQIUOQlJSEjz76CL1795Y6JDIgc+bMgYeHB27duoWgoCCpwyEqMPKUHPXt2xfOzs44deoUIiIiMHPmTOzfvx+1atVi5z8iPdqxYwf27t0LMzMzrFq1irMikxo7OzssX74cALBw4UJcuXJF4oiICoY8PT7ExsYG586dQ4UKFZTLhBDo3LkzLC0t8dNPP2k1SG3j40OoMIiPj0fFihXx+PFjTJkyhS0DlKNPP/0Uu3btwkcffYRjx44xiaYCy6AfH5JdC5FMJsPs2bOxe/durQRGRO82efJkPH78GGXLlsWECROkDocM2KJFi2BtbY0TJ04Y/H9eiQyBxslRmzZtMHHiRPz8888IDAzEqFGj8OTJE7Uy8fHxnFuFSA/OnDmDZcuWAQBWrFgBS0tLiSMiQ+bl5aXstD9mzBh2fyB6D1NNC1atWhXnz5/H2rVrlUlR6dKl0aVLF9SoUQPp6elYu3YthxET6VhGRoby0RA9evRAs2bNpA6JCoBRo0Zh/fr1iIyMxOTJk5XJNRFllac+R0+ePEFERAQuXLig/Ll58ybkcjnKly+Pv//+Wxexag37HFFBtmbNGvTv3x+2trb4559/4OLiInVIVEAcO3YMTZo0gUwmw5kzZ1CrVi2pQyLKFX1dv/OUHGXn9evXuHjxIi5evIiBAwdqY5M6w+SICqrnz5+jXLlyiI2NxcKFCzFq1CipQ6ICpmfPnvjpp59Qq1Yt/Pnnn5DL5VKHRKSxApccFSRMjqigGjZsGL7//ntUqlQJFy5cgJmZmdQhUQETHR2NChUqID4+HsuXL8egQYOkDolIYwY9Wo2I9O/ixYvKOWuWLl3KxIjyxMXFBTNnzgSgGPH47NkziSMiMjxMjogKACEEhg4dioyMDHTp0gVNmzaVOiQqwAIDA1G1alU8e/YMU6dOlTocIoPD5IioANi0aRNOnToFa2trLFiwQOpwqIAzNTXF4sWLASimgrh8+bLEEREZFiZHRAYuISEBY8aMAQBMmjQJnp6eEkdEhUGTJk3QqVMnpKenY8SIETDC7qdEOWJyRGTgZsyYgejoaPj4+ODLL7+UOhwqRL755htYWFjgyJEj2LVrl9ThEBkMJkdEBuzGjRvK2x+LFi2ChYWFxBFRYVKqVCmMHTsWAPDll1/izZs3EkdEZBiYHBEZsHHjxiE1NRUtW7ZEmzZtpA6HCqHx48fD3d0dd+7cwcKFC6UOh8ggMDkiMlDHjh3Dzp07IZfL2QmbdMbGxgbz5s0DAMyePRsPHz6UOCIi6TE5IjJA6enpGD16NABgwIABqFy5ssQRUWHm7++P+vXr49WrVxg/frzU4RBJjskRkQH68ccfERERATs7OwQFBUkdDhVyMpkMixcvhkwmw08//YTTp09LHRKRpJgcERmYly9fYuLEiQAUMxg7OTlJHBEZg1q1aiEgIAAAMGbMGA7tJ6PG5IjIwMyfPx+PHz9G6dKlMXz4cKnDISMyY8YMWFlZ4dSpUxzaT0aNyRGRAXnw4IGy8/X8+fN1N3Q/Kgo4elTxSgWLDo+dh4eHci6tr776CikpKVqvg6ggYHJEZEAmTpyI169fo2HDhujYsaNuKgkOBry8gKZNFa/Bwbqph7RPD8fuq6++QokSJXDz5k2sWrVK69snKghkwghvLCckJMDe3h7x8fGws7OTOhwiAMCZM2dQp04dAMDZs2dRq1Yt7VcSFaW4qGZk/LdMLgfu3gU8PLRfH2mPHo/dqlWrEBgYiOLFi+PmzZsoWrSoVrdPlFf6un6z5YjIAAghlLczevXqpZvECABu3FC/uAJAejpw86Zu6iPt0eOx69u3LypWrIi4uDjMmTNH69snMnRMjogMwK+//opTp07B0tISs2bN0l1FZcsCJm+d9nI54OOjuzpJO/R47ExNTfHNN98AABYvXox79+5pvQ4iQ8bkiEhiaWlpmDBhAgBg5MiR8NDl7S0PD2D1asVFFVC8rlrFW2oFgZ6PXevWrdG0aVMkJydj0qRJOqmDyFCxzxH7HJHEQkJC0LdvXzg4OODWrVv66d8RFaW4HePjw8SooNHjsYuIiICvry+EELrrB0eUC+xzRGQEkpKSMGXKFADApEmT9Nfx1cMDaNyYiVFBpMdjV7NmTfTs2RMA8OWXX3JiSDIaTI6IJLR06VI8fPgQJUuWxODBg6UOhyiLmTNnwtLSEidOnMC+ffukDodIL5gcEUnk2bNnypFAmRcgIkPj6empnKl9woQJyHh7xBxRIcTkiEgis2fPRnx8PKpVqwZ/f3+pwyHK0bhx41C0aFFcunQJmzZtkjocIp1jckQkgXv37mHp0qUAgHnz5kGeOQKJyAA5ODhg3LhxAICvv/6ajxWhQo/JEZEEpkyZgpSUFDRp0gQtWrSQOhyi9xo+fDhcXV1x9+5drF69WupwiHSKyRGRnv3999/48ccfAShajWQymcQREb2ftbW1cmTljBkz8PLlS4kjItIdJkdEejZhwgQIIdClSxd8+OGHUodDpLG+ffvCx8cHMTEx+O6776QOh0hnDCI5Wr58OUqVKgVLS0v4+vri5MmTGq33xx9/wNTUFDVq1NBtgERacvz4cezbtw+mpqa6fUwIkQ6YmZlh5syZAIBvvvkGT58+lTgiIt2QPDnaunUrRo4ciUmTJiEiIgINGzZEq1atcP/+/XeuFx8fj169eqFZs2Z6ipQof4QQyscw9O/fHz58nhkVQJ07d0bNmjWRmJjIh9JSoSX540Pq1KmDDz74ACtWrFAuq1ixIjp06PDOE69bt24oW7Ys5HI5du3ahQsXLmhcJx8fQlLYv38/WrduDUtLS9y6dQtubm5Sh0SUJwcPHkTLli1hbm6OGzduoGTJklKHREbCKB4fkpKSgnPnzsHPz09tuZ+fH8LCwnJcb+3atbh16xamTp2qUT3JyclISEhQ+yHSp4yMDGWr0dChQ5kYUYHm5+eHJk2aICUlRePvYaKCRNLkKDY2Funp6XB2dlZb7uzsjOjo6GzXuXHjBsaPH4+NGzfC1NRUo3rmzJkDe3t75Y+np2e+YyfKjR07diAiIgK2trbK+WKICiqZTKZs2d+wYQOuXLkicURE2iV5nyMAWYYyCyGyHd6cnp4Of39/BAUFoVy5chpvf8KECYiPj1f+PHjwIN8xE2kqPT1dOQR61KhRcHR0lDgiovyrU6cOPv30U2RkZODrr7+WOhwirZI0OXJ0dIRcLs/SShQTE5OlNQkAEhMT8ddff2Ho0KEwNTWFqakppk+fjosXL8LU1BRHjhzJth4LCwvY2dmp/RDpy8aNGxEZGYlixYph9OjRUodDpDUzZsyATCbDzp07ce7cOanDIdIaSZMjc3Nz+Pr6IjQ0VG15aGgo6tevn6W8nZ0dLl26hAsXLih/AgMDUb58eVy4cAF16tTRV+hEGklJScG0adMAKJ5PZW9vL21ARFpUuXJl5XMBM1tHiQoDzTrt6NDo0aPRs2dP1KpVC/Xq1cPq1atx//59BAYGAlDcEnv48CE2bNgAExMTVKlSRW39EiVKwNLSMstyIkMQEhKCO3fuwNnZGUOHDpU6HCKtmzp1KrZs2YJ9+/YhPDwc9erVkzokonyTvM9R165dsWjRIkyfPh01atTAiRMnsG/fPnh5eQEAHj9+/N45j4gM0evXrzFjxgwAwOTJk2FjYyNxRETaV7ZsWQQEBAAA+x5RoSH5PEdS4DxHpA/ffvstxowZg5IlS+Kff/6BhYWF1CER6cTdu3dRrlw5pKam4ujRo2jcuLHUIVEhZRTzHBEVVomJiZg7dy4AxW0HJkZUmHl7e6N///4AFK1HRvh/bipkmBwR6cCiRYsQGxuLcuXKoVevXlKHQ6RzEydOhIWFBU6dOoVDhw5JHQ5RvjA5ItKyZ8+eYcGCBQCAoKAgjScrJSrI3N3dMXjwYABsPaKCj8kRkZZ98803SEhIQLVq1dClSxepwyHSm/Hjx8Pa2hpnz57Fr7/+KnU4RHnG5IhIi2JjY7F06VIAignyTEz0fIpFRQFHjypeybhJ8FkoUaIEhg8fDkDRepSRkaG3uom0ickRkRZ9++23ePXqFT744AO0a9dOv5UHBwNeXkDTporX4GD91k+GQ8LPwtixY2FnZ4e///4b27dv11u9RNrEofwcyk9aEhcXB29vb7x8+RK7d+/GJ598or/Ko6IUF0HV/6nL5cDdu4CHh/7iIOkZwGdh2rRpCAoKQsWKFXHp0iXI5XK91EuFH4fyExUwCxcuxMuXL1GzZk39txrduKF+MQSA9HTg5k39xkHSM4DPwqhRo1CsWDFERkZi8+bNequXSFuYHBFpQVxcHJYsWQJAMa+RTCbTbwBlywJv92+SywEfH/3GQdIzgM+Cvb09vvrqKwCKVqTU1FS91U2kDUyOiLTgu+++w8uXL1GjRg393k7L5OEBrF6tuAgCitdVq3hLzRgZyGdh2LBhcHJywq1bt7Bx40a91k2UX+xzxD5HlE/Pnj2Dt7c3EhMTsWPHDnz66afSBRMVpbh94uPDxMjYGcBnYcGCBRg7dizKlCmDa9eucc4vyjf2OSIqIL777jskJiaievXqaN++vbTBeHgAjRszMSKD+CwMGjRI2Xr0008/SRYHUW4xOSLKh+fPnyv7Gk2ZMkX/8xoRGTAbGxtl36OZM2ciLS1N4oiINMNvcqJ8WLRoERISElC1alV06NBB6nCIDA5bj6ggYnJElEfPnz/HokWLAChGqLHViCgrth5RQcRvc6I8Wrx4MRISElClShVpO2ETGTi2HlFBw+SIKA9evHihbDViXyOid2PrERU0/EYnyoPFixcjPj4elStXRqdOnaQOh8jgsfWIChImR0S5FB8fz1Yjolxi6xEVJPxWJ8qlJUuW4MWLF6hUqRI+++wzqcMhKjDYekQFBZMjolyIj4/HwoULAbDViCi32HpEBQW/2YlyYenSpXjx4gUqVqzIViOiPGDrERUETI6INJSQkKBsNfr6668hz3ywJxFpjK1HVBAwOSLS0NKlS/H8+XNUqFABXbp0kTocogKLrUdk6JgcEWkgMTGRrUZEWsLWIzJ0TI6INPD999/j2bNnKF++PLp27Sp1OEQFHluPyJAxOSJ6j8TERCxYsAAAW42ItIWtR2TImBwRvceyZcvw7NkzlCtXDt26ddN/AFFRwNGjilcibZPw86XaevTjjz/qvX6inDA5InqHly9fKluNJk+erP9Wo+BgwMsLaNpU8RocrN/6qXCT+PNlY2ODsWPHAgBmzZrF1iMyGEyOiN5h2bJliIuLQ9myZfH555/rt/KoKGDAACAjQ/F7RgYwcCBbkEg7DOTzNXjwYDg6OuLWrVvYuHGjXusmygmTI6IcvN1qZGpqqt8Abtz478KVKT0duHlTv3FQ4WQgny/V1qMZM2aw9YgMApMjohysWLECsbGx8PHxgb+/v/4DKFsWePvxJHI54OOj/1io8DGgz5dq69GmTZv0Xj/R25gcEWXj1atX+OabbwBI1GoEAB4ewOrVigsWoHhdtUqxnCi/DOjzVaRIEXz55ZcAOHKNDINMCCGkDkLfEhISYG9vj/j4eNjZ2UkdDhmgBQsWYOzYsShTpgyuXbsmTXKUKSpKcavDx4eJEWmfgXy+EhMT4e3tjWfPnmHDhg3o2bOnZLGQ4dLX9ZstR0RvUW01mjRpkrSJEaC4YDVuzMSIdMNAPl+2trYYM2YMAEXrUXp6uqTxkHFjckT0lpUrVyImJgalS5dGjx49pA6HyGgMHToUDg4O+Oeff7BlyxapwyEjxuSISEVSUhLmz58PQNFqZGZmJnFERMbD1tYWo0ePBqAYucbWI5IKkyMiFatWrUJMTAxKlSrFPg9EEhg2bBiKFSuG69evY+vWrVKHQ0aKyRHRv5KSkjBv3jwAbDUikoqdnR1bj0hyTI6I/rV69Wo8efIE3t7e6NWrl9ThEBmtYcOGoWjRorh27Rp++eUXqcMhI8TkiAjA69evla1GEydOZKsRkYTs7e2VrUfTp09n6xHpHZMjIihajaKjo+Hl5YWAgACpwyEyesOHD0fRokURGRmJbdu2SR0OGRkmR2T03rx5o9ZqZG5uLnFERGRvb4+RI0cCUPQ9ynj7OXBEOsTkiIzeDz/8gMePH6NkyZLo3bu31OEQ0b9GjBgBe3t7XLlyBdu3b5c6HDIiTI7IqL158wZz584FwFYjIkNTtGhRZetRUFAQW49Ib5gckVFbs2YNHj16BE9PT/Tp00fqcIjoLSNGjICdnR2uXLmCHTt2SB0OGQkmR2S0VFuNJkyYoP9Wo6go4OhRxSuRoZPo81qsWDGMGDECgGLkGluPSB+YHJHRCg4OxsOHD+Hh4YEvvvhC35UDXl5A06aK1+Bg/dZPlBsSf15HjhwJOzs7XLp0CTt37tRr3WScmByRUUpOTlZrNbKwsNBf5VFRwIABQOb/gDMygIED2YJEhskAPq8ODg4YPnw4ALYekX4wOSKjFBISgqioKLi7u6Nv3776rfzGjf8uNJnS04GbN/UbB5EmDOTzOmrUKNja2uLvv//G7t279Vo3GR8mR2R0kpOTMXv2bADA+PHj9dtqBABlywImb516cjng46PfOIg0YSCfVwcHBwwbNgyAovVICKHX+sm4MDkio7N27VpERUXBzc0N/fr1038AHh7A6tWKCwygeF21SrGcyNAY0Od19OjRKFKkCC5cuMDWI9IpmTDC9DshIQH29vaIj4+HnZ2d1OGQHqWkpMDHxwcPHjzAkiVLlP8TlURUlOLWhI8PEyMyfAbyeZ04cSLmzJmDmjVr4ty5c5DJZJLFQvqnr+s3kyMmR0Zl1apVCAwMhKurK27fvg1LS0upQyKiXIiNjYW3tzdevXqF3bt345NPPpE6JNIjfV2/eVuNjEZKSgrmzJkDQNHXiIkRUcHj6OiobPGdNm0a+x6RTjA5IqOxbt063Lt3Dy4uLujfv7/U4RBRHn355ZewsbFBREQEfvvtN6nDoUKIyREZhZSUFMyaNQuAYl4jKysriSMiorxydHTEkCFDACieucbWI9I2JkdkFNatW4f79+/D1dWVrUZEhcCYMWNgbW2Nc+fOYd++fVKHQ4UMkyMq9FRbjcaPH89WI6JCwMnJSdl6xL5HpG1MjqjQW7t2LVuNiAqhzNajv/76C/v375c6HCpEmBxRoSZJXyOJnl5OZDD0dA6UKFECgwYNAsC+R6RdTI6oUFu7di0ePHigv1YjiZ9eTiQ5PZ8DY8eOhZWVFc6cOYMDBw7otC4yHkyOqNB6u9VI5/MaGcDTy4kkJcE54OzszNYj0jqDSI6WL1+OUqVKwdLSEr6+vjh58mSOZXfs2IGPP/4YTk5OsLOzQ7169XDw4EE9RksFRUhIiH5bjQzk6eVEkpHoHBg7diwsLS1x+vRpHDp0SKd1kXGQPDnaunUrRo4ciUmTJiEiIgINGzZEq1atcP/+/WzLnzhxAh9//DH27duHc+fOoUmTJmjXrh0iIiL0HDkZsuTkZMyePRuAnlqNAIN5ejmRZCQ6B1xcXBAYGAiAI9dIS4TEateuLQIDA9WWVahQQYwfP17jbVSqVEkEBQVpXD4+Pl4AEPHx8RqvQwXLihUrBADh5uYmXr9+rb+K16wRQi4XAlC8rlmjv7qJDIFE58CjR4+EpaWlACAOHjyolzpJ//R1/Za05SglJQXnzp2Dn5+f2nI/Pz+EhYVptI2MjAwkJibCwcEhxzLJyclISEhQ+6HCS5JWo0x9+wJ37ypG6ty9q/idyJhIdA64urpi4MCBANj3iPJP0uQoNjYW6enpcHZ2Vlvu7OyM6Ohojbbx7bff4tWrV+jSpUuOZebMmQN7e3vlj6enZ77iJsOW2dfIzc0N/fr1038AHh5A48aKVyJjJNE58NVXX8HCwgJhYWH4/fff9Vo3FS6S9zkCAJlMpva7ECLLsuxs3rwZ06ZNw9atW1GiRIkcy02YMAHx8fHKnwcPHuQ7ZjJMkrYaEZGk3NzclK1H7HtE+SFpcuTo6Ai5XJ6llSgmJiZLa9Lbtm7dir59++Lnn39G8+bN31nWwsICdnZ2aj9UOIWEhCAqKgru7u7StBoRkaTGjRsHCwsL/PHHHzhy5IjU4VABJWlyZG5uDl9fX4SGhqotDw0NRf369XNcb/Pmzejduzc2bdqENm3a6DpMKiDYakREbm5uyqk72PeI8kry22qjR4/GmjVrEBISgsjISIwaNQr3799XDsucMGECevXqpSy/efNm9OrVC99++y3q1q2L6OhoREdHIz4+XqpdIAOh2mrUlx2hiYzW+PHjYW5ujpMnT+Lo0aNSh0MFkOTJUdeuXbFo0SJMnz4dNWrUwIkTJ7Bv3z54eXkBAB4/fqw259GqVauQlpaGIUOGwNXVVfkzYsSIXNd969Ytre0HSevNmze6bzXiM9OItEtH55S7u7ta6xEVHsePH9dLPTJhhG2OCQkJsLe3x6xZszBx4kSpwyEtWLJkCUaMGAEPDw/cuHFD+8lRcPB/j0UwMQFWr+YwfaL80PE5FRUVhTJlyiAlJQVHjx5F48aNtbZtkk6XLl3wyy+/ID4+Xqf9hyVvOZLS4cOHpQ6BtODVq1fKVqOvv/5a+4kRn5lGpF16OKc8PDyUt9fZelQ4ZGRk6G2KBqNOjv744w8kJSVJHQbl0/fff48nT56gdOnS6NOnj/Yr4DPTiLRLT+fUhAkTYGZmhmPHjrHvUSFw4cIFPHv2TC91GXVylJKSorf7l6Qb8fHxmDdvHgDFvCZmZmbar4TPTCPSLj2dU56ensq+R5MnT+bItQJOnw+ZN+rkCNDvm03at2jRIjx//hwVKlSAv7+/birx8FD0h5DLFb/L5cCqVZwBmyiv9HhOTZo0CZaWlggLC8P+/fu1vn3Sn0OHDumtLqPukA0A5cuXx7Vr1ySOiPIiLi4OpUuXRkJCAn7++Wd07txZtxVGRSma/X18mBgRaYOezqmxY8diwYIFqFGjBs6dOweTt1utyOC9fPkSDg4OSE1NBQB2yNYlExMTXL9+HXfv3pU6FMqDBQsWICEhAdWrV0enTp10XyGfmUakXXo6p8aNGwdbW1tcuHAB27dv12ldpBvHjh1DamqqcpofXTPq5Kh27doAeGutIIqOjsaSJUsAADNmzOD/BIkoR46Ojhg1ahQAYMqUKUhPT5c4IsqtzOt0s2bN9FKfUV9RMt9kJkcFz9y5c5GUlIQ6deqgbdu2+dsYJ3ckMmxaOEdHjx4NBwcHXLt2DT/99JMWgyNdE0Jg7969APDeZ6lqi1EnR5lv8uHDh5X3McnwPXjwACtWrAAAzJw5EzKZLO8bCw4GvLyApk0Vr8HBWoqSiLRCS+eovb09xo0bB0AxsjUlJUWbUZIORUZG4s6dO7CwsECjRo30UqdRJ0c1atSAo6MjEhMT8eeff0odDmlo1qxZSElJQaNGjfLXxMrJHYkMm5bP0aFDh8LFxQV3797FmjVrtBgo6VJmq1Hjxo1RpEgRvdRp1MmRiYkJ/Pz8APz35pNhu337NoL//Z/jjBkz8tdqxMkdiQybls9Ra2trTJo0CYCi1ZmTABcMmdfnfHehyAWjTo4AoF27dgCAX3/9VeJISBNBQUFIS0tDixYt0LBhw/xtjJM7Ehk2HZyj/fv3R8mSJfH48WMsX748nwGSrj1//hynTp0CALRp00Zv9Rp9ctSyZUuYmpri6tWruHXrltTh0DtcvnwZP/74IwBFq1G+cXJHIsOmg3PUwsIC06ZNA6AY2JGQkKCFQElXDh06hPT0dFSqVAmlSpXSW71GnxwVLVoUH330EQC2Hhm6iRMnQgiBTp064cMPP9TORvv2Be7eVYyEuXtXq08FJyIt0ME52rNnT5QvXx5xcXFYtGhRvrdHuvPbb78B0G+rEcDkCMB/t9b27NkjcSSUk1OnTuHXX3+FXC7HrFmzNFtJ0+G/nNyRyLBpeo5qeM6bmpoiKCgIgGIy2bi4OC0FStqUnp6ufOQLkyMJZCZHJ06cwPPnzyWOht4mhFAOwe3bty/Kly///pU4RJ/IuOTynO/cuTOqV6+OxMREzf/DRXp1+vRpxMXFoWjRoqhfv75e62ZyBKBMmTKoVKkS0tPTceDAAanDobf8+uuvCAsLg5WVFaZOnfr+FThEn8i45OGcNzExwbx58wAAy5Yt42OkDFDmLbUWLVrAzMxMr3UzOfrXJ598AoC31gxNeno6JkyYAAAYOXIk3Nzc3r8Sh+gTGZc8nvN+fn5o1qwZUlJSMHnyZB0GSHmxa9cuAP/d3dEnJkf/ynzz9+/fz9myDciGDRtw9epVFCtWDF999ZVmK3GIPpFxyeM5L5PJlK1HGzduREREhK4ipFyKjIxEZGQkzMzM9Dq/USYmR/+qU6cOnJycEB8fjxMnTkgdDgF4/fo1pkyZAgCYNGkSihYtqtmKHKJPZFzycc77+vri888/BwBl30aS3s6dOwEoHvNlb2+v9/qZHP1LLpcrs9MdO3ZIHA0Bin4AUVFR8PT0xJAhQ3K3MofoExmXfJzzs2bNgpmZGUJDQxEaGqqzEElzmdfhjh07SlI/kyMVn332GQDFQUlPT5c4GuP24sULzJ49G4BiVmxLS8v//sgh+kSUnTwO+S9VqhQGDx4MQNF6lPF2/yXSq3v37uHcuXMwMTFB+/btJYmByZGK5s2bo2jRooiOjsYff/whdThGbd68eXj+/DkqV66MXr16/fcHDtEnovzI4Ttk8uTJsLOzQ0REBDZv3ixxkMYts9Xoo48+gpOTkyQxMDlSYW5ursxSt23bJnE0xuv+/fvKWWtnz54NeWY/Ag7RJ6L8eMd3iKOjo7LP0eTJk5GcnCxhoMZN6ltqAJOjLDJvrW3fvp1NqxKZOHEi3rx5g0aNGqkP4eQQfSLKj/d8h2ROF3L37l0+lFYiqnduOnToIFkcTI7e8vHHH8POzg6PHj1CWFiY1OEYnTNnzmDjxo0AgG+//RYymey/P3KIPhHlx3u+Q6ytrZWPFZk5cyZevHih5wBp9+7dEEKgdu3a8PT0lCwOJkdvsbCw4K01iYgHD/Blv34AgF69esHX11e9AIfoE1F+aPAd0rt3b1SqVAnPnj3DzHHjNBv8QVqzdetWAECnTp0kjUMmhBCSRiCBhIQE2NvbIz4+HnZ2dln+vmfPHrRv3x7u7u64f/8+TN7+nwZpX3Awtvfvj8+EgBWAf+bPh8fYsdmXjYpSNIP7+DAxIqLce893yIEDB9CqVSuYAbgCoKyJiSKp4pQgOvXo0SN4eHhACIG7d+/Cy8srS5n3Xb+1hVf9bPj5+cHW1hYPHz7En3/+KXU4hV9UFJL798dX/+bpYwF4TJiQ8//WOESfiPLjPd8hLatUQSsAqVB8H3Hwh378/PPPEEKgfv362SZG+sTkKBuWlpbKW2ubNm2SOBojcOMGlgmB2wBc8e+XETtaE5FUbtzAtwDkAHYDOALwO0kPMq+3mTOWS4nJUQ66d+8OANiyZQtSUlIkjqaAe8+kjbHFi2P6v/+eCaAIwI7WRCSdsmVR0cQEg/79dRSAdBOTnL+TNJ2YlnJ08+ZNnD17FiYmJujcubPU4TA5yknz5s3h7OyMuLg4HDx4UOpwCi4NJm2cvmYN4gFUBxAAsKM1EUnr347b00xMUBTA3wBCevTI/juJE9NqxZYtWwD8d+2VGpOjHJiamsLf3x8A8OOPP0ocTQGlwaSNly9fVs4n8u3mzZDzWWhEZAj69kXxe/cw7d/nOk7avx/x8fHqZTgxrVYIIQzqlhrA5OidevbsCUAxeo3zXeTBeyZcE0Jg+PDhSE9PR8eOHdGsWzd2tCYiw+HhgcHffYdy5crh6dOnyuc9KnFiWq04f/48IiMjYWFhgU8//VTqcAAwOXqnGjVqoHLlykhOTuacR2/T5B77eyZc27ZtG44ePQpLS0t8++23OgyWiChvzMzMlN9PixYtwo0bN/77Y24npmXfpGytXbsWgGJGbHt7e4mjUWBy9A4ymQw9evQAwFtrajS9x/6OCddevXqFL7/8EoDiKdje3t76iZ2IKJfatGkDPz8/pKSkYMSIEVBOD5ibiWnZNylbycnJyltqffr0kTia/3ASyPdMIvXgwQN4eXlBCIE7d+7wIh4VpTixVZuS5XJFP6GcbodlM+Ha119/jZkzZ8LLywuRkZGwsrLSfexERHn0zz//oEqVKkhNTcWuXbuU070AeP/EtHn53jQSv/zyC7p06QJ3d3fcu3fvvweN54CTQBoIT09PNG7cGACwfv16aYPRh/c1++blHvtbE67dvn0b33zzDQBg4cKFTIyIyOCVK1cOY8aMAQCMGDECSUlJ//3xfRPT5uV700huwa1btw6A4pFR70uM9InJkQb6/fu8r+DgYKSnp0scjQ5p0uyrhYe/jho1CsnJyWjevLnBdL4jInqfSZMmwdPTE/fu3cPcuXM1XzG335tGcgvu0aNHOHDgAADFM+0MCZMjDXTs2BEODg548OBBwZ3z6H3/C9F0SGo+H/66f/9+7NmzB6ampliyZAlkMlked4iISL9sbGzw3XffAQDmzZuHm5qOSsvN92ZupwcowC1MP/74IzIyMlC/fn2UK1dO6nDUMDnSgKWlJXr16gUA+OGHHySOJg80+V9Ibpp9+/ZV3CvP5ZxESUlJGDx4MABFs3TFihVztx9ERBLr2LGjsnP28OHDoXG3XU2/N3PzXVyAW5gyMjKwevVqAEBfA5zXjh2yNezQdfXqVVSuXBlyuRwPHjyAq6urjqPUEk07Auqhw+D48eMxb948lCxZEleuXEGRIkW0sl0iIn1S7Zy9c+dOdOjQQXsbN6DvbF06cOAAWrVqhaJFi+Lhw4ewtrbWaD12yDYwlSpVQoMGDZCenq6ck8EgaKsDdT5vl73PpUuXlHOFfP/990yMiKjAKleuHMaOHQsAGDZsGBISErS3cU2/i3PbydvAbr+tWLECABAQEKBxYqRXwgjFx8cLACI+Pj5X661fv14AEF5eXiI1NVVH0eXCmjVCmJgIAShe16zJWubBg//KZP7I5Yrl2XnwQIijR3P+ex6kp6eLevXqCQCiY8eOWtsuEZFUXr16JUqXLi0AiKFDh2q/gvd9F+fmu12Ta4Ue3bt3T5iYmAgAIjIyMlfr5vX6nVtMjnIhKSlJFC9eXAAQO3bs0FF0/3rwQIgjR7R3Ysjl/5XR84mxcuVKAUDY2tqKqKgovdZNRKQroaGhAoCQyWQiLCxM/wFo8t2el/8gv+vaowWTJ08WAESTJk1yva6+kiPeVssFKysrDBw4EACwePHivG1Ek6ZNA+lArQ3R0dEYP348AGDmzJlwd3fXW91ERLrUvHlzBAQEQAiB/v37IyUlRb8BaPLdrqsO3nm8TZeSkoI1a9YAAAYNGpSrdfVKp6mXgcpP5vngwQMhl8sFABEREZG7lbV5Gyy3/xuQSLdu3QQA4evrK9LS0qQOh4hIq2JjY4WTk5MAIGbMmCF1OFnp4pqSj9t069atEwCEm5ubSElJyfXusOXIQHl4eOCzzz4DACxZsuS/P2hrHiED6UCtDTt37sSWLVsgl8uxevVqg5r9lIhIG4oXL45FixYBAGbMmIHr169LG9DbtN3BOx/zMAkhsHDhQgCKjuxmZmb53Dkd0mnqZaBylXlmc/81LCxMABAWFhbiyZMnmmXRR46oZ+SZP0ePZq1P4g7U2hAbGytKlCghAIiJEydKHQ4Rkc5kZGSIli1bCgDio48+Eunp6VKHlJW2Onhrei0TIsu1MXT0aAFA2NjYiGfPnmWtX4O+TuyQrUMav7k5JD0ZGRniww8/FADE1yNG6KbJUsIO1Nrg7+8vAIhKlSqJN2/eSB0OEZFO3b17V9jY2AgAYvHixVKHkzfa7OCdTbmWgAAghg0blrVeDW/TMTnSIeWbe/VqzoXe8wH45ZdfBABRtEgRkZCbLFrTpMdAW4Q0sXPnTgFAmJiYiDNnzkgdDhGRXixfvlwAEJaWluLatWtSh5M3mlx7NLmWvdXCdPnfxEgmk4mbN2+q15eLuyXxV68yOdIVZXIkk+WcoLyn6TAtLU2UK1dOABDfyGQF/jaYtsTGxgpnZ2cBQIwfP17qcIiI9CYjI0N8/PHHAoCoU6eOYcyHpyu5vE3X69/kqGOrVurlcnmbLl4mY3KkK8rk6F2JjAbZbHBwsAAgXOztxevMsgX0Npi2fP755wKAqFixonj9+rXU4RAR6dWDBw+Evb29ACBmz54tdTjS+reF6QYg5P8mR2fPnlUvk8vbdPH/boej1XQtp/keNOjh36NHD3h4eCA6Ph7rZ82SZB4hQ7Jx40Zs3rwZcrkca9euhaWlpdQhERHplYeHB5YuXQoAmDp1Ki5evChxRBL6dx6m2S1bIh1A69atUatWLfUy+RlNp0PG/eBZAHbve1BfVJQiefLxybbM4sWLMXLkSHh5eeH69euwsLDQaeyG6u7du6hevToSEhIQFBSEKVOmSB0SEZEkhBDo2LEjdu3ahWrVquH06dNG+5/FO3fuoGzZskhPT0d4eDjq1q2bfcH3XGszH7SbkJEBe4APntUpE5P3zw3k4QE0bpxjmf79+8PFxQX37t1TzvppbNLS0tCjRw8kJCSgfv36mDhxotQhERFJRiaTYdWqVXBycsLff/+NcePGSR2SZObMmYP09HT4+fnlnBgB773WKluYTPSTthh3cnT5cr5vgVlbW+Prr78GoJgA7NWrV9qIrECZO3cu/vjjD9ja2uKnn36Cqamp1CEREUmqRIkSWL9+PQDFhMF79uyROCL9u3nzJtauXQsA2rmb0Lev4rqtB8adHGnpOV/9+vWDt7c3njx5gu+//14r2ywowsLCMG3aNADA8uXLUapUKWkDIiIyEK1atcLo0aMBAH369EFULp9DVtBNnDgRaWlpaNmyJRo0aKCdjerp+ZzGnRxpibm5OYKCggAA8+bNw4sXL6QNSE+ePn2KLl26ID09Hf7+/ujevbvUIRERGZQ5c+bA19cXz549Q48ePZCeni51SHpx+vRp/PLLL5DJZJg/f77U4eQakyMt6d69OypVqoTnz59jxowZUoejc+np6ejevTsePnyIChUqYOXKlZDJZFKHRURkUMzNzbFlyxYUKVIEx48fV7a0F2ZCCHz11VcAgICAAFStWlXiiHKPyZGWyOVyfPvttwAU95evXbsmcUS6NXPmTISGhsLa2hrbtm2Dra2t1CERERkkHx8frFq1CoDiu3P37t0SR6Rbv/76K06cOAFLS0tMnz5d6nDyhMmRFrVs2RJt27ZFWloaRo0ahcI6S8KhQ4eUtxFXrlyJypUrSxwREZFh8/f3x/DhwwEAPXv2xPXr1yWOSDeSkpIwYsQIAMDIkSPh6ekpcUR5YxDJUWZHXktLS/j6+uLkyZPvLH/8+HH4+vrC0tISpUuXxsqVK/UU6fstXLgQZmZmOHDgAPbt2yd1OFp348YNdOvWDUIIDBgwAD179pQ6JCKiAmHBggVo2LAhEhMT8emnnyIxMVHqkLRuzpw5uHv3Ljw9PTFp0iSpw8k7nc6/rYEtW7YIMzMz8cMPP4irV6+KESNGCBsbG3Hv3r1sy9++fVtYW1uLESNGiKtXr4offvhBmJmZiW3btmlcp66f6vvVV18JAKJUqVLi5cuXOqlDCs+fPxfly5cXAETdunX5eBAiolx6/PixcHNzUzxnrGNHkZ6eLnVIWnP9+nVhbm4uAIjt27frpA5dX78zSZ4c1a5dWwQGBqotq1ChQo4PLf3qq69EhQoV1JYNHDhQ1K1bV+M6df3mJiQkiJIlSwoAYuTIkTqpQ99SU1OFn5+fACA8PT1FdHS01CERERVIYWFhwszMTAAQ48aNkzocrcjIyBDNmzcXAESrVq1ERkaGTurRV3Ik6W21lJQUnDt3Dn5+fmrL/fz8EBYWlu064eHhWcq3aNECf/31F1JTU3UWa27Y2tpi9erVABSPF8lpXwqS0aNH49ChQ7C2tsaePXvg7OwsdUhERAVSvXr1lE9UmDdvnrKzdkG2evVqHD58GJaWlli6dGmBH70s6VTGsbGxSE9Pz3KhdXZ2RnR0dLbrREdHZ1s+LS0NsbGxcHV1zbJOcnIykpOTlb/Hx8cDUDxjTVfq1auHzz//HJs3b0bv3r1x6tSpAvtsnaVLlyofpLh69WqULl1ap+8dEVFh16FDB4wfPx5z587F4MGD4ejoiI8//ljqsPLk9u3byskup06dCicnJ51dIzK3K3Q84MkgnvPwdoYphHhn1pld+eyWZ5ozZ45ydJUqffWiv3HjRqFpaenRo4fUIRARFSoZGRn47LPPpA5DKyZMmIAJEybovJ64uDjY29vrbPuSJkeOjo6Qy+VZWoliYmJyTCZcXFyyLW9qaorixYtnu86ECROUWS0AvHjxAl5eXrh//75O31xDk5CQAE9PTzx48ECnTzM2NNxv7rcx4H5zv41BfHw8SpYsCQcHB53WI2lyZG5uDl9fX4SGhuLTTz9VLg8NDUX79u2zXadevXr49ddf1ZYdOnQItWrVgpmZWbbrWFhYwMLCIstye3t7o/pQZbKzs+N+GxHut3HhfhsXY91vExPddpmWfJ6j0aNHY82aNQgJCUFkZCRGjRqF+/fvIzAwEICi1adXr17K8oGBgbh37x5Gjx6NyMhIhISEIDg4GGPGjJFqF4iIiKgQkbzPUdeuXREXF4fp06fj8ePHqFKlCvbt2wcvLy8AwOPHj3H//n1l+VKlSmHfvn0YNWoUli1bBjc3NyxZsgSdOnWSaheIiIioEJE8OQKAwYMHY/Dgwdn+bd26dVmWNWrUCOfPn89zfRYWFpg6dWq2t9oKM+4399sYcL+538aA+63b/ZYJXY+HIyIiIipAJO9zRERERGRImBwRERERqWByRERERKSCyRERERGRikKbHM2aNQv169eHtbU1ihYtqtE6QghMmzYNbm5usLKyQuPGjXHlyhW1MsnJyRg2bBgcHR1hY2ODTz75BFFRUTrYg7x5/vw5evbsCXt7e9jb26Nnz5548eLFO9eRyWTZ/nzzzTfKMo0bN87y927duul4bzSXl/3u3bt3ln2qW7euWpnCdrxTU1Mxbtw4VK1aFTY2NnBzc0OvXr3w6NEjtXKGdryXL1+OUqVKwdLSEr6+vjh58uQ7yx8/fhy+vr6wtLRE6dKlsXLlyixltm/fjkqVKsHCwgKVKlXCzp07dRV+nuVmv3fs2IGPP/4YTk5OsLOzQ7169XDw4EG1MuvWrcv2XH/z5o2udyVXcrPfx44dy3afrl27plausB3v7L6/ZDIZKleurCxj6Mf7xIkTaNeuHdzc3CCTybBr1673rqO3c1sUUlOmTBELFy4Uo0ePFvb29hqtM3fuXGFrayu2b98uLl26JLp27SpcXV1FQkKCskxgYKBwd3cXoaGh4vz586JJkyaievXqIi0tTUd7kjstW7YUVapUEWFhYSIsLExUqVJFtG3b9p3rPH78WO0nJCREyGQycevWLWWZRo0aif79+6uVe/Hiha53R2N52e+AgADRsmVLtX2Ki4tTK1PYjveLFy9E8+bNxdatW8W1a9dEeHi4qFOnjvD19VUrZ0jHe8uWLcLMzEz88MMP4urVq2LEiBHCxsZG3Lt3L9vyt2/fFtbW1mLEiBHi6tWr4ocffhBmZmZi27ZtyjJhYWFCLpeL2bNni8jISDF79mxhamoq/vzzT33t1nvldr9HjBgh5s2bJ86cOSP++ecfMWHCBGFmZibOnz+vLLN27VphZ2eX5Zw3JLnd76NHjwoA4vr162r7pHqOFsbj/eLFC7X9ffDggXBwcBBTp05VljH0471v3z4xadIksX37dgFA7Ny5853l9XluF9rkKNPatWs1So4yMjKEi4uLmDt3rnLZmzdvhL29vVi5cqUQQvFhNDMzE1u2bFGWefjwoTAxMREHDhzQeuy5dfXqVQFA7UMQHh4uAIhr165pvJ327duLpk2bqi1r1KiRGDFihLZC1aq87ndAQIBo3759jn83luN95swZAUDtS9iQjnft2rVFYGCg2rIKFSqI8ePHZ1v+q6++EhUqVFBbNnDgQFG3bl3l7126dBEtW7ZUK9OiRQvRrVs3LUWdf7nd7+xUqlRJBAUFKX/X9PtQSrnd78zk6Pnz5zlu0xiO986dO4VMJhN3795VLisIxzuTJsmRPs/tQntbLbfu3LmD6Oho+Pn5KZdZWFigUaNGCAsLAwCcO3cOqampamXc3NxQpUoVZRkphYeHw97eHnXq1FEuq1u3Luzt7TWO78mTJ9i7dy/69u2b5W8bN26Eo6MjKleujDFjxiAxMVFrsedHfvb72LFjKFGiBMqVK4f+/fsjJiZG+TdjON6A4kGOMpksy+1nQzjeKSkpOHfunNoxAAA/P78c9zE8PDxL+RYtWuCvv/5CamrqO8sYwnEF8rbfb8vIyEBiYmKWB3S+fPkSXl5e8PDwQNu2bREREaG1uPMrP/tds2ZNuLq6olmzZjh69Kja34zheAcHB6N58+bKp0tkMuTjnVv6PLcNYoZsQxAdHQ0AcHZ2Vlvu7OyMe/fuKcuYm5ujWLFiWcpkri+l6OholChRIsvyEiVKaBzf+vXrYWtri44dO6ot7969O0qVKgUXFxdcvnwZEyZMwMWLFxEaGqqV2PMjr/vdqlUrdO7cGV5eXrhz5w6+/vprNG3aFOfOnYOFhYVRHO83b95g/Pjx8Pf3V3t4paEc79jYWKSnp2d7Xua0j9HR0dmWT0tLQ2xsLFxdXXMsYwjHFcjbfr/t22+/xatXr9ClSxflsgoVKmDdunWoWrUqEhISsHjxYjRo0AAXL15E2bJltboPeZGX/XZ1dcXq1avh6+uL5ORk/Pjjj2jWrBmOHTuGjz76CEDOn4nCcrwfP36M/fv3Y9OmTWrLDf1455Y+z+0ClRxNmzYNQUFB7yxz9uxZ1KpVK891yGQytd+FEFmWvU2TMvmh6X4DWeMHchdfSEgIunfvDktLS7Xl/fv3V/67SpUqKFu2LGrVqoXz58/jgw8+0GjbuaXr/e7atavy31WqVEGtWrXg5eWFvXv3ZkkOc7Pd/NLX8U5NTUW3bt2QkZGB5cuXq/1NiuP9Lrk9L7Mr//byvJzr+pbXGDdv3oxp06Zh9+7dagl03bp11QYdNGjQAB988AGWLl2KJUuWaC/wfMrNfpcvXx7ly5dX/l6vXj08ePAACxYsUCZHud2mVPIa47p161C0aFF06NBBbXlBOd65oa9zu0AlR0OHDn3viBlvb+88bdvFxQWAIjN1dXVVLo+JiVFmoS4uLkhJScHz58/VWhNiYmJQv379PNWrCU33+++//8aTJ0+y/O3p06dZMunsnDx5EtevX8fWrVvfW/aDDz6AmZkZbty4obOLpb72O5Orqyu8vLxw48YNAIX7eKempqJLly64c+cOjhw5otZqlB19HO/sODo6Qi6XZ/lfn+p5+TYXF5dsy5uamqJ48eLvLJObz4su5WW/M23duhV9+/bFL7/8gubNm7+zrImJCT788EPlZ15q+dlvVXXr1sVPP/2k/L0wH28hBEJCQtCzZ0+Ym5u/s6yhHe/c0uu5naseSgVQbjtkz5s3T7ksOTk52w7ZW7duVZZ59OiRwXXQPX36tHLZn3/+qXEH3YCAgCyjlnJy6dIlAUAcP348z/FqS373O1NsbKywsLAQ69evF0IU3uOdkpIiOnToICpXrixiYmI0qkvK4127dm0xaNAgtWUVK1Z8Z4fsihUrqi0LDAzM0mmzVatWamVatmxpcB10c7PfQgixadMmYWlp+d6OrZkyMjJErVq1RJ8+ffITqlblZb/f1qlTJ9GkSRPl74X1eAvxX4f0S5cuvbcOQzzemaBhh2x9nduFNjm6d++eiIiIEEFBQaJIkSIiIiJCREREiMTERGWZ8uXLix07dih/nzt3rrC3txc7duwQly5dEp9//nm2Q/k9PDzE4cOHxfnz50XTpk0Nbmh3tWrVRHh4uAgPDxdVq1bNMrT77f0WQoj4+HhhbW0tVqxYkWWbN2/eFEFBQeLs2bPizp07Yu/evaJChQqiZs2aBXa/ExMTxZdffinCwsLEnTt3xNGjR0W9evWEu7t7oT7eqamp4pNPPhEeHh7iwoULasN7k5OThRCGd7wzhzgHBweLq1evipEjRwobGxvlqJzx48eLnj17KstnDvcdNWqUuHr1qggODs4y3PePP/4QcrlczJ07V0RGRoq5c+ca7NBuTfd706ZNwtTUVCxbtizHKRimTZsmDhw4IG7duiUiIiJEnz59hKmpqVqCLbXc7vd3330ndu7cKf755x9x+fJlMX78eAFAbN++XVmmMB7vTD169BB16tTJdpuGfrwTExOV12YAYuHChSIiIkI5clbKc7vQJkcBAQECQJafo0ePKssAEGvXrlX+npGRIaZOnSpcXFyEhYWF+Oijj7Jk469fvxZDhw4VDg4OwsrKSrRt21bcv39fT3v1fnFxcaJ79+7C1tZW2Nraiu7du2cZ4vr2fgshxKpVq4SVlVW2c9ncv39ffPTRR8LBwUGYm5uLMmXKiOHDh2eZE0hKud3vpKQk4efnJ5ycnISZmZkoWbKkCAgIyHIsC9vxvnPnTrbnheq5YYjHe9myZcLLy0uYm5uLDz74QK0FKyAgQDRq1Eit/LFjx0TNmjWFubm58Pb2zjbp/+WXX0T58uWFmZmZqFChgtrF1FDkZr8bNWqU7XENCAhQlhk5cqQoWbKkMDc3F05OTsLPz0+EhYXpcY80k5v9njdvnihTpoywtLQUxYoVE//73//E3r17s2yzsB1vIRSt21ZWVmL16tXZbs/Qj3dmq1dOn1kpz22ZEP/2ZiIiIiKiwvv4ECIiIqK8YHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERFSrTp09H1apVYWNjA2dnZwwaNAipqalSh0VEBYip1AEQEWmLEALp6elYtWoV3N3dcfXqVfTq1QvVqlXDoEGDpA6PiAoIPniWiAo1f39/ODk5YfHixVKHQkQFBG+rEVGhce/ePQwdOhRVqlRBsWLFUKRIEfz888/w8PCQOjQiKkCYHBFRoRAbG4vatWsjNjYWCxcuxKlTpxAeHg65XI4aNWpIHR4RFSDsc0REhcK+ffuQlpaGzZs3QyaTAQCWLVuGlJQUJkdElCtMjoioUHBwcEBCQgL27NmDSpUq4ddff8WcOXPg7u4OJycnqcMjogKEHbKJqFAQQmDQoEHYtGkTrKys0KNHD7x58wb37t3Db7/9JnV4RFSAMDkiIiIiUsEO2UREREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkYr/A299wScHCDhCAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzSElEQVR4nO3dd1QUVxsG8GfpHQUUQRSwo1ixoMZYgy0aNVYs2GtiSzT6mcSSYiwxRmMNYInYS+wajdiiSeyJYo0FUbADilL3fn9sdsJKcYHdnV14fudwkPHOzDtt5925ZRRCCAEiIiIiAgCYyR0AERERkTFhckRERESUCZMjIiIiokyYHBERERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRCbt/v37mDZtGs6fP5/l//r37w8HB4d8Lzs1NRXDhw+Hh4cHzM3NUatWrfwHqgOLFy/GypUrs0y/ffs2FApFtv9XmCgUCkybNk3uMHRi2rRpUCgUep934cKFqFChAqysrKBQKBAfH4/+/fvDx8dHo9zXX3+Nn3/+OV/x5Obp06fo2bMnSpYsCYVCgU6dOuV5GT4+Pujfv7/OYzNGFy9eRLdu3VCiRAlYW1vDx8cHI0eOlDusIslC7gCICuL+/fuYPn06fHx8dJ68LFmyBMuWLcPChQsREBBQoERLFxYvXgw3N7csNwoPDw+cPHkS5cuXlycwyrPBgwejTZs2el3H+fPnMXr0aAwePBghISGwsLCAo6MjPvvsM4wZM0aj7Ndff42uXbvmK3nJzRdffIFt27YhPDwc5cuXh4uLi06XX5hERkaiffv2aNKkCZYuXQo3NzdER0fj3LlzcodWJDE5IsrBxYsXYWtriw8++EDuUHJlbW2NwMBAucOgPPDy8oKXl5de13Hp0iUAwJAhQ1C/fn1puiGT6IsXL6J8+fLo3bu3wdapKy9fvoSdnZ3B1tW7d2+0aNECO3fu1Hgy2LdvX4PEQJpYrUaSR48eYejQoShTpgysra1RokQJNG7cGAcPHpTKNGvWDP7+/jh58iQaNWoEW1tb+Pj4YMWKFQCA3bt3o06dOrCzs0P16tWxb9++LOs5fvw4WrZsCUdHR9jZ2aFRo0bYvXt3lnIXL17Ee++9h+LFi8PGxga1atXCqlWrpP8/fPgw6tWrBwAYMGAAFApFtlUvN27cQLt27eDg4IAyZcrgo48+QkpKSq77QqFQIDQ0FK9evZKWu3LlylyrsF5ft7r649KlS+jVqxecnZ3h7u6OgQMHIiEhQWNepVKJhQsXolatWrC1tUWxYsUQGBiIHTt2AFBVLVy6dAlHjhyR4lFXjeQUkzb7eeXKlVAoFIiMjMSIESPg5uYGV1dXdOnSBffv3891H+XGx8cH7777LrZt24YaNWrAxsYG5cqVw4IFC7KUjY6ORp8+fVCyZElYW1vDz88P3377LZRKZY7Lv337NiwsLDBz5sws/3f06FEoFAps2rQJQN6OQ3JyMiZPngxfX19YWVmhdOnSGDVqFOLj47Pdvl27dqF27dqwtbWFn58fdu3aBUC1X/38/GBvb4/69evj9OnTGvNnVzW2YcMGBAUFwcPDQ1repEmTkJSUlPOOzkGzZs3Qp08fAECDBg2gUCikJ46vV6spFAokJSVh1apV0rnVrFmzXJf/9OlTjBw5EqVLl4aVlRXKlSuHKVOmSNeV+pw8ePAgLl++LC338OHDOS4zLS0NEydORKlSpWBnZ4e33noLf/75Z7Zl4+LiMGzYMHh5ecHKygq+vr6YPn060tPTNcrFxMSga9eucHR0RLFixdC7d2+cOnUqy/WiroL/+++/ERQUBEdHR7Rs2RKAqnr9yy+/RJUqVaTPxQEDBuDRo0dZ4tqwYQMaNmwIe3t7ODg4oHXr1lo9+dm0aRNiY2MxYcKEfFe3ko4Jon+1bt1alChRQixfvlwcPnxY/Pzzz+Lzzz8X69evl8o0bdpUuLq6isqVK4uwsDCxf/9+8e677woAYvr06aJ69epi3bp1Ys+ePSIwMFBYW1uLe/fuSfMfPnxYWFpaioCAALFhwwbx888/i6CgIKFQKDTWc+XKFeHo6CjKly8vVq9eLXbv3i169eolAIhZs2YJIYRISEgQK1asEADEp59+Kk6ePClOnjwp7t69K4QQIiQkRFhZWQk/Pz8xd+5ccfDgQfH5558LhUIhpk+fnuu+OHnypGjXrp2wtbWVlvvw4UNx69YtAUCsWLEiyzwAxNSpU6W/p06dKgCIypUri88//1wcOHBAzJs3T1hbW4sBAwZozNu3b1+hUCjE4MGDxfbt28XevXvFV199Jb7//nshhBBnz54V5cqVE7Vr15biOXv2rBBCZBuTtvtZvf/KlSsnPvzwQ7F//34RGhoqihcvLpo3b64Ro7psdtv+Om9vb1G6dGlRtmxZER4eLvbs2SN69+4tAIg5c+ZI5R4+fChKly4tSpQoIZYuXSr27dsnPvjgAwFAjBgxItf927lzZ1G2bFmRnp6uUa5bt27C09NTpKWl5ek4KJVK0bp1a2FhYSE+++wz8csvv4i5c+cKe3t7Ubt2bZGcnKyxfV5eXsLf31863xs0aCAsLS3F559/Lho3biy2bt0qtm3bJipVqiTc3d3Fy5cvpfnVMWX2xRdfiO+++07s3r1bHD58WCxdulT4+vpmOQ7Zzfu6S5cuiU8//VQ6XidPnhQ3btwQQqiuC29vb6nsyZMnha2trWjXrp10bl26dCnHZb969UrUqFFD2Nvbi7lz54pffvlFfPbZZ8LCwkK0a9dOCCFEcnKyOHnypKhdu7YoV66ctNyEhIQclxsSEiIUCoWYMGGC+OWXX8S8efNE6dKlhZOTkwgJCZHKxcbGijJlyghvb2+xbNkycfDgQfHFF18Ia2tr0b9/f6ncixcvRIUKFYSLi4tYtGiR2L9/vxg3bpzw9fXNch6HhIQIS0tL4ePjI2bOnCl+/fVXsX//fpGRkSHatGkj7O3txfTp08WBAwdEaGioKF26tKhatarGMf3qq6+EQqEQAwcOFLt27RJbt24VDRs2FPb29rnuTyGEGDhwoAAgfv31V9G4cWNhaWkpihUrJnr27Knx+UmGw+SIJA4ODmLs2LG5lmnatKkAIE6fPi1Ne/LkiTA3Nxe2trYaF/L58+cFALFgwQJpWmBgoChZsqR4/vy5NC09PV34+/sLLy8voVQqhRBC9OzZU1hbW4vo6GiN9bdt21bY2dmJ+Ph4IYQQp06dyvGGHRISIgCIjRs3akxv166dqFy58hv2hmp+e3t7jWn5SY5mz56tUW7kyJHCxsZG2tajR48KAGLKlCm5xlOtWjXRtGnTLNOzi0nb/axOeEaOHKmxzNmzZwsAIjY2Vpq2atUqYW5uLlatWpVrnEKokgeFQiHOnz+vMf2dd94RTk5OIikpSQghxKRJkwQA8ccff2iUGzFihFAoFOLq1avStNf3b2RkpAAgtm3bJk27d++esLCw0Eh+tT0O+/bty7bchg0bBACxfPlyje2ztbUVMTEx0jT1+e7h4SFtnxBC/PzzzwKA2LFjR5aYcqJUKkVaWpo4cuSIACAuXLig9bxq6mN76tQpjemvJ0dCCGFvb6+RgORm6dKl2V5Xs2bNEgDEL7/8Ik1r2rSpqFat2huXefnyZQFAjBs3TmN6RESEAKAR27Bhw4SDg4O4c+eORtm5c+cKAFIismjRIgFA7N27V6PcsGHDsk2OAIjw8HCNsuvWrRMAxJYtWzSmqz93Fi9eLIQQIjo6WlhYWIgPP/xQo9zz589FqVKlRPfu3XPd/tatWwsAolixYmLixIni0KFDYunSpcLV1VVUqFBB43wiw2C1Gknq16+PlStX4ssvv8Tvv/+OtLS0bMt5eHggICBA+tvFxQUlS5ZErVq14OnpKU338/MDANy5cwcAkJSUhD/++ANdu3bVaNxsbm6Ovn37IiYmBlevXgUAHDp0CC1btkSZMmU01t2/f3+8fPkSJ0+e1GqbFAoFOnTooDGtRo0aUkyG0LFjxyzrT05OxsOHDwEAe/fuBQCMGjVKJ+vLy37OLUYAGvupX79+SE9PR79+/bSKo1q1aqhZs6bGtODgYCQmJuLs2bMAVMe5atWqGm1iANVxFkLg0KFDOS6/WbNmqFmzJhYtWiRNW7p0KRQKBYYOHZql/JuOg3pdrzd479atG+zt7fHrr79qTK9VqxZKly4t/a0+35s1a6bRVuX16yAnN2/eRHBwMEqVKgVzc3NYWlqiadOmAIDLly/nOq8hHTp0CPb29ujatavGdPV+e30/aSMyMhIAsrRN6t69OywsNJvG7tq1C82bN4enpyfS09Oln7Zt2wIAjhw5Iv12dHTM0vC9V69eOcbx/vvvZ1lXsWLF0KFDB4111apVC6VKlZKqCffv3y9dG5nL2djYoGnTprlWJwKQqpB79OiBWbNmoXnz5hg2bBjCwsJw48YNrF27Ntf5SffYIJskGzZswJdffonQ0FB89tlncHBwQOfOnTF79myUKlVKKpddjxMrK6ss062srACo2nEAwLNnzyCEgIeHR5b51UnVkydPpN/alHsTOzs72NjYaEyztraWYjIEV1fXLOsHgFevXgFQtfUyNzfX2McFkZf9rG2M+ZHd9qinZT7Or3crzy3O16l7Y129ehXlypXDjz/+iK5du2a77jdt45MnT2BhYYESJUpolFMoFChVqlSWWHI63990HWTnxYsXaNKkCWxsbPDll1+iUqVKsLOzw927d9GlS5cCHQdde/LkCUqVKpWlbUzJkiVhYWGh9bX5+jKBrOeMhYVFluP24MED7Ny5E5aWltku6/Hjx9Iy3d3ds/x/dtMA1WeFk5NTlnXFx8dLxzCndT148AAApDaQrzMzy/05hHobW7durTG9devWUCgU0pcJMhwmRyRxc3PD/PnzMX/+fERHR2PHjh2YNGkSHj58mG3D6rwqXrw4zMzMEBsbm+X/1I1/3dzcAKg+LLQpZ2jqROv1Bt35uSGolShRAhkZGYiLi8s2ocmrvOxnfYqLi8txmvpmUNDjHBwcjE8++QSLFi1CYGAg4uLi8v0EztXVFenp6Xj06JFGgiSEQFxcXI43Pl04dOgQ7t+/j8OHD0tPiwBkaQhuDFxdXfHHH39ACKGRID18+BDp6en5OrfU50NcXJzG07j09PQs15abmxtq1KiBr776KttlqRNrV1fXbBt0Z3deAsi2IbS6g0JOn3+Ojo5SOQDYvHkzvL29sy2bmxo1amD9+vU5/v+bkivSPe5xylbZsmXxwQcf4J133tHZtxZ7e3s0aNAAW7du1fgmrFQqsWbNGnh5eaFSpUoAgJYtW0o3jMxWr14NOzs7qeu6Lp5w5IW7uztsbGzw119/aUzfvn17vpeprg5YsmRJruWsra212s687Gd9unTpEi5cuKAxbe3atXB0dESdOnUAqI5zVFRUlnNs9erVUCgUaN68ea7rsLGxwdChQ7Fq1SrMmzcPtWrVQuPGjfMVr7p30po1azSmb9myBUlJSdL/64P6xqw+n9WWLVumt3Vmpu25Baj204sXL7IMGrl69Wrp//NK3TsuIiJCY/rGjRuz9EB79913pSEC6tatm+VHnRw1bdoUz58/l6qt1XJLQl737rvv4smTJ8jIyMh2XZUrVwagesJjYWGBf/75J9tydevWzXU9nTt3hkKhyBLr3r17IYTgUB0y4JMjAgAkJCSgefPmCA4ORpUqVeDo6IhTp05h37596NKli87WM3PmTLzzzjto3rw5Pv74Y1hZWWHx4sW4ePEi1q1bJ90kpk6dKrUt+Pzzz+Hi4oKIiAjs3r0bs2fPhrOzMwDVmC22traIiIiAn58fHBwc4OnpqdH2SZcUCgX69OkjDWpXs2ZN/PnnnwVqE9CkSRP07dsXX375JR48eIB3330X1tbWOHfuHOzs7PDhhx8CAKpXr47169djw4YNKFeuHGxsbFC9evVsl6ntfs6L1atXY+DAgQgPD9eq3ZGnpyc6duyIadOmwcPDA2vWrMGBAwcwa9YsqU3OuHHjsHr1arRv3x4zZsyAt7c3du/ejcWLF2PEiBFaJXEjR47E7NmzcebMGYSGhuZ5u9TeeecdtG7dGp988gkSExPRuHFj/PXXX5g6dSpq166t1/FmGjVqhOLFi2P48OGYOnUqLC0tERERkSW51Jfq1avj8OHD2LlzJzw8PODo6Cjd+F/Xr18/LFq0CCEhIbh9+zaqV6+O48eP4+uvv0a7du3QqlWrPK/fz88Pffr0wfz582FpaYlWrVrh4sWLmDt3bpaqrhkzZuDAgQNo1KgRRo8ejcqVKyM5ORm3b9/Gnj17sHTpUnh5eSEkJATfffcd+vTpgy+//BIVKlTA3r17sX//fgDaPY3p2bMnIiIi0K5dO4wZMwb169eHpaUlYmJiEBkZiffeew+dO3eGj48PZsyYgSlTpuDmzZto06YNihcvjgcPHuDPP/+Evb09pk+fnuN6qlSpglGjRmHx4sVwdHRE27Ztce3aNXz66aeoXbs2unfvnud9SgUkZ2twMh7Jycli+PDhokaNGsLJyUnY2tqKypUri6lTp2r0lMip94m3t7do3759lukAxKhRozSmHTt2TLRo0ULY29sLW1tbERgYKHbu3Jll3r///lt06NBBODs7CysrK1GzZs1se4mtW7dOVKlSRVhaWmr0aMqut5kQ2vf2yWn+hIQEMXjwYOHu7i7s7e1Fhw4dxO3bt3Psrfbo0SON+dW9iG7duiVNy8jIEN99953w9/cXVlZWwtnZWTRs2FBjv9y+fVsEBQUJR0dHAUDqcZRTDzpt9nNOPZrUPcEiIyOzlNW2K3/79u3F5s2bRbVq1YSVlZXw8fER8+bNy1L2zp07Ijg4WLi6ugpLS0tRuXJlMWfOHJGRkaFR7vX9m1mzZs2Ei4uLRtdqtbwch1evXolPPvlEeHt7C0tLS+Hh4SFGjBghnj17lu32vS678119fDIPYZDdOXjixAnRsGFDYWdnJ0qUKCEGDx4szp49m2Wf66O32vnz50Xjxo2FnZ2dAJBtr8jMnjx5IoYPHy48PDyEhYWF8Pb2FpMnT9YY7kAI7XurCSFESkqK+Oijj0TJkiWFjY2NCAwMFCdPnhTe3t5ZetI9evRIjB49Wvj6+gpLS0vh4uIiAgICxJQpU8SLFy+kctHR0aJLly7CwcFBODo6ivfff1/s2bNHABDbt2/X2CfZXetCCJGWlibmzp0ratasKWxsbISDg4OoUqWKGDZsmLh+/bpG2Z9//lk0b95cODk5CWtra+Ht7S26du0qDh48+MbtT09PF998842oUKFCruceGYZCCCEMmYwRUeHn4+MDf39/aVBEfXr48CG8vb3x4YcfYvbs2XpfH5m2r7/+Gp9++imio6P1Pko5mS5WqxGRSYqJicHNmzcxZ84cmJmZZXlfGNEPP/wAQFVtlZaWhkOHDmHBggXo06cPEyPKFZMjIjJJoaGhmDFjBnx8fBAREaHRy4kIUHXP/+6773D79m2kpKSgbNmy+OSTT/Dpp5/KHRoZOVarEREREWUie1f+o0ePokOHDvD09IRCocjSPTQ7R44cQUBAgPQyy6VLl+o/UCIiIioSZE+OkpKSULNmTalu+E1u3bqFdu3aoUmTJjh37hz+97//YfTo0diyZYueIyUiIqKiwKiq1RQKBbZt24ZOnTrlWOaTTz7Bjh07NN41NHz4cFy4cEHr920RERER5cTkGmSfPHkSQUFBGtNat26NsLAwpKWlZfu+nZSUFI3XPSiVSjx9+hSurq75GgyPiIiIDE8IgefPn8PT01Ovr1UxueQoLi4uy4sD3d3dkZ6ejsePH2f7bqqZM2fmOjopERERmY67d+/qdTgGk0uOgKwvCFTXDOb0FGjy5MkYP3689HdCQgLKli2Lu3fvZhmanohMyL17wD//AOXLA7l15de2HBEZtcTERJQpU0Z66a++mFxyVKpUqSxvVX748CEsLCykNzu/ztraOssLHQHAycmJyRGRqQoLA4YOBZRKwMwMWL4cGDQo/+WIyGTou0mM7L3V8qphw4Y4cOCAxrRffvkFdevWzba9EREVQjEx/yU8gOr3sGGq6fkpR0SUiezJ0YsXL3D+/HmcP38egKqr/vnz5xEdHQ1AVSWW+Q3gw4cPx507dzB+/HhcvnwZ4eHhCAsLw8cffyxH+EQkh+vX/0t41DIygBs38leOiCgT2avVTp8+jebNm0t/q9sGhYSEYOXKlYiNjZUSJQDw9fXFnj17MG7cOCxatAienp5YsGAB3n//fYPHTkQyqVhRVUWWOfExNwcqVMhfOSKiTIxqnCNDSUxMhLOzMxISEtjmiMhUhYWpqsgyMlQJz7JlObc50qYcERk9Q92/mRwxOSIyXTExqiqyChWA3Lr1aluOiIyaoe7fslerERHlm5eXdsmOtuWIiGAEDbKJiIiIjAmTIyIiIqJMmBwRERERZcLkiIiIiCgTJkdEREREmTA5IiIiIsqEyRERERFRJkyOiIiIiDJhckRERESUCZMjIiIiokyYHBERERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERERJQJkyMiIiKiTJgcEREREWXC5IiIiIgoEyZHRGR8YmKAyEjV76K0biIyCkyOiMi4hIUB3t5Aixaq32FhRWPdRGQ0FEIIIXcQhpaYmAhnZ2ckJCTAyclJ7nCISC0mRpWUKJX/TTM3B27fBry8Cu+6iUgrhrp/88kRERmP69c1kxMAyMgAbtwo3OsmIqPC5IiIjEfFioDZax9L5uZAhQqFe91EZFSYHBGR8fDyApYvVyUlgOr3smWGqdaSc91EZFTY5ohtjoiMT0yMqjqrQgXDJydyrpuIcmWo+7eF3pZMRJRfXl7yJSZyrpuIjAKr1YiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiIiIiCgTJkdEREREmTA5IiIiIsqEyRERERFRJkyOiIiIiDJhckRERESUCZMjIiIiokyYHBERERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERERJQJkyMiIiKiTJgcEREREWXC5IiIiIgoEyZHRERERJkwOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiIiIiCgTJkdEREREmTA5IiIiIsqEyRERERFRJkyOiIiIiDIxiuRo8eLF8PX1hY2NDQICAnDs2LFcy0dERKBmzZqws7ODh4cHBgwYgCdPnhgoWiIiIirMZE+ONmzYgLFjx2LKlCk4d+4cmjRpgrZt2yI6Ojrb8sePH0e/fv0waNAgXLp0CZs2bcKpU6cwePBgA0dOREREhZHsydG8efMwaNAgDB48GH5+fpg/fz7KlCmDJUuWZFv+999/h4+PD0aPHg1fX1+89dZbGDZsGE6fPm3gyImIiKgwkjU5Sk1NxZkzZxAUFKQxPSgoCCdOnMh2nkaNGiEmJgZ79uyBEAIPHjzA5s2b0b59+xzXk5KSgsTERI0fIpJBTAwQGan6beoK07YQkQZZk6PHjx8jIyMD7u7uGtPd3d0RFxeX7TyNGjVCREQEevToASsrK5QqVQrFihXDwoULc1zPzJkz4ezsLP2UKVNGp9tBRFoICwO8vYEWLVS/w8Lkjij/CtO2EFEWslerAYBCodD4WwiRZZpaVFQURo8ejc8//xxnzpzBvn37cOvWLQwfPjzH5U+ePBkJCQnSz927d3UaPxG9QUwMMHQooFSq/lYqgWHDTPOpS2HaFiLKloWcK3dzc4O5uXmWp0QPHz7M8jRJbebMmWjcuDEmTJgAAKhRowbs7e3RpEkTfPnll/Dw8Mgyj7W1NaytrXW/AUSknevX/0sm1DIygBs3AC8veWLKr8K0LUSULVmfHFlZWSEgIAAHDhzQmH7gwAE0atQo23levnwJMzPNsM3NzQGonjgRkRGqWBF47bqFuTlQoYI88RREYdoWIsqW7NVq48ePR2hoKMLDw3H58mWMGzcO0dHRUjXZ5MmT0a9fP6l8hw4dsHXrVixZsgQ3b97Eb7/9htGjR6N+/frw9PSUazOIKDdeXsDy5aokAlD9XrbMNJ+0FKZtIaJsyVqtBgA9evTAkydPMGPGDMTGxsLf3x979uyBt7c3ACA2NlZjzKP+/fvj+fPn+OGHH/DRRx+hWLFiaNGiBWbNmiXXJhCRNgYNAlq3VlU/Vahg2slEYdoWIspCIYpgXVRiYiKcnZ2RkJAAJycnucMhIiIiLRjq/i17tRoRERGRMWFyRERERJSJ7G2OiIgKIj4+HidOnMCVK1fwzz//IDExEa9evYK9vT1cXFxQoUIF+Pv7o169erCzs5M7XCIyAUyOiMjkxMTEYN26ddi4cSPOnDmj1TAe1tbWaNKkCbp3744ePXqwvSER5YgNsvkBSWQyzpw5g9mzZ2Pz5s1QZhqIsWLFiqhVqxYqVKgAV1dX2NjYICkpCY8fP8aVK1dw9uxZ3Lt3TypvZ2eHgQMHYuLEiXydEJEJMdT9m8kRkyMioxcdHY2JEydiw4YN0rQmTZqgd+/e6NChwxvHOBNC4OrVq9i+fTtWrlyJK1euAAAsLS0xatQoTJs2Dc7OznrdBiIqOCZHesTkiMg0ZGRkYM6cOZgxYwZevXoFhUKB3r17Y8KECahRo0a+limEwKFDh/DVV18hMjISAFCyZEksXLgQ3bt312X4RKRj7MpPREXa7du30axZM0yePBmvXr3C22+/jbNnz+Knn37Kd2IEqF503bJlSxw6dAj79+9H5cqV8fDhQ/To0QP9+vVDYmKiDreCiEwRkyMiMjq7d+9GzZo1cfz4cTg4OGDFihU4fPgwatWqpdP1BAUF4a+//sJnn30GMzMz/PTTT6hduzYuXryo0/UQkWlhckRERkMIgW+//RYdOnRAYmIiGjZsiAsXLqB///5QKBR6WaeVlRVmzJiBo0ePwsfHBzdv3kSjRo2we/duvayPiIwfkyMiMgoZGRkYMWIEPv74YwghMGTIEBw+fBjlypUzyPobN26M06dPo1mzZnj+/Dk6dOiAxYsXG2TdRGRcmBwRkezS09MREhKCZcuWwczMDPPnz8eyZctgZWVl0DhcXV2xf/9+DBkyBEIIjBo1CnPmzDFoDEQkPyZHRCSrtLQ09OzZExEREbCwsMDatWsxZswYvVWjvYmVlRWWLVuGKVOmAAAmTpyI6dOnyxILEcmDyRERyUapVKJ///7YsmULrKyssGXLFvTo0UPusKBQKPDll1/iq6++AgBMmzYNc+fOlTkqIjIUJkdEJAshBMaMGYO1a9fCwsICW7duRceOHeUOS8P//vc/zJw5EwAwYcIEhIeHyxwRERkCkyMiksVXX32FH374AQqFAqtWrUL79u3lDilbkyZNwoQJEwAAQ4YMwY4dO2SOiIj0jckRERncli1b8NlnnwEAFixYgODgYJkjyt2sWbMwaNAgKJVKBAcH48KFC3KHRER6xOSIiAzq/Pnz6NevHwBg7Nix+OCDD2SO6M0UCgWWLFmCli1bIikpCR07dsTDhw/lDouI9ITJEREZzIMHD9CxY0e8fPkSrVu3Nqlu8paWlti0aRMqVqyI6OhodOnSBWlpaXKHRUR6wOSIiAwiIyMDPXr0wN27d1GpUiWsX78eFhYWcoeVJ8WLF8fOnTvh7OyM3377Df/73//kDomI9IDJEREZxBdffIEjR47AwcEBO3bsQLFixeQOKV8qV66MFStWAADmzp2LnTt3yhwREekakyMi0rvDhw/jiy++AAAsXboUlStXljmiguncuTPGjBkDAAgJCUF0dLTMERGRLjE5IiK9evToEXr37g2lUokBAwagd+/ecoekE7Nnz0a9evXw7Nkz9OzZE+np6XKHREQ6wuSIiPRGCIHBgwfj/v378PPzw8KFC+UOSWesrKywceNGODs74+TJk5g9e7bcIRGRjjA5IiK9WbNmDXbs2AFLS0usX78e9vb2coekUz4+PlLCN23aNI5/RFRIMDkiIr24f/8+Ro8eDUCVONSoUUPmiPSjT58+6NSpE9LS0tCvXz+kpqbKHRIRFRCTIyLSOSEEhg4divj4eNStWxcTJ06UOyS9USgUWLZsGdzc3PDXX39h+vTpcodERAXE5IiIdG716tXYvXs3rKyssGrVKpMbzyivSpYsiWXLlgFQvWqE1WtEpo3JERHp1OPHjzF+/HgAwPTp01G1alWZIzKMLl26oFu3bsjIyMCwYcOQkZEhd0hElE9MjohIpyZOnIinT5+iRo0a+Oijj+QOx6Dmz58PJycn/PHHH9KTJCIyPUyOiEhnjh07Jo0evXTpUlhaWsockWF5enpi5syZAIDJkyfj/v37MkdERPnB5IiIdCI1NRUjRowAAAwdOhQNGzaUOSJ5DBs2DA0aNEBiYiLGjh0rdzhElA9MjohIJ+bPn49Lly6hRIkS0tOTosjc3BzLli2Dubk5Nm3ahEOHDskdEhHlEZMjIiqwuLg46d1ps2fPhouLi8wRyatmzZrSU7SxY8fy1SJEJobJEREV2GeffYYXL16gXr166Nevn9zhGIXp06fDxcUFf//9N3788Ue5wyGiPGByREQFcv78eYSFhQEAvvvuO5iZ8WMFAFxcXDBjxgwAquTx6dOnMkdERNripxgR5ZsQAuPHj4cQAj169EDjxo3lDsmoDBs2DNWqVcOTJ08wbdo0ucMhIi0xOSKifNuxYwciIyNhbW2NWbNmyR2O0bGwsMD3338PAFiyZAmuX78uc0REpA0mR0SUL6mpqfj4448BAB999BG8vb1ljsg4tWzZEu3atUN6ejo+/fRTucMhIi0wOSKifAkNDcWNGzfg7u6OSZMmyR2OUZs5cyYUCgU2btyI06dPyx0OEb0BkyMiyrOkpCSp6/5nn30GR0dHmSMybjVq1ECfPn0AAJ988gmEEDJHRES5YXJERHm2cOFCxMXFwcfHB0OGDAFiYoDISNVv0vTvvpkxYgSsrKxw6NAhHDhwQO6oiCgXTI6IKE/i4+OlxtfTp0+H1U8/Ad7eQIsWqt//dusnqPbFv/vG5623MPLttwGonh4plUqZgyOinDA5IqI8mTNnDuLj41GtWjX0btoUGDoUUN/olUpg2DA+QQJU++C1fTPl0CE4Ojjg/Pnz2Lhxo7zxEVGOmBwRkdbi4uIwf/58AMCXX34J85s3/7v5q2VkADduGD44Y3P9epZ946ZU4uOuXQGonrplZGTIERkRvQGTIyLS2syZM/Hy5Us0aNAA7733HlCxIvD6iNjm5kCFCvIEaExy2DdjJkxAsWLFcOXKFT49IjJSTI6ISCtxcXFYvnw5AOCLL76AQqEAvLyA5ctVCRGg+r1smWp6UZfDvnGuWhUfffQRAGDGjBl8ekRkhBSiCPYpTUxMhLOzMxISEuDk5CR3OEQm4eOPP8a3336LwMBAnDhxQpUcqcXEqKrSKlRgYvS6bPZNYmIifHx88OzZM0RERCA4OFjmIIlMg6Hu30yOmBwRvdGjR4/g4+ODly9fYs+ePWjbtq3cIZm8r776Cp9++ikqV66MS5cuwVz9hImIcmSo+zer1YjojebNm4eXL1+ibt26aNOmjdzhFAoffvghihcvjqtXr2LDhg1yh0NEmTA5IqJcPXnyBD/88AMA1WjYGtVplG9OTk5se0RkpJgcEVGuvv/+e7x48QI1a9ZEhw4d5A6nUPnwww9RrFgxXL16Fdu3b5c7HCL6F5MjIspRfHw8vv/+ewB8aqQPTk5OGDVqFADgm2++4TvXiIwEkyMiytEPP/yAxMREVKtWDZ07d5Y7nEJpzJgxsLW1xalTpxAZGSl3OEQEJkdElINXr15hwYIFAID//e9/MHt9QEPSiRIlSmDQoEEAVINsEpH8+GlHRNlatWoVHj16BG9vb3Tv3l3ucAq1jz76CObm5jh48CBOnz4tdzhERR6TIyLKIiMjA99++y0AYPz48bCwsJA5osLNx8dHGghy1qxZMkdDREyOiCiLn3/+GTdu3EDx4sUxcOBAucMpEiZOnAgA2LJlC65duyZzNERFG5MjItIghMDs2bMBAKNGjYKDg4PMERUN/v7+6NChg8b+JyJ5MDkiIg3Hjh3Dn3/+CWtra3zwwQdyh1OkTJo0CQDw008/IS4uTuZoiIouJkdEpGHOnDkAgP79+8Pd3V3maIqWRo0aITAwEKmpqViyZInc4RAVWUyOiEgSFRWFXbt2QaFQSK+2IMMaN24cAGDJkiVITk6WORqioonJERFJ5s2bBwDo1KkTKlasKHM0RVOXLl1QtmxZPHr0CBEREXKHQ1QkGUVytHjxYvj6+sLGxgYBAQE4duxYruVTUlIwZcoUeHt7w9raGuXLl0d4eLiBoiUqnB4/fizdjPnUSD4WFhYYPXo0AOC7777jK0WIZCB7crRhwwaMHTsWU6ZMwblz59CkSRO0bdsW0dHROc7TvXt3/PrrrwgLC8PVq1exbt06VKlSxYBRExU+P/74I5KTkxEQEIBGjRrJHU6RNnjwYDg4OODSpUs4cOCA3OEQFTkKIfPXkgYNGqBOnToajQ/9/PzQqVOnbIfS37dvH3r27ImbN2/CxcUlX+tMTEyEs7MzEhIS4OTklO/YiQqLtLQ0+Pr64t69e1i1ahX69esnd0hF3pgxY7BgwQK0adMGe/fulTscIqNgqPu3rE+OUlNTcebMGQQFBWlMDwoKwokTJ7KdZ8eOHahbty5mz56N0qVLo1KlSvj444/x6tWrHNeTkpKCxMREjR8i+s/WrVtx7949uLu7o0ePHnKHQ1AlRwqFAvv27UNUVJTc4RAVKbImR48fP0ZGRkaW7sLu7u45jvFx8+ZNHD9+HBcvXsS2bdswf/58bN68GaNGjcpxPTNnzoSzs7P0U6ZMGZ1uB5Gp+/777wEAw4cPh7W1tczREACUK1cOnTp1AgDMnz9f1liIihrZ2xwBgEKh0PhbCJFlmppSqYRCoUBERATq16+Pdu3aYd68eVi5cmWOT48mT56MhIQE6efu3bs63wYiU3Xq1CmcPHkSlpaWGD58uNzhUCbqbv1r1qzB06dPZY6GqOiQNTlyc3ODubl5lqdEDx8+zHHwOQ8PD5QuXRrOzs7SND8/PwghEBMTk+081tbWcHJy0vghIpUFCxYAAHr27IlSpUrJHA1l9tZbb6FmzZp49eoVVqxYIXc4REWGrMmRlZUVAgICsvTGOHDgQI69ZRo3boz79+/jxYsX0rRr167BzMwMXl5eeo2XqLCJjY3Fhg0bAEDqPk7GQ6FQSE0GFi9eDKVSKXNEREWD7NVq48ePR2hoKMLDw3H58mWMGzcO0dHR0uP9yZMna/ScCQ4OhqurKwYMGICoqCgcPXoUEyZMwMCBA2FrayvXZhCZpKVLlyItLQ2NGjVC3bp15Q6HshEcHIxixYrh5s2b2Ldvn9zhEBUJsidHPXr0wPz58zFjxgzUqlULR48exZ49e+Dt7Q1A9c0285hHDg4OOHDgAOLj41G3bl307t0bHTp0kKoGiEg7qampWLp0KQBVzygyTvb29hgwYAAAYNGiRTJHQ1Q0yD7OkRw4zhERsH79evTq1Quenp64ffs2LC0t5Q6JcnD9+nVUqlQJCoUC169fR/ny5eUOiUgWRWKcIyKSj3rg1SFDhjAxMnIVK1ZEmzZtIITQGDCXiPSDyRFREXTp0iUcPXoU5ubmGDJkiNzhkBbUDbPDwsLw8uVLmaMhKtyYHBEVQeq2Rh07dkTp0qVljoa00bZtW/j6+iI+Ph7r1q2TOxyiQo3JEVER8+LFC6xevRoAMGLECJmjIW2Zm5tLx+uHH35AEWwuSmQwTI6Iiph169YhMTERFSpUQMuWLeUOh/Jg4MCBsLGxwfnz53Hy5Em5wyEqtJgcERUhmRv0Dh8+HGZm/AgwJa6urujZsycAYNmyZTJHQ1R48ZORqAg5deoUzp07B2tra/Tv31/ucCgfhg4dCgDYuHEjnj17JnM0RIUTkyOiIkT91Kh79+5wdXWVORrKj8DAQFSvXh3JyclYs2aN3OEQFUpMjoiKiKdPn2L9+vUA2BDblCkUCunp0bJly9gwm0gPmBwRFRGrVq1CcnIyatasicDAQLnDoQLo06cPbG1tcenSJTbMJtIDJkdERYAQQhrbaMSIEVAoFDJHRAVRrFgx9OjRAwCwfPlymaMhKnyYHBEVAceOHcO1a9fg4OCA4OBg7WeMiQEiI1W/Sb/yuK/VVWsbNmxgw2wiHWNyRFQEhIaGAgB69eoFR0dH7WYKCwO8vYEWLVS/w8L0GGERl499zYbZRPqjEEWwNZ+h3upLZAzi4+Ph4eGB5ORk/PHHH6hfv/6bZ4qJUd2klcr/ppmbA7dvA15eeou1SCrAvv7hhx/w4Ycfwt/fH3/99RerS6nQM9T9m0+OiAq5tWvXIjk5GdWrV0e9evW0m+n6dc2bNQBkZAA3bug+wKKuAPta3TD74sWLbJhNpENMjogKOXWV2qBBg7R/slCxIvD66Nnm5kCFCjqOjgqyr9kwm0g/mBwRFWJnz57FuXPnYGVlhT59+mg/o5cXsHy56iYNqH4vW8YqNX0o4L5mw2wi3WNyRFSIqZ8adenSJe8jYg8apGr3Ehmp+j1okM7jo38VYF9nbpi9bt06vYVIVJQwOSIqpF6+fImIiAgAwODBg/O3EC8voFkzPjEyhHzua4VCgYEDBwIAwsPD9RAYUdHD5IiokNq8eTMSExPh6+uL5s2byx0O6VHv3r1haWmJM2fO4MKFC3KHQ2TymBwRFVKZG2Kbvd7glwqVEiVKoGPHjgCAFStWyBwNkenjJyZRIXT16lUcO3YMZmZm6N+/v9zhkAGoq9bWrFmDlJQUmaMhMm1MjogKobB/R1hu164dSpcuLXM0ZAhBQUHw9PTEkydPsHPnTrnDITJpTI6ICpm0tDSsWrUKQAEaYpPJsbCwQEhICABWrREVFJMjokJm165dePjwIUqVKoV27drJHQ4Z0IABAwAA+/btw71792SOhsh0MTkiKmTUT4369esHS0tLmaMhQ6pYsSKaNGkCpVKJ1atXyx0OkckqUHL08OFDxMXF6SoWIiqgx48fY/fu3QBUyREVPZnHPCqC7xUn0ol8JUd//fUXqlWrBg8PD5QuXRqlS5fGp59+iqSkJF3HR0R5sH79eqSnp6NOnTqoVq2a3OGQDLp27QoHBwfcuHEDx48flzscIpOUr+Ro0KBBcHd3x/Hjx3Hu3Dl8+eWX2Lt3L+rWrct3+xDJ6KeffgLAp0ZFmYODg/QyWo6YTZQ/CpGP56729vY4c+YMqlSpIk0TQqBbt26wsbHBmjVrdBqkriUmJsLZ2RkJCQlwcnKSOxwinbhy5Qr8/Pxgbm6O+/fvo2TJknKHRDI5ceIEGjduDDs7O8TFxcHR0VHukIh0wlD373w9OcruCZFCocDXX3+N7du36yQwIsob9VOjNm3aMDEq4ho2bIjKlSvj5cuX2Lhxo9zhEJkcrZOj9u3b43//+x82btyI4cOHY9y4cXjw4IFGmYSEBBQvXlznQRJR7pRKpfTEllVqxJfREhWM1tVqkyZNwvnz53HhwgUpKbK1tUX37t1Rq1YtZGRkYMWKFZg2bRref/99vQZdUKxWo8Lm8OHDaN68OZydnREbGwtbW1u5QyKZxcbGokyZMsjIyMCVK1dQuXJluUMiKjCjq1b75ptvsG/fPsTGxiI2NhZ79uzBZ599hlevXmHJkiWYOHEirl27hunTp+stWCLKnnpMm27dujExIgCAh4cH2rRpAwAc84goj/LVIDs7r169woULF3DhwgUMGzZMF4vUGz45osLk5cuXcHd3x4sXL3D06FE0adJE7pDISGzatAndu3dHmTJlcPv2bZiZcdxfMm1G9+ToTWxtbREYGGj0iRFRYbN9+3a8ePECvr6+aNy4sdzhkBHp0KEDihUrhrt37+Lw4cNyh0NkMvg1gsjEqatM+vbtyycDpMHGxkYa84hVa0Ta4ycpkQmLjY3FL7/8AgDo06ePzNGQMVL3Xty8eTNevHghczREpoHJEZEJW7t2LZRKJRo2bIiKFSvKHQ4ZoYYNG6JChQpISkrCtm3b5A6HyCQwOSIyYXxdCL2JQqGQzo9Vq1bJHA2RaWByRGSi1L1Drays0L17d7nDISPWt29fAMChQ4dw9+5dmaMhMn5MjohMlPqp0bvvvgsXFxeZoyFj5uPjg6ZNm0IIYfTvviQyBkyOiExQeno6IiIiALBKjbQTEhICQNVrTUfD2xEVWkyOiEzQr7/+iri4OLi6uqJt27Zyh0Mm4P3334etrS2uXLmCU6dOyR0OkVFjckRkgtRj1vTs2RNWVlYyR0OmwMnJCV26dAHAMY+I3oTJEZGJef78udQlm1VqlBfq82XdunVITU2VORoi48XkiMjEbNmyBa9evULlypVRr149ucMhE9KyZUt4enri6dOn2L17t9zhEBktJkdEJkZdJdKvXz8oFAqZoyFTYm5uLo2kzqo1opwxOSIyIXfu3EFkZCQAoHfv3vlfUEwMEBmp+k2mpYDHTl21tnv3bjx+/FiXkREVGkyOiEyIuvt+s2bN4O3tnb+FhIUB3t5Aixaq32FhOoyQ9EoHx65atWoICAhAWloa1q9fr4cgiUwfkyMiEyGEKPjrQmJigKFDAaVS9bdSCQwbxidIpkCHx46vEyHKHZMjIhNx+vRpXLlyBTY2Nnj//ffzt5Dr1/+7uaplZAA3bhQ8QNIvHR67Xr16wcLCAqdPn0ZUVJSOAiQqPJgcEZkIdQPazp07w8nJKX8LqVgRMHvtsjc3BypUKGB0pHc6PHYlSpRAu3btALBhNlF2mBwRmYDU1FSpfUiBxjby8gKWL1fdVAHV72XLVNPJuOn42KlfJxIREYGMjAxdRUlUKChEEXzJTmJiIpydnZGQkJD/b+BEBrRjxw689957KFWqFO7evQsLC4uCLTAmRlUdU6ECEyNTo6Njl5KSAg8PDzx79gwHDx5Ey5YtdRgkkX4Y6v7NJ0dEJkBd9REcHFzwxAhQ3VSbNWNiZIp0dOysra3Ro0cPAKxaI3odkyMiI/fs2TPs3LkTAF8XQrrVt29fAKpR15OSkmSOhsh4MDkiMnIbN25EamoqatSogZo1a8odDhUiDRs2RPny5ZGUlCS9r4+ImBwRGb3Mrwsh0iWFQiGdV+oxtIiIyRGRUbtx4wZOnDgBMzMzBAcHyx0OFULqd60dPHgQ9+7dkzkaIuPA5IjIiKm/zb/zzjvw8PCQORoqjMqVK4e33noLSqUSa9eulTscIqPA5IjISOnkdSFEWlA3zF69ejWK4OguRFkwOSIyUr/99htu3boFBwcHdOrUSe5wqBDr1q0brK2tcfHiRVy4cEHucIhkZxTJ0eLFi+Hr6wsbGxsEBATg2LFjWs3322+/wcLCArVq1dJvgEQyUDfE7tq1K+zs7GSOhgqz4sWLo2PHjgDYMJsIMILkaMOGDRg7diymTJmCc+fOoUmTJmjbti2io6NznS8hIQH9+vXjqK5UKCUnJ2Pjxo0AWKVGhqGuWouIiEB6errM0RDJS/bkaN68eRg0aBAGDx4MPz8/zJ8/H2XKlMGSJUtynW/YsGEIDg5Gw4YNDRQpkeHs3LkTCQkJKFOmDJo2bSp3OFQEtGnTBm5ubnjw4AEOHDggdzhEspI1OUpNTcWZM2cQFBSkMT0oKAgnTpzIcb4VK1bgn3/+wdSpU7VaT0pKChITEzV+iIyZukqtT58+MHv9TexEemBpaYlevXoBYNUakayfuo8fP0ZGRgbc3d01pru7uyMuLi7bea5fv45JkyYhIiJC63dMzZw5E87OztJPmTJlChw7kb48fPgQe/fuBfBfVQeRIaircLdt28YvkVSkGcVXUoVCofG3ECLLNADIyMhAcHAwpk+fjkqVKmm9/MmTJyMhIUH6uXv3boFjJtKX9evXIyMjA/Xq1YOfn5/c4VAREhAQAD8/PyQnJ2PLli1yh0MkG1mTIzc3N5ibm2d5SvTw4cMsT5MA4Pnz5zh9+jQ++OADWFhYwMLCAjNmzMCFCxdgYWGBQ4cOZbsea2trODk5afwQGSt1lRqfGpGhKRQKjTGPiIoqWZMjKysrBAQEZGn8d+DAATRq1ChLeScnJ/z99984f/689DN8+HBUrlwZ58+fR4MGDQwVOpFeREVF4cyZM7CwsEDPnj3lDoeKoN69e0OhUODw4cO4c+eO3OEQyUL2arXx48cjNDQU4eHhuHz5MsaNG4fo6GgMHz4cgKpKTF0PbmZmBn9/f42fkiVLwsbGBv7+/rC3t5dzU4gKTN0Qtl27dihRooTM0VBRVLZsWTRr1gyAqls/UVEke3LUo0cPzJ8/HzNmzECtWrVw9OhR7NmzB97e3gCA2NjYN455RFQYZGRkYM2aNQA4thHJS33+8XUiVFQpRBE88xMTE+Hs7IyEhAS2PyKj8euvv6JVq1YoVqwY4uLiYG1tLXdIVEQ9f/4c7u7uePXqFf7880/Uq1dP7pCIABju/i37kyMiUlE3gO3RowcTI5KVo6MjOnfuDIANs6loYnJEZASSkpKkrtOsUiNjoD4P161bh9TUVJmjITIsJkdERmDbtm1ISkpC+fLl+UocMgotW7ZEqVKl8OTJE+zbt0/ucIgMiskRkRHIPLZRdgOgEhmahYUFevfuDYBVa1T0MDkiktm9e/dw8OBBADoY+DEmBoiMVP2mok0H54K6am3nzp149uyZriIjMnpMjohktnbtWggh8NZbb6FcuXL5X1BYGODtDbRoofodFqa7IMm06OhcqFGjBmrUqIHU1FRs3LhRx0ESGS8mR0QyEkJg1apVAAr41CgmBhg6FFAqVX8rlcCwYXyCVBTp+FzIPOYRUVHB5IhIRufPn8elS5dgbW2Nbt265X9B16//dzNUy8gAbtwoWIBkenR8LgQHB8PMzAwnTpzAP//8o4MAiYwfkyMiGalfF9KxY0cUL148/wuqWBEwe+1yNjcHKlQoQHRkknR8Lnh4eOCdd94B8N/5SlTYMTkikkl6err07qoCj23k5QUsX666CQKq38uWqaZT0aKHc0F9fv700098nQgVCXx9CF8fQjLZs2cP2rdvjxIlSuDevXuwtLQs+EJjYlTVJxUqMDEq6nR4Lrx8+RLu7u548eIFjh8/jsaNG+soSKK84etDiAo5dQPXXr166SYxAlQ3wWbNmBiRTs8FOzs7dO3aFQAbZlPRwOSISAYJCQnYvn07AL4uhEyDujflxo0bkZycLHM0RPrF5IhIBps3b0ZycjL8/PxQp04ducMheqNmzZqhTJkyiI+Px65du+QOh0ivmBwRyUBdNdGvXz++LoRMgpmZGfr06QOAVWtU+DE5IjKw27dv4+jRo1AoFNK7q4hMgbpqbe/evXj06JHM0RDpD5MjIgNbs2YNAKBFixYoU6aMzNEQac/Pzw9169ZFeno61q9fL3c4RHrD5IjIgIQQUpVEgV8ySyQD9XnLASGpMGNyRGRAv//+O65fvw47Ozu8//77codDlGc9e/aEhYUFTp06hcuXL8sdDpFeMDkiMiD1S2bff/99ODg4yBwNUd6VLFkSbdu2BcCnR1R4MTkiMpDk5GRs2LABABASEiJzNET5p65aW7NmDZSvv+SWqBBgckRkIDt37kR8fDy8vLzQrFkzucMhyrcOHTrA2dkZd+/exZEjR+QOh0jnmBwRGYi6Sq1v374wV78UlMgE2djYoHv37gBYtUaFE5MjIgN48OAB9u3bB4CvC6HCQX0eb9q0CS9fvpQ5GiLdYnJEZABr165FRkYG6tevjypVqsgdDlGBNW7cGL6+vnjx4gV+/vlnucMh0ikmR0QGoK5SY0NsKiwUCgXHPKJCi8kRkZ5duHABFy5cgKWlJXr27Cl3OEQ6o06OfvnlF8TGxsocDZHuMDki0jP1iNgdOnSAi4tL3hcQEwNERqp+E+laAc6vChUqoGHDhlAqlVi3bp0egiOSB5MjIj1KT09HREQEgHxWqYWFAd7eQIsWqt9hYTqOkIo0HZxf6obZ6i8BRIWBQggh5A7C0BITE+Hs7IyEhAQ4OTnJHQ4VYnv27EH79u3h5uaG+/fvw9LSUvuZY2JUN6zMg+yZmwO3bwNeXjqPlYoYHZ1fT58+hYeHB1JTU3HhwgXUqFFD97ES/ctQ928+OSLSI3VD7ODg4LwlRgBw/brmjQsAMjKAGzd0FB0VaTo6v1xcXPDuu+8CYMNsKjyYHBHpSXx8PLZv3w4gn1VqFSsCZq9doubmQIUKOoiOijwdnl/qqrWIiAhkZGToIjoiWTE5ItKTjRs3IiUlBf7+/qhdu3beF+DlBSxfrrphAarfy5axSo10Q4fnV9u2beHq6orY2Fj8+uuvOg6UyPCYHBHpibqBar9+/aBQKPK3kEGDVG1AIiNVvwcN0ll8RLo6v6ysrKRhKtgwmwoDNshmg2zSgxs3bqBixYowMzNDTEwMPDw85A6JSK/+/PNPNGjQALa2tnjw4AEcHR3lDokKITbIJjJh6m/PQUFBTIyoSKhXrx4qVaqEV69eYevWrXKHQ1QgTI6IdEypVEq91PiSWSoqFAoFxzyiQoPJEZGOHTp0CNHR0ShWrBg6deokdzhEBtO7d28AQGRkJO7evStzNET5x+SISMfCw8MBqMY2srW1lTkaIsPx8fFB06ZNIYSQRoYnMkVMjoh06NmzZ1J7i4EDB8ocDZHhZa5aK4L9faiQYHJEpEPr1q1DSkoKatSogTp16sgdDpHBde3aFTY2Nrh8+TLOnj0rdzhE+cLkiEiH1FVqAwcOzP/YRkQmzMnJSWprt3LlSlljIcovJkdEOnLhwgWcOXMGlpaWUsNUoqJowIABAIA1a9bg1atXMkdDlHdMjoh0ZMWKFQCA9957D25ubjJHQySfVq1aoWzZsoiPj8e2bdvkDocoz5gcEelASkoK1qxZA4ANsYnMzMyk6yAsLEzmaIjyjskRkQ7s3LkTT548gaenJ4KCguQOh0h2AwYMgEKhwKFDh/DPP//IHQ5RnjA5ItIBdUPskJAQmKvfcv4mMTGqF37GxOgxMiIdyeP5WrZsWemLgrrKmchUMDkiKqCYmBjs378fwH8NUd8oLAzw9gZatFD9ZtUDGbN8nq+DBg0CoEqO0tPT9RkhkU4xOSIqoNWrV0OpVKJJkyaoWLHim2eIiQGGDgWUStXfSiUwbBifIJFxKsD52rFjR7i6uuL+/fvSFwgiU8DkiKgAhBBSlYHWDbGvX//vRqOWkQHcuKHj6Ih0oADnq7W1tTRidmhoqD6iI9ILJkdEBXD06FHcuHEDDg4O6Nq1q3YzVawImL126ZmbAxUq6D5AooIq4PmqrlrbtWsX4uLidB0dkV4wOSIqgOXLlwMAevXqBQcHB+1m8vICli9X3WAA1e9ly1TTiYxNAc/XatWqITAwEOnp6Vi9erUeAyXSHYUogm8GTExMhLOzMxISEuDk5CR3OGSi1F33U1NTcfr0aQQEBORtATExqqqJChWYGJHxK8D5GhoaiiFDhqBSpUq4cuUKX61D+Wao+zefHBHl06pVq5Camoo6derkPTECVDeYZs2YGJFpKMD52qNHD9jb2+PatWs4fvy47mMj0jEmR0T5IISQqtSGDh0qczRExs3R0RE9evQAwBGzyTQwOSLKh2PHjuHq1auwt7dHcHCw3OEQGb3BgwcDADZu3Ij4+Hh5gyF6AyZHRPmgfmoUHBwMR0dHmaMhMn6BgYHw9/fHq1ev8NNPP8kdDlGumBwR5dGTJ0+wefNmAKxSI9KWQqHA8OHDAQBLlixBEewLRCaEyRFRHq1evRopKSmoU6cO6tatK3c4RCajT58+sLOzw+XLl3Hs2DG5wyHKEZMjojxgQ2yi/HN2dkbv3r0BAEuXLpU5GqKcMTkiyoPjx4/jypUrsLe3R69evbIvlMe3lxMVOrlcA8OGDQMAbN68GQ8fPjR0ZERaYXJElAeZR8TOdgCyfL69nKjQeMM1EBAQgHr16iEtLU16LyGRseEI2Rwhm7T05MkTlC5dGikpKTh16lTW9kYxMaqbQeaXdJqbA7dvc6BHKhq0vAbCw8MxaNAg+Pr64saNGzB7/d1tRDkoUiNkL168GL6+vrCxsUFAQECuDfW2bt2Kd955ByVKlICTkxMaNmyI/fv3GzBaKqrCw8ORkpKC2rVrZz8idgHeXk5UKGh5DfTs2RPOzs64desWDhw4YMAAibQje3K0YcMGjB07FlOmTMG5c+fQpEkTtG3bFtHR0dmWP3r0KN555x3s2bMHZ86cQfPmzdGhQwecO3fOwJFTUZKRkYElS5YAAD744IPs3w1VwLeXE5k8La8BOzs7hISEAGDDbDJOslerNWjQAHXq1JFuPADg5+eHTp06YebMmVoto1q1aujRowc+//xzrcqzWo3yateuXejQoQOKFy+OmJgY2NnZZV8wLAwYNkz1bVn99vJBgwwbLJGctLwGoqKiUK1aNZiZmeHOnTvwYtUzaaFIVKulpqbizJkzCAoK0pgeFBSEEydOaLUMpVKJ58+fw8XFJccyKSkpSExM1PghyotFixYBAAYNGpRzYqQqoGpfERmp+s3EiIoaLa+BqlWromnTplAqlQgNDTVoiERvImty9PjxY2RkZMDd3V1juru7O+Li4rRaxrfffoukpCR07949xzIzZ86Es7Oz9FOmTJkCxU1Fy/Xr17Fv3z4oFAqMGDHizTMU4O3lRIWClteAesTsH3/8EWlpaQYIjEg7src5ApCl/YYQIvs2Ha9Zt24dpk2bhg0bNqBkyZI5lps8eTISEhKkn7t37xY4Zio61FW+7dq1Q7ly5WSOhqjw6NKlC9zd3XH//n1s3bpV7nCIJLImR25ubjA3N8/ylOjhw4dZnia9bsOGDRg0aBA2btyIVq1a5VrW2toaTk5OGj9E2khKSkJ4eDgAYNSoUTJHQ1S4WFlZSU+PFixYIHM0RP+RNTmysrJCQEBAlq6cBw4cQKNGjXKcb926dejfvz/Wrl2L9u3b6ztMKsIiIiKQkJCA8uXLo3Xr1nKHQ1ToDB8+HJaWljhx4gROnz4tdzhEAIygWm38+PEIDQ1FeHg4Ll++jHHjxiE6Olr6NjF58mT069dPKr9u3Tr069cP3377LQIDAxEXF4e4uDgkJCTItQlUSAkhpIbYI0eO5EB1RHpQqlQp9OjRAwCfHpHxkL0rP6AaBHL27NmIjY2Fv78/vvvuO7z99tsAgP79++P27ds4fPgwAKBZs2Y4cuRIlmWEhIRg5cqVWq2PXflJG8eOHcPbb78NW1tb3Lt3D8WTklSD3FWsyMbWRLoQEwNcv45TSUmo36EDLC0tER0djVKlSskdGRkpQ92/jSI5MjQmR6SN7t27Y9OmTRg8eDB+DAwEhg5Vjf5rZgYsX85u+kQFERamcU019PHB7zdvYtq0aZg6darc0ZGRYnKkR0yO6E1u376N8uXLQ6lU4q9ffkH1Nm34zjQiXcnmHWzrFQr0EgLu7u6Ijo6GlZWVjAGSsSoSg0ASGauFCxdCqVSiVatWqG5hwXemEelSNu9ge18IeLq54cGDB9i0aZNMgRGpMDkiek1iYiJ+/PFHAKoOA3xnGpGOZXNNWZqbY0T//gDYMJvkx+SI6DXh4eF4/vw5/Pz8VN33vbxUbYzMzVUF1O+LYpUaUf7kcE0NnTABVlZW+PPPP/H777/LGyMVaUyOiDJJT0/H999/DwAYN27cf933+c40It3K5poqWbIkgoODAQBz586VNTwq2tggmw2yKZPNmzejW7ducHNzQ3R0NGxtbeUOiahIuXjxIqpXrw6FQoFr166hAquvKRM2yCaSwXfffQcAGDFiBBMjIhn4+/ujbdu2EEJg3rx5codDRRSfHPHJEf07EN3vz5+j4XvvwcrKCnfu3OFAdEQyiYyMRIsWLWBjY4Po6GiUSEnhAKwEgE+OiAwjLEw13kqLFpj73nsAgODgYCZGRDJq1qwZ6tati+TkZCwaNEi6RuHtrbpmifSMyREVXTEx0gi9VwBs/Xfyx336yBkVUZGnUCgwYcIEAMAPO3fipXpMJKUSGDZMde0S6RGTIyq6Mg1ENxuAAPAegGrq7sVEJJsuXbrA18MDTwCszPwfHICVDIDJERVd/w5EdxfAT/9OmmxmxsEdiYyAhYUFxo8cCQD4FkCG+j84ACsZAJMjKrr+HYjuW4UC6QCaA2iwfDkbfBIZiQHjxsHF3h43AWwGOAArGQyTIyrSHr/3Hn60sQEATFqzhoM7EhkRe3t7jP637dFX5cpBefMmr1EyCCZHVHjFxKhG382l8eaCBQvw8tUr1KlTB+/8OzIvERmP0aNHw9HREX/fvIkdZ8/mXliLa55IG0yOqHDK1EU/p+6/z58/x8KFCwEAkydPhkKhMHSURPQGxYsXx4cffggA+OKLL5Dj0HxaXPNE2uIgkBwEsvCJiVF9OKq7/wKqtgq3b2u0VZgzZw4mTpyISpUqISoqCubspUZklB4/fgwfHx8kJSVh165daN++vWYBLa95Mn0cBJIovzJ10Ze81v33xYsXmDNnDgBg0qRJTIyIjJibmxtG/ttzLdunR1pc80R5weSICp9/u+hreK3776JFi/Do0SOUL18effv2NXCARJRXH330EWxtbfHHH3/g4MGDmv+pxTVPlBdMjqjw+beLPtRPg17r/vv8+XPMnj0bAPD555/DwsJCrkiJSEvu7u4YNmwYAGDGjBmaT4/ecM0T5RXbHLHNUeEVE6N6rF6hgsaH5Ndff40pU6agUqVKuHTpEpMjIhNx//59lCtXDikpKfj111/RokULzQI5XPNUeLDNkYnLyMjArl27MGTIEPj7+8PZ2RmWlpZwcXFB3bp1MXz4cOzevRvJyclyh2p6tO2u6+UFNGum8SGZkJCAuXPnAgCmTp3KxIjIhHh6emLIkCEAgClTpmRte5TNNZ8tdvnPl8TERKxatQp9+/ZF1apVpfta8eLFERgYiLFjx+LEiRM59yg0JaIISkhIEABEQkKCzpedkZEhVq9eLcqWLSugel1Xrj/FihUTn3zyibh3757OYymUQkOFMDMTAlD9Dg3N0+zTp08XAISfn59IT0/XU5BEpC+xsbHCzs5OABDbt2/P+wIK+BlSFEVFRYl+/foJGxsbre5r9erVEwcOHNBLLPq8f2fGajUdPpaLjY1F7969ERkZCQBwdXVF79690bJlS1SqVAkODg5ITEzE5cuXERkZiZ9//hn37t0DAFhbW2PChAmYNGkS7O3tdRZToVLA7rpPnjxB+fLlkZCQgPXr16NHjx76i5WI9OZ///sfZs6cCX9/f5w/f1773qbs8p8nsbGxmDhxIiIiIqSnQZUrV0a3bt3QqFEjlCtXDvb29khISMDff/+N3bt3Y+vWrXj58iUAYOjQoZg3b55O72kGaxaj19TLSOkj8zx79qwoVaqUACDs7e3FzJkzxatXr3KdJyMjQ/z888+iYcOGUsbt5eWlt4zb5B06pPq29/pPZKRWs48fP14AEDVq1BAZGRn6jZWI9Obp06eiWLFiAoBYvXq19jMW8DOkqFAqlWLRokXCyclJujd16tRJ/P7770KpVOY674MHD8SoUaOk+erWrSsePHigs9gM9eSIyZEO/PHHH9KFWq1aNXHlypU8za9UKsWWLVuEr6+vdEKNHj1avHz5UifxFRp37/73OFz9Y26umv4Gt27dElZWVgKA2Lt3rwGCJSJ9mjlzpgAgfH19RUpKinYzFeAzpKh4+PChePfddzWqyP788888L+fXX38Vbm5uAoAoX768uH//vk7iY3KkR7rcudeuXRMuLi4CgGjcuLGIj4/P97JevHghRo4cKZ2UtWvXFrdv3y5wjCbj7l3VN7vcPqhCQ1UfZuoPNS3bC/Tu3VsAEC1btnzjNx8iMn4vXryQntb/8MMP2s+Yl88QbT6TCpHjx49L+9TKykp89913BWqbee3aNelLf82aNQt0f1RjcqRHutq5z549ExUrVhQARP369cWLFy90Et/evXtFiRIlBADh5uYmIovCI9+8NJK8e1f1GFzLD6yzZ89KCefp06d1Ey8Rye6HH34QAESJEiXyduPV5jOkiDXcXrlypfR0vWrVquLChQs6We4///wj3N3dBQDRrl27AjdpYHKkR7rYuUqlUnTv3l0AEGXLlhWxsbE6jFCIO3fuiDp16ggAwsLCIm/16qZGz4+6W7VqJQCIXr166WR5RGQcUlJSRKVKlQQAMXHiRN0tuAhVv2VkZIhPPvlE+gLZpUsXnX3RVztz5ozU0+2bb74p0LKYHOmRLnbuihUrpMTljz/+0GF0/0lKShI9e/aUTtrZs2cXziohPTaS3LdvnwAgLC0txc2bNwseKxEZlZ07d0rVQDdu3NDNQotIw+3U1FQRHBws3WM+/fRTvXVW+fHHHwUAYW5uLs6ePZvv5TA50qOC7ty4uDipAfZXX32l4+g0ZWRkiI8++kg6eceOHWt6Pa3eVG+vp29pqampws/PT9pvRFT4KJVKERQUJACIzp0762ahef1MMsG2SS9fvhTt27eXvuSvWbNGr+tTKpWiW7duUnvatLS0fC2HyZEeFXTn9uvXr8AHOK/mzp0rJUhDhgwxnQRJ23r7fDa0zs23334rtUd49uxZgZdHRMbp4sWLwtzcXAAQhw4d0s1Ctf1MMsG2SfHx8eLtt98WAISNjY3YvXu3QdYbFxcnihcvLgCIuXPn5msZTI70qCA798SJEwKAUCgUeqtOy8mqVauEmZmZACD69+9v/CM85+fbVx4aWucmNjZWODo6CgAi1AQ+rIioYNRj69SsWVN3n41v+kwywbZJz549E/Xq1RMAhJOTkzh69KhB1x8aGioACGdnZ/Ho0aM8z8/kSI/yu3OVSqVo0qSJACAGDRqkp+hyt3btWukbUp8+fQz25CpfZKy3DwkJkcboMJmnbESUb48ePZKaOyxatMgwKzWxtkkJCQmiQYMGAoBwdXUtUNuf/EpPTxc1a9aUxvPLKyZHepTfnbtnzx7pMeRdGb8ZbNy4UVhYWAgAomfPnvIkSNrUscv0rUr9dA+A+P333/W6LiIyHuqu/U5OTjobdDBXJtQ2KTExUTRq1EgAEC4uLuL8+fMGj0HtwIEDUlunvI7lx+RIj/Kzc5VKpfQo8uOPP9ZjdNrZunWrsLS0lCdByksdux7aEuUmJSVF+Pv7CwBiwIABel0XERmX9PR06XO6e/fuhlmpCbRNevHihVTrUaxYMXHmzBmDrTsnLVq0EADEyJEj8zQfkyM9ys/OPXLkiPTU6OHDh3qMTnvbt2+XEqRevXoZJkHKz9MgHbYlepMvvvhCaoT9+PFjva+PiIzL2bNnpbaZe/bsMcxKjbhtUlJSkmjWrJnUzufUqVN6X6c2Dh06JAAIa2trce/ePa3nY3KkR/nZuep3zQwfPlyPkeXdtm3bpCq24ODggjdEfNNjXyOuY798+bI0wuvatWvlDoeIZKJ+ybSPj49ISkqSO5z8fW7qoAru5cuXomXLlgKAcHR0NKpmBkqlUjRu3FgAEBMmTNB6PiZHepTXnRsVFSX1ULt27Zqeo8u7rVu3SglSnz598p8gafPY10h7Z2RkZIi33npLqIeoL5SDZRKRVp4/fy7KlCmT70a/OpfXz00dVMG9evVKGv/JwcFB/PbbbwXcCN3bsWOHACCKFy+udRLL5EiP8rpzhwwZotsBxvRgy5YtUi+2vn37Zk2QdDkQo4HbEWlj4cKFAoCwt7cXd+7ckTscIpKZenR8nY59VBDafm7qoJF3cnKyaNeunQAg7OzsDN5dX1vp6enSi2l//PFHreZhcqRHedm5iYmJwt7eXgAw2hNMbdOmTVKCFBIS8l+CpM23kLw+9jVgO6I3iYqKkt7bs3DhQrnDISIjMWzYMAFAeHt76/1mqhVtPjfz8lmczWd7SkqK6NixowAgbG1tjf7F5eoBjqtXr67VE38mR3qUl52rfh9M5cqVTaKqZuPGjVKCNGDAAJFx545230KMtLrsTVJSUkTt2rUFANG6dWuOaUREksTEROnJhFxj0+WZtp/F2ZRLNTMTXdq2lToPHTx4UJ5tyIOnT58KW1tbAUCrgZUNlRyZgXIVFhYGABg0aBAUCoXM0WQjJgaIjFT9BtCtWzesXbsW5ubmWLFiBYYMHw6lUqk5T0YGcOOG5jQvL2D5csDcXPW3uTmwbJlquhH7/PPPce7cObi6uiI8PBxmZjyliUjF0dERK1asgEKhQFhYGLZu3Sp3SG+m7Wfx9etAps/2dAB9lUps3bsXVlZW+Pnnn9GyZcv/yr92rzAWxYsXR+fOnQEAq1atkjmaTPSaehkpbTPPixcvSgNVxcXFGSi6PMilumzdunVSd9bBgMjIS/21kVSXvcmhQ4eEQqEQAMTWrVvlDoeIjNSECROkruz//POP3OFoJw/DA6QDove/7assLS3Fzp07Ncsa+fvffvnlF6lhdnJycq5lWa2mR9ruXHV30E6dOhkoskx00IB67dq1UoI0RKFQJUhG0oC6oO7duyfc3d1N63E5EckiNTVVNGzYUAAQderUEa9evZI7JN0IDRUZZmai/7+JkYW5udi2bZtmGRMYxTs9PV2ULl1aABCbNm3KtSyTIz3SZudmZGQIT09PAUBs375ddyvX5sTTYQPqiIgIKUEa+u67qjZIJi41NVUaH6NGjRrGMY4JERm16Oho4erqKoC8j8psrNLT08Wgnj0FAGFubi42btyYtVABG3jnSMdJ1OTJkwUA0b59+1zLMTnSI2127rFjxwSgekfPmx7zaU2X4wjl4dvATz/9JFU/DR8+3CQaludm7Nix0rG5fv263OEQkYlQvx8TgFixYoXc4RRIamqqCA4OFgCEmZmZiIiIyL6gHu4p+qimu3LlipTkPXr0KMdyTI70SJud++GHHwoAol+/ftotVFfjCOU1y9dyvKHVq1dLCdLIkSNNNkFaunSp9OGW5fExEdEbfPbZZ1LbHGMfniUnycnJonPnzlKb2GyfGGWmzb1C23uPHqvpatasKQCIsLCwHMswOdKjN+3cjIwM4eHhIQCInStWGLQaLF8nnpYNqFeuXCklSKNGjTK5BGnfvn3SMAUzZsyQOxwiMkEZGRmia9euAoBwdXU1nQba/3r58qVo06aNACCsrKzEjh07tJtRV+9/02M13YwBA95YtcbkSI/etHOPHj2q6tlgayuSFQqDV4PpcwTqFStWSAnSgAEDRGpqqs6WrU/nzp0Tjo6O0tM8U0vsiMh4JCUliYCAAAFAVKxY0Th7I2fjyZMn0muS7OzsxIEDB3S7Am3uPXqsprv0b62AlYVFjvdnJkd6JO3cqKhs/19dpRbyemZswGowfXapX7FihdRIOygoyDhGjs1FVFSUcHNzEwBE06ZNRUpKitwhEZGJu3fvnvD29pY6djx9+lTukHJ18+ZNUblyZaEekkBvVYLa3Hv0VE2nBETlfxOkiAULsl11wr/vOmVypAdScqRQZDmoSqVSumC2y1wNpk+7du0SdnZ2AoCoWbOmuHfvnqzx5OT69etSFWdAQICIj4+XOyQiKiSuX78uDQkSGBhotF8UT506JUqWLCkAiDJlyoiLFy/KHZLequn+929y9P7bb2ddZmioSPi35oPJkR5IyVE2B+vSpUsCgLC2thYv1FVqMlaD6dOpU6ekDwZPT09x8uRJuUPScOnSJWnsC39/f/H48WO5QyKiQuavv/4SxYsXFwBE3bp1c+0pJYe1a9dKX2Rr1apltF9ks5WParrT/yZHdra2muNR/Vsu4d//Z3KkBxrJ0WtPg2bPni0AiDZt2hhNNZg+3bp1S1StWlXqvbF48WKjaM9z4sQJ6QPLz89PxMbGyh0SERVSZ86ckaruq1atKmJiYuQOSaSmporRo0cLde/ctm3bisTERLnDyrs8VtMpzcyEZ7FiAoDYv3//f2X+fcLE5EiPcnty1LRpUwFALFDXd5po0pMXiYmJUu8NAKJPnz6yVl9t2rRJ+qYUGBjIJ0ZEpHdRUVHSk2pPT0+tXoKqL7du3ZIGugUgPv30U5Geni5bPAaR6V47cOBAAUCMGzdO8//55Ei/pOTotR5o8fHxUldxU+veWVBKpVLMmTNHaqhdtmxZcejQIYPGkJaWJj7++GONb0ovXrwwaAxEVHRlfpJubW1t8IEilUqlCA0NFQ4ODkI90K1O39BgIjZu3CjVGmgIDRUJ/96jmBzpQU691dQHpHLlyjJFJr/jx4+LcuXKSQnKqFGjDNKL4+rVqxrflCZOnCjS0tL0vl4ioswSExPFe++9J30W9ejRwyBPr//55x/Rvn17ab1vvfVWkfuSrvb06VPpi/rt27c1/s9QvdXMUJSVLq3x5549ewAA7du3lyMao9C4cWNcuHABw4YNAwAsWrQIlSpVwvLly5Genq7z9aWmpmL27NmoWbMmfvvtNzg4OGDTpk2YNWsWLCwsdL4+IqLcODo6YuvWrfjiiy9gbm6ODRs2wN/fHxs2bIAQQufre/HiBT777DNUrVoVu3fvhpWVFWbPno3Dhw+jXLlyOl+fKShevDgaNmwIANi3b5/mf75239YbvaZeRiq7QaSUSqUoU6aMACD27dsnY3TG4+DBg9IjZgCifPnyIjQ0VCfjDKWnp4t169aJ8uXLS8sPCgrK8i2BiEgup06dEn5+ftJnVP369UVkZKROOq3Ex8eLL774Qri4uEjLb9mypbh06ZIOIjd9X3zxhQAgOnXqpDGdg0DqUXY798aNG1KPLbZz+U9qaqqYP3++1JMDgChZsqT46KOPxN9//53nD4mYmBgxd+5c4evrKy3P3d1dhIeHG0UvOSKizF69eiVmzJgh7O3tpc+sgIAAsWLFCvHs2bM8LSs9PV0cOXJE9O/fX2N5FStWFFu3buVnYCanTp0SAISjo6NGEwtDJUcKIfTwnNDIJSYmwtnZGQkJCXBycgIA/Pjjjxg6dCiaNGmCo0ePyhyh8UlKSsLy5csxZ84cxMbGStPLli2LVq1aoWHDhqhatSq8vLxQvHhxKBQKJCcnIyYmBv/88w/+/PNPHD16FL///rs0r6urK8aMGYNx48bBwcFBjs0iItJKXFwcZsyYgRUrViA5ORkAYGlpiebNm+Ott95CQEAAfH194e7uDhsbG6SlpeHp06e4desWLl26hGPHjuHXX3/F06dPpWVWq1YNU6ZMQffu3WFubi7XphklpVIJNzc3PHv2DH/88Qfq168PIPv7t17oNfUyUtllnj179hQAxNSpU+ULzASkpqaKHTt2iE6dOgkrKyvpm09efho3bix+/PFH8fLlS7k3h4goTx49eiS+/vprjSYHeflxcnISgwYNEr/99hufFL2BumH8rFmzpGlF6snR4sWLpScS1apVw/z589GkSZMcyx85cgTjx4/HpUuX4OnpiYkTJ2L48OFar+/1zFMIAQ8PDzx48ACHDx9G06ZNdbFZhV5SUpL0beivv/5CVFQUHjx4gLS0NKmMm5sbfHx8UKtWLTRu3BitWrWCl5eXjFETEelGVFQUDh06hN9++w1RUVG4desWnj9/Lv2/ra0tSpcujapVq6JOnTpo1aoV6tevD0tLSxmjNh3fffcdxo8fj3bt2mH37t0ADPfkSPbkaMOGDejbty8WL16Mxo0bY9myZQgNDUVUVBTKli2bpfytW7fg7++PIUOGYNiwYfjtt98wcuRIrFu3Du+//75W63x950ZFRaFatWqwsbFBfHw8rK2tdb2ZRYYQAi9fvgQAWFtbs8cZERUpaWlpSE5OhqWlJWxsbOQOx6SdO3cOderUgaOjI54+fQoLCwuDJUeyd+WfN28eBg0ahMGDB8PPzw/z589HmTJlsGTJkmzLL126FGXLlsX8+fPh5+eHwYMHY+DAgZg7d26+Yzh06BAA4K233mJiVEAKhQL29vawt7dnYkRERY6lpSUcHR2ZGOlAjRo1UKxYMTx//hznzp0z6LplTY5SU1Nx5swZBAUFaUwPCgrCiRMnsp3n5MmTWcq3bt0ap0+f1qjOyYvDhw8DAJo3b56v+YmIiEi3zM3N8fbbbwNQNacxJFm/2j9+/BgZGRlwd3fXmO7u7o64uLhs54mLi8u2fHp6Oh4/fgwPD48s86SkpCAlJUX6OyEhAYCqek0IgWPHjgEA6tSpg8TExAJtExEREelGYGAgduzYgQMHDmDo0KHSPVrfLYKMot5DoVBo/C2EyDLtTeWzm642c+ZMTJ8+Pcv0MmXKaPzdtm1breIlIiIiw/nll1/g7Ows/f3kyRONv3VN1uTIzc0N5ubmWZ4SPXz4MMvTIbVSpUplW97CwgKurq7ZzjN58mSMHz9e+js+Ph7e3t6Ijo7W6841NomJiShTpgzu3r2r3/EhjAy3m9tdFHC7ud1FQUJCAsqWLQsXFxe9rkfW5MjKygoBAQE4cOAAOnfuLE0/cOAA3nvvvWznadiwIXbu3Kkx7ZdffkHdunVz7B5pbW2dbUNrZ2fnInVSqTk5OXG7ixBud9HC7S5aiup2m5npt8m07L3Vxo8fj9DQUISHh+Py5csYN24coqOjpXGLJk+ejH79+knlhw8fjjt37mD8+PG4fPkywsPDERYWho8//liuTSAiIqJCRPY2Rz169MCTJ08wY8YMxMbGwt/fH3v27IG3tzcAIDY2FtHR0VJ5X19f7NmzB+PGjcOiRYvg6emJBQsWaD3GEREREVFuZE+OAGDkyJEYOXJktv+3cuXKLNOaNm2Ks2fP5nt91tbWmDp1apEb04jbze0uCrjd3O6igNut3+2WfYRsIiIiImMie5sjIiIiImPC5IiIiIgoEyZHRERERJkwOSIiIiLKpNAmR1999RUaNWoEOzs7FCtWTKt5hBCYNm0aPD09YWtri2bNmuHSpUsaZVJSUvDhhx/Czc0N9vb26NixI2JiYvSwBfnz7Nkz9O3bF87OznB2dkbfvn0RHx+f6zwKhSLbnzlz5khlmjVrluX/e/bsqeet0V5+trt///5ZtikwMFCjTGE73mlpafjkk09QvXp12Nvbw9PTE/369cP9+/c1yhnb8V68eDF8fX1hY2ODgIAA6X2IOTly5AgCAgJgY2ODcuXKYenSpVnKbNmyBVWrVoW1tTWqVq2Kbdu26Sv8fMvLdm/duhXvvPMOSpQoAScnJzRs2BD79+/XKLNy5cpsr/Xk5GR9b0qe5GW7Dx8+nO02XblyRaNcYTve2X1+KRQKVKtWTSpj7Mf76NGj6NChAzw9PaFQKPDzzz+/cR6DXduikPr888/FvHnzxPjx44Wzs7NW83zzzTfC0dFRbNmyRfz999+iR48ewsPDQyQmJkplhg8fLkqXLi0OHDggzp49K5o3by5q1qwp0tPT9bQledOmTRvh7+8vTpw4IU6cOCH8/f3Fu+++m+s8sbGxGj/h4eFCoVCIf/75RyrTtGlTMWTIEI1y8fHx+t4creVnu0NCQkSbNm00tunJkycaZQrb8Y6PjxetWrUSGzZsEFeuXBEnT54UDRo0EAEBARrljOl4r1+/XlhaWooff/xRREVFiTFjxgh7e3tx586dbMvfvHlT2NnZiTFjxoioqCjx448/CktLS7F582apzIkTJ4S5ubn4+uuvxeXLl8XXX38tLCwsxO+//26ozXqjvG73mDFjxKxZs8Sff/4prl27JiZPniwsLS3F2bNnpTIrVqwQTk5OWa55Y5LX7Y6MjBQAxNWrVzW2KfM1WhiPd3x8vMb23r17V7i4uIipU6dKZYz9eO/Zs0dMmTJFbNmyRQAQ27Zty7W8Ia/tQpscqa1YsUKr5EipVIpSpUqJb775RpqWnJwsnJ2dxdKlS4UQqpPR0tJSrF+/Xipz7949YWZmJvbt26fz2PMqKipKANA4CU6ePCkAiCtXrmi9nPfee0+0aNFCY1rTpk3FmDFjdBWqTuV3u0NCQsR7772X4/8XleP9559/CgAaH8LGdLzr168vhg8frjGtSpUqYtKkSdmWnzhxoqhSpYrGtGHDhonAwEDp7+7du4s2bdpolGndurXo2bOnjqIuuLxud3aqVq0qpk+fLv2t7eehnPK63erk6NmzZzkusygc723btgmFQiFu374tTTOF462mTXJkyGu70Far5dWtW7cQFxeHoKAgaZq1tTWaNm2KEydOAADOnDmDtLQ0jTKenp7w9/eXysjp5MmTcHZ2RoMGDaRpgYGBcHZ21jq+Bw8eYPfu3Rg0aFCW/4uIiICbmxuqVauGjz/+GM+fP9dZ7AVRkO0+fPgwSpYsiUqVKmHIkCF4+PCh9H9F4XgDqhc5KhSKLNXPxnC8U1NTcebMGY1jAABBQUE5buPJkyezlG/dujVOnz6NtLS0XMsYw3EF8rfdr1MqlXj+/HmWF3S+ePEC3t7e8PLywrvvvotz587pLO6CKsh2165dGx4eHmjZsiUiIyM1/q8oHO+wsDC0atVKeruEmjEf77wy5LVtFCNkG4O4uDgAgLu7u8Z0d3d33LlzRypjZWWF4sWLZymjnl9OcXFxKFmyZJbpJUuW1Dq+VatWwdHREV26dNGY3rt3b/j6+qJUqVK4ePEiJk+ejAsXLuDAgQM6ib0g8rvdbdu2Rbdu3eDt7Y1bt27hs88+Q4sWLXDmzBlYW1sXieOdnJyMSZMmITg4WOPllcZyvB8/foyMjIxsr8uctjEuLi7b8unp6Xj8+DE8PDxyLGMMxxXI33a/7ttvv0VSUhK6d+8uTatSpQpWrlyJ6tWrIzExEd9//z0aN26MCxcuoGLFijrdhvzIz3Z7eHhg+fLlCAgIQEpKCn766Se0bNkShw8fxttvvw0g53OisBzv2NhY7N27F2vXrtWYbuzHO68MeW2bVHI0bdo0TJ8+Pdcyp06dQt26dfO9DoVCofG3ECLLtNdpU6YgtN1uIGv8QN7iCw8PR+/evWFjY6MxfciQIdK//f39UbFiRdStWxdnz55FnTp1tFp2Xul7u3v06CH929/fH3Xr1oW3tzd2796dJTnMy3ILylDHOy0tDT179oRSqcTixYs1/k+O452bvF6X2ZV/fXp+rnVDy2+M69atw7Rp07B9+3aNBDowMFCj00Hjxo1Rp04dLFy4EAsWLNBd4AWUl+2uXLkyKleuLP3dsGFD3L17F3PnzpWSo7wuUy75jXHlypUoVqwYOnXqpDHdVI53Xhjq2jap5OiDDz54Y48ZHx+ffC27VKlSAFSZqYeHhzT94cOHUhZaqlQppKam4tmzZxpPEx4+fIhGjRrla73a0Ha7//rrLzx48CDL/z169ChLJp2dY8eO4erVq9iwYcMby9apUweWlpa4fv263m6WhtpuNQ8PD3h7e+P69esACvfxTktLQ/fu3XHr1i0cOnRI46lRdgxxvLPj5uYGc3PzLN/6Ml+XrytVqlS25S0sLODq6pprmbycL/qUn+1W27BhAwYNGoRNmzahVatWuZY1MzNDvXr1pHNebgXZ7swCAwOxZs0a6e/CfLyFEAgPD0ffvn1hZWWVa1ljO955ZdBrO08tlExQXhtkz5o1S5qWkpKSbYPsDRs2SGXu379vdA10//jjD2na77//rnUD3ZCQkCy9lnLy999/CwDiyJEj+Y5XVwq63WqPHz8W1tbWYtWqVUKIwnu8U1NTRadOnUS1atXEw4cPtVqXnMe7fv36YsSIERrT/Pz8cm2Q7efnpzFt+PDhWRpttm3bVqNMmzZtjK6Bbl62Wwgh1q5dK2xsbN7YsFVNqVSKunXrigEDBhQkVJ3Kz3a/7v333xfNmzeX/i6sx1uI/xqk//33329chzEebzVo2SDbUNd2oU2O7ty5I86dOyemT58uHBwcxLlz58S5c+fE8+fPpTKVK1cWW7dulf7+5ptvhLOzs9i6dav4+++/Ra9evbLtyu/l5SUOHjwozp49K1q0aGF0Xbtr1KghTp48KU6ePCmqV6+epWv369sthBAJCQnCzs5OLFmyJMsyb9y4IaZPny5OnTolbt26JXbv3i2qVKkiateubbLb/fz5c/HRRx+JEydOiFu3bonIyEjRsGFDUbp06UJ9vNPS0kTHjh2Fl5eXOH/+vEb33pSUFCGE8R1vdRfnsLAwERUVJcaOHSvs7e2lXjmTJk0Sffv2lcqru/uOGzdOREVFibCwsCzdfX/77Tdhbm4uvvnmG3H58mXxzTffGG3Xbm23e+3atcLCwkIsWrQoxyEYpk2bJvbt2yf++ecfce7cOTFgwABhYWGhkWDLLa/b/d1334lt27aJa9euiYsXL4pJkyYJAGLLli1SmcJ4vNX69OkjGjRokO0yjf14P3/+XLo3AxDz5s0T586dk3rOynltF9rkKCQkRADI8hMZGSmVASBWrFgh/a1UKsXUqVNFqVKlhLW1tXj77bezZOOvXr0SH3zwgXBxcRG2trbi3XffFdHR0Qbaqjd78uSJ6N27t3B0dBSOjo6id+/eWbq4vr7dQgixbNkyYWtrm+1YNtHR0eLtt98WLi4uwsrKSpQvX16MHj06y5hAcsrrdr98+VIEBQWJEiVKCEtLS1G2bFkREhKS5VgWtuN969atbK+LzNeGMR7vRYsWCW9vb2FlZSXq1Kmj8QQrJCRENG3aVKP84cOHRe3atYWVlZXw8fHJNunftGmTqFy5srC0tBRVqlTRuJkai7xsd9OmTbM9riEhIVKZsWPHirJlyworKytRokQJERQUJE6cOGHALdJOXrZ71qxZonz58sLGxkYUL15cvPXWW2L37t1ZllnYjrcQqqfbtra2Yvny5dkuz9iPt/qpV07nrJzXtkKIf1szEREREVHhfX0IERERUX4wOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiIiIiCgTJkdEREREmTA5IiIiIsqEyRERFSozZsxA9erVYW9vD3d3d4wYMQJpaWlyh0VEJsRC7gCIiHRFCIGMjAwsW7YMpUuXRlRUFPr164caNWpgxIgRcodHRCaCL54lokItODgYJUqUwPfffy93KERkIlitRkSFxp07d/DBBx/A398fxYsXh4ODAzZu3AgvLy+5QyMiE8LkiIgKhcePH6N+/fp4/Pgx5s2bh+PHj+PkyZMwNzdHrVq15A6PiEwI2xwRUaGwZ88epKenY926dVAoFACARYsWITU1lckREeUJkyMiKhRcXFyQmJiIHTt2oGrVqti5cydmzpyJ0qVLo0SJEnKHR0QmhA2yiahQEEJgxIgRWLt2LWxtbdGnTx8kJyfjzp072LVrl9zhEZEJYXJERERElAkbZBMRERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERERJQJkyMiIiKiTJgcEREREWXC5IiIiIgoEyZHRERERJkwOSIiIiLK5P8Mg1jWbxZ4/wAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABy4klEQVR4nO3dd1QUVxsG8GfpHQUUQRSwo1ixoMZYgy0aY6xYsNfElsToZxJLirHEGI01gCViL7FrNGKLJrEniho7oiA2QFHq3u+PzU5YKS6wu7MLz+8cDjLemXmn7bw7t4xCCCFARERERAAAM7kDICIiIjImTI6IiIiIsmByRERERJQFkyMiIiKiLJgcEREREWXB5IiIiIgoCyZHRERERFkwOSIiIiLKgskRERERURZMjsik3b9/H9OmTcP58+ez/d+AAQPg4OBQ4GWnpaVhxIgR8PDwgLm5OerUqVPwQHVg8eLFWLlyZbbpt2/fhkKhyPH/ihKFQoFp06bJHYZOTJs2DQqFQu/zLly4EJUqVYKVlRUUCgUSEhIwYMAA+Pj4aJT7+uuv8fPPPxconrw8efIEvXr1QunSpaFQKNClS5d8L8PHxwcDBgzQeWzGRH1Mc/tZv3693CEWOxZyB0BUGPfv38f06dPh4+Oj8+RlyZIlWLZsGRYuXIiAgIBCJVq6sHjxYri5uWW7UXh4eODkyZOoWLGiPIFRvg0ZMgTt2rXT6zrOnz+PMWPGYMiQIQgJCYGFhQUcHR3x2WefYezYsRplv/76a3Tr1q1AyUtevvjiC2zbtg3h4eGoWLEiXFxcdLr8oiK382Ho0KG4ceOG3s8Vyo7JEVEuLl68CFtbW7z//vtyh5Ina2trBAYGyh0G5YOXlxe8vLz0uo5Lly4BUN1gGzZsKE03ZBJ98eJFVKxYEX369DHYOnXlxYsXsLOzM8i6cjofbt++jUuXLqFPnz4oUaKEQeKg/7BajSQPHz7EsGHDUK5cOVhbW6NUqVJo2rQpDh48KJVp0aIF/P39cfLkSTRp0gS2trbw8fHBihUrAAC7d+9GvXr1YGdnh5o1a2Lfvn3Z1nP8+HG0bt0ajo6OsLOzQ5MmTbB79+5s5S5evIh33nkHJUuWhI2NDerUqYNVq1ZJ/3/48GE0aNAAADBw4EDpEfSrVS/Xr19Hhw4d4ODggHLlyuHDDz9EampqnvtCoVAgNDQUL1++lJa7cuXKPKuwXl23+lH5pUuX0Lt3bzg7O8Pd3R2DBg1CYmKixrxKpRILFy5EnTp1YGtrixIlSiAwMBA7duwAoKpauHTpEo4cOSLFo64ayS0mbfbzypUroVAoEBkZiZEjR8LNzQ2urq7o2rUr7t+/n+c+youPjw/efvttbNu2DbVq1YKNjQ0qVKiABQsWZCsbHR2Nvn37onTp0rC2toafnx++/fZbKJXKXJd/+/ZtWFhYYObMmdn+7+jRo1AoFNi0aROA/B2HlJQUTJ48Gb6+vrCyskLZsmUxevRoJCQk5Lh9u3btQt26dWFraws/Pz/s2rULgGq/+vn5wd7eHg0bNsTp06c15s+pamzDhg0ICgqCh4eHtLxJkyYhOTk59x2dixYtWqBv374AgEaNGkGhUEhPHF+tVlMoFEhOTsaqVaukc6tFixZ5Lv/JkycYNWoUypYtCysrK1SoUAFTpkyRriv1OXnw4EFcvnxZWu7hw4dzXWZ6ejomTpyIMmXKwM7ODm+88Qb+/PPPHMvGxcVh+PDh8PLygpWVFXx9fTF9+nRkZGRolIuJiUG3bt3g6OiIEiVKoE+fPjh16lS260VdBf/3338jKCgIjo6OaN26NQBV9fqXX36JatWqSZ+LAwcOxMOHD7PFtWHDBjRu3Bj29vZwcHBA27Ztce7cuTz3ZW7Cw8MhhMCQIUMKND8VkiD6V9u2bUWpUqXE8uXLxeHDh8XPP/8sPv/8c7F+/XqpTPPmzYWrq6uoWrWqCAsLE/v37xdvv/22ACCmT58uatasKdatWyf27NkjAgMDhbW1tbh37540/+HDh4WlpaUICAgQGzZsED///LMICgoSCoVCYz1XrlwRjo6OomLFimL16tVi9+7donfv3gKAmDVrlhBCiMTERLFixQoBQHz66afi5MmT4uTJk+Lu3btCCCFCQkKElZWV8PPzE3PnzhUHDx4Un3/+uVAoFGL69Ol57ouTJ0+KDh06CFtbW2m58fHx4tatWwKAWLFiRbZ5AIipU6dKf0+dOlUAEFWrVhWff/65OHDggJg3b56wtrYWAwcO1Ji3X79+QqFQiCFDhojt27eLvXv3iq+++kp8//33Qgghzp49KypUqCDq1q0rxXP27FkhhMgxJm33s3r/VahQQXzwwQdi//79IjQ0VJQsWVK0bNlSI0Z12Zy2/VXe3t6ibNmyonz58iI8PFzs2bNH9OnTRwAQc+bMkcrFx8eLsmXLilKlSomlS5eKffv2iffff18AECNHjsxz/7777ruifPnyIiMjQ6Nc9+7dhaenp0hPT8/XcVAqlaJt27bCwsJCfPbZZ+KXX34Rc+fOFfb29qJu3boiJSVFY/u8vLyEv7+/dL43atRIWFpais8//1w0bdpUbN26VWzbtk1UqVJFuLu7ixcvXkjzq2PK6osvvhDfffed2L17tzh8+LBYunSp8PX1zXYccpr3VZcuXRKffvqpdLxOnjwprl+/LoRQXRfe3t5S2ZMnTwpbW1vRoUMH6dy6dOlSrst++fKlqFWrlrC3txdz584Vv/zyi/jss8+EhYWF6NChgxBCiJSUFHHy5ElRt25dUaFCBWm5iYmJuS43JCREKBQK8fHHH4tffvlFzJs3T5QtW1Y4OTmJkJAQqVxsbKwoV66c8Pb2FsuWLRMHDx4UX3zxhbC2thYDBgyQyj1//lxUqlRJuLi4iEWLFon9+/eL8ePHC19f32zncUhIiLC0tBQ+Pj5i5syZ4tdffxX79+8XmZmZol27dsLe3l5Mnz5dHDhwQISGhoqyZcuK6tWraxzTr776SigUCjFo0CCxa9cusXXrVtG4cWNhb2+f5/7MSWZmpihXrpyoVKlSvuYj3WFyRBIHBwcxbty4PMs0b95cABCnT5+Wpj1+/FiYm5sLW1tbjUTo/PnzAoBYsGCBNC0wMFCULl1aPHv2TJqWkZEh/P39hZeXl1AqlUIIIXr16iWsra1FdHS0xvrbt28v7OzsREJCghBCiFOnTuV6ww4JCREAxMaNGzWmd+jQQVStWvU1e0M1v729vca0giRHs2fP1ig3atQoYWNjI23r0aNHBQAxZcqUPOOpUaOGaN68ebbpOcWk7X5WJzyjRo3SWObs2bMFABEbGytNW7VqlTA3NxerVq3KM04hVMmDQqEQ58+f15j+1ltvCScnJ5GcnCyEEGLSpEkCgPjjjz80yo0cOVIoFApx9epVadqr+zcyMlIAENu2bZOm3bt3T1hYWGgkv9oeh3379uVYbsOGDQKAWL58ucb22draipiYGGma+nz38PCQtk8IIX7++WcBQOzYsSNbTLlRKpUiPT1dHDlyRAAQFy5c0HpeNfWxPXXqlMb0V5MjIYSwt7fXSEDysnTp0hyvq1mzZgkA4pdffpGmNW/eXNSoUeO1y7x8+bIAIMaPH68xPSIiQgDQiG348OHCwcFB3LlzR6Ps3LlzBQApEVm0aJEAIPbu3atRbvjw4TkmRwBEeHi4Rtl169YJAGLLli0a09WfO4sXLxZCCBEdHS0sLCzEBx98oFHu2bNnokyZMqJHjx6v3QdZ7d27VwAQM2fOzNd8pDusViNJw4YNsXLlSnz55Zf4/fffkZ6enmM5Dw8PBAQESH+7uLigdOnSqFOnDjw9PaXpfn5+AIA7d+4AAJKTk/HHH3+gW7duGo2bzc3N0a9fP8TExODq1asAgEOHDqF169YoV66cxroHDBiAFy9e4OTJk1ptk0KhQKdOnTSm1apVS4rJEDp37pxt/SkpKYiPjwcA7N27FwAwevRonawvP/s5rxgBaOyn/v37IyMjA/3799cqjho1aqB27doa04KDg5GUlISzZ88CUB3n6tWra7SJAVTHWQiBQ4cO5br8Fi1aoHbt2li0aJE0benSpVAoFBg2bFi28q87Dup1vdrgvXv37rC3t8evv/6qMb1OnTooW7as9Lf6fG/RooVGW5VXr4Pc3Lx5E8HBwShTpgzMzc1haWmJ5s2bAwAuX76c57yGdOjQIdjb26Nbt24a09X77dX9pI3IyEgAyNY2qUePHrCw0Gwau2vXLrRs2RKenp7IyMiQftq3bw8AOHLkiPTb0dExW2Pm3r175xrHe++9l21dJUqUQKdOnTTWVadOHZQpU0aqJty/f790bWQtZ2Njg+bNm+dZnZiTsLAwWFhYFPleesaMDbJJsmHDBnz55ZcIDQ3FZ599BgcHB7z77ruYPXs2ypQpI5XLqceJlZVVtulWVlYAVO04AODp06cQQsDDwyPb/Oqk6vHjx9Jvbcq9jp2dHWxsbDSmWVtbSzEZgqura7b1A8DLly8BqNp6mZuba+zjwsjPftY2xoLIaXvU07Ie51e7lecV56vUvbGuXr2KChUq4Mcff0S3bt1yXPfrtvHx48ewsLBAqVKlNMopFAqUKVMmWyy5ne+vuw5y8vz5czRr1gw2Njb48ssvUaVKFdjZ2eHu3bvo2rVroY6Drj1+/BhlypTJ1maqdOnSsLCw0PrafHWZQPZzxsLCIttxe/DgAXbu3AlLS8scl/Xo0SNpme7u7tn+P6dpgOqzwsnJKdu6EhISpGOY27oePHgAAFIbyFeZmWn/HOLRo0fYsWMHOnbsqLPPBMo/JkckcXNzw/z58zF//nxER0djx44dmDRpEuLj43NsWJ1fJUuWhJmZGWJjY7P9n7rxr5ubGwDVjUybcoamTrRebdBdkBuCWqlSpZCZmYm4uLgcE5r8ys9+1qe4uLhcp6lveIU9zsHBwfjkk0+waNEiBAYGIi4ursBP4FxdXZGRkYGHDx9qJEhCCMTFxeV649OFQ4cO4f79+zh8+LD0tAhAtobgxsDV1RV//PEHhBAaCVJ8fDwyMjIKdG6pz4e4uDiNp3EZGRnZri03NzfUqlULX331VY7LUifWrq6uOTbozum8BJDj2FHqDgq5ff45OjpK5QBg8+bN8Pb2zrGstn766SekpaWxIbbMWK1GOSpfvjzef/99vPXWW1IVSGHZ29ujUaNG2Lp1q8Y3YaVSiTVr1sDLywtVqlQBALRu3Vq6YWS1evVq2NnZSV3XdfGEIz/c3d1hY2ODv/76S2P69u3bC7xMdXXAkiVL8ixnbW2t1XbmZz/r06VLl3DhwgWNaWvXroWjoyPq1asHQHWco6Kisp1jq1evhkKhQMuWLfNch42NDYYNG4ZVq1Zh3rx5qFOnDpo2bVqgeNW9k9asWaMxfcuWLUhOTpb+Xx/UN2b1+ay2bNkyva0zK23PLUC1n54/f55t0MjVq1dL/59f6t5xERERGtM3btyYrQfa22+/LQ0RUL9+/Ww/6uSoefPmePbsmVRtrZafARXffvttPH78GJmZmTmuq2rVqgCAtm3bwsLCAjdu3MixXP369bVeZ1hYGDw9PaXPBZIHnxwRACAxMREtW7ZEcHAwqlWrBkdHR5w6dQr79u1D165ddbaemTNn4q233kLLli3x0UcfwcrKCosXL8bFixexbt066SYxdepUqW3B559/DhcXF0RERGD37t2YPXs2nJ2dAajGbLG1tUVERAT8/Pzg4OAAT09PjbZPuqRQKNC3b19pULvatWvjzz//xNq1awu8zGbNmqFfv3748ssv8eDBA7z99tuwtrbGuXPnYGdnhw8++AAAULNmTaxfvx4bNmxAhQoVYGNjg5o1a+a4TG33c36sXr0agwYNQnh4uFbtjjw9PdG5c2dMmzYNHh4eWLNmDQ4cOIBZs2ZJbXLGjx+P1atXo2PHjpgxYwa8vb2xe/duLF68GCNHjtQqiRs1ahRmz56NM2fOIDQ0NN/bpfbWW2+hbdu2+OSTT5CUlISmTZvir7/+wtSpU1G3bl3069evwMt+nSZNmqBkyZIYMWIEpk6dCktLS0RERGRLLvWlZs2aOHz4MHbu3AkPDw84OjpKN/5X9e/fH4sWLUJISAhu376NmjVr4vjx4/j666/RoUMHtGnTJt/r9/PzQ9++fTF//nxYWlqiTZs2uHjxIubOnZutqmvGjBk4cOAAmjRpgjFjxqBq1apISUnB7du3sWfPHixduhReXl4ICQnBd999h759++LLL79EpUqVsHfvXuzfvx+AdlVdvXr1QkREBDp06ICxY8eiYcOGsLS0RExMDCIjI/HOO+/g3XffhY+PD2bMmIEpU6bg5s2baNeuHUqWLIkHDx7gzz//hL29PaZPn/7a9f3xxx+4dOkS/ve//8Hc3Dzf+5F0SNbm4GQ0UlJSxIgRI0StWrWEk5OTsLW1FVWrVhVTp07V6HmTW+8Tb29v0bFjx2zTAYjRo0drTDt27Jho1aqVsLe3F7a2tiIwMFDs3Lkz27x///236NSpk3B2dhZWVlaidu3aOfYSW7dunahWrZqwtLTU6NGUU28zIbTv7ZPb/ImJiWLIkCHC3d1d2Nvbi06dOonbt2/n2lvt4cOHGvOrexHdunVLmpaZmSm+++474e/vL6ysrISzs7No3Lixxn65ffu2CAoKEo6OjgKA1OMotx502uzn3Ho0qXuCRUZGZiurbVf+jh07is2bN4saNWoIKysr4ePjI+bNm5et7J07d0RwcLBwdXUVlpaWomrVqmLOnDkiMzNTo9yr+zerFi1aCBcXF42u1Wr5OQ4vX74Un3zyifD29haWlpbCw8NDjBw5Ujx9+jTH7XtVTue7+vhkHcIgp3PwxIkTonHjxsLOzk6UKlVKDBkyRJw9ezbbPtdHb7Xz58+Lpk2bCjs7OwEgx16RWT1+/FiMGDFCeHh4CAsLC+Ht7S0mT56sMdyBENr3VhNCiNTUVPHhhx+K0qVLCxsbGxEYGChOnjwpvL29s/Wke/jwoRgzZozw9fUVlpaWwsXFRQQEBIgpU6aI58+fS+Wio6NF165dhYODg3B0dBTvvfee2LNnjwAgtm/frrFPcrrWhRAiPT1dzJ07V9SuXVvY2NgIBwcHUa1aNTF8+HBx7do1jbI///yzaNmypXBychLW1tbC29tbdOvWTRw8eFCrfTB06FChUCjEjRs3tCpP+qMQQghDJmNEVPT5+PjA399fGhRRn+Lj4+Ht7Y0PPvgAs2fP1vv6yLR9/fXX+PTTTxEdHa33UcrJdLFajYhMUkxMDG7evIk5c+bAzMws2/vCiH744QcAQLVq1ZCeno5Dhw5hwYIF6Nu3LxMjyhOTIyIySaGhoZgxYwZ8fHwQERGh0cuJCFB1z//uu+9w+/ZtpKamonz58vjkk0/w6aefyh0aGTlWqxERERFlIXtX/qNHj6JTp07w9PSEQqHI1j00J0eOHEFAQID0MsulS5fqP1AiIiIqFmRPjpKTk1G7dm2pbvh1bt26hQ4dOqBZs2Y4d+4c/ve//2HMmDHYsmWLniMlIiKi4sCoqtUUCgW2bduGLl265Frmk08+wY4dOzTeNTRixAhcuHBB6/dtEREREeXG5Bpknzx5EkFBQRrT2rZti7CwMKSnp+f4vp3U1FSN1z0olUo8efIErq6uBRoMj4iIiAxPCIFnz57B09MzX++syy+TS47i4uKyvTjQ3d0dGRkZePToUY7vppo5c6ZWo5MSERGR8bt7965eh2MwueQIyP6CQHXNYG5PgSZPnowJEyZIfycmJqJ8+fK4e/dutqHpiciE3LsH3LgBVKwI5NWVX9tyRGTUkpKSUK5cOemlv/picslRmTJlsr1VOT4+HhYWFtKbnV9lbW2d7YWOAODk5MTkiMhUhYUBw4YBSiVgZgYsXw4MHlzwckRkMvTdJEb23mr51bhxYxw4cEBj2i+//IL69evn2N6IiIqgmJj/Eh5A9Xv4cNX0gpQjIspC9uTo+fPnOH/+PM6fPw9A1VX//PnziI6OBqCqEsv6BvARI0bgzp07mDBhAi5fvozw8HCEhYXho48+kiN8IpLDtWv/JTxqmZnA9esFK0dElIXs1WqnT59Gy5Ytpb/VbYNCQkKwcuVKxMbGSokSAPj6+mLPnj0YP348Fi1aBE9PTyxYsADvvfeewWMnIplUrqyqIsua+JibA5UqFawcEVEWRjXOkaEkJSXB2dkZiYmJbHNEZKrCwlRVZJmZqoRn2bLc2xxpU46IjJ6h7t9MjpgcEZmumBhVFVmlSkBe3Xq1LUdERs1Q92/Zq9WIiArMy0u7ZEfbckREMIIG2URERETGhMkRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZMDkiIiIiyoLJEREREVEWTI6IiIiIsmByRERERJQFkyMiMj4xMUBkpOp3cVo3ERkFJkdEZFzCwgBvb6BVK9XvsLDisW4iMhoKIYSQOwhDS0pKgrOzMxITE+Hk5CR3OESkFhOjSkqUyv+mmZsDt28DXl5Fd91EpBVD3b/55IiIjMe1a5rJCQBkZgLXrxftdRORUWFyRETGo3JlwOyVjyVzc6BSpaK9biIyKkyOiMh4eHkBy5erkhJA9XvZMsNUa8m5biIyKmxzxDZHRMYnJkZVnVWpkuGTEznXTUR5MtT920JvSyYiKigvL/kSEznXTURGgdVqRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZMDkiIiIiyoLJEREREVEWTI6IiIiIsmByRERERJQFkyMiIiKiLJgcEREREWXB5IiIiIgoCyZHRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWRhFcrR48WL4+vrCxsYGAQEBOHbsWJ7lIyIiULt2bdjZ2cHDwwMDBw7E48ePDRQtERERFWWyJ0cbNmzAuHHjMGXKFJw7dw7NmjVD+/btER0dnWP548ePo3///hg8eDAuXbqETZs24dSpUxgyZIiBIyciIqKiSPbkaN68eRg8eDCGDBkCPz8/zJ8/H+XKlcOSJUtyLP/777/Dx8cHY8aMga+vL9544w0MHz4cp0+fNnDkREREVBTJmhylpaXhzJkzCAoK0pgeFBSEEydO5DhPkyZNEBMTgz179kAIgQcPHmDz5s3o2LFjrutJTU1FUlKSxg8RySAmBoiMVP02dUVpW4hIg6zJ0aNHj5CZmQl3d3eN6e7u7oiLi8txniZNmiAiIgI9e/aElZUVypQpgxIlSmDhwoW5rmfmzJlwdnaWfsqVK6fT7SAiLYSFAd7eQKtWqt9hYXJHVHBFaVuIKBvZq9UAQKFQaPwthMg2TS0qKgpjxozB559/jjNnzmDfvn24desWRowYkevyJ0+ejMTEROnn7t27Oo2fiF4jJgYYNgxQKlV/K5XA8OGm+dSlKG0LEeXIQs6Vu7m5wdzcPNtTovj4+GxPk9RmzpyJpk2b4uOPPwYA1KpVC/b29mjWrBm+/PJLeHh4ZJvH2toa1tbWut8AItLOtWv/JRNqmZnA9euAl5c8MRVUUdoWIsqRrE+OrKysEBAQgAMHDmhMP3DgAJo0aZLjPC9evICZmWbY5ubmAFRPnIjICFWuDLxy3cLcHKhUSZ54CqMobQsR5Uj2arUJEyYgNDQU4eHhuHz5MsaPH4/o6Gipmmzy5Mno37+/VL5Tp07YunUrlixZgps3b+K3337DmDFj0LBhQ3h6esq1GUSUFy8vYPlyVRIBqH4vW2aaT1qK0rYQUY5krVYDgJ49e+Lx48eYMWMGYmNj4e/vjz179sDb2xsAEBsbqzHm0YABA/Ds2TP88MMP+PDDD1GiRAm0atUKs2bNkmsTiEgbgwcDbduqqp8qVTLtZKIobQsRZaMQxbAuKikpCc7OzkhMTISTk5Pc4RAREZEWDHX/lr1ajYiIiMiYMDkiIiIiykL2NkdERIWRkJCAEydO4MqVK7hx4waSkpLw8uVL2Nvbw8XFBZUqVYK/vz8aNGgAOzs7ucMlIhPA5IiITE5MTAzWrVuHjRs34syZM1oN42FtbY1mzZqhR48e6NmzJ9sbElGu2CCbH5BEJuPMmTOYPXs2Nm/eDGWWgRgrV66MOnXqoFKlSnB1dYWNjQ2Sk5Px6NEjXLlyBWfPnsW9e/ek8nZ2dhg0aBAmTpzI1wkRmRBD3b+ZHDE5IjJ60dHRmDhxIjZs2CBNa9asGfr06YNOnTq9dowzIQSuXr2K7du3Y+XKlbhy5QoAwNLSEqNHj8a0adPg7Oys120gosJjcqRHTI6ITENmZibmzJmDGTNm4OXLl1AoFOjTpw8+/vhj1KpVq0DLFELg0KFD+OqrrxAZGQkAKF26NBYuXIgePXroMnwi0jF25SeiYu327dto0aIFJk+ejJcvX+LNN9/E2bNn8dNPPxU4MQJUL7pu3bo1Dh06hP3796Nq1aqIj49Hz5490b9/fyQlJelwK4jIFDE5IiKjs3v3btSuXRvHjx+Hg4MDVqxYgcOHD6NOnTo6XU9QUBD++usvfPbZZzAzM8NPP/2EunXr4uLFizpdDxGZFiZHRGQ0hBD49ttv0alTJyQlJaFx48a4cOECBgwYAIVCoZd1WllZYcaMGTh69Ch8fHxw8+ZNNGnSBLt379bL+ojI+DE5IiKjkJmZiZEjR+Kjjz6CEAJDhw7F4cOHUaFCBYOsv2nTpjh9+jRatGiBZ8+eoVOnTli8eLFB1k1ExoXJERHJLiMjAyEhIVi2bBnMzMwwf/58LFu2DFZWVgaNw9XVFfv378fQoUMhhMDo0aMxZ84cg8ZARPJjckREskpPT0evXr0QEREBCwsLrF27FmPHjtVbNdrrWFlZYdmyZZgyZQoAYOLEiZg+fbossRCRPJgcEZFslEolBgwYgC1btsDKygpbtmxBz5495Q4LCoUCX375Jb766isAwLRp0zB37lyZoyIiQ2FyRESyEEJg7NixWLt2LSwsLLB161Z07txZ7rA0/O9//8PMmTMBAB9//DHCw8NljoiIDIHJERHJ4quvvsIPP/wAhUKBVatWoWPHjnKHlKNJkybh448/BgAMHToUO3bskDkiItI3JkdEZHBbtmzBZ599BgBYsGABgoODZY4ob7NmzcLgwYOhVCoRHByMCxcuyB0SEekRkyMiMqjz58+jf//+AIBx48bh/ffflzmi11MoFFiyZAlat26N5ORkdO7cGfHx8XKHRUR6wuSIiAzmwYMH6Ny5M168eIG2bduaVDd5S0tLbNq0CZUrV0Z0dDS6du2K9PR0ucMiIj1gckREBpGZmYmePXvi7t27qFKlCtavXw8LCwu5w8qXkiVLYufOnXB2dsZvv/2G//3vf3KHRER6wOSIiAziiy++wJEjR+Dg4IAdO3agRIkScodUIFWrVsWKFSsAAHPnzsXOnTtljoiIdI3JERHp3eHDh/HFF18AAJYuXYqqVavKHFHhvPvuuxg7diwAICQkBNHR0TJHRES6xOSIiPTq4cOH6NOnD5RKJQYOHIg+ffrIHZJOzJ49Gw0aNMDTp0/Rq1cvZGRkyB0SEekIkyMi0hshBIYMGYL79+/Dz88PCxculDsknbGyssLGjRvh7OyMkydPYvbs2XKHREQ6wuSIiPRmzZo12LFjBywtLbF+/XrY29vLHZJO+fj4SAnftGnTOP4RURHB5IiI9OL+/fsYM2YMAFXiUKtWLZkj0o++ffuiS5cuSE9PR//+/ZGWliZ3SERUSEyOiEjnhBAYNmwYEhISUL9+fUycOFHukPRGoVBg2bJlcHNzw19//YXp06fLHRIRFRKTIyLSudWrV2P37t2wsrLCqlWrTG48o/wqXbo0li1bBkD1qhFWrxGZNiZHRKRTjx49woQJEwAA06dPR/Xq1WWOyDC6du2K7t27IzMzE8OHD0dmZqbcIRFRATE5IiKdmjhxIp48eYJatWrhww8/lDscg5o/fz6cnJzwxx9/SE+SiMj0MDkiIp05duyYNHr00qVLYWlpKXNEhuXp6YmZM2cCACZPnoz79+/LHBERFQSTIyLSibS0NIwcORIAMGzYMDRu3FjmiOQxfPhwNGrUCElJSRg3bpzc4RBRATA5IiKdmD9/Pi5duoRSpUpJT0+KI3Nzcyxbtgzm5ubYtGkTDh06JHdIRJRPTI6IqNDi4uKkd6fNnj0bLi4uMkckr9q1a0tP0caNG8dXixCZGCZHRFRon332GZ4/f44GDRqgf//+codjFKZPnw4XFxf8/fff+PHHH+UOh4jygckRERXK+fPnERYWBgD47rvvYGbGjxUAcHFxwYwZMwCokscnT57IHBERaYufYkRUYEIITJgwAUII9OzZE02bNpU7JKMyfPhw1KhRA48fP8a0adPkDoeItMTkiIgKbMeOHYiMjIS1tTVmzZoldzhGx8LCAt9//z0AYMmSJbh27ZrMERGRNpgcEVGBpKWl4aOPPgIAfPjhh/D29pY5IuPUunVrdOjQARkZGfj000/lDoeItMDkiIgKJDQ0FNevX4e7uzsmTZokdzhGbebMmVAoFNi4cSNOnz4tdzhE9BpMjogo35KTk6Wu+5999hkcHR1ljsi41apVC3379gUAfPLJJxBCyBwREeWFyRER5dvChQsRFxcHHx8fDB06FIiJASIjVb9J07/7ZsbIkbCyssKhQ4dw4MABuaMiojwwOSKifElISJAaX0+fPh1WP/0EeHsDrVqpfv/brZ+g2hf/7hufN97AqDffBKB6eqRUKmUOjohyw+SIiPJlzpw5SEhIQI0aNdCneXNg2DBAfaNXKoHhw/kECVDtg1f2zZRDh+Do4IDz589j48aN8sZHRLlickREWouLi8P8+fMBAF9++SXMb9787+avlpkJXL9u+OCMzbVr2faNm1KJj7p1A6B66paZmSlHZET0GkyOiEhrM2fOxIsXL9CoUSO88847QOXKwKsjYpubA5UqyROgMcll34z9+GOUKFECV65c4dMjIiPF5IiItBIXF4fly5cDAL744gsoFArAywtYvlyVEAGq38uWqaYXd7nsG+fq1fHhhx8CAGbMmMGnR0RGSCGKYZ/SpKQkODs7IzExEU5OTnKHQ2QSPvroI3z77bcIDAzEiRMnVMmRWkyMqiqtUiUmRq/KYd8kJSXBx8cHT58+RUREBIKDg2UOksg0GOr+zeSIyRHRaz18+BA+Pj548eIF9uzZg/bt28sdksn76quv8Omnn6Jq1aq4dOkSzNVPmIgoV4a6f7NajYhea968eXjx4gXq16+Pdu3ayR1OkfDBBx+gZMmSuHr1KjZs2CB3OESUBZMjIsrT48eP8cMPPwBQjYatUZ1GBebk5MS2R0RGiskREeXp+++/x/Pnz1G7dm106tRJ7nCKlA8++AAlSpTA1atXsX37drnDIaJ/MTkiolwlJCTg+++/B8CnRvrg5OSE0aNHAwC++eYbvnONyEgwOSKiXP3www9ISkpCjRo18O6778odTpE0duxY2Nra4tSpU4iMjJQ7HCICkyMiysXLly+xYMECAMD//vc/mL06oCHpRKlSpTB48GAAqkE2iUh+/LQjohytWrUKDx8+hLe3N3r06CF3OEXahx9+CHNzcxw8eBCnT5+WOxyiYo/JERFlk5mZiW+//RYAMGHCBFhYWMgcUdHm4+MjDQQ5a9YsmaMhIiZHRJTNzz//jOvXr6NkyZIYNGiQ3OEUCxMnTgQAbNmyBf/884/M0RAVb0yOiEiDEAKzZ88GAIwePRoODg4yR1Q8+Pv7o1OnThr7n4jkweSIiDQcO3YMf/75J6ytrfH+++/LHU6xMmnSJADATz/9hLi4OJmjISq+mBwRkYY5c+YAAAYMGAB3d3eZoylemjRpgsDAQKSlpWHJkiVyh0NUbDE5IiJJVFQUdu3aBYVCIb3aggxr/PjxAIAlS5YgJSVF5miIiicmR0QkmTdvHgCgS5cuqFy5sszRFE9du3ZF+fLl8fDhQ0RERMgdDlGxZBTJ0eLFi+Hr6wsbGxsEBATg2LFjeZZPTU3FlClT4O3tDWtra1SsWBHh4eEGipaoaHr06JF0M+ZTI/lYWFhgzJgxAIDvvvuOrxQhkoHsydGGDRswbtw4TJkyBefOnUOzZs3Qvn17REdH5zpPjx498OuvvyIsLAxXr17FunXrUK1aNQNGTVT0/Pjjj0hJSUFAQACaNGkidzjF2pAhQ+Dg4IBLly7hwIEDcodDVOwohMxfSxo1aoR69eppND708/NDly5dchxKf9++fejVqxdu3rwJFxeXAq0zKSkJzs7OSExMhJOTU4FjJyoq0tPT4evri3v37mHVqlXo37+/3CEVe2PHjsWCBQvQrl077N27V+5wiIyCoe7fsj45SktLw5kzZxAUFKQxPSgoCCdOnMhxnh07dqB+/fqYPXs2ypYtiypVquCjjz7Cy5cvc11PamoqkpKSNH6I6D9bt27FvXv34O7ujp49e8odDkGVHCkUCuzbtw9RUVFyh0NUrMiaHD169AiZmZnZugu7u7vnOsbHzZs3cfz4cVy8eBHbtm3D/PnzsXnzZowePTrX9cycORPOzs7ST7ly5XS6HUSm7vvvvwcAjBgxAtbW1jJHQwBQoUIFdOnSBQAwf/58WWMhKm5kb3MEAAqFQuNvIUS2aWpKpRIKhQIRERFo2LAhOnTogHnz5mHlypW5Pj2aPHkyEhMTpZ+7d+/qfBuITNWpU6dw8uRJWFpaYsSIEXKHQ1mou/WvWbMGT548kTkaouJD1uTIzc0N5ubm2Z4SxcfH5zr4nIeHB8qWLQtnZ2dpmp+fH4QQiImJyXEea2trODk5afwQkcqCBQsAAL169UKZMmVkjoayeuONN1C7dm28fPkSK1askDscomJD1uTIysoKAQEB2XpjHDhwINfeMk2bNsX9+/fx/Plzado///wDMzMzeHl56TVeoqImNjYWGzZsAACp+zgZD4VCITUZWLx4MZRKpcwRERUPslerTZgwAaGhoQgPD8fly5cxfvx4REdHS4/3J0+erNFzJjg4GK6urhg4cCCioqJw9OhRfPzxxxg0aBBsbW3l2gwik7R06VKkp6ejSZMmqF+/vtzhUA6Cg4NRokQJ3Lx5E/v27ZM7HKJiQfbkqGfPnpg/fz5mzJiBOnXq4OjRo9izZw+8vb0BqL7ZZh3zyMHBAQcOHEBCQgLq16+PPn36oFOnTlLVABFpJy0tDUuXLgWg6hlFxsne3h4DBw4EACxatEjmaIiKB9nHOZIDxzkiAtavX4/evXvD09MTt2/fhqWlpdwhUS6uXbuGKlWqQKFQ4Nq1a6hYsaLcIRHJoliMc0RE8lEPvDp06FAmRkaucuXKaNeuHYQQGgPmEpF+MDkiKoYuXbqEo0ePwtzcHEOHDpU7HNKCumF2WFgYXrx4IXM0REUbkyOiYkjd1qhz584oW7aszNGQNtq3bw9fX18kJCRg3bp1codDVKQxOSIqZp4/f47Vq1cDAEaOHClzNKQtc3Nz6Xj98MMPKIbNRYkMhskRUTGzbt06JCUloVKlSmjdurXc4VA+DBo0CDY2Njh//jxOnjwpdzhERRaTI6JiJGuD3hEjRsDMjB8BpsTV1RW9evUCACxbtkzmaIiKLn4yEhUjp06dwrlz52BtbY0BAwbIHQ4VwLBhwwAAGzduxNOnT2WOhqhoYnJEVIyonxr16NEDrq6uMkdDBREYGIiaNWsiJSUFa9askTscoiKJyRFRMfHkyROsX78eABtimzKFQiE9PVq2bBkbZhPpAZMjomJi1apVSElJQe3atREYGCh3OFQIffv2ha2tLS5dusSG2UR6wOSIqBgQQkhjG40cORIKhULmiKgwSpQogZ49ewIAli9fLnM0REUPkyOiYuDYsWP4559/4ODggODgYO1njIkBIiNVv0m/8rmv1VVrGzZsYMNsIh1jckRUDISGhgIAevfuDUdHR+1mCgsDvL2BVq1Uv8PC9BhhMVeAfc2G2UT6oxDFsDWfod7qS2QMEhIS4OHhgZSUFPzxxx9o2LDh62eKiVHdpJXK/6aZmwO3bwNeXnqLtVgqxL7+4Ycf8MEHH8Df3x9//fUXq0upyDPU/ZtPjoiKuLVr1yIlJQU1a9ZEgwYNtJvp2jXNmzUAZGYC16/rPsDirhD7Wt0w++LFi2yYTaRDTI6Iijh1ldrgwYO1f7JQuTLw6ujZ5uZApUo6jo4Ks6/ZMJtIP5gcERVhZ8+exblz52BlZYW+fftqP6OXF7B8ueomDah+L1vGKjV9KOS+ZsNsIt1jckRUhKmfGnXt2jX/I2IPHqxq9xIZqfo9eLDO46N/FWJfZ22YvW7dOr2FSFScMDkiKqJevHiBiIgIAMCQIUMKthAvL6BFCz4xMoQC7muFQoFBgwYBAMLDw/UQGFHxw+SIqIjavHkzkpKS4Ovri5YtW8odDulRnz59YGlpiTNnzuDChQtyh0Nk8pgcERVRWRtim73a4JeKlFKlSqFz584AgBUrVsgcDZHp4ycmURF09epVHDt2DGZmZhgwYIDc4ZABqKvW1qxZg9TUVJmjITJtTI6IiqCwf0dY7tChA8qWLStzNGQIQUFB8PT0xOPHj7Fz5065wyEyaUyOiIqY9PR0rFq1CkAhGmKTybGwsEBISAgAVq0RFRaTI6IiZteuXYiPj0eZMmXQoUMHucMhAxo4cCAAYN++fbh3757M0RCZLiZHREWM+qlR//79YWlpKXM0ZEiVK1dGs2bNoFQqsXr1arnDITJZhUqO4uPjERcXp6tYiKiQHj16hN27dwNQJUdU/GQd86gYvlecSCcKlBz99ddfqFGjBjw8PFC2bFmULVsWn376KZKTk3UdHxHlw/r165GRkYF69eqhRo0acodDMujWrRscHBxw/fp1HD9+XO5wiExSgZKjwYMHw93dHcePH8e5c+fw5ZdfYu/evahfvz7f7UMko59++gkAnxoVZw4ODtLLaDliNlHBKEQBnrva29vjzJkzqFatmjRNCIHu3bvDxsYGa9as0WmQupaUlARnZ2ckJibCyclJ7nCIdOLKlSvw8/ODubk57t+/j9KlS8sdEsnkxIkTaNq0Kezs7BAXFwdHR0e5QyLSCUPdvwv05CinJ0QKhQJff/01tm/frpPAiCh/1E+N2rVrx8SomGvcuDGqVq2KFy9eYOPGjXKHQ2RytE6OOnbsiP/973/YuHEjRowYgfHjx+PBgwcaZRITE1GyZEmdB0lEeVMqldITW1apEV9GS1Q4WlerTZo0CefPn8eFCxekpMjW1hY9evRAnTp1kJmZiRUrVmDatGl477339Bp0YbFajYqaw4cPo2XLlnB2dkZsbCxsbW3lDolkFhsbi3LlyiEzMxNXrlxB1apV5Q6JqNCMrlrtm2++wb59+xAbG4vY2Fjs2bMHn332GV6+fIklS5Zg4sSJ+OeffzB9+nS9BUtEOVOPadO9e3cmRgQA8PDwQLt27QCAYx4R5VOBGmTn5OXLl7hw4QIuXLiA4cOH62KResMnR1SUvHjxAu7u7nj+/DmOHj2KZs2ayR0SGYlNmzahR48eKFeuHG7fvg0zM477S6bN6J4cvY6trS0CAwONPjEiKmq2b9+O58+fw9fXF02bNpU7HDIinTp1QokSJXD37l0cPnxY7nCITAa/RhCZOHWVSb9+/fhkgDTY2NhIYx6xao1Ie/wkJTJhsbGx+OWXXwAAffv2lTkaMkbq3oubN2/G8+fPZY6GyDQwOSIyYWvXroVSqUTjxo1RuXJlucMhI9S4cWNUqlQJycnJ2LZtm9zhEJkEJkdEJoyvC6HXUSgU0vmxatUqmaMhMg1MjohMlLp3qJWVFXr06CF3OGTE+vXrBwA4dOgQ7t69K3M0RMaPyRGRiVI/NXr77bfh4uIiczRkzHx8fNC8eXMIIYz+3ZdExoDJEZEJysjIQEREBABWqZF2QkJCAKh6reloeDuiIovJEZEJ+vXXXxEXFwdXV1e0b99e7nDIBLz33nuwtbXFlStXcOrUKbnDITJqTI6ITJB6zJpevXrByspK5mjIFDg5OaFr164AOOYR0eswOSIyMc+ePZO6ZLNKjfJDfb6sW7cOaWlpMkdDZLyYHBGZmC1btuDly5eoWrUqGjRoIHc4ZEJat24NT09PPHnyBLt375Y7HCKjxeSIyMSoq0T69+8PhUIhczRkSszNzaWR1Fm1RpQ7JkdEJuTOnTuIjIwEAPTp06fgC4qJASIjVb/JtBTy2Kmr1nbv3o1Hjx7pMjKiIoPJEZEJUXffb9GiBby9vQu2kLAwwNsbaNVK9TssTIcRkl7p4NjVqFEDAQEBSE9Px/r16/UQJJHpY3JEZCKEEIV/XUhMDDBsGKBUqv5WKoHhw/kEyRTo8NjxdSJEeWNyRGQiTp8+jStXrsDGxgbvvfdewRZy7dp/N1e1zEzg+vXCB0j6pcNj17t3b1hYWOD06dOIiorSUYBERQeTIyIToW5A++6778LJyalgC6lcGTB75bI3NwcqVSpkdKR3Ojx2pUqVQocOHQCwYTZRTpgcEZmAtLQ0qX1IocY28vICli9X3VQB1e9ly1TTybjp+NipXycSERGBzMxMXUVJVCQoRDF8yU5SUhKcnZ2RmJhY8G/gRAa0Y8cOvPPOOyhTpgzu3r0LCwuLwi0wJkZVHVOpEhMjU6OjY5eamgoPDw88ffoUBw8eROvWrXUYJJF+GOr+zSdHRCZAXfURHBxc+MQIUN1UW7RgYmSKdHTsrK2t0bNnTwCsWiN6FZMjIiP39OlT7Ny5EwBfF0K61a9fPwCqUdeTk5NljobIeDA5IjJyGzduRFpaGmrVqoXatWvLHQ4VIY0bN0bFihWRnJwsva+PiJgcERm9rK8LIdIlhUIhnVfqMbSIiMkRkVG7fv06Tpw4ATMzMwQHB8sdDhVB6netHTx4EPfu3ZM5GiLjwOSIyIipv82/9dZb8PDwkDkaKooqVKiAN954A0qlEmvXrpU7HCKjwOSIyEjp5HUhRFpQN8xevXo1iuHoLkTZMDkiMlK//fYbbt26BQcHB3Tp0kXucKgI6969O6ytrXHx4kVcuHBB7nCIZGcUydHixYvh6+sLGxsbBAQE4NixY1rN99tvv8HCwgJ16tTRb4BEMlA3xO7WrRvs7OxkjoaKspIlS6Jz584A2DCbCDCC5GjDhg0YN24cpkyZgnPnzqFZs2Zo3749oqOj85wvMTER/fv356iuVCSlpKRg48aNAFilRoahrlqLiIhARkaGzNEQyUv25GjevHkYPHgwhgwZAj8/P8yfPx/lypXDkiVL8pxv+PDhCA4ORuPGjQ0UKZHh7Ny5E4mJiShXrhyaN28udzhUDLRr1w5ubm548OABDhw4IHc4RLKSNTlKS0vDmTNnEBQUpDE9KCgIJ06cyHW+FStW4MaNG5g6dapW60lNTUVSUpLGD5ExU1ep9e3bF2avvomdSA8sLS3Ru3dvAKxaI5L1U/fRo0fIzMyEu7u7xnR3d3fExcXlOM+1a9cwadIkREREaP2OqZkzZ8LZ2Vn6KVeuXKFjJ9KX+Ph47N27F8B/VR1EhqCuwt22bRu/RFKxZhRfSRUKhcbfQohs0wAgMzMTwcHBmD59OqpUqaL18idPnozExETp5+7du4WOmUhf1q9fj8zMTDRo0AB+fn5yh0PFSEBAAPz8/JCSkoItW7bIHQ6RbGRNjtzc3GBubp7tKVF8fHy2p0kA8OzZM5w+fRrvv/8+LCwsYGFhgRkzZuDChQuwsLDAoUOHclyPtbU1nJycNH6IjJW6So1PjcjQFAqFxphHRMWVrMmRlZUVAgICsjX+O3DgAJo0aZKtvJOTE/7++2+cP39e+hkxYgSqVq2K8+fPo1GjRoYKnUgvoqKicObMGVhYWKBXr15yh0PFUJ8+faBQKHD48GHcuXNH7nCIZCF7tdqECRMQGhqK8PBwXL58GePHj0d0dDRGjBgBQFUlpq4HNzMzg7+/v8ZP6dKlYWNjA39/f9jb28u5KUSFpm4I26FDB5QqVUrmaKg4Kl++PFq0aAFA1a2fqDiSPTnq2bMn5s+fjxkzZqBOnTo4evQo9uzZA29vbwBAbGzsa8c8IioKMjMzsWbNGgAc24jkpT7/+DoRKq4Uohie+UlJSXB2dkZiYiLbH5HR+PXXX9GmTRuUKFECcXFxsLa2ljskKqaePXsGd3d3vHz5En/++ScaNGggd0hEAAx3/5b9yRERqagbwPbs2ZOJEcnK0dER7777LgA2zKbiickRkRFITk6Wuk6zSo2Mgfo8XLduHdLS0mSOhsiwmBwRGYFt27YhOTkZFStW5CtxyCi0bt0aZcqUwePHj7Fv3z65wyEyKCZHREYg69hGOQ2ASmRoFhYW6NOnDwBWrVHxw+SISGb37t3DwYMHAehg4MeYGCAyUvWbijcdnAvqqrWdO3fi6dOnuoqMyOgxOSKS2dq1ayGEwBtvvIEKFSoUfEFhYYC3N9Cqlep3WJjugiTToqNzoVatWqhVqxbS0tKwceNGHQdJZLyYHBHJSAiBVatWASjkU6OYGGDYMECpVP2tVALDh/MJUnGk43Mh65hHRMUFkyMiGZ0/fx6XLl2CtbU1unfvXvAFXbv2381QLTMTuH69cAGS6dHxuRAcHAwzMzOcOHECN27c0EGARMaPyRGRjNSvC+ncuTNKlixZ8AVVrgyYvXI5m5sDlSoVIjoySTo+Fzw8PPDWW28B+O98JSrqmBwRySQjI0N6d1Whxzby8gKWL1fdBAHV72XLVNOpeNHDuaA+P3/66Se+ToSKBb4+hK8PIZns2bMHHTt2RKlSpXDv3j1YWloWfqExMarqk0qVmBgVdzo8F168eAF3d3c8f/4cx48fR9OmTXUUJFH+8PUhREWcuoFr7969dZMYAaqbYIsWTIxIp+eCnZ0dunXrBoANs6l4YHJEJIPExERs374dAF8XQqZB3Zty48aNSElJkTkaIv1ickQkg82bNyMlJQV+fn6oV6+e3OEQvVaLFi1Qrlw5JCQkYNeuXXKHQ6RXTI6IZKCumujfvz9fF0ImwczMDH379gXAqjUq+pgcERnY7du3cfToUSgUCundVUSmQF21tnfvXjx8+FDmaIj0h8kRkYGtWbMGANCqVSuUK1dO5miItOfn54f69esjIyMD69evlzscIr1hckRkQEIIqUqi0C+ZJZKB+rzlgJBUlDE5IjKg33//HdeuXYOdnR3ee+89ucMhyrdevXrBwsICp06dwuXLl+UOh0gvmBwRGZD6JbPvvfceHBwcZI6GKP9Kly6N9u3bA+DTIyq6mBwRGUhKSgo2bNgAAAgJCZE5GqKCU1etrVmzBspXX3JLVAQwOSIykJ07dyIhIQFeXl5o0aKF3OEQFVinTp3g7OyMu3fv4siRI3KHQ6RzTI6IDERdpdavXz+Yq18KSmSCbGxs0KNHDwCsWqOiickRkQE8ePAA+/btA8DXhVDRoD6PN23ahBcvXsgcDZFuMTkiMoC1a9ciMzMTDRs2RLVq1eQOh6jQmjZtCl9fXzx//hw///yz3OEQ6RSTIyIDUFepsSE2FRUKhYJjHlGRxeSISM8uXLiACxcuwNLSEr169ZI7HCKdUSdHv/zyC2JjY2WOhkh3mBwR6Zl6ROxOnTrBxcUl/wuIiQEiI1W/iXStEOdXpUqV0LhxYyiVSqxbt04PwRHJg8kRkR5lZGQgIiICQAGr1MLCAG9voFUr1e+wMB1HSMWaDs4vdcNs9ZcAoqJAIYQQcgdhaElJSXB2dkZiYiKcnJzkDoeKsD179qBjx45wc3PD/fv3YWlpqf3MMTGqG1bWQfbMzYHbtwEvL53HSsWMjs6vJ0+ewMPDA2lpabhw4QJq1aql+1iJ/mWo+zefHBHpkbohdnBwcP4SIwC4dk3zxgUAmZnA9es6io6KNR2dXy4uLnj77bcBsGE2FR1Mjoj0JCEhAdu3bwdQwCq1ypUBs1cuUXNzoFIlHURHxZ4Ozy911VpERAQyMzN1ER2RrJgcEenJxo0bkZqaCn9/f9StWzf/C/DyApYvV92wANXvZctYpUa6ocPzq3379nB1dUVsbCx+/fVXHQdKZHhMjoj0RN1AtX///lAoFAVbyODBqjYgkZGq34MH6yw+Il2dX1ZWVtIwFWyYTUUBG2SzQTbpwfXr11G5cmWYmZkhJiYGHh4ecodEpFd//vknGjVqBFtbWzx48ACOjo5yh0RFEBtkE5kw9bfnoKAgJkZULDRo0ABVqlTBy5cvsXXrVrnDISoUJkdEOqZUKqVeanzJLBUXCoWCYx5RkcHkiEjHDh06hOjoaJQoUQJdunSROxwig+nTpw8AIDIyEnfv3pU5GqKCY3JEpGPh4eEAVGMb2drayhwNkeH4+PigefPmEEJII8MTmSImR0Q69PTpU6m9xaBBg2SOhsjwslatFcP+PlREMDki0qF169YhNTUVtWrVQr169eQOh8jgunXrBhsbG1y+fBlnz56VOxyiAmFyRKRD6iq1QYMGFXxsIyIT5uTkJLW1W7lypayxEBUUkyMiHblw4QLOnDkDS0tLqWEqUXE0cOBAAMCaNWvw8uVLmaMhyj8mR0Q6smLFCgDAO++8Azc3N5mjIZJPmzZtUL58eSQkJGDbtm1yh0OUb0yOiHQgNTUVa9asAcCG2ERmZmbSdRAWFiZzNET5x+SISAd27tyJx48fw9PTE0FBQXKHQyS7gQMHQqFQ4NChQ7hx44bc4RDlC5MjIh1QN8QOCQmBufot568TE6N64WdMjB4jI9KRfJ6v5cuXl74oqKuciUwFkyOiQoqJicH+/fsB/NcQ9bXCwgBvb6BVK9VvVj2QMSvg+Tp48GAAquQoIyNDnxES6RSTI6JCWr16NZRKJZo1a4bKlSu/foaYGGDYMECpVP2tVALDh/MJEhmnQpyvnTt3hqurK+7fvy99gSAyBUyOiApBCCFVGWjdEPvatf9uNGqZmcD16zqOjkgHCnG+WltbSyNmh4aG6iM6Ir1gckRUCEePHsX169fh4OCAbt26aTdT5cqA2SuXnrk5UKmS7gMkKqxCnq/qqrVdu3YhLi5O19ER6QWTI6JCWL58OQCgd+/ecHBw0G4mLy9g+XLVDQZQ/V62TDWdyNgU8nytUaMGAgMDkZGRgdWrV+sxUCLdUYhi+GbApKQkODs7IzExEU5OTnKHQyZK3XU/LS0Np0+fRkBAQP4WEBOjqpqoVImJERm/QpyvoaGhGDp0KKpUqYIrV67w1TpUYIa6f/PJEVEBrVq1CmlpaahXr17+EyNAdYNp0YKJEZmGQpyvPXv2hL29Pf755x8cP35c97ER6RiTI6ICEEJIVWrDhg2TORoi4+bo6IiePXsC4IjZZBqYHBEVwLFjx3D16lXY29sjODhY7nCIjN6QIUMAABs3bkRCQoK8wRC9BpMjogJQPzUKDg6Go6OjzNEQGb/AwED4+/vj5cuX+Omnn+QOhyhPTI6I8unx48fYvHkzAFapEWlLoVBgxIgRAIAlS5agGPYFIhPC5Igon1avXo3U1FTUq1cP9evXlzscIpPRt29f2NnZ4fLlyzh27Jjc4RDliskRUT6wITZRwTk7O6NPnz4AgKVLl8ocDVHumBwR5cPx48dx5coV2Nvbo3fv3jkXyufby4mKnDyugeHDhwMANm/ejPj4eENHRqQVJkdE+ZB1ROwcByAr4NvLiYqM11wDAQEBaNCgAdLT06X3EhIZG46QzRGySUuPHz9G2bJlkZqailOnTmVvbxQTo7oZZH1Jp7k5cPs2B3qk4kHLayA8PByDBw+Gr68vrl+/DrNX391GlItiNUL24sWL4evrCxsbGwQEBOTZUG/r1q146623UKpUKTg5OaFx48bYv3+/AaOl4io8PBypqamoW7duziNiF+Lt5URFgpbXQK9eveDs7Ixbt27hwIEDBgyQSDuyJ0cbNmzAuHHjMGXKFJw7dw7NmjVD+/btER0dnWP5o0eP4q233sKePXtw5swZtGzZEp06dcK5c+cMHDkVJ5mZmViyZAkA4P3338/53VCFfHs5kcnT8hqws7NDSEgIADbMJuMke7Vao0aNUK9ePenGAwB+fn7o0qULZs6cqdUyatSogZ49e+Lzzz/Xqjyr1Si/du3ahU6dOqFkyZKIiYmBnZ1dzgXDwoDhw1XfltVvLx882LDBEslJy2sgKioKNWrUgJmZGe7cuQMvVj2TFopFtVpaWhrOnDmDoKAgjelBQUE4ceKEVstQKpV49uwZXFxcci2TmpqKpKQkjR+i/Fi0aBEAYPDgwbknRqoCqvYVkZGq30yMqLjR8hqoXr06mjdvDqVSidDQUIOGSPQ6siZHjx49QmZmJtzd3TWmu7u7Iy4uTqtlfPvtt0hOTkaPHj1yLTNz5kw4OztLP+XKlStU3FS8XLt2Dfv27YNCocDIkSNfP0Mh3l5OVCRoeQ2oR8z+8ccfkZ6eboDAiLQje5sjANnabwghcm7T8Yp169Zh2rRp2LBhA0qXLp1rucmTJyMxMVH6uXv3bqFjpuJDXeXboUMHVKhQQeZoiIqOrl27wt3dHffv38fWrVvlDodIImty5ObmBnNz82xPieLj47M9TXrVhg0bMHjwYGzcuBFt2rTJs6y1tTWcnJw0foi0kZycjPDwcADA6NGjZY6GqGixsrKSnh4tWLBA5miI/iNrcmRlZYWAgIBsXTkPHDiAJk2a5DrfunXrMGDAAKxduxYdO3bUd5hUjEVERCAxMREVK1ZE27Zt5Q6HqMgZMWIELC0tceLECZw+fVrucIgAGEG12oQJExAaGorw8HBcvnwZ48ePR3R0tPRtYvLkyejfv79Uft26dejfvz++/fZbBAYGIi4uDnFxcUhMTJRrE6iIEkJIDbFHjRrFgeqI9KBMmTLo2bMnAD49IuMhe1d+QDUI5OzZsxEbGwt/f3989913ePPNNwEAAwYMwO3bt3H48GEAQIsWLXDkyJFsywgJCcHKlSu1Wh+78pM2jh07hjfffBO2tra4d+8eSiYnqwa5q1yZja2JdCEmBrh2DaeSk9GwUydYWloiOjoaZcqUkTsyMlKGun8bRXJkaEyOSBs9evTApk2bMGTIEPwYGAgMG6Ya/dfMDFi+nN30iQojLEzjmmrs44Pfb97EtGnTMHXqVLmjIyPF5EiPmBzR69y+fRsVK1aEUqnEX7/8gprt2vGdaUS6ksM72NYrFOgtBNzd3REdHQ0rKysZAyRjVSwGgSQyVgsXLoRSqUSbNm1Q08KC70wj0qUc3sH2nhDwdHPDgwcPsGnTJpkCI1JhckT0iqSkJPz4448AVB0G+M40Ih3L4ZqyNDfHyAEDALBhNsmPyRHRK8LDw/Hs2TP4+fmpuu97eanaGJmbqwqo3xfFKjWigsnlmhr28cewsrLCn3/+id9//13eGKlYY3JElEVGRga+//57AMD48eP/677Pd6YR6VYO11Tp0qURHBwMAJg7d66s4VHxxgbZbJBNWWzevBndu3eHm5sboqOjYWtrK3dIRMXKxYsXUbNmTSgUCvzzzz+oxOpryoINsolk8N133wEARo4cycSISAb+/v5o3749hBCYN2+e3OFQMcUnR3xyRP8ORPf7s2do/M47sLKywp07dzgQHZFMIiMj0apVK9jY2CA6OhqlUlM5ACsB4JMjIsMIC1ONt9KqFea+8w4AIDg4mIkRkYxatGiB+vXrIyUlBYsGD5auUXh7q65ZIj1jckTFV0yMNELvFQBb/538Ud++ckZFVOwpFAp8/PHHAIAfdu7EC/WYSEolMHy46tol0iMmR1R8ZRmIbjYAAeAdADXU3YuJSDZdu3aFr4cHHgNYmfU/OAArGQCTIyq+/h2I7i6An/6dNNnMjIM7EhkBCwsLTBg1CgDwLYBM9X9wAFYyACZHVHz9OxDdtwoFMgC0BNBo+XI2+CQyEgPHj4eLvT1uAtgMcABWMhgmR1SsPXrnHfxoYwMAmLRmDQd3JDIi9vb2GPNv26OvKlSA8uZNXqNkEEyOqOiKiVGNvptH480FCxbgxcuXqFevHt76d2ReIjIeY8aMgaOjI/6+eRM7zp7Nu7AW1zyRNpgcUdGUpYt+bt1/nz17hoULFwIAJk+eDIVCYegoieg1SpYsiQ8++AAA8MUXXyDXofm0uOaJtMVBIDkIZNETE6P6cFR3/wVUbRVu39ZoqzBnzhxMnDgRVapUQVRUFMzZS43IKD169Ag+Pj5ITk7Grl270LFjR80CWl7zZPo4CCRRQWXpoi95pfvv8+fPMWfOHADApEmTmBgRGTE3NzeM+rfnWo5Pj7S45onyg8kRFT3/dtHX8Er330WLFuHhw4eoWLEi+vXrZ+AAiSi/PvzwQ9ja2uKPP/7AwYMHNf9Ti2ueKD+YHFHR828XfaifBr3S/ffZs2eYPXs2AODzzz+HhYWFXJESkZbc3d0xfPhwAMCMGTM0nx695ponyi+2OWKbo6IrJkb1WL1SJY0Pya+//hpTpkxBlSpVcOnSJSZHRCbi/v37qFChAlJTU/Hrr7+iVatWmgVyueap6GCbIxOXmZmJXbt2YejQofD394ezszMsLS3h4uKC+vXrY8SIEdi9ezdSUlLkDtX0aNtd18sLaNFC40MyMTERc+fOBQBMnTqViRGRCfH09MTQoUMBAFOmTMne9iiHaz5H7PJfIElJSVi1ahX69euH6tWrS/e1kiVLIjAwEOPGjcOJEydy71FoSkQxlJiYKACIxMREnS87MzNTrF69WpQvX15A9bquPH9KlCghPvnkE3Hv3j2dx1IkhYYKYWYmBKD6HRqar9mnT58uAAg/Pz+RkZGhpyCJSF9iY2OFnZ2dACC2b9+e/wUU8jOkOIqKihL9+/cXNjY2Wt3XGjRoIA4cOKCXWPR5/86K1Wo6fCwXGxuLPn36IDIyEgDg6uqKPn36oHXr1qhSpQocHByQlJSEy5cvIzIyEj///DPu3bsHALC2tsbHH3+MSZMmwd7eXmcxFSmF7K77+PFjVKxYEYmJiVi/fj169uypv1iJSG/+97//YebMmfD398f58+e1723KLv/5Ehsbi4kTJyIiIkJ6GlS1alV0794dTZo0QYUKFWBvb4/ExET8/fff2L17N7Zu3YoXL14AAIYNG4Z58+bp9J5msGYxek29jJQ+Ms+zZ8+KMmXKCADC3t5ezJw5U7x8+TLPeTIzM8XPP/8sGjduLGXcXl5eesu4Td6hQ6pve6/+REZqNfuECRMEAFGrVi2RmZmp31iJSG+ePHkiSpQoIQCI1atXaz9jIT9DigulUikWLVoknJycpHtTly5dxO+//y6USmWe8z548ECMHj1amq9+/friwYMHOovNUE+OmBzpwB9//CFdqDVq1BBXrlzJ1/xKpVJs2bJF+Pr6SifUmDFjxIsXL3QSX5Fx9+5/j8PVP+bmqumvcevWLWFlZSUAiL179xogWCLSp5kzZwoAwtfXV6Smpmo3UyE+Q4qL+Ph48fbbb2tUkf3555/5Xs6vv/4q3NzcBABRsWJFcf/+fZ3Ex+RIj3S5c//55x/h4uIiAIimTZuKhISEAi/r+fPnYtSoUdJJWbduXXH79u1Cx2gy7t5VfbPL64MqNFT1Yab+UNOyvUCfPn0EANG6devXfvMhIuP3/Plz6Wn9Dz/8oP2M+fkM0eYzqQg5fvy4tE+trKzEd999V6i2mf/884/0pb927dqFuj+qMTnSI13t3KdPn4rKlSsLAKJhw4bi+fPnOolv7969olSpUgKAcHNzE5HF4ZFvfhpJ3r2regyu5QfW2bNnpYTz9OnTuomXiGT3ww8/CACiVKlS+bvxavMZUswabq9cuVJ6ul69enVx4cIFnSz3xo0bwt3dXQAQHTp0KHSTBiZHeqSLnatUKkWPHj0EAFG+fHkRGxurwwiFuHPnjqhXr54AICwsLPJXr25q9Pyou02bNgKA6N27t06WR0TGITU1VVSpUkUAEBMnTtTdgotR9VtmZqb45JNPpC+QXbt21dkXfbUzZ85IPd2++eabQi2LyZEe6WLnrlixQkpc/vjjDx1G95/k5GTRq1cv6aSdPXt20awS0mMjyX379gkAwtLSUty8ebPwsRKRUdm5c6dUDXT9+nXdLLSYNNxOS0sTwcHB0j3m008/1VtnlR9//FEAEObm5uLs2bMFXg6TIz0q7M6Ni4uTGmB/9dVXOo5OU2Zmpvjwww+lk3fcuHGm19PqdfX2evqWlpaWJvz8/KT9RkRFj1KpFEFBQQKAePfdd3Wz0Px+Jplg26QXL16Ijh07Sl/y16xZo9f1KZVK0b17d6k9bXp6eoGWw+RIjwq7c/v371/oA5xfc+fOlRKkoUOHmk6CpG29fQEbWufl22+/ldojPH36tNDLIyLjdPHiRWFubi4AiEOHDulmodp+Jplg26SEhATx5ptvCgDCxsZG7N692yDrjYuLEyVLlhQAxNy5cwu0DCZHelSYnXvixAkBQCgUCr1Vp+Vm1apVwszMTAAQAwYMMP4Rngvy7SsfDa3zEhsbKxwdHQUAEWoCH1ZEVDjqsXVq166tu8/G130mmWDbpKdPn4oGDRoIAMLJyUkcPXrUoOsPDQ0VAISzs7N4+PBhvudncqRHBd25SqVSNGvWTAAQgwcP1lN0eVu7dq30Dalv374Ge3JVIDLW24eEhEhjdJjMUzYiKrCHDx9KzR0WLVpkmJWaWNukxMRE0ahRIwFAuLq6FqrtT0FlZGSI2rVrS+P55ReTIz0q6M7ds2eP9BjyrozfDDZu3CgsLCwEANGrVy95EiRt6thl+lalfroHQPz+++96XRcRGQ91134nJyedDTqYJxNqm5SUlCSaNGkiAAgXFxdx/vx5g8egduDAAamtU37H8mNypEcF2blKpVJ6FPnRRx/pMTrtbN26VVhaWsqTIOWnjl0PbYnykpqaKvz9/QUAMXDgQL2ui4iMS0ZGhvQ53aNHD8Os1ATaJj1//lyq9ShRooQ4c+aMwdadm1atWgkAYtSoUfmaj8mRHhVk5x45ckR6ahQfH6/H6LS3fft2KUHq3bu3YRKkgjwN0mFbotf54osvpEbYjx490vv6iMi4nD17VmqbuWfPHsOs1IjbJiUnJ4sWLVpI7XxOnTql93Vq49ChQwKAsLa2Fvfu3dN6PiZHelSQnat+18yIESP0GFn+bdu2TapiCw4OLnxDxNc99jXiOvbLly9LI7yuXbtW7nCISCbql0z7+PiI5ORkucMp2OemDqrgXrx4IVq3bi0ACEdHR6NqZqBUKkXTpk0FAPHxxx9rPR+TIz3K786NioqSeqj9888/eo4u/7Zu3SolSH379i14gqTNY18j7Z2RmZkp3njjDaEeor5IDpZJRFp59uyZKFeuXIEb/epcfj83dVAF9/LlS2n8JwcHB/Hbb78VciN0b8eOHQKAKFmypNZJLJMjPcrvzh06dKhuBxjTgy1btki92Pr165c9QdLlQIwGbkekjYULFwoAwt7eXty5c0fucIhIZurR8XU69lFhaPu5qYNG3ikpKaJDhw4CgLCzszN4d31tZWRkSC+m/fHHH7Wah8mRHuVn5yYlJQl7e3sBwGhPMLVNmzZJCVJISMh/CZI230Ly+9jXgO2IXicqKkp6b8/ChQvlDoeIjMTw4cMFAOHt7a33m6lWtPnczM9ncQ6f7ampqaJz584CgLC1tTX6F5erBziuWbOmVk/8mRzpUX52rvp9MFWrVjWJqpqNGzdKCdLAgQNF5p072n0LMdLqstdJTU0VdevWFQBE27ZtOaYREUmSkpKkJxNyjU2Xb9p+FudQLs3MTHRt317qPHTw4EF5tiEfnjx5ImxtbQUArQZWNlRyZAbKU1hYGABg8ODBUCgUMkeTg5gYIDJS9RtA9+7dsXbtWpibm2PFihUYOmIElEql5jyZmcD165rTvLyA5csBc3PV3+bmwLJlqulG7PPPP8e5c+fg6uqK8PBwmJnxlCYiFUdHR6xYsQIKhQJhYWHYunWr3CG9nrafxdeuAVk+2zMA9FMqsXXvXlhZWeHnn39G69at/yv/yr3CWJQsWRLvvvsuAGDVqlUyR5OFXlMvI6Vt5nnx4kVpoKq4uDgDRZcPeVSXrVu3TurOOgQQmfmpvzaS6rLXOXTokFAoFAKA2Lp1q9zhEJGR+vjjj6Wu7Ddu3JA7HO3kY3iADED0+bd9laWlpdi5c6dmWSN//9svv/wiNcxOSUnJsyyr1fRI252r7g7apUsXA0WWhQ4aUK9du1ZKkIYqFKoEyUgaUBfWvXv3hLu7u2k9LiciWaSlpYnGjRsLAKJevXri5cuXcoekG6GhItPMTAz4NzGyMDcX27Zt0yxjAqN4Z2RkiLJlywoAYtOmTXmWZXKkR9rs3MzMTOHp6SkAiO3bt+tu5dqceDpsQB0RESElSMPeflvVBsnEpaWlSeNj1KpVyzjGMSEioxYdHS1cXV0FkP9RmY1VRkaGGNyrlwAgzM3NxcaNG7MXKmQD71zpOImaPHmyACA6duyYZzkmR3qkzc49duyYAFTv6HndYz6t6XIcoXx8G/jpp5+k6qcRI0aYRMPyvIwbN046NteuXZM7HCIyEer3YwIQK1askDucQklLSxPBwcECgDAzMxMRERE5F9TDPUUf1XRXrlyRkryHDx/mWo7JkR5ps3M/+OADAUD0799fu4Xqahyh/Gb5Wo43tHr1ailBGjVqlMkmSEuXLpU+3LI9PiYieo3PPvtMaptj7MOz5CYlJUW8++67UpvYHJ8YZaXNvULbe48eq+lq164tAIiwsLBcyzA50qPX7dzMzEzh4eEhAIidK1YYtBqsQCeelg2oV65cKSVIo0ePNrkEad++fdIwBTNmzJA7HCIyQZmZmaJbt24CgHB1dTWdBtr/evHihWjXrp0AIKysrMSOHTu0m1FX73/TYzXdjIEDX1u1xuRIj163c48eParq2WBrK1IUCoNXg+lzBOoVK1ZICdLAgQNFWlqazpatT+fOnROOjo7S0zxTS+yIyHgkJyeLgIAAAUBUrlzZOHsj5+Dx48fSa5Ls7OzEgQMHdLsCbe49eqymu/RvrYCVhUWu92cmR3ok7dyoqBz/X12lFvJqZmzAajB9dqlfsWKF1Eg7KCjIOEaOzUNUVJRwc3MTAETz5s1Famqq3CERkYm7d++e8Pb2ljp2PHnyRO6Q8nTz5k1RtWpVoR6SQG9Vgtrce/RUTacERNV/E6SIBQtyXHXiv+86ZXKkB1JypFBkO6hKpVK6YLbLXA2mT7t27RJ2dnYCgKhdu7a4d++erPHk5tq1a1IVZ0BAgEhISJA7JCIqIq5duyYNCRIYGGi0XxRPnTolSpcuLQCIcuXKiYsXL8odkt6q6f73b3L03ptvZl9maKhI/Lfmg8mRHkjJUQ4H69KlSwKAsLa2Fs/VVWoyVoPp06lTp6QPBk9PT3Hy5Em5Q9Jw6dIlaewLf39/8ejRI7lDIqIi5q+//hIlS5YUAET9+vXz7Cklh7Vr10pfZOvUqWO0X2RzVIBqutP/Jkd2traa41H9Wy7x3/9ncqQHGsnRK0+DZs+eLQCIdu3aGU01mD7dunVLVK9eXeq9sXjxYqNoz3PixAnpA8vPz0/ExsbKHRIRFVFnzpyRqu6rV68uYmJi5A5JpKWliTFjxgh179z27duLpKQkucPKv3xW0ynNzIRniRICgNi/f/9/Zf59wsTkSI/yenLUvHlzAUAsUNd3mmjSkx9JSUlS7w0Aom/fvrJWX23atEn6phQYGMgnRkSkd1FRUdKTak9PT61egqovt27dkga6BSA+/fRTkZGRIVs8BpHlXjto0CABQIwfP17z//nkSL+k5OiVHmgJCQlSV3FT695ZWEqlUsyZM0dqqF2+fHlx6NAhg8aQnp4uPvroI41vSs+fPzdoDERUfGV9km5tbW3wgSKVSqUIDQ0VDg4OQj3QrU7f0GAiNm7cKNUaaAgNFYn/3qOYHOlBbr3V1AekatWqMkUmv+PHj4sKFSpICcro0aMN0ovj6tWrGt+UJk6cKNLT0/W+XiKirJKSksQ777wjfRb17NnTIE+vb9y4ITp27Cit94033ih2X9LVnjx5In1Rv337tsb/Gaq3mhmKs7JlNf7cs2cPAKBjx45yRGMUmjZtigsXLmD48OEAgEWLFqFKlSpYvnw5MjIydL6+tLQ0zJ49G7Vr18Zvv/0GBwcHbNq0CbNmzYKFhYXO10dElBdHR0ds3boVX3zxBczNzbFhwwb4+/tjw4YNEELofH3Pnz/HZ599hurVq2P37t2wsrLC7NmzcfjwYVSoUEHn6zMFJUuWROPGjQEA+/bt0/zPV+7beqPX1MtI5TSIlFKpFOXKlRMAxL59+2SMzngcPHhQesQMQFSsWFGEhobqZJyhjIwMsW7dOlGxYkVp+UFBQdm+JRARyeXUqVPCz89P+oxq2LChiIyM1EmnlYSEBPHFF18IFxcXafmtW7cWly5d0kHkpu+LL74QAESXLl00pnMQSD3Kaedev35d6rHFdi7/SUtLE/Pnz5d6cgAQpUuXFh9++KH4+++/8/0hERMTI+bOnSt8fX2l5bm7u4vw8HCj6CVHRJTVy5cvxYwZM4S9vb30mRUQECBWrFghnj59mq9lZWRkiCNHjogBAwZoLK9y5cpi69at/AzM4tSpUwKAcHR01GhiYajkSCGEHp4TGrmkpCQ4OzsjMTERTk5OAIAff/wRw4YNQ7NmzXD06FGZIzQ+ycnJWL58OebMmYPY2Fhpevny5dGmTRs0btwY1atXh5eXF0qWLAmFQoGUlBTExMTgxo0b+PPPP3H06FH8/vvv0ryurq4YO3Ysxo8fDwcHBzk2i4hIK3FxcZgxYwZWrFiBlJQUAIClpSVatmyJN954AwEBAfD19YW7uztsbGyQnp6OJ0+e4NatW7h06RKOHTuGX3/9FU+ePJGWWaNGDUyZMgU9evSAubm5XJtmlJRKJdzc3PD06VP88ccfaNiwIYCc7996odfUy0jllHn26tVLABBTp06VLzATkJaWJnbs2CG6dOkirKyspG8++flp2rSp+PHHH8WLFy/k3hwionx5+PCh+PrrrzWaHOTnx8nJSQwePFj89ttvfFL0GuqG8bNmzZKmFasnR4sXL5aeSNSoUQPz589Hs2bNci1/5MgRTJgwAZcuXYKnpycmTpyIESNGaL2+VzNPIQQ8PDzw4MEDHD58GM2bN9fFZhV5ycnJ0rehv/76C1FRUXjw4AHS09OlMm5ubvDx8UGdOnXQtGlTtGnTBl5eXjJGTUSkG1FRUTh06BB+++03REVF4datW3j27Jn0/7a2tihbtiyqV6+OevXqoU2bNmjYsCEsLS1ljNp0fPfdd5gwYQI6dOiA3bt3AzDckyPZk6MNGzagX79+WLx4MZo2bYply5YhNDQUUVFRKF++fLbyt27dgr+/P4YOHYrhw4fjt99+w6hRo7Bu3Tq89957Wq3z1Z0bFRWFGjVqwMbGBgkJCbC2ttb1ZhYbQgi8ePECAGBtbc0eZ0RUrKSnpyMlJQWWlpawsbGROxyTdu7cOdSrVw+Ojo548uQJLCwsDJYcyd6Vf968eRg8eDCGDBkCPz8/zJ8/H+XKlcOSJUtyLL906VKUL18e8+fPh5+fH4YMGYJBgwZh7ty5BY7h0KFDAIA33niDiVEhKRQK2Nvbw97enokRERU7lpaWcHR0ZGKkA7Vq1UKJEiXw7NkznDt3zqDrljU5SktLw5kzZxAUFKQxPSgoCCdOnMhxnpMnT2Yr37ZtW5w+fVqjOic/Dh8+DABo2bJlgeYnIiIi3TI3N8ebb74JQNWcxpBk/Wr/6NEjZGZmwt3dXWO6u7s74uLicpwnLi4ux/IZGRl49OgRPDw8ss2TmpqK1NRU6e/ExEQAquo1IQSOHTsGAKhXrx6SkpIKtU1ERESkG4GBgdixYwcOHDiAYcOGSfdofbcIMop6D4VCofG3ECLbtNeVz2m62syZMzF9+vRs08uVK6fxd/v27bWKl4iIiAznl19+gbOzs/T348ePNf7WNVmTIzc3N5ibm2d7ShQfH5/t6ZBamTJlcixvYWEBV1fXHOeZPHkyJkyYIP2dkJAAb29vREdH63XnGpukpCSUK1cOd+/e1e/4EEaG283tLg643dzu4iAxMRHly5eHi4uLXtcja3JkZWWFgIAAHDhwAO+++640/cCBA3jnnXdynKdx48bYuXOnxrRffvkF9evXz7V7pLW1dY4NrZ2dnYvVSaXm5OTE7S5GuN3FC7e7eCmu221mpt8m07L3VpswYQJCQ0MRHh6Oy5cvY/z48YiOjpbGLZo8eTL69+8vlR8xYgTu3LmDCRMm4PLlywgPD0dYWBg++ugjuTaBiIiIihDZ2xz17NkTjx8/xowZMxAbGwt/f3/s2bMH3t7eAIDY2FhER0dL5X19fbFnzx6MHz8eixYtgqenJxYsWKD1GEdEREREeZE9OQKAUaNGYdSoUTn+38qVK7NNa968Oc6ePVvg9VlbW2Pq1KnFbkwjbje3uzjgdnO7iwNut363W/YRsomIiIiMiextjoiIiIiMCZMjIiIioiyYHBERERFlweSIiIiIKIsimxx99dVXaNKkCezs7FCiRAmt5hFCYNq0afD09IStrS1atGiBS5cuaZRJTU3FBx98ADc3N9jb26Nz586IiYnRwxYUzNOnT9GvXz84OzvD2dkZ/fr1Q0JCQp7zKBSKHH/mzJkjlWnRokW2/+/Vq5eet0Z7BdnuAQMGZNumwMBAjTJF7Xinp6fjk08+Qc2aNWFvbw9PT0/0798f9+/f1yhnbMd78eLF8PX1hY2NDQICAqT3IebmyJEjCAgIgI2NDSpUqIClS5dmK7NlyxZUr14d1tbWqF69OrZt26av8AssP9u9detWvPXWWyhVqhScnJzQuHFj7N+/X6PMypUrc7zWU1JS9L0p+ZKf7T58+HCO23TlyhWNckXteOf0+aVQKFCjRg2pjLEf76NHj6JTp07w9PSEQqHAzz///Np5DHZtiyLq888/F/PmzRMTJkwQzs7OWs3zzTffCEdHR7Flyxbx999/i549ewoPDw+RlJQklRkxYoQoW7asOHDggDh79qxo2bKlqF27tsjIyNDTluRPu3bthL+/vzhx4oQ4ceKE8Pf3F2+//Xae88TGxmr8hIeHC4VCIW7cuCGVad68uRg6dKhGuYSEBH1vjtYKst0hISGiXbt2Gtv0+PFjjTJF7XgnJCSINm3aiA0bNogrV66IkydPikaNGomAgACNcsZ0vNevXy8sLS3Fjz/+KKKiosTYsWOFvb29uHPnTo7lb968Kezs7MTYsWNFVFSU+PHHH4WlpaXYvHmzVObEiRPC3NxcfP311+Ly5cvi66+/FhYWFuL333831Ga9Vn63e+zYsWLWrFnizz//FP/884+YPHmysLS0FGfPnpXKrFixQjg5OWW75o1Jfrc7MjJSABBXr17V2Kas12hRPN4JCQka23v37l3h4uIipk6dKpUx9uO9Z88eMWXKFLFlyxYBQGzbti3P8oa8totscqS2YsUKrZIjpVIpypQpI7755htpWkpKinB2dhZLly4VQqhORktLS7F+/XqpzL1794SZmZnYt2+fzmPPr6ioKAFA4yQ4efKkACCuXLmi9XLeeecd0apVK41pzZs3F2PHjtVVqDpV0O0OCQkR77zzTq7/X1yO959//ikAaHwIG9PxbtiwoRgxYoTGtGrVqolJkyblWH7ixImiWrVqGtOGDx8uAgMDpb979Ogh2rVrp1Gmbdu2olevXjqKuvDyu905qV69upg+fbr0t7afh3LK73ark6OnT5/muszicLy3bdsmFAqFuH37tjTNFI63mjbJkSGv7SJbrZZft27dQlxcHIKCgqRp1tbWaN68OU6cOAEAOHPmDNLT0zXKeHp6wt/fXyojp5MnT8LZ2RmNGjWSpgUGBsLZ2Vnr+B48eIDdu3dj8ODB2f4vIiICbm5uqFGjBj766CM8e/ZMZ7EXRmG2+/DhwyhdujSqVKmCoUOHIj4+Xvq/4nC8AdWLHBUKRbbqZ2M43mlpaThz5ozGMQCAoKCgXLfx5MmT2cq3bdsWp0+fRnp6ep5ljOG4AgXb7lcplUo8e/Ys2ws6nz9/Dm9vb3h5eeHtt9/GuXPndBZ3YRVmu+vWrQsPDw+0bt0akZGRGv9XHI53WFgY2rRpI71dQs2Yj3d+GfLaNooRso1BXFwcAMDd3V1juru7O+7cuSOVsbKyQsmSJbOVUc8vp7i4OJQuXTrb9NKlS2sd36pVq+Do6IiuXbtqTO/Tpw98fX1RpkwZXLx4EZMnT8aFCxdw4MABncReGAXd7vbt26N79+7w9vbGrVu38Nlnn6FVq1Y4c+YMrK2ti8XxTklJwaRJkxAcHKzx8kpjOd6PHj1CZmZmjtdlbtsYFxeXY/mMjAw8evQIHh4euZYxhuMKFGy7X/Xtt98iOTkZPXr0kKZVq1YNK1euRM2aNZGUlITvv/8eTZs2xYULF1C5cmWdbkNBFGS7PTw8sHz5cgQEBCA1NRU//fQTWrdujcOHD+PNN98EkPs5UVSOd2xsLPbu3Yu1a9dqTDf2451fhry2TSo5mjZtGqZPn55nmVOnTqF+/foFXodCodD4WwiRbdqrtClTGNpuN5A9fiB/8YWHh6NPnz6wsbHRmD506FDp3/7+/qhcuTLq16+Ps2fPol69elotO7/0vd09e/aU/u3v74/69evD29sbu3fvzpYc5me5hWWo452eno5evXpBqVRi8eLFGv8nx/HOS36vy5zKvzq9INe6oRU0xnXr1mHatGnYvn27RgIdGBio0emgadOmqFevHhYuXIgFCxboLvBCys92V61aFVWrVpX+bty4Me7evYu5c+dKyVF+lymXgsa4cuVKlChRAl26dNGYbirHOz8MdW2bVHL0/vvvv7bHjI+PT4GWXaZMGQCqzNTDw0OaHh8fL2WhZcqUQVpaGp4+farxNCE+Ph5NmjQp0Hq1oe12//XXX3jw4EG2/3v48GG2TDonx44dw9WrV7Fhw4bXlq1Xrx4sLS1x7do1vd0sDbXdah4eHvD29sa1a9cAFO3jnZ6ejh49euDWrVs4dOiQxlOjnBjieOfEzc0N5ubm2b71Zb0uX1WmTJkcy1tYWMDV1TXPMvk5X/SpINuttmHDBgwePBibNm1CmzZt8ixrZmaGBg0aSOe83Aqz3VkFBgZizZo10t9F+XgLIRAeHo5+/frBysoqz7LGdrzzy6DXdr5aKJmg/DbInjVrljQtNTU1xwbZGzZskMrcv3/f6Bro/vHHH9K033//XesGuiEhIdl6LeXm77//FgDEkSNHChyvrhR2u9UePXokrK2txapVq4QQRfd4p6WliS5duogaNWqI+Ph4rdYl5/Fu2LChGDlypMY0Pz+/PBtk+/n5aUwbMWJEtkab7du31yjTrl07o2ugm5/tFkKItWvXChsbm9c2bFVTKpWifv36YuDAgYUJVacKst2veu+990TLli2lv4vq8Rbivwbpf//992vXYYzHWw1aNsg21LVdZJOjO3fuiHPnzonp06cLBwcHce7cOXHu3Dnx7NkzqUzVqlXF1q1bpb+/+eYb4ezsLLZu3Sr+/vtv0bt37xy78nt5eYmDBw+Ks2fPilatWhld1+5atWqJkydPipMnT4qaNWtm69r96nYLIURiYqKws7MTS5YsybbM69evi+nTp4tTp06JW7duid27d4tq1aqJunXrmux2P3v2THz44YfixIkT4tatWyIyMlI0btxYlC1btkgf7/T0dNG5c2fh5eUlzp8/r9G9NzU1VQhhfMdb3cU5LCxMREVFiXHjxgl7e3upV86kSZNEv379pPLq7r7jx48XUVFRIiwsLFt3399++02Ym5uLb775Rly+fFl88803Rtu1W9vtXrt2rbCwsBCLFi3KdQiGadOmiX379okbN26Ic+fOiYEDBwoLCwuNBFtu+d3u7777Tmzbtk38888/4uLFi2LSpEkCgNiyZYtUpigeb7W+ffuKRo0a5bhMYz/ez549k+7NAMS8efPEuXPnpJ6zcl7bRTY5CgkJEQCy/URGRkplAIgVK1ZIfyuVSjF16lRRpkwZYW1tLd58881s2fjLly/F+++/L1xcXIStra14++23RXR0tIG26vUeP34s+vTpIxwdHYWjo6Po06dPti6ur263EEIsW7ZM2Nra5jiWTXR0tHjzzTeFi4uLsLKyEhUrVhRjxozJNiaQnPK73S9evBBBQUGiVKlSwtLSUpQvX16EhIRkO5ZF7XjfunUrx+si67VhjMd70aJFwtvbW1hZWYl69eppPMEKCQkRzZs31yh/+PBhUbduXWFlZSV8fHxyTPo3bdokqlatKiwtLUW1atU0bqbGIj/b3bx58xyPa0hIiFRm3Lhxonz58sLKykqUKlVKBAUFiRMnThhwi7STn+2eNWuWqFixorCxsRElS5YUb7zxhti9e3e2ZRa14y2E6um2ra2tWL58eY7LM/bjrX7qlds5K+e1rRDi39ZMRERERFR0Xx9CREREVBBMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERcqMGTNQs2ZN2Nvbw93dHSNHjkR6errcYRGRCbGQOwAiIl0RQiAzMxPLli1D2bJlERUVhf79+6NWrVoYOXKk3OERkYngi2eJqEgLDg5GqVKl8P3338sdChGZCFarEVGRcefOHbz//vvw9/dHyZIl4eDggI0bN8LLy0vu0IjIhDA5IqIi4dGjR2jYsCEePXqEefPm4fjx4zh58iTMzc1Rp04ducMjIhPCNkdEVCTs2bMHGRkZWLduHRQKBQBg0aJFSEtLY3JERPnC5IiIigQXFxckJSVhx44dqF69Onbu3ImZM2eibNmyKFWqlNzhEZEJYYNsIioShBAYOXIk1q5dC1tbW/Tt2xcpKSm4c+cOdu3aJXd4RGRCmBwRERERZcEG2URERERZMDkiIiIiyoLJEREREVEWTI6IiIiIsmByRERERJQFkyMiIiKiLJgcEREREWXB5IiIiIgoCyZHRERERFkwOSIiIiLKgskRERERURZMjoiIiIiy+D9Ql18SaugSJAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzsElEQVR4nO3dd1gU59oG8HtZOgh2qmIXO4oFNMaOit0kaowdY4kxUT/PiR4TFWNiYowxJtaILbEQey8YsUVMLFghBiuiAkqkqIjAvt8fmx1ZaQvs7ixw/66LC5h9d+aZnd2ZZ982CiGEABEREREBAMzkDoCIiIjIlDA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZMDmiYu3BgweYPXs2Ll68mO2xESNGwN7evtDrfvnyJcaNGwcXFxcolUp4eXkVPlA9WLp0KdauXZtt+Z07d6BQKHJ8rCRRKBSYPXu23GHoxezZs6FQKAz+3B9++AG1atWCpaUlFAoFEhMTMWLECFSrVk2r3JdffomdO3cWKp68/PPPPxg0aBAqV64MhUKBvn37Fngd1apVw4gRI/Qem6m5ceMGhg4diqpVq8LGxgY1a9bElClTkJCQIHdopZK53AEQFcWDBw8QGBiIatWq6T15WbZsGVasWIEffvgB3t7eRUq09GHp0qWoWLFitguFi4sLwsLCULNmTXkCowIbPXo0unXrZtBtXLx4ER999BFGjx6N4cOHw9zcHGXKlMFnn32Gjz/+WKvsl19+ibfffrtQyUtePv/8c+zYsQOrV69GzZo1Ub58eb2uv6R49OgRfHx84ODggM8//xxVq1ZFeHg4Zs2ahdDQUJw/fx5mZqzLMCYmR0S5uHr1KmxsbPDhhx/KHUqerKys4OPjI3cYVADu7u5wd3c36DauXbsGAHj//ffRsmVLabkxk+irV6+iZs2aeO+994y2TX15/vw5bG1tjbKtXbt2ISEhAcHBwejUqRMAoEOHDkhLS8P//vc/XLp0CU2bNjVKLKTGVJQkjx49wpgxY1ClShVYWVmhUqVKaNOmDY4cOSKVad++PRo2bIiwsDC0bt0aNjY2qFatGtasWQMA2LdvH5o1awZbW1s0atQIBw8ezLadU6dOoVOnTihTpgxsbW3RunVr7Nu3L1u5q1evok+fPihXrhysra3h5eWFdevWSY8fO3YMLVq0AACMHDkSCoUix6aXGzduwN/fH/b29qhSpQr+7//+D2lpaXm+FgqFAqtWrUJqaqq03rVr1+bZhPX6tjXNH9euXcO7774LR0dHODk5YdSoUUhKStJ6rkqlwg8//AAvLy/Y2NigbNmy8PHxwe7duwGomxauXbuG48ePS/FomkZyi0mX13nt2rVQKBQIDQ3F+PHjUbFiRVSoUAH9+/fHgwcP8nyN8lKtWjX07NkTO3bsQOPGjWFtbY0aNWpg8eLF2cpGR0djyJAhqFy5MqysrFCvXj18++23UKlUua7/zp07MDc3x7x587I9duLECSgUCmzZsgVAwY7DixcvMH36dFSvXh2WlpZwc3PDhAkTkJiYmOP+7d27F02bNoWNjQ3q1auHvXv3AlC/rvXq1YOdnR1atmyJc+fOaT0/p6ax4OBg+Pn5wcXFRVrftGnT8OzZs9xf6Fy0b98eQ4YMAQC0atUKCoVCqnF8vVlNoVDg2bNnWLdunfTeat++fZ7r/+eff/DBBx/Azc0NlpaWqFGjBmbMmCF9rjTvySNHjiAyMlJa77Fjx3JdZ3p6Ov773//C2dkZtra2eOONN/Dnn3/mWDY2NhZjx46Fu7s7LC0tUb16dQQGBiIjI0OrXExMDN5++22UKVMGZcuWxXvvvYezZ89m+7xomuCvXLkCPz8/lClTRkpSXr58iblz58LT01M6L44cORKPHj3KFldwcDB8fX1hZ2cHe3t7dO3aFeHh4Xm+lgBgYWEBAHB0dNRaXrZsWQCAtbV1vusgPRNE/+ratauoVKmSWLlypTh27JjYuXOnmDlzpti8ebNUpl27dqJChQqibt26IigoSBw6dEj07NlTABCBgYGiUaNGYtOmTWL//v3Cx8dHWFlZifv370vPP3bsmLCwsBDe3t4iODhY7Ny5U/j5+QmFQqG1nb/++kuUKVNG1KxZU6xfv17s27dPvPvuuwKA+Prrr4UQQiQlJYk1a9YIAOLTTz8VYWFhIiwsTNy7d08IIcTw4cOFpaWlqFevnliwYIE4cuSImDlzplAoFCIwMDDP1yIsLEz4+/sLGxsbab3x8fHi9u3bAoBYs2ZNtucAELNmzZL+nzVrlgAg6tatK2bOnClCQkLEwoULhZWVlRg5cqTWc4cOHSoUCoUYPXq02LVrlzhw4ID44osvxPfffy+EEOLChQuiRo0aomnTplI8Fy5cEEKIHGPS9XXWvH41atQQEydOFIcOHRKrVq0S5cqVEx06dNCKUVM2p31/nYeHh3BzcxNVq1YVq1evFvv37xfvvfeeACC++eYbqVx8fLxwc3MTlSpVEsuXLxcHDx4UH374oQAgxo8fn+fr269fP1G1alWRkZGhVe6dd94Rrq6uIj09vUDHQaVSia5duwpzc3Px2WeficOHD4sFCxYIOzs70bRpU/HixQut/XN3dxcNGzaU3u+tWrUSFhYWYubMmaJNmzZi+/btYseOHaJOnTrCyclJPH/+XHq+JqasPv/8c/Hdd9+Jffv2iWPHjonly5eL6tWrZzsOOT33ddeuXROffvqpdLzCwsLEjRs3hBDqz4WHh4dUNiwsTNjY2Ah/f3/pvXXt2rVc152amioaN24s7OzsxIIFC8Thw4fFZ599JszNzYW/v78QQogXL16IsLAw0bRpU1GjRg1pvUlJSbmud/jw4UKhUIj//Oc/4vDhw2LhwoXCzc1NODg4iOHDh0vlHj58KKpUqSI8PDzEihUrxJEjR8Tnn38urKysxIgRI6RyT58+FbVq1RLly5cXS5YsEYcOHRKTJ08W1atXz/Y+Hj58uLCwsBDVqlUT8+bNE7/99ps4dOiQyMzMFN26dRN2dnYiMDBQhISEiFWrVgk3NzdRv359rWP6xRdfCIVCIUaNGiX27t0rtm/fLnx9fYWdnV2er6cQQiQmJoqqVauKN998U1y9elWkpKSI48ePi6pVq4pevXrl+VwyDCZHJLG3txeTJk3Ks0y7du0EAHHu3DlpWUJCglAqlcLGxkYrEbp48aIAIBYvXiwt8/HxEZUrVxYpKSnSsoyMDNGwYUPh7u4uVCqVEEKIQYMGCSsrKxEdHa21/e7duwtbW1uRmJgohBDi7NmzuV6whw8fLgCIX3/9VWu5v7+/qFu3bj6vhvr5dnZ2WssKkxzNnz9fq9wHH3wgrK2tpX09ceKEACBmzJiRZzwNGjQQ7dq1y7Y8p5h0fZ01Cc8HH3ygtc758+cLAOLhw4fSsnXr1gmlUinWrVuXZ5xCqJMHhUIhLl68qLW8S5cuwsHBQTx79kwIIcS0adMEAPHHH39olRs/frxQKBTi+vXr0rLXX9/Q0FABQOzYsUNadv/+fWFubq6V/Op6HA4ePJhjueDgYAFArFy5Umv/bGxsRExMjLRM8353cXGR9k8IIXbu3CkAiN27d2eLKTcqlUqkp6eL48ePCwDi0qVLOj9XQ3Nsz549q7X89eRICCHs7Oy0EpC8LF++PMfP1ddffy0AiMOHD0vL2rVrJxo0aJDvOiMjIwUAMXnyZK3lGzZsEAC0Yhs7dqywt7cXd+/e1Sq7YMECAUBKRJYsWSIAiAMHDmiVGzt2bI7JEQCxevVqrbKbNm0SAMS2bdu0lmvOO0uXLhVCCBEdHS3Mzc3FxIkTtcqlpKQIZ2dnMWDAgHxfgwcPHghfX18BQPp55513tJJyMh42q5GkZcuWWLt2LebOnYszZ84gPT09x3IuLi7w9vaW/i9fvjwqV64MLy8vuLq6Ssvr1asHALh79y4A4NmzZ/jjjz/w9ttva3VuViqVGDp0KGJiYnD9+nUAwNGjR9GpUydUqVJFa9sjRozA8+fPERYWptM+KRQK9OrVS2tZ48aNpZiMoXfv3tm2/+LFC8THxwMADhw4AACYMGGCXrZXkNc5rxgBaL1Ow4YNQ0ZGBoYNG6ZTHA0aNECTJk20lg0ePBjJycm4cOECAPVxrl+/vlafGEB9nIUQOHr0aK7rb9++PZo0aYIlS5ZIy5YvXw6FQoExY8ZkK5/fcdBs6/UO7++88w7s7Ozw22+/aS338vKCm5ub9L/m/d6+fXutviqvfw5yc+vWLQwePBjOzs5QKpWwsLBAu3btAACRkZF5PteYjh49Cjs7O7z99ttayzWv2+uvky5CQ0MBIFvfpAEDBsDcXLtr7N69e9GhQwe4uroiIyND+unevTsA4Pjx49LvMmXKZOv4/u677+Yax1tvvZVtW2XLlkWvXr20tuXl5QVnZ2epmfDQoUPSZyNrOWtra7Rr1y7P5kQAePLkCfr06YPk5GRs2LABJ06cwNKlS3Hq1Cn07t07W3MhGR47ZJMkODgYc+fOxapVq/DZZ5/B3t4e/fr1w/z58+Hs7CyVy2nEiaWlZbbllpaWANT9OAD1CUAIARcXl2zP1yRVmmGrCQkJOpXLj62tbbb2eisrKykmY6hQoUK27QNAamoqAHVfL6VSqfUaF0VBXmddYyyMnPZHsyzrcX59WHlecb5OMxrr+vXrqFGjBn766Se8/fbbOW47v31MSEiAubk5KlWqpFVOoVDA2dk5Wyy5vd/z+xzk5OnTp2jbti2sra0xd+5c1KlTB7a2trh37x769+9fpOOgbwkJCXB2ds7WZ6py5cowNzcv1NBzzXNeP27m5ubZjltcXBz27Nkj9dN53ePHj6V1Ojk5ZXs8p2WA+lzh4OCQbVuJiYnSMcxtW3FxcQAg9YF8XX4jzb7++mtcvHgRd+/elT63bdu2haenJzp27IgNGzZg+PDhea6D9IvJEUkqVqyIRYsWYdGiRYiOjsbu3bsxbdo0xMfH59ixuqDKlSsHMzMzPHz4MNtjms6/FStWBKC+kOlSztg0idbrHbqLMhdJpUqVkJmZidjY2BwTmoIqyOtsSLGxsbku01zwinqcBw8ejE8++QRLliyBj48PYmNjC10DV6FCBWRkZODRo0daCZIQArGxsble+PTh6NGjePDgAY4dOybVFgHI1hHcFFSoUAF//PEHhBBaCVJ8fDwyMjIK9d7SvB9iY2O1auMyMjKyfbYqVqyIxo0b44svvshxXZrEukKFCjl26M7pfQkgx7mjNAMUcjv/lSlTRioHAFu3boWHh0eOZfNy8eJFuLm5Zfv8a95zV69eLfA6qWjYrEY5qlq1Kj788EN06dJFagIpKjs7O7Rq1Qrbt2/X+iasUqnwyy+/wN3dHXXq1AEAdOrUSbpgZLV+/XrY2tpKQ9f1UcNREE5OTrC2tsbly5e1lu/atavQ69Q0ByxbtizPclZWVjrtZ0FeZ0O6du0aLl26pLVs48aNKFOmDJo1awZAfZwjIiKyvcfWr18PhUKBDh065LkNa2trjBkzBuvWrcPChQvh5eWFNm3aFCpezeikX375RWv5tm3b8OzZM+lxQ9BcmDXvZ40VK1YYbJtZ6freAtSv09OnT7NNGrl+/Xrp8YLSjI7bsGGD1vJff/01W5NSz549pSkCmjdvnu1Hkxy1a9cOKSkpUrO1xubNm3WOq2fPnkhISEBmZmaO26pbty4AoGvXrjA3N8fNmzdzLNe8efM8t+Pq6oqYmBjcv39fa7mm+4Chp32g7FhzRACApKQkdOjQAYMHD4anpyfKlCmDs2fP4uDBg+jfv7/etjNv3jx06dIFHTp0wNSpU2FpaYmlS5fi6tWr2LRpk3SRmDVrltS3YObMmShfvjw2bNiAffv2Yf78+dKQ15o1a8LGxgYbNmxAvXr1YG9vD1dXV62+T/qkUCgwZMgQaVK7Jk2a4M8//8TGjRsLvc62bdti6NChmDt3LuLi4tCzZ09YWVkhPDwctra2mDhxIgCgUaNG2Lx5M4KDg1GjRg1YW1ujUaNGOa5T19e5INavX49Ro0Zh9erVOvU7cnV1Re/evTF79my4uLjgl19+QUhICL7++mupT87kyZOxfv169OjRA3PmzIGHhwf27duHpUuXYvz48TolcR988AHmz5+P8+fPY9WqVQXeL40uXbqga9eu+OSTT5CcnIw2bdrg8uXLmDVrFpo2bYqhQ4cWet35ad26NcqVK4dx48Zh1qxZsLCwwIYNG7Ill4bSqFEjHDt2DHv27IGLiwvKlCkjXfhfN2zYMCxZsgTDhw/HnTt30KhRI5w6dQpffvkl/P390blz5wJvv169ehgyZAgWLVoECwsLdO7cGVevXsWCBQuyNXXNmTMHISEhaN26NT766CPUrVsXL168wJ07d7B//34sX74c7u7uGD58OL777jsMGTIEc+fORa1atXDgwAEcOnQIQP5NXQAwaNAgbNiwAf7+/vj444/RsmVLWFhYICYmBqGhoejTpw/69euHatWqYc6cOZgxYwZu3bqFbt26oVy5coiLi8Off/4JOzs7BAYG5rqdCRMmYMOGDejSpQumTZuGKlWq4OrVq5g7dy6cnJyK5TxRxZ6s3cHJZLx48UKMGzdONG7cWDg4OAgbGxtRt25dMWvWLK2RN7mNPvHw8BA9evTIthyAmDBhgtaykydPio4dOwo7OzthY2MjfHx8xJ49e7I998qVK6JXr17C0dFRWFpaiiZNmuQ4SmzTpk3C09NTWFhYaI1oymm0mRC6j/bJ7flJSUli9OjRwsnJSdjZ2YlevXqJO3fu5Dpa7dGjR1rP14wiun37trQsMzNTfPfdd6Jhw4bC0tJSODo6Cl9fX63X5c6dO8LPz0+UKVNGAJBGHOU2gk6X1zm3EU2akWChoaHZyuo6lL9Hjx5i69atokGDBsLS0lJUq1ZNLFy4MFvZu3fvisGDB4sKFSoICwsLUbduXfHNN9+IzMxMrXKvv75ZtW/fXpQvX15raLVGQY5Damqq+OSTT4SHh4ewsLAQLi4uYvz48eLJkyc57t/rcnq/a45P1ikMcnoPnj59Wvj6+gpbW1tRqVIlMXr0aHHhwoVsr7khRqtdvHhRtGnTRtja2goAOY6KzCohIUGMGzdOuLi4CHNzc+Hh4SGmT5+ebWSVrqPVhBAiLS1N/N///Z+oXLmysLa2Fj4+PiIsLEx4eHhkG0n36NEj8dFHH4nq1asLCwsLUb58eeHt7S1mzJghnj59KpWLjo4W/fv3F/b29qJMmTLirbfeEvv37xcAxK5du7Rek5w+60IIkZ6eLhYsWCCaNGkirK2thb29vfD09BRjx44VUVFRWmV37twpOnToIBwcHISVlZXw8PAQb7/9tjhy5Ei++3/hwgXRr18/4e7uLqysrESNGjXE6NGjs43YJeNQCCGEMZMxIir5qlWrhoYNG0qTIhpSfHw8PDw8MHHiRMyfP9/g26Pi7csvv8Snn36K6OhoNldRrtisRkTFUkxMDG7duoVvvvkGZmZm2e4XRvTjjz8CADw9PZGeno6jR49i8eLFGDJkCBMjyhOTIyIqllatWoU5c+agWrVq2LBhg9YoJyJAPTz/u+++w507d5CWloaqVavik08+waeffip3aGTi2KxGRERElIXsQ/lPnDiBXr16wdXVFQqFItvw0JwcP34c3t7e0s0sly9fbvhAiYiIqFSQPTl69uwZmjRpIrUN5+f27dvw9/dH27ZtER4ejv/973/46KOPsG3bNgNHSkRERKWBSTWrKRQK7NixA3379s21zCeffILdu3dr3Wto3LhxuHTpks732yIiIiLKTbHrkB0WFgY/Pz+tZV27dkVQUBDS09NzvN9OWlqa1u0eVCoV/vnnH1SoUKFQk+ERERGR8QkhkJKSAldXV50m8iysYpccxcbGZrtxoJOTEzIyMvD48eMc7001b968PGcnJSIiouLj3r17Bp2OodglR0D2GwRqWgZzqwWaPn06pkyZIv2flJSEqlWr4t69e9mmpieiYuT+feDmTaBmTSCvofy6liMik5acnIwqVapIN/01lGKXHDk7O2e7q3J8fDzMzc2lOzu/zsrKKtsNHQHAwcGByRFRcRUUBIwZA6hUgJkZsHIlEBBQ+HJEVGwYukuM7KPVCsrX1xchISFayw4fPozmzZvn2N+IiEqgmJhXCQ+g/j12rHp5YcoREWUhe3L09OlTXLx4ERcvXgSgHqp/8eJFREdHA1A3iWW9A/i4ceNw9+5dTJkyBZGRkVi9ejWCgoIwdepUOcInIjlERb1KeDQyM4EbNwpXjogoC9mb1c6dO4cOHTpI/2v6Bg0fPhxr167Fw4cPpUQJAKpXr479+/dj8uTJWLJkCVxdXbF48WK89dZbRo+diGRSu7a6iSxr4qNUArVqFa4cEVEWJjXPkbEkJyfD0dERSUlJ7HNEVFwFBambyDIz1QnPihW59znSpRwRmTxjXb+ZHDE5Iiq+YmLUTWS1agF5DevVtRwRmTRjXb9lb1YjIio0d3fdkh1dyxERwQQ6ZBMRERGZEiZHRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZMDkiIiIiyoLJEREREVEWTI6IyPTExAChoerfpWnbRGQSmBwRkWkJCgI8PICOHdW/g4JKx7aJyGQohBBC7iCMLTk5GY6OjkhKSoKDg4Pc4RCRRkyMOilRqV4tUyqBO3cAd/eSu20i0omxrt+sOSIi0xEVpZ2cAEBmJnDjRsneNhGZFCZHRGQ6atcGzF47LSmVQK1aJXvbRGRSmBwRkelwdwdWrlQnJYD694oVxmnWknPbRGRS2OeIfY6ITE9MjLo5q1Yt4ycncm6biPJkrOu3ucHWTERUWO7u8iUmcm6biEwCm9WIiIiIsmByRERERJQFkyMiIiKiLJgcEREREWXB5IiIiIgoCyZHRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUhbncARAR6Ut6ejri4+ORmpoKR0dHlC9fHkqlUu6wiKiYYXJERMXahQsXsHnzZhw+fBgRERFIT0+XHrOxsUGzZs3QvXt3DBo0CDVr1pQxUiIqLhRCCCF3EMaWnJwMR0dHJCUlwcHBQe5wiKgQDh48iC+++AKnTp3SWq5UKmFtbY1nz55pLVcoFOjduzcCAwPRpEkTY4ZKRHpirOs3+xwRUbESHR2Nfv36oXv37jh16hQsLCwwcOBAbNq0CXfu3MHLly/x9OlTvHz5EpGRkVi5ciX8/PwghMCuXbvQrFkzTJo0CcnJyXLvChGZKNYcseaIqNjYu3cvhg4disTERJibm2PixImYOnUqXF1d833uX3/9hZkzZ2LLli0AgNq1a2Pbtm1o1KiRocMmIj1hzRER0b+EEAgMDESvXr2QmJiIli1bIjw8HAsXLtQpMQIAT09P/Prrrzh8+DCqVKmCqKgotGrVCr/++quBoyei4obJERGZNJVKhYkTJ2L27NkAgIkTJ+LkyZNo2LBhodbXpUsXhIeHo1u3bkhNTcWgQYOwYsUKPUZMRMUdkyMiMlkqlQoBAQFYsmQJFAoFli5disWLF8PS0rJI661QoQL27t2LcePGQQiBcePG4fvvv9dT1ERU3DE5IiKTJITA1KlTsXbtWiiVSmzYsAHjx4/X2/qVSiWWLl2K6dOnAwAmTZqEn3/+WW/rJ6Lii8kREZmkb775Bt999x0AYM2aNXj33Xf1vg2FQoEvvvgCkydPBgCMHDkSBw8e1Pt2iKh4YXJERCZn3759mDZtGgBg4cKFGDp0qMG2pVAosGDBAgwdOhSZmZkYNGgQoqKiDLY9IjJ9TI6IyKRERUXhvffek/oCaWp1DMnMzAyrVq1CmzZtkJSUhD59+iAlJcXg2yUi08TkiIhMRlpaGt5++20kJSWhTZs2Ru0kbWlpia1bt8LV1RWRkZEYM2YMSuE0cEQEJkdEZEJmzJiBy5cvo1KlStiyZUuRR6UVlLOzM7Zu3QqlUonNmzfjl19+Mer2icg0MDkiIpPw22+/4dtvvwUABAUFwcXFRZY4fH19pTmVJkyYgFu3bskSBxHJxySSo6VLl6J69eqwtraGt7c3Tp48mWf5DRs2oEmTJrC1tYWLiwtGjhyJhIQEI0VLRPqWmJiI4cOHAwDGjh2LXr16yRrP9OnT8cYbbyAlJQUBAQFsXiMqZWRPjoKDgzFp0iTMmDED4eHhaNu2Lbp3747o6Ogcy586dQrDhg1DQEAArl27hi1btuDs2bMYPXq0kSMnIn2ZNm0a7t+/j9q1a0u1R3JSKpVYt24dbGxscOzYMaxZs0bukIjIiGRPjhYuXIiAgACMHj0a9erVw6JFi1ClShUsW7Ysx/JnzpxBtWrV8NFHH6F69ep44403MHbsWJw7d87IkRORPoSFhUm37/jpp59gZ2cnc0RqNWrUwJw5cwAAU6dORVxcnMwREZGxyJocvXz5EufPn4efn5/Wcj8/P5w+fTrH57Ru3RoxMTHYv38/hBCIi4vD1q1b0aNHj1y3k5aWhuTkZK0fIpJBTAwQGqr+DSA9PR1jx44FAIwYMQLt2rWTM7psJk2ahKZNm+LJkyeYNGmS9oOv7QsRlRyyJkePHz9GZmYmnJyctJY7OTkhNjY2x+e0bt0aGzZswMCBA2FpaQlnZ2eULVsWP/zwQ67bmTdvHhwdHaWfKlWq6HU/iEgHQUGAhwfQsaP6d1AQvv/+e1y5cgUVKlTAN998I3eE2Zibm2PVqlUwMzPD5s2bcezYMfUDOewLEZUcsjerAeoZarMSQmRbphEREYGPPvoIM2fOxPnz53Hw4EHcvn0b48aNy3X906dPR1JSkvRz7949vcZPRPmIiQHGjAFUKvX/KhXix4zBnMBAAMD8+fNRsWJFGQPMXbNmzaTzy+TJk5F59262fcHYsaxBIipBzOXceMWKFaFUKrPVEsXHx2erTdKYN28e2rRpg//85z8AgMaNG8POzg5t27bF3Llzcxz+a2VlBSsrK/3vABHpJirqVTLxr1kqFVKePkXz5s0xYsQIeeLSUWBgIDZs2ICLFy9i7Y8/IuC1fUFmJnDjBuDuLk+ARKRXstYcWVpawtvbGyEhIVrLQ0JC0Lp16xyf8/z5c5iZaYetVCoBgMNtiUxV7dpAls9tBICf/v3722+/zfaZNjUVK1bErFmzAAAz1q1D8us120olUKuWDJERkSHIfkaaMmUKVq1ahdWrVyMyMhKTJ09GdHS0VI09ffp0DBs2TCrfq1cvbN++HcuWLcOtW7fw+++/46OPPkLLli3h6uoq124QUV7c3YGVK9VJBID/AsgE0LdvX7z55puyhqarCRMmoHbt2oh79Ajz/f2lfYFSCaxYwVojohJEIUygumXp0qWYP38+Hj58iIYNG+K7776TTpgjRozAnTt3XnWEBPDDDz9g+fLluH37NsqWLYuOHTvi66+/hpubm07bS05OhqOjI5KSkuDg4GCIXSKinMTE4PjWrWg/eTLMzc1x7do11KlTR+6odLZjxw70798fdnZ2uHXqFConJqprjJgYERmFsa7fJpEcGRuTIyL5tG/fHsePH8f48eOxdOlSucMpECEEWrRogfPnz2PKlCkmMWElUWlirOu37M1qRFR6hIaG4vjx47C0tMT//vc/ucMpMIVCgblz5wIAlixZgvv378scEREZApMjIjIKIYTUqXnMmDFwL6ZNUV27dsUbb7yBtLQ0fPHFF3KHQ0QGwOSIiIzi6NGjOHnyJKysrDB9+nS5wym0rLVHq1at4rxpRCUQkyMiMristUZjx44t9iNL27Vrh3bt2iE9PR0LFy6UOxwi0jMmR0RkcMeOHcPvv/8Oa2trTJs2Te5w9EJT+7Vy5Uo8fvxY5miISJ+YHBGRwc2fPx8AEBAQkOMs9sWRn58fmjZtiufPn+d5b0ciKn6YHBGRQV25cgUHDx6EmZkZpkyZInc4eqNQKKTaox9++AEpKSkyR0RE+sLkiIgMasGCBQCAt956CzVq1JA5Gv3q378/6tSpgydPnmDlypVyh0NEesLkiIgM5t69e9i4cSMASDeLLkmUSiX++9//AgAWLlyIly9fyhwREekDkyMiMpjvv/8eGRkZaNeuHVq0aCF3OAYxdOhQuLi44MGDB9i6davc4RCRHjA5IiKDSEpKkpqaSmKtkYalpSXGjx8PQJ0MElHxx+SIiAxi7dq1SElJQb169dC9e3e5wzGosWPHwtLSEn/++SfOnDkjdzhEVERMjohI71QqFZYsWQIAmDhxIszMSvappnLlyhg8eDAA1h4RlQQl+4xFRLIICQlBVFQUHBwcMHToULnDMYqPPvoIALB161bekJaomGNyRER69+OPPwIARowYAXt7e5mjMY6mTZuibdu2yMjIwLJly+QOh4iKgMkREenVrVu3sG/fPgDAhAkTZI7GuD7++GMAwIoVK5CWliZzNERUWEyOiEivli1bBiEEunbtijp16sgdjlH16dMH7u7uePz4MbZv3y53OERUSEyOiEhvUlNTERQUBAD48MMPZY7G+MzNzREQEABAXXtERMUTkyMi0putW7fiyZMnqFatWokfvp+b0aNHw8zMDMePH8dff/0ldzhEVAhMjohIb1atWgUACAgIgFKplDkaebi7u6NHjx4AwPutERVTTI6ISC/+/vtvnDhxAmZmZhg5cqTc4chq7NixAIB169bhxYsXMkdDRAXF5IiI9ELT18jf3x9ubm4yRyOvbt26oWrVqvjnn3+wbds2ucMhogJickRERZaeno61a9cCUPe5Ke2USqX0OrBjNlHxw+SIiIps7969iI+Ph7OzM/z9/eUOxySMGjUKZmZmOHnyJKKiouQOh4gKgMkRERWZpiP2iBEjYGFhIXM0psHNzQ1du3YFoO57RETFB5MjIiqSe/fu4eDBgwDUtSX0yogRIwCok6PMzEx5gyEinTE5IqIiWbNmDVQqFdq3b4/atWvLHY5J6d27N8qWLYuYmBiEhobKHQ4R6YjJEREVmhAC69evB8Bao5xYW1tj8ODBACB1WCci08fkiIgKLSwsDDdv3oSdnR369+8vdzgmSdO0tn37diQlJckbDBHphMkRERXazz//DAB46623YGdnJ3M0pql58+aoX78+UlNTsWXLFrnDISIdMDkiokJJS0tDcHAwAGDo0KEyR2O6FAqFVHvEpjWi4oHJEREVyr59+/DkyRO4urqiQ4cOcodj0oYMGQIzMzP8/vvvnPOIqBhgckREhaJpUhsyZEipvcmsrlxcXNCtWzcAkDqwE5HpYnJERAWWkJCAffv2AWCTmq6GDBkCANi0aROEEDJHQ0R5YXJERAUWHByM9PR0NG3aFA0bNpQ7nGKhd+/esLW1xc2bN3H27Fm5wyGiPDA5IqIC0zSpsdZId3Z2dujbty8AYMOGDfIGQ0R5YnJERAVy48YNnDlzBmZmZnj33XflDqdY0UwIGRwcjIyMDJmjIaLcMDkiogLRDN/v3LkznJ2dZY6mePHz80OFChUQFxfH24kQmTAmR0RUIJs3bwYADBw4UOZIih8LCwu88847AICNGzfKHA0R5YbJERHp7Nq1a7h69SosLCzQr18/ucMplt577z0AwLZt25CamipzNESUEyZHRKQzTZNat27dUK5cOZmjKZ5at26NqlWrIiUlRZoOgYhMC5MjItKJECL3JrWYGCA0VP2btL322mTtyM5Ra0SmickREenk4sWLiIqKgrW1NXr37v3qgaAgwMMD6NhR/TsoSL4gTU0ur40mOTpw4ACSk5PljJCIcsDkiIh0oqk16tmzJ8qUKaNeGBMDjBkDqFTq/1UqYOxY1iABeb42jRs3Rt26dZGWloY9e/bIGycRZcPkiIjyJYSQ+hsNGjTo1QNRUa8u/hqZmcCNG0aMzkTl8dooFApp1NqWLVtkCI6I8sLkiIjy9ccff+Du3buwt7eHv7//qwdq1wbMXjuNKJVArVrGDdAU5fPaaJKjgwcPsmmNyMQwOSKifGma1Pr06QMbG5tXD7i7AytXqi/6gPr3ihXq5aVdPq9No0aNUKdOHTatEZkgJkdElKfMzEz8+uuvAF5rUtMICADu3FGPyLpzR/0/qeXx2igUCgwYMAAAm9aITI1CCCHkDsLYkpOT4ejoiKSkJDg4OMgdDpFJO3nyJN588004OjoiPj4elpaWcodUYly+fBlNmjSBlZUV4uPjeT4iyoexrt+sOSKiPG3btg0A0Lt3byZGesamNSLTxOSIiHIlhMD27dsBAG+99ZbM0ZQ8HLVGZJqYHBFRrs6ePYt79+7Bzs4Ofn5+codTInHUGpHpYXJERLnSNKn16NFDe5Qa6U3jxo2lprW9e/fKHQ4RgckREeVCCCElR2xSM5ysTWuaUYFEJC8mR0SUo8uXL+PmzZuwtrbWnviR9E6THB06dAhPnz6VORoiYnJERDnS1Bp17doV9vb2MkdTsjVu3BjVq1fHixcvcPDgQbnDISr1mBwRUY7YpGY8CoUC/fv3BwDs2LFD5miIiMkREWXz119/ISIiAubm5ujVq5fc4ZQK/fr1AwDs27cPL1++lDkaotKNyRERZaOZ26hTp04oW7asvMGUEr6+vnByckJSUhJCQ0PlDoeoVGNyRETZsEnN+MzMzNCnTx8AbFojkhuTIyLScvv2bVy4cAFmZmbo27ev3OGUKpqmtV27dkGlUskcDVHpxeSIiLRomtTefPNNVKpUSeZoSpeOHTvCwcEBsbGxOHPmjNzhEJVaTI6ISMvOnTsBQBo9RcZjaWmJHj16AHiVpBKR8ZlEcrR06VJUr14d1tbW8Pb2xsmTJ/Msn5aWhhkzZsDDwwNWVlaoWbMmVq9ebaRoiUquR48e4fTp0wCA3r17yxxN6ZR1SL8QQuZoiEonc7kDCA4OxqRJk7B06VK0adMGK1asQPfu3REREYGqVavm+JwBAwYgLi4OQUFBqFWrFuLj45GRkWHkyIlKnr1790KlUsHLywseHh5yh1MqdevWDVZWVrh16xauXLmCxo0byx0SUakje83RwoULERAQgNGjR6NevXpYtGgRqlSpgmXLluVY/uDBgzh+/Dj279+Pzp07o1q1amjZsiVat25t5MiJSp5du3YBgDRqiozP3t4efn5+ADhqjUgusiZHL1++xPnz56UTgYafn59Utf+63bt3o3nz5pg/fz7c3NxQp04dTJ06FampqbluJy0tDcnJyVo/RKTt+fPnOHz4MAAmR3LTjFpjckQkD1mb1R4/fozMzEw4OTlpLXdyckJsbGyOz7l16xZOnToFa2tr7NixA48fP8YHH3yAf/75J9d+R/PmzUNgYKDe4ycqSY4cOYLU1FRUrVoVXl5ecodTqvXq1QtmZma4dOkSbt++jerVq8sdElGpInuzGqC+r1BWQohsyzRUKhUUCgU2bNiAli1bwt/fHwsXLsTatWtzrT2aPn06kpKSpJ979+7pfR+IijtNk1rv3r1z/fyRcVSsWBFvvvkmgFejB4nIeGRNjipWrAilUpmtlig+Pj5bbZKGi4sL3Nzc4OjoKC2rV68ehBCIiYnJ8TlWVlZwcHDQ+iGiVzIzM7Fnzx4AbFIzFZrjoDkuRGQ8siZHlpaW8Pb2RkhIiNbykJCQXDtYt2nTBg8ePMDTp0+lZX///TfMzMzg7u5u0HiJSqo//vgDjx49gqOjI9q1ayd3OARIN/w9ceIEnjx5InM0RKWL7M1qU6ZMwapVq7B69WpERkZi8uTJiI6Oxrhx4wCom8SGDRsmlR88eDAqVKiAkSNHIiIiAidOnMB//vMfjBo1CjY2NnLtBlGxpmlS8/f3h4WFhczREADUrFkTDRo0QGZmJg4cOCB3OESliuzJ0cCBA7Fo0SLMmTMHXl5eOHHiBPbv3y/NsfLw4UNER0dL5e3t7RESEoLExEQ0b94c7733Hnr16oXFixfLtQtExR6H8JsmTe0Rm9aIjEshSuEUrMnJyXB0dERSUhL7H1Gpd/36dXh6esLCwgKPHz/mZ8KEhIWFoXXr1nB0dER8fDwsLS3lDolIVsa6fstec0RE8tLUGnXo0IGJkYlp2bIlKleujKSkpHxvq0RE+sPkiKiUY5Oa6VIqlejZsycA9QS4RGQcTI6ISrG4uDiEhYUBeNW/hUxL1n5HpbAXBJEsmBwRlWJ79+6FEALNmjVDlSpV5A6HctClSxdYWVnh9u3buHbtmtzhEJUKTI6ISjE2qZk+Ozs7dO7cGQCb1oiMhckRUSn1/PlzaQJWJkemrXfv3gCYHBEZC5MjolLq6NGjePHiBapWrYrGjRvLHQ7lQdMp+88//8z1ptxEpD9MjohKqX379gFQX3h5o1nT5urqiubNm0MIIR03IjIcJkdEpZAQAnv37gUA9OjRQ+ZoSBdsWiMyHiZHRKXQ5cuXERMTAxsbG3To0EHucEgHmuQoJCQEqampMkdDVLIxOSIqhTS1Rp07d+YNm4uJxo0bo2rVqkhNTcVvv/0mdzhEJRqTI6JSKGt/ozzFxAChoerfZFj5vNYKhUKaEJJNa0SGxeSIqJR59OgRzpw5AyCf/kZBQYCHB9Cxo/p3UJCRIiyFdHytNU1rmsk7icgwmBwRlTIHDhyAEAJeXl5wc3PLuVBMDDBmDKBSqf9XqYCxY1mDZAgFeK3btWsHOzs7PHz4EOHh4UYOlKj0YHJEVMpo+hvl2aQWFfXqYq2RmQncuGHAyEqpArzWVlZW6NKlC4BXx5GI9I/JEVEpkp6ejkOHDgHIJzmqXRswe+30oFQCtWoZMLpSqoCvtaYplPMdERkOkyOiUuTUqVNITk5GpUqV0KJFi9wLursDK1eqL9KA+veKFerlpF8FfK39/f0BAGfPnkVcXJyxoiQqVZgcEZUimqYYf39/mL1eW/G6gADgzh31CKo7d9T/k2EU4LV2dXVFs2bNIITAgQMHjBYiUWnC5IioFNF5CL+GuzvQvj1rjIyhAK81m9aIDIvJEVEpERUVhevXr8Pc3Bx+fn5yh0NFoEmODh8+jPT0dJmjISp5mBwRlRKaWoZ27drBwcFB5mioKFq0aIFKlSohOTkZp06dkjscohKHyRFRKcEbzZYcZmZmUsdsDukn0j8mR0SlQHJyMk6cOAGgAP2NyKSx3xGR4TA5IioFQkJCkJ6ejjp16qB27dpyh0N64OfnB3Nzc1y/fh03ODknkV4xOSIqBXSaFZuKFUdHR7Rt2xYAa4+I9I3JEVEJp1KpsH//fgDsb1TSsGmNyDCKlBzFx8cjNjZWX7EQkQGcO3cO8fHxcHBwwBtvvCF3OKRHmuTo+PHjSElJkTkaopKjUMnR5cuX0aBBA7i4uMDNzQ1ubm749NNP8ezZM33HR0RFpGlS69q1KywtLWWOhvSpbt26qFmzJl6+fIkjR47IHQ5RiVGo5CggIABOTk44deoUwsPDMXfuXBw4cADNmzfHkydP9B0jERUB+xuVXAqFgk1rRAagEEKIgj7Jzs4O58+fh6enp7RMCIF33nkH1tbW+OWXX/QapL4lJyfD0dERSUlJnAyPSrT79+/D3d0dCoUCcXFxqFSpktwhkZ4dPnwYXbt2hYuLC2JiYvK/Zx5RMWas63ehPkU51RApFAp8+eWX2LVrl14CI6Ki03TEbtWqFROjEqpdu3aws7PDw4cPER4eLnc4RCWCzslRjx498L///Q+//vorxo0bh8mTJyMuLk6rTFJSEsqVK6f3IImocNikVvJZWVmhS5cuANi0RqQv5roWbNSoES5cuIA1a9ZISVGNGjUwYMAAeHl5ITMzE2vWrMF3331nsGCJSHcvXryQOukyOSrZevTogZ07d2Lfvn2YOXOm3OEQFXuF6nMUFxeH8PBwXLx4Ufq5ceMGlEol6tati8uXLxsiVr1hnyMqDQ4ePIju3bvD3d0d0dHRUCgUcodEBvLgwQO4ubkBAGJjY+Hk5CRzRESGYazrt841R1k5OTmhW7du6Natm7QsNTUVly5dwqVLl/QWHBEVXtYbzTIxKtlcXV3RrFkzXLhwAQcOHMCIESPkDomoWNPbsAYbGxv4+Phg7Nix+lolERWSEIL9jUoZDukn0h+O+SQqgSIiInD37l1YW1ujY8eOcodDRqBJjg4fPoyXL1/KHA1R8cbkiKgE0tQedOjQAba2tjJHQ8bQokULVKpUCcnJyTh16pTc4RAVa0yOiEogNqmVPmZmZvD39wfApjWiomJyRFTCPHnyBKdPnwbwqqmFSgf2OyLSDyZHRCXMoUOHkJmZiQYNGsDDw0PucMiI/Pz8YG5ujuvXr+PGjRtyh0NUbDE5IiphNLUGrDUqfRwdHdG2bVsArD0iKgomR0QlSGZmJg4cOACAyVFppelnpul3RkQFx+SIqAT5888/kZCQgLJly6J169Zyh0My0CTFx48fR0pKiszREBVPTI6IShBNU0rXrl1hbl6oCfCpmKtTpw5q1aqF9PR0hISEyB0OUbHE5IioBMl6yxAqnRQKBUetERURkyOiEiImJgaXLl2CQqFA9+7d5Q6HZKTpd7Rv3z6oVCqZoyEqfpgcEZUQ+/fvBwD4+PigYsWKMkdDcnrzzTdhb2+PuLg4XLhwQe5wiIodJkdEJUSBhvDHxAChoerfVLzocOwsLS3h5+cHgKPWiAqDyRFRCfDixQscOXIEgA7JUVAQ4OEBdOyo/h0UZIQISS8KcOzY74io8BRCCCF3EMaWnJwMR0dHJCUlwcHBQe5wiIrs0KFD6NatG9zc3HDv3j0oFIqcC8bEqC+qWfuhKJXAnTuAu7tRYqVCKuCxi42NhYuLCwDgwYMH0t9ExZmxrt+sOSIqATS1A/7+/rknRgAQFaV9cQWAzEyAt5owfQU8ds7OzmjevDkASBODEpFumBwRFXNCCN2H8NeuDZi99rFXKoFatQwUHelNIY4dZ8smKhwmR0TF3F9//YXbt2/D0tISnTp1yruwuzuwcqX6ogqof69YwSa14qAQx06TLIeEhCAtLc0YURKVCEyOiIo5TZNahw4dYG9vn/8TAgLU/VRCQ9W/AwIMGh/pUQGPXbNmzeDs7IynT5/ixIkTRgmRqCRgckRUzBVoCL+GuzvQvj1rjIqjAhw7MzMzjlojKgQmR0TFWFJSEk6dOgWAtwyhnGneF3v37kUpHJxMVChMjoiKscOHDyMjIwOenp6oUaOG3OGQCercuTMsLS1x8+ZN/P3333KHQ1QsMDkiKsYK1aRGpUqZMmXQrl07ABy1RqQrJkdExZRKpZLup8bkiPKS9Ua0RJQ/JkdExdTZs2fx6NEjODg44I033pA7HDJhmuT55MmTSEpKkjkaItPH5IiomNLUAvj5+cHCwkLmaMiU1axZE56ensjIyMDhw4flDofI5DE5Iiqm2N+ICiLrqDUiyptJJEdLly5F9erVYW1tDW9vb5w8eVKn5/3+++8wNzeHl5eXYQMkMjEPHz7EhQsXoFAo0L17d7nDoWJA0+/owIEDyMzMlDkaItMme3IUHByMSZMmYcaMGQgPD0fbtm3RvXt3REdH5/m8pKQkDBs2LP/bJRCVQJqO2C1atICTk5PM0VBx0KZNGzg6OuLRo0c4e/as3OEQmTTZk6OFCxciICAAo0ePRr169bBo0SJUqVIFy5Yty/N5Y8eOxeDBg+Hr62ukSIlMB5vUqKAsLCzQtWtXABy1RpQfWZOjly9f4vz58/Dz89Na7ufnh9OnT+f6vDVr1uDmzZuYNWuWTttJS0tDcnKy1g9RcZWWloaQkBAATI6oYNjviEg3siZHjx8/RmZmZrZmAScnJ8TGxub4nKioKEybNg0bNmyAubm5TtuZN28eHB0dpZ8qVaoUOXYiuZw4cQJPnz6Fs7MzmjZtKnc4VIx0794dCoUCFy9exP379+UOh8hkyd6sBgAKhULrfyFEtmUAkJmZicGDByMwMBB16tTRef3Tp09HUlKS9HPv3r0ix0wkF823fn9/f5iZmcRHmIqJSpUqoVWrVgDYtEaUF1nPrBUrVoRSqcxWSxQfH59jJ9OUlBScO3cOH374IczNzWFubo45c+bg0qVLMDc3x9GjR3PcjpWVFRwcHLR+iIojIQR2794NAOjdu7fM0VBxxNmyifIna3JkaWkJb29vqf+ERkhICFq3bp2tvIODA65cuYKLFy9KP+PGjUPdunVx8eJF6RsRUUl17do13LlzB9bW1ujcubPc4VAxpEmOjhw5ghcvXsgcDZFp0q3TjgFNmTIFQ4cORfPmzeHr64uVK1ciOjoa48aNA6BuErt//z7Wr18PMzMzNGzYUOv5lStXhrW1dbblRCXRnj17AACdOnWCnZ2dzNFQcdS4cWO4u7sjJiYGx44dQ7du3eQOicjkyN5hYeDAgVi0aBHmzJkDLy8vnDhxAvv374eHhwcA9WR3+c15RFRaaJrUevXqJXMkVFwpFAqOWiPKh0IIIeQOwtiSk5Ph6OiIpKQk9j+iYiMuLg4uLi4QQiAmJgZubm5yh0TF1J49e9C7d29Uq1YNt27dynEADJEpMtb1W/aaIyLSzb59+yCEgLe3NxMjKpJOnTrB2toad+7cQUREhNzhEJkcJkdExYSmvxFHqVFR2draokOHDgA4ao0oJ0yOiIqBFy9e4PDhwwDY34j0QzNqTdOPjYheYXJEVAwcPXoUz58/h7u7O7y8vOQOh0oATZIdFhaGR48eyRwNkWlhckRUDGia1Hr16pV359mYGCA0VP2bSrd83gtVqlRBs2bNoFKpOGqN6DVMjohMnBBCKznKVVAQ4OEBdOyo/h0UZKQIyeTo+F7Q9F9j0xqRNg7l51B+MnEXLlyAt7c37Ozs8PjxY1hbW2cvFBOjvgiqVK+WKZXAnTuAu7vRYiUTUID3wsWLF9G0aVPY2tri8ePHsLGxMW6sRAXEofxEBODVt3o/P7+cEyMAiIrSvhgCQGYmcOOGgaMjk1OA90KTJk1QtWpVPH/+HEeOHDFSgESmj8kRkYnTaQh/7dqA2WsfZ6USqFXLgJGRSSrAe0GhULBpjSgHTI6ITFhMTAwuXLgAhUIBf3//3Au6uwMrV6ovgoD694oVbFIrjQr4XujTpw8AdRKuer3GiaiUkv3Gs0SUO80oIl9fX1SuXDnvwgEBQNeu6uaTWrWYGJVmBXgvvPnmm3BwcEBcXBz++OMP+Pr6GjFQItPEmiMiE6bTKLWs3N2B9u2ZGJHO7wVLS0upVnLXrl1GCIzI9DE5IjJRz549w2+//QaAtwwhw9I0rbHfEZEakyMiExUSEoK0tDTUqFED9erVkzscKsG6desGc3NzREZGIioqSu5wiGTH5IjIRO3YsQOA+lt9nrNiExVR2bJl0b59ewBsWiMCmBwRmaT09HSpv1G/fv1kjoZKAzatEb3C5IjIBJ04cQJPnjxBpUqV0Lp1a7nDoVJA0+n/999/x+PHj2WOhkheTI6ITJCmSa13795QauarITIgDw8PeHl58Ua0RGByRGRyVCoVdu7cCYBNamRcmqY19jui0o7JEZGJOXfuHO7fvw97e3t06tRJ7nCoFNFMGXH48GGkpqbKHA2RfJgcEZkYTZOav79/7jeaJTKApk2bokqVKnj+/DlCQkLkDodINkyOiEyMJjlikxoZm0KhQP/+/QEA27ZtkzkaIvkwOSIyIZGRkbh+/brWLR2IjEmTHO3evRvp6ekyR0MkDyZHRCZEU2vUqVMnODg4yBwNlUZt2rRB5cqVkZiYiGPHjskdDpEsmBwRmRA2qZHclEol+vbtC4BNa1R6MTkiMhH37t3DuXPnoFAoeKNZkpWmaW3nzp3IzMyUORoi42NyRGQiNHMbtWnTBk5OTvIGQ6Vahw4dULZsWcTFxSEsLEzucIiMjskRkYnQJEeaJg1JTAwQGqr+TaRvOby/LC0tpduJsGmNSiMmR0QmICEhAcePHwfwWn+joCDAwwPo2FH9OyhIpgipRMrj/fXWW28BALZv3w4hhFwREsmCyRGRCdi9ezcyMzPRuHFj1KhRQ70wJgYYMwZQqdT/q1TA2LGsQSL9yOf95efnB1tbW0RHR+PChQsyBkpkfEyOiEzAli1bAABvv/32q4VRUa8uXBqZmcCNG0aMjEqsfN5fNjY20lxbbFqj0obJEZHMnjx5giNHjgAA3nnnnVcP1K4NmL32EVUqgVq1jBgdlVg6vL80TWvbtm1j0xqVKkyOiGS2a9cupKeno2HDhvD09Hz1gLs7sHKl+oIFqH+vWKFeTlRUOry//P39YWlpib///huRkZEyBUpkfEyOiGSmaVLTqjXSCAgA7txRjya6c0f9P5G+5PP+cnBwQJcuXQCwaY1KFyZHRDJ68uSJdPfzHJMjQP1Nvn171hiRYeTz/tL0g/v111+NGBSRvJgcEckoa5NavXr15A6HKJs+ffrAwsICV69eRUREhNzhEBkFkyMiGeXZpEZkAsqVK4euXbsCAIKDg2WOhsg4mBwRySQxMTH/JjUiEzBw4EAA6qY1jlqj0oDJEZFMNE1qDRo0YJMambTevXvDysoKf/31F65cuSJ3OEQGx+SISCZsUqPiwsHBAd27dwfApjUqHZgcEckgMTERhw8fBsDkiIoHTdNacHAwm9aoxGNyRCSDnTt3Ij09HfXr10f9+vXlDocoXz179oSNjQ1u3rzJe61RicfkiEgGGzduBAC8++67MkdCpBt7e3v07NkTAJvWqORjckRkZLGxsfjtt98AAIMHD5Y5GiLdDRgwAABHrVHJx+SIyMh+/fVXqFQq+Pj4oEaNGnKHQ6Qzf39/2NnZ4e7du/jjjz/kDofIYJgcERmZpkmNtUZU3Nja2qJ3794AgM2bN8scDZHhMDkiMqIbN27gjz/+gJmZGQa88Yb6hp8xMXKHRZS/mBggNBTv/nsj2s2bNyMjI0PmoIgMg8kRkRFt2rQJANC5Xj04NW8OdOwIeHgAQUEyR0aUh6Ag9fu0Y0d0CwhABXt7xMXFSX3niEoaJkdERiKEwIYNGwAAgyMiAJVK/YBKBYwdyxokMk0xMcCYMdL71UIIDHr2DADw888/yxkZkcEwOSIykosXL+L69euwtrREv9dH+mRmAjduyBMYUV6iol4l8v8a8u/7d8eOHXj69KkcUREZFJMjIiPRdMTu5ecHB7PXPnpKJVCrlgxREeWjdm3gtfdrKzMz1KpWDc+fP8fOnTvliYvIgJgcERmBSqWS+hsNDggAVq5UJ0SA+veKFYC7u4wREuXC3T3b+1WxciWGjBgBgE1rVDIpRCmcySs5ORmOjo5ISkqCg4OD3OFQKRAaGoqOHTvC0dERcXFxsLKyUvfluHFDXWPExIhM3Wvv1xs3bqB27dowMzNDTEwMXFxc5I6QSgFjXb9Zc0RkBOvWrQOgnmHYyspKvdDdHWjfnokRFQ+vvV9r1aoFX19fqFQqznlEJQ6TIyIDe/r0KbZu3QoAGPFvUwRRSTBkyBAAbFqjkofJEZGBbd26Fc+ePUPt2rXh6+srdzhEejNgwACYm5sjPDwc165dkzscIr1hckRkYGvXrgWgrjVSKBTyBkOkRxUrVkT37t0BsPaIShYmR0QGdOvWLRw/fhwKhQJDhw6VOxwivRs+fDgAYP369bydCJUYTI6IDGj9+vUAgM6dO6NKlSoyR0Okf7169UKlSpXw8OFDHDhwQO5wiPSCyRGRgahUKmmUGjtiU0llaWkp1YoG8R6BVEJwniPOc0T6FhMDREXh2OPH6DBgABwcHPDw4UPY2trKHRmRQVy7dg0NGzaEUqlETEwMnDMy1LcdqV2bU1WQXnGeI6LiKMvdy9cMGAAAGDhwIBMjKtEaNGiAVq1aITMzEz9PnCh9BuDhof5MEBUzTI6I9CXL3cufAPj138Uje/SQMyoiowgICAAABG3dCqG5Ua1KBYwdq/5sEBUjJpEcLV26FNWrV4e1tTW8vb1x8uTJXMtu374dXbp0QaVKleDg4ABfX18cOnTIiNES5SLL3ct/BvACQCMAPmy6pVJg4MCBsLW2xnUAp7M+kJmpvu0IUTEie3IUHByMSZMmYcaMGQgPD0fbtm3RvXt3REdH51j+xIkT6NKlC/bv34/z58+jQ4cO6NWrF8LDw40cOdFr/r17uQCw4t9FYxUKKGrXljMqIqNwcHDAgF69AACrsz6gVKrvx0ZUjMjeIbtVq1Zo1qwZli1bJi2rV68e+vbti3nz5um0jgYNGmDgwIGYOXOmTuXZIZsMJigIp8aMQVuVCrYAHixeDMeJE+WOisgoTp06hbZt28IOwAMADkolsGIF8G+TG1FRlYoO2S9fvsT58+fh5+entdzPzw+nT5/O5VnaVCoVUlJSUL58+VzLpKWlITk5WeuHyCACArCib18AwKCBA5kYUanSpk0b1KtXD88ArP/oI+DOHSZGVCzJmhw9fvwYmZmZcHJy0lru5OSE2NhYndbx7bff4tmzZxjw78ignMybNw+Ojo7SDyfjI0NJSEjAln37AABjp0yRORoi41IoFPjggw8AAEtDQiDc3GSOiKhwZO9zBCDb/aaEEDrdg2rTpk2YPXs2goODUbly5VzLTZ8+HUlJSdLPvXv3ihwzUU7Wr1+PtLQ0eHl5oUWLFnKHQ2R0w4YNg52dHSIjI3Hs2DG5wyEqFFmTo4oVK0KpVGarJYqPj89Wm/S64OBgBAQE4Ndff0Xnzp3zLGtlZQUHBwetHyJ9E0JgxQp1V+yxY8fyJrNUKjk4OEgzZi9dulTmaIgKR9bkyNLSEt7e3ggJCdFaHhISgtatW+f6vE2bNmHEiBHYuHEjenAOGTIRoaGhuH79Ouzs7DB48GC5wyGSjaZpbceOHbh//77M0RAVnOzNalOmTMGqVauwevVqREZGYvLkyYiOjsa4ceMAqJvEhg0bJpXftGkThg0bhm+//RY+Pj6IjY1FbGwskpKS5NoFIgDA999/D0DdrMDaSSrNGjVqhLZt2yIzMxMrV66UOxyiApM9ORo4cCAWLVqEOXPmwMvLCydOnMD+/fvh4eEBAHj48KHWnEcrVqxARkYGJkyYABcXF+nn448/lmsXqLSIiQFCQ3Oc7ffmzZvYs2cPAOCjjz4ydmREJmfChAkAgJUrVyI9PT3nQnl8pojkJPs8R3LgPEdUYEFB0q1BYGYGrFypNUR58uTJWLRoEbp27YqDBw/KGCiRaXj58iWqVq2KuLg4BAcHZx9RnM9niignpWKeI6JiIcs90wBku19USkoKVq9WzwnMGkwiNUtLS4wZMwYAsHDhQmh9D8/nM0UkNyZHRPnJcs80SZb7Ra1duxbJycmoU6cOunbtKkOARKZpwoQJsLS0xB9//KE9sW8+nykiuTE5IsrPv/dM0/Lv/aJUKhV++OEHAOq+RmavlyMqxZycnKRh/d9+++2rB/L4TBGZAp7JifLj7q7uD6FUqv/X3C/K3R179uxBVFQUHB0dMXz4cHnjJDJBU/6dKX7nzp2IiopSL8zjM0VkCpgcEekiIEB9n6jQUOl+UUII6ebI48ePh729vawhEpmi+vXrw9/fH0IILFq06NUDOXymiEwFR6txtBoV0vHjx9G+fXtYWVnh7t27+c7qTlRaHT16FJ06dYKNjQ3u3buHChUqyB0SFVMcrUZk4r766isAwKhRo5gYEeWhQ4cO8PLyQmpqKn788Ue5wyHKF5MjokJMRHfx4kUcPHgQZmZmmDp1qgGDIyr+FAoFPvnkEwDAokWLkJycXLAVcLJIMjImR1S6BQUBHh5Ax47q30FBOj1NU2s0cOBA1KhRw5AREpUI77zzDurWrYvExEQsWbJE9ycW8jNKVBTsc8Q+R6VXTIz6ZJt1vhWlUt05NI9RM3///Tfq1asHlUqFS5cuoXHjxoaPlagE+OWXXzB06FBUqFABd+7cyX8QQyE/o1Rysc8RkaEVciK6wMBAqFQq9OrVi4kRUQEMGjQINWvWREJCApYtW5b/EzhZJMmEyRGVXoWYiO7q1avYtGkTAGDOnDmGjI6oxDE3N8eMGTMAAAsWLMDz58/zfgIniySZMDmi0qsQE9HNnj0bQgi89dZb8PLyMk6cRCXIkCFDUK1aNcTHx+dfe8TJIkkm7HPEPkcUE6Oupq9VK8+Tbnh4OJo1awaFQoErV66gQYMGRgySqORYvXo1AgICUL58edy8eRNly5bN+wk6fkap5GOfI6Ki0nX4r7s70L59vifdmTNnAgDeffddJkZERTBs2DDUr18f//zzD+bPn5//E3T8jHLIP+kLkyMqmfQ8/PfUqVPYu3cvlEolZs2apacgiUonc3Nz6dY7ixYtwv3794u+Ug75Jz1ickQlT0wMMGbMq1EuKhUwdmyhv02qVCrp5pkBAQGoU6eOviIlKrV69eqFNm3aIDU1FYGBgUVbmZ4/80RMjqjk0fPw340bN+Ls2bOwt7fnCDUiPVEoFPj6668BAEFBQYiMjCz8yjjkn/SMyRGVPHoc/vv8+XNMnz4dAPC///2P91Aj0qM2bdqgT58+UKlUmDRpEgo9PohD/knPmBxRyaPH4b8LFixATEwMPDw8MHnyZD0HSkQLFiyApaUlDh8+jJ07dxZuJRzyT3rGofwcyl9yFXH4740bN9CwYUOkpaVh06ZNGDRokAGCJKJPP/0UX3zxBTw8PBAREQFbW9vCrYhD/ks8DuUnyo2eh+jnRAiBCRMmIC0tDZ07d8bAgQMLFysR5Wv69OmoUqUK7t69K93UuVA45J/0hMkRFS9GGq4bHByMw4cPw8rKCkuXLoVCoTDIdogIsLOzw8KFCwEAX3/9Na5du2a4jXHIP+mAzWqloFktOTkZoaGhOHHiBCIiInDz5k0kJSUhNTUVtra2cHR0RPXq1VGnTh34+vqibdu2cDfFKmkj3aH7n3/+QYMGDRAbG4vAwEBp8kciMhwhBHr37o29e/eiRYsWOH36NMzNzfW7ESOdQ4pKCIHIyEicOXMGZ86cQVRUFKKjo5GSkoKXL1/C1tYWFStWRI0aNeDl5YU33ngDb775JiwtLeUO3eCMdv0WpVBSUpIAIJKSkuQOxWAyMjLEzp07Ra9evYS5ubkAUKCfevXqiVmzZolr167JvSuvHD0qBJD9JzRUr5sZNGiQACA8PT3Fixcv9LpuIspdTEyMcHBwEADEN998o/8NGOkcUhgqlUqcOHFCTJw4UVSpUqXA5+wyZcqIYcOGiTNnzgiVSiX37hiMsa7frDkqYTVHKpUKmzdvxpw5c3D9+nVpee3atdGpUyd4eXmhTp06qFChAmxsbJCamoqEhATcunULV65cwalTpxAeHg5Vlm9Wb7zxBiZOnIh+/frBwsJCjt1SM8K3vs2bN+Pdd9+FUqnE6dOn0bJlS72sl4h0ExQUhNGjR8Pa2hrh4eHw9PTU38pNsOYoKSkJ69evx/LlyxERESEtt7W1RcuWLeHj44OGDRuiatWqKF++PCwsLPD8+XPEx8cjMjISFy5cwKFDhxAXFyc9t02bNpg3bx7atm0rxy4ZFGuODKik1hxdvHhRtGrVSvomUb58eTF16lQRERFRoPUkJiaKn3/+OVutk5ubm1i8eLFITU01zA7cu6f+ZnfvXu5lVq0SQqlUf9tTKtX/68n9+/dFuXLlBAAxc+ZMva2XiHSnUqmEn5+fACC8vLz0f74pyDlEl3NSISUkJIhPP/1UlClTRjrH2traiuHDh4vdu3eL58+f67yuzMxM8fvvv4thw4YJKysraX39+/cXDx480HvscjLW9ZvJUQmQkZEhAgMDhVKplKpXP//8c73s3/3798XMmTNF5cqVpQ+cu7u7WLZsmUhLS9ND9P9atUoIMzP1CcvMLP8TVmioXk9Y6enpokOHDgKAaNasmXj58qXe1k1EBXP//n1RsWJFAUBMnDhR/xvQ5RxSkHNSATx58iRbUlSvXj3xww8/iMTExCKv//79+2LcuHHS9aBs2bLi559/1kPkpoHJkQGVpOQoNjZWuqgDEG+99ZaIiYnR+3ZevHghli1bJtzc3KRt1apVS+zevbvo7dv37r06CWl+lEqDfFvLzbRp0wQAYWdnJyIjI422XSLK2f79+6VzzY4dO4y7cQOck9LT08XSpUulpA+AaNKkidi+fbvIzMzUY/Bqly5dEt7e3tK2xowZY7hafyNicmRAJSU5ioiIENWqVZMu6uvXrzf4NlNTU8XixYuFk5OT9KHz8/MrWsdtmTtJ7tq1S9qXzZs3G2WbRJS/qVOnCgDCwcGhwN0DikTP56SQkBDRsGFDrZqiHTt2GCQpyio9PV3Mnj1bKBQKAUD4+PiIR48eGXSbhsbkyIBKQnJ07NgxUbZsWakGx9i1HcnJyWLatGnC0tJSABBKpVJ89NFH4smTJ9kL59duL2PN0ZUrV6TRMR9//LHBt0dEuktLSxNt27YVAESNGjXE48ePjbPhgp6TcjnH3bp1S/Tu3VurH+iPP/4o0tPTjbATrxw8eFDqT1m3bl1x+/Zto25fn5gcGVBxT44OHz4srK2tBQDh6+sr6zeBGzduiD59+kgf/kqVKonVq1e/+kaka7u9ATta5+bevXvC3d1dABBt27bVbx8qItKL+Ph4Ub16dQFAvPnmm8b7nOp6TsrhHPfixQsxd+5c6Tyt+fKYkJBgnNhzEBERIU0R4OLiUmy7DzA5MqDinBwdOXJE+sD16tWrQCMaDOnw4cPC09NTSpJ8fHzEuX37Cv7tS88drXOTmJgoGjVqJM1nJOdJi4jydvXqVakD81tvvWW8mpf8zkk51DAdNjMTdWrUkM6F7du3N5n54u7duyc177m6uoobN27IHVKBMTkyoOKaHJ08eVLY2NgIAKJnz54mV9ORlpYmvvnmG2Fvby8ACIVCIcYC4rFMfYlyk5iYKHx8fAQA4ezsXKyrmIlKi8OHD0vN+IMHDxYZGRlyh6TVNykGEAOyTMro5OQkNmzYYHITMj569EjUr19fABAeHh4iOjpa7pAKhMmRAWle3MuXL8sdis4iIyOlNmN/f3/5Z27Oox/R/fv3xeDBg1+1swNiOSAyZBiF9ronT56Ili1bCgCiXLly4sKFC7LFQkQFs3v3bmnutWHDhsk/5ca9e+KlQiEWAML+3/OdGSA+GjUq52H5Bpw3qSAePHggateuLdWc59hX1EQdPXqUyZGhaJIjg0xPbwAPHz6URqX5+PjI35SmYz+i48ePi0ZZhv57AyJs+nQjB/vK7du3pW9MFSpUEOHh4bLFQkSFs2XLFmkOn+7du4uUlBTZYjlw4ICo7+oqneN8ARGe2wSyBpo3qbCio6OlqVk6duxoci0RuRkyZAiTI0PRJEfvvfee3KHkKzU1VbRo0UIalRYfHy9vQAUcxZGeni6+DwwUDnZ20glk1KhRIjY21qhhnzx5UprI0tXVVVy6dMmo2yci/dmzZ4/UxaBJkyYiKirKqNu/fPmyNIs3AFGhXDmxaupUkXn3bs5PMIG53HISHh4u7P49N48aNcrkmgBzoukryuTIADTJUYMGDeQOJU8qlUqMGjVKqukwygkgv2rfQs7/ERsbK0aMGCGdTGxtbcV///tfg4+0y8jIEJ9//rkwMzOTTqT3ZD4hEVHRnTlzRvrC4+DgIDZv3mzwi/uNGzfEyJEjpfOJhYWF+L//+z/xzz//5P3Ewpw3jdQEt3fvXml/Fi9ebNBtFdWLFy+kZlUmRwagSY7MzMzkb6LKw4oVK6Q4Q0JCDL9BXap9i/gN6PTp01KfHwDC3t5eTJs2zSCzep89e1Y0b95c2tbQoUNlrYInIv2KiYkRbdq0kT7jffr0MciXn8jISDF8+HCpOQ+AePvtt3Uf7VXQ86aRm+AWLlwoAAhzc3Px+++/G3RbRXH+/Hnp9WdyZACa5AiAOHPmjNzh5OjMmTPCwsJCABBfffVV0Veoz4kYizgnkUqlEnv37hXNmjWTjoO5ubkYMGCAOH78eJFnjb127ZoYPHiwNCuso6OjWLduXZHWSUSm6eXLl2LmzJnS+dLa2lpMmTKlyE33L1++FFu2bBEdO3aUzlOafk5hYWEFX6Gu5009TUBZECqVSgwYMEDqdmDsbg+6+umnn5gcGVLW5GjJkiVyh5PNkydPpMm6+vfvX/SqYl2+hRS02lcPcxKpVCqxc+dOaQZczU+VKlXElClTxJEjR8SzZ890WtejR4/EunXrRMeOHaWkSNOv7OHDh4WOkYiKhytXrmidSywsLMSAAQPErl27xNOnT3Vaxz///CN27dolRowYIcqXLy+ty8zMTPTt21f8+eefRQtSl/NmQc7FeqxhSk5Oluaqa9++vdFn8dbF+PHjjZYcKYQQAqVMcnIyHB0dAQCjRo1CUFCQzBFpGzp0KH755RfUqlUL58+fh4ODQ+FXFhMDeHgAKtWrZUolcOcO4O5e8HIGcvHiRfz444/49ddfkZKSIi23sLBA06ZNUadOHdSqVQvly5eHjY0NUlNT8eTJE0RFReHy5cu4fPmy1vr69euHzz77DE2bNjV47ERkGoQQOHToEAIDA3HmzBlpuZWVFby8vNCkSRNUrVoVFSpUgEKhQFpaGu7fv4+7d+/iypUriIiI0Fqfk5MT3n//fbz//vuoWrWqcXZCxnN2ZGQkWrZsiadPnyIwMBAzZ84s1HoMpVmzZggPDwcAJCUlFe3amB+Dpl4mKmvNUZMmTeQOR8uWLVukbyo6Vd3qswO1DLfweF1qaqrYsWOHGDp0qDTMVNefhg0bijlz5og7d+4YPW4iMi3h4eFi4sSJ0q1HdP2pVauWmDhxojh27Jh8tSe6nIsLU9uvQ/Pbzz//LAD1LU9Onz5d9H3Rk6dPn2r1+WLNkQFkrTlSKpVITEyEvb29zFEBDx8+RKNGjZCQkIAZM2Zg7ty5eT8hKAgYM0b9zcHMDFi5EggI0C5T0G8XMTHAjRtArVpGqTHKixACt27dQnh4OKKionDr1i0kJyfj+fPnsLW1hYODA2rUqAFPT0/4+vrC2dlZ1niJyPQIIXDjxg1cuHABV65cQVxcHB4/fgwAsLS0hLOzMzw8PFC7dm34+PigUqVKMkf8r/zOxQU5t+tyrcjivffew8aNG1G9enVcvHjRsDU0Ojp+/Djat28PFxcXPHz4kDVHhqCpOdLcdPTIkSNyhyRUKpXw9/cXAETTpk1F2s2bJtOBmoiITJAu5/ZCdPB+snu38Pj3+jhs2DDD7oOO5s2bJ41IhBFqjswMl3aZPl9fXwDAqVOnjLfRmBggNFT9O4uffvoJ+/fvh5WVFX7u2xeWtWsDHTuqvxnk1CcqKkr7GwMAZGaqv2m8LiBA/W0iNFT9O49vDEREVEzocm4vyLUiKAjw8EDZ3r3xy/37MFMosH79emzevDl72VyuZYYSFhYGAGjZsqVRtleqkyMfHx8ARkyO/n3jvZ703Lx5E1OmTAEAfPnf/6JBYOCrN7NKBYwdm/0NWLu2uno0K6VSXQWbE3d3oH172ZvKiIhIj/I7t+t6rYiJedX0BuANITDj34fGjx+PmKzXoFyuZYYihJCSoxYtWhh0WxqlOjnS1ByFhYUhIyOjaCvLL4t+7Y2nSXoy797FsGHD8OzZM7Rv3x6T2rXTLct3d1e3GyuV6v+VSmDFCiY/RET0iq7XihxqmD4TAs3r1kViYiJGjRoFlUqV67Usz2tfEWuYbty4gUePHsHCwgJNmjQp9HoKolQnR/Xq1YOjoyOePXuGS5cu5VxIlwOrSxadS9Xm/Llzcfr0aTg4OGDt2rUwq1tX9xohNpcREVF+dLlW5FDDZKFU4ufly2FtbY2QkBAsWbKkUM10OtUw5XGtPXr0KAB1hYa1tXU+O6snBu3RZKI0HbKTkpJE9+7dBQDx7bffZi+oz9tp5FAu3MxMmtV17dq12ttlB2oiIjKmXK49P/zwg8C/s49HhoYW+pqX56ChPK61b7/9tgAgAgMDta7fhlS6k6OICPHtt98KAKJr167ahXQ9sIWcRyjVzEw0/Hcen759+2afBVsPM1ATEREVSA7XnszMTNGlSxcBQDRv3ly8XL5cf/Mw5XOtzczMFBUqVBAAxO+//y6SIiI4Ws3gGjRA16dPAajnUEhNTX31mK5VhwXpGJ2lavOz99/H1fv3UblyZaxcuRIKhUK7LDtQExGRseVw7TEzM8OaNWtQtmxZnDt3Dl88fFioZrocr435XGsvXbqEhIQE2Nvbo8WVK0CDBkXeRV2U7uRICNQPDIS7iwtevHiBEydOvHpM1wNb0I7R7u44rlDg25UrAQCrVq0ynUnHiIiIcuDm5oalS5cCAObOnYs/HzzI+wu8rtfGfK61R44cAQC09/GBxQcfqOuWjKB0J0cAFCoVujVrBgA4ePDgqwcKkvQUoGN0cnIyhg8fDiEEAgIC0KtXL/3tDBERkYG8++67GDRoEDIzMzF06FA8f/487yfocm3M51q7b98+AEDnunWz1zAZUKm+fUgSAAelEluXLME748ahbt26+Ouvv7QL6/l2GqNGjcKaNWtQvXp1XLp0CWXKlCnyOomIiIzhn3/+QaNGjfDgwQNMmDABP/74o35WnMO19tGjR3B2doZKpcLt06dR7Y03kKxSwRGGv/Fs6a45MjMDVqxAl0GDYGlpievXr+Pq1avaZfTY92fXrl1Ys2YNFAoF1q1bx8SIiIiKlfLly2PNmjUAgCVLluDQoUP6WXEO19o9e/ZApVKhadOmqObrq65her0JzkBKd3J09SoQEABHR0d069YNABAcHGyQTcXGxmL06NEAgKlTp6Jt27YG2Q4REZEh+fn5YcKECQCAkSNH4p9//jHIdrZv3w4A6Nevn3pBQID6um0EpTs5cnOT/hw4cCAAdXKk75ZGIQRGjhyJx48fo3Hjxvj888/1un4iIiJjmj9/PurUqYOHDx/igw8+0Pv6k5KSpM7YUnIEaF23Dal0J0dZ9OrVC9bW1oiKisLFixf1uu4ff/wRBw8ehLW1NTZu3AgrKyu9rp+IiMiYbG1t8csvv0CpVCI4OBibNm3S6/o3b96MtLQ0eHp6ooGRhu9nxeToX2XKlEGPHj0AAKtXr9bbeq9evYr//Oc/AIAFCxbIcpCJiIj0rUWLFvj0008BAB988IH2zWmLaNWqVQCA0aNHZ58H0AhK92i113q7HzlyBF26dEGZMmVw//79IneYfvr0KXx8fHDt2jX4+/tj7969shxkIiIiQ0hPT0fr1q1x7tw5dO7cGYcOHYJZETtNX7p0CV5eXrCwsEBMTAwqV64sPZbb9VvfWHOURadOnVC3bl2kpKTg559/LtK6hBAYPXo0rl27BhcXF6xevZqJERERlSgWFhb45ZdfYGNjgyNHjmDRokVFXufy5csBAH369NFKjIzJJJKjpUuXonr16rC2toa3tzdOnjyZZ/njx4/D29sb1tbWqFGjhvRCFpVCoZB64H///ffIyMgo9Lq+//57BAcHw9zcHFu2bIGTk5NeYiQiIjIldevWxTfffAMA+M9//oOQkJBCrys2NlaaKkBzPZaFQe/cpoPNmzcLCwsL8dNPP4mIiAjx8ccfCzs7O3H37t0cy9+6dUvY2tqKjz/+WERERIiffvpJWFhYiK1bt+q8zbzu6puUlCTd5O6nn34q1D4dPnxYKJVKAUAsXry4UOsgIiIqLlQqlRg2bJgAIMqWLSuuX79eqPVMnjxZABCtW7fOfkN2kff1W59kT45atmwpxo0bp7XM09NTTJs2Lcfy//3vf4Wnp6fWsrFjxwofHx+dt5nfi/vdd98JAMLV1VU8e/ZM5/UKIcT58+eFvb29ACCGDBmS48ElIiIqaVJTU4Wvr68AIOrUqSPi4+ML9PyoqChhYWEhAIiDBw/mWMZYyZGszWovX77E+fPn4efnp7Xcz88Pp0+fzvE5YWFh2cp37doV586dQ3p6ul7iGj9+PDw8PPDgwQPMmjVL5+f99ddf6N69O54+fYqOHTti1apV7GdERESlgrW1NbZv344qVarg77//RufOnZGQkKDTc1UqFcaPH4/09HR069YNXbt2NXC0eTOXc+OPHz9GZmZmtv44Tk5OiI2NzfE5sbGxOZbPyMjA48eP4eLiku05aWlpSEtLk/5PSkoCoO71npuvvvoK7777LhYsWIDWrVujU6dOee7LpUuX0K9fPyQkJKBhw4ZYt25dtu0SERGVZLa2tti5cye6d++Oy5cvo0OHDtiyZUuO1+asvv/+exw5cgTW1tb44osvcr0+a5YLAw+0lzU50ni9dkUIkWeNS07lc1quMW/ePAQGBmZbXqVKFZ3i69+/v07lNK5evarzuomIiEqqK1euwNPTU+fyL168gLe3d77lEhIS4OjoWJTQ8iRrclSxYkUolcpstUTx8fG5ju5ydnbOsby5uTkqVKiQ43OmT5+OKVOmSP8nJibCw8MD0dHRBn1xTU1ycjKqVKmCe/fuGXR+CFPD/eZ+lwbcb+53aZCUlISqVauifPnyBt2OrMmRpaUlvL29ERISonXvlJCQEPTp0yfH5/j6+mLPnj1ayw4fPozmzZvDwsIix+dYWVnleMsOR0fHUvWm0nBwcOB+lyLc79KF+126lNb9LupEk/mu36Br18GUKVOwatUqrF69GpGRkZg8eTKio6Mxbtw4AOpan2HDhknlx40bh7t372LKlCmIjIzE6tWrERQUhKlTp8q1C0RERFSCyN7naODAgUhISMCcOXPw8OFDNGzYEPv374eHhwcA4OHDh4iOjpbKV69eHfv378fkyZOxZMkSuLq6YvHixXjrrbfk2gUiIiIqQWRPjgD1Des++OCDHB9bu3ZttmXt2rXDhQsXCr09KysrzJo1K8emtpKM+839Lg2439zv0oD7bdj9LpU3niUiIiLKjex9joiIiIhMCZMjIiIioiyYHBERERFlweSIiIiIKIsSmxx98cUXaN26NWxtbVG2bFmdniOEwOzZs+Hq6gobGxu0b98e165d0yqTlpaGiRMnomLFirCzs0Pv3r0RExNjgD0onCdPnmDo0KFwdHSEo6Mjhg4disTExDyfo1Aocvz55ptvpDLt27fP9vigQYMMvDe6K8x+jxgxIts++fj4aJUpacc7PT0dn3zyCRo1agQ7Ozu4urpi2LBhePDggVY5UzveS5cuRfXq1WFtbQ1vb2+cPHkyz/LHjx+Ht7c3rK2tUaNGDSxfvjxbmW3btqF+/fqwsrJC/fr1sWPHDkOFX2gF2e/t27ejS5cuqFSpEhwcHODr64tDhw5plVm7dm2On/UXL14YelcKpCD7fezYsRz36a+//tIqV9KOd07nL4VCgQYNGkhlTP14nzhxAr169YKrqysUCgV27tyZ73OM9tkWJdTMmTPFwoULxZQpU4Sjo6NOz/nqq69EmTJlxLZt28SVK1fEwIEDhYuLi0hOTpbKjBs3Tri5uYmQkBBx4cIF0aFDB9GkSRORkZFhoD0pmG7duomGDRuK06dPi9OnT4uGDRuKnj175vmchw8fav2sXr1aKBQKcfPmTalMu3btxPvvv69VLjEx0dC7o7PC7Pfw4cNFt27dtPYpISFBq0xJO96JiYmic+fOIjg4WPz1118iLCxMtGrVSnh7e2uVM6XjvXnzZmFhYSF++uknERERIT7++GNhZ2cn7t69m2P5W7duCVtbW/Hxxx+LiIgI8dNPPwkLCwuxdetWqczp06eFUqkUX375pYiMjBRffvmlMDc3F2fOnDHWbuWroPv98ccfi6+//lr8+eef4u+//xbTp08XFhYW4sKFC1KZNWvWCAcHh2yfeVNS0P0ODQ0VAMT169e19inrZ7QkHu/ExESt/b13754oX768mDVrllTG1I/3/v37xYwZM8S2bdsEALFjx448yxvzs11ikyONNWvW6JQcqVQq4ezsLL766itp2YsXL4Sjo6NYvny5EEL9ZrSwsBCbN2+Wyty/f1+YmZmJgwcP6j32goqIiBAAtN4EYWFhAoD466+/dF5Pnz59RMeOHbWWtWvXTnz88cf6ClWvCrvfw4cPF3369Mn18dJyvP/8808BQOskbErHu2XLlmLcuHFayzw9PcW0adNyLP/f//5XeHp6ai0bO3as8PHxkf4fMGCA6Natm1aZrl27ikGDBukp6qIr6H7npH79+iIwMFD6X9fzoZwKut+a5OjJkye5rrM0HO8dO3YIhUIh7ty5Iy0rDsdbQ5fkyJif7RLbrFZQt2/fRmxsLPz8/KRlVlZWaNeuHU6fPg0AOH/+PNLT07XKuLq6omHDhlIZOYWFhcHR0RGtWrWSlvn4+MDR0VHn+OLi4rBv3z4EBARke2zDhg2oWLEiGjRogKlTpyIlJUVvsRdFUfb72LFjqFy5MurUqYP3338f8fHx0mOl4XgD6hs5KhSKbM3PpnC8X758ifPnz2sdAwDw8/PLdR/DwsKyle/atSvOnTuH9PT0PMuYwnEFCrffr1OpVEhJScl2g86nT5/Cw8MD7u7u6NmzJ8LDw/UWd1EVZb+bNm0KFxcXdOrUCaGhoVqPlYbjHRQUhM6dO0t3l9Aw5eNdUMb8bJvEDNmmIDY2FgDg5OSktdzJyQl3796VylhaWqJcuXLZymieL6fY2FhUrlw52/LKlSvrHN+6detQpkwZ9O/fX2v5e++9h+rVq8PZ2RlXr17F9OnTcenSJYSEhOgl9qIo7H53794d77zzDjw8PHD79m189tln6NixI86fPw8rK6tScbxfvHiBadOmYfDgwVo3rzSV4/348WNkZmbm+LnMbR9jY2NzLJ+RkYHHjx/DxcUl1zKmcFyBwu3367799ls8e/YMAwYMkJZ5enpi7dq1aNSoEZKTk/H999+jTZs2uHTpEmrXrq3XfSiMwuy3i4sLVq5cCW9vb6SlpeHnn39Gp06dcOzYMbz55psAcn9PlJTj/fDhQxw4cAAbN27UWm7qx7ugjPnZLlbJ0ezZsxEYGJhnmbNnz6J58+aF3oZCodD6XwiRbdnrdClTFLruN5A9fqBg8a1evRrvvfcerK2ttZa///770t8NGzZE7dq10bx5c1y4cAHNmjXTad0FZej9HjhwoPR3w4YN0bx5c3h4eGDfvn3ZksOCrLeojHW809PTMWjQIKhUKixdulTrMTmOd14K+rnMqfzrywvzWTe2wsa4adMmzJ49G7t27dJKoH18fLQGHbRp0wbNmjXDDz/8gMWLF+sv8CIqyH7XrVsXdevWlf739fXFvXv3sGDBAik5Kug65VLYGNeuXYuyZcuib9++WsuLy/EuCGN9totVcvThhx/mO2KmWrVqhVq3s7MzAHVm6uLiIi2Pj4+XslBnZ2e8fPkST5480apNiI+PR+vWrQu1XV3out+XL19GXFxctscePXqULZPOycmTJ3H9+nUEBwfnW7ZZs2awsLBAVFSUwS6WxtpvDRcXF3h4eCAqKgpAyT7e6enpGDBgAG7fvo2jR49q1RrlxBjHOycVK1aEUqnM9q0v6+fydc7OzjmWNzc3R4UKFfIsU5D3iyEVZr81goODERAQgC1btqBz5855ljUzM0OLFi2k97zcirLfWfn4+OCXX36R/i/Jx1sIgdWrV2Po0KGwtLTMs6ypHe+CMupnu0A9lIqhgnbI/vrrr6VlaWlpOXbIDg4Olso8ePDA5Dro/vHHH9KyM2fO6NxBd/jw4dlGLeXmypUrAoA4fvx4oePVl6Lut8bjx4+FlZWVWLdunRCi5B7vly9fir59+4oGDRqI+Ph4nbYl5/Fu2bKlGD9+vNayevXq5dkhu169elrLxo0bl63TZvfu3bXKdOvWzeQ66BZkv4UQYuPGjcLa2jrfjq0aKpVKNG/eXIwcObIooepVYfb7dW+99Zbo0KGD9H9JPd5CvOqQfuXKlXy3YYrHWwM6dsg21me7xCZHd+/eFeHh4SIwMFDY29uL8PBwER4eLlJSUqQydevWFdu3b5f+/+qrr4Sjo6PYvn27uHLlinj33XdzHMrv7u4ujhw5Ii5cuCA6duxockO7GzduLMLCwkRYWJho1KhRtqHdr++3EEIkJSUJW1tbsWzZsmzrvHHjhggMDBRnz54Vt2/fFvv27ROenp6iadOmxXa/U1JSxP/93/+J06dPi9u3b4vQ0FDh6+sr3NzcSvTxTk9PF7179xbu7u7i4sWLWsN709LShBCmd7w1Q5yDgoJERESEmDRpkrCzs5NG5UybNk0MHTpUKq8Z7jt58mQREREhgoKCsg33/f3334VSqRRfffWViIyMFF999ZXJDu3Wdb83btwozM3NxZIlS3KdgmH27Nni4MGD4ubNmyI8PFyMHDlSmJubayXYcivofn/33Xdix44d4u+//xZXr14V06ZNEwDEtm3bpDIl8XhrDBkyRLRq1SrHdZr68U5JSZGuzQDEwoULRXh4uDRyVs7PdolNjoYPHy4AZPsJDQ2VygAQa9askf5XqVRi1qxZwtnZWVhZWYk333wzWzaempoqPvzwQ1G+fHlhY2MjevbsKaKjo420V/lLSEgQ7733nihTpowoU6aMeO+997INcX19v4UQYsWKFcLGxibHuWyio6PFm2++KcqXLy8sLS1FzZo1xUcffZRtTiA5FXS/nz9/Lvz8/ESlSpWEhYWFqFq1qhg+fHi2Y1nSjvft27dz/Fxk/WyY4vFesmSJ8PDwEJaWlqJZs2ZaNVjDhw8X7dq10yp/7Ngx0bRpU2FpaSmqVauWY9K/ZcsWUbduXWFhYSE8PT21LqamoiD73a5duxyP6/Dhw6UykyZNElWrVhWWlpaiUqVKws/PT5w+fdqIe6Sbguz3119/LWrWrCmsra1FuXLlxBtvvCH27duXbZ0l7XgLoa7dtrGxEStXrsxxfaZ+vDW1Xrm9Z+X8bCuE+Lc3ExERERGV3NuHEBERERUGkyMiIiKiLJgcEREREWXB5IiIiIgoCyZHRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRUYkyZ84cNGrUCHZ2dnBycsL48eORnp4ud1hEVIyYyx0AEZG+CCGQmZmJFStWwM3NDRERERg2bBgaN26M8ePHyx0eERUTvPEsEZVogwcPRqVKlfD999/LHQoRFRNsViOiEuPu3bv48MMP0bBhQ5QrVw729vb49ddf4e7uLndoRFSMMDkiohLh8ePHaNmyJR4/foyFCxfi1KlTCAsLg1KphJeXl9zhEVExwj5HRFQi7N+/HxkZGdi0aRMUCgUAYMmSJXj58iWTIyIqECZHRFQilC9fHsnJydi9ezfq16+PPXv2YN68eXBzc0OlSpXkDo+IihF2yCaiEkEIgfHjx2Pjxo2wsbHBkCFD8OLFC9y9exd79+6VOzwiKkaYHBERERFlwQ7ZRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLL4fxmQhHM/YsH7AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzv0lEQVR4nO3dd1gU59oG8HtZWDrYEBAUu9hRLKAxdlSs0USNDRVjidGox3Oin4mKKSbGGGNijdgSC7H3ghFbxMSCFTRYERUQomBBBPb9/tjsykpbYHdngft3XVzA7Dszz+zszDz7lhmZEEKAiIiIiAAAZlIHQERERGRKmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHFGx9uDBA8yePRsXLlzI9trw4cNhZ2dX6GW/evUKY8eOhaurK+RyOby8vAofqB4sWbIEa9asyTb9zp07kMlkOb5WkshkMsyePVvqMPRi9uzZkMlkBp/3xx9/RM2aNaFQKCCTyfDkyRMMHz4cVatW1Sr31VdfYceOHYWKJy///PMPBg4ciIoVK0Imk6FPnz4FXkbVqlUxfPhwvcdmav7++2/069cPZcuWhY2NDVq2bIldu3ZJHVapZS51AERF8eDBAwQFBaFq1ap6T16WLl2K5cuX48cff4S3t3eREi19WLJkCSpUqJDtQuHq6orw8HDUqFFDmsCowEaNGoWuXbsadB0XLlzAxIkTMWrUKAQEBMDc3Bz29vb47LPP8PHHH2uV/eqrr/Duu+8WKnnJy+eff47t27dj1apVqFGjBsqVK6fX5ZcUd+7cga+vL1xdXbFs2TLY2dlh6dKl6NOnDzZv3ox+/fpJHWKpw+SIKBdXrlyBtbU1PvroI6lDyZOlpSV8fHykDoMKwN3dHe7u7gZdx9WrVwEAH3zwAVq0aKGZbswk+sqVK6hRowYGDx5stHXqy4sXL2BjY2OUdX399dd48eIFDh48CDc3NwBA165d0bBhQ0yePBnvvPMOzMzY0GNMfLdJ49GjRxg9ejQqV64MS0tLODk5oXXr1jh8+LCmTLt27dCgQQOEh4ejVatWsLa2RtWqVbF69WoAwN69e9G0aVPY2NigYcOGOHDgQLb1nDx5Eh07doS9vT1sbGzQqlUr7N27N1u5K1euoHfv3ihbtiysrKzg5eWFtWvXal4/evQomjdvDgAYMWIEZDJZjk0vN27cgL+/P+zs7FC5cmX85z//QVpaWp7vhUwmw8qVK5GamqpZ7po1a/Jswnpz3ermj6tXr+L999+Ho6MjnJ2dMXLkSCQnJ2vNq1Qq8eOPP8LLywvW1tYoU6YMfHx8NNXqVatWxdWrV3Hs2DFNPOqmkdxi0uV9XrNmDWQyGcLCwjBu3DhUqFAB5cuXR9++ffHgwYM836O8VK1aFT169MD27dvRqFEjWFlZoXr16li0aFG2sjExMRgyZAgqVqwIS0tL1K1bF9999x2USmWuy79z5w7Mzc0xd+7cbK8dP34cMpkMmzdvBlCw/fDy5UtMnz4d1apVg0KhgJubG8aPH48nT57kuH179uxBkyZNYG1tjbp162LPnj0AVO9r3bp1YWtrixYtWuDs2bNa8+fUNBYSEgI/Pz+4urpqljdt2jQ8f/489zc6F+3atcOQIUMAAC1btoRMJtPUOL7ZrCaTyfD8+XOsXbtW89lq165dnsv/559/8OGHH8LNzQ0KhQLVq1fHjBkzNMeV+jN5+PBhREVFaZZ79OjRXJeZnp6O//3vf3BxcYGNjQ3eeust/PXXXzmWjYuLw5gxY+Du7g6FQoFq1aohKCgIGRkZWuViY2Px7rvvwt7eHmXKlMHgwYNx5syZbMeLugn+8uXL8PPzg729PTp27AhA1bz+xRdfwNPTU3NeHDFiBB49epQtrpCQEPj6+sLW1hZ2dnbo0qULIiIi8nwvAeCPP/5A48aNNYkRAMjlcnTr1g337t3L9X0gAxJE/+rSpYtwcnISK1asEEePHhU7duwQM2fOFJs2bdKUadu2rShfvryoU6eOCA4OFgcPHhQ9evQQAERQUJBo2LCh2Lhxo9i3b5/w8fERlpaW4v79+5r5jx49KiwsLIS3t7cICQkRO3bsEH5+fkImk2mt59q1a8Le3l7UqFFDrFu3Tuzdu1e8//77AoD45ptvhBBCJCcni9WrVwsA4tNPPxXh4eEiPDxc3Lt3TwghREBAgFAoFKJu3bpi/vz54vDhw2LmzJlCJpOJoKCgPN+L8PBw4e/vL6ytrTXLTUhIELdv3xYAxOrVq7PNA0DMmjVL8/+sWbMEAFGnTh0xc+ZMERoaKhYsWCAsLS3FiBEjtOYdOnSokMlkYtSoUWLnzp1i//794ssvvxQ//PCDEEKI8+fPi+rVq4smTZpo4jl//rwQQuQYk67vs/r9q169upgwYYI4ePCgWLlypShbtqxo3769Vozqsjlt+5s8PDyEm5ubqFKlili1apXYt2+fGDx4sAAgvv32W025hIQE4ebmJpycnMSyZcvEgQMHxEcffSQAiHHjxuX5/r7zzjuiSpUqIiMjQ6vce++9JypVqiTS09MLtB+USqXo0qWLMDc3F5999pk4dOiQmD9/vrC1tRVNmjQRL1++1No+d3d30aBBA83nvWXLlsLCwkLMnDlTtG7dWmzbtk1s375d1K5dWzg7O4sXL15o5lfHlNXnn38uvv/+e7F3715x9OhRsWzZMlGtWrVs+yGned909epV8emnn2r2V3h4uLhx44YQQnVceHh4aMqGh4cLa2tr4e/vr/lsXb16Nddlp6amikaNGglbW1sxf/58cejQIfHZZ58Jc3Nz4e/vL4QQ4uXLlyI8PFw0adJEVK9eXbPc5OTkXJcbEBAgZDKZ+O9//ysOHTokFixYINzc3ISDg4MICAjQlHv48KGoXLmy8PDwEMuXLxeHDx8Wn3/+ubC0tBTDhw/XlHv27JmoWbOmKFeunFi8eLE4ePCgmDx5sqhWrVq2z3FAQICwsLAQVatWFXPnzhW///67OHjwoMjMzBRdu3YVtra2IigoSISGhoqVK1cKNzc3Ua9ePa19+uWXXwqZTCZGjhwp9uzZI7Zt2yZ8fX2Fra1tnu+nEELUrl1bvP3229mmT58+XQAQy5cvz3N+0j8mR6RhZ2cnJk2alGeZtm3bCgDi7NmzmmlJSUlCLpcLa2trrUTowoULAoBYtGiRZpqPj4+oWLGiePr0qWZaRkaGaNCggXB3dxdKpVIIIcTAgQOFpaWliImJ0Vp/t27dhI2NjXjy5IkQQogzZ87kesEOCAgQAMRvv/2mNd3f31/UqVMnn3dDNb+tra3WtMIkR/PmzdMq9+GHHworKyvNth4/flwAEDNmzMgznvr164u2bdtmm55TTLq+z+qE58MPP9Ra5rx58wQA8fDhQ820tWvXCrlcLtauXZtnnEKokgeZTCYuXLigNb1z587CwcFBPH/+XAghxLRp0wQA8eeff2qVGzdunJDJZOL69euaaW++v2FhYQKA2L59u2ba/fv3hbm5uVbyq+t+OHDgQI7lQkJCBACxYsUKre2ztrYWsbGxmmnqz7urq6tm+4QQYseOHQKA2LVrV7aYcqNUKkV6ero4duyYACAuXryo87xq6n175swZrelvJkdCCGFra6uVgORl2bJlOR5X33zzjQAgDh06pJnWtm1bUb9+/XyXGRUVJQCIyZMna01fv369AKAV25gxY4SdnZ24e/euVtn58+cLAJpEZPHixQKA2L9/v1a5MWPG5JgcARCrVq3SKrtx40YBQGzdulVruvq8s2TJEiGEEDExMcLc3FxMmDBBq9zTp0+Fi4uL6N+/f57b36dPH1GmTBmt41UIIdq0aSMAiK+++irP+Un/2KxGGi1atMCaNWvwxRdf4PTp00hPT8+xnKurK7y9vTX/lytXDhUrVoSXlxcqVaqkmV63bl0AwN27dwEAz58/x59//ol3331Xq3OzXC7H0KFDERsbi+vXrwMAjhw5go4dO6Jy5cpa6x4+fDhevHiB8PBwnbZJJpOhZ8+eWtMaNWqkickYevXqlW39L1++REJCAgBg//79AIDx48frZX0FeZ/zihGA1vs0bNgwZGRkYNiwYTrFUb9+fTRu3Fhr2qBBg5CSkoLz588DUO3nevXqafWJAVT7WQiBI0eO5Lr8du3aoXHjxli8eLFm2rJlyyCTyTB69Ohs5fPbD+p1vdnh/b333oOtrS1+//13releXl5azSDqz3u7du20+qq8eRzk5tatWxg0aBBcXFwgl8thYWGBtm3bAgCioqLynNeYjhw5AltbW7z77rta09Xv25vvky7CwsIAIFvfpP79+8PcXLtr7J49e9C+fXtUqlQJGRkZmp9u3boBAI4dO6b5bW9vn63j+/vvv59rHG92fN6zZw/KlCmDnj17aq3Ly8sLLi4ummbCgwcPao6NrOWsrKzQtm3bPJsTAeCjjz5CcnIyhg0bhlu3biE+Ph6fffYZTp06BQDsbyQBvuOkERISgoCAAKxcuRK+vr4oV64chg0bhri4OK1yOY04USgU2aYrFAoAqn4cAPD48WMIIeDq6pptfnVSlZSUpPmtS7n82NjYwMrKSmuapaWlJiZjKF++fLb1A0BqaioAVV8vuVwOFxcXvayvIO+zrjEWRk7bo56mr/08ceJE/P7777h+/TrS09Px888/4913381x3fltY1JSEszNzeHk5KRVTiaTwcXFJVssuX3e8zsOcvLs2TO0adMGf/75J7744gscPXoUZ86cwbZt27RiNAVJSUlwcXHJ1meqYsWKMDc31/nYfHOZQPbPjLm5ebb9Fh8fj927d8PCwkLrp379+gCAxMREzTKdnZ2zrSunaYDqXOHg4JBtXU+ePIFCoci2vri4OM264uPjAQDNmzfPVi4kJERTLjcdO3bE6tWrcfz4cdSoUQMuLi7Ytm0bPv/8cwDQSsLJODhajTQqVKiAhQsXYuHChYiJicGuXbswbdo0JCQk5NixuqDKli0LMzMzPHz4MNtr6s6/FSpUAKC6kOlSztjUidabHboLc0FQc3JyQmZmJuLi4nJMFAqqIO+zIb2ZVGedpr7gFXU/Dxo0CJ988gkWL14MHx8fxMXFFboGrnz58sjIyMCjR4+0EiQhBOLi4jSd/w3hyJEjePDgAY4ePaqpLQKQrSO4KShfvjz+/PNPCCG0EqSEhARkZGQU6rOl/jzExcVpJQIZGRnZjq0KFSqgUaNG+PLLL3NcljqxLl++fI4dmXP6XALI8d5R6gEKuZ3/7O3tNeUAYMuWLfDw8MixbH4CAgIwePBgREdHw8LCAjVr1sTcuXMhk8nQpk2bQi2TCo81R5SjKlWq4KOPPkLnzp01TSBFZWtri5YtW2Lbtm1a34SVSiV+/fVXuLu7o3bt2gBU36TUF4ys1q1bBxsbG83QdX3UcBSEs7MzrKyscOnSJa3pO3fuLPQy1c0BS5cuzbOcpaWlTttZkPfZkK5evYqLFy9qTduwYQPs7e3RtGlTAKr9HBkZme0ztm7dOshkMrRv3z7PdVhZWWH06NFYu3YtFixYAC8vL7Ru3bpQ8apHJ/36669a07du3Yrnz59rXjcE9YVZ/XlWW758ucHWmZWuny1A9T49e/Ys200j161bp3m9oNSj49avX681/bfffss2Aq1Hjx6aWwQ0a9Ys2486OWrbti2ePn2qabZW27Rpk85x9ejRA0lJScjMzMxxXXXq1AEAdOnSBebm5rh582aO5Zo1a6bT+szNzVG3bl3UrFkTycnJWLFiBXr37l3ohIsKjzVHBABITk5G+/btMWjQIHh6esLe3h5nzpzBgQMH0LdvX72tZ+7cuejcuTPat2+PqVOnQqFQYMmSJbhy5Qo2btyouUjMmjVL07dg5syZKFeuHNavX4+9e/di3rx5cHR0BKC6Z4u1tTXWr1+PunXrws7ODpUqVdLq+6RPMpkMQ4YM0dzUrnHjxvjrr7+wYcOGQi+zTZs2GDp0KL744gvEx8ejR48esLS0REREBGxsbDBhwgQAQMOGDbFp0yaEhISgevXqsLKyQsOGDXNcpq7vc0GsW7cOI0eOxKpVq3Tqd1SpUiX06tULs2fPhqurK3799VeEhobim2++0fTJmTx5MtatW4fu3btjzpw58PDwwN69e7FkyRKMGzdOpyTuww8/xLx583Du3DmsXLmywNul1rlzZ3Tp0gWffPIJUlJS0Lp1a1y6dAmzZs1CkyZNMHTo0EIvOz+tWrVC2bJlMXbsWMyaNQsWFhZYv359tuTSUBo2bIijR49i9+7dcHV1hb29vebC/6Zhw4Zh8eLFCAgIwJ07d9CwYUOcPHkSX331Ffz9/dGpU6cCr79u3boYMmQIFi5cCAsLC3Tq1AlXrlzB/PnzszV1zZkzB6GhoWjVqhUmTpyIOnXq4OXLl7hz5w727duHZcuWwd3dHQEBAfj+++8xZMgQfPHFF6hZsyb279+PgwcPAtCtH8/AgQOxfv16+Pv74+OPP0aLFi1gYWGB2NhYhIWFoXfv3njnnXdQtWpVzJkzBzNmzMCtW7fQtWtXlC1bFvHx8fjrr79ga2uLoKCgXNeTkJCA7777Dq1bt4a9vT2uXbuGefPmwczMTKtPHRmRpN3ByWS8fPlSjB07VjRq1Eg4ODgIa2trUadOHTFr1iytkTe5jT7x8PAQ3bt3zzYdgBg/frzWtBMnTogOHToIW1tbYW1tLXx8fMTu3buzzXv58mXRs2dP4ejoKBQKhWjcuHGOo8Q2btwoPD09hYWFhdaIppxGmwmh+2if3OZPTk4Wo0aNEs7OzsLW1lb07NlT3LlzJ9fRao8ePdKaXz2K6Pbt25ppmZmZ4vvvvxcNGjQQCoVCODo6Cl9fX6335c6dO8LPz0/Y29sLAJoRR7mNoNPlfc5tRJN6JFhYWFi2sroO5e/evbvYsmWLqF+/vlAoFKJq1apiwYIF2crevXtXDBo0SJQvX15YWFiIOnXqiG+//VZkZmZqlXvz/c2qXbt2oly5clpDq9UKsh9SU1PFJ598Ijw8PISFhYVwdXUV48aNE48fP85x+96U0+ddvX+y3sIgp8/gqVOnhK+vr7CxsRFOTk5i1KhR4vz589nec0OMVrtw4YJo3bq1sLGxEQByHBWZVVJSkhg7dqxwdXUV5ubmwsPDQ0yfPl3rdgdC6D5aTQgh0tLSxH/+8x9RsWJFYWVlJXx8fER4eLjw8PDINpLu0aNHYuLEiaJatWrCwsJClCtXTnh7e4sZM2aIZ8+eacrFxMSIvn37Cjs7O2Fvby/69esn9u3bJwCInTt3ar0nOR3rQgiRnp4u5s+fLxo3biysrKyEnZ2d8PT0FGPGjBHR0dFaZXfs2CHat28vHBwchKWlpfDw8BDvvvuuOHz4cJ7bnpSUJPz8/ISTk5OwsLAQVapUERMmTMj2mSXjkQkhhDGTMSIq+apWrYoGDRpobopoSAkJCfDw8MCECRMwb948g6+PirevvvoKn376KWJiYgx+l3IqvtisRkTFUmxsLG7duoVvv/0WZmZm2Z4XRvTTTz8BADw9PZGeno4jR45g0aJFGDJkCBMjyhOTIyIqllauXIk5c+agatWqWL9+PYc7UzY2Njb4/vvvcefOHaSlpaFKlSr45JNP8Omnn0odGpk4NqsRERERZSH5UP7jx4+jZ8+eqFSpEmQyWbbhoTk5duwYvL29NQ+zXLZsmeEDJSIiolJB8uTo+fPnaNy4saZtOD+3b9+Gv78/2rRpg4iICPzf//0fJk6ciK1btxo4UiIiIioNTKpZTSaTYfv27ejTp0+uZT755BPs2rVL61lDY8eOxcWLF3V+3hYRERFRbopdh+zw8HD4+flpTevSpQuCg4ORnp4OCwuLbPOkpaVpPe5BqVTin3/+Qfny5Qt1MzwiIiIyPiEEnj59ikqVKhn0gbzFLjmKi4vL9uBAZ2dnZGRkIDExMcdnU82dOzfPu5MSERFR8XHv3j2D3o6h2CVHQPYHBKpbBnOrBZo+fTqmTJmi+T85ORlVqlTBvXv3st2anoiKkfv3gZs3gRo1gLyG8utajohMWkpKCipXrqx56K+hFLvkyMXFJdtTlRMSEmBubq55svObLC0tsz3QEQAcHByYHBEVV8HBwOjRgFIJmJkBK1YAgYGFL0dExYahu8RIPlqtoHx9fREaGqo17dChQ2jWrFmO/Y2IqASKjX2d8ACq32PGqKYXphwRURaSJ0fPnj3DhQsXcOHCBQCqofoXLlxATEwMAFWTWNYngI8dOxZ3797FlClTEBUVhVWrViE4OBhTp06VInwikkJ09OuERy0zE7hxo3DliIiykLxZ7ezZs2jfvr3mf3XfoICAAKxZswYPHz7UJEoAUK1aNezbtw+TJ0/G4sWLUalSJSxatAj9+vUzeuxEJJFatVRNZFkTH7kcqFmzcOWIiLIwqfscGUtKSgocHR2RnJzMPkdExVVwsKqJLDNTlfAsX557nyNdyhGRyTPW9ZvJEZMjouIrNlbVRFazJpDXsF5dyxGRSTPW9VvyZjUiokJzd9ct2dG1HBERTKBDNhEREZEpYXJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZMDkiIiIiyoLJEREREVEWTI6IiIiIsmByRERERJQFkyMiIiKiLJgcEREREWXB5IiITE9sLBAWpvpdmtZNRCaByRERmZbgYMDDA+jQQfU7OLh0rJuITIZMCCGkDsLYUlJS4OjoiOTkZDg4OEgdDhGpxcaqkhKl8vU0uRy4cwdwdy+56yYinRjr+s2aIyIyHdHR2skJAGRmAjdulOx1E5FJYXJERKajVi3A7I3TklwO1KxZstdNRCaFyRERmQ53d2DFClVSAqh+L19unGYtKddNRCaFfY7Y54jI9MTGqpqzatY0fnIi5bqJKE/Gun6bG2zJRESF5e4uXWIi5bqJyCSwWY2IiIgoCyZHRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZmEsdABGRvqSnpyMhIQGpqalwdHREuXLlIJfLpQ6LiIoZJkdEVKydP38emzZtwqFDhxAZGYn09HTNa9bW1mjatCm6deuGgQMHokaNGhJGSkTFhUwIIaQOwthSUlLg6OiI5ORkODg4SB0OERXCgQMH8OWXX+LkyZNa0+VyOaysrPD8+XOt6TKZDL169UJQUBAaN25szFCJSE+Mdf1mnyMiKlZiYmLwzjvvoFu3bjh58iQsLCwwYMAAbNy4EXfu3MGrV6/w7NkzvHr1ClFRUVixYgX8/PwghMDOnTvRtGlTTJo0CSkpKVJvChGZKNYcseaIqNjYs2cPhg4diidPnsDc3BwTJkzA1KlTUalSpXznvXbtGmbOnInNmzcDAGrVqoWtW7eiYcOGhg6biPSENUdERP8SQiAoKAg9e/bEkydP0KJFC0RERGDBggU6JUYA4Onpid9++w2HDh1C5cqVER0djZYtW+K3334zcPREVNwwOSIik6ZUKjFhwgTMnj0bADBhwgScOHECDRo0KNTyOnfujIiICHTt2hWpqakYOHAgli9frseIiai4Y3JERCZLqVQiMDAQixcvhkwmw5IlS7Bo0SIoFIoiLbd8+fLYs2cPxo4dCyEExo4dix9++EFPURNRccfkiIhMkhACU6dOxZo1ayCXy7F+/XqMGzdOb8uXy+VYsmQJpk+fDgCYNGkSfvnlF70tn4iKLyZHRGSSvv32W3z//fcAgNWrV+P999/X+zpkMhm+/PJLTJ48GQAwYsQIHDhwQO/rIaLihckREZmcvXv3Ytq0aQCABQsWYOjQoQZbl0wmw/z58zF06FBkZmZi4MCBiI6ONtj6iMj0MTkiIpMSHR2NwYMHa/oCqWt1DMnMzAwrV65E69atkZycjN69e+Pp06cGXy8RmSYmR0RkMtLS0vDuu+8iOTkZrVu3NmonaYVCgS1btqBSpUqIiorC6NGjUQpvA0dEYHJERCZkxowZuHTpEpycnLB58+Yij0orKBcXF2zZsgVyuRybNm3Cr7/+atT1E5FpYHJERCbh999/x3fffQcACA4OhqurqyRx+Pr6au6pNH78eNy6dUuSOIhIOiaRHC1ZsgTVqlWDlZUVvL29ceLEiTzLr1+/Ho0bN4aNjQ1cXV0xYsQIJCUlGSlaItK3J0+eICAgAAAwZswY9OzZU9J4pk+fjrfeegtPnz5FYGAgm9eIShnJk6OQkBBMmjQJM2bMQEREBNq0aYNu3bohJiYmx/InT57EsGHDEBgYiKtXr2Lz5s04c+YMRo0aZeTIiUhfpk2bhvv376NWrVqa2iMpyeVyrF27FtbW1jh69ChWr14tdUhEZESSJ0cLFixAYGAgRo0ahbp162LhwoWoXLkyli5dmmP506dPo2rVqpg4cSKqVauGt956C2PGjMHZs2eNHDkR6UN4eLjm8R0///wzbG1tJY5IpXr16pgzZw4AYOrUqYiPj5c4IiIyFkmTo1evXuHcuXPw8/PTmu7n54dTp07lOE+rVq0QGxuLffv2QQiB+Ph4bNmyBd27d891PWlpaUhJSdH6ISIJxMYCYWGq3wDS09MxZswYAMDw4cPRtm1bKaPLZtKkSWjSpAkeP36MSZMmab/4xrYQUckhaXKUmJiIzMxMODs7a013dnZGXFxcjvO0atUK69evx4ABA6BQKODi4oIyZcrgxx9/zHU9c+fOhaOjo+ancuXKet0OItJBcDDg4QF06KD6HRyMH374AZcvX0b58uXx7bffSh1hNubm5li5ciXMzMywadMmHD16VPVCDttCRCWH5M1qgOoOtVkJIbJNU4uMjMTEiRMxc+ZMnDt3DgcOHMDt27cxduzYXJc/ffp0JCcna37u3bun1/iJKB+xscDo0YBSqfpfqUTC6NGYExQEAJg3bx4qVKggYYC5a9q0qeb8MnnyZGTevZttWzBmDGuQiEoQcylXXqFCBcjl8my1RAkJCdlqk9Tmzp2L1q1b47///S8AoFGjRrC1tUWbNm3wxRdf5Dj819LSEpaWlvrfACLSTXT062TiX7OUSjx99gzNmjXD8OHDpYlLR0FBQVi/fj0uXLiANT/9hMA3tgWZmcCNG4C7uzQBEpFeSVpzpFAo4O3tjdDQUK3poaGhaNWqVY7zvHjxAmZm2mHL5XIA4HBbIlNVqxaQ5biNBPDzv39/99132Y5pU1OhQgXMmjULADBj7VqkvFmzLZcDNWtKEBkRGYLkZ6QpU6Zg5cqVWLVqFaKiojB58mTExMRoqrGnT5+OYcOGacr37NkT27Ztw9KlS3Hr1i388ccfmDhxIlq0aIFKlSpJtRlElBd3d2DFClUSAeB/ADIB9OnTB2+//bakoelq/PjxqFWrFuIfPcI8f3/NtkAuB5YvZ60RUQkiEyZQ3bJkyRLMmzcPDx8+RIMGDfD9999rTpjDhw/HnTt3XneEBPDjjz9i2bJluH37NsqUKYMOHTrgm2++gZubm07rS0lJgaOjI5KTk+Hg4GCITSKinMTG4tiWLWg3eTLMzc1x9epV1K5dW+qodLZ9+3b07dsXtra2uHXyJCo+eaKqMWJiRGQUxrp+m0RyZGxMjoik065dOxw7dgzjxo3DkiVLpA6nQIQQaN68Oc6dO4cpU6aYxA0riUoTY12/JW9WI6LSIywsDMeOHYNCocD//d//SR1OgclkMnzxxRcAgMWLF+P+/fsSR0REhsDkiIiMQgih6dQ8evRouBfTpqguXbrgrbfeQlpaGr788kupwyEiA2ByRERGceTIEZw4cQKWlpaYPn261OEUWtbao5UrV/K+aUQlEJMjIjK4rLVGY8aMKfYjS9u2bYu2bdsiPT0dCxYskDocItIzJkdEZHBHjx7FH3/8ASsrK0ybNk3qcPRCXfu1YsUKJCYmShwNEekTkyMiMrh58+YBAAIDA3O8i31x5OfnhyZNmuDFixd5PtuRiIofJkdEZFCXL1/GgQMHYGZmhilTpkgdjt7IZDJN7dGPP/6Ip0+fShwREekLkyMiMqj58+cDAPr164fq1atLHI1+9e3bF7Vr18bjx4+xYsUKqcMhIj1hckREBnPv3j1s2LABADQPiy5J5HI5/ve//wEAFixYgFevXkkcERHpA5MjIjKYH374ARkZGWjbti2aN28udTgGMXToULi6uuLBgwfYsmWL1OEQkR4wOSIig0hOTtY0NZXEWiM1hUKBcePGAVAlg0RU/DE5IiKDWLNmDZ4+fYq6deuiW7duUodjUGPGjIFCocBff/2F06dPSx0OERURkyMi0julUonFixcDACZMmAAzs5J9qqlYsSIGDRoEgLVHRCVByT5jEZEkQkNDER0dDQcHBwwdOlTqcIxi4sSJAIAtW7bwgbRExRyTIyLSu59++gkAMHz4cNjZ2UkcjXE0adIEbdq0QUZGBpYuXSp1OERUBEyOiEivbt26hb179wIAxo8fL3E0xvXxxx8DAJYvX460tDSJoyGiwmJyRER6tXTpUggh0KVLF9SuXVvqcIyqd+/ecHd3R2JiIrZt2yZ1OERUSEyOiEhvUlNTERwcDAD46KOPJI7G+MzNzREYGAhAVXtERMUTkyMi0pstW7bg8ePHqFq1aokfvp+bUaNGwczMDMeOHcO1a9ekDoeICoHJERHpzcqVKwEAgYGBkMvlEkcjDXd3d3Tv3h0A+Lw1omKKyRER6cXff/+N48ePw8zMDCNGjJA6HEmNGTMGALB27Vq8fPlS4miIqKCYHBGRXqj7Gvn7+8PNzU3iaKTVtWtXVKlSBf/88w+2bt0qdThEVEBMjoioyNLT07FmzRoAqj43pZ1cLte8D+yYTVT8MDkioiLbs2cPEhIS4OLiAn9/f6nDMQkjR46EmZkZTpw4gejoaKnDIaICYHJEREWm7og9fPhwWFhYSByNaXBzc0OXLl0AqPoeEVHxweSIiIrk3r17OHDgAABVbQm9Nnz4cACq5CgzM1PaYIhIZ0yOiKhIVq9eDaVSiXbt2qFWrVpSh2NSevXqhTJlyiA2NhZhYWFSh0NEOmJyRESFJoTAunXrALDWKCdWVlYYNGgQAGg6rBOR6WNyRESFFh4ejps3b8LW1hZ9+/aVOhyTpG5a27ZtG5KTk6UNhoh0wuSIiArtl19+AQD069cPtra2Ekdjmpo1a4Z69eohNTUVmzdvljocItIBkyMiKpS0tDSEhIQAAIYOHSpxNKZLJpNpao/YtEZUPDA5IqJC2bt3Lx4/foxKlSqhffv2Uodj0oYMGQIzMzP88ccfvOcRUTHA5IiICkXdpDZkyJBS+5BZXbm6uqJr164AoOnATkSmi8kRERVYUlIS9u7dC4BNaroaMmQIAGDjxo0QQkgcDRHlhckRERVYSEgI0tPT0aRJEzRo0EDqcIqFXr16wcbGBjdv3sSZM2ekDoeI8sDkiIgKTN2kxloj3dna2qJPnz4AgPXr10sbDBHlickRERXIjRs3cPr0aZiZmeH999+XOpxiRX1DyJCQEGRkZEgcDRHlhskRERWIevh+p06d4OLiInE0xYufnx/Kly+P+Ph4Pk6EyIQxOSKiAtm0aRMAYMCAARJHUvxYWFjgvffeAwBs2LBB4miIKDdMjohIZ1evXsWVK1dgYWGBd955R+pwiqXBgwcDALZu3YrU1FSJoyGinDA5IiKdqZvUunbtirJly0ocTfHUqlUrVKlSBU+fPtXcDoGITAuTIyLSiRAi9ya12FggLEz1m7S98d5k7cjOUWtEponJERHp5MKFC4iOjoaVlRV69er1+oXgYMDDA+jQQfU7OFi6IE1NLu+NOjnav38/UlJSpIyQiHLA5IiIdKKuNerRowfs7e1VE2NjgdGjAaVS9b9SCYwZwxokIM/3plGjRqhTpw7S0tKwe/duaeMkomyYHBFRvoQQmv5GAwcOfP1CdPTri79aZiZw44YRozNRebw3MplMM2pt8+bNEgRHRHlhckRE+frzzz9x9+5d2NnZwd/f//ULtWoBZm+cRuRyoGZN4wZoivJ5b9TJ0YEDB9i0RmRimBwRUb7UTWq9e/eGtbX16xfc3YEVK1QXfUD1e/ly1fTSLp/3pmHDhqhduzab1ohMEJMjIspTZmYmfvvtNwBvNKmpBQYCd+6oRmTduaP6n1TyeG9kMhn69+8PgE1rRKZGJoQQUgdhbCkpKXB0dERycjIcHBykDofIpJ04cQJvv/02HB0dkZCQAIVCIXVIJcalS5fQuHFjWFpaIiEhgecjonwY6/rNmiMiytPWrVsBAL169WJipGdsWiMyTUyOiChXQghs27YNANCvXz+Joyl5OGqNyDQxOSKiXJ05cwb37t2Dra0t/Pz8pA6nROKoNSLTw+SIiHKlblLr3r279ig10ptGjRppmtb27NkjdThEBCZHRJQLIYQmOWKTmuFkbVpTjwokImkxOSKiHF26dAk3b96ElZWV9o0fSe/UydHBgwfx7NkziaMhIiZHRJQjda1Rly5dYGdnJ3E0JVujRo1QrVo1vHz5EgcOHJA6HKJSj8kREeWITWrGI5PJ0LdvXwDA9u3bJY6GiJgcEVE2165dQ2RkJMzNzdGzZ0+pwykV3nnnHQDA3r178erVK4mjISrdmBwRUTbqext17NgRZcqUkTaYUsLX1xfOzs5ITk5GWFiY1OEQlWpMjogoGzapGZ+ZmRl69+4NgE1rRFJjckREWm7fvo3z58/DzMwMffr0kTqcUkXdtLZz504olUqJoyEqvZgcEZEWdZPa22+/DScnJ4mjKV06dOgABwcHxMXF4fTp01KHQ1RqMTkiIi07duwAAM3oKTIehUKB7t27A3idpBKR8ZlEcrRkyRJUq1YNVlZW8Pb2xokTJ/Isn5aWhhkzZsDDwwOWlpaoUaMGVq1aZaRoiUquR48e4dSpUwCAXr16SRxN6ZR1SL8QQuJoiEonc6kDCAkJwaRJk7BkyRK0bt0ay5cvR7du3RAZGYkqVarkOE///v0RHx+P4OBg1KxZEwkJCcjIyDBy5EQlz549e6BUKuHl5QUPDw+pwymVunbtCktLS9y6dQuXL19Go0aNpA6JqNSRvOZowYIFCAwMxKhRo1C3bl0sXLgQlStXxtKlS3Msf+DAARw7dgz79u1Dp06dULVqVbRo0QKtWrUycuREJc/OnTsBQDNqiozPzs4Ofn5+ADhqjUgqkiZHr169wrlz5zQnAjU/Pz9N1f6bdu3ahWbNmmHevHlwc3ND7dq1MXXqVKSmpua6nrS0NKSkpGj9EJG2Fy9e4NChQwCYHElNPWqNyRGRNCRtVktMTERmZiacnZ21pjs7OyMuLi7HeW7duoWTJ0/CysoK27dvR2JiIj788EP8888/ufY7mjt3LoKCgvQeP1FJcvjwYaSmpqJKlSrw8vKSOpxSrWfPnjAzM8PFixdx+/ZtVKtWTeqQiEoVyZvVANVzhbISQmSbpqZUKiGTybB+/Xq0aNEC/v7+WLBgAdasWZNr7dH06dORnJys+bl3757et4GouFM3qfXq1SvX44+Mo0KFCnj77bcBvB49SETGI2lyVKFCBcjl8my1RAkJCdlqk9RcXV3h5uYGR0dHzbS6detCCIHY2Ngc57G0tISDg4PWDxG9lpmZid27dwNgk5qpUO8H9X4hIuORNDlSKBTw9vZGaGio1vTQ0NBcO1i3bt0aDx48wLNnzzTT/v77b5iZmcHd3d2g8RKVVH/++ScePXoER0dHtG3bVupwCNA88Pf48eN4/PixxNEQlS6SN6tNmTIFK1euxKpVqxAVFYXJkycjJiYGY8eOBaBqEhs2bJim/KBBg1C+fHmMGDECkZGROH78OP773/9i5MiRsLa2lmoziIo1dZOav78/LCwsJI6GAKBGjRqoX78+MjMzsX//fqnDISpVJE+OBgwYgIULF2LOnDnw8vLC8ePHsW/fPs09Vh4+fIiYmBhNeTs7O4SGhuLJkydo1qwZBg8ejJ49e2LRokVSbQJRscch/KZJXXvEpjUi45KJUngL1pSUFDg6OiI5OZn9j6jUu379Ojw9PWFhYYHExEQeEyYkPDwcrVq1gqOjIxISEqBQKKQOiUhSxrp+S15zRETSUtcatW/fnomRiWnRogUqVqyI5OTkfB+rRET6w+SIqJRjk5rpksvl6NGjBwDVDXCJyDiYHBGVYvHx8QgPDwfwun8LmZas/Y5KYS8IIkkwOSIqxfbs2QMhBJo2bYrKlStLHQ7loHPnzrC0tMTt27dx9epVqcMhKhWYHBGVYmxSM322trbo1KkTADatERkLkyOiUurFixeaG7AyOTJtvXr1AsDkiMhYmBwRlVJHjhzBy5cvUaVKFTRq1EjqcCgP6k7Zf/31V64P5SYi/WFyRFRK7d27F4DqwssHzZq2SpUqoVmzZhBCaPYbERkOkyOiUkgIgT179gAAunfvLnE0pAs2rREZD5MjolLo0qVLiI2NhbW1Ndq3by91OKQDdXIUGhqK1NRUiaMhKtmYHBGVQupao06dOvGBzcVEo0aNUKVKFaSmpuL333+XOhyiEo3JEVEplLW/UZ5iY4GwMNVvMqx83muZTKa5ISSb1ogMi8kRUSnz6NEjnD59GkA+/Y2CgwEPD6BDB9Xv4GAjRVgK6fheq5vW1DfvJCLDYHJEVMrs378fQgh4eXnBzc0t50KxscDo0YBSqfpfqQTGjGENkiEU4L1u27YtbG1t8fDhQ0RERBg5UKLSg8kRUSmj7m+UZ5NadPTri7VaZiZw44YBIyulCvBeW1paonPnzgBe70ci0j8mR0SlSHp6Og4ePAggn+SoVi3A7I3Tg1wO1KxpwOhKqQK+1+qmUN7viMhwmBwRlSInT55ESkoKnJyc0Lx589wLursDK1aoLtKA6vfy5arppF8FfK/9/f0BAGfOnEF8fLyxoiQqVZgcEZUi6qYYf39/mL1ZW/GmwEDgzh3VCKo7d1T/k2EU4L2uVKkSmjZtCiEE9u/fb7QQiUoTJkdEpYjOQ/jV3N2Bdu1YY2QMBXiv2bRGZFhMjohKiejoaFy/fh3m5ubw8/OTOhwqAnVydOjQIaSnp0scDVHJw+SIqJRQ1zK0bdsWDg4OEkdDRdG8eXM4OTkhJSUFJ0+elDocohKHyRFRKcEHzZYcZmZmmo7ZHNJPpH9MjohKgZSUFBw/fhxAAfobkUljvyMiw2FyRFQKhIaGIj09HbVr10atWrWkDof0wM/PD+bm5rh+/Tpu8OacRHrF5IioFNDprthUrDg6OqJNmzYAWHtEpG9MjohKOKVSiX379gFgf6OShk1rRIZRpOQoISEBcXFx+oqFiAzg7NmzSEhIgIODA9566y2pwyE9UidHx44dw9OnTyWOhqjkKFRydOnSJdSvXx+urq5wc3ODm5sbPv30Uzx//lzf8RFREamb1Lp06QKFQiFxNKRPderUQY0aNfDq1SscPnxY6nCISoxCJUeBgYFwdnbGyZMnERERgS+++AL79+9Hs2bN8PjxY33HSERFwP5GJZdMJmPTGpEByIQQoqAz2dra4ty5c/D09NRME0Lgvffeg5WVFX799Ve9BqlvKSkpcHR0RHJyMm+GRyXa/fv34e7uDplMhvj4eDg5OUkdEunZoUOH0KVLF7i6uiI2Njb/Z+YRFWPGun4X6ijKqYZIJpPhq6++ws6dO/USGBEVnbojdsuWLZkYlVBt27aFra0tHj58iIiICKnDISoRdE6Ounfvjv/7v//Db7/9hrFjx2Ly5MmIj4/XKpOcnIyyZcvqPUgiKhw2qZV8lpaW6Ny5MwA2rRHpi7muBRs2bIjz589j9erVmqSoevXq6N+/P7y8vJCZmYnVq1fj+++/N1iwRKS7ly9fajrpMjkq2bp3744dO3Zg7969mDlzptThEBV7hepzFB8fj4iICFy4cEHzc+PGDcjlctSpUweXLl0yRKx6wz5HVBocOHAA3bp1g7u7O2JiYiCTyaQOiQzkwYMHcHNzAwDExcXB2dlZ4oiIDMNY12+da46ycnZ2RteuXdG1a1fNtNTUVFy8eBEXL17UW3BEVHhZHzTLxKhkq1SpEpo2bYrz589j//79GD58uNQhERVrehvWYG1tDR8fH4wZM0ZfiySiQhJCsL9RKcMh/UT6wzGfRCVQZGQk7t69CysrK3To0EHqcMgI1MnRoUOH8OrVK4mjISremBwRlUDq2oP27dvDxsZG4mjIGJo3bw4nJyekpKTg5MmTUodDVKwxOSIqgdikVvqYmZnB398fAJvWiIqKyRFRCfP48WOcOnUKwOumFiod2O+ISD+YHBGVMAcPHkRmZibq168PDw8PqcMhI/Lz84O5uTmuX7+OGzduSB0OUbHF5IiohFHXGrDWqPRxdHREmzZtALD2iKgomBwRlSCZmZnYv38/ACZHpZW6n5m63xkRFRyTI6IS5K+//kJSUhLKlCmDVq1aSR0OSUCdFB87dgxPnz6VOBqi4onJEVEJom5K6dKlC8zNC3UDfCrmateujZo1ayI9PR2hoaFSh0NULDE5IipBsj4yhEonmUzGUWtERcTkiKiEiI2NxcWLFyGTydCtWzepwyEJqfsd7d27F0qlUuJoiIofJkdEJcS+ffsAAD4+PqhQoYLE0ZCU3n77bdjZ2SE+Ph7nz5+XOhyiYofJEVEJUaAh/LGxQFiY6jcVLzrsO4VCAT8/PwActUZUGEyOiEqAly9f4vDhwwB0SI6CgwEPD6BDB9Xv4GAjREh6UYB9x35HRIUnE0IIqYMwtpSUFDg6OiI5ORkODg5Sh0NUZAcPHkTXrl3h5uaGe/fuQSaT5VwwNlZ1Uc3aD0UuB+7cAdzdjRIrFVIB911cXBxcXV0BAA8ePND8TVScGev6zZojohJAXTvg7++fe2IEANHR2hdXAMjMBPioCdNXwH3n4uKCZs2aAYDmxqBEpBsmR0TFnBBC9yH8tWoBZm8c9nI5ULOmgaIjvSnEvuPdsokKh8kRUTF37do13L59GwqFAh07dsy7sLs7sGKF6qIKqH4vX84mteKgEPtOnSyHhoYiLS3NGFESlQhMjoiKOXWTWvv27WFnZ5f/DIGBqn4qYWGq34GBBo2P9KiA+65p06ZwcXHBs2fPcPz4caOESFQSMDkiKuYKNIRfzd0daNeONUbFUQH2nZmZGUetERUCkyOiYiw5ORknT54EwEeGUM7Un4s9e/agFA5OJioUJkdExdihQ4eQkZEBT09PVK9eXepwyAR16tQJCoUCN2/exN9//y11OETFApMjomKsUE1qVKrY29ujbdu2ADhqjUhXTI6IiimlUql5nhqTI8pL1gfRElH+mBwRFVNnzpzBo0eP4ODggLfeekvqcMiEqZPnEydOIDk5WeJoiEwfkyOiYkpdC+Dn5wcLCwuJoyFTVqNGDXh6eiIjIwOHDh2SOhwik8fkiKiYYn8jKoiso9aIKG8mkRwtWbIE1apVg5WVFby9vXHixAmd5vvjjz9gbm4OLy8vwwZIZGIePnyI8+fPQyaToVu3blKHQ8WAut/R/v37kZmZKXE0RKZN8uQoJCQEkyZNwowZMxAREYE2bdqgW7duiImJyXO+5ORkDBs2LP/HJRCVQOqO2M2bN4ezs7PE0VBx0Lp1azg6OuLRo0c4c+aM1OEQmTTJk6MFCxYgMDAQo0aNQt26dbFw4UJUrlwZS5cuzXO+MWPGYNCgQfD19TVSpESmg01qVFAWFhbo0qULAI5aI8qPpMnRq1evcO7cOfj5+WlN9/Pzw6lTp3Kdb/Xq1bh58yZmzZql03rS0tKQkpKi9UNUXKWlpSE0NBQAkyMqGPY7ItKNpMlRYmIiMjMzszULODs7Iy4uLsd5oqOjMW3aNKxfvx7m5uY6rWfu3LlwdHTU/FSuXLnIsRNJ5fjx43j27BlcXFzQpEkTqcOhYqRbt26QyWS4cOEC7t+/L3U4RCZL8mY1AJDJZFr/CyGyTQOAzMxMDBo0CEFBQahdu7bOy58+fTqSk5M1P/fu3StyzERSUX/r9/f3h5mZSRzCVEw4OTmhZcuWANi0RpQXSc+sFSpUgFwuz1ZLlJCQkGMn06dPn+Ls2bP46KOPYG5uDnNzc8yZMwcXL16Eubk5jhw5kuN6LC0t4eDgoPVDVBwJIbBr1y4AQK9evSSOhooj3i2bKH+SJkcKhQLe3t6a/hNqoaGhaNWqVbbyDg4OuHz5Mi5cuKD5GTt2LOrUqYMLFy5ovhERlVRXr17FnTt3YGVlhU6dOkkdDhVD6uTo8OHDePnypcTREJkm3TrtGNCUKVMwdOhQNGvWDL6+vlixYgViYmIwduxYAKomsfv372PdunUwMzNDgwYNtOavWLEirKyssk0nKol2794NAOjYsSNsbW0ljoaKo0aNGsHd3R2xsbE4evQounbtKnVIRCZH8g4LAwYMwMKFCzFnzhx4eXnh+PHj2LdvHzw8PACobnaX3z2PiEoLdZNaz549JY6EiiuZTMZRa0T5kAkhhNRBGFtKSgocHR2RnJzM/kdUbMTHx8PV1RVCCMTGxsLNzU3qkKiY2r17N3r16oWqVavi1q1bOQ6AITJFxrp+S15zRES62bt3L4QQ8Pb2ZmJERdKxY0dYWVnhzp07iIyMlDocIpPD5IiomFD3N+IoNSoqGxsbtG/fHgBHrRHlhMkRUTHw8uVLHDp0CAD7G5F+qEetqfuxEdFrTI6IioEjR47gxYsXcHd3h5eXl9ThUAmgTrLDw8Px6NEjiaMhMi1MjoiKAXWTWs+ePfPuPBsbC4SFqX5T6ZbPZ6Fy5cpo2rQplEolR60RvYHJEZGJE0JoJUe5Cg4GPDyADh1Uv4ODjRQhmRwdPwvq/mtsWiPSxqH8HMpPJu78+fPw9vaGra0tEhMTYWVllb1QbKzqIqhUvp4mlwN37gDu7kaLlUxAAT4LFy5cQJMmTWBjY4PExERYW1sbN1aiAuJQfiIC8PpbvZ+fX86JEQBER2tfDAEgMxO4ccPA0ZHJKcBnoXHjxqhSpQpevHiBw4cPGylAItPH5IjIxOk0hL9WLcDsjcNZLgdq1jRgZGSSCvBZkMlkbFojygGTIyITFhsbi/Pnz0Mmk8Hf3z/3gu7uwIoVqosgoPq9fDmb1EqjAn4WevfuDUCVhCvfrHEiKqUkf/AsEeVOPYrI19cXFStWzLtwYCDQpYuq+aRmTSZGpVkBPgtvv/02HBwcEB8fjz///BO+vr5GDJTINLHmiMiE6TRKLSt3d6BdOyZGpPNnQaFQaGold+7caYTAiEwfkyMiE/X8+XP8/vvvAPjIEDIsddMa+x0RqTA5IjJRoaGhSEtLQ/Xq1VG3bl2pw6ESrGvXrjA3N0dUVBSio6OlDodIckyOiEzU9u3bAai+1ed5V2yiIipTpgzatWsHgE1rRACTIyKTlJ6erulv9M4770gcDZUGbFojeo3JEZEJOn78OB4/fgwnJye0atVK6nCoFFB3+v/jjz+QmJgocTRE0mJyRGSC1E1qvXr1glx9vxoiA/Lw8ICXlxcfREsEJkdEJkepVGLHjh0A2KRGxqVuWmO/IyrtmBwRmZizZ8/i/v37sLOzQ8eOHaUOh0oR9S0jDh06hNTUVImjIZIOkyMiE6NuUvP398/9QbNEBtCkSRNUrlwZL168QGhoqNThEEmGyRGRiVEnR2xSI2OTyWTo27cvAGDr1q0SR0MkHSZHRCYkKioK169f13qkA5ExqZOjXbt2IT09XeJoiKTB5IjIhKhrjTp27AgHBweJo6HSqHXr1qhYsSKePHmCo0ePSh0OkSSYHBGZEDapkdTkcjn69OkDgE1rVHoxOSIyEffu3cPZs2chk8n4oFmSlLppbceOHcjMzJQ4GiLjY3JEZCLU9zZq3bo1nJ2dpQ2GSrX27dujTJkyiI+PR3h4uNThEBkdkyMiE6FOjtRNGhqxsUBYmOo3kb7l8PlSKBSax4mwaY1KIyZHRCYgKSkJx44dA/BGf6PgYMDDA+jQQfU7OFiiCKlEyuPz1a9fPwDAtm3bIISQKkIiSTA5IjIBu3btQmZmJho1aoTq1aurJsbGAqNHA0ql6n+lEhgzhjVIpB/5fL78/PxgY2ODmJgYnD9/XsJAiYyPyRGRCdi8eTMA4N133309MTr69YVLLTMTuHHDiJFRiZXP58va2lpzry02rVFpw+SISGKPHz/G4cOHAQDvvffe6xdq1QLM3jhE5XKgZk0jRkcllg6fL3XT2tatW9m0RqUKkyMiie3cuRPp6elo0KABPD09X7/g7g6sWKG6YAGq38uXq6YTFZUOny9/f38oFAr8/fffiIqKkihQIuNjckQkMXWTmlatkVpgIHDnjmo00Z07qv+J9CWfz5eDgwM6d+4MgE1rVLowOSKS0OPHjzVPP88xOQJU3+TbtWONERlGPp8vdT+43377zYhBEUmLyRGRhLI2qdWtW1fqcIiy6d27NywsLHDlyhVERkZKHQ6RUTA5IpJQnk1qRCagbNmy6NKlCwAgJCRE4miIjIPJEZFEnjx5kn+TGpEJGDBgAABV0xpHrVFpwOSISCLqJrX69euzSY1MWq9evWBpaYlr167h8uXLUodDZHBMjogkwiY1Ki4cHBzQrVs3AGxao9KByRGRBJ48eYJDhw4BYHJExYO6aS0kJIRNa1TiMTkiksCOHTuQnp6OevXqoV69elKHQ5SvHj16wNraGjdv3uSz1qjEY3JEJIENGzYAAN5//32JIyHSjZ2dHXr06AGATWtU8jE5IjKyuLg4/P777wCAQYMGSRwNke769+8PgKPWqORjckRkZL/99huUSiV8fHxQvXp1qcMh0pm/vz9sbW1x9+5d/Pnnn1KHQ2QwTI6IjEzdpMZaIypubGxs0KtXLwDApk2bJI6GyHCYHBEZ0Y0bN/Dnn3/CzMwM/d96S/XAz9hYqcMiyl9sLBAWhvf/fRDtpk2bkJGRIXFQRIbB5IjIiDZu3AgA6FS3LpybNQM6dAA8PIDgYIkjI8pDcLDqc9qhA7oGBqK8nR3i4+M1feeIShomR0RGIoTA+vXrAQCDIiMBpVL1glIJjBnDGiQyTbGxwOjRms+rhRAY+Pw5AOCXX36RMjIig2FyRGQkFy5cwPXr12GlUOCdN0f6ZGYCN25IExhRXqKjXyfy/xry7+d3+/btePbsmRRRERkUkyMiI1F3xO7p5wcHszcOPbkcqFlTgqiI8lGrFvDG57WlmRlqVq2KFy9eYMeOHdLERWRATI6IjECpVGr6Gw0KDARWrFAlRIDq9/LlgLu7hBES5cLdPdvnVbZiBYYMHw6ATWtUMslEKbyTV0pKChwdHZGcnAwHBwepw6FSICwsDB06dICjoyPi4+NhaWmp6stx44aqxoiJEZm6Nz6vN27cQK1atWBmZobY2Fi4urpKHSGVAsa6frPmiMgI1q5dC0B1h2FLS0vVRHd3oF07JkZUPLzxea1ZsyZ8fX2hVCp5zyMqcZgcERnYs2fPsGXLFgDA8H+bIohKgiFDhgBg0xqVPEyOiAxsy5YteP78OWrVqgVfX1+pwyHSm/79+8Pc3BwRERG4evWq1OEQ6Q2TIyIDW7NmDQBVrZFMJpM2GCI9qlChArp16waAtUdUsjA5IjKgW7du4dixY5DJZBg6dKjU4RDpXUBAAABg3bp1fJwIlRhMjogMaN26dQCATp06oXLlyhJHQ6R/PXv2hJOTEx4+fIj9+/dLHQ6RXjA5IjIQpVKpGaXGjthUUikUCk2taDCfEUglBO9zxPsckb7FxgLR0TiamIj2/fvDwcEBDx8+hI2NjdSRERnE1atX0aBBA8jlcsTGxsIlI0P12JFatXirCtIr3ueIqDjK8vTy1f37AwAGDBjAxIhKtPr166Nly5bIzMzELxMmaI4BeHiojgmiYobJEZG+ZHl6+WMAv/07eUT37lJGRWQUgYGBAIDgLVsg1A+qVSqBMWNUxwZRMWISydGSJUtQrVo1WFlZwdvbGydOnMi17LZt29C5c2c4OTnBwcEBvr6+OHjwoBGjJcpFlqeX/wLgJYCGAHzYdEulwIABA2BjZYXrAE5lfSEzU/XYEaJiRPLkKCQkBJMmTcKMGTMQERGBNm3aoFu3boiJicmx/PHjx9G5c2fs27cP586dQ/v27dGzZ09EREQYOXKiN/z79HIBYPm/k8bIZJDVqiVlVERG4eDggP49ewIAVmV9QS5XPY+NqBiRvEN2y5Yt0bRpUyxdulQzrW7duujTpw/mzp2r0zLq16+PAQMGYObMmTqVZ4dsMpjgYJwcPRptlErYAHiwaBEcJ0yQOioiozh58iTatGkDWwAPADjI5cDy5cC/TW5ERVUqOmS/evUK586dg5+fn9Z0Pz8/nDp1Kpe5tCmVSjx9+hTlypXLtUxaWhpSUlK0fogMIjAQy/v0AQAMHDCAiRGVKq1bt0bdunXxHMC6iROBO3eYGFGxJGlylJiYiMzMTDg7O2tNd3Z2RlxcnE7L+O677/D8+XP0/3dkUE7mzp0LR0dHzQ9vxkeGkpSUhM179wIAxkyZInE0RMYlk8nw4YcfAgCWhIZCuLlJHBFR4Uje5whAtudNCSF0egbVxo0bMXv2bISEhKBixYq5lps+fTqSk5M1P/fu3StyzEQ5WbduHdLS0uDl5YXmzZtLHQ6R0Q0bNgy2traIiorC0aNHpQ6HqFAkTY4qVKgAuVyerZYoISEhW23Sm0JCQhAYGIjffvsNnTp1yrOspaUlHBwctH6I9E0IgeXLVV2xx4wZw4fMUqnk4OCguWP2kiVLJI6GqHAkTY4UCgW8vb0RGhqqNT00NBStWrXKdb6NGzdi+PDh2LBhA7rzHjJkIsLCwnD9+nXY2tpi0KBBUodDJBl109r27dtx//59iaMhKjjJm9WmTJmClStXYtWqVYiKisLkyZMRExODsWPHAlA1iQ0bNkxTfuPGjRg2bBi+++47+Pj4IC4uDnFxcUhOTpZqE4gAAD/88AMAVbMCayepNGvYsCHatGmDzMxMrFixQupwiApM8uRowIABWLhwIebMmQMvLy8cP34c+/btg4eHBwDg4cOHWvc8Wr58OTIyMjB+/Hi4urpqfj7++GOpNoFKi9hYICwsx7v93rx5E7t37wYATJw40diREZmc8ePHAwBWrFiB9PT0nAvlcUwRSUny+xxJgfc5ogILDtY8GgRmZsCKFVpDlCdPnoyFCxeiS5cuOHDggISBEpmGV69eoUqVKoiPj0dISEj2EcX5HFNEOSkV9zkiKhayPDMNQLbnRT19+hSrVqnuCcwaTCIVhUKB0aNHAwAWLFgAre/h+RxTRFJjckSUnyzPTNPI8ryoNWvWICUlBbVr10aXLl0kCJDINI0fPx4KhQJ//vmn9o198zmmiKTG5IgoP/8+M03Lv8+LUiqV+PHHHwGo+hqZvVmOqBRzdnbWDOv/7rvvXr+QxzFFZAp4JifKj7u7qj+EXK76X/28KHd37N69G9HR0XB0dERAQIC0cRKZoCn/3il+x44diI6OVk3M45giMgVMjoh0ERioek5UWJjmeVFCCM3DkceNGwc7OztJQyQyRfXq1YO/vz+EEFi4cOHrF3I4pohMBUercbQaFdKxY8fQrl07WFpa4u7du/ne1Z2otDpy5Ag6duwIa2tr3Lt3D+XLl5c6JCqmOFqNyMR9/fXXAICRI0cyMSLKQ/v27eHl5YXU1FT89NNPUodDlC8mR0SFuBHdhQsXcODAAZiZmWHq1KkGDI6o+JPJZPjkk08AAAsXLkRKSkrBFsCbRZKRMTmi0i04GPDwADp0UP0ODtZpNnWt0YABA1C9enVDRkhUIrz33nuoU6cOnjx5gsWLF+s+YyGPUaKiYJ8j9jkqvWJjVSfbrPdbkctVnUPzGDXz999/o27dulAqlbh48SIaNWpk+FiJSoBff/0VQ4cORfny5XHnzp38BzEU8hilkot9jogMrZA3ogsKCoJSqUTPnj2ZGBEVwMCBA1GjRg0kJSVh6dKl+c/Am0WSRJgcUelViBvRXblyBRs3bgQAzJkzx5DREZU45ubmmDFjBgBg/vz5ePHiRd4z8GaRJBEmR1R6FeJGdLNnz4YQAv369YOXl5dx4iQqQYYMGYKqVasiISEh/9oj3iySJMI+R+xzRLGxqmr6mjXzPOlGRESgadOmkMlkuHz5MurXr2/EIIlKjlWrViEwMBDlypXDzZs3UaZMmbxn0PEYpZKPfY6IikrX4b/u7kC7dvmedGfOnAkAeP/995kYERXBsGHDUK9ePfzzzz+YN29e/jPoeIxyyD/pC5MjKpn0PPz35MmT2LNnD+RyOWbNmqWnIIlKJ3Nzc82jdxYuXIj79+8XfaEc8k96xOSISp7YWGD06NejXJRKYMyYQn+bVCqVmodnBgYGonbt2vqKlKjU6tmzJ1q3bo3U1FQEBQUVbWF6PuaJmBxRyaPn4b8bNmzAmTNnYGdnxxFqRHoik8nwzTffAACCg4MRFRVV+IVxyD/pGZMjKnn0OPz3xYsXmD59OgDg//7v//gMNSI9at26NXr37g2lUolJkyah0OODOOSf9IzJEZU8ehz+O3/+fMTGxsLDwwOTJ0/Wc6BENH/+fCgUChw6dAg7duwo3EI45J/0jEP5OZS/5Cri8N8bN26gQYMGSEtLw8aNGzFw4EADBElEn376Kb788kt4eHggMjISNjY2hVsQh/yXeBzKT5QbPQ/Rz4kQAuPHj0daWho6deqEAQMGFC5WIsrX9OnTUblyZdy9e1fzUOdC4ZB/0hMmR1S8GGm4bkhICA4dOgRLS0ssWbIEMpnMIOshIsDW1hYLFiwAAHzzzTe4evWq4VbGIf+kAzarlYJmtZSUFISFheH48eOIjIzEzZs3kZycjNTUVNjY2MDR0RHVqlVD7dq14evrizZt2sDdFKukjfSE7n/++Qf169dHXFwcgoKCNDd/JCLDEUKgV69e2LNnD5o3b45Tp07B3Nxcvysx0jmkqIQQiIqKwunTp3H69GlER0cjJiYGT58+xatXr2BjY4MKFSqgevXq8PLywltvvYW3334bCoVC6tANzmjXb1EKJScnCwAiOTlZ6lAMJiMjQ+zYsUP07NlTmJubCwAF+qlbt66YNWuWuHr1qtSb8tqRI0IA2X/CwvS6moEDBwoAwtPTU7x8+VKvyyai3MXGxgoHBwcBQHz77bf6X4GRziGFoVQqxfHjx8WECRNE5cqVC3zOtre3F8OGDROnT58WSqVS6s0xGGNdv1lzVMJqjpRKJTZt2oQ5c+bg+vXrmum1atVCx44d4eXlhdq1a6N8+fKwtrZGamoqkpKScOvWLVy+fBknT55EREQElFm+Wb311luYMGEC3nnnHVhYWEixWSpG+Na3adMmvP/++5DL5Th16hRatGihl+USkW6Cg4MxatQoWFlZISIiAp6envpbuAnWHCUnJ2PdunVYtmwZIiMjNdNtbGzQokUL+Pj4oEGDBqhSpQrKlSsHCwsLvHjxAgkJCYiKisL58+dx8OBBxMfHa+Zt3bo15s6dizZt2kixSQbFmiMDKqk1RxcuXBAtW7bUfJMoV66cmDp1qoiMjCzQcp48eSJ++eWXbLVObm5uYtGiRSI1NdUwG3Dvnuqb3b17uZdZuVIIuVz1bU8uV/2vJ/fv3xdly5YVAMTMmTP1tlwi0p1SqRR+fn4CgPDy8tL/+aYg5xBdzkmFlJSUJD799FNhb2+vOcfa2NiIgIAAsWvXLvHixQudl5WZmSn++OMPMWzYMGFpaalZXt++fcWDBw/0HruUjHX9ZnJUAmRkZIigoCAhl8s11auff/65Xrbv/v37YubMmaJixYqaA87d3V0sXbpUpKWl6SH6f61cKYSZmeqEZWaW/wkrLEyvJ6z09HTRvn17AUA0bdpUvHr1Sm/LJqKCuX//vqhQoYIAICZMmKD/FehyDinIOakAHj9+nC0pqlu3rvjxxx/FkydPirz8+/fvi7Fjx2quB2XKlBG//PKLHiI3DUyODKgkJUdxcXGaizoA0a9fPxEbG6v39bx8+VIsXbpUuLm5adZVs2ZNsWvXrqK3b9+79/okpP6Ryw3ybS0306ZNEwCEra2tiIqKMtp6iShn+/bt05xrtm/fbtyVG+CclJ6eLpYsWaJJ+gCIxo0bi23btonMzEw9Bq9y8eJF4e3trVnX6NGjDVfrb0RMjgyopCRHkZGRomrVqpqL+rp16wy+ztTUVLFo0SLh7OysOej8/PyK1nFb4k6SO3fu1GzLpk2bjLJOIsrf1KlTBQDh4OBQ4O4BRaLnc1JoaKho0KCBVk3R9u3bDZIUZZWeni5mz54tZDKZACB8fHzEo0ePDLpOQ2NyZEAlITk6evSoKFOmjKYGx9i1HSkpKWLatGlCoVAIAEIul4uJEyeKx48fZy+cX7u9hDVHly9f1oyO+fjjjw2+PiLSXVpammjTpo0AIKpXry4SExONs+KCnpNyOcfdunVL9OrVS6sf6E8//STS09ONsBGvHThwQNOfsk6dOuL27dtGXb8+MTkyoOKeHB06dEhYWVkJAMLX11fSbwI3btwQvXv31hz8Tk5OYtWqVa+/Eenabm/Ajta5uXfvnnB3dxcARJs2bfTbh4qI9CIhIUFUq1ZNABBvv/228Y5TXc9JOZzjXr58Kb744gvNeVr95TEpKck4secgMjJSc4sAV1fXYtt9gMmRARXn5Ojw4cOaA65nz54FGtFgSIcOHRKenp6aJMnHx0ec3bu34N++9NzROjdPnjwRDRs21NzPSMqTFhHl7cqVK5oOzP369TNezUt+56QcapgOmZmJ2tWra86F7dq1M5n7xd27d0/TvFepUiVx48YNqUMqMCZHBlRck6MTJ04Ia2trAUD06NHD5Go60tLSxLfffivs7OwEACGTycQYQCRK1JcoN0+ePBE+Pj4CgHBxcSnWVcxEpcWhQ4c0zfiDBg0SGRkZUoek1TcpFhD9s9yU0dnZWaxfv97kbsj46NEjUa9ePQFAeHh4iJiYGKlDKhAmRwakfnMvXbokdSg6i4qK0rQZ+/v7S3/n5jz6Ed2/f18MGjTodTs7IJYBIkOCUWhvevz4sWjRooUAIMqWLSvOnz8vWSxEVDC7du3S3Htt2LBh0t9y49498UomE/MBYffv+c4MEBNHjsx5WL4B75tUEA8ePBC1atXS1Jzn2FfURB05coTJkaGokyOD3J7eAB4+fKgZlebj4yN9U5qO/YiOHTsmGmYZ+u8NiPDp040c7Gu3b9/WfGMqX768iIiIkCwWIiqczZs3a+7h061bN/H06VPJYtm/f7+oV6mS5hznC4iI3G4ga6D7JhVWTEyM5tYsHTp0MLmWiNwMGTKEyZGhqJOjwYMHSx1KvlJTU0Xz5s01o9ISEhKkDaiAozjS09PFD0FBwsHWVnMCGTlypIiLizNq2CdOnNDcyLJSpUri4sWLRl0/EenP7t27NV0MGjduLKKjo426/kuXLmnu4g1AlC9bVqycOlVk3r2b8wwmcC+3nERERAjbf8/NI0eONLkmwJyo+4oyOTIAdXJUv359qUPJk1KpFCNHjtTUdBjlBJBftW8h7/8RFxcnhg8frjmZ2NjYiP/9738GH2mXkZEhPv/8c2FmZqY5kd6T+IREREV3+vRpzRceBwcHsWnTJoNf3G/cuCFGjBihOZ9YWFiI//znP+Kff/7Je8bCnDeN1AS3Z88ezfYsWrTIoOsqqpcvX2qaVZkcGYA6OTIzM5O+iSoPy5cv18QZGhpq+BXqUu1bxG9Ap06d0vT5ASDs7OzEtGnTDHJX7zNnzohmzZpp1jV06FBJq+CJSL9iY2NF69atNcd47969DfLlJyoqSgQEBGia8wCId999V/fRXgU9bxq5CW7BggUCgDA3Nxd//PGHQddVFOfOndO8/0yODECdHAEQp0+fljqcHJ0+fVpYWFgIAOLrr78u+gL1eSPGIt6TSKlUij179oimTZtq9oO5ubno37+/OHbsWJHvGnv16lUxaNAgzV1hHR0dxdq1a4u0TCIyTa9evRIzZ87UnC+trKzElClTitx0/+rVK7F582bRoUMHzXlK3c8pPDy84AvU9byppxtQFoRSqRT9+/fXdDswdrcHXf38889Mjgwpa3K0ePFiqcPJ5vHjx5qbdfXt27foVcW6fAspaLWvHu5JpFQqxY4dOzR3wFX/VK5cWUyZMkUcPnxYPH/+XKdlPXr0SKxdu1Z06NBBkxSp+5U9fPiw0DESUfFw+fJlrXOJhYWF6N+/v9i5c6d49uyZTsv4559/xM6dO8Xw4cNFuXLlNMsyMzMTffr0EX/99VfRgtTlvFmQc7Eea5hSUlI096pr166d0e/irYtx48YZLTmSCSEESpmUlBQ4OjoCAEaOHIng4GCJI9I2dOhQ/Prrr6hZsybOnTsHBweHwi8sNhbw8ACUytfT5HLgzh3A3b3g5QzkwoUL+Omnn/Dbb7/h6dOnmukWFhZo0qQJateujZo1a6JcuXKwtrZGamoqHj9+jOjoaFy6dAmXLl3SWt4777yDzz77DE2aNDF47ERkGoQQOHjwIIKCgnD69GnNdEtLS3h5eaFx48aoUqUKypcvD5lMhrS0NNy/fx93797F5cuXERkZqbU8Z2dnfPDBB/jggw9QpUoV42yEhOfsqKgotGjRAs+ePUNQUBBmzpxZqOUYStOmTREREQEASE5OLtq1MT8GTb1MVNaao8aNG0sdjpbNmzdrvqnoVHWrzw7UEjzC402pqali+/btYujQoZphprr+NGjQQMyZM0fcuXPH6HETkWmJiIgQEyZM0Dx6RNefmjVrigkTJoijR49KV3uiy7m4MLX9OjS//fLLLwJQPfLk1KlTRd8WPXn27JlWny/WHBlA1pojuVyOJ0+ewM7OTuKogIcPH6Jhw4ZISkrCjBkz8MUXX+Q9Q3AwMHq06puDmRmwYgUQGKhdpqDfLmJjgRs3gJo1jVJjlBchBG7duoWIiAhER0fj1q1bSElJwYsXL2BjYwMHBwdUr14dnp6e8PX1hYuLi6TxEpHpEULgxo0bOH/+PC5fvoz4+HgkJiYCABQKBVxcXODh4YFatWrBx8cHTk5OEkf8r/zOxQU5t+tyrchi8ODB2LBhA6pVq4YLFy4YtoZGR8eOHUO7du3g6uqKhw8fsubIENQ1R+qHjh4+fFjqkIRSqRT+/v4CgGjSpIlIu3nTZDpQExGRCdLl3F6IDt6Pd+0SHv9eH4cNG2bYbdDR3LlzNSMSYYSaIzPDpV2mz9fXFwBw8uRJ4600NhYIC1P9zuLnn3/Gvn37YGlpiV/69IGiVi2gQwfVN4Oc+kRFR2t/YwCAzEzVN403BQaqvk2Ehal+5/GNgYiIigldzu0FuVYEBwMeHijTqxd+vX8fZjIZ1q1bh02bNmUvm8u1zFDCw8MBAC1atDDK+kp1cuTj4wPAiMnRvx+8N5OemzdvYsqUKQCAr/73P9QPCnr9YVYqgTFjsn8Aa9VSVY9mJZerqmBz4u4OtGsneVMZERHpUX7ndl2vFbGxr5veALwlBGb8+9K4ceMQm/UalMu1zFCEEJrkqHnz5gZdl1qpTo7UNUfh4eHIyMgo2sLyy6Lf+OCpk57Mu3cxbNgwPH/+HO3atcOktm11y/Ld3VXtxnK56n+5HFi+nMkPERG9puu1Iocaps+EQLM6dfDkyROMHDkSSqUy12tZnte+ItYw3bhxA48ePYKFhQUaN25c6OUURKlOjurWrQtHR0c8f/4cFy9ezLmQLjtWlyw6l6rNeV98gVOnTsHBwQFr1qyBWZ06utcIsbmMiIjyo8u1IocaJgu5HL8sWwYrKyuEhoZi8eLFhWqm06mGKY9r7ZEjRwCoKjSsrKzy2Vg9MWiPJhOl7pCdnJwsunXrJgCI7777LntBfT5OI4dyEWZmmru6rlmzRnu97EBNRETGlMu158cffxT49+7jUWFhhb7m5TloKI9r7bvvvisAiKCgIK3rtyGV7uQoMlJ89913AoDo0qWLdiFdd2wh7yOUamYmGvx7H58+ffpkvwu2Hu5ATUREVCA5XHsyMzNF586dBQDRrFkz8WrZMv3dhymfa21mZqYoX768ACD++OMPkRwZydFqBle/Pro8ewZAdQ+F1NTU16/pWnVYkI7RWao2P/vgA1y5fx8VK1bEihUrIJPJtMuyAzURERlbDtceMzMzrF69GmXKlMHZs2fx5cOHhWqmy/HamM+19uLFi0hKSoKdnR2aX74M1K9f5E3URelOjoRAvaAguLu64uXLlzh+/Pjr13TdsQXtGO3ujmMyGb5bsQIAsHLlStO56RgREVEO3NzcsGTJEgDAF198gb8ePMj7C7yu18Z8rrWHDx8GALTz8YHFhx+q6paMoHQnRwBkSiW6Nm0KADhw4MDrFwqS9BSgY3RKSgoCAgIghEBgYCB69uypv40hIiIykPfffx8DBw5EZmYmhg4dihcvXuQ9gy7XxnyutXv37gUAdKpTJ3sNkwGV6seHJANwkMuxZfFivDd2LOrUqYNr165pF9bz4zRGjhyJ1atXo1q1arh48SLs7e2LvEwiIiJj+Oeff9CwYUM8ePAA48ePx08//aSfBedwrX306BFcXFygVCpx+9QpVH3rLaQolXCE4R88W7prjszMgOXL0XngQCgUCly/fh1XrlzRLqPHvj87d+7E6tWrIZPJsHbtWiZGRERUrJQrVw6rV68GACxevBgHDx7Uz4JzuNbu3r0bSqUSTZo0QVVfX1UN05tNcAZSupOjK1eAwEA4Ojqia9euAICQkBCDrCouLg6jRo0CAEydOhVt2rQxyHqIiIgMyc/PD+PHjwcAjBgxAv/8849B1rNt2zYAwDvvvKOaEBioum4bQelOjtzcNH8OGDAAgCo50ndLoxACI0aMQGJiIho1aoTPP/9cr8snIiIypnnz5qF27dp4+PAhPvzwQ70vPzk5WdMZW5McAVrXbUMq3clRFj179oSVlRWio6Nx4cIFvS77p59+woEDB2BlZYUNGzbA0tJSr8snIiIyJhsbG/z666+Qy+UICQnBxo0b9br8TZs2IS0tDZ6enqhvpOH7WTE5+pe9vT26d+8OAFi1apXelnvlyhX897//BQDMnz9fkp1MRESkb82bN8enn34KAPjwww+1H05bRCtXrgQAjBo1Kvt9AI2gdI9We6O3++HDh9G5c2fY29vj/v37Re4w/ezZM/j4+ODq1avw9/fHnj17JNnJREREhpCeno5WrVrh7Nmz6NSpEw4ePAizInaavnjxIry8vGBhYYHY2FhUrFhR81pu1299Y81RFh07dkSdOnXw9OlT/PLLL0ValhACo0aNwtWrV+Hq6opVq1YxMSIiohLFwsICv/76K6ytrXH48GEsXLiwyMtctmwZAKB3795aiZExmURytGTJElSrVg1WVlbw9vbGiRMn8ix/7NgxeHt7w8rKCtWrV9e8kUUlk8k0PfB/+OEHZGRkFHpZP/zwA0JCQmBubo7NmzfD2dlZLzESERGZkjp16uDbb78FAPz3v/9FaGhooZcVFxenuVWA+nosCYM+uU0HmzZtEhYWFuLnn38WkZGR4uOPPxa2trbi7t27OZa/deuWsLGxER9//LGIjIwUP//8s7CwsBBbtmzReZ15PdU3OTlZ85C7n3/+uVDbdOjQISGXywUAsWjRokItg4iIqLhQKpVi2LBhAoAoU6aMuH79eqGWM3nyZAFAtGrVKvsD2UXe1299kjw5atGihRg7dqzWNE9PTzFt2rQcy//vf/8Tnp6eWtPGjBkjfHx8dF5nfm/u999/LwCISpUqiefPn+u8XCGEOHfunLCzsxMAxJAhQ3LcuURERCVNamqq8PX1FQBE7dq1RUJCQoHmj46OFhYWFgKAOHDgQI5ljJUcSdqs9urVK5w7dw5+fn5a0/38/HDq1Kkc5wkPD89WvkuXLjh79izS09P1Ete4cePg4eGBBw8eYNasWTrPd+3aNXTr1g3Pnj1Dhw4dsHLlSvYzIiKiUsHKygrbtm1D5cqV8ffff6NTp05ISkrSaV6lUolx48YhPT0dXbt2RZcuXQwcbd7MpVx5YmIiMjMzs/XHcXZ2RlxcXI7zxMXF5Vg+IyMDiYmJcHV1zTZPWloa0tLSNP8nJycDUPV6z83XX3+N999/H/Pnz0erVq3QsWPHPLfl4sWLeOedd5CUlIQGDRpg7dq12dZLRERUktnY2GDHjh3o1q0bLl26hPbt22Pz5s05Xpuz+uGHH3D48GFYWVnhyy+/zPX6rJ4uDDzQXtLkSO3N2hUhRJ41LjmVz2m62ty5cxEUFJRteuXKlXWKr2/fvjqVU7ty5YrOyyYiIiqpLl++DE9PT53Lv3z5Et7e3vmWS0pKgqOjY1FCy5OkyVGFChUgl8uz1RIlJCTkOrrLxcUlx/Lm5uYoX758jvNMnz4dU6ZM0fz/5MkTeHh4ICYmxqBvrqlJSUlB5cqVce/ePYPeH8LUcLu53aUBt5vbXRokJyejSpUqKFeunEHXI2lypFAo4O3tjdDQUK1np4SGhqJ37945zuPr64vdu3drTTt06BCaNWsGCwuLHOextLTM8ZEdjo6OpepDpebg4MDtLkW43aULt7t0Ka3bXdQbTea7fIMuXQdTpkzBypUrsWrVKkRFRWHy5MmIiYnB2LFjAahqfYYNG6YpP3bsWNy9exdTpkxBVFQUVq1aheDgYEydOlWqTSAiIqISRPI+RwMGDEBSUhLmzJmDhw8fokGDBti3bx88PDwAAA8fPkRMTIymfLVq1bBv3z5MnjwZixcvRqVKlbBo0SL069dPqk0gIiKiEkTy5AhQPbDuww8/zPG1NWvWZJvWtm1bnD9/vtDrs7S0xKxZs3JsaivJuN3c7tKA283tLg243Ybd7lL54FkiIiKi3Eje54iIiIjIlDA5IiIiIsqCyRERERFRFkyOiIiIiLIoscnRl19+iVatWsHGxgZlypTRaR4hBGbPno1KlSrB2toa7dq1w9WrV7XKpKWlYcKECahQoQJsbW3Rq1cvxMbGGmALCufx48cYOnQoHB0d4ejoiKFDh+LJkyd5ziOTyXL8+fbbbzVl2rVrl+31gQMHGnhrdFeY7R4+fHi2bfLx8dEqU9L2d3p6Oj755BM0bNgQtra2qFSpEoYNG4YHDx5olTO1/b1kyRJUq1YNVlZW8Pb2xokTJ/Isf+zYMXh7e8PKygrVq1fHsmXLspXZunUr6tWrB0tLS9SrVw/bt283VPiFVpDt3rZtGzp37gwnJyc4ODjA19cXBw8e1CqzZs2aHI/1ly9fGnpTCqQg23306NEct+natWta5Ura/s7p/CWTyVC/fn1NGVPf38ePH0fPnj1RqVIlyGQy7NixI995jHZsixJq5syZYsGCBWLKlCnC0dFRp3m+/vprYW9vL7Zu3SouX74sBgwYIFxdXUVKSoqmzNixY4Wbm5sIDQ0V58+fF+3btxeNGzcWGRkZBtqSgunatato0KCBOHXqlDh16pRo0KCB6NGjR57zPHz4UOtn1apVQiaTiZs3b2rKtG3bVnzwwQda5Z48eWLozdFZYbY7ICBAdO3aVWubkpKStMqUtP395MkT0alTJxESEiKuXbsmwsPDRcuWLYW3t7dWOVPa35s2bRIWFhbi559/FpGRkeLjjz8Wtra24u7duzmWv3XrlrCxsREff/yxiIyMFD///LOwsLAQW7Zs0ZQ5deqUkMvl4quvvhJRUVHiq6++Eubm5uL06dPG2qx8FXS7P/74Y/HNN9+Iv/76S/z9999i+vTpwsLCQpw/f15TZvXq1cLBwSHbMW9KCrrdYWFhAoC4fv261jZlPUZL4v5+8uSJ1vbeu3dPlCtXTsyaNUtTxtT39759+8SMGTPE1q1bBQCxffv2PMsb89guscmR2urVq3VKjpRKpXBxcRFff/21ZtrLly+Fo6OjWLZsmRBC9WG0sLAQmzZt0pS5f/++MDMzEwcOHNB77AUVGRkpAGh9CMLDwwUAce3aNZ2X07t3b9GhQwetaW3bthUff/yxvkLVq8Jud0BAgOjdu3eur5eW/f3XX38JAFonYVPa3y1atBBjx47Vmubp6SmmTZuWY/n//e9/wtPTU2vamDFjhI+Pj+b//v37i65du2qV6dKlixg4cKCeoi66gm53TurVqyeCgoI0/+t6PpRSQbdbnRw9fvw412WWhv29fft2IZPJxJ07dzTTisP+VtMlOTLmsV1im9UK6vbt24iLi4Ofn59mmqWlJdq2bYtTp04BAM6dO4f09HStMpUqVUKDBg00ZaQUHh4OR0dHtGzZUjPNx8cHjo6OOscXHx+PvXv3IjAwMNtr69evR4UKFVC/fn1MnToVT58+1VvsRVGU7T569CgqVqyI2rVr44MPPkBCQoLmtdKwvwHVgxxlMlm25mdT2N+vXr3CuXPntPYBAPj5+eW6jeHh4dnKd+nSBWfPnkV6enqeZUxhvwKF2+43KZVKPH36NNsDOp89ewYPDw+4u7ujR48eiIiI0FvcRVWU7W7SpAlcXV3RsWNHhIWFab1WGvZ3cHAwOnXqpHm6hJop7++CMuaxbRJ3yDYFcXFxAABnZ2et6c7Ozrh7966mjEKhQNmyZbOVUc8vpbi4OFSsWDHb9IoVK+oc39q1a2Fvb4++fftqTR88eDCqVasGFxcXXLlyBdOnT8fFixcRGhqql9iLorDb3a1bN7z33nvw8PDA7du38dlnn6FDhw44d+4cLC0tS8X+fvnyJaZNm4ZBgwZpPbzSVPZ3YmIiMjMzczwuc9vGuLi4HMtnZGQgMTERrq6uuZYxhf0KFG673/Tdd9/h+fPn6N+/v2aap6cn1qxZg4YNGyIlJQU//PADWrdujYsXL6JWrVp63YbCKMx2u7q6YsWKFfD29kZaWhp++eUXdOzYEUePHsXbb78NIPfPREnZ3w8fPsT+/fuxYcMGremmvr8LypjHdrFKjmbPno2goKA8y5w5cwbNmjUr9DpkMpnW/0KIbNPepEuZotB1u4Hs8QMFi2/VqlUYPHgwrKystKZ/8MEHmr8bNGiAWrVqoVmzZjh//jyaNm2q07ILytDbPWDAAM3fDRo0QLNmzeDh4YG9e/dmSw4LstyiMtb+Tk9Px8CBA6FUKrFkyRKt16TY33kp6HGZU/k3pxfmWDe2wsa4ceNGzJ49Gzt37tRKoH18fLQGHbRu3RpNmzbFjz/+iEWLFukv8CIqyHbXqVMHderU0fzv6+uLe/fuYf78+ZrkqKDLlEphY1yzZg3KlCmDPn36aE0vLvu7IIx1bBer5Oijjz7Kd8RM1apVC7VsFxcXAKrM1NXVVTM9ISFBk4W6uLjg1atXePz4sVZtQkJCAlq1alWo9epC1+2+dOkS4uPjs7326NGjbJl0Tk6cOIHr168jJCQk37JNmzaFhYUFoqOjDXaxNNZ2q7m6usLDwwPR0dEASvb+Tk9PR//+/XH79m0cOXJEq9YoJ8bY3zmpUKEC5HJ5tm99WY/LN7m4uORY3tzcHOXLl8+zTEE+L4ZUmO1WCwkJQWBgIDZv3oxOnTrlWdbMzAzNmzfXfOalVpTtzsrHxwe//vqr5v+SvL+FEFi1ahWGDh0KhUKRZ1lT298FZdRju0A9lIqhgnbI/uabbzTT0tLScuyQHRISoinz4MEDk+ug++eff2qmnT59WucOugEBAdlGLeXm8uXLAoA4duxYoePVl6Jut1piYqKwtLQUa9euFUKU3P396tUr0adPH1G/fn2RkJCg07qk3N8tWrQQ48aN05pWt27dPDtk161bV2va2LFjs3Xa7Natm1aZrl27mlwH3YJstxBCbNiwQVhZWeXbsVVNqVSKZs2aiREjRhQlVL0qzHa/qV+/fqJ9+/aa/0vq/hbidYf0y5cv57sOU9zfatCxQ7axju0SmxzdvXtXREREiKCgIGFnZyciIiJERESEePr0qaZMnTp1xLZt2zT/f/3118LR0VFs27ZNXL58Wbz//vs5DuV3d3cXhw8fFufPnxcdOnQwuaHdjRo1EuHh4SI8PFw0bNgw29DuN7dbCCGSk5OFjY2NWLp0abZl3rhxQwQFBYkzZ86I27dvi7179wpPT0/RpEmTYrvdT58+Ff/5z3/EqVOnxO3bt0VYWJjw9fUVbm5uJXp/p6eni169egl3d3dx4cIFreG9aWlpQgjT29/qIc7BwcEiMjJSTJo0Sdja2mpG5UybNk0MHTpUU1493Hfy5MkiMjJSBAcHZxvu+8cffwi5XC6+/vprERUVJb7++muTHdqt63Zv2LBBmJubi8WLF+d6C4bZs2eLAwcOiJs3b4qIiAgxYsQIYW5urpVgS62g2/3999+L7du3i7///ltcuXJFTJs2TQAQW7du1ZQpiftbbciQIaJly5Y5LtPU9/fTp08112YAYsGCBSIiIkIzclbKY7vEJkcBAQECQLafsLAwTRkAYvXq1Zr/lUqlmDVrlnBxcRGWlpbi7bffzpaNp6amio8++kiUK1dOWFtbix49eoiYmBgjbVX+kpKSxODBg4W9vb2wt7cXgwcPzjbE9c3tFkKI5cuXC2tr6xzvZRMTEyPefvttUa5cOaFQKESNGjXExIkTs90TSEoF3e4XL14IPz8/4eTkJCwsLESVKlVEQEBAtn1Z0vb37du3czwush4bpri/Fy9eLDw8PIRCoRBNmzbVqsEKCAgQbdu21Sp/9OhR0aRJE6FQKETVqlVzTPo3b94s6tSpIywsLISnp6fWxdRUFGS727Ztm+N+DQgI0JSZNGmSqFKlilAoFMLJyUn4+fmJU6dOGXGLdFOQ7f7mm29EjRo1hJWVlShbtqx46623xN69e7Mts6TtbyFUtdvW1tZixYoVOS7P1Pe3utYrt8+slMe2TIh/ezMRERERUcl9fAgRERFRYTA5IiIiIsqCyRERERFRFkyOiIiIiLJgckRERESUBZMjIiIioiyYHBERERFlweSIiIiIKAsmR0RERERZMDkiIiIiyoLJERGVKHPmzEHDhg1ha2sLZ2dnjBs3Dunp6VKHRUTFiLnUARAR6YsQApmZmVi+fDnc3NwQGRmJYcOGoVGjRhg3bpzU4RFRMcEHzxJRiTZo0CA4OTnhhx9+kDoUIiom2KxGRCXG3bt38dFHH6FBgwYoW7Ys7Ozs8Ntvv8Hd3V3q0IioGGFyREQlQmJiIlq0aIHExEQsWLAAJ0+eRHh4OORyOby8vKQOj4iKEfY5IqISYd++fcjIyMDGjRshk8kAAIsXL8arV6+YHBFRgTA5IqISoVy5ckhJScGuXbtQr1497N69G3PnzoWbmxucnJykDo+IihF2yCaiEkEIgXHjxmHDhg2wtrbGkCFD8PLlS9y9exd79uyROjwiKkaYHBERERFlwQ7ZRERERFkwOSIiIiLKgskRERERURZMjoiIiIiyYHJERERElAWTIyIiIqIsmBwRERERZcHkiIiIiCgLJkdEREREWTA5IiIiIsqCyRERERFRFkyOiIiIiLL4f11Sj6gCMyTtAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByDklEQVR4nO3dd1gUV9sG8HvpHQsKCIq9d4iKDWxYYtfYazSKJcYYEzUa22diiS3Ja43YEms0togFKxoxsWCJYosCoiKKCqj0Pd8fZFdWlr67s7vcv+viQmbPzDwzs7vzeMocmRBCgIiIiIgAACZSB0BERESkT5gcEREREWXC5IiIiIgoEyZHRERERJkwOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmByRQXj8+DFmz56NK1euZHlt2LBhsLOzK/C2U1JS4O/vD1dXV5iamqJ+/foFD1QDVq5ciY0bN2ZZHh4eDplMpvY1YyKTyTB79mypw9CI2bNnQyaTaX3dn376CZUrV4aFhQVkMhlevXqFYcOGoXz58irlvvvuO+zdu7dA8eTkxYsX6NevH0qXLg2ZTIbu3bvnexvly5fHsGHDNB6bvpkxYwY6d+4MNzc3yGSyHI/5/v376NmzJ4oVKwY7Ozu0a9cOly9f1l2wRRiTIzIIjx8/xpw5c9QmR4W1atUqrFmzBtOnT8fZs2fxyy+/aHwf+ZFdcuTq6oqQkBB8+OGHug+KCmTkyJEICQnR6j6uXLmCCRMmoFWrVjhx4gRCQkJgb2+Pb775Bnv27FEpq63k6P/+7/+wZ88eLFu2DCEhIVi0aJHG92Esli1bhtjYWHTt2hUWFhbZlnv27BlatGiBO3fuYP369di5cyeSkpLg6+uL27dv6zDioslM6gCIpPbPP//A2toa48ePlzqUHFlaWqJJkyZSh0H54O7uDnd3d63u48aNGwCATz75BI0aNVIur1Spklb3m9k///yDSpUqYeDAgTrbp6a8ffsWNjY2OttfQkICTEwy6iVy+o/Y999/j2fPnuHcuXPw8PAAADRv3hyVKlXCzJkzsWPHDp3EW1Sx5qgIevbsGUaNGoWyZcvC0tISpUqVQrNmzXDs2DFlGV9fX9SuXRshISFo2rQprK2tUb58eWzYsAEAcPDgQTRs2BA2NjaoU6cODh8+nGU/Z8+eRZs2bWBvbw8bGxs0bdoUBw8ezFLun3/+Qbdu3VC8eHFYWVmhfv362LRpk/L1U6dO4YMPPgAADB8+HDKZTG3Ty71799CpUyfY2dmhbNmy+OKLL5CcnJzjuZDJZFi3bh0SExOV2924cWOOTVjv71vR/HHjxg30798fjo6OcHZ2xscff4y4uDiVdeVyOX766SfUr18f1tbWKFasGJo0aYL9+/cDyGhauHHjBk6fPq2MR9E0kl1MeTnPGzduhEwmw8mTJzFmzBg4OTmhZMmS6NmzJx4/fpzjOcpJ+fLl0blzZ+zZswd169aFlZUVKlasiB9//DFL2cjISAwaNAilS5eGpaUlatSogSVLlkAul2e7/fDwcJiZmWH+/PlZXgsODoZMJsNvv/0GIH/XISkpCdOmTUOFChVgYWEBNzc3jBs3Dq9evVJ7fH/88QcaNGgAa2tr1KhRA3/88QeAjPNao0YN2NraolGjRrh48aLK+uqaxnbs2AE/Pz+4uroqtzd16lS8efMm+xOdDV9fXwwaNAgA0LhxY5Vmmveb1WQyGd68eYNNmzYp31u+vr45bv/FixcYO3Ys3NzcYGFhgYoVK2L69OnKz5XiPXns2DGEhYUpt3vq1Klst5mamoqvvvoKLi4usLGxQfPmzfH333+rLRsdHY3Ro0fD3d0dFhYWqFChAubMmYO0tDSVclFRUejduzfs7e1RrFgxDBw4EBcuXMjyeVE0wV+/fh1+fn6wt7dHmzZtAGQ0r8+bNw/Vq1dXfi8OHz4cz549yxLXjh074O3tDVtbW9jZ2aF9+/YIDQ3N8VwqKBKj3OzZswetW7dWJkYA4ODggJ49e+LAgQNZzgFpmKAip3379qJUqVJi7dq14tSpU2Lv3r1i5syZYvv27coyPj4+omTJkqJatWoiICBAHDlyRHTu3FkAEHPmzBF16tQR27ZtE4GBgaJJkybC0tJSPHr0SLn+qVOnhLm5ufD09BQ7duwQe/fuFX5+fkImk6ns59atW8Le3l5UqlRJbN68WRw8eFD0799fABALFy4UQggRFxcnNmzYIACIGTNmiJCQEBESEiIePnwohBBi6NChwsLCQtSoUUMsXrxYHDt2TMycOVPIZDIxZ86cHM9FSEiI6NSpk7C2tlZuNyYmRjx48EAAEBs2bMiyDgAxa9Ys5d+zZs0SAES1atXEzJkzRVBQkFi6dKmwtLQUw4cPV1l38ODBQiaTiZEjR4p9+/aJQ4cOiW+//Vb88MMPQgghLl++LCpWrCgaNGigjOfy5ctCCKE2pryeZ8X5q1ixovj000/FkSNHxLp160Tx4sVFq1atVGJUlFV37O/z8PAQbm5uoly5cmL9+vUiMDBQDBw4UAAQ33//vbJcTEyMcHNzE6VKlRKrV68Whw8fFuPHjxcAxJgxY3I8vz169BDlypUTaWlpKuU++ugjUaZMGZGampqv6yCXy0X79u2FmZmZ+Oabb8TRo0fF4sWLha2trWjQoIFISkpSOT53d3dRu3Zt5fu9cePGwtzcXMycOVM0a9ZM/P7772LPnj2iatWqwtnZWbx9+1a5viKmzP7v//5PLFu2TBw8eFCcOnVKrF69WlSoUCHLdVC37vtu3LghZsyYobxeISEh4t69e0KIjM+Fh4eHsmxISIiwtrYWnTp1Ur63bty4ke22ExMTRd26dYWtra1YvHixOHr0qPjmm2+EmZmZ6NSpkxBCiKSkJBESEiIaNGggKlasqNxuXFxcttsdOnSokMlk4ssvvxRHjx4VS5cuFW5ubsLBwUEMHTpUWe7JkyeibNmywsPDQ6xZs0YcO3ZM/N///Z+wtLQUw4YNU5Z7/fq1qFy5sihRooRYsWKFOHLkiPj8889FhQoVsryPhw4dKszNzUX58uXF/PnzxfHjx8WRI0dEenq66NChg7C1tRVz5swRQUFBYt26dcLNzU3UrFlT5Zp+++23QiaTiY8//lj88ccf4vfffxfe3t7C1tY2x/Opjq2trcoxK7x9+1Z5jt73v//9TwAQt2/fzte+KH+YHBVBdnZ2YuLEiTmW8fHxEQDExYsXlctiY2OFqampsLa2VkmErly5IgCIH3/8UbmsSZMmonTp0iIhIUG5LC0tTdSuXVu4u7sLuVwuhBCiX79+wtLSUkRGRqrsv2PHjsLGxka8evVKCCHEhQsXsr1hDx06VAAQO3fuVFneqVMnUa1atVzORsb6tra2KssKkhwtWrRIpdzYsWOFlZWV8liDg4MFADF9+vQc46lVq5bw8fHJslxdTHk9z4qEZ+zYsSrbXLRokQAgnjx5oly2adMmYWpqKjZt2pRjnEJkJA8ymUxcuXJFZXm7du2Eg4ODePPmjRBCiKlTpwoA4q+//lIpN2bMGCGTyVS+6N8/vydPnhQAxJ49e5TLHj16JMzMzFSS37xeh8OHD6stt2PHDgFArF27VuX4rK2tRVRUlHKZ4v3u6uqqPD4hhNi7d68AIPbv358lpuzI5XKRmpoqTp8+LQCIq1ev5nldBcW1vXDhgsry95MjIbK/GauzevVqtZ+rhQsXCgDi6NGjymU+Pj6iVq1auW4zLCxMABCff/65yvItW7YIACqxjR49WtjZ2YmIiAiVsosXLxYAlInIihUrBABx6NAhlXKjR49WmxwBEOvXr1cpu23bNgFA7N69W2W54ntn5cqVQgghIiMjhZmZmfj0009VyiUkJAgXFxfRp0+fXM9BZtldj0ePHgkAYv78+Vle27p1qwAgzp07l699Uf6wWa0IatSoETZu3Ih58+bh/PnzSE1NVVvO1dUVnp6eyr9LlCiB0qVLo379+ihTpoxyeY0aNQAAERERAIA3b97gr7/+Qu/evVVGkZmammLw4MGIiopSdig8ceIE2rRpg7Jly6rse9iwYXj79m2eO7PKZDJ06dJFZVndunWVMelC165ds+w/KSkJMTExAIBDhw4BAMaNG6eR/eXnPOcUIwCV8zRkyBCkpaVhyJAheYqjVq1aqFevnsqyAQMGID4+Xjmy5sSJE6hZs6ZKnxgg4zoLIXDixIlst+/r64t69ephxYoVymWrV6+GTCbDqFGjspTP7Too9vX+KKGPPvoItra2OH78uMry+vXrw83NTfm34v3u6+ur0lfl/c9Bdu7fv48BAwbAxcUFpqamMDc3h4+PDwAgLCwsx3V16cSJE7C1tUXv3r1VlivO2/vnKS9OnjwJAFn6JvXp0wdmZqpdYP/44w+0atUKZcqUQVpamvKnY8eOAIDTp08rf9vb26NDhw4q6/fv3z/bOHr16pVlX8WKFUOXLl1U9lW/fn24uLgomwmPHDmi/GxkLmdlZQUfH58cmxMLIqfRigUdBUl5ww7ZRdCOHTswb948rFu3Dt988w3s7OzQo0cPLFq0CC4uLspyJUqUyLKuhYVFluWKERdJSUkAgJcvX0IIAVdX1yzrK5Kq2NhY5e+8lMuNjY0NrKysVJZZWloqY9KFkiVLZtk/ACQmJgLI6Otlamqqco4LIz/nOa8xFoS641Esy3yd3x9WnlOc75swYQJGjhyJ27dvo2LFivj555/Ru3dvtfvO7RhjY2NhZmaGUqVKqZSTyWRwcXHJEkt27/fcPgfqvH79Gi1atICVlRXmzZuHqlWrwsbGBg8fPkTPnj0LdR00LTY2Fi4uLlluwqVLl4aZmVmeP5vvbxPI+p4xMzPLct2ePn2KAwcOwNzcXO22nj9/rtyms7NzltfVLQMyviscHByy7OvVq1fZjh5T7Ovp06cAoOwD+b689ifKTfHixSGTydSe4xcvXgBQ//1MmsPkqAhycnLC8uXLsXz5ckRGRmL//v2YOnUqYmJi1Haszq/ixYvDxMQET548yfKaovOvk5MTgIwbWV7K6Zoi0Xq/Q3dBbggKpUqVQnp6OqKjo9UmNPmVn/OsTdHR0dkuU9zwCnudBwwYgClTpmDFihVo0qQJoqOjC1wDV7JkSaSlpeHZs2cqCZIQAtHR0dne+DThxIkTePz4MU6dOqWsLQKQpSO4PihZsiT++usvCCFUEqSYmBikpaUV6L2leD9ER0er1MalpaVl+Ww5OTmhbt26+Pbbb9VuS5FYlyxZUm2HbnXvS0B9jYtigEJ233/29vbKcgCwa9culY7SmmZtbY3KlSvj+vXrWV67fv06rK2tUbFiRa3tnzharcgrV64cxo8fr9GHi9na2qJx48b4/fffVf4nLJfL8euvv8Ld3R1Vq1YFALRp00Z5w8hs8+bNsLGxUQ5d10QNR344OzvDysoK165dU1m+b9++Am9T0RywatWqHMtZWlrm6Tjzc5616caNG7h69arKsq1bt8Le3h4NGzYEkHGdb968meU9tnnzZshkMrRq1SrHfVhZWWHUqFHYtGkTli5divr166NZs2YFilcxOunXX39VWb579268efNG+bo2KG7Mivezwpo1a7S2z8zy+t4CMs7T69evszwXafPmzcrX80sxOm7Lli0qy3fu3Jll9FXnzp2Vjwjw8vLK8qNIjnx8fJCQkKBstlbYvn17nuPq3LkzYmNjkZ6ernZf1apVAwC0b98eZmZm+Pfff9WW8/Lyyu8pyVaPHj1w4sQJPHz4ULksISEBv//+O7p27ZqlGZI0i2e3iImLi0OrVq0wYMAAVK9eHfb29rhw4QIOHz6Mnj17amw/8+fPR7t27dCqVStMnjwZFhYWWLlyJf755x9s27ZNeZOYNWuWsm/BzJkzUaJECWzZsgUHDx7EokWL4OjoCCDjmS3W1tbYsmULatSoATs7O5QpU0al75MmyWQyDBo0COvXr0elSpVQr149/P3339i6dWuBt9miRQsMHjwY8+bNw9OnT9G5c2dYWloiNDQUNjY2+PTTTwEAderUwfbt27Fjxw5UrFgRVlZWqFOnjtpt5vU858fmzZvx8ccfY/369Xnqd1SmTBl07doVs2fPhqurK3799VcEBQVh4cKFyj45n3/+OTZv3owPP/wQc+fOhYeHBw4ePIiVK1dizJgxeUrixo4di0WLFuHSpUtYt25dvo9LoV27dmjfvj2mTJmC+Ph4NGvWDNeuXcOsWbPQoEEDDB48uMDbzk3Tpk1RvHhx+Pv7Y9asWTA3N8eWLVuyJJfaUqdOHZw6dQoHDhyAq6sr7O3tlTf+9w0ZMgQrVqzA0KFDER4ejjp16uDs2bP47rvv0KlTJ7Rt2zbf+69RowYGDRqE5cuXw9zcHG3btsU///yDxYsXZ2nqmjt3LoKCgtC0aVNMmDAB1apVQ1JSEsLDwxEYGIjVq1fD3d0dQ4cOxbJlyzBo0CDMmzcPlStXxqFDh3DkyBEAeWvq6tevH7Zs2YJOnTrhs88+Q6NGjWBubo6oqCicPHkS3bp1Q48ePVC+fHnMnTsX06dPx/3799GhQwcUL14cT58+xd9//w1bW1vMmTMnx32dPn1a+XiA9PR0REREYNeuXQAyEj1FbebkyZPxyy+/KD8zlpaWWLBgAZKSkozmCfJ6TdLu4KRzSUlJwt/fX9StW1c4ODgIa2trUa1aNTFr1iyVkTfZjT7x8PAQH374YZblAMS4ceNUlp05c0a0bt1a2NraCmtra9GkSRNx4MCBLOtev35ddOnSRTg6OgoLCwtRr149taPEtm3bJqpXry7Mzc1VRjSpG20mRN5H+2S3flxcnBg5cqRwdnYWtra2okuXLiI8PDzb0WrPnj1TWV8xiujBgwfKZenp6WLZsmWidu3awsLCQjg6Ogpvb2+V8xIeHi78/PyEvb29AKAccZTdCLq8nOfsRjQpRoKdPHkyS9m8DuX/8MMPxa5du0StWrWEhYWFKF++vFi6dGmWshEREWLAgAGiZMmSwtzcXFSrVk18//33Ij09XaXc++c3M19fX1GiRAmVodUK+bkOiYmJYsqUKcLDw0OYm5sLV1dXMWbMGPHy5Uu1x/c+de93xfXJ/AgDde/Bc+fOCW9vb2FjYyNKlSolRo4cKS5fvpzlnGtjtNqVK1dEs2bNhI2NjQCgdlRkZrGxscLf31+4uroKMzMz4eHhIaZNm6byuAMh8j5aTQghkpOTxRdffCFKly4trKysRJMmTURISIjw8PDIMnLr2bNnYsKECaJChQrC3NxclChRQnh6eorp06eL169fK8tFRkaKnj17Cjs7O2Fvby969eolAgMDBQCxb98+lXOi7rMuhBCpqali8eLFol69esLKykrY2dmJ6tWri9GjR4u7d++qlN27d69o1aqVcHBwEJaWlsLDw0P07t1bHDt2LNfjV4wEVveT+XMohBD37t0T3bt3Fw4ODsLGxka0adNGXLp0Kdd9UOHJhBBCN2kYERmb8uXLo3bt2sqHImpTTEwMPDw88Omnn3J6CsrVd999hxkzZiAyMlLrTykn48NmNSLSa1FRUbh//z6+//57mJiY4LPPPpM6JNIz//vf/wAA1atXR2pqKk6cOIEff/wRgwYNYmJEBcLkiIj02rp16zB37lyUL18eW7ZsURnlRARkDM9ftmwZwsPDkZycjHLlymHKlCmYMWOG1KGRgWKzGhEREVEmkg/lDw4ORpcuXVCmTBnIZLIsw0bVOX36NDw9PZWTXK5evVr7gRIREVGRIHly9ObNG9SrV0/ZZpybBw8eoFOnTmjRogVCQ0Px9ddfY8KECdi9e7eWIyUiIqKiQK+a1WQyGfbs2YPu3btnW2bKlCnYv3+/yhxE/v7+uHr1ap7n4SIiIiLKjsF1yA4JCYGfn5/Ksvbt2yMgIACpqalq5+FJTk5WmQZCLpfjxYsXKFmyJCfvIyIiMhBCCCQkJKBMmTIam8tOHYNLjqKjo7NMKOjs7Iy0tDQ8f/5c7ZxV8+fPz/WppURERGQYHj58qNXHNBhccgRknThQ0TKYXS3QtGnTMGnSJOXfcXFxKFeuHB4+fJjlkfVEZEAePQL+/ReoVAnIaYh/XssRkV6Lj49H2bJllZMBa4vBJUcuLi5ZZluOiYmBmZmZcsbn91laWmaZ6BEAHBwcmBwRGaqAAGDUKEAuB0xMgLVrgREjCl6OiAyGtrvESD5aLb+8vb0RFBSksuzo0aPw8vJS29+IiIxQVNS7hAfI+D16dMbygpQjIspE8uTo9evXuHLlCq5cuQIgY6j+lStXEBkZCSCjSSzzzOD+/v6IiIjApEmTEBYWhvXr1yMgIACTJ0+WInwiksLdu+8SHoX0dODevYKVIyLKRPJmtYsXL6JVq1bKvxV9g4YOHYqNGzfiyZMnykQJACpUqIDAwEB8/vnnWLFiBcqUKYMff/wRvXr10nnsRCSRKlUymsgyJz6mpkDlygUrR0SUiV4950hX4uPj4ejoiLi4OPY5IjJUAQEZTWTp6RkJz5o12fc5yks5ItJ7urp/MzlickRkuKKiMprIKlcGchrWm9dyRKTXdHX/lrxZjYiowNzd85bs5LUcERH0oEM2ERERkT5hckRERESUCZMjIiIiokyYHBERERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERERJQJkyMiIiKiTJgcEREREWXC5IiIiIgoEyZHRERERJkwOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiIj0T1QUcPJkxu+itG8i0gtMjohIvwQEAB4eQOvWGb8DAorGvolIb8iEEELqIHQtPj4ejo6OiIuLg4ODg9ThEJFCVFRGUiKXv1tmagqEhwPu7sa7byLKE13dv1lzRET64+5d1eQEANLTgXv3jHvfRKRXmBwRkf6oUgUwee9rydQUqFzZuPdNRHqFyRER6Q93d2Dt2oykBMj4vWaNbpq1pNw3EekV9jlinyMi/RMVldGcVbmy7pMTKfdNRDnS1f3bTGtbJiIqKHd36RITKfdNRHqByRERGbzExEQcPHgQp0+fxq1bt5CcnAw7OzvUrl0b7du3h6+vL0wVzWVERLlgsxqb1YgMVlxcHJYuXYrly5cjPj4+23Lu7u6YMWMGPv74Y5ibm+swQiLSJF3dv5kcMTkiMkhBQUEYPnw4Hj16BADw8PBAjx49UK9ePdjb2+P58+e4cOEC9uzZgxcvXgAAGjZsiF9++QU1a9aUMnQiKiAmR1rE5IjIcAkhMH/+fEyfPh0AUKlSJSxYsAA9e/aEyftD8QEkJSVh7dq1mDNnDl68eAFra2ts2bIFPXr00HXoRFRIfAgkEdF7hBAYO3asMjHy9/fH1atX0bt3b7WJEQBYWVlhwoQJuH79Otq1a4fExET06tULq1at0mXoRGRAmBwRkUEQQmDy5MlYvXo1TExM8L///Q+rVq2Cra1tntYvU6YMAgMDMWbMGGWStW7dOi1HTUSGiMkRERmE7777DkuXLgUArFu3DuPGjcv3NszMzLBixQpMmjQJADBq1CgcOnRIo3ESkeFjckREeu+PP/7AjBkzAAA//PADhg8fXuBtyWQyLF68GB9//DGEEOjfvz9u376tqVCJyAgwOSIivfbvv/9i0KBBAIDx48djwoQJhd6mTCbDqlWr0KxZM8TFxaFbt254/fp1obdLRMaByRER6a3U1FT07dsXcXFx8Pb2xpIlSzS2bQsLC+zevRvu7u64ffs2Jk+erLFtE5FhY3JERHpr4cKFuHTpEooXL47ffvsNFhYWGt2+s7MzNm3aBABYs2YNAgMDNbp9IjJMTI6ISC9du3YNc+fOBQD8+OOPcHNz08p+WrdujYkTJwIARowYgVevXmllP0RkOJgcEZHekcvlGDlyJFJTU9G1a1cMHDhQq/v77rvvUK1aNURHR+Obb77R6r6ISP8xOSIivbNp0yZcuHAB9vb2WL16NWQymVb3Z21tjZUrVwIAVq5cicuXL2t1f0Sk35gcEZFeiYuLw9SpUwEAM2fOhKurq07227p1a/Tr1w9yuRzjxo2DXC7XyX6JSP8wOSIivTJv3jzExMSgatWqGhm2nx+LFy+GnZ0dzp8/j99++02n+yYi/cHkiIj0xsOHD/HTTz8BAJYtW6bx0Wm5cXNzw5dffgkAmDFjBlJTU3W6fyLSD0yOiEhv/N///R+Sk5Ph4+ODjh07ShLDpEmTULp0ady7d49zrxEVUUyOiEgv3L17F+vXrwcAfPvtt1rvhJ0dOzs75Yi1OXPm4O3bt5LEQUTSYXJERHphzpw5SE9PR6dOndCsWTNJYxk1ahTKly+Pp0+fIiAgQNJYiEj3mBwRkeTu37+Pbdu2AchoWpOahYUFpkyZAgBYtGgRUlJSJI6IiHSJyRERSW7JkiWQy+Vo3749GjZsKHU4AIBhw4bB1dUVUVFR+PXXX6UOh4h0iMkREUnq6dOnyr5Giucb6QMrKyt88cUXAIAFCxYgPT1d4oiISFeYHBGRpH788UckJSWhcePG8PHxkTocFaNHj0aJEiVw9+5dPveIqAhhckREkklISFBO2zFlyhTJRqhlx87OTvkgyuXLl0sbDBHpDJMjIpLMpk2b8OrVK1SrVg3dunWTOhy1/P39YWFhgb/++gt//fWX1OEQkQ4wOSIiSQgh8L///Q8A8Omnn8LERD+/jpydndGvXz8AUD69m4iMm35+GxGR0Tt+/Dhu374Ne3t7DBkyROpwcqRoWtu5cyeePHkicTREpG1MjohIEopao6FDh8Le3l7iaHLm6emJpk2bIjU1FWvWrJE6HCLSMiZHRKRz4eHhOHDgAABg3LhxEkeTN4rao9WrV/OhkERGjskREenc6tWrIZfL0bZtW1SvXl3qcPKkZ8+ecHV1xdOnT5WJHREZJyZHRKRTqamp2LBhAwBg7NixEkeTd+bm5hg2bBgAYN26ddIGQ0RaxeSIiHTq4MGDiImJgbOzMzp37ix1OPny8ccfAwCOHDmCyMhIiaMhIm3Ri+Ro5cqVqFChAqysrODp6YkzZ87kWH7Lli2oV68ebGxs4OrqiuHDhyM2NlZH0RJRYSimChkyZAjMzc0ljiZ/KleujFatWkEIoaz9IiLjI3lytGPHDkycOBHTp09HaGgoWrRogY4dO2b7v7KzZ89iyJAhGDFiBG7cuIHffvsNFy5cwMiRI3UcORHl15MnTxAYGAjgXS2MoVF81wQEBHC+NSIjJXlytHTpUowYMQIjR45EjRo1sHz5cpQtWxarVq1SW/78+fMoX748JkyYgAoVKqB58+YYPXo0Ll68qOPIiSi/Nm/ejPT0dDRt2tRgOmK/r2fPnihevDgePnyIo0ePSh0OEWmBpMlRSkoKLl26BD8/P5Xlfn5+OHfunNp1mjZtiqioKAQGBkIIgadPn2LXrl348MMPs91PcnIy4uPjVX6ISLeEEFi/di0AYESPHhJHU3BWVlYYNGgQAGDz998DUVESR0REmiZpcvT8+XOkp6fD2dlZZbmzszOio6PVrtO0aVNs2bIFffv2hYWFBVxcXFCsWLEcH+s/f/58ODo6Kn/Kli2r0eMgotyFfP017ty/D1sAH331FRAQIHVIBTbE0REAsPfkScSXK2fQx0JEWUnerAYgy0zcQohsZ+e+efMmJkyYgJkzZ+LSpUs4fPgwHjx4AH9//2y3P23aNMTFxSl/Hj58qNH4iSgXUVHYsmABAKAXAHshgNGjDbPWJSoKnt9+i2oAkgDsMeRjISK1zKTcuZOTE0xNTbPUEimG+aozf/58NGvWDF9++SUAoG7durC1tUWLFi0wb948uLq6ZlnH0tISlpaWmj8AIsqT1LAw7Pzv3wMUC9PTgXv3AHd3iaIqoLt3IRMCAwHMBPArgKGGeixEpJakNUcWFhbw9PREUFCQyvKgoCA0bdpU7Tpv377NMnu3qakpgIwaJyLSP0FPnuA5gNIA2igWmpoClStLF1RBVakCmJhg4H9/ngDw2MTEMI+FiNSSvFlt0qRJWLduHdavX4+wsDB8/vnniIyMVDaTTZs2TWXG7i5duuD333/HqlWrcP/+ffz555+YMGECGjVqhDJlykh1GESUg63/jerqK5NlVFebmgJr1hhmTYu7O7B2LSqamqIpADmA7b17G+axEJFakjarAUDfvn0RGxuLuXPn4smTJ6hduzYCAwPh4eEBIOO5KJmfeTRs2DAkJCTgf//7H7744gsUK1YMrVu3xsKFC6U6BCLKwZs3b7B3714AwMB9+wB7+4xaFkNOJkaMANq3x6AlS3Bu+XL8evcuJkkdExFpjEwUwbao+Ph4ODo6Ii4uDg4ODlKHQ2TUtm3bhgEDBqBSpUq4e/dutoMtDFFsbCxcXFyQlpaGf/75B7Vq1ZI6JCKjpqv7t+TNakRk3LZs2QIAGDBggFElRgBQsmRJdOzYEUBGEkhExoHJERFpTWxsLI4cOQIgIzkyRv369QMA/PbbbxwUQmQkmBwRkdbs3bsXaWlpqF+/vsFOF5KbLl26wNLSEnfu3MH169elDoeINIDJERFpza5duwAAH330kcSRaI+9vT06dOgA4N3xEpFhY3JERFrx8uVLHDt2DADQu3dviaPRLsXxsWmNyDgwOSIirThw4ADS0tJQu3ZtVK1aVepwtKpLly6wsLDArVu3cOPGDanDIaJCYnJERFqhaGIy9lojAHB0dET79u0BZNQeEZFhY3JERBoXHx+vHKVWFJIj4F2/KvY7IjJ8TI6ISOP++OMPpKSkoHr16qhZs6bU4ehE165dYW5ujps3b+LmzZtSh0NEhcDkiIg0bvfu3QCAXr16Gd2DH7Pj6OgIPz8/AKw9IjJ0TI6ISKPevHmDQ4cOASg6TWoKPXv2BADs379f4kiIqDCYHBGRRh09ehSJiYmoWLEi6tWrJ3U4OvXhhx9CJpPh0qVLiIqKkjocIiogJkdEpFGKWpNu3boVmSY1BWdnZ3h7ewNg7RGRIWNyREQak56ejj/++ANARgfloqhbt24AgH379kkcCREVFJMjItKY8+fP4/nz5yhevDiaNWsmdTiSUCRHJ0+eRFxcnMTREFFBMDkiIo1RNCV16tQJ5ubmEkcjjWrVqqFatWpITU1VPuuJiAwLkyMi0hhFclRUm9QU2LRGZNiYHBGRRty5cwe3bt2Cubm5ciqNokqRHAYGBiI1NVXiaIgov5gcEZFGHDhwAADg6+sLR0dHiaORVpMmTVCqVCm8evUKwcHBUodDRPnE5IiINIJNau+YmpqiS5cuANi0RmSImBwRUaHFxsbi7NmzAKBMCoo6Rb+j/fv3QwghcTRElB9Mjoio0AIDAyGXy1GvXj14eHhIHY5eaNu2LSwtLREREYGwsDCpwyGifGByRESFpuhvxFqjd2xsbNCqVSsAGckjERkOJkdEVChpaWk4evQoAKBz584SR6NfOnXqBIDJEZGhYXJERIUSEhKCuLg4lCxZEl5eXlKHo1c6duwIADhz5gzi4+MljoaI8orJEREVyqFDhwAAHTp0gKmpqcTR6JfKlSujatWqSEtLw7Fjx6QOh4jyiMkRERWKoslIUUtCqhRNa4okkoj0H5MjIiqwx48f4+rVq5DJZEX+qdjZUSSNgYGBHNJPZCCYHBFRgR0+fBgA8MEHH8DJyUniaPRTy5YtYWNjg8ePH+PatWtSh0NEecDkiIgKTNFUpGg6oqysrKzQpk0bABy1RmQomBwRUYGkpqYiKCgIAPsb5YZD+okMC5MjIioQxRB+JycnDuHPhSJ5DAkJwcuXLyWOhohyw+SIiApE0aTWvn17mJjwqyQnHh4eqFmzJtLT05W1bUSkv/iNRkQFwv5G+cOmNSLDweSIiPIt8xB+Pz8/qcMxCJmfdySXyyWOhohywuSIiPJNMYS/UaNGHMKfR82aNYOtrS1iYmJw/fp1qcMhohwwOSKifFMkRxyllncWFhbw9fUFAOVEvUSkn5gcEVG+pKen4/jx4wDAJrV8Upwvdsom0m9MjogoXy5fvowXL17A0dERH3zwgdThGBRFchQcHIzExESJoyGi7DA5IqJ8UdR6tG7dGmZmZhJHY1iqVasGd3d3JCcn48yZM1KHQ0TZYHJERPmiSI7atWsncSSGJ/PoPvY7ItJfTI6IKM/evHmDP//8E8B7yVFUFHDyZMZvUvXeuWG/IyL9x+SIiPIsODgYqampKF++PCpVqpSxMCAA8PAAWrfO+B0QIG2Q+kTNuWnTpg1kMhmuXbuGJ0+eSB0hEanB5IiI8ixzk5pMJsuoDRk1ClA81FAuB0aPZg0SkO25cUpKQsOGDQEAx44dkzBAIsoOkyMiyjNFPxllk9rdu+9u/grp6cC9ezqOTA/lcG7YtEak35gcEVGePH78GDdu3IBMJkPr1q0zFlapArw/6aypKVC5su4D1Dc5nBtFcnn06FEIISQIjohywuSIiPJE0QTk5eWFkiVLZix0dwfWrs246QMZv9esyVhe1OVwbpo2bQobGxs8ffqUU4kQ6SEmR0SUJ9kO4R8xAggPzxiRFR6e8TdlyObcWFpaKqcSYdMakf5hckREuRJCKGuO1D7fyN0d8PVljZE62ZwbPu+ISH8xOSKiXP3zzz+Ijo6GjY0NvL29pQ7HKCiSTE4lQqR/mBwRUa4UTT8+Pj6wtLSUOBrjUKNGDbi5uSEpKQlnz56VOhwiyoTJERHlKssQfio0mUymPJ/Hjx+XOBoiyozJERHlKCkpCcHBwQCYHGlamzZtADA5ItI3TI6IKEfnzp1DYmIiXF1dUatWLanDMSqK50VdunQJL1++lDgaIlJgckREOcoyZQhpTJkyZVC9enUIIXDq1CmpwyGi/zA5IqIcnThxAsC7JiDSLMV5VZxnIpIekyMiylZcXBwuXrwI4F0TEGkW+x0R6R8mR0SUrTNnzkAul6NKlSpw5wMetcLHxwcymQxhYWF4/Pix1OEQEZgcEVEOTp48CQBo1aqVxJEYrxIlSqBhw4YA3p1vIpIWkyMiypaiHwyb1LSLTWtE+oXJERGpFRsbi6tXrwKAcpJU0g5F8nn8+HEIISSOhoiYHBGRWqdPn4YQArVq1YKzs7PU4Ri15s2bw9zcHJGRkfj333+lDoeoyGNyRERqsUlNd2xtbZUT+nJIP5H09CI5WrlyJSpUqAArKyt4enrizJkzOZZPTk7G9OnT4eHhAUtLS1SqVAnr16/XUbRERQM7Y+sW+x0R6Q/Jk6MdO3Zg4sSJmD59OkJDQ9GiRQt07NgRkZGR2a7Tp08fHD9+HAEBAbh9+za2bduG6tWr6zBqIuMWHR2NmzdvQiaTwcfHR+pwigRFDd2JEycgl8sljoaoaJMJiXv/NW7cGA0bNsSqVauUy2rUqIHu3btj/vz5WcofPnwY/fr1w/3791GiRIkC7TM+Ph6Ojo6Ii4uDg4NDgWMnMlbbt29H//790aBBA1y+fFnqcIqElJQUlChRAm/evMHVq1dRt25dqUMi0ju6un9LWnOUkpKCS5cuwc/PT2W5n58fzp07p3ad/fv3w8vLC4sWLYKbmxuqVq2KyZMnIzExMdv9JCcnIz4+XuWHiLLH/ka6Z2FhgZYtWwJg0xqR1CRNjp4/f4709PQsI2GcnZ0RHR2tdp379+/j7Nmz+Oeff7Bnzx4sX74cu3btwrhx47Ldz/z58+Ho6Kj8KVu2rEaPg8jYsL+RNDIP6Sci6Uje5whAlpm+hRDZzv4tl8shk8mwZcsWNGrUCJ06dcLSpUuxcePGbGuPpk2bhri4OOXPw4cPNX4MRMYiMjIS9+7dg6mpKVq0aCF1OEWKolP26dOnkZqaKnE0REWXpMmRk5MTTE1Ns9QSxcTEZPtcFVdXV7i5ucHR0VG5rEaNGhBCICoqSu06lpaWcHBwUPkhIvUUtUZeXl78rOhYvXr1UKJECbx+/Vo54S8R6Z6kyZGFhQU8PT0RFBSksjwoKAhNmzZVu06zZs3w+PFjvH79Wrnszp07MDEx4cSYRBqgSI7Y30j3TExMlE2ZbFojko7kzWqTJk3CunXrsH79eoSFheHzzz9HZGQk/P39AWQ0iQ0ZMkRZfsCAAShZsiSGDx+OmzdvIjg4GF9++SU+/vhjWFtbS3UYREZBCMHO2BLj846IpGcmdQB9+/ZFbGws5s6diydPnqB27doIDAyEh4cHAODJkycqzzyys7NDUFAQPv30U3h5eaFkyZLo06cP5s2bJ9UhEBmN+/fv4+HDhzA3N8+29pa0S5EchYSEIDExkf/pI5KA5M85kgKfc0Sk3s8//4xRo0ahZcuWOH36tNThFElCCJQtWxaPHj3C8ePHWYNHlEmReM4REekXDuGXnkwmU3laNhHpHpMjIgLA/kb6hMkRkbSYHBERAODWrVt4+vQprKys0LhxY6nDKdIUNXd///03EhISJI6GqOhhckREAN7VUjRv3hyWlpYSR1O0eXh4oFKlSkhPT8eZM2ekDoeoyGFyREQA3iVH7G+kH9i0RiQdJkdEBLlcjlOnTgFgfyN9weSISDpMjogI165dw4sXL2Bvbw8vLy+pwyG8q8G7cuUKYmNjJY6GqGhhckREyiH8LVq0gJmZ5M+GJQDOzs6oWbMmhBB85hSRjjE5IiIO4ddTbFojkgaTI6IiLi0tDcHBwQDYGVvfMDkikgaTI6Ii7vLly4iPj0fx4sVRr149qcOhTHx8fCCTyRAWFoYnT55IHQ5RkcHkiKiIU9RK+Pj4wNTUVPXFqCjg5MmM36Rdas51iRIl0KBBAwDv+oURkfYxOSIq4hQ33Sz9jQICAA8PoHXrjN8BARJEV0TkcK7ZtEake0yOiIqwlJQUnD17FsB7yVFUFDBqFCCXZ/wtlwOjR7MGSRtyOdeK68KaIyLdYXJEVIT9/fffePv2LUqXLo2aNWu+e+Hu3Xc3a4X0dODePd0GWBTkcq6bN28OMzMz3L9/H+Hh4bqPj6gIYnJEVIRlnjJEJpO9e6FKFcDkva8HU1OgcmUdRldE5HKu7e3t0ahRIwCsPSLSFSZHREWY4mabZQi/uzuwdm3GTRrI+L1mTcZy0qw8nGv2OyLSLZkQQkgdhK7Fx8fD0dERcXFxcHBwkDocIkkkJiaiWLFiSElJwZ07d1ClSpWshaKiMpp3KldmYqRtOZzrkydPonXr1ihTpgyioqJUa/mIihBd3b85TwBRERUSEoKUlBS4ubmhcnbNZe7uTIp0JYdz7e3tDUtLSzx+/Bh37txBtWrVdBwcUdHCZjWiIirzlCGsidBvVlZWaNasGQA2rRHpApMjoiIqc2ds0n/sd0SkO0yOiIqghIQEXLhwAQAnmzUUmZ93JH9/6D8RaRSTI6Ii6OzZs0hLS0PFihXh4eEhdTiUB15eXrCzs0NsbCyuX78udThERo3JEVERlO0QftJb5ubmaNGiBQA2rRFpG5MjoiIoc2dsMhzsd0SkG0yOiIqYly9fIjQ0FABrjgyNIjk6ffo00tLSJI6GyHgVKjmKiYlBdHS0pmIhIh0IDg6GXC5H9erV4erqKnU4lA/16tVD8eLFkZCQgEuXLkkdDpHRKlBydO3aNdSqVQuurq5wc3ODm5sbZsyYgTdv3mg6PiLSMA7hN1ympqbw9fUFwKY1Im0qUHI0YsQIODs74+zZswgNDcW8efNw6NAheHl54eXLl5qOkYg0SNEZm/2NDBP7HRFpX4HmVrO1tcWlS5dQvXp15TIhBD766CNYWVnh119/1WiQmsa51aioiomJgbOzs/LfpUqVkjgiyq+bN2+iVq1asLKywqtXr2BpaSl1SEQ6o6v7d4FqjtTVEMlkMnz33XfYt2+fRgIjIs07deoUgIy+K0yMDFONGjXg7OyMpKQk/PXXX1KHQ2SU8pwcffjhh/j666+xc+dO+Pv74/PPP8fTp09VysTFxaF48eIaD5KINIPPNzJ8MpmMTWtEWmaW14J16tTB5cuXsWHDBmVSVLFiRfTp0wf169dHeno6NmzYgGXLlmktWCIqHD7fyDi0bt0a27Ztw4kTJzB79mypwyEyOgXqc/T06VOEhobiypUryp979+7B1NQU1apVw7Vr17QRq8awzxEVRVFRUShbtixMTEzw4sULODo6Sh0SFdD9+/dRqVIlmJub4+XLl7C1tZU6JCKd0NX9O881R5k5OzujQ4cO6NChg3JZYmIirl69iqtXr2osOCLSHEWTmpeXFxMjA1ehQgV4eHggIiICf/75J/z8/KQOicioaOwJ2dbW1mjSpAlGjx6tqU0SkQaxSc14sN8RkXZx+hCiIkAIweTIyDA5ItIeJkdERcD9+/cRGRkJc3NzNGvWTOpwSAMUIw4vXbqEV69eSRsMkZFhckRUBChqF7y9vWFjYyNxNKQJbm5uqFq1KuRyOYKDg6UOh8ioMDkiKgLYpGac2LRGpB1MjoiMHPsbGS8mR0TaweSIyMjdvHkTMTExsLa2RuPGjaUOhzTI19cXAHD9+nXExMRIGwyREWFyRGTkFM83at68OSwsLCSOhjSpVKlSqFu3LoB38+YRUeExOSIycmxSM25sWiPSPCZHREYsPT1dWaPA5Mg4MTki0jwmR0RG7OrVq3j58iUcHBzQsGFDqcMhLWjZsiVMTExw9+5dREVFSR0OkVFgckRkxBS1CT4+PjAzK9BUiqTnHB0d4eXlBeBd/zIiKhwmR0RGjP2NigY2rRFpFpMjIiOVmpqqfHJyluQoKgo4eTLjNxkWNdcuc3IkhJAqMiKjweSIyEhduHABb968gZOTE2rXrv3uhYAAwMMDaN0643dAgHRBUv5kc+2aNWsGc3NzREZG4v79+xIHSWT4mBwRGSlFE0urVq1gYvLfRz0qChg1CpDLM/6Wy4HRo1mDZAhyuHY2Njbw9vYGwKY1Ik1gckRkpNT2N7p7993NVSE9Hbh3T4eRUYHkcu3Y74hIc5gcERmhpKQknDt3DsB7yVGVKoDJex97U1OgcmUdRkcFksu1Y78jIs1hckRkhEJCQpCcnAw3NzdUqVLl3Qvu7sDatRk3VSDj95o1GctJv+Vy7Ro1agRra2vExMTg5s2bEgZKZPiYHBEZoWPHjgHI6G8kk8lUXxwxAggPzxjxFB6e8TcZhhyunaWlJZo3bw6ATWtEhcXkiMgIKZKjtm3bqi/g7g74+rLGyBDlcO3Y74hIM5gcERmZly9f4uLFiwBySI7IKCmSo1OnTiE9PV3iaIgMF5MjIiNz8uRJyOVy1KhRA25ublKHQzrUsGFDODg44NWrV7hy5YrU4RAZLCZHREYmKCgIANCuXTuJIyFdMzMzg4+PDwA2rREVBpMjIiPD5KhoY78josJjckRkRB48eIB///1XpQaBihZFcnTmzBmkpKRIHA2RYWJyRGREFKPUmjRpAnt7e4mjISnUrl0bTk5OePPmDS5cuCB1OEQGickRkRFRNKlxlFrRZWJiglatWgHI6JxPRPmnF8nRypUrUaFCBVhZWcHT0xNnzpzJ03p//vknzMzMUL9+fe0GSGQA5HI5jh8/DoD9jYo69jsiKhzJk6MdO3Zg4sSJmD59OkJDQ9GiRQt07NgRkZGROa4XFxeHIUOGoE2bNjqKlEi/hYaG4sWLF7C3t8cHH3wgdTgkIUVydO7cOSQmJkocDZHhkTw5Wrp0KUaMGIGRI0eiRo0aWL58OcqWLYtVq1bluN7o0aMxYMAAeHt76yhSIv2WecoQc3NziaMhKVWpUgVubm5ITk5GSEiI1OEQGRxJk6OUlBRcunQJfn5+Ksv9/PyUM4qrs2HDBvz777+YNWtWnvaTnJyM+Ph4lR8iY8P+RqQgk8nYtEZUCJImR8+fP0d6ejqcnZ1Vljs7OyM6OlrtOnfv3sXUqVOxZcsWmJmZ5Wk/8+fPh6Ojo/KnbNmyhY6dSJ8kJibi7NmzANjfiDIokiNFjSIR5Z3kzWoAsswaLoTIOpM4gPT0dAwYMABz5sxB1apV87z9adOmIS4uTvnz8OHDQsdMpE/Onj2L5ORkuLm5oVq1alKHQ3pAUYN44cIFvHjxQuJoiAyLpMmRk5MTTE1Ns9QSxcTEZKlNAoCEhARcvHgR48ePh5mZGczMzDB37lxcvXoVZmZm2VYfW1pawsHBQeWHyJhkfiq2uv9YUNHj7u6OWrVqQS6Xs/aIKJ8kTY4sLCzg6emp/GJXCAoKQtOmTbOUd3BwwPXr13HlyhXlj7+/P6pVq4YrV66gcePGugqdSK8obn7sb0SZtW/fHgBw5MgRiSMhMix567SjRZMmTcLgwYPh5eUFb29vrF27FpGRkfD39weQ0ST26NEjbN68GSYmJqhdu7bK+qVLl4aVlVWW5URFxbNnzxAaGgqAyRGpat++PZYuXYojR45k212BiLKSPDnq27cvYmNjMXfuXDx58gS1a9dGYGAgPDw8AABPnjzJ9ZlHREWZ4sGPderUUdscTUVXixYtYGVlhUePHuHmzZuoVauW1CERGQS96JA9duxYhIeHIzk5GZcuXULLli2Vr23cuBGnTp3Kdt3Zs2fjypUr2g+SSE8pmkw4So3eZ21trZyAmE1rRHmnF8kRERWMEAKHDx8GAHTs2FHiaEgfsd8RUf4xOSIyYNeuXUN0dDRsbGzQvHlzqcMhPaRIjoKDgzmVCFEeMTkiMmCKWqNWrVrByspK4mhIH9WoUQPu7u5ISkpCcHCw1OEQGQQmR0QGjE1qlBuZTMamNaJ8YnJEZKASEhKUU4Z06NAhY2FUFHDyZMZvKtoyvReYHBHlD5MjIgN14sQJpKWloXLlyqhUqRIQEAB4eACtW2f8DgiQOkSSynvvhTaPH8PExAQ3b97k9ElEecDkiMhAKZrUOnTokFFLMGoUIJdnvCiXA6NHswapKFLzXijxxRf4oF49AMDRo0clDI7IMDA5IjJAmYfwd+jQAbh7993NUCE9Hbh3T4LoSFLZvBfa16kDgE1rRHnB5IjIAN25cwfh4eGwsLCAr68vUKUKYPLex9nUFKhcWZL4SELZvBfa9+gBIGMevvT0dAkCIzIcTI6IDJCi1qhly5awtbUF3N2BtWszEiIg4/eaNRnLqWjJ5r3QqHNnFCtWDC9fvsTff/8tbYxEeo7JEZEBUmlSUxgxAggPzxihFB6e8TcVTWreC2ZmZvDz8wMAHDx4UNLwiPQdkyMiA5OYmKicb1AlOQIyag18fVljRGrfCx9++CEAJkdEuWFyRGRggoODkZSUBHd3d9SsWVPqcMiAdOzYETKZDFeuXMGjR4+kDodIbzE5IjIwiv/1d+jQATKZTOJoyJCUKlUKjRs3BsDaI6KcMDkiMiBCCBw4cAAA0KVLF4mjIUPEpjWi3DE5IjIgN2/eRHh4OCwtLdGmTRupwyEDpEiOjh07hqSkJImjIdJPTI6IDMgff/wBAGjdunXGEH6ifKpfvz7KlCmDt2/f4vTp01KHQ6SXmBwRGRBFcsQmNSoomUzGpjWiXDA5IjIQsbGxOHfuHIB3TSNEBaF4//zxxx8QQkgcDZH+YXJEZCAOHz4MuVyOunXroly5clKHQwasTZs2sLCwwIMHD3Dr1i2pwyHSO0yOiAyEYpRa586dJY6EDJ2dnR1atWoFgE1rROowOSIyAKmpqcopQ5gckSaw3xFR9pgcERmAP//8E3FxcXByckKjRo2kDoeMgCI5Onv2LF69eiVtMER6hskRkQFQjFLr1KkTTBWzrRMVQsWKFVGjRg2kpaXh0KFDUodDpFeYHBHpucxPxWaTGmlS9+7dAQB79+6VNA4ifcPkiEjPhYWF4c6dO7CwsED79u2lDoeMSI8ePQAAgYGBSE5OljgaIv3B5IhIz+3ZswcA0LZtWzg4OEgcDRkTT09PuLm54fXr1zh+/LjU4RDpDSZHRHpuz44dAIAevr7SBkJGx8TEBN3+m6Nv75YtEkdDpD+YHBHpschFi3Dp+nWYAOg6ZQoQECB1SGRMAgLQ/ZdfAAD7tm5F+s8/SxwQkX6QiSL47Pj4+Hg4OjoiLi6OzRSkv6Ki8GO5cvhMCLQAEAwApqZAeDjg7i5tbGT4oqIADw+kyOUoDSAOwJ8mJmgaEcH3F+ktXd2/WXNEpK/u3sWe//7v0kOxLD0duHdPspDIiNy9C8jlsACgGAO5Ry7n+4sITI6I9NbzkiUzaouQKTkyNQUqV5YoIjIqVaoAJhm3gO7/LdoDQFSqJFVERHqDyRGRnjpw6RLkAOoDKA9kJEZr1rDJgzTD3R1YuxYwNUV7AJYA/gVwMz5e4sCIpMfkiEhPKYbw9/jiC+DkyYy+RiNGSBsUGZcRI4DwcNifPIm2/41aU7zviIoyJkdEeuj169c4evQoAKDH0KGAry9rjEg73N0BX1/06N8fALBr1y6JAyKSHpMjIj106NAhJCcno1KlSqhdu7bU4VAR0L17d5iZmeHq1au4ffu21OEQSYrJEZEe2vHfgx979+4NmUwmcTRUFJQsWRJt27YFAPz2228SR0MkLSZHRHomISEBBw8eBAD07dtX4mioKFG83xTJOVFRxeSISM8cOHAASUlJqFKlCurXry91OFSEdOvWDebm5vjnn39w8+ZNqcMhkgyTIyI9s3PnTgBAnz592KRGOlW8eHH4+fkBYNMaFW1Mjoj0SFxcHA4dOgSATWokjcxNa0VwdikiAEyOiPTKvn37kJKSgho1anCUGkmia9eusLCwQFhYGG7cuCF1OESSYHJEpEcUHWH79u3LJjWShKOjIzp06ADgXRMvUVHD5IhIT7x48UL54Ec2qZGU2LRGRR2TIyI9sXv3bqSlpaFu3bqoXr261OFQEdalSxdYWVnhzp07CA0NlTocIp1jckSkJ3755RcAwMCBAyWOhIo6e3t7dO3aFcC79yVRUcLkiEgqUVEZE8pGReHBgwc4c+YMZDIZBgwYIHVkRBg8eDAAYOvWrUhLS1N5vxIZOyZHRFIICAA8PIDWrQEPD/z6+ecAgDZt2sCdE8ySHmjfvj1KlSqFmJgYHP3iC5X3KwICpA6PSKuYHBHpWlQUMGoUIJcDAIRcjl/27QPw7n/rRFIzNzdH//79AQC//Pij8v0KuRwYPZo1SGTUmBwR6drdu+9uNAD+BnAXgI2VFXr27ClZWETvUyTrewHEZ34hPR24d0+CiIh0g8kRka5VqQKYvPvobf7vd89OnWBnZydNTERqeHp6okaVKkgCsCvzC6amQOXKEkVFpH1Mjoh0zd0dWLsWMDVFCoDt/y0ePHq0lFERZSGTyTB4+HAAgHLMmqkpsGZNxvuYyEgxOSKSwogRQHg4/pgzBy8AuLq6ok2bNlJHRZSF4tESpwA82LoVCA/PeP8SGTEmR0RScXfHzyEhAIAhQ4bA1NRU4oCIsipXrhzatWsHAAi4cYM1RlQkMDkikkhERASOHDkCAPjkk08kjoYoe4r35/r16zOeeURk5JgcEUkkICAAQgi0adMGlSpVkjocomx169YNpUqVwpMnT3Dw4EGpwyHSOiZHRBJIS0vD+vXrAbDWiPSfhYUFhg0bBgD4+eefpQ2GSAeYHBFJ4NChQ3j06BFKliyJ7t27Sx0OUa5GjhwJIOO9+/DhQ4mjIdIuJkdEElD873vYsGGwtLSUOBqi3FWtWhW+vr6Qy+XKWk8iY8XkiEjHoqKilP02FP8bJzIEo0aNAgCsW7eOHbPJqDE5ItK0XGYvX716NeRyOVq2bInq1avrODiiguvRowdKliyJqKgo7N+/P/uCuXwGiPQdkyMiTQoIyHH28qSkJKxZswYAMGHCBCkiJCowKysrjP7vSe4//PCD+kK5fAaIDIFMCCGkDkLX4uPj4ejoiLi4ODg4OEgdDhmLqKiMm0GmSWVhaprxROH/Hpy3YcMGfPzxxyhXrhz+/fdfmJmZSRMrUQE9evQI5cuXR1paGi5fvowGDRq8ezEPnwGiwtDV/Vsvao5WrlyJChUqwMrKCp6enjhz5ky2ZX///Xe0a9cOpUqVgoODA7y9vZUP0iOS1N27qjcFQGX2ciEEfvzxRwDAuHHjmBiRQXJzc8NHH30EQE3tUS6fASJDIXlytGPHDkycOBHTp09HaGgoWrRogY4dOyIyMlJt+eDgYLRr1w6BgYG4dOkSWrVqhS5duiA0NFTHkRO9p0oVwOS9j1Sm2cvPnDmDK1euwNramh2xyaBNnDgRALBt2zY8ffr03Qu5fAaIDIaQWKNGjYS/v7/KsurVq4upU6fmeRs1a9YUc+bMyXP5uLg4AUDExcXleR2iPFm3TghTUyGAjN/r1ilf6tGjhwAgRo0aJWGARJrRpEkTAUDMnj1b9YUcPgNEhaWr+7ekNUcpKSm4dOkS/Pz8VJb7+fnh3LlzedqGXC5HQkICSpQokW2Z5ORkxMfHq/wQacWIERn9K06eVJm9/NatW9i7dy8A4LPPPpMsPCJNUdQerVy5EklJSe9eyOYzQGRIJE2Onj9/jvT0dDg7O6ssd3Z2RnR0dJ62sWTJErx58wZ9+vTJtsz8+fPh6Oio/Clbtmyh4ibKkbs74Our0gF10aJFEEKgW7duqFmzpnSxEWlIz549UbZsWcTExGDDhg2qL6r5DBAZEsn7HAGATCZT+VsIkWWZOtu2bcPs2bOxY8cOlC5dOtty06ZNQ1xcnPKHj74nXXr48CF++eUXAMDUqVMljoZIM8zNzfHVV18BABYuXIjU1FSJIyLSHEmTIycnJ5iammapJYqJiclSm/S+HTt2YMSIEdi5cyfatm2bY1lLS0s4ODio/BDpypIlS5CWlgZfX180adJE6nCINGbEiBEoXbo0IiIisHXrVqnDIdIYSZMjCwsLeHp6IigoSGV5UFAQmjZtmu1627Ztw7Bhw7B161Z8+OGH2g6TqMCeP3+unEdt2rRpEkdDpFnW1taYNGkSgIzuC+np6RJHRKQZkjerTZo0CevWrcP69esRFhaGzz//HJGRkfD39weQcUMZMmSIsvy2bdswZMgQLFmyBE2aNEF0dDSio6MRFxcn1SEQZWvhwoV4+/YtPD090a5dO6nDIdK4MWPGoFixYrh9+zZ+//13qcMh0gjJk6O+ffti+fLlmDt3LurXr4/g4GAEBgbCw8MDAPDkyROVZx6tWbMGaWlpGDduHFxdXZU/HAFEWpfP+aIeP36M//3vfwCAuXPn5qkfHZGhcXBwUH7/zpo1K38T0nIONtJTnD6E/Y8oLwICgFGjMp7+a2ICrF2b6xDl8ePHY8WKFWjatCnOnj3L5IiMVlxcHCpWrIgXL15g/fr1GD58eO4rFeAzRaSr+zeTIyZHlJsCzBcVHh6OqlWrIjU1FSdOnECrVq10EyuRRJYsWYLJkyejbNmyuHPnDqysrLIvzDnYqICK1NxqRHqtAPNFzZ49G6mpqWjTpg0TIyoSxo4dC3d3dzx8+BCrV6/OuTDnYCM9x+SIKDf5nC/qwoUL2LRpEwDgu+++03Z0RHrB2toas2bNAgDMmzcPL1++zL4w52AjPcfkiCg37u4Z/SFMTTP+NjUF1qxRW/0vhFB2Th08eDAaNWqky0iJJDVs2DDUrFkTsbGxykRJrXx8poikwD5H7HNEeRUVlVHtX7lytl/iW7duxcCBA2Fra4vbt2/Dzc1Nx0ESSev48eNo27YtTExMEBoairp162ZfOA+fKaLM2OeISN/kMl/U69evldMpfP3110yMqEhq06YNevfuDblcjk8//RQ5/v+bc7CRnmJyRKQh06dPx6NHj1C+fHnlU4OJiqIlS5bA2toawcHBnFaEDBKTIyINPIjuzz//xE8//QQg40GlOQ5jJjJy5cqVw/Tp0wEAEyZMwNOnTwu3QT4sknSMyREVbQEBGc9bad0643dAQL43kZSUhBEjRkAIgWHDhsHPz08LgRIZlq+++gr169fHixcvMGbMmJyb13Kigc8oUX6xQzY7ZBddGnoQ3ZQpU7Bo0SK4uLjg5s2bKF68uOZjJTJAV69ehZeXF9LS0rB161b0798/fxvgwyLpPeyQTaRtGngQXVBQEL7//nsAwKpVq5gYEWVSr149fPPNNwCAcePGITw8PH8b4MMiSSJMjqjoKuSD6J4+fYrBgwdDCIHRo0eje/fumo+RyMBNmzYNjRo1wsuXL9GnTx8kJyfnfWU+LJIkwuSIiq5CPIguNTUV/fv3x9OnT1GrVi0sW7ZMy8ESGSZzc3Ps3LkTJUqUwIULF/DFF1/kfWU+LJIkwj5H7HNEBXgQ3dixY7Fq1SrY2dnh/PnzqFWrlpaDJDJshw4dQqdOnQAAGzZswLBhw/K+Mh8WSf9hnyOiwsrr8N98Pojup59+wqpVqyCTybBlyxYmRkR50LFjR8ycORMA8MknnyAoKCjvK+f1M8oh/6QhTI7IOGlp+O8vv/yCCRMmAMiYVLZr164a2S5RUTBr1iz0798faWlp6NWrFy5fvqy5jXPIP2kQm9XYrGZ8tDT8d9euXejXrx/S09Px6aef4ocffoBMJit8vERFSHJyMjp06IBTp06hePHiCAoKgqenZ+E2yiH/RQab1YgKSgvDf9etW4e+ffsiPT0dw4YNw/Lly5kYERWApaUl9u3bB29vb7x8+RJt27bFuXPnCrdRDvknDWNyRMZHg8N/5XI5Zs+ejU8++QRyuRwjRozAzz//DJP3t09Eeebg4IAjR46gadOmePXqFVq3bl24Odg45J80zEzqAMh4CSEQFhaGCxcu4Pbt27h79y6eP3+O+Ph4JCUlwcLCApaWlihVqhTc3Nzg5uaG6tWro27duqhcuTJMFcN380sx/Hf06Iz/PRZw+O+LFy8wePBgBAYGAsh4Evb8+fNZY0SkAfb29jh69CgGDRqEvXv3YuDAgfj777+xYMGC/M9NqKHPvEJycjLCwsJw7do13Lt3D48ePUJUVBRevnyJ5ORkpKamwtbWFo6OjnBxcUHVqlVRrVo1eHt7o1y5cgXaJ+kX9jlinyONSk5OxuHDh7F9+3YcP34cz549K9B2rK2tUa9ePTRv3hwtWrRA8+bNUaJEifxtpBDDf3fv3o1x48bh6dOnsLKywurVqzF06ND87Z+IciWXyzFt2jQsWrQIAFC3bl2sW7cOH3zwQf43VsDP/KNHj3DmzBkEBwfj7NmzCAsLQ1paWv73D6BixYrw8/PDgAED0KxZM9Yya5iu7t9MjpgcacTDhw+xbNkybNy4ES9fvlQut7a2RqNGjVCzZk1UrVoVLi4ucHR0hJWVFVJTU5GYmIiYmBhERUXh4cOHuHHjBq5fv47ExMQs+6hVqxZatmwJn9q10bJ0abg2aaLxzpYXL17E9OnTcfToUQBAjRo1sGXLFjRo0ECj+yEiVX/88QeGDx+O58+fQyaTYfjw4Zg5cyY8PDw0vq+I8+dxau9enH7wAMGXLuHff//NUqZYsWKoV68eatSoAXd3d7i5ucHJyQmWlpYwMzPDmzdvEBcXh6ioKNy5cwfXr1/H5cuXkZ6ertxGuXLlMHbsWPj7+8PR0VHjx1EU6ez+LYqguLg4AUDExcVJHYrBi4yMFMOGDRNmZmYCgAAgypQpI7744gtx5swZkZycnO9tpqWliVu3bonNmzeLTz75RFSvXl257cw/VQAxskULsXnzZhEREVHgY0hMTBS7du0Sbdq0UW7b3NxcTJ8+XSQlJRV4u0SUP0+ePBFDhgxRfg5NTU3FgAEDxPHjx0VaWlqBtimXy8X9+/fFxo0bxbBhw0R5J6cs3yUmJiaiYcOGYuLEiWL37t0iMjJSyOXyfO8rPj5eHDx4UAwfPlw4ODgot+/g4CC+/vpr3nM0QFf3b9YcseaoQN68eYNFixbh+++/V9bytGrVCl9++SX8/PwK3l8oG8+ePcOZvXsRPGoUggFcQca3TmYeHh5o0KABatWqhVq1aqFy5cpwdnaGk5MTzM3NYWJigtevXyM6OhqRkZG4fPkyzp07h2PHjuHt27cAAJlMhkGDBmHOnDmoUKGCRo+BiPImJCQEM2fOxLFjx5TLnJ2d0bp1azRv3hw1a9ZExYoVUaxYMdjZ2UEul+PNmzd4+fIlwsPDERERgVu3buHSpUu4fPkyYmNjVbZvCuADAD4AfExM0PT6dTjWrKnRY0hMTMTOnTuxaNEi3Lx5EwBQunRpfPvttxg+fLjGvyOLCtYcaRFrjgonODhYVKxYUfm/opYtW4rz589rf8cnTggBCAGIl4A4AIgvAdGoenVhamqqtnYprz9ubm7i66+/FuHh4do/DiLKk4sXL4pRo0aJ4sWLF+rzbWZmJpo0aSKm9u8vDgMi/r/vEeXPyZNaO4b09HSxZ88eUbVqVWU8zZs3F/fu3dPaPo0Za460iDVHBZOSkoJp06Zh2bJlEEKgbNmyWLZsGXr27KmbEVw5POgtwdERf//9N27cuKH8iYiIwNOnT5GamqqyGQcHB5QpUwZ16tSBp6cn/Pz8UL9+fY5CI9JTKSkp+PPPP3H69Gn8/fffuHPnDiIiIrJ0mrawsICHhwc8PDxQqVIlNGjQAJ6enqhTpw4sLS0lfVhkSkoKVqxYgZkzZ+L169ewsbHB4sWL4e/vz++efGCHbC1icpR/jx49Qu/evXH+/HkAwIgRI7BkyRLNdjKMisp4mFuVKtl/UQUEZB2uO2JEtpsUQiA+Ph7p6ekQQsDa2ho2Njaai5mIJCGEQFJSEhISEmBmZgZbW1tYWFjknmjk5zskL99J+RQeHo6PP/4YJ0+eBAD0798fa9euhZ2dnUa2b+yYHGkRk6P8OX36NPr06YOYmBgUK1YMmzdvRpcuXTS7k4AAYNSojP/RmZhkPLMkpy8sztBNRAWVl++Q/Hwn5ZNcLsfy5csxZcoUpKWloWbNmti7dy+qVKmike0bMyZHWsTkKO82btyITz75BGlpaahXrx52796NSpUqaXYnnBeJiPSJjr6Tzp49iz59+uDJkycoWbIk9u/fj6ZNm2ps+8aIc6uRpIQQylEVaWlp6N+/P86dO6f5xAjgvEhEpF909J3UvHlzXL58GV5eXoiNjUXr1q2xe/duje6DCobJEWWRnp6OcePGYcaMGQCAqVOnYsuWLQXvqxMVBZw8mfFbHc6LRET6JL/fSbl9x+XAxcUFp06dQpcuXZCcnIyPPvoIq1atKkDQpElMjkhFeno6Pv74Y6xatQoymQw//fRT4eYTCwjIqJ5u3Trjd0BA1jKKeZEUz/0o5LxIRESFkp/vpLx8x+XC1tYWe/bswdixYyGEwNixY/HDDz8U8iCoMNjniH2OlNLS0jBs2DBs2bIFpqam2LJlC/r27VvwDea33Z4drYlIn+T2naThvklCCEybNg0LFy4EACxcuBBfffVVAYM3Trq6f5tpbctkUNLS0jB48GBs374dZmZm2L59O3r16lW4jebUbq/ui8PdnUkREemP3L6T8vsdlwuZTIb58+fD0tISc+fOxZQpU5CSkqLs4kC6w2Y1glwux7Bhw7B9+3aYm5vjt99+yz0xyksbO/sSEZEx00LfJJlMhjlz5uDbb78FAHzzzTdYsmSJpiKmPGLNUTbkcjkCAwMREhICAGjYsCE6duxodA8QFELgs88+w5YtW2BmZoZdu3aha9euOa+U1+d/KNrt33/gGmuHiMgY5Oc7Lp/PTfr6668hhMCMGTMwefJk2NvbY9SoUVo8GGnExsZi//79uHXrFuzs7NC2bVt4e3tLHRbnVlPn7t27ol69elnm53F2dhYBAQEFmq1ZX82aNUsAEDKZTGzdujX3FR4+FMLERHVeIlPTjOU5rXPyZM5liIgMVW7fcQX53hRCyOVyMWXKFOV39JYtWzQfu0SSk5PFzJkzhY2NTZZ7befOncXLly/VrqerudWYHL3nzp07omTJkgKAcHR0FCNHjhT+/v6ibNmyygvXp08fkZCQIEHkmvXDDz8oj2nFihUZCx8+zJjgNbsPbabJX3U1cSMRkUEryPfmf9/F8shIMXbsWAFAmJqair179+osbG2JiIgQjRo1Ut5/6tatKz777DPRr18/YW5urlwWHx+fZV0mR1qU3cl9+/atqFmzpgAgGjZsKJ48eaJ8LTk5WSxYsECYmZkJAKJJkyYiNjZW16FrzC+//KJ8Y86dOzdj4bp17/53Y2KS8ff7Cvg/ICKiIiu/35vvfRenr10rBg8eLAAICwsLcfz4cd3Gr0F3795VVjYUK1ZM7NixQ6U1JjQ0VLi4uAgAonfv3llaapgcaVF2J1fRxOTi4iIeP36sdt0///xTFC9eXAAQDRo0EK9evdJFyIWXqUbowIEDwtTUVAAQn332WcabLz8f3nXrMl5TlFGXRBER0Tt5/d7M5rs49cED0aNHDwFA2NnZib/++utd+Zxq+/VIWFiYcHV1FQBE1apVxYMHD9SWCwkJUdYg7du3T+U1JkdapO7kRkVFCSsrKwFA7Ny5M8f1r1+/LkqXLi0ACB8fH5GYmKjtkAsn0/9CTstkwuq/N92gQYNEenp6Rpn8VvuyHxERUf7k5Xszh+/ixMRE0aZNGwFAlChRQtyYOzf32n498fjxY+Hh4SEAiDp16ojo6Ogcy0+dOlUAEJUqVRKpqanK5UyOtEjdyZ08ebIAIJo1a5anDteXL18W9vb2AoDo1avXuyRD32T6X8hlQDj815TWpW1bkZKSorYcm8uIiCSSy3dxfHy8sr9OGUA8MIDv7Pj4eNGgQQMBQFSpUkU8e/Ys13USEhKEk5OTACC2bdumXK6r5IjPOULGEzfXrFkDIGMesbxMldGgQQPs378fFhYW2L17N2bPnq3lKLOR23Mz/ntI2V0AHQDEA2gJYMfkyTA3N39XjlN4EBFJL5fvYnt7ewQGBqJW+fJ4DKAtgGjFujlNjluI+d8KIy0tDX369EFoaChKlSqFQ4cOwcnJKdf17OzsMH78eADA4sWLtR1mVlpNvfTU+5lnQECAsg00vzVAGzduVHZs3r59uzbCzV4eO1A/lMlEuf9ibACIVyYmOQ85ZXMZEZG0cvkufnThgqigGO0FiBe59ROVqPlt4sSJAoCwtrZ+108qj549eyYsLCwEAHHlyhUhBJvVtOr9k+vr6ysAiO+++65A2/vyyy8FAGFlZSUuXLigmSBz62SXx2awmJgYUf2/nv9VABGt5+3SRESUN/e++064/JcgeQPiteKRLJnlt8uEBjt4//zzz8rKg127dhVoG7169RIAxKRJk4QQTI60KvPJjYyMVD5gKyIiokDbS0tLEx9++GFGG3CZMuLRo0fZF87LGy8vWX4eOlDHxcUJT09PAUC4u7qKiO3bWSNERGRErh09Kor/1//Vz89PJCUlqRbIz2Cb/NQw5XIvCw4OVo44mzNnToGPb9++fcpR5Onp6UyOtCnzyV2xYoWyI3Zht6l4RpKXl5d48+ZN1kKafI5QLuXevn0rWrZsKQAIJycnERYWVqjjIyIi/RQSEqJ80vRHH30k0tLS3r2ooXuKilzuZQ8ePFB2pu7Tp0+hZpVITk4WDg4OAoA4f/48O2TryoEDBwAAXbp0KdR2HOLjceDrr1GyeHFcvHgRgwcPhjzzbM1RUe/m1QEyfo8enbVzXE6zPGeWQ6e95ORkfPTRRwgODoaDgwOOHDmC6tWrF+r4iIhIPzVp0gR79+5VThzu7+8PIUTGi3kdbJPXe08u97KEhAR07doVz58/R8OGDbFh3jzITp0qcEdwCwsLtG/fHsC7+7VOaDX10lOKzPPx48fC0tJSABA3btxQXzifzWBnZDJh8d9TtL/88st3ZfJatVmQ9uFMnfaSkpKUTXxWVlbi9OnTeT4vRERkuHbt2iVMTEwEAPHVV1+pvqip+d9yuJelpaWJrl27KpvBHi5apJFmus2bN2d0PK9bl81q2qQ4ubt27RIAhIeHh/pqvwI2g/0qkyk7oa1duzbbcpp+AnViYqLo1KmTMjEKCgrKx1khIiJDpxh9DUBMmTIlf01aebn3ZHMvk0dGitGjRwsAwtLSUoTs26exZrqYmBjlMd27d4/JkbYokqOJI0cKAGLYsGFZCxUyi549bJgA3psoMD9JTz6H1CckJIj27dsrh0wa8tw7RERUcMuXL1cmE/7+/vl7RE1e7j1q7mVz5sxRDm7atWuXxltL6tatKwCIjUuXMjnSFkVy5PXfm2fjxo1ZCxXywsojI8WQIUMEAGFubi4CAwPfldfwc4SePn0qvLy8BABhY2MjTuY00zMRERm9tWvXCtl/rRgDBgwQycnJmt1BpnvZjz/+qEzGVigeJ6CBZrrMJkyYIACIT/7bD5MjLVAkRyb/neQH585lLaSBZrDU1FTRu3dvZTXjkSNHNH4sYWFholKlSspRaefPn9f4PoiIyPBs375dmP3XB7ZFixYiJiZG4/tYsmSJMjH65ptvVF8sRDPd+/fa39euFQBENSZH2qNIjgCIsupqgxQ00AyWkpKi7KBmZmYmNm3apLHj2Llzp7CzsxMARMWKFcWdO3c0tm0iIjJ8hw4dUg6F9/DwEKGhoRrZbnp6upg2bZryXjpjxgz1/ZsK2Ez3vmd79ij3xeRISzInRz2BnC+aBprBkpKSRN++fZX7nDZtmuqkr/mUkJAgxo8fr9yer69vrjMcExFR0XTz5k1RuXJlAUBYWFiIxYsXF2qy9Li4ONG9e3flPWju3LmFDzIPo+kqMjnSrszJ0Xc9e+pkn+np6eKrr75S7rdx48bi1q1b+dqGXC4XBw4cEB4eHsrtTJ06VaSmpmopaiIiMgYvXrwQXbp0Ud47vL29CzTdVVBQkChbtqwy0dq8ebMWolWvX6NGTI60KXNydPToUZ3ue8eOHaJYsWLKZrZPP/1UPHjwIMd1UlNTxYEDB4S3t7cybg8PD3H48GHdBE1ERAZPLpeLtWvXCltbW+W95KOPPhLnzp3Ldcj/5cuXRY8ePZTrVaxYUZxT119Xi5b+N1JNF8mRTAjFYzSLjvj4eDg6OgIAYmNjUaJECZ3uPzIyEmPHjsXBgwcBACYmJmjZsiXatWuHWrVqoXjx4khOTkZERAT++usvHDhwAE+fPgUAWFlZYfz48Zg1axbs7Ox0GjcRERm+R48eYdq0afjll1+Uy6pUqYKOHTvCy8sL7u7uMDExwdOnTxEaGorDhw/jypUrAACZTIaxY8diwYIFOr8H/fnnn2jevDkAIC4uDg4ODlrbV5FOjsqXL48HDx5IFsexY8ewaNEiBAUF5VrWyckJQ4YMweTJk+Hq6qqD6IiIyJhdu3YNy5cvx5YtW5CSkpJjWXNzc/Tq1QvffPMNatasqaMIVb1580aZkDE50gJFctSjRw/8/vvvUoeDBw8e4MCBA/jrr79w+/ZtvHnzBmZmZihTpgzq168PX19ftG3bFubm5lKHSkRERiY+Ph7Hjx9HUFAQbt26hejoaKSnp6N06dKoXLkyWrZsiS5dusDJyUnqUFGlShXcu3dP68mRmda2bAAaNGggdQgAgAoVKmDChAlSh0FEREWQg4MDevTogR49ekgdSq7q1q2Le+9PhqsFJlrfgx5r2bKl1CEQERFRHnXr1k0n+9GL5GjlypWoUKECrKys4OnpiTNnzuRY/vTp0/D09ISVlRUqVqyI1atXF2i/+lJzRERERLnr3r27TvYjeXK0Y8cOTJw4EdOnT0doaChatGiBjh07IjIyUm35Bw8eoFOnTmjRogVCQ0Px9ddfY8KECdi9e7eOIyciIiJjJHmH7MaNG6Nhw4ZYtWqVclmNGjXQvXt3zJ8/P0v5KVOmYP/+/QgLC1Mu8/f3x9WrVxESEpKnfSo6ZGu7QxcRERFpjq7u35LWHKWkpODSpUvw8/NTWe7n54dz586pXSckJCRL+fbt2+PixYtITU3VWqxERERUNEg6Wu358+dIT0+Hs7OzynJnZ2dER0erXSc6Olpt+bS0NDx//lztM4CSk5ORnJys/DsuLg5ARgZKREREhkFx39Z2o5deDOWXyWQqfwshsizLrby65Qrz58/HnDlzsiwvW7ZsfkMlIiIiicXGxipnutAGSZMjJycnmJqaZqkliomJyVI7pODi4qK2vJmZGUqWLKl2nWnTpmHSpEnKv1+9egUPDw9ERkZq9eTqm/j4eJQtWxYPHz4sUn2teNw87qKAx83jLgri4uJQrlw5rU/7JWlyZGFhAU9PTwQFBak8fCooKCjbZxl4e3vjwIEDKsuOHj0KLy+vbJ8gbWlpCUtLyyzLHR0di9SbSsHBwYHHXYTwuIsWHnfRUlSP28REu12mJR/KP2nSJKxbtw7r169HWFgYPv/8c0RGRsLf3x9ARq3PkCFDlOX9/f0RERGBSZMmISwsDOvXr0dAQAAmT54s1SEQERGREZG8z1Hfvn0RGxuLuXPn4smTJ6hduzYCAwPh4eEBAHjy5InKM48qVKiAwMBAfP7551ixYgXKlCmDH3/8Eb169ZLqEIiIiMiISJ4cAcDYsWMxduxYta9t3LgxyzIfHx9cvny5wPuztLTErFmz1Da1GTMeN4+7KOBx87iLAh63do9b8odAEhEREekTyfscEREREekTJkdEREREmTA5IiIiIsqEyRERERFRJkabHH377bdo2rQpbGxsUKxYsTytI4TA7NmzUaZMGVhbW8PX1xc3btxQKZOcnIxPP/0UTk5OsLW1RdeuXREVFaWFIyiYly9fYvDgwXB0dISjoyMGDx6MV69e5biOTCZT+/P9998ry/j6+mZ5vV+/flo+mrwryHEPGzYsyzE1adJEpYyxXe/U1FRMmTIFderUga2tLcqUKYMhQ4bg8ePHKuX07XqvXLkSFSpUgJWVFTw9PXHmzJkcy58+fRqenp6wsrJCxYoVsXr16ixldu/ejZo1a8LS0hI1a9bEnj17tBV+geXnuH///Xe0a9cOpUqVgoODA7y9vXHkyBGVMhs3blT7WU9KStL2oeRLfo771KlTao/p1q1bKuWM7Xqr+/6SyWSoVauWsoy+X+/g4GB06dIFZcqUgUwmw969e3NdR2efbWGkZs6cKZYuXSomTZokHB0d87TOggULhL29vdi9e7e4fv266Nu3r3B1dRXx8fHKMv7+/sLNzU0EBQWJy5cvi1atWol69eqJtLQ0LR1J/nTo0EHUrl1bnDt3Tpw7d07Url1bdO7cOcd1njx5ovKzfv16IZPJxL///qss4+PjIz755BOVcq9evdL24eRZQY576NChokOHDirHFBsbq1LG2K73q1evRNu2bcWOHTvErVu3REhIiGjcuLHw9PRUKadP13v79u3C3Nxc/Pzzz+LmzZvis88+E7a2tiIiIkJt+fv37wsbGxvx2WefiZs3b4qff/5ZmJubi127dinLnDt3TpiamorvvvtOhIWFie+++06YmZmJ8+fP6+qwcpXf4/7ss8/EwoULxd9//y3u3Lkjpk2bJszNzcXly5eVZTZs2CAcHByyfOb1SX6P++TJkwKAuH37tsoxZf6MGuP1fvXqlcrxPnz4UJQoUULMmjVLWUbfr3dgYKCYPn262L17twAg9uzZk2N5XX62jTY5UtiwYUOekiO5XC5cXFzEggULlMuSkpKEo6OjWL16tRAi481obm4utm/frizz6NEjYWJiIg4fPqzx2PPr5s2bAoDKmyAkJEQAELdu3crzdrp16yZat26tsszHx0d89tlnmgpVowp63EOHDhXdunXL9vWicr3//vtvAUDlS1ifrnejRo2Ev7+/yrLq1auLqVOnqi3/1VdfierVq6ssGz16tGjSpIny7z59+ogOHTqolGnfvr3o16+fhqIuvPwetzo1a9YUc+bMUf6d1+9DKeX3uBXJ0cuXL7PdZlG43nv27BEymUyEh4crlxnC9VbIS3Kky8+20Tar5deDBw8QHR0NPz8/5TJLS0v4+Pjg3LlzAIBLly4hNTVVpUyZMmVQu3ZtZRkphYSEwNHREY0bN1Yua9KkCRwdHfMc39OnT3Hw4EGMGDEiy2tbtmyBk5MTatWqhcmTJyMhIUFjsRdGYY771KlTKF26NKpWrYpPPvkEMTExyteKwvUGMiZylMlkWZqf9eF6p6Sk4NKlSyrXAAD8/PyyPcaQkJAs5du3b4+LFy8iNTU1xzL6cF2Bgh33++RyORISErJM0Pn69Wt4eHjA3d0dnTt3RmhoqMbiLqzCHHeDBg3g6uqKNm3a4OTJkyqvFYXrHRAQgLZt2ypnl1DQ5+udX7r8bOvFE7L1QXR0NADA2dlZZbmzszMiIiKUZSwsLFC8ePEsZRTrSyk6OhqlS5fOsrx06dJ5jm/Tpk2wt7dHz549VZYPHDgQFSpUgIuLC/755x9MmzYNV69eRVBQkEZiL4yCHnfHjh3x0UcfwcPDAw8ePMA333yD1q1b49KlS7C0tCwS1zspKQlTp07FgAEDVCav1Jfr/fz5c6Snp6v9XGZ3jNHR0WrLp6Wl4fnz53B1dc22jD5cV6Bgx/2+JUuW4M2bN+jTp49yWfXq1bFx40bUqVMH8fHx+OGHH9CsWTNcvXoVVapU0egxFERBjtvV1RVr166Fp6cnkpOT8csvv6BNmzY4deoUWrZsCSD794SxXO8nT57g0KFD2Lp1q8pyfb/e+aXLz7ZBJUezZ8/GnDlzcixz4cIFeHl5FXgfMplM5W8hRJZl78tLmcLI63EDWeMH8hff+vXrMXDgQFhZWaks/+STT5T/rl27NqpUqQIvLy9cvnwZDRs2zNO280vbx923b1/lv2vXrg0vLy94eHjg4MGDWZLD/Gy3sHR1vVNTU9GvXz/I5XKsXLlS5TUprndO8vu5VFf+/eUF+azrWkFj3LZtG2bPno19+/apJNBNmjRRGXTQrFkzNGzYED/99BN+/PFHzQVeSPk57mrVqqFatWrKv729vfHw4UMsXrxYmRzld5tSKWiMGzduRLFixdC9e3eV5YZyvfNDV59tg0qOxo8fn+uImfLlyxdo2y4uLgAyMlNXV1fl8piYGGUW6uLigpSUFLx8+VKlNiEmJgZNmzYt0H7zIq/Hfe3aNTx9+jTLa8+ePcuSSatz5swZ3L59Gzt27Mi1bMOGDWFubo67d+9q7Wapq+NWcHV1hYeHB+7evQvAuK93amoq+vTpgwcPHuDEiRMqtUbq6OJ6q+Pk5ARTU9Ms/+vL/Ll8n4uLi9ryZmZmKFmyZI5l8vN+0aaCHLfCjh07MGLECPz2229o27ZtjmVNTEzwwQcfKN/zUivMcWfWpEkT/Prrr8q/jfl6CyGwfv16DB48GBYWFjmW1bfrnV86/Wznq4eSAcpvh+yFCxcqlyUnJ6vtkL1jxw5lmcePH+tdB92//vpLuez8+fN57qA7dOjQLKOWsnP9+nUBQJw+fbrA8WpKYY9b4fnz58LS0lJs2rRJCGG81zslJUV0795d1KpVS8TExORpX1Je70aNGokxY8aoLKtRo0aOHbJr1Kihsszf3z9Lp82OHTuqlOnQoYPeddDNz3ELIcTWrVuFlZVVrh1bFeRyufDy8hLDhw8vTKgaVZDjfl+vXr1Eq1atlH8b6/UW4l2H9OvXr+e6D3283grIY4dsXX22jTY5ioiIEKGhoWLOnDnCzs5OhIaGitDQUJGQkKAsU61aNfH7778r/16wYIFwdHQUv//+u7h+/bro37+/2qH87u7u4tixY+Ly5cuidevWeje0u27duiIkJESEhISIOnXqZBna/f5xCyFEXFycsLGxEatWrcqyzXv37ok5c+aICxcuiAcPHoiDBw+K6tWriwYNGhjscSckJIgvvvhCnDt3Tjx48ECcPHlSeHt7Czc3N6O+3qmpqaJr167C3d1dXLlyRWV4b3JyshBC/663YohzQECAuHnzppg4caKwtbVVjsqZOnWqGDx4sLK8Yrjv559/Lm7evCkCAgKyDPf9888/hampqViwYIEICwsTCxYs0Nuh3Xk97q1btwozMzOxYsWKbB/BMHv2bHH48GHx77//itDQUDF8+HBhZmamkmBLLb/HvWzZMrFnzx5x584d8c8//4ipU6cKAGL37t3KMsZ4vRUGDRokGjdurHab+n69ExISlPdmAGLp0qUiNDRUOXJWys+20SZHQ4cOFQCy/Jw8eVJZBoDYsGGD8m+5XC5mzZolXFxchKWlpWjZsmWWbDwxMVGMHz9elChRQlhbW4vOnTuLyMhIHR1V7mJjY8XAgQOFvb29sLe3FwMHDswyxPX94xZCiDVr1ghra2u1z7KJjIwULVu2FCVKlBAWFhaiUqVKYsKECVmeCSSl/B7327dvhZ+fnyhVqpQwNzcX5cqVE0OHDs1yLY3tej948EDt5yLzZ0Mfr/eKFSuEh4eHsLCwEA0bNlSpwRo6dKjw8fFRKX/q1CnRoEEDYWFhIcqXL6826f/tt99EtWrVhLm5uahevbrKzVRf5Oe4fXx81F7XoUOHKstMnDhRlCtXTlhYWIhSpUoJPz8/ce7cOR0eUd7k57gXLlwoKlWqJKysrETx4sVF8+bNxcGDB7Ns09iutxAZtdvW1tZi7dq1aren79dbUeuV3XtWys+2TIj/ejMRERERkfFOH0JERERUEEyOiIiIiDJhckRERESUCZMjIiIiokyYHBERERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERGZe7cuahTpw5sbW3h7OyMMWPGIDU1VeqwiMiAmEkdABGRpgghkJ6ejjVr1sDNzQ03b97EkCFDULduXYwZM0bq8IjIQHDiWSIyagMGDECpUqXwww8/SB0KERkINqsRkdGIiIjA+PHjUbt2bRQvXhx2dnbYuXMn3N3dpQ6NiAwIkyMiMgrPnz9Ho0aN8Pz5cyxduhRnz55FSEgITE1NUb9+fanDIyIDwj5HRGQUAgMDkZaWhm3btkEmkwEAVqxYgZSUFCZHRJQvTI6IyCiUKFEC8fHx2L9/P2rWrIkDBw5g/vz5cHNzQ6lSpaQOj4gMCDtkE5FREEJgzJgx2Lp1K6ytrTFo0CAkJSUhIiICf/zxh9ThEZEBYXJERERElAk7ZBMRERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERERJQJkyMiIiKiTJgcEREREWXC5IiIiIgoEyZHRERERJkwOSIiIiLK5P8BuREsSVB0jN4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxVklEQVR4nO3dd1gUV9sG8HvpHQsKCIpd7AWiYgMbltg19hqNYolRY6JGY/tMjMaW5LVGbIkt0dgiFqxoxMSCJYotCoiKRFRApe/5/tjsykqH3Z3d5f5dFxcye2bmmZndncdT5siEEAJEREREBAAwkToAIiIiIn3C5IiIiIgoEyZHRERERJkwOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiAzC48ePMXfuXFy5ciXLa8OHD4ednV2ht52amoqAgAC4urrC1NQUDRo0KHygGrBq1Sps2rQpy/KIiAjIZLJsXzMmMpkMc+fOlToMjZg7dy5kMpnW1/3hhx9QtWpVWFhYQCaT4eXLlxg+fDgqVqyoVu7rr7/G3r17CxVPbp4/f47+/fujbNmykMlk6NGjR4G3UbFiRQwfPlzjsembWbNmoUuXLnBzc4NMJsvxmG/cuIFx48bBx8cHtra2kMlkOHXqlE5jLc6YHJFBePz4MebNm5dtclRUq1evxtq1azFz5kycPXsWP/30k8b3URA5JUeurq4IDQ3F+++/r/ugqFBGjRqF0NBQre7jypUrmDhxIlq3bo0TJ04gNDQU9vb2+PLLL7Fnzx61stpKjv7v//4Pe/bswfLlyxEaGorFixdrfB/GYvny5YiLi0O3bt1gYWGRY7mLFy9i7969KFWqFNq2bavDCAkAzKQOgEhqf//9N6ytrTFhwgSpQ8mVpaUlmjZtKnUYVADu7u5wd3fX6j5u3LgBAPjoo4/QuHFj1fIqVapodb+Z/f3336hSpQoGDRqks31qyps3b2BjY6Oz/SUmJsLERFEvkdt/xIYMGYJhw4YBAHbt2oUDBw7oJD5SYM1RMfTvv/9i9OjRKF++PCwtLVGmTBk0b94cx44dU5Xx8/NDnTp1EBoaimbNmsHa2hoVK1bExo0bAQAHDx5Eo0aNYGNjg7p16+Lw4cNZ9nP27Fm0bdsW9vb2sLGxQbNmzXDw4MEs5f7++290794dJUuWhJWVFRo0aIDNmzerXj916hTee+89AMCIESMgk8mybXq5d+8eOnfuDDs7O5QvXx6ffvopUlJScj0XMpkM69evR1JSkmq7mzZtyrUJ6919K5s/bty4gQEDBsDR0RHOzs748MMPER8fr7auXC7HDz/8gAYNGsDa2holSpRA06ZNsX//fgCKpoUbN27g9OnTqniUTSM5xZSf87xp0ybIZDKcPHkSY8eOhZOTE0qXLo1evXrh8ePHuZ6j3FSsWBFdunTBnj17UK9ePVhZWaFy5cr4/vvvs5SNiorC4MGDUbZsWVhaWqJmzZpYunQp5HJ5jtuPiIiAmZkZFi5cmOW1kJAQyGQy/PrrrwAKdh2Sk5MxY8YMVKpUCRYWFnBzc8P48ePx8uXLbI/v999/R8OGDWFtbY2aNWvi999/B6A4rzVr1oStrS0aN26Mixcvqq2fXdPYzp074e/vD1dXV9X2pk+fjtevX+d8onPg5+eHwYMHAwCaNGmi1kzzbrOaTCbD69evsXnzZtV7y8/PL9ftP3/+HOPGjYObmxssLCxQuXJlzJw5U/W5Ur4njx07hvDwcNV2c2v+SUtLw+effw4XFxfY2NigRYsW+Ouvv7ItGxMTgzFjxsDd3R0WFhaoVKkS5s2bh/T0dLVy0dHR6NOnD+zt7VGiRAkMGjQIFy5cyPJ5UTbBX79+Hf7+/rC3t1fVyqSmpmLBggXw9PRUfS+OGDEC//77b5a4du7cqWrusrOzQ4cOHRAWFpbruVRSJkaaKkdaIqjY6dChgyhTpoxYt26dOHXqlNi7d6+YPXu22LFjh6qMr6+vKF26tKhRo4YIDAwUR44cEV26dBEAxLx580TdunXF9u3bRVBQkGjatKmwtLQUjx49Uq1/6tQpYW5uLry8vMTOnTvF3r17hb+/v5DJZGr7uXXrlrC3txdVqlQRW7ZsEQcPHhQDBgwQAMSiRYuEEELEx8eLjRs3CgBi1qxZIjQ0VISGhoqHDx8KIYQYNmyYsLCwEDVr1hRLliwRx44dE7NnzxYymUzMmzcv13MRGhoqOnfuLKytrVXbjY2NFQ8ePBAAxMaNG7OsA0DMmTNH9fecOXMEAFGjRg0xe/ZsERwcLJYtWyYsLS3FiBEj1NYdMmSIkMlkYtSoUWLfvn3i0KFD4quvvhLfffedEEKIy5cvi8qVK4uGDRuq4rl8+bIQQmQbU37Ps/L8Va5cWXz88cfiyJEjYv369aJkyZKidevWajEqy2Z37O/y8PAQbm5uokKFCmLDhg0iKChIDBo0SAAQ3377rapcbGyscHNzE2XKlBFr1qwRhw8fFhMmTBAAxNixY3M9vz179hQVKlQQ6enpauU++OADUa5cOZGWllag6yCXy0WHDh2EmZmZ+PLLL8XRo0fFkiVLhK2trWjYsKFITk5WOz53d3dRp04d1fu9SZMmwtzcXMyePVs0b95c/Pbbb2LPnj2ievXqwtnZWbx580a1vjKmzP7v//5PLF++XBw8eFCcOnVKrFmzRlSqVCnLdchu3XfduHFDzJo1S3W9QkNDxb1794QQis+Fh4eHqmxoaKiwtrYWnTt3Vr23bty4keO2k5KSRL169YStra1YsmSJOHr0qPjyyy+FmZmZ6Ny5sxBCiOTkZBEaGioaNmwoKleurNpufHx8jtsdNmyYkMlk4rPPPhNHjx4Vy5YtE25ubsLBwUEMGzZMVe7JkyeifPnywsPDQ6xdu1YcO3ZM/N///Z+wtLQUw4cPV5V79eqVqFq1qihVqpRYuXKlOHLkiJg8ebKoVKlSlvfxsGHDhLm5uahYsaJYuHChOH78uDhy5IjIyMgQHTt2FLa2tmLevHkiODhYrF+/Xri5uYlatWqpXdOvvvpKyGQy8eGHH4rff/9d/Pbbb8LHx0fY2trmej6zY2trq3bMOfn1118FAHHy5MkCbZ8Kj8lRMWRnZycmTZqUaxlfX18BQFy8eFG1LC4uTpiamgpra2u1ROjKlSsCgPj+++9Vy5o2bSrKli0rEhMTVcvS09NFnTp1hLu7u5DL5UIIIfr37y8sLS1FVFSU2v47deokbGxsxMuXL4UQQly4cCHHG/awYcMEAPHLL7+oLe/cubOoUaNGHmdDsb6tra3assIkR4sXL1YrN27cOGFlZaU61pCQEAFAzJw5M9d4ateuLXx9fbMszy6m/J5nZcIzbtw4tW0uXrxYABBPnjxRLdu8ebMwNTUVmzdvzjVOIRTJg0wmE1euXFFb3r59e+Hg4CBev34thBBi+vTpAoD4888/1cqNHTtWyGQycfv2bdWyd8/vyZMnBQCxZ88e1bJHjx4JMzMzteQ3v9fh8OHD2ZbbuXOnACDWrVundnzW1tYiOjpatUz5fnd1dVUdnxBC7N27VwAQ+/fvzxJTTuRyuUhLSxOnT58WAMTVq1fzva6S8tpeuHBBbfm7yZEQ+b8ZCyHEmjVrsv1cLVq0SAAQR48eVS3z9fUVtWvXznOb4eHhAoCYPHmy2vKtW7cKAGqxjRkzRtjZ2YnIyEi1skuWLBEAVInIypUrBQBx6NAhtXJjxozJNjkCIDZs2KBWdvv27QKA2L17t9py5ffOqlWrhBBCREVFCTMzM/Hxxx+rlUtMTBQuLi6ib9++eZ6DzJgc6S/W2xVDjRs3xqZNm7BgwQKcP38eaWlp2ZZzdXWFl5eX6u9SpUqhbNmyaNCgAcqVK6daXrNmTQBAZGQkAOD169f4888/0adPH7VRZKamphgyZAiio6Nx+/ZtAMCJEyfQtm1blC9fXm3fw4cPx5s3b/LdmVUmk6Fr165qy+rVq6eKSRe6deuWZf/JycmIjY0FABw6dAgAMH78eI3sryDnObcYAaidp6FDhyI9PR1Dhw7NVxy1a9dG/fr11ZYNHDgQCQkJuHz5MgDFda5Vq5ZanxhAcZ2FEDhx4kSO2/fz80P9+vWxcuVK1bI1a9ZAJpNh9OjRWcrndR2U+3p3lNAHH3wAW1tbHD9+XG15gwYN4Obmpvpb+X738/NT66vy7ucgJ/fv38fAgQPh4uICU1NTmJubw9fXFwAQHh6e67q6dOLECdja2qJPnz5qy5Xn7d3zlB8nT54EgCx9k/r27QszM/UusL///jtat26NcuXKIT09XfXTqVMnAMDp06dVv+3t7dGxY0e19QcMGJBjHL17986yrxIlSqBr165q+2rQoAFcXFxUzYRHjhxRfTYyl7OysoKvry9HkxkRdsguhnbu3IkFCxZg/fr1+PLLL2FnZ4eePXti8eLFcHFxUZUrVapUlnUtLCyyLFeOuEhOTgYAvHjxAkIIuLq6ZllfmVTFxcWpfuenXF5sbGxgZWWltszS0lIVky6ULl06y/4BICkpCYCir5epqanaOS6Kgpzn/MZYGNkdj3JZ5uv87rDy3OJ818SJEzFq1Cjcvn0blStXxo8//og+ffpku++8jjEuLg5mZmYoU6aMWjmZTAYXF5csseT0fs/rc5CdV69eoWXLlrCyssKCBQtQvXp12NjY4OHDh+jVq1eRroOmxcXFwcXFJUufqbJly8LMzCzfn813twlkfc+YmZlluW5Pnz7FgQMHYG5unu22nj17ptqms7NzltezWwYoviscHByy7Ovly5c5jh5T7uvp06cAoOoD+S72EzIeTI6KIScnJ6xYsQIrVqxAVFQU9u/fj+nTpyM2NjbbjtUFVbJkSZiYmODJkydZXlN2/nVycgKguJHlp5yuKROtdzt0F+aGoFSmTBlkZGQgJiYm24SmoApynrUpJiYmx2XKG15Rr/PAgQMxbdo0rFy5Ek2bNkVMTEyha+BKly6N9PR0/Pvvv2oJkhACMTExOd74NOHEiRN4/PgxTp06paotApClI7g+KF26NP78808IIdQSpNjYWKSnpxfqvaV8P8TExKjVxqWnp2f5bDk5OaFevXr46quvst2WMrEuXbp0th26s3tfAsj22VHKAQo5ff/Z29urygGK0WMeHh7ZliXjwDS3mKtQoQImTJiA9u3bq5pAisrW1hZNmjTBb7/9pvY/Yblcjp9//hnu7u6oXr06AKBt27aqG0ZmW7ZsgY2NjWrouiZqOArC2dkZVlZWuHbtmtryffv2FXqbyuaA1atX51rO0tIyX8dZkPOsTTdu3MDVq1fVlm3btg329vZo1KgRAMV1vnnzZpb32JYtWyCTydC6detc92FlZYXRo0dj8+bNWLZsGRo0aIDmzZsXKl7l6KSff/5Zbfnu3bvx+vVrrT5TRnljVr6fldauXau1fWaW3/cWoDhPr169yvJcpC1btqheLyjl6LitW7eqLf/ll1+yjEDr0qWL6hEB3t7eWX6UyZGvry8SExNVzdZKO3bsyHdcXbp0QVxcHDIyMrLdV40aNQAAHTp0gJmZGf75559sy3l7exf0lJCeYs1RMRMfH4/WrVtj4MCB8PT0hL29PS5cuIDDhw+jV69eGtvPwoUL0b59e7Ru3RpTp06FhYUFVq1ahb///hvbt29X3STmzJmj6lswe/ZslCpVClu3bsXBgwexePFiODo6AlA8s8Xa2hpbt25FzZo1YWdnh3Llyqn1fdIkmUyGwYMHY8OGDahSpQrq16+Pv/76C9u2bSv0Nlu2bIkhQ4ZgwYIFePr0Kbp06QJLS0uEhYXBxsYGH3/8MQCgbt262LFjB3bu3InKlSvDysoKdevWzXab+T3PBbFlyxZ8+OGH2LBhQ776HZUrVw7dunXD3Llz4erqip9//hnBwcFYtGiRqk/O5MmTsWXLFrz//vuYP38+PDw8cPDgQaxatQpjx47NVxI3btw4LF68GJcuXcL69esLfFxK7du3R4cOHTBt2jQkJCSgefPmuHbtGubMmYOGDRtiyJAhhd52Xpo1a4aSJUsiICAAc+bMgbm5ObZu3ZoludSWunXr4tSpUzhw4ABcXV1hb2+vuvG/a+jQoVi5ciWGDRuGiIgI1K1bF2fPnsXXX3+Nzp07o127dgXef82aNTF48GCsWLEC5ubmaNeuHf7++28sWbIkS1PX/PnzERwcjGbNmmHixImoUaMGkpOTERERgaCgIKxZswbu7u4YNmwYli9fjsGDB2PBggWoWrUqDh06hCNHjgDIX1NX//79sXXrVnTu3BmffPIJGjduDHNzc0RHR+PkyZPo3r07evbsiYoVK2L+/PmYOXMm7t+/j44dO6JkyZJ4+vQp/vrrL9ja2mLevHm57uv06dOqxwNkZGQgMjISu3btAqBI9JS1mW/evEFQUBAA4Pz586p1nz17BltbW9V/tkhLJO0OTjqXnJwsAgICRL169YSDg4OwtrYWNWrUEHPmzFEbeZPT6BMPDw/x/vvvZ1kOQIwfP15t2ZkzZ0SbNm2Era2tsLa2Fk2bNhUHDhzIsu7169dF165dhaOjo7CwsBD169fPdpTY9u3bhaenpzA3N1cb0ZTdaDMh8j/aJ6f14+PjxahRo4Szs7OwtbUVXbt2FRERETmOVvv333/V1leOInrw4IFqWUZGhli+fLmoU6eOsLCwEI6OjsLHx0ftvERERAh/f39hb28vAKhGHOU0gi4/5zmnEU3KkWCZR8EUdCj/+++/L3bt2iVq164tLCwsRMWKFcWyZcuylI2MjBQDBw4UpUuXFubm5qJGjRri22+/FRkZGWrl3j2/mfn5+YlSpUqpDa1WKsh1SEpKEtOmTRMeHh7C3NxcuLq6irFjx4oXL15ke3zvyu79rrw+mR9hkN178Ny5c8LHx0fY2NiIMmXKiFGjRonLly9nOefaGK125coV0bx5c2FjYyMAZDsqMrO4uDgREBAgXF1dhZmZmfDw8BAzZsxQe9yBEPkfrSaEECkpKeLTTz8VZcuWFVZWVqJp06YiNDRUeHh4ZBm59e+//4qJEyeKSpUqCXNzc1GqVCnh5eUlZs6cKV69eqUqFxUVJXr16iXs7OyEvb296N27twgKChIAxL59+9TOSXafdSGESEtLE0uWLBH169cXVlZWws7OTnh6eooxY8aIu3fvqpXdu3evaN26tXBwcBCWlpbCw8ND9OnTRxw7dizP41eOBM7uJ/PnUPl+yu7n3etKmicTQghtJ2BEZJwqVqyIOnXqqB6KqE2xsbHw8PDAxx9/zOkpKE9ff/01Zs2ahaioKK0/pZyMD5vViEivRUdH4/79+/j2229hYmKCTz75ROqQSM/873//AwB4enoiLS0NJ06cwPfff4/BgwczMaJCYXJERHpt/fr1mD9/PipWrIitW7eqjXIiAhTD85cvX46IiAikpKSgQoUKmDZtGmbNmiV1aGSg2KxGRERElInkQ/lDQkLQtWtXlCtXDjKZLMuw0eycPn0aXl5eqkku16xZo/1AiYiIqFiQPDl6/fo16tevr2ozzsuDBw/QuXNntGzZEmFhYfjiiy8wceJE7N69W8uREhERUXGgV81qMpkMe/bsQY8ePXIsM23aNOzfv19tDqKAgABcvXo13/NwEREREeXE4Dpkh4aGwt/fX21Zhw4dEBgYiLS0tGzn4UlJSVGbBkIul+P58+coXbp0oR6SR0RERLonhEBiYiLKlSun1bnsDC45iomJyTKhoLOzM9LT0/Hs2bNs56xauHBhnk8tJSIiIsPw8OFDrT6mweCSIyDrxIHKlsGcaoFmzJiBKVOmqP6Oj49HhQoV8PDhwyyPrCciA/LoEfDPP0CVKkBuQ/zzW46I9FpCQgLKly+vmgxYWwwuOXJxccky23JsbCzMzMxUMz6/y9LSMstEjwDg4ODA5IjIUAUGAqNHA3I5YGICrFsHjBxZ+HJEZDC03SVG8tFqBeXj44Pg4GC1ZUePHoW3t3e2/Y2IyAhFR79NeADF7zFjFMsLU46IKBPJk6NXr17hypUruHLlCgDFUP0rV64gKioKgKJJLPPM4AEBAYiMjMSUKVMQHh6ODRs2IDAwEFOnTpUifCKSwt27bxMepYwM4N69wpUjIspE8ma1ixcvonXr1qq/lX2Dhg0bhk2bNuHJkyeqRAkAKlWqhKCgIEyePBkrV65EuXLl8P3336N37946j52IJFKtmqKJLHPiY2oKVK1auHJERJno1XOOdCUhIQGOjo6Ij49nnyMiQxUYqGgiy8hQJDxr1+bc5yg/5YhI7+nq/s3kiMkRkeGKjlY0kVWtCuQ2rDe/5YhIr+nq/i15sxoRUaG5u+cv2clvOSIi6EGHbCIiIiJ9wuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IiIiIMmFyRERERJQJkyMiIiKiTJgcEREREWXC5IiIiIgoEyZHRERERJkwOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiIiIiCgTJkdEREREmTA5IiIiIsqEyRER6Z/oaODkScXv4rRvItILTI6ISL8EBgIeHkCbNorfgYHFY99EpDdkQgghdRC6lpCQAEdHR8THx8PBwUHqcIhIKTpakZTI5W+XmZoCERGAu7vx7puI8kVX92/WHBGR/rh7Vz05AYCMDODePePeNxHpFSZHRKQ/qlUDTN75WjI1BapWNe59E5FeYXJERPrD3R1Yt06RlACK32vX6qZZS8p9E5FeYZ8j9jki0j/R0YrmrKpVdZ+cSLlvIsqVru7fZlrbMhFRYbm7S5eYSLlvItILTI6IyOAlJSXh4MGDOH36NG7duoWUlBTY2dmhTp066NChA/z8/GCqbC4jIsoDm9XYrEZksOLj47Fs2TKsWLECCQkJOZZzd3fHrFmz8OGHH8Lc3FyHERKRJunq/s3kiMkRkUEKDg7GiBEj8OjRIwCAh4cHevbsifr168Pe3h7Pnj3DhQsXsGfPHjx//hwA0KhRI/z000+oVauWlKETUSExOdIiJkdEhksIgYULF2LmzJkAgCpVquCbb75Br169YPLuUHwAycnJWLduHebNm4fnz5/D2toaW7duRc+ePXUdOhEVER8CSUT0DiEExo0bp0qMAgICcPXqVfTp0yfbxAgArKysMHHiRFy/fh3t27dHUlISevfujdWrV+sydCIyIEyOiMggCCEwdepUrFmzBiYmJvjf//6H1atXw9bWNl/rlytXDkFBQRg7dqwqyVq/fr2WoyYiQ8TkiIgMwtdff41ly5YBANavX4/x48cXeBtmZmZYuXIlpkyZAgAYPXo0Dh06pNE4icjwMTkiIr33+++/Y9asWQCA7777DiNGjCj0tmQyGZYsWYIPP/wQQggMGDAAt2/f1lSoRGQEmBwRkV77559/MHjwYADAhAkTMHHixCJvUyaTYfXq1WjevDni4+PRvXt3vHr1qsjbJSLjwOSIiPRWWloa+vXrh/j4ePj4+GDp0qUa27aFhQV2794Nd3d33L59G1OnTtXYtonIsDE5IiK9tWjRIly6dAklS5bEr7/+CgsLC41u39nZGZs3bwYArF27FkFBQRrdPhEZJiZHRKSXrl27hvnz5wMAvv/+e7i5uWllP23atMGkSZMAACNHjsTLly+1sh8iMhxMjohI78jlcowaNQppaWno1q0bBg0apNX9ff3116hRowZiYmLw5ZdfanVfRKT/mBwRkd7ZvHkzLly4AHt7e6xZswYymUyr+7O2tsaqVasAAKtWrcLly5e1uj8i0m9MjohIr8THx2P69OkAgNmzZ8PV1VUn+23Tpg369+8PuVyO8ePHQy6X62S/RKR/mBwRkV5ZsGABYmNjUb16dY0M2y+IJUuWwM7ODufPn8evv/6q030Tkf5gckREeuPhw4f44YcfAADLly/X+Oi0vLi5ueGzzz4DAMyaNQtpaWk63T8R6QcmR0SkN/7v//4PKSkp8PX1RadOnSSJYcqUKShbtizu3bvHudeIiikmR0SkF+7evYsNGzYAAL766iutd8LOiZ2dnWrE2rx58/DmzRtJ4iAi6TA5IiK9MG/ePGRkZKBz585o3ry5pLGMHj0aFStWxNOnTxEYGChpLESke0yOiEhy9+/fx/bt2wEomtakZmFhgWnTpgEAFi9ejNTUVIkjIiJdYnJERJJbunQp5HI5OnTogEaNGkkdDgBg+PDhcHV1RXR0NH7++WepwyEiHWJyRESSevr0qaqvkfL5RvrAysoKn376KQDgm2++QUZGhsQREZGuMDkiIkl9//33SE5ORpMmTeDr6yt1OGrGjBmDUqVK4e7du3zuEVExwuSIiCSTmJiomrZj2rRpko1Qy4mdnZ3qQZQrVqyQNhgi0hkmR0Qkmc2bN+Ply5eoUaMGunfvLnU42QoICICFhQX+/PNP/Pnnn1KHQ0Q6wOSIiCQhhMD//vc/AMDHH38MExP9/DpydnZG//79AUD19G4iMm76+W1EREbv+PHjuH37Nuzt7TF06FCpw8mVsmntl19+wZMnTySOhoi0jckREUlCWWs0bNgw2NvbSxxN7ry8vNCsWTOkpaVh7dq1UodDRFrG5IiIdC4iIgIHDhwAAIwfP17iaPJHWXu0Zs0aPhSSyMgxOSIinVuzZg3kcjnatWsHT09PqcPJl169esHV1RVPnz5VJXZEZJyYHBGRTqWlpWHjxo0AgHHjxkkcTf6Zm5tj+PDhAID169dLGwwRaRWTIyLSqYMHDyI2NhbOzs7o0qWL1OEUyIcffggAOHLkCKKioiSOhoi0RS+So1WrVqFSpUqwsrKCl5cXzpw5k2v5rVu3on79+rCxsYGrqytGjBiBuLg4HUVLREWhnCpk6NChMDc3lziagqlatSpat24NIYSq9ouIjI/kydHOnTsxadIkzJw5E2FhYWjZsiU6deqU4//Kzp49i6FDh2LkyJG4ceMGfv31V1y4cAGjRo3SceREVFBPnjxBUFAQgLe1MIZG+V0TGBjI+daIjJTkydGyZcswcuRIjBo1CjVr1sSKFStQvnx5rF69Otvy58+fR8WKFTFx4kRUqlQJLVq0wJgxY3Dx4kUdR05EBbVlyxZkZGSgWbNmBtMR+129evVCyZIl8fDhQxw9elTqcIhICyRNjlJTU3Hp0iX4+/urLff398e5c+eyXadZs2aIjo5GUFAQhBB4+vQpdu3ahffffz/H/aSkpCAhIUHth4h0SwiBDevWAQBG9uwpcTSFZ2VlhcGDBwMAtnz7LRAdLXFERKRpkiZHz549Q0ZGBpydndWWOzs7IyYmJtt1mjVrhq1bt6Jfv36wsLCAi4sLSpQoketj/RcuXAhHR0fVT/ny5TV6HESUt9AvvsCd+/dhC+CDzz8HAgOlDqnQhjo6AgD2njyJhAoVDPpYiCgryZvVAGSZiVsIkePs3Ddv3sTEiRMxe/ZsXLp0CYcPH8aDBw8QEBCQ4/ZnzJiB+Ph41c/Dhw81Gj8R5SE6Glu/+QYA0BuAvRDAmDGGWesSHQ2vr75CDQDJAPYY8rEQUbbMpNy5k5MTTE1Ns9QSKYf5ZmfhwoVo3rw5PvvsMwBAvXr1YGtri5YtW2LBggVwdXXNso6lpSUsLS01fwBElC9p4eH45b9/D1QuzMgA7t0D3N0liqqQ7t6FTAgMAjAbwM8AhhnqsRBRtiStObKwsICXlxeCg4PVlgcHB6NZs2bZrvPmzZsss3ebmpoCUNQ4EZH+CX7yBM8AlAXQVrnQ1BSoWlW6oAqrWjXAxASD/vvzBIDHJiaGeSxElC3Jm9WmTJmC9evXY8OGDQgPD8fkyZMRFRWlaiabMWOG2ozdXbt2xW+//YbVq1fj/v37+OOPPzBx4kQ0btwY5cqVk+owiCgX2/4b1dVPJlNUV5uaAmvXGmZNi7s7sG4dKpuaohkAOYAdffoY5rEQUbYkbVYDgH79+iEuLg7z58/HkydPUKdOHQQFBcHDwwOA4rkomZ95NHz4cCQmJuJ///sfPv30U5QoUQJt2rTBokWLpDoEIsrF69evsXfvXgDAoH37AHt7RS2LIScTI0cCHTpg8NKlOLdiBX6+exdTpI6JiDRGJophW1RCQgIcHR0RHx8PBwcHqcMhMmrbt2/HwIEDUaVKFdy9ezfHwRaGKC4uDi4uLkhPT8fff/+N2rVrSx0SkVHT1f1b8mY1IjJuW7duBQAMHDjQqBIjAChdujQ6deoEQJEEEpFxYHJERFoTFxeHI0eOAFAkR8aof//+AIBff/2Vg0KIjASTIyLSmr179yI9PR0NGjQw2OlC8tK1a1dYWlrizp07uH79utThEJEGMDkiIq3ZtWsXAOCDDz6QOBLtsbe3R8eOHQG8PV4iMmxMjohIK168eIFjx44BAPr06SNxNNqlPD42rREZByZHRKQVBw4cQHp6OurUqYPq1atLHY5Wde3aFRYWFrh16xZu3LghdThEVERMjohIK5RNTMZeawQAjo6O6NChAwBF7RERGTYmR0SkcQkJCapRasUhOQLe9qtivyMiw8fkiIg07vfff0dqaio8PT1Rq1YtqcPRiW7dusHc3Bw3b97EzZs3pQ6HiIqAyRERadzu3bsBAL179za6Bz/mxNHREf7+/gBYe0Rk6JgcEZFGvX79GocOHQJQfJrUlHr16gUA2L9/v8SREFFRMDkiIo06evQokpKSULlyZdSvX1/qcHTq/fffh0wmw6VLlxAdHS11OERUSEyOiEijlLUm3bt3LzZNakrOzs7w8fEBwNojIkPG5IiINCYjIwO///47AEUH5eKoe/fuAIB9+/ZJHAkRFRaTIyLSmPPnz+PZs2coWbIkmjdvLnU4klAmRydPnkR8fLzE0RBRYTA5IiKNUTYlde7cGebm5hJHI40aNWqgRo0aSEtLUz3riYgMC5MjItIYZXJUXJvUlNi0RmTYmBwRkUbcuXMHt27dgrm5uWoqjeJKmRwGBQUhLS1N4miIqKCYHBGRRhw4cAAA4OfnB0dHR4mjkVbTpk1RpkwZvHz5EiEhIVKHQ0QFxOSIiDSCTWpvmZqaomvXrgDYtEZkiJgcEVGRxcXF4ezZswCgSgqKO2W/o/3790MIIXE0RFQQTI6IqMiCgoIgl8tRv359eHh4SB2OXmjXrh0sLS0RGRmJ8PBwqcMhogJgckRERabsb8Rao7dsbGzQunVrAIrkkYgMB5MjIiqS9PR0HD16FADQpUsXiaPRL507dwbA5IjI0DA5IqIiCQ0NRXx8PEqXLg1vb2+pw9ErnTp1AgCcOXMGCQkJEkdDRPnF5IiIiuTQoUMAgI4dO8LU1FTiaPRL1apVUb16daSnp+PYsWNSh0NE+cTkiIiKRNlkpKwlIXXKpjVlEklE+o/JEREV2uPHj3H16lXIZLJi/1TsnCiTxqCgIA7pJzIQTI6IqNAOHz4MAHjvvffg5OQkcTT6qVWrVrCxscHjx49x7do1qcMhonxgckREhaZsKlI2HVFWVlZWaNu2LQCOWiMyFEyOiKhQ0tLSEBwcDID9jfLCIf1EhoXJEREVinIIv5OTE4fw50GZPIaGhuLFixcSR0NEeWFyRESFomxS69ChA0xM+FWSGw8PD9SqVQsZGRmq2jYi0l/8RiOiQmF/o4Jh0xqR4WByREQFlnkIv7+/v9ThGITMzzuSy+USR0NEuWFyREQFphzC37hxYw7hz6fmzZvD1tYWsbGxuH79utThEFEumBwRUYEpkyOOUss/CwsL+Pn5AYBqol4i0k9MjoioQDIyMnD8+HEAYJNaASnPFztlE+k3JkdEVCCXL1/G8+fP4ejoiPfee0/qcAyKMjkKCQlBUlKSxNEQUU6YHBFRgShrPdq0aQMzMzOJozEsNWrUgLu7O1JSUnDmzBmpwyGiHDA5IqICUSZH7du3lzgSw5N5dB/7HRHpLyZHRJRvr1+/xh9//AHgneQoOho4eVLxm9S9c27Y74hI/zE5IqJ8CwkJQVpaGipWrIgqVaooFgYGAh4eQJs2it+BgdIGqU+yOTdt27aFTCbDtWvX8OTJE6kjJKJsMDkionzL3KQmk8kUtSGjRwPKhxrK5cCYMaxBAnI8N07JyWjUqBEA4NixYxIGSEQ5YXJERPmm7CejalK7e/ftzV8pIwO4d0/HkemhXM4Nm9aI9BuTIyLKl8ePH+PGjRuQyWRo06aNYmG1asC7k86amgJVq+o+QH2Ty7lRJpdHjx6FEEKC4IgoN0yOiChflE1A3t7eKF26tGKhuzuwbp3ipg8ofq9dq1he3OVybpo1awYbGxs8ffqUU4kQ6SEmR0SULzkO4R85EoiIUIzIiohQ/E0KOZwbS0tL1VQibFoj0j9MjogoT0IIVc1Rts83cncH/PxYY5SdHM4Nn3dEpL+YHBFRnv7++2/ExMTAxsYGPj4+UodjFJRJJqcSIdI/TI6IKE/Kph9fX19YWlpKHI1xqFmzJtzc3JCcnIyzZ89KHQ4RZcLkiIjylGUIPxWZTCZTnc/jx49LHA0RZcbkiIhylZycjJCQEABMjjStbdu2AJgcEekbJkdElKtz584hKSkJrq6uqF27ttThGBXl86IuXbqEFy9eSBwNESkxOSKiXGWZMoQ0ply5cvD09IQQAqdOnZI6HCL6D5MjIsrViRMnALxtAiLNUp5X5XkmIukxOSKiHMXHx+PixYsA3jYBkWax3xGR/mFyREQ5OnPmDORyOapVqwZ3PuBRK3x9fSGTyRAeHo7Hjx9LHQ4RgckREeXi5MmTAIDWrVtLHInxKlWqFBo1agTg7fkmImkxOSKiHCn7wbBJTbvYtEakX5gcEVG24uLicPXqVQBQTZJK2qFMPo8fPw4hhMTREBGTIyLK1unTpyGEQO3ateHs7Cx1OEatRYsWMDc3R1RUFP755x+pwyEq9pgcEVG22KSmO7a2tqoJfTmkn0h6epEcrVq1CpUqVYKVlRW8vLxw5syZXMunpKRg5syZ8PDwgKWlJapUqYINGzboKFqi4oGdsXWL/Y6I9IfkydHOnTsxadIkzJw5E2FhYWjZsiU6deqEqKioHNfp27cvjh8/jsDAQNy+fRvbt2+Hp6enDqMmMm4xMTG4efMmZDIZfH19pQ6nWFDW0J04cQJyuVziaIiKN5mQuPdfkyZN0KhRI6xevVq1rGbNmujRowcWLlyYpfzhw4fRv39/3L9/H6VKlSrUPhMSEuDo6Ij4+Hg4ODgUOnYiY7Vjxw4MGDAADRs2xOXLl6UOp1hITU1FqVKl8Pr1a1y9ehX16tWTOiQivaOr+7ekNUepqam4dOkS/P391Zb7+/vj3Llz2a6zf/9+eHt7Y/HixXBzc0P16tUxdepUJCUl5biflJQUJCQkqP0QUc7Y30j3LCws0KpVKwBsWiOSmqTJ0bNnz5CRkZFlJIyzszNiYmKyXef+/fs4e/Ys/v77b+zZswcrVqzArl27MH78+Bz3s3DhQjg6Oqp+ypcvr9HjIDI27G8kjcxD+olIOpL3OQKQZaZvIUSOs3/L5XLIZDJs3boVjRs3RufOnbFs2TJs2rQpx9qjGTNmID4+XvXz8OFDjR8DkbGIiorCvXv3YGpqipYtW0odTrGi7JR9+vRppKWlSRwNUfElaXLk5OQEU1PTLLVEsbGxOT5XxdXVFW5ubnB0dFQtq1mzJoQQiI6OznYdS0tLODg4qP0QUfaUtUbe3t78rOhY/fr1UapUKbx69Uo14S8R6Z6kyZGFhQW8vLwQHBystjw4OBjNmjXLdp3mzZvj8ePHePXqlWrZnTt3YGJiwokxiTRAmRyxv5HumZiYqJoy2bRGJB3Jm9WmTJmC9evXY8OGDQgPD8fkyZMRFRWFgIAAAIomsaFDh6rKDxw4EKVLl8aIESNw8+ZNhISE4LPPPsOHH34Ia2trqQ6DyCgIIdgZW2J83hGR9MykDqBfv36Ii4vD/Pnz8eTJE9SpUwdBQUHw8PAAADx58kTtmUd2dnYIDg7Gxx9/DG9vb5QuXRp9+/bFggULpDoEIqNx//59PHz4EObm5jnW3pJ2KZOj0NBQJCUl8T99RBKQ/DlHUuBzjoiy9+OPP2L06NFo1aoVTp8+LXU4xZIQAuXLl8ejR49w/Phx1uARZVIsnnNERPqFQ/ilJ5PJ1J6WTUS6x+SIiACwv5E+YXJEJC0mR0QEALh16xaePn0KKysrNGnSROpwijVlzd1ff/2FxMREiaMhKn6YHBERgLe1FC1atIClpaXE0RRvHh4eqFKlCjIyMnDmzBmpwyEqdpgcERGAt8kR+xvpBzatEUmHyRERQS6X49SpUwDY30hfMDkikg6TIyLCtWvX8Pz5c9jb28Pb21vqcAhva/CuXLmCuLg4iaMhKl6YHBGRagh/y5YtYWYm+bNhCYCzszNq1aoFIQSfOUWkY0yOiIhD+PUUm9aIpMHkiKiYS09PR0hICAB2xtY3TI6IpMHkiKiYu3z5MhISElCyZEnUr19f6nAoE19fX8hkMoSHh+PJkydSh0NUbDA5IirmlLUSvr6+MDU1VX8xOho4eVLxm7Qrm3NdqlQpNGzYEMDbfmFEpH1MjoiKOeVNN0t/o8BAwMMDaNNG8TswUILoiolczjWb1oh0j8kRUTGWmpqKs2fPAngnOYqOBkaPBuRyxd9yOTBmDGuQtCGPc628Lqw5ItIdJkdExdhff/2FN2/eoGzZsqhVq9bbF+7efXuzVsrIAO7d022AxUEe57pFixYwMzPD/fv3ERERofv4iIohJkdExVjmKUNkMtnbF6pVA0ze+XowNQWqVtVhdMVEHufa3t4ejRs3BsDaIyJdYXJEVIwpb7ZZhvC7uwPr1ilu0oDi99q1iuWkWfk41+x3RKRbMiGEkDoIXUtISICjoyPi4+Ph4OAgdThEkkhKSkKJEiWQmpqKO3fuoFq1alkLRUcrmneqVmVipG25nOuTJ0+iTZs2KFeuHKKjo9Vr+YiKEV3dvzlPAFExFRoaitTUVLi5uaFqTs1l7u5MinQll3Pt4+MDS0tLPH78GHfu3EGNGjV0HBxR8cJmNaJiKvOUIayJ0G9WVlZo3rw5ADatEekCkyOiYipzZ2zSf+x3RKQ7TI6IiqHExERcuHABACebNRSZn3ckf3foPxFpFJMjomLo7NmzSE9PR+XKleHh4SF1OJQP3t7esLOzQ1xcHK5fvy51OERGjckRUTGU4xB+0lvm5uZo2bIlADatEWkbkyOiYihzZ2wyHOx3RKQbTI6IipkXL14gLCwMAGuODI0yOTp9+jTS09MljobIeBUpOYqNjUVMTIymYiEiHQgJCYFcLoenpydcXV2lDocKoH79+ihZsiQSExNx6dIlqcMhMlqFSo6uXbuG2rVrw9XVFW5ubnBzc8OsWbPw+vVrTcdHRBrGIfyGy9TUFH5+fgDYtEakTYVKjkaOHAlnZ2ecPXsWYWFhWLBgAQ4dOgRvb2+8ePFC0zESkQYpO2Ozv5FhYr8jIu0r1Nxqtra2uHTpEjw9PVXLhBD44IMPYGVlhZ9//lmjQWoa51aj4io2NhbOzs6qf5cpU0biiKigbt68idq1a8PKygovX76EpaWl1CER6Yyu7t+FqjnKroZIJpPh66+/xr59+zQSGBFp3qlTpwAo+q4wMTJMNWvWhLOzM5KTk/Hnn39KHQ6RUcp3cvT+++/jiy++wC+//IKAgABMnjwZT58+VSsTHx+PkiVLajxIItIMPt/I8MlkMjatEWmZWX4L1q1bF5cvX8bGjRtVSVHlypXRt29fNGjQABkZGdi4cSOWL1+utWCJqGj4fCPj0KZNG2zfvh0nTpzA3LlzpQ6HyOgUqs/R06dPERYWhitXrqh+7t27B1NTU9SoUQPXrl3TRqwawz5HVBxFR0ejfPnyMDExwfPnz+Ho6Ch1SFRI9+/fR5UqVWBubo4XL17A1tZW6pCIdEJX9+981xxl5uzsjI4dO6Jjx46qZUlJSbh69SquXr2qseCISHOUTWre3t5MjAxcpUqV4OHhgcjISPzxxx/w9/eXOiQio6KxJ2RbW1ujadOmGDNmjKY2SUQaxCY148F+R0TaxelDiIoBIQSTIyPD5IhIe5gcERUD9+/fR1RUFMzNzdG8eXOpwyENUI44vHTpEl6+fCltMERGhskRUTGgrF3w8fGBjY2NxNGQJri5uaF69eqQy+UICQmROhwio8LkiKgYYJOacWLTGpF2MDkiMnLsb2S8mBwRaQeTIyIjd/PmTcTGxsLa2hpNmjSROhzSID8/PwDA9evXERsbK20wREaEyRGRkVM+36hFixawsLCQOBrSpDJlyqBevXoA3s6bR0RFx+SIyMixSc24sWmNSPOYHBEZsYyMDFWNApMj48TkiEjzmBwRGbGrV6/ixYsXcHBwQKNGjaQOh7SgVatWMDExwd27dxEdHS11OERGgckRkRFT1ib4+vrCzKxQUymSnnN0dIS3tzeAt/3LiKhomBwRGTH2Nyoe2LRGpFlMjoiMVFpamurJyVmSo+ho4ORJxW8yLNlcu8zJkRBCqsiIjAaTIyIjdeHCBbx+/RpOTk6oU6fO2xcCAwEPD6BNG8XvwEDpgqSCyeHaNW/eHObm5oiKisL9+/clDpLI8DE5IjJSyiaW1q1bw8Tkv496dDQwejQglyv+lsuBMWNYg2QIcrl2NjY28PHxAcCmNSJNYHJEZKSy7W909+7bm6tSRgZw754OI6NCyePasd8RkeYwOSIyQsnJyTh37hyAd5KjatUAk3c+9qamQNWqOoyOCiWPa8d+R0Saw+SIyAiFhoYiJSUFbm5uqFat2tsX3N2BdesUN1VA8XvtWsVy0m95XLvGjRvD2toasbGxuHnzpoSBEhk+JkdERujYsWMAFP2NZDKZ+osjRwIREYoRTxERir/JMORy7SwtLdGiRQsAbFojKiomR0RGSJkctWvXLvsC7u6Anx9rjAxRLteO/Y6INIPJEZGRefHiBS5evAggl+SIjJIyOTp16hQyMjIkjobIcDE5IjIyJ0+ehFwuR82aNeHm5iZ1OKRDjRo1goODA16+fIkrV65IHQ6RwWJyRGRkgoODAQDt27eXOBLSNTMzM/j6+gJg0xpRUTA5IjIyTI6KN/Y7Iio6JkdERuTBgwf4559/1GoQqHhRJkdnzpxBamqqxNEQGSYmR0RGRDlKrWnTprC3t5c4GpJCnTp14OTkhNevX+PChQtSh0NkkJgcERkRZZMaR6kVXyYmJmjdujUARed8Iio4vUiOVq1ahUqVKsHKygpeXl44c+ZMvtb7448/YGZmhgYNGmg3QCIDIJfLcfz4cQDsb1Tcsd8RUdFInhzt3LkTkyZNwsyZMxEWFoaWLVuiU6dOiIqKynW9+Ph4DB06FG3bttVRpET6LSwsDM+fP4e9vT3ee+89qcMhCSmTo3PnziEpKUniaIgMj+TJ0bJlyzBy5EiMGjUKNWvWxIoVK1C+fHmsXr061/XGjBmDgQMHwsfHR0eREum3zFOGmJubSxwNSalatWpwc3NDSkoKQkNDpQ6HyOBImhylpqbi0qVL8Pf3V1vu7++vmlE8Oxs3bsQ///yDOXPm5Gs/KSkpSEhIUPshMjbsb0RKMpmMTWtERSBpcvTs2TNkZGTA2dlZbbmzszNiYmKyXefu3buYPn06tm7dCjMzs3ztZ+HChXB0dFT9lC9fvsixE+mTpKQknD17FgD7G5GCMjlS1igSUf5J3qwGIMus4UKIrDOJA8jIyMDAgQMxb948VK9ePd/bnzFjBuLj41U/Dx8+LHLMRPrk7NmzSElJgZubG2rUqCF1OKQHlDWIFy5cwPPnzyWOhsiwSJocOTk5wdTUNEstUWxsbJbaJABITEzExYsXMWHCBJiZmcHMzAzz58/H1atXYWZmlmP1saWlJRwcHNR+iIxJ5qdiZ/cfCyp+3N3dUbt2bcjlctYeERWQpMmRhYUFvLy8VF/sSsHBwWjWrFmW8g4ODrh+/TquXLmi+gkICECNGjVw5coVNGnSRFehE+kV5c2P/Y0osw4dOgAAjhw5InEkRIYlf512tGjKlCkYMmQIvL294ePjg3Xr1iEqKgoBAQEAFE1ijx49wpYtW2BiYoI6deqorV+2bFlYWVllWU5UXPz7778ICwsDwOSI1HXo0AHLli3DkSNHcuyuQERZSZ4c9evXD3FxcZg/fz6ePHmCOnXqICgoCB4eHgCAJ0+e5PnMI6LiTPngx7p162bbHE3FV8uWLWFlZYVHjx7h5s2bqF27ttQhERkEveiQPW7cOERERCAlJQWXLl1Cq1atVK9t2rQJp06dynHduXPn4sqVK9oPkkhPKZtMOEqN3mVtba2agJhNa0T5pxfJEREVjhAChw8fBgB06tRJ4mhIH7HfEVHBMTkiMmDXrl1DTEwMbGxs0KJFC6nDIT2kTI5CQkI4lQhRPjE5IjJgylqj1q1bw8rKSuJoSB/VrFkT7u7uSE5ORkhIiNThEBkEJkdEBoxNapQXmUzGpjWiAmJyRGSgEhMTVVOGdOzYUbEwOho4eVLxm4q3TO8FJkdEBcPkiMhAnThxAunp6ahatSqqVKkCBAYCHh5AmzaK34GBUodIUnnnvdD28WOYmJjg5s2bnD6JKB+YHBEZKGWTWseOHRW1BKNHA3K54kW5HBgzhjVIxVE274VSn36K9+rXBwAcPXpUwuCIDAOTIyIDlHkIf8eOHYG7d9/eDJUyMoB79ySIjiSVw3uhQ926ANi0RpQfTI6IDNCdO3cQEREBCwsL+Pn5AdWqASbvfJxNTYGqVSWJjySUw3uhQ8+eABTz8GVkZEgQGJHhYHJEZICUtUatWrWCra0t4O4OrFunSIgAxe+1axXLqXjJ4b3QuEsXlChRAi9evMBff/0lbYxEeo7JEZEBUmtSUxo5EoiIUIxQiohQ/E3FUzbvBTMzM/j7+wMADh48KGl4RPqOyRGRgUlKSlLNN6iWHAGKWgM/P9YYUbbvhffffx8AkyOivDA5IjIwISEhSE5Ohru7O2rVqiV1OGRAOnXqBJlMhitXruDRo0dSh0Okt5gcERkY5f/6O3bsCJlMJnE0ZEjKlCmDJk2aAGDtEVFumBwRGRAhBA4cOAAA6Nq1q8TRkCFi0xpR3pgcERmQmzdvIiIiApaWlmjbtq3U4ZABUiZHx44dQ3JyssTREOknJkdEBuT3338HALRp00YxhJ+ogBo0aIBy5crhzZs3OH36tNThEOklJkdEBkSZHLFJjQpLJpOxaY0oD0yOiAxEXFwczp07B+Bt0whRYSjfP7///juEEBJHQ6R/mBwRGYjDhw9DLpejXr16qFChgtThkAFr27YtLCws8ODBA9y6dUvqcIj0DpMjIgOhHKXWpUsXiSMhQ2dnZ4fWrVsDYNMaUXaYHBEZgLS0NNWUIUyOSBPY74goZ0yOiAzAH3/8gfj4eDg5OaFx48ZSh0NGQJkcnT17Fi9fvpQ2GCI9w+SIyAAoR6l17twZpsrZ1omKoHLlyqhZsybS09Nx6NAhqcMh0itMjoj0XOanYrNJjTSpR48eAIC9e/dKGgeRvmFyRKTnwsPDcefOHVhYWKBDhw5Sh0NGpGfPngCAoKAgpKSkSBwNkf5gckSk5/bs2QMAaNeuHRwcHCSOhoyJl5cX3Nzc8OrVKxw/flzqcIj0BpMjIj23Z+dOAEBPPz9pAyGjY2Jigu7/zdG3d+tWiaMh0h9Mjoj0WNTixbh0/TpMAHSbNg0IDJQ6JDImgYHo8dNPAIB927Yh48cfJQ6ISD/IRDF8dnxCQgIcHR0RHx/PZgrSX9HR+L5CBXwiBFoCCAEAU1MgIgJwd5c2NjJ80dGAhwdS5XKUBRAP4A8TEzSLjOT7i/SWru7frDki0ld372LPf/936alclpEB3LsnWUhkRO7eBeRyWABQjoHcI5fz/UUEJkdEeutZ6dKK2iJkSo5MTYGqVSWKiIxKtWqAieIW0OO/RXsAiCpVpIqISG8wOSLSUwcuXYIcQAMAFQFFYrR2LZs8SDPc3YF16wBTU3QAYAngHwA3ExIkDoxIekyOiPSUcgh/z08/BU6eVPQ1GjlS2qDIuIwcCUREwP7kSbT7b9Sa8n1HVJwxOSLSQ69evcLRo0cBAD2HDQP8/FhjRNrh7g74+aHngAEAgF27dkkcEJH0mBwR6aFDhw4hJSUFVapUQZ06daQOh4qBHj16wMzMDFevXsXt27elDodIUkyOiPTQzv8e/NinTx/IZDKJo6HioHTp0mjXrh0A4Ndff5U4GiJpMTki0jOJiYk4ePAgAKBfv34SR0PFifL9pkzOiYorJkdEeubAgQNITk5GtWrV0KBBA6nDoWKke/fuMDc3x99//42bN29KHQ6RZJgcEemZX375BQDQt29fNqmRTpUsWRL+/v4A2LRGxRuTIyI9Eh8fj0OHDgFgkxpJI3PTWjGcXYoIAJMjIr2yb98+pKamombNmhylRpLo1q0bLCwsEB4ejhs3bkgdDpEkmBwR6RFlR9h+/fqxSY0k4ejoiI4dOwJ428RLVNwwOSLSE8+fP1c9+JFNaiQlNq1RccfkiEhP7N69G+np6ahXrx48PT2lDoeKsa5du8LKygp37txBWFiY1OEQ6RyTIyI98dNPPwEABg0aJHEkVNzZ29ujW7duAN6+L4mKEyZHRFKJjlZMKBsdjQcPHuDMmTOQyWQYOHCg1JERYciQIQCAbdu2IT09Xe39SmTsmBwRSSEwEPDwANq0ATw88PPkyQCAtm3bwp0TzJIe6NChA8qUKYPY2Fgc/fRTtfcrAgOlDo9Iq5gcEeladDQwejQglwMAhFyOn/btA/D2f+tEUjM3N8eAAQMAAD99/73q/Qq5HBgzhjVIZNSYHBHp2t27b280AP4CcBeAjZUVevXqJVlYRO9SJut7ASRkfiEjA7h3T4KIiHSDyRGRrlWrBpi8/eht+e93r86dYWdnJ01MRNnw8vJCzWrVkAxgV+YXTE2BqlUliopI+5gcEemauzuwbh1gaopUADv+WzxkzBgpoyLKQiaTYciIEQAA1Zg1U1Ng7VrF+5jISDE5IpLCyJFARAR+nzcPzwG4urqibdu2UkdFlIXy0RKnADzYtg2IiFC8f4mMGJMjIqm4u+PH0FAAwNChQ2FqaipxQERZVahQAe3btwcABN64wRojKhaYHBFJJDIyEkeOHAEAfPTRRxJHQ5Qz5ftzw4YNimceERk5JkdEEgkMDIQQAm3btkWVKlWkDocoR927d0eZMmXw5MkTHDx4UOpwiLSOyRGRBNLT07FhwwYArDUi/WdhYYHhw4cDAH788UdpgyHSASZHRBI4dOgQHj16hNKlS6NHjx5Sh0OUp1GjRgFQvHcfPnwocTRE2sXkiEgCyv99Dx8+HJaWlhJHQ5S36tWrw8/PD3K5XFXrSWSsmBwR6Vh0dLSq34byf+NEhmD06NEAgPXr17NjNhk1JkdEmpbH7OVr1qyBXC5Hq1at4OnpqePgiAqvZ8+eKF26NKKjo7F///6cC+bxGSDSd0yOiDQpMDDX2cuTk5Oxdu1aAMDEiROliJCo0KysrDDmvye5f/fdd9kXyuMzQGQIZEIIIXUQupaQkABHR0fEx8fDwcFB6nDIWERHK24GmSaVhamp4onC/z04b+PGjfjwww9RoUIF/PPPPzAzM5MmVqJCevToESpWrIj09HRcvnwZDRs2fPtiPj4DREWhq/u3XtQcrVq1CpUqVYKVlRW8vLxw5syZHMv+9ttvaN++PcqUKQMHBwf4+PioHqRHJKm7d9VvCoDa7OVCCHz//fcAgPHjxzMxIoPk5uaGDz74AEA2tUd5fAaIDIXkydHOnTsxadIkzJw5E2FhYWjZsiU6deqEqKiobMuHhISgffv2CAoKwqVLl9C6dWt07doVYWFhOo6c6B3VqgEm73ykMs1efubMGVy5cgXW1tbsiE0GbdKkSQCA7du34+nTp29fyOMzQGQwhMQaN24sAgIC1JZ5enqK6dOn53sbtWrVEvPmzct3+fj4eAFAxMfH53sdonxZv14IU1MhAMXv9etVL/Xs2VMAEKNHj5YwQCLNaNq0qQAg5s6dq/5CLp8BoqLS1f1b0pqj1NRUXLp0Cf7+/mrL/f39ce7cuXxtQy6XIzExEaVKlcqxTEpKChISEtR+iLRi5EhF/4qTJ9VmL7916xb27t0LAPjkk08kC49IU5S1R6tWrUJycvLbF3L4DBAZEkmTo2fPniEjIwPOzs5qy52dnRETE5OvbSxduhSvX79G3759cyyzcOFCODo6qn7Kly9fpLiJcuXuDvj5qXVAXbx4MYQQ6N69O2rVqiVdbEQa0qtXL5QvXx6xsbHYuHGj+ovZfAaIDInkfY4AQCaTqf0thMiyLDvbt2/H3LlzsXPnTpQtWzbHcjNmzEB8fLzqh4++J116+PAhfvrpJwDA9OnTJY6GSDPMzc3x+eefAwAWLVqEtLQ0iSMi0hxJkyMnJyeYmppmqSWKjY3NUpv0rp07d2LkyJH45Zdf0K5du1zLWlpawsHBQe2HSFeWLl2K9PR0+Pn5oWnTplKHQ6QxI0eORNmyZREZGYlt27ZJHQ6RxkiaHFlYWMDLywvBwcFqy4ODg9GsWbMc19u+fTuGDx+Obdu24f3339d2mESF9uzZM9U8ajNmzJA4GiLNsra2xpQpUwAoui9kZGRIHBGRZkjerDZlyhSsX78eGzZsQHh4OCZPnoyoqCgEBAQAUNxQhg4dqiq/fft2DB06FEuXLkXTpk0RExODmJgYxMfHS3UIRDlatGgR3rx5Ay8vL7Rv317qcIg0buzYsShRogRu376N3377TepwiDRC8uSoX79+WLFiBebPn48GDRogJCQEQUFB8PDwAAA8efJE7ZlHa9euRXp6OsaPHw9XV1fVD0cAkdYVcL6ox48f43//+x8AYP78+fnqR0dkaBwcHFTfv3PmzCnYhLScg430FKcPYf8jyo/AQGD0aMXTf01MgHXr8hyiPGHCBKxcuRLNmjXD2bNnmRyR0YqPj0flypXx/PlzbNiwASNGjMh7pUJ8poh0df9mcsTkiPJSiPmiIiIiUL16daSlpeHEiRNo3bq1bmIlksjSpUsxdepUlC9fHnfu3IGVlVXOhTkHGxVSsZpbjUivFWK+qLlz5yItLQ1t27ZlYkTFwrhx4+Du7o6HDx9izZo1uRfmHGyk55gcEeWlgPNFXbhwAZs3bwYAfP3119qOjkgvWFtbY86cOQCABQsW4MWLFzkX5hxspOeYHBHlxd1d0R/C1FTxt6kpsHZtttX/QghV59QhQ4agcePGuoyUSFLDhw9HrVq1EBcXp0qUslWAzxSRFNjniH2OKL+ioxXV/lWr5vglvm3bNgwaNAi2tra4ffs23NzcdBwkkbSOHz+Odu3awcTEBGFhYahXr17OhfPxmSLKjH2OiPRNHvNFvXr1SjWdwhdffMHEiIqltm3bok+fPpDL5fj444+R6/+/OQcb6SkmR0QaMnPmTDx69AgVK1ZUPTWYqDhaunQprK2tERISwmlFyCAxOSLSwIPo/vjjD/zwww8AFA8qzXUYM5GRq1ChAmbOnAkAmDhxIp4+fVq0DfJhkaRjTI6oeAsMVDxvpU0bxe/AwAJvIjk5GSNHjoQQAsOHD4e/v78WAiUyLJ9//jkaNGiA58+fY+zYsbk3r+VGA59RooJih2x2yC6+NPQgumnTpmHx4sVwcXHBzZs3UbJkSc3HSmSArl69Cm9vb6Snp2Pbtm0YMGBAwTbAh0XSO9ghm0jbNPAguuDgYHz77bcAgNWrVzMxIsqkfv36+PLLLwEA48ePR0RERME2wIdFkkSYHFHxVcQH0T19+hRDhgyBEAJjxoxBjx49NB8jkYGbMWMGGjdujBcvXqBv375ISUnJ/8p8WCRJhMkRFV9FeBBdWloaBgwYgKdPn6J27dpYvny5loMlMkzm5ub45ZdfUKpUKVy4cAGffvpp/lfmwyJJIuxzxD5HVIgH0Y0bNw6rV6+GnZ0dzp8/j9q1a2s5SCLDdujQIXTu3BkAsHHjRgwfPjz/K/NhkfQf9jkiKqr8Dv8t4IPofvjhB6xevRoymQxbt25lYkSUD506dcLs2bMBAB999BGCg4Pzv3J+P6Mc8k8awuSIjJOWhv/+9NNPmDhxIgDFpLLdunXTyHaJioM5c+ZgwIABSE9PR+/evXH58mXNbZxD/kmD2KzGZjXjo6Xhv7t27UL//v2RkZGBjz/+GN999x1kMlnR4yUqRlJSUtCxY0ecOnUKJUuWRHBwMLy8vIq2UQ75LzbYrEZUWFoY/rt+/Xr069cPGRkZGD58OFasWMHEiKgQLC0tsW/fPvj4+ODFixdo164dzp07V7SNcsg/aRiTIzI+Ghz+K5fLMXfuXHz00UeQy+UYOXIkfvzxR5i8u30iyjcHBwccOXIEzZo1w8uXL9GmTZuizcHGIf+kYWZSB0DGSwiB8PBwXLhwAbdv38bdu3fx7NkzJCQkIDk5GRYWFrC0tESZMmXg5uYGNzc3eHp6ol69eqhatSpMlcN3C0o5/HfMGMX/Hgs5/Pf58+cYMmQIgoKCACiehL1w4ULWGBFpgL29PY4ePYrBgwdj7969GDRoEP766y988803BZ+bUEOfeaWUlBSEh4fj2rVruHfvHh49eoTo6Gi8ePECKSkpSEtLg62tLRwdHeHi4oLq1aujRo0a8PHxQYUKFQq1T9Iv7HPEPkcalZKSgsOHD2PHjh04fvw4/v3330Jtx9raGvXr10eLFi3QsmVLtGjRAqVKlSrYRoow/Hf37t0YP348nj59CisrK6xZswbDhg0r2P6JKE9yuRwzZszA4sWLAQD16tXD+vXr8d577xV8Y4X8zD969AhnzpxBSEgIzp49i/DwcKSnpxd8/wAqV64Mf39/DBw4EM2bN2cts4bp6v7N5IjJkUY8fPgQy5cvx6ZNm/DixQvVcmtrazRu3Bi1atVC9erV4eLiAkdHR1hZWSEtLQ1JSUmIjY1FdHQ0Hj58iBs3buD69etISkrKso/atWujVatW8K1TB63KloVr06Ya72x58eJFzJw5E0ePHgUA1KxZE1u3bkXDhg01uh8iUvf7779jxIgRePbsGWQyGUaMGIHZs2fDw8ND4/uKPH8ep/buxekHDxBy6RL++eefLGVKlCiB+vXro2bNmnB3d4ebmxucnJxgaWkJMzMzvH79GvHx8YiOjsadO3dw/fp1XL58GRkZGaptVKhQAePGjUNAQAAcHR01fhzFkc7u36IYio+PFwBEfHy81KEYvKioKDF8+HBhZmYmAAgAoly5cuLTTz8VZ86cESkpKQXeZnp6urh165bYsmWL+Oijj4Snp6dq25l/qgFiVMuWYsuWLSIyMrLQx5CUlCR27dol2rZtq9q2ubm5mDlzpkhOTi70domoYJ48eSKGDh2q+hyampqKgQMHiuPHj4v09PRCbVMul4v79++LTZs2ieHDh4uKTk5ZvktMTExEo0aNxKRJk8Tu3btFVFSUkMvlBd5XQkKCOHjwoBgxYoRwcHBQbd/BwUF88cUXvOdogK7u36w5Ys1Robx+/RqLFy/Gt99+q6rlad26NT777DP4+/sXvr9QDv7991+c2bsXIaNHIwTAFSi+dTLz8PBAw4YNUbt2bdSuXRtVq1aFs7MznJycYG5uDhMTE7x69QoxMTGIiorC5cuXce7cORw7dgxv3rwBAMhkMgwePBjz5s1DpUqVNHoMRJQ/oaGhmD17No4dO6Za5uzsjDZt2qBFixaoVasWKleujBIlSsDOzg5yuRyvX7/GixcvEBERgcjISNy6dQuXLl3C5cuXERcXp7Z9UwDvAfAF4GtigmbXr8OxVi2NHkNSUhJ++eUXLF68GDdv3gQAlC1bFl999RVGjBih8e/I4oI1R1rEmqOiCQkJEZUrV1b9r6hVq1bi/Pnz2t/xiRNCAEIA4gUgDgDiM0A09vQUpqam2dYu5ffHzc1NfPHFFyIiIkL7x0FE+XLx4kUxevRoUbJkySJ9vs3MzETTpk3F9AEDxGFAJPz3PaL6OXlSa8eQkZEh9uzZI6pXr66Kp0WLFuLevXta26cxY82RFrHmqHBSU1MxY8YMLF++HEIIlC9fHsuXL0evXr10M4Irlwe9JTo64q+//sKNGzdUP5GRkXj69CnS0tLUNuPg4IBy5cqhbt268PLygr+/Pxo0aMBRaER6KjU1FX/88QdOnz6Nv/76C3fu3EFkZGSWTtMWFhbw8PCAh4cHqlSpgoYNG8LLywt169aFpaWlpA+LTE1NxcqVKzF79my8evUKNjY2WLJkCQICAvjdUwDskK1FTI4K7tGjR+jTpw/Onz8PABg5ciSWLl2q2U6G0dGKh7lVq5bzF1VgYNbhuiNH5rhJIQQSEhKQkZEBIQSsra1hY2OjuZiJSBJCCCQnJyMxMRFmZmawtbWFhYVF3olGQb5D8vOdVEARERH48MMPcfLkSQDAgAEDsG7dOtjZ2Wlk+8aOyZEWMTkqmNOnT6Nv376IjY1FiRIlsGXLFnTt2lWzOwkMBEaPVvyPzsRE8cyS3L6wOEM3ERVWfr5DCvKdVEByuRwrVqzAtGnTkJ6ejlq1amHv3r2oVq2aRrZvzJgcaRGTo/zbtGkTPvroI6Snp6N+/frYvXs3qlSpotmdcF4kItInOvpOOnv2LPr27YsnT56gdOnS2L9/P5o1a6ax7Rsjzq1GkhJCqEZVpKenY8CAATh37pzmEyOA8yIRkX7R0XdSixYtcPnyZXh7eyMuLg5t2rTB7t27NboPKhwmR5RFRkYGxo8fj1mzZgEApk+fjq1btxa+r050NHDypOJ3djgvEhHpk4J+J+X1HZcLFxcXnDp1Cl27dkVKSgo++OADrF69uhBBkyYxOSI1GRkZ+PDDD7F69WrIZDL88MMPRZtPLDBQUT3dpo3id2Bg1jLKeZGUz/0o4rxIRERFUpDvpPx8x+XB1tYWe/bswbhx4yCEwLhx4/Ddd98V8SCoKNjniH2OVNLT0zF8+HBs3boVpqam2Lp1K/r161f4DRa03Z4drYlIn+T1naThvklCCMyYMQOLFi0CACxatAiff/55IYM3Trq6f5tpbctkUNLT0zFkyBDs2LEDZmZm2LFjB3r37l20jebWbp/dF4e7O5MiItIfeX0nFfQ7Lg8ymQwLFy6EpaUl5s+fj2nTpiE1NVXVxYF0h81qBLlcjuHDh2PHjh0wNzfHr7/+mndilJ82dvYlIiJjpoW+STKZDPPmzcNXX30FAPjyyy+xdOlSTUVM+cSaoxzI5XIEBQUhNDQUANCoUSN06tTJ6B4gKITAJ598gq1bt8LMzAy7du1Ct27dcl8pv8//ULbbv/vANdYOEZExKMh3XAGfm/TFF19ACIFZs2Zh6tSpsLe3x+jRo7V4MNKIi4vD/v37cevWLdjZ2aFdu3bw8fGROizOrZadu3fvivr162eZn8fZ2VkEBgYWarZmfTVnzhwBQMhkMrFt27a8V3j4UAgTE/V5iUxNFctzW+fkydzLEBEZqry+4wrzvSmEkMvlYtq0aarv6K1bt2o+domkpKSI2bNnCxsbmyz32i5duogXL15ku56u5lZjcvSOO3fuiNKlSwsAwtHRUYwaNUoEBASI8uXLqy5c3759RWJiogSRa9Z3332nOqaVK1cqFj58qJjgNacPbabJX3U1cSMRkUErzPfmf9/F8qgoMW7cOAFAmJqair179+osbG2JjIwUjRs3Vt1/6tWrJz755BPRv39/YW5urlqWkJCQZV0mR1qU08l98+aNqFWrlgAgGjVqJJ48eaJ6LSUlRXzzzTfCzMxMABBNmzYVcXFxug5dY3766SfVG3P+/PmKhevXv/3fjYmJ4u93FfJ/QERExVZBvzff+S7OWLdODBkyRAAQFhYW4vjx47qNX4Pu3r2rqmwoUaKE2Llzp1prTFhYmHBxcREARJ8+fbK01DA50qKcTq6yicnFxUU8fvw423X/+OMPUbJkSQFANGzYULx8+VIXIRddphqhAwcOCFNTUwFAfPLJJ4o3X0E+vOvXK15TlskuiSIiorfy+72Zw3dx2oMHomfPngKAsLOzE3/++efb8rnV9uuR8PBw4erqKgCI6tWriwcPHmRbLjQ0VFWDtG/fPrXXmBxpUXYnNzo6WlhZWQkA4pdffsl1/evXr4uyZcsKAMLX11ckJSVpO+SiyfS/kNMymbD67003ePBgkZGRoShT0Gpf9iMiIiqY/Hxv5vJdnJSUJNq2bSsAiFKlSokb8+fnXduvJx4/fiw8PDwEAFG3bl0RExOTa/np06cLAKJKlSoiLS1NtZzJkRZld3KnTp0qAIjmzZvnq8P15cuXhb29vQAgevfu/TbJ0DeZ/hdyGRAO/zWldW3XTqSmpmZbjs1lREQSyeO7OCEhQdVfpxwgHhjAd3ZCQoJo2LChACCqVasm/v333zzXSUxMFE5OTgKA2L59u2q5rpIjPucIiidurl27FoBiHrH8TJXRsGFD7N+/HxYWFti9ezfmzp2r5ShzkNdzM/57SNldAB0BJABoBWDn1KkwNzd/W45TeBARSS+P72J7e3sEBQWhdsWKeAygHYAY5bq5TY5bhPnfiiI9PR19+/ZFWFgYypQpg0OHDsHJySnP9ezs7DBhwgQAwJIlS7QdZlZaTb301LuZZ2BgoKoNtKA1QJs2bVJ1bN6xY4c2ws1ZPjtQP5TJRIX/YmwIiJcmJrkPOWVzGRGRtPL4Ln504YKopBztBYjnefUTlaj5bdKkSQKAsLa2fttPKp/+/fdfYWFhIQCIK1euCCHYrKZV755cPz8/AUB8/fXXhdreZ599JgAIKysrceHCBc0EmVcnu3w2g8XGxgrP/3r+VwNEjJ63SxMRUf7c+/pr4fJfguQDiFfKR7JkVtAuExrs4P3jjz+qKg927dpVqG307t1bABBTpkwRQjA50qrMJzcqKkr1gK3IyMhCbS89PV28//77ijbgcuXEo0ePci6cnzdefrL8fHSgjo+PF15eXgKAcHd1FZE7drBGiIjIiFw7elSU/K//q7+/v0hOTlYvUJDBNgWpYcrjXhYSEqIacTZv3rxCH9++fftUo8gzMjKYHGlT5pO7cuVKVUfsom5T+Ywkb29v8fr166yFNPkcoTzKvXnzRrRq1UoAEE5OTiI8PLxIx0dERPopNDRU9aTpDz74QKSnp799UUP3FDV53MsePHig6kzdt2/fIs0qkZKSIhwcHAQAcf78eXbI1pUDBw4AALp27Vqk7TgkJODAF1+gdMmSuHjxIoYMGQJ55tmao6PfzqsDKH6PGZO1c1xuszxnlkunvZSUFHzwwQcICQmBg4MDjhw5Ak9PzyIdHxER6aemTZti7969qonDAwICIIRQvJjfwTb5vffkcS9LTExEt27d8OzZMzRq1AgbFyyA7NSpQncEt7CwQIcOHQC8vV/rhFZTLz2lzDwfP34sLC0tBQBx48aN7AsXsBnsjEwmLP57ivZnn332tkx+qzYL0z6cqdNecnKyqonPyspKnD59Ot/nhYiIDNeuXbuEiYmJACA+//xz9Rc1Nf9bLvey9PR00a1bN1Uz2MPFizXSTLdlyxZFx/N69dispk3Kk7tr1y4BQHh4eGRf7VfIZrCfZTJVJ7R169blWE7TT6BOSkoSnTt3ViVGwcHBBTgrRERk6JSjrwGIadOmFaxJKz/3nhzuZfKoKDFmzBgBQFhaWorQffs01kwXGxurOqZ79+4xOdIWZXI0adQoAUAMHz48a6EiZtFzhw8XwDsTBRYk6SngkPrExETRoUMH1ZBJQ557h4iICm/FihWqZCIgIKBgj6jJz70nm3vZvHnzVIObdu3apfHWknr16gkAYtOyZUyOtEWZHHn/9+bZtGlT1kJFvLDyqCgxdOhQAUCYm5uLoKCgt+U1/Byhp0+fCm9vbwFA2NjYiJO5zfRMRERGb926dUL2XyvGwIEDRUpKimZ3kOle9v3336uSsZXKxwlooJkus4kTJwoA4qP/9sPkSAuUyZHJfyf5wblzWQtpoBksLS1N9OnTR1XNeOTIEY0fS3h4uKhSpYpqVNr58+c1vg8iIjI8O3bsEGb/9YFt2bKliI2N1fg+li5dqkqMvvzyS/UXi9BM9+699rd16wQAUYPJkfYokyMAonx2tUFKGmgGS01NVXVQMzMzE5s3b9bYcfzyyy/Czs5OABCVK1cWd+7c0di2iYjI8B06dEg1FN7Dw0OEhYVpZLsZGRlixowZqnvprFmzsu/fVMhmunf9u2ePal9MjrQkc3LUC8j9ommgGSw5OVn069dPtc8ZM2aoT/paQImJiWLChAmq7fn5+eU5wzERERVPN2/eFFWrVhUAhIWFhViyZEmRJkuPj48XPXr0UN2D5s+fX/Qg8zGarjKTI+3KnBx93auXTvaZkZEhPv/8c9V+mzRpIm7dulWgbcjlcnHgwAHh4eGh2s706dNFWlqalqImIiJj8Pz5c9G1a1fVvcPHx6dQ010FBweL8uXLqxKtLVu2aCHa7PVv3JjJkTZlTo6OHj2q033v3LlTlChRQtXM9vHHH4sHDx7kuk5aWpo4cOCA8PHxUcXt4eEhDh8+rJugiYjI4MnlcrFu3Tpha2urupd88MEH4ty5c3kO+b98+bLo2bOnar3KlSuLc9n119WiZf+NVNNFciQTQvkYzeIjISEBjo6OAIC4uDiUKlVKp/uPiorCuHHjcPDgQQCAiYkJWrVqhfbt26N27dooWbIkUlJSEBkZiT///BMHDhzA06dPAQBWVlaYMGEC5syZAzs7O53GTUREhu/Ro0eYMWMGfvrpJ9WyatWqoVOnTvD29oa7uztMTEzw9OlThIWF4fDhw7hy5QoAQCaTYdy4cfjmm290fg/6448/0KJFCwBAfHw8HBwctLavYp0cVaxYEQ8ePJAsjmPHjmHx4sUIDg7Os6yTkxOGDh2KqVOnwtXVVQfRERGRMbt27RpWrFiBrVu3IjU1Ndey5ubm6N27N7788kvUqlVLRxGqe/36tSohY3KkBcrkqGfPnvjtt9+kDgcPHjzAgQMH8Oeff+L27dt4/fo1zMzMUK5cOTRo0AB+fn5o164dzM3NpQ6ViIiMTEJCAo4fP47g4GDcunULMTExyMjIQNmyZVG1alW0atUKXbt2hZOTk9Sholq1arh3757WkyMzrW3ZADRs2FDqEAAAlSpVwsSJE6UOg4iIiiEHBwf07NkTPXv2lDqUPNWrVw/33p0MVwtMtL4HPdaqVSupQyAiIqJ86t69u072oxfJ0apVq1CpUiVYWVnBy8sLZ86cybX86dOn4eXlBSsrK1SuXBlr1qwp1H71peaIiIiI8tajRw+d7Efy5Gjnzp2YNGkSZs6cibCwMLRs2RKdOnVCVFRUtuUfPHiAzp07o2XLlggLC8MXX3yBiRMnYvfu3TqOnIiIiIyR5B2ymzRpgkaNGmH16tWqZTVr1kSPHj2wcOHCLOWnTZuG/fv3Izw8XLUsICAAV69eRWhoaL72qeyQre0OXURERKQ5urp/S1pzlJqaikuXLsHf319tub+/P86dO5ftOqGhoVnKd+jQARcvXkRaWprWYiUiIqLiQdLRas+ePUNGRgacnZ3Vljs7OyMmJibbdWJiYrItn56ejmfPnmX7DKCUlBSkpKSo/o6PjwegyECJiIjIMCjv29pu9NKLofwymUztbyFElmV5lc9uudLChQsxb968LMvLly9f0FCJiIhIYnFxcaqZLrRB0uTIyckJpqamWWqJYmNjs9QOKbm4uGRb3szMDKVLl852nRkzZmDKlCmqv1++fAkPDw9ERUVp9eTqm4SEBJQvXx4PHz4sVn2teNw87uKAx83jLg7i4+NRoUIFrU/7JWlyZGFhAS8vLwQHB6s9fCo4ODjHZxn4+PjgwIEDasuOHj0Kb2/vHJ8gbWlpCUtLyyzLHR0di9WbSsnBwYHHXYzwuIsXHnfxUlyP28REu12mJR/KP2XKFKxfvx4bNmxAeHg4Jk+ejKioKAQEBABQ1PoMHTpUVT4gIACRkZGYMmUKwsPDsWHDBgQGBmLq1KlSHQIREREZEcn7HPXr1w9xcXGYP38+njx5gjp16iAoKAgeHh4AgCdPnqg986hSpUoICgrC5MmTsXLlSpQrVw7ff/89evfuLdUhEBERkRGRPDkCgHHjxmHcuHHZvrZp06Ysy3x9fXH58uVC78/S0hJz5szJtqnNmPG4edzFAY+bx10c8Li1e9ySPwSSiIiISJ9I3ueIiIiISJ8wOSIiIiLKhMkRERERUSZMjoiIiIgyMdrk6KuvvkKzZs1gY2ODEiVK5GsdIQTmzp2LcuXKwdraGn5+frhx44ZamZSUFHz88cdwcnKCra0tunXrhujoaC0cQeG8ePECQ4YMgaOjIxwdHTFkyBC8fPky13VkMlm2P99++62qjJ+fX5bX+/fvr+Wjyb/CHPfw4cOzHFPTpk3Vyhjb9U5LS8O0adNQt25d2Nraoly5chg6dCgeP36sVk7frveqVatQqVIlWFlZwcvLC2fOnMm1/OnTp+Hl5QUrKytUrlwZa9asyVJm9+7dqFWrFiwtLVGrVi3s2bNHW+EXWkGO+7fffkP79u1RpkwZODg4wMfHB0eOHFErs2nTpmw/68nJydo+lAIpyHGfOnUq22O6deuWWjlju97ZfX/JZDLUrl1bVUbfr3dISAi6du2KcuXKQSaTYe/evXmuo7PPtjBSs2fPFsuWLRNTpkwRjo6O+Vrnm2++Efb29mL37t3i+vXrol+/fsLV1VUkJCSoygQEBAg3NzcRHBwsLl++LFq3bi3q168v0tPTtXQkBdOxY0dRp04dce7cOXHu3DlRp04d0aVLl1zXefLkidrPhg0bhEwmE//884+qjK+vr/joo4/Uyr18+VLbh5NvhTnuYcOGiY4dO6odU1xcnFoZY7veL1++FO3atRM7d+4Ut27dEqGhoaJJkybCy8tLrZw+Xe8dO3YIc3Nz8eOPP4qbN2+KTz75RNja2orIyMhsy9+/f1/Y2NiITz75RNy8eVP8+OOPwtzcXOzatUtV5ty5c8LU1FR8/fXXIjw8XHz99dfCzMxMnD9/XleHlaeCHvcnn3wiFi1aJP766y9x584dMWPGDGFubi4uX76sKrNx40bh4OCQ5TOvTwp63CdPnhQAxO3bt9WOKfNn1Biv98uXL9WO9+HDh6JUqVJizpw5qjL6fr2DgoLEzJkzxe7duwUAsWfPnlzL6/KzbbTJkdLGjRvzlRzJ5XLh4uIivvnmG9Wy5ORk4ejoKNasWSOEULwZzc3NxY4dO1RlHj16JExMTMThw4c1HntB3bx5UwBQexOEhoYKAOLWrVv53k737t1FmzZt1Jb5+vqKTz75RFOhalRhj3vYsGGie/fuOb5eXK73X3/9JQCofQnr0/Vu3LixCAgIUFvm6ekppk+fnm35zz//XHh6eqotGzNmjGjatKnq7759+4qOHTuqlenQoYPo37+/hqIuuoIed3Zq1aol5s2bp/o7v9+HUirocSuToxcvXuS4zeJwvffs2SNkMpmIiIhQLTOE662Un+RIl59to21WK6gHDx4gJiYG/v7+qmWWlpbw9fXFuXPnAACXLl1CWlqaWply5cqhTp06qjJSCg0NhaOjI5o0aaJa1rRpUzg6OuY7vqdPn+LgwYMYOXJklte2bt0KJycn1K5dG1OnTkViYqLGYi+Kohz3qVOnULZsWVSvXh0fffQRYmNjVa8Vh+sNKCZylMlkWZqf9eF6p6am4tKlS2rXAAD8/f1zPMbQ0NAs5Tt06ICLFy8iLS0t1zL6cF2Bwh33u+RyORITE7NM0Pnq1St4eHjA3d0dXbp0QVhYmMbiLqqiHHfDhg3h6uqKtm3b4uTJk2qvFYfrHRgYiHbt2qlml1DS5+tdULr8bOvFE7L1QUxMDADA2dlZbbmzszMiIyNVZSwsLFCyZMksZZTrSykmJgZly5bNsrxs2bL5jm/z5s2wt7dHr1691JYPGjQIlSpVgouLC/7++2/MmDEDV69eRXBwsEZiL4rCHnenTp3wwQcfwMPDAw8ePMCXX36JNm3a4NKlS7C0tCwW1zs5ORnTp0/HwIED1Sav1Jfr/ezZM2RkZGT7uczpGGNiYrItn56ejmfPnsHV1TXHMvpwXYHCHfe7li5ditevX6Nv376qZZ6enti0aRPq1q2LhIQEfPfdd2jevDmuXr2KatWqafQYCqMwx+3q6op169bBy8sLKSkp+Omnn9C2bVucOnUKrVq1ApDze8JYrveTJ09w6NAhbNu2TW25vl/vgtLlZ9ugkqO5c+di3rx5uZa5cOECvL29C70PmUym9rcQIsuyd+WnTFHk97iBrPEDBYtvw4YNGDRoEKysrNSWf/TRR6p/16lTB9WqVYO3tzcuX76MRo0a5WvbBaXt4+7Xr5/q33Xq1IG3tzc8PDxw8ODBLMlhQbZbVLq63mlpaejfvz/kcjlWrVql9poU1zs3Bf1cZlf+3eWF+azrWmFj3L59O+bOnYt9+/apJdBNmzZVG3TQvHlzNGrUCD/88AO+//57zQVeRAU57ho1aqBGjRqqv318fPDw4UMsWbJElRwVdJtSKWyMmzZtQokSJdCjRw+15YZyvQtCV59tg0qOJkyYkOeImYoVKxZq2y4uLgAUmamrq6tqeWxsrCoLdXFxQWpqKl68eKFWmxAbG4tmzZoVar/5kd/jvnbtGp4+fZrltX///TdLJp2dM2fO4Pbt29i5c2eeZRs1agRzc3PcvXtXazdLXR23kqurKzw8PHD37l0Axn2909LS0LdvXzx48AAnTpxQqzXKji6ud3acnJxgamqa5X99mT+X73Jxccm2vJmZGUqXLp1rmYK8X7SpMMettHPnTowcORK//vor2rVrl2tZExMTvPfee6r3vNSKctyZNW3aFD///LPqb2O+3kIIbNiwAUOGDIGFhUWuZfXteheUTj/bBeqhZIAK2iF70aJFqmUpKSnZdsjeuXOnqszjx4/1roPun3/+qVp2/vz5fHfQHTZsWJZRSzm5fv26ACBOnz5d6Hg1pajHrfTs2TNhaWkpNm/eLIQw3uudmpoqevToIWrXri1iY2PztS8pr3fjxo3F2LFj1ZbVrFkz1w7ZNWvWVFsWEBCQpdNmp06d1Mp07NhR7zroFuS4hRBi27ZtwsrKKs+OrUpyuVx4e3uLESNGFCVUjSrMcb+rd+/eonXr1qq/jfV6C/G2Q/r169fz3Ic+Xm8l5LNDtq4+20abHEVGRoqwsDAxb948YWdnJ8LCwkRYWJhITExUlalRo4b47bffVH9/8803wtHRUfz222/i+vXrYsCAAdkO5Xd3dxfHjh0Tly9fFm3atNG7od316tUToaGhIjQ0VNStWzfL0O53j1sIIeLj44WNjY1YvXp1lm3eu3dPzJs3T1y4cEE8ePBAHDx4UHh6eoqGDRsa7HEnJiaKTz/9VJw7d048ePBAnDx5Uvj4+Ag3Nzejvt5paWmiW7duwt3dXVy5ckVteG9KSooQQv+ut3KIc2BgoLh586aYNGmSsLW1VY3KmT59uhgyZIiqvHK47+TJk8XNmzdFYGBgluG+f/zxhzA1NRXffPONCA8PF998843eDu3O73Fv27ZNmJmZiZUrV+b4CIa5c+eKw4cPi3/++UeEhYWJESNGCDMzM7UEW2oFPe7ly5eLPXv2iDt37oi///5bTJ8+XQAQu3fvVpUxxuutNHjwYNGkSZNst6nv1zsxMVF1bwYgli1bJsLCwlQjZ6X8bBttcjRs2DABIMvPyZMnVWUAiI0bN6r+lsvlYs6cOcLFxUVYWlqKVq1aZcnGk5KSxIQJE0SpUqWEtbW16NKli4iKitLRUeUtLi5ODBo0SNjb2wt7e3sxaNCgLENc3z1uIYRYu3atsLa2zvZZNlFRUaJVq1aiVKlSwsLCQlSpUkVMnDgxyzOBpFTQ437z5o3w9/cXZcqUEebm5qJChQpi2LBhWa6lsV3vBw8eZPu5yPzZ0MfrvXLlSuHh4SEsLCxEo0aN1Gqwhg0bJnx9fdXKnzp1SjRs2FBYWFiIihUrZpv0//rrr6JGjRrC3NxceHp6qt1M9UVBjtvX1zfb6zps2DBVmUmTJokKFSoICwsLUaZMGeHv7y/OnTunwyPKn4Ic96JFi0SVKlWElZWVKFmypGjRooU4ePBglm0a2/UWQlG7bW1tLdatW5ft9vT9eitrvXJ6z0r52ZYJ8V9vJiIiIiIy3ulDiIiIiAqDyRERERFRJkyOiIiIiDJhckRERESUCZMjIiIiokyYHBERERFlwuSIiIiIKBMmR0RERESZMDkiIiIiyoTJEREREVEmTI6IyKjMnz8fdevWha2tLZydnTF27FikpaVJHRYRGRAzqQMgItIUIQQyMjKwdu1auLm54ebNmxg6dCjq1auHsWPHSh0eERkITjxLREZt4MCBKFOmDL777jupQyEiA8FmNSIyGpGRkZgwYQLq1KmDkiVLws7ODr/88gvc3d2lDo2IDAiTIyIyCs+ePUPjxo3x7NkzLFu2DGfPnkVoaChMTU3RoEEDqcMjIgPCPkdEZBSCgoKQnp6O7du3QyaTAQBWrlyJ1NRUJkdEVCBMjojIKJQqVQoJCQnYv38/atWqhQMHDmDhwoVwc3NDmTJlpA6PiAwIO2QTkVEQQmDs2LHYtm0brK2tMXjwYCQnJyMyMhK///671OERkQFhckRERESUCTtkExEREWXC5IiIiIgoEyZHRERERJkwOSIiIiLKhMkRERERUSZMjoiIiIgyYXJERERElAmTIyIiIqJMmBwRERERZcLkiIiIiCgTJkdEREREmTA5IiIiIsrk/wFxlfvvhpyufQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByeElEQVR4nO3dd1wT9/8H8FcIUwQUUEC2ExUVRXGLE/dqrVp3q3W01tWh/mzraKvfttba4aygtlWrrbNurLhRHLito4qIigjKEGUln98fNJHICiO5BF7PxyMP5fgk975cLvfiPp+7kwkhBIiIiIgIAGAidQFEREREhoThiIiIiCgHhiMiIiKiHBiOiIiIiHJgOCIiIiLKgeGIiIiIKAeGIyIiIqIcGI6IiIiIcmA4IiIiIsqB4YiMwoMHDzBnzhycP38+1+9GjRqFihUrFvu1MzIyMH78eLi4uEAul8PPz6/4hZaCpUuXYs2aNbmmR0VFQSaT5fm7skQmk2HOnDlSl1Eq5syZA5lMpvPn/vjjj6hZsybMzc0hk8mQmJiIUaNGwcvLS6Pd/PnzsW3btmLVU5AnT55g8ODBqFq1KmQyGfr161fk1/Dy8sKoUaNKvTZD88knn6BXr15wdXWFTCbLd5lXrVqFfv36wcvLC1ZWVqhZsyYmTJiAhw8f6rfgcorhiIzCgwcPMHfu3DzDUUktW7YMK1aswKxZs3Ds2DH8+uuvpT6PosgvHLm4uCA8PBw9e/bUf1FULGPGjEF4eLhO53H+/HlMmjQJHTp0wMGDBxEeHg4bGxt8+umn2Lp1q0ZbXYWjzz//HFu3bsV3332H8PBwfP3116U+j7Liu+++Q0JCAvr06QNzc/N8282ePRsVK1bE/PnzsXfvXnz88cfYuXMn/P398ejRIz1WXD6ZSl0AkdQuX74MKysrTJw4UepSCmRhYYEWLVpIXQYVgZubG9zc3HQ6jytXrgAA3nnnHQQEBKin16hRQ6fzzeny5cuoUaMGhg4dqrd5lpbnz5+jQoUKeptfSkoKTEyyj0sU9IdYZGQkqlatqv45MDAQTZo0QbNmzfDzzz/jk08+0Xmt5RmPHJVDjx8/xtixY+Hu7g4LCwtUqVIFrVu3xoEDB9Rt2rdvD19fX4SHh6NVq1awsrKCl5cXVq9eDQDYtWsXmjRpggoVKqBBgwbYu3dvrvkcO3YMnTp1go2NDSpUqIBWrVph165dudpdvnwZffv2ReXKlWFpaQk/Pz+sXbtW/ftDhw6hWbNmAIC33noLMpksz66XW7duoUePHqhYsSLc3d3xwQcfID09vcD3QiaTYdWqVXjx4oX6ddesWVNgF9ar81Z1f1y5cgVvvvkm7Ozs4OTkhLfffhtJSUkaz1Uqlfjxxx/h5+cHKysrVKpUCS1atMCOHTsAZHctXLlyBYcPH1bXo+oaya8mbd7nNWvWQCaTISwsDBMmTICjoyMcHBzw2muv4cGDBwW+RwXx8vJCr169sHXrVjRs2BCWlpaoXr06fvjhh1xto6OjMWzYMFStWhUWFhaoW7cuvv32WyiVynxfPyoqCqampliwYEGu3x05cgQymQx//PEHgKKth7S0NMycORPe3t4wNzeHq6sr3nvvPSQmJua5fDt37kTjxo1hZWWFunXrYufOnQCy39e6devC2toaAQEBOHPmjMbz8+oa27hxI4KCguDi4qJ+vRkzZiA1NTX/Nzof7du3x7BhwwAAzZs31+imebVbTSaTITU1FWvXrlV/ttq3b1/g6z958gTvvvsuXF1dYW5ujurVq2PWrFnq7Ur1mTxw4ACuXbumft1Dhw7l+5qZmZn4+OOP4ezsjAoVKqBNmzaIiIjIs21sbCzGjRsHNzc3mJubw9vbG3PnzkVWVpZGu5iYGAwYMAA2NjaoVKkShg4ditOnT+faXlRd8JcuXUJQUBBsbGzQqVMnANnd61988QV8fHzU34tvvfUWHj9+nKuujRs3omXLlrC2tkbFihXRtWtXREZGFvheqqiCUWFyBiMVf39/yOVy3Lt3T6vXoBIQVO507dpVVKlSRaxcuVIcOnRIbNu2TXz22Wfi999/V7cJDAwUDg4Ook6dOiI4OFjs27dP9OrVSwAQc+fOFQ0aNBAbNmwQu3fvFi1atBAWFhbi/v376ucfOnRImJmZCX9/f7Fx40axbds2ERQUJGQymcZ8/vnnH2FjYyNq1KghfvnlF7Fr1y7x5ptvCgDiq6++EkIIkZSUJFavXi0AiE8++USEh4eL8PBwce/ePSGEECNHjhTm5uaibt26YuHCheLAgQPis88+EzKZTMydO7fA9yI8PFz06NFDWFlZqV83Li5O3LlzRwAQq1evzvUcAGL27Nnqn2fPni0AiDp16ojPPvtMhIaGikWLFgkLCwvx1ltvaTx3+PDhQiaTiTFjxojt27eLPXv2iC+//FJ8//33Qgghzp07J6pXry4aN26srufcuXNCCJFnTdq+z6r3r3r16uL9998X+/btE6tWrRKVK1cWHTp00KhR1TavZX+Vp6encHV1FR4eHiIkJETs3r1bDB06VAAQ33zzjbpdXFyccHV1FVWqVBHLly8Xe/fuFRMnThQAxIQJEwp8f/v37y88PDxEVlaWRrs33nhDVKtWTWRmZhZpPSiVStG1a1dhamoqPv30U7F//36xcOFCYW1tLRo3bizS0tI0ls/NzU34+vqqP+/NmzcXZmZm4rPPPhOtW7cWW7ZsEVu3bhW1a9cWTk5O4vnz5+rnq2rK6fPPPxffffed2LVrlzh06JBYvny58Pb2zrUe8nruq65cuSI++eQT9foKDw8Xt27dEkJkbxeenp7qtuHh4cLKykr06NFD/dm6cuVKvq/94sUL0bBhQ2FtbS0WLlwo9u/fLz799FNhamoqevToIYQQIi0tTYSHh4vGjRuL6tWrq183KSkp39cdOXKkkMlk4qOPPhL79+8XixYtEq6ursLW1laMHDlS3e7hw4fC3d1deHp6ihUrVogDBw6Izz//XFhYWIhRo0ap2z179kzUrFlT2NvbiyVLloh9+/aJqVOnCm9v71yf45EjRwozMzPh5eUlFixYIP7++2+xb98+oVAoRLdu3YS1tbWYO3euCA0NFatWrRKurq6iXr16Guv0yy+/FDKZTLz99tti586dYsuWLaJly5bC2tq6wPczL9bW1hrLXJiwsDABQP19QbrDcFQOVaxYUUyZMqXANoGBgQKAOHPmjHpaQkKCkMvlwsrKSiMInT9/XgAQP/zwg3paixYtRNWqVUVKSop6WlZWlvD19RVubm5CqVQKIYQYPHiwsLCwENHR0Rrz7969u6hQoYJITEwUQghx+vTpfHfYI0eOFADEpk2bNKb36NFD1KlTp5B3I/v51tbWGtOKE46+/vprjXbvvvuusLS0VC/rkSNHBAAxa9asAuupX7++CAwMzDU9r5q0fZ9Vgefdd9/VeM2vv/5aABAPHz5UT1u7dq2Qy+Vi7dq1BdYpRHZ4kMlk4vz58xrTu3TpImxtbUVqaqoQQogZM2YIAOLUqVMa7SZMmCBkMpm4fv26etqr769qh7B161b1tPv37wtTU1ON8Kvteti7d2+e7TZu3CgAiJUrV2osn5WVlYiJiVFPU33eXVxc1MsnhBDbtm0TAMSOHTty1ZQfpVIpMjMzxeHDhwUAceHCBa2fq6Jat6dPn9aY/mo4EqJoO+Ply5fnuV199dVXAoDYv3+/elpgYKCoX79+oa957do1AUBMnTpVY/q6desEAI3axo0bJypWrCju3r2r0XbhwoUCgDqILFmyRAAQe/bs0Wg3bty4PMMRABESEqLRdsOGDQKA2Lx5s8Z01ffO0qVLhRBCREdHC1NTU/H+++9rtEtJSRHOzs5i4MCBhb4HORVlfSQnJ4u6desKd3d3je2ddIPdauVQQEAA1qxZgy+++AInT55EZmZmnu1cXFzg7++v/tne3h5Vq1aFn58fqlWrpp5et25dAMDdu3cBAKmpqTh16hQGDBigcRaZXC7H8OHDERMTg+vXrwMADh48iE6dOsHd3V1j3qNGjcLz58+1Hswqk8nQu3dvjWkNGzZU16QPffr0yTX/tLQ0xMXFAQD27NkDAHjvvfdKZX5FeZ8LqhGAxvs0YsQIZGVlYcSIEVrVUb9+fTRq1Ehj2pAhQ5CcnIxz584ByF7P9erV0xgTA2SvZyEEDh48mO/rt2/fHo0aNcKSJUvU05YvXw6ZTIaxY8fmal/YelDN69WzhN544w1YW1vj77//1pju5+cHV1dX9c+qz3v79u01xqq8uh3k5/bt2xgyZAicnZ0hl8thZmaGwMBAAMC1a9cKfK4+HTx4ENbW1hgwYIDGdNX79ur7pI2wsDAAyDU2aeDAgTA11RwCu3PnTnTo0AHVqlVDVlaW+tG9e3cAwOHDh9X/2tjYoFu3bhrPf/PNN/Ot4/XXX881r0qVKqF3794a8/Lz84Ozs7O6m3Dfvn3qbSNnO0tLSwQGBhbYnVgSaWlpeO2113D37l388ccfJTo7l7TDAdnl0MaNG/HFF19g1apV+PTTT1GxYkX0798fX3/9NZydndXt7O3tcz3X3Nw813TVGRdpaWkAgKdPn0IIARcXl1zPV4WqhIQE9b/atCtMhQoVYGlpqTHNwsJCXZM+ODg45Jo/ALx48QJA9lgvuVyu8R6XRFHeZ21rLI68lkc1Led6fvW08oLqfNWkSZMwZswYXL9+HdWrV8fPP/+MAQMG5DnvwpYxISEBpqamqFKlikY7mUwGZ2fnXLXk93kvbDvIy7Nnz9C2bVtYWlriiy++QO3atVGhQgXcu3cPr732WonWQ2lLSEiAs7NzrjFTVatWhampqdbb5quvCeT+zJiamuZab48ePcJff/0FMzOzPF8rPj5e/ZpOTk65fp/XNCD7u8LW1jbXvBITE/M9e0w1L9VZYqoxkK/SdjxRUaSnp6N///44duwYdu7ciebNm5f6PCg3hqNyyNHREYsXL8bixYsRHR2NHTt2YMaMGYiLi8tzYHVRVa5cGSYmJnlej0M1+NfR0RFA9o5Mm3b6pgparw7oLs4OQaVKlSpQKBSIjY3NM9AUVVHeZ12KjY3Nd5pqh1fS9TxkyBBMnz4dS5YsQYsWLRAbG1vsI3AODg7IysrC48ePNQKSEAKxsbH57vhKw8GDB/HgwQMcOnRIfbQIQK6B4IbAwcEBp06dghBCIyDFxcUhKyurWJ8t1echNjZW42hcVlZWrm3L0dERDRs2xJdffpnna6mCtYODQ54DuvP6XALI89pRqhMU8vv+s7GxUbcDgD///BOenp55ti1N6enp6NevH8LCwrB9+3b14HHSPXarlXMeHh6YOHEiunTpou4CKSlra2s0b94cW7Zs0fhLWKlU4rfffoObmxtq164NAOjUqZN6h5HTL7/8ggoVKqhPXS+NIxxF4eTkBEtLS1y8eFFj+vbt24v9mqrugGXLlhXYzsLCQqvlLMr7rEtXrlzBhQsXNKatX78eNjY2aNKkCYDs9Xz16tVcn7FffvkFMpkMHTp0KHAelpaWGDt2LNauXYtFixbBz88PrVu3Lla9qh3Mb7/9pjF98+bNSE1N1ekOSLVjVn2eVVasWKGzeeak7WcLyH6fnj17luu6SL/88ov690WlOjtu3bp1GtM3bdqU6wy0Xr16qS8R0LRp01wPVTgKDAxESkqKutta5ffff9e6rl69eiEhIQEKhSLPedWpUwcA0LVrV5iamuLff//Ns13Tpk2L+pbkS3XE6ODBg9i8eTO6du1aaq9NheORo3ImKSkJHTp0wJAhQ+Dj4wMbGxucPn0ae/fuxWuvvVZq81mwYAG6dOmCDh064MMPP4S5uTmWLl2Ky5cvY8OGDeqdxOzZs9VjCz777DPY29tj3bp12LVrF77++mvY2dkByL5mi5WVFdatW4e6deuiYsWKqFatmsbYp9Ikk8kwbNgwhISEoEaNGmjUqBEiIiKwfv36Yr9m27ZtMXz4cHzxxRd49OgRevXqBQsLC0RGRqJChQp4//33AQANGjTA77//jo0bN6J69eqwtLREgwYN8nxNbd/novjll1/w9ttvIyQkRKtxR9WqVUOfPn0wZ84cuLi44LfffkNoaCi++uor9ZicqVOn4pdffkHPnj0xb948eHp6YteuXVi6dCkmTJigVYh799138fXXX+Ps2bNYtWpVkZdLpUuXLujatSumT5+O5ORktG7dGhcvXsTs2bPRuHFjDB8+vNivXZhWrVqhcuXKGD9+PGbPng0zMzOsW7cuV7jUlQYNGuDQoUP466+/4OLiAhsbG/WO/1UjRozAkiVLMHLkSERFRaFBgwY4duwY5s+fjx49eqBz585Fnn/dunUxbNgwLF68GGZmZujcuTMuX76MhQsX5urqmjdvHkJDQ9GqVStMmjQJderUQVpaGqKiorB7924sX74cbm5uGDlyJL777jsMGzYMX3zxBWrWrIk9e/Zg3759ALTr6ho8eDDWrVuHHj16YPLkyQgICICZmRliYmIQFhaGvn37on///vDy8sK8efMwa9Ys3L59G926dUPlypXx6NEjREREwNraGnPnzi1wXocPH1ZfHkChUODu3bv4888/AWQHPdXRzAEDBmDPnj2YNWsWHBwccPLkSfVr2Nraol69etq/8VR0kg4HJ71LS0sT48ePFw0bNhS2trbCyspK1KlTR8yePVvjzJv8zj7x9PQUPXv2zDUdgHjvvfc0ph09elR07NhRWFtbCysrK9GiRQvx119/5XrupUuXRO/evYWdnZ0wNzcXjRo1yvMssQ0bNggfHx9hZmamcUZTXmebCaH92T75PT8pKUmMGTNGODk5CWtra9G7d28RFRWV79lqjx8/1ni+6iyiO3fuqKcpFArx3XffCV9fX2Fubi7s7OxEy5YtNd6XqKgoERQUJGxsbAQA9RlH+Z1Bp837nN8ZTaozwcLCwnK11fZU/p49e4o///xT1K9fX5ibmwsvLy+xaNGiXG3v3r0rhgwZIhwcHISZmZmoU6eO+Oabb4RCodBo9+r7m1P79u2Fvb29xqnVKkVZDy9evBDTp08Xnp6ewszMTLi4uIgJEyaIp0+f5rl8r8rr865aPzkvYZDXZ/DEiROiZcuWokKFCqJKlSpizJgx4ty5c7nec12crXb+/HnRunVrUaFCBQEgz7Mic0pISBDjx48XLi4uwtTUVHh6eoqZM2dqXO5ACO3PVhNCiPT0dPHBBx+IqlWrCktLS9GiRQsRHh4uPD09c5259fjxYzFp0iTh7e0tzMzMhL29vfD39xezZs0Sz549U7eLjo4Wr732mqhYsaKwsbERr7/+uti9e7cAILZv367xnuS1rQshRGZmpli4cKFo1KiRsLS0FBUrVhQ+Pj5i3Lhx4ubNmxptt23bJjp06CBsbW2FhYWF8PT0FAMGDBAHDhwodPlVZwLn9ci5HebXRpv1RiUnE0IIHecvIiqjvLy84Ovrq74ooi7FxcXB09MT77//Pm9PQYWaP38+PvnkE0RHR+v8KuVU9rBbjYgMWkxMDG7fvo1vvvkGJiYmmDx5stQlkYH56aefAAA+Pj7IzMzEwYMH8cMPP2DYsGEMRlQsDEdEZNBWrVqFefPmwcvLC+vWrdM4y4kIyD49/7vvvkNUVBTS09Ph4eGB6dOn8/5jVGzsViMiIiLKQfJT+Y8cOYLevXujWrVqkMlkuU4bzcvhw4fh7++vvsnl8uXLdV8oERERlQuSh6PU1FQ0atRI3WdcmDt37qBHjx5o27YtIiMj8X//93+YNGkSNm/erONKiYiIqDwwqG41mUyGrVu3ol+/fvm2mT59Onbs2KFxD6Lx48fjwoULWt+Hi4iIiCg/RjcgOzw8HEFBQRrTunbtiuDgYGRmZuZ5H5709HSN20AolUo8efIEDg4OxbpIHhEREemfEAIpKSmoVq2aTu5lp2J04Sg2NjbXDQWdnJyQlZWF+Pj4PO9ZtWDBgkKvWkpERETG4d69ezq9TIPRhSMg940DVT2D+R0FmjlzJqZNm6b+OSkpCR4eHrh3716uS9YTkRG5fx/491+gRg2goFP8tW1HRAYtOTkZ7u7u6psB64rRhSNnZ+dcd1uOi4uDqamp+o7Pr7KwsMh1o0cg+/40DEdERio4GBg7FlAqARMTYOVKYPTo4rcjIqOh6yExkp+tVlQtW7ZEaGioxrT9+/ejadOmeY43IqIyKCbmZeABsv8dNy57enHaERHlIHk4evbsGc6fP4/z588DyD5V//z584iOjgaQ3SWW887g48ePx927dzFt2jRcu3YNISEhCA4OxocffihF+UQkhZs3XwYeFYUCuHWreO2IiHKQvFvtzJkz6NChg/pn1digkSNHYs2aNXj48KE6KAGAt7c3du/ejalTp2LJkiWoVq0afvjhB7z++ut6r52IJFKrVnYXWc7gI5cDNWsWrx0RUQ4GdZ0jfUlOToadnR2SkpI45ojIWAUHZ3eRKRTZgWfFivzHHGnTjogMnr723wxHDEdExismJruLrGZNoKDTerVtR0QGTV/7b8m71YiIis3NTbuwo207IiIYwIBsIiIiIkPCcERERESUA8MRERERUQ4MR0REREQ5MBwRERER5cBwRERERJQDwxERERFRDgxHRERERDkwHBERERHlwHBERERElAPDEREREVEODEdEREREOTAcEREREeXAcERERESUA8MRERERUQ6mUhdARFQahBC4ceMGLl68iKSkJDg7O6NRo0Zwd3eXujQiMjIMR0Rk1DIzM7F27Vp88803uHHjRq7ft23bFh9//DF69uwJmUwmQYVEZGxkQgghdRH6lpycDDs7OyQlJcHW1lbqcoiomK5du4bBgwfj4sWLAAAzMzP4+/vD3t4e9+/fx8WLF6H6iuvZsyfWrFkDR0dHKUsmohLQ1/6bY46IyCjt2rULTZs2xcWLF+Hg4IBFixYhISEB4eHh2LVrF86fP4979+7ho48+gpmZmbr9pUuXpC6diAwcjxzxyBGR0dm8eTMGDx6MrKwsdOrUCb/99hucnZ3zbX/58mX0798ft27dgoODA8LCwtCgQQM9VkxEpYFHjoio/IqJAcLCsv99xZEjRzBkyBBkZWXhzTffxJ49ewoMRgDg6+uLiIgINGvWDAkJCejcuTOioqKKPG8iKh8YjojIsAQHA56eQMeO2f8GB6t/dfv2bfTr1w8ZGRkYMGAAfv31V5iZmWn1spUrV8a+ffvg5+eHuLg49O/fH6mpqVrPm4jKD3arsVuNyHDExGSHEqXy5TS5HIiKQkbVqmjTpg1Onz6NgIAAHDp0CFZWVkWeRXR0NJo1a4a4uDiMHDkSa9asKXTecHMr0WIRUelgtxoRlT83b2qGEwBQKIBbtzB79mycPn0alStXxh9//FGsYAQAHh4e+OOPP2BiYoK1a9di69athc6biMoXhiMiMhy1agEmr3wtyeU4n56Ob775BgCwatUqeHh4lGg27dq1w8cffwwAGDt2LOLj4/OdN2rWLNG8iMj4MBwRkeFwcwNWrswOJQAgl0OxbBnGffYZFAoF3njjDbz22mulMqu5c+eiQYMGiI+Px6xZs/KcN1asYJcaUTnEMUccc0RkeGJisruzatbE8p07MWHCBNja2uLatWuoVq1aqc3m6NGjaNeuHWQyGSIiItC0aVONeTMYERkWjjkiovLLzQ1o3x5JNjb45JNPAABffPFFqQYjIPvWIkOHDoUQAhMnToRSqVTPm8GIqPxiOCIig/Xtt98iISEBPj4+mDBhgk7m8fXXX6NixYo4deoUtmzZopN5EJFxYTgiIoP06NEjLFq0CADw5ZdfwtRUN/fJrlatGqZOnQoAmD17NhQKhU7mQ0TGg+GIiAzS/PnzkZqaimbNmqF///46nde0adNQqVIlXL16FRs3btTpvIjI8DEcEZHBefToEVauXAkgOyTJZDKdzq9SpUr48MMPAQBz5sxBVlaWTudHRIaN4YiIDM4PP/yAtLQ0NG/eHJ06ddLLPCdNmgQHBwfcvHkT27Zt08s8icgwMRwRkUFJTk7G0qVLAQDTp0/X+VEjFRsbG7z33nsAgG+++Qbl8ConRPQfhiMiMigrV65EYmIi6tSpg759++p13u+99x4sLCwQERGB48eP63XeRGQ4GI6IyGAoFAr88MMPAICPP/4YJq/ezkPHqlatipEjRwIAFi5cqNd5E5HhYDgiIoOxa9cu3Lt3Dw4ODhgyZIgkNUybNg0AsH37dvz777+S1EBE0mI4IiKDoRpr9Pbbb8PS0lKSGurUqYNu3boBgPqMOSIqXxiOiMgg/Pvvv9i3bx9kMhnGjRsnaS3jx48HAISEhCA9PV3SWohI/xiOiMggLF++HADQrVs31KhRQ9JaevbsCTc3N8THx2Pz5s2S1kJE+sdwRESSe/HiBUJCQgBAZ/dQKwpTU1O88847AF6GNiIqPxiOiEhy27Ztw5MnT+Dh4YEePXpIXQ4AYMyYMZDL5Th69CiuX78udTlEpEcMR0QkubVr1wIARo0aBblcLnE12apVq6YemP3LL79IXA0R6RPDERFJ6sGDBwgNDQUADB8+XOJqNI0YMQIA8Ouvv0KpVEpcDRHpC8MREUlq/fr1UCqVaNWqFWrWrCl1ORr69OkDOzs73Lt3D4cPH5a6HCLSE4YjIpKMEELdpaa6MrUhsbS0xKBBgwC87PojorKP4YiIJHPhwgVcvnwZFhYWeOONN6QuJ0+qrrU///wTqampEldDRPrAcEREklENdO7Tpw8qV64scTV5a9WqFapXr47U1FRs2bJF6nKISA8YjohIEkqlEr///jsAYNiwYRJXkz+ZTKYeKK6ql4jKNoYjIpLE8ePH8fDhQ9jZ2aFr165Sl1OggQMHAgBCQ0Px9OlTiashIl1jOCIiSfzxxx8AgL59+8LCwkLiagpWr149+Pr6IjMzE9u3b5e6HCLSMYYjItI7pVKJP//8E8DLozKGTlWnKtQRUdnFcEREepezS61Lly5Sl6MV1dl07FojKvsYjohI7zZt2gQA6NevH8zNzSWuRjs+Pj5o0KABu9aIygGGIyLSK4VCYXRdaiqqelXhjojKJoYjItKrEydOIDY2FpUqVULnzp2lLqdIcnatJSYmSlsMEekMwxER6dWOHTsAAL169TKaLjWVOnXqoF69esjKysLevXulLoeIdIThiIj0RgihHq/Tp08fiaspHlXdHHdEVHYxHBGR3ly/fh03b96Eubk5unXrJnU5xdK3b18AwJ49e5CRkSFxNUSkCwxHRKQ3qqMtHTp0gI2NjcTVFE9AQACqVq2KpKQkHDlyROpyiEgHGI6ISG9U441UR1+MkYmJCXr37g3g5fIQUdliEOFo6dKl8Pb2hqWlJfz9/XH06NEC269btw6NGjVChQoV4OLigrfeegsJCQl6qpaIiuPRo0cIDw8HAHW4MFaqcLd9+3YIISSuhohKm+ThaOPGjZgyZQpmzZqFyMhItG3bFt27d0d0dHSe7Y8dO4YRI0Zg9OjRuHLlCv744w+cPn0aY8aM0XPlRFQUu3btghAC/v7+cHNzk7qcEunUqROsrKwQHR2NixcvSl0OEZUyycPRokWLMHr0aIwZMwZ169bF4sWL4e7ujmXLluXZ/uTJk/Dy8sKkSZPg7e2NNm3aYNy4cThz5oyeKyeiojD2s9RyqlChgvq2JzxrjajskTQcZWRk4OzZswgKCtKYHhQUhBMnTuT5nFatWiEmJga7d++GEAKPHj3Cn3/+iZ49e+Y7n/T0dCQnJ2s8iEh/nj9/jtDQUABAHxcXICZG4opKrm/btgCAHf9d7ZuIyg5Jw1F8fDwUCgWcnJw0pjs5OSE2NjbP57Rq1Qrr1q3DoEGDYG5uDmdnZ1SqVAk//vhjvvNZsGAB7Ozs1A93d/dSXQ4iKtihQ4fw4sULuANoNHYs4OkJBAdLXVbxBQej58cfQwbg7KVLePDtt1JXRESlSPJuNQCQyWQaPwshck1TuXr1KiZNmoTPPvsMZ8+exd69e3Hnzh2MHz8+39efOXMmkpKS1I979+6Vav1EVLC9/x1d6QFABgBKJTBunHEeQYqJAcaOhZMQ8P9v0v6PPjLOZSGiPJlKOXNHR0fI5fJcR4ni4uJyHU1SWbBgAVq3bo2PPvoIANCwYUNYW1ujbdu2+OKLL+Di4pLrORYWFrCwsCj9BSAirez9r0tN47KPCgVw6xZgbIOzb97MDncAugM4A2CPEBhljMtCRHmS9MiRubk5/P391WMRVEJDQ9GqVas8n/P8+XOYmGiWLZfLAYCn1BIZoH///Rc3Y2JgCqBjzl/I5UDNmhJVVQK1agH/fQepwl4ogCwvL6kqIqJSJnm32rRp07Bq1SqEhITg2rVrmDp1KqKjo9XdZDNnzsSIESPU7Xv37o0tW7Zg2bJluH37No4fP45JkyYhICAA1apVk2oxiCgf+/btAwC0rl0btv/9IQO5HFixwjiPtLi5AStXAnI5AgBUBvAUQMSDBxIXRkSlRdJuNQAYNGgQEhISMG/ePDx8+BC+vr7YvXs3PD09AQAPHz7UuObRqFGjkJKSgp9++gkffPABKlWqhI4dO+Krr76SahGIqACqu9d3e+stYNiw7K60mjWNMxipjB4NdO0K01u30OXbb7Fp507s3bs33yPeRGRcZKIc9kUlJyfDzs4OSUlJsLW1lbocojIrPT0dDg4OSE1NRWRkJPz8/KQuqdStWbMGb731Fpo1a4aIiAipyyEq0/S1/5a8W42Iyq7jx48jNTUVzs7OaNSokdTl6ETXrl0BAGfOnMHjx48lroaISgPDERHpjKpLrWvXrvlensPYubi4wM/PD0II7N+/X+pyiKgUMBwRkc6oxxt161ZIS+OmWr49e/ZIXAkRlQaGIyLSifv37+PSpUuQyWTq+5CVVd27dweQfWae8r9rIBGR8WI4IiKdUJ3CHxAQAAcHB4mr0a2WLVuiYsWKiI+Px8WLF6Uuh4hKiOGIiHQi53ijss7MzAyBgYEAgAMHDkhcDRGVFMMREZU6pVKJgwcPAgCCgoIkrkY/OnfuDIDhiKgsYDgiolJ34cIFJCQkoGLFiggICJC6HL3o1KkTAODo0aNIT0+XuBoiKgmGIyIqdX///TcAoF27djAzM5O4Gv3w9fVF1apV8fz5c5w8eVLqcoioBBiOiKjUqcKR6mhKeSCTydi1RlRGMBwRUanKyMjAkSNHAJSvcAS8XF5VOCQi48RwRESl6tSpU3j+/DkcHR3RoEEDqcvRK9WRo4iICCQlJUlcDREVF8MREZWqnF1qJibl6yvGw8MDtWrVgkKhwOHDh6Uuh4iKqXx9cxGRzpXH8UY5sWuNyPgxHBFRqXn27Jn6TK3yGo44KJvI+DEcEVGpOXr0KLKysuDl5YXq1atLXY4kOnToAJlMhqtXr+LBgwdSl0NExcBwRESlprx3qQGAvb09mjRpAoBda0TGiuGIiEoNw1E21fIfOnRI2kKIqFgYjoioVMTHx+P8+fMAgI4dO0pbjMTat28PgOGIyFgxHBFRqVBd+LF+/fpwcnKSuBpptW7dGiYmJrh9+zbu3bsndTlEVEQMR0RUKlTX9QkMDJS4EunZ2trC398fAHi9IyIjxHBERKVC1YXEcJSNXWtExovhiIhK7MmTJ7h06RIAhiMVhiMi48VwREQldvToUQgh4OPjU+7HG6m0adMGJiYm+PfffxETEyN1OURUBAxHRFRiHG+Um62trfp6Rxx3RGRcGI6IqMQYjvLGrjUi48RwREQlkpiYiMjISAAMR69iOCIyTgxHRFQix44dgxACNWvWRLVq1aQux6Coxh3dunUL9+/fl7ocItISwxERlYiqS011lIResrOzQ+PGjQFw3BGRMWE4IqIS4XijgrFrjcj4MBwRUbGlpKTg3LlzABiO8sNwRGR8GI6IqNiOHz8OhUIBb29vuLu7S12OQVKNO7p58yYePHggdTlEpAWGIyIqNt4ypHCVKlWCn58fAB49IjIWDEdEVGwcb6Qd1ftz9OhRiSshIm0wHBFRsaSmpuLMmTMAeKZaYdq2bQuA4YjIWDAcEVGxnDhxAllZWfDw8ICXl5fU5Ri0Nm3aAACuXLmChIQEiashosIwHBFRsbBLTXtVqlRBnTp1AGQPYiciw8ZwRETFouoiateuncSVGAdV19qxY8ckroSICsNwRERFlpGRgYiICAAvd/pUMI47IjIeDEdEVGTnzp1DWloaHB0dUbt2banLMQqqcHTmzBk8f/5c4mqIqCAMR0RUZKquodatW0Mmk0lcjXHw8vKCq6srsrKycOrUKanLIaICMBwRUZGpwpHqLCzExABhYdn/kqb/3hvZ/fvsWiMyEgxHRFQkQgj1GVetW7cGgoMBT0+gY8fsf4ODJa7QgLzy3rSVywEwHBEZOpkQQkhdhL4lJyfDzs4OSUlJsLW1lbocIqNy/fp1+Pj4wNLSEomXL8Oidm1AqXzZQC4HoqIANzfJajQIMTHZwSjHe3PJxAQNlUpYW1sjMTERpqamEhZIZHz0tf/mkSMiKhJVl1pAQAAsoqM1gxEAKBTArVsSVGZgbt7M9d7UVypRqWJFpKam4vz589LURUSFYjgioiLRGG9UqxZg8srXiFwO1KwpQWUGJo/3xkQuR+vmzQGwa43IkDEcEVGRaIw3cnMDVq7MDkRA9r8rVrBLDcj3vWnbpQsAhiMiQ8YxRxxzRKS1R48ewdnZGTKZDAkJCahcuXL2L2JisrvSatZkMHrVK+/NiRMn0Lp1a1SpUgWPHj3ipRCIikBf+2+OBiQiramOGvn6+r4MRkB2IGIoytsr703Tpk1haWmJx48fqwe3E5FhYbcaEWkt1/WNqMjMzc3RnOOOiAwawxERaU1jvBEVGy8GSWTYGI6ISCupqak4d+4cAB45KinV+8dwRGSYGI6ISCsRERHIysqCm5sbPDw8pC7HqLVs2RImJiaIiopCDG+5QmRwGI6ISCuqLrU2bdrwDKsSsrW1hZ+fH4CX47iIyHAwHBGRVlQ7cY43Kh2qcUcMR0SGh+GIiAqlUChw4sQJABxvVFpU7yPDEZHhYTgiokJdunQJKSkpsLGxQYMGDaQup0xQHYG7ePEikpKSJK6GiHJiOCKiQqnGG7Vs2RJy1e0wqERcXFxQo0YNCCEQHh4udTlElAPDEREVihd/1A12rREZJoYjIiqQEEJ9PR6Go9LFi0ESGSaGIyIqUHR0NO7fvw9TU1MEBARIXU6ZogqbERERSE9Pl7gaIlJhOCKiAqnGGzVu3BjW1tYSV1O21K5dG46OjkhLS1NffZyIpMdwREQF4ngj3ZHJZBx3RGSADCIcLV26FN7e3rC0tIS/v3+h/e/p6emYNWsWPD09YWFhgRo1aiAkJERP1RKVLwxHusVwRGR4TKUuYOPGjZgyZQqWLl2K1q1bY8WKFejevTuuXr2a7/2bBg4ciEePHiE4OBg1a9ZEXFwcsrKy9Fw5UdmXmJiIy5cvA+CVsXVFFY6OHz8OpVIJExOD+JuVqFyTCSGElAU0b94cTZo0wbJly9TT6tati379+mHBggW52u/duxeDBw/G7du3YW9vX6x5Jicnw87ODklJSbC1tS127URl3Z49e9CjRw/UrFkTN2/elLqcMikjIwOVKlXCixcvcPXqVdStW1fqkogMlr7235L+iZKRkYGzZ88iKChIY3pQUJD6VgWv2rFjB5o2bYqvv/4arq6uqF27Nj788EO8ePEi3/mkp6cjOTlZ40FEhWOXmu6Zm5ujefPmANi1RmQoJA1H8fHxUCgUcHJy0pju5OSE2NjYPJ9z+/ZtHDt2DJcvX8bWrVuxePFi/Pnnn3jvvffync+CBQtgZ2enfri7u5fqchCVVQxH+sFxR0SGxSA6t2UymcbPQohc01SUSiVkMhnWrVuHgIAA9OjRA4sWLcKaNWvyPXo0c+ZMJCUlqR/37t0r9WUgKmsyMjIQEREBgOFI1xiOiAyLpOHI0dERcrk811GiuLi4XEeTVFxcXODq6go7Ozv1tLp160IIgZiYmDyfY2FhAVtbW40HERXs3LlzSEtLg6OjI2rXri11OWVay5YtYWJigtu3b+PBgwdSl0NU7kkajszNzeHv74/Q0FCN6aGhoWjVqlWez2ndujUePHiAZ8+eqafduHEDJiYmcHNz02m9ROWJ6ihG69at8z2SS6XD1tYWjRo1AsCjR0SGQPJutWnTpmHVqlUICQnBtWvXMHXqVERHR2P8+PEAsrvERowYoW4/ZMgQODg44K233sLVq1dx5MgRfPTRR3j77bdhZWUl1WIQlTmqK2OzS00/2LVGZDgkD0eDBg3C4sWLMW/ePPj5+eHIkSPYvXs3PD09AQAPHz5EdHS0un3FihURGhqKxMRENG3aFEOHDkXv3r3xww8/SLUIRGWOEELjyBHpHsMRkeGQ/DpHUuB1jogKdv36dfj4+MDS0hKJiYmwsLCQuqQy7/79+3Bzc4OJiQmePn3K7yaiPJSL6xwRkWFSHb0ICAhgMNITV1dXeHt7Q6lU4uTJk1KXQ1SuMRwRUS4cbyQNdq0RGQaGIyLKheONpMFwRGQYGI6ISMOjR49w8+ZNyGQytGzZUupyyhVVODp58iQyMzMlroao/GI4IiINqvsa+vr6onLlyhJXU774+PjA3t4eL168QGRkpNTlEJVbDEdEpIH3U5OOiYmJ+n0/evSoxNUQlV8MR0SkgeONpMVxR0TSYzgiIrXnz5/j3LlzAHjkSCo5w1E5vAwdkUFgOCIitYiICGRlZcHNzQ0eHh5Sl1MuNWnSBJaWloiPj8eNGzekLoeoXGI4IiK1nOONeLNZaVhYWCAgIAAAu9aIpMJwRERqHG9kGDjuiEhaplIXQESGQaFQqE/jV483iokBbt4EatUC3NwkrK4cyPFeMxwRSYtHjogIAHDp0iWkpKTAxsYGDRo0AIKDAU9PoGPH7H+Dg6Uusex65b1ueesWZDIZbt26hdjYWKmrIyp3GI6ICMDLoxStWrWC/OFDYOxYQKnM/qVSCYwbl310g0pXTEyu97rS1Klo4OMD4OV97ohIfxiOiAjAKxd/vHnz5c5aRaEAbt2SoLIyLp/3uk3t2gDYtUYkBYYjIoIQQn1F5jZt2mSPMTJ55etBLgdq1pSgujIun/e6bZcuAHilbCIpMBwREe7evYsHDx7A1NQ0+zRyNzdg5crsQARk/7tiBQdl60I+73Wbvn0BAJGRkUhJSZGwQKLyh+GIiNRdN/7+/qhQoUL2xNGjgagoICws+9/RoyWrr8zL4712c3ODp6cnlEolTp06JXWFROUKwxER5X+zWTc3oH17HjHShzzea57STyQNhiMiyj8ckaQYjoikwXBEVM49efIEV65cAcArYxsaVTg6efIkMjMzJa6GqPxgOCIq58LDwwEAderUQZUqVSSuhnKqV68eKlWqhNTUVFy4cEHqcojKDYYjonKOXWqGy8TERH00j11rRPrDcERUzjEcGTaOOyLSP4YjonIsLS0NERERABiODFXOcCSEkLgaovKB4YioHDt79iwyMjLg5OSEGjVqSF0O5aFZs2awsLDAo0ePcIu3byHSixKFo7i4ON4xmsiIqbpqWrduDZlMJnE1lBcLCws0a9YMALvWiPSlWOHo4sWLqF+/PlxcXODq6gpXV1d88sknSE1NLe36iEiHON7IOHDcEZF+FSscjR49Gk5OTjh27BgiIyPxxRdfYM+ePWjatCmePn1a2jUSkQ4olUocP34cAMORoWM4ItIvmSjGCD9ra2ucPXsWPj4+6mlCCLzxxhuwtLTEb7/9VqpFlrbk5GTY2dkhKSkJtra2UpdDJIkrV67A19cXFSpUQGJiIszMzKQuifLx9OlT2NvbAwAePXqEqlWrSlwRkTT0tf8u1pGjvI4QyWQyzJ8/H9u3by+VwohIt1RHIVq0aMFgZOAqV64MX19fAFAf7SMi3dE6HPXs2RP/93//h02bNmH8+PGYOnUqHj16pNEmKSkJlStXLvUiiaj0cbyRcWHXGpH+mGrbsEGDBjh37hxWr16tDkXVq1fHwIED4efnB4VCgdWrV+O7777TWbFEVHoYjoxLmzZtsHz5coYjIj0o1pijR48eITIyEufPn1c/bt26Bblcjjp16uDixYu6qLXUcMwRlXcxMTFwd3eHiYkJEhMTYWNjI3VJVIi7d+/Cy8sLpqamSExMhLW1tdQlEemdvvbfWh85ysnJyQndunVDt27d1NNevHiBCxcu8OaIREZANW7Fz8+PwchIeHh4wM3NDTExMYiIiECHDh2kLomozCq1K2RbWVmhRYsWGDduXGm9JBHpyNGjRwFAfVNTMnwymQxt27YF8HL9EZFu8PYhROXQ4cOHAQCBgYESV0JFwUHZRPrBcERUziQkJODy5csAgHbt2klcDRWFKhyFh4cjKytL4mqIyi6GI6JyRtUlU7duXVSpUkXiaqgo6tevDzs7Ozx79szgT3whMmYMR0TlzJEjRwDwqJExksvlaNWqFQB2rRHpEsMRUTmjCkccb2ScOO6ISPcYjojKkaSkJERGRgLgkSNjlTMcFeMydUSkBYYjonLkxIkTUCqVqFGjBlxdXaUuh4qhWbNmMDMzw8OHD3Hnzh2pyyEqkxiOiMoR1Sn8PGpkvKysrNC0aVMA7Foj0hWGI6JyhOONygaOOyLSLYYjonLi+fPnOH36NAAeOTJ2qitlMxwR6QbDEVE5obpwoLu7O7y8vKQuh0pAdTr/tWvXEB8fL3E1RGUPwxFROZHz+kYymUziaqgkHBwcUK9ePQAvbyJMRKWH4YionNC4n1pMDBAWlv0vGZf/1l2bxo0BsGuNSBdMpS6AiHQvPT0dJ0+eBAC0i4sDPD0BpRIwMQFWrgRGj5a4QtJKcDAwdiygVKKNTIaVeHlEkIhKj0yUw6uIJScnw87ODklJSbC1tZW6HCKdO3r0KNq1awenKlXwMD4espybvVwOREUBbm6S1UdaiIl5GWoBRAPwRPYtRZ4+fQobGxtJyyPSB33tv9mtRlQOqMcb1aunGYwAQKEAbt2SoCoqkps31cEIADwAVAegUCjUNxMmotLBcERUDqjDUefO2V1pOcnlQM2aElRFRVKrVq511/6/gfVhYWFSVERUZjEcEZVxmZmZ6jOa2vXpkz3GSC7P/qVcDqxYwS41Y+DmlmvddXj7bQDAoUOHpKuLqAzimCOOOaIy7sSJE2jdujUcHR3x6NEjmJiYZI9fuXUr+4gRg5FxybHu7stkcHNzg4mJCZ48eQI7OzupqyPSKY45IqJScfDgQQBA+/bts4MRkB2I2rdnMDJGOdadq6sratWqBaVSybPWiEoRwxFRGacKRx07dpS4EtKFDh06AOC4I6LSxHBEVIalpaXhxIkTABiOyiqGI6LSx3BEVIaFh4cjPT0d1apVQ+3ataUuh3Sgffv2AIALFy7gyZMn0hZDVEYwHBGVYTm71Hg/tbLJ2dkZdevWhRBCfYsYIioZhiOiMozjjcoHdq0RlS6GI6IyKiUlBREREQBe7jypbGI4IipdDEdEZdSxY8eQlZUFb29veHl5SV0O6VBgYCAA4PLly3j8+LHE1RAZP4MIR0uXLoW3tzcsLS3h7++v9X2Cjh8/DlNTU/j5+em2QCIjxC618qNKlSrw9fUFwKtlE5UGycPRxo0bMWXKFMyaNQuRkZFo27Ytunfvjujo6AKfl5SUhBEjRqBTp056qpTIuKi6WBiOygdV1xrDEVHJSR6OFi1ahNGjR2PMmDGoW7cuFi9eDHd3dyxbtqzA540bNw5DhgxBy5Yt9VQpkfF4+vQpzp07B4DjjcoLVQj++++/Ja6EyPhJGo4yMjJw9uxZBAUFaUwPCgpSX7guL6tXr8a///6L2bNnazWf9PR0JCcnazyIyrLDhw9DCIG6devCxcVF6nJID1S3h7l+/Tru3bsndTlERk3ScBQfHw+FQgEnJyeN6U5OToiNjc3zOTdv3sSMGTOwbt06mJqaajWfBQsWwM7OTv1wd3cvce1EhozjjcqfSpUqISAgAAAQGhoqcTVExk3ybjUAuS5OJ4TI84J1CoUCQ4YMwdy5c4t0td+ZM2ciKSlJ/eBfVVTWqcIRu9TKl86dOwMADhw4IHElRMZN0nDk6OgIuVye6yhRXFxcrqNJQPZ1W86cOYOJEyfC1NQUpqammDdvHi5cuABTU1P1DuFVFhYWsLW11XgQlVUPHz7ElStXIJPJ1LeWoPKhS5cuALLDkVKplLgaIuMlaTgyNzeHv79/rkPAoaGhaNWqVa72tra2uHTpEs6fP69+jB8/HnXq1MH58+fRvHlzfZVOZLD2798PAGjatCkcHBwkrob0qUWLFrC2tsbjx49x8eJFqcshMlraDdrRoWnTpmH48OFo2rQpWrZsiZUrVyI6Ohrjx48HkN0ldv/+ffzyyy8wMTFRX8tDpWrVqrC0tMw1nai8UoWjV090oLLP3Nwc7du3x65duxAaGsprwBEVk+RjjgYNGoTFixdj3rx58PPzw5EjR7B79254enoCyO4iKOyaR0SUTalUqo/EMhyVTxx3RFRyMiGEkLoIfUtOToadnR2SkpI4/ojKlMjISDRp0gQVK1ZEQkICzM3NpS6J9OzKlSvw9fWFpaUlnj59CktLS6lLIio1+tp/S37kiIhKj6pLrUOHDgxG5VS9evVQrVo1pKWl4fjx41KXQ2SUGI6IyhCONyKZTKbuWuP1joiKh+GIqIxITU3FsWPHADAclXccd0RUMgxHRGXEkSNHkJGRAU9PT9SqVUvqckhCqnB07tw5xMfHS1wNkfFhOCIqI9Rdar6+kN2/L3E1JCUXFxc08PGBEAIHNm6Uuhwio8NwRFRG7N+0CQAQtGsX4OkJBAdLXBFJJjgY3f75BwCwe+JEfhaIioin8vNUfioDYk6fhntAAEwAxAOoDAByORAVBbi5SVob6VlMDODpiUNKJToAqAIg1sQEJnfv8rNARo+n8hOR1vb/8QcAIAD/BSMAUCiAW7ekKomkcvMmoFSiNQAbAI8BnFUq+VkgKgKGI6IyYPeVKwCArjknyuVAzZqS1EMSqlULMDGBGYAu/03aLZPxs0BUBAxHREYuIyMD+48eBQD0NPlvk5bLgRUr2I1SHrm5AStXAnI5evw3abeXFz8LREXAcERk5I4dO4aUlBQ4OTnB/84dICwse6zR6NFSl0ZSGT0aiIpCt/8G6Z+OisLjx48lLorIeDAcERm5Xbt2AQC6d+8OEw8PoH17HiUgwM0Nrm+8gUaNGkEIgX379kldEZHRYDgiMnKqcNSzZ0+JKyFD1KNHdufa7t27Ja6EyHgwHBEZsX///RfXr1+HqakpunTpUvgTqNzp3r07AGDfvn1QKBQSV0NkHBiOiIyY6mhAmzZtYGdnJ3E1ZIhatmwJOzs7PHnyBBEREVKXQ2QUGI6IjBi71Kgwpqam6hsRs2uNSDsMR0RGKjU1FYcOHQLAcEQFU407+uuvvySuhMg4MBwRGam///4b6enp8Pb2ho+Pj9TlkAHr2bMnTExMcOHCBURFRUldDpHBYzgiMlLbt28HkL3jk8lkEldDhqxKlSpo3bo1AGDHjh0SV0Nk+BiOiIyQQqFQ7+T69+8vcTVkDPr16wfgZagmovwxHBEZoePHjyM+Ph6VK1dGu3btpC6HjEDfvn0BAIcPH8bTp08lrobIsDEcERmhbdu2AQB69+4NU1NTaYsho1CjRg3Ur18fCoVCfZYjEeWN4YjIyAgh1OFI1VVCpA12rRFph+GIyMhcvHgRd+7cgZWVFbp27Sp1OWREVF1re/fuRXp6usTVEBkuhiMiI6M6ahQUFIQKFSpIWwwZFX9/f7i6uuLZs2c4ePCg1OUQGSyGIyIjs3XrVgDsUqOiMzExQZ8+fQC8/BwRUW4MR0RG5M6dO7hw4QJMTEzQu3dvqcshI6S69MO2bduQlZUlcTVEhonhiMjQxcQAYWFATAy2bNkCAGjXrh0cHBwkLoyMUYcOHeDg4IDHjx9n334mx+eLiLIxHBEZsuBgwNMT6NgR8PTExp9+AgC88cYbEhdGxsrU1BSvv/46AGDT559rfL4QHCxxdUSGQSaEEFIXoW/Jycmws7NDUlISbG1tpS6HKG8xMdk7LKUSAHAbQA1kjxt58OABnJycJC2PjNfff/+Nzp07wwHAQwBmql/I5UBUFODmJlltRAXR1/6bR46IDNXNm+pgBAAb//u3Y+PGDEZUIoGBgahSqRISAITl/IVCAdy6JVFVRIaD4YjIUNWqBZi83ERV4WjQoEHS1ENlhqmpKQb8N6B/U85fyOVAzZqS1ERkSBiOiAyVmxuwciUgl+M6gAsATOVyvDZ6tNSVURkw8O23AQBbAGQC2cFoxQp2qRGB4YjIsI0eDURFYeOoUQCALkFBsLe3l7YmKhPatm0LJycnPAXw91dfZY81YvAmAsBwRGTwhKsrfj91CgAwePBgiauhskIul2PAgAEAgN+vXuURI6IcGI6IDNzly5dx7do1mJubq++NRVQa3nzzTQDA5s2bkZqaKnE1RIaD4YjIwP32228AgO7du8POzk7iaqgsadWqFapXr45nz56p79lHRAxHRAZNoVCow9GIESMkrobKGplMpv5c/fLLLxJXQ2Q4GI6IDNiBAwfw4MED2Nvbo2fPnlKXQ2XQ8OHDAWR/1u7fvy9xNUSGgeGIyICtXbsWQPbYEAsLC4mrobKoevXqaNOmDZRKJdatWyd1OUQGgeGIyEAlJSVh69atAICRI0dKXA2VZaqutbVr16Ic3lGKKBeGIyID9ccffyAtLQ316tVD06ZNpS6HyrA33ngDFhYWuHr1KiIjI6Uuh0hyDEdEBmrNmjUAso8ayWQyaYuhMq1SpUro168fgJefO6LyjOGIyABduXIFx48fh1wux7Bhw6Quh8qBUf9dhf3XX3/FixcvpC2GSGIMR0QGaMWKFQCAPn36oFq1ahJXQ+VBUFAQvLy8kJiYiE2bNhX+BKIyjOGIyMA8f/5cfc2Z8ePHS1wNlRcmJiYYO3YsAGD58uUSV0MkLYYjIqnExABhYdn/5rBx40YkJSWhevXq6Ny5s0TFUXn09ttvw9TUFCdPnsSFCxc0f5nP55WoLGI4IpJCcDDg6Ql07Jj9b3Cw+leqv9rHjh0LExNuoqQ/Tk5O6N+/P4CXXbsACvy8EpVFMlEOL2qRnJwMOzs7JCUlwdbWVupyqLyJicnewSiVL6fJ5UBUFCIfP0aTJk1gZmaGmJgYVK1aVbo6qVw6ePAgOnXqBBsbG9y/fx82SUn5fl7h5iZZnVQ+6Wv/zT9LifTt5k3NHQ0AKBTArVtYvHgxAOD1119nMCJJdOjQAXXq1EFKSgpWr15d4OeVqKxiOCLSt1q1gFe7y+RyPLSxwYYNGwAAU6dOlaAwouyb0U6ZMgUAsHjxYiiqV8/z84qaNfVfHJGeMBwR6ZubG7ByZfYOBsj+d8UKLNm6FZmZmWjTpg0CAgKkrZHKtREjRsDe3h537tzBjnPn8vy8skuNyjKOOeKYI5JKTEx210TNmnhubw93d3c8efIEW7ZsUQ+KJZLKJ598gi+//BJt2rTB0aNHNT6vDEYkFX3tvxmOGI7IACxfvhwTJkxA9erVcePGDchVf6UTSeThw4fw9PREZmYmTp06xaOZZBA4IJuonMjKysK3334LAJg8eTKDERkEFxcXvPnmmwCAr7/+WuJqiPSL4YhIYhs2bMCtW7fg6OiIt99+W+pyiNQ+/vhjAMDmzZtx+fJliash0h+GIyIJKRQKfPHFFwCADz74ABUrVpS4IqKX6tevjwEDBgAAPv/8c4mrIdIfhiMiCW3cuBE3btyAvb093nvvPanLIcrl008/BQD88ccfuHr1qsTVEOkHwxGRRHIeNZo2bRpsbGwkrogot4YNG6J///4QQqg/r0RlHcMRkUQ2bNiAa9euoVKlSnj//felLocoX5999hkA4Pfff8fFixclroZI9xiOiEqbFncvf/HiBf7v//4PADB9+nReUoIMmp+fHwYMGAAhhHqQdoG02AaIDBnDEVFp0vLu5d9//z3u3bsHd3d3TJ48Wc9FEhXdggULYGZmhn379mH//v35N9RyGyAyZLwIJP9ip9ISE6PV3cvj4uJQs2ZNpKSk4Ndff8WwYcP0XytRMUydOhWLFy9Gw4YNce7cudzX5NJyGyAqrnJ1EcilS5fC29sblpaW8Pf3z75UfT62bNmCLl26oEqVKrC1tUXLli2xb98+PVZLlA8t714+e/ZspKSkoEmTJhgyZIgeCyQqmU8++QSVKlXCxYsXsWbNmtwNtNwGiAyd5OFo48aNmDJlCmbNmoXIyEi0bdsW3bt3R3R0dJ7tjxw5gi5dumD37t04e/YsOnTogN69eyMyMlLPlRO9olatQu9eHhERgRUrVgAAvv32W5i82p7IgDk4OKhP7f/444/x+PFjzQZabANERkFILCAgQIwfP15jmo+Pj5gxY4bWr1GvXj0xd+5crdsnJSUJACIpKUnr5xBpZdUqIeRyIYDsf1etUv8qMzNT+Pn5CQBi2LBhEhZJVHwZGRmiUaNG+X+OC9gGiEpKX/tvSf9szcjIwNmzZxEUFKQxPSgoCCdOnNDqNZRKJVJSUmBvb59vm/T0dCQnJ2s8iHRi9Ojs8RVhYdn/jh6t/tWPP/6I8+fPo3Llyup7qREZGzMzM6xcuRIymQy//fYbQkNDNRsUsA0QGQtJw1F8fDwUCgWcnJw0pjs5OSE2Nlar1/j222+RmpqKgQMH5ttmwYIFsLOzUz/c3d1LVDdRgdzcgPbtNQag/vPPP+pT97/66itUrVpVouKISi4gIAATJ04EAIwbNw7Pnj3TbJDHNkBkTAxiwINMJtP4WQiRa1peNmzYgDlz5mDjxo0F7mxmzpyJpKQk9ePevXslrplIW5mZmRg+fDjS0tIQFBSE0fxLmsqAL7/8Eu7u7rhz5w4vR0FljqThyNHREXK5PNdRori4uFxHk161ceNGjB49Gps2bULnzp0LbGthYQFbW1uNB5G+zJ07F2fOnEHlypUREhLCQdhUJtjY2ODXX3+FTCZDSEgI/vzzT6lLIio1kn5Lm5ubw9/fP1efdWhoKFq1apXv8zZs2IBRo0Zh/fr16Nmzp67LJCq2Xbt24csvvwQALFu2DK6urhJXRFR6AgMDMWPGDADAO++8g1s8ZZ/KCMn/hJ02bRpWrVqFkJAQXLt2DVOnTkV0dDTGjx8PILtLbMSIEer2GzZswIgRI/Dtt9+iRYsWiI2NRWxsLJKSkqRaBKI83b59W32Bx3fffReDBg2SuCKi0jd37ly0bNkSiYmJ6NevX+7xR0RGSPJwNGjQICxevBjz5s2Dn58fjhw5gt27d8PT0xMA8PDhQ41rHq1YsQJZWVl477334OLion6wz5t0rgj3i3r69Cn69OmDxMREtGjRAt99950eCiTSPzMzM/z5559wcXHBlStXMGLECCgUCu2ezHuwkYHi7UM4/oi0ERwMjB2bffVfExNg5cp8T1FOS0tD165dceTIEVSrVg2nTp2CG8/aoTLu5MmTCAwMREZGBiZMmIAlS5YUfGJNEbYpIhV97b8ZjhiOqDBFuF9URkYGBg4ciO3bt8PW1hZHjx5Fw4YN9VsvkUQ2bdqEwYMHQwiBTz75BPPmzcs7IPEebFRM5ereakQGTcv7RaWnp+P111/H9u3bYWFhga1btzIYUbkycOBALFmyBADwxRdfYObMmcjz72/eg40MHMMRUWG0uF/UkydP0L17d+zcuROWlpbYsWMHOnbsqOdCiaQ3YcIELFy4EED2BU8nTJiAzMxMzUa8BxsZOIYjosK4uWWPh5DLs3+Wy4EVK9SH/69fv46WLVsiLCwMFStWxK5du3LdEoeoPPnggw+wYsUKyGQyrFixAl27dkV8fPzLBoVsU0RS45gjjjkibcXEZB/2r1kTcHODEAKrV6/G+++/j+fPn8PDwwN//fUXu9KI/rNt2zYMHz4cz549g7u7O9asWaN5RPWVbYqoMByQrUMMR1RSt2/fxqRJk7Br1y4AQIcOHbB+/Xo4OztLXBmRYbl8+TL69++vvkDku+++i88//7zAm4UT5YcDsokMUFxcHD766CPUq1cPu3btgpmZGf73v/8hNDSUwYgoD76+voiMjFRf2Hfp0qWoVasWFi9ejNTUVImrI8objxzxyBHFxGSfPVOrVp6H9oUQOHv2LH7++Wf8+uuvePHiBQCgS5cu+PHHH1GnTh19V0xklA4ePIjJkyfj8uXLAAB7e3u8++67ePvtt+Ht7Z3/EwvZRqn8YLeaDjEckVo+F6LLyMjA6dOnsWvXLuzYsQNXrlxRP6VZs2aYPXs2evToUfBF7ogol6ysLKxevRpff/21xr3YWrZsiddeew2dO3dGw4YNX96gmReLpBwYjnSI4YgAADExSPLwwF0hcBfAXQA3ZTKcbtIE5y5fRnp6urqphYUFXn/9dbzzzjsIDAxkKCIqIYVCga1bt2L58uUICwuDMsd1j+zt7dGkSRM0rlkTDVesQA0h4A3ACYCMF4ss1xiOdIjhqPxITEzE7du3cefOHdy5cwd37959+fj3XyQVMObB3t4eQUFB6NWrF3r06IHKlSvrsXKi8uPhw4fYtGkT9u/fj8OHD+c7FskSgBcAj6ZN4eHnB09PT3h4eKgfbm5uMDc312fppGcMRzrEcFT2KBQKXLhwAWfPnkVkZCQiIyNx/fp1PH36tNDnOgDw/O/hJZOhyeLFaN69O2rWrMkjRER6lpGRgQsXLuD8+fM4f+wYLv/yC6IAxABQFvJcmUwGZ2dn1K1bF40bN0bjxo3RtGlT1K5dm9tyGcFwpEMMR2XDo0ePsHXrVuzfvx9hYWFITEzMs52TkxO8vb3h7e0NT09PjYdHWBgqTp6cfesC1YXoOJ6ByHAEBwPjxiFDocA9ExPcmTIF93x9ER0dneuRlpaW50u4urqic+fO6Nq1K3r16gUbGxs9LwSVFoYjHWI4Ml4vXrzApk2bsH79ehw4cEBjnIKdnR2aNWum/ovR19cX1atXh7W1dcEvygvRERk2LbZRIQTi4+MRFRWFS5cu4dy5c4iMjMTZs2c1xg9aWVmhd+/eGDZsGHr06AG56irdZBQYjnSI4cj4xMbGYunSpVi2bJnGbQgCAgLQp08fdOnSBf7+/ppfdDz9l6h8yWObf/HiBY4fP47Q0FBs3boVN2/eVDf39vbGpEmTMHr0aB5NMhIMRzrEcGQ8EhIS8OWXX2LJkiXIyMgAAHh5eeHtt9/GkCFDUKNGjbyfyNN/icoXLbZ51TXL1q9fj7Vr1+LJkycAAEdHR8yYMQPvvvsurKyspKietMRwpEMMR4YvPT0d33//PebPn4+kpCQAQIsWLfDBBx+gX79+MDU1zf/JMTGAp2f2l6QKT/8lKruKsc0/f/4cv/32GxYuXKg+muTq6opFixbhjTfe4ABuA8Xbh1C5FR4ejiZNmmD69OlISkpCw4YNsXfvXpw4cQIDBgwoOBgB2YfVla+c16JQZI9ZIKKypxjbfIUKFTB27FhcvXoVISEh8PT0xP379zFo0CB069ZN4wKVVP4wHJHBeP78OaZMmYLWrVvj6tWrqFq1KtasWYNz586ha9eu2v8lV6tW9mH1nOTy7MGcRFT2lGCbNzU1xVtvvYV//vkHs2fPhrm5Ofbv348GDRrgp59+QjnsXCEwHJGBuHLlCgICAvD9999DCIGRI0fi6tWrGDlyZNHPJnFzyx5voHqe6hR9dqkRlU2lsM1bWlpizpw5uHz5Mjp37oy0tDS8//776NmzJ2JjY3VUOBkqjjnimCNJCSEQEhKC999/Hy9evICzszPWrFmDrl27lvzFeYo+UflSStu8EAI//fQTPvroI6Snp6NKlSrYtGkT2rdvX3q1UrFwQLYOMRwZhoyMDEycOBE///wzACAoKAi//PILnJycCn4iT9EnopLQ8jvkypUrGDJkCC5evAi5XI5Fixbh/fff52BtCXFANpVpCQkJCAoKws8//wyZTIb58+djz549hQej4ODss1I6dsz+NzhYPwUTUdlQhO+Q+vXrIzw8HEOHDoVCocDkyZMxatQojYtKUtnEI0c8cqR3V69eRe/evXH79m3Y2Nhgw4YN6NmzZ+FP5Cn6RFQSxfwOEULg+++/x4cffgiFQoH27dtj69atqFSpks5LJk08ckRl0pkzZ9C2bVvcvn0b3t7eCA8P1y4YATxFn4hKppjfITKZDFOmTMHevXthY2ODQ4cOoXXr1oiOjtZhsSQlhiPSm+PHj6NTp0548uQJmjdvjoiICNSvX1/7F+Ap+kRUEiX8DuncuTOOHTsGV1dXXL16FS1atMCFCxd0UChJjeGI9OLgwYMICgpCcnIy2rVrh9DQUDg6Omo2iokBwsKy/80LT9EnopIo6ndIHt9JDRs2xMmTJ+Hr64uHDx+iffv2OHXqlB6KJ33imCOOOdK53bt347XXXkN6ejqCgoKwdetWVKhQQbNRUe6FxlP0iagktPkOKeQ7KTExEb169cLx48dRsWJF/PXXXzzVXw94Kr8OMRzpz5YtWzB48GBkZmaiT58+2LRpEywsLDQbcaA1ERkSLb+TUlNT0a9fPxw4cACWlpbYsmULunfvrv96yxEOyCajt379egwcOBCZmZkYOHAg/vzzz9zBCOBAayIyLFp+J1lbW+Ovv/5C7969kZaWhr59+2LLli16LJR0heGIdCI4OBjDhg2DQqHAyAEDsP6dd2D26FHejTnQmogMSRG+kywtLbH5++8xqEMH9R+C69ev11OhpCsMR1TqfvrpJ4wZMwZCCExo3x4hmzdD3qVL/hdc40BrIjIkRflOCg6GWc2aWBcWhrcAKBQKDBs2DCEhIXotmUoXxxxxzFGp+vrrrzF9+nQAwLR33sHCVasgy/kRK2gsEQdaE5EhKew76ZWxSUoAE2UyLPvvO2/p0qWYMGGCHgsu+zjmiIyKEAJz5sxRB6NPPvkECwcP1gxGQMFjidzcgPbtGYyIyDAU9p30ytgkEwBLhMDUAQMAAO+++y6+++473ddJpY7hiIonx/U/hBCYPn065s6dCwCYP38+Pv/8c8hq1+ZYIiIqu/IYmySTy/HtokX4v//7PwDAtGnTMH/+/OxfFnYtNzIYDEdUdDlu3Kj08MD7nTrhm2++AQAsXrwYM2fOzG7HsUREVJbl8x0nc3fHl19+iXnz5gEAZs2ahc9694bw8OBNs40ExxxxzFHR5OhjzwIwFsBqZN97aPny5Rg7dmzez+FYIiIqqwr4jvvmm2/w8ccfAwA+AvAVABnAa7kVk77236Y6e2UyTjEx2f3otWrlvdH+18eeDmAogM3IPvy4ZsYMDM8rGAHZr8MvACIqqwr4jvvoo49gGR2NST/9hG8ApAFYDMBENf6yoFuXFPRdTDrFbjU9E0Lg8ePHuH//PpKSkqQuR1OO7rJ8D/vWqoVUmQx9kB2MzAH8aWKC4e++q+diiYiMw/vTp2OFTAYZgB8BjAegNDHJf/ylNt/FElAqlXjy5Anu3buH5ORklOWOJ4YjPXjy5AkWLVqEDh06wMbGBlWrVoWbmxsqVaoEe3t7dO/eHQsXLsSdO3d0V0RhAwFjYl7eRwjI/nfcuFztEytWRNcaNbAfQAUAO01M0H/lSv5lQ0SUHzc3jP35Z6yRyWAC4GcAo5o3R5azc+62Wn4Xa7TX0SBvIQQuXLiATz/9FO3atUOlSpXg4OAADw8P2NnZwdHREX369MGvv/6KFy9elPr8JSXKoaSkJAFAJCUl6XQ+qampYubMmaJChQoCgMZDLpfnmgZAdOzYUWzfvl0olcrSK2TVKiFMTIQAsv9dtSp3m4MHs3//6iMsTN0kKipK1K9fXwAQlezsxPEffxTi3r3Sq5OIqCy7d0/8/umn6u//nj17iuTkZM02WnwXq2nz3V4MaWlpIiQkRDRs2DDP/ZSZmVmuaVWqVBHLli0TmZmZpVJDfvS1/2Y40pFTp04Jb29v9QfHz89PfP/99+LKlSsiLS1NCCFESkqKOHv2rFi0aJHo1KmTkMlk6vYNGzYUmzZtKnlIunfv5cajesjluUNNIe0iIiKEk5OTACBcXFzE+fPnS1YXEVE5tW3bNmFpaan+ro+Ojn75y1L6zi6OjIwMsXTpUuHs7KzeF1lYWIh+/fqJkJAQcenSJZGeni6EEOLZs2fi1KlTYt68ecLT01Pdvk2bNprLU8oYjnRI12/ur7/+KszNzQUA4e7uLrZt26ZVyLlz546YPn26qFixovqDFhAQII4dO5b/k+7dy/5LI78Noqh/hcjlLzey//4K2bRpk7Cyssp7QyYioiI7deqU+g9OZ2dnERER8fKX+XwXayjKd7sQBe4rlEql2L59u6hTp4563+Pq6iq++uor8eTJk0KXJSMjQ/zwww/CxsZGABCOjo7i5MmTWr4TRcNwpEO6fHN//vln9Yerb9++IjExscivkZCQID777DNhbW2tfq0BAwaIW7duaTbU5pBqUf+6uHcve+O6d0+kp6eLyZMnq2vo3r177kPARERULFFRUaJBgwbqIzRLly59+Yd0ju/iPBXlu72AfUVERIRo166d+nve0dFR/Pjjj+ojREVx69Yt0bhxYwFAVKhQQRw4cKDIr1EYhiMd0tWbGxwcrP6ATZw4USgUiuK/2L174sEff4gxb74pTExM1P28U6ZMEfHx8UXfMAr7K+QVN27cEC1atFAvz/Tp03Xel0xEVN4kJSWJ3r17q79rBw4cqNXRGiGEdt/t+ewrbh8/LoYMGaKer6WlpZgxY4ZIvHKl4N6IQqSkpIigoCABQFhbW2seESsFDEc6pIs3NzQ0VD3IbvLkyfl3oxXWDSZErpR/YfZs9YcNgLCzsxNfjx0rXhT1kGpBf4X8JysrSyxatEjdH25nZye2b9+u1XtARERFp1QqxcKFC4Wpqam6m23z5s3aPbmw7/ZXut/iATEVEOY5BlUPHz5c3L17t2gDvAvYl6WlpYnOnTurj0Rdv35du2XRAsORDpX2m3v9+nVRqVIl9Ycs32BUwm6wffv2aZw94AGI5YB4XkqD8UJDQ4Wfn5/69Tt37iyioqKK/XpERKS98PBwUbt2bfV3cO/evcWlS5dK9qL/7VMSADEPEHZ4eYZZp06dxNmzZzXalbSbTiU5OVk0bdpUABA+Pj6lNiSD4UiHVG9uXFxciV/rxYsXwtfXVwAQLevVEy9u3sy7obYfvEIG2WVlZYnVq1cLV1dX9Qe8KiA+l8nEg4ULi1y/QqEQe/fuFV26dFG/nq2trVi+fHnpXk6AiIgK9eLFCzFr1iz1USSZTCaGDRsmzp07V6zXu3z5spjSubOwzhGKGrm7i71792p+x2s7wLsIISo2NlZU+2/Q+cBevUpln3L//n2GI11RhaOQkJDCGxfSDfbRRx+pA0psQUeESvmDl5qaKr777jvhkSMkyWQy0bFjR7FkyRJx+fLlfD+Iz58/F0ePHhXTp08XNWrUUD/fzMxMTJ48WTx+/Ljw94WIiHTm6tWrYsCAAervZwCiadOmYsGCBeL8+fP5jgHNyMgQp0+fFvPnz1cfuVGHoho1xIaffsp7PGwp/QGvYdUqcVwmE6b/zf/HIUPyX2BthpwIoT5JiOFIB1ThaMKECQU3LOTQ4eHDh9XXJtpR2AdKRwOoMzIyxG+//SZatmypsRGozhbw9fUVnTp1Et27dxeBgYGidu3auS5AaWNjI6ZMmSJu376t7VtIRER6cObMGfHmm2/muvCihYWFaNiwoejQoYPo0aOHCAwMFD4+PuojTqqHqamp6Nu3r9izZ0/hR25KMMC7oH3e4v9qsQTE1YMH856vlmOdVPs6hiMdUIUj/4YN829UyAcgOTlZeHl5CQBidBFStNZnjWk5gDqn27dviwULFoiOHTuqr0uU38PZ2VkMHDhQ/P777yIlJUXreRARkf49evRILF26VPTs2VPjMi95Pezs7ES/fv3EkiVLij58RJt9TxGvw6QERNf/avOvXVtkZGRozk/LAwcZGRnC0sJCL+FIJoQQKGeSk5NhZ2cHUwApy5bBcvz43I3CwrJv+pfX9Pbt8c4772DVqlXwcnfHhZgY2OZ8G+VyICoq7/uNxcRk34m5Zk2d3o8sMzMTd+7cwb///ounT58iPT0dVlZWcHZ2Ro0aNeDm5gaZTKaz+RMRkW4olUpERUXhxo0bSExMxPPnz1GxYkVUrlwZPj4++vl+L2xfFhOTfdPc/+4R9wCAL4CnAD799FPMmzcvu10h+9qcznz6KZp98QUAICkpCba2tqW2OK8q1+EIAI6bmKDV3bu5V+4rKxaAOvTsPH8evXv3hkwmQ1hYGAJv3cq+MaBCkd1mxQpg9Gg9LhEREZGBCQ7W2DduHD0ag1euhImJCU6cOIHmzZsXuK/V2C/HxOBHDw9M+i+y6DocmejslY3EUaUyO/2+ys0NWLkyeyUB6tDz2MICY8aMAQBMmzYNgYGB2UEoKio76UZFMRgRERG9sm8ctGIF3nzzTSiVSowcORIvXrzId1+b64DFzZs4psdjOeX+yFF7AGH37uXfxZXj0KFwdcWAAQOwZcsW1KtXD2fPnoWlpaXe6iYiIjJmT548ga+vLx4+fIipU6di0aJF2b8opJsuKyoKVby9kfjfz+xW04Gc4chULkfCkydavcm//fYbhg8fDlNTU5w6dQpNmjTRdalERERlyu7du9GzZ8+XQ1MCAwt9zvHjx9GmTRtUApAIdqvpVHVPT2QpFAgNDS20bXR0NCZOnAgAmD17NoMRERFRMfTo0QNjxoyBEAKjRo1CSkpKoc/ZvXs3AKBT9+66Lg9AOQ9HPXr3BgCsW7euwHZZWVkYOnQokpKS0Lx5c8yYMUMf5REREZVJ3377LTw9PREVFYUPP/ywwLZKpRLr168HAHR//XV9lFe+w9HQoUMBAH/99Rfi4uLybffll1/i2LFjsLGxwfr162FqaqqvEomIiMocW1tbrFmzBgCwcuVK7Ny5M9+2YWFhiIqKgp2dHXr16qWX+sp1OKpXrx4CAgKQlZWFpUuX5tlmz5496usxrFixAtWrV9dniURERGVS+/btMXnyZADAsGHDcOPGjTzbff/99wCAIUOGwMrKSi+1lesB2UlJSdi3bx8GDhwIa2tr3Lp1C87Ozup2586dQ7t27ZCamorRo0dj1apVElZNRERUtmRkZKBjx444fvw4ateujcOHD2vshw8fPoz27dtDLpfjypUrcHFxUe+/OSBbhwYMGICAgACkpqbijTfeQGpqKoDswV8dO3ZEamoqOnXqlO+RJSIiIioec3NzbN68GR4eHrhx4wbatWuHS5cuAQDu37+PYcOGAQDGjBmDOnXq6K0ugwhHS5cuhbe3NywtLeHv74+jR48W2P7w4cPw9/eHpaUlqlevjuXLlxd73jKZDKtXr4atrS2OHTuG6tWro2HDhujZsyeSkpLQtm1bbN68Gebm5sWeBxEREeXNyckJBw8ehIeHB27evAk/Pz80b94cDRs2RExMDHx8fLBgwQK91iR5ONq4cSOmTJmCWbNmITIyEm3btkX37t0RHR2dZ/s7d+6gR48eaNu2LSIjI/F///d/mDRpEjZv3lzsGurVq4edO3fC09MTcXFxuHTpEkxMTDBlyhTs379ffU0kIiIiKn01atTAmTNn0K9fPyiVSkRERKgvGLl7925UrlxZr/VIPuaoefPmaNKkCZYtW6aeVrduXfTr1y/PpDh9+nTs2LED165dU08bP348Lly4gPDwcK3mmXPMUc4+yxcvXuDIkSNISUlB27Zt4eTkVIIlIyIioqK6fv06Ll68CHt7e/V4I5X89t+lTdJz0jMyMnD27Nlc1w0KCgrCiRMn8nxOeHg4goKCNKZ17doVwcHByMzMhJmZWbHrsbKyQteuXYv9fCIiIiqZOnXq6HV8UV4kDUfx8fFQKBS5jtA4OTkhNjY2z+fExsbm2T4rKwvx8fFwcXHJ9Zz09HSkp6erf05KSgKQnUCJiIjIOKj227ru9DKIqxnKZDKNn4UQuaYV1j6v6SoLFizA3Llzc013d3cvaqlEREQksYSEBJ2OB5Y0HDk6OkIul+c6ShQXF5fveB9nZ+c825uamsLBwSHP58ycORPTpk1T/5yYmAhPT09ER0eXq8HWycnJcHd3x71793TaV2touNxc7vKAy83lLg+SkpLg4eEBe3t7nc5H0nBkbm4Of39/hIaGon///urpoaGh6Nu3b57PadmyJf766y+Nafv370fTpk3zHW9kYWEBCwuLXNPt7OzK1YdKxdbWlstdjnC5yxcud/lSXpfbxES3J9tLfir/tGnTsGrVKoSEhODatWuYOnUqoqOjMX78eADZR31GjBihbj9+/HjcvXsX06ZNw7Vr1xASEoLg4OBCb1xHREREpA3JxxwNGjQICQkJmDdvHh4+fKi+poGnpycA4OHDhxrXPPL29sbu3bsxdepULFmyBNWqVcMPP/yA1/V0p14iIiIq2yQPRwDw7rvv4t13383zd6q79uYUGBiIc+fOFXt+FhYWmD17dp5dbWUZl5vLXR5wubnc5QGXW7fLLflFIImIiIgMieRjjoiIiIgMCcMRERERUQ4MR0REREQ5MBwRERER5VBmw9GXX36JVq1aoUKFCqhUqZJWzxFCYM6cOahWrRqsrKzQvn17XLlyRaNNeno63n//fTg6OsLa2hp9+vRBTEyMDpageJ4+fYrhw4fDzs4OdnZ2GD58OBITEwt8jkwmy/PxzTffqNu0b98+1+8HDx6s46XRXnGWe9SoUbmWqUWLFhptytr6zszMxPTp09GgQQNYW1ujWrVqGDFiBB48eKDRztDW99KlS+Ht7Q1LS0v4+/vj6NGjBbY/fPgw/P39YWlpierVq2P58uW52mzevBn16tWDhYUF6tWrh61bt+qq/GIrynJv2bIFXbp0QZUqVWBra4uWLVti3759Gm3WrFmT57aelpam60UpkqIs96FDh/Jcpn/++UejXVlb33l9f8lkMtSvX1/dxtDX95EjR9C7d29Uq1YNMpkM27ZtK/Q5etu2RRn12WefiUWLFolp06YJOzs7rZ7zv//9T9jY2IjNmzeLS5cuiUGDBgkXFxeRnJysbjN+/Hjh6uoqQkNDxblz50SHDh1Eo0aNRFZWlo6WpGi6desmfH19xYkTJ8SJEyeEr6+v6NWrV4HPefjwocYjJCREyGQy8e+//6rbBAYGinfeeUejXWJioq4XR2vFWe6RI0eKbt26aSxTQkKCRpuytr4TExNF586dxcaNG8U///wjwsPDRfPmzYW/v79GO0Na37///rswMzMTP//8s7h69aqYPHmysLa2Fnfv3s2z/e3bt0WFChXE5MmTxdWrV8XPP/8szMzMxJ9//qluc+LECSGXy8X8+fPFtWvXxPz584Wpqak4efKkvharUEVd7smTJ4uvvvpKREREiBs3boiZM2cKMzMzce7cOXWb1atXC1tb21zbvCEp6nKHhYUJAOL69esay5RzGy2L6zsxMVFjee/duyfs7e3F7Nmz1W0MfX3v3r1bzJo1S2zevFkAEFu3bi2wvT637TIbjlRWr16tVThSKpXC2dlZ/O9//1NPS0tLE3Z2dmL58uVCiOwPo5mZmfj999/Vbe7fvy9MTEzE3r17S732orp69aoAoPEhCA8PFwDEP//8o/Xr9O3bV3Ts2FFjWmBgoJg8eXJplVqqirvcI0eOFH379s339+VlfUdERAgAGl/ChrS+AwICxPjx4zWm+fj4iBkzZuTZ/uOPPxY+Pj4a08aNGydatGih/nngwIGiW7duGm26du0qBg8eXEpVl1xRlzsv9erVE3PnzlX/rO33oZSKutyqcPT06dN8X7M8rO+tW7cKmUwmoqKi1NOMYX2raBOO9Lltl9lutaK6c+cOYmNjERQUpJ5mYWGBwMBAnDhxAgBw9uxZZGZmarSpVq0afH191W2kFB4eDjs7OzRv3lw9rUWLFrCzs9O6vkePHmHXrl0YPXp0rt+tW7cOjo6OqF+/Pj788EOkpKSUWu0lUZLlPnToEKpWrYratWvjnXfeQVxcnPp35WF9A9k3cpTJZLm6nw1hfWdkZODs2bMa6wAAgoKC8l3G8PDwXO27du2KM2fOIDMzs8A2hrBegeIt96uUSiVSUlJy3aDz2bNn8PT0hJubG3r16oXIyMhSq7ukSrLcjRs3houLCzp16oSwsDCN35WH9R0cHIzOnTur7y6hYsjru6j0uW0bxBWyDUFsbCwAwMnJSWO6k5MT7t69q25jbm6OypUr52qjer6UYmNjUbVq1VzTq1atqnV9a9euhY2NDV577TWN6UOHDoW3tzecnZ1x+fJlzJw5ExcuXEBoaGip1F4SxV3u7t2744033oCnpyfu3LmDTz/9FB07dsTZs2dhYWFRLtZ3WloaZsyYgSFDhmjcvNJQ1nd8fDwUCkWe22V+yxgbG5tn+6ysLMTHx8PFxSXfNoawXoHiLfervv32W6SmpmLgwIHqaT4+PlizZg0aNGiA5ORkfP/992jdujUuXLiAWrVqleoyFEdxltvFxQUrV66Ev78/0tPT8euvv6JTp044dOgQ2rVrByD/z0RZWd8PHz7Enj17sH79eo3phr6+i0qf27ZRhaM5c+Zg7ty5BbY5ffo0mjZtWux5yGQyjZ+FELmmvUqbNiWh7XIDuesHilZfSEgIhg4dCktLS43p77zzjvr/vr6+qFWrFpo2bYpz586hSZMmWr12Uel6uQcNGqT+v6+vL5o2bQpPT0/s2rUrVzgsyuuWlL7Wd2ZmJgYPHgylUomlS5dq/E6K9V2Qom6XebV/dXpxtnV9K26NGzZswJw5c7B9+3aNAN2iRQuNkw5at26NJk2a4Mcff8QPP/xQeoWXUFGWu06dOqhTp47655YtW+LevXtYuHChOhwV9TWlUtwa16xZg0qVKqFfv34a041lfReFvrZtowpHEydOLPSMGS8vr2K9trOzM4DsZOri4qKeHhcXp06hzs7OyMjIwNOnTzWOJsTFxaFVq1bFmq82tF3uixcv4tGjR7l+9/jx41xJOi9Hjx7F9evXsXHjxkLbNmnSBGZmZrh586bOdpb6Wm4VFxcXeHp64ubNmwDK9vrOzMzEwIEDcefOHRw8eFDjqFFe9LG+8+Lo6Ai5XJ7rr76c2+WrnJ2d82xvamoKBweHAtsU5fOiS8VZbpWNGzdi9OjR+OOPP9C5c+cC25qYmKBZs2bqz7zUSrLcObVo0QK//fab+ueyvL6FEAgJCcHw4cNhbm5eYFtDW99Fpddtu0gjlIxQUQdkf/XVV+pp6enpeQ7I3rhxo7rNgwcPDG6A7qlTp9TTTp48qfUA3ZEjR+Y6ayk/ly5dEgDE4cOHi11vaSnpcqvEx8cLCwsLsXbtWiFE2V3fGRkZol+/fqJ+/foiLi5Oq3lJub4DAgLEhAkTNKbVrVu3wAHZdevW1Zg2fvz4XIM2u3fvrtGmW7duBjdAtyjLLYQQ69evF5aWloUObFVRKpWiadOm4q233ipJqaWqOMv9qtdff1106NBB/XNZXd9CvByQfunSpULnYYjrWwVaDsjW17ZdZsPR3bt3RWRkpJg7d66oWLGiiIyMFJGRkSIlJUXdpk6dOmLLli3qn//3v/8JOzs7sWXLFnHp0iXx5ptv5nkqv5ubmzhw4IA4d+6c6Nixo8Gd2t2wYUMRHh4uwsPDRYMGDXKd2v3qcgshRFJSkqhQoYJYtmxZrte8deuWmDt3rjh9+rS4c+eO2LVrl/Dx8RGNGzc22uVOSUkRH3zwgThx4oS4c+eOCAsLEy1bthSurq5len1nZmaKPn36CDc3N3H+/HmN03vT09OFEIa3vlWnOAcHB4urV6+KKVOmCGtra/VZOTNmzBDDhw9Xt1ed7jt16lRx9epVERwcnOt03+PHjwu5XC7+97//iWvXron//e9/Bntqt7bLvX79emFqaiqWLFmS7yUY5syZI/bu3Sv+/fdfERkZKd566y1hamqqEbClVtTl/u6778TWrVvFjRs3xOXLl8WMGTMEALF582Z1m7K4vlWGDRsmmjdvnudrGvr6TklJUe+bAYhFixaJyMhI9ZmzUm7bZTYcjRw5UgDI9QgLC1O3ASBWr16t/lmpVIrZs2cLZ2dnYWFhIdq1a5crjb948UJMnDhR2NvbCysrK9GrVy8RHR2tp6UqXEJCghg6dKiwsbERNjY2YujQoblOcX11uYUQYsWKFcLKyirPa9lER0eLdu3aCXt7e2Fubi5q1KghJk2alOuaQFIq6nI/f/5cBAUFiSpVqggzMzPh4eEhRo4cmWtdlrX1fefOnTy3i5zbhiGu7yVLlghPT09hbm4umjRponEEa+TIkSIwMFCj/aFDh0Tjxo2Fubm58PLyyjP0//HHH6JOnTrCzMxM+Pj4aOxMDUVRljswMDDP9Tpy5Eh1mylTpggPDw9hbm4uqlSpIoKCgsSJEyf0uETaKcpyf/XVV6JGjRrC0tJSVK5cWbRp00bs2rUr12uWtfUtRPbRbSsrK7Fy5co8X8/Q17fqqFd+n1kpt22ZEP+NZiIiIiKisnv7ECIiIqLiYDgiIiIiyoHhiIiIiCgHhiMiIiKiHBiOiIiIiHJgOCIiIiLKgeGIiIiIKAeGIyIiIqIcGI6IiIiIcmA4IiIiIsqB4YiIypR58+ahQYMGsLa2hpOTEyZMmIDMzEypyyIiI2IqdQFERKVFCAGFQoEVK1bA1dUVV69exYgRI9CwYUNMmDBB6vKIyEjwxrNEVKYNGTIEVapUwffffy91KURkJNitRkRlxt27dzFx4kT4+vqicuXKqFixIjZt2gQ3NzepSyMiI8JwRERlQnx8PAICAhAfH49Fixbh2LFjCA8Ph1wuh5+fn9TlEZER4ZgjIioTdu/ejaysLGzYsAEymQwAsGTJEmRkZDAcEVGRMBwRUZlgb2+P5ORk7NixA/Xq1cNff/2FBQsWwNXVFVWqVJG6PCIyIhyQTURlghACEyZMwPr162FlZYVhw4YhLS0Nd+/exc6dO6Uuj4iMCMMRERERUQ4ckE1ERESUA8MRERERUQ4MR0REREQ5MBwRERER5cBwRERERJQDwxERERFRDgxHRERERDkwHBERERHlwHBERERElAPDEREREVEODEdEREREOTAcEREREeXw/zBYbIRUpappAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByj0lEQVR4nO3dd1wT9/8H8FcIUwQUUUCWuEBFRbG4xYl7tVatu9U6WuvqUH+2dbTVb1tr7XBWUNuq1dbZOrHiRnHgttaFiIoIyhBlJZ/fHzSRyB7JZbyej0ceyuWT3PtySe6V+3zuTiaEECAiIiIiAICZ1AUQERER6ROGIyIiIqJcGI6IiIiIcmE4IiIiIsqF4YiIiIgoF4YjIiIiolwYjoiIiIhyYTgiIiIiyoXhiIiIiCgXhiMyCPfv38ecOXNw7ty5PPeNGjUKFStWLPVzZ2ZmYvz48XB1dYVcLoe/v3/pCy0HS5cuxZo1a/JMj46Ohkwmy/c+YyKTyTBnzhypyygXc+bMgUwm0/pjf/jhB9SuXRuWlpaQyWRISkrCqFGjUKNGDY128+fPx7Zt20pVT2EeP36MwYMHo1q1apDJZOjXr1+Jn6NGjRoYNWpUudembz7++GP06tULbm5ukMlkBS7zhg0b0K5dOzg7O8PKygrVq1dH7969cfz4cd0WbKIYjsgg3L9/H3Pnzs03HJXVsmXLsGLFCsyaNQtHjx7FL7/8Uu7zKImCwpGrqysiIiLQs2dP3RdFpTJmzBhERERodR7nzp3DpEmT0KFDBxw4cAARERGws7PDJ598gq1bt2q01VY4+uyzz7B161Z8++23iIiIwFdffVXu8zAW3377LRITE9GnTx9YWloW2C4xMRGtW7fG0qVLsW/fPixatAgPHz5Eu3btcOjQIR1WbJrMpS6ASGqXLl2CjY0NJk6cKHUphbKyskKLFi2kLoNKwN3dHe7u7lqdx+XLlwEAb7/9NgIDA9XTa9WqpdX55nbp0iXUqlULQ4cO1dk8y8uzZ89QoUIFnc0vNTUVZmY5+yUK+yGW3/dR9+7dUbVqVYSEhCAoKEhrNRL3HJmkR48eYezYsfDw8ICVlRWqVq2K1q1bY//+/eo27du3h5+fHyIiItCqVSvY2NigRo0aWL16NQBg586daNq0KSpUqICGDRtiz549eeZz9OhRdOrUCXZ2dqhQoQJatWqFnTt35ml36dIl9O3bF5UrV4a1tTX8/f2xdu1a9f0HDx7EK6+8AgB48803IZPJ8u16uXHjBnr06IGKFSvCw8MD77//PjIyMgp9LWQyGVatWoXnz5+rn3fNmjWFdmG9PG9V98fly5fxxhtvwMHBAc7OznjrrbeQnJys8VilUokffvgB/v7+sLGxQaVKldCiRQvs2LEDQE7XwuXLl3Ho0CF1PaqukYJqKs7rvGbNGshkMoSHh2PChAlwcnJClSpV8Oqrr+L+/fuFvkaFqVGjBnr16oWtW7eiUaNGsLa2Rs2aNfH999/naRsTE4Nhw4ahWrVqsLKyQr169fDNN99AqVQW+PzR0dEwNzfHggUL8tx3+PBhyGQy/P777wBKth7S09Mxc+ZMeHt7w9LSEm5ubnj33XeRlJSU7/L99ddfaNKkCWxsbFCvXj389ddfAHJe13r16sHW1haBgYE4ffq0xuPz6xrbuHEjgoOD4erqqn6+GTNmIC0treAXugDt27fHsGHDAADNmzfX6KZ5uVtNJpMhLS0Na9euVb+32rdvX+jzP378GO+88w7c3NxgaWmJmjVrYtasWerPleo9uX//fly9elX9vAcPHizwObOysvDRRx/BxcUFFSpUQJs2bRAZGZlv27i4OIwbNw7u7u6wtLSEt7c35s6di+zsbI12sbGxGDBgAOzs7FCpUiUMHToUp06dyvN5UXXBX7x4EcHBwbCzs0OnTp0A5HSvf/755/D19VV/L7755pt49OhRnro2btyIli1bwtbWFhUrVkTXrl0RFRVV6GupogpGpWFnZwdra2uYm3O/htYJMjldu3YVVatWFStXrhQHDx4U27ZtE59++qn47bff1G2CgoJElSpVhI+PjwgJCRF79+4VvXr1EgDE3LlzRcOGDcWGDRvErl27RIsWLYSVlZW4d++e+vEHDx4UFhYWIiAgQGzcuFFs27ZNBAcHC5lMpjGff/75R9jZ2YlatWqJn3/+WezcuVO88cYbAoD48ssvhRBCJCcni9WrVwsA4uOPPxYREREiIiJC3L17VwghxMiRI4WlpaWoV6+eWLhwodi/f7/49NNPhUwmE3Pnzi30tYiIiBA9evQQNjY26ueNj48Xt2/fFgDE6tWr8zwGgJg9e7b679mzZwsAwsfHR3z66aciLCxMLFq0SFhZWYk333xT47HDhw8XMplMjBkzRmzfvl3s3r1bfPHFF+K7774TQghx9uxZUbNmTdGkSRN1PWfPnhVCiHxrKu7rrHr9atasKd577z2xd+9esWrVKlG5cmXRoUMHjRpVbfNb9pd5eXkJNzc34enpKUJDQ8WuXbvE0KFDBQDx9ddfq9vFx8cLNzc3UbVqVbF8+XKxZ88eMXHiRAFATJgwodDXt3///sLT01NkZ2drtHv99ddF9erVRVZWVonWg1KpFF27dhXm5ubik08+Efv27RMLFy4Utra2okmTJiI9PV1j+dzd3YWfn5/6/d68eXNhYWEhPv30U9G6dWuxZcsWsXXrVlG3bl3h7Owsnj17pn68qqbcPvvsM/Htt9+KnTt3ioMHD4rly5cLb2/vPOshv8e+7PLly+Ljjz9Wr6+IiAhx48YNIUTO58LLy0vdNiIiQtjY2IgePXqo31uXL18u8LmfP38uGjVqJGxtbcXChQvFvn37xCeffCLMzc1Fjx49hBBCpKeni4iICNGkSRNRs2ZN9fMmJycX+LwjR44UMplMfPjhh2Lfvn1i0aJFws3NTdjb24uRI0eq2z148EB4eHgILy8vsWLFCrF//37x2WefCSsrKzFq1Ch1u6dPn4ratWsLR0dHsWTJErF3714xdepU4e3tned9PHLkSGFhYSFq1KghFixYIP7++2+xd+9eoVAoRLdu3YStra2YO3euCAsLE6tWrRJubm6ifv36Guv0iy++EDKZTLz11lvir7/+Elu2bBEtW7YUtra2hb6e+bG1tdVY5vxkZ2eLzMxMcfv2bTF27FhRsWJFcfr06RLNh0qO4cgEVaxYUUyZMqXQNkFBQQKAxocwMTFRyOVyYWNjoxGEzp07JwCI77//Xj2tRYsWolq1aiI1NVU9LTs7W/j5+Ql3d3ehVCqFEEIMHjxYWFlZiZiYGI35d+/eXVSoUEEkJSUJIYQ4depUgRvskSNHCgBi06ZNGtN79OghfHx8ing1ch5va2urMa004eirr77SaPfOO+8Ia2tr9bIePnxYABCzZs0qtJ4GDRqIoKCgPNPzq6m4r7Mq8Lzzzjsaz/nVV18JAOLBgwfqaWvXrhVyuVysXbu20DqFyAkPMplMnDt3TmN6ly5dhL29vUhLSxNCCDFjxgwBQJw8eVKj3YQJE4RMJhPXrl1TT3v59Q0PDxcAxNatW9XT7t27J8zNzTXCb3HXw549e/Jtt3HjRgFArFy5UmP5bGxsRGxsrHqa6v3u6uqqXj4hhNi2bZsAIHbs2JGnpoIolUqRlZUlDh06JACI8+fPF/uxKqp1e+rUKY3pL4cjIYq3MVZZvnx5vp+rL7/8UgAQ+/btU08LCgoSDRo0KPI5r169KgCIqVOnakxft26dAKBR27hx40TFihXFnTt3NNouXLhQAFAHkSVLlggAYvfu3Rrtxo0bl284AiBCQ0M12m7YsEEAEJs3b9aYrvreWbp0qRBCiJiYGGFubi7ee+89jXapqanCxcVFDBw4sMjXILfirA8fHx8BQP2eO3r0aInmQaXDbjUTFBgYiDVr1uDzzz/HiRMnkJWVlW87V1dXBAQEqP92dHREtWrV4O/vj+rVq6un16tXDwBw584dAEBaWhpOnjyJAQMGaBxFJpfLMXz4cMTGxuLatWsAgAMHDqBTp07w8PDQmPeoUaPw7NmzYg9mlclk6N27t8a0Ro0aqWvShT59+uSZf3p6OuLj4wEAu3fvBgC8++675TK/krzOhdUIQON1GjFiBLKzszFixIhi1dGgQQM0btxYY9qQIUOQkpKCs2fPAshZz/Xr19cYEwPkrGchBA4cOFDg87dv3x6NGzfGkiVL1NOWL18OmUyGsWPH5mlf1HpQzevlo4Ref/112Nra4u+//9aY7u/vDzc3N/Xfqvd7+/btNcaqvPw5KMitW7cwZMgQuLi4QC6Xw8LCQj1+5OrVq4U+VpcOHDgAW1tbDBgwQGO66nV7+XUqjvDwcADIMzZp4MCBebqK/vrrL3To0AHVq1dHdna2+ta9e3cAUA9KPnToEOzs7NCtWzeNx7/xxhsF1vHaa6/lmVelSpXQu3dvjXn5+/vDxcVF3U24d+9e9Wcjdztra2sEBQUV2p1YWps3b8bJkyfx+++/o379+ujevbtW5kOa2HFpgjZu3IjPP/8cq1atwieffIKKFSuif//++Oqrr+Di4qJu5+jomOexlpaWeaarjrhIT08HADx58gRCCLi6uuZ5vCpUJSYmqv8tTruiVKhQAdbW1hrTrKys1DXpQpUqVfLMHwCeP38OIGesl1wu13iNy6Ikr3NxayyN/JZHNS33en75sPLC6nzZpEmTMGbMGFy7dg01a9bETz/9hAEDBuQ776KWMTExEebm5qhatapGO5lMBhcXlzy1FPR+L+pzkJ+nT5+ibdu2sLa2xueff466deuiQoUKuHv3Ll599dUyrYfylpiYCBcXlzxjpqpVqwZzc/NifzZffk4g73vG3Nw8z3p7+PAh/vzzT1hYWOT7XAkJCerndHZ2znN/ftOAnO8Ke3v7PPNKSkoq8Ogx1bwePnwIAOoxkC8ry3iigjRo0ABAzo/afv36oUmTJpg8eTLOnz9f7vOiFxiOTJCTkxMWL16MxYsXIyYmBjt27MCMGTMQHx+f78DqkqpcuTLMzMzw4MGDPPepBv86OTkByNmQFaedrqmC1ssDukuzQVCpWrUqFAoF4uLi8g00JVWS11mb4uLiCpym2uCVdT0PGTIE06dPx5IlS9CiRQvExcWVeg9clSpVkJ2djUePHmkEJCEE4uLiCtzwlYcDBw7g/v37OHjwoMbRRi8PBNcHVapUwcmTJyGE0AhI8fHxyM7OLtV7S/V+iIuL09gbl52dneez5eTkhEaNGuGLL77I97lUwbpKlSr5DujO730JIN9zR6kOUCjo+8/Ozk7dDgD++OMPeHl55dtWm8zNzdG0aVNs2rRJ5/M2NexWM3Genp6YOHEiunTpou4CKStbW1s0b94cW7Zs0fglrFQq8euvv8Ld3R1169YFAHTq1Em9wcjt559/RoUKFdSHrpfHHo6ScHZ2hrW1NS5cuKAxffv27aV+TlV3wLJlywptZ2VlVazlLMnrrE2XL1/O8yt2/fr1sLOzQ9OmTQHkrOcrV67keY/9/PPPkMlk6NChQ6HzsLa2xtixY7F27VosWrQI/v7+aN26danqVR2d9Ouvv2pM37x5M9LS0tT3a4Nqw6x6P6usWLFCa/PMrbjvLSDndXr69Gme8yL9/PPP6vtLSnV03Lp16zSmb9q0Kc8RaL169VKfIqBZs2Z5bqpwFBQUhNTUVHW3tcpvv/1W7Lp69eqFxMREKBSKfOfl4+MDAOjatSvMzc1x8+bNfNs1a9aspC9JiaSnp+PEiROoXbu2VudD3HNkcpKTk9GhQwcMGTIEvr6+sLOzw6lTp7Bnzx68+uqr5TafBQsWoEuXLujQoQM++OADWFpaYunSpbh06RI2bNig3kjMnj1bPbbg008/haOjI9atW4edO3fiq6++goODA4Ccc7bY2Nhg3bp1qFevHipWrIjq1atrjH0qTzKZDMOGDUNoaChq1aqFxo0bIzIyEuvXry/1c7Zt2xbDhw/H559/jocPH6JXr16wsrJCVFQUKlSogPfeew8A0LBhQ/z222/YuHEjatasCWtrazRs2DDf5yzu61wSP//8M9566y2EhoYWa9xR9erV0adPH8yZMweurq749ddfERYWhi+//FI9Jmfq1Kn4+eef0bNnT8ybNw9eXl7YuXMnli5digkTJhQrxL3zzjv46quvcObMGaxatarEy6XSpUsXdO3aFdOnT0dKSgpat26NCxcuYPbs2WjSpAmGDx9e6ucuSqtWrVC5cmWMHz8es2fPhoWFBdatW6ezLpKGDRvi4MGD+PPPP+Hq6go7Ozv1hv9lI0aMwJIlSzBy5EhER0ejYcOGOHr0KObPn48ePXqgc+fOJZ5/vXr1MGzYMCxevBgWFhbo3LkzLl26hIULF+bp6po3bx7CwsLQqlUrTJo0CT4+PkhPT0d0dDR27dqF5cuXw93dHSNHjsS3336LYcOG4fPPP0ft2rWxe/du7N27F0DxuroGDx6MdevWoUePHpg8eTICAwNhYWGB2NhYhIeHo2/fvujfvz9q1KiBefPmYdasWbh16xa6deuGypUr4+HDh4iMjIStrS3mzp1b6LwOHTqkPj2AQqHAnTt38McffwDICXqqvZmtWrVCnz59UK9ePTg4OCA6OhrLli3DzZs385zck7RA0uHgpHPp6eli/PjxolGjRsLe3l7Y2NgIHx8fMXv2bI0jbwo6+sTLy0v07Nkzz3QA4t1339WYduTIEdGxY0dha2srbGxsRIsWLcSff/6Z57EXL14UvXv3Fg4ODsLS0lI0btw436PENmzYIHx9fYWFhYXGEU35HW0mRPGP9ino8cnJyWLMmDHC2dlZ2Nrait69e4vo6OgCj1Z79OiRxuNVRxHdvn1bPU2hUIhvv/1W+Pn5CUtLS+Hg4CBatmyp8bpER0eL4OBgYWdnJwCojzgq6Ai64rzOBR3RpDoSLDw8PE/b4h7K37NnT/HHH3+IBg0aCEtLS1GjRg2xaNGiPG3v3LkjhgwZIqpUqSIsLCyEj4+P+Prrr4VCodBo9/Lrm1v79u2Fo6OjxqHVKiVZD8+fPxfTp08XXl5ewsLCQri6uooJEyaIJ0+e5Lt8L8vv/a5aP7lPYZDfe/D48eOiZcuWokKFCqJq1apizJgx4uzZs3lec20crXbu3DnRunVrUaFCBQEg36Mic0tMTBTjx48Xrq6uwtzcXHh5eYmZM2dqnO5AiOIfrSaEEBkZGeL9998X1apVE9bW1qJFixYiIiJCeHl55Tly69GjR2LSpEnC29tbWFhYCEdHRxEQECBmzZolnj59qm4XExMjXn31VVGxYkVhZ2cnXnvtNbFr1y4BQGzfvl3jNcnvsy6EEFlZWWLhwoWicePGwtraWlSsWFH4+vqKcePGievXr2u03bZtm+jQoYOwt7cXVlZWwsvLSwwYMEDs37+/yOVXHQmc3y335/D9998XjRs3Fg4ODsLc3Fy4uLiI/v37i2PHjhXjVaaykgkhhG5iGBEZmxo1asDPz099UkRtio+Ph5eXF9577z1enoKKNH/+fHz88ceIiYnR+lnKyfiwW42I9FpsbCxu3bqFr7/+GmZmZpg8ebLUJZGe+fHHHwEAvr6+yMrKwoEDB/D9999j2LBhDEZUKgxHRKTXVq1ahXnz5qFGjRpYt26dxlFOREDO4fnffvstoqOjkZGRAU9PT0yfPh0ff/yx1KWRgWK3GhEREVEukh/Kf/jwYfTu3RvVq1eHTCbLc9hofg4dOoSAgAD1RS6XL1+u/UKJiIjIJEgejtLS0tC4cWN1n3FRbt++jR49eqBt27aIiorC//3f/2HSpEnYvHmzlislIiIiU6BX3WoymQxbt25Fv379Cmwzffp07NixQ+MaROPHj8f58+eLfR0uIiIiooIY3IDsiIgIBAcHa0zr2rUrQkJCkJWVle91eDIyMjQuA6FUKvH48WNUqVKlVCfJIyIiIt0TQiA1NRXVq1fXyrXsVAwuHMXFxeW5oKCzszOys7ORkJCQ7zWrFixYUORZS4mIiMgw3L17V6unaTC4cATkvXCgqmewoL1AM2fOxLRp09R/Jycnw9PTE3fv3s1zynoiMiD37gE3bwK1agGFHeJf3HZEpNdSUlLg4eGhvhiwthhcOHJxcclzteX4+HiYm5urr/j8MisrqzwXegQAe3t7hiMiQxUSAowdCyiVgJkZsHIlMHp06dsRkcHQ9pAYyY9WK6mWLVsiLCxMY9q+ffvQrFmzfMcbEZERio19EXiAnH/HjcuZXpp2RES5SB6Onj59inPnzuHcuXMAcg7VP3fuHGJiYgDkdInlvjL4+PHjcefOHUybNg1Xr15FaGgoQkJC8MEHH0hRPhFJ4fr1F4FHRaEAbtwoXTsiolwk71Y7ffo0OnTooP5bNTZo5MiRWLNmDR48eKAOSgDg7e2NXbt2YerUqViyZAmqV6+O77//Hq+99prOayciidSpk9NFljv4yOVA7dqla0dElItenedIV1JSUuDg4IDk5GSOOSIyVCEhOV1kCkVO4FmxouAxR8VpR0R6T1fbb4YjhiMiwxUbm9NFVrs2UNhhvcVtR0R6TVfbb8m71YiISs3dvXhhp7jtiIigBwOyiYiIiPQJwxERERFRLgxHRERERLkwHBERERHlwnBERERElAvDEREREVEuDEdEREREuTAcEREREeXCcERERESUC8MRERERUS4MR0RERES5MBwRERER5cJwRERERJQLwxERERFRLgxHRERERLmYS10AEVF5EELg33//xYULF5CcnAwXFxc0btwYHh4eUpdGRAaG4YiIDFpWVhbWrl2Lr7/+Gv/++2+e+9u2bYuPPvoIPXv2hEwmk6BCIjI0MiGEkLoIXUtJSYGDgwOSk5Nhb28vdTlEVEpXr17F4MGDceHCBQCAhYUFAgIC4OjoiHv37uHChQtQfcX17NkTa9asgZOTk5QlE1EZ6Gr7zTFHRGSQdu7ciWbNmuHChQuoUqUKFi1ahMTERERERGDnzp04d+4c7t69iw8//BAWFhbq9hcvXpS6dCLSc9xzxD1HRAZn8+bNGDx4MLKzs9GpUyf8+uuvcHFxKbD9pUuX0L9/f9y4cQNVqlRBeHg4GjZsqMOKiag8cM8REZmu2FggPDzn35ccPnwYQ4YMQXZ2Nt544w3s3r270GAEAH5+foiMjMQrr7yCxMREdO7cGdHR0SWeNxGZBoYjItIvISGAlxfQsWPOvyEh6rtu3bqFfv36ITMzEwMGDMAvv/wCCwuLYj1t5cqVsXfvXvj7+yM+Ph79+/dHWlpasedNRKaD3WrsViPSH7GxOaFEqXwxTS4HoqORWa0a2rRpg1OnTiEwMBAHDx6EjY1NiWcRExODV155BfHx8Rg5ciTWrFlT5Lzh7l6mxSKi8sFuNSIyPdeva4YTAFAogBs3MHv2bJw6dQqVK1fG77//XqpgBACenp74/fffYWZmhrVr12Lr1q1FzpuITAvDERHpjzp1ALOXvpbkcpzLyMDXX38NAFi1ahU8PT3LNJt27drho48+AgCMHTsWCQkJBc4btWuXaV5EZHgYjohIf7i7AytX5oQSAJDLoVi2DOM+/RQKhQKvv/46Xn311XKZ1dy5c9GwYUMkJCRg1qxZ+c4bK1awS43IBHHMEcccEemf2Nic7qzatbH8r78wYcIE2Nvb4+rVq6hevXq5zebIkSNo164dZDIZIiMj0axZM415MxgR6ReOOSIi0+XuDrRvj2Q7O3z88ccAgM8//7xcgxGQc2mRoUOHQgiBiRMnQqlUqufNYERkuhiOiEhvffPNN0hMTISvry8mTJiglXl89dVXqFixIk6ePIktW7ZoZR5EZFgYjohILz18+BCLFi0CAHzxxRcwN9fOdbKrV6+OqVOnAgBmz54NhUKhlfkQkeFgOCIivTR//nykpaXhlVdeQf/+/bU6r2nTpqFSpUq4cuUKNm7cqNV5EZH+YzgiIr3z8OFDrFy5EkBOSJLJZFqdX6VKlfDBBx8AAObMmYPs7Gytzo+I9BvDERHpne+//x7p6elo3rw5OnXqpJN5Tpo0CVWqVMH169exbds2ncyTiPQTwxER6ZWUlBQsXboUADB9+nSt7zVSsbOzw7vvvgsA+Prrr2GCZzkhov8wHBGRXlm5ciWSkpLg4+ODvn376nTe7777LqysrBAZGYljx47pdN5EpD8YjohIbygUCnz//fcAgI8++ghmL1/OQ8uqVauGkSNHAgAWLlyo03kTkf5gOCIivbFz507cvXsXVapUwZAhQySpYdq0aQCA7du34+bNm5LUQETSYjgiIr2hGmv01ltvwdraWpIafHx80K1bNwBQHzFHRKaF4YiI9MLNmzexd+9eyGQyjBs3TtJaxo8fDwAIDQ1FRkaGpLUQke4xHBGRXli+fDkAoFu3bqhVq5aktfTs2RPu7u5ISEjA5s2bJa2FiHSP4YiIJPf8+XOEhoYCgNauoVYS5ubmePvttwG8CG1EZDoYjohIctu2bcPjx4/h6emJHj16SF0OAGDMmDGQy+U4cuQIrl27JnU5RKRDDEdEJLm1a9cCAEaNGgW5XC5xNTmqV6+uHpj9888/S1wNEekSwxERSer+/fsICwsDAAwfPlziajSNGDECAPDLL79AqVRKXA0R6QrDERFJav369VAqlWjVqhVq164tdTka+vTpAwcHB9y9exeHDh2Suhwi0hGGIyKSjBBC3aWmOjO1PrG2tsagQYMAvOj6IyLjx3BERJI5f/48Ll26BCsrK7z++utSl5MvVdfaH3/8gbS0NImrISJdYDgiIsmoBjr36dMHlStXlria/LVq1Qo1a9ZEWloatmzZInU5RKQDDEdEJAmlUonffvsNADBs2DCJqymYTCZTDxRX1UtExo3hiIgkcezYMTx48AAODg7o2rWr1OUUauDAgQCAsLAwPHnyROJqiEjbGI6ISBK///47AKBv376wsrKSuJrC1a9fH35+fsjKysL27dulLoeItIzhiIh0TqlU4o8//gDwYq+MvlPVqQp1RGS8GI6ISOdyd6l16dJF6nKKRXU0HbvWiIwfwxER6dymTZsAAP369YOlpaXE1RSPr68vGjZsyK41IhPAcEREOqVQKAyuS01FVa8q3BGRcWI4IiKdOn78OOLi4lCpUiV07txZ6nJKJHfXWlJSkrTFEJHWMBwRkU7t2LEDANCrVy+D6VJT8fHxQf369ZGdnY09e/ZIXQ4RaQnDERHpjBBCPV6nT58+EldTOqq6Oe6IyHgxHBGRzly7dg3Xr1+HpaUlunXrJnU5pdK3b18AwO7du5GZmSlxNUSkDQxHRKQzqr0tHTp0gJ2dncTVlE5gYCCqVauG5ORkHD58WOpyiEgLGI6ISGdU441Ue18MkZmZGXr37g3gxfIQkXHRi3C0dOlSeHt7w9raGgEBAThy5Eih7detW4fGjRujQoUKcHV1xZtvvonExEQdVUtEpfHw4UNEREQAgDpcGCpVuNu+fTuEEBJXQ0TlTfJwtHHjRkyZMgWzZs1CVFQU2rZti+7duyMmJibf9kePHsWIESMwevRoXL58Gb///jtOnTqFMWPG6LhyIiqJnTt3QgiBgIAAuLu7S11OmXTq1Ak2NjaIiYnBhQsXpC6HiMqZ5OFo0aJFGD16NMaMGYN69eph8eLF8PDwwLJly/Jtf+LECdSoUQOTJk2Ct7c32rRpg3HjxuH06dM6rpyISsLQj1LLrUKFCurLnvCoNSLjI2k4yszMxJkzZxAcHKwxPTg4GMePH8/3Ma1atUJsbCx27doFIQQePnyIP/74Az179ixwPhkZGUhJSdG4EZHuPHv2DGFhYQCAPq6uQGysxBWVXd+2bQEAO/472zcRGQ9Jw1FCQgIUCgWcnZ01pjs7OyMuLi7fx7Rq1Qrr1q3DoEGDYGlpCRcXF1SqVAk//PBDgfNZsGABHBwc1DcPD49yXQ4iKtzBgwfx/PlzeABoPHYs4OUFhIRIXVbphYSg50cfQQbgzMWLuP/NN1JXRETlSPJuNQCQyWQafwsh8kxTuXLlCiZNmoRPP/0UZ86cwZ49e3D79m2MHz++wOefOXMmkpOT1be7d++Wa/1EVLg9/+1d6QFABgBKJTBunGHuQYqNBcaOhbMQCPhv0r4PPzTMZSGifJlLOXMnJyfI5fI8e4ni4+Pz7E1SWbBgAVq3bo0PP/wQANCoUSPY2tqibdu2+Pzzz+Hq6prnMVZWVrCysir/BSCiYtnzX5eaxmkfFQrgxg3A0AZnX7+eE+4AdAdwGsBuITDKEJeFiPIl6Z4jS0tLBAQEqMciqISFhaFVq1b5PubZs2cwM9MsWy6XAwAPqSXSQzdv3sT12FiYA+iY+w65HKhdW6KqyqBOHeC/7yBV2AsDkF2jhlQVEVE5k7xbbdq0aVi1ahVCQ0Nx9epVTJ06FTExMepuspkzZ2LEiBHq9r1798aWLVuwbNky3Lp1C8eOHcOkSZMQGBiI6tWrS7UYRFSAvXv3AgBa160L+/9+yEAuB1asMMw9Le7uwMqVgFyOQACVATwBEHn/vsSFEVF5kbRbDQAGDRqExMREzJs3Dw8ePICfnx927doFLy8vAMCDBw80znk0atQopKam4scff8T777+PSpUqoWPHjvjyyy+lWgQiKoTq6vXd3nwTGDYspyutdm3DDEYqo0cDXbvC/MYNdPnmG2z66y/s2bOnwD3eRGRYZMIE+6JSUlLg4OCA5ORk2NvbS10OkdHKyMhAlSpVkJaWhqioKPj7+0tdUrlbs2YN3nzzTbzyyiuIjIyUuhwio6ar7bfk3WpEZLyOHTuGtLQ0uLi4oHHjxlKXoxVdu3YFAJw+fRqPHj2SuBoiKg8MR0SkNaouta5duxZ4eg5D5+rqCn9/fwghsG/fPqnLIaJywHBERFqjHm/UrVsRLQ2bavl2794tcSVEVB4YjohIK+7du4eLFy9CJpOpr0NmrLp37w4g58g85X/nQCIiw8VwRERaoTqEPzAwEFWqVJG4Gu1q2bIlKlasiISEBFy4cEHqcoiojBiOiEgrco83MnYWFhYICgoCAOzfv1/iaoiorBiOiKjcKZVKHDhwAAAQHBwscTW60blzZwAMR0TGgOGIiMrd+fPnkZiYiIoVKyIwMFDqcnSiU6dOAIAjR44gIyND4mqIqCwYjoio3P39998AgHbt2sHCwkLianTDz88P1apVw7Nnz3DixAmpyyGiMmA4IqJypwpHqr0ppkAmk7FrjchIMBwRUbnKzMzE4cOHAZhWOAJeLK8qHBKRYWI4IqJydfLkSTx79gxOTk5o2LCh1OXolGrPUWRkJJKTkyWuhohKi+GIiMpV7i41MzPT+orx9PREnTp1oFAocOjQIanLIaJSMq1vLiLSOlMcb5Qbu9aIDB/DERGVm6dPn6qP1DLVcMRB2USGj+GIiMrNkSNHkJ2djRo1aqBmzZpSlyOJDh06QCaT4cqVK7h//77U5RBRKTAcEVG5MfUuNQBwdHRE06ZNAbBrjchQMRwRUblhOMqhWv6DBw9KWwgRlQrDERGVi4SEBJw7dw4A0LFjR2mLkVj79u0BMBwRGSqGIyIqF6oTPzZo0ADOzs4SVyOt1q1bw8zMDLdu3cLdu3elLoeISojhiIjKheq8PkFBQRJXIj17e3sEBAQAAM93RGSAGI6IqFyoupAYjnKwa43IcDEcEVGZPX78GBcvXgTAcKTCcERkuBiOiKjMjhw5AiEEfH19TX68kUqbNm1gZmaGmzdvIjY2VupyiKgEGI6IqMw43igve3t79fmOOO6IyLAwHBFRmTEc5Y9da0SGieGIiMokKSkJUVFRABiOXsZwRGSYGI6IqEyOHj0KIQRq166N6tWrS12OXlGNO7px4wbu3bsndTlEVEwMR0RUJqouNdVeEnrBwcEBTZo0AcBxR0SGhOGIiMqE440Kx641IsPDcEREpZaamoqzZ88CYDgqCMMRkeFhOCKiUjt27BgUCgW8vb3h4eEhdTl6STXu6Pr167h//77U5RBRMTAcEVGp8ZIhRatUqRL8/f0BcO8RkaFgOCKiUuN4o+JRvT5HjhyRuBIiKg6GIyIqlbS0NJw+fRoAj1QrStu2bQEwHBEZCoYjIiqV48ePIzs7G56enqhRo4bU5ei1Nm3aAAAuX76MxMREiashoqIwHBFRqbBLrfiqVq0KHx8fADmD2IlIvzEcEVGpqLqI2rVrJ3ElhkHVtXb06FGJKyGiojAcEVGJZWZmIjIyEsCLjT4VjuOOiAwHwxERldjZs2eRnp4OJycn1K1bV+pyDIIqHJ0+fRrPnj2TuBoiKgzDERGVmKprqHXr1pDJZBJXYxhq1KgBNzc3ZGdn4+TJk1KXQ0SFYDgiohJThSPVUViIjQXCw3P+JU3/vTaye/fYtUZkIBiOiKhEhBDqI65at24NhIQAXl5Ax445/4aESFyhHnnptWkrlwNgOCLSdzIhhJC6CF1LSUmBg4MDkpOTYW9vL3U5RAbl2rVr8PX1hbW1NZIuXYJV3bqAUvmigVwOREcD7u6S1agXYmNzglGu1+aimRkaKZWwtbVFUlISzM3NJSyQyPDoavvNPUdEVCKqLrXAwEBYxcRoBiMAUCiAGzckqEzPXL+e57VpoFSiUsWKSEtLw7lz56Spi4iKxHBERCWiMd6oTh3A7KWvEbkcqF1bgsr0TD6vjZlcjtbNmwNg1xqRPmM4IqIS0Rhv5O4OrFyZE4iAnH9XrGCXGlDga9O2SxcADEdE+oxjjjjmiKjYHj58CBcXF8hkMiQmJqJy5co5d8TG5nSl1a7NYPSyl16b48ePo3Xr1qhatSoePnzIUyEQlYCutt8cDUhExabaa+Tn5/ciGAE5gYihKH8vvTbNmjWDtbU1Hj16pB7cTkT6hd1qRFRsec5vRCVmaWmJ5hx3RKTXGI6IqNg0xhtRqfFkkET6jeGIiIolLS0NZ8+eBcA9R2Wlev0Yjoj0E8MRERVLZGQksrOz4e7uDk9PT6nLMWgtW7aEmZkZoqOjEctLrhDpHYYjIioWVZdamzZteIRVGdnb28Pf3x/Ai3FcRKQ/GI6IqFhUG3GONyofqnFHDEdE+ofhiIiKpFAocPz4cQAcb1ReVK8jwxGR/mE4IqIiXbx4EampqbCzs0PDhg2lLscoqPbAXbhwAcnJyRJXQ0S5MRwRUZFU441atmwJuepyGFQmrq6uqFWrFoQQiIiIkLocIsqF4YiIisSTP2oHu9aI9BPDEREVSgihPh8Pw1H54skgifQTwxERFSomJgb37t2Dubk5AgMDpS7HqKjCZmRkJDIyMiSuhohUGI6IqFCq8UZNmjSBra2txNUYl7p168LJyQnp6enqs48TkfQYjoioUBxvpD0ymYzjjoj0kF6Eo6VLl8Lb2xvW1tYICAgosv89IyMDs2bNgpeXF6ysrFCrVi2EhobqqFoi08JwpF0MR0T6x1zqAjZu3IgpU6Zg6dKlaN26NVasWIHu3bvjypUrBV6/aeDAgXj48CFCQkJQu3ZtxMfHIzs7W8eVExm/pKQkXLp0CQDPjK0tqnB07NgxKJVKmJnpxW9WIpMmE0IIKQto3rw5mjZtimXLlqmn1atXD/369cOCBQvytN+zZw8GDx6MW7duwdHRsVTzTElJgYODA5KTk2Fvb1/q2omM3e7du9GjRw/Url0b169fl7oco5SZmYlKlSrh+fPnuHLlCurVqyd1SUR6S1fbb0l/omRmZuLMmTMIDg7WmB4cHKy+VMHLduzYgWbNmuGrr76Cm5sb6tatiw8++ADPnz8vcD4ZGRlISUnRuBFR0dilpn2WlpZo3rw5AHatEekLScNRQkICFAoFnJ2dNaY7OzsjLi4u38fcunULR48exaVLl7B161YsXrwYf/zxB959990C57NgwQI4ODiobx4eHuW6HETGiuFINzjuiEi/6EXntkwm0/hbCJFnmopSqYRMJsO6desQGBiIHj16YNGiRVizZk2Be49mzpyJ5ORk9e3u3bvlvgxExiYzMxORkZEAGI60jeGISL9IGo6cnJwgl8vz7CWKj4/PszdJxdXVFW5ubnBwcFBPq1evHoQQiI2NzfcxVlZWsLe317gRUeHOnj2L9PR0ODk5oW7dulKXY9RatmwJMzMz3Lp1C/fv35e6HCKTJ2k4srS0REBAAMLCwjSmh4WFoVWrVvk+pnXr1rh//z6ePn2qnvbvv//CzMwM7u7uWq2XyJSo9mK0bt26wD25VD7s7e3RuHFjANx7RKQPJO9WmzZtGlatWoXQ0FBcvXoVU6dORUxMDMaPHw8gp0tsxIgR6vZDhgxBlSpV8Oabb+LKlSs4fPgwPvzwQ7z11luwsbGRajGIjI7qzNjsUtMNdq0R6Q/Jw9GgQYOwePFizJs3D/7+/jh8+DB27doFLy8vAMCDBw8QExOjbl+xYkWEhYUhKSkJzZo1w9ChQ9G7d298//33Ui0CkdERQmjsOSLtYzgi0h+Sn+dICjzPEVHhrl27Bl9fX1hbWyMpKQlWVlZSl2T07t27B3d3d5iZmeHJkyf8biLKh0mc54iI9JNq70VgYCCDkY64ubnB29sbSqUSJ06ckLocIpPGcEREeXC8kTTYtUakHxiOiCgPjjeSBsMRkX5gOCIiDQ8fPsT169chk8nQsmVLqcsxKapwdOLECWRlZUlcDZHpYjgiIg2q6xr6+fmhcuXKEldjWnx9feHo6Ijnz58jKipK6nKITBbDERFp4PXUpGNmZqZ+3Y8cOSJxNUSmi+GIiDRwvJG0OO6ISHoMR0Sk9uzZM5w9exYA9xxJJXc4MsHT0BHpBYYjIlKLjIxEdnY23N3d4enpKXU5Jqlp06awtrZGQkIC/v33X6nLITJJDEdEpJZ7vBEvNisNKysrBAYGAmDXGpFUGI6ISI3jjfQDxx0RSctc6gKISD8oFAr1Yfzq8UaxscD160CdOoC7u4TVmYBcrzXDEZG0uOeIiAAAFy9eRGpqKuzs7NCwYUMgJATw8gI6dsz5NyRE6hKN10uvdcsbNyCTyXDjxg3ExcVJXR2RyWE4IiIAL/ZStGrVCvIHD4CxYwGlMudOpRIYNy5n7waVr9jYPK91palT0dDXF8CL69wRke4wHBERgJdO/nj9+ouNtYpCAdy4IUFlRq6A17pN3boA2LVGJAWGIyKCEEJ9RuY2bdrkjDEye+nrQS4HateWoDojV8Br3bZLFwA8UzaRFBiOiAh37tzB/fv3YW5unnMYubs7sHJlTiACcv5dsYKDsrWhgNe6Td++AICoqCikpqZKWCCR6WE4IiJ1101AQAAqVKiQM3H0aCA6GggPz/l39GjJ6jN6+bzW7u7u8PLyglKpxMmTJ6WukMikMBwRUcEXm3V3B9q35x4jXcjnteYh/UTSYDgiooLDEUmK4YhIGgxHRCbu8ePHuHz5MgCeGVvfqMLRiRMnkJWVJXE1RKaD4YjIxEVERAAAfHx8ULVqVYmrodzq16+PSpUqIS0tDefPn5e6HCKTwXBEZOLYpaa/zMzM1Hvz2LVGpDsMR0QmjuFIv3HcEZHuMRwRmbD09HRERkYCYDjSV7nDkRBC4mqITAPDEZEJO3PmDDIzM+Hs7IxatWpJXQ7l45VXXoGVlRUePnyIG7x8C5FOlCkcxcfH84rRRAZM1VXTunVryGQyiauh/FhZWeGVV14BwK41Il0pVTi6cOECGjRoAFdXV7i5ucHNzQ0ff/wx0tLSyrs+ItIijjcyDBx3RKRbpQpHo0ePhrOzM44ePYqoqCh8/vnn2L17N5o1a4YnT56Ud41EpAVKpRLHjh0DwHCk7xiOiHRLJkoxws/W1hZnzpyBr6+vepoQAq+//jqsra3x66+/lmuR5S0lJQUODg5ITk6Gvb291OUQSeLy5cvw8/NDhQoVkJSUBAsLC6lLogI8efIEjo6OAICHDx+iWrVqEldEJA1dbb9Ltecovz1EMpkM8+fPx/bt28ulMCLSLtVeiBYtWjAY6bnKlSvDz88PANR7+4hIe4odjnr27In/+7//w6ZNmzB+/HhMnToVDx8+1GiTnJyMypUrl3uRRFT+ON7IsLBrjUh3zIvbsGHDhjh79ixWr16tDkU1a9bEwIED4e/vD4VCgdWrV+Pbb7/VWrFEVH4YjgxLmzZtsHz5coYjIh0o1Zijhw8fIioqCufOnVPfbty4AblcDh8fH1y4cEEbtZYbjjkiUxcbGwsPDw+YmZkhKSkJdnZ2UpdERbhz5w5q1KgBc3NzJCUlwdbWVuqSiHROV9vvYu85ys3Z2RndunVDt27d1NOeP3+O8+fP8+KIRAZANW7F39+fwchAeHp6wt3dHbGxsYiMjESHDh2kLonIaJXbGbJtbGzQokULjBs3rryekoi05MiRIwCgvqgp6T+ZTIa2bdsCeLH+iEg7ePkQIhN06NAhAEBQUJDElVBJcFA2kW4wHBGZmMTERFy6dAkA0K5dO4mroZJQhaOIiAhkZ2dLXA2R8WI4IjIxqi6ZevXqoWrVqhJXQyXRoEEDODg44OnTp3p/4AuRIWM4IjIxhw8fBsC9RoZILpejVatWANi1RqRNDEdEJkYVjjjeyDBx3BGR9jEcEZmQ5ORkREVFAeCeI0OVOxyV4jR1RFQMDEdEJuT48eNQKpWoVasW3NzcpC6HSuGVV16BhYUFHjx4gNu3b0tdDpFRYjgiMiGqQ/i518hw2djYoFmzZgDYtUakLQxHRCaE442MA8cdEWkXwxGRiXj27BlOnToFgHuODJ3qTNkMR0TawXBEZCJUJw708PBAjRo1pC6HykB1OP/Vq1eRkJAgcTVExofhiMhE5D6/kUwmk7gaKosqVaqgfv36AF5cRJiIyg/DEZGJ0LieWmwsEB6e8y8Zlv/WXZsmTQCwa41IG8ylLoCItC8jIwMnTpwAALSLjwe8vAClEjAzA1auBEaPlrhCKpaQEGDsWECpRBuZDCvxYo8gEZUfmTDBs4ilpKTAwcEBycnJsLe3l7ocIq07cuQI2rVrB+eqVfEgIQGy3B97uRyIjgbc3SWrj4ohNvZFqAUQA8ALOZcUefLkCezs7CQtj0gXdLX9ZrcakQlQjzeqX18zGAGAQgHcuCFBVVQi16+rgxEAeAKoCUChUKgvJkxE5YPhiMgEqMNR5845XWm5yeVA7doSVEUlUqdOnnXX/r+B9eHh4VJURGS0GI6IjFxWVpb6iKZ2ffrkjDGSy3PulMuBFSvYpWYI3N3zrLsOb70FADh48KB0dREZIY454pgjMnLHjx9H69at4eTkhIcPH8LMzCxn/MqNGzl7jBiMDEuudXdPJoO7uzvMzMzw+PFjODg4SF0dkVZxzBERlYsDBw4AANq3b58TjICcQNS+PYORIcq17tzc3FCnTh0olUoetUZUjhiOiIycKhx17NhR4kpIGzp06ACA446IyhPDEZERS09Px/HjxwEwHBkrhiOi8sdwRGTEIiIikJGRgerVq6Nu3bpSl0Na0L59ewDA+fPn8fjxY2mLITISDEdERix3lxqvp2acXFxcUK9ePQgh1JeIIaKyYTgiMmIcb2Qa2LVGVL4YjoiMVGpqKiIjIwG82HiScWI4IipfDEdERuro0aPIzs6Gt7c3atSoIXU5pEVBQUEAgEuXLuHRo0cSV0Nk+PQiHC1duhTe3t6wtrZGQEBAsa8TdOzYMZibm8Pf31+7BRIZIHapmY6qVavCz88PAM+WTVQeJA9HGzduxJQpUzBr1ixERUWhbdu26N69O2JiYgp9XHJyMkaMGIFOnTrpqFIiw6LqYmE4Mg2qrjWGI6KykzwcLVq0CKNHj8aYMWNQr149LF68GB4eHli2bFmhjxs3bhyGDBmCli1b6qhSIsPx5MkTnD17FgDHG5kKVQj++++/Ja6EyPBJGo4yMzNx5swZBAcHa0wPDg5Wn7guP6tXr8bNmzcxe/bsYs0nIyMDKSkpGjciY3bo0CEIIVCvXj24urpKXQ7pgOryMNeuXcPdu3elLofIoEkajhISEqBQKODs7Kwx3dnZGXFxcfk+5vr165gxYwbWrVsHc3PzYs1nwYIFcHBwUN88PDzKXDuRPuN4I9NTqVIlBAYGAgDCwsIkrobIsEnerQYgz8nphBD5nrBOoVBgyJAhmDt3bonO9jtz5kwkJyerb/xVRcZOFY7YpWZaOnfuDADYv3+/xJUQGTZJw5GTkxPkcnmevUTx8fF59iYBOedtOX36NCZOnAhzc3OYm5tj3rx5OH/+PMzNzdUbhJdZWVnB3t5e40ZkrB48eIDLly9DJpOpLy1BpqFLly4AcsKRUqmUuBoiwyVpOLK0tERAQECeXcBhYWFo1apVnvb29va4ePEizp07p76NHz8ePj4+OHfuHJo3b66r0on01r59+wAAzZo1Q5UqVSSuhnSpRYsWsLW1xaNHj3DhwgWpyyEyWMUbtKNF06ZNw/Dhw9GsWTO0bNkSK1euRExMDMaPHw8gp0vs3r17+Pnnn2FmZqY+l4dKtWrVYG1tnWc6kalShaOXD3Qg42dpaYn27dtj586dCAsL4zngiEpJ8jFHgwYNwuLFizFv3jz4+/vj8OHD2LVrF7y8vADkdBEUdc4jIsqhVCrVe2IZjkwTxx0RlZ1MCCGkLkLXUlJS4ODggOTkZI4/IqMSFRWFpk2bomLFikhMTISlpaXUJZGOXb58GX5+frC2tsaTJ09gbW0tdUlE5UZX22/J9xwRUflRdal16NCBwchE1a9fH9WrV0d6ejqOHTsmdTlEBonhiMiIcLwRyWQyddcaz3dEVDoMR0RGIi0tDUePHgXAcGTqOO6IqGwYjoiMxOHDh5GZmQkvLy/UqVNH6nJIQqpwdPbsWSQkJEhcDZHhYTgiMhLqLjU/P8ju3ZO4GpKSq6srGvr6QgiB/Rs3Sl0OkcFhOCIyEvs2bQIABO/cCXh5ASEhEldEkgkJQbd//gEA7Jo4ke8FohLiofw8lJ+MQOypU/AIDIQZgAQAlQFALgeiowF3d0lrIx2LjQW8vHBQqUQHAFUBxJmZwezOHb4XyODxUH4iKrZ9v/8OAAjEf8EIABQK4MYNqUoiqVy/DiiVaA3ADsAjAGeUSr4XiEqA4YjICOy6fBkA0DX3RLkcqF1bknpIQnXqAGZmsADQ5b9Ju2QyvheISoDhiMjAZWZmYt+RIwCAnmb/faTlcmDFCnajmCJ3d2DlSkAuR4//Ju2qUYPvBaISYDgiMnBHjx5FamoqnJ2dEXD7NhAenjPWaPRoqUsjqYweDURHo9t/g/RPRUfj0aNHEhdFZDgYjogM3M6dOwEA3bt3h5mnJ9C+PfcSEODuDrfXX0fjxo0hhMDevXulrojIYDAcERk4VTjq2bOnxJWQPurRI6dzbdeuXRJXQmQ4GI6IDNjNmzdx7do1mJubo0uXLkU/gExO9+7dAQB79+6FQqGQuBoiw8BwRGTAVHsD2rRpAwcHB4mrIX3UsmVLODg44PHjx4iMjJS6HCKDwHBEZMDYpUZFMTc3V1+ImF1rRMXDcERkoNLS0nDw4EEADEdUONW4oz///FPiSogMA8MRkYH6+++/kZGRAW9vb/j6+kpdDumxnj17wszMDOfPn0d0dLTU5RDpPYYjIgO1fft2ADkbPplMJnE1pM+qVq2K1q1bAwB27NghcTVE+o/hiMgAKRQK9Uauf//+EldDhqBfv34AXoRqIioYwxGRATp27BgSEhJQuXJltGvXTupyyAD07dsXAHDo0CE8efJE4mqI9BvDEZEB2rZtGwCgd+/eMDc3l7YYMgi1atVCgwYNoFAo1Ec5ElH+GI6IDIwQQh2OVF0lRMXBrjWi4mE4IjIwFy5cwO3bt2FjY4OuXbtKXQ4ZEFXX2p49e5CRkSFxNUT6i+GIyMCo9hoFBwejQoUK0hZDBiUgIABubm54+vQpDhw4IHU5RHqL4YjIwGzduhUAu9So5MzMzNCnTx8AL95HRJQXwxGRAbl9+zbOnz8PMzMz9O7dW+pyyACpTv2wbds2ZGdnS1wNkX5iOCLSd7GxQHg4EBuLLVu2AADatWuHKlWqSFwYGaIOHTqgSpUqePToUc7lZ3K9v4goB8MRkT4LCQG8vICOHQEvL2z88UcAwOuvvy5xYWSozM3N8dprrwEANn32mcb7CyEhEldHpB9kQgghdRG6lpKSAgcHByQnJ8Pe3l7qcojyFxubs8FSKgEAtwDUQs64kfv378PZ2VnS8shw/f333+jcuTOqAHgAwEJ1h1wOREcD7u6S1UZUGF1tv7nniEhfXb+uDkYAsPG/fzs2acJgRGUSFBSEqpUqIRFAeO47FArgxg2JqiLSHwxHRPqqTh3A7MVHVBWOBg0aJE09ZDTMzc0x4L8B/Zty3yGXA7VrS1ITkT5hOCLSV+7uwMqVgFyOawDOAzCXy/Hq6NFSV0ZGYOBbbwEAtgDIAnKC0YoV7FIjAsMRkX4bPRqIjsbGUaMAAF2Cg+Ho6ChtTWQU2rZtC2dnZzwB8PeXX+aMNWLwJgLAcESk94SbG347eRIAMHjwYImrIWMhl8sxYMAAAMBvV65wjxFRLgxHRHru0qVLuHr1KiwtLdXXxiIqD2+88QYAYPPmzUhLS5O4GiL9wXBEpOd+/fVXAED37t3h4OAgcTVkTFq1aoWaNWvi6dOn6mv2ERHDEZFeUygU6nA0YsQIiashYyOTydTvq59//lniaoj0B8MRkR7bv38/7t+/D0dHR/Ts2VPqcsgIDR8+HEDOe+3evXsSV0OkHxiOiPTY2rVrAeSMDbGyspK4GjJGNWvWRJs2baBUKrFu3TqpyyHSCwxHRHoqOTkZW7duBQCMHDlS4mrImKm61tauXQsTvKIUUR4MR0R66vfff0d6ejrq16+PZs2aSV0OGbHXX38dVlZWuHLlCqKioqQuh0hyDEdEemrNmjUAcvYayWQyaYsho1apUiX069cPwIv3HZEpYzgi0kOXL1/GsWPHIJfLMWzYMKnLIRMw6r+zsP/yyy94/vy5tMUQSYzhiEgPrVixAgDQp08fVK9eXeJqyBQEBwejRo0aSEpKwqZNm4p+AJERYzgi0jPPnj1Tn3Nm/PjxEldDpsLMzAxjx44FACxfvlziaoikxXBEJJXYWCA8POffXDZu3Ijk5GTUrFkTnTt3lqg4MkVvvfUWzM3NceLECZw/f17zzgLer0TGiOGISAohIYCXF9CxY86/ISHqu1S/2seOHQszM35ESXecnZ3Rv39/AC+6dgEU+n4lMkYyYYIntUhJSYGDgwOSk5Nhb28vdTlkamJjczYwSuWLaXI5EB2NqEeP0LRpU1hYWCA2NhbVqlWTrk4ySQcOHECnTp1gZ2eHe/fuwS45ucD3K9zdJauTTJOutt/8WUqka9eva25oAEChAG7cwOLFiwEAr732GoMRSaJDhw7w8fFBamoqVq9eXej7lchYMRwR6VqdOsDL3WVyOR7Y2WHDhg0AgKlTp0pQGFHOxWinTJkCAFi8eDEUNWvm+35F7dq6L45IRxiOiHTN3R1YuTJnAwPk/LtiBZZs3YqsrCy0adMGgYGB0tZIJm3EiBFwdHTE7du3sePs2Xzfr+xSI2PGMUccc0RSiY3N6ZqoXRvPHB3h4eGBx48fY8uWLepBsURS+fjjj/HFF1+gTZs2OHLkiMb7lcGIpKKr7TfDEcMR6YHly5djwoQJqFmzJv7991/IVb/SiSTy4MEDeHl5ISsrCydPnuTeTNILHJBNZCKys7PxzTffAAAmT57MYER6wdXVFW+88QYA4KuvvpK4GiLdYjgiktiGDRtw48YNODk54a233pK6HCK1jz76CACwefNmXLp0SeJqiHSH4YhIQgqFAp9//jkA4P3330fFihUlrojohQYNGmDAgAEAgM8++0ziaoh0h+GISEIbN27Ev//+C0dHR7z77rtSl0OUxyeffAIA+P3333HlyhWJqyHSDYYjIonk3ms0bdo02NnZSVwRUV6NGjVC//79IYRQv1+JjB3DEZFENmzYgKtXr6JSpUp47733pC6HqECffvopAOC3337DhQsXJK6GSPsYjojKWzGuXv78+XP83//9HwBg+vTpPKUE6TV/f38MGDAAQgj1IO1CFeMzQKTPGI6IylMxr17+3Xff4e7du/Dw8MDkyZN1XCRRyS1YsAAWFhbYu3cv9u3bV3DDYn4GiPQZTwLJX+xUXmJji3X18vj4eNSuXRupqan45ZdfMGzYMN3XSlQKU6dOxeLFi9GoUSOcPXs27zm5ivkZICotkzoJ5NKlS+Ht7Q1ra2sEBATknKq+AFu2bEGXLl1QtWpV2Nvbo2XLlti7d68OqyUqQDGvXj579mykpqaiadOmGDJkiA4LJCqbjz/+GJUqVcKFCxewZs2avA2K+Rkg0neSh6ONGzdiypQpmDVrFqKiotC2bVt0794dMTEx+bY/fPgwunTpgl27duHMmTPo0KEDevfujaioKB1XTvSSOnWKvHp5ZGQkVqxYAQD45ptvYPZyeyI9VqVKFfWh/R999BEePXqk2aAYnwEigyAkFhgYKMaPH68xzdfXV8yYMaPYz1G/fn0xd+7cYrdPTk4WAERycnKxH0NULKtWCSGXCwHk/LtqlfqurKws4e/vLwCIYcOGSVgkUellZmaKxo0bF/w+LuQzQFRWutp+S/qzNTMzE2fOnEFwcLDG9ODgYBw/frxYz6FUKpGamgpHR8cC22RkZCAlJUXjRqQVo0fnjK8ID8/5d/Ro9V0//PADzp07h8qVK6uvpUZkaCwsLLBy5UrIZDL8+uuvCAsL02xQyGeAyFBIGo4SEhKgUCjg7OysMd3Z2RlxcXHFeo5vvvkGaWlpGDhwYIFtFixYAAcHB/XNw8OjTHUTFcrdHWjfXmMA6j///KM+dP/LL79EtWrVJCqOqOwCAwMxceJEAMC4cePw9OlTzQb5fAaIDIleDHiQyWQafwsh8kzLz4YNGzBnzhxs3Lix0I3NzJkzkZycrL7dvXu3zDUTFVdWVhaGDx+O9PR0BAcHYzR/SZMR+OKLL+Dh4YHbt2/zdBRkdCQNR05OTpDL5Xn2EsXHx+fZm/SyjRs3YvTo0di0aRM6d+5caFsrKyvY29tr3Ih0Ze7cuTh9+jQqV66M0NBQDsImo2BnZ4dffvkFMpkMoaGh+OOPP6QuiajcSPotbWlpiYCAgDx91mFhYWjVqlWBj9uwYQNGjRqF9evXo2fPntouk6jUdu7ciS+++AIAsGzZMri5uUlcEVH5CQoKwowZMwAAb7/9Nm7wkH0yEpL/hJ02bRpWrVqF0NBQXL16FVOnTkVMTAzGjx8PIKdLbMSIEer2GzZswIgRI/DNN9+gRYsWiIuLQ1xcHJKTk6VaBKJ83bp1S32Cx3feeQeDBg2SuCKi8jd37ly0bNkSSUlJ6NevX97xR0QGSPJwNGjQICxevBjz5s2Dv78/Dh8+jF27dsHLywsA8ODBA41zHq1YsQLZ2dl499134erqqr6xz5u0rgTXi3ry5An69OmDpKQktGjRAt9++60OCiTSPQsLC/zxxx9wdXXF5cuXMWLECCgUiuI9mNdgIz3Fy4dw/BEVR0gIMHZsztl/zcyAlSsLPEQ5PT0dXbt2xeHDh1G9enWcPHkS7jxqh4zciRMnEBQUhMzMTEyYMAFLliwp/MCaEnymiFR0tf1mOGI4oqKU4HpRmZmZGDhwILZv3w57e3scOXIEjRo10m29RBLZtGkTBg8eDCEEPv74Y8ybNy//gMRrsFEpmdS11Yj0WjGvF5WRkYHXXnsN27dvh5WVFbZu3cpgRCZl4MCBWLJkCQDg888/x8yZM5Hv729eg430HMMRUVGKcb2ox48fo3v37vjrr79gbW2NHTt2oGPHjjoulEh6EyZMwMKFCwHknPB0woQJyMrK0mzEa7CRnmM4IiqKu3vOeAi5POdvuRxYsUK9+//atWto2bIlwsPDUbFiRezcuTPPJXGITMn777+PFStWQCaTYcWKFejatSsSEhJeNCjiM0UkNY454pgjKq7Y2Jzd/rVrA+7uEEJg9erVeO+99/Ds2TN4enrizz//ZFca0X+2bduG4cOH4+nTp/Dw8MCaNWs096i+9JkiKgoHZGsRwxGV1a1btzBp0iTs3LkTANChQwesX78eLi4uEldGpF8uXbqE/v37q08Q+c477+Czzz4r9GLhRAXhgGwiPRQfH48PP/wQ9evXx86dO2FhYYH//e9/CAsLYzAiyoefnx+ioqLUJ/ZdunQp6tSpg8WLFyMtLU3i6ojyxz1H3HNEsbE5R8/UqZPvrn0hBM6cOYOffvoJv/zyC54/fw4A6NKlC3744Qf4+PjoumIig3TgwAFMnjwZly5dAgA4OjrinXfewVtvvQVvb++CH1jEZ5RMB7vVtIjhiNQKOBFdZmYmTp06hZ07d2LHjh24fPmy+iGvvPIKZs+ejR49ehR+kjsiyiM7OxurV6/GV199pXEttpYtW+LVV19F586d0ahRoxcXaObJIikXhiMtYjgiAEBsLJI9PXFHCNwBcAfAdZkMp5o2xdlLl5CRkaFuamVlhddeew1vv/02goKCGIqIykihUGDr1q1Yvnw5wsPDocx13iNHR0c0bdoUTWrXRqMVK1BLCHgDcAYg48kiTRrDkRYxHJmOpKQk3Lp1C7dv38bt27dx586dF7ebN5FcyJgHR0dHBAcHo1evXujRowcqV66sw8qJTMeDBw+wadMm7Nu3D4cOHSpwLJI1gBoAPJs1g6e/P7y8vODp6am+ubu7w9LSUpelk44xHGkRw5HxUSgUOH/+PM6cOYOoqChERUXh2rVrePLkSZGPrQLA679bDZkMTRcvRvPu3VG7dm3uISLSsczMTJw/fx7nzp3DuaNHcennnxENIBaAsojHymQyuLi4oF69emjSpAmaNGmCZs2aoW7duvwsGwmGIy1iODIODx8+xNatW7Fv3z6Eh4cjKSkp33bOzs7w9vaGt7c3vLy8NG6e4eGoOHlyzqULVCei43gGIv0REgKMG4dMhQJ3zcxwe8oU3PXzQ0xMTJ5benp6vk/h5uaGzp07o2vXrujVqxfs7Ox0vBBUXhiOtIjhyHA9f/4cmzZtwvr167F//36NcQoODg545ZVX1L8Y/fz8ULNmTdja2hb+pDwRHZF+K8ZnVAiBhIQEREdH4+LFizh79iyioqJw5swZjfGDNjY26N27N4YNG4YePXpArjpLNxkEhiMtYjgyPHFxcVi6dCmWLVumcRmCwMBA9OnTB126dEFAQIDmFx0P/yUyLfl85p8/f45jx44hLCwMW7duxfXr19XNvb29MWnSJIwePZp7kwwEw5EWMRwZjsTERHzxxRdYsmQJMjMzAQA1atTAW2+9hSFDhqBWrVr5P5CH/xKZlmJ85lXnLFu/fj3Wrl2Lx48fAwCcnJwwY8YMvPPOO7CxsZGieiomhiMtYjjSfxkZGfjuu+8wf/58JCcnAwBatGiB999/H/369YO5uXnBD46NBby8cr4kVXj4L5HxKsVn/tmzZ/j111+xcOFC9d4kNzc3LFq0CK+//joHcOspXj6ETFZERASaNm2K6dOnIzk5GY0aNcKePXtw/PhxDBgwoPBgBOTsVle+dFyLQpEzZoGIjE8pPvMVKlTA2LFjceXKFYSGhsLLywv37t3DoEGD0K1bN40TVJLpYTgivfHs2TNMmTIFrVu3xpUrV1CtWjWsWbMGZ8+eRdeuXYv/S65OnZzd6rnJ5TmDOYnI+JThM29ubo4333wT//zzD2bPng1LS0vs27cPDRs2xI8//ggT7FwhMByRnrh8+TICAwPx3XffQQiBkSNH4sqVKxg5cmTJjyZxd88Zb6B6nOoQfXapERmncvjMW1tbY86cObh06RI6d+6M9PR0vPfee+jZsyfi4uK0VDjpK4454pgjSQkhEBoaivfeew/Pnz+Hi4sL1qxZg65du5b9yXmIPpFpKafPvBACP/74Iz788ENkZGSgatWq2LRpE9q3b19+tVKpcEC2FjEc6YfMzExMnDgRP/30EwAgODgYP//8M5ydnQt/IA/RJ6KyKOZ3yOXLlzFkyBBcuHABcrkcixYtwnvvvcfB2hLigGwyaomJiQgODsZPP/0EmUyG+fPnY/fu3UUHo5CQnKNSOnbM+TckRDcFE5FxKMF3SIMGDRAREYGhQ4dCoVBg8uTJGDVqlMZJJck4cc8R9xzp3JUrV9C7d2/cunULdnZ22LBhA3r27Fn0A3mIPhGVRSm/Q4QQ+O677/DBBx9AoVCgffv22Lp1KypVqqT1kkkT9xyRUTp9+jTatm2LW7duwdvbGxEREcULRgAP0Seisinld4hMJsOUKVOwZ88e2NnZ4eDBg2jdujViYmK0WCxJieGIdObYsWPo1KkTHj9+jObNmyMyMhINGjQo/hPwEH0iKosyfod07twZR48ehZubG65cuYIWLVrg/PnzWiiUpMZwRDpx4MABBAcHIyUlBe3atUNYWBicnJw0G8XGAuHhOf/mh4foE1FZlPQ7JJ/vpEaNGuHEiRPw8/PDgwcP0L59e5w8eVIHxZMuccwRxxxp3a5du/Dqq68iIyMDwcHB2Lp1KypUqKDZqCTXQuMh+kRUFsX5DiniOykpKQm9evXCsWPHULFiRfz555881F8HeCi/FjEc6c6WLVswePBgZGVloU+fPti0aROsrKw0G3GgNRHpk2J+J6WlpaFfv37Yv38/rK2tsWXLFnTv3l339ZoQDsgmg7d+/XoMHDgQWVlZGDhwIP7444+8wQjgQGsi0i/F/E6ytbXFn3/+id69eyM9PR19+/bFli1bdFgoaQvDEWlFSEgIhg0bBoVCgZEDBmD922/D4uHD/BtzoDUR6ZMSfCdZW1tj83ffYVCHDuofguvXr9dRoaQtDEdU7n788UeMGTMGQghMaN8eoZs3Q96lS8EnXONAayLSJyX5TgoJgUXt2lgXHo43ASgUCgwbNgyhoaE6LZnKF8ccccxRufrqq68wffp0AMC0t9/GwlWrIMv9FitsLBEHWhORPinqO+mlsUlKABNlMiz77ztv6dKlmDBhgg4LNn4cc0QGRQiBOXPmqIPRxx9/jIWDB2sGI6DwsUTu7kD79gxGRKQfivpOemlskhmAJUJg6oABAIB33nkH3377rfbrpHLHcESlk+v8H0IITJ8+HXPnzgUAzJ8/H5999hlkdetyLBERGa98xibJ5HJ8s2gR/u///g8AMG3aNMyfPz/nzqLO5UZ6g+GISi7XhRuVnp54r1MnfP311wCAxYsXY+bMmTntOJaIiIxZAd9xMg8PfPHFF5g3bx4AYNasWfi0d28IT09eNNtAcMwRxxyVTK4+9mwAYwGsRs61h5YvX46xY8fm/xiOJSIiY1XId9zXX3+Njz76CADwIYAvAcgAnsutlHS1/TbX2jOTYYqNzelHr1Mn/w/tf33sGQCGAtiMnN2Pa2bMwPD8ghGQ8zz8AiAiY1XId9yHH34I65gYTPrxR3wNIB3AYgBmqvGXhV26pLDvYtIqdqvpmBACjx49wr1795CcnCx1OZpydZcVuNu3Th2kyWTog5xgZAngDzMzDH/nHR0XS0RkGN6bPh0rZDLIAPwAYDwApZlZweMvi/NdLAGlUonHjx/j7t27SElJgTF3PDEc6cDjx4+xaNEidOjQAXZ2dqhWrRrc3d1RqVIlODo6onv37li4cCFu376tvSKKGggYG/viOkJAzr/jxuVpn1SxIrrWqoV9ACoA+MvMDP1XruQvGyKigri7Y+xPP2GNTAYzAD8BGNW8ObJdXPK2LeZ3sUZ7LQ3yFkLg/Pnz+OSTT9CuXTtUqlQJVapUgaenJxwcHODk5IQ+ffrgl19+wfPnz8t9/pISJig5OVkAEMnJyVqdT1pampg5c6aoUKGCAKBxk8vleaYBEB07dhTbt28XSqWy/ApZtUoIMzMhgJx/V63K2+bAgZz7X76Fh6ubREdHiwYNGggAopKDgzj2ww9C3L1bfnUSERmzu3fFb598ov7+79mzp0hJSdFsU4zvYrXifLeXQnp6uggNDRWNGjXKdztlYWGRZ1rVqlXFsmXLRFZWVrnUUBBdbb8ZjrTk5MmTwtvbW/3G8ff3F9999524fPmySE9PF0IIkZqaKs6cOSMWLVokOnXqJGQymbp9o0aNxKZNm8oeku7effHhUd3k8ryhpoh2kZGRwtnZWQAQrq6u4ty5c2Wri4jIRG3btk1YW1urv+tjYmJe3FlO39mlkZmZKZYuXSpcXFzU2yIrKyvRr18/ERoaKi5evCgyMjKEEEI8ffpUnDx5UsybN094eXmp27dp00ZzecoZw5EWafvF/eWXX4SlpaUAIDw8PMS2bduKFXJu374tpk+fLipWrKh+owUGBoqjR48W/KC7d3N+aRT0gSjprxC5/MWH7L9fIZs2bRI2Njb5f5CJiKjETp48qf7B6eLiIiIjI1/cWcB3sYaSfLcLUei2QqlUiu3btwsfHx/1tsfNzU18+eWX4vHjx0UuS2Zmpvj++++FnZ2dACCcnJzEiRMnivlKlAzDkRZp88X96aef1G+uvn37iqSkpBI/R2Jiovj000+Fra2t+rkGDBggbty4odmwOLtUS/rr4u7dnA/X3bsiIyNDTJ48WV1D9+7d8+4CJiKiUomOjhYNGzZU76FZunTpix/Sub6L81WS7/ZCthWRkZGiXbt26u95Jycn8cMPP6j3EJXEjRs3RJMmTQQAUaFCBbF///4SP0dRGI60SFsvbkhIiPoNNnHiRKFQKEr/ZHfvivu//y7GvPGGMDMzU/fzTpkyRSQkJJT8g1HUr5CX/Pvvv6JFixbq5Zk+fbrW+5KJiExNcnKy6N27t/q7duDAgcXaWyOEKN53ewHbilvHjokhQ4ao52ttbS1mzJghki5fLrw3ogipqakiODhYABC2traae8TKAcORFmnjxQ0LC1MPsps8eXLB3WhFdYMJkSfln589W/1mAyAcHBzEV2PHiucl3aVa2K+Q/2RnZ4tFixap+8MdHBzE9u3bi/UaEBFRySmVSrFw4UJhbm6u7mbbvHlz8R5c1Hf7S91vCYCYCgjLXIOqhw8fLu7cuVOyAd6FbMvS09NF586d1Xuirl27VrxlKQaGIy0q7xf32rVrolKlSuo3WYHBqIzdYHv37tU4esATEMsB8aycBuOFhYUJf39/9fN37txZREdHl/r5iIio+CIiIkTdunXV38G9e/cWFy9eLNuT/rdNSQTEPEA44MURZp06dRJnzpzRaFfWbjqVlJQU0axZMwFA+Pr6ltuQDIYjLVK9uPHx8WV+rufPnws/Pz8BQLSsX188v349/4bFfeMVMcguOztbrF69Wri5uanf4NUA8ZlMJu4vXFji+hUKhdizZ4/o0qWL+vns7e3F8uXLy/d0AkREVKTnz5+LWbNmqfciyWQyMWzYMHH27NlSPd+lS5fElM6dhW2uUNTYw0Ps2bNH8zu+uAO8SxCi4uLiRPX/Bp0P7NWrXLYp9+7dYzjSFlU4Cg0NLbpxEd1gH374oTqgxBW2R6ic33hpaWni22+/FZ65QpJMJhMdO3YUS5YsEZcuXSrwjfjs2TNx5MgRMX36dFGrVi314y0sLMTkyZPFo0ePin5diIhIa65cuSIGDBig/n4GIJo1ayYWLFggzp07V+AY0MzMTHHq1Ckxf/589Z4bdSiqVUts+PHH/MfDltMPeA2rVoljMpkw/2/+PwwZUvACF2fIiRDqg4QYjrRAFY4mTJhQeMMidh0eOnRIfW6iHUW9obQ0gDozM1P8+uuvomXLlhofAtXRAn5+fqJTp06ie/fuIigoSNStWzfPCSjt7OzElClTxK1bt4r7EhIRkQ6cPn1avPHGG3lOvGhlZSUaNWokOnToIHr06CGCgoKEr6+veo+T6mZubi769u0rdu/eXfSemzIM8C5sm7f4v1qsAXHlwIH851vMsU6qbR3DkRaowlFAo0YFNyriDZCSkiJq1KghAIjRJUjRxT5qrJgDqHO7deuWWLBggejYsaP6vEQF3VxcXMTAgQPFb7/9JlJTU4s9DyIi0r2HDx+KpUuXip49e2qc5iW/m4ODg+jXr59YsmRJyYePFGfbU8LzMCkB0fW/2gLq1hWZmZma8yvmjoPMzExhbWWlk3AkE0IImJiUlBQ4ODjAHEDqsmWwHj8+b6Pw8JyL/uU3vX17vP3221i1ahVqeHjgfGws7HO/jHI5EB2d//XGYmNzrsRcu7ZWr0eWlZWF27dv4+bNm3jy5AkyMjJgY2MDFxcX1KpVC+7u7pDJZFqbPxERaYdSqUR0dDT+/fdfJCUl4dmzZ6hYsSIqV64MX19f3Xy/F7Uti43NuWjuf9eIuw/AD8ATAJ988gnmzZuX066IbW1upz/5BK98/jkAIDk5Gfb29uW2OC8z6XAEAMfMzNDqzp28K/elFQtAHXr+OncOvXv3hkwmQ3h4OIJu3Mi5MKBCkdNmxQpg9GgdLhEREZGeCQnR2DZuHD0ag1euhJmZGY4fP47mzZsXuq3V2C7HxuIHT09M+i+yaDscmWntmQ3EEaUyJ/2+zN0dWLkyZyUB6tDzyMoKY8aMAQBMmzYNQUFBOUEoOjon6UZHMxgRERG9tG0ctGIF3njjDSiVSowcORLPnz8vcFubZ4fF9es4qsN9OSa/56g9gPC7dwvu4sq161C4uWHAgAHYsmUL6tevjzNnzsDa2lpndRMRERmyx48fw8/PDw8ePMDUqVOxaNGinDuK6KbLjo5GVW9vJP33N7vVtCB3ODKXy5H4+HGxXuRff/0Vw4cPh7m5OU6ePImmTZtqu1QiIiKjsmvXLvTs2fPF0JSgoCIfc+zYMbRp0waVACSB3WpaVdPLC9kKBcLCwopsGxMTg4kTJwIAZs+ezWBERERUCj169MCYMWMghMCoUaOQmppa5GN27doFAOjUvbu2ywNg4uGoR+/eAIB169YV2i47OxtDhw5FcnIymjdvjhkzZuiiPCIiIqP0zTffwMvLC9HR0fjggw8KbatUKrF+/XoAQPfXXtNFeaYdjoYOHQoA+PPPPxEfH19guy+++AJHjx6FnZ0d1q9fD3Nzc12VSEREZHTs7e2xZs0aAMDKlSvx119/Fdg2PDwc0dHRcHBwQK9evXRSn0mHo/r16yMwMBDZ2dlYunRpvm12796tPh/DihUrULNmTV2WSEREZJTat2+PyZMnAwCGDRuGf//9N9923333HQBgyJAhsLGx0UltJj0gOzk5GXv37sXAgQNha2uLGzduwMXFRd3u7NmzaNeuHdLS0jB69GisWrVKwqqJiIiMS2ZmJjp27Ihjx46hbt26OHTokMZ2+NChQ2jfvj3kcjkuX74MV1dX9fabA7K1aMCAAQgMDERaWhpef/11pKWlAcgZ/NWxY0ekpaWhU6dOBe5ZIiIiotKxtLTE5s2b4enpiX///Rft2rXDxYsXAQD37t3DsGHDAABjxoyBj4+PzurSi3C0dOlSeHt7w9raGgEBAThy5Eih7Q8dOoSAgABYW1ujZs2aWL58eannLZPJsHr1atjb2+Po0aOoWbMmGjVqhJ49eyI5ORlt27bF5s2bYWlpWep5EBERUf6cnZ1x4MABeHp64vr16/D390fz5s3RqFEjxMbGwtfXFwsWLNBpTZKHo40bN2LKlCmYNWsWoqKi0LZtW3Tv3h0xMTH5tr99+zZ69OiBtm3bIioqCv/3f/+HSZMmYfPmzaWuoX79+vjrr7/g5eWF+Ph4XLx4EWZmZpgyZQr27dunPicSERERlb9atWrh9OnT6NevH5RKJSIjI9UnjNy1axcqV66s03okH3PUvHlzNG3aFMuWLVNPq1evHvr165dvUpw+fTp27NiBq1evqqeNHz8e58+fR0RERLHmmXvMUe4+y+fPn+Pw4cNITU1F27Zt4ezsXIYlIyIiopK6du0aLly4AEdHR/V4I5WCtt/lTdJj0jMzM3HmzJk85w0KDg7G8ePH831MREQEgoODNaZ17doVISEhyMrKgoWFRanrsbGxQdeuXUv9eCIiIiobHx8fnY4vyo+k4SghIQEKhSLPHhpnZ2fExcXl+5i4uLh822dnZyMhIQGurq55HpORkYGMjAz138nJyQByEigREREZBtV2W9udXnpxNkOZTKbxtxAiz7Si2uc3XWXBggWYO3dunukeHh4lLZWIiIgklpiYqNXxwJKGIycnJ8jl8jx7ieLj4wsc7+Pi4pJve3Nzc1SpUiXfx8ycORPTpk1T/52UlAQvLy/ExMSY1GDrlJQUeHh44O7du1rtq9U3XG4utyngcnO5TUFycjI8PT3h6Oio1flIGo4sLS0REBCAsLAw9O/fXz09LCwMffv2zfcxLVu2xJ9//qkxbd++fWjWrFmB442srKxgZWWVZ7qDg4NJvalU7O3tudwmhMttWrjcpsVUl9vMTLsH20t+KP+0adOwatUqhIaG4urVq5g6dSpiYmIwfvx4ADl7fUaMGKFuP378eNy5cwfTpk3D1atXERoaipCQkCIvXEdERERUHJKPORo0aBASExMxb948PHjwQH1OAy8vLwDAgwcPNM555O3tjV27dmHq1KlYsmQJqlevju+//x6v6ehKvURERGTcJA9HAPDOO+/gnXfeyfc+1VV7cwsKCsLZs2dLPT8rKyvMnj073642Y8bl5nKbAi43l9sUcLm1u9ySnwSSiIiISJ9IPuaIiIiISJ8wHBERERHlwnBERERElAvDEREREVEuRhuOvvjiC7Rq1QoVKlRApUqVivUYIQTmzJmD6tWrw8bGBu3bt8fly5c12mRkZOC9996Dk5MTbG1t0adPH8TGxmphCUrnyZMnGD58OBwcHODg4IDhw4cjKSmp0MfIZLJ8b19//bW6Tfv27fPcP3jwYC0vTfGVZrlHjRqVZ5latGih0cbY1ndWVhamT5+Ohg0bwtbWFtWrV8eIESNw//59jXb6tr6XLl0Kb29vWFtbIyAgAEeOHCm0/aFDhxAQEABra2vUrFkTy5cvz9Nm8+bNqF+/PqysrFC/fn1s3bpVW+WXWkmWe8uWLejSpQuqVq0Ke3t7tGzZEnv37tVos2bNmnw/6+np6dpelBIpyXIfPHgw32X6559/NNoZ2/rO7/tLJpOhQYMG6jb6vr4PHz6M3r17o3r16pDJZNi2bVuRj9HZZ1sYqU8//VQsWrRITJs2TTg4OBTrMf/73/+EnZ2d2Lx5s7h48aIYNGiQcHV1FSkpKeo248ePF25ubiIsLEycPXtWdOjQQTRu3FhkZ2draUlKplu3bsLPz08cP35cHD9+XPj5+YlevXoV+pgHDx5o3EJDQ4VMJhM3b95UtwkKChJvv/22RrukpCRtL06xlWa5R44cKbp166axTImJiRptjG19JyUlic6dO4uNGzeKf/75R0RERIjmzZuLgIAAjXb6tL5/++03YWFhIX766Sdx5coVMXnyZGFrayvu3LmTb/tbt26JChUqiMmTJ4srV66In376SVhYWIg//vhD3eb48eNCLpeL+fPni6tXr4r58+cLc3NzceLECV0tVpFKutyTJ08WX375pYiMjBT//vuvmDlzprCwsBBnz55Vt1m9erWwt7fP85nXJyVd7vDwcAFAXLt2TWOZcn9GjXF9JyUlaSzv3bt3haOjo5g9e7a6jb6v7127dolZs2aJzZs3CwBi69athbbX5WfbaMORyurVq4sVjpRKpXBxcRH/+9//1NPS09OFg4ODWL58uRAi581oYWEhfvvtN3Wbe/fuCTMzM7Fnz55yr72krly5IgBovAkiIiIEAPHPP/8U+3n69u0rOnbsqDEtKChITJ48ubxKLVelXe6RI0eKvn37Fni/qazvyMhIAUDjS1if1ndgYKAYP368xjRfX18xY8aMfNt/9NFHwtfXV2PauHHjRIsWLdR/Dxw4UHTr1k2jTdeuXcXgwYPLqeqyK+ly56d+/fpi7ty56r+L+30opZIutyocPXnypMDnNIX1vXXrViGTyUR0dLR6miGsb5XihCNdfraNtlutpG7fvo24uDgEBwerp1lZWSEoKAjHjx8HAJw5cwZZWVkabapXrw4/Pz91GylFRETAwcEBzZs3V09r0aIFHBwcil3fw4cPsXPnTowePTrPfevWrYOTkxMaNGiADz74AKmpqeVWe1mUZbkPHjyIatWqoW7dunj77bcRHx+vvs8U1jeQcyFHmUyWp/tZH9Z3ZmYmzpw5o7EOACA4OLjAZYyIiMjTvmvXrjh9+jSysrIKbaMP6xUo3XK/TKlUIjU1Nc8FOp8+fQovLy+4u7ujV69eiIqKKre6y6osy92kSRO4urqiU6dOCA8P17jPFNZ3SEgIOnfurL66hIo+r++S0uVnWy/OkK0P4uLiAADOzs4a052dnXHnzh11G0tLS1SuXDlPG9XjpRQXF4dq1arlmV6tWrVi17d27VrY2dnh1Vdf1Zg+dOhQeHt7w8XFBZcuXcLMmTNx/vx5hIWFlUvtZVHa5e7evTtef/11eHl54fbt2/jkk0/QsWNHnDlzBlZWViaxvtPT0zFjxgwMGTJE4+KV+rK+ExISoFAo8v1cFrSMcXFx+bbPzs5GQkICXF1dC2yjD+sVKN1yv+ybb75BWloaBg4cqJ7m6+uLNWvWoGHDhkhJScF3332H1q1b4/z586hTp065LkNplGa5XV1dsXLlSgQEBCAjIwO//PILOnXqhIMHD6Jdu3YACn5PGMv6fvDgAXbv3o3169drTNf39V1SuvxsG1Q4mjNnDubOnVtom1OnTqFZs2alnodMJtP4WwiRZ9rLitOmLIq73EDe+oGS1RcaGoqhQ4fC2tpaY/rbb7+t/r+fnx/q1KmDZs2a4ezZs2jatGmxnruktL3cgwYNUv/fz88PzZo1g5eXF3bu3JknHJbkectKV+s7KysLgwcPhlKpxNKlSzXuk2J9F6akn8v82r88vTSfdV0rbY0bNmzAnDlzsH37do0A3aJFC42DDlq3bo2mTZvihx9+wPfff19+hZdRSZbbx8cHPj4+6r9btmyJu3fvYuHChepwVNLnlEppa1yzZg0qVaqEfv36aUw3lPVdErr6bBtUOJo4cWKRR8zUqFGjVM/t4uICICeZurq6qqfHx8erU6iLiwsyMzPx5MkTjb0J8fHxaNWqVanmWxzFXe4LFy7g4cOHee579OhRniSdnyNHjuDatWvYuHFjkW2bNm0KCwsLXL9+XWsbS10tt4qrqyu8vLxw/fp1AMa9vrOysjBw4EDcvn0bBw4c0NhrlB9drO/8ODk5QS6X5/nVl/tz+TIXF5d825ubm6NKlSqFtinJ+0WbSrPcKhs3bsTo0aPx+++/o3PnzoW2NTMzwyuvvKJ+z0utLMudW4sWLfDrr7+q/zbm9S2EQGhoKIYPHw5LS8tC2+rb+i4pnX62SzRCyQCVdED2l19+qZ6WkZGR74DsjRs3qtvcv39f7wbonjx5Uj3txIkTxR6gO3LkyDxHLRXk4sWLAoA4dOhQqestL2VdbpWEhARhZWUl1q5dK4Qw3vWdmZkp+vXrJxo0aCDi4+OLNS8p13dgYKCYMGGCxrR69eoVOiC7Xr16GtPGjx+fZ9Bm9+7dNdp069ZN7wbolmS5hRBi/fr1wtrausiBrSpKpVI0a9ZMvPnmm2UptVyVZrlf9tprr4kOHTqo/zbW9S3EiwHpFy9eLHIe+ri+VVDMAdm6+mwbbTi6c+eOiIqKEnPnzhUVK1YUUVFRIioqSqSmpqrb+Pj4iC1btqj//t///iccHBzEli1bxMWLF8Ubb7yR76H87u7uYv/+/eLs2bOiY8eOendod6NGjURERISIiIgQDRs2zHNo98vLLYQQycnJokKFCmLZsmV5nvPGjRti7ty54tSpU+L27dti586dwtfXVzRp0sRglzs1NVW8//774vjx4+L27dsiPDxctGzZUri5uRn1+s7KyhJ9+vQR7u7u4ty5cxqH92ZkZAgh9G99qw5xDgkJEVeuXBFTpkwRtra26qNyZsyYIYYPH65urzrcd+rUqeLKlSsiJCQkz+G+x44dE3K5XPzvf/8TV69eFf/73//09tDu4i73+vXrhbm5uViyZEmBp2CYM2eO2LNnj7h586aIiooSb775pjA3N9cI2FIr6XJ/++23YuvWreLff/8Vly5dEjNmzBAAxObNm9VtjHF9qwwbNkw0b9483+fU9/Wdmpqq3jYDEIsWLRJRUVHqI2el/GwbbTgaOXKkAJDnFh4erm4DQKxevVr9t1KpFLNnzxYuLi7CyspKtGvXLk8af/78uZg4caJwdHQUNjY2olevXiImJkZHS1W0xMREMXToUGFnZyfs7OzE0KFD8xzi+vJyCyHEihUrhI2NTb7nsomJiRHt2rUTjo6OwtLSUtSqVUtMmjQpzzmBpFTS5X727JkIDg4WVatWFRYWFsLT01OMHDkyz7o0tvV9+/btfD8XuT8b+ri+lyxZIry8vISlpaVo2rSpxh6skSNHiqCgII32Bw8eFE2aNBGWlpaiRo0a+Yb+33//Xfj4+AgLCwvh6+ursTHVFyVZ7qCgoHzX68iRI9VtpkyZIjw9PYWlpaWoWrWqCA4OFsePH9fhEhVPSZb7yy+/FLVq1RLW1taicuXKok2bNmLnzp15ntPY1rcQOXu3bWxsxMqVK/N9Pn1f36q9XgW9Z6X8bMuE+G80ExEREREZ7+VDiIiIiEqD4YiIiIgoF4YjIiIiolwYjoiIiIhyYTgiIiIiyoXhiIiIiCgXhiMiIiKiXBiOiIiIiHJhOCIiIiLKheGIiIiIKBeGIyIyKvPmzUPDhg1ha2sLZ2dnTJgwAVlZWVKXRUQGxFzqAoiIyosQAgqFAitWrICbmxuuXLmCESNGoFGjRpgwYYLU5RGRgeCFZ4nIqA0ZMgRVq1bFd999J3UpRGQg2K1GREbjzp07mDhxIvz8/FC5cmVUrFgRmzZtgru7u9SlEZEBYTgiIqOQkJCAwMBAJCQkYNGiRTh69CgiIiIgl8vh7+8vdXlEZEA45oiIjMKuXbuQnZ2NDRs2QCaTAQCWLFmCzMxMhiMiKhGGIyIyCo6OjkhJScGOHTtQv359/Pnnn1iwYAHc3NxQtWpVqcsjIgPCAdlEZBSEEJgwYQLWr18PGxsbDBs2DOnp6bhz5w7++usvqcsjIgPCcERERESUCwdkExEREeXCcERERESUC8MRERERUS4MR0RERES5MBwRERER5cJwRERERJQLwxERERFRLgxHRERERLkwHBERERHlwnBERERElAvDEREREVEuDEdEREREufw/5L1hXBM83jUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxZElEQVR4nO3dd1hT1/8H8HcIe7oQEWS4UMGJIk7cWutorXWvinW0Vau1Vb+2rvpzVGvtcIurdWBrtS7cuHEh7oULREXEgYiykvP7AxOJBAQEbsb79Tw8ys1J8rm5Se6bc869VyaEECAiIiIiAICJ1AUQERER6RKGIyIiIqJMGI6IiIiIMmE4IiIiIsqE4YiIiIgoE4YjIiIiokwYjoiIiIgyYTgiIiIiyoThiIiIiCgThiPSC/fv38fkyZNx9uzZLLcNGDAAtra2+X7s1NRUDB06FM7OzpDL5ahVq1b+Cy0ACxYswMqVK7Msv3PnDmQymdbbDIlMJsPkyZOlLqNATJ48GTKZrNDv+/vvv6NixYowNzeHTCbDs2fPMGDAAHh4eGi0mz59OjZv3pyvenLy5MkT9OjRA6VLl4ZMJsNHH32U58fw8PDAgAEDCrw2XfP999+jQ4cOcHFxgUwmy/U69+nTBzKZDB06dCjcAgkAwxHpifv372PKlClaw9H7WrhwIRYvXowJEybgyJEj+PPPPwv8OfIiu3Dk7OyMsLAwfPjhh0VfFOXLoEGDEBYWVqjPcfbsWYwYMQLNmzfH/v37ERYWBjs7O/zwww/YtGmTRtvCCkc//vgjNm3ahF9++QVhYWH46aefCvw5DMUvv/yCx48fo1OnTjA3N8/VfbZv347NmzfD3t6+kKsjFVOpCyCS2sWLF2FlZYWvvvpK6lJyZGFhAX9/f6nLoDxwdXWFq6troT7HpUuXAACff/45/Pz81MsrVKhQqM+b2cWLF1GhQgX07t27yJ6zoLx8+RLW1tZF9nyJiYkwMcnol8jNH2IJCQkYMmQIfvzxR/z666+FXR69xp4jI/To0SMMHjwY5cqVg4WFBRwdHdGoUSPs3btX3aZZs2bw8fFBWFgYGjZsCCsrK3h4eGDFihUAMv6SqVOnDqytrVG9enXs3Lkzy/McOXIELVu2hJ2dHaytrdGwYUNs3749S7uLFy+ic+fOKF68OCwtLVGrVi2sWrVKffuBAwdQr149AMBnn30GmUymdejlxo0baN++PWxtbVGuXDl88803SElJyfG1kMlkWLZsGV69eqV+3JUrV+Y4hPX2c6uGPy5duoSePXvCwcEBTk5OGDhwIBISEjTuq1Qq8fvvv6NWrVqwsrJCsWLF4O/vjy1btgDIGFq4dOkSDh48qK5HNTSSXU25eZ1XrlwJmUyG0NBQDBs2DKVKlULJkiXRpUsX3L9/P8fXKCceHh7o0KEDNm3ahBo1asDS0hLly5fHb7/9lqVtdHQ0+vTpg9KlS8PCwgJVq1bFzz//DKVSme3j37lzB6amppgxY0aW2w4dOgSZTIa///4bQN62Q3JyMsaPHw9PT0+Ym5vDxcUFX375JZ49e6Z1/bZt24batWvDysoKVatWxbZt2wBkvK5Vq1aFjY0N/Pz8cPr0aY37axsaCw4ORps2beDs7Kx+vHHjxiEpKSn7FzobzZo1Q58+fQAA9evX1ximeXtYTSaTISkpCatWrVK/t5o1a5bj4z958gRffPEFXFxcYG5ujvLly2PChAnqz5XqPbl3715cuXJF/bgHDhzI9jHT0tLw3XffoUyZMrC2tkbjxo1x8uRJrW1jY2MxZMgQuLq6wtzcHJ6enpgyZQrS09M12sXExKBr166ws7NDsWLF0Lt3b5w6dSrL50U1BH/hwgW0adMGdnZ2aNmyJYCM4fVp06ahSpUq6u/Fzz77DI8ePcpSV3BwMBo0aAAbGxvY2tqibdu2iIiIyPG1VFEFo9z65ptv4OzsjBEjRuTpfvSeBBmdtm3bCkdHR7FkyRJx4MABsXnzZjFx4kSxfv16dZuAgABRsmRJ4eXlJYKCgsSuXbtEhw4dBAAxZcoUUb16dbFu3TqxY8cO4e/vLywsLMS9e/fU9z9w4IAwMzMTvr6+Ijg4WGzevFm0adNGyGQyjee5evWqsLOzExUqVBCrV68W27dvFz179hQAxKxZs4QQQiQkJIgVK1YIAOL7778XYWFhIiwsTNy9e1cIIUT//v2Fubm5qFq1qpgzZ47Yu3evmDhxopDJZGLKlCk5vhZhYWGiffv2wsrKSv24cXFx4vbt2wKAWLFiRZb7ABCTJk1S/z5p0iQBQHh5eYmJEyeKPXv2iLlz5woLCwvx2Wefady3b9++QiaTiUGDBon//vtPhISEiP/7v/8Tv/76qxBCiDNnzojy5cuL2rVrq+s5c+aMEEJorSm3r7Pq9StfvrwYPny42LVrl1i2bJkoXry4aN68uUaNqrba1v1t7u7uwsXFRbi5uYnly5eLHTt2iN69ewsAYvbs2ep2cXFxwsXFRTg6OopFixaJnTt3iq+++koAEMOGDcvx9f3444+Fm5ubSE9P12j36aefirJly4q0tLQ8bQelUinatm0rTE1NxQ8//CB2794t5syZI2xsbETt2rVFcnKyxvq5uroKHx8f9fu9fv36wszMTEycOFE0atRI/Pvvv2LTpk2icuXKwsnJSbx8+VJ9f1VNmf3444/il19+Edu3bxcHDhwQixYtEp6enlm2g7b7vu3SpUvi+++/V2+vsLAwcePGDSFExufC3d1d3TYsLExYWVmJ9u3bq99bly5dyvaxX716JWrUqCFsbGzEnDlzxO7du8UPP/wgTE1NRfv27YUQQiQnJ4uwsDBRu3ZtUb58efXjJiQkZPu4/fv3FzKZTHz77bdi9+7dYu7cucLFxUXY29uL/v37q9s9ePBAlCtXTri7u4vFixeLvXv3ih9//FFYWFiIAQMGqNu9ePFCVKxYUZQoUULMnz9f7Nq1S4waNUp4enpmeR/3799fmJmZCQ8PDzFjxgyxb98+sWvXLqFQKES7du2EjY2NmDJlitizZ49YtmyZcHFxEdWqVdPYpv/3f/8nZDKZGDhwoNi2bZv4999/RYMGDYSNjU2Or6c2NjY2Guv8tj179ggzMzNx9uxZIUTG+/HDDz/M03NQ/jAcGSFbW1vx9ddf59gmICBAABCnT59WL3v8+LGQy+XCyspKIwidPXtWABC//fabepm/v78oXbq0SExMVC9LT08XPj4+wtXVVSiVSiGEED169BAWFhYiOjpa4/k/+OADYW1tLZ49eyaEEOLUqVPZ7rD79+8vAIgNGzZoLG/fvr3w8vJ6x6uRcX8bGxuNZfkJRz/99JNGuy+++EJYWlqq1/XQoUMCgJgwYUKO9Xh7e4uAgIAsy7XVlNvXWRV4vvjiC43H/OmnnwQA8eDBA/WyVatWCblcLlatWpVjnUJkfFnLZDL1l7dK69athb29vUhKShJCCDFu3DgBQJw4cUKj3bBhw4RMJhPXrl1TL3v79Q0NDRUAxKZNm9TL7t27J0xNTTXCb263w86dO7W2Cw4OFgDEkiVLNNbPyspKxMTEqJep3u/Ozs7q9RNCiM2bNwsAYsuWLVlqyo5SqRRpaWni4MGDAoA4d+5cru+rotq2p06d0lj+djgS4t0748wWLVqk9XM1a9YsAUDs3r1bvSwgIEB4e3u/8zGvXLkiAIhRo0ZpLF+zZo0AoFHbkCFDhK2trYiKitJoO2fOHAFAHUTmz58vAIiQkBCNdkOGDNEajgCI5cuXa7Rdt26dACA2btyosVz1vbNgwQIhhBDR0dHC1NRUDB8+XKNdYmKiKFOmjOjWrds7X4PMctoeiYmJwsPDQ4wfP169jOGo6HBYzQj5+flh5cqVmDZtGo4fP460tDSt7ZydneHr66v+vUSJEihdujRq1aqFsmXLqpdXrVoVABAVFQUASEpKwokTJ9C1a1eNo8jkcjn69u2LmJgYXLt2DQCwf/9+tGzZEuXKldN47gEDBuDly5e5nswqk8nQsWNHjWU1atRQ11QUOnXqlOX5k5OTERcXBwAICQkBAHz55ZcF8nx5eZ1zqhGAxuvUr18/pKeno1+/frmqw9vbGzVr1tRY1qtXLzx//hxnzpwBkLGdq1WrpjEnBsjYzkII7N+/P9vHb9asGWrWrIn58+erly1atAgymQyDBw/O0v5d20H1XG8fJfTpp5/CxsYG+/bt01heq1YtuLi4qH9Xvd+bNWumMVfl7c9Bdm7duoVevXqhTJkykMvlMDMzQ0BAAADgypUrOd63KO3fvx82Njbo2rWrxnLV6/b265QboaGhAJBlblK3bt1gaqo5BXbbtm1o3rw5ypYti/T0dPXPBx98AAA4ePCg+l87Ozu0a9dO4/49e/bMto5PPvkky3MVK1YMHTt21HiuWrVqoUyZMuphwl27dqk/G5nbWVpaIiAgIMfhxLwaN24czMzMMHHixAJ7TMo9Tsg2QsHBwZg2bRqWLVuGH374Aba2tvj444/x008/oUyZMup2JUqUyHJfc3PzLMtVR1wkJycDAJ4+fQohBJydnbPcXxWqHj9+rP43N+3exdraGpaWlhrLLCws1DUVhZIlS2Z5fgB49eoVgIy5XnK5XOM1fh95eZ1zW2N+aFsf1bLM2/ntw8pzqvNtI0aMwKBBg3Dt2jWUL18eS5cuRdeuXbU+97vW8fHjxzA1NYWjo6NGO5lMhjJlymSpJbv3+7s+B9q8ePECTZo0gaWlJaZNm4bKlSvD2toad+/eRZcuXd5rOxS0x48fo0yZMlnmTJUuXRqmpqa5/my+/ZhA1veMqalplu328OFDbN26FWZmZlofKz4+Xv2YTk5OWW7XtgzI+K54+6ivhw8f4tmzZ9kePaZ6rocPHwKAeg7k2/I6nyg7J0+exIIFC/Dvv/8iOTlZ/Z5SKpVIT0/Hs2fPYGVlpX5vU8FjODJCpUqVwrx58zBv3jxER0djy5YtGDduHOLi4rROrM6r4sWLw8TEBA8ePMhym2ryb6lSpQBk7Mhy066oqYLW2xO687NDUHF0dIRCoUBsbKzWQJNXeXmdC1NsbGy2y1Q7vPfdzr169cLYsWMxf/58+Pv7IzY2Nt89cCVLlkR6ejoePXqkEZCEEIiNjc12x1cQ9u/fj/v37+PAgQPq3iIAWSaC64KSJUvixIkTEEJoBKS4uDikp6fn672lej/ExsZq9Malp6dn+WyVKlUKNWrUwP/93/9pfSxVsC5ZsqTWCd3a3pcAtJ47SnWAQnbff3Z2dup2APDPP//A3d1da9uCcPnyZQgh8PHHH2e57e7duyhevDh++eUXfP3114VWg7HjsJqRc3Nzw1dffYXWrVurh0Del42NDerXr49///1X4y9hpVKJv/76C66urqhcuTIAoGXLluodRmarV6+GtbW1+tD1gujhyAsnJydYWlri/PnzGsv/+++/fD+majhg4cKFObazsLDI1Xrm5XUuTJcuXcK5c+c0lq1duxZ2dnaoU6cOgIztfPny5SzvsdWrV0Mmk6F58+Y5PoelpSUGDx6MVatWYe7cuahVqxYaNWqUr3pVRyf99ddfGss3btyIpKQk9e2FQbVjfvsv/sWLFxfac2aW2/cWkPE6vXjxIst5kVavXq2+Pa9UR8etWbNGY/mGDRuyHIHWoUMH9SkC6tatm+VHFY4CAgKQmJioHrZWWb9+fa7r6tChAx4/fgyFQqH1uby8vAAAbdu2hampKW7evKm1Xd26dfP6kmjVrl07hIaGZvlxcnKCv78/QkNDswx3UsFiz5GRSUhIQPPmzdGrVy9UqVIFdnZ2OHXqFHbu3IkuXboU2PPMmDEDrVu3RvPmzTFmzBiYm5tjwYIFuHjxItatW6feSUyaNEk9t2DixIkoUaIE1qxZg+3bt+Onn36Cg4MDgIxztlhZWWHNmjWoWrUqbG1tUbZsWY25TwVJJpOhT58+WL58OSpUqICaNWvi5MmTWLt2bb4fs0mTJujbty+mTZuGhw8fokOHDrCwsEBERASsra0xfPhwAED16tWxfv16BAcHo3z58rC0tET16tW1PmZuX+e8WL16NQYOHIjly5fnat5R2bJl0alTJ0yePBnOzs7466+/sGfPHsyaNUs9J2fUqFFYvXo1PvzwQ0ydOhXu7u7Yvn07FixYgGHDhuUqxH3xxRf46aefEB4ejmXLluV5vVRat26Ntm3bYuzYsXj+/DkaNWqE8+fPY9KkSahduzb69u2b78d+l4YNG6J48eIYOnQoJk2aBDMzM6xZsyZLuCws1atXx4EDB7B161Y4OzvDzs5OveN/W79+/TB//nz0798fd+7cQfXq1XHkyBFMnz4d7du3R6tWrfL8/FWrVkWfPn0wb948mJmZoVWrVrh48SLmzJmTZahr6tSp2LNnDxo2bIgRI0bAy8sLycnJuHPnDnbs2IFFixbB1dUV/fv3xy+//II+ffpg2rRpqFixIkJCQrBr1y4AuRvq6tGjB9asWYP27dtj5MiR8PPzg5mZGWJiYhAaGorOnTvj448/hoeHB6ZOnYoJEybg1q1baNeuHYoXL46HDx/i5MmTsLGxwZQpU3J8roMHD6pPD6BQKBAVFYV//vkHQEbQc3R0RJkyZbQOGVtaWqJkyZLvPAUDFQApZ4NT0UtOThZDhw4VNWrUEPb29sLKykp4eXmJSZMmaRx5k93RJ9kdLQFAfPnllxrLDh8+LFq0aCFsbGyElZWV8Pf3F1u3bs1y3wsXLoiOHTsKBwcHYW5uLmrWrKn1KLF169aJKlWqCDMzM40jmrQdbSZE7o/2ye7+CQkJYtCgQcLJyUnY2NiIjh07ijt37mR7tNqjR4807q86iuj27dvqZQqFQvzyyy/Cx8dHmJubCwcHB9GgQQON1+XOnTuiTZs2ws7OTgBQH3GU3RF0uXmdszuiSXUkWGhoaJa2uT2U/8MPPxT//POP8Pb2Fubm5sLDw0PMnTs3S9uoqCjRq1cvUbJkSWFmZia8vLzE7NmzhUKh0Gj39uubWbNmzUSJEiU0Dq1Wyct2ePXqlRg7dqxwd3cXZmZmwtnZWQwbNkw8ffpU6/q9Tdv7XbV9Mp/CQNt78NixY6JBgwbC2tpaODo6ikGDBokzZ85kec0L42i1s2fPikaNGglra2sBQOtRkZk9fvxYDB06VDg7OwtTU1Ph7u4uxo8fr3G6AyFyf7SaEEKkpKSIb775RpQuXVpYWloKf39/ERYWJtzd3bMcufXo0SMxYsQI4enpKczMzESJEiWEr6+vmDBhgnjx4oW6XXR0tOjSpYuwtbUVdnZ24pNPPhE7duwQAMR///2n8Zpo+6wLIURaWpqYM2eOqFmzprC0tBS2traiSpUqYsiQISIyMlKj7ebNm0Xz5s2Fvb29sLCwEO7u7qJr165i796971x/1ZHA2n4yfw614dFqRUcmhBBFE8OIyNB4eHjAx8dHfVLEwhQXFwd3d3cMHz6cl6egd5o+fTq+//57REdHF/pZysnwcFiNiHRaTEwMbt26hdmzZ8PExAQjR46UuiTSMX/88QcAoEqVKkhLS8P+/fvx22+/oU+fPgxGlC8MR0Sk05YtW4apU6fCw8MDa9as0TjKiQjIODz/l19+wZ07d5CSkgI3NzeMHTsW33//vdSlkZ7isBoRERFRJpIfyn/o0CF07NgRZcuWhUwmy3LYqDYHDx6Er6+v+iKXixYtKvxCiYiIyChIHo6SkpJQs2ZN9Zjxu9y+fRvt27dHkyZNEBERgf/9738YMWIENm7cWMiVEhERkTHQqWE1mUyGTZs24aOPPsq2zdixY7FlyxaNaxANHToU586dy/V1uIiIiIiyo3cTssPCwtCmTRuNZW3btkVQUBDS0tK0XocnJSVF4zIQSqUST548QcmSJfN1kjwiIiIqekIIJCYmomzZsgV2LTtt9C4cxcbGZrmgoJOTE9LT0xEfH6/1mlUzZsx451lLiYiISD/cvXu3UE/ToHfhCMh64UDVyGB2vUDjx4/H6NGj1b8nJCTAzc0Nd+/ezXLKeiLSI/fuATdvAhUqADkd4p/bdkSk054/f45y5cqpLwZcWPQuHJUpUybL1Zbj4uJgamqqvuLz2ywsLLJc6BEA7O3tGY6I9FVQEDB4MKBUAiYmwJIlQGBg/tsRkd4o7Ckxkh+tllcNGjTAnj17NJbt3r0bdevW1TrfiIgMUEzMm8ADZPw7ZEjG8vy0IyLKRPJw9OLFC5w9exZnz54FkHGo/tmzZxEdHQ0gY0gs85XBhw4diqioKIwePRpXrlzB8uXLERQUhDFjxkhRPhFJITLyTeBRUSiAGzfy146IKBPJh9VOnz6N5s2bq39XzQ3q378/Vq5ciQcPHqiDEgB4enpix44dGDVqFObPn4+yZcvit99+wyeffFLktRORRCpVyhgiyxx85HKgYsX8tSMiykSnznNUVJ4/fw4HBwckJCRwzhGRvgoKyhgiUygyAs/ixdnPOcpNOyLSeUW1/2Y4Yjgi0l8xMRlDZBUrAjkd1pvbdkSk04pq/y35sBoRUb65uuYu7OS2HRERdGBCNhEREZEuYTgiIiIiyoThiIiIiCgThiMiIiKiTBiOiIiIiDJhOCIiIiLKhOGIiIiIKBOGIyLSe0IIhISEoFevXqhYsSIcHR3h4+ODYcOGITw8XOryiEjP8AzZPEM2kV67fv06hg4ditDQ0Gzb9OnTB7///juKFStWdIURUYErqv03e46ISG/t27cP9erVQ2hoKCwtLTFy5Ejs3bsX58+fx3///YdevXrBxMQEf/31F2rVqoXr169LXTIR6QH2HLHniEgvbd++HR999BHS09PRuHFjrF69Gp6enlnahYWFoU+fPrh16xacnJywb98+eHt7S1AxEb0v9hwREWXj1KlT6NatG9LT0/Hpp59i7969WoMRADRo0ABhYWGoWbMmHj58iPbt2yMuLq6IKyYifcJwRER6JT4+Hh999BFevnyJtm3bYs2aNbCwsMjxPqVLl8b+/ftRqVIlREdH45NPPkFaWloRVUxE+obhiIj0hhACgYGBuH//Pry8vPD333/DzMwsV/ctUaIEtmzZAnt7exw5cgQzZswo5GqJSF8xHBGR3li9ejW2bNkCc3NzrF+/HnZ2dnm6f5UqVbBw4UIAwI8//ogzZ84URplEpOcYjohILzx+/BhjxowBAEydOhW1atXK1+P07NkTXbt2RXp6OoYMGQKlUlmAVRKRIWA4IiK9MGHCBMTHx8Pb2xujR4/O9+PIZDL88ccfsLe3x+nTp7Fy5cqCK5KIDALDERHpvGvXrmHp0qUAgAULFuR6nlF2nJycMHHiRADA+PHjkZiY+N41EpHhYDgiIp03adIkKJVKdOzYEU2bNi2Qxxw+fDgqVaqEuLg4zJ8/v0Aek4gMA8MREem0s2fPIjg4GAAwbdq0Antcc3Nzde/R7Nmz2XtERGoMR0Ske2JigNBQICYGkyZNApAxkbpGjRoF+jQ9evRA5cqV8eTJE/zxxx9ZnpuIjBPDERHplqAgwN0daNECV9zcsGXLFshkMnVIKkimpqbq3qM5c+bgxfz56ueGu3tGLURkdHhtNV5bjUh3xMRkhJLXh9cPBrAUQOc2bbB5165CeUqFQoEqVargxo0bmC+T4YvMX4lyOXDnDuDqWijPTUR5w2urEZHxiYxUB6M4AKtfLx7ToUOhPaVcLseIESMAAL8JAY2zHikUwI0bhfbcRKSbGI6ISHdUqgSYZHwtLQCQAsAPQKOPPirUpx0wYADs7exwDcDuzDfI5UDFioX63ESkexiOiEh3uLoCS5YgzcQEi18vGj14MGTlyhXq09rZ2WFgYCAA4FfVQrkcWLyYQ2pERohzjjjniEjnbFq6FF0GD4aToyPu3rv33id9zI1bt26hYsWKEEIg8q+/UDEggMGISMdwzhERGa2lmzYBAAYMHFgkwQgAypcvj7Zt2wIAVly+zGBEZMQYjohIp0RFRWHnzp0AgEGDBhXpcwe+HlpbuXIl0tPTi/S5iUh3MBwRkU5Zvnw5hBBo0aIFKhbxZOiOHTuiZMmSuH//Pnbv3v3uOxCRQWI4IiKdoVQqsWrVKgBF32sEABYWFujbty8AIIgngCQyWgxHRKQzwsLCEBUVBVtbW3xUyIfvZ0c1tLZlyxbEx8dLUgMRSYvhiIh0xtq1awEAXbp0gZWVlSQ1+Pj4oHbt2khPT8c///wjSQ1EJC2GIyLSCWlpadiwYQMAoFevXpLW0rNnTwDAunXrJK2DiKTBcEREOmHv3r2Ij4+Ho6MjWrZsKWkt3bt3BwAcPnwYMTExktZCREWP4YiIdIJqSK179+4wNTWVtBY3Nzc0btwYQggEBwdLWgsRFT2GIyKS3MuXL7Hp9YkfpR5SU+HQGpHxYjgiIsmFhIQgKSkJHh4e8Pf3l7ocAEDXrl0hl8sRHh6OW7duSV0OERUhhiMikpyq1+iTTz6BTCaTuJoMpUuXRpMmTQAAmzdvlrYYIipSDEdEJKnU1FRs27YNAPDxxx9LXI0mVT2q8EZExoHhiIgkdeDAASQkJMDJyUlnhtRUVCeiPHr0KOLi4qQthoiKDMMREUlKNWTVqVMnyOVyaYt5i5ubG3x9fSGEwJYtW6Quh4iKCMMREUlGqVSqw5GuDampqOrivCMi48FwRESSOXnyJB48eAA7Ozu0aNFC6nK0Ug2t7dmzB4mJidIWQ0RFguGIiCSjmujcvn17WFhYSFyNdtWqVUOlSpWQmpqKkJAQqcshoiLAcEREktm6dSuAN70zukgmk6mH1jjviMg4MBwRkSTu3LmDK1euQC6Xo23btlKXk6MPP/wQALBr1y4oFAqJqyGiwsZwRESSUA1RNWzYEMWLF5e4mpw1aNAADg4OiI+Px+nTp6Uuh4gKGcMREUlix44dADLmG+k6MzMztGnTBgA474jICDAcEVGRS05Oxr59+wAAH3zwgcTV5I6qTlWoIyLDxXBEREXu4MGDePXqFcqWLYsaNWpIXU6utGvXDgBw6tQpPHz4UOJqiKgwMRwRUZFTDU21b99eZy40+y7Ozs6oU6cOgIyJ2URkuBiOiKjI6dN8o8xU9XJojciwMRwRUZG6ceMGIiMjYWZmhpYtW0pdTp6owtGuXbuQnp4ucTVEVFgYjoioSO3ZswdAxiH89vb2EleTN35+fihWrBiePXuG8PBwqcshokLCcERERWrv3r0AgNatW0tcSd7J5XL1NeBU60FEhofhiIiKjEKhwP79+wEArVq1kria/FHVzXBEZLgYjoioyJw5cwbPnj2Dg4MDfH19pS4nX1Th6NixY0hKSpK4GiIqDAxHRFRkVL0tzZs3h6mpqcTV5E/FihXh5uaG1NRUHDlyROpyiKgQMBwRUZHR5/lGKjKZjENrRAaO4YiIisTLly/VPS36Ot9IheGIyLDpRDhasGABPD09YWlpCV9fXxw+fDjH9mvWrEHNmjVhbW0NZ2dnfPbZZ3j8+HERVUtE+XH06FGkpqaiXLlyqFSpktTlvBfVEWtnz57Fo0ePJK6GiAqa5OEoODgYX3/9NSZMmICIiAg0adIEH3zwAaKjo7W2P3LkCPr164fAwEBcunQJf//9N06dOoVBgwYVceVElBeqXpZWrVrpzSVDsuPk5KS+Jpzq6DsiMhySh6O5c+ciMDAQgwYNQtWqVTFv3jyUK1cOCxcu1Nr++PHj8PDwwIgRI+Dp6YnGjRtjyJAhOH36dBFXTkR5kTkcGQLVeuzbt0/iSoiooEkajlJTUxEeHo42bdpoLG/Tpg2OHTum9T4NGzZETEwMduzYASEEHj58iH/++Qcffvhhts+TkpKC58+fa/wQUdGJj49HREQEAKClhQUQEyNxRe+vVa1aAIA9O3dKWwgRFThJw1F8fDwUCgWcnJw0ljs5OSE2NlbrfRo2bIg1a9age/fuMDc3R5kyZVCsWDH8/vvv2T7PjBkz4ODgoP4pV65cga4HEeXs4MGDEELAB4BT166AuzsQFCR1WfkXFISm/fvDFMCdu3dxZ9YsqSsiogIk+bAagCzzD4QQ2c5JuHz5MkaMGIGJEyciPDwcO3fuxO3btzF06NBsH3/8+PFISEhQ/9y9e7dA6yeinB3cvh0A0Ey1QKkEhgzRzx6kmBhg8GDYCIF6rxcdHD9eP9eFiLSS9CxspUqVglwuz9JLFBcXl6U3SWXGjBlo1KgRvv32WwBAjRo1YGNjgyZNmmDatGlwdnbOch8LCwtYWFgU/AoQUa4cPHgQABCQeaFCAdy4Abi6SlJTvkVGZoQ7ZKxPGICDQqC/Pq4LEWklac+Rubk5fH191VfpVtmzZw8aNmyo9T4vX76EiYlm2XK5HEBGjxMR6ZYnT57gwu3bAICmmW+Qy4GKFSWp6b1UqgS8/g5Shb2DgH6uCxFpJfmw2ujRo7Fs2TIsX74cV65cwahRoxAdHa0eJhs/fjz69eunbt+xY0f8+++/WLhwIW7duoWjR49ixIgR8PPzQ9myZaVaDSLKxqFDhyCEQFVnZ5R+/YcM5HJg8WL97GlxdQWWLAHkcjQCIAdwC8Bd/nFGZDAkD0fdu3fHvHnzMHXqVNSqVQuHDh3Cjh074O7uDgB48OCBxjmPBgwYgLlz5+KPP/6Aj48PPv30U3h5eeHff/+VahWIKAfqIbXOnYE7d4DQ0Ix/AwMlreu9BAYCd+7ALjQUdWrWBPBmPYlI/8mEEY5FPX/+HA4ODkhISIC9vb3U5RAZtDp16iAiIgLr1q1Djx49pC6nwH377beYM2cOBg0ahKVLl0pdDpFBK6r9t+Q9R0RkuJ49e4azZ88CAAICAnJurKdU68WeIyLDwXBERIXmyJEjEEKgUqVKWo8kNQSNGzeGTCZDZGQk7t+/L3U5RFQAGI6IqNAcOHAAgOH2GgFAsWLFUOv12bLZe0RkGBiOiKjQqMJCs2bNpC2kkKnWj+GIyDAwHBFRoXj+/DnOnDkDwLB7jgDOOyIyNAxHRFQojh49CqVSifLly8NVH89nlAdNmjSBTCbD1atX8fDhQ6nLIaL3xHBERIVCfX4jA+81AoASJUqgevXqADJOeklE+o3hiIgKxeHDhwEATZs2fUdLw6AKgar1JiL9xXBERAUuOTkZp0+fBpBxqLsxaNSoEYCM0xcQkX5jOCKiAnf69GmkpqbCyckJFSpUkLqcIqEKR+fOnUNiYqLE1RDR+2A4IqICp+o9adSoEWQymcTVFA1XV1e4u7tDqVTi+PHjUpdDRO+B4YiICtzRo0cBvOlNMRaqIUTV+hORfmI4IqICpVQqcezYMQDGM99IRRUGGY6I9BvDEREVqKtXr+LJkyewsrJC7dq1pS6nSKnCUVhYGNLT0yWuhojyi+GIiAqUqtfEz88PZmZmEldTtLy9veHg4ICkpCScP39e6nKIKJ8YjoioQKnCkbENqQGAXC5HgwYNAHBojUifMRwRUYHKfKSaMVKFQp7viEh/MRwRUYGJjY3FzZs3IZPJ1D0oxibzySCFEBJXQ0T5wXBERAVGNZTk4+ODYsWKSVuMRPz8/GBqaor79+8jKipK6nKIKB8YjoiowBjr+Y0ys7a2Rp06dQBw3hGRvmI4IqICw3CUgec7ItJvDEdEVCBevnyJM2fOADDOI9Uy46RsIv3GcEREBeLkyZNIT09H2bJl4e7uLnU5klL1HF28eBHPnj2TthgiyjOGIyIqEJmH1IzlYrPZcXJyQoUKFSCE4EVoifQQwxERFQjV9dSMfb6RCi9CS6S/GI6I6L1l7iFp2LChxNXoBtV5nthzRKR/GI6I6L1FRkbiyZMnsLCwQM2aNaUuRyf4+/sDAE6cOAGFQiFxNUSUFwxHRPTeVL0jvr6+MDc3l7ga3eDj4wMbGxskJibi8uXLUpdDRHnAcERE700VjlS9JZRxEVo/Pz8AHFoj0jcMR0T03hiOtFPNOwoLC5O4EiLKC4YjInovSUlJOH/+PAAY7cVms8NJ2UT6ieGIiN7L6dOnoVAo4OLiAldXV6nL0Sn169cHAFy5cgVPnz6VuBoiyi2GIyJ6LxxSy56joyMqVqwIIOOoNSLSDwxHRPReGI5ypnpdOLRGpD8Yjogo3zKf/JHhSDtOyibSPwxHRJRvUVFRiI2NhampKXx9faUuRyepwtGJEyegVColroaIcoPhiIjyTdVrVKtWLVhZWUlcjW6qXr06rK2tkZCQgKtXr0pdDhHlAsMREeUbh9TezdTUFPXq1QPAoTUifcFwRET5xnCUO5yUTaRfGI6IKF9SUlIQEREBgOHoXTgpm0i/MBwRUb5EREQgNTUVjo6OKF++vNTl6DRVeLx8+TISEhIkroaI3oXhiIjyRdUL4u/vD9m9e0BoKBATI3FVOigmBk6XL8PTzQ1CCJw8eVLqiojoHRiOiChf1PONTE0Bd3egRYuMf4OCJK5MhwQFqV+bBtHRADi0RqQPGI6IKF/U4WjzZkB1/h6lEhgyhD1IQMZrMHiw+rVRzco6fuCAZCURUe4wHBFRnt2/fx/R0dEwMTFBPSE0b1QogBs3pClMl0RGvgmNABq8/vf46dM8GSSRjmM4IqI8U11E1cfLC3Ymb32NyOXA64utGrVKlYBMr00NAJYAniYmIjIyUrKyiOjdGI6IKM/Uk7GbNAGWLMkIREDGv4sXA66uElanI1xdNV4bc7kcdStVAsB5R0S6juGIiPJM4+SPgYHAnTsZR6vduZPxO2V467Vp8NFHABiOiHSdqdQFEJF+SUtLw+nTpwFkOvmjqyt7i7KT6bVRvV4MR0S6jT1HRJQnFy5cwKtXr1CsWDF4eXlJXY5eUZ0p+9KlS0hMTJS4GiLKDsMREeWJakitfv36MHl7MjblyNnZGW5ublAqlTh16pTU5RBRNvjNRkR5kvnM2JR3vAgtke5jOCKiPNGYjE15phpaYzgi0l0MR0SUa/Hx8bjx+gSP9evXl7ga/ZS550i8fQJNItIJDEdElGuqkz9WqVIFxYsXl7ga/VS7dm2Ym5vj0aNHuHXrltTlEJEWDEdElGscUnt/FhYWqF27NgAOrRHpKoYjIso1hqOCwXlHRLqN4YiIckWhUKiH1RiO3g+PWCPSbQxHRJQrV65cQWJiImxsbODt7S11OXpNFY7Onj2LV69eSVwNEb2N4YiIckXVy+Hn5wdTU1556H24ubmhTJkySE9PR3h4uNTlENFbGI6IKFc436jgyGQyzjsi0mEMR0SUKwxHBYvzjoh0F8MREb1TQkICLl++DIAnfywoqnAUFhbGk0ES6RidCEcLFiyAp6cnLC0t4evri8OHD+fYPiUlBRMmTIC7uzssLCxQoUIFLF++vIiqJTI+J0+ehBACnp6ecHJykrocg+Dr6wu5XI779+8jJiZG6nKIKBPJw1FwcDC+/vprTJgwAREREWjSpAk++OADREdHZ3ufbt26Yd++fQgKCsK1a9ewbt06VKlSpQirJjIuqqEf1TwZen82NjaoWbMmAA6tEekaycPR3LlzERgYiEGDBqFq1aqYN28eypUrh4ULF2ptv3PnThw8eBA7duxAq1at4OHhAT8/PzRs2LCIKycyHpxvVDg474hIN0kajlJTUxEeHo42bdpoLG/Tpg2OHTum9T5btmxB3bp18dNPP8HFxQWVK1fGmDFjcjxXSEpKCp4/f67xQ0S5I4RgOCokmecdEZHukPRkJfHx8VAoFFnmMDg5OSE2NlbrfW7duoUjR47A0tISmzZtQnx8PL744gs8efIk23lHM2bMwJQpUwq8fiJjEBkZiSdPnsDCwkI9DEQFQxWOzpw5g5SUFFhYWEhcEREBOjCsBmSc8yMzIUSWZSpKpRIymQxr1qyBn58f2rdvj7lz52LlypXZ9h6NHz8eCQkJ6p+7d+8W+DoQGSpVr1HdunVhbm4ucTWGpWLFiihZsiRSUlJw7tw5qcshotckDUelSpWCXC7P0ksUFxeX7RExzs7OcHFxgYODg3pZ1apVIYTI9ogPCwsL2Nvba/wQUe6ohnw4pFbwZDIZ5x0R6SBJw5G5uTl8fX2xZ88ejeV79uzJdoJ1o0aNcP/+fbx48UK97Pr16zAxMYGrq2uh1ktkjDjfqHBx3hGR7pF8WG306NFYtmwZli9fjitXrmDUqFGIjo7G0KFDAWQMifXr10/dvlevXihZsiQ+++wzXL58GYcOHcK3336LgQMHwsrKSqrVIDJISUlJOH/+PAAexl9Y2HNEpHskv3pk9+7d8fjxY0ydOhUPHjyAj48PduzYAXd3dwDAgwcPNM55ZGtriz179mD48OGoW7cuSpYsiW7dumHatGlSrQKRwTp16hSUSiVcXV3h4uIidTkGyc/PDzKZDHfu3EFsbCzKlCkjdUlERk/ycAQAX3zxBb744gutt61cuTLLsipVqmQZiiOigseTPxY+e3t7eHt74+LFizhx4gQ6d+4sdUlERk/yYTUi0l2cjF00OO+ISLcwHBGRVplP/sieo8LFeUdEuoXhiIi0unPnDuLi4mBmZobatWtLXY5BU4XPU6dOIT09XeJqiIjhiIi0Ug3x1K5dG5aWlhJXY9iqVKkCe3t7vHz5EhcvXpS6HCKjx3BERFpxSK3omJiYoH79+gA474hIFzAcEZFWnIxdtDjviEh3MBwRURavXr3C2bNnAbDnqKioXmeGIyLpMRwRURZnzpxBeno6ypQpAzc3N6nLMQp+fn4AMi6H9PjxY4mrITJuDEdElEXmITWZTCZxNcahZMmSqFy5MgDgxIkTEldDZNwYjogoC07GlgbnHRHpBoYjItIghOBkbIlw3hGRbmA4IiINMTExuH//PuRyOeo6OwOhoUBMjNRlGb6YGPjL5QAyhtWUSqXEBREZL4YjItKg6rWo6eIC6ypVgBYtAHd3IChI4soMWFAQ4O4On8GDYQ3g+fPnuHr1qtRVERkthiMi0qAeUouOBlS9F0olMGQIe5AKQ0wMMHgwoFTCFEC914vDduyQsioio8ZwREQa1JOx375BoQBu3CjyegxeZOSbEIo3r/vxAwckKYeIGI6IKJOUlBSEh4cDAPzfPoRfLgcqVpSgKgNXqRJg8uarWDUF/jiDKJFkGI6ISO3s2bNITU1FqVKlUGHJkoxABGT8u3gx4OoqbYGGyNUVyPRa138dlC5dv47nz59LWRmR0WI4IiI1jZM/DhoE3LmTcbTanTtAYKCktRm0wED1a10mKgoeHh4QQuDkyZNSV0ZklBiOiEgty8kfXV2BZs3YY1QUMr3WPN8RkbQYjohITbUz5skfpcUzZRNJi+GIiAAA9+/fR1RUFExMTFCvXr1334EKTeZwJISQuBoi48NwREQAgKNHjwIAatSoATs7O4mrMW61atWChYUFHj9+jBs8ao2oyDEcERGAN+GoUaNGEldC5ubm8PX1BcChNSIpMBwREQCGI13DeUdE0mE4IiIkJSUhIiICAMORrlCFI9XpFYio6DAcERFOnjwJhUIBV1dXuLm5SV0OAWjYsCEA4Ny5c0hMTJS4GiLj8l7hKC4uDrGxsQVVCxFJhENqusfFxQUeHh5QKpUcWiMqYvkKR+fPn4e3tzecnZ3h4uICFxcXfP/990hKSiro+oioCKjCkaq3gnRD48aNAbzZPkRUNPIVjgIDA+Hk5IQjR44gIiIC06ZNQ0hICOrWrYunT58WdI1EVIiUSqV6Xgt7jnSLanscOXJE4kqIjItM5OMMYzY2NggPD0eVKlXUy4QQ+PTTT2FpaYm//vqrQIssaM+fP4eDgwMSEhJgb28vdTlEkrpw4QJq1KgBGxsbPHv2DKamplKXRK9dvHgR1atXh42NDZ4+fQozMzOpSyKSVFHtv/PVc6Sth0gmk2H69On477//CqQwIioaqiGb+vXrMxjpmGrVqqFYsWJISkrCuXPnpC6HyGjkOhx9+OGH+N///ocNGzZg6NChGDVqFB4+fKjRJiEhAcWLFy/wIomo8Bw7dgwAh9R0kYmJiXq7cN4RUdHJ9Z+J1atXx5kzZ7BixQp1KCpfvjy6deuGWrVqQaFQYMWKFfjll18KrVgiKng8Uk23NWrUCNu3b8eRI0cwcuRIqcshMgr5mnP08OFDRERE4OzZs+qfGzduQC6Xw8vLC+fPny+MWgsM5xwRZYiNjYWzszNkMhmePn0KBwcHqUuitxw+fBhNmzZFmTJlcP/+fchkMqlLIpJMUe2/8zXBwMnJCe3atUO7du3Uy169eoVz585xXJxIj6h6japXr85gpKPq1asHc3NzxMbG4vbt2yhfvrzUJREZvAI7Q7aVlRX8/f0xZMiQgnpIIipkHFLTfZaWluqL0PKQfqKiwcuHEBkxhiP9oDoZJMMRUdFgOCIyUi9fvsSZM2cAMBzpOp4pm6hoMRwRGalTp04hPT0dZcuWhbu7u9TlUA5Ul3W5fPkyHj9+LHE1RIaP4YjISGUeUuMRULqtVKlS6isSqM5LRUSFh+GIyEgdOnQIwJshG9JtnHdEVHQYjoiMUHp6urrnKCAgQOJqKDc474io6DAcERmhiIgIvHjxAsWKFUP16tWlLodyQRWOTp06heTkZImrITJsDEdERkg1pNakSROYmPBrQB+UL18eTk5OSE1NxalTp6Quh8ig8VuRyAgdPHgQANC0aVOJK6HckslkaNKkCYA34ZaICgfDEZGRUSqVOHz4MADON9I3qu2lCrdEVDgYjoiMzMWLF/Hs2TPY2tqidu3aUpdDedCsWTMAGZOy09LSpC2GyIAxHBEZGVWvQ6NGjWBqmq9rT5NEqlWrhpIlS+Lly5c4ffq01OUQGSyGIyIjo5qv0tTVFYiJkbgaygsTExME+PkBAA5u2SJxNUSGi+GIyIgIIXBo1y4AQNOgIMDdHQgKkrgqyrWgIATs3AkAODBzJrcdUSFhOCIyItcOHkRcYiIsAdQDAKUSGDKEPUj6ICYGGDwYAUIAAI4CSBs8mNuOqBAwHBEZkUNbtwIA/AFYqBYqFMCNG1KVRLkVGQkolagOoDiAFwDOKJXcdkSFgOGIyIgcvHULAKBxAL9cDlSsKEk9lAeVKgEmJjABoDo71UGZjNuOqBAwHBEZCSEEDr0+wqmp6qzYcjmweDHg6iphZZQrrq7AkiWAXI5mrxcd8PbmtiMqBAxHREbixo0biImJgbm5OfyvXgVCQ4E7d4DAQKlLo9wKDATu3EHAkiUAgCNRUUhPT5e4KCLDw3BEZCT2798PAGjQoAGsK1UCmjVjr4M+cnVFjYED4eDggMTEREREREhdEZHBYTgiMhL79u0DALRo0ULiSuh9yeVy9XXxeCkRooLHcERkBJRKJUJDQwEALVu2lLgaKgiq66wdOHBA2kKIDBDDEZERuHDhAuLj42FjY4N69epJXQ4VgObNmwPIOOM5r7NGVLAYjoiMgGq+UdOmTWFubi5xNVQQatWqhRIlSiAxMRGnTp2Suhwig8JwRGQEVPONOKRmOExMTNTbc+/evRJXQ2RYGI6IDFxaWpp60i4nYxuWVq1aAWA4IipoDEdEBu706dN48eIFSpQogZo1a0pdDhUgVTgKCwvDixcvJK6GyHDoRDhasGABPD09YWlpCV9fXxw+fDhX9zt69ChMTU1Rq1atwi2QSI+p5hs1b94cJiY68ZGnAlK+fHl4enoiPT0dhw4dkrocIoMh+TdlcHAwvv76a0yYMAERERFo0qQJPvjgA0RHR+d4v4SEBPTr149zKIjegfONDBuH1ogKnuThaO7cuQgMDMSgQYNQtWpVzJs3D+XKlcPChQtzvN+QIUPQq1cvNGjQoIgqJdI/r169wrFjxwBwvpGhYjgiKniShqPU1FSEh4ejTZs2GsvbtGmj/kLXZsWKFbh58yYmTZqUq+dJSUnB8+fPNX6IjMGxY8eQkpICFxcXVK5cWepyqBCoQu+FCxcQGxsrcTVEhkHScBQfHw+FQgEnJyeN5U5OTtl+yCMjIzFu3DisWbMGpqamuXqeGTNmwMHBQf1Trly5966dSB+oehNatmwJmUwmcTVUGEqVKoXatWsDeDO/jIjej+TDagCyfGkLIbR+kSsUCvTq1QtTpkzJ01/B48ePR0JCgvrn7t27710zkT7YuXMnAGTpnSXDwqE1ooIlaTgqVaoU5HJ5ll6iuLi4LL1JAJCYmIjTp0/jq6++gqmpKUxNTTF16lScO3cOpqam2f7VZGFhAXt7e40fIkMXGxuLs2fPQiaTMRwZuMzhSAghcTVE+k/ScGRubg5fX1/s2bNHY/mePXvQsGHDLO3t7e1x4cIFnD17Vv0zdOhQeHl54ezZs6hfv35RlU6k83bv3g0AqFOnDhwdHSWuhgpT48aNYW5ujrt37+L69etSl0Ok93I3aacQjR49Gn379kXdunXRoEEDLFmyBNHR0Rg6dCiAjCGxe/fuYfXq1TAxMYGPj4/G/UuXLg1LS8ssy4mMnWpIrV27dhJXQoXN2toajRs3xv79+7Fz5054eXlJXRKRXpN8zlH37t0xb948TJ06FbVq1cKhQ4ewY8cOuLu7AwAePHjwznMeEZEmhUKh7jliODIOH3zwAQAgJCRE4kqI9J9MGOEA9fPnz+Hg4ICEhATOPyKDdOrUKfj5+cHe3h7x8fEwMzOTuiQqZJcuXYKPjw8sLCzw5MkTWFtbS10SUYErqv235D1HRFTwdu3aBSBjoi6DkXGoVq0a3NzckJKSgtDQUKnLIdJrDEdEBkg136ht27YSV0JFRSaTcWiNqIAwHBEZmGfPnuH48eMAGI6MTfv27QEAO3bs4CH9RO+B4YjIwOzbtw8KhQJVqlRRH9hAxqFFixYwNzfH7du3eUg/0XtgOCIyJDEx2LZ0KYA3Ry+R8bC1tUXTpk0BACHr1gGhoUBMjMRVEekfhiMiQxEUBIWbG7a9nozdUS6XuCCSgioU75gyBWjRAnB3B4KCJK6KSL8wHBEZgpgYYPBgnBAC8QCKAWg8dy57DYxQ+zp1AAAHASQBgFIJDBnC9wJRHjAcERmCyEhAqcSW179+AMBMqQRu3JCyKpKAl1IJTwCpANSXoVUo+F4gygOGIyJDUKkSYGKCra9/7QgAcjlQsaKERZEUZJUro9Pr//+nWsj3AlGeMBwRGQJXV9ycNg2XkXHBxHYmJsDixYCrq9SVUVFzdUXnMWMAAFsApPO9QJRnDEdEBmKrlRUAoEnt2igeFQUEBkpcEUmlyYwZKO7ggMcAjgUH871AlEcMR0QGYsuWjBlHnfr1Yy+BkTM1NUXHzp0BAP+FhUlcDZH+YTgiMgBPnz7FoUOHAAAdO3aUuBrSBZ1fh6PNmzfzbNlEecRwRGQAdu7cCYVCgWrVqqFChQpSl0M6oG3btrC0tMStW7dw8eJFqcsh0isMR0QGYOPGjQDe9BYQ2djYoHXr1gCA//777x2tiSgzhiMiPZeUlIQdO3YAALp27SpxNaRLMg+tEVHuMRwR6bmQkBC8evUKnp6eqF27ttTlkA7p2LEjZDIZwsPDER0dLXU5RHqD4YhIz/3zzz8AMnqNZDKZxNWQLildujQaN24M4M37hIjejeGISI+9evUK27ZtA8AhNdKue/fuAIDg4GCJKyHSHwxHRHps165dSEpKQrly5VCvXj2pyyEd9Mknn8DExAQnT57E7du3pS6HSC8wHBHpMQ6p0buUKVMGAQEBAIANGzZIXA2RfmA4ItJTL1++VJ8Vm0NqlBMOrRHlDcMRkZ7aunUrEhMT4e7uDn9/f6nLIR32ySefQC6XIyIiApGRkVKXQ6TzGI6I9NSaNWsAAL1794aJCT/KlL1SpUqhZcuWANh7RJQb/EYl0kPx8fEICQkBkBGOiN5FNbS2du1aXmuN6B0Yjoj00N9//4309HTUrl0b1apVk7oc0gOffPIJLC0tceXKFZw+fVrqcoh0GsMRkR7KPKRGlBsODg74+OOPAQCrVq2SuBoi3cZwRKTrYmKA0NCMfwHcvn0bR48ehUwmQ48ePSQujvRJ//79AQDr1q1DampqxsK33l9EBJhKXQAR5SAoCBg8GFAqARMTYMkSrH69E2vevDlcXFwkLpD0SatWreDs7IwHDx5g+/bt+PjJkyzvLwQGSl0mkeTYc0Skq2Ji3uy4AECphGLwYCxfuhQAEMidGOWRXC5Hnz59AACrFi3K8v7CkCHsQSICwxGR7oqMfLPjem2vUonoe/dQvHhxdOnSRaLCSJ/169cPALB93z48euv9BYUCuHFDgqqIdAvDEZGuqlQpY6gjk2Wv/+3Tpw8sLS2LvibSez4+Pqhbty7SFQqsfPuSM3I5ULGiNIUR6RCGIyJd5eqaMQdELgcAxJmY4L/X/x80aJCUlZGeGzp0KABgcalSUKoCuFwOLF6c8b4jMnIMR0S6LDAQuHMHCA3F6vHjkaZQwM/PDzVq1JC6MtJjPXr0gL29PW4+eoR9f/6ZcbTanTucjE30GsMRka5zdYWyaVMs/ftvAOw1ovdnY2Ojnnu0aONGoFkz9hgRZcJwRKQHdu/ejevXr8Pe3p7nNqICoRpa+++//3D//n2JqyHSLQxHRHrg119/BQAMHDgQdnZ2EldDhsDb2xtNmjSBQqHAsmXL3n0HIiPCcESk465evYqdO3dCJpNh+PDhUpdDBmTYsGEAgAULFiAlJUXiaoh0B8MRkY77/fffAQAdO3ZE+fLlJa6GDEnXrl3h6uqKhw8fqq/XR0QMR0Q67dmzZ+qLhI4cOVLiasjQmJmZqd9XP//8M4QQEldEpBsYjoh02KJFi5CUlAQfHx80b95c6nLIAH3++eews7PD5cuXsXPnTqnLIdIJDEdEOurly5eYO3cuAOC7776D7O2zGRMVAAcHB3z++ecAgDlz5khcDZFuYDgi0lFLly7Fo0eP4OnpiZ49e0pdDhmwkSNHQi6XY//+/Th58qTU5RBJjuGISAelpKRg9uzZAICxY8fC1NRU4orIkLm5uaFPnz4AgMmTJ0tbDJEOYDgi0kGrV6/GvXv3ULZsWQwYMEDqcsgI/PDDD5DL5QgJCcHx48elLodIUgxHRDomJSUF06dPBwB8++23sLCwkLgiMgYVKlRA//79AQCTJk2SuBoiaTEcEUklJibjgp8xMRqLFyxYgDt37qBs2bIYPHiwRMWRMfr+++9hamqK3bt349ixY5o3ZvN+JTJEDEdEUggKAtzdgRYtMv4NCgKQcV6jadOmAQCmTJkCa2trKaskI+Pp6akexh07duyb8x5l834lMlQyYYRn/Xr+/DkcHByQkJAAe3t7qcshYxMTk7GDUSrfLJPLgTt3MH7+fMycORNVq1bF+fPnORGbilxMTAwqV66MV69eYcOGDfi0QYNs369wdZWsTjJORbX/Zs8RUVGLjNTc0QCAQoGYsDDMmzcPADBz5kwGI5KEq6srvvvuOwAZc96SL13S+n7FjRsSVEdUNBiOiIpapUqAyVsfPbkco1evRnJyMpo0aYKOHTtKUxsRMkKRi4sLoqKi8EtoqNb3KypWlKY4oiLAcERU1FxdgSVLMnYwACCXY/eIEfh72zaYmJjgt99+49mwSVI2NjaYOXMmAGD6/Pm4O3OmxvsVixdzSI0MGsMRkRQCAzPmbISGIuXaNXy1bRsAYPjw4ahVq5akpREBQK9evdCgQQO8ePECww4ehLh9O+NotTt3Mt6/RAaM4YhIKq6uQLNmmBIUhMjISJQpUwZTpkyRuioiAICJiQmWLVsGc3NzbN++HeuPHAGaNWOPERkFhiMiCZ04cQKzZs0CAMyfPx8ODg4SV0T0RrVq1fD9998DAEaMGIH4+HiJKyIqGgxHRBJ59eoV+vfvD6VSiV69eqFLly5Sl0SUxdixY1G9enXEx8dj8ODBMMKzv5ARYjgiksjIkSNx7do1ODs74/fff5e6HCKtzM3NsXLlSpiZmWHTpk34448/pC6JqNAxHBFJ4K+//sLSpUshk8mwatUqlChRQuqSiLJVp04dzJkzBwAwZswYhIeHS1wRUeFiOCIqYhcuXMCQIUMAZFwJvXXr1hJXRPRuw4cPR+fOnZGamopu3brh8ePHUpdEVGgYjoiKUGxsLDp06ICXL1+iZcuWmDhxotQlEeWKTCbD8uXL4eHhgVu3buHjjz9GSkqK1GURFQqGI6KCls3Vy1++fImPPvoI0dHRqFSpEjZs2AC56sR6RHqgRIkS2LZtG+zt7XH48GEEBgZqn6CdzWeASF8wHBEVpGyuXp6cnIzOnTvjxIkTKFGiBLZv3855RqSXvL29sXHjRpiammLNmjX47rvvNANSNp8BIn0iE0Z4XGZRXdWXjExMjNarl6dev44uI0Zg+/btsLGxwe7du9GwYUPp6iQqAMuXL0fg6zNlf/fdd5g5cyZk9+5p/Qzgzh2ePJIKRFHtv3Wi52jBggXw9PSEpaUlfH19cfjw4Wzb/vvvv2jdujUcHR1hb2+PBg0aYNeuXUVYLVE2IiOzXL08SaFAl969sX37dlhZWWH79u0MRmQQBg4cqD6s/6effsroQbp+PctnAAoFcOOGBBUS5Z/k4Sg4OBhff/01JkyYgIiICDRp0gQffPABoqOjtbY/dOgQWrdujR07diA8PBzNmzdHx44dERERUcSVE72lUiWNq5c/AtACwPbjx2FpaYnNmzcjICBAsvKICtqXX36pDkhz5sxB3z/+QMrbF02Wy4GKFSWojij/JB9Wq1+/PurUqYOFCxeql1WtWhUfffQRZsyYkavH8Pb2Rvfu3XN95A+H1ajQBAUBQ4bgokKBjwHcQMYk1q1bt7LHiAzW8uXLMWTIEKSnp6NJpUr49+ZNlFIqM4LR4sW8UC0VGKMYVktNTUV4eDjatGmjsbxNmzY4duxYrh5DqVQiMTExx8mtKSkpeP78ucYPUaEIDMSfP/8MPwsL3ADg4eGBY8eOMRiRQRs4cCBCQkIyjmKLjERtJycc+e23jLlGDEakhyQNR/Hx8VAoFHByctJY7uTkhNjY2Fw9xs8//4ykpCR069Yt2zYzZsyAg4OD+qdcuXLvVTeRNk+fPsWAAQPQ7+uv8SolBW3atMHJkyfh5eUldWlEha5Vq1Y4duwYvLy8EPPgAZqNGoWpy5cjLS1N6tKI8kzyOUdAxsnFMhNCZFmmzbp16zB58mQEBwejdOnS2bYbP348EhIS1D93795975qJMtu6dSu8vb2xatUqyGQyTJ48GTt27ICjo6PUpREVGW9vb5w+fRp9+/aFQqHApEmTULduXZw8eVLq0ojyRNJwVKpUKcjl8iy9RHFxcVl6k94WHByMwMBAbNiwAa1atcqxrYWFBezt7TV+iArC1atX0b59e3Tq1AkPHjyAl5cXjhw5gkmTJvEEj2SUbG1tsXr1avz1118oWbIkzp8/D39/fwwfPhzx8fFSl0eUK5KGI3Nzc/j6+mLPnj0ay/fs2ZPjHI1169ZhwIABWLt2LT788MPCLpMoi/j4eIwcORI+Pj4ICQmBmZkZvvvuO0RERHB+ERGA3r1748qVK+jTpw+EEPjjjz9QoUIFzJw5E69evZK6PKKcCYmtX79emJmZiaCgIHH58mXx9ddfCxsbG3Hnzh0hhBDjxo0Tffv2Vbdfu3atMDU1FfPnzxcPHjxQ/zx79izXz5mQkCAAiISEhAJfHzJssbGx4ttvvxU2NjYCgAAgOnXqJK5fvy51aUQ6a+/evaJWrVrqz4yLi4uYP3++ePXqldSlkZ4pqv235OFICCHmz58v3N3dhbm5uahTp444ePCg+rb+/fuLgIAA9e8BAQHqD1jmn/79++f6+RiOKK/u3bsnRgYGCisLC/V7rk6dOmLPnj1Sl0akFxQKhfjzzz+Fm5ub+jPkXLq0mDtsmHhx7ZrU5ZGeKKr9t+TnOZICz3NEuRUdHY1Zs2Zh2ZIlSE1PBwDUB/DDiBFoP29erg4cIKI3kpOTERQUhFkTJ+LukycAgFIARnfpgi9XrOB3MuWoqPbfDEf8IJIWt27dwowZM7Bq1Sr1ochNAPwAoBUAGa8XRZR/MTFIdXPDaiEwA8Ct14uLOzhg5KhRGDFiBIoXLy5lhaSjjOIkkES65tq1a+jfvz8qV66MZcuWIS0tDS1q18YBAIcAtAYgA3i9KKL3ERkJcyEwCMA1AKsBVAHwNCEBkydPhru7OyZMmMCj20gyDEdEyAhFPXv2RNWqVbF69WooFAq0a9cOR44cwb4tWxBg8tZHhdeLIsq/TNchNAXQF8BFExMEL1gAHx8fJCYmYvr06fDw8MC3336Lhw8fSlouGR+GIzJqsbGxGDZsGLy9vbF+/XoIIdCpUyecPHkSISEhaNSoUcbQ2ZIlGYEIeHO9KA6pEeWPls+UfMkSdBs2DOfOncOmTZtQp04dJCUlYc6cOahYsSKmTZuGly9fSls3GQ3OOeKcI6Ok+tKdPXs2kpKSAAAdO3bEjz/+iJo1a2q/U0xMxlBaxYoMRkQFIYfPlBACISEhmDx5Mk6dOgUAcHFxwbRp09C3b1+eZNVIcUJ2IWI4Mm7bt2/Hl19+iaioKACAn58fZs+ejaZNm0pcGRG9TalUYsOGDRg3bpz6M1u3bl0sXboUtWrVkrY4KnKckE1UwO7du4euXbuiQ4cOiIqKgpubG4KDg3H8+HEGIyIdZWJigh49euDq1auYPXs2HBwccPr0adStWxffffcdh9qoUDAckVFYu3YtvL29sXHjRsjlcowZMwaXL19Gt27dILt3DwgNzejiJyLdExMDy7AwjOnRA1euXEG3bt2gUCgwe/Zs+Pj44MiRI1JXSAaG4YgM2tOnT9GrVy/07t0bCQkJ8PPzQ3h4OGbPng0bGxsgKAhwdwdatMj4NyhI6pKJKLO3PqPOO3YgODgYW7duRbly5XD79m0EBARg4sSJSH99olai98U5R5xzZLCOHj2Knj174u7du5DL5Zg4cSL+97//wdTUNKNBTEzGl65S+eZOPLkjke54x2c0MTERw4cPx6pVqwAA/v7+WLNmDcqXLy9NvVToOOeIKJ+EEPj999/RrFkz3L17FxUrVsTRo0cxceLEN8EIACIjNb90AZ7ckUiXvOMzamdnh5UrV2L9+vVwcHDA8ePH4evri5CQEAmKJUPCcEQG5eXLl+jXrx9GjBiB9PR0dO/eHREREahfv37WxplORKfGkzsS6Y5cfka7d++Oc+fOwd/fH8+ePcOHH36I6dOnwwgHRqiAMByRwbh37x4aN26Mv/76C3K5HHPnzsW6detga2ur/Q48uSORbsvDZ9Td3R0HDhzA559/DiEEJkyYgE8//VR9HjOivOCcI845Mgjnz59H+/btce/ePTg6OmLDhg1o1qxZ7u7MkzsS6bY8fkaXLFmCr776CmlpaahXrx62bt0KJyenIiiUChtPAlmIGI4My65du/Dpp58iMTERVatWxfbt2+Hp6ZnxhRoZmdE1z9BDZPgyfeaPRkWhc+fOePz4MTw9PRESEgIvLy+pK6T3xAnZRLmwfPlyfPjhh0hMTESzZs1w9OjRjGDEQ/SJjMtbn/lGV6/i2LFjKF++PG7fvo2GDRvi6NGjUldJeoI9R+w50lvz5s3DqFGjAAB9+vTBsmXLYGFhwUP0iYxNDp/5OHNzdOzYESdPnoSFhQX+/vtvdOzYUbpa6b2w54goBzNmzFAHo2+//RarV6/OCEYAD9EnMjY5fOZLly6N0NBQdOrUCSkpKejSpQuCg4OlqZP0BsMR6RUhBH744Qf873//AwBMnjwZs2bNgkwme9OIh+gTGZd3fOatra2xceNG9O7dG+np6ejZsyeCONROOWA4Ir0hhMC3336LadOmAQBmzZqFSZMmaQYjgIfoExmbXHzmTU1NsXr1agwZMgRCCAwaNAi//vqrRAWTruOcI8450gtKpRLDhw/HggULAAC///47vvrqq5zvxEP0iYxLLj7zqj+yfv75ZwDAjz/+iAkTJmT9I4t0UlHtv03f3YRIWgqFAp9//jlWrFgBmUyGJbNmYZC3d8YXYU6hx9WVoYjImOTiMy+TyTB75EjYP36MSStX4ocffkBSUhKmT5/OgERqDEek09LS0tCvXz+sX78eJiYmWPXZZ+gzblzG5EsTk4yu9MBAqcskIn0RFATZ4MGYqFTCVibDN0Jg5syZePXqFX755RcGJALAOUekw1JSUtC9e3esX78epqamCF6wAH1WrHhzVIpSCQwZktGDRET0LjExwODB6u+Q0UJgwesw9Ouvv2Lo0KFQvn3UGxklhiPSSa9evcLHH3+MTZs2wdzcHJs2bULXypV5iD4R5Z+WQ/6HCYEVY8fCxMQES5YswYABA5Ceni5RgaQrGI5I57x48QIffvghQkJCYGVlhW3btqFDhw48RJ+I3k823yEDvvoKa9asgVwux59//olevXohLS1NmhpJJzAcke6IicGzrVvRtnlzhIaGwtbWFjt37kTr1q0zbuch+kT0PnL4DunRowf++ecfmJmZ4e+//0bXrl2RcvMmEBrKoXsjxEP5eSi/bggKwqPPP0dbIRABoJi1NXbu34/69etnbctD9InofeTwHbJz5058/PHHSE5ORhsAmwBY8+APnVFU+2+GI4Yj6cXE4L6bG1oJgSsAHAHsNjFBragohh8iKnL7g4PRqUcPJAFoBmALADten1En8NpqZDRuHzqEJq+DkQuAQwBqKZWcaE1EkmhRujR2AbADcABAWwDPePCHUWE4osIXE5PtuP2lS5fQ5JtvcAtAeQCHAVQBONGaiKRTqRIamZhgH4DiAMIAtATwuGRJ7e1z+I4j/cRwRIUrKAhwdwdatMj4N9PFHvfv349GjRrhXmwsqpUti8MmJvAEONGaiKT1euJ2PbkcocgY6j8DoGHXrrh586Zm2xy+40h/cc4R5xwVnpiYjC+LzOcVeT1u/9eBAxg4cCDS0tLQuHFjbN68GSVfveJEayLSHa8nbl8RAu0GDEB0dDRKlSqF//77Dw0bNszxO47fYYWD11Yj/aflhGtKhQI//vADJq9cCQDo3r07Vq5cCUtLy4wG/EIhIl3x+lptVQEcP34cHTt2RHh4OFq0aIGVK1eih5NT9iem5XeZXuOwGuVPbsbY3zrh2lMAnQB1MPruu++wdu3aN8GIiEhHOTs74+DBg+jcuTNSUlLQs2dPjFm/HmlvX4stp/mSnJukNxiOKO9yO8ae6YRrZwHUBbAdgIWFBVasWIFZs2bB5O2z1RIR6SgbGxts3LgR3377LQDg5yVL0KJiRdxXfY/lNF+Sc5P0Cucccc5R3uRxjF2hUGD2999j4pw5SEtPh4eHBzZu3Ig6deoUXc1ERAXs33//xWeffYbnz5+jVIkSWDhiBLoGBmoPRpybVGB4niOSxru6fbXMI8ru4q8XLlxA06ZNMX7mTKSlp6NTp044ffo0gxER6b0uXbogPDwcNWvWRPyTJ/h08mR0Gz0asbGxWRvn4XtTjUNwkmLPkR72HAkhcPXqVezevRvh4eG4fPky7t+/j4SEBAghYGtrCzs7O3h4eKBixYrw9vZG/fr1UatWLVhYWGT/wEFBwODBGR/i7E6Xn4u/gB4/foxJkyZh4cKFUCqVsLOzw2+//Yb+/ftD9vb4PBGRHktNTcWPP/6IGTNmQKFQwNbWFv/73//w9ddfw8rKKqNRXnuOcvNd/NrLly9x/PhxnD59GtevX8f169cRHR2NxMREJCUlwdzcHA4ODnB3d0e1atXQoEEDtG7dGq562mNVZPtvYYQSEhIEAJGQkCB1KXkSGxsrZsyYISpWrCgA5PnH3MxM+NepI7755huxefNm8ejRozcPfveuECYmQgBvfuTyjOVvW7Ys4zZVm2XLhBBC3L9/X3zzzTfCxsZG/ZyffvqpiIqKKqJXiIhIGuHh4aJevXrq7z4XFxcxe/bsN/uZbL43s3jHd/GTJ0/E1q1bxXfffSf8/f2FqalpvvYH9evXF0uXLhUvXrwooleoYBTV/ps9R3rQcxQXF4eZM2di4cKFSE5OBpAxqblp06Zo2rQpvL294eHhAQcHB8hkMiQlJeHp06e4ffs2IiMjEbFlC46fP4/HWh67atWqaNy4MZqULIkmM2fCHYBG305oKNCsWdY7vj7/R1LZsthx7hz+/PNPhISEID09HQBQu3Zt/Pzzz2jevHkBvxpERLpJqVRi3bp1GDduHGJeD4fZ2dmha9eu6N69O1pUrgyzqKicz+UWGpoxafu1+8i4csDhjz7C4Vu3cOHCBby923YB0AhAtU6dULlHD3h6esLe3h42NjZITU3F06dPcfPmTVy4cAH79+/HqVOnoHzdi1WqVCmMHTsWX3zxBaytrQv+RSlgvPBsIXr7xU1JScFPP/2EzZs3o0SJEujevTs+++wzyOVySetUKpVYvHgxxo0bh+fPnwMA6tWrh2HDhuHTTz+Fra3tux/kdXeuUCpxC8AxAEdkMhypVAmXr1/P0lz1IasEwFMmQ7k//4SNhwcsLS2RnJyMp0+f4sGDB7h8+TJOnz6NEydOIC0tTX3/Ro0aYcKECWjXrh2H0IjIKKWkpGDNmjWYM2cOrly5ol5ua2sLPz8/+Pv7o3z58nB1dYWDgwNMTEygUCjw6NEjPLx6FZFjx+ISgAsA7mp5/EqVKqGpry+aBAejqRDwwOs/anM5yfvhw4f4888/sXDhQty6dQsA4O7ujt9//x0dO3YskNfgfSQlJWHevHkICQmBEAKBgYH47LPPIJPJOKxWmDJ3yykUCtGpU6csXY7NmjUTT548kazGmzdvigYNGqjrqVOnjti5c6dQKpWaDe/eFWL/fu3DX0Jk3Ja5e1b1ExoqHj16JP777z8xZswYUb9+fWEql+ere9bT01OMHz9eXLp0qfBfGCIiPaFQKERoaKgYOnSoKFWqVL6+X00AUdvNTYwYMUJs2LBB3L9/P+PBc/hu10rLviItLU2sWLFCuLm5qZ+vW7du4unTp4X+2mTn5s2bWqeOjBkzRgjBYbVClTl5Ll26FGPGjIGFhQX++OMPPHr0CNOnT8eLFy9Qs2ZNHDx4EA4ODkVa3759+9CtWzc8efIEtra2mD59Or744ousPVkFNIFa5eXLlzixbRtO79+P2y9f4k58PO7du4dXr17h1atXsLCwQPHixeHo6IgqVaqgevXqCAgIgKenJ3uJiIhyoFAocOXKFRw7dgxnzpxBdHQ07t69i6SkJAghIJPJUKpUKZQuXRru7u6o7uoKbxsb1GzdGvZVq2Z9wLxM8n7HviIpKQk//vgj5syZA4VCATc3N6xduxaNGjUqnBcjG1euXEHLli3x4MEDlCtXDt9//z3i4uLwww8/AAB2796N+vXrs+eosKiS5/3790WJEiUEALFo0SL17efPnxdOTk7qHqTk5OQiqUupVIp58+YJ+eseHL8qVUT0iRPaGxfABGoiItJjufluz8O+4sSJE6L8614kuVwufv3116yjFYUkPj5eeHp6CgCievXq4sGDB+rbvvrqKwFANGrUqMh6jow6HM2aNUsAEBUqVBDp6ekabc6cOSPs7OwEANGvX7+Ce4NkMwyWnJwsBgwYoO5C7AeIV0DGm1rbGz4/XaqhodkPvxERkf5513d7XvYVy5aJBJlM9Mo0nBUYGKi9g+BdUzryIDU1VTRv3lw9TUPjSGqRcSS0ubm5ACB27drFcFRYVOGodu3aAoD4448/tLbbvXu3uhdn5syZ7//Ey5a9SfCZQs/9+/eFv79/xviyiYn4RSYTynel/Lz0HBERkXHK7b4iUzslIOa8nu+k6rGJjY190zabfVl+qXqGbG1txYULF7S2GThwoACg7kRgOCoEqnAEQMhkMs2N/pb58+er223atCn7B31Xis7mDXpiyxZRtmxZAUAUL15c7P7ppzylfA6XERFRjnKzr9DSwxQCCIfX561zc3MT586dy/sf5u/YNy5dulS9P968eXO2q6DqMXJ0dGQ4KiyZw1GjRo1ybnz3rviyc2cBQFhbW4szZ85kbZObFK3ljbcKEBZmZgKAqFatmoiMjMzfG4/DZURElJN37Suy2fdcPXBAVKpUSQAQNjY2YtPUqXn7Az6HfePBgweF2et94I9jxuQYolJSUoS9vb16381wVAgyh6Offvop+4avN2waIFq/bu/q6qoxUSw/XZZpgBidaUy3c+fO4vnz55rPyx4hIiIqStnse548eSJatWql3mdNL4CpH5GRkeoDorrVrSuUMtk7h+m6d+/OcFSYMoej48ePa2/01oZ9CggvvDnt+suXLzPa5XGy20MTE9EqUzD64YcfhEKh0P787BEiIqKilM2+JzU1VXz55ZfqfVdvmSzjoKE8DNOp9o0PHz4UXl5eAoCoV7OmeKkKRu8YLVFNcymKcGRSAGcD0FvmAGqfPav9xreuolwMwDYAxe3scOLECfTu3RspKSlApUoZ543ITC7POD38W45WqYLajo7YC8DaygobNmzA1KlTYfL2/YGM81Q0a/bOM50SEREVmGz2PWZmZvjjjz+wYMECyOVyrBECAVWq4PahQ9ovipvNvjG+RAm0atUK165dQ7ly5fDf99/D6u3TLSoUwI0bWR6y4cOH77lyeVCo0UtHqXqO6uc0nyebLsHQDRvUY6QtWrQQ8fHx7xwGe/nypRg3bpz6yLcqVaqIixcvFtHaEhERFZy9e/eK4sWLq48wW7ZsmfYRkLf2jVd+/FFUqFBBABDOzs7i+vXreZqakiaTCWsOqxUeVTgantMQmBDZhp49e/YIW1tb9QbesGGDUERFZemKTE1NFatWrRLly5dXdwX26tVLJCYmFv5KEhERFZJbt26Jxo0bq/dtderUEbt27dJ6iavkXbvEnO+/F9bW1gKA8PDwEFeuXHnTJg9H0zUponBk1JcP+RNAn3ddqO/11effvoryuXPn0LNnT/VFBStXroz27dujfPnySEtLw4ULF7Bt2zbEx8cDAFxdXTF//nx06tSpkNeOiIio8CkUCsybNw9TpkxBYmIiAKBChQpo27YtvLy8AAAXL17Epk2b1PvCZs2aYcOGDXB0dNR8sGz2tRq3u7tjjFKJn4FCv3yIUYejJzIZii9dqn28NBdevXqFGTNm4Ndff8Xz58+1tildujRGjx6NL7/8Era2tu9TNhERkc6Ji4vD//3f/2HFihXqkPQ2FxcXTJ48GQMHDtQ+zzY3goLw9PPPUUIIhqPCoL7w7OXL2i/ol0cJCQkICQnB4cOH8ejRI8hkMlSqVAnNmjVDs2bNYGpqWgBVExER6a6kpCSEhIQgLCwMMTExUCgUqFixIho3box27doVyL7w+ZUrcKhWjeGoMKjDUWFf1ZeIiIgKTFHtv436UH4iIiKitzEcEREREWXCcERERESUCcMRERERUSY6EY4WLFgAT09PWFpawtfXF4cPH86x/cGDB+Hr6wtLS0uUL18eixYtKqJKiYiIyNBJHo6Cg4Px9ddfY8KECYiIiECTJk3wwQcfIDo6Wmv727dvo3379mjSpAkiIiLwv//9DyNGjMDGjRuLuHIiIiIyRJIfyl+/fn3UqVMHCxcuVC+rWrUqPvroI8yYMSNL+7Fjx2LLli3qM1MDwNChQ3Hu3DmEhYXl6jl5KD8REZH+MYpD+VNTUxEeHo42bdpoLG/Tpg2OHTum9T5hYWFZ2rdt2xanT59GWlpaodVKRERExkHSUzfHx8dDoVDAyclJY7mTkxNiY2O13ic2NlZr+/T0dMTHx8PZ2TnLfVJSUpCSkqL+PSEhAQCyveQHERER6R7VfruwB7104roWMplM43chRJZl72qvbbnKjBkzMGXKlCzLy5Url9dSiYiISGKPHz+Gg4NDoT2+pOGoVKlSkMvlWXqJ4uLisvQOqZQpU0Zre1NTU5QsWVLrfcaPH4/Ro0erf3/27Bnc3d0RHR1dqC+urnn+/DnKlSuHu3fvGtVcK64319sYcL253sYgISEBbm5uKFGiRKE+j6ThyNzcHL6+vtizZw8+/vhj9fI9e/agc+fOWu/ToEEDbN26VWPZ7t27UbduXZiZmWm9j4WFBSwsLLIsd3BwMKo3lYq9vT3X24hwvY0L19u4GOt6m5gU7pRpyQ/lHz16NJYtW4bly5fjypUrGDVqFKKjozF06FAAGb0+/fr1U7cfOnQooqKiMHr0aFy5cgXLly9HUFAQxowZI9UqEBERkQGRfM5R9+7d8fjxY0ydOhUPHjyAj48PduzYAXd3dwDAgwcPNM555OnpiR07dmDUqFGYP38+ypYti99++w2ffPKJVKtAREREBkTycAQAX3zxBb744gutt61cuTLLsoCAAJw5cybfz2dhYYFJkyZpHWozZFxvrrcx4HpzvY0B17tw11vyk0ASERER6RLJ5xwRERER6RKGIyIiIqJMGI6IiIiIMmE4IiIiIsrEYMPR//3f/6Fhw4awtrZGsWLFcnUfIQQmT56MsmXLwsrKCs2aNcOlS5c02qSkpGD48OEoVaoUbGxs0KlTJ8TExBTCGuTP06dP0bdvXzg4OMDBwQF9+/bFs2fPcryPTCbT+jN79mx1m2bNmmW5vUePHoW8NrmXn/UeMGBAlnXy9/fXaGNo2zstLQ1jx45F9erVYWNjg7Jly6Jfv364f/++Rjtd294LFiyAp6cnLC0t4evri8OHD+fY/uDBg/D19YWlpSXKly+PRYsWZWmzceNGVKtWDRYWFqhWrRo2bdpUWOXnW17W+99//0Xr1q3h6OgIe3t7NGjQALt27dJos3LlSq2f9eTk5MJelTzJy3ofOHBA6zpdvXpVo52hbW9t318ymQze3t7qNrq+vQ8dOoSOHTuibNmykMlk2Lx58zvvU2SfbWGgJk6cKObOnStGjx4tHBwccnWfmTNnCjs7O7Fx40Zx4cIF0b17d+Hs7CyeP3+ubjN06FDh4uIi9uzZI86cOSOaN28uatasKdLT0wtpTfKmXbt2wsfHRxw7dkwcO3ZM+Pj4iA4dOuR4nwcPHmj8LF++XMhkMnHz5k11m4CAAPH5559rtHv27Flhr06u5We9+/fvL9q1a6exTo8fP9ZoY2jb+9mzZ6JVq1YiODhYXL16VYSFhYn69esLX19fjXa6tL3Xr18vzMzMxNKlS8Xly5fFyJEjhY2NjYiKitLa/tatW8La2lqMHDlSXL58WSxdulSYmZmJf/75R93m2LFjQi6Xi+nTp4srV66I6dOnC1NTU3H8+PGiWq13yut6jxw5UsyaNUucPHlSXL9+XYwfP16YmZmJM2fOqNusWLFC2NvbZ/nM65K8rndoaKgAIK5du6axTpk/o4a4vZ89e6axvnfv3hUlSpQQkyZNUrfR9e29Y8cOMWHCBLFx40YBQGzatCnH9kX52TbYcKSyYsWKXIUjpVIpypQpI2bOnKlelpycLBwcHMSiRYuEEBlvRjMzM7F+/Xp1m3v37gkTExOxc+fOAq89ry5fviwAaLwJwsLCBABx9erVXD9O586dRYsWLTSWBQQEiJEjRxZUqQUqv+vdv39/0blz52xvN5btffLkSQFA40tYl7a3n5+fGDp0qMayKlWqiHHjxmlt/91334kqVapoLBsyZIjw9/dX/96tWzfRrl07jTZt27YVPXr0KKCq319e11ubatWqiSlTpqh/z+33oZTyut6qcPT06dNsH9MYtvemTZuETCYTd+7cUS/Th+2tkptwVJSfbYMdVsur27dvIzY2Fm3atFEvs7CwQEBAAI4dOwYACA8PR1pamkabsmXLwsfHR91GSmFhYXBwcED9+vXVy/z9/eHg4JDr+h4+fIjt27cjMDAwy21r1qxBqVKl4O3tjTFjxiAxMbHAan8f77PeBw4cQOnSpVG5cmV8/vnniIuLU99mDNsbyLiQo0wmyzL8rAvbOzU1FeHh4RrbAADatGmT7TqGhYVlad+2bVucPn0aaWlpObbRhe0K5G+936ZUKpGYmJjlAp0vXryAu7s7XF1d0aFDB0RERBRY3e/rfda7du3acHZ2RsuWLREaGqpxmzFs76CgILRq1Up9dQkVXd7eeVWUn22dOEO2LoiNjQUAODk5aSx3cnJCVFSUuo25uTmKFy+epY3q/lKKjY1F6dKlsywvXbp0rutbtWoV7Ozs0KVLF43lvXv3hqenJ8qUKYOLFy9i/PjxOHfuHPbs2VMgtb+P/K73Bx98gE8//RTu7u64ffs2fvjhB7Ro0QLh4eGwsLAwiu2dnJyMcePGoVevXhoXr9SV7R0fHw+FQqH1c5ndOsbGxmptn56ejvj4eDg7O2fbRhe2K5C/9X7bzz//jKSkJHTr1k29rEqVKli5ciWqV6+O58+f49dff0WjRo1w7tw5VKpUqUDXIT/ys97Ozs5YsmQJfH19kZKSgj///BMtW7bEgQMH0LRpUwDZvycMZXs/ePAAISEhWLt2rcZyXd/eeVWUn229CkeTJ0/GlClTcmxz6tQp1K1bN9/PIZPJNH4XQmRZ9rbctHkfuV1vIGv9QN7qW758OXr37g1LS0uN5Z9//rn6/z4+PqhUqRLq1q2LM2fOoE6dOrl67Lwq7PXu3r27+v8+Pj6oW7cu3N3dsX379izhMC+P+76KanunpaWhR48eUCqVWLBggcZtUmzvnOT1c6mt/dvL8/NZL2r5rXHdunWYPHky/vvvP40A7e/vr3HQQaNGjVCnTh38/vvv+O233wqu8PeUl/X28vKCl5eX+vcGDRrg7t27mDNnjjoc5fUxpZLfGleuXIlixYrho48+0liuL9s7L4rqs61X4eirr7565xEzHh4e+XrsMmXKAMhIps7OzurlcXFx6hRapkwZpKam4unTpxq9CXFxcWjYsGG+njc3crve58+fx8OHD7Pc9ujRoyxJWpvDhw/j2rVrCA4OfmfbOnXqwMzMDJGRkYW2syyq9VZxdnaGu7s7IiMjARj29k5LS0O3bt1w+/Zt7N+/X6PXSJui2N7alCpVCnK5PMtffZk/l28rU6aM1vampqYoWbJkjm3y8n4pTPlZb5Xg4GAEBgbi77//RqtWrXJsa2Jignr16qnf81J7n/XOzN/fH3/99Zf6d0Pe3kIILF++HH379oW5uXmObXVte+dVkX628zRDSQ/ldUL2rFmz1MtSUlK0TsgODg5Wt7l//77OTdA9ceKEetnx48dzPUG3f//+WY5ays6FCxcEAHHw4MF811tQ3ne9VeLj44WFhYVYtWqVEMJwt3dqaqr46KOPhLe3t4iLi8vVc0m5vf38/MSwYcM0llWtWjXHCdlVq1bVWDZ06NAskzY/+OADjTbt2rXTuQm6eVlvIYRYu3atsLS0fOfEVhWlUinq1q0rPvvss/cptUDlZ73f9sknn4jmzZurfzfU7S3EmwnpFy5ceOdz6OL2VkEuJ2QX1WfbYMNRVFSUiIiIEFOmTBG2trYiIiJCREREiMTERHUbLy8v8e+//6p/nzlzpnBwcBD//vuvuHDhgujZs6fWQ/ldXV3F3r17xZkzZ0SLFi107tDuGjVqiLCwMBEWFiaqV6+e5dDut9dbCCESEhKEtbW1WLhwYZbHvHHjhpgyZYo4deqUuH37tti+fbuoUqWKqF27tt6ud2Jiovjmm2/EsWPHxO3bt0VoaKho0KCBcHFxMejtnZaWJjp16iRcXV3F2bNnNQ7vTUlJEULo3vZWHeIcFBQkLl++LL7++mthY2OjPipn3Lhxom/fvur2qsN9R40aJS5fviyCgoKyHO579OhRIZfLxcyZM8WVK1fEzJkzdfbQ7tyu99q1a4WpqamYP39+tqdgmDx5sti5c6e4efOmiIiIEJ999pkwNTXVCNhSy+t6//LLL2LTpk3i+vXr4uLFi2LcuHECgNi4caO6jSFub5U+ffqI+vXra31MXd/eiYmJ6n0zADF37lwRERGhPnJWys+2wYaj/v37CwBZfkJDQ9VtAIgVK1aof1cqlWLSpEmiTJkywsLCQjRt2jRLGn/16pX46quvRIkSJYSVlZXo0KGDiI6OLqK1erfHjx+L3r17Czs7O2FnZyd69+6d5RDXt9dbCCEWL14srKystJ7LJjo6WjRt2lSUKFFCmJubiwoVKogRI0ZkOSeQlPK63i9fvhRt2rQRjo6OwszMTLi5uYn+/ftn2ZaGtr1v376t9XOR+bOhi9t7/vz5wt3dXZibm4s6depo9GD1799fBAQEaLQ/cOCAqF27tjA3NxceHh5aQ//ff/8tvLy8hJmZmahSpYrGzlRX5GW9AwICtG7X/v37q9t8/fXXws3NTZibmwtHR0fRpk0bcezYsSJco9zJy3rPmjVLVKhQQVhaWorixYuLxo0bi+3bt2d5TEPb3kJk9G5bWVmJJUuWaH08Xd/eql6v7N6zUn62ZUK8ns1ERERERIZ7+RAiIiKi/GA4IiIiIsqE4YiIiIgoE4YjIiIiokwYjoiIiIgyYTgiIiIiyoThiIiIiCgThiMiIiKiTBiOiIiIiDJhOCIiIiLKhOGIiAzK1KlTUb16ddjY2MDJyQnDhg1DWlqa1GURkR4xlboAIqKCIoSAQqHA4sWL4eLigsuXL6Nfv36oUaMGhg0bJnV5RKQneOFZIjJovXr1gqOjI3799VepSyEiPcFhNSIyGFFRUfjqq6/g4+OD4sWLw9bWFhs2bICrq6vUpRGRHmE4IiKDEB8fDz8/P8THx2Pu3Lk4cuQIwsLCIJfLUatWLanLIyI9wjlHRGQQduzYgfT0dKxbtw4ymQwAMH/+fKSmpjIcEVGeMBwRkUEoUaIEnj9/ji1btqBatWrYunUrZsyYARcXFzg6OkpdHhHpEU7IJiKDIITAsGHDsHbtWlhZWaFPnz5ITk5GVFQUtm3bJnV5RKRHGI6IiIiIMuGEbCIiIqJMGI6IiIiIMmE4IiIiIsqE4YiIiIgoE4YjIiIiokwYjoiIiIgyYTgiIiIiyoThiIiIiCgThiMiIiKiTBiOiIiIiDJhOCIiIiLKhOGIiIiIKJP/B3LxufvsbtY3AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxUklEQVR4nO3dd1hT1x8G8DeEPV0ICDJcqOBEESfuVUdrrVuxxTraqtWfrVpbV62jWmuHW1ytA1urdeHGjQtxL6wKIiLiQERlJOf3ByYSCQgI3IS8n+fhabmcJN+bm5v7es6598qEEAJEREREBAAwkroAIiIiIl3CcERERESUCcMRERERUSYMR0RERESZMBwRERERZcJwRERERJQJwxERERFRJgxHRERERJkwHBERERFlwnBEeiE2NhaTJ0/G2bNns/xt4MCBsLa2zvdzp6amYujQoXBycoJcLkft2rXzX2gBWLBgAVauXJll+e3btyGTybT+rTiRyWSYPHmy1GUUiMmTJ0MmkxX6Y3/77TdUqlQJpqamkMlkePLkCQYOHAh3d3eNdtOnT8fmzZvzVU9OHj16hF69eqFs2bKQyWR4//338/wc7u7uGDhwYIHXpmu+/fZbdOrUCc7OzpDJZNmus2r7v/ljbm5etAUbKGOpCyDKjdjYWEyZMgXu7u4FHl4WLlyIxYsX47fffoOPj887Ba2CsGDBApQpUybLl6aTkxPCwsJQsWJFaQqjPBs0aBDat29fqK9x9uxZjBgxAoMGDUJAQACMjY1hY2OD7777DiNHjtRoO336dHTv3j1f4SUn33//PTZt2oTly5ejYsWKKFWqVIE+f3Hy888/o2bNmujSpQuWL1/+1vY7d+6EnZ2d+ncjI/ZpFAWGIzJ4Fy9ehIWFBb744gupS8mRmZkZ/Pz8pC6D8sDFxQUuLi6F+hqXLl0CAHz66afw9fVVLy/KEH3x4kVUrFgRffv2LbLXLCjPnz+HpaVlkb1eUlKSOuD88ccfb23v4+ODMmXKFHZZ9AZGUAP04MEDDB48GOXLl4eZmRns7e3RuHFj7N27V92mefPm8Pb2RlhYGBo1agQLCwu4u7tjxYoVAIDt27ejbt26sLS0RI0aNbBz584sr3PkyBG0atUKNjY2sLS0RKNGjbB9+/Ys7S5evIiuXbuiZMmSMDc3R+3atbFq1Sr13w8cOID69esDAD7++GN19/KbQy83btxAx44dYW1tjfLly+N///sfUlJScnwvZDIZli1bhhcvXqifd+XKlTkOYb352qru70uXLqF3796ws7ODg4MDPvnkEyQmJmo8VqlU4rfffkPt2rVhYWGBEiVKwM/PD1u2bAGQMbRw6dIlHDx4UF2Pamgku5py8z6vXLkSMpkMoaGhGDZsGMqUKYPSpUujW7duiI2NzfE9yom7uzs6deqETZs2oWbNmjA3N0eFChXw66+/ZmkbHR2Nfv36oWzZsjAzM0O1atXw008/QalUZvv8t2/fhrGxMWbMmJHlb4cOHYJMJsNff/0FIG/b4eXLlxg/fjw8PDxgamoKZ2dnfP7553jy5InW9du2bRvq1KkDCwsLVKtWDdu2bQOQ8b5Wq1YNVlZW8PX1xenTpzUer21oLDg4GG3btoWTk5P6+caNG4fk5OTs3+hsNG/eHP369QMANGjQQGOY5s1hNZlMhuTkZKxatUr92WrevHmOz//o0SN89tlncHZ2hqmpKSpUqIAJEyao9yvVZ3Lv3r24cuWK+nkPHDiQ7XOmpaXh66+/hqOjIywtLdGkSROcPHlSa9u4uDgMGTIELi4uMDU1hYeHB6ZMmYL09HSNdjExMejevTtsbGxQokQJ9O3bF6dOncqyv6iG4C9cuIC2bdvCxsYGrVq1ApAxvD5t2jRUrVpV/b348ccf48GDB1nqCg4ORsOGDWFlZQVra2u0a9cOEREROb6XKuz50ROCDE67du2Evb29WLJkiThw4IDYvHmzmDhxoli/fr26jb+/vyhdurTw9PQUQUFBYteuXaJTp04CgJgyZYqoUaOGWLdundixY4fw8/MTZmZm4u7du+rHHzhwQJiYmAgfHx8RHBwsNm/eLNq2bStkMpnG61y9elXY2NiIihUritWrV4vt27eL3r17CwBi1qxZQgghEhMTxYoVKwQA8e2334qwsDARFhYm7ty5I4QQIiAgQJiamopq1aqJOXPmiL1794qJEycKmUwmpkyZkuN7ERYWJjp27CgsLCzUzxsfHy9u3bolAIgVK1ZkeQwAMWnSJPXvkyZNEgCEp6enmDhxotizZ4+YO3euMDMzEx9//LHGY/v37y9kMpkYNGiQ+Pfff0VISIj44YcfxC+//CKEEOLMmTOiQoUKok6dOup6zpw5I4QQWmvK7fusev8qVKgghg8fLnbt2iWWLVsmSpYsKVq0aKFRo6qttnV/k5ubm3B2dhaurq5i+fLlYseOHaJv374CgJg9e7a6XXx8vHB2dhb29vZi0aJFYufOneKLL74QAMSwYcNyfH8/+OAD4erqKtLT0zXaffTRR6JcuXIiLS0tT9tBqVSKdu3aCWNjY/Hdd9+J3bt3izlz5ggrKytRp04d8fLlS431c3FxEd7e3urPe4MGDYSJiYmYOHGiaNy4sfjnn3/Epk2bRJUqVYSDg4N4/vy5+vGqmjL7/vvvxc8//yy2b98uDhw4IBYtWiQ8PDyybAdtj33TpUuXxLfffqveXmFhYeLGjRtCiIz9ws3NTd02LCxMWFhYiI4dO6o/W5cuXcr2uV+8eCFq1qwprKysxJw5c8Tu3bvFd999J4yNjUXHjh2FEEK8fPlShIWFiTp16ogKFSqonzcxMTHb5w0ICBAymUx89dVXYvfu3WLu3LnC2dlZ2NraioCAAHW7e/fuifLlyws3NzexePFisXfvXvH9998LMzMzMXDgQHW7Z8+eiUqVKolSpUqJ+fPni127dolRo0YJDw+PLJ/jgIAAYWJiItzd3cWMGTPEvn37xK5du4RCoRDt27cXVlZWYsqUKWLPnj1i2bJlwtnZWVSvXl1jm/7www9CJpOJTz75RGzbtk38888/omHDhsLKyirH91MbKysrjXXOTLX9HR0dhZGRkShbtqzo37+/iIqKytNrUP4wHBkga2tr8eWXX+bYxt/fXwAQp0+fVi97+PChkMvlwsLCQiMInT17VgAQv/76q3qZn5+fKFu2rEhKSlIvS09PF97e3sLFxUUolUohhBC9evUSZmZmIjo6WuP1O3ToICwtLcWTJ0+EEEKcOnUq2wN2QECAACA2bNigsbxjx47C09PzLe9GxuOtrKw0luUnHP34448a7T777DNhbm6uXtdDhw4JAGLChAk51uPl5SX8/f2zLNdWU27fZ1Xg+eyzzzSe88cffxQAxL1799TLVq1aJeRyuVi1alWOdQqRER5kMpk4e/asxvI2bdoIW1tbkZycLIQQYty4cQKAOHHihEa7YcOGCZlMJq5du6Ze9ub7GxoaKgCITZs2qZfdvXtXGBsba4Tf3G6HnTt3am0XHBwsAIglS5ZorJ+FhYWIiYlRL1N93p2cnNTrJ4QQmzdvFgDEli1bstSUHaVSKdLS0sTBgwcFAHHu3LlcP1ZFtW1PnTqlsfzNcCREzgfjNy1atEjrfjVr1iwBQOzevVu9zN/fX3h5eb31Oa9cuSIAiFGjRmksX7NmjQCgUduQIUOEtbV1ljAwZ84cAUAdRObPny8AiJCQEI12Q4YM0RqOAIjly5drtF23bp0AIDZu3KixXPW9s2DBAiGEENHR0cLY2FgMHz5co11SUpJwdHQUPXr0eOt7kFlO22P16tXihx9+EDt27BD79+8XM2fOFKVKlRIODg4an0cqHOzfM0C+vr5YuXIlpk2bhuPHjyMtLU1rOycnJ/j4+Kh/L1WqFMqWLYvatWujXLly6uXVqlUDAERFRQEAkpOTceLECXTv3l1jcrNcLkf//v0RExODa9euAQD279+PVq1aoXz58hqvPXDgQDx//hxhYWG5WieZTIbOnTtrLKtZs6a6pqLQpUuXLK//8uVLxMfHAwBCQkIAAJ9//nmBvF5e3uecagSg8T4NGDAA6enpGDBgQK7q8PLyQq1atTSW9enTB0+fPsWZM2cAZGzn6tWra8yJATK2sxAC+/fvz/b5mzdvjlq1amH+/PnqZYsWLYJMJsPgwYOztH/bdlC91psT3j/66CNYWVlh3759Gstr164NZ2dn9e+qz3vz5s015qq8uR9k5+bNm+jTpw8cHR0hl8thYmICf39/AMCVK1dyfGxR2r9/P6ysrNC9e3eN5ar37c33KTdCQ0MBIMvcpB49esDYWHMK7LZt29CiRQuUK1cO6enp6p8OHToAAA4ePKj+r42NTZaJ77179862jg8//DDLa5UoUQKdO3fWeK3atWvD0dFRPUy4a9cu9b6RuZ25uTn8/f1zHE7Mq/79++Obb75Bhw4d0KJFC4wdOxYhISF48OABfvzxxwJ7HdKOE7INUHBwMKZNm4Zly5bhu+++g7W1NT744AP8+OOPcHR0VLfTdsaJqalpluWmpqYAMuZxAMDjx48hhICTk1OWx6tC1cOHD9X/zU27t7G0tMxyiquZmZm6pqJQunTpLK8PAC9evACQMddLLpdrvMfvIi/vc25rzA9t66Nalnk7v3laeU51vkl1Nta1a9dQoUIFLF26FN27d9f62m9bx4cPH8LY2Bj29vYa7WQyGRwdHbPUkt3n/W37gTbPnj1D06ZNYW5ujmnTpqFKlSqwtLTEnTt30K1bt3faDgXt4cOHcHR0zDJnqmzZsjA2Ns71vvnmcwJZPzPGxsZZttv9+/exdetWmJiYaH2uhIQE9XM6ODhk+bu2ZUDGd4WtrW2W13ry5Il6G2b3Wvfv3wcA9RzINxX2fCJfX19UqVIFx48fL9TXIYYjg1SmTBnMmzcP8+bNQ3R0NLZs2YJx48YhPj5e68TqvCpZsiSMjIxw7969LH9TTf5VnX1RunTpXLUraqqg9eaE7vwcEFTs7e2hUCgQFxenNdDkVV7e58IUFxeX7TLVAe9dt3OfPn0wduxYzJ8/H35+foiLi8t3D1zp0qWRnp6OBw8eaAQkIQTi4uKyPfAVhP379yM2NhYHDhxQ9xYByDIRXBeULl0aJ06cgBBCIyDFx8cjPT09X58t1echLi5OozcuPT09y75VpkwZ1KxZEz/88IPW51IF69KlS2ud0K3tcwlA67WjVCcoZPf9Z2Njo24HAH///Tfc3Ny0ti1sQghO6i4CfIcNnKurK7744gu0adNGPQTyrqysrNCgQQP8888/Gv8SViqV+PPPP+Hi4oIqVaoAAFq1aqU+YGS2evVqWFpaqk9dL4gejrxwcHCAubk5zp8/r7H833//zfdzqoYDFi5cmGM7MzOzXK1nXt7nwnTp0iWcO3dOY9natWthY2ODunXrAsjYzpcvX87yGVu9ejVkMhlatGiR42uYm5tj8ODBWLVqFebOnYvatWujcePG+apXdXbSn3/+qbF848aNSE5OVv+9MKgOzKrPs8rixYsL7TUzy+1nC8h4n549e5blopGrV69W/z2vVGfHrVmzRmP5hg0bspyB1qlTJ/UlAurVq5flRxWO/P39kZSUpB62Vlm/fn2u6+rUqRMePnwIhUKh9bU8PT0BAO3atYOxsTH+++8/re3q1auX17ckT44fP47IyEhe0qMIsOfIwCQmJqJFixbo06cPqlatChsbG5w6dQo7d+5Et27dCux1ZsyYgTZt2qBFixYYM2YMTE1NsWDBAly8eBHr1q1THyQmTZqknlswceJElCpVCmvWrMH27dvx448/qi9+VrFiRVhYWGDNmjWoVq0arK2tUa5cOY25TwVJJpOhX79+6ova1apVCydPnsTatWvz/ZxNmzZF//79MW3aNNy/fx+dOnWCmZkZIiIiYGlpieHDhwMAatSogfXr1yM4OBgVKlSAubk5atSoofU5c/s+58Xq1avxySefYPny5bmad1SuXDl06dIFkydPhpOTE/7880/s2bMHs2bNUs/JGTVqFFavXo333nsPU6dOhZubG7Zv344FCxZg2LBhuQpxn332GX788UeEh4dj2bJleV4vlTZt2qBdu3YYO3Ysnj59isaNG+P8+fOYNGkS6tSpg/79++f7ud+mUaNGKFmyJIYOHYpJkybBxMQEa9asyRIuC0uNGjVw4MABbN26FU5OTrCxsVEf+N80YMAAzJ8/HwEBAbh9+zZq1KiBI0eOYPr06ejYsSNat26d59evVq0a+vXrh3nz5sHExAStW7fGxYsXMWfOnCxDXVOnTsWePXvQqFEjjBgxAp6ennj58iVu376NHTt2YNGiRXBxcUFAQAB+/vln9OvXD9OmTUOlSpUQEhKCXbt2AcjdUFevXr2wZs0adOzYESNHjoSvry9MTEwQExOD0NBQdO3aFR988AHc3d0xdepUTJgwATdv3kT79u1RsmRJ3L9/HydPnoSVlRWmTJmS42sdPHhQfXkAhUKBqKgo/P333wAygp6qN7NWrVro168fqlWrBnNzc5w8eRKzZ8+Go6Mjvv766zy/95RHUs4Gp6L38uVLMXToUFGzZk1ha2srLCwshKenp5g0aZLGmTfZnX3i5uYm3nvvvSzLAYjPP/9cY9nhw4dFy5YthZWVlbCwsBB+fn5i69atWR574cIF0blzZ2FnZydMTU1FrVq1tJ4ltm7dOlG1alVhYmKicUaTtrPNhMj92T7ZPT4xMVEMGjRIODg4CCsrK9G5c2dx+/btbM9We/DggcbjVWcR3bp1S71MoVCIn3/+WXh7ewtTU1NhZ2cnGjZsqPG+3L59W7Rt21bY2NgIAOozjrI7gy4373N2ZzSpzgQLDQ3N0ja3p/K/99574u+//xZeXl7C1NRUuLu7i7lz52ZpGxUVJfr06SNKly4tTExMhKenp5g9e7ZQKBQa7d58fzNr3ry5KFWqlMap1Sp52Q4vXrwQY8eOFW5ubsLExEQ4OTmJYcOGicePH2tdvzdp+7yrtk/mSxho+wweO3ZMNGzYUFhaWgp7e3sxaNAgcebMmSzveWGcrXb27FnRuHFjYWlpKQBoPSsys4cPH4qhQ4cKJycnYWxsLNzc3MT48eM1LncgRO7PVhNCiJSUFPG///1PlC1bVpibmws/Pz8RFhYm3Nzcspy59eDBAzFixAjh4eEhTExMRKlSpYSPj4+YMGGCePbsmbpddHS06Natm7C2thY2Njbiww8/FDt27BAAxL///qvxnmjb14UQIi0tTcyZM0fUqlVLmJubC2tra1G1alUxZMgQERkZqdF28+bNokWLFsLW1laYmZkJNzc30b17d7F37963rr/qTGBtP5n3w169eolKlSoJKysrYWJiItzc3MTQoUNFbGxsLt5lelcyIYQomhhGRMWNu7s7vL291RdFLEzx8fFwc3PD8OHDebYOvdX06dPx7bffIjo6utCvUk7FD4fViEinxcTE4ObNm5g9ezaMjIyy3C+M6PfffwcAVK1aFWlpadi/fz9+/fVX9OvXj8GI8oXhiIh02rJlyzB16lS4u7tjzZo1Gmc5EQEZp+f//PPPuH37NlJSUuDq6oqxY8fi22+/lbo00lMcViMiIiLKRPJT+Q8dOoTOnTujXLlykMlkWU4b1ebgwYPw8fFR3+Ry0aJFhV8oERERGQTJw1FycjJq1aqlHjN+m1u3bqFjx45o2rQpIiIi8M0332DEiBHYuHFjIVdKREREhkCnhtVkMhk2bdqE999/P9s2Y8eOxZYtWzTuQTR06FCcO3cu1/fhIiIiIsqO3k3IDgsLQ9u2bTWWtWvXDkFBQUhLS9N6H56UlBSN20AolUo8evQIpUuXztdF8oiIiKjoCSGQlJSEcuXKFeptVPQuHMXFxWW5oaCDgwPS09ORkJCg9Z5VM2bMeOtVS4mIiEg/3Llzp1Av06B34QjIeuNA1chgdr1A48ePx+jRo9W/JyYmwtXVFXfu3MlyyXoi0iN37wL//QdUrAjkdIp/btsRkU57+vQpypcvr74ZcGHRu3Dk6OiY5W7L8fHxMDY2Vt/x+U1mZmZZbvQIALa2tgxHRPoqKAgYPBhQKgEjI2DJEiAwMP/tiEhvFPaUGMnPVsurhg0bYs+ePRrLdu/ejXr16mmdb0RExVBMzOvAA2T8d8iQjOX5aUdElInk4ejZs2c4e/Yszp49CyDjVP2zZ88iOjoaQMaQWOY7gw8dOhRRUVEYPXo0rly5guXLlyMoKAhjxoyRonwikkJk5OvAo6JQADdu5K8dEVEmkg+rnT59Gi1atFD/rpobFBAQgJUrV+LevXvqoAQAHh4e2LFjB0aNGoX58+ejXLly+PXXX/Hhhx8Wee1EJJHKlTOGyDIHH7kcqFQpf+2IiDLRqescFZWnT5/Czs4OiYmJnHNEpK+CgjKGyBSKjMCzeHH2c45y046IdF5RHb8ZjhiOiPRXTEzGEFmlSkBOp/Xmth0R6bSiOn5LPqxGRJRvLi65Czu5bUdEBB2YkE1ERESkSxiOiIiIiDJhOCIiIiLKhOGIiIiIKBOGIyIiIqJMGI6IiIiIMmE4IiIiIsqE4YiI9J4QAiEhIejTpw8qVaoEe3t7eHt7Y9iwYQgPD5e6PCLSM7xCNq+QTaTXrl+/jqFDhyI0NDTbNv369cNvv/2GEiVKFF1hRFTgiur4zZ4jItJb+/btQ/369REaGgpzc3OMHDkSe/fuxfnz5/Hvv/+iT58+MDIywp9//onatWvj+vXrUpdMRHqAPUfsOSLSS9u3b8f777+P9PR0NGnSBKtXr4aHh0eWdmFhYejXrx9u3rwJBwcH7Nu3D15eXhJUTETvij1HRETZOHXqFHr06IH09HR89NFH2Lt3r9ZgBAANGzZEWFgYatWqhfv376Njx46Ij48v4oqJSJ8wHBGRXklISMD777+P58+fo127dlizZg3MzMxyfEzZsmWxf/9+VK5cGdHR0fjwww+RlpZWRBUTkb5hOCIivSGEQGBgIGJjY+Hp6Ym//voLJiYmuXpsqVKlsGXLFtja2uLIkSOYMWNGIVdLRPqK4YiI9Mbq1auxZcsWmJqaYv369bCxscnT46tWrYqFCxcCAL7//nucOXOmMMokIj3HcEREeuHhw4cYM2YMAGDq1KmoXbt2vp6nd+/e6N69O9LT0zFkyBAolcoCrJKIigOGIyLSCxMmTEBCQgK8vLwwevTofD+PTCbD77//DltbW5w+fRorV64suCKJqFhgOCIinXft2jUsXboUALBgwYJczzPKjoODAyZOnAgAGD9+PJKSkt65RiIqPhiOiEjnTZo0CUqlEp07d0azZs0K5DmHDx+OypUrIz4+HvPnzy+Q5ySi4oHhiIh02tmzZxEcHAwAmDZtWoE9r6mpqbr3aPbs2ew9IiI1hiMi0j0xMUBoKBATg0mTJgHImEhds2bNAn2ZXr16oUqVKnj06BF+//33LK9NRIaJ4YiIdEtQEODmBrRsiSuurtiyZQtkMpk6JBUkY2Njde/RnDlz8Gz+fPVrw80toxYiMji8txrvrUakO2JiMkLJq9PrBwNYCqBr27bYvGtXobykQqFA1apVcePGDcyXyfBZ5q9EuRy4fRtwcSmU1yaivOG91YjI8ERGqoNRPIDVrxaP6dSp0F5SLpdjxIgRAIBfhYDGVY8UCuDGjUJ7bSLSTQxHRKQ7KlcGjDK+lhYASAHgC6Dx++8X6ssOHDgQtjY2uAZgd+Y/yOVApUqF+tpEpHsYjohId7i4AEuWIM3ICItfLRo9eDBk5csX6sva2Njgk8BAAMAvqoVyObB4MYfUiAwQ5xxxzhGRztm0dCm6DR4MB3t73Ll7950v+pgbN2/eRKVKlSCEQOSff6KSvz+DEZGO4ZwjIjJYSzdtAgAM/OSTIglGAFChQgW0a9cOALDi8mUGIyIDxnBERDolKioKO3fuBAAMGjSoSF878NXQ2sqVK5Genl6kr01EuoPhiIh0yvLlyyGEQMuWLVGpiCdDd+7cGaVLl0ZsbCx279799gcQUbHEcEREOkOpVGLVqlUAir7XCADMzMzQv39/AEAQLwBJZLAYjohIZ4SFhSEqKgrW1tZ4v5BP38+Oamhty5YtSEhIkKQGIpIWwxER6Yy1a9cCALp16wYLCwtJavD29kadOnWQnp6Ov//+W5IaiEhaDEdEpBPS0tKwYcMGAECfPn0kraV3794AgHXr1klaBxFJg+GIiHTC3r17kZCQAHt7e7Rq1UrSWnr27AkAOHz4MGJiYiSthYiKHsMREekE1ZBaz549YWxsLGktrq6uaNKkCYQQCA4OlrQWIip6DEdEJLnnz59j06sLP0o9pKbCoTUiw8VwRESSCwkJQXJyMtzd3eHn5yd1OQCA7t27Qy6XIzw8HDdv3pS6HCIqQgxHRCQ5Va/Rhx9+CJlMJnE1GcqWLYumTZsCADZv3ixtMURUpBiOiEhSqamp2LZtGwDggw8+kLgaTap6VOGNiAwDwxERSerAgQNITEyEg4ODzgypqaguRHn06FHEx8dLWwwRFRmGIyKSlGrIqkuXLpDL5dIW8wZXV1f4+PhACIEtW7ZIXQ4RFRGGIyKSjFKpVIcjXRtSU1HVxXlHRIaD4YiIJHPy5Encu3cPNjY2aNmypdTlaKUaWtuzZw+SkpKkLYaIigTDERFJRjXRuWPHjjAzM5O4Gu2qV6+OypUrIzU1FSEhIVKXQ0RFgOGIiCSzdetWAK97Z3SRTCZTD61x3hGRYWA4IiJJ3L59G1euXIFcLke7du2kLidH7733HgBg165dUCgUEldDRIWN4YiIJKEaomrUqBFKliwpcTU5a9iwIezs7JCQkIDTp09LXQ4RFTKGIyKSxI4dOwBkzDfSdSYmJmjbti0AcN4RkQFgOCKiIvfy5Uvs27cPANChQweJq8kdVZ2qUEdExRfDEREVuYMHD+LFixcoV64catasKXU5udK+fXsAwKlTp3D//n2JqyGiwsRwRERFTjU01bFjR5250ezbODk5oW7dugAyJmYTUfHFcERERU6f5htlpqqXQ2tExRvDEREVqRs3biAyMhImJiZo1aqV1OXkiSoc7dq1C+np6RJXQ0SFheGIiIrUnj17AGScwm9raytxNXnj6+uLEiVK4MmTJwgPD5e6HCIqJAxHRFSk9u7dCwBo06aNxJXknVwuV98DTrUeRFT8MBwRUZFRKBTYv38/AKB169YSV5M/qroZjoiKL4YjIioyZ86cwZMnT2BnZwcfHx+py8kXVTg6duwYkpOTJa6GiAoDwxERFRlVb0uLFi1gbGwscTX5U6lSJbi6uiI1NRVHjhyRuhwiKgQMR0RUZPR5vpGKTCbj0BpRMcdwRERF4vnz5+qeFn2db6TCcERUvOlEOFqwYAE8PDxgbm4OHx8fHD58OMf2a9asQa1atWBpaQknJyd8/PHHePjwYRFVS0T5cfToUaSmpqJ8+fKoXLmy1OW8E9UZa2fPnsWDBw8kroaICprk4Sg4OBhffvklJkyYgIiICDRt2hQdOnRAdHS01vZHjhzBgAEDEBgYiEuXLuGvv/7CqVOnMGjQoCKunIjyQtXL0rp1a725ZUh2HBwc1PeEU519R0TFh+ThaO7cuQgMDMSgQYNQrVo1zJs3D+XLl8fChQu1tj9+/Djc3d0xYsQIeHh4oEmTJhgyZAhOnz5dxJUTUV5kDkfFgWo99u3bJ3ElRFTQJA1HqampCA8PR9u2bTWWt23bFseOHdP6mEaNGiEmJgY7duyAEAL379/H33//jffeey/b10lJScHTp081foio6CQkJCAiIgIA0MrMDIiJkbiid9e6dm0AwJ6dO6UthIgKnKThKCEhAQqFAg4ODhrLHRwcEBcXp/UxjRo1wpo1a9CzZ0+YmprC0dERJUqUwG+//Zbt68yYMQN2dnbqn/LlyxfoehBRzg4ePAghBLwBOHTvDri5AUFBUpeVf0FBaBYQAGMAt+/cwe1Zs6SuiIgKkOTDagCyzD8QQmQ7J+Hy5csYMWIEJk6ciPDwcOzcuRO3bt3C0KFDs33+8ePHIzExUf1z586dAq2fiHJ2cPt2AEBz1QKlEhgyRD97kGJigMGDYSUE6r9adHD8eP1cFyLSStKrsJUpUwZyuTxLL1F8fHyW3iSVGTNmoHHjxvjqq68AADVr1oSVlRWaNm2KadOmwcnJKctjzMzMYGZmVvArQES5cvDgQQCAf+aFCgVw4wbg4iJJTfkWGZkR7pCxPmEADgqBAH1cFyLSStKeI1NTU/j4+Kjv0q2yZ88eNGrUSOtjnj9/DiMjzbLlcjmAjB4nItItjx49woVbtwAAzTL/QS4HKlWSpKZ3Urky8Oo7SBX2DgL6uS5EpJXkw2qjR4/GsmXLsHz5cly5cgWjRo1CdHS0ephs/PjxGDBggLp9586d8c8//2DhwoW4efMmjh49ihEjRsDX1xflypWTajWIKBuHDh2CEALVnJxQ9tU/ZCCXA4sX62dPi4sLsGQJIJejMQA5gJsA7vAfZ0TFhuThqGfPnpg3bx6mTp2K2rVr49ChQ9ixYwfc3NwAAPfu3dO45tHAgQMxd+5c/P777/D29sZHH30ET09P/PPPP1KtAhHlQD2k1rUrcPs2EBqa8d/AQEnreieBgcDt27AJDUXdWrUAvF5PItJ/MmGAY1FPnz6FnZ0dEhMTYWtrK3U5RMVa3bp1ERERgXXr1qFXr15Sl1PgvvrqK8yZMweDBg3C0qVLpS6HqFgrquO35D1HRFR8PXnyBGfPngUA+Pv759xYT6nWiz1HRMUHwxERFZojR45ACIHKlStrPZO0OGjSpAlkMhkiIyMRGxsrdTlEVAAYjoio0Bw4cABA8e01AoASJUqg9qurZbP3iKh4YDgiokKjCgvNmzeXtpBCplo/hiOi4oHhiIgKxdOnT3HmzBkAxbvnCOC8I6LihuGIiArF0aNHoVQqUaFCBbjo4/WM8qBp06aQyWS4evUq7t+/L3U5RPSOGI6IqFCor29UzHuNAKBUqVKoUaMGgIyLXhKRfmM4IqJCcfjwYQBAs2bN3tKyeFCFQNV6E5H+YjgiogL38uVLnD59GkDGqe6GoHHjxgAyLl9ARPqN4YiICtzp06eRmpoKBwcHVKxYUepyioQqHJ07dw5JSUkSV0NE74LhiIgKnKr3pHHjxpDJZBJXUzRcXFzg5uYGpVKJ48ePS10OEb0DhiMiKnBHjx4F8Lo3xVCohhBV609E+onhiIgKlFKpxLFjxwAYznwjFVUYZDgi0m8MR0RUoK5evYpHjx7BwsICderUkbqcIqUKR2FhYUhPT5e4GiLKL4YjIipQql4TX19fmJiYSFxN0fLy8oKdnR2Sk5Nx/vx5qcshonxiOCKiAqUKR4Y2pAYAcrkcDRs2BMChNSJ9xnBERAUq85lqhkgVCnm9IyL9xXBERAUmLi4O//33H2QymboHxdBkvhikEELiaogoPxiOiKjAqIaSvL29UaJECWmLkYivry+MjY0RGxuLqKgoqcshonxgOCKiAmOo1zfKzNLSEnXr1gXAeUdE+orhiIgKDMNRBl7viEi/MRwRUYF4/vw5zpw5A8Awz1TLjJOyifQbwxERFYiTJ08iPT0d5cqVg5ubm9TlSErVc3Tx4kU8efJE2mKIKM8YjoioQGQeUjOUm81mx8HBARUrVoQQgjehJdJDDEdEVCBU91Mz9PlGKrwJLZH+YjgioneWuYekUaNGElejG1TXeWLPEZH+YTgioncWGRmJR48ewczMDLVq1ZK6HJ3g5+cHADhx4gQUCoXE1RBRXjAcEdE7U/WO+Pj4wNTUVOJqdIO3tzesrKyQlJSEy5cvS10OEeUBwxERvTNVOFL1llDGTWh9fX0BcGiNSN8wHBHRO2M40k417ygsLEziSogoLxiOiOidJCcn4/z58wBgsDebzQ4nZRPpJ4YjInonp0+fhkKhgLOzM1xcXKQuR6c0aNAAAHDlyhU8fvxY4mqIKLcYjojonXBILXv29vaoVKkSgIyz1ohIPzAcEdE7YTjKmep94dAakf5gOCKifMt88UeGI+04KZtI/zAcEVG+RUVFIS4uDsbGxvDx8ZG6HJ2kCkcnTpyAUqmUuBoiyg2GIyLKN1WvUe3atWFhYSFxNbqpRo0asLS0RGJiIq5evSp1OUSUCwxHRJRvHFJ7O2NjY9SvXx8Ah9aI9AXDERHlG8NR7nBSNpF+YTgionxJSUlBREQEAIajt+GkbCL9wnBERPkSERGB1NRU2Nvbo0KFClKXo9NU4fHy5ctITEyUuBoiehuGIyLKF1UviJ+fH2R37wKhoUBMjMRV6aCYGDhcvgwPV1cIIXDy5EmpKyKit2A4IqJ8Uc83MjYG3NyAli0z/hsUJHFlOiQoSP3eNIyOBsChNSJ9wHBERPmiDkebNwOq6/colcCQIexBAjLeg8GD1e+NalbW8QMHJCuJiHKH4YiI8iw2NhbR0dEwMjJCfSE0/6hQADduSFOYLomMfB0aATR89d/jp0/zYpBEOo7hiIjyTHUTVW9PT9gYvfE1IpcDr262atAqVwYyvTc1AZgDeJyUhMjISMnKIqK3YzgiojxTT8Zu2hRYsiQjEAEZ/128GHBxkbA6HeHiovHemMrlqFe5MgDOOyLSdQxHRJRnGhd/DAwEbt/OOFvt9u2M3ynDG+9Nw/ffB8BwRKTrjKUugIj0S1paGk6fPg0g08UfXVzYW5SdTO+N6v1iOCLSbew5IqI8uXDhAl68eIESJUrA09NT6nL0iupK2ZcuXUJSUpLE1RBRdhiOiChPVENqDRo0gNGbk7EpR05OTnB1dYVSqcSpU6ekLoeIssFvNiLKk8xXxqa8401oiXQfwxER5YnGZGzKM9XQGsMRke5iOCKiXEtISMCNVxd4bNCggcTV6KfMPUfizQtoEpFOYDgiolxTXfyxatWqKFmypMTV6Kc6derA1NQUDx48wM2bN6Uuh4i0YDgiolzjkNq7MzMzQ506dQBwaI1IVzEcEVGuMRwVDM47ItJtDEdElCsKhUI9rMZw9G54xhqRbmM4IqJcuXLlCpKSkmBlZQUvLy+py9FrqnB09uxZvHjxQuJqiOhNDEdElCuqXg5fX18YG/POQ+/C1dUVjo6OSE9PR3h4uNTlENEbGI6IKFc436jgyGQyzjsi0mEMR0SUKwxHBYvzjoh0F8MREb1VYmIiLl++DIAXfywoqnAUFhbGi0ES6RidCEcLFiyAh4cHzM3N4ePjg8OHD+fYPiUlBRMmTICbmxvMzMxQsWJFLF++vIiqJTI8J0+ehBACHh4ecHBwkLqcYsHHxwdyuRyxsbGIiYmRuhwiykTycBQcHIwvv/wSEyZMQEREBJo2bYoOHTogOjo628f06NED+/btQ1BQEK5du4Z169ahatWqRVg1kWFRDf2o5snQu7OyskKtWrUAcGiNSNdIHo7mzp2LwMBADBo0CNWqVcO8efNQvnx5LFy4UGv7nTt34uDBg9ixYwdat24Nd3d3+Pr6olGjRkVcOZHh4HyjwsF5R0S6SdJwlJqaivDwcLRt21Zjedu2bXHs2DGtj9myZQvq1auHH3/8Ec7OzqhSpQrGjBmT47VCUlJS8PTpU40fIsodIQTDUSHJPO+IiHSHpBcrSUhIgEKhyDKHwcHBAXFxcVofc/PmTRw5cgTm5ubYtGkTEhIS8Nlnn+HRo0fZzjuaMWMGpkyZUuD1ExmCyMhIPHr0CGZmZuphICoYqnB05swZpKSkwMzMTOKKiAjQgWE1IOOaH5kJIbIsU1EqlZDJZFizZg18fX3RsWNHzJ07FytXrsy292j8+PFITExU/9y5c6fA14GouFL1GtWrVw+mpqYSV1O8VKpUCaVLl0ZKSgrOnTsndTlE9Iqk4ahMmTKQy+VZeoni4+OzPSPGyckJzs7OsLOzUy+rVq0ahBDZnvFhZmYGW1tbjR8iyh3VkA+H1AqeTCbjvCMiHSRpODI1NYWPjw/27NmjsXzPnj3ZTrBu3LgxYmNj8ezZM/Wy69evw8jICC4uLoVaL5Eh4nyjwsV5R0S6R/JhtdGjR2PZsmVYvnw5rly5glGjRiE6OhpDhw4FkDEkNmDAAHX7Pn36oHTp0vj4449x+fJlHDp0CF999RU++eQTWFhYSLUaRMVScnIyzp8/D4Cn8RcW9hwR6R7J7x7Zs2dPPHz4EFOnTsW9e/fg7e2NHTt2wM3NDQBw7949jWseWVtbY8+ePRg+fDjq1auH0qVLo0ePHpg2bZpUq0BUbJ06dQpKpRIuLi5wdnaWupxiydfXFzKZDLdv30ZcXBwcHR2lLonI4EkejgDgs88+w2effab1bytXrsyyrGrVqlmG4oio4PHij4XP1tYWXl5euHjxIk6cOIGuXbtKXRKRwZN8WI2IdBcnYxcNzjsi0i0MR0SkVeaLP7LnqHBx3hGRbmE4IiKtbt++jfj4eJiYmKBOnTpSl1OsqcLnqVOnkJ6eLnE1RMRwRERaqYZ46tSpA3Nzc4mrKd6qVq0KW1tbPH/+HBcvXpS6HCKDx3BERFpxSK3oGBkZoUGDBgA474hIFzAcEZFWnIxdtDjviEh3MBwRURYvXrzA2bNnAbDnqKio3meGIyLpMRwRURZnzpxBeno6HB0d4erqKnU5BsHX1xdAxu2QHj58KHE1RIaN4YiIssg8pCaTySSuxjCULl0aVapUAQCcOHFC4mqIDBvDERFlwcnY0uC8IyLdwHBERBqEEJyMLRHOOyLSDQxHRKQhJiYGsbGxkMvlqOfkBISGAjExUpdV/MXEwE8uB5AxrKZUKiUuiMhwMRwRkQZVr0UtZ2dYVq0KtGwJuLkBQUESV1aMBQUBbm7wHjwYlgCePn2Kq1evSl0VkcFiOCIiDeohtehoQNV7oVQCQ4awB6kwxMQAgwcDSiWMAdR/tThsxw4pqyIyaAxHRKRBPRn7zT8oFMCNG0VeT7EXGfk6hOL1+378wAFJyiEihiMiyiQlJQXh4eEAAL83T+GXy4FKlSSoqpirXBkwev1VrJoCf5xBlEgyDEdEpHb27FmkpqaiTJkyqLhkSUYgAjL+u3gx4OIibYHFkYsLkOm9bvAqKF26fh1Pnz6VsjIig8VwRERqGhd/HDQIuH0742y127eBwEBJayvWAgPV77VjVBTc3d0hhMDJkyelrozIIDEcEZFalos/urgAzZuzx6goZHqveb0jImkxHBGRmupgzIs/SotXyiaSFsMREQEAYmNjERUVBSMjI9SvX//tD6BCkzkcCSEkrobI8DAcEREA4OjRowCAmjVrwsbGRuJqDFvt2rVhZmaGhw8f4gbPWiMqcgxHRATgdThq3LixxJWQqakpfHx8AHBojUgKDEdEBIDhSNdw3hGRdBiOiAjJycmIiIgAwHCkK1ThSHV5BSIqOgxHRISTJ09CoVDAxcUFrq6uUpdDABo1agQAOHfuHJKSkiSuhsiwvFM4io+PR1xcXEHVQkQS4ZCa7nF2doa7uzuUSiWH1oiKWL7C0fnz5+Hl5QUnJyc4OzvD2dkZ3377LZKTkwu6PiIqAqpwpOqtIN3QpEkTAK+3DxEVjXyFo8DAQDg4OODIkSOIiIjAtGnTEBISgnr16uHx48cFXSMRFSKlUqme18KeI92i2h5HjhyRuBIiwyIT+bjCmJWVFcLDw1G1alX1MiEEPvroI5ibm+PPP/8s0CIL2tOnT2FnZ4fExETY2tpKXQ6RpC5cuICaNWvCysoKT548gbGxsdQl0SsXL15EjRo1YGVlhcePH8PExETqkogkVVTH73z1HGnrIZLJZJg+fTr+/fffAimMiIqGasimQYMGDEY6pnr16ihRogSSk5Nx7tw5qcshMhi5DkfvvfcevvnmG2zYsAFDhw7FqFGjcP/+fY02iYmJKFmyZIEXSUSF59ixYwA4pKaLjIyM1NuF846Iik6u/5lYo0YNnDlzBitWrFCHogoVKqBHjx6oXbs2FAoFVqxYgZ9//rnQiiWigscz1XRb48aNsX37dhw5cgQjR46Uuhwig5CvOUf3799HREQEzp49q/65ceMG5HI5PD09cf78+cKotcBwzhFRhri4ODg5OUEmk+Hx48ews7OTuiR6w+HDh9GsWTM4OjoiNjYWMplM6pKIJFNUx+98TTBwcHBA+/bt0b59e/WyFy9e4Ny5cxwXJ9Ijql6jGjVqMBjpqPr168PU1BRxcXG4desWKlSoIHVJRMVegV0h28LCAn5+fhgyZEhBPSURFTIOqek+c3Nz9U1oeUo/UdHg7UOIDBjDkX5QXQyS4YioaDAcERmo58+f48yZMwAYjnQdr5RNVLQYjogM1KlTp5Ceno5y5crBzc1N6nIoB6rbuly+fBkPHz6UuBqi4o/hiMhAZR5S4xlQuq1MmTLqOxKorktFRIWH4YjIQB06dAjA6yEb0m2cd0RUdBiOiAxQenq6uufI399f4mooNzjviKjoMBwRGaCIiAg8e/YMJUqUQI0aNaQuh3JBFY5OnTqFly9fSlwNUfHGcERkgFRDak2bNoWREb8G9EGFChXg4OCA1NRUnDp1SupyiIo1fisSGaCDBw8CAJo1ayZxJZRbMpkMTZs2BfA63BJR4WA4IjIwSqUShw8fBsD5RvpGtb1U4ZaICgfDEZGBuXjxIp48eQJra2vUqVNH6nIoD5o3bw4gY1J2WlqatMUQFWMMR0QGRtXr0LhxYxgb5+ve0ySR6tWro3Tp0nj+/DlOnz4tdTlExRbDEZGBUc1XaebiAsTESFwN5YWRkRH8fX0BAAe3bJG4GqLii+GIyIAIIXBo1y4AQLOgIMDNDQgKkrgqyrWgIPjv3AkAODBzJrcdUSFhOCIyINcOHkR8UhLMAdQHAKUSGDKEPUj6ICYGGDwY/kIAAI4CSBs8mNuOqBAwHBEZkENbtwIA/ACYqRYqFMCNG1KVRLkVGQkolagBoCSAZwDOKJXcdkSFgOGIyIAcvHkTAKBxAr9cDlSqJEk9lAeVKwNGRjACoLo61UGZjNuOqBAwHBEZCCEEDr06w6mZ6qrYcjmweDHg4iJhZZQrLi7AkiWAXI7mrxYd8PLitiMqBAxHRAbixo0biImJgampKfyuXgVCQ4Hbt4HAQKlLo9wKDARu34b/kiUAgCNRUUhPT5e4KKLih+GIyEDs378fANCwYUNYVq4MNG/OXgd95OKCmp98Ajs7OyQlJSEiIkLqioiKHYYjIgOxb98+AEDLli0lroTelVwuV98Xj7cSISp4DEdEBkCpVCI0NBQA0KpVK4mroYKgus/agQMHpC2EqBhiOCIyABcuXEBCQgKsrKxQv359qcuhAtCiRQsAGVc8533WiAoWwxGRAVDNN2rWrBlMTU0lroYKQu3atVGqVCkkJSXh1KlTUpdDVKwwHBEZANV8Iw6pFR9GRkbq7bl3716JqyEqXhiOiIq5tLQ09aRdTsYuXlq3bg2A4YiooDEcERVzp0+fxrNnz1CqVCnUqlVL6nKoAKnCUVhYGJ49eyZxNUTFh06EowULFsDDwwPm5ubw8fHB4cOHc/W4o0ePwtjYGLVr1y7cAon0mGq+UYsWLWBkpBO7PBWQChUqwMPDA+np6Th06JDU5RAVG5J/UwYHB+PLL7/EhAkTEBERgaZNm6JDhw6Ijo7O8XGJiYkYMGAA51AQvQXnGxVvHFojKniSh6O5c+ciMDAQgwYNQrVq1TBv3jyUL18eCxcuzPFxQ4YMQZ8+fdCwYcMiqpRI/7x48QLHjh0DwPlGxRXDEVHBkzQcpaamIjw8HG3bttVY3rZtW/UXujYrVqzAf//9h0mTJuXqdVJSUvD06VONHyJDcOzYMaSkpMDZ2RlVqlSRuhwqBKrQe+HCBcTFxUlcDVHxIGk4SkhIgEKhgIODg8ZyBweHbHfyyMhIjBs3DmvWrIGxsXGuXmfGjBmws7NT/5QvX/6dayfSB6rehFatWkEmk0lcDRWGMmXKoE6dOgBezy8joncj+bAagCxf2kIIrV/kCoUCffr0wZQpU/L0r+Dx48cjMTFR/XPnzp13rplIH+zcuRMAsvTOUvHCoTWigiVpOCpTpgzkcnmWXqL4+PgsvUkAkJSUhNOnT+OLL76AsbExjI2NMXXqVJw7dw7GxsbZ/qvJzMwMtra2Gj9ExV1cXBzOnj0LmUzGcFTMZQ5HQgiJqyHSf5KGI1NTU/j4+GDPnj0ay/fs2YNGjRplaW9ra4sLFy7g7Nmz6p+hQ4fC09MTZ8+eRYMGDYqqdCKdt3v3bgBA3bp1YW9vL3E1VJiaNGkCU1NT3LlzB9evX5e6HCK9l7tJO4Vo9OjR6N+/P+rVq4eGDRtiyZIliI6OxtChQwFkDIndvXsXq1evhpGREby9vTUeX7ZsWZibm2dZTmToVENq7du3l7gSKmyWlpZo0qQJ9u/fj507d8LT01Pqkoj0muRzjnr27Il58+Zh6tSpqF27Ng4dOoQdO3bAzc0NAHDv3r23XvOIiDQpFAp1zxHDkWHo0KEDACAkJETiSoj0n0wY4AD106dPYWdnh8TERM4/omLp1KlT8PX1ha2tLRISEmBiYiJ1SVTILl26BG9vb5iZmeHRo0ewtLSUuiSiAldUx2/Je46IqODt2rULQMZEXQYjw1C9enW4uroiJSUFoaGhUpdDpNcYjoiKIdV8o3bt2klcCRUVmUzGoTWiAsJwRFTMPHnyBMePHwfAcGRoOnbsCADYsWMHT+knegcMR0TFzL59+6BQKFC1alX1iQ1kGFq2bAlTU1PcunWLp/QTvQOGI6LiJCYG25YuBfD67CUyHNbW1mjWrBkAIGTdOiA0FIiJkbgqIv3DcERUXAQFQeHqim2vJmN3lsslLoikoArFO6ZMAVq2BNzcgKAgiasi0i8MR0TFQUwMMHgwTgiBBAAlADSZO5e9BgaoY926AICDAJIBQKkEhgzhZ4EoDxiOiIqDyEhAqcSWV792AGCiVAI3bkhZFUnAU6mEB4BUAOrb0CoU/CwQ5QHDEVFxULkyYGSEra9+7QwAcjlQqZKERZEUZFWqoMur//9XtZCfBaI8YTgiKg5cXPDftGm4jIwbJrY3MgIWLwZcXKSujIqaiwu6jhkDANgCIJ2fBaI8YzgiKia2WlgAAJrWqYOSUVFAYKDEFZFUms6YgZJ2dngI4FhwMD8LRHnEcERUTGzZkjHjqMuAAewlMHDGxsbo3LUrAODfsDCJqyHSPwxHRMXA48ePcejQIQBA586dJa6GdEHXV+Fo8+bNvFo2UR4xHBEVAzt37oRCoUD16tVRsWJFqcshHdCuXTuYm5vj5s2buHjxotTlEOkVhiOiYmDjxo0AXvcWEFlZWaFNmzYAgH///fctrYkoM4YjIj2XnJyMHTt2AAC6d+8ucTWkSzIPrRFR7jEcEem5kJAQvHjxAh4eHqhTp47U5ZAO6dy5M2QyGcLDwxEdHS11OUR6g+GISM/9/fffADJ6jWQymcTVkC4pW7YsmjRpAuD154SI3o7hiEiPvXjxAtu2bQPAITXSrmfPngCA4OBgiSsh0h8MR0R6bNeuXUhOTkb58uVRv359qcshHfThhx/CyMgIJ0+exK1bt6Quh0gvMBwR6TEOqdHbODo6wt/fHwCwYcMGiash0g8MR0R66vnz5+qrYnNIjXLCoTWivGE4ItJTW7duRVJSEtzc3ODn5yd1OaTDPvzwQ8jlckRERCAyMlLqcoh0HsMRkZ5as2YNAKBv374wMuKuTNkrU6YMWrVqBYC9R0S5wW9UIj2UkJCAkJAQABnhiOhtVENra9eu5b3WiN6C4YhID/31119IT09HnTp1UL16danLIT3w4YcfwtzcHFeuXMHp06elLodIpzEcEemhzENqRLlhZ2eHDz74AACwatUqiash0m0MR0S6LiYGCA3N+C+AW7du4ejRo5DJZOjVq5fExZE+CQgIAACsW7cOqampGQvf+HwREWAsdQFElIOgIGDwYECpBIyMgCVLsPrVQaxFixZwdnaWuEDSJ61bt4aTkxPu3buH7du344NHj7J8vhAYKHWZRJJjzxGRroqJeX3gAgClEorBg7F86VIAQCAPYpRHcrkc/fr1AwCsWrQoy+cLQ4awB4kIDEdEuisy8vWB65W9SiWi795FyZIl0a1bN4kKI302YMAAAMD2ffvw4I3PFxQK4MYNCaoi0i0MR0S6qnLljKGOTJa9+m+/fv1gbm5e9DWR3vP29ka9evWQrlBg5Zu3nJHLgUqVpCmMSIcwHBHpKheXjDkgcjkAIN7ICP+++v9BgwZJWRnpuaFDhwIAFpcpA6UqgMvlwOLFGZ87IgPHcESkywIDgdu3gdBQrB4/HmkKBXx9fVGzZk2pKyM91qtXL9ja2uK/Bw+w748/Ms5Wu32bk7GJXmE4ItJ1Li5QNmuGpX/9BYC9RvTurKys1HOPFm3cCDRvzh4jokwYjoj0wO7du3H9+nXY2try2kZUIFRDa//++y9iY2MlroZItzAcEemBX375BQDwySefwMbGRuJqqDjw8vJC06ZNoVAosGzZsrc/gMiAMBwR6birV69i586dkMlkGD58uNTlUDEybNgwAMCCBQuQkpIicTVEuoPhiEjH/fbbbwCAzp07o0KFChJXQ8VJ9+7d4eLigvv376vv10dEDEdEOu3Jkyfqm4SOHDlS4mqouDExMVF/rn766ScIISSuiEg3MBwR6bBFixYhOTkZ3t7eaNGihdTlUDH06aefwsbGBpcvX8bOnTulLodIJzAcEemo58+fY+7cuQCAr7/+GrI3r2ZMVADs7Ozw6aefAgDmzJkjcTVEuoHhiEhHLV26FA8ePICHhwd69+4tdTlUjI0cORJyuRz79+/HyZMnpS6HSHIMR0Q6KCUlBbNnzwYAjB07FsbGxhJXRMWZq6sr+vXrBwCYPHmytMUQ6QCGIyIdtHr1aty9exflypXDwIEDpS6HDMB3330HuVyOkJAQHD9+XOpyiCTFcESkY1JSUjB9+nQAwFdffQUzMzOJKyJDULFiRQQEBAAAJk2aJHE1RNJiOCKSSkxMxg0/Y2I0Fi9YsAC3b99GuXLlMHjwYImKI0P07bffwtjYGLt378axY8c0/5jN55WoOGI4IpJCUBDg5ga0bJnx36AgABnXNZo2bRoAYMqUKbC0tJSySjIwHh4e6mHcsWPHvr7uUTafV6LiSiYM8KpfT58+hZ2dHRITE2Frayt1OWRoYmIyDjBK5etlcjlw+zbGz5+PmTNnolq1ajh//jwnYlORi4mJQZUqVfDixQts2LABHzVsmO3nFS4uktVJhqmojt/sOSIqapGRmgcaAFAoEBMWhnnz5gEAZs6cyWBEknBxccHXX38NIGPO28tLl7R+XnHjhgTVERUNhiOiola5MmD0xq4nl2P06tV4+fIlmjZtis6dO0tTGxEyQpGzszOioqLwc2io1s8rKlWSpjiiIsBwRFTUXFyAJUsyDjAAIJdj94gR+GvbNhgZGeHXX3/l1bBJUlZWVpg5cyYAYPr8+bgzc6bG5xWLF3NIjYo1hiMiKQQGZszZCA1FyrVr+GLbNgDA8OHDUbt2bUlLIwKAPn36oGHDhnj27BmGHTwIcetWxtlqt29nfH6JijGGIyKpuLgAzZtjSlAQIiMj4ejoiClTpkhdFREAwMjICMuWLYOpqSm2b9+O9UeOAM2bs8eIDALDEZGETpw4gVmzZgEA5s+fDzs7O4krInqtevXq+PbbbwEAI0aMQEJCgsQVERUNhiMiibx48QIBAQFQKpXo06cPunXrJnVJRFmMHTsWNWrUQEJCAgYPHgwDvPoLGSCGIyKJjBw5EteuXYOTkxN+++03qcsh0srU1BQrV66EiYkJNm3ahN9//13qkogKHcMRkQT+/PNPLF26FDKZDKtWrUKpUqWkLokoW3Xr1sWcOXMAAGPGjEF4eLjEFREVLoYjoiJ24cIFDBkyBEDGndDbtGkjcUVEbzd8+HB07doVqamp6NGjBx4+fCh1SUSFhuGIqAjFxcWhU6dOeP78OVq1aoWJEydKXRJRrshkMixfvhzu7u64efMmPvjgA6SkpEhdFlGhYDgiKmjZ3L38+fPneP/99xEdHY3KlStjw4YNkKsurEekB0qVKoVt27bB1tYWhw8fRmBgoPYJ2tnsA0T6guGIqCBlc/fyly9fomvXrjhx4gRKlSqF7du3c54R6SUvLy9s3LgRxsbGWLNmDb7++mvNgJTNPkCkT2TCAM/LLKq7+pKBiYnRevfy1OvX0W3ECGzfvh1WVlbYvXs3GjVqJF2dRAVg+fLlCHx1peyvv/4aM2fOhOzuXa37AG7f5sUjqUAU1fFbJ3qOFixYAA8PD5ibm8PHxweHDx/Otu0///yDNm3awN7eHra2tmjYsCF27dpVhNUSZSMyMsvdy5MVCnTr2xfbt2+HhYUFtm/fzmBExcInn3yiPq3/xx9/zOhBun49yz4AhQK4cUOCConyT/JwFBwcjC+//BITJkxAREQEmjZtig4dOiA6Olpr+0OHDqFNmzbYsWMHwsPD0aJFC3Tu3BkRERFFXDnRGypX1rh7+QMALQFsP34c5ubm2Lx5M/z9/SUrj6igff755+qANGfOHPT//XekvHnTZLkcqFRJguqI8k/yYbUGDRqgbt26WLhwoXpZtWrV8P7772PGjBm5eg4vLy/07Nkz12f+cFiNCk1QEDBkCC4qFPgAwA1kTGLdunUre4yo2Fq+fDmGDBmC9PR0NK1cGf/89x/KKJUZwWjxYt6olgqMQQyrpaamIjw8HG3bttVY3rZtWxw7dixXz6FUKpGUlJTj5NaUlBQ8ffpU44eoUAQG4o+ffoKvmRluAHB3d8exY8cYjKhY++STTxASEpJxFltkJOo4OODIr79mzDViMCI9JGk4SkhIgEKhgIODg8ZyBwcHxMXF5eo5fvrpJyQnJ6NHjx7ZtpkxYwbs7OzUP+XLl3+nuom0efz4MQYOHIgBX36JFykpaNu2LU6ePAlPT0+pSyMqdK1bt8axY8fg6emJmHv30HzUKExdvhxpaWlSl0aUZ5LPOQIyLi6WmRAiyzJt1q1bh8mTJyM4OBhly5bNtt348eORmJio/rlz584710yU2datW+Hl5YVVq1ZBJpNh8uTJ2LFjB+zt7aUujajIeHl54fTp0+jfvz8UCgUmTZqEevXq4eTJk1KXRpQnkoajMmXKQC6XZ+klio+Pz9Kb9Kbg4GAEBgZiw4YNaN26dY5tzczMYGtrq/FDVBCuXr2Kjh07okuXLrh37x48PT1x5MgRTJo0iRd4JINkbW2N1atX488//0Tp0qVx/vx5+Pn5Yfjw4UhISJC6PKJckTQcmZqawsfHB3v27NFYvmfPnhznaKxbtw4DBw7E2rVr8d577xV2mURZJCQkYOTIkfD29kZISAhMTEzw9ddfIyIigvOLiAD07dsXV65cQb9+/SCEwO+//46KFSti5syZePHihdTlEeVMSGz9+vXCxMREBAUFicuXL4svv/xSWFlZidu3bwshhBg3bpzo37+/uv3atWuFsbGxmD9/vrh3757658mTJ7l+zcTERAFAJCYmFvj6UPEWFxcnvvrqK2FlZSUACACiS5cu4vr161KXRqSz9u7dK2rXrq3eZ5ydncX8+fPFixcvpC6N9ExRHb8lD0dCCDF//nzh5uYmTE1NRd26dcXBgwfVfwsICBD+/v7q3/39/dU7WOafgICAXL8ewxHl1d27d8XIwEBhYWam/szVrVtX7NmzR+rSiPSCQqEQf/zxh3B1dVXvQ05ly4q5w4aJZ9euSV0e6YmiOn5Lfp0jKfA6R5Rb0dHRmDVrFpYtWYLU9HQAQAMA340YgY7z5uXqxAEieu3ly5cICgrCrIkTcefRIwBAGQCju3XD5ytW8DuZclRUx2+GI+6IpMXNmzcxY8YMrFq1Sn0qclMA3wFoDUDG+0UR5V9MDFJdXbFaCMwAcPPV4pJ2dhg5ahRGjBiBkiVLSlkh6SiDuAgkka65du0aAgICUKVKFSxbtgxpaWloWacODgA4BKANABnA+0URvYvISJgKgUEArgFYDaAqgMeJiZg8eTLc3NwwYcIEnt1GkmE4IkJGKOrduzeqVauG1atXQ6FQoH379jhy5Aj2bdkCf6M3dhXeL4oo/zLdh9AYQH8AF42MELxgAby9vZGUlITp06fD3d0dX331Fe7fvy9puWR4GI7IoMXFxWHYsGHw8vLC+vXrIYRAly5dcPLkSYSEhKBx48YZQ2dLlmQEIuD1/aI4pEaUP1r2KfmSJegxbBjOnTuHTZs2oW7dukhOTsacOXNQqVIlTJs2Dc+fP5e2bjIYnHPEOUcGSfWlO3v2bCQnJwMAOnfujO+//x61atXS/qCYmIyhtEqVGIyICkIO+5QQAiEhIZg8eTJOnToFAHB2dsa0adPQv39/XmTVQHFCdiFiODJs27dvx+eff46oqCgAgK+vL2bPno1mzZpJXBkRvUmpVGLDhg0YN26cep+tV68eli5ditq1a0tbHBU5TsgmKmB3795F9+7d0alTJ0RFRcHV1RXBwcE4fvw4gxGRjjIyMkKvXr1w9epVzJ49G3Z2djh9+jTq1auHr7/+mkNtVCgYjsggrF27Fl5eXti4cSPkcjnGjBmDy5cvo0ePHpDdvQuEhmZ08ROR7omJgXlYGMb06oUrV66gR48eUCgUmD17Nry9vXHkyBGpK6RihuGIirXHjx+jT58+6Nu3LxITE+Hr64vw8HDMnj0bVlZWQFAQ4OYGtGyZ8d+gIKlLJqLM3thHnXbsQHBwMLZu3Yry5cvj1q1b8Pf3x8SJE5H+6kKtRO+Kc44456jYOnr0KHr37o07d+5ALpdj4sSJ+Oabb2BsbJzRICYm40tXqXz9IF7ckUh3vGUfTUpKwvDhw7Fq1SoAgJ+fH9asWYMKFSpIUy8VOs45IsonIQR+++03NG/eHHfu3EGlSpVw9OhRTJw48XUwAoDISM0vXYAXdyTSJW/ZR21sbLBy5UqsX78ednZ2OH78OHx8fBASEiJBsVScMBxRsfL8+XMMGDAAI0aMQHp6Onr27ImIiAg0aNAga+NMF6JT48UdiXRHLvfRnj174ty5c/Dz88OTJ0/w3nvvYfr06TDAgREqIAxHVGzcvXsXTZo0wZ9//gm5XI65c+di3bp1sLa21v4AXtyRSLflYR91c3PDgQMH8Omnn0IIgQkTJuCjjz5SX8eMKC8454hzjoqF8+fPo2PHjrh79y7s7e2xYcMGNG/ePHcP5sUdiXRbHvfRJUuW4IsvvkBaWhrq16+PrVu3wsHBoQgKpcLGi0AWIoaj4mXXrl346KOPkJSUhGrVqmH79u3w8PDI+EKNjMzommfoISr+Mu3zR6Oi0LVrVzx8+BAeHh4ICQmBp6en1BXSO+KEbKJcWL58Od577z0kJSWhefPmOHr0aEYw4in6RIbljX2+8dWrOHbsGCpUqIBbt26hUaNGOHr0qNRVkp5gzxF7jvTWvHnzMGrUKABAv379sGzZMpiZmfEUfSJDk8M+H29qis6dO+PkyZMwMzPDX3/9hc6dO0tXK70T9hwR5WDGjBnqYPTVV19h9erVGcEI4Cn6RIYmh32+bNmyCA0NRZcuXZCSkoJu3bohODhYmjpJbzAckV4RQuC7777DN998AwCYPHkyZs2aBZlM9roRT9EnMixv2ectLS2xceNG9O3bF+np6ejduzeCONROOWA4Ir0hhMBXX32FadOmAQBmzZqFSZMmaQYjgKfoExmaXOzzxsbGWL16NYYMGQIhBAYNGoRffvlFooJJ13HOEecc6QWlUonhw4djwYIFAIDffvsNX3zxRc4P4in6RIYlF/u86h9ZP/30EwDg+++/x4QJE7L+I4t0UlEdv43f3oRIWgqFAp9++ilWrFgBmUyGJbNmYZCXV8YXYU6hx8WFoYjIkORin5fJZJg9ciRsHz7EpJUr8d133yE5ORnTp09nQCI1hiPSaWlpaRgwYADWr18PIyMjrPr4Y/QbNy5j8qWRUUZXemCg1GUSkb4ICoJs8GBMVCphLZPhf0Jg5syZePHiBX7++WcGJALAOUekw1JSUtCzZ0+sX78exsbGCF6wAP1WrHh9VopSCQwZktGDRET0NjExwODB6u+Q0UJgwasw9Msvv2Do0KFQvnnWGxkkhiPSSS9evMAHH3yATZs2wdTUFJs2bUL3KlV4ij4R5Z+WU/6HCYEVY8fCyMgIS5YswcCBA5Geni5RgaQrGI5I5zx79gzvvfceQkJCYGFhgW3btqFTp048RZ+I3k023yEDv/gCa9asgVwuxx9//IE+ffogLS1NmhpJJzAcke6IicGTrVvRrkULhIaGwtraGjt37kSbNm0y/s5T9InoXeTwHdKrVy/8/fffMDExwV9//YXu3bsj5b//gNBQDt0bIJ7Kz1P5dUNQEB58+inaCYEIACUsLbFz/340aNAga1ueok9E7yKH75CdO3figw8+wMuXL9EWwCYAljz5Q2cU1fGb4YjhSHoxMYh1dUVrIXAFgD2A3UZGqB0VxfBDREVuf3AwuvTqhWQAzQFsAWDD+zPqBN5bjQzGrUOH0PRVMHIGcAhAbaWSE62JSBIty5bFLgA2AA4AaAfgCU/+MCgMR1T4YmKyHbe/dOkSmv7vf7gJoAKAwwCqApxoTUTSqVwZjY2MsA9ASQBhAFoBeFi6tPb2OXzHkX5iOKLCFRQEuLkBLVtm/DfTzR7379+Pxo0b425cHKqXK4fDRkbwADjRmoik9Wridn25HKHIGOo/A6BR9+7477//NNvm8B1H+otzjjjnqPDExGR8WWS+rsircfs/DxzAJ598grS0NDRp0gSbN29G6RcvONGaiHTHq4nbV4RA+4EDER0djTJlyuDff/9Fo0aNcvyO43dY4eC91Uj/abngmlKhwPfffYfJK1cCAHr27ImVK1fC3Nw8owG/UIhIV7y6V1s1AMePH0fnzp0RHh6Oli1bYuXKlejl4JD9hWn5XabXOKxG+ZObMfY3Lrj2GEAXQB2Mvv76a6xdu/Z1MCIi0lFOTk44ePAgunbtipSUFPTu3Rtj1q9H2pv3YstpviTnJukNhiPKu9yOsWe64NpZAPUAbAdgZmaGFStWYNasWTB682q1REQ6ysrKChs3bsRXX30FAPhpyRK0rFQJsarvsZzmS3Jukl7hnCPOOcqbPI6xKxQKzP72W0ycMwdp6elwd3fHxo0bUbdu3aKrmYiogP3zzz/4+OOP8fTpU5QpVQoLR4xA98BA7cGIc5MKDK9zRNJ4W7evlnlE2d389cKFC2jWrBnGz5yJtPR0dOnSBadPn2YwIiK9161bN4SHh6NWrVpIePQIH02ejB6jRyMuLi5r4zx8b6pxCE5S7DnSw54jIQSuXr2K3bt3Izw8HJcvX0ZsbCwSExMhhIC1tTVsbGzg7u6OSpUqwcvLCw0aNEDt2rVhZmaW/RMHBQGDB2fsxNldLj8X/wJ6+PAhJk2ahIULF0KpVMLGxga//vorAgICIHtzfJ6ISI+lpqbi+++/x4wZM6BQKGBtbY1vvvkGX375JSwsLDIa5bXnKDffxa88f/4cx48fx+nTp3H9+nVcv34d0dHRSEpKQnJyMkxNTWFnZwc3NzdUr14dDRs2RJs2beCipz1WRXb8FgYoMTFRABCJiYlSl5IncXFxYsaMGaJSpUoCQJ5/TE1MhF/duuJ///uf2Lx5s3jw4MHrJ79zRwgjIyGA1z9yecbyNy1blvE3VZtly4QQQsTGxor//e9/wsrKSv2aH330kYiKiiqid4iISBrh4eGifv366u8+Z2dnMXv27NfHmWy+N7N4y3fxo0ePxNatW8XXX38t/Pz8hLGxcb6OBw0aNBBLly4Vz549K6J3qGAU1fGbPUd60HMUHx+PmTNnYuHChXj58iWAjEnNzZo1Q7NmzeDl5QV3d3fY2dlBJpMhOTkZjx8/xq1btxAZGYmILVtw/Px5PNTy3NWqVUOTJk3QtHRpNJ05E24ANPp2QkOB5s2zPvDV9T+Sy5XDjnPn8McffyAkJATp6ekAgDp16uCnn35CixYtCvjdICLSTUqlEuvWrcO4ceMQ82o4zMbGBt27d0fPnj3RskoVmERF5Xwtt9DQjEnbr8Qi484Bh99/H4dv3sSFCxfw5mHbGUBjANW7dEGVXr3g4eEBW1tbWFlZITU1FY8fP8Z///2HCxcuYP/+/Th16hSUr3qxypQpg7Fjx+Kzzz6DpaVlwb8pBYw3ni1Eb765KSkp+PHHH7F582aUKlUKPXv2xMcffwy5XC5pnUqlEosXL8a4cePw9OlTAED9+vUxbNgwfPTRR7C2tn77k7zqzhVKJW4COAbgiEyGI5Ur4/L161maq3ayygA8ZDKU/+MPWLm7w9zcHC9fvsTjx49x7949XL58GadPn8aJEyeQlpamfnzjxo0xYcIEtG/fnkNoRGSQUlJSsGbNGsyZMwdXrlxRL7e2toavry/8/PxQoUIFuLi4wM7ODkZGRlAoFHjw4AHuX72KyLFjcQnABQB3tDx/5cqV0czHB02Dg9FMCLjj1T9qcznJ+/79+/jjjz+wcOFC3Lx5EwDg5uaG3377DZ07dy6Q9+BdJCcnY968eQgJCYEQAoGBgfj4448hk8k4rFaYMnfLKRQK0aVLlyxdjs2bNxePHj2SrMb//vtPNGzYUF1P3bp1xc6dO4VSqdRseOeOEPv3ax/+EiLjb5m7Z1U/oaHiwYMH4t9//xVjxowRDRo0EMZyeb66Zz08PMT48ePFpUuXCv+NISLSEwqFQoSGhoqhQ4eKMmXK5Ov71QgQdVxdxYgRI8SGDRtEbGxsxpPn8N2ulZZjRVpamlixYoVwdXVVv16PHj3E48ePC/29yc5///2nderImDFjhBAcVitUmZPn0qVLMWbMGJiZmeH333/HgwcPMH36dDx79gy1atXCwYMHYWdnV6T17du3Dz169MCjR49gbW2N6dOn47PPPsvak1VAE6hVnj9/jhPbtuH0/v249fw5bick4O7du3jx4gVevHgBMzMzlCxZEvb29qhatSpq1KgBf39/eHh4sJeIiCgHCoUCV65cwbFjx3DmzBlER0fjzp07SE5OhhACMpkMZcqUQdmyZeHm5oYaLi7wsrJCrTZtYFutWtYnzMsk77ccK5KTk/H9999jzpw5UCgUcHV1xdq1a9G4cePCeTOyceXKFbRq1Qr37t1D+fLl8e233yI+Ph7fffcdAGD37t1o0KABe44Kiyp5xsbGilKlSgkAYtGiReq/nz9/Xjg4OKh7kF6+fFkkdSmVSjFv3jwhf9WD41u1qog+cUJ74wKYQE1ERHosN9/teThWnDhxQlR41Yskl8vFL7/8knW0opAkJCQIDw8PAUDUqFFD3Lt3T/23L774QgAQjRs3LrKeI4MOR7NmzRIARMWKFUV6erpGmzNnzggbGxsBQAwYMKDgPiDZDIO9fPlSDBw4UN2FOAAQL4CMD7W2D3x+ulRDQ7MffiMiIv3ztu/2vBwrli0TiTKZ6JNpOCswMFB7B8HbpnTkQWpqqmjRooV6mobGmdQi40xoU1NTAUDs2rWL4aiwqMJRnTp1BADx+++/a223e/dudS/OzJkz3/2Fly17neAzhZ7Y2Fjh5+eXMb5sZCR+lsmE8m0pPy89R0REZJhye6zI1E4JiDmv5jupemzi4uJet83mWJZfqp4ha2trceHCBa1tPvnkEwFA3YnAcFQIVOEIgJDJZJob/Q3z589Xt9u0aVP2T/q2FJ3NB/TEli2iXLlyAoAoWbKk2P3jj3lK+RwuIyKiHOXmWKGlhykEEHavrlvn6uoqzp07l/d/mL/l2Lh06VL18Xjz5s3ZroKqx8je3p7hqLBkDkeNGzfOufGdO+Lzrl0FAGFpaSnOnDmTtU1uUrSWD94qQJiZmAgAonr16iIyMjJ/HzwOlxERUU7edqzI5thz9cABUblyZQFAWFlZiU1Tp+btH/A5HBsPHjwoTF4dA78fMybHEJWSkiJsbW3Vx26Go0KQORz9+OOP2Td8tWHTANHmVXsXFxeNiWL56bJMA8ToTGO6Xbt2FU+fPtV8XfYIERFRUcrm2PPo0SPRunVr9TFregFM/YiMjFSfENWjXj2hlMneOkzXs2dPhqPClDkcHT9+XHujNzbsY0B44vVl158/f57RLo+T3e4bGYnWmYLRd999JxQKhfbXZ48QEREVpWyOPampqeLzzz9XH7v6ymQZJw3lYZhOdWy8f/++8PT0FABE/Vq1xHNVMHrLaIlqmktRhCOjArgagN4yBVDn7Fntf3zjLsolAGwDUNLGBidOnEDfvn2RkpICVK6ccd2IzOTyjMvDv+Fo1aqoY2+PvQAsLSywYcMGTJ06FUZvPh7IuE5F8+ZvvdIpERFRgcnm2GNiYoLff/8dCxYsgFwuxxoh4F+1Km4dOqT9prjZHBsTSpVC69atce3aNZQvXx7/fvstLN683KJCAdy4keUpG92//44rlweFGr10lKrnqEFO83my6RIM3bBBPUbasmVLkZCQ8NZhsOfPn4tx48apz3yrWrWquHjxYhGtLRERUcHZu3evKFmypPoMs2XLlmkfAXnj2Hjl++9FxYoVBQDh5OQkrl+/nqepKWkymbDksFrhUYWj4TkNgQmRbejZs2ePsLa2Vm/gDRs2CEVUVJauyNTUVLFq1SpRoUIFdVdgnz59RFJSUuGvJBERUSG5efOmaNKkifrYVrduXbFr1y6tt7h6uWuXmPPtt8LS0lIAEO7u7uLKlSuv2+ThbLqmRRSODPr2IX8A6Pe2G/W9uvv8m3dRPnfuHHr37q2+qWCVKlXQsWNHVKhQAWlpabhw4QK2bduGhIQEAICLiwvmz5+PLl26FPLaERERFT6FQoF58+ZhypQpSEpKAgBUrFgR7dq1g6enJwDg4sWL2LRpk/pY2Lx5c2zYsAH29vaaT5bNsVbj725uGKNU4ieg0G8fYtDh6JFMhpJLl2ofL82FFy9eYMaMGfjll1/w9OlTrW3Kli2L0aNH4/PPP4e1tfW7lE1ERKRz4uPj8cMPP2DFihXqkPQmZ2dnTJ48GZ988on2eba5ERSEx59+ilJCMBwVBvWNZy9f1n5DvzxKTExESEgIDh8+jAcPHkAmk6Fy5cpo3rw5mjdvDmNj4wKomoiISHclJycjJCQEYWFhiImJgUKhQKVKldCkSRO0b9++QI6FT69cgV316gxHhUEdjgr7rr5ERERUYIrq+G3Qp/ITERERvYnhiIiIiCgThiMiIiKiTBiOiIiIiDLRiXC0YMECeHh4wNzcHD4+Pjh8+HCO7Q8ePAgfHx+Ym5ujQoUKWLRoURFVSkRERMWd5OEoODgYX375JSZMmICIiAg0bdoUHTp0QHR0tNb2t27dQseOHdG0aVNERETgm2++wYgRI7Bx48YirpyIiIiKI8lP5W/QoAHq1q2LhQsXqpdVq1YN77//PmbMmJGl/dixY7Flyxb1lakBYOjQoTh37hzCwsJy9Zo8lZ+IiEj/GMSp/KmpqQgPD0fbtm01lrdt2xbHjh3T+piwsLAs7du1a4fTp08jLS2t0GolIiIiwyDppZsTEhKgUCjg4OCgsdzBwQFxcXFaHxMXF6e1fXp6OhISEuDk5JTlMSkpKUhJSVH/npiYCADZ3vKDiIiIdI/quF3Yg146cV8LmUym8bsQIsuyt7XXtlxlxowZmDJlSpbl5cuXz2upREREJLGHDx/Czs6u0J5f0nBUpkwZyOXyLL1E8fHxWXqHVBwdHbW2NzY2RunSpbU+Zvz48Rg9erT69ydPnsDNzQ3R0dGF+ubqmqdPn6J8+fK4c+eOQc214npzvQ0B15vrbQgSExPh6uqKUqVKFerrSBqOTE1N4ePjgz179uCDDz5QL9+zZw+6du2q9TENGzbE1q1bNZbt3r0b9erVg4mJidbHmJmZwczMLMtyOzs7g/pQqdja2nK9DQjX27BwvQ2Loa63kVHhTpmW/FT+0aNHY9myZVi+fDmuXLmCUaNGITo6GkOHDgWQ0eszYMAAdfuhQ4ciKioKo0ePxpUrV7B8+XIEBQVhzJgxUq0CERERFSOSzznq2bMnHj58iKlTp+LevXvw9vbGjh074ObmBgC4d++exjWPPDw8sGPHDowaNQrz589HuXLl8Ouvv+LDDz+UahWIiIioGJE8HAHAZ599hs8++0zr31auXJllmb+/P86cOZPv1zMzM8OkSZO0DrUVZ1xvrrch4HpzvQ0B17tw11vyi0ASERER6RLJ5xwRERER6RKGIyIiIqJMGI6IiIiIMmE4IiIiIsqk2IajH374AY0aNYKlpSVKlCiRq8cIITB58mSUK1cOFhYWaN68OS5duqTRJiUlBcOHD0eZMmVgZWWFLl26ICYmphDWIH8eP36M/v37w87ODnZ2dujfvz+ePHmS42NkMpnWn9mzZ6vbNG/ePMvfe/XqVchrk3v5We+BAwdmWSc/Pz+NNsVte6elpWHs2LGoUaMGrKysUK5cOQwYMACxsbEa7XRtey9YsAAeHh4wNzeHj48PDh8+nGP7gwcPwsfHB+bm5qhQoQIWLVqUpc3GjRtRvXp1mJmZoXr16ti0aVNhlZ9veVnvf/75B23atIG9vT1sbW3RsGFD7Nq1S6PNypUrte7rL1++LOxVyZO8rPeBAwe0rtPVq1c12hW37a3t+0smk8HLy0vdRte396FDh9C5c2eUK1cOMpkMmzdvfutjimzfFsXUxIkTxdy5c8Xo0aOFnZ1drh4zc+ZMYWNjIzZu3CguXLggevbsKZycnMTTp0/VbYYOHSqcnZ3Fnj17xJkzZ0SLFi1ErVq1RHp6eiGtSd60b99eeHt7i2PHjoljx44Jb29v0alTpxwfc+/ePY2f5cuXC5lMJv777z91G39/f/Hpp59qtHvy5Elhr06u5We9AwICRPv27TXW6eHDhxptitv2fvLkiWjdurUIDg4WV69eFWFhYaJBgwbCx8dHo50ube/169cLExMTsXTpUnH58mUxcuRIYWVlJaKiorS2v3nzprC0tBQjR44Uly9fFkuXLhUmJibi77//Vrc5duyYkMvlYvr06eLKlSti+vTpwtjYWBw/fryoVuut8rreI0eOFLNmzRInT54U169fF+PHjxcmJibizJkz6jYrVqwQtra2WfZ5XZLX9Q4NDRUAxLVr1zTWKfM+Why395MnTzTW986dO6JUqVJi0qRJ6ja6vr137NghJkyYIDZu3CgAiE2bNuXYvij37WIbjlRWrFiRq3CkVCqFo6OjmDlzpnrZy5cvhZ2dnVi0aJEQIuPDaGJiItavX69uc/fuXWFkZCR27txZ4LXn1eXLlwUAjQ9BWFiYACCuXr2a6+fp2rWraNmypcYyf39/MXLkyIIqtUDld70DAgJE165ds/27oWzvkydPCgAaX8K6tL19fX3F0KFDNZZVrVpVjBs3Tmv7r7/+WlStWlVj2ZAhQ4Sfn5/69x49eoj27dtrtGnXrp3o1atXAVX97vK63tpUr15dTJkyRf17br8PpZTX9VaFo8ePH2f7nIawvTdt2iRkMpm4ffu2epk+bG+V3ISjoty3i+2wWl7dunULcXFxaNu2rXqZmZkZ/P39cezYMQBAeHg40tLSNNqUK1cO3t7e6jZSCgsLg52dHRo0aKBe5ufnBzs7u1zXd//+fWzfvh2BgYFZ/rZmzRqUKVMGXl5eGDNmDJKSkgqs9nfxLut94MABlC1bFlWqVMGnn36K+Ph49d8MYXsDGTdylMlkWYafdWF7p6amIjw8XGMbAEDbtm2zXcewsLAs7du1a4fTp08jLS0txza6sF2B/K33m5RKJZKSkrLcoPPZs2dwc3ODi4sLOnXqhIiIiAKr+129y3rXqVMHTk5OaNWqFUJDQzX+ZgjbOygoCK1bt1bfXUJFl7d3XhXlvq0TV8jWBXFxcQAABwcHjeUODg6IiopStzE1NUXJkiWztFE9XkpxcXEoW7ZsluVly5bNdX2rVq2CjY0NunXrprG8b9++8PDwgKOjIy5evIjx48fj3Llz2LNnT4HU/i7yu94dOnTARx99BDc3N9y6dQvfffcdWrZsifDwcJiZmRnE9n758iXGjRuHPn36aNy8Ule2d0JCAhQKhdb9Mrt1jIuL09o+PT0dCQkJcHJyyraNLmxXIH/r/aaffvoJycnJ6NGjh3pZ1apVsXLlStSoUQNPnz7FL7/8gsaNG+PcuXOoXLlyga5DfuRnvZ2cnLBkyRL4+PggJSUFf/zxB1q1aoUDBw6gWbNmALL/TBSX7X3v3j2EhIRg7dq1Gst1fXvnVVHu23oVjiZPnowpU6bk2ObUqVOoV69evl9DJpNp/C6EyLLsTblp8y5yu95A1vqBvNW3fPly9O3bF+bm5hrLP/30U/X/e3t7o3LlyqhXrx7OnDmDunXr5uq586qw17tnz57q//f29ka9evXg5uaG7du3ZwmHeXned1VU2zstLQ29evWCUqnEggULNP4mxfbOSV73S23t31yen329qOW3xnXr1mHy5Mn4999/NQK0n5+fxkkHjRs3Rt26dfHbb7/h119/LbjC31Fe1tvT0xOenp7q3xs2bIg7d+5gzpw56nCU1+eUSn5rXLlyJUqUKIH3339fY7m+bO+8KKp9W6/C0RdffPHWM2bc3d3z9dyOjo4AMpKpk5OTenl8fLw6hTo6OiI1NRWPHz/W6E2Ij49Ho0aN8vW6uZHb9T5//jzu37+f5W8PHjzIkqS1OXz4MK5du4bg4OC3tq1bty5MTEwQGRlZaAfLolpvFScnJ7i5uSEyMhJA8d7eaWlp6NGjB27duoX9+/dr9BppUxTbW5syZcpALpdn+Vdf5v3yTY6OjlrbGxsbo3Tp0jm2ycvnpTDlZ71VgoODERgYiL/++gutW7fOsa2RkRHq16+v/sxL7V3WOzM/Pz/8+eef6t+L8/YWQmD58uXo378/TE1Nc2yra9s7r4p0387TDCU9lNcJ2bNmzVIvS0lJ0TohOzg4WN0mNjZW5ybonjhxQr3s+PHjuZ6gGxAQkOWspexcuHBBABAHDx7Md70F5V3XWyUhIUGYmZmJVatWCSGK7/ZOTU0V77//vvDy8hLx8fG5ei0pt7evr68YNmyYxrJq1arlOCG7WrVqGsuGDh2aZdJmhw4dNNq0b99e5ybo5mW9hRBi7dq1wtzc/K0TW1WUSqWoV6+e+Pjjj9+l1AKVn/V+04cffihatGih/r24bm8hXk9Iv3DhwltfQxe3twpyOSG7qPbtYhuOoqKiREREhJgyZYqwtrYWERERIiIiQiQlJanbeHp6in/++Uf9+8yZM4WdnZ34559/xIULF0Tv3r21nsrv4uIi9u7dK86cOSNatmypc6d216xZU4SFhYmwsDBRo0aNLKd2v7neQgiRmJgoLC0txcKFC7M8540bN8SUKVPEqVOnxK1bt8T27dtF1apVRZ06dfR2vZOSksT//vc/cezYMXHr1i0RGhoqGjZsKJydnYv19k5LSxNdunQRLi4u4uzZsxqn96akpAghdG97q05xDgoKEpcvXxZffvmlsLKyUp+VM27cONG/f391e9XpvqNGjRKXL18WQUFBWU73PXr0qJDL5WLmzJniypUrYubMmTp7andu13vt2rXC2NhYzJ8/P9tLMEyePFns3LlT/PfffyIiIkJ8/PHHwtjYWCNgSy2v6/3zzz+LTZs2ievXr4uLFy+KcePGCQBi48aN6jbFcXur9OvXTzRo0EDrc+r69k5KSlIfmwGIuXPnioiICPWZs1Lu28U2HAUEBAgAWX5CQ0PVbQCIFStWqH9XKpVi0qRJwtHRUZiZmYlmzZplSeMvXrwQX3zxhShVqpSwsLAQnTp1EtHR0UW0Vm/38OFD0bdvX2FjYyNsbGxE3759s5zi+uZ6CyHE4sWLhYWFhdZr2URHR4tmzZqJUqVKCVNTU1GxYkUxYsSILNcEklJe1/v58+eibdu2wt7eXpiYmAhXV1cREBCQZVsWt+1969YtrftF5n1DF7f3/PnzhZubmzA1NRV169bV6MEKCAgQ/v7+Gu0PHDgg6tSpI0xNTYW7u7vW0P/XX38JT09PYWJiIqpWrapxMNUVeVlvf39/rds1ICBA3ebLL78Urq6uwtTUVNjb24u2bduKY8eOFeEa5U5e1nvWrFmiYsWKwtzcXJQsWVI0adJEbN++PctzFrftLURG77aFhYVYsmSJ1ufT9e2t6vXK7jMr5b4tE+LVbCYiIiIiKr63DyEiIiLKD4YjIiIiokwYjoiIiIgyYTgiIiIiyoThiIiIiCgThiMiIiKiTBiOiIiIiDJhOCIiIiLKhOGIiIiIKBOGIyIiIqJMGI6IqFiZOnUqatSoASsrKzg4OGDYsGFIS0uTuiwi0iPGUhdARFRQhBBQKBRYvHgxnJ2dcfnyZQwYMAA1a9bEsGHDpC6PiPQEbzxLRMVanz59YG9vj19++UXqUohIT3BYjYiKjaioKHzxxRfw9vZGyZIlYW1tjQ0bNsDFxUXq0ohIjzAcEVGxkJCQAF9fXyQkJGDu3Lk4cuQIwsLCIJfLUbt2banLIyI9wjlHRFQs7NixA+np6Vi3bh1kMhkAYP78+UhNTWU4IqI8YTgiomKhVKlSePr0KbZs2YLq1atj69atmDFjBpydnWFvby91eUSkRzghm4iKBSEEhg0bhrVr18LCwgL9+vXDy5cvERUVhW3btkldHhHpEYYjIiIiokw4IZuIiIgoE4YjIiIiokwYjoiIiIgyYTgiIiIiyoThiIiIiCgThiMiIiKiTBiOiIiIiDJhOCIiIiLKhOGIiIiIKBOGIyIiIqJMGI6IiIiIMmE4IiIiIsrk/2IPdu8v/Sf7AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwi0lEQVR4nO3dd1gU1xoG8HcLTaoVQRR7CVhBxY4N1GhMojGJ3WBsSWxpGo0tRmNiu/FaI7YbC7HGggUVK9gQjT02QBQsqICFtnvuH7gbVkoAWWbL+3seHmX27M43O1tezpw5IxNCCBARERERAEAudQFEREREhoThiIiIiCgLhiMiIiKiLBiOiIiIiLJgOCIiIiLKguGIiIiIKAuGIyIiIqIsGI6IiIiIsmA4IiIiIsqC4YiMwr179zBlyhScO3cu220DBw6EnZ1doR87LS0Nw4YNg4uLCxQKBRo0aFD4QovAokWLsGrVqmzLo6KiIJPJcrzNlMhkMkyZMkXqMorElClTIJPJ9H7fBQsWoHr16rC0tIRMJsPTp08xcOBAVK5cWafdjBkzsG3btkLVk5fHjx/jo48+Qrly5SCTyfDuu+8W+DEqV66MgQMHFnlthmbixIno2rUrKlSoAJlMluc2CyGwcuVKNGnSBLa2tnBwcECjRo3w559/Fl/BZkopdQFE+XHv3j1MnToVlStXLvLwsnjxYixduhQLFiyAl5fXGwWtorBo0SKUKVMm24emi4sLwsPDUa1aNWkKowIbPHgwOnXqpNd1nDt3DiNHjsTgwYMxYMAAKJVK2Nvb4/vvv8eoUaN02s6YMQM9e/YsVHjJyw8//ICtW7dixYoVqFatGkqVKlWkj29K5s2bh3r16uGdd97BihUr8mw7fPhwrFq1CmPGjMHMmTORkZGBCxcu4MWLF8VUrfliOCKzd/HiRdjY2ODzzz+XupQ8WVlZwcfHR+oyqADc3Nzg5uam13VcunQJAPDpp5+iSZMm2uXFGaIvXryIatWqoU+fPsW2zqLy4sULlChRotjWl5ycDLk886DN//73v1zbbdu2DUuXLkVQUBB69eqlXe7v76/3GomH1czSw4cPMWTIEFSsWBFWVlYoW7YsWrRogf3792vb+Pr6wtPTE+Hh4WjevDlsbGxQuXJlrFy5EgCwa9cuNGrUCCVKlEDdunWxZ8+ebOs5duwY2rdvD3t7e5QoUQLNmzfHrl27srW7ePEiunfvjpIlS8La2hoNGjTA6tWrtbcfOnQIjRs3BgAMGjQIMpksx0MvN27cQJcuXWBnZ4eKFSviyy+/RGpqap7PhUwmw/Lly/Hy5Uvt465atSrPQ1ivr1tz+OPSpUv4+OOP4ejoCGdnZ3zyySdITEzUua9arcaCBQvQoEED2NjYwMnJCT4+Pti+fTuAzEMLly5dwuHDh7X1aA6N5FZTfp7nVatWQSaTITQ0FMOHD0eZMmVQunRpvP/++7h3716ez1FeKleujK5du2Lr1q2oV68erK2tUbVqVfz666/Z2sbExKBv374oV64crKysUKdOHcyZMwdqtTrXx4+KioJSqcTMmTOz3XbkyBHIZDJs3LgRQMH2Q0pKCsaPH48qVarA0tISFSpUwGeffYanT5/muH07d+5Ew4YNYWNjgzp16mDnzp0AMp/XOnXqwNbWFk2aNMGZM2d07p/TobGgoCD4+fnBxcVF+3jjxo3D8+fPc3+ic+Hr64u+ffsCAJo2bapzmOb1w2oymQzPnz/H6tWrta8tX1/fPB//8ePHGDFiBCpUqABLS0tUrVoVEyZM0L6vNK/J/fv348qVK9rHPXToUK6PmZ6ejm+++Qbly5dHiRIl0LJlS5w6dSrHtvHx8Rg6dCjc3NxgaWmJKlWqYOrUqcjIyNBpFxsbi549e8Le3h5OTk7o06cPTp8+ne39ojkEf+HCBfj5+cHe3h7t27cHkHl4ffr06ahdu7b2c3HQoEF4+PBhtrqCgoLQrFkz2Nraws7ODv7+/oiMjMzzudTQBKN/85///AeVK1fWCUZUjASZHX9/f1G2bFmxbNkycejQIbFt2zYxadIksWHDBm2bNm3aiNKlS4tatWqJwMBAsXfvXtG1a1cBQEydOlXUrVtXrF+/XgQHBwsfHx9hZWUl7t69q73/oUOHhIWFhfDy8hJBQUFi27Ztws/PT8hkMp31XL16Vdjb24tq1aqJNWvWiF27domPP/5YABCzZs0SQgiRmJgoVq5cKQCIiRMnivDwcBEeHi7u3LkjhBBiwIABwtLSUtSpU0fMnj1b7N+/X0yaNEnIZDIxderUPJ+L8PBw0aVLF2FjY6N93AcPHojbt28LAGLlypXZ7gNATJ48Wfv75MmTBQBRq1YtMWnSJBESEiLmzp0rrKysxKBBg3Tu269fPyGTycTgwYPFn3/+KXbv3i1+/PFH8Z///EcIIcTZs2dF1apVRcOGDbX1nD17Vgghcqwpv8+z5vmrWrWq+OKLL8TevXvF8uXLRcmSJUXbtm11atS0zWnbX+fu7i4qVKggKlWqJFasWCGCg4NFnz59BADxyy+/aNs9ePBAVKhQQZQtW1YsWbJE7NmzR3z++ecCgBg+fHiez+97770nKlWqJDIyMnTaffDBB8LV1VWkp6cXaD+o1Wrh7+8vlEql+P7778W+ffvE7Nmzha2trWjYsKFISUnR2T43Nzfh6empfb03bdpUWFhYiEmTJokWLVqILVu2iK1bt4qaNWsKZ2dn8eLFC+39NTVl9cMPP4h58+aJXbt2iUOHDoklS5aIKlWqZNsPOd33dZcuXRITJ07U7q/w8HBx48YNIUTm+8Ld3V3bNjw8XNjY2IguXbpoX1uXLl3K9bFfvnwp6tWrJ2xtbcXs2bPFvn37xPfffy+USqXo0qWLEEKIlJQUER4eLho2bCiqVq2qfdzExMRcH3fAgAFCJpOJr7/+Wuzbt0/MnTtXVKhQQTg4OIgBAwZo28XFxYmKFSsKd3d3sXTpUrF//37xww8/CCsrKzFw4EBtu2fPnonq1auLUqVKiYULF4q9e/eKMWPGiCpVqmR7HQ8YMEBYWFiIypUri5kzZ4oDBw6IvXv3CpVKJTp16iRsbW3F1KlTRUhIiFi+fLmoUKGCeOutt3T26Y8//ihkMpn45JNPxM6dO8WWLVtEs2bNhK2tbZ7PZ05sbW11tlkjPT1dWFlZiffee0/MmTNHVKpUScjlclGlShXxyy+/CLVaXaD1UMExHJkhOzs7MXr06DzbtGnTRgAQZ86c0S5LSEgQCoVC2NjY6AShc+fOCQDi119/1S7z8fER5cqVE8nJydplGRkZwtPTU7i5uWnf3B999JGwsrISMTExOuvv3LmzKFGihHj69KkQQojTp0/n+oU9YMAAAUD88ccfOsu7dOkiatWq9S/PRub9bW1tdZYVJhz9/PPPOu1GjBghrK2ttdt65MgRAUBMmDAhz3o8PDxEmzZtsi3Pqab8Ps+awDNixAidx/z5558FABEXF6ddtnr1aqFQKMTq1avzrFOIzPAgk8nEuXPndJZ37NhRODg4iOfPnwshhBg3bpwAIE6ePKnTbvjw4UImk4lr165pl73+/IaGhgoAYuvWrdpld+/eFUqlUif85nc/7NmzJ8d2QUFBAoBYtmyZzvbZ2NiI2NhY7TLN693FxUW7fUIIsW3bNgFAbN++PVtNuVGr1SI9PV0cPnxYABDnz5/P9301NPv29OnTOstfD0dC5P5lnJMlS5bk+L6aNWuWACD27dunXdamTRvh4eHxr4955coVAUCMGTNGZ/natWsFAJ3ahg4dKuzs7ER0dLRO29mzZwsA2iCycOFCAUDs3r1bp93QoUNzDEcAxIoVK3Tarl+/XgAQmzdv1lmu+dxZtGiREEKImJgYoVQqxRdffKHTLjk5WZQvX1706tXrX5+DrHLbH3FxcQKAcHBwEG5ubmL16tXiwIEDYtiwYQKA+O677wq0Hio4HlYzQ02aNMGqVaswffp0nDhxAunp6Tm2c3FxgZeXl/b3UqVKoVy5cmjQoAFcXV21y+vUqQMAiI6OBgA8f/4cJ0+eRM+ePXUGNysUCvTr1w+xsbG4du0aAODgwYNo3749KlasqLPugQMH4sWLFwgPD8/XNslkMnTr1k1nWb169bQ1FYd33nkn2/pTUlLw4MEDAMDu3bsBAJ999lmRrK8gz3NeNQLQeZ769++PjIwM9O/fP191eHh4oH79+jrLevfujaSkJJw9exZA5n5+6623dMbEAJn7WQiBgwcP5vr4vr6+qF+/PhYuXKhdtmTJEshkMgwZMiRb+3/bD5p1vT7g/YMPPoCtrS0OHDigs7xBgwaoUKGC9nfN693X11dnrMrr74Pc3Lp1C71790b58uWhUChgYWGBNm3aAACuXLmS532L08GDB2Fra4uePXvqLNc8b68/T/kRGhoKANnGJvXq1QtKpe4Q2J07d6Jt27ZwdXVFRkaG9qdz584AgMOHD2v/tbe3zzbw/eOPP861jh49emRbl5OTE7p166azrgYNGqB8+fLaw4R79+7VvjeytrO2tkabNm3yPJxYEJpDzUlJSdi4cSP69++Pdu3aYfHixXj33Xcxd+5cPHv2rEjWRTljODJDQUFBGDBgAJYvX45mzZqhVKlS6N+/P+Lj43Xa5XTGiaWlZbbllpaWADLHcQDAkydPIISAi4tLtvtrQlVCQoL23/y0+zclSpSAtbW1zjIrKyttTcWhdOnS2dYPAC9fvgSQOdZLoVCgfPnyRbK+gjzP+a2xMHLaHs2yotrPI0eOxIEDB3Dt2jWkp6fjt99+Q8+ePXNc979tY0JCApRKJcqWLavTTiaToXz58tlqye31/m/vg5w8e/YMrVq1wsmTJzF9+nQcOnQIp0+fxpYtW3RqNAQJCQkoX758tjFT5cqVg1KpzPd78/XHBLK/ZpRKZbb9dv/+fezYsQMWFhY6Px4eHgCAR48eaR/T2dk527pyWgZkflY4ODhkW9fTp09haWmZbX3x8fHadd2/fx8A0Lhx42ztgoKCtO3eVMmSJSGTyeDg4JDtJIzOnTsjJSUFly9fLpJ1Uc54tpoZKlOmDObPn4/58+cjJiYG27dvx7hx4/DgwYMcB1YXVMmSJSGXyxEXF5ftNs3g3zJlygDI/CLLT7vipglarw/oLswXgkbZsmWhUqkQHx+fY1AoqII8z/r0eqjOukzzhfem+7l379749ttvsXDhQvj4+CA+Pr7QPXClS5dGRkYGHj58qBOQhBCIj4/XDv7Xh4MHD+LevXs4dOiQtrcIQLaB4IagdOnSOHnyJIQQOgHpwYMHyMjIKNRrS/N6iI+P1+mNy8jIyPbeKlOmDOrVq4cff/wxx8fSBOvSpUvnOKA7p9clgBznjtKcoJDb55+9vb22HQBs2rQJ7u7uObYtCjY2NqhRo0aO2yCEAJD/gd1UOHx2zVylSpXw+eefo2PHjtpDIG/K1tYWTZs2xZYtW3T+Elar1fj999/h5uaGmjVrAgDat2+v/cLIas2aNShRooT2r6ai6OEoCGdnZ1hbW+Ovv/7SWf4mk69pDgcsXrw4z3ZWVlb52s6CPM/6dOnSJZw/f15n2bp162Bvb49GjRoByNzPly9fzvYaW7NmDWQyGdq2bZvnOqytrTFkyBCsXr0ac+fORYMGDdCiRYtC1as5O+n333/XWb5582Y8f/5ce7s+aL6YNa9njaVLl+ptnVnl97UFZD5Pz549yzZp5Jo1a7S3F5Tm7Li1a9fqLP/jjz+ynYHWtWtX7RQB3t7e2X404ahNmzZITk7WHrbW2LBhQ77r6tq1KxISEqBSqXJcV61atQBknkavVCpx8+bNHNt5e3sX9CnJVY8ePZCUlISwsDCd5cHBwbCzs9P2oJF+sOfIzCQmJqJt27bo3bs3ateuDXt7e5w+fRp79uzB+++/X2TrmTlzJjp27Ii2bdviq6++gqWlJRYtWoSLFy9i/fr12i+JyZMna8cWTJo0CaVKlcLatWuxa9cu/Pzzz3B0dASQOWeLjY0N1q5dizp16sDOzg6urq46Y5+KkkwmQ9++fbWT2tWvXx+nTp3CunXrCv2YrVq1Qr9+/TB9+nTcv38fXbt2hZWVFSIjI1GiRAl88cUXAIC6detiw4YNCAoKQtWqVWFtbY26devm+Jj5fZ4LYs2aNfjkk0+wYsWKfI07cnV1xTvvvIMpU6bAxcUFv//+O0JCQjBr1iztmJwxY8ZgzZo1ePvttzFt2jS4u7tj165dWLRoEYYPH56vEDdixAj8/PPPiIiIwPLlywu8XRodO3aEv78/vv32WyQlJaFFixb466+/MHnyZDRs2BD9+vUr9GP/m+bNm6NkyZIYNmwYJk+eDAsLC6xduzZbuNSXunXr4tChQ9ixYwdcXFxgb2+v/eJ/Xf/+/bFw4UIMGDAAUVFRqFu3Lo4dO4YZM2agS5cu6NChQ4HXX6dOHfTt2xfz58+HhYUFOnTogIsXL2L27NnZDnVNmzYNISEhaN68OUaOHIlatWohJSUFUVFRCA4OxpIlS+Dm5oYBAwZg3rx56Nu3L6ZPn47q1atj9+7d2Lt3L4D89bB89NFHWLt2Lbp06YJRo0ahSZMmsLCwQGxsLEJDQ9G9e3e89957qFy5MqZNm4YJEybg1q1b6NSpE0qWLIn79+/j1KlTsLW1xdSpU/Nc1+HDh7XTA6hUKkRHR2PTpk0AMoOepjfzq6++wtq1a/HBBx/ghx9+gJubGzZt2oTt27dj9uzZsLGxKfDzTwUg5WhwKn4pKSli2LBhol69esLBwUHY2NiIWrVqicmTJ+uceZPb2Sfu7u7i7bffzrYcgPjss890lh09elS0a9dO2NraChsbG+Hj4yN27NiR7b4XLlwQ3bp1E46OjsLS0lLUr18/x7PE1q9fL2rXri0sLCx0zmjK6WwzIfJ/tk9u909MTBSDBw8Wzs7OwtbWVnTr1k1ERUXlerbaw4cPde6vOYvo9u3b2mUqlUrMmzdPeHp6CktLS+Ho6CiaNWum87xERUUJPz8/YW9vLwBozzjK7Qy6/DzPuZ3RpDkTLDQ0NFvb/J7K//bbb4tNmzYJDw8PYWlpKSpXrizmzp2brW10dLTo3bu3KF26tLCwsBC1atUSv/zyi1CpVDrtXn9+s/L19RWlSpXSObVaoyD74eXLl+Lbb78V7u7uwsLCQri4uIjhw4eLJ0+e5Lh9r8vp9a7ZP1mnMMjpNRgWFiaaNWsmSpQoIcqWLSsGDx4szp49m+0518fZaufOnRMtWrQQJUqUEAByPCsyq4SEBDFs2DDh4uIilEqlcHd3F+PHj9eZ7kCI/J+tJoQQqamp4ssvvxTlypUT1tbWwsfHR4SHhwt3d/dsZ249fPhQjBw5UlSpUkVYWFiIUqVKCS8vLzFhwgTx7NkzbbuYmBjx/vvvCzs7O2Fvby969OghgoODBQDx559/6jwnOb3Xhcg8fX727Nmifv36wtraWtjZ2YnatWuLoUOHiuvXr+u03bZtm2jbtq1wcHAQVlZWwt3dXfTs2VPs37//X7dfcyZwTj9Z34ea7froo49EyZIlhaWlpahXr162M+1IP2RCvDqASURUQJUrV4anp6d2UkR9evDgAdzd3fHFF1/g559/1vv6yLjNmDEDEydORExMjN5nKSfTw8NqRGTQYmNjcevWLfzyyy+Qy+XZrhdG9N///hcAULt2baSnp+PgwYP49ddf0bdvXwYjKhSGIyIyaMuXL8e0adNQuXJlrF27VucsJyIg8/T8efPmISoqCqmpqahUqRK+/fZbTJw4UerSyEjxsBoRERFRFpKfyn/kyBF069YNrq6ukMlk2U4bzcnhw4fh5eWlvcjlkiVL9F8oERERmQXJw9Hz589Rv3597THjf3P79m106dIFrVq1QmRkJL777juMHDkSmzdv1nOlREREZA4M6rCaTCbD1q1b8e677+ba5ttvv8X27dt1rkE0bNgwnD9/Pt/X4SIiIiLKjdENyA4PD4efn5/OMn9/fwQGBiI9PR0WFhbZ7pOamqpzGQi1Wo3Hjx+jdOnShZokj4iIiIqfEALJyclwdXXV6yVUjC4cxcfHZ7ugoLOzMzIyMvDo0aMcr1k1c+bMf521lIiIiIzDnTt39DpNg9GFIyD7hQM1RwZz6wUaP348xo4dq/09MTERlSpVwp07d7JNWU9ERuTuXeDmTaBaNSCvU/zz246IDFpSUhIqVqyovRiwvhhdOCpfvny2KxU/ePAASqVSe8Xn11lZWWW70CMAODg4MBwRGavAQGDIEECtBuRyYNkyICCg8O2IyGjoe0iM5GerFVSzZs0QEhKis2zfvn3w9vbOcbwREZmg2Nh/Ag+Q+e/QoZnLC9OOiCgLycPRs2fPcO7cOZw7dw5A5qn6586dQ0xMDIDMQ2JZrww+bNgwREdHY+zYsbhy5QpWrFiBwMBAfPXVV1KUT0RSuH79n8CjoVIBN24Urh0RURaSH1Y7c+YM2rZtq/1dMzZowIABWLVqFeLi4rRBCQCqVKmC4OBgjBkzBgsXLoSrqyt+/fVX9OjRo9hrJyKJ1KiReYgsa/BRKIDq1QvXjogoC4Oa56i4JCUlwdHREYmJiRxzRGSsAgMzD5GpVJmBZ+nS3Mcc5acdERm84vr+ZjhiOCIyXrGxmYfIqlcH8jqtN7/tiMigFdf3t+SH1YiICs3NLX9hJ7/tiIhgAAOyiYiIiAwJe46IyCS8fPkSW7duxdGjR/HkyRO4urqiY8eO6NixI5RKftQRUf7xE4OIjJoQAr///ju+/PJLPHz4UOe2efPm4a233sLixYvRunVriSokImPDcERERkulUmHkyJFYtGgRAKBy5cr44IMP4OLigr///htBQUG4fPky2rZti/nz5+OLL76QuGIiMgYMR0RklNRqNfr3749169ZBJpNh6tSpGDdunM5M+TNnzsTo0aOxevVqjBw5EhkZGRgzZoyEVRORMeCAbCIySlOmTMG6detgYWGBDRs24Pvvv892CSEnJyesXLkSEydOBJA5yeyWLVukKJeIjAjDEREZnR07duCHH34AACxduhS9evXKta1MJsO0adO0PUYDBw7EtWvXiqVOIjJODEdEZFQSEhLw6aefAgBGjx6NQYMG/et9ZDIZfv75Z7Ru3RrJycno378/VCqVvkslIiPFcERERmXkyJG4f/8+3nrrLcycOTPf91MqlVi/fj0cHBxw6tQpLFy4UI9VEpExYzgiIqNx/Phx7QDsVatWwdraukD3d3V1xaxZswAA3333HeLi4vRRJhEZOYYjIjIKarVaO24oICAAjRs3LtTjDBkyBE2bNsXz588xbdq0oiyRiEwEwxERGYVNmzbh9OnTsLe3x/Tp0wv9OHK5HD///DMA4LfffsPff/9dVCUSkYlgOCIigyeEwI8//ggg83R8Z2fnN3q81q1bo2vXrlCpVJgyZUoRVEhEpoThiIgM3s6dO/HXX3/Bzs4OI0eOLJLH1BxSCwoKwq1bt4rkMYnINDAcEZFBy9prNGLECJQqVapIHrdhw4bo1KkT1Go1Zs+eXSSPSUSmgeGIiAzakSNHcPLkSVhbW2Ps2LFF+tjjxo0DAKxYsSLbRWuJyHwxHBGRQdPMR9S/f/83Hmv0utatW6Nx48ZITU3FihUrivSxich4MRwRkcGKi4vD1q1bAWQeUitqMpkMw4cPB5B5GRK1Wl3k6yAi48NwREQGKzAwEBkZGWjevDnq16+vl3V8+OGHcHJywu3bt7F37169rIOIjAvDEREZJJVKhWXLlgGAtndHH0qUKKG9PtvixYv1th4iMh4MR0RkeGJjsefnn3Hnzh2ULl0aPXv21Ovqhg0bBgDYtWsXYk+fBkJDgdhYva6TiAwXwxERGZbAQMDdHf/77jsAQN+GDQt8DbWCqlmzJlq1agW1Wo31TZsC7doB7u6ZtRCR2WE4IiLDERsLDBmCRLUaf75a1O/gwWLpxenXtSsA4H9CZC5Qq4GhQ9mDRGSGGI6IyHBcvw6o1dgCIAVAbQCN1Grgxg29r7pn7dqwBHABwF+ahSpVsaybiAwLwxERGY4aNQC5HP979Ws/ADKFAqheXe+rLtmoEbq9+r9m/SimdRORYWE4IiLD4eaGOz/9hEOvfu0tlwNLlwJubsWy7r6ffQYAWAdAVZzrJiKDwnBERAZlk1IJAaBl3bqoHB0NBAQU27q7zJ2Lko6OuAfgeFBQsa6biAwHwxERGZTNmzcDAD4YPLjYe20sLS3xzrvvZtZx9GixrpuIDAfDEREZjLi4OISFhQEA3n//fUlq6NGjBwBgy5YtvJwIkZliOCIig7F161YIIdC0aVO4STTWp2PHjrCzs0NsbCxOnz4tSQ1EJC2GIyIyGJpDapreGylYW1vj7bff1qmHiMwLwxERGYRHjx7h8OHDAKQNR1nXv3nzZgjNpJBEZDYYjojIIOzatQsqlQr169dH1apVJa2lS5cusLa2xq1bt3Dp0iVJayGi4sdwREQGYdeuXQCAbt26/UtL/bO1tUXbtm0BADt37pS4GiIqbgxHRCS59PR07N27FwDQ9dU1zqSmqUMT2ojIfDAcEZHkjh07hqSkJJQtWxaNGzeWuhwA0A7KDgsLw+PHjyWuhoiKE8MREUlO0zvTuXNnyOWG8bHk7u4ODw8PqNVqba8WEZkHw/gUIiKzpglHmt4aQ6Gph4fWiMwLwxERSerWrVu4evUqFAoF/Pz8pC5HhyYc7d69GyqVSuJqiKi4MBwRkaQ0vTKtWrWCk5OTtMW8pnnz5nBycsLjx49x4sQJqcshomLCcEREkgoODgZgeIfUAECpVKJTp04A/qmTiEwfwxERSSY1NVU7K7YmhBgaTV0hISESV0JExYXhiIgkExYWhpcvX6J8+fLw8PCQupwcdejQAQBw5swZntJPZCYYjohIMvv37weQGUBkMpnE1eSsQoUKqFOnDoQQCA0NlbocIioGDEdEJBnNoaqOHTtKXEneNPXx0BqReWA4IiJJPH78GGfOnAEAtG/fXuJq8qY5tMZwRGQeGI6ISBKhoaEQQuCtt95ChQoVpC4nT76+vlAqlbh16xZu3boldTlEpGcMR0QkCWM5pAYA9vb28PHxAfDPOCkiMl0MR0QkiayDsY2Bpk6GIyLTx3BERMXu9u3buHnzJpRKJdq0aSN1Ofmi6eE6cOAALyVCZOIYjoio2GlOiW/SpAns7e0lriZ/GjduDDs7Ozx+/BgXLlyQuhwi0iOGIyIqdppZsX19faUtpAAsLCzQokULAP/UT0SmieGIiIqdMYYj4J96GY6ITBvDEREVq6ioKERHR0OpVKJ58+ZSl1MgmvFRR44cgVqtlrgaItIXhiMiKlaaXhdvb2/Y2tpKXE3BeHt7o0SJEkhISMClS5ekLoeI9IThiIiKlSYcGctZallx3BGReWA4IqJidejQIQDGN95IQxPqGI6ITBfDEREVmzt37uD27dtQKBTaHhhjk3VQthBC2mKISC8Yjoio2Gh6Wxo1amQ08xu9rnHjxrCxscHDhw9x5coVqcshIj1gOCKiYqM5pGaM4400LC0t0axZMwA8tEZkqhiOiKjYGOv8Rq/jfEdEps0gwtGiRYtQpUoVWFtbw8vLC0ePHs2z/dq1a1G/fn2UKFECLi4uGDRoEBISEoqpWiIqjHv37uHGjRuQy+Vo2bKl1OW8kayDsjnuiMj0SB6OgoKCMHr0aEyYMAGRkZFo1aoVOnfujJiYmBzbHzt2DP3790dAQAAuXbqEjRs34vTp0xg8eHAxV05EBaH5o6d+/fpwdHSUuJo306RJE1haWiI+Ph43b96UuhwiKmKSh6O5c+ciICAAgwcPRp06dTB//nxUrFgRixcvzrH9iRMnULlyZYwcORJVqlRBy5YtMXToUJw5c6aYKyeigjh+/DgAGO1ZallZW1vD29sbwD/bRUSmQ9JwlJaWhoiICPj5+eks9/PzQ1hYWI73ad68OWJjYxEcHAwhBO7fv49Nmzbh7bffznU9qampSEpK0vkhouKlDUdOTkBsrLTFFIEW9eoBAI7v2ydxJURU1CQNR48ePYJKpYKzs7POcmdnZ8THx+d4n+bNm2Pt2rX48MMPYWlpifLly8PJyQkLFizIdT0zZ86Eo6Oj9qdixYpFuh1ElLdnz57h/LlzAIAW06cD7u5AYKC0Rb2JwEC0WLoUAHB83Trj3hYiykbyw2oAIJPJdH4XQmRbpnH58mWMHDkSkyZNQkREBPbs2YPbt29j2LBhuT7++PHjkZiYqP25c+dOkdZPRHk7uXMnVGo1KgKoCABqNTB0qHH2IMXGAkOGoPmrgdiXATweMsQ4t4WIcqSUcuVlypSBQqHI1kv04MGDbL1JGjNnzkSLFi3w9ddfAwDq1asHW1tbtGrVCtOnT4eLi0u2+1hZWcHKyqroN4CI8uX43r0AAJ3RRioVcOMG4OYmSU2Fdv06oFajLICaAP4GEK5W421j3BYiypGkPUeWlpbw8vJCSEiIzvKQkBA0b948x/u8ePECcrlu2QqFAgB4Si2RgTp+6xaA18KRQgFUry5JPW+kRg3g1WeQZnuOy2TGuS1ElCPJD6uNHTsWy5cvx4oVK3DlyhWMGTMGMTEx2sNk48ePR//+/bXtu3Xrhi1btmDx4sW4desWjh8/jpEjR6JJkyZwdXWVajOIKBcqlQrhkZEAgBaaP2wUCmDpUuPsaXFzA5YtAxSKf8JRjRrGuS1ElCNJD6sBwIcffoiEhARMmzYNcXFx8PT0RHBwMNzd3QEAcXFxOnMeDRw4EMnJyfjvf/+LL7/8Ek5OTmjXrh1mzZol1SYQUR4uXryI5ORk2NnZoe6FC0BUVGYvizGHiYAAwN8fLQ4eBAYMwKmYGKSlpcHS0lLqyoioCMiEGR6LSkpKgqOjIxITE+Hg4CB1OUQmbdGiRfjss8/QoUOHbIfQjZ1arUbZsmXx+PFjnDhxAk2bNpW6JCKTVlzf35IfViMi02ZKkz++Ti6Xa8dHcjJIItPBcEREemXK4Qj4Z7sYjohMB8MREenN3bt3ER0dDblcDh8fH6nL0Yus4cgMRykQmSSGIyLSG01vSr169WBvby9xNfrh7e0NCwsL3L9/H7deTVlARMaN4YiI9MbUD6kBgI2NDby8vADw0BqRqWA4IiK9OXHiBADkOqmrqdCEP832EpFxYzgiIr1ITU3FuVcXmzX1U9w128dwRGQaGI6ISC/++usvpKWloXTp0qhatarU5eiVZrD5X3/9hRcvXkhcDRG9KYYjItKLkydPAgCaNGkCmUwmcTX65ebmBldXV6hUKkREREhdDhG9IYYjItKLU6dOAcgMR6ZOJpPx0BqRCWE4IiK90PQcmfp4Iw3NoTXNdhOR8WI4IqIi9+TJE/z9998AgMaNG0tcTfHQhCP2HBEZP4YjIipyZ86cAQBUrVoVZcqUkbia4uHl5QWFQoG7d+8iNjZW6nKI6A0wHBFRkTO3Q2oAYGtri7p16wLgoTUiY8dwRERFzpwGY2fFQ2tEpoHhiIiKlBBCG47MqecI+Gd72XNEZNwYjoioSMXExOD+/ftQKpVo0KCB1OUUK03P0ZkzZ5Ceni5xNURUWAxHRFSkNL1G9erVg42NjcTVFK+aNWvCyckJL1++xIULF6Quh4gKieGIiIqUOQ7G1pDL5dpxVjy0RmS8GI6IqEiZ62BsDQ7KJjJ+DEdEVGQyMjK01xYz93DEniMi48VwRERF5tKlS3jx4gXs7e1Ru3ZtqcuRhCYUXrt2DY8fP5a4GiIqDIYjIioymkNqjRs3hlxunh8vpUuXRo0aNQD883wQkXExz08vItILc53f6HWc74jIuDEcEVGR0YQBcx1vpMFB2UTGjeGIiIrEs2fPcOnSJQAMR1kHZQshJK6GiAqK4YiIikRERATUajXc3Nzg6uoqdTmSqlevHqysrPDkyRPcuHFD6nKIqIAYjoioSJj7/EZZWVhYoFGjRgA47ojIGDEcEVGRYDjSxUHZRMaL4YiIioQ5XzYkJ5rngafzExkfhiMiemNxcXG4c+cOZDIZvLy8pC7HIGh60M6dO4fU1FSJqyGigmA4IqI3dvr0aQCAh4cH7O3tJa7GMFSpUgVlypRBWloazp07J3U5RFQADEdE9MY4v1F2MpmMh9aIjBTDERG9MQ7GzhkHZRMZJ4YjInojarWalw3JhSYsMhwRGReGIyJ6I3///TeSkpJgY2MDDw8PqcsxKJpwdOPGDSQkJEhcDRHlF8MREb0RTa9Ro0aNYGFhIXE1hqVkyZKoWbMmgH8GrROR4WM4IqI3wvmN8sZDa0TGh+GIiN4IB2PnjYOyiYwPwxERFVpKSgrOnz8PgOEoN1lP5xdCSFwNEeUHwxERFdq5c+eQnp6OsmXLonLlylKXY5Dq1asHS0tLJCQk4NatW1KXQ0T5wHBERIWmPaRWrx5khw4BsbHSFmSArB4+RMNq1QDw0BqRsWA4IqJC0w7GPngQaNcOcHcHAgMlrsqABAYC7u5oeuUKAODUypUSF0RE+cFwRESFdiosDADQRDOWRq0Ghg5lDxKQ+RwMGQKo1dCMxjq5fz+fGyIjwHBERIXy+PFj3IiKAgA0znqDSgXcuCFFSYbl+vXMsAhAM8lBJIC0V71IRGS4GI6IqFA0441qACiV9QaFAqheXYqSDEuNGoA88yO2GjKfo1QAf6WlSVkVEeUDwxERFYp2MHbTppmBCMj8d+lSwM1NwsoMhJsbsGwZoFBABvxzaO1VbxsRGS6GIyIqFG046t0biIoCQkMz/w0IkLQugxIQoH1umo4ZA4BnrBEZA6XUBRCR8RFC6F42xM2NvUW5efXcNH35Epg3TxsqichwseeIiAosKioKjx49goWFBerXry91OUZBM4P4tWvX8OTJE4mrIaK8MBwRUYFpeo0aNGgAa2triasxDqVLl0a1V5NBnj59WuJqiCgvDEdEVGC82Gzh8CK0RMaB4YiICozhqHCyXoSWiAwXwxERFUh6ejoiIiIA/PNlT/mjCZMnT56E0MwqTkQGh+GIiArk4sWLSElJgaOjI2rUqCF1OUalQYMGsLCwwMOHDxHF+Y6IDBbDEREViOaQUOPGjSGX8yOkIKytrdGgQQMAPLRGZMj4yUZEBaIzvxEVWNZDa0RkmBiOiKhAOBj7zfCMNSLDx3BERPmWlJSEy5cvA2A4KixNODp79izS09MlroaIcsJwRET5FhERASEEKlWqhPLly0tdjlGqXr06nJyckJKSggsXLkhdDhHlgOGIiPKNh9TenFwu57gjIgPHcERE+cbB2EWDk0ESGTaGIyLKN/YcFQ32HBEZNoMIR4sWLUKVKlVgbW0NLy8vHD16NM/2qampmDBhAtzd3WFlZYVq1aphxYoVxVQtkXm6e/cu7t69C7lcjkaNGkldjlHT9BxdvXoViYmJEldDRK+TPBwFBQVh9OjRmDBhAiIjI9GqVSt07twZMTExud6nV69eOHDgAAIDA3Ht2jWsX78etWvXLsaqicyPptfI09MTdnZ2Eldj3MqWLYsqVapACIEzZ85IXQ4RvUbycDR37lwEBARg8ODBqFOnDubPn4+KFSti8eLFObbfs2cPDh8+jODgYHTo0AGVK1dGkyZN0Lx582KunMi88JBa0eJ8R0SGS9JwlJaWhoiICPj5+eks9/PzQ1hYWI732b59O7y9vfHzzz+jQoUKqFmzJr766iu8fPky1/WkpqYiKSlJ54eICkbzJc5wVDQ47ojIcCmlXPmjR4+gUqng7Oyss9zZ2Rnx8fE53ufWrVs4duwYrK2tsXXrVjx69AgjRozA48ePcx13NHPmTEydOrXI6ycyFyqVCqdPnwbAM9WKStaeIyEEZDKZxBURkYbkh9UAZPtQyOuDQq1WQyaTYe3atWjSpAm6dOmCuXPnYtWqVbn2Ho0fPx6JiYnanzt37hT5NhCZssuXL+PZs2ewtbWFh4eH1OWYhIYNG0KpVOL+/fv8TCIyMJKGozJlykChUGTrJXrw4EG23iQNFxcXVKhQAY6OjtplderUgRACsbGxOd7HysoKDg4OOj9ElH+aQz+NGzeGQqGQuBrTYGNjg3r16gHgoTUiQyNpOLK0tISXlxdCQkJ0loeEhOQ6wLpFixa4d+8enj17pl32999/Qy6Xw83NTa/1EpkrTv6oHxyUTWSYJD+sNnbsWCxfvhwrVqzAlStXMGbMGMTExGDYsGEAMg+J9e/fX9u+d+/eKF26NAYNGoTLly/jyJEj+Prrr/HJJ5/AxsZGqs0gMmkMR/rBmbKJDJOkA7IB4MMPP0RCQgKmTZuGuLg4eHp6Ijg4GO7u7gCAuLg4nTmP7OzsEBISgi+++ALe3t4oXbo0evXqhenTp0u1CUQm7dmzZ7h06RIAhqOipjljLSIiAhkZGVAqJf9IJiIAMiGEkLqI4paUlARHR0ckJiZy/BHRvzh06BDatm0LNzc3DhwuYmq1GqVKlUJiYiIiIyPRoEEDqUsiMmjF9f0t+WE1IjJsPKSmP3K5HI0bNwbAQ2tEhoThiIjyxHCkX5wMksjwMBwRUZ4YjvSLZ6wRGR6GIyLKVWxsLO7duweFQgEvLy+pyzFJmp6jy5cvIzk5WeJqiAhgOCKiPGh6Mzw9PWFraytxNaapfPnyqFSpEoQQOHPmjNTlEBEYjogoDzykVjx4aI3IsDAcEVGuNF/WPj4+Eldi2jgZJJFhYTgiohxlZGRoD/Ow50i/eMYakWFhOCKiHF26dAkvXryAg4MDateuLXU5Js3LywsKhQL37t3L9QLaRFR8GI6IKEcnTpwAADRu3BhyOT8q9KlEiRKoW7cuAPYeERkCfuIRUY44GLt4cdwRkeFgOCKiHGnDkY0NwEM9etekenUAwMkjRySuhIgYjogom6SkJFy5cgUA0PT77wF3dyAwUOKqTFhgIJp+8w0A4MyJE1D99pvEBRGZN4YjIsrmdHAwhBBwB+AMAGo1MHQoe5D0ITYWGDIEtYWAPYDnAC4PG8bnmkhCDEdElM3J/fsBADqjjVQq4MYNSeoxadevA2o1FAC8Xy06qVbzuSaSEMMREWUTHh0NANCZ+lGhAF6Ni6EiVKMG8OpsQE0YPSmT8bkmkhDDERHpEEIgPDISANBccwq/QgEsXQq4uUlYmYlycwOWLQMUCm04OlWhAp9rIgkxHBGRjuvXryMhIQFWVlZoeP06EBoKREUBAQFSl2a6AgKAqCg02bgRAHDx3j08e/ZM4qKIzBfDERHpCAsLA5A5+aNl1aqAry97MYqDmxtce/aEm5sb1Go1IiIipK6IyGwxHBGRDk04at68ucSVmCdOBkkkPYYjItLBcCQtXoSWSHoMR0Sk9fTpU1y6dAkA0KxZM4mrMU+aniOGIyLpMBwRkZbmYrPVq1dHuXLlJK7GPHl5eUEulyM2Nhb37t2Tuhwis8RwRERaPKQmPTs7O3h4eADguCMiqTAcEZEWw5Fh4KE1ImkxHBERACAjI0P7ZcxwJC2GIyJpvVE4evDgAeLj44uqFiKS0MWLF/Hs2TM4ODjgrbfekrocs+bjk3nhllOnTiEjI0PiaojMT6HC0V9//QUPDw+4uLigQoUKqFChAiZOnIjnz58XdX1EVEw0h9R8fHygUCgkrsa8vfXWW3BycsLz589x7tw5qcshMjuFCkcBAQFwdnbGsWPHEBkZienTp2P37t3w9vbGkydPirpGIioGHG9kOORyOVq0aAEAOHbsmMTVEJmfQoWjy5cvY9GiRWjWrBnq1auHQYMG4cyZM/Dw8MAXX3xR1DUSUTFgODIsLVu2BMBwRCQFZWHulFMPkUwmw4wZM+Dl5VUkhRFR8YmLi8Pt27chk8m0g4FJWlnDkRACMplM4oqIzEe+e47efvttfPfdd/jjjz8wbNgwjBkzBvfv39dpk5iYiJIlSxZ5kUSkX+Hh4QCAunXrwsHBQeJqCMj8I9TS0hL379/HzZs3pS6HyKzku+eobt26OHv2LFauXKkNRVWrVkWvXr3QoEEDqFQqrFy5EvPmzdNbsUSkH8ePHwfAS4YYEmtrazRu3BjHjx/HsWPHUL16dalLIjIb+Q5HP/30k/b/9+/fR2RkJM6dO4dz585h8eLFuHHjBhQKBaZOnYoePXropVgi0o8jR44AAFq1aiVxJZRVy5YtteFo4MCBUpdDZDYKNebI2dkZnTp1QqdOnbTLXr58ifPnz+P8+fNFVhwR6V9ycjIiIyMBAK1bt5a4GsqqZcuWmDVrFgdlExWzQoWjnNjY2MDHx0c7eRkRGYfw8HCoVCpUrlwZFStWlLocykJz5uC1a9fw4MEDXgyYqJjw8iFEZk5zSI29RoanVKlS2ovQasaFEZH+MRwRmTmONzJsnO+IqPgxHBGZsZSUFJw6dQoAe44MFcMRUfFjOCIyY6dPn0ZqaiqcnZ1Ro0YNqcuhHGjC0dmzZ3n9SqJiwnBEZMayjjfiDMyGyd3dHW5ubsjIyMDJkyelLofILDAcEZmxo0ePAuAhNUMmk8m048EOHz4scTVE5oHhiMhMZWRkaM+A4mBsw+br6wsAOHTokKR1EJkLhiMiM3Xu3Dk8e/YMTk5O8PT0lLocykPbtm0BACdOnMDLly8lrobI9DEcEZkpzXijli1bQqFQSFwN5aV69epwdXVFWlqa9iLBRKQ/DEdEZorjjYyHTCbjoTWiYsRwRGSG1Go1w5GR0RxaCw0NlbgSItPHcERkhi5evIiEhATY2tqiUaNGUpdD+aDpOTp58iRevHghbTFEJo7hiMgMHdi8GQDQukkTWFhYSFwN5Ue1atXg5uaG9PR0hC9eDMTGSl0SkcliOCIyN4GBODhtGgCg3aFDQGCgtPVQvshkMvi6uQEAQr/6CnB3574j0hOGIyJzEhuLjE8/hWYqwXZCAEOHshfCGMTGwvfVDNmHAECt5r4j0hOGIyJzcv06zgiBZAAlATQAAJUKuHFD0rIoH65fR1shAACnADwHuO+I9IThiMic1KiBg6+uodYWrz4AFAqgenUpq6L8qFEDVWQyVASQDiAM4L4j0hOGIyJz4uaGg7VrAwDaAZlfrkuXAq/GspABc3OD7Lff4Psq3B6SybjviPSE4YjIjKSkpOD47dsAgHarVgFRUUBAgKQ1UQEEBKDtL78AAA42bMh9R6QnDEdEZiQ8PBwpKSlwcXFB7f792etghNr17AkAOH3+PJ4+fSptMUQmiuGIyIwcPHgQANCuXTvIXh2eIePi7u6OmjVrQqVScbZsIj1hOCIyI1nDERkvPz8/AEBISIjElRCZJoYjIjORmJiIU6dOAWA4MnaacLRv3z6JKyEyTQxHRGbi4MGDyMjIQI0aNVC5cmWpy6E34OvrC6VSiZs3b+LWrVtSl0NkchiOiMzE3r17AQCdOnWSuBJ6U/b29mjWrBkAHloj0geGIyIzIITAnj17AAD+/v4SV0NFoWPHjgAYjoj0geGIyAz8/fffiI6OhqWlJXx9faUuh4qAZtzRgQMHkJGRIXE1RKbFIMLRokWLUKVKFVhbW8PLywtHjx7N1/2OHz8OpVKJBg0a6LdAIiOnOaTWqlUr2NraSlwNFQVvb284OTnh6dOnOHPmjNTlEJkUycNRUFAQRo8ejQkTJiAyMhKtWrVC586dERMTk+f9EhMT0b9/f7Rv376YKiUyXppDahxvZDoUCoX284+H1oiKluThaO7cuQgICMDgwYNRp04dzJ8/HxUrVsTixYvzvN/QoUPRu3dv7aBEIspZSkoKDh06BIDjjUyN5tCapmeQiIqGpOEoLS0NERER2je4hp+fH8LCwnK938qVK3Hz5k1Mnjw5X+tJTU1FUlKSzg+RuTh69ChevnwJV1dXeHp6Sl0OFSFNT2B4eDgSEhIkrobIdEgajh49egSVSgVnZ2ed5c7OzoiPj8/xPtevX8e4ceOwdu1aKJXKfK1n5syZcHR01P5UrFjxjWsnMhaaXgV/f39eMsTEVKpUCXXr1oVardYeOiWiNyf5YTUA2T6whRA5foirVCr07t0bU6dORc2aNfP9+OPHj0diYqL2586dO29cM5Gx4Hgj09a1a1cAwK5duySuhMh0SBqOypQpA4VCka2X6MGDB9l6kwAgOTkZZ86cweeffw6lUgmlUolp06bh/PnzUCqV2utGvc7KygoODg46P0TmIDo6GpcuXYJcLkeHDh2kLof0QBOOdu/ezVP6iYqIpOHI0tISXl5e2c60CAkJQfPmzbO1d3BwwIULF3Du3Dntz7Bhw1CrVi2cO3cOTZs2La7SiYzCjh07AAAtW7ZEqVKlJK6G9KFp06YoXbo0nj59mudYTSLKv/wN2tGjsWPHol+/fvD29kazZs2wbNkyxMTEYNiwYQAyD4ndvXsXa9asgVwuzzagtFy5crC2tuZAU6IcbN++HQDQrVs3iSshfVEoFOjcuTN+//137Nq1C61bt5a6JCKjJ/mYow8//BDz58/HtGnT0KBBAxw5cgTBwcFwd3cHAMTFxf3rnEdElF1SUpL2FH6GI9OmObS2c+dOiSshMg0yIYSQuojilpSUBEdHRyQmJnL8EZmsjRs3olevXqhZsyauXbsmdTmkR0+fPkWZMmWgUqlw69YtVKlSReqSiPSiuL6/Je85IiL90Iw3Yq+R6XNyckLLli0B8Kw1oqLAcERkgjIyMhAcHAyA4chcaA6taUIxERUewxGRCdLMmFyyZEm0aNFC6nKoGHTv3h0AcPDgQTx58kTiaoiMG8MRkQnatm0bAKBLly75nkmejFuNGjXg6emJjIwMDswmekMMR0SmJDYW4uBBbP7jDwBAjx49JC6IipNmf2/evBmIjQVCQzP/JaICYTgiMhWBgYC7OyLat0d0bCxsrax4yRAz8/777wMA9gYH41mlSkC7doC7e+Zrg4jyjeGIyBTExgJDhgBqNTa9WvR2WhpseKV2s1K3bl1Uc3dHSno6dmtmaVGrgaFD2YNEVAAMR0Sm4Pp1QK2GALThqKcQwI0bUlZFxUwmk6FHs2YAgM1Zb1Cp+FogKgCGIyJTUKMGIJfjPICbAGwAdJbLgerVJS6Mitv7vXsDAHYBSNEsVCj4WiAqAIYjIlPg5gYsW4ZNMhkAoDMAu2XLMpeTWWn89ttwK1kSzwDsATKD0dKlfC0QFQDDEZGJEJ98gk1VqwIAei5YAAQESFwRSUEul6PXoEEAgPW+vkBUFF8LRAXEcERkIiIjI3Ht5k1YW1vj7f79pS6HJNT71aG17SdOINnRUeJqiIwPwxGRifj9998BZM6UzAsqm7dGjRqhZs2aSElJ0U4ISkT5x3BEZAJUKhXWr18PAOjTp4/E1ZDUZDKZtvdo3bp1EldDZHwYjohMwMGDBxEfH4/SpUvD399f6nLIAHz88ccAgJCQEDx48EDiaoiMC8MRkQnQHFLr1asXLC0tJa6GDEHNmjXh7e0NlUqFjRs3Sl0OkVFhOCIyci9evMCWLVsAAH379pW4GjIkmkNr//vf/ySuhMi4MBwRGbk///wTz549Q5UqVdDs1ezIREBmOFIoFDh58iQuXbokdTlERoPhiMjILV++HADQr18/yF5NAkkEAM7OzujatSsAYMWKFRJXQ2Q8GI6IjNjNmzdx8OBByGQyfPLJJ1KXQwYo4NUEkGvWrEFaWprE1RAZB4YjIiMWGBgIAPD394e7u7vE1ZAh6ty5M1xcXPDo0SPs3LlT6nKIjALDEZGRysjIwMqVKwEAgwcPlrgaMlRKpRIDBgwA8E+YJqK8MRwRGaldu3YhPj4e5cqVQ7du3aQuhwzYoFfXWtuzZw9iY2MlrobI8DEcERmp3377DQAwcOBAzm1EeapZsyZ8fX2hVquxZMkSqcshMngMR0RG6ObNmwgODgbwz4Bborx8/vnnAIBly5YhJSVF4mqIDBvDEZERWrBgAYQQ6Ny5M2rWrCl1OWQEunfvjooVK+Lhw4cICgqSuhwig8ZwRGRkkpKStHPWjBo1SuJqyFgolUoMHz4cwD/hmohyxnBEZOhiY4HQ0Mx/AaxcuRLJycmoU6cO/Pz8JC6OjMmnn34KKysrRERE4MSJE5kLX3t9ERHDEZFhCwwE3N2Bdu0Ad3eofvsNCxYsAACMHDmSM2JTgZQpUwYff/wxAGD+/PnZXl/gqf5EAACZMMO+1aSkJDg6OiIxMREODg5Sl0OUs9jYzC8stVq7aJtcjvfUajg5OSE2Nha2trYSFkjG6Pz582jQoAHkcjmuCoEaWb8CFAogKgpwc5OsPqK8FNf3N3uOiAzV9es6wUgAmPHq92HDhjEYUaHUr18fXbp0gVqtxs+v/22sUgE3bkhTGJEBYTgiMlQ1agDyf96iIQBOA7CxtsaYMWMkK4uM33fffQcAWA3gbtYbFAqgenUpSiIyKAxHRIbKzQ1YtizzCwvA9FeLhw0fjnLlyklXFxm9Fi1aoFWrVkgHMEczbk2hAJYu5SE1IjAcERm2gAAgKgpH5s/HUQCWlpb46quvpK6KTICm92iptTUebt2aOdaIE4oSAWA4IjJ8bm6YtmMHgMzZsF1dXSUuiEyBv78/vLy88OLlS8w8coQ9RkRZMBwRGbiQkBAcOHAAFhYW+Pbbb6Uuh0yETCbDjz/+CABYtGgRYmJiJK6IyHAwHBEZMLVarQ1En332Gdzd3SWuiEyJn58ffH19kZqaiqlTp0pdDpHBYDgiMmDr169HZGQkHBwcMGHCBKnLIRMjk8kwc+ZMAMCqVatw9epViSsiMgwMR0QGKjU1FRMnTgQAfPvttyhTpozEFZEp8vHxQffu3aFWq/HNN99IXQ6RQWA4IjJQ8+bNQ1RUFFxcXDB69GipyyETNnPmTCiVSuzYsQPBwcFSl0MkOYYjIgMUHR2NH374AQDw008/oUSJEhJXRKasTp06GDVqFABg1KhRSE1NlbgiImkxHBEZoNGjR+PFixdo1aoV+vXrJ3U5ZAYmTZoEFxcX3LhxA3PmzJG6HCJJMRwRGZidO3di27ZtUCqVWLx4MWSaGYyJ9MjBwQG//PILAGD69Om4deuWxBURSYfhiMiAJCUl4bPPPgMAjB07Fh4eHhJXROakd+/e8PX1xcuXLxEQEAB1lgsfE5kThiMiAzJ69GjExMSgatWq+P7776Uuh8yMTCZDYGAgSpQogUOHDmHx4sVSl0QkCYYjIgOxY8cOrFy5EjKZDKtWrYKdnZ3UJZEZqlq1KmbNmgUA+Oabb3h4jcwSwxGRVGJjgdBQIDYWDx8+xKeffgoA+PLLL9GqVSuJiyNzNmLECPj6+uLFixfo06cP0tPTdV6vRKaO4YhICoGBgLs70K4dVJUqoY+vL+7fvw8PDw/tKfxEUpHL5Vi5ciWcnJxw4sQJfNetm/b1Cnf3zNcvkQmTCSGE1EUUt6SkJDg6OiIxMREODg5Sl0PmJjY28wvm1WDXKQCmAihhY4NTp09zEDYZjG3btuG9994DAGwH0E1zg0IBREUBbm4SVUbmqri+v9lzRFTcrl/XBqO9AKa9Wrx0zBgGIzIo7777Lkb36AEAGADghuYGlQq4cSO3uxEZPYYjouJWowYgl+MqgI8ACADDZDL0HT5c4sKIspv1889oCuAJMnuOngKZPUfVq0tZFpFeMRwRFTc3NzycMwddkPlF0xzAvEWLeIiCDJJl1arYOns23ABcBdALQAZfr2TiGI6IitnLly/R/Y8/cBtAVVdXbDt3DtbDhkldFlGuXL78Ejv27EEJa2uEABh26hTMcLgqmRGGI6JilJqaih49eiA8PBxOTk7YdeAAytavL3VZRP+qgb8/1m3YALlcjsDAQHz99dcMSGSyGI6IiklGRgZ69+6N3bt3w8bGBjt27EDt2rWlLoso37p3747ly5cDAObMmYMZM2ZIXBGRfjAcERUDlUqFQYMGYcuWLbC0tMSff/6Jli1bSl0WUYENGjQI8+bNAwBMnDgRc+fOlbgioqLHcESkZ+np6ejbty9+//13KJVKbNq0CR07dpS6LKJCGz16NCZPngwgc0b3H3/8UeKKiIoWwxGRHr18+RLvvfceNmzYAAsLC6xfvx7dunX79zsSGbjJkydj2rTMWbomTpyICRMmcAwSmQyGIyI9SUpKQufOnbFr1y7Y2Nhg+/bt6Nmzp9RlERUJmUyG77//Hr/88gsAYMaMGfjss8+gUqkkrozozTEcEenB3bt34evri8OHD8Pe3h579+5Fp06dpC6LqMh99dVXWLhwIWQyGRYvXoz3338fL168kLosojfCcERUxM7t3YumDRogMjISZcuWRWhoKFq1aiV1WUR6M2LECPzxxx+wsrLC9u3b0a5lSzzcujXzOoJERojhiKgI7Ro1Ci07dcLdR49QB8DJsWPh5eUldVlEetezZ0/s378fpWxtcTIyEs3efx/XK1UCAgOlLo2owBiOiIrIf6dPxzu//ornANoBCANQZeJE/vVMZqNl5co4/uIFKgO4CcBHCBwdMoTvATI6BhGOFi1ahCpVqsDa2hpeXl44evRorm23bNmCjh07omzZsnBwcECzZs2wd+/eYqyWSJdKpcLo0aPxxfffQw3gEwC7AThl3sirl5P5uH4dtYVAOIDGAB4D6KBWY+3ixRIXRlQwkoejoKAgjB49GhMmTEBkZCRatWqFzp07IyYmJsf2R44cQceOHREcHIyIiAi0bdsW3bp1Q2RkZDFXTpR5Rto777yD//znPwCAmTIZlgOw1DTg1cvJnNSoAcjlKA/gEID3AKQB6DtjBqZNm8ZT/cloyITEr9amTZuiUaNGWJzlL4s6derg3XffxcyZM/P1GB4eHvjwww8xadKkfLVPSkqCo6MjEhMT4eDgUKi6iaKiotCtWzdcvHgRNjY2WL16NT5ISgKGDs3sMVIogKVLgYAAqUslKj6Bgdr3gFoux7cdO2L2q979fv364bfffoOVlZXERZKxKq7vb0l7jtLS0hAREQE/Pz+d5X5+fggLC8vXY6jVaiQnJ6NUqVK5tklNTUVSUpLOD9GbOH78OJo0aYKLFy/CxcUFR44cwQcffJAZhKKigNDQzH8ZjMjcZHkPyKOj8cuePViyZAkUCgX+97//wc/PD48fP5a6SqI8SRqOHj16BJVKBWdnZ53lzs7OiI+Pz9djzJkzB8+fP0evXr1ybTNz5kw4OjpqfypWrPhGdZN5+/3339GuXTs8fPgQDRs2xKlTp+Dt7f1PAzc3wNc3818ic/Tae2Do0KHYtWsX7O3tceTIEfj4+OAGx+KRAZN8zBGQOdNqVkKIbMtysn79ekyZMgVBQUEoV65cru3Gjx+PxMRE7c+dO3feuGYyP2q1GhMmTEC/fv2QlpaG9957D0ePHoUbQxDRv/L390dYWBgqVaqE69evw8fHB8eOHZO6LKIcSRqOypQpA4VCka2X6MGDB9l6k14XFBSEgIAA/PHHH+jQoUOeba2srODg4KDzQ1QQL1++RK9evTBjxgwAmYF706ZNsLW1lbgyIuPh6emJkydPwtvbGwkJCWjfvj3WrVsndVlE2UgajiwtLeHl5YWQkBCd5SEhIWjevHmu91u/fj0GDhyIdevW4e2339Z3mWTmEhIS0KFDB2zevBmWlpZYvXo1ZsyYAbncIDpeiYxK+fLlcfjwYbz33ntIS0tDnz598MMPP/BMNjIokn+6jx07FsuXL8eKFStw5coVjBkzBjExMRg2bBiAzL/Q+/fvr22/fv169O/fH3PmzIGPjw/i4+MRHx+PxMREqTaBTFh0dDRatmyJsLAwODk5ISQkROf1SEQFV6JECWzatAlfffUVAGDSpEkYOHAgUlNTJa6MKJPk4ejDDz/E/PnzMW3aNDRo0ABHjhxBcHAw3N3dAQBxcXE6cx4tXboUGRkZ+Oyzz+Di4qL9GTVqlFSbQCbq3LlzaNasGa5evQo3Nzcc27QJrVUqzvZLVATkcjl+GTUKi0ePhkKhwJo1a+Dv788z2cggSD7PkRQ4zxH9mwMHDuC9995DcnIyPD09sbt/f7iNGweo1YBcDixbxtP0id5EYCAwZAigVmOvTIYPrKyQnJKCmjVrYteuXajOyVMpB8X1/c1wxHBEr9m2bRt69eqF9PR0tGnTBtsWLoRTvXqZwUhDocicy4VnqhEVXGws4O6u8566IJfj7fLlcefePZQtWxb79+9HvXr1JCySDJFZTAJJZGjWr1+Pnj17Ij09HT169MCePXvg9OCBbjACeM00ojdx/Xq291RdtRonf/0VDRs2xMOHD+Hr64vTp09LVCCZO4YjoldWrFiBPn36QKVSoV+/ftiwYQOsra2114vSwWumERVeLu8pl6ZNcfDgQTRr1gxPnjxB+/bt87wQOZG+MBwRAVi4cCECAgIghMDQoUOxatUqKJXKzBvd3DLHGCkUmb9rrpnGQ2pEhZPHe8rJyQn79u1D27ZtkZycDH9//2zTvRDpG8ccccyR2Zs9eza+/vprAMCYMWMwZ86cnGdoj43NPJRWvTqDEVFRyOM99fLlS/Ts2RPBwcGwtLTE1q1b0aVLF4kKJUPBAdl6xHBEGnPmzNHOtTJx4kRMmzYtX5euISL9S0tLw8cff4wtW7bA0tIS27dvh7+/v9RlkYQ4IJtIzxYsWKANRtOmTcMPP/zAYERkQCwtLbFhwwa8//77SEtLQ/fu3bF//36pyyIzwHBEZmnZsmUYOXIkAGDiyJH4vmVLTu5IZIAsLCyw/pdf0L1FC6SmpqJbt244ePCg1GWRiWM4IrOzcuVKDB06FADwtb8/pi1YALRrlznvSmCgxNURkY7AQFjWqIE/jh9HVwApKSno1q0bDh8+LHVlZMIYjsisrF27FgGvZrYeFRCAWfv2QaYZdqdWA0OHsgeJyFDExmpn0bYEsAlAZwAvXrzA22+/jWPHjklcIJkqhiMyGxs3bkT//v0hhMDw4cMxr3fvf4KRBid3JDIcr00WaQVgC4CO3t54/vw5OnfujBMnTkhWHpkuhiMyC9u2bcPHH38MtVqNgIAA/Pe//4WsZk1O7khkyHKYLNJaocCf69ahXbt2ePbsGTp16oSIiAiJCiRTxXBEJm/Xrl3o1auXdubrpUuXQi6Xc3JHIkOXy3vUpkYNbN++Ha1atUJiYiI6duyI8+fPS1srmRTOc8R5jkxaSEgIunXrhtTUVPTq1Qtr1679Z+ZrDU7uSGTYcnmPJicnw8/PDydOnECZMmVw6NAheHh4SFgo6RsngdQjhiPzcHjjRnTu1w8vU1Px7rvv4o8//oCFhYXUZRFREXr69Ck6duyIM2fOwLlsWRz+5RfUat+ef+iYKE4CSfQGwsaPx9u9euFlaireBhDUqRODEZEJcnJywt69e9GgYkXcf/gQ7QYOxI1KlTgtB70RhiMyOWd27ULnn37CcwAdkHn6r+Vnn/EUfSITVerFC4TExsIDwD0A7YRA1JAhfM9ToTEckUk5f/48/D7+GEkAWgP4E4A1wFP0iUzZ9esoIwQOAKgF4A6Admo17oSFSVwYGSuGIzIZly9fRocOHfAkORnNAOwEUEJzI0/RJzJdr075dwZwEEB1ALcBtB83DnFxcdLWRkaJ4YhMwsWLF9GuXTs8evQI3t7e2P3rr7DnKfpE5iHLKf+uAA7K5ahcpgyu376Ndu3a4f79+1JXSEaGZ6vxbDWjd+7cOXTo0AEJCQlo0KABDhw4gFKlSvEUfSJzk+U9fzs9HW3atMGdO3fg6emJ0NBQlClTRuoK6Q3xVH49YjgycrGxmZcVqFEDp+Pi4O/vjydPnsDb2xt79+7NDEZEZPZu3LiB1q1bIy4uDp6enti3bx9cXFx0PkP4h5Nx4an8RDkJDATc3YF27RBWqRI6tGmDJ0+eoFmzZti/fz+DERFpVa9eHQcPHoSLiwsuXryIli1b4tZPP2k/Q+DuzlP+KUfsOWLPkfGIjc38MFOrsRNALwAvAbTx8cGOfftgb28vcYFEZIhu3bqFjh074tatW3ABsA+Ap+ZGhQKIimIPkpFgzxHR615doXsZgO7IDEadAARPnsxgRES5qlq1Ko4dO4a6VasiDpnTfGhP8uc0H5QDhiMyGqJ6dXwPYCgANYBBALbL5Sjh6Zn3HYnI7Lm4uODwn3+iGYAnANoBWAdwmg/KEcMRGY7YWCA0NMdZbZOTk9Fr7FhMf/X7ZACBcjksli1jdzgR5UtJT0+ELFyI7gBSAfQBMLFTJ6hdXXO+Qx6fSWTaGI7IMGQZaP36IMlr166hadOm2LRpEywsLLD8l18wJTQUsuhoICBAwqKJyNjYjhiBLdHRGNe7NwDgx1270L17dyQkJOg2zOMziUwfB2RzQLb0sgy01lIoIG7fxtrDhzFixAgkJyfD1dUVmzZtQrNmzaSrlYhMxpo1azBkyBCkpqaiQoUKWLduHVq3bp3rZxIHbkuPA7LJfLwaaJ1VgkqFXv36oV+/fkhOTkbr1q0RERHBYERERaZ///44ceIEatWqhbt376Jt27b47rvv8PLixWyfSRy4bV4Yjkj//u24/avrIgGACsBvAGoD2HT4MJRKJX744QccOHAA5cuXL66KichMNGjQAGfOnMHAgQOhVqsxc+ZM1Bs+HAdkMt2GeQ3c5tgkk8NwRPqVn+P2bm4QS5din1wOHwBDADwC4OnpiRMnTmDixIlQKpXFXDgRmQs7OzusXLkSW7duhaurK25ERaGDEOgK4AKQ9/UZOTbJJDEckf7ExgJDhvzTPa1WA0OH6vx1lZ6ejq1bt6LZ8uXwV6txBoCDvT3mzZuHs2fPwsvLS5raicjsvPvuu7h8+TI+//xzKBQK7AJQXybD+x074nD16sg2RDcfn3FknBiOSH9yGEsElQqqa9cQHh6Ob775BhUrVsT777+PkydPwtraGqNHj8bf169j9OjRsLCwkKZuIjJbjo6OWLBgAa5cuYJevXpBCIGte/bA19cXdevWxQ8//ICrV69mNs7lM45jk4wfz1bj2Wp5EkJApVJBpVIhIyMDarUacrkc8nv3IL91C7IaNSCvVAlyuRwymQyyrMfpY2ORWKkS7giBaADnAEQAOFqqFB49fqxtVq5cOXzyyScYNWoUxxURkUG5fPkyfv31V6xZswYvX77ULq9YsSJaeXmh6Z9/orYQqAnAGYBNXme15XHBW81Xsez1sU6ko7i+vxmOGI4ghMDt27cRFhaGixcv4tKlS4iNjcWDBw/w8OFDpKen5/uxZDJZZnh6FZbS0tJybOfk5AR/f3/06tUL3bp1Yy8RERm0J0+eYNu2bdi4cSNCQkKQkZGRYztrCwuULFMGFhYW2s9DtVoNVVISMp48gQpABoAMa2uo5HJkZGRo//C0sbFBuXLlUK5cObi7u8PDwwN169ZFq1atUK5cuWLdXkPFcKRHDEeASqXCoUOHEBQUhL179yImJkZv6yrp6IiKpUvDo25deLVqhaZNm6Jp06YMRERklJ4/f44TJ07g6NGjOH/+PK5duoSbUVFIK8AfkgXl4eGBLl264KOPPkLDhg3NtoeJ4UiPzDkc3bt3D4sWLUJgYCDi4+O1y5VKJRo3bowG1avDo2RJVPHygrOHB8qWLQs7OzsolUooFArIjx6F6NwZakD3Z9s2qJs1g1qt1vkpVaoU7OzsJNpaIqLiIYRAcnIyEhIS8PTpU6hUKqjV6szDZRERsPjsMygAKF/9KAAo16+HsmVLKBQKKBQKPH/+HA8ePEB8fDxunDmDS2fOICI6Gn9duaKzrtq1a2P48OEYNGiQ2V10m+FIj8wxHN28eRPTpk3DunXrtN3BpUqVQs+ePfH++++jZcuWsN2w4Z8zL+RyYNmy7Jfn4MyxREQFU9DPzcBAnc/iR3Pm4KCrKzZu3IidO3ciJSUFAODg4IDhw4fjm2++QalSpYpnWyRWbN/fwgwlJiYKACIxMVHqUvTu3r17Yvjw4UKpVAoAAoBo2bKl2Lhxo0hNTf2n4Z07QsjlQgD//CgUmctft3x55m2aNsuXF98GEREZo/x+bv7LZ3FiYqJYtGiRqFWrlvYz3cHWVvzw1VciOTm5GDdIGsX1/c2eIxPtOcrIyMB///tffP/993j27BkAwB/ANJkMTX77LXuPUGho5iRmrwsNBXx9sy+Pjc08XbV6dfYYERHlR34+N/P5WaxWq7Fr1ChM/O9/8derZa5OTpi3dCk++OADkx2TxMNqemTq4SgiIgJDhgzB2bNnAQBNAcwC0EbTIKfuXB4uIyKSXn4/i1+1U6vVCAIwAcDtVzd17NgRCxYsQK1atYqv7mLCC89S/mS5pk9ycjJGjx6NJk2a4OzZs3BycsLSsWMRhizBCMh5kjI3t8wxRgpF5u95TZdPRET6kd/P4lcTUMoBfAzgEoDJAKwsLBASEoJ69eph0qRJ2vFJvP5bwbDnyJh7jrIM2vtTJsPnTk6IffIEAPDxxx9j7ty5KJ+RUbAeIR4uIyKS3r99FufSw3Tz0CF8MWMGdu/eDQCoXr06Fr/zDjrMn5/3yTZGgofV9KionlwhBC5cuICzZ88iLi4ONjY2qFatGpo0aQJnZ+c3KzKPmVS1t7u7I0atxigA214trlKpEhYvWwZ/f/9/2gYGZl7vR6X6568QI31jEBHRK7l8tgshsHnzZowaNQr37t0DAPQGMBeZs3j/6x/IeX335NPt27dx6tQp3L17F2lpaahSpQqaNm2KypUrF/oxAZ6tpldvOtpdrVaLTZs2CQ8PD+3ZAll/ZDKZaN26tViyZEn2swfu3BHi4MGczwLTWL78n7MV5PIcz2pI3btX/ASIEq/WqQTEeEA8370758e8c0eI0NC810tERMYlj8/2xMRE8cV77wnZq+8JJ0AsAYQKyLzP6/Lx3aOz3te+y1JTU8W6detE8+bNc/xuBCDatm0rwsPDC725xXW2GsNRASUnJ4u+fftqd7S1tbXw9fUVAwYMEL169coWmEqWLCnGjRsnYmNj8/fCy8cp9SEhIaJOjRr/nJoPiAt5nXpPRETm6c4dcVomE42yfC81A8T5ffuytSvQdC5Zvsvuzp4tJk2aJJydnbXrUCqVonHjxqJ3796iX79+omnTpkIul2s7ECZOnChUKlWBN4fhSI8K++Q+ffpUNGnSRAAQCoVCTJgwQTx9+jTzxiwpOiYmRsyePVvUyBJgLCwsRF9AnPm3F97Bg7ovTs1PaKgICwsT7dq10z5mWXt7sVomE2rON0RERLlZvlyky+ViPiDsXn1/yOVy0a9fP3Ht2rXMNnl89+h4FaLUgDgCiF6vjlxovpdcXFzE1KlTxb179/5p/+q7MTo6WvTr10/bduDAgSI9Pb1Am8JwpEcFenJf7djnf/+t7SosXbq0OHLkyD9tcukRUqlUYtu2baJVq1Y6vUmtALEGEIl5vPA0L8xkQPwuk4nm3t46QeuLL74Qjx8/5uEyIiL6d6++K2JPnRI9e/bUfp/I5XLx3nvviV2rV4t0mexfe47iNm0SswHh8drhspZ164oNGzaItLS0fxrn8t24atUqoVAoBAAREBAg1Gp1/oacCE4CqVf5HtD16mwwoVajP4DfkXk1+YMHD6Jhw4aZbfI5J0VEcDDmv/02NiDziswAYAWgefPmaN62LapXrw5nZ2eoVCok/vknrgQG4owQCAWgua69UqnEgAED8P3338Pd3b2Ing0iIjI3Z86cwbRp07Bjxw7tMkcbG7R/+RKNANSQyWD3xRdQd+yIu3fv4u+//8aRI0dw9uxZqF9939kA6APgM7kcDaKjCzR33pYtW/DBBx9ArVZjTq9eGLtpU77OpuOAbD3SJM+4s2dzb5SlB2fhq2SsAEToH3/otstvV6QQQixfLu7K5WIKIGrnMlgtp59q1arpdlMSEREVgQsXLojRo0eL0qVL5/s7yadqVbFEJhNP8hrSkY/vxnnz5mX2XgEiLD9jnYQQUeHh7DnSF03yXA4gYPnynBPqqyncbwCoB+AlgDkAxr5+OY2Cziz9au4KUa0ariQn49ixYzh16hRiY2Px4MEDKJVK2NraokaNGqhbty7at2+POnXqmOxU8EREJD2VSoWIiAgcOHAAV69exa1bt5CSkgK1Wg0XFxdUrVoVTZo0Qdu2bVGhQoVCz8OU9btRCIF+fn5Yu38/qgE4B8BO0zanS1cFBmLk4MFYAHCeI33QhKNPASzLLcjExkJdqRLaCoEjANoDCJHLIXu96xDgPEJERESvy8d349NLl1DP0xN3gMzvZCDPy6U0UatxGvoPR2Z9+ZATQM6X0gAANzcs/vhjHAFgC+A3uRyyZctyTsgBAZk7MjQ0818GIyIiMnf5+G508vDAmq++ggzAbwD2yOW5Xi7lpVqNyGIoGzDzniMZgES5HPY59AZFRUXB09MTz58/x4KRI/H511/zchpERER6MCogAL+uWAE3Fxdcuno1e69QbCyOVqqE1q8iC3uO9EgAODFqVLbQI4TAp59+iufPn6N169YYMW8egxEREZGezPj1V1StWhWxcXH4+uuvszdwc8Px994rtnrMOhwBwI6MjGzLlixZgv3798PGxgaBgYGQy83+aSIiItIbW1tbBAYGAgCWLVuGAwcOZGuz79WF1YuD2X/rr1+/Hmlpadrfr1+/jq+++goAMHPmTFSvXl2q0oiIiMyGr68vRowYAQAYPHgwnj17pr0tPj4ehw8fLrZazDoclS1bFo8ePdJOgpWcnIyePXvixYsXaN++Pb744guJKyQiIjIfs2bNQuXKlREVFYWAgADthJOLFi2CWq1GkyZNiqUOsw5H/fv3BwB8/fXXOHr0KDp16oS//voLzs7OWLVqFQ+nERERFSM7OzusWbMGFhYW+OOPPzBw4EDs3r0bc+bMAQB89tlnxVKHWZ+tFhMTg1atWiE6Olp7m6OjI/bt21ds6ZSIiIh0/f777xg4cCBUKpV2WYcOHbBp0yY4OTnxbDV9cnR0xP79+9GuXTvY29ujQ4cOOHXqFIMRERGRhPr27YuQkBA0atQIjo6O6N27NzZu3FhsV4swiHC0aNEiVKlSBdbW1vDy8sLRo0fzbH/48GF4eXnB2toaVatWxZIlSwq97urVq+PAgQNISkpCSEgIatasWejHIiIioqLRtm1bRERE4OnTp1i7di2cnJyKbd2Sh6OgoCCMHj0aEyZMQGRkJFq1aoXOnTsjJiYmx/a3b99Gly5d0KpVK0RGRuK7777DyJEjsXnz5mKunIiIiEyR5GOOmjZtikaNGmHx4sXaZXXq1MG7776LmTNnZmv/7bffYvv27bhy5Yp22bBhw3D+/HmEh4fna52aMUf6PmZJRERERae4vr8l7TlKS0tDREQE/Pz8dJb7+fkhLCwsx/uEh4dna+/v748zZ84gPT1db7USERGReVBKufJHjx5BpVLB2dlZZ7mzszPi4+NzvE98fHyO7TMyMvDo0SO4uLhku09qaipSU1O1vycmJgLITKBERERkHDTf2/o+6CVpONJ4ffS5ECLPEek5tc9pucbMmTMxderUbMsrVqxY0FKJiIhIYgkJCXB0dNTb40sajsqUKQOFQpGtl+jBgwfZeoc0ypcvn2N7pVKJ0qVL53if8ePHY+zYsdrfnz59Cnd3d8TExOj1yTU0SUlJqFixIu7cuWNWY6243dxuc8Dt5nabg8TERFSqVAmlSpXS63okDUeWlpbw8vJCSEgI3stytd2QkBB07949x/s0a9ZMe7kPjX379sHb2xsWFhY53sfKygpWVlbZljs6OprVi0rDwcGB221GuN3mhdttXsx1u/V9BQvJT+UfO3Ysli9fjhUrVuDKlSsYM2YMYmJiMGzYMACZvT6ay3wAmWemRUdHY+zYsbhy5QpWrFiBwMBA7cViiYiIiN6E5GOOPvzwQyQkJGDatGmIi4uDp6cngoOD4e7uDgCIi4vTmfOoSpUqCA4OxpgxY7Bw4UK4urri119/RY8ePaTaBCIiIjIhkocjABgxYgRGjBiR422rVq3KtqxNmzY4e/ZsoddnZWWFyZMn53iozZRxu7nd5oDbze02B9xu/W635JNAEhERERkSycccERERERkShiMiIiKiLBiOiIiIiLJgOCIiIiLKwmTD0Y8//ojmzZujRIkScHJyytd9hBCYMmUKXF1dYWNjA19fX1y6dEmnTWpqKr744guUKVMGtra2eOeddxAbG6uHLSicJ0+eoF+/fnB0dISjoyP69euHp0+f5nkfmUyW488vv/yibePr65vt9o8++kjPW5N/hdnugQMHZtsmHx8fnTamtr/T09Px7bffom7durC1tYWrqyv69++Pe/fu6bQztP29aNEiVKlSBdbW1vDy8sLRo0fzbH/48GF4eXnB2toaVatWxZIlS7K12bx5M9566y1YWVnhrbfewtatW/VVfqEVZLu3bNmCjh07omzZsnBwcECzZs2wd+9enTarVq3K8b2ekpKi700pkIJs96FDh3LcpqtXr+q0M7X9ndPnl0wmg4eHh7aNoe/vI0eOoFu3bnB1dYVMJsO2bdv+9T7F9t4WJmrSpEli7ty5YuzYscLR0TFf9/npp5+Evb292Lx5s7hw4YL48MMPhYuLi0hKStK2GTZsmKhQoYIICQkRZ8+eFW3bthX169cXGRkZetqSgunUqZPw9PQUYWFhIiwsTHh6eoquXbvmeZ+4uDidnxUrVgiZTCZu3rypbdOmTRvx6aef6rR7+vSpvjcn3wqz3QMGDBCdOnXS2aaEhASdNqa2v58+fSo6dOgggoKCxNWrV0V4eLho2rSp8PLy0mlnSPt7w4YNwsLCQvz222/i8uXLYtSoUcLW1lZER0fn2P7WrVuiRIkSYtSoUeLy5cvit99+ExYWFmLTpk3aNmFhYUKhUIgZM2aIK1euiBkzZgilUilOnDhRXJv1rwq63aNGjRKzZs0Sp06dEn///bcYP368sLCwEGfPntW2WblypXBwcMj2njckBd3u0NBQAUBcu3ZNZ5uyvkdNcX8/ffpUZ3vv3LkjSpUqJSZPnqxtY+j7Ozg4WEyYMEFs3rxZABBbt27Ns31xvrdNNhxprFy5Ml/hSK1Wi/Lly4uffvpJuywlJUU4OjqKJUuWCCEyX4wWFhZiw4YN2jZ3794Vcrlc7Nmzp8hrL6jLly8LADovgvDwcAFAXL16Nd+P0717d9GuXTudZW3atBGjRo0qqlKLVGG3e8CAAaJ79+653m4u+/vUqVMCgM6HsCHt7yZNmohhw4bpLKtdu7YYN25cju2/+eYbUbt2bZ1lQ4cOFT4+Ptrfe/XqJTp16qTTxt/fX3z00UdFVPWbK+h25+Stt94SU6dO1f6e389DKRV0uzXh6MmTJ7k+pjns761btwqZTCaioqK0y4xhf2vkJxwV53vbZA+rFdTt27cRHx8PPz8/7TIrKyu0adMGYWFhAICIiAikp6frtHF1dYWnp6e2jZTCw8Ph6OiIpk2bapf5+PjA0dEx3/Xdv38fu3btQkBAQLbb1q5dizJlysDDwwNfffUVkpOTi6z2N/Em233o0CGUK1cONWvWxKeffooHDx5obzOH/Q1kXshRJpNlO/xsCPs7LS0NEREROvsAAPz8/HLdxvDw8Gzt/f39cebMGaSnp+fZxhD2K1C47X6dWq1GcnJytgt0Pnv2DO7u7nBzc0PXrl0RGRlZZHW/qTfZ7oYNG8LFxQXt27dHaGiozm3msL8DAwPRoUMH7dUlNAx5fxdUcb63DWKGbEMQHx8PAHB2dtZZ7uzsjOjoaG0bS0tLlCxZMlsbzf2lFB8fj3LlymVbXq5cuXzXt3r1atjb2+P999/XWd6nTx9UqVIF5cuXx8WLFzF+/HicP38eISEhRVL7myjsdnfu3BkffPAB3N3dcfv2bXz//fdo164dIiIiYGVlZRb7OyUlBePGjUPv3r11Ll5pKPv70aNHUKlUOb4vc9vG+Pj4HNtnZGTg0aNHcHFxybWNIexXoHDb/bo5c+bg+fPn6NWrl3ZZ7dq1sWrVKtStWxdJSUn4z3/+gxYtWuD8+fOoUaNGkW5DYRRmu11cXLBs2TJ4eXkhNTUV//vf/9C+fXscOnQIrVu3BpD7a8JU9ndcXBx2796NdevW6Sw39P1dUMX53jaqcDRlyhRMnTo1zzanT5+Gt7d3odchk8l0fhdCZFv2uvy0eRP53W4ge/1AwepbsWIF+vTpA2tra53ln376qfb/np6eqFGjBry9vXH27Fk0atQoX49dUPre7g8//FD7f09PT3h7e8Pd3R27du3KFg4L8rhvqrj2d3p6Oj766COo1WosWrRI5zYp9ndeCvq+zKn968sL814vboWtcf369ZgyZQr+/PNPnQDt4+Ojc9JBixYt0KhRIyxYsAC//vpr0RX+hgqy3bVq1UKtWrW0vzdr1gx37tzB7NmzteGooI8plcLWuGrVKjg5OeHdd9/VWW4s+7sgiuu9bVTh6PPPP//XM2YqV65cqMcuX748gMxk6uLiol3+4MEDbQotX7480tLS8OTJE53ehAcPHqB58+aFWm9+5He7//rrL9y/fz/bbQ8fPsyWpHNy9OhRXLt2DUFBQf/atlGjRrCwsMD169f19mVZXNut4eLiAnd3d1y/fh2Aae/v9PR09OrVC7dv38bBgwd1eo1yUhz7OydlypSBQqHI9ldf1vfl68qXL59je6VSidKlS+fZpiCvF30qzHZrBAUFISAgABs3bkSHDh3ybCuXy9G4cWPta15qb7LdWfn4+OD333/X/m7K+1sIgRUrVqBfv36wtLTMs62h7e+CKtb3doFGKBmhgg7InjVrlnZZampqjgOyg4KCtG3u3btncAN0T548qV124sSJfA/QHTBgQLazlnJz4cIFAUAcPny40PUWlTfdbo1Hjx4JKysrsXr1aiGE6e7vtLQ08e677woPDw/x4MGDfK1Lyv3dpEkTMXz4cJ1lderUyXNAdp06dXSWDRs2LNugzc6dO+u06dSpk8EN0C3IdgshxLp164S1tfW/DmzVUKvVwtvbWwwaNOhNSi1Shdnu1/Xo0UO0bdtW+7up7m8h/hmQfuHChX9dhyHubw3kc0B2cb23TTYcRUdHi8jISDF16lRhZ2cnIiMjRWRkpEhOTta2qVWrltiyZYv2959++kk4OjqKLVu2iAsXLoiPP/44x1P53dzcxP79+8XZs2dFu3btDO7U7nr16onw8HARHh4u6tatm+3U7te3WwghEhMTRYkSJcTixYuzPeaNGzfE1KlTxenTp8Xt27fFrl27RO3atUXDhg2NdruTk5PFl19+KcLCwsTt27dFaGioaNasmahQoYJJ7+/09HTxzjvvCDc3N3Hu3Dmd03tTU1OFEIa3vzWnOAcGBorLly+L0aNHC1tbW+1ZOePGjRP9+vXTttec7jtmzBhx+fJlERgYmO103+PHjwuFQiF++uknceXKFfHTTz8Z7Knd+d3udevWCaVSKRYuXJjrFAxTpkwRe/bsETdv3hSRkZFi0KBBQqlU6gRsqRV0u+fNmye2bt0q/v77b3Hx4kUxbtw4AUBs3rxZ28YU97dG3759RdOmTXN8TEPf38nJydrvZgBi7ty5IjIyUnvmrJTvbZMNRwMGDBAAsv2EhoZq2wAQK1eu1P6uVqvF5MmTRfny5YWVlZVo3bp1tjT+8uVL8fnnn4tSpUoJGxsb0bVrVxETE1NMW/XvEhISRJ8+fYS9vb2wt7cXffr0yXaK6+vbLYQQS5cuFTY2NjnOZRMTEyNat24tSpUqJSwtLUW1atXEyJEjs80JJKWCbveLFy+En5+fKFu2rLCwsBCVKlUSAwYMyLYvTW1/3759O8f3Rdb3hiHu74ULFwp3d3dhaWkpGjVqpNODNWDAANGmTRud9ocOHRINGzYUlpaWonLlyjmG/o0bN4patWoJCwsLUbt2bZ0vU0NRkO1u06ZNjvt1wIAB2jajR48WlSpVEpaWlqJs2bLCz89PhIWFFeMW5U9BtnvWrFmiWrVqwtraWpQsWVK0bNlS7Nq1K9tjmtr+FiKzd9vGxkYsW7Ysx8cz9P2t6fXK7TUr5XtbJsSr0UxEREREZLqXDyEiIiIqDIYjIiIioiwYjoiIiIiyYDgiIiIiyoLhiIiIiCgLhiMiIiKiLBiOiIiIiLJgOCIiIiLKguGIiIiIKAuGIyIiIqIsGI6IyKRMmzYNdevWha2tLZydnTF8+HCkp6dLXRYRGRGl1AUQERUVIQRUKhWWLl2KChUq4PLly+jfvz/q1auH4cOHS10eERkJXniWiExa7969UbZsWfznP/+RuhQiMhI8rEZEJiM6Ohqff/45PD09UbJkSdjZ2eGPP/6Am5ub1KURkRFhOCIik/Do0SM0adIEjx49wty5c3Hs2DGEh4dDoVCgQYMGUpdHREaEY46IyCQEBwcjIyMD69evh0wmAwAsXLgQaWlpDEdEVCAMR0RkEkqVKoWkpCRs374db731Fnbs2IGZM2eiQoUKKFu2rNTlEZER4YBsIjIJQggMHz4c69atg42NDfr27YuUlBRER0dj586dUpdHREaE4YiIiIgoCw7IJiIiIsqC4YiIiIgoC4YjIiIioiwYjoiIiIiyYDgiIiIiyoLhiIiIiCgLhiMiIiKiLBiOiIiIiLJgOCIiIiLKguGIiIiIKAuGIyIiIqIsGI6IiIiIsvg/lVQiVmxlbawAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABv8UlEQVR4nO3dd1QU198G8GcLvVoRRLGXgBVU7NhAjcZojCZ2g7El1jSN3RiNiVHfGGtEjT9rrLErKnZsiMYeGyAKFlTAQtu97x+4G1aKgCyz5fmcw1Fm7+58Z2fLw507d2RCCAEiIiIiAgDIpS6AiIiIyJAwHBERERFlwHBERERElAHDEREREVEGDEdEREREGTAcEREREWXAcERERESUAcMRERERUQYMR0REREQZMByRUbh//z4mT56M8+fPZ7qtX79+sLe3z/djp6SkYPDgwXB1dYVCoUDt2rXzX2gBWLBgAVasWJFpeUREBGQyWZa3mRKZTIbJkydLXUaBmDx5MmQymd7vO2/ePFSqVAmWlpaQyWR49uwZ+vXrh3Llyum0mz59OrZu3ZqvenLy5MkTfPLJJyhZsiRkMhk+/PDDPD9GuXLl0K9fvwKvzdCMHz8eHTp0QOnSpSGTybLd5nLlykEmk2X5Y21tXbhFmyGl1AUQ5cb9+/cxZcoUlCtXrsDDy8KFC7F48WLMmzcP3t7e7xS0CsKCBQtQvHjxTB+arq6uCA0NRcWKFaUpjPJswIABaNu2rV7Xcf78eQwfPhwDBgxA3759oVQq4eDggAkTJmDEiBE6badPn46uXbvmK7zk5IcffsCWLVuwbNkyVKxYEUWLFi3Qxzclc+bMQc2aNfHBBx9g2bJl2bbbsmULkpOTdZZFRUWhe/fu6Ny5s77LNHsMR2T2Ll26BBsbG3z55ZdSl5IjKysr+Pr6Sl0G5YG7uzvc3d31uo7Lly8DAD7//HPUr19fu7wwQ/SlS5dQsWJF9OzZs9DWWVBevnwJW1vbQltfYmIi5PL0gzb/+9//sm1Xp06dTMv27t0LID10k37xsJoZevToEQYOHIgyZcrAysoKJUqUQOPGjbF//35tGz8/P3h5eSE0NBSNGjWCjY0NypUrh+XLlwMAdu7cibp168LW1hY1atTAnj17Mq3n2LFjaNWqFRwcHGBra4tGjRph586dmdpdunQJnTp1QpEiRWBtbY3atWvjzz//1N5+6NAh1KtXDwDQv39/bdfym4debt68ifbt28Pe3h5lypTBV199lekvrzfJZDIsXboUr1690j7uihUrcjyE9ea6NYc/Ll++jE8//RROTk5wcXHBZ599hvj4eJ37qtVqzJs3D7Vr14aNjQ2cnZ3h6+uLbdu2AUjvSr98+TIOHz6srUdzaCS7mnLzPK9YsQIymQwhISEYMmQIihcvjmLFiqFLly64f/9+js9RTsqVK4cOHTpgy5YtqFmzJqytrVGhQgX89ttvmdpGRUWhV69eKFmyJKysrFC9enX8+uuvUKvV2T5+REQElEolZsyYkem2I0eOQCaTYcOGDQDyth+SkpIwduxYlC9fHpaWlihdujS++OILPHv2LMvt27FjB+rUqQMbGxtUr14dO3bsAJD+vFavXh12dnaoX78+zp49q3P/rA6NrV+/Hv7+/nB1ddU+3pgxY/DixYvsn+hs+Pn5oVevXgCABg0a6BymefOwmkwmw4sXL/Dnn39qX1t+fn45Pv6TJ08wdOhQlC5dGpaWlqhQoQLGjRunfV9pXpP79+/H1atXtY976NChbB8zNTUV3377LUqVKgVbW1s0adIEp0+fzrJtbGwsBg0aBHd3d1haWqJ8+fKYMmUK0tLSdNpFR0eja9eucHBwgLOzM3r27IkzZ85ker9oDsFfvHgR/v7+cHBwQKtWrQCkH16fNm0aqlWrpv1c7N+/Px49epSprvXr16Nhw4aws7ODvb09AgICEB4enuNzqaEJRnklhMDy5ctRoUIFtGzZMl+PQXkgyOwEBASIEiVKiCVLlohDhw6JrVu3iokTJ4p169Zp2zRv3lwUK1ZMVK1aVQQFBYm9e/eKDh06CABiypQpokaNGmLt2rVi165dwtfXV1hZWYl79+5p73/o0CFhYWEhvL29xfr168XWrVuFv7+/kMlkOuu5du2acHBwEBUrVhQrV64UO3fuFJ9++qkAIGbOnCmEECI+Pl4sX75cABDjx48XoaGhIjQ0VNy9e1cIIUTfvn2FpaWlqF69upg1a5bYv3+/mDhxopDJZGLKlCk5PhehoaGiffv2wsbGRvu4Dx8+FHfu3BEAxPLlyzPdB4CYNGmS9vdJkyYJAKJq1api4sSJIjg4WMyePVtYWVmJ/v3769y3d+/eQiaTiQEDBoi///5b7N69W/z444/i//7v/4QQQpw7d05UqFBB1KlTR1vPuXPnhBAiy5py+zxrnr8KFSqIYcOGib1794qlS5eKIkWKiBYtWujUqGmb1ba/ycPDQ5QuXVqULVtWLFu2TOzatUv07NlTABC//PKLtt3Dhw9F6dKlRYkSJcSiRYvEnj17xJdffikAiCFDhuT4/Hbu3FmULVtWpKWl6bT7+OOPhZubm0hNTc3TflCr1SIgIEAolUoxYcIEsW/fPjFr1ixhZ2cn6tSpI5KSknS2z93dXXh5eWlf7w0aNBAWFhZi4sSJonHjxmLz5s1iy5YtokqVKsLFxUW8fPlSe39NTRn98MMPYs6cOWLnzp3i0KFDYtGiRaJ8+fKZ9kNW933T5cuXxfjx47X7KzQ0VNy8eVMIkf6+8PDw0LYNDQ0VNjY2on379trX1uXLl7N97FevXomaNWsKOzs7MWvWLLFv3z4xYcIEoVQqRfv27YUQQiQlJYnQ0FBRp04dUaFCBe3jxsfHZ/u4ffv2FTKZTHzzzTdi3759Yvbs2aJ06dLC0dFR9O3bV9suJiZGlClTRnh4eIjFixeL/fv3ix9++EFYWVmJfv36ads9f/5cVKpUSRQtWlTMnz9f7N27V4waNUqUL18+0+u4b9++wsLCQpQrV07MmDFDHDhwQOzdu1eoVCrRtm1bYWdnJ6ZMmSKCg4PF0qVLRenSpcV7772ns09//PFHIZPJxGeffSZ27NghNm/eLBo2bCjs7OxyfD6zYmdnp7PNOdm3b58AIKZNm5andVD+MByZIXt7ezFy5Mgc2zRv3lwAEGfPntUui4uLEwqFQtjY2OgEofPnzwsA4rffftMu8/X1FSVLlhSJiYnaZWlpacLLy0u4u7sLtVothBDik08+EVZWViIqKkpn/e3atRO2trbi2bNnQgghzpw5k+0Xdt++fQUA8ddff+ksb9++vahatepbno30+9vZ2eksy084+vnnn3XaDR06VFhbW2u39ciRIwKAGDduXI71eHp6iubNm2danlVNuX2eNYFn6NChOo/5888/CwAiJiZGu+zPP/8UCoVC/PnnnznWKUR6eJDJZOL8+fM6y9u0aSMcHR3FixcvhBBCjBkzRgAQp06d0mk3ZMgQIZPJxPXr17XL3nx+Q0JCBACxZcsW7bJ79+4JpVKpE35zux/27NmTZbv169cLAGLJkiU622djYyOio6O1yzSvd1dXV+32CSHE1q1bBQCxbdu2TDVlR61Wi9TUVHH48GEBQFy4cCHX99XQ7NszZ87oLH8zHAmRty/jRYsWZfm+mjlzpgAg9u3bp13WvHlz4enp+dbHvHr1qgAgRo0apbN89erVAoBObYMGDRL29vYiMjJSp+2sWbMEAG0QmT9/vgAgdu/erdNu0KBBWYYjAGLZsmU6bdeuXSsAiE2bNuks13zuLFiwQAghRFRUlFAqlWLYsGE67RITE0WpUqVEt27d3vocZJSX/dG9e3ehUCh0XoukPzysZobq16+PFStWYNq0aTh58iRSU1OzbOfq6gpvb2/t70WLFkXJkiVRu3ZtuLm5aZdXr14dABAZGQkAePHiBU6dOoWuXbvqDG5WKBTo3bs3oqOjcf36dQDAwYMH0apVK5QpU0Zn3f369cPLly8RGhqaq22SyWTo2LGjzrKaNWtqayoMH3zwQab1JyUl4eHDhwCA3bt3AwC++OKLAllfXp7nnGoEoPM89enTB2lpaejTp0+u6vD09EStWrV0lvXo0QMJCQk4d+4cgPT9/N577+mMiQHS97MQAgcPHsz28f38/FCrVi3Mnz9fu2zRokWQyWQYOHBgpvZv2w+adb054P3jjz+GnZ0dDhw4oLO8du3aKF26tPZ3zevdz89PZ6zKm++D7Ny+fRs9evRAqVKloFAoYGFhgebNmwMArl69muN9C9PBgwdhZ2eHrl276izXPG9vPk+5ERISAgCZxiZ169YNSqXuENgdO3agRYsWcHNzQ1pamvanXbt2AIDDhw9r/3VwcMg08P3TTz/Nto6PPvoo07qcnZ3RsWNHnXXVrl0bpUqV0h4m3Lt3r/a9kbGdtbU1mjdvnuPhxHfx5MkTbN26FW3bttV5LZL+cEC2GVq/fj2mTZuGpUuXYsKECbC3t0fnzp3x888/o1SpUtp2WZ1xYmlpmWm5paUlgPRxHADw9OlTCCHg6uqa6f6aUBUXF6f9Nzft3sbW1jbT6a1WVlbamgpDsWLFMq0fAF69egUgfayXQqHQeY7fRV6e59zWmB9ZbY9mWcb9/OZp5TnV+SbN2VjXr19HhQoV8Mcff6Br165Zrvtt2xgXFwelUokSJUrotJPJZChVqlSmWrJ7vb/tfZCV58+fo2nTprC2tsa0adNQpUoV2Nra4u7du+jSpcs77YeCFhcXh1KlSmUaM1WyZEkolcpcvzfffEwg82tGqVRm2m8PHjzA9u3bYWFhkeVjPX78WPuYLi4umW7PahmQ/lnh6OiYaV3Pnj3T7sPs1vXgwQMA0I6BfFN+xxO9zapVq5CcnMyB2IWI4cgMFS9eHHPnzsXcuXMRFRWFbdu2YcyYMXj48GGWA6vzqkiRIpDL5YiJicl0m2bwb/HixQGkf5Hlpl1h0wStNwd05+cLQaNEiRJQqVSIjY3NMtDkVV6eZ32KjY3NdpnmC+9d93OPHj3w3XffYf78+fD19UVsbGy+e+CKFSuGtLQ0PHr0SCcgCSEQGxub7RdfQTh48CDu37+PQ4cOaXuLAGQaCG4IihUrhlOnTkEIoROQHj58iLS0tHy9tjSvh9jYWJ0ekLS0tEzvreLFi6NmzZr48ccfs3wsTbAuVqxYlgO6s3pdAshy7ijNCQrZff45ODho2wHAxo0b4eHhkWVbfQgKCoKLiws6dOhQaOs0dzysZubKli2LL7/8Em3atNEeAnlXdnZ2aNCgATZv3qzzl7BarcaqVavg7u6OKlWqAABatWql/cLIaOXKlbC1tdWeul4QPRx54eLiAmtra/zzzz86y//+++98P6bmcMDChQtzbGdlZZWr7czL86xPly9fxoULF3SWrVmzBg4ODqhbty6A9P185cqVTK+xlStXQiaToUWLFjmuw9raGgMHDsSff/6J2bNno3bt2mjcuHG+6tWcnbRq1Sqd5Zs2bcKLFy+0t+uD5otZ83rWWLx4sd7WmVFuX1tA+vP0/PnzTJNGrly5Unt7XmnOjlu9erXO8r/++ivTGWgdOnTQThHg4+OT6UcTjpo3b47ExETtYWuNdevW5bquDh06IC4uDiqVKst1Va1aFQAQEBAApVKJW7duZdnOx8cnr0/JW509exb//POPdg4rKhx8ps1MfHw8WrRogR49eqBatWpwcHDAmTNnsGfPHnTp0qXA1jNjxgy0adMGLVq0wNdffw1LS0ssWLAAly5dwtq1a7VfEpMmTdKOLZg4cSKKFi2K1atXY+fOnfj555/h5OQEIH3OFhsbG6xevRrVq1eHvb093NzcdMY+FSSZTIZevXppJ7WrVasWTp8+jTVr1uT7MZs2bYrevXtj2rRpePDgATp06AArKyuEh4fD1tYWw4YNAwDUqFED69atw/r161GhQgVYW1ujRo0aWT5mbp/nvFi5ciU+++wzLFu2LFfjjtzc3PDBBx9g8uTJcHV1xapVqxAcHIyZM2dqx+SMGjUKK1euxPvvv4+pU6fCw8MDO3fuxIIFCzBkyJBchbihQ4fi559/RlhYGJYuXZrn7dJo06YNAgIC8N133yEhIQGNGzfGP//8g0mTJqFOnTro3bt3vh/7bRo1aoQiRYpg8ODBmDRpEiwsLLB69epM4VJfatSogUOHDmH79u1wdXWFg4OD9ov/TX369MH8+fPRt29fREREoEaNGjh27BimT5+O9u3bo3Xr1nlef/Xq1dGrVy/MnTsXFhYWaN26NS5duoRZs2ZlOtQ1depUBAcHo1GjRhg+fDiqVq2KpKQkREREYNeuXVi0aBHc3d3Rt29fzJkzB7169cK0adNQqVIl7N69WzsnUG4OdX3yySdYvXo12rdvjxEjRqB+/fqwsLBAdHQ0QkJC0KlTJ3Tu3BnlypXD1KlTMW7cONy+fRtt27ZFkSJF8ODBA5w+fRp2dnaYMmVKjus6fPiwdnoAlUqFyMhIbNy4EUB60HvzcG9QUBAAIDAwMHdPMhUMSYeDU6FLSkoSgwcPFjVr1hSOjo7CxsZGVK1aVUyaNEnnzJvszj7x8PAQ77//fqblAMQXX3yhs+zo0aOiZcuWws7OTtjY2AhfX1+xffv2TPe9ePGi6Nixo3BychKWlpaiVq1aWZ4ltnbtWlGtWjVhYWGhc0ZTVmebCZH7s32yu398fLwYMGCAcHFxEXZ2dqJjx44iIiIi27PVHj16pHN/zVlEd+7c0S5TqVRizpw5wsvLS1haWgonJyfRsGFDneclIiJC+Pv7CwcHBwFAe8ZRdmfQ5eZ5zu6MJs2ZYCEhIZna5vZU/vfff19s3LhReHp6CktLS1GuXDkxe/bsTG0jIyNFjx49RLFixYSFhYWoWrWq+OWXX4RKpdJp9+bzm5Gfn58oWrSozqnVGnnZD69evRLfffed8PDwEBYWFsLV1VUMGTJEPH36NMvte1NWr3fN/sk4hUFWr8ETJ06Ihg0bCltbW1GiRAkxYMAAce7cuUzPuT7OVjt//rxo3LixsLW1FQCyPCsyo7i4ODF48GDh6uoqlEql8PDwEGPHjtWZ7kCI3J+tJoQQycnJ4quvvhIlS5YU1tbWwtfXV4SGhgoPD49MZ249evRIDB8+XJQvX15YWFiIokWLCm9vbzFu3Djx/PlzbbuoqCjRpUsXYW9vLxwcHMRHH30kdu3aJQCIv//+W+c5yeq9LoQQqampYtasWaJWrVrC2tpa2Nvbi2rVqolBgwaJGzdu6LTdunWraNGihXB0dBRWVlbCw8NDdO3aVezfv/+t2685Ezirn4zvQyGEePnypXBychLNmjV76+NSwZIJIUThxDAiMjXlypWDl5eXdlJEfXr48CE8PDwwbNgw/Pzzz3pfHxm36dOnY/z48YiKitL7LOVkenhYjYgMWnR0NG7fvo1ffvkFcrk80/XCiH7//XcAQLVq1ZCamoqDBw/it99+Q69evRiMKF8YjojIoC1duhRTp05FuXLlsHr1as7zQpnY2tpizpw5iIiIQHJyMsqWLYvvvvsO48ePl7o0MlI8rEZERESUgeSn8h85cgQdO3aEm5sbZDJZptNGs3L48GF4e3trL3K5aNEi/RdKREREZkHycPTixQvUqlVLe8z4be7cuYP27dujadOmCA8Px/fff4/hw4dj06ZNeq6UiIiIzIFBHVaTyWTYsmULPvzww2zbfPfdd9i2bZvONYgGDx6MCxcu5Po6XERERETZMboB2aGhofD399dZFhAQgKCgIKSmpmZ5HZ7k5GSdy0Co1Wo8efIExYoVy9ckeURERFT4hBBITEyEm5ub3q5lBxhhOIqNjc10QUEXFxekpaXh8ePHWV6zasaMGW+dtZSIiIiMw927d/U6TYPRhSMg84UDNUcGs+sFGjt2LEaPHq39PT4+HmXLlsXdu3czTVlPREbk3j3g1i2gYkUgp1P8c9uOiAxaQkICypQpo70YsL4YXTgqVapUpqstP3z4EEqlUnvF5zdZWVllutAjADg6OjIcERmroCBg4EBArQbkcmDJEiCr60/lth0RGQ19D4mR/Gy1vGrYsCGCg4N1lu3btw8+Pj5ZjjciIhMUHf1f4AHS/x00KH15ftoREWUgeTh6/vw5zp8/j/PnzwNIP1X//PnziIqKApB+SCzjlcEHDx6MyMhIjB49GlevXsWyZcsQFBSEr7/+WoryiUgKN278F3g0VCrg5s38tSMiykDyw2pnz55FixYttL9rxgb17dsXK1asQExMjDYoAUD58uWxa9cujBo1CvPnz4ebmxt+++03fPTRR4VeOxFJpHLl9ENkGYOPQgFUqpS/dkREGRjUPEeFJSEhAU5OToiPj+eYIyJjFRSUfohMpUoPPIsXZz/mKDftiMjgFdb3N8MRwxGR8YqOTj9EVqkSkNNpvbltR0QGrbC+vyU/rEZElG/u7rkLO7ltR0QEAxiQTURERGRI2HNERCbh1atX2LJlC44ePYqnT5/Czc0Nbdq0QZs2baBU8qOOiHKPnxhEZNSEEFi1ahW++uorPHr0SOe2OXPm4L333sPChQvRrFkziSokImPDcERERkulUmH48OFYsGABAKBcuXL4+OOP4erqin///Rfr16/HlStX0KJFC8ydOxfDhg2TuGIiMgYMR0RklNRqNfr06YM1a9ZAJpNhypQpGDNmjM5M+TNmzMDIkSPx559/Yvjw4UhLS8OoUaMkrJqIjAEHZBORUZo8eTLWrFkDCwsLrFu3DhMmTMh0CSFnZ2csX74c48ePB5A+yezmzZulKJeIjAjDEREZne3bt+OHH34AACxevBjdunXLtq1MJsPUqVO1PUb9+vXD9evXC6VOIjJODEdEZFTi4uLw+eefAwBGjhyJ/v37v/U+MpkMP//8M5o1a4bExET06dMHKpVK36USkZFiOCIiozJ8+HA8ePAA7733HmbMmJHr+ymVSqxduxaOjo44ffo05s+fr8cqiciYMRwRkdE4fvy4dgD2ihUrYG1tnaf7u7m5YebMmQCA77//HjExMfook4iMHMMRERkFtVqtHTcUGBiIevXq5etxBg4ciAYNGuDFixeYOnVqQZZIRCaC4YiIjMLGjRtx5swZODg4YNq0afl+HLlcjp9//hkA8Mcff+Dff/8tqBKJyEQwHBGRwRNC4McffwSQfjq+i4vLOz1es2bN0KFDB6hUKkyePLkAKiQiU8JwREQGb8eOHfjnn39gb2+P4cOHF8hjag6prV+/Hrdv3y6QxyQi08BwREQGLWOv0dChQ1G0aNECedw6deqgbdu2UKvVmDVrVoE8JhGZBoYjIjJoR44cwalTp2BtbY3Ro0cX6GOPGTMGALBs2bJMF60lIvPFcEREBk0zH1GfPn3eeazRm5o1a4Z69eohOTkZy5YtK9DHJiLjxXBERAYrJiYGW7ZsAZB+SK2gyWQyDBkyBED6ZUjUanWBr4OIjA/DEREZrKCgIKSlpaFRo0aoVauWXtbRvXt3ODs7486dO9i7d69e1kFExoXhiIgMkkqlwpIlSwBA27ujD7a2ttrrsy1cuFBv6yEi48FwRESGJzoae37+GXfv3kWxYsXQtWtXva5u8ODBAICdO3ci+swZICQEiI7W6zqJyHAxHBGRYQkKAjw88L/vvwcA9KpTJ8/XUMurKlWqoGnTplCr1VjboAHQsiXg4ZFeCxGZHYYjIjIc0dHAwIGIV6vx9+tFvQ8eLJRenN4dOgAA/idE+gK1Ghg0iD1IRGaI4YiIDMeNG4Bajc0AkgBUA1BXrQZu3tT7qrtWqwZLABcB/KNZqFIVyrqJyLAwHBGR4ahcGZDL8b/Xv/YGIFMogEqV9L7qInXrouPr/2vWj0JaNxEZFoYjIjIc7u64+9NPOPT61x5yObB4MeDuXijr7vXFFwCANQBUhbluIjIoDEdEZFA2KpUQAJrUqIFykZFAYGChrbv97Nko4uSE+wCOr19fqOsmIsPBcEREBmXTpk0AgI8HDCj0XhtLS0t88OGH6XUcPVqo6yYiw8FwREQGIyYmBidOnAAAdOnSRZIaPvroIwDA5s2beTkRIjPFcEREBmPLli0QQqBBgwZwl2isT5s2bWBvb4/o6GicOXNGkhqISFoMR0RkMDSH1DS9N1KwtrbG+++/r1MPEZkXhiMiMgiPHz/G4cOHAUgbjjKuf9OmTRCaSSGJyGwwHBGRQdi5cydUKhVq1aqFChUqSFpL+/btYW1tjdu3b+Py5cuS1kJEhY/hiIgMws6dOwEAHTt2fEtL/bOzs0OLFi0AADt27JC4GiIqbAxHRCS51NRU7N27FwDQ4fU1zqSmqUMT2ojIfDAcEZHkjh07hoSEBJQoUQL16tWTuhwA0A7KPnHiBJ48eSJxNURUmBiOiEhymt6Zdu3aQS43jI8lDw8PeHp6Qq1Wa3u1iMg8GManEBGZNU040vTWGApNPTy0RmReGI6ISFK3b9/GtWvXoFAo4O/vL3U5OjThaPfu3VCpVBJXQ0SFheGIiCSl6ZVp2rQpnJ2dpS3mDY0aNYKzszOePHmCkydPSl0OERUShiMiktSuXbsAGN4hNQBQKpVo27YtgP/qJCLTx3BERJJJTk7WzoqtCSGGRlNXcHCwxJUQUWFhOCIiyZw4cQKvXr1CqVKl4OnpKXU5WWrdujUA4OzZszyln8hMMBwRkWT2798PID2AyGQyiavJWunSpVG9enUIIRASEiJ1OURUCBiOiEgymkNVbdq0kbiSnGnq46E1IvPAcEREknjy5AnOnj0LAGjVqpXE1eRMc2iN4YjIPDAcEZEkQkJCIITAe++9h9KlS0tdTo78/PygVCpx+/Zt3L59W+pyiEjPGI6ISBLGckgNABwcHODr6wvgv3FSRGS6GI6ISBIZB2MbA02dDEdEpo/hiIgK3Z07d3Dr1i0olUo0b95c6nJyRdPDdeDAAV5KhMjEMRwRUaHTnBJfv359ODg4SFxN7tSrVw/29vZ48uQJLl68KHU5RKRHDEdEVOg0s2L7+flJW0geWFhYoHHjxgD+q5+ITBPDEREVOmMMR8B/9TIcEZk2hiMiKlQRERGIjIyEUqlEo0aNpC4nTzTjo44cOQK1Wi1xNUSkLwxHRFSoNL0uPj4+sLOzk7iavPHx8YGtrS3i4uJw+fJlqcshIj1hOCKiQqUJR8ZyllpGHHdEZB4YjoioUB06dAiA8Y030tCEOoYjItPFcEREhebu3bu4c+cOFAqFtgfG2GQclC2EkLYYItILhiMiKjSa3pa6desazfxGb6pXrx5sbGzw6NEjXL16VepyiEgPGI6IqNBoDqkZ43gjDUtLSzRs2BAAD60RmSqGIyIqNMY6v9GbON8RkWkziHC0YMEClC9fHtbW1vD29sbRo0dzbL969WrUqlULtra2cHV1Rf/+/REXF1dI1RJRfty/fx83b96EXC5HkyZNpC7nnWQclM1xR0SmR/JwtH79eowcORLjxo1DeHg4mjZtinbt2iEqKirL9seOHUOfPn0QGBiIy5cvY8OGDThz5gwGDBhQyJUTUV5o/uipVasWnJycJK7m3dSvXx+WlpaIjY3FrVu3pC6HiAqY5OFo9uzZCAwMxIABA1C9enXMnTsXZcqUwcKFC7Nsf/LkSZQrVw7Dhw9H+fLl0aRJEwwaNAhnz54t5MqJKC+OHz8OAEZ7llpG1tbW8PHxAfDfdhGR6ZA0HKWkpCAsLAz+/v46y/39/XHixIks79OoUSNER0dj165dEELgwYMH2LhxI95///1s15OcnIyEhASdHyIqXNpw5OwMREdLW0wBaFyzJgDg+L59EldCRAVN0nD0+PFjqFQquLi46Cx3cXFBbGxslvdp1KgRVq9eje7du8PS0hKlSpWCs7Mz5s2bl+16ZsyYAScnJ+1PmTJlCnQ7iChnz58/x4Xz5wEAjadNAzw8gKAgaYt6F0FBaLx4MQDg+Jo1xr0tRJSJ5IfVAEAmk+n8LoTItEzjypUrGD58OCZOnIiwsDDs2bMHd+7cweDBg7N9/LFjxyI+Pl77c/fu3QKtn4hydmrHDqjUapQBUAYA1Gpg0CDj7EGKjgYGDkSj1wOxrwB4MnCgcW4LEWVJKeXKixcvDoVCkamX6OHDh5l6kzRmzJiBxo0b45tvvgEA1KxZE3Z2dmjatCmmTZsGV1fXTPexsrKClZVVwW8AEeXK8b17AQA6o41UKuDmTcDdXZKa8u3GDUCtRgkAVQD8CyBUrcb7xrgtRJQlSXuOLC0t4e3tjeDgYJ3lwcHBaNSoUZb3efnyJeRy3bIVCgUA8JRaIgN1/PZtAG+EI4UCqFRJknreSeXKwOvPIM32HJfJjHNbiChLkh9WGz16NJYuXYply5bh6tWrGDVqFKKiorSHycaOHYs+ffpo23fs2BGbN2/GwoULcfv2bRw/fhzDhw9H/fr14ebmJtVmEFE2VCoVQsPDAQCNNX/YKBTA4sXG2dPi7g4sWQIoFP+Fo8qVjXNbiChLkh5WA4Du3bsjLi4OU6dORUxMDLy8vLBr1y54eHgAAGJiYnTmPOrXrx8SExPx+++/46uvvoKzszNatmyJmTNnSrUJRJSDS5cuITExEfb29qhx8SIQEZHey2LMYSIwEAgIQOODB4G+fXE6KgopKSmwtLSUujIiKgAyYYbHohISEuDk5IT4+Hg4OjpKXQ6RSVuwYAG++OILtG7dOtMhdGOnVqtRokQJPHnyBCdPnkSDBg2kLonIpBXW97fkh9WIyLSZ0uSPb5LL5drxkZwMksh0MBwRkV6ZcjgC/tsuhiMi08FwRER6c+/ePURGRkIul8PX11fqcvQiYzgyw1EKRCaJ4YiI9EbTm1KzZk04ODhIXI1++Pj4wMLCAg8ePMDt11MWEJFxYzgiIr0x9UNqAGBjYwNvb28APLRGZCoYjohIb06ePAkA2U7qaio04U+zvURk3BiOiEgvkpOTcf71xWZN/RR3zfYxHBGZBoYjItKLf/75BykpKShWrBgqVKggdTl6pRls/s8//+Dly5cSV0NE74rhiIj04tSpUwCA+vXrQyaTSVyNfrm7u8PNzQ0qlQphYWFSl0NE74jhiIj04vTp0wDSw5Gpk8lkPLRGZEIYjohILzQ9R6Y+3khDc2hNs91EZLwYjoiowD19+hT//vsvAKBevXoSV1M4NOGIPUdExo/hiIgK3NmzZwEAFSpUQPHixSWupnB4e3tDoVDg3r17iI6OlrocInoHDEdEVODM7ZAaANjZ2aFGjRoAeGiNyNgxHBFRgTOnwdgZ8dAakWlgOCKiAiWE0IYjc+o5Av7bXvYcERk3hiMiKlBRUVF48OABlEolateuLXU5hUrTc3T27FmkpqZKXA0R5RfDEREVKE2vUc2aNWFjYyNxNYWrSpUqcHZ2xqtXr3Dx4kWpyyGifGI4IqICZY6DsTXkcrl2nBUPrREZL4YjIipQ5joYW4ODsomMH8MRERWYtLQ07bXFzD0cseeIyHgxHBFRgbl8+TJevnwJBwcHVKtWTepyJKEJhdevX8eTJ08kroaI8oPhiIgKjOaQWr169SCXm+fHS7FixVC5cmUA/z0fRGRczPPTi4j0wlznN3oT5zsiMm4MR0RUYDRhwFzHG2lwUDaRcWM4IqIC8fz5c1y+fBkAw1HGQdlCCImrIaK8YjgiogIRFhYGtVoNd3d3uLm5SV2OpGrWrAkrKys8ffoUN2/elLocIsojhiMiKhDmPr9RRhYWFqhbty4AjjsiMkYMR0RUIBiOdHFQNpHxYjgiogJhzpcNyYrmeeDp/ETGh+GIiN5ZTEwM7t69C5lMBm9vb6nLMQiaHrTz588jOTlZ4mqIKC8YjojonZ05cwYA4OnpCQcHB4mrMQzly5dH8eLFkZKSgvPnz0tdDhHlAcMREb0zzm+UmUwm46E1IiPFcERE74yDsbPGQdlExonhiIjeiVqt5mVDsqEJiwxHRMaF4YiI3sm///6LhIQE2NjYwNPTU+pyDIomHN28eRNxcXESV0NEucVwRETvRNNrVLduXVhYWEhcjWEpUqQIqlSpAuC/QetEZPgYjojonXB+o5zx0BqR8WE4IqJ3wsHYOeOgbCLjw3BERPmWlJSECxcuAGA4yk7G0/mFEBJXQ0S5wXBERPl2/vx5pKamokSJEihXrpzU5RikmjVrwtLSEnFxcbh9+7bU5RBRLjAcEVG+aQ+p1awJ2aFDQHS0tAUZIKtHj1CnYkUAPLRGZCwYjogo37SDsQ8eBFq2BDw8gKAgiasyIEFBgIcHGly9CgA4vXy5xAURUW4wHBFRvp0+cQIAUF8zlkatBgYNYg8SkP4cDBwIqNXQjMY6tX8/nxsiI8BwRET58uTJE9yMiAAA1Mt4g0oF3LwpRUmG5caN9LAIQDPJQTiAlNe9SERkuBiOiChfNOONKgMomvEGhQKoVEmKkgxL5cqAPP0jtiLSn6NkAP+kpEhZFRHlAsMREeWLdjB2gwbpgQhI/3fxYsDdXcLKDIS7O7BkCaBQQAb8d2jtdW8bERkuhiMiyhdtOOrRA4iIAEJC0v8NDJS0LoMSGKh9bhqMGgWAZ6wRGQOl1AUQkfERQuheNsTdnb1F2Xn93DR49QqYM0cbKonIcLHniIjyLCIiAo8fP4aFhQVq1aoldTlGQTOD+PXr1/H06VOJqyGinDAcEVGeaXqNateuDWtra4mrMQ7FihVDxdeTQZ45c0biaogoJwxHRJRnvNhs/vAitETGgeGIiPKM4Sh/Ml6ElogMF8MREeVJamoqwsLCAPz3ZU+5owmTp06dgtDMKk5EBofhiIjy5NKlS0hKSoKTkxMqV64sdTlGpXbt2rCwsMCjR48QwfmOiAwWwxER5YnmkFC9evUgl/MjJC+sra1Ru3ZtADy0RmTI+MlGRHmiM78R5VnGQ2tEZJgYjogoTzgY+93wjDUiw8dwRES5lpCQgCtXrgBgOMovTTg6d+4cUlNTJa6GiLLCcEREuRYWFgYhBMqWLYtSpUpJXY5RqlSpEpydnZGUlISLFy9KXQ4RZYHhiIhyjYfU3p1cLue4IyIDx3BERLnGwdgFg5NBEhk2hiMiyjX2HBUM9hwRGTaDCEcLFixA+fLlYW1tDW9vbxw9ejTH9snJyRg3bhw8PDxgZWWFihUrYtmyZYVULZF5unfvHu7duwe5XI66detKXY5R0/QcXbt2DfHx8RJXQ0RvkjwcrV+/HiNHjsS4ceMQHh6Opk2bol27doiKisr2Pt26dcOBAwcQFBSE69evY+3atahWrVohVk1kfjS9Rl5eXrC3t5e4GuNWokQJlC9fHkIInD17VupyiOgNkoej2bNnIzAwEAMGDED16tUxd+5clClTBgsXLsyy/Z49e3D48GHs2rULrVu3Rrly5VC/fn00atSokCsnMi88pFawON8RkeGSNBylpKQgLCwM/v7+Osv9/f1x4sSJLO+zbds2+Pj44Oeff0bp0qVRpUoVfP3113j16lW260lOTkZCQoLODxHljeZLnOGoYHDcEZHhUkq58sePH0OlUsHFxUVnuYuLC2JjY7O8z+3bt3Hs2DFYW1tjy5YtePz4MYYOHYonT55kO+5oxowZmDJlSoHXT2QuVCoVzpw5A4BnqhWUjD1HQgjIZDKJKyIiDckPqwHI9KGQ0weFWq2GTCbD6tWrUb9+fbRv3x6zZ8/GihUrsu09Gjt2LOLj47U/d+/eLfBtIDJlV65cwfPnz2FnZwdPT0+pyzEJderUgVKpxIMHD/iZRGRgJA1HxYsXh0KhyNRL9PDhw0y9SRqurq4oXbo0nJyctMuqV68OIQSio6OzvI+VlRUcHR11fogo9zSHfurVqweFQiFxNabBxsYGNWvWBMBDa0SGRtJwZGlpCW9vbwQHB+ssDw4OznaAdePGjXH//n08f/5cu+zff/+FXC6Hu7u7XuslMlec/FE/OCibyDBJflht9OjRWLp0KZYtW4arV69i1KhRiIqKwuDBgwGkHxLr06ePtn2PHj1QrFgx9O/fH1euXMGRI0fwzTff4LPPPoONjY1Um0Fk0hiO9IMzZRMZJkkHZANA9+7dERcXh6lTpyImJgZeXl7YtWsXPDw8AAAxMTE6cx7Z29sjODgYw4YNg4+PD4oVK4Zu3bph2rRpUm0CkUl7/vw5Ll++DIDhqKBpzlgLCwtDWloalErJP5KJCIBMCCGkLqKwJSQkwMnJCfHx8Rx/RPQWhw4dQosWLeDu7s6BwwVMrVajaNGiiI+PR3h4OGrXri11SUQGrbC+vyU/rEZEho2H1PRHLpejXr16AHhojciQMBwRUY4YjvSLk0ESGR6GIyLKEcORfvGMNSLDw3BERNmKjo7G/fv3oVAo4O3tLXU5JknTc3TlyhUkJiZKXA0RAQxHRJQDTW+Gl5cX7OzsJK7GNJUqVQply5aFEAJnz56VuhwiAsMREeWAh9QKBw+tERkWhiMiypbmy9rX11fiSkwbJ4MkMiwMR0SUpbS0NO1hHvYc6RfPWCMyLAxHRJSly5cv4+XLl3B0dES1atWkLsekeXt7Q6FQ4P79+9leQJuICg/DERFl6eTJkwCAevXqQS7nR4U+2draokaNGgDYe0RkCPiJR0RZ4mDswsVxR0SGg+GIiLKkDUc2NgAP9ehd/UqVAACnjhyRuBIiYjgiokwSEhJw9epVAECDCRMADw8gKEjiqkxYUBAafPstAODsyZNQ/fGHxAURmTeGIyLK5MyuXRBCwAOACwCo1cCgQexB0ofoaGDgQFQTAg4AXgC4Mngwn2siCTEcEVEmp/bvBwDojDZSqYCbNyWpx6TduAGo1VAA8Hm96JRazeeaSEIMR0SUSWhkJABAZ+pHhQJ4PS6GClDlysDrswE1YfSUTMbnmkhCDEdEpEMIgdDwcABAI80p/AoFsHgx4O4uYWUmyt0dWLIEUCi04eh06dJ8rokkxHBERDpu3LiBuLg4WFlZoc6NG0BICBARAQQGSl2a6QoMBCIiUH/DBgDApfv38fz5c4mLIjJfDEdEpOPEiRMA0id/tKxQAfDzYy9GYXB3h1vXrnB3d4darUZYWJjUFRGZLYYjItKhCUeNGjWSuBLzxMkgiaTHcEREOhiOpMWL0BJJj+GIiLSePXuGy5cvAwAaNmwocTXmSdNzxHBEJB2GIyLS0lxstlKlSihZsqTE1Zgnb29vyOVyREdH4/79+1KXQ2SWGI6ISIuH1KRnb28PT09PABx3RCQVhiMi0mI4Mgw8tEYkLYYjIgIApKWlab+MGY6kxXBEJK13CkcPHz5EbGxsQdVCRBK6dOkSnj9/DkdHR7z33ntSl2PWfH3TL9xy+vRppKWlSVwNkfnJVzj6559/4OnpCVdXV5QuXRqlS5fG+PHj8eLFi4Kuj4gKieaQmq+vLxQKhcTVmLf33nsPzs7OePHiBc6fPy91OURmJ1/hKDAwEC4uLjh27BjCw8Mxbdo07N69Gz4+Pnj69GlB10hEhYDjjQyHXC5H48aNAQDHjh2TuBoi85OvcHTlyhUsWLAADRs2RM2aNdG/f3+cPXsWnp6eGDZsWEHXSESFgOHIsDRp0gQAwxGRFJT5uVNWPUQymQzTp0+Ht7d3gRRGRIUnJiYGd+7cgUwm0w4GJmllDEdCCMhkMokrIjIfue45ev/99/H999/jr7/+wuDBgzFq1Cg8ePBAp018fDyKFClS4EUSkX6FhoYCAGrUqAFHR0eJqyEg/Y9QS0tLPHjwALdu3ZK6HCKzkuueoxo1auDcuXNYvny5NhRVqFAB3bp1Q+3ataFSqbB8+XLMmTNHb8USkX4cP34cAC8ZYkisra1Rr149HD9+HMeOHUOlSpWkLonIbOQ6HP3000/a/z948ADh4eE4f/48zp8/j4ULF+LmzZtQKBSYMmUKPvroI70US0T6ceTIEQBA06ZNJa6EMmrSpIk2HPXr10/qcojMRr7GHLm4uKBt27Zo27atdtmrV69w4cIFXLhwocCKIyL9S0xMRHh4OACgWbNmEldDGTVp0gQzZ87koGyiQpavcJQVGxsb+Pr6aicvIyLjEBoaCpVKhXLlyqFMmTJSl0MZaM4cvH79Oh4+fMiLARMVEl4+hMjMaQ6psdfI8BQtWlR7EVrNuDAi0j+GIyIzx/FGho3zHREVPoYjIjOWlJSE06dPA2DPkaFiOCIqfAxHRGbszJkzSE5OhouLCypXrix1OZQFTTg6d+4cr19JVEgYjojMWMbxRpyB2TB5eHjA3d0daWlpOHXqlNTlEJkFhiMiM3b06FEAPKRmyGQymXY82OHDhyWuhsg8MBwRmam0tDTtGVAcjG3Y/Pz8AACHDh2StA4ic8FwRGSmzp8/j+fPn8PZ2RleXl5Sl0M5aNGiBQDg5MmTePXqlcTVEJk+hiMiM6UZb9SkSRMoFAqJq6GcVKpUCW5ubkhJSdFeJJiI9IfhiMhMcbyR8ZDJZDy0RlSIGI6IzJBarWY4MjKaQ2shISESV0Jk+hiOiMzQpUuXEBcXBzs7O9StW1fqcigXND1Hp06dwsuXL6UthsjEMRwRmaEDmzYBAJrVrw8LCwuJq6HcqFixItzd3ZGamorQhQuB6GipSyIyWQxHROYmKAgHp04FALQ8dAgICpK2HsoVmUwGP3d3AEDI118DHh7cd0R6wnBEZE6io5H2+efQTCXYUghg0CD2QhiD6Gj4vZ4h+xAAqNXcd0R6wnBEZE5u3MBZIZAIoAiA2gCgUgE3b0paFuXCjRtoIQQA4DSAFwD3HZGeMBwRmZPKlXHw9TXUWuD1B4BCAVSqJGVVlBuVK6O8TIYyAFIBnAC474j0hOGIyJy4u+NgtWoAgJZA+pfr4sXA67EsZMDc3SH74w/4vQ63h2Qy7jsiPWE4IjIjSUlJOH7nDgCg5YoVQEQEEBgoaU2UB4GBaPHLLwCAg3XqcN8R6QnDEZEZCQ0NRVJSElxdXVGtTx/2Ohihll27AgDOXLiAZ8+eSVsMkYliOCIyIwcPHgQAtGzZErLXh2fIuHh4eKBKlSpQqVScLZtITxiOiMxIxnBExsvf3x8AEBwcLHElRKaJ4YjITMTHx+P06dMAGI6MnSYc7du3T+JKiEwTwxGRmTh48CDS0tJQuXJllCtXTupy6B34+flBqVTi1q1buH37ttTlEJkchiMiM7F3714AQNu2bSWuhN6Vg4MDGjZsCICH1oj0geGIyAwIIbBnzx4AQEBAgMTVUEFo06YNAIYjIn1gOCIyA//++y8iIyNhaWkJPz8/qcuhAqAZd3TgwAGkpaVJXA2RaTGIcLRgwQKUL18e1tbW8Pb2xtGjR3N1v+PHj0OpVKJ27dr6LZDIyGkOqTVt2hR2dnYSV0MFwcfHB87Oznj27BnOnj0rdTlEJkXycLR+/XqMHDkS48aNQ3h4OJo2bYp27dohKioqx/vFx8ejT58+aNWqVSFVSmS8NIfUON7IdCgUCu3nHw+tERUsycPR7NmzERgYiAEDBqB69eqYO3cuypQpg4ULF+Z4v0GDBqFHjx7aQYlElLWkpCQcOnQIAMcbmRrNoTVNzyARFQxJw1FKSgrCwsK0b3ANf39/nDhxItv7LV++HLdu3cKkSZNytZ7k5GQkJCTo/BCZi6NHj+LVq1dwc3ODl5eX1OVQAdL0BIaGhiIuLk7iaohMh6Th6PHjx1CpVHBxcdFZ7uLigtjY2Czvc+PGDYwZMwarV6+GUqnM1XpmzJgBJycn7U+ZMmXeuXYiY6HpVQgICOAlQ0xM2bJlUaNGDajVau2hUyJ6d5IfVgOQ6QNbCJHlh7hKpUKPHj0wZcoUVKlSJdePP3bsWMTHx2t/7t69+841ExkLjjcybR06dAAA7Ny5U+JKiEyHpOGoePHiUCgUmXqJHj58mKk3CQASExNx9uxZfPnll1AqlVAqlZg6dSouXLgApVKpvW7Um6ysrODo6KjzQ2QOIiMjcfnyZcjlcrRu3VrqckgPNOFo9+7dPKWfqIBIGo4sLS3h7e2d6UyL4OBgNGrUKFN7R0dHXLx4EefPn9f+DB48GFWrVsX58+fRoEGDwiqdyChs374dANCkSRMULVpU4mpIHxo0aIBixYrh2bNnOY7VJKLcy92gHT0aPXo0evfuDR8fHzRs2BBLlixBVFQUBg8eDCD9kNi9e/ewcuVKyOXyTANKS5YsCWtraw40JcrCtm3bAAAdO3aUuBLSF4VCgXbt2mHVqlXYuXMnmjVrJnVJREZP8jFH3bt3x9y5czF16lTUrl0bR44cwa5du+Dh4QEAiImJeeucR0SUWUJCgvYUfoYj06Y5tLZjxw6JKyEyDTIhhJC6iMKWkJAAJycnxMfHc/wRmawNGzagW7duqFKlCq5fvy51OaRHz549Q/HixaFSqXD79m2UL19e6pKI9KKwvr8l7zkiIv3QjDdir5Hpc3Z2RpMmTQDwrDWigsBwRGSC0tLSsGvXLgAMR+ZCc2hNE4qJKP8YjohMkGbG5CJFiqBx48ZSl0OFoFOnTgCAgwcP4unTpxJXQ2TcGI6ITNDWrVsBAO3bt8/1TPJk3CpXrgwvLy+kpaVxYDbRO2I4IjIl0dEQBw9i019/AQA++ugjiQuiwqTZ35s2bQKio4GQkPR/iShPGI6ITEVQEODhgbBWrRAZHQ07KyteMsTMdOnSBQCwd9cuPC9bFmjZEvDwSH9tEFGuMRwRmYLoaGDgQECtxsbXi95PSYENr9RuVmrUqIGKHh5ISk3Fbs0sLWo1MGgQe5CI8oDhiMgU3LgBqNUQgDYcdRUCuHlTyqqokMlkMnzUsCEAYFPGG1QqvhaI8oDhiMgUVK4MyOW4AOAWABsA7eRyoFIliQujwtalRw8AwE4ASZqFCgVfC0R5wHBEZArc3YElS7BRJgMAtANgv2RJ+nIyK/Xefx/uRYrgOYA9QHowWryYrwWiPGA4IjIR4rPPsLFCBQBA13nzgMBAiSsiKcjlcnTr3x8AsNbPD4iI4GuBKI8YjohMRHh4OK7fugVra2u836eP1OWQhHq8PrS27eRJJDo5SVwNkfFhOCIyEatWrQKQPlMyL6hs3urWrYsqVaogKSlJOyEoEeUewxGRCVCpVFi7di0AoGfPnhJXQ1KTyWTa3qM1a9ZIXA2R8WE4IjIBBw8eRGxsLIoVK4aAgACpyyED8OmnnwIAgoOD8fDhQ4mrITIuDEdEJkBzSK1bt26wtLSUuBoyBFWqVIGPjw9UKhU2bNggdTlERoXhiMjIvXz5Eps3bwYA9OrVS+JqyJBoDq3973//k7gSIuPCcERk5P7++288f/4c5cuXR8PXsyMTAenhSKFQ4NSpU7h8+bLU5RAZDYYjIiO3dOlSAEDv3r0hez0JJBEAuLi4oEOHDgCAZcuWSVwNkfFgOCIyYrdu3cLBgwchk8nw2WefSV0OGaDA1xNArly5EikpKRJXQ2QcGI6IjFhQUBAAICAgAB4eHhJXQ4aoXbt2cHV1xePHj7Fjxw6pyyEyCgxHREYqLS0Ny5cvBwAMGDBA4mrIUCmVSvTt2xfAf2GaiHLGcERkpHbu3InY2FiULFkSHTt2lLocMmD9X19rbc+ePYiOjpa4GiLDx3BEZKT++OMPAEC/fv04txHlqEqVKvDz84NarcaiRYukLofI4DEcERmhW7duYdeuXQD+G3BLlJMvv/wSALBkyRIkJSVJXA2RYWM4IjJC8+bNgxAC7dq1Q5UqVaQuh4xAp06dUKZMGTx69Ajr16+Xuhwig8ZwRGRkEhIStHPWjBgxQuJqyFgolUoMGTIEwH/hmoiyxnBEZOiio4GQkPR/ASxfvhyJiYmoXr06/P39JS6OjMnnn38OKysrhIWF4eTJk+kL33h9ERHDEZFhCwoCPDyAli0BDw+o/vgD8+bNAwAMHz6cM2JTnhQvXhyffvopAGDu3LmZXl/gqf5EAACZMMO+1YSEBDg5OSE+Ph6Ojo5Sl0OUtejo9C8stVq7aKtcjs5qNZydnREdHQ07OzsJCyRjdOHCBdSuXRtyuRzXhEDljF8BCgUQEQG4u0tWH1FOCuv7mz1HRIbqxg2dYCQATH/9++DBgxmMKF9q1aqF9u3bQ61W4+c3/zZWqYCbN6UpjMiAMBwRGarKlQH5f2/RYABnANhYW2PUqFGSlUXG7/vvvwcA/AngXsYbFAqgUiUpSiIyKAxHRIbK3R1YsiT9CwvAtNeLBw8ZgpIlS0pXFxm9xo0bo2nTpkgF8Ktm3JpCASxezENqRGA4IjJsgYFARASOzJ2LowAsLS3x9ddfS10VmQBN79Fia2s82rIlfawRJxQlAsBwRGT43N0xdft2AOmzYbu5uUlcEJmCgIAAeHt74+WrV5hx5Ah7jIgyYDgiMnDBwcE4cOAALCws8N1330ldDpkImUyGH3/8EQCwYMECREVFSVwRkeFgOCIyYGq1WhuIvvjiC3h4eEhcEZkSf39/+Pn5ITk5GVOmTJG6HCKDwXBEZMDWrl2L8PBwODo6Yty4cVKXQyZGJpNhxowZAIAVK1bg2rVrEldEZBgYjogMVHJyMsaPHw8A+O6771C8eHGJKyJT5Ovri06dOkGtVuPbb7+Vuhwig8BwRGSg5syZg4iICLi6umLkyJFSl0MmbMaMGVAqldi+fTt27doldTlEkmM4IjJAkZGR+OGHHwAAP/30E2xtbSWuiExZ9erVMWLECADAiBEjkJycLHFFRNJiOCIyQCNHjsTLly/RtGlT9O7dW+pyyAxMnDgRrq6uuHnzJn799VepyyGSFMMRkYHZsWMHtm7dCqVSiYULF0KmmcGYSI8cHR3xyy+/AACmTZuG27dvS1wRkXQYjogMSEJCAr744gsAwOjRo+Hp6SlxRWROevToAT8/P7x69QqBgYFQZ7jwMZE5YTgiMiAjR45EVFQUKlSogAkTJkhdDpkZmUyGoKAg2Nra4tChQ1i4cKHUJRFJguGIyEBs374dy5cvh0wmw4oVK2Bvby91SWSGKlSogJkzZwIAvv32Wx5eI7PEcEQklehoICQEiI7Go0eP8PnnnwMAvvrqKzRt2lTi4sicDR06FH5+fnj58iV69uyJ1NRUndcrkaljOCKSQlAQ4OEBtGwJVdmy6OnnhwcPHsDT01N7Cj+RVORyOZYvXw5nZ2ecPHkS33fsqH29wsMj/fVLZMJkQgghdRGFLSEhAU5OToiPj4ejo6PU5ZC5iY5O/4J5Pdh1MoApAGxtbHD6zBkOwiaDsXXrVnTu3BkAsA1AR80NCgUQEQG4u0tUGZmrwvr+Zs8RUWG7cUMbjPYCmPp68eJRoxiMyKB8+OGHGPnRRwCAvgBuam5QqYCbN7O7G5HRYzgiKmyVKwNyOa4B+ASAADBYJkOvIUMkLowos5k//4wGAJ4ivefoGZDec1SpkpRlEekVwxFRYXN3x6Nff0V7pH/RNAIwZ8ECHqIgg2RZoQK2zJoFdwDXAHQDkMbXK5k4hiOiQvbq1St0+usv3AFQwc0NW8+fh/XgwVKXRZQt16++wvY9e2BrbY1gAINPn4YZDlclM8JwRFSIkpOT8dFHHyE0NBTOzs7YeeAAStSqJXVZRG9VOyAAa9atg1wuR1BQEL755hsGJDJZDEdEhSQtLQ09evTA7t27YWNjg+3bt6NatWpSl0WUa506dcLSpUsBAL/++iumT58ucUVE+sFwRFQIVCoV+vfvj82bN8PS0hJ///03mjRpInVZRHnWv39/zJkzBwAwfvx4zJ49W+KKiAoewxGRnqWmpqJXr15YtWoVlEolNm7ciDZt2khdFlG+jRw5EpMmTQKQPqP7jz/+KHFFRAWL4YhIj169eoXOnTtj3bp1sLCwwNq1a9GxY8e335HIwE2aNAlTp6bP0jV+/HiMGzeOY5DIZDAcEelJQkIC2rVrh507d8LGxgbbtm1D165dpS6LqEDIZDJMmDABv/zyCwBg+vTp+OKLL6BSqSSujOjdMRwR6cG9e/fg5+eHw4cPw8HBAXv37kXbtm2lLouowH399deYP38+ZDIZFi5ciC5duuDly5dSl0X0ThiOiArY+b170aB2bYSHh6NEiRIICQlB06ZNpS6LSG+GDh2Kv/76C1ZWVti2bRtaNmmCR1u2pF9HkMgIMRwRFaCdI0agSdu2uPf4MaoDODV6NLy9vaUui0jvunbtiv3796OonR1OhYejYZcuuFG2LBAUJHVpRHnGcERUQH6fNg0f/PYbXgBoCeAEgPLjx/OvZzIbTcqVw/GXL1EOwC0AvkLg6MCBfA+Q0TGIcLRgwQKUL18e1tbW8Pb2xtGjR7Ntu3nzZrRp0wYlSpSAo6MjGjZsiL179xZitUS6VCoVRo4ciWETJkAN4DMAuwE4p9/Iq5eT+bhxA9WEQCiAegCeAGitVmP1woUSF0aUN5KHo/Xr12PkyJEYN24cwsPD0bRpU7Rr1w5RUVFZtj9y5AjatGmDXbt2ISwsDC1atEDHjh0RHh5eyJUTpZ+R9sEHH+D//u//AAAzZDIsBWCpacCrl5M5qVwZkMtRCsAhAJ0BpADoNX06pk6dylP9yWjIhMSv1gYNGqBu3bpYmOEvi+rVq+PDDz/EjBkzcvUYnp6e6N69OyZOnJir9gkJCXByckJ8fDwcHR3zVTdRREQEOnbsiEuXLsHGxgZ//vknPk5IAAYNSu8xUiiAxYuBwECpSyUqPEFB2veAWi7Hd23aYNbr3v3evXvjjz/+gJWVlcRFkrEqrO9vSXuOUlJSEBYWBn9/f53l/v7+OHHiRK4eQ61WIzExEUWLFs22TXJyMhISEnR+iN7F8ePHUb9+fVy6dAmurq44cuQIPv744/QgFBEBhISk/8tgROYmw3tAHhmJX/bswaJFi6BQKPC///0P/v7+ePLkidRVEuVI0nD0+PFjqFQquLi46Cx3cXFBbGxsrh7j119/xYsXL9CtW7ds28yYMQNOTk7anzJlyrxT3WTeVq1ahZYtW+LRo0eoU6cOTp8+DR8fn/8auLsDfn7p/xKZozfeA4MGDcLOnTvh4OCAI0eOwNfXFzc5Fo8MmORjjoD0mVYzEkJkWpaVtWvXYvLkyVi/fj1KliyZbbuxY8ciPj5e+3P37t13rpnMj1qtxrhx49C7d2+kpKSgc+fOOHr0KNwZgojeKiAgACdOnEDZsmVx48YN+Pr64tixY1KXRZQlScNR8eLFoVAoMvUSPXz4MFNv0pvWr1+PwMBA/PXXX2jdunWOba2srODo6KjzQ5QXr169Qrdu3TB9+nQA6YF748aNsLOzk7gyIuPh5eWFU6dOwcfHB3FxcWjVqhXWrFkjdVlEmUgajiwtLeHt7Y3g4GCd5cHBwWjUqFG291u7di369euHNWvW4P3339d3mWTm4uLi0Lp1a2zatAmWlpb4888/MX36dMjlBtHxSmRUSpUqhcOHD6Nz585ISUlBz5498cMPP/BMNjIokn+6jx49GkuXLsWyZctw9epVjBo1ClFRURg8eDCA9L/Q+/Tpo22/du1a9OnTB7/++it8fX0RGxuL2NhYxMfHS7UJZMIiIyPRpEkTnDhxAs7OzggODtZ5PRJR3tna2mLjxo34+uuvAQATJ05Ev379kJycLHFlROkkD0fdu3fH3LlzMXXqVNSuXRtHjhzBrl274OHhAQCIiYnRmfNo8eLFSEtLwxdffAFXV1ftz4gRI6TaBDJR58+fR8OGDXHt2jW4u7vj2MaNaKZScbZfogIgl8vxy4gRWDhyJBQKBVauXImAgACeyUYGQfJ5jqTAeY7obQ4cOIDOnTsjMTERXl5e2N2nD9zHjAHUakAuB5Ys4Wn6RO8iKAgYOBBQq7FXJsPHVlZITEpClSpVsHPnTlTi5KmUhcL6/mY4YjiiN2zduhXdunVDamoqmjdvjq3z58O5Zs30YKShUKTP5cIz1YjyLjoa8PDQeU9dlMvxfqlSuHv/PkqUKIH9+/ejZs2aEhZJhsgsJoEkMjRr165F165dkZqaio8++gh79uyB88OHusEI4DXTiN7FjRuZ3lM11Gqc+u031KlTB48ePYKfnx/OnDkjUYFk7hiOiF5btmwZevbsCZVKhd69e2PdunWwtrbWXi9KB6+ZRpR/2bynXBs0wMGDB9GwYUM8ffoUrVq1yvFC5ET6wnBEBGD+/PkIDAyEEAKDBg3CihUroFQq0290d08fY6RQpP+uuWYaD6kR5U8O7ylnZ2fs27cPLVq0QGJiIgICAjJN90KkbxxzxDFHZm/WrFn45ptvAACjRo3Cr7/+mvUM7dHR6YfSKlViMCIqCDm8p169eoWuXbti165dsLS0xJYtW9C+fXuJCiVDwQHZesRwRBq//vqrdq6V8ePHY+rUqbm6dA0R6V9KSgo+/fRTbN68GZaWlti2bRsCAgKkLoskxAHZRHo2b948bTCaOnUqfvjhBwYjIgNiaWmJdevWoUuXLkhJSUGnTp2wf/9+qcsiM8BwRGZpyZIlGD58OABg/PDhmNCkCSd3JDJAFhYWWPvLL+jUuDGSk5PRsWNHHDx4UOqyyMQxHJHZWb58OQYNGgQA+CYgAFPnzQNatkyfdyUoSOLqiEhHUBAsK1fGX8ePowOApKQkdOzYEYcPH5a6MjJhDEdkVlavXo3A1zNbjwgMxMx9+yDTDLtTq4FBg9iDRGQooqO1s2hbAtgIoB2Aly9f4v3338exY8ckLpBMFcMRmY0NGzagT58+EEJgyJAhmNOjx3/BSIOTOxIZjjcmi7QCsBlAGx8fvHjxAu3atcPJkyclK49MF8MRmYWtW7fi008/hVqtRmBgIH7//XfIqlTh5I5EhiyLySKtFQr8vWYNWrZsiefPn6Nt27YICwuTqEAyVQxHZPJ27tyJbt26aWe+Xrx4MeRyOSd3JDJ02bxHbSpXxrZt29C0aVPEx8ejTZs2uHDhgrS1kknhPEec58ikBQcHo2PHjkhOTka3bt2wevXq/2a+1uDkjkSGLZv3aGJiIvz9/XHy5EkUL14chw4dgqenp4SFkr5xEkg9YjgyD4c3bEC73r3xKjkZH374If766y9YWFhIXRYRFaBnz56hTZs2OHv2LFxKlMDhX35B1Vat+IeOieIkkETv4MTYsXi/Wze8Sk7G+wDWt23LYERkgpydnbF3717ULlMGDx49Qst+/XCzbFlOy0HvhOGITM7ZnTvR7qef8AJAa6Sf/mv5xRc8RZ/IRBV9+RLB0dHwBHAfQEshEDFwIN/zlG8MR2RSLly4AP9PP0UCgGYA/gZgDfAUfSJTduMGiguBAwCqArgLoKVajbsnTkhcGBkrhiMyGVeuXEHr1q3xNDERDQHsAGCruZGn6BOZrten/LsAOAigEoA7AFqNGYOYmBhpayOjxHBEJuHSpUto2bIlHj9+DB8fH+z+7Tc48BR9IvOQ4ZR/NwAH5XKUK14cN+7cQcuWLfHgwQOpKyQjw7PVeLaa0Tt//jxat26NuLg41K5dGwcOHEDRokV5ij6Rucnwnr+TmormzZvj7t278PLyQkhICIoXLy51hfSOeCq/HjEcGbno6PTLClSujDMxMQgICMDTp0/h4+ODvXv3pgcjIjJ7N2/eRLNmzRATEwMvLy/s27cPrq6uOp8h/MPJuPBUfqKsBAUBHh5Ay5Y4UbYsWjdvjqdPn6Jhw4bYv38/gxERaVWqVAkHDx6Eq6srLl26hCZNmuD2Tz9pP0Pg4cFT/ilL7Dliz5HxiI5O/zBTq7EDQDcArwA09/XF9n374ODgIHGBRGSIbt++jTZt2uD27dtwBbAPgJfmRoUCiIhgD5KRYM8R0ZteX6F7CYBOSA9GbQHsmjSJwYiIslWhQgUcO3YMNSpUQAzSp/nQnuTPaT4oCwxHZDREpUqYAGAQADWA/gC2yeWw9fLK+Y5EZPZcXV1x+O+/0RDAUwAtAawBOM0HZYnhiAxHdDQQEpLlrLaJiYnoNno0pr3+fRKAILkcFkuWsDuciHKliJcXgufPRycAyQB6Ahjfti3Ubm5Z3yGHzyQybQxHZBgyDLR+c5Dk9evX0aBBA2zcuBEWFhZY+ssvmBwSAllkJBAYKGHRRGRs7IYOxebISIzp0QMA8OPOnejUqRPi4uJ0G+bwmUSmjwOyOSBbehkGWmspFBB37mD14cMYOnQoEhMT4ebmho0bN6Jhw4bS1UpEJmPlypUYOHAgkpOTUbp0aaxZswbNmjXL9jOJA7elxwHZZD5eD7TOKE6lQrfevdG7d28kJiaiWbNmCAsLYzAiogLTp08fnDx5ElWrVsW9e/fQokULfP/993h16VKmzyQO3DYvDEekf287bv/6ukgAoALwB4BqADYePgylUokffvgBBw4cQKlSpQqrYiIyE7Vr18bZs2fRr18/qNVqzJgxAzWHDMEBmUy3YU4Dtzk2yeQwHJF+5ea4vbs7xOLF2CeXwxfAQACPAXh5eeHkyZMYP348lEplIRdORObC3t4ey5cvx5YtW+Dm5oabERFoLQQ6ALgI5Hx9Ro5NMkkMR6Q/0dHAwIH/dU+r1cCgQTp/XaWmpmLLli1ouHQpAtRqnAXg6OCAOXPm4Ny5c/D29pamdiIyOx9++CGuXLmCL7/8EgqFAjsB1JLJ0KVNGxyuVAmZhujm4jOOjBPDEelPFmOJoFJBdf06QkND8e2336JMmTLo0qULTp06BWtra4wcORL/3riBkSNHwsLCQpq6ichsOTk5Yd68ebh69Sq6desGIQS27NkDPz8/1KhRAz/88AOuXbuW3jibzziOTTJ+PFuNZ6vlSAgBlUoFlUqFtLQ0qNVqyOVyyO/fh/z2bcgqV4a8bFnI5XLIZDLIMh6nj45GfNmyuCsEIgGcBxAG4GjRonj85Im2WcmSJfHZZ59hxIgRHFdERAblypUr+O2337By5Uq8evVKu7xMmTJo6u2NBn//jWpCoAoAFwA2OZ3VlsMFbzVfxbI3xzqRjsL6/mY4YjiCEAJ37tzBiRMncOnSJVy+fBnR0dF4+PAhHj16hNTU1Fw/lkwmSw9Pr8NSSkpKlu2cnZ0REBCAbt26oWPHjuwlIiKD9vTpU2zduhUbNmxAcHAw0tLSsmxnbWGBIsWLw8LCQvt5qFaroUpIQNrTp1ABSAOQZm0NlVyOtLQ07R+eNjY2KFmyJEqWLAkPDw94enqiRo0aaNq0KUqWLFmo22uoGI70iOEIUKlUOHToENavX4+9e/ciKipKb+sq4uSEMsWKwbNGDXg3bYoGDRqgQYMGDEREZJRevHiBkydP4ujRo7hw4QKuX76MWxERSMnDH5J55enpifbt2+OTTz5BnTp1zLaHieFIj8w5HN2/fx8LFixAUFAQYmNjtcuVSiXq1auH2pUqwbNIEZT39oaLpydKlCgBe3t7KJVKKBQKyI8ehWjXDmpA92frVqgbNoRardb5KVq0KOzt7SXaWiKiwiGEQGJiIuLi4vDs2TOoVCqo1er0w2VhYbD44gsoAChf/ygAKNeuhbJJEygUCigUCrx48QIPHz5EbGwsbp49i8tnzyIsMhL/XL2qs65q1aphyJAh6N+/v9lddJvhSI/MMRzdunULU6dOxZo1a7TdwUWLFkXXrl3RpUsXNGnSBHbr1v135oVcDixZkvnyHJw5logob/L6uRkUpPNZ/PjXX3HQzQ0bNmzAjh07kJSUBABwdHTEkCFD8O2336Jo0aKFsy0SK7Tvb2GG4uPjBQARHx8vdSl6d//+fTFkyBChVCoFAAFANGnSRGzYsEEkJyf/1/DuXSHkciGA/34UivTlb1q6NP02TZulSwtvg4iIjFFuPzff8lkcHx8vFixYIKpWrar9THe0sxM/fP21SExMLMQNkkZhfX+z58hEe47S0tLw+++/Y8KECXj+/DkAIADAVJkM9f/4I3OPUEhI+iRmbwoJAfz8Mi+Pjk4/XbVSJfYYERHlRm4+N3P5WaxWq7FzxAiM//13/PN6mZuzM+YsXoyPP/7YZMck8bCaHpl6OAoLC8PAgQNx7tw5AEADADMBNNc0yKo7l4fLiIikl9vP4tft1Go11gMYB+DO65vatGmDefPmoWrVqoVXdyHhhWcpdzJc0ycxMREjR45E/fr1ce7cOTg7O2Px6NE4gQzBCMh6kjJ39/QxRgpF+u85TZdPRET6kdvP4tcTUMoBfArgMoBJAKwsLBAcHIyaNWti4sSJ2vFJvP5b3rDnyJh7jjIM2vtbJsOXzs6IfvoUAPDpp59i9uzZKJWWlrceIR4uIyKS3ts+i7PpYbp16BCGTZ+O3bt3AwAqVaqEhR98gNZz5+Z8so2R4GE1PSqoJ1cIgYsXL+LcuXOIiYmBjY0NKlasiPr168PFxeXdisxhJlXt7R4eiFKrMQLA1teLy5cti4VLliAgIOC/tkFB6df7Uan++yvESN8YRET0Wjaf7UIIbNq0CSNGjMD9+/cBAD0AzEb6LN5v/QM5p++eXLpz5w5Onz6Ne/fuISUlBeXLl0eDBg1Qrly5fD8mwLPV9OpdR7ur1WqxceNG4enpqT1bIOOPTCYTzZo1E4sWLcp89sDdu0IcPJj1WWAaS5f+d7aCXJ7lWQ3Je/eKnwBh+3qdSkCMBcSL3buzfsy7d4UICcl5vUREZFxy+GyPj48Xwzp3FrLX3xPOgFgECBWQfp835eK7R2e9b3yXJScnizVr1ohGjRpl+d0IQLRo0UKEhobme3ML62w1hqM8SkxMFL169dLuaGtra+Hn5yf69u0runXrlikwFSlSRIwZM0ZER0fn7oWXi1Pqg4ODRfXKlf87NR8QF3M69Z6IiMzT3bvijEwm6mb4XmoIiAv79mVql6fpXDJ8l92bNUtMnDhRuLi4aNehVCpFvXr1RI8ePUTv3r1FgwYNhFwu13YgjB8/XqhUqjxvDsORHuX3yX327JmoX7++ACAUCoUYN26cePbsWfqNGVJ0VFSUmDVrlqicIcBYWFiIXoA4+7YX3sGDui9OzU9IiDhx4oRo2bKl9jFLODiIP2UyoeZ8Q0RElJ2lS0WqXC7mAsL+9feHXC4XvXv3FtevX09vk8N3j47XIUoNiCOA6Pb6yIXme8nV1VVMmTJF3L9//7/2r78bIyMjRe/evbVt+/XrJ1JTU/O0KQxHepSnJ/f1jn3x77/arsJixYqJI0eO/Ncmmx4hlUoltm7dKpo2barTm9QUECsBEZ/DC0/zwkwExCqZTDTy8dEJWsOGDRNPnjzh4TIiInq7198V0adPi65du2q/T+RyuejcubPY+eefIlUme2vPUczGjWIWIDzfOFzWpEYNsW7dOpGSkvJf42y+G1esWCEUCoUAIAIDA4Varc7dkBPBSSD1KtcDul6fDSbUavQBsArpV5M/ePAg6tSpk94ml3NShO3ahbnvv491SL8iMwBYAWjUqBEatWiBSpUqwcXFBSqVCvF//42rQUE4KwRCAGiua69UKtG3b19MmDABHh4eBfRsEBGRuTl79iymTp2K7du3a5c52dig1atXqAugskwG+2HDoG7TBvfu3cO///6LI0eO4Ny5c1C//r6zAdATwBdyOWpHRuZp7rzNmzfj448/hlqtxq/dumH0xo25OpuOA7L1SJM8Y86dy75Rhh6c+a+TsQIQIX/9pdsut12RQgixdKm4J5eLyYCols1gtax+KlasqNtNSUREVAAuXrwoRo4cKYoVK5br7yTfChXEIplMPM1pSEcuvhvnzJmT3nsFiBO5GeskhIgIDWXPkb5okudSAIFLl2adUF9P4X4TQE0ArwD8CmD0m5fTyOvM0q/nrhAVK+JqYiKOHTuG06dPIzo6Gg8fPoRSqYSdnR0qV66MGjVqoFWrVqhevbrJTgVPRETSU6lUCAsLw4EDB3Dt2jXcvn0bSUlJUKvVcHV1RYUKFVC/fn20aNECpUuXzvc8TBm/G4UQ6O3vj9X796MigPMA7DVts7p0VVAQhg8YgHkA5znSB004+hzAkuyCTHQ01GXLooUQOAKgFYBguRyyN7sOAc4jRERE9KZcfDc+u3wZNb28cBdI/04GcrxcSn21Gmeg/3Bk1pcPOQlkfSkNAHB3x8JPP8URAHYA/pDLIVuyJOuEHBiYviNDQtL/ZTAiIiJzl4vvRmdPT6z8+mvIAPwBYI9cnu3lUl6p1QgvhLIBM+85kgGIl8vhkEVvUEREBLy8vPDixQvMGz4cX37zDS+nQUREpAcjAgPx27JlcHd1xeVr1zL3CkVH42jZsmj2OrKw50iPBICTI0ZkCj1CCHz++ed48eIFmjVrhqFz5jAYERER6cn0335DhQoVEB0Tg2+++SZzA3d3HO/cudDqMetwBADb09IyLVu0aBH2798PGxsbBAUFQS43+6eJiIhIb+zs7BAUFAQAWLJkCQ4cOJCpzb7XF1YvDGb/rb927VqkpKRof79x4wa+/vprAMCMGTNQqVIlqUojIiIyG35+fhg6dCgAYMCAAXj+/Ln2ttjYWBw+fLjQajHrcFSiRAk8fvxYOwlWYmIiunbtipcvX6JVq1YYNmyYxBUSERGZj5kzZ6JcuXKIiIhAYGCgdsLJBQsWQK1Wo379+oVSh1mHoz59+gAAvvnmGxw9ehRt27bFP//8AxcXF6xYsYKH04iIiAqRvb09Vq5cCQsLC/z111/o168fdu/ejV9//RUA8MUXXxRKHWZ9tlpUVBSaNm2KyMhI7W1OTk7Yt29foaVTIiIi0rVq1Sr069cPKpVKu6x169bYuHEjnJ2debaaPjk5OWH//v1o2bIlHBwc0Lp1a5w+fZrBiIiISEK9evVCcHAw6tatCycnJ/To0QMbNmwotKtFGEQ4WrBgAcqXLw9ra2t4e3vj6NGjObY/fPgwvL29YW1tjQoVKmDRokX5XnelSpVw4MABJCQkIDg4GFWqVMn3YxEREVHBaNGiBcLCwvDs2TOsXr0azs7OhbZuycPR+vXrMXLkSIwbNw7h4eFo2rQp2rVrh6ioqCzb37lzB+3bt0fTpk0RHh6O77//HsOHD8emTZsKuXIiIiIyRZKPOWrQoAHq1q2LhQsXapdVr14dH374IWbMmJGp/XfffYdt27bh6tWr2mWDBw/GhQsXEBoamqt1asYc6fuYJRERERWcwvr+lrTnKCUlBWFhYfD399dZ7u/vjxMnTmR5n9DQ0EztAwICcPbsWaSmpuqtViIiIjIPSilX/vjxY6hUKri4uOgsd3FxQWxsbJb3iY2NzbJ9WloaHj9+DFdX10z3SU5ORnJysvb3+Ph4AOkJlIiIiIyD5ntb3we9JA1HGm+OPhdC5DgiPav2WS3XmDFjBqZMmZJpeZkyZfJaKhEREUksLi4OTk5Oent8ScNR8eLFoVAoMvUSPXz4MFPvkEapUqWybK9UKlGsWLEs7zN27FiMHj1a+/uzZ8/g4eGBqKgovT65hiYhIQFlypTB3bt3zWqsFbeb220OuN3cbnMQHx+PsmXLomjRonpdj6ThyNLSEt7e3ggODkbnDFfbDQ4ORqdOnbK8T8OGDbWX+9DYt28ffHx8YGFhkeV9rKysYGVllWm5k5OTWb2oNBwdHbndZoTbbV643ebFXLdb31ewkPxU/tGjR2Pp0qVYtmwZrl69ilGjRiEqKgqDBw8GkN7ro7nMB5B+ZlpkZCRGjx6Nq1evYtmyZQgKCtJeLJaIiIjoXUg+5qh79+6Ii4vD1KlTERMTAy8vL+zatQseHh4AgJiYGJ05j8qXL49du3Zh1KhRmD9/Ptzc3PDbb7/ho48+kmoTiIiIyIRIHo4AYOjQoRg6dGiWt61YsSLTsubNm+PcuXP5Xp+VlRUmTZqU5aE2U8bt5nabA243t9sccLv1u92STwJJREREZEgkH3NEREREZEgYjoiIiIgyYDgiIiIiyoDhiIiIiCgDkw1HP/74Ixo1agRbW1s4Ozvn6j5CCEyePBlubm6wsbGBn58fLl++rNMmOTkZw4YNQ/HixWFnZ4cPPvgA0dHRetiC/Hn69Cl69+4NJycnODk5oXfv3nj27FmO95HJZFn+/PLLL9o2fn5+mW7/5JNP9Lw1uZef7e7Xr1+mbfL19dVpY2r7OzU1Fd999x1q1KgBOzs7uLm5oU+fPrh//75OO0Pb3wsWLED58uVhbW0Nb29vHD16NMf2hw8fhre3N6ytrVGhQgUsWrQoU5tNmzbhvffeg5WVFd577z1s2bJFX+XnW162e/PmzWjTpg1KlCgBR0dHNGzYEHv37tVps2LFiizf60lJSfrelDzJy3YfOnQoy226du2aTjtT299ZfX7JZDJ4enpq2xj6/j5y5Ag6duwINzc3yGQybN269a33KbT3tjBREydOFLNnzxajR48WTk5OubrPTz/9JBwcHMSmTZvExYsXRffu3YWrq6tISEjQthk8eLAoXbq0CA4OFufOnRMtWrQQtWrVEmlpaXrakrxp27at8PLyEidOnBAnTpwQXl5eokOHDjneJyYmRudn2bJlQiaTiVu3bmnbNG/eXHz++ec67Z49e6bvzcm1/Gx33759Rdu2bXW2KS4uTqeNqe3vZ8+eidatW4v169eLa9euidDQUNGgQQPh7e2t086Q9ve6deuEhYWF+OOPP8SVK1fEiBEjhJ2dnYiMjMyy/e3bt4Wtra0YMWKEuHLlivjjjz+EhYWF2Lhxo7bNiRMnhEKhENOnTxdXr14V06dPF0qlUpw8ebKwNuut8rrdI0aMEDNnzhSnT58W//77rxg7dqywsLAQ586d07ZZvny5cHR0zPSeNyR53e6QkBABQFy/fl1nmzK+R01xfz979kxne+/evSuKFi0qJk2apG1j6Pt7165dYty4cWLTpk0CgNiyZUuO7QvzvW2y4Uhj+fLluQpHarValCpVSvz000/aZUlJScLJyUksWrRICJH+YrSwsBDr1q3Ttrl3756Qy+Viz549BV57Xl25ckUA0HkRhIaGCgDi2rVruX6cTp06iZYtW+osa968uRgxYkRBlVqg8rvdffv2FZ06dcr2dnPZ36dPnxYAdD6EDWl/169fXwwePFhnWbVq1cSYMWOybP/tt9+KatWq6SwbNGiQ8PX11f7erVs30bZtW502AQEB4pNPPimgqt9dXrc7K++9956YMmWK9vfcfh5KKa/brQlHT58+zfYxzWF/b9myRchkMhEREaFdZgz7WyM34agw39sme1gtr+7cuYPY2Fj4+/trl1lZWaF58+Y4ceIEACAsLAypqak6bdzc3ODl5aVtI6XQ0FA4OTmhQYMG2mW+vr5wcnLKdX0PHjzAzp07ERgYmOm21atXo3jx4vD09MTXX3+NxMTEAqv9XbzLdh86dAglS5ZElSpV8Pnnn+Phw4fa28xhfwPpF3KUyWSZDj8bwv5OSUlBWFiYzj4AAH9//2y3MTQ0NFP7gIAAnD17FqmpqTm2MYT9CuRvu9+kVquRmJiY6QKdz58/h4eHB9zd3dGhQweEh4cXWN3v6l22u06dOnB1dUWrVq0QEhKic5s57O+goCC0bt1ae3UJDUPe33lVmO9tg5gh2xDExsYCAFxcXHSWu7i4IDIyUtvG0tISRYoUydRGc38pxcbGomTJkpmWlyxZMtf1/fnnn3BwcECXLl10lvfs2RPly5dHqVKlcOnSJYwdOxYXLlxAcHBwgdT+LvK73e3atcPHH38MDw8P3LlzBxMmTEDLli0RFhYGKysrs9jfSUlJGDNmDHr06KFz8UpD2d+PHz+GSqXK8n2Z3TbGxsZm2T4tLQ2PHz+Gq6trtm0MYb8C+dvuN/3666948eIFunXrpl1WrVo1rFixAjVq1EBCQgL+7//+D40bN8aFCxdQuXLlAt2G/MjPdru6umLJkiXw9vZGcnIy/ve//6FVq1Y4dOgQmjVrBiD714Sp7O+YmBjs3r0ba9as0Vlu6Ps7rwrzvW1U4Wjy5MmYMmVKjm3OnDkDHx+ffK9DJpPp/C6EyLTsTblp8y5yu91A5vqBvNW3bNky9OzZE9bW1jrLP//8c+3/vby8ULlyZfj4+ODcuXOoW7durh47r/S93d27d9f+38vLCz4+PvDw8MDOnTszhcO8PO67Kqz9nZqaik8++QRqtRoLFizQuU2K/Z2TvL4vs2r/5vL8vNcLW35rXLt2LSZPnoy///5bJ0D7+vrqnHTQuHFj1K1bF/PmzcNvv/1WcIW/o7xsd9WqVVG1alXt7w0bNsTdu3cxa9YsbTjK62NKJb81rlixAs7Ozvjwww91lhvL/s6LwnpvG1U4+vLLL996xky5cuXy9dilSpUCkJ5MXV1dtcsfPnyoTaGlSpVCSkoKnj59qtOb8PDhQzRq1Chf682N3G73P//8gwcPHmS67dGjR5mSdFaOHj2K69evY/369W9tW7duXVhYWODGjRt6+7IsrO3WcHV1hYeHB27cuAHAtPd3amoqunXrhjt37uDgwYM6vUZZKYz9nZXixYtDoVBk+qsv4/vyTaVKlcqyvVKpRLFixXJsk5fXiz7lZ7s11q9fj8DAQGzYsAGtW7fOsa1cLke9evW0r3mpvct2Z+Tr64tVq1Zpfzfl/S2EwLJly9C7d29YWlrm2NbQ9ndeFep7O08jlIxQXgdkz5w5U7ssOTk5ywHZ69ev17a5f/++wQ3QPXXqlHbZyZMncz1At2/fvpnOWsrOxYsXBQBx+PDhfNdbUN51uzUeP34srKysxJ9//imEMN39nZKSIj788EPh6ekpHj58mKt1Sbm/69evL4YMGaKzrHr16jkOyK5evbrOssGDB2catNmuXTudNm3btjW4Abp52W4hhFizZo2wtrZ+68BWDbVaLXx8fET//v3fpdQClZ/tftNHH30kWrRoof3dVPe3EP8NSL948eJb12GI+1sDuRyQXVjvbZMNR5GRkSI8PFxMmTJF2Nvbi/DwcBEeHi4SExO1bapWrSo2b96s/f2nn34STk5OYvPmzeLixYvi008/zfJUfnd3d7F//35x7tw50bJlS4M7tbtmzZoiNDRUhIaGiho1amQ6tfvN7RZCiPj4eGFraysWLlyY6TFv3rwppkyZIs6cOSPu3Lkjdu7cKapVqybq1KljtNudmJgovvrqK3HixAlx584dERISIho2bChKly5t0vs7NTVVfPDBB8Ld3V2cP39e5/Te5ORkIYTh7W/NKc5BQUHiypUrYuTIkcLOzk57Vs6YMWNE7969te01p/uOGjVKXLlyRQQFBWU63ff48eNCoVCIn376SVy9elX89NNPBntqd263e82aNUKpVIr58+dnOwXD5MmTxZ49e8StW7dEeHi46N+/v1AqlToBW2p53e45c+aILVu2iH///VdcunRJjBkzRgAQmzZt0rYxxf2t0atXL9GgQYMsH9PQ93diYqL2uxmAmD17tggPD9eeOSvle9tkw1Hfvn0FgEw/ISEh2jYAxPLly7W/q9VqMWnSJFGqVClhZWUlmjVrlimNv3r1Snz55ZeiaNGiwsbGRnTo0EFERUUV0la9XVxcnOjZs6dwcHAQDg4OomfPnplOcX1zu4UQYvHixcLGxibLuWyioqJEs2bNRNGiRYWlpaWoWLGiGD58eKY5gaSU1+1++fKl8Pf3FyVKlBAWFhaibNmyom/fvpn2pant7zt37mT5vsj43jDE/T1//nzh4eEhLC0tRd26dXV6sPr27SuaN2+u0/7QoUOiTp06wtLSUpQrVy7L0L9hwwZRtWpVYWFhIapVq6bzZWoo8rLdzZs3z3K/9u3bV9tm5MiRomzZssLS0lKUKFFC+Pv7ixMnThTiFuVOXrZ75syZomLFisLa2loUKVJENGnSROzcuTPTY5ra/hYivXfbxsZGLFmyJMvHM/T9ren1yu41K+V7WybE69FMRERERGS6lw8hIiIiyg+GIyIiIqIMGI6IiIiIMmA4IiIiIsqA4YiIiIgoA4YjIiIiogwYjoiIiIgyYDgiIiIiyoDhiIiIiCgDhiMiIiKiDBiOiMikTJ06FTVq1ICdnR1cXFwwZMgQpKamSl0WERkRpdQFEBEVFCEEVCoVFi9ejNKlS+PKlSvo06cPatasiSFDhkhdHhEZCV54lohMWo8ePVCiRAn83//9n9SlEJGR4GE1IjIZkZGR+PLLL+Hl5YUiRYrA3t4ef/31F9zd3aUujYiMCMMREZmEx48fo379+nj8+DFmz56NY8eOITQ0FAqFArVr15a6PCIyIhxzREQmYdeuXUhLS8PatWshk8kAAPPnz0dKSgrDERHlCcMREZmEokWLIiEhAdu2bcN7772H7du3Y8aMGShdujRKlCghdXlEZEQ4IJuITIIQAkOGDMGaNWtgY2ODXr16ISkpCZGRkdixY4fU5RGREWE4IiIiIsqAA7KJiIiIMmA4IiIiIsqA4YiIiIgoA4YjIiIiogwYjoiIiIgyYDgiIiIiyoDhiIiIiCgDhiMiIiKiDBiOiIiIiDJgOCIiIiLKgOGIiIiIKAOGIyIiIqIM/h9AXAWojV+X3wAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwqklEQVR4nO3dd3gU1dvG8e9mUwkkdAgEQi/SCdKRItLEiqIiggpSLCiWn2IHUexYadL0FRAVwUIvARQCUgLSRJASQi+SAELanvePsGuWBEhCktkk9+e6ckFmz848s7O7c2fOmRmbMcYgIiIiIgB4WV2AiIiIiCdROBIRERFJReFIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhEREQkFYUjERERkVQUjkRERERSUTiSPOHQoUO8/vrrbNq0Kc1jDz74IIULF87yvBMSEhg0aBAhISHY7XYaNmyY9UKzwZgxY5g6dWqa6fv27cNms6X7WH5is9l4/fXXrS4jW7z++uvYbLYcf+6nn35KtWrV8PX1xWazcfr0aR588EEqVark1u6tt95izpw5WarnSk6dOsW9995L6dKlsdls3H777ZmeR6VKlXjwwQezvTZP8/LLL9O9e3fKly+PzWa74jrPmjWLVq1aUbx4cYoWLUrTpk35v//7v9wrtgBTOJI84dChQwwfPjzdcHStxo4dy/jx43nppZf47bffLP/yuVw4CgkJITIykptvvjn3i5Is6d+/P5GRkTm6jE2bNjFkyBDat2/PsmXLiIyMpEiRIrzyyivMnj3brW1OhaM33niD2bNnM3r0aCIjI3n33XezfRn5xejRozl58iS33norvr6+l203efJk7rrrLkJCQpg2bRrffPMNVatWpU+fPowePToXKy6YvK0uQMRqW7duJSAggMcff9zqUq7Iz8+P5s2bW12GZEJoaCihoaE5uoxt27YB8Mgjj9C0aVPX9KpVq+boclPbunUrVatW5f7778+1ZWaXf//9l0KFCuXa8s6cOYOXV8pxiSv9ITZ58mTCwsL49ttvXe07d+7Mpk2bmDp1KkOHDs2VegsqHTkqgI4fP86AAQOoUKECfn5+lCpVilatWrFkyRJXm3bt2lG3bl0iIyNp2bIlAQEBVKpUiSlTpgAwd+5cGjduTKFChahXrx4LFixIs5zffvuNG2+8kSJFilCoUCFatmzJ3Llz07TbunUrt912G8WKFcPf35+GDRvy5Zdfuh5fvnw5119/PQAPPfQQNpst3a6X3bt3061bNwoXLkyFChV45plniI+Pv+JrYbPZmDhxIufPn3fNd+rUqVfswrp02c7uj23btnHfffcRHBxMmTJlePjhh4mNjXV7rsPh4NNPP6Vhw4YEBARQtGhRmjdvzk8//QSkdC1s27aNFStWuOpxdo1crqaMvM5Tp07FZrMRERHB4MGDKVmyJCVKlODOO+/k0KFDV3yNrqRSpUp0796d2bNnU79+ffz9/alSpQqffPJJmrbR0dH07t2b0qVL4+fnR+3atfnggw9wOByXnf++ffvw9vZm1KhRaR5buXIlNpuN7777Dsjcdrhw4QLDhg2jcuXK+Pr6Ur58eR577DFOnz6d7vr98ssvNGrUiICAAGrXrs0vv/wCpLyutWvXJjAwkKZNm7J+/Xq356fXNTZz5kw6depESEiIa34vvPAC586du/wLfRnt2rWjd+/eADRr1sytm+bSbjWbzca5c+f48ssvXe+tdu3aXXH+p06d4tFHH6V8+fL4+vpSpUoVXnrpJdfnyvmeXLJkCTt27HDNd/ny5ZedZ2JiIv/73/8oW7YshQoVonXr1vz+++/ptj1y5AgDBw4kNDQUX19fKleuzPDhw0lKSnJrFxMTw1133UWRIkUoWrQo999/P+vWrUvzeXF2wW/ZsoVOnTpRpEgRbrzxRiCle33kyJHUqlXL9b340EMPcfz48TR1zZw5kxYtWhAYGEjhwoXp3LkzUVFRV3wtnZxB52p8fHwoXLiwW3ubzUZQUBD+/v4ZmodcAyMFTufOnU2pUqXMhAkTzPLly82cOXPMq6++ar755htXm7Zt25oSJUqYmjVrmkmTJpmFCxea7t27G8AMHz7c1KtXz8yYMcPMmzfPNG/e3Pj5+ZmDBw+6nr98+XLj4+NjwsPDzcyZM82cOXNMp06djM1mc1vOn3/+aYoUKWKqVq1qvvrqKzN37lxz3333GcC88847xhhjYmNjzZQpUwxgXn75ZRMZGWkiIyPNgQMHjDHG9O3b1/j6+pratWub999/3yxZssS8+uqrxmazmeHDh1/xtYiMjDTdunUzAQEBrvkeO3bM7N271wBmypQpaZ4DmNdee831+2uvvWYAU7NmTfPqq6+axYsXmw8//ND4+fmZhx56yO25DzzwgLHZbKZ///7mxx9/NPPnzzdvvvmm+fjjj40xxmzcuNFUqVLFNGrUyFXPxo0bjTEm3Zoy+jo7X78qVaqYJ554wixcuNBMnDjRFCtWzLRv396tRmfb9Nb9UmFhYaZ8+fKmYsWKZvLkyWbevHnm/vvvN4B57733XO2OHTtmypcvb0qVKmXGjRtnFixYYB5//HEDmMGDB1/x9b3jjjtMxYoVTVJSklu7u+++25QrV84kJiZmajs4HA7TuXNn4+3tbV555RWzaNEi8/7775vAwEDTqFEjc+HCBbf1Cw0NNXXr1nW935s1a2Z8fHzMq6++alq1amV++OEHM3v2bFOjRg1TpkwZ8++//7qe76wptTfeeMOMHj3azJ071yxfvtyMGzfOVK5cOc12SO+5l9q2bZt5+eWXXdsrMjLS7N692xiT8rkICwtztY2MjDQBAQGmW7durvfWtm3bLjvv8+fPm/r165vAwEDz/vvvm0WLFplXXnnFeHt7m27duhljjLlw4YKJjIw0jRo1MlWqVHHNNzY29rLz7du3r7HZbOa5554zixYtMh9++KEpX768CQoKMn379nW1O3z4sKlQoYIJCwsz48ePN0uWLDFvvPGG8fPzMw8++KCr3dmzZ021atVM8eLFzeeff24WLlxohg4daipXrpzmfdy3b1/j4+NjKlWqZEaNGmWWLl1qFi5caJKTk02XLl1MYGCgGT58uFm8eLGZOHGiKV++vLnuuuvctumbb75pbDabefjhh80vv/xifvjhB9OiRQsTGBh4xdczPYGBgW7rnNqsWbOMl5eXGTlypDl27Jg5fvy4ee+994zdbjfffvttppYjmadwVAAVLlzYPPXUU1ds07ZtWwOY9evXu6adPHnS2O12ExAQ4BaENm3aZADzySefuKY1b97clC5d2pw5c8Y1LSkpydStW9eEhoYah8NhjDHm3nvvNX5+fiY6Otpt+V27djWFChUyp0+fNsYYs27dusvusPv27WuANF8Y3bp1MzVr1rzKq5Hy/MDAQLdpWQlH7777rlu7Rx991Pj7+7vWdeXKlQYwL7300hXrqVOnjmnbtm2a6enVlNHX2Rl4Hn30Ubd5vvvuuwYwhw8fdk378ssvjd1uN19++eUV6zQmJTzYbDazadMmt+k33XSTCQoKMufOnTPGGPPCCy8YwKxdu9at3eDBg43NZjM7d+50Tbv09Y2IiDCAmT17tmvawYMHjbe3t1v4zeh2WLBgQbrtZs6caQAzYcIEt/ULCAgwMTExrmnO93tISIhr/YwxZs6cOQYwP/30U5qaLsfhcJjExESzYsUKA5jNmzdn+LlOzm27bt06t+mXhiNjrrwzvtS4cePS/Vy98847BjCLFi1yTWvbtq2pU6fOVee5Y8cOA5ihQ4e6TZ82bZoB3GobOHCgKVy4sNm/f79b2/fff98AriDy+eefG8DMnz/frd3AgQPTDUeAmTx5slvbGTNmGMDMmjXLbbrze2fMmDHGGGOio6ONt7e3eeKJJ9zanTlzxpQtW9b07Nnzqq9BalfbHnPmzDHBwcEGMIAJCAgwX3/9daaWIVmjbrUCqGnTpkydOpWRI0eyZs0aEhMT020XEhJCeHi46/fixYtTunRpGjZsSLly5VzTa9euDcD+/fsBOHfuHGvXruWuu+5yO4vMbrfzwAMPEBMTw86dOwFYtmwZN954IxUqVHBb9oMPPsi///6b4cGsNpuNW265xW1a/fr1XTXlhltvvTXN8i9cuMCxY8cAmD9/PgCPPfZYtiwvM6/zlWoE3F6nPn36kJSURJ8+fTJUR506dWjQoIHbtF69ehEXF8fGjRuBlO183XXXuY2JgZTtbIxh2bJll51/u3btaNCgAZ9//rlr2rhx47DZbAwYMCBN+6ttB+eyLj1L6O677yYwMJClS5e6TW/YsCHly5d3/e58v7dr185trMqln4PL2bNnD7169aJs2bLY7XZ8fHxo27YtADt27Ljic3PTsmXLCAwM5K677nKb7nzdLn2dMiIiIgIgzdiknj174u3tPgT2l19+oX379pQrV46kpCTXT9euXQFYsWKF698iRYrQpUsXt+ffd999l62jR48eaZZVtGhRbrnlFrdlNWzYkLJly7q6CRcuXOj6bKRu5+/vT9u2ba/YnZhZCxYsoHfv3tx5553Mnz+fxYsX079/fx588EHX8AbJORqQXQDNnDmTkSNHMnHiRF555RUKFy7MHXfcwbvvvkvZsmVd7YoXL57mub6+vmmmO8+4uHDhAgD//PMPxhhCQkLSPN8Zqk6ePOn6NyPtrqZQoUJp+uH9/PxcNeWGEiVKpFk+wPnz54GUsV52u93tNb4WmXmdM1pjVqS3Ps5pqbfzpaeVX6nOSw0ZMoT+/fuzc+dOqlSpwhdffMFdd92V7rKvto4nT57E29ubUqVKubWz2WyULVs2TS2Xe79f7XOQnrNnz9KmTRv8/f0ZOXIkNWrUoFChQhw4cIA777zzmrZDdjt58iRly5ZNM2aqdOnSeHt7Z/izeek8Ie17xtvbO812O3r0KD///DM+Pj7pzuvEiROueZYpUybN4+lNg5TviqCgoDTLOn369GXPHnMu6+jRowCuMZCXyuh4oqsxxvDwww9zww03MHnyZNf0jh07EhsbyxNPPEHPnj0JDAzMluVJWgpHBVDJkiX56KOP+Oijj4iOjuann37ihRde4NixY+kOrM6sYsWK4eXlxeHDh9M85hz8W7JkSSBlR5aRdrnNGbQuHdCdlR2CU6lSpUhOTubIkSPpBprMyszrnJOOHDly2WnOHd61budevXrx/PPP8/nnn9O8eXOOHDmS5SNwJUqUICkpiePHj7sFJGMMR44cueyOLzssW7aMQ4cOsXz5ctfRIiDNQHBPUKJECdauXYsxxi0gHTt2jKSkpCy9t5zvhyNHjrgdjUtKSkrz2SpZsiT169fnzTffTHdezmBdokSJdAd0p/e+BNK9dpTzBIXLff8VKVLE1Q7g+++/JywsLN222eHo0aMcPnyYgQMHpnns+uuv56uvvmLfvn3UqVMnx2oo6NStVsBVrFiRxx9/nJtuusnVBXKtAgMDadasGT/88IPbX8IOh4Ovv/6a0NBQatSoAcCNN97o2mGk9tVXX1GoUCHXqevZcYQjM8qUKYO/vz9//PGH2/Qff/wxy/N0dgeMHTv2iu38/PwytJ6ZeZ1z0rZt29i8ebPbtOnTp1OkSBEaN24MpGzn7du3p3mPffXVV9hsNtq3b3/FZfj7+zNgwAC+/PJLPvzwQxo2bEirVq2yVK/z7KSvv/7abfqsWbM4d+6c6/Gc4NwxO9/PTuPHj8+xZaaW0fcWpLxOZ8+eTXNdpK+++sr1eGY5z46bNm2a2/Rvv/02zRlo3bt3d10ioEmTJml+nOGobdu2nDlzxtVt7fTNN99kuK7u3btz8uRJkpOT011WzZo1gZRT6b29vfn777/TbdekSZPMviTpcp65u2bNmjSPRUZG4uXllS1/YMnl6chRARMbG0v79u3p1asXtWrVokiRIqxbt44FCxZw5513ZttyRo0axU033UT79u159tln8fX1ZcyYMWzdupUZM2a4dhKvvfaaa2zBq6++SvHixZk2bRpz587l3XffJTg4GEi5ZktAQADTpk2jdu3aFC5cmHLlyrmNfcpONpuN3r17M3nyZKpWrUqDBg34/fffmT59epbn2aZNGx544AFGjhzJ0aNH6d69O35+fkRFRVGoUCGeeOIJAOrVq8c333zDzJkzqVKlCv7+/tSrVy/deWb0dc6Mr776iocffpjJkydnaNxRuXLluPXWW3n99dcJCQnh66+/ZvHixbzzzjuuMTlDhw7lq6++4uabb2bEiBGEhYUxd+5cxowZw+DBgzMU4h599FHeffddNmzYwMSJEzO9Xk433XQTnTt35vnnnycuLo5WrVrxxx9/8Nprr9GoUSMeeOCBLM/7alq2bEmxYsUYNGgQr732Gj4+PkybNi1NuMwp9erVY/ny5fz888+EhIRQpEgR147/Un369OHzzz+nb9++7Nu3j3r16vHbb7/x1ltv0a1bNzp27Jjp5deuXZvevXvz0Ucf4ePjQ8eOHdm6dSvvv/9+mq6uESNGsHjxYlq2bMmQIUOoWbMmFy5cYN++fcybN49x48YRGhpK3759GT16NL1792bkyJFUq1aN+fPns3DhQiBjXV333nsv06ZNo1u3bjz55JM0bdoUHx8fYmJiiIiI4LbbbuOOO+6gUqVKjBgxgpdeeok9e/bQpUsXihUrxtGjR/n9998JDAxk+PDhV1zWihUrXJcHSE5OZv/+/Xz//fdAStArVaoUfn5+PProo3z44Yf06dOHe+65B7vdzpw5c5g+fTr9+vVLd9iDZCMrR4NL7rtw4YIZNGiQqV+/vgkKCjIBAQGmZs2a5rXXXnM78+ZyZ5+EhYWZm2++Oc10wDz22GNu03799VfToUMHExgYaAICAkzz5s3Nzz//nOa5W7ZsMbfccosJDg42vr6+pkGDBumeJTZjxgxTq1Yt4+Pj43ZGU3pnmxmT8bN9Lvf82NhY079/f1OmTBkTGBhobrnlFrNv377Lnq12/Phxt+c7zyLau3eva1pycrIZPXq0qVu3rvH19TXBwcGmRYsWbq/Lvn37TKdOnUyRIkUM4Drj6HJn0GXkdb7cGU3OM8EiIiLStM3oqfw333yz+f77702dOnWMr6+vqVSpkvnwww/TtN2/f7/p1auXKVGihPHx8TE1a9Y07733nklOTnZrd+nrm1q7du1M8eLF3U6tdsrMdjh//rx5/vnnTVhYmPHx8TEhISFm8ODB5p9//kl3/S6V3vvduX1SX8Igvffg6tWrTYsWLUyhQoVMqVKlTP/+/c3GjRvTvOY5cbbapk2bTKtWrUyhQoUMkO5ZkamdPHnSDBo0yISEhBhvb28TFhZmhg0b5na5A2MyfraaMcbEx8ebZ555xpQuXdr4+/ub5s2bm8jISBMWFpbmzK3jx4+bIUOGmMqVKxsfHx9TvHhxEx4ebl566SVz9uxZV7vo6Ghz5513msKFC5siRYqYHj16mHnz5hnA/Pjjj26vSXqfdWOMSUxMNO+//75p0KCB8ff3N4ULFza1atUyAwcONLt27XJrO2fOHNO+fXsTFBRk/Pz8TFhYmLnrrrvMkiVLrrr+zjOB0/tJ/TlMTk42X3zxhWnSpIkpWrSoCQoKMo0aNTKfffaZSUhIyMArLdfCZowxuRPDRCS/qVSpEnXr1nVdFDEnHTt2jLCwMJ544gndnkKu6q233uLll18mOjo6x69SLvmPutVExKPFxMSwZ88e3nvvPby8vHjyySetLkk8zGeffQZArVq1SExMZNmyZXzyySf07t1bwUiyROFIRDzaxIkTGTFiBJUqVWLatGluZzmJQMrp+aNHj2bfvn3Ex8dTsWJFnn/+eV5++WWrS5M8St1qIiIiIqlYfir/ypUrueWWWyhXrhw2my3NaaPpWbFiBeHh4a6bXI4bNy7nCxUREZECwfJwdO7cORo0aODqM76avXv30q1bN9q0aUNUVBQvvvgiQ4YMYdasWTlcqYiIiBQEHtWtZrPZmD17Nrfffvtl2zz//PP89NNPbvcgGjRoEJs3b87wfbhERERELifPDciOjIykU6dObtM6d+7MpEmTSExMTPc+PPHx8W63gXA4HJw6dYoSJUpk6SJ5IiIikvuMMZw5c4Zy5cpl273s0pPnwtGRI0fS3FCwTJkyJCUlceLEiXQvqT5q1KirXrVURERE8oYDBw7k6GUa8lw4grQ3DnT2DF7uKNCwYcN4+umnXb/HxsZSsWJFDhw4kOaS9SKShxw8CH//DVWrwpVO8c9oOxHxaHFxcVSoUMF1M+CckufCUdmyZdPcbfnYsWN4e3u77vh8KT8/vzQ3egQICgpSOBLJqyZNggEDwOEALy+YMAH69ct6OxHJM3J6SIzlZ6tlVosWLVi8eLHbtEWLFtGkSZN0xxuJSD4UE/Nf4IGUfwcOTJmelXYiIqlYHo7Onj3Lpk2b2LRpE5Byqv6mTZuIjo4GUrrEUt8ZfNCgQezfv5+nn36aHTt2MHnyZCZNmsSzzz5rRfkiYoVdu/4LPE7JybB7d9baiYikYnm32vr162nfvr3rd+fYoL59+zJ16lQOHz7sCkoAlStXZt68eQwdOpTPP/+ccuXK8cknn9CjR49cr11ELFK9ekoXWergY7dDtWpZaycikopHXecot8TFxREcHExsbKzGHInkVZMmpXSRJSenBJ7x49narBnLli3j5MmThIaG0rVrV0IXLkzTTmOORPKm3Np/W37kSEQkS/r1g86dYfdudtntPDpiBEv693dr4uXlRZ8+fXhv40ZKnjqVcsRId2kXkauwfMyRiEiWhYYy//x5GnXtypIlS/D29qZr164MHDiQVq1a4XA4mDp1Kk1uvZVtpUopGIlIhujIkYjkWYsWLeK2224jMTGRtm3bMmXKFCpXrux6fM2aNfTu3Zu///6bDh06sHLlSmrWrGlhxSKSF+jIkYjkSTt37qRnz54kJibSs2dPFi9e7BaMAJo3b87atWtp2LAhx44d47bbbuPs2bMWVSwieYXCkYjkOfHx8fTo0YPY2FhatmzJV199ddnrnJUoUYKFCxdSvnx5du7cyYABAyiA56GISCYoHIlInjNy5Ei2bdtG6dKl+eGHH9K9An5qpUuX5ttvv8Xb25sZM2bwww8/5FKlIpIXKRyJSJ6yZcsW3n77bQA+//zzNDeivpyWLVsybNgwAJ588knOnDmTYzWKSN6mcCQiecr//vc/kpKSuP3227nrrrsy9dxhw4ZRpUoVDh48yMiRI3OoQhHJ6xSORCTPWLZsGQsWLMDb25v33nsv088PCAjgo48+AuDTTz/l8OHD2VyhiOQHCkcikicYY3jxxReBlHssVsviLUC6d+9OixYtOH/+PKNGjcrOEkUkn1A4EpE8Yfny5axduxZ/f39efvnlLM/HZrPxxhtvADB+/HgOHTqUXSWKSD6hcCQiecI777wDQL9+/TI8CPtyOnToQOvWrUlISOCzzz7LjvJEJB9ROBIRj7d582YWLlyI3W7nmWeeueb52Ww213zGjRvHuXPnrnmeIpJ/KByJiMcbM2YMAD169EhzFeysuuWWW6hatSr//PMPU6dOzZZ5ikj+oHAkIh7tzJkzTJ8+HYDBgwdn23ztdjtPPvkkkDL2SFfNFhEnhSMR8WjTp0/n7Nmz1KxZk7Zt22brvB944AH8/f3ZsmUL69evz9Z5i0jepXAkIh7LGMO4ceMAGDBgADabLVvnX7RoUXr06AHAxIkTs3XeIpJ3KRyJiMdav349mzZtws/Pj759++bIMvr37w/AjBkzNDBbRACFIxHxYNOmTQPgjjvuoESJEjmyjLZt21K1alXOnDnDd999lyPLEJG8ReFIRDxScnIy33zzDQD3339/ji3HZrPx8MMPA/D111/n2HJEJO9QOBIRjxQREcHRo0cpXrw4nTp1ytFl3XvvvW7LFJGCTeFIRDyS8/T9u+++G19f3xxdVpUqVbj++utxOBzMmjUrR5clIp5P4UhEPM6F3buZ9e23APTq1StXlnnPPfcA8M2XX0JEBMTE5MpyRcTzKByJiGeZNImFNWoQd+4coUDrnTtzZbE9e/YE4Lfff+dghw4QFgaTJuXKskXEsygciYjniImBAQOYc/Fq1T0Ar8GDc+UoTgWbjZaAAb4DcDhg4EAdQRIpgBSORMRz7NpFksPBzxd/vR0gORl2786VZfe8+N85zmm5tWwR8SgKRyLiOapXZ5XNxkmgONAawG6HatVyZdm3XbwC92/Aydxctoh4FIUjEfEcoaHMufFGAG4BvO12GD8eQkNzZdmVvviC+kAyMN9my71li4hHUTgSEY9hjGH2rl0A3PHGG7BvH/Trl3sF9OvHrUOGAPBjt265u2wR8RgKRyLiMf744w/2799PQEAANz39tCVHbW7t3RuABStWEB8fn+vLFxHrKRyJiMeYN28eAB07dqRQoUKW1BAeHk5ISAhnz55l+fLlltQgItZSOBIRj7FgwQIAunbtalkNXl5e3HLLLQD8/PPPV2ktIvmRwpGIeITY2FhWr14NQOfOnS2tpVu3bgAsXLjQ0jpExBoKRyLiEZYuXUpSUhI1atSgSpUqltbSvn17vL292b17N3v27LG0FhHJfQpHIuIRPKFLzSkoKIgWLVoAsGjRIourEZHcpnAkIpYzxrjCUZcuXSyuJoWza09dayIFj8KRiFhux44dHDhwAH9/f9q2bWt1OcB/4Wjp0qUkJiZaXI2I5CaFIxGx3Pz58wFo27YtAQEBFleTolGjRpQoUYIzZ86wZs0aq8sRkVykcCQilnN2XXlKlxqA3W7npptuAjTuSKSgUTgSEUvFx8fz22+/AbjCiKfQuCORgknhSEQstXbtWs6fP0/p0qW57rrrrC7HTadOnQBYv349p06dsrgaEcktCkciYqlly5YB0KFDB2w2m8XVuCtXrhy1a9fGGMPKlSutLkdEconCkYhYKnU48kTt2rUDICIiwtpCRCTXKByJiGX+/fdf15lg7du3t7ia9DnrUjgSKTgUjkTEMqtWrSIxMZEKFSpQtWpVq8tJl/O6S1u2bOHEiRMWVyMiuUHhSEQs48njjZxKly5NnTp1AFixYoXF1YhIblA4EhHLOLuqPLVLzclZ3/Lly60tRERyhcKRiFgiNjaWdevWAZ4fjjQoW6RgUTgSEUusWrUKh8NB1apVqVixotXlXJFz3NG2bds4duyYxdWISE5TOBIRS/z6668A3HDDDRZXcnUlS5akXr16gMYdiRQECkciYgnnLUPatGljcSUZo3FHIgWHwpGI5LoLFy7w+++/A9C6dWuLq8kYZ4hbtWqVxZWISE5TOBKRXLd+/XoSEhIoU6YM1apVs7qcDGnVqhUAf/zxB7GxsRZXIyI5SeFIRHKdc7xRmzZtPPb6RpcKCQmhatWqGGOIjIy0uhwRyUEKRyKS65zhKK90qTk561XXmkj+pnAkIrkqOTmZ1atXA3lnMLaTMxw5B5OLSP6kcCQiuWrr1q3ExsZSpEgR6tevb3U5meIMR2vXriUhIcHiakQkpygciUiuch51adGiBd7e3hZXkzk1a9akRIkSnD9/nqioKKvLEZEconAkIrkq9WDsvMZms6lrTaQAUDgSkVxjjMnT4Qg07kikIFA4EpFcs2/fPg4dOoSPjw9Nmza1upwsSR2OjDEWVyMiOUHhSERyjfMstcaNGxMQEGBxNVnTuHFj/P39OXHiBH/99ZfV5YhIDlA4EpFcs2bNGiBlMHZe5evr6zrq5ewiFJH8xSPC0ZgxY6hcuTL+/v6Eh4df9Qtn2rRpNGjQgEKFChESEsJDDz3EyZMnc6laEcmq/BCO4L9biehK2SL5k+XhaObMmTz11FO89NJLREVF0aZNG7p27Up0dHS67X/77Tf69OlDv3792LZtG9999x3r1q2jf//+uVy5iGTG+fPn2bRpEwDNmze3tphr5Ax3zrAnIvmL5eHoww8/pF+/fvTv35/atWvz0UcfUaFCBcaOHZtu+zVr1lCpUiWGDBlC5cqVad26NQMHDmT9+vW5XLmIZMaGDRtISkoiJCSEChUqWF3ONWnWrBkA27dv5/Tp09YWIyLZztJwlJCQwIYNG+jUqZPb9E6dOrkGbl6qZcuWxMTEMG/ePIwxHD16lO+//56bb775ssuJj48nLi7O7UdEcperS61aNWwHD1pczbUpXbo0VSpWBGDdvHkWVyMi2c3ScHTixAmSk5MpU6aM2/QyZcpw5MiRdJ/TsmVLpk2bxj333IOvry9ly5alaNGifPrpp5ddzqhRowgODnb95PW/WkXyosgZMwBo/uuvEBYGkyZZXNE1mDSJ5he7/tf07p2310VE0rC8Ww1SrjqbmjEmzTSn7du3M2TIEF599VU2bNjAggUL2Lt3L4MGDbrs/IcNG0ZsbKzr58CBA9lav4hcmTlwgMiNGwFoDuBwwMCBEBNjaV1ZEhMDAwbgHDW1xpi8uy4iki5Lb2xUsmRJ7HZ7mqNEx44dS3M0yWnUqFG0atWK5557DoD69esTGBhImzZtGDlyJCEhIWme4+fnh5+fX/avgIhkyIFVqzhMyhdOuHNicjLs3g2hodYVlhW7doHD8V84AkxyMra8uC4iki5Ljxz5+voSHh7O4sWL3aYvXryYli1bpvucf//9Fy8v97LtdjuArlYr4qHW/PMPAA2AQs6JdjtUq2ZVSVlXvTp4edEA8AdOAbu9vPLmuohIuizvVnv66aeZOHEikydPZseOHQwdOpTo6GhXN9mwYcPo06ePq/0tt9zCDz/8wNixY9mzZw+rVq1iyJAhNG3alHLlylm1GiJyBWt27QKgubO73G6H8ePz5pGW0FCYMAFfu911FGzNQw/lzXURkXRZ2q0GcM8993Dy5ElGjBjB4cOHqVu3LvPmzSMsLAyAw4cPu13z6MEHH+TMmTN89tlnPPPMMxQtWpQOHTrwzjvvWLUKInIVzosltvj4Y6hXL+UoS14OE/36QefONH/mGVZ9+y1r/Px4wOqaRCTb2EwB7IuKi4sjODiY2NhYgoKCrC5HJF+Lj48nKCiIhIQEdu/eTdWqVa0uKdt8//333H333TRu3JgNGzZYXY5Ivpdb+2/Lu9VEJH/btGkTCQkJlCxZkipVqlhdTrZyXul78+bN/PvvvxZXIyLZReFIRHKUq0utRYvLXqIjrwoNDaV8+fIkJyfrKv0i+YjCkYjkKOeVsfP6/dQux7leus+aSP6hcCQiOUrhSETyGoUjEckxhw8fZv/+/Xh5eXH99ddbXU6OcIajyMhIXWtNJJ9QOBKRHPP7778DUKdOHYoUKWJxNTkjPDzcdaX/g3n8hroikkLhSERyzLp16wDy7VEjgICAAOrVqwf8FwZFJG9TOBKRHOMMC/k5HMF/6+cMgyKStykciUiOMMa4Tm9v2rSpxdXkLIUjkfxF4UhEcsTff//NP//8g5+fn6vbKb9yhr9169bhcDgsrkZErpXCkYjkCOdRlIYNG+Lj42NxNTmrTp06BAQEEBcXx66LN9kVkbxL4UhEckRBGIzt5O3tTaNGjQB1rYnkBwpHIpIjClI4gv/WU2esieR9Ckciku2SkpLYuHEjUHDCUepxRyKStykciUi227FjB//++y9FihShZs2aVpeTK5whMCoqioSEBIurEZFroXAkItnO2bUUHh6Ol1fB+JqpVq0aRYsWJT4+nq1bt1pdjohcg4LxrSUiuaqgjTcCsNlsut6RSD6hcCQi2c4ZDvL7xR8vpUHZIvmDwpGIZKsLFy7wxx9/AAXryBHoStki+YXCkYhkq82bN5OUlESpUqWoWLGi1eXkKueRsm3btnHu3DmLqxGRrFI4EpFslXq8kc1ms7ia3FWuXDnKlSuHw+FwXcpARPIehSMRyVYFcTB2aupaE8n7FI5EJFsV9HCki0GK5H0KRyKSbeLi4vjzzz+BghuOdMaaSN6ncCQi2WbDhg0YY6hYsSKlS5e2uhxLNGnSBIA9e/Zw8uRJi6sRkaxQOBKRbFNQr2+UWrFixahevTqgrjWRvErhSESyTUEfb+SkQdkieZvCkYhkG4WjFApHInmbwpGIZIvjx4+zf/9+bDYb4eHhVpdjKWe34u+//44xxuJqRCSzFI5EJFs4j5LUrFmToKAgi6uxVsOGDbHb7Rw9epSYmBiryxGRTFI4EpFsoS61/xQqVIi6desC6loTyYsUjkQkWziv66NwlELjjkTyLoUjEblmxhgdObqEwpFI3qVwJCLXLDo6muPHj+Pt7U3Dhg2tLscjOMPR+vXrcTgcFlcjIpmhcCQi18x5dKR+/fr4+/tbXI1nqFu3Lv7+/sTGxrJ7926ryxGRTFA4EpFrpi61tHx8fFxH0dS1JpK3KByJyDVTOEqfxh2J5E0KRyJyTRwOBxs2bAAUji6lcCSSNykcicg1+euvv4iLiyMgIIDrrrvO6nI8ijMcRUVFkZSUZHE1IpJRCkcick3Wr18PQKNGjfD29ra4Gs9So0YNgoKCOH/+PNu2bbO6HBHJIIUjEbkmGm90eV5eXq77zKlrTSTvUDgSkWviCkeBgaD7iKVxfa1aAKxbvtzaQkQkwxSORCTLEhMTibrYrdbkrbcgLAwmTbK4Kg8yaRLXjxsHwLpp0/TaiOQRCkcikmXbIyK4kJhIEFAdwOGAgQN1BAlSXoMBA7jeGAC2ABcGDNBrI5IHKByJSJatW7QIgCak+jJJTgZdERp27QKHg4pAKSAJ2ORw6LURyQMUjkQky9YdOQKA21Bsux2qVbOkHo9SvTp4eWHjv9dnnc2m10YkD1A4EpEsW7d9OwBNvC5+ldjtMH48hIZaWJWHCA2FCRPAbv8vHDVvrtdGJA9QOBKRLLlw4QJbtmwB4PpVqyAiAvbtg379rC3Mk/TrB/v2cf1bbwGw7p9/LC5IRDJC4UhEsmTz5s0kJSVRqlQpKjZrBu3a6ahIekJDuf5iYNy5cydxcXEWFyQiV6NwJCJZkvrijzabzeJqPFvp0qWpWLEixhjXfehExHMpHIlIljjDUZMmTSyuJG/QTWhF8g6FIxHJEuc91XTbkIxROBLJOxSORCTTzpw5w44dOwCFo4xSOBLJOxSORCTTNm7ciDGGChUqUKZMGavLyROcN6Ddv38/x48ft7gaEbkShSMRyTSNN8q84OBgatasCejokYinUzgSkUxLfaaaZFzTpk0BhSMRT6dwJCKZpsHYWaNxRyJ5g8KRiGTKyZMn2bNnD/DfOBrJmNThyBhjcTUicjkKRyKSKc6jRtWqVaNYsWIWV5O3NGzYEG9vb44dO8aBAwesLkdELkPhSEQyReONss7f35969eoB6loT8WQKRyKSKRpvdG007kjE8ykciUim6MjRtVE4EvF8CkcikmGHDh3i0KFDeHl50ahRI6vLyZOc4Wj9+vU4HA6LqxGR9HhEOBozZgyVK1fG39+f8PBwfv311yu2j4+P56WXXiIsLAw/Pz+qVq3K5MmTc6lakYLLebTjuuuuIzAw0OJq8qY6deoQEBBAXFwcu3btsrocEUmH5eFo5syZPPXUU7z00ktERUXRpk0bunbtSnR09GWf07NnT5YuXcqkSZPYuXMnM2bMoFatWrlYtUjBpPFG187b29t11E1dayKeyfJw9OGHH9KvXz/69+9P7dq1+eijj6hQoQJjx45Nt/2CBQtYsWIF8+bNo2PHjlSqVImmTZvSsmXLXK5cpODReKPsoXFHIp7N0nCUkJDAhg0b6NSpk9v0Tp06sXr16nSf89NPP9GkSRPeffddypcvT40aNXj22Wc5f/78ZZcTHx9PXFyc24+IZI4xRuEomygciXg2bysXfuLECZKTk9Pc1btMmTIcOXIk3efs2bOH3377DX9/f2bPns2JEyd49NFHOXXq1GXHHY0aNYrhw4dne/0iBcnevXs5deoUPj4+rmv1SNY4w1FUVBSJiYn4+PhYXJGIpGZ5txqAzWZz+90Yk2aak8PhwGazMW3aNJo2bUq3bt348MMPmTp16mWPHg0bNozY2FjXj65MK5J5a9euBaBRo0b4+flZXE3eVq1aNYKDg7lw4QLbtm2zuhwRuYSl4ahkyZLY7fY0R4mOHTuW5miSU0hICOXLlyc4ONg1rXbt2hhjiImJSfc5fn5+BAUFuf2ISOY4w1GzZs0sriTv8/LyokmTJoC61kQ8kaXhyNfXl/DwcBYvXuw2ffHixZcdYN2qVSsOHTrE2bNnXdP++usvvLy8CA0NzdF6RQoyhaPspXFHIp7L8m61p59+mokTJzJ58mR27NjB0KFDiY6OZtCgQUBKl1ifPn1c7Xv16kWJEiV46KGH2L59OytXruS5557j4YcfJiAgwKrVEMnXEhISiIqKAhSOsovCkYjnsnRANsA999zDyZMnGTFiBIcPH6Zu3brMmzePsLAwAA4fPux2zaPChQuzePFinnjiCZo0aUKJEiXo2bMnI0eOtGoVRPK9zZs3Ex8fT4kSJahatarV5eQLznC0ZcsWzp8/rz/uRDyIzRhjrC4it8XFxREcHExsbKzGH4lkwGeffcYTTzxB165dmTdvntXl5AvGGEJCQjh69CirV6+mRYsWVpck4vFya/9tebeaiHg+jTfKfjabTV1rIh5K4UhErkrhKGcoHIl4JoUjEbmiU6dOuW6Q2rRpU4uryV+c4ej333+3uBIRSU3hSESuyLnjrl69OsWLF7e4mvzFGTb/+usvTp06ZXE1IuKkcCQiV6QutZxTokQJatSoAfz3OouI9RSOROSKFI5yVvPmzQFYs2aNxZWIiJPCkYhcljHG1a2mcJQznKfwR0ZGWlyJiDgpHInIZf3999+cPHkSPz8/GjRoYHU5+ZLzyNHatWtxOBwWVyMioHAkIlfg7FJr1KgRvr6+FleTP9WtW5fAwEDi4uLYsWOH1eWICApHInIFGm+U87y9vV2n9KtrTcQzKByJyGUpHOUO57gjDcoW8QwKRyKSrvj4eDZt2gRAs4oVrS0mn3OOO4pcsgRiYiyuRkQUjkQkXRuHDychIYFSQOU2bWDSJKtLyrea//03ANv37+d0xYp6rUUspnAkImnFxLDq7bcBaAnYjIGBA3VUIyfExFD62WepcvHX3/Vai1hO4UhE0tq1i9XGANDKOS05GXbvtqykfGvXLnA4aHHx1zWg11rEYgpHIpKGqVaN1Rf/39I50W6HatUsqigfq14dvLxofvHXSNBrLWIxhSMRSWNvYiJHAR8gHFJ21uPHQ2iotYXlR6GhMGECLbxSvo7XAo6xY/Vai1hI4UhE0li9OuW4UXjjxvhHRMC+fdCvn7VF5Wf9+lF/9278fX35B/irTRurKxIp0BSORCQNZzhq2a4dtGunoxi5wKdyZZo0bQroekciVlM4EpE0XOGoZcurtJTspJvQingGhSMRcRMXF8eWLVsAhaPc5roYpMKRiKUUjkTEjfPu8JUrVyYkJMTqcgoUZxjdunUrp0+ftrYYkQJM4UhE3KhLzTply5alWrVqGGNc20FEcp/CkYi4UTiyVpuLZ6r99ttvFlciUnApHImIS3JysutMKYUja7Ru3RpQOBKxksKRiLhs376duLg4ChcuTN26da0up0ByhqPff/+d+Ph4i6sRKZiuKRwdO3aMI0eOZFctImIxZ5da8+bN8fb2triagql69eqULl2a+Ph41q9fb3U5IgVSlsLRH3/8QZ06dQgJCaF8+fKUL1+el19+mXPnzmV3fSKSi5xdOepSs47NZlPXmojFshSO+vXrR5kyZfjtt9+Iiopi5MiRzJ8/nyZNmvDPP/9kd40ikktWrlwJwA033GBxJQWbMxz9+uuvFlciUjDZjDEms08KDAxkw4YN1KpVyzXNGMPdd9+Nv78/X3/9dbYWmd3i4uIIDg4mNjaWoKAgq8sR8Qj79++nUqVKeHt7c/r0aQIDA60uqcBav349119/PUWLFuXkyZN4eWl4qAjk3v47S5+49I4Q2Ww23nrrLX788cdsKUxEcpfzqFF4eLiCkcUaNmxIYGAgp0+fZvv27VaXI1LgZDgc3Xzzzbz44ot8++23DBo0iKFDh3L06FG3NrGxsRQrVizbixSRnKcuNc/h7e3tus+autZEcl+GT0epV68eGzduZMqUKa5QVKVKFXr27EnDhg1JTk5mypQpjB49OseKFZGco3DkWVq3bs2SJUv47bffGDx4sNXliBQoWRpzdPToUaKioti0aZPrZ/fu3djtdmrWrMkff/yRE7VmG405EnF35MgRQkJCsNlsnDx5UkeAPcDSpUvp2LEjFStWZP/+/VaXI+IRcmv/naULmZQpU4YuXbrQpUsX17Tz58+zefNmNm/enG3FiUjucHbd1K9fX8HIQzRv3hy73U50dDTR0dFUrFjR6pJECoxsOwUiICCA5s2bM3DgwOyapYjkEnWpeZ7AwEAaN24M/Ld9RCR36PxQEVE48lBt27YFYPny5dYWIlLAKByJFHCnTp1iy5YtwH93hBfP0L59ewAiIiIsrkSkYFE4EingVq1ahTGGGjVqUKZMGavLkVTatGmD3W5nz549REdHW12OSIGhcCRSwK1YsQJQl5onKlKkCE2aNAF09EgkNykciRRwy5YtA/7rwhHPoq41kdyncCRSgJ08eZJNmzYB0KFDB2uLkXSlDkdZuCydiGSBwpFIAbZ8+XKMMVx33XWULVvW6nIkHS1btsTb25vo6Gj27dtndTkiBYLCkUgBtnTpUgBuvPFGiyuRyylcuDBNmzYF1LUmklsUjkQKMOd4I3WpeTaNOxLJXQpHIgXUwYMH2blzJ15eXrRr187qcuQKNO5IJHcpHIkUUM6jRo0bN6Zo0aLWFiNX1LJlS3x9fTl48CC7d++2uhyRfE/hSKSAUpda3uG8dyXAkiVLLK5GJP9TOBIpgMyBAyydNw/QYOy8olOnTgAs/ukniIiAmBiLKxLJvxSORAqaSZP4OyyMA8eO4QO0UjdNnuAMR0sXLCCpQwcIC4NJkyyuSiR/UjgSKUhiYmDAAJZeHNTbAggcMkRHIfKAxqVLUxyIA34HcDhg4EBtO5EcoHAkUpDs2gUOB4su/nojQHIy6OiRx7Pv2UPHi/93bj9tO5GcoXAkUpBUr06izYZzSG9XALsdqlWzsCjJkOrV6WSzAanCkbadSI5QOBIpSEJDWfPcc8QBJYFwLy8YPx5CQ62uTK4mNJSb3n4bgLXAaW07kRyjcCRSwCzw9gag04034rV/P/TrZ3FFklEV//c/alWrhgNYNm6ctp1IDlE4EilgFixYAECXvn111CEP6tStGwCLNmywuBKR/EvhSKQAOXr0KBs3bgT+OzVc8hbndlu4cKFuJSKSQxSORAqQRYtShvI2btyYMmXKWFyNZEXbtm3x8fFh3759upWISA5ROBIpQJxdal27drW4EsmqwoUL07p1awDmXbzKuYhkL4UjkQIiOTmZhQsXAtClSxeLq5Fr0b17dwB++eUXiysRyZ8UjkQKiA0bNnDy5EmCg4NdNzGVvMkZjlasWEFcXJzF1YjkPwpHIgXE/PnzgZQbzXpfPJ1f8qYaNWpQo0YNEhMTXePIRCT7KByJFBA//vgjALfccovFlUh2cG7Hn3/+2eJKRPIfjwhHY8aMoXLlyvj7+xMeHs6vv/6aoeetWrUKb29vGjZsmLMFiuRxBw4cICoqCi8vL26++Wary5Fs4OxamzdvHsnJyRZXI5K/WB6OZs6cyVNPPcVLL71EVFQUbdq0oWvXrkRHR1/xebGxsfTp04cbb7wxlyoVybucRxdatmxJqVKlLK5GskOrVq0oWrQoJ06cYO3atVaXI5KvWB6OPvzwQ/r160f//v2pXbs2H330ERUqVGDs2LFXfN7AgQPp1asXLVq0yKVKRfIuZ5farbfeanElkl18fHxcZx2qa00ke1kajhISEtiwYUOaK/V26tSJ1atXX/Z5U6ZM4e+//+a1117L0HLi4+OJi4tz+xEpKOLi4oiIiAAUjvIb57gjndIvkr0sDUcnTpwgOTk5zZV6y5Qpw5EjR9J9zq5du3jhhReYNm1ahs+4GTVqFMHBwa6fChUqXHPtInnFggULSExMpGbNmtSsWdPqciQbdenSBbvdztatW9m7d6/V5YjkG5Z3qwHYbDa3340xaaZBykXsevXqxfDhw6lRo0aG5z9s2DBiY2NdPwcOHLjmmkXyip9++gnQUaP8qHjx4q6rZc+ZM8faYkTyEUvDUcmSJbHb7WmOEh07dizd+z6dOXOG9evX8/jjj+Pt7Y23tzcjRoxg8+bNeHt7s2zZsnSX4+fnR1BQkNuPSEGQmJjI3LlzAYWj/KpHjx4AfP/99xZXIpJ/WBqOfH19CQ8PZ/HixW7TFy9eTMuWLdO0DwoKYsuWLWzatMn1M2jQIGrWrMmmTZto1qxZbpUukicsXbqU06dPU6ZMGZ28kE/deeedAKxevZqDBw9aXI1I/mB5t9rTTz/NxIkTmTx5Mjt27GDo0KFER0czaNAgIKVLrE+fPgB4eXlRt25dt5/SpUvj7+9P3bp1CQwMtHJVRDzOd999B6QcXbDb7RZXIzmhfPnyruA7e/Zsi6sRyR8sD0f33HMPH330ESNGjKBhw4asXLmSefPmERYWBsDhw4eves0jEUkrMTHRtbO8++67La5GctJdd90FqGtNJLvYjDHG6iJyW1xcHMHBwcTGxmr8keRbCxYsoGvXrpQpU4aDBw/qyFE+tn//fipVqoSXlxeHDh1Kd8ymSH6QW/tvy48ciUjOUJdawREWFkaTJk1wOBw6a00kGygcieRDiYmJrp2kutQKBmfX2rfffmtxJSJ5n8KRSD60bNkyTp06RZkyZWjTpo3V5Ugu6NmzJwAREREcOnTI4mpE8jaFI5F8aPr06YC61AqSypUr07JlS4wxfPPNN1aXI5KnKRyJ5CcxMZybN49ZF89a6t27t8UFSW66//77Afj6668hJgYiIlL+FZFMUTgSyS8mTYKwMGbffDPn/v2XaqVL07x5c6urklzUs2dPvL29iYqKYkfFitChA4SFpbw3RCTDFI5E8oOYGBgwABwO/u/ipN7Hj2PTFZMLlJIlS9KlXTsApjmv0uJwwMCBOoIkkgkKRyL5wa5d4HBwGFhycVJvY2D3biurEgvcf/Fo4TTAdRG75GS9F0QyQeFIJD+oXh28vJgOOICWQFW7HapVs7gwyW239ulDYWAf8Jtzot4LIpmicCSSH4SGYsaPd3WpPWCzwfjxEBpqaVmS+wpVr07P1q0BmAgpwUjvBZFMUTgSySc2NGzIZsDPx4eemzdDv35WlyQWeeS99wD4zs+P03oviGSawpFIPjFhwgQA7urZk+L16llcjVipWbNm1KlTh/Px8cxYudLqckTyHIUjkXzgzJkzrgs/DhgwwOJqxGo2m43+/fsDMHHiRIurEcl7FI5E8oEZM2Zw7tw5atasqduFCJByAVBfX182btzIxo0brS5HJE9ROBLJB8aPHw+kHDWy2WwWVyOeoGTJktx5550AfPHFFxZXI5K3KByJ5HEbNmxg48aN+Pr60qdPH6vLEQ/i7GL9v//7P2JjYy2uRiTvUDgSyeM+/fRTIOUmsyVLlrS4GvEk7dq1o06dOpw7d47JkydbXY5InqFwJJKHHTlyhBkzZgDw5JNPWlyNeBqbzcaQIUMA+Oyzz0hOTra4IpG8QeFIJA8bO3YsCQkJtGjRgmbNmlldjnig3r17U6xYMfbs2cO8efOsLkckT1A4EsmjLly4wNixYwF46qmnrC1GPFahQoV45JFHAPj4448trkYkb1A4Esmjpk+fzvHjx6lQoYLrrCSR9Dz66KN4eXmxdOlS/vjjD6vLEfF4CkcieZDD4WD06NEAPPHEE3h7e1tckXiysLAwevToAcA777xjcTUink/hSCQP+vnnn9m6dStFihRxdZmIXMmwYcMA+Oabb/j7778trkbEsykcieQxxhhGjhwJwOOPP07RokWtLUjyhEaNGtGlSxccDgfvXbwxrYikT+FIJI9ZtGgR69evJyAggKFDh1pdjuQhL774IgBTpkzh0KFDFlcj4rkUjkTyEGMMb7zxBgCDBg2iVKlSFlckeUmbNm1o3bo1CQkJvP/++1aXI+KxFI5E8pAVK1awatUqfH19efbZZ60uR/Kgl156CUi5RtbBgwctrkbEMykciXi6mBiIiMAcOOAaVNu/f3/KlStncWGSF3Xu3JnWrVtz4cKFlLFrF99fxMRYXZqIx7AZY4zVReS2uLg4goODiY2NJSgoyOpyRC5v0iQYMAAcDubYbNxhDIUKFeLvv/+mbNmyVlcnedSvv/7KDTfcgLfdzp8OB1WNAS8vmDAB+vWzujyRy8qt/beOHIl4qpgYVzBKAl68+HfM0H79FIzkmrRp04Yu7dqRlJzM686/jx0OGDhQR5BEUDgS8Vy7dqXssICvgB1AceC5Tp2srEryiZH33gvANGCTc2JyMuzebVFFIp5D4UjEU1WvDl5enAVevTjpRZuN4IYNLSxK8ovwm2/mHsAAT138F7sdqlWzsiwRj6BwJOKpQkNhwgTestk4CFQGHhszJmW6yLUKDeXdd97BH1gBzPLygvHj9f4SQeFIxKPtbtuWD3x8ABg9cSL+gwZZXJHkJxX/9z+ev3gh0WfLleN8r14WVyTiGRSORDzY0KFDSUhIoFOnTtz68MNWlyP50P9GjiQ0NJT9MTG6MKTIRQpHIh7q559/5pdffsHb25uPPvoIm81mdUmSDxUqVMh1r7U333yTv/76y+KKRKyncCTigeLi4hg8eDAATz31FLVr17a4IsnP7rnnHjp37kx8fDwDBgygAF7+TsSNwpGIB3r++ec5ePAgVapUYfjw4VaXI/mczWZj7NixFCpUiBUrVjB58mSrSxKxlMKRiIdZsWIF48aNA2DixIkUKlTI4oqkIKhcuTIjRowA4Nlnn+XIkSMWVyRiHYUjEQ9y/vx5HnnkESDl/mnt27e3uCIpSJ588knCw8M5ffo0gwcPVveaFFgKRyIe5IUXXmDXrl2EhIS4BsmK5BZvb28mTpyIj48Pc+bMYerUqVaXJGIJhSMRDzF//nw++eQTIKU7rWjRotYWJAVSw4YNeeONNwAYMmQIe/bssbgikdyncCTiAY4dO8ZDDz0EwBNPPEG3bt0srkgKsmeffZY2bdpw9uxZHnjgAZKSkqwuSSRXKRyJWMwYQ79+/Th69Ch16tThnXfesbokKeDsdjtfffUVQUFBrF69mjfffNPqkkRylcKRiMU+/vhjfvnlF3x9fZk+fToBAQFWlyRCpUqVGDNmDADDhw9nyZIlFlckknsUjkQstGrVKp577jkA3n//ferXr29xRSL/uf/+++nfvz/GGHr16sXBgwetLkkkVygciVjkaFQUPW+7jaSkJO69914ef/xxq0sSSeOTTz6hYcOGHD9+nHu6dCFx716rSxLJcQpHIhZImjCB+xo35tDJk9QGvmjdWvdOE48UEBDA9z17EgSs2rqVYVWqwKRJVpclkqNspgBe5SsuLo7g4GBiY2MJCgqyuhwpaGJieL5CBd4FAoF1QG27Hfbtg9BQa2sTuVRMDISFMdvh4M6Lk6bbbNwXHa33q+S63Np/68iRSC6b8sknvHvx/5OA2gDJybB7t3VFiVzOrl3gcHAH8PzFSQ8bw/q5c62sSiRHKRyJ5KKIiAgGjB4NwMvAPc4H7HaoVs2qskQur3p18ErZVbwJ3AxcAG5//XUOHz5sZWUiOUbhSCSX7Ny5kzvvvJOkpCTuuf56hl/c4WC3w/jx6qIQzxQaChMmgN2OHZju5UXtkBAOHjnC7bffzoULF6yuUCTbacyRxhxJLjhx4gTNmzfn77//pkWLFixbtgz/EydSutKqVVMwEs8XE+N6v+6+cIGmTZvyzz//8MADD/Dll1/qhALJFRpzJJJPxMfHc8cdd/D3339TqVIl5syZg7+/f0ogatdOwUjyhlTv12rVqvHdd99ht9v5v//7P959992rPl0kL1E4EslBxhj69+/Pb7/9RlBQEHPnzqV06dJWlyVyzW688UZGXxw/98ILL/Ddd99ZXJFI9lE4EslBI0eO5Ouvv8Zut/P9999z3XXXWV2SSLZ54okneOKJJwB44IEHiIyMtLgikeyhcCSSQ2bMmMGrr74KwJgxY7jpppssrkgk+40ePZru3bsTHx/Pbbfdxp49e6wuSeSaKRyJ5IDVq1fz0EMPAfDMM88wYMAAiysSyRl2u50ZM2bQqFEjjh8/Trdu3Th16pTVZYlcE4UjkWy2Z88ebr/9dtdf0u+8847VJYnkqMKFC/PLL78QGhrqumRFQkKC1WWJZJnCkUg2On36NN27d+f48eM0atSIadOmYbfbrS5LJMeVK1eOuXPnUqRIEVasWEH//v0pgFeKkXxC4UgkmyQmJnL33XezY8cOypcsyc/jxxMYGGh1WSK5pn79+m6n+L/x3HNWlySSJQpHItnAGMNjjz3GkiVLCAR+OXGC8s2b6+7lUuB0jolhjMMBwGsffMDX/ftbXJFI5ikciWSDDz74gC+++AIv4BugIYDDAQMHplxZWKQgiImBAQMYYAz/uzjp4UmTWPn995aWJZJZHhGOxowZQ+XKlfH39yc8PJxff/31sm1/+OEHbrrpJkqVKkVQUBAtWrRg4cKFuVitiLvZs2fzv/+l7Ao+BLqnfjA5OeWWCyIFwa5dKX8UAKOAu4BE4PaHH2bnzp1WViaSKZaHo5kzZ/LUU0/x0ksvERUVRZs2bejatSvR0dHptl+5ciU33XQT8+bNY8OGDbRv355bbrmFqKioXK5cBDZs2MD999+PMYZH+/RhyKX3l7LbU+6dJlIQVK8OF2+o7AV8BTQH/jlzhq5du3Ls2DErqxPJOGOxpk2bmkGDBrlNq1WrlnnhhRcyPI/rrrvODB8+PMPtY2NjDWBiY2Mz/ByRS0VHR5uQkBADmC5dupjExERjJk40xm43BlL+nTjR6jJFctcln4Fjo0ebKlWqGMA0a9bMnDt3zuoKJQ/Lrf23pUeOEhIS2LBhA506dXKb3qlTJ1avXp2heTgcDs6cOUPx4sUv2yY+Pp64uDi3H5FrcebMGW655RYOHz5M3bp1mTlzJt7e3tCvH+zbBxERKf/262d1qSK565LPQKmnnmL+/PkUL16ctWvX0rt3b5KTk62uUuSKLA1HJ06cIDk5mTJlyrhNL1OmDEeOHMnQPD744APOnTtHz549L9tm1KhRBAcHu34qVKhwTXVLwZacnMx9993H5s2bKV26NL/88gtBQUH/NUh193KRAumSz0CNGjWYM2cOvr6+bmP0RDyV5WOOAGyXjNMwxqSZlp4ZM2bw+uuvM3PmzCve6XzYsGHExsa6fg4cOHDNNUvB9cwzzzB37lz8/f356aefCAsLs7okEY/Xpk0bpk6dCsCHH37IZ599Zm1BIldgaTgqWbIkdrs9zVGiY8eOpTmadKmZM2fSr18/vv32Wzp27HjFtn5+fgQFBbn9iGTF559/zscffwzAV199RbNmzSyuSCTvuO+++3jrrbcAePLJJ/n5558trkgkfZaGI19fX8LDw1m8eLHb9MWLF9OyZcvLPm/GjBk8+OCDTJ8+nZtvvjmnyxQBYMGCBQwZMgSAt956i7vvvtviikTynhdeeIH+/fvjcDi49957Wb9+vdUliaRhebfa008/zcSJE5k8eTI7duxg6NChREdHM2jQICClS6xPnz6u9jNmzKBPnz588MEHNG/enCNHjnDkyBFiY2OtWgUpALZs2ULPnj1xOBw89NBDvPDCC1aXJJIn2Ww2xowZQ+fOnfn333/p3r07+/fvt7osETeWh6N77rmHjz76iBEjRtCwYUNWrlzJvHnzXOM4Dh8+7HbNo/Hjx5OUlMRjjz1GSEiI6+fJJ5+0ahUknzty5Ajdu3fnzJkztGvYkHEvv5yhMXEikj4fHx++/fZb6teuzdGjR+nWqROnT5+2uiwRF5sxBe+2yXFxcQQHBxMbG6vxR3JF//77L+3bt+f333+nBhAJFPfyggkTdJq+yLWYNImYRx6hmTEcAtrXqsWCzZvx9fW1ujLxYLm1/7b8yJGIp3I4HPTt25fff/+d4sBcoHjKA7pnmsi1uHgPtlBjmAsUBiL+/JNHLl5tXsRqCkcil/Hyyy/z/fff4+PtzRzA7SYgumeaSNalugdbQ+BbwA589f33jBgxwsLCRFIoHImkY8qUKYwaNQqASe+/TxuvSz4qumeaSNalugcbQFdgzMVxfK+//jpffvmlRYWJpFA4ErnE0qVLGTBgAACvvPIKDzz5ZMoYI7s9pYHdDuPH6wrYIlkVGprmMzXgiy9cZ4H279+fZcuWWVigFHQakK0B2ZLKli1baN26NXFxcdx3331MmzbtvzPTYmJSutKqVVMwEskOl3ymHA4HvXr1YubMmQQHB7Nq1Srq1KljdZXiQXJr/61wpHAkF8XExNC8eXMOHjxI27ZtWbhwIX5+flaXJVKgXLhwgY4dO7Jq1SoqVqzI2rVrKVu2rNVliYfQ2WoiuSguLo6bb76ZgwcPUrt2bWbPnq1gJGIBf39/5syZQ/Xq1YmOjqZ79+6cO3fO6rKkgFE4kgIvce9e7urQgT/++IOyZcsyb948ihUrZnVZIgVWyZIlmTdvHiVKlGDDhg3cd/vtJC9ZostnSK5ROJICzUycyMAqVVi8YQOBwC/9+1OpUiWryxIp8KpVq8ZPP/2En7c3Py9ZwlM33YSpWBEmTbK6NCkAFI6k4IqJ4bVHHmEKKR+Eb4HwUaP016mIh2hZsSJfJycD8BnwkTG6AKvkCoUjKbBGv/UWb1z8/1igG+jijiKeZNcu7jKG9y7++gzwgz6jkgsUjqRAmjx5Mk+PHQvAm8AA5wO6uKOI57h4schngMGAAe4H1sTFWVuX5HsKR1LgfP/99zzyyCMAPNu5M8OcV+rVxR1FPMvFi0Xa7HY+IeXo7gXg5oceYvPmzRYXJ/mZwpEUKAsWLKBXr144HA769+/Pu/PnY9u/HyIiYN8+6NfP6hJFJLV+/WDfPrwjIpj55580bdqUU6dO0bFjR7Zt22Z1dZJP6SKQughk/hUTk3KDy+rVITSUX375hR49epCQkMDdd9/NjBkzsDtvXyAiecLp06fp2LEjGzZsoEyZMixfvpxatWqlPHjJZ17yH10EUuRaTJoEYWHQoQOEhfHj449z5513kpCQQI8ePZg2bZqCkUgeVLRoURYtWkTDhg05evQoHTp0YMeOHWk+8zrlX66FjhzpyFH+ExOT8uXocAAwC7gXSAJ69uzJ119/jY+Pj5UVisg1OnHiBB06dGDLli2UKFaMBadP0yT17sxuT+kq1xGkfEVHjkSyatcuVzAaB/QkJRj1uvFGpk2bpmAkkg+ULFmSZcuWcf3113Pyn39obwzLUzfQKf9yDRSOJP+pXh1js/ESKaf/OoB+NhtfTZqEt7e3xcWJSHYpWbIkS5cupX3LlpwFugDfOB/UZTnkGigcSb5zvkQJHmjalLcu/v66zcYXEyZgDwuztC4RyX5FihRh3tKl3N6oEfHAfcBrNhuOsWPVpSZZpnAk+cqePXto2bIl09auxW63M+m553gtOhpb//5WlyYiOcTf35/v163j2YEDARhhDPcuXsyZM2csrkzyKoUjyXtiYlKuS3TJ/ZXmzp1LkyZN2LRpE6VKlWLRokU8/O67+utRpACw2+28N24ckyZNwsfHh++++47w8HA2bNiQtvFlvkNEnBSOJG9J53Tds2fPMmjQILp3784///xDs2bN2LhxIx06dLC6WhHJZQ8//DARERFUqFCBXbt20aJFCz744AOSL97AVqf8S0boVH6dyp93XHKKPsACLy8eDQ1lb3Q0AEOGDOHdd9/Fz8/PqipFxAOcOnWK/v37M3v2bACaNWvG+BEjaNC1q9t3iE75z1t0Kr/IpVKdor8buA3o6nCwNzqaihUrsnTpUj7++GMFIxGhePHizJo1i/Hjx1OkSBHWrl1LeNeuPOlwcCx1Q53yL+lQOJK8o3p1dttsPATUAn4CvIGnH3mELVu2qBtNRNzYbDYGDBjAjh07uOuuu0h2OPgEqAq8ChwHnfIv6VI4Es9xmUGSDoeDBQsWcNtjj1ETmAokA12BP0aM4IMJE9Q9KiKXVb58eb777jsWL15MeFgYZ4E3gIrAIy1bsv7IEdIdYaKB2wWWxhxpp+oZJk2CAQNSus28vEgaO5bfatRg1qxZzJ49m4MHD7qadm3fntfuuotmt96qcQIikinGGGZNmMA7o0ezfudO1/QaNWrQq1cvbrvtNurXr4/XlClu30lMmAD9+llYuUDu7b8VjhSOrBcTw+mKFfnDGH4DVgKrgdRXKClatCh9+/Zl0KBB/92BW0Qki4wxrFq1is8++4yffvqJ8+fPux4rVaIEHU+epCVwPdAA8NfAbY+gcJSDFI6s8++//7Jjxw62bdvGli1b2Lp1K1s3bCDm+PE0bYsHBXHrnXfSo0cPOnbsiL+/vwUVi0h+d+bMGebMmcO3335LREQE586dc3vcG7gOaHDTTTTo3JkGDRrQoEEDSpUqZUm9BZnCUQ5SOMp5xhj27NnD2rVr2bJ6Nds2bmTbwYPsPXAg/b59IBRoDrQBbvDyot6ePbrlh4jkqoSEBNb89BPL7r6bdcA6Lg7cTkdISEhKUKpShQbFitGgQwdq3HCD7uGYgxSOcpDCUfYzxrBjxw4WLFhAREQEa9as4cSJE+m2LVmyJPXq1aNu3bqunzobNhA8dGjKabV2O4wfr/59EbHOpEkwcCAmOZkDXl5EDR7M5tKl2bx5M5s3b+bvv/9O92n+Pj7UqV+fBg0a0KxZM7p160aouuKyjcJRDlI4yh7GGNavX8+0adOYPXs20RcvxOjk6+tLo4QEGgF1nD9eXpTevz/9fvuYmJTrjVSrpn59EbHeFb6Tzpw5w5alS9l8551sNobNwBbgXDqzadCgAbfffju9e/emmi4bcE0UjnKQwtG1OXnyJBMnTmTSpEns2rXLNd3Pz4+2bdvSuXNnWrVqRcPTp/Hr0iXtDCIioF273CtYRCQnRESk3IbkIgewB9j8+utsSkpi6dKlrFmzxm0oQYsWLXjooYe4//77KVSoUO7XnMcpHOUghaOs2bZtGx9//DFff/2168yOAH9/brv9du677z46duzo/mFP53YfulS/iOQbGfiOO378OPPnz2fGjBksWrQIx8W2xYsXZ+DAgTz22GOUL1/eguLzJt0+RDzGvn37eOCBB6hXrx5ffPEF58+fpyEwGTgWH8+Mjh259dZb0/4VFBqacm0Quz3ld+dYIgUjEckPMvAdV6pUKfr06cP8u+4ixhjeAyqRcu+3UaNGUaVKFZ544gkOHTpkxRrIZejIkY4cXdaJEyd48803GTNmDAkJCQDc0aULQxcupLUx2JwNr3Y0SGOJRCQ/u9p33CVHmJKBn7y8+CA8nFXr1gEpwxIGDRrEiy++SOnSpXOx+LxF3Wo5SOHoCmJiOPfHH3y0fDnvjh9PXFwcAB07duTtt98mPC7OrY/dReOIRETSd8nYJCezbBnLHA5ee+01Vq1aBUCRIkV48cUXebJHDwJiYqB6df1RmYrCUQ5SOEpf0oQJTBo0iNeN4cjFaY0aNeKdd97hpptuSpmgcUQiIplzle9NYwxLlixh2LBhbNiwAUi579tbwH02G15ffKFLm1ykMUeSva5wA0VjDD988QV1Bg5k0MVgVBmYbrOxfs6c/4IRaByRiEhmXeV702azcdNNN/H777/zfx9/TAUgGugNNDOGlQMGXP7mt7o5bo5QOCoIJk1K+aulQ4eUfydNcj20YsUKWrRoQY8BA/gLKAl8AvwJ3GcMXnv2pJ1fv34pf/FERKT8q79oRESuLAPfm15eXvSuV4+dpBw1KgKsB9o6HNzSsydbtmxxf8IVvtvl2qhbLSiIc+fOcfbsWcqUKWN1adnvModz186ezSuffsrixYsBKBQQwDPnz/MsEJSqnbrLRERyUarv7GPAa8AXpAzittls3H///YwYMYLKPj4FYoiDMYaDBw9SunRpfH191a2WW6ZMmUKpUqUoW7YsN998MydPnrS6pMy52iHVXbvcPjxrgFuTk2l+660sXrwYb29vBg8ezN979jBi4kSC1F0mImKdVF1wpYGxdjvbR46kZ8+eGGP4+uuvqVmzJoMefZS/UgcjSLn90u7d6c83D3a//fHHH9SrV48KFSpQsWJFfv3119xbuCmAYmNjDWBWrlxpvLy8DOD6ue6668zp06etLjFjJk40xsvLGEj5d+LEtG0OHDAXbDYzA0yzVOvp5eVlHnzwQbNnz5407U1ERMq/IiJijXS+i9evX286derk+h63gbkNzGIwSWCM3Z7+d3dG9hWX4XA4jMPhyIYVypzt27ebEiVKuO2fS5QoYfbt22cAExsbm6PLL9Ddal27dmX+/PncddddvPLKK3Tt2pVDhw7RvXt3fvzxR7y8cubAWkxMDAsWLGDZsmX8+eef7Nmzh3PnzpGUlERQUBAlS5akXIkS1CxVilqNGlGzWTNq1qxJ5cqV8fHxcc7kiodUT548ya+//srs2bOZ8913xF28orUv0KtlS16YPJmaNWvmyPqJiEjOWblyJe+99x6//PKLa1o54N6bbqLzs8/SunXr/y7Ke5V9RVJSEvv37+evv/5i165d7IqK4q+tW9l17BiHjx0jPj4eLy8vSpYsSYUKFWjSpAmtW7fmlltuybFurX///ZcmTZqwY8cOmjRpwuzZs+ncuTPbt2/nhRde4O2339ap/DnBGY5sNhvGGLZv307t2rXZsGEDrVu35sKFC4wePZqnnnoq25ZpjGHevHl89v77LFi+PEvz8Pb2pkqVKtSsWZNK3t4Umz2boqTczycBOA7sbd2aP0+c4M8//3R7bvmyZRnQpQsDhwyhTKNG17YyIiJiuR07dvDpqFF8M2cO/5w545ru4+NDnTp1qFmzJlXsdgpPn04gEA+c4eK+okkT9sbGsm/fPhITEzO9bH8/P25v2ZLnn3+ehp07Z9cqAfDoo48yduxYQkJC2Lx5M6VKlWLatGn07t2bChUqcODAAYWjnOAMRwDh4eGsX7/e9di4ceMYPHgwPj4+rFmzhsaNG1/z8lavXs2zzz5LZGQkADagOdDpllsIf+QRqlatSnBwMHa7nbi//uJ4u3ZEG8NOUs4a+xP4y9+f8xcuZGq5tWvXpmPHjvTs2ZOWLVvm2JEwERGxTnx8PPPnz2fOnDksW7aMAwcOZOr5fn5+VK9Uieo7d1IDqA7UACp4eeG/bh1JpUtz4sQJdu3axdq1a/ll2jR2Hjniev7tjRrxwfffU6VKlWtel59++onbbrsNgEWLFrkuJXP+/HlKlCjhuq+nwlEOSB2OXnnlFUaMGOF6zBhDjx49mD17NjVq1GDDhg0ULlz46jONiUkZ/Jzqaqbnzp3jueeeY+zYsQAUAgYBjwJVIf0zCy5zJVXH0qUcrF6dv/76i507d3Lo0CFOrVrF6RUrsBuDr81G0Y4dqXzrrVSpUoWmTZtSsmTJLL0+IiKSNxlj2Lt3L9u2bWPnzp1ER0dzLiqKf1etwtcYithsFLv5ZirfcQeVK1emSpUqVKhQAa8VKzJ294OYGEzFimw0hg+Ab0gZEOTv58dLL7/M888//9/wj4vtL903Xs6RI0eoV68eJ06c4Omnn+aDDz5we7x79+7MnTsXyPlwVKAHZANmwYIFaR4/efKkCQ0NNYB5qGdPY5Ytu/IA5XQGu61atcpUq1bNtZx+3bqZg5DSJvVPRIT7vA4c+G9ezp/LDbJzttcAahERuZKr7Ssyuu9ZtsytzXYwN6YaNH399debnTt3prTNxEBwR3S06dK0qQFMgwYNzIULF9K0eeedd1zLyekB2QU+HB07dizdNsuXLzdeNpsBzPSrnA2W+g11Acwwm811FlxoaKhZsmRJ5kLPxIkpjznbZOLMAhERkSzJyL4nnX2Zw8vLTPvkE1O0aFEDmEKFCpmxb71lHDZbhvd5H1zc3/qD2Tp8eLrlrVy5UuEoJznDUfmyZS/f6MAB8+rFjRAEZlsGUvR6MPVSJeg+ffqYf/7557+2mQk9OiIkIiK5LSP7nsvsyw4cOGA6dOjg2gd2AXMgA70lc2w2Y7v4nM+uEKLOnj2ba+GoQI/QbXDkyOUvt75rF68ArYE4oC0Qld4FtqpX56zNxktAM2ALKbfgmDVhAl9++SVFixb9r21mbrsRGprSz6uLMIqISG7JyL7nMvuy0NBQFi9ezAcffICfnx8LgDrABFKu8I3dDtWquc1qzpQp3GsMhv/G5F7uYpaB33xD5WtewYwp2OEIYODA9K8YWr063l5ezAEaAyeAFsCrc+awZ88eLly4wPbt2xkxeTJVCxfmLVI2fk+bje2jR3PnI4+kv1CFHhERyesusy/z8vLi6aefJioqimZVqhAHDATqAZ/dcw/7k5OJj49n8+bN9OvXjztefZULwG3Ap6SczZ1eiCImBgYM4LqcXzOggJ+tNoeUDZJmNL7TpEkwcCCxycn0AuZdYZ5Vw8J49+GHufPhhxV8RESkwEtOTubTN97gjdGjORUXd9l2Q268kQ8iIvB2OP67ddWlPSsXz+R+F3gencqfI1w3roOUe4ld6UZ9MTGwezemalW+X7OGTz/9lDVr1pCYmIi/vz833HADvXv35t5773U/fVFERESIjY1lypQpzJgxg40bN5KUlERgYCA33ngjzz33HK1bt3bta6lWLf398cUrfcc5HASjcJQjXOHIy4ugCROuPPYnHQkJCfz7778EBQXpwooiIiIZ5Nx/FilSBLvzRucZNWkScQMGEOxwKBzlBFc42r6doNq1rS5HREREMiBuxw6Cr7sux8NRwT7sUb681RWIiIhIRuXSfrtghyMRERGRSygciYiIiKSicCQiIiKSisKRiIiISCoeEY7GjBlD5cqV8ff3Jzw8nF9//fWK7VesWEF4eDj+/v5UqVKFcePG5VKlIiIikt9ZHo5mzpzJU089xUsvvURUVBRt2rSha9euREdHp9t+7969dOvWjTZt2hAVFcWLL77IkCFDmDVrVi5XLiIiIvmR5dc5atasGY0bN2bs2LGuabVr1+b2229n1KhRado///zz/PTTT+zYscM1bdCgQWzevJnIyMgMLdN1naMcvk6CiIiIZJ/c2n9beuQoISGBDRs20KlTJ7fpnTp1YvXq1ek+JzIyMk37zp07s379ehITE3OsVhERESkYvK1c+IkTJ0hOTqZMmTJu08uUKcORI0fSfc6RI0fSbZ+UlMSJEycICQlJ85z4+Hji4+Ndv8fGxgIpCVRERETyBud+O6c7vSwNR042m83td2NMmmlXa5/edKdRo0YxfPjwNNMrVKiQ2VJFRETEYidPniQ4ODjH5m9pOCpZsiR2uz3NUaJjx46lOTrkVLZs2XTbe3t7U6JEiXSfM2zYMJ5++mnX76dPnyYsLIzo6OgcfXE9TVxcHBUqVODAgQMFaqyV1lvrXRBovbXeBUFsbCwVK1akePHiObocS8ORr68v4eHhLF68mDvuuMM1ffHixdx2223pPqdFixb8/PPPbtMWLVpEkyZN8PHxSfc5fn5++Pn5pZkeHBxcoN5UTkFBQVrvAkTrXbBovQuWgrreXl45O2Ta8lP5n376aSZOnMjkyZPZsWMHQ4cOJTo6mkGDBgEpR3369Onjaj9o0CD279/P008/zY4dO5g8eTKTJk3i2WeftWoVREREJB+xfMzRPffcw8mTJxkxYgSHDx+mbt26zJs3j7CwMAAOHz7sds2jypUrM2/ePIYOHcrnn39OuXLl+OSTT+jRo4dVqyAiIiL5iOXhCODRRx/l0UcfTfexqVOnppnWtm1bNm7cmOXl+fn58dprr6Xb1Zafab213gWB1lvrXRBovXN2vS2/CKSIiIiIJ7F8zJGIiIiIJ1E4EhEREUlF4UhEREQkFYUjERERkVTybTh68803admyJYUKFaJo0aIZeo4xhtdff51y5coREBBAu3bt2LZtm1ub+Ph4nnjiCUqWLElgYCC33norMTExObAGWfPPP//wwAMPEBwcTHBwMA888ACnT5++4nNsNlu6P++9956rTbt27dI8fu+99+bw2mRcVtb7wQcfTLNOzZs3d2uT37Z3YmIizz//PPXq1SMwMJBy5crRp08fDh065NbO07b3mDFjqFy5Mv7+/oSHh/Prr79esf2KFSsIDw/H39+fKlWqMG7cuDRtZs2axXXXXYefnx/XXXcds2fPzqnysywz6/3DDz9w0003UapUKYKCgmjRogULFy50azN16tR0P+sXLlzI6VXJlMys9/Lly9Ndpz///NOtXX7b3ul9f9lsNurUqeNq4+nbe+XKldxyyy2UK1cOm83GnDlzrvqcXPtsm3zq1VdfNR9++KF5+umnTXBwcIae8/bbb5siRYqYWbNmmS1btph77rnHhISEmLi4OFebQYMGmfLly5vFixebjRs3mvbt25sGDRqYpKSkHFqTzOnSpYupW7euWb16tVm9erWpW7eu6d69+xWfc/jwYbefyZMnG5vNZv7++29Xm7Zt25pHHnnErd3p06dzenUyLCvr3bdvX9OlSxe3dTp58qRbm/y2vU+fPm06duxoZs6caf78808TGRlpmjVrZsLDw93aedL2/uabb4yPj4/54osvzPbt282TTz5pAgMDzf79+9Ntv2fPHlOoUCHz5JNPmu3bt5svvvjC+Pj4mO+//97VZvXq1cZut5u33nrL7Nixw7z11lvG29vbrFmzJrdW66oyu95PPvmkeeedd8zvv/9u/vrrLzNs2DDj4+NjNm7c6GozZcoUExQUlOYz70kyu94REREGMDt37nRbp9Sf0fy4vU+fPu22vgcOHDDFixc3r732mquNp2/vefPmmZdeesnMmjXLAGb27NlXbJ+bn+18G46cpkyZkqFw5HA4TNmyZc3bb7/tmnbhwgUTHBxsxo0bZ4xJeTP6+PiYb775xtXm4MGDxsvLyyxYsCDba8+s7du3G8DtTRAZGWkA8+eff2Z4Prfddpvp0KGD27S2bduaJ598MrtKzVZZXe++ffua22677bKPF5Tt/fvvvxvA7UvYk7Z306ZNzaBBg9ym1apVy7zwwgvptv/f//5natWq5TZt4MCBpnnz5q7fe/bsabp06eLWpnPnzubee+/NpqqvXWbXOz3XXXedGT58uOv3jH4fWimz6+0MR//8889l51kQtvfs2bONzWYz+/btc03LC9vbKSPhKDc/2/m2Wy2z9u7dy5EjR+jUqZNrmp+fH23btmX16tUAbNiwgcTERLc25cqVo27duq42VoqMjCQ4OJhmzZq5pjVv3pzg4OAM13f06FHmzp1Lv3790jw2bdo0SpYsSZ06dXj22Wc5c+ZMttV+La5lvZcvX07p0qWpUaMGjzzyCMeOHXM9VhC2N6TcyNFms6XpfvaE7Z2QkMCGDRvctgFAp06dLruOkZGRadp37tyZ9evXk5iYeMU2nrBdIWvrfSmHw8GZM2fS3KDz7NmzhIWFERoaSvfu3YmKisq2uq/Vtax3o0aNCAkJ4cYbbyQiIsLtsYKwvSdNmkTHjh1dd5dw8uTtnVm5+dn2iCtke4IjR44AUKZMGbfpZcqUYf/+/a42vr6+FCtWLE0b5/OtdOTIEUqXLp1meunSpTNc35dffkmRIkW488473abff//9VK5cmbJly7J161aGDRvG5s2bWbx4cbbUfi2yut5du3bl7rvvJiwsjL179/LKK6/QoUMHNmzYgJ+fX4HY3hcuXOCFF16gV69ebjev9JTtfeLECZKTk9P9XF5uHY8cOZJu+6SkJE6cOEFISMhl23jCdoWsrfelPvjgA86dO0fPnj1d02rVqsXUqVOpV68ecXFxfPzxx7Rq1YrNmzdTvXr1bF2HrMjKeoeEhDBhwgTCw8OJj4/n//7v/7jxxhtZvnw5N9xwA3D590R+2d6HDx9m/vz5TJ8+3W26p2/vzMrNz3aeCkevv/46w4cPv2KbdevW0aRJkywvw2azuf1ujEkz7VIZaXMtMrrekLZ+yFx9kydP5v7778ff399t+iOPPOL6f926dalevTpNmjRh48aNNG7cOEPzzqycXu977rnH9f+6devSpEkTwsLCmDt3bppwmJn5Xqvc2t6JiYnce++9OBwOxowZ4/aYFdv7SjL7uUyv/aXTs/JZz21ZrXHGjBm8/vrr/Pjjj24Bunnz5m4nHbRq1YrGjRvz6aef8sknn2Rf4dcoM+tds2ZNatas6fq9RYsWHDhwgPfff98VjjI7T6tktcapU6dStGhRbr/9drfpeWV7Z0ZufbbzVDh6/PHHr3rGTKVKlbI077JlywIpyTQkJMQ1/dixY64UWrZsWRISEvjnn3/cjiYcO3aMli1bZmm5GZHR9f7jjz84evRomseOHz+eJkmn59dff2Xnzp3MnDnzqm0bN26Mj48Pu3btyrGdZW6tt1NISAhhYWHs2rULyN/bOzExkZ49e7J3716WLVvmdtQoPbmxvdNTsmRJ7HZ7mr/6Un8uL1W2bNl023t7e1OiRIkrtsnM+yUnZWW9nWbOnEm/fv347rvv6Nix4xXbenl5cf3117ve81a7lvVOrXnz5nz99deu3/Pz9jbGMHnyZB544AF8fX2v2NbTtndm5epnO1MjlPKgzA7Ifuedd1zT4uPj0x2QPXPmTFebQ4cOedwA3bVr17qmrVmzJsMDdPv27ZvmrKXL2bJliwHMihUrslxvdrnW9XY6ceKE8fPzM19++aUxJv9u74SEBHP77bebOnXqmGPHjmVoWVZu76ZNm5rBgwe7Tatdu/YVB2TXrl3bbdqgQYPSDNrs2rWrW5suXbp43ADdzKy3McZMnz7d+Pv7X3Vgq5PD4TBNmjQxDz300LWUmq2yst6X6tGjh2nfvr3r9/y6vY35b0D6li1brroMT9zeTmRwQHZufbbzbTjav3+/iYqKMsOHDzeFCxc2UVFRJioqypw5c8bVpmbNmuaHH35w/f7222+b4OBg88MPP5gtW7aY++67L91T+UNDQ82SJUvMxo0bTYcOHTzu1O769eubyMhIExkZaerVq5fm1O5L19sYY2JjY02hQoXM2LFj08xz9+7dZvjw4WbdunVm7969Zu7cuaZWrVqmUaNGeXa9z5w5Y5555hmzevVqs3fvXhMREWFatGhhypcvn6+3d2Jiorn11ltNaGio2bRpk9vpvfHx8cYYz9vezlOcJ02aZLZv326eeuopExgY6Dor54UXXjAPPPCAq73zdN+hQ4ea7du3m0mTJqU53XfVqlXGbrebt99+2+zYscO8/fbbHntqd0bXe/r06cbb29t8/vnnl70Ew+uvv24WLFhg/v77bxMVFWUeeugh4+3t7RawrZbZ9R49erSZPXu2+euvv8zWrVvNCy+8YAAza9YsV5v8uL2devfubZo1a5buPD19e585c8a1bwbMhx9+aKKiolxnzlr52c634ahv374GSPMTERHhagOYKVOmuH53OBzmtddeM2XLljV+fn7mhhtuSJPGz58/bx5//HFTvHhxExAQYLp3726io6Nzaa2u7uTJk+b+++83RYoUMUWKFDH3339/mlNcL11vY4wZP368CQgISPdaNtHR0eaGG24wxYsXN76+vqZq1apmyJAhaa4JZKXMrve///5rOnXqZEqVKmV8fHxMxYoVTd++fdNsy/y2vffu3Zvu5yL1Z8MTt/fnn39uwsLCjK+vr2ncuLHbEay+ffuatm3burVfvny5adSokfH19TWVKlVKN/R/9913pmbNmsbHx8fUqlXLbWfqKTKz3m3btk13u/bt29fV5qmnnjIVK1Y0vr6+plSpUqZTp05m9erVubhGGZOZ9X7nnXdM1apVjb+/vylWrJhp3bq1mTt3bpp55rftbUzK0e2AgAAzYcKEdOfn6dvbedTrcu9ZKz/bNmMujmYSERERkfx7+xARERGRrFA4EhEREUlF4UhEREQkFYUjERERkVQUjkRERERSUTgSERERSUXhSERERCQVhSMRERGRVBSORERERFJROBIRERFJReFIRPKVESNGUK9ePQIDAylTpgyDBw8mMTHR6rJEJA/xtroAEZHsYowhOTmZ8ePHU758ebZv306fPn2oX78+gwcPtro8EckjdONZEcnXevXqRalSpfj444+tLkVE8gh1q4lIvrF//34ef/xx6tatS7FixShcuDDffvstoaGhVpcmInmIwpGI5AsnTpygadOmnDhxgg8//JDffvuNyMhI7HY7DRs2tLo8EclDNOZIRPKFefPmkZSUxIwZM7DZbAB8/vnnJCQkKByJSKYoHIlIvlC8eHHi4uL46aefuO666/j5558ZNWoU5cuXp1SpUlaXJyJ5iAZki0i+YIxh8ODBTJ8+nYCAAHr37s2FCxfYv38/v/zyi9XliUgeonAkIiIikooGZIuIiIikonAkIiIikorCkYiIiEgqCkciIiIiqSgciYiIiKSicCQiIiKSisKRiIiISCoKRyIiIiKpKByJiIiIpKJwJCIiIpKKwpGIiIhIKgpHIiIiIqn8P+baDGxbv96VAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwnUlEQVR4nO3dd3gU1dvG8e+mh0BCD4FA6L0HaYIUkSbYUFSqClIsKJZXsYMoYsNKkwD6ExAbiNJLAKVJCUgTQUoInQAJIISU8/4Rds2SBJOQZDbJ/bmuXJDZszPP7Ozu3JlzZsZmjDGIiIiICABuVhcgIiIi4koUjkRERERSUDgSERERSUHhSERERCQFhSMRERGRFBSORERERFJQOBIRERFJQeFIREREJAWFIxEREZEUFI4kTzh69ChvvPEGW7duTfXYQw89ROHChbM87ytXrjBkyBCCgoJwd3enYcOGWS80G4wfP57p06enmn7w4EFsNluaj+UnNpuNN954w+oyssUbb7yBzWbL8ed++umnVK1aFS8vL2w2G+fOneOhhx6iYsWKTu3efvtt5s6dm6V6rufMmTM88MADlC5dGpvNxl133ZXpeVSsWJGHHnoo22tzNa+88grdunWjXLly2Gy2667zjBkzaNSoET4+PpQsWZJevXpx+PDh3Cu2AFM4kjzh6NGjjBw5Ms1wdKMmTJjApEmTePnll/ntt9/43//+l+3LyIz0wlFQUBDr1q3j9ttvz/2iJEsGDhzIunXrcnQZW7duZdiwYbRr144VK1awbt06ihQpwquvvsqcOXOc2uZUOHrzzTeZM2cO48aNY926dbz77rvZvoz8Yty4cURHR3PHHXfg5eWVbrtPP/2UPn360KRJE3766SfGjh3LypUrad26NWfPns3FigsmD6sLELHajh078PX15YknnrC6lOvy9vamefPmVpchmRAcHExwcHCOLmPnzp0APProozRt2tQxvUqVKjm63JR27NhBlSpV6N27d64tM7v8888/FCpUKNeWd/78edzcko9LpPeHWFxcHK+++irdu3fniy++cEyvXbs2LVu25P333+ett97KlXoLKh05KoBOnTrFoEGDKF++PN7e3pQqVYqbb76ZZcuWOdq0bduWunXrsm7dOlq2bImvry8VK1Zk2rRpAMyfP5/GjRtTqFAh6tWrx6JFi1It57fffuPWW2+lSJEiFCpUiJYtWzJ//vxU7Xbs2MGdd95JsWLF8PHxoWHDhnz55ZeOx1euXMlNN90EwMMPP4zNZkuz62Xfvn107dqVwoULU758eZ599lni4uKu+1rYbDamTJnCpUuXHPOdPn36dbuwrl22vftj586dPPjggwQEBBAYGMgjjzxCTEyM03OTkpL49NNPadiwIb6+vhQtWpTmzZszb948ILlrYefOnaxatcpRj71rJL2aMvI6T58+HZvNRnh4OEOHDqVkyZKUKFGCe+65h6NHj173NbqeihUr0q1bN+bMmUP9+vXx8fGhcuXKfPLJJ6naRkZG0qdPH0qXLo23tze1atXigw8+ICkpKd35Hzx4EA8PD8aMGZPqsdWrV2Oz2fjuu++AzG2Hy5cvM2LECCpVqoSXlxflypXj8ccf59y5c2mu3y+//EKjRo3w9fWlVq1a/PLLL0Dy61qrVi38/Pxo2rQpmzZtcnp+Wl1js2fPpmPHjgQFBTnm9+KLL3Lx4sX0X+h0tG3blj59+gDQrFkzp26aa7vVbDYbFy9e5Msvv3S8t9q2bXvd+Z85c4bHHnuMcuXK4eXlReXKlXn55Zcdnyv7e3LZsmXs3r3bMd+VK1emO8/4+Hj+7//+jzJlylCoUCFatWrF77//nmbb48ePM3jwYIKDg/Hy8qJSpUqMHDmShIQEp3ZRUVHce++9FClShKJFi9K7d282btyY6vNi74Lfvn07HTt2pEiRItx6661Acvf66NGjqVmzpuN78eGHH+bUqVOp6po9ezYtWrTAz8+PwoUL06lTJyIiIq77WtrZg9H17Nixg5iYGLp27eo0vUWLFhQvXpwffvghQ8uSG2CkwOnUqZMpVaqUmTx5slm5cqWZO3euee2118w333zjaNOmTRtTokQJU6NGDRMWFmYWL15sunXrZgAzcuRIU69ePTNr1iyzYMEC07x5c+Pt7W2OHDnieP7KlSuNp6enCQ0NNbNnzzZz5841HTt2NDabzWk5f/75pylSpIipUqWK+eqrr8z8+fPNgw8+aAAzduxYY4wxMTExZtq0aQYwr7zyilm3bp1Zt26dOXz4sDHGmP79+xsvLy9Tq1Yt8/7775tly5aZ1157zdhsNjNy5Mjrvhbr1q0zXbt2Nb6+vo75njx50hw4cMAAZtq0aameA5jXX3/d8fvrr79uAFOjRg3z2muvmaVLl5oPP/zQeHt7m4cfftjpuX379jU2m80MHDjQ/PTTT2bhwoXmrbfeMh9//LExxpgtW7aYypUrm0aNGjnq2bJlizHGpFlTRl9n++tXuXJl8+STT5rFixebKVOmmGLFipl27do51Whvm9a6XyskJMSUK1fOVKhQwUydOtUsWLDA9O7d2wDmvffec7Q7efKkKVeunClVqpSZOHGiWbRokXniiScMYIYOHXrd1/fuu+82FSpUMAkJCU7t7rvvPlO2bFkTHx+fqe2QlJRkOnXqZDw8PMyrr75qlixZYt5//33j5+dnGjVqZC5fvuy0fsHBwaZu3bqO93uzZs2Mp6enee2118zNN99sfvzxRzNnzhxTvXp1ExgYaP755x/H8+01pfTmm2+acePGmfnz55uVK1eaiRMnmkqVKqXaDmk991o7d+40r7zyimN7rVu3zuzbt88Yk/y5CAkJcbRdt26d8fX1NV27dnW8t3bu3JnuvC9dumTq169v/Pz8zPvvv2+WLFliXn31VePh4WG6du1qjDHm8uXLZt26daZRo0amcuXKjvnGxMSkO9/+/fsbm81mnn/+ebNkyRLz4YcfmnLlyhl/f3/Tv39/R7tjx46Z8uXLm5CQEDNp0iSzbNky8+abbxpvb2/z0EMPOdpduHDBVK1a1RQvXtx8/vnnZvHixWb48OGmUqVKqd7H/fv3N56enqZixYpmzJgxZvny5Wbx4sUmMTHRdO7c2fj5+ZmRI0eapUuXmilTpphy5cqZ2rVrO23Tt956y9hsNvPII4+YX375xfz444+mRYsWxs/P77qvZ1r8/Pyc1tlu7dq1BjBTp05N9VhQUJBxc3Mzly5dytSyJHMUjgqgwoULm6effvq6bdq0aWMAs2nTJse06Oho4+7ubnx9fZ2C0NatWw1gPvnkE8e05s2bm9KlS5vz5887piUkJJi6deua4OBgk5SUZIwx5oEHHjDe3t4mMjLSafldunQxhQoVMufOnTPGGLNx48Z0d9j9+/c3gPn222+dpnft2tXUqFHjP16N5Of7+fk5TctKOHr33Xed2j322GPGx8fHsa6rV682gHn55ZevW0+dOnVMmzZtUk1Pq6aMvs72wPPYY485zfPdd981gDl27Jhj2pdffmnc3d3Nl19+ed06jUkODzabzWzdutVp+m233Wb8/f3NxYsXjTHGvPjiiwYwGzZscGo3dOhQY7PZzJ49exzTrn19w8PDDWDmzJnjmHbkyBHj4eHhFH4zuh0WLVqUZrvZs2cbwEyePNlp/Xx9fU1UVJRjmv39HhQU5Fg/Y4yZO3euAcy8efNS1ZSepKQkEx8fb1atWmUAs23btgw/186+bTdu3Og0/dpwZEz6O+O0TJw4Mc3P1dixYw1glixZ4pjWpk0bU6dOnf+c5+7duw1ghg8f7jR9xowZBnCqbfDgwaZw4cLm0KFDTm3ff/99AziCyOeff24As3DhQqd2gwcPTjMcpRU6Zs2aZQDzww8/OE23f++MHz/eGGNMZGSk8fDwME8++aRTu/Pnz5syZcqYnj17/udrkFJ62yM6Otq4ubmZAQMGOE3ft2+fAQxgjh49mqllSeaoW60Aatq0KdOnT2f06NGsX7+e+Pj4NNsFBQURGhrq+L148eKULl2ahg0bUrZsWcf0WrVqAXDo0CEALl68yIYNG7j33nudziJzd3enb9++REVFsWfPHgBWrFjBrbfeSvny5Z2W/dBDD/HPP/9keDCrzWaje/fuTtPq16/vqCk33HHHHamWf/nyZU6ePAnAwoULAXj88cezZXmZeZ2vVyPg9Dr169ePhIQE+vXrl6E66tSpQ4MGDZym9erVi9jYWLZs2QIkb+fatWs7jYmB5O1sjGHFihXpzr9t27Y0aNCAzz//3DFt4sSJ2Gw2Bg0alKr9f20H+7KuPUvovvvuw8/Pj+XLlztNb9iwIeXKlXP8bn+/t23b1mmsyrWfg/Ts37+fXr16UaZMGdzd3fH09KRNmzYA7N69+7rPzU0rVqzAz8+Pe++912m6/XW79nXKiPDwcIBUY5N69uyJh4fzENhffvmFdu3aUbZsWRISEhw/Xbp0AWDVqlWOf4sUKULnzp2dnv/ggw+mW0ePHj1SLato0aJ0797daVkNGzakTJkyjm7CxYsXOz4bKdv5+PjQpk2b63YnZkbx4sXp3bs3X331FZMmTeLMmTP88ccf9O7dG3d3dyBj3XOSdRqQXQDNnj2b0aNHM2XKFF599VUKFy7M3XffzbvvvkuZMmUc7YoXL57quV5eXqmm28+4uHz5MgBnz57FGENQUFCq59tDVXR0tOPfjLT7L4UKFcLHx8dpmre3t6Om3FCiRIlUywe4dOkSkDzWy93d3ek1vhGZeZ0zWmNWpLU+9mkpt/O1p5Vfr85rDRs2jIEDB7Jnzx4qV67MF198wb333pvmsv9rHaOjo/Hw8KBUqVJO7Ww2G2XKlElVS3rv9//6HKTlwoULtG7dGh8fH0aPHk316tUpVKgQhw8f5p577rmh7ZDdoqOjKVOmTKoxU6VLl8bDwyPDn81r5wmp3zMeHh6pttuJEyf4+eef8fT0THNep0+fdswzMDAw1eNpTYPk7wp/f/9Uyzp37ly6Z4/Zl3XixAkAxxjIa2VnYJkwYQLGGB577DGGDBmCm5sbffv2JTAwkMWLF6d6vSR7KRwVQCVLluSjjz7io48+IjIyknnz5vHiiy9y8uTJNAdWZ1axYsVwc3Pj2LFjqR6zD/4tWbIkkLwjy0i73GYPWtcO6M7KDsGuVKlSJCYmcvz48TQDTWZl5nXOScePH093mv0L/Ea3c69evXjhhRf4/PPPad68OcePH8/yEbgSJUqQkJDAqVOnnAKSMYbjx4+nu+PLDitWrODo0aOsXLnScbQISDUQ3BWUKFGCDRs2YIxxCkgnT54kISEhS+8t+/vh+PHjTkfjEhISUn22SpYsSf369dM9K8serEuUKJHmgO603pdAmteOsp+gkN73X5EiRRztAL7//ntCQkLSbJtd/Pz8+N///scnn3zC4cOHKVu2LCVLlqRmzZq0bNky1ZE2yV46LlfAVahQgSeeeILbbrvN0QVyo/z8/GjWrBk//vij01/CSUlJfP311wQHB1O9enUAbr31VscOI6WvvvqKQoUKOU5dz44jHJkRGBiIj48Pf/zxh9P0n376KcvztHcHTJgw4brtvL29M7SemXmdc9LOnTvZtm2b07SZM2dSpEgRGjduDCRv5127dqV6j3311VfYbDbatWt33WX4+PgwaNAgvvzySz788EMaNmzIzTffnKV67Wcnff31107Tf/jhBy5evOh4PCfYd8z297PdpEmTcmyZKWX0vQXJr9OFCxdSXRfpq6++cjyeWfaz42bMmOE0/dtvv011Blq3bt0clwho0qRJqh97OGrTpg3nz593dFvbffPNNxmuq1u3bkRHR5OYmJjmsmrUqAFAp06d8PDw4O+//06zXZMmTTL7kvynYsWKUb9+fUqWLMm8efPYs2cPTz31VLYvR5wpehYwMTExtGvXjl69elGzZk2KFCnCxo0bWbRoEffcc0+2LWfMmDHcdttttGvXjueeew4vLy/Gjx/Pjh07mDVrlmMn8frrrzvGFrz22msUL16cGTNmMH/+fN59910CAgKA5Gu2+Pr6MmPGDGrVqkXhwoUpW7as09in7GSz2ejTpw9Tp06lSpUqNGjQgN9//52ZM2dmeZ6tW7emb9++jB49mhMnTtCtWze8vb2JiIigUKFCPPnkkwDUq1ePb775htmzZ1O5cmV8fHyoV69emvPM6OucGV999RWPPPIIU6dOzdC4o7Jly3LHHXfwxhtvEBQUxNdff83SpUsZO3asY0zO8OHD+eqrr7j99tsZNWoUISEhzJ8/n/HjxzN06NAMhbjHHnuMd999l82bNzNlypRMr5fdbbfdRqdOnXjhhReIjY3l5ptv5o8//uD111+nUaNG9O3bN8vz/i8tW7akWLFiDBkyhNdffx1PT09mzJiRKlzmlHr16rFy5Up+/vlngoKCKFKkiGPHf61+/frx+eef079/fw4ePEi9evX47bffePvtt+natSsdOnTI9PJr1apFnz59+Oijj/D09KRDhw7s2LGD999/P1VX16hRo1i6dCktW7Zk2LBh1KhRg8uXL3Pw4EEWLFjAxIkTCQ4Opn///owbN44+ffowevRoqlatysKFC1m8eDGQsa6uBx54gBkzZtC1a1eeeuopmjZtiqenJ1FRUYSHh3PnnXdy9913U7FiRUaNGsXLL7/M/v376dy5M8WKFePEiRP8/vvv+Pn5MXLkyOsua9WqVY7LAyQmJnLo0CG+//57IDno2Y9m/vDDDxw9epRatWpx+fJlVq5cyccff8yQIUO48847M/3aSyZZORpcct/ly5fNkCFDTP369Y2/v7/x9fU1NWrUMK+//rrTmTfpnX0SEhJibr/99lTTAfP44487Tfv1119N+/btjZ+fn/H19TXNmzc3P//8c6rnbt++3XTv3t0EBAQYLy8v06BBgzTPEps1a5apWbOm8fT0dDqjKa2zzYzJ+Nk+6T0/JibGDBw40AQGBho/Pz/TvXt3c/DgwXTPVjt16pTT8+1nER04cMAxLTEx0YwbN87UrVvXeHl5mYCAANOiRQun1+XgwYOmY8eOpkiRIgZwnHGU3hl0GXmd0zujyX4mWHh4eKq2GT2V//bbbzfff/+9qVOnjvHy8jIVK1Y0H374Yaq2hw4dMr169TIlSpQwnp6epkaNGua9994ziYmJTu2ufX1Tatu2rSlevLjTqdV2mdkOly5dMi+88IIJCQkxnp6eJigoyAwdOtScPXs2zfW7Vlrvd/v2SXkJg7Teg2vXrjUtWrQwhQoVMqVKlTIDBw40W7ZsSfWa58TZalu3bjU333yzKVSokAHSPCsypejoaDNkyBATFBRkPDw8TEhIiBkxYoTT5Q6MyfjZasYYExcXZ5599llTunRp4+PjY5o3b27WrVtnQkJCUp25derUKTNs2DBTqVIl4+npaYoXL25CQ0PNyy+/bC5cuOBoFxkZae655x5TuHBhU6RIEdOjRw+zYMECA5iffvrJ6TVJ67NujDHx8fHm/fffNw0aNDA+Pj6mcOHCpmbNmmbw4MFm7969Tm3nzp1r2rVrZ/z9/Y23t7cJCQkx9957r1m2bNl/rr/9TOC0flJ+DufMmWMaNmzo+Fw3adLEhIWFOc66lJxlM8aY3IlhIpLfVKxYkbp16zouipiTTp48SUhICE8++aRuTyH/6e233+aVV14hMjIyx69SLvmPutVExKVFRUWxf/9+3nvvPdzc3DTeQlL57LPPAKhZsybx8fGsWLGCTz75hD59+igYSZYoHImIS5syZQqjRo2iYsWKzJgxw+ksJxFIPj1/3LhxHDx4kLi4OCpUqMALL7zAK6+8YnVpkkepW01EREQkBctP5V+9ejXdu3enbNmy2Gy2VKeNpmXVqlWEhoY6bnI5ceLEnC9URERECgTLw9HFixdp0KCBo8/4vxw4cICuXbvSunVrIiIieOmllxg2bJjuUiwiIiLZwqW61Ww2G3PmzOGuu+5Kt80LL7zAvHnznO5BNGTIELZt25bh+3CJiIiIpCfPDchet24dHTt2dJrWqVMnwsLCiI+PT/M+PHFxcU63gUhKSuLMmTOUKFEiSxfJExERkdxnjOH8+fOULVs2R2++m+fC0fHjx1PdUDAwMJCEhAROnz6d5j2rxowZ859XLRUREZG84fDhwzl6mYY8F44g9Y0D7T2D6R0FGjFiBM8884zj95iYGCpUqMDhw4dTXbJeRPKQI0fg77+hShW43in+GW0nIi4tNjaW8uXLO24GnFPyXDgqU6ZMqrstnzx5Eg8PD8cdn6/l7e2d6kaPAP7+/gpHInlVWBgMGgRJSeDmBpMnw4ABWW8nInlGTg+Jsfxstcxq0aIFS5cudZq2ZMkSmjRpkuZ4IxHJh6Ki/g08kPzv4MHJ07PSTkQkBcvD0YULF9i6dStbt24Fkk/V37p1K5GRkUByl1jKO4MPGTKEQ4cO8cwzz7B7926mTp1KWFgYzz33nBXli4gV9u79N/DYJSbCvn1ZaycikoLl3WqbNm2iXbt2jt/tY4P69+/P9OnTOXbsmCMoAVSqVIkFCxYwfPhwPv/8c8qWLcsnn3xCjx49cr12EbFItWrJXWQpg4+7O1StmrV2IiIpuNR1jnJLbGwsAQEBxMTEaMyRSF4VFpbcRZaYmBx4Jk1iR7NmrFixgujoaIKDg+nSpQvBixenaqcxRyJ5U27tvy0/ciQikiUDBkCnTrBvH3vd3Xls1CiWDRzo1MTNzY1+/frx3pYtlDxzJvmIke7SLiL/wfIxRyIiWRYczMJLl2jUpQvLli3Dw8ODLl26MHjwYG6++WaSkpKYPn06Te64g52lSikYiUiG6MiRiORZS5Ys4c477yQ+Pp42bdowbdo0KlWq5Hh8/fr19OnTh7///pv27duzevVqatSoYWHFIpIX6MiRiORJe/bsoWfPnsTHx9OzZ0+WLl3qFIwAmjdvzoYNG2jYsCEnT57kzjvv5MKFCxZVLCJ5hcKRiOQ5cXFx9OjRg5iYGFq2bMlXX32V7nXOSpQoweLFiylXrhx79uxh0KBBFMDzUEQkExSORCTPGT16NDt37qR06dL8+OOPaV4BP6XSpUvz7bff4uHhwaxZs/jxxx9zqVIRyYsUjkQkT9m+fTvvvPMOAJ9//nmqG1Gnp2XLlowYMQKAp556ivPnz+dYjSKStykciUie8n//938kJCRw1113ce+992bquSNGjKBy5cocOXKE0aNH51CFIpLXKRyJSJ6xYsUKFi1ahIeHB++9916mn+/r68tHH30EwKeffsqxY8eyuUIRyQ8UjkQkTzDG8NJLLwHJ91ismsVbgHTr1o0WLVpw6dIlxowZk50likg+oXAkInnCypUr2bBhAz4+PrzyyitZno/NZuPNN98EYNKkSRw9ejS7ShSRfELhSETyhLFjxwIwYMCADA/CTk/79u1p1aoVV65c4bPPPsuO8kQkH1E4EhGXt23bNhYvXoy7uzvPPvvsDc/PZrM55jNx4kQuXrx4w/MUkfxD4UhEXN748eMB6NGjR6qrYGdV9+7dqVKlCmfPnmX69OnZMk8RyR8UjkTEpZ0/f56ZM2cCMHTo0Gybr7u7O0899RSQPPZIV80WETuFIxFxaTNnzuTChQvUqFGDNm3aZOu8+/bti4+PD9u3b2fTpk3ZOm8RybsUjkTEZRljmDhxIgCDBg3CZrNl6/yLFi1Kjx49AJgyZUq2zltE8i6FIxFxWZs2bWLr1q14e3vTv3//HFnGwIEDAZg1a5YGZosIoHAkIi5sxowZANx9992UKFEiR5bRpk0bqlSpwvnz5/nuu+9yZBkikrcoHImIS0pMTOSbb74BoHfv3jm2HJvNxiOPPALA119/nWPLEZG8Q+FIRFxSeHg4J06coHjx4nTs2DFHl/XAAw84LVNECjaFIxFxSfbT9++77z68vLxydFmVK1fmpptuIikpiR9++CFHlyUirk/hSERczuV9+/jh228B6NWrV64s8/777wfgmy+/hPBwiIrKleWKiOtROBIR1xIWxuLq1Ym9eJFgoNWePbmy2J49ewLw2++/c6R9ewgJgbCwXFm2iLgWhSMRcR1RUTBoEHOvXq26B+A2dGiuHMUpb7PREjDAdwBJSTB4sI4giRRACkci4jr27iUhKYmfr/56F0BiIuzblyvL7nn1v3Pt03Jr2SLiUhSORMR1VKvGGpuNaKA40ArA3R2qVs2VZd959QrcvwHRublsEXEpCkci4jqCg5l7660AdAc83N1h0iQIDs6VZVf84gvqA4nAQpst95YtIi5F4UhEXIYxhjl79wJw95tvwsGDMGBA7hUwYAB3DBsGwE9du+buskXEZSgciYjL+OOPPzh06BC+vr7c9swzlhy1uaNPHwAWrVpFXFxcri9fRKyncCQiLmPBggUAdOjQgUKFCllSQ2hoKEFBQVy4cIGVK1daUoOIWEvhSERcxqJFiwDo0qWLZTW4ubnRvXt3AH7++ef/aC0i+ZHCkYi4hJiYGNauXQtAp06dLK2la9euACxevNjSOkTEGgpHIuISli9fTkJCAtWrV6dy5cqW1tKuXTs8PDzYt28f+/fvt7QWEcl9Ckci4hJcoUvNzt/fnxYtWgCwZMkSi6sRkdymcCQiljPGOMJR586dLa4mmb1rT11rIgWPwpGIWG737t0cPnwYHx8f2rRpY3U5wL/haPny5cTHx1tcjYjkJoUjEbHcwoULAWjTpg2+vr4WV5OsUaNGlChRgvPnz7N+/XqryxGRXKRwJCKWs3dduUqXGoC7uzu33XYboHFHIgWNwpGIWCouLo7ffvsNwBFGXIXGHYkUTApHImKpDRs2cOnSJUqXLk3t2rWtLsdJx44dAdi0aRNnzpyxuBoRyS0KRyJiqRUrVgDQvn17bDabxdU4K1u2LLVq1cIYw+rVq60uR0RyicKRiFgqZThyRW3btgUgPDzc2kJEJNcoHImIZf755x/HmWDt2rWzuJq02etSOBIpOBSORMQya9asIT4+nvLly1OlShWry0mT/bpL27dv5/Tp0xZXIyK5QeFIRCzjyuON7EqXLk2dOnUAWLVqlcXViEhuUDgSEcvYu6pctUvNzl7fypUrrS1ERHKFwpGIWCImJoaNGzcCrh+ONChbpGBROBIRS6xZs4akpCSqVKlChQoVrC7nuuzjjnbu3MnJkyctrkZEcprCkYhY4tdffwXglltusbiS/1ayZEnq1asHaNyRSEGgcCQilrDfMqR169YWV5IxGnckUnAoHIlIrrt8+TK///47AK1atbK4moyxh7g1a9ZYXImI5DSFIxHJdZs2beLKlSsEBgZStWpVq8vJkJtvvhmAP/74g5iYGIurEZGcpHAkIrnOPt6odevWLnt9o2sFBQVRpUoVjDGsW7fO6nJEJAcpHIlIrrOHo7zSpWZnr1ddayL5m8KRiOSqxMRE1q5dC+Sdwdh29nBkH0wuIvmTwpGI5KodO3YQExNDkSJFqF+/vtXlZIo9HG3YsIErV65YXI2I5BSFIxHJVfajLi1atMDDw8PiajKnRo0alChRgkuXLhEREWF1OSKSQxSORCRXpRyMndfYbDZ1rYkUAApHIpJrjDF5OhyBxh2JFAQKRyKSaw4ePMjRo0fx9PSkadOmVpeTJSnDkTHG4mpEJCcoHIlIrrGfpda4cWN8fX0triZrGjdujI+PD6dPn+avv/6yuhwRyQEKRyKSa9avXw8kD8bOq7y8vBxHvexdhCKSv7hEOBo/fjyVKlXCx8eH0NDQ//zCmTFjBg0aNKBQoUIEBQXx8MMPEx0dnUvVikhW5YdwBP/eSkRXyhbJnywPR7Nnz+bpp5/m5ZdfJiIigtatW9OlSxciIyPTbP/bb7/Rr18/BgwYwM6dO/nuu+/YuHEjAwcOzOXKRSQzLl26xNatWwFo3ry5tcXcIHu4s4c9EclfLA9HH374IQMGDGDgwIHUqlWLjz76iPLlyzNhwoQ0269fv56KFSsybNgwKlWqRKtWrRg8eDCbNm3K5cpFJDM2b95MQkICQUFBlC9f3upybkizZs0A2LVrF+fOnbO2GBHJdpaGoytXrrB582Y6duzoNL1jx46OgZvXatmyJVFRUSxYsABjDCdOnOD777/n9ttvT3c5cXFxxMbGOv2ISO5ydKlVrYrtyBGLq7kxpUuXpnKFCgBsXLDA4mpEJLtZGo5Onz5NYmIigYGBTtMDAwM5fvx4ms9p2bIlM2bM4P7778fLy4syZcpQtGhRPv3003SXM2bMGAICAhw/ef2vVpG8aN2sWQA0//VXCAmBsDCLK7oBYWE0v9r1v75Pn7y9LiKSiuXdapB81dmUjDGpptnt2rWLYcOG8dprr7F582YWLVrEgQMHGDJkSLrzHzFiBDExMY6fw4cPZ2v9InJ95vBh1m3ZAkBzgKQkGDwYoqIsrStLoqJg0CDso6bWG5N310VE0mTpjY1KliyJu7t7qqNEJ0+eTHU0yW7MmDHcfPPNPP/88wDUr18fPz8/WrduzejRowkKCkr1HG9vb7y9vbN/BUQkQw6vWcMxkr9wQu0TExNh3z4IDrausKzYuxeSkv4NR4BJTMSWF9dFRNJk6ZEjLy8vQkNDWbp0qdP0pUuX0rJlyzSf888//+Dm5ly2u7s7gK5WK+Ki1p89C0ADoJB9ors7VK1qVUlZV60auLnRAPABzgD73Nzy5rqISJos71Z75plnmDJlClOnTmX37t0MHz6cyMhIRzfZiBEj6Nevn6N99+7d+fHHH5kwYQL79+9nzZo1DBs2jKZNm1K2bFmrVkNErmP93r0ANLd3l7u7w6RJefNIS3AwTJ6Ml7u74yjY+ocfzpvrIiJpsrRbDeD+++8nOjqaUaNGcezYMerWrcuCBQsICQkB4NixY07XPHrooYc4f/48n332Gc8++yxFixalffv2jB071qpVEJH/YL9YYouPP4Z69ZKPsuTlMDFgAHTqRPNnn2XNt9+y3tubvlbXJCLZxmYKYF9UbGwsAQEBxMTE4O/vb3U5IvlaXFwc/v7+XLlyhX379lGlShWrS8o233//Pffddx+NGzdm8+bNVpcjku/l1v7b8m41Ecnftm7dypUrVyhZsiSVK1e2upxsZb/S97Zt2/jnn38srkZEsovCkYjkKEeXWosW6V6iI68KDg6mXLlyJCYm6ir9IvmIwpGI5Cj7lbHz+v3U0mNfL91nTST/UDgSkRylcCQieY3CkYjkmGPHjnHo0CHc3Ny46aabrC4nR9jD0bp163StNZF8QuFIRHLM77//DkCdOnUoUqSIxdXkjNDQUMeV/o/k8RvqikgyhSMRyTEbN24EyLdHjQB8fX2pV68e8G8YFJG8TeFIRHKMPSzk53AE/66fPQyKSN6mcCQiOcIY4zi9vWnTphZXk7MUjkTyF4UjEckRf//9N2fPnsXb29vR7ZRf2cPfxo0bSUpKsrgaEblRCkcikiPsR1EaNmyIp6enxdXkrDp16uDr60tsbCx7r95kV0TyLoUjEckRBWEwtp2HhweNGjUC1LUmkh8oHIlIjihI4Qj+XU+dsSaS9ykciUi2S0hIYMuWLUDBCUcpxx2JSN6mcCQi2W737t38888/FClShBo1alhdTq6wh8CIiAiuXLlicTUiciMUjkQk29m7lkJDQ3FzKxhfM1WrVqVo0aLExcWxY8cOq8sRkRtQML61RCRXFbTxRgA2m03XOxLJJxSORCTb2cNBfr/447U0KFskf1A4EpFsdfnyZf744w+gYB05Al0pWyS/UDgSkWy1bds2EhISKFWqFBUqVLC6nFxlP1K2c+dOLl68aHE1IpJVCkcikq1Sjjey2WwWV5O7ypYtS9myZUlKSnJcykBE8h6FIxHJVgVxMHZK6loTyfsUjkQkWxX0cKSLQYrkfQpHIpJtYmNj+fPPP4GCG450xppI3qdwJCLZZvPmzRhjqFChAqVLl7a6HEs0adIEgP379xMdHW1xNSKSFQpHIpJtCur1jVIqVqwY1apVA9S1JpJXKRyJSLYp6OON7DQoWyRvUzgSkWyjcJRM4Ugkb1M4EpFscerUKQ4dOoTNZiM0NNTqcixl71b8/fffMcZYXI2IZJbCkYhkC/tRkho1auDv729xNdZq2LAh7u7unDhxgqioKKvLEZFMUjgSkWyhLrV/FSpUiLp16wLqWhPJixSORCRb2K/ro3CUTOOORPIuhSMRuWHGGB05uobCkUjepXAkIjcsMjKSU6dO4eHhQcOGDa0uxyXYw9GmTZtISkqyuBoRyQyFIxG5YfajI/Xr18fHx8fialxD3bp18fHxISYmhn379lldjohkgsKRiNwwdaml5unp6TiKpq41kbxF4UhEbpjCUdo07kgkb1I4EpEbkpSUxObNmwGFo2spHInkTQpHInJD/vrrL2JjY/H19aV27dpWl+NS7OEoIiKChIQEi6sRkYxSOBKRG7Jp0yYAGjVqhIeHh8XVuJbq1avj7+/PpUuX2Llzp9XliEgGKRyJyA3ReKP0ubm5Oe4zp641kbxD4UhEbogjHPn5ge4jlspNNWsCsHHlSmsLEZEMUzgSkSyLj48n4mq3WpO334aQEAgLs7gqFxIWxk0TJwKwccYMvTYieYTCkYhk2a7wcC7Hx+MPVANISoLBg3UECZJfg0GDuMkYALYDlwcN0msjkgcoHIlIlm1csgSAJqT4MklMBF0RGvbuhaQkKgClgARga1KSXhuRPEDhSESybOPx4wA4DcV2d4eqVS2px6VUqwZubtj49/XZaLPptRHJAxSORCTLNu7aBUATt6tfJe7uMGkSBAdbWJWLCA6GyZPB3f3fcNS8uV4bkTxA4UhEsuTy5cts374dgJvWrIHwcDh4EAYMsLYwVzJgABw8yE1vvw3AxrNnLS5IRDJC4UhEsmTbtm0kJCRQqlQpKjRrBm3b6qhIWoKDuelqYNyzZw+xsbEWFyQi/0XhSESyJOXFH202m8XVuLbSpUtToUIFjDGO+9CJiOtSOBKRLLGHoyZNmlhcSd6gm9CK5B0KRyKSJfZ7qum2IRmjcCSSdygciUimnT9/nt27dwMKRxmlcCSSdygciUimbdmyBWMM5cuXJzAw0Opy8gT7DWgPHTrEqVOnLK5GRK5H4UhEMk3jjTIvICCAGjVqADp6JOLqFI5EJNNSnqkmGde0aVNA4UjE1SkciUimaTB21mjckUjeoHAkIpkSHR3N/v37gX/H0UjGpAxHxhiLqxGR9CgciUim2I8aVa1alWLFillcTd7SsGFDPDw8OHnyJIcPH7a6HBFJh8KRiGSKxhtlnY+PD/Xq1QPUtSbiyhSORCRTNN7oxmjckYjrUzgSkUzRkaMbo3Ak4voUjkQkw44ePcrRo0dxc3OjUaNGVpeTJ9nD0aZNm0hKSrK4GhFJi0uEo/Hjx1OpUiV8fHwIDQ3l119/vW77uLg4Xn75ZUJCQvD29qZKlSpMnTo1l6oVKbjsRztq166Nn5+fxdXkTXXq1MHX15fY2Fj27t1rdTkikgbLw9Hs2bN5+umnefnll4mIiKB169Z06dKFyMjIdJ/Ts2dPli9fTlhYGHv27GHWrFnUrFkzF6sWKZg03ujGeXh4OI66qWtNxDVZHo4+/PBDBgwYwMCBA6lVqxYfffQR5cuXZ8KECWm2X7RoEatWrWLBggV06NCBihUr0rRpU1q2bJnLlYsUPBpvlD007kjEtVkajq5cucLmzZvp2LGj0/SOHTuydu3aNJ8zb948mjRpwrvvvku5cuWoXr06zz33HJcuXUp3OXFxccTGxjr9iEjmGGMUjrKJwpGIa/OwcuGnT58mMTEx1V29AwMDOX78eJrP2b9/P7/99hs+Pj7MmTOH06dP89hjj3HmzJl0xx2NGTOGkSNHZnv9IgXJgQMHOHPmDJ6eno5r9UjW2MNRREQE8fHxeHp6WlyRiKRkebcagM1mc/rdGJNqml1SUhI2m40ZM2bQtGlTunbtyocffsj06dPTPXo0YsQIYmJiHD+6Mq1I5m3YsAGARo0a4e3tbXE1eVvVqlUJCAjg8uXL7Ny50+pyROQaloajkiVL4u7unuoo0cmTJ1MdTbILCgqiXLlyBAQEOKbVqlULYwxRUVFpPsfb2xt/f3+nHxHJHHs4atasmcWV5H1ubm40adIEUNeaiCuyNBx5eXkRGhrK0qVLnaYvXbo03QHWN998M0ePHuXChQuOaX/99Rdubm4EBwfnaL0iBZnCUfbSuCMR12V5t9ozzzzDlClTmDp1Krt372b48OFERkYyZMgQILlLrF+/fo72vXr1okSJEjz88MPs2rWL1atX8/zzz/PII4/g6+tr1WqI5GtXrlwhIiICUDjKLgpHIq7L0gHZAPfffz/R0dGMGjWKY8eOUbduXRYsWEBISAgAx44dc7rmUeHChVm6dClPPvkkTZo0oUSJEvTs2ZPRo0dbtQoi+d62bduIi4ujRIkSVKlSxepy8gV7ONq+fTuXLl3SH3ciLsRmjDFWF5HbYmNjCQgIICYmRuOPRDLgs88+48knn6RLly4sWLDA6nLyBWMMQUFBnDhxgrVr19KiRQurSxJxebm1/7a8W01EXJ/GG2U/m82mrjURF6VwJCL/SeEoZygcibgmhSMRua4zZ844bpDatGlTi6vJX+zh6Pfff7e4EhFJSeFIRK7LvuOuVq0axYsXt7ia/MUeNv/66y/OnDljcTUiYqdwJCLXpS61nFOiRAmqV68O/Ps6i4j1FI5E5LoUjnJW8+bNAVi/fr3FlYiIncKRiKTLGOPoVlM4yhn2U/jXrVtncSUiYqdwJCLp+vvvv4mOjsbb25sGDRpYXU6+ZD9ytGHDBpKSkiyuRkRA4UhErsPepdaoUSO8vLwsriZ/qlu3Ln5+fsTGxrJ7926ryxERFI5E5Do03ijneXh4OE7pV9eaiGtQOBKRdCkc5Q77uCMNyhZxDQpHIpKmuLg4tm7dCkCzChWsLSafs487WrdsGURFWVyNiCgciUiatowcyZUrVygFVGrdGsLCrC4p32r+998A7Dp0iHMVKui1FrGYwpGIpBYVxZp33gGgJWAzBgYP1lGNnBAVRennnqPy1V9/12stYjmFIxFJbe9e1hoDwM32aYmJsG+fZSXlW3v3QlISLa7+uh70WotYTOFIRFIxVauy9ur/W9onurtD1aoWVZSPVasGbm40v/rrOtBrLWIxhSMRSeVAfDwnAE8gFJJ31pMmQXCwtYXlR8HBMHkyLdySv443AEkTJui1FrGQwpGIpLJ2bfJxo9DGjfEJD4eDB2HAAGuLys8GDKD+vn34eHlxFvirdWurKxIp0BSORCQVezhq2bYttG2roxi5wLNSJZo0bQroekciVlM4EpFUHOGoZcv/aCnZSTehFXENCkci4iQ2Npbt27cDCke5zXExSIUjEUspHImIE/vd4StVqkRQUJDV5RQo9jC6Y8cOzp07Z20xIgWYwpGIOFGXmnXKlClD1apVMcY4toOI5D6FIxFxonBkrdZXz1T77bffLK5EpOBSOBIRh8TERMeZUgpH1mjVqhWgcCRiJYUjEXHYtWsXsbGxFC5cmLp161pdToFkD0e///47cXFxFlcjUjDdUDg6efIkx48fz65aRMRi9i615s2b4+HhYXE1BVO1atUoXbo0cXFxbNq0yepyRAqkLIWjP/74gzp16hAUFES5cuUoV64cr7zyChcvXszu+kQkF9m7ctSlZh2bzaauNRGLZSkcDRgwgMDAQH777TciIiIYPXo0CxcupEmTJpw9eza7axSRXLJ69WoAbrnlFosrKdjs4ejXX3+1uBKRgslmjDGZfZKfnx+bN2+mZs2ajmnGGO677z58fHz4+uuvs7XI7BYbG0tAQAAxMTH4+/tbXY6ISzh06BAVK1bEw8ODc+fO4efnZ3VJBdamTZu46aabKFq0KNHR0bi5aXioCOTe/jtLn7i0jhDZbDbefvttfvrpp2wpTERyl/2oUWhoqIKRxRo2bIifnx/nzp1j165dVpcjUuBkOBzdfvvtvPTSS3z77bcMGTKE4cOHc+LECac2MTExFCtWLNuLFJGcpy411+Hh4eG4z5q61kRyX4ZPR6lXrx5btmxh2rRpjlBUuXJlevbsScOGDUlMTGTatGmMGzcux4oVkZyjcORaWrVqxbJly/jtt98YOnSo1eWIFChZGnN04sQJIiIi2Lp1q+Nn3759uLu7U6NGDf7444+cqDXbaMyRiLPjx48TFBSEzWYjOjpaR4BdwPLly+nQoQMVKlTg0KFDVpcj4hJya/+dpQuZBAYG0rlzZzp37uyYdunSJbZt28a2bduyrTgRyR32rpv69esrGLmI5s2b4+7uTmRkJJGRkVSoUMHqkkQKjGw7BcLX15fmzZszePDg7JqliOQSdam5Hj8/Pxo3bgz8u31EJHfo/FARUThyUW3atAFg5cqV1hYiUsAoHIkUcGfOnGH79u3Av3eEF9fQrl07AMLDwy2uRKRgUTgSKeDWrFmDMYbq1asTGBhodTmSQuvWrXF3d2f//v1ERkZaXY5IgaFwJFLArVq1ClCXmisqUqQITZo0AXT0SCQ3KRyJFHArVqwA/u3CEdeirjWR3KdwJFKARUdHs3XrVgDat29vbTGSppThKAuXpRORLFA4EinAVq5ciTGG2rVrU6ZMGavLkTS0bNkSDw8PIiMjOXjwoNXliBQICkciBdjy5csBuPXWWy2uRNJTuHBhmjZtCqhrTSS3KByJFGD28UbqUnNtGnckkrsUjkQKqCNHjrBnzx7c3Nxo27at1eXIdWjckUjuUjgSKaDsR40aN25M0aJFrS1Grqtly5Z4eXlx5MgR9u3bZ3U5IvmewpFIAaUutbzDfu9KgGXLlllcjUj+p3AkUgCZw4dZvmABoMHYeUXHjh0BWDpvHoSHQ1SUxRWJ5F8KRyIFTVgYf4eEcPjkSTyBm9VNkyfYw9HyRYtIaN8eQkIgLMziqkTyJ4UjkYIkKgoGDWL51UG9LQC/YcN0FCIPaFy6NMWBWOB3gKQkGDxY204kBygciRQke/dCUhJLrv56K0BiIujokctz37+fDlf/b99+2nYiOUPhSKQgqVaNeJsN+5DeLgDu7lC1qoVFSYZUq0ZHmw1IEY607URyhMKRSEESHMz6558nFigJhLq5waRJEBxsdWXyX4KDue2ddwDYAJzTthPJMQpHIgXMIg8PADreeituhw7BgAEWVyQZVeH//o+aVauSBKyYOFHbTiSHKByJFDCLFi0CoHP//jrqkAd17NoVgCWbN1tciUj+pXAkUoCcOHGCLVu2AP+eGi55i327LV68WLcSEckhCkciBciSJclDeRs3bkxgYKDF1UhWtGnTBk9PTw4ePKhbiYjkEIUjkQLE3qXWpUsXiyuRrCpcuDCtWrUCYMHVq5yLSPZSOBIpIBITE1m8eDEAnTt3trgauRHdunUD4JdffrG4EpH8SeFIpIDYvHkz0dHRBAQEOG5iKnmTPRytWrWK2NhYi6sRyX8UjkQKiIULFwLJN5r1uHo6v+RN1atXp3r16sTHxzvGkYlI9lE4EikgfvrpJwC6d+9ucSWSHezb8eeff7a4EpH8xyXC0fjx46lUqRI+Pj6Ehoby66+/Zuh5a9aswcPDg4YNG+ZsgSJ53OHDh4mIiMDNzY3bb7/d6nIkG9i71hYsWEBiYqLF1YjkL5aHo9mzZ/P000/z8ssvExERQevWrenSpQuRkZHXfV5MTAz9+vXj1ltvzaVKRfIu+9GFli1bUqpUKYurkexw8803U7RoUU6fPs2GDRusLkckX7E8HH344YcMGDCAgQMHUqtWLT766CPKly/PhAkTrvu8wYMH06tXL1q0aJFLlYrkXfYutTvuuMPiSiS7eHp6Os46VNeaSPayNBxduXKFzZs3p7pSb8eOHVm7dm26z5s2bRp///03r7/+eoaWExcXR2xsrNOPSEERGxtLeHg4oHCU39jHHemUfpHsZWk4On36NImJiamu1BsYGMjx48fTfM7evXt58cUXmTFjRobPuBkzZgwBAQGOn/Lly99w7SJ5xaJFi4iPj6dGjRrUqFHD6nIkG3Xu3Bl3d3d27NjBgQMHrC5HJN+wvFsNwGazOf1ujEk1DZIvYterVy9GjhxJ9erVMzz/ESNGEBMT4/g5fPjwDdcsklfMmzcP0FGj/Kh48eKOq2XPnTvX2mJE8hFLw1HJkiVxd3dPdZTo5MmTad736fz582zatIknnngCDw8PPDw8GDVqFNu2bcPDw4MVK1akuRxvb2/8/f2dfkQKgvj4eObPnw8oHOVXPXr0AOD777+3uBKR/MPScOTl5UVoaChLly51mr506VJatmyZqr2/vz/bt29n69atjp8hQ4ZQo0YNtm7dSrNmzXKrdJE8Yfny5Zw7d47AwECdvJBP3XPPPQCsXbuWI0eOWFyNSP5gebfaM888w5QpU5g6dSq7d+9m+PDhREZGMmTIECC5S6xfv34AuLm5UbduXaef0qVL4+PjQ926dfHz87NyVURcznfffQckH11wd3e3uBrJCeXKlXME3zlz5lhcjUj+YHk4uv/++/noo48YNWoUDRs2ZPXq1SxYsICQkBAAjh079p/XPBKR1OLj4x07y/vuu8/iaiQn3XvvvYC61kSyi80YY6wuIrfFxsYSEBBATEyMxh9JvrVo0SK6dOlCYGAgR44c0ZGjfOzQoUNUrFgRNzc3jh49muaYTZH8ILf235YfORKRnKEutYIjJCSEJk2akJSUpLPWRLKBwpFIPhQfH+/YSapLrWCwd619++23FlcikvcpHInkQytWrODMmTMEBgbSunVrq8uRXNCzZ08AwsPDOXr0qMXViORtCkci+dDMmTMBdakVJJUqVaJly5YYY/jmm2+sLkckT1M4EslPoqK4uGABP1w9a6lPnz4WFyS5qXfv3gB8/fXXEBUF4eHJ/4pIpigcieQXYWEQEsKc22/n4j//ULV0aZo3b251VZKLevbsiYeHBxEREeyuUAHat4eQkOT3hohkmMKRSH4QFQWDBkFSEv+7OqnPqVPYdMXkAqVkyZJ0btsWgBn2q7QkJcHgwTqCJJIJCkci+cHevZCUxDFg2dVJfYyBffusrEos0Pvq0cIZgOMidomJei+IZILCkUh+UK0auLkxE0gCWgJV3N2halWLC5Pcdke/fhQGDgK/2SfqvSCSKQpHIvlBcDBm0iRHl1pfmw0mTYLgYEvLktxXqFo1erZqBcAUSA5Gei+IZIrCkUg+sblhQ7YB3p6e9Ny2DQYMsLokscij770HwHfe3pzTe0Ek0xSORPKJyZMnA3Bvz54Ur1fP4mrESs2aNaNOnTpciotj1urVVpcjkucoHInkA+fPn3dc+HHQoEEWVyNWs9lsDBw4EIApU6ZYXI1I3qNwJJIPzJo1i4sXL1KjRg3dLkSA5AuAenl5sWXLFrZs2WJ1OSJ5isKRSD4wadIkIPmokc1ms7gacQUlS5bknnvuAeCLL76wuBqRvEXhSCSP27x5M1u2bMHLy4t+/fpZXY64EHsX6//+9z9iYmIsrkYk71A4EsnjPv30UyD5JrMlS5a0uBpxJW3btqVOnTpcvHiRqVOnWl2OSJ6hcCSShx0/fpxZs2YB8NRTT1lcjbgam83GsGHDAPjss89ITEy0uCKRvEHhSCQPmzBhAleuXKFFixY0a9bM6nLEBfXp04dixYqxf/9+FixYYHU5InmCwpFIHnX58mUmTJgAwNNPP21tMeKyChUqxKOPPgrAxx9/bHE1InmDwpFIHjVz5kxOnTpF+fLlHWcliaTlsccew83NjeXLl/PHH39YXY6Iy1M4EsmDkpKSGDduHABPPvkkHh4eFlckriwkJIQePXoAMHbsWIurEXF9CkciedDPP//Mjh07KFKkiKPLROR6RowYAcA333zD33//bXE1Iq5N4UgkjzHGMHr0aACeeOIJihYtam1Bkic0atSIzp07k5SUxHtXb0wrImlTOBLJY5YsWcKmTZvw9fVl+PDhVpcjechLL70EwLRp0zh69KjF1Yi4LoUjkTzEGMObb74JwJAhQyhVqpTFFUle0rp1a1q1asWVK1d4//33rS5HxGUpHInkIatWrWLNmjV4eXnx3HPPWV2O5EEvv/wykHyNrCNHjlhcjYhrUjgScXVRURAejjl82DGoduDAgZQtW9biwiQv6tSpE61ateLy5cvJY9euvr+IirK6NBGXYTPGGKuLyG2xsbEEBAQQExODv7+/1eWIpC8sDAYNgqQk5tps3G0MhQoV4u+//6ZMmTJWVyd51K+//sott9yCh7s7fyYlUcUYcHODyZNhwACryxNJV27tv3XkSMRVRUU5glEC8NLVv2OGDxigYCQ3pHXr1nRu25aExETesP99nJQEgwfrCJIICkcirmvv3uQdFvAVsBsoDjzfsaOVVUk+MfqBBwCYAWy1T0xMhH37LKpIxHUoHIm4qmrVwM2NC8BrVye9ZLMR0LChhUVJfhF6++3cDxjg6av/4u4OVataWZaIS1A4EnFVwcEweTJv22wcASoBj48fnzxd5EYFB/Pu2LH4AKuAH9zcYNIkvb9EUDgScWn72rThA09PAMZNmYLPkCEWVyT5SYX/+z9euHoh0efKluVSr14WVyTiGhSORFzY8OHDuXLlCh07duSORx6xuhzJh/5v9GiCg4M5FBWlC0OKXKVwJOKifv75Z3755Rc8PDz46KOPsNlsVpck+VChQoUc91p76623+OuvvyyuSMR6CkciLig2NpahQ4cC8PTTT1OrVi2LK5L87P7776dTp07ExcUxaNAgCuDl70ScKByJuKAXXniBI0eOULlyZUaOHGl1OZLP2Ww2JkyYQKFChVi1ahVTp061uiQRSykcibiYVatWMXHiRACmTJlCoUKFLK5ICoJKlSoxatQoAJ577jmOHz9ucUUi1lE4EnEhly5d4tFHHwWS75/Wrl07iyuSguSpp54iNDSUc+fOMXToUHWvSYGlcCTiQl588UX27t1LUFCQY5CsSG7x8PBgypQpeHp6MnfuXKZPn251SSKWUDgScRELFy7kk08+AZK704oWLWptQVIgNWzYkDfffBOAYcOGsX//fosrEsl9CkciLuDkyZM8/PDDADz55JN07drV4oqkIHvuuedo3bo1Fy5coG/fviQkJFhdkkiuUjgSsZgxhgEDBnDixAnq1KnD2LFjrS5JCjh3d3e++uor/P39Wbt2LW+99ZbVJYnkKoUjEYt9/PHH/PLLL3h5eTFz5kx8fX2tLkmEihUrMn78eABGjhzJsmXLLK5IJPcoHIlYaM2aNTz//PMAvP/++9SvX9/iikT+1bt3bwYOHIgxhl69enHkyBGrSxLJFQpHIhY5ERFBzzvvJCEhgQceeIAnnnjC6pJEUvnkk09o2LAhp06d4v7OnYk/cMDqkkRynMKRiAUSJk/mwcaNORodTS3gi1atdO80cUm+vr5837Mn/sCaHTsYUbkyhIVZXZZIjrKZAniVr9jYWAICAoiJicHf39/qcqSgiYrihfLleRfwAzYCtdzd4eBBCA62tjaRa0VFQUgIc5KSuOfqpJk2Gw9GRur9Krkut/bfOnIkksumffIJ7179fxhQCyAxEfbts64okfTs3QtJSdwNvHB10iPGsGn+fCurEslRCkciuSg8PJxB48YB8Apwv/0Bd3eoWtWqskTSV60auCXvKt4CbgcuA3e98QbHjh2zsjKRHKNwJJJL9uzZwz333ENCQgL333QTI6/ucHB3h0mT1EUhrik4GCZPBnd33IGZbm7UCgriyPHj3HXXXVy+fNnqCkWyncYcacyR5ILTp0/TvHlz/v77b1q0aMGKFSvwOX06uSutalUFI3F9UVGO9+u+y5dp2rQpZ8+epW/fvnz55Zc6oUByhcYcieQTcXFx3H333fz9999UrFiRuXPn4uPjkxyI2rZVMJK8IcX7tWrVqnz33Xe4u7vzv//9j3ffffc/ny6SlygcieQgYwwDBw7kt99+w9/fn/nz51O6dGmryxK5Ybfeeivjro6fe/HFF/nuu+8srkgk+ygcieSg0aNH8/XXX+Pu7s73339P7dq1rS5JJNs8+eSTPPnkkwD07duXdevWWVyRSPZQOBLJIbNmzeK1114DYPz48dx2220WVySS/caNG0e3bt2Ii4vjzjvvZP/+/VaXJHLDFI5EcsDatWt5+OGHAXj22WcZNGiQxRWJ5Ax3d3dmzZpFo0aNOHXqFF27duXMmTNWlyVyQxSORLLZ/v37ueuuuxx/SY8dO9bqkkRyVOHChfnll18IDg52XLLiypUrVpclkmUKRyLZ6Ny5c3Tr1o1Tp07RqFEjZsyYgbu7u9VlieS4smXLMn/+fIoUKcKqVasYOHAgBfBKMZJPKByJZJP4+Hjuu+8+du/eTbmSJfl50iT8/PysLksk19SvX9/pFP83n3/e6pJEskThSCQbGGN4/PHHWbZsGX7AL6dPU655c929XAqcTlFRjE9KAuD1Dz7g64EDLa5IJPMUjkSywQcffMAXX3yBG/AN0BAgKQkGD06+srBIQRAVBYMGMcgY/u/qpEfCwlj9/feWliWSWS4RjsaPH0+lSpXw8fEhNDSUX3/9Nd22P/74I7fddhulSpXC39+fFi1asHjx4lysVsTZnDlz+L//S94VfAh0S/lgYmLyLRdECoK9e5P/KADGAPcC8cBdjzzCnj17rKxMJFMsD0ezZ8/m6aef5uWXXyYiIoLWrVvTpUsXIiMj02y/evVqbrvtNhYsWMDmzZtp164d3bt3JyIiIpcrF4HNmzfTu3dvjDE81q8fw669v5S7e/K900QKgmrV4OoNld2Ar4DmwNnz5+nSpQsnT560sjqRjDMWa9q0qRkyZIjTtJo1a5oXX3wxw/OoXbu2GTlyZIbbx8TEGMDExMRk+Dki14qMjDRBQUEGMJ07dzbx8fHGTJlijLu7MZD875QpVpcpkruu+QycHDfOVK5c2QCmWbNm5uLFi1ZXKHlYbu2/LT1ydOXKFTZv3kzHjh2dpnfs2JG1a9dmaB5JSUmcP3+e4sWLp9smLi6O2NhYpx+RG3H+/Hm6d+/OsWPHqFu3LrNnz8bDwwMGDICDByE8PPnfAQOsLlUkd13zGSj19NMsXLiQ4sWLs2HDBvr06UNiYqLVVYpcl6Xh6PTp0yQmJhIYGOg0PTAwkOPHj2doHh988AEXL16kZ8+e6bYZM2YMAQEBjp/y5cvfUN1SsCUmJvLggw+ybds2SpcuzS+//IK/v/+/DVLcvVykQLrmM1C9enXmzp2Ll5eX0xg9EVdl+ZgjANs14zSMMammpWXWrFm88cYbzJ49+7p3Oh8xYgQxMTGOn8OHD99wzVJwPfvss8yfPx8fHx/mzZtHSEiI1SWJuLzWrVszffp0AD788EM+++wzawsSuQ5Lw1HJkiVxd3dPdZTo5MmTqY4mXWv27NkMGDCAb7/9lg4dOly3rbe3N/7+/k4/Ilnx+eef8/HHHwPw1Vdf0axZM4srEsk7HnzwQd5++20AnnrqKX7++WeLKxJJm6XhyMvLi9DQUJYuXeo0fenSpbRs2TLd582aNYuHHnqImTNncvvtt+d0mSIALFq0iGHDhgHw9ttvc99991lckUje8+KLLzJw4ECSkpJ44IEH2LRpk9UliaRiebfaM888w5QpU5g6dSq7d+9m+PDhREZGMmTIECC5S6xfv36O9rNmzaJfv3588MEHNG/enOPHj3P8+HFiYmKsWgUpALZv307Pnj1JSkri4Ycf5sUXX7S6JJE8yWazMX78eDp16sQ///xDt27dOHTokNVliTixPBzdf//9fPTRR4waNYqGDRuyevVqFixY4BjHcezYMadrHk2aNImEhAQef/xxgoKCHD9PPfWUVasg+dzx48fp1q0b58+fp23Dhkx85ZUMjYkTkbR5enry7bffUr9WLU6cOEHXjh05d+6c1WWJONiMKXi3TY6NjSUgIICYmBiNP5Lr+ueff2jXrh2///471YF1QHE3N5g8Wafpi9yIsDCiHn2UZsZwFGhXsyaLtm3Dy8vL6srEheXW/tvyI0ciriopKYn+/fvz+++/UxyYDxRPfkD3TBO5EVfvwRZsDPOBwkD4n3/y6NWrzYtYTeFIJB2vvPIK33//PZ4eHswFnG4ConumiWRdinuwNQS+BdyBr77/nlGjRllYmEgyhSORNEybNo0xY8YAEPb++7R2u+ajonumiWRdinuwAXQBxl8dx/fGG2/w5ZdfWlSYSDKFI5FrLF++nEGDBgHw6quv0vepp5LHGLm7Jzdwd4dJk3QFbJGsCg5O9Zka9MUXjrNABw4cyIoVKywsUAo6DcjWgGxJYfv27bRq1YrY2FgefPBBZsyY8e+ZaVFRyV1pVasqGIlkh2s+U0lJSfTq1YvZs2cTEBDAmjVrqFOnjtVVigvJrf23wpHCkVwVFRVF8+bNOXLkCG3atGHx4sV4e3tbXZZIgXL58mU6dOjAmjVrqFChAhs2bKBMmTJWlyUuQmerieSi2NhYbr/9do4cOUKtWrWYM2eOgpGIBXx8fJg7dy7VqlUjMjKSbt26cfHiRavLkgJG4UgKvPgDB7i3fXv++OMPypQpw4IFCyhWrJjVZYkUWCVLlmTBggWUKFGCzZs38+Bdd5G4bJkunyG5RuFICjQzZQqDK1dm6ebN+AG/DBxIxYoVrS5LpMCrWrUq8+bNw9vDg5+XLePp227DVKgAYWFWlyYFgMKRFFxRUbz+6KNMI/mD8C0QOmaM/joVcREtK1Tg68READ4DPjJGF2CVXKFwJAXWuLff5s2r/58AdAVd3FHElezdy73G8N7VX58FftRnVHKBwpEUSFOnTuWZCRMAeAsYZH9AF3cUcR1XLxb5LDAUMEBvYH1srLV1Sb6ncCQFzvfff8+jjz4KwHOdOjHCfqVeXdxRxLVcvVikzd2dT0g+unsZuP3hh9m2bZvFxUl+pnAkBcqiRYvo1asXSUlJDBw4kHcXLsR26BCEh8PBgzBggNUlikhKAwbAwYN4hIcz+88/adq0KWfOnKFDhw7s3LnT6uokn9JFIHURyPwrKir5BpfVqkFwML/88gs9evTgypUr3HfffcyaNQt3++0LRCRPOHfuHB06dGDz5s0EBgaycuVKatasmfzgNZ95yX90EUiRGxEWBiEh0L49hITw0xNPcM8993DlyhV69OjBjBkzFIxE8qCiRYuyZMkSGjZsyIkTJ2jfvj27d+9O9ZnXKf9yI3TkSEeO8p+oqOQvx6QkAH4AHgASgJ49e/L111/j6elpZYUicoNOnz5N+/bt2b59OyWKFWPRuXM0Sbk7c3dP7irXEaR8RUeORLJq715HMJoI9CQ5GPW69VZmzJihYCSSD5QsWZIVK1Zw0003EX32LO2MYWXKBjrlX26AwpHkP9WqYWw2Xib59N8kYIDNxldhYXh4eFhcnIhkl5IlS7J8+XLatWzJBaAz8I39QV2WQ26AwpHkO5dKlKBv06a8ffX3N2w2vpg8GfeQEEvrEpHsV6RIERYsX85djRoRBzwIvG6zkTRhgrrUJMsUjiRf2b9/Py1btmTGhg24u7sT9vzzvB4ZiW3gQKtLE5Ec4uPjw/cbN/Lc4MEAjDKGB5Yu5fz58xZXJnmVwpHkPVFRydcluub+SvPnz6dJkyZs3bqVUqVKsWTJEh5591399ShSALi7u/PexImEhYXh6enJd999R2hoKJs3b07dOJ3vEBE7hSPJW9I4XffChQsMGTKEbt26cfbsWZo1a8aWLVto37691dWKSC575JFHCA8Pp3z58uzdu5cWLVrwwQcfkHj1BrY65V8yQqfy61T+vOOaU/QBFrm58VhwMAciIwEYNmwY7777Lt7e3lZVKSIu4MyZMwwcOJA5c+YA0KxZMyaNGkWDLl2cvkN0yn/eolP5Ra6V4hT9fcCdQJekJA5ERlKhQgWWL1/Oxx9/rGAkIhQvXpwffviBSZMmUaRIETZs2EBoly48lZTEyZQNdcq/pEHhSPKOatXYZ7PxMFATmAd4AM88+ijbt29XN5qIOLHZbAwaNIjdu3dz7733kpiUxCdAFeA14BTolH9Jk8KRuI50BkkmJSWxaNEi7nz8cWoA04FEoAvwx6hRfDB5srpHRSRd5cqV47vvvmPp0qWEhoRwAXgTqAA82rIlm44fJ80RJhq4XWBpzJF2qq4hLAwGDUruNnNzI2HCBH6rXp0ffviBOXPmcOTIEUfTLu3a8fq999Lsjjs0TkBEMsUYww+TJzN23Dg27dnjmF69enV69erFnXfeSf369XGbNs3pO4nJk2HAAAsrF8i9/bfCkcKR9aKiOFehAn8Yw2/AamAtkPIKJUWLFqV///4MGTLk3ztwi4hkkTGGNWvW8NlnnzFv3jwuXbrkeKxUiRJ0iI6mJXAT0ADw0cBtl6BwlIMUjqzzzz//sHv3bnbu3Mn27dvZsWMHOzZvJurUqVRti/v7c8c999CjRw86dOiAj4+PBRWLSH53/vx55s6dy7fffkt4eDgXL150etwDqA00uO02GnTqRIMGDWjQoAGlSpWypN6CTOEoBykc5TxjDPv372fDhg1sX7uWnVu2sPPIEQ4cPpx23z4QDDQHWgO3uLlRb/9+3fJDRHLVlStXWD9vHivuu4+NwEauDtxOQ1BQUHJQqlyZBsWK0aB9e6rfcovu4ZiDFI5ykMJR9jPGsHv3bhYtWkR4eDjr16/n9OnTabYtWbIk9erVo27duo6fOps3EzB8ePJpte7uMGmS+vdFxDphYTB4MCYxkcNubkQMHcq20qXZtm0b27Zt4++//07zaT6entSpX58GDRrQrFkzunbtSrC64rKNwlEOUjjKHsYYNm3axIwZM5gzZw6RVy/EaOfl5UWjK1doBNSx/7i5UfrQobT77aOikq83UrWq+vVFxHrX+U46f/4825cvZ9s997DNGLYB24GLacymQYMG3HXXXfTp04equmzADVE4ykEKRzcmOjqaKVOmEBYWxt69ex3Tvb29adOmDZ06deLmm2+m4blzeHfunHoG4eHQtm3uFSwikhPCw5NvQ3JVErAf2PbGG2xNSGD58uWsX7/eaShBixYtePjhh+nduzeFChXK/ZrzOIWjHKRwlDU7d+7k448/5uuvv3ac2eHr48Odd93Fgw8+SIcOHZw/7Gnc7kOX6heRfCMD33GnTp1i4cKFzJo1iyVLlpB0tW3x4sUZPHgwjz/+OOXKlbOg+LxJtw8Rl3Hw4EH69u1LvXr1+OKLL7h06RINganAybg4ZnXowB133JH6r6Dg4ORrg7i7J/9uH0ukYCQi+UEGvuNKlSpFv379WHjvvUQZw3tARZLv/TZmzBgqV67Mk08+ydGjR61YA0mHjhzpyFG6Tp8+zVtvvcX48eO5cuUKAHd37szwxYtpZQw2e8P/OhqksUQikp/913fcNUeYEoF5bm58EBrKmo0bgeRhCUOGDOGll16idOnSuVh83qJutRykcHQdUVFc/OMPPlq5kncnTSI2NhaADh068M477xAaG+vUx+6gcUQiImm7ZmySnVmxghVJSbz++uusWbMGgCJFivDSSy/xVI8e+EZFQbVq+qMyBYWjHKRwlLaEyZMJGzKEN4zh+NVpjRo1YuzYsdx2223JEzSOSEQkc/7je9MYw7JlyxgxYgSbN28Gku/79jbwoM2G2xdf6NImV2nMkWSv69xA0RjDj198QZ3BgxlyNRhVAmbabGyaO/ffYAQaRyQikln/8b1ps9m47bbb+P333/nfxx9THogE+gDNjGH1oEHp3/xWN8fNEQpHBUFYWPJfLe3bJ/8bFuZ4aNWqVbRo0YIegwbxF1AS+AT4E3jQGNz27089vwEDkv/iCQ9P/ld/0YiIXF8Gvjfd3NzoU68ee0g+alQE2AS0SUqie8+ebN++3fkJ1/lulxujbjV/fy5evMiFCxcIDAy0urTsl87h3A1z5vDqp5+ydOlSAAr5+vLspUs8B/inaKfuMhGRXJTiO/sk8DrwBcmDuG02G71792bUqFFU8vQsEEMcjDEcOXKE0qVL4+XlpW613DJt2jRKlSpFmTJluP3224mOjra6pMz5r0Oqe/c6fXjWA3ckJtL8jjtYunQpHh4eDB06lL/372fUlCn4q7tMRMQ6KbrgSgMT3N3ZNXo0PXv2xBjD119/TY0aNRjy2GP8lTIYQfLtl/btS3u+ebD77Y8//qBevXqUL1+eChUq8Ouvv+bewk0BFBMTYwCzevVq4+bmZgDHT+3atc25c+esLjFjpkwxxs3NGEj+d8qU1G0OHzaXbTYzC0yzFOvp5uZmHnroIbN///5U7U14ePK/IiJijTS+izdt2mQ6duzo+B63gbkTzFIwCWCMu3va390Z2VekIykpySQlJWXDCmXOrl27TIkSJZz2zyVKlDAHDx40gImJicnR5RfobrUuXbqwcOFC7r33Xl599VW6dOnC0aNH6datGz/99BNubjlzYC0qKopFixaxYsUK/vzzT/bv38/FixdJSEjA39+fkiVLUrZECWqUKkXNRo2o0awZNWrUoFKlSnh6etpnct1DqtHR0fz666/MmTOHud99R+zVK1p7Ab1atuTFqVOpUaNGjqyfiIjknNWrV/Pee+/xyy+/OKaVBR647TY6PfccrVq1+veivP+xr0hISODQoUP89ddf7N27l70REfy1Ywd7T57k2MmTxMXF4ebmRsmSJSlfvjxNmjShVatWdO/ePce6tf755x+aNGnC7t27adKkCXPmzKFTp07s2rWLF198kXfeeUen8ucEeziy2WwYY9i1axe1atVi8+bNtGrVisuXLzNu3DiefvrpbFumMYYFCxbw2fvvs2jlyizNw8PDg8qVK1OjRg0qenhQbM4cipJ8P58rwCngQKtW/Hn6NH/++afTc8uVKcOgzp0ZPGwYgY0a3djKiIiI5Xbv3s2nY8bwzdy5nD1/3jHd09OTOnXqUKNGDSq7u1N45kz8gDjgPFf3FU2acCAmhoMHDxIfH5/pZft4e3NXy5a88MILNOzUKbtWCYDHHnuMCRMmEBQUxLZt2yhVqhQzZsygT58+lC9fnsOHDysc5QR7OAIIDQ1l06ZNjscmTpzI0KFD8fT0ZP369TRu3PiGl7d27Vqee+451q1bB4ANaA507N6d0EcfpUqVKgQEBODu7k7sX39xqm1bIo1hD8lnjf0J/OXjw6XLlzO13Fq1atGhQwd69uxJy5Ytc+xImIiIWCcuLo6FCxcyd+5cVqxYweHDhzP1fG9vb6pVrEi1PXuoDlQDqgPl3dzw2biRhNKlOX36NHv37mXDhg38MmMGe44fdzz/rkaN+OD776lcufINr8u8efO48847AViyZInjUjKXLl2iRIkSjvt6KhzlgJTh6NVXX2XUqFGOx4wx9OjRgzlz5lC9enU2b95M4cKF/3umUVHJg59TXM304sWLPP/880yYMAGAQsAQ4DGgCqR9ZkE6V1JNWr6cI9Wq8ddff7Fnzx6OHj3KmTVrOLdqFe7G4GWzUbRDByrdcQeVK1emadOmlCxZMkuvj4iI5E3GGA4cOMDOnTvZs2cPkZGRXIyI4J81a/AyhiI2G8Vuv51Kd99NpUqVqFy5MuXLl8dt1aqM3f0gKgpToQJbjOED4BuSBwT5eHvz8iuv8MILL/w7/ONq+2v3jek5fvw49erV4/Tp0zzzzDN88MEHTo9369aN+fPnAzkfjgr0gGzALFq0KNXj0dHRJjg42ADm4Z49jVmx4voDlNMY7LZmzRpTtWpVx3IGdO1qjkBym5Q/4eHO8zp8+N952X/SG2Rnb68B1CIicj3/ta/I6L5nxQqnNrvA3Jpi0PRNN91k9uzZk9w2EwPBkyIjTeemTQ1gGjRoYC5fvpyqzdixYx3LyekB2QU+HJ08eTLNNitXrjRuNpsBzMz/OBss5RvqMpgRNpvjLLjg4GCzbNmyzIWeKVOSH7O3ycSZBSIiIlmSkX1PGvuyJDc3M+OTT0zRokUNYAoVKmQmvP22SbLZMrzP++Dq/tYHzI6RI9Msb/Xq1QpHOckejsqVKZN+o8OHzWtXN4I/mJ0ZSNGbwNRLkaD79etnzp49+2/bzIQeHRESEZHclpF9Tzr7ssOHD5v27ds79oGdwRzOQG/JXJvN2K4+57PrhKgLFy7kWjgq0CN0Gxw/nv7l1vfu5VWgFRALtAEi0rrAVrVqXLDZeBloBmwn+RYcP0yezJdffknRokX/bZuZ224EByf38+oijCIiklsysu9JZ18WHBzM0qVL+eCDD/D29mYRUAeYTPIVvnF3h6pVnWY1d9o0HjAGw79jctO7mKXfN99Q6YZXMGMKdjgCGDw47SuGVquGh5sbc4HGwGmgBfDa3Lns37+fy5cvs2vXLkZNnUqVwoV5m+SN39NmY9e4cdzz6KNpL1ShR0RE8rp09mVubm4888wzRERE0KxyZWKBwUA94LP77+dQYiJxcXFs27aNAQMGcPdrr3EZuBP4lOSzudMKUURFwaBB1M75NQMK+Nlqc0neIKlG49uFhcHgwcQkJtILWHCdeVYJCeHdRx7hnkceUfAREZECLzExkU/ffJM3x43jTGxsuu2G3XorH4SH45GU9O+tq67tWbl6Jve7wAvoVP4c4bhxHSTfS+x6N+qLioJ9+zBVqvD9+vV8+umnrF+/nvj4eHx8fLjlllvo06cPDzzwgPPpiyIiIkJMTAzTpk1j1qxZbNmyhYSEBPz8/Lj11lt5/vnnadWqlWNfS9Wqae+Pr17pOzYpiQAUjnKEIxy5ueE/efL1x/6k4cqVK/zzzz/4+/vrwooiIiIZZN9/FilSBHf7jc4zKiyM2EGDCEhKUjjKCY5wtGsX/rVqWV2OiIiIZEDs7t0E1K6d4+GoYB/2KFfO6gpEREQko3Jpv12ww5GIiIjINRSORERERFJQOBIRERFJQeFIREREJAWXCEfjx4+nUqVK+Pj4EBoayq+//nrd9qtWrSI0NBQfHx8qV67MxIkTc6lSERERye8sD0ezZ8/m6aef5uWXXyYiIoLWrVvTpUsXIiMj02x/4MABunbtSuvWrYmIiOCll15i2LBh/PDDD7lcuYiIiORHll/nqFmzZjRu3JgJEyY4ptWqVYu77rqLMWPGpGr/wgsvMG/ePHbv3u2YNmTIELZt28a6desytEzHdY5y+DoJIiIikn1ya/9t6ZGjK1eusHnzZjp27Og0vWPHjqxduzbN56xbty5V+06dOrFp0ybi4+NzrFYREREpGDysXPjp06dJTEwkMDDQaXpgYCDHjx9P8znHjx9Ps31CQgKnT58mKCgo1XPi4uKIi4tz/B4TEwMkJ1ARERHJG+z77Zzu9LI0HNnZbDan340xqab9V/u0ptuNGTOGkSNHpppevnz5zJYqIiIiFouOjiYgICDH5m9pOCpZsiTu7u6pjhKdPHky1dEhuzJlyqTZ3sPDgxIlSqT5nBEjRvDMM884fj937hwhISFERkbm6IvramJjYylfvjyHDx8uUGOttN5a74JA6631LghiYmKoUKECxYsXz9HlWBqOvLy8CA0NZenSpdx9992O6UuXLuXOO+9M8zktWrTg559/dpq2ZMkSmjRpgqenZ5rP8fb2xtvbO9X0gICAAvWmsvP399d6FyBa74JF612wFNT1dnPL2SHTlp/K/8wzzzBlyhSmTp3K7t27GT58OJGRkQwZMgRIPurTr18/R/shQ4Zw6NAhnnnmGXbv3s3UqVMJCwvjueees2oVREREJB+xfMzR/fffT3R0NKNGjeLYsWPUrVuXBQsWEBISAsCxY8ecrnlUqVIlFixYwPDhw/n8888pW7Ysn3zyCT169LBqFURERCQfsTwcATz22GM89thjaT42ffr0VNPatGnDli1bsrw8b29vXn/99TS72vIzrbfWuyDQemu9CwKtd86ut+UXgRQRERFxJZaPORIRERFxJQpHIiIiIikoHImIiIikoHAkIiIikkK+DUdvvfUWLVu2pFChQhQtWjRDzzHG8MYbb1C2bFl8fX1p27YtO3fudGoTFxfHk08+ScmSJfHz8+OOO+4gKioqB9Yga86ePUvfvn0JCAggICCAvn37cu7cues+x2azpfnz3nvvOdq0bds21eMPPPBADq9NxmVlvR966KFU69S8eXOnNvlte8fHx/PCCy9Qr149/Pz8KFu2LP369ePo0aNO7Vxte48fP55KlSrh4+NDaGgov/7663Xbr1q1itDQUHx8fKhcuTITJ05M1eaHH36gdu3aeHt7U7t2bebMmZNT5WdZZtb7xx9/5LbbbqNUqVL4+/vTokULFi9e7NRm+vTpaX7WL1++nNOrkimZWe+VK1emuU5//vmnU7v8tr3T+v6y2WzUqVPH0cbVt/fq1avp3r07ZcuWxWazMXfu3P98Tq59tk0+9dprr5kPP/zQPPPMMyYgICBDz3nnnXdMkSJFzA8//GC2b99u7r//fhMUFGRiY2MdbYYMGWLKlStnli5darZs2WLatWtnGjRoYBISEnJoTTKnc+fOpm7dumbt2rVm7dq1pm7duqZbt27Xfc6xY8ecfqZOnWpsNpv5+++/HW3atGljHn30Uad2586dy+nVybCsrHf//v1N586dndYpOjraqU1+297nzp0zHTp0MLNnzzZ//vmnWbdunWnWrJkJDQ11audK2/ubb74xnp6e5osvvjC7du0yTz31lPHz8zOHDh1Ks/3+/ftNoUKFzFNPPWV27dplvvjiC+Pp6Wm+//57R5u1a9cad3d38/bbb5vdu3ebt99+23h4eJj169fn1mr9p8yu91NPPWXGjh1rfv/9d/PXX3+ZESNGGE9PT7NlyxZHm2nTphl/f/9Un3lXktn1Dg8PN4DZs2eP0zql/Izmx+197tw5p/U9fPiwKV68uHn99dcdbVx9ey9YsMC8/PLL5ocffjCAmTNnznXb5+ZnO9+GI7tp06ZlKBwlJSWZMmXKmHfeeccx7fLlyyYgIMBMnDjRGJP8ZvT09DTffPONo82RI0eMm5ubWbRoUbbXnlm7du0ygNObYN26dQYwf/75Z4bnc+edd5r27ds7TWvTpo156qmnsqvUbJXV9e7fv7+588470328oGzv33//3QBOX8KutL2bNm1qhgwZ4jStZs2a5sUXX0yz/f/93/+ZmjVrOk0bPHiwad68ueP3nj17ms6dOzu16dSpk3nggQeyqeobl9n1Tkvt2rXNyJEjHb9n9PvQSpldb3s4Onv2bLrzLAjbe86cOcZms5mDBw86puWF7W2XkXCUm5/tfNutllkHDhzg+PHjdOzY0THN29ubNm3asHbtWgA2b95MfHy8U5uyZctSt25dRxsrrVu3joCAAJo1a+aY1rx5cwICAjJc34kTJ5g/fz4DBgxI9diMGTMoWbIkderU4bnnnuP8+fPZVvuNuJH1XrlyJaVLl6Z69eo8+uijnDx50vFYQdjekHwjR5vNlqr72RW295UrV9i8ebPTNgDo2LFjuuu4bt26VO07derEpk2biI+Pv24bV9iukLX1vlZSUhLnz59PdYPOCxcuEBISQnBwMN26dSMiIiLb6r5RN7LejRo1IigoiFtvvZXw8HCnxwrC9g4LC6NDhw6Ou0vYufL2zqzc/Gy7xBWyXcHx48cBCAwMdJoeGBjIoUOHHG28vLwoVqxYqjb251vp+PHjlC5dOtX00qVLZ7i+L7/8kiJFinDPPfc4Te/duzeVKlWiTJky7NixgxEjRrBt2zaWLl2aLbXfiKyud5cuXbjvvvsICQnhwIEDvPrqq7Rv357Nmzfj7e1dILb35cuXefHFF+nVq5fTzStdZXufPn2axMTEND+X6a3j8ePH02yfkJDA6dOnCQoKSreNK2xXyNp6X+uDDz7g4sWL9OzZ0zGtZs2aTJ8+nXr16hEbG8vHH3/MzTffzLZt26hWrVq2rkNWZGW9g4KCmDx5MqGhocTFxfG///2PW2+9lZUrV3LLLbcA6b8n8sv2PnbsGAsXLmTmzJlO0119e2dWbn6281Q4euONNxg5cuR122zcuJEmTZpkeRk2m83pd2NMqmnXykibG5HR9YbU9UPm6ps6dSq9e/fGx8fHafqjjz7q+H/dunWpVq0aTZo0YcuWLTRu3DhD886snF7v+++/3/H/unXr0qRJE0JCQpg/f36qcJiZ+d6o3Nre8fHxPPDAAyQlJTF+/Hinx6zY3teT2c9lWu2vnZ6Vz3puy2qNs2bN4o033uCnn35yCtDNmzd3Oung5ptvpnHjxnz66ad88skn2Vf4DcrMeteoUYMaNWo4fm/RogWHDx/m/fffd4SjzM7TKlmtcfr06RQtWpS77rrLaXpe2d6ZkVuf7TwVjp544on/PGOmYsWKWZp3mTJlgORkGhQU5Jh+8uRJRwotU6YMV65c4ezZs05HE06ePEnLli2ztNyMyOh6//HHH5w4cSLVY6dOnUqVpNPy66+/smfPHmbPnv2fbRs3boynpyd79+7NsZ1lbq23XVBQECEhIezduxfI39s7Pj6enj17cuDAAVasWOF01CgtubG901KyZEnc3d1T/dWX8nN5rTJlyqTZ3sPDgxIlSly3TWbeLzkpK+ttN3v2bAYMGMB3331Hhw4drtvWzc2Nm266yfGet9qNrHdKzZs35+uvv3b8np+3tzGGqVOn0rdvX7y8vK7b1tW2d2bl6mc7UyOU8qDMDsgeO3asY1pcXFyaA7Jnz57taHP06FGXG6C7YcMGx7T169dneIBu//79U521lJ7t27cbwKxatSrL9WaXG11vu9OnTxtvb2/z5ZdfGmPy7/a+cuWKueuuu0ydOnXMyZMnM7QsK7d306ZNzdChQ52m1apV67oDsmvVquU0bciQIakGbXbp0sWpTefOnV1ugG5m1tsYY2bOnGl8fHz+c2CrXVJSkmnSpIl5+OGHb6TUbJWV9b5Wjx49TLt27Ry/59ftbcy/A9K3b9/+n8twxe1tRwYHZOfWZzvfhqNDhw6ZiIgIM3LkSFO4cGETERFhIiIizPnz5x1tatSoYX788UfH7++8844JCAgwP/74o9m+fbt58MEH0zyVPzg42Cxbtsxs2bLFtG/f3uVO7a5fv75Zt26dWbdunalXr16qU7uvXW9jjImJiTGFChUyEyZMSDXPffv2mZEjR5qNGzeaAwcOmPnz55uaNWuaRo0a5dn1Pn/+vHn22WfN2rVrzYEDB0x4eLhp0aKFKVeuXL7e3vHx8eaOO+4wwcHBZuvWrU6n98bFxRljXG97209xDgsLM7t27TJPP/208fPzc5yV8+KLL5q+ffs62ttP9x0+fLjZtWuXCQsLS3W675o1a4y7u7t55513zO7du80777zjsqd2Z3S9Z86caTw8PMznn3+e7iUY3njjDbNo0SLz999/m4iICPPwww8bDw8Pp4Bttcyu97hx48ycOXPMX3/9ZXbs2GFefPFFA5gffvjB0SY/bm+7Pn36mGbNmqU5T1ff3ufPn3fsmwHz4YcfmoiICMeZs1Z+tvNtOOrfv78BUv2Eh4c72gBm2rRpjt+TkpLM66+/bsqUKWO8vb3NLbfckiqNX7p0yTzxxBOmePHixtfX13Tr1s1ERkbm0lr9t+joaNO7d29TpEgRU6RIEdO7d+9Up7heu97GGDNp0iTj6+ub5rVsIiMjzS233GKKFy9uvLy8TJUqVcywYcNSXRPISpld73/++cd07NjRlCpVynh6epoKFSqY/v37p9qW+W17HzhwIM3PRcrPhitu788//9yEhIQYLy8v07hxY6cjWP379zdt2rRxar9y5UrTqFEj4+XlZSpWrJhm6P/uu+9MjRo1jKenp6lZs6bTztRVZGa927Rpk+Z27d+/v6PN008/bSpUqGC8vLxMqVKlTMeOHc3atWtzcY0yJjPrPXbsWFOlShXj4+NjihUrZlq1amXmz5+fap75bXsbk3x029fX10yePDnN+bn69rYf9UrvPWvlZ9tmzNXRTCIiIiKSf28fIiIiIpIVCkciIiIiKSgciYiIiKSgcCQiIiKSgsKRiIiISAoKRyIiIiIpKByJiIiIpKBwJCIiIpKCwpGIiIhICgpHIiIiIikoHIlIvjJq1Cjq1auHn58fgYGBDB06lPj4eKvLEpE8xMPqAkREsosxhsTERCZNmkS5cuXYtWsX/fr1o379+gwdOtTq8kQkj9CNZ0UkX+vVqxelSpXi448/troUEckj1K0mIvnGoUOHeOKJJ6hbty7FihWjcOHCfPvttwQHB1tdmojkIQpHIpIvnD59mqZNm3L69Gk+/PBDfvvtN9atW4e7uzsNGza0ujwRyUM05khE8oUFCxaQkJDArFmzsNlsAHz++edcuXJF4UhEMkXhSETyheLFixMbG8u8efOoXbs2P//8M2PGjKFcuXKUKlXK6vJEJA/RgGwRyReMMQwdOpSZM2fi6+tLnz59uHz5MocOHeKXX36xujwRyUMUjkRERERS0IBsERERkRQUjkRERERSUDgSERERSUHhSERERCQFhSMRERGRFBSORERERFJQOBIRERFJQeFIREREJAWFIxEREZEUFI5EREREUlA4EhEREUlB4UhEREQkhf8HwNUaOtm0xUQAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwlElEQVR4nO3dd3gU1dvG8e9m0wMJPQRCQpUOofeuCAiKDRAUkCKgiIL+BEVUEMH2IjaKEsACiKJgAQtKEwlKFxCRDpHeQiftvH+EXRMSIAlJJpu9P9eVSzN7duaZnd3szZxzZmzGGIOIiIiIAOBhdQEiIiIiuYnCkYiIiEgyCkciIiIiySgciYiIiCSjcCQiIiKSjMKRiIiISDIKRyIiIiLJKByJiIiIJKNwJCIiIpKMwpG4hIMHD/LSSy+xcePGVI/17t2bfPnyZXrdsbGxDBw4kJCQEOx2OxEREZkvNAtMmjSJmTNnplq+d+9ebDZbmo/lJTabjZdeesnqMrLESy+9hM1my/bnvvvuu5QvXx5vb29sNhunT5+md+/elC5dOkW7cePGsWDBgkzVcz0nT56kW7duFCtWDJvNRufOnTO8jtKlS9O7d+8sry03WbduHY899hjVq1cnf/78BAcHc+utt7JkyZI02+/evZt77rmHAgUKkC9fPm677TbWr1+fw1W7J4UjcQkHDx5k9OjRaYajmzV58mSmTp3KyJEjWblyJZ988kmWbyMjrhWOQkJCiIqK4o477sj5oiRT+vXrR1RUVLZuY+PGjQwZMoRWrVqxZMkSoqKiyJ8/P6NGjWL+/Pkp2mZXOHr55ZeZP38+b731FlFRUbz++utZvo28YM6cOfzxxx/06dOHr7/+mmnTpuHj40ObNm34+OOPU7Q9duwYzZo1459//mH69Ol8/vnnXLp0iZYtW7J9+3aL9sB9eFpdgIjVtmzZgp+fH4MHD7a6lOvy8fGhYcOGVpchGRAaGkpoaGi2bmPr1q0A9O/fn/r16zuXlytXLlu3m9yWLVsoV64cPXr0yLFtZpULFy7g7++fI9t65plnePPNN1Ms69ChA7Vr12bMmDH07NnTufyNN97g2LFjrFq1ivDwcACaNm1KuXLleOGFF5g7d26O1OyudObIDR07doxHHnmEUqVK4ePjQ9GiRWnSpAk///yzs03Lli2pVq0aUVFRNG7cGD8/P0qXLs2MGTMAWLhwIbVr18bf35/q1avzww8/pNrOypUradOmDfnz58ff35/GjRuzcOHCVO22bNnCXXfdRcGCBfH19SUiIoKPPvrI+fiyZcuoV68eAA8//DA2my3NrpedO3fSoUMH8uXLR6lSpXjqqae4fPnydV8Lm83GtGnTuHjxonO9M2fOvG4X1tXbdnR/bN26lQceeICgoCCCg4Pp06cPMTExKZ6bmJjIu+++S0REBH5+fhQoUICGDRvyzTffAEldC1u3bmX58uXOehxdI9eqKT2v88yZM7HZbCxdupRBgwZRpEgRChcuzD333MPBgwev+xpdT+nSpenYsSPz58+nRo0a+Pr6UrZsWd55551Ubffv38+DDz5IsWLF8PHxoXLlyvzf//0fiYmJ11z/3r178fT0ZPz48akeW7FiBTabjS+++ALI2HG4dOkSzz77LGXKlMHb25uSJUvy2GOPcfr06TT377vvvqNWrVr4+flRuXJlvvvuOyDpda1cuTIBAQHUr1+ftWvXpnh+Wl1jc+fOpW3btoSEhDjXN2LECM6fP3/tF/oaWrZsyYMPPghAgwYNsNlszq6pq7vVbDYb58+f56OPPnK+t1q2bHnd9Z88eZJHH32UkiVL4u3tTdmyZRk5cqTzc+V4T/78889s27bNud5ly5Zdc51xcXE888wzFC9eHH9/f5o2bcoff/yRZtvDhw8zYMAAQkND8fb2pkyZMowePZr4+PgU7aKjo7nvvvvInz8/BQoUoEePHqxZsybV58XRBb9582batm1L/vz5adOmDZDUvT527FgqVark/Lv48MMPc+zYsVR1zZ07l0aNGhEQEEC+fPm4/fbb2bBhw3VfS4BixYqlWma326lTpw4HDhxIsXz+/Pm0bt3aGYwAAgMDueeee/j2229TvQaSxYy4ndtvv90ULVrUfPDBB2bZsmVmwYIF5oUXXjCfffaZs02LFi1M4cKFTcWKFU1kZKT58ccfTceOHQ1gRo8ebapXr27mzJljFi1aZBo2bGh8fHzMv//+63z+smXLjJeXl6lTp46ZO3euWbBggWnbtq2x2WwptvP333+b/Pnzm3LlypmPP/7YLFy40DzwwAMGMK+99poxxpiYmBgzY8YMA5jnn3/eREVFmaioKHPgwAFjjDG9evUy3t7epnLlyubNN980P//8s3nhhReMzWYzo0ePvu5rERUVZTp06GD8/Pyc6z169KjZs2ePAcyMGTNSPQcwL774ovP3F1980QCmYsWK5oUXXjCLFy82EyZMMD4+Pubhhx9O8dyHHnrI2Gw2069fP/P111+b77//3rzyyivm7bffNsYYs379elO2bFlTq1YtZz3r1683xpg0a0rv6+x4/cqWLWsef/xx8+OPP5pp06aZggULmlatWqWo0dE2rX2/Wnh4uClZsqQJCwsz06dPN4sWLTI9evQwgHnjjTec7Y4ePWpKlixpihYtaqZMmWJ++OEHM3jwYAOYQYMGXff1vfvuu01YWJiJj49P0e7+++83JUqUMHFxcRk6DomJieb22283np6eZtSoUeann34yb775pgkICDC1atUyly5dSrF/oaGhplq1as73e4MGDYyXl5d54YUXTJMmTcxXX31l5s+fb2655RYTHBxsLly44Hy+o6bkXn75ZfPWW2+ZhQsXmmXLlpkpU6aYMmXKpDoOaT33alu3bjXPP/+883hFRUWZnTt3GmOSPhfh4eHOtlFRUcbPz8906NDB+d7aunXrNdd98eJFU6NGDRMQEGDefPNN89NPP5lRo0YZT09P06FDB2OMMZcuXTJRUVGmVq1apmzZss71xsTEXHO9vXr1Mjabzfzvf/8zP/30k5kwYYIpWbKkCQwMNL169XK2O3TokClVqpQJDw83U6dONT///LN5+eWXjY+Pj+ndu7ez3blz50z58uVNoUKFzPvvv29+/PFHM3ToUFOmTJlU7+NevXoZLy8vU7p0aTN+/Hjzyy+/mB9//NEkJCSYdu3amYCAADN69GizePFiM23aNFOyZElTpUqVFMf0lVdeMTabzfTp08d899135quvvjKNGjUyAQEB1309ryUuLs6UL1/e1KpVy7nswoULztfoau+9954BzPbt2zO8LUk/hSM3lC9fPvPkk09et02LFi0MYNauXetcduLECWO3242fn1+KILRx40YDmHfeece5rGHDhqZYsWLm7NmzzmXx8fGmWrVqJjQ01CQmJhpjjOnWrZvx8fEx+/fvT7H99u3bG39/f3P69GljjDFr1qy55hd2r169DGA+//zzFMs7dOhgKlaseINXI+n5AQEBKZZlJhy9/vrrKdo9+uijxtfX17mvK1asMIAZOXLkdeupWrWqadGiRarladWU3tfZEXgeffTRFOt8/fXXDWAOHTrkXPbRRx8Zu91uPvroo+vWaUxSeLDZbGbjxo0plt92220mMDDQnD9/3hhjzIgRIwxgfv/99xTtBg0aZGw2W4o/9Fe/vkuXLjWAmT9/vnPZv//+azw9PVOE3/Qehx9++CHNdnPnzjWA+eCDD1Lsn5+fn4mOjnYuc7zfQ0JCnPtnjDELFiwwgPnmm29S1XQtiYmJJi4uzixfvtwAZtOmTel+roPj2K5ZsybF8qvDkTHGBAQEpAgg1zNlypQ0P1evvfaaAcxPP/3kXNaiRQtTtWrVG65z27ZtBjBDhw5NsXzWrFkGSFHbgAEDTL58+cy+fftStH3zzTcN4Awi77//vgHM999/n6LdgAED0gxHgJk+fXqKtnPmzDGA+fLLL1Msd/zdmTRpkjHGmP379xtPT0/z+OOPp2h39uxZU7x4cdOlS5cbvgZXGzlypAHMggULnMv+/fdfA5jx48enaj979mwDmFWrVmV4W5J+6lZzQ/Xr12fmzJmMHTuW1atXExcXl2a7kJAQ6tSp4/y9UKFCFCtWjIiICEqUKOFcXrlyZQD27dsHwPnz5/n999+57777Uswis9vtPPTQQ0RHRzsHFC5ZsoQ2bdpQqlSpFNvu3bs3Fy5cSPdgVpvNRqdOnVIsq1GjhrOmnHDnnXem2v6lS5c4evQoAN9//z0Ajz32WJZsLyOv8/VqBFK8Tj179iQ+Pj7F+IfrqVq1KjVr1kyxrHv37pw5c8Y5s2bJkiVUqVIlxZgYSDrOxphrztaBpK6jmjVr8v777zuXTZkyBZvNxiOPPJKq/Y2Og2NbV8+Muv/++wkICOCXX35JsTwiIoKSJUs6f3e831u2bJlirMrVn4Nr2b17N927d6d48eLY7Xa8vLxo0aIFANu2bbvuc3PSkiVLCAgI4L777kux3PG6Xf06pcfSpUsBUo1N6tKlC56eKYfAfvfdd7Rq1YoSJUoQHx/v/Gnfvj0Ay5cvd/43f/78tGvXLsXzH3jggWvWce+996baVoECBejUqVOKbUVERFC8eHFnN+GPP/7o/Gwkb+fr60uLFi2u252YlmnTpvHKK6/w1FNPcdddd6V6/HqzFTM7C1LSRwOy3dDcuXMZO3Ys06ZNY9SoUeTLl4+7776b119/neLFizvbFSpUKNVzvb29Uy339vYGksZxAJw6dQpjDCEhIame7whVJ06ccP43Pe1uxN/fH19f3xTLfHx8nDXlhMKFC6faPsDFixeBpLFedrs9xWt8MzLyOqe3xsxIa38cy5If56unlV+vzqsNGTKEfv36sX37dsqWLcuHH37Ifffdl+a2b7SPJ06cwNPTk6JFi6ZoZ7PZKF68eKparvV+v9HnIC3nzp2jWbNm+Pr6MnbsWG655Rb8/f05cOAA99xzz00dh6x24sQJihcvnupLuFixYnh6eqb7s3n1OiH1e8bT0zPVcTty5AjffvstXl5eaa7r+PHjznUGBwenejytZZD0tyIwMDDVtk6fPu08htfa1pEjRwCcYyCv5uGR/vMNM2bMYMCAATzyyCO88cYbKR4rWLAgNpstzdf45MmTQNp/nyXrKBy5oSJFijBx4kQmTpzI/v37+eabbxgxYgRHjx5Nc2B1RhUsWBAPDw8OHTqU6jHH4N8iRYoASV9k6WmX0xxB6+oB3Zn5QnAoWrQoCQkJHD58OM1Ak1EZeZ2z0+HDh6+5zPGFd7PHuXv37gwfPpz333+fhg0bcvjw4UyfgStcuDDx8fEcO3YsRUAyxnD48OFrfvFlhSVLlnDw4EGWLVvmPFsEpBoInhsULlyY33//HWNMioB09OhR4uPjM/XecrwfDh8+nOJsXHx8fKrPVpEiRahRowavvPJKmutyBOvChQunOaA7rfclpH3GxTFB4Vp///Lnz+9sBzBv3rwUA6UzasaMGfTr149evXo5z4Im5+fnR/ny5dm8eXOq527evBk/Pz/Kli2b6e3Ljalbzc2FhYUxePDgLL24WEBAAA0aNOCrr75K8S/hxMREPv30U0JDQ7nlllsAaNOmjfMLI7mPP/4Yf39/59T1rDjDkRHBwcH4+vry559/plj+9ddfZ3qdju6AyZMnX7edj49PuvYzI69zdtq6dSubNm1KsWz27Nnkz5+f2rVrA0nH+a+//kr1Hvv444+x2Wy0atXqutvw9fXlkUce4aOPPmLChAlERETQpEmTTNXrmJ306aefplj+5Zdfcv78eefj2cHxJeh4PztMnTo127aZXHrfW5D0Op07dy7VdZEc1+PJzOvkmB03a9asFMs///zzVLOvOnbs6LxEQN26dVP9OMJRixYtOHv2rLPb2uGzzz5Ld10dO3bkxIkTJCQkpLmtihUrAnD77bfj6enJrl270mxXt27dG25r5syZ9OvXjwcffJBp06Zds3vs7rvvZsmSJSlmsZ09e5avvvqKO++8M1U3pGQtvbpuJiYmhlatWtG9e3cqVapE/vz5WbNmDT/88AP33HNPlm1n/Pjx3HbbbbRq1Yqnn34ab29vJk2axJYtW5gzZ47zD8KLL77oHFvwwgsvUKhQIWbNmsXChQt5/fXXCQoKApKu2eLn58esWbOoXLky+fLlo0SJEinGPmUlm83Ggw8+yPTp0ylXrhw1a9bkjz/+YPbs2ZleZ7NmzXjooYcYO3YsR44coWPHjvj4+LBhwwb8/f15/PHHAahevTqfffYZc+fOpWzZsvj6+lK9evU015ne1zkjPv74Y/r06cP06dPTNe6oRIkS3Hnnnbz00kuEhITw6aefsnjxYl577TXnmJyhQ4fy8ccfc8cddzBmzBjCw8NZuHAhkyZNYtCgQekKcY8++iivv/4669atY9q0aRneL4fbbruN22+/neHDh3PmzBmaNGnCn3/+yYsvvkitWrV46KGHMr3uG2ncuDEFCxZk4MCBvPjii3h5eTFr1qxU4TK7VK9enWXLlvHtt98SEhJC/vz5nV/8V+vZsyfvv/8+vXr1Yu/evVSvXp2VK1cybtw4OnTowK233prh7VeuXJkHH3yQiRMn4uXlxa233sqWLVt48803U3V1jRkzhsWLF9O4cWOGDBlCxYoVuXTpEnv37mXRokVMmTKF0NBQevXqxVtvvcWDDz7I2LFjKV++PN9//z0//vgjkL6urm7dujFr1iw6dOjAE088Qf369fHy8iI6OpqlS5dy1113cffdd1O6dGnGjBnDyJEj2b17N+3ataNgwYIcOXKEP/74g4CAAEaPHn3N7XzxxRf07duXiIgIBgwYkOqMV61atZzB+emnn+aTTz5xfmZ8fHx49dVXuXTpUp65gnyuZulwcMlxly5dMgMHDjQ1atQwgYGBxs/Pz1SsWNG8+OKLKWbeXGv2SXh4uLnjjjtSLQfMY489lmLZr7/+alq3bm0CAgKMn5+fadiwofn2229TPXfz5s2mU6dOJigoyHh7e5uaNWumOUtszpw5plKlSsbLyyvFjKa0ZpsZk/7ZPtd6fkxMjOnXr58JDg42AQEBplOnTmbv3r3XnK127NixFM93zCLas2ePc1lCQoJ56623TLVq1Yy3t7cJCgoyjRo1SvG67N2717Rt29bkz5/fAM4ZR9eaQZee1/laM5ocM8GWLl2aqm16p/LfcccdZt68eaZq1arG29vblC5d2kyYMCFV23379pnu3bubwoULGy8vL1OxYkXzxhtvmISEhBTtrn59k2vZsqUpVKhQiqnVDhk5DhcvXjTDhw834eHhxsvLy4SEhJhBgwaZU6dOpbl/V0vr/e44PskvYZDWe3DVqlWmUaNGxt/f3xQtWtT069fPrF+/PtVrnh2z1TZu3GiaNGli/P39DZDmrMjkTpw4YQYOHGhCQkKMp6enCQ8PN88++2yKyx0Yk/7ZasYYc/nyZfPUU0+ZYsWKGV9fX9OwYUMTFRVlwsPDU82kO3bsmBkyZIgpU6aM8fLyMoUKFTJ16tQxI0eONOfOnXO2279/v7nnnntMvnz5TP78+c29995rFi1aZADz9ddfp3hN0vqsG5M0pf7NN980NWvWNL6+viZfvnymUqVKZsCAAWbHjh0p2i5YsMC0atXKBAYGGh8fHxMeHm7uu+8+8/PPP1933x2z5a71k/w9aowxO3fuNJ07dzaBgYHG39/ftGnTxqxbty4dr7LcLJsxxuRIChORPKd06dJUq1bNeVHE7HT06FHCw8N5/PHHdXsKuaFx48bx/PPPs3///my/SrnkPepWE5FcLTo6mt27d/PGG2/g4eHBE088YXVJksu89957AFSqVIm4uDiWLFnCO++8w4MPPqhgJJmicCQiudq0adMYM2YMpUuXZtasWSlmOYlA0vT8t956i71793L58mXCwsIYPnw4zz//vNWliYtSt5qIiIhIMpZP5V+xYgWdOnWiRIkS2Gy2VNNG07J8+XLq1KnjvMnllClTsr9QERERcQuWh6Pz589Ts2ZNZ5/xjezZs4cOHTrQrFkzNmzYwHPPPceQIUP48ssvs7lSERERcQe5qlvNZrMxf/58OnfufM02w4cP55tvvklxD6KBAweyadOmdN+HS0RERORaXG5AdlRUFG3btk2x7PbbbycyMpK4uLg078Nz+fLlFLeBSExM5OTJkxQuXFg37xMREXERxhjOnj1LiRIlMnQvu4xyuXB0+PDhVDcUDA4OJj4+nuPHj6d5z6rx48df96qlIiIi4joOHDiQrZdpcLlwBKlvHOjoGbzWWaBnn32WYcOGOX+PiYkhLCyMAwcOpLpkvYi4kH//hV27oFw5uN4U//S2E5Fc7cyZM5QqVcp5M+Ds4nLhqHjx4qnutnz06FE8PT2dd3y+mo+PT6obPQIEBgYqHIm4qshIeOQRSEwEDw/44APo2zfz7UTEZWT3kBjLZ6tlVKNGjVi8eHGKZT/99BN169ZNc7yRiORB0dH/BR5I+u+AARAdTVxcHCdPniQhIeG67URErsXycHTu3Dk2btzIxo0bgaSp+hs3bmT//v1AUpdY8juDDxw4kH379jFs2DC2bdvG9OnTiYyM5Omnn7aifBGxwo4d/wWeK5YlJNDunnvIly8fhQsXpmDBgvTo3Zu/r2pHQgLs3JmDxYqIq7F8Kv+yZcto1apVquW9evVi5syZ9O7dm71797Js2TLnY8uXL2fo0KFs3bqVEiVKMHz4cAYOHJjubZ45c4agoCBiYmLUrSbiiqKjITwcEhNJAIYC716jqRfwNjDIscBuh717QffcEnE5OfX9bXk4soLCkUgeEBlJwiOP8EBiIl9cWTRgwACefPJJypQpw4YNGxgzZgzff/89AOOAZ+12mDpVY45EXFROfX9b3q0mIpIpffvyvz59+ALw9vZm3rx5TJkyhUqVKuHj40PDhg1ZuHAhY8aMAeA5YO477ygYicgNKRyJiEtauHAhb02bBsAnn3zCvffem6qNzWZj1KhRPPPMMwD0Gz6cv//+O0frFBHXo3AkIi7n2LFj9OnTB4ChQ4fSpUuX67Z/5ZVXaNWqFefOnaNXr14kXj1IW0QkGYUjEXE5I0eO5OjRo1SrVo1x48bdsL2npyeffvop+fPn548//iAyMjIHqhQRV6VwJCIuZdOmTUy70p02efJkfH190/W8EiVKOMcfDR8+nFOnTmVbjSLi2hSORMSl/O9//8MYQ5cuXWjatGmGnjt48GCqVq3KqVOnmDBhQjZVKCKuTuFIRFzG6tWrWbx4MZ6enrz66qsZfr6np6fz7NHbb7/NyZMns7pEEckDFI5ExGWMHz8egAcffJAyZcpkah2dO3emZs2anD17VmePRCRNCkci4hK2bNnCN998g81mY8SIEZlej4eHB6NGjQJgypQpXLx4MatKFJE8QuFIRFzCe++9B8A999xDxYoVb2pdnTt3pnTp0pw4cYJZs2ZlRXkikocoHIlIrhcTE8Onn34KwOOPP37T67Pb7QwePBhIGnvkhndREpHrUDgSkVzv448/5vz581StWpXmzZtnyTr79u1LQEAAW7ZsYdWqVVmyThHJGxSORCRXM8YwdepUAB599FFsNluWrLdAgQLOK2vPnDkzS9YpInmDwpGI5GobN25k69at+Pj40L179yxdd+/evQGYO3cu58+fz9J1i4jrUjgSkVztk08+AeDOO++kQIECWbrupk2bUrZsWc6ePcv8+fOzdN0i4roUjkQk14qPj2f27NkAPPTQQ1m+fg8PD3r16gWoa01E/qNwJCK51s8//8yRI0coUqQI7dq1y5ZtOMLRL7/8QnR0dLZsQ0Rci8KRiORaji61bt264eXllS3bCA8Pd96j7auvvsqWbYiIa1E4EpFc6dKlS3zzzTcA9OjRI1u3dd999wEwb968bN2OiLgGhSMRyZV++eUXzp07R8mSJalfv362buuee+4BYOXKlRw6dChbtyUiuZ/CkYjkSo4urs6dO+Phkb1/qkqVKkXDhg0xxmjWmogoHIlI7hMfH+/sUnOc1clu6loTEQeFIxHJdVbOn8/x48cpVKBAlt0u5EbuvfdeAJYvX86x+fNBM9dE3JbCkYjkLpGRzL9yW487T5/G86OPcmSzpUuXJqJUKRITE/nhnnsgPBwiI3Nk2yKSuygciUjuER2N6d+fb6782hlgwICcOYsTHc0dBw4AsBAgMTHnti0iuYrCkYjkHjt2sN0Y9gLewK0ACQmwc2eObPuOK//7AxCXk9sWkVxF4UhEco8KFfjBZgOgORAAYLdD+fI5su36NhtFgBhgVU5uW0RyFYUjEck9QkP5vkoVANpDUjiZOhVCQ3Nk2/YPP6T9lXC20GbLuW2LSK6icCQiucaFCxdYfqUbq92MGbB3L/Ttm3MF9O3LHe+9B8B35cvn7LZFJNdQOBKRXGPZsmVcvnyZsLAwKvfqZclZm9u7d8dut7Ntxw727duX49sXEespHIlIrvH9998D0L59e2xXurdyWoECBZy3K/n5558tqUFErKVwJCK5RvJwZKVbb70VUDgScVcKRyKSK+zcuZNdu3bh5eVF69atLa3FEY5++eUXEhMTLa1FRHKewpGI5AqOszSNGzcmf/78ltbSsGFDAgICOHbsGJs3b7a0FhHJeQpHIpIrLFmyBIA2bdpYXAl4e3vTokULQF1rIu5I4UhELJeYmMiyZcsAaNWqlbXFXKFxRyLuS+FIRCy3detWjh07hr+/v3OmmNUc4WjFihVcvnzZ4mpEJCcpHImI5ZYuXQpA06ZN8fb2triaJNWqVaNYsWJcuHCB1atXW12OiOQghSMRsZxjvJHVs9SSs9ls6loTcVMKRyJiqYSEBJYvXw7knvFGDo56HPWJiHtQOBIRS23cuJHTp08TGBhI7dq1rS4nBceMtd9//51Lly5ZXI2I5BSFIxGxlGO8UfPmzfH09LS4mpTKly9P8eLFiY2N5Y8//rC6HBHJIQpHImIpRzjKTeONHGw2G82bNwfUtSbiThSORMQyCQkJ/PbbbwDOEJLbOOpasWKFxZWISE5ROBIRy2zdupWYmBjy5ctHzZo1rS4nTY5xR6tWrSIuLs7iakQkJygciYhlVq5cCUCjRo1y3XgjhypVqlCoUCEuXLjAunXrrC5HRHKAwpGIWMYRjpo2bWpxJdfm4eFBs2bNAHWtibgLhSMRsYwrhCP4r2tN4UjEPSgciYgl9u/fz4EDB7Db7TRo0MDqcq7LMSj7119/JSEhweJqRCS7KRyJiCUcZ41q165NQECAxdVcX82aNcmXLx9nzpxh69atVpcjItlM4UhELOEqXWoAnp6ezrNbUVFRFlcjItlN4UhELOFK4QigcePGQNKUfhHJ2xSORCTHnTp1ii1btgDQpEkTi6tJH4UjEfehcCQiOS4qKgpjDBUqVCA4ONjqctKlYcOGAOzcuZOjR49aXI2IZCeFIxHJcY4uNcf1g1xBgQIFqFq1KqBxRyJ5ncKRiOQ4x/3UXKVLzaFRo0aAutZE8jqFIxHJUfHx8axZswb4L2y4Cse4I505EsnbFI5EJEdt3ryZixcvEhQURMWKFa0uJ0Mc4WjNmjXExsZaXI2IZBeFIxHJUatXrwagQYMGeHi41p+gW265hUKFCnHp0iU2btxodTkikk1c6y+TiLg8RzhyzP5yJTabTVP6RdyAwpGI5Kjff/8dcM1wBLrekYg7UDgSkRxz8uRJtm/fDkD9+vUtriZzHOHIMeNORPIehSMRyTF//PEHABUqVKBw4cIWV5M59erVw263c/DgQaKjo60uR0SyQa4IR5MmTaJMmTL4+vpSp04dfv311+u2nzVrFjVr1sTf35+QkBAefvhhTpw4kUPVikhmufJ4Iwd/f3+qV68O/Bf2RCRvsTwczZ07lyeffJKRI0eyYcMGmjVrRvv27dm/f3+a7VeuXEnPnj3p27cvW7du5YsvvmDNmjX069cvhysXkYzKC+EI/usSVDgSyZssD0cTJkygb9++9OvXj8qVKzNx4kRKlSrF5MmT02y/evVqSpcuzZAhQyhTpgxNmzZlwIABrF27NocrF5GMSExMdPnB2A6OcOTYHxHJWywNR7Gxsaxbt462bdumWN62bdtrzgRp3Lgx0dHRLFq0CGMMR44cYd68edxxxx3X3M7ly5c5c+ZMih8RyVn//PMPp0+fxs/Hh+oFC1pdzk1xhKO1v/9Owr59FlcjIlnN0nB0/PhxEhISUt2VOzg4mMOHD6f5nMaNGzNr1iy6du2Kt7c3xYsXp0CBArz77rvX3M748eMJCgpy/pQqVSpL90NEbmz1668DUOfyZbzKl4fISIsryrwqq1cTAJy7eJG/y5Rx6X0RkdQs71aDpAurJWeMSbXM4a+//mLIkCG88MILrFu3jh9++IE9e/YwcODAa67/2WefJSYmxvlz4MCBLK1fRG4gOprVM2YA0BAgMREGDABXnO0VHY194EDqXvn1d2Ncd19EJE2eVm68SJEi2O32VGeJjh49mupsksP48eNp0qQJ//vf/wCoUaMGAQEBNGvWjLFjxxISEpLqOT4+Pvj4+GT9DohI+uzYgWN0jnO0UUIC7NwJoaEWFZVJO3ZAYiL1geXAH0AfV90XEUmTpWeOvL29qVOnDosXL06xfPHixc4LrV3twoULqe7HZLfbgaQzTiKS+5wvWZI/r/y/MxzZ7VC+vEUV3YQKFcDDA8clLP8A190XEUmT5d1qw4YNY9q0aUyfPp1t27YxdOhQ9u/f7+wme/bZZ+nZs6ezfadOnfjqq6+YPHkyu3fv5rfffmPIkCHUr1+fEiVKWLUbInId6w4fJhEoeeUHux2mTnXNMy2hofDBBzS48o+0P4EL77zjmvsiImmytFsNoGvXrpw4cYIxY8Zw6NAhqlWrxqJFiwgPDwfg0KFDKa551Lt3b86ePct7773HU089RYECBWjdujWvvfaaVbsgIjewZs0aAOq3awfDhyedZXHlMNG3L6Ft21I8IoLDJ0+yoWZNmlhdk4hkGZtxw76oM2fOEBQURExMDIGBgVaXI5LnPfDAA3z22We88sorPPfcc1aXk2XuuusuvvnmGyZMmMDQoUOtLkckz8up72/Lu9VEJO9znDmqV6+exZVkrQYNGgC6GKRIXqNwJCLZ6tSpU+zatQuAOnXqWFxN1tJtRETyJoUjEclWjlv7lCtXjkKFCllcTdaqWzfpakd79uzh2LFjFlcjIllF4UhEspUjHDmCRF5SoEABKlasCOjskUheonAkItkqr443cnCMO1I4Esk7FI5EJFs5wlFePHMEGnckkhcpHIlItjl8+DDR0dHYbDZq165tdTnZInk4csMro4jkSQpHIpJtHOONKlWqRP78+S2uJnvUrFkTb29vTp48yZ49e6wuR0SygMKRiGQbRzjKq+ONIOkekTVq1AD+218RcW0KRyKSbfL6eCMHx/4pHInkDQpHIpItjDFuceYIFI5E8hqFIxHJFgcOHODo0aN4enpSs2ZNq8vJVo5wtG7dOhITEy2uRkRulsKRiGQLx1mUatWq4efnZ3E12atKlSr4+vpy5swZdu7caXU5InKTFI5EJFu4y3gjAC8vLyIiIgB1rYnkBQpHIpIt3GW8kYPGHYnkHQpHIpLlkg/GdoczR6BwJJKXKByJSJbbtWsXp0+fxsfHh2rVqlldTo5whKP169eTkJBgcTUicjMUjkQkyznGGzmuHu0OKlWqhL+/P+fPn2f79u1WlyMiN0HhSESynLuNNwKw2+3O+8epa03EtSkciUiWc6eZaslp3JFI3qBwJCJZKiEhgfXr1wPudeYIFI5E8gqFIxHJUn///Tfnz58nICCASpUqWV1OjnKEow0bNhAfH29xNSKSWQpHIpKlHGdNateujd1ut7ianFWhQgUCAwO5dOkSf/31l9XliEgmKRyJSJZy1/FGAB4eHtSpUwdQ15qIK1M4EpEs5Y4z1ZLTuCMR16dwJCJZJjY2lo0bNwIKRwpHIq5L4UhEsszWrVu5fPkyBQoUoFy5claXYwlHONq0aROxsbEWVyMimaFwJCJZJvl4I5vNZnE11ihTpgwFCxYkNjaWLVu2WF2OiGSCwpGIZBl3HoztYLPZ1LUm4uIUjkQky7j7YGwHhSMR16ZwJCJZ4uLFi2zevBlw7zNHoHAk4uoUjkQkS2zatImEhASKFi1KqVKlrC7HUo5wtHnzZi5dumRxNSKSUQpHIpIlknepuetgbIdSpUpRtGhR4uPj+fPPP60uR0QySOFIRLKEIxy5e5caaFC2iKtTOBKRLOGYqebug7EdFI5EXJfCkYjctHPnzrFt2zYA573F3J3CkYjrUjgSkZu2YcMGjDGULFmSkJAQq8vJFRzhaOvWrVy4cMHiakQkIxSOROSmqUsttRIlShASEkJiYqLzfnMi4hoUjkTkpmkwdtrUtSbimhSOROSmKRylTeFIxDUpHInITTl9+jQ7duwANBj7ao5w5Oh2FBHXoHAkIjdl3bp1AJQJCaGIrgadgiMcbd++nbN//21xNSKSXgpHInJT1k6eDEDdQ4cgPBwiIy2uKPco9u23hAHGGNZVqaLXRsRFKByJSOZFR7P2yy8BqAuQmAgDBkB0tKVl5QrR0fDIIzjm760xRq+NiItQOBKRzNuxA8doGuck/oQE2LnTooJykR07IDHxv3AEem1EXITCkYhk2rFChdh35f9rOxba7VC+vEUV5SIVKoCHR8pwpNdGxCUoHIlIpq07dAiAW4AgSPrynzoVQkOtLCt3CA2FDz6gtkfSn9m9wLE339RrI+ICFI5EJNMc1++pd/fdsHQp7N0LfftaW1Ru0rcvBfbt45ZSpQBYV6mSxQWJSHooHIlIpjmu31O3eXNo2VJnRdISGkq95s0BXe9IxFUoHIlIpunK2OnjuOecwpGIa1A4EpFMOXjwIAcPHsTDw4NatWpZXU6uljwcGWMsrkZEbkThSEQyxXHWqEqVKgQEBFhcTe4WERGB3W7n8OHD/Pvvv1aXIyI3oHAkIpmiLrX08/f3p2rVqoC61kRcgcKRiGSKwlHGaNyRiOtQOBKRDDPG/DeNv169G7QWUDgScSUKRyKSYfv37+fYsWN4enpSo0YNq8txCY5wtHbtWg3KFsnlFI5EJMMcZ42qV6+Or6+vxdW4hurVq+Pj48Pp06fZtWuX1eWIyHUoHIlIhqlLLeO8vLyIiIgA1LUmktspHIlIhjmvjK3B2BmicUcirkHhSEQyJPlgbIWjjHG8XgpHIrmbwpGIZMjOnTuJiYnBx8eHatWqWV2OS3GcOVq/fj3x8fEWVyMi16JwJCIZ8vvvvwNQu3ZtvLy8LK7GtVSsWJF8+fJx4cIFtm3bZnU5InINCkcikiF//PEHAPXr17e4Etdjt9upU6cOoK41kdwsV4SjSZMmUaZMGXx9falTpw6//vrrddtfvnyZkSNHEh4ejo+PD+XKlWP69Ok5VK2Ie3OcOWrQoIHFlbim5Nc7EpHcydPqAubOncuTTz7JpEmTaNKkCVOnTqV9+/b89ddfhIWFpfmcLl26cOTIESIjIylfvjxHjx5V/71IDrh8+TIbN24EFI4ySzPWRHI/m7H4Uq0NGjSgdu3aTJ482bmscuXKdO7cmfHjx6dq/8MPP9CtWzd2795NoUKFMrXNM2fOEBQURExMDIGBgZmuXcTd/PHHHzRo0IAiRYpw9OhRbDab1SW5nD179lC2bFm8vLw4e/YsPj4+Vpck4jJy6vvb0m612NhY1q1bR9u2bVMsb9u2LatWrUrzOd988w1169bl9ddfp2TJktxyyy08/fTTXLx48ZrbuXz5MmfOnEnxIyIZ5+hSq1+/voJRJpUuXZrChQsTFxfHn3/+aXU5IpIGS8PR8ePHSUhIIDg4OMXy4OBgDh8+nOZzdu/ezcqVK9myZQvz589n4sSJzJs3j8cee+ya2xk/fjxBQUHOn1KlSmXpfoi4Cw3Gvnk2m815vSPH6ykiuUuuGJB99b9AjTHX/FdpYmIiNpuNWbNmUb9+fTp06MCECROYOXPmNc8ePfvss8TExDh/Dhw4kOX7IOIONBg7azRs2BD47/UUkdzF0gHZRYoUwW63pzpLdPTo0VRnkxxCQkIoWbIkQUFBzmWVK1fGGEN0dDQVKlRI9RwfHx/164vcpJMnT7Jjxw5AZ45uliNcrl692uJKRCQtlp458vb2pk6dOixevDjF8sWLF9O4ceM0n9OkSRMOHjzIuXPnnMv++ecfPDw8CA0NzdZ6RdyZY3ZV+fLlMz0ZQpI4wuWOHTs4ceKExdWIyNUs71YbNmwY06ZNY/r06Wzbto2hQ4eyf/9+Bg4cCCR1ifXs2dPZvnv37hQuXJiHH36Yv/76ixUrVvC///2PPn364OfnZ9VuiOR56lLLOoULF+aWW24BNO5IJDeyPBx17dqViRMnMmbMGCIiIlixYgWLFi0iPDwcgEOHDrF//35n+3z58rF48WJOnz5N3bp16dGjB506deKdd96xahdE3ILCUdZyjDtS15pI7mP5dY6soOsciWSMMYZixYpx/PhxVq9erYCUBSZPnsyjjz5K27Zt+fHHH60uR8QluMV1jkTENezZs4fjx4/j7e1NRESE1eXkCclnrCUmJlpcjYgkp3AkIjfk6FKLiIjQzM8sUr16dfz8/IiJiWH79u1WlyMiySgcicgN6eKPWc/T09N5nzWNOxLJXRSOROSGNBg7e+h6RyK5k8KRiFxXbGws69evBxSOspqulC2SOykcich1bdq0icuXL1OwYEHKly9vdTl5iiMcbd68OcWFbUXEWgpHInJdq1atAqBx48bXvOehZE6JEiUoVaoUiYmJrF271upyROQKhSMRua7k4Uiyni4GKZL7KByJyHUpHGUvhSOR3EfhSESu6cCBA0RHR2O3253TziVrJQ9HbnjDApFcSeFIRK7JcdYoIiKCgIAAi6vJm2rVqoWXlxdHjhxh3759VpcjIigcich1rPrpJwAa16hhcSV5l5+fn/OWLKsjIyE62tqCREThSESuITKSVdOnA9B45kyIjLS2njys0ZUbaP42diyEh+u1FrGYzbhhJ3dO3dVXxGVFR3M+LIwgY0gA9gFhdjvs3QuhoRYXl8dER/NFWBhdjCEC2ACg11okTTn1/a0zRyKS2o4drL0SjEoCpQASEmDnTmvryot27KDJlX+j/gmcAb3WIhZTOBKR1CpUYNWVCz42BmyQdDZDV8jOehUqUMLDgzJAIrAa9FqLWEzhSERSCw1lVfXqQFI4wm6HqVPVzZMdQkPhgw9oeiWMrrTZ9FqLWEzhSERSMcaw6sqsqcaTJiWNf+nb19qi8rK+fWkybhwAKxs10mstYjGFIxFJ5Z9//uHkyZP4+voS0bevzmLkgKadOgHw+8aNxMXFWVyNiHtTOBKRVBwXf6xXrx7e3t4WV+MeKleuTMGCBblw4QIbN260uhwRt6ZwJCKprFy5EoBGjRpZXIn78PDwcN6/zvH6i4g1FI5EJJVff/0VgObNm1tciXtp2rQpAL/99pvFlYi4N4UjEUnh0KFD7NixA5vNRpMmTawux604wtHKlSt1E1oRCykciUgKjrNGNWvWpECBAtYW42bq1q2Lt7c3R44cYdeuXVaXI+K2FI5EJIUVK1YA6lKzgq+vL3Xr1gU07kjESgpHIpKCwpG1NO5IxHo3FY6OHj3K4cOHs6oWEbHYyZMn2bx5MwDNmjWzuBr35Bjn5ejeFJGcl6lw9Oeff1K1alVCQkIoWbIkJUuW5Pnnn+f8+fNZXZ+I5CBHV06lSpUoVqyYxdW4p6ZNm2Kz2di+fTuHDh2yuhwRt5SpcNS3b1+Cg4NZuXIlGzZsYOzYsXz//ffUrVuXU6dOZXWNIpJD1KVmvUKFClGzZk0Ali9fbnE1Iu4pU+Hor7/+YtKkSTRq1IgaNWrw8MMPs3btWqpWrcrjjz+e1TWKSA5ROModWrZsCcCyZcssrUPEXWUqHKV1hshmszFu3Di+/vrrLClMRHLW2bNnWb9+PaBwZDWFIxFreaa34R133EHNmjWJiIhg4MCBDB06lK+//prg4GBnm5iYGAoWLJgthYpI9oqKiiIhIYHSpUtTqlQpq8txa82bN08x7igkJMTqkkTcSrrDUfXq1Vm/fj0zZszgyJEjAJQtW5YuXboQERFBQkICM2bM4K233sq2YkUk+zjGt2iWmvUKFixIREQEGzZsYPny5XTr1s3qkkTcSrrD0auvvur8/yNHjrBhwwY2btzIxo0bmTx5Mjt37sRutzN69GjuvffebClWRLLPkiVLAGjVqpXFlQgkda1t2LCBpUuXKhyJ5LB0h6PkgoODadeuHe3atXMuu3jxIps2bWLTpk1ZVpyI5IwzZ86wZs0aANq0aWNxNQJJ4eitt97SuCMRC2QqHKXFz8+Phg0b0rBhw6xapYjkkBUrVpCQkED58uUJCwuzuhzhv3FH//zzDwcPHqREiRJWlyTiNnT7EBHhl19+AaB169YWVyIOBQoUoFatWoCudySS0xSORMQZjtSllrtoSr+INRSORNzc0aNHnfdT02Ds3MURjhyD5UUkZygcibi5pUuXAlCjRg2KFi1qcTWSXIsWLbDb7ezcuZM9e/ZYXY6I21A4EnFz6lLLvQIDA52TXBYvXmxxNSLuQ+FIxM0pHOVubdu2BRSORHKSwpGIG9u7dy+7d+/Gbrfryti51G233QYkhdiEhASLqxFxDwpHIm7MMdC3fv36BAYGWlyNpKVevXoEBQVx6tQp1q1bZ3U5Im5B4UjEjf3000+AutRyM09PT+f1p9S1JpIzFI5E3FR8fLwzHLVv397iauR6HF1rjuMlItlL4UjETa1Zs4ZTp05RoEAB6tevb3U5ch2OQdlRUVGcO3fO4mpE8j6FIxE39f333wNJX7yenll2m0XJBuXKlaNMmTLExcXpViIiOUDhSMQdRUfzw+efA9CuXTuLi5H0cJw9+umrr2DpUoiOtrgikbxL4UjE3URGciwsjLXbtwPQ7uRJiwuS9HCMO/px+nRo3RrCwyEy0uKqRPImhSMRdxIdDY88wk/GYICaQMjw4ToL4QJurVwZT2A7sBMgMREGDNCxE8kGCkci7mTHDkhM5Psrv7YDSEiAnTstLErSI+jIEZpf+f+FjoU6diLZQuFIxJ1UqECizcaPV35tD2C3Q/nyFhYl6VKhAh1tNgC+cyzTsRPJFgpHIu4kNJT1I0dyHMgPNPbwgKlTITTU6srkRkJDuePllwFYDpzVsRPJNgpHIm5mkZcXAG2aNsVr3z7o29fiiiS9bhk5kgplyhAHLJ4yRcdOJJsoHIm4mW+++QaAjr1766yDC+rYuTMA30VFWVuISB6mcCTiRqKjo1m3bh02m42OHTtaXY5kguO4LVy4kMTERIurEcmbFI5E3IjjrFGjRo0IDg62uBrJjKZNmxIYGMjRo0dZu3at1eWI5EkKRyJuxBGO7rrrLosrkczy9vZ2Xi37u+++u0FrEckMhSMRN3HmzBmWLFkCKBy5OkfXmiPsikjWUjgScRM//vgjcXFx3HLLLVSsWNHqcuQm3HHHHdjtdjZt2sTu3butLkckz1E4EnETX3/9NaCzRnlBkSJFaNGiBQBfffWVxdWI5D0KRyJuIDY2loULk246oXCUN9x7770AfPnllxZXIpL35IpwNGnSJMqUKYOvry916tTh119/TdfzfvvtNzw9PYmIiMjeAkVc3C+//MLp06cpXrw4DRs2tLocyQKdr1zvaPXq1fz777/WFiOSx1gejubOncuTTz7JyJEj2bBhA82aNaN9+/bs37//us+LiYmhZ8+etGnTJocqFXFdX3zxBZB0tsFut1tcjWSFEiVK0LhxYwDmz59vcTUieYvl4WjChAn07duXfv36UblyZSZOnEipUqWYPHnydZ83YMAAunfvTqNGjXKoUhHXFBsby4IFCwC4//77rS1GspS61kSyh6XhKDY2lnXr1jmv2eHQtm1bVq1adc3nzZgxg127dvHiiy+mazuXL1/mzJkzKX5E3MUvv/zCqVOnCA4OpmnTplaXI1no7rvvBmDFihUcO3bM4mpE8g5Lw9Hx48dJSEhIdaXe4OBgDh8+nOZzduzYwYgRI5g1axaenp7p2s748eMJCgpy/pQqVeqmaxdxFY4utfvuu09danlMmTJlqF27NomJiTp7JJKFLO9WA7DZbCl+N8akWgaQkJBA9+7dGT16NLfccku61//ss88SExPj/Dlw4MBN1yziCmJjY53jUdSlljc98MADAMyZM8fiSkTyDkvDUZEiRbDb7anOEh09ejTN+z6dPXuWtWvXMnjwYDw9PfH09GTMmDFs2rQJT09P59V/r+bj40NgYGCKHxF34Jilpi61vKtr165AUtea/uEnkjUsDUfe3t7UqVOHxYsXp1i+ePFi5yyM5AIDA9m8eTMbN250/gwcOJCKFSuyceNGGjRokFOli7iE2bNnA+pSy8tKlSpF8+bNAfjss88srkYkb7C8W23YsGFMmzaN6dOns23bNoYOHcr+/fsZOHAgkNQl1rNnTwA8PDyoVq1aip9ixYrh6+tLtWrVCAgIsHJXRHKVc+fOOa+e/OCDD1pcjWSn7t27A+paE8kqloejrl27MnHiRMaMGUNERAQrVqxg0aJFhIeHA3Do0KEbXvNIRFKbP38+Fy5coEKFCjqrmsfdd999eHp6smHDBrZt22Z1OSIuz2aMMVYXkdPOnDlDUFAQMTExGn8keVbbtm1ZvHgxo0eP5oUXXrC6HMlmHTt2ZOHChYwaNYoxY8ZYXY5Itsip72/LzxyJSNY7ePAgv/zyCwA9evSwuBrJCY6utU8++YTExESLqxFxbQpHInnQnDlzSExMpHHjxpQrV87qciQHdO7cmcDAQPbu3cvy5cutLkfEpSkcieQxxhg++eQTAB566CGLq5Gc4u/vT7du3QCYPn26xdWIuDaFI5E8Zt26dWzatAlvb2+6dOlidTmSg/r06QMk3WstJibG4mpEXJfCkUheEh3Nh6NHA0k3JS1UqJDFBUlOql+/PlWqVOHixYvMnTIFli6F6GiryxJxOQpHInlFZCTnwsKY/d13APQvWdLigiSn2Ww2Hn74YQCmjxgBrVtDeDhERlpcmYhr0VR+TeWXvCA6GsLDiUxMpB9QHvjHwwPbvn0QGmp1dZKDjmzYQMnatUkAtgBVAex22LtX7wVxeZrKLyLpt2MHJCby4ZVf+wG2xETYudPKqsQCwadPc+eV/5/sWJiQoPeCSAYoHInkBRUqsNlm43fAE+gNSWcLype3tCyxQIUKPGqzAfAxcBb0XhDJIIUjkbwgNJRJV24+eicQbLfD1KnqRnFHoaG0njqVW0gKRrNsNr0XRDJI4UgkDzh16hQfr1kDwONvvZU0vqRvX2uLEst49O/Poy+9BMD7t9yCuTLFX0TSR+FIJA+YPn06Fy5coHr16rR44gmdJRB6PfEE/v7+bNm+nZUrV1pdjohLUTgScXEJCQm89957AAwZMgTblfEm4t4KFCjgvK/eu+++a3E1Iq5F4UjExX333Xfs3buXQoUKOW8+KgIwePBgIOmK2Xv27LG4GhHXoXAk4uLefvttAPr374+/v7/F1UhuUqNGDdq2bUtiYiITJ060uhwRl6FwJOLC1q1bx9KlS7Hb7Tz66KNWlyO50NNPPw3AtGnTOHnypMXViLgGhSMRF/baa68B8MADDxAWFmZxNZIb3XrrrURERHDhwgUmT5584yeIiMKRiKvasWMH8+bNA+CZZ56xuBrJrWw2m/Ps0bvvvsulS5csrkgk91M4EnFRb7zxBsYY7rjjDqpXr251OZKLdenShVKlSnHkyBE+/fRTq8sRyfUUjkRc0KFDh/joo48AGDFihMXVSG7n5eXFk08+CcCrr75KfHy8tQWJ5HIKRyIu6I033iA2NpbGjRvTtGlTq8sRFzBgwACKFCnCrl27mDVrltXliORqCkciLubgwYPOgbUvvPCCxdWIqwgICHCOTXv55Zd19kjkOhSORFzMq6++yqVLl2jSpAlt27a1uhxxIY8++ihFixZl165dGnskch0KRyIu5MCBA0ydOhWAMWPG6FYhkiHJzx6NHTtWZ49ErkHhSMSFjBs3jtjYWFq0aEGrVq2sLkdc0KBBg5xnjz755BOryxHJlRSORFzE3r17iYyMBHTWSDIv+dmjl156Sdc9EkmDwpGIixg1ahRxcXHceuutNG/e3OpyxIU99thjhIaGsn//ft577z2ryxHJdRSORHK76GjWTZ3qHED76quvWlyQuDo/Pz9efvllAF4ZO5aTX38N0dEWVyWSeygcieRmkZGYsDCeHjgQgAcbNqROnToWFyV5wUMPPUT1kiU5HRPD+M6dITwcrnTbirg7mzHGWF1ETjtz5gxBQUHExMQQGBhodTkiaYuOhvBwvk1M5E7AB/jHw4OwffsgNNTq6sTVRUfzQ1gY7Y3BG9gOlLbbYe9evb8k18qp72+dORLJrXbsID4xEcctZYcCYYmJsHOnlVVJXrFjB7cbQxsgFngWICFB7y8RFI5Ecq8KFZhss/E3UAQYAWC3Q/ny1tYleUOFCtg8PHgDsAGfASs8PPT+EkHhSCTXOuLlxShfXwBeBoLsdpg6VV0ekjVCQ+GDD6hltzPgyqLBISHEFy9uaVkiuYHCkUguNWLECGIuXqR29er0//nnpLEgfftaXZbkJX37wt69jF2wgEIFCrD533+d9+0TcWcakK0B2ZILrVq1iiZNmgAQFRVFw4YNLa5I8ropU6YwaNAgChQowPbt2ylWrJjVJYmkogHZIm4qISGBxx57DIA+ffooGEmO6N+/P7Vq1eL06dM899xzVpcjYimFI5FcZsqUKWzcuJECBQrogo+SY+x2u/Nq2ZGRkaxatcriikSso3AkkoscPHjQ+a/2V155haJFi1pckbiTxo0b06dPHyDpTNLly5ctrkjEGgpHIrnI4MGDOXPmDPXq1WPAgAE3foJIFnvjjTcoVqwYf/31F6+//rrV5YhYQuFIJJf48ssvmT9/Pp6enkybNg273W51SeKGChUqxNtvvw3A2LFj+fvvvy2uSCTnKRyJ5AKnTp1i8ODBQNIU/ho1alhckbizrl270qFDB2JjY3nkkUdITEy0uiSRHKVwJJILPPPMMxw+fJiKFSsycuRIq8sRN2ez2Zg0aRIBAQH8+uuvTJs2zeqSRHKUwpGIxZYuXer88vnwww/xvXJVbBErhYeHM3bsWCApvEdHR1tckUjOUTgSsdC5c+fo378/AAMHDqRZs2YWVyTyn8cff5z69esTExND//79ccNrBoubUjgSsdDw4cPZtWsXpUqV0jWNJNex2+3MnDkTHx8ffvjhByIjI60uSSRHKByJWGTx4sVMmjQJgOnTpxMUFGRxRSKpVa5cmVdeeQWAYcOGsW/fPosrEsl+CkciFoiJiaFPr14APNarF7feeqvFFYlc25NPPkmTevU4e/YsfXr00Ow1yfMUjkQs8GSHDkQfOkQ54LWPPwZ1V0guZp85k5lr1+IHLPntN6b07Gl1SSLZSuFIJId9M306M1etwgZ8BAQYAwMGgGYDSW4UHQ2PPEJ5Y3jtyqL/zZrFrpUrLS1LJDspHInkoOPHj9P/6acBeBpo4nggIQF27rSqLJFr27EDrnSjPQa0Ai4ADz/2GAkJCVZWJpJtFI5EcogxhkGDBnH01CmqAGOSP2i3Q/nyFlUmch0VKoBH0leFBzAdyAf8+uefvPnmm1ZWJpJtFI5Ecsjs2bOZN28enp6efPz88/g67p1mt8PUqRAaam2BImkJDYUPPkh6nwKl7Xbe6d0bgFGjRrF+/XoLixPJHjbjhlf1OnPmDEFBQcTExBAYGGh1OeIG9uzZQ0REBGfOnGH06NG88MILSWM5du5MOmOkYCS5XbL3qylZkvvvv58vv/ySSpUqsW7dOvz9/a2uUNxATn1/KxwpHEk2i4+Pp2XLlvz22280btyY5cuX4+npaXVZIjflxIkT1KhRg4MHD/Loo4/y/vvvW12SuIGc+v5Wt5pINhs/fjy//fYb+fPn59NPP1UwkjyhcOHCzJw5E4BJkyaxcOFCawsSyUIKRyLZaPXq1YwePRpI+gIpU6aMxRWJZJ3bbruNoUOHAtCnTx+OHj1qcUUiWUPhSCSbnD17lh49epCQkMADDzxAjx49rC5JJMuNGzeO6tWrc/ToUfr27aub00qeoHAkkk2GDBnC7t27CQ8PZ9KkSdhsNqtLEslyvr6+zJo1Cx8fH7777jumTp1qdUkiN03hSCQbfP7558ycORMPDw8++eQTChQoYHVJItmmevXqvPrqq0DSzWn//vtviysSuTkKRyJZ7MCBAwwYMACA5557jmbNmllckUj2GzJkCLfeeisXL17kgQce4NKlS1aXJJJpCkciWSghIYGeXbty+vRp6kdEJF3PSMQNeHh48PHHH1O0aFE2btzI/x54QPcLFJelcCSShV697z6WRUURAMzatAmvjz+2uiSRHBMSEsJH3bsD8N6CBSwIC4PISIurEsk4XQRSF4GULPLrl1/S8r77SAQ+AnpC0i0X9u7VFbDFPURHQ3g4/0tM5E2gILDRw4Owffv0GZAs4VYXgXRc/8XX15c6derw66+/XrPtV199xW233UbRokUJDAykUaNG/PjjjzlYrUhqx48f54GBA0kkKRT1dDyQkJB0ywURd7BjByQm8gpQDzgFdE9MJH77dosLE8kYy8PR3LlzefLJJxk5ciQbNmygWbNmtG/fnv3796fZfsWKFdx2220sWrSIdevW0apVKzp16sSGDRtyuHKRJMYYevfuzb/Hj1MRSHETBbs96d5pIu6gQgXw8MAb+AwIBH4DRn/zjbV1iWSQ5d1qDRo0oHbt2kyePNm5rHLlynTu3Jnx48enax1Vq1ala9eu6R78qm41yUoTJkzgqaeewsfHhz9GjKDG2LFJZ4zsdpg6Ffr2tbpEkZwTGQkDBkBCAnNtNroZg81m4+eff6Z169ZWVycuzi261WJjY1m3bh1t27ZNsbxt27asWrUqXetITEzk7NmzFCpU6JptLl++zJkzZ1L8iGSFP/74g+HDhwMwceJEarz0UtIYo6VLk/6rYCTupm9f52eg6/799O/fH2MMPXr00O1FxGVYGo6OHz9OQkICwcHBKZYHBwdz+PDhdK3j//7v/zh//jxdunS5Zpvx48cTFBTk/ClVqtRN1S0CcPr0abp27Up8fDz333+/89pGhIZCy5YagCruK9lnYOLEiVSpUoXDhw/Ts2dPEhMTra5O5IYsH3MEpLqtgrlyGvZG5syZw0svvcTcuXMpVqzYNds9++yzxMTEOH8OHDhw0zWLezPG8PDDD7N3717KlCnDhx9+qNuDiKTB39+fuXPn4uvry48//sjLL79sdUkiN2RpOCpSpAh2uz3VWaKjR4+mOpt0tblz59K3b18+//xzbr311uu29fHxITAwMMWPyM14/fXXWbBgAd7e3sydO5egoCCrSxLJtapVq+a859ro0aP5/vvvLa5I5PosDUfe3t7UqVOHxYsXp1i+ePFiGjdufM3nzZkzh969ezN79mzuuOOO7C5TJIVffvmF5557DoB33nmHevXqWVyRSO7Xs2dPBg4c6Bx/tGfPHqtLErkmy7vVhg0bxrRp05g+fTrbtm1j6NCh7N+/n4EDBwJJXWI9ezqvGsOcOXPo2bMn//d//0fDhg05fPgwhw8fJiYmxqpdEDdy4MABunXrRmJiIr179+aRRx6xuiQRlzFx4kTq16/PqVOnuPfee7l48aLVJYmkyfJw1LVrVyZOnMiYMWOIiIhgxYoVLFq0iPDwcAAOHTqU4ppHU6dOJT4+nscee4yQkBDnzxNPPGHVLoibuLxrF/e1bcvx48epVasWkyZN0jgjkQzw8fFh3rx5FClShA0bNvBY796YJUt0DzbJdSy/zpEVdJ0jybDISAb168cUkm6JsG78eMqMGGF1VSIu6eeff+b2tm1JNIYPgP4eHvDBB7r0hdxQTn1/KxwpHMmNREczJSyMQcZgAxYC7XXPNJHMi45mfFgYzxmDF/AL0EyfKUkHt7gIpIgrWDJ3LoOv/BviZaA96J5pIjdjxw6GG8O9QBxwN7BbnynJRRSORK7jn3/+4b6XXyYB6AE853hA90wTybwKFfDw8OBjoA5wAugIxFznenUiOUnhSOQaTp06RadOnTgVE0PDsmWZ5uGBDf67Z5pO/4tkTmgofPAB/nY7XwMlgG1A12HDiI+Pt7g4EYUjkTRdunSJu+++m3/++YdSpUqxYNUqfPft0z3TRLLKlXuwlVy6lG8WLsTPz48ff/yRJ598EjccCiu5jKfVBYjkNgkJCfTo0YPly5cTGBjIt99++98V23W2SCTrhIZCaCh1gE8//ZR7772X999/n5CQEEaOHGl1deLGdOZIJBljDI899hhfffUV3t7efP3119SsWdPqskTyvHvuuYe3334bgOeff54pU6ZYXJG4M4UjkejopO6y6GhGjx7N1KlTsdlszJ49m5YtW1pdnYjbGDJkCM8//zwAjz76KF988UXSA8k+oyI5Qd1q4t4iI+GRRyAxkVdtNkZfGeswadIk7r33XouLE3E/Y8aM4fjx40yZMoUePXoQsHIlHd57DxITQReLlByii0DqIpDuKzoawsOTghHw7JXFrzzzDM+99pqVlYm4tYSEBLp3787nn3+ONzAP6OR4UBeLdGu6CKRIdtuxI1UwGgs81769hUWJiN1u59NPP+W+5s2JBe4F5jse1MUiJQcoHInbSixXjqdIGYxG6uKOIrmCl5cXcz76iG4kXUW7C/AJ6AKskiMUjsQtxcbG8uCIEUy48vvrXAlGurijSK7hWbo0n0ydyoM2G/FAT+CVTp0wJUtaXZrkcQpH4nZOnDhB+/btmTNnDp6ennw8cSL/08UdRXIlz0ce4aO9e/lf164APL9gAQMGDCAuLs7iyiQvUziSvCuN6b/r16+nTp06LFmyhICAABYuXMhDTzwBLVvqjJFILuURFsbrn33Ge++9h4eHBx9++CGtW7fm4MGDKRtqyr9kEYUjyZsiI5NmorVuDeHhmGnTmDFjBk2aNGHfvn2UK1eOqKgo2rZta3WlIpJOjz32GAsWLCAwMJCVK1dSq1Ytli5dmvTgVZ95IiOtLVZcmqbyayp/3pNsij7AUWAg/8126dixI5988gkFChSwqEARuRk7duzgvvvu488//8TDw4OnBwxg9JQp+Cb/OtOU/zxJU/lFMuvKFH0DfAFUJSkYeXl68sorr/D1118rGIm4sAoVKhAVFcXDDz9MYmIir0+eTIQxRCVvpCn/chMUjiTvqVCBzTYbt5I0/fc4UB3447vveO655/Dw0NtexNX5+/szffp0vv76a4oXK8Z2oAnQFzgEmvIvN0XfEpKn7N+/n0GvvEIEsATwAUbZbKyZPJmI22+3tjgRyXJ33nknW7dto1fjxhhgOlABeLljR85o2IRkksKR5Am7du3ikUceoXz58kyZMoVEY7i3Qwe2zZ7NmP378Rk40OoSRSSbFCpUiJm//caqBQtoWKUK54EXvv6a8PBwRo0axfHjx60uUVyMBmTrXxauJzoaduwgoWxZfty6lffff5/vv/8ex1u5VatWvPjii7Ro0cLiQkUkpxljmDt3LqNHj+bvv/8GwM/Pj27dujFw4EDq1auH7d9/k8YmVqigAdsuJqe+vxWOFI5cS2QkW/v35zNjmAXsSfZQu3btGDlyJE2bNrWqOhHJJRITE5k/fz7jxo1j/fr1zuW1wsJ4+MABuhhDsIcHfPCBLv7qQhSOspHCkevZtWsXn02dymdvvMGWZMsLAH3692fg//5HhQoVLKpORHIrYwxRUVFMmTKFzz//nMuXLwNJY0paA91sNu75808KVqtmaZ2SPgpH2UjhyDVER0fz+eef89lnn7FmzRrnci+gPdAV6Az4L12adIVrEZHrOLFgAbPuvpvZwO/Jlnt7edGufXu6detGp06dyJcvn1Ulyg0oHGUjhaPc68SJE8ybN4/Zs2fz66+/OscReXh40KZJE7qtXMndxlDQ8QRd6E1E0ivZBWJ3A58BcyDF2Wh/f386depEt27daNeuHb6+vtbUKmnSRSDFbVy8eJHZs2fT8dZbKR4czMCBA1mxYgXGGJo2bcr777/PoUOH+GnFCvp8+CEF7fakJ9rtMHWqgpGIpE9oaNIYI7udssBzdjubp01j8+bNPP/885QrV44LFy4wd+5c7r77boKLFaN3u3b8NGsWiVeuuC/uQWeOdObIMtu2beODDz7go48+4tSpU87lEUD3++6j6//9H2FhYamfGB2ddOXb8uUVjEQk467xN8QYw7p16/jss8+YO3060cn+LpUuUoR+Tz5Jnz59CAkJsaJqQd1q2UrhyDqJiYl89913TJgwgeXLlzuXhwE9ge5AZVB3mYhYJzqaxLAwVhnDHGA2cPrKQ56ennTu3Jmnn36aBg0aWFejm1K3muQply9fZsaMGVSrVo277rqL5cuX4+HhwZ133snCcePYDbzMlWAEui+SiFhnxw48jKEp8D5wEPgIaFy1KvHx8cybN4+GDRvSsmVLFi1ahBueY8jzFI4kW8XGxjJ53DjKhYbSp08ftm3bRmBgIMOHD2ffvn18/fXXdHjoIexX3+9M90USEatUqADJ/ib5AT3tdn774Qf+/PNPevfujZeXF8uXL+eOO+4gompVFrz8MubAAetqliylcCTZIiEhgY8//phKJUvy6MiR/Hv8OCWAN+6/nwMHDvDqq68S6ugySzZIEtBAaxGx1nX+JlWvXp0ZM2awe/dunn76afL7+vLntm3c/cIL1A8L48ehQ3UmKQ/QmCONOcpSxhi++uorRo0axbZt2wAoDowE+gM+1xtLpIHWIpKb3OhvUnQ0p8LCeNMY3gbOX1nctF49xv3f/9GsWbOcrNYtaMyRuJwlS5ZQv3597rvvPrZt20bB/Pl5DdgFDAZ84PpjiUJDky7mqGAkIrnBjf4m7dhBQWN4BdgNDCPp79zKNWto3rw5HTp0YOPGjTlVrWQhhSPJnOhoWLoUoqP5888/ad++PW3atGHt2rXky5ePF154gT2rV/OMhwf+yZ+nsUQiklckG5tUDPg/YJeHBwMefBC73c73339PrVq1eOCBB9i5c2eKv5uSuykcScZFRkJ4OPtat6ZnqVJERETwww8/4OnpyeDBg9m1axejR48mqEoVjSUSkbwrjbFJJT/4gCmffMLff//NAw88AMBnn31G5UqVGFiqFAdbt066SndkpIWFy41ozJHGHGVMdDRHwsJ43RjeA2KvLO7aqRNjJ0ygfFpnhTSWSETysuv8jdu4cSMjn3qKRUuWAEkz3x4Hhnt4UGjfPv1NzCCNORJrXOe076FDhxg2dChljGECScGoFfAH8NmwYWkHI9BYIhHJ267zNy4iIoKFzz/PCqAJcBF4HSibmMi4l17i/PnzqZ4DqAvOYgpH8p8r3WVcddp38+bNPPLII5QpU4a35s3jIlAfWAT8AtTTOCIRkWurUIFmHh78CnwH1ABigJGRkYSHh/Pcc8/x77///tf+Gn+LJeeoW81dutWio2HHjqQBhNeaRn/lbtWQ9MFdYLMxo0EDlq9e7WzWqFEjXmzQgLbvvIMtMfG/cUR9++bQjoiIuKDISBgwABISSPTw4LO+fXlhyRJ27doFJN2W5K677uLBdu1o/8gj+CT/ar7RJVCu97c9j9G91bKR24WjyEh45JGk4OPhkTSA8KowY5YsYUebNiwl6YzQD/w3nshut3PPPfcwePBgmjVrhs1m0zgiEZGMuurvZkJCAt988w1vv/12intNFgDuBNoCtwLBkNTF1rJlyvWl4297XqNwlI3yajiKi4vj8uXLxMXFOX/iDxwgrnFj4o0hHogDYjw8OPreexyJj2fHjh1s3bqVzZs2cezEiRTrqwJ0feop+jz55H9XsxYRkSz3559/8vHHHzPn0085eORIisfCgFpt21KpVi1CQ0MpVaoUheLjCbj/fvyNwR/wBrw9PPD+6y+8y5TBy8sr6R+yeYzCUTZy5XAUHx/P2rVrWbNmDVu2bGHbxo0cPniQIzExnDl79qbW7e3pSaP4eFoD93h4UM0N/hUiIpKbJCQk8OuIEXz/f//HT8aw8SbW5eXlhbe3N97e3hQrVIjShQpRrnJl6rZsSb169ahSpQoeV9/XMpdTOMpGrhaOzp8/z4IFC/jiiy9YunQpZ86cSdfzPD098fL0xPPSJTwBL8ATyAcE169PcFgYYWFhVKtWjWrVqlG1alX8T55Ud5mIiNWudMHFFCvGpuPH2bBhA7t37+bAgQMcOHCAmBMnOL9nDxeAC/w3DCIjgoODueOOO+jcuTPt2rXDy8sri3ci6ykcZSOXCEfR0fz5ww9MXLyYud99x4ULF5wPFSxYkKZ16lDj55+pCoSSdHXWIh4e+P39N16lS+Pp6fnfKdVkAwE1gFpEJI9I9rfdeHiQMHkysQ8+SGxs7H8/+/ZxuVkzDhnDXmAbsAZY6+/P+WTfK8HBwfTu3ZsBd95JmcuXc+0Ab4WjbGRpOLrBzAJjDD8OG8b/TZzIz8mWlytXjh49enDnnXcSERGBfcWKpGmeV0tr0J5juzojJCKSt9zob/vSpWl+V8T+9BMrbDa+/fZb5s6dy5Er45zsQBfgGZuNiA8/vPY/pC2aJadwlI1u5sXdtWsXv//+O2fPnqVkyZLUrl2bEiVKpO/J15lZEBcXx9y5c3lt7Fi2bN8OJF2E6j7gCQ8PGu3di61Uqf/WddXUe+D60z1FRMT9pOO7Ii4ujoUffcTk/v35KdlT2wLPzJlD665dUw7uzsQsOWMMu3fvZu3atZw8eZJixYrRokULihQpkqHdybGTG8YNxcTEGMDExMSk+zk7d+40t99+uwFS/TRo0MC89eKL5vC8ecYcOJD2Cg4cMMbDwxj478duNxf++ce89957pnTp0s715QMzFMye5G2XLk29zmnTjLHbnesy06Zl7gUREZG8Kz3fFUuWGANmPZhuYDySfcfVqlXLzJo1y8TGxl7zu+xa3317Vq0yo3v3NuXCw1N9d9rtdtOvXz9z4sSJdO9KZr6/M0Nnjm6UPKOjWTFvHh1HjeLsuXN4eHjQsGFDihQpwu7du9m6dSuOl9AOtAd6DxpEx7fewsfH57/1JDu1aYANwHRgVr58nD53DoBixYrx5MMPM+j11ymQkQuAqbtMRESu50bfFVedYdoNTLDZmO7jw8VLlwAICwujX5s2dJ8xg3JXPz/ZkI6zZ88yf/58Zo4fz9K//3Y28bLbqVOvHsHBwezZs4c///wTgPLly/PDjBmUi4u7YTedutWyUbpf3MhINvXvTxNjOA80KV+ej374gXLl/ntbHF6/nnl16/KpMfye7KmB+fPTqHFj6tatS4kSJbCdPs3x559nmzEsBQ4na1umTBmefvppHn74Yfz8/DSAWkREcl4a3z0nOndm8uTJvPvuuxw9etTZ9BagKVABKGizETt6NPtiYvj9999ZvXo18fHxANiANkAv4G4PDwKS3Wz3t99+o0ePHuzbt49yQBRQ9AbddApH2cj54v71F4GVK6fdKDqas2Fh1DKGXSQd3G89PPC7+i7Kyc4I/Q18BHwC/Jt6jSn4AZ3q1qXfuHG0adMm9bUmdEZIRERy2jW+ey5dusTnn3/OrFmz+HnxYhJvEB0qhIbSKzqah0i6iKXTVZOGDq1bR5O6ddlDUs/LQsB2nd6SM9u2EVSlisJRdnCEo++BdtOmpZ1Qly5lWOvWvAWEA+uBQleWp5gNlsZgtwQPD/5cuJDfdu5k69atHDlyBJvNRlBQEOWLFqVhcDBN7roLn3KpTkyKiIjkaqdOnWLVN9+w+pdf2HfhAmfi4/Hy8iI0NJQqVarQpk0bynp7p2/S0NKlbGndmrrAZWAa0PfK8rRulzK1Xz8GgsJRdnCEozHAqGsk1E0//USd228nAfiRpFH71xz7o24wERGRlNLz3XjlBMObiYn8j6Rr9u3w8CDw6l6aK+3uTUzkK7I/HLnWdcOz2G5IOmg7d6Z6bNhrr5EA3G+z/ReMpk5Nu4urb9+k0LR0adJ/FYxERMTdpee7MTQUPviAIR4e3AIcBca1bZv6u3bHDkhMTPrezgFufeaoObA8jbNBK1asoEWLFnh5ebFjxQrCL13S2B8REZHsEh3Ntx9/zJ0jR+Lj48POnTtT3vA8OhoTFkYBYziDzhxlq12Q5tmgF198EYB+/foR3rBhUr+ngpGIiEj2CA2l47PP0rx5cy5fvsy4ceNSPX58wgTSd2fRm+fWZ44gaWBZgQIFnI8tW7aMVq1a4e3tzc6dOymV/KrUIiIikm2WL19Oy5Ytk3puduwgPDzc+djSpUtpfWV2uM4cZTPHRagg6fLmyc8aKRiJiIjknBYtWtCmTRvi4uJ4+eWXUzy2cePGHKvD7cPR2rVrnf+/ZMkSVqxYgbe3N88++6yFVYmIiLgnRyiaOXMmO5NNmEr+fZ3d3D4cLVu2DEh51mjAgAEpB4KJiIhIjmjUqBHt27cnISGBMWPGAEnf0Y7v65zg9mOOAgICOHLkCIsWLaJLly74+vqya9cuSpQoYXGVIiIi7mnt2rXUq1cPDw8PtmzZwuXLl6lVqxbe3t7ExsZqzFF2KlOmDOfPn2fkyJE8/vjjADzzzDMKRiIiIhaqW7cud911F4mJiXTv3p1Ro0YB0KFDhxzZfq4IR5MmTaJMmTL4+vpSp04dfv311+u2X758OXXq1MHX15eyZcsyZcqUTG130KBBALz99tscOXKEqlWr8txzz2VqXSIiIpJ13n33XYoWLcrGjRv57rvvgP++t7Ob5eFo7ty5PPnkk4wcOZINGzbQrFkz2rdvz/79+9Nsv2fPHjp06ECzZs3YsGEDzz33HEOGDOHLL7/M8Lb79etH37598fT0pHHjxixcuBAfH5+b3SURERG5SaVKleLbb7+lfPnyBAQE8Oabb9KwYcMc2bblY44aNGhA7dq1mTx5snNZ5cqV6dy5M+PHj0/Vfvjw4XzzzTds27bNuWzgwIFs2rSJqKiodG3TMebI0WdpjMFms938zoiIiEiWc3xPX/39nV0sPXMUGxvLunXraNu2bYrlbdu2ZdWqVWk+JyoqKlX722+/nbVr1xIXF5epOhSMREREcq+c/p72zNGtXeX48eMkJCQQHBycYnlwcDCHDx9O8zmHDx9Os318fDzHjx8nJCQk1XMuX77M5cuXnb/HxMQASWeQRERExDU4vrezu9PL0nDkcHUivFE3V1rt01ruMH78eEaPHp1qua6ALSIi4npOnDjhvCRPdrA0HBUpUgS73Z7qLNHRo0dTnR1yKF68eJrtPT09KVy4cJrPefbZZxk2bJjz99OnTxMeHs7+/fuz9cXNbc6cOUOpUqU4cOBAtvbV5jbab+23O9B+a7/dQUxMDGFhYRQqVChbt2NpOPL29qZOnTosXryYu+++27l88eLF3HXXXWk+p1GjRnz77bcplv3000/UrVsXLy+vNJ/j4+OT5iy0oKAgt3pTOQQGBmq/3Yj2271ov92Lu+63h0f2Dpm2fCr/sGHDmDZtGtOnT2fbtm0MHTqU/fv3M3DgQCDprE/Pnj2d7QcOHMi+ffsYNmwY27ZtY/r06URGRvL0009btQsiIiKSh1g+5qhr166cOHGCMWPGcOjQIapVq8aiRYsIDw8H4NChQymueVSmTBkWLVrE0KFDef/99ylRogTvvPMO9957r1W7ICIiInmI5eEI4NFHH+XRRx9N87GZM2emWtaiRQvWr1+f6e35+Pjw4osvut0FH7Xf2m93oP3WfrsD7Xf27rflF4EUERERyU0sH3MkIiIikpsoHImIiIgko3AkIiIikozCkYiIiEgyeTYcvfLKKzRu3Bh/f38KFCiQrucYY3jppZcoUaIEfn5+tGzZkq1bt6Zoc/nyZR5//HGKFClCQEAAd955J9HR0dmwB5lz6tQpHnroIYKCgggKCuKhhx7i9OnT132OzWZL8+eNN95wtmnZsmWqx7t165bNe5N+mdnv3r17p9qnhg0bpmiT1453XFwcw4cPp3r16gQEBFCiRAl69uzJwYMHU7TLbcd70qRJlClTBl9fX+rUqcOvv/563fbLly+nTp06+Pr6UrZsWaZMmZKqzZdffkmVKlXw8fGhSpUqzJ8/P7vKz7SM7PdXX33FbbfdRtGiRQkMDKRRo0b8+OOPKdrMnDkzzc/6pUuXsntXMiQj+71s2bI09+nvv/9O0S6vHe+0/n7ZbDaqVq3qbJPbj/eKFSvo1KkTJUqUwGazsWDBghs+J8c+2yaPeuGFF8yECRPMsGHDTFBQULqe8+qrr5r8+fObL7/80mzevNl07drVhISEmDNnzjjbDBw40JQsWdIsXrzYrF+/3rRq1crUrFnTxMfHZ9OeZEy7du1MtWrVzKpVq8yqVatMtWrVTMeOHa/7nEOHDqX4mT59urHZbGbXrl3ONi1atDD9+/dP0e706dPZvTvplpn97tWrl2nXrl2KfTpx4kSKNnnteJ8+fdrceuutZu7cuebvv/82UVFRpkGDBqZOnTop2uWm4/3ZZ58ZLy8v8+GHH5q//vrLPPHEEyYgIMDs27cvzfa7d+82/v7+5oknnjB//fWX+fDDD42Xl5eZN2+es82qVauM3W4348aNM9u2bTPjxo0znp6eZvXq1Tm1WzeU0f1+4oknzGuvvWb++OMP888//5hnn33WeHl5mfXr1zvbzJgxwwQGBqb6zOcmGd3vpUuXGsBs3749xT4l/4zmxeN9+vTpFPt74MABU6hQIfPiiy862+T2471o0SIzcuRI8+WXXxrAzJ8//7rtc/KznWfDkcOMGTPSFY4SExNN8eLFzauvvupcdunSJRMUFGSmTJlijEl6M3p5eZnPPvvM2ebff/81Hh4e5ocffsjy2jPqr7/+MkCKN0FUVJQBzN9//53u9dx1112mdevWKZa1aNHCPPHEE1lVapbK7H736tXL3HXXXdd83F2O9x9//GGAFH+Ec9Pxrl+/vhk4cGCKZZUqVTIjRoxIs/0zzzxjKlWqlGLZgAEDTMOGDZ2/d+nSxbRr1y5Fm9tvv91069Yti6q+eRnd77RUqVLFjB492vl7ev8eWimj++0IR6dOnbrmOt3heM+fP9/YbDazd+9e5zJXON4O6QlHOfnZzrPdahm1Z88eDh8+TNu2bZ3LfHx8aNGiBatWrQJg3bp1xMXFpWhTokQJqlWr5mxjpaioKIKCgmjQoIFzWcOGDQkKCkp3fUeOHGHhwoX07ds31WOzZs2iSJEiVK1alaeffpqzZ89mWe0342b2e9myZRQrVoxbbrmF/v37c/ToUedj7nC8IelGjjabLVX3c2443rGxsaxbty7FMQBo27btNfcxKioqVfvbb7+dtWvXEhcXd902ueG4Qub2+2qJiYmcPXs21Q06z507R3h4OKGhoXTs2JENGzZkWd0362b2u1atWoSEhNCmTRuWLl2a4jF3ON6RkZHceuutzrtLOOTm451ROfnZzhVXyM4NDh8+DEBwcHCK5cHBwezbt8/Zxtvbm4IFC6Zq43i+lQ4fPkyxYsVSLS9WrFi66/voo4/Inz8/99xzT4rlPXr0oEyZMhQvXpwtW7bw7LPPsmnTJhYvXpwltd+MzO53+/btuf/++wkPD2fPnj2MGjWK1q1bs27dOnx8fNzieF+6dIkRI0bQvXv3FDevzC3H+/jx4yQkJKT5ubzWPh4+fDjN9vHx8Rw/fpyQkJBrtskNxxUyt99X+7//+z/Onz9Ply5dnMsqVarEzJkzqV69OmfOnOHtt9+mSZMmbNq0iQoVKmTpPmRGZvY7JCSEDz74gDp16nD58mU++eQT2rRpw7Jly2jevDlw7fdEXjnehw4d4vvvv2f27Nkpluf2451ROfnZdqlw9NJLLzF69OjrtlmzZg1169bN9DZsNluK340xqZZdLT1tbkZ69xtS1w8Zq2/69On06NEDX1/fFMv79+/v/P9q1apRoUIF6taty/r166ldu3a61p1R2b3fXbt2df5/tWrVqFu3LuHh4SxcuDBVOMzIem9WTh3vuLg4unXrRmJiIpMmTUrxmBXH+3oy+rlMq/3VyzPzWc9pma1xzpw5vPTSS3z99dcpAnTDhg1TTDpo0qQJtWvX5t133+Wdd97JusJvUkb2u2LFilSsWNH5e6NGjThw4ABvvvmmMxxldJ1WyWyNM2fOpECBAnTu3DnFclc53hmRU59tlwpHgwcPvuGMmdKlS2dq3cWLFweSkmlISIhz+dGjR50ptHjx4sTGxnLq1KkUZxOOHj1K48aNM7Xd9Ejvfv/5558cOXIk1WPHjh1LlaTT8uuvv7J9+3bmzp17w7a1a9fGy8uLHTt2ZNuXZU7tt0NISAjh4eHs2LEDyNvHOy4uji5durBnzx6WLFmS4qxRWnLieKelSJEi2O32VP/qS/65vFrx4sXTbO/p6UnhwoWv2yYj75fslJn9dpg7dy59+/bliy++4NZbb71uWw8PD+rVq+d8z1vtZvY7uYYNG/Lpp586f8/Lx9sYw/Tp03nooYfw9va+btvcdrwzKkc/2xkaoeSCMjog+7XXXnMuu3z5cpoDsufOnetsc/DgwVw3QPf33393Llu9enW6B+j26tUr1ayla9m8ebMBzPLlyzNdb1a52f12OH78uPHx8TEfffSRMSbvHu/Y2FjTuXNnU7VqVXP06NF0bcvK412/fn0zaNCgFMsqV6583QHZlStXTrFs4MCBqQZttm/fPkWbdu3a5boBuhnZb2OMmT17tvH19b3hwFaHxMREU7duXfPwww/fTKlZKjP7fbV7773XtGrVyvl7Xj3exvw3IH3z5s033EZuPN4OpHNAdk59tvNsONq3b5/ZsGGDGT16tMmXL5/ZsGGD2bBhgzl79qyzTcWKFc1XX33l/P3VV181QUFB5quvvjKbN282DzzwQJpT+UNDQ83PP/9s1q9fb1q3bp3rpnbXqFHDREVFmaioKFO9evVUU7uv3m9jjImJiTH+/v5m8uTJqda5c+dOM3r0aLNmzRqzZ88es3DhQlOpUiVTq1Ytl93vs2fPmqeeesqsWrXK7NmzxyxdutQ0atTIlCxZMk8f77i4OHPnnXea0NBQs3HjxhTTey9fvmyMyX3H2zHFOTIy0vz111/mySefNAEBAc5ZOSNGjDAPPfSQs71juu/QoUPNX3/9ZSIjI1NN9/3tt9+M3W43r776qtm2bZt59dVXc+3U7vTu9+zZs42np6d5//33r3kJhpdeesn88MMPZteuXWbDhg3m4YcfNp6enikCttUyut9vvfWWmT9/vvnnn3/Mli1bzIgRIwxgvvzyS2ebvHi8HR588EHToEGDNNeZ24/32bNnnd/NgJkwYYLZsGGDc+aslZ/tPBuOevXqZYBUP0uXLnW2AcyMGTOcvycmJpoXX3zRFC9e3Pj4+JjmzZunSuMXL140gwcPNoUKFTJ+fn6mY8eOZv/+/Tm0Vzd24sQJ06NHD5M/f36TP39+06NHj1RTXK/eb2OMmTp1qvHz80vzWjb79+83zZs3N4UKFTLe3t6mXLlyZsiQIamuCWSljO73hQsXTNu2bU3RokWNl5eXCQsLM7169Up1LPPa8d6zZ0+an4vkn43ceLzff/99Ex4ebry9vU3t2rVTnMHq1auXadGiRYr2y5YtM7Vq1TLe3t6mdOnSaYb+L774wlSsWNF4eXmZSpUqpfgyzS0yst8tWrRI87j26tXL2ebJJ580YWFhxtvb2xQtWtS0bdvWrFq1Kgf3KH0yst+vvfaaKVeunPH19TUFCxY0TZs2NQsXLky1zrx2vI1JOrvt5+dnPvjggzTXl9uPt+Os17Xes1Z+tm3GXBnNJCIiIiJ59/YhIiIiIpmhcCQiIiKSjMKRiIiISDIKRyIiIiLJKByJiIiIJKNwJCIiIpKMwpGIiIhIMgpHIiIiIskoHImIiIgko3AkIiIikozCkYjkKWPGjKF69eoEBAQQHBzMoEGDiIuLs7osEXEhnlYXICKSVYwxJCQkMHXqVEqWLMlff/1Fz549qVGjBoMGDbK6PBFxEbrxrIjkad27d6do0aK8/fbbVpciIi5C3Woikmfs27ePwYMHU61aNQoWLEi+fPn4/PPPCQ0Ntbo0EXEhCkcikiccP36c+vXrc/z4cSZMmMDKlSuJiorCbrcTERFhdXki4kI05khE8oRFixYRHx/PnDlzsNlsALz//vvExsYqHIlIhigciUieUKhQIc6cOcM333xDlSpV+Pbbbxk/fjwlS5akaNGiVpcnIi5EA7JFJE8wxjBo0CBmz56Nn58fDz74IJcuXWLfvn189913VpcnIi5E4UhEREQkGQ3IFhEREUlG4UhEREQkGYUjERERkWQUjkRERESSUTgSERERSUbhSERERCQZhSMRERGRZBSORERERJJROBIRERFJRuFIREREJBmFIxEREZFkFI5EREREkvl/ThIS2W99Y1wAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABv4klEQVR4nO3dd3QUVR/G8e9m00iA0EMgJFTpEHrvioCg2ABBASkCiihYQBEVRLC9iI2iBLAAoiiIgihKEwlK7yIdIk1a6KTd94+wa0ICJCHJZLPP55wczezdmd/s7GYf5t65YzPGGEREREQEAA+rCxARERHJThSORERERBJROBIRERFJROFIREREJBGFIxEREZFEFI5EREREElE4EhEREUlE4UhEREQkEYUjERERkUQUjsQlHD58mFdffZWNGzcme6xnz57kzp073euOjo6mf//+BAUFYbfbCQsLS3+hGWDChAlMnz492fL9+/djs9lSfCwnsdlsvPrqq1aXkSFeffVVbDZbpj/3gw8+oGzZsnh7e2Oz2Thz5gw9e/akZMmSSdqNGTOGefPmpaueGzl16hRdunShSJEi2Gw2OnbsmOZ1lCxZkp49e2Z4bdnJunXreOKJJ6hatSp58uQhMDCQ22+/nSVLliRru23bNh5//HEaNGiAv78/NpuNZcuWZX3RbkrhSFzC4cOHGTlyZIrh6FZNnDiRyZMnM3z4cFauXMnnn3+e4dtIi+uFo6CgICIiIrjrrruyvihJlz59+hAREZGp29i4cSODBg2iRYsWLFmyhIiICPLkycOIESOYO3dukraZFY5ee+015s6dy7vvvktERARvvfVWhm8jJ5g1axZ//vknvXr14rvvvmPKlCn4+PjQqlUrPvvssyRt165dy7x58yhQoACtWrWyqGL35Wl1ASJW27p1K7ly5WLgwIFWl3JDPj4+1K9f3+oyJA2Cg4MJDg7O1G1s27YNgL59+1K3bl3n8jJlymTqdhPbunUrZcqUoVu3blm2zYxy8eJF/Pz8smRbzz//PO+8806SZe3ataNmzZqMGjWK7t27O5c/8sgj9OjRA4A5c+bw/fffZ0mNkkBnjtzQv//+y2OPPUaJEiXw8fGhcOHCNGrUiF9++cXZpnnz5lSpUoWIiAgaNmxIrly5KFmyJNOmTQNgwYIF1KxZEz8/P6pWrcqiRYuSbWflypW0atWKPHny4OfnR8OGDVmwYEGydlu3buWee+4hf/78+Pr6EhYWxqeffup8fNmyZdSpUweARx99FJvNlmLXy+7du2nXrh25c+emRIkSPPPMM1y5cuWGr4XNZmPKlClcunTJud7p06ffsAvr2m07uj+2bdvGQw89REBAAIGBgfTq1YuoqKgkz42Pj+eDDz4gLCyMXLlykS9fPurXr8/8+fOBhK6Fbdu2sXz5cmc9jq6R69WUmtd5+vTp2Gw2li5dyoABAyhUqBAFCxbkvvvu4/Dhwzd8jW6kZMmStG/fnrlz51KtWjV8fX0pXbo077//frK2Bw8e5OGHH6ZIkSL4+PhQsWJF/ve//xEfH3/d9e/fvx9PT0/Gjh2b7LEVK1Zgs9n4+uuvgbQdh8uXL/PCCy9QqlQpvL29KV68OE888QRnzpxJcf9++OEHatSoQa5cuahYsSI//PADkPC6VqxYEX9/f+rWrcvatWuTPD+lrrHZs2fTunVrgoKCnOsbNmwYFy5cuP4LfR3Nmzfn4YcfBqBevXrYbDZn19S13Wo2m40LFy7w6aefOt9bzZs3v+H6T506xeOPP07x4sXx9vamdOnSDB8+3Pm5crwnf/nlF3bs2OFc7426f2JiYnj++ecpWrQofn5+NG7cmD///DPFtkePHqVfv34EBwfj7e1NqVKlGDlyJLGxsUnaRUZG8sADD5AnTx7y5ctHt27dWLNmTbLPi6MLfsuWLbRu3Zo8efI4z8pER0czevRoKlSo4Py7+Oijj/Lvv/8mq2v27NnO7q7cuXNz5513smHDhhu+lgBFihRJtsxut1OrVi0OHTqUZLmHh76eLWXE7dx5552mcOHC5uOPPzbLli0z8+bNMy+//LL58ssvnW2aNWtmChYsaMqXL2/Cw8PNTz/9ZNq3b28AM3LkSFO1alUza9Yss3DhQlO/fn3j4+Nj/vnnH+fzly1bZry8vEytWrXM7Nmzzbx580zr1q2NzWZLsp2//vrL5MmTx5QpU8Z89tlnZsGCBeahhx4ygHnzzTeNMcZERUWZadOmGcC89NJLJiIiwkRERJhDhw4ZY4zp0aOH8fb2NhUrVjTvvPOO+eWXX8zLL79sbDabGTly5A1fi4iICNOuXTuTK1cu53qPHz9u9u3bZwAzbdq0ZM8BzCuvvOL8/ZVXXjGAKV++vHn55ZfN4sWLzbhx44yPj4959NFHkzz3kUceMTabzfTp08d899135scffzSvv/66ee+994wxxqxfv96ULl3a1KhRw1nP+vXrjTEmxZpS+zo7Xr/SpUubJ5980vz0009mypQpJn/+/KZFixZJanS0TWnfrxUaGmqKFy9uQkJCzNSpU83ChQtNt27dDGDefvttZ7vjx4+b4sWLm8KFC5tJkyaZRYsWmYEDBxrADBgw4Iav77333mtCQkJMbGxsknYPPvigKVasmImJiUnTcYiPjzd33nmn8fT0NCNGjDA///yzeeedd4y/v7+pUaOGuXz5cpL9Cw4ONlWqVHG+3+vVq2e8vLzMyy+/bBo1amS+/fZbM3fuXHPbbbeZwMBAc/HiRefzHTUl9tprr5l3333XLFiwwCxbtsxMmjTJlCpVKtlxSOm519q2bZt56aWXnMcrIiLC7N692xiT8LkIDQ11to2IiDC5cuUy7dq1c763tm3bdt11X7p0yVSrVs34+/ubd955x/z8889mxIgRxtPT07Rr184YY8zly5dNRESEqVGjhildurRzvVFRUdddb48ePYzNZjPPPfec+fnnn824ceNM8eLFTd68eU2PHj2c7Y4cOWJKlChhQkNDzeTJk80vv/xiXnvtNePj42N69uzpbHf+/HlTtmxZU6BAAfPRRx+Zn376yQwePNiUKlUq2fu4R48exsvLy5QsWdKMHTvW/Prrr+ann34ycXFxpk2bNsbf39+MHDnSLF682EyZMsUUL17cVKpUKckxff31143NZjO9evUyP/zwg/n2229NgwYNjL+//w1fz+uJiYkxZcuWNTVq1Lhum6+//toAZunSpWlev6SPwpEbyp07t3n66adv2KZZs2YGMGvXrnUuO3nypLHb7SZXrlxJgtDGjRsNYN5//33nsvr165siRYqYc+fOOZfFxsaaKlWqmODgYBMfH2+MMaZLly7Gx8fHHDx4MMn227Zta/z8/MyZM2eMMcasWbPmul/YPXr0MID56quvkixv166dKV++/E1ejYTn+/v7J1mWnnD01ltvJWn3+OOPG19fX+e+rlixwgBm+PDhN6yncuXKplmzZsmWp1RTal9nR+B5/PHHk6zzrbfeMoA5cuSIc9mnn35q7Ha7+fTTT29YpzEJ4cFms5mNGzcmWX7HHXeYvHnzmgsXLhhjjBk2bJgBzB9//JGk3YABA4zNZjM7d+50Lrv29V26dKkBzNy5c53L/vnnH+Pp6Zkk/Kb2OCxatCjFdrNnzzaA+fjjj5PsX65cuUxkZKRzmeP9HhQU5Nw/Y4yZN2+eAcz8+fOT1XQ98fHxJiYmxixfvtwAZtOmTal+roPj2K5ZsybJ8mvDkTHG+Pv7JwkgNzJp0qQUP1dvvvmmAczPP//sXNasWTNTuXLlm65zx44dBjCDBw9OsnzGjBkGSFJbv379TO7cuc2BAweStH3nnXcM4AwiH330kQHMjz/+mKRdv379UgxHgJk6dWqStrNmzTKA+eabb5Isd/zdmTBhgjHGmIMHDxpPT0/z5JNPJml37tw5U7RoUdOpU6ebvgbXGj58uAHMvHnzrttG4Sjr6bydG6pbty7Tp09n9OjRrF69mpiYmBTbBQUFUatWLefvBQoUoEiRIoSFhVGsWDHn8ooVKwJw4MABAC5cuMAff/zBAw88kOQqMrvdziOPPEJkZCQ7d+4EYMmSJbRq1YoSJUok2XbPnj25ePFiqgez2mw2OnTokGRZtWrVnDVlhbvvvjvZ9i9fvszx48cB+PHHHwF44oknMmR7aXmdb1QjkOR16t69O7GxsUnGP9xI5cqVqV69epJlXbt25ezZs6xfvx5IOM6VKlVKMiYGEo6zMSbFq3UcmjdvTvXq1fnoo4+cyyZNmoTNZuOxxx5L1v5mx8GxrWuvjHrwwQfx9/fn119/TbI8LCyM4sWLO393vN+bN2+eZKzKtZ+D69m7dy9du3alaNGi2O12vLy8aNasGQA7duy44XOz0pIlS/D39+eBBx5Istzxul37OqXG0qVLAZKNTerUqROenkmHwP7www+0aNGCYsWKERsb6/xp27YtAMuXL3f+N0+ePLRp0ybJ8x966KHr1nH//fcn21a+fPno0KFDkm2FhYVRtGhRZzfhTz/95PxsJG7n6+tLs2bN0nw12ZQpU3j99dd55plnuOeee9L0XMlcGpDthmbPns3o0aOZMmUKI0aMIHfu3Nx777289dZbFC1a1NmuQIECyZ7r7e2dbLm3tzeQMI4D4PTp0xhjCAoKSvZ8R6g6efKk87+paXczfn5++Pr6Jlnm4+PjrCkrFCxYMNn2AS5dugQkjPWy2+1JXuNbkZbXObU1pkdK++NYlvg4X3tZ+Y3qvNagQYPo06cPO3fupHTp0nzyySc88MADKW77Zvt48uRJPD09KVy4cJJ2NpuNokWLJqvleu/3m30OUnL+/HmaNGmCr68vo0eP5rbbbsPPz49Dhw5x33333dJxyGgnT56kaNGiycZMFSlSBE9Pz1R/Nq9dJyR/z3h6eiY7bseOHeP777/Hy8srxXWdOHHCuc7AwMBkj6e0DBL+VuTNmzfZts6cOeM8htfb1rFjxwCcYyCvlZZxQtOmTaNfv3489thjvP3226l+nmQNhSM3VKhQIcaPH8/48eM5ePAg8+fPZ9iwYRw/fjzFgdVplT9/fjw8PDhy5EiyxxyDfwsVKgQkfJGlpl1WcwStawd0p+cLwaFw4cLExcVx9OjRFANNWqXldc5MR48eve4yxxferR7nrl27MnToUD766CPq16/P0aNH030GrmDBgsTGxvLvv/8mCUjGGI4ePXrdL76MsGTJEg4fPsyyZcucZ4uAZAPBs4OCBQvyxx9/YIxJEpCOHz9ObGxsut5bjvfD0aNHk5yNi42NTfbZKlSoENWqVeP1119PcV2OYF2wYMEUB3Sn9L4EUpw7ynGBwvX+/uXJk8fZDhKuHgsNDU2xbWpMmzaNPn360KNHD+dZUMle1K3m5kJCQhg4cCB33HGHswvkVvn7+1OvXj2+/fbbJP8Sjo+P54svviA4OJjbbrsNgFatWjm/MBL77LPP8PPzc166nhFnONIiMDAQX19fNm/enGT5d999l+51OroDJk6ceMN2Pj4+qdrPtLzOmWnbtm1s2rQpybKZM2eSJ08eatasCSQc5+3btyd7j3322WfYbDZatGhxw234+vry2GOP8emnnzJu3DjCwsJo1KhRuup1XJ30xRdfJFn+zTffcOHChUydU8bxJeh4PztMnjw507aZWGrfW5DwOp0/fz7ZvEiO+XjS8zo5ro6bMWNGkuVfffVVsivQ2rdv75wioHbt2sl+HOGoWbNmnDt3ztlt7fDll1+muq727dtz8uRJ4uLiUtxW+fLlAbjzzjvx9PRkz549KbarXbv2Tbc1ffp0+vTpw8MPP8yUKVMUjLIpnTlyM1FRUbRo0YKuXbtSoUIF8uTJw5o1a1i0aBH33Xdfhm1n7Nix3HHHHbRo0YJnn30Wb29vJkyYwNatW5k1a5bzD8Irr7ziHFvw8ssvU6BAAWbMmMGCBQt46623CAgIABLmbMmVKxczZsygYsWK5M6dm2LFiiUZ+5SRbDYbDz/8MFOnTqVMmTJUr16dP//8k5kzZ6Z7nU2aNOGRRx5h9OjRHDt2jPbt2+Pj48OGDRvw8/PjySefBKBq1ap8+eWXzJ49m9KlS+Pr60vVqlVTXGdqX+e0+Oyzz+jVqxdTp05N1bijYsWKcffdd/Pqq68SFBTEF198weLFi3nzzTedY3IGDx7MZ599xl133cWoUaMIDQ1lwYIFTJgwgQEDBqQqxD3++OO89dZbrFu3jilTpqR5vxzuuOMO7rzzToYOHcrZs2dp1KgRmzdv5pVXXqFGjRo88sgj6V73zTRs2JD8+fPTv39/XnnlFby8vJgxY0aycJlZqlatyrJly/j+++8JCgoiT548zi/+a3Xv3p2PPvqIHj16sH//fqpWrcrKlSsZM2YM7dq14/bbb0/z9itWrMjDDz/M+PHj8fLy4vbbb2fr1q288847ybq6Ro0axeLFi2nYsCGDBg2ifPnyXL58mf3797Nw4UImTZpEcHAwPXr04N133+Xhhx9m9OjRlC1blh9//JGffvoJSF1XV5cuXZgxYwbt2rXjqaeeom7dunh5eREZGcnSpUu55557uPfeeylZsiSjRo1i+PDh7N27lzZt2pA/f36OHTvGn3/+ib+/PyNHjrzudr7++mt69+5NWFgY/fr1S3bGq0aNGs7gfPHiRRYuXAjA6tWrgYTxVSdOnMDf39/5jy3JJJYOB5csd/nyZdO/f39TrVo1kzdvXpMrVy5Tvnx588orryS58uZ6V5+Ehoaau+66K9lywDzxxBNJlv3222+mZcuWxt/f3+TKlcvUr1/ffP/998meu2XLFtOhQwcTEBBgvL29TfXq1VO8SmzWrFmmQoUKxsvLK8kVTSldbWZM6q/2ud7zo6KiTJ8+fUxgYKDx9/c3HTp0MPv377/u1Wr//vtvkuc7riLat2+fc1lcXJx59913TZUqVYy3t7cJCAgwDRo0SPK67N+/37Ru3drkyZPHAM4rjq53BV1qXufrXdHkuBIs8VUwab2U/6677jJz5swxlStXNt7e3qZkyZJm3LhxydoeOHDAdO3a1RQsWNB4eXmZ8uXLm7ffftvExcUlaXft65tY8+bNTYECBZJcWu2QluNw6dIlM3ToUBMaGmq8vLxMUFCQGTBggDl9+nSK+3etlN7vjuOTeAqDlN6Dq1atMg0aNDB+fn6mcOHCpk+fPmb9+vXJXvPMuFpt48aNplGjRsbPz88AKV4VmdjJkydN//79TVBQkPH09DShoaHmhRdeSDLdgTGpv1rNGGOuXLlinnnmGVOkSBHj6+tr6tevbyIiIkxoaGiyK+n+/fdfM2jQIFOqVCnj5eVlChQoYGrVqmWGDx9uzp8/72x38OBBc99995ncuXObPHnymPvvv98sXLjQAOa7775L8pqk9Fk3JuGS+nfeecdUr17d+Pr6mty5c5sKFSqYfv36mV27diVpO2/ePNOiRQuTN29e4+PjY0JDQ80DDzxgfvnllxvuu+Nquev9JH6POt5PKf1ce1wl49mMMSaT85eI5FAlS5akSpUqzkkRM9Px48cJDQ3lySef1O0p5KbGjBnDSy+9xMGDBzN9lnLJedStJiLZWmRkJHv37uXtt9/Gw8ODp556yuqSJJv58MMPAahQoQIxMTEsWbKE999/n4cffljBSNJF4UhEsrUpU6YwatQoSpYsyYwZM5Jc5SQCCZfnv/vuu+zfv58rV64QEhLC0KFDeemll6wuTVyUutVEREREErH8Uv4VK1bQoUMHihUrhs1mS3bZaEqWL19OrVq1nDe5nDRpUuYXKiIiIm7B8nB04cIFqlev7uwzvpl9+/bRrl07mjRpwoYNG3jxxRcZNGgQ33zzTSZXKiIiIu4gW3Wr2Ww25s6dS8eOHa/bZujQocyfPz/JPYj69+/Ppk2bUn0fLhEREZHrcbkB2REREbRu3TrJsjvvvJPw8HBiYmJSvA/PlStXktwGIj4+nlOnTlGwYEHNTioiIuIijDGcO3eOYsWKpeledmnlcuHo6NGjyW4oGBgYSGxsLCdOnEjxnlVjx4694aylIiIi4joOHTqUqdM0uFw4guQ3DnT0DF7vLNALL7zAkCFDnL9HRUUREhLCoUOHkk1ZLyIu5J9/YM8eKFMGbnSJf2rbiUi2dvbsWUqUKOG8GXBmcblwVLRo0WR3Wz5+/Dienp7OOz5fy8fHJ9mNHgHy5s2rcCTiqsLD4bHHID4ePDzg44+hd+/0txMRl5HZQ2Isv1otrRo0aMDixYuTLPv555+pXbt2iuONRCQHioz8L/BAwn/79YPISGJiYjh16hRxcXE3bCcicj2Wh6Pz58+zceNGNm7cCCRcqr9x40YOHjwIJHSJJb4zeP/+/Tlw4ABDhgxhx44dTJ06lfDwcJ599lkryhcRK+za9V/guWpZXBxt7ruP3LlzU7BgQfLnz0+3nj3565p2xMXB7t1ZWKyIuBrLL+VftmwZLVq0SLa8R48eTJ8+nZ49e7J//36WLVvmfGz58uUMHjyYbdu2UaxYMYYOHUr//v1Tvc2zZ88SEBBAVFSUutVEXFFkJISGQnw8ccBg4IPrNPUC3gMGOBbY7bB/P+ieWyIuJ6u+vy0PR1ZQOBLJAcLDiXvsMR6Kj+frq4v69evH008/TalSpdiwYQOjRo3ixx9/BGAM8ILdDpMna8yRiIvKqu9vy7vVRETSpXdvnuvVi68Bb29v5syZw6RJk6hQoQI+Pj7Ur1+fBQsWMGrUKABeBGa//76CkYjclMKRiLikBQsW8O6UKQB8/vnn3H///cna2Gw2RowYwfPPPw9An6FD+euvv7K0ThFxPQpHIuJy/v33X3r16gXA4MGD6dSp0w3bv/7667Ro0YLz58/To0cP4q8dpC0ikojCkYi4nOHDh3P8+HGqVKnCmDFjbtre09OTL774gjx58vDnn38SHh6eBVWKiKtSOBIRl7Jp0yamXO1OmzhxIr6+vql6XrFixZzjj4YOHcrp06czrUYRcW0KRyLiUp577jmMMXTq1InGjRun6bkDBw6kcuXKnD59mnHjxmVShSLi6hSORMRlrF69msWLF+Pp6ckbb7yR5ud7eno6zx699957nDp1KqNLFJEcQOFIRFzG2LFjAXj44YcpVapUutbRsWNHqlevzrlz53T2SERSpHAkIi5h69atzJ8/H5vNxrBhw9K9Hg8PD0aMGAHApEmTuHTpUkaVKCI5hMKRiLiEDz/8EID77ruP8uXL39K6OnbsSMmSJTl58iQzZszIiPJEJAdROBKRbC8qKoovvvgCgCeffPKW12e32xk4cCCQMPbIDe+iJCI3oHAkItneZ599xoULF6hcuTJNmzbNkHX27t0bf39/tm7dyqpVqzJknSKSMygciUi2Zoxh8uTJADz++OPYbLYMWW++fPmcM2tPnz49Q9YpIjmDwpGIZGsbN25k27Zt+Pj40LVr1wxdd8+ePQGYPXs2Fy5cyNB1i4jrUjgSkWzt888/B+Duu+8mX758Gbruxo0bU7p0ac6dO8fcuXMzdN0i4roUjkQk24qNjWXmzJkAPPLIIxm+fg8PD3r06AGoa01E/qNwJCLZ1i+//MKxY8coVKgQbdq0yZRtOMLRr7/+SmRkZKZsQ0Rci8KRiGRbji61Ll264OXllSnbCA0Ndd6j7dtvv82UbYiIa1E4EpFs6fLly8yfPx+Abt26Zeq2HnjgAQDmzJmTqdsREdegcCQi2dKvv/7K+fPnKV68OHXr1s3Ubd13330ArFy5kiNHjmTqtkQk+1M4EpFsydHF1bFjRzw8MvdPVYkSJahfvz7GGF21JiIKRyKS/cTGxjq71BxndTKbutZExEHhSESynZVz53LixAkK5MuXYbcLuZn7778fgOXLl/Pv3LmgK9dE3JbCkYhkL+HhzL16W4+7z5zB89NPs2SzJUuWJKxECeLj41l0330QGgrh4VmybRHJXhSORCT7iIzE9O3L/Ku/dgTo1y9rzuJERnLXoUMALACIj8+6bYtItqJwJCLZx65d7DSG/YA3cDtAXBzs3p0l277r6v8uAmKyctsikq0oHIlI9lGuHItsNgCaAv4AdjuULZsl265rs1EIiAJWZeW2RSRbUTgSkewjOJgfK1UCoC0khJPJkyE4OEu2bf/kE9peDWcLbLas27aIZCsKRyKSbVy8eJHlV7ux2kybBvv3Q+/eWVdA797c9eGHAPxQtmzWbltEsg2FIxHJNpYtW8aVK1cICQmhYo8elpy1ubNrV+x2Ozt27eLAgQNZvn0RsZ7CkYhkGz/++CMAbdu2xXa1eyur5cuXz3m7kl9++cWSGkTEWgpHIpJtJA5HVrr99tsBhSMRd6VwJCLZwu7du9mzZw9eXl60bNnS0loc4ejXX38lPj7e0lpEJOspHIlItuA4S9OwYUPy5MljaS3169fH39+ff//9ly1btlhai4hkPYUjEckWlixZAkCrVq0srgS8vb1p1qwZoK41EXekcCQilouPj2fZsmUAtGjRwtpirtK4IxH3pXAkIpbbtm0b//77L35+fs4rxazmCEcrVqzgypUrFlcjIllJ4UhELLd06VIAGjdujLe3t8XVJKhSpQpFihTh4sWLrF692upyRCQLKRyJiOUc442svkotMZvNpq41ETelcCQiloqLi2P58uVA9hlv5OCox1GfiLgHhSMRsdTGjRs5c+YMefPmpWbNmlaXk4TjirU//viDy5cvW1yNiGQVhSMRsZRjvFHTpk3x9PS0uJqkypYtS9GiRYmOjubPP/+0uhwRySIKRyJiKUc4yk7jjRxsNhtNmzYF1LUm4k4UjkTEMnFxcfz+++8AzhCS3TjqWrFihcWViEhWUTgSEcts27aNqKgocufOTfXq1a0uJ0WOcUerVq0iJibG4mpEJCsoHImIZVauXAlAgwYNst14I4dKlSpRoEABLl68yLp166wuR0SygMKRiFjGEY4aN25scSXX5+HhQZMmTQB1rYm4C4UjEbGMK4Qj+K9rTeFIxD0oHImIJQ4ePMihQ4ew2+3Uq1fP6nJuyDEo+7fffiMuLs7iakQksykciYglHGeNatasib+/v8XV3Fj16tXJnTs3Z8+eZdu2bVaXIyKZTOFIRCzhKl1qAJ6ens6zWxERERZXIyKZTeFIRCzhSuEIoGHDhkDCJf0ikrMpHIlIljt9+jRbt24FoFGjRhZXkzoKRyLuQ+FIRLJcREQExhjKlStHYGCg1eWkSv369QHYvXs3x48ft7gaEclMCkcikuUcXWqO+YNcQb58+ahcuTKgcUciOZ3CkYhkOcf91FylS82hQYMGgLrWRHI6hSMRyVKxsbGsWbMG+C9suArHuCOdORLJ2RSORCRLbdmyhUuXLhEQEED58uWtLidNHOFozZo1REdHW1yNiGQWhSMRyVKrV68GoF69enh4uNafoNtuu40CBQpw+fJlNm7caHU5IpJJXOsvk4i4PEc4clz95UpsNpsu6RdxAwpHIpKl/vjjD8A1wxFoviMRd6BwJCJZ5tSpU+zcuROAunXrWlxN+jjCkeOKOxHJeRSORCTL/PnnnwCUK1eOggULWlxN+tSpUwe73c7hw4eJjIy0uhwRyQTZIhxNmDCBUqVK4evrS61atfjtt99u2H7GjBlUr14dPz8/goKCePTRRzl58mQWVSsi6eXK440c/Pz8qFq1KvBf2BORnMXycDR79myefvpphg8fzoYNG2jSpAlt27bl4MGDKbZfuXIl3bt3p3fv3mzbto2vv/6aNWvW0KdPnyyuXETSKieEI/ivS1DhSCRnsjwcjRs3jt69e9OnTx8qVqzI+PHjKVGiBBMnTkyx/erVqylZsiSDBg2iVKlSNG7cmH79+rF27dosrlxE0iI+Pt7lB2M7OMKRY39EJGexNBxFR0ezbt06WrdunWR569atr3slSMOGDYmMjGThwoUYYzh27Bhz5szhrrvuuu52rly5wtmzZ5P8iEjW+vvvvzlz5gy5fHyomj+/1eXcEkc4WvvHH8QdOGBxNSKS0SwNRydOnCAuLi7ZXbkDAwM5evRois9p2LAhM2bMoHPnznh7e1O0aFHy5cvHBx98cN3tjB07loCAAOdPiRIlMnQ/ROTmVr/1FgC1rlzBq2xZCA+3uKL0q7R6Nf7A+UuX+KtUKZfeFxFJzvJuNUiYWC0xY0yyZQ7bt29n0KBBvPzyy6xbt45Fixaxb98++vfvf931v/DCC0RFRTl/Dh06lKH1i8hNREayeto0AOoDxMdDv37gild7RUZi79+f2ld//cMY190XEUmRp5UbL1SoEHa7PdlZouPHjyc7m+QwduxYGjVqxHPPPQdAtWrV8Pf3p0mTJowePZqgoKBkz/Hx8cHHxyfjd0BEUmfXLhyjc5yjjeLiYPduCA62qKh02rUL4uOpCywH/gR6ueq+iEiKLD1z5O3tTa1atVi8eHGS5YsXL3ZOtHatixcvJrsfk91uBxLOOIlI9nOheHE2X/1/Zziy26FsWYsqugXlyoGHB44pLP8E190XEUmR5d1qQ4YMYcqUKUydOpUdO3YwePBgDh486Owme+GFF+jevbuzfYcOHfj222+ZOHEie/fu5ffff2fQoEHUrVuXYsWKWbUbInID644eJR4ofvUHux0mT3bNMy3BwfDxx9S7+o+0zcDF9993zX0RkRRZ2q0G0LlzZ06ePMmoUaM4cuQIVapUYeHChYSGhgJw5MiRJHMe9ezZk3PnzvHhhx/yzDPPkC9fPlq2bMmbb75p1S6IyE2sWbMGgLpt2sDQoQlnWVw5TPTuTXDr1hQNC+PoqVNsqF6dRlbXJCIZxmbcsC/q7NmzBAQEEBUVRd68ea0uRyTHe+ihh/jyyy95/fXXefHFF60uJ8Pcc889zJ8/n3HjxjF48GCryxHJ8bLq+9vybjURyfkcZ47q1KljcSUZq169eoAmgxTJaRSORCRTnT59mj179gBQq1Yti6vJWLqNiEjOpHAkIpnKcWufMmXKUKBAAYuryVi1ayfMdrRv3z7+/fdfi6sRkYyicCQimcoRjhxBIifJly8f5cuXB3T2SCQnUTgSkUyVU8cbOTjGHSkcieQcCkcikqkc4SgnnjkCjTsSyYkUjkQk0xw9epTIyEhsNhs1a9a0upxMkTgcueHMKCI5ksKRiGQax3ijChUqkCdPHouryRzVq1fH29ubU6dOsW/fPqvLEZEMoHAkIpnGEY5y6ngjSLhHZLVq1YD/9ldEXJvCkYhkmpw+3sjBsX8KRyI5g8KRiGQKY4xbnDkChSORnEbhSEQyxaFDhzh+/Dienp5Ur17d6nIylSMcrVu3jvj4eIurEZFbpXAkIpnCcRalSpUq5MqVy+JqMlelSpXw9fXl7Nmz7N692+pyROQWKRyJSKZwl/FGAF5eXoSFhQHqWhPJCRSORCRTuMt4IweNOxLJORSORCTDJR6M7Q5njkDhSCQnUTgSkQy3Z88ezpw5g4+PD1WqVLG6nCzhCEfr168nLi7O4mpE5FYoHIlIhnOMN3LMHu0OKlSogJ+fHxcuXGDnzp1WlyMit0DhSEQynLuNNwKw2+3O+8epa03EtSkciUiGc6cr1RLTuCORnEHhSEQyVFxcHOvXrwfc68wRKByJ5BQKRyKSof766y8uXLiAv78/FSpUsLqcLOUIRxs2bCA2NtbiakQkvRSORCRDOc6a1KxZE7vdbnE1WatcuXLkzZuXy5cvs337dqvLEZF0UjgSkQzlruONADw8PKhVqxagrjURV6ZwJCIZyh2vVEtM445EXJ/CkYhkmOjoaDZu3AgoHCkcibguhSMRyTDbtm3jypUr5MuXjzJlylhdjiUc4WjTpk1ER0dbXI2IpIfCkYhkmMTjjWw2m8XVWKNUqVLkz5+f6Ohotm7danU5IpIOCkcikmHceTC2g81mU9eaiItTOBKRDOPug7EdFI5EXJvCkYhkiEuXLrFlyxbAvc8cgcKRiKtTOBKRDLFp0ybi4uIoXLgwJUqUsLocSznC0ZYtW7h8+bLF1YhIWikciUiGSNyl5q6DsR1KlChB4cKFiY2NZfPmzVaXIyJppHAkIhnCEY7cvUsNNChbxNUpHIlIhnBcqebug7EdFI5EXJfCkYjcsvPnz7Njxw4A573F3J3CkYjrUjgSkVu2YcMGjDEUL16coKAgq8vJFhzhaNu2bVy8eNHiakQkLRSOROSWqUstuWLFihEUFER8fLzzfnMi4hoUjkTklmkwdsrUtSbimhSOROSWKRylTOFIxDUpHInILTlz5gy7du0CNBj7Wo5w5Oh2FBHXoHAkIrdk3bp1AJQKCqKQZoNOwhGOdu7cybm//rK4GhFJLYUjEbklaydOBKD2kSMQGgrh4RZXlH0U+f57QgBjDOsqVdJrI+IiFI5EJP0iI1n7zTcA1AaIj4d+/SAy0tKysoXISHjsMRzX760xRq+NiItQOBKR9Nu1C8doGudF/HFxsHu3RQVlI7t2QXz8f+EI9NqIuAiFIxFJt38LFODA1f+v6Vhot0PZshZVlI2UKwceHknDkV4bEZegcCQi6bbuyBEAbgMCIOHLf/JkCA62sqzsITgYPv6Ymh4Jf2b3A/++845eGxEXoHAkIunmmL+nzr33wtKlsH8/9O5tbVHZSe/e5DtwgNtKlABgXYUKFhckIqmhcCQi6eaYv6d206bQvLnOiqQkOJg6TZsCmu9IxFUoHIlIumlm7NRx3HNO4UjENSgciUi6HD58mMOHD+Ph4UGNGjWsLidbSxyOjDEWVyMiN6NwJCLp4jhrVKlSJfz9/S2uJnsLCwvDbrdz9OhR/vnnH6vLEZGbUDgSkXRRl1rq+fn5UblyZUBdayKuQOFIRNJF4ShtNO5IxHUoHIlImhlj/ruMv06dm7QWUDgScSUKRyKSZgcPHuTff//F09OTatWqWV2OS3CEo7Vr12pQtkg2p3AkImnmOGtUtWpVfH19La7GNVStWhUfHx/OnDnDnj17rC5HRG5A4UhE0kxdamnn5eVFWFgYoK41kexO4UhE0sw5M7YGY6eJxh2JuAaFIxFJk8SDsRWO0sbxeikciWRvCkcikia7d+8mKioKHx8fqlSpYnU5LsVx5mj9+vXExsZaXI2IXI/CkYikyR9//AFAzZo18fLysrga11K+fHly587NxYsX2bFjh9XliMh1KByJSJr8+eefANStW9fiSlyP3W6nVq1agLrWRLKzbBGOJkyYQKlSpfD19aVWrVr89ttvN2x/5coVhg8fTmhoKD4+PpQpU4apU6dmUbUi7s1x5qhevXoWV+KaEs93JCLZk6fVBcyePZunn36aCRMm0KhRIyZPnkzbtm3Zvn07ISEhKT6nU6dOHDt2jPDwcMqWLcvx48fVfy+SBa5cucLGjRsBhaP00hVrItmfzVg8VWu9evWoWbMmEydOdC6rWLEiHTt2ZOzYscnaL1q0iC5durB3714KFCiQrm2ePXuWgIAAoqKiyJs3b7prF3E3f/75J/Xq1aNQoUIcP34cm81mdUkuZ9++fZQuXRovLy/OnTuHj4+P1SWJuIys+v62tFstOjqadevW0bp16yTLW7duzapVq1J8zvz586lduzZvvfUWxYsX57bbbuPZZ5/l0qVL193OlStXOHv2bJIfEUk7R5da3bp1FYzSqWTJkhQsWJCYmBg2b95sdTkikgJLw9GJEyeIi4sjMDAwyfLAwECOHj2a4nP27t3LypUr2bp1K3PnzmX8+PHMmTOHJ5544rrbGTt2LAEBAc6fEiVKZOh+iLgLDca+dTabzTnfkeP1FJHsJVsMyL72X6DGmOv+qzQ+Ph6bzcaMGTOoW7cu7dq1Y9y4cUyfPv26Z49eeOEFoqKinD+HDh3K8H0QcQcajJ0x6tevD/z3eopI9mLpgOxChQpht9uTnSU6fvx4srNJDkFBQRQvXpyAgADnsooVK2KMITIyknLlyiV7jo+Pj/r1RW7RqVOn2LVrF6AzR7fKES5Xr15tcSUikhJLzxx5e3tTq1YtFi9enGT54sWLadiwYYrPadSoEYcPH+b8+fPOZX///TceHh4EBwdnar0i7sxxdVXZsmXTfTGEJHCEy127dnHy5EmLqxGRa1nerTZkyBCmTJnC1KlT2bFjB4MHD+bgwYP0798fSOgS6969u7N9165dKViwII8++ijbt29nxYoVPPfcc/Tq1YtcuXJZtRsiOZ661DJOwYIFue222wCNOxLJjiwPR507d2b8+PGMGjWKsLAwVqxYwcKFCwkNDQXgyJEjHDx40Nk+d+7cLF68mDNnzlC7dm26detGhw4deP/9963aBRG3oHCUsRzjjtS1JpL9WD7PkRU0z5FI2hhjKFKkCCdOnGD16tUKSBlg4sSJPP7447Ru3ZqffvrJ6nJEXIJbzHMkIq5h3759nDhxAm9vb8LCwqwuJ0dIfMVafHy8xdWISGIKRyJyU44utbCwMF35mUGqVq1Krly5iIqKYufOnVaXIyKJKByJyE1p8seM5+np6bzPmsYdiWQvCkciclMajJ05NN+RSPakcCQiNxQdHc369esBhaOMppmyRbInhSMRuaFNmzZx5coV8ufPT9myZa0uJ0dxhKMtW7YkmdhWRKylcCQiN7Rq1SoAGjZseN17Hkr6FCtWjBIlShAfH8/atWutLkdErlI4EpEbShyOJONpMkiR7EfhSERuSOEocykciWQ/Ckcicl2HDh0iMjISu93uvOxcMlbicOSGNywQyZYUjkTkuhxnjcLCwvD397e4mpypRo0aeHl5cezYMQ4cOGB1OSKCwpGI3MCqn38GoGG1ahZXknPlypXLeUuW1eHhEBlpbUEionAkItcRHs6qqVMBaDh9OoSHW1tPDtbg6g00fx89GkJD9VqLWMxm3LCTO6vu6ivisiIjuRASQoAxxAEHgBC7Hfbvh+Bgi4vLYSIj+TokhE7GEAZsANBrLZKirPr+1pkjEUlu1y7WXg1GxYESAHFxsHu3tXXlRLt20ejqv1E3A2dBr7WIxRSORCS5cuVYdXXCx4aADRLOZmiG7IxXrhzFPDwoBcQDq0GvtYjFFI5EJLngYFZVrQokhCPsdpg8Wd08mSE4GD7+mMZXw+hKm02vtYjFFI5EJBljDKuuXjXVcMKEhPEvvXtbW1RO1rs3jcaMAWBlgwZ6rUUspnAkIsn8/fffnDp1Cl9fX8J699ZZjCzQuEMHAP7YuJGYmBiLqxFxbwpHIpKMY/LHOnXq4O3tbXE17qFixYrkz5+fixcvsnHjRqvLEXFrCkcikszKlSsBaNCggcWVuA8PDw/n/escr7+IWEPhSESS+e233wBo2rSpxZW4l8aNGwPw+++/W1yJiHtTOBKRJI4cOcKuXbuw2Ww0atTI6nLciiMcrVy5UjehFbGQwpGIJOE4a1S9enXy5ctnbTFupnbt2nh7e3Ps2DH27NljdTkibkvhSESSWLFiBaAuNSv4+vpSu3ZtQOOORKykcCQiSSgcWUvjjkSsd0vh6Pjx4xw9ejSjahERi506dYotW7YA0KRJE4urcU+OcV6O7k0RyXrpCkebN2+mcuXKBAUFUbx4cYoXL85LL73EhQsXMro+EclCjq6cChUqUKRIEYurcU+NGzfGZrOxc+dOjhw5YnU5Im4pXeGod+/eBAYGsnLlSjZs2MDo0aP58ccfqV27NqdPn87oGkUki6hLzXoFChSgevXqACxfvtziakTcU7rC0fbt25kwYQINGjSgWrVqPProo6xdu5bKlSvz5JNPZnSNIpJFFI6yh+bNmwOwbNkyS+sQcVfpCkcpnSGy2WyMGTOG7777LkMKE5Gsde7cOdavXw8oHFlN4UjEWp6pbXjXXXdRvXp1wsLC6N+/P4MHD+a7774jMDDQ2SYqKor8+fNnSqEikrkiIiKIi4ujZMmSlChRwupy3FrTpk2TjDsKCgqyuiQRt5LqcFS1alXWr1/PtGnTOHbsGAClS5emU6dOhIWFERcXx7Rp03j33XczrVgRyTyO8S26Ss16+fPnJywsjA0bNrB8+XK6dOlidUkibiXV4eiNN95w/v+xY8fYsGEDGzduZOPGjUycOJHdu3djt9sZOXIk999/f6YUKyKZZ8mSJQC0aNHC4koEErrWNmzYwNKlSxWORLJYqsNRYoGBgbRp04Y2bdo4l126dIlNmzaxadOmDCtORLLG2bNnWbNmDQCtWrWyuBqBhHD07rvvatyRiAXSFY5SkitXLurXr0/9+vUzapUikkVWrFhBXFwcZcuWJSQkxOpyhP/GHf39998cPnyYYsWKWV2SiNvQ7UNEhF9//RWAli1bWlyJOOTLl48aNWoAmu9IJKspHImIMxypSy170SX9ItZQOBJxc8ePH3feT02DsbMXRzhyDJYXkayhcCTi5pYuXQpAtWrVKFy4sMXVSGLNmjXDbreze/du9u3bZ3U5Im5D4UjEzalLLfvKmzev8yKXxYsXW1yNiPtQOBJxcwpH2Vvr1q0BhSORrKRwJOLG9u/fz969e7Hb7ZoZO5u64447gIQQGxcXZ3E1Iu5B4UjEjTkG+tatW5e8efNaXI2kpE6dOgQEBHD69GnWrVtndTkibkHhSMSN/fzzz4C61LIzT09P5/xT6loTyRoKRyJuKjY21hmO2rZta3E1ciOOrjXH8RKRzKVwJOKm1qxZw+nTp8mXLx9169a1uhy5Aceg7IiICM6fP29xNSI5n8KRiJv68ccfgYQvXk/PDLvNomSCMmXKUKpUKWJiYnQrEZEsoHAk4o4iI1n01VcAtGnTxuJiJDUcZ49+/vZbWLoUIiMtrkgk51I4EnE34eH8GxLC2p07AWhz6pTFBUlqOMYd/TR1KrRsCaGhEB5ucVUiOZPCkYg7iYyExx7jZ2MwQHUgaOhQnYVwAbdXrIgnsBPYDRAfD/366diJZAKFIxF3smsXxMfz49Vf2wDExcHu3RYWJakRcOwYTa/+/wLHQh07kUyhcCTiTsqVI95m46erv7YFsNuhbFkLi5JUKVeO9jYbAD84lunYiWQKhSMRdxIczPrhwzkB5AEaenjA5MkQHGx1ZXIzwcHc9dprACwHzunYiWQahSMRN7PQywuAVo0b43XgAPTubXFFklq3DR9OuVKliAEWT5qkYyeSSRSORNzM/PnzAWjfs6fOOrig9h07AvBDRIS1hYjkYApHIm4kMjKSdevWYbPZaN++vdXlSDo4jtuCBQuIj4+3uBqRnEnhSMSNOM4aNWjQgMDAQIurkfRo3LgxefPm5fjx46xdu9bqckRyJIUjETfiCEf33HOPxZVIenl7eztny/7hhx9u0lpE0kPhSMRNnD17liVLlgAKR67O0bXmCLsikrEUjkTcxE8//URMTAy33XYb5cuXt7ocuQV33XUXdrudTZs2sXfvXqvLEclxFI5E3MR3330H6KxRTlCoUCGaNWsGwLfffmtxNSI5j8KRiBuIjo5mwYKEm04oHOUM999/PwDffPONxZWI5DzZIhxNmDCBUqVK4evrS61atfjtt99S9bzff/8dT09PwsLCMrdAERf366+/cubMGYoWLUr9+vWtLkcyQMer8x2tXr2af/75x9piRHIYy8PR7Nmzefrppxk+fDgbNmygSZMmtG3bloMHD97weVFRUXTv3p1WrVplUaUiruvrr78GEs422O12i6uRjFCsWDEaNmwIwNy5cy2uRiRnsTwcjRs3jt69e9OnTx8qVqzI+PHjKVGiBBMnTrzh8/r160fXrl1p0KBBFlUq4pqio6OZN28eAA8++KC1xUiGUteaSOawNBxFR0ezbt0655wdDq1bt2bVqlXXfd60adPYs2cPr7zySqq2c+XKFc6ePZvkR8Rd/Prrr5w+fZrAwEAaN25sdTmSge69914AVqxYwb///mtxNSI5h6Xh6MSJE8TFxSWbqTcwMJCjR4+m+Jxdu3YxbNgwZsyYgaenZ6q2M3bsWAICApw/JUqUuOXaRVyFo0vtgQceUJdaDlOqVClq1qxJfHy8zh6JZCDLu9UAbDZbkt+NMcmWAcTFxdG1a1dGjhzJbbfdlur1v/DCC0RFRTl/Dh06dMs1i7iC6Oho53gUdanlTA899BAAs2bNsrgSkZzD0nBUqFAh7HZ7srNEx48fT/G+T+fOnWPt2rUMHDgQT09PPD09GTVqFJs2bcLT09M5+++1fHx8yJs3b5IfEXfguEpNXWo5V+fOnYGErjX9w08kY1gajry9valVqxaLFy9Osnzx4sXOqzASy5s3L1u2bGHjxo3On/79+1O+fHk2btxIvXr1sqp0EZcwc+ZMQF1qOVmJEiVo2rQpAF9++aXF1YjkDJZ3qw0ZMoQpU6YwdepUduzYweDBgzl48CD9+/cHErrEunfvDoCHhwdVqlRJ8lOkSBF8fX2pUqUK/v7+Vu6KSLZy/vx55+zJDz/8sMXVSGbq2rUroK41kYxieTjq3Lkz48ePZ9SoUYSFhbFixQoWLlxIaGgoAEeOHLnpnEciktzcuXO5ePEi5cqV01nVHO6BBx7A09OTDRs2sGPHDqvLEXF5NmOMsbqIrHb27FkCAgKIiorS+CPJsVq3bs3ixYsZOXIkL7/8stXlSCZr3749CxYsYMSIEYwaNcrqckQyRVZ9f1t+5khEMt7hw4f59ddfAejWrZvF1UhWcHStff7558THx1tcjYhrUzgSyYFmzZpFfHw8DRs2pEyZMlaXI1mgY8eO5M2bl/3797N8+XKryxFxaQpHIjmMMYbPP/8cgEceecTiaiSr+Pn50aVLFwCmTp1qcTUirk3hSCSHWbduHZs2bcLb25tOnTpZXY5koV69egEJ91qLioqyuBoR16VwJJKTREbyyciRQMJNSQsUKGBxQZKV6tatS6VKlbh06RKzJ02CpUshMtLqskRcjsKRSE4RHs75kBBm/vADAH2LF7e4IMlqNpuNRx99FICpw4ZBy5YQGgrh4RZXJuJadCm/LuWXnCAyEkJDCY+Ppw9QFvjbwwPbgQMQHGx1dZKFjm3YQPGaNYkDtgKVAex22L9f7wVxebqUX0RSb9cuiI/nk6u/9gFs8fGwe7eVVYkFAs+c4e6r/z/RsTAuTu8FkTRQOBLJCcqVY4vNxh+AJ9ATEs4WlC1raVligXLleNxmA+Az4BzovSCSRgpHIjlBcDATrt589G4g0G6HyZPVjeKOgoNpOXkyt5EQjGbYbHoviKSRwpFIDnD69Gk+W7MGgCfffTdhfEnv3tYWJZbx6NuXx199FYCPbrsNc/USfxFJHYUjkRxg6tSpXLx4kapVq9Lsqad0lkDo8dRT+Pn5sXXnTlauXGl1OSIuReFIxMXFxcXx4YcfAjBo0CBsV8ebiHvLly+f8756H3zwgcXViLgWhSMRF/fDDz+wf/9+ChQo4Lz5qAjAwIEDgYQZs/ft22dxNSKuQ+FIxMW99957APTt2xc/Pz+Lq5HspFq1arRu3Zr4+HjGjx9vdTkiLkPhSMSFrVu3jqVLl2K323n88cetLkeyoWeffRaAKVOmcOrUKYurEXENCkciLuzNN98E4KGHHiIkJMTiaiQ7uv322wkLC+PixYtMnDjx5k8QEYUjEVe1a9cu5syZA8Dzzz9vcTWSXdlsNufZow8++IDLly9bXJFI9qdwJOKi3n77bYwx3HXXXVStWtXqciQb69SpEyVKlODYsWN88cUXVpcjku0pHIm4oCNHjvDpp58CMGzYMIurkezOy8uLp59+GoA33niD2NhYawsSyeYUjkRc0Ntvv010dDQNGzakcePGVpcjLqBfv34UKlSIPXv2MGPGDKvLEcnWFI5EXMzhw4edA2tffvlli6sRV+Hv7+8cm/baa6/p7JHIDSgcibiYN954g8uXL9OoUSNat25tdTniQh5//HEKFy7Mnj17NPZI5AYUjkRcyKFDh5g8eTIAo0aN0q1CJE0Snz0aPXq0zh6JXIfCkYgLGTNmDNHR0TRr1owWLVpYXY64oAEDBjjPHn3++edWlyOSLSkcibiI/fv3Ex4eDuiskaRf4rNHr776quY9EkmBwpGIixgxYgQxMTHcfvvtNG3a1OpyxIU98cQTBAcHc/DgQT788EOryxHJdhSORLK7yEjWTZ7sHED7xhtvWFyQuLpcuXLx2muvAfD66NGc+u47iIy0uCqR7EPhSCQ7Cw/HhITwbP/+ADxcvz61atWyuCjJCR555BGqFi/OmagoxnbsCKGhcLXbVsTd2YwxxuoistrZs2cJCAggKiqKvHnzWl2OSMoiIyE0lO/j47kb8AH+9vAg5MABCA62ujpxdZGRLAoJoa0xeAM7gZJ2O+zfr/eXZFtZ9f2tM0ci2dWuXcTGx+O4pexgICQ+HnbvtrIqySl27eJOY2gFRAMvAMTF6f0lgsKRSPZVrhwTbTb+AgoBwwDsdihb1tq6JGcoVw6bhwdvAzbgS2CFh4feXyIoHIlkW8e8vBjh6wvAa0CA3Q6TJ6vLQzJGcDB8/DE17Hb6XV00MCiI2KJFLS1LJDtQOBLJpoYNG0bUpUvUrFqVvr/8kjAWpHdvq8uSnKR3b9i/n9Hz5lEgXz62/POP8759Iu5MA7I1IFuyoVWrVtGoUSMAIiIiqF+/vsUVSU43adIkBgwYQL58+di5cydFihSxuiSRZDQgW8RNxcXF8cQTTwDQq1cvBSPJEn379qVGjRqcOXOGF1980epyRCylcCSSzUyaNImNGzeSL18+TfgoWcZutztnyw4PD2fVqlUWVyRiHYUjkWzk8OHDzn+1v/766xQuXNjiisSdNGzYkF69egEJZ5KuXLlicUUi1lA4EslGBg4cyNmzZ6lTpw79+vW7+RNEMtjbb79NkSJF2L59O2+99ZbV5YhYQuFIJJv45ptvmDt3Lp6enkyZMgW73W51SeKGChQowHvvvQfA6NGj+euvvyyuSCTrKRyJZAOnT59m4MCBQMIl/NWqVbO4InFnnTt3pl27dkRHR/PYY48RHx9vdUkiWUrhSCQbeP755zl69Cjly5dn+PDhVpcjbs5mszFhwgT8/f357bffmDJlitUliWQphSMRiy1dutT55fPJJ5/ge3VWbBErhYaGMnr0aCAhvEdGRlpckUjWUTgSsdD58+fp27cvAP3796dJkyYWVyTynyeffJK6desSFRVF3759ccM5g8VNKRyJWGjo0KHs2bOHEiVKaE4jyXbsdjvTp0/Hx8eHRYsWER4ebnVJIllC4UjEIosXL2bChAkATJ06lYCAAIsrEkmuYsWKvP766wAMGTKEAwcOWFyRSOZTOBKxQFRUFL169ADgiR49uP322y2uSOT6nn76aRrVqcO5c+fo1a2brl6THE/hSMQCT7drR+SRI5QB3vzsM1B3hWRj9unTmb52LbmAJb//zqTu3a0uSSRTKRyJZLH5U6cyfdUqbMCngL8x0K8f6GogyY4iI+GxxyhrDG9eXfTcjBnsWbnS0rJEMpPCkUgWOnHiBH2ffRaAZ4FGjgfi4mD3bqvKErm+XbvgajfaE0AL4CLw6BNPEBcXZ2VlIplG4UgkixhjGDBgAMdPn6YSMCrxg3Y7lC1rUWUiN1CuHHgkfFV4AFOB3MBvmzfzzjvvWFmZSKZROBLJIjNnzmTOnDl4enry2Usv4eu4d5rdDpMnQ3CwtQWKpCQ4GD7+OOF9CpS023m/Z08ARowYwfr16y0sTiRz2Iwbzup19uxZAgICiIqKIm/evFaXI25g3759hIWFcfbsWUaOHMnLL7+cMJZj9+6EM0YKRpLdJXq/muLFefDBB/nmm2+oUKEC69atw8/Pz+oKxQ1k1fe3wpHCkWSy2NhYmjdvzu+//07Dhg1Zvnw5np6eVpclcktOnjxJtWrVOHz4MI8//jgfffSR1SWJG8iq7291q4lksrFjx/L777+TJ08evvjiCwUjyREKFizI9OnTAZgwYQILFiywtiCRDKRwJJKJVq9ezciRI4GEL5BSpUpZXJFIxrnjjjsYPHgwAL169eL48eMWVySSMRSORDLJuXPn6NatG3FxcTz00EN069bN6pJEMtyYMWOoWrUqx48fp3fv3ro5reQICkcimWTQoEHs3buX0NBQJkyYgM1ms7okkQzn6+vLjBkz8PHx4YcffmDy5MlWlyRyyxSORDLBV199xfTp0/Hw8ODzzz8nX758VpckkmmqVq3KG2+8ASTcnPavv/6yuCKRW6NwJJLBDh06RL9+/QB48cUXadKkicUViWS+QYMGcfvtt3Pp0iUeeughLl++bHVJIummcCSSgeLi4ujeuTNnzpyhblhYwnxGIm7Aw8ODzz77jMKFC7Nx40aee+gh3S9QXJbCkUgGeuOBB1gWEYE/MGPTJrw++8zqkkSyTFBQEJ927QrAh/PmMS8kBMLDLa5KJO00CaQmgZQM8ts339D8gQeIBz4FukPCLRf279cM2OIeIiMhNJTn4uN5B8gPbPTwIOTAAX0GJEO41SSQjvlffH19qVWrFr/99tt123777bfccccdFC5cmLx589KgQQN++umnLKxWJLkTJ07wUP/+xJMQiro7HoiLS7jlgog72LUL4uN5HagDnAa6xscTu3OnxYWJpI3l4Wj27Nk8/fTTDB8+nA0bNtCkSRPatm3LwYMHU2y/YsUK7rjjDhYuXMi6deto0aIFHTp0YMOGDVlcuUgCYww9e/bknxMnKA8kuYmC3Z5w7zQRd1CuHHh44A18CeQFfgdGzp9vbV0iaWR5t1q9evWoWbMmEydOdC6rWLEiHTt2ZOzYsalaR+XKlencuXOqB7+qW00y0rhx43jmmWfw8fHhz2HDqDZ6dMIZI7sdJk+G3r2tLlEk64SHQ79+EBfHbJuNLsZgs9n45ZdfaNmypdXViYtzi2616Oho1q1bR+vWrZMsb926NatWrUrVOuLj4zl37hwFChS4bpsrV65w9uzZJD8iGeHPP/9k6NChAIwfP55qr76aMMZo6dKE/yoYibvp3dv5Geh88CB9+/bFGEO3bt10exFxGZaGoxMnThAXF0dgYGCS5YGBgRw9ejRV6/jf//7HhQsX6NSp03XbjB07loCAAOdPiRIlbqluEYAzZ87QuXNnYmNjefDBB51zGxEcDM2bawCquK9En4Hx48dTqVIljh49Svfu3YmPj7e6OpGbsnzMEZDstgrm6mnYm5k1axavvvoqs2fPpkiRItdt98ILLxAVFeX8OXTo0C3XLO7NGMOjjz7K/v37KVWqFJ988oluDyKSAj8/P2bPno2vry8//fQTr732mtUlidyUpeGoUKFC2O32ZGeJjh8/nuxs0rVmz55N7969+eqrr7j99ttv2NbHx4e8efMm+RG5FW+99Rbz5s3D29ub2bNnExAQYHVJItlWlSpVnPdcGzlyJD/++KPFFYncmKXhyNvbm1q1arF48eIkyxcvXkzDhg2v+7xZs2bRs2dPZs6cyV133ZXZZYok8euvv/Liiy8C8P7771OnTh2LKxLJ/rp3707//v2d44/27dtndUki12V5t9qQIUOYMmUKU6dOZceOHQwePJiDBw/Sv39/IKFLrHt356wxzJo1i+7du/O///2P+vXrc/ToUY4ePUpUVJRVuyBu5NChQ3Tp0oX4+Hh69uzJY489ZnVJIi5j/Pjx1K1bl9OnT3P//fdz6dIlq0sSSZHl4ahz586MHz+eUaNGERYWxooVK1i4cCGhoaEAHDlyJMmcR5MnTyY2NpYnnniCoKAg589TTz1l1S6Im7iyZw8PtG7NiRMnqFGjBhMmTNA4I5E08PHxYc6cORQqVIgNGzbwRM+emCVLdA82yXYsn+fICprnSNIsPJwBffowiYRbIqwbO5ZSw4ZZXZWIS/rll1+4s3Vr4o3hY6Cvhwd8/LGmvpCbyqrvb4UjhSO5mchIJoWEMMAYbMACoK3umSaSfpGRjA0J4UVj8AJ+BZroMyWp4BaTQIq4giWzZzPw6r8hXgPagu6ZJnIrdu1iqDHcD8QA9wJ79ZmSbEThSOQG/v77bx547TXigG7Ai44HdM80kfQrVw4PDw8+A2oBJ4H2QNQN5qsTyUoKRyLXcfr0aTp06MDpqCjqly7NFA8PbPDfPdN0+l8kfYKD4eOP8bPb+Q4oBuwAOg8ZQmxsrMXFiSgciaTo8uXL3Hvvvfz999+UKFGCeatW4XvggO6ZJpJRrt6DrfjSpcxfsIBcuXLx008/8fTTT+OGQ2Elm/G0ugCR7CYuLo5u3bqxfPly8ubNy/fff//fjO06WySScYKDITiYWsAXX3zB/fffz0cffURQUBDDhw+3ujpxYzpzJJKIMYYnnniCb7/9Fm9vb7777juqV69udVkiOd59993He++9B8BLL73EpEmTLK5I3JnCkUhkZEJ3WWQkI0eOZPLkydhsNmbOnEnz5s2trk7EbQwaNIiXXnoJgMcff5yvv/464YFEn1GRrKBuNXFv4eHw2GMQH88bNhsjr451mDBhAvfff7/FxYm4n1GjRnHixAkmTZpEt27d8F+5knYffgjx8aDJIiWLaBJITQLpviIjITQ0IRgBL1xd/Przz/Pim29aWZmIW4uLi6Nr16589dVXeANzgA6OBzVZpFvTJJAimW3XrmTBaDTwYtu2FhYlIna7nS+++IIHmjYlGrgfmOt4UJNFShZQOBK3FV+mDM+QNBgN1+SOItmCl5cXsz79lC4kzKLdCfgcNAGrZAmFI3FL0dHRPDxsGOOu/v4WV4ORJncUyTY8S5bk88mTedhmIxboDrzeoQOmeHGrS5McTuFI3M7Jkydp27Yts2bNwtPTk8/Gj+c5Te4oki15PvYYn+7fz3OdOwPw0rx59OvXj5iYGIsrk5xM4UhyrhQu/12/fj21atViyZIl+Pv7s2DBAh556ilo3lxnjESyKY+QEN768ks+/PBDPDw8+OSTT2jZsiWHDx9O2lCX/EsGUTiSnCk8POFKtJYtITQUM2UK06ZNo1GjRhw4cIAyZcoQERFB69atra5URFLpiSeeYN68eeTNm5eVK1dSo0YNli5dmvDgNZ95wsOtLVZcmi7l16X8OU+iS/QBjgP9+e9ql/bt2/P555+TL18+iwoUkVuxa9cuHnjgATZv3oyHhwfP9uvHyEmT8E38daZL/nMkXcovkl5XL9E3wNdAZRKCkZenJ6+//jrfffedgpGICytXrhwRERE8+uijxMfH89bEiYQZQ0TiRrrkX26BwpHkPOXKscVm43YSLv89AVQF/vzhB1588UU8PPS2F3F1fn5+TJ06le+++46iRYqwE2gE9AaOgC75l1uibwnJUQ4ePMiA118nDFgC+AAjbDbWTJxI2J13WluciGS4u+++m207dtCjYUMMMBUoB7zWvj1nNWxC0knhSHKEPXv28Nhjj1G2bFkmTZpEvDHc364dO2bOZNTBg/j07291iSKSSQoUKMD0339n1bx51K9UiQvAy999R2hoKCNGjODEiRNWlyguRgOy9S8L1xMZCbt2EVe6ND9t28ZHH33Ejz/+iOOt3KJFC1555RWaNWtmcaEiktWMMcyePZuRI0fy119/AZArVy66dOlC//79qVOnDrZ//kkYm1iunAZsu5is+v5WOFI4ci3h4Wzr25cvjWEGsC/RQ23atGH48OE0btzYqupEJJuIj49n7ty5jBkzhvXr1zuX1wgJ4dFDh+hkDIEeHvDxx5r81YUoHGUihSPXs2fPHr6cPJkv336brYmW5wN69e1L/+eeo1y5chZVJyLZlTGGiIgIJk2axFdffcWVK1eAhDElLYEuNhv3bd5M/ipVLK1TUkfhKBMpHLmGyMhIvvrqK7788kvWrFnjXO4FtAU6Ax0Bv6VLE2a4FhG5gZPz5jHj3nuZCfyRaLm3lxdt2ralS5cudOjQgdy5c1tVotyEwlEmUjjKvk6ePMmcOXOYOXMmv/32m3MckYeHB60aNaLLypXcawz5HU/QRG8iklqJJojdC3wJzIIkZ6P9/Pzo0KEDXbp0oU2bNvj6+lpTq6RIk0CK27h06RIzZ86k/e23UzQwkP79+7NixQqMMTRu3JiPPvqII0eO8POKFfT65BPy2+0JT7TbYfJkBSMRSZ3g4IQxRnY7pYEX7Xa2TJnCli1beOmllyhTpgwXL15k9uzZ3HvvvQQWKULPNm34ecYM4q/OuC/uQWeOdObIMjt27ODjjz/m008/5fTp087lYUDXBx6g8//+R0hISPInRkYmzHxbtqyCkYik3XX+hhhjWLduHV9++SWzp04lMtHfpZKFCtHn6afp1asXQUFBVlQtqFstUykcWSc+Pp4ffviBcePGsXz5cufyEKA70BWoCOouExHrREYSHxLCKmOYBcwEzlx9yNPTk44dO/Lss89Sr14962p0U+pWkxzlypUrTJs2jSpVqnDPPfewfPlyPDw8uPvuu1kwZgx7gde4GoxA90USEevs2oWHMTQGPgIOA58CDStXJjY2ljlz5lC/fn2aN2/OwoULccNzDDmewpFkqujoaCaOGUOZ4GB69erFjh07yJs3L0OHDuXAgQN89913tHvkEezX3u9M90USEauUKweJ/iblArrb7fy+aBGbN2+mZ8+eeHl5sXz5cu666y7CKldm3muvYQ4dsq5myVAKR5Ip4uLi+Oyzz6hQvDiPDx/OPydOUAx4+8EHOXToEG+88QbBji6zRIMkAQ20FhFr3eBvUtWqVZk2bRp79+7l2WefJY+vL5t37ODel1+mbkgIPw0erDNJOYDGHGnMUYYyxvDtt98yYsQIduzYAUBRYDjQF/C50VgiDbQWkezkZn+TIiM5HRLCO8bwHnDh6uLGdeow5n//o0mTJllZrVvQmCNxOUuWLKFu3bo88MAD7Nixg/x58vAmsAcYCPjAjccSBQcnTOaoYCQi2cHN/ibt2kV+Y3gd2AsMIeHv3Mo1a2jatCnt2rVj48aNWVWtZCCFI0mfyEhYuhQiI9m8eTNt27alVatWrF27lty5c/Pyyy+zb/VqnvfwwC/x8zSWSERyikRjk4oA/wP2eHjQ7+GHsdvt/Pjjj9SoUYOHHnqI3bt3J/m7KdmbwpGkXXg4hIZyoGVLupcoQVhYGIsWLcLT05OBAweyZ88eRo4cSUClShpLJCI5Vwpjk4p//DGTPv+cv/76i4ceegiAL7/8kooVKtC/RAkOt2yZMEt3eLiFhcvNaMyRxhylTWQkx0JCeMsYPgSiry7u3KEDo8eNo2xKZ4U0lkhEcrIb/I3buHEjw595hoVLlgAJV749CQz18KDAgQP6m5hGGnMk1rjBad8jR44wZPBgShnDOBKCUQvgT+DLIUNSDkagsUQikrPd4G9cWFgYC156iRVAI+AS8BZQOj6eMa++yoULF5I9B1AXnMUUjuQ/V7vLuOa075YtW3jssccoVaoU786ZwyWgLrAQ+BWoo3FEIiLXV64cTTw8+A34AagGRAHDw8MJDQ3lxRdf5J9//vmv/XX+FkvWUbeau3SrRUbCrl0JAwivdxn91btVQ8IHd57NxrR69Vi+erWzWYMGDXilXj1av/8+tvj4/8YR9e6dRTsiIuKCwsOhXz+IiyPew4Mve/fm5SVL2LNnD5BwW5J77rmHh9u0oe1jj+GT+Kv5ZlOg3Ohvew6je6tlIrcLR+Hh8NhjCcHHwyNhAOE1YcYsWcKuVq1YSsIZoUX8N57Ibrdz3333MXDgQJo0aYLNZtM4IhGRtLrm72ZcXBzz58/nvffeS3KvyXzA3UBr4HYgEBK62Jo3T7q+VPxtz2kUjjJRTg1HMTExXLlyhZiYGOdP7KFDxDRsSKwxxAIxQJSHB8c//JBjsbHs2rWLbdu2sWXTJv49eTLJ+ioBnZ95hl5PP/3fbNYiIpLhNm/ezGeffcasL77g8LFjSR4LAWq0bk2FGjUIDg6mRIkSFIiNxf/BB/EzBj/AG/D28MB7+3a8S5XCy8sr4R+yOYzCUSZy5XAUGxvL2rVrWbNmDVu3bmXHxo0cPXyYY1FRnD137pbW7e3pSYPYWFoC93l4UMUN/hUiIpKdxMXF8duwYfz4v//xszFsvIV1eXl54e3tjbe3N0UKFKBkgQKUqViR2s2bU6dOHSpVqoTHtfe1zOYUjjKRq4WjCxcuMG/ePL7++muWLl3K2bNnU/U8T09PvDw98bx8GU/AC/AEcgOBdesSGBJCSEgIVapUoUqVKlSuXBm/U6fUXSYiYrWrXXBRRYqw6cQJNmzYwN69ezl06BCHDh0i6uRJLuzbx0XgIv8Ng0iLwMBA7rrrLjp27EibNm3w8vLK4J3IeApHmcglwlFkJJsXLWL84sXM/uEHLl686Hwof/78NK5Vi2q//EJlIJiE2VkLeXiQ66+/8CpZEk9Pz/9OqSYaCKgB1CIiOUSiv+3Gw4O4iROJfvhhoqOj//s5cIArTZpwxBj2AzuANcBaPz8uJPpeCQwMpGfPnvS7+25KXbmSbQd4KxxlIkvD0U2uLDDG8NOQIfxv/Hh+SbS8TJkydOvWjbvvvpuwsDDsK1YkXOZ5rZQG7Tm2qzNCIiI5y83+ti9dmuJ3RfTPP7PCZuP7779n9uzZHLs6zskOdAKet9kI++ST6/9D2qKr5BSOMtGtvLh79uzhjz/+4Ny5cxQvXpyaNWtSrFix1D35BlcWxMTEMHv2bN4cPZqtO3cCCZNQPQA85eFBg/37sZUo8d+6rrn0Hrjx5Z4iIuJ+UvFdERMTw4JPP2Vi3778nOiprYHnZ82iZefOSQd3p+MqOWMMe/fuZe3atZw6dYoiRYrQrFkzChUqlKbdybKTG8YNRUVFGcBERUWl+jm7d+82d955pwGS/dSrV8+8+8or5uicOcYcOpTyCg4dMsbDwxj478duNxf//tt8+OGHpmTJks715QYzGMy+xG2XLk2+zilTjLHbnesyU6ak7wUREZGcKzXfFUuWGANmPZguYDwSfcfVqFHDzJgxw0RHR1/3u+x63337Vq0yI3v2NGVCQ5N9d9rtdtOnTx9z8uTJVO9Ker6/00Nnjm6WPCMjWTFnDu1HjODc+fN4eHhQv359ChUqxN69e9m2bRuOl9AOtAV6DhhA+3ffxcfH57/1JDq1aYANwFRgRu7cnDl/HoAiRYrw9KOPMuCtt8iXlgnA1F0mIiI3crPvimvOMO0FxtlsTPXx4dLlywCEhITQp1Uruk6bRplrn59oSMe5c+eYO3cu08eOZelffzmbeNnt1KpTh8DAQPbt28fmzZsBKFu2LIumTaNMTMxNu+nUrZaJUv3ihoezqW9fGhnDBaBR2bJ8umgRZcr897Y4un49c2rX5gtj+CPRU/PmyUODhg2pXbs2xYoVw3bmDCdeeokdxrAUOJqobalSpXj22Wd59NFHyZUrlwZQi4hI1kvhu+dkx45MnDiRDz74gOPHjzub3gY0BsoB+W02okeO5EBUFH/88QerV68mNjYWABvQCugB3OvhgX+im+3+/vvvdOvWjQMHDlAGiAAK36SbTuEoEzlf3O3byVuxYsqNIiM5FxJCDWPYQ8LB/d7Dg1zX3kU50Rmhv4BPgc+Bf5KvMYlcQIfatekzZgytWrVKPteEzgiJiEhWu853z+XLl/nqq6+YMWMGvyxeTPxNokO54GB6REbyCAmTWDpdc9HQkXXraFS7NvtI6HlZANhu0FtydscOAipVUjjKDI5w9CPQZsqUlBPq0qUMadmSd4FQYD1Q4OryJFeDpTDYLc7Dg80LFvD77t1s27aNY8eOYbPZCAgIoGzhwtQPDKTRPffgUybZiUkREZFs7fTp06yaP5/Vv/7KgYsXORsbi5eXF8HBwVSqVIlWrVpR2ts7dRcNLV3K1pYtqQ1cAaYAva8uT+l2KZP79KE/KBxlBkc4GgWMuE5C3fTzz9S6807igJ9IGLV/3bE/6gYTERFJKjXfjVdPMLwTH89zJMzZt8vDg7zX9tJcbXd/fDzfkvnhyLXmDc9geyHhoO3eneyxIW++SRzwoM32XzCaPDnlLq7evRNC09KlCf9VMBIREXeXmu/G4GD4+GMGeXhwG3AcGNO6dfLv2l27ID4+4Xs7C7j1maOmwPIUzgatWLGCZs2a4eXlxa4VKwi9fFljf0RERDJLZCTff/YZdw8fjo+PD7t37056w/PISExICPmM4Sw6c5Sp9kCKZ4NeeeUVAPr06UNo/foJ/Z4KRiIiIpkjOJj2L7xA06ZNuXLlCmPGjEn2+Ilx40jdnUVvnVufOYKEgWX58uVzPrZs2TJatGiBt7c3u3fvpkTiWalFREQk0yxfvpzmzZsn9Nzs2kVoaKjzsaVLl9Ly6tXhOnOUyRyTUEHC9OaJzxopGImIiGSdZs2a0apVK2JiYnjttdeSPLZx48Ysq8Ptw9HatWud/79kyRJWrFiBt7c3L7zwgoVViYiIuCdHKJo+fTq7E10wlfj7OrO5fThatmwZkPSsUb9+/ZIOBBMREZEs0aBBA9q2bUtcXByjRo0CEr6jHd/XWcHtxxz5+/tz7NgxFi5cSKdOnfD19WXPnj0UK1bM4ipFRETc09q1a6lTpw4eHh5s3bqVK1euUKNGDby9vYmOjtaYo8xUqlQpLly4wPDhw3nyyScBeP755xWMRERELFS7dm3uuece4uPj6dq1KyNGjACgXbt2WbL9bBGOJkyYQKlSpfD19aVWrVr89ttvN2y/fPlyatWqha+vL6VLl2bSpEnp2u6AAQMAeO+99zh27BiVK1fmxRdfTNe6REREJON88MEHFC5cmI0bN/LDDz8A/31vZzbLw9Hs2bN5+umnGT58OBs2bKBJkya0bduWgwcPpth+3759tGvXjiZNmrBhwwZefPFFBg0axDfffJPmbffp04fevXvj6elJw4YNWbBgAT4+Pre6SyIiInKLSpQowffff0/ZsmXx9/fnnXfeoX79+lmybcvHHNWrV4+aNWsyceJE57KKFSvSsWNHxo4dm6z90KFDmT9/Pjt27HAu69+/P5s2bSIiIiJV23SMOXL0WRpjsNlst74zIiIikuEc39PXfn9nFkvPHEVHR7Nu3Tpat26dZHnr1q1ZtWpVis+JiIhI1v7OO+9k7dq1xMTEpKsOBSMREZHsK6u/pz2zdGvXOHHiBHFxcQQGBiZZHhgYyNGjR1N8ztGjR1NsHxsby4kTJwgKCkr2nCtXrnDlyhXn71FRUUDCGSQRERFxDY7v7czu9LI0HDlcmwhv1s2VUvuUljuMHTuWkSNHJluuGbBFRERcz8mTJ51T8mQGS8NRoUKFsNvtyc4SHT9+PNnZIYeiRYum2N7T05OCBQum+JwXXniBIUOGOH8/c+YMoaGhHDx4MFNf3Ozm7NmzlChRgkOHDmVqX212o/3WfrsD7bf22x1ERUUREhJCgQIFMnU7loYjb29vatWqxeLFi7n33nudyxcvXsw999yT4nMaNGjA999/n2TZzz//TO3atfHy8krxOT4+PilehRYQEOBWbyqHvHnzar/diPbbvWi/3Yu77reHR+YOmbb8Uv4hQ4YwZcoUpk6dyo4dOxg8eDAHDx6kf//+QMJZn+7duzvb9+/fnwMHDjBkyBB27NjB1KlTCQ8P59lnn7VqF0RERCQHsXzMUefOnTl58iSjRo3iyJEjVKlShYULFxIaGgrAkSNHksx5VKpUKRYuXMjgwYP56KOPKFasGO+//z7333+/VbsgIiIiOYjl4Qjg8ccf5/HHH0/xsenTpydb1qxZM9avX5/u7fn4+PDKK6+43YSP2m/ttzvQfmu/3YH2O3P32/JJIEVERESyE8vHHImIiIhkJwpHIiIiIokoHImIiIgkonAkIiIikkiODUevv/46DRs2xM/Pj3z58qXqOcYYXn31VYoVK0auXLlo3rw527ZtS9LmypUrPPnkkxQqVAh/f3/uvvtuIiMjM2EP0uf06dM88sgjBAQEEBAQwCOPPMKZM2du+BybzZbiz9tvv+1s07x582SPd+nSJZP3JvXSs989e/ZMtk/169dP0ianHe+YmBiGDh1K1apV8ff3p1ixYnTv3p3Dhw8naZfdjveECRMoVaoUvr6+1KpVi99+++2G7ZcvX06tWrXw9fWldOnSTJo0KVmbb775hkqVKuHj40OlSpWYO3duZpWfbmnZ72+//ZY77riDwoULkzdvXho0aMBPP/2UpM306dNT/Kxfvnw5s3clTdKy38uWLUtxn/76668k7XLa8U7p75fNZqNy5crONtn9eK9YsYIOHTpQrFgxbDYb8+bNu+lzsuyzbXKol19+2YwbN84MGTLEBAQEpOo5b7zxhsmTJ4/55ptvzJYtW0znzp1NUFCQOXv2rLNN//79TfHixc3ixYvN+vXrTYsWLUz16tVNbGxsJu1J2rRp08ZUqVLFrFq1yqxatcpUqVLFtG/f/obPOXLkSJKfqVOnGpvNZvbs2eNs06xZM9O3b98k7c6cOZPZu5Nq6dnvHj16mDZt2iTZp5MnTyZpk9OO95kzZ8ztt99uZs+ebf766y8TERFh6tWrZ2rVqpWkXXY63l9++aXx8vIyn3zyidm+fbt56qmnjL+/vzlw4ECK7ffu3Wv8/PzMU089ZbZv324++eQT4+XlZebMmeNss2rVKmO3282YMWPMjh07zJgxY4ynp6dZvXp1Vu3WTaV1v5966inz5ptvmj///NP8/fff5oUXXjBeXl5m/fr1zjbTpk0zefPmTfaZz07Sut9Lly41gNm5c2eSfUr8Gc2Jx/vMmTNJ9vfQoUOmQIEC5pVXXnG2ye7He+HChWb48OHmm2++MYCZO3fuDdtn5Wc7x4Yjh2nTpqUqHMXHx5uiRYuaN954w7ns8uXLJiAgwEyaNMkYk/Bm9PLyMl9++aWzzT///GM8PDzMokWLMrz2tNq+fbsBkrwJIiIiDGD++uuvVK/nnnvuMS1btkyyrFmzZuapp57KqFIzVHr3u0ePHuaee+657uPucrz//PNPAyT5I5ydjnfdunVN//79kyyrUKGCGTZsWIrtn3/+eVOhQoUky/r162fq16/v/L1Tp06mTZs2SdrceeedpkuXLhlU9a1L636npFKlSmbkyJHO31P799BKad1vRzg6ffr0ddfpDsd77ty5xmazmf379zuXucLxdkhNOMrKz3aO7VZLq3379nH06FFat27tXObj40OzZs1YtWoVAOvWrSMmJiZJm2LFilGlShVnGytFREQQEBBAvXr1nMvq169PQEBAqus7duwYCxYsoHfv3skemzFjBoUKFaJy5co8++yznDt3LsNqvxW3st/Lli2jSJEi3HbbbfTt25fjx487H3OH4w0JN3K02WzJup+zw/GOjo5m3bp1SY4BQOvWra+7jxEREcna33nnnaxdu5aYmJgbtskOxxXSt9/Xio+P59y5c8lu0Hn+/HlCQ0MJDg6mffv2bNiwIcPqvlW3st81atQgKCiIVq1asXTp0iSPucPxDg8P5/bbb3feXcIhOx/vtMrKz3a2mCE7Ozh69CgAgYGBSZYHBgZy4MABZxtvb2/y58+frI3j+VY6evQoRYoUSba8SJEiqa7v008/JU+ePNx3331Jlnfr1o1SpUpRtGhRtm7dygsvvMCmTZtYvHhxhtR+K9K7323btuXBBx8kNDSUffv2MWLECFq2bMm6devw8fFxi+N9+fJlhg0bRteuXZPcvDK7HO8TJ04QFxeX4ufyevt49OjRFNvHxsZy4sQJgoKCrtsmOxxXSN9+X+t///sfFy5coFOnTs5lFSpUYPr06VStWpWzZ8/y3nvv0ahRIzZt2kS5cuUydB/SIz37HRQUxMcff0ytWrW4cuUKn3/+Oa1atWLZsmU0bdoUuP57Iqcc7yNHjvDjjz8yc+bMJMuz+/FOq6z8bLtUOHr11VcZOXLkDdusWbOG2rVrp3sbNpstye/GmGTLrpWaNrcitfsNyeuHtNU3depUunXrhq+vb5Llffv2df5/lSpVKFeuHLVr12b9+vXUrFkzVetOq8ze786dOzv/v0qVKtSuXZvQ0FAWLFiQLBymZb23KquOd0xMDF26dCE+Pp4JEyYkecyK430jaf1cptT+2uXp+axntfTWOGvWLF599VW+++67JAG6fv36SS46aNSoETVr1uSDDz7g/fffz7jCb1Fa9rt8+fKUL1/e+XuDBg04dOgQ77zzjjMcpXWdVklvjdOnTydfvnx07NgxyXJXOd5pkVWfbZcKRwMHDrzpFTMlS5ZM17qLFi0KJCTToKAg5/Ljx487U2jRokWJjo7m9OnTSc4mHD9+nIYNG6Zru6mR2v3evHkzx44dS/bYv//+myxJp+S3335j586dzJ49+6Zta9asiZeXF7t27cq0L8us2m+HoKAgQkND2bVrF5Czj3dMTAydOnVi3759LFmyJMlZo5RkxfFOSaFChbDb7cn+1Zf4c3mtokWLptje09OTggUL3rBNWt4vmSk9++0we/Zsevfuzddff83tt99+w7YeHh7UqVPH+Z632q3sd2L169fniy++cP6ek4+3MYapU6fyyCOP4O3tfcO22e14p1WWfrbTNELJBaV1QPabb77pXHblypUUB2TPnj3b2ebw4cPZboDuH3/84Vy2evXqVA/Q7dGjR7Krlq5ny5YtBjDLly9Pd70Z5Vb32+HEiRPGx8fHfPrpp8aYnHu8o6OjTceOHU3lypXN8ePHU7UtK4933bp1zYABA5Isq1ix4g0HZFesWDHJsv79+ycbtNm2bdskbdq0aZPtBuimZb+NMWbmzJnG19f3pgNbHeLj403t2rXNo48+eiulZqj07Pe17r//ftOiRQvn7zn1eBvz34D0LVu23HQb2fF4O5DKAdlZ9dnOseHowIEDZsOGDWbkyJEmd+7cZsOGDWbDhg3m3Llzzjbly5c33377rfP3N954wwQEBJhvv/3WbNmyxTz00EMpXsofHBxsfvnlF7N+/XrTsmXLbHdpd7Vq1UxERISJiIgwVatWTXZp97X7bYwxUVFRxs/Pz0ycODHZOnfv3m1Gjhxp1qxZY/bt22cWLFhgKlSoYGrUqOGy+33u3DnzzDPPmFWrVpl9+/aZpUuXmgYNGpjixYvn6OMdExNj7r77bhMcHGw2btyY5PLeK1euGGOy3/F2XOIcHh5utm/fbp5++mnj7+/vvCpn2LBh5pFHHnG2d1zuO3jwYLN9+3YTHh6e7HLf33//3djtdvPGG2+YHTt2mDfeeCPbXtqd2v2eOXOm8fT0NB999NF1p2B49dVXzaJFi8yePXvMhg0bzKOPPmo8PT2TBGyrpXW/3333XTN37lzz999/m61bt5phw4YZwHzzzTfONjnxeDs8/PDDpl69eimuM7sf73Pnzjm/mwEzbtw4s2HDBueVs1Z+tnNsOOrRo4cBkv0sXbrU2QYw06ZNc/4eHx9vXnnlFVO0aFHj4+NjmjZtmiyNX7p0yQwcONAUKFDA5MqVy7Rv394cPHgwi/bq5k6ePGm6detm8uTJY/LkyWO6deuW7BLXa/fbGGMmT55scuXKleJcNgcPHjRNmzY1BQoUMN7e3qZMmTJm0KBByeYEslJa9/vixYumdevWpnDhwsbLy8uEhISYHj16JDuWOe1479u3L8XPReLPRnY83h999JEJDQ013t7epmbNmknOYPXo0cM0a9YsSftly5aZGjVqGG9vb1OyZMkUQ//XX39typcvb7y8vEyFChWSfJlmF2nZ72bNmqV4XHv06OFs8/TTT5uQkBDj7e1tChcubFq3bm1WrVqVhXuUOmnZ7zfffNOUKVPG+Pr6mvz585vGjRubBQsWJFtnTjvexiSc3c6VK5f5+OOPU1xfdj/ejrNe13vPWvnZthlzdTSTiIiIiOTc24eIiIiIpIfCkYiIiEgiCkciIiIiiSgciYiIiCSicCQiIiKSiMKRiIiISCIKRyIiIiKJKByJiIiIJKJwJCIiIpKIwpGIiIhIIgpHIpKjjBo1iqpVq+Lv709gYCADBgwgJibG6rJExIV4Wl2AiEhGMcYQFxfH5MmTKV68ONu3b6d79+5Uq1aNAQMGWF2eiLgI3XhWRHK0rl27UrhwYd577z2rSxERF6FuNRHJMQ4cOMDAgQOpUqUK+fPnJ3fu3Hz11VcEBwdbXZqIuBCFIxHJEU6cOEHdunU5ceIE48aNY+XKlURERGC32wkLC7O6PBFxIRpzJCI5wsKFC4mNjWXWrFnYbDYAPvroI6KjoxWORCRNFI5EJEcoUKAAZ8+eZf78+VSqVInvv/+esWPHUrx4cQoXLmx1eSLiQjQgW0RyBGMMAwYMYObMmeTKlYuHH36Yy5cvc+DAAX744QeryxMRF6JwJCIiIpKIBmSLiIiIJKJwJCIiIpKIwpGIiIhIIgpHIiIiIokoHImIiIgkonAkIiIikojCkYiIiEgiCkciIiIiiSgciYiIiCSicCQiIiKSiMKRiIiISCIKRyIiIiKJ/B8GluJ/paXj1gAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwLUlEQVR4nO3deVxU1f/H8dewIwruiIK47zvuZu6aluW3MivX0tSsLG3Tn98yzdI2280NtzIzK7PSNDO3klzBzC3MBVHRxAR3hTm/P3DmC4KKCtwB3s/Hg0dxOTP3c+fOzH17zzn32owxBhEREREBwM3qAkRERERcicKRiIiISCoKRyIiIiKpKByJiIiIpKJwJCIiIpKKwpGIiIhIKgpHIiIiIqkoHImIiIikonAkIiIikorCkeQKhw8f5pVXXiEqKird3/r160fBggVv+rkvXrzI4MGDCQoKwt3dnXr16t18oVlg0qRJzJo1K93y/fv3Y7PZMvxbXmKz2XjllVesLiNLvPLKK9hstmx/7IcffkilSpXw8vLCZrNx8uRJ+vXrR7ly5dK0e/311/n2229vqp5rOXHiBA8++CAlS5bEZrPRrVu3G36OcuXK0a9fvyyvzZVs3ryZJ554gtq1a1OoUCECAwNp3749v/zyS7q206dPp1u3bpQrVw5fX18qVarE448/zpEjRyyoPP9ROJJc4fDhw4wZMybDcHSrPvnkE6ZMmcKoUaP49ddf+fTTT7N8HTfiauEoKCiIiIgI7rzzzpwvSm7KgAEDiIiIyNZ1REVFMXToUNq0acMvv/xCREQEhQoV4qWXXmLhwoVp2mZXOHr11VdZuHAh7777LhEREbz55ptZvo68YN68eWzYsIFHH32URYsWMX36dLy9vWnXrh1z5sxJ03b06NEULFiQ119/naVLl/LCCy/www8/EBYWxtGjRy3agvzDw+oCRKz2559/4uvry5NPPml1Kdfk7e1N06ZNrS5DbkBwcDDBwcHZuo7t27cD8Nhjj9G4cWPn8ooVK2brelP7888/qVixIj179syxdWaVs2fPUqBAgRxZ1wsvvMDbb7+dZlmXLl1o0KABY8eOpU+fPs7lkZGRlCxZ0vl7q1ataNCgAY0aNWLatGn897//zZGa8yudOcqH/vnnHwYOHEhISAje3t6UKFGCFi1a8PPPPzvbtG7dmlq1ahEREUHz5s3x9fWlXLlyzJw5E4DFixfToEEDChQoQO3atVm6dGm69fz666+0a9eOQoUKUaBAAZo3b87ixYvTtfvzzz+55557KFKkCD4+PtSrV4/Zs2c7/75q1SoaNWoEwCOPPILNZsuw62XPnj106dKFggULEhISwrPPPsuFCxeu+VrYbDamT5/OuXPnnM87a9asa3ZhXbluR/fH9u3beeihhwgICCAwMJBHH32UhISENI+12+18+OGH1KtXD19fXwoXLkzTpk357rvvgJSuhe3bt7N69WpnPY6ukavVlJnXedasWdhsNlauXMnjjz9O8eLFKVasGPfeey+HDx++5mt0LeXKleOuu+5i4cKF1KlTBx8fHypUqMAHH3yQrm1MTAy9evWiZMmSeHt7U716dd555x3sdvtVn3///v14eHgwfvz4dH9bs2YNNpuNBQsWADe2H86fP8/IkSMpX748Xl5elClThieeeIKTJ09muH0//PAD9evXx9fXl+rVq/PDDz8AKa9r9erV8fPzo3HjxmzatCnN4zPqGps/fz4dO3YkKCjI+XwjRozgzJkzV3+hr6J169b06tULgCZNmmCz2ZxdU1d2q9lsNs6cOcPs2bOd763WrVtf8/lPnDjBkCFDKFOmDF5eXlSoUIFRo0Y5P1eO9+TPP//Mzp07nc+7atWqqz7npUuXeOGFFyhVqhQFChTgtttuY8OGDRm2jYuLY9CgQQQHB+Pl5UX58uUZM2YMSUlJadrFxsZy//33U6hQIQoXLkzPnj3ZuHFjus+Lowt+27ZtdOzYkUKFCtGuXTsgpXt93LhxVKtWzfm9+Mgjj/DPP/+kq2v+/Pk0a9YMPz8/ChYsSKdOnYiMjLzmawmkCTsO7u7uhIWFcfDgweu2DQsLw93dPV1byQZG8p1OnTqZEiVKmKlTp5pVq1aZb7/91rz88svmiy++cLZp1aqVKVasmKlataoJDw83y5YtM3fddZcBzJgxY0zt2rXNvHnzzJIlS0zTpk2Nt7e3OXTokPPxq1atMp6eniYsLMzMnz/ffPvtt6Zjx47GZrOlWc+uXbtMoUKFTMWKFc2cOXPM4sWLzUMPPWQA88YbbxhjjElISDAzZ840gPnvf/9rIiIiTEREhDl48KAxxpi+ffsaLy8vU716dfP222+bn3/+2bz88svGZrOZMWPGXPO1iIiIMF26dDG+vr7O5z127JjZt2+fAczMmTPTPQYwo0ePdv4+evRoA5iqVaual19+2SxfvtxMnDjReHt7m0ceeSTNY3v37m1sNpsZMGCAWbRokfnxxx/Na6+9Zt5//31jjDFbtmwxFSpUMPXr13fWs2XLFmOMybCmzL7OjtevQoUK5qmnnjLLli0z06dPN0WKFDFt2rRJU6OjbUbbfqXQ0FBTpkwZU7ZsWTNjxgyzZMkS07NnTwOYt956y9nu2LFjpkyZMqZEiRJm8uTJZunSpebJJ580gHn88cev+fr+5z//MWXLljVJSUlp2nXv3t2ULl3aXLp06Yb2g91uN506dTIeHh7mpZdeMj/99JN5++23jZ+fn6lfv745f/58mu0LDg42tWrVcr7fmzRpYjw9Pc3LL79sWrRoYb755huzcOFCU6VKFRMYGGjOnj3rfLyjptReffVV8+6775rFixebVatWmcmTJ5vy5cun2w8ZPfZK27dvN//973+d+ysiIsLs2bPHGJPyuQgNDXW2jYiIML6+vqZLly7O99b27duv+tznzp0zderUMX5+fubtt982P/30k3nppZeMh4eH6dKlizHGmPPnz5uIiAhTv359U6FCBefzJiQkXPV5+/bta2w2m3n++efNTz/9ZCZOnGjKlClj/P39Td++fZ3tjhw5YkJCQkxoaKiZMmWK+fnnn82rr75qvL29Tb9+/ZztTp8+bSpVqmSKFi1qPv74Y7Ns2TIzbNgwU758+XTv4759+xpPT09Trlw5M378eLNixQqzbNkyk5ycbO644w7j5+dnxowZY5YvX26mT59uypQpY2rUqJFmn7722mvGZrOZRx991Pzwww/mm2++Mc2aNTN+fn7XfD2v5tKlS6ZSpUqmfv361227cuVKAzi/LyT7KBzlQwULFjTPPPPMNdu0atXKAGbTpk3OZfHx8cbd3d34+vqmCUJRUVEGMB988IFzWdOmTU3JkiXNqVOnnMuSkpJMrVq1THBwsLHb7cYYYx588EHj7e1tYmJi0qy/c+fOpkCBAubkyZPGGGM2btx41QN23759DWC+/PLLNMu7dOliqlatep1XI+Xxfn5+aZbdTDh6880307QbMmSI8fHxcW7rmjVrDGBGjRp1zXpq1qxpWrVqlW55RjVl9nV2BJ4hQ4akec4333zTAObIkSPOZbNnzzbu7u5m9uzZ16zTmJTwYLPZTFRUVJrlHTp0MP7+/ubMmTPGGGNGjBhhALN+/fo07R5//HFjs9nM7t27ncuufH0dB4SFCxc6lx06dMh4eHikCb+Z3Q9Lly7NsN38+fMNYKZOnZpm+3x9fU1sbKxzmeP9HhQU5Nw+Y4z59ttvDWC+++67dDVdjd1uN5cuXTKrV682gNm6dWumH+vg2LcbN25Ms/zKcGSMMX5+fmkCyLVMnjw5w8/VG2+8YQDz008/OZe1atXK1KxZ87rPuXPnTgOYYcOGpVk+d+5cA6SpbdCgQaZgwYLmwIEDadq+/fbbBnAGkY8//tgA5scff0zTbtCgQRmGI8DMmDEjTdt58+YZwHz99ddplju+dyZNmmSMMSYmJsZ4eHiYp556Kk27U6dOmVKlSpkHHnjguq/BlUaNGmUA8+23316zXWJioqlevboJCQlJ83mX7KFutXyocePGzJo1i3HjxvH7779z6dKlDNsFBQURFhbm/L1o0aKULFmSevXqUbp0aefy6tWrA3DgwAEAzpw5w/r167n//vvTzCJzd3end+/exMbGsnv3bgB++eUX2rVrR0hISJp19+vXj7Nnz2Z6MKvNZqNr165pltWpU8dZU064++67063//PnzHDt2DIAff/wRgCeeeCJL1ncjr/O1agTSvE59+vQhKSkpzfiHa6lZsyZ169ZNs+zhhx8mMTGRLVu2ACn7uUaNGmnGxEDKfjbGZDhbx6F169bUrVuXjz/+2Lls8uTJ2Gw2Bg4cmK799faDY11Xzozq3r07fn5+rFixIs3yevXqUaZMGefvjvd769at04xVufJzcDV79+7l4YcfplSpUri7u+Pp6UmrVq0A2Llz5zUfm5N++eUX/Pz8uP/++9Msd7xuV75OmbFy5UqAdGOTHnjgATw80g6B/eGHH2jTpg2lS5cmKSnJ+dO5c2cAVq9e7fxvoUKFuOOOO9I8/qGHHrpqHffdd1+6dRUuXJiuXbumWVe9evUoVaqUs5tw2bJlzs9G6nY+Pj60atXqmt2JGZk+fTqvvfYazz77LPfcc89V250/f557772XAwcOsGDBgluanSuZowHZ+dD8+fMZN24c06dP56WXXqJgwYL85z//4c0336RUqVLOdkWLFk33WC8vr3TLvby8gJQPMMC///6LMYagoKB0j3eEqvj4eOd/M9PuegoUKICPj0+aZd7e3s6ackKxYsXSrR/g3LlzQMpYL3d39zSv8a24kdc5szXejIy2x7Es9X6+clr5teq80tChQxkwYAC7d++mQoUKTJs2jfvvvz/DdV9vG+Pj4/Hw8KBEiRJp2tlsNkqVKpWulqu936/3OcjI6dOnadmyJT4+PowbN44qVapQoEABDh48yL333ntL+yGrxcfHU6pUqXRjpkqWLImHh0emP5tXPiekf894eHik229Hjx7l+++/x9PTM8PnOn78uPM5AwMD0/09o2WQ8l3h7++fbl0nT5507sOrrcsxS8wxBvJKbm6ZP98wc+ZMBg0axMCBA3nrrbeu2u7ChQv85z//4ddff+WHH36gSZMmmV6H3DyFo3yoePHivPfee7z33nvExMTw3XffMWLECI4dO5bhwOobVaRIEdzc3DK8Hodj8G/x4sWBlANZZtrlNEfQunJA980cEBxKlChBcnIycXFxGQaaG3Ujr3N2iouLu+oyxwHvVvfzww8/zIsvvsjHH39M06ZNiYuLu+kzcMWKFSMpKYl//vknTUAyxhAXF3fVA19W+OWXXzh8+DCrVq1yni0C0g0EdwXFihVj/fr1GGPSBKRjx46RlJR0U+8tx/shLi4uzdm4pKSkdJ+t4sWLU6dOHV577bUMn8sRrIsVK5bhgO6M3pdAhteOckxQuNr3X6FChZztAL766itCQ0MzbJsZM2fOZMCAAfTt29d5FjQjFy5coFu3bqxcuZJFixY5B49L9lO3Wj5XtmxZnnzySTp06ODsArlVfn5+NGnShG+++SbNv4TtdjufffYZwcHBVKlSBYB27do5DxipzZkzhwIFCjinrmfFGY4bERgYiI+PD3/88Uea5YsWLbrp53R0B3zyySfXbOft7Z2p7byR1zk7bd++na1bt6ZZ9vnnn1OoUCEaNGgApOznHTt2pHuPzZkzB5vNRps2ba65Dh8fHwYOHMjs2bOZOHEi9erVo0WLFjdVr+MA89lnn6VZ/vXXX3PmzJlsPQA5DoKO97PDlClTsm2dqWX2vQUpr9Pp06fTXRfJcT2em3mdHLPj5s6dm2b5l19+mW4G2l133eW8REDDhg3T/TjCUatWrTh16pSz29rhiy++yHRdd911F/Hx8SQnJ2e4rqpVqwLQqVMnPDw8+PvvvzNs17Bhw+uua9asWQwYMIBevXoxffr0awaj//znP/zyyy98/fXXdOrUKdPbI7dOZ47ymYSEBNq0acPDDz9MtWrVKFSoEBs3bmTp0qXce++9Wbae8ePH06FDB9q0acNzzz2Hl5cXkyZN4s8//2TevHnOL4TRo0c7xxa8/PLLFC1alLlz57J48WLefPNNAgICgJRrtvj6+jJ37lyqV69OwYIFKV26dJqxT1nJZrPRq1cvZsyYQcWKFalbty4bNmzg888/v+nnbNmyJb1792bcuHEcPXqUu+66C29vbyIjIylQoABPPfUUALVr1+aLL75g/vz5VKhQAR8fH2rXrp3hc2b2db4Rc+bM4dFHH2XGjBmZGndUunRp7r77bl555RWCgoL47LPPWL58OW+88YZzTM6wYcOYM2cOd955J2PHjiU0NJTFixczadIkHn/88UyFuCFDhvDmm2+yefNmpk+ffsPb5dChQwc6derEiy++SGJiIi1atOCPP/5g9OjR1K9fn969e9/0c19P8+bNKVKkCIMHD2b06NF4enoyd+7cdOEyu9SuXZtVq1bx/fffExQURKFChZwH/iv16dOHjz/+mL59+7J//35q167Nr7/+yuuvv06XLl1o3779Da+/evXq9OrVi/feew9PT0/at2/Pn3/+ydtvv52uq2vs2LEsX76c5s2bM3ToUKpWrcr58+fZv38/S5YsYfLkyQQHB9O3b1/effddevXqxbhx46hUqRI//vgjy5YtAzLX1fXggw8yd+5cunTpwtNPP03jxo3x9PQkNjaWlStXcs899/Cf//yHcuXKMXbsWEaNGsXevXu54447KFKkCEePHmXDhg34+fkxZsyYq65nwYIF9O/fn3r16jFo0KB0Z7zq16/vDM73338/P/74I6NGjaJYsWL8/vvvznb+/v7UqFEj06+73ARLh4NLjjt//rwZPHiwqVOnjvH39ze+vr6matWqZvTo0Wlm3lxt9kloaKi588470y0HzBNPPJFm2dq1a03btm2Nn5+f8fX1NU2bNjXff/99usdu27bNdO3a1QQEBBgvLy9Tt27dDGeJzZs3z1SrVs14enqmmdGU0WwzYzI/2+dqj09ISDADBgwwgYGBxs/Pz3Tt2tXs37//qrPV/vnnnzSPd8wi2rdvn3NZcnKyeffdd02tWrWMl5eXCQgIMM2aNUvzuuzfv9907NjRFCpUyADOGUdXm0GXmdf5ajOaHDPBVq5cma5tZqfy33nnnearr74yNWvWNF5eXqZcuXJm4sSJ6doeOHDAPPzww6ZYsWLG09PTVK1a1bz11lsmOTk5TbsrX9/UWrdubYoWLZpmarXDjeyHc+fOmRdffNGEhoYaT09PExQUZB5//HHz77//Zrh9V8ro/e7YP6kvYZDRe3DdunWmWbNmpkCBAqZEiRJmwIABZsuWLele8+yYrRYVFWVatGhhChQoYIAMZ0WmFh8fbwYPHmyCgoKMh4eHCQ0NNSNHjkxzuQNjMj9bzRhjLly4YJ599llTsmRJ4+PjY5o2bWoiIiJMaGhoupl0//zzjxk6dKgpX7688fT0NEWLFjVhYWFm1KhR5vTp0852MTEx5t577zUFCxY0hQoVMvfdd59ZsmSJAcyiRYvSvCYZfdaNSZlS//bbb5u6desaHx8fU7BgQVOtWjUzaNAgEx0dnabtt99+a9q0aWP8/f2Nt7e3CQ0NNffff7/5+eefr7ntjtlyV/tJ/R69Vrvr7Te5dTZjjMne+CUieVW5cuWoVauW86KI2enYsWOEhoby1FNP6fYUcl2vv/46//3vf4mJicn2q5RL3qNuNRFxabGxsezdu5e33noLNzc3nn76aatLEhfz0UcfAVCtWjUuXbrEL7/8wgcffECvXr0UjOSmKByJiEubPn06Y8eOpVy5csydOzfNLCcRSJme/+6777J//34uXLhA2bJlefHFF3X/Mblp6lYTERERScXyqfxr1qyha9eulC5dGpvNlm7aaEZWr15NWFiY8yaXkydPzv5CRUREJF+wPBydOXOGunXrOvuMr2ffvn106dKFli1bEhkZyf/93/8xdOhQvv7662yuVERERPIDl+pWs9lsLFy4kG7dul21zYsvvsh3332X5h5EgwcPZuvWrZm+D5eIiIjI1eS6AdkRERF07NgxzbJOnToRHh7OpUuXMrwPz4ULF9LcBsJut3PixAmKFSt2UxfJExERkZxnjOHUqVOULl36hu5ld6NyXTiKi4tLd0PBwMBAkpKSOH78eIb3rBo/fvw1r1oqIiIiucfBgwez9TINuS4cQfobBzp6Bq92FmjkyJEMHz7c+XtCQgJly5bl4MGD6S5ZLyK5yKFD8PffULEiXGuKf2bbiYhLS0xMJCQkxHkz4OyS68JRqVKl0t1t+dixY3h4eDjv+Hwlb2/vdDd6hJT70ygcieRS4eEwcCDY7eDmxtkPP+RTd3d+/PFH/vnnH0JCQujevTv/OXECt8GDne2YOhX697e6ehG5Bdk9JCbXhaNmzZrx/fffp1n2008/0bBhwwzHG4lIHhQb+79gBKyz2+n5xBPsv6LZ/PnzaQp8AYRCSvtBg6BTJ9CVk0XkKiyfyn/69GmioqKIiooCUqbqR0VFERMTA6R0iaW+M/jgwYM5cOAAw4cPZ+fOncyYMYPw8HCee+45K8oXEStERzuD0WKgLbAfCClZkgkTJvDVV1/x4osvUtDXl9+BxsAux2OTk2HPHguKFpHcwvKp/KtWraJNmzbplvft25dZs2bRr18/9u/fz6pVq5x/W716NcOGDWP79u2ULl2aF198kcGDB2d6nYmJiQQEBJCQkKBuNZHcKDYWQkPZarfTDDgH3A18umMH/tWrO5vFrF9P16ZN+QMIBjYBge7usH+/zhyJ5EI5dfy2PBxZQeFIJPf794MPCHv6afYBHYEfJk/Gc9CgdO2Ov/cetw0bxm6gHbBs6lTcH3ssh6sVkayQU8dvy7vVRERuxgvbtrEPKB8UxLw//sgwGAEUf+YZFv7yC34+PqwApiUn52idIpL7KByJSK7z22+/MX36dABmz59P0dq1r9m+eps2jH/zTQBGjBjB0aNHs71GEcm9FI5EJFex2+089dRTADz66KO0bNkyU48bMmQIDRo0ICEhgf/7v//LzhJFJJdTOBKRXOXbb78lMjKSQoUK8cYbb2T6ce7u7s4bXM+ePZs9mrEmIlehcCQiuYbdbmf06NEAPPPMMxQvXvyGHt+sWTO6dOlCcnIyr776anaUKCJ5gMKRiOQaixYt4s8//yQgIIBhw4bd1HM47rP42WefsXfv3qwsT0TyCIUjEck13nvvPQCeeOIJihQpclPP0bBhQzp16oTdbnd2s4mIpKZwJCK5QlRUFGvWrMHd3Z0hQ4bc0nM9/fTTAISHh3P69OmsKE9E8hCFIxHJFT788EMA7r//fsqUKXNLz9WpUyeqVKlCYmIis2fPzoryRCQPUTgSEZd36tQpvvjiCwDnNP5b4ebmxpNPPgnAtGnTbvn5RCRvUTgSEZf31VdfcfbsWapUqULz5s2z5Dl79uyJl5cXW7duJTIyMkueU0TyBoUjEXF5jq6vvn37YrPZsuQ5ixYtSrdu3QCYOXNmljyniOQNCkci4tL27dvH6tWrsdls9O7dO0uf+5FHHgFg7ty5XLx4MUufW0RyL4UjEXFpn376KQBt27YlJCQkS5+7Q4cOBAUFceLECZYvX56lzy0iuZfCkYi4LGMMc+fOBVK61LKau7s7999/PwALFizI8ucXkdxJ4UhEXNaOHTv466+/8PLy4p577smWdXTv3h1IuWfbhQsXsmUdIpK7KByJiMv6+uuvAejYsSP+/v7Zso4WLVoQFBREQkICP//8c7asQ0RyF4UjEXFZjnB03333Zds63Nzc1LUmImkoHImIS9qzZw9//PEH7u7udO3aNVvXlbprTbPWREThSERc0jfffANAmzZtKFasWLauq0WLFgQGBpKQkMCaNWuydV0i4voUjkTEJS1cuBCAe++9N9vX5ebmxp133gnADz/8kO3rExHXpnAkIi7n+PHjrF+/HoC77747R9Z51113ASnhyBiTI+sUEdekcCQiLmfZvHkYY6hbowZlypTJkXW2b98eLy8v/v77b/6aMwdiY3NkvSLiehSORMS1hIezZOhQALrs2AHh4Tmy2kKFCtGqUiUAfujXD0JDc2zdIuJaFI5ExHXExpL82GMsu/xrZ4BBg3LmLE5sLHft3AnADwB2e86tW0RcisKRiLiO6Gg2GkM8EAA0A0hOhj17cmTdd14ea7QWSMjJdYuIS1E4EhHXUbkySy7/byfAA8DdHS53d2X3uiu6uVEZSAZW5eS6RcSlKByJiOsIDmZpuXLA5S41d3eYMgWCg3Nk3UydSgebDYCfbbacW7eIuBSFIxFxGf/++y+bY2IA6LhgAezfD/3751wB/fvTfsoUAH6uWDFn1y0iLkPhSERcxurVq7Hb7VSrVo3S999vyVmb1vffj5ubG7v27CFWg7FF8iWFIxFxGStWrACgbdu2ltVQpEgRGjZsmKYeEclfFI5ExGX88ssvALRr187SOtq3bw/Azz//bGkdImINhSMRcQlHjhxhx44d2Gw2WrdubWktqcORbiUikv8oHImIS3CcNapfvz5Fixa1tJZmzZrh6+tLXFwcO3bssLQWEcl5Ckci4hIc4cjK8UYOPj4+tGzZEoDly5dbXI2I5DSFIxGxnDHGOfjZ6vFGDo46Vq9ebXElIpLTFI5ExHL79u3jwIEDeHh4cNttt1ldDgC33347AGvXrsVut1tcjYjkJIUjEbGc4+xM48aNKViwoMXVpGjQoAEFChQgPj6enZdvSCsi+YPCkYhYbu3atcD/zta4Ai8vL5o1awbAmjVrLK5GRHKSwpGIWO7XX38FcJkuNQdHWFM4EslfFI5ExFJxcXFER0djs9lo3ry51eWkkToc6XpHIvmHwpGIWOq3334DoFatWhQpUsTiatJq0qQJnp6eHD58mL1791pdjojkEIUjEbGUY7yR47pCrsTX15fGjRsD6loTyU8UjkTEUq4cjkDjjkTyI4UjEbHMqVOniIqKAlxvMLaDwpFI/qNwJCKWiYiIwG63U65cOYKDg60uJ0PNmzfHzc2NvXv3cvjwYavLEZEcoHAkIpZx1Sn8qfn7+1OrVi0gJcyJSN6ncCQilnH18UYOjksMKByJ5A8KRyJiiYsXL7J+/XrA9cOR40rZ69ats7gSEckJCkciYonIyEjOnTtHsWLFqFatmtXlXJPjzNHmzZu5cOGCxdWISHZTOBIRSzi6qJo1a4bNZrO4mmurWLEixYsX5+LFi0RGRlpdjohkM4UjEbGEo0utadOmFldyfTabTV1rIvmIwpGIWOL3338Hckc4Ag3KFslPFI5EJMfFxcWxf/9+bDYbjRo1srqcTEl95kg3oRXJ2xSORCTHObrUatasib+/v8XVZE6jRo1wd3fn8OHDHDx40OpyRCQbKRyJSI7LbV1qAAUKFKBevXqAutZE8jqFIxHJcbkxHMH/xh1pULZI3qZwJCI5Kjk5mY0bNwK5Lxw5xh3pzJFI3qZwJCI5avv27Zw5cwZ/f3+qV69udTk3xHHmyHEBSxHJmxSORCRHObrUGjdujJtb7voKKlu2LIGBgSQlJREVFWV1OSKSTXLXN5OI5Hq5dbwRpFwMsnHjxgBs2LDB4mpEJLsoHIlIjsrN4QhQOBLJBxSORCTHnDx5kp07dwL/Cxm5jeOilY5B5SKS97hEOJo0aRLly5fHx8eHsLAw1q5de832c+fOpW7duhQoUICgoCAeeeQR4uPjc6haEblZjrMtFStWpESJEhZXc3Mc4Sg6OpoTJ05YXI2IZAfLw9H8+fN55plnGDVqFJGRkbRs2ZLOnTsTExOTYftff/2VPn360L9/f7Zv386CBQvYuHEjAwYMyOHKReRG5fYuNYCiRYtSqVIlADZt2mRxNSKSHSwPRxMnTqR///4MGDCA6tWr89577xESEsInn3ySYfvff/+dcuXKMXToUMqXL89tt93GoEGD9CUlkgs4bhvSpEkTiyu5NRp3JJK3WRqOLl68yObNm+nYsWOa5R07drzqFWibN29ObGwsS5YswRjD0aNH+eqrr7jzzjuvup4LFy6QmJiY5kdEcpYxho2OcFSunLXF3CJnOFqyBGJjLa5GRLKapeHo+PHjJCcnExgYmGZ5YGAgcXFxGT6mefPmzJ07lx49euDl5UWpUqUoXLgwH3744VXXM378eAICApw/ISEhWbodInJ9B996i3/i4/EA6txzD4SHW13STWt89CgAGyIiMGXL5uptEZH0LO9Wg5Rrh6RmjEm3zGHHjh0MHTqUl19+mc2bN7N06VL27dvH4MGDr/r8I0eOJCEhwfmjO2qL5LDYWDaOGAFAHcDHGBg0KHeedYmNpd6ECXgAR4HY3LwtIpIhDytXXrx4cdzd3dOdJTp27Fi6s0kO48ePp0WLFjz//PMA1KlTBz8/P1q2bMm4ceMICgpK9xhvb2+8vb2zfgNEJHOio9lkDAANHcuSk2HPHggOtqysmxIdja8x1AYigQ1ASG7dFhHJkKVnjry8vAgLC2P58uVpli9fvtx5D6MrnT17Nt0tB9zd3YGUM04i4oIqV8ZxVSBnOHJ3h8uzvnKVypXBzQ3HVZo2QO7dFhHJkOXdasOHD2f69OnMmDGDnTt3MmzYMGJiYpzdZCNHjqRPnz7O9l27duWbb77hk08+Ye/evfz2228MHTqUxo0bU7p0aas2Q0SuwZQpwyZfXwAaQUqYmDIld55pCQ6GqVNpfLnrfwPk3m0RkQxZ2q0G0KNHD+Lj4xk7dixHjhyhVq1aLFmyhNDQUACOHDmS5ppH/fr149SpU3z00Uc8++yzFC5cmLZt2/LGG29YtQkich1///03CefO4ePtTc0ffoBq1XJ3mOjfn8ahodChA5v8/Eju1w93q2sSkSxjM/mwLyoxMZGAgAASEhLw9/e3uhyRPG/evHk8/PDDNG3alIiICKvLyRLJyckEBARw5swZ/vzzT2rWrGl1SSJ5Xk4dvy3vVhORvM9xkdaGDRtep2Xu4e7uTlhYGKD7rInkNQpHIpLtHOEhL4Uj0JWyRfIqhSMRyVbJycls2bIF+N9NW/MKhSORvEnhSESy1e7duzlz5gx+fn5UrVrV6nKylCMcbd26lfPnz1tcjYhkFYUjEclWji61sLAw5zXJ8oqyZctSokQJkpKS2Lp1q9XliEgWUTgSkWyVFwdjO9hsNud2aVC2SN6hcCQi2SqvDsZ2cIyjcoRAEcn9FI5EJNtcunSJqKgoIO8NxnZwbJfOHInkHQpHIpJt/vzzTy5cuEDhwoWpWLGi1eVkC8cZsZ07d3Lq1CmLqxGRrKBwJCLZJvV4I9vle5HlNaVKlSI4OBhjDJGRkVaXIyJZQOFIRLJNXh6MnZq61kTyFoUjEck2jrCQV8cbOSgcieQtCkciki3Onz/Ptm3bgLx/5kjT+UXyFoUjEckWW7duJSkpiRIlShASEmJ1OdnKEY727t3LiRMnLK5GRG6VwpGIZAvHeKNGjRrl2cHYDkWKFKFSpUqArnckkhcoHIlItsgvg7EdNO5IJO9QOBKRbJFfBmM7OEKgzhyJ5H4KRyKS5U6fPs3OnTuBlBvO5gc6cySSdygciUiWi4yMxG63U6ZMGYKCgqwuJ0c0aNAANzc3Dh06xJEjR6wuR0RugcKRiGS51IOx8ws/Pz9q1KgB6OyRSG6ncCQiWc4RDvLLYGwHjTsSyRsUjkQky+XHM0egcUcieYXCkYhkqZMnTxIdHQ3kn8HYDqnDkTHG4mpE5GYpHIlIltqyZQsA5cuXp1ixYhZXk7Pq1KmDp6cn8fHx7N+/3+pyROQmKRyJSJbKr11qAN7e3tSpUwfQuCOR3EzhSESyVH67MvaVNO5IJPdTOBKRLKVwpHAkktspHIlIlomPj2ffvn1AykUR8yNHKNy8eTN2u93iakTkZigciUiW2bx5MwBVqlQhICDA4mqsUaNGDXx9fTl16hR//fWX1eWIyE1QOBKRLJPfu9QAPDw8nGfN1LUmkjspHIlIlnGEo/x2faMrOcKhwpFI7qRwJCJZRmeOUjgGZWs6v0jupHAkIlni6NGjHDx4EJvNRv369a0ux1KOcBQZGcmlS5csrkZEbpTCkYhkCcdg7GrVqlGoUCGLq7FWpUqVCAgI4Pz582zfvt3qckTkBikciUiWUJfa/7i5uTnHXalrTST3UTgSkSyhcJSWLgYpknspHIlIllA4SkvhSCT3UjgSkVt2+PBhjhw5gpubG/Xq1bO6HJfgCEfbtm3j/PnzFlcjIjdC4UhEbpnjrFHNmjUpUKCAxdW4hpCQEEqUKEFSUhJbt261uhwRuQEKRyJyy9Sllp7NZlPXmkgupXAkIrdM4ShjCkciuZPCkYjcEmMMmzZsAKBhSIjF1bgW521EVq+G2FiLqxGRzFI4EpFbcvCtt/gnPh4PoM4990B4uNUluYxGf/0FwK4DBzhVtqxeG5FcwmaMMVYXkdMSExMJCAggISEBf39/q8sRyb1iY/mmbFnuM4b6wBYAd3fYvx+Cg62tzWqxsRAaSlm7nYPAKqCVXhuRW5JTx2+dORKRmxcdzabL/75yjjZKToY9eywryWVER4PdTqPLv24EvTYiuYTCkYjcvMqVcdwcwxmO3N2hUiWLCnIhlSuDm5vzddkEem1EcgmFIxG5aaZMGTZdvq5RQ0g5+E+Zom4jSHkNpk6lkVvK1+xG0GsjkksoHInITdu3bx//nj2Ll5cXtX76KWU8Tf/+VpflOvr3p+EffwCwF4jv1s3SckQkcxSOROSmOa5vVLduXbw6dNBZkQwUrlmTypUrA/97vUTEtSkcichN08UfM8fx+igcieQOCkcictMUjjJHV8oWyV0UjkTkptjtdjZv3gwoHF2PwpFI7qJwJCI3JTo6msTERHx8fKhRo4bV5bi0+vXr4+bmxuHDhzl8+LDV5YjIdSgcichN2XD5fmphYWF4eHhYXI1r8/PzcwZIjTsScX0KRyJyUxzhqHHjxhZXkjuoa00k91A4EpGbsn79ekDhKLMUjkRyD4UjEblhFy5cICoqCoAmTZpYW0wukXo6fz6837dIrqJwJCI3LCoqikuXLlG8eHHKlStndTm5Qp06dfD09CQ+Pp79+/dbXY6IXIPCkYjcsNTjjWw2m8XV5A7e3t7UrVsXUNeaiKtTOBKRG+YIR+pSuzGOrjWFIxHXpnAkIjdMg7FvjmNQtqbzi7g2hSMRuSEnTpwgOjoa+N/BXjLH8Xpt3rwZu91ucTUicjUKRyJyQxxnPSpWrEixYsUsriZ3qV69OgUKFODUqVPs3r3b6nJE5CpcIhxNmjSJ8uXL4+PjQ1hYGGvXrr1m+wsXLjBq1ChCQ0Px9vamYsWKzJgxI4eqFcnfHF1qGm904zw8PKhfvz6grjURV2Z5OJo/fz7PPPMMo0aNIjIykpYtW9K5c2diYmKu+pgHHniAFStWEB4ezu7du5k3bx7VqlXLwapF8i9dGfvW6GKQIq7P8hsiTZw4kf79+zNgwAAA3nvvPZYtW8Ynn3zC+PHj07VfunQpq1evZu/evRQtWhRA11kRySHGGIWjW6RwJOL6LD1zdPHiRTZv3kzHjh3TLO/YsSPr1q3L8DHfffcdDRs25M0336RMmTJUqVKF5557jnPnzl11PRcuXCAxMTHNj4jcuAMHDnDs2LE03UNyYxzhyHEhTRFxPZaGo+PHj5OcnExgYGCa5YGBgcTFxWX4mL179/Lrr7/y559/snDhQt577z2++uornnjiiauuZ/z48QQEBDh/QkJCsnQ7RPILx1mjunXr4uPjY3E1uVPFihUJCAjg/PnzbN++3epyRCQDlo85AtJdYdcYc9Wr7trtdmw2G3PnzqVx48Z06dKFiRMnMmvWrKuePRo5ciQJCQnOn4MHD2b5NojkB+pSu3Vubm66GKSIi7M0HBUvXhx3d/d0Z4mOHTuW7mySQ1BQEGXKlCEgIMC5rHr16hhjiI2NzfAx3t7e+Pv7p/kRkRuniz9mDY07EnFtloYjLy8vwsLCWL58eZrly5cvp3nz5hk+pkWLFhw+fJjTp087l/3111+4ubkRHBycrfWK5GdJSUls3rwZ0DT+W+U4c6Tp/CKuyfJuteHDhzN9+nRmzJjBzp07GTZsGDExMQwePBhI6RLr06ePs/3DDz9MsWLFeOSRR9ixYwdr1qzh+eef59FHH8XX19eqzRDJ87Zt28a5c+fw9/enatWqVpeTqznOHG3bto3z589bXI2IXMnyqfw9evQgPj6esWPHcuTIEWrVqsWSJUsIDQ0F4MiRI2mueVSwYEGWL1/OU089RcOGDSlWrBgPPPAA48aNs2oTRPIFxwzSpk2b4uZm+b+rcrWQkBBKlizJsWPHiIqKomnTplaXJCKpWB6OAIYMGcKQIUMy/NusWbPSLatWrVq6rjgRyV4REREANGvWzOJKcj+bzUajRo1YvHgx69evVzgScTH655+IZIrjzNHVxgPKjXGETEfoFBHXoXAkItcVFxfHvn37sNlsGoydRRwh82oXvBUR6ygcich1Oc5u1KxZM81lNOTmNWrUCHd3dw4ePKhrr4m4GIUjEbkuRzhSl1rWKViwIHXr1gXUtSbiahSOROS6HF0/GoydtdS1JuKaFI5E5JouXrzovFihzhxlLcfr+dtvv1lciYikpnAkItcUGRnJhQsXKFasGJUrV7a6nDzFEY4iIyM5c+aMxdWIiIPCkYhcU+rrG13thtByc8qWLUuZMmVITk7WrUREXIjCkYhck65vlH1sNpvGHYm4IIUjEbkmzVTLXgpHIq5H4UhErurgwYPExsbi7u7uvJO8ZK3U4cgYY3E1IgIKRyJyDRE//ABAvRo18PPzs7iavKlevXr4+Phw4sQJ/pozB2JjrS5JJN9TOBKRjIWH89vlG0I327YNwsMtLihv8vLyolFICAC/9esHoaF6rUUspnAkIunFxsLAgay9/OttAIMG6axGdoiNpXl0NADrAOx2vdYiFlM4EpH0oqNJsNvZevnXlgDJybBnj4VF5VHR0TiGujsvBanXWsRSCkcikl7lyqyz2bADFYHSAO7uUKmStXXlRZUr0/zy9aN2AcdAr7WIxRSORCS94GDWdu4MwO2QcrCeMgWCgy0tK08KDqb4tGnUvPzrr25ueq1FLKZwJCIZWpOQAEDLF16A/fuhf39rC8rL+vfn9t69AVjzyCN6rUUspnAkIumcO3eODRs2AHD7wIE6i5EDWt15JwBrtmyxuBIRUTgSkXQ2bNjApUuXKF26NBUqVLC6nHyhZcuWAERFRZFw+aydiFhD4UhE0lmzZg2QcsDWzWZzRunSpalUqRLGGH799VeryxHJ1xSORCSdtWtTrnB0++23W1xJ/uJ4vR3hVESsoXAkImkkJSU5b4Lq6OqRnNGqVStA4UjEagpHIpJGZGQkZ86coUiRItSsWfP6D5As4zhztGnTJs6cOWNxNSL5l8KRiKThOGtx22234eamr4icFBoaSkhICElJSfz+++9WlyOSb+mbT0TSWLVqFaDxRlaw2WwadyTiAm4pHB07doy4uLisqkVELJaUlMTq1asBaNeuncXV5E+OcUeO/SAiOe+mwtEff/xBzZo1CQoKokyZMpQpU4b//ve/6iMXyeU2b97MqVOnKFKkCHXr1rW6nHzJEY4iIiI4e/asxdWI5E83FY769+9PYGAgv/76K5GRkYwbN44ff/yRhg0b8u+//2Z1jSKSQ3755RcA2rRpo/FGFqlcuTJlypTh4sWL/Pbbb1aXI5Iv3dS3344dO5g0aRLNmjWjTp06PPLII2zatImaNWvy1FNPZXWNIpJDHOGobdu2FleSf9lsNmeX5ooVKyyuRiR/uqlwlNEZIpvNxuuvv86iRYuypDARyVkXLlxwXplZ4chajnDkCKsikrM8MtvwzjvvpG7dutSrV4/BgwczbNgwFi1aRGBgoLNNQkICRYoUyZZCRSR7/f7775w/f55SpUpRrVo1q8vJ1xzhaPPmzZw8eZLChQtbW5BIPpPpcFS7dm22bNnCzJkzOXr0KAAVKlTggQceoF69eiQnJzNz5kzefffdbCtWRLJP6i413U/NWmXKlKFq1ars3r2bVatW0a1bN6tLEslXMh2OJkyY4Pz/o0ePEhkZSVRUFFFRUXzyySfs2bMHd3d3xowZw3333ZctxYpI9tF4I9fSrl07du/ezYoVKxSORHJYpsNRaoGBgdxxxx3ccccdzmXnzp1j69atbN26NcuKE5Gccfr0aecVmRWOXEO7du2YNGmSBmWLWOCmwlFGfH19adq0KU2bNs2qpxSRHPLrr7+SlJREuXLlKF++vNXlCNC6dWtsNhs7d+7k8OHDlC5d2uqSRPINXchERJxnJ9q0aWNxJeJQtGhRGjRoAGjWmkhOUzgSEZYtWwZAx44dLa5EUtP1jkSsoXAkks8dOnSIbdu2YbPZ6NChg9XlSCqOcLR8+XKMMRZXI5J/KByJ5HOOs0aNGjWiWLFiFlcjqbVs2RIfHx8OHTrE9u3brS5HJN9QOBLJ5xzhKPXsU3ENvr6+znFgP/74o8XViOQfCkci+VhSUhLLly8HFI5clWO/KByJ5ByFI5F8bOPGjfz7778ULlyYRo0aWV2OZKBz585AyuUWTp06ZXE1IvmDwpFIPuboUuvQoQMeHll22TPJQpUqVaJChQpcunRJU/pFcojCkUg+tnTpUkBdaq7MZrM5zx459peIZC+FI5F8Kj4+no0bNwK6vpGrSz3uSFP6RbKfwpFIPvXzzz9jt9upVasWwcHBVpcj19CmTRu8vLw4cOAAu3fvtrockTxP4Ugkn1q8eDGgLrXcwM/Pj1atWgGatSaSExSORPKhpP37WbxoEQBdu3a1uBrJDGfX2sKFsHIlxMZaXJFI3qVwJJLfhIezrkIFTiQmUhRovmuX1RVJJtx5550ArFq7loS2bSE0FMLDLa5KJG9SOBLJT2JjYeBAvrs8qPdOwGPIEJ2FyAWq+vlRBbgELAWw22HQIO07kWygcCSSn0RHY+x2Fl3+9W6A5GTYs8fCoiRToqPpdvl/HftP+04keygcieQnlSuz22ZjD+AFdAJwd4dKlaytS66vcmXusdkAWELKGSTtO5HsoXAkkp8EB/P9ffcB0AYo5O4OU6aApvK7vuBgmkyZQkkgAVjt5qZ9J5JNFI5E8pnv4uIAuPvpp2H/fujf39qCJNPcH3uMrg8+CMCiPn2070SyicKRSD7yzz//sG7dOgC6PvuszjrkQvc8/DAAi1as0NWyRbKJwpFIPrJ48WLsdjv169cnJCTE6nLkJrRv354CBQpw8OBBoqKirC5HJE9SOBLJR77++msA7r77bosrkZvl6+tLp06dAFi0aNF1WovIzVA4EsknTp48ybJlywDo3r27xdXIrbjnnnsA+OabbyyuRCRvUjgSySe+++47Ll26RI0aNahZs6bV5cgtuPvuu/H09GTbtm3s0hXORbKcwpFIPrFgwQJAZ43ygiJFitChQwcA5s+fb3E1InmPwpFIPqAutbynR48eAHz55ZcWVyKS9ygcieQD6lLLe+655x68vLzYsWMHf/75p9XliOQpLhGOJk2aRPny5fHx8SEsLIy1a9dm6nG//fYbHh4e1KtXL3sLFMnlHGcXdNYo7wgICOCOO+4A1LUmktUsD0fz58/nmWeeYdSoUURGRtKyZUs6d+5MTEzMNR+XkJBAnz59aNeuXQ5VKpI7nTx5kp9++glQOMprUnet6YKQIlnH8nA0ceJE+vfvz4ABA6hevTrvvfceISEhfPLJJ9d83KBBg3j44Ydp1qxZDlUqkjstWrRIXWp5VNeuXfHx8eGvv/5i69atVpcjkmdYGo4uXrzI5s2b6dixY5rlHTt2dN7iICMzZ87k77//ZvTo0Zlaz4ULF0hMTEzzI5JffPbZZ8D/zjJI3lGoUCG6dOkCqGtNJCtZGo6OHz9OcnIygYGBaZYHBgYSd/nmmFeKjo5mxIgRzJ07Fw8Pj0ytZ/z48QQEBDh/dNsEyS8OHTrEihUrAOjVq5fF1Uh2cITeefPmYbfbLa5GJG+wvFsNwGazpfndGJNuGUBycjIPP/wwY8aMoUqVKpl+/pEjR5KQkOD8OXjw4C3XLJIbzJ07F2MMt912GxUqVLC6HMkGXbt2xd/fnwMHDrBmzRqryxHJEywNR8WLF8fd3T3dWaJjx46lO5sEcOrUKTZt2sSTTz6Jh4cHHh4ejB07lq1bt+Lh4cEvv/yS4Xq8vb3x9/dP8yOS1xlj+PTTTwHo3bu3xdVIdvH19eWBBx4AYPbs2RZXI5I3WBqOvLy8CAsLY/ny5WmWL1++nObNm6dr7+/vz7Zt24iKinL+DB48mKpVqxIVFUWTJk1yqnQRl7d161b+/PNPvL29NUstj+vbty8AX331FWfOnLG4GpHcL3ODdrLR8OHD6d27Nw0bNqRZs2ZMnTqVmJgYBg8eDKR0iR06dIg5c+bg5uZGrVq10jy+ZMmS+Pj4pFsukt/NmTMHSOl2KVKkiMXVSHZq0aIFFSpUYO/evSxcuFDjy0RukeVjjnr06MF7773H2LFjqVevHmvWrGHJkiWEhoYCcOTIkete80hE0kpKSuLzzz8H1KWWH9hsNvr06QOoa00kK9hMPrxyWGJiIgEBASQkJGj8keRJP/74I126dKF48eIcOnQILy8vq0uSbLZv3z4qVKiAzWbjwIEDmpUreVJOHb8tP3MkIlkvPDwcgIceekjBKJ8oX748t99+O8YY5s6da3U5IrmawpFIHhMXF8eiRYsAeOyxxyyuRnKSY2D2jBkzdDsRkVugcCSSx8yaNYukpCSaNWtG7dq1rS5HctADDzxAoUKFiI6OZuXKlVaXI5JrKRyJ5CF2u51p06YBMHDgQIurkZxWsGBB5wD8yZMnW1yNSO6lcCSSh/wyfz579+4lwN/feWFAyV8GDRoEwMKFC4n7+muIjbW4IpHcR+FIJK8ID2fqww8D0CsxkQLz5llckFihTp06NKtYkaSkJGbefz+EhsLlAfoikjmayq+p/JIXxMZytGxZgo0hCYgC6rq7w/79EBxsbW2Ss2JjmV22LP2MoRzwN+Cm94LkEZrKLyKZFx3NjMvBqAlQFyA5GfbssbYuyXnR0TxgDIWB/cBPoPeCyA1SOBLJAy6VK8fHl/9/iGOhuztUqmRRRWKZypXxdXOj7+VfJ4HeCyI3SOFIJA/4ZsMGDgGBQA9IORhOmaJulPwoOBimTuVxt5Sv9x+APWPH6r0gcgMUjkTygPfffx+AwcOG4b1yZcr4kv79rS1KrNO/P1UPHKBLkyYY4IO4OKsrEslVNCBbA7Ill9u4cSONGzfG09OTmJgYSpUqZXVJ4iKWL19Ox44d8fPzIzY2lsKFC1tdksgt0YBsEckUx1mjBx98UMFI0mjfvj01a9bkzJkzzvvticj1KRyJ5GJHjhzhyy+/BODpp5+2uBpxNTabjWeeeQaADz74gKSkJGsLEsklFI5EcrEPP/yQS5cu0aJFC8LCwqwuR1xQz549KV68ODExMXz77bdWlyOSKygcieRSiYmJTJo0CYDnnnvO4mrEVfn6+jJ48GAA3nrrLfLhMFORG6ZwJJJLTZkyhYSEBKpVq8bdd99tdTniwp588kl8fHzYsGEDK1eutLocEZencCSSC124cIF3330XgBdffBE3N32U5eoCAwPpf/nSDq+//rrF1Yi4Pn2jiuRCn376KUeOHCE4OJiHL99sVuRann/+eTw8PFixYgUbNmywuhwRl6ZwJJLLJCcn8+abbwIwfPhwvLy8LK5IcoPQ0FB69uwJwPjx4y2uRsS1KRyJ5DJff/010dHRFClShMcee8zqciQXefHFF7HZbHz77bds377d6nJEXJbCkUguYrfbGTt2LABDhw6lYMGCFlckuUn16tW59957AZgwYYLF1Yi4LoUjkVxkwYIFbN++nYCAAOfF/URuxMiRIwGYN28ef//9t8XViLgmhSORXCI5Odl51mjYsGG6T5bclLCwMDp37pzm/SQiaSkcieQSCxYsYMeOHRQuXFhnjeSWjBkzBoDPPvuMXbt2WVyNiOtROBLJBZKTk50HtOHDhxMQEGBxRZKbNWrUiHvuuQe73e58X4nI/ygcieQC8+fPZ9euXRQuXJihQ4daXY7kAY4utfnz57Nt2zaLqxFxLQpHIi4uaf9+xrz4IgDPPvuszhpJlqhTpw7du3fHGMPoIUMgNtbqkkRchsKRiCsLD2dGhQr8FRtLcWCoBmFLFnqldm1swMJff2VL2bIQHm51SSIuwWby4S2aExMTCQgIICEhAX9/f6vLEclYbCxny5alkjEcAd4DnnZ3h/37ITjY2tok94uNhdBQetvtfAZ0Apbq/SUuLqeO3zpzJOKqoqN5/3IwKgcMBkhOhj17LC1L8ojoaLDbeQXwBJYBP+v9JQIoHIm4rPjixXFcw3gc4A3g7g6VKllXlOQdlSuDmxsVgccvL3oBsFeoYGFRIq5B4UjERb0+axaJQF3gIUgJRlOmqMtDskZwMEydCu7u/BfwByKBeWvXWlyYiPU05khjjsQFHThwgCpVqnDx4kWWfvopnYKDU84YKRhJVouNhT17GL90Kf/3xhuEhoaya9cufHx8rK5MJB2NORLJx15++WUuXrxI27Zt6dizJ7RurWAk2SM4GFq35umXX6ZMmTIcOHCAjz/+2OqqRCylcCTiYjZt2sScOXOAlDun22w2iyuS/KBAgQK8+uqrAIwbN44TJ05YXJGIdRSORFyIMcZ537RevXrRqFEjawuSfKVPnz7UqlWLkydP8tprr1ldjohlFI5EXMiXX37Jb7/9RoECBZgwYcL1HyCShdzd3XnrrbcA+OCDD9i9e7fFFYlYQ+FIxEWcO3eOF154AYARI0ZQpkwZiyuS/OiOO+7gzjvvJCkpieHDh1tdjoglFI5EXMQ777xDTEwMISEhPPvss1aXI/nYxIkT8fT0ZMmSJSxZssTqckRynMKRiAs4dOgQ48ePB+DNN9+kQIECFlck+VmVKlV4+umnARg2bBgXL160uCKRnKVwJOICRo4cydmzZ2nevDk9evSwuhwRXnrpJUqWLMlff/3FRx99ZHU5IjlK4UjEYuvXr+fTTz8F4L333tPUfXEJ/v7+zrOZY8aM4ejRoxZXJJJzFI5ELJScnMyQIUMA6Nevn6bui0vp168fYWFhJCYm8t///tfqckRyjMKRiIWmTJnCli1bCAgI4I033rC6HJE03Nzc+OCDDwAIDw9nw4YNFlckkjMUjkQscuzYMUaNGgXAa6+9RsmSJS2uSCS95s2b07t3b4wxDB48mKSkJKtLEsl2CkciFnnhiSc4efIkDWrXZvDgwVaXI3JVb7/9NoUDAoiMjGTS669bXY5ItlM4ErHAryNGMPurr7ABk/78E/dZs6wuSeSqSn7/PeMTEwH47+jRHH7nHYsrEsleNmOMsbqInJaYmEhAQAAJCQn4+/tbXY7kM0n799OgfHm2AY8BUwHc3WH//pQ7pIu4kthYCA3FbrfTDNgA9LDZ+CImRu9XyXE5dfzWmSORHPbRW2+xDSgKODsokpNhzx7rihK5muhosNtxAyaTctCYbwzLv/jC4sJEso/CkUgOiomJ4b+Xu9AmAMUdf3B3h0qVLKpK5BoqVwa3lENFfeDJy4uHfPwx58+ft6wskeykcCSSQ4wxPP7445w5e5bbKlem/+UDDu7uMGWKuijENQUHw9SpKe9T4FU3N4ICAtizf78uPyF5lsYcacyR5JAvvviChx56CC8vL6KioqheqFBKV1qlSgpG4vpiY53v1y/XraNHjx54eXmxdetWqlWrZnV1kk9ozJFIHnLixAnnjTxHjRpF9erVUwJR69YKRpI7pHq/du/enc6dO3Px4kUGDBiA3W63ujqRLKVwJJIDnnvuOY4dO0aNGjUYMWKE1eWI3BKbzcbkyZMpWLAgv/32G5MmTbK6JJEspXAkks1WrFjBzJkzsdlsTJ8+HS8vL6tLErllZcuWdY45GjFiBPv377e2IJEspHAkko3Onj3LoEGDABgyZAjNmjWzuCKRrDN48GBatmzJmTNnGDRoEPlwCKvkUQpHItno//7v//j7778JDg7mdd12QfIYNzc3pk+fjo+PDz/99BOzZ8+2uiSRLKFwJJJNVq1axfvvvw/AtGnTNDNS8qQqVaowZswYAIYNG8aRI0csrkjk1ikciWSDU6dO8cgjjwDw2GOPcccdd1hckUj2GT58OGFhYZw8eZKBAweqe01yPYUjkawWG8vzPXuyf/9+ypUrxzu6SafkcR4eHsyaNQsvLy9++OEHwt9+G1auTLk2kkgupHAkkpXCw1lWtixTvv8egBn330+hQoUsLkok+9WqVcs5ru6ZF17g77ZtITQUwsMtrkzkxukK2RoHIlklNpZ/y5altjEcAoYC77u7w/79utCj5Av2mBjahYayCmgGrAE89BmQLJSvrpA9adIkypcvj4+PD2FhYaxdu/aqbb/55hs6dOhAiRIl8Pf3p1mzZixbtiwHqxXJmPnrLx67HIwqA+MBkpNTbrkgkg+4/f03swB/IAJ4E/QZkFzJ8nA0f/58nnnmGUaNGkVkZCQtW7akc+fOxMTEZNh+zZo1dOjQgSVLlrB582batGlD165diYyMzOHKRdKavmkTXwMewOdAAUi5WWelSpbWJZJjKlcm1M2Njy7/OhrY7Oamz4DkOpZ3qzVp0oQGDRrwySefOJdVr16dbt26MX78+Ew9R82aNenRowcvv/xyptqrW02y2o4dO2jYsCHnzp3jLZuN54xJCUZTpkD//laXJ5JzwsMxAwfygN3OV0DFEiXYsmePvmslS+SLbrWLFy+yefNmOnbsmGZ5x44dWbduXaaew263c+rUKYoWLXrVNhcuXCAxMTHNj0hWOX/+PA899BDnzp2jY8eODN+/P2Wmzv79CkaS//Tvj+3AAaYsWkTZMmX4+59/NL1fch1Lw9Hx48dJTk4mMDAwzfLAwEDi4uIy9RzvvPMOZ86c4YEHHrhqm/HjxxMQEOD8CQkJuaW6RVJ79tln+eOPPyhRogSzZ8/GrWxZ593LRfKl4GCK3n0387/6Cg8PD+bPn8+UKVOsrkok0ywfcwQpd3hOzRiTbllG5s2bxyuvvML8+fMpWbLkVduNHDmShIQE58/BgwdvuWYRgE8//dR5R/LZs2dTqlQpiysScR1NmzZ13pz2mWeeISoqytqCRDLJ0nBUvHhx3N3d050lOnbsWLqzSVeaP38+/fv358svv6R9+/bXbOvt7Y2/v3+aH5FbFRUVxcCBAwF4+eWX6dy5s8UVibieYcOG0bVrVy5cuED37t35999/rS5J5LosDUdeXl6EhYWxfPnyNMuXL19O8+bNr/q4efPm0a9fPz7//HPuvPPO7C5TJJ1///2X++67j/Pnz9O5c2dGjx5tdUkiLslmszFr1ixCQ0PZs2cPDz74IElJSVaXJXJNlnerDR8+nOnTpzNjxgx27tzJsGHDiImJYfDgwUBKl1ifPn2c7efNm0efPn145513aNq0KXFxccTFxZGQkGDVJkg+k5ycTK9evdi7dy/ly5fns88+w83N8o+SiMsqWrQoixYtokCBAvz000+MGDHC6pJErsnyb/QePXrw3nvvMXbsWOrVq8eaNWtYsmQJoaGhABw5ciTNNY+mTJlCUlISTzzxBEFBQc6fp59+2qpNkPwiNhZWruSFxx9nyZIl+Pj48M0331xzpqSIpKhbty6zZs0CUibSzJkzx/mZ0j3YxNVYfp0jK+g6R3LDwsNh4EA+sdsZcnnRvHnzePDBBy0tSyS3eemllxg3bhzeHh6sTE6mmTHg5gZTp+rSF3JdOXX8VjhSOJLriY2F0FB+tNu5C7ADr9ls/F9MjKbri9wgu93OvZ07s+innygK/AZUg5SLpuoebHId+eIikCK5QnQ0G+12HiAlGPUDRhqj+0WJ3AQ3NzfmPv00jYETwB3AYdA92MSlKByJXMefycncAZwG2gFTAJvumSZy0/zq1GGxzUYV4ADQGTipe7CJC1E4ErmGPXv20KF3b04ATYBvAS/HPdN0+l/k5gQHU3zaNJa6uVEK+APoFBpKQqFCVlcmAigciVzV33//Tbt27YiLi6NOnTos+eMPCuqeaSJZo39/yh84wLLp0ylauDAb9u2jU6dOuiyLuAQNyNaAbMnAjh07aN++PUeOHKFKlSqsWbPmuldtF5GbExUVRbt27Thx4gRNmzZl6dKlBAQEWF2WuCANyBaxyJYtW2jVqhVHjhyhVq1arFq1SsFIJBvVq1ePn3/+mSJFivD7779z++23c/jwYavLknxM4Ugk1YXoli1bRps2bTh+/DgNGzZk1apVBAUFWV2hSJ5Xv359fvnlFwIDA/njjz9o1qwZO3fuTPmjLhYpOUzhSPK38HAIDYW2bfmobFm6dO5MYmIirVq1YsWKFRQrVszqCkXyjXr16hEREUHlypWJiYnhtttuY+Xzzzs/o4SGpnxmRbKZxhxpzFH+dfnijhftdoYBky4v7te9O1M++wwvLy8rqxPJt44fP85dd93F+vXrcQfeBIYBNtDFIvM5jTkSyW7R0ey122nB/4LRBGDG448rGIlYqHjx4qxcuZLeHTqQDDwLPAycAl0sUnKEwpHkWwt276Y+sAkoAnwHvOjujq1yZWsLExF8fX2ZHR7OhzYbHsAXQD1gnS4WKTlA4UjynX/++YcePXrwwOOPkwg0B6KArrq4o4hLsYWE8OS0aaxycyMU2Au0NIZRn3zChQsXrC5P8jCFI8k3jDF8/vnn1KhRgy+//BJ3d3dGjRrFqr17KauLO4q4pv79aXHgAFu//57e992H3Rhef/116taty8qVK62uTvIoDcjWgOy8KzYWoqOhcmUi//mHp59+mrVr1wJQp04dZsyYQVhYmMVFisiN+Oqrr3jyySc5evQoAL169eLtt99OuRZZqs+8zgDnTRqQLXIrLk/RP9a2LQNDQggLC2Pt2rX4+voyduxYNm7cqGAkkgvdf//97Nq1iyFDhmCz2fjss8+oVKkSY7t143TZspryL1lCZ4505ijviY3lRNmyTDSG94HTlxc/dM89vPHhh4SEhFhZnYhkkY0bNzJkyBA2bdoEQCngFaA/4KEp/3mSzhyJ3ISTJ0/yyqhRlDeG10gJRmHAWuDzZ55RMBLJQxo1asT69ev54qWXKA/EAYOB6sCc5GSSdu+2tkDJtRSOJE9ITExk3LhxlC9fnjFz5pAI1AEWAhuB29zdNf1XJA9yc3Ojx8CB7LLZeB8oDuwB+gLVBwxgzpw5JCUlWVuk5DoKR5KrnT59mjfeeIPy5cvz0ksvcfLkSWrUqMGCwYOJdHOjG2DTFH2RvC04GK9p0xjq7s4+YILNRrGCBdmzfz99+/alevXqCklyQzTmSGOOcqWzZ8/yySef8MYbb/DPP/8AULVqVV555RW6d++Ou7t7ysyVPXtSzhgpGInkfak+86cLF+bjjz/mrbfeIj4+HoBKlSrx0ksv0bNnz5TvCMl1cur4rXCkcJSrnD9/nilvvMH499/n6L//AlCxYkVGjx7NQw89hIeHh8UViogrOX36dLqQVK1SJcY8/DD39++PW9myFlcoN0LhKBspHOU+Fy5cIDw8nNdGjeLwyZMAlANe7teP3tOmKRSJyDU5QtKbr77KiTNnAKgLjHvqKe58/31sNpu1BUqmaLaaCGC325kzZw5VqlThiSee4PDJk4QAU4DdwCOffopHXJzFVYqIqytYsCAv9uzJvrNneQUoBGwFun74Ic0bNmTFihXWFiguReFIXNaKFSsICwujb9++xMTEULpYMT4CooGBgBfoDt0iknnR0fgbw2hgH/AC4Av8vmUL7du3p2PHjmzbts3aGsUlKByJy9m+fTt33nkn7du3JyoqCn9/fyZMmMCeiAiecHPDO3VjTdEXkcyqXBncUg57xYA3gL/d3HjqkUfw9PRk+fLl1KtXj4EDBxKnM9L5msKRuIy4LVsY1LUrderUYcmSJXh4ePDUU0/x999/8+KLL+JbuTJMnZoSiCDlv5qiLyKZFRyc7jskaOpUPpgxg127dtG9e3fsdjvTpk2jcuXKvP7ii5xbujRlFpzkKxqQrQHZljt//jzv9uzJ699847zVx70NGjDhiy+oXLly+gdoir6I3IprfIf89ttvDBs2jI0bNwIQQsp1kx6cMgW3xx6zoFhJTbPVspHCkWswxvDVV1/xwrPPsv/gQQAaAxOBFrovkohYxB4TwxflyjHCGA5eXtYEmLhwIc27dbOwMtFsNcnTtmzZQqtWrXjggQfYf/AgZYDPgAigBWigtYhYxu3vv3nYGHYDrwEFgfVAi//8hx49erBv3z5rC5Rsp3Ak2S82FlauhNhYjhw5wqOPPkrDhg1Zu3Ytvr6+jB42jN02Gz1J9YbUQGsRscrlgdu+wP+RMkP2MZsNNzc3vvzyS6pVq8YLL7xAQkJCSvtU33GSNygcSfYKD4fQUBLatuXlkBAqly/PzJkzMcbQs2dPdu/ezSsTJ+I3bZoGWouIa7hi4HYpd3emTptGZGQk7du35+LFi7z11ltUqlSJSb16kVS2LLRtC6GhKd95kutpzJHGHGWf2FjOlS3LJGN4HThxeXHjevV4/5NPaNq0abr2GmgtIi4jg+8kYwxLlizhueeeY9euXQBUBV4GekDKPds0XjLbaMyR5GqJiYm889prVDKG50gJRtWAr4DfJ05MH4wg5cukdWt9qYiIa8jgO8lms3HnnXfyxx9/8NHQoRQj5Wr9PYGawGfJySTt3m1NvZJlFI7k5lylj/3QoUOMHDmSsmXL8tzkyRwGygIzgG3Afe7u2DKani8ikot4enryxPPPs9dmYxxQlJSQ1Buo+uijvP3225w4cSLtgzQ2KddQt5q61W5ceDgMHAh2O7i5cXHSJH4oUYLw8HCWLl2K3W4HoFq1ajzftCk958zB227/31ii/v0t3gARkSwSHg6DBnEqOZmPbDbe8fMj/nTKFdt8fHx46KGH6NOnDy2jo3EfPNj5vcnUqfouvAm6zlE2Sv3i/vvvvyxevJjWrVtTo0YNq0tzfbGxEBpKvN3Oz8C3wBIgMVWT22+/neHDh9O1a1fc3Nw0lkhE8rZU33Fnixbl888/5+OPPyYqKsrZpBRwP9AFaAkU1NikTFuzZg27d++me/fuuLm5KRxlF0c4io6OpmnTpsTHx+Pr68uqVato3Lix1eVZKzYWoqNTprJe/tDGx8fz119/sXv3bn7/5hvWfv89O654WFCxYvQZMIBHH32UKlWq5HzdIiIuxBjD77//zvTp01m4YAH/njrl/JsnKReVbPLAAzS45x7CwsKoVKlSymBuhwy+i/OjTz/9lD59+gBQv359VqxYQdGiRRWOsoMjHD377LO88847zuW1a9cmKioq5WxHPnP69Gn2vPUWf736Kn8Zw1/AXxUqEH3yZPp+88uqA12Bbm5uNNm3D7eyZXOyZBGRXOHi3r38XKkSC43hZ2B/Bm28vb2pUKEClSpVotL581T++WcqGUNlm42QKVNwz4e3Lvn333+pXLky8fHxzmWzZ8+mb9++CkfZwRGOKleuTHR0NJMmTWLEiBEkJiaycOFCuuXFy8Nf/ldIcoUK/HnyJBs2bGDHjh3s3LmTHTt2cPDgwWs+PDg4mMqVK1OvXj1aXrjAbZMnU0LjiEREMufy2CSSk9nr5sbqPn3Y7OfHli1biIqK4ty5c1d9qBdQsXJlKlevTpUqVQgLC6NRo0ZUqFAB26FDefYM08iRI5kwYQI1atTgjjvuYOLEiXTv3p0FCxYoHGUHRzgCcHNz4/jx47z55ptMmDCBJk2a8Pvvv1tcYdYxxvDHmDF8P3Ysq43hd3De3PVKxYEqQOXL/60CVJ42jUoPPYSfn1/axhpHJCJyY67yvZmcnMzBgweJjo5mz+LF7Hn/faJJuTL3XuDiVZ6uqJ8ft505Q2fgDpuNctOm5Zl/qJ4/f57g4GDi4+NZuHAhRYoUoXXr1hQvXpzjx48rHGWH1OGodu3a/PHHHxw9epSyZcty8eJF1q9fn6vHHhljiIiIYN68eXy3cCExhw6l+XshoEnLltRp1Ijq1aun/Pj7U7RevZSZFA4aMCgikrMuT3pxfBcnAzFubkTPmUP0yZNs376dTZs2sXXrVi5eTBubqgE9hg3j4cGDc/3Yz88++4zevXsTEhLCvn37uHTpEgULFiQ5ORkg+2ebm3woISHBAAYwvXr1ci7v3bu3AUzv3r0trO4GHTxozC+/GHPwoDl48KB5/fXXTZUqVZzbBxhfMHeD+RjMVjBJYMzKlemfa/p0Y9zdjYGU/06fnuObIyKS72Xiu/j80qVmPZjXwLQE457qOx8wYWFhZuLEiSYuLi7lAamOFblB8+bNDWBeffVV57IaNWo4ty8hISFb15/vw9Gbb77pXL5+/XoDGC8vL3P06FELK8yk6dPNOZvNfAGmIxibzebcrgIFCpg+ffqY72fONGdttpQPmePH3f3qH5CDB1OCUy75AImI5EnX+y4+eNAYNzfn9/pJMJ/ZbKZL27bG3d3deSxwd3c3d9WpYxbYbOYcpDzGxf/hu3XrVgMYDw8Pc/jwYefyHj165Fg4yn/Tsq5QKdWd3xs3bkzjxo25ePEi06dPt7Aqrnsl1ahly3hqwABKG8ODwE+kdKe1atqUmTNnEhcXx+zZs7mrXz98b+SmrrqFh4iI9a73XXzFzXED3N3pOW0ai1es4MiRI3z00Uc0btyY5ORkfvjjD7obQxDwuN3O7wMHYq42CccFruI9efJkALp160ZQUJBzeerjdbbL1ujlolKfOYqMjEzztzlz5hjABAcHm0uXLmX9yjNzanP69P/9i+Byyrfb7SYyMtK8/PLLpnbt2mlOn4aAeQnM31frLnOsV2eERETylut8t++YOdOMAFPmim63KiEhZty4cWbfvn3/a5zBseea682GbrqEhARTqFAhA5gVK1ak+dv06dNz7MxRvh+QffLkSef/A1y4cIGQkBD++ecfvvrqK+67776bXk9sbCwrV65k9+7dHDhwgPM7d8LmzfgDJYAS3btT/M47KV68OMWLF6do0aK4HT1K0u23k2AMMcDfwHogomRJ4o4dcz63l5cX3S5e5FGgPeAOGkAtIiJpXR7gnWy3sxKYDXwDnE3VpEKFCrRs0IC6X39NJWMIBgoAPm5unFm+nARfXxISEoiPj0/5+fln4r//nuNAElD4ttso3aYN9erVo02bNhQpUuSmy33nnXd47rnnqF69Otu3b8dmszn/tnLlStq2bQtoQHa2cJw5CggIyPDvo0aNMoBp3bp15p/0copO2r/fzJkzxzRt2jRNSs+KH19fX9OtWzcza9YsEx8frwHUIiJyfVccKxI/+sjMnDnTtG7d2ri5uWXpccrDw8N07tzZLFu2zNjt9hs6w3Tx4kUTHBxsADM9g+PZ3r17deYoOznOHFWtWpVdu3al+/vBgwcpX748ycnJbP3pJ+p4eFz7AluXb8S61W7nMWDj5cVubm40bNiQBg0aUN5ux2/qVABOAseBf4DjjRpx3G7n+PHjKVcBNQaPM2fwA0JJuaN9fZuNZgsW0LBLF3x9fdOuW9cbEhGR67nKsSIxMZF169bx248/8tcHH7AHOAycA84DfoULE1CkCAEBARQtWpRiyckUW72aYkAxUm6FchLY17kzvx84wI4d/7u51O1VqvBBdDR1jbn+zXZjY/n044/pM2ECgYGBHDhwAG9v7zRNzp8/7zwG6sxRNnCcObr99tuv2qZ79+4GMJ0dM7yu1v968KA5a7OZF1NNpfQHM+755/83hfJyu9QzC645a0xnhEREJKdl5thznWPZrl27zNChQ42vj48BjBuYZ8Ccus4x76zNZkIvH0Nfv/feq5YYEBCgqfzZxRGOHrjrrqu22b16tfG8vKMWXCPMLH/rLVMx1SnFe8EcutrA6BsJPRpALSIiOS0zx55MHMsOzJtnuqc6NoaC+TGjY+PlsDXycrtgMGfc3K66/soVKmgqf3YL/OGHlC6xDFRJTub5y//fH4gCSE5OOS0JHD58mD59+tDh+ef5GygDfAt8DZR2d085dXml/v1TBkyvXJny32td5l1T6kVEJKdl5tiTiWNZ2dtu40s3N34kZYjIAaAz0PvDDzl+/Pj/GkZH85XdzvjLv74HFLDbncfaNMLDKbV3701t1o3K12OOxgGjrjbDKzaWS2XL0s4Y1pJyy41nbDaqvPcev//1FzNnzuTs2bPYbDaebNOGcatW4a8bsYqIiKS4fLPd08nJvGyz8T5gN4bixYszaNAgqlevzm/LljH5008xwBDgY8h45vXlWXfd7Xa+IvvHHOXrcPQjcAekpN/WrdM3DA/n5MCB3Ht5CuSVmjdvzsSJE2nSpIkGRouIiFwp1bFxw+HDDBgwgG3btqVrNshm4yNj8LjaCYaVK6FtW6YBA1E4yhaOcJQA+F/v2kCxsSTv3s38HTv4ZvVq4uPjqVSpEt27d6dDhw5prsEgIiIiV3fp0iUWLFjADz/8wKFDhwgNDaVfv360rVLl2icYLp85SrTbCUDhKFs4w5GbG/7XmlooIiIiriE8nMSBAwmw2xWOsoMzHO3YgX/16laXIyIiIpmQuHMnATVqZHs4ytez1ShTxuoKREREJLNy6Lidv8ORiIiIyBUUjkRERERSUTgSERERSUXhSERERCQVlwhHkyZNonz58vj4+BAWFsbatWuv2X716tWEhYXh4+NDhQoVmDx5cg5VKiIiInmd5eFo/vz5PPPMM4waNYrIyEhatmxJ586diYmJybD9vn376NKlCy1btiQyMpL/+7//Y+jQoXz99dc5XLmIiIjkRZZf56hJkyY0aNCATz75xLmsevXqdOvWjfHjx6dr/+KLL/Ldd9+xc+dO57LBgwezdetWIiIiMrVO53WOsvk6CSIiIpJ1cur4bemZo4sXL7J582Y6duyYZnnHjh1Zt25dho+JiIhI175Tp05s2rSJS5cuZVutIiIikj94WLny48ePk5ycTGBgYJrlgYGBxMXFZfiYuLi4DNsnJSVx/PhxgoKC0j3mwoULXLhwwfl7QkICkJJARUREJHdwHLezu9PL0nDkcOXNW40x17yha0btM1ruMH78eMaMGZNueUhIyI2WKiIiIhaLj48nICAg257f0nBUvHhx3N3d050lOnbsWLqzQw6lSpXKsL2HhwfFihXL8DEjR45k+PDhzt9PnjxJaGgoMTEx2friuprExERCQkI4ePBgvhprpe3WducH2m5td36QkJBA2bJlKVq0aLaux9Jw5OXlRVhYGMuXL+c///mPc/ny5cu55557MnxMs2bN+P7779Ms++mnn2jYsCGenp4ZPsbb2xtvb+90ywMCAvLVm8rB399f252PaLvzF213/pJft9vNLXuHTFs+lX/48OFMnz6dGTNmsHPnToYNG0ZMTAyDBw8GUs769OnTx9l+8ODBHDhwgOHDh7Nz505mzJhBeHg4zz33nFWbICIiInmI5WOOevToQXx8PGPHjuXIkSPUqlWLJUuWEBoaCsCRI0fSXPOofPnyLFmyhGHDhvHxxx9TunRpPvjgA+677z6rNkFERETyEMvDEcCQIUMYMmRIhn+bNWtWumWtWrViy5YtN70+b29vRo8enWFXW16m7dZ25wfabm13fqDtzt7ttvwikCIiIiKuxPIxRyIiIiKuROFIREREJBWFIxEREZFUFI5EREREUsmz4ei1116jefPmFChQgMKFC2fqMcYYXnnlFUqXLo2vry+tW7dm+/btadpcuHCBp556iuLFi+Pn58fdd99NbGxsNmzBzfn333/p3bs3AQEBBAQE0Lt3b06ePHnNx9hstgx/3nrrLWeb1q1bp/v7gw8+mM1bk3k3s939+vVLt01NmzZN0yav7e9Lly7x4osvUrt2bfz8/ChdujR9+vTh8OHDadq52v6eNGkS5cuXx8fHh7CwMNauXXvN9qtXryYsLAwfHx8qVKjA5MmT07X5+uuvqVGjBt7e3tSoUYOFCxdmV/k37Ua2+5tvvqFDhw6UKFECf39/mjVrxrJly9K0mTVrVoaf9fPnz2f3ptyQG9nuVatWZbhNu3btStMur+3vjL6/bDYbNWvWdLZx9f29Zs0aunbtSunSpbHZbHz77bfXfUyOfbZNHvXyyy+biRMnmuHDh5uAgIBMPWbChAmmUKFC5uuvvzbbtm0zPXr0MEFBQSYxMdHZZvDgwaZMmTJm+fLlZsuWLaZNmzambt26JikpKZu25MbccccdplatWmbdunVm3bp1platWuauu+665mOOHDmS5mfGjBnGZrOZv//+29mmVatW5rHHHkvT7uTJk9m9OZl2M9vdt29fc8cdd6TZpvj4+DRt8tr+PnnypGnfvr2ZP3++2bVrl4mIiDBNmjQxYWFhadq50v7+4osvjKenp5k2bZrZsWOHefrpp42fn585cOBAhu337t1rChQoYJ5++mmzY8cOM23aNOPp6Wm++uorZ5t169YZd3d38/rrr5udO3ea119/3Xh4eJjff/89pzbrum50u59++mnzxhtvmA0bNpi//vrLjBw50nh6epotW7Y428ycOdP4+/un+8y7khvd7pUrVxrA7N69O802pf6M5sX9ffLkyTTbe/DgQVO0aFEzevRoZxtX399Lliwxo0aNMl9//bUBzMKFC6/ZPic/23k2HDnMnDkzU+HIbrebUqVKmQkTJjiXnT9/3gQEBJjJkycbY1LejJ6enuaLL75wtjl06JBxc3MzS5cuzfLab9SOHTsMkOZNEBERYQCza9euTD/PPffcY9q2bZtmWatWrczTTz+dVaVmqZvd7r59+5p77rnnqn/PL/t7w4YNBkjzJexK+7tx48Zm8ODBaZZVq1bNjBgxIsP2L7zwgqlWrVqaZYMGDTJNmzZ1/v7AAw+YO+64I02bTp06mQcffDCLqr51N7rdGalRo4YZM2aM8/fMfh9a6Ua32xGO/v3336s+Z37Y3wsXLjQ2m83s37/fuSw37G+HzISjnPxs59lutRu1b98+4uLi6Nixo3OZt7c3rVq1Yt26dQBs3ryZS5cupWlTunRpatWq5WxjpYiICAICAmjSpIlzWdOmTQkICMh0fUePHmXx4sX0798/3d/mzp1L8eLFqVmzJs899xynTp3Kstpvxa1s96pVqyhZsiRVqlThscce49ixY86/5Yf9DSk3crTZbOm6n11hf1+8eJHNmzen2QcAHTt2vOo2RkREpGvfqVMnNm3axKVLl67ZxhX2K9zcdl/Jbrdz6tSpdDfoPH36NKGhoQQHB3PXXXcRGRmZZXXfqlvZ7vr16xMUFES7du1YuXJlmr/lh/0dHh5O+/btnXeXcHDl/X2jcvKz7RJXyHYFcXFxAAQGBqZZHhgYyIEDB5xtvLy8KFKkSLo2jsdbKS4ujpIlS6ZbXrJkyUzXN3v2bAoVKsS9996bZnnPnj0pX748pUqV4s8//2TkyJFs3bqV5cuXZ0ntt+Jmt7tz5850796d0NBQ9u3bx0svvUTbtm3ZvHkz3t7e+WJ/nz9/nhEjRvDwww+nuXmlq+zv48ePk5ycnOHn8mrbGBcXl2H7pKQkjh8/TlBQ0FXbuMJ+hZvb7iu98847nDlzhgceeMC5rFq1asyaNYvatWuTmJjI+++/T4sWLdi6dSuVK1fO0m24GTez3UFBQUydOpWwsDAuXLjAp59+Srt27Vi1ahW33347cPX3RF7Z30eOHOHHH3/k888/T7Pc1ff3jcrJz3auCkevvPIKY8aMuWabjRs30rBhw5teh81mS/O7MSbdsitlps2tyOx2Q/r64cbqmzFjBj179sTHxyfN8scee8z5/7Vq1aJy5co0bNiQLVu20KBBg0w9943K7u3u0aOH8/9r1apFw4YNCQ0NZfHixenC4Y08763Kqf196dIlHnzwQex2O5MmTUrzNyv297Xc6Ocyo/ZXLr+Zz3pOu9ka582bxyuvvMKiRYvSBOimTZummXTQokULGjRowIcffsgHH3yQdYXfohvZ7qpVq1K1alXn782aNePgwYO8/fbbznB0o89plZutcdasWRQuXJhu3bqlWZ5b9veNyKnPdq4KR08++eR1Z8yUK1fupp67VKlSQEoyDQoKci4/duyYM4WWKlWKixcv8u+//6Y5m3Ds2DGaN29+U+vNjMxu9x9//MHRo0fT/e2ff/5Jl6QzsnbtWnbv3s38+fOv27ZBgwZ4enoSHR2dbQfLnNpuh6CgIEJDQ4mOjgby9v6+dOkSDzzwAPv27eOXX35Jc9YoIzmxvzNSvHhx3N3d0/2rL/Xn8kqlSpXKsL2HhwfFihW7Zpsbeb9kp5vZbof58+fTv39/FixYQPv27a/Z1s3NjUaNGjnf81a7le1OrWnTpnz22WfO3/Py/jbGMGPGDHr37o2Xl9c127ra/r5ROfrZvqERSrnQjQ7IfuONN5zLLly4kOGA7Pnz5zvbHD582OUG6K5fv9657Pfff8/0AN2+ffumm7V0Ndu2bTOAWb169U3Xm1Vudbsdjh8/bry9vc3s2bONMXl3f1+8eNF069bN1KxZ0xw7dixT67Jyfzdu3Ng8/vjjaZZVr179mgOyq1evnmbZ4MGD0w3a7Ny5c5o2d9xxh8sN0L2R7TbGmM8//9z4+Phcd2Crg91uNw0bNjSPPPLIrZSapW5mu6903333mTZt2jh/z6v725j/DUjftm3bddfhivvbgUwOyM6pz3aeDUcHDhwwkZGRZsyYMaZgwYImMjLSREZGmlOnTjnbVK1a1XzzzTfO3ydMmGACAgLMN998Y7Zt22YeeuihDKfyBwcHm59//tls2bLFtG3b1uWmdtepU8dERESYiIgIU7t27XRTu6/cbmOMSUhIMAUKFDCffPJJuufcs2ePGTNmjNm4caPZt2+fWbx4salWrZqpX79+rt3uU6dOmWeffdasW7fO7Nu3z6xcudI0a9bMlClTJk/v70uXLpm7777bBAcHm6ioqDTTey9cuGCMcb397ZjiHB4ebnbs2GGeeeYZ4+fn55yVM2LECNO7d29ne8d032HDhpkdO3aY8PDwdNN9f/vtN+Pu7m4mTJhgdu7caSZMmOCyU7szu92ff/658fDwMB9//PFVL8HwyiuvmKVLl5q///7bREZGmkceecR4eHikCdhWu9Htfvfdd83ChQvNX3/9Zf78808zYsQIA5ivv/7a2SYv7m+HXr16mSZNmmT4nK6+v0+dOuU8NgNm4sSJJjIy0jlz1srPdp4NR3379jVAup+VK1c62wBm5syZzt/tdrsZPXq0KVWqlPH29ja33357ujR+7tw58+STT5qiRYsaX19fc9ddd5mYmJgc2qrri4+PNz179jSFChUyhQoVMj179kw3xfXK7TbGmClTphhfX98Mr2UTExNjbr/9dlO0aFHj5eVlKlasaIYOHZrumkBWutHtPnv2rOnYsaMpUaKE8fT0NGXLljV9+/ZNty/z2v7et29fhp+L1J8NV9zfH3/8sQkNDTVeXl6mQYMGac5g9e3b17Rq1SpN+1WrVpn69esbLy8vU65cuQxD/4IFC0zVqlWNp6enqVatWpqDqau4ke1u1apVhvu1b9++zjbPPPOMKVu2rPHy8jIlSpQwHTt2NOvWrcvBLcqcG9nuN954w1SsWNH4+PiYIkWKmNtuu80sXrw43XPmtf1tTMrZbV9fXzN16tQMn8/V97fjrNfV3rNWfrZtxlwezSQiIiIieff2ISIiIiI3Q+FIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhEREQkFYUjERERkVQUjkRERERSUTgSERERSUXhSERERCQVhSMRyVPGjh1L7dq18fPzIzAwkMcff5xLly5ZXZaI5CIeVhcgIpJVjDEkJyczZcoUypQpw44dO+jTpw916tTh8ccft7o8EckldONZEcnTHn74YUqUKMH7779vdSkikkuoW01E8owDBw7w5JNPUqtWLYoUKULBggX58ssvCQ4Otro0EclFFI5EJE84fvw4jRs35vjx40ycOJFff/2ViIgI3N3dqVevntXliUguojFHIpInLFmyhKSkJObNm4fNZgPg448/5uLFiwpHInJDFI5EJE8oWrQoiYmJfPfdd9SoUYPvv/+e8ePHU6ZMGUqUKGF1eSKSi2hAtojkCcYYHn/8cT7//HN8fX3p1asX58+f58CBA/zwww9WlyciuYjCkYiIiEgqGpAtIiIikorCkYiIiEgqCkciIiIiqSgciYiIiKSicCQiIiKSisKRiIiISCoKRyIiIiKpKByJiIiIpKJwJCIiIpKKwpGIiIhIKgpHIiIiIqkoHImIiIik8v/4wfo8aR/rGgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwT0lEQVR4nO3deVwV1f/H8ddlRxTccUFx33fczdzXsvxWZuVampqVpm3681umWdpmu6mJW5mZlVlpmplbSa5g5hauiIomJrgr3PP7A+/9gqCCAnOB9/Px4FEM58585s5d3s45Z8ZmjDGIiIiICABuVhcgIiIi4koUjkRERESSUTgSERERSUbhSERERCQZhSMRERGRZBSORERERJJROBIRERFJRuFIREREJBmFIxEREZFkFI4kRzh69CivvPIKERERqf7Wv39/8ufPf8vrvnz5MkOGDKFkyZK4u7tTr169Wy80E0yZMoXZs2enWn7w4EFsNluaf8tNbDYbr7zyitVlZIpXXnkFm82W5Y/98MMPqVSpEl5eXthsNk6fPk3//v0pV65cinavv/4633333S3VcyOnTp3ioYceonjx4thsNrp3757hdZQrV47+/ftnem2uZMuWLTz55JPUrl2bAgUKEBgYSPv27fn1119TtZ0/fz533nkngYGBeHt7U6pUKbp168b69estqDzvUTiSHOHo0aOMGzcuzXB0uz755BOmTZvGmDFj+O233/jss88yfRsZcb1wVLJkScLCwrjrrruyvyi5JQMHDiQsLCxLtxEREcGwYcNo06YNv/76K2FhYRQoUICXXnqJRYsWpWibVeHo1VdfZdGiRbz77ruEhYXx5ptvZvo2coP58+ezceNGHnvsMRYvXsyMGTPw9vamXbt2zJ07N0Xb2NhYWrRowZQpU/j555+ZPHkyx48f584772TNmjUW7UHe4WF1ASJW++uvv/D19eWpp56yupQb8vb2pmnTplaXIRkQFBREUFBQlm5jx44dADz++OM0btzYubxixYpZut3k/vrrLypWrEivXr2ybZuZ5fz58+TLly9btvXCCy/w9ttvp1jWtWtXGjRowPjx4+nbt69zeVqfR126dKFYsWKEhobSqlWrLK83L9OZozzon3/+YdCgQZQpUwZvb2+KFStGixYt+OWXX5xtWrduTa1atQgLC6N58+b4+vpSrlw5Zs2aBcCSJUto0KAB+fLlo3bt2ixbtizVdn777TfatWtHgQIFyJcvH82bN2fJkiWp2v3111/ce++9FCpUCB8fH+rVq8ecOXOcf1+9ejWNGjUC4NFHH8Vms6XZ9bJ37166du1K/vz5KVOmDM8++yyXLl264XNhs9mYMWMGFy5ccK539uzZN+zCunbbju6PHTt28PDDDxMQEEBgYCCPPfYYcXFxKR5rt9v58MMPqVevHr6+vhQsWJCmTZvy/fffA0ldCzt27GDNmjXOehxdI9erKT3P8+zZs7HZbKxatYonnniCokWLUqRIEe677z6OHj16w+foRsqVK8fdd9/NokWLqFOnDj4+PlSoUIEPPvggVduoqCh69+5N8eLF8fb2pnr16rzzzjvY7fbrrv/gwYN4eHgwceLEVH9bu3YtNpuNhQsXAhk7DhcvXmT06NGUL18eLy8vSpcuzZNPPsnp06fT3L8ff/yR+vXr4+vrS/Xq1fnxxx+BpOe1evXq+Pn50bhxYzZv3pzi8Wl1jS1YsICOHTtSsmRJ5/pGjRrFuXPnrv9EX0fr1q3p3bs3AE2aNMFmszm7pq7tVrPZbJw7d445c+Y4X1utW7e+4fpPnTrF0KFDKV26NF5eXlSoUIExY8Y431eO1+Qvv/zCrl27nOtdvXr1ddd55coVXnjhBUqUKEG+fPm444472LhxY5ptY2JiGDx4MEFBQXh5eVG+fHnGjRtHQkJCinbR0dE88MADFChQgIIFC9KrVy82bdqU6v3i6ILfvn07HTt2pECBArRr1w5I6l6fMGEC1apVc34uPvroo/zzzz+p6lqwYAHNmjXDz8+P/Pnz06lTJ8LDw2/4XAIUL1481TJ3d3dCQkI4fPjwTR9foEABfHx88PDQeY0sZyTP6dSpkylWrJiZPn26Wb16tfnuu+/Myy+/bL788ktnm1atWpkiRYqYqlWrmtDQULN8+XJz9913G8CMGzfO1K5d28yfP98sXbrUNG3a1Hh7e5sjR444H7969Wrj6elpQkJCzIIFC8x3331nOnbsaGw2W4rt7N692xQoUMBUrFjRzJ071yxZssQ8/PDDBjBvvPGGMcaYuLg4M2vWLAOY//73vyYsLMyEhYWZw4cPG2OM6devn/Hy8jLVq1c3b7/9tvnll1/Myy+/bGw2mxk3btwNn4uwsDDTtWtX4+vr61zviRMnzIEDBwxgZs2aleoxgBk7dqzz97FjxxrAVK1a1bz88stmxYoVZvLkycbb29s8+uijKR7bp08fY7PZzMCBA83ixYvNTz/9ZF577TXz/vvvG2OM2bp1q6lQoYKpX7++s56tW7caY0yaNaX3eXY8fxUqVDBPP/20Wb58uZkxY4YpVKiQadOmTYoaHW3T2vdrBQcHm9KlS5uyZcuamTNnmqVLl5pevXoZwLz11lvOdidOnDClS5c2xYoVM1OnTjXLli0zTz31lAHME088ccPn9z//+Y8pW7asSUhISNGuR48eplSpUubKlSsZOg52u9106tTJeHh4mJdeesn8/PPP5u233zZ+fn6mfv365uLFiyn2LygoyNSqVcv5em/SpInx9PQ0L7/8smnRooX59ttvzaJFi0yVKlVMYGCgOX/+vPPxjpqSe/XVV827775rlixZYlavXm2mTp1qypcvn+o4pPXYa+3YscP897//dR6vsLAws3fvXmNM0vsiODjY2TYsLMz4+vqarl27Ol9bO3bsuO66L1y4YOrUqWP8/PzM22+/bX7++Wfz0ksvGQ8PD9O1a1djjDEXL140YWFhpn79+qZChQrO9cbFxV13vf369TM2m808//zz5ueffzaTJ082pUuXNv7+/qZfv37OdseOHTNlypQxwcHBZtq0aeaXX34xr776qvH29jb9+/d3tjt79qypVKmSKVy4sPn444/N8uXLzYgRI0z58uVTvY779etnPD09Tbly5czEiRPNypUrzfLly01iYqLp3Lmz8fPzM+PGjTMrVqwwM2bMMKVLlzY1atRIcUxfe+01Y7PZzGOPPWZ+/PFH8+2335pmzZoZPz+/Gz6f13PlyhVTqVIlU79+/TT/npCQYC5fvmwOHDhgBg0aZPLnz282b96c4e1Ixigc5UH58+c3zzzzzA3btGrVygAp3oSxsbHG3d3d+Pr6pghCERERBjAffPCBc1nTpk1N8eLFzZkzZ5zLEhISTK1atUxQUJCx2+3GGGMeeugh4+3tbaKiolJsv0uXLiZfvnzm9OnTxhhjNm3adN0v7H79+hnAfPXVVymWd+3a1VStWvUmz0bS4/38/FIsu5Vw9Oabb6ZoN3ToUOPj4+Pc17Vr1xrAjBkz5ob11KxZ07Rq1SrV8rRqSu/z7Ag8Q4cOTbHON9980wDm2LFjzmVz5swx7u7uZs6cOTes05ik8GCz2UxERESK5R06dDD+/v7m3LlzxhhjRo0aZQCzYcOGFO2eeOIJY7PZzJ49e5zLrn1+V61aZQCzaNEi57IjR44YDw+PFOE3vcdh2bJlabZbsGCBAcz06dNT7J+vr6+Jjo52LnO83kuWLOncP2OM+e677wxgvv/++1Q1XY/dbjdXrlwxa9asMYDZtm1buh/r4Di2mzZtSrH82nBkjDF+fn4pAsiNTJ06Nc331RtvvGEA8/PPPzuXtWrVytSsWfOm69y1a5cBzIgRI1IsnzdvngFS1DZ48GCTP39+c+jQoRRt3377bQM4g8jHH39sAPPTTz+laDd48OA0wxFgZs6cmaLt/PnzDWC++eabFMsdnztTpkwxxhgTFRVlPDw8zNNPP52i3ZkzZ0yJEiXMgw8+eNPn4FpjxowxgPnuu+/S/HvVqlUN4HzN/fbbbxnehmScutXyoMaNGzN79mwmTJjAH3/8wZUrV9JsV7JkSUJCQpy/Fy5cmOLFi1OvXj1KlSrlXF69enUADh06BMC5c+fYsGEDDzzwQIpZZO7u7vTp04fo6Gj27NkDwK+//kq7du0oU6ZMim3379+f8+fPp3swq81mo1u3bimW1alTx1lTdrjnnntSbf/ixYucOHECgJ9++gmAJ598MlO2l5Hn+UY1Aimep759+5KQkJBi/MON1KxZk7p166ZY9sgjjxAfH8/WrVuBpONco0aNFGNiIOk4G2PSnK3j0Lp1a+rWrcvHH3/sXDZ16lRsNhuDBg1K1f5mx8GxrWtnRvXo0QM/Pz9WrlyZYnm9evUoXbq083fH671169Ypxqpc+z64nv379/PII49QokQJ3N3d8fT0dI4f2bVr1w0fm51+/fVX/Pz8eOCBB1Isdzxv1z5P6bFq1SqAVGOTHnzwwVRdRT/++CNt2rShVKlSJCQkOH+6dOkC4ByUvGbNGgoUKEDnzp1TPP7hhx++bh33339/qm0VLFiQbt26pdhWvXr1KFGihLObcPny5c73RvJ2Pj4+tGrV6obdiWmZMWMGr732Gs8++yz33ntvmm2++eYbNmzYwMKFC6lRowZdunTJ8HYk49RxmQctWLCACRMmMGPGDF566SXy58/Pf/7zH958801KlCjhbFe4cOFUj/Xy8kq13MvLC0gaxwHw77//YoyhZMmSqR7vCFWxsbHO/6an3c3ky5cPHx+fFMu8vb2dNWWHIkWKpNo+wIULF4CksV7u7u4pnuPbkZHnOb013oq09sexLPlxvnZa+Y3qvNawYcMYOHAge/bsoUKFCnz66ac88MADaW77ZvsYGxuLh4cHxYoVS9HOZrNRokSJVLVc7/V+s/dBWs6ePUvLli3x8fFhwoQJVKlShXz58nH48GHuu+++2zoOmS02NpYSJUqkGjNVvHhxPDw80v3evHadkPo14+Hhkeq4HT9+nB9++AFPT88013Xy5EnnOgMDA1P9Pa1lkPRZ4e/vn2pbp0+fdh7D623r+PHjAM4xkNdyc0v/+YZZs2YxePBgBg0axFtvvXXddjVr1gSS/lHbvXt36tevz/Dhw9m2bVu6tyUZp3CUBxUtWpT33nuP9957j6ioKL7//ntGjRrFiRMn0hxYnVGFChXCzc2NY8eOpfqbY/Bv0aJFgaQvsvS0y26OoHXtgO5b+UJwKFasGImJicTExKQZaDIqI89zVoqJibnuMscX3u0e50ceeYQXX3yRjz/+mKZNmxITE3PLZ+CKFClCQkIC//zzT4qAZIwhJibmul98meHXX3/l6NGjrF69OsVso2sHgruCIkWKsGHDBowxKQLSiRMnSEhIuKXXluP1EBMTk+JsXEJCQqr3VtGiRalTpw6vvfZamutyBOsiRYqkOaA7rdclkOa1oxwTFK73+VegQAFnO4Cvv/6a4ODgNNumx6xZsxg4cCD9+vVzngVNDw8PDxo0aMBXX311y9uW9FG3Wh5XtmxZnnrqKTp06ODsArldfn5+NGnShG+//TbFv4Ttdjuff/45QUFBVKlSBYB27do5vzCSmzt3Lvny5XNOXc+MMxwZERgYiI+PD3/++WeK5YsXL77ldTq6Az755JMbtvP29k7Xfmbkec5KO3bsSPWv2C+++IICBQrQoEEDIOk479y5M9VrbO7cudhsNtq0aXPDbfj4+DBo0CDmzJnD5MmTqVevHi1atLileh2zkz7//PMUy7/55hvOnTvn/HtWcHwJOl7PDtOmTcuybSaX3tcWJD1PZ8+eTXVdJMf1eG7leXLMjps3b16K5V999VWqGWh333238xIBDRs2TPXjCEetWrXizJkzzm5rhy+//DLddd19993ExsaSmJiY5raqVq0KQKdOnfDw8GDfvn1ptmvYsOFNtzV79mwGDhxI7969mTFjRoYuEnrx4kX++OMPKlWqlO7HyK3RmaM8Ji4ujjZt2vDII49QrVo1ChQowKZNm1i2bBn33Xdfpm1n4sSJdOjQgTZt2vDcc8/h5eXFlClT+Ouvv5g/f77zA2Hs2LHOsQUvv/wyhQsXZt68eSxZsoQ333yTgIAAIOmaLb6+vsybN4/q1auTP39+SpUqlWLsU2ay2Wz07t2bmTNnUrFiRerWrcvGjRv54osvbnmdLVu2pE+fPkyYMIHjx49z99134+3tTXh4OPny5ePpp58GoHbt2nz55ZcsWLCAChUq4OPjQ+3atdNcZ3qf54yYO3cujz32GDNnzkzXuKNSpUpxzz338Morr1CyZEk+//xzVqxYwRtvvOEckzNixAjmzp3LXXfdxfjx4wkODmbJkiVMmTKFJ554Il0hbujQobz55pts2bKFGTNmZHi/HDp06ECnTp148cUXiY+Pp0WLFvz555+MHTuW+vXr06dPn1te9800b96cQoUKMWTIEMaOHYunpyfz5s3Lti6S2rVrs3r1an744QdKlixJgQIFnF/81+rbty8ff/wx/fr14+DBg9SuXZvffvuN119/na5du9K+ffsMb7969er07t2b9957D09PT9q3b89ff/3F22+/naqra/z48axYsYLmzZszbNgwqlatysWLFzl48CBLly5l6tSpBAUF0a9fP95991169+7NhAkTqFSpEj/99BPLly8H0tfV9dBDDzFv3jy6du3K8OHDady4MZ6enkRHR7Nq1Sruvfde/vOf/1CuXDnGjx/PmDFj2L9/P507d6ZQoUIcP36cjRs34ufnx7hx4667nYULFzJgwADq1avH4MGDU53xql+/vjM4N2/enHvuuYfq1asTEBDAwYMH+eSTT9i3b1+qi3tKFrB0OLhku4sXL5ohQ4aYOnXqGH9/f+Pr62uqVq1qxo4dm2LmzfVmnwQHB5u77ror1XLAPPnkkymWrVu3zrRt29b4+fkZX19f07RpU/PDDz+keuz27dtNt27dTEBAgPHy8jJ169ZNc5bY/PnzTbVq1Yynp2eKGU1pzTYzJv2zfa73+Li4ODNw4EATGBho/Pz8TLdu3czBgwevO1vtn3/+SfF4xyyiAwcOOJclJiaad99919SqVct4eXmZgIAA06xZsxTPy8GDB03Hjh1NgQIFDOCccXS9GXTpeZ6vN6PJMRNs1apVqdqmdyr/XXfdZb7++mtTs2ZN4+XlZcqVK2cmT56cqu2hQ4fMI488YooUKWI8PT1N1apVzVtvvWUSExNTtLv2+U2udevWpnDhwimmVjtk5DhcuHDBvPjiiyY4ONh4enqakiVLmieeeML8+++/ae7ftdJ6vTuOT/JLGKT1Gly/fr1p1qyZyZcvnylWrJgZOHCg2bp1a6rnPCtmq0VERJgWLVqYfPnyGSDNWZHJxcbGmiFDhpiSJUsaDw8PExwcbEaPHp3icgfGpH+2mjHGXLp0yTz77LOmePHixsfHxzRt2tSEhYWZ4ODgVDPp/vnnHzNs2DBTvnx54+npaQoXLmxCQkLMmDFjzNmzZ53toqKizH333Wfy589vChQoYO6//36zdOlSA5jFixeneE7Seq8bkzSl/u233zZ169Y1Pj4+Jn/+/KZatWpm8ODBJjIyMkXb7777zrRp08b4+/sbb29vExwcbB544AHzyy+/3HDfHbPlrveT/DX67LPPmrp165qAgADj4eFhSpQoYf7zn/+Y33//PV3Ps9wemzHGZEsKE5Fcp1y5ctSqVct5UcSsdOLECYKDg3n66ad1ewq5qddff53//ve/REVFZflVyiX3UbeaiLi06Oho9u/fz1tvvYWbmxvDhw+3uiRxMR999BEA1apV48qVK/z666988MEH9O7dW8FIbonCkYi4tBkzZjB+/HjKlSvHvHnzUsxyEoGk6fnvvvsuBw8e5NKlS5QtW5YXX3yR//73v1aXJjmUutVEREREkrF8Kv/atWvp1q0bpUqVwmazpZo2mpY1a9YQEhLivMnl1KlTs75QERERyRMsD0fnzp2jbt26zj7jmzlw4ABdu3alZcuWhIeH83//938MGzaMb775JosrFRERkbzApbrVbDYbixYtonv37tdt8+KLL/L999+nuAfRkCFD2LZtW7rvwyUiIiJyPTluQHZYWBgdO3ZMsaxTp06EhoZy5cqVNO/Dc+nSpRS3gbDb7Zw6dYoiRYrc0kXyREREJPsZYzhz5gylSpXK0L3sMirHhaOYmJhUNxQMDAwkISGBkydPpnnPqokTJ97wqqUiIiKScxw+fDhLL9OQ48IRpL5xoKNn8HpngUaPHs3IkSOdv8fFxVG2bFkOHz6c6pL1IpKDHDkC+/ZBxYpwoyn+6W0nIi4tPj6eMmXKOG8GnFVyXDgqUaJEqrstnzhxAg8PD+cdn6/l7e2d6kaPAP7+/gpHIjlVaCgMGgR2O7i5cf7DD/nM3Z2ffvqJf/75hzJlytCjRw/+c+oUbkOGONsxfToMGGB19SJyG7J6SEyOC0fNmjXjhx9+SLHs559/pmHDhmmONxKRXCg6+n/BCFhvt9PrySc5eE2zBQsW0BT4EgiGpPaDB0OnTqArJ4vIdVg+lf/s2bNEREQQEREBJE3Vj4iIICoqCkjqEkt+Z/AhQ4Zw6NAhRo4cya5du5g5cyahoaE899xzVpQvIlaIjHQGoyVAW+AgUKZ4cSZNmsTXX3/Niy++SH5fX/4AGgO7HY9NTIS9ey0oWkRyCsun8q9evZo2bdqkWt6vXz9mz55N//79OXjwIKtXr3b+bc2aNYwYMYIdO3ZQqlQpXnzxRYYMGZLubcbHxxMQEEBcXJy61URyouhoCA5mm91OM+ACcA/w2c6d+Fev7mwWtWED3Zo25U8gCNgMBLq7w8GDOnMkkgNl1/e35eHICgpHIjnfvx98QMjw4RwAOgI/Tp2K5+DBqdqdfO897hgxgj1AO2D59Om4P/54NlcrIpkhu76/Le9WExG5FS9s384BoHzJksz/8880gxFA0WeeYdGvv+Ln48NK4NPExGytU0RyHoUjEclxfv/9d2bMmAHAnAULKFy79g3bV2/TholvvgnAqFGjOH78eJbXKCI5l8KRiOQodrudp59+GoDHHnuMli1bputxQ4cOpUGDBsTFxfF///d/WVmiiORwCkcikqN89913hIeHU6BAAd544410P87d3d15g+s5c+awVzPWROQ6FI5EJMew2+2MHTsWgGeeeYaiRYtm6PHNmjWja9euJCYm8uqrr2ZFiSKSCygciUiOsXjxYv766y8CAgIYMWLELa3DcZ/Fzz//nP3792dmeSKSSygciUiO8d577wHw5JNPUqhQoVtaR8OGDenUqRN2u93ZzSYikpzCkYjkCBEREaxduxZ3d3eGDh16W+saPnw4AKGhoZw9ezYzyhORXEThSERyhA8//BCABx54gNKlS9/Wujp16kSVKlWIj49nzpw5mVGeiOQiCkci4vLOnDnDl19+CeCcxn873NzceOqppwD49NNPb3t9IpK7KByJiMv7+uuvOX/+PFWqVKF58+aZss5evXrh5eXFtm3bCA8Pz5R1ikjuoHAkIi7P0fXVr18/bDZbpqyzcOHCdO/eHYBZs2ZlyjpFJHdQOBIRl3bgwAHWrFmDzWajT58+mbruRx99FIB58+Zx+fLlTF23iORcCkci4tI+++wzANq2bUuZMmUydd0dOnSgZMmSnDp1ihUrVmTqukUk51I4EhGXZYxh3rx5QFKXWmZzd3fngQceAGDhwoWZvn4RyZkUjkTEZe3cuZO///4bLy8v7r333izZRo8ePYCke7ZdunQpS7YhIjmLwpGIuKxvvvkGgI4dO+Lv758l22jRogUlS5YkLi6OX375JUu2ISI5i8KRiLgsRzi6//77s2wbbm5u6loTkRQUjkTEJe3du5c///wTd3d3unXrlqXbSt61pllrIqJwJCIu6dtvvwWgTZs2FClSJEu31aJFCwIDA4mLi2Pt2rVZui0RcX0KRyLikhYtWgTAfffdl+XbcnNz46677gLgxx9/zPLtiYhrUzgSEZdz8uRJNmzYAMA999yTLdu8++67gaRwZIzJlm2KiGtSOBIRl7N8/nyMMdStUYPSpUtnyzbbt2+Pl5cX+/bt4++5cyE6Olu2KyKuR+FIRFxLaChLhw0DoOvOnRAami2bLVCgAK0qVQLgx/79ITg427YtIq5F4UhEXEd0NImPP87yq792ARg8OHvO4kRHc/euXQD8CGC3Z9+2RcSlKByJiOuIjGSTMcQCAUAzgMRE2Ls3W7Z919WxRuuAuOzctoi4FIUjEXEdlSuz9Or/dgI8ANzd4Wp3V1Zvu6KbG5WBRGB1dm5bRFyKwpGIuI6gIJaVKwdc7VJzd4dp0yAoKFu2zfTpdLDZAPjFZsu+bYuIS1E4EhGX8e+//7IlKgqAjgsXwsGDMGBA9hUwYADtp00D4JeKFbN32yLiMhSORMRlrFmzBrvdTrVq1Sj1wAOWnLVp/cADuLm5sXvvXqI1GFskT1I4EhGXsXLlSgDatm1rWQ2FChWiYcOGKeoRkbxF4UhEXMavv/4KQLt27Syto3379gD88ssvltYhItZQOBIRl3Ds2DF27tyJzWajdevWltaSPBzpViIieY/CkYi4BMdZo/r161O4cGFLa2nWrBm+vr7ExMSwc+dOS2sRkeyncCQiLsERjqwcb+Tg4+NDy5YtAVixYoXF1YhIdlM4EhHLGWOcg5+tHm/k4KhjzZo1FlciItlN4UhELHfgwAEOHTqEh4cHd9xxh9XlAHDnnXcCsG7dOux2u8XViEh2UjgSEcs5zs40btyY/PnzW1xNkgYNGpAvXz5iY2PZdfWGtCKSNygciYjl1q1bB/zvbI0r8PLyolmzZgCsXbvW4mpEJDspHImI5X777TcAl+lSc3CENYUjkbxF4UhELBUTE0NkZCQ2m43mzZtbXU4KycORrnckkncoHImIpX7//XcAatWqRaFChSyuJqUmTZrg6enJ0aNH2b9/v9XliEg2UTgSEUs5xhs5rivkSnx9fWncuDGgrjWRvEThSEQs5crhCDTuSCQvUjgSEcucOXOGiIgIwPUGYzsoHInkPQpHImKZsLAw7HY75cqVIygoyOpy0tS8eXPc3NzYv38/R48etbocEckGCkciYhlXncKfnL+/P7Vq1QKSwpyI5H4KRyJiGVcfb+TguMSAwpFI3qBwJCKWuHz5Mhs2bABcPxw5rpS9fv16iysRkeygcCQilggPD+fChQsUKVKEatWqWV3ODTnOHG3ZsoVLly5ZXI2IZDWFIxGxhKOLqlmzZthsNourubGKFStStGhRLl++THh4uNXliEgWUzgSEUs4utSaNm1qcSU3Z7PZ1LUmkocoHImIJf744w8gZ4Qj0KBskbxE4UhEsl1MTAwHDx7EZrPRqFEjq8tJl+RnjnQTWpHcTeFIRLKdo0utZs2a+Pv7W1xN+jRq1Ah3d3eOHj3K4cOHrS5HRLKQwpGIZLuc1qUGkC9fPurVqweoa00kt1M4EpFslxPDEfxv3JEGZYvkbgpHIpKtEhMT2bRpE5DzwpFj3JHOHInkbgpHIpKtduzYwblz5/D396d69epWl5MhjjNHjgtYikjupHAkItnK0aXWuHFj3Nxy1kdQ2bJlCQwMJCEhgYiICKvLEZEskrM+mUQkx8up440g6WKQjRs3BmDjxo0WVyMiWUXhSESyVU4OR4DCkUgeoHAkItnm9OnT7Nq1C/hfyMhpHBetdAwqF5HcxyXC0ZQpUyhfvjw+Pj6EhISwbt26G7afN28edevWJV++fJQsWZJHH32U2NjYbKpWRG6V42xLxYoVKVasmMXV3BpHOIqMjOTUqVMWVyMiWcHycLRgwQKeeeYZxowZQ3h4OC1btqRLly5ERUWl2f63336jb9++DBgwgB07drBw4UI2bdrEwIEDs7lyEcmonN6lBlC4cGEqVaoEwObNmy2uRkSyguXhaPLkyQwYMICBAwdSvXp13nvvPcqUKcMnn3ySZvs//viDcuXKMWzYMMqXL88dd9zB4MGD9SElkgM4bhvSpEkTiyu5PRp3JJK7WRqOLl++zJYtW+jYsWOK5R07drzuFWibN29OdHQ0S5cuxRjD8ePH+frrr7nrrruuu51Lly4RHx+f4kdEspcxhk2OcFSunLXF3CZnOFq6FKKjLa5GRDKbpeHo5MmTJCYmEhgYmGJ5YGAgMTExaT6mefPmzJs3j549e+Ll5UWJEiUoWLAgH3744XW3M3HiRAICApw/ZcqUydT9EJGbO/zWW/wTG4sHUOfeeyE01OqSblnj48cB2BgWhilbNkfvi4ikZnm3GiRdOyQ5Y0yqZQ47d+5k2LBhvPzyy2zZsoVly5Zx4MABhgwZct31jx49mri4OOeP7qgtks2io9k0ahQAdQAfY2Dw4Jx51iU6mnqTJuEBHAeic/K+iEiaPKzceNGiRXF3d091lujEiROpziY5TJw4kRYtWvD8888DUKdOHfz8/GjZsiUTJkygZMmSqR7j7e2Nt7d35u+AiKRPZCSbjQGgoWNZYiLs3QtBQZaVdUsiI/E1htpAOLARKJNT90VE0mTpmSMvLy9CQkJYsWJFiuUrVqxw3sPoWufPn091ywF3d3cg6YyTiLigypVxXBXIGY7c3eHqrK8cpXJlcHPDcZWmjZBz90VE0mR5t9rIkSOZMWMGM2fOZNeuXYwYMYKoqChnN9no0aPp27evs323bt349ttv+eSTT9i/fz+///47w4YNo3HjxpQqVcqq3RCRGzClS7PZ1xeARpAUJqZNy5lnWoKCYPp0Gl/t+t8IOXdfRCRNlnarAfTs2ZPY2FjGjx/PsWPHqFWrFkuXLiU4OBiAY8eOpbjmUf/+/Tlz5gwfffQRzz77LAULFqRt27a88cYbVu2CiNzEvn37iLtwAR9vb2r++CNUq5azw8SAATQODoYOHdjs50di//64W12TiGQam8mDfVHx8fEEBAQQFxeHv7+/1eWI5Hrz58/nkUceoWnTpoSFhVldTqZITEwkICCAc+fO8ddff1GzZk2rSxLJ9bLr+9vybjURyf0cF2lt2LDhTVrmHO7u7oSEhAC6z5pIbqNwJCJZzhEeclM4Al0pWyS3UjgSkSyVmJjI1q1bgf/dtDW3UDgSyZ0UjkQkS+3Zs4dz587h5+dH1apVrS4nUznC0bZt27h48aLF1YhIZlE4EpEs5ehSCwkJcV6TLLcoW7YsxYoVIyEhgW3btlldjohkEoUjEclSuXEwtoPNZnPulwZli+QeCkcikqVy62BsB8c4KkcIFJGcT+FIRLLMlStXiIiIAHLfYGwHx37pzJFI7qFwJCJZ5q+//uLSpUsULFiQihUrWl1OlnCcEdu1axdnzpyxuBoRyQwKRyKSZZKPN7JdvRdZblOiRAmCgoIwxhAeHm51OSKSCRSORCTL5ObB2Mmpa00kd1E4EpEs4wgLuXW8kYPCkUjuonAkIlni4sWLbN++Hcj9Z440nV8kd1E4EpEssW3bNhISEihWrBhlypSxupws5QhH+/fv59SpUxZXIyK3S+FIRLKEY7xRo0aNcu1gbIdChQpRqVIlQNc7EskNFI5EJEvklcHYDhp3JJJ7KByJSJbIK4OxHRwhUGeORHI+hSMRyXRnz55l165dQNINZ/MCnTkSyT0UjkQk04WHh2O32yldujQlS5a0upxs0aBBA9zc3Dhy5AjHjh2zuhwRuQ0KRyKS6ZIPxs4r/Pz8qFGjBqCzRyI5ncKRiGQ6RzjIK4OxHTTuSCR3UDgSkUyXF88cgcYdieQWCkcikqlOnz5NZGQkkHcGYzskD0fGGIurEZFbpXAkIplq69atAJQvX54iRYpYXE32qlOnDp6ensTGxnLw4EGryxGRW6RwJCKZKq92qQF4e3tTp04dQOOORHIyhSMRyVR57crY19K4I5GcT+FIRDKVwpHCkUhOp3AkIpkmNjaWAwcOAEkXRcyLHKFwy5Yt2O12i6sRkVuhcCQimWbLli0AVKlShYCAAIursUaNGjXw9fXlzJkz/P3331aXIyK3QOFIRDJNXu9SA/Dw8HCeNVPXmkjOpHAkIpnGEY7y2vWNruUIhwpHIjmTwpGIZBqdOUriGJSt6fwiOZPCkYhkiuPHj3P48GFsNhv169e3uhxLOcJReHg4V65csbgaEckohSMRyRSOwdjVqlWjQIECFldjrUqVKhEQEMDFixfZsWOH1eWISAYpHIlIplCX2v+4ubk5x12pa00k51E4EpFMoXCUki4GKZJzKRyJSKZQOEpJ4Ugk51I4EpHbdvToUY4dO4abmxv16tWzuhyX4AhH27dv5+LFixZXIyIZoXAkIrfNcdaoZs2a5MuXz+JqXEOZMmUoVqwYCQkJbNu2zepyRCQDFI5E5LapSy01m82mrjWRHErhSERum8JR2hSORHImhSMRuS3GGDZv3AhAwzJlLK7GtThvI7JmDURHW1yNiKSXwpGI3JbDb73FP7GxeAB17r0XQkOtLsllNPr7bwB2HzrEmbJl9dyI5BA2Y4yxuojsFh8fT0BAAHFxcfj7+1tdjkjOFR3Nt2XLcr8x1Ae2Ari7w8GDEBRkbW1Wi46G4GDK2u0cBlYDrfTciNyW7Pr+1pkjEbl1kZFsvvrvK+doo8RE2LvXspJcRmQk2O00uvrrJtBzI5JDKByJyK2rXBnHzTGc4cjdHSpVsqggF1K5Mri5OZ+XzaDnRiSHUDgSkVtmSpdm89XrGjWEpC//adPUbQRJz8H06TRyS/qY3QR6bkRyCIUjEbllBw4c4N/z5/Hy8qLWzz8njacZMMDqslzHgAE0/PNPAPYDsd27W1qOiKSPwpGI3DLH9Y3q1q2LV4cOOiuShoI1a1K5cmXgf8+XiLg2hSMRuWW6+GP6OJ4fhSORnEHhSERumcJR+uhK2SI5i8KRiNwSu93Oli1bAIWjm1E4EslZFI5E5JZERkYSHx+Pj48PNWrUsLocl1a/fn3c3Nw4evQoR48etbocEbkJhSMRuSUbr95PLSQkBA8PD4urcW1+fn7OAKlxRyKuT+FIRG6JIxw1btzY4kpyBnWtieQcCkcicks2bNgAKByll8KRSM6hcCQiGXbp0iUiIiIAaNKkibXF5BDJp/Pnwft9i+QoCkcikmERERFcuXKFokWLUq5cOavLyRHq1KmDp6cnsbGxHDx40OpyROQGFI5EJMOSjzey2WwWV5MzeHt7U7duXUBdayKuTuFIRDLMEY7UpZYxjq41hSMR16ZwJCIZpsHYt8YxKFvT+UVcm8KRiGTIqVOniIyMBP73ZS/p43i+tmzZgt1ut7gaEbkehSMRyRDHWY+KFStSpEgRi6vJWapXr06+fPk4c+YMe/bssbocEbkOlwhHU6ZMoXz58vj4+BASEsK6detu2P7SpUuMGTOG4OBgvL29qVixIjNnzsymakXyNkeXmsYbZZyHhwf169cH1LUm4sosD0cLFizgmWeeYcyYMYSHh9OyZUu6dOlCVFTUdR/z4IMPsnLlSkJDQ9mzZw/z58+nWrVq2Vi1SN6lK2PfHl0MUsT1WX5DpMmTJzNgwAAGDhwIwHvvvcfy5cv55JNPmDhxYqr2y5YtY82aNezfv5/ChQsD6DorItnEGKNwdJsUjkRcn6Vnji5fvsyWLVvo2LFjiuUdO3Zk/fr1aT7m+++/p2HDhrz55puULl2aKlWq8Nxzz3HhwoXrbufSpUvEx8en+BGRjDt06BAnTpxI0T0kGeMIR44LaYqI67E0HJ08eZLExEQCAwNTLA8MDCQmJibNx+zfv5/ffvuNv/76i0WLFvHee+/x9ddf8+STT153OxMnTiQgIMD5U6ZMmUzdD5G8wnHWqG7duvj4+FhcTc5UsWJFAgICuHjxIjt27LC6HBFJg+VjjoBUV9g1xlz3qrt2ux2bzca8efNo3LgxXbt2ZfLkycyePfu6Z49Gjx5NXFyc8+fw4cOZvg8ieYG61G6fm5ubLgYp4uIsDUdFixbF3d091VmiEydOpDqb5FCyZElKly5NQECAc1n16tUxxhAdHZ3mY7y9vfH390/xIyIZp4s/Zg6NOxJxbZaGIy8vL0JCQlixYkWK5StWrKB58+ZpPqZFixYcPXqUs2fPOpf9/fffuLm5ERQUlKX1iuRlCQkJbNmyBdA0/tvlOHOk6fwirsnybrWRI0cyY8YMZs6cya5duxgxYgRRUVEMGTIESOoS69u3r7P9I488QpEiRXj00UfZuXMna9eu5fnnn+exxx7D19fXqt0QyfW2b9/OhQsX8Pf3p2rVqlaXk6M5zhxt376dixcvWlyNiFzL8qn8PXv2JDY2lvHjx3Ps2DFq1arF0qVLCQ4OBuDYsWMprnmUP39+VqxYwdNPP03Dhg0pUqQIDz74IBMmTLBqF0TyBMcM0qZNm+LmZvm/q3K0MmXKULx4cU6cOEFERARNmza1uiQRScbycAQwdOhQhg4dmubfZs+enWpZtWrVUnXFiUjWCgsLA6BZs2YWV5Lz2Ww2GjVqxJIlS9iwYYPCkYiL0T//RCRdHGeOrjceUDLGETIdoVNEXIfCkYjcVExMDAcOHMBms2kwdiZxhMzrXfBWRKyjcCQiN+U4u1GzZs0Ul9GQW9eoUSPc3d05fPiwrr0m4mIUjkTkphzhSF1qmSd//vzUrVsXUNeaiKtROBKRm3J0/WgwduZS15qIa1I4EpEbunz5svNihTpzlLkcz+fvv/9ucSUikpzCkYjcUHh4OJcuXaJIkSJUrlzZ6nJyFUc4Cg8P59y5cxZXIyIOCkcickPJr290vRtCy60pW7YspUuXJjExUbcSEXEhCkcickO6vlHWsdlsGnck4oIUjkTkhjRTLWspHIm4HoUjEbmuw4cPEx0djbu7u/NO8pK5kocjY4zF1YgIKByJyA2E/fgjAPVq1MDPz8/ianKnevXq4ePjw6lTp/h77lyIjra6JJE8T+FIRNIWGsrvV28I3Wz7dggNtbig3MnLy4tGZcoA8Hv//hAcrOdaxGIKRyKSWnQ0DBrEuqu/3gEweLDOamSF6GiaR0YCsB7AbtdzLWIxhSMRSS0ykji7nW1Xf20JkJgIe/daWFQuFRmJY6i781KQeq5FLKVwJCKpVa7MepsNO1ARKAXg7g6VKllbV25UuTLNr14/ajdwAvRci1hM4UhEUgsKYl2XLgDcCUlf1tOmQVCQpWXlSkFBFP30U2pe/fU3Nzc91yIWUzgSkTStjYsDoOULL8DBgzBggLUF5WYDBnBnnz4ArH30UT3XIhZTOBKRVC5cuMDGjRsBuHPQIJ3FyAat7roLgLVbt1pciYgoHIlIKhs3buTKlSuUKlWKChUqWF1OntCyZUsAIiIiiLt61k5ErKFwJCKprF27Fkj6wtbNZrNHqVKlqFSpEsYYfvvtN6vLEcnTFI5EJJV165KucHTnnXdaXEne4ni+HeFURKyhcCQiKSQkJDhvguro6pHs0apVK0DhSMRqCkcikkJ4eDjnzp2jUKFC1KxZ8+YPkEzjOHO0efNmzp07Z3E1InmXwpGIpOA4a3HHHXfg5qaPiOwUHBxMmTJlSEhI4I8//rC6HJE8S598IpLC6tWrAY03soLNZtO4IxEXcFvh6MSJE8TExGRWLSJisYSEBNasWQNAu3btLK4mb3KMO3IcBxHJfrcUjv78809q1qxJyZIlKV26NKVLl+a///2v+shFcrgtW7Zw5swZChUqRN26da0uJ09yhKOwsDDOnz9vcTUiedMthaMBAwYQGBjIb7/9Rnh4OBMmTOCnn36iYcOG/Pvvv5ldo4hkk19//RWANm3aaLyRRSpXrkzp0qW5fPkyv//+u9XliORJt/Tpt3PnTqZMmUKzZs2oU6cOjz76KJs3b6ZmzZo8/fTTmV2jiGQTRzhq27atxZXkXTabzdmluXLlSourEcmbbikcpXWGyGaz8frrr7N48eJMKUxEstelS5ecV2ZWOLKWIxw5wqqIZC+P9Da86667qFu3LvXq1WPIkCGMGDGCxYsXExgY6GwTFxdHoUKFsqRQEclaf/zxBxcvXqREiRJUq1bN6nLyNEc42rJlC6dPn6ZgwYLWFiSSx6Q7HNWuXZutW7cya9Ysjh8/DkCFChV48MEHqVevHomJicyaNYt33303y4oVkayTvEtN91OzVunSpalatSp79uxh9erVdO/e3eqSRPKUdIejSZMmOf//+PHjhIeHExERQUREBJ988gl79+7F3d2dcePGcf/992dJsSKSdTTeyLW0a9eOPXv2sHLlSoUjkWyW7nCUXGBgIJ07d6Zz587OZRcuXGDbtm1s27Yt04oTkexx9uxZ5xWZFY5cQ7t27ZgyZYoGZYtY4JbCUVp8fX1p2rQpTZs2zaxVikg2+e2330hISKBcuXKUL1/e6nIEaN26NTabjV27dnH06FFKlSpldUkieYYuZCIizrMTbdq0sbgScShcuDANGjQANGtNJLspHIkIy5cvB6Bjx44WVyLJ6XpHItZQOBLJ444cOcL27dux2Wx06NDB6nIkGUc4WrFiBcYYi6sRyTsUjkTyOMdZo0aNGlGkSBGLq5HkWrZsiY+PD0eOHGHHjh1WlyOSZygcieRxjnCUfPapuAZfX1/nOLCffvrJ4mpE8g6FI5E8LCEhgRUrVgAKR67KcVwUjkSyj8KRSB62adMm/v33XwoWLEijRo2sLkfS0KVLFyDpcgtnzpyxuBqRvEHhSCQPc3SpdejQAQ+PTLvsmWSiSpUqUaFCBa5cuaIp/SLZROFIJA9btmwZoC41V2az2ZxnjxzHS0SylsKRSB4VGxvLpk2bAF3fyNUlH3ekKf0iWU/hSCSP+uWXX7Db7dSqVYugoCCry5EbaNOmDV5eXhw6dIg9e/ZYXY5IrqdwJJJHLVmyBFCXWk7g5+dHq1atAM1aE8kOCkcieVDCwYMsWbwYgG7dullcjaSHs2tt0SJYtQqioy2uSCT3UjgSyWtCQ1lfoQKn4uMpDDTfvdvqiiQd7rrrLgBWr1tHXNu2EBwMoaEWVyWSOykcieQl0dEwaBDfXx3UexfgMXSozkLkAFX9/KgCXAGWAdjtMHiwjp1IFlA4EslLIiMxdjuLr/56D0BiIuzda2FRki6RkXS/+r+O46djJ5I1FI5E8pLKldljs7EX8AI6Abi7Q6VK1tYlN1e5MvfabAAsJekMko6dSNZQOBLJS4KC+OH++wFoAxRwd4dp00BT+V1fUBBNpk2jOBAHrHFz07ETySIKRyJ5zPcxMQDcM3w4HDwIAwZYW5Ckm/vjj9PtoYcAWNy3r46dSBZROBLJQ/755x/Wr18PQLdnn9VZhxzo3kceAWDxypW6WrZIFlE4EslDlixZgt1up379+pQpU8bqcuQWtG/fnnz58nH48GEiIiKsLkckV1I4EslDvvnmGwDuueceiyuRW+Xr60unTp0AWLx48U1ai8itUDgSySNOnz7N8uXLAejRo4fF1cjtuPfeewH49ttvLa5EJHdSOBLJI77//nuuXLlCjRo1qFmzptXlyG2455578PT0ZPv27ezWFc5FMp3CkUgesXDhQkBnjXKDQoUK0aFDBwAWLFhgcTUiuY/CkUgeoC613Kdnz54AfPXVVxZXIpL7KByJ5AHqUst97r33Xry8vNi5cyd//fWX1eWI5CouEY6mTJlC+fLl8fHxISQkhHXr1qXrcb///jseHh7Uq1cvawsUyeEcZxd01ij3CAgIoHPnzoC61kQym+XhaMGCBTzzzDOMGTOG8PBwWrZsSZcuXYiKirrh4+Li4ujbty/t2rXLpkpFcqbTp0/z888/AwpHuU3yrjVdEFIk81gejiZPnsyAAQMYOHAg1atX57333qNMmTJ88sknN3zc4MGDeeSRR2jWrFk2VSqSMy1evFhdarlUt27d8PHx4e+//2bbtm1WlyOSa1gaji5fvsyWLVvo2LFjiuUdO3Z03uIgLbNmzWLfvn2MHTs2Xdu5dOkS8fHxKX5E8orPP/8c+N9ZBsk9ChQoQNeuXQF1rYlkJkvD0cmTJ0lMTCQwMDDF8sDAQGKu3hzzWpGRkYwaNYp58+bh4eGRru1MnDiRgIAA549umyB5xZEjR1i5ciUAvXv3trgayQqO0Dt//nzsdrvF1YjkDpZ3qwHYbLYUvxtjUi0DSExM5JFHHmHcuHFUqVIl3esfPXo0cXFxzp/Dhw/fds0iOcG8efMwxnDHHXdQoUIFq8uRLNCtWzf8/f05dOgQa9eutbockVzB0nBUtGhR3N3dU50lOnHiRKqzSQBnzpxh8+bNPPXUU3h4eODh4cH48ePZtm0bHh4e/Prrr2lux9vbG39//xQ/IrmdMYbPPvsMgD59+lhcjWQVX19fHnzwQQDmzJljcTUiuYOl4cjLy4uQkBBWrFiRYvmKFSto3rx5qvb+/v5s376diIgI58+QIUOoWrUqERERNGnSJLtKF3F527Zt46+//sLb21uz1HK5fv36AfD1119z7tw5i6sRyfnSN2gnC40cOZI+ffrQsGFDmjVrxvTp04mKimLIkCFAUpfYkSNHmDt3Lm5ubtSqVSvF44sXL46Pj0+q5SJ53dy5c4GkbpdChQpZXI1kpRYtWlChQgX279/PokWLNL5M5DZZPuaoZ8+evPfee4wfP5569eqxdu1ali5dSnBwMADHjh276TWPRCSlhIQEvvjiC0BdanmBzWajb9++gLrWRDKDzeTBK4fFx8cTEBBAXFycxh9JrvTTTz/RtWtXihYtypEjR/Dy8rK6JMliBw4coEKFCthsNg4dOqRZuZIrZdf3t+VnjkQk84WGhgLw8MMPKxjlEeXLl+fOO+/EGMO8efOsLkckR1M4EsllYmJiWLx4MQCPP/64xdVIdnIMzJ45c6ZuJyJyGxSORHKZ2bNnk5CQQLNmzahdu7bV5Ug2evDBBylQoACRkZGsWrXK6nJEciyFI5FcxG638+mnnwIwaNAgi6uR7JY/f37nAPypU6daXI1IzqVwJJKL/LpgAfv37yfA3995YUDJWwYPHgzAokWLiPnmG4iOtrgikZxH4UgktwgNZfojjwDQOz6efPPnW1yQWKFOnTo0q1iRhIQEZj3wAAQHw9UB+iKSPprKr6n8khtER3O8bFmCjCEBiADqurvDwYMQFGRtbZK9oqOZU7Ys/Y2hHLAPcNNrQXIJTeUXkfSLjGTm1WDUBKgLkJgIe/daW5dkv8hIHjSGgsBB4GfQa0EkgxSORHKBK+XK8fHV/x/qWOjuDpUqWVSRWKZyZXzd3Oh39dcpoNeCSAYpHInkAt9u3MgRIBDoCUlfhtOmqRslLwoKgunTecIt6eP9R2Dv+PF6LYhkgMKRSC7w/vvvAzBkxAi8V61KGl8yYIC1RYl1Bgyg6qFDdG3SBAN8EBNjdUUiOYoGZGtAtuRwmzZtonHjxnh6ehIVFUWJEiWsLklcxIoVK+jYsSN+fn5ER0dTsGBBq0sSuS0akC0i6eI4a/TQQw8pGEkK7du3p2bNmpw7d855vz0RuTmFI5Ec7NixY3z11VcADB8+3OJqxNXYbDaeeeYZAD744AMSEhKsLUgkh1A4EsnBPvzwQ65cuUKLFi0ICQmxuhxxQb169aJo0aJERUXx3XffWV2OSI6gcCSSQ8XHxzNlyhQAnnvuOYurEVfl6+vLkCFDAHjrrbfIg8NMRTJM4Ugkh5o2bRpxcXFUq1aNe+65x+pyxIU99dRT+Pj4sHHjRlatWmV1OSIuT+FIJAe6dOkS7777LgAvvvgibm56K8v1BQYGMuDqpR1ef/11i6sRcX36RBXJgT777DOOHTtGUFAQj1y92azIjTz//PN4eHiwcuVKNm7caHU5Ii5N4Ugkh0lMTOTNN98EYOTIkXh5eVlckeQEwcHB9OrVC4CJEydaXI2Ia1M4EslhvvnmGyIjIylUqBCPP/641eVIDvLiiy9is9n47rvv2LFjh9XliLgshSORHMRutzN+/HgAhg0bRv78+S2uSHKS6tWrc9999wEwadIki6sRcV0KRyI5yMKFC9mxYwcBAQHOi/uJZMTo0aMBmD9/Pvv27bO4GhHXpHAkkkMkJiY6zxqNGDFC98mSWxISEkKXLl1SvJ5EJCWFI5EcYuHChezcuZOCBQvqrJHclnHjxgHw+eefs3v3bourEXE9CkciOUBiYqLzC23kyJEEBARYXJHkZI0aNeLee+/Fbrc7X1ci8j8KRyI5wIIFC9i9ezcFCxZk2LBhVpcjuYCjS23BggVs377d4mpEXIvCkYiLSzh4kHEvvgjAs88+q7NGkinq1KlDjx49MMYwduhQiI62uiQRl6FwJOLKQkOZWaECf0dHUxQYpkHYkoleqV0bG7Dot9/YWrYshIZaXZKIS7CZPHiL5vj4eAICAoiLi8Pf39/qckTSFh3N+bJlqWQMx4D3gOHu7nDwIAQFWVub5HzR0RAcTB+7nc+BTsAyvb7ExWXX97fOHIm4qshI3r8ajMoBQwASE2HvXkvLklwiMhLsdl4BPIHlwC96fYkACkciLiu2aFEc1zCeAHgDuLtDpUrWFSW5R+XK4OZGReCJq4teAOwVKlhYlIhrUDgScVGvz55NPFAXeBiSgtG0aerykMwRFATTp4O7O/8F/IFwYP66dRYXJmI9jTnSmCNxQYcOHaJKlSpcvnyZZZ99RqegoKQzRgpGktmio2HvXiYuW8b/vfEGwcHB7N69Gx8fH6srE0lFY45E8rCXX36Zy5cv07ZtWzr26gWtWysYSdYICoLWrRn+8suULl2aQ4cO8fHHH1tdlYilFI5EXMzmzZuZO3cukHTndJvNZnFFkhfky5ePV199FYAJEyZw6tQpiysSsY7CkYgLMcY475vWu3dvGjVqZG1Bkqf07duXWrVqcfr0aV577TWryxGxjMKRiAv56quv+P3338mXLx+TJk26+QNEMpG7uztvvfUWAB988AF79uyxuCIRaygcibiICxcu8MILLwAwatQoSpcubXFFkhd17tyZu+66i4SEBEaOHGl1OSKWUDgScRHvvPMOUVFRlClThmeffdbqciQPmzx5Mp6enixdupSlS5daXY5ItlM4EnEBR44cYeLEiQC8+eab5MuXz+KKJC+rUqUKw4cPB2DEiBFcvnzZ4opEspfCkYgLGD16NOfPn6d58+b07NnT6nJEeOmllyhevDh///03H330kdXliGQrhSMRi23YsIHPPvsMgPfee09T98Ul+Pv7O89mjhs3juPHj1tckUj2UTgSsVBiYiJDhw4FoH///pq6Ly6lf//+hISEEB8fz3//+1+ryxHJNgpHIhaaNm0aW7duJSAggDfeeMPqckRScHNz44MPPgAgNDSUjRs3WlyRSPZQOBKxyIkTJxgzZgwAr732GsWLF7e4IpHUmjdvTp8+fTDGMGTIEBISEqwuSSTLKRyJWOSFJ5/k9OnTNKhdmyFDhlhdjsh1vf322xQMCCA8PJwpr79udTkiWU7hSMQCv40axZyvv8YGTPnrL9xnz7a6JJHrKv7DD0yMjwfgv2PHcvSddyyuSCRr2Ywxxuoislt8fDwBAQHExcXh7+9vdTmSxyQcPEiD8uXZDjwOTAdwd4eDB5PukC7iSqKjITgYu91OM2Aj0NNm48uoKL1eJdtl1/e3zhyJZLOP3nqL7UBhwNlBkZgIe/daV5TI9URGgt2OGzCVpC+NBcaw4ssvLS5MJOsoHIlko6ioKP57tQttElDU8Qd3d6hUyaKqRG6gcmVwS/qqqA88dXXx0I8/5uLFi5aVJZKVFI5EsokxhieeeIJz589zR+XKDLj6hYO7O0ybpi4KcU1BQTB9etLrFHjVzY2SAQHsPXhQl5+QXEtjjjTmSLLJl19+ycMPP4yXlxcRERFUL1AgqSutUiUFI3F90dHO1+tX69fTs2dPvLy82LZtG9WqVbO6OskjNOZIJBc5deqU80aeY8aMoXr16kmBqHVrBSPJGZK9Xnv06EGXLl24fPkyAwcOxG63W12dSKZSOBLJBs899xwnTpygRo0ajBo1yupyRG6LzWZj6tSp5M+fn99//50pU6ZYXZJIplI4EsliK1euZNasWdhsNmbMmIGXl5fVJYnctrJlyzrHHI0aNYqDBw9aW5BIJlI4EslC58+fZ/DgwQAMHTqUZs2aWVyRSOYZMmQILVu25Ny5cwwePJg8OIRVcimFI5Es9H//93/s27ePoKAgXtdtFySXcXNzY8aMGfj4+PDzzz8zZ84cq0sSyRQKRyJZZPXq1bz//vsAfPrpp5oZKblSlSpVGDduHAAjRozg2LFjFlckcvsUjkSywJkzZ3j00UcBePzxx+ncubPFFYlknZEjRxISEsLp06cZNGiQutckx1M4Esls0dE836sXBw8epFy5cryjm3RKLufh4cHs2bPx8vLixx9/JPTtt2HVqqRrI4nkQApHIpkpNJTlZcsy7YcfAJj5wAMUKFDA4qJEsl6tWrWc4+qeeeEF9rVtC8HBEBpqcWUiGacrZGsciGSW6Gj+LVuW2sZwBBgGvO/uDgcP6kKPkifYo6JoFxzMaqAZsBbw0HtAMlGeukL2lClTKF++PD4+PoSEhLBu3brrtv3222/p0KEDxYoVw9/fn2bNmrF8+fJsrFYkbebvv3n8ajCqDEwESExMuuWCSB7gtm8fswF/IAx4E/QekBzJ8nC0YMECnnnmGcaMGUN4eDgtW7akS5cuREVFpdl+7dq1dOjQgaVLl7JlyxbatGlDt27dCA8Pz+bKRVKasXkz3wAewBdAPki6WWelSpbWJZJtKlcm2M2Nj67+OhbY4uam94DkOJZ3qzVp0oQGDRrwySefOJdVr16d7t27M3HixHSto2bNmvTs2ZOXX345Xe3VrSaZbefOnTRs2JALFy7wls3Gc8YkBaNp02DAAKvLE8k+oaGYQYN40G7na6BisWJs3btXn7WSKfJEt9rly5fZsmULHTt2TLG8Y8eOrF+/Pl3rsNvtnDlzhsKFC1+3zaVLl4iPj0/xI5JZLl68yMMPP8yFCxfo2LEjIw8eTJqpc/CggpHkPQMGYDt0iGmLF1O2dGn2/fOPpvdLjmNpODp58iSJiYkEBgamWB4YGEhMTEy61vHOO+9w7tw5Hnzwweu2mThxIgEBAc6fMmXK3FbdIsk9++yz/PnnnxQrVow5c+bgVras8+7lInlSUBCF77mHBV9/jYeHBwsWLGDatGlWVyWSbpaPOYKkOzwnZ4xJtSwt8+fP55VXXmHBggUUL178uu1Gjx5NXFyc8+fw4cO3XbMIwGeffea8I/mcOXMoUaKExRWJuI6mTZs6b077zDPPEBERYW1BIulkaTgqWrQo7u7uqc4SnThxItXZpGstWLCAAQMG8NVXX9G+ffsbtvX29sbf3z/Fj8jtioiIYNCgQQC8/PLLdOnSxeKKRFzPiBEj6NatG5cuXaJHjx78+++/VpckclOWhiMvLy9CQkJYsWJFiuUrVqygefPm133c/Pnz6d+/P1988QV33XVXVpcpksq///7L/fffz8WLF+nSpQtjx461uiQRl2Sz2Zg9ezbBwcHs3buXhx56iISEBKvLErkhy7vVRo4cyYwZM5g5cya7du1ixIgRREVFMWTIECCpS6xv377O9vPnz6dv37688847NG3alJiYGGJiYoiLi7NqFySPSUxMpHfv3uzfv5/y5cvz+eef4+Zm+VtJxGUVLlyYxYsXky9fPn7++WdGjRpldUkiN2T5J3rPnj157733GD9+PPXq1WPt2rUsXbqU4OBgAI4dO5bimkfTpk0jISGBJ598kpIlSzp/hg8fbtUuSF4RHQ2rVvHCE0+wdOlSfHx8+Pbbb284U1JEktStW5fZs2cDSRNp5s6d63xP6R5s4mosv86RFXSdI8mw0FAYNIhP7HaGXl00f/58HnroIUvLEslpXnrpJSZMmIC3hwerEhNpZgy4ucH06br0hdxUdn1/KxwpHMnNREdDcDA/2e3cDdiB12w2/i8qStP1RTLIbrdzX5cuLP75ZwoDvwPVIOmiqboHm9xEnrgIpEiOEBnJJrudB0kKRv2B0cboflEit8DNzY15w4fTGDgFdAaOgu7BJi5F4UjkJv5KTKQzcBZoB0wDbLpnmsgt86tThyU2G1WAQ0AX4LTuwSYuROFI5Ab27t1Lhz59OAU0Ab4DvBz3TNPpf5FbExRE0U8/ZZmbGyWAP4FOwcHEFShgdWUigMKRyHXt27ePdu3aERMTQ506dVj655/k1z3TRDLHgAGUP3SI5TNmULhgQTYeOECnTp10WRZxCRqQrQHZkoadO3fSvn17jh07RpUqVVi7du1Nr9ouIrcmIiKCdu3acerUKZo2bcqyZcsICAiwuixxQRqQLWKRrVu30qpVK44dO0atWrVYvXq1gpFIFqpXrx6//PILhQoV4o8//uDOO+/k6NGjVpcleZjCkUiyC9EtX76cNm3acPLkSRo2bMjq1aspWbKk1RWK5Hr169fn119/JTAwkD///JNmzZqxa9eupD/qYpGSzRSOJG8LDYXgYGjblo/KlqVrly7Ex8fTqlUrVq5cSZEiRayuUCTPqFevHmFhYVSuXJmoqCjuuOMOVj3/vPM9SnBw0ntWJItpzJHGHOVdVy/ueNluZwQw5eri/j16MO3zz/Hy8rKyOpE86+TJk9x9991s2LABd+BNYARgA10sMo/TmCORrBYZyX67nRb8LxhNAmY+8YSCkYiFihYtyqpVq+jToQOJwLPAI8AZ0MUiJVsoHEmetXDPHuoDm4FCwPfAi+7u2CpXtrYwEcHX15c5oaF8aLPhAXwJ1APW62KRkg0UjiTP+eeff+jZsycPPvEE8UBzIALopos7irgUW5kyPPXpp6x2cyMY2A+0NIYxn3zCpUuXrC5PcjGFI8kzjDF88cUX1KhRg6+++gp3d3fGjBnD6v37KauLO4q4pgEDaHHoENt++IE+99+P3Rhef/116taty6pVq6yuTnIpDcjWgOzcKzoaIiOhcmXC//mH4cOHs27dOgDq1KnDzJkzCQkJsbhIEcmIr7/+mqeeeorjx48D0Lt3b95+++2ka5Ele8/rDHDupAHZIrfj6hT9E23bMqhMGUJCQli3bh2+vr6MHz+eTZs2KRiJ5EAPPPAAu3fvZujQodhsNj7//HMqVarE+O7dOVu2rKb8S6bQmSOdOcp9oqM5VbYsk43hfeDs1cUP33svb3z4IWXKlLGyOhHJJJs2bWLo0KFs3rwZgBLAK8AAwENT/nMlnTkSuQWnT5/mlTFjKG8Mr5EUjEKAdcAXzzyjYCSSizRq1IgNGzbw5UsvUR6IAYYA1YG5iYkk7NljbYGSYykcSa4QHx/PhAkTKF++POPmziUeqAMsAjYBd7i7a/qvSC7k5uZGz0GD2G2z8T5QFNgL9AOqDxzI3LlzSUhIsLZIyXEUjiRHO3v2LG+88Qbly5fnpZde4vTp09SoUYOFQ4YQ7uZGd8CmKfoiuVtQEF6ffsowd3cOAJNsNorkz8/egwfp168f1atXV0iSDNGYI405ypHOnz/PJ598whtvvME///wDQNWqVXnllVfo0aMH7u7uSTNX9u5NOmOkYCSS+yV7z58tWJCPP/6Yt956i9jYWAAqVarESy+9RK9evZI+IyTHya7vb4UjhaMc5eLFi0x74w0mvv8+x//9F4CKFSsyduxYHn74YTw8PCyuUERcydmzZ1OFpGqVKjHukUd4YMAA3MqWtbhCyQiFoyykcJTzXLp0idDQUF4bM4ajp08DUA54uX9/+nz6qUKRiNyQIyS9+eqrnDp3DoC6wISnn+au99/HZrNZW6Cki2ariQB2u525c+dSpUoVnnzySY6ePk0ZYBqwB3j0s8/wiImxuEoRcXX58+fnxV69OHD+PK8ABYBtQLcPP6R5w4asXLnS2gLFpSgcictauXIlISEh9OvXj6ioKEoVKcJHQCQwCPAC3aFbRNIvMhJ/YxgLHABeAHyBP7ZupX379nTs2JHt27dbW6O4BIUjcTk7duzgrrvuon379kRERODv78+kSZPYGxbGk25ueCdvrCn6IpJelSuDW9LXXhHgDWCfmxtPP/oonp6erFixgnr16jFo0CBidEY6T1M4EpcRs3Urg7t1o06dOixduhQPDw+efvpp9u3bx4svvohv5cowfXpSIIKk/2qKvoikV1BQqs+QktOn88HMmezevZsePXpgt9v59NNPqVy5Mq+/+CIXli1LmgUneYoGZGtAtuUuXrzIu7168fq33zpv9XFfgwZM+vJLKleunPoBmqIvIrfjBp8hv//+OyNGjGDTpk0AlCHpukkPTZuG2+OPW1CsJKfZallI4cg1GGP4+uuveeHZZzl4+DAAjYHJQAvdF0lELGKPiuLLcuUYZQyHry5rAkxetIjm3btbWJlotprkalu3bqVVq1Y8+OCDHDx8mNLA50AY0AI00FpELOO2bx+PGMMe4DUgP7ABaPGf/9CzZ08OHDhgbYGS5RSOJOtFR8OqVRAdzbFjx3jsscdo2LAh69atw9fXl7EjRrDHZqMXyV6QGmgtIla5OnDbF/g/kmbIPm6z4ebmxldffUW1atV44YUXiIuLS2qf7DNOcgeFI8laoaEQHExc27a8XKYMlcuXZ9asWRhj6NWrF3v27OGVyZPx+/RTDbQWEddwzcDtEu7uTP/0U8LDw2nfvj2XL1/mrbfeolKlSkzp3ZuEsmWhbVsIDk76zJMcT2OONOYo60RHc6FsWaYYw+vAqauLG9erx/uffELTpk1TtddAaxFxGWl8JhljWLp0Kc899xy7d+8GoCrwMtATku7ZpvGSWUZjjiRHi4+P553XXqOSMTxHUjCqBnwN/DF5cupgBEkfJq1b60NFRFxDGp9JNpuNu+66iz///JOPhg2jCElX6+8F1AQ+T0wkYc8ea+qVTKNwJLfmOn3sR44cYfTo0ZQtW5bnpk7lKFAWmAlsB+53d8eW1vR8EZEcxNPTkyeff579NhsTgMIkhaQ+QNXHHuPtt9/m1KlTKR+ksUk5hrrV1K2WcaGhMGgQ2O3g5sblKVP4sVgxQkNDWbZsGXa7HYBq1arxfNOm9Jo7F2+7/X9jiQYMsHgHREQySWgoDB7MmcREPrLZeMfPj9izSVds8/Hx4eGHH6Zv3760jIzEfcgQ5+cm06frs/AW6DpHWSj5k/vvv/+yZMkSWrduTY0aNawuzfVFR0NwMLF2O78A3wFLgfhkTe68805GjhxJt27dcHNz01giEcndkn3GnS9cmC+++IKPP/6YiIgIZ5MSwANAV6AlkF9jk9Jt7dq17Nmzhx49euDm5qZwlFUc4SgyMpKmTZsSGxuLr68vq1evpnHjxlaXZ63oaIiMTJrKevVNGxsby99//82ePXv449tvWffDD+y85mElixSh78CBPPbYY1SpUiX76xYRcSHGGP744w9mzJjBooUL+ffMGeffPEm6qGSTBx+kwb33EhISQqVKlZIGczuk8VmcF3322Wf07dsXgPr167Ny5UoKFy6scJQVHOHo2Wef5Z133nEur127NhEREUlnO/KYs2fPsvett/j71Vf52xj+Bv6uUIHI06dT95tfVR3oBnR3c6PJgQO4lS2bnSWLiOQIl/fv55dKlVhkDL8AB9No4+3tTYUKFahUqRKVLl6k8i+/UMkYKttslJk2Dfc8eOuSf//9l8qVKxMbG+tcNmfOHPr166dwlBUc4ahy5cpERkYyZcoURo0aRXx8PIsWLaJ7brw8/NV/hSRWqMBfp0+zceNGdu7cya5du9i5cyeHDx++4cODgoKoXLky9erVo+WlS9wxdSrFNI5IRCR9ro5NIjGR/W5urOnbly1+fmzdupWIiAguXLhw3Yd6ARUrV6Zy9epUqVKFkJAQGjVqRIUKFbAdOZJrzzCNHj2aSZMmUaNGDTp37szkyZPp0aMHCxcuVDjKCo5wBODm5sbJkyd58803mTRpEk2aNOGPP/6wuMLMY4zhz3Hj+GH8eNYYwx/gvLnrtYoCVYDKV/9bBaj86adUevhh/Pz8UjbWOCIRkYy5zudmYmIihw8fJjIykr1LlrD3/feJJOnK3PuBy9dZXWE/P+44d44uQGebjXKffppr/qF68eJFgoKCiI2NZdGiRRQqVIjWrVtTtGhRTp48qXCUFZKHo9q1a/Pnn39y/PhxypYty+XLl9mwYUOOHntkjCEsLIz58+fz/aJFRB05kuLvBYAmLVtSp1EjqlevnvTj70/hevWSZlI4aMCgiEj2ujrpxfFZnAhEubkROXcukadPs2PHDjZv3sy2bdu4fDllbKoG9BwxgkeGDMnxYz8///xz+vTpQ5kyZThw4ABXrlwhf/78JCYmAmT9bHOTB8XFxRnAAKZ3797O5X369DGA6dOnj4XVZdDhw8b8+qsxhw+bw4cPm9dff91UqVLFuX+A8QVzD5iPwWwDkwDGrFqVel0zZhjj7m4MJP13xoxs3x0RkTwvHZ/FF5ctMxvAvAamJRj3ZJ/5gAkJCTGTJ082MTExSQ9I9l2REzRv3twA5tVXX3Uuq1GjhnP/4uLisnT7eT4cvfnmm87lGzZsMIDx8vIyx48ft7DCdJoxw1yw2cyXYDqCsdlszv3Kly+f6du3r/lh1ixz3mZLepM5ftzdr/8GOXw4KTjlkDeQiEiudLPP4sOHjXFzc36unwbzuc1murZta9zd3Z3fBe7u7ubuOnXMQpvNXICkx7j4P3y3bdtmAOPh4WGOHj3qXN6zZ89sC0d5b1rWNSolu/N748aNady4MZcvX2bGjBkWVsVNr6QasXw5Tw8cSCljeAj4maTutFZNmzJr1ixiYmKYM2cOd/fvj29GbuqqW3iIiFjvZp/F19wcN8DdnV6ffsqSlSs5duwYH330EY0bNyYxMZEf//yTHsZQEnjCbuePQYMw15uE4wJX8Z46dSoA3bt3p2TJks7lyb+vs1yWRi8XlfzMUXh4eIq/zZ071wAmKCjIXLlyJfM3np5TmzNm/O9fBFdTvt1uN+Hh4ebll182tWvXTnH6tAyYl8Dsu153mWO7OiMkIpK73OSzfeesWWYUmNLXdLtVKVPGTJgwwRw4cOB/jdP47rnhdrOgmy4uLs4UKFDAAGblypUp/jZjxoxsO3OU5wdknz592vn/AJcuXaJMmTL8888/fP3119x///23vJ3o6GhWrVrFnj17OHToEBd37YItW/AHigHFevSg6F13UbRoUYoWLUrhwoVxO36chDvvJM4YooB9wAYgrHhxYk6ccK7by8uL7pcv8xjQHnAHDaAWEZGUrg7wTrTbWQXMAb4FzidrUqFCBVo2aEDdb76hkjEEAfkAHzc3zq1YQZyvL3FxccTGxib9/PILsT/8wEkgASh4xx2UatOGevXq0aZNGwoVKnTL5b7zzjs899xzVK9enR07dmCz2Zx/W7VqFW3btgU0IDtLOM4cBQQEpPn3MWPGGMC0bt06/Su9mqITDh40c+fONU2bNk2R0jPjx9fX13Tv3t3Mnj3bxMbGagC1iIjc3DXfFfEffWRmzZplWrdubdzc3DL1e8rDw8N06dLFLF++3Njt9gydYbp8+bIJCgoygJmRxvfZ/v37deYoKznOHFWtWpXdu3en+vvhw4cpX748iYmJbPv5Z+p4eNz4AltXb8S6zW7ncWDT1cVubm40bNiQBg0aUN5ux2/6dABOAyeBf4CTjRpx0m7n5MmTSVcBNQaPc+fwA4JJuqN9fZuNZgsX0rBrV3x9fVNuW9cbEhGRm7nOd0V8fDzr16/n959+4u8PPmAvcBS4AFwE/AoWJKBQIQICAihcuDBFEhMpsmYNRYAiJN0K5TRwoEsX/jh0iJ07/3dzqTurVOGDyEjqGnPzm+1GR/PZxx/Td9IkAgMDOXToEN7e3imaXLx40fkdqDNHWcBx5ujOO++8bpsePXoYwHRxzPC6Xv/r4cPmvM1mXkw2ldIfzITnn//fFMqr7ZLPLLjhrDGdERIRkeyWnu+em3yX7d692wwbNsz4+vgYwLiBeQbMmZt855232Uzw1e/Q1++777olBgQEaCp/VnGEowfvvvu6bfasWWM8rx6ohTcIMyveestUTHZK8T4wR643MDojoUcDqEVEJLul57snHd9lh+bPNz2SfTcGg/kpre/Gq2Fr9NV2QWDOubldd/uVK1TQVP6sFvjjj0ldYmmokpjI81f/fwAQAZCYmHRaEjh69Ch9+/alw/PPsw8oDXwHfAOUcndPOnV5rQEDkgZMr1qV9N8bXeZdU+pFRCS7pee7Jx3fZWXvuIOv3Nz4iaQhIoeALkCfDz/k5MmT/2sYGcnXdjsTr/76HpDPbnd+16YQGkqJ/ftvabcyKk+POZoAjLneDK/oaK6ULUs7Y1hH0i03nrHZqPLee/zx99/MmjWL8+fPY7PZeKpNGyasXo2/bsQqIiKS5OrNds8mJvKyzcb7gN0YihYtyuDBg6levTq/L1/O1M8+wwBDgY8h7ZnXV2fd9bDb+ZqsH3OUp8PRT0BnSEq/rVunbhgayulBg7jv6hTIazVv3pzJkyfTpEkTDYwWERG5VrLvxo1HjzJw4EC2b9+eqtlgm42PjMHjeicYVq2Ctm35FBiEwlGWcISjOMD/ZtcGio4mcc8eFuzcybdr1hAbG0ulSpXo0aMHHTp0SHENBhEREbm+K1eusHDhQn788UeOHDlCcHAw/fv3p22VKjc+wXD1zFG83U4ACkdZwhmO3Nzwv9HUQhEREXENoaHEDxpEgN2ucJQVnOFo5078q1e3uhwRERFJh/hduwioUSPLw1Genq1G6dJWVyAiIiLplU3f23k7HImIiIhcQ+FIREREJBmFIxEREZFkFI5EREREknGJcDRlyhTKly+Pj48PISEhrFu37obt16xZQ0hICD4+PlSoUIGpU6dmU6UiIiKS21kejhYsWMAzzzzDmDFjCA8Pp2XLlnTp0oWoqKg02x84cICuXbvSsmVLwsPD+b//+z+GDRvGN998k82Vi4iISG5k+XWOmjRpQoMGDfjkk0+cy6pXr0737t2ZOHFiqvYvvvgi33//Pbt27XIuGzJkCNu2bSMsLCxd23Re5yiLr5MgIiIimSe7vr8tPXN0+fJltmzZQseOHVMs79ixI+vXr0/zMWFhYanad+rUic2bN3PlypUsq1VERETyBg8rN37y5EkSExMJDAxMsTwwMJCYmJg0HxMTE5Nm+4SEBE6ePEnJkiVTPebSpUtcunTJ+XtcXByQlEBFREQkZ3B8b2d1p5el4cjh2pu3GmNueEPXtNqntdxh4sSJjBs3LtXyMmXKZLRUERERsVhsbCwBAQFZtn5Lw1HRokVxd3dPdZboxIkTqc4OOZQoUSLN9h4eHhQpUiTNx4wePZqRI0c6fz99+jTBwcFERUVl6ZPrauLj4ylTpgyHDx/OU2OttN/a77xA+639zgvi4uIoW7YshQsXztLtWBqOvLy8CAkJYcWKFfznP/9xLl+xYgX33ntvmo9p1qwZP/zwQ4plP//8Mw0bNsTT0zPNx3h7e+Pt7Z1qeUBAQJ56UTn4+/trv/MQ7Xfeov3OW/Lqfru5Ze2Qacun8o8cOZIZM2Ywc+ZMdu3axYgRI4iKimLIkCFA0lmfvn37OtsPGTKEQ4cOMXLkSHbt2sXMmTMJDQ3lueees2oXREREJBexfMxRz549iY2NZfz48Rw7doxatWqxdOlSgoODATh27FiKax6VL1+epUuXMmLECD7++GNKlSrFBx98wP3332/VLoiIiEguYnk4Ahg6dChDhw5N82+zZ89OtaxVq1Zs3br1lrfn7e3N2LFj0+xqy82039rvvED7rf3OC7TfWbvfll8EUkRERMSVWD7mSERERMSVKByJiIiIJKNwJCIiIpKMwpGIiIhIMrk2HL322ms0b96cfPnyUbBgwXQ9xhjDK6+8QqlSpfD19aV169bs2LEjRZtLly7x9NNPU7RoUfz8/LjnnnuIjo7Ogj24Nf/++y99+vQhICCAgIAA+vTpw+nTp2/4GJvNlubPW2+95WzTunXrVH9/6KGHsnhv0u9W9rt///6p9qlp06Yp2uS2433lyhVefPFFateujZ+fH6VKlaJv374cPXo0RTtXO95TpkyhfPny+Pj4EBISwrp1627Yfs2aNYSEhODj40OFChWYOnVqqjbffPMNNWrUwNvbmxo1arBo0aKsKv+WZWS/v/32Wzp06ECxYsXw9/enWbNmLF++PEWb2bNnp/lev3jxYlbvSoZkZL9Xr16d5j7t3r07RbvcdrzT+vyy2WzUrFnT2cbVj/fatWvp1q0bpUqVwmaz8d133930Mdn23ja51Msvv2wmT55sRo4caQICAtL1mEmTJpkCBQqYb775xmzfvt307NnTlCxZ0sTHxzvbDBkyxJQuXdqsWLHCbN261bRp08bUrVvXJCQkZNGeZEznzp1NrVq1zPr168369etNrVq1zN13333Dxxw7dizFz8yZM43NZjP79u1ztmnVqpV5/PHHU7Q7ffp0Vu9Out3Kfvfr18907tw5xT7FxsamaJPbjvfp06dN+/btzYIFC8zu3btNWFiYadKkiQkJCUnRzpWO95dffmk8PT3Np59+anbu3GmGDx9u/Pz8zKFDh9Jsv3//fpMvXz4zfPhws3PnTvPpp58aT09P8/XXXzvbrF+/3ri7u5vXX3/d7Nq1y7z++uvGw8PD/PHHH9m1WzeV0f0ePny4eeONN8zGjRvN33//bUaPHm08PT3N1q1bnW1mzZpl/P39U73nXUlG93vVqlUGMHv27EmxT8nfo7nxeJ8+fTrF/h4+fNgULlzYjB071tnG1Y/30qVLzZgxY8w333xjALNo0aIbts/O93auDUcOs2bNSlc4stvtpkSJEmbSpEnOZRcvXjQBAQFm6tSpxpikF6Onp6f58ssvnW2OHDli3NzczLJlyzK99ozauXOnAVK8CMLCwgxgdu/ene713HvvvaZt27YplrVq1coMHz48s0rNVLe63/369TP33nvvdf+eV473xo0bDZDiQ9iVjnfjxo3NkCFDUiyrVq2aGTVqVJrtX3jhBVOtWrUUywYPHmyaNm3q/P3BBx80nTt3TtGmU6dO5qGHHsqkqm9fRvc7LTVq1DDjxo1z/p7ez0MrZXS/HeHo33//ve4688LxXrRokbHZbObgwYPOZTnheDukJxxl53s713arZdSBAweIiYmhY8eOzmXe3t60atWK9evXA7BlyxauXLmSok2pUqWoVauWs42VwsLCCAgIoEmTJs5lTZs2JSAgIN31HT9+nCVLljBgwIBUf5s3bx5FixalZs2aPPfcc5w5cybTar8dt7Pfq1evpnjx4lSpUoXHH3+cEydOOP+WF443JN3I0Wazpep+doXjffnyZbZs2ZLiGAB07NjxuvsYFhaWqn2nTp3YvHkzV65cuWEbVziucGv7fS273c6ZM2dS3aDz7NmzBAcHExQUxN133014eHim1X27bme/69evT8mSJWnXrh2rVq1K8be8cLxDQ0Np37698+4SDq58vDMqO9/bLnGFbFcQExMDQGBgYIrlgYGBHDp0yNnGy8uLQoUKpWrjeLyVYmJiKF68eKrlxYsXT3d9c+bMoUCBAtx3330plvfq1Yvy5ctTokQJ/vrrL0aPHs22bdtYsWJFptR+O251v7t06UKPHj0IDg7mwIEDvPTSS7Rt25YtW7bg7e2dJ473xYsXGTVqFI888kiKm1e6yvE+efIkiYmJab4vr7ePMTExabZPSEjg5MmTlCxZ8rptXOG4wq3t97Xeeecdzp07x4MPPuhcVq1aNWbPnk3t2rWJj4/n/fffp0WLFmzbto3KlStn6j7cilvZ75IlSzJ9+nRCQkK4dOkSn332Ge3atWP16tXceeedwPVfE7nleB87doyffvqJL774IsVyVz/eGZWd7+0cFY5eeeUVxo0bd8M2mzZtomHDhre8DZvNluJ3Y0yqZddKT5vbkd79htT1Q8bqmzlzJr169cLHxyfF8scff9z5/7Vq1aJy5co0bNiQrVu30qBBg3StO6Oyer979uzp/P9atWrRsGFDgoODWbJkSapwmJH13q7sOt5XrlzhoYcewm63M2XKlBR/s+J430hG35dptb92+a2817PbrdY4f/58XnnlFRYvXpwiQDdt2jTFpIMWLVrQoEEDPvzwQz744IPMK/w2ZWS/q1atStWqVZ2/N2vWjMOHD/P22287w1FG12mVW61x9uzZFCxYkO7du6dYnlOOd0Zk13s7R4Wjp5566qYzZsqVK3dL6y5RogSQlExLlizpXH7ixAlnCi1RogSXL1/m33//TXE24cSJEzRv3vyWtpse6d3vP//8k+PHj6f62z///JMqSadl3bp17NmzhwULFty0bYMGDfD09CQyMjLLviyza78dSpYsSXBwMJGRkUDuPt5XrlzhwQcf5MCBA/z6668pzhqlJTuOd1qKFi2Ku7t7qn/1JX9fXqtEiRJptvfw8KBIkSI3bJOR10tWupX9dliwYAEDBgxg4cKFtG/f/oZt3dzcaNSokfM1b7Xb2e/kmjZtyueff+78PTcfb2MMM2fOpE+fPnh5ed2wrasd74zK1vd2hkYo5UAZHZD9xhtvOJddunQpzQHZCxYscLY5evSoyw3Q3bBhg3PZH3/8ke4Buv369Us1a+l6tm/fbgCzZs2aW643s9zufjucPHnSeHt7mzlz5hhjcu/xvnz5sunevbupWbOmOXHiRLq2ZeXxbty4sXniiSdSLKtevfoNB2RXr149xbIhQ4akGrTZpUuXFG06d+7scgN0M7LfxhjzxRdfGB8fn5sObHWw2+2mYcOG5tFHH72dUjPVrez3te6//37Tpk0b5++59Xgb878B6du3b7/pNlzxeDuQzgHZ2fXezrXh6NChQyY8PNyMGzfO5M+f34SHh5vw8HBz5swZZ5uqVauab7/91vn7pEmTTEBAgPn222/N9u3bzcMPP5zmVP6goCDzyy+/mK1bt5q2bdu63NTuOnXqmLCwMBMWFmZq166damr3tfttjDFxcXEmX7585pNPPkm1zr1795px48aZTZs2mQMHDpglS5aYatWqmfr16+fY/T5z5ox59tlnzfr1682BAwfMqlWrTLNmzUzp0qVz9fG+cuWKueeee0xQUJCJiIhIMb330qVLxhjXO96OKc6hoaFm586d5plnnjF+fn7OWTmjRo0yffr0cbZ3TPcdMWKE2blzpwkNDU013ff333837u7uZtKkSWbXrl1m0qRJLju1O737/cUXXxgPDw/z8ccfX/cSDK+88opZtmyZ2bdvnwkPDzePPvqo8fDwSBGwrZbR/X733XfNokWLzN9//23++usvM2rUKAOYb775xtkmNx5vh969e5smTZqkuU5XP95nzpxxfjcDZvLkySY8PNw5c9bK93auDUf9+vUzQKqfVatWOdsAZtasWc7f7Xa7GTt2rClRooTx9vY2d955Z6o0fuHCBfPUU0+ZwoULG19fX3P33XebqKiobNqrm4uNjTW9evUyBQoUMAUKFDC9evVKNcX12v02xphp06YZX1/fNK9lExUVZe68805TuHBh4+XlZSpWrGiGDRuW6ppAVsrofp8/f9507NjRFCtWzHh6epqyZcuafv36pTqWue14HzhwIM33RfL3hise748//tgEBwcbLy8v06BBgxRnsPr162datWqVov3q1atN/fr1jZeXlylXrlyaoX/hwoWmatWqxtPT01SrVi3Fl6mryMh+t2rVKs3j2q9fP2ebZ555xpQtW9Z4eXmZYsWKmY4dO5r169dn4x6lT0b2+4033jAVK1Y0Pj4+plChQuaOO+4wS5YsSbXO3Ha8jUk6u+3r62umT5+e5vpc/Xg7znpd7zVr5XvbZszV0UwiIiIikntvHyIiIiJyKxSORERERJJROBIRERFJRuFIREREJBmFIxEREZFkFI5EREREklE4EhEREUlG4UhEREQkGYUjERERkWQUjkRERESSUTgSkVxl/Pjx1K5dGz8/PwIDA3niiSe4cuWK1WWJSA7iYXUBIiKZxRhDYmIi06ZNo3Tp0uzcuZO+fftSp04dnnjiCavLE5EcQjeeFZFc7ZFHHqFYsWK8//77VpciIjmEutVEJNc4dOgQTz31FLVq1aJQoULkz5+fr776iqCgIKtLE5EcROFIRHKFkydP0rhxY06ePMnkyZP57bffCAsLw93dnXr16lldnojkIBpzJCK5wtKlS0lISGD+/PnYbDYAPv74Yy5fvqxwJCIZonAkIrlC4cKFiY+P5/vvv6dGjRr88MMPTJw4kdKlS1OsWDGryxORHEQDskUkVzDG8MQTT/DFF1/g6+tL7969uXjxIocOHeLHH3+0ujwRyUEUjkRERESS0YBsERERkWQUjkRERESSUTgSERERSUbhSERERCQZhSMRERGRZBSORERERJJROBIRERFJRuFIREREJBmFIxEREZFkFI5EREREklE4EhEREUlG4UhEREQkmf8HrTXvFA8msKQAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvoElEQVR4nO3dd3gUVd/G8e9m0wMJHQKB0HsPIEU6UkVFURQV0NDsivoqDyqCBSsiCgLSHxGxAKKgGCQ0QTqIgEiHSA1CQg2QPe8fYfdJSIAkJJlN9v5c116ws2dnfrOz5c6cMzM2Y4xBRERERADwsroAEREREXeicCQiIiKSjMKRiIiISDIKRyIiIiLJKByJiIiIJKNwJCIiIpKMwpGIiIhIMgpHIiIiIskoHImIiIgko3AkucKhQ4d4/fXX2bRpU6rH+vTpQ758+TI974sXLzJw4EBCQ0Ox2+3UrVs384VmgbFjxzJ16tRU0/ft24fNZkvzsbzEZrPx+uuvW11Glnj99dex2WzZ/txPPvmEihUr4uvri81m49SpU/Tp04eyZcumaPf2228zd+7cTNVzPf/++y/3338/xYoVw2azcdddd2V4HmXLlqVPnz5ZXps7Wb9+PU888QS1atUif/78FC9enHbt2rF48eIbPvehhx7CZrNx++2350Cl4m11ASLpcejQIYYNG0bZsmWzPLx89tlnjB8/nk8++YSIiIibClpZYezYsRQpUiTVD0VoaCirVq2iQoUK1hQmGda3b186duyYrcvYtGkTTz/9NH379qV37954e3uTP39+Xn31VZ555pkUbd9++226d++eqfByPW+88QZz5sxh8uTJVKhQgUKFCmXp/POKmTNnsmbNGh599FHq1KnD2bNnGTduHG3btmXatGn06tUrzefNnz+fuXPnEhwcnMMVey6FI/F4f/75JwEBATz55JNWl3Jdfn5+NG7c2OoyJAPCwsIICwvL1mVs3boVgH79+tGoUSPX9JwM0X/++ScVKlTgwQcfzLFlZpVz584RGBiYI8v6v//7Pz744IMU0zp37kz9+vUZPnx4muEoLi6OAQMG8MYbb/Dxxx/nSJ2ibjWPdPz4cfr370/p0qXx8/OjaNGiNGvWjEWLFrnatGrVipo1a7Jq1SqaNm1KQEAAZcuWZcqUKUDSXzL169cnMDCQWrVq8fPPP6dazooVK2jbti358+cnMDCQpk2bMn/+/FTt/vzzT+68804KFiyIv78/devWZdq0aa7HlyxZQsOGDQF45JFHsNlsaXa97Nq1i86dO5MvXz5Kly7N888/T0JCwnVfC5vNxsSJEzl//rxrvlOnTr1uF9bVy3Z2f2zdupUHHniAkJAQihcvzqOPPkpcXFyK5zocDj755BPq1q1LQEAABQoUoHHjxsybNw9I6lrYunUrS5cuddXj7Bq5Vk3peZ2nTp2KzWYjOjqaxx57jCJFilC4cGHuvvtuDh06dN3X6HrKli3L7bffzpw5c6hduzb+/v6UL1+e0aNHp2p74MABHnroIYoVK4afnx/VqlXjww8/xOFwXHP++/btw9vbmxEjRqR6bNmyZdhsNr755hsgY9vhwoULDB48mHLlyuHr60upUqV44oknOHXqVJrr9+OPP1KvXj0CAgKoVq0aP/74I5D0ularVo2goCAaNWrEunXrUjw/ra6xWbNm0b59e0JDQ13ze/nllzl79uy1X+hraNWqFQ899BAAt9xyCzabzbXH8epuNZvNxtmzZ5k2bZrrvdWqVavrzv/ff//l8ccfp1SpUvj6+lK+fHmGDBni+lw535OLFi1i+/btrvkuWbLkmvO8dOkS//d//0eJEiUIDAzk1ltvZc2aNWm2PXLkCAMGDCAsLAxfX1/KlSvHsGHDuHz5cop2MTExdO/enfz581OgQAEefPBB1q5dm+rz4uyC37JlC+3btyd//vy0bdsWSOpef/PNN6latarre/GRRx7h+PHjqeqaNWsWTZo0ISgoiHz58tGhQwc2btx43dcSoFixYqmm2e12IiIiOHjwYJrPef755wkNDeXpp5++4fwlCxnxOB06dDBFixY1EyZMMEuWLDFz5841r732mvnqq69cbVq2bGkKFy5sqlSpYiZNmmQWLlxobr/9dgOYYcOGmVq1apmZM2eaBQsWmMaNGxs/Pz/zzz//uJ6/ZMkS4+PjYyIiIsysWbPM3LlzTfv27Y3NZkuxnL/++svkz5/fVKhQwUyfPt3Mnz/fPPDAAwYw7777rjHGmLi4ODNlyhQDmFdeecWsWrXKrFq1yhw8eNAYY0zv3r2Nr6+vqVatmvnggw/MokWLzGuvvWZsNpsZNmzYdV+LVatWmc6dO5uAgADXfI8dO2b27t1rADNlypRUzwHM0KFDXfeHDh1qAFOlShXz2muvmaioKDNy5Ejj5+dnHnnkkRTPffjhh43NZjN9+/Y133//vfnpp5/MW2+9ZT7++GNjjDEbNmww5cuXN/Xq1XPVs2HDBmOMSbOm9L7OztevfPny5qmnnjILFy40EydONAULFjStW7dOUaOzbVrrfrXw8HBTqlQpU6ZMGTN58mSzYMEC8+CDDxrAvP/++652x44dM6VKlTJFixY148aNMz///LN58sknDWAee+yx676+3bp1M2XKlDGXL19O0e7ee+81JUuWNJcuXcrQdnA4HKZDhw7G29vbvPrqq+aXX34xH3zwgQkKCjL16tUzFy5cSLF+YWFhpmbNmq73+y233GJ8fHzMa6+9Zpo1a2Zmz55t5syZYypXrmyKFy9uzp0753q+s6bk3njjDfPRRx+Z+fPnmyVLlphx48aZcuXKpdoOaT33alu3bjWvvPKKa3utWrXK7Nq1yxiT9LkIDw93tV21apUJCAgwnTt3dr23tm7des15nz9/3tSuXdsEBQWZDz74wPzyyy/m1VdfNd7e3qZz587GGGMuXLhgVq1aZerVq2fKly/vmm9cXNw159u7d29js9nMiy++aH755RczcuRIU6pUKRMcHGx69+7tanf48GFTunRpEx4ebsaPH28WLVpk3njjDePn52f69OnjanfmzBlTsWJFU6hQITNmzBizcOFC89xzz5ly5cqleh/37t3b+Pj4mLJly5oRI0aYX3/91SxcuNAkJiaajh07mqCgIDNs2DATFRVlJk6caEqVKmWqV6+eYpu+9dZbxmazmUcffdT8+OOPZvbs2aZJkyYmKCjouq/ntVy6dMlUrFjR1KtXL9VjUVFRxsfHx2zatMkYk/R+7NKlS4aXIRmncOSB8uXLZ5599tnrtmnZsqUBzLp161zTTpw4Yex2uwkICEgRhDZt2mQAM3r0aNe0xo0bm2LFipnTp0+7pl2+fNnUrFnThIWFGYfDYYwx5v777zd+fn7mwIEDKZbfqVMnExgYaE6dOmWMMWbt2rXX/MHu3bu3AczXX3+dYnrnzp1NlSpVbvBqJD0/KCgoxbTMhKP33nsvRbvHH3/c+Pv7u9Z12bJlBjBDhgy5bj01atQwLVu2TDU9rZrS+zo7A8/jjz+eYp7vvfeeAczhw4dd06ZNm2bsdruZNm3ades0JunL2mazub68nW677TYTHBxszp49a4wx5uWXXzaAWb16dYp2jz32mLHZbGbHjh2uaVe/vtHR0QYwc+bMcU37559/jLe3d4rwm97t8PPPP6fZbtasWQYwEyZMSLF+AQEBJiYmxjXN+X4PDQ11rZ8xxsydO9cAZt68ealquhaHw2EuXbpkli5dagCzefPmdD/Xyblt165dm2L61eHIGGOCgoJSBJDrGTduXJqfq3fffdcA5pdffnFNa9mypalRo8YN57l9+3YDmOeeey7F9BkzZhggRW0DBgww+fLlM/v370/R9oMPPjCAK4iMGTPGAOann35K0W7AgAFphiPATJ48OUXbmTNnGsB89913KaY7v3fGjh1rjDHmwIEDxtvb2zz11FMp2p0+fdqUKFHC3HfffTd8Da42ZMgQA5i5c+emmmfZsmXN4MGDXdMUjnKOutU8UKNGjZg6dSpvvvkmv//+O5cuXUqzXWhoKBEREa77hQoVolixYtStW5eSJUu6plerVg2A/fv3A3D27FlWr15N9+7dUwxuttvtPPzww8TExLBjxw4AFi9eTNu2bSldunSKZffp04dz586xatWqdK2TzWaja9euKabVrl3bVVNOuOOOO1It/8KFCxw7dgyAn376CYAnnngiS5aXkdf5ejUCKV6nXr16cfny5WsODr1ajRo1qFOnToppPXv2JD4+ng0bNgBJ27l69eopxsRA0nY2xlz3aJ1WrVpRp04dxowZ45o2btw4bDYb/fv3T9X+RtvBuayrB7zfe++9BAUF8euvv6aYXrduXUqVKuW673y/t2rVKsVYlas/B9eyZ88eevbsSYkSJbDb7fj4+NCyZUsAtm/fft3n5qTFixcTFBRE9+7dU0x3vm5Xv07pER0dDZBqbNJ9992Ht3fKIbA//vgjrVu3pmTJkly+fNl169SpEwBLly51/Zs/f/5UA98feOCBa9Zxzz33pFpWgQIF6Nq1a4pl1a1blxIlSri6CRcuXOj6bCRv5+/vT8uWLa/bnZiWiRMn8tZbb/H8889z5513pnjs5ZdfxsfHh9deey1D85SsoQHZHmjWrFm8+eabTJw4kVdffZV8+fLRrVs33nvvPUqUKOFql9YRJ76+vqmm+/r6AknjOABOnjyJMYbQ0NBUz3eGqhMnTrj+TU+7GwkMDMTf3z/FND8/P1dNOaFw4cKplg9w/vx5IGmsl91uT/Ea34yMvM7prTEz0lof57Tk2/nqw8qvV+fVnEdj7dixg/Lly/P555/TvXv3NJd9o3U8ceIE3t7eFC1aNEU7m81GiRIlUtVyrff7jT4HaTlz5gzNmzfH39+fN998k8qVKxMYGMjBgwe5++67b2o7ZLUTJ05QokSJVGOmihUrhre3d7o/m1fPE1K/Z7y9vVNtt6NHj/LDDz/g4+OT5rxiY2Nd8yxevHiqx9OaBknfFVcf9XX06FFOnTrl2obXWtbRo0cBXGMgr+bllf79DVOmTGHAgAH079+f999/P8Vja9asYezYscyePZsLFy643lMOh4PLly9z6tQpAgICXO9tyXoKRx6oSJEijBo1ilGjRnHgwAHmzZvHyy+/zLFjx9IcWJ1RBQsWxMvLi8OHD6d6zDn4t0iRIkDSD1l62uU0Z9C6ekB3Zn4QnIoWLUpiYiJHjhxJM9BkVEZe5+x05MiRa05z/uDd7Hbu2bMnL730EmPGjKFx48YcOXIk03vgChcuzOXLlzl+/HiKgGSM4ciRI9f84csKixcv5tChQyxZssS1twhINRDcHRQuXJjVq1djjEkRkI4dO8bly5cz9d5yvh+OHDmSYm/c5cuXU322ihQpQu3atXnrrbfSnJczWBcuXDjNAd1pvS+BNM8d5TxA4Vrff/nz53e1A/j2228JDw9Ps216TJkyxXXqBede0OS2bduGMYZu3bqleu7BgwcpWLAgH330Ec8++2yma5DrU7eahytTpgxPPvkkt912m6sL5GYFBQVxyy23MHv27BR/CTscDr744gvCwsKoXLkyAG3btnX9YCQ3ffp0AgMDXYeuZ8UejowoXrw4/v7+/PHHHymmf//995mep7M74LPPPrtuOz8/v3StZ0Ze5+y0detWNm/enGLal19+Sf78+alfvz6QtJ23bduW6j02ffp0bDYbrVu3vu4y/P396d+/P9OmTWPkyJHUrVuXZs2aZape59FJX3zxRYrp3333HWfPnnU9nh2cP4JX/8U/fvz4bFtmcul9b0HS63TmzJlUJ42cPn266/GMch4dN2PGjBTTv/7661RHoN1+++2uUwQ0aNAg1c0Zjlq2bMnp06dd3dZOX331Vbrruv322zlx4gSJiYlpLqtKlSoAdOjQAW9vb3bv3p1muwYNGtxwWVOnTqVv37489NBDTJw4Mc2w1rFjR6Kjo1PdihcvTuPGjYmOjk7V3SlZS3uOPExcXBytW7emZ8+eVK1alfz587N27Vp+/vln7r777ixbzogRI7jtttto3bo1L7zwAr6+vowdO5Y///yTmTNnur4Qhg4d6hpb8Nprr1GoUCFmzJjB/Pnzee+99wgJCQGSztkSEBDAjBkzqFatGvny5aNkyZIpxj5lJZvNxkMPPeQ6qV2dOnVYs2YNX375Zabn2bx5cx5++GHefPNNjh49yu23346fnx8bN24kMDCQp556CoBatWrx1VdfMWvWLMqXL4+/vz+1atVKc57pfZ0zYvr06Tz66KNMnjw5XeOOSpYsyR133MHrr79OaGgoX3zxBVFRUbz77ruuMTnPPfcc06dPp0uXLgwfPpzw8HDmz5/P2LFjeeyxx9IV4h5//HHee+891q9fz8SJEzO8Xk633XYbHTp04KWXXiI+Pp5mzZrxxx9/MHToUOrVq8fDDz+c6XnfSNOmTSlYsCADBw5k6NCh+Pj4MGPGjFThMrvUqlWLJUuW8MMPPxAaGkr+/PldP/xX69WrF2PGjKF3797s27ePWrVqsWLFCt5++206d+5Mu3btMrz8atWq8dBDDzFq1Ch8fHxo164df/75Jx988EGqrq7hw4cTFRVF06ZNefrpp6lSpQoXLlxg3759LFiwgHHjxhEWFkbv3r356KOPeOihh3jzzTepWLEiP/30EwsXLgTS19V1//33M2PGDDp37swzzzxDo0aN8PHxISYmhujoaO688066detG2bJlGT58OEOGDGHPnj107NiRggULcvToUdasWUNQUBDDhg275nK++eYbIiMjqVu3LgMGDEi1x6tevXr4+flRokSJNLuM/f39KVy48A1PwSBZwMrR4JLzLly4YAYOHGhq165tgoODTUBAgKlSpYoZOnRoiiNvrnX0ybWOlgDME088kWLa8uXLTZs2bUxQUJAJCAgwjRs3Nj/88EOq527ZssV07drVhISEGF9fX1OnTp00jxKbOXOmqVq1qvHx8UlxRFNaR5sZk/6jfa71/Li4ONO3b19TvHhxExQUZLp27Wr27dt3zaPVjh8/nuL5zqOI9u7d65qWmJhoPvroI1OzZk3j6+trQkJCTJMmTVK8Lvv27TPt27c3+fPnN4DriKNrHUGXntf5Wkc0OY8Ei46OTtU2vYfyd+nSxXz77bemRo0axtfX15QtW9aMHDkyVdv9+/ebnj17msKFCxsfHx9TpUoV8/7775vExMQU7a5+fZNr1aqVKVSoUIpDq50ysh3Onz9vXnrpJRMeHm58fHxMaGioeeyxx8zJkyfTXL+rpfV+d26f5KcwSOs9uHLlStOkSRMTGBhoihYtavr27Ws2bNiQ6jXPjqPVNm3aZJo1a2YCAwMNkOZRkcmdOHHCDBw40ISGhhpvb28THh5uBg8enOJ0B8ak/2g1Y4xJSEgwzz//vClWrJjx9/c3jRs3NqtWrTLh4eGpjqQ7fvy4efrpp025cuWMj4+PKVSokImIiDBDhgwxZ86ccbU7cOCAufvuu02+fPlM/vz5zT333GMWLFhgAPP999+neE3S+qwbk3RI/QcffGDq1Klj/P39Tb58+UzVqlXNgAEDzM6dO1O0nTt3rmndurUJDg42fn5+Jjw83HTv3t0sWrTouuvuPFruWrfk79G06Gi1nGMzxpgcSWEikueULVuWmjVruk6KmJ2OHTtGeHg4Tz31FO+99162L09yt7fffptXXnmFAwcOZPtZyiXvUbeaiLi1mJgY9uzZw/vvv4+Xl1eq64WJfPrppwBUrVqVS5cusXjxYkaPHs1DDz2kYCSZonAkIm5t4sSJDB8+nLJlyzJjxowURzmJQNLh+R999BH79u0jISGBMmXK8NJLL/HKK69YXZrkUupWExEREUnG8kP5ly1bRteuXSlZsiQ2my3VYaNpWbp0KREREa6LXI4bNy77CxURERGPYHk4Onv2LHXq1HH1Gd/I3r176dy5M82bN2fjxo385z//4emnn+a7777L5kpFRETEE7hVt5rNZmPOnDncdddd12zz0ksvMW/evBTXIBo4cCCbN29O93W4RERERK4l1w3IXrVqFe3bt08xrUOHDkyaNIlLly6leR2ehISEFJeBcDgc/PvvvxQuXDhTJ8kTERGRnGeM4fTp05QsWTJD17LLqFwXjo4cOZLqgoLFixfn8uXLxMbGpnnNqhEjRlz3rKUiIiKSexw8eDBbT9OQ68IRpL5woLNn8Fp7gQYPHsygQYNc9+Pi4ihTpgwHDx5Mdcp6EclF/vkHdu+GChX4NyCAsWPHsmDBAmJjYylbtix33303vXv3JuDff13t0KkARHKt+Ph4Spcu7boYcHbJdeGoRIkSqa62fOzYMby9vV1XfL6an59fqgs9AgQHByscieRWkyZB//7gcPCLzcYDgYH8e/as6+GjR4+yevVqpo4axbdHjlDdGPDyggkTIDLSwsJF5GZl95AYy49Wy6gmTZoQFRWVYtovv/xCgwYN0hxvJCJ5UEyMKxjNBTobw79nz1KralW+/PJL1qxZwyeffEJosWJsP3yYFsbwB4DDAQMGJD1fROQaLN9zdObMGXbt2uW6v3fvXjZt2kShQoUoU6YMgwcP5p9//mH69OlA0pFpn376KYMGDaJfv36sWrWKSZMmMXPmTKtWQURy2s6d4HCwHngASAR6ApM//hi/KwdsNGzYkB6lStHl7rtZC9wOrAOKJSbCrl2gy0qIyDVYvudo3bp11KtXj3r16gEwaNAg6tWrx2uvvQbA4cOHOXDggKt9uXLlWLBgAUuWLKFu3bq88cYbjB49mnvuuceS+kXEApUqcc5m4yHgAtAFmOblhV/16imaFW3YkF9sNioDB4FHAePlBRUr5njJIpJ7uNV5jnJKfHw8ISEhxMXFacyRSC717G238fGiRYQCf3p5UehaY4kmTWJr//7Udzi4CHzVvz89xo/P6XJFJAvk1O+35XuOREQyatu2bXyyeDEAU959l0L79197kHVkJDX272dInz4APDVnDqdOncqZQkUkV1I4EpFc56WXXsLhcNCtWzc6/N//3Xj8UFgYL48fT9WqVTl+/DgfffRRzhQqIrmSwpGI5CrLly/nxx9/xNvbm3feeSfdz/P19eXNN98E4KOPPiI2Nja7ShSRXE7hSERyFWcgevTRR6lcuXKGntutWzfq1avH6dOn+fDDD7OjPBHJAxSORCTX2LJlCwsWLMBms/Hiiy9m+PleXl4MHToUgHHjxnE22UkjRUScFI5EJNdw7u255557qJjJw/G7du1KhQoVOHXqlOv8aSIiySkciUiucOLECb766isAXnjhhUzPx8vLi2eeeQaAjz/+GIfDkSX1iUjeoXAkIrnCf//7XxISEqhbty6NGjW6qXn16dOH4OBgduzYwdKlS7OoQhHJKxSORMTtGWOYMGECAP3797/pi07mz5+f+++/H4ApU6bcdH0ikrcoHImI21u1ahXbt28nMDCQnj17Zsk8H3nkEQC+/fZb4uPjs2SeIpI3KByJiNv78ssvgaSB2CEhIVkyz1tuuYWqVaty/vx5vv766yyZp4jkDQpHIuLWLl++zDfffAPAAw88kGXztdlsrr1HzvAlIgIKRyLi5pYsWcKxY8coVKgQ7dq1y9J533fffQAsXbqUo0ePZum8RST3UjgSEbfmPHy/e/fu+Pj4ZOm8y5YtS8OGDXE4HMyePTtL5y0iuZfCkYi4rYsXL/Ldd98BWdullty9994L4Oq6ExFROBIRtxUVFcWpU6cIDQ2lefPm2bIMZzhaunQpx44dy5ZliEjuonAkIm5r3rx5ANx1113Y7fZsWYa61kTkagpHIuKWHA4HP/74IwB33HFHti6re/fuAMydOzdblyMiuYPCkYi4pQ0bNnDo0CHy5ctH69ats3VZXbt2BSA6OpozZ85k67JExP0pHImIW/rhhx8AaN++PX5+ftm6rKpVq1KuXDkuXrzIr7/+mq3LEhH3p3AkIm7JOd4ou7vUIOmEkF26dAFg/vz52b48EXFvCkci4nYOHjzIpk2bsNlsdO7cOUeWefvttwOwYMECjDE5skwRcU8KRyLidn6eOROAxvXrU7Ro0RxZZsuWLQkMDOSff/5h88SJEBOTI8sVEfejcCQi7mXSJKJeegmADhs2wKRJObJYf39/2lWuDMCP/ftDeHiOLVtE3IvCkYi4j5gYEvv1wzkk+jZjYMCAnNmLExND582bAYgCcDhybtki4lYUjkTEfezcyUZj+BcIBhoBJCbCrl05suy2V8YarQLO5uSyRcStKByJiPuoVIkomw2A1oA3gN0OFSvmyLIr2GyEA5eA5Tm5bBFxKwpHIuI+wsKIqlIFgNsgKZyMHw9hYTmybNvnn9P2Sjj71WbLuWWLiFtROBIRt3Hu3Dl+27MHgNumT4d9+yAyMucKiIyk3ejRACyqXj1nly0ibkPhSETcxrJly7h48SJlypSh0kMPWbLXps299wKwaetWYmNjc3z5ImI9hSMRcRuLFi0C4LbbbsN2pXsrpxUvXpyaNWsCSddaExHPo3AkIm7DeV2zdu3aWVqHc/nOsCYinkXhSETcwsmTJ9l85TxDrVq1srSWtm3bAugitCIeSuFIRNzCb7/9hjGGypUrU6JECUtradmyJXa7nd27d3PgwAFLaxGRnKdwJCJuYenSpUBSMLFa/vz5qV+/PgDLly+3uBoRyWkKRyLiFpYtWwZAixYtLK4kibMOZ10i4jkUjkTEcmfOnGH9+vWA+4Sj5s2bA9pzJOKJFI5ExHIrV64kMTGRsmXLUqZMGavLAeDWW28FYPv27Rw/ftziakQkJykciYjl3K1LDaBw4cLUqFEDgBUrVlhcjYjkJIUjEbGcOw3GTk5dayKeSeFIRCx1/vx51qxZA7jXniP4XzjSoGwRz6JwJCKWWrNmDRcvXiQ0NJQKFSpYXU4KznC0ceNGTp8+bXE1IpJTFI5ExFIrV64EkgZAW3U9tWspXbo0ZcuWxeFwsGrVKqvLEZEconAkIpZyho4mTZpYXEnadL4jEc+jcCQiljHGuPYcNW3a1OJq0tasWTMA7TkS8SAKRyJimZ07d3LixAn8/PyoV6+e1eWkyblHa82aNSQmJlpcjYjkBIUjEbGMc29MgwYN8PX1tbiatFWvXp38+fNz5swZ/vzzT6vLEZEcoHAkIpZx9y41ALvdTqNGjQB1rYl4CoUjEbGMuw/GdnLWp3Ak4hkUjkTEEnFxca5uKoUjEXEnCkciYonVq1djjKFcuXKUKFHC6nKuq3HjxsD/BpCLSN6mcCQilnDuhXHn8UZOhQoVokqVKgD8/vvvFlcjItlN4UhELOEcjO3uXWpO6loT8RwKRyKS4xwOh2sPTG7YcwQKRyKeROFIRHLctm3biI+PJygoiFq1alldTrroZJAinkPhSERy3Jo1awCIiIjA29vb4mrSRyeDFPEcCkcikuPWrVsHQMOGDS2uJP3sdju33HILoK41kbxO4UhEctzatWuB3BWO4H9da6tXr7a4EhHJTgpHIpKjEhIS2Lx5M5D7wpGzXme4E5G8SeFIRHLUli1buHTpEoUKFaJcuXJWl5MhznC0bds2Tp8+bXE1IpJdFI5EJEc5xxs1aNAAm81mcTUZU6JECUqXLo0xhg0bNlhdjohkE4UjEclRzi6pBg0aWFxJ5jRq1Aj43xF3IpL3KByJSI7KjUeqJadxRyJ5n1uEo7Fjx1KuXDn8/f2JiIhg+fLl120/Y8YM6tSpQ2BgIKGhoTzyyCO6GKRILnDu3Dm2bt0KaM+RiLgvy8PRrFmzePbZZxkyZAgbN26kefPmdOrUiQMHDqTZfsWKFfTq1YvIyEi2bt3KN998w9q1a+nbt28OVy4iGbVp0yYSExMpUaIEpUqVsrqcTImIiMBms7F//36OHTtmdTkikg0sD0cjR44kMjKSvn37Uq1aNUaNGkXp0qX57LPP0mz/+++/U7ZsWZ5++mnKlSvHrbfeyoABA1y76kXEfSUfb5TbBmM7BQcHU7VqVUBdayJ5laXh6OLFi6xfv5727dunmN6+fXvXFbuv1rRpU2JiYliwYAHGGI4ePcq3335Lly5drrmchIQE4uPjU9xEJOetW7YMgIZVqlhcyc1xjTv6+muIibG4GhHJapaGo9jYWBITEylevHiK6cWLF+fIkSNpPqdp06bMmDGDHj164OvrS4kSJShQoACffPLJNZczYsQIQkJCXLfSpUtn6XqISDpMmsTa2bMBaDByJEyaZHFBmdfo8mUA1kyfDuHhuXpdRCQ1y7vVgFS7140x19zlvm3bNp5++mlee+011q9fz88//8zevXsZOHDgNec/ePBg4uLiXLeDBw9maf0icgMxMcT368eOK3cbGAMDBuTOvS4xMTScOROAtYBxOHLvuohImiy9HHaRIkWw2+2p9hIdO3Ys1d4kpxEjRtCsWTNefPFFAGrXrk1QUBDNmzfnzTffJDQ0NNVz/Pz88PPzy/oVEJH02bmT9cYAUAYoBpCYCLt2QViYlZVl3M6d1DEGHyAW2AeUy63rIiJpsnTPka+vLxEREURFRaWYHhUVRdOmTdN8zrlz5/DySlm23W4HkvY4iYgbqlSJdVf2BrvObmS3Q8WKlpWUaZUq4eflRZ0rd9dC7l0XEUmT5d1qgwYNYuLEiUyePJnt27fz3HPPceDAAVc32eDBg+nVq5erfdeuXZk9ezafffYZe/bs4bfffuPpp5+mUaNGlCxZ0qrVEJHrCQtjbUQEAA0gKUyMH58797SEhcGECTS8EvbW2my5d11EJE2WdqsB9OjRgxMnTjB8+HAOHz5MzZo1WbBgAeHh4QAcPnw4xTmP+vTpw+nTp/n00095/vnnKVCgAG3atOHdd9+1ahVEJB3WXTlRa8MPPoAePXJ3mIiMpFFcHJ89/zxrGjWCyEirKxKRLGQzHtgXFR8fT0hICHFxcQQHB1tdjkieFxsbS9GiRQE4efIkBQoUsLagLLB161Zq1qxJUFAQcXFxru59Eck+OfX7bXm3mojkfc6TtFaqVClPBCOAqlWrki9fPs6ePcv27dutLkdEspDCkYhkO2c4yq3XU0uL3W4n4so4Kl1nTSRvUTgSkWznvMyG88zSeYXzIrS6jIhI3qJwJCLZLi/uOYL/rY+u7SiStygciUi2OnToEIcOHcLLy4v69etbXU6Wcu4J27x5MwkJCRZXIyJZReFIRLKVc69K9erVCQoKsriarFW2bFkKFy7MpUuX2LJli9XliEgWUTgSkWzlHI+T17rUIOm6kM710rgjkbxD4UhEspVzz1FeG4zt5FwvhSORvEPhSESyjTEmT+85Ag3KFsmLFI5EJNvs37+fEydO4OPjQ506dW78hFzIuedo69atnD171uJqRCQrKByJSLZx7jWqVasWfn5+FleTPUqWLEnJkiVxOBxs3LjR6nJEJAsoHIlItsnr442c1LUmkrcoHIlItsnr442cNChbJG9ROBKRbOFwOFi/fj2gPUcikrsoHIlItti5cyfx8fH4+/tTvXp1q8vJVs5w9Pfff3Pq1ClrixGRm6ZwJCLZwrkXpV69evj4+FhcTfYqUqQI5cqVA3DtLROR3EvhSESyhaeMN3JS15pI3qFwJCLZwlOOVHPSoGyRvEPhSESy3OXLl9mwYQPgOXuOFI5E8g6FIxHJctu3b+f8+fPky5ePKlWqWF1Ojqhfvz42m40DBw5w7Ngxq8sRkZugcCQiWc659yQiIgIvL8/4mgkODnYFQY07EsndPONbS0RylKeNN3LSoGyRvEHhSESynKcdqeakcUcieYPCkYhkqYSEBDZv3gx43p6j5OHIGGNxNSKSWQpHIpKltmzZwqVLlyhUqJDrxIieok6dOtjtdo4ePco///xjdTkikkkKRyKSpZzjbRo0aIDNZrO4mpwVGBhIzZo1AXWtieRmCkcikqU8dbyRk3O9FY5Eci+FIxHJUs5Q4GnjjZyc660j1kRyL4UjEcky586dY+vWrYDC0bp16zQoWySXUjgSkSyzceNGHA4HJUqUoGTJklaXY4maNWvi6+vLyZMn2bNnj9XliEgmKByJSJZJfvJHTxuM7eTr60vdunUBjTsSya0UjkQky3j6YGwnnQxSJHdTOBKRLOOplw25mi4jIpK7KRyJSJaIi4tjx44dgPYcOcPh+vXrSUxMtLgaEckohSMRyRIbNmwAIDw8nKJFi1pcjbWqVq1KUFAQZ8+e5a+//rK6HBHJIIUjEckSGm/0P3a7nfr16wPqWhPJjRSORCRLJL9siGhQtkhupnAkIllizZo1ADRq1MjiStyDLiMiknspHInITTt+/Dj79+8HICIiwuJq3INzz9HmzZu5ePGixdWISEYoHInITXPuHalSpQohISEWV+MeKlSoQIECBUhISODPP/+0uhwRyQCFIxG5aZ5+sdm02Gw2ne9IJJdSOBKRm7Z2+XIAGlaqZHEl7sU1KPv77yEmxuJqRCS9FI5E5KaYiRNZ++uvADR8/XWYNMnagtxIg1OnAFi7YAGEh+u1EcklbMYYY3UROS0+Pp6QkBDi4uIIDg62uhyR3CsmhgNlyhBuDN5APBBgt8O+fRAWZnFxFouJ4WCZMpQxBjtwGr02Ijcrp36/tedIRDJv507WXvn7qhYQAJCYCLt2WVmVe9i5kzBjKA4kAptAr41ILqFwJCKZV6kSa6781zUU226HihUtKsiNVKqEzcsL5ykx14JeG5FcQuFIRDIvLIy1VasCV8KR3Q7jx6vbCJJegwkTaGizAbDOZtNrI5JLeFtdgIjkXg6Hg/WHDgHQ8PPPoWNH/fgnFxlJA29v6NOHtRUqQGSk1RWJSDooHIlIpv3999/Ex8cTEBBAjT59wFtfKVdr2KkTADt27yY+Pl4HgYjkAupWE5FMc578sX79+ngrGKWpWLFilClTBmMMGzZssLocEUkHhSMRyTSdGTt9dBFakdxF4UhEMk3hKH2cr48uIyKSOygciUimXLp0iY0bNwIKRzeiPUciuYvCkYhkypYtW0hISKBAgQJU1Ll7rssZjvbu3UtsbKzF1YjIjSgciUimJO9Ss105l4+krUCBAlS6clHe9evXW1yNiNyIwpGIZIrGG2WMutZEcg+FIxHJFIWjjNGgbJHcQ+FIRDLs3LlzbN26FVA4Si/tORLJPRSORCTD1q9fT2JiIiVLlqRUqVJWl5Mr1K9fHy8vLw4dOsShK5dcERH3pHAkIhn2+++/A9C4cWOLK8k9goKCqF69OqCuNRF3p3AkIhmmcJQ56loTyR0UjkQkwxSOMsc5PkvhSMS9KRyJSIbExMRw6NAh7HY7ERERVpeTqyQ/Ys0YY3E1InItbhGOxo4dS7ly5fD39yciIoLly5dft31CQgJDhgwhPDwcPz8/KlSowOTJk3OoWhHP5txrVKdOHQIDAy2uJnepXbs2Pj4+nDhxgn379lldjohcg+XhaNasWTz77LMMGTKEjRs30rx5czp16sSBAweu+Zz77ruPX3/9lUmTJrFjxw5mzpxJ1apVc7BqEc+lLrXM8/Pzo3bt2oC61kTcmeXhaOTIkURGRtK3b1+qVavGqFGjKF26NJ999lma7X/++WeWLl3KggULaNeuHWXLlqVRo0Y0bdo0hysX8UwKRzenUaNGAKxevdriSkTkWiwNRxcvXmT9+vW0b98+xfT27duzcuXKNJ8zb948GjRowHvvvUepUqWoXLkyL7zwAufPn7/mchISEoiPj09xE5GMc35mQeEos5o0aQJwze84EbGet5ULj42NJTExkeLFi6eYXrx4cY4cOZLmc/bs2cOKFSvw9/dnzpw5xMbG8vjjj/Pvv/9ec9zRiBEjGDZsWJbXL+Jp/vjjDy5cuEChQoWoWLGi1eXkSs693Bs2bODChQv4+/tbXJGIXM3ybjUg1RW9jTHXvMq3w+HAZrMxY8YMGjVqROfOnRk5ciRTp0695t6jwYMHExcX57odPHgwy9dBxBMk71K71mdUrq98+fIULVqUixcvsmHDBqvLEZE0WBqOihQpgt1uT7WX6NixY6n2JjmFhoZSqlQpQkJCXNOqVauGMYaYmJg0n+Pn50dwcHCKm4hknMYb3Tybzebae7Rq1SqLqxGRtFgajnx9fYmIiCAqKirF9KioqGsOsG7WrBmHDh3izJkzrml///03Xl5ehIWFZWu9Ip5O4ShrOMcdKRyJuCfLu9UGDRrExIkTmTx5Mtu3b+e5557jwIEDDBw4EEjqEuvVq5erfc+ePSlcuDCPPPII27ZtY9myZbz44os8+uijBAQEWLUaInne8ePH2b17NzabzXXElWRO8kHZOhmkiPuxdEA2QI8ePThx4gTDhw/n8OHD1KxZkwULFhAeHg7A4cOHU5zzKF++fERFRfHUU0/RoEEDChcuzH333cebb75p1SqIeATnoefVqlVL0a0tGdegQQO8vb1d32/O7zsRcQ+WhyOAxx9/nMcffzzNx6ZOnZpqWtWqVVN1xYlI9lKXWtYJDAykbt26rFu3jlWrVikcibgZy7vVRCR3+O233wCFo6ziHFep8x2JuB+FIxG5oUuXLrm61W699VaLq8kbNChbxH0pHInIDW3cuJHz589TuHBhXccwizjD0aZNmzh37pzF1YhIcgpHInJDK1asAJJOpaGTP2aNMmXKULJkSS5fvsy6deusLkdEklE4EpEbSh6OJGvYbDZ1rYm4KYUjEbkuY4xrMLbGG2UtDcoWcU8KRyJyXbt27eLYsWP4+fkRERFhdTl5ik4GKeKeFI5E5LqcXWoNGzbEz8/P4mryloiICPz9/YmNjWXHjh1WlyMiVygcich1qUst+/j6+rrOG7Vs2TKLqxERJ4UjEbkuDcbOXi1atAAUjkTcicKRiFzT8ePHXd09zsHDkrWc4Wj58uUWVyIiTgpHInJNK+fNA6BG5coUKlTI4mrypsaNG+Pt7c2BAwfYP3MmxMRYXZKIx1M4EpG0TZrEir59AWj2998waZLFBeVNQUFBRJQpA8Dynj0hPFyvtYjFFI5EJLWYGOjfnxVX7t4KMGCA9mpkh5gYmu/ZA8AyAIdDr7WIxRSORCS1nTs573Cw/srdWwESE2HXLguLyqN27qTFlf+6Rh3ptRaxlMKRiKRWqRKrbDYuAaWAsgB2O1SsaGlZeVKlSjS7cr26v4BjoNdaxGIKRyKSWlgYS7p0AaAVYLPbYfx4CAuztKw8KSyMQp9/Tq0rd1d4eem1FrGYwpGIpGlJXBwArV54Afbtg8hIawvKyyIjadG7NwDLHnlEr7WIxRSORCSVc+fOsXr1agBaDRigvRg5oHmnTgAs27DB4kpEROFIRFL5/fffuXjxIqVKlaJChQpWl+MRmjdvDsDmzZuJu7LXTkSsoXAkIqksWbIEgFatWmG7MlhYslfJkiWpUKECDofDdT07EbGGwpGIpJI8HEnOadmyJfC/119ErKFwJCIppBhvpHCUo9q2bQvA4sWLLa5ExLMpHIlIChpvZJ3WrVsDsGHDBv7991+LqxHxXApHIpKCxhtZJzQ0lGrVqmGMYenSpVaXI+KxFI5EJAWNN7JWmzZtAHWtiVjppsLRsWPHOHLkSFbVIiIW03gj6znHHf36668WVyLiuTIVjv744w9q1KhBaGgopUqVolSpUrzyyiucPXs2q+sTkRy0fPlyLl68SFhYmMYbWaRly5bYbDa2b9/O4cOHrS5HxCNlKhxFRkZSvHhxVqxYwcaNG3nzzTf56aefaNCgASdPnszqGkUkh0RFRQFw2223abyRRQoVKkS9evUAiI6OtrgaEc+UqXC0bds2xo4dS5MmTahduzaPPPII69ato0aNGjz11FNZXaOI5JDk4Uiso641EWtlKhyltYfIZrPx9ttv8/3332dJYSKSs44ePcoff/wB/O/HWayhQdki1vJOb8MuXbpQp04d6taty8CBA3nuuef4/vvvKV68uKtNXFwcBQsWzJZCRSR7LVq0CIC6detSrFgxi6vxbLfeeive3t7s27ePvXv3Uq5cOatLEvEo6Q5HtWrVYsOGDUyZMoWjR48CUL58ee677z7q1q1LYmIiU6ZM4aOPPsq2YkUk+6hLzX3ky5ePW265hd9++42oqCj69+9vdUkiHsVmjDEZfdLRo0fZuHEjmzZtct127dqF3W6nSpUqrl3z7io+Pp6QkBDi4uIIDg62uhwRyxljCAsL49ChQ/zyyy8KSG7gjTfe4LXXXuPuu+/mu+++s7ocEbeQU7/fmQpHaTl//jybN29m8+bNDBgwICtmmW0UjkRS2r59O9WrV8fPz4+TJ08SEBBgdUkeb+3atTRq1Ijg4GBiY2Px8fGxuiQRy+XU73eWnSE7ICCAxo0bu30wEpHUnF1qzZs3VzByE/Xr16dw4cLEx8fz+++/W12OiEfR5UNExBWO2rVrZ3El4mS322nfvj0ACxcutLgaEc+icCTi4S5evOi6nprGGrmXjh07AvDzzz9bXImIZ1E4EvFwK1as4MyZMxQrVoy6detaXY4k49xztH79eo4dO2ZxNSKeQ+FIxMMtWLAAgE6dOuHlpa8Ed1KiRAlXYHV2fYpI9tM3oYiHmz9/PgCdO3e2uBJJi7rWRHKewpGIB9uzZw9//fVXisG/4l6c4WjhwoU4HA6LqxHxDApHIh7M2aXWrFkzChQoYG0xkqYmTZqQL18+jh8/zsaNG60uR8QjKByJeDBnOOrSpYvFlci1+Pr6uk6x4OwCFZHspXAk4qHOnTtHdHQ0oPFG7q5r164AzJs3z+JKRDyDwpGIh4qOjubChQuUKVOGGjVqWF2OXEeXLl2w2WysX7+ef/75x+pyRPI8hSMRD5X8KDWbzWZxNXI9xYsX55ZbbgHgxx9/tLgakbxP4UjEAxljNN4ol7njjjsAda2J5ASFIxEP9EdUFPv378ffz4/WrVtbXY6kg3Pc0a+//srZBQsgJsbiikTyLoUjEU8zaRJzOnQAoENCAkFffWVxQZIeNWrUoFyRIiQkJBDVpQuEh8OkSVaXJZInKRyJeJKYGOjfnzlX7t4FMGCA9kLkArZ//qFrbCwAPwA4HNp2ItlE4UjEk+zcyR6Hgz8AO9AVIDERdu2yti65sZ07uePKf38AEkHbTiSbKByJeJJKlZhz5ci0FkBhALsdKla0sipJj0qVaG6zEQwcB1aDtp1INlE4EvEkYWHMvfJj2g2SflzHj4ewMEvLknQIC8P388/pciXczrbZtO1EsonCkYgHOXr0KL9d6Ya5a9Ys2LcPIiOtLUrSLzKS7uPHA/BtqVKYRx+1uCCRvEnhSMSDzJs3D2MMDRo0oPR992mvQy7U8cEHCQwMZH9MDOvXr7e6HJE8SeFIxIPMmZN0nFq3bt0srkQyKzAw0HXizm+//dbiakTyJoUjEQ9x6tQpfv31VwDuuusua4uRm3LvvfcCSeHIGGNxNSJ5j8KRiIeYO3cuFy9epEaNGlSvXt3qcuQmdOrUiYCAAHbv3s3mzZutLkckz1E4EvEQs2bNAqBHjx4WVyI3K1++fHTq1AlQ15pIdlA4EvEAsbGxREVFAQpHeUX37t0B+Oabb9S1JpLFFI5EPMDs2bNJTEykXr16VK5c2epyJAvcfvvt+Pn58ffff/Pnn39aXY5InqJwJOIBvrpycdn777/f4kokq+TPn9/Vtfbll19aXI1I3uIW4Wjs2LGUK1cOf39/IiIiWL58ebqe99tvv+Ht7U3dunWzt0CRXOzw4cMsWbIEgPvuu8/aYiRL9ezZE0gKRw6Hw+JqRPIOy8PRrFmzePbZZxkyZAgbN26kefPmdOrUiQMHDlz3eXFxcfTq1Yu2bdvmUKUiuZPzcO/GjRtTtmxZq8uRLHT77beTP39+Dhw4wG+//WZ1OSJ5huXhaOTIkURGRtK3b1+qVavGqFGjKF26NJ999tl1nzdgwAB69uxJkyZNcqhSkdxJXWp5V0BAAPfccw8AM2bMsLgakbzD0nB08eJF1q9fT/v27VNMb9++PStXrrzm86ZMmcLu3bsZOnRoupaTkJBAfHx8ipuIJ9izZw8rV67EZrO5ThwoecuDDz4IJB21dvHiRYurEckbLA1HsbGxJCYmUrx48RTTixcvzpEjR9J8zs6dO3n55ZeZMWMG3t7e6VrOiBEjCAkJcd1Kly5907WL5Ab//e9/AWjXrh0lS5a0uBrJDq1btyY0NJR///2Xn3/+2epyRPIEy7vVAGw2W4r7xphU0wASExPp2bMnw4YNy9DhyIMHDyYuLs51O3jw4E3XLOLujDFMnz4dgN69e1tcjWQXu93u6jL94osvLK5GJG+wNBwVKVIEu92eai/RsWPHUu1NAjh9+jTr1q3jySefxNvbG29vb4YPH87mzZvx9vZm8eLFaS7Hz8+P4ODgFDeRvG7FihXs2bOHfPny6UKzeZyza+2HH37QsAGRLGBpOPL19SUiIsJ15l6nqKgomjZtmqp9cHAwW7ZsYdOmTa7bwIEDqVKlCps2beKWW27JqdJF3N60adOApIuUBgYGWlyNZKf69etTtWpVLly4wDfffGN1OSK5nuXdaoMGDWLixIlMnjyZ7du389xzz3HgwAEGDhwIJHWJ9erVCwAvLy9q1qyZ4lasWDH8/f2pWbMmQUFBVq6KiNs4f/48X3/9NaAuNU9gs9no06cPAJMnT7a2GJE8wPJw1KNHD0aNGsXw4cOpW7cuy5YtY8GCBYSHhwNJJ7C70TmPRCSluXPncvr0acqWLUvz5s2tLkdyQK9evbDb7axcuZLt27dbXY5IrmYzHnjFwvj4eEJCQoiLi9P4I8mTOnbsyMKFC3n11VcZPny41eVIDrnjjjv44YcfePHFF3nvvfesLkcky+XU77fle45EJGsdOHDANY7P2SUtnuHRRx8FYPr06Vy6dMniakRyL4UjkTxm8uTJOBwOWrduTcWKFa0uR3JQly5dKFasGEePHuWnn36yuhyRXEvhSCQPuXz5MpMmTQKgf//+FlcjOc3Hx8e1t9D5PhCRjFM4EslDfv75Z2JiYihcuLDObeShHnnkEQDmz5/P4cOHLa5GJHdSOBLJQyZ8/DEAve++Gz8/P4urEStUr16dJk2akJiYyORXXoGYGKtLEsl1FI5E8oiY999n/qJFAPSbOBHUreKxHq9eHYDxkydzuUwZvRdEMkiH8utQfskLYmJ4o0wZXjOGFsBSALsd9u2DsDBra5OcFRPDhTJlKG0MscBc4E69FySP0KH8IpJul//6i8+v/J3jGoadmAi7dllWk1hk5078jSHyyt2xoPeCSAYpHInkAfP27uUgUAS4xznRbgcdyu95KlUCLy8GADbgF2Cnl5feCyIZoHAkkgd88uWXAPSz2fCHpGA0fry6UTxRWBhMmEA5u53OVyaNa9tW7wWRDNCYI405klzujz/+oE6dOtjtdvauXEnpc+eS9hLox9CzxcSw4Isv6DJ4MAULFiQmJobAwECrqxK5KRpzJCLp8umnnwLQrVs3SjdqBK1aKRgJhIXR4cUXKVeuHCdPnmTWrFlWVySSaygcieRi//77L1988QUATz/9tMXViLux2+0MHDgQgNGjR+OBHQUimaJwJJKLTZo0ifPnz1OnTh1uvfVWq8sRNxQZGUlAQACbNm1i6dKlVpcjkisoHInkUomJiYwZMwaAp556CpvNZnFF4o4KFy5Mnz59ABg5cqS1xYjkEgpHIrnUvHnz2L9/P4UKFaJnz55WlyNu7NlnnwXghx9+4O+//7a2GJFcQOFIJJf64IMPABgwYAABAQEWVyPurHLlynTt2hWAUaNGWVuMSC6gcCSSC/3222+sXLkSX19fnnrqKavLkVxg0KBBAEydOpUTJ05YXI2Ie1M4EsmF3n//fQAefvhhQkNDLa5GcoOWLVtSr149zp8/z/jx460uR8StKRyJ5DJ//fUX8+bNA+CFF16wuBrJLWw2m2vv0SeffEJCQoLFFYm4L4UjkVzmww8/xBjDHXfcQdWqVa0uR3KR++67j5IlS3LkyBHX+bFEJDWFI5Fc5MiRI0yfPh2AF1980eJqJLfx9fXl+eefB+Cdd94hMTHR4opE3JPCkUgu8sknn3Dx4kWaNGlCs2bNrC5HcqH+/ftTqFAhdu3axTfffGN1OSJuSeFIJJeIi4tznfTxxRdf1EkfJVPy5cvHM888A8Dbb7+tS4qIpEHhSCSX+PTTT4mLi6NatWrceeedVpcjudiTTz5Jvnz52LJlC/Pnz7e6HBG3o3AkkgucOXOGjz76CIBXXnkFLy99dCXzChUqxGOPPQbAW2+9pb1HIlfRN6xILvDZZ59x4sQJKlWqRI8ePawuR/KA5557Dj8/P37//XddkFbkKgpHIm7u3M6dfDBiBAD/+c9/sNvtFlckeUFoaCiPPvooAG+/8ALExFhckYj7UDgScWeTJvF5lSocO3mSssCDOnGfZKH/Cw/HDkStX8/vZcrApElWlyTiFmzGAzub4+PjCQkJIS4ujuDgYKvLEUlbTAwXypShgjEcAsYD/e122LcPwsIsLk5yvZgYCA/nUYeDKUB7YKHeX+Lmcur3W3uORNzVzp1MuRKMwoDeAImJsGuXtXVJ3rBzJzgcvAJ4A78AK/T+EgEUjkTc1oXSpRlx5f8vAX4AdjtUrGhdUZJ3VKoEXl6UBx65Mmko6P0lgsKRiNsaP38+B4FSQF9ICkbjx6vLQ7JGWBhMmAB2O68APsBiYIn2HIkoHIm4ozNnzvD2228D8No77+AfHZ00FiQy0trCJG+JjIR9+ygTHU2/Xr0AeO2113TeI/F4GpCtAdniht5++22GDBlChQoV2L59Oz4+PlaXJHncP//8Q4UKFUhISCAqKop27dpZXZJIKhqQLeKhTp06xfvvvw/AsGHDFIwkR5QqVYqBAwcC8Oqrr2rvkXg0hSMRN/PBBx9w6tQpatSowf333291OeJBXn75ZQICAvj999/58ccfrS5HxDIKRyJu5NixY4waNQqAN998U2fDlhxVokQJnnnmGSApKF2+fNniikSsoXAk4kZGjBjB2bNnadiwIXfeeafV5YgHeumllyhUqBDbtm1j2rRpVpcjYgmFIxE3sWfPHsaMGQMk7TWy2WwWVySeqECBAgwZMgRIOnLt3LlzFlckkvMUjkTcxODBg7l06RLt27enffv2VpcjHuyJJ54gPDycQ4cOMXr0aKvLEclxCkcibmDVqlV8/fXX2Gw215FqIlbx8/PjjTfeAOCdd97hxIkTFlckkrMUjkQsZozhhRdeAOCRRx6hdu3aFlckAg8++CB16tQhLi6Ot956y+pyRHKUwpGIxWbPns3KlSsJDAxk+PDhVpcjAoCXlxfvvvsuAGPGjGH37t0WVySScxSORCx08eJFXnrpJQBeeOEFSpUqZXFFIv/Tvn17brvtNi5evOjauyniCRSORCw0duxYdu/eTYkSJXjxxRetLkckBZvNxkcffYTdbmfu3LksWrTI6pJEcoTCkYhFjm/ezLBXXwVg+PDh5MuXz+KKRFKrUaMGjz/+OADP9uvH5X37rC1IJAcoHIlYYdIk/lO3LqfOnKEe8KjV9Yhcx7CKFSkMbN23j/Hly8OkSVaXJJKtbMYDry6YU1f1FUlTTAxrypShsTEYYAXQzG6HffsgLMzi4kSuEhMD4eF85nDwOFAQ2OnlReH9+/V+lRyXU7/f2nMkksMcO3bw5JVg9DDQDCAxEXbtsrYwkbTs3AkOB/2AWsBJ4HWHQ+9XydMUjkRy2NSNG1kL5AfedU6026FiReuKErmWSpXAywtv4OMrk8YCGy9csLAokeylcCSSg06ePMnL770HwFCbjVBICkbjx6uLQtxTWBhMmAB2O62BHjYbDmDAa6+RmJhodXUi2ULhSCQHvfTSSxw/fpyqVavy1K5dEB2dNNYoMtLq0kSuLTIy6X0aHc1Ha9cSHBzM2rVrGTdunNWViWQLDcjWgGzJIcuWLaNly5YALF26lBYtWlhckUjmjB07lieeeILg4GC2b99OyZIlrS5JPIQGZIvkIRcuXKB///4A9OvXT8FIcrUBAwbQqFEj4uPjee6556wuRyTLKRyJ5IARI0awY8cOSpQowXtXxhyJ5FZ2u53x48djt9v5+uuvWbBggdUliWQphSORbLZ161ZGjBgBwCeffEKBAgWsLUgkC9StW5dnn30WgP79+3Pq1ClL6xHJSgpHItno8uXLREZGcunSJbp27co999xjdUkiWWb48OFUrFiRf/75h0GDBlldjkiWUTgSyUbvvvsuq1evJiQkhDFjxmCz2awuSSTLBAYGMnXqVGw2G1OmTGH+/PlWlySSJRSORLLJxo0bef311wH49NNPKV26tLUFiWSDZs2aufYa9evXj5MnT1pckcjNUzgSyWoxMVxYuJCH77+fy5cvc8899/Dggw9aXZVItnnjjTeoUqUKhw8f5umnn066Hlt0dNK/IrmQwpFIVpo0CcLDebVjR7b+/TfFg4P57LPP1J0meVpAQABTp07Fy8uLL774gpllykCbNhAenvSZEMllFI5EskpMDPTvz68OBx9emfT5mTMUTUiwtCyRnNC4cWNeefppAAYYwx4AhwMGDNAeJMl13CIcjR07lnLlyuHv709ERATLly+/ZtvZs2dz2223UbRoUYKDg2nSpAkLFy7MwWpFrmHnTo44HDwIGKAf0FVXLxcP8mqXLtwKnAYeAC4BJCbqMyC5juXhaNasWTz77LMMGTKEjRs30rx5czp16sSBAwfSbL9s2TJuu+02FixYwPr162ndujVdu3Zl48aNOVy5SEqJ5cvTEzgK1OLKFcztdqhY0dK6RHKKd9WqzLDZKAisAV4BfQYkV7L82mq33HIL9evX57PPPnNNq1atGnfddZfrxHk3UqNGDXr06MFrr72Wrva6tppkh6FDhzJ8+HCCgPVAFbsdxo/XRWXFs0yaxJz+/bnb4QBgzhNPcNenn1pclOQVHnFttYsXL7J+/Xrat2+fYnr79u1ZuXJluubhcDg4ffo0hQoVumabhIQE4uPjU9xEstL8+fN54403ABg/ejRVoqOTrmKuYCSeJjKSbvv388yVE572mj6dv/76y+KiRDLG0nAUGxtLYmIixYsXTzG9ePHiHDlyJF3z+PDDDzl79iz33XffNduMGDGCkJAQ103nm5GstH37dh544AGMMQwYMIAHn3oKWrWCsDCrSxOxRlgY78+cScuWLTl9+jR33XWX/iiVXMXyMUdAqsOcjTHpOvR55syZvP7668yaNYtixYpds93gwYOJi4tz3Q4ePHjTNYsA/Pvvv9xxxx2cPn2a5s2bM3r0aKtLEnELPj4+fP3114SFhbFjxw4efvhhEhMTrS5LJF0sDUdFihTBbren2kt07NixVHuTrjZr1iwiIyP5+uuvadeu3XXb+vn5ERwcnOImcrMuXbpEjx492LVrF+Hh4Xz33Xf4+vpaXZaI2yhWrBizZ8/Gz8+PefPm8fzzz1tdkki6WBqOfH19iYiIICoqKsX0qKgomjZtes3nzZw5kz59+vDll1/SpUuX7C5TJBVjDP369WPRokUEBgby/fffU7RoUavLEnE7DRs2ZNq0aQB8/PHHjBo1ytqCRNLB8m61QYMGMXHiRCZPnsz27dt57rnnOHDgAAMHDgSSusR69erlaj9z5kx69erFhx9+SOPGjTly5AhHjhwhLi7OqlUQDzR48GCmTZuG3W5n1qxZ1KlTx+qSRNxWjx49eO+994Ck7/zvvvvO4opEbsC4gTFjxpjw8HDj6+tr6tevb5YuXep6rHfv3qZly5au+y1btjQknWMvxa13797pXl5cXJwBTFxcXBauheR5Bw8as3ix+WjoUNf7bvLkyVZXJZIrOBwO8/jjjxvA+Pr6moULF7o+U+bgQavLk1wip36/LT/PkRV0niPJsEmToH9/xjscDLwyacSIEbz88suWliWSmyQmJnLfffcxe/Zs/H18+OnyZVoZA15eMGGCTn0hN5RTv98KRwpHciMxMRAezjiHg8euTHreZuP9/fux6bQQIhly8eJF7u7cmfm//koQsBBoBkln0t63T6fAkOvyiJNAiuQKO3emDEbA+8Zg273byqpEciVfX1++ffFFbgPOAh2AX0HXYBO3onAkch3GGEYsXJgyGAE2XS9KJNP8a9Rgrs1GO5ICUmdgjpeXPlPiNhSORK4hMTGRp59+mv+8+y4AL9ts/wtG48dr979IZoWFEfj55/zo5UU34CLQ3Rgm//KL1ZWJAApHImk6d+4c999/P59++ik2m41Ro0Yx4sABbLpmmkjWiIzEb/9+vl60iD733ovDGCIjIxk8eDCOKxetFbGKBmRrQLZcZf/+/dx1111s2rQJX19fpk+fTo8ePawuSyTPcjgcvPrqq7z99tsA3HnnnXzxxRfky5fP4srE3WhAtogFlixZQoMGDdi0aRNFixYlKipKwUgkm3l5efHWW2/x3//+Fz8/P77//ntuvfVW9u7da3Vp4qEUjkRiYnD8+isfvvoq7dq1IzY2lvr167Nu3TpatGhhdXUiHuOhhx4iOjqaYsWKsXnzZurVq8ecOXOSTqcRHZ30r0gOULeautU826RJHOvXj97G8POVST179uTzzz8nMDDQ0tJEPNXBgwfp0aMHq1atAuAZ4D3AVyeL9Hg6CWQ2UjgSAGJiWFSmDA8bwxHAH/jIZmOATu4oYrlLly7xn6ee4oPx4wGIAP4LVNPJIj2axhyJZKOzZ8/y3LPP0v5KMKoOrAUG6uSOIm7Bx8eH93v0YB5QEFgP1Ac+TkzE8fff1hYneZ7CkXicxYsXU7t2bUZ99x0G6E9SMKoJSZcw0InoRNxDpUp09fJiC0ln0r4APAu0e/VVDhw4YGlpkrcpHInHiIuLo3///rRt25Y9e/ZQunRpFjzzDOPtdgIhKRjp5I4i7iMsDCZMoJTdzk/AZzYbgb6+RK9cSa1atfj888/xwJEhkgM05khjjjzCjz/+yMCBA/nnn38AeOyxx3jnnXeStn9MTNI1nSpWVDAScUfJPqO7LlygV69ersHarVu3ZsKECVTUHl+PoAHZ2UjhyEPExBC7bh3PTJvGl3PnAlCxYkUmTpxIy5Ytra1NRDItMTGR0aNHM2TIEM6fP09AQADDhw/n2e7d8d67FypV0h86eZTCUTZSOMr7zMSJfN2/P08Zw3HAy2Zj0PPPM2zYMB2iL5JH7Nmzh379+rF48WIAGgCTgNo65D/P0tFqIpl0aN06uvXrx/1XglENYJXNxvvPPKNgJJKHlC9fnkWLFjHx/fcJAdaRdMj/aw4HCf3766SRkmkKR5JnGGOYPHky1Vu14nvAGxgKbAAaORxJYxZEJE+x2WxERkSwDbgLuAy8AdRzOFj1/feW1ia5l8KR5An79u2jQ4cOREZGEnf2LA1ICkWvA76gQ/RF8rJKlSjp5cVs4BugGLAdaPbUUzz55JPEx8dbW5/kOgpHkqs5HA4+/fRTatasSVRUFP7+/rz33nusGj+eWnZ7UiMdoi+St1055N9mt9Md2O7lRZ+mTTHGMGbMGKpXr8732oskGaAB2RqQnWvt2LGDvn37smLFCgCaN2/OxIkTqVy5clIDHaIv4lmu+swvXryY/v37s/vKWe/vueceRo8eTcmSJS0uVDJLR6tlI4Wj3O3S3r188PbbDPvvf0lISCBfvny8++67DBw4EC8v7QwVkf85f/48w4cP5/333ycxMZGQkBDeffll+jVsiFeVKvrDKZdROMpGCke51+ohQ+j79tv8eeV+hxo1GD9/PuHh4ZbWJSLubfPmzfTr14+1a9cCcCswwWaj2uef65D/XESH8oskc/r0aZ5+9FGaXAlGRYAvgJ+2byfcObZIROQa6tSpw6pvvmGUzUYQsAKoawzD+vUjQReblqsoHInbmzdvHtWrV+eTKVMwQC+SjkR5ELDpEH0RSSf7nj08Ywxbgc7AReB1Y6jXtq1r7KIIKByJG9u3bx933303d955JzExMZQvU4Yom41pJO05AnSIvoikX6VK4OVFOPAj8BVXDvvfv5/mzZvz2GOPERcXZ22N4hYUjsR9xMRAdDTndu5k6NChVKtWjTlz5mC323n55ZfZsn077T7/PCkQgQ7RF5GMuXLIP3Y7NqCH3c72UaOIvDLmaNy4cVStWpUpU6bgcDhc30k607bn0YBsDch2D5MmYfr14xtjeAE4eGVy69atGT16NDVr1vxfWx2iLyI3I43vkCVLltC/f3927twJQL0yZRh58CCtjAFdq81t6Gi1bKRw5F7MwYP8Gh7Of4xh7ZVpZYCR48dzd79+2Gw2K8sTEQ+RkJDAJ598whvDhxN/+jSQdEmSt4Fqdjvs26c/yCymo9UkzzPGsHz5ctrecQe3XQlGgSRdD207cE/lygpGIpJj/Pz8eOGFF9g1bRqPA3ZgLkkXr34gMZFtixZZWp/kHIUjyX5X9dsnJiby7bff0qRJE1q0aEH0pk34As8Ae0i6HlqgBlqLiEWKNmzIGC8v/gDuBAxJg7drPvoo3bt3Z/ny5aTodNHYpDxH4Uiy16RJEB4ObdpwsEwZ3urWjUqVKnHvvfeyevVq/Pz8kvr5332XUXY7xUEDrUXEWlcGble325kLbPTy4u769THG8N1339GiRQvq1q3L559/zukxY1zfcYSHJ33nSa6nMUcac5R9YmI4UaYMPxrDl0AUSX+BARQqVIgnnniCJ554guLFi7vaa6C1iLiNq76T/vzzT0aPHs0XX3zB+fPnAfAH7gB6Ah0BP41NylYakJ2NFI6yjzGGrVu38uuvv/L91Kks27SJxGSPtwQeffllur/6KoGBgVaVKSKSaSdPnmTKlCmM/+gj/k7WlZYPaAd0GjSITs8+S+nSpS2rMa9SOMpGCkdZICYGdu7EVKzIX2fOEB0dzZIlS1iyZAnHjx9P0bQ20A14GKigv6pEJI8wBw+yMTycL43hK+Cfqx6vWrUqLVu2pEWLFjRv3pzSNhvs3Jl0Mkp9B2aKwlE2UjjKPIfDwfY332Tp66+z1BiWAUeuahMYGEizZs3o2LEjd128SPlXXoHExP+NJdK5QkQkr5g0CQYMwJGYyEYvL3664w4WHD3K6tWrk04kmUxZoAXQwmaj5ZtvUmHwYB2Rm0EKR9lI4Shjdu/ezYIFC4iOjmb50qXE/vtvisf9gKZNm9K6Y0dat25No0aN8PX1/V8DjSUSkbwsje+4f//9l+XLl7Ns2TKWLVrEhj/+wHHV08qUKkW7Dh1o27Ytbdq0oUSJEjlfey6jcJSNFI6uIyaGS9u3szQ2lgVr1zJ//nz+/vvvFE0CgKYkjR9qAdwC+EdHQ6tWOV6uiIjbi47mdJs2rAKWAUuB1cClq5rVqVOHbt260a1bN2oVLIht1y51wV1F4SgbKRylZoxh9ZAhzBgxgq+A2GSPeXt707x5c9q3b0/LatWI6NYN3+RvG40jEhG5tpiYpMP8k3WznfXyYsW0aSzavJlff/2VTZs2pTh3UnmSxmr2tNmoN2ECtr59c75uN6RwlI08MhxdGUB99V8hO3fuZMaMGXwxdSq79+93TS8K3G6z0WXcONr16EFISMj/5nWlj13jiERE0ukG35uxsbH8+OOPzPnyS36JiuJCsqfWAB4ePJgHH3+csKv/CL3Gd3tepXCUjTwuHE2aBP37J/3V4uXFsQ8+YJa3N1988QVr1qxxNQsk6S+Vh0g6HNUbks76mlZ3mcYRiYhkTHq+N6OjOdumDQuBWcD3QMKVh2w2G23atKFXr15069aN/F9/neK73RMujqtwlI08Khxd2Z0b73AwB5gJLALXuYfsdju33XYbD3XuzJ3PPEM+dZeJiFjnqi64U8C3NhvTGzZkebI/Zv39/LgjIeF/J58Ej/jO1oVnJX2uc02fY8eOMX3MGLo7HBQD+gALSQpGDatW5eOPP+aff/7hp59+4sGnniLf558nfbhAl/AQEbHClUuXOL+LC9jt9P38c5atXs2ePXsYPnw4lStX5kJCAl8DdwGhQF9gbmIi8Zs3pz1fXf8tQ7TnKDfvOUrWXXbZZmPvm2+ytmxZ1qxZw2+//ca6detSNK8KPADc7+VF5f370w4+6i4TEbHedb6LjTFs+OknvuzShZnA4WSPeXt707RpU1q0aEFERAQRERGELVyIbcCAPNH9pm61bJQbwtGFXbs4sHIlRwIDifPzIz4+nri4OOLi4jh16hSn/vmHUzNmcALYB+wHLqcxn3r16tEpNJR7f/6ZOg4HNg2gFhHJGyZNIrF/f5Y5HMy22VhYrBg7jx5N1SwQKAOEk3SwTYjNRsgTTxBSujQFChQgJCSEAgUKUKBAAYpevkyZ8+fxrlrVLf9AVjjKRpaGozSOLDDGsHbtWqKiolizZg3rly/nn5MnMzxrP6Be9eo0ateORo0a0aZNG0JDQ/+3XO0REhHJW676bt+9e/f/fkvWr2frn3+S6Lj69JPX503S2bzrN2jArb160bJlS2rVqpXybN4WHSWncJSNMvPiXrp0iW+//ZYtW7YQEhJCmzZtaNCgQcZO/X7VUWP73n6bLy5d4r///W+qEy0CBAGlgBAgpHlzQooVIzg4mIIFC1LAZqPAyJEUMIZwoAIQ6uWF17W6y0RExOMk7N7NwUqV2G8MB4ATQJzNRlyfPsQlJrp6I+JiYzm1dStHIMVpBJwqVKjAPffcwwMPPECddesy3U13+fJlfv31V37//XcuX75MixYtaNu2LV5e6RsCnWM7N4wHiouLM4CJi4tLV/udO3eaypUrGyDFrXbt2mbKlCkmISHBmIMHjVm8OOnftBw8aIyXlzkFZiKYFlfNKyAgwHTv3t2MfOwxswJMLBgHGOO8RUennufEicbY7UmP2+1J90VERJJLz2/F4sXGgEkEEwNmEZg3wXRo2ND4+/un+L2qCebdK+1c87zeb9/ixebs33+bTz/91JQtWzbVb2mHDh3MiRMn0rUqGf39ziyFoxs4tmmTKV2smAFMsWLFzIABA8zdd9+d4s1SqmBB84HNZuLBGC+vVG+8c+fOme/feMPcD8Y/2RvCBqZNvXpmypQpJj4+PqnxlRBlkgejG73xoqOv/biIiMiNfiuu89tz+vRp8/XXX5vu3bsbPx+fFL9h7cBMB3N6wYLU85w40Ry32cxwMEWS/fYVKVLE9O7d2/Tq1cv1W9r21lvN5aioG/6W5VQ4Urfa9XbLTZpE7759mQ5UApZ9+CElBg0C4OTJk3z++eeM+vBDDh87BkA+oDVQ02Yj+KWX+DcxkT/++IMVK1Zw9uxZ12yrAb2AB728KJ1WN5jOQC0iIjktHb89p7Zu5ZtatZhuDCuSTQ8MCKBDx45Ur16doKAgTuzbx4YJE1jG/86rVxZ48c03eWTQIAICAgDYuHEjzZs04WxCAu8DL9ygm05jjrKR68Xdto3gatXSbhQTw7oyZWhoDDbgd6BRGifYSli4kC86duR9YMd1llm6dGnurlKFhxYvJiI9R41pALWIiOS09Pz2XAlRexIT+cJm479Fi7Lryk6CtEQALwDdAe+rr7oQE8PEMmXoZwwFgb1AyHVOZhm/fTsh1asrHGUHZzj6GegwcWLaASU6mp5t2jCTpMtp/DfZ9Ks3LOHhOBwONgHRwD6bjdP33EOBUqWoUqUKt9xyC/Xq1UsavK3QIyIiuV2y3zJTqhSrV69m5cqV7Nq1i4SEBPLbbFSdPJnbjKGC8zlphZ7oaBLbtKEWsB14C/jPlempLl01aRKT+valLygcZQdnOHoL+M81Euo/a9cS3qgRicBGoC5c+9Ts6gYTERFJKT2/jVd2MEx3OOgNlAd2pnXk9ZV29zkcfEP2hyOPvnxIPCRttF27Uj02a/lyEoFmJAtG17qcRmRkUmiKjk76V8FIREQ8XXp+G69cLqW7lxfBwB5g6aBBqX9rd+4Eh4O47K8a8PBwdAqSQk/FiqkemzVrFgAPvPFG+kJPWFjSLkB1lYmIiCRJz29jZCSB+/dz/+23AzAzLo0IVKkSeHkpHOWEeEhzb9C+fftYs2YNXl5edO/XT6FHREQkO4WFcc9TTwHwww8/4Lj6rN5X9jDF51A5Hh2O4tq0SXNvUFRUFABNmjShePHiOV2WiIiIx2nVqhXBwcEcOXKEtWvXpm4QGUlcDv0me3Q4ir94Mc3p0dHRALRp0yYnyxEREfFYvr6+dOrUCYAff/wxzTbxyc4ZmJ08OhzFpdGvaYxROBIREbFA+/btAVi8eHGqxxITEzlz5kyO1OHR4Sg+PnXv5Y4dOzhy5Ah+fn40btzYgqpEREQ8k3OnxJo1a1IFobR+s7OLR4ejU6dOpZrmTKtNmzbF398/hysSERHxXGXLlqVs2bJcvnyZFStWpHgsrd/s7OLR4SguLo5Lly6lmKYuNREREes4f3+dv8dOx48fz7Ea3CIcjR07lnLlyuHv709ERATLly+/bvulS5cSERGBv78/5cuXZ9y4cZledmxsrOv/DoeDJUuWANC6detMz1NEREQyx/n7e/W4I48KR7NmzeLZZ59lyJAhSVfnbd6cTp06ceDAgTTb7927l86dO9O8eXM2btzIf/7zH55++mm+++67TC0/+Yu9detWYmNjCQwMpGHDhpman4iIiGSeMxxt2LAhRVfasetc3DarWR6ORo4cSWRkJH379qVatWqMGjWK0qVL89lnn6XZfty4cZQpU4ZRo0ZRrVo1+vbty6OPPsoHH3yQqeUnf7GdKbV58+b4+vpman4iIiKSeaVKlaJSpUo4HI4U4448Zs/RxYsXWb9+vevQPaf27duzcuXKNJ+zatWqVO07dOjAunXrUo0fSo/k4cjZv6kuNREREes4f4edQ10gZ/cceefYktIQGxtLYmJiqrNQFy9enCNHjqT5nCNHjqTZ/vLly8TGxhIaGprqOQkJCSQkJLjuJz+/0f79+4mPjycxMdG1ERo2bJijhwyKiIjI/zRq1IgJEyawaNEi1+/xwYMHXY8bY7J1+ZaGIyebzZbivjEm1bQbtU9rutOIESMYNmxYmo/95z//4T//+U+KaW3btr1hzSIiIpK9Nm/eTEhISKrpJ06cSHN6VrE0HBUpUgS73Z5qL9GxY8eueU2zEiVKpNne29ubwoULp/mcwYMHM2jQINf9U6dOER4ezoEDB7L1xXU38fHxlC5dmoMHDxIcHGx1OTlG66319gRab623J4iLi6NMmTIUKlQoW5djaTjy9fUlIiKCqKgounXr5poeFRXFnXfemeZzmjRpwg8//JBi2i+//EKDBg3w8fFJ8zl+fn74+fmlmh4SEuJRbyqn4OBgrbcH0Xp7Fq23Z/HU9fbyyt4h05YfrTZo0CAmTpzI5MmT2b59O8899xwHDhxg4MCBQNJen169ernaDxw4kP379zNo0CC2b9/O5MmTmTRpEi+88IJVqyAiIiJ5iOVjjnr06MGJEycYPnw4hw8fpmbNmixYsIDw8HAADh8+nOKcR+XKlWPBggU899xzjBkzhpIlSzJ69Gjuueceq1ZBRERE8hDLwxHA448/zuOPP57mY1OnTk01rWXLlmzYsCHTy/Pz82Po0KFpdrXlZVpvrbcn0HprvT2B1jt719tmsvt4OBEREZFcxPIxRyIiIiLuROFIREREJBmFIxEREZFkFI5EREREksmz4eitt96iadOmBAYGUqBAgXQ9xxjD66+/TsmSJQkICKBVq1Zs3bo1RZuEhASeeuopihQpQlBQEHfccQcxMTHZsAaZc/LkSR5++GFCQkIICQnh4Ycf5tSpU9d9js1mS/P2/vvvu9q0atUq1eP3339/Nq9N+mVmvfv06ZNqnRo3bpyiTV7b3pcuXeKll16iVq1aBAUFUbJkSXr16sWhQ4dStHO37T127FjKlSuHv78/ERERLF++/Lrtly5dSkREBP7+/pQvX55x48alavPdd99RvXp1/Pz8qF69OnPmzMmu8jMtI+s9e/ZsbrvtNooWLUpwcDBNmjRh4cKFKdpMnTo1zc/6hQsXsntVMiQj671kyZI01+mvv/5K0S6vbe+0vr9sNhs1atRwtXH37b1s2TK6du1KyZIlsdlszJ0794bPybHPtsmjXnvtNTNy5EgzaNAgExISkq7nvPPOOyZ//vzmu+++M1u2bDE9evQwoaGhJj4+3tVm4MCBplSpUiYqKsps2LDBtG7d2tSpU8dcvnw5m9YkYzp27Ghq1qxpVq5caVauXGlq1qxpbr/99us+5/DhwylukydPNjabzezevdvVpmXLlqZfv34p2p06dSq7VyfdMrPevXv3Nh07dkyxTidOnEjRJq9t71OnTpl27dqZWbNmmb/++susWrXK3HLLLSYiIiJFO3fa3l999ZXx8fExn3/+udm2bZt55plnTFBQkNm/f3+a7ffs2WMCAwPNM888Y7Zt22Y+//xz4+PjY7799ltXm5UrVxq73W7efvtts337dvP2228bb29v8/vvv+fUat1QRtf7mWeeMe+++65Zs2aN+fvvv83gwYONj4+P2bBhg6vNlClTTHBwcKrPvDvJ6HpHR0cbwOzYsSPFOiX/jObF7X3q1KkU63vw4EFTqFAhM3ToUFcbd9/eCxYsMEOGDDHfffedAcycOXOu2z4nP9t5Nhw5TZkyJV3hyOFwmBIlSph33nnHNe3ChQsmJCTEjBs3zhiT9Gb08fExX331lavNP//8Y7y8vMzPP/+c5bVn1LZt2wyQ4k2watUqA5i//vor3fO58847TZs2bVJMa9mypXnmmWeyqtQsldn17t27t7nzzjuv+binbO81a9YYIMWXsDtt70aNGpmBAwemmFa1alXz8ssvp9n+//7v/0zVqlVTTBswYIBp3Lix6/59991nOnbsmKJNhw4dzP33359FVd+8jK53WqpXr26GDRvmup/e70MrZXS9neHo5MmT15ynJ2zvOXPmGJvNZvbt2+ealhu2t1N6wlFOfrbzbLdaRu3du5cjR47Qvn171zQ/Pz9atmzJypUrAVi/fj2XLl1K0aZkyZLUrFnT1cZKq1atIiQkhFtuucU1rXHjxoSEhKS7vqNHjzJ//nwiIyNTPTZjxgyKFClCjRo1eOGFFzh9+nSW1X4zbma9lyxZQrFixahcuTL9+vXj2LFjrsc8YXtD0oUcbTZbqu5nd9jeFy9eZP369Sm2AUD79u2vuY6rVq1K1b5Dhw6sW7eOS5cuXbeNO2xXyNx6X83hcHD69OlUF+g8c+YM4eHhhIWFcfvtt7Nx48Ysq/tm3cx616tXj9DQUNq2bUt0dHSKxzxhe0+aNIl27dq5ri7h5M7bO6Ny8rPtFmfIdgdHjhwBoHjx4immFy9enP3797va+Pr6UrBgwVRtnM+30pEjRyhWrFiq6cWKFUt3fdOmTSN//vzcfffdKaY/+OCDlCtXjhIlSvDnn38yePBgNm/eTFRUVJbUfjMyu96dOnXi3nvvJTw8nL179/Lqq6/Spk0b1q9fj5+fn0ds7wsXLvDyyy/Ts2fPFBevdJftHRsbS2JiYpqfy2ut45EjR9Jsf/nyZWJjYwkNDb1mG3fYrpC59b7ahx9+yNmzZ7nvvvtc06pWrcrUqVOpVasW8fHxfPzxxzRr1ozNmzdTqVKlLF2HzMjMeoeGhjJhwgQiIiJISEjgv//9L23btmXJkiW0aNECuPZ7Iq9s78OHD/PTTz/x5Zdfppju7ts7o3Lys52rwtHrr7/OsGHDrttm7dq1NGjQINPLsNlsKe4bY1JNu1p62tyM9K43pK4fMlbf5MmTefDBB/H3908xvV+/fq7/16xZk0qVKtGgQQM2bNhA/fr10zXvjMru9e7Ro4fr/zVr1qRBgwaEh4czf/78VOEwI/O9WTm1vS9dusT999+Pw+Fg7NixKR6zYntfT0Y/l2m1v3p6Zj7rOS2zNc6cOZPXX3+d77//PkWAbty4cYqDDpo1a0b9+vX55JNPGD16dNYVfpMyst5VqlShSpUqrvtNmjTh4MGDfPDBB65wlNF5WiWzNU6dOpUCBQpw1113pZieW7Z3RuTUZztXhaMnn3zyhkfMlC1bNlPzLlGiBJCUTENDQ13Tjx075kqhJUqU4OLFi5w8eTLF3oRjx47RtGnTTC03PdK73n/88QdHjx5N9djx48dTJem0LF++nB07djBr1qwbtq1fvz4+Pj7s3Lkz234sc2q9nUJDQwkPD2fnzp1A3t7ely5d4r777mPv3r0sXrw4xV6jtOTE9k5LkSJFsNvtqf7qS/65vFqJEiXSbO/t7U3hwoWv2yYj75fslJn1dpo1axaRkZF88803tGvX7rptvby8aNiwoes9b7WbWe/kGjduzBdffOG6n5e3tzGGyZMn8/DDD+Pr63vdtu62vTMqRz/bGRqhlAtldED2u+++65qWkJCQ5oDsWbNmudocOnTI7Qborl692jXt999/T/cA3d69e6c6aulatmzZYgCzdOnSTNebVW52vZ1iY2ONn5+fmTZtmjEm727vixcvmrvuusvUqFHDHDt2LF3LsnJ7N2rUyDz22GMpplWrVu26A7KrVauWYtrAgQNTDdrs1KlTijYdO3Z0uwG6GVlvY4z58ssvjb+//w0Htjo5HA7ToEED88gjj9xMqVkqM+t9tXvuuce0bt3adT+vbm9j/jcgfcuWLTdchjtubyfSOSA7pz7beTYc7d+/32zcuNEMGzbM5MuXz2zcuNFs3LjRnD592tWmSpUqZvbs2a7777zzjgkJCTGzZ882W7ZsMQ888ECah/KHhYWZRYsWmQ0bNpg2bdq43aHdtWvXNqtWrTKrVq0ytWrVSnVo99XrbYwxcXFxJjAw0Hz22Wep5rlr1y4zbNgws3btWrN3714zf/58U7VqVVOvXr1cu96nT582zz//vFm5cqXZu3eviY6ONk2aNDGlSpXK09v70qVL5o477jBhYWFm06ZNKQ7vTUhIMMa43/Z2HuI8adIks23bNvPss8+aoKAg11E5L7/8snn44Ydd7Z2H+z733HNm27ZtZtKkSakO9/3tt9+M3W4377zzjtm+fbt555133PbQ7vSu95dffmm8vb3NmDFjrnkKhtdff938/PPPZvfu3Wbjxo3mkUceMd7e3ikCttUyut4fffSRmTNnjvn777/Nn3/+aV5++WUDmO+++87VJi9ub6eHHnrI3HLLLWnO09239+nTp12/zYAZOXKk2bhxo+vIWSs/23k2HPXu3dsAqW7R0dGuNoCZMmWK677D4TBDhw41JUqUMH5+fqZFixap0vj58+fNk08+aQoVKmQCAgLM7bffbg4cOJBDa3VjJ06cMA8++KDJnz+/yZ8/v3nwwQdTHeJ69XobY8z48eNNQEBAmueyOXDggGnRooUpVKiQ8fX1NRUqVDBPP/10qnMCWSmj633u3DnTvn17U7RoUePj42PKlCljevfunWpb5rXtvXfv3jQ/F8k/G+64vceMGWPCw8ONr6+vqV+/foo9WL179zYtW7ZM0X7JkiWmXr16xtfX15QtWzbN0P/NN9+YKlWqGB8fH1O1atUUP6buIiPr3bJlyzS3a+/evV1tnn32WVOmTBnj6+trihYtatq3b29WrlyZg2uUPhlZ73fffddUqFDB+Pv7m4IFC5pbb73VzJ8/P9U889r2NiZp73ZAQICZMGFCmvNz9+3t3Ot1rfeslZ9tmzFXRjOJiIiISN69fIiIiIhIZigciYiIiCSjcCQiIiKSjMKRiIiISDIKRyIiIiLJKByJiIiIJKNwJCIiIpKMwpGIiIhIMgpHIiIiIskoHImIiIgko3AkInnK8OHDqVWrFkFBQRQvXpzHHnuMS5cuWV2WiOQi3lYXICKSVYwxJCYmMn78eEqVKsW2bdvo1asXtWvX5rHHHrO6PBHJJXThWRHJ03r27EnRokX5+OOPrS5FRHIJdauJSJ6xf/9+nnzySWrWrEnBggXJly8fX3/9NWFhYVaXJiK5iMKRiOQJsbGxNGrUiNjYWEaOHMmKFStYtWoVdrudunXrWl2eiOQiGnMkInnCggULuHz5MjNnzsRmswEwZswYLl68qHAkIhmicCQieUKhQoWIj49n3rx5VK9enR9++IERI0ZQqlQpihYtanV5IpKLaEC2iOQJxhgee+wxvvzySwICAnjooYe4cOEC+/fv58cff7S6PBHJRRSORERERJLRgGwRERGRZBSORERERJJROBIRERFJRuFIREREJBmFIxEREZFkFI5EREREklE4EhEREUlG4UhEREQkGYUjERERkWQUjkRERESSUTgSERERSUbhSERERCSZ/wfdJvS841p7zAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvnElEQVR4nO3dd3gU1dvG8e9m0wMJ0gMhofceQIp0BAGxoigqoKHZFfVVREWwYEVEQUD6T0QsoCgoBumCdBABEaRGahASaoDsef8Iu2ZJgCQkmU32/lxXLsjs2Z1ndrbcOefMjM0YYxARERERAHysLkBERETEkygciYiIiKSicCQiIiKSisKRiIiISCoKRyIiIiKpKByJiIiIpKJwJCIiIpKKwpGIiIhIKgpHIiIiIqkoHEmesH//fl599VU2bNiQ5rZevXpRoECBLD/2uXPn6N+/P+Hh4djtdurWrZv1QrPB6NGjmTx5cprlu3fvxmazpXtbfmKz2Xj11VetLiNbvPrqq9hsthy/70cffUTFihXx9/fHZrNx/PhxevXqRdmyZd3avfnmm3z77bdZqudK/v33X+655x6KFy+OzWbjtttuy/RjlC1bll69emV7bZ5k7dq1PProo9SqVYuCBQtSokQJ2rVrx4IFC9K0de7/S38CAwMtqNz7+FpdgEhG7N+/nyFDhlC2bNlsDy+ffPIJY8eO5aOPPiI6OvqaglZ2GD16NEWLFk3zRREeHs6KFSuoUKGCNYVJpvXu3ZubbropR9exYcMGnnjiCXr37k3Pnj3x9fWlYMGCvPzyyzz55JNubd988026du2apfByJa+99hqzZs1i4sSJVKhQgcKFC2fr4+cX06dPZ9WqVTz00EPUqVOHU6dOMWbMGNq2bcuUKVPo0aNHmvv89NNPhIWFuX738VGfRm5QOBKv98cffxAUFMRjjz1mdSlXFBAQQOPGja0uQzIhIiKCiIiIHF3H5s2bAejTpw+NGjVyLc/NEP3HH39QoUIF7rvvvlxbZ3Y5ffo0wcHBubKu//u//+O9995zW9apUyfq16/P0KFD0w1H0dHRFC1aNFfqk/8ognqhI0eO0LdvX8qUKUNAQADFihWjWbNmzJ8/39WmVatW1KxZkxUrVtC0aVOCgoIoW7YskyZNAmDOnDnUr1+f4OBgatWqxU8//ZRmPcuWLaNt27YULFiQ4OBgmjZtypw5c9K0++OPP7j11lu57rrrCAwMpG7dukyZMsV1+6JFi2jYsCEADz74oKt7+dKhlx07dtCpUycKFChAmTJleOaZZ0hKSrric2Gz2Rg/fjxnzpxxPe7kyZOvOIR16bqd3d+bN2/m3nvvJSwsjBIlSvDQQw+RkJDgdl+Hw8FHH31E3bp1CQoKolChQjRu3JjZs2cDKUMLmzdvZvHixa56nEMjl6spI8/z5MmTsdlsLFy4kIcffpiiRYtSpEgR7rjjDvbv33/F5+hKypYty80338ysWbOoXbs2gYGBlC9fnpEjR6Zpu3fvXu6//36KFy9OQEAA1apV4/3338fhcFz28Xfv3o2vry/Dhg1Lc9uSJUuw2Wx89dVXQOb2w9mzZxk4cCDlypXD39+f0qVL8+ijj3L8+PF0t++HH36gXr16BAUFUa1aNX744Qcg5XmtVq0aISEhNGrUiDVr1rjdP72hsRkzZtC+fXvCw8Ndj/fCCy9w6tSpyz/Rl9GqVSvuv/9+AK6//npsNpurx/HSYTWbzcapU6eYMmWK67XVqlWrKz7+v//+yyOPPELp0qXx9/enfPnyDBo0yPW+cr4m58+fz9atW12Pu2jRoss+5vnz5/m///s/SpYsSXBwMDfccAOrVq1Kt+3Bgwfp168fERER+Pv7U65cOYYMGcKFCxfc2sXFxdG1a1cKFixIoUKFuO+++1i9enWa94tzCH7Tpk20b9+eggUL0rZtWyBleP3111+natWqrs/FBx98kCNHjqSpa8aMGTRp0oSQkBAKFChAhw4dWL9+/RWfS4DixYunWWa324mOjmbfvn1Xvb/kIiNep0OHDqZYsWJm3LhxZtGiRebbb781r7zyivniiy9cbVq2bGmKFCliqlSpYiZMmGDmzZtnbr75ZgOYIUOGmFq1apnp06ebuXPnmsaNG5uAgADzzz//uO6/aNEi4+fnZ6Kjo82MGTPMt99+a9q3b29sNpvbev78809TsGBBU6FCBTN16lQzZ84cc++99xrAvP3228YYYxISEsykSZMMYF566SWzYsUKs2LFCrNv3z5jjDE9e/Y0/v7+plq1aua9994z8+fPN6+88oqx2WxmyJAhV3wuVqxYYTp16mSCgoJcj3v48GGza9cuA5hJkyaluQ9gBg8e7Pp98ODBBjBVqlQxr7zyiomNjTXDhw83AQEB5sEHH3S77wMPPGBsNpvp3bu3+e6778yPP/5o3njjDfPhhx8aY4xZt26dKV++vKlXr56rnnXr1hljTLo1ZfR5dj5/5cuXN48//riZN2+eGT9+vLnuuutM69at3Wp0tk1v2y8VFRVlSpcubSIjI83EiRPN3LlzzX333WcA8+6777raHT582JQuXdoUK1bMjBkzxvz000/mscceM4B5+OGHr/j83n777SYyMtJcuHDBrd1dd91lSpUqZc6fP5+p/eBwOEyHDh2Mr6+vefnll83PP/9s3nvvPRMSEmLq1atnzp4967Z9ERERpmbNmq7X+/XXX2/8/PzMK6+8Ypo1a2ZmzpxpZs2aZSpXrmxKlChhTp8+7bq/s6bUXnvtNfPBBx+YOXPmmEWLFpkxY8aYcuXKpdkP6d33Ups3bzYvvfSSa3+tWLHC7NixwxiT8r6IiopytV2xYoUJCgoynTp1cr22Nm/efNnHPnPmjKldu7YJCQkx7733nvn555/Nyy+/bHx9fU2nTp2MMcacPXvWrFixwtSrV8+UL1/e9bgJCQmXfdyePXsam81mnnvuOfPzzz+b4cOHm9KlS5vQ0FDTs2dPV7sDBw6YMmXKmKioKDN27Fgzf/5889prr5mAgADTq1cvV7uTJ0+aihUrmsKFC5tRo0aZefPmmaefftqUK1cuzeu4Z8+exs/Pz5QtW9YMGzbM/PLLL2bevHkmOTnZ3HTTTSYkJMQMGTLExMbGmvHjx5vSpUub6tWru+3TN954w9hsNvPQQw+ZH374wcycOdM0adLEhISEXPH5vJzz58+bihUrmnr16rktd+7/kiVLGh8fH1O8eHHzwAMPmD179mR6HZJ5CkdeqECBAuapp566YpuWLVsawKxZs8a17OjRo8Zut5ugoCC3ILRhwwYDmJEjR7qWNW7c2BQvXtycOHHCtezChQumZs2aJiIiwjgcDmOMMffcc48JCAgwe/fudVt/x44dTXBwsDl+/LgxxpjVq1df9gu7Z8+eBjBffvml2/JOnTqZKlWqXOXZSLl/SEiI27KshKN33nnHrd0jjzxiAgMDXdu6ZMkSA5hBgwZdsZ4aNWqYli1bplmeXk0ZfZ6dgeeRRx5xe8x33nnHAObAgQOuZVOmTDF2u91MmTLlinUakxIebDab2bBhg9vyG2+80YSGhppTp04ZY4x54YUXDGBWrlzp1u7hhx82NpvNbNu2zbXs0ud34cKFBjCzZs1yLfvnn3+Mr6+vW/jN6H746aef0m03Y8YMA5hx48a5bV9QUJCJi4tzLXO+3sPDw13bZ4wx3377rQHM7Nmz09R0OQ6Hw5w/f94sXrzYAGbjxo0Zvq+Tc9+uXr3abfml4cgYY0JCQtwCyJWMGTMm3ffV22+/bQDz888/u5a1bNnS1KhR46qPuXXrVgOYp59+2m35tGnTDOBWW79+/UyBAgXShIH33nvPAK4gMmrUKAOYH3/80a1dv3790g1HgJk4caJb2+nTpxvAfPPNN27LnZ87o0ePNsYYs3fvXuPr62sef/xxt3YnTpwwJUuWNHffffdVn4NLDRo0yADm22+/dVs+depU88Ybb5i5c+eaBQsWmLfeessULlzYlChRwu31KDlDw2peqFGjRkyePJnXX3+d3377jfPnz6fbLjw8nOjoaNfvhQsXpnjx4tStW5dSpUq5llerVg2APXv2AHDq1ClWrlxJ165d3SY32+12HnjgAeLi4ti2bRsACxYsoG3btpQpU8Zt3b169eL06dOsWLEiQ9tks9no0qWL27LatWu7asoNt9xyS5r1nz17lsOHDwPw448/AvDoo49my/oy8zxfqUbA7Xnq0aMHFy5cSHf+Q3pq1KhBnTp13JZ1796dxMRE1q1bB6Ts5+rVq7vNiYGU/WyMSfdoHadWrVpRp04dRo0a5Vo2ZswYbDYbffv2TdP+avvBua5LJ7zfddddhISE8Msvv7gtr1u3LqVLl3b97ny9t2rVym2uyqXvg8vZuXMn3bt3p2TJktjtdvz8/GjZsiUAW7duveJ9c9OCBQsICQmha9eubsudz9ulz1NGLFy4ECDN3KS7774bX1/3KbA//PADrVu3plSpUly4cMH107FjRwAWL17s+rdgwYJpJr7fe++9l63jzjvvTLOuQoUK0aVLF7d11a1bl5IlS7qGCefNm+d6b6RuFxgYSMuWLa84nJie8ePH88Ybb/DMM89w6623ut32wAMP8OKLL9KxY0dat27N888/z48//siRI0d45513MrUeyTxNyPZCM2bM4PXXX2f8+PG8/PLLFChQgNtvv5133nmHkiVLutqld8SJv79/muX+/v5AyjwOgGPHjmGMITw8PM39naHq6NGjrn8z0u5qgoOD0xziGhAQ4KopNxQpUiTN+gHOnDkDpMz1stvtbs/xtcjM85zRGrMive1xLku9ny89rPxKdV7KeTTWtm3bKF++PJ9++ildu3ZNd91X28ajR4/i6+tLsWLF3NrZbDZKliyZppbLvd6v9j5Iz8mTJ2nevDmBgYG8/vrrVK5cmeDgYPbt28cdd9xxTfshux09epSSJUummTNVvHhxfH19M/zevPQxIe1rxtfXN81+O3ToEN9//z1+fn7pPlZ8fLzrMUuUKJHm9vSWQcpnRWhoaJp1HT9+3LUPL7euQ4cOAbjmQF4qM0eSTZo0iX79+tG3b1/efffdDN2nUaNGVK5cmd9++y3D65GsUTjyQkWLFmXEiBGMGDGCvXv3Mnv2bF544QUOHz6c7sTqzLruuuvw8fHhwIEDaW5zTv51Hn1RpEiRDLXLbc6gdemE7qx8ITgVK1aM5ORkDh48mG6gyazMPM856eDBg5dd5vzCu9b93L17d55//nlGjRpF48aNOXjwYJZ74IoUKcKFCxc4cuSIW0AyxnDw4MHLfvFlhwULFrB//34WLVrk6i0C0kwE9wRFihRh5cqVGGPcAtLhw4e5cOFCll5bztfDwYMH3XrjLly4kOa9VbRoUWrXrs0bb7yR7mM5g3WRIkXSndCd3usSSPfcUc4DFC73+VewYEFXO4Cvv/6aqKiodNtmxKRJk1ynXnD2gmaUMUaH8+cCPcNeLjIykscee4wbb7zRNQRyrUJCQrj++uuZOXOm21/CDoeDzz77jIiICCpXrgxA27ZtXV8YqU2dOpXg4GDXoevZ0cORGSVKlCAwMJDff//dbfl3332X5cd0Dgd88sknV2wXEBCQoe3MzPOckzZv3szGjRvdln3++ecULFiQ+vXrAyn7ecuWLWleY1OnTsVms9G6desrriMwMJC+ffsyZcoUhg8fTt26dWnWrFmW6nUenfTZZ5+5Lf/mm284deqU6/ac4PwSdL6encaOHZtj60wto68tSHmeTp48meakkVOnTnXdnlnOo+OmTZvmtvzLL79McwTazTff7DpFQIMGDdL8OMNRy5YtOXHihGvY2umLL77IcF0333wzR48eJTk5Od11ValSBYAOHTrg6+vL33//nW67Bg0aXHVdkydPpnfv3tx///2MHz8+U8Hot99+Y/v27TqlRy5Qz5GXSUhIoHXr1nTv3p2qVatSsGBBVq9ezU8//cQdd9yRbesZNmwYN954I61bt+bZZ5/F39+f0aNH88cffzB9+nTXB8LgwYNdcwteeeUVChcuzLRp05gzZw7vvPOO6+RnFSpUICgoiGnTplGtWjUKFChAqVKl3OY+ZSebzcb999/vOqldnTp1WLVqFZ9//nmWH7N58+Y88MADvP766xw6dIibb76ZgIAA1q9fT3BwMI8//jgAtWrV4osvvmDGjBmUL1+ewMBAatWqle5jZvR5zoypU6fy0EMPMXHixAzNOypVqhS33HILr776KuHh4Xz22WfExsby9ttvu+bkPP3000ydOpXOnTszdOhQoqKimDNnDqNHj+bhhx/OUIh75JFHeOedd1i7di3jx4/P9HY53XjjjXTo0IHnn3+exMREmjVrxu+//87gwYOpV68eDzzwQJYf+2qaNm3KddddR//+/Rk8eDB+fn5MmzYtTbjMKbVq1WLRokV8//33hIeHU7BgQdcX/6V69OjBqFGj6NmzJ7t376ZWrVosW7aMN998k06dOtGuXbtMr79atWrcf//9jBgxAj8/P9q1a8cff/zBe++9l2aoa+jQocTGxtK0aVOeeOIJqlSpwtmzZ9m9ezdz585lzJgxRERE0LNnTz744APuv/9+Xn/9dSpWrMiPP/7IvHnzgIwNdd1zzz1MmzaNTp068eSTT9KoUSP8/PyIi4tj4cKF3Hrrrdx+++2ULVuWoUOHMmjQIHbu3MlNN93Eddddx6FDh1i1ahUhISEMGTLksuv56quviImJoW7duvTr1y9Nj1e9evVcwblOnTrcf//9VKtWjcDAQFatWsW7775LyZIl+b//+7/MPvWSWVbOBpfcd/bsWdO/f39Tu3ZtExoaaoKCgkyVKlXM4MGD3Y68udzRJ1FRUaZz585plgPm0UcfdVu2dOlS06ZNGxMSEmKCgoJM48aNzffff5/mvps2bTJdunQxYWFhxt/f39SpUyfdo8SmT59uqlatavz8/NyOaErvaDNjMn60z+Xun5CQYHr37m1KlChhQkJCTJcuXczu3bsve7TakSNH3O7vPIpo165drmXJycnmgw8+MDVr1jT+/v4mLCzMNGnSxO152b17t2nfvr0pWLCgAVxHHF3uCLqMPM+XO6LJeSTYwoUL07TN6KH8nTt3Nl9//bWpUaOG8ff3N2XLljXDhw9P03bPnj2me/fupkiRIsbPz89UqVLFvPvuuyY5Odmt3aXPb2qtWrUyhQsXdju02ikz++HMmTPm+eefN1FRUcbPz8+Eh4ebhx9+2Bw7dizd7btUeq935/5JfQqD9F6Dy5cvN02aNDHBwcGmWLFipnfv3mbdunVpnvOcOFptw4YNplmzZiY4ONgA6R4VmdrRo0dN//79TXh4uPH19TVRUVFm4MCBbqc7MCbjR6sZY0xSUpJ55plnTPHixU1gYKBp3LixWbFihYmKikpzJN2RI0fME088YcqVK2f8/PxM4cKFTXR0tBk0aJA5efKkq93evXvNHXfcYQoUKGAKFixo7rzzTjN37lwDmO+++87tOUnvvW5MyiH17733nqlTp44JDAw0BQoUMFWrVjX9+vUz27dvd2v77bffmtatW5vQ0FATEBBgoqKiTNeuXc38+fOvuO3Oo+Uu95P6NXrPPfeYihUrmpCQEOPn52eioqJM//79zf79+zP0PMu1sRljTK6kMBHJd8qWLUvNmjVdJ0XMSYcPHyYqKorHH39cR+vIVb355pu89NJL7N27N8fPUi75j4bVRMSjxcXFsXPnTt599118fHzSXC9M5OOPPwagatWqnD9/ngULFjBy5Ejuv/9+BSPJEoUjEfFo48ePZ+jQoZQtW5Zp06a5HeUkAimH53/wwQfs3r2bpKQkIiMjef7553nppZesLk3yKA2riYiIiKRi+aH8S5YsoUuXLpQqVQqbzZbmsNH0LF68mOjoaNdFLseMGZPzhYqIiIhXsDwcnTp1ijp16rjGjK9m165ddOrUiebNm7N+/XpefPFFnnjiCb755pscrlRERES8gUcNq9lsNmbNmsVtt9122TbPP/88s2fPdrsGUf/+/dm4cWOGr8MlIiIicjl5bkL2ihUraN++vduyDh06MGHCBM6fP5/udXiSkpLcLgPhcDj4999/KVKkSJZOkiciIiK5zxjDiRMnKFWqVI5eRiXPhaODBw+muaBgiRIluHDhAvHx8eles2rYsGFXPGupiIiI5B379u3L0dM05LlwBGkvHOgcGbxcL9DAgQMZMGCA6/eEhAQiIyPZt29fmlPWi0ge8s8/8PffUKEC/wYFMXr0aObOnUt8fDxly5bljjvuoGfPngT9+6+rHToVgEielZiYSJkyZVwXA84peS4clSxZMs3Vlg8fPoyvr6/ris+XCggISHOhR4DQ0FCFI5G8asIE6NsXHA5+ttm4NziYf0+dct186NAhVq5cyeQRI/j64EGqGwM+PjBuHMTEWFi4iFyrnJ4SY/nRapnVpEkTYmNj3Zb9/PPPNGjQIN35RiKSD8XFuYLRt0AnY/j31ClqVa3K559/zqpVq/joo48IL16crQcO0MIYfgdwOKBfv5T7i4hchuU9RydPnmTHjh2u33ft2sWGDRsoXLgwkZGRDBw4kH/++YepU6cCKUemffzxxwwYMIA+ffqwYsUKJkyYwPTp063aBBHJbdu3g8PBWuBeIBnoDkz88EMCLh6w0bBhQ7qVLk3nO+5gNXAzsAYonpwMO3aALishIpdhec/RmjVrqFevHvXq1QNgwIAB1KtXj1deeQWAAwcOsHfvXlf7cuXKMXfuXBYtWkTdunV57bXXGDlyJHfeeacl9YuIBSpV4rTNxv3AWaAzMMXHh4Dq1d2aFWvYkJ9tNioD+4CHAOPjAxUr5nrJIpJ3eNR5jnJLYmIiYWFhJCQkaM6RSB711I038uH8+YQDf/j4UPhyc4kmTGBz377Udzg4B3zRty/dxo7N7XJFJBvk1ve35T1HIiKZtWXLFj5asACASW+/TeE9ey4/yTomhhp79jCoVy8AHp81i+PHj+dOoSKSJykciUie8/zzz+NwOLj99tvp8H//d/X5QxERvDB2LFWrVuXIkSN88MEHuVOoiORJCkcikqcsXbqUH374AV9fX956660M38/f35/XX38dgA8++ID4+PicKlFE8jiFIxHJU5yB6KGHHqJy5cqZuu/tt99OvXr1OHHiBO+//35OlCci+YDCkYjkGZs2bWLu3LnYbDaee+65TN/fx8eHwYMHAzBmzBhOpTpppIiIk8KRiOQZzt6eO++8k4pZPBy/S5cuVKhQgePHj7vOnyYikprCkYjkCUePHuWLL74A4Nlnn83y4/j4+PDkk08C8OGHH+JwOLKlPhHJPxSORCRP+N///kdSUhJ169alUaNG1/RYvXr1IjQ0lG3btrF48eJsqlBE8guFIxHxeMYYxo0bB0Dfvn2v+aKTBQsW5J577gFg0qRJ11yfiOQvCkci4vFWrFjB1q1bCQ4Opnv37tnymA8++CAAX3/9NYmJidnymCKSPygciYjH+/zzz4GUidhhYWHZ8pjXX389VatW5cyZM3z55ZfZ8pgikj8oHImIR7tw4QJfffUVAPfee2+2Pa7NZnP1HjnDl4gIKByJiIdbtGgRhw8fpnDhwrRr1y5bH/vuu+8GYPHixRw6dChbH1tE8i6FIxHxaM7D97t27Yqfn1+2PnbZsmVp2LAhDoeDmTNnZutji0jepXAkIh7r3LlzfPPNN0D2DqmldtdddwG4hu5ERBSORMRjxcbGcvz4ccLDw2nevHmOrMMZjhYvXszhw4dzZB0ikrcoHImIx5o9ezYAt912G3a7PUfWoaE1EbmUwpGIeCSHw8EPP/wAwC233JKj6+ratSsA3377bY6uR0TyBoUjEfFI69atY//+/RQoUIDWrVvn6Lq6dOkCwMKFCzl58mSOrktEPJ/CkYh4pO+//x6A9u3bExAQkKPrqlq1KuXKlePcuXP88ssvObouEfF8Ckci4pGc841yekgNUk4I2blzZwDmzJmT4+sTEc+mcCQiHmffvn1s2LABm81Gp06dcmWdN998MwBz587FGJMr6xQRz6RwJCIe56fp0wFoXL8+xYoVy5V1tmzZkuDgYP755x82jh8PcXG5sl4R8TwKRyLiWSZMIPb55wHosG4dTJiQK6sNDAykXeXKAPzQty9EReXaukXEsygciYjniIsjuU8fnFOibzQG+vXLnV6cuDg6bdwIQCyAw5F76xYRj6JwJCKeY/t21hvDv0Ao0AggORl27MiVdbe9ONdoBXAqN9ctIh5F4UhEPEelSsTabAC0BnwB7HaoWDFX1l3BZiMKOA8szc11i4hHUTgSEc8REUFslSoA3Agp4WTsWIiIyJV12z79lLYXw9kvNlvurVtEPIrCkYh4jNOnT/Przp0A3Dh1KuzeDTExuVdATAztRo4EYH716rm7bhHxGApHIuIxlixZwrlz54iMjKTS/fdb0mvT5q67ANiweTPx8fG5vn4RsZ7CkYh4jPnz5wNw4403Yrs4vJXbSpQoQc2aNYGUa62JiPdROBIRj+G8rlm7du0srcO5fmdYExHvonAkIh7h2LFjbLx4nqFWrVpZWkvbtm0BdBFaES+lcCQiHuHXX3/FGEPlypUpWbKkpbW0bNkSu93O33//zd69ey2tRURyn8KRiHiExYsXAynBxGoFCxakfv36ACxdutTiakQktykciYhHWLJkCQAtWrSwuJIUzjqcdYmI91A4EhHLnTx5krVr1wKeE46aN28OqOdIxBspHImI5ZYvX05ycjJly5YlMjLS6nIAuOGGGwDYunUrR44csbgaEclNCkciYjlPG1IDKFKkCDVq1ABg2bJlFlcjIrlJ4UhELOdJk7FT09CaiHdSOBIRS505c4ZVq1YBntVzBP+FI03KFvEuCkciYqlVq1Zx7tw5wsPDqVChgtXluHGGo/Xr13PixAmLqxGR3KJwJCKWWr58OZAyAdqq66ldTpkyZShbtiwOh4MVK1ZYXY6I5BKFIxGxlDN0NGnSxOJK0qfzHYl4H4UjEbGMMcbVc9S0aVOLq0lfs2bNANRzJOJFFI5ExDLbt2/n6NGjBAQEUK9ePavLSZezR2vVqlUkJydbXI2I5AaFIxGxjLM3pkGDBvj7+1tcTfqqV69OwYIFOXnyJH/88YfV5YhILlA4EhHLePqQGoDdbqdRo0aAhtZEvIXCkYhYxtMnYzs561M4EvEOCkciYomEhATXMJXCkYh4EoUjEbHEypUrMcZQrlw5SpYsaXU5V9S4cWPgvwnkIpK/KRyJiCWcvTCePN/IqXDhwlSpUgWA3377zeJqRCSnKRyJiCWck7E9fUjNSUNrIt5D4UhEcp3D4XD1wOSFniNQOBLxJgpHIpLrtmzZQmJiIiEhIdSqVcvqcjJEJ4MU8R4KRyKS61atWgVAdHQ0vr6+FleTMToZpIj3UDgSkVy3Zs0aABo2bGhxJRlnt9u5/vrrAQ2tieR3CkcikutWr14N5K1wBP8Nra1cudLiSkQkJykciUiuSkpKYuPGjUDeC0fOep3hTkTyJ4UjEclVmzZt4vz58xQuXJhy5cpZXU6mOMPRli1bOHHihMXViEhOUTgSkVzlnG/UoEEDbDabxdVkTsmSJSlTpgzGGNatW2d1OSKSQxSORCRXOYekGjRoYHElWdOoUSPgvyPuRCT/UTgSkVyVF49US03zjkTyP48IR6NHj6ZcuXIEBgYSHR3N0qVLr9h+2rRp1KlTh+DgYMLDw3nwwQd1MUiRPOD06dNs3rwZUM+RiHguy8PRjBkzeOqppxg0aBDr16+nefPmdOzYkb1796bbftmyZfTo0YOYmBg2b97MV199xerVq+ndu3cuVy4imbVhwwaSk5MpWbIkpUuXtrqcLImOjsZms7Fnzx4OHz5sdTkikgMsD0fDhw8nJiaG3r17U61aNUaMGEGZMmX45JNP0m3/22+/UbZsWZ544gnKlSvHDTfcQL9+/Vxd9SLiuVLPN8prk7GdQkNDqVq1KqChNZH8ytJwdO7cOdauXUv79u3dlrdv3951xe5LNW3alLi4OObOnYsxhkOHDvH111/TuXPny64nKSmJxMREtx8RyX1rliwBoGGVKhZXcm1c846+/BLi4iyuRkSym6XhKD4+nuTkZEqUKOG2vESJEhw8eDDd+zRt2pRp06bRrVs3/P39KVmyJIUKFeKjjz667HqGDRtGWFiY66dMmTLZuh0ikgETJrB65kwAGgwfDhMmWFxQ1jW6cAGAVVOnQlRUnt4WEUnL8mE1IE33ujHmsl3uW7Zs4YknnuCVV15h7dq1/PTTT+zatYv+/ftf9vEHDhxIQkKC62ffvn3ZWr+IXEVcHIl9+rDt4q8NjIF+/fJmr0tcHA2nTwdgNWAcjry7LSKSLksvh120aFHsdnuaXqLDhw+n6U1yGjZsGM2aNeO5554DoHbt2oSEhNC8eXNef/11wsPD09wnICCAgICA7N8AEcmY7dtZawwAkUBxgORk2LEDIiKsrCzztm+njjH4AfHAbqBcXt0WEUmXpT1H/v7+REdHExsb67Y8NjaWpk2bpnuf06dP4+PjXrbdbgdSepxExANVqsSai73BrrMb2e1QsaJlJWVZpUoE+PhQ5+KvqyHvbouIpMvyYbUBAwYwfvx4Jk6cyNatW3n66afZu3eva5hs4MCB9OjRw9W+S5cuzJw5k08++YSdO3fy66+/8sQTT9CoUSNKlSpl1WaIyJVERLA6OhqABpASJsaOzZs9LRERMG4cDS+GvdU2W97dFhFJl6XDagDdunXj6NGjDB06lAMHDlCzZk3mzp1LVFQUAAcOHHA751GvXr04ceIEH3/8Mc888wyFChWiTZs2vP3221ZtgohkwJqLJ2pt+N570K1b3g4TMTE0Skjgk2eeYVWjRhATY3VFIpKNbMYLx6ISExMJCwsjISGB0NBQq8sRyffi4+MpVqwYAMeOHaNQoULWFpQNNm/eTM2aNQkJCSEhIcE1vC8iOSe3vr8tH1YTkfzPeZLWSpUq5YtgBFC1alUKFCjAqVOn2Lp1q9XliEg2UjgSkRznDEd59Xpq6bHb7URfnEel66yJ5C8KRyKS45yX2XCeWTq/cF6EVpcREclfFI5EJMflx54j+G97dG1HkfxF4UhEctT+/fvZv38/Pj4+1K9f3+pyspWzJ2zjxo0kJSVZXI2IZBeFIxHJUc5elerVqxMSEmJxNdmrbNmyFClShPPnz7Np0yaryxGRbKJwJCI5yjkfJ78NqUHKdSGd26V5RyL5h8KRiOQoZ89RfpuM7eTcLoUjkfxD4UhEcowxJl/3HIEmZYvkRwpHIpJj9uzZw9GjR/Hz86NOnTpXv0Me5Ow52rx5M6dOnbK4GhHJDgpHIpJjnL1GtWrVIiAgwOJqckapUqUoVaoUDoeD9evXW12OiGQDhSMRyTH5fb6Rk4bWRPIXhSMRyTH5fb6RkyZli+QvCkcikiMcDgdr164F1HMkInmLwpGI5Ijt27eTmJhIYGAg1atXt7qcHOUMR3/99RfHjx+3thgRuWYKRyKSI5y9KPXq1cPPz8/ianJW0aJFKVeuHICrt0xE8i6FIxHJEd4y38hJQ2si+YfCkYjkCG85Us1Jk7JF8g+FIxHJdhcuXGDdunWA9/QcKRyJ5B8KRyKS7bZu3cqZM2coUKAAVapUsbqcXFG/fn1sNht79+7l8OHDVpcjItdA4UhEsp2z9yQ6OhofH+/4mAkNDXUFQc07EsnbvONTS0RylbfNN3LSpGyR/EHhSESynbcdqeakeUci+YPCkYhkq6SkJDZu3Ah4X89R6nBkjLG4GhHJKoUjEclWmzZt4vz58xQuXNh1YkRvUadOHex2O4cOHeKff/6xuhwRySKFIxHJVs75Ng0aNMBms1lcTe4KDg6mZs2agIbWRPIyhSMRyVbeOt/IybndCkcieZfCkYhkK2co8Lb5Rk7O7dYRayJ5l8KRiGSb06dPs3nzZkDhaM2aNZqULZJHKRyJSLZZv349DoeDkiVLUqpUKavLsUTNmjXx9/fn2LFj7Ny50+pyRCQLFI5EJNukPvmjt03GdvL396du3bqA5h2J5FUKRyKSbbx9MraTTgYpkrcpHIlItvHWy4ZcSpcREcnbFI5EJFskJCSwbds2QD1HznC4du1akpOTLa5GRDJL4UhEssW6desAiIqKolixYhZXY62qVasSEhLCqVOn+PPPP60uR0QySeFIRLKF5hv9x263U79+fUBDayJ5kcKRiGSL1JcNEU3KFsnLFI5EJFusWrUKgEaNGllciWfQZURE8i6FIxG5ZkeOHGHPnj0AREdHW1yNZ3D2HG3cuJFz585ZXI2IZIbCkYhcM2fvSJUqVQgLC7O4Gs9QoUIFChUqRFJSEn/88YfV5YhIJigcicg18/aLzabHZrPpfEcieZTCkYhcs9VLlwLQsFIliyvxLK5J2d99B3FxFlcjIhmlcCQi18SMH8/qX34BoOGrr8KECdYW5EEaHD8OwOq5cyEqSs+NSB5hM8YYq4vIbYmJiYSFhZGQkEBoaKjV5YjkXXFx7I2MJMoYfIFEIMhuh927ISLC4uIsFhfHvshIIo3BDpxAz43Itcqt72/1HIlI1m3fzuqLf1/VAoIAkpNhxw4rq/IM27cTYQwlgGRgA+i5EckjFI5EJOsqVWLVxf+6pmLb7VCxokUFeZBKlbD5+OA8JeZq0HMjkkcoHIlI1kVEsLpqVeBiOLLbYexYDRtBynMwbhwNbTYA1thsem5E8ghfqwsQkbzL4XCwdv9+ABp++incdJO+/FOLiaGBry/06sXqChUgJsbqikQkAxSORCTL/vrrLxITEwkKCqJGr17gq4+USzXs2BGAbX//TWJiog4CEckDNKwmIlnmPPlj/fr18VUwSlfx4sWJjIzEGMO6deusLkdEMkDhSESyTGfGzhhdhFYkb1E4EpEsUzjKGOfzo8uIiOQNCkcikiXnz59n/fr1gMLR1ajnSCRvUTgSkSzZtGkTSUlJFCpUiIo6d88VOcPRrl27iI+Pt7gaEbkahSMRyZLUQ2q2i+fykfQVKlSIShcvyrt27VqLqxGRq1E4EpEs0XyjzNHQmkjeoXAkIlmicJQ5mpQtkncoHIlIpp0+fZrNmzcDCkcZpZ4jkbxD4UhEMm3t2rUkJydTqlQpSpcubXU5eUL9+vXx8fFh//797L94yRUR8UwKRyKSab/99hsAjRs3triSvCMkJITq1asDGloT8XQKRyKSaQpHWaOhNZG8QeFIRDJN4ShrnPOzFI5EPJvCkYhkSlxcHPv378dutxMdHW11OXlK6iPWjDEWVyMil+MR4Wj06NGUK1eOwMBAoqOjWbp06RXbJyUlMWjQIKKioggICKBChQpMnDgxl6oV8W7OXqM6deoQHBxscTV5S+3atfHz8+Po0aPs3r3b6nJE5DIsD0czZszgqaeeYtCgQaxfv57mzZvTsWNH9u7de9n73H333fzyyy9MmDCBbdu2MX36dKpWrZqLVYt4Lw2pZV1AQAC1a9cGNLQm4sksD0fDhw8nJiaG3r17U61aNUaMGEGZMmX45JNP0m3/008/sXjxYubOnUu7du0oW7YsjRo1omnTprlcuYh3Uji6No0aNQJg5cqVFlciIpdjaTg6d+4ca9eupX379m7L27dvz/Lly9O9z+zZs2nQoAHvvPMOpUuXpnLlyjz77LOcOXPmsutJSkoiMTHR7UdEMs/5ngWFo6xq0qQJwGU/40TEer5Wrjw+Pp7k5GRKlCjhtrxEiRIcPHgw3fvs3LmTZcuWERgYyKxZs4iPj+eRRx7h33//vey8o2HDhjFkyJBsr1/E2/z++++cPXuWwoULU7FiRavLyZOcvdzr1q3j7NmzBAYGWlyRiFzK8mE1IM0VvY0xl73Kt8PhwGazMW3aNBo1akSnTp0YPnw4kydPvmzv0cCBA0lISHD97Nu3L9u3QcQbpB5Su9x7VK6sfPnyFCtWjHPnzrFu3TqryxGRdFgajooWLYrdbk/TS3T48OE0vUlO4eHhlC5dmrCwMNeyatWqYYwhLi4u3fsEBAQQGhrq9iMimaf5RtfOZrO5eo9WrFhhcTUikh5Lw5G/vz/R0dHExsa6LY+Njb3sBOtmzZqxf/9+Tp486Vr2119/4ePjQ0RERI7WK+LtFI6yh3PekcKRiGeyfFhtwIABjB8/nokTJ7J161aefvpp9u7dS//+/YGUIbEePXq42nfv3p0iRYrw4IMPsmXLFpYsWcJzzz3HQw89RFBQkFWbIZLvHTlyhL///hubzeY64kqyJvWkbJ0MUsTzWDohG6Bbt24cPXqUoUOHcuDAAWrWrMncuXOJiooC4MCBA27nPCpQoACxsbE8/vjjNGjQgCJFinD33Xfz+uuvW7UJIl7Beeh5tWrV3Ia1JfMaNGiAr6+v6/PN+XknIp7B8nAE8Mgjj/DII4+ke9vkyZPTLKtatWqaoTgRyVkaUss+wcHB1K1blzVr1rBixQqFIxEPY/mwmojkDb/++iugcJRdnPMqdb4jEc+jcCQiV3X+/HnXsNoNN9xgcTX5gyZli3guhSMRuar169dz5swZihQpousYZhNnONqwYQOnT5+2uBoRSU3hSESuatmyZUDKqTR08sfsERkZSalSpbhw4QJr1qyxuhwRSUXhSESuKnU4kuxhs9k0tCbioRSOROSKjDGuydiab5S9NClbxDMpHInIFe3YsYPDhw8TEBBAdHS01eXkKzoZpIhnUjgSkStyDqk1bNiQgIAAi6vJX6KjowkMDCQ+Pp5t27ZZXY6IXKRwJCJXpCG1nOPv7+86b9SSJUssrkZEnBSOROSKNBk7Z7Vo0QJQOBLxJApHInJZR44ccQ33OCcPS/ZyhqOlS5daXImIOCkcichlLZ89G4AalStTuHBhi6vJnxo3boyvry979+5lz/TpEBdndUkiXk/hSETSN2ECy3r3BqDZX3/BhAkWF5Q/hYSEEB0ZCcDS7t0hKkrPtYjFFI5EJK24OOjbl2UXf70BoF8/9WrkhLg4mu/cCcASAIdDz7WIxRSORCSt7ds543Cw9uKvNwAkJ8OOHRYWlU9t306Li/91zTrScy1iKYUjEUmrUiVW2GycB0oDZQHsdqhY0dKy8qVKlWh28Xp1fwKHQc+1iMUUjkQkrYgIFnXuDEArwGa3w9ixEBFhaVn5UkQEhT/9lFoXf13m46PnWsRiCkcikq5FCQkAtHr2Wdi9G2JirC0oP4uJoUXPngAsefBBPdciFlM4EpE0Tp8+zcqVKwFo1a+fejFyQfOOHQFYsm6dxZWIiMKRiKTx22+/ce7cOUqXLk2FChWsLscrNG/eHICNGzeScLHXTkSsoXAkImksWrQIgFatWmG7OFlYclapUqWoUKECDofDdT07EbGGwpGIpJE6HEnuadmyJfDf8y8i1lA4EhE3bvONFI5yVdu2bQFYsGCBxZWIeDeFIxFxo/lG1mndujUA69at499//7W4GhHvpXAkIm4038g64eHhVKtWDWMMixcvtrocEa+lcCQibjTfyFpt2rQBNLQmYqVrCkeHDx/m4MGD2VWLiFhM842s55x39Msvv1hciYj3ylI4+v3336lRowbh4eGULl2a0qVL89JLL3Hq1Knsrk9EctHSpUs5d+4cERERmm9kkZYtW2Kz2di6dSsHDhywuhwRr5SlcBQTE0OJEiVYtmwZ69ev5/XXX+fHH3+kQYMGHDt2LLtrFJFcEhsbC8CNN96o+UYWKVy4MPXq1QNg4cKFFlcj4p2yFI62bNnC6NGjadKkCbVr1+bBBx9kzZo11KhRg8cffzy7axSRXJI6HIl1NLQmYq0shaP0eohsNhtvvvkm3333XbYUJiK569ChQ/z+++/Af1/OYg1Nyhaxlm9GG3bu3Jk6depQt25d+vfvz9NPP813331HiRIlXG0SEhK47rrrcqRQEclZ8+fPB6Bu3boUL17c4mq82w033ICvry+7d+9m165dlCtXzuqSRLxKhsNRrVq1WLduHZMmTeLQoUMAlC9fnrvvvpu6deuSnJzMpEmT+OCDD3KsWBHJORpS8xwFChTg+uuv59dffyU2Npa+fftaXZKIV7EZY0xm73To0CHWr1/Phg0bXD87duzAbrdTpUoVV9e8p0pMTCQsLIyEhARCQ0OtLkfEcsYYIiIi2L9/Pz///LMCkgd47bXXeOWVV7jjjjv45ptvrC5HxCPk1vd3lsJRes6cOcPGjRvZuHEj/fr1y46HzDEKRyLutm7dSvXq1QkICODYsWMEBQVZXZLXW716NY0aNSI0NJT4+Hj8/PysLknEcrn1/Z1tZ8gOCgqicePGHh+MRCQt55Ba8+bNFYw8RP369SlSpAiJiYn89ttvVpcj4lV0+RARcYWjdu3aWVyJONntdtq3bw/AvHnzLK5GxLsoHIl4uXPnzrmup6a5Rp7lpptuAuCnn36yuBIR76JwJOLlli1bxsmTJylevDh169a1uhxJxdlztHbtWg4fPmxxNSLeQ+FIxMvNnTsXgI4dO+Ljo48ET1KyZElXYHUOfYpIztMnoYiXmzNnDgCdOnWyuBJJj4bWRHKfwpGIF9u5cyd//vmn2+Rf8SzOcDRv3jwcDofF1Yh4B4UjES/mHFJr1qwZhQoVsrYYSVeTJk0oUKAAR44cYf369VaXI+IVFI5EvJgzHHXu3NniSuRy/P39XadYcA6BikjOUjgS8VKnT59m4cKFgOYbebouXboAMHv2bIsrEfEOCkciXmrhwoWcPXuWyMhIatSoYXU5cgWdO3fGZrOxdu1a/vnnH6vLEcn3FI5EvFTqo9RsNpvF1ciVlChRguuvvx6AH374weJqRPI/hSMRL2SM0XyjPOaWW24BNLQmkhsUjkS80O+xsezZs4fAgABat25tdTmSAc55R7/88gun5s6FuDiLKxLJvxSORLzNhAnM6tABgA5JSYR88YXFBUlG1KhRg3JFi5KUlERs584QFQUTJlhdlki+pHAk4k3i4qBvX2Zd/PU2gH791AuRB9j++Ycu8fEAfA/gcGjfieQQhSMRb7J9OzsdDn4H7EAXgORk2LHD2rrk6rZv55aL//0eSAbtO5EconAk4k0qVWLWxSPTWgBFAOx2qFjRyqokIypVornNRihwBFgJ2nciOUThSMSbRETw7cUv09sh5ct17FiIiLC0LMmAiAj8P/2UzhfD7UybTftOJIcoHIl4kUOHDvHrxWGY22bMgN27ISbG2qIk42Ji6Dp2LABfly6NeeghiwsSyZ8UjkS8yOzZszHG0KBBA8rcfbd6HfKgm+67j+DgYPbExbF27VqryxHJlxSORLzIrFkpx6ndfvvtFlciWRUcHOw6cefXX39tcTUi+ZPCkYiXOH78OL/88gsAt912m7XFyDW56667gJRwZIyxuBqR/EfhSMRLfPvtt5w7d44aNWpQvXp1q8uRa9CxY0eCgoL4+++/2bhxo9XliOQ7CkciXmLGjBkAdOvWzeJK5FoVKFCAjh07AhpaE8kJCkciXiA+Pp7Y2FhA4Si/6Nq1KwBfffWVhtZEspnCkYgXmDlzJsnJydSrV4/KlStbXY5kg5tvvpmAgAD++usv/vjjD6vLEclXFI5EvMAXFy8ue88991hciWSXggULuobWPv/8c4urEclfPCIcjR49mnLlyhEYGEh0dDRLly7N0P1+/fVXfH19qVu3bs4WKJKHHThwgEWLFgFw9913W1uMZKvu3bsDKeHI4XBYXI1I/mF5OJoxYwZPPfUUgwYNYv369TRv3pyOHTuyd+/eK94vISGBHj160LZt21yqVCRvch7u3bhxY8qWLWt1OZKNbr75ZgoWLMjevXv59ddfrS5HJN+wPBwNHz6cmJgYevfuTbVq1RgxYgRlypThk08+ueL9+vXrR/fu3WnSpEkuVSqSN2lILf8KCgrizjvvBGDatGkWVyOSf1gajs6dO8fatWtp37692/L27duzfPnyy95v0qRJ/P333wwePDhD60lKSiIxMdHtR8Qb7Ny5k+XLl2Oz2VwnDpT85b777gNSjlo7d+6cxdWI5A+WhqP4+HiSk5MpUaKE2/ISJUpw8ODBdO+zfft2XnjhBaZNm4avr2+G1jNs2DDCwsJcP2XKlLnm2kXygv/9738AtGvXjlKlSllcjeSE1q1bEx4ezr///stPP/1kdTki+YLlw2oANpvN7XdjTJplAMnJyXTv3p0hQ4Zk6nDkgQMHkpCQ4PrZt2/fNdcs4umMMUydOhWAnj17WlyN5BS73e4aMv3ss88srkYkf7A0HBUtWhS73Z6ml+jw4cNpepMATpw4wZo1a3jsscfw9fXF19eXoUOHsnHjRnx9fVmwYEG66wkICCA0NNTtRyS/W7ZsGTt37qRAgQK60Gw+5xxa+/777zVtQCQbWBqO/P39iY6Odp251yk2NpamTZumaR8aGsqmTZvYsGGD66d///5UqVKFDRs2cP311+dW6SIeb8qUKUDKRUqDg4MtrkZyUv369alatSpnz57lq6++srockTzP8mG1AQMGMH78eCZOnMjWrVt5+umn2bt3L/379wdShsR69OgBgI+PDzVr1nT7KV68OIGBgdSsWZOQkBArN0XEY5w5c4Yvv/wS0JCaN7DZbPTq1QuAiRMnWluMSD5geTjq1q0bI0aMYOjQodStW5clS5Ywd+5coqKigJQT2F3tnEci4u7bb7/lxIkTlC1blubNm1tdjuSCHj16YLfbWb58OVu3brW6HJE8zWa88IqFiYmJhIWFkZCQoPlHki/ddNNNzJs3j5dffpmhQ4daXY7kkltuuYXvv/+e5557jnfeecfqckSyXW59f1vecyQi2Wvv3r2ueXzOIWnxDg899BAAU6dO5fz58xZXI5J3KRyJ5DMTJ07E4XDQunVrKlasaHU5kos6d+5M8eLFOXToED/++KPV5YjkWQpHIvnIhQsXmDBhAgB9+/a1uBrJbX5+fq7eQufrQEQyT+FIJB/56aefiIuLo0iRIjq3kZd68MEHAZgzZw4HDhywuBqRvEnhSCQfGffhhwD0vOMOAgICLK5GrFC9enWaNGlCcnIyE196CeLirC5JJM9ROBLJJ+LefZc58+cD0Gf8eNCwitd6pHp1AMZOnMiFyEi9FkQySYfy61B+yQ/i4ngtMpJXjKEFsBjAbofduyEiwtraJHfFxXE2MpIyxhAPfAvcqteC5BM6lF9EMuzCn3/y6cW/c1zTsJOTYccOy2oSi2zfTqAxxFz8dTTotSCSSQpHIvnA7F272AcUBe50LrTbQYfye59KlcDHh36ADfgZ2O7jo9eCSCYoHInkAx99/jkAfWw2AiElGI0dq2EUbxQRAePGUc5up9PFRWPattVrQSQTNOdIc44kj/v999+pU6cOdrudXcuXU+b06ZReAn0Zere4OOZ+9hmdBw7kuuuuIy4ujuDgYKurErkmmnMkIhny8ccfA3D77bdTplEjaNVKwUggIoIOzz1HuXLlOHbsGDNmzLC6IpE8Q+FIJA/7999/+eyzzwB44oknLK5GPI3dbqd///4AjBw5Ei8cKBDJEoUjkTxswoQJnDlzhjp16nDDDTdYXY54oJiYGIKCgtiwYQOLFy+2uhyRPEHhSCSPSk5OZtSoUQA8/vjj2Gw2iysST1SkSBF69eoFwPDhw60tRiSPUDgSyaNmz57Nnj17KFy4MN27d7e6HPFgTz31FADff/89f/31l7XFiOQBCkciedR7770HQL9+/QgKCrK4GvFklStXpkuXLgCMGDHC2mJE8gCFI5E86Ndff2X58uX4+/vz+OOPW12O5AEDBgwAYPLkyRw9etTiakQ8m8KRSB707rvvAvDAAw8QHh5ucTWSF7Rs2ZJ69epx5swZxo4da3U5Ih5N4Ugkj/nzzz+ZPXs2AM8++6zF1UheYbPZXL1HH330EUlJSRZXJOK5FI5E8pj3338fYwy33HILVatWtbocyUPuvvtuSpUqxcGDB13nxxKRtBSORPKQgwcPMnXqVACee+45i6uRvMbf359nnnkGgLfeeovk5GSLKxLxTApHInnIRx99xLlz52jSpAnNmjWzuhzJg/r27UvhwoXZsWMHX331ldXliHgkhSORPCIhIcF10sfnnntOJ32ULClQoABPPvkkAG+++aYuKSKSDoUjkTzi448/JiEhgWrVqnHrrbdaXY7kYY899hgFChRg06ZNzJkzx+pyRDyOwpFIHnDy5Ek++OADAF566SV8fPTWlawrXLgwDz/8MABvvPGGeo9ELqFPWJE84JNPPuHo0aNUqlSJbt26WV2O5ANPP/00AQEB/Pbbb7ogrcglFI5EPNzp7dt5b9gwAF588UXsdrvFFUl+EB4ezkMPPQTAm88+C3FxFlck4jkUjkQ82YQJfFqlCoePHaMscJ9O3CfZ6P+iorADsWvX8ltkJEyYYHVJIh7BZrxwsDkxMZGwsDASEhIIDQ21uhyR9MXFcTYykgrGsB8YC/S122H3boiIsLg4yfPi4iAqioccDiYB7YF5en2Jh8ut72/1HIl4qu3bmXQxGEUAPQGSk2HHDmvrkvxh+3ZwOHgJ8AV+Bpbp9SUCKByJeKyzZcow7OL/nwcCAOx2qFjRuqIk/6hUCXx8KA88eHHRYNDrSwSFIxGPNXbOHPYBpYHekBKMxo7VkIdkj4gIGDcO7HZeAvyABcAi9RyJKByJeKKTJ0/y5ptvAvDKW28RuHBhylyQmBhrC5P8JSYGdu8mcuFC+vToAcArr7yi8x6J19OEbE3IFg/05ptvMmjQICpUqMDWrVvx8/OzuiTJ5/755x8qVKhAUlISsbGxtGvXzuqSRNLQhGwRL3X8+HHeffddAIYMGaJgJLmidOnS9O/fH4CXX35ZvUfi1RSORDzMe++9x/Hjx6lRowb33HOP1eWIF3nhhRcICgrit99+44cffrC6HBHLKByJeJDDhw8zYsQIAF5//XWdDVtyVcmSJXnyySeBlKB04cIFiysSsYbCkYgHGTZsGKdOnaJhw4bceuutVpcjXuj555+ncOHCbNmyhSlTplhdjoglFI5EPMTOnTsZNWoUkNJrZLPZLK5IvFGhQoUYNGgQkHLk2unTpy2uSCT3KRyJeIiBAwdy/vx52rdvT/v27a0uR7zYo48+SlRUFPv372fkyJFWlyOS6xSORDzAihUr+PLLL7HZbK4j1USsEhAQwGuvvQbAW2+9xdGjRy2uSCR3KRyJWMwYw7PPPgvAgw8+SO3atS2uSATuu+8+6tSpQ0JCAm+88YbV5YjkKoUjEYvNnDmT5cuXExwczNChQ60uRwQAHx8f3n77bQBGjRrF33//bXFFIrlH4UjEQufOneP5558H4Nlnn6V06dIWVyTyn/bt23PjjTdy7tw5V++miDdQOBKx0OjRo/n7778pWbIkzz33nNXliLix2Wx88MEH2O12vv32W+bPn291SSK5QuFIxCJHNm5kyMsvAzB06FAKFChgcUUiadWoUYNHHnkEgKf69OHC7t3WFiSSCxSORKwwYQIv1q3L8ZMnqQc8ZHU9IlcwpGJFigCbd+9mbPnyMGGC1SWJ5Cib8cKrC+bWVX1F0hUXx6rISBobgwGWAc3sdti9GyIiLC5O5BJxcRAVxScOB48A1wHbfXwosmePXq+S63Lr+1s9RyK5zLFtG49dDEYPAM0AkpNhxw5rCxNJz/bt4HDQB6gFHANedTj0epV8TeFIJJdNXr+e1UBB4G3nQrsdKla0riiRy6lUCXx88AU+vLhoNLD+7FkLixLJWQpHIrno2LFjvPDOOwAMttkIh5RgNHashijEM0VEwLhxYLfTGuhms+EA+r3yCsnJyVZXJ5IjFI5EctHzzz/PkSNHqFq1Ko/v2AELF6bMNYqJsbo0kcuLiUl5nS5cyAerVxMaGsrq1asZM2aM1ZWJ5AhNyNaEbMklS5YsoWXLlgAsXryYFi1aWFyRSNaMHj2aRx99lNDQULZu3UqpUqWsLkm8hCZki+QjZ8+epW/fvgD06dNHwUjytH79+tGoUSMSExN5+umnrS5HJNspHInkgmHDhrFt2zZKlizJOxfnHInkVXa7nbFjx2K32/nyyy+ZO3eu1SWJZCuFI5EctnnzZoYNGwbARx99RKFChawtSCQb1K1bl6eeegqAvn37cvz4cUvrEclOCkciOejChQvExMRw/vx5unTpwp133ml1SSLZZujQoVSsWJF//vmHAQMGWF2OSLZROBLJQW+//TYrV64kLCyMUaNGYbPZrC5JJNsEBwczefJkbDYbkyZNYs6cOVaXJJItFI5Ecsj69et59dVXAfj4448pU6aMtQWJ5IBmzZq5eo369OnDsWPHLK5I5NopHIlkt7g4zs6bxwP33MOFCxe48847ue+++6yuSiTHvPbaa1SpUoUDBw7wxBNPpFyPbeHClH9F8iCFI5HsNGECREXx8k03sfmvvygRGsonn3yi4TTJ14KCgpg8eTI+Pj589tlnTI+MhDZtICoq5T0hkscoHIlkl7g46NuXXxwO3r+46NOTJymWlGRpWSK5oXHjxrz0xBMA9DOGnQAOB/Trpx4kyXM8IhyNHj2acuXKERgYSHR0NEuXLr1s25kzZ3LjjTdSrFgxQkNDadKkCfPmzcvFakUuY/t2Djoc3AcYoA/QRVcvFy/ycufO3ACcAO4FzgMkJ+s9IHmO5eFoxowZPPXUUwwaNIj169fTvHlzOnbsyN69e9Ntv2TJEm688Ubmzp3L2rVrad26NV26dGH9+vW5XLmIu+Ty5ekOHAJqcfEK5nY7VKxoaV0iucW3alWm2WxcB6wCXgK9ByRPsvzaatdffz3169fnk08+cS2rVq0at912m+vEeVdTo0YNunXrxiuvvJKh9rq2muSEwYMHM3ToUEKAtUAVux3GjtVFZcW7TJjArL59ucPhAGDWo49y28cfW1yU5BdecW21c+fOsXbtWtq3b++2vH379ixfvjxDj+FwODhx4gSFCxe+bJukpCQSExPdfkSy05w5c3jttdcAGDtyJFUWLky5irmCkXibmBhu37OHJy+e8LTH1Kn8+eefFhclkjmWhqP4+HiSk5MpUaKE2/ISJUpw8ODBDD3G+++/z6lTp7j77rsv22bYsGGEhYW5fnS+GclOW7du5d5778UYQ79+/bjv8cehVSuIiLC6NBFrRETw7vTptGzZkhMnTnDbbbfpj1LJUyyfcwSkOczZGJOhQ5+nT5/Oq6++yowZMyhevPhl2w0cOJCEhATXz759+665ZhGAf//9l1tuuYUTJ07QvHlzRo4caXVJIh7Bz8+PL7/8koiICLZt28YDDzxAcnKy1WWJZIil4aho0aLY7fY0vUSHDx9O05t0qRkzZhATE8OXX35Ju3btrtg2ICCA0NBQtx+Ra3X+/Hm6devGjh07iIqK4ptvvsHf39/qskQ8RvHixZk5cyYBAQHMnj2bZ555xuqSRDLE0nDk7+9PdHQ0sbGxbstjY2Np2rTpZe83ffp0evXqxeeff07nzp1zukyRNIwx9OnTh/nz5xMcHMx3331HsWLFrC5LxOM0bNiQKVOmAPDhhx8yYsQIawsSyQDLh9UGDBjA+PHjmThxIlu3buXpp59m79699O/fH0gZEuvRo4er/fTp0+nRowfvv/8+jRs35uDBgxw8eJCEhASrNkG80MCBA5kyZQp2u50ZM2ZQp04dq0sS8VjdunXjnXfeAVI+87/55huLKxK5CuMBRo0aZaKiooy/v7+pX7++Wbx4seu2nj17mpYtW7p+b9mypSHlHHtuPz179szw+hISEgxgEhISsnErJN/bt8+YBQvMB4MHu153EydOtLoqkTzB4XCYRx55xADG39/fzJs3z/WeMvv2WV2e5BG59f1t+XmOrKDzHEmmTZgAffsy1uGg/8VFw4YN44UXXrC0LJG8JDk5mbvvvpuZM2cS6OfHjxcu0MoY8PGBceN06gu5qtz6/lY4UjiSq4mLg6goxjgcPHxx0TM2G+/u2YNNp4UQyZRz585xR6dOzPnlF0KAeUAzSDmT9u7dOgWGXJFXnARSJE/Yvt09GAHvGoPt77+trEokT/L39+fr557jRuAU0AH4BXQNNvEoCkciV2CMYdi8ee7BCLDpelEiWRZYowbf2my0IyUgdQJm+fjoPSUeQ+FI5DKSk5N54oknePHttwF4wWb7LxiNHavuf5Gsiogg+NNP+cHHh9uBc0BXY5j4889WVyYCKByJpOv06dPcc889fPzxx9hsNkaMGMGwvXux6ZppItkjJoaAPXv4cv58et11Fw5jiImJYeDAgTguXrRWxCqakK0J2XKJPXv2cNttt7Fhwwb8/f2ZOnUq3bp1s7oskXzL4XDw8ssv8+abbwJw66238tlnn1GgQAGLKxNPownZIhZYtGgRDRo0YMOGDRQrVozY2FgFI5Ec5uPjwxtvvMH//vc/AgIC+O6777jhhhvYtWuX1aWJl1I4EomLw/HLL7z/8su0a9eO+Ph46tevz5o1a2jRooXV1Yl4jfvvv5+FCxdSvHhxNm7cSL169Zg1a1bK6TQWLkz5VyQXaFhNw2rebcIEDvfpQ09j+Oniou7du/Ppp58SHBxsaWki3mrfvn1069aNFStWAPAk8A7gr5NFej2dBDIHKRwJAHFxzI+M5AFjOAgEAh/YbPTTyR1FLHf+/HlefPxx3hs7FoBo4H9ANZ0s0qtpzpFIDjp16hRPP/UU7S8Go+rAaqC/Tu4o4hH8/Px4t1s3ZgPXAWuB+sCHyck4/vrL2uIk31M4Eq+zYMECateuzYhvvsEAfUkJRjUh5RIGOhGdiGeoVIkuPj5sIuVM2meBp4B2L7/M3r17LS1N8jeFI/EaCQkJ9O3bl7Zt27Jz507KlCnD3CefZKzdTjCkBCOd3FHEc0REwLhxlLbb+RH4xGYj2N+fhcuXU6tWLT799FO8cGaI5ALNOdKcI6/www8/0L9/f/755x8AHn74Yd56662U/R8Xl3JNp4oVFYxEPFGq9+iOs2fp0aOHa7J269atGTduHBXV4+sVNCE7BykceYm4OOLXrOHJKVP4/NtvAahYsSLjx4+nZcuW1tYmIlmWnJzMyJEjGTRoEGfOnCEoKIihQ4fyVNeu+O7aBZUq6Q+dfErhKAcpHOV/Zvx4vuzbl8eN4QjgY7Mx4JlnGDJkiA7RF8kndu7cSZ8+fViwYAEADYAJQG0d8p9v6Wg1kSzav2YNt/fpwz0Xg1ENYIXNxrtPPqlgJJKPlC9fnvnz5zP+3XcJA9aQcsj/Kw4HSX376qSRkmUKR5JvGGOYOHEi1Vu14jvAFxgMrAMaORwpcxZEJF+x2WzEREezBbgNuAC8BtRzOFjx3XeW1iZ5l8KR5Au7d++mQ4cOxMTEkHDqFA1ICUWvAv6gQ/RF8rNKlSjl48NM4CugOLAVaPb44zz22GMkJiZaW5/kOQpHkqc5HA4+/vhjatasSWxsLIGBgbzzzjusGDuWWnZ7SiMdoi+Sv1085N9mt9MV2OrjQ6+mTTHGMGrUKKpXr8536kWSTNCEbE3IzrO2bdtG7969WbZsGQDNmzdn/PjxVK5cOaWBDtEX8S6XvOcXLFhA3759+fviWe/vvPNORo4cSalSpSwuVLJKR6vlIIWjvO38rl289+abDPnf/0hKSqJAgQK8/fbb9O/fHx8fdYaKyH/OnDnD0KFDeffdd0lOTiYsLIy3X3iBPg0b4lOliv5wymMUjnKQwlHetXLQIHq/+SZ/XPy9Q40ajJ0zh6ioKEvrEhHPtnHjRvr06cPq1asBuAEYZ7NR7dNPdch/HqJD+UVSOXHiBE889BBNLgajosBnwI9btxLlnFskInIZderUYcVXXzHCZiMEWAbUNYYhffqQpItNyyUUjsTjzZ49m+rVq/PRpEkYoAcpR6LcB9h0iL6IZJB9506eNIbNQCfgHPCqMdRr29Y1d1EEFI7Eg+3evZs77riDW2+9lbi4OMpHRhJrszGFlJ4jQIfoi0jGVaoEPj5EAT8AX3DxsP89e2jevDkPP/wwCQkJ1tYoHkHhSDxHXBwsXMjp7dsZPHgw1apVY9asWdjtdl544QU2bd1Ku08/TQlEoEP0RSRzLh7yj92ODehmt7N1xAhiLs45GjNmDFWrVmXSpEk4HA7XZ5LOtO19NCFbE7I9w4QJmD59+MoYngX2XVzcunVrRo4cSc2aNf9rq0P0ReRapPMZsmjRIvr27cv27dsBqBcZyfB9+2hlDOhabR5DR6vlIIUjz2L27eOXqCheNIbVF5dFAsPHjuWOPn2w2WxWliciXiIpKYmPPvqI14YOJfHECSDlkiRvAtXsdti9W3+QWUxHq0m+Z4xh6dKltL3lFm68GIyCSbke2lbgzsqVFYxEJNcEBATw7LPPsmPKFB4B7MC3pFy8+t7kZLbMn29pfZJ7FI4k510ybp+cnMzXX39NkyZNaNGiBQs3bMAfeBLYScr10II10VpELFKsYUNG+fjwO3ArYEiZvF3zoYfo2rUrS5cuxW3QRXOT8h2FI8lZEyZAVBS0acO+yEjeuP12KlWqxF133cXKlSsJCAhIGed/+21G2O2UAE20FhFrXZy4Xd1u51tgvY8Pd9SvjzGGb775hhYtWlC3bl0+/fRTTowa5fqMIyoq5TNP8jzNOdKco5wTF8fRyEh+MIbPgVhS/gIDKFy4MI8++iiPPvooJUqUcLXXRGsR8RiXfCb98ccfjBw5ks8++4wzZ84AEAjcAnQHbgICNDcpR2lCdg5SOMo5xhg2b97ML7/8wneTJ7NkwwaSU93eEnjohRfo+vLLBAcHW1WmiEiWHTt2jEmTJjH2gw/4K9VQWgGgHdBxwAA6PvUUZcqUsazG/ErhKAcpHGWDuDjYvh1TsSJ/njzJwoULWbRoEYsWLeLIkSNuTWsDtwMPABX0V5WI5BNm3z7WR0XxuTF8Afxzye1Vq1alZcuWtGjRgubNm1PGZoPt21NORqnPwCxROMpBCkdZ53A42Pr66yx+9VUWG8MS4OAlbYKDg2nWrBk33XQTt507R/mXXoLk5P/mEulcISKSX0yYAP364UhOZr2PDz/ecgtzDx1i5cqVKSeSTKUs0AJoYbPR8vXXqTBwoI7IzSSFoxykcJQ5f//9N3PnzmXhwoUsXbyY+H//dbs9AGjatCmtb7qJ1q1b06hRI/z9/f9roLlEIpKfpfMZ9++//7J06VKWLFnCkvnzWff77zguuVtk6dK069CBtm3b0qZNG0qWLJn7tecxCkc5SOHoCuLiOL91K4vj45m7ejVz5szhr7/+cmsSBDQlZf5QC+B6IHDhQmjVKtfLFRHxeAsXcqJNG1YAS4DFwErg/CXN6tSpw+23387tt99Oreuuw7Zjh4bgLqFwlIMUjtIyxrBy0CCmDRvGF0B8qtt8fX1p3rw57du3p2W1akTffjv+qV82mkckInJ5cXEph/mnGmY75ePDsilTmL9xI7/88gsbNmxwO3dSeVLmana32ag3bhy23r1zv24PpHCUg7wyHF2cQH3pXyHbt29n2rRpfDZ5Mn/v2eNaXgy42Waj85gxtOvWjbCwsP8e6+IYu+YRiYhk0FU+N+Pj4/nhhx+Y9fnn/Bwby9lUd60BPDBwIPc98ggRl/4RepnP9vxK4SgHeV04mjAB+vZN+avFx4fD773HDF9fPvvsM1atWuVqFkzKXyr3k3I4qi+knPU1veEyzSMSEcmcjHxuLlzIqTZtmAfMAL4Dki7eZLPZaNOmDT169OD222+n4Jdfun22e8PFcRWOcpBXhaOL3bmJDgezgOnAfHCde8hut3PjjTdyf6dO3PrkkxTQcJmIiHUuGYI7DnxtszG1YUOWpvpjNjAggFuSkv47+SR4xWe2LjwrGXOFa/ocPnyYqaNG0dXhoDjQC5hHSjBqWLUqH374If/88w8//vgj9z3+OAU+/TTlzQW6hIeIiBUuXrrE+VlcyG6n96efsmTlSnbu3MnQoUOpXLkyZ5OS+BK4DQgHegPfJieTuHFj+o+r679linqO8nLPUarhsgs2G7tef53VZcuyatUqfv31V9asWePWvCpwL3CPjw+V9+xJP/houExExHpX+Cw2xrDuxx/5vHNnpgMHUt3m6+tL06ZNadGiBdHR0URHRxMxbx62fv3yxfCbhtVyUF4IR2d37GDv8uUcDA4mISCAxMREEhISSEhI4Pjx4xz/5x+OT5vGUWA3sAe4kM7j1KtXj47h4dz100/UcTiwaQK1iEj+MGECyX37ssThYKbNxrzixdl+6FCaZsFAJBBFysE2YTYbYY8+SliZMhQqVIiwsDAKFSpEoUKFKHbhApFnzuBbtapH/oGscJSDLA1H6RxZYIxh9erVxMbGsmrVKtYuXco/x45l+qEDgHrVq9OoXTsaNWpEmzZtCA8P/2+96hESEclfLvls//vvv//7Llm7ls1//EGy49LTT16ZLyln867foAE39OhBy5YtqVWrlvvZvC06Sk7hKAdl5ck9f/48X3/9NZs2bSIsLIw2bdrQoEGDzJ36/ZKjxna/+SafnT/P//73vzQnWgQIAUoDYUBY8+aEFS9OaGgo1113HYVsNgoNH04hY4gCKgDhPj74XG64TEREvE7S33+zr1Il9hjDXuAokGCzkdCrFwnJya7RiIT4eI5v3sxBcDuNgFOFChW48847uffee6mzZk2Wh+kuXLjAL7/8wm+//caFCxdo0aIFbdu2xccnY1Ogc61zw3ihhIQEA5iEhIQMtd++fbupXLmyAdx+ateubSZNmmSSkpKM2bfPmAULUv5Nz759xvj4mONgxoNpccljBQUFma5du5rhDz9sloGJB+MAY5w/Cxemfczx442x21Nut9tTfhcREUktI98VCxYYAyYZTByY+WBeB9OhYUMTGBjo9n1VE8zbF9u5HvNK330LFphTf/1lPv74Y1O2bNk036UdOnQwR48ezdCmZPb7O6sUjq7i8IYNpkzx4gYwxYsXN/369TN33HGH24ul9HXXmfdsNpMIxvj4pHnhnT592nz32mvmHjCBqV4QNjBt6tUzkyZNMomJiSmNL4YokzoYXe2Ft3Dh5W8XERG52nfFFb57Tpw4Yb788kvTtWtXE+Dn5/Yd1g7MVDAn5s5N+5jjx5sjNpsZCqZoqu++okWLmp49e5oePXq4vkvb3nCDuRAbe9XvstwKRxpWu1K33IQJ9Ozdm6lAJWDJ++9TcsAAAI4dO8ann37KiPff58DhwwAUAFoDNW02Qp9/nn+Tk/n9999ZtmwZp06dcj1sNaAHcJ+PD2XSGwbTGahFRCS3ZeC75/jmzXxVqxZTjWFZquXBQUF0uOkmqlevTkhICEd372bduHEs4b/z6pUFnnv9dR4cMICgoCAA1q9fT/MmTTiVlMS7wLNXGabTnKMc5Hpyt2whtFq19BvFxbEmMpKGxmADfgMapXOCraR58/jsppt4F9h2hXWWKVOGO6pU4f4FC4jOyFFjmkAtIiK5LSPfPRdD1M7kZD6z2fhfsWLsuNhJkJ5o4FmgK+B76VUX4uIYHxlJH2O4DtgFhF3hZJaJW7cSVr26wlFOcIajn4AO48enH1AWLqR7mzZMJ+VyGv9LtfzSHUtUFA6Hgw3AQmC3zcaJO++kUOnSVKlSheuvv5569eqlTN5W6BERkbwu1XeZKV2alStXsnz5cnbs2EFSUhIFbTaqTpzIjcZQwXmf9ELPwoUkt2lDLWAr8Abw4sXlaS5dNWECE3r3pjcoHOUEZzh6A3jxMgn1n9WriWrUiGRgPVAXLn9qdg2DiYiIuMvId+PFDoapDgc9gfLA9vSOvL7Y7m6Hg6/I+XDk1ZcPSYSUnbZjR5rbZixdSjLQjFTB6HKX04iJSQlNCxem/KtgJCIi3i4j340XL5fS1ceHUGAnsHjAgLTftdu3g8NBQs5XDXh5ODoOKaGnYsU0t82YMQOAe197LWOhJyIipQtQQ2UiIiIpMvLdGBND8J493HPzzQBMT0gnAlWqBD4+Cke5IRHS7Q3avXs3q1atwsfHh659+ij0iIiI5KSICO58/HEAvv/+exyXntX7Yg9TYi6V49XhKKFNm3R7g2JjYwFo0qQJJUqUyO2yREREvE6rVq0IDQ3l4MGDrF69Om2DmBgScuk72avDUeK5c+kuX7hwIQBt2rTJzXJERES8lr+/Px07dgTghx9+SLdNYqpzBuYkrw5HCemMaxpjFI5EREQs0L59ewAWLFiQ5rbk5GROnjyZK3V4dThKTEw7erlt2zYOHjxIQEAAjRs3tqAqERER7+TslFi1alWaIJTed3ZO8epwdPz48TTLnGm1adOmBAYG5nJFIiIi3qts2bKULVuWCxcusGzZMrfb0vvOzileHY4SEhI4f/682zINqYmIiFjH+f3r/D52OnLkSK7V4BHhaPTo0ZQrV47AwECio6NZunTpFdsvXryY6OhoAgMDKV++PGPGjMnyuuPj413/dzgcLFq0CIDWrVtn+TFFREQka5zfv5fOO/KqcDRjxgyeeuopBg0alHJ13ubN6dixI3v37k23/a5du+jUqRPNmzdn/fr1vPjiizzxxBN88803WVp/6id78+bNxMfHExwcTMOGDbP0eCIiIpJ1znC0bt06t6G0w1e4uG12szwcDR8+nJiYGHr37k21atUYMWIEZcqU4ZNPPkm3/ZgxY4iMjGTEiBFUq1aN3r1789BDD/Hee+9laf2pn2xnSm3evDn+/v5ZejwRERHJutKlS1OpUiUcDofbvCOv6Tk6d+4ca9eudR2659S+fXuWL1+e7n1WrFiRpn2HDh1Ys2ZNmvlDGZE6HDnHNzWkJiIiYh3n97Bzqgvkbs+Rb66tKR3x8fEkJyenOQt1iRIlOHjwYLr3OXjwYLrtL1y4QHx8POHh4Wnuk5SURFJSkuv31Oc32rNnD4mJiSQnJ7t2QsOGDXP1kEERERH5T6NGjRg3bhzz5893fR/v27fPdbsxJkfXb2k4crLZbG6/G2PSLLta+/SWOw0bNowhQ4ake9uLL77Iiy++6Lasbdu2V61ZREREctbGjRsJCwtLs/zo0aPpLs8uloajokWLYrfb0/QSHT58+LLXNCtZsmS67X19fSlSpEi69xk4cCADBgxw/X78+HGioqLYu3dvjj65niYxMZEyZcqwb98+QkNDrS4n12i7td3eQNut7fYGCQkJREZGUrhw4Rxdj6XhyN/fn+joaGJjY7n99ttdy2NjY7n11lvTvU+TJk34/vvv3Zb9/PPPNGjQAD8/v3TvExAQQEBAQJrlYWFhXvWicgoNDdV2exFtt3fRdnsXb91uH5+cnTJt+dFqAwYMYPz48UycOJGtW7fy9NNPs3fvXvr37w+k9Pr06NHD1b5///7s2bOHAQMGsHXrViZOnMiECRN49tlnrdoEERERyUcsn3PUrVs3jh49ytChQzlw4AA1a9Zk7ty5REVFAXDgwAG3cx6VK1eOuXPn8vTTTzNq1ChKlSrFyJEjufPOO63aBBEREclHLA9HAI888giPPPJIurdNnjw5zbKWLVuybt26LK8vICCAwYMHpzvUlp9pu7Xd3kDbre32BtrunN1um8np4+FERERE8hDL5xyJiIiIeBKFIxEREZFUFI5EREREUlE4EhEREUkl34ajN954g6ZNmxIcHEyhQoUydB9jDK+++iqlSpUiKCiIVq1asXnzZrc2SUlJPP744xQtWpSQkBBuueUW4uLicmALsubYsWM88MADhIWFERYWxgMPPMDx48eveB+bzZbuz7vvvutq06pVqzS333PPPTm8NRmXle3u1atXmm1q3LixW5v8tr/Pnz/P888/T61atQgJCaFUqVL06NGD/fv3u7XztP09evRoypUrR2BgINHR0SxduvSK7RcvXkx0dDSBgYGUL1+eMWPGpGnzzTffUL16dQICAqhevTqzZs3KqfKzLDPbPXPmTG688UaKFStGaGgoTZo0Yd68eW5tJk+enO57/ezZszm9KZmSme1etGhRutv0559/urXLb/s7vc8vm81GjRo1XG08fX8vWbKELl26UKpUKWw2G99+++1V75Nr722TT73yyitm+PDhZsCAASYsLCxD93nrrbdMwYIFzTfffGM2bdpkunXrZsLDw01iYqKrTf/+/U3p0qVNbGysWbdunWndurWpU6eOuXDhQg5tSebcdNNNpmbNmmb58uVm+fLlpmbNmubmm2++4n0OHDjg9jNx4kRjs9nM33//7WrTsmVL06dPH7d2x48fz+nNybCsbHfPnj3NTTfd5LZNR48edWuT3/b38ePHTbt27cyMGTPMn3/+aVasWGGuv/56Ex0d7dbOk/b3F198Yfz8/Mynn35qtmzZYp588kkTEhJi9uzZk277nTt3muDgYPPkk0+aLVu2mE8//dT4+fmZr7/+2tVm+fLlxm63mzfffNNs3brVvPnmm8bX19f89ttvubVZV5XZ7X7yySfN22+/bVatWmX++usvM3DgQOPn52fWrVvnajNp0iQTGhqa5j3vSTK73QsXLjSA2bZtm9s2pX6P5sf9ffz4cbft3bdvnylcuLAZPHiwq42n7++5c+eaQYMGmW+++cYAZtasWVdsn5vv7XwbjpwmTZqUoXDkcDhMyZIlzVtvveVadvbsWRMWFmbGjBljjEl5Mfr5+ZkvvvjC1eaff/4xPj4+5qeffsr22jNry5YtBnB7EaxYscIA5s8//8zw49x6662mTZs2bstatmxpnnzyyewqNVtldbt79uxpbr311sve7i37e9WqVQZw+xD2pP3dqFEj079/f7dlVatWNS+88EK67f/v//7PVK1a1W1Zv379TOPGjV2/33333eamm25ya9OhQwdzzz33ZFPV1y6z252e6tWrmyFDhrh+z+jnoZUyu93OcHTs2LHLPqY37O9Zs2YZm81mdu/e7VqWF/a3U0bCUW6+t/PtsFpm7dq1i4MHD9K+fXvXsoCAAFq2bMny5csBWLt2LefPn3drU6pUKWrWrOlqY6UVK1YQFhbG9ddf71rWuHFjwsLCMlzfoUOHmDNnDjExMWlumzZtGkWLFqVGjRo8++yznDhxIttqvxbXst2LFi2iePHiVK5cmT59+nD48GHXbd6wvyHlQo42my3N8LMn7O9z586xdu1at30A0L59+8tu44oVK9K079ChA2vWrOH8+fNXbOMJ+xWytt2XcjgcnDhxIs0FOk+ePElUVBQRERHcfPPNrF+/PtvqvlbXst316tUjPDyctm3bsnDhQrfbvGF/T5gwgXbt2rmuLuHkyfs7s3Lzve0RZ8j2BAcPHgSgRIkSbstLlCjBnj17XG38/f257rrr0rRx3t9KBw8epHjx4mmWFy9ePMP1TZkyhYIFC3LHHXe4Lb/vvvsoV64cJUuW5I8//mDgwIFs3LiR2NjYbKn9WmR1uzt27Mhdd91FVFQUu3bt4uWXX6ZNmzasXbuWgIAAr9jfZ8+e5YUXXqB79+5uF6/0lP0dHx9PcnJyuu/Ly23jwYMH021/4cIF4uPjCQ8Pv2wbT9ivkLXtvtT777/PqVOnuPvuu13LqlatyuTJk6lVqxaJiYl8+OGHNGvWjI0bN1KpUqVs3YasyMp2h4eHM27cOKKjo0lKSuJ///sfbdu2ZdGiRbRo0QK4/Gsiv+zvAwcO8OOPP/L555+7Lff0/Z1ZufnezlPh6NVXX2XIkCFXbLN69WoaNGiQ5XXYbDa3340xaZZdKiNtrkVGtxvS1g+Zq2/ixIncd999BAYGui3v06eP6/81a9akUqVKNGjQgHXr1lG/fv0MPXZm5fR2d+vWzfX/mjVr0qBBA6KiopgzZ06acJiZx71WubW/z58/zz333IPD4WD06NFut1mxv68ks+/L9Npfujwr7/XcltUap0+fzquvvsp3333nFqAbN27sdtBBs2bNqF+/Ph999BEjR47MvsKvUWa2u0qVKlSpUsX1e5MmTdi3bx/vvfeeKxxl9jGtktUaJ0+eTKFChbjtttvclueV/Z0ZufXezlPh6LHHHrvqETNly5bN0mOXLFkSSEmm4eHhruWHDx92pdCSJUty7tw5jh075tabcPjwYZo2bZql9WZERrf7999/59ChQ2luO3LkSJoknZ6lS5eybds2ZsyYcdW29evXx8/Pj+3bt+fYl2VubbdTeHg4UVFRbN++Hcjf+/v8+fPcfffd7Nq1iwULFrj1GqUnN/Z3eooWLYrdbk/zV1/q9+WlSpYsmW57X19fihQpcsU2mXm95KSsbLfTjBkziImJ4auvvqJdu3ZXbOvj40PDhg1dr3mrXct2p9a4cWM+++wz1+/5eX8bY5g4cSIPPPAA/v7+V2zrafs7s3L1vZ2pGUp5UGYnZL/99tuuZUlJSelOyJ4xY4arzf79+z1ugu7KlStdy3777bcMT9Dt2bNnmqOWLmfTpk0GMIsXL85yvdnlWrfbKT4+3gQEBJgpU6YYY/Lv/j537py57bbbTI0aNczhw4cztC4r93ejRo3Mww8/7LasWrVqV5yQXa1aNbdl/fv3TzNps2PHjm5tbrrpJo+boJuZ7TbGmM8//9wEBgZedWKrk8PhMA0aNDAPPvjgtZSarbKy3Ze68847TevWrV2/59f9bcx/E9I3bdp01XV44v52IoMTsnPrvZ1vw9GePXvM+vXrzZAhQ0yBAgXM+vXrzfr1682JEydcbapUqWJmzpzp+v2tt94yYWFhZubMmWbTpk3m3nvvTfdQ/oiICDN//nyzbt0606ZNG487tLt27dpmxYoVZsWKFaZWrVppDu2+dLuNMSYhIcEEBwebTz75JM1j7tixwwwZMsSsXr3a7Nq1y8yZM8dUrVrV1KtXL89u94kTJ8wzzzxjli9fbnbt2mUWLlxomjRpYkqXLp2v9/f58+fNLbfcYiIiIsyGDRvcDu9NSkoyxnje/nYe4jxhwgSzZcsW89RTT5mQkBDXUTkvvPCCeeCBB1ztnYf7Pv3002bLli1mwoQJaQ73/fXXX43dbjdvvfWW2bp1q3nrrbc89tDujG73559/bnx9fc2oUaMuewqGV1991fz000/m77//NuvXrzcPPvig8fX1dQvYVsvsdn/wwQdm1qxZ5q+//jJ//PGHeeGFFwxgvvnmG1eb/Li/ne6//35z/fXXp/uYnr6/T5w44fpuBszw4cPN+vXrXUfOWvnezrfhqGfPngZI87Nw4UJXG8BMmjTJ9bvD4TCDBw82JUuWNAEBAaZFixZp0viZM2fMY489ZgoXLmyCgoLMzTffbPbu3ZtLW3V1R48eNffdd58pWLCgKViwoLnvvvvSHOJ66XYbY8zYsWNNUFBQuuey2bt3r2nRooUpXLiw8ff3NxUqVDBPPPFEmnMCWSmz23369GnTvn17U6xYMePn52ciIyNNz5490+zL/La/d+3ale77IvV7wxP396hRo0xUVJTx9/c39evXd+vB6tmzp2nZsqVb+0WLFpl69eoZf39/U7Zs2XRD/1dffWWqVKli/Pz8TNWqVd2+TD1FZra7ZcuW6e7Xnj17uto89dRTJjIy0vj7+5tixYqZ9u3bm+XLl+fiFmVMZrb77bffNhUqVDCBgYHmuuuuMzfccIOZM2dOmsfMb/vbmJTe7aCgIDNu3Lh0H8/T97ez1+tyr1kr39s2Yy7OZhIRERGR/Hv5EBEREZGsUDgSERERSUXhSERERCQVhSMRERGRVBSORERERFJROBIRERFJReFIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhE8pWhQ4dSq1YtQkJCKFGiBA8//DDnz5+3uiwRyUN8rS5ARCS7GGNITk5m7NixlC5dmi1bttCjRw9q167Nww8/bHV5IpJH6MKzIpKvde/enWLFivHhhx9aXYqI5BEaVhORfGPPnj089thj1KxZk+uuu44CBQrw5ZdfEhERYXVpIpKHKByJSL4QHx9Po0aNiI+PZ/jw4SxbtowVK1Zgt9upW7eu1eWJSB6iOUciki/MnTuXCxcuMH36dGw2GwCjRo3i3LlzCkcikikKRyKSLxQuXJjExERmz55N9erV+f777xk2bBilS5emWLFiVpcnInmIJmSLSL5gjOHhhx/m888/JygoiPvvv5+zZ8+yZ88efvjhB6vLE5E8ROFIREREJBVNyBYRERFJReFIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhEREQkFYUjERERkVQUjkRERERSUTgSERERSUXhSERERCQVhSMRERGRVBSORERERFL5f0D0wFSqEf81AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0a0lEQVR4nO3dd3gU1f7H8ffuphJI6KGEhBZCb6Ej0kEQFBVBkaKCgKgo6r3KtYIFe7s/qgSwIIIiKkWkBQFBOoiAEJQWaYKQUEOSPb8/wu5NSIAEkswm+byeJ49mcnbmOztbPpxzZsZmjDGIiIiICAB2qwsQERER8SQKRyIiIiKpKByJiIiIpKJwJCIiIpKKwpGIiIhIKgpHIiIiIqkoHImIiIikonAkIiIikorCkYiIiEgqCkeSJxw6dIiXX36ZLVu2pPvb/fffT+HCha973RcvXmTo0KGULVsWh8NB/fr1r7/QbDBu3DimTZuWbvm+ffuw2WwZ/i0/sdlsvPzyy1aXkS1efvllbDZbjj/2v//9L1WrVsXHxwebzcapU6e4//77qVixYpp2r7/+Ot9+++111XM1//zzD/fccw+lS5fGZrPRo0ePLK+jYsWK3H///dlemyfZuHEjjzzyCHXq1KFIkSIEBwfToUMHli1blmF7YwxTp06lSZMmBAQEEBgYSMOGDfnuu+9yufKCx8vqAkQy49ChQ4waNYqKFStme3gZP348EydO5L///S+RkZE3FLSyw7hx4yhZsmS6L4qyZcuyZs0aqlSpYk1hkmWDBg3illtuydFtbNmyheHDhzNo0CAGDBiAl5cXRYoU4YUXXuDxxx9P0/b111+nZ8+e1xVeruaVV15hzpw5TJkyhSpVqlC8ePFsXX9+MWPGDNatW8eDDz5IvXr1OHv2LBMmTKB9+/Z88skn9O/fP037hx9+mGnTpjFixAjGjBlDUlIS27Zt49y5cxbtQcGhcCQF3m+//Ya/vz+PPvqo1aVcla+vL82aNbO6DMmCkJAQQkJCcnQb27dvB+Chhx6iSZMm7uW5GaJ/++03qlSpwn333Zdr28wu586do1ChQrmyrX//+9+88847aZZ17dqVhg0bMnr06DTh6Ntvv2XixInMnDmTXr16uZd37tw5V2ot6DSsVgD9/fffDB48mAoVKuDr60upUqVo2bIlS5Yscbdp06YNtWvXZs2aNbRo0QJ/f38qVqzI1KlTAZg/fz4NGzakUKFC1KlTh4ULF6bbzqpVq2jfvj1FihShUKFCtGjRgvnz56dr99tvv3H77bdTrFgx/Pz8qF+/Pp988on778uXL6dx48YAPPDAA9hstgyHXvbs2UPXrl0pXLgwFSpU4KmnniIhIeGqz4XNZmPy5MmcP3/evd5p06ZddQjr8m27hj+2b9/OvffeS1BQEMHBwTz44IPExcWleazT6eS///0v9evXx9/fn6JFi9KsWTO+//57IGVoYfv27fz000/uelxDI1eqKTPP87Rp07DZbERHR/Pwww9TsmRJSpQowZ133smhQ4eu+hxdTcWKFenWrRtz5syhbt26+Pn5UblyZT766KN0bQ8cOEDfvn0pXbo0vr6+1KhRg3fffRen03nF9e/btw8vLy/GjBmT7m8rVqzAZrPx1VdfAVk7DhcuXGDkyJFUqlQJHx8fypcvzyOPPMKpU6cy3L958+bRoEED/P39qVGjBvPmzQNSntcaNWoQEBBAkyZN2LBhQ5rHZzQ0NnPmTDp16kTZsmXd63v22Wc5e/bslZ/oK2jTpg19+/YFoGnTpthsNneP4+XDajabjbNnz/LJJ5+4X1tt2rS56vr/+ecfhg0bRvny5fHx8aFy5co899xz7veV6zW5ZMkSdu7c6V7v8uXLr7jOxMRE/v3vf1OmTBkKFSrETTfdxLp16zJse+TIEYYMGUJISAg+Pj5UqlSJUaNGkZSUlKZdbGwsPXv2pEiRIhQtWpT77ruP9evXp3u/uIbgt23bRqdOnShSpAjt27cHUobXX331VapXr+7+XHzggQf4+++/09U1c+ZMmjdvTkBAAIULF6Zz585s3rz5qs8lQOnSpdMtczgcREZGcvDgwTTLP/zwQypWrJgmGEkuMlLgdO7c2ZQqVcpMmjTJLF++3Hz77bfmxRdfNF9++aW7TevWrU2JEiVMRESEiYqKMj/++KPp1q2bAcyoUaNMnTp1zIwZM8yCBQtMs2bNjK+vr/nrr7/cj1++fLnx9vY2kZGRZubMmebbb781nTp1MjabLc12fv/9d1OkSBFTpUoV8+mnn5r58+ebe++91wDmzTffNMYYExcXZ6ZOnWoA8/zzz5s1a9aYNWvWmIMHDxpjjBkwYIDx8fExNWrUMO+8845ZsmSJefHFF43NZjOjRo266nOxZs0a07VrV+Pv7+9e77Fjx8zevXsNYKZOnZruMYB56aWX3L+/9NJLBjARERHmxRdfNIsXLzbvvfee8fX1NQ888ECax/br18/YbDYzaNAg891335kffvjBvPbaa+bDDz80xhizadMmU7lyZdOgQQN3PZs2bTLGmAxryuzz7Hr+KleubB577DHz448/msmTJ5tixYqZtm3bpqnR1Tajfb9cWFiYKV++vAkNDTVTpkwxCxYsMPfdd58BzNtvv+1ud+zYMVO+fHlTqlQpM2HCBLNw4ULz6KOPGsA8/PDDV31+77jjDhMaGmqSkpLStLv77rtNuXLlTGJiYpaOg9PpNJ07dzZeXl7mhRdeMIsWLTLvvPOOCQgIMA0aNDAXLlxIs38hISGmdu3a7td706ZNjbe3t3nxxRdNy5YtzTfffGPmzJljqlWrZoKDg825c+fcj3fVlNorr7xi3n//fTN//nyzfPlyM2HCBFOpUqV0xyGjx15u+/bt5vnnn3cfrzVr1pg9e/YYY1LeF2FhYe62a9asMf7+/qZr167u19b27duvuO7z58+bunXrmoCAAPPOO++YRYsWmRdeeMF4eXmZrl27GmOMuXDhglmzZo1p0KCBqVy5snu9cXFxV1zvgAEDjM1mM//617/MokWLzHvvvWfKly9vAgMDzYABA9ztDh8+bCpUqGDCwsLMxIkTzZIlS8wrr7xifH19zf333+9ud+bMGVO1alVTvHhxM3bsWPPjjz+aESNGmEqVKqV7HQ8YMMB4e3ubihUrmjFjxpilS5eaH3/80SQnJ5tbbrnFBAQEmFGjRpnFixebyZMnm/Lly5uaNWumOaavvfaasdls5sEHHzTz5s0z33zzjWnevLkJCAi46vN5JYmJiaZq1aqmQYMGaZb5+vqaO+64w7z77rsmNDTU2O12U6lSJfP2228bp9OZ5e1I1igcFUCFCxc2TzzxxFXbtG7d2gBmw4YN7mUnTpwwDofD+Pv7pwlCW7ZsMYD56KOP3MuaNWtmSpcubU6fPu1elpSUZGrXrm1CQkLcb+577rnH+Pr6mgMHDqTZfpcuXUyhQoXMqVOnjDHGrF+//opf2AMGDDCAmTVrVprlXbt2NREREdd4NlIeHxAQkGbZ9YSjt956K027YcOGGT8/P/e+rlixwgDmueeeu2o9tWrVMq1bt063PKOaMvs8uwLPsGHD0qzzrbfeMoA5fPiwe9knn3xiHA6H+eSTT65apzEp4cFms5ktW7akWd6xY0cTGBhozp49a4wx5tlnnzWAWbt2bZp2Dz/8sLHZbGbXrl3uZZc/v9HR0QYwc+bMcS/766+/jJeXV5rwm9njsHDhwgzbzZw50wBm0qRJafbP39/fxMbGupe5Xu9ly5Z1758xxnz77bcGMN9//326mq7E6XSaxMRE89NPPxnAbN26NdOPdXEd2/Xr16dZfnk4MsaYgICANAHkaiZMmJDh++rNN980gFm0aJF7WevWrU2tWrWuuc6dO3cawIwYMSLN8unTpxsgTW1DhgwxhQsXNvv370/T9p133jGAO4iMHTvWAOaHH35I027IkCEZhiPATJkyJU3bGTNmGMDMnj07zXLX5864ceOMMcYcOHDAeHl5mcceeyxNu9OnT5syZcqYXr16XfM5uNxzzz1nAPPtt9+6lx0+fNgAJjAw0ISEhJhPPvnELF261AwdOtQA5j//+U+WtyNZo2G1AqhJkyZMmzaNV199lV9++YXExMQM25UtW5bIyEj378WLF6d06dLUr1+fcuXKuZfXqFEDgP379wNw9uxZ1q5dS8+ePdNMbnY4HPTr14/Y2Fh27doFwLJly2jfvj0VKlRIs+3777+fc+fOsWbNmkztk81mo3v37mmW1a1b111TbrjtttvSbf/ChQscO3YMgB9++AGARx55JFu2l5Xn+Wo1Ammep/79+5OUlJRucuiV1KpVi3r16qVZ1qdPH+Lj49m0aROQcpxr1qyZZk4MpBxnY8wVz9aBlKGjevXqMXbsWPeyCRMmYLPZGDx4cLr21zoOrm1dPuH97rvvJiAggKVLl6ZZXr9+fcqXL+/+3fV6b9OmTZq5Kpe/D67kzz//pE+fPpQpUwaHw4G3tzetW7cGYOfOnVd9bG5atmwZAQEB9OzZM81y1/N2+fOUGdHR0QDp5ib16tULL6+0U2DnzZtH27ZtKVeuHElJSe6fLl26APDTTz+5/1ukSJF0E9/vvffeK9Zx1113pdtW0aJF6d69e5pt1a9fnzJlyriHCX/88Uf3eyN1Oz8/P1q3bn3V4cSMTJ48mddee42nnnqK22+/3b3cNdQcHx/PV199Rf/+/WnXrh3jx4+nR48evPfee5w5cyZL25KsUTgqgGbOnMmAAQOYPHkyzZs3p3jx4vTv358jR46kaZfRGSc+Pj7plvv4+AAp8zgATp48iTGGsmXLpnu8K1SdOHHC/d/MtLuWQoUK4efnl2aZr6+vu6bcUKJEiXTbBzh//jyQMtfL4XBQpkyZbNleVp7nzNZ4PTLaH9ey7DrOw4cPZ+nSpezatYvExEQ+/vhjevbsmeG2r7WPJ06cwMvLi1KlSqVpZ7PZKFOmTLparvR6v9b7ICNnzpyhVatWrF27lldffZXly5ezfv16vvnmmzQ1eoITJ05QpkyZdHOmSpcujZeXV6bfm5evE9K/Zry8vNIdt6NHjzJ37ly8vb3T/NSqVQuA48ePu9cZHBycblsZLYOUz4rAwMB02zp16hQ+Pj7ptnfkyBH3to4ePQpA48aN07WbOXOmu11mTJ06lSFDhjB48GDefvvtNH8rVqwYNpuNwMDAdCdhdOnShQsXLrBjx45Mb0uyTmerFUAlS5bkgw8+4IMPPuDAgQN8//33PPvssxw7dizDidVZVaxYMex2O4cPH073N9fk35IlSwIpX2SZaZfbXEHr8gnd1/OF4FKqVCmSk5M5cuRIhkEhq7LyPOeky0N16mWuL7wbPc59+vThmWeeYezYsTRr1owjR45cdw9ciRIlSEpK4u+//04TkIwxHDlyxD35PycsW7aMQ4cOsXz5cndvEZBuIrgnKFGiBGvXrsUYkyYgHTt2jKSkpOt6bbleD0eOHEnTG5eUlJTuvVWyZEnq1q3La6+9luG6XMG6RIkSGU7ozuh1CWR47SjXCQpX+vwrUqSIux3A119/TVhYWIZtM2Pq1KnuSy+4ekFT8/f3Jzw8PMN9MMYAYLerbyMn6dkt4EJDQ3n00Ufp2LGjewjkRgUEBNC0aVO++eabNP8SdjqdfP7554SEhFCtWjUA2rdv7/7CSO3TTz+lUKFC7n81ZUcPR1YEBwfj5+fHr7/+mmb5jVx8zTUcMH78+Ku28/X1zdR+ZuV5zknbt29n69ataZZ98cUXFClShIYNGwIpx3nHjh3pXmOffvopNpuNtm3bXnUbfn5+DB48mE8++YT33nuP+vXr07Jly+uq13V20ueff55m+ezZszl79qz77znB9SXoej27TJw4Mce2mVpmX1uQ8jydOXMm3UUjP/30U/ffs8p1dtz06dPTLJ81a1a6M9C6devmvkRAo0aN0v24wlHr1q05ffq0e9ja5csvv8x0Xd26dePEiRMkJydnuK2IiAgg5TR6Ly8v/vjjjwzbNWrU6JrbmjZtGoMGDaJv375Mnjz5ihf6vOuuu4iPj2f16tVpli9YsIDChQu7e9AkZ6jnqICJi4ujbdu29OnTh+rVq1OkSBHWr1/PwoULufPOO7NtO2PGjKFjx460bduWp59+Gh8fH8aNG8dvv/3GjBkz3B8IL730kntuwYsvvkjx4sWZPn068+fP56233iIoKAhIuWaLv78/06dPp0aNGhQuXJhy5cqlmfuUnWw2G3379nVf1K5evXqsW7eOL7744rrX2apVK/r168err77K0aNH6datG76+vmzevJlChQrx2GOPAVCnTh2+/PJLZs6cSeXKlfHz86NOnToZrjOzz3NWfPrppzz44INMmTIlU/OOypUrx2233cbLL79M2bJl+fzzz1m8eDFvvvmme07OiBEj+PTTT7n11lsZPXo0YWFhzJ8/n3HjxvHwww9nKsQNGzaMt956i40bNzJ58uQs75dLx44d6dy5M8888wzx8fG0bNmSX3/9lZdeeokGDRrQr1+/6173tbRo0YJixYoxdOhQXnrpJby9vZk+fXq6cJlT6tSpw/Lly5k7dy5ly5alSJEi7i/+y/Xv35+xY8cyYMAA9u3bR506dVi1ahWvv/46Xbt2pUOHDlnefo0aNejbty8ffPAB3t7edOjQgd9++4133nkn3VDX6NGjWbx4MS1atGD48OFERERw4cIF9u3bx4IFC5gwYQIhISEMGDCA999/n759+/Lqq69StWpVfvjhB3788Ucgcz0s99xzD9OnT6dr1648/vjjNGnSBG9vb2JjY4mOjub222/njjvuoGLFiowePZrnnnuOP//8k1tuuYVixYpx9OhR1q1bR0BAAKNGjbridr766isGDhxI/fr1GTJkSLoerwYNGriD89NPP8306dO5++67eeWVVwgJCeHrr7/m+++/55133sHf3z+rT79khZWzwSX3XbhwwQwdOtTUrVvXBAYGGn9/fxMREWFeeumlNGfeXOnsk7CwMHPrrbemWw6YRx55JM2ylStXmnbt2pmAgADj7+9vmjVrZubOnZvusdu2bTPdu3c3QUFBxsfHx9SrVy/Ds8RmzJhhqlevbry9vdOc0ZTR2WbGZP5snys9Pi4uzgwaNMgEBwebgIAA0717d7Nv374rnq32999/p3m86yyivXv3upclJyeb999/39SuXdv4+PiYoKAg07x58zTPy759+0ynTp1MkSJFDOA+4+hKZ9Bl5nm+0hlNrjPBoqOj07XN7Kn8t956q/n6669NrVq1jI+Pj6lYsaJ577330rXdv3+/6dOnjylRooTx9vY2ERER5u233zbJyclp2l3+/KbWpk0bU7x48TSnVrtk5TicP3/ePPPMMyYsLMx4e3ubsmXLmocffticPHkyw/27XEavd9fxSX0Jg4xeg6tXrzbNmzc3hQoVMqVKlTKDBg0ymzZtSvec58TZalu2bDEtW7Y0hQoVMkCGZ0WmduLECTN06FBTtmxZ4+XlZcLCwszIkSPTXO7AmMyfrWaMMQkJCeapp54ypUuXNn5+fqZZs2ZmzZo1JiwsLN2ZdH///bcZPny4qVSpkvH29jbFixc3kZGR5rnnnjNnzpxxtztw4IC58847TeHChU2RIkXMXXfdZRYsWGAA891336V5TjJ6rxuTcvr8O++8Y+rVq2f8/PxM4cKFTfXq1c2QIUNMTExMmrbffvutadu2rQkMDDS+vr4mLCzM9OzZ0yxZsuSq++46W+5KP6lfo679uueee0yxYsWMj4+PqVu3broz7SRn2Iy5NIApIpJFFStWpHbt2u6LIuakY8eOERYWxmOPPcZbb72V49uTvO3111/n+eef58CBAzl+lXLJfzSsJiIeLTY2lj///JO3334bu92e7n5hIv/3f/8HQPXq1UlMTGTZsmV89NFH9O3bV8FIrovCkYh4tMmTJzN69GgqVqzI9OnT05zlJAIpp+e///777Nu3j4SEBEJDQ3nmmWd4/vnnrS5N8igNq4mIiIikYvmp/CtWrKB79+6UK1cOm82W7rTRjPz0009ERka6b3I5YcKEnC9URERECgTLw9HZs2epV6+ee8z4Wvbu3UvXrl1p1aoVmzdv5j//+Q/Dhw9n9uzZOVypiIiIFAQeNaxms9mYM2cOPXr0uGKbZ555hu+//z7NPYiGDh3K1q1bM30fLhEREZEryXMTstesWUOnTp3SLOvcuTNRUVEkJibi7e2d7jEJCQlpbgPhdDr5559/KFGixHVdJE9ERERynzGG06dPU65cuRy9hUqeC0dHjhxJd0PB4OBgkpKSOH78eIb3rBozZsxVr1oqIiIiecfBgwdz9DINeS4cQfobB7pGBq/UCzRy5EiefPJJ9+9xcXGEhoZy8ODBdJesF5E85K+/4I8/+LtoUR6+dLuJyz300EO8+vDD+P31F1SpAroUgEieFR8fT4UKFdw3A84peS4clSlTJt2dio8dO4aXl5f7js+X8/X1TXejR4DAwECFI5G8KioKBg/moNNJZ+APwNvbmz59+hAREcGaNWuYO3cuH3/8MX98/DFzgUJ2O0yaBAMHWly8iNyInJ4Sk+fCUfPmzZk7d26aZYsWLaJRo0YZzjcSkXwoNhYGDybe6aQrKcGoEjD3hx+olepu8T989hm9+vdnGdAXmO10YhsyBDp3Bl05WUSuwPJT+c+cOcOWLVvYsmULkHKq/pYtWzhw4ACQMiSW+s7gQ4cOZf/+/Tz55JPs3LmTKVOmEBUVxdNPP21F+SJihZgYcDoZAfwGlAGWA7UcjjTNuoSEsADwAeYAHwIkJ8OePblarojkLZaHow0bNtCgQQMaNGgAwJNPPkmDBg148cUXATh8+LA7KAFUqlSJBQsWsHz5curXr88rr7zCRx99xF133WVJ/SJigfBwFthsTAFswCwg1OGAqlXTtWtlt/P+pV+fA/bb7enbiYik4lHXOcot8fHxBAUFERcXpzlHInnQhQsXqB4Swv4TJxgBvOdwwMSJGc8liorCDB5MG6eTFUC3unX5fssWXcZDJA/Kre9vy3uORESyavz48ew/cYLyZcrw6g8/wL59V55kPXAgtv37mTBtGt7e3sz79VeWLVuWq/WKSN6icCQieUp8fDyvvfYaAC+/8gqFbrnl2pOrQ0KoMWAAQ4cOTXncyy9TADvNRSSTFI5EJE8ZP348J06cICIigvvvvz9Lj3322Wfx9fVl1apVLF26NGcKFJE8T+FIRPKMixcv8tFHHwEpQcfLK2tXIylXrhxDhgwB4I033sj2+kQkf1A4EpE8Y9asWRw6dIgyZcpw7733Xtc6RowYgd1uZ+nSpWluYC0i4qJwJCJ5xocffgjAo48+muFV7zOjYsWKdO/eHYCxY8dmW20ikn8oHIlInrB161Y2bNiAt7c3gwcPvqF1PfbYYwB88sknnD59OjvKE5F8ROFIRPKEqKgoAG6//XZKlSp1Q+tq164d1apV48yZM3z99dfZUZ6I5CMKRyLi8S5cuMDnn38OwMBsuGmszWZjwIABAHz66ac3vD4RyV8UjkTE482bN4+TJ08SEhJCx44ds2Wdffv2xWazsXz5cvbt25ct6xSR/EHhSEQ83qxZswDo06cPjstuLnu9QkNDadu2LYC7V0pEBBSORMTDnT17lnnz5gHQq1evbF13v379gP+FLxERUDgSEQ+3YMECzp8/T+XKlWnYsGG2rvu2227Dy8uLbdu2ERMTk63rFpG8S+FIRDyaq1enV69e2Gy2bF138eLF3UNr33zzTbauW0TyLoUjEfFYZ86cYf78+UD2D6m53HXXXQDMnj07R9YvInmPwpGIeKyFCxdy/vx5qlSpQv369XNkGz169MBms7F+/XoOHDiQI9sQkbxF4UhEPJZrIrYrwOSE4OBgWrVqBWhoTURSKByJiEdyOp0sWLAAgG7duuXotu68804A5s6dm6PbEZG8QeFIRDzS+vXr+fvvvwkKCqJly5Y5uq2uXbsCsHLlSt1rTUQUjkTEM7kmYnfu3Blvb+8c3VZ4eDhVqlQhMTGRpUuX5ui2RMTzKRyJiEdyzTe69dZbc2V7rt4j11CeiBRcCkci4nH++usvNm/ejM1mo0uXLrmyTdd2fvjhB4wxubJNEfFMCkci4nEWffklAE3q16dUqVK5ss02bdrg5+dHbGwsv02ZArGxubJdEfE8Ckci4lmioljy9NMAdNy8GaKicmWz/v7+tK1aFYAFgwZBWFiubVtEPIvCkYh4jthYzEMP4ZoS3QFgyJDc6cWJjeWW7dsBUrbvdObetkXEoygciYjniIlhuzEcBfyBZgDJybBnT65su/2luUargITc3LaIeBSFIxHxHOHhLLl0JeybAV8AhwMuDXfl9LZr2myUBs4Dv+TmtkXEoygciYjnCAlhaZ06ALSHlHAycSKEhOTKtm0ff0y7S+Fsmc2We9sWEY+icCQiHiMxMZHlf/4JQIdJk2DfPhg4MPcKGDiQdm+8AcCyRo1yd9si4jEUjkTEY6xfv54zZ85QokQJ6g0caEmvTbu77gLgl82bOXv2bK5vX0Ssp3AkIh5jyZIlALRt2xa73ZqPp8qVKxMWFkZSUhKrVq2ypAYRsZbCkYh4DNd9zdq3b29ZDTabjXbt2gGwbNkyy+oQEesoHImIR0hISGDt2rVASs+RlRSORAo2hSMR8Qjr168nISGB0qVLU61aNUtrcYWzjRs3curUKUtrEZHcp3AkIh5h5cqVALRq1QrbpdPprVK+fHmqVq2KMYY1a9ZYWouI5D6FIxHxCKnDkSe46aabgP/VJSIFh8KRiFguOTmZn3/+GYCbb77Z4mpSuMKRzlgTKXgUjkTEcr/++ivx8fEEBgZSt25dq8sB/teDtW7dOhISEiyuRkRyk8KRiFjONXTVokULHA6HxdWkCA8Pp3Tp0iQkJLBhwwaryxGRXKRwJCKWW7FiBeA5Q2qQcr0jDa2JFEwKRyJiKWOMx03GdtGkbJGCSeFIRCwVExPDsWPH8PX1pXHjxlaXk4YrrP388884nU6LqxGR3KJwJCKWWr16NQCNGzfG19fX4mrSql+/PgEBAZw6dYodO3ZYXY6I5BKFIxGxlOsii82bN7e4kvS8vLxo1qwZoKE1kYJE4UhELPXLL78AnhmO4H/zjlw9XCKS/ykciYhlTp8+zW+//Qbg7qHxNK7Q5gpxIpL/KRyJiGXWr1+P0+kkLCyMsmXLWl1Ohpo0aQLAnj17OH78uMXViEhuUDgSEcu45ht5aq8RQLFixahevToAa9eutbgaEckNCkciYhlPn2/k4qrPFeZEJH9TOBIRSxhj3OHIk3uO4H/1ad6RSMGgcCQilnDN4fH19aVBgwZWl3NVrnC0bt06kpOTLa5GRHKawpGIWMLVCxMZGYmPj4/F1VxdrVq1KFy4MKdPn2bnzp1WlyMiOUzhSEQskRcmY7s4HA73WWsaWhPJ/xSORMQSeWUytosrxGlStkj+p3AkIrnu7Nmz/Prrr0De6DkCTcoWKUgUjkQk123YsIHk5GRCQkIICQmxupxMadq0KQA7duzg1KlT1hYjIjlK4UhEcl1emm/kUrp0aSpXrgykXNlbRPIvhSMRyXV5bb6Riy4GKVIwKByJSK5z9by4zgDLK1z1qudIJH9TOBKRXHXo0CEOHTqE3W73+Is/Xq5x48ZASjgyxlhcjYjkFIUjEclVGzZsAKBmzZoEBARYXE3W1K9fHy8vL44ePUpsbKzV5YhIDlE4EpFc5RqScvXC5CX+/v7Url0b0NCaSH6mcCQiucrVc9SoUSOLK7k+qYfWRCR/8ohwNG7cOCpVqoSfnx+RkZGsXLnyqu2nT59OvXr1KFSoEGXLluWBBx7gxIkTuVStiFwvY0ye7jmC/9W9bt06iysRkZxieTiaOXMmTzzxBM899xybN2+mVatWdOnShQMHDmTYftWqVfTv35+BAweyfft2vvrqK9avX8+gQYNyuXIRyar9+/dz4sQJvL29qVu3rtXlXBdXONqwYQNOp9PiakQkJ1gejt577z0GDhzIoEGDqFGjBh988AEVKlRg/PjxGbb/5ZdfqFixIsOHD6dSpUrcdNNNDBkyxN1VLyKey9VrVKdOHXx9fS2u5vrUqlULPz8/4uPjiYmJsbocEckBloajixcvsnHjRjp16pRmeadOnVi9enWGj2nRogWxsbEsWLAAYwxHjx7l66+/5tZbb73idhISEoiPj0/zIyK5b0N0NACNa9a0uJLr5+3t7b4EwfpPPgGdtSaS71gajo4fP05ycjLBwcFplgcHB3PkyJEMH9OiRQumT59O79698fHxoUyZMhQtWpT//ve/V9zOmDFjCAoKcv9UqFAhW/dDRDIhKooNl3qEG02fDlFRFhd0/RoXKgTA+jFjICwsT++LiKRn+bAagM1mS/O7MSbdMpcdO3YwfPhwXnzxRTZu3MjChQvZu3cvQ4cOveL6R44cSVxcnPvn4MGD2Vq/iFxDbCzOhx7CNfjd2BgYMiRv9rrExtJ42TIA1gM4nXl3X0QkQ15WbrxkyZI4HI50vUTHjh1L15vkMmbMGFq2bMm//vUvAOrWrUtAQACtWrXi1VdfpWzZsuke4+vrm2fnN4jkCzEx7DGGeMAPqAmQnAx79kBIiLW1ZVVMTEq4AzYDiYB3Xt0XEcmQpT1HPj4+REZGsnjx4jTLFy9eTIsWLTJ8zLlz57Db05btcDgAdDl/EU8VHs76S73BDQBvAIcDqla1sqrrEx5OuM1GIHAB2A55d19EJEOWD6s9+eSTTJ48mSlTprBz505GjBjBgQMH3MNkI0eOpH///u723bt355tvvmH8+PH8+eef/PzzzwwfPpwmTZpQrlw5q3ZDRK4mJIQN7dsD0AhSwsTEiXmzpyUkBPvHH+O6hOV6my3v7ouIZMjSYTWA3r17c+LECUaPHs3hw4epXbs2CxYsICwsDIDDhw+nuebR/fffz+nTp/m///s/nnrqKYoWLUq7du148803rdoFEcmE9efPA9B45EgYNixvh4mBA2m8aRPLxo1j/b338tDAgVZXJCLZyGYK4FhUfHw8QUFBxMXFERgYaHU5IvleUlISQUFBnDt3jh07dlCjRg2rS7phs2fPpmfPntSvX5/NmzdbXY5IgZBb39+WD6uJSP63c+dOzp07R+HChYmIiLC6nGzRpEkTALZt28a5c+csrkZEspPCkYjkONcV7CMjI9OdUJFXhYSEEBwcTHJyMlu2bLG6HBHJRvnjU0pEPFpev9lsRmw2m3t/XPsnIvmDwpGI5DhXz1GjRo2u0TJvUTgSyZ8UjkQkR128eJGtW7cC+avnCBSORPIrhSMRyVHbtm3j4sWLFC9enEqVKlldTrZyhaPdu3dz6tQpa4sRkWyjcCQiOSr1kNqV7pmYV5UsWdJ9TbZNmzZZXI2IZBeFIxHJUa4hp/w238hFQ2si+Y/CkYjkKFfPUX6bb+Ti2i/XfopI3qdwJCI55ty5c/z2229A/u05cu2Xeo5E8g+FIxHJMVu3biU5OZkyZcpQvnx5q8vJEZGRkQDs37+fv//+2+JqRCQ7KByJSI5JPd8ov03GdgkKCqJatWqAhtZE8guFIxHJMfl9vpGL5h2J5C8KRyKSY/L7mWourv1TOBLJHxSORCRHxMfHs2vXLiD/hyOdzi+SvygciUiO2LRpE8YYQkNDKV26tNXl5Kj69etjt9s5fPgwhw4dsrocEblBCkcikiMKynwjgICAAGrVqgWo90gkP1A4EpEcUVDmG7lo3pFI/qFwJCI5IvU91QoCzTsSyT8UjkQk2/3zzz/8+eefwP8ukpjfpe45MsZYXI2I3AiFIxHJdq5eo6pVq1KsWDGLq8kddevWxdvbmxMnTrBv3z6ryxGRG6BwJCLZriBNxnbx9fWlbt26gOYdieR1Ckciku0K2mRsF807EskfFI5EJNsVxJ4j0BlrIvmFwpGIZKsjR44QGxuL3W6nQYMGVpeTq1xhcOPGjTidTourEZHrpXAkItnKNaRUo0YNChcubHE1uatmzZr4+/sTHx9PTEyM1eWIyHVSOBKRbFVQh9QAvLy83L1lmnckkncpHIlItiqok7FdNO9IJO9TOBKRbGOMcYejgthzBDpjTSQ/UDgSkWxz4MABjh8/jre3N/Xq1bO6HEu4eo42b95MUlKSxdWIyPVQOBKRbOPqLalTpw6+vr4WV2ONatWqUaRIEc6fP8+OHTusLkdEroPCkYhkm4I+pAZgt9vd95PTvCORvEnhSESyjcJRCs07EsnbFI5EJFs4nU42btwIFNwz1Vx0xppI3qZwJCLZIiYmhvj4ePz9/alVq5bV5VjK1XO0detWEhISLK5GRLJK4UhEsoVrCKlBgwZ4eXlZXI21KlasSIkSJUhMTGTbtm1WlyMiWaRwJCLZQvON/sdms7mH1jTvSCTvUTgSkWzhml9T0OcbuWjekUjepXAkIjcsKSmJzZs3A+o5ctEZayJ5l8KRiNyw7du3c/78eQIDAwkPD7e6HI/g6jnavn07586ds7gaEckKhSMRuWGuoaPIyEjsdn2sAJQvX56yZcvidDrdvWoikjfoU0xEbtj65csBaFy9urWFeBj3vKMZMyA21uJqRCSzFI5E5MZERbH+888BaDxhAkRFWVyQ52h8qRdt/dixEBam50Ykj7AZY4zVReS2+Ph4goKCiIuLIzAw0OpyRPKu2FguhIZSxBiSgL1ARYcD9u2DkBCLi7NYbCw/hIbS1RgigN8B9NyI3JDc+v5Wz5GIXL+YGH69FIxKAmEAycmwZ4+1dXmCmBgaXfq35y4gDvTciOQRCkcicv3Cw1lvswHQGLBBSu9I1apWVuUZwsMpZbenBEZgE+i5EckjFI5E5PqFhLC+eXMgJRzhcMDEiRo2gpTnYNIkXFd92mCz6bkRySMUjkTkhqw/dQqARq+9ljKfZuBAS+vxKAMH0vg//wFg/a236rkRySMUjkTkup05c4adO3cC0PjBB9UrkoFG7dsDsGH7dosrEZHMUjgSkeu2YcMGjDGEhIRQpkwZq8vxSJGRkQDs3buX48ePW1yNiGSGwpGIXLe1a9cC0KxZM4sr8VxBQUFUq1YNgI0bN1pcjYhkhsKRiFw3Vzhq2rSpxZV4Nt2EViRvUTgSketijOGXX34B1HN0Le7biFy6B52IeDaFIxG5LrGxsRw+fBiHw0HDhg2tLsejuXqO1q1bRwG8KYFInqNwJCLXxdVrVK9ePQoVKmRxNZ6tQYMGOBwODh8+TKxuQCvi8RSOROS6aL5R5hUqVIh69eoB/wuVIuK5FI5E5LpovlHWNL90JXGFIxHPp3AkIlmWmJjoPi1dPUeZ4wqRa9assbgSEbkWhSMRybJt27Zx4cIFihYtSnh4uNXl5AmucLRp0yYSEhIsrkZErkbhSESyzDU01LRpU+x2fYxkRpUqVShZsiQJCQls3brV6nJE5Cr0qSYiWabJ2Flns9k0tCaSRygciUiWaTL29XE9X5qULeLZFI5EJEv++ecfdu/eDUCTJk0sriZvUTgSyRs8IhyNGzeOSpUq4efnR2RkJCtXrrxq+4SEBJ577jnCwsLw9fWlSpUqTJkyJZeqFSnY1q1bB0B4eDglSpSwuJq8pXHjxthsNvbt28eRI0esLkdErsDycDRz5kyeeOIJnnvuOTZv3kyrVq3o0qULBw4cuOJjevXqxdKlS4mKimLXrl3MmDGD6tWr52LVIgWX5htdv8DAQGrXrg2o90jEk1kejt577z0GDhzIoEGDqFGjBh988AEVKlRg/PjxGbZfuHAhP/30EwsWLKBDhw5UrFiRJk2a0KJFi1yuXKRgcoUjzTe6PhpaE/F8loajixcvsnHjRjp16pRmeadOnVi9enWGj/n+++9p1KgRb731FuXLl6datWo8/fTTnD9//orbSUhIID4+Ps2PiGSdMUY9RzdI4UjE83lZufHjx4+TnJxMcHBwmuXBwcFXHI//888/WbVqFX5+fsyZM4fjx48zbNgw/vnnnyvOOxozZgyjRo3K9vpFCprdu3fzzz//4OfnR926da0uJ09yhaP169eTlJSEl5elH8MikgHLh9Ug5fofqRlj0i1zcTqd2Gw2pk+fTpMmTejatSvvvfce06ZNu2Lv0ciRI4mLi3P/HDx4MNv3QaQg+Pnnn4GUicU+Pj4WV5M3Va9enaCgIM6dO8e2bdusLkdEMmBpOCpZsiQOhyNdL9GxY8fS9Sa5lC1blvLlyxMUFOReVqNGDYwxxMbGZvgYX19fAgMD0/yISNa5wlHLli0triTvstvt7iFJDa2JeCZLw5GPjw+RkZEsXrw4zfLFixdfcYJ1y5YtOXToEGfOnHEv2717N3a7nZCQkBytV6SgUzjKHpp3JOLZLB9We/LJJ5k8eTJTpkxh586djBgxggMHDjB06FAgZUisf//+7vZ9+vShRIkSPPDAA+zYsYMVK1bwr3/9iwcffBB/f3+rdkMk3zt+/Di7du0C0NmhN6h58+aAbiMi4qksnwnYu3dvTpw4wejRozl8+DC1a9dmwYIFhIWFAXD48OE01zwqXLgwixcv5rHHHqNRo0aUKFGCXr168eqrr1q1CyIFgusM0ho1alC8eHGLq8nbmjZtis1mIyYmhmPHjlG6dGmrSxKRVCwPRwDDhg1j2LBhGf5t2rRp6ZZVr1493VCciOQsDalln2LFilG7dm22bdvGqlWruPPOO60uSURSsXxYTUTyBoWj7HXTTTcBsGrVKosrEZHLKRyJyDUlJCSwYcMGQOEouygciXguhSMRuaaNGzeSkJBAqVKlqFq1qtXl5AuucLRp0ybOnj1rcTUikprCkYhcU+ohtStdoFWyJjQ0lNDQUJKTk923ZBERz6BwJCLXpPlGOcPVe7Ry5UqLKxGR1BSOROSqjDHu0/gVjrKX5h2JeCaFIxG5qpiYGP7++298fX1p2LCh1eXkK65wtGbNGpKSkiyuRkRcFI5E5KpS32zW19fX4mryl1q1alG0aFHOnj3L1q1brS5HRC5ROBKRq3IN+WhILfvZ7Xb386p5RyKeQ+FIRK7qp59+AuDmm2+2uJL8SfOORDyPwpGIXFFsbCx//PEHdrvd/SUu2St1ODLGWFyNiIDCkYhcxU9z5gDQoFYtAgMDLa4mf2rUqBE+Pj4cPXqUP6ZPh9hYq0sSKfAUjkQkY1FR/DR8OACtt22DqCiLC8qf/Pz8aBIWBsCKfv0gLEzPtYjFFI5EJL3YWBg8mJ8u/doaYMgQ9WrkhNhYbo6JAWA5gNOp51rEYgpHIpJeTAyHnU52AzagFUByMuzZY21d+VFMDG0v/W80YEDPtYjFFI5EJL3wcFZcuodaPaAYgMMBuuls9gsPp4XNhjcQC/wBeq5FLKZwJCLphYTwU+vWwKUhNYcDJk6EkBBLy8qXQkIo9PHHNLv0a7TNpudaxGIKRyKSoZ+OHQOg9ejRsG8fDBxobUH52cCBtH3iCQCib7tNz7WIxRSORCSdv//+mx07dgDQ6uGH1YuRC9refjsA0WvX6npHIhZTOBKRdFasWAFA7dq1KVmypMXVFAzNmjXD19eXI0eOsGvXLqvLESnQFI5EJJ3o6GgAWl+adyQ5z8/Pj+bNmwOwfPlya4sRKeAUjkQknaVLlwLQrl07iyspWNq2TTmp3xVORcQaCkciksZff/3F77//js1mc39ZS+5wPd/Lly/XvCMRCykciUgay5YtAyAyMpJixYpZXE3B0qRJE/z9/Tl27Jh7QryI5D6FIxFJY8mSJQB06NDB4koKHl9fX1q2bAloaE3ESgpHIuJmjHHPN2rfvr3F1RRMmnckYr0bCkfHjh3jyJEj2VWLiFhs165d/PXXX2l6MCR3pQ5HycnJFlcjUjBdVzj69ddfqVWrFmXLlqV8+fKUL1+e559/nrNnz2Z3fSKSi1y9RjfddBP+/v4WV1MwNW7cmMDAQE6ePMmmTZusLkekQLqucDRw4ECCg4NZtWoVmzdv5tVXX+WHH36gUaNGnDx5MrtrFJFc4ppvpCE163h5ebmf/0WLFllcjUjBdF3haMeOHYwbN47mzZtTt25dHnjgATZs2ECtWrV47LHHsrtGEckFycnJ7nkumoxtrU6dOgEKRyJW8bqeB2XUQ2Sz2Xj99deJjIzMlsJEJHdt3LiRuLg4ihYtSsOGDa0up0BzhaPVq1dz+vRpihQpYnFFIgVLpnuObr31Vv7zn/8wa9Yshg4dyogRIzh69GiaNnFxcbouikge5RpSa9u2LQ6Hw+JqCrbKlStTpUoVkpKSdCsREQtkuueoTp06bNq0ialTp7pDUeXKlenVqxf169cnOTmZqVOn8v777+dYsSKSc3788UdAQ2qeolOnTowfP55FixbRvXt3q8sRKVBs5jquUX/06FE2b97Mli1b3D979uzB4XAQERHBr7/+mhO1Zpv4+HiCgoKIi4sjMDDQ6nJELBcXF0eJEiVITk7mzz//pFKlSlaXVOB9++233HHHHVSrVo1du3ZZXY6IR8it7+/rmnMUHBzMLbfcwi233OJedv78ebZu3crWrVuzrTgRyR1Lly4lOTmZiIgIBSMP4Rre3L17N/v27aNixYpWlyRSYGTbFbL9/f1p1qwZQ4YMya5Vikgu+eGHHwDS/INHrBUUFESzZs0AWLx4scXViBQsun2ISAFnjGHhwoUAdOnSxeJqJDXXWWuu+WAikjsUjkQKuO3btxMbG4ufnx8333yz1eVIKq5wtGTJEhITEy2uRqTgUDgSKeBcvUZt27bVLUM8TOPGjSlZsiRxcXGsXr3a6nJECgyFI5ECzjXfSENqnsfhcLiPy/z58y2uRqTgUDgSKcDOnDnDypUrAU3G9lS33noroHAkkpsUjkQKsGXLlpGYmEiVKlUIDw+3uhzJQOfOnXE4HOzYsYO9e/daXY5IgaBwJFKALViwAFCvkScrWrQoLVu2BNR7JJJbFI5ECiin08ncuXMBdHsKD9etWzdA4UgktygciRRQmzZt4tChQxQuXJg2bdpYXY5chWveUXR0NGfPnrW4GpH8T+FIpID6/vvvgZQhNV9fX4urkaupUaMGFStWJCEhgWXLllldjki+p3AkUkC5wtFtt91mcSVyLTabzd17NG/ePIurEcn/FI5ECqD9+/ezdetW7HY7Xbt2tbocyQTXvKN58+bhdDotrkYkf1M4EimA5n72GQA3NW5MiRIlLK5GMqNt27YUKVKEQ4cOsX7CBIiNtbokkXxL4UikoImK4vsXXgDgtnXrICrK4oIkM3x9felavToAcx55BMLCdOxEcojNGGOsLiK3xcfHExQURFxcHIGBgVaXI5J7YmOJCw2llDEkAruBcIcD9u2DkBCLi5Orio1lZmgo9xhDNeB3wKZjJwVMbn1/q+dIpCCJiWHhpWBUHQgHSE6GPXusrUuuLSaGLsbgQ0qo3Qk6diI5ROFIpCAJD2fOpf91n6PmcEDVqhYVJJkWHk6g3U6HS7/OAR07kRyicCRSgJwvUYJ5l65p1BNSvlwnTtSwTF4QEgKTJnGHzQZcCkc6diI5QuFIpAD58ccfOZuQQGj58jRatixlvsrAgVaXJZk1cCC3bdqE3W5nI3CgY0erKxLJlxSORAqQr7/+GoCevXtja9tWvQ55UOn69d03ov3222+tLUYkn1I4EikgEhIS3FfF7tmzp8XVyI244447APjmm28srkQkf1I4EikgFi9ezOnTpylfvjxNmza1uhy5AXfeeScAK1as4PDhwxZXI5L/KByJFBCuIbW77roLu11v/bwsLCyMZs2aYYxxH1cRyT76hBQpAC5evMh3330HaEgtv+jduzcAM2fOtLgSkfxH4UikAIiOjubUqVMEBwfTokULq8uRbHD33XcD8PPPP3Pw4EGLqxHJXxSORAqAL7/8EkiZq+JwOCyuRrJD+fLluemmmwD46quvLK5GJH9ROBLJ586fP8/s2bMB6NOnj8XVSHbS0JpIzvCIcDRu3DgqVaqEn58fkZGRrFy5MlOP+/nnn/Hy8qJ+/fo5W6BIHrZgwQJOnz5NaGiohtTymZ49e2K321m3bh179+61uhyRfMPycDRz5kyeeOIJnnvuOTZv3kyrVq3o0qULBw4cuOrj4uLi6N+/P+3bt8+lSkXypi+++AKAe++9V2ep5TNlypShdevWgIbWRLKT5Z+U7733HgMHDmTQoEHUqFGDDz74gAoVKjB+/PirPm7IkCH06dOH5s2b51KlInnPqVOnmD9/PqAhtfzKNbQ2Y8YMiysRyT8sDUcXL15k48aNdOrUKc3yTp06sXr16is+burUqfzxxx+89NJLmdpOQkIC8fHxaX5ECoI5c+aQkJBAzZo1qVOnjtXlSA7o2bMn3t7ebNmyhW3btlldjki+YGk4On78OMnJyQQHB6dZHhwczJEjRzJ8TExMDM8++yzTp0/Hy8srU9sZM2YMQUFB7p8KFSrccO0ieYFrSK1Pnz7YLt3NXfKXEiVK0K1bNwA+++wzi6sRyR8sH1YD0n1oG2My/CBPTk6mT58+jBo1imrVqmV6/SNHjiQuLs79o2uCSEFw+PBhli1bBqTMN5L8q1+/fgBMnz6d5ORki6sRyfsy1/WSQ0qWLInD4UjXS3Ts2LF0vUkAp0+fZsOGDWzevJlHH30UAKfTiTEGLy8vFi1aRLt27dI9ztfXF19f35zZCREPNXPmTJxOJ82aNaNy5cpWlyM5qGvXrhQrVoxDhw6xbNkyOnbsaHVJInmapT1HPj4+REZGsnjx4jTLFy9enOEpx4GBgWzbto0tW7a4f4YOHUpERARbtmzRzTRFUpk2bRoAffv2tbYQyXG+vr7cc889gIbWRLKD5cNqTz75JJMnT2bKlCns3LmTESNGcODAAYYOHQqkDIn1798fALvdTu3atdP8lC5dGj8/P2rXrk1AQICVuyLiMTZv3szWrVvx8fHRkFoB4Rpamz17NmfOnLG4GpG8zdJhNUg5DfXEiROMHj2aw4cPU7t2bRYsWEBYWBiQMm/iWtc8EpG0XL1GPXr0oHjx4tYWI7miWbNmVK1alT179jBnzhx3WBKRrLMZY4zVReS2+Ph4goKCiIuLIzAw0OpyRLLVxYsXKVeuHCdOnGDBggV06dLF6pIkl4wePZqXXnqJDh06pJuuIJIf5Nb3t+XDaiKSvebNm8eJEycoV65cumuISf7mml+2dOlSYmNjLa5GJO9SOBLJZ6ZOnQpA//79cTgcFlcjualy5cq0atUKYwyffPKJ1eWI5FkKRyL5yJEjR/jhhx8AuP/++60tRiwxaNAgAKKionA6nRZXI5I3KRyJ5COff/45ycnJNG/enIiICKvLEQv07NmToKAg9u7d674IqIhkjcKRSD5hjGHqxx8DcP/tt1tcjVilUKFC3HfffQB8/NproLlHIlmmcCSST6weOZIdu3dTCOg9ciRERVldkljkoZIlAZizfDl/h4bqtSCSRQpHIvlBbCwT3nwTgHuBIGNgyBD1GhREsbHUf/VVGgGJwGd6LYhkmcKRSD5wYsMGvrr0/0NdC5OTYc8eiyoSy8TEgNPJoEu/fgwYvRZEskThSCQf+GTTJhKAhkAj10KHA6pWta4osUZ4ONjt3AsUAn4Hfrbb9VoQyQKFI5E8zhjDhC+/BGCozZay0OGAiRMhJMTCysQSISEwaRKBDgf3XFo0qWlTvRZEskDhSCSPi46OJiYmhiJFinDvzp0QHQ379sHAgVaXJlYZOBD27WPw2LEAzNq0iePHj1tclEjeoXAkksdNnDgRSLl1ROGICGjTRr0EAiEhNHn4YRo1akRCQgJROmNNJNMUjkTysKNHj/LNN98AMGTIEIurEU9js9l45JFHABg3bhzJyckWVySSNygcieRhH3/8MUlJSTRr1ox69epZXY54oN69e1OiRAkOHDjAvHnzrC5HJE9QOBLJoxITExk3bhwAjz76qMXViKfy9/d332/t//7v/yyuRiRvUDgSyaO+/vprDh8+TJkyZbj77rutLkc82NChQ7HZbCxZsoTff//d6nJEPJ7CkUge9eGHHwLw8MMP4+PjY3E14skqVqxI9+7dAdy9jSJyZQpHInnQ2rVrWbt2LT4+PpqILZniGnqdNm0ap0+ftrgaEc+mcCSSB7l6je69916Cg4Mtrkbygvbt2xMREcHp06eZMmWK1eWIeDSFI5E85tChQ3z1Vcqd1IYPH25xNZJX2O12nnjiCQA++OADkpKSrC1IxIMpHInkMePHjycpKYmbbrqJhg0bWl2O5CH9+/enRIkS7Nu3jzlz5lhdjojHUjgSyUPOnTvHhAkTAHj88cctrkbymkKFCjFs2DAA3n33XYwxFlck4pkUjkTykGnTpnH8+HEqVapEjx49rC5H8qBHHnkEX19f1q5dy+rVq60uR8QjKRyJ5BFJSUm8++67ADz11FN4eXlZXJHkRcHBwfTt2xfA/XoSkbQUjkTyiNmzZ/Pnn39SokQJHnjgAavLkTzsySefBODbb7/ljz/+sLgaEc+jcCSSBxhjeOuttwB47LHHKFSokMUVSV5Ws2ZNunTpgjGG999/3+pyRDyOwpFIHrBs2TI2bdqEv7+/+y7rIjfi6aefBiAqKoqjR49aXI2IZ1E4EvF0sbG89eyzAAwcOJCSJUtaXJDkB23btqVp06ZcuHCB9554AmJjrS5JxGMoHIl4sqgotoSGsmjDBuzAk+XLW12R5BM2m43nGjcGYNyXX3IyNBSioiyuSsQz2EwBvNBFfHw8QUFBxMXFERgYaHU5IhmLjYWwMHo6ncwG7gFmOBywbx+EhFhcnOR5sbE4Q0OpbwzbgFHAi3p9iYfLre9v9RyJeKqYGH67FIwAngdIToY9eywsSvKNmBjsxvCfS79+CJzR60sEUDgS8Vzh4bx66X97ArUAHA6oWtW6miT/CA8Hu527garAP8BEm02vLxEUjkQ81s7Tp5llswGXeo0cDpg4UUMekj1CQmDSJBwOB89eWvROYCAXNOFfROFIxFO99tprGGPo0bkz9aKjU+aCDBxodVmSnwwcCPv20W/RIiqUK8eRuDgmTpxodVUiltOEbE3IFg+0e/duatSogdPpZOPGjTRs2NDqkiSfmzRpEkOGDCE4OJg///xTFxoVj6QJ2SIF2GuvvYbT6aRbt24KRpIrHnjgASpVqsTRo0cZO3as1eWIWErhSMTD7Nixg88//xyAF154weJqpKDw9vbmxRdfBODNN9/k9OnTFlckYh2FIxEP88ILL+B0OunRowdNmjSxuhwpQPr27Uu1atU4ceIEH330kdXliFhG4UjEg6xfv55vvvkGm83Gq6++eu0HiGQjLy8vXnrpJQDeeecdTp06ZW1BIhZROBLxIP/5T8ol+fr160etWrUsrkYKot69e1OzZk1OnTrFe++9Z3U5IpZQOBLxEMuWLWPJkiV4e3szatQoq8uRAsrhcDB69GgA3n33XQ4dOmRxRSK5T+FIxAMYYxg5ciQAQ4cOpWLFitYWJAXanXfeSfPmzTl37hwvv/yy1eWI5DqFIxEP8M0337Bu3ToCAgJ47rnnrC5HCjibzcY777wDQFRUFNu3b7e4IpHcpXAkYrGEhAT+9a9/AfDUU08RHBxscUUi0KJFC+68806cTifPPPOM1eWI5CqFIxGLffjhh+zdu5dy5crx73//2+pyRNzeeOMNvLy8mD9/PtHR0VaXI5JrFI5ELHT06FH3KftjxowhICDA4opE/ic8PJyhQ4cC8PTTT+N0Oi2uSCR3KByJWCU2lhcHDeL06dM0atSIvn37Wl2RSDovvvgigYGBbNq0iSn//jfExlpdkkiOUzgSsUJUFFtDQ5k8bx4A77dvj92ut6N4nlKlSvHyLbcA8Oy77/JPaChERVlclUjOshljjNVF5LbcuquvSIZiYzGhobQzhuVAL2CmwwH79kFIiLW1iVwuNpbE0FAaGMN2YBgwVq9XsUhufX/rn6oiuS0mhs8vBSN/4E2A5GTYs8fSskQyFBODtzH836VfJwCb9XqVfE7hSCSXnSxViqcu/f+LQEUAhwOqVrWsJpErCg8Hu502wD2AE3gEcFaubGlZIjlJ4Ugkl438v//jb6Am8CSkBKOJEzVEIZ4pJAQmTQKHg7eBAGAN8MnSpRYXJpJzNOdIc44kF/3yyy+0aNECYwzLZ82idalSKT1GCkbi6WJjYc8e3l6yhH+/9hrFihVj586dumip5Krc+v5WOFI4klxy8eJFGjVqxLZt2xgwYADTpk2zuiSRLEtMTKRp06Zs3ryZu+++m1mzZlldkhQgmpAtks+8+uqrbNu2jZIlS/L2229bXY7IdfH29iYqKgqHw8FXX33FnDlzrC5JJNspHInkgk2bNvH6668DMG7cOEqVKmVxRSLXr0GDBu77rQ0bNoyTJ09aXJFI9lI4EslhFy9e5P777yc5OZm7776bu+++2+qSRG7YCy+8QEREBEeOHOHxxx+3uhyRbKVwJJLDRo8ezbZt2yhVqhRjx461uhyRbOHn58fUqVOx2+189tlnzJw50+qSRLKNwpFIDvrpp58YM2YMoOE0yX+aN2/Oc889B8DQoUM5ePCgxRWJZA+FI5EccuLECfr27YvT6eSBBx6gZ8+eVpckku1eeOEFmjRpwqlTpxgwYABOp9PqkkRumMKRSHaLjcUsW8ag++4jNjaWatWq8dFHH1ldlUiO8Pb25vPPP6dQoUJER0fz5ptvplwTKTo65b8ieZDCkUh2ioqCsDDGt2/Ptz/+iI+XF19++SWFCxe2ujKRHBMeHu7+B8Dzzz1HdGgotGsHYWEp7wmRPEbhSCS7xMbC4MGscTp54tKiN5KTaaB5RlIAPPjggwzo2ROnMdxjDIcAnE4YMkQ9SJLneEQ4GjduHJUqVcLPz4/IyEhWrlx5xbbffPMNHTt2pFSpUgQGBtK8eXN+/PHHXKxW5ApiYjjsdHIXkAj0BJ4wRncvlwLBZrMx7sEHqQscA3qT8j4gOVnvAclzLA9HM2fO5IknnuC5555j8+bNtGrVii5dunDgwIEM269YsYKOHTuyYMECNm7cSNu2benevTubN2/O5cpF0roYFsbdwGGgFjAVsDkcKfdOEykACtWpw9c2G4HAKmAEpNxYWe8ByWMsv7da06ZNadiwIePHj3cvq1GjBj169HCfAn0ttWrVonfv3rz44ouZaq97q0l2M8YwdOhQJk2aRBCwHgh3OGDiRBg40OryRHJPVBTfDR5Mj0tnrf23Tx8enT7d4qIkvygQ91a7ePEiGzdupFOnTmmWd+rUidWrV2dqHU6nk9OnT1O8ePErtklISCA+Pj7Nj0h2euutt5g0aRI2m43Pp04lPDoa9u1TMJKCZ+BAbt+/nzcGDwbg8S+/ZOHChRYXJZI1loaj48ePk5ycTHBwcJrlwcHBHDlyJFPrePfddzl79iy9evW6YpsxY8YQFBTk/qlQocIN1S2S2pdffsmzzz4LwAcffEC3+++HNm0gJMTSukQsExLCvydM4IEHHsDpdNKrVy+2bdtmdVUimWb5nCNImciXmjEm3bKMzJgxg5dffpmZM2dSunTpK7YbOXIkcXFx7h9dxVWyy8qVKxkwYAAATzzxBMOHD7e4IhHPYLPZmDBhAjfffDOnT5+mc+fO7N271+qyRDLF0nBUsmRJHA5Hul6iY8eOpetNutzMmTMZOHAgs2bNokOHDldt6+vrS2BgYJofkRu1YcMGbr31Vi5evMgdd9zBO++8Y3VJIh7Fx8eHb7/9ltq1a3P48GE6duyY6VEBEStZGo58fHyIjIxk8eLFaZYvXryYFi1aXPFxM2bM4P777+eLL77g1ltvzekyRdLZtm0bnTt35vTp07Ru3ZrPP/8ch8NhdVkiHqdYsWL8+OOPVKpUiT/++IPOnTtz8uRJq8sSuSrLh9WefPJJJk+ezJQpU9i5cycjRozgwIEDDB06FEgZEuvfv7+7/YwZM+jfvz/vvvsuzZo148iRIxw5coS4uDirdkEKmF27dtGhQwf++ecfmjVrxty5cylUqJDVZYl4rHLlyrFo0SKCg4P59ddf6dixI//884/VZYlckeXhqHfv3nzwwQeMHj2a+vXrs2LFChYsWEBYWBgAhw8fTnPNo4kTJ5KUlMQjjzxC2bJl3T+PP/64VbsgBUVsLLs++YT2bdpw7NgxGjRowA8//ECRIkWsrkzE41WtWpXFixdTsmRJNm7cSIcOHTixbZvuwSYeyfLrHFlB1zmSLIuKYutDD9HJGI4BtcqVY/nWrZQsWdLqykTylN9++4127drx999/Uw9YApS022HSJF36Qq6pQFznSCRPiI3ll4ceos2lYNQAiD5yhJIXLlhdmUieU7t2bZZ/+SXBwFagDRCre7CJh1E4ErmGpTNn0sEYTgEtgGVAKadT94sSuU41bTaWA+WA7aS8r3bqHmziQRSORK7is88+o8vIkZwF2gOLgKKg+0WJ3IjwcKrb7awGIoCDQEtg9alTlpYl4qJwJJIBYwyvvPIK/fv3JzExkV6NGjHPbicAUoLRxIm6ArbI9QoJgUmTCHM4WAU0BU4C7e+9l++++87i4kQUjkTSSUxMZNCgQe4bGf/73/9mxtq1+O3fn3Jmje6ZJnLjBg6EffsoGR3N0l27uPXWW7lw4YL7gqoF8Fwh8SA6W01nq0kqx48fp1evXkRHR2O32xk7dqz7mlsiknMSExN59NFHmTRpEgD3338/EyZMwNfX1+LKxJPobDWRXLZ161YaN25MdHQ0hQsX5rvvvlMwEskl3t7eTJgwgQ8//BC73c60adNo3749x44ds7o0KYAUjkRiY/nqpZdo0bw5+/bto0qVKvzyyy9069bN6spEChSbzcbw4cP54YcfCAoK4ueff6Zx48ZsXbRIF4uUXKVwJAWa8+OPeb5CBXqNHs258+fpWLMm69ato1atWlaXJlJgderUibVr1xIeHs6BAwdo0bkz09u1g7AwiIqyujwpABSOpMA6+dtv3D54MK9d+v0pYMHvv1P83DkryxIRICIigl9mz6YTcA7oCzzmdHJx8GD1IEmOUziSAmnTpk1EdurEPMAX+Ax4B/DSxR1FPEbx48dZADx/6ff/A9o4nfy1Zo2FVUlBoHAkBYoxhkmTJtGiRQv2Hj5MJeBnUv5VCujijiKeJDwch93OK8D3QBCwBmg4bBjLly+3tDTJ3xSOpMA4d+4c999/P0OGDCEhIYHu3buz8cMPiXQ4Uhro4o4inuXSxSJxOOgObLDbqRsSwrHjx+nQoYOuhyQ5pkCHo4SEBNq2bUtAQAArVqywuhzJQbt376Zp06Z8+umn2O123njjDb799luKDR+eclFHXdxRxDNdulgk0dFU3b+fNbt20bdvX5KTk/nXv/5Fjx49+Oeff6yuUnLQ+PHj8fX1ZdiwYbm2zQJ9EcjZs2dz1113AdC2bVuWLVtmcWWSrWJjISaGr3btYuC//83p06cJDg7myy+/pE2bNlZXJyLXyRjD+PHjGTFiBBcvXqRChQrMmDGDlmFhEBMD4eHqAc4nEhISKFeunDsA79mzh6pVq+oikDkpdW/RTz/9RFxcnIXVSLaKiuJcaChD2rWj18MPc/r0aW6++WY2b96sYCSSx9lsNoYNG8Yvv/xC1apVOXjwIK1vvpk3QkNx6pT/fGXt2rVpegZza5SnQIej7du3u//f6XTy888/W1iNZJvYWH596CEaGcMkwAY8a7Ox9JNPKFu2rNXViUg2adCgAZs2beLe228n2elkpDF0AY46nTBkiE75zwcuD0M7d+7Mle0W6HB08OBBAMqVKwfAxo0brSxHsoExhrFvv00TY9gJlAEWAWOMwWvfPmuLE5FsV6RIEaYPH85kwJ+U93t9YGlysi7LkQ+sW7cO+N/39IEDB3JluwpHwK233gqk7UmSvOf48ePccccdPPrRRyQAXYFfgQ6gU/RF8jFbtWoMtNtZD9QEjpDyvn/i8885f/68tcXJDdm6dSsAt99+O/C/7+2cVqDD0blLV0Lu0qULAL/99puV5cgN+O6776hVqxbfffcd3t7evN+7N/PsdkqBTtEXye8unfJfy+FgPTDEZgPgw6goIiMjNSqQR506dcrdU+S616XCUS4pUaIEkZGRQMrp3omJiRZXJFlx8uRJ+vfvT48ePTh27Bg1a9Zk7dq1PPHll9j279cp+iIFxaVT/gtFRzPhwAHmz59PmTJl2LlzJ82aNeOVV14hKSnJ6iolC3bt2gWkDKnVrl0bgMOHD+fKtgt8OCpZsiQVKlSgSJEiJCYmEhMTY3VJci2xsRAdzYJPP6V27dp89tln2O12nnnmGTZu3EiDBg1S2oWEQJs26jESKShSvee7du3Ktm3b6NmzJ0lJSbz44os0bdqUTZs2uT9DNGHbs7nCUUREBCVKlADItYBb4MNR8eLFsdls7ruwa2jNw0VFERsaSs927bh1wAAOHTpEtWrVWLVqFW+88QZ+fn5WVygiHqJkyZLMmjWLzz//nKJFi7Jp0yYaN2rEkxUqcEan/Hu83bt3A1CtWjUKFSqEj49Prm1b4ah4cQBq1qwJwO+//25lOXIViXv38u5DD1HdGGYDDuApm43N8+bRvHlzq8sTEQ9ks9m477772LlzJ/fcdhtOY3gfqAXMcToxgwerB8lDucJRREQENpvN3XuUGxSOLoWjatWqAf/rxhPPYYxh7ty51G/blqeN4SzQAtgEvGMMhf76y+IKRcTTlSlThhlPPMECoCJwALgTaON0snH+fEtrk4y5vo9d38+u7+vcUODDkSuJRkREAP9LquIZfvnlF1q3bs1tt93Gjv37KQFEASuBuqBT9EUk88LD6WK3sx14HvADVgCNhg6lf//+7NF1kTyG0+l0zwFWOLJARj1HBfB2c57h0iRJc/AgK1as4JZbbqF58+asXLkSPz8/nn32WfZ89BEPOhwpL1ydoi8iWXHplP9CDgevALvtdvo2awbAZ599RvXq1RkwYMD//pGsiduWiY2N5fz583h5eVGxYkUADavlpqJFiwJQpUoV7HY7p0+f5ujRo9YWVRBFRZEUGsq37dpxU2gorVu35scff8ThcPDggw8SExPDmDFjKPrYY+47dOsUfRHJskun/BMdTYX9+/lszRrWr19P165dSU5O5tNPP6VGjRr0bNSIn0JDMZq4bQlXQK1SpQre3t7A/76vc0OBD0dFihQBwNfX151ONe8odx3euJFXHnqISsZwB7Aa8AUe7tePmJgYoqKiCEndO6RT9EXkRlz2GdKoUSPmz5/P+vXr6d69O06nk9kbN9LGGOoDHzudnNHE7VyV+kw1F9f3dW4o8OGocOHC7v/XvKPcc+7cOWbNmkWPHj0IbdqUF40hFigJPAPsBcY9+CCVKlWytlARKTAaNWrE999/z7aoKIaQcq+2X4HBQBmnkwEDB7Js2TKcTqe1hRYAl0/GhrTf1zlN4SjVk60z1nLIpXH7pH37WLhwIf379yc4OJjevXvz3XffkZScTAvgM+Ag8AZQVhOtRcQitTt1YoLdzl/AO0AV4Czw6aJFtG/fnooVKzJy5Mj/XRdPc5OyXeoLQLooHOUi9RzlLDN5MmtDQ3msXTvKVapEly5d+Oyzzzhz5gxhYWGMHDmSbdu28fPkyfR1OPADTbQWEWtdmrhdzOHgKSDGbufnZ59lyJAhFC1alIMHD/LGG29Qp04d6oaE8EZoKPs0NylbWR2ObKYAnpoVHx9PUFAQAJs3b6Z+/foALF26lA4dOlCtWjX1Ht2gP//8k8/HjePzd98l9Q1ZSgG9Bgygz+DBNG/eHNulG0QCKf/q2rMnpcdIwUhErJbBZ9KFCxeYO3cuX3zxBQsWLODixYvu5i2APjYbd2/aROlL3yuSdefPnycgIABjDEeOHCE4OBiAKVOmMPDSSThxcXEEBgbmWA0FPhzFxMRQ9dLwzcGDBwkNDcXLy4tz5865Z8hL5vzzzz/uS/X//PPP7uWFgDuA+4AOgHd0dMpkSBGRPOzk99/zze238wUQDbi+TB12Ox07daJPnz706NEjVycS5wfbtm2jbt26FC1alH/++cf9j+hZs2bRu3dvIOfDkVeOrTmPSN1NV758eQoVKsS5c+fYu3dvmolgcpnYWIiJISE0lAW//spnn33G/Pnz3f+KstvttG/Zkn6rVnGHMbifZc0lEpF8oljDhgy02xnodHIImAl8AWxwOlm4cCELFy7Ez8+P2267jXvvvZcuderge+AAhIerd/wqXLfxct02xEVzjnJR6kRvt9sJDw8HNO/oaszkyfwcGsrQdu0oW7Uqd955J3PmzOHixYvUq1ePt99+m4MHD7JoxQr6ffwxhR2OlAdqLpGI5CeX5ibhcFAOGOFwsH7yZHbv3s2oUaOIiIjgwoULzJo1izvuuIMyVasyqF07loWGkvzxx1ZX77Eymm8EOpU/V/n7+6f53XUwNOcovZiYGF4aMYKqDz3ETcYwETgJlAP+NXQov/76K1u2bOHpp5+mXLlyKQ9KdcE1XbRRRPKdDD7jwsPDefHFF9m5cycbN27kqcGDKQ+cIuX2R+2NIWzwYJ595BF27txpZfUe6UrhSD1HuaRQoULY7WmfAtdQWoHtObrslNTjx48zduxYmjVrRrVq1Rj9wQf8CRQGBgBLSLmB41u9e1OnTp2M16mLNopIfnaFzzibzUbDhg155557OAAsJ+WaScWAv4A3x42jZs2aNG3alHHjxvHPP//878EF+PIACkcWu7zXCAp4z1FUFISFcaZdO74IDeW2+vUpW7Ysjz76KGvXrsVut3NLmzZMt9k4AkwD2gMOzSMSEbmy8HDsdjutgYnAYWC23c5tHTvi5eXFunXreOSRRyhbtix3330384YPJyk0FArg5QGMMe7v3+rVq6f5W0bf2TlF4egyrnCU77o6r/GvkFPbtzProYfo5XRSGrjPGOZu3UpSUhINGzbk/fff56+//uKH6Gj6fPwxAZpHJCKSOanmJgH4OhzcOWkS3y1axF9//cX7779P/fr1uXjxIl9//TXd//tfyhvDYGCu08m5q926JJ/1MB0+fJj4+Hjsdrv7THKX3AxHBfpU/ipVqrBnz540fzt79ixFihRJd32FPC0qCgYPBqcT7HaYNImz99zDhg0bWLlyJQsXLuSXNWtITnVJ/HCgN3Dv1KnUvP/+9OvUNYlERLLmGp+bW7du5ZNXX+Xzr7/m71TL/YEOLVrQ5q67uOmmm2jQoEHKpWYy+GzP6/M6f/jhB7p27UqNGjXYsWNHmr+dPXvWPbSm6xzlAFc4ql27Ntu2bUv394iICHbv3s2PP/5Ip06dLKgw+yTu3cufVaqwyxh2AbuAjcA2h4Pk5OQ0bWsA3UkJRQ0Am8ORMsFQ4UdEJHfExpIYGkq0McwFvidlXmdqhQoVokGtWtRev546QG2gFlAyH3xmv/HGG4wcOZJ77rmHGTNmpPlbcnIyXl4pVyDSdY5ykK+vb4bL69evz+7du9m6davnh6NL1xs6XqIEv8fHs2vXrjQ/f+zZQ1JG+Tc5mfLly9OsWTM6duzILbfcQtiSJTBkCCQna7hMRMQKISF4f/wxnYYMoVNyMh/Z7fz6wgss9Pdn1apV/Pzzz5w8eZKf16/n58seWiI5mRpdu1K9aVNq1KhB9erVqV69OmFhYTgOH4aYGI+/xtKWLVsA3HeuSM3hcODl5UVSUlKO11Ggw9GVxi/r1avHrFmz3AfJ0zidTtavX8/Kd99l7VdfsY70/7JIrRBQDYgAqgO17Xaa/fILIY0bp204cCB07qzhMhERK6X6LLZVrUq9kBDqAc888wxOp5OdO3eyddkyfhs+nG3Ab8A+4ASwats2Vl02IuLn7U21xERqAzfbbLR55RWq/ec/aW/f5CGuFo4g5Xv79OnTOV5HgQ5Hfn5+GS6vV68egLXh6FKPkCvlx8fHs3jxYubNm8f8+fP5+++/0z0kDIi4+WYi6tUjIiLC/VN+4ULsDz+ctkfo8mDkEhKiUCQiYrUrfBbb7XZq1apFrVq1oFAhd2//ObudXc8/z+/Vq/P777+zc+dOfv/9d3bv3s2FhAR+BX4FvjAGnn+eMh99ROcuXbj99tvp1KkTAQEBKRu47LsnN509e5aYmJS7cbq+hy/n6+ubK+GoQM856tatG3Pnzk3396NHj1KmTBlsNhsnTpygWLFi2bfxzLzwLk2y+9PpZJ7Nxtzq1flpzx4SExPdTQIDAmh39izNgCZAJBAIKWctZHTfMk2gFhHJf67x2Z68ZAn7OnZkJ7AB+AlYAySkauPn50fHjh25vXhxbv30U8oYc+0J3jkQoqKjo2nXrh3ly5cn9gpn34WGhnLw4EHNOcpJVxpWCw4OJjw8nJiYGFavXs2tt956XetPnTttNts1zyw4cuQI63/4gUWDBvEjpNzN3hi4dFmBqlWr0r17d7p3785NFSviXbVqyrpcrna9IfUIiYjkP9f4bHdUr04Vu50qTifdLi27YLez+osvmPvLL3z33Xfs3buXuXPn4uoqaAB0cTrpMHgwDZs3J6hmzbQrzaGz5FauXAlAq1atrtjmSiM+2a1Ah6MrTciGlIMTExPDqlWrMheOYmMxu3ez6uRJvliyhBUrVrBnzx73jVj9fH0JSkggEAgCAp1OggYNwjZ7NsdOn2bPnj0cOXIkzSodQCugG9D900+p1q9f2m1OmqQJ1CIicmWuayyl+q7wmziRdr170653b9577z1+++03vn3/fb6fOpUNwOZLP687nVCrFpUqVSIsLIxSpUphv3CB5LlzSQDigHink/hBg4j/97+JP3MGb29vIiIi6Ny5M3379qVmYGCme5hWrVoFeEY4whRAcXFxBjAPPfTQFdtMmTLFAKZFo0bGLFtmzMGDV17h5Mlmh81m2oPhBn5sNpupXrWqGQLmGzCnUvqNjHE4rrz9gweNiY6+en0iIlKwXeu74uBBY+x2cxTMp2DuBROWDd9p94M5AsbY7cZMnnzF8hL37jWF/f0NYLZu3XrFdo0bNzaAiYuLu8En5OrUc3QFbdu2BWDthg383a4dpa7UdRgbS/RDD9HDGOIBH+A+m407oqKo3aaN+4KSZ/fsIb5lS+IutYsD4m02kkePpnREBBUqVKBOnTopk+KiojLfI6ThMhERuZZrfVdc6mEqPWQI/ZKT6Xfpu+efO+5g27ZtHDp0iL///htz8iReo0bha8z/RkLsdgIXLSKwWjXOnj3Lpk2b+HLqVOYuWcI04EfgK6eTlkOGpJyFd3kdUVH89NBDnDGGkkDttWuhbt0My1TPUQ5y9Rz9a8iQKzc6eNA0vJR+P75KD87MF180Ppfa3Qxmr6ttdHT6dU6enLIO17qukqLVIyQiIrkuM989mfkuW7bMrAVT89L3o/elEZF0342XeqyGXmr30DVGSzrefHOu9BwV6Hur+U6ceOUb+sXE0PPS/85yLUtOTjkr4JL//ve/3PPKK1wEepKSjivClSdGDxyYcvXS6OiU/15tApvuZC8iIrktM989mfkuCw+nid3OWuAOIBG4G/ji8rtSxMSQ5HTyzaVfe0K671q3qCj8VqzI6h5dlwIdjvwhZfgqo1MGw8PpZbNhAxYDm8Adeowx/Oc//2H48OEYY3ikbVu+tNvxc7W51jCYQo+IiORl1/ouuzRMV9jhYBYwwGYjGej7+OOMHz/+f+3Cw/naZuMYUApoCxl3MMTGwuDB5NatZwt0OGoAV06oISFU+fhj+ly6gugzgHP8eM4WK0a/fv0YM2YMAK+++ir/XboUx/79mesREhERKQgu9TB5RUczZd8+HnnkEYwxDBs2jJdffpnk5GTiihThPyVKAPAo4H2lDoaYGHA66ZhLpRfoi0DGAYHXuFFfzMqV1GnfnoTERBo1asTBgwc5evQoDoeDiRMnMlBBSERE5JqMMbz00ku88sorAISHh+N0Ovnjjz+oUK4cOyZPpnCdOhl/H8fGQlgY8U4nQeT8jWcLdM8Rdvs1rw0U3qoVn3/xBb6+vmzYsIGjR48SGhrK0qVLFYxEREQyyWazMXr0aKZMmUJgYCAxMTH88ccflC5dmu/mzaNwly7XHKbDnjuxpWD3HO3YQWCNGpl6zIEDB1i0aBElS5aka9eu+Pj45HCVIiIi+dPJkydZunQp58+fp3v37hQtWjRTj4vfuZOgmjVzvOeoYIejHH5yRUREJPvk1vd3wR5WExEREbmMwpGIiIhIKgpHIiIiIqkoHImIiIik4hHhaNy4cVSqVAk/Pz8iIyNZuXLlVdv/9NNPREZG4ufnR+XKlZkwYUIuVSoiIiL5neXhaObMmTzxxBM899xzbN68mVatWtGlSxcOHDiQYfu9e/fStWtXWrVqxebNm9238Zg9e3YuVy4iIiL5keWn8jdt2pSGDRumuddKjRo16NGjh/sWHak988wzfP/99+zcudO9bOjQoWzdupU1a9Zkaps6lV9ERCTvKRCn8l+8eJGNGzfSqVOnNMs7derE6tWrM3zMmjVr0rXv3LkzGzZsIDExMcdqFRERkYLBy8qNHz9+nOTkZIKDg9MsDw4O5siRIxk+5siRIxm2T0pK4vjx45QtWzbdYxISEkhISHD/HhcXB6QkUBEREckbXN/bOT3oZWk4crHZbGl+N8akW3at9hktdxkzZgyjRo1Kt7xChQpZLVVEREQsduLECYKCgnJs/ZaGo5IlS+JwONL1Eh07dixd75BLmTJlMmzv5eVFiRIlMnzMyJEjefLJJ92/nzp1irCwMA4cOJCjT66niY+Pp0KFChw8eLBAzbXSfmu/CwLtt/a7IIiLiyM0NJTixYvn6HYsDUc+Pj5ERkayePFi7rjjDvfyxYsXc/vtt2f4mObNmzN37tw0yxYtWkSjRo3w9vbO8DG+vr74+vqmWx4UFFSgXlQugYGB2u8CRPtdsGi/C5aCut92e85Ombb8VP4nn3ySyZMnM2XKFHbu3MmIESM4cOAAQ4cOBVJ6ffr37+9uP3ToUPbv38+TTz7Jzp07mTJlClFRUTz99NNW7YKIiIjkI5bPOerduzcnTpxg9OjRHD58mNq1a7NgwQLCwsIAOHz4cJprHlWqVIkFCxYwYsQIxo4dS7ly5fjoo4+46667rNoFERERyUcsD0cAw4YNY9iwYRn+bdq0aemWtW7dmk2bNl339nx9fXnppZcyHGrLz7Tf2u+CQPut/S4ItN85u9+WXwRSRERExJNYPudIRERExJMoHImIiIikonAkIiIikorCkYiIiEgq+TYcvfbaa7Ro0YJChQpRtGjRTD3GGMPLL79MuXLl8Pf3p02bNmzfvj1Nm4SEBB577DFKlixJQEAAt912G7GxsTmwB9fn5MmT9OvXj6CgIIKCgujXrx+nTp266mNsNluGP2+//ba7TZs2bdL9/Z577snhvcm869nv+++/P90+NWvWLE2b/Ha8ExMTeeaZZ6hTpw4BAQGUK1eO/v37c+jQoTTtPO14jxs3jkqVKuHn50dkZCQrV668avuffvqJyMhI/Pz8qFy5MhMmTEjXZvbs2dSsWRNfX19q1qzJnDlzcqr865aV/f7mm2/o2LEjpUqVIjAwkObNm/Pjjz+maTNt2rQM3+sXLlzI6V3Jkqzs9/LlyzPcp99//z1Nu/x2vDP6/LLZbNSqVcvdxtOP94oVK+jevTvlypXDZrPx7bffXvMxufbeNvnUiy++aN577z3z5JNPmqCgoEw95o033jBFihQxs2fPNtu2bTO9e/c2ZcuWNfHx8e42Q4cONeXLlzeLFy82mzZtMm3btjX16tUzSUlJObQnWXPLLbeY2rVrm9WrV5vVq1eb2rVrm27dul31MYcPH07zM2XKFGOz2cwff/zhbtO6dWvz0EMPpWl36tSpnN6dTLue/R4wYIC55ZZb0uzTiRMn0rTJb8f71KlTpkOHDmbmzJnm999/N2vWrDFNmzY1kZGRadp50vH+8ssvjbe3t/n444/Njh07zOOPP24CAgLM/v37M2z/559/mkKFCpnHH3/c7Nixw3z88cfG29vbfP311+42q1evNg6Hw7z++utm586d5vXXXzdeXl7ml19+ya3duqas7vfjjz9u3nzzTbNu3Tqze/duM3LkSOPt7W02bdrkbjN16lQTGBiY7j3vSbK639HR0QYwu3btSrNPqd+j+fF4nzp1Ks3+Hjx40BQvXty89NJL7jaefrwXLFhgnnvuOTN79mwDmDlz5ly1fW6+t/NtOHKZOnVqpsKR0+k0ZcqUMW+88YZ72YULF0xQUJCZMGGCMSblxejt7W2+/PJLd5u//vrL2O12s3DhwmyvPat27NhhgDQvgjVr1hjA/P7775lez+23327atWuXZlnr1q3N448/nl2lZqvr3e8BAwaY22+//Yp/LyjHe926dQZI8yHsSce7SZMmZujQoWmWVa9e3Tz77LMZtv/3v/9tqlevnmbZkCFDTLNmzdy/9+rVy9xyyy1p2nTu3Nncc8892VT1jcvqfmekZs2aZtSoUe7fM/t5aKWs7rcrHJ08efKK6ywIx3vOnDnGZrOZffv2uZflhePtkplwlJvv7Xw7rJZVe/fu5ciRI3Tq1Mm9zNfXl9atW7N69WoANm7cSGJiYpo25cqVo3bt2u42VlqzZg1BQUE0bdrUvaxZs2YEBQVlur6jR48yf/58Bg4cmO5v06dPp2TJktSqVYunn36a06dPZ1vtN+JG9nv58uWULl2aatWq8dBDD3Hs2DH33wrC8YaUGznabLZ0w8+ecLwvXrzIxo0b0xwDgE6dOl1xH9esWZOufefOndmwYQOJiYlXbeMJxxWub78v53Q6OX36dLobdJ45c4awsDBCQkLo1q0bmzdvzra6b9SN7HeDBg0oW7Ys7du3Jzo6Os3fCsLxjoqKokOHDu67S7h48vHOqtx8b3vEFbI9wZEjRwAIDg5Oszw4OJj9+/e72/j4+FCsWLF0bVyPt9KRI0coXbp0uuWlS5fOdH2ffPIJRYoU4c4770yz/L777qNSpUqUKVOG3377jZEjR7J161YWL16cLbXfiOvd7y5dunD33XcTFhbG3r17eeGFF2jXrh0bN27E19e3QBzvCxcu8Oyzz9KnT580N6/0lON9/PhxkpOTM3xfXmkfjxw5kmH7pKQkjh8/TtmyZa/YxhOOK1zffl/u3Xff5ezZs/Tq1cu9rHr16kybNo06deoQHx/Phx9+SMuWLdm6dSvh4eHZug/X43r2u2zZskyaNInIyEgSEhL47LPPaN++PcuXL+fmm28GrvyayC/H+/Dhw/zwww988cUXaZZ7+vHOqtx8b+epcPTyyy8zatSoq7ZZv349jRo1uu5t2Gy2NL8bY9Itu1xm2tyIzO43pK8fslbflClTuO+++/Dz80uz/KGHHnL/f+3atQkPD6dRo0Zs2rSJhg0bZmrdWZXT+927d2/3/9euXZtGjRoRFhbG/Pnz04XDrKz3RuXW8U5MTOSee+7B6XQybty4NH+z4nhfTVbflxm1v3z59bzXc9v11jhjxgxefvllvvvuuzQBulmzZmlOOmjZsiUNGzbkv//9Lx999FH2FX6DsrLfERERREREuH9v3rw5Bw8e5J133nGHo6yu0yrXW+O0adMoWrQoPXr0SLM8rxzvrMit93aeCkePPvroNc+YqVix4nWtu0yZMkBKMi1btqx7+bFjx9wptEyZMly8eJGTJ0+m6U04duwYLVq0uK7tZkZm9/vXX3/l6NGj6f72999/p0vSGVm5ciW7du1i5syZ12zbsGFDvL29iYmJybEvy9zab5eyZcsSFhZGTEwMkL+Pd2JiIr169WLv3r0sW7YsTa9RRnLjeGekZMmSOByOdP/qS/2+vFyZMmUybO/l5UWJEiWu2iYrr5ecdD377TJz5kwGDhzIV199RYcOHa7a1m6307hxY/dr3mo3st+pNWvWjM8//9z9e34+3sYYpkyZQr9+/fDx8blqW0873lmVq+/tLM1QyoOyOiH7zTffdC9LSEjIcEL2zJkz3W0OHTrkcRN0165d6172yy+/ZHqC7oABA9KdtXQl27ZtM4D56aefrrve7HKj++1y/Phx4+vraz755BNjTP493hcvXjQ9evQwtWrVMseOHcvUtqw83k2aNDEPP/xwmmU1atS46oTsGjVqpFk2dOjQdJM2u3TpkqbNLbfc4nETdLOy38YY88UXXxg/P79rTmx1cTqdplGjRuaBBx64kVKz1fXs9+Xuuusu07ZtW/fv+fV4G/O/Cenbtm275jY88Xi7kMkJ2bn13s634Wj//v1m8+bNZtSoUaZw4cJm8+bNZvPmzeb06dPuNhEREeabb75x//7GG2+YoKAg880335ht27aZe++9N8NT+UNCQsySJUvMpk2bTLt27Tzu1O66deuaNWvWmDVr1pg6deqkO7X78v02xpi4uDhTqFAhM378+HTr3LNnjxk1apRZv3692bt3r5k/f76pXr26adCgQZ7d79OnT5unnnrKrF692uzdu9dER0eb5s2bm/Lly+fr452YmGhuu+02ExISYrZs2ZLm9N6EhARjjOcdb9cpzlFRUWbHjh3miSeeMAEBAe6zcp599lnTr18/d3vX6b4jRowwO3bsMFFRUelO9/3555+Nw+Ewb7zxhtm5c6d54403PPbU7szu9xdffGG8vLzM2LFjr3gJhpdfftksXLjQ/PHHH2bz5s3mgQceMF5eXmkCttWyut/vv/++mTNnjtm9e7f57bffzLPPPmsAM3v2bHeb/Hi8Xfr27WuaNm2a4To9/XifPn3a/d0MmPfee89s3rzZfeasle/tfBuOBgwYYIB0P9HR0e42gJk6dar7d6fTaV566SVTpkwZ4+vra26++eZ0afz8+fPm0UcfNcWLFzf+/v6mW7du5sCBA7m0V9d24sQJc99995kiRYqYIkWKmPvuuy/dKa6X77cxxkycONH4+/tneC2bAwcOmJtvvtkUL17c+Pj4mCpVqpjhw4enuyaQlbK63+fOnTOdOnUypUqVMt7e3iY0NNQMGDAg3bHMb8d77969Gb4vUr83PPF4jx071oSFhRkfHx/TsGHDND1YAwYMMK1bt07Tfvny5aZBgwbGx8fHVKxYMcPQ/9VXX5mIiAjj7e1tqlevnubL1FNkZb9bt26d4XEdMGCAu80TTzxhQkNDjY+PjylVqpTp1KmTWb16dS7uUeZkZb/ffPNNU6VKFePn52eKFStmbrrpJjN//vx068xvx9uYlN5tf39/M2nSpAzX5+nH29XrdaXXrJXvbZsxl2YziYiIiEj+vX2IiIiIyPVQOBIRERFJReFIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhEREQkFYUjERERkVQUjkRERERSUTgSERERSUXhSETyldGjR1OnTh0CAgIIDg7m4YcfJjEx0eqyRCQP8bK6ABGR7GKMITk5mYkTJ1K+fHl27NhB//79qVu3Lg8//LDV5YlIHqEbz4pIvtanTx9KlSrFhx9+aHUpIpJHaFhNRPKN/fv38+ijj1K7dm2KFStG4cKFmTVrFiEhIVaXJiJ5iMKRiOQLx48fp0mTJhw/fpz33nuPVatWsWbNGhwOB/Xr17e6PBHJQzTnSETyhQULFpCUlMSMGTOw2WwAjB07losXLyociUiWKByJSL5QvHhx4uPj+f7776lZsyZz585lzJgxlC9fnlKlSlldnojkIZqQLSL5gjGGhx9+mC+++AJ/f3/69u3LhQsX2L9/P/PmzbO6PBHJQxSORERERFLRhGwRERGRVBSORERERFJROBIRERFJReFIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhEREQkFYUjERERkVQUjkRERERSUTgSERERSUXhSERERCSV/wfiMKFft7KSGgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABz1UlEQVR4nO3dd3gU1f7H8ffuppFAQg8lJLQQegsdkQ6CYEVQpKggICrWe5VrBVHs7f6oEsCCCIqoFBGQICBIBxEQgtIiTRASakiy5/dH2L0JCRAgyWyyn9fz5NFMzs58Z2fLh3POzNiMMQYRERERAcBudQEiIiIinkThSERERCQdhSMRERGRdBSORERERNJROBIRERFJR+FIREREJB2FIxEREZF0FI5ERERE0lE4EhEREUlH4UjyhQMHDvDyyy+zadOmTH+77777KFy48DWv+/z58wwZMoSyZcvicDioX7/+tReaA8aOHcvUqVMzLd+zZw82my3LvxUkNpuNl19+2eoycsTLL7+MzWbL9cf+97//pWrVqvj5+WGz2Thx4gT33XcfFStWzNDutdde45tvvrmmei7nn3/+4e6776Z06dLYbDZuu+22q15HxYoVue+++3K8Nk+yfv16Hn74YerUqUORIkUIDQ2lQ4cOLFmyJFPbihUrYrPZsvwJCAiwoHrv4mN1ASLZceDAAUaMGEHFihVzPLyMGzeOCRMm8N///pfo6OjrClo5YezYsZQsWTLTF0XZsmVZtWoVVapUsaYwuWoDBw7kpptuytVtbNq0iWHDhjFw4ED69++Pj48PRYoU4YUXXuCxxx7L0Pa1116jR48e1xReLueVV15h9uzZTJ48mSpVqlC8ePEcXX9BMX36dNasWcMDDzxAvXr1OH36NOPHj6d9+/Z8/PHH9OvXz9129uzZJCUlZXj8vn376NWrF7fffntel+51FI7E6/32228UKlSIRx55xOpSLsvf359mzZpZXYZchbCwMMLCwnJ1G1u3bgXgwQcfpEmTJu7leRmif/vtN6pUqcK9996bZ9vMKWfOnCEwMDBPtvXvf/+bt99+O8Oyrl270rBhQ0aOHJkhHDVo0CDT43/44QcgLXRL7tKwmhf6+++/GTRoEBUqVMDf359SpUrRsmVLFi9e7G7Tpk0bateuzapVq2jRogWFChWiYsWKTJkyBYB58+bRsGFDAgMDqVOnDgsWLMi0nRUrVtC+fXuKFClCYGAgLVq0YN68eZna/fbbb9x6660UK1aMgIAA6tevz8cff+z++9KlS2ncuDEA999/v7tr+eKhl127dtG1a1cKFy5MhQoVeOqppzL9y+tiNpuNSZMmcfbsWfd6p06detkhrIu37Rr+2Lp1K/fccw8hISGEhobywAMPkJCQkOGxTqeT//73v9SvX59ChQpRtGhRmjVrxnfffQekdaVv3bqVn376yV2Pa2jkUjVl53meOnUqNpuN2NhYHnroIUqWLEmJEiW44447OHDgwGWfo8upWLEi3bp1Y/bs2dStW5eAgAAqV67Mhx9+mKntvn376NOnD6VLl8bf358aNWrwzjvv4HQ6L7n+PXv24OPjw+jRozP9bdmyZdhsNr788kvg6o7DuXPnGD58OJUqVcLPz4/y5cvz8MMPc+LEiSz3b+7cuTRo0IBChQpRo0YN5s6dC6Q9rzVq1CAoKIgmTZqwbt26DI/PamhsxowZdOrUibJly7rX9+yzz3L69OlLP9GX0KZNG/r06QNA06ZNsdls7h7Hi4fVbDYbp0+f5uOPP3a/ttq0aXPZ9f/zzz8MHTqU8uXL4+fnR+XKlXnuuefc7yvXa3Lx4sVs377dvd6lS5decp3Jycn8+9//pkyZMgQGBnLDDTewZs2aLNseOnSIwYMHExYWhp+fH5UqVWLEiBGkpKRkaBcfH0+PHj0oUqQIRYsW5d5772Xt2rWZ3i+uIfgtW7bQqVMnihQpQvv27YG04fVRo0ZRvXp19+fi/fffz99//52prhkzZtC8eXOCgoIoXLgwnTt3ZuPGjZd9LgFKly6daZnD4SA6Opr9+/df9rHGGKZMmULlypVp167dFbcl18mI1+ncubMpVaqUmThxolm6dKn55ptvzIsvvmi++OILd5vWrVubEiVKmKioKBMTE2N++OEH061bNwOYESNGmDp16pjp06eb+fPnm2bNmhl/f3/z119/uR+/dOlS4+vra6Kjo82MGTPMN998Yzp16mRsNluG7fz++++mSJEipkqVKuaTTz4x8+bNM/fcc48BzBtvvGGMMSYhIcFMmTLFAOb55583q1atMqtWrTL79+83xhjTv39/4+fnZ2rUqGHefvtts3jxYvPiiy8am81mRowYcdnnYtWqVaZr166mUKFC7vUeOXLE7N692wBmypQpmR4DmJdeesn9+0svvWQAExUVZV588UWzaNEi8+677xp/f39z//33Z3hs3759jc1mMwMHDjTffvut+f77782rr75qPvjgA2OMMRs2bDCVK1c2DRo0cNezYcMGY4zJsqbsPs+u569y5crm0UcfNT/88IOZNGmSKVasmGnbtm2GGl1ts9r3i0VERJjy5cub8PBwM3nyZDN//nxz7733GsC89dZb7nZHjhwx5cuXN6VKlTLjx483CxYsMI888ogBzEMPPXTZ5/f222834eHhJiUlJUO7u+66y5QrV84kJydf1XFwOp2mc+fOxsfHx7zwwgtm4cKF5u233zZBQUGmQYMG5ty5cxn2LywszNSuXdv9em/atKnx9fU1L774omnZsqX5+uuvzezZs021atVMaGioOXPmjPvxrprSe+WVV8x7771n5s2bZ5YuXWrGjx9vKlWqlOk4ZPXYi23dutU8//zz7uO1atUqs2vXLmNM2vsiIiLC3XbVqlWmUKFCpmvXru7X1tatWy+57rNnz5q6deuaoKAg8/bbb5uFCxeaF154wfj4+JiuXbsaY4w5d+6cWbVqlWnQoIGpXLmye70JCQmXXG///v2NzWYz//rXv8zChQvNu+++a8qXL2+Cg4NN//793e0OHjxoKlSoYCIiIsyECRPM4sWLzSuvvGL8/f3Nfffd52536tQpU7VqVVO8eHEzZswY88MPP5gnnnjCVKpUKdPruH///sbX19dUrFjRjB492vz444/mhx9+MKmpqeamm24yQUFBZsSIEWbRokVm0qRJpnz58qZmzZoZjumrr75qbDabeeCBB8zcuXPN119/bZo3b26CgoIu+3xeSnJysqlatapp0KDBZdstXLjQAGbUqFFXvQ25egpHXqhw4cLm8ccfv2yb1q1bG8CsW7fOvezYsWPG4XCYQoUKZQhCmzZtMoD58MMP3cuaNWtmSpcubU6ePOlelpKSYmrXrm3CwsKM0+k0xhhz9913G39/f7Nv374M2+/SpYsJDAw0J06cMMYYs3bt2kt+Yffv398AZubMmRmWd+3a1URFRV3h2Uh7fFBQUIZl1xKO3nzzzQzthg4dagICAtz7umzZMgOY55577rL11KpVy7Ru3TrT8qxqyu7z7Ao8Q4cOzbDON9980wDm4MGD7mUff/yxcTgc5uOPP75sncakhQebzWY2bdqUYXnHjh1NcHCwOX36tDHGmGeffdYAZvXq1RnaPfTQQ8Zms5kdO3a4l138/MbGxhrAzJ49273sr7/+Mj4+PhnCb3aPw4IFC7JsN2PGDAOYiRMnZti/QoUKmfj4ePcy1+u9bNmy7v0zxphvvvnGAOa7777LVNOlOJ1Ok5ycbH766ScDmM2bN2f7sS6uY7t27doMyy8OR8YYExQUlCGAXM748eOzfF+98cYbBjALFy50L2vdurWpVavWFde5fft2A5gnnngiw/Jp06YZIENtgwcPNoULFzZ79+7N0Pbtt982gDuIjBkzxgDm+++/z9Bu8ODBWYYjwEyePDlD2+nTpxvAzJo1K8Ny1+fO2LFjjTHG7Nu3z/j4+JhHH300Q7uTJ0+aMmXKmJ49e17xObjYc889ZwDzzTffXLZdr169jMPhyPBalNyjYTUv1KRJE6ZOncqoUaP45ZdfSE5OzrJd2bJliY6Odv9evHhxSpcuTf369SlXrpx7eY0aNQDYu3cvAKdPn2b16tX06NEjw+Rmh8NB3759iY+PZ8eOHQAsWbKE9u3bU6FChQzbvu+++zhz5gyrVq3K1j7ZbDa6d++eYVndunXdNeWFW265JdP2z507x5EjRwD4/vvvAXj44YdzZHtX8zxfrkYgw/PUr18/UlJSMsx/uJxatWpRr169DMt69+5NYmIiGzZsANKOc82aNTPMiYG042yMyfJsHZc2bdpQr149xowZ4142fvx4bDYbgwYNytT+SsfBta2LJ7zfddddBAUF8eOPP2ZYXr9+fcqXL+/+3fV6b9OmTYa5Khe/Dy7lzz//pHfv3pQpUwaHw4Gvry+tW7cGYPv27Zd9bF5asmQJQUFB9OjRI8Ny1/N28fOUHbGxsQCZ5ib17NkTH5+MU2Dnzp1L27ZtKVeuHCkpKe6fLl26APDTTz+5/1ukSJFME9/vueeeS9Zx5513ZtpW0aJF6d69e4Zt1a9fnzJlyriHCX/44Qf3eyN9u4CAAFq3bn3Z4cSsTJo0iVdffZWnnnqKW2+99ZLt/vnnH7755htuuummDK9FyT2akO2FZsyYwahRo5g0aRIvvPAChQsX5vbbb+fNN9+kTJky7nZZnXHi5+eXabmfnx+QNo8D4Pjx4xhjKFu2bKbHu0LVsWPH3P/NTrsrCQwMzHR6q7+/v7umvFCiRIlM2wc4e/YskDbXy+FwZHiOr8fVPM/ZrfFaZLU/rmXpj/PFp5Vfrs6Luc7G2rFjB5UrV+ajjz6iR48eWW77Svt47NgxfHx8KFWqVIZ2NpuNMmXKZKrlUq/3K70PsnLq1ClatWpFQEAAo0aNolq1agQGBrJ//37uuOOO6zoOOe3YsWOUKVMm05yp0qVL4+Pjk+335sXrhMyvGR8fn0zH7fDhw8yZMwdfX98s13X06FH3OkNDQzP9PatlkPZZERwcnGlbJ06ccB/DS23r8OHDAO45kBez27Pf3zBlyhQGDx7MoEGDeOutty7b9rPPPiMpKUkTsfOQwpEXKlmyJO+//z7vv/8++/bt47vvvuPZZ5/lyJEjWU6svlrFihXDbrdz8ODBTH9zTf4tWbIkkPZFlp12ec0VtC6e0H0tXwgupUqVIjU1lUOHDmUZaK7W1TzPuenQoUOXXOb6wrve49y7d2+eeeYZxowZQ7NmzTh06NA198CVKFGClJQU/v777wwByRjDoUOHLvnFlxOWLFnCgQMHWLp0qbu3CMg0EdwTlChRgtWrV2OMyRCQjhw5QkpKyjW9tlyvh0OHDmXoAUlJScn03ipZsiR169bl1VdfzXJdrmBdokSJLCd0Z/W6BLK8dpTrBIVLff4VKVLE3Q7gq6++IiIiIsu22TFlyhT3pRdcvaCXExMTQ2hoKN26dbvmbcrV0bCalwsPD+eRRx6hY8eO7iGQ6xUUFETTpk35+uuvM/xL2Ol08tlnnxEWFka1atUAaN++vfsLI71PPvmEwMBA96nrOdHDcTVCQ0MJCAjg119/zbD822+/veZ1uoYDxo0bd9l2/v7+2drPq3mec9PWrVvZvHlzhmWff/45RYoUoWHDhkDacd62bVum19gnn3yCzWajbdu2l91GQEAAgwYN4uOPP+bdd9+lfv36tGzZ8prqdZ2d9Nlnn2VYPmvWLE6fPu3+e25wfQm6Xs8uEyZMyLVtppfd1xakPU+nTp3KdNHITz75xP33q+U6O27atGkZls+cOTPTGWjdunVzXyKgUaNGmX5c4ah169acPHnSPWzt8sUXX2S7rm7dunHs2DFSU1Oz3FZUVBQAnTt3xsfHhz/++CPLdo0aNbritqZOncrAgQPp06cPkyZNumIwWrduHb/++qv7GlaSN/RMe5mEhATatm1L7969qV69OkWKFGHt2rUsWLCAO+64I8e2M3r0aDp27Ejbtm15+umn8fPzY+zYsfz2229Mnz7d/YHw0ksvuecWvPjiixQvXpxp06Yxb9483nzzTUJCQoC0a7YUKlSIadOmUaNGDQoXLky5cuUyzH3KSTabjT59+rgvalevXj3WrFnD559/fs3rbNWqFX379mXUqFEcPnyYbt264e/vz8aNGwkMDOTRRx8FoE6dOnzxxRfMmDGDypUrExAQQJ06dbJcZ3af56vxySef8MADDzB58uRszTsqV64ct9xyCy+//DJly5bls88+Y9GiRbzxxhvuOTlPPPEEn3zyCTfffDMjR44kIiKCefPmMXbsWB566KFshbihQ4fy5ptvsn79eiZNmnTV++XSsWNHOnfuzDPPPENiYiItW7bk119/5aWXXqJBgwb07dv3mtd9JS1atKBYsWIMGTKEl156CV9fX6ZNm5YpXOaWOnXqsHTpUubMmUPZsmUpUqSI+4v/Yv369WPMmDH079+fPXv2UKdOHVasWMFrr71G165d6dChw1Vvv0aNGvTp04f3338fX19fOnTowG+//cbbb7+daahr5MiRLFq0iBYtWjBs2DCioqI4d+4ce/bsYf78+YwfP56wsDD69+/Pe++9R58+fRg1ahRVq1bl+++/d18TKDtDXXfffTfTpk2ja9euPPbYYzRp0gRfX1/i4+OJjY3l1ltv5fbbb6dixYqMHDmS5557jj///JObbrqJYsWKcfjwYdasWUNQUBAjRoy45Ha+/PJLBgwYQP369Rk8eHCmHq8GDRpkCs4xMTEADBgwIFvPseQQS6eDS547d+6cGTJkiKlbt64JDg42hQoVMlFRUeall17KcObNpc4+iYiIMDfffHOm5YB5+OGHMyxbvny5adeunQkKCjKFChUyzZo1M3PmzMn02C1btpju3bubkJAQ4+fnZ+rVq5flWWLTp0831atXN76+vhnOaMrqbDNjsn+2z6Uen5CQYAYOHGhCQ0NNUFCQ6d69u9mzZ88lz1b7+++/MzzedRbR7t273ctSU1PNe++9Z2rXrm38/PxMSEiIad68eYbnZc+ePaZTp06mSJEiBnCfcXSpM+iy8zxf6owm15lgsbGxmdpm91T+m2++2Xz11VemVq1axs/Pz1SsWNG8++67mdru3bvX9O7d25QoUcL4+vqaqKgo89Zbb5nU1NQM7S5+ftNr06aNKV68eIZTq12u5jicPXvWPPPMMyYiIsL4+vqasmXLmoceesgcP348y/27WFavd9fxSX8Jg6xegytXrjTNmzc3gYGBplSpUmbgwIFmw4YNmZ7z3DhbbdOmTaZly5YmMDDQAFmeFZnesWPHzJAhQ0zZsmWNj4+PiYiIMMOHD89wuQNjsn+2mjHGJCUlmaeeesqULl3aBAQEmGbNmplVq1aZiIiITGfS/f3332bYsGGmUqVKxtfX1xQvXtxER0eb5557zpw6dcrdbt++feaOO+4whQsXNkWKFDF33nmnmT9/vgHMt99+m+E5yeq9bkzaKfVvv/22qVevngkICDCFCxc21atXN4MHDzZxcXEZ2n7zzTembdu2Jjg42Pj7+5uIiAjTo0cPs3jx4svuu+tsuUv9pH+NGmPMmTNnTEhIiLnxxhuz8cxKTrIZY0yepDARKXAqVqxI7dq13RdFzE1HjhwhIiKCRx99lDfffDPXtyf522uvvcbzzz/Pvn37cv0q5VLwaFhNRDxafHw8f/75J2+99RZ2uz3T/cJE/u///g+A6tWrk5yczJIlS/jwww/p06ePgpFcE4UjEfFokyZNYuTIkVSsWJFp06bpOi+SSWBgIO+99x579uwhKSmJ8PBwnnnmGZ5//nmrS5N8SsNqIiIiIulYfir/smXL6N69O+XKlcNms2U6bTQrP/30E9HR0e6bXI4fPz73CxURERGvYHk4On36NPXq1XOPGV/J7t276dq1K61atWLjxo385z//YdiwYcyaNSuXKxURERFv4FHDajabjdmzZ3Pbbbddss0zzzzDd999l+EeREOGDGHz5s3Zvg+XiIiIyKXkuwnZq1atolOnThmWde7cmZiYGJKTk7O8D09SUlKG20A4nU7++ecfSpQocU0XyRMREZG8Z4zh5MmTlCtX7qruZXe18l04OnToUKYbCoaGhpKSksLRo0ezvGfV6NGjL3vVUhEREck/9u/fn6uXach34Qgy3zjQNTJ4qV6g4cOH8+STT7p/T0hIIDw8nP3792e6ZL2I5CN//QV//MHfRYvy0IXbTVzswQcfZNRDDxHw119QpQroUgAi+VZiYiIVKlRw3ww4t+S7cFSmTJlMd1s+cuQIPj4+7js+X8zf3z/T/WoAgoODFY5E8quYGBg0iP1OJ52BPwBfX1969+5NVFQUq1atYs6cOXz00Uf88dFHzAEC7XaYOBF0nyqRfC23p8Tku3DUvHlz5syZk2HZwoULadSoUZbzjUSkAIqPh0GDSHQ66UpaMKoEzPn+e2qlu1v8959+Ss9+/VgC9AFmOZ3YBg+Gzp1BV04WkUuw/FT+U6dOsWnTJjZt2gSknaq/adMm9u3bB6QNiaW/M/iQIUPYu3cvTz75JNu3b2fy5MnExMTw9NNPW1G+iFghLg6cTp4AfgPKAEuBWg5HhmZdwsKYD/gBs4EPAFJTYdeuPC1XRPIXy8PRunXraNCgAQ0aNADgySefpEGDBrz44osAHDx40B2UACpVqsT8+fNZunQp9evX55VXXuHDDz/kzjvvtKR+EbFAZCTzbTYmAzZgJhDucEDVqpnatbLbee/Cr88Be+32zO1ERNLxqOsc5ZXExERCQkJISEjQnCORfOjcuXNUDwtj77FjPAG863DAhAlZzyWKicEMGkQbp5NlQLe6dflu0yZdxkMkH8qr72/Le45ERK7WuHHj2HvsGOXLlGHU99/Dnj2XnmQ9YAC2vXsZP3Uqvr6+zP31V5YsWZKn9YpI/qJwJCL5SmJiIq+++ioAL7/yCoE33XTlydVhYdTo358hQ4akPe7ll/HCTnMRySaFIxHJV8aNG8exY8eIiorivvvuu6rHPvvss/j7+7NixQp+/PHH3ClQRPI9hSMRyTfOnz/Phx9+CKQFHR+fq7saSbly5Rg8eDAAr7/+eo7XJyIFg8KRiOQbM2fO5MCBA5QpU4Z77rnnmtbxxBNPYLfb+fHHHzPcwFpExEXhSETyjQ8++ACARx55JMur3mdHxYoV6d69OwBjxozJsdpEpOBQOBKRfGHz5s2sW7cOX19fBg0adF3revTRRwH4+OOPOXnyZE6UJyIFiMKRiOQLMTExANx6662UKlXqutbVrl07qlWrxqlTp/jqq69yojwRKUAUjkTE4507d47PPvsMgAE5cNNYm81G//79Afjkk0+ue30iUrAoHImIx5s7dy7Hjx8nLCyMjh075sg6+/Tpg81mY+nSpezZsydH1ikiBYPCkYh4vJkzZwLQu3dvHBfdXPZahYeH07ZtWwB3r5SICCgciYiHO336NHPnzgWgZ8+eObruvn37Av8LXyIioHAkIh5u/vz5nD17lsqVK9OwYcMcXfctt9yCj48PW7ZsIS4uLkfXLSL5l8KRiHg0V69Oz549sdlsObru4sWLu4fWvv766xxdt4jkXwpHIuKxTp06xbx584CcH1JzufPOOwGYNWtWrqxfRPIfhSMR8VgLFizg7NmzVKlShfr16+fKNm677TZsNhtr165l3759ubINEclfFI5ExGO5JmK7AkxuCA0NpVWrVoCG1kQkjcKRiHgkp9PJ/PnzAejWrVuubuuOO+4AYM6cObm6HRHJHxSORMQjrV27lr///puQkBBatmyZq9vq2rUrAMuXL9e91kRE4UhEPJNrInbnzp3x9fXN1W1FRkZSpUoVkpOT+fHHH3N1WyLi+RSORMQjueYb3XzzzXmyPVfvkWsoT0S8l8KRiHicv/76i40bN2Kz2ejSpUuebNO1ne+//x5jTJ5sU0Q8k8KRiHichV98AUCT+vUpVapUnmyzTZs2BAQEEB8fz2+TJ0N8fJ5sV0Q8j8KRiHiWmBgWP/00AB03boSYmDzZbKFChWhbtSoA8wcOhIiIPNu2iHgWhSMR8Rzx8ZgHH8Q1JboDwODBedOLEx/PTVu3AqRt3+nMu22LiEdROBIRzxEXx1ZjOAwUApoBpKbCrl15su32F+YarQCS8nLbIuJRFI5ExHNERrL4wpWwbwT8ARwOuDDcldvbrmmzURo4C/ySl9sWEY+icCQiniMsjB/r1AGgPaSFkwkTICwsT7Zt++gj2l0IZ0tstrzbtoh4FIUjEfEYycnJLP3zTwA6TJwIe/bAgAF5V8CAAbR7/XUAljRqlLfbFhGPoXAkIh5j7dq1nDp1ihIlSlBvwABLem3a3XknAL9s3Mjp06fzfPsiYj2FIxHxGIsXLwagbdu22O3WfDxVrlyZiIgIUlJSWLFihSU1iIi1FI5ExGO47mvWvn17y2qw2Wy0a9cOgCVLllhWh4hYR+FIRDxCUlISq1evBtJ6jqykcCTi3RSORMQjrF27lqSkJEqXLk21atUsrcUVztavX8+JEycsrUVE8p7CkYh4hOXLlwPQqlUrbBdOp7dK+fLlqVq1KsYYVq1aZWktIpL3FI5ExCOkD0ee4IYbbgD+V5eIeA+FIxGxXGpqKj///DMAN954o8XVpHGFI52xJuJ9FI5ExHK//voriYmJBAcHU7duXavLAf7Xg7VmzRqSkpIsrkZE8pLCkYhYzjV01aJFCxwOh8XVpImMjKR06dIkJSWxbt06q8sRkTykcCQillu2bBngOUNqkHa9Iw2tiXgnhSMRsZQxxuMmY7toUraId1I4EhFLxcXFceTIEfz9/WncuLHV5WTgCms///wzTqfT4mpEJK8oHImIpVauXAlA48aN8ff3t7iajOrXr09QUBAnTpxg27ZtVpcjInlE4UhELOW6yGLz5s0triQzHx8fmjVrBmhoTcSbKByJiKV++eUXwDPDEfxv3pGrh0tECj6FIxGxzMmTJ/ntt98A3D00nsYV2lwhTkQKPoUjEbHM2rVrcTqdREREULZsWavLyVKTJk0A2LVrF0ePHrW4GhHJCwpHImIZ13wjT+01AihWrBjVq1cHYPXq1RZXIyJ5QeFIRCzj6fONXFz1ucKciBRsCkciYgljjDsceXLPEfyvPs07EvEOCkciYgnXHB5/f38aNGhgdTmX5QpHa9asITU11eJqRCS3KRyJiCVcvTDR0dH4+flZXM3l1apVi8KFC3Py5Em2b99udTkikssUjkTEEvlhMraLw+Fwn7WmoTWRgk/hSEQskV8mY7u4QpwmZYsUfApHIpLnTp8+za+//grkj54j0KRsEW+icCQieW7dunWkpqYSFhZGWFiY1eVkS9OmTQHYtm0bJ06csLYYEclVCkcikufy03wjl9KlS1O5cmUg7creIlJwKRyJSJ7Lb/ONXHQxSBHvoHAkInnO1fPiOgMsv3DVq54jkYJN4UhE8tSBAwc4cOAAdrvd4y/+eLHGjRsDaeHIGGNxNSKSWxSORCRPrVu3DoCaNWsSFBRkcTVXp379+vj4+HD48GHi4+OtLkdEconCkYjkKdeQlKsXJj8pVKgQtWvXBjS0JlKQKRyJSJ5y9Rw1atTI4kquTfqhNREpmDwiHI0dO5ZKlSoREBBAdHQ0y5cvv2z7adOmUa9ePQIDAylbtiz3338/x44dy6NqReRaGWPydc8R/K/uNWvWWFyJiOQWy8PRjBkzePzxx3nuuefYuHEjrVq1okuXLuzbty/L9itWrKBfv34MGDCArVu38uWXX7J27VoGDhyYx5WLyNXau3cvx44dw9fXl7p161pdzjVxhaN169bhdDotrkZEcoPl4ejdd99lwIABDBw4kBo1avD+++9ToUIFxo0bl2X7X375hYoVKzJs2DAqVarEDTfcwODBg91d9SLiuVy9RnXq1MHf39/iaq5NrVq1CAgIIDExkbi4OKvLEZFcYGk4On/+POvXr6dTp04Zlnfq1ImVK1dm+ZgWLVoQHx/P/PnzMcZw+PBhvvrqK26++eZLbicpKYnExMQMPyKS99bFxgLQuGZNiyu5dr6+vu5LEKz9+GPQWWsiBY6l4ejo0aOkpqYSGhqaYXloaCiHDh3K8jEtWrRg2rRp9OrVCz8/P8qUKUPRokX573//e8ntjB49mpCQEPdPhQoVcnQ/RCQbYmJYd6FHuNG0aRATY3FB165xYCAAa0ePhoiIfL0vIpKZ5cNqADabLcPvxphMy1y2bdvGsGHDePHFF1m/fj0LFixg9+7dDBky5JLrHz58OAkJCe6f/fv352j9InIF8fE4H3wQ1+B3Y2Ng8OD82esSH0/jJUsAWAvgdObffRGRLPlYufGSJUvicDgy9RIdOXIkU2+Sy+jRo2nZsiX/+te/AKhbty5BQUG0atWKUaNGUbZs2UyP8ff3z7fzG0QKhLg4dhlDIhAA1ARITYVduyAszNrarlZcXFq4AzYCyYBvft0XEcmSpT1Hfn5+REdHs2jRogzLFy1aRIsWLbJ8zJkzZ7DbM5btcDgAdDl/EU8VGcnaC73BDQBfAIcDqla1sqprExlJpM1GMHAO2Ar5d19EJEuWD6s9+eSTTJo0icmTJ7N9+3aeeOIJ9u3b5x4mGz58OP369XO37969O19//TXjxo3jzz//5Oeff2bYsGE0adKEcuXKWbUbInI5YWGsa98egEaQFiYmTMifPS1hYdg/+gjXJSzX2mz5d19EJEuWDqsB9OrVi2PHjjFy5EgOHjxI7dq1mT9/PhEREQAcPHgwwzWP7rvvPk6ePMn//d//8dRTT1G0aFHatWvHG2+8YdUuiEg2rD17FoDGw4fD0KH5O0wMGEDjDRtYMnYsa++5hwcHDLC6IhHJQTbjhWNRiYmJhISEkJCQQHBwsNXliBR4KSkphISEcObMGbZt20aNGjWsLum6zZo1ix49elC/fn02btxodTkiXiGvvr8tH1YTkYJv+/btnDlzhsKFCxMVFWV1OTmiSZMmAGzZsoUzZ85YXI2I5CSFIxHJda4r2EdHR2c6oSK/CgsLIzQ0lNTUVDZt2mR1OSKSgwrGp5SIeLT8frPZrNhsNvf+uPZPRAoGhSMRyXWunqNGjRpdoWX+onAkUjApHIlIrjp//jybN28GClbPESgciRRUCkcikqu2bNnC+fPnKV68OJUqVbK6nBzlCkc7d+7kxIkT1hYjIjlG4UhEclX6IbVL3TMxvypZsqT7mmwbNmywuBoRySkKRyKSq1xDTgVtvpGLhtZECh6FIxHJVa6eo4I238jFtV+u/RSR/E/hSERyzZkzZ/jtt9+Agttz5Nov9RyJFBwKRyKSazZv3kxqaiplypShfPnyVpeTK6KjowHYu3cvf//9t8XViEhOUDgSkVyTfr5RQZuM7RISEkK1atUADa2JFBQKRyKSawr6fCMXzTsSKVgUjkQk1xT0M9VcXPuncCRSMCgciUiuSExMZMeOHUDBD0c6nV+kYFE4EpFcsWHDBowxhIeHU7p0aavLyVX169fHbrdz8OBBDhw4YHU5InKdFI5EJFd4y3wjgKCgIGrVqgWo90ikIFA4EpFc4S3zjVw070ik4FA4EpFckf6eat5A845ECg6FIxHJcf/88w9//vkn8L+LJBZ06XuOjDEWVyMi10PhSERynKvXqGrVqhQrVsziavJG3bp18fX15dixY+zZs8fqckTkOigciUiO86bJ2C7+/v7UrVsX0LwjkfxO4UhEcpy3TcZ20bwjkYJB4UhEcpw39hyBzlgTKSgUjkQkRx06dIj4+HjsdjsNGjSwupw85QqD69evx+l0WlyNiFwrhSMRyVGuIaUaNWpQuHBhi6vJWzVr1qRQoUIkJiYSFxdndTkico0UjkQkR3nrkBqAj4+Pu7dM845E8i+FIxHJUd46GdtF845E8j+FIxHJMcYYdzjyxp4j0BlrIgWBwpGI5Jh9+/Zx9OhRfH19qVevntXlWMLVc7Rx40ZSUlIsrkZEroXCkYjkGFdvSZ06dfD397e4GmtUq1aNIkWKcPbsWbZt22Z1OSJyDRSORCTHePuQGoDdbnffT07zjkTyJ4UjEckxCkdpNO9IJH9TOBKRHOF0Olm/fj3gvWequeiMNZH8TeFIRHJEXFwciYmJFCpUiFq1alldjqVcPUebN28mKSnJ4mpE5GopHIlIjnANITVo0AAfHx+Lq7FWxYoVKVGiBMnJyWzZssXqckTkKikciUiO0Hyj/7HZbO6hNc07Esl/FI5EJEe45td4+3wjF807Esm/FI5E5LqlpKSwceNGQD1HLjpjTST/UjgSkeu2detWzp49S3BwMJGRkVaX4xFcPUdbt27lzJkzFlcjIldD4UhErptr6Cg6Ohq7XR8rAOXLl6ds2bI4nU53r5qI5A/6FBOR67Z26VIAGlevbm0hHsY972j6dIiPt7gaEckuhSMRuT4xMaz97DMAGo8fDzExFhfkORpf6EVbO2YMRETouRHJJ2zGGGN1EXktMTGRkJAQEhISCA4OtrockfwrPp5z4eEUMYYUYDdQ0eGAPXsgLMzi4iwWH8/34eF0NYYo4HcAPTci1yWvvr/VcyQi1y4ujl8vBKOSQARAairs2mVtXZ4gLo5GF/7tuQNIAD03IvmEwpGIXLvISNbabAA0BmyQ1jtStaqVVXmGyEhK2e1pgRHYAHpuRPIJhSMRuXZhYaxt3hxIC0c4HDBhgoaNIO05mDgR11Wf1tlsem5E8gmFIxG5LmtPnACg0auvps2nGTDA0no8yoABNP7PfwBYe/PNem5E8gmFIxG5ZqdOnWL79u0ANH7gAfWKZKFR+/YArNu61eJKRCS7FI5E5JqtW7cOYwxhYWGUKVPG6nI8UnR0NAC7d+/m6NGjFlcjItmhcCQi12z16tUANGvWzOJKPFdISAjVqlUDYP369RZXIyLZoXAkItfMFY6aNm1qcSWeTTehFclfFI5E5JoYY/jll18A9Rxdifs2IhfuQScink3hSESuSXx8PAcPHsThcNCwYUOry/Forp6jNWvW4IU3JRDJdxSOROSauHqN6tWrR2BgoMXVeLYGDRrgcDg4ePAg8boBrYjHUzgSkWui+UbZFxgYSL169YD/hUoR8VwKRyJyTTTf6Oo0v3AlcYUjEc+ncCQiVy05Odl9Wrp6jrLHFSJXrVplcSUiciUKRyJy1bZs2cK5c+coWrQokZGRVpeTL7jC0YYNG0hKSrK4GhG5HIUjEblqrqGhpk2bYrfrYyQ7qlSpQsmSJUlKSmLz5s1WlyMil6FPNRG5apqMffVsNpuG1kTyCYUjEblqmox9bVzPlyZli3g2hSMRuSr//PMPO3fuBKBJkyYWV5O/KByJ5A8eEY7Gjh1LpUqVCAgIIDo6muXLl1+2fVJSEs899xwRERH4+/tTpUoVJk+enEfVini3NWvWABAZGUmJEiUsriZ/ady4MTabjT179nDo0CGryxGRS7A8HM2YMYPHH3+c5557jo0bN9KqVSu6dOnCvn37LvmYnj178uOPPxITE8OOHTuYPn061atXz8OqRbyX5htdu+DgYGrXrg2o90jEk1kejt59910GDBjAwIEDqVGjBu+//z4VKlRg3LhxWbZfsGABP/30E/Pnz6dDhw5UrFiRJk2a0KJFizyuXMQ7ucKR5htdGw2tiXg+S8PR+fPnWb9+PZ06dcqwvFOnTqxcuTLLx3z33Xc0atSIN998k/Lly1OtWjWefvppzp49e8ntJCUlkZiYmOFHRK6eMUY9R9dJ4UjE8/lYufGjR4+SmppKaGhohuWhoaGXHI//888/WbFiBQEBAcyePZujR48ydOhQ/vnnn0vOOxo9ejQjRozI8fpFvM3OnTv5559/CAgIoG7dulaXky+5wtHatWtJSUnBx8fSj2ERyYLlw2qQdv2P9IwxmZa5OJ1ObDYb06ZNo0mTJnTt2pV3332XqVOnXrL3aPjw4SQkJLh/9u/fn+P7IOINfv75ZyBtYrGfn5/F1eRP1atXJyQkhDNnzrBlyxaryxGRLFgajkqWLInD4cjUS3TkyJFMvUkuZcuWpXz58oSEhLiX1ahRA2MM8fHxWT7G39+f4ODgDD8icvVc4ahly5YWV5J/2e1295CkhtZEPJOl4cjPz4/o6GgWLVqUYfmiRYsuOcG6ZcuWHDhwgFOnTrmX7dy5E7vdTlhYWK7WK+LtFI5yhuYdiXg2y4fVnnzySSZNmsTkyZPZvn07TzzxBPv27WPIkCFA2pBYv3793O179+5NiRIluP/++9m2bRvLli3jX//6Fw888ACFChWyajdECryjR4+yY8cOAJ0dep2aN28O6DYiIp7K8pmAvXr14tixY4wcOZKDBw9Su3Zt5s+fT0REBAAHDx7McM2jwoULs2jRIh599FEaNWpEiRIl6NmzJ6NGjbJqF0S8gusM0ho1alC8eHGLq8nfmjZtis1mIy4ujiNHjlC6dGmrSxKRdCwPRwBDhw5l6NChWf5t6tSpmZZVr14901CciOQuDanlnGLFilG7dm22bNnCihUruOOOO6wuSUTSsXxYTUTyB4WjnHXDDTcAsGLFCosrEZGLKRyJyBUlJSWxbt06QOEopygciXguhSMRuaL169eTlJREqVKlqFq1qtXlFAiucLRhwwZOnz5tcTUikp7CkYhcUfohtUtdoFWuTnh4OOHh4aSmprpvySIinkHhSESuSPONcoer92j58uUWVyIi6SkcichlGWPcp/ErHOUszTsS8UwKRyJyWXFxcfz999/4+/vTsGFDq8spUFzhaNWqVaSkpFhcjYi4KByJyGWlv9msv7+/xdUULLVq1aJo0aKcPn2azZs3W12OiFygcCQil+Ua8tGQWs6z2+3u51XzjkQ8h8KRiFzWTz/9BMCNN95ocSUFk+YdiXgehSMRuaT4+Hj++OMP7Ha7+0tcclb6cGSMsbgaEQGFIxG5jJ9mzwagQa1aBAcHW1xNwdSoUSP8/Pw4fPgwf0ybBvHxVpck4vUUjkQkazEx/DRsGACtt2yBmBiLCyqYAgICaBIRAcCyvn0hIkLPtYjFFI5EJLP4eBg0iJ8u/NoaYPBg9Wrkhvh4boyLA2ApgNOp51rEYgpHIpJZXBwHnU52AjagFUBqKuzaZW1dBVFcHG0v/G8sYEDPtYjFFI5EJLPISJZduIdaPaAYgMMBuulszouMpIXNhi8QD/wBeq5FLKZwJCKZhYXxU+vWwIUhNYcDJkyAsDBLyyqQwsII/Ogjml34NdZm03MtYjGFIxHJ0k9HjgDQeuRI2LMHBgywtqCCbMAA2j7+OACxt9yi51rEYgpHIpLJ33//zbZt2wBo9dBD6sXIA21vvRWA2NWrdb0jEYspHIlIJsuWLQOgdu3alCxZ0uJqvEOzZs3w9/fn0KFD7Nixw+pyRLyawpGIZBIbGwtA6wvzjiT3BQQE0Lx5cwCWLl1qbTEiXk7hSEQy+fHHHwFo166dxZV4l7Zt007qd4VTEbGGwpGIZPDXX3/x+++/Y7PZ3F/Wkjdcz/fSpUs170jEQgpHIpLBkiVLAIiOjqZYsWIWV+NdmjRpQqFChThy5Ih7QryI5D2FIxHJYPHixQB06NDB4kq8j7+/Py1btgQ0tCZiJYUjEXEzxrjnG7Vv397iaryT5h2JWO+6wtGRI0c4dOhQTtUiIhbbsWMHf/31V4YeDMlb6cNRamqqxdWIeKdrCke//vortWrVomzZspQvX57y5cvz/PPPc/r06ZyuT0TykKvX6IYbbqBQoUIWV+OdGjduTHBwMMePH2fDhg1WlyPila4pHA0YMIDQ0FBWrFjBxo0bGTVqFN9//z2NGjXi+PHjOV2jiOQR13wjDalZx8fHx/38L1y40OJqRLzTNYWjbdu2MXbsWJo3b07dunW5//77WbduHbVq1eLRRx/N6RpFJA+kpqa657loMra1OnXqBCgciVjF51oelFUPkc1m47XXXiM6OjpHChORvLV+/XoSEhIoWrQoDRs2tLocr+YKRytXruTkyZMUKVLE4opEvEu2e45uvvlm/vOf/zBz5kyGDBnCE088weHDhzO0SUhI0HVRRPIp15Ba27ZtcTgcFlfj3SpXrkyVKlVISUnRrURELJDtnqM6deqwYcMGpkyZ4g5FlStXpmfPntSvX5/U1FSmTJnCe++9l2vFikju+eGHHwANqXmKTp06MW7cOBYuXEj37t2tLkfEq9jMNVyj/vDhw2zcuJFNmza5f3bt2oXD4SAqKopff/01N2rNMYmJiYSEhJCQkEBwcLDV5YhYLiEhgRIlSpCamsqff/5JpUqVrC7J633zzTfcfvvtVKtWjR07dlhdjohHyKvv72uacxQaGspNN93ETTfd5F529uxZNm/ezObNm3OsOBHJGz/++COpqalERUUpGHkI1/Dmzp072bNnDxUrVrS6JBGvkWNXyC5UqBDNmjVj8ODBObVKEckj33//PUCGf/CItUJCQmjWrBkAixYtsrgaEe+i24eIeDljDAsWLACgS5cuFlcj6bnOWnPNBxORvKFwJOLltm7dSnx8PAEBAdx4441WlyPpuMLR4sWLSU5OtrgaEe+hcCTi5Vy9Rm3bttUtQzxM48aNKVmyJAkJCaxcudLqckS8hsKRiJdzzTfSkJrncTgc7uMyb948i6sR8R4KRyJe7NSpUyxfvhzQZGxPdfPNNwMKRyJ5SeFIxIstWbKE5ORkqlSpQmRkpNXlSBY6d+6Mw+Fg27Zt7N692+pyRLyCwpGIF5s/fz6gXiNPVrRoUVq2bAmo90gkrygciXgpp9PJnDlzAHR7Cg/XrVs3QOFIJK8oHIl4qQ0bNnDgwAEKFy5MmzZtrC5HLsM17yg2NpbTp09bXI1IwadwJOKlvvvuOyBtSM3f39/iauRyatSoQcWKFUlKSmLJkiVWlyNS4CkciXgpVzi65ZZbLK5ErsRms7l7j+bOnWtxNSIFn8KRiBfau3cvmzdvxm6307VrV6vLkWxwzTuaO3cuTqfT4mpECjaFIxEvNOfTTwG4oXFjSpQoYXE1kh1t27alSJEiHDhwgLXjx0N8vNUliRRYCkci3iYmhu9eeAGAW9asgZgYiwuS7PD396dr9eoAzH74YYiI0LETySU2Y4yxuoi8lpiYSEhICAkJCQQHB1tdjkjeiY8nITycUsaQDOwEIh0O2LMHwsIsLk4uKz6eGeHh3G0M1YDfAZuOnXiZvPr+Vs+RiDeJi2PBhWBUHYgESE2FXbusrUuuLC6OLsbgR1qo3Q46diK5ROFIxJtERjL7wv+6z1FzOKBqVYsKkmyLjCTYbqfDhV9ng46dSC5ROBLxImdLlGDuhWsa9YC0L9cJEzQskx+EhcHEidxuswEXwpGOnUiuUDgS8SI//PADp5OSCC9fnkZLlqTNVxkwwOqyJLsGDOCWDRuw2+2sB/Z17Gh1RSIFksKRiBf56quvAOjRqxe2tm3V65APla5f330j2m+++cbaYkQKKIUjES+RlJTkvip2jx49LK5Grsftt98OwNdff21xJSIFk8KRiJdYtGgRJ0+epHz58jRt2tTqcuQ63HHHHQAsW7aMgwcPWlyNSMGjcCTiJVxDanfeeSd2u976+VlERATNmjXDGOM+riKSc/QJKeIFzp8/z7fffgtoSK2g6NWrFwAzZsywuBKRgkfhSMQLxMbGcuLECUJDQ2nRooXV5UgOuOuuuwD4+eef2b9/v8XViBQsCkciXuCLL74A0uaqOBwOi6uRnFC+fHluuOEGAL788kuLqxEpWBSORAq4s2fPMmvWLAB69+5tcTWSkzS0JpI7PCIcjR07lkqVKhEQEEB0dDTLly/P1uN+/vlnfHx8qF+/fu4WKJKPzZ8/n5MnTxIeHq4htQKmR48e2O121qxZw+7du60uR6TAsDwczZgxg8cff5znnnuOjRs30qpVK7p06cK+ffsu+7iEhAT69etH+/bt86hSkfzp888/B+Cee+7RWWoFTJkyZWjdujWgoTWRnGT5J+W7777LgAEDGDhwIDVq1OD999+nQoUKjBs37rKPGzx4ML1796Z58+Z5VKlI/nPixAnmzZsHaEitoHINrU2fPt3iSkQKDkvD0fnz51m/fj2dOnXKsLxTp06sXLnyko+bMmUKf/zxBy+99FK2tpOUlERiYmKGHxFvMHv2bJKSkqhZsyZ16tSxuhzJBT169MDX15dNmzaxZcsWq8sRKRAsDUdHjx4lNTWV0NDQDMtDQ0M5dOhQlo+Ji4vj2WefZdq0afj4+GRrO6NHjyYkJMT9U6FCheuuXSQ/cA2p9e7dG9uFu7lLwVKiRAm6desGwKeffmpxNSIFg+XDakCmD21jTJYf5KmpqfTu3ZsRI0ZQrVq1bK9/+PDhJCQkuH90TRDxBgcPHmTJkiVA2nwjKbj69u0LwLRp00hNTbW4GpH8L3tdL7mkZMmSOByOTL1ER44cydSbBHDy5EnWrVvHxo0beeSRRwBwOp0YY/Dx8WHhwoW0a9cu0+P8/f3x9/fPnZ0Q8VAzZszA6XTSrFkzKleubHU5kou6du1KsWLFOHDgAEuWLKFjx45WlySSr1nac+Tn50d0dDSLFi3KsHzRokVZnnIcHBzMli1b2LRpk/tnyJAhREVFsWnTJt1MUySdqVOnAtCnTx9rC5Fc5+/vz9133w1oaE0kJ1g+rPbkk08yadIkJk+ezPbt23niiSfYt28fQ4YMAdKGxPr16weA3W6ndu3aGX5Kly5NQEAAtWvXJigoyMpdEfEYGzduZPPmzfj5+WlIzUu4htZmzZrFqVOnLK5GJH+zdFgN0k5DPXbsGCNHjuTgwYPUrl2b+fPnExERAaTNm7jSNY9EJCNXr9Ftt91G8eLFrS1G8kSzZs2oWrUqu3btYvbs2e6wJCJXz2aMMVYXkdcSExMJCQkhISGB4OBgq8sRyVHnz5+nXLlyHDt2jPnz59OlSxerS5I8MnLkSF566SU6dOiQabqCSEGQV9/flg+riUjOmjt3LseOHaNcuXKZriEmBZtrftmPP/5IfHy8xdWI5F8KRyIFzJQpUwDo168fDofD4mokL1WuXJlWrVphjOHjjz+2uhyRfEvhSKQAOXToEN9//z0A9913n7XFiCUGDhwIQExMDE6n0+JqRPInhSORAuSzzz4jNTWV5s2bExUVZXU5YoEePXoQEhLC7t273RcBFZGro3AkUkAYY5jy0UcA3HfrrRZXI1YJDAzk3nvvBeCjV18FzT0SuWoKRyIFxMrhw9m2cyeBQK/hwyEmxuqSxCIPliwJwOylS/k7PFyvBZGrpHAkUhDExzP+jTcAuAcIMQYGD1avgTeKj6f+qFE0ApKBT/VaELlqCkciBcCxdev48sL/D3EtTE2FXbssqkgsExcHTicDL/z6EWD0WhC5KgpHIgXAxxs2kAQ0BBq5FjocULWqdUWJNSIjwW7nHiAQ+B342W7Xa0HkKigcieRzxhjGf/EFAENstrSFDgdMmABhYRZWJpYIC4OJEwl2OLj7wqKJTZvqtSByFRSORPK52NhY4uLiKFKkCPds3w6xsbBnDwwYYHVpYpUBA2DPHgaNGQPAzA0bOHr0qMVFieQfCkci+dyECROAtFtHFI6KgjZt1EsgEBZGk4ceolGjRiQlJRGjM9ZEsk3hSCQfO3z4MF9//TUAgwcPtrga8TQ2m42HH34YgLFjx5KammpxRSL5g8KRSD720UcfkZKSQrNmzahXr57V5YgH6tWrFyVKlGDfvn3MnTvX6nJE8gWFI5F8Kjk5mbFjxwLwyCOPWFyNeKpChQq577f2f//3fxZXI5I/KByJ5FNfffUVBw8epEyZMtx1111WlyMebMiQIdhsNhYvXszvv/9udTkiHk/hSCSf+uCDDwB46KGH8PPzs7ga8WQVK1ake/fuAO7eRhG5NIUjkXxo9erVrF69Gj8/P03ElmxxDb1OnTqVkydPWlyNiGdTOBLJh1y9Rvfccw+hoaEWVyP5Qfv27YmKiuLkyZNMnjzZ6nJEPJrCkUg+c+DAAb78Mu1OasOGDbO4Gskv7HY7jz/+OADvv/8+KSkp1hYk4sEUjkTymXHjxpGSksINN9xAw4YNrS5H8pF+/fpRokQJ9uzZw+zZs60uR8RjKRyJ5CNnzpxh/PjxADz22GMWVyP5TWBgIEOHDgXgnXfewRhjcUUinknhSCQfmTp1KkePHqVSpUrcdtttVpcj+dDDDz+Mv78/q1evZuXKlVaXI+KRFI5E8omUlBTeeecdAJ566il8fHwsrkjyo9DQUPr06QPgfj2JSEYKRyL5xKxZs/jzzz8pUaIE999/v9XlSD725JNPAvDNN9/wxx9/WFyNiOdROBLJB4wxvPnmmwA8+uijBAYGWlyR5Gc1a9akS5cuGGN47733rC5HxOMoHInkA0uWLGHDhg0UKlTIfZd1kevx9NNPAxATE8Phw4ctrkbEsygciXi6+HjefPZZAAYMGEDJkiUtLkgKgrZt29K0aVPOnTvHu48/DvHxVpck4jEUjkQ8WUwMm8LDWbhuHXbgyfLlra5ICgibzcZzjRsDMPaLLzgeHg4xMRZXJeIZbMYLL3SRmJhISEgICQkJBAcHW12OSNbi4yEigh5OJ7OAu4HpDgfs2QNhYRYXJ/lefDzO8HDqG8MWYATwol5f4uHy6vtbPUcinioujt8uBCOA5wFSU2HXLguLkgIjLg67Mfznwq8fAKf0+hIBFI5EPFdkJKMu/G8PoBaAwwFVq1pXkxQckZFgt3MXUBX4B5hgs+n1JYLCkYjH2n7yJDNtNuBCr5HDARMmaMhDckZYGEyciMPh4NkLi94ODuacJvyLKByJeKpXX30VYwy3de5MvdjYtLkgAwZYXZYUJAMGwJ499F24kArlynEoIYEJEyZYXZWI5TQhWxOyxQPt3LmTGjVq4HQ6Wb9+PQ0bNrS6JCngJk6cyODBgwkNDeXPP//UhUbFI2lCtogXe/XVV3E6nXTr1k3BSPLE/fffT6VKlTh8+DBjxoyxuhwRSykciXiYbdu28dlnnwHwwgsvWFyNeAtfX19efPFFAN544w1OnjxpcUUi1lE4EvEwL7zwAk6nk9tuu40mTZpYXY54kT59+lCtWjWOHTvGhx9+aHU5IpZROBLxIGvXruXrr7/GZrMxatSoKz9AJAf5+Pjw0ksvAfD2229z4sQJawsSsYjCkYgH+c9/0i7J17dvX2rVqmVxNeKNevXqRc2aNTlx4gTvvvuu1eWIWELhSMRDLFmyhMWLF+Pr68uIESOsLke8lMPhYOTIkQC88847HDhwwOKKRPKewpGIBzDGMHz4cACGDBlCxYoVrS1IvNodd9xB8+bNOXPmDC+//LLV5YjkOYUjEQ/w9ddfs2bNGoKCgnjuueesLke8nM1m4+233wYgJiaGrVu3WlyRSN5SOBKxWFJSEv/6178AeOqppwgNDbW4IhFo0aIFd9xxB06nk2eeecbqckTylMKRiMU++OADdu/eTbly5fj3v/9tdTkibq+//jo+Pj7MmzeP2NhYq8sRyTMKRyIWOnz4sPuU/dGjRxMUFGRxRSL/ExkZyZAhQwB4+umncTqdFlckkjcUjkSsEh/PiwMHcvLkSRo1akSfPn2srkgkkxdffJHg4GA2bNjA5H//G+LjrS5JJNcpHIlYISaGzeHhTJo7F4D32rfHbtfbUTxPqVKlePmmmwB49p13+Cc8HGJiLK5KJHfZjDHG6iLyWl7d1VckS/HxmPBw2hnDUqAnMMPhgD17ICzM2tpELhYfT3J4OA2MYSswFBij16tYJK++v/VPVZG8FhfHZxeCUSHgDYDUVNi1y9KyRLIUF4evMfzfhV/HAxv1epUCTuFIJI8dL1WKpy78/4tARQCHA6pWtawmkUuKjAS7nTbA3YATeBhwVq5saVkiuUnhSCSPDf+//+NvoCbwJKQFowkTNEQhniksDCZOBIeDt4AgYBXw8Y8/WlyYSO7RnCPNOZI89Msvv9CiRQuMMSydOZPWpUql9RgpGImni4+HXbt4a/Fi/v3qqxQrVozt27froqWSp/Lq+1vhSOFI8sj58+dp1KgRW7ZsoX///kydOtXqkkSuWnJyMk2bNmXjxo3cddddzJw50+qSxItoQrZIATNq1Ci2bNlCyZIleeutt6wuR+Sa+Pr6EhMTg8Ph4Msvv2T27NlWlySS4xSORPLAhg0beO211wAYO3YspUqVsrgikWvXoEED9/3Whg4dyvHjxy2uSCRnKRyJ5LLz589z3333kZqayl133cVdd91ldUki1+2FF14gKiqKQ4cO8dhjj1ldjkiOUjgSyWUjR45ky5YtlCpVijFjxlhdjkiOCAgIYMqUKdjtdj799FNmzJhhdUkiOUbhSCQX/fTTT4wePRrQcJoUPM2bN+e5554DYMiQIezfv9/iikRyhsKRSC45duwYffr0wel0cv/999OjRw+rSxLJcS+88AJNmjThxIkT9O/fH6fTaXVJItdN4Ugkp8XHY5YsYeC99xIfH0+1atX48MMPra5KJFf4+vry2WefERgYSGxsLG+88UbaNZFiY9P+K5IPKRyJ5KSYGIiIYFz79nzzww/4+fjwxRdfULhwYasrE8k1kZGR7n8APP/cc8SGh0O7dhARkfaeEMlnFI5Eckp8PAwaxCqnk8cvLHo9NZUGmmckXuCBBx6gf48eOI3hbmM4AOB0wuDB6kGSfMcjwtHYsWOpVKkSAQEBREdHs3z58ku2/frrr+nYsSOlSpUiODiY5s2b88MPP+RhtSKXEBfHQaeTO4FkoAfwuDG6e7l4BZvNxtgHHqAucAToRdr7gNRUvQck37E8HM2YMYPHH3+c5557jo0bN9KqVSu6dOnCvn37smy/bNkyOnbsyPz581m/fj1t27ale/fubNy4MY8rF8nofEQEdwEHgVrAFMDmcKTdO03ECwTWqcNXNhvBwArgCUi7sbLeA5LPWH5vtaZNm9KwYUPGjRvnXlajRg1uu+029ynQV1KrVi169erFiy++mK32urea5DRjDEOGDGHixImEAGuBSIcDJkyAAQOsLk8k78TE8O2gQdx24ay1//buzSPTpllclBQUXnFvtfPnz7N+/Xo6deqUYXmnTp1YuXJlttbhdDo5efIkxYsXv2SbpKQkEhMTM/yI5KQ333yTiRMnYrPZ+GzKFCJjY2HPHgUj8T4DBnDr3r28PmgQAI998QULFiywuCiRq2NpODp69CipqamEhoZmWB4aGsqhQ4eytY533nmH06dP07Nnz0u2GT16NCEhIe6fChUqXFfdIul98cUXPPvsswC8//77dLvvPmjTBsLCLK1LxDJhYfx7/Hjuv/9+nE4nPXv2ZMuWLVZXJZJtls85grSJfOkZYzIty8r06dN5+eWXmTFjBqVLl75ku+HDh5OQkOD+0VVcJacsX76c/v37A/D4448zbNgwiysS8Qw2m43x48dz4403cvLkSTp37szu3butLkskWywNRyVLlsThcGTqJTpy5Eim3qSLzZgxgwEDBjBz5kw6dOhw2bb+/v4EBwdn+BG5XuvWrePmm2/m/Pnz3H777bz99ttWlyTiUfz8/Pjmm2+oXbs2Bw8epGPHjtkeFRCxkqXhyM/Pj+joaBYtWpRh+aJFi2jRosUlHzd9+nTuu+8+Pv/8c26++ebcLlMkky1bttC5c2dOnjxJ69at+eyzz3A4HFaXJeJxihUrxg8//EClSpX4448/6Ny5M8ePH7e6LJHLsnxY7cknn2TSpElMnjyZ7du388QTT7Bv3z6GDBkCpA2J9evXz91++vTp9OvXj3feeYdmzZpx6NAhDh06REJCglW7IF5mx44ddOjQgX/++YdmzZoxZ84cAgMDrS5LxGOVK1eOhQsXEhoayq+//krHjh35559/rC5L5JIsD0e9evXi/fffZ+TIkdSvX59ly5Yxf/58IiIiADh48GCGax5NmDCBlJQUHn74YcqWLev+eeyxx6zaBfEW8fHs+Phj2rdpw5EjR2jQoAHff/89RYoUsboyEY9XtWpVFi1aRMmSJVm/fj0dOnTg2JYtugebeCTLr3NkBV3nSK5aTAybH3yQTsZwBKhVrhxLN2+mZMmSVlcmkq/89ttvtGvXjr///pt6wGKgpN0OEyfq0hdyRV5xnSORfCE+nl8efJA2F4JRAyD20CFKnjtndWUi+U7t2rVZ+sUXhAKbgTZAvO7BJh5G4UjkCn6cMYMOxnACaAEsAUo5nbpflMg1qmmzsRQoB2wl7X21XfdgEw+icCRyGZ9++ildhg/nNNAeWAgUBd0vSuR6REZS3W5nJRAF7AdaAitPnLC0LBEXhSORLBhjeOWVV+jXrx/Jycn0bNSIuXY7QZAWjCZM0BWwRa5VWBhMnEiEw8EKoClwHGh/zz18++23FhcnonAkkklycjIDBw5038j43//+N9NXryZg7960M2t0zzSR6zdgAOzZQ8nYWH7csYObb76Zc+fOuS+o6oXnCokH0dlqOltN0jl69Cg9e/YkNjYWu93OmDFj3NfcEpHck5yczCOPPMLEiRMBuO+++xg/fjz+/v4WVyaeRGerieSxzZs307hxY2JjYylcuDDffvutgpFIHvH19WX8+PF88MEH2O12pk6dSvv27Tly5IjVpYkXUjgSiY/ny5deokXz5uzZs4cqVarwyy+/0K1bN6srE/EqNpuNYcOG8f333xMSEsLPP/9M48aN2bxwoS4WKXlK4Ui8mvOjj3i+QgV6jhzJmbNn6VizJmvWrKFWrVpWlybitTp16sTq1auJjIxk3759tOjcmWnt2kFEBMTEWF2eeAGFI/Fax3/7jVsHDeLVC78/Bcz//XeKnzljZVkiAkRFRfHLrFl0As4AfYBHnU7ODxqkHiTJdQpH4pU2bNhAdKdOzAX8gU+BtwEfXdxRxGMUP3qU+cDzF37/P6CN08lfq1ZZWJV4A4Uj8SrGGCZOnEiLFi3YffAglYCfSftXKaCLO4p4kshIHHY7rwDfASHAKqDh0KEsXbrU0tKkYFM4Eq9x5swZ7rvvPgYPHkxSUhLdu3dn/QcfEO1wpDXQxR1FPMuFi0XicNAdWGe3UzcsjCNHj9KhQwddD0lyjVeHo6SkJNq2bUtQUBDLli2zuhzJRTt37qRp06Z88skn2O12Xn/9db755huKDRuWdlFHXdxRxDNduFgksbFU3buXVTt20KdPH1JTU/nXv/7Fbbfdxj///GN1lZKLxo0bh7+/P0OHDs2zbXr1RSBnzZrFnXfeCUDbtm1ZsmSJxZVJjoqPh7g4vtyxgwH//jcnT54kNDSUL774gjZt2lhdnYhcI2MM48aN44knnuD8+fNUqFCB6dOn0zIiAuLiIDJSPcAFRFJSEuXKlXMH4F27dlG1alVdBDI3pe8t+umnn0hISLCwGslRMTGcCQ9ncLt29HzoIU6ePMmNN97Ixo0bFYxE8jmbzcbQoUP55ZdfqFq1Kvv376f1jTfyeng4Tp3yX6CsXr06Q89gXo3yeHU42rp1q/v/nU4nP//8s4XVSI6Jj+fXBx+kkTFMBGzAszYbP378MWXLlrW6OhHJIQ0aNGDDhg3cc+utpDqdDDeGLsBhpxMGD9Yp/wXAxWFo+/btebJdrw5H+/fvB6BcuXIArF+/3spyJAcYYxjz1ls0MYbtQBlgITDaGHz27LG2OBHJcUWKFGHasGFMAgqR9n6vD/yYmqrLchQAa9asAf73Pb1v37482a7CEXDzzTcDGXuSJP85evQot99+O498+CFJQFfgV6AD6BR9kQLMVq0aA+x21gI1gUOkve8f/+wzzp49a21xcl02b94MwK233gr873s7t3l1ODpz4UrIXbp0AeC3336zshy5Dt9++y21atXi22+/xdfXl/d69WKu3U4p0Cn6IgXdhVP+azkcrAUG22wAfBATQ3R0tEYF8qkTJ064e4pc97pUOMojJUqUIDo6Gkg73Ts5OdniiuRqHD9+nH79+nHbbbdx5MgRatasyerVq3n8iy+w7d2rU/RFvMWFU/4DY2MZv28f8+bNo0yZMmzfvp1mzZrxyiuvkJKSYnWVchV27NgBpA2p1a5dG4CDBw/myba9PhyVLFmSChUqUKRIEZKTk4mLi7O6JLmS+HiIjWX+J59Qu3ZtPv30U+x2O8888wzr16+nQYMGae3CwqBNG/UYiXiLdO/5rl27smXLFnr06EFKSgovvvgiTZs2ZcOGDe7PEE3Y9myucBQVFUWJEiUA8izgen04Kl68ODabzX0Xdg2tebiYGOLDw+nRrh039+/PgQMHqFatGitWrOD1118nICDA6gpFxEOULFmSmTNn8tlnn1G0aFE2bNhA40aNeLJCBU7plH+Pt3PnTgCqVatGYGAgfn5+ebZthaPixQGoWbMmAL///ruV5chlJO/ezTsPPkh1Y5gFOICnbDY2zp1L8+bNrS5PRDyQzWbj3nvvZfv27dx9yy04jeE9oBYw2+nEDBqkHiQP5QpHUVFR2Gw2d+9RXlA4uhCOqlWrBvyvG088hzGGOXPmUL9tW542htNAC2AD8LYxBP71l8UVioinK1OmDNMff5z5QEVgH3AH0MbpZP28eZbWJllzfR+7vp9d39d5wevDkSuJRkVFAf9LquIZfvnlF1q3bs0tt9zCtr17KQHEAMuBuqBT9EUk+yIj6WK3sxV4HggAlgGNhgyhX79+7NJ1kTyG0+l0zwFWOLJAVj1HXni7Oc9wYZKk2b+fZcuWcdNNN9G8eXOWL19OQEAAzz77LLs+/JAHHI60F65O0ReRq3HhlP9Ah4NXgJ12O32aNQPg008/pXr16vTv3/9//0jWxG3LxMfHc/bsWXx8fKhYsSKAhtXyUtGiRQGoUqUKdrudkydPcvjwYWuL8kYxMaSEh/NNu3bcEB5O69at+eGHH3A4HDzwwAPExcUxevRoij76qPsO3TpFX0Su2oVT/omNpcLevXy6ahVr166la9eupKam8sknn1CjRg16NGrET+HhGE3ctoQroFapUgVfX1/gf9/XecHrw1GRIkUA8Pf3d6dTzTvKWwfXr+eVBx+kkjHcDqwE/IGH+vYlLi6OmJgYwtL3DukUfRG5Hhd9hjRq1Ih58+axdu1aunfvjtPpZNb69bQxhvrAR04npzRxO0+lP1PNxfV9nRe8PhwVLlzY/f+ad5R3zpw5w8yZM7ntttsIb9qUF40hHigJPAPsBsY+8ACVKlWytlAR8RqNGjXiu+++Y0tMDINJu1fbr8AgoIzTSf8BA1iyZAlOp9PaQr3AxZOxIeP3dW5TOEr3ZOuMtVxyYdw+Zc8eFixYQL9+/QgNDaVXr158++23pKSm0gL4FNgPvA6U1URrEbFI7U6dGG+38xfwNlAFOA18snAh7du3p2LFigwfPvx/18XT3KQcl/4CkC4KR3lIPUe5y0yaxOrwcB5t145ylSrRpUsXPv30U06dOkVERATDhw9ny5Yt/DxpEn0cDgJAE61FxFoXJm4Xczh4Coiz2/n52WcZPHgwRYsWZf/+/bz++uvUqVOHumFhvB4ezh7NTcpRVocjm/HCU7MSExMJCQkBYOPGjdSvXx+AH3/8kQ4dOlCtWjX1Hl2nP//8k8/GjuWzd94h/Q1ZSgE9+/en96BBNG/eHNuFG0QCaf/q2rUrrcdIwUhErJbFZ9K5c+eYM2cOn3/+OfPnz+f8+fPu5i2A3jYbd23YQOkL3yty9c6ePUtQUBDGGA4dOkRoaCgAkydPZsCFk3ASEhIIDg7OtRq8PhzFxcVR9cLwzf79+wkPD8fHx4czZ864Z8hL9vzzzz/uS/X//PPP7uWBwO3AvUAHwDc2Nm0ypIhIPnb8u+/4+tZb+RyIBVxfpg67nY6dOtG7d29uu+22PJ1IXBBs2bKFunXrUrRoUf755x/3P6JnzpxJr169gNwPRz65tuZ8In03Xfny5QkMDOTMmTPs3r07w0QwuUh8PMTFkRQezvxff+XTTz9l3rx57n9F2e122rdsSd8VK7jdGNzPsuYSiUgBUaxhQwbY7QxwOjkAzAA+B9Y5nSxYsIAFCxYQEBDALbfcwj333EOXOnXw37cPIiPVO34Zrtt4uW4b4qI5R3kofaK32+1ERkYCmnd0OWbSJH4OD2dIu3aUrVqVO+64g9mzZ3P+/Hnq1avHW2+9xf79+1m4bBl9P/qIwg5H2gM1l0hECpILc5NwOCgHPOFwsHbSJHbu3MmIESOIiori3LlzzJw5k9tvv50yVasysF07loSHk/rRR1ZX77Gymm8EOpU/TxUqVCjD766DoTlHmcXFxfHSE09Q9cEHucEYJgDHgXLAv4YM4ddff2XTpk08/fTTlCtXLu1B6S64pos2ikiBk8VnXGRkJC+++CLbt29n/fr1PDVoEOWBE6Td/qi9MUQMGsSzDz/M9u3brazeI10qHKnnKI8EBgZit2d8ClxDaV7bc3TRKalHjx5lzJgxNGvWjGrVqjHy/ff5EygM9AcWk3YDxzd79aJOnTpZr1MXbRSRguwSn3E2m42GDRvy9t13sw9YSto1k4oBfwFvjB1LzZo1adq0KWPHjuWff/7534O9+PIACkcWu7jXCLy85ygmBiIiONWuHZ+Hh3NL/fqULVuWRx55hNWrV2O327mpTRum2WwcAqYC7QGH5hGJiFxaZCR2u53WwATgIDDLbueWjh3x8fFhzZo1PPzww5QtW5a77rqLucOGkRIeDl54eQBjjPv7t3r16hn+ltV3dm5ROLqIKxwVuK7OK/wr5MTWrcx88EF6Op2UBu41hjmbN5OSkkLDhg157733+Ouvv/g+NpbeH31EkOYRiYhkT7q5SQD+Dgd3TJzItwsX8tdff/Hee+9Rv359zp8/z1dffUX3//6X8sYwCJjjdHLmcrcuKWA9TAcPHiQxMRG73e4+k9wlL8ORV5/KX6VKFXbt2pXhb6dPn6ZIkSKZrq+Qr8XEwKBB4HSC3Q4TJ3L67rtZt24dy5cvZ8GCBfyyahWp6S6JHwn0Au6ZMoWa992XeZ26JpGIyNW5wufm5s2b+XjUKD776iv+Tre8ENChRQva3HknN9xwAw0aNEi71EwWn+35fV7n999/T9euXalRowbbtm3L8LfTp0+7h9Z0naNc4ApHtWvXZsuWLZn+HhUVxc6dO/nhhx/o1KmTBRXmnOTdu/mzShV2GMMOYAewHtjicJCampqhbQ2gO2mhqAFgczjSJhgq/IiI5I34eJLDw4k1hjnAd6TN60wvMDCQBrVqUXvtWuoAtYFaQMkC8Jn9+uuvM3z4cO6++26mT5+e4W+pqan4+KRdgUjXOcpF/v7+WS6vX78+O3fuZPPmzZ4fji5cb+hoiRL8npjIjh07Mvz8sWsXKVnl39RUypcvT7NmzejYsSM33XQTEYsXw+DBkJqq4TIRESuEheH70Ud0GjyYTqmpfGi38+sLL7CgUCFWrFjBzz//zPHjx/l57Vp+vuihJVJTqdG1K9WbNqVGjRpUr16d6tWrExERgePgQYiL8/hrLG3atAnAfeeK9BwOBz4+PqSkpOR6HV4dji41flmvXj1mzpzpPkiexul0snbtWpa/8w6rv/ySNWT+l0V6gUA1IAqoDtS222n2yy+ENW6cseGAAdC5s4bLRESslO6z2Fa1KvXCwqgHPPPMMzidTrZv387mJUv4bdgwtgC/AXuAY8CKLVtYcdGISICvL9WSk6kN3Giz0eaVV6j2n/9kvH2Th7hcOIK07+2TJ0/meh1eHY4CAgKyXF6vXj0Aa8PRhR4hV8pPTExk0aJFzJ07l3nz5vH3339nekgEEHXjjUTVq0dUVJT7p/yCBdgfeihjj9DFwcglLEyhSETEapf4LLbb7dSqVYtatWpBYKC7t/+M3c6O55/n9+rV+f3339m+fTu///47O3fu5FxSEr8CvwKfGwPPP0+ZDz+kc5cu3HrrrXTq1ImgoKC0DVz03ZOXTp8+TVxc2t04Xd/DF/P398+TcOTVc466devGnDlzMv398OHDlClTBpvNxrFjxyhWrFjObTw7L7wLk+z+dDqZa7Mxp3p1ftq1i+TkZHeT4KAg2p0+TTOgCRANBEPaWQtZ3bdME6hFRAqeK3y2py5ezJ6OHdkOrAN+AlYBSenaBAQE0LFjR24tXpybP/mEMsZceYJ3LoSo2NhY2rVrR/ny5Ym/xNl34eHh7N+/X3OOctOlhtVCQ0OJjIwkLi6OlStXcvPNN1/T+tPnTpvNdsUzCw4dOsTa779n4cCB/ABpd7M3Bi5cVqBq1ap0796d7t27c0PFivhWrZq2LpfLXW9IPUIiIgXPFT7bHdWrU8Vup4rTSbcLy87Z7az8/HPm/PIL3377Lbt372bOnDm4ugoaAF2cTjoMGkTD5s0JqVkz40pz6Sy55cuXA9CqVatLtrnUiE9O8+pwdKkJ2ZB2cOLi4lixYkX2wlF8PGbnTlYcP87nixezbNkydu3a5b4Ra4C/PyFJSQQDIUCw00nIwIHYZs3iyMmT7Nq1i0OHDmVYpQNoBXQDun/yCdX69s24zYkTNYFaREQuzXWNpXTfFQETJtCuVy/a9erFu+++y2+//cY3773Hd1OmsA7YeOHnNacTatWiUqVKREREUKpUKeznzpE6Zw5JQAKQ6HSSOHAgif/+N4mnTuHr60tUVBSdO3emT58+1AwOznYP04oVKwDPCEcYL5SQkGAA8+CDD16yzeTJkw1gWjRqZMySJcbs33/pFU6aZLbZbKY9GK7jx2azmepVq5rBYL4GcyKt38gYh+PS29+/35jY2MvXJyIi3u1K3xX79xtjt5vDYD4Bcw+YiBz4TrsPzCEwxm43ZtKkS5aXvHu3KVyokAHM5s2bL9mucePGBjAJCQnX+YRcnnqOLqFt27YArF63jr/btaPUpboO4+OJffBBbjOGRMAPuNdm4/aYGGq3aeO+oOTpXbtIbNmShAvtEoBEm43UkSMpHRVFhQoVqFOnTtqkuJiY7PcIabhMRESu5ErfFRd6mEoPHkzf1FT6Xvju+ef229myZQsHDhzg77//xhw/js+IEfgb87+RELud4IULCa5WjdOnT7Nhwwa+mDKFOYsXMxX4AfjS6aTl4MFpZ+FdXEdMDD89+CCnjKEkUHv1aqhbN8sy1XOUi1w9R/8aPPjSjfbvNw0vpN+PLtODM+PFF43fhXY3gtntahsbm3mdkyalrcO1rsukaPUIiYhInsvOd092vsuWLDGrwdS88P3oe2FEJNN344UeqyEX2j14hdGSjjfemCc9R159bzX/CRMufUO/uDh6XPjfma5lqalpZwVc8N///pe7X3mF80AP0tJxRbj0xOgBA9KuXhobm/bfy01g053sRUQkr2Xnuyc732WRkTSx21kN3A4kA3cBn198V4q4OFKcTr6+8GsPyPRd6xYTQ8CyZVe7R9fEq8NRIUgbvsrqlMHISHrabNiARcAGcIceYwz/+c9/GDZsGMYYHm7bli/sdgJcba40DKbQIyIi+dmVvssuDNMVdjiYCfS32UgF+jz2GOPGjftfu8hIvrLZOAKUAtpC1h0M8fEwaBB5detZrw5HDeDSCTUsjCoffUTvC1cQfQZwjhvH6WLF6Nu3L6NHjwZg1KhR/PfHH3Hs3Zu9HiERERFvcKGHySc2lsl79vDwww9jjGHo0KG8/PLLpKamklCkCP8pUQKARwDfS3UwxMWB00nHPCrdqy8CmQAEX+FGfXHLl1OnfXuSkpNp1KgR+/fv5/DhwzgcDiZMmMAABSEREZErMsbw0ksv8corrwAQGRmJ0+nkjz/+oEK5cmybNInCdepk/X0cHw8RESQ6nYSQ+zee9eqeI+z2K14bKLJVKz77/HP8/f1Zt24dhw8fJjw8nB9//FHBSEREJJtsNhsjR45k8uTJBAcHExcXxx9//EHp0qX5du5cCnfpcsVhOux5E1u8u+do2zaCa9TI1mP27dvHwoULKVmyJF27dsXPzy+XqxQRESmYjh8/zo8//sjZs2fp3r07RYsWzdbjErdvJ6RmzVzvOfLucJTLT66IiIjknLz6/vbuYTURERGRiygciYiIiKSjcCQiIiKSjsKRiIiISDoeEY7Gjh1LpUqVCAgIIDo6muXLl1+2/U8//UR0dDQBAQFUrlyZ8ePH51GlIiIiUtBZHo5mzJjB448/znPPPcfGjRtp1aoVXbp0Yd++fVm23717N127dqVVq1Zs3LjRfRuPWbNm5XHlIiIiUhBZfip/06ZNadiwYYZ7rdSoUYPbbrvNfYuO9J555hm+++47tm/f7l42ZMgQNm/ezKpVq7K1TZ3KLyIikv94xan858+fZ/369XTq1CnD8k6dOrFy5cosH7Nq1apM7Tt37sy6detITk7OtVpFRETEO/hYufGjR4+SmppKaGhohuWhoaEcOnQoy8ccOnQoy/YpKSkcPXqUsmXLZnpMUlISSUlJ7t8TEhKAtAQqIiIi+YPrezu3B70sDUcuNpstw+/GmEzLrtQ+q+Uuo0ePZsSIEZmWV6hQ4WpLFREREYsdO3aMkJCQXFu/peGoZMmSOByOTL1ER44cydQ75FKmTJks2/v4+FCiRIksHzN8+HCefPJJ9+8nTpwgIiKCffv25eqT62kSExOpUKEC+/fv96q5Vtpv7bc30H5rv71BQkIC4eHhFC9ePFe3Y2k48vPzIzo6mkWLFnH77be7ly9atIhbb701y8c0b96cOXPmZFi2cOFCGjVqhK+vb5aP8ff3x9/fP9PykJAQr3pRuQQHB2u/vYj227tov72Lt+633Z67U6YtP5X/ySefZNKkSUyePJnt27fzxBNPsG/fPoYMGQKk9fr069fP3X7IkCHs3buXJ598ku3btzN58mRiYmJ4+umnrdoFERERKUAsn3PUq1cvjh07xsiRIzl48CC1a9dm/vz5REREAHDw4MEM1zyqVKkS8+fP54knnmDMmDGUK1eODz/8kDvvvNOqXRAREZECxPJwBDB06FCGDh2a5d+mTp2aaVnr1q3ZsGHDNW/P39+fl156KcuhtoJM+6399gbab+23N9B+5+5+W34RSBERERFPYvmcIxERERFPonAkIiIiko7CkYiIiEg6CkciIiIi6RTYcPTqq6/SokULAgMDKVq0aLYeY4zh5Zdfply5chQqVIg2bdqwdevWDG2SkpJ49NFHKVmyJEFBQdxyyy3Ex8fnwh5cm+PHj9O3b19CQkIICQmhb9++nDhx4rKPsdlsWf689dZb7jZt2rTJ9Pe77747l/cm+65lv++7775M+9SsWbMMbQra8U5OTuaZZ56hTp06BAUFUa5cOfr168eBAwcytPO04z127FgqVapEQEAA0dHRLF++/LLtf/rpJ6KjowkICKBy5cqMHz8+U5tZs2ZRs2ZN/P39qVmzJrNnz86t8q/Z1ez3119/TceOHSlVqhTBwcE0b96cH374IUObqVOnZvleP3fuXG7vylW5mv1eunRplvv0+++/Z2hX0I53Vp9fNpuNWrVqudt4+vFetmwZ3bt3p1y5cthsNr755psrPibP3tumgHrxxRfNu+++a5588kkTEhKSrce8/vrrpkiRImbWrFlmy5YtplevXqZs2bImMTHR3WbIkCGmfPnyZtGiRWbDhg2mbdu2pl69eiYlJSWX9uTq3HTTTaZ27dpm5cqVZuXKlaZ27dqmW7dul33MwYMHM/xMnjzZ2Gw288cff7jbtG7d2jz44IMZ2p04cSK3dyfbrmW/+/fvb2666aYM+3Ts2LEMbQra8T5x4oTp0KGDmTFjhvn999/NqlWrTNOmTU10dHSGdp50vL/44gvj6+trPvroI7Nt2zbz2GOPmaCgILN3794s2//5558mMDDQPPbYY2bbtm3mo48+Mr6+vuarr75yt1m5cqVxOBzmtddeM9u3bzevvfaa8fHxMb/88kte7dYVXe1+P/bYY+aNN94wa9asMTt37jTDhw83vr6+ZsOGDe42U6ZMMcHBwZne857kavc7NjbWAGbHjh0Z9in9e7QgHu8TJ05k2N/9+/eb4sWLm5deesndxtOP9/z5881zzz1nZs2aZQAze/bsy7bPy/d2gQ1HLlOmTMlWOHI6naZMmTLm9ddfdy87d+6cCQkJMePHjzfGpL0YfX19zRdffOFu89dffxm73W4WLFiQ47VfrW3bthkgw4tg1apVBjC///57ttdz6623mnbt2mVY1rp1a/PYY4/lVKk56lr3u3///ubWW2+95N+95XivWbPGABk+hD3peDdp0sQMGTIkw7Lq1aubZ599Nsv2//73v0316tUzLBs8eLBp1qyZ+/eePXuam266KUObzp07m7vvvjuHqr5+V7vfWalZs6YZMWKE+/fsfh5a6Wr32xWOjh8/fsl1esPxnj17trHZbGbPnj3uZfnheLtkJxzl5Xu7wA6rXa3du3dz6NAhOnXq5F7m7+9P69atWblyJQDr168nOTk5Q5ty5cpRu3ZtdxsrrVq1ipCQEJo2bepe1qxZM0JCQrJd3+HDh5k3bx4DBgzI9Ldp06ZRsmRJatWqxdNPP83JkydzrPbrcT37vXTpUkqXLk21atV48MEHOXLkiPtv3nC8Ie1GjjabLdPwsycc7/Pnz7N+/foMxwCgU6dOl9zHVatWZWrfuXNn1q1bR3Jy8mXbeMJxhWvb74s5nU5OnjyZ6Qadp06dIiIigrCwMLp168bGjRtzrO7rdT373aBBA8qWLUv79u2JjY3N8DdvON4xMTF06NDBfXcJF08+3lcrL9/bHnGFbE9w6NAhAEJDQzMsDw0NZe/eve42fn5+FCtWLFMb1+OtdOjQIUqXLp1peenSpbNd38cff0yRIkW44447Miy/9957qVSpEmXKlOG3335j+PDhbN68mUWLFuVI7dfjWve7S5cu3HXXXURERLB7925eeOEF2rVrx/r16/H39/eK433u3DmeffZZevfuneHmlZ5yvI8ePUpqamqW78tL7eOhQ4eybJ+SksLRo0cpW7bsJdt4wnGFa9vvi73zzjucPn2anj17updVr16dqVOnUqdOHRITE/nggw9o2bIlmzdvJjIyMkf34Vpcy36XLVuWiRMnEh0dTVJSEp9++int27dn6dKl3HjjjcClXxMF5XgfPHiQ77//ns8//zzDck8/3lcrL9/b+Socvfzyy4wYMeKybdauXUujRo2ueRs2my3D78aYTMsulp021yO7+w2Z64erq2/y5Mnce++9BAQEZFj+4IMPuv+/du3aREZG0qhRIzZs2EDDhg2zte6rldv73atXL/f/165dm0aNGhEREcG8efMyhcOrWe/1yqvjnZyczN13343T6WTs2LEZ/mbF8b6cq31fZtX+4uXX8l7Pa9da4/Tp03n55Zf59ttvMwToZs2aZTjpoGXLljRs2JD//ve/fPjhhzlX+HW6mv2OiooiKirK/Xvz5s3Zv38/b7/9tjscXe06rXKtNU6dOpWiRYty2223ZVieX4731cir93a+CkePPPLIFc+YqVix4jWtu0yZMkBaMi1btqx7+ZEjR9wptEyZMpw/f57jx49n6E04cuQILVq0uKbtZkd29/vXX3/l8OHDmf72999/Z0rSWVm+fDk7duxgxowZV2zbsGFDfH19iYuLy7Uvy7zab5eyZcsSERFBXFwcULCPd3JyMj179mT37t0sWbIkQ69RVvLieGelZMmSOByOTP/qS/++vFiZMmWybO/j40OJEiUu2+ZqXi+56Vr222XGjBkMGDCAL7/8kg4dOly2rd1up3Hjxu7XvNWuZ7/Ta9asGZ999pn794J8vI0xTJ48mb59++Ln53fZtp52vK9Wnr63r2qGUj50tROy33jjDfeypKSkLCdkz5gxw93mwIEDHjdBd/Xq1e5lv/zyS7Yn6Pbv3z/TWUuXsmXLFgOYn3766ZrrzSnXu98uR48eNf7+/ubjjz82xhTc433+/Hlz2223mVq1apkjR45ka1tWHu8mTZqYhx56KMOyGjVqXHZCdo0aNTIsGzJkSKZJm126dMnQ5qabbvK4CbpXs9/GGPP555+bgICAK05sdXE6naZRo0bm/vvvv55Sc9S17PfF7rzzTtO2bVv37wX1eBvzvwnpW7ZsueI2PPF4u5DNCdl59d4usOFo7969ZuPGjWbEiBGmcOHCZuPGjWbjxo3m5MmT7jZRUVHm66+/dv/++uuvm5CQEPP111+bLVu2mHvuuSfLU/nDwsLM4sWLzYYNG0y7du087tTuunXrmlWrVplVq1aZOnXqZDq1++L9NsaYhIQEExgYaMaNG5dpnbt27TIjRowwa9euNbt37zbz5s0z1atXNw0aNMi3+33y5Enz1FNPmZUrV5rdu3eb2NhY07x5c1O+fPkCfbyTk5PNLbfcYsLCwsymTZsynN6blJRkjPG84+06xTkmJsZs27bNPP744yYoKMh9Vs6zzz5r+vbt627vOt33iSeeMNu2bTMxMTGZTvf9+eefjcPhMK+//rrZvn27ef311z321O7s7vfnn39ufHx8zJgxYy55CYaXX37ZLFiwwPzxxx9m48aN5v777zc+Pj4ZArbVrna/33vvPTN79myzc+dO89tvv5lnn33WAGbWrFnuNgXxeLv06dPHNG3aNMt1evrxPnnypPu7GTDvvvuu2bhxo/vMWSvf2wU2HPXv398AmX5iY2PdbQAzZcoU9+9Op9O89NJLpkyZMsbf39/ceOONmdL42bNnzSOPPGKKFy9uChUqZLp162b27duXR3t1ZceOHTP33nuvKVKkiClSpIi59957M53ievF+G2PMhAkTTKFChbK8ls2+ffvMjTfeaIoXL278/PxMlSpVzLBhwzJdE8hKV7vfZ86cMZ06dTKlSpUyvr6+Jjw83PTv3z/TsSxox3v37t1Zvi/Svzc88XiPGTPGREREGD8/P9OwYcMMPVj9+/c3rVu3ztB+6dKlpkGDBsbPz89UrFgxy9D/5ZdfmqioKOPr62uqV6+e4cvUU1zNfrdu3TrL49q/f393m8cff9yEh4cbPz8/U6pUKdOpUyezcuXKPNyj7Lma/X7jjTdMlSpVTEBAgClWrJi54YYbzLx58zKts6Adb2PSercLFSpkJk6cmOX6PP14u3q9LvWatfK9bTPmwmwmERERESm4tw8RERERuRYKRyIiIiLpKByJiIiIpKNwJCIiIpKOwpGIiIhIOgpHIiIiIukoHImIiIiko3AkIiIiko7CkYiIiEg6CkciIiIi6SgciUiBMnLkSOrUqUNQUBChoaE89NBDJCcnW12WiOQjPlYXICKSU4wxpKamMmHCBMqXL8+2bdvo168fdevW5aGHHrK6PBHJJ3TjWREp0Hr37k2pUqX44IMPrC5FRPIJDauJSIGxd+9eHnnkEWrXrk2xYsUoXLgwM2fOJCwszOrSRCQfUTgSkQLh6NGjNGnShKNHj/Luu++yYsUKVq1ahcPhoH79+laXJyL5iOYciUiBMH/+fFJSUpg+fTo2mw2AMWPGcP78eYUjEbkqCkciUiAUL16cxMREvvvuO2rWrMmcOXMYPXo05cuXp1SpUlaXJyL5iCZki0iBYIzhoYce4vPPP6dQoUL06dOHc+fOsXfvXubOnWt1eSKSjygciYiIiKSjCdkiIiIi6SgciYiIiKSjcCQiIiKSjsKRiIiISDoKRyIiIiLpKByJiIiIpKNwJCIiIpKOwpGIiIhIOgpHIiIiIukoHImIiIiko3AkIiIiko7CkYiIiEg6/w+NOISxFQXIiwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxbUlEQVR4nO3dd3gUVd/G8e9mU4EkSAuBQKjSa+iIdBDE8qCCIoIKCCIClteGDSxYENsjPYAIIhZAUarSRIL0jkgLIQiEIqGXZM/7R9h9EpJAAklmk70/15VLM3t25zczu9mbc87M2IwxBhEREREBwMvqAkRERETcicKRiIiISDIKRyIiIiLJKByJiIiIJKNwJCIiIpKMwpGIiIhIMgpHIiIiIskoHImIiIgko3AkIiIikozCkeQK//zzD2+++SYbN25M9dijjz5KgQIFbvi1L126RL9+/QgNDcVut1O7du0bLzQLjBo1ismTJ6daHh0djc1mS/OxvMRms/Hmm29aXUaWePPNN7HZbNn+3M8//5wKFSrg6+uLzWbj5MmTPProo5QpUyZFu3fffZfZs2ffUD3XcuLECR588EGKFSuGzWbj3nvvzfRrlClThkcffTTLa3Mn69at46mnnqJGjRoEBgYSEhJCmzZtWLx4cZrtf/jhB5o2bUqhQoUoWLAgDRo04Kuvvsrhqj2TwpHkCv/88w9Dhw5NMxzdrNGjRzN27FiGDBnCihUrLP/jk144Cg0NJSoqijvvvDPni5Ib0rt3b6KiorJ1HRs3bmTgwIG0bNmSxYsXExUVRWBgIK+99hqzZs1K0Ta7wtFbb73FrFmz+Pjjj4mKiuKDDz7I8nXkBdOnT2f16tU8/vjj/Pjjj0yYMAE/Pz9at27NlClTUrSdOHEi999/P6GhoUybNo1vvvmG8uXL06NHDz7++GOLtsBzeFtdgIjVtm7dSkBAAAMGDLC6lGvy8/OjUaNGVpchmRAWFkZYWFi2rmPbtm0A9OnThwYNGriWly9fPlvXm9zWrVspX748Dz/8cI6tM6ucO3eOfPny5ci6XnjhBUaMGJFiWceOHalbty7Dhg2jR48eruUTJ04kPDycb7/9Fi+vpH6M9u3bs3HjRiZPnswzzzyTIzV7KvUceaCjR4/yxBNPUKpUKfz8/ChatChNmzbl119/dbVp0aIF1atXJyoqiiZNmhAQEECZMmWYNGkSAL/88gt169YlX7581KhRg/nz56daz4oVK2jdujWBgYHky5ePJk2a8Msvv6Rqt3XrVu655x5uueUW/P39qV27Nl9++aXr8aVLl1K/fn0AHnvsMWw2W5pDL7t376Zjx44UKFCAUqVK8dxzz3Hx4sVr7gubzcaECRM4f/6863UnT558zSGsq9ftHP7Ytm0bDz30EMHBwYSEhPD4448THx+f4rkOh4PPP/+c2rVrExAQQMGCBWnUqBE//fQTkDS0sG3bNpYtW+aqxzk0kl5NGdnPkydPxmazsWTJEp588kmKFClC4cKF6dy5M//8888199G1lClThk6dOjFr1ixq1qyJv78/5cqV47PPPkvVNiYmhu7du1OsWDH8/PyoUqUKH330EQ6HI93Xj46Oxtvbm+HDh6d6bPny5dhsNr777jsgc8fhwoULvPzyy5QtWxZfX19KlizJU089xcmTJ9Pcvp9//pk6deoQEBBAlSpV+Pnnn4Gk/VqlShXy589PgwYNWLt2bYrnpzU0NmPGDNq1a0doaKjr9V566SXOnj2b/o5OR4sWLejevTsADRs2xGazuYamrh5Ws9lsnD17li+//NL13mrRosU1X//EiRP079+fkiVL4uvrS7ly5RgyZIjrc+V8T/7666/s2LHD9bpLly5N9zUvX77MCy+8QPHixcmXLx+33XYbq1evTrPt4cOH6du3L2FhYfj6+lK2bFmGDh1KQkJCinaxsbHcf//9BAYGUrBgQR5++GHWrFmT6vPiHILfsmUL7dq1IzAwkNatWwNJw+tvv/02lStXdv1dfOyxxzh69GiqumbMmEHjxo3Jnz8/BQoUoH379mzYsOGa+xKgWLFiqZbZ7XYiIiI4cOBAiuU+Pj4UKFDAFYwg6RgGBQXh7+9/3XXJTTLicdq3b2+KFi1qxo0bZ5YuXWpmz55tXn/9dfPNN9+42jRv3twULlzYVKpUyURGRpoFCxaYTp06GcAMHTrU1KhRw0yfPt3MnTvXNGrUyPj5+ZmDBw+6nr906VLj4+NjIiIizIwZM8zs2bNNu3btjM1mS7Gev/76ywQGBpry5cubKVOmmF9++cU89NBDBjDvv/++McaY+Ph4M2nSJAOYV1991URFRZmoqChz4MABY4wxPXv2NL6+vqZKlSpmxIgR5tdffzWvv/66sdlsZujQodfcF1FRUaZjx44mICDA9bpxcXFm3759BjCTJk1K9RzAvPHGG67f33jjDQOYSpUqmddff90sWrTIjBw50vj5+ZnHHnssxXMfeeQRY7PZTO/evc2PP/5o5s2bZ9555x3z6aefGmOMWb9+vSlXrpypU6eOq57169cbY0yaNWV0Pzv3X7ly5czTTz9tFixYYCZMmGBuueUW07JlyxQ1Otumte1XCw8PNyVLljSlS5c2EydONHPnzjUPP/ywAcyHH37oahcXF2dKlixpihYtasaMGWPmz59vBgwYYADz5JNPXnP//uc//zGlS5c2CQkJKdo98MADpkSJEuby5cuZOg4Oh8O0b9/eeHt7m9dee80sXLjQjBgxwuTPn9/UqVPHXLhwIcX2hYWFmerVq7ve7w0bNjQ+Pj7m9ddfN02bNjUzZ840s2bNMrfeeqsJCQkx586dcz3fWVNyb731lvn444/NL7/8YpYuXWrGjBljypYtm+o4pPXcq23bts28+uqrruMVFRVldu/ebYxJ+lyEh4e72kZFRZmAgADTsWNH13tr27Zt6b72+fPnTc2aNU3+/PnNiBEjzMKFC81rr71mvL29TceOHY0xxly4cMFERUWZOnXqmHLlyrleNz4+Pt3X7dmzp7HZbOb//u//zMKFC83IkSNNyZIlTVBQkOnZs6er3aFDh0ypUqVMeHi4GTt2rPn111/NW2+9Zfz8/Myjjz7qanfmzBlToUIFU6hQIfPFF1+YBQsWmGeeecaULVs21fu4Z8+exsfHx5QpU8YMHz7c/Pbbb2bBggUmMTHR3HHHHSZ//vxm6NChZtGiRWbChAmmZMmSpmrVqimO6TvvvGNsNpt5/PHHzc8//2xmzpxpGjdubPLnz3/N/Zmey5cvmwoVKpg6deqkWP7DDz8YLy8v8/bbb5u4uDhz9OhR8+GHHxq73W6+/fbbTK9HMkfhyAMVKFDADB48+JptmjdvbgCzdu1a17Ljx48bu91uAgICUgShjRs3GsB89tlnrmWNGjUyxYoVM6dPn3YtS0hIMNWrVzdhYWHG4XAYY4x58MEHjZ+fn4mJiUmx/g4dOph8+fKZkydPGmOMWbNmTbpf2D179jRAqj8YHTt2NJUqVbrO3kh6fv78+VMsu5Fw9MEHH6Ro179/f+Pv7+/a1uXLlxvADBky5Jr1VKtWzTRv3jzV8rRqyuh+dgae/v37p3jNDz74wADm0KFDrmVffvmlsdvt5ssvv7xmncYkhQebzWY2btyYYnnbtm1NUFCQOXv2rDHGmJdeeskA5s8//0zR7sknnzQ2m83s3LnTtezq/btkyRIDmFmzZrmWHTx40Hh7e6cIvxk9DvPnz0+z3YwZMwxgxo0bl2L7AgICTGxsrGuZ8/0eGhrq2j5jjJk9e7YBzE8//ZSqpvQ4HA5z+fJls2zZMgOYTZs2Zfi5Ts5ju2bNmhTLrw5HxhiTP3/+FAHkWsaMGZPm5+r99983gFm4cKFrWfPmzU21atWu+5o7duwwgHnmmWdSLJ82bZoBUtTWt29fU6BAAbN///4UbUeMGGEAVxD54osvDGDmzZuXol3fvn3TDEeAmThxYoq206dPN4D54YcfUix3/t0ZNWqUMcaYmJgY4+3tbZ5++ukU7U6fPm2KFy9uunTpct19cLUhQ4YYwMyePTvVY7NnzzbBwcEGMIAJCAgwU6dOzfQ6JPM0rOaBGjRowOTJk3n77bdZtWoVly9fTrNdaGgoERERrt8LFSpEsWLFqF27NiVKlHAtr1KlCgD79+8H4OzZs/z555/cf//9Kc4is9vtPPLII8TGxrJz504AFi9eTOvWrSlVqlSKdT/66KOcO3cuw5NZbTYbd911V4plNWvWdNWUE+6+++5U679w4QJxcXEAzJs3D4CnnnoqS9aXmf18rRqBFPupR48eJCQkpJj/cC3VqlWjVq1aKZZ169aNU6dOsX79eiDpOFetWjXFnBhIOs7GmHTP1oGkoaNatWrxxRdfuJaNGTMGm83GE088kar99Y6Dc11Xnxn1wAMPkD9/fn777bcUy2vXrk3JkiVdvzvf7y1atEgxV+Xqz0F69u7dS7du3ShevDh2ux0fHx+aN28OwI4dO6753Jy0ePFi8ufPz/33359iuXO/Xb2fMmLJkiUAqeYmdenSBW/vlFNgf/75Z1q2bEmJEiVISEhw/XTo0AGAZcuWuf4bGBjIHXfckeL5Dz30ULp13HfffanWVbBgQe66664U66pduzbFixd3DRMuWLDA9dlI3s7f35/mzZtfczgxLRMmTOCdd97hueee45577knx2Pz58+nevTudO3dm3rx5LFq0iN69e/Poo4+6pjdI9tGEbA80Y8YM3n77bSZMmMBrr71GgQIF+M9//sMHH3xA8eLFXe0KFSqU6rm+vr6plvv6+gJJ8zgA/v33X4wxhIaGpnq+M1QdP37c9d+MtLuefPnypRqH9/Pzc9WUEwoXLpxq/QDnz58HkuZ62e32FPv4ZmRmP2e0xhuR1vY4lyU/zlefVn6tOq82cOBAevfuzc6dOylXrhzjx4/n/vvvT3Pd19vG48eP4+3tTdGiRVO0s9lsFC9ePFUt6b3fr/c5SMuZM2do1qwZ/v7+vP3229x6663ky5ePAwcO0Llz55s6Dlnt+PHjFC9ePNWcqWLFiuHt7Z3hz+bVrwmp3zPe3t6pjtuRI0eYM2cOPj4+ab7WsWPHXK8ZEhKS6vG0lkHS34qgoKBU6zp58qTrGKa3riNHjgC45kBeLfn8oOuZNGkSffv25YknnuDDDz9M8Zgxhscff5zbb7+diRMnupa3adOG+Ph4nn76abp06UL+/PkzvD7JHIUjD1SkSBE++eQTPvnkE2JiYvjpp5946aWXiIuLS3NidWbdcssteHl5cejQoVSPOSf/FilSBEj6IstIu5zmDFpXT+i+kS8Ep6JFi5KYmMjhw4fTDDSZlZn9nJ0OHz6c7jLnF97NHudu3brx4osv8sUXX9CoUSMOHz58wz1whQsXJiEhgaNHj6YISMYYDh8+nO4XX1ZYvHgx//zzD0uXLnX1FgGpJoK7g8KFC/Pnn39ijEkRkOLi4khISLih95bz/XD48OEUvXEJCQmpPltFihShZs2avPPOO2m+ljNYFy5cOM0J3Wm9L4E0rx3lPEEhvb9/gYGBrnYA33//PeHh4Wm2zYhJkybRu3dvevbs6eoFTe7IkSMcOnSIvn37pnpu/fr1mTJlCtHR0VSrVu2Ga5Br07CahytdujQDBgygbdu2riGQm5U/f34aNmzIzJkzU/xL2OFwMHXqVMLCwrj11lsBaN26tesLI7kpU6aQL18+16nrWdHDkRkhISH4+/uzefPmFMt//PHHG35N53DA6NGjr9nOz88vQ9uZmf2cnbZt28amTZtSLPv6668JDAykbt26QNJx3r59e6r32JQpU7DZbLRs2fKa6/D39+eJJ57gyy+/ZOTIkdSuXZumTZveUL3Os5OmTp2aYvkPP/zA2bNnXY9nB+eXoPP97DR27NhsW2dyGX1vQdJ+OnPmTKrrIjmvx3Mj+8l5dty0adNSLP/2229TnYHWqVMn1yUC6tWrl+rHGY6aN2/O6dOnXcPWTt98802G6+rUqRPHjx8nMTExzXVVqlQJSDqV3tvbmz179qTZrl69etdd1+TJk+nduzfdu3dnwoQJaYY155m7q1atSvVYVFQUXl5eWfIPLEmfeo48THx8PC1btqRbt25UrlyZwMBA1qxZw/z58+ncuXOWrWf48OG0bduWli1b8vzzz+Pr68uoUaPYunUr06dPd/1BeOONN1xzC15//XUKFSrEtGnT+OWXX/jggw8IDg4Gkq7ZEhAQwLRp06hSpQoFChSgRIkSKeY+ZSWbzUb37t2ZOHEi5cuXp1atWqxevZqvv/76hl+zWbNmPPLII7z99tscOXKETp064efnx4YNG8iXLx9PP/00ADVq1OCbb75hxowZlCtXDn9/f2rUqJHma2Z0P2fGlClTePzxx5k4cWKG5h2VKFGCu+++mzfffJPQ0FCmTp3KokWLeP/9911zcp555hmmTJnCnXfeybBhwwgPD+eXX35h1KhRPPnkkxkKcf379+eDDz5g3bp1TJgwIdPb5dS2bVvat2/Piy++yKlTp2jatCmbN2/mjTfeoE6dOjzyyCM3/NrX06RJE2655Rb69evHG2+8gY+PD9OmTUsVLrNLjRo1WLp0KXPmzCE0NJTAwEDXF//VevTowRdffEHPnj2Jjo6mRo0arFixgnfffZeOHTvSpk2bTK+/SpUqdO/enU8++QQfHx/atGnD1q1bGTFiRKqhrmHDhrFo0SKaNGnCwIEDqVSpEhcuXCA6Opq5c+cyZswYwsLC6NmzJx9//DHdu3fn7bffpkKFCsybN48FCxYAGRvqevDBB5k2bRodO3Zk0KBBNGjQAB8fH2JjY1myZAn33HMP//nPfyhTpgzDhg1jyJAh7N27lzvuuINbbrmFI0eOsHr1avLnz8/QoUPTXc93331Hr169qF27Nn379k3V41WnTh38/Pzw8/Ojf//+jBw5kh49etC1a1fsdjuzZ8/m66+/plevXmlOe5AsZOVscMl5Fy5cMP369TM1a9Y0QUFBJiAgwFSqVMm88cYbKc68Se/sk/DwcHPnnXemWg6Yp556KsWy33//3bRq1crkz5/fBAQEmEaNGpk5c+akeu6WLVvMXXfdZYKDg42vr6+pVatWmmeJTZ8+3VSuXNn4+PikOKMprbPNjMn42T7pPT8+Pt707t3bhISEmPz585u77rrLREdHp3u22tGjR1M833kW0b59+1zLEhMTzccff2yqV69ufH19TXBwsGncuHGK/RIdHW3atWtnAgMDDeA64yi9M+gysp/TO6PJeSbYkiVLUrXN6Kn8d955p/n+++9NtWrVjK+vrylTpowZOXJkqrb79+833bp1M4ULFzY+Pj6mUqVK5sMPPzSJiYkp2l29f5Nr0aKFKVSoUIpTq50ycxzOnz9vXnzxRRMeHm58fHxMaGioefLJJ82///6b5vZdLa33u/P4JL+EQVrvwZUrV5rGjRubfPnymaJFi5revXub9evXp9rn2XG22saNG03Tpk1Nvnz5DJDmWZHJHT9+3PTr18+EhoYab29vEx4ebl5++eUUlzswJuNnqxljzMWLF81zzz1nihUrZvz9/U2jRo1MVFSUCQ8PT3Um3dGjR83AgQNN2bJljY+PjylUqJCJiIgwQ4YMMWfOnHG1i4mJMZ07dzYFChQwgYGB5r777jNz5841gPnxxx9T7JO0PuvGJJ1SP2LECFOrVi3j7+9vChQoYCpXrmz69u1rdu3alaLt7NmzTcuWLU1QUJDx8/Mz4eHh5v777ze//vrrNbfdebZcej9X/60YP368qVevnilYsKAJCgoyderUMf/973/NpUuXMrSv5cbZjDEmR1KYiOQ5ZcqUoXr16q6LImanuLg4wsPDefrpp3V7Crmud999l1dffZWYmJhsv0q55D0aVhMRtxYbG8vevXv58MMP8fLyYtCgQVaXJG7mv//9LwCVK1fm8uXLLF68mM8++4zu3bsrGMkNUTgSEbc2YcIEhg0bRpkyZZg2bVqKs5xEIOn0/I8//pjo6GguXrxI6dKlefHFF3n11VetLk1yKQ2riYiIiCRj+an8y5cv56677qJEiRLYbLZUp42mZdmyZURERLhucjlmzJjsL1REREQ8guXh6OzZs9SqVcs1Znw9+/bto2PHjjRr1owNGzbwyiuvMHDgQH744YdsrlREREQ8gVsNq9lsNmbNmsW9996bbpsXX3yRn376KcU9iPr168emTZsyfB8uERERkfTkugnZUVFRtGvXLsWy9u3bExkZyeXLl9O8D8/FixdT3AbC4XBw4sQJChcufEMXyRMREZGcZ4zh9OnTlChRIlP3ssusXBeODh8+nOqGgiEhISQkJHDs2LE0L6k+fPjwa161VERERHKPAwcOZOtlGnJdOILUNw50jgym1wv08ssv8+yzz7p+j4+Pp3Tp0hw4cCDVJetFJBc5eBD27OHLDRt4dtiwVPfnAggODmb6Z5/RtFAhKF8edCkAkVzr1KlTlCpVynUz4OyS68JR8eLFU91tOS4uDm9vb9cdn6/mvFfN1YKCghSORHKryEh44gkmOhwMvLLo3nvvZfjw4VSqVImVK1cyaNAg1q1bR+eePVkCNPLygnHjoFcvKysXkZuU3VNiLD9bLbMaN27MokWLUixbuHAh9erVS3O+kYjkQbGx8MQT/Olw0O/KomdtNmZ+9hmVK1fGZrPRtGlTfp8+nTuAC8C9wGGHA/r2TXq+iEg6LA9HZ86cYePGjWzcuBFIOlV/48aNxMTEAElDYsnvDN6vXz/279/Ps88+y44dO5g4cSKRkZE8//zzVpQvIlbYtYvzDgfdgMvAfcAIY7Dt2ZOiWUBsLN8BNYAjQB/AJCbC7t05XbGI5CKWh6O1a9dSp04d6tSpA8Czzz5LnTp1eP311wE4dOiQKygBlC1blrlz57J06VJq167NW2+9xWeffcZ9991nSf0iYoGKFXkf2AuUBCIBm90OFSqkalfAy4tpgC/wM/Cjl1fqdiIiybjVdY5yyqlTpwgODiY+Pl5zjkRyob1791K1UiUuJiTwLfCA3Q5jx6Y9lygyEvr25dXERN4BKhQrxrYDB/D19c3pskXkJuXU97flPUciIpn1zjvvcDEhgTbNmnH/4sUQHZ3+JOtevSA6mhd/+YWQokXZHRfH6NGjc7ReEcld1HOkniORXCU6OpqKFSuSkJDAqlWraNiwYYafO3bsWPr160eJEiXYu3dvmmexioj7Us+RiEga3nvvPRISEmjbtm2mghHAo48+SokSJfjnn3/4+uuvs6lCEcntFI5EJNc4ceIEX375JQCvvvpqpp/v5+fH4MGDAfjggw9wOBxZWZ6I5BEKRyKSa0yePJkLFy5Qu3ZtmjVrdkOv8cQTTxAUFMRff/3F4sWLs7hCEckLFI5EJFdwOByMGjUKgP79+9/wFXKDg4Pp3r07AOPHj8+y+kQk71A4EpFc4bfffmPPnj0EBwfTrVu3m3qtPn36ADBr1iyOHj2aFeWJSB6icCQiucLUqVMB6NatG/nz57+p16pduzb169fn8uXLrjlMIiJOCkci4vbOnTvHzJkzAVxDYjerd+/ewP9Cl4iIk8KRiLi9OXPmcObMGcqWLUvjxo2z5DXvv/9+fHx82LRpEzt27MiS1xSRvEHhSETc3rRp04CkIbUbnYh9tUKFCtG+fXsApk+fniWvKSJ5g8KRiLi148ePM2/ePAAefvjhLH3thx56CEgKRx54swARSYfCkYi4tdmzZ5OQkEDt2rWpUqVKlr723XffTUBAALt372bTpk1Z+toiknspHImIW/vxxx8B6Ny5c5a/doECBWjXrl2K9YiIKByJiNs6d+4cixYtAuCee+7JlnU4X1fhSEScFI5ExG0tWrSICxcuUKZMGWrUqJEt6+jUqRNeXl5s2LCBAwcOZMs6RCR3UTgSEbfl7M255557suwstasVLVqUJk2aAPDTTz9lyzpEJHdROBIRt5SYmMjPP/8MZN+QmpOG1kQkOYUjEXFLq1at4ujRoxQsWJDbbrstW9d19913A7BkyRJOnTqVresSEfencCQibmnBggUAtG/fHh8fn2xd16233krFihVJSEhg8eLF2bouEXF/Ckci4pacZ6k5r2Kd3ZzrcYYyEfFcCkci4nb+/fdfVq9eDUDbtm1zZJ3O6x0tXLgwR9YnIu5L4UhE3M7i777D4XBQpWJFwsLCcmSdLVu2xMfHh71797J76lSIjc2R9YqI+1E4EhH3EhnJwr59AWi3axdERubIagsUKEDTcuUAWPjIIxAenmPrFhH3onAkIu4jNhbTpw/Oga12AH375kwvTmws7f7+G4AFAA5Hzq1bRNyKwpGIuI9du9hjDNGAD9AcIDERdu/OkXW3NwaAxcDlnFy3iLgVhSMRcR8VK7LwypWwmwL5Aex2qFAhR9Zd22ajMHAGWJuT6xYRt6JwJCLuIyyMhbVqAVeG1Ox2GDsWcmJSdlgYXuPHJ/VWAUtttpxbt4i4FYUjEXEbDoeD5fv3A9B61CiIjoZevXKugF69aDFsGABLmzXL2XWLiNtQOBIRt7Flyxb+/fdfChQoQN0+fSzptWlx770ArFi7lsuXL+f4+kXEegpHIuI2li1bBkDTpk3x9va2pIZq1apRuHBhzp07x9q1ay2pQUSspXAkIm5j+fLlADRv3vw6LbOPl5eXa/1Lly61rA4RsY7CkYi4BWOMW4QjgBYtWgAKRyKeSuFIRNzCjh07OHr0KAEBAdSrV8/SWpzhaMWKFZp3JOKBFI5ExC045xs1btwYX19fS2vRvCMRz6ZwJCJuwV2G1EDzjkQ8ncKRiFjOGOPqObr99tstriaJs44VK1ZYXImI5DSFIxGx3O7duzl06BC+vr40bNjQ6nIAaNKkCQBRUVE4HA6LqxGRnKRwJCKW++OPPwCoX78+AQEBFleTpHbt2gQEBPDvv//y119/WV2OiOQghSMRsdzKlSuBpIs/ugsfHx8aNGgA/K8+EfEMCkciYjln+HAOZbkLZ1hz9myJiGdQOBIRS508eZJt27YBSafxuxNnOFLPkYhnUTgSEUv9+eefAJQvX55ixYpZXE1KjRo1AuDvv//m2LFjFlcjIjlF4UhELOWuQ2oAhQoVomrVqoB6j0Q8icKRiFjKncMR/K8uhSMRz6FwJCKWSUxMZNWqVYD7zTdy0qRsEc+jcCQiltm2bRtnzpyhQIECVK9e3epy0uTsOVqzZg2XLl2yuBoRyQkKRyJiGedQVaNGjbDb7RZXk7aKFStSpEgRLl68yPr1660uR0RygMKRiFjG3ecbAdhsNld9GloT8QwKRyJiGWc4ctf5Rk7OcOS87ICI5G0KRyJiibi4OPbs2QP873pC7sp5M1yFIxHPoHAkIpZwnqVWpUoVChYsaG0x1xEREYHNZiMmJobDhw9bXY6IZDOFIxGxxNq1awFcN3d1Z4GBgVSrVg2A1atXW1yNiGQ3hSMRscSaNWsAqF+/vsWVZIyG1kQ8h8KRiOQ4Y0yuC0fOHi6FI5G8T+FIRHJcdHQ0x48fx8fHh1q1alldToY4e47WrFmDw+GwuBoRyU4KRyKS45y9RjVr1sTPz8/iajKmWrVq5MuXj1OnTrFz506ryxGRbKRwJCI5LrcNqQF4e3sTEREBaGhNJK9TOBKRHJcbwxH8b2hNZ6yJ5G0KRyKSoxwOB+vWrQNyXzjSpGwRz6BwJCI5aufOnZw5c4aAgACqVKlidTmZ4uw52rx5M+fPn7e4GhHJLgpHIpKjnENqdevWxdvb2+JqMqdUqVIUL16chIQENmzYYHU5IpJNFI5EJEfl1vlGADabTUNrIh7ALcLRqFGjKFu2LP7+/kRERPD7779fs/20adOoVasW+fLlIzQ0lMcee4zjx4/nULUicjNyczgCXSlbxBNYHo5mzJjB4MGDGTJkCBs2bKBZs2Z06NCBmJiYNNuvWLGCHj160KtXL7Zt28Z3333HmjVr6N27dw5XLiKZdenSJTZu3Ajk3nDk7DnSGWsieZfl4WjkyJH06tWL3r17U6VKFT755BNKlSrF6NGj02y/atUqypQpw8CBAylbtiy33XYbffv2dd3EUkTc17Zt27h48SIFCxakQoUKVpdzQ5yhbt++fRw9etTiakQkO1gaji5dusS6deto165diuXt2rVj5cqVaT6nSZMmxMbGMnfuXIwxHDlyhO+//54777wz3fVcvHiRU6dOpfgRkZy3ZuFCAOrVqIHNZrO4mhsTHBxMpUqVAFg3cSLExlpckYhkNUvD0bFjx0hMTCQkJCTF8pCQEA4fPpzmc5o0acK0adPo2rUrvr6+FC9enIIFC/L555+nu57hw4cTHBzs+ilVqlSWboeIZEBkJGteegmAer//DpGRFhd04+oVLAjA2pdegvDwXL0tIpKa5cNqQKp/QRpj0v1X5fbt2xk4cCCvv/4669atY/78+ezbt49+/fql+/ovv/wy8fHxrp8DBw5kaf0ich2xsfDEE6y58mt9gL59c2evS2ws9a7MN1oD4HDk3m0RkTRZepGRIkWKYLfbU/USxcXFpepNcho+fDhNmzbl//7v/4CkG1fmz5+fZs2a8fbbbxMaGprqOX5+frnm5pYiedKuXZxzONh65df6AImJsHs3hIVZWNgN2LWLesYA4JrpmFu3RUTSZGnPka+vLxERESxatCjF8kWLFtGkSZM0n3Pu3Dm8vFKWbbfbgaQeJxFxQxUrstFmIxEIAcIA7HbIjZOyK1akjs2GF/DPlZ9cuy0ikibLh9WeffZZJkyYwMSJE9mxYwfPPPMMMTExrmGyl19+mR49erja33XXXcycOZPRo0ezd+9e/vjjDwYOHEiDBg0oUaKEVZshItcSFsaarl2BpF4jm90OY8fmzp6WsDDyjx9P1Su/rvPyyr3bIiJpsvza/V27duX48eMMGzaMQ4cOUb16debOnUt4eDgAhw4dSnHNo0cffZTTp0/z3//+l+eee46CBQvSqlUr3n//fas2QUQyYO2VW4XUf/RReOut3B0mevWi3oIFbP3uO9Y8/TR39epldUUikoVsxgPHok6dOkVwcDDx8fEEBQVZXY6IR6hcuTI7d+5k7ty5dOjQwepybtqoUaN46qmn6NChA3PnzrW6HBGPkFPf35YPq4lI3hcfH8/OnTsBqFevnsXVZA3ndqxdu1bzHUXyGIUjEcl269atAyA8PJyiRYtaXE3WqFmzJt7e3hw9ejTd2x2JSO6kcCQi2S6332w2Lf7+/tSoUQNAty8SyWMUjkQk2+XFcAT/2x6FI5G8ReFIRLJdXg1HyecdiUjeoXAkItkqLi6OmJgYbDYbERERVpeTpTQpWyRvUjgSkWzl7FWpVKlSnrt0RvXq1fHz8+PkyZPs2bPH6nJEJIsoHIlItnIOqeWVU/iT8/HxoXbt2oCG1kTyEoUjEclWeXW+kZPmHYnkPQpHIpJtjDEeE46c2ykiuZ/CkYhkmwMHDhAXF4e3t7dr+CmvcYa+9evXk5iYaHE1IpIVFI5EJNs4h5qqV69OQECAxdVkj8qVK5MvXz7OnDnD33//bXU5IpIFFI5EJNvk9SE1ALvdTt26dQENrYnkFQpHIpJtPCEcga6ULZLXKByJSLZwOByusJAXT+NPTmesieQtCkciki12795NfHw8/v7+VK9e3epyspUzHG3YsIGEhASLqxGRm6VwJCLZwjmkVrt2bXx8fCyuJntVqFCBoKAgLly4wLZt26wuR0RuksKRiGQLT5lvBODl5aWhNZE8ROFIRLKFMyR4QjgCzTsSyUsUjkQkyyUkJLB+/XpA4UhEch+FIxHJctu3b+f8+fMEBgZy6623Wl1OjnCGo02bNnHx4kWLqxGRm6FwJCJZzjnfKCIiAi8vz/gzU6ZMGQoXLszly5fZsmWL1eWIyE3wjL9aIpKjPGkytpPNZtPQmkgeoXAkIlnOE8MRaN6RSF6hcCQiWerChQuuYSVPC0fO7dU91kRyN4UjEclSmzdv5vLlyxQpUoTw8HCry8lRzp6jbdu2ce7cOYurEZEbpXAkIlkq+ZCazWazuJqcVbJkSUJDQ0lMTGTDhg1WlyMiN0jhSESylKfON3LS0JpI7qdwJCJZyhkKnENMnqZBgwYArF692uJKRORGKRyJSJY5c+YMO3bsANRzpJ4jkdxL4UhEssy6deswxhAWFkbx4sWtLscSzh6z3bt3c+LECYurEZEboXAkIlnG2VviHFryRIUKFaJChQqArnckklspHIlIlnHOs/HkcAQaWhPJ7RSORCTLOMORp843ctKkbJHcTeFIRLJEXFwc+/fvx2azERERYXU5llLPkUjupnAkIlnCGQQqVapEcHCwxdVYq06dOtjtdg4dOsTBgwetLkdEMknhSESyhCZj/0++fPmoXr06oKE1kdxI4UhEsoTmG6WkoTWR3EvhSERumjFGPUdXce4HhSOR3EfhSERuWnR0NMeOHcPHx4datWpZXY5bSN5z5HA4LK5GRDJD4UhEbppzSK1WrVr4+flZXI17qFatGv7+/sTHx7N7926ryxGRTFA4EpGbtmbxYgAaVK1qcSXuw8fHh7p16wKwevJkiI21tiARyTCFIxG5OZGRrB43DoD6X30FkZEWF+Q+6ufLB8Ca4cMhPFz7RiSXUDgSkRsXG0tCnz6su/JrA2Ogb1/1kgDExlL/t98AWAPgcGjfiOQSCkcicuN27WKHMZwDCgCVABITQXNsYNeupLAIbAAug/aNSC6hcCQiN65iRVbbbADUA+wAdjtcuSu9R6tYkQo2GwWBC8BW0L4RySUUjkTkxoWFseb22wFoAElf/mPHQliYpWW5hbAwbOPH47wk5hqbTftGJJdQOBKRm7L61CkA6r/5JkRHQ69eltbjVnr1ov6AAQCs7tpV+0Ykl1A4EpEbdv78ebZs2QJAg8ceU69IGuq3bg3Amu3bLa5ERDJK4UhEbtjGjRtJSEigWLFilCpVyupy3JLzNiJbt27l7NmzFlcjIhmhcCQiN8x5ZewGDRpguzIxW1IqUaIEJUqUwOFwsGHDBqvLEZEMUDgSkRvmDEfO+4hJ2py9R879JSLuTeFIRG7YqlWrAGjUqJHFlbi3hg0bAv/bXyLi3hSOROSGxMXFsXfvXmw2m+vLX9LWuHFjAKKioiyuREQyQuFIRG6IsxekSpUqBAcHW1yNe6tXrx52u53Y2FhidfsQEbencCQiN8TZC+LsFZH05c+fn5o1awIaWhPJDRSOROSGOMOR5htljHM/aWhNxP0pHIlIpiUkJLBmzRpAPUcZ5dxP6jkScX8KRyKSaVu2bOHcuXMEBQVRpUoVq8vJFZw9R+vWrePSpUsWVyMi16JwJCKZ5uz9aNiwIV5e+jOSERUqVKBw4cJcvHiRjRs3Wl2OiFyD/qqJSKZpMnbm2Ww2zTsSySUUjkQk03TxxxujeUciuYPCkYhkyrFjx9i1axeALv6YSeo5Eskd3CIcjRo1irJly+Lv709ERAS///77NdtfvHiRIUOGEB4ejp+fH+XLl2fixIk5VK2IZ/vzzz8BqFSpEoUKFbK4mtzFeYPe/fv3c+jQIavLEZF0WB6OZsyYweDBgxkyZAgbNmygWbNmdOjQgZiYmHSf06VLF3777TciIyPZuXMn06dPp3LlyjlYtYjn0nyjGxcYGEj16tUBDa2JuDPLw9HIkSPp1asXvXv3pkqVKnzyySeUKlWK0aNHp9l+/vz5LFu2jLlz59KmTRvKlClDgwYNaNKkSQ5XLuKZFI5uju6zJuL+LA1Hly5dYt26dbRr1y7F8nbt2rFy5co0n/PTTz9Rr149PvjgA0qWLMmtt97K888/z/nz59Ndz8WLFzl16lSKHxHJvMTERFavXg1oMvaNcu439RyJuC9vK1d+7NgxEhMTCQkJSbE8JCSEw4cPp/mcvXv3smLFCvz9/Zk1axbHjh2jf//+nDhxIt15R8OHD2fo0KFZXr+Ip9m2bRtnzpyhQIECVKtWzepyciVnz9HatWu5fPkyPj4+FlckIlezfFgNkq7/kZwxJtUyJ4fDgc1mY9q0aTRo0ICOHTsycuRIJk+enG7v0csvv0x8fLzr58CBA1m+DSKewNnb0aBBA+x2u8XV5E633norBQsW5Pz582zevNnqckQkDZaGoyJFimC321P1EsXFxaXqTXIKDQ2lZMmSBAcHu5ZVqVIFYwyxsbFpPsfPz4+goKAUPyKSec7hbs03unFeXl6uobX0pg+IiLUsDUe+vr5ERESwaNGiFMsXLVqU7gTrpk2b8s8//3DmzBnXsr///hsvLy/CwsKytV4RT7dixQog6XMoN865/5z7U0Tci+XDas8++ywTJkxg4sSJ7Nixg2eeeYaYmBj69esHJA2J9ejRw9W+W7duFC5cmMcee4zt27ezfPly/u///o/HH3+cgIAAqzZDJM87dOgQe/bswWaz6ezQm9SsWTMgKRwZYyyuRkSuZumEbICuXbty/Phxhg0bxqFDh6hevTpz584lPDwcSPqDnPyaRwUKFGDRokU8/fTT1KtXj8KFC9OlSxfefvttqzZBxCM4ezlq1qyZYlhbMq9Bgwb4+Pjwzz//sG/fPsqVK2d1SSKSjOXhCKB///70798/zccmT56calnlypVTDcWJSPZyhiNnr4fcuICAAOrVq0dUVBQrVqxQOBJxM5YPq4lI7uAMR7fddpvFleQNzv2oeUci7kfhSESu69SpU2zcuBFQOMoqzv14vXtJikjOUzgSketatWoVDoeDsmXLUrJkSavLyROcZ6z99ddfHD161OJqRCQ5hSMRuS4NqWW9woULU7VqVUDXOxJxNwpHInJdzqEfhaOspaE1EfekcCQi13Tp0iX+/PNPQGeqZbXk1zsSEfehcCQi17R+/XrOnz9P4cKFqVy5stXl5CnOnqN169Zx9uxZi6sRESeFIxG5puTzjdK7IbTcmPDwcMLCwkhISGD16tVWlyMiVygcicg1aTJ29rHZbLrekYgbUjgSkXQ5HA6Fo2ymSdki7kfhSETStWPHDo4fP05AQAB169a1upw8yTkpe+XKlVy+fNniakQEFI5E5BqWzJoFQNN69fD19bW4mrypevXqFC5cmLNnz7J27FiIjbW6JBGPp3AkImmLjGTJa68B0HLFCoiMtLigvMnLy4vm4eEALHn6aQgP174WsZjCkYikFhuLo08fll35tYUx0LevejWyQ2wsLTdsAGApgMOhfS1iMYUjEUlt1y62GsNxID9QHyAxEXbvtrauvGjXrqTwCfwBXALtaxGLKRyJSGoVK7LkyjWNbgN8AOx2qFDByqrypooVqWazURQ4B6wG7WsRiykciUhqYWEsrV0bgJaQ9GU9diyEhVlZVd4UFoZt/HhaXAmjS2027WsRiykciUgqDoeDZdHRALT44guIjoZevSytKU/r1YuWb78NwJImTbSvRSymcCQiqWzatIl///2XwMBAIp54Qr0YOaDFf/4DwMp167h48aLF1Yh4NoUjEUll6dKlQNIFCr29va0txkNUrlyZ4sWLc+HCBf7880+ryxHxaApHIpLKkiVLAGjRooW1hXgQm83m2t/O/S8i1lA4EpEUEhMTWb58OQAtW7a0uBrP4tzfCkci1lI4EpEUNm7cSHx8PEFBQdSpU8fqcjyKMxytWrWKCxcuWFyNiOdSOBKRFJy9Frfffjt2u93iajxLhQoVKFGiBBcvXiQqKsrqckQ8lsKRiKTw66+/AtCqVSuLK/E8NpvNtd+dx0FEcp7CkYi4XLhwgWXLku6o1q5dO4ur8UzO/b5w4UKLKxHxXDcVjuLi4jh8+HBW1SIiFvvjjz+4cOECJUqUoGrVqlaX45HatGkDwLp16zh27JjF1Yh4phsKR5s3b6ZatWqEhoZSsmRJSpYsyauvvsrZs2ezuj4RyUHO3oq2bdtiu3I7C8lZoaGh1KxZE2MMv/32m9XliHikGwpHvXr1IiQkhBUrVrBhwwbefvtt5s2bR7169fj333+zukYRySHJw5FYR0NrItayGWNMZp+UP39+1q1bR+XKlV3LjDE88MAD+Pv7M3Xq1CwtMqudOnWK4OBg1+nKIpI0TB4SEgLA4cOHXf8vOW/RokW0a9eOsLAwYmJi1IsnckVOfX/fUM9RWj1ENpuNd999lx9//DFLChORnOU8O6pWrVoKRha77bbb8PPzIzY2lr/++svqckQ8TobD0Z133skrr7zCt99+S79+/XjmmWc4cuRIijbx8fHccsstWV6kiGS/RYsWATpLzR0EBARw++23AxpaE7FChu8oWaNGDdavX8+kSZNcoahcuXJ06dKF2rVrk5iYyKRJk/j444+zrVgRyR7GGM03cjPt2rVj0aJFLFy4kEGDBlldjohHuaE5R0eOHGHDhg1s3LjR9bN7927sdjuVKlVi8+bN2VFrltGcI5GUtm/fTrVq1fDz8+Pff/8lICDA6pI83ubNm6lVqxb58uXjxIkT+Pn5WV2SiOVy6vs7wz1HyYWEhHDHHXdwxx13uJadP3+eTZs2sWnTpiwrTkRyhrPX6Pbbb1cwchM1atQgJCSEI0eOsHLlSt0EWCQHZdkVsgMCAmjUqBF9+/bNqpcUkRwyb948QPON3InNZtMp/SIW0e1DRDzc2bNnWbp0KZB04oW4D+f8rwULFlhciYhnUTgS8XCLFy/m0qVLlClTJsW1y8R67du3x2azsWHDBv755x+ryxHxGApHIh7ul19+AaBjx4662KCbKVasGPXr1wdg7ty5Flcj4jkUjkQ8mDHG9aWrITX31KlTJ+B/IVZEsp/CkYgH27ZtGwcOHMDf358WLVpYXY6kwRlaFy1axMWLFy2uRsQzKByJeDBnr1HLli3Jly+fxdVIWurUqUOJEiU4e/Ysy5Yts7ocEY+gcCTiwTSk5v5sNhsdO3YE4Oeff7a4GhHPoHAk4qFOnjzJihUrAOjQoYPF1ci1OOcd/fzzz9zATQ1EJJMUjkQ81KJFi0hMTKRy5cqUK1fO6nLkGlq3bo2vry/79u3jr7/+srockTxP4UjEQ82ZMwfANWQj7qtAgQKu24forDWR7KdwJOKBEhISXPNX7rnnHourkYxwzgvTvCOR7KdwJOKBfv/9d/7991+KFClCkyZNrC5HMsAZjlasWMHJkyetLUYkj1M4EvFAP06bBkCnli3x9va2uBrJiHLlylGlShUSExOZN2IExMZaXZJInqVwJOJhzIQJzI6MBOCe77+HK/8v7u/esmUBmPXOOxAermMnkk1sxgPPCz116hTBwcHEx8cTFBRkdTkiOSc2lk2lS1PbGAKAY0A+ux2ioyEszOLi5JpiY1lTujQNjCE/cBQI0LETD5NT39/qORLxJLt28eOVfw+1BfIBJCbC7t1WViUZsWsX9YwhDDgL/Ao6diLZROFIxJNUrMjsK/97r3OZ3Q4VKlhSjmRCxYrYvLzofOXXmaBjJ5JNFI5EPEiMw8EGkj74nSDpy3XsWA3L5AZhYTBuHP/xSvqz/ROQMGqUjp1INlA4EvEgP/74IwBN6ten6JIlSfNVevWytijJuF69uG3PHooEB3MCWK5eI5FsoXAk4kG+//57AP7z4IPQooV6HXIh7zJluOf++wGYNWuWxdWI5E0KRyIe4tChQ/z+++8A3H/ly1Vyp//85z9AUjhyOBwWVyOS9ygciXiIH374AWMMjRo1onTp0laXIzehdevWBAYGcvDgQdauXWt1OSJ5jsKRiIf47rvvAHjggQcsrkRulr+/v+uGwTNnzrS4GpG8R+FIxANoSC3v6dw56aT+77//Hg+8lq9ItlI4EvEAM2fOxBhDw4YNNaSWR9x5553ky5ePPXv2sG7dOqvLEclTFI5EPICG1PKe/Pnzc9dddwHwzTffWFyNSN6icCSSxx0+fJjly5cDGlLLax588EEAZsyYobPWRLKQW4SjUaNGUbZsWfz9/YmIiHDNjbieP/74A29vb2rXrp29BYrkYs6z1Bo2bEh4eLjV5UgWuuOOOwgKCiI2NpaoqCiryxHJMywPRzNmzGDw4MEMGTKEDRs20KxZMzp06EBMTMw1nxcfH0+PHj1o3bp1DlUqkjtpSC3v8vf359577wU0tCaSlWzG4tMcGjZsSN26dRk9erRrWZUqVbj33nsZPnx4us978MEHqVixIna7ndmzZ7Nx48YMr/PUqVMEBwcTHx9PUFDQzZQv4tYOHjxIqVKlMMYQHR2tnqM8aN68eXTs2JFixYpx8OBBvL29rS5JJNvk1Pe3pT1Hly5dYt26dbRr1y7F8nbt2rFy5cp0nzdp0iT27NnDG2+8kaH1XLx4kVOnTqX4EfEE06dPxxjDbbfdpmCUR7Vp04ZChQoRFxfHsmXLrC5HJE+wNBwdO3aMxMREQkJCUiwPCQnh8OHDaT5n165dvPTSS0ybNi3D/0IaPnw4wcHBrp9SpUrddO0iucG0adMA6N69u8WVSHbx8fFxTbTX0JpI1rB8zhGAzWZL8bsxJtUygMTERLp168bQoUO59dZbM/z6L7/8MvHx8a6fAwcO3HTNIu5u27ZtbNy4ER8fH803yuOcZ6398MMPXLp0yeJqRHI/SwenixQpgt1uT9VLFBcXl6o3CeD06dOsXbuWDRs2MGDAAAAcDgfGGLy9vVm4cCGtWrVK9Tw/Pz/8/PyyZyNE3JSz16hjx44UKlTI4mokO91+++0UL16cw4cPM3/+fO6++26rSxLJ1SztOfL19SUiIoJFixalWL5o0SKaNGmSqn1QUBBbtmxh48aNrp9+/fpRqVIlNm7cSMOGDXOqdBG35nA4XOHo4YcftrgayW52u52HHnoIgK+++sriakRyP8tPa3j22Wd55JFHqFevHo0bN2bcuHHExMTQr18/IGlI7ODBg0yZMgUvLy+qV6+e4vnFihXD398/1XIRT7ZixQpiYmIICgqiU6dOVpcjOaBHjx58/PHH/PTTT5w4cUK9hSI3wfI5R127duWTTz5h2LBh1K5dm+XLlzN37lzXmTWHDh267jWPRCQlZ6/R/fffT0BAgMXVSE6oXbs2NWvW5NKlS3z77bdWlyOSq1l+nSMr6DpHkpddvHiR4sWLc/LkSX777bc05+FJ3vTRRx/x/PPP07hx42teDkUkt/KI6xyJSNabO3cuJ0+epGTJkjRv3tzqciQHPfzww3h5eREVFcXff/9tdTkiuZbCkUgeM2nSJAC6deuG3W63uBrJScWLF6d9+/aAJmaL3AyFI5E85NChQ8ydOxeAxx9/3OJqxAo9e/YEYMqUKTgcDourEcmdFI5E8pCvvvqKxMREmjRpQuXKla0uRyxw9913ExQURExMDMuXL7e6HJFcSeFIJI8wxjBx3DgAHv/PfyyuRqwSEBBAly5dAPjyvfcgNtbiikRyH4UjkTxi5csvs3PPHvIDXV54ASIjrS5JLPJo4cIAfLtgAadKl9Z7QSSTFI5E8oLYWCa+/z4AXYBAY6BvX/UaeKLYWJp88AFVgHPA13oviGSawpFIHnBm82ZmXPl/1zTsxETYvduiisQyu3ZhM4Y+V34dB3oviGSSwpFIHvDdjh2cBW4FmjoX2u1QoYJ1RYk1KlYELy8eAXyBDcA6Ly+9F0QyQeFIJA+InDULgMdtNmyQFIzGjoWwMEvrEguEhcG4cRSx27nvyqLxzZrpvSCSCbp9iG4fIrncli1bqFmzJna7nQN//kno6dNJvQT6MvRssbEs+e47Wj37LAUKFODQoUMUKFDA6qpEbopuHyIiGTJmzBgA7r33XkIjIqBFCwUjgbAwWgweTIUKFThz5gwzZsy4/nNEBFA4EsnVTp8+zZQpUwDo37+/xdWIu7HZbPTu3RuA8ePHW1yNSO6hcCSSi02bNo0zZ85QqVIlWrZsaXU54oYeffRRvL29+fPPP9m4caPV5YjkCgpHIrmUMYbRo0cD8OSTT2Kz2SyuSNxRSEgInTt3BuCLL76wuBqR3EHhSCSXWrlyJZs3byYgIMB1s1GRtAwYMABI6mk8ceKExdWIuD+FI5Fcytlr9NBDD1GwYEFrixG3dtttt1GrVi3Onz/PxIkTrS5HxO0pHInkQkePHuW7774DNBFbrs9ms/H0008DSUNriYmJFlck4t4UjkRyofHjx3Pp0iXq169PRESE1eVILvDQQw9xyy23EB0dzdy5c60uR8StKRyJ5DKXLl3iv//9LwADBw60uBrJLfLly+c6rf/zzz+3uBoR96ZwJJLLfPvttxw6dIjQ0FC6dOlidTmSi/Tv3x+bzcaiRYv466+/rC5HxG0pHInkIsYYPv74YyDpDCRfX1+LK5LcpEyZMtx1112Aeo9ErkXhSCQXWb58OevXrycgIIC+fftaXY7kQoMGDQJg8uTJHD9+3OJqRNyTwpFILuLsNerRoweFCxe2uBrJjVq2bEmdOnU4d+6c63IQIpKSwpFILrF7925++uknAAYPHmxtMZJr2Ww2nn/+eSBpaO3ChQsWVyTifhSORHKJzz77DGMMHTp0oHLlylaXI7nYAw88QOnSpYmLi3PduFhE/kfhSCQXOHbsGJGRkQA888wzFlcjuZ2Pj4/rffTRRx/hcDgsrkjEvSgcibi72Fg+e/ZZzp07R506dWjTpo3VFUke0KtXL4KDg/n777+Z8+67EBtrdUkibkPhSMSdRUZyqnRpPv/qKwBeadgQm81mcVGSFwQGBvJkkyYAfPjaaxAeDld6J0U8nc0YY6wuIqedOnWK4OBg4uPjCQoKsrockbTFxkJ4OB84HLwIVAK2eXlh378fwsKsrk5yu9hYDpUuTbgxXAaWA83sdoiO1vtL3FZOfX+r50jEXe3axXmHg5FXfn0JsDscsHu3lVVJXrFrF6HG8NiVX98CSEzU+0sEhSMR91WxIpNsNo4ApYGHAex2qFDB2rokb6hYEby8eBnwBhYBUV5een+JoHAk4rYuh4TwQaFCAPwf4GO3w9ixGvKQrBEWBuPGUcZup+eVRW9Vrar3lwgKRyJua+rUqew/fpxiRYrQa/78pLkgvXpZXZbkJb16QXQ0L0+dit1uZ97WraxevdrqqkQsp3Ak4oYuXbrEsGHDAHj+hRcIaN9e/6KX7BEWRvmHH6Z79+4AvPXWWxYXJGI9hSMRNzRp0iSio6MJCQnhqaeesroc8QCvvPIKXl5e/Pzzz6xfv97qckQspXAk4mYuXLjg+tf7kCFDyJcvn8UViSe49dZbeeihhwB44403LK5GxFoKRyJuZty4cRw8eJCwsDD69OljdTniQV5//XXsdjs///wzK1assLocEcsoHIm4kXPnzvHuu+8C8Nprr+Hv729xReJJbr31Vnr37g3Aiy++iAdeI1gEUDgScSuffPIJR44coWzZsjz22GPXf4JIFnv99dcJCAhg5cqVzJkzx+pyRCyhcCTiJuLi4njvvfcAePvtt/Hx8bG4IvFEJUqUYPDgwQC8/PLLJCYmWluQiAUUjkTcxNChQzl9+jQRERE8+OCDVpcjHuyFF17glltuYfv27UyZMsXqckRynMKRiBvYuXMnY8eOBWDEiBF4eemjKdYpWLAgr7zyCpB05tr58+ctrkgkZ+kvsIgbePHFF0lMTOSuu+6iRYsWVpcjwoABAyhVqhQHDhxgxIgRVpcjkqMUjkQstnTpUn788Ufsdjvvv/++1eWIAODv788HH3wAwPDhwzlw4IDFFYnkHIUjEQtdvnyZAQMGANC3b1+qVKlicUUi/9O1a1eaNWvG+fPneeGFF6wuRyTHKByJWCU2lv8OGsS2bdsoXLiw7mklbsdms/Hpp59is9n45ptv+P3TTyE21uqyRLKdwpGIFSIjOVS6NG+MHg3Ae3feSaFChSwuSiS1OnXq0KdZMwAGDh5MYunSEBlpcVUi2ctmPPASqKdOnSI4OJj4+HiCgoKsLkc8TWwshIfziMPBVKABEOXlhdf+/RAWZnV1IinFxnK0dGluNYaTwCfAILsdoqP1fpUcl1Pf3+o5Eslpu3ax9EowsgFfAF4OB+zebXFhImnYtYuixuA8VWAIEJOYqPer5GkKRyI57FxYGM7byfYF6gHY7VChgnVFiaSnYkXw8qI3cBtwFugPmPLlra1LJBspHInksDfGjWM3UBJ4D5KC0dixGqIQ9xQWBuPG4WW3Mw7wAX4Bvl+1yuLCRLKP5hxpzpHkoDVr1tCoUSMcDgdzJk2iU5kyST1GCkbi7mJjYfdu3vjxR4Z98gkhISGuMy1FckpOfX8rHCkcSQ65dOkS9erVY8uWLXTr1o1p06ZZXZJIpl24cIE6derw119/0bVrV7755hurSxIPognZInnMm2++yZYtWyhSpAiffPKJ1eWI3BB/f3+mTJmC3W5nxowZCkeSJykcieSA5cuX89577wEwZswYihYtanFFIjeufv36vPrqqwD079+ff/75x+KKRLKWwpFINjt58iSPPPIIxhgee+wx7rvvPqtLErlpQ4YMISIign///ZdevXrhgTM0JA9TOBLJZk899RQxMTGUL1+eTz/91OpyRLKEj48PX331Ff7+/syfP5+RI0daXZJIllE4EslGkydP5uuvv8ZutzN16lQCAwOtLkkky1SpUoWPP/4YgJdeeolVOr1f8giFI5FssmnTJp588kkgaTJ2o0aNLK5IJOv17duXLl26kJCQQNeuXTlx4oTVJYncNIUjkawWG0v8nDncf++9XLhwgQ4dOvDKK69YXZVItrDZbIwfP57y5csTExPDY489hiMmBpYsSbo2kkgupHAkkpUiIzGlS/P43XezOzqa0oUK8dVXX+HlpY+a5F1BQUF8++23+Pr68tNPP/FWmTLQqhWEh0NkpNXliWSa/mKLZJXYWHjiCd42hpkk3Wbhu5MnKXz+vNWViWS7unXrMubddwF488pnAIcD+vZVD5LkOm4RjkaNGkXZsmXx9/cnIiKC33//Pd22M2fOpG3bthQtWpSgoCAaN27MggULcrBakXTs2sV3DgevX/n1C6CBw6G7l4vHeKxuXQZe+f8ewBaAxER9BiTXsTwczZgxg8GDBzNkyBA2bNhAs2bN6NChAzExMWm2X758OW3btmXu3LmsW7eOli1bctddd7Fhw4YcrlwkpbXnztHzyv8/A/SBpJvKVqhgXVEiOaliRT6y2WgNnAXuAY55eekzILmO5fdWa9iwIXXr1mX06NGuZVWqVOHee+9l+PDhGXqNatWq0bVrV15//fXrN0b3VpOsd/DgQRo0aMA///xDR+AnwG63w9ix0KuX1eWJ5JzISI4/8QQNHA72Ak3Kl+fXLVsICAiwujLJAzzi3mqXLl1i3bp1tGvXLsXydu3asXLlygy9hsPh4PTp0xQqVCjdNhcvXuTUqVMpfkSySnx8PHfeeSf//PMP1apVY/r27diXLIHoaAUj8Ty9elF4/37mTJpEweBgVu7ZQ7du3UhMTLS6MpEMszQcHTt2jMTEREJCQlIsDwkJ4fDhwxl6jY8++oizZ8/SpUuXdNsMHz6c4OBg10+pUqVuqm4RpwsXLnDPPfewadMmQkJCmDNnDkFVqkCLFhAWZnV5ItYIC6Pqo4/y05w5+Pn5MXv2bAYOHKhbjEiuYfmcI0i6TkZyxphUy9Iyffp03nzzTWbMmEGxYsXSbffyyy8THx/v+jlw4MBN1yySmJhIt27dWLZsGUFBQcyfP5+yZctaXZaI22jWrBlTp07FZrMxatQo182XRdydpeGoSJEi2O32VL1EcXFxqXqTrjZjxgx69erFt99+S5s2ba7Z1s/Pj6CgoBQ/IjfDGMOTTz7JrFmz8PPz48cff6R27dpWlyXidu6//34++eQTAF555RW++OILawsSyQBLw5Gvry8REREsWrQoxfJFixbRpEmTdJ83ffp0Hn30Ub7++mvuvPPO7C5TJAVjDM888wzjx4/Hy8uLr7/+mhYtWlhdlojbGjhwIK+++ioAAwYMIFIXhhQ35211Ac8++yyPPPII9erVo3HjxowbN46YmBj69esHJA2JHTx4kClTpgBJwahHjx58+umnNGrUyNXrFBAQQHBwsGXbIZ7BGMMLL7zAp59+CsD48ePp3LmzxVWJuL9hw4Zx7tw5Ro4cSZ8+fQgICKBbt25WlyWSJsvDUdeuXTl+/DjDhg3j0KFDVK9enblz5xIeHg7AoUOHUlzzaOzYsSQkJPDUU0/x1FNPuZb37NmTyZMn53T54kHMgQMMeeklRnz9NQBjxozh8ccft7gqkdzBZrMxYsQIzp8/z+jRo+nRowd+Z85wX8WKULGiTmAQt2L5dY6soOscSWaZCRN4s08fhl35/b/duvHUtGmW1iSSGzkcDnr37s2kSZPwBqYBXby8YNw4XfpCriunvr8VjhSO5DrMgQO8XLo071/5/RNgkN2edB0j/WtXJNMS9+/nsTJl+Iqkia+TgB76TEkGeMRFIEXcncPhYMDTT7uC0UhgEOh+USI3wb53L5OB3oADeBQYp8+UuBGFI5F0JCQk8NhjjzHqxx+xAeNIumcaoHumidyMihXx8vJiLDAAMEBf4PNr3HRcJCcpHImk4eLFi3Tt2pUpU6Zgt9uZ1qcPfez2pAed90xT97/IjQkLg3Hj8LLb+Qz4vysX/R34+uu8/fbbupK2WE5zjjTnSK5y5swZ7r//fhYsWICvry/ffvst99xzD8TGJnX7V6igYCSSFa58pkz58rw5YQLDhiWd8vDUU0/x6aefJt28WSQZTcjORgpHkp64uDjuvPNO1q5dS758+Zg9ezZt27a1uiwRj/D5558zaNAgjDE88MADfPXVV/j5+VldlrgRTcgWyWG7d++mSZMmrF27lsKFC/Pbb78pGInkoKeffppvvvkGHx8fvvvuOzp27MipU6esLks8kMKRSGwsq0eNonHDhuzZs4eyZcuycuVKGjVqZHVlIh6nS5cuzJs3j8DAQBYvXkzz5s05tG4dLFmSNAwnkgMUjsSzRUbyc+nStHzqKY6dOEFEeDhRUVHceuutVlcm4rFat27N0qVLKVasGBs3bqRBvXpsatUKwsNB92WTHKBwJB7LHDjAx336cI8xnAM6AEsPHCDk8mWrSxPxeHXr1iVq5kwqA7FAU2COwwF9+6oHSbKdwpF4pEuXLvFEv348awwOoBfwI1DA4dCF6ETcRLlLl4gCWgNngXuAjxMTMbt2WVuY5HkKR+Jxjh07Rtu2bZkwdy5eJF31ejzgA7q4o4g7qViRgl5ezAOeIOlikc8CT06cyGX18Eo2UjgSj7JlyxYaNGjA8uXLCQwM5OdBg3jGbscGurijiLu5crFIH7udMcBHNhs2m42xU6fSqlUrDh06ZHWFkkfpOke6zpHHmDp1Kk888QTnz5+nXLlyzJkzh6pVq+rijiLuLtln9OeNG3n44Yc5deoUxYsX5/vvv6dp06ZWVyg5RBeBzEYKRx4iNhZ27eJi6dI889FHjB49GoB27doxbdo0ihQpYnGBInIjdu3aRefOndm6dSve3t589NFHPP3009gOHoRdu6BiRf1DJ4/SRSBFbkZkJISHE92qFc0qVHAFo9dff525c+cqGInkYhUrVmTVqlU8+OCDJCQkMGjQIB5q2JCTpUuDTvmXLKCeI/Uc5T2xsZjSpZlmDE8Bp4BbgKlffknHHj0sLk5Esooxhs8++4znn3+ehIQEwoGpwG2QNIcwOlo9SHmMeo5EbtC/69fzkDE8QlIwagKsBzqWLm1tYSKSpWw2G4MGDWLFp59SDtgPNAdeBxISE3VZDrlhCkeSpyxYsICa/foxA7ADbwHLgDI6RV8kz2p4991stNnoCThI+tw3BjZdumRtYZJrKRxJnnD06FG6d+/OHXfcQeyhQ1QoVoyVXl68CnjrFH2RvC0sjMDx45lstzMdCAbWAvXuvJMhQ4Zw4cIFiwuU3EbhSHI1h8PBl19+SZUqVZg2bRpeXl4MHjyYDXv20GD//qSbVUZHQ69eVpcqItmpVy+IjubBJUvYsXYtnTt3JiEhgXfffZdatWqxePFiqyuUXEQTsjUhO/e5cor+in//5Znhw1m7di0ANWrUYMKECTRo0MDiAkXEHcycOZMBAwa4LhZ5zz338OGHH1IxIECn/OdSus5RNlI4ysUiI9nXpw8vGsN3VxYFBgby6quv8swzz+Dj42NpeSLiXk6ePMmrr77KmDFjSExMxMduZ0BiIq8Bt3h5wbhx6lnORRSOspHCUe4UHRXFu02aMAlIIGlMuLfNxrB16wipU8fi6kTEnW3fvp3nBwxg3pIlAAQBg4HBXl7csn+/epByCZ3KL3JFdHQ0ffv2pWKzZownKRi1BzYCY40hJD7e0vpExP1VrVqVua+9xnygJkmX+RgGlHE4eGPIEE6cOGFtgeJWFI7ELRljWLZsGZ07d6Z8+fKMGzeOhMRE2gJ/APOBGpB0oTedoi8iGVGxIu29vNgAfA9U50pImjKFUqVKMXDgQPbu3WttjeIWFI7EfcTGcn7+fCaOGEGdOnVo0aIFs2bNwuFw0K5dO1asWMHCCRNoYrcntdcp+iKSGWFhMG4cXnY79wGbvLz4rl8/atasyblz5/j888+pWLEi999/P1FRUUknfyxZkvRf8Siac6Q5R27h4IgRjPq//2MscPzKsnz58tGjRw+efvppqlat+r/Gye7QrWAkIpl21d8QYwy//fYbH330EfPnz3c1awA8DTxgs+E3frwmbrsBTcjORgpH7sEYw6pVq/h0+HB+mDOHhCvLw4EBNhu9Nm/mlurVrSxRRDzM1q1bGfnWW0z79luc19cuBjxhs9Hvzz8pWb++leV5PE3Iljzr4sWLTJ06lQYNGtCkSRNmXAlGzYGZwG7geWO45dgxawsVEY9TvXp1JvbrRwxJtyEpAcQBbxtDeKNGdOnShd9//x0P7FfwKOo5Us9R9rty0cYjBQsy5qefGD16NEeOHAHAz8+Ph++9l6e//Zbayd+KuqO2iFglNhbCw8Hh4DIwG/gvsDxZk1q1ajFgwAC6detGvhMndFHJHKKeI8kbIiNZV7o0PVq1onTdurz55pscOXKEEiVK8M4773DgwAEiv/mG2uPHJwUi0ERrEbHWlYnb2O34AA/Y7SybMIGNGzfSp08fAgIC2LRpE3369CGsaFH+r1Qp9rZqlRSoIiOtrl6ygHqO1HOULS5evMh3Y8cyatAgopItbwwM/O9/ue+JJ1JfzVoTrUXEnaTzN+nEiRNMmjSJLz77jH0xMQDYgE7AAC8v2uzbh1fp0tbUnMdpQnY2UjjKPtHR0YwdO5YJEyZw7MqcIR+gCzAIqA9Jp8a2aGFZjSIiWSHx11+Z17YtnwMLky2vVKoUT/3f/9GjRw+Cg4OtKi9PUjjKRgpHWeDKPCIqViQxNJSFCxcyevRofv75Z9dExbDQUPoePkxvYyjufJ7mEolIXpFsbtJO4AtgMnD6ysMBAQE88MAD9OnTh6ZNm2I7eFBzk26S5hyJ+4qMhPBwtrdqxYulSlG6SBE6duzInDlzMMbQpk0bZs2axb6YGF4dP57imkskInlRsrlJlYDP7HYO/ve/fPHFF1SrVo3z588zZcoUmjVrRtUSJfiodGniNDcpV1DPkXqOMmXvH38wu1kzvjGGNcmWFypYkEd69uTJJ5+kUqVKKZ+kuUQikpel8TfOGMOff/7JhAkT+Gb6dM6eOweAHWgJdLHZ6LxpE4Vr1LCu7lxIw2rZSOHoGpINlxEWxoULF1izZg2//vors2fPZvPmza6m3kBH4FHgzoUL8W3b1qKiRUTc16mff2bGXXcxAVidbLndy4vmLVpwxx130L59e2rUqIHNZkt68Kq/xZJE4SgbKRylIzKSo3368Icx/AH8Ub48a2NiuHz5squJ3W6neWIi9wJdSbpyrOYRiYhcQ7K5SXuA74BvgQ1XNQsNDaVVq1Y0BZp8/TXVjcHu5ZU0dKdblwAKR9nKI8NRGv8KMcawc+dO/vjjD/5YuJA/vv2Wv9N4akhICM2aNaNTp0506tSJwrNnQ9++kJj4v3lE+uCKiKQvMjLV383dzZszd+5cFixYwNKlSzl3ZejNKRBoBDS12Wj81Vc07NQp9dlvHtbDpHCUjTwuHEVGwhNPYBwOdtpsLOzald/OnWPlypWu0+2TqwrcBjQFmk6dSrlu3f7X1eukeUQiIplzjb+bFy9eZMWKFfw+ZQorp0xhFf87683JZrNRvXp1mjRpkvQTG0v5V1/FZgx4SA+TwlE28qRwdGzzZn6rXZuFxrAQiL3qcT8/Pxo0aEDTmjW5bdQoGhtDIeeDGi4TEclZV4bgEh0OtgJ/AFE2GytLlWLvlQtOJleUpPtS3gG09/IibP/+PP03O6e+v72z7ZXzoP3792OMoUyZMlaX8j9XdaleunSJlStXsnDhQhYtWsS6detS3CDRj6ReobZPPMHtjz5K3bp18fPzS3qwTp3Uw2V5+EMmIuJ2rlwewN63L7USE6llt9P/ytSFw4cPExUVxcqVK1k5bx7rtm3jKPD9lR8cDqo1a0b7zp254447aNasGf7+/kmv62bDb8YY/vrrLwoXLkyxYsWsLicV9RxlIHkmJibSu3dvJk+eDEDnzp2ZNGmS9b1OkZGYPn3YYQy/2mwsrFGDpXv2cPbs2RTNagBtgXZAMyDftXqENFwmImK96/0tjo3lYunSrDOGRcAC4E/AkaxJQEAALVq0oH1wMHfMmMGtxmBzg+G3vXv30qVLF9atW4fdbuf999/nueeey9BzNayWjTK7cz/99FMGDx4MJI35GmOoU6cOy5YtIzAwMHuKTCflnzp1iq1bt7Jh8WKWvfYaS4GjVz21WLFitG3blnbt2tGmTRtKzJunCdQiInnNVZO8T3z0Eb+VKMH8+fNZsGABBw8eTNE8nKR/KDe02ag3bx7VWrVK+x6X2djDtHfvXho3bkxcXBxeXl44HElxbtmyZdx+++3Xfb7CUTbKzM69ePEipUuXJi4ujlGjRlGvXj3uvPNOjh49Svv27ZkzZ07qN9e1pHPW2NGjRzl48CD//PMPcd9/z9Evv+SoMRwDjtasyVF/fw4dOsSBAwdSvWQASZOn2wHtxo+nxuOP4+V11cXP1SMkIpL3pPO33RjDtm3bmP/f/7Jg7FiWA5eueqq3tzelSpWibNmyhIeHE3rkCKHz5hFqDKE2G6Hvvkvo4MH/G5q7er2ZDFEnTpygSZMm7Ny5k5o1a/LLL78wdOhQJkyYQMuWLVm8ePF1X0PhKBtlZufOnDmT++67j5IlS7Jv3z58fHxYs2YNLVq04Ny5czz22GNERkamPpsrLVfOGnM4HKy32fi5Uyd+P3uW9evXc/LkyQzXX7JkSWpUrEjTZctoYQz1SZpLpAnUIiKSwpUJ3mcdDpYCy4F1wNqgIOJPncrQSxQsWJDQ0FDKly9P69at6XD2LJVefx0cjgyfJXfhwgXat2/P8uXLKVWqFKtWraJEiRLExMRQtmxZHA4H+/btu+6c3hw7ocp4oPj4eAOY+Pj467bt3r27Acxzzz2XYvmcOXOMl5eXAcybb75pzIEDxixenPTftBw4YP612cxIMOXBkMZPSEiIqVOhgrkDzCNgngXzLpjxYGa/9Zb5448/zLFjx/73mhMmGGO3GwNJ/50w4WZ2i4iI5EVpfFckJiaamJgYs3z5cvPll1+atx9/3DwFpjOYxmDKgPFL57sKMI3AjANzyvma1/juS1i0yHTu0MEAJigoyGzZsiVFkxYtWhjAjBw58rqbkpnv75uhcHQdpUqUMID5dfr0VI+NGTPG9UYZZrMZBxjj5ZUqpGzdutX0u+suky/ZG6sAmPvAjHvuObN+/Xpz4cKFpMYHDiS9Bvzv5zpvPLNkSfqPi4iIXO+7Io3vHoeXlzmxZYvZtm2b+fXXX82IESNM24gI453suywQzAAwO778MvVrTphgzttspuuVtr7e3mbJkiWpmo0YMcIApmPDhtf9LlM4ykYZ3bmxH35oAOMF5rTNlmbPzNDnnnO9SVqCmQvmoJeX2bxwoRk1apRp3LhxirRdHcxYMGeuFXrUIyQiIjktI989Bw6Ywzab+RDMrVf1JrVu3dpMnTrV/P3332b/qlVmms1mKl95zAfM915eaX7nrXvtNVfQSkjnu9Ypp8KRZ8852r6doCpV0m4UG8v3pUvzgDHU5so9cNKa07NkCeNatWIwcD6d9dntdu655x6eLleO5iNHYnM4rn/WmCZQi4hITsvId8+Vs+QciYn85uXFFzVrMmfzZteZZ1crDkwDWgEsWQItWqRYX2Lp0gQaw3lgJ3DrNebPntqxg+CqVbN9zpHX9ZvkXSurVk06yGnZtYuoK7mxsXNZYmLSmya5ihV5wsuLrUB/kk6VtAGBBQrQvHlzPvjgA2JjY/nhhx9o8eGH2PbvT3pzREdfewJbWFjSG0jBSEREckpGvnt69YLoaLyWLKHt/v3M3rCBvXv38sorr1C/fn38/Pyw2+1UAd4AtnElGNntSaEruV27sBtD9Su/boa0v2sBIiP5vmrVm97EjPDonqN3gZfTS6ixsbQsVYqlwGSgJ6R/NlgaNxTUdYRERMSjZeS78crZdL0dDiKBV4G30vquvdKuq8PBt6Ceo+yUAOkn1LAwdl65+3EVuPbtNK6k6Az1CImIiHiCjHw3XrldSq0rl8PZDGl/1+7aBQ5H0vd2DvDoe6tdhrS7+YDTp09zKD4egEpz5kDt2tfuZgwL0xCYiIhIchn5buzVi5pBQdClC5tLlUo7RFWsCF5eXE5nXlNWU89ROr1Bf//9NwAhISEEd+qk4CMiIpJNarRuDUD0gQOp7g8KuHqYcqrnyKPDUWK/fukOgTnD0a233pqTJYmIiHicQoUKEXxlKkt0dHTajXr1IiED91/LCh4dji4HBKT72M6dOwGoVKlSTpUjIiLiscqWLQtcIxwBCXZ7jtTi0eEoISH9Djr1HImIiOQcZzjat29fum2u9b2dlRSO0uFMruXKlcuhakRERDyXwpGbuNZOjo2NBaBUqVI5VY6IiIjHKlOmDHDtcHT58uUcqUXhKA2JiYn8888/AITpLDUREZFsl5E5R4mJiTlSi1uEo1GjRlG2bFn8/f2JiIjg999/v2b7ZcuWERERgb+/P+XKlWPMmDE3tN70wtHhw4dJTEzE29ubkJCQG3ptERERyTgNqyUzY8YMBg8ezJAhQ9iwYQPNmjWjQ4cOxMTEpNl+3759dOzYkWbNmrFhwwZeeeUVBg4cyA8//JDpdafXPXfgwAEASpQogT2HZsaLiIh4stKlSwNw8uRJzpw5k2YbjxlWGzlyJL169aJ3795UqVKFTz75hFKlSjF69Og0248ZM4bSpUvzySefUKVKFXr37s3jjz/OiBEjMr3u9LrnNN9IREQkZwUGBlKgQAEADh06lGYbj+g5unTpEuvWraNdu3Yplrdr146VK1em+ZyoqKhU7du3b8/atWsznSjT28nOniPNNxIREck5oaGhAK55v1fLqTlHlt5b7dixYyQmJqaa1xMSEsLhw4fTfM7hw4fTbJ+QkMCxY8dcOza5ixcvcvHiRdfv8VfumXbu3DlOnTqVqv2ePXsAKFasWJqPi4iISNYrVqwYu3btYs+ePdSpUyfV45cuXQLAGJOtdbjFjWdtV+7G62SMSbXseu3TWu40fPhwhg4dmmr5ggULXJcrT8vnn3/O559/nu7jIiIikvV69epFr3Ru7wVw/Pjxa35/3yxLw1GRIkWw2+2peoni4uLSPUusePHiabb39vamcOHCaT7n5Zdf5tlnn3X9fvLkScLDw4mJicnWnetuTp06RalSpThw4ABBQUFWl5NjtN3abk+g7dZ2e4L4+HhKly5NoUKFsnU9loYjX19fIiIiWLRoEf/5z39cyxctWsQ999yT5nMaN27MnDlzUixbuHAh9erVw8fHJ83n+Pn54efnl2p5cHCwR72pnIKCgrTdHkTb7Vm03Z7FU7fbyyt7p0xbfrbas88+y4QJE5g4cSI7duzgmWeeISYmhn79+gFJvT49evRwte/Xrx/79+/n2WefZceOHUycOJHIyEief/55qzZBRERE8hDL5xx17dqV48ePM2zYMA4dOkT16tWZO3cu4eHhQNLpfMmveVS2bFnmzp3LM888wxdffEGJEiX47LPPuO+++6zaBBEREclDLA9HAP3796d///5pPjZ58uRUy5o3b8769etveH1+fn688cYbaQ615WXabm23J9B2a7s9gbY7e7fbZrL7fDgRERGRXMTyOUciIiIi7kThSERERCQZhSMRERGRZBSORERERJLJs+HonXfeoUmTJuTLl4+CBQtm6DnGGN58801KlChBQEAALVq0YNu2bSnaXLx4kaeffpoiRYqQP39+7r77bmJjY7NhC27Mv//+yyOPPEJwcDDBwcE88sgjnDx58prPsdlsaf58+OGHrjYtWrRI9fiDDz6YzVuTcTey3Y8++miqbWrUqFGKNnnteF++fJkXX3yRGjVqkD9/fkqUKEGPHj1S3eTR3Y73qFGjKFu2LP7+/kRERPD7779fs/2yZcuIiIjA39+fcuXKMWbMmFRtfvjhB6pWrYqfnx9Vq1Zl1qxZ2VX+DcvMds+cOZO2bdtStGhRgoKCaNy4MQsWLEjRZvLkyWl+1i9cuJDdm5IpmdnupUuXprlNf/31V4p2ee14p/X3y2azUa1aNVcbdz/ey5cv56677qJEiRLYbDZmz5593efk2Gfb5FGvv/66GTlypHn22WdNcHBwhp7z3nvvmcDAQPPDDz+YLVu2mK5du5rQ0FBz6tQpV5t+/fqZkiVLmkWLFpn169ebli1bmlq1apmEhIRs2pLMueOOO0z16tXNypUrzcqVK0316tVNp06drvmcQ4cOpfiZOHGisdlsZs+ePa42zZs3N3369EnR7uTJk9m9ORl2I9vds2dPc8cdd6TYpuPHj6dok9eO98mTJ02bNm3MjBkzzF9//WWioqJMw4YNTURERIp27nS8v/nmG+Pj42PGjx9vtm/fbgYNGmTy589v9u/fn2b7vXv3mnz58plBgwaZ7du3m/HjxxsfHx/z/fffu9qsXLnS2O128+6775odO3aYd99913h7e5tVq1bl1GZdV2a3e9CgQeb99983q1evNn///bd5+eWXjY+Pj1m/fr2rzaRJk0xQUFCqz7w7yex2L1myxABm586dKbYp+Wc0Lx7vkydPptjeAwcOmEKFCpk33njD1cbdj/fcuXPNkCFDzA8//GAAM2vWrGu2z8nPdp4NR06TJk3KUDhyOBymePHi5r333nMtu3DhggkODjZjxowxxiS9GX18fMw333zjanPw4EHj5eVl5s+fn+W1Z9b27dsNkOJNEBUVZQDz119/Zfh17rnnHtOqVasUy5o3b24GDRqUVaVmqRvd7p49e5p77rkn3cc95XivXr3aACn+CLvT8W7QoIHp169fimWVK1c2L730UprtX3jhBVO5cuUUy/r27WsaNWrk+r1Lly7mjjvuSNGmffv25sEHH8yiqm9eZrc7LVWrVjVDhw51/Z7Rv4dWyux2O8PRv//+m+5resLxnjVrlrHZbCY6Otq1LDccb6eMhKOc/Gzn2WG1zNq3bx+HDx+mXbt2rmV+fn40b96clStXArBu3TouX76cok2JEiWoXr26q42VoqKiCA4OpmHDhq5ljRo1Ijg4OMP1HTlyhF9++SXNuyFPmzaNIkWKUK1aNZ5//nlOnz6dZbXfjJvZ7qVLl1KsWDFuvfVW+vTpQ1xcnOsxTzjekHQjR5vNlmr42R2O96VLl1i3bl2KYwDQrl27dLcxKioqVfv27duzdu1aLl++fM027nBc4ca2+2oOh4PTp0+nukHnmTNnCA8PJywsjE6dOrFhw4Ysq/tm3cx216lTh9DQUFq3bs2SJUtSPOYJxzsyMpI2bdq47i7h5M7HO7Ny8rPtFlfIdgeHDx8GICQkJMXykJAQ9u/f72rj6+vLLbfckqqN8/lWOnz4MMWKFUu1vFixYhmu78svvyQwMJDOnTunWP7www9TtmxZihcvztatW3n55ZfZtGkTixYtypLab8aNbneHDh144IEHCA8PZ9++fbz22mu0atWKdevW4efn5xHH+8KFC7z00kt069Ytxc0r3eV4Hzt2jMTExDQ/l+lt4+HDh9Nsn5CQwLFjxwgNDU23jTscV7ix7b7aRx99xNmzZ+nSpYtrWeXKlZk8eTI1atTg1KlTfPrppzRt2pRNmzZRsWLFLN2GG3Ej2x0aGsq4ceOIiIjg4sWLfPXVV7Ru3ZqlS5dy++23A+m/J/LK8T506BDz5s3j66+/TrHc3Y93ZuXkZztXhaM333yToUOHXrPNmjVrqFev3g2vw2azpfjdGJNq2dUy0uZmZHS7IXX9kLn6Jk6cyMMPP4y/v3+K5X369HH9f/Xq1alYsSL16tVj/fr11K1bN0OvnVnZvd1du3Z1/X/16tWpV68e4eHh/PLLL6nCYWZe92bl1PG+fPkyDz74IA6Hg1GjRqV4zIrjfS2Z/Vym1f7q5TfyWc9pN1rj9OnTefPNN/nxxx9TBOhGjRqlOOmgadOm1K1bl88//5zPPvss6wq/SZnZ7kqVKlGpUiXX740bN+bAgQOMGDHCFY4y+5pWudEaJ0+eTMGCBbn33ntTLM8txzszcuqznavC0YABA657xkyZMmVu6LWLFy8OJCXT0NBQ1/K4uDhXCi1evDiXLl3i33//TdGbEBcXR5MmTW5ovRmR0e3evHkzR44cSfXY0aNHUyXptPz+++/s3LmTGTNmXLdt3bp18fHxYdeuXdn2ZZlT2+0UGhpKeHg4u3btAvL28b58+TJdunRh3759LF68OEWvUVpy4ninpUiRItjt9lT/6kv+ubxa8eLF02zv7e1N4cKFr9kmM++X7HQj2+00Y8YMevXqxXfffUebNm2u2dbLy4v69eu73vNWu5ntTq5Ro0ZMnTrV9XtePt7GGCZOnMgjjzyCr6/vNdu62/HOrBz9bGdqhlIulNkJ2e+//75r2cWLF9OckD1jxgxXm3/++cftJuj++eefrmWrVq3K8ATdnj17pjprKT1btmwxgFm2bNkN15tVbna7nY4dO2b8/PzMl19+aYzJu8f70qVL5t577zXVqlUzcXFxGVqXlce7QYMG5sknn0yxrEqVKteckF2lSpUUy/r165dq0maHDh1StLnjjjvcboJuZrbbGGO+/vpr4+/vf92JrU4Oh8PUq1fPPPbYYzdTapa6ke2+2n333Wdatmzp+j2vHm9j/jchfcuWLdddhzsebycyOCE7pz7beTYc7d+/32zYsMEMHTrUFChQwGzYsMFs2LDBnD592tWmUqVKZubMma7f33vvPRMcHGxmzpxptmzZYh566KE0T+UPCwszv/76q1m/fr1p1aqV253aXbNmTRMVFWWioqJMjRo1Up3affV2G2NMfHy8yZcvnxk9enSq19y9e7cZOnSoWbNmjdm3b5/55ZdfTOXKlU2dOnVy7XafPn3aPPfcc2blypVm3759ZsmSJaZx48amZMmSefp4X7582dx9990mLCzMbNy4McXpvRcvXjTGuN/xdp7iHBkZabZv324GDx5s8ufP7zor56WXXjKPPPKIq73zdN9nnnnGbN++3URGRqY63fePP/4wdrvdvPfee2bHjh3mvffec9tTuzO63V9//bXx9vY2X3zxRbqXYHjzzTfN/PnzzZ49e8yGDRvMY489Zry9vVMEbKtldrs//vhjM2vWLPP333+brVu3mpdeeskA5ocffnC1yYvH26l79+6mYcOGab6mux/v06dPu76bATNy5EizYcMG15mzVn6282w46tmzpwFS/SxZssTVBjCTJk1y/e5wOMwbb7xhihcvbvz8/Mztt9+eKo2fP3/eDBgwwBQqVMgEBASYTp06mZiYmBzaqus7fvy4efjhh01gYKAJDAw0Dz/8cKpTXK/ebmOMGTt2rAkICEjzWjYxMTHm9ttvN4UKFTK+vr6mfPnyZuDAgamuCWSlzG73uXPnTLt27UzRokWNj4+PKV26tOnZs2eqY5nXjve+ffvS/Fwk/2y44/H+4osvTHh4uPH19TV169ZN0YPVs2dP07x58xTtly5daurUqWN8fX1NmTJl0gz93333nalUqZLx8fExlStXTvFl6i4ys93NmzdP87j27NnT1Wbw4MGmdOnSxtfX1xQtWtS0a9fOrFy5Mge3KGMys93vv/++KV++vPH39ze33HKLue2228wvv/yS6jXz2vE2Jql3OyAgwIwbNy7N13P34+3s9UrvPWvlZ9tmzJXZTCIiIiKSd28fIiIiInIjFI5EREREklE4EhEREUlG4UhEREQkGYUjERERkWQUjkRERESSUTgSERERSUbhSERERCQZhSMRERGRZBSORERERJJROBKRPGXYsGHUqFGD/PnzExISwpNPPsnly5etLktEchFvqwsQEckqxhgSExMZO3YsJUuWZPv27fTo0YOaNWvy5JNPWl2eiOQSuvGsiORp3bp1o2jRonz66adWlyIiuYSG1UQkz9i/fz8DBgygevXq3HLLLRQoUIBvv/2WsLAwq0sTkVxE4UhE8oRjx47RoEEDjh07xsiRI1mxYgVRUVHY7XZq165tdXkikotozpGI5Alz584lISGB6dOnY7PZAPjiiy+4dOmSwpGIZIrCkYjkCYUKFeLUqVP89NNPVK1alTlz5jB8+HBKlixJ0aJFrS5PRHIRTcgWkTzBGMOTTz7J119/TUBAAN27d+fChQvs37+fn3/+2eryRCQXUTgSERERSUYTskVERESSUTgSERERSUbhSERERCQZhSMRERGRZBSORERERJJROBIRERFJRuFIREREJBmFIxEREZFkFI5EREREklE4EhEREUlG4UhEREQkGYUjERERkWT+H+hD6A3X7C83AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxXUlEQVR4nO3dd3gUVd/G8e9mU4EkSAuBQKjSa5Aq0gQEsTyooIigAoKIgOW1YQMLFsT2SA8ggogFUBQpShMJ0jsiLYRQDDX0QLLn/SPsPglJIIEks8nen+vKpZk9u/Obmd3szTlnZmzGGIOIiIiIAOBldQEiIiIi7kThSERERCQFhSMRERGRFBSORERERFJQOBIRERFJQeFIREREJAWFIxEREZEUFI5EREREUlA4EhEREUlB4UjyhIMHD/Lmm2+yYcOGNI89+uijFCpU6Lpf++LFi/Tr14/Q0FDsdjt169a9/kKzwahRo5g8eXKa5dHR0dhstnQfy09sNhtvvvmm1WVkizfffBObzZbjz/3888+pVKkSvr6+2Gw2Tp48yaOPPkq5cuVStXv33XeZPXv2ddVzNcePH+fBBx+kRIkS2Gw27r333iy/Rrly5Xj00UezvTZ3snbtWp566ilq1apFYGAgISEh3H777SxatCjd9tOmTaNevXr4+/tTrFgxunXrxv79+3O5as+kcCR5wsGDBxk6dGi64ehGjR49mrFjxzJkyBCWL1/OV199le3ryIqMwlFoaChRUVHceeeduV+UXJfevXsTFRWVo+vYsGEDAwcOpFWrVixatIioqCgCAwN57bXXmDVrVqq2ORWO3nrrLWbNmsXHH39MVFQUH3zwQbavIz+YPn06q1at4vHHH+fHH39kwoQJ+Pn50aZNG6ZMmZKq7eeff0737t1p0KABP/74I++//z5LliyhefPmnDhxwqIt8BzeVhcgYrUtW7YQEBDAgAEDrC7lqvz8/GjcuLHVZUgWhIWFERYWlqPr2Lp1KwB9+vShYcOGruUVK1bM0fWmtGXLFipWrMjDDz+ca+vMLufOnaNAgQK5sq4XXniBESNGpFrWsWNH6tevz7Bhw+jRowcACQkJvPbaa9x1112MHz/e1bZ69eo0bdqUESNG8M477+RKzZ5KPUce6MiRIzzxxBOUKVMGPz8/ihcvTrNmzfjtt99cbVq2bEnNmjWJioqiadOmBAQEUK5cOSZNmgTAL7/8Qv369SlQoAC1atVi3rx5adazfPly2rRpQ2BgIAUKFKBp06b88ssvadpt2bKFe+65h5tuugl/f3/q1q3Ll19+6Xp8yZIl3HLLLQA89thj2Gy2dIdedu3aRceOHSlUqBBlypThueeeIyEh4ar7wmazMWHCBM6fP+963cmTJ191COvKdTuHP7Zu3cpDDz1EcHAwISEhPP7448THx6d6rsPh4PPPP6du3boEBARQuHBhGjduzE8//QQkDy1s3bqVpUuXuupxDo1kVFNm9vPkyZOx2WwsXryYJ598kmLFilG0aFE6d+7MwYMHr7qPrqZcuXJ06tSJWbNmUbt2bfz9/alQoQKfffZZmrYxMTF0796dEiVK4OfnR7Vq1fjoo49wOBwZvn50dDTe3t4MHz48zWPLli3DZrPx3XffAVk7DhcuXODll1+mfPny+Pr6Urp0aZ566ilOnjyZ7vb9/PPP1KtXj4CAAKpVq8bPP/8MJO/XatWqUbBgQRo2bMiaNWtSPT+9obEZM2bQrl07QkNDXa/30ksvcfbs2Yx3dAZatmxJ9+7dAWjUqBE2m801NHXlsJrNZuPs2bN8+eWXrvdWy5Ytr/r6x48fp3///pQuXRpfX18qVKjAkCFDXJ8r53vyt99+Y/v27a7XXbJkSYaveenSJV544QVKlixJgQIFuPXWW1m1alW6bQ8fPkzfvn0JCwvD19eX8uXLM3ToUBITE1O1i42N5f777ycwMJDChQvz8MMPs3r16jSfF+cQ/ObNm2nXrh2BgYG0adMGSB5ef/vtt6latarr7+Jjjz3GkSNH0tQ1Y8YMmjRpQsGCBSlUqBDt27dn/fr1V92XACVKlEizzG63ExERkWq4bMuWLcTHx9OxY8dUbZs0aUKRIkX44YcfrrkuuUFGPE779u1N8eLFzbhx48ySJUvM7Nmzzeuvv26++eYbV5sWLVqYokWLmipVqpjIyEgzf/5806lTJwOYoUOHmlq1apnp06ebuXPnmsaNGxs/Pz9z4MAB1/OXLFlifHx8TEREhJkxY4aZPXu2adeunbHZbKnW8/fff5vAwEBTsWJFM2XKFPPLL7+Yhx56yADm/fffN8YYEx8fbyZNmmQA8+qrr5qoqCgTFRVl9u/fb4wxpmfPnsbX19dUq1bNjBgxwvz222/m9ddfNzabzQwdOvSq+yIqKsp07NjRBAQEuF43Li7O7N271wBm0qRJaZ4DmDfeeMP1+xtvvGEAU6VKFfP666+bhQsXmpEjRxo/Pz/z2GOPpXruI488Ymw2m+ndu7f58ccfza+//mreeecd8+mnnxpjjFm3bp2pUKGCqVevnquedevWGWNMujVldj8791+FChXM008/bebPn28mTJhgbrrpJtOqVatUNTrbprftVwoPDzelS5c2ZcuWNRMnTjRz5841Dz/8sAHMhx9+6GoXFxdnSpcubYoXL27GjBlj5s2bZwYMGGAA8+STT151//7nP/8xZcuWNYmJianaPfDAA6ZUqVLm0qVLWToODofDtG/f3nh7e5vXXnvNLFiwwIwYMcIULFjQ1KtXz1y4cCHV9oWFhZmaNWu63u+NGjUyPj4+5vXXXzfNmjUzM2fONLNmzTI333yzCQkJMefOnXM931lTSm+99Zb5+OOPzS+//GKWLFlixowZY8qXL5/mOKT33Ctt3brVvPrqq67jFRUVZXbt2mWMSf5chIeHu9pGRUWZgIAA07FjR9d7a+vWrRm+9vnz503t2rVNwYIFzYgRI8yCBQvMa6+9Zry9vU3Hjh2NMcZcuHDBREVFmXr16pkKFSq4Xjc+Pj7D1+3Zs6ex2Wzm//7v/8yCBQvMyJEjTenSpU1QUJDp2bOnq92hQ4dMmTJlTHh4uBk7dqz57bffzFtvvWX8/PzMo48+6mp35swZU6lSJVOkSBHzxRdfmPnz55tnnnnGlC9fPs37uGfPnsbHx8eUK1fODB8+3Pz+++9m/vz5Jikpydxxxx2mYMGCZujQoWbhwoVmwoQJpnTp0qZ69eqpjuk777xjbDabefzxx83PP/9sZs6caZo0aWIKFix41f2ZkUuXLplKlSqZevXquZatWLHCAGbixIlp2oeGhhovLy9z/vz5LK9LMk/hyAMVKlTIDB48+KptWrRoYQCzZs0a17Jjx44Zu91uAgICUgWhDRs2GMB89tlnrmWNGzc2JUqUMKdPn3YtS0xMNDVr1jRhYWHG4XAYY4x58MEHjZ+fn4mJiUm1/g4dOpgCBQqYkydPGmOMWb16dYZf2D179jSA+fbbb1Mt79ixo6lSpco19kby8wsWLJhq2fWEow8++CBVu/79+xt/f3/Xti5btswAZsiQIVetp0aNGqZFixZplqdXU2b3szPw9O/fP9VrfvDBBwYwhw4dci378ssvjd1uN19++eVV6zQmOTzYbDazYcOGVMvbtm1rgoKCzNmzZ40xxrz00ksGMH/99Veqdk8++aSx2Wxmx44drmVX7t/FixcbwMyaNcu17MCBA8bb2ztV+M3scZg3b1667WbMmGEAM27cuFTbFxAQYGJjY13LnO/30NBQ1/YZY8zs2bMNYH766ac0NWXE4XCYS5cumaVLlxrAbNy4MdPPdXIe29WrV6dafmU4MsaYggULpgogVzNmzJh0P1fvv/++AcyCBQtcy1q0aGFq1Khxzdfcvn27AcwzzzyTavm0adMMkKq2vn37mkKFCpl9+/alajtixAgDuILIF198YQDz66+/pmrXt2/fdMNReqFj+vTpBjA//PBDquXOvzujRo0yxhgTExNjvL29zdNPP52q3enTp03JkiVNly5drrkPrjRkyBADmNmzZ7uWHTt2zHh5eZlevXqlartr1y4DGMAcPHgwy+uSzNOwmgdq2LAhkydP5u2332blypVcunQp3XahoaFERES4fi9SpAglSpSgbt26lCpVyrW8WrVqAOzbtw+As2fP8tdff3H//fenOovMbrfzyCOPEBsby44dOwBYtGgRbdq0oUyZMqnW/eijj3Lu3LlMT2a12WzcddddqZbVrl3bVVNuuPvuu9Os/8KFC8TFxQHw66+/AvDUU09ly/qysp+vViOQaj/16NGDxMRE1/yHa6lRowZ16tRJtaxbt26cOnWKdevWAcnHuXr16qnmxEDycTbGZHi2DiQPHdWpU4cvvvjCtWzMmDHYbDaeeOKJNO2vdRyc67ryzKgHHniAggUL8vvvv6daXrduXUqXLu363fl+b9myZaq5Kld+DjKyZ88eunXrRsmSJbHb7fj4+NCiRQsAtm/fftXn5qZFixZRsGBB7r///lTLnfvtyv2UGYsXLwZIMzepS5cueHunngL7888/06pVK0qVKkViYqLrp0OHDgAsXbrU9d/AwEDuuOOOVM9/6KGHMqzjvvvuS7OuwoULc9ddd6VaV926dSlZsqRrmHD+/Pmuz0bKdv7+/rRo0eKqw4npmTBhAu+88w7PPfcc99xzj2t5kSJFePjhh5kyZQpjx47l+PHjbNq0iYcffhi73Q6Al5e+vnOSJmR7oBkzZvD2228zYcIEXnvtNQoVKsR//vMfPvjgA0qWLOlqV6RIkTTP9fX1TbPc19cXSJ7HAXDixAmMMYSGhqZ5vjNUHTt2zPXfzLS7lgIFCuDv759qmZ+fn6um3FC0aNE06wc4f/48kDzXy263p9rHNyIr+zmzNV6P9LbHuSzlcb7ytPKr1XmlgQMH0rt3b3bs2EGFChUYP348999/f7rrvtY2Hjt2DG9vb4oXL56qnc1mo2TJkmlqyej9fq3PQXrOnDlD8+bN8ff35+233+bmm2+mQIEC7N+/n86dO9/Qcchux44do2TJkmnmTJUoUQJvb+9MfzavfE1I+57x9vZOc9z+/fdf5syZg4+PT7qvdfToUddrhoSEpHk8vWWQ/LciKCgozbpOnjzpOoYZrevff/8FcM2BvFJWAsukSZPo27cvTzzxBB9++GGax0ePHo0xhv79+9OvXz+8vLx45JFHCAkJYf78+Wn2l2QvhSMPVKxYMT755BM++eQTYmJi+Omnn3jppZeIi4tLd2J1Vt100014eXlx6NChNI85J/8WK1YMSP4iy0y73OYMWldO6L6eLwSn4sWLk5SUxOHDh9MNNFmVlf2ckw4fPpzhMucf8Bs9zt26dePFF1/kiy++oHHjxhw+fPi6e+CKFi1KYmIiR44cSRWQjDEcPnw4wy++7LBo0SIOHjzIkiVLXL1FQJqJ4O6gaNGi/PXXXxhjUgWkuLg4EhMTr+u95Xw/HD58OFVvXGJiYprPVrFixahdu3aGZ2U5g3XRokXTndCd3vsSSPfaUc4TFDL6+xcYGOhqB/D9998THh6ebtvMmDRpEr1796Znz56uXtArFSxYkK+++orPPvuM/fv3U6pUKYoVK0bVqlVp2rRpmp42yV7ql/NwZcuWZcCAAbRt29Y1BHKjChYsSKNGjZg5c2aqfwk7HA6mTp1KWFgYN998MwBt2rRxfWGkNGXKFAoUKOA6dT07ejiyIiQkBH9/fzZt2pRq+Y8//njdr+kcDhg9evRV2/n5+WVqO7Oyn3PS1q1b2bhxY6plX3/9NYGBgdSvXx9IPs7btm1L8x6bMmUKNpuNVq1aXXUd/v7+PPHEE3z55ZeMHDmSunXr0qxZs+uq13l20tSpU1Mt/+GHHzh79qzr8Zzg/BJ0vp+dxo4dm2PrTCmz7y1I3k9nzpxJc10k5/V4rmc/Oc+OmzZtWqrl3377bZoz0Dp16uS6RECDBg3S/DjDUYsWLTh9+rRr2Nrpm2++yXRdnTp14tixYyQlJaW7ripVqgDQvn17vL292b17d7rtGjRocM11TZ48md69e9O9e3cmTJhwzQt93nTTTdSuXZtixYrx008/sWPHDgYNGpTpbZPro+jpYeLj42nVqhXdunWjatWqBAYGsnr1aubNm0fnzp2zbT3Dhw+nbdu2tGrViueffx5fX19GjRrFli1bmD59uusPwhtvvOGaW/D6669TpEgRpk2bxi+//MIHH3xAcHAwkHzNloCAAKZNm0a1atUoVKgQpUqVSjX3KTvZbDa6d+/OxIkTqVixInXq1GHVqlV8/fXX1/2azZs355FHHuHtt9/m33//pVOnTvj5+bF+/XoKFCjA008/DUCtWrX45ptvmDFjBhUqVMDf359atWql+5qZ3c9ZMWXKFB5//HEmTpyYqXlHpUqV4u677+bNN98kNDSUqVOnsnDhQt5//33XnJxnnnmGKVOmcOeddzJs2DDCw8P55ZdfGDVqFE8++WSmQlz//v354IMPWLt2LRMmTMjydjm1bduW9u3b8+KLL3Lq1CmaNWvGpk2beOONN6hXrx6PPPLIdb/2tTRt2pSbbrqJfv368cYbb+Dj48O0adPShMucUqtWLZYsWcKcOXMIDQ0lMDDQ9cV/pR49evDFF1/Qs2dPoqOjqVWrFsuXL+fdd9+lY8eO3H777Vlef7Vq1ejevTuffPIJPj4+3H777WzZsoURI0akGeoaNmwYCxcupGnTpgwcOJAqVapw4cIFoqOjmTt3LmPGjCEsLIyePXvy8ccf0717d95++20qVarEr7/+yvz584HMDXU9+OCDTJs2jY4dOzJo0CAaNmyIj48PsbGxLF68mHvuuYf//Oc/lCtXjmHDhjFkyBD27NnDHXfcwU033cS///7LqlWrKFiwIEOHDs1wPd999x29evWibt269O3bN02PV7169VzB+YcffuDgwYNUq1aNCxcusGTJEj799FP69euXan6S5BArZ4NL7rtw4YLp16+fqV27tgkKCjIBAQGmSpUq5o033kh15k1GZ5+Eh4ebO++8M81ywDz11FOplv3xxx+mdevWpmDBgiYgIMA0btzYzJkzJ81zN2/ebO666y4THBxsfH19TZ06ddI9S2z69OmmatWqxsfHJ9UZTemdbWZM5s/2yej58fHxpnfv3iYkJMQULFjQ3HXXXSY6OjrDs9WOHDmS6vnOs4j27t3rWpaUlGQ+/vhjU7NmTePr62uCg4NNkyZNUu2X6Oho065dOxMYGGgA1xlHGZ1Bl5n9nNEZTc4zwRYvXpymbWZP5b/zzjvN999/b2rUqGF8fX1NuXLlzMiRI9O03bdvn+nWrZspWrSo8fHxMVWqVDEffvihSUpKStXuyv2bUsuWLU2RIkVSnVrtlJXjcP78efPiiy+a8PBw4+PjY0JDQ82TTz5pTpw4ke72XSm997vz+KS8hEF678EVK1aYJk2amAIFCpjixYub3r17m3Xr1qXZ5zlxttqGDRtMs2bNTIECBQyQ7lmRKR07dsz069fPhIaGGm9vbxMeHm5efvnlVJc7MCbzZ6sZY0xCQoJ57rnnTIkSJYy/v79p3LixiYqKMuHh4WnOpDty5IgZOHCgKV++vPHx8TFFihQxERERZsiQIebMmTOudjExMaZz586mUKFCJjAw0Nx3331m7ty5BjA//vhjqn2S3mfdmORT6keMGGHq1Klj/P39TaFChUzVqlVN3759zc6dO1O1nT17tmnVqpUJCgoyfn5+Jjw83Nx///3mt99+u+q2O8+Wy+gn5Xt01qxZpm7duq7PdYMGDUxkZKTrrEvJWTZjjMmVFCYi+U65cuWoWbOm66KIOSkuLo7w8HCefvpp3Z5Crundd9/l1VdfJSYmJsevUi75j4bVRMStxcbGsmfPHj788EO8vLw030LS+O9//wtA1apVuXTpEosWLeKzzz6je/fuCkZyXRSORMStTZgwgWHDhlGuXDmmTZuW6iwnEUg+Pf/jjz8mOjqahIQEypYty4svvsirr75qdWmSR2lYTURERCQFy0/lX7ZsGXfddRelSpXCZrOlOW00PUuXLiUiIsJ1k8sxY8bkfKEiIiLiESwPR2fPnqVOnTquMeNr2bt3Lx07dqR58+asX7+eV155hYEDB+ouxSIiIpIt3GpYzWazMWvWLO69994M27z44ov89NNPqe5B1K9fPzZu3Jjp+3CJiIiIZCTPTciOioqiXbt2qZa1b9+eyMhILl26lO59eBISElLdBsLhcHD8+HGKFi16XRfJExERkdxnjOH06dOUKlUqR2++m+fC0eHDh9PcUDAkJITExESOHj2a7j2rhg8fftWrloqIiEjesX///hy9TEOeC0eQ9saBzpHBjHqBXn75ZZ599lnX7/Hx8ZQtW5b9+/enuWS9iOQhBw7A7t18uX49zw4blub+XADBwcFM/+wzmhUpAhUrgi4FIJJnnTp1ijJlyrhuBpxT8lw4KlmyZJq7LcfFxeHt7e264/OV/Pz80tzoESAoKEjhSCSvioyEJ55gosPBwMuL7r33XoYPH06VKlVYsWIFgwYNYu3atXTu2ZPFQGMvLxg3Dnr1srJyEblBOT0lxvKz1bKqSZMmLFy4MNWyBQsW0KBBg3TnG4lIPhQbC088wV8OB/0uL3rWZmPmZ59RtWpVbDYbzZo144/p07kDuADcCxx2OKBv3+Tni4hkwPJwdObMGTZs2MCGDRuA5FP1N2zYQExMDJA8JJbyzuD9+vVj3759PPvss2zfvp2JEycSGRnJ888/b0X5ImKFnTs573DQDbgE3AeMMAbb7t2pmgXExvIdUAv4F+gDmKQk2LUrtysWkTzE8nC0Zs0a6tWrR7169QB49tlnqVevHq+//joAhw4dcgUlgPLlyzN37lyWLFlC3bp1eeutt/jss8+47777LKlfRCxQuTLvA3uA0kAkYLPboVKlNO0KeXkxDfAFfgZ+9PJK205EJAW3us5Rbjl16hTBwcHEx8drzpFIHrRnzx6qV6lCQmIi3wIP2O0wdmz6c4kiI6FvX15NSuIdoFKJEmzdvx9fX9/cLltEblBufX9b3nMkIpJV77zzDgmJidzevDn3L1oE0dEZT7Lu1Quio3nxl18IKV6cXXFxjB49OlfrFZG8RT1H6jkSyVOio6OpXLkyiYmJrFy5kkaNGmX6uWPHjqVfv36UKlWKPXv2pHsWq4i4L/UciYik47333iMxMZG2bdtmKRgBPProo5QqVYqDBw/y9ddf51CFIpLXKRyJSJ5x/PhxvvzySwBeffXVLD/fz8+PwYMHA/DBBx/gcDiyszwRyScUjkQkz5g8eTIXLlygbt26NG/e/Lpe44knniAoKIi///6bRYsWZXOFIpIfKByJSJ7gcDgYNWoUAP3797/uK+QGBwfTvXt3AMaPH59t9YlI/qFwJCJ5wu+//87u3bsJDg6mW7duN/Raffr0AWDWrFkcOXIkO8oTkXxE4UhE8oSpU6cC0K1bNwoWLHhDr1W3bl1uueUWLl265JrDJCLipHAkIm7v3LlzzJw5E8A1JHajevfuDfwvdImIOCkciYjbmzNnDmfOnKF8+fI0adIkW17z/vvvx8fHh40bN7J9+/ZseU0RyR8UjkTE7U2bNg1IHlK73onYVypSpAjt27cHYPr06dnymiKSPygciYhbO3bsGL/++isADz/8cLa+9kMPPQQkhyMPvFmAiGRA4UhE3Nrs2bNJTEykbt26VKtWLVtf++677yYgIIBdu3axcePGbH1tEcm7FI5ExK39+OOPAHTu3DnbX7tQoUK0a9cu1XpERBSORMRtnTt3joULFwJwzz335Mg6nK+rcCQiTgpHIuK2Fi5cyIULFyhXrhy1atXKkXV06tQJLy8v1q9fz/79+3NkHSKStygciYjbcvbm3HPPPdl2ltqVihcvTtOmTQH46aefcmQdIpK3KByJiFtKSkri559/BnJuSM1JQ2sikpLCkYi4pZUrV3LkyBEKFy7MrbfemqPruvvuuwFYvHgxp06dytF1iYj7UzgSEbc0f/58ANq3b4+Pj0+Oruvmm2+mcuXKJCYmsmjRohxdl4i4P4UjEXFLzrPUnFexzmnO9ThDmYh4LoUjEXE7J06cYNWqVQC0bds2V9bpvN7RggULcmV9IuK+FI5ExO0s+u47HA4H1SpXJiwsLFfW2apVK3x8fNizZw+7pk6F2NhcWa+IuB+FIxFxL5GRLOjbF4B2O3dCZGSurLZQoUI0q1ABgAWPPALh4bm2bhFxLwpHIuI+YmMxffrgHNhqB9C3b+704sTG0u6ffwCYD+Bw5N66RcStKByJiPvYuZPdxhAN+AAtAJKSYNeuXFl3e2MAWARcys11i4hbUTgSEfdRuTILLl8JuxlQEMBuh0qVcmXddW02igJngDW5uW4RcSsKRyLiPsLCWFCnDnB5SM1uh7FjITcmZYeF4TV+fHJvFbDEZsu9dYuIW1E4EhG34XA4WLZvHwBtRo2C6Gjo1Sv3CujVi5bDhgGwpHnz3F23iLgNhSMRcRubN2/mxIkTFCpUiPp9+ljSa9Py3nsBWL5mDZcuXcr19YuI9RSORMRtLF26FIBmzZrh7e1tSQ01atSgaNGinDt3jjVr1lhSg4hYS+FIRNzGsmXLAGjRosU1WuYcLy8v1/qXLFliWR0iYh2FIxFxC8YYtwhHAC1btgQUjkQ8lcKRiLiF7du3c+TIEQICAmjQoIGltTjD0fLlyzXvSMQDKRyJiFtwzjdq0qQJvr6+ltaieUcink3hSETcgrsMqYHmHYl4OoUjEbGcMcbVc3TbbbdZXE0yZx3Lly+3uBIRyW0KRyJiuV27dnHo0CF8fX1p1KiR1eUA0LRpUwCioqJwOBwWVyMiuUnhSEQs9+effwJwyy23EBAQYHE1yerWrUtAQAAnTpzg77//trocEclFCkciYrkVK1YAyRd/dBc+Pj40bNgQ+F99IuIZFI5ExHLO8OEcynIXzrDm7NkSEc+gcCQiljp58iRbt24Fkk/jdyfOcKSeIxHPonAkIpb666+/AKhYsSIlSpSwuJrUGjduDMA///zD0aNHLa5GRHKLwpGIWMpdh9QAihQpQvXq1QH1Hol4EoUjEbGUO4cj+F9dCkcinkPhSEQsk5SUxMqVKwH3m2/kpEnZIp5H4UhELLN161bOnDlDoUKFqFmzptXlpMvZc7R69WouXrxocTUikhsUjkTEMs6hqsaNG2O32y2uJn2VK1emWLFiJCQksG7dOqvLEZFcoHAkIpZx9/lGADabzVWfhtZEPIPCkYhYxhmO3HW+kZMzHDkvOyAi+ZvCkYhYIi4ujt27dwP/u56Qu3LeDFfhSMQzKByJiCWcZ6lVq1aNwoULW1vMNURERGCz2YiJieHw4cNWlyMiOUzhSEQssWbNGgDXzV3dWWBgIDVq1ABg1apVFlcjIjlN4UhELLF69WoAbrnlFosryRwNrYl4DoUjEcl1xpg8F46cPVwKRyL5n8KRiOS66Ohojh07ho+PD3Xq1LG6nExx9hytXr0ah8NhcTUikpMUjkQk1zl7jWrXro2fn5/F1WROjRo1KFCgAKdOnWLHjh1WlyMiOUjhSERyXV4bUgPw9vYmIiIC0NCaSH6ncCQiuS4vhiP439CazlgTyd8UjkQkVzkcDtauXQvkvXCkSdkinkHhSERy1Y4dOzhz5gwBAQFUq1bN6nKyxNlztGnTJs6fP29xNSKSUxSORCRXOYfU6tevj7e3t8XVZE2ZMmUoWbIkiYmJrF+/3upyRCSHKByJSK7Kq/ONAGw2m4bWRDyAW4SjUaNGUb58efz9/YmIiOCPP/64avtp06ZRp04dChQoQGhoKI899hjHjh3LpWpF5Ebk5XAEulK2iCewPBzNmDGDwYMHM2TIENavX0/z5s3p0KEDMTEx6bZfvnw5PXr0oFevXmzdupXvvvuO1atX07t371yuXESy6uLFi2zYsAHIu+HI2XOkM9ZE8i/Lw9HIkSPp1asXvXv3plq1anzyySeUKVOG0aNHp9t+5cqVlCtXjoEDB1K+fHluvfVW+vbt67qJpYi4r61bt5KQkEDhwoWpVKmS1eVcF2eo27t3L0eOHLG4GhHJCZaGo4sXL7J27VratWuXanm7du1YsWJFus9p2rQpsbGxzJ07F2MM//77L99//z133nlnhutJSEjg1KlTqX5EJPetXrAAgAa1amGz2Syu5voEBwdTpUoVANZOnAixsRZXJCLZzdJwdPToUZKSkggJCUm1PCQkhMOHD6f7nKZNmzJt2jS6du2Kr68vJUuWpHDhwnz++ecZrmf48OEEBwe7fsqUKZOt2yEimRAZyeqXXgKgwR9/QGSkxQVdvwaFCwOw5qWXIDw8T2+LiKRl+bAakOZfkMaYDP9VuW3bNgYOHMjrr7/O2rVrmTdvHnv37qVfv34Zvv7LL79MfHy862f//v3ZWr+IXENsLDzxBKsv/3oLQN++ebPXJTaWBpfnG60GcDjy7raISLosvchIsWLFsNvtaXqJ4uLi0vQmOQ0fPpxmzZrxf//3f0DyjSsLFixI8+bNefvttwkNDU3zHD8/vzxzc0uRfGnnTs45HGy5/OstAElJsGsXhIVZWNh12LmTBsYA4JrpmFe3RUTSZWnPka+vLxERESxcuDDV8oULF9K0adN0n3Pu3Dm8vFKXbbfbgeQeJxFxQ5Urs8FmIwkIAcIA7HbIi5OyK1emns2GF3Dw8k+e3RYRSZflw2rPPvssEyZMYOLEiWzfvp1nnnmGmJgY1zDZyy+/TI8ePVzt77rrLmbOnMno0aPZs2cPf/75JwMHDqRhw4aUKlXKqs0QkasJC2N1165Acq+RzW6HsWPzZk9LWBgFx4+n+uVf13p55d1tEZF0WX7t/q5du3Ls2DGGDRvGoUOHqFmzJnPnziU8PByAQ4cOpbrm0aOPPsrp06f573//y3PPPUfhwoVp3bo177//vlWbICKZsObyrUJuefRReOutvB0mevWiwfz5bPnuO1Y//TR39epldUUiko1sxgPHok6dOkVwcDDx8fEEBQVZXY6IR6hatSo7duxg7ty5dOjQwepybtioUaN46qmn6NChA3PnzrW6HBGPkFvf35YPq4lI/hcfH8+OHTsAaNCggcXVZA/ndqxZs0bzHUXyGYUjEclxa9euBSA8PJzixYtbXE32qF27Nt7e3hw5ciTD2x2JSN6kcCQiOS6v32w2Pf7+/tSqVQtAty8SyWcUjkQkx+XHcAT/2x6FI5H8ReFIRHJcfg1HKecdiUj+oXAkIjkqLi6OmJgYbDYbERERVpeTrTQpWyR/UjgSkRzl7FWpUqVKvrt0Rs2aNfHz8+PkyZPs3r3b6nJEJJsoHIlIjnIOqeWXU/hT8vHxoW7duoCG1kTyE4UjEclR+XW+kZPmHYnkPwpHIpJjjDEeE46c2ykieZ/CkYjkmP379xMXF4e3t7dr+Cm/cYa+devWkZSUZHE1IpIdFI5EJMc4h5pq1qxJQECAxdXkjKpVq1KgQAHOnDnDP//8Y3U5IpINFI5EJMfk9yE1ALvdTv369QENrYnkFwpHIpJjPCEcga6ULZLfKByJSI5wOByusJAfT+NPSWesieQvCkcikiN27dpFfHw8/v7+1KxZ0+pycpQzHK1fv57ExESLqxGRG6VwJCI5wjmkVrduXXx8fCyuJmdVqlSJoKAgLly4wNatW60uR0RukMKRiOQIT5lvBODl5aWhNZF8ROFIRHKEMyR4QjgCzTsSyU8UjkQk2yUmJrJu3TpA4UhE8h6FIxHJdtu2beP8+fMEBgZy8803W11OrnCGo40bN5KQkGBxNSJyIxSORCTbOecbRURE4OXlGX9mypUrR9GiRbl06RKbN2+2uhwRuQGe8VdLRHKVJ03GdrLZbBpaE8knFI5EJNt5YjgCzTsSyS8UjkQkW124cME1rORp4ci5vbrHmkjepnAkItlq06ZNXLp0iWLFihEeHm51ObnK2XO0detWzp07Z3E1InK9FI5EJFulHFKz2WwWV5O7SpcuTWhoKElJSaxfv97qckTkOikciUi28tT5Rk4aWhPJ+xSORCRbOUOBc4jJ0zRs2BCAVatWWVyJiFwvhSMRyTZnzpxh+/btgHqO1HMkkncpHIlItlm7di3GGMLCwihZsqTV5VjC2WO2a9cujh8/bnE1InI9FI5EJNs4e0ucQ0ueqEiRIlSqVAnQ9Y5E8iqFIxHJNs55Np4cjkBDayJ5ncKRiGQbZzjy1PlGTpqULZK3KRyJSLaIi4tj37592Gw2IiIirC7HUuo5EsnbFI5EJFs4g0CVKlUIDg62uBpr1atXD7vdzqFDhzhw4IDV5YhIFikciUi20GTs/ylQoAA1a9YENLQmkhcpHIlIttB8o9Q0tCaSdykcicgNM8ao5+gKzv2gcCSS9ygcicgNi46O5ujRo/j4+FCnTh2ry3ELKXuOHA6HxdWISFYoHInIDXMOqdWpUwc/Pz+Lq3EPNWrUwN/fn/j4eHbt2mV1OSKSBQpHInLDVi9aBEDD6tUtrsR9+Pj4UL9+fQBWTZ4MsbHWFiQimaZwJCI3JjKSVePGAXDLV19BZKTFBbmPWwoUAGD18OEQHq59I5JHKByJyPWLjSWxTx/WXv61oTHQt696SQBiY7nl998BWA3gcGjfiOQRCkcicv127mS7MZwDCgFVAJKSQHNsYOfO5LAIrAcugfaNSB6hcCQi169yZVbZbAA0AOwAdjtcviu9R6tcmUo2G4WBC8AW0L4RySMUjkTk+oWFsfq22wBoCMlf/mPHQliYpWW5hbAwbOPH47wk5mqbTftGJI9QOBKRG7Lq1CkAbnnzTYiOhl69LK3HrfTqxS0DBgCwqmtX7RuRPELhSESu2/nz59m8eTMADR97TL0i6bilTRsAVm/bZnElIpJZCkcict02bNhAYmIiJUqUoEyZMlaX45actxHZsmULZ8+etbgaEckMhSMRuW7OK2M3bNgQ2+WJ2ZJaqVKlKFWqFA6Hg/Xr11tdjohkgsKRiFw3Zzhy3kdM0ufsPXLuLxFxbwpHInLdVq5cCUDjxo0trsS9NWrUCPjf/hIR96ZwJCLXJS4ujj179mCz2Vxf/pK+Jk2aABAVFWVxJSKSGQpHInJdnL0g1apVIzg42OJq3FuDBg2w2+3ExsYSq9uHiLg9hSMRuS7OXhBnr4hkrGDBgtSuXRvQ0JpIXqBwJCLXxRmONN8oc5z7SUNrIu5P4UhEsiwxMZHVq1cD6jnKLOd+Us+RiPtTOBKRLNu8eTPnzp0jKCiIatWqWV1OnuDsOVq7di0XL160uBoRuRqFIxHJMmfvR6NGjfDy0p+RzKhUqRJFixYlISGBDRs2WF2OiFyF/qqJSJZpMnbW2Ww2zTsSySMUjkQky3Txx+ujeUcieYPCkYhkydGjR9m5cyeALv6YReo5Eskb3CIcjRo1ivLly+Pv709ERAR//PHHVdsnJCQwZMgQwsPD8fPzo2LFikycODGXqhXxbH/99RcAVapUoUiRIhZXk7c4b9C7b98+Dh06ZHU5IpIBy8PRjBkzGDx4MEOGDGH9+vU0b96cDh06EBMTk+FzunTpwu+//05kZCQ7duxg+vTpVK1aNRerFvFcmm90/QIDA6lZsyagoTURd2Z5OBo5ciS9evWid+/eVKtWjU8++YQyZcowevTodNvPmzePpUuXMnfuXG6//XbKlStHw4YNadq0aS5XLuKZFI5ujO6zJuL+LA1HFy9eZO3atbRr1y7V8nbt2rFixYp0n/PTTz/RoEEDPvjgA0qXLs3NN9/M888/z/nz5zNcT0JCAqdOnUr1IyJZl5SUxKpVqwBNxr5ezv2mniMR9+Vt5cqPHj1KUlISISEhqZaHhIRw+PDhdJ+zZ88eli9fjr+/P7NmzeLo0aP079+f48ePZzjvaPjw4QwdOjTb6xfxNFu3buXMmTMUKlSIGjVqWF1OnuTsOVqzZg2XLl3Cx8fH4opE5EqWD6tB8vU/UjLGpFnm5HA4sNlsTJs2jYYNG9KxY0dGjhzJ5MmTM+w9evnll4mPj3f97N+/P9u3QcQTOHs7GjZsiN1ut7iavOnmm2+mcOHCnD9/nk2bNlldjoikw9JwVKxYMex2e5peori4uDS9SU6hoaGULl2a4OBg17Jq1aphjCE2Njbd5/j5+REUFJTqR0SyzjncrflG18/Ly8s1tJbR9AERsZal4cjX15eIiAgWLlyYavnChQsznGDdrFkzDh48yJkzZ1zL/vnnH7y8vAgLC8vRekU83fLly4Hkz6FcP+f+c+5PEXEvlg+rPfvss0yYMIGJEyeyfft2nnnmGWJiYujXrx+QPCTWo0cPV/tu3bpRtGhRHnvsMbZt28ayZcv4v//7Px5//HECAgKs2gyRfO/QoUPs3r0bm82ms0NvUPPmzYHkcGSMsbgaEbmSpROyAbp27cqxY8cYNmwYhw4dombNmsydO5fw8HAg+Q9yymseFSpUiIULF/L000/ToEEDihYtSpcuXXj77bet2gQRj+Ds5ahdu3aqYW3JuoYNG+Lj48PBgwfZu3cvFSpUsLokEUnB8nAE0L9/f/r375/uY5MnT06zrGrVqmmG4kQkZznDkbPXQ65fQEAADRo0ICoqiuXLlyscibgZy4fVRCRvcIajW2+91eJK8gfnftS8IxH3o3AkItd06tQpNmzYACgcZRfnfrzWvSRFJPcpHInINa1cuRKHw0H58uUpXbq01eXkC84z1v7++2+OHDlicTUikpLCkYhck4bUsl/RokWpXr06oOsdibgbhSMRuSbn0I/CUfbS0JqIe1I4EpGrunjxIn/99RegM9WyW8rrHYmI+1A4EpGrWrduHefPn6do0aJUrVrV6nLyFWfP0dq1azl79qzF1YiIk8KRiFxVyvlGGd0QWq5PeHg4YWFhJCYmsmrVKqvLEZHLFI5E5Ko0GTvn2Gw2Xe9IxA0pHIlIhhwOh8JRDtOkbBH3o3AkIhnavn07x44dIyAggPr161tdTr7knJS9YsUKLl26ZHE1IgIKRyJyFYtnzQKgWYMG+Pr6WlxN/lSzZk2KFi3K2bNnWTN2LMTGWl2SiMdTOBKR9EVGsvi11wBotXw5REZaXFD+5OXlRYvwcAAWP/00hIdrX4tYTOFIRNKKjcXRpw9LL//a0hjo21e9GjkhNpZW69cDsATA4dC+FrGYwpGIpLVzJ1uM4RhQELgFICkJdu2ytq78aOfO5PAJ/AlcBO1rEYspHIlIWpUrs/jyNY1uBXwA7HaoVMnKqvKnypWpYbNRHDgHrALtaxGLKRyJSFphYSypWxeAVpD8ZT12LISFWVlV/hQWhm38eFpeDqNLbDbtaxGLKRyJSBoOh4Ol0dEAtPziC4iOhl69LK0pX+vVi1Zvvw3A4qZNta9FLKZwJCJpbNy4kRMnThAYGEjEE0+oFyMXtPzPfwBYsXYtCQkJFlcj4tkUjkQkjSVLlgDJFyj09va2thgPUbVqVUqWLMmFCxf466+/rC5HxKMpHIlIGosXLwagZcuW1hbiQWw2m2t/O/e/iFhD4UhEUklKSmLZsmUAtGrVyuJqPItzfysciVhL4UhEUtmwYQPx8fEEBQVRr149q8vxKM5wtHLlSi5cuGBxNSKeS+FIRFJx9lrcdttt2O12i6vxLJUqVaJUqVIkJCQQFRVldTkiHkvhSERS+e233wBo3bq1xZV4HpvN5trvzuMgIrlP4UhEXC5cuMDSpcl3VGvXrp3F1Xgm535fsGCBxZWIeK4bCkdxcXEcPnw4u2oREYv9+eefXLhwgVKlSlG9enWry/FIt99+OwBr167l6NGjFlcj4pmuKxxt2rSJGjVqEBoaSunSpSldujSvvvoqZ8+eze76RCQXOXsr2rZti+3y7Swkd4WGhlK7dm2MMfz+++9WlyPika4rHPXq1YuQkBCWL1/O+vXrefvtt/n1119p0KABJ06cyO4aRSSXpAxHYh0NrYlYy2aMMVl9UsGCBVm7di1Vq1Z1LTPG8MADD+Dv78/UqVOztcjsdurUKYKDg12nK4tI8jB5SEgIAIcPH3b9v+S+hQsX0q5dO8LCwoiJiVEvnshlufX9fV09R+n1ENlsNt59911+/PHHbClMRHKX8+yoOnXqKBhZ7NZbb8XPz4/Y2Fj+/vtvq8sR8TiZDkd33nknr7zyCt9++y39+vXjmWee4d9//03VJj4+nptuuinbixSRnLdw4UJAZ6m5g4CAAG677TZAQ2siVsj0HSVr1arFunXrmDRpkisUVahQgS5dulC3bl2SkpKYNGkSH3/8cY4VKyI5wxij+UZupl27dixcuJAFCxYwaNAgq8sR8SjXNefo33//Zf369WzYsMH1s2vXLux2O1WqVGHTpk05UWu20ZwjkdS2bdtGjRo18PPz48SJEwQEBFhdksfbtGkTderUoUCBAhw/fhw/Pz+rSxKxXG59f2e65yilkJAQ7rjjDu644w7XsvPnz7Nx40Y2btyYbcWJSO5w9hrddtttCkZuolatWoSEhPDvv/+yYsUK3QRYJBdl2xWyAwICaNy4MX379s2ulxSRXPLrr78Cmm/kTmw2m07pF7GIbh8i4uHOnj3LkiVLgOQTL8R9OOd/zZ8/3+JKRDyLwpGIh1u0aBEXL16kXLlyqa5dJtZr3749NpuN9evXc/DgQavLEfEYCkciHu6XX34BoGPHjrrYoJspUaIEt9xyCwBz5861uBoRz6FwJOLBjDGuL10NqbmnTp06Af8LsSKS8xSORDzY1q1b2b9/P/7+/rRs2dLqciQdztC6cOFCEhISLK5GxDMoHIl4MGevUatWrShQoIDF1Uh66tWrR6lSpTh79ixLly61uhwRj6BwJOLBNKTm/mw2Gx07dgTg559/trgaEc+gcCTioU6ePMny5csB6NChg8XVyNU45x39/PPPXMdNDUQkixSORDzUwoULSUpKomrVqlSoUMHqcuQq2rRpg6+vL3v37uXvv/+2uhyRfE/hSMRDzZkzB8A1ZCPuq1ChQq7bh+isNZGcp3Ak4oESExNd81fuuecei6uRzHDOC9O8I5Gcp3Ak4oH++OMPTpw4QbFixWjatKnV5UgmOMPR8uXLOXnypLXFiORzCkciHujHadMA6NSqFd7e3hZXI5lRoUIFqlWrRlJSEr+OGAGxsVaXJJJvKRyJeBgzYQKzIyMBuOf77+Hy/4v7u7d8eQBmvfMOhIfr2InkEJvxwPNCT506RXBwMPHx8QQFBVldjkjuiY1lY9my1DWGAOAoUMBuh+hoCAuzuDi5qthYVpctS0NjKAgcAQJ07MTD5Nb3t3qORDzJzp38ePnfQ22BAgBJSbBrl5VVSWbs3EkDYwgDzgK/gY6dSA5ROBLxJJUrM/vy/97rXGa3Q6VKlpQjWVC5MjYvLzpf/nUm6NiJ5BCFIxEPEuNwsJ7kD34nSP5yHTtWwzJ5QVgYjBvHf7yS/2z/BCSOGqVjJ5IDFI5EPMiPP/4IQNNbbqH44sXJ81V69bK2KMm8Xr24dfduigUHcxxYpl4jkRyhcCTiQb7//nsA/vPgg9CypXod8iDvcuW45/77AZg1a5bF1YjkTwpHIh7i0KFD/PHHHwDcf/nLVfKm//znP0ByOHI4HBZXI5L/KByJeIgffvgBYwyNGzembNmyVpcjN6BNmzYEBgZy4MAB1qxZY3U5IvmOwpGIh/juu+8AeOCBByyuRG6Uv7+/64bBM2fOtLgakfxH4UjEA2hILf/p3Dn5pP7vv/8eD7yWr0iOUjgS8QAzZ87EGEOjRo00pJZP3HnnnRQoUIDdu3ezdu1aq8sRyVcUjkQ8gIbU8p+CBQty1113AfDNN99YXI1I/qJwJJLPHT58mGXLlgEaUstvHnzwQQBmzJihs9ZEspFbhKNRo0ZRvnx5/P39iYiIcM2NuJY///wTb29v6tatm7MFiuRhzrPUGjVqRHh4uNXlSDa64447CAoKIjY2lqioKKvLEck3LA9HM2bMYPDgwQwZMoT169fTvHlzOnToQExMzFWfFx8fT48ePWjTpk0uVSqSN2lILf/y9/fn3nvvBTS0JpKdbMbi0xwaNWpE/fr1GT16tGtZtWrVuPfeexk+fHiGz3vwwQepXLkydrud2bNns2HDhkyv89SpUwQHBxMfH09QUNCNlC/i1g4cOECZMmUwxhAdHa2eo3zo119/pWPHjpQoUYIDBw7g7e1tdUkiOSa3vr8t7Tm6ePEia9eupV27dqmWt2vXjhUrVmT4vEmTJrF7927eeOONTK0nISGBU6dOpfoR8QTTp0/HGMOtt96qYJRP3X777RQpUoS4uDiWLl1qdTki+YKl4ejo0aMkJSUREhKSanlISAiHDx9O9zk7d+7kpZdeYtq0aZn+F9Lw4cMJDg52/ZQpU+aGaxfJC6ZNmwZA9+7dLa5EcoqPj49ror2G1kSyh+VzjgBsNluq340xaZYBJCUl0a1bN4YOHcrNN9+c6dd/+eWXiY+Pd/3s37//hmsWcXdbt25lw4YN+Pj4aL5RPuc8a+2HH37g4sWLFlcjkvdZOjhdrFgx7HZ7ml6iuLi4NL1JAKdPn2bNmjWsX7+eAQMGAOBwODDG4O3tzYIFC2jdunWa5/n5+eHn55czGyHippy9Rh07dqRIkSIWVyM56bbbbqNkyZIcPnyYefPmcffdd1tdkkieZmnPka+vLxERESxcuDDV8oULF9K0adM07YOCgti8eTMbNmxw/fTr148qVaqwYcMGGjVqlFuli7g1h8PhCkcPP/ywxdVITrPb7Tz00EMAfPXVVxZXI5L3WX5aw7PPPssjjzxCgwYNaNKkCePGjSMmJoZ+/foByUNiBw4cYMqUKXh5eVGzZs1Uzy9RogT+/v5plot4suXLlxMTE0NQUBCdOnWyuhzJBT169ODjjz/mp59+4vjx4+otFLkBls856tq1K5988gnDhg2jbt26LFu2jLlz57rOrDl06NA1r3kkIqk5e43uv/9+AgICLK5GckPdunWpXbs2Fy9e5Ntvv7W6HJE8zfLrHFlB1zmS/CwhIYGSJUty8uRJfv/993Tn4Un+9NFHH/H888/TpEmTq14ORSSv8ojrHIlI9ps7dy4nT56kdOnStGjRwupyJBc9/PDDeHl5ERUVxT///GN1OSJ5lsKRSD4zadIkALp164bdbre4GslNJUuWpH379oAmZovcCIUjkXzk0KFDzJ07F4DHH3/c4mrECj179gRgypQpOBwOi6sRyZsUjkTyka+++oqkpCSaNm1K1apVrS5HLHD33XcTFBRETEwMy5Yts7ockTxJ4UgknzDGMHHcOAAe/89/LK5GrBIQEECXLl0A+PK99yA21uKKRPIehSORfGLFyy+zY/duCgJdXngBIiOtLkks8mjRogB8O38+p8qW1XtBJIsUjkTyg9hYJr7/PgBdgEBjoG9f9Rp4othYmn7wAdWAc8DXei+IZJnCkUg+cGbTJmZc/n/XNOykJNi1y6KKxDI7d2Izhj6Xfx0Hei+IZJHCkUg+8N327ZwFbgaaORfa7VCpknVFiTUqVwYvLx4BfIH1wFovL70XRLJA4UgkH4icNQuAx202bJAcjMaOhbAwS+sSC4SFwbhxFLPbue/yovHNm+u9IJIFun2Ibh8iedzmzZupXbs2drud/X/9Rejp08m9BPoy9GyxsSz+7jtaP/sshQoV4tChQxQqVMjqqkRuiG4fIiKZMmbMGADuvfdeQiMioGVLBSOBsDBaDh5MpUqVOHPmDDNmzLj2c0QEUDgSydNOnz7NlClTAOjfv7/F1Yi7sdls9O7dG4Dx48dbXI1I3qFwJJKHTZs2jTNnzlClShVatWpldTnihh599FG8vb3566+/2LBhg9XliOQJCkcieZQxhtGjRwPw5JNPYrPZLK5I3FFISAidO3cG4IsvvrC4GpG8QeFIJI9asWIFmzZtIiAgwHWzUZH0DBgwAEjuaTx+/LjF1Yi4P4UjkTzK2Wv00EMPUbhwYWuLEbd26623UqdOHc6fP8/EiROtLkfE7SkcieRBR44c4bvvvgM0EVuuzWaz8fTTTwPJQ2tJSUkWVyTi3hSORPKg8ePHc/HiRW655RYiIiKsLkfygIceeoibbrqJ6Oho5s6da3U5Im5N4Ugkj7l48SL//e9/ARg4cKDF1UheUaBAAddp/Z9//rnF1Yi4N4UjkTzm22+/5dChQ4SGhtKlSxery5E8pH///thsNhYuXMjff/9tdTkibkvhSCQPMcbw8ccfA8lnIPn6+lpckeQl5cqV46677gLUeyRyNQpHInnIsmXLWLduHQEBAfTt29fqciQPGjRoEACTJ0/m2LFjFlcj4p4UjkTyEGevUY8ePShatKjF1Uhe1KpVK+rVq8e5c+dcl4MQkdQUjkTyiF27dvHTTz8BMHjwYGuLkTzLZrPx/PPPA8lDaxcuXLC4IhH3o3Akkkd89tlnGGPo0KEDVatWtbocycMeeOABypYtS1xcnOvGxSLyPwpHInnA0aNHiYyMBOCZZ56xuBrJ63x8fFzvo48++giHw2FxRSLuReFIxN3FxvLZs89y7tw56tWrx+233251RZIP9OrVi+DgYP755x/mvPsuxMZaXZKI21A4EnFnkZGcKluWz7/6CoBXGjXCZrNZXJTkB4GBgTzZtCkAH772GoSHw+XeSRFPZzPGGKuLyG2nTp0iODiY+Ph4goKCrC5HJH2xsRAezgcOBy8CVYCtXl7Y9+2DsDCrq5O8LjaWQ2XLEm4Ml4BlQHO7HaKj9f4St5Vb39/qORJxVzt3ct7hYOTlX18C7A4H7NplZVWSX+zcSagxPHb517cAkpL0/hJB4UjEfVWuzCSbjX+BssDDAHY7VKpkbV2SP1SuDF5evAx4AwuBKC8vvb9EUDgScVuXQkL4oEgRAP4P8LHbYexYDXlI9ggLg3HjKGe30/PyoreqV9f7SwSFIxG3NXXqVPYdO0aJYsXoNW9e8lyQXr2sLkvyk169IDqal6dOxW638+uWLaxatcrqqkQsp3Ak4oYuXrzIsGHDAHj+hRcIaN9e/6KXnBEWRsWHH6Z79+4AvPXWWxYXJGI9hSMRNzRp0iSio6MJCQnhqaeesroc8QCvvPIKXl5e/Pzzz6xbt87qckQspXAk4mYuXLjg+tf7kCFDKFCggMUViSe4+eabeeihhwB44403LK5GxFoKRyJuZty4cRw4cICwsDD69OljdTniQV5//XXsdjs///wzy5cvt7ocEcsoHIm4kXPnzvHuu+8C8Nprr+Hv729xReJJbr75Znr37g3Aiy++iAdeI1gEUDgScSuffPIJ//77L+XLl+exxx679hNEstnrr79OQEAAK1asYM6cOVaXI2IJhSMRNxEXF8d7770HwNtvv42Pj4/FFYknKlWqFIMHDwbg5ZdfJikpydqCRCygcCTiJoYOHcrp06eJiIjgwQcftLoc8WAvvPACN910E9u2bWPKlClWlyOS6xSORNzAjh07GDt2LAAjRozAy0sfTbFO4cKFeeWVV4DkM9fOnz9vcUUiuUt/gUXcwIsvvkhSUhJ33XUXLVu2tLocEQYMGECZMmXYv38/I0aMsLockVylcCRisSVLlvDjjz9it9t5//33rS5HBAB/f38++OADAIYPH87+/fstrkgk9ygciVjo0qVLDBgwAIC+fftSrVo1iysS+Z+uXbvSvHlzzp8/zwsvvGB1OSK5RuFIxCqxsfx30CC2bt1K0aJFdU8rcTs2m41PP/0Um83GN998wx+ffgqxsVaXJZLjFI5ErBAZyaGyZXlj9GgA3rvzTooUKWJxUSJp1atXjz7NmwMwcPBgksqWhchIi6sSyVk244GXQD116hTBwcHEx8cTFBRkdTniaWJjITycRxwOpgINgSgvL7z27YOwMKurE0ktNpYjZctyszGcBD4BBtntEB2t96vkutz6/lbPkUhu27mTJZeDkQ34AvByOGDXLosLE0nHzp0UNwbnqQJDgJikJL1fJV9TOBLJZefCwnDeTrYv0ADAbodKlawrSiQjlSuDlxe9gVuBs0B/wFSsaG1dIjlI4Ugkl70xbhy7gNLAe5AcjMaO1RCFuKewMBg3Di+7nXGAD/AL8P3KlRYXJpJzNOdIc44kF61evZrGjRvjcDiYM2kSncqVS+4xUjASdxcbC7t28caPPzLsk08ICQlxnWkpklty6/tb4UjhSHLJxYsXadCgAZs3b6Zbt25MmzbN6pJEsuzChQvUq1ePv//+m65du/LNN99YXZJ4EE3IFsln3nzzTTZv3kyxYsX45JNPrC5H5Lr4+/szZcoU7HY7M2bMUDiSfEnhSCQXLFu2jPfeew+AMWPGULx4cYsrErl+t9xyC6+++ioA/fv35+DBgxZXJJK9FI5EctjJkyd55JFHMMbw2GOPcd9991ldksgNGzJkCBEREZw4cYJevXrhgTM0JB9TOBLJYU899RQxMTFUrFiRTz/91OpyRLKFj48PX331Ff7+/sybN4+RI0daXZJItlE4EslBkydP5uuvv8ZutzN16lQCAwOtLkkk21SrVo2PP/4YgJdeeomVOr1f8gmFI5EcsnHjRp588kkgeTJ248aNLa5IJPv17duXLl26kJiYSNeuXTl+/LjVJYncMIUjkewWG0v8nDncf++9XLhwgQ4dOvDKK69YXZVIjrDZbIwfP56KFSsSExPDY489hiMmBhYvTr42kkgepHAkkp0iIzFly/L43XezKzqaskWK8NVXX+HlpY+a5F9BQUF8++23+Pr68tNPP/FWuXLQujWEh0NkpNXliWSZ/mKLZJfYWHjiCd42hpkk32bhu5MnKXr+vNWVieS4+vXrM+bddwF48/JnAIcD+vZVD5LkOW4RjkaNGkX58uXx9/cnIiKCP/74I8O2M2fOpG3bthQvXpygoCCaNGnC/Pnzc7FakQzs3Ml3DgevX/71C6Chw6G7l4vHeKx+fQZe/v8ewGaApCR9BiTPsTwczZgxg8GDBzNkyBDWr19P8+bN6dChAzExMem2X7ZsGW3btmXu3LmsXbuWVq1acdddd7F+/fpcrlwktTXnztHz8v8/A/SB5JvKVqpkXVEiualyZT6y2WgDnAXuAY56eekzIHmO5fdWa9SoEfXr12f06NGuZdWqVePee+9l+PDhmXqNGjVq0LVrV15//fVrN0b3VpPsd+DAARo2bMjBgwfpCPwE2O12GDsWevWyujyR3BMZybEnnqChw8EeoGnFivy2eTMBAQFWVyb5gEfcW+3ixYusXbuWdu3apVrerl07VqxYkanXcDgcnD59miJFimTYJiEhgVOnTqX6Ecku8fHx3HnnnRw8eJAaNWowfds27IsXQ3S0gpF4nl69KLpvH3MmTaJwcDArdu+mW7duJCUlWV2ZSKZZGo6OHj1KUlISISEhqZaHhIRw+PDhTL3GRx99xNmzZ+nSpUuGbYYPH05wcLDrp0yZMjdUt4jThQsXuOeee9i4cSMhISHMmTOHoGrVoGVLCAuzujwRa4SFUf3RR/lpzhz8/PyYPXs2AwcO1C1GJM+wfM4RJF8nIyVjTJpl6Zk+fTpvvvkmM2bMoESJEhm2e/nll4mPj3f97N+//4ZrFklKSqJbt24sXbqUoKAg5s2bR/ny5a0uS8RtNG/enKlTp2Kz2Rg1apTr5ssi7s7ScFSsWDHsdnuaXqK4uLg0vUlXmjFjBr169eLbb7/l9ttvv2pbPz8/goKCUv2I3AhjDE8++SSzZs3Cz8+PH3/8kbp161pdlojbuf/++/nkk08AeOWVV/jiiy+sLUgkEywNR76+vkRERLBw4cJUyxcuXEjTpk0zfN706dN59NFH+frrr7nzzjtzukyRVIwxPPPMM4wfPx4vLy++/vprWrZsaXVZIm5r4MCBvPrqqwAMGDCASF0YUtyct9UFPPvsszzyyCM0aNCAJk2aMG7cOGJiYujXrx+QPCR24MABpkyZAiQHox49evDpp5/SuHFjV69TQEAAwcHBlm2HeAZjDC+88AKffvopAOPHj6dz584WVyXi/oYNG8a5c+cYOXIkffr0ISAggG7dulldlki6LA9HXbt25dixYwwbNoxDhw5Rs2ZN5s6dS3h4OACHDh1Kdc2jsWPHkpiYyFNPPcVTTz3lWt6zZ08mT56c2+WLBzH79zPkpZcY8fXXAIwZM4bHH3/c4qpE8gabzcaIESM4f/48o0ePpkePHvidOcN9lStD5co6gUHciuXXObKCrnMkWWUmTODNPn0Ydvn3/3brxlPTpllak0he5HA46N27N5MmTcIbmAZ08fKCceN06Qu5ptz6/lY4UjiSazD79/Ny2bK8f/n3T4BBdnvydYz0r12RLEvat4/HypXjK5Invk4CeugzJZngEReBFHF3DoeDAU8/7QpGI4FBoPtFidwA+549TAZ6Aw7gUWCcPlPiRhSORDKQmJjIY489xqgff8QGjCP5nmmA7pkmciMqV8bLy4uxwADAAH2Bz69y03GR3KRwJJKOhIQEunbtypQpU7Db7Uzr04c+dnvyg857pqn7X+T6hIXBuHF42e18Bvzf5Yv+Dnz9dd5++21dSVsspzlHmnMkVzhz5gz3338/8+fPx9fXl2+//ZZ77rkHYmOTu/0rVVIwEskOlz9TpmJF3pwwgWHDkk95eOqpp/j000+Tb94skoImZOcghSPJSFxcHHfeeSdr1qyhQIECzJ49m7Zt21pdlohH+Pzzzxk0aBDGGB544AG++uor/Pz8rC5L3IgmZIvksl27dtG0aVPWrFlD0aJF+f333xWMRHLR008/zTfffIOPjw/fffcdHTt25NSpU1aXJR5I4UgkNpZVo0bRpFEjdu/eTfny5VmxYgWNGze2ujIRj9OlSxd+/fVXAgMDWbRoES1atODQ2rWweHHyMJxILlA4Es8WGcnPZcvS6qmnOHr8OBHh4URFRXHzzTdbXZmIx2rTpg1LliyhRIkSbNiwgYYNGrCxdWsIDwfdl01ygcKReCyzfz8f9+nDPcZwDugALNm/n5BLl6wuTcTj1a9fn6iZM6kKxALNgDkOB/Ttqx4kyXEKR+KRLl68yBP9+vGsMTiAXsCPQCGHQxeiE3ETFS5eJApoA5wF7gE+TkrC7NxpbWGS7ykcicc5evQobdu2ZcLcuXiRfNXr8YAP6OKOIu6kcmUKe3nxK/AEyReLfBZ4cuJELqmHV3KQwpF4lM2bN9OwYUOWLVtGYGAgPw8axDN2OzbQxR1F3M3li0X62O2MAT6y2bDZbIydOpXWrVtz6NAhqyuUfErXOdJ1jjzG1KlTeeKJJzh//jwVKlRgzpw5VK9eXRd3FHF3KT6jP2/YwMMPP8ypU6coWbIk33//Pc2aNbO6QsklughkDlI48hCxsbBzJwlly/LMRx8xevRoANq1a8e0adMoVqyYxQWKyPXYuXMnnTt3ZsuWLXh7e/PRRx/x9NNPYztwAHbuhMqV9Q+dfEoXgRS5EZGREB5OdOvWNK9UyRWMXn/9debOnatgJJKHVa5cmZUrV/Lggw+SmJjIoEGDeKhRI06WLQs65V+ygXqO1HOU/8TGYsqWZZoxPAWcAm4Cpn75JR179LC4OBHJLsYYPvvsM55//nkSExMJB6YCt0LyHMLoaPUg5TPqORK5TifWreMhY3iE5GDUFFgHdCxb1trCRCRb2Ww2Bg0axPJPP6UCsA9oAbwOJCYl6bIcct0UjiRfmT9/PrX79WMGYAfeApYC5XSKvki+1ejuu9lgs9ETcJD8uW8CbLx40drCJM9SOJJ84ciRI3Tv3p077riD2EOHqFSiBCu8vHgV8NYp+iL5W1gYgePHM9luZzoQDKwBGtx5J0OGDOHChQsWFyh5jcKR5GkOh4Mvv/ySatWqMW3aNLy8vBg8eDDrd++m4b59yTerjI6GXr2sLlVEclKvXhAdzYOLF7N9zRo6d+5MYmIi7777LnXq1GHRokVWVyh5iCZka0J23nP5FP3lJ07wzPDhrFmzBoBatWoxYcIEGjZsaHGBIuIOZs6cyYABA1wXi7znnnv48MMPqRwQoFP+8yhd5ygHKRzlYZGR7O3ThxeN4bvLiwIDA3n11Vd55pln8PHxsbQ8EXEvJ0+e5NVXX2XMmDEkJSXhY7czICmJ14CbvLxg3Dj1LOchCkc5SOEob4qOiuLdpk2ZBCSSPCbc22Zj2Nq1hNSrZ3F1IuLOtm3bxvMDBvDr4sUABAGDgcFeXty0b596kPIIncovcll0dDR9+/alcvPmjCc5GLUHNgBjjSEkPt7S+kTE/VWvXp25r73GPKA2yZf5GAaUczh4Y8gQjh8/bm2B4lYUjsQtGWNYunQpnTt3pmLFiowbN47EpCTaAn8C84BakHyhN52iLyKZUbky7b28WA98D9TkckiaMoUyZcowcOBA9uzZY22N4hYUjsR9xMZyft48Jo4YQb169WjZsiWzZs3C4XDQrl07li9fzoIJE2hqtye31yn6IpIVYWEwbhxedjv3ARu9vPiuXz9q167NuXPn+Pzzz6lcuTL3338/UVFRySd/LF6c/F/xKJpzpDlHbuHAiBGM+r//Yyxw7PKyAgUK0KNHD55++mmqV6/+v8Yp7tCtYCQiWXbF3xBjDL///jsfffQR8+bNczVrCDwNPGCz4Td+vCZuuwFNyM5BCkfuwRjDypUr+XT4cH6YM4fEy8vDgQE2G702beKmmjWtLFFEPMyWLVsY+dZbTPv2W5zX1y4BPGGz0e+vvyh9yy1WlufxNCFb8q2EhASmTp1Kw4YNadq0KTMuB6MWwExgF/C8Mdx09Ki1hYqIx6lZsyYT+/UjhuTbkJQC4oC3jSG8cWO6dOnCH3/8gQf2K3gU9Ryp5yjnXb5o47+FCzPmp58YPXo0//77LwB+fn48fO+9PP3tt9RN+VbUHbVFxCqxsRAeDg4Hl4DZwH+BZSma1KlThwEDBtCtWzcKHD+ui0rmEvUcSf4QGcnasmXp0bo1ZevX58033+Tff/+lVKlSvPPOO+zfv5/Ib76h7vjxyYEINNFaRKx1eeI2djs+wAN2O0snTGDDhg306dOHgIAANm7cSJ8+fQgrXpz/K1OGPa1bJweqyEirq5dsoJ4j9RzliISEBL4bO5ZRgwYRlWJ5E2Dgf//LfU88kfZq1ppoLSLuJIO/ScePH2fSpEl88dln7I2JAcAGdAIGeHlx+969eJUta03N+ZwmZOcghaOcEx0dzdixY5kwYQJHL88Z8gG6AIOAWyD51NiWLS2rUUQkOyT99hu/tm3L58CCFMurlCnDU//3f/To0YPg4GCrysuXFI5ykMJRNrg8j4jKlUkKDWXBggWMHj2an3/+2TVRMSw0lL6HD9PbGEo6n6e5RCKSX6SYm7QD+AKYDJy+/HBAQAAPPPAAffr0oVmzZtgOHNDcpBukOUfiviIjITycba1b82KZMpQtVoyOHTsyZ84cjDHcfvvtzJo1i70xMbw6fjwlNZdIRPKjFHOTqgCf2e0c+O9/+eKLL6hRowbnz59nypQpNG/enOqlSvFR2bLEaW5SnqCeI/UcZcmeP/9kdvPmfGMMq1MsL1K4MI/07MmTTz5JlSpVUj9Jc4lEJD9L52+cMYa//vqLCRMm8M306Zw9dw4AO9AK6GKz0XnjRorWqmVd3XmQhtVykMLRVaQYLiMsjAsXLrB69Wp+++03Zs+ezaZNm1xNvYGOwKPAnQsW4Nu2rUVFi4i4r1M//8yMu+5iArAqxXK7lxctWrbkjjvuoH379tSqVQubzZb84BV/iyWZwlEOUjjKQGQkR/r04U9j+BP4s2JF1sTEcOnSJVcTu91Oi6Qk7gW6knzlWM0jEhG5ihRzk3YD3wHfAuuvaBYaGkrr1q1pBjT9+mtqGoPdyyt56E63LgEUjnKUR4ajdP4VYoxhx44d/Pnnn/y5YAF/fvst/6Tz1JCQEJo3b06nTp3o1KkTRWfPhr59ISnpf/OI9MEVEclYZGSav5u7WrRg7ty5zJ8/nyVLlnDu8tCbUyDQGGhms9Hkq69o1KlT2rPfPKyHSeEoB3lcOIqMhCeewDgc7LDZWNC1K7+fO8eKFStcp9unVB24FWgGNJs6lQrduv2vq9dJ84hERLLmKn83ExISWL58OX9MmcKKKVNYyf/OenOy2WzUrFmTpk2bJv/ExlLx1VexGQMe0sOkcJSDPCkcHd20id/r1mWBMSwAYq943M/Pj4YNG9Ksdm1uHTWKJsZQxPmghstERHLX5SG4JIeDLcCfQJTNxooyZdhz+YKTKRUn+b6UdwDtvbwI27cvX//Nzq3vb+8ce+V8aN++fRhjKFeunNWl/M8VXaoXL15kxYoVLFiwgIULF7J27dpUN0j0I7lXqO0TT3Dbo49Sv359/Pz8kh+sVy/tcFk+/pCJiLidy5cHsPftS52kJOrY7fS/PHXh8OHDREVFsWLFClb8+itrt27lCPD95R8cDmo0b077zp254447aN68Of7+/smv62bDb8YY/v77b4oWLUqJEiWsLicN9RxlInkmJSXRu3dvJk+eDEDnzp2ZNGmS9b1OkZGYPn3Ybgy/2WwsqFWLJbt3c/bs2VTNagFtgXZAc6DA1XqENFwmImK9a/0tjo0loWxZ1hrDQmA+8BfgSNEkICCAli1b0j44mDtmzOBmY7C5wfDbnj176NKlC2vXrsVut/P+++/z3HPPZeq5GlbLQVnduZ9++imDBw8Gksd8jTHUq1ePpUuXEhgYmDNFZpDyT506xZYtW1i/aBFLX3uNJcCRK55aokQJ2rZtS7t27bj99tsp9euvmkAtIpLfXDHJ+/hHH/F7qVLMmzeP+fPnc+DAgVTNw0n+h3Ijm40Gv/5Kjdat07/HZQ72MO3Zs4cmTZoQFxeHl5cXDkdynFu6dCm33XbbNZ+vcJSDsrJzExISKFu2LHFxcYwaNYoGDRpw5513cuTIEdq3b8+cOXPSvrmuJoOzxo4cOcKBAwc4ePAgcd9/z5Evv+SIMRwFjtSuzRF/fw4dOsT+/fvTvGQAyZOn2wHtxo+n1uOP4+V1xcXP1SMkIpL/ZPC33RjD1q1bmfff/zJ/7FiWAReveKq3tzdlypShfPnyhIeHE/rvv4T++iuhxhBqsxH67ruEDh78v6G5K9ebxRB1/PhxmjZtyo4dO6hduza//PILQ4cOZcKECbRq1YpFixZd8zUUjnJQVnbuzJkzue+++yhdujR79+7Fx8eH1atX07JlS86dO8djjz1GZGRk2rO50nP5rDGHw8E6m42fO3Xij7NnWbduHSdPnsx0/aVLl6ZW5co0W7qUlsZwC8lziTSBWkREUrk8wfusw8ESYBmwFlgTFET8qVOZeonChQsTGhpKxYoVadOmDR3OnqXK66+Dw5Hps+QuXLhA+/btWbZsGWXKlGHlypWUKlWKmJgYypcvj8PhYO/evdec05trJ1QZDxQfH28AEx8ff8223bt3N4B57rnnUi2fM2eO8fLyMoB58803jdm/35hFi5L/m579+80Jm82MBFMRDOn8hISEmHqVKpk7wDwC5lkw74IZD2b2W2+ZP//80xw9evR/rzlhgjF2uzGQ/N8JE25kt4iISH6UzndFUlKSiYmJMcuWLTNffvmlefvxx81TYDqDaQKmHBi/DL6rANMYzDgwp5yveZXvvsSFC03nDh0MYIKCgszmzZtTNWnZsqUBzMiRI6+5KVn5/r4RCkfXUKZUKQOY36ZPT/PYmDFjXG+UYTabcYAxXl5pQsqWLVtMv7vuMgVSvLEKgbkPzLjnnjPr1q0zFy5cSG68f3/ya8D/fq7xxjOLF2f8uIiIyLW+K9L57nF4eZnjmzebrVu3mt9++82MGDHCtI2IMN4pvssCwQwAs/3LL9O+5oQJ5rzNZrpebuvr7W0WL16cptmIESMMYDo2anTN7zKFoxyU2Z0b++GHBjBeYE7bbOn2zAx97jnXm6QVmLlgDnh5mU0LFphRo0aZJk2apErbNcGMBXPmaqFHPUIiIpLbMvPds3+/OWyzmQ/B3HxFb1KbNm3M1KlTzT///GP2rVxpptlspurlx3zAfO/lle533trXXnMFrcQMvmudciscefaco23bCKpWLf1GsbF8X7YsDxhDXS7fAye9OT2LFzOudWsGA+czWJ/dbueee+7h6QoVaDFyJDaH49pnjWkCtYiI5LbMfPdcPkvOkZTE715efFG7NnM2bXKdeXalksA0oDXA4sXQsmWq9SWVLUugMZwHdgA3X2X+7Knt2wmuXj3H5xx5XbtJ/rWievXkg5yenTuJupwbmziXJSUlv2lSqlyZJ7y82AL0J/lUSRsQWKgQLVq04IMPPiA2NpYffviBlh9+iG3fvuQ3R3T01SewhYUlv4EUjEREJLdk5runVy+IjsZr8WLa7tvH7PXr2bNnD6+88gq33HILfn5+2O12qgFvAFu5HIzs9uTQldLOndiNoeblXzdB+t+1AJGRfF+9+g1vYmZ4dM/Ru8DLGSXU2FhalSnDEmAy0BMyPhssnRsK6jpCIiLi0TLz3Xj5bLreDgeRwKvAW+l9115u19Xh4FtQz1FOSoSME2pYGDsu3/24Glz9dhqXU3SmeoREREQ8QWa+Gy/fLqXO5cvhbIL0v2t37gSHI/l7Oxd49L3VLkH63XzA6dOnORQfD0CVOXOgbt2rdzOGhWkITEREJKXMfDf26kXtoCDo0oVNZcqkH6IqVwYvLy5lMK8pu6nnKIPeoH/++QeAkJAQgjt1UvARERHJIbXatAEgev/+NPcHBVw9TLnVc+TR4SipX78Mh8Cc4ejmm2/OzZJEREQ8TpEiRQi+PJUlOjo6/Ua9epGYifuvZQePDkeXAgIyfGzHjh0AVKlSJbfKERER8Vjly5cHrhKOgES7PVdq8ehwlJiYcQedeo5ERERyjzMc7d27N8M2V/vezk4KRxlwJtcKFSrkUjUiIiKeS+HITVxtJ8fGxgJQpkyZ3CpHRETEY5UrVw64eji6dOlSrtSicJSOpKQkDh48CECYzlITERHJcZmZc5SUlJQrtbhFOBo1ahTly5fH39+fiIgI/vjjj6u2X7p0KREREfj7+1OhQgXGjBlzXevNKBwdPnyYpKQkvL29CQkJua7XFhERkczTsFoKM2bMYPDgwQwZMoT169fTvHlzOnToQExMTLrt9+7dS8eOHWnevDnr16/nlVdeYeDAgfzwww9ZXndG3XP79+8HoFSpUthzaWa8iIiIJytbtiwAJ0+e5MyZM+m28ZhhtZEjR9KrVy969+5NtWrV+OSTTyhTpgyjR49Ot/2YMWMoW7Ysn3zyCdWqVaN37948/vjjjBgxIsvrzqh7TvONREREcldgYCCFChUC4NChQ+m28Yieo4sXL7J27VratWuXanm7du1YsWJFus+JiopK0759+/asWbMmy4kyo53s7DnSfCMREZHcExoaCuCa93ul3JpzZOm91Y4ePUpSUlKaeT0hISEcPnw43eccPnw43faJiYkcPXrUtWNTSkhIICEhwfV7/OV7pp07d45Tp06lab97924ASpQoke7jIiIikv1KlCjBzp072b17N/Xq1Uvz+MWLFwEwxuRoHW5x41nb5bvxOhlj0iy7Vvv0ljsNHz6coUOHplk+f/581+XK0/P555/z+eefZ/i4iIiIZL9evXrRK4PbewEcO3bsqt/fN8rScFSsWDHsdnuaXqK4uLgMzxIrWbJkuu29vb0pWrRous95+eWXefbZZ12/nzx5kvDwcGJiYnJ057qbU6dOUaZMGfbv309QUJDV5eQabbe22xNou7XdniA+Pp6yZctSpEiRHF2PpeHI19eXiIgIFi5cyH/+8x/X8oULF3LPPfek+5wmTZowZ86cVMsWLFhAgwYN8PHxSfc5fn5++Pn5pVkeHBzsUW8qp6CgIG23B9F2exZtt2fx1O328srZKdOWn6327LPPMmHCBCZOnMj27dt55plniImJoV+/fkByr0+PHj1c7fv168e+fft49tln2b59OxMnTiQyMpLnn3/eqk0QERGRfMTyOUddu3bl2LFjDBs2jEOHDlGzZk3mzp1LeHg4kHw6X8prHpUvX565c+fyzDPP8MUXX1CqVCk+++wz7rvvPqs2QURERPIRy8MRQP/+/enfv3+6j02ePDnNshYtWrBu3brrXp+fnx9vvPFGukNt+Zm2W9vtCbTd2m5PoO3O2e22mZw+H05EREQkD7F8zpGIiIiIO1E4EhEREUlB4UhEREQkBYUjERERkRTybTh65513aNq0KQUKFKBw4cKZeo4xhjfffJNSpUoREBBAy5Yt2bp1a6o2CQkJPP300xQrVoyCBQty9913ExsbmwNbcH1OnDjBI488QnBwMMHBwTzyyCOcPHnyqs+x2Wzp/nz44YeuNi1btkzz+IMPPpjDW5N517Pdjz76aJptaty4cao2+e14X7p0iRdffJFatWpRsGBBSpUqRY8ePdLc5NHdjveoUaMoX748/v7+RERE8Mcff1y1/dKlS4mIiMDf358KFSowZsyYNG1++OEHqlevjp+fH9WrV2fWrFk5Vf51y8p2z5w5k7Zt21K8eHGCgoJo0qQJ8+fPT9Vm8uTJ6X7WL1y4kNObkiVZ2e4lS5aku01///13qnb57Xin9/fLZrNRo0YNVxt3P97Lli3jrrvuolSpUthsNmbPnn3N5+TaZ9vkU6+//roZOXKkefbZZ01wcHCmnvPee++ZwMBA88MPP5jNmzebrl27mtDQUHPq1ClXm379+pnSpUubhQsXmnXr1plWrVqZOnXqmMTExBzakqy54447TM2aNc2KFSvMihUrTM2aNU2nTp2u+pxDhw6l+pk4caKx2Wxm9+7drjYtWrQwffr0SdXu5MmTOb05mXY9292zZ09zxx13pNqmY8eOpWqT3473yZMnze23325mzJhh/v77bxMVFWUaNWpkIiIiUrVzp+P9zTffGB8fHzN+/Hizbds2M2jQIFOwYEGzb9++dNvv2bPHFChQwAwaNMhs27bNjB8/3vj4+Jjvv//e1WbFihXGbrebd99912zfvt28++67xtvb26xcuTK3NuuasrrdgwYNMu+//75ZtWqV+eeff8zLL79sfHx8zLp161xtJk2aZIKCgtJ85t1JVrd78eLFBjA7duxItU0pP6P58XifPHky1fbu37/fFClSxLzxxhuuNu5+vOfOnWuGDBlifvjhBwOYWbNmXbV9bn628204cpo0aVKmwpHD4TAlS5Y07733nmvZhQsXTHBwsBkzZowxJvnN6OPjY7755htXmwMHDhgvLy8zb968bK89q7Zt22aAVG+CqKgoA5i///47069zzz33mNatW6da1qJFCzNo0KDsKjVbXe929+zZ09xzzz0ZPu4px3vVqlUGSPVH2J2Od8OGDU2/fv1SLatatap56aWX0m3/wgsvmKpVq6Za1rdvX9O4cWPX7126dDF33HFHqjbt27c3Dz74YDZVfeOyut3pqV69uhk6dKjr98z+PbRSVrfbGY5OnDiR4Wt6wvGeNWuWsdlsJjo62rUsLxxvp8yEo9z8bOfbYbWs2rt3L4cPH6Zdu3auZX5+frRo0YIVK1YAsHbtWi5dupSqTalSpahZs6arjZWioqIIDg6mUaNGrmWNGzcmODg40/X9+++//PLLL+neDXnatGkUK1aMGjVq8Pzzz3P69Olsq/1G3Mh2L1myhBIlSnDzzTfTp08f4uLiXI95wvGG5Bs52my2NMPP7nC8L168yNq1a1MdA4B27dpluI1RUVFp2rdv3541a9Zw6dKlq7Zxh+MK17fdV3I4HJw+fTrNDTrPnDlDeHg4YWFhdOrUifXr12db3TfqRra7Xr16hIaG0qZNGxYvXpzqMU843pGRkdx+++2uu0s4ufPxzqrc/Gy7xRWy3cHhw4cBCAkJSbU8JCSEffv2udr4+vpy0003pWnjfL6VDh8+TIkSJdIsL1GiRKbr+/LLLwkMDKRz586plj/88MOUL1+ekiVLsmXLFl5++WU2btzIwoULs6X2G3G9292hQwceeOABwsPD2bt3L6+99hqtW7dm7dq1+Pn5ecTxvnDhAi+99BLdunVLdfNKdzneR48eJSkpKd3PZUbbePjw4XTbJyYmcvToUUJDQzNs4w7HFa5vu6/00UcfcfbsWbp06eJaVrVqVSZPnkytWrU4deoUn376Kc2aNWPjxo1Urlw5W7fhelzPdoeGhjJu3DgiIiJISEjgq6++ok2bNixZsoTbbrsNyPg9kV+O96FDh/j111/5+uuvUy139+OdVbn52c5T4ejNN99k6NChV22zevVqGjRocN3rsNlsqX43xqRZdqXMtLkRmd1uSFs/ZK2+iRMn8vDDD+Pv759qeZ8+fVz/X7NmTSpXrkyDBg1Yt24d9evXz9RrZ1VOb3fXrl1d/1+zZk0aNGhAeHg4v/zyS5pwmJXXvVG5dbwvXbrEgw8+iMPhYNSoUakes+J4X01WP5fptb9y+fV81nPb9dY4ffp03nzzTX788cdUAbpx48apTjpo1qwZ9evX5/PPP+ezzz7LvsJvUFa2u0qVKlSpUsX1e5MmTdi/fz8jRoxwhaOsvqZVrrfGyZMnU7hwYe69995Uy/PK8c6K3Pps56lwNGDAgGueMVOuXLnreu2SJUsCyck0NDTUtTwuLs6VQkuWLMnFixc5ceJEqt6EuLg4mjZtel3rzYzMbvemTZv4999/0zx25MiRNEk6PX/88Qc7duxgxowZ12xbv359fHx82LlzZ459WebWdjuFhoYSHh7Ozp07gfx9vC9dukSXLl3Yu3cvixYtStVrlJ7cON7pKVasGHa7Pc2/+lJ+Lq9UsmTJdNt7e3tTtGjRq7bJyvslJ13PdjvNmDGDXr168d1333H77bdfta2Xlxe33HKL6z1vtRvZ7pQaN27M1KlTXb/n5+NtjGHixIk88sgj+Pr6XrWtux3vrMrVz3aWZijlQVmdkP3++++7liUkJKQ7IXvGjBmuNgcPHnS7Cbp//fWXa9nKlSszPUG3Z8+eac5aysjmzZsNYJYuXXrd9WaXG91up6NHjxo/Pz/z5ZdfGmPy7/G+ePGiuffee02NGjVMXFxcptZl5fFu2LChefLJJ1Mtq1at2lUnZFerVi3Vsn79+qWZtNmhQ4dUbe644w63m6Cble02xpivv/7a+Pv7X3Niq5PD4TANGjQwjz322I2Umq2uZ7uvdN9995lWrVq5fs+vx9uY/01I37x58zXX4Y7H24lMTsjOrc92vg1H+/btM+vXrzdDhw41hQoVMuvXrzfr1683p0+fdrWpUqWKmTlzpuv39957zwQHB5uZM2eazZs3m4ceeijdU/nDwsLMb7/9ZtatW2dat27tdqd2165d20RFRZmoqChTq1atNKd2X7ndxhgTHx9vChQoYEaPHp3mNXft2mWGDh1qVq9ebfbu3Wt++eUXU7VqVVOvXr08u92nT582zz33nFmxYoXZu3evWbx4sWnSpIkpXbp0vj7ely5dMnfffbcJCwszGzZsSHV6b0JCgjHG/Y638xTnyMhIs23bNjN48GBTsGBB11k5L730knnkkUdc7Z2n+z7zzDNm27ZtJjIyMs3pvn/++aex2+3mvffeM9u3bzfvvfee257andnt/vrrr423t7f54osvMrwEw5tvvmnmzZtndu/ebdavX28ee+wx4+3tnSpgWy2r2/3xxx+bWbNmmX/++cds2bLFvPTSSwYwP/zwg6tNfjzeTt27dzeNGjVK9zXd/XifPn3a9d0MmJEjR5r169e7zpy18rOdb8NRz549DZDmZ/Hixa42gJk0aZLrd4fDYd544w1TsmRJ4+fnZ2677bY0afz8+fNmwIABpkiRIiYgIMB06tTJxMTE5NJWXduxY8fMww8/bAIDA01gYKB5+OGH05zieuV2G2PM2LFjTUBAQLrXsomJiTG33XabKVKkiPH19TUVK1Y0AwcOTHNNICtldbvPnTtn2rVrZ4oXL258fHxM2bJlTc+ePdMcy/x2vPfu3Zvu5yLlZ8Mdj/cXX3xhwsPDja+vr6lfv36qHqyePXuaFi1apGq/ZMkSU69ePePr62vKlSuXbuj/7rvvTJUqVYyPj4+pWrVqqi9Td5GV7W7RokW6x7Vnz56uNoMHDzZly5Y1vr6+pnjx4qZdu3ZmxYoVubhFmZOV7X7//fdNxYoVjb+/v7npppvMrbfean755Zc0r5nfjrcxyb3bAQEBZty4cem+nrsfb2evV0bvWSs/2zZjLs9mEhEREZH8e/sQERERkeuhcCQiIiKSgsKRiIiISAoKRyIiIiIpKByJiIiIpKBwJCIiIpKCwpGIiIhICgpHIiIiIikoHImIiIikoHAkIiIikoLCkYjkK8OGDaNWrVoULFiQkJAQnnzySS5dumR1WSKSh3hbXYCISHYxxpCUlMTYsWMpXbo027Zto0ePHtSuXZsnn3zS6vJEJI/QjWdFJF/r1q0bxYsX59NPP7W6FBHJIzSsJiL5xr59+xgwYAA1a9bkpptuolChQnz77beEhYVZXZqI5CEKRyKSLxw9epSGDRty9OhRRo4cyfLly4mKisJut1O3bl2ryxORPERzjkQkX5g7dy6JiYlMnz4dm80GwBdffMHFixcVjkQkSxSORCRfKFKkCKdOneKnn36ievXqzJkzh+HDh1O6dGmKFy9udXkikodoQraI5AvGGJ588km+/vprAgIC6N69OxcuXGDfvn38/PPPVpcnInmIwpGIiIhICpqQLSIiIpKCwpGIiIhICgpHIiIiIikoHImIiIikoHAkIiIikoLCkYiIiEgKCkciIiIiKSgciYiIiKSgcCQiIiKSgsKRiIiISAoKRyIiIiIpKByJiIiIpPD/wj712yf2JrEAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4GUlEQVR4nO3dd3gUVdvH8e9m0wMJPZRA6B0FQkeKIAgIIhZEVFABKYoi8qjYEB4VbKAoSAugr6jYQJAmCNhAaaGj1AChgxJ6SLLn/SPZfRKSQALJzib5fa4rF9nJ2Z17ZnZ3bu5z5ozNGGMQEREREQC8rA5ARERExJMoORIRERFJQcmRiIiISApKjkRERERSUHIkIiIikoKSIxEREZEUlByJiIiIpKDkSERERCQFJUciIiIiKSg5klzh8OHDvPbaa2zcuDHN3x555BEKFChw3a99+fJlBgwYQKlSpbDb7dStW/f6A80GEydOZObMmWmWR0dHY7PZ0v1bXmKz2XjttdesDiNbvPbaa9hsthx/7ocffkjlypXx9fXFZrNx+vRpHnnkEcqXL5+q3ZtvvsncuXOvK56r+eeff+jRowclSpTAZrNx1113Zfk1ypcvzyOPPJLtsXmSgwcP0q1bNypWrEhQUBAhISHUq1ePjz76iISEhDTt9+7dy913302hQoUoUKAA7dq1Y8OGDRZEnv94Wx2ASGYcPnyYkSNHUr58+WxPXj7++GMmT57Mhx9+SERExA0lWtlh4sSJFCtWLM2JolSpUqxevZpKlSpZE5hkWd++fenQoUOOrmPjxo089dRT9O3bl969e+Pt7U3BggV55ZVXePrpp1O1ffPNN7n33nuvK3m5mv/+97/MmTOH6dOnU6lSJYoUKZKtr59XnD9/nuDgYF555RXKlSvH5cuXWbhwIYMHD2bjxo1MmzbN1fbEiRO0aNGCwoULM336dPz9/Rk9ejStW7dm7dq1VKtWzcItyfuUHEm+t3XrVgICAnjyySetDuWq/Pz8aNKkidVhSBaEhYURFhaWo+vYtm0bAP369aNRo0au5e5Mordu3UqlSpV48MEH3bbO7HLhwgUCAwPdsq7q1avzySefpFrWsWNHjh8/zieffMKECRPw8/MD4J133uHEiROsWrWK8PBwAG655RYqVarEq6++yuzZs90Sc36lbrV86MSJEzz++OOULVsWPz8/ihcvTvPmzVm2bJmrTevWralduzarV6+mWbNmBAQEUL58eWbMmAHAggULqF+/PoGBgdSpU4fFixenWc9vv/1G27ZtKViwIIGBgTRr1owFCxakabd161a6du1K4cKF8ff3p27duqm+QFauXEnDhg0BePTRR7HZbOl2vezevZtOnTpRoEABypYty7PPPktcXNxV94XNZmPatGlcvHjR9bozZ868ahfWlet2dn9s27aNBx54gJCQEEJDQ3nssceIjY1N9VyHw8GHH35I3bp1CQgIoFChQjRp0oR58+YBSV0L27Zt4+eff3bF4+waySimzOznmTNnYrPZWLFiBQMHDqRYsWIULVqUu+++m8OHD191H11N+fLl6dy5M3PmzOGmm27C39+fihUrMn78+DRtDxw4wEMPPUSJEiXw8/OjRo0avPfeezgcjgxfPzo6Gm9vb0aPHp3mb7/88gs2m42vv/4ayNpxuHTpEsOHD6dChQr4+vpSpkwZnnjiCU6fPp3u9v3www/Uq1ePgIAAatSowQ8//AAk7dcaNWoQFBREo0aNWLduXarnp9c1Nnv2bNq3b0+pUqVcr/fCCy9w/vz5jHd0Blq3bs1DDz0EQOPGjbHZbK6K45XdajabjfPnz/PJJ5+43lutW7e+6uv/888/DBo0iDJlyuDr60vFihV56aWXXJ8r53ty2bJl7Nixw/W6K1euzPA14+Pjee655yhZsiSBgYHccsstrFmzJt22R48epX///oSFheHr60uFChUYOXJkmi6omJgY7r33XgoWLEihQoV48MEHWbt2bZrPi7MLfsuWLbRv356CBQvStm1bIKl7/fXXX6d69equ78VHH32UEydOpIlr9uzZNG3alKCgIAoUKMDtt99OVFTUVffl1RQvXhwvLy/sdrtr2Zw5c2jTpo0rMQIIDg7m7rvvZv78+el2w0k2MpLv3H777aZ48eJmypQpZuXKlWbu3Lnm1VdfNV9++aWrTatWrUzRokVNtWrVTGRkpFmyZInp3LmzAczIkSNNnTp1zBdffGEWLlxomjRpYvz8/MyhQ4dcz1+5cqXx8fExERERZvbs2Wbu3Lmmffv2xmazpVrPX3/9ZQoWLGgqVapkPv30U7NgwQLzwAMPGMC89dZbxhhjYmNjzYwZMwxgXn75ZbN69WqzevVqc/DgQWOMMb179za+vr6mRo0a5t133zXLli0zr776qrHZbGbkyJFX3RerV682nTp1MgEBAa7XPX78uNm3b58BzIwZM9I8BzAjRoxwPR4xYoQBTLVq1cyrr75qli5dasaOHWv8/PzMo48+muq5Dz/8sLHZbKZv377m+++/N4sWLTJvvPGG+eCDD4wxxmzYsMFUrFjR1KtXzxXPhg0bjDEm3Zgyu5+d+69ixYpm8ODBZsmSJWbatGmmcOHC5tZbb00Vo7Ntett+pfDwcFOmTBlTrlw5M336dLNw4ULz4IMPGsC88847rnbHjx83ZcqUMcWLFzeTJk0yixcvNk8++aQBzMCBA6+6f7t162bKlStnEhISUrW77777TOnSpU18fHyWjoPD4TC333678fb2Nq+88or58ccfzbvvvmuCgoJMvXr1zKVLl1JtX1hYmKldu7br/d64cWPj4+NjXn31VdO8eXPz3XffmTlz5piqVaua0NBQc+HCBdfznTGl9N///teMGzfOLFiwwKxcudJMmjTJVKhQIc1xSO+5V9q2bZt5+eWXXcdr9erVZvfu3caYpM9FeHi4q+3q1atNQECA6dSpk+u9tW3btgxf++LFi+amm24yQUFB5t133zU//vijeeWVV4y3t7fp1KmTMcaYS5cumdWrV5t69eqZihUrul43NjY2w9ft3bu3sdls5j//+Y/58ccfzdixY02ZMmVMcHCw6d27t6vdkSNHTNmyZU14eLiZPHmyWbZsmfnvf/9r/Pz8zCOPPOJqd+7cOVO5cmVTpEgRM2HCBLNkyRLzzDPPmAoVKqR5H/fu3dv4+PiY8uXLm9GjR5uffvrJLFmyxCQmJpoOHTqYoKAgM3LkSLN06VIzbdo0U6ZMGVOzZs1Ux/SNN94wNpvNPPbYY+aHH34w3333nWnatKkJCgq66v5MyeFwmPj4ePPPP/+YL7/80gQFBZnhw4e7/n7hwgXXPrrSRx99ZADz999/Z2pdcn2UHOVDBQoUMEOGDLlqm1atWhnArFu3zrXs1KlTxm63m4CAgFSJ0MaNGw1gxo8f71rWpEkTU6JECXP27FnXsoSEBFO7dm0TFhZmHA6HMcaYHj16GD8/P3PgwIFU6+/YsaMJDAw0p0+fNsYYs3bt2gxP2L179zaA+eqrr1It79Spk6lWrdo19kbS84OCglItu57k6O23307VbtCgQcbf39+1rb/88osBzEsvvXTVeGrVqmVatWqVZnl6MWV2PzsTnkGDBqV6zbffftsA5siRI65ln3zyibHb7eaTTz65apzGJCUPNpvNbNy4MdXydu3ameDgYHP+/HljjDEvvPCCAcyff/6Zqt3AgQONzWZL9UV/5f5dsWKFAcycOXNcyw4dOmS8vb1TJb+ZPQ6LFy9Ot93s2bMNYKZMmZJq+wICAkxMTIxrmfP9XqpUKdf2GWPM3LlzDWDmzZuXJqaMOE+SP//8swHMpk2bMv1cJ+exXbt2barlVyZHxhgTFBSUKgG5mkmTJqX7uXrrrbcMYH788UfXslatWplatWpd8zV37NhhAPPMM8+kWj5r1iwDpIqtf//+pkCBAmb//v2p2r777rsGcCUiEyZMMIBZtGhRqnb9+/dPNzkCzPTp01O1/eKLLwxgvv3221TLnd87EydONMYYc+DAAePt7W0GDx6cqt3Zs2dNyZIlTffu3a+5D4wxZvTo0QYwgLHZbGm+Ew4dOmQAM3r06DTP/fzzzw1gVq1alal1yfVRt1o+1KhRI2bOnMnrr7/OH3/8QXx8fLrtSpUqRUREhOtxkSJFKFGiBHXr1qV06dKu5TVq1ABg//79QNKgwz///JN777031eBmu93Oww8/TExMDH///TcAy5cvp23btpQtWzbVuh955BEuXLjA6tWrM7VNNpuNLl26pFp20003uWJyhzvvvDPN+i9dusTx48cBWLRoEQBPPPFEtqwvK/v5ajECqfZTr169SEhIoFevXpmKo1atWtx8882plvXs2ZMzZ864rqxZvnw5NWvWTDUmBpKOszGG5cuXZ/j6rVu35uabb2bChAmuZZMmTcJms/H444+naX+t4+Bc15UD3u+77z6CgoL46aefUi2vW7cuZcqUcT12vt9bt26daqzKlZ+DjOzdu5eePXtSsmRJ7HY7Pj4+tGrVCoAdO3Zc9bnutHz5coKCgrj33ntTLXfutyv3U2asWLECIM3YpO7du+PtnXoI7A8//MCtt95K6dKlSUhIcP107NgRgJ9//tn1b8GCBdMMfH/ggQcyjOOee+5Js65ChQrRpUuXVOuqW7cuJUuWdHUTLlmyxPXZSNnO39+fVq1aXbU7MaVHHnmEtWvXsmTJEp577jneeecdBg8enKbd1a5WvN6rICVzNCA7H5o9ezavv/4606ZN45VXXqFAgQJ069aNt99+m5IlS7rapXfFia+vb5rlvr6+QNI4DoB///0XYwylSpVK83xnUnXq1CnXv5lpdy2BgYH4+/unWubn5+eKyR2KFi2aZv0AFy9eBJLGetnt9lT7+EZkZT9nNsbrkd72OJelPM5XXlZ+tTiv5Lwa6++//6ZixYpMnTqVe++9N911X2sbT506hbe3N8WLF0/VzmazUbJkyTSxZPR+v9bnID3nzp2jRYsW+Pv78/rrr1O1alUCAwM5ePAgd9999w0dh+x26tQpSpYsmeYkXKJECby9vTP92bzyNSHte8bb2zvNcTt27Bjz58/Hx8cn3dc6efKk6zVDQ0PT/D29ZZD0XREcHJxmXadPn3Ydw4zWdezYMQDXGMgreXllrt5QsmRJ1z5o3749hQsX5oUXXuCxxx6jXr16FC5cGJvNlu4+/ueff4D0v58l+yg5yoeKFSvG+++/z/vvv8+BAweYN28eL7zwAsePH093YHVWFS5cGC8vL44cOZLmb87Bv8WKFQOSTmSZaeduzkTrygHd13NCcCpevDiJiYkcPXo03YQmq7Kyn3PS0aNHM1zmPOHd6HHu2bMnzz//PBMmTKBJkyYcPXr0uitwRYsWJSEhgRMnTqRKkIwxHD16NMMTX3ZYvnw5hw8fZuXKla5qEZBmILgnKFq0KH/++SfGmFQJ0vHjx0lISLiu95bz/XD06NFU1biEhIQ0n61ixYpx00038cYbb6T7Ws7EumjRoukO6E7vfQnpV1ycFyhk9P1XsGBBVzuAb775JtVA6RvlrKju3LnTNfC/cuXKbNmyJU3bLVu2EBAQQMWKFbNt/ZKWutXyuXLlyvHkk09m6+RiQUFBNG7cmO+++y7V/4QdDgefffYZYWFhVK1aFYC2bdu6ThgpffrppwQGBrouXc+OCkdWhIaG4u/vz+bNm1Mt//7776/7NZ3dAR9//PFV2/n5+WVqO7Oyn3PStm3b2LRpU6pln3/+OQULFqR+/fpA0nHevn17mvfYp59+is1m49Zbb73qOvz9/Xn88cf55JNPGDt2LHXr1qV58+bXFa/z6qTPPvss1fJvv/2W8+fPu/6eE5wnZuf72Wny5Mk5ts6UMvvegqT9dO7cuTSTRn766aeuv2eV8+q4WbNmpVr+1Vdfpbn6qnPnzq4pAho0aJDmx5kctWrVirNnz7q6rZ2+/PLLTMfVuXNnTp06RWJiYrrrcs4pdPvtt+Pt7c2ePXvSbdegQYOs7hLgf92NlStXdi3r1q0by5cv5+DBg65lZ8+e5bvvvuPOO+9M0w0p2Ut7N5+JjY3l1ltvpWfPnlSvXp2CBQuydu1aFi9ezN13351t6xk9ejTt2rXj1ltvZdiwYfj6+jJx4kS2bt3KF1984TpJjBgxwjW24NVXX6VIkSLMmjWLBQsW8PbbbxMSEgIkzdkSEBDArFmzqFGjBgUKFKB06dKpxj5lJ5vNxkMPPeSa1O7mm29mzZo1fP7559f9mi1atODhhx/m9ddf59ixY3Tu3Bk/Pz+ioqIIDAx0jTmoU6cOX375JbNnz6ZixYr4+/tTp06ddF8zs/s5Kz799FMee+wxpk+fnqlxR6VLl+bOO+/ktddeo1SpUnz22WcsXbqUt956yzUm55lnnuHTTz/ljjvuYNSoUYSHh7NgwQImTpzIwIEDM5XEDRo0iLfffpv169enmiwvq9q1a8ftt9/O888/z5kzZ2jevDmbN29mxIgR1KtXj4cffvi6X/tamjVrRuHChRkwYAAjRozAx8eHWbNmpUkuc0qdOnVYuXIl8+fPp1SpUhQsWDDDyQR79erFhAkT6N27N9HR0dSpU4fffvuNN998k06dOnHbbbdlef01atTgoYce4v3338fHx4fbbruNrVu38u6776bp6ho1ahRLly6lWbNmPPXUU1SrVo1Lly4RHR3NwoULmTRpEmFhYfTu3Ztx48bx0EMP8frrr1O5cmUWLVrEkiVLgMx1dfXo0YNZs2bRqVMnnn76aRo1aoSPjw8xMTGsWLGCrl270q1bN8qXL8+oUaN46aWX2Lt3Lx06dKBw4cIcO3aMNWvWEBQUxMiRIzNcz4gRIzh27BgtW7akTJkynD59msWLFzN16lTuu+++VGM8hw0bxv/93/+5PjN+fn6MGTOGS5cu5ZkZ5D2apcPBxe0uXbpkBgwYYG666SYTHBxsAgICTLVq1cyIESNSXXmT0dUn4eHh5o477kizHDBPPPFEqmW//vqradOmjQkKCjIBAQGmSZMmZv78+Wmeu2XLFtOlSxcTEhJifH19zc0335zuVWJffPGFqV69uvHx8Ul1RVN6V5sZk/mrfTJ6fmxsrOnbt68JDQ01QUFBpkuXLiY6OjrDq9VOnDiR6vnOq4j27dvnWpaYmGjGjRtnateubXx9fU1ISIhp2rRpqv0SHR1t2rdvbwoWLGgA1xVHGV1Bl5n9nNEVTc4rwVasWJGmbWYv5b/jjjvMN998Y2rVqmV8fX1N+fLlzdixY9O03b9/v+nZs6cpWrSo8fHxMdWqVTPvvPOOSUxMTNXuyv2bUuvWrU2RIkVSXVrtlJXjcPHiRfP888+b8PBw4+PjY0qVKmUGDhxo/v3333S370rpvd+dxyflFAbpvQdXrVplmjZtagIDA03x4sVN3759zYYNG9Ls85y4Wm3jxo2mefPmJjAw0ADpXhWZ0qlTp8yAAQNMqVKljLe3twkPDzfDhw9PNd2BMZm/Ws0YY+Li4syzzz5rSpQoYfz9/U2TJk3M6tWrTXh4eJor6U6cOGGeeuopU6FCBePj42OKFCliIiIizEsvvWTOnTvnanfgwAFz9913mwIFCpiCBQuae+65xyxcuNAA5vvvv0+1T9L7rBtjTHx8vHn33XfNzTffbPz9/U2BAgVM9erVTf/+/c2uXbtStZ07d6659dZbTXBwsPHz8zPh4eHm3nvvNcuWLbvqts+bN8/cdtttJjQ01Hh7e5sCBQqYRo0amfHjx7umpEhp9+7d5q677jLBwcEmMDDQtG3b1qxfv/5au1iygc0YY9yZjIlI3lG+fHlq167tmhQxJx0/fpzw8HAGDx7M22+/nePrk9ztzTff5OWXX+bAgQM5Pku55D3qVhMRjxYTE8PevXt555138PLySnO/MJGPPvoISLo9R3x8PMuXL2f8+PE89NBDSozkuig5EhGPNm3aNEaNGkX58uWZNWtWqqucRCDp8vxx48YRHR1NXFwc5cqV4/nnn+fll1+2OjTJpdStJiIiIpKC5Zfy//LLL3Tp0oXSpUtjs9nSXDaanp9//pmIiAjXTS4nTZqU84GKiIhIvmB5cnT+/HluvvlmV5/xtezbt49OnTrRokULoqKiePHFF3nqqaf49ttvczhSERERyQ88qlvNZrMxZ84c7rrrrgzbPP/888ybNy/VPYgGDBjApk2bMn0fLhEREZGM5LoB2atXr6Z9+/aplt1+++1ERkYSHx+f7n144uLiUt0GwuFw8M8//1C0aFHdvE9ERCSXMMZw9uxZSpcunel72V2PXJccHT16NM0NBUNDQ0lISODkyZPp3rNq9OjRV521VERERHKPgwcP5ug0DbkuOYK0Nw509gxmVAUaPnw4Q4cOdT2OjY2lXLlyHDx4MM2U9SKSixw6RMLOnfT9+GPmJN8uomLFilStWpX169dz4sQJAF55+mmG3XYbVKoEmgpAJNc6c+YMZcuWdd0MOKfkuuSoZMmSae62fPz4cby9vV13fL6Sn59fmhs9AgQHBys5EsmtIiPh8cd53OFgDuDr7c2HEybQt29fvLy8uHTpEi+//DLvvfce//3gA8p88AH9vbxgyhTo08fq6EXkBuT0kBjLr1bLqqZNm7J06dJUy3788UcaNGiQ7ngjEcmDYmLg8cf50uFgKklfZF85HDzeqZNrHIK/vz/vDhnCyOQv0SeB9Q4H9O+f9HwRkQxYnhydO3eOjRs3snHjRiDpUv2NGzdy4MABIKlLLOWdwQcMGMD+/fsZOnQoO3bsYPr06URGRjJs2DArwhcRK+zaRYzDwYDkhy8BXR0O2L07TbtXjOEeIAHoDVxOTEzbTkQkBcuTo3Xr1lGvXj3q1asHwNChQ6lXrx6vvvoqAEeOHHElSgAVKlRg4cKFrFy5krp16/Lf//6X8ePHc88991gSv4hYoEoVXgRigUbAKwB2O1SunKadzcuLSUAJYBvwsc2Wtp2ISAoeNc+Ru5w5c4aQkBBiY2M15kgkF9qwYQMNGjTAGMNaoIHdDpMnpz+WKDIS+vdnamIijwNFgoLYExNDoUKF3By1iNwod52/La8ciYhk1fDhwzHG8EDXrjRYsQKiozMeZN2nD0RH8+iyZdSsWpV/zp9nzJgxbo1XRHIXVY5UORLJVTZs2EBERAR2u51du3ZRoUKFTD/3+++/56677iI4OFhTeYjkQqociYik47333gOge/fuWUqMALp06UL16tU5c+YMU6dOzYnwRCQPUHIkIrnGgQMHmD17NsB1XaHq5eXlet77779PfHx8tsYnInmDkiMRyTWmTp1KYmIit956K/Xr17+u13jwwQcpUaIEMTExLFiwIJsjFJG8QMmRiOQKiYmJzJgxA0ia7+x6+fv788gjjwAwbdq07AhNRPIYJUcikissWbKEQ4cOUbRoUbp27XpDr9Un+cq2RYsWcejQoewIT0TyECVHIpIrOKs8vXr1SvdeiVlRtWpVWrZsicPhYObMmdkQnYjkJUqORMTjxcbGusYHObvEbtSjjz4KwKxZs8iHM5qIyFUoORIRjzdv3jwuX75MjRo1qFOnTra8Zrdu3fD19WXHjh1s3bo1W15TRPIGJUci4vG++uorAO6//35sNlu2vGZISAidOnUC4Msvv8yW1xSRvEHJkYh4tH///ZclS5YASRM/ZqcePXoAScmRutZExEnJkYh4tO+//574+Hjq1KlDjRo1svW1O3fuTGBgIHv37iUqKipbX1tEci8lRyLi0ZxdatldNQIICgqiffv2AMyfPz/bX19EciclRyLisc6dO8dPP/0EwD333JMj67jzzjuBpEHfIiKg5EhEPNhPP/3E5cuXqVixItWrV8+Rddxxxx3YbDY2bNhATExMjqxDRHIXJUci4rGccxs5E5icUKJECZo2bQqoa01Ekig5EhGPZIzhhx9+AJIGTuckda2JSEpKjkTEI0VFRXHkyBGCgoJo1apVjq7LmRwtX76cc+fO5ei6RMTzKTkSEY/k7FJr167dDd9L7VqqV69OhQoVuHz5MitXrszRdYmI51NyJCIeKeV4o5xms9lcl/QvXbo0x9cnIp5NyZGIeJzTp0+zdu1aAG6//Xa3rNOZHP34449uWZ+IeC4lRyLicX7+9lscDgdVK1akbNmybllnmzZt8PLy4q+//uLAl1+CLusXybeUHImIZ4mMZFnfvgC03bsXIiPdstpChQrRuEIFAJY+8ACEh7tt3SLiWZQciYjniImBxx/np+SHtwH07++eKk5MDO327AFgKYDD4b51i4hHUXIkIp5j1y4OORzsAGxAa4DERNi92y3rbp/861Ig0Z3rFhGPouRIRDxHlSosT54JOwIoAmC3Q+XKbll3Y5uNgsA/wBZ3rltEPIqSIxHxHGFhLGvSBIC2kJScTJ4MYWFuWbf31Knckvxwpc3mvnWLiEdRciQiHsMYw08HDgDQ9p13IDoa+vRxXwB9+tBq+HAAfm7f3r3rFhGPoeRIRDzG33//zaFDh/Dz8+OWJ56wpGrTumtXAH5ZuxaHw+H29YuI9ZQciYjH+PnnnwFo0qQJAQEBlsRQv359goKC+Oeff9i6daslMYiItZQciYjH+PXXXwFo2bKlZTH4+Phwyy1JI490nzWR/EnJkYh4jN9++w2AFi1aWBpHq1atgP9VskQkf1FyJCIe4eDBg+zfvx8vLy+aJF+xZhVncvTLL79o3JFIPqTkSEQ8grNLrV69ehQsWNDSWBo0aEBgYCAnT55k+/btlsYiIu6n5EhEPIIzObK6Sw3A19eXZs2aARp3JJIfKTkSEY/gKeONnJxda864RCT/UHIkIpZLedl88+bNLY4miTOOVatWWRyJiLibkiMRsdzvv/8OQNWqVQkNDbU4miQNGzbEbrdz8OBBDh48aHU4IuJGSo5ExHKeNN7IqUCBAtx8880ArF692uJoRMSdlByJiOU8bbyRk3NQtrrWRPIXJUciYqmLFy+ybt06wPOSI+e4I2e3n4jkD0qORMRSa9asIT4+nlKlSlGhQgWrw0nFWTmKiori/PnzFkcjIu6i5EhELLVmzRoAmjZtis1mszia1MqWLUuZMmVITEx0VbdEJO9TciQillq7di2QdHWYp7HZbBp3JJIPKTkSEUs5K0eNGjWyOJL0ab4jkfxHyZGIWOb48ePs378fgIiICIujSV/KypExxuJoRMQdlByJiGWcXWrVq1cnJCTE4mjSV7duXQICAvjnn3/4+++/rQ5HRNxAyZGIWMaTxxs5+fj4uOJT15pI/qDkSEQs4+njjZycXWuaKVskf1ByJCKWMMbkisoRQOPGjYH/JXMikrcpORIRS0RHR3Py5El8fHxc9zDzVM7K1tatWzUZpEg+oORIRCzhrBrddNNN+Pv7WxzN1ZUuXZqwsDAcDgfr16+3OhwRyWFKjkTEErllvJGTM051rYnkfUqORMQSuWW8kZNz3NGff/5pcSQiktOUHImI2yUmJrq6p1Q5EhFPo+RIRNxux44dnD9/ngIFClC9enWrw8mUiIgIbDYbBw4c4OjRo1aHIyI5SMmRiLids/oSERGB3W63OJrMKViwILVq1QJUPRLJ65QciYjbOccb5ZYuNSd1rYnkD0qORMTtnMlFbhmM7eRMjjQoWyRvU3IkIm516dIlNm/eDOS+ypHzirW1a9ficDgsjkZEcoqSIxFxq40bN5KQkEDx4sUpV66c1eFkSa1atQgICCA2NpZdu3ZZHY6I5BAlRyLiVinHG9lsNoujyRofHx/q168PqGtNJC/ziORo4sSJVKhQAX9/fyIiIvj111+v2n7WrFncfPPNBAYGUqpUKR599FFOnTrlpmhF5Ebk1vFGTroJrUjeZ3lyNHv2bIYMGcJLL71EVFQULVq0oGPHjhw4cCDd9r/99hu9evWiT58+bNu2ja+//pq1a9fSt29fN0cuItcjt16p5qRB2SJ5n80YY6wMoHHjxtSvX5+PP/7YtaxGjRrcddddjB49Ok37d999l48//pg9e/a4ln344Ye8/fbbHDx4MFPrPHPmDCEhIcTGxhIcHHzjGyEimXL69GkKFy4MwIkTJyhWrJjFEWXdvn37qFixIj4+Ppw5c8bjb5orkpe46/xtaeXo8uXLrF+/nvbt26da3r59e1atWpXuc5o1a0ZMTAwLFy7EGMOxY8f45ptvuOOOOzJcT1xcHGfOnEn1IyLut27RIgAqlCuXKxMjgPLly1O8eHHi4+PZGBkJMTFWhyQi2czS5OjkyZMkJiYSGhqaanloaGiG0/M3a9aMWbNmcf/99+Pr60vJkiUpVKgQH374YYbrGT16NCEhIa6fsmXLZut2iEgmREay9sEHAWh44ABERloc0PWx2Ww0KlUKgD+ffBLCw3PttohI+iwfcwSkuWLFGJPhVSzbt2/nqaee4tVXX2X9+vUsXryYffv2MWDAgAxff/jw4cTGxrp+Mtv9JiLZJCYGHn+cNcm9+I0A+vfPnVWXmBgabdkCwFoAhyP3bouIpMvbypUXK1YMu92epkp0/PjxNNUkp9GjR9O8eXP+85//AHDTTTcRFBREixYteP311ymV/D+6lPz8/PDz88v+DRCRzNm1CxyOpGQCaAiQmAi7d0NYmIWBXYddu2iYnOQ5tyfXbouIpMvSypGvry8REREsXbo01fKlS5fSrFmzdJ9z4cIFvLxSh+28caXFY8tFJCNVqnDYZuMQSV869QHsdqhc2dq4rkeVKjRMrmzvBE5D7t0WEUmX5d1qQ4cOZdq0aUyfPp0dO3bwzDPPcODAAVc32fDhw+nVq5erfZcuXfjuu+/4+OOP2bt3L7///jtPPfUUjRo1onTp0lZthohcTVgYawcNAqAmUMBuh8mTc2elJSyMYlOnUiH54Tovr9y7LSKSLku71QDuv/9+Tp06xahRozhy5Ai1a9dm4cKFhIeHA3DkyJFUcx498sgjnD17lo8++ohnn32WQoUK0aZNG9566y2rNkFEMmFNSAgAjTp2hClTcncy0acPjb7/nn3z57P2P//htj59rI5IRLKR5ckRwKBBgxiU/L/KK82cOTPNssGDBzN48OAcjkpEspNz8seGd96ZuxOjZA1btWL2/Pms3bnT6lBEJJtZ3q0mInmfMSbXz4x9JeftT3QbEZG8R8mRiOS43bt3c/r0afz8/KhTp47V4WSL+vXr4+XlxaFDhzh8+LDV4YhINlJyJCI5zlldqVevHj4+PhZHkz0KFChAzZo1gf91GYpI3qDkSERynGu8UXJXVF7h3B4lRyJ5i5IjEclxzspRXhlv5OTcHiVHInmLkiMRyVHx8fFERUUBeS85Slk50iS0InmHkiMRyVFbt27l0qVLhISEUDmPzSJdp04dfH19+ffff9mzZ4/V4YhINlFyJCI5KuV4oytv/ZPb+fr6Uq9ePUBdayJ5Sd76phIRj+Mcb5TXBmM7ab4jkbxHyZGI5Ki8NvnjlXTFmkjeo+RIRHLM+fPn2bp1K5B3K0fOpG/Dhg0kJCRYHI2IZAclRyKSY6KionA4HJQuXZoyZcpYHU6OqFq1KsHBwVy8eJFt27ZZHY6IZAMlRyKSY/L6eCMALy8vGjRoAKhrTSSvUHIkIjkmr483ctK4I5G8RcmRiOSY/FA5Al2xJpLXKDkSkRxx6tQp9u7dC+DqdsqrnJWxLVu2cPHiRYujEZEbpeRIRHKEs4upSpUqFC5c2OJoclZYWBihoaEkJiayceNGq8MRkRuk5EhEckR+GW8EYLPZ1LUmkocoORKRHJFfxhs5OZNADcoWyf2UHIlItjPG5KvKEWhQtkheouRIRLLdwYMHOXbsGN7e3tStW9fqcNzCOeh8165dnD592tpgROSGKDkSkWznrBrVqVOHgIAAi6Nxj2LFilGxYkUA1q1bZ3E0InIjlByJSLbLb+ONnNS1JpI3KDkSkWyX38YbOWmmbJG8QcmRiGSrxMREV7dSfqsc6Yo1kbxByZGIZKu///6bs2fPEhgYSM2aNa0Ox63q16+Pl5cXhw4d4vDhw1aHIyLXScmRiGQrZ9UkIiICb29vi6Nxr6CgIFdCqOqRSO6l5EhEslV+HYztpK41kdxPyZGIZKv8OhjbSVesieR+So5EJNvExcW5brya3ytH69atwxhjcTQicj2UHIlIttm8eTPx8fEULVqUChUqWB2OJerUqYOfnx///vsve/bssTocEbkOSo5EJNukHG9ks9ksjsYaPj4+rlumqGtNJHdSciQi2Sa/jzdy0qBskdxNyZGIZJv8fqWak2bKFsndlByJSLY4c+YMf/31F6DkyLn9GzZsICEhweJoRCSrlByJSLZYv349xhjKlStHaGio1eFYqmrVqgQHB3Px4kW2bdtmdTgikkVKjkQkW/z5558ANG7c2OJIrOfl5UWDBg0ADcoWyY2UHIlItlBylJrGHYnkXkqORCRbOCsk+f1KNSddsSaSeyk5EpEbFhMTw+HDh7Hb7dSvX9/qcDyCs3K0ZcsWLly4YHE0IpIVSo5E5IY5u9Rq165NUFCQxdF4hrCwMEJDQ0lMTHTdUkVEcgclRyJyw9b89BMAjWvXtjgSz2Gz2f7Xtfb55xATY3FEIpJZSo5E5MZERvLnxx8D0PjzzyEy0uKAPEdDr6Sv2DUTJkB4uPaNSC5hM/nwttFnzpwhJCSE2NhYgoODrQ5HJPeKiSGxXDlCjOE8sAWobbdDdDSEhVkcnMViYlhSrhwdjKEKsBNA+0bkhrjr/K3KkYhcv1272J6cGBUAagAkJsLu3dbG5Ql27aJB8v89dwH/gvaNSC6h5EhErl+VKvxpswHQELBDUnWkcmUro/IMVapQ1MuLiskP14H2jUguoeRIRK5fWBhrWrQAoBEknfwnT1a3ESTtgylTaJScPK612bRvRHIJJUcickP+PH0agMajRiWNp+nTx9J4PEqfPjR8+WUA1rZvr30jkksoORKR63bu3Dm2bt0KQOM+fVQVSUfDdu0AWLNli8WRiEhmKTkSkeu2YcMGHA4HZcqUoXTp0laH45Hq16+Pl5cXhw8f5vDhw1aHIyKZoORIRK6bbjZ7bUFBQdSqVQvQfdZEcgslRyJy3XSz2cxx3mfNub9ExLMpORKR66bKUea4biOiypFIrqDkSESuy5EjRzh48CBeXl40aNDA6nA8mrNytHbtWvLhTQlEch0lRyJyXZxdRDVr1qRAgQIWR+PZ6tSpg5+fH6dPn2a3ZsgW8XhKjkTkuqhLLfN8fHyoV68eoK41kdxAyZGIXJc//vgDUHKUWRqULZJ7KDkSkSxLSEhwVY6aNWtmcTS5Q8pxRyLi2ZQciUiWbd68mQsXLhASEkKNGjWsDidXcF6xtmHDBi5fvmxxNCJyNUqORCTLVq1aBUCTJk3w8tLXSGZUrVqVIkWKcOnSJTZu3Gh1OCJyFfpWE5EsW716NaAutayw2Wyu/fX7779bHI2IXI2SIxHJMmflSMlR1jRv3hz43/4TEc+k5EhEsuTIkSNER0djs9l025AsSlk50mSQIp7LI5KjiRMnUqFCBfz9/YmIiODXX3+9avu4uDheeuklwsPD8fPzo1KlSkyfPt1N0Yrkb84utTp16hAcHGxxNLlLw4YN8fb25siRI+zfv9/qcEQkA5YnR7Nnz2bIkCG89NJLREVF0aJFCzp27MiBAwcyfE737t356aefiIyM5O+//+aLL76gevXqboxaJP9Sl9r1CwgIoH79+oDGHYl4MsuTo7Fjx9KnTx/69u1LjRo1eP/99ylbtiwff/xxuu0XL17Mzz//zMKFC7ntttsoX748jRo10he1iJs4k6OmTZtaHEnupHFHIp7P0uTo8uXLrF+/nvbt26da3r59+wy/OObNm0eDBg14++23KVOmDFWrVmXYsGFcvHgxw/XExcVx5syZVD8iknVxcXGsX78eUOXoejn3m5IjEc/lbeXKT548SWJiIqGhoamWh4aGcvTo0XSfs3fvXn777Tf8/f2ZM2cOJ0+eZNCgQfzzzz8ZjjsaPXo0I0eOzPb4RfIb5wSGxYsXp1KlSlaHkys5k6PNmzdz9uxZChYsaHFEInIly7vVIGn+j5SMMWmWOTkcDmw2G7NmzaJRo0Z06tSJsWPHMnPmzAyrR8OHDyc2Ntb1c/DgwWzfBpH8IGWXWkafUbm60qVLU758eRwOh+sWLCLiWSxNjooVK4bdbk9TJTp+/HiaapJTqVKlKFOmDCEhIa5lNWrUwBhDTExMus/x8/MjODg41Y+IZJ0GY2cPTQYp4tksTY58fX2JiIhg6dKlqZYvXbo0wy/f5s2bc/jwYc6dO+datnPnTry8vAgLC8vReEXyM2OMkqNsokHZIp7N8m61oUOHMm3aNKZPn86OHTt45plnOHDgAAMGDACSusR69erlat+zZ0+KFi3Ko48+yvbt2/nll1/4z3/+w2OPPUZAQIBVmyGS50VHR3P06FG8vb1p0KCB1eHkas7k8o8//iAxMdHiaETkSpYOyAa4//77OXXqFKNGjeLIkSPUrl2bhQsXEh4eDiTNxptyzqMCBQqwdOlSBg8eTIMGDShatCjdu3fn9ddft2oTRPIF5+SsDRo00H9EblCdOnUoUKAAZ86cYdu2bdx0001WhyQiKVieHAEMGjSIQYMGpfu3mTNnpllWvXr1NF1xIpKzfvnlFwBatGhhcSS5n91up0mTJixbtoxVq1YpORLxMJZ3q4lI7uCsHCk5yh4alC3iuZQcicg1HTt2jJ07d2Kz2bjlllusDidPcA7KVnIk4nmUHInINf32228A1K5dm8KFC1scTd7QpEkTvLy82LdvX4bTkIiINZQcicg1abxR9gsODnbdhNa5f0XEMyg5EpFrco43atmypcWR5C3O/ankSMSzKDkSkauKjY1l06ZNgCpH2a1Vq1YA/PzzzxZHIiIpKTkSkatatWoVDoeDihUrUrp0aavDyVNuueUWbDYbf/31F8ePH7c6HBFJpuRIRK5Kl/DnnCJFilCnTh1AXWsinkTJkYhclcYb5SyNOxLxPEqORCRDly5dYs2aNYAqRznFmRxp3JGI51ByJCIZWrNmDZcvXyY0NJTKlStbHU6e5EyOtmzZwj///GNxNCICSo5E5Cp+/eEHAFo2bIjNZrM4mrwpNDSUatWqYYzht4kTQRNCilhOyZGIpC8ykpXvvANAywULIDLS4oDyrlahoQD88sorEB6ufS1iMSVHIpJWTAxx/frxW/LDNsZA//6qauSEmBhaJg96/xnA4dC+FrGYkiMRSWvXLv40hktAKFADIDERdu+2Nq68aNcuWhoDwAbgLGhfi1hMyZGIpFWlCsuTf70VsAHY7aBB2dmvShXKenlRAXAAv4P2tYjFlByJSFphYayoWhVISo6w22HyZAgLszSsPCksDKZMoXXygPflNpv2tYjFlByJSBoXLlxg9b59ALT57DOIjoY+fawNKi/r04c2778PwPLatbWvRSym5EhE0vj999+Jj4+nbNmyVOrZU1UMN2hz770AbNi6VfMdiVhMyZGIpLFixQoAbr31Vs1v5CalS5emRo0aGGNYuXKl1eGI5GtKjkQkjeXLk4Zjt2nTxuJI8pe2bdsC8NNPP1kciUj+puRIRFI5c+YM69atA5IqR+I+So5EPIOSIxFJ5ddffyUxMZFKlSpRrlw5q8PJV1q3bo2Xlxd///03hw4dsjockXxLyZGIpOIcb6QuNfcrVKgQERERgKpHIlZSciQiqTjHG6lLzRrOpNR5HETE/ZQciYjLqVOn2LhxI5DUxSPul3LckUm+rYiIuNcNJUfHjx/n6NGj2RWLiFhs2bJlGGOoXbs2pUqVsjqcfKl58+b4+voSExPDrl27rA5HJF+6ruRo8+bN1KpVi1KlSlGmTBnKlCnDyy+/zPnz57M7PhFxox9//BGA22+/3eJI8q/AwECaNWsGaNyRiFWuKznq06cPoaGh/Pbbb0RFRfH666+zaNEiGjRowL///pvdMYqIGxhjWLJkCQDt27e3OJr8TZf0i1jLZq6jUzsoKIj169dTvXp11zJjDPfddx/+/v589tln2Rpkdjtz5gwhISHExsYSHBxsdTgiHmH79u3UqlULf39//vnnHwICAqwOKd9avXo1zZo1o1ChQpw4cQJvb2+rQxLxCO46f19X5Si9CpHNZuPNN9/k+++/z5bARMS9nFWjli1bKjGyWMOGDSlcuDCnT59m7dq1Vocjku9kOjm64447ePHFF/nqq68YMGAAzzzzDMeOHUvVJjY2lsKFC2d7kCKS8zTeyHN4e3vTrl07ABYvXmxxNCL5T6ZrtXXq1GHDhg3MmDHDlRRVrFiR7t27U7duXRITE5kxYwbjxo3LsWBFJGdcunSJn3/+GdB4I0/RoUMHvvrqKxYvXszIkSOtDkckX7muMUfHjh0jKiqKjRs3un52796N3W6nWrVqbN68OSdizTYacySS2rJly2jXrh2lS5cmJiYGm81mdUj53uHDhylTpgw2m43jx49TrFgxq0MSsZy7zt/XNcovNDSUDh060KFDB9eyixcvsmnTJjZt2pRtwYmIezi71Nq3b6/EyEOULl2am266ic2bN7N06VIeeOABq0MSyTeybYbsgIAAmjRpQv/+/bPrJUXETXQJv2dy/gdU445E3Eu3DxHJ544cOcLmzZux2WyuQcDiGZyD45csWYLD4bA4GpH8Q8mRSD63dOlSAOrXr69xLR6mefPmBAUFcezYMY8fyymSl+Tr5CgxMZH777+fESNGWB2KiGUWLVoEqEvNE/n5+dGmTRtAXWuSf8XHx/Pggw/y8ssvu22d+To5WrduHV999RWjRo3i9OnTVocj4nbx8fGuk27nzp0tjkbSo3FHkt8tWLCAzz//nDfeeIPExES3rDNfJ0dnzpxx/f7LL79YGImINVatWsXp06cpWrQojRs3tjocSYczOfr9999TfWeJ5Bfr1q1z/f7PP/+4ZZ35OjlKOcP333//bWEkItZYsGABAJ06dcJut1scjaSnYsWKVKlShYSEBJYtW2Z1OCJut2fPHtfvV96ZI6fk6+To+PHjrt+vvFecSH7www8/AEm3BxLP5Tw+8+fPtzgSEfdLWS1Ked7OSUqOkik5kvxmz5497NixA7vdrvupebguXboASZU+d425EPEUKc/PJ06ccMs683VydPLkSdfv7urHFPEUzi61Fi1aUKhQIWuDkatq0aIFISEhnDhxgjVr1lgdjohbpTw/KzlygwsXLrh+V+VI8htncqSr1Dyfj48PHTt2BNS1JvlPyvNzyvN2TsrXyVFcXJzrdyVHkp+cPXuWlStXAhpvlFs4u9bmzZtncSQi7uNwOFKdn1Oet3NSvk6OLl686Ppd3WqSnyxbtozLly9TqVIlqlWrZnU4kgkdO3bEbrezbds29u3bZ3U4Im5x5swZjDGuxynP2zkpXydHly5dcv2uSSAlP1nw1VcAdG7dGpvNZnE0khmFCxemRYsWAMwfOxZiYiyOSCTnXXluVuXIDVLu5PPnz1sYiYj7OKZOZcGXXwJwx/TpEBlpcUSSWV1KlABg3kcfQXi4jp3keefOnUv1OGVRIyfl6+Qo5U6Oi4vTJbKS98XE8Gf//hwFCgItjYH+/VWFyA1iYujy9dcA/AzEOhw6dpLnXVm4UOXIDa7MQN01Cl7EMrt2MSe5/74z4AeQmAi7d1sZlWTGrl1UMYbqQAKwBHTsJM+7snKkMUduoORI8htTuTLfJf/ezbnQbofKlS2KSDKtShXw8qJL8sN5oGMneZ661SxwZXlO444kr9t6+jR7SKoYdYSkk+vkyRAWZm1gcm1hYTBlCnd6JX1t/wBcnjBBx07yNHWrWUCVI8lvvvsuqW7U/rbbKLBiBURHQ58+1gYlmdenD0337iW0cGFigeXh4VZHJJKjVDmyQHx8PAAFChQAVDmSvG/OnDkAdOvZE1q3VtUhF7KHh3N3jx4AfPvttxZHI5KznOflokWLAqocuVWRIkUAVY4kb9u7dy+bNm3Cbre7ZluW3Omee+4BYO7cuSQkJFgcjUjOcVaOihUrBmhAtls5M1JVjiQvc1aNWrZs6fqikdypVatWFC1alJMnT/Lrr79aHY5IjnEmR6ocuZndbickJARQciR5mzM5uvvuuy2ORG6Ut7c3Xbt2BeCbb76xOBqRnOM8Lzv/Q6cxR24SEBBAYGAgoG41ybuOHj3KqlWrALjrrrusDUayhbNrbc6cOTgcDoujEckZGnNkEV9fX4KCggBVjiTvmjt3LsYYGjZsSJgGYecJbdu2JTg4mCNHjrB69WqrwxHJEc4xRoULFwaUHLmNj4+PKkeS532VfKNZZ7VBcj8/Pz/XwHpdtSZ5lTM5KliwIPC/q8xzWr5Pjry9vVU5kjztyJEjrFy5EoD777/f2mAkWzmT3e+++w6TfFsYkbzkyuTIXfdA9YjkaOLEiVSoUAF/f38iIiIyffXF77//jre3N3Xr1r3udXt7e6tyJHnaN998gzGGJk2aUL58eavDkWx0++23ExgYyP79+1m3bp3V4YhkO2dyFBwc7Nb1Wp4czZ49myFDhvDSSy8RFRVFixYt6NixIwcOHLjq82JjY+nVqxdt27a9ofX7+PiociR52pdffgmoapQXBQYG0rlzZ+B/x1kkL7mycuQulidHY8eOpU+fPvTt25caNWrw/vvvU7ZsWT7++OOrPq9///707NmTpk2b3tD6VTmSvOzAgQOsWrUKm83GfffdZ3U4kgN69uwJJCVH7upyEHGXfJkcXb58mfXr19O+fftUy9u3b++67Dg9M2bMYM+ePYwYMSJT64mLi+PMmTOpfpxUOZK8zDkQu2XLlpQpU8biaCQndOjQgUKFCnH48GFNCCl5Tr5Mjk6ePEliYiKhoaGploeGhnL06NF0n7Nr1y5eeOEFZs2ahbe3d6bWM3r0aEJCQlw/ZcuWdf1NlSPJy9Sllvf5+fm5BmZ/8cUXFkcjkr3yZXLkZLPZUj02xqRZBkmj1Hv27MnIkSOpWrVqpl9/+PDhxMbGun4OHjzo+psqR5JX7d69m/Xr12O323UJfx73wAMPAPD1119z+fJli6MRyT7O5CgwMBC73e629Wau9JJDihUrht1uT1MlOn78eJpqEsDZs2dZt24dUVFRPPnkkwA4HA6MMXh7e/Pjjz/Spk2bNM/z8/PDz88v3RhSVo6UHEleMnv2bADatGlDiRIlLI5GclLr1q0pWbIkR48e5ccff3QN0hbJ7ZzJUUBAAN7e3vnjUn5fX18iIiJYunRpquVLly6lWbNmadoHBwezZcsWNm7c6PoZMGAA1apVY+PGjTRu3DjLMaSsHKlbTfISZ5dajx49LI5Ecprdbnd1naprTfKKxMREVyU0ICAAHx8ft63b0soRwNChQ3n44Ydp0KABTZs2ZcqUKRw4cIABAwYASV1ihw4d4tNPP8XLy4vatWunen6JEiXw9/dPszyzVDmSvGjTpk1s3boVX19funXrZnU44gYPPPAAH3zwAXPnzuX8+fOu//SJ5FYpbzLrrBy5i+XJ0f3338+pU6cYNWoUR44coXbt2ixcuJDw8HAgaXbfa815dCNUOZK86NNPPwWgS5curnsSSd7WqFEjKlasyN69e5k/f74qhpLrObvUwP2VI48YkD1o0CCio6OJi4tj/fr1tGzZ0vW3mTNnum59kJ7XXnuNjRs3Xve6vb29CQgIAFIfCJHcKiEhgVmzZgHQu3dvi6MRd7HZbK6B2c7jL5KbOc/JPj4+2O12t1aOPCI5spKPj48rObpw4YLuTyS53tKlSzl27BjFihWjQ4cOVocjbvTQQw8BsGjRIo4dO2ZxNCI3JuVgbCD/VY6slLJy5HA43HbHX5Gc4uxS69mzp1u/TMR61atXp3HjxiQmJqp6JLnelcmRKkdulDI5AnWtSe4WGxvL3LlzAejVq5e1wYglHnnkESDpTgKqhEtupuTIQj4+Pvj5+bkmnVRyJLnZN998w6VLl6hZsyb169e3OhyxwP3334+fnx9bt24lKirK6nBErpu61Szk7e2NzWbD398fUHIkudsnU6YA0Ktr13RnmZe8r3Dhwtx1110AzHz9dYiJsTYgkeukypGFnJmorliT3G7vmDH8umYNNuChMWMgMtLqkMQij5YqBcCsOXOIK1dO7wXJlVQ5spAzE3VOBKnkSHKlmBg+GT4cgLZAGWOgf39VDfKjmBhu++ADSgP/AAv0XpBcyjkJpCpHFlDlSPKCxL/+Ynry731cCxNh926LIhLL7NqF3Ricw/FngN4LkiupcmQhZyaq5Ehys8WHDhEDFAVcNwux26FyZeuCEmtUqQJeXjin/1wEHPXy0ntBch2NObKQKkeSF0z57jsAetts+EFSYjR5MoSFWRqXWCAsDKZMobrdTlMgEZhx1116L0iuo8qRha6sHOn+apLbHD58mAULFgDQ96efYMUKiI6GPn2u/kTJu/r0geho+j//PABTNmzA4XBYHJRI1qhyZCFVjiS3mzFjBomJibRo0YIat94KrVurSiAQFkb3ESMoVKgQ0dHR/Pjjj1ZHJJIlqhxZSGOOJDdzOBxMmzYNgH79+lkcjXiagIAA182HJ02aZHE0IlmjypGFlBxJbrZs2TKio6MpVKgQ9957r9XhiAfq378/AD/88AMxupxfchHn+dg5SbOSIzdSciS52ZTkGbEffvjhVPcIFHGqUaMGLVu2JDExkUhNBim5iLrVLKTkSHKrQ4cOuW4yqy41uZoBAwYAMHXqVBISEiyORiRzrkyO7Ha729ad75Mj587WDNmS20yaNMk1ELtOnTpWhyMe7O6776ZYsWIcOnSIhQsXWh2OSKYoObKQl1fSLlDlSHKTuLg4V5fa4MGDLY5GPJ2fnx+PPvooABMmTLA4GpHMuTI5cp6v3SHfJ0fOTFTJkeQmX331FcePH6dMmTKuO7CLXM2AAQOw2Wz8+OOPbN++3epwRK5JlSMLXZkcaRJIyQ0+/PBDAAYOHOjWQYqSe1WsWJGuXbsCMH78eIujEbk2JUcWUuVIcps1a9awdu1afH19NRBbsmTIkCEAfPrpp5w6dcraYESuQcmRhZQcSW7jrBr16NGDEiVKWByN5CYtW7akXr16XLx4kalTp1odjshVKTmykAZkS25y6NAhZs+eDWggtmSdzWZzVY8++ugj4uPjrQ1I5Co0INtCqhxJbvLBBx8QHx9Py5YtadCggdXhSC50//33ExoayqFDh/jmm2+sDkckQ6ocWUjJkeQWZ86cYfLkyQD85z//sTgaya38/PwYNGgQAOPGjcMYY3FEImkZY5QcWUnJkeQWU6ZM4cyZM9SoUYNOnTpZHY7kYgMGDMDX15e1a9fy22+/WR2OSBrx8fE4HA5AyZElNEO25AaXL1/m/fffB2DYsGFu7XuXvKdEiRL07t0bgDFjxlgcjUhaKc/FSo4soAHZ4vFiYvhyxAgOHTpEqVKlePDBB62OSPKA5557Di8vLxYuXMjGqVMhJsbqkERcLl265Prdz88P0IBst1K3mni0yEgc5crxTvL/7p9q2tT1RSFyIypXrsx9EREAjHn8cQgPh8hIi6MSSZJyvJHNZgNUOXKrK5OjhIQEXd4qniEmBh5/nO+NYSsQDPSfO1f/w5fsERPDC+vWAfA1sNvhgP799f4Sj+C8W4Xz3AxKjtzqyuQIVD0SD7FrF8bh4L/JDwcDhR0O2L3byqgkr9i1i7rG0BFwAG8DJCbq/SUe4cor1UDJkVs5d7a/v79rmZIj8QhVqrDAZiMKCAKeAbDboXJla+OSvKFKFfDyYnjyw0+AGC8vvb/EIyg5sphzgJfNZnMlSEqOxBOYMmUYFR4OwJNAUbsdJk+GsDBrA5O8ISwMpkyhhd1OS+Ay8GbLlnp/iUdILznSgGw3SpmJalC2eJIlS5awNjqawIAAhn73HURHQ58+VocleUmfPhAdzahx4wCY9vvv7N+/3+KgRFQ5spySI/FExhhGjhwJwICBAynRrZv+Ry85IyyMVkOG0KZNG+Lj43n99detjkhEyZHVUu5sTQQpnmL+/Pn88ccfBAYG6lYh4hb//W/S0P8ZM2awZ88ei6OR/E7JkcVUORJPk5iYyIsvvgjA008/TcmSJS2OSPKDZs2a0aFDBxITE12JkohVlBxZLOUALyVH4glmzZrFtm3bKFy4MM8995zV4Ug+MmrUKAD+7//+j+3bt1scjeRnGpBtMVWOxJPExcUxYsQIAF544QUKFSpkbUCSrzRs2JC77roLh8PB888/b3U4ko+pcmSx9JIj58ycIu42ZcoUoqOjKV26NE8++aTV4Ug+NGbMGOx2Oz/88AMrV660OhzJp5QcWUyVI/EUp0+fdnVrvPrqq64LBETcqVq1avTv3x+AYcOG4XA4LI5I8iMlRxZTciSeYtSoUZw8eZIaNWrw2GOPWR2O5GMjRoygYMGCrF+/ni+//NLqcCQfUnJkMQ3IFk/w999/8+GHHwIwbtw4fHx8LI5I8rMSJUq4xhy9+OKL+k4Ut9OAbIupciSe4NlnnyUhIYE77riD22+/3epwRHjmmWcoU6YM+/fv5+2337Y6HMlnVDmymJIjsdqSJUtYsGAB3t7evPfee1aHIwIkTYrrfD+OGTOGffv2WRyR5CdKjiymGbLFSnFxcQwZMgSAwYMHU61aNWsDEkmhe/futGnThkuXLrnepyLuoOTIYqociWViYnh74ED++usvQkNDefXVV62OSCQVm83Ghx9+iLe3N/PmzWPh6NEQE2N1WJIPKDmymAZkiyUiI9lVrhxvzJgBwLg779SEj+KRatasydNt2gDw1IsvcrFcOYiMtDgqyes0INtiqhyJ28XEYPr1Y5AxxAHtgR6RkfofuXimmBhGLF1KaWAPMMoY6N9f71fJUaocWUwzZIvb7drFF8awDPAHJgI2hwN277Y4MJF07NpFQWOYkPzwHSAqMVHvV8lRSo4spsqRuNvxwoV5Ovn3l4FKAHY7VK5sXVAiGalSBby8uAu4D0gE+gAJ5ctbGZXkcc7zcMo7BSg5ciMlR+JOxhgGvf46J4GbgP9AUmI0eTKEhVkbnEh6wsJgyhSw2/kQKAxEAe/Nnm1xYJKXqXJkMQ3IFnf68ssv+fbbb/H29uaTxYvxXbECoqOhTx+rQxPJWJ8+EB1N6IoVjBs7Fki6xci2bdssDkzyKg3ItpgqR+IuR44c4YknngDglVdeoe7tt0Pr1qoYSe4QFgatW9NryBA6duxIXFwcDz30EHFxcVZHJnlMYmIily9fBlQ5sowqR+IOxhj69evHv//+S7169Rg+fLjVIYlcF5vNxvTp0ylWrBgbN27U/FyS7S5duuT6XcmRBWw2GzabzfVYM2RLThk/fjwLFizAz8+PTz75RDeWlVytZMmSTJ06FYB33nmHlStXWhuQ5Ckpz8FKjixw5Y5W5UhyQlRUFM899xwA7733HnXq1LE4IpEbd9ddd9G3b1+MMfTq1YvTp09bHZLkEc5zsK+vb6reHSVHbnLl4C5nchQfH09iYqIVIUkec+7cOXr06MHly5fp2rUrgwYNsjokkWwzbtw4KlWqxMGDB12JksiNSm8wNmhAtttkVDkCVY8kezz11FPs3LmTMmXKEBkZmaobVyS3K1CgAJ9//jk+Pj58++23jB8/3uqQJA/IKDlS5chNrtzR/v7+rt81S7bcqJkzZzJjxgy8vLyYNWsWRYsWtTokkWzXqFEjxiZf3j9s2DBWr15tcUSS2yk5stiVO9rLyws/Pz9AlSO5ATExrJ88mQEDBgBJ88G0atXK4qBEcs4TTzxB9+7dSUhIoHv37pzcvBlWrND91+S6OIsTSo4skl7/pQZlyw2JjORkuXLcPWAAcXFxdL7pJl5++WWroxLJUTabjWnTplGtWjViYmJ48OabSWzTBsLDITLS6vAkl9GYIw+k5EiuW0wMCf360cMYDgCVgf/buhWvw4etjkwkxxUsWJBvPvqIAOBH4HkAhwP691cFSbIko+TInWM2PSI5mjhxIhUqVMDf35+IiAh+/fXXDNt+9913tGvXjuLFixMcHEzTpk1ZsmTJda1XlSPJVrt28YIx/AQEAXOAQg6H7l4u+UZtu51Pkn9/D5gBkJioz4BkiSpHwOzZsxkyZAgvvfQSUVFRtGjRgo4dO3LgwIF02//yyy+0a9eOhQsXsn79em699Va6dOlCVFRUltet5Eiy09S1a3kv+ffpQG1Iuqls5crWBSXiTlWqcJ+XFyOSH/YHfvfy0mdAskTJETB27Fj69OlD3759qVGjBu+//z5ly5bl448/Trf9+++/z3PPPUfDhg2pUqUKb775JlWqVGH+/PlZXnd6O1qzZMv1WLZsGYNeegmA12w2ukNSYjR5su6dJvlHWBhMmcKrXl7cA8QD3YKC2K954yQL8n1ydPnyZdavX0/79u1TLW/fvj2rVq3K1Gs4HA7Onj1LkSJFMmwTFxfHmTNnUv2AKkeSPXbs2MG9995LQkICPXv25NX9+5Ou1ImOTrqbuUh+0qcPXvv388nChdStVYsTZ8/SpUsXYmNjrY5Mcol8nxydPHmSxMREQkNDUy0PDQ3l6NGjmXqN9957j/Pnz9O9e/cM24wePZqQkBDXT9myZQElR3LjTpw4wR133EFsbCzNmzdPmuixbFlo3VoVI8m/wsII6tiReYsWERoaypYtW+jWrRtxcXFWRya5QL5PjpyuHIFujMnUqPQvvviC1157jdmzZ1OiRIkM2w0fPpzY2FjXz8GDB4GrJ0eaBFKu5dy5c3Tu3Jl9+/ZRsWJF5s6dm2oiUZH8rmzZsixcuJACBQqwYsUKHn30URwOh9VhiYfL98lRsWLFsNvtaapEx48fT1NNutLs2bPp06cPX331FbfddttV2/r5+REcHJzqB1Q5kusXFxfH3XffzZo1ayhSpAgLFiygWLFiVocl4nHq16/Pt99+i7e3N1988QXPP/+81SGJh8v3yZGvry8REREsXbo01fKlS5fSrFmzDJ/3xRdf8Mgjj/D5559zxx13XPf6lRzJ9UhMTKRXr14sXbqUoKAgFi1aRPXq1a0OS8RjtW/fnunTpwPw7rvvMm7cOIsjEk/m7LlxXiDllG+SI4ChQ4cybdo0pk+fzo4dO3jmmWc4cOCA69YLw4cPp1evXq72X3zxBb169eK9996jSZMmHD16lKNHj17XYL/0uu6UHMnVGGMYPHgwX331FT4+PsyZM4dGjRpZHZaIx3v44YcZM2YMkPS970yWRK50/vx5AIKCglItd2dy5O22NWXg/vvv59SpU4waNYojR45Qu3ZtFi5cSHh4OABHjhxJNefR5MmTSUhI4IknnuCJJ55wLe/duzczZ87M0rpVOZIsiYnhtZde4uNPP8Vms/HZZ5/Rrl07q6MSyTWee+45jh07xrhx4+jbty+BFy/So2ZNqFJFFzCIi5KjZIMGDWLQoEHp/u3KhGflypXZtl5VjiTTIiMZ068fo4wBYELPnle9QlJE0rLZbLz33ntcuHCByZMn89CTTxIAdPXygilTNPWFABknR/nu9iFWUeVIMiUmhnf69WN4cmL0JjDwyy91vyiR62Cz2Zj44os8DCQC3YElugebpOAJlSMlR1fQDNlypbFvvslzyYnRKGA46H5RIjfAa88epgP3ApeBbsByfaYkmZIji6lyJNfy/vvv82zyrWxGAK84/6B7polcvypV8PbyYhZwB3Ax+d/FyXPQSf6m5MhiSo7kasaNG8czzzwDwCudOzPC+X7RPdNEbkzyPdh87Xa+BboAl4Cuffvy/fffWxycWE3JkcU0Q7akxxjDiBEjGDp0KAAvvvgiI+fNw6Z7polknz59IDoavxUr+GbPHu69914uX77Mvffey9dff211dGIhTxiQ7RFXq1lFlSO5ksPh4JlnnmH8+PEAvPHGGwwfPjzpQxkWpmqRSHZK/kz5kjSHna+vL59//jk9evTg0qVLPPzww1ZHKG7mcDhcxQldrWYRJUeSUkJCAo899pgrMfroo4948cUX3fqBFMmvvL29+fTTT133X3NO9iv5S8pzb4ECBdL83V1da/k6OdI8RwJATAznFi6kW8eOfPLJJ9jtdj799NNUk4yKSM6z2+1MmzaNp59+GoBhw4YxdOhQHAcOJHVp61L/PO/cuXOu36+8txooOXKLq13KrzFH+URkJEfKlaPVHXfww7Jl+Pv48M0336icL2IRLy8vxo0bxzvvvAMkXRjRMzycuDZtIDwcIiMtjlByknO8UWBgYLrnaCVHbpBe5ahgwYJA6uxV8qiYGLb260djY9gAFANWJCZyV4MGVkcmkq/ZbDaGDRvGrPHj8QFmA+2BE5osMs/LaDC2k7uGOeTr5Ci9DNTZx3n+/HkcDoe7QxI3WjxrFs2N4SBQFfgDaOJwaCI6EQ/Rs3ZtFgHBwC9AQ2CzJovM066VHKly5Abp7WRn5Qj+d5Akb3E4HLz++ut0Gj6cM0ALYDVQCTS5o4gnqVKFtl5e/AFUBvYDTYFvd+60Ni7JMUqOPEB6O9nf39+1/OzZs+4OSXJYbGws3bp145VXXsEYQ/9WrVjq5UUR0OSOIp4mebLIGnY7a4B2wAXg3v79efnll0lISLA4QMluSo48QHo72WazadxRHrV582YaNmzIvHnz8PPzIzIykkkrV+KnyR1FPFfyZJGFV6xg4b59rlnr33jjDdq2bUuMxh/lKUqOPEBGO9k57kiVo1wuJgZWrMBx4ADjxo2jYcOG7Nq1i3LlyvHbb7/x2GOPJbULC4PWrVUxEvFUyZ9R7/LlGTt2LJ9//jkFChTgl19+oW7duixYsCCpXfJnXgO2cy8lRx4go52sylEeEBkJ4eEcbtOGDuHhDB06lMuXL9OlSxfWr19PA12RJpJrPfDAA0RFRVG/fn1OnTpF586defq22zhfrhzokv9cTVereYCMdrIqR7lcTAymXz++cDi4CVgKBACTRo/m+++/p1ixYhYHKCI3qnLlyqxatYqnnnoKgPE//cTNxvALgC75z7VUOfIAqhzlTft//ZU7jKEncAqoD2wA+jdpoluBiOQhfn5+fPDBBywaM4YwYA/QChgMnNMl/7mSkiMPoDFHeUtCQgIffPABtfr2ZRHgC4wi6TL96rpEXyTP6vDgg2y12eiX/PgjoAbw9V9/YYyxMDLJKiVHHkCVo7xj+fLl1K9fnyFDhnD+wgVaVKnCJi8vXgF8dYm+SN4WFkbI1KlMsdv5ESgPxADdBw6kXbt2bN++3dr4JNOcRYn0bjoLSo7cQmOOcr89e/bQrVs32rZty5YtWyhcuDCTJ09m5V9/UV2X6IvkH8mX/LdbsYLtO3cyYsQI/Pz8+Omnn7j55pt59tln+ffff62OUq7hzJkzAISEhKT7dw3IdgNVjnKpmBhOzZ3LfwYMoGbNmsydOxe73c7gwYPZvXs3jz/+eNKx1SX6IvlL8mc+oEoVXnvtNbZv307Xrl1JSEhg7NixVKxYkXfeeYeLu3bpkn8PFRsbC2ScHKly5AYac5T7nJ0wgVHlylGxWzfenTyZy5cv0759ezZv3sz48eMpUqSI1SGKiIeoWLEic+fOZdGiRdSuXZvTp0/z3HPPUbVqVWa0aUNiuXK65N/DOCtHwcHB6f5dyZEbqHKUe1y8eJGxr75KxSefZIQxnAHqAgu8vFg8bRo1a9a0OEIR8VQdOnRg48aNzBw7lrIkjUd6DLjZGOY8/jjm4EGLIxQnJUceQJUjzxcfH8+UKVOoUqUKz/73v5wEqgKzgfVAJ4cD25491gYpIh7PbrfTu25ddgLvAoWBbcDdDgf127Th+++/15VtHuBa3Woac+QGqhx5rsuXLxMZGUn16tXp378/hw4domzp0kTabGwDupP85tUl+iKSWVWq4O/lxbPAXuAloACwcfdu7rrrLiIiIpg3b56SJAupcuQBMspAncmRKkduFhND3JIlTBo9mipVqtC3b1/27t1L8eLFef/999m5Zw+PTZ2Kt92e1F6X6ItIVoSFwZQpYLdTCHjdbif6/fcZPnw4BQoUICoqiq5du9KgQQPmz5+f1N2mgdtuk5iY6CpKWD0g29sta/FQ1+pWU+XIfS5NmsS0QYMYYwyHkpeVLFmS//znP/Tv3/9/E4L16QO33540823lykqMRCRrrvgOKRoWxpvA0KFDee+99/jwww/ZsGEDd955JxHAK0AXmw2vqVM1JUgOS1mQUOXIQtfqVnOW9yTnXLhwgfdfe42KAwcyODkxKg2Mt9nY+8svDB06NO1MqbpEX0RuRDrfIcWKFWP06NHs27eP5wYOJJCkcY13ATcZw//160f8vn3WxJtPOM+5vr6++Pn5pdtGyZEbZLSTCxUqBPxvYJhkvxMnTvDaa68RHh7OMyNHcgQoC0wk6f5Ig40h4NChq7+IiEg2K168OG/ddx/RwPNAQZIGbvcyhipNm/LRRx9x4cIFS2PMq641ASQoOXKLayVHZ8+eJSEhwY0R5VExMa5++927dzNw4EDKlSvHyJEjOXnyJBXKlWOKzcZuYCDgDxpoLSLWqVKF4l5ejAEOAG8CJYD9x44xePBgypcvzxtvvME///yT1D7Fd5xcP2dBIqMuNVBy5BYZDch2JkcAp0+fdk8weVVkJKZcOZa3acM9ZctStWpVJk2axKVLl2jQoAGzZ89m55499Js6NekeaKCB1iJirSsGbg+324meOJEJEyZQvnx5Tpw4wcsvv0yZMmXo06IFG8qVgzZtIDxck0regGtdqQa6lN8tMspAvb29XeOOdC+e63dqyxbG9utHdWNoC3wHGGPo1KYNK1asYM2aNXTv3h1vb2/XfZF0LzQR8QhXfCcFDBzIoEGD2LVrF5999hl169bl0qVLTP/tNyKMoRkwy+Hg0uOPq4J0ndSt5iGutpMLFy4MKDnKqri4OObNm0ePHj0oExHBs8awk6R++4HAVmDBK6/QunXrtP8D0EBrEfEk6XwneXt78+CDD7JhwwZ+Gz+eB0i67Hs18BBQ0uGg34AB/PLLLzgcDmvizqXUreYhrraTnV1rSo4ykKKPPT4+np9++ol+/fpRsmRJunbtyuzZs4mLj6ceMBk4TNJg61oaSyQieYDNZqN5t2587uXFQWAUSReVxALTFiygVatWVKpUieHDh7NmzZqkREljk64qM5Ujdau5QWYqRxpzlI7ISE6VK8dnbdrQo2xZioeEcNtttzFt2jROnz5NqVKlGDp0KOvWrWP91Kk8brdTADSWSETyluSxSSXtdl4Bor28WD5sGI8++igFCxYkOjqaMWPG0LhxY8KKFGFA2bIsatOGON3wNl2ZGXOkSSDd4GoZqLrVUjPGsHnzZhZ9+SU/jBnDasBVML54kWJFitC1WzcefPBBWrZsid05uDoiAjp00KSNIpI3pZhU0qtyZW4NC+NW4KOPPmLevHl89913LFq4kCOxsUwmqZIeZAxt+valw9GjdOzZkwoVKli8EZ7Bk7rV8nVypDFH6YiJgV27oEoVThcowLJly1i0aBGLFy/m8OHDqZreBHQGugANv/oKe9u26b9mWJiSIhHJu9L5jgsMDKRHjx706NGDuCVLWNGhA3OBecARYD4w/+WX4eWXqVq1Kh07dqRDhw60atWKgICAVN/F+eX70zk1QtGiRTNso+TIDTTmKDUzbRobH3+cRcawCFjt5UViigGFAQEBtGnWjE7Ll9PZGMo5/2C3Q7VqVoQsIuLx/GrVooOXFx0cDiYCm4DFNhuLGzXi93Xr2LlzJzt37uSDDz7A39+f1pUr03HbNjoYQxWbDVs+uXXJyZMngaTZyjOi5MgN8lXlKIP/hVy8eJGffvqJ+V9+yQ+zZpGqNuRwUL1yZTp26ULHjh1p0aIF/v7+SX3l/ftDYqLGEYmIXItz3qT+/fFKTKSe3U69yZMZ3qcPsbGx/PTTTyxatIhFixZx6NAhFm/dyuLkp1Y0hg79+tHRbufW++5LezulPFRhUnLkIfLNgOzISHj8cXA4wMuLI2+/zQ/BwcyfP59ly5Zx8eJFV9NAoC3QMfmn/NSpSZeypqSbv4qIZE0G35shISHcfffd3H333Rhj2DZjBov79GER8CuwF5hoDBMffRTf/v1p2bIlHTp0oEOHDtRcvRpb//6u73amTMnVFaYTJ04ASo4sly8GZMfEcKlfP1YZw3JgicPBumHDUjUpW7YsnVu35s7PPqO1MUm374Cr38JD44hERLLmGt+bNpuN2u3bU9vLi2EOB+eA5SR1wS0KCyP64EGWLVvGsmXLGDZsGGWBDiT9R7atw0Fw//5JCVgu/W7OTOXIXZfy5+vkKE90q11RUj137hzbt29n69atbNu2jajly1llDHFXPK1h9ep06dmTLl26cPPNNye94Vq1UneZiIiVUnTBFUhM5E67nTsnT8Y89hg7d+50XSCzcvlyDsbHMxWYStLJvHliIu1ee42Ie+/l5ptvpmTJkv9LJjy8++3ixYucP38eUOXIcplJjlw3FvQw58+fZ8eYMWx74w22GcM2YFvRouw/dSrd9qVI6i5rA3Tw8qLU0qVpPyDqLhMRsV4638U2oFq1alSrVo0hQ4ZwYdcufq5WjUXGsBjYBfwM/BwZ6ZpDqVixYtx0003UAmquWEFNY6hhs1HcAwd4n0o+d3l7e3vEvdWUHGWgRIkSABw7dgxjjNsOiEuKLP9i0aKsWrWK9evXs2HDBtavX8+ePXswxqR+TvKbq2TJktSqVYtatWpRu3ZtWhw7RrURI7A5HNeuCKm7TETEetf4Lg6sUoWOU6fSMbnav8fLi8U9evBLQgKbNm1i165dnDx5kuXLl7M85RONoVjfvtScOpUadetSs2ZNmjRpQv369ZPuc2lRhSlll9rVzreqHLnB1Q5AyZIlgaRS39mzZ6+ayWZJZt54kZHs69ePhcawEFjh68vFy5fTNCsO1LryZ+5cinbtmvY1H3lEFSERkbwkRYWpUuXKPBEWxhPJf7pw4QLbtm1jy9dfs+Odd9gObAeigZPAL3/+yS9//ul6qeDgYFqWL0+7LVsyN4VANidRmRlvBEqO3OJqOzkoKIiCBQty9uxZjhw5kunkaNu2bUybNo3NmzcDULlyZRo2bEiLFi2o+uuvGV5ZcOHCBX777TeWfPMNC6dO5a+UL3r5MmVKlqR5y5bUr1+f+vXrc3Px4pSIiEh6LSe7PWlG6vSoIiQikvdk8N0eGBhIw4YNaViqFLz3nutccR7428uL7ePGsf3oUbZs2cJvv/3G6dOn+WHzZn5Ifn6F5CkEOthstOnenQIFCvzvxVNcAW1sNg6MGcMf4eH88ccfbNq0CV9fX5o1a0a/fv0oVapUpjZDyZEHudZOLlWqlCs5qnaNSQ7NwYOMHjmSl6dPT9XdtXz5cqZMmQJACeAWoDpQxOHgcr9+RK9Ywfb9+1mzZg2XU1SH7EBzoFPyT+3PP8d2662pV5o8aE8DqEVEJF0pBniTmEiQ3U79yZOpn6IilJiYyKZp0/hpwACWkDSFwD7gY2P4uE8ffAYM4JZbbqF27dqUDgrC/tZbHDOGHcAGYzj6/PNpVrtkyRLeffddpr/zDvdWrXrNCpOSIw9yrZ1csmRJdu7cydGffrp6d1RkJG/068cryUlR17p16TZkCHa7na1bt/LHH3/wx6pVHI+P57uUzzMGZs1yPQwLC+O2pk3p9M03tDOGQs4/2O1Jb6wraQC1iIhcyzXOFXa7nfp33EF9Ly/+kzyFwEqSpxAoW5a9Bw6wYsUKVqxYke7LewN1q1WjSbt2NGjQgIsXLzJ9+nTWrl3L/QMG8A3Q7RrzMJ3cuxeAYv7+6f7dScmRG1yzcpQ8OeKR11+HN99M/8DGxLAsRWL0PvD0li3Qtm2qN2Dcnj2srVKF1cYQDcQCPjYbZZ96iioRETRp0oTKlSsnjYPKygzU6i4TEZFruda54oopBDrb7XSePBn69GH37t389NNPREdHc3j3bmzffEMhknpB6gD1vbwIWLYs1ev369iRfuXLMwN4FKjvcBCe0TxMkZEcHzcOgGKffZY08XAGSZSSIzfwOncu4z/GxFBq7VoAjkJSf206B/bStm0MTE6M+gNPQ1JSs3t3qnZ+lSpxy9Sp3HJl0pPeG0AVIRERcbcMzj2VK1emcsoJgTPxH3j73r1MJmkQ+J8knRvnpnNuJCYGHn+cQ8kPwyDdc62T16VL2be9V5G/k6N334Xq1dNPUHbtomTyr0ecy9I5sP+3aRO7SZpH6G3nwoxmls5K0qOKkIiIuFtmzj2ZOZdVqYKPlxczHA7qAN8Dv3p50eLKc+OuXeBwEJP8sAyke64FIDISr8WLcQf31Kc8lA2SMtSYmLR/rFKFUsmX+ruSoyuSHmMM4//v/wAYZrMR7GxzrW6w1q2V+IiISO51rXNZcjddDbudvsmL3qhRI237KlXAy8uVHIVB+gWG5AqTu2YczNfJUV34X4Z6pbAwSg0ZAiQnR+kkPT///DNbt24lMDCQx7ZsgRUrIDra42YeFRERcbs+fSA6muc//xwvLy+WbNvG9u3bU7cJCyNuwgSOOx96eaVfYEiuMLVzS+D5PDm6Ba56c9Wyjz8OwP6AAMy+fWmSng8//BCAhx9+mEK1aqkiJCIiklJYGBUeeICuyZMTjx8/Pk2T/W3aABDo70/RjAoMyRWm+3My1hTydXJERhlqsgoVKmCz2Th38SLHfX1T/e3AgQPMnTsXgCeffDKnIxUREcm1hiT3xHz66adp7lm6Z88eACpXrYqtbNn0X8B5NZ2brlbL38nR1q1X7QLz8/OjbPKB2n1F19vHH3+Mw+GgTZs21K5dO0fDFBERyc1atGjBzTffzMWLF/nkk09S/c15fq1UqdLVX6RPn6Tzthvk7+SoTJlrNnFevrhz507XsosXLzJ16lQABg8enDOxiYiI5BE2m42BAwcCMGnSpFR3knCeXytnMMQllUyct7ND/k6OMqFOnToAbNq0ybXsyy+/5NSpU4SHh9OlSxerQhMREck1HnzwQQoWLMjOnTtZvny5a7nz/Oo833oCJUfXULduXQCioqKApMv3nQOxBw0ahN1utyo0ERGRXKNAgQI8/PDDQNLQFEg6pzqTI+f51hPYTMraVj5x5swZQkJCiI2NJTg4+Kptt27dSp06dQgMDOSff/5h9erV3Hrrrfj7+xMTE0PRokXdFLWIiEju5jyn2u129u/fzz///MNNN91EYGAgp0+fxsfH56rPz8r5+0aocnQNtWrVIjQ0lAsXLvDbb78xatQoAB599FElRiIiIllQu3ZtbrnlFhITE5kwYQKLk2e8btWq1TUTI3fyiORo4sSJVKhQAX9/fyIiIvj111+v2v7nn38mIiICf39/KlasyKRJk3IsNpvNRufOnQHo2LEjK1aswMfHh+HDh+fYOkVERPKqZ599FoC33nqL559/HsDjxu9anhzNnj2bIUOG8NJLLxEVFUWLFi3o2LEjBw4cSLf9vn376NSpEy1atCAqKooXX3yRp556im+//TbHYnz66afx8vIiPj4egGHDhrku8RcREZHM69q1K+3bt8fhcGCMoVixYq6xSJ7C8jFHjRs3pn79+q7BWQA1atTgrrvuYvTo0WnaP//888ybN48dO3a4lg0YMIBNmzaxevXqTK3zevosv/32Wz744ANatWrFiBEj8PbO1/fsFRERuW7//vsv//nPfzhw4ABvvPEGDRs2zNTz3DXmyNIz/OXLl1m/fj0vvPBCquXt27dn1apV6T5n9erVtG/fPtWy22+/ncjISOLj43Osz/Kee+7hnnvuyZHXFhERyU8KFy7MtGnTrA4jQ5YmRydPniQxMZHQ0NBUy0NDQzl69Gi6zzl69Gi67RMSEjh58iSlSpVK85y4uDji4uJcj2NjY4GkDFRERERyB+d5O6c7vTyib8hms6V6bIxJs+xa7dNb7jR69GhGjhyZZrnGDYmIiOQ+p06dIiQkJMde39LkqFixYtjt9jRVouPHj6epDjmVLFky3fbe3t4ZXlo/fPhwhg4d6np8+vRpwsPDOXDgQI7uXE9z5swZypYty8GDB3O0r9bTaLu13fmBtlvbnR/ExsZSrlw5ihQpkqPrsTQ58vX1JSIigqVLl9KtWzfX8qVLl9K1a9d0n9O0aVPmz5+fatmPP/5IgwYNMhxv5Ofnh5+fX5rlISEh+epN5RQcHKztzke03fmLtjt/ya/b7eWVsxfbW34p/9ChQ5k2bRrTp09nx44dPPPMMxw4cIABAwYASVWfXr16udoPGDCA/fv3M3ToUHbs2MH06dOJjIxk2LBhVm2CiIiI5CGWjzm6//77OXXqFKNGjeLIkSPUrl2bhQsXEh4eDsCRI0dSzXlUoUIFFi5cyDPPPMOECRMoXbo048eP15VkIiIiki0sT44g6QaugwYNSvdvM2fOTLOsVatWbNiw4brX5+fnx4gRI9LtasvLtN3a7vxA263tzg+03Tm73ZZPAikiIiLiSSwfcyQiIiLiSZQciYiIiKSg5EhEREQkBSVHIiIiIink2eTojTfeoFmzZgQGBlKoUKFMPccYw2uvvUbp0qUJCAigdevWbNu2LVWbuLg4Bg8eTLFixQgKCuLOO+8kJiYmB7bg+vz77788/PDDhISEEBISwsMPP8zp06ev+hybzZbuzzvvvONq07p16zR/79GjRw5vTeZdz3Y/8sgjabapSZMmqdrkteMdHx/P888/T506dQgKCqJ06dL06tWLw4cPp2rnacd74sSJVKhQAX9/fyIiIvj111+v2v7nn38mIiICf39/KlasyKRJk9K0+fbbb6lZsyZ+fn7UrFmTOXPm5FT41y0r2/3dd9/Rrl07ihcvTnBwME2bNmXJkiWp2sycOTPdz/qlS5dyelOyJCvbvXLlynS36a+//krVLq8d7/S+v2w2G7Vq1XK18fTj/csvv9ClSxdKly6NzWZj7ty513yO2z7bJo969dVXzdixY83QoUNNSEhIpp4zZswYU7BgQfPtt9+aLVu2mPvvv9+UKlXKnDlzxtVmwIABpkyZMmbp0qVmw4YN5tZbbzU333yzSUhIyKEtyZoOHTqY2rVrm1WrVplVq1aZ2rVrm86dO1/1OUeOHEn1M336dGOz2cyePXtcbVq1amX69euXqt3p06dzenMy7Xq2u3fv3qZDhw6ptunUqVOp2uS143369Glz2223mdmzZ5u//vrLrF692jRu3NhERESkaudJx/vLL780Pj4+ZurUqWb79u3m6aefNkFBQWb//v3ptt+7d68JDAw0Tz/9tNm+fbuZOnWq8fHxMd98842rzapVq4zdbjdvvvmm2bFjh3nzzTeNt7e3+eOPP9y1WdeU1e1++umnzVtvvWXWrFljdu7caYYPH258fHzMhg0bXG1mzJhhgoOD03zmPUlWt3vFihUGMH///XeqbUr5Gc2Lx/v06dOptvfgwYOmSJEiZsSIEa42nn68Fy5caF566SXz7bffGsDMmTPnqu3d+dnOs8mR04wZMzKVHDkcDlOyZEkzZswY17JLly6ZkJAQM2nSJGNM0pvRx8fHfPnll642hw4dMl5eXmbx4sXZHntWbd++3QCp3gSrV682gPnrr78y/Tpdu3Y1bdq0SbWsVatW5umnn86uULPV9W537969TdeuXTP8e3453mvWrDFAqi9hTzrejRo1MgMGDEi1rHr16uaFF15It/1zzz1nqlevnmpZ//79TZMmTVyPu3fvbjp06JCqze2332569OiRTVHfuKxud3pq1qxpRo4c6Xqc2e9DK2V1u53J0b///pvha+aH4z1nzhxjs9lMdHS0a1luON5OmUmO3PnZzrPdalm1b98+jh49Svv27V3L/Pz8aNWqFatWrQJg/fr1xMfHp2pTunRpateu7WpjpdWrVxMSEkLjxo1dy5o0aUJISEim4zt27BgLFiygT58+af42a9YsihUrRq1atRg2bBhnz57NtthvxI1s98qVKylRogRVq1alX79+HD9+3PW3/HC8IelGjjabLU33sycc78uXL7N+/fpUxwCgffv2GW7j6tWr07S//fbbWbduHfHx8Vdt4wnHFa5vu6/kcDg4e/Zsmht0njt3jvDwcMLCwujcuTNRUVHZFveNupHtrlevHqVKlaJt27asWLEi1d/yw/GOjIzktttuc91dwsmTj3dWufOz7REzZHuCo0ePAhAaGppqeWhoKPv373e18fX1pXDhwmnaOJ9vpaNHj1KiRIk0y0uUKJHp+D755BMKFizI3XffnWr5gw8+SIUKFShZsiRbt25l+PDhbNq0iaVLl2ZL7Dfiere7Y8eO3HfffYSHh7Nv3z5eeeUV2rRpw/r16/Hz88sXx/vSpUu88MIL9OzZM9XNKz3leJ88eZLExMR0P5cZbePRo0fTbZ+QkMDJkycpVapUhm084bjC9W33ld577z3Onz9P9+7dXcuqV6/OzJkzqVOnDmfOnOGDDz6gefPmbNq0iSpVqmTrNlyP69nuUqVKMWXKFCIiIoiLi+P//u//aNu2LStXrqRly5ZAxu+JvHK8jxw5wqJFi/j8889TLff0451V7vxs56rk6LXXXmPkyJFXbbN27VoaNGhw3euw2WypHhtj0iy7Umba3IjMbjekjR+yFt/06dN58MEH8ff3T7W8X79+rt9r165NlSpVaNCgARs2bKB+/fqZeu2syuntvv/++12/165dmwYNGhAeHs6CBQvSJIdZed0b5a7jHR8fT48ePXA4HEycODHV36w43leT1c9leu2vXH49n3V3u94Yv/jiC1577TW+//77VAl0kyZNUl100Lx5c+rXr8+HH37I+PHjsy/wG5SV7a5WrRrVqlVzPW7atCkHDx7k3XffdSVHWX1Nq1xvjDNnzqRQoULcddddqZbnluOdFe76bOeq5OjJJ5+85hUz5cuXv67XLlmyJJCUmZYqVcq1/Pjx464stGTJkly+fJl///03VTXh+PHjNGvW7LrWmxmZ3e7Nmzdz7NixNH87ceJEmkw6Pb/++it///03s2fPvmbb+vXr4+Pjw65du3LsZOmu7XYqVaoU4eHh7Nq1C8jbxzs+Pp7u3buzb98+li9fnqpqlB53HO/0FCtWDLvdnuZ/fSk/l1cqWbJkuu29vb0pWrToVdtk5f2Sk65nu51mz55Nnz59+Prrr7ntttuu2tbLy4uGDRu63vNWu5HtTqlJkyZ89tlnrsd5+XgbY5g+fToPP/wwvr6+V23racc7q9z62c7SCKVcKKsDst966y3Xsri4uHQHZM+ePdvV5vDhwx43QPfPP/90Lfvjjz8yPUC3d+/eaa5aysiWLVsMYH7++efrjje73Oh2O508edL4+fmZTz75xBiTd4/35cuXzV133WVq1apljh8/nql1WXm8GzVqZAYOHJhqWY0aNa46ILtGjRqplg0YMCDNoM2OHTumatOhQwePG6Cble02xpjPP//c+Pv7X3Ngq5PD4TANGjQwjz766I2Emq2uZ7uvdM8995hbb73V9TivHm9j/jcgfcuWLddchycebycyOSDbXZ/tPJsc7d+/30RFRZmRI0eaAgUKmKioKBMVFWXOnj3ralOtWjXz3XffuR6PGTPGhISEmO+++85s2bLFPPDAA+leyh8WFmaWLVtmNmzYYNq0aeNxl3bfdNNNZvXq1Wb16tWmTp06aS7tvnK7jTEmNjbWBAYGmo8//jjNa+7evduMHDnSrF271uzbt88sWLDAVK9e3dSrVy/XbvfZs2fNs88+a1atWmX27dtnVqxYYZo2bWrKlCmTp493fHy8ufPOO01YWJjZuHFjqst74+LijDGed7ydlzhHRkaa7du3myFDhpigoCDXVTkvvPCCefjhh13tnZf7PvPMM2b79u0mMjIyzeW+v//+u7Hb7WbMmDFmx44dZsyYMR57aXdmt/vzzz833t7eZsKECRlOwfDaa6+ZxYsXmz179pioqCjz6KOPGm9v71QJttWyut3jxo0zc+bMMTt37jRbt241L7zwggHMt99+62qTF4+300MPPWQaN26c7mt6+vE+e/as69wMmLFjx5qoqCjXlbNWfrbzbHLUu3dvA6T5WbFihasNYGbMmOF67HA4zIgRI0zJkiWNn5+fadmyZZps/OLFi+bJJ580RYoUMQEBAaZz587mwIEDbtqqazt16pR58MEHTcGCBU3BggXNgw8+mOYS1yu32xhjJk+ebAICAtKdy+bAgQOmZcuWpkiRIsbX19dUqlTJPPXUU2nmBLJSVrf7woULpn379qZ48eLGx8fHlCtXzvTu3TvNscxrx3vfvn3pfi5SfjY88XhPmDDBhIeHG19fX1O/fv1UFazevXubVq1apWq/cuVKU69ePePr62vKly+fbtL/9ddfm2rVqhkfHx9TvXr1VCdTT5GV7W7VqlW6x7V3796uNkOGDDHlypUzvr6+pnjx4qZ9+/Zm1apVbtyizMnKdr/11lumUqVKxt/f3xQuXNjccsstZsGCBWleM68db2OSqtsBAQFmypQp6b6epx9vZ9Uro/eslZ9tmzHJo5lEREREJO/ePkRERETkeig5EhEREUlByZGIiIhICkqORERERFJQciQiIiKSgpIjERERkRSUHImIiIikoORIREREJAUlRyIiIiIpKDkSERERSUHJkYjkKaNGjaJOnToEBQURGhrKwIEDiY+PtzosEclFvK0OQEQkuxhjSExMZPLkyZQpU4bt27fTq1cvbrrpJgYOHGh1eCKSS+jGsyKSp/Xs2ZPixYvzwQcfWB2KiOQS6lYTkTxj//79PPnkk9SuXZvChQtToEABvvrqK8LCwqwOTURyESVHIpInnDx5kkaNGnHy5EnGjh3Lb7/9xurVq7Hb7dStW9fq8EQkF9GYIxHJExYuXEhCQgJffPEFNpsNgAkTJnD58mUlRyKSJUqORCRPKFKkCGfOnGHevHnUrFmT+fPnM3r0aMqUKUPx4sWtDk9EchENyBaRPMEYw8CBA/n8888JCAjgoYce4tKlS+zfv58ffvjB6vBEJBdRciQiIiKSggZki4iIiKSg5EhEREQkBSVHIiIiIikoORIRERFJQcmRiIiISApKjkRERERSUHIkIiIikoKSIxEREZEUlByJiIiIpKDkSERERCQFJUciIiIiKSg5EhEREUnh/wHkfpAGhx9znAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3bElEQVR4nO3dd3gUVd/G8e9m0wOEHkog9I4CoSNFEAQEsSKigApIURTRR8WG8KhgA0VBKQH0FRUbCNIEARsoLXSUGiB0UEIPSfa8fyS7T5YkkECys0nuz3XlIjuZ3fnNzO7OzTlnZmzGGIOIiIiIAOBjdQEiIiIi3kThSERERCQVhSMRERGRVBSORERERFJROBIRERFJReFIREREJBWFIxEREZFUFI5EREREUlE4EhEREUlF4UhyhUOHDvHqq6+yYcOGNH976KGHKFCgwDW/9qVLlxg4cCClS5fGbrdTr169ay80G0ycOJEZM2akmR4TE4PNZkv3b3mJzWbj1VdftbqMbPHqq69is9ly/LkffPABVapUwd/fH5vNxqlTp3jooYeoUKGC23xvvPEGc+bMuaZ6ruSff/6hR48elCxZEpvNxh133JHl16hQoQIPPfRQttfmTQ4cOMCdd95JpUqVCAkJITQ0lPr16/Phhx+SmJjoNu/WrVsZPHgwzZo1IyQkBJvNxooVK6wpPB/ytboAkcw4dOgQI0eOpEKFCtkeXj766CMmTZrEBx98QGRk5HUFrewwceJEihcvnuZAUbp0aVatWkXlypWtKUyyrF+/fnTs2DFHl7FhwwaeeOIJ+vXrR58+ffD19aVgwYK8/PLLPPnkk27zvvHGG9xzzz3XFF6u5L///S+zZ89m2rRpVK5cmaJFi2br6+cV586do1ChQrz88suUL1+eS5cusWDBAoYMGcKGDRuYOnWqa961a9cyZ84c6tevT7t27Zg3b56Flec/CkeS723ZsoWgoCAef/xxq0u5ooCAAJo2bWp1GZIF4eHhhIeH5+gytm7dCkD//v1p3Lixa7onQ/SWLVuoXLkyDzzwgMeWmV3Onz9PcHCwR5ZVo0YNPvnkE7dpnTp14tixY3zyySdMmDCBgIAAAHr16kWfPn0A+OabbxSOPEzdavnQ8ePHefTRRylXrhwBAQGUKFGCFi1asHTpUtc8bdq0oU6dOqxatYrmzZsTFBREhQoVmD59OgDz58+nQYMGBAcHU7duXRYtWpRmOb/99hvt2rWjYMGCBAcH07x5c+bPn59mvi1bttCtWzeKFClCYGAg9erVc/sCWbFiBY0aNQLg4Ycfxmazpdv1smvXLjp37kyBAgUoV64cTz/9NPHx8VfcFjabjalTp3LhwgXX686YMeOKXViXL9vZ/bF161buv/9+QkNDCQsL45FHHiEuLs7tuQ6Hgw8++IB69eoRFBRE4cKFadq0KXPnzgWSuxa2bt3Kzz//7KrH2TWSUU2Z2c4zZszAZrOxfPlyBg0aRPHixSlWrBh33XUXhw4duuI2upIKFSrQpUsXZs+ezQ033EBgYCCVKlVi/Pjxaebdv38/Dz74ICVLliQgIICaNWvy7rvv4nA4Mnz9mJgYfH19GT16dJq//fLLL9hsNr7++msga/vh4sWLDB8+nIoVK+Lv70/ZsmV57LHHOHXqVLrr98MPP1C/fn2CgoKoWbMmP/zwA5C8XWvWrElISAiNGzdm7dq1bs9Pr2ts1qxZdOjQgdKlS7te7/nnn+fcuXMZb+gMtGnThgcffBCAJk2aYLPZXC2Ol3er2Ww2zp07xyeffOJ6b7Vp0+aKr//PP/8wePBgypYti7+/P5UqVeLFF190fa6c78mlS5eyfft21+teqfsnISGBZ599llKlShEcHMxNN93E6tWr0533yJEjDBgwgPDwcPz9/alYsSIjR45M0wUVGxvLPffcQ8GCBSlcuDAPPPAAa9asSfN5cXbBb968mQ4dOlCwYEHatWsHJHevv/baa9SoUcP1vfjwww9z/PjxNHXNmjXL1d1VoEABbr31VqKjo6+4La+kRIkS+Pj4YLfbXdN8fHR4tpSRfOfWW281JUqUMJMnTzYrVqwwc+bMMa+88or58ssvXfO0bt3aFCtWzFSvXt1ERUWZxYsXmy5duhjAjBw50tStW9d88cUXZsGCBaZp06YmICDAHDx40PX8FStWGD8/PxMZGWlmzZpl5syZYzp06GBsNpvbcv766y9TsGBBU7lyZfPpp5+a+fPnm/vvv98A5s033zTGGBMXF2emT59uAPPSSy+ZVatWmVWrVpkDBw4YY4zp06eP8ff3NzVr1jTvvPOOWbp0qXnllVeMzWYzI0eOvOK2WLVqlencubMJCgpyve6xY8fM3r17DWCmT5+e5jmAGTFihOvxiBEjDGCqV69uXnnlFbNkyRIzduxYExAQYB5++GG35/bq1cvYbDbTr18/8/3335uFCxea119/3bz//vvGGGPWr19vKlWqZOrXr++qZ/369cYYk25Nmd3Ozu1XqVIlM2TIELN48WIzdepUU6RIEXPzzTe71eicN711v1xERIQpW7asKV++vJk2bZpZsGCBeeCBBwxg3n77bdd8x44dM2XLljUlSpQwH3/8sVm0aJF5/PHHDWAGDRp0xe175513mvLly5vExES3+e69915TpkwZk5CQkKX94HA4zK233mp8fX3Nyy+/bH788UfzzjvvmJCQEFO/fn1z8eJFt/ULDw83derUcb3fmzRpYvz8/Mwrr7xiWrRoYb777jsze/ZsU61aNRMWFmbOnz/ver6zptT++9//mnHjxpn58+ebFStWmI8//thUrFgxzX5I77mX27p1q3nppZdc+2vVqlVm165dxpjkz0VERIRr3lWrVpmgoCDTuXNn13tr69atGb72hQsXzA033GBCQkLMO++8Y3788Ufz8ssvG19fX9O5c2djjDEXL140q1atMvXr1zeVKlVyvW5cXFyGr9unTx9js9nMf/7zH/Pjjz+asWPHmrJly5pChQqZPn36uOY7fPiwKVeunImIiDCTJk0yS5cuNf/9739NQECAeeihh1zznT171lSpUsUULVrUTJgwwSxevNg89dRTpmLFimnex3369DF+fn6mQoUKZvTo0eann34yixcvNklJSaZjx44mJCTEjBw50ixZssRMnTrVlC1b1tSqVcttn77++uvGZrOZRx55xPzwww/mu+++M82aNTMhISFX3J6pORwOk5CQYP755x/z5ZdfmpCQEDN8+PAM5//6668NYJYvX56p15frp3CUDxUoUMAMHTr0ivO0bt3aAGbt2rWuaSdPnjR2u90EBQW5BaENGzYYwIwfP941rWnTpqZkyZLmzJkzrmmJiYmmTp06Jjw83DgcDmOMMT169DABAQFm//79bsvv1KmTCQ4ONqdOnTLGGLNmzZoMD9h9+vQxgPnqq6/cpnfu3NlUr179Klsj+fkhISFu064lHL311ltu8w0ePNgEBga61vWXX34xgHnxxRevWE/t2rVN69at00xPr6bMbmdn4Bk8eLDba7711lsGMIcPH3ZN++STT4zdbjeffPLJFes0Jjk82Gw2s2HDBrfp7du3N4UKFTLnzp0zxhjz/PPPG8D8+eefbvMNGjTI2Gw28/fff7umXb59ly9fbgAze/Zs17SDBw8aX19ft/Cb2f2waNGidOebNWuWAczkyZPd1i8oKMjExsa6pjnf76VLl3atnzHGzJkzxwBm7ty5aWrKiPMg+fPPPxvAbNy4MdPPdXLu2zVr1rhNvzwcGWNMSEiIWwC5ko8//jjdz9Wbb75pAPPjjz+6prVu3drUrl37qq+5fft2A5innnrKbfrMmTMN4FbbgAEDTIECBcy+ffvc5n3nnXcM4AoiEyZMMIBZuHCh23wDBgxINxwBZtq0aW7zfvHFFwYw3377rdt05/fOxIkTjTHG7N+/3/j6+pohQ4a4zXfmzBlTqlQp071796tuA2OMGT16tAEMYGw221W/ExSOPE/tdvlQ48aNmTFjBq+99hp//PEHCQkJ6c5XunRpIiMjXY+LFi1KyZIlqVevHmXKlHFNr1mzJgD79u0Dkgcd/vnnn9xzzz1ug5vtdju9evUiNjaWv//+G4Bly5bRrl07ypUr57bshx56iPPnz7Nq1apMrZPNZqNr165u02644QZXTZ5w++23p1n+xYsXOXbsGAALFy4E4LHHHsuW5WVlO1+pRsBtO/Xu3ZvExER69+6dqTpq167NjTfe6DatZ8+enD59mvXr1wPJ+7lWrVpuY2IgeT8bY1i2bFmGr9+mTRtuvPFGJkyY4Jr28ccfY7PZePTRR9PMf7X94FzW5QPe7733XkJCQvjpp5/cpterV4+yZcu6Hjvf723atHEbq3L55yAje/bsoWfPnpQqVQq73Y6fnx+tW7cGYPv27Vd8rictW7aMkJAQ7rnnHrfpzu12+XbKjOXLlwOkGZvUvXt3fH3dh8D+8MMP3HzzzZQpU4bExETXT6dOnQD4+eefXf8WLFgwzcD3+++/P8M67r777jTLKly4MF27dnVbVr169ShVqpSrm3Dx4sWuz0bq+QIDA2ndunWmzyZ76KGHWLNmDYsXL+bZZ5/l7bffZsiQIZl6rniGBmTnQ7NmzeK1115j6tSpvPzyyxQoUIA777yTt956i1KlSrnmS++ME39//zTT/f39geRxHAD//vsvxhhKly6d5vnOUHXy5EnXv5mZ72qCg4MJDAx0mxYQEOCqyROKFSuWZvkAFy5cAJLHetntdrdtfD2ysp0zW+O1SG99nNNS7+fLTyu/Up2Xc56N9ffff1OpUiWmTJnCPffck+6yr7aOJ0+exNfXlxIlSrjNZ7PZKFWqVJpaMnq/X+1zkJ6zZ8/SsmVLAgMDee2116hWrRrBwcEcOHCAu+6667r2Q3Y7efIkpUqVSjNmqmTJkvj6+mb6s3n5a0La94yvr2+a/Xb06FHmzZuHn59fuq914sQJ12uGhYWl+Xt60yD5u6JQoUJplnXq1CnXPsxoWUePHgVwjYG8XGbHCZUqVcq1DTp06ECRIkV4/vnneeSRR6hfv36mXkNylsJRPlS8eHHee+893nvvPfbv38/cuXN5/vnnOXbsWLoDq7OqSJEi+Pj4cPjw4TR/cw7+LV68OJB8IMvMfJ7mDFqXD+i+lgOCU4kSJUhKSuLIkSPpBpqsysp2zklHjhzJcJrzgHe9+7lnz54899xzTJgwgaZNm3LkyJFrboErVqwYiYmJHD9+3C0gGWM4cuRIhge+7LBs2TIOHTrEihUrXK1FQJqB4N6gWLFi/Pnnnxhj3ALSsWPHSExMvKb3lvP9cOTIEbfWuMTExDSfreLFi3PDDTfw+uuvp/tazmBdrFixdAd0p/e+BNK9dpTzBIWMvv8KFizomg+Szx6LiIhId95r4WxR3bFjh8KRl1C3Wj5Xvnx5Hn/8cdq3b+/qArleISEhNGnShO+++87tf8IOh4PPPvuM8PBwqlWrBkC7du1cB4zUPv30U4KDg12nrmdHC0dWhIWFERgYyKZNm9ymf//999f8ms7ugI8++uiK8wUEBGRqPbOynXPS1q1b2bhxo9u0zz//nIIFC9KgQQMgeT9v27YtzXvs008/xWazcfPNN19xGYGBgTz66KN88sknjB07lnr16tGiRYtrqtd5dtJnn33mNv3bb7/l3Llzrr/nBOeB2fl+dpo0aVKOLTO1zL63IHk7nT17Ns1FIz/99FPX37PKeXbczJkz3aZ/9dVXac5A69Kli+sSAQ0bNkzz4wxHrVu35syZM65ua6cvv/wy03V16dKFkydPkpSUlO6yqlevDsCtt96Kr68vu3fvTne+hg0bZnWTAP/rbqxSpco1PV+yn1qO8pm4uDhuvvlmevbsSY0aNShYsCBr1qxh0aJF3HXXXdm2nNGjR9O+fXtuvvlmnnnmGfz9/Zk4cSJbtmzhiy++cB0kRowY4Rpb8Morr1C0aFFmzpzJ/PnzeeuttwgNDQWSr9kSFBTEzJkzqVmzJgUKFKBMmTJuY5+yk81m48EHH3Rd1O7GG29k9erVfP7559f8mi1btqRXr1689tprHD16lC5duhAQEEB0dDTBwcGuMQd169blyy+/ZNasWVSqVInAwEDq1q2b7mtmdjtnxaeffsojjzzCtGnTMjXuqEyZMtx+++28+uqrlC5dms8++4wlS5bw5ptvusbkPPXUU3z66afcdtttjBo1ioiICObPn8/EiRMZNGhQpkLc4MGDeeutt1i3bp3bxfKyqn379tx6660899xznD59mhYtWrBp0yZGjBhB/fr16dWr1zW/9tU0b96cIkWKMHDgQEaMGIGfnx8zZ85MEy5zSt26dVmxYgXz5s2jdOnSFCxY0HXgv1zv3r2ZMGECffr0ISYmhrp16/Lbb7/xxhtv0LlzZ2655ZYsL79mzZo8+OCDvPfee/j5+XHLLbewZcsW3nnnnTRdXaNGjWLJkiU0b96cJ554gurVq3Px4kViYmJYsGABH3/8MeHh4fTp04dx48bx4IMP8tprr1GlShUWLlzI4sWLgcx1dfXo0YOZM2fSuXNnnnzySRo3boyfnx+xsbEsX76cbt26ceedd1KhQgVGjRrFiy++yJ49e+jYsSNFihTh6NGjrF69mpCQEEaOHJnhckaMGMHRo0dp1aoVZcuW5dSpUyxatIgpU6Zw7733uo3xPH/+PAsWLADgjz/+AJLHV504cYKQkBDXf7Ykh1g6HFw87uLFi2bgwIHmhhtuMIUKFTJBQUGmevXqZsSIEW5n3mR09klERIS57bbb0kwHzGOPPeY27ddffzVt27Y1ISEhJigoyDRt2tTMmzcvzXM3b95sunbtakJDQ42/v7+58cYb0z1L7IsvvjA1atQwfn5+bmc0pXe2mTGZP9sno+fHxcWZfv36mbCwMBMSEmK6du1qYmJiMjxb7fjx427Pd55FtHfvXte0pKQkM27cOFOnTh3j7+9vQkNDTbNmzdy2S0xMjOnQoYMpWLCgAVxnHGV0Bl1mtnNGZzQ5zwRLfRZMVk/lv+2228w333xjateubfz9/U2FChXM2LFj08y7b98+07NnT1OsWDHj5+dnqlevbt5++22TlJTkNt/l2ze1Nm3amKJFi7qdWu2Ulf1w4cIF89xzz5mIiAjj5+dnSpcubQYNGmT+/fffdNfvcum93537J/UlDNJ7D65cudI0a9bMBAcHmxIlSph+/fqZ9evXp9nmOXG22oYNG0yLFi1McHCwAdI9KzK1kydPmoEDB5rSpUsbX19fExERYYYPH+52uQNjMn+2mjHGxMfHm6efftqULFnSBAYGmqZNm5pVq1aZiIiINGfSHT9+3DzxxBOmYsWKxs/PzxQtWtRERkaaF1980Zw9e9Y13/79+81dd91lChQoYAoWLGjuvvtus2DBAgOY77//3m2bpPdZN8aYhIQE884775gbb7zRBAYGmgIFCpgaNWqYAQMGmJ07d7rNO2fOHHPzzTebQoUKmYCAABMREWHuueces3Tp0iuu+9y5c80tt9xiwsLCjK+vrylQoIBp3LixGT9+vOuSFE7O91N6P5fvV8l+NmOM8UwME5G8pkKFCtSpU8d1UcScdOzYMSIiIhgyZAhvvfVWji9Pcrc33niDl156if379+f4Vcol71G3moh4tdjYWPbs2cPbb7+Nj49PmvuFiXz44YdA8u05EhISWLZsGePHj+fBBx9UMJJronAkIl5t6tSpjBo1igoVKjBz5ky3s5xEIPn0/HHjxhETE0N8fDzly5fnueee46WXXrK6NMml1K0mIiIikorlp/L/8ssvdO3alTJlymCz2dKcNpqen3/+mcjISNdNLj/++OOcL1RERETyBcvD0blz57jxxhtdfcZXs3fvXjp37kzLli2Jjo7mhRde4IknnuDbb7/N4UpFREQkP/CqbjWbzcbs2bO54447MpznueeeY+7cuW73IBo4cCAbN27M9H24RERERDKS6wZkr1q1ig4dOrhNu/XWW4mKiiIhISHd+/DEx8e73QbC4XDwzz//UKxYsWu6SJ6IiIh4njGGM2fOUKZMmUzfy+5a5LpwdOTIkTQ3FAwLCyMxMZETJ06ke8+q0aNHX/GqpSIiIpJ7HDhwIEcv05DrwhGkvXGgs2cwo1ag4cOHM2zYMNfjuLg4ypcvz4EDB9Jcsl5EcpGDB0ncsYN+H33E7JTbRVSqVIlq1aqxbt06jh8/DsDLTz7JM7fcApUrgy4FIJJrnT59mnLlyrluBpxTcl04KlWqVJq7LR87dgxfX1/XHZ8vFxAQkOZGjwCFChVSOBLJraKi4NFHedThYDbg7+vLBxMm0K9fP3x8fLh48SIvvfQS7777Lv99/33Kvv8+A3x8YPJk6NvX6upF5Drk9JAYy89Wy6pmzZqxZMkSt2k//vgjDRs2THe8kYjkQbGx8OijfOlwMIXkL7KvHA4e7dzZNQ4hMDCQd4YOZWTKl+jjwDqHAwYMSH6+iEgGLA9HZ8+eZcOGDWzYsAFIPlV/w4YN7N+/H0juEkt9Z/CBAweyb98+hg0bxvbt25k2bRpRUVE888wzVpQvIlbYuZNYh4OBKQ9fBLo5HLBrV5r5XjaGu4FEoA9wKSkp7XwiIqlYHo7Wrl1L/fr1qV+/PgDDhg2jfv36vPLKKwAcPnzYFZQAKlasyIIFC1ixYgX16tXjv//9L+PHj+fuu++2pH4RsUDVqrwAxAGNgZcB7HaoUiXNfDYfHz4GSgJbgY9strTziYik4lXXOfKU06dPExoaSlxcnMYcieRC69evp2HDhhhjWAM0tNth0qT0xxJFRcGAAUxJSuJRoGhICLtjYylcuLCHqxaR6+Wp47flLUciIlk1fPhwjDHc360bDZcvh5iYjAdZ9+0LMTE8vHQptapV459z5xgzZoxH6xWR3EUtR2o5EslV1q9fT2RkJHa7nZ07d1KxYsVMP/f777/njjvuoFChQrqUh0gupJYjEZF0vPvuuwB07949S8EIoGvXrtSoUYPTp08zZcqUnChPRPIAhSMRyTX279/PrFmzAK7pDFUfHx/X89577z0SEhKytT4RyRsUjkQk15gyZQpJSUncfPPNNGjQ4Jpe44EHHqBkyZLExsYyf/78bK5QRPIChSMRyRWSkpKYPn06kHy9s2sVGBjIQw89BMDUqVOzozQRyWMUjkQkV1i8eDEHDx6kWLFidOvW7bpeq2/KmW0LFy7k4MGD2VGeiOQhCkcikis4W3l69+6d7r0Ss6JatWq0atUKh8PBjBkzsqE6EclLFI5ExOvFxcW5xgc5u8Su18MPPwzAzJkzyYdXNBGRK1A4EhGvN3fuXC5dukTNmjWpW7dutrzmnXfeib+/P9u3b2fLli3Z8poikjcoHImI1/vqq68AuO+++7DZbNnymqGhoXTu3BmAL7/8MlteU0TyBoUjEfFq//77L4sXLwaSL/yYnXr06AEkhyN1rYmIk8KRiHi177//noSEBOrWrUvNmjWz9bW7dOlCcHAwe/bsITo6OltfW0RyL4UjEfFqzi617G41AggJCaFDhw4AzJs3L9tfX0RyJ4UjEfFaZ8+e5aeffgLg7rvvzpFl3H777UDyoG8REVA4EhEv9tNPP3Hp0iUqVapEjRo1cmQZt912GzabjfXr1xMbG5sjyxCR3EXhSES8lvPaRs4AkxNKlixJs2bNAHWtiUgyhSMR8UrGGH744QcgeeB0TlLXmoikpnAkIl4pOjqaw4cPExISQuvWrXN0Wc5wtGzZMs6ePZujyxIR76dwJCJeydml1r59++u+l9rV1KhRg4oVK3Lp0iVWrFiRo8sSEe+ncCQiXin1eKOcZrPZXKf0L1myJMeXJyLeTeFIRLzOqVOnWLNmDQC33nqrR5bpDEc//vijR5YnIt5L4UhEvM7P336Lw+GgWqVKlCtXziPLbNu2LT4+Pvz111/s//JL0Gn9IvmWwpGIeJeoKJb26wdAuz17ICrKI4stXLgwTSpWBGDJ/fdDRITHli0i3kXhSES8R2wsPPooP6U8vAVgwADPtOLExtJ+924AlgA4HJ5btoh4FYUjEfEeO3dy0OFgO2AD2gAkJcGuXR5ZdoeUX5cASZ5ctoh4FYUjEfEeVauyLOVK2JFAUQC7HapU8ciym9hsFAT+ATZ7ctki4lUUjkTEe4SHs7RpUwDaQXI4mTQJwsM9smzfKVO4KeXhCpvNc8sWEa+icCQiXsMYw0/79wPQ7u23ISYG+vb1XAF9+9J6+HAAfu7QwbPLFhGvoXAkIl7j77//5uDBgwQEBHDTY49Z0mrTpls3AH5ZswaHw+Hx5YuI9RSORMRr/PzzzwA0bdqUoKAgS2po0KABISEh/PPPP2zZssWSGkTEWgpHIuI1fv31VwBatWplWQ1+fn7cdFPyyCPdZ00kf1I4EhGv8dtvvwHQsmVLS+to3bo18L+WLBHJXxSORMQrHDhwgH379uHj40PTlDPWrOIMR7/88ovGHYnkQwpHIuIVnF1q9evXp2DBgpbW0rBhQ4KDgzlx4gTbtm2ztBYR8TyFIxHxCs5wZHWXGoC/vz/NmzcHNO5IJD9SOBIRr+At442cnF1rzrpEJP9QOBIRy6U+bb5FixYWV5PMWcfKlSstrkREPE3hSEQs9/vvvwNQrVo1wsLCLK4mWaNGjbDb7Rw4cIADBw5YXY6IeJDCkYhYzpvGGzkVKFCAG2+8EYBVq1ZZXI2IeJLCkYhYztvGGzk5B2Wra00kf1E4EhFLXbhwgbVr1wLeF46c446c3X4ikj8oHImIpVavXk1CQgKlS5emYsWKVpfjxtlyFB0dzblz5yyuRkQ8ReFIRCy1evVqAJo1a4bNZrO4GnflypWjbNmyJCUluVq3RCTvUzgSEUutWbMGSD47zNvYbDaNOxLJhxSORMRSzpajxo0bW1xJ+nS9I5H8R+FIRCxz7Ngx9u3bB0BkZKTF1aQvdcuRMcbiakTEExSORMQyzi61GjVqEBoaanE16atXrx5BQUH8888//P3331aXIyIeoHAkIpbx5vFGTn5+fq761LUmkj8oHImIZbx9vJGTs2tNV8oWyR8UjkTEEsaYXNFyBNCkSRPgf2FORPI2hSMRsURMTAwnTpzAz8/PdQ8zb+Vs2dqyZYsuBimSDygciYglnK1GN9xwA4GBgRZXc2VlypQhPDwch8PBunXrrC5HRHKYwpGIWCK3jDdyctaprjWRvE/hSEQskVvGGzk5xx39+eefFlciIjlN4UhEPC4pKcnVPaWWIxHxNgpHIuJx27dv59y5cxQoUIAaNWpYXU6mREZGYrPZ2L9/P0eOHLG6HBHJQQpHIuJxztaXyMhI7Ha7xdVkTsGCBalduzag1iORvE7hSEQ8zjneKLd0qTmpa00kf1A4EhGPc4aL3DIY28kZjjQoWyRvUzgSEY+6ePEimzZtAnJfy5HzjLU1a9bgcDgsrkZEcorCkYh41IYNG0hMTKREiRKUL1/e6nKypHbt2gQFBREXF8fOnTutLkdEcojCkYh4VOrxRjabzeJqssbPz48GDRoA6loTycu8IhxNnDiRihUrEhgYSGRkJL/++usV5585cyY33ngjwcHBlC5dmocffpiTJ096qFoRuR65dbyRk25CK5L3WR6OZs2axdChQ3nxxReJjo6mZcuWdOrUif3796c7/2+//Ubv3r3p27cvW7du5euvv2bNmjX069fPw5WLyLXIrWeqOWlQtkjeZzPGGCsLaNKkCQ0aNOCjjz5yTatZsyZ33HEHo0ePTjP/O++8w0cffcTu3btd0z744APeeustDhw4kKllnj59mtDQUOLi4ihUqND1r4SIZMqpU6coUqQIAMePH6d48eIWV5R1e/fupVKlSvj5+XH69Gmvv2muSF7iqeO3pS1Hly5dYt26dXTo0MFteocOHVi5cmW6z2nevDmxsbEsWLAAYwxHjx7lm2++4bbbbstwOfHx8Zw+fdrtR0Q8b+3ChQBULF8+VwYjgAoVKlCiRAkSEhLYEBUFsbFWlyQi2czScHTixAmSkpIICwtzmx4WFpbh5fmbN2/OzJkzue+++/D396dUqVIULlyYDz74IMPljB49mtDQUNdPuXLlsnU9RCQToqJY88ADADTavx+ioiwu6NrYbDYaly4NwJ+PPw4REbl2XUQkfZaPOQLSnLFijMnwLJZt27bxxBNP8Morr7Bu3ToWLVrE3r17GThwYIavP3z4cOLi4lw/me1+E5FsEhsLjz7K6pRe/MYAAwbkzlaX2Fgab94MwBoAhyP3rouIpMvXyoUXL14cu92eppXo2LFjaVqTnEaPHk2LFi34z3/+A8ANN9xASEgILVu25LXXXqN0yv/oUgsICCAgICD7V0BEMmfnTnA4ksME0AggKQl27YLwcAsLuwY7d9IoJeQ51yfXrouIpMvSliN/f38iIyNZsmSJ2/QlS5bQvHnzdJ9z/vx5fHzcy3beuNLiseUikpGqVTlks3GQ5C+dBgB2O1SpYm1d16JqVRqltGzvAE5B7l0XEUmX5d1qw4YNY+rUqUybNo3t27fz1FNPsX//flc32fDhw+ndu7dr/q5du/Ldd9/x0UcfsWfPHn7//XeeeOIJGjduTJkyZaxaDRG5kvBw1gweDEAtoIDdDpMm5c6WlvBwik+ZQsWUh2t9fHLvuohIuiztVgO47777OHnyJKNGjeLw4cPUqVOHBQsWEBERAcDhw4fdrnn00EMPcebMGT788EOefvppChcuTNu2bXnzzTetWgURyYTVoaEANO7UCSZPzt1hom9fGn//PXvnzWPNf/7DLX37Wl2RiGQjy8MRwODBgxmc8r/Ky82YMSPNtCFDhjBkyJAcrkpEspPz4o+Nbr89dwejFI1at2bWvHms2bHD6lJEJJtZ3q0mInmfMSbXXxn7cs7bn+g2IiJ5j8KRiOS4Xbt2cerUKQICAqhbt67V5WSLBg0a4OPjw8GDBzl06JDV5YhINlI4EpEc52xdqV+/Pn5+fhZXkz0KFChArVq1gP91GYpI3qBwJCI5zjXeKKUrKq9wro/CkUjeonAkIjnO2XKUV8YbOTnXR+FIJG9ROBKRHJWQkEB0dDSQ98JR6pYjXYRWJO9QOBKRHLVlyxYuXrxIaGgoVfLYVaTr1q2Lv78///77L7t377a6HBHJJgpHIpKjUo83uvzWP7mdv78/9evXB9S1JpKX5K1vKhHxOs7xRnltMLaTrnckkvcoHIlIjsprF3+8nM5YE8l7FI5EJMecO3eOLVu2AHm35cgZ+tavX09iYqLF1YhIdlA4EpEcEx0djcPhoEyZMpQtW9bqcnJEtWrVKFSoEBcuXGDr1q1WlyMi2UDhSERyTF4fbwTg4+NDw4YNAXWtieQVCkcikmPy+ngjJ407EslbFI5EJMfkh5Yj0BlrInmNwpGI5IiTJ0+yZ88eAFe3U17lbBnbvHkzFy5csLgaEbleCkcikiOcXUxVq1alSJEiFleTs8LDwwkLCyMpKYkNGzZYXY6IXCeFIxHJEfllvBGAzWZT15pIHqJwJCI5Ir+MN3JyhkANyhbJ/RSORCTbGWPyVcsRaFC2SF6icCQi2e7AgQMcPXoUX19f6tWrZ3U5HuEcdL5z505OnTplbTEicl0UjkQk2zlbjerWrUtQUJDF1XhG8eLFqVSpEgBr1661uBoRuR4KRyKS7fLbeCMnda2J5A0KRyKS7fLbeCMnXSlbJG9QOBKRbJWUlOTqVspvLUc6Y00kb1A4EpFs9ffff3PmzBmCg4OpVauW1eV4VIMGDfDx8eHgwYMcOnTI6nJE5BopHIlItnK2mkRGRuLr62txNZ4VEhLiCoRqPRLJvRSORCRb5dfB2E7qWhPJ/RSORCRb5dfB2E46Y00k91M4EpFsEx8f77rxan5vOVq7di3GGIurEZFroXAkItlm06ZNJCQkUKxYMSpWrGh1OZaoW7cuAQEB/Pvvv+zevdvqckTkGigciUi2ST3eyGazWVyNNfz8/Fy3TFHXmkjupHAkItkmv483ctKgbJHcTeFIRLJNfj9TzUlXyhbJ3RSORCRbnD59mr/++gtQOHKu//r160lMTLS4GhHJKoUjEckW69atwxhD+fLlCQsLs7ocS1WrVo1ChQpx4cIFtm7danU5IpJFCkciki3+/PNPAJo0aWJxJdbz8fGhYcOGgAZli+RGCkciki0Ujtxp3JFI7qVwJCLZwtlCkt/PVHPSGWsiuZfCkYhct9jYWA4dOoTdbqdBgwZWl+MVnC1Hmzdv5vz58xZXIyJZoXAkItfN2aVWp04dQkJCLK7GO4SHhxMWFkZSUpLrlioikjsoHInIdVv9008ANKlTx+JKvIfNZvtf19rnn0NsrMUViUhmKRyJyPWJiuLPjz4CoMnnn0NUlMUFeY9GPslfsasnTICICG0bkVzCZvLhbaNPnz5NaGgocXFxFCpUyOpyRHKv2FiSypcn1BjOAZuBOnY7xMRAeLjFxVksNpbF5cvT0RiqAjsAtG1Erounjt9qORKRa7dzJ9tSglEBoCZAUhLs2mVtXd5g504apvzfcyfwL2jbiOQSCkcicu2qVuVPmw2ARoAdkltHqlSxsirvULUqxXx8qJTycC1o24jkEgpHInLtwsNZ3bIlAI0h+eA/aZK6jSB5G0yeTOOU8LjGZtO2EcklFI5E5Lr8eeoUAE1GjUoeT9O3r6X1eJW+fWn00ksArOnQQdtGJJdQOBKRa3b27Fm2bNkCQJO+fdUqko5G7dsDsHrzZosrEZHMUjgSkWu2fv16HA4HZcuWpUyZMlaX45UaNGiAj48Phw4d4tChQ1aXIyKZoHAkItdMN5u9upCQEGrXrg3oPmsiuYXCkYhcM91sNnOc91lzbi8R8W4KRyJyzdRylDmu24io5UgkV1A4EpFrcvjwYQ4cOICPjw8NGza0uhyv5mw5WrNmDfnwpgQiuY7CkYhcE2cXUa1atShQoIDF1Xi3unXrEhAQwKlTp9ilK2SLeD2FIxG5JupSyzw/Pz/q168PqGtNJDdQOBKRa/LHH38ACkeZpUHZIrmHwpGIZFliYqKr5ah58+YWV5M7pB53JCLeTeFIRLJs06ZNnD9/ntDQUGrWrGl1ObmC84y19evXc+nSJYurEZErUTgSkSxbuXIlAE2bNsXHR18jmVGtWjWKFi3KxYsX2bBhg9XliMgV6FtNRLJs1apVgLrUssJms7m21++//25xNSJyJQpHIpJlzpYjhaOsadGiBfC/7Sci3knhSESy5PDhw8TExGCz2XTbkCxK3XKki0GKeC+vCEcTJ06kYsWKBAYGEhkZya+//nrF+ePj43nxxReJiIggICCAypUrM23aNA9VK5K/ObvU6tatS6FChSyuJndp1KgRvr6+HD58mH379lldjohkwPJwNGvWLIYOHcqLL75IdHQ0LVu2pFOnTuzfvz/D53Tv3p2ffvqJqKgo/v77b7744gtq1KjhwapF8i91qV27oKAgGjRoAGjckYg3szwcjR07lr59+9KvXz9q1qzJe++9R7ly5fjoo4/SnX/RokX8/PPPLFiwgFtuuYUKFSrQuHFjfVGLeIgzHDVr1sziSnInjTsS8X6WhqNLly6xbt06OnTo4Da9Q4cOGX5xzJ07l4YNG/LWW29RtmxZqlWrxjPPPMOFCxcyXE58fDynT592+xGRrIuPj2fdunWAWo6ulXO7KRyJeC9fKxd+4sQJkpKSCAsLc5seFhbGkSNH0n3Onj17+O233wgMDGT27NmcOHGCwYMH888//2Q47mj06NGMHDky2+sXyW+cFzAsUaIElStXtrqcXMkZjjZt2sSZM2coWLCgxRWJyOUs71aD5Ot/pGaMSTPNyeFwYLPZmDlzJo0bN6Zz586MHTuWGTNmZNh6NHz4cOLi4lw/Bw4cyPZ1EMkPUnepZfQZlSsrU6YMFSpUwOFwuG7BIiLexdJwVLx4cex2e5pWomPHjqVpTXIqXbo0ZcuWJTQ01DWtZs2aGGOIjY1N9zkBAQEUKlTI7UdEsk6DsbOHLgYp4t0sDUf+/v5ERkayZMkSt+lLlizJ8Mu3RYsWHDp0iLNnz7qm7dixAx8fH8LDw3O0XpH8zBijcJRNNChbxLtZ3q02bNgwpk6dyrRp09i+fTtPPfUU+/fvZ+DAgUByl1jv3r1d8/fs2ZNixYrx8MMPs23bNn755Rf+85//8MgjjxAUFGTVaojkeTExMRw5cgRfX18aNmxodTm5mjNc/vHHHyQlJVlcjYhcztIB2QD33XcfJ0+eZNSoURw+fJg6deqwYMECIiIigOSr8aa+5lGBAgVYsmQJQ4YMoWHDhhQrVozu3bvz2muvWbUKIvmC8+KsDRs21H9ErlPdunUpUKAAp0+fZuvWrdxwww1WlyQiqVgejgAGDx7M4MGD0/3bjBkz0kyrUaNGmq44EclZv/zyCwAtW7a0uJLcz26307RpU5YuXcrKlSsVjkS8jOXdaiKSOzhbjhSOsocGZYt4L4UjEbmqo0ePsmPHDmw2GzfddJPV5eQJzkHZCkci3kfhSESu6rfffgOgTp06FClSxOJq8oamTZvi4+PD3r17M7wMiYhYQ+FIRK5K442yX6FChVw3oXVuXxHxDgpHInJVzvFGrVq1sriSvMW5PRWORLyLwpGIXFFcXBwbN24E1HKU3Vq3bg3Azz//bHElIpKawpGIXNHKlStxOBxUqlSJMmXKWF1OnnLTTTdhs9n466+/OHbsmNXliEgKhSMRuSKdwp9zihYtSt26dQF1rYl4E4UjEbkijTfKWRp3JOJ9FI5EJEMXL15k9erVgFqOcoozHGnckYj3UDgSkQytXr2aS5cuERYWRpUqVawuJ09yhqPNmzfzzz//WFyNiIDCkYhcwa8//ABAq0aNsNlsFleTN4WFhVG9enWMMfw2cSLogpAillM4EpH0RUWx4u23AWg1fz5ERVlcUN7VOiwMgF9efhkiIrStRSymcCQiacXGEt+/P7+lPGxrDAwYoFaNnBAbS6uUQe8/Azgc2tYiFlM4EpG0du7kT2O4CIQBNQGSkmDXLmvryot27qSVMQCsB86AtrWIxRSORCStqlVZlvLrzYANwG4HDcrOflWrUs7Hh4qAA/gdtK1FLKZwJCJphYezvFo1IDkcYbfDpEkQHm5pWXlSeDhMnkyblAHvy2w2bWsRiykciUga58+fZ9XevQC0/ewziImBvn2tLSov69uXtu+9B8CyOnW0rUUspnAkImn8/vvvJCQkUK5cOSr37KlWDA9oe889AKzfskXXOxKxmMKRiKSxfPlyAG6++WZd38hDypQpQ82aNTHGsGLFCqvLEcnXFI5EJI1ly5KHY7dt29biSvKXdu3aAfDTTz9ZXIlI/qZwJCJuTp8+zdq1a4HkliPxHIUjEe+gcCQibn799VeSkpKoXLky5cuXt7qcfKVNmzb4+Pjw999/c/DgQavLEcm3FI5ExI1zvJG61DyvcOHCREZGAmo9ErGSwpGIuHGON1KXmjWcodS5H0TE8xSORMTl5MmTbNiwAUju4hHPSz3uyKTcVkREPOu6wtGxY8c4cuRIdtUiIhZbunQpxhjq1KlD6dKlrS4nX2rRogX+/v7Exsayc+dOq8sRyZeuKRxt2rSJ2rVrU7p0acqWLUvZsmV56aWXOHfuXHbXJyIe9OOPPwJw6623WlxJ/hUcHEzz5s0BjTsSsco1haO+ffsSFhbGb7/9RnR0NK+99hoLFy6kYcOG/Pvvv9ldo4h4gDGGxYsXA9ChQweLq8nfdEq/iLVs5ho6tUNCQli3bh01atRwTTPGcO+99xIYGMhnn32WrUVmt9OnTxMaGkpcXByFChWyuhwRr7Bt2zZq165NYGAg//zzD0FBQVaXlG+tWrWK5s2bU7hwYY4fP46vr6/VJYl4BU8dv6+p5Si9FiKbzcYbb7zB999/ny2FiYhnOVuNWrVqpWBksUaNGlGkSBFOnTrFmjVrrC5HJN/JdDi67bbbeOGFF/jqq68YOHAgTz31FEePHnWbJy4ujiJFimR7kSKS8zTeyHv4+vrSvn17ABYtWmRxNSL5T6bbauvWrcv69euZPn26KxRVqlSJ7t27U69ePZKSkpg+fTrjxo3LsWJFJGdcvHiRn3/+GdB4I2/RsWNHvvrqKxYtWsTIkSOtLkckX7mmMUdHjx4lOjqaDRs2uH527dqF3W6nevXqbNq0KSdqzTYacyTibunSpbRv354yZcoQGxuLzWazuqR879ChQ5QtWxabzcaxY8coXry41SWJWM5Tx+9rGuUXFhZGx44d6dixo2vahQsX2LhxIxs3bsy24kTEM5xdah06dFAw8hJlypThhhtuYNOmTSxZsoT777/f6pJE8o1su0J2UFAQTZs2ZcCAAdn1kiLiITqF3zs5/wOqcUcinqXbh4jkc4cPH2bTpk3YbDbXIGDxDs7B8YsXL8bhcFhcjUj+oXAkks8tWbIEgAYNGmhci5dp0aIFISEhHD161OvHcorkJfk6HCUlJXHffffxyiuvWF2KiGUWLlwIqEvNGwUEBNC2bVtAXWuSfyUkJPDAAw/w0ksveWyZ+TocrV27lq+++or//ve/nDp1yupyRDwuISHBddDt0qWLxdVIejTuSPK7+fPn8/nnn/P666+TlJTkkWXm63B0+vRp1++//PKLhZWIWGPlypWcOnWKYsWK0aRJE6vLkXQ4w9Hvv//u9p0lkl+sXbvW9fs///zjkWXm63CU+grff//9t4WViFhj/vz5AHTu3Bm73W5xNZKeSpUqUbVqVRITE1m6dKnV5Yh43O7du12/X35njpySr8PRsWPHXL9ffq84kfzghx9+AJJvDyTey7l/5s2bZ3ElIp6XurUo9XE7JykcpVA4kvxm9+7dbN++HbvdrvupebmuXbsCyS19nhpzIeItUh+fjx8/7pFl5utwdOLECdfvnurHFPEWzi61li1bUrhwYWuLkStq2bIloaGhHD9+nNWrV1tdjohHpT4+Kxx5wPnz512/q+VI8htnONJZat7Pz8+PTp06Aepak/wn9fE59XE7J+XrcBQfH+/6XeFI8pMzZ86wYsUKQOONcgtn19rcuXMtrkTEcxwOh9vxOfVxOyfl63B04cIF1+/qVpP8ZOnSpVy6dInKlStTvXp1q8uRTOjUqRN2u52tW7eyd+9eq8sR8YjTp09jjHE9Tn3czkn5OhxdvHjR9bsuAin5yfyvvgKgS5s22Gw2i6uRzChSpAgtW7YEYN7YsRAba3FFIjnv8mOzWo48IPVGPnfunIWViHiOY8oU5n/5JQC3TZsGUVEWVySZ1bVkSQDmfvghRERo30med/bsWbfHqRs1clK+DkepN3J8fLxOkZW8LzaWPwcM4AhQEGhlDAwYoFaI3CA2lq5ffw3Az0Ccw6F9J3ne5Q0XajnygMsTqKdGwYtYZudOZqf033cBAgCSkmDXLiurkszYuZOqxlADSAQWg/ad5HmXtxxpzJEHKBxJfmOqVOG7lN/vdE6026FKFYsqkkyrWhV8fOia8nAuaN9JnqduNQtc3jyncUeS1205dYrdJLcYdYLkg+ukSRAebm1hcnXh4TB5Mrf7JH9t/wBcmjBB+07yNHWrWUAtR5LffPddcrtRh1tuocDy5RATA337WluUZF7fvjTbs4ewIkWIA5ZFRFhdkUiOUsuRBRISEgAoUKAAoJYjyftmz54NwJ09e0KbNmp1yIXsERHc1aMHAN9++63F1YjkLOdxuVixYoBajjyqaNGigFqOJG/bs2cPGzduxG63u662LLnT3XffDcCcOXNITEy0uBqRnONsOSpevDigAdke5UykajmSvMzZatSqVSvXF43kTq1bt6ZYsWKcOHGCX3/91epyRHKMMxyp5cjD7HY7oaGhgMKR5G3OcHTXXXdZXIlcL19fX7p16wbAN998Y3E1IjnHeVx2/odOY448JCgoiODgYEDdapJ3HTlyhJUrVwJwxx13WFuMZAtn19rs2bNxOBwWVyOSMzTmyCL+/v6EhIQAajmSvGvOnDkYY2jUqBHhGoSdJ7Rr145ChQpx+PBhVq1aZXU5IjnCOcaoSJEigMKRx/j5+anlSPK8r1JuNOtsbZDcLyAgwDWwXmetSV7lDEcFCxYE/neWeU7L9+HI19dXLUeSpx0+fJgVK1YAcN9991lbjGQrZ9j97rvvMCm3hRHJSy4PR566B6pXhKOJEydSsWJFAgMDiYyMzPTZF7///ju+vr7Uq1fvmpft6+urliPJ07755huMMTRt2pQKFSpYXY5ko1tvvZXg4GD27dvH2rVrrS5HJNs5w1GhQoU8ulzLw9GsWbMYOnQoL774ItHR0bRs2ZJOnTqxf//+Kz4vLi6O3r17065du+tavp+fn1qOJE/78ssvAbUa5UXBwcF06dIF+N9+FslLLm858hTLw9HYsWPp27cv/fr1o2bNmrz33nuUK1eOjz766IrPGzBgAD179qRZs2bXtXy1HEletn//flauXInNZuPee++1uhzJAT179gSSw5GnuhxEPCVfhqNLly6xbt06OnTo4Da9Q4cOrtOO0zN9+nR2797NiBEjMrWc+Ph4Tp8+7fbjpJYjycucA7FbtWpF2bJlLa5GckLHjh0pXLgwhw4d0gUhJc/Jl+HoxIkTJCUlERYW5jY9LCyMI0eOpPucnTt38vzzzzNz5kx8fX0ztZzRo0cTGhrq+ilXrpzrb6lbjhSOJK9Rl1reFxAQ4BqY/cUXX1hcjUj2ypfhyMlms7k9NsakmQbJo9R79uzJyJEjqVatWqZff/jw4cTFxbl+Dhw44Ppb6pYjdatJXrJr1y7WrVuH3W7XKfx53P333w/A119/zaVLlyyuRiT7OMNRcHAwdrvdY8vNXNNLDilevDh2uz1NK9GxY8fStCYBnDlzhrVr1xIdHc3jjz8OgMPhwBiDr68vP/74I23btk3zvICAAAICAtKtQS1HklfNmjULgLZt21KyZEmLq5Gc1KZNG0qVKsWRI0f48ccfXYO0RXI7ZzgKCgrC19c3f5zK7+/vT2RkJEuWLHGbvmTJEpo3b55m/kKFCrF582Y2bNjg+hk4cCDVq1dnw4YNNGnSJMs1qOVI8ipnl1qPHj0srkRymt1ud3WdqmtN8oqkpCRXS2hQUBB+fn4eW7alLUcAw4YNo1evXjRs2JBmzZoxefJk9u/fz8CBA4HkLrGDBw/y6aef4uPjQ506ddyeX7JkSQIDA9NMzyy1HEletHHjRrZs2YK/vz933nmn1eWIB9x///28//77zJkzh3Pnzrn+0yeSW6W+yayz5chTLA9H9913HydPnmTUqFEcPnyYOnXqsGDBAiIiIoDkq/te7ZpH10Nnq0le9OmnnwLQtWtX1z2JJG9r3LgxlSpVYs+ePcybN08thpLrObvUwPMtR14xIHvw4MHExMQQHx/PunXraNWqletvM2bMcN36ID2vvvoqGzZsuOZl+/r6EhQUBLjvCJHcKjExkZkzZwLQp08fi6sRT7HZbK6B2c79L5KbOY/Jfn5+2O12j7YceUU4spKfn59bONL9iSS3W7JkCUePHqV48eJ07NjR6nLEgx588EEAFi5cyNGjRy2uRuT6pB6MDeS/liMrpW45cjgcHrvjr0hOcXap9ezZ06NfJmK9GjVq0KRJE5KSktR6JLne5eFILUcelDocgbrWJHeLi4tjzpw5APTu3dvaYsQSDz30EJB8JwG1hEtupnBkIT8/PwICAlwXnVQ4ktzsm2++4eLFi9SqVYsGDRpYXY5Y4L777iMgIIAtW7YQHR1tdTki10zdahby9fXFZrMRGBgIKBxJ7vbJ5MkA9O7WLd2rzEveV6RIEe644w4AZrz2GsTGWluQyDVSy5GFnElUZ6xJbrdnzBh+Xb0aG/DgmDEQFWV1SWKRh0uXBmDm7NnEly+v94LkSmo5spAziTovBKlwJLlSbCyfDB8OQDugrDEwYIBaDfKj2Fhuef99ygD/APP1XpBcynkRSLUcWUAtR5IXJP31F9NSfu/rmpgEu3ZZVJFYZudO7MbgHI4/HfRekFxJLUcWciZRhSPJzRYdPEgsUAxw3SzEbocqVawrSqxRtSr4+OC8/OdC4IiPj94LkutozJGFLm850s1nJTea/N13APSx2QiA5GA0aRKEh1tal1ggPBwmT6aG3U4zIAmYfscdei9IrqOWIwup5Uhyu0OHDjF//nwA+v30EyxfDjEx0LfvlZ8oeVffvhATw4DnngNg8vr1OBwOi4sSyRq1HFlIY44kt5s+fTpJSUm0bNmSmjffDG3aqJVAIDyc7iNGULhwYWJiYvjxxx+trkgkS9RyZCG1HElu5nA4mDp1KgD9+/e3uBrxNkFBQa6bD3/88ccWVyOSNWo5spDCkeRmS5cuJSYmhsKFC3PPPfdYXY54oQEDBgDwww8/EKvT+SUXcR6PnRdpVjjyIIUjyc0mp1wRu1evXm73CBRxqlmzJq1atSIpKYkoXQxSchF1q1lI4Uhyq4MHD7puMqsuNbmSgQMHAjBlyhQSExMtrkYkcy4PR3a73WPLzvfhyLmxdYVsyW0+/vhj10DsunXrWl2OeLG77rqL4sWLc/DgQRYsWGB1OSKZonBkIR+f5E2gliPJTeLj411dakOGDLG4GvF2AQEBPPzwwwBMmDDB4mpEMufycOQ8XntCvg9HziSqcCS5yVdffcWxY8coW7as6w7sIlcycOBAbDYbP/74I9u2bbO6HJGrUsuRhS4PR7pCtuQGH3zwAQCDBg3y6CBFyb0qVapEt27dABg/frzF1YhcncKRhdRyJLnN6tWrWbNmDf7+/hqILVkydOhQAD799FNOnjxpbTEiV6FwZCGFI8ltnK1GPXr0oGTJkhZXI7lJq1atqF+/PhcuXGDKlClWlyNyRQpHFtKAbMlNDh48yKxZswANxJass9lsrtajDz/8kISEBGsLErkCDci2kFqOJDd5//33SUhIoFWrVjRs2NDqciQXuu+++wgLC+PgwYN88803VpcjkiG1HFlI4Uhyi9OnTzNp0iQA/vOf/1hcjeRWAQEBDB48GIBx48ZhjLG4IpG0jDEKR1ZSOJLcYvLkyZw+fZqaNWvSuXNnq8uRXGzgwIH4+/uzZs0afvvtN6vLEUkjISEBh8MBKBxZQlfIltzg0qVLvPfeewA888wzHu17l7ynZMmS9OnTB4AxY8ZYXI1IWqmPxQpHFtCAbPF6sbF8OWIEBw8epHTp0jzwwANWVyR5wLPPPouPjw8LFixgw5QpEBtrdUkiLhcvXnT9HhAQAGhAtkepW028WlQUjvLleTvlf/dPNGvm+qIQuR5VqlTh3shIAMY8+ihEREBUlMVViSRLPd7IZrMBajnyqMvDUWJiok5vFe8QGwuPPsr3xrAFKAQMmDNH/8OX7BEby/Nr1wLwNbDL4YABA/T+Eq/gvFuF89gMCkcedXk4ArUeiZfYuRPjcPDflIdDgCIOB+zaZWVVklfs3Ek9Y+gEOIC3AJKS9P4Sr3D5mWqgcORRzo0dGBjomqZwJF6halXm22xEAyHAUwB2O1SpYm1dkjdUrQo+PgxPefgJEOvjo/eXeAWFI4s5B3jZbDZXQFI4Em9gypZlVEQEAI8Dxex2mDQJwsOtLUzyhvBwmDyZlnY7rYBLwButWun9JV4hvXCkAdkelDqJalC2eJPFixezJiaG4KAghn33HcTEQN++VpcleUnfvhATw6hx4wCY+vvv7Nu3z+KiRNRyZDmFI/FGxhhGjhwJwMBBgyh55536H73kjPBwWg8dStu2bUlISOC1116zuiIRhSOrpd7YuhCkeIt58+bxxx9/EBwcrFuFiEf897/JQ/+nT5/O7t27La5G8juFI4up5Ui8TVJSEi+88AIATz75JKVKlbK4IskPmjdvTseOHUlKSnIFJRGrKBxZLPUAL4Uj8QYzZ85k69atFClShGeffdbqciQfGTVqFAD/93//x7Zt2yyuRvIzDci2mFqOxJvEx8czYsQIAJ5//nkKFy5sbUGSrzRq1Ig77rgDh8PBc889Z3U5ko+p5chi6YUj55U5RTxt8uTJxMTEUKZMGR5//HGry5F8aMyYMdjtdn744QdWrFhhdTmSTykcWUwtR+ItTp065erWeOWVV1wnCIh4UvXq1RkwYAAAzzzzDA6Hw+KKJD9SOLKYwpF4i1GjRnHixAlq1qzJI488YnU5ko+NGDGCggULsm7dOr788kury5F8SOHIYhqQLd7g77//5oMPPgBg3Lhx+Pn5WVyR5GclS5Z0jTl64YUX9J0oHqcB2RZTy5F4g6effprExERuu+02br31VqvLEeGpp56ibNmy7Nu3j7feesvqciSfUcuRxRSOxGqLFy9m/vz5+Pr68u6771pdjgiQfFFc5/txzJgx7N271+KKJD9ROLKYrpAtVoqPj2fo0KEADBkyhOrVq1tbkEgq3bt3p23btly8eNH1PhXxBIUji6nlSCwTG8tbgwbx119/ERYWxiuvvGJ1RSJubDYbH3zwAb6+vsydO5cFo0dDbKzVZUk+oHBkMQ3IFktERbGzfHlenz4dgHG3364LPopXqlWrFk+2bQvAEy+8wIXy5SEqyuKqJK/TgGyLqeVIPC42FtO/P4ONIR7oAPSIitL/yMU7xcYyYskSygC7gVHGwIABer9KjlLLkcV0hWzxuJ07+cIYlgKBwETA5nDArl0WFyaSjp07KWgME1Ievg1EJyXp/So5SuHIYmo5Ek87VqQIT6b8/hJQGcBuhypVrCtKJCNVq4KPD3cA9wJJQF8gsUIFK6uSPM55HE59pwCFIw9SOBJPMsYw+LXXOAHcAPwHkoPRpEkQHm5tcSLpCQ+HyZPBbucDoAgQDbw7a5bFhUleppYji2lAtnjSl19+ybfffouvry+fLFqE//LlEBMDfftaXZpIxvr2hZgYwpYvZ9zYsUDyLUa2bt1qcWGSV2lAtsXUciSecvjwYR577DEAXn75Zerdeiu0aaMWI8kdwsOhTRt6Dx1Kp06diI+P58EHHyQ+Pt7qyiSPSUpK4tKlS4BajiyjliPxBGMM/fv3599//6V+/foMHz7c6pJEronNZmPatGkUL16cDRs26Ppcku0uXrzo+l3hyAI2mw2bzeZ6rCtkS04ZP3488+fPJyAggE8++UQ3lpVcrVSpUkyZMgWAt99+mxUrVlhbkOQpqY/BCkcWuHxDq+VIckJ0dDTPPvssAO+++y5169a1uCKR63fHHXfQr18/jDH07t2bU6dOWV2S5BHOY7C/v79b747CkYdcPrjLGY4SEhJITEy0oiTJY86ePUuPHj24dOkS3bp1Y/DgwVaXJJJtxo0bR+XKlTlw4IArKIlcr/QGY4MGZHtMRi1HoNYjyR5PPPEEO3bsoGzZskRFRbl144rkdgUKFODzzz/Hz8+Pb7/9lvHjx1tdkuQBGYUjtRx5yOUbOjAw0PW7wpFcrxkzZjB9+nR8fHyYOXMmxYoVs7okkWzXuHFjxqac3v/MM8+watUqiyuS3E7hyGKXb2gfHx8CAgIAhSO5DrGxrJs0iYEDBwLJ14Np3bq1xUWJ5JzHHnuM7t27k5iYSPfu3TmxaRMsX677r8k1cd7CS+HIIun1X2pQtlyXqChOlC/PXQMHEh8fT5cbbuCll16yuiqRHGWz2Zg6dSrVq1cnNjaWB268kaS2bSEiAqKirC5PchmNOfJCCkdyzWJjSezfnx7GsB+oAvzfli34HDpkdWUiOa5gwYJ88+GHBAE/As8BOBwwYIBakCRLMgpHnhyz6RXhaOLEiVSsWJHAwEAiIyP59ddfM5z3u+++o3379pQoUYJChQrRrFkzFi9efE3LVcuRZKudO3neGH4CQoDZQGGHQ3cvl3yjjt3OJym/vwtMB0hK0mdAskQtR8CsWbMYOnQoL774ItHR0bRs2ZJOnTqxf//+dOf/5ZdfaN++PQsWLGDdunXcfPPNdO3alejo6CwvW+FIstOUNWt4N+X3aUAdSL6pbJUq1hUl4klVq3Kvjw8jUh4OAH738dFnQLJE4QgYO3Ysffv2pV+/ftSsWZP33nuPcuXK8dFHH6U7/3vvvcezzz5Lo0aNqFq1Km+88QZVq1Zl3rx5WV52ehtaV8mWa7F06VIGv/giAK/abHSH5GA0aZLunSb5R3g4TJ7MKz4+3A0kAHeGhLAvKcnqyiQXyffh6NKlS6xbt44OHTq4Te/QoQMrV67M1Gs4HA7OnDlD0aJFM5wnPj6e06dPu/2AWo4ke2zfvp177rmHxMREevbsySv79iWfqRMTk3w3c5H8pG9ffPbt45MFC6hXuzbHz5yha9euxMXFWV2Z5BL5PhydOHGCpKQkwsLC3KaHhYVx5MiRTL3Gu+++y7lz5+jevXuG84wePZrQ0FDXT7ly5QCFI7l+x48f57bbbiMuLo4WLVokX+ixXDlo00YtRpJ/hYcT0qkTcxcuJCwsjM2bN3PnnXcSHx9vdWWSC+T7cOR0+Qh0Y0ymRqV/8cUXvPrqq8yaNYuSJUtmON/w4cOJi4tz/Rw4cAC4cjhyXmdBJCNnz56lS5cu7N27l0qVKjFnzhy3C4mK5HflypVjwYIFFChQgOXLl/Pwww/jcDisLku8XL4PR8WLF8dut6dpJTp27Fia1qTLzZo1i759+/LVV19xyy23XHHegIAAChUq5PYDajmSaxcfH89dd93F6tWrKVq0KPPnz6d48eJWlyXidRo0aMC3336Lr68vX3zxBc8995zVJYmXy/fhyN/fn8jISJYsWeI2fcmSJTRv3jzD533xxRc89NBDfP7559x2223XvHyFI7kWSUlJ9O7dmyVLlhASEsLChQupUaOG1WWJeK0OHTowbdo0AN555x3GjRtncUXizZw9N84TpJzyTTgCGDZsGFOnTmXatGls376dp556iv3797tuvTB8+HB69+7tmv+LL76gd+/evPvuuzRt2pQjR45w5MiRaxrsl17XncKRXIkxhiFDhvDVV1/h5+fH7Nmzady4sdVliXi9Xr16MWbMGCD5e98ZlkQud+7cOQBCQkLcpnsyHPl6bEkZuO+++zh58iSjRo3i8OHD1KlThwULFhAREQHA4cOH3a55NGnSJBITE3nsscd47LHHXNP79OnDjBkzsrRstRxJlsTG8uqLL/LRp59is9n47LPPaN++vdVVieQazz77LEePHmXcuHH069eP4AsX6FGrFlStqhMYxEXhKMXgwYMZPHhwun+7PPCsWLEi25arliPJtKgoxvTvzyhjAJjQs+cVz5AUkbRsNhvvvvsu58+fZ9KkSTz4+OMEAd18fGDyZF36QoCMw1G+u32IVdRyJJkSG8vb/fszPCUYvQEM+vJL3S9K5BrYbDYmvvACvYAkoDuwWPdgk1S8oeVI4egyukK2XG7sG2/wbEowGgUMB90vSuQ6+OzezTTgHuAScCewTJ8pSaFwZDG1HMnVvPfeezydciubEcDLzj/onmki165qVXx9fJgJ3AZcSPl3Uco16CR/UziymMKRXMm4ceN46qmnAHi5SxdGON8vumeayPVJuQebv93Ot0BX4CLQrV8/vv/+e4uLE6spHFlMV8iW9BhjGDFiBMOGDQPghRdeYOTcudh0zzSR7NO3L8TEELB8Od/s3s0999zDpUuXuOeee/j666+trk4s5A0Dsr3ibDWrqOVILudwOHjqqacYP348AK+//jrDhw9P/lCGh6u1SCQ7pXym/Em+hp2/vz+ff/45PXr04OLFi/Tq1cvqCsXDHA6Hq3FCZ6tZROFIUktMTOSRRx5xBaMPP/yQF154waMfSJH8ytfXl08//dR1/zXnxX4lf0l97C1QoECav3uqay1fhyNd50gAiI3l7IIF3NmpE5988gl2u51PP/3U7SKjIpLz7HY7U6dO5cknnwTgmWeeYdiwYTj270/u0tap/nne2bNnXb9ffm81UDjyiCudyq8xR/lEVBSHy5en9W238cPSpQT6+fHNN9+oOV/EIj4+PowbN463334bSD4xomdEBPFt20JEBERFWVyh5CTneKPg4OB0j9EKRx6QXstRwYIFAff0KnlUbCxb+veniTGsB4oDy5OSuKNhQ6srE8nXbDYbzzzzDDPHj8cPmAV0AI7rYpF5XkaDsZ08NcwhX4ej9BKos4/z3LlzOBwOT5ckHrRo5kxaGMMBoBrwB9DU4dCF6ES8RM86dVgIFAJ+ARoBm3SxyDztauFILUcekN5GdrYcwf92kuQtDoeD1157jc7Dh3MaaAmsAiqDLu4o4k2qVqWdjw9/AFWAfUAz4NsdO6ytS3KMwpEXSG8jBwYGuqafOXPG0yVJDouLi+POO+/k5ZdfxhjDgNatWeLjQ1HQxR1FvE3KxSJr2u2sBtoD54F7BgzgpZdeIjEx0eICJbspHHmB9DayzWbTuKM8atOmTTRq1Ii5c+cSEBBAVFQUH69YQYAu7ijivVIuFllk+XIW7N3rumr966+/Trt27YjV+KM8ReHIC2S0kZ3jjtRylMvFxsLy5Tj272fcuHE0atSInTt3Ur58eX777TceeeSR5PnCw6FNG7UYiXirlM+ob4UKjB07ls8//5wCBQrwyy+/UK9ePebPn588X8pnXgO2cy+FIy+Q0UZWy1EeEBUFEREcatuWjhERDBs2jEuXLtG1a1fWrVtHQ52RJpJr3X///URHR9OgQQNOnjxJly5dePKWWzhXvjzolP9cTWereYGMNrJajnK52FhM//584XBwA7AECAI+Hj2a77//nuLFi1tcoIhcrypVqrBy5UqeeOIJAMb/9BM3GsMvADrlP9dSy5EXUMtR3rTv11+5zRh6AieBBsB6YEDTproViEgeEhAQwPvvv8/CMWMIB3YDrYEhwFmd8p8rKRx5AY05ylsSExN5//33qd2vHwsBf2AUyafp19Ap+iJ5VscHHmCLzUb/lMcfAjWBr//6C2OMhZVJVikceQG1HOUdy5Yto0GDBgwdOpRz58/TsmpVNvr48DLgr1P0RfK28HBCp0xhst3Oj0AFIBboPmgQ7du3Z9u2bdbWJ5nmbJRI76azoHDkERpzlPvt3r2bO++8k3bt2rF582aKFCnCpEmTWPHXX9TQKfoi+UfKKf/tly9n244djBgxgoCAAH766SduvPFGnn76af7991+rq5SrOH36NAChoaHp/l0Dsj1ALUe5VGwsJ+fM4T8DB1KrVi3mzJmD3W5nyJAh7Nq1i0cffTR53+oUfZH8JeUzH1S1Kq+++irbtm2jW7duJCYmMnbsWCpVqsTbb7/NhZ07dcq/l4qLiwMyDkdqOfIAjTnKfc5MmMCo8uWpdOedvDNpEpcuXaJDhw5s2rSJ8ePHU7RoUatLFBEvUalSJebMmcPChQupU6cOp06d4tlnn6VatWpMb9uWpPLldcq/l3G2HBUqVCjdvysceYBajnKPCxcuMPaVV6j0+OOMMIbTQD1gvo8Pi6ZOpVatWhZXKCLeqmPHjmzYsIEZY8dSjuTxSI8ANxrD7EcfxRw4YHGF4qRw5AWuFo7UcmS9hIQEJk+eTNWqVXn6v//lBFANmAWsAzo7HNh277a2SBHxena7nT716rEDeAcoAmwF7nI4aNC2Ld9//73ObPMCV+tW05gjD7hat5pajqxz6dIloqKiqFGjBgMGDODgwYOUK1OGKJuNrUB3Ut68OkVfRDKralUCfXx4GtgDvAgUADbs2sUdd9xBZGQkc+fOVUiykFqOvEBGCVQtRxaJjSV+8WI+Hj2aqlWr0q9fP/bs2UOJEiV477332LF7N49MmYKv3Z48v07RF5GsCA+HyZPBbqcw8JrdTsx77zF8+HAKFChAdHQ03bp1o2HDhsybNy+5u00Dtz0mKSnJ1Shh9YBsX48sxUup5ch7XPz4Y6YOHswYYziYMq1UqVL85z//YcCAAf+7IFjfvnDrrclXvq1SRcFIRLLmsu+QYuHhvAEMGzaMd999lw8++ID169dz++23Ewm8DHS12fCZMkWXBMlhqRsk1HJkoauNOXI270nOOX/+PO+9+iqVBg1iSEowKgOMt9nY88svDBs2LO2VUnWKvohcj3S+Q4oXL87o0aPZu3cvzw4aRDDJ4xrvAG4whv/r35+EvXutqTefcB5z/f39CQgISHcehSMPyGgjFy5cGPjfwDDJfsePH+fVV18lIiKCp0aO5DBQDphI8v2RhhhD0MGDV34REZFsVqJECd68915igOeAgiQP3O5tDFWbNePDDz/k/PnzltaYV13tApCgcOQRVwtHZ86cITEx0YMV5VGxsa5++127djFo0CDKly/PyJEjOXHiBBXLl2eyzcYuYBAQCBpoLSLWqVqVEj4+jAH2A28AJYF9R48yZMgQKlSowOuvv84///yTPH+q7zi5ds4GiYy61EDhyCMyGpDtDEcAp06d8kwxeVVUFKZ8eZa1bcvd5cpRrVo1Pv74Yy5evEjDhg2ZNWsWO3bvpv+UKcn3QAMNtBYRa102cHu43U7MxIlMmDCBChUqcPz4cV566SXKli1L35YtWV++PLRtCxERuqjkdbjamWqgU/k9IqME6uvr6xp3pHvxXLuTmzcztn9/ahhDO+A7wBhD57ZtWb58OatXr6Z79+74+vq67ouke6GJiFe47DspaNAgBg8ezM6dO/nss8+oV68eFy9eZNpvvxFpDM2BmQ4HFx99VC1I10jdal7iShu5SJEigMJRVsXHxzN37lx69OhB2chInjaGHST32w8CtgDzX36ZNm3apP0fgAZai4g3Sec7ydfXlwceeID169fz2/jx3E/yad+rgAeBUg4H/QcO5JdffsHhcFhTdy6lbjUvcaWN7OxaUzjKQKo+9oSEBH766Sf69+9PqVKl6NatG7NmzSI+IYH6wCTgEMmDrWtrLJGI5AE2m40Wd97J5z4+HABGkXxSSRwwdf58WrduTeXKlRk+fDirV69ODkoam3RFmWk5UreaB2Sm5UhjjtIRFcXJ8uX5rG1bepQrR4nQUG655RamTp3KqVOnKF26NMOGDWPt2rWsmzKFR+12CoDGEolI3pIyNqmU3c7LQIyPD8ueeYaHH36YggULEhMTw5gxY2jSpAnhRYsysFw5FrZtS7xueJuuzIw50kUgPeBKCVTdau6MMWzatImFX37JD2PGsApwNRhfuEDxokXpduedPPDAA7Rq1Qq7c3B1ZCR07KiLNopI3pTqopI+Vapwc3g4NwMffvghc+fO5bvvvmPhggUcjotjEskt6SHG0LZfPzoeOUKnnj2pWLGixSvhHbypWy1fhyONOUpHbCzs3AlVq3KqQAGWLl3KwoULWbRoEYcOHXKb9QagC9AVaPTVV9jbtUv/NcPDFYpEJO9K5zsuODiYHj160KNHD+IXL2Z5x47MAeYCh4F5wLyXXoKXXqJatWp06tSJjh070rp1a4KCgty+i/PL96fz0gjFihXLcB6FIw/QmCN3ZupUNjz6KAuNYSGwyseHpFQDCoOCgmjbvDmdly2jizGUd/7Bbofq1a0oWUTE6wXUrk1HHx86OhxMBDYCi2w2FjVuzO9r17Jjxw527NjB+++/T2BgIG2qVKHT1q10NIaqNhu2fHLrkhMnTgDJVyvPiMKRB+SrlqMM/hdy4cIFfvrpJ+Z9+SU/zJyJW9uQw0GNKlXo1LUrnTp1omXLlgQGBib3lQ8YAElJGkckInI1zusmDRiAT1IS9e126k+axPC+fYmLi+Onn35i4cKFLFy4kIMHD7JoyxYWpTy1kjF07N+fTnY7N997b9rbKeWhFiaFIy+RbwZkR0XBo4+CwwE+Phx+6y1+KFSIefPmsXTpUi5cuOCaNRhoB3RK+akwZUryqayp6eavIiJZk8H3ZmhoKHfddRd33XUXxhi2Tp/Oor59WQj8CuwBJhrDxIcfxn/AAFq1akXHjh3p2LEjtVatwjZggOu7ncmTc3UL0/HjxwGFI8vliwHZsbFc7N+flcawDFjscLD2mWfcZilXrhxd2rTh9s8+o40xybfvgCvfwkPjiEREsuYq35s2m406HTpQx8eHZxwOzgLLSO6CWxgeTsyBAyxdupSlS5fyzDPPUA7oSPJ/ZNs5HBQaMCA5gOXS7+bMtBx56lT+fB2O8kS32mVNqmfPnmXbtm1s2bKFrVu3Er1sGSuNIf6ypzWqUYOuPXvStWtXbrzxxuQ3XOvW6i4TEbFSqi64AklJ3G63c/ukSZhHHmHHjh2uE2RWLFvGgYQEpgBTSD6Yt0hKov2rrxJ5zz3ceOONlCpV6n9hwsu73y5cuMC5c+cAtRxZLjPhyHVjQS9z7tw5to8Zw9bXX2erMWwFthYrxr6TJ9OdvzTJ3WVtgY4+PpResiTtB0TdZSIi1kvnu9gGVK9enerVqzN06FDO79zJz9Wrs9AYFgE7gZ+Bn6OiXNdQKl68ODfccAO1gVrLl1PLGGrabJTwwgHeJ1OOXb6+vl5xbzWFowyULFkSgKNHj2KM8dgOcUmV8i8UK8bKlStZt24d69evZ926dezevRtjjPtzUt5cpUqVonbt2tSuXZs6derQ8uhRqo8Ygc3huHqLkLrLRESsd5Xv4uCqVek0ZQqdUlr7d/v4sKhHD35JTGTjxo3s3LmTEydOsGzZMpalfqIxFO/Xj1pTplCzXj1q1apF06ZNadCgQfJ9Li1qYUrdpXal461ajjzgSjugVKlSQHJT35kzZ66YZLMkM2+8qCj29u/PAmNYACz39+fCpUtpZisB1L78Z84cinXrlvY1H3pILUIiInlJqhamylWq8Fh4OI+l/On8+fNs3bqVzV9/zfa332YbsA2IAU4Av/z5J7/8+afrpQoVKkSrChVov3lz5i4hkM0hKjPjjUDhyCOutJFDQkIoWLAgZ86c4fDhw5kOR1u3bmXq1Kls2rQJgCpVqtCoUSNatmxJtV9/zfDMgvPnz/Pbb7+x+JtvWDBlCn+lftFLlyhbqhQtWrWiQYMGNGjQgBtLlKBkZGTyaznZ7clXpE6PWoRERPKeDL7bg4ODadSoEY1Kl4Z333UdK84Bf/v4sG3cOLYdOcLmzZv57bffOHXqFD9s2sQPKc+vmHIJgY42G227d6dAgQL/e/FUZ0Abm439Y8bwR0QEf/zxBxs3bsTf35/mzZvTv39/SpcunanVUDjyIlfbyKVLl3aFo+pXucihOXCA0SNH8tK0aW7dXcuWLWPy5MkAlARuAmoARR0OLvXvT8zy5Wzbt4/Vq1dzKVXrkB1oAXRO+anz+efYbr7ZfaEpg/Y0gFpERNKVaoA3SUmE2O00mDSJBqlahJKSktg4dSo/DRzIYpIvIbAX+MgYPurbF7+BA7npppuoU6cOZUJCsL/5JkeNYTuw3hiOPPdcmsUuXryYd955h2lvv8091apdtYVJ4ciLXG0jlypVih07dnDkp5+u3B0VFcXr/fvzckoo6lavHncOHYrdbmfLli388ccf/LFyJccSEvgu9fOMgZkzXQ/Dw8O5pVkzOn/zDe2NobDzD3Z78hvrchpALSIiV3OVY4XdbqfBbbfRwMeH/6RcQmAFKZcQKFeOPfv3s3z5cpYvX57uy/sC9apXp2n79jRs2JALFy4wbdo01qxZw30DB/INcOdVrsN0Ys8eAIoHBqb7dyeFIw+4astRysURD7/2GrzxRvo7NjaWpamC0XvAk5s3Q7t2bm/A+N27WVO1KquMIQaIA/xsNso98QRVIyNp2rQpVapUSR4HlZUrUKu7TEREruZqx4rLLiHQxW6ny6RJ0Lcvu3bt4qeffiImJoZDu3Zh++YbCpPcC1IXaODjQ9DSpW6v379TJ/pXqMB04GGggcNBREbXYYqK4ti4cQAU/+yz5AsPZxCiFI48wOfs2Yz/GBtL6TVrADgCyf216ezYi1u3MiglGA0AnoTkULNrl9t8AZUrc9OUKdx0eehJ7w2gFiEREfG0DI49VapUoUrqCwJn4j/w9j17mETyIPA/ST42zknn2EhsLDz6KAdTHoZDusdaJ5+LF7Nvfa8gf4ejd96BGjXSDyg7d1Iq5dfDzmnp7Nj/27iRXSRfR+gt58SMriydldCjFiEREfG0zBx7MnMsq1oVPx8fpjsc1AW+B3718aHl5cfGnTvB4SA25WFZSPdYC0BUFD6LFuEJnmmf8lI2SE6osbFp/1i1KqVTTvV3haPLQo8xhvH/938APGOzUcg5z9W6wdq0UfAREZHc62rHspRuupp2O/1SJr1es2ba+atWBR8fVzgKh/QbGFJamDx1xcF8HY7qwf8S6uXCwyk9dCiQEo7SCT0///wzW7ZsITg4mEc2b4blyyEmxuuuPCoiIuJxfftCTAzPff45Pj4+LN66lW3btrnPEx5O/IQJHHM+9PFJv4EhpYWpvUcKz+fh6Ca44s1Vyz36KAD7goIwe/emCT0ffPABAL169aJw7dpqERIREUktPJyK999Pt5SLE48fPz7NLPvatgUgODCQYhk1MKS0MN2Xk7Wmkq/DERkl1BQVK1bEZrNx9sIFjvn7u/1t//79zJkzB4DHH388pysVERHJtYam9MR8+umnae5Zunv3bgCqVKuGrVy59F/AeTadh85Wy9/haMuWK3aBBQQEUC5lR+26rOvto48+wuFw0LZtW+rUqZOjZYqIiORmLVu25MYbb+TChQt88sknbn9zHl8rV6585Rfp2zf5uO0B+TsclS171Vmcpy/u2LHDNe3ChQtMmTIFgCFDhuRMbSIiInmEzWZj0KBBAHz88cdud5JwHl+rZDDExU0mjtvZIX+Ho0yoW7cuABs3bnRN+/LLLzl58iQRERF07drVqtJERERyjQceeICCBQuyY8cOli1b5pruPL46j7feQOHoKurVqwdAdHQ0kHz6vnMg9uDBg7Hb7VaVJiIikmsUKFCAXr16AclDUyD5mOoMR87jrTewmdRtW/nE6dOnCQ0NJS4ujkKFCl1x3i1btlC3bl2Cg4P5559/WLVqFTfffDOBgYHExsZSrFgxD1UtIiKSuzmPqXa7nX379vHPP/9www03EBwczKlTp/Dz87vi87Ny/L4eajm6itq1axMWFsb58+f57bffGDVqFAAPP/ywgpGIiEgW1KlTh5tuuomkpCQmTJjAopQrXrdu3fqqwciTvCIcTZw4kYoVKxIYGEhkZCS//vrrFef/+eefiYyMJDAwkEqVKvHxxx/nWG02m40uXboA0KlTJ5YvX46fnx/Dhw/PsWWKiIjkVU8//TQAb775Js899xyA143ftTwczZo1i6FDh/Liiy8SHR1Ny5Yt6dSpE/v37093/r1799K5c2datmxJdHQ0L7zwAk888QTffvttjtX45JNP4uPjQ0JCAgDPPPOM6xR/ERERybxu3brRoUMHHA4HxhiKFy/uGovkLSwfc9SkSRMaNGjgGpwFULNmTe644w5Gjx6dZv7nnnuOuXPnsn37dte0gQMHsnHjRlatWpWpZV5Ln+W3337L+++/T+vWrRkxYgS+vvn6nr0iIiLX7N9//+U///kP+/fv5/XXX6dRo0aZep6nxhxZeoS/dOkS69at4/nnn3eb3qFDB1auXJnuc1atWkWHDh3cpt16661ERUWRkJCQY32Wd999N3fffXeOvLaIiEh+UqRIEaZOnWp1GRmyNBydOHGCpKQkwsLC3KaHhYVx5MiRdJ9z5MiRdOdPTEzkxIkTlC5dOs1z4uPjiY+Pdz2Oi4sDkhOoiIiI5A7O43ZOd3p5Rd+QzWZze2yMSTPtavOnN91p9OjRjBw5Ms10jRsSERHJfU6ePEloaGiOvb6l4ah48eLY7fY0rUTHjh1L0zrkVKpUqXTn9/X1zfDU+uHDhzNs2DDX41OnThEREcH+/ftzdON6m9OnT1OuXDkOHDiQo3213kbrrfXOD7TeWu/8IC4ujvLly1O0aNEcXY6l4cjf35/IyEiWLFnCnXfe6Zq+ZMkSunXrlu5zmjVrxrx589ym/fjjjzRs2DDD8UYBAQEEBASkmR4aGpqv3lROhQoV0nrnI1rv/EXrnb/k1/X28cnZk+0tP5V/2LBhTJ06lWnTprF9+3aeeuop9u/fz8CBA4HkVp/evXu75h84cCD79u1j2LBhbN++nWnTphEVFcUzzzxj1SqIiIhIHmL5mKP77ruPkydPMmrUKA4fPkydOnVYsGABERERABw+fNjtmkcVK1ZkwYIFPPXUU0yYMIEyZcowfvx4nUkmIiIi2cLycATJN3AdPHhwun+bMWNGmmmtW7dm/fr117y8gIAARowYkW5XW16m9dZ65wdab613fqD1ztn1tvwikCIiIiLexPIxRyIiIiLeROFIREREJBWFIxEREZFUFI5EREREUsmz4ej111+nefPmBAcHU7hw4Uw9xxjDq6++SpkyZQgKCqJNmzZs3brVbZ74+HiGDBlC8eLFCQkJ4fbbbyc2NjYH1uDa/Pvvv/Tq1YvQ0FBCQ0Pp1asXp06duuJzbDZbuj9vv/22a542bdqk+XuPHj1yeG0y71rW+6GHHkqzTk2bNnWbJ6/t74SEBJ577jnq1q1LSEgIZcqUoXfv3hw6dMhtPm/b3xMnTqRixYoEBgYSGRnJr7/+esX5f/75ZyIjIwkMDKRSpUp8/PHHaeb59ttvqVWrFgEBAdSqVYvZs2fnVPnXLCvr/d1339G+fXtKlChBoUKFaNasGYsXL3abZ8aMGel+1i9evJjTq5IlWVnvFStWpLtOf/31l9t8eW1/p/f9ZbPZqF27tmseb9/fv/zyC127dqVMmTLYbDbmzJlz1ed47LNt8qhXXnnFjB071gwbNsyEhoZm6jljxowxBQsWNN9++63ZvHmzue+++0zp0qXN6dOnXfMMHDjQlC1b1ixZssSsX7/e3HzzzebGG280iYmJObQmWdOxY0dTp04ds3LlSrNy5UpTp04d06VLlys+5/Dhw24/06ZNMzabzezevds1T+vWrU3//v3d5jt16lROr06mXct69+nTx3Ts2NFtnU6ePOk2T17b36dOnTK33HKLmTVrlvnrr7/MqlWrTJMmTUxkZKTbfN60v7/88kvj5+dnpkyZYrZt22aefPJJExISYvbt25fu/Hv27DHBwcHmySefNNu2bTNTpkwxfn5+5ptvvnHNs3LlSmO3280bb7xhtm/fbt544w3j6+tr/vjjD0+t1lVldb2ffPJJ8+abb5rVq1ebHTt2mOHDhxs/Pz+zfv161zzTp083hQoVSvOZ9yZZXe/ly5cbwPz9999u65T6M5oX9/epU6fc1vfAgQOmaNGiZsSIEa55vH1/L1iwwLz44ovm22+/NYCZPXv2Fef35Gc7z4Yjp+nTp2cqHDkcDlOqVCkzZswY17SLFy+a0NBQ8/HHHxtjkt+Mfn5+5ssvv3TNc/DgQePj42MWLVqU7bVn1bZt2wzg9iZYtWqVAcxff/2V6dfp1q2badu2rdu01q1bmyeffDK7Ss1W17reffr0Md26dcvw7/llf69evdoAbl/C3rS/GzdubAYOHOg2rUaNGub5559Pd/5nn33W1KhRw23agAEDTNOmTV2Pu3fvbjp27Og2z6233mp69OiRTVVfv6yud3pq1aplRo4c6Xqc2e9DK2V1vZ3h6N9//83wNfPD/p49e7ax2WwmJibGNS037G+nzIQjT36282y3Wlbt3buXI0eO0KFDB9e0gIAAWrduzcqVKwFYt24dCQkJbvOUKVOGOnXquOax0qpVqwgNDaVJkyauaU2bNiU0NDTT9R09epT58+fTt2/fNH+bOXMmxYsXp3bt2jzzzDOcOXMm22q/Htez3itWrKBkyZJUq1aN/v37c+zYMdff8sP+huQbOdpstjTdz96wvy9dusS6devc9gFAhw4dMlzHVatWpZn/1ltvZe3atSQkJFxxHm/Yr3Bt6305h8PBmTNn0tyg8+zZs0RERBAeHk6XLl2Ijo7Otrqv1/Wsd/369SldujTt2rVj+fLlbn/LD/s7KiqKW265xXV3CSdv3t9Z5cnPtldcIdsbHDlyBICwsDC36WFhYezbt881j7+/P0WKFEkzj/P5Vjpy5AglS5ZMM71kyZKZru+TTz6hYMGC3HXXXW7TH3jgASpWrEipUqXYsmULw4cPZ+PGjSxZsiRbar8e17renTp14t577yUiIoK9e/fy8ssv07ZtW9atW0dAQEC+2N8XL17k+eefp2fPnm43r/SW/X3ixAmSkpLS/VxmtI5HjhxJd/7ExEROnDhB6dKlM5zHG/YrXNt6X+7dd9/l3LlzdO/e3TWtRo0azJgxg7p163L69Gnef/99WrRowcaNG6latWq2rsO1uJb1Ll26NJMnTyYyMpL4+Hj+7//+j3bt2rFixQpatWoFZPyeyCv7+/DhwyxcuJDPP//cbbq37++s8uRnO1eFo1dffZWRI0decZ41a9bQsGHDa16GzWZze2yMSTPtcpmZ53pkdr0hbf2QtfqmTZvGAw88QGBgoNv0/v37u36vU6cOVatWpWHDhqxfv54GDRpk6rWzKqfX+7777nP9XqdOHRo2bEhERATz589PEw6z8rrXy1P7OyEhgR49euBwOJg4caLb36zY31eS1c9levNfPv1aPuuedq01fvHFF7z66qt8//33bgG6adOmbicdtGjRggYNGvDBBx8wfvz47Cv8OmVlvatXr0716tVdj5s1a8aBAwd45513XOEoq69plWutccaMGRQuXJg77rjDbXpu2d9Z4anPdq4KR48//vhVz5ipUKHCNb12qVKlgORkWrp0adf0Y8eOuVJoqVKluHTpEv/++69ba8KxY8do3rz5NS03MzK73ps2beLo0aNp/nb8+PE0STo9v/76K3///TezZs266rwNGjTAz8+PnTt35tjB0lPr7VS6dGkiIiLYuXMnkLf3d0JCAt27d2fv3r0sW7bMrdUoPZ7Y3+kpXrw4drs9zf/6Un8uL1eqVKl05/f19aVYsWJXnCcr75ecdC3r7TRr1iz69u3L119/zS233HLFeX18fGjUqJHrPW+161nv1Jo2bcpnn33mepyX97cxhmnTptGrVy/8/f2vOK+37e+s8uhnO0sjlHKhrA7IfvPNN13T4uPj0x2QPWvWLNc8hw4d8roBun/++adr2h9//JHpAbp9+vRJc9ZSRjZv3mwA8/PPP19zvdnletfb6cSJEyYgIMB88sknxpi8u78vXbpk7rjjDlO7dm1z7NixTC3Lyv3duHFjM2jQILdpNWvWvOKA7Jo1a7pNGzhwYJpBm506dXKbp2PHjl43QDcr622MMZ9//rkJDAy86sBWJ4fDYRo2bGgefvjh6yk1W13Lel/u7rvvNjfffLPrcV7d38b8b0D65s2br7oMb9zfTmRyQLanPtt5Nhzt27fPREdHm5EjR5oCBQqY6OhoEx0dbc6cOeOap3r16ua7775zPR4zZowJDQ013333ndm8ebO5//770z2VPzw83CxdutSsX7/etG3b1utO7b7hhhvMqlWrzKpVq0zdunXTnNp9+XobY0xcXJwJDg42H330UZrX3LVrlxk5cqRZs2aN2bt3r5k/f76pUaOGqV+/fq5d7zNnzpinn37arFy50uzdu9csX77cNGvWzJQtWzZP7++EhARz++23m/DwcLNhwwa303vj4+ONMd63v52nOEdFRZlt27aZoUOHmpCQENdZOc8//7zp1auXa37n6b5PPfWU2bZtm4mKikpzuu/vv/9u7Ha7GTNmjNm+fbsZM2aM157andn1/vzzz42vr6+ZMGFChpdgePXVV82iRYvM7t27TXR0tHn44YeNr6+vW8C2WlbXe9y4cWb27Nlmx44dZsuWLeb55583gPn2229d8+TF/e304IMPmiZNmqT7mt6+v8+cOeM6NgNm7NixJjo62nXmrJWf7Twbjvr06WOAND/Lly93zQOY6dOnux47HA4zYsQIU6pUKRMQEGBatWqVJo1fuHDBPP7446Zo0aImKCjIdOnSxezfv99Da3V1J0+eNA888IApWLCgKViwoHnggQfSnOJ6+XobY8ykSZNMUFBQutey2b9/v2nVqpUpWrSo8ff3N5UrVzZPPPFEmmsCWSmr633+/HnToUMHU6JECePn52fKly9v+vTpk2Zf5rX9vXfv3nQ/F6k/G964vydMmGAiIiKMv7+/adCggVsLVp8+fUzr1q3d5l+xYoWpX7++8ff3NxUqVEg39H/99demevXqxs/Pz9SoUcPtYOotsrLerVu3Tne/9unTxzXP0KFDTfny5Y2/v78pUaKE6dChg1m5cqUH1yhzsrLeb775pqlcubIJDAw0RYoUMTfddJOZP39+mtfMa/vbmOTW7aCgIDN58uR0X8/b97ez1Suj96yVn22bMSmjmUREREQk794+RERERORaKByJiIiIpKJwJCIiIpKKwpGIiIhIKgpHIiIiIqkoHImIiIikonAkIiIikorCkYiIiEgqCkciIiIiqSgciYiIiKSicCQiecqoUaOoW7cuISEhhIWFMWjQIBISEqwuS0RyEV+rCxARyS7GGJKSkpg0aRJly5Zl27Zt9O7dmxtuuIFBgwZZXZ6I5BK68ayI5Gk9e/akRIkSvP/++1aXIiK5hLrVRCTP2LdvH48//jh16tShSJEiFChQgK+++orw8HCrSxORXEThSETyhBMnTtC4cWNOnDjB2LFj+e2331i1ahV2u5169epZXZ6I5CIacyQiecKCBQtITEzkiy++wGazATBhwgQuXbqkcCQiWaJwJCJ5QtGiRTl9+jRz586lVq1azJs3j9GjR1O2bFlKlChhdXkikotoQLaI5AnGGAYNGsTnn39OUFAQDz74IBcvXmTfvn388MMPVpcnIrmIwpGIiIhIKhqQLSIiIpKKwpGIiIhIKgpHIiIiIqkoHImIiIikonAkIiIikorCkYiIiEgqCkciIiIiqSgciYiIiKSicCQiIiKSisKRiIiISCoKRyIiIiKpKByJiIiIpPL/goNnenA1ed0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0HUlEQVR4nO3deVwV1f/H8ddlRwTcEUVQ09xX3M1cMnfbbLXSSk1bNPPbrzRbtM32PXNDbTGzMs1yy3ItyRVNzUxNQVJELUHNBbjn9wfcm1dAAYG5wPv5ePAohnPvfGbmwrw958yMzRhjEBEREREAPKwuQERERMSdKByJiIiInEfhSEREROQ8CkciIiIi51E4EhERETmPwpGIiIjIeRSORERERM6jcCQiIiJyHoUjERERkfMoHEmRcPDgQcaNG8eWLVsy/eyee+6hdOnSeX7vc+fOMWzYMEJDQ/H09KRp06Z5LzQfTJw4kZkzZ2Zavn//fmw2W5Y/K05sNhvjxo2zuox8MW7cOGw2W4G/9r333qNWrVr4+Phgs9k4fvw499xzD9WrV3dp99JLLzF//vw81XMxf//9N7fffjuVKlXCZrNxww035Po9qlevzj333JPvtbmTAwcOcOONN1KzZk0CAgIIDg6mWbNmvP/++6Smprq0nTZtGjfccAPVq1fH39+fWrVq8cADD3Do0CGLqi9ZvKwuQCQnDh48yPjx46levXq+h5cPP/yQyZMn89577xEZGXlZQSs/TJw4kQoVKmQ6UYSGhhIdHc0VV1xhTWGSa4MHD6ZHjx4Fuo4tW7YwYsQIBg8ezMCBA/Hy8iIwMJCnn36aRx55xKXtSy+9xM0335yn8HIxzz//PPPmzWP69OlcccUVlCtXLl/fv7g4deoUQUFBPP3004SHh3Pu3DkWLVrE8OHD2bJlC9OmTXO2ffbZZ+ncuTMvvfQSVatWZdeuXTz//PN88803xMTEEBISYuGWFH8KR1Libd++HX9/fx5++GGrS7koX19f2rRpY3UZkgthYWGEhYUV6Dp27NgBwJAhQ2jVqpVzeWGG6O3bt3PFFVdw5513Fto688u///5LqVKlCmVddevW5aOPPnJZ1rNnTxITE/noo4/44IMP8PX1BSAmJoZKlSo523Xs2JHmzZvTsmVLpk6dylNPPVUoNZdUGlYrgY4cOcL9999PtWrV8PX1pWLFirRv354ffvjB2aZTp040bNiQ6Oho2rVrh7+/P9WrV2fGjBkALFy4kObNm1OqVCkaNWrEkiVLMq3np59+4pprriEwMJBSpUrRrl07Fi5cmKnd9u3buf766ylbtix+fn40bdrU5Q/IypUradmyJQD33nsvNpsty6GXPXv20KtXL0qXLk21atX43//+x9mzZy+6L2w2G9OmTeP06dPO9505c+ZFh7AuXLdj+GPHjh3ccccdBAcHExISwn333UdSUpLLa+12O++99x5NmzbF39+fMmXK0KZNGxYsWACkDy3s2LGDVatWOetxDI1kV1NO9vPMmTOx2WysWLGCBx54gAoVKlC+fHluuukmDh48eNF9dDHVq1enT58+zJs3j8aNG+Pn50fNmjV59913M7WNi4vjrrvuolKlSvj6+lKvXj3eeOMN7HZ7tu+/f/9+vLy8mDBhQqafrV69GpvNxpdffgnk7jicOXOGMWPGUKNGDXx8fKhatSoPPfQQx48fz3L7vvvuO5o1a4a/vz/16tXju+++A9L3a7169QgICKBVq1Zs3LjR5fVZDY3NmTOHbt26ERoa6ny/0aNHc+rUqex3dDY6derEXXfdBUDr1q2x2WzOHscLh9VsNhunTp3io48+cn62OnXqdNH3//vvv3nwwQepWrUqPj4+1KxZk7Fjxzp/rxyfyR9++IGdO3c633flypXZvmdKSgqPP/44lStXplSpUlx11VWsX78+y7YJCQkMHTqUsLAwfHx8qFGjBuPHj880BBUfH8/NN99MYGAgZcqU4c4772TDhg2Zfl8cQ/Dbtm2jW7duBAYGcs011wDpw+svvPACdevWdf5dvPfeezly5EimuubMmUPbtm0JCAigdOnSdO/enZiYmIvuy4upWLEiHh4eeHp6OpedH4wcIiMj8fT05MCBA3lel+SQkRKne/fupmLFimbKlClm5cqVZv78+eaZZ54xn3/+ubNNx44dTfny5U2dOnVMVFSUWbp0qenTp48BzPjx402jRo3M7NmzzaJFi0ybNm2Mr6+v+euvv5yvX7lypfH29jaRkZFmzpw5Zv78+aZbt27GZrO5rOf33383gYGB5oorrjAff/yxWbhwobnjjjsMYF555RVjjDFJSUlmxowZBjBPPfWUiY6ONtHR0ebAgQPGGGMGDhxofHx8TL169czrr79ufvjhB/PMM88Ym81mxo8ff9F9ER0dbXr16mX8/f2d75uYmGj27dtnADNjxoxMrwHMs88+6/z+2WefNYCpU6eOeeaZZ8yyZcvMm2++aXx9fc29997r8tq7777b2Gw2M3jwYPPNN9+YxYsXmxdffNG88847xhhjNm/ebGrWrGmaNWvmrGfz5s3GGJNlTTndz479V7NmTTN8+HCzdOlSM23aNFO2bFnTuXNnlxodbbPa9gtFRESYqlWrmvDwcDN9+nSzaNEic+eddxrAvPbaa852iYmJpmrVqqZixYpm0qRJZsmSJebhhx82gHnggQcuun9vvPFGEx4eblJTU13a3XLLLaZKlSomJSUlV8fBbreb7t27Gy8vL/P000+b77//3rz++usmICDANGvWzJw5c8Zl+8LCwkzDhg2dn/fWrVsbb29v88wzz5j27dubr7/+2sybN89ceeWVJiQkxPz777/O1ztqOt/zzz9v3nrrLbNw4UKzcuVKM2nSJFOjRo1MxyGr115ox44d5qmnnnIer+joaLNnzx5jTPrvRUREhLNtdHS08ff3N7169XJ+tnbs2JHte58+fdo0btzYBAQEmNdff918//335umnnzZeXl6mV69exhhjzpw5Y6Kjo02zZs1MzZo1ne+blJSU7fsOHDjQ2Gw283//93/m+++/N2+++aapWrWqCQoKMgMHDnS2O3TokKlWrZqJiIgwkydPNj/88IN5/vnnja+vr7nnnnuc7U6ePGlq1aplypUrZz744AOzdOlS8+ijj5oaNWpk+hwPHDjQeHt7m+rVq5sJEyaYH3/80SxdutSkpaWZHj16mICAADN+/HizbNkyM23aNFO1alVTv359l2P64osvGpvNZu677z7z3Xffma+//tq0bdvWBAQEXHR/ns9ut5uUlBTz999/m88//9wEBASYMWPGXPJ1K1asMIDz74UUHIWjEqh06dJm5MiRF23TsWNHA5iNGzc6lx07dsx4enoaf39/lyC0ZcsWA5h3333XuaxNmzamUqVK5sSJE85lqamppmHDhiYsLMzY7XZjjDG333678fX1NXFxcS7r79mzpylVqpQ5fvy4McaYDRs2ZHvCHjhwoAHMF1984bK8V69epk6dOpfYG+mvDwgIcFmWl3D06quvurR78MEHjZ+fn3NbV69ebQAzduzYi9bToEED07Fjx0zLs6opp/vZEXgefPBBl/d89dVXDWAOHTrkXPbRRx8ZT09P89FHH120TmPSw4PNZjNbtmxxWX7ttdeaoKAgc+rUKWOMMaNHjzaAWbdunUu7Bx54wNhsNrNr1y7nsgv3r+OEMG/ePOeyv/76y3h5ebmE35wehyVLlmTZbs6cOQYwU6ZMcdk+f39/Ex8f71zm+LyHhoY6t88YY+bPn28As2DBgkw1Zcdxkly1apUBzNatW3P8WgfHsd2wYYPL8gvDkTHGBAQEuASQi5k0aVKWv1evvPKKAcz333/vXNaxY0fToEGDS77nzp07DWAeffRRl+WzZs0ygEttQ4cONaVLlzaxsbEubV9//XUDOIPIBx98YACzePFil3ZDhw7NMhwBZvr06S5tZ8+ebQAzd+5cl+WOvzsTJ040xhgTFxdnvLy8zPDhw13anThxwlSuXNnceuutl9wHxhgzYcIEAxjA2Gy2S/5NMMaY5ORkU69ePVOtWjWX33cpGBpWK4FatWrFzJkzeeGFF/jll19ISUnJsl1oaCiRkZHO78uVK0elSpVo2rQpVapUcS6vV68eALGxsUD6pMN169Zx8803u0xu9vT05O677yY+Pp5du3YBsHz5cq655hqqVavmsu577rmHf//9l+jo6Bxtk81mo2/fvi7LGjdu7KypMFx33XWZ1n/mzBkSExMBWLx4MQAPPfRQvqwvN/v5YjUCLvtpwIABpKamMmDAgBzV0aBBA5o0aeKyrH///iQnJ7N582Yg/TjXr1/fZU4MpB9nYwzLly/P9v07depEkyZN+OCDD5zLJk2ahM1m4/7778/U/lLHwbGuCye833LLLQQEBPDjjz+6LG/atClVq1Z1fu/4vHfq1MllrsqFvwfZ+fPPP+nfvz+VK1fG09MTb29vOnbsCMDOnTsv+trCtHz5cgICArj55ptdljv224X7KSdWrFgBkGlu0q233oqXl+sU2O+++47OnTtTpUoVUlNTnV89e/YEYNWqVc7/BgYGZpr4fscdd2RbR79+/TKtq0yZMvTt29dlXU2bNqVy5crOYcKlS5c6fzfOb+fn50fHjh0vOpx4vnvuuYcNGzawdOlSHn/8cV577TWGDx+ebfszZ85w0003ERsby5dffmn5RSMlgSZkl0Bz5szhhRdeYNq0aTz99NOULl2aG2+8kVdffZXKlSs722V1xYmPj0+m5T4+PkD6LzDAP//8gzGG0NDQTK93hKpjx445/5uTdpdSqlQp/Pz8XJb5+vo6ayoM5cuXz7R+gNOnTwPpc708PT1d9vHlyM1+zmmNeZHV9jiWnX+cL7ys/GJ1XshxNdauXbuoWbMmU6dO5eabb85y3ZfaxmPHjuHl5UXFihVd2tlsNipXrpypluw+75f6PcjKyZMn6dChA35+frzwwgtceeWVlCpVigMHDnDTTTdd1nHIb8eOHaNy5cqZ5kxVqlQJLy+vHP9uXviekPkz4+Xllem4HT58mG+//RZvb+8s3+vo0aPO98zqyq3sruYqVaoUQUFBmdZ1/Phx5zHMbl2HDx8GcM6BvJCHR876GypXruzcB926daNs2bKMHj2a++67j2bNmrm0PXv2LDfeeCM//fQT3333Ha1bt87ROuTyKByVQBUqVODtt9/m7bffJi4ujgULFjB69GgSExOznFidW2XLlsXDwyPL+3E4Jv9WqFABSD+R5aRdYXMErQsndOflhOBQsWJF0tLSSEhIyDLQ5FZu9nNBSkhIyHaZ44R3uce5f//+PPHEE3zwwQe0adOGhISEPPfAlS9fntTUVI4cOeISkIwxJCQkZHviyw/Lly/n4MGDrFy50tlbBGSaCO4Oypcvz7p16zDGuASkxMREUlNT8/TZcnweEhISXHrjUlNTM/1uVahQgcaNG/Piiy9m+V6OYF2+fPksJ3Rn9bkEsrx3lOMChez+/gUGBjrbAXz11VdERERk2TYvHD2qf/zxh0s4Onv2LDfccAMrVqzgm2++cU4el4KnYbUSLjw8nIcffphrr73WOQRyuQICAmjdujVff/21y7+E7XY7n376KWFhYVx55ZUAXHPNNc4Txvk+/vhjSpUq5bx0PT96OHIjJCQEPz8/fv31V5fl33zzTZ7f0zEc8OGHH160na+vb462Mzf7uSDt2LGDrVu3uiz77LPPCAwMpHnz5kD6cf7tt98yfcY+/vhjbDYbnTt3vug6/Pz8uP/++/noo4948803adq0Ke3bt89TvY4TzKeffuqyfO7cuZw6dapAT0COE7Pj8+wwefLkAlvn+XL62YL0/XTy5MlMN438+OOPnT/PLcfVcbNmzXJZ/sUXX2S6Aq1Pnz7OWwS0aNEi05cjHHXs2JETJ044h60dPv/88xzX1adPH44dO0ZaWlqW66pTpw4A3bt3x8vLi71792bZrkWLFrndJcB/w421atVyLnP0GC1fvpy5c+fSvXv3PL235I16jkqYpKQkOnfuTP/+/albty6BgYFs2LCBJUuWcNNNN+XbeiZMmMC1115L586deeyxx/Dx8WHixIls376d2bNnO08Szz77rHNuwTPPPEO5cuWYNWsWCxcu5NVXXyU4OBhIv2eLv78/s2bNol69epQuXZoqVaq4zH3KTzabjbvuust5U7smTZqwfv16Pvvsszy/Z4cOHbj77rt54YUXOHz4MH369MHX15eYmBhKlSrlnHPQqFEjPv/8c+bMmUPNmjXx8/OjUaNGWb5nTvdzbnz88cfcd999TJ8+PUfzjqpUqcJ1113HuHHjCA0N5dNPP2XZsmW88sorzjk5jz76KB9//DG9e/fmueeeIyIigoULFzJx4kQeeOCBHIW4Bx98kFdffZVNmza53Cwvt6699lq6d+/OE088QXJyMu3bt+fXX3/l2WefpVmzZtx99915fu9LadeuHWXLlmXYsGE8++yzeHt7M2vWrEzhsqA0atSIlStX8u233xIaGkpgYKDzxH+hAQMG8MEHHzBw4ED2799Po0aN+Omnn3jppZfo1asXXbt2zfX669Wrx1133cXbb7+Nt7c3Xbt2Zfv27bz++uuZhrqee+45li1bRrt27RgxYgR16tThzJkz7N+/n0WLFjFp0iTCwsIYOHAgb731FnfddRcvvPACtWrVYvHixSxduhTI2VDX7bffzqxZs+jVqxePPPIIrVq1wtvbm/j4eFasWMH111/PjTfeSPXq1XnuuecYO3Ysf/75Jz169KBs2bIcPnyY9evXExAQwPjx47Ndz7PPPsvhw4e5+uqrqVq1KsePH2fJkiVMnTqVW265xWWO580338zixYsZO3Ys5cuX55dffnH+LCgoiPr16+d290tuWDodXArdmTNnzLBhw0zjxo1NUFCQ8ff3N3Xq1DHPPvusy5U32V19EhERYXr37p1pOWAeeughl2Vr1qwxXbp0MQEBAcbf39+0adPGfPvtt5leu23bNtO3b18THBxsfHx8TJMmTbK8Smz27Nmmbt26xtvb2+WKpqyuNjMm51f7ZPf6pKQkM3jwYBMSEmICAgJM3759zf79+7O9Wu3IkSMur3dcRbRv3z7nsrS0NPPWW2+Zhg0bGh8fHxMcHGzatm3rsl/2799vunXrZgIDAw3gvOIouyvocrKfs7uiyXEl2IoVKzK1zeml/L179zZfffWVadCggfHx8THVq1c3b775Zqa2sbGxpn///qZ8+fLG29vb1KlTx7z22msmLS3Npd2F+/d8nTp1MuXKlXO5tNohN8fh9OnT5oknnjARERHG29vbhIaGmgceeMD8888/WW7fhbL6vDuOz/m3MMjqM7h27VrTtm1bU6pUKVOxYkUzePBgs3nz5kz7vCCuVtuyZYtp3769KVWqlAGyvCryfMeOHTPDhg0zoaGhxsvLy0RERJgxY8a43O7AmJxfrWaMMWfPnjX/+9//TKVKlYyfn59p06aNiY6ONhEREZmupDty5IgZMWKEqVGjhvH29jblypUzkZGRZuzYsebkyZPOdnFxceamm24ypUuXNoGBgaZfv35m0aJFBjDffPONyz7J6nfdGGNSUlLM66+/bpo0aWL8/PxM6dKlTd26dc3QoUPN7t27XdrOnz/fdO7c2QQFBRlfX18TERFhbr75ZvPDDz9cdNsXLFhgunbtakJCQoyXl5cpXbq0adWqlXn33Xedt6RwIONqtqy+LnXc5PLZjDGmUFKYiBQ71atXp2HDhs6bIhakxMREIiIiGD58OK+++mqBr0+KtpdeeomnnnqKuLi4Ar9LuRQ/GlYTEbcWHx/Pn3/+yWuvvYaHh0em54WJvP/++0D64zlSUlJYvnw57777LnfddZeCkeSJwpGIuLVp06bx3HPPUb16dWbNmuVylZMIpF+e/9Zbb7F//37Onj1LeHg4TzzxhJ4/JnmmYTURERGR81h+Kf/q1avp27cvVapUwWazZbpsNCurVq0iMjLS+ZDLSZMmFXyhIiIiUiJYHo5OnTpFkyZNnGPGl7Jv3z569epFhw4diImJ4cknn2TEiBHMnTu3gCsVERGRksCthtVsNhvz5s3jhhtuyLbNE088wYIFC1yeQTRs2DC2bt2a4+dwiYiIiGSnyE3Ijo6Oplu3bi7LunfvTlRUFCkpKVk+h+fs2bMuj4Gw2+38/ffflC9fPk83yRMREZHCZ4zhxIkTVKlSJcfPssuLIheOEhISMj1QMCQkhNTUVI4ePZrlM6smTJhw0buWioiISNFx4MCBAr1NQ5ELR5D5wYGOkcHseoHGjBnDqFGjnN8nJSURHh7OgQMHMt2yXkSKkL/+4vivv3LTiy+yads2bDYb119/PXXq1GHt2rWsWbMGgFt692bK/ffjUbs26FYAIkVWcnIy1apVcz4MuKAUuXBUuXLlTE9bTkxMxMvLy/nE5wv5+vpmetAjpD+fRuFIpIiKiiJ1yBBuNYZNQPnSpVmwdCnt2rVzNvnkk0+47957+XLhQqovXMirHh4wZQoMGmRd3SJy2Qp6SozlV6vlVtu2bVm2bJnLsu+//54WLVpkOd9IRIqh+Hi4/37eMIalQClg2b//0i483KXZ3Z0787HdDsBrwCK7HYYOTX+9iEg2LA9HJ0+eZMuWLWzZsgVIv1R/y5YtxMXFAelDYuc/GXzYsGHExsYyatQodu7cyfTp04mKiuKxxx6zonwRscLu3eyx2xmX8e37QDO7HfbsydTuDmMYkfHtA8C/aWmZ24mInMfycLRx40aaNWtGs2bNABg1ahTNmjXjmWeeAeDQoUPOoARQo0YNFi1axMqVK2natCnPP/887777Lv369bOkfhGxQO3aPAScAboC9wB4ekKtWpna4eHBBCAciANesdkytxMROY9b3eeosCQnJxMcHExSUpLmHIkUQatWraJTp054AzuBKzw9YfLkrOcSRUXB0KF8lZbGLYCvlxd79u3TA0lFiqDCOn9b3nMkIpIbxhhnz/KQAQO4YsUK2L8/+0nWgwbB/v30W76cq1q25GxqKm+++WbhFSwiRY56jtRzJFKkrFixgi5duuDr68uePXty1QO0dOlSevToQalSpYiNjaVChQoFWKmI5Df1HImIZOGdd94B4L777sv10Fi3bt1o3rw5//77L++9915BlCcixYDCkYgUGfv37+fbb78FYPjw4bl+vc1m44knngBgypQppKSk5Gt9IlI8KByJSJExceJE7HY7Xbt2pV69enl6jxtvvJGQkBASEhJYsGBBPlcoIsWBwpGIFAkpKSnMnDkTyFuvkYO3tzeDMiZvT5o0KT9KE5FiRuFIRIqExYsXc+TIEUJCQujVq9dlvdeQIUOw2Wz88MMP7Nu3L58qFJHiQuFIRIqEjz76CIA777wTL6/Leyxk9erV6dKlCwCfffbZZdcmIsWLwpGIuL2///7bORF74MCB+fKed955JwCzZs2iBN7RREQuQuFIRNze3LlzSUlJoXHjxjRu3Dhf3vOmm27C19eXnTt3snXr1nx5TxEpHhSORMTtff311wDcdttt+faewcHB9OnTB9DQmoi4UjgSEbd2/PhxfvzxRyC9tyc/3X777QDMmzdPQ2si4qRwJCJu7bvvviMlJYX69etTt27dfH3v7t27Ox9DsnPnznx9bxEpuhSORMStOYbU8rvXCCAwMJCuXbsCMH/+/Hx/fxEpmhSORMRtnTp1iiVLlgDQr1+/AlnHDTfcACgcich/FI5ExG19//33nD59mpo1a9KkSZMCWUffvn2x2Wxs2LCB+Pj4AlmHiBQtCkci4rYWL14MQJ8+fbDZbAWyjpCQENq2bQugZ62JCKBwJCJuyhjjDEc9e/Ys0HVdf/31ACxcuLBA1yMiRYPCkYi4pe3btxMfH4+fnx8dO3Ys0HX16NEDgJUrV3L27NkCXZeIuD+FIxFxS45eo86dO+Pv71+g62rUqBGhoaH8+++//PTTTwW6LhFxfwpHIuKWCmtIDcBms9GtWzcAli5dWuDrExH3pnAkIm4nOTnZ2YNTGOEI0m8ICThvHSAiJZfCkYi4nZVffUVqaiq1qlenVq1ahbLOa6+9FpvNxrZt2zj45Zegy/pFSiyFIxFxL1FRLB80CICu+/dDVFShrLZChQpERkQA8P2tt0JERKGtW0Tci8KRiLiP+Hi4/36WZ3zbBWDo0MLpxYmPp/v+/QAsA7DbC2/dIuJWFI5ExH3s3s0Ru51tGd92AkhLgz17CmXdXTL+dyVgCnPdIuJWFI5ExH3Urs3KjDthNwIqAnh6QmHMO6pdm7Y2Gz7AQWBPYa5bRNyKwpGIuI+wMJZffTWQMaTm6QmTJ0NYWKGs23/qVNpkfLvSZiu8dYuIW1E4EhG3siIhAYDOzz8P+/dDxuTsQjFoEJ1Gjkyv47rrCnfdIuI2FI5ExG389ddf7Nq1Cw8PDzo+/LAlvTadrrsOgJXr12OMKfT1i4j1FI5ExG2sWLECgObNm1OmTBlLamjbti2+vr4cOnSI3bt3W1KDiFhL4UhE3IYjHHXu3NmyGvz8/GjTpo1LPSJSsigciYjbWLVqFQCdOnWytA7H+leuXGlpHSJiDYUjEXELCQkJ7N27F5vNRvv27S2txdFztXLlSs07EimBFI5ExC38/PPPADRq1Ijg4GBLa2ndujW+vr4kJCRo3pFICaRwJCJu4aeffgLgqquusriS9HlHLVq0AGDt2rUWVyMihU3hSETcgqPnyOohNYd27doB/9UlIiWHwpGIWO7UqVNs3rwZcI+eI/gvpCkciZQ8CkciYrl169aRlpZGtWrVCA8Pt7oc4L+eo507d/L3339bXI2IFCaFIxGxnLsNqQFUrFiRK6+8EoDo6GiLqxGRwqRwJCKWc6fJ2OfT0JpIyaRwJCKWSktLc/bMuFPPESgciZRUCkciYqlt27Zx4sQJAgMDadSokdXluHCEo/Xr13Pu3DmLqxGRwqJwJCKWcgyptWvXDk9PT4urcVWnTh3KlSvHmTNn2LJli9XliEghUTgSEUs5wpG7DakB2Gw23e9IpARSOBIRS61btw7479J5d6N5RyIlj8KRiFjmyJEj7N+/H8D5uA53c3440kNoRUoGhSMRscyGDRsAqFu3ruUPm81OixYt8Pb2JiEhgdjYWKvLEZFCoHAkIpZZv349AC1btrS4kuz5+/vTpEkT4L8hQBEp3hSORMQyjp6jVq1aWVzJxbVu3RpQOBIpKRSORMQSxpgi0XMECkciJY3CkYhYIjY2lqNHj+Lt7e0ctnJXjnC0efNmUlJSLK5GRAqawpGIWMLRa9S4cWP8/PwsrubiateuTdmyZTlz5gy//vqr1eWISAFTOBIRSxSV+UaQfjNIR50aWhMp/hSORMQSRWW+kYPmHYmUHApHIlLo0tLS2LRpE1A0eo5A4UikJFE4EpFCt3PnTk6dOkVAQAB169a1upwccYS4Xbt28c8//1hcjYgUJIUjESl0jvlGLVq0wNPT0+JqcqZChQpcccUVwH/1i0jxpHAkIoWuqM03ctDQmkjJoHAkIoWuKF2pdj6FI5GSQeFIRArVmTNn2Lp1K1C0e46MMRZXIyIFReFIRArVli1bSE1NpWLFikRERFhdTq40adIEb29vjh49yr59+6wuR0QKiMKRiBSq84fUbDabxdXkjp+fH02bNgU0tCZSnLlFOJo4cSI1atTAz8+PyMhI1qxZc9H2s2bNokmTJpQqVYrQ0FDuvfdejh07VkjVisjlKKqTsR0cQ2uO7RCR4sfycDRnzhxGjhzJ2LFjiYmJoUOHDvTs2ZO4uLgs2//0008MGDCAQYMGsWPHDr788ks2bNjA4MGDC7lyEcmLojoZ28FRty7nFym+LA9Hb775JoMGDWLw4MHUq1ePt99+m2rVqvHhhx9m2f6XX36hevXqjBgxgho1anDVVVcxdOhQNm7cWMiVi0huHT9+nF27dgFFt+eoRYsWAGzevJnU1FSLqxGRgmBpODp37hybNm2iW7duLsu7devG2rVrs3xNu3btiI+PZ9GiRRhjOHz4MF999RW9e/fOdj1nz54lOTnZ5UtECt+mJUsAqBEeToUKFSyuJm/q1KlDYGAgp0+fZudHH0F8vNUliUg+szQcHT16lLS0NEJCQlyWh4SEkJCQkOVr2rVrx6xZs7jtttvw8fGhcuXKlClThvfeey/b9UyYMIHg4GDnV7Vq1fJ1O0QkB6KiWN+/PwAt4+IgKsrigvLGw8ODyCpVANgweDBERBTZbRGRrFk+rAZkumLFGJPtVSy//fYbI0aM4JlnnmHTpk0sWbKEffv2MWzYsGzff8yYMSQlJTm/Dhw4kK/1i8glxMfD/fezIePeQK0Ahg4tmr0u8fG0zBga3ABgtxfdbRGRLHlZufIKFSrg6emZqZcoMTExU2+Sw4QJE2jfvj3/93//B0Djxo0JCAigQ4cOvPDCC4SGhmZ6ja+vL76+vvm/ASKSM7t3g92O4/qulgBpabBnD4SFWVhYHuzeTYuM/3XOdCyq2yIiWbK058jHx4fIyEiWLVvmsnzZsmW0a9cuy9f8+++/eHi4lu14cKXuWCvipmrX5qDNxl+k/9FpDuDpCbVqWVtXXtSuTcuMnu2twFkoutsiIlmyfFht1KhRTJs2jenTp7Nz504effRR4uLinMNkY8aMYcCAAc72ffv25euvv+bDDz/kzz//5Oeff2bEiBG0atWKKhnzAETEzYSFseHBBwGoD5T29ITJk4tmT0tYGNWnTKE8kAL86uFRdLdFRLJk6bAawG233caxY8d47rnnOHToEA0bNmTRokXOxwocOnTI5Z5H99xzDydOnOD999/nf//7H2XKlKFLly688sorVm2CiOTAhjJlAGjVsydMmVKkw4Rt8GBafPopS1etYsNzz9Fy0CCrSxKRfGR5OAJ48MEHeTDjX5UXmjlzZqZlw4cPZ/jw4QVclYjkJ+edsa+7rkgHI4eWHTqwdNUqNu7da3UpIpLPLB9WE5HizxhT5O+MfSHHTSx1p2yR4kfhSEQK3J49ezh+/Di+vr40atTI6nLyheNO2b/99hunTp2yuBoRyU8KRyJS4BxDas2aNcPb29viavJHlSpVqFKlCna7nc2bN1tdjojkI4UjESlwxW1IzcExtKZnO4oULwpHIlLgnJOxi+jDZrOjeUcixZPCkYgUqJSUFGJiYoDi23OkcCRSvCgciUiB2r59O2fOnCE4OJhaxewu0pGRkUD6hPN//vnH4mpEJL8oHIlIgXL0qrRs2TLTo3+KuvLly1OzZk0ANm3aZHE1IpJfitdfKhFxO8V1vpGDhtZEih+FIxEpUMX1SjUHx/2OFI5Eig+FIxEpMKdOnWL79u1A8e850uX8IsWHwpGIFJiYmBjsdjtVqlShatWqVpdTIJo3b47NZuPAgQMcPnzY6nJEJB8oHIlIgSnu840AAgMDqVevHqChNZHiQuFIRApMcZ9v5KB5RyLFi8KRiBSYktBzBJp3JFLcKByJSIE4duwYf/75J/Bfz0pxdf7l/MYYi6sRkculcCQiBcIxxHTllVdStmxZi6spWE2aNMHLy4sjR44QFxdndTkicpkUjkSkQJSUITUAPz8/GjVqBGhoTaQ4UDgSkQJRUiZjO+hO2SLFh8KRiOQ7Y0yJ6jkChSOR4kThSETy3YEDB0hMTMTLy4umTZtaXU6hcEw637hxI3a73eJqRORyKByJSL5z9Bo1atQIf39/i6spHA0aNMDPz4/k5GT27NljdTkichkUjkQk35W0+UYA3t7eNGvWDNDQmkhRp3AkIvmupM03ctC8I5HiQeFIRPJVWloamzZtAkpWzxHoMSIixYXCkYjkq127dnHixAlKlSrlfCBrSeHoOYqJiSE1NdXiakQkrxSORCRfOXpNIiMj8fLysriawnXllVcSFBTE6dOn2bFjh9XliEgeKRyJSL4qqfONADw8PJzb7dgPIlL0KByJSL4qiVeqnc+x3QpHIkWXwpGI5JuzZ8+yZcsWQOFo3bp1FlciInmlcCQi+Wbr1q2kpKRQvnx5qlevbnU5lmjdujUAO3bs4OTJkxZXIyJ5oXAkIvnGMZTUqlUrbDabxdVYIzQ0lLCwMOx2O5s3b7a6HBHJA4UjEck3jnDk6D0pqTTvSKRoUzgSkXzjmGdTUucbOSgciRRtCkciki/++ecf/vjjD6BkXsZ/PoUjkaJN4UhE8sXGjRsBuOKKK6hQoYLF1VgrMjISm81GbGwshw8ftrocEcklhSMRyRcaUvtPUFCQ89Epes6aSNGjcCQi+UKTsV1paE2k6FI4EpHLZoxRz9EFFI5Eii6FIxG5bHFxcSQmJuLl5UXTpk2tLsctnB+OjDEWVyMiuaFwJCKXzdE70qRJE/z9/S2uxj00btwYX19f/vnnH/bs2WN1OSKSCwpHInLZ1v3wAwCt6te3uBL34e3tTfPmzQFYP3MmxMdbW5CI5JjCkYhcnqgo1k+ZAkCrTz+FqCiLC3IfrQICAFj/0ksQEaF9I1JEKByJSN7Fx5M6ZAibMr5tbQwMHapeEoD4eFr9+CMA6wHsdu0bkSJC4UhE8m73bnYYw79AIFAHIC0NNMcGdu+mVcZE7BjgHGjfiBQRCkcikne1a7PeZgOgJRl/UDw9oVYtK6tyD7Vrc4XNRlngLLANtG9EigiFIxHJu7Aw1l91FQCtIf3kP3kyhIVZWpZbCAvDNnUqjrs+rbfZtG9EigiFIxG5LOuOHweg1fPPw/79MGiQpfW4lUGDaPXIIwCsv/lm7RuRIkLhSETy7OTJk+zYsQOA1oMGqVckC626dgVgfcZ+EhH3p3AkInm2efNm7HY7YWFhhIaGWl2OW3LcKXvnzp0kJydbXI2I5ITCkYjkmZ6ndmmVKlWievXqGGPYuHGj1eWISA4oHIlInikc5Yxj/zj2l4i4N4UjEckTYwzR0dEAtG3b1uJq3FubNm0AnPtLRNybwpGI5ElcXBwHDx7Ey8uLFi1aWF2OW3OEx+joaEzGjSFFxH0pHIlInjh6QZo2bUqpUqUsrsa9NWvWDF9fX44ePcoe3SFbxO0pHIlInmhILed8fX2JjIwENLQmUhQoHIlInqxduxZQOMqp84fWRMS9KRyJSK6dPn2aLVu2ANCuXTtriykiHPvJESpFxH0pHIlIrm3cuJHU1FRCQ0MJDw+3upwiwdFztH37dk6cOGFxNSJyMQpHIpJr5883stlsFldTNISGhhIREYHdbmf9+vVWlyMiF6FwJCK5pvlGeePYXxpaE3FvCkcikivn3/xR841yx7G/NClbxL0pHIlIruzbt4/ExES8vb1p3ry51eUUKY6eo19++QW73W5xNSKSHbcIRxMnTqRGjRr4+fkRGRnJmjVrLtr+7NmzjB07loiICHx9fbniiiuYPn16IVUrUrI5hoSaN2+On5+fxdUULU2aNMHf359//vmHP/74w+pyRCQbloejOXPmMHLkSMaOHUtMTAwdOnSgZ8+exMXFZfuaW2+9lR9//JGoqCh27drF7NmzqVu3biFWLVJy6eaPeeft7e181IrmHYm4L8vD0ZtvvsmgQYMYPHgw9erV4+2336ZatWp8+OGHWbZfsmQJq1atYtGiRXTt2pXq1avTqlUrzX0QKSSab3R5NO9IxP1ZGo7OnTvHpk2b6Natm8vybt26ZfuvqgULFtCiRQteffVVqlatypVXXsljjz3G6dOns13P2bNnSU5OdvkSkdw7efIkv/76K6Ceo7zSnbJF3J+XlSs/evQoaWlphISEuCwPCQkhISEhy9f8+eef/PTTT/j5+TFv3jyOHj3Kgw8+yN9//53tvKMJEyYwfvz4fK9fpKTZsGEDaWlphIWFERYWZnU5RZIjHO3YsYPjx49TpkwZawsSkUwsH1YDMt1EzhiT7Y3l7HY7NpuNWbNm0apVK3r16sWbb77JzJkzs+09GjNmDElJSc6vAwcO5Ps2iJQEmm90+SpVqkTNmjUBWLduncXViEhWLA1HFSpUwNPTM1MvUWJiYqbeJIfQ0FCqVq1KcHCwc1m9evUwxhAfH5/la3x9fQkKCnL5EpHc+/nnnwHNN7pcjv3n2J8i4l4sDUc+Pj5ERkaybNkyl+XLli3L9o9v+/btOXjwICdPnnQu++OPP/Dw8FA3v0gBSktLc57MO3ToYHE1RZtj/13qtiUiYg3Lh9VGjRrFtGnTmD59Ojt37uTRRx8lLi6OYcOGAelDYgMGDHC279+/P+XLl+fee+/lt99+Y/Xq1fzf//0f9913H/7+/lZthkixt337dpKSkihdujRNmjSxupwizRGOfvnlF86dO2dxNSJyIUsnZAPcdtttHDt2jOeee45Dhw7RsGFDFi1aREREBACHDh1yuedR6dKlWbZsGcOHD6dFixaUL1+eW2+9lRdeeMGqTRApERy9HG3btsXLy/I/HUVa3bp1KV++PMeOHWPTpk2awyXiZtziL9yDDz7Igw8+mOXPZs6cmWlZ3bp1Mw3FiUjBcoQjDaldPpvNxlVXXcU333zDmjVrFI5E3Izlw2oi4v6MMfz000+AwlF+cexHx34VEfehcCQil7Rv3z4OHjyIt7c3rVu3trqcYuH8cKSH0Iq4F4UjEbkkx5BaixYtdOFDPmnWrBmlSpXin3/+4bfffrO6HBE5j8KRiFyS5hvlP29vb+dcI13SL+JeFI5E5JIUjgqG7nck4p4UjkTkog4fPswff/wB6M7Y+e2qq64C0sORMcbiakTEQeFIRC7KcTVVw4YNKVeunMXVFC9t2rTBy8uL+Ph4YmNjrS5HRDIoHInIRekS/oITEBBA8+bNAV3SL+JOFI5E5KI036hgad6RiPtROBKRbJ04cYKYmBhA4aigOPbr6tWrLa5ERBwUjkQkW2vWrMFut1OjRg3CwsKsLqdY6tChAzabjd9//52EhASryxERFI5E5CJWfvstAJ1btbK4kuKrXLlyNG7cGICVH3wA8fEWVyQiCkcikrWoKFZMmgRA5y++gKgoiwsqvjpXrAjAyhdegIgI7WsRi9lMCby5RnJyMsHBwSQlJREUFGR1OSLuJz6epPBwyhmDHYgHqnp6wv79oOG1/BUfz4LwcK43hiuBXQDa1yJZKqzzt3qORCSz3btZnRGMagNVAdLSYM8ea+sqjnbv5mpj8AD+AA6C9rWIxRSORCSz2rVZmfG/nRzLPD2hVi1LyinWatemjIcHzTK+XQHa1yIWUzgSkczCwlgRHg5AZ0g/WU+erGGeghAWBlOm0NlmA2CFzaZ9LWIxhSMRyeTvv/9my4EDAHT66qv0+S+DBllbVHE2aBCdZswAYEW1atrXIhZTOBKRTFavXo0xhrp16xLar596MQpBhxtvxNPTkz/j4oiLi7O6HJESTeFIRDJZuXIlAJ06dbK0jpIkKCiIyMhI4L/9LyLWUDgSkUxWrFgBQOfOnS2upGRx7G/H/hcRaygciYiLo0eP8uuvvwLqOSpsCkci7kHhSERcrFq1CoAGDRpQqVIli6spWdq3b4+XlxexsbHs27fP6nJESiyFIxFxsXz5ckC9RlYoXbo0rTKeY+c4DiJS+BSORMTFsmXLALj22mstrqRk6tq1K/DfcRCRwqdwJCJO+/fvZ/fu3Xh6eqrnyCKOUPrDDz9gt9strkakZLqscJSYmEhCQkJ+1SIiFnP0VrRu3Zrg4GCLqymZWrduTWBgIMeOHSMmJsbqckRKpDyFo19//ZUGDRoQGhpK1apVqVq1Kk899RSnTp3K7/pEpBA5wlG3bt0srqTk8vb2dl61pqE1EWvkKRwNGjSIkJAQfvrpJ2JiYnjhhRdYvHgxLVq04J9//snvGkWkEKSlpfHDDz8Amm9kNcf+VzgSsYbNGGNy+6KAgAA2bdpE3bp1ncuMMdxyyy34+fnx6aef5muR+S05OZng4GCSkpIICgqyuhwRt7BhwwZatWpFUFAQx44dw8vLy+qSSqw//viDOnXq4OPjwz///EOpUqWsLknELRTW+TtPPUdZ9RDZbDZeeuklvvnmm3wpTEQKl6OXokuXLgpGFqtduzbh4eGcO3eO1atXW12OSImT43DUu3dvnnzySb744guGDRvGo48+yuHDh13aJCUlUbZs2XwvUkQK3vfffw9oSM0d2Gw2Da2JWCjH/zxs1KgRmzdvZsaMGc5QVLNmTW699VaaNm1KWloaM2bM4K233iqwYkWkYJw8eZK1a9cCmoztLrp160ZUVJTCkYgF8jTn6PDhw8TExLBlyxbn1549e/D09KROnTrO5zK5K805EnG1cOFC+vTpQ/Xq1fnzzz+x2WxWl1TiHTt2jIoVK2KM4eDBg4SGhlpdkojlCuv8naeJBSEhIfTo0YMePXo4l50+fZqtW7eydevWfCtORArH+XfFVjByD+XLl6d58+Zs2rSJH374gbvvvtvqkkRKjHy7Q7a/vz9t2rRh6NCh+fWWIlJIdH8j9+Q4HhpaEylcenyISAkXFxfHb7/9hoeHB126dLG6HDmPIxwtXbpUjxIRKUQKRyIl3OLFiwFo06YN5cqVs7gaOV+7du0IDAwkMTGRzZs3W12OSImhcCRSwi1atAiAXr16WVyJXMjHx8d5Sb/jOIlIwVM4EinBzpw543xkSO/evS2uRrLiOC4LFy60uBKRkkPhSKQEW716Nf/++y+hoaE0adLE6nIkC46rgjds2EBiYqLF1YiUDApHIiWYozeiV69euoTfTVWpUoVmzZphjGHJkiVWlyNSIigciZRgjnksGlJzb47jo3lHIoVD4UikhNq9ezd79uzB29ubrl27Wl2OXIRjsvzSpUtJTU21uBqR4k/hSKSEcgypXX311QQGBlpcjVxMq1atKF++PMePHyc6OtrqckSKPYUjkRJKl/AXHZ6ens6J2RpaEyl4CkciJdDJkydZtWoVoHBUVDiOk8KRSMFTOBIpgX788UfOnTtHzZo1qVOnjtXlSA50794dDw8Pfv31Vw4cOGB1OSLFmsKRSAn07eefA9Dr6qt1CX8RUb58edq0aQPAt2+8AfHxFlckUnwpHImUMGlTp7IgIxxd/9FHEBVlcUWSU9eHhgLwzTvvQESEjp1IAbEZY4zVRRS25ORkgoODSUpKIigoyOpyRApPfDw/h4dzlTEEA0cAb09P2L8fwsIsLk4uKj6eP8LDqWMM3qQfu2AdOylhCuv8rZ4jkZJk927mZ/x7qA/gDZCWBnv2WFmV5MTu3VxpDPWAFGAx6NiJFBCFI5ESxNSqxbyM/7/BsdDTE2rVsqYgybnatcHDw3nc5oOOnUgBUTgSKUF+S05mL+ALdIf0k+vkyRqWKQrCwmDKFG7wSP+zvQg4+/77OnYiBUDhSKQEmT9/PgBdr7mGwBUr0uerDBpkaU2SC4MG0WLfPqpUqMAJYEX16lZXJFIsKRyJlCCOcHTD7bdDp07qdSiCPMLDuf6WW4D/jqeI5C+FI5ES4sCBA2zcuBGbzUbfvn2tLkcuww033ADAN998g91ut7YYkWJI4UikhFiwYAEA7dq1IyQkxOJq5HJ06tSJoKAgEhISWL9+vdXliBQ7CkciJYRzSC2j10GKLh8fH+ez1jS0JpL/FI5ESoBjx46xcuVKAK6//npri5F84Qi5c+fOpQTey1ekQCkciZQA8+fPJzU1laZNm1K7dm2ry5F80Lt3b/z8/NizZw9bt261uhyRYkXhSKQE+OKLLwC4JeMqJyn6SpcuTe/evYH/jq+I5A+FI5Fi7ujRo/z444+AwlFxc+uttwLp4UhDayL5xy3C0cSJE6lRowZ+fn5ERkayZs2aHL3u559/xsvLi6ZNmxZsgSJF2Lx580hLS6NZs2YaUitmevfujb+/P3v37iUmJsbqckSKDcvD0Zw5cxg5ciRjx44lJiaGDh060LNnT+Li4i76uqSkJAYMGMA111xTSJWKFE2OIRdHL4MUHwEBAfTp0wfQ0JpIfrIZi/tiW7duTfPmzfnwww+dy+rVq8cNN9zAhAkTsn3d7bffTu3atfH09GT+/Pls2bIlx+tMTk4mODiYpKQkgoKCLqd8Ebd25MgRKleujN1uZ8+ePVxxxRVWlyT57KuvvuKWW26hRo0a7N27F5vNZnVJIgWmsM7flvYcnTt3jk2bNtGtWzeX5d26dWPt2rXZvm7GjBns3buXZ599NkfrOXv2LMnJyS5fIiXB119/jd1uJzIyUsGomOrVqxelSpVi3759bNq0yepyRIoFS8PR0aNHSUtLy3S33pCQEBISErJ8ze7duxk9ejSzZs3Cy8srR+uZMGECwcHBzq9q1apddu0iRYGG1Iq/UqVKOR8Ho6E1kfxh+ZwjIFM3sDEmy67htLQ0+vfvz/jx47nyyitz/P5jxowhKSnJ+XXgwIHLrlnE3R0+fNh540ddpVa86ao1kfyVs66XAlKhQgU8PT0z9RIlJiZm+eynEydOsHHjRmJiYnj44YcBsNvtGGPw8vLi+++/p0uXLple5+vri6+vb8FshIibmjt3Lna7nZYtW1KjRg2ry5EC1LNnTwICAoiNjWXdunW0adPG6pJEijRLe458fHyIjIxk2bJlLsuXLVtGu3btMrUPCgpi27ZtbNmyxfk1bNgw6tSpw5YtW2jdunVhlS7i9j799FMg/eIFKd78/f2djxOZNWuWtcWIFAOWD6uNGjWKadOmMX36dHbu3Mmjjz5KXFwcw4YNA9KHxAYMGACAh4cHDRs2dPmqVKkSfn5+NGzYkICAACs3RcRt7Nmzh+joaDw8PLjjjjusLkcKwV133QXA559/TkpKisXViBRtlg6rAdx2220cO3aM5557jkOHDtGwYUMWLVpEREQEAIcOHbrkPY9ExJWj16hr166EhoZaXI0Uhq5duxISEsLhw4dZsmSJc5K2iOSe5fc5soLucyTFmTGG2rVrs3fvXj755BNnj4IUf6NGjeKtt97illtu0ZVrUiyViPsciUj+++WXX9i7dy8BAQHceOONVpcjhejuu+8GYMGCBRw/ftzaYkSKMIUjkWLmk08+AeCmm27SPLwSpmnTptSvX5+zZ88yd+5cq8sRKbIUjkSKkXPnzjFnzhwADaeVQDabzdl75AjJIpJ7CkcixciiRYv4+++/CQ0N1UOZS6g777wTm83GqlWriI2NtbockSJJ4UikGPlkyhQA+vfti6enp8XViBWqVatGp06dAJj1/PMQH29tQSJFkMKRSDFx9O23+W7xYgDunjoVoqIsrkiscnfGrVBmRkVhwsP1WRDJJV3Kr0v5pTiIj+ft8HAeNYbmwCYAT0/Yvx/CwqytTQpXfDwnw8MJNYaTwCrgan0WpJjQpfwikmPmjz+YlvHvnMGOhWlpsGePZTWJRXbvprQxOB4aMxX0WRDJJYUjkWJg3cmT7AD8AefDQjw9oVYt64oSa9SuDR4eDMn49ivgHw8PfRZEckHhSKQYiPr2WwBusdkoA+nBaPJkDaOURGFhMGUKLT08aAScAT67/XZ9FkRyQeFIpIg7ceIEs2fPBmDQF1/AihXp80sGDbK2MLHOoEHYYmMZMnw4AFN37KAETi8VyTOFI5Ei7osvvuDUqVPUrl2bDv36QadO6iUQCAvjznHj8PX1ZevWrWzatMnqikSKDIUjkSJu2rRpAAwePBibzWZxNeJOypUrR79+/YD/PicicmkKRyJFWExMDL/88gve3t4MGDDA6nLEDQ0Zkj41+7PPPuPkyZMWVyNSNCgciRRhH3zwAQD9+vWjcuXKFlcj7qhjx47UqlWLEydO8Nlnn1ldjkiRoHAkUkT9/fffzpPdQw89ZHE14q5sNhsPPvggAO+9954mZovkgMKRSBE1Y8YMTp8+TZMmTWjfvr3V5Ygbu/feeylVqhTbt29n9erVVpcj4vYUjkSKILvdzocffgik9xppIrZcTJkyZbj77ruB9N4jEbk4hSORImjp0qXs3buX4OBg+vfvb3U5UgQ4hl7nz5/PgQMHLK5GxL0pHIkUQY6J2Pfeey8BAQEWVyNFQaNGjejUqRNpaWlMmjTJ6nJE3JrCkUgRs2vXLhYuXOgy0VYkJx5++GEApkyZwpkzZyyuRsR9KRyJFDFvvfUWAH379qV27doWVyNFyfXXX09YWBhHjx5l1qxZVpcj4rYUjkSKkCNHjvDRRx8B8L///c/iaqSo8fLy4pFHHgHgjTfewG63W1yRiHtSOBIpQiZOnMiZM2do0aIFHTp0sLocKYLuv/9+goKC2LlzJ4sWLbK6HBG3pHAkUkScPn3aORH7f//7ny7flzwJCgpi6NChALz22msWVyPinhSORIqITz/9lCNHjhAeHs7NN99sdTlShI0YMQIvLy9Wr17N+vXrrS5HxO0oHIkUAWlpabzxxhsAjBw5Ei8vL4srkqIsLCzMeX+s119/3eJqRNyPwpGIu4uPZ+5zz7Fr1y7Kli3LoEGDrK5IioHHHnsMgLlz57L7k08gPt7iikTch8KRiDuLisIeHs4Lzz0HwCMdOhAUFGRxUVIcNGrUiF6NGmG325kwYABEREBUlNVlibgFmymBj2hOTk4mODiYpKQknWjEfcXHQ0QEC+x2rgcCgVgPD8rGxkJYmNXVSVEXH88v4eG0NQZPYDdQw9MT9u/X50vcVmGdv9VzJOKudu/G2O08n/Htw0BZux327LGyKikudu+mjTF0A9KAlwHS0vT5EkHhSMR91a7N9zYbG4FSwKMAnp5Qq5a1dUnxULs2eHjwTMa3M4A4Dw99vkRQOBJxW6ZqVZ6rWROAYUBFT0+YPFlDHpI/wsJgyhTae3rSBUgBXunYUZ8vERSORNzW4sWLWbt3L36+vjz21Vfpc0F0pZrkp0GDYP9+nsl4Xt+0n3/mwIEDFhclYj2FIxE3ZLfbefLJJwEYPmIEof366V/0UjDCwug4ciSdOnXi3LlzjB8/3uqKRCyncCTihr788ku2bt1KUFAQTzzxhNXlSAnw0ksvATBjxgx+//13i6sRsZbCkYibSUlJ4emnnwbSb9RXvnx5iyuSkqBt27Zcf/312O12nnrqKavLEbGUwpGIm/noo4/YvXs3FStWZOTIkVaXIyXIiy++iM1mY+7cuWzYsMHqckQso3Ak4kZOnTrFuHHjAHjyyScJDAy0tiApURo0aMCAAQMAGD16tMXViFhH4UjEjbz22mv89ddf1KhRg2HDhlldjpRA48ePx8fHh+XLl7No0SKryxGxhMKRiJuIj4/n1VdfBeDVV1/Fz8/P4oqkJIqIiOCRRx4BYNSoUaSkpFhckUjhUzgScRNPPvkkp0+f5qqrrqJfv35WlyMl2NixY6lYsSK7du3igw8+sLockUKncCTiBjZs2MAnn3wCwJtvvonNZrO4IinJgoODefHFF4H0YbajR49aXJFI4VI4ErGY3W53XpV2991307JlS2sLEgHuu+8+mjRpwvHjx3n22WetLkekUCkciVhsxowZrF27ltKlSztvxCdiNU9PT95++20AJk2aRExMjLUFiRQihSMRCx09epTHH38cSB++CNMjQsSNdOrUiVtvvRW73c6wYcNIS0uzuiSRQqFwJGKV+HieGDCAv//+m8aNGzNixAirKxLJ5O233yYoKIj169cz+X//g/h4q0sSKXAKRyJWiIrip/Bwpi9eDMCHvXrh5eVlcVEimYWGhvJSnz4AjHnnHQ6Gh0NUlMVViRQsmzHGWF1EYUtOTiY4OJikpCSCgoKsLkdKmvh4UsLDaW4M24HBwFRPT9i/HzSsJu4mPp608HDaGsMG4FZgjj6vYpHCOn+r50iksO3ezSsZwagC8DJAWhrs2WNtXSJZ2b0bT2OYTPoJ4wtgsT6vUswpHIkUsl9TU3ku4//fBsoDeHpCrVqW1SSSrdq1wcODZsDIjEX3A0mVKllXk0gBUzgSKUQpKSncO3o0KcD1QH9ID0aTJ2uIQtxTWBhMmQKenjwH1ALigUdff93iwkQKjsKRSCF65ZVX2Lx5M2XLlmXSpk3YVqxIn7sxaJDVpYlkb9Ag2L+fgBUrmPn119hsNmbMmMF3331ndWUiBUITsjUhWwrJr7/+SosWLUhJSeHTTz/lzjvvtLokkTx57LHHeOONNwgNDWX79u2UK1fO6pKkhNCEbJFi5OzZswwYMICUlBSuv/56+vfvb3VJInn2/PPPU7duXQ4dOqT7c0mxpHAkUgjGjBnD1q1bqVChApMmTdKDZaVI8/f3Z+bMmXh4eDBr1iw+++wzq0sSyVcKRyIFbMmSJbz11ltA+nPUKleubHFFIpevdevWPP300wAMGzaMP//80+KKRPKPwpFIATp8+DADBw4EYPjw4fTJuNOwSHHw1FNPcdVVV3HixAnuuOMOUlJSrC5JJF8oHIkUEGMM9957L4mJiTRs2JBXX33V6pJE8pWXlxezZs2iTJkyrF+/nmeeecbqkkTyhcKRSAF59dVXWbx4MX5+fsyePRs/Pz+rSxLJd+Hh4UybNg1Iv1XF999/b3FFIpdP4Ugkv8XHs/yNN3jyyScBeOedd2jYsKHFRYkUnH79+jF06FCMMfTv35+4detgxQqIj7e6NJE80X2OdJ8jyU9RUfw1ZAjNjOEIcE+7dkz/6SddnSbF3unTp7nqqqvYvHkzLYA1gJ+HR/rdtXWTU8knus+RSFETH8+5IUO4JSMYNQUm/vILtr/+srgwkYLn7+/P3PffpxywERgBYLfD0KHqQZIixy3C0cSJE6lRowZ+fn5ERkayZs2abNt+/fXXXHvttVSsWJGgoCDatm3L0qVLC7FakWzs3s1jxhANlAHmAv52u55eLiVG9TNnmA3YgKlAFEBamn4HpMixPBzNmTOHkSNHMnbsWGJiYujQoQM9e/YkLi4uy/arV6/m2muvZdGiRWzatInOnTvTt29fYmJiCrlyEVczY2J4L+P/PwFqQvpDZWvVsq4okcJUuzbdPDx4PuPbh4ANHh76HZAix/I5R61bt6Z58+Z8+OGHzmX16tXjhhtuYMKECTl6jwYNGnDbbbfl+DJSzTmS/LZ69Wq6du1KSkoKz9hsjDcmPRhNnqz5FlKyREVhv/9+brTbWQBUDg5m/bZtVKtWzerKpBgoEXOOzp07x6ZNm+jWrZvL8m7durF27docvYfdbufEiRMXffDh2bNnSU5OdvkSyS979+7lpptuIiUlhVtuuYVn9+9Pv1Jn/34FIyl5Bg3CIzaWT777joZ16pCQlMR1113HyZMnra5MJMcsDUdHjx4lLS2NkJAQl+UhISEkJCTk6D3eeOMNTp06xa233pptmwkTJhAcHOz80r9gJL8kJSXRt29fjh07RosWLdKfNxUeDp06QViY1eWJWCMsjKDevfl2yRIqVarEli1buPPOO0lLS7O6MpEcsXzOEZDpMmdjTI4ufZ49ezbjxo1jzpw5VKpUKdt2Y8aMISkpyfl14MCBy65ZJCUlhdtuu42dO3dSpUoVvvnmG0qVKmV1WSJuo3r16syfPx9fX18WLFjA6NGjrS5JJEcsDUcVKlTA09MzUy9RYmJipt6kC82ZM4dBgwbxxRdf0LVr14u29fX1JSgoyOVL5HIYYxg6dChLly7F39+fBQsWUKVKFavLEnE7bdu2ZebMmQC8/vrrLvNLRdyVpeHIx8eHyMhIli1b5rJ82bJltGvXLtvXzZ49m3vuuYfPPvuM3r17F3SZIpmMHTuWGTNm4OHhweeff05kZKTVJYm4rdtvv53nnnsOgIceeoivvvrK4opELs7yYbVRo0Yxbdo0pk+fzs6dO3n00UeJi4tj2LBhQPqQ2IABA5ztZ8+ezYABA3jjjTdo06YNCQkJJCQkkJSUZNUmSAnz7rvvOq+knDx5Mtddd53FFYm4v6eeeophw4ZhjOHOO+/kxx9/tLokkewZN/DBBx+YiIgI4+PjY5o3b25WrVrl/NnAgQNNx44dnd937NjRAJm+Bg4cmOP1JSUlGcAkJSXl41ZIsXfggJn91FPGZrMZwLzwwgtWVyRSpKSmppqbb77ZAKZ06dJmw3ffGbN8uTEHDlhdmhQRhXX+tvw+R1bQfY4k16Ki+G7IEG4yhhTg4S5dePeHH/TMNJFcOnv2LL169WL58uVUIP0ZbHX1DDbJocI6fyscKRzJpcTHsyQ8nOuN4RxwO/CphweesbG6XF8kD078/jud69VjE1AZWAnU8fRMvzeYfqfkIkrETSBFioJls2dzQ0Yw6gd8DHjqmWkieRZ46BBLgEZAAtAZ+EPPYBM3onAkchHLly/nuqef5ixwAzAb8AY9M03kctSuTQUPD34EGgKHSA9Iuz09ra1LJIPCkUg2li5dSp8+fThz9ix9mzRhjofHf8Fo8mR1/4vkVVgYTJlCRU9PfgQaAAeBznfcwR9//GFxcSIKRyJZ+vLLL+nbty+nT5+md+/efLluHT6xsXpmmkh+GTQI9u+n0ooVLI+JoX79+vz1119cddVVbNq0yerqpITThGxNyJYLTJs2jaFDh2K327ntttv4+OOP8fHxsboskWLtyJEj9OzZk02bNhEYGMg333xD586drS5L3IwmZIsUMmMML730EkOGDMFut3P//fcza9YsBSORQlCxYkWWL19O586dOXHiBD169ODrr7+2uiwpoRSOROLjSVm2jMF33MHYsWMBePzxx5k0aRKemiAqUmiCgoJYtGgRN910E+fOneOWW27h3XffxRw4kD6kHR9vdYlSQmhYTcNqJVtUFMeHDOFmY/gR8LDZeOfdd3n44YetrkykxEpLS+OBBx5g6tSpANwPvA9462aRJZ6G1UQKWnw8u4YMoV1GMAoAFthsPHzDDRYXJlKyeXp6MnnyZF4bOxYbMAXoBhyz22HoUPUgSYFTOJIS6+uoKFoaw06gKvAT0Fs3dxRxCzabjceuuYYFQGnS76LdGtimm0VKIVA4khInNTWVJ554gn7jxnECuBrYCDQF3dxRxJ3Urk0fDw+igerAXqAVELVxIyVwRogUIoUjKVH++usvunXrxquvvgrAqGuv5QcPDyqDbu4o4m4ybhbZ0NOTDUAP4Aww+P/+j4EDB3Lq1CmLC5TiSuFISoyvvvqKRo0asWLFCgICApgzZw5vfP893rq5o4j7yrhZZIUVK1gYG8tLL72Eh4cHn3zyCS1btmTLli1WVyjFkK5W09VqxVd8POzezYnQUB559VVmzJgBQGRkJLNmzaJOnToWFygiebFq1SruuOMODh06hLe3N+PHj+f//u//8EpIgN27oXZt9QAXU4V1/lY4UjgqnqKi4P77+clu5x7S5yrYbDZGjx7NuHHjdGNHkSIuMTGRoUOHMn/+fADa1KzJx/v2UdsY0CX/xZbCUQFSOCrm4uNJDg9njDFMzFgUDnzy5ZdcffPNVlYmIvnIGMMnn3zC8IcfJvnECfyBl4GHSL8dAPv3qwepmNF9jkTyaOEnn9DgvGA0GNgKXF2hgoVViUh+s9lsDBgwgG1TpnANcBp4BGgHbNUl/3IZFI6k2Dh8+DB33nknfZ58knigJvAjMBUoo0v0RYqt8Kuu4nubjYlAELAeiASe+OIL/v33X2uLkyJJ4UiKvNTUVN59913q1KnDZ599hoeHB4917842Dw+6gC7RFynuwsLwmDqVBzw92QncDKQBr374IQ0bNmTRokUWFyhFjcKRFGmrV6+mefPmPPLIIyQlJREZGcm6det4bckSSukSfZGSI+OS/yorVvDlgQMsWLCAatWqsW/fPnr37k3fvn3Zo2E2ySFNyNaE7KInPp6D0dE8Pns2s+bNA6BcuXK89NJLDB48OH0ipoiUeCdPnmTcuHG88847pKam4uPjw6hRoxh7zz2UPnhQl/wXQbparQDldecaY7DZbAVYmVzK6Q8/5O2HHmKCMZwgfULm/fffz4svvkj58uWtLk9E3NDvv//OyJEjWbp0KQBVgFeB/jYbtqlT1bNsodyeV3W1mpt5/fXX8fPz47bbbtMzfSxgt9v55J13qPPggzyZEYxaAettNiY99ZSCkYhkq27duixevJgF06dzBXAQuAtoYwyr7r8//YaxUqhOnjxJs2bNKFOmDAsXLrS6nEwUjnIgKSmJcePGce7cOb744gu+++47q0sqUVasWEHLli0ZMHIkB4BqwCdANNDCbtfluiJySTabjb7Vq7MDmAAEkH5VWye7nb633sqOHTusLbCEef3119myZQvJyck89dRTbtfpoHCUAytXrnR5wOFHH31kYTUlx+bNm+nTpw9dunRh8+bNBJYuzQSbjV2k/6vPA9KvRNMl+iKSE7Vr4+vhwWhgD/AA4Al8Fx1N48aNGTRoEPHqRSpwxhg+/vhj5/dbtmzhr7/+srCizBSOcmDjxo0ANGrUCIClS5eSmppqZUnFU3w8rFjBr8uWceONNxIZGcnChQvx9PTkoYceYs/evYyeOhV/x4RrXaIvIrkRFpb+WBFPTyoDEz09+e2FF+jXrx92u53p06dTq1YtRowYkX6yzvibpGG3/PXbb7+xb98+/Pz8qJXxj1vHedZdKBzlwObNmwEYMmQIwcHBnDx5kpiYGIurKmaiotgeHs6tXbrQpFs35s+fj81m46677mLnzp28//77VKpUyXm5ri7RF5E8ueBvyJVjx/LVV18RHR3N1VdfzdmzZ3nvvfeoWb06D1WrRlyXLhARkf68RskXP/zwAwBXX301V199NfDfedZdKBzlwJ9//glA/fr16dChA5D+VGi5fMYYls+ZQ8/Bg2lkDF8CNuA2m40dP/7IJ598Qu3atV1fFBYGnTqpx0hE8iaLvyFt2rRh5cqV/Pjjj1zdujXnUlOZCNQChtjt7NTE7Xzz888/A9C5c2fq1KkD/HeedRcKR5dgjGH//v0AVK9enY4dOwIKR5fr3LlzfP7557Ro0YJrbr+dJaR/GG8h/TlonxtDPd02QUQKkc1mo0uXLqyaMIGVQGcgBZgG1Lfb6dmvH0uXLnW7ycNFzbp16wBo3bo11atXB3CeZ92FwtElJCYmcubMGWw2G9WqVXN2AUZHR+sXJKfOG7f/888/GT16NNWqVeOOO+5g8+bN+Pv58RDwB/AF0Ag00VpErFO7Nh09PFgOrAFuIL1He8n69fTo0YMGDRrw7rvvcuzYsfT2mpuUYwkJCcTFxWGz2WjRooXCUVEVGxsLQJUqVfDx8aFJkyb4+Phw7Ngx9u7da3F1RUBUFGfCw/mqSxe6VavGFVdcwSuvvEJiYiKhoaGMHz+euAMHeH/aNK7QRGsRcQfnTdy+Cpjn6cmeCRMYOXIkgYGB7Ny5k0ceeYQqVapwe6tWLAsPx665STmyfv16IH2aSmBgIBEREQAcPHiQc+fOWVmaC4WjSzh8+DAAoaGhAPj6+tKsWTPgv65BySw1NZWln37KvYMHE2IMtwDLSP/XV/eOHfn666+JjY3lmWeeoUKFCppoLSLu5YK/STVHj+att94iPj6e999/n2bNmnHu3DnmbNhAN2OoCTxpt7NNc5MuyhGOWrduDUDFihXx8PDAGMPRo0etLM2FwtElJCYmAqRfKZXBcVAVjlzZ7XbWrFnDQw89RJUqVehx993MBJKBMGAMsBdYMm4cN954I97e3q5voInWIuJOsvibFBQUxEMPPcTmzZvZPHkyDwFlgFjSby7Z2G6nYYcOvPjiixpdyILjvNmqVSsAPDw8qFixIvDf+dYdKBxdwsXCkSMBl0gZY+zmwAE2b97M//3f/1G9enWuvvpqJk6cyJEjR6hYvjwPkj5mHwu8BNTQXCIRKSaa9erF+x4eHAQ+J31ukg+wY/9+nnrqKWrVqkWrVq146623dN8k0v8BvWHDBuC/8yj8d351p3DkZXUB7u5i4SgmJoazZ8/i6+trSW2WiYri9yFDmG0Mn5M+kdohKCiIm266idtvv51rrrkGr48+gqFDIS1Nc4lEpHjJmJvkP3Qot6WlcZunJ8ffeot5pUsze/ZsfvzxRzZs2MCGDRsYNWoU7YGbgX42G9VK4ANv//jjD5KSkvD396dBgwbO5QpHRVBW4ahmzZpUqFCBo0ePsnXrVmf3YHH3xx9/8OW0aXz52mtsPW+5H9C3Tx/uuO8+evbsiZ+f338/HDQIundPf/5ZrVoKRiJSvFzwN65MWBj3Avfeey+HDx/mq6++YvZHH/Hzhg38DPwMPGoMbQYP5ub9+7l58GDnpOTizjHaEhkZ6TKtwh3DkYbVLuHIkSMAzjFRSL8XhiMQFbt5Rxd0++7cuZPnn3+exo0bU6dOHZ7KCEZeQG/gUyAR+OJ//+PGG290DUYOmkskIsVZNn/jQkJCeOihh/jplVeIB94BOpB+YcovwGMvvED16tVp1aoVr732muuNEIvhEJwjHF3YoeA4vzrOt+5A4egSjh8/DkDZsmVdlhfLcBQVhT08nPVduvBMtWo0qFqV+vXr88wzz7Bt2za8vLzo0akT02w2EoDvgDuBQM0jEhHJXu3aVPXwYASwGvgLeN9mo1Pbtnh4eLBhwwYef/xxrrjiCiIjI3m5Xz92h4dDMbs9QHbhyHF+dZxv3YHC0SU4DlaZMmVclhe5K9Yu8q+Qw4cP8/kHHzBg8GAqG0Nr4Hngt4MH8fb2plevXkyfPp3Dhw+zeMUKBk2dSnndk0hEJGfOu28SQKinJw9NncqKtWs5ePAgH374IV26dMHDw4PNmzcz5uuvudIYagMP2e3Mv/9+kn77Lev3LiI9TGfPnmXLli1A0QhHmnN0CdmFI8fB3bNnD8eOHaN8+fKFXFkuREXB/feD3Y6x2dj7wgv8XLUqa9asYfXq1ezevduleRDQDegDXDd3LmX79nV9P80jEhHJnWz+boaEhDBs2DCGDRvGkSNHmPfyy3z15pssB/ZkfE202/Fs1IjIFi1o27Ytbdq0oW3btoQvW4Zt6FCw28HDIz2Auekk761bt5KSkkLFihWdd8V2cJxf3Skc2UwJfAZGcnIywcHBJCUlERQUlG07Ywy+vr6kpKQQFxdHtWrVXH5+5ZVXsnv3bhYvXkyPHj0Kuuw8SdyyhfXNm7PeGNYDG4C/L2hjs9loVLcuPXbupBfQDvCG9H/l7N+v8CMiUlji4yEigmS7nZXA9xlfu7NoGgq0BdpkfEV6eFAqNtYt/2a/9957jBgxgt69e/Pdd9+5/Oybb77hhhtuoE2bNkRHR1/0fXJ6/r5c6jm6iNOnT5OSkgJk7jmC9KG13bt3s27dOuvCUXw87N4NtWtjqlZl165d/Pjjj6xatYr169c7H39yPl+geYMGXN2nDx06dKBdu3bp3ZpRUbrsXkTEShlDcEFDh3JdWhrXZfwtju3alZ9//pno6Giio6PZumULh9LS+Br4OuOlnnY7Tbp0oc2119K6dWvatm1LrVq1sNlsLucKK/6ur1mzBoA2bdpk+pl6jtxETpPnwYMHqVq1Kh4eHqSmpqZ/wM7z/vvvM3z4cHr06MHixYsLuuzMoqKIHTKE5cbwI7A8OJhDSUkuTWw2G/WMoRU4vxp5eOCT3b8u4uM1XCYiYrVL/C3+d/duNtapwzpj+AWIBg5l8TaVK1emY7VqdNy4kY7GUM9mw1bI91gyxhASEsKRI0f46aefaN++vcvPt27dStOmTalcuTKHDmW1Ff9Rz5EbOH++0YXBCKBdu3YA/PTTT5w7dw4fH5/8W3k2KT8+Pp5Vq1axcuFCVsyejcvN6ZOS8PX1pX379nTp0oV27doRGRlJ0Jdf5rxHKCxMoUhExGqX+FtcqnZtrp46lasz/rYbDw/iX36ZX6pX55dffuGXX35h48aNJCQkMCchgTkZr6toDFcPHkzHgwfpeP31NGzYEA+P867NKoAeph07dnDkyBFKlSpFy5YtM/1cPUduIqfJc+3atbRv354aNWq43n8ig91uJzQ0lMTERJYvX07nzp0vvfILPngnT57k4MGDJCQkcPLkSf79919OLVrEvzNn8q8xnLLZSOralZ1eXmzbto34C65I8CS9N6gLcA3QdulS/Lp1y3q96hESESleLvK3/fTp06ybNIlVo0axivTepTMXvLxcuXJ06NCBevXqUTUujoqzZ+NrDN42Gz4jR+J34434+vpSpkwZqlev/l8nQC5ClGO+0bXXXsv333+f6efHjx93XrF25syZiz51orB6jjAlUFJSkgFMUlLSRdstXbrUAKZx48bZtrn77rsNYB5//PFLr3jaNGM8PEwsmLFgGlWtamw2mwFy/OXh4WFatGhhHhs61Hxns5kkMMbx5elpzIEDud0dIiJSXB04YIyHhzFgzoBZA+YFm81c26GDCQgIyNX5x9PT07Rv3968fsst5rjNln7e8fBIP7ddxDXXXGMA8+qrr2b585SUFOc6jh49etH3yun5+3JpWO0iTp48CUDp0qWzbdOzZ08++eQTvpk7l5e7d8d25ZXZzuU5MWQI44zhHSAN4K+/AAgMDCQkJISgoCACUlIotW0bAUCpjK/SQK2RI2nUrx+NGzf+Ly23bKkJ1CIikj3HPZaGDsU3LY2rPD25avJkxg4aREpKCps2beLnn38m9uef+WvePI4BKcA54Cxwtlo1znp4cPToUU6dOsXPP//Mz6TfC+9ZYITdjufQoem3Kcji/HNs2zZWrlgBwE033ZRliV5eXvj5+XHmzBlOnjzpHrfGKdDo5aZymjxnzpxpANO9Zctse2SSkpKMv4+PAcwvF0nRO2fONLXOS+CdwcwCkzB3rmvD81J+jnqEDhwwZsUK9RiJiEj2LnWuuMS5x263mz///NN88Mgjpt5557IOYA5B+ntfaNo0My1jdKQJXLSHqWL58gYw25Ytu+hmFFbPke6QfREnM8ZGS2/YkO0t3IOSk+l37hwA0yH9ZlxDh7rcrXTx4sW0Hj6cPUA4sAhYDvT39CTkwofWXnAn1RxNoNZzy0RE5GIuda64xLnHZrNRo0YNHnzsMbbbbEwmfVRjDenzXn/NuO2NU3w8ZsgQ3s2Y1nwHZDo3OkVFUfrYMQBOduvmFo9LKdnhKGNYK0vx8ZycPRuAQMgy9ACwezeDM/53JqRfPZaWBnv2YIzhjTfeoE+fPiSfOEGH2rXZ6OFBT7h46Bk0KP3miytWpP/XTe94KiIixUhOzj1hYXhMncr9np5sBq4EDgDtbryRefPm/ddu926WGsOvQABwPzjPjS7i4+H++9PPs8BJY7IPUXDx83Y+KtHhaG39+tkn1N270w8S6ekYyPrA1q7N1TYb3Ugfo30QOOfhwdFy5ejfvz+PPfYYdrudQYMG8cP27VSMjc1Z6FGPkIiIFLacnHsyQlTtFSv4Zds2unbtyqlTp7jpppt4+umnOXPmDEfLl2d4RvMhQFlI7xS48CHlu3eD3e48z56ArM+1AFFRfFW//uVtX04V6KCdm3KMWb54sfk8Bw6YRzLGVEdfau7PtGlmh4eH8ctoHxIUZHx9fQ1gvLy8zLvvvmvsdnvBb5iIiEghS0lJMSNHjnTOQwoKCjJlypQxgKkG5h/H+TOrOUcZc526Zbz24+zOtRntbslopzlHBS27hBoWxsmrrgIyhtUuMQxWPzaW+a+8QvmyZTmcnMzZs2dp2rQpq1atYvjw4VneRFJERKSo8/Ly4q233uLzzz8nLCyM5ORkjh8/Tp06dVi6fDllLjFMx5Qp/w2r2WxZn2szepgKS4m+lN9A1t18GU5WrQpA6YcfhieeuHg3Y1gY3R9/nNiHHmLjxo2EhIRQp04dhSIRESkRbrvtNm666Sa2b9/OmTNnaNmyJV5eOYgZgwZReskS+OorTowZk3WIql0bPDwwhRSQFI4uciWY8z5HzZrleO5PQEAAHTt2zKcKRUREig5vb2+aNWuW69eVDgkB4KTjarkLZfQwmcGDs/55PivRw2rmsccuOin633//BaBUqVKFVZKIiEiJExAQAPx33s3SoEHQs2eh1FOyw1Fg4EV/fvr0aQD8/PwKoxwREZESyd/fH7hEOAJMRruCVqLD0aU4wpF/IR0MERGRksgxQnPJcJRxi52CVqLD0aV2ssKRiIhIwXOEI8d5NzsKR4XgUjv5zJkzgMKRiIhIQcppz1FhUTi6CPUciYiIFDwNq2Vh4sSJ1KhRAz8/PyIjI1mzZs1F269atYrIyEj8/PyoWbMmkyZNKpC6NCFbRESk4OV4QnZJCUdz5sxh5MiRjB07lpiYGDp06EDPnj2Ji4vLsv2+ffvo1asXHTp0ICYmhieffJIRI0Ywd+7cXK9bPUciIiLW07DaBd58800GDRrE4MGDqVevHm+//TbVqlXjww8/zLL9pEmTCA8P5+2336ZevXoMHjyY++67j9dffz3X675YOEpJSSEtLQ1QOBIRESlIGlY7z7lz59i0aRPdunVzWd6tWzfWrl2b5Wuio6Mzte/evTsbN24kJSUlV+u/2E4+f8a8wpGIiEjBcbdwZOnjQ44ePUpaWhohGbcNdwgJCSEhISHL1yQkJGTZPjU1laNHjxIaGprpNWfPnuXs2bPO75OSkoD0q9GSk5OzXM+RI0ec/3/u3LlcBy8RERHJGXvGM9NOnTqV7XkZcJ6LCzokucWz1S58OKsx5qIPbM2qfVbLHSZMmMD48eMzLX/jjTd44403LllfmTJlLtlGRERELk9SUhLBwcGXbHfs2LEctcsrS8NRhQoV8PT0zNRLlJiYmKl3yKFy5cpZtvfy8qJ8+fJZvmbMmDGMGjXK+f3x48eJiIggLi6uQHeuu0lOTqZatWocOHCAoKAgq8spNNpubXdJoO3WdpcESUlJhIeHU65cuQJdj6XhyMfHh8jISJYtW8aNN97oXL5s2TKuv/76LF/Ttm1bvv32W5dl33//PS1atMDb2zvL1/j6+uLr65tpeXBwcIn6UDkEBQVpu0sQbXfJou0uWUrqdnt4FOyUacuvVhs1ahTTpk1j+vTp7Ny5k0cffZS4uDiGDRsGpPf6DBgwwNl+2LBhxMbGMmrUKHbu3Mn06dOJioriscces2oTREREpBixfM7RbbfdxrFjx3juuec4dOgQDRs2ZNGiRURERABw6NAhl3se1ahRg0WLFvHoo4/ywQcfUKVKFd5991369etn1SaIiIhIMWJ5OAJ48MEHefDBB7P82cyZMzMt69ixI5s3b87z+nx9fXn22WezHGorzrTd2u6SQNut7S4JtN0Fu902U1g3DRAREREpAiyfcyQiIiLiThSORERERM6jcCQiIiJyHoUjERERkfMU23D04osv0q5dO0qVKpXjx38YYxg3bhxVqlTB39+fTp06sWPHDpc2Z8+eZfjw4VSoUIGAgACuu+464uPjC2AL8uaff/7h7rvvJjg4mODgYO6++26OHz9+0dfYbLYsv1577TVnm06dOmX6+e23317AW5Nzednue+65J9M2tWnTxqVNcTveKSkpPPHEEzRq1IiAgACqVKnCgAEDOHjwoEs7dzveEydOpEaNGvj5+REZGcmaNWsu2n7VqlVERkbi5+dHzZo1mTRpUqY2c+fOpX79+vj6+lK/fn3mzZtXUOXnWW62++uvv+baa6+lYsWKBAUF0bZtW5YuXerSZubMmVn+rp85c6agNyVXcrPdK1euzHKbfv/9d5d2xe14Z/X3y2az0aBBA2cbdz/eq1evpm/fvlSpUgWbzcb8+fMv+ZpC+902xdQzzzxj3nzzTTNq1CgTHByco9e8/PLLJjAw0MydO9ds27bN3HbbbSY0NNQkJyc72wwbNsxUrVrVLFu2zGzevNl07tzZNGnSxKSmphbQluROjx49TMOGDc3atWvN2rVrTcOGDU2fPn0u+ppDhw65fE2fPt3YbDazd+9eZ5uOHTuaIUOGuLQ7fvx4QW9OjuVluwcOHGh69Ojhsk3Hjh1zaVPcjvfx48dN165dzZw5c8zvv/9uoqOjTevWrU1kZKRLO3c63p9//rnx9vY2U6dONb/99pt55JFHTEBAgImNjc2y/Z9//mlKlSplHnnkEfPbb7+ZqVOnGm9vb/PVV18526xdu9Z4enqal156yezcudO89NJLxsvLy/zyyy+FtVmXlNvtfuSRR8wrr7xi1q9fb/744w8zZswY4+3tbTZv3uxsM2PGDBMUFJTpd96d5Ha7V6xYYQCza9cul206/3e0OB7v48ePu2zvgQMHTLly5cyzzz7rbOPux3vRokVm7NixZu7cuQYw8+bNu2j7wvzdLrbhyGHGjBk5Ckd2u91UrlzZvPzyy85lZ86cMcHBwWbSpEnGmPQPo7e3t/n888+dbf766y/j4eFhlixZku+159Zvv/1mAJcPQXR0tAHM77//nuP3uf76602XLl1clnXs2NE88sgj+VVqvsrrdg8cONBcf/312f68pBzv9evXG8Dlj7A7He9WrVqZYcOGuSyrW7euGT16dJbtH3/8cVO3bl2XZUOHDjVt2rRxfn/rrbeaHj16uLTp3r27uf322/Op6suX2+3OSv369c348eOd3+f076GVcrvdjnD0zz//ZPueJeF4z5s3z9hsNrN//37nsqJwvB1yEo4K83e72A6r5da+fftISEigW7duzmW+vr507NiRtWvXArBp0yZSUlJc2lSpUoWGDRs621gpOjqa4OBgWrdu7VzWpk0bgoODc1zf4cOHWbhwIYMGDcr0s1mzZlGhQgUaNGjAY489xokTJ/Kt9stxOdu9cuVKKlWqxJVXXsmQIUNITEx0/qwkHG9If5CjzWbLNPzsDsf73LlzbNq0yeUYAHTr1i3bbYyOjs7Uvnv37mzcuJGUlJSLtnGH4wp52+4L2e12Tpw4kekBnSdPniQiIoKwsDD69OlDTExMvtV9uS5nu5s1a0ZoaCjXXHMNK1ascPlZSTjeUVFRdO3a1fl0CQd3Pt65VZi/225xh2x3kJCQAEBISIjL8pCQEGJjY51tfHx8KFu2bKY2jtdbKSEhgUqVKmVaXqlSpRzX99FHHxEYGMhNN93ksvzOO++kRo0aVK5cme3btzNmzBi2bt3KsmXL8qX2y5HX7e7Zsye33HILERER7Nu3j6effpouXbqwadMmfH19S8TxPnPmDKNHj6Z///4uD690l+N99OhR0tLSsvy9zG4bExISsmyfmprK0aNHCQ0NzbaNOxxXyNt2X+iNN97g1KlT3Hrrrc5ldevWZebMmTRq1Ijk5GTeeecd2rdvz9atW6ldu3a+bkNe5GW7Q0NDmTJlCpGRkZw9e5ZPPvmEa665hpUrV3L11VcD2X8misvxPnToEIsXL+azzz5zWe7uxzu3CvN3u0iFo3HjxjF+/PiLttmwYQMtWrTI8zpsNpvL98aYTMsulJM2lyOn2w2Z64fc1Td9+nTuvPNO/Pz8XJYPGTLE+f8NGzakdu3atGjRgs2bN9O8efMcvXduFfR233bbbc7/b9iwIS1atCAiIoKFCxdmCoe5ed/LVVjHOyUlhdtvvx273c7EiRNdfmbF8b6Y3P5eZtX+wuV5+V0vbHmtcfbs2YwbN45vvvnGJUC3adPG5aKD9u3b07x5c9577z3efffd/Cv8MuVmu+vUqUOdOnWc37dt25YDBw7w+uuvO8NRbt/TKnmtcebMmZQpU4YbbrjBZXlROd65UVi/20UqHD388MOXvGKmevXqeXrvypUrA+nJNDQ01Lk8MTHRmUIrV67MuXPn+Oeff1x6ExITE2nXrl2e1psTOd3uX3/9lcOHD2f62ZEjRzIl6aysWbOGXbt2MWfOnEu2bd68Od7e3uzevbvATpaFtd0OoaGhREREsHv3bqB4H++UlBRuvfVW9u3bx/Lly116jbJSGMc7KxUqVMDT0zPTv/rO/728UOXKlbNs7+XlRfny5S/aJjefl4KUl+12mDNnDoMGDeLLL7+ka9euF23r4eFBy5YtnZ95q13Odp+vTZs2fPrpp87vi/PxNsYwffp07r77bnx8fC7a1t2Od24V6u92rmYoFUG5nZD9yiuvOJedPXs2ywnZc+bMcbY5ePCg203QXbdunXPZL7/8kuMJugMHDsx01VJ2tm3bZgCzatWqPNebXy53ux2OHj1qfH19zUcffWSMKb7H+9y5c+aGG24wDRo0MImJiTlal5XHu1WrVuaBBx5wWVavXr2LTsiuV6+ey7Jhw4ZlmrTZs2dPlzY9evRwuwm6udluY4z57LPPjJ+f3yUntjrY7XbTokULc++9915OqfkqL9t9oX79+pnOnTs7vy+ux9uY/yakb9u27ZLrcMfj7UAOJ2QX1u92sQ1HsbGxJiYmxowfP96ULl3axMTEmJiYGHPixAlnmzp16pivv/7a+f3LL79sgoODzddff222bdtm7rjjjiwv5Q8LCzM//PCD2bx5s+nSpYvbXdrduHFjEx0dbaKjo02jRo0yXdp94XYbY0xSUpIpVaqU+fDDDzO95549e8z48ePNhg0bzL59+8zChQtN3bp1TbNmzYrsdp84ccL873//M2vXrjX79u0zK1asMG3btjVVq1Yt1sc7JSXFXHfddSYsLMxs2bLF5fLes2fPGmPc73g7LnGOiooyv/32mxk5cqQJCAhwXpUzevRoc/fddzvbOy73ffTRR81vv/1moqKiMl3u+/PPPxtPT0/z8ssvm507d5qXX37ZbS/tzul2f/bZZ8bLy8t88MEH2d6CYdy4cWbJkiVm7969JiYmxtx7773Gy8vLJWBbLbfb/dZbb5l58+aZP/74w2zfvt2MHj3aAGbu3LnONsXxeDvcddddpnXr1lm+p7sf7xMnTjjPzYB58803TUxMjPPKWSt/t4ttOBo4cKABMn2tWLHC2QYwM2bMcH5vt9vNs88+aypXrmx8fX3N1VdfnSmNnz592jz88MOmXLlyxt/f3/Tp08fExcUV0lZd2rFjx8ydd95pAgMDTWBgoLnzzjszXeJ64XYbY8zkyZONv79/lveyiYuLM1dffbUpV66c8fHxMVdccYUZMWJEpnsCWSm32/3vv/+abt26mYoVKxpvb28THh5uBg4cmOlYFrfjvW/fvix/L87/3XDH4/3BBx+YiIgI4+PjY5o3b+7SgzVw4EDTsWNHl/YrV640zZo1Mz4+PqZ69epZhv4vv/zS1KlTx3h7e5u6deu6nEzdRW62u2PHjlke14EDBzrbjBw50oSHhxsfHx9TsWJF061bN7N27dpC3KKcyc12v/LKK+aKK64wfn5+pmzZsuaqq64yCxcuzPSexe14G5Peu+3v72+mTJmS5fu5+/F29Hpl95m18nfbZkzGbCYRERERKb6PDxERERHJC4UjERERkfMoHImIiIicR+FIRERE5DwKRyIiIiLnUTgSEREROY/CkYiIiMh5FI5EREREzqNwJCIiInIehSMRERGR8ygciUix8txzz9GoUSMCAgIICQnhgQceICUlxeqyRKQI8bK6ABGR/GKMIS0tjcmTJ1O1alV+++03BgwYQOPGjXnggQesLk9Eigg9eFZEirX+/ftTsWJF3nnnHatLEZEiQsNqIlJsxMbG8vDDD9OwYUPKli1L6dKl+eKLLwgLC7O6NBEpQhSORKRYOHr0KK1ateLo0aO8+eab/PTTT0RHR+Pp6UnTpk2tLk9EihDNORKRYmHRokWkpqYye/ZsbDYbAB988AHnzp1TOBKRXFE4EpFioVy5ciQnJ7NgwQLq16/Pt99+y4QJE6hatSoVK1a0ujwRKUI0IVtEigVjDA888ACfffYZ/v7+3HXXXZw5c4bY2Fi+++47q8sTkSJE4UhERETkPJqQLSIiInIehSMRERGR8ygciYiIiJxH4UhERETkPApHIiIiIudROBIRERE5j8KRiIiIyHkUjkRERETOo3AkIiIich6FIxEREZHzKByJiIiInEfhSEREROQ8/w8/ZGcCPjPhhQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0LUlEQVR4nO3dd1xW5f/H8dfNRgTciCKoae6J25wZOVs2rbRyNjSzft8sG9qyvTM1cVRmVqZZrixnSU40NTM1FUkRtcSRA7iv3x9w33nLEBA4N/B+Ph48isN13+dzzrnhvL2u65xjM8YYRERERAQAD6sLEBEREXEnCkciIiIiF1A4EhEREbmAwpGIiIjIBRSORERERC6gcCQiIiJyAYUjERERkQsoHImIiIhcQOFIRERE5AIKR1IkHDx4kLFjx7J58+YMP7vnnnsoXbp0nt/7/PnzDBs2jNDQUDw9PWnatGneC80HEyZMYPr06RmW79u3D5vNlunPihObzcbYsWOtLiNfjB07FpvNVuCvfe+996hVqxY+Pj7YbDaOHz/OPffcQ/Xq1V3avfTSS8ybNy9P9WTn77//5vbbb6dSpUrYbDZuuOGGXL9H9erVueeee/K9Nndy4MABbrzxRmrWrElAQADBwcE0a9aM999/n5SUFJe2s2bNomPHjoSEhODr60uVKlXo06cPa9assaj6ksXL6gJEcuLgwYOMGzeO6tWr53t4+fDDD5k0aRLvvfcekZGRlxW08sOECROoUKFChhNFaGgoMTExXHHFFdYUJrk2aNAgunfvXqDr2Lx5MyNGjGDQoEEMGDAALy8vAgMDefrpp3n44Ydd2r700kvcfPPNeQov2Xn++eeZO3cuU6dO5YorrqBcuXL5+v7FxenTpwkKCuLpp58mPDyc8+fPs3DhQoYPH87mzZuZMmWKs+2xY8do3749Dz/8MBUqVODQoUO8+eabdOzYkR9//JFOnTpZuCXFn8KRlHjbtm3D39+fhx56yOpSsuXr60ubNm2sLkNyISwsjLCwsAJdx/bt2wEYPHgwrVq1ci4vzBC9bds2rrjiCu68885CW2d++ffffylVqlShrKtu3brMmDHDZVmPHj1ITExkxowZfPDBB/j6+gJk+veoR48eVKxYkejoaIWjAqZhtRLoyJEjDBkyhGrVquHr60vFihVp3749P/zwg7NN586dadiwITExMbRr1w5/f3+qV6/OtGnTAFiwYAHNmzenVKlSNGrUiMWLF2dYz08//cTVV19NYGAgpUqVol27dixYsCBDu23btnH99ddTtmxZ/Pz8aNq0qcsfkBUrVtCyZUsA7r33Xmw2W6ZDL7t376Znz56ULl2aatWq8eijj3Lu3Lls94XNZmPKlCmcOXPG+b7Tp0/Pdgjr4nU7hj+2b9/OHXfcQXBwMCEhIdx3330kJSW5vNZut/Pee+/RtGlT/P39KVOmDG3atGH+/PlA2tDC9u3bWblypbMex9BIVjXlZD9Pnz4dm83G8uXLuf/++6lQoQLly5fnpptu4uDBg9nuo+xUr16d3r17M3fuXBo3boyfnx81a9bk3XffzdA2Li6Ou+66i0qVKuHr60u9evV44403sNvtWb7/vn378PLyYvz48Rl+tmrVKmw2G19++SWQu+Nw9uxZnnjiCWrUqIGPjw9Vq1blwQcf5Pjx45lu33fffUezZs3w9/enXr16fPfdd0Dafq1Xrx4BAQG0atWKDRs2uLw+s6Gx2bNnExUVRWhoqPP9Ro8ezenTp7Pe0Vno3Lkzd911FwCtW7fGZrM5exwvHlaz2WycPn2aGTNmOD9bnTt3zvb9//77bx544AGqVq2Kj48PNWvWZMyYMc7fK8dn8ocffmDHjh3O912xYkWW75mcnMz//vc/KleuTKlSpbjqqqtYt25dpm0TEhIYOnQoYWFh+Pj4UKNGDcaNG5dhCCo+Pp6bb76ZwMBAypQpw5133sn69esz/L44huC3bt1KVFQUgYGBXH311UDa8PoLL7xA3bp1nX8X7733Xo4cOZKhrtmzZ9O2bVsCAgIoXbo01157LbGxsdnuy+xUrFgRDw8PPD09s20XGBiIn58fXl7q1yhwRkqca6+91lSsWNFMnjzZrFixwsybN88888wz5vPPP3e26dSpkylfvrypU6eOiY6ONkuWLDG9e/c2gBk3bpxp1KiRmTVrllm4cKFp06aN8fX1NX/99Zfz9StWrDDe3t4mMjLSzJ4928ybN89ERUUZm83msp7ff//dBAYGmiuuuMJ8/PHHZsGCBeaOO+4wgHnllVeMMcYkJSWZadOmGcA89dRTJiYmxsTExJgDBw4YY4wZMGCA8fHxMfXq1TOvv/66+eGHH8wzzzxjbDabGTduXLb7IiYmxvTs2dP4+/s73zcxMdHs3bvXAGbatGkZXgOYZ5991vn9s88+awBTp04d88wzz5ilS5eaN9980/j6+pp7773X5bV33323sdlsZtCgQeabb74xixYtMi+++KJ55513jDHGbNq0ydSsWdM0a9bMWc+mTZuMMSbTmnK6nx37r2bNmmb48OFmyZIlZsqUKaZs2bKmS5cuLjU62ma27ReLiIgwVatWNeHh4Wbq1Klm4cKF5s477zSAee2115ztEhMTTdWqVU3FihXNxIkTzeLFi81DDz1kAHP//fdnu39vvPFGEx4eblJSUlza3XLLLaZKlSomOTk5V8fBbreba6+91nh5eZmnn37afP/99+b11183AQEBplmzZubs2bMu2xcWFmYaNmzo/Ly3bt3aeHt7m2eeeca0b9/efP3112bu3LnmyiuvNCEhIebff/91vt5R04Wef/5589Zbb5kFCxaYFStWmIkTJ5oaNWpkOA6ZvfZi27dvN0899ZTzeMXExJjdu3cbY9J+LyIiIpxtY2JijL+/v+nZs6fzs7V9+/Ys3/vMmTOmcePGJiAgwLz++uvm+++/N08//bTx8vIyPXv2NMYYc/bsWRMTE2OaNWtmatas6XzfpKSkLN93wIABxmazmf/7v/8z33//vXnzzTdN1apVTVBQkBkwYICz3aFDh0y1atVMRESEmTRpkvnhhx/M888/b3x9fc0999zjbHfq1ClTq1YtU65cOfPBBx+YJUuWmEceecTUqFEjw+d4wIABxtvb21SvXt2MHz/e/Pjjj2bJkiUmNTXVdO/e3QQEBJhx48aZpUuXmilTppiqVaua+vXruxzTF1980dhsNnPfffeZ7777znz99dembdu2JiAgINv9eSG73W6Sk5PN33//bT7//HMTEBBgnnjiiUzbpqSkmPPnz5u9e/eaIUOGmNKlS5sNGzbkaD2SdwpHJVDp0qXNyJEjs23TqVMnA7j8Eh47dsx4enoaf39/lyC0efNmA5h3333XuaxNmzamUqVK5uTJk85lKSkppmHDhiYsLMzY7XZjjDG333678fX1NXFxcS7r79GjhylVqpQ5fvy4McaY9evXZ3nCHjBggAHMF1984bK8Z8+epk6dOpfYG2mvDwgIcFmWl3D06quvurR74IEHjJ+fn3NbV61aZQAzZsyYbOtp0KCB6dSpU4blmdWU0/3sCDwPPPCAy3u++uqrBjCHDh1yLpsxY4bx9PQ0M2bMyLZOY9LCg81mM5s3b3ZZfs0115igoCBz+vRpY4wxo0ePNoBZu3atS7v777/f2Gw2s3PnTueyi/fv8uXLDWDmzp3rXPbXX38ZLy8vl/Cb0+OwePHiTNvNnj3bAGby5Mku2+fv72/i4+Odyxyf99DQUOf2GWPMvHnzDGDmz5+foaasOE6SK1euNIDZsmVLjl/r4Di269evd1l+cTgyxpiAgACXAJKdiRMnZvp79corrxjAfP/9985lnTp1Mg0aNLjke+7YscMA5pFHHnFZPnPmTAO41DZ06FBTunRps3//fpe2r7/+ugGcQeSDDz4wgFm0aJFLu6FDh2YajgAzdepUl7azZs0ygJkzZ47LcsffnQkTJhhjjImLizNeXl5m+PDhLu1OnjxpKleubG699dZL7gNjjBk/frwBDGBsNlu2fxPq1KnjbBsaGmp++umnHK1DLo+G1UqgVq1aMX36dF544QV++eUXkpOTM20XGhpKZGSk8/ty5cpRqVIlmjZtSpUqVZzL69WrB8D+/fuBtEmHa9eu5eabb3aZ3Ozp6cndd99NfHw8O3fuBGDZsmVcffXVVKtWzWXd99xzD//++y8xMTE52iabzUafPn1cljVu3NhZU2G47rrrMqz/7NmzJCYmArBo0SIAHnzwwXxZX272c3Y1Ai77qX///qSkpNC/f/8c1dGgQQOaNGnisqxfv36cOHGCTZs2AWnHuX79+i5zYiDtOBtjWLZsWZbv37lzZ5o0acIHH3zgXDZx4kRsNhtDhgzJ0P5Sx8GxrosnvN9yyy0EBATw448/uixv2rQpVatWdX7v+Lx37tzZZa7Kxb8HWfnzzz/p168flStXxtPTE29vb+f8kR07dmT72sK0bNkyAgICuPnmm12WO/bbxfspJ5YvXw6QYW7SrbfemmGo6LvvvqNLly5UqVKFlJQU51ePHj0AWLlypfO/gYGBGSa+33HHHVnW0bdv3wzrKlOmDH369HFZV9OmTalcubJzmHDJkiXO340L2/n5+dGpU6dshxMvdM8997B+/XqWLFnC//73P1577TWGDx+eads5c+awdu1avvzyS+rXr0+PHj1yvB7JOw1clkCzZ8/mhRdeYMqUKTz99NOULl2aG2+8kVdffZXKlSs722V2xYmPj0+G5T4+PkDaPA6Af/75B2MMoaGhGV7vCFXHjh1z/jcn7S6lVKlS+Pn5uSzz9fV11lQYypcvn2H9AGfOnAHS5np5enq67OPLkZv9nNMa8yKz7XEsu/A4X3xZeXZ1XsxxNdbOnTupWbMmH330ETfffHOm677UNh47dgwvLy8qVqzo0s5ms1G5cuUMtWT1eb/U70FmTp06RYcOHfDz8+OFF17gyiuvpFSpUhw4cICbbrrpso5Dfjt27BiVK1fOMGeqUqVKeHl55fh38+L3hIyfGS8vrwzH7fDhw3z77bd4e3tn+l5Hjx51vmdISEiGn2e2DNL+VgQFBWVY1/Hjx53HMKt1HT58GMA5B/JiHh4562+oXLmycx9ERUVRtmxZRo8ezX333UezZs1c2jZo0ABI+0ftDTfcQLNmzXj44YfZsmVLjtYleaNwVAJVqFCBt99+m7fffpu4uDjmz5/P6NGjSUxMzHRidW6VLVsWDw8PDh06lOFnjsm/FSpUANJOZDlpV9gcQeviCd15OSE4VKxYkdTUVBISEjINNLmVm/1ckBISErJc5jjhXe5x7tevH48//jgffPABbdq0ISEhIc89cOXLlyclJYUjR464BCRjDAkJCVme+PLDsmXLOHjwICtWrHC52ujiieDuoHz58qxduxZjjEtASkxMJCUlJU+fLcfnISEhwaU3LiUlJcPvVoUKFWjcuDEvvvhipu/lCNbly5fPdEJ3Zp9LINN7RzkuUMjq719gYKCzHcBXX31FREREpm3zwtGj+scff2QIRxfy8vKiefPmfPHFF/m2bsmchtVKuPDwcB566CGuueYa5xDI5QoICKB169Z8/fXXLv8SttvtfPrpp4SFhXHllVcCcPXVVztPGBf6+OOPKVWqlPPS9fzo4ciNkJAQ/Pz8+PXXX12Wf/PNN3l+T8dwwIcffphtO19f3xxtZ272c0Havn17hn/FfvbZZwQGBtK8eXMg7Tj/9ttvGT5jH3/8MTabjS5dumS7Dj8/P4YMGcKMGTN48803adq0Ke3bt89TvY6rkz799FOX5XPmzOH06dPOnxcEx4nZ8Xl2mDRpUoGt80I5/WxB2n46depUhptGfvzxx86f55bj6riZM2e6LP/iiy8yXIHWu3dv5y0CWrRokeHLEY46derEyZMnncPWDp9//nmO6+rduzfHjh0jNTU103XVqVMHgGuvvRYvLy/27NmTabsWLVrkdpcA/w031qpVK9t2Z8+e5ZdffrlkO7l86jkqYZKSkujSpQv9+vWjbt26BAYGsn79ehYvXsxNN92Ub+sZP34811xzDV26dOGxxx7Dx8eHCRMmsG3bNmbNmuU8STz77LPOuQXPPPMM5cqVY+bMmSxYsIBXX32V4OBgIO2eLf7+/sycOZN69epRunRpqlSp4jL3KT/ZbDbuuusu503tmjRpwrp16/jss8/y/J4dOnTg7rvv5oUXXuDw4cP07t0bX19fYmNjKVWqlHPOQaNGjfj888+ZPXs2NWvWxM/Pj0aNGmX6njndz7nx8ccfc9999zF16tQczTuqUqUK1113HWPHjiU0NJRPP/2UpUuX8sorrzjn5DzyyCN8/PHH9OrVi+eee46IiAgWLFjAhAkTuP/++3MU4h544AFeffVVNm7c6HKzvNy65ppruPbaa3n88cc5ceIE7du359dff+XZZ5+lWbNm3H333Xl+70tp164dZcuWZdiwYTz77LN4e3szc+bMQhsiadSoEStWrODbb78lNDSUwMBA54n/Yv379+eDDz5gwIAB7Nu3j0aNGvHTTz/x0ksv0bNnT7p165br9derV4+77rqLt99+G29vb7p168a2bdt4/fXXMwx1PffccyxdupR27doxYsQI6tSpw9mzZ9m3bx8LFy5k4sSJhIWFMWDAAN566y3uuusuXnjhBWrVqsWiRYtYsmQJkLOhrttvv52ZM2fSs2dPHn74YVq1aoW3tzfx8fEsX76c66+/nhtvvJHq1avz3HPPMWbMGP7880+6d+9O2bJlOXz4MOvWrSMgIIBx48ZluZ5nn32Ww4cP07FjR6pWrcrx48dZvHgxH330EbfccovLHM927dpx3XXXUa9ePYKDg9m3bx8ffvghe/bsYe7cubne95JLlk4Hl0J39uxZM2zYMNO4cWMTFBRk/P39TZ06dcyzzz7rcuVNVlefREREmF69emVYDpgHH3zQZdnq1atN165dTUBAgPH39zdt2rQx3377bYbXbt261fTp08cEBwcbHx8f06RJk0yvEps1a5apW7eu8fb2drmiKbOrzYzJ+dU+Wb0+KSnJDBo0yISEhJiAgADTp08fs2/fviyvVjty5IjL6x1XEe3du9e5LDU11bz11lumYcOGxsfHxwQHB5u2bdu67Jd9+/aZqKgoExgYaADnFUdZXUGXk/2c1RVNjivBli9fnqFtTi/l79Wrl/nqq69MgwYNjI+Pj6levbp58803M7Tdv3+/6devnylfvrzx9vY2derUMa+99ppJTU11aXfx/r1Q586dTbly5VwurXbIzXE4c+aMefzxx01ERITx9vY2oaGh5v777zf//PNPptt3scw+747jc+EtDDL7DK5Zs8a0bdvWlCpVylSsWNEMGjTIbNq0KcM+L4ir1TZv3mzat29vSpUqZYBMr4q80LFjx8ywYcNMaGio8fLyMhEREeaJJ55wud2BMTm/Ws0YY86dO2ceffRRU6lSJePn52fatGljYmJiTERERIYr6Y4cOWJGjBhhatSoYby9vU25cuVMZGSkGTNmjDl16pSzXVxcnLnppptM6dKlTWBgoOnbt69ZuHChAcw333zjsk8y+103xpjk5GTz+uuvmyZNmhg/Pz9TunRpU7duXTN06FCza9cul7bz5s0zXbp0MUFBQcbX19dERESYm2++2fzwww/Zbvv8+fNNt27dTEhIiPHy8jKlS5c2rVq1Mu+++67zlhQOjz76qGnSpIkJDg42Xl5epnLlyubGG280P//8c052s1wmmzHGFGYYE5Hio3r16jRs2NB5U8SClJiYSEREBMOHD+fVV18t8PVJ0fbSSy/x1FNPERcXV+B3KZfiR8NqIuLW4uPj+fPPP3nttdfw8PDI8Lwwkffffx9IezxHcnIyy5Yt49133+Wuu+5SMJI8UTgSEbc2ZcoUnnvuOapXr87MmTNdrnISgbTL89966y327dvHuXPnCA8P5/HHH+epp56yujQpojSsJiIiInIByy/lX7VqFX369KFKlSrYbLYMl41mZuXKlURGRjofcjlx4sSCL1RERERKBMvD0enTp2nSpIlzzPhS9u7dS8+ePenQoQOxsbE8+eSTjBgxgjlz5hRwpSIiIlISuNWwms1mY+7cudxwww1Ztnn88ceZP3++yzOIhg0bxpYtW3L8HC4RERGRrBS5CdkxMTFERUW5LLv22muJjo4mOTk50+fwnDt3zuUxEHa7nb///pvy5cvn6SZ5IiIiUviMMZw8eZIqVark+Fl2eVHkwlFCQkKGBwqGhISQkpLC0aNHM31m1fjx47O9a6mIiIgUHQcOHCjQ2zQUuXAEGR8c6BgZzKoX6IknnmDUqFHO75OSkggPD+fAgQMZblkvIkXIX39x/NdfuenFF9m4dSs2m43rr7+eOnXqsGbNGlavXg3ALb16MXnIEDxq1wbdCkCkyDpx4gTVqlVzPgy4oBS5cFS5cuUMT1tOTEzEy8vL+cTni/n6+mZ40CNAUFCQwpFIURUdTcrgwdxqDBuB8qVLM3/JEtq1a+ds8sknn3Dfvffy5YIFVF+wgFc9PGDyZBg40Lq6ReSyFfSUGMuvVsuttm3bsnTpUpdl33//PS1atMh0vpGIFEPx8TBkCG8YwxKgFLD0339pFx7u0uzuLl342G4H4DVgod0OQ4emvV5EJAuWh6NTp06xefNmNm/eDKRdqr9582bi4uKAtCGxC58MPmzYMPbv38+oUaPYsWMHU6dOJTo6mscee8yK8kXECrt2sdtuZ2z6t+8Dzex22L07Q7s7jGFE+rf3A/+mpmZsJyJyAcvD0YYNG2jWrBnNmjUDYNSoUTRr1oxnnnkGgEOHDjmDEkCNGjVYuHAhK1asoGnTpjz//PO8++679O3b15L6RcQCtWvzIHAW6AbcA+DpCbVqZWiHhwfjgXAgDnjFZsvYTkTkAm51n6PCcuLECYKDg0lKStKcI5EiaOXKlXTu3BlvYAdwhacnTJqU+Vyi6GgYOpSvUlO5BfD18mL33r16IKlIEVRY52/Le45ERHLDGOPsWR7cvz9XLF8O+/ZlPcl64EDYt4++y5ZxVcuWnEtJ4c033yy8gkWkyFHPkXqORIqU5cuX07VrV3x9fdm9e3eueoCWLFlC9+7dKVWqFPv376dChQoFWKmI5Df1HImIZOKdd94B4L777sv10FhUVBTNmzfn33//5b333iuI8kSkGFA4EpEiY9++fXz77bcADB8+PNevt9lsPP744wBMnjyZ5OTkfK1PRIoHhSMRKTImTJiA3W6nW7du1KtXL0/vceONNxISEkJCQgLz58/P5wpFpDhQOBKRIiE5OZnp06cDees1cvD29mZg+uTtiRMn5kdpIlLMKByJSJGwaNEijhw5QkhICD179rys9xo8eDA2m40ffviBvXv35lOFIlJcKByJSJEwY8YMAO688068vC7vsZDVq1ena9euAHz22WeXXZuIFC8KRyLi9v7++2/nROwBAwbky3veeeedAMycOZMSeEcTEcmGwpGIuL05c+aQnJxM48aNady4cb6850033YSvry87duxgy5Yt+fKeIlI8KByJiNv7+uuvAbjtttvy7T2Dg4Pp3bs3oKE1EXGlcCQibu348eP8+OOPQFpvT366/fbbAZg7d66G1kTESeFIRNzad999R3JyMvXr16du3br5+t7XXnut8zEkO3bsyNf3FpGiS+FIRNyaY0gtv3uNAAIDA+nWrRsA8+bNy/f3F5GiSeFIRNzW6dOnWbx4MQB9+/YtkHXccMMNgMKRiPxH4UhE3Nb333/PmTNnqFmzJk2aNCmQdfTp0webzcb69euJj48vkHWISNGicCQibmvRokUA9O7dG5vNViDrCAkJoW3btgB61pqIAApHIuKmjDHOcNSjR48CXdf1118PwIIFCwp0PSJSNCgciYhb2rZtG/Hx8fj5+dGpU6cCXVf37t0BWLFiBefOnSvQdYmI+1M4EhG35Og16tKlC/7+/gW6rkaNGhEaGsq///7LTz/9VKDrEhH3p3AkIm6psIbUAGw2G1FRUQAsWbKkwNcnIu5N4UhE3M6JEyecPTiFEY4g7YaQgPPWASJScikciYjbWfHVV6SkpFCrenVq1apVKOu85pprsNlsbN26lYNffgm6rF+kxFI4EhH3Eh3NsoEDAei2bx9ERxfKaitUqEBkRAQA3996K0REFNq6RcS9KByJiPuIj4chQ1iW/m1XgKFDC6cXJz6ea/ftA2ApgN1eeOsWEbeicCQi7mPXLo7Y7WxN/7YzQGoq7N5dKOvumv6/KwBTmOsWEbeicCQi7qN2bVak3wm7EVARwNMTCmPeUe3atLXZ8AEOArsLc90i4lYUjkTEfYSFsaxjRyB9SM3TEyZNgrCwQlm3/0cf0Sb92xU2W+GtW0TcisKRiLiV5QkJAHR5/nnYtw/SJ2cXioED6TxyZFod111XuOsWEbehcCQibuOvv/5i586deHh40Omhhyzptel83XUArFi3DmNMoa9fRKyncCQibmP58uUANG/enDJlylhSQ9u2bfH19eXQoUPs2rXLkhpExFoKRyLiNhzhqEuXLpbV4OfnR5s2bVzqEZGSReFIRNzGypUrAejcubOldTjWv2LFCkvrEBFrKByJiFtISEhgz5492Gw22rdvb2ktjp6rFStWaN6RSAmkcCQibuHnn38GoFGjRgQHB1taS+vWrfH19SUhIUHzjkRKIIUjEXELP/30EwBXXXWVxZWkzTtq0aIFAGvWrLG4GhEpbApHIuIWHD1HVg+pObRr1w74ry4RKTkUjkTEcqdPn2bTpk2Ae/QcwX8hTeFIpORROBIRy61du5bU1FSqVatGeHi41eUA//Uc7dixg7///tviakSkMCkciYjl3G1IDaBixYpceeWVAMTExFhcjYgUJoUjEbGcO03GvpCG1kRKJoUjEbFUamqqs2fGnXqOQOFIpKRSOBIRS23dupWTJ08SGBhIo0aNrC7HhSMcrVu3jvPnz1tcjYgUFoUjEbGUY0itXbt2eHp6WlyNqzp16lCuXDnOnj3L5s2brS5HRAqJwpGIWMoRjtxtSA3AZrPpfkciJZDCkYhYau3atcB/l867G807Eil5FI5ExDJHjhxh3759AM7HdbibC8ORHkIrUjIoHImIZdavXw9A3bp1LX/YbFZatGiBt7c3CQkJ7N+/3+pyRKQQKByJiGXWrVsHQMuWLS2uJGv+/v40adIE+G8IUESKN4UjEbGMo+eoVatWFleSvdatWwMKRyIlhcKRiFjCGFMkeo5A4UikpFE4EhFL7N+/n6NHj+Lt7e0ctnJXjnC0adMmkpOTLa5GRAqawpGIWMLRa9S4cWP8/PwsriZ7tWvXpmzZspw9e5Zff/3V6nJEpIApHImIJYrKfCNIuxmko04NrYkUfwpHImKJojLfyEHzjkRKDoUjESl0qampbNy4ESgaPUegcCRSkigciUih27FjB6dPnyYgIIC6detaXU6OOELczp07+eeffyyuRkQKksKRiBQ6x3yjFi1a4OnpaXE1OVOhQgWuuOIK4L/6RaR4UjgSkUJX1OYbOWhoTaRkUDgSkUJXlK5Uu5DCkUjJoHAkIoXq7NmzbNmyBSjaPUfGGIurEZGConAkIoVq8+bNpKSkULFiRSIiIqwuJ1eaNGmCt7c3R48eZe/evVaXIyIFROFIRArVhUNqNpvN4mpyx8/Pj6ZNmwIaWhMpztwiHE2YMIEaNWrg5+dHZGQkq1evzrb9zJkzadKkCaVKlSI0NJR7772XY8eOFVK1InI5iupkbAfH0JpjO0Sk+LE8HM2ePZuRI0cyZswYYmNj6dChAz169CAuLi7T9j/99BP9+/dn4MCBbN++nS+//JL169czaNCgQq5cRPKiqE7GdnDUrcv5RYovy8PRm2++ycCBAxk0aBD16tXj7bffplq1anz44YeZtv/ll1+oXr06I0aMoEaNGlx11VUMHTqUDRs2FHLlIpJbx48fZ+fOnUDR7Tlq0aIFAJs2bSIlJcXiakSkIFgajs6fP8/GjRuJiopyWR4VFcWaNWsyfU27du2Ij49n4cKFGGM4fPgwX331Fb169cpyPefOnePEiRMuXyJS+DYuXgxAjfBwKlSoYHE1eVOnTh0CAwM5c+YMO2bMgPh4q0sSkXxmaTg6evQoqamphISEuCwPCQkhISEh09e0a9eOmTNnctttt+Hj40PlypUpU6YM7733XpbrGT9+PMHBwc6vatWq5et2iEgOREezrl8/AFrGxUF0tMUF5Y2HhweRVaoAsH7QIIiIKLLbIiKZs3xYDchwxYoxJsurWH777TdGjBjBM888w8aNG1m8eDF79+5l2LBhWb7/E088QVJSkvPrwIED+Vq/iFxCfDwMGcL69HsDtQIYOrRo9rrEx9MyfWhwPYDdXnS3RUQy5WXlyitUqICnp2eGXqLExMQMvUkO48ePp3379vzf//0fAI0bNyYgIIAOHTrwwgsvEBoamuE1vr6++Pr65v8GiEjO7NoFdjuO67taAqSmwu7dEBZmYWF5sGsXLdL/1znTsahui4hkytKeIx8fHyIjI1m6dKnL8qVLl9KuXbtMX/Pvv//i4eFatuPBlbpjrYibql2bgzYbf5H2R6c5gKcn1KplbV15Ubs2LdN7trcA56DobouIZMryYbVRo0YxZcoUpk6dyo4dO3jkkUeIi4tzDpM98cQT9O/f39m+T58+fP3113z44Yf8+eef/Pzzz4wYMYJWrVpRJX0egIi4mbAw1j/wAAD1gdKenjBpUtHsaQkLo/rkyZQHkoFfPTyK7raISKYsHVYDuO222zh27BjPPfcchw4domHDhixcuND5WIFDhw653PPonnvu4eTJk7z//vs8+uijlClThq5du/LKK69YtQkikgPry5QBoFWPHjB5cpEOE7ZBg2jx6acsWbmS9c89R8uBA60uSUTykeXhCOCBBx7ggfR/VV5s+vTpGZYNHz6c4cOHF3BVIpKfnHfGvu66Ih2MHFp26MCSlSvZsGeP1aWISD6zfFhNRIo/Y0yRvzP2xRw3sdSdskWKH4UjESlwu3fv5vjx4/j6+tKoUSOry8kXjjtl//bbb5w+fdriakQkPykciUiBcwypNWvWDG9vb4uryR9VqlShSpUq2O12Nm3aZHU5IpKPFI5EpMAVtyE1B8fQmp7tKFK8KByJSIFzTsYuog+bzYrmHYkUTwpHIlKgkpOTiY2NBYpvz5HCkUjxonAkIgVq27ZtnD17luDgYGoVs7tIR0ZGAmkTzv/55x+LqxGR/KJwJCIFytGr0rJlywyP/inqypcvT82aNQHYuHGjxdWISH4pXn+pRMTtFNf5Rg4aWhMpfhSORKRAFdcr1Rwc9ztSOBIpPhSORKTAnD59mm3btgHFv+dIl/OLFB8KRyJSYGJjY7Hb7VSpUoWqVataXU6BaN68OTabjQMHDnD48GGryxGRfKBwJCIFprjPNwIIDAykXr16gIbWRIoLhSMRKTDFfb6Rg+YdiRQvCkciUmBKQs8RaN6RSHGjcCQiBeLYsWP8+eefwH89K8XVhZfzG2MsrkZELpfCkYgUCMcQ05VXXknZsmUtrqZgNWnSBC8vL44cOUJcXJzV5YjIZVI4EpECUVKG1AD8/Pxo1KgRoKE1keJA4UhECkRJmYztoDtlixQfCkciku+MMSWq5wgUjkSKE4UjEcl3Bw4cIDExES8vL5o2bWp1OYXCMel8w4YN2O12i6sRkcuhcCQi+c7Ra9SoUSP8/f0trqZwNGjQAD8/P06cOMHu3butLkdELoPCkYjku5I23wjA29ubZs2aARpaEynqFI5EJN+VtPlGDpp3JFI8KByJSL5KTU1l48aNQMnqOQI9RkSkuFA4EpF8tXPnTk6ePEmpUqWcD2QtKRw9R7GxsaSkpFhcjYjklcKRiOQrR69JZGQkXl5eFldTuK688kqCgoI4c+YM27dvt7ocEckjhSMRyVcldb4RgIeHh3O7HftBRIoehSMRyVcl8Uq1Czm2W+FIpOhSOBKRfHPu3Dk2b94MKBytXbvW4kpEJK8UjkQk32zZsoXk5GTKly9P9erVrS7HEq1btwZg+/btnDp1yuJqRCQvFI5EJN84hpJatWqFzWazuBprhIaGEhYWht1uZ9OmTVaXIyJ5oHAkIvnGEY4cvSclleYdiRRtCkcikm8c82xK6nwjB4UjkaJN4UhE8sU///zDH3/8AZTMy/gvpHAkUrQpHIlIvtiwYQMAV1xxBRUqVLC4GmtFRkZis9nYv38/hw8ftrocEcklhSMRyRcaUvtPUFCQ89Epes6aSNGjcCQi+UKTsV1paE2k6FI4EpHLZoxRz9FFFI5Eii6FIxG5bHFxcSQmJuLl5UXTpk2tLsctXBiOjDEWVyMiuaFwJCKXzdE70qRJE/z9/S2uxj00btwYX19f/vnnH3bv3m11OSKSCwpHInLZ1v7wAwCt6te3uBL34e3tTfPmzQFYN306xMdbW5CI5JjCkYhcnuho1k2eDECrTz+F6GiLC3IfrQICAFj30ksQEaF9I1JEKByJSN7Fx5MyeDAb079tbQwMHapeEoD4eFr9+CMA6wDsdu0bkSJC4UhE8m7XLrYbw79AIFAHIDUVNMcGdu2iVfpE7FjgPGjfiBQRCkcikne1a7POZgOgJel/UDw9oVYtK6tyD7Vrc4XNRlngHLAVtG9EigiFIxHJu7Aw1l11FQCtIe3kP2kShIVZWpZbCAvD9tFHOO76tM5m074RKSIUjkTksqw9fhyAVs8/D/v2wcCBltbjVgYOpNXDDwOw7uabtW9EigiFIxHJs1OnTrF9+3YAWg8cqF6RTLTq1g2Aden7SUTcn8KRiOTZpk2bsNvthIWFERoaanU5bslxp+wdO3Zw4sQJi6sRkZxQOBKRPNPz1C6tUqVKVK9eHWMMGzZssLocEckBhSMRyTOFo5xx7B/H/hIR96ZwJCJ5YowhJiYGgLZt21pcjXtr06YNgHN/iYh7UzgSkTyJi4vj4MGDeHl50aJFC6vLcWuO8BgTE4NJvzGkiLgvhSMRyRNHL0jTpk0pVaqUxdW4t2bNmuHr68vRo0fZrTtki7g9hSMRyRMNqeWcr68vkZGRgIbWRIoChSMRyZM1a9YACkc5deHQmoi4N4UjEcm1M2fOsHnzZgDatWtnbTFFhGM/OUKliLgvhSMRybUNGzaQkpJCaGgo4eHhVpdTJDh6jrZt28bJkyctrkZEsqNwJCK5duF8I5vNZnE1RUNoaCgRERHY7XbWrVtndTkikg2FIxHJNc03yhvH/tLQmoh7UzgSkVy58OaPmm+UO479pUnZIu5N4UhEcmXv3r0kJibi7e1N8+bNrS6nSHH0HP3yyy/Y7XaLqxGRrLhFOJowYQI1atTAz8+PyMhIVq9enW37c+fOMWbMGCIiIvD19eWKK65g6tSphVStSMnmGBJq3rw5fn5+FldTtDRp0gR/f3/++ecf/vjjD6vLEZEsWB6OZs+ezciRIxkzZgyxsbF06NCBHj16EBcXl+Vrbr31Vn788Ueio6PZuXMns2bNom7duoVYtUjJpZs/5p23t7fzUSuadyTiviwPR2+++SYDBw5k0KBB1KtXj7fffptq1arx4YcfZtp+8eLFrFy5koULF9KtWzeqV69Oq1atNPdBpJBovtHl0bwjEfdnaTg6f/48GzduJCoqymV5VFRUlv+qmj9/Pi1atODVV1+latWqXHnllTz22GOcOXMmy/WcO3eOEydOuHyJSO6dOnWKX3/9FVDPUV7pTtki7s/LypUfPXqU1NRUQkJCXJaHhISQkJCQ6Wv+/PNPfvrpJ/z8/Jg7dy5Hjx7lgQce4O+//85y3tH48eMZN25cvtcvUtKsX7+e1NRUwsLCCAsLs7qcIskRjrZv387x48cpU6aMtQWJSAaWD6sBGW4iZ4zJ8sZydrsdm83GzJkzadWqFT179uTNN99k+vTpWfYePfHEEyQlJTm/Dhw4kO/bIFISaL7R5atUqRI1a9YEYO3atRZXIyKZsTQcVahQAU9Pzwy9RImJiRl6kxxCQ0OpWrUqwcHBzmX16tXDGEN8fHymr/H19SUoKMjlS0Ry7+effwY03+hyOfafY3+KiHuxNBz5+PgQGRnJ0qVLXZYvXbo0yz++7du35+DBg5w6dcq57I8//sDDw0Pd/CIFKDU11Xky79Chg8XVFG2O/Xep25aIiDUsH1YbNWoUU6ZMYerUqezYsYNHHnmEuLg4hg0bBqQNifXv39/Zvl+/fpQvX557772X3377jVWrVvF///d/3Hffffj7+1u1GSLF3rZt20hKSqJ06dI0adLE6nKKNEc4+uWXXzh//rzF1YjIxSydkA1w2223cezYMZ577jkOHTpEw4YNWbhwIREREQAcOnTI5Z5HpUuXZunSpQwfPpwWLVpQvnx5br31Vl544QWrNkGkRHD0crRt2xYvL8v/dBRpdevWpXz58hw7doyNGzdqDpeIm3GLv3APPPAADzzwQKY/mz59eoZldevWzTAUJyIFyxGONKR2+Ww2G1dddRXffPMNq1evVjgScTOWD6uJiPszxvDTTz8BCkf5xbEfHftVRNyHwpGIXNLevXs5ePAg3t7etG7d2upyioULw5EeQiviXhSOROSSHENqLVq00IUP+aRZs2aUKlWKf/75h99++83qckTkAgpHInJJmm+U/7y9vZ1zjXRJv4h7UTgSkUtSOCoYut+RiHtSOBKRbB0+fJg//vgD0J2x89tVV10FpIUjY4zF1YiIg8KRiGTLcTVVw4YNKVeunMXVFC9t2rTBy8uL+Ph49u/fb3U5IpJO4UhEsqVL+AtOQEAAzZs3B3RJv4g7UTgSkWxpvlHB0rwjEfejcCQiWTp58iSxsbGAwlFBcezXVatWWVyJiDgoHIlIllavXo3dbqdGjRqEhYVZXU6x1KFDB2w2G7///jsJCQlWlyMiKByJSDZWfPstAF1atbK4kuKrXLlyNG7cGIAVH3wA8fEWVyQiCkcikrnoaJZPnAhAly++gOhoiwsqvrpUrAjAihdegIgI7WsRi9lMCby5xokTJwgODiYpKYmgoCCryxFxP/HxJIWHU84Y7EA8UNXTE/btAw2v5a/4eOaHh3O9MVwJ7ATQvhbJVGGdv9VzJCIZ7drFqvRgVBuoCpCaCrt3W1tXcbRrFx2NwQP4AzgI2tciFlM4EpGMatdmRfr/dnYs8/SEWrUsKadYq12bMh4eNEv/djloX4tYTOFIRDIKC2N5eDgAXSDtZD1pkoZ5CkJYGEyeTBebDYDlNpv2tYjFFI5EJIO///6bzQcOAND5q6/S5r8MHGhtUcXZwIF0njYNgOXVqmlfi1hM4UhEMli1ahXGGOrWrUto377qxSgEHW68EU9PT/6MiyMuLs7qckRKNIUjEclgxYoVAHTu3NnSOkqSoKAgIiMjgf/2v4hYQ+FIRDJYvnw5AF26dLG4kpLFsb8d+19ErKFwJCIujh49yq+//gqo56iwKRyJuAeFIxFxsXLlSgAaNGhApUqVLK6mZGnfvj1eXl7s37+fvXv3Wl2OSImlcCQiLpYtWwao18gKpUuXplX6c+wcx0FECp/CkYi4WLp0KQDXXHONxZWUTN26dQP+Ow4iUvgUjkTEad++fezatQtPT0/1HFnEEUp/+OEH7Ha7xdWIlEyXFY4SExNJSEjIr1pExGKO3orWrVsTHBxscTUlU+vWrQkMDOTYsWPExsZaXY5IiZSncPTrr7/SoEEDQkNDqVq1KlWrVuWpp57i9OnT+V2fiBQiRziKioqyuJKSy9vb23nVmobWRKyRp3A0cOBAQkJC+Omnn4iNjeWFF15g0aJFtGjRgn/++Se/axSRQpCamsoPP/wAaL6R1Rz7X+FIxBo2Y4zJ7YsCAgLYuHEjdevWdS4zxnDLLbfg5+fHp59+mq9F5rcTJ04QHBxMUlISQUFBVpcj4hbWr19Pq1atCAoK4tixY3h5eVldUon1xx9/UKdOHXx8fPjnn38oVaqU1SWJuIXCOn/nqecosx4im83GSy+9xDfffJMvhYlI4XL0UnTt2lXByGK1a9cmPDyc8+fPs2rVKqvLESlxchyOevXqxZNPPskXX3zBsGHDeOSRRzh8+LBLm6SkJMqWLZvvRYpIwfv+++8BDam5A5vNpqE1EQvl+J+HjRo1YtOmTUybNs0ZimrWrMmtt95K06ZNSU1NZdq0abz11lsFVqyIFIxTp06xZs0aQJOx3UVUVBTR0dEKRyIWyNOco8OHDxMbG8vmzZudX7t378bT05M6deo4n8vkrjTnSMTVggUL6N27N9WrV+fPP//EZrNZXVKJd+zYMSpWrIgxhoMHDxIaGmp1SSKWK6zzd54mFoSEhNC9e3e6d+/uXHbmzBm2bNnCli1b8q04ESkcF94VW8HIPZQvX57mzZuzceNGfvjhB+6++26rSxIpMfLtDtn+/v60adOGoUOH5tdbikgh0f2N3JPjeGhoTaRw6fEhIiVcXFwcv/32Gx4eHnTt2tXqcuQCjnC0ZMkSPUpEpBApHImUcIsWLQKgTZs2lCtXzuJq5ELt2rUjMDCQxMRENm3aZHU5IiWGwpFICbdw4UIAevbsaXElcjEfHx/nJf2O4yQiBU/hSKQEO3v2rPORIb169bK4GsmM47gsWLDA4kpESg6FI5ESbNWqVfz777+EhobSpEkTq8uRTDiuCl6/fj2JiYkWVyNSMigciZRgjt6Inj176hJ+N1WlShWaNWuGMYbFixdbXY5IiaBwJFKCOeaxaEjNvTmOj+YdiRQOhSOREmrXrl3s3r0bb29vunXrZnU5kg3HZPklS5aQkpJicTUixZ/CkUgJ5RhS69ixI4GBgRZXI9lp1aoV5cuX5/jx48TExFhdjkixp3AkUkLpEv6iw9PT0zkxW0NrIgVP4UikBDp16hQrV64EFI6KCsdxUjgSKXgKRyIl0I8//sj58+epWbMmderUsbocyYFrr70WDw8Pfv31Vw4cOGB1OSLFmsKRSAn07eefA9CzY0ddwl9ElC9fnjZt2gDw7RtvQHy8xRWJFF8KRyIlTOpHHzE/PRxdP2MGREdbXJHk1PWhoQB88847EBGhYydSQGzGGGN1EYXtxIkTBAcHk5SURFBQkNXliBSe+Hh+Dg/nKmMIBo4A3p6esG8fhIVZXJxkKz6eP8LDqWMM3qQdu2AdOylhCuv8rZ4jkZJk1y7mpf97qDfgDZCaCrt3W1mV5MSuXVxpDPWAZGAR6NiJFBCFI5ESxNSqxdz0/7/BsdDTE2rVsqYgybnatcHDw3nc5oGOnUgBUTgSKUF+O3GCPYAvcC2knVwnTdKwTFEQFgaTJ3ODR9qf7YXAufff17ETKQAKRyIlyLx58wDodvXVBC5fnjZfZeBAS2uSXBg4kBZ791KlQgVOAsurV7e6IpFiSeFIpARxhKMbbr8dOndWr0MR5BEezvW33AL8dzxFJH8pHImUEAcOHGDDhg3YbDb69OljdTlyGW644QYAvvnmG+x2u7XFiBRDCkciJcT8+fMBaNeuHSEhIRZXI5ejc+fOBAUFkZCQwLp166wuR6TYUTgSKSGcQ2rpvQ5SdPn4+DiftaahNZH8p3AkUgIcO3aMFStWAHD99ddbW4zkC0fInTNnDiXwXr4iBUrhSKQEmDdvHikpKTRt2pTatWtbXY7kg169euHn58fu3bvZsmWL1eWIFCsKRyIlwBdffAHALelXOUnRV7p0aXr16gX8d3xFJH8oHIkUc0ePHuXHH38EFI6Km1tvvRVIC0caWhPJP24RjiZMmECNGjXw8/MjMjKS1atX5+h1P//8M15eXjRt2rRgCxQpwubOnUtqairNmjXTkFox06tXL/z9/dmzZw+xsbFWlyNSbFgejmbPns3IkSMZM2YMsbGxdOjQgR49ehAXF5ft65KSkujfvz9XX311IVUqUjQ5hlwcvQxSfAQEBNC7d29AQ2si+clmLO6Lbd26Nc2bN+fDDz90LqtXrx433HAD48ePz/J1t99+O7Vr18bT05N58+axefPmHK/zxIkTBAcHk5SURFBQ0OWUL+LWjhw5QuXKlbHb7ezevZsrrrjC6pIkn3311Vfccsst1KhRgz179mCz2awuSaTAFNb529Keo/Pnz7Nx40aioqJclkdFRbFmzZosXzdt2jT27NnDs88+m6P1nDt3jhMnTrh8iZQEX3/9NXa7ncjISAWjYqpnz56UKlWKvXv3snHjRqvLESkWLA1HR48eJTU1NcPdekNCQkhISMj0Nbt27WL06NHMnDkTLy+vHK1n/PjxBAcHO7+qVat22bWLFAUaUiv+SpUq5XwcjIbWRPKH5XOOgAzdwMaYTLuGU1NT6devH+PGjePKK6/M8fs/8cQTJCUlOb8OHDhw2TWLuLvDhw87b/yoq9SKN121JpK/ctb1UkAqVKiAp6dnhl6ixMTETJ/9dPLkSTZs2EBsbCwPPfQQAHa7HWMMXl5efP/993Tt2jXD63x9ffH19S2YjRBxU3PmzMFut9OyZUtq1KhhdTlSgHr06EFAQAD79+9n7dq1tGnTxuqSRIo0S3uOfHx8iIyMZOnSpS7Lly5dSrt27TK0DwoKYuvWrWzevNn5NWzYMOrUqcPmzZtp3bp1YZUu4vY+/fRTIO3iBSne/P39nY8TmTlzprXFiBQDlg+rjRo1iilTpjB16lR27NjBI488QlxcHMOGDQPShsT69+8PgIeHBw0bNnT5qlSpEn5+fjRs2JCAgAArN0XEbezevZuYmBg8PDy44447rC5HCsFdd90FwOeff05ycrLF1YgUbZYOqwHcdtttHDt2jOeee45Dhw7RsGFDFi5cSEREBACHDh265D2PRMSVo9eoW7duhIaGWlyNFIZu3boREhLC4cOHWbx4sXOStojknuX3ObKC7nMkxZkxhtq1a7Nnzx4++eQTZ4+CFH+jRo3irbfe4pZbbtGVa1IslYj7HIlI/vvll1/Ys2cPAQEB3HjjjVaXI4Xo7rvvBmD+/PkcP37c2mJEijCFI5Fi5pNPPgHgpptu0jy8EqZp06bUr1+fc+fOMWfOHKvLESmyFI5EipHz588ze/ZsAA2nlUA2m83Ze+QIySKSewpHIsXIwoUL+fvvvwkNDdVDmUuoO++8E5vNxsqVK9m/f7/V5YgUSQpHIsXIJ5MnA9CvTx88PT0trkasUK1aNTp37gzAzOefh/h4awsSKYIUjkSKiaNvv813ixYBcPdHH0F0tMUViVXuTr8VyvToaEx4uD4LIrmkS/l1Kb8UB/HxvB0eziPG0BzYCODpCfv2QViYtbVJ4YqP51R4OKHGcApYCXTUZ0GKCV3KLyI5Zv74gynp/84Z5FiYmgq7d1tWk1hk1y5KG4PjoTEfgT4LIrmkcCRSDKw9dYrtgD/gfFiIpyfUqmVdUWKN2rXBw4PB6d9+Bfzj4aHPgkguKByJFAPR334LwC02G2UgLRhNmqRhlJIoLAwmT6alhweNgLPAZ7ffrs+CSC4oHIkUcSdPnmTWrFkADPziC1i+PG1+ycCB1hYm1hk4ENv+/QwePhyAj7ZvpwROLxXJM4UjkSLuiy++4PTp09SuXZsOfftC587qJRAIC+POsWPx9fVly5YtbNy40eqKRIoMhSORIm7KlCkADBo0CJvNZnE14k7KlStH3759gf8+JyJyaQpHIkVYbGwsv/zyC97e3vTv39/qcsQNDR6cNjX7s88+49SpUxZXI1I0KByJFGEffPABAH379qVy5coWVyPuqFOnTtSqVYuTJ0/y2WefWV2OSJGgcCRSRP3999/Ok92DDz5ocTXirmw2Gw888AAA7733niZmi+SAwpFIETVt2jTOnDlDkyZNaN++vdXliBu79957KVWqFNu2bWPVqlVWlyPi9hSORIogu93Ohx9+CKT1GmkitmSnTJky3H333UBa75GIZE/hSKQIWrJkCXv27CE4OJh+/fpZXY4UAY6h13nz5nHgwAGLqxFxbwpHIkWQYyL2vffeS0BAgMXVSFHQqFEjOnfuTGpqKhMnTrS6HBG3pnAkUsTs3LmTBQsWuEy0FcmJhx56CIDJkydz9uxZi6sRcV8KRyJFzFtvvQVAnz59qF27tsXVSFFy/fXXExYWxtGjR5k5c6bV5Yi4LYUjkSLkyJEjzJgxA4BHH33U4mqkqPHy8uLhhx8G4I033sBut1tckYh7UjgSKUImTJjA2bNnadGiBR06dLC6HCmChgwZQlBQEDt27GDhwoVWlyPilhSORIqIM2fOOCdiP/roo7p8X/IkKCiIoUOHAvDaa69ZXI2Ie1I4EikiPv30U44cOUJ4eDg333yz1eVIETZixAi8vLxYtWoV69ats7ocEbejcCRSBKSmpvLGG28AMHLkSLy8vCyuSIqysLAw5/2xXn/9dYurEXE/Ckci7i4+njnPPcfOnTspW7YsAwcOtLoiKQYee+wxAObMmcOuTz6B+HiLKxJxHwpHIu4sOhp7eDgvPPccAA936EBQUJDFRUlx0KhRI3o2aoTdbmd8//4QEQHR0VaXJeIWbKYEPqL5xIkTBAcHk5SUpBONuK/4eIiIYL7dzvVAILDfw4Oy+/dDWJjV1UlRFx/PL+HhtDUGT2AXUMPTE/bt0+dL3FZhnb/VcyTirnbtwtjtPJ/+7UNAWbsddu+2siopLnbtoo0xRAGpwMsAqan6fImgcCTivmrX5nubjQ1AKeARAE9PqFXL2rqkeKhdGzw8eCb922lAnIeHPl8iKByJuC1TtSrP1awJwDCgoqcnTJqkIQ/JH2FhMHky7T096QokA6906qTPlwgKRyJua9GiRazZswc/X18e++qrtLkgulJN8tPAgbBvH8+kP69vys8/c+DAAYuLErGewpGIG7Lb7Tz55JMADB8xgtC+ffUveikYYWF0GjmSzp07c/78ecaNG2d1RSKWUzgScUNffvklW7ZsISgoiMcff9zqcqQEeOmllwCYNm0av//+u8XViFhL4UjEzSQnJ/P0008DaTfqK1++vMUVSUnQtm1brr/+eux2O0899ZTV5YhYSuFIxM3MmDGDXbt2UbFiRUaOHGl1OVKCvPjii9hsNubMmcP69eutLkfEMgpHIm7k9OnTjB07FoAnn3ySwMBAawuSEqVBgwb0798fgNGjR1tcjYh1FI5E3Mhrr73GX3/9RY0aNRg2bJjV5UgJNG7cOHx8fFi2bBkLFy60uhwRSygcibiJ+Ph4Xn31VQBeffVV/Pz8LK5ISqKIiAgefvhhAEaNGkVycrLFFYkUPoUjETfx5JNPcubMGa666ir69u1rdTlSgo0ZM4aKFSuyc+dOPvjgA6vLESl0CkcibmD9+vV88sknALz55pvYbDaLK5KSLDg4mBdffBFIG2Y7evSoxRWJFC6FIxGL2e1251Vpd999Ny1btrS2IBHgvvvuo0mTJhw/fpxnn33W6nJECpXCkYjFpk2bxpo1ayhdurTzRnwiVvP09OTtt98GYOLEicTGxlpbkEghUjgSsdDRo0f53//+B6QNX4TpESHiRjp37sytt96K3W5n2LBhpKamWl2SSKFQOBKxSnw8j/fvz99//03jxo0ZMWKE1RWJZPD2228TFBTEunXrmPTooxAfb3VJIgVO4UjECtHR/BQeztRFiwD4sGdPvLy8LC5KJKPQ0FBe6t0bgCfeeYeD4eEQHW1xVSIFy2aMMVYXUdhOnDhBcHAwSUlJBAUFWV2OlDTx8SSHh9PcGLYBg4CPPD1h3z7QsJq4m/h4UsPDaWsM64Fbgdn6vIpFCuv8rZ4jkcK2axevpAejCsDLAKmpsHu3tXWJZGbXLjyNYRJpJ4wvgEX6vEoxp3AkUsh+TUnhufT/fxsoD+DpCbVqWVaTSJZq1wYPD5oBI9MXDQGSKlWyriaRAqZwJFKIkpOTuXf0aJKB64F+kBaMJk3SEIW4p7AwmDwZPD15DqgFxAOPvP66xYWJFByFI5FC9Morr7Bp0ybKli3LxI0bsS1fnjZ3Y+BAq0sTydrAgbBvHwHLlzP966+x2WxMmzaN7777zurKRAqEJmRrQrYUkl9//ZUWLVqQnJzMp59+yp133ml1SSJ58thjj/HGG28QGhrKtm3bKFeunNUlSQmhCdkixci5c+fo378/ycnJXH/99fTr18/qkkTy7Pnnn6du3bocOnRI9+eSYknhSKQQPPHEE2zZsoUKFSowceJEPVhWijR/f3+mT5+Oh4cHM2fO5LPPPrO6JJF8pXAkUsAWL17MW2+9BaQ9R61y5coWVyRy+Vq3bs3TTz8NwLBhw/jzzz8trkgk/ygciRSgw4cPM2DAAACGDx9O7/Q7DYsUB0899RRXXXUVJ0+e5I477iA5OdnqkkTyhcKRSAExxnDvvfeSmJhIw4YNefXVV60uSSRfeXl5MXPmTMqUKcO6det45plnrC5JJF8oHIkUkFdffZVFixbh5+fHrFmz8PPzs7okkXwXHh7OlClTgLRbVXz//fcWVyRy+RSORPJbfDzL3niDJ598EoB33nmHhg0bWlyUSMHp27cvQ4cOxRhDv379iFu7FpYvh/h4q0sTyRPd50j3OZL8FB3NX4MH08wYjgD3tGvH1J9+0tVpUuydOXOGq666ik2bNtECWA34eXik3V1bNzmVfKL7HIkUNfHxnB88mFvSg1FTYMIvv2D76y+LCxMpeP7+/sx5/33KARuAEQB2Owwdqh4kKXLcIhxNmDCBGjVq4OfnR2RkJKtXr86y7ddff80111xDxYoVCQoKom3btixZsqQQqxXJwq5dPGYMMUAZYA7gb7fr6eVSYlQ/e5ZZgA34CIgGSE3V74AUOZaHo9mzZzNy5EjGjBlDbGwsHTp0oEePHsTFxWXaftWqVVxzzTUsXLiQjRs30qVLF/r06UNsbGwhVy7ianpsLO+l//8nQE1Ie6hsrVrWFSVSmGrXJsrDg+fTv30QWO/hod8BKXIsn3PUunVrmjdvzocffuhcVq9ePW644QbGjx+fo/do0KABt912W44vI9WcI8lvq1atolu3biQnJ/OMzcY4Y9KC0aRJmm8hJUt0NPYhQ7jRbmc+UDk4mHVbt1KtWjWrK5NioETMOTp//jwbN24kKirKZXlUVBRr1qzJ0XvY7XZOnjyZ7YMPz507x4kTJ1y+RPLLnj17uOmmm0hOTuaWW27h2X370q7U2bdPwUhKnoED8di/n0+++46GdeqQkJTEddddx6lTp6yuTCTHLA1HR48eJTU1lZCQEJflISEhJCQk5Og93njjDU6fPs2tt96aZZvx48cTHBzs/NK/YCS/JCUl0adPH44dO0aLFi3SnjcVHg6dO0NYmNXliVgjLIygXr34dvFiKlWqxObNm7nzzjtJTU21ujKRHLF8zhGQ4TJnY0yOLn2eNWsWY8eOZfbs2VSqVCnLdk888QRJSUnOrwMHDlx2zSLJycncdttt7NixgypVqvDNN99QqlQpq8sScRvVq1dn3rx5+Pr6Mn/+fEaPHm11SSI5Ymk4qlChAp6enhl6iRITEzP0Jl1s9uzZDBw4kC+++IJu3bpl29bX15egoCCXL5HLYYxh6NChLFmyBH9/f+bPn0+VKlWsLkvE7bRt25bp06cD8Prrr7vMLxVxV5aGIx8fHyIjI1m6dKnL8qVLl9KuXbssXzdr1izuuecePvvsM3r16lXQZYpkMGbMGKZNm4aHhweff/45kZGRVpck4rZuv/12nnvuOQAefPBBvvrqK4srEsme5cNqo0aNYsqUKUydOpUdO3bwyCOPEBcXx7Bhw4C0IbH+/fs728+aNYv+/fvzxhtv0KZNGxISEkhISCApKcmqTZAS5t1333VeSTlp0iSuu+46iysScX9PPfUUw4YNwxjDnXfeyY8//mh1SSJZM27ggw8+MBEREcbHx8c0b97crFy50vmzAQMGmE6dOjm/79SpkwEyfA0YMCDH60tKSjKASUpKysetkGLvwAEz66mnjM1mM4B54YUXrK5IpEhJSUkxN998swFM6dKlzfrvvjNm2TJjDhywujQpIgrr/G35fY6soPscSa5FR/Pd4MHcZAzJwENdu/LuDz/omWkiuXTu3Dl69uzJsmXLqEDaM9jq6hlskkOFdf5WOFI4kkuJj2dxeDjXG8N54HbgUw8PPPfv1+X6Inlw8vff6VKvHhuBysAKoI6nZ9q9wfQ7JdkoETeBFCkKls6axQ3pwagv8DHgqWemieRZ4KFDLAYaAQlAF+APPYNN3IjCkUg2li1bxnVPP8054AZgFuANemaayOWoXZsKHh78CDQEDpEWkHZ5elpbl0g6hSORLCxZsoTevXtz9tw5+jRpwmwPj/+C0aRJ6v4XyauwMJg8mYqenvwINAAOAl3uuIM//vjD4uJEFI5EMvXll1/Sp08fzpw5Q69evfhy7Vp89u/XM9NE8svAgbBvH5WWL2dZbCz169fnr7/+4qqrrmLjxo1WVyclnCZka0K2XGTKlCkMHToUu93Obbfdxscff4yPj4/VZYkUa0eOHKFHjx5s3LiRwMBAvvnmG7p06WJ1WeJmNCFbpJAZY3jppZcYPHgwdrudIUOGMHPmTAUjkUJQsWJFli1bRpcuXTh58iTdu3fn66+/trosKaEUjkTi40leupRBd9zBmDFjAPjf//7HxIkT8dQEUZFCExQUxMKFC7nppps4f/48t9xyC++++y7mwIG0Ie34eKtLlBJCw2oaVivZoqM5PngwNxvDj4CHzcY7777LQw89ZHVlIiVWamoq999/Px999BEAQ4D3AW/dLLLE07CaSEGLj2fn4MG0Sw9GAcB8m42HbrjB4sJESjZPT08mTZrEa2PGYAMmA1HAMbsdhg5VD5IUOIUjKbG+jo6mpTHsAKoCPwG9dHNHEbdgs9l47OqrmQ+UJu0u2q2BrbpZpBQChSMpcVJSUnj88cfpO3YsJ4GOwAagKejmjiLupHZtent4EANUB/YArYDoDRsogTNCpBApHEmJ8tdffxEVFcWrr74KwKhrruEHDw8qg27uKOJu0m8W2dDTk/VAd+AsMOj//o8BAwZw+vRpiwuU4krhSEqMr776ikaNGrF8+XICAgKYPXs2b3z/Pd66uaOI+0q/WWSF5ctZsH8/L730Eh4eHnzyySe0bNmSzZs3W12hFEO6Wk1XqxVf8fGwaxcnQ0N5+NVXmTZtGgCRkZHMnDmTOnXqWFygiOTFypUrueOOOzh06BDe3t6MGzeO//u//8MrIQF27YLatdUDXEwV1vlb4UjhqHiKjoYhQ/jJbuce0uYq2Gw2Ro8ezdixY3VjR5EiLjExkaFDhzJv3jwA2tSsycd791LbGNAl/8WWwlEBUjgq5uLjOREezhPGMCF9UTjwyZdf0vHmm62sTETykTGGTz75hOEPPcSJkyfxB14GHiTtdgDs26cepGJG9zkSyaMFn3xCgwuC0SBgC9CxQgULqxKR/Gaz2ejfvz9bJ0/mauAM8DDQDtiiS/7lMigcSbFx+PBh7rzzTno/+STxQE3gR+AjoIwu0RcptsKvuorvbTYmAEHAOiASePyLL/j333+tLU6KJIUjKfJSUlJ49913qVOnDp999hkeHh48du21bPXwoCvoEn2R4i4sDI+PPuJ+T092ADcDqcCrH35Iw4YNWbhwocUFSlGjcCRF2qpVq2jevDkPP/wwSUlJREZGsnbtWl5bvJhSukRfpORIv+S/yvLlfHngAPPnz6datWrs3buXXr160adPH3ZrmE1ySBOyNSG76ImP52BMDP+bNYuZc+cCUK5cOV566SUGDRqUNhFTREq8U6dOMXbsWN555x1SUlLw8fFh1KhRjLnnHkofPKhL/osgXa1WgPK6c40x2Gy2AqxMLuXMhx/y9oMPMt4YTpI2IXPIkCG8+OKLlC9f3uryRMQN/f7774wcOZIlS5YAUAV4Fehns2H76CP1LFsot+dVXa3mZl5//XX8/Py47bbb9EwfC9jtdj555x3qPPAAT6YHo1bAOpuNiU89pWAkIlmqW7cuixYtYv7UqVwBHATuAtoYw8ohQ9JuGCuF6tSpUzRr1owyZcqwYMECq8vJQOEoB5KSkhg7diznz5/niy++4LvvvrO6pBJl+fLltGzZkv4jR3IAqAZ8AsQALex2Xa4rIpdks9noU70624HxQABpV7V1ttvpc+utbN++3doCS5jXX3+dzZs3c+LECZ566im363RQOMqBFStWuDzgcMaMGRZWU3Js2rSJ3r1707VrVzZt2kRg6dKMt9nYSdq/+jwg7Uo0XaIvIjlRuza+Hh6MBnYD9wOewHcxMTRu3JiBAwcSr16kAmeM4eOPP3Z+v3nzZv766y8LK8pI4SgHNmzYAECjRo0A+P7770lJSbGypOIpPh6WL+fXpUu58cYbiYyMZMGCBXh6evLggw+ye88eRn/0Ef6OCde6RF9EciMsLO2xIp6eVAYmeHry2wsv0LdvX+x2O1OnTqVWrVqMGDEi7WSd/jdJw27567fffmPv3r34+flRK/0ft47zrLtQOMqBTZs2ATB48GCCg4M5efKkngSd36Kj2RYezq1du9IkKop58+Zhs9m466672LFjB++//z6VKlVyXq6rS/RFJE8u+hty5ZgxfPXVV8TExNCxY0fOnTvHe++9R83q1XmwWjXiunaFiIi05zVKvvjhhx8A6NixIx07dgT+O8+6C4WjHPjzzz8BqF+/Ph06dADShtrk8hljWDZ7Nj0GDaKRMXwJ2IDbbDa2//gjn3zyCbVr13Z9UVgYdO6sHiMRyZtM/oa0adOGFStW8OOPP9KxdWvOp6QwAagFDLbb2aGJ2/nm559/BqBLly7UqVMH+O886y4Uji7BGMO+ffsAqF69Op06dQJg5cqVFlZV9J0/f57PP/+cFi1acPXtt7OYtA/jLaQ9B+1zY6in2yaISCGy2Wx07dqVlePHswLoAiQDU4D6djs9+vZlyZIlbjd5uKhZu3YtAK1bt6Z69eoAzvOsu1A4uoTExETOnj2LzWajWrVqzi7AmJgY/YLk1AXj9n/++SejR4+mWrVq3HHHHWzatAl/Pz8eBP4AvgAagSZai4h1atemk4cHy4DVwA2k9WgvXreO7t2706BBA959912OHTuW1l5zk3IsISGBuLg4bDYbLVq0UDgqqvbv3w9AlSpV8PHxoUmTJvj4+HDs2DH27NljcXVFQHQ0Z8PD+aprV6KqVeOKK67glVdeITExkdDQUMaNG0fcgQO8P2UKV2iitYi4gwsmbl8FzPX0ZPf48YwcOZLAwEB27NjBww8/TJUqVbi9VSuWhodj19ykHFm3bh2QNk0lMDCQiIgIAA4ePMj58+etLM2FwtElHD58GIDQ0FAAfH19adasGfBf16BklJKSwpJPP+XeQYMIMYZbgKWk/evr2k6d+Prrr9m/fz/PPPMMFSpU0ERrEXEvF/1Nqjl6NG+99Rbx8fG8//77NGvWjPPnzzN7/XqijKEm8KTdzlbNTcqWIxy1bt0agIoVK+Lh4YExhqNHj1pZmguFo0tITEwESLtSKp3joCocubLb7axevZoHH3yQKlWq0P3uu5kOnADCgCeAPcDisWO58cYb8fb2dn0DTbQWEXeSyd+koKAgHnzwQTZt2sSmSZN4ECgD7Cft5pKN7XYadujAiy++qNGFTDjOm61atQLAw8ODihUrAv+db92BwtElZBeOHAm4REofYzcHDrBp0yb+7//+j+rVq9OxY0cmTJjAkSNHqFi+PA+QNma/H3gJqKG5RCJSTDTr2ZP3PTw4CHxO2twkH2D7vn089dRT1KpVi1atWvHWW2/pvkmk/QN6/fr1wH/nUfjv/OpO4cjL6gLcXXbhKDY2lnPnzuHr62tJbZaJjub3wYOZZQyfkzaR2iEoKIibbrqJ22+/nauvvhqvGTNg6FBITdVcIhEpXtLnJvkPHcptqanc5unJ8bfeYm7p0syaNYsff/yR9evXs379ekaNGkV74Gagr81GtRL4wNs//viDpKQk/P39adCggXO5wlERlFk4qlmzJhUqVODo0aNs2bLF2T1Y3P3xxx98OWUKX772GlsuWO4H9Ondmzvuu48ePXrg5+f33w8HDoRrr017/lmtWgpGIlK8XPQ3rkxYGPcC9957L4cPH+arr75i1owZ/Lx+PT8DPwOPGEObQYO4ed8+bh40yDkpubhzjLZERka6TKtwx3CkYbVLOHLkCIBzTBTS7oXhCETFbt7RRd2+O3bs4Pnnn6dx48bUqVOHp9KDkRfQC/gUSAS+ePRRbrzxRtdg5KC5RCJSnGXxNy4kJIQHH3yQn155hXjgHaADaRem/AI89sILVK9enVatWvHaa6+53gixGA7BOcLRxR0KjvOr43zrDhSOLuH48eMAlC1b1mV5sQxH0dHYw8NZ17Urz1SrRoOqValfvz7PPPMMW7duxcvLi+6dOzPFZiMB+A64EwjUPCIRkazVrk1VDw9GAKuAv4D3bTY6t22Lh4cH69ev53//+x9XXHEFkZGRvNy3L7vCw6GY3R4gq3DkOL86zrfuQOHoEhwHq0yZMi7Li9wVa9n8K+Tw4cN8/sEH9B80iMrG0Bp4Hvjt4EG8vb3p2bMnU6dO5fDhwyxavpyBH31Eed2TSEQkZy64bxJAqKcnD370EcvXrOHgwYN8+OGHdO3aFQ8PDzZt2sQTX3/NlcZQG3jQbmfekCEk/fZb5u9dRHqYzp0753wmaVEIR5pzdAlZhSPHwd29ezfHjh2jfPnyhVxZLkRHw5AhYLdjbDb2vPACP1etyurVq1m1ahW7du1yaR4ERAG9gevmzKFsnz6u76d5RCIiuZPF382QkBCGDRvGsGHDOHLkCHNffpmv3nyTZcDu9K8JdjuejRoR2aIFbdu2pU2bNrRt25bwpUuxDR0Kdjt4eKQFMDed5L1lyxaSk5OpWLGi867YDo7zqzuFI5spgc/AOHHiBMHBwSQlJREUFJRlO2MMvr6+JCcnExcXR7Vq1Vx+fuWVV7Jr1y4WLVpE9+7dC7rsPEncvJl1zZuzzhjWAeuBvy9qY7PZaFS3Lt137KAn0A7whrR/5ezbp/AjIlJY4uMhIoITdjsrgO/Tv3Zl0jQUaAu0Sf+K9PCg1P79bvk3+7333mPEiBH06tWL7777zuVn33zzDTfccANt2rQhJiYm2/fJ6fn7cqnnKBtnzpwhOTkZyNhzBGlDa7t27WLt2rXWhaP4eNi1C2rXxlStys6dO/nxxx9ZuXIl69atcz7+5EK+QPMGDejYuzcdOnSgXbt2ad2a0dG67F5ExErpQ3BBQ4dyXWoq16X/Ld7frRs///wzMTExxMTEsGXzZg6lpvI18HX6Sz3tdpp07Uqba66hdevWtG3bllq1amGz2VzOFVb8XV+9ejUAbdq0yfAz9Ry5iZwmz4MHD1K1alU8PDxISUlJ+4Bd4P3332f48OF0796dRYsWFXTZGUVHs3/wYJYZw4/AsuBgDiUluTSx2WzUM4ZW4Pxq5OGBT1b/uoiP13CZiIjVLvG3+N9du9hQpw5rjeEXIAY4lMnbVK5cmU7VqtFpwwY6GUM9mw1bId9jyRhDSEgIR44c4aeffqJ9+/YuP9+yZQtNmzalcuXKHDqU2Vb8Rz1HbuDC+UYXByOAdu3aAfDTTz9x/vx5fHx88m/lWaT8+Ph4Vq5cyYoFC1g+axYuN6dPSsLX15f27dvTtWtX2rVrR2RkJEFffpnzHqGwMIUiERGrXeJvcanaten40Ud0TP/bbjw8iH/5ZX6pXp1ffvmFX375hQ0bNpCQkMDshARmp7+uojF0HDSITgcP0un662nYsCEeHhdcm1UAPUzbt2/nyJEjlCpVipYtW2b4uXqO3EROk+eaNWto3749NWrUcL3/RDq73U5oaCiJiYksW7aMLl26XHrlF33wTp06xcGDB0lISODUqVP8+++/nF64kH+nT+dfYzhts5HUrRs7vLzYunUr8RddkeBJWm9QV+BqoO2SJfhFRWW+XvUIiYgUL9n8bT9z5gxrJ05k5ahRrCStd+nsRS8vV64cHTp0oF69elSNi6PirFn4GoO3zYbPyJH43Xgjvr6+lClThurVq//XCZCLEOWYb3TNNdfw/fffZ/j58ePHnVesnT17NtunThRWzxGmBEpKSjKASUpKyrbdkiVLDGAaN26cZZu7777bAOZ///vfpVc8ZYoxHh5mP5gxYBpVrWpsNpsBcvzl4eFhWrRoYR4bOtR8Z7OZJDDG8eXpacyBA7ndHSIiUlwdOGCMh4cxYM6CWQ3mBZvNXNOhgwkICMjV+cfT09O0b9/evH7LLea4zZZ23vHwSDu3ZePqq682gHn11Vcz/XlycrJzHUePHs32vXJ6/r5cGlbLxqlTpwAoXbp0lm169OjBJ598wjdz5vDytddiu/LKLOfynBw8mLHG8A6QCvDXXwAEBgYSEhJCUFAQAcnJlNq6lQCgVPpXaaDWyJE06tuXxo0b/5eWW7bUBGoREcma4x5LQ4fim5rKVZ6eXDVpEmMGDiQ5OZmNGzfy888/s//nn/lr7lyOAcnAeeAccK5aNc55eHD06FFOnz7Nzz//zM+k3QvvWWCE3Y7n0KFptynI5PxzbOtWVixfDsBNN92UaYleXl74+flx9uxZTp065R63xinQ6OWmcpo8Z8yYYQBzbcuWWfbIJCUlGX8fHwOYX7JJ0TumTze1LkjgXcDMBJMwZ45rwwtSfo56hA4cMGb5cvUYiYhI1i51rrjEucdut5s///zTfPDww6beBeeyDmAOQdp7X2zKFDMlfXSkCWTbw1SxfHkDmK1Ll2a7GYXVc6Q7ZGfj5JIlAJRevz7LW7gHnThB3/PnAZgKaTfjGjrU5W6lixYtovXw4ewGwoGFwDKgn6cnIRc/tPaiO6nmaAK1nlsmIiLZudS54hLnHpvNRo0aNXjgscfYZrMxibRRjdWkzXv9Nf22N07x8ZjBg3k3fVrzHZDh3OgUHU3pY8cAOBUV5RaPSynZ4Sh9WCtT8fGcmjULgEDINPQAsGsXg9L/dzqkXT2Wmgq7d2OM4Y033qB3796cOHmSDrVrs8HDgx6QfegZODDt5ovLl6f9103veCoiIsVITs49YWF4fPQRQzw92QRcCRwA2t14I3Pnzv2v3a5dLDGGX4EAYAg4z40u4uNhyJC08yxwypisQxRkf97ORyU6HK2pXz/rhLprV9pBIi0dA5kf2Nq16WizEUXaGO0DwHkPD46WK0e/fv147LHHsNvtDBw4kB+2baPi/v05Cz3qERIRkcKWk3NPeoiqvXw5v2zdSrdu3Th9+jQ33XQTTz/9NGfPnuVo+fIMT28+GCgLaZ0CFz+kfNcusNud59lTkPm5FiA6mq/q17+87cupAh20c1OOMcsXs5vPc+CAeTh9THX0peb+TJlitnt4GL/09iFBQcbX19cAxsvLy7z77rvGbrcX/IaJiIgUsuTkZDNy5EjnPKSgoCBTpkwZA5hqYP5xnD8zm3OUPtcpKv21H2d1rk1vd0t6O805KmhZJdSwME5ddRWQPqx2iWGw+vv3M++VVyhftiyHT5zg3LlzNG3alJUrVzJ8+PBMbyIpIiJS1Hl5efHWW28xa9YswsLCOHHiBMePH6dOnTosWbaMMpcYpmPy5P+G1Wy2zM+16T1MhaVEX8pvIPNuvnSnqlYFoPRDD8Hjj2ffzRgWxrX/+x/7H3yQDRs2EBISQp06dRSKRESkRLj99tvp27cv27Zt4+zZs7Rs2RIvrxzEjIEDKb14MXz1FaeefDLzEFW7Nnh4YAopICkcZXMlmPM+R82a5XjuT0BAAJ06dcqnCkVERIoOb29vmjVrluvXlQ4JAeCkRxYDWuk9TGbQoMx/ns9K9LCaeeyxbCdF//vvvwCUKlWqsEoSEREpcQICAoD/zruZGjgQevQolHpKdjgKDMz252fOnAHAz8+vMMoREREpkfz9/YFLhCPApLcraCU6HF2KIxz5F9LBEBERKYkcIzSXDEfpt9gpaCU6HF1qJysciYiIFDxHOHKcd7OicFQILrWTz549CygciYiIFKSc9hwVFoWjbKjnSEREpOBpWC0TEyZMoEaNGvj5+REZGcnq1auzbb9y5UoiIyPx8/OjZs2aTJw4sUDq0oRsERGRgpfjCdklJRzNnj2bkSNHMmbMGGJjY+nQoQM9evQgLi4u0/Z79+6lZ8+edOjQgdjYWJ588klGjBjBnDlzcr1u9RyJiIhYT8NqF3nzzTcZOHAggwYNol69erz99ttUq1aNDz/8MNP2EydOJDw8nLfffpt69eoxaNAg7rvvPl5//fVcrzu7cJScnExqaiqgcCQiIlKQNKx2gfPnz7Nx40aioqJclkdFRbFmzZpMXxMTE5Oh/bXXXsuGDRtITk7O1fqz28kXzphXOBIRESk47haOLH18yNGjR0lNTSUk/bbhDiEhISQkJGT6moSEhEzbp6SkcPToUUJDQzO85ty5c5w7d875fVJSEpB2NdqJEycyXc+RI0ec/3/+/PlcBy8RERHJGXv6M9NOnz6d5XkZcJ6LCzokucWz1S5+OKsxJtsHtmbWPrPlDuPHj2fcuHEZlr/xxhu88cYbl6yvTJkyl2wjIiIilycpKYng4OBLtjt27FiO2uWVpeGoQoUKeHp6ZuglSkxMzNA75FC5cuVM23t5eVG+fPlMX/PEE08watQo5/fHjx8nIiKCuLi4At257ubEiRNUq1aNAwcOEBQUZHU5hUbbre0uCbTd2u6SICkpifDwcMqVK1eg67E0HPn4+BAZGcnSpUu58cYbncuXLl3K9ddfn+lr2rZty7fffuuy7Pvvv6dFixZ4e3tn+hpfX198fX0zLA8ODi5RHyqHoKAgbXcJou0uWbTdJUtJ3W4Pj4KdMm351WqjRo1iypQpTJ06lR07dvDII48QFxfHsGHDgLRen/79+zvbDxs2jP379zNq1Ch27NjB1KlTiY6O5rHHHrNqE0RERKQYsXzO0W233caxY8d47rnnOHToEA0bNmThwoVEREQAcOjQIZd7HtWoUYOFCxfyyCOP8MEHH1ClShXeffdd+vbta9UmiIiISDFieTgCeOCBB3jggQcy/dn06dMzLOvUqRObNm3K8/p8fX159tlnMx1qK8603drukkDbre0uCbTdBbvdNlNYNw0QERERKQIsn3MkIiIi4k4UjkREREQuoHAkIiIicgGFIxEREZELFNtw9OKLL9KuXTtKlSqV48d/GGMYO3YsVapUwd/fn86dO7N9+3aXNufOnWP48OFUqFCBgIAArrvuOuLj4wtgC/Lmn3/+4e677yY4OJjg4GDuvvtujh8/nu1rbDZbpl+vvfaas03nzp0z/Pz2228v4K3Jubxs9z333JNhm9q0aePSprgd7+TkZB5//HEaNWpEQEAAVapUoX///hw8eNClnbsd7wkTJlCjRg38/PyIjIxk9erV2bZfuXIlkZGR+Pn5UbNmTSZOnJihzZw5c6hfvz6+vr7Ur1+fuXPnFlT5eZab7f7666+55pprqFixIkFBQbRt25YlS5a4tJk+fXqmv+tnz54t6E3Jldxs94oVKzLdpt9//92lXXE73pn9/bLZbDRo0MDZxt2P96pVq+jTpw9VqlTBZrMxb968S76m0H63TTH1zDPPmDfffNOMGjXKBAcH5+g1L7/8sgkMDDRz5swxW7duNbfddpsJDQ01J06ccLYZNmyYqVq1qlm6dKnZtGmT6dKli2nSpIlJSUkpoC3Jne7du5uGDRuaNWvWmDVr1piGDRua3r17Z/uaQ4cOuXxNnTrV2Gw2s2fPHmebTp06mcGDB7u0O378eEFvTo7lZbsHDBhgunfv7rJNx44dc2lT3I738ePHTbdu3czs2bPN77//bmJiYkzr1q1NZGSkSzt3Ot6ff/658fb2Nh999JH57bffzMMPP2wCAgLM/v37M23/559/mlKlSpmHH37Y/Pbbb+ajjz4y3t7e5quvvnK2WbNmjfH09DQvvfSS2bFjh3nppZeMl5eX+eWXXwprsy4pt9v98MMPm1deecWsW7fO/PHHH+aJJ54w3t7eZtOmTc4206ZNM0FBQRl+591Jbrd7+fLlBjA7d+502aYLf0eL4/E+fvy4y/YeOHDAlCtXzjz77LPONu5+vBcuXGjGjBlj5syZYwAzd+7cbNsX5u92sQ1HDtOmTctROLLb7aZy5crm5Zdfdi47e/asCQ4ONhMnTjTGpH0Yvb29zeeff+5s89dffxkPDw+zePHifK89t3777TcDuHwIYmJiDGB+//33HL/P9ddfb7p27eqyrFOnTubhhx/Or1LzVV63e8CAAeb666/P8ucl5XivW7fOAC5/hN3peLdq1coMGzbMZVndunXN6NGjM23/v//9z9StW9dl2dChQ02bNm2c3996662me/fuLm2uvfZac/vtt+dT1Zcvt9udmfr165tx48Y5v8/p30Mr5Xa7HeHon3/+yfI9S8Lxnjt3rrHZbGbfvn3OZUXheDvkJBwV5u92sR1Wy629e/eSkJBAVFSUc5mvry+dOnVizZo1AGzcuJHk5GSXNlWqVKFhw4bONlaKiYkhODiY1q1bO5e1adOG4ODgHNd3+PBhFixYwMCBAzP8bObMmVSoUIEGDRrw2GOPcfLkyXyr/XJcznavWLGCSpUqceWVVzJ48GASExOdPysJxxvSHuRos9kyDD+7w/E+f/48GzdudDkGAFFRUVluY0xMTIb21157LRs2bCA5OTnbNu5wXCFv230xu93OyZMnMzyg89SpU0RERBAWFkbv3r2JjY3Nt7ov1+Vsd7NmzQgNDeXqq69m+fLlLj8rCcc7Ojqabt26OZ8u4eDOxzu3CvN32y3ukO0OEhISAAgJCXFZHhISwv79+51tfHx8KFu2bIY2jtdbKSEhgUqVKmVYXqlSpRzXN2PGDAIDA7nppptclt95553UqFGDypUrs23bNp544gm2bNnC0qVL86X2y5HX7e7Rowe33HILERER7N27l6effpquXbuyceNGfH19S8TxPnv2LKNHj6Zfv34uD690l+N99OhRUlNTM/29zGobExISMm2fkpLC0aNHCQ0NzbKNOxxXyNt2X+yNN97g9OnT3Hrrrc5ldevWZfr06TRq1IgTJ07wzjvv0L59e7Zs2ULt2rXzdRvyIi/bHRoayuTJk4mMjOTcuXN88sknXH311axYsYKOHTsCWX8misvxPnToEIsWLeKzzz5zWe7uxzu3CvN3u0iFo7FjxzJu3Lhs26xfv54WLVrkeR02m83le2NMhmUXy0mby5HT7YaM9UPu6ps6dSp33nknfn5+LssHDx7s/P+GDRtSu3ZtWrRowaZNm2jevHmO3ju3Cnq7b7vtNuf/N2zYkBYtWhAREcGCBQsyhMPcvO/lKqzjnZyczO23347dbmfChAkuP7PieGcnt7+XmbW/eHleftcLW15rnDVrFmPHjuWbb75xCdBt2rRxueigffv2NG/enPfee4933303/wq/TLnZ7jp16lCnTh3n923btuXAgQO8/vrrznCU2/e0Sl5rnD59OmXKlOGGG25wWV5UjnduFNbvdpEKRw899NAlr5ipXr16nt67cuXKQFoyDQ0NdS5PTEx0ptDKlStz/vx5/vnnH5fehMTERNq1a5en9eZETrf7119/5fDhwxl+duTIkQxJOjOrV69m586dzJ49+5Jtmzdvjre3N7t27Sqwk2VhbbdDaGgoERER7Nq1Cyjexzs5OZlbb72VvXv3smzZMpdeo8wUxvHOTIUKFfD09Mzwr74Lfy8vVrly5Uzbe3l5Ub58+Wzb5ObzUpDyst0Os2fPZuDAgXz55Zd069Yt27YeHh60bNnS+Zm32uVs94XatGnDp59+6vy+OB9vYwxTp07l7rvvxsfHJ9u27na8c6tQf7dzNUOpCMrthOxXXnnFuezcuXOZTsiePXu2s83BgwfdboLu2rVrnct++eWXHE/QHTBgQIarlrKydetWA5iVK1fmud78crnb7XD06FHj6+trZsyYYYwpvsf7/Pnz5oYbbjANGjQwiYmJOVqXlce7VatW5v7773dZVq9evWwnZNerV89l2bBhwzJM2uzRo4dLm+7du7vdBN3cbLcxxnz22WfGz8/vkhNbHex2u2nRooW59957L6fUfJWX7b5Y3759TZcuXZzfF9fjbcx/E9K3bt16yXW44/F2IIcTsgvrd7vYhqP9+/eb2NhYM27cOFO6dGkTGxtrYmNjzcmTJ51t6tSpY77++mvn9y+//LIJDg42X3/9tdm6dau54447Mr2UPywszPzwww9m06ZNpmvXrm53aXfjxo1NTEyMiYmJMY0aNcpwaffF222MMUlJSaZUqVLmww8/zPCeu3fvNuPGjTPr1683e/fuNQsWLDB169Y1zZo1K7LbffLkSfPoo4+aNWvWmL1795rly5ebtm3bmqpVqxbr452cnGyuu+46ExYWZjZv3uxyee+5c+eMMe53vB2XOEdHR5vffvvNjBw50gQEBDivyhk9erS5++67ne0dl/s+8sgj5rfffjPR0dEZLvf9+eefjaenp3n55ZfNjh07zMsvv+y2l3bndLs/++wz4+XlZT744IMsb8EwduxYs3jxYrNnzx4TGxtr7r33XuPl5eUSsK2W2+1+6623zNy5c80ff/xhtm3bZkaPHm0AM2fOHGeb4ni8He666y7TunXrTN/T3Y/3yZMnnedmwLz55psmNjbWeeWslb/bxTYcDRgwwAAZvpYvX+5sA5hp06Y5v7fb7ebZZ581lStXNr6+vqZjx44Z0viZM2fMQw89ZMqVK2f8/f1N7969TVxcXCFt1aUdO3bM3HnnnSYwMNAEBgaaO++8M8MlrhdvtzHGTJo0yfj7+2d6L5u4uDjTsWNHU65cOePj42OuuOIKM2LEiAz3BLJSbrf733//NVFRUaZixYrG29vbhIeHmwEDBmQ4lsXteO/duzfT34sLfzfc8Xh/8MEHJiIiwvj4+JjmzZu79GANGDDAdOrUyaX9ihUrTLNmzYyPj4+pXr16pqH/yy+/NHXq1DHe3t6mbt26LidTd5Gb7e7UqVOmx3XAgAHONiNHjjTh4eHGx8fHVKxY0URFRZk1a9YU4hblTG62+5VXXjFXXHGF8fPzM2XLljVXXXWVWbBgQYb3LG7H25i03m1/f38zefLkTN/P3Y+3o9crq8+slb/bNmPSZzOJiIiISPF9fIiIiIhIXigciYiIiFxA4UhERETkAgpHIiIiIhdQOBIRERG5gMKRiIiIyAUUjkREREQuoHAkIiIicgGFIxEREZELKByJiIiIXEDhSESKleeee45GjRoREBBASEgI999/P8nJyVaXJSJFiJfVBYiI5BdjDKmpqUyaNImqVavy22+/0b9/fxo3bsz9999vdXkiUkTowbMiUqz169ePihUr8s4771hdiogUERpWE5FiY//+/Tz00EM0bNiQsmXLUrp0ab744gvCwsKsLk1EihCFIxEpFo4ePUqrVq04evQob775Jj/99BMxMTF4enrStGlTq8sTkSJEc45EpFhYuHAhKSkpzJo1C5vNBsAHH3zA+fPnFY5EJFcUjkSkWChXrhwnTpxg/vz51K9fn2+//Zbx48dTtWpVKlasaHV5IlKEaEK2iBQLxhjuv/9+PvvsM/z9/bnrrrs4e/Ys+/fv57vvvrO6PBEpQhSORERERC6gCdkiIiIiF1A4EhEREbmAwpGIiIjIBRSORERERC6gcCQiIiJyAYUjERERkQsoHImIiIhcQOFIRERE5AIKRyIiIiIXUDgSERERuYDCkYiIiMgFFI5ERERELvD/jDpZU4pL+G0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4SklEQVR4nO3dd3gU5dfG8e+mhxBCh5BAqNJrACkiRbqgYgMRQQ1dQUFfFRug2BURf9IkCCoiKCBVigqIgtSgVAWlRekd6cnz/pHsmpBCCElmNnt/risXZDK7c2Zns3NynvPMOIwxBhEREREBwMvqAERERETsRMmRiIiISBJKjkRERESSUHIkIiIikoSSIxEREZEklByJiIiIJKHkSERERCQJJUciIiIiSSg5EhEREUlCyZG4hX/++Ydhw4axadOmFD97+OGHyZs3b6af+9KlS/Tt25fQ0FC8vb2pVatW5gPNAmPGjGHy5Mkplu/ZsweHw5Hqz3ITh8PBsGHDrA4jSwwbNgyHw5Htj/3www8pX748fn5+OBwOTp48ycMPP0zp0qWTrff666/zzTffZCqe9Bw/fpwuXbpQtGhRHA4Hd91113U/R+nSpXn44YezPDY72b9/P506daJs2bIEBQUREhJC7dq1+d///seVK1fSfWy3bt1wOBx06NAhh6L1bD5WByCSEf/88w/Dhw+ndOnSWZ68jB07lvHjx/Phhx8SGRl5Q4lWVhgzZgyFCxdOcaIIDQ1l9erVlCtXzprA5Lr17NmTtm3bZus2Nm3axMCBA+nZsyc9evTAx8eH4OBgXnrpJZ544olk677++uvce++9mUpe0vPqq68ye/ZsJk2aRLly5ShYsGCWPn9u8e+//5IvXz5eeuklSpUqxaVLl1i4cCEDBgxg06ZNTJw4MdXHLViwgG+++YZ8+fLlcMSeS8mReLwtW7YQGBjI448/bnUo6fL396dBgwZWhyHXITw8nPDw8GzdxtatWwHo1asX9evXdy3PySR6y5YtlCtXjgcffDDHtplVzp07R548eXJkW5UqVWLKlCnJlrVr147Dhw8zZcoUPvroI/z9/ZP9/NSpU/Tp04dXX32VDz74IEfiFA2reaQjR47Qu3dvSpYsib+/P0WKFKFx48Z89913rnWaNWtGtWrVWL16NY0aNSIwMJDSpUvzySefAAl/ydSpU4c8efJQvXp1Fi1alGI7P/30E7fddhvBwcHkyZOHRo0asWDBghTrbdmyhTvvvJMCBQoQEBBArVq1kn2ALF++nHr16gHwyCOP4HA4Uh162bVrF+3btydv3ryULFmSp556iosXL6b7WjgcDiZOnMj58+ddzzt58uR0h7Cu3rZz+GPr1q088MADhISEUKxYMR599FFOnTqV7LHx8fF8+OGH1KpVi8DAQPLnz0+DBg2YO3cukDC0sHXrVlasWOGKxzk0klZMGXmdJ0+ejMPhYNmyZfTr14/ChQtTqFAh7r77bv755590X6P0lC5dmg4dOjB79mxq1KhBQEAAZcuWZfTo0SnW3bdvH926daNo0aL4+/tTuXJl3nvvPeLj49N8/j179uDj48Mbb7yR4mc//vgjDoeDr776Cri+43DhwgWGDBlCmTJl8PPzIywsjMcee4yTJ0+mun/z58+ndu3aBAYGUrlyZebPnw8kvK6VK1cmKCiI+vXrs379+mSPT21obPr06bRu3ZrQ0FDX8z333HP8+++/ab/QaWjWrBndunUD4Oabb8bhcLgqjlcPqzkcDv7991+mTJniem81a9Ys3ec/fvw4/fv3JywsDD8/P8qWLcsLL7zg+r1yvie/++47tm/f7nre5cuXp/mcly9f5plnnqF48eLkyZOHW265hbVr16a67sGDB+nTpw/h4eH4+flRpkwZhg8fnmIIKjY2lnvvvZfg4GDy58/Pgw8+yLp161L8vjiH4Ddv3kzr1q0JDg7mtttuAxKG10eMGEGlSpVcn4uPPPIIR44cSRHX9OnTadiwIUFBQeTNm5c2bdoQExOT7muZniJFiuDl5YW3t3eKnz311FOEhoYycODATD+/ZIIRj9OmTRtTpEgRM2HCBLN8+XLzzTffmJdfftl8+eWXrnWaNm1qChUqZCpWrGiio6PN4sWLTYcOHQxghg8fbqpXr26mTZtmFi5caBo0aGD8/f3N33//7Xr88uXLja+vr4mMjDTTp08333zzjWndurVxOBzJtrNjxw4THBxsypUrZz799FOzYMEC88ADDxjAvPXWW8YYY06dOmU++eQTA5gXX3zRrF692qxevdrs37/fGGNMjx49jJ+fn6lcubJ59913zXfffWdefvll43A4zPDhw9N9LVavXm3at29vAgMDXc97+PBhs3v3bgOYTz75JMVjADN06FDX90OHDjWAqVixonn55ZfN0qVLzciRI42/v7955JFHkj32oYceMg6Hw/Ts2dPMmTPHfPvtt+a1114zH3zwgTHGmI0bN5qyZcua2rVru+LZuHGjMcakGlNGX2fn61e2bFkzYMAAs3jxYjNx4kRToEAB07x582QxOtdNbd+vFhERYcLCwkypUqXMpEmTzMKFC82DDz5oAPPOO++41jt8+LAJCwszRYoUMePGjTOLFi0yjz/+uAFMv3790n19O3XqZEqVKmWuXLmSbL377rvPlChRwly+fPm6jkN8fLxp06aN8fHxMS+99JJZsmSJeffdd01QUJCpXbu2uXDhQrL9Cw8PN9WqVXO932+++Wbj6+trXn75ZdO4cWMza9YsM3v2bHPTTTeZYsWKmXPnzrke74wpqVdffdW8//77ZsGCBWb58uVm3LhxpkyZMimOQ2qPvdrWrVvNiy++6Dpeq1evNrt27TLGJPxeREREuNZdvXq1CQwMNO3bt3e9t7Zu3Zrmc58/f97UqFHDBAUFmXfffdcsWbLEvPTSS8bHx8e0b9/eGGPMhQsXzOrVq03t2rVN2bJlXc976tSpNJ+3R48exuFwmP/7v/8zS5YsMSNHjjRhYWEmX758pkePHq71Dhw4YEqWLGkiIiLM+PHjzXfffWdeffVV4+/vbx5++GHXemfPnjXly5c3BQsWNB999JFZvHixGTRokClTpkyK93GPHj2Mr6+vKV26tHnjjTfM999/bxYvXmzi4uJM27ZtTVBQkBk+fLhZunSpmThxogkLCzNVqlRJdkxfe+0143A4zKOPPmrmz59vZs2aZRo2bGiCgoLSfT2Tio+PN5cvXzbHjx83X375pQkKCjJDhgxJsd7SpUuNr6+v2bRpkzEm4f14++23Z2gbcmOUHHmgvHnzmieffDLddZo2bWoAs379eteyY8eOGW9vbxMYGJgsEdq0aZMBzOjRo13LGjRoYIoWLWrOnDnjWnblyhVTrVo1Ex4ebuLj440xxnTp0sX4+/ubffv2Jdt+u3btTJ48eczJkyeNMcasW7cuzRN2jx49DGBmzJiRbHn79u1NxYoVr/FqJDw+KCgo2bLMJEdvv/12svX69+9vAgICXPv6448/GsC88MIL6cZTtWpV07Rp0xTLU4spo6+zM+Hp379/sud8++23DWAOHDjgWjZlyhTj7e1tpkyZkm6cxiR8WDscDteHt1OrVq1Mvnz5zL///muMMea5554zgFmzZk2y9fr162ccDof5/fffXcuufn2XLVtmADN79mzXsr///tv4+PgkS34zehwWLVqU6nrTp083gJkwYUKy/QsMDDSxsbGuZc73e2hoqGv/jDHmm2++MYCZO3duipjS4jxJrlixwgDm119/zfBjnZzHdt26dcmWX50cGWNMUFBQsgQkPePGjUv19+qtt94ygFmyZIlrWdOmTU3VqlWv+Zzbt283gBk0aFCy5VOnTjVAstj69Olj8ubNa/bu3Zts3XfffdcArkTko48+MoD59ttvk63Xp0+fVJMjwEyaNCnZutOmTTOAmTlzZrLlzs+dMWPGGGOM2bdvn/Hx8TEDBgxItt6ZM2dM8eLFzf3333/N18AYY9544w0DGMA4HI5UPxPOnDljSpcunSxpUnKUczSs5oHq16/P5MmTGTFiBL/88guXL19Odb3Q0FAiIyNd3xcsWJCiRYtSq1YtSpQo4VpeuXJlAPbu3QskNB2uWbOGe++9N1lzs7e3Nw899BCxsbH8/vvvAPzwww/cdtttlCxZMtm2H374Yc6dO8fq1asztE8Oh4OOHTsmW1ajRg1XTDnhjjvuSLH9CxcucPjwYQC+/fZbAB577LEs2d71vM7pxQgke526d+/OlStX6N69e4biqFq1KjVr1ky2rGvXrpw+fZqNGzcCCce5SpUqyXpiIOE4G2P44Ycf0nz+Zs2aUbNmTT766CPXsnHjxuFwOOjdu3eK9a91HJzburrh/b777iMoKIjvv/8+2fJatWoRFhbm+t75fm/WrFmyXpWrfw/S8tdff9G1a1eKFy+Ot7c3vr6+NG3aFIDt27en+9ic9MMPPxAUFMS9996bbLnzdbv6dcqIZcuWAaToTbr//vvx8UneAjt//nyaN29OiRIluHLliuurXbt2AKxYscL1b3BwcIrG9wceeCDNOO65554U28qfPz8dO3ZMtq1atWpRvHhx1zDh4sWLXb8bSdcLCAigadOm6Q4nJvXwww+zbt06Fi9ezDPPPMM777zDgAEDkq3z3HPP4evry8svv5yh55SspYZsDzR9+nRGjBjBxIkTeemll8ibNy+dOnXi7bffpnjx4q71Uptx4ufnl2K5n58fkNDHAXDixAmMMYSGhqZ4vDOpOnbsmOvfjKx3LXny5CEgICDZMn9/f1dMOaFQoUIptg9w/vx5IKHXy9vbO9lrfCOu53XOaIyZkdr+OJclPc5XTytPL86rOWdj/f7775QtW5aPP/6Ye++9N9VtX2sfjx07ho+PD0WKFEm2nsPhoHjx4iliSev9fq3fg9ScPXuWJk2aEBAQwIgRI7jpppvIkycP+/fv5+67776h45DVjh07RvHixVP0TBUtWhQfH58M/25e/ZyQ8j3j4+OT4rgdOnSIefPm4evrm+pzHT161PWcxYoVS/Hz1JZBwmfF1bO+Dh06xMmTJ13HMK1tHTp0CMDVA3k1L6+M1RuKFy/ueg1at25NgQIFeO6553j00UepXbs2a9euZcyYMcyaNYsLFy643lPx8fFcuXKFkydPEhgYmKJ5W7KOkiMPVLhwYUaNGsWoUaPYt28fc+fO5bnnnuPw4cOpNlZfrwIFCuDl5cWBAwdS/MzZ/Fu4cGEg4USWkfVymjPRurqhOzMnBKciRYoQFxfHwYMHU01ortf1vM7Z6eDBg2kuc57wbvQ4d+3alWeffZaPPvqIBg0acPDgwUxX4AoVKsSVK1c4cuRIsgTJGMPBgwfTPPFlhR9++IF//vmH5cuXu6pFQIpGcDsoVKgQa9aswRiTLEE6fPgwV65cydR7y/l+OHjwYLJq3JUrV1L8bhUuXJgaNWrw2muvpfpczsS6UKFCqTZ0p/a+BFK9dpRzgkJan3/BwcGu9QC+/vprIiIiUl03M5wV1T/++IPatWuzbds2jDF06tQpxbr79++nQIECvP/++zz55JNZFoMkp2E1D1eqVCkef/xxWrVq5RoCuVFBQUHcfPPNzJo1K9lfwvHx8Xz++eeEh4dz0003AXDbbbe5ThhJffrpp+TJk8c1dT0rKhzXo1ixYgQEBPDbb78lWz5nzpxMP6dzOGDs2LHprufv75+h/bye1zk7bd26lV9//TXZsi+++ILg4GDq1KkDJBznbdu2pXiPffrppzgcDpo3b57uNgICAujduzdTpkxh5MiR1KpVi8aNG2cqXufspM8//zzZ8pkzZ/Lvv/+6fp4dnCfmq//iHz9+fLZtM6mMvrcg4XU6e/ZsiotGfvrpp66fXy/n7LipU6cmWz5jxowUM9A6dOjgukRA3bp1U3w5k6OmTZty5swZ17C105dffpnhuDp06MCxY8eIi4tLdVsVK1YEoE2bNvj4+PDnn3+mul7dunWv9yUB/htuLF++PABt27Zl2bJlKb6KFStGgwYNWLZsWYrhTslaqhx5mFOnTtG8eXO6du1KpUqVCA4OZt26dSxatIi77747y7bzxhtv0KpVK5o3b87TTz+Nn58fY8aMYcuWLUybNs11khg6dKirt+Dll1+mYMGCTJ06lQULFvD2228TEhICJFyzJTAwkKlTp1K5cmXy5s1LiRIlkvU+ZSWHw0G3bt1cF7WrWbMma9eu5Ysvvsj0czZp0oSHHnqIESNGcOjQITp06IC/vz8xMTHkyZPH1XNQvXp1vvzyS6ZPn07ZsmUJCAigevXqqT5nRl/n6/Hpp5/y6KOPMmnSpAz1HZUoUYI77riDYcOGERoayueff87SpUt56623XD05gwYN4tNPP+X222/nlVdeISIiggULFjBmzBj69euXoSSuf//+vP3222zYsCHNi+VlRKtWrWjTpg3PPvssp0+fpnHjxvz2228MHTqU2rVr89BDD2X6ua+lUaNGFChQgL59+zJ06FB8fX2ZOnVqiuQyu1SvXp3ly5czb948QkNDCQ4Odp34r9a9e3c++ugjevTowZ49e6hevTo//fQTr7/+Ou3bt6dly5bXvf3KlSvTrVs3Ro0aha+vLy1btmTLli28++67KYa6XnnlFZYuXUqjRo0YOHAgFStW5MKFC+zZs4eFCxcybtw4wsPD6dGjB++//z7dunVjxIgRlC9fnm+//ZbFixcDGRvq6tKlC1OnTqV9+/Y88cQT1K9fH19fX2JjY1m2bBl33nknnTp1onTp0rzyyiu88MIL/PXXX7Rt25YCBQpw6NAh1q5dS1BQEMOHD09zO0OHDuXQoUPceuuthIWFcfLkSRYtWsTHH3/Mfffd5+rxTDrsllRAQACFChW65iUYJAtY2Q0uOe/ChQumb9++pkaNGiZfvnwmMDDQVKxY0QwdOjTZzJu0Zp+kNVsCMI899liyZStXrjQtWrQwQUFBJjAw0DRo0MDMmzcvxWM3b95sOnbsaEJCQoyfn5+pWbNmqrPEpk2bZipVqmR8fX2TzWhKbbaZMRmf7ZPW40+dOmV69uxpihUrZoKCgkzHjh3Nnj170pytduTIkWSPd84i2r17t2tZXFycef/99021atWMn5+fCQkJMQ0bNkz2uuzZs8e0bt3aBAcHG8A14yitGXQZeZ3TmtHknAm2bNmyFOtmdCr/7bffbr7++mtTtWpV4+fnZ0qXLm1GjhyZYt29e/earl27mkKFChlfX19TsWJF884775i4uLhk6139+ibVrFkzU7BgwWRTq52u5zicP3/ePPvssyYiIsL4+vqa0NBQ069fP3PixIlU9+9qqb3fnccn6SUMUnsPrlq1yjRs2NDkyZPHFClSxPTs2dNs3LgxxWueHbPVNm3aZBo3bmzy5MljgFRnRSZ17Ngx07dvXxMaGmp8fHxMRESEGTJkSLLLHRiT8dlqxhhz8eJF89RTT5miRYuagIAA06BBA7N69WoTERGRYibdkSNHzMCBA02ZMmWMr6+vKViwoImMjDQvvPCCOXv2rGu9ffv2mbvvvtvkzZvXBAcHm3vuuccsXLjQAGbOnDnJXpPUfteNMeby5cvm3XffNTVr1jQBAQEmb968plKlSqZPnz5m586dydb95ptvTPPmzU2+fPmMv7+/iYiIMPfee6/57rvv0t33uXPnmpYtW5pixYoZHx8fkzdvXlO/fn0zevRo1yUp0qPZajnHYYwxOZmMiUjuUbp0aapVq+a6KGJ2Onz4MBEREQwYMIC3334727cn7u3111/nxRdfZN++fdl+lXLJfTSsJiK2Fhsby19//cU777yDl5dXivuFifzvf/8DEm7PcfnyZX744QdGjx5Nt27dlBhJpig5EhFbmzhxIq+88gqlS5dm6tSpyWY5iUDC9Pz333+fPXv2cPHiRUqVKsWzzz7Liy++aHVo4qY0rCYiIiKShOVT+X/88Uc6duxIiRIlcDgcKaaNpmbFihVERka6bnI5bty47A9UREREPILlydG///5LzZo1XWPG17J7927at29PkyZNiImJ4fnnn2fgwIHMnDkzmyMVERERT2CrYTWHw8Hs2bO566670lzn2WefZe7cucnuQdS3b19+/fXXDN+HS0RERCQtbteQvXr1alq3bp1sWZs2bYiOjuby5cup3ofn4sWLyW4DER8fz/HjxylUqFCmLpInIiIiOc8Yw5kzZyhRokSG72WXGW6XHB08eDDFDQWLFSvGlStXOHr0aKr3rHrjjTfSvWqpiIiIuI/9+/dn62Ua3C45gpQ3DnSODKZVBRoyZAiDBw92fX/q1ClKlSpF1apVWbVqVbJ127Vrx6pVq5gyZUq6w3siYgN//83Bdeto9/LL/LV3L4GBgURFRVGxYkV+/vlnpk+fjjGG5g0bMv3pp/GvXBl0KQARWxs2bBjvv/8+/fr1480333QtN8aQP39+4L+bAWcXt0uOihcvnuJuy4cPH8bHx8d1x+er+fv7p7jRI4C3t3eK+/k4h+UCAgJS/ExEbCQ6mou9etHdGP4CIgoVYsmqVa77tD3++OM8+uijdOrYkWWrV/PcPfcQ7eUFEyZAVJS1sYtImtI6Dydtkc7ulhjLZ6tdr4YNG7J06dJky5YsWULdunVT7Te6Xs4xTBv1qYvI1WJjoXdvXjGGNUAB4LsTJ7gp8Ua3Tq0qV2bWpUt4AZOAL+PjoU+fhMeLiC05z7/Z2VN0LZYnR2fPnmXTpk1s2rQJSJiqv2nTJvbt2wckDIklvTN437592bt3L4MHD2b79u1MmjSJ6Ohonn766evedmqZp3NZfHx8JvZGRHLEzp1sjo/HeYe1aKB8fDzs2pVivdbG4LxO8pPA6bi4lOuJiG04z79Xn6NzcgKV5cnR+vXrqV27NrVr1wZg8ODB1K5dm5dffhmAAwcOuBIlgDJlyrBw4UKWL19OrVq1ePXVVxk9ejT33HNPlsSjypGI/Zny5ekHXAHuBjoBeHtD+fLJV6xQAby8eAG4CTgEvOpwpFxPRGzDDpUjy3uOmjVrlm4iMnny5BTLmjZtysaNG7MlHlWOROxv8dat/AwEAqMhITEaPx6unr0SHg4TJuDXpw+j4uJoD3zg5UX/y5cpk+NRi0hGOM+/Hj2sZjeqHInYmzGGoUOHAtCvVy/Cli2DPXvSbrKOioI9e2i3bBktmzThclwc7777bs4FLCLX5Voz0HOCRydHqb3wzuRIlSMRe1q6dClr164lMDCQZ159FZo1S1kxulp4ODRrxguvvAJAdHR0ilmvImIPqhzZkIbVROxt9OjRAPTq1SvFBWGvpWnTpjRo0ICLFy/ywQcfZEd4InKD0mrIzklKjq6iYTUR+/rzzz9ZuHAhkHAdo+vlcDh45plngITq0aVLl7I0PhG5cXZoyFZydBVVjkTsa8yYMRhjaNu2LRUqVMjUc3Ts2JESJUpw5MgRvvnmm6wNUERumCpHFkuv50iVIxF7uXz5MlOmTAEyVzVy8vHxISqxeXv8+PFZEpuIZB1VjmxIlSMRe1q8eDHHjh2jePHitGnT5oaeKyoqCofDwQ8//MBff/2VRRGKSFZQQ7YNqXIkYk+ff/45AA888AA+Pjd2ibaIiAhatmwJwLRp0244NhHJOprKb0Oayi9iP6dPn2bOnDkAdOvWLUues2vXrgBMnTpVfwyJ2IgqRxbTvdVE3MOsWbO4cOEClSpVct1q6EZ16tQJf39/tm/fzm+//ZYlzykiNy69huycqiZ5dHKUGg2ridjP1KlTgYSqUVZ9OIaEhNChQwcAvvjiiyx5ThG5cWrItiFVjkTs5fjx4yxbtgyAzp07Z+lzO59v9uzZ+oNIxCY0ld+GVDkSsZeFCxcSFxdHtWrVKF++fJY+d9u2bfHz82Pnzp3s2LEjS59bRDInvcqRhtVygHqOROzP2Yh95513ZvlzBwcH06JFi2TbERFrqSHbhlQ5ErGPCxcusGjRIiB7kqOkz6vkSMQeNJXfhlQ5ErGPH374gbNnzxIWFkZkZGS2bOOOO+4A4JdffuHAgQPZsg0RyThVjmxIlSMR+3BWc+64445s+6AsUaIE9evXB2DevHnZsg0Rybj0KkfqObKILgIpYg/GGBYsWAD8V93JLs6hNef2RMQ6qhzZkIbVROxh27Zt/P333wQEBNC0adNs3Vbbtm2BhGG8S5cuZeu2RCR9mspvQxpWE7GHxYsXA9C0aVMCAwOzdVu1atWiSJEinD17ltWrV2frtkQkfboIpMU0lV/EvpYsWQJA69ats31bXl5etGrVCvgvKRMRa6Q3rKaeI4uociRivfPnz7NixQoA2rRpkyPbdG5HyZGItTSV34ZUORKx3srEG82GFS9OlSpVcmSbzgrVxo0bOTxrFsTG5sh2RSQ5NWTbkCpHIhaLjmZJt24AtDl4EMekSTmy2eLFi1OzZEkAvrvnHoiIgOjoHNm2iPxHlSOLpfbCayq/iIViY6F3b5YmftsaoE+fnKnixMbSZv9+AJYAxMfn3LZFxEU9RzakYTURC+3cybH4eH5L/LY5QFwc7NqVI9tukfjfFc5lObVtEXHRVH4b0rCaiIUqVODHxA/EqkBRAG9vKF8+R7bd2OHAG9iT+JVj2xYRF03ltyFVjkQsFB7O8hYJ9ZtmkJCcjB8P4eE5su28H39MvcRvVzgcObdtEXFRQ7bF0us5UuVIxBrLDh8GoNmwYbBnD0RF5dzGo6Jo9thjCXHcc0/ObltEAN1bzZZUORKxztGjR9m8eTMATfv3t6Rq0zzxPm7L163L8W2LiCpHtqTKkYh1fvzxRwCqVatGkSJFLImhUaNG+Pj4sHfvXvbs2WNJDCKeTFP5bUhT+UWss3z5cgCaNWtmWQx58+alXr16yeIRkZyjqfwW073VROzFDslR0u0rORLJeZrKb0MaVhOxRtJ+o1tvvdXSWJQciVhHU/ltSJUjEWusXLkSgKpVq1rWb+SUtO9o7969lsYi4mnUkG1DqhyJWOPnn38G4JZbbrE4koS+o1q1agH/xSUiOUNT+S2mniMR+1i1ahUAjRs3tjiSBM44nHGJSM5Q5ciGVDkSyXkXLlxgw4YNgP2SI1WORHKWpvLbkCpHIjlv/fr1XLp0ieLFi1OmTBmrwwH+S45+++03zpw5Y3E0Ip5DlSMbUuVIJOc5qzONGjWy9K/FpEqUKEHp0qWJj49nzZo1Vocj4jHSm62mnqMckN691VQ5Esk5zuTILkNqTo0aNQI0tCaSk3SdIxvSsJpIzjLG2K4Z20l9RyI5T8NqNqRhNZGc9ccff3Ds2DECAgKoXbu21eEk40yOfvnlF+Li4iyORsQzqCHbYprKL2I9Z1WmXr16+Pn5WRxNctWqVSNfvnycOXOGLVu2WB2OiEfQvdVsSJUjkZxl134jAG9vbxo0aABoaE0kp6hyZEOqHInkLDsnR6CmbJGcpp4jG1LlSCTnHD16lN9//x2Ahg0bWhxN6tSULZKzdONZi2kqv4i1nNcPqlixIoUKFbI4mtTdfPPNeHl5sXfvXg4cOGB1OCK5XnpT+dVzZBENq4nknLVr1wIJCYhdBQcHU7VqVQBdDFIkB2hYzYY0rCaSc9atWwdA/fr1LY4kfc7kTcmRSPZTQ7YNqXIkkjOMMa7KkZIjEXHSVH6LpddzpMqRSPbas2cPx44dw9fXlxo1algdTrqcydG6det0MUiRbKbKkQ2pciSSM5xVo1q1auHv729xNOmrUqUKQUFBnD17lh07dlgdjkiupp4jG1LlSCRnOJOjevXqWRzJtXl7e1O3bl1AQ2si2U1T+W1IU/lFcoa7NGM7qe9IJGdoKr/FdG81EWtcuXKFDRs2AO5ROQIlRyI5RZUjG9Kwmkj22759O+fOnSM4OJiKFStaHU6GOJOjzZs38++//1ocjUjulV7lKKcoObqKKkci2c/ZbxQZGYm3t7fF0WRMWFgYYWFhxMfHu6peIpL11JBtQ6ociWQ/d+s3cnLGq6E1keyT3lR+9RzlAPUciVjDXS7+eDX1HYlkP1WObEiVI5Hsdf78eX777TfAfZqxnZzJkTO5E5Gsp4ZsG1LlSCR7bdq0ibi4OIoVK0bJkiWtDue61K1bFy8vL/bv38+BAwesDkckV1JDtg2pciSSvZJe/NHKD7/MyJs3L1WrVgU0tCaSXdKrHHlUz9GYMWMoU6YMAQEBREZGsnLlynTXnzp1KjVr1iRPnjyEhobyyCOPcOzYsevebnr3VlPlSCR7uGsztpP6jkSylypHwPTp03nyySd54YUXiImJoUmTJrRr1459+/aluv5PP/1E9+7diYqKYuvWrXz11VesW7eOnj17Zkk8GlYTyV7udNuQ1GjGmkj2UkM2MHLkSKKioujZsyeVK1dm1KhRlCxZkrFjx6a6/i+//ELp0qUZOHAgZcqU4ZZbbqFPnz6sX78+S+LRsJpI9jlx4gQ7d+4E3Dc5claO1q1bR1xcnMXRiOQ+6U3lzymWJkeXLl1iw4YNtG7dOtny1q1bs2rVqlQf06hRI2JjY1m4cCHGGA4dOsTXX3/N7bffnuZ2Ll68yOnTp5N9gabyi+S09d9+C0C5iAgKFSpkcTSZU7VqVYKCgjh79iy/f/opxMZaHZJIrpJe5cgjeo6OHj3qmrWSVLFixTh48GCqj2nUqBFTp06lc+fO+Pn5Ubx4cfLnz8+HH36Y5nbeeOMNQkJCXF/pzZBR5Ugkm0RHs65bNwDq7d0L0dEWB5Q53t7eRIaFAbD20UchIsJt90XEjjSVP9HVmaAxJs3scNu2bQwcOJCXX36ZDRs2sGjRInbv3k3fvn3TfP4hQ4Zw6tQp19f+/fuvGYsqRyJZKDYWevdmbeKHXn2APn3cs+oSG0u9P/4AYC1AfLz77ouIDdmhIdvHsi0DhQsXxtvbO0WV6PDhwymqSU5vvPEGjRs35v/+7/8AqFGjBkFBQTRp0oQRI0YQGhqa4jH+/v74+/tnKCZVjkSywc6dEB+P89KJ9QDi4mDXLggPtzCwTNi5E+c8O9elIN11X0RsyOOn8vv5+REZGcnSpUuTLV+6dCmNGjVK9THnzp1L8YI5b1x5vQmNpvKL5JAKFfjb4eAA4A3UBvD2hvLlrY0rMypUoH7iZ8dvwAVw330RsSE7VI4sH1YbPHgwEydOZNKkSWzfvp1Bgwaxb98+1zDZkCFD6N69u2v9jh07MmvWLMaOHctff/3Fzz//zMCBA6lfvz4lSpS44Xg0rCaSDcLDWduvHwBVgSBvbxg/3j0rLeHhREyYQBHgMvCrl5f77ouIDdmh58jSYTWAzp07c+zYMV555RUOHDhAtWrVWLhwIREREQAcOHAg2TWPHn74Yc6cOcP//vc/nnrqKfLnz0+LFi146623siQeDauJZI91ISEA1L/9dhg3zq2TCUfPntT/8ksWfP89a4cN4+aoKKtDEskVkp57PbbnyKl///70798/1Z9Nnjw5xbIBAwYwYMCAbIlFlSOR7OG8+GP9O+9068TIqV6TJgnJUWJztojcuKTnXo+frWaV9HqOVDkSyTrx8fGuC7W668Ufr+a8UrYz6RORG5f03KvkyEZUORLJejt37uTUqVMEBga6btzq7pxJ3h9//MHJkyetDUYkl0h67vXohmy7UeVIJOs5qyu1a9fG19fX4miyRuHChSlbtixAlt2+SMTTqXJkU6ociWS9devWAf8NReUWzuqRhtZEssa1KkcecZ0jq+k6RyI5w5k85JZ+Iyf1HYlkLVWObErDaiJZ69KlS2zatAnIfZUj5/44K2MicmM0W82mNKwmkrU2b97MxYsXKVCgAOXKlbM6nCxVu3ZtvL29+eeff/j777+tDkfE7akh26ZUORLJWs6qSr169Sz9sMsOQUFBrtl3GloTuXHXGlZTz1EOSK/ZS5UjkazhuvhjLhtSc1LfkUjWUeXIplQ5EslaubUZ20l9RyJZRw3ZNqXKkUjWOXPmDNu2bQM8IznS54bIjVHlyKZUORLJOhs3bsQYQ3h4OKGhoVaHky2qVq1KYGAgp0+f5g/dZ03khlzrxrPqObKIMzmKi4uzOBIR95dbL/6YlI+PD3Xq1AHUdyRyo1Q5silVjkSyTm7vN3JS35FI1nAmR97e3pbGoeToKrpCtkjW8YTKEWjGmkhWcZ5702rG1rBaDtDtQ0Syz+HDh9mzZw8Oh4PIyEirw8lWzuRo06ZNXLx40eJoRNzXtZKjnOLRyVFqlByJZA1n1ahixYqEhIRYHE32KlOmDIUKFeLSpUv89ttvVocj4raUHNmUkiORrOEpQ2qQUIV29lWp70gk85Qc2ZSSI5Gs4SnN2E7qOxK5ceo5sgH1HIlkD2OMR1WOQMmRSFZQ5cimlByJ3Lg9e/Zw9OhRfH19qVmzptXh5AhnhWzHjh2cPn3a4mhE3JOSI5tSciRy45xVo5o1a+Lv729xNDmjaNGiREREYIxhw4YNVocj4paUHNmUkiORG+dp/UZOGloTuTHqObIB9RyJZA9P6zdyUnIkcmNUObIpJUciN+bKlSusX78e8LzkyFkpU3IkkjlKjmxKyZHIjdm+fTvnzp0jb968VKxY0epwclRkZCReXl7ExsZy4MABq8MRcTtKjmwq6Y1ndfNZkevnrJrUrVvX8ptH5rS8efNSpUoVQBeDFMkM9RzZQHo9R4CSI5FMcCZHnjak5qS+I5HMU+XIppIeEA2tiVw/Z1Jw8803WxyJNdR3JJJ5So5sSsmRSOadO3eOzZs3A6ocrVu3TtVnkeukYTWbUnIkknkxMTHExcURGhpKWFiY1eFYonr16vj7+3Py5El27dpldTgibkWVIxu4Vs+RkiOR67NmzRogoXqSU3/h2Y2vry916tQBNLQmcr2UHNmUkiORzPP0ZmwnNWWLZI6SI5tSciSSeUqOEqgpWyRz1HNkU0qORDLnyJEj7N69G0i4xpEncyaHMTExXL582eJoRNyHKkc2oJ4jkazjvOhhxYoVyZ8/v7XBWKx8+fLkz5+fixcvumbvici1KTmyKSVHIpmjIbX/OBwO9R2JZIKSI5tKWk1SciSScZ5+8cerqe9I5Pqp58gG0nqRdfNZketjjFHl6CpJLwYpIhmjypGNKTkSuT5//fUXx44dw8/Pjxo1algdji04K0dbt27lzJkzFkcj4h6UHNmYkiOR6+OsGtWqVQt/f3+Lo7GH0NBQSpYsiTGGjRs3Wh2OiFtQcmRjSo5Ers/a778HoH6VKhZHYi+uvqMvvoDYWIujEbE/9RzZgHqORLJAdDRro6MBqD9lCiT+X6B+4mfMugkTICJCr43INahyZGNKjkQyKDaWy7164Rw0qm8M9OmjKglAbCz1Z80CYC1AfLxeG5FrUHJkY0qORDJo5042G8MFIASoABAXB7obPezcSaQxOIC9wCHQayNyDUqObEzJkUgGVajA2sSho/okfqB4e0P58lZGZQ8VKpDPy4tKid+uA702ItegniMbUM+RyA0KD2dto0ZAQnKEtzeMHw/h4ZaGZQvh4TBhwn99Rw6HXhuRa1DlyMaUHIlk3NqTJwGoP2IE7NkDUVGWxmMrUVHUf/VVANY2barXRuQalBzZmJIjkYw5c+YM27ZtA6Deo4+qKpKK+m3aALD2t98wxlgcjYi9aVjNxpQciWTM2rVrMcZQsmRJQkNDrQ7HlmrUqIGfnx/Hjx/nr7/+sjocEVtT5cgG1HMkcmNWr14NQMOGDS2OxL78/PyoVasWoJvQilyLkiMbU3IkkjFKjjJGN6EVyRglRzam5Ejk2owx/PLLL4CSo2txJkeqHImkTz1HNqbkSOTadu7cyfHjx/H396d27dpWh2NrzuRo48aNXL582eJoROxLlSMbUM+RSOY5h9QiIyPx8/OzOBp7q1ChAvny5eP8+fNs3brV6nBEbEvJkY0pORK5NvUbZZyXlxf16tUD1Hckkh4lRzam5Ejk2pQcXR/1HYlcm3qObEzJkUj6zpw5w5YtWwAlRxnlTI7WrFljcSQi9qXKkQ2o50gkc9auXUt8fDylSpWiRIkSVofjFpzJ0datWzlz5ozF0YjYk5IjG1NyJJI+DaldvxIlSlC6dGni4+NVPRJJg5IjG1NyJJI+JUeZ06hRIwB+/vlniyMRsSf1HNmAhtVErp8u/ph5jRs3BpQciaRFlSMbU3IkkrY//viD48ePExAQ4LpnmGSMMzn65ZdfiIuLszgaEftRcpTEmDFjKFOmDAEBAURGRrJy5cp017948SIvvPACERER+Pv7U65cOSZNmpRl8Sg5EkmbLv6YedWqVSM4ODjZbD8R+Y+So0TTp0/nySef5IUXXiAmJoYmTZrQrl079u3bl+Zj7r//fr7//nuio6P5/fffmTZtGpUqVcqymJQciaRN/UaZ5+3tTYMGDQANrYmkRj1HiUaOHElUVBQ9e/akcuXKjBo1ipIlSzJ27NhU11+0aBErVqxg4cKFtGzZktKlS1O/fn1Xo+P1UM+RyPVTcnRj1HckkjZVjoBLly6xYcMGWrdunWx569atWbVqVaqPmTt3LnXr1uXtt98mLCyMm266iaeffprz58+nuZ2LFy9y+vTpZF/pUXIkkrrTp0/r4o83yPmHXFqfcSKezC7JkY+VGz969ChxcXEUK1Ys2fJixYpx8ODBVB/z119/8dNPPxEQEMDs2bM5evQo/fv35/jx42n2Hb3xxhsMHz48w3EpORJJ3S+//IIxhtKlSxMaGmp1OG6pQYMGeHl5sWfPHv755x9dRFMkCbskR5YPq0HK4S1jTJpDXvHx8TgcDqZOnUr9+vVp3749I0eOZPLkyWlWj4YMGcKpU6dcX/v37083HiVHIqlzTpZo0qSJxZG4r+DgYGrUqAFoaE3kakqOgMKFC+Pt7Z2iSnT48OEU1SSn0NBQwsLCCAkJcS2rXLkyxhhiY2NTfYy/vz/58uVL9gXqORK5Xj/99BOg5OhGaWhNJHVKjgA/Pz8iIyNZunRpsuVLly5Ns8G6cePG/PPPP5w9e9a17I8//sDLy4vw8PAsiUvJkUhKly5dct324pZbbrE4GvempmyR1Ck5SjR48GAmTpzIpEmT2L59O4MGDWLfvn307dsXSBgS6969u2v9rl27UqhQIR555BG2bdvGjz/+yP/93//x6KOPEhgYmCUxKTkSSWnjxo2cP3+eQoUKZemlMzyRMzmKiYnh3LlzFkcjYh92mcpvaUM2QOfOnTl27BivvPIKBw4coFq1aixcuJCIiAgADhw4kOyaR3nz5mXp0qUMGDCAunXrUqhQIe6//35GjBiRZTEpORJJyTmk1rhx4xz7gMqtSpUqRYkSJfjnn39Yt24dTZs2tTokEVuwS+XI8uQIoH///vTv3z/Vn02ePDnFskqVKqUYissM9RyJZJz6jbKOw+GgcePGfPXVV/z8889KjkQS2SU5snxYzY6UHIkkZ4xxJUfqN8oa6jsSSUnJkY0pORJJbseOHRw7doyAgADq1KljdTi5QtIZa/qsEUlgl54jJUepUHIkkpyzanTzzTfrZrNZpHbt2uTNm5eTJ0+yefNmq8MRsQVVjmxAPUciGaN+o6zn4+PjGlr78ccfLY5GxB6UHNmYkiOR5JxXxla/Uda69dZbASVHIk5KjmxMyZHIf/7++292796Nl5eXbjabxZImR8YYi6MRsZ56jmxMyZHIf5yzqWrUqOG69Y5kjXr16hEQEMDhw4f5/fffrQ5HxHKqHNmAeo5Erk1DatnH39+fBg0aABpaEwElR7bmPChxcXEWRyJiveXLlwPoQoXZxPm6rlixwuJIRKyn5MjGVDkSSXDkyBG2bNkC/NcfI1nL+bquWLFCfUfi8dRzZGNKjkQSOId6qlatStGiRS2OJndq0KABvr6+rsZ3EU+mypGNKTkSSbB8/nwAmtWta3EkuVeePHmoV68eAD+OHw+xsRZHJGIdJUc2puRIBIiOZnnijZ+bf/opREdbG08udmtICAA/vv02RETotRaPpWE1G1NyJB4vNpYjvXqxJfHbW42BPn1U1cgOsbE0XbQIgBUA8fF6rcVjqXJkA5rKL5KGnTv5MbE5uBpQBCAuDnbtsjKq3GnnThoZgxfwFxALeq3FYyk5sjElR+LxKlRgeeJ/mzmXeXtD+fKWhJOrVahAPi8vaid+uwL0WovHUnJkY0qOxOOFh7M8LAxITI68vWH8eAgPtzKq3Ck8HCZMoHliJXuZw6HXWjyWeo5sTMmReLojR46w5e+/Abh19mzYsweioqwNKjeLiqLFlCkA/FCypF5r8ViqHNmAeo5EUue8vlG1atUoctddqmLkgCadOuHj48Pufft0vSPxWEqObEzJkXg65y1DmjVrZmkcniRv3rzcfPPNAPzwww8WRyNiDSVHNqbkSDydkiNrtGjRAoDvv//e4khErKGeIxtTciSeTPdTs85tt90GJFSOdJ818USqHNmAeo5EUnJWLWrWrEmRIkUsjsazNGjQgMDAQA4dOsT27dutDkckxyk5sjElR+LJvvvuOwBatmxpcSSex9/fn1tuuQXQ0Jp4JiVHNqbkSDyVMYalS5cC0KpVK4uj8UzOviM1ZYsnUs+RjSk5Ek+1a9cu9u3bh5+fH02aNLE6HI/kTI6WL19OXFycxdGI5KxcUTk6fPgwBw8ezKpYcpx6jkSSc1aNGjduTJ48eSyOxjPVqVOHkJAQTp48SUxMjNXhiOQot06OfvvtN6pWrUpoaChhYWGEhYXx4osv8u+//2Z1fJZQciSeSv1G1vPx8aFp06aA+o7E87h1chQVFUWxYsX46aefiImJYcSIEXz77bfUrVuXEydOZHWMOU7JkXiiuLg4V5+LkiNr6XpH4qncuudo27ZtjBkzhoYNG1KjRg0eeeQR1q9fT9WqVRkwYEBWx5jjlByJJ1q/fj2nTp0if/78REZGWh2OR3MmpytXruT8+fMWRyOSc9y6cpRahcjhcPD6668zZ86cLAksJ6jnSOQ/ziG1Fi1a4O3tbXE0nq1KlSqEhYVx4cIFVq5caXU4IjnG7ZKj22+/neeff54ZM2bQt29fBg0axKFDh5Ktc+rUKQoUKJDlQeY0JUfiiZzN2BpSs57D4aB169YALF682OJoRHKOXYbVfDK6YvXq1dm4cSOffPKJKykqW7Ys999/P7Vq1SIuLo5PPvmE999/P9uCzSlKjsTT/Pvvv6xatQrQ9Y3som3btnzyyScsXryY9957z+pwRHKEXSpHGU6O3nzzTdf/Dx06RExMDJs2bWLTpk2MHTuWXbt24e3tzfDhw7nnnnuyJdispmE1kQQrV67k8uXLREREUK5cOavDERIqeF5eXmzdupXY2FjCw8OtDkkk27ldcpRUsWLFaNu2LW3btnUtO3/+PL/++iu//vprlgVnFSVH4mmWLFkCJJyQc6psLekrWLAg9erVY82aNSxZsoRHH33U6pBEsp1dkqMs23pgYCANGjSgT58+WfWUllFyJJ7m22+/BUj2B49Yr02bNgAsWrTI4khEcoZdeo50+5BUKDkST7J792527NiBt7e3mrFtxpkcfffdd7qViHiEXFc5ckfqORL5r2rUqFEj8ufPb20wkkz9+vUJCQnhxIkTrFu3zupwRLKdkiMbU3IknsSZHLVv397iSORqPj4+rmqepvSLJ1ByZGNKjsRTXLhwwXXLkHbt2lkcjaTGObSm5Eg8gXqObEzJkXiKlStXcu7cOUqUKEGNGjWsDkdS4UyO1qxZkyvuXSmSHlWObEA9R+LpFi5cCCTMUtMUfnsqVaoUlStXJj4+3nUVc5HcSsmRjSk5Ek+hfiP34Dw+CxYssDgSkeyl5MjGlByJJ9i9eze///57sqZfsacOHToACZU+TemX3Ew9Rzam5Eg8QdIp/CEhIRZHI+lp3Lgx+fPn5+jRo6xZs8bqcESyjSpHNqCeI/Fkzn4jzVKzP19fX9fVy+fPn29xNCLZR8mRjSk5ktzu/PnzLFu2DFC/kbtwDq0pOZLcTMmRjSk5ktzu+++/59y5c5QsWZLq1atbHY5kQLt27fDy8mLz5s3s3bvX6nBEsoV6jmxMyZHkdnO++AKAO1q00BR+N1GwYEEaN24MwPyRIyE21uKIRLKeKkc2oJ4j8UTxH3/MvGnTALjz008hOtriiCSjOhYrBsD80aMhIkLHTnIdJUc2puRIcq3YWNb26cMhIB/Q1Bjo00dVCHcQG0uHmTMB+AE4Gx+vYye5jobVbEzJkeRaO3cyxxgA2gF+AHFxsGuXlVFJRuzcSSVjKAtcAr4DHTvJdVQ5sjElR5JrVajAnMT/3ulc5u0N5ctbFJBkWIUKOLy86Jj47TzQsZNcR8mRDajnSDzNzvPn2Q74kFA5wtsbxo+H8HBrA5NrCw+HCRPomPj5NB+IGztWx05yFSVHNqbkSHKruXPnAtCsSRPyL1sGe/ZAVJS1QUnGRUVx665dFAgO5jDwc8WKVkckkqXUc2RjSo4kt5ozJ2FQ7Y777oNmzVR1cEO+Zcpwx913AzBr1iyLoxHJOiaxHxJUObKUhtXEkxw9epSff/4ZgDvuuMPiaORG3J0kOUp6QhFxZ0nPuUqObEjJkeRGCxYsID4+nlq1ahEREWF1OHIDWrVqRVBQEPv372fDhg1WhyOSJZQc2ZySI8mNZiZeI+fOO++8xppid4GBga574mloTXKLjCRH6jmykJIjyW1OnTrF4sWLAbjvvvssjkaygnNobebMmRpak1xBlSObUM+ReIr58+dz6dIlKlWqRJUqVawOR7JA+/bt8fPz448//mDbtm1WhyNyw5Qc2ZySI8ltvvrqKyChaqQbzeYO+fLlo3Xr1oCG1iR3UHJkc0qOJDc5c+YMixYtAuDee++1OBrJSndrSr/kIkqOrjJmzBjKlClDQEAAkZGRrFy5MkOP+/nnn/Hx8aFWrVpZGo+SI8lN5s+fz8WLF7npppuoXr261eFIFurYsSPe3t5s2rSJv/76y+pwRG6IkqMkpk+fzpNPPskLL7xATEwMTZo0oV27duzbty/dx506dYru3btz2223ZXrb6jkST/D1118DCVUjDanlLoULF6ZZs2YAzJgxw9pgRG6QkqMkRo4cSVRUFD179qRy5cqMGjWKkiVLMnbs2HQf16dPH7p27UrDhg2zPCbnQYmLi8vy5xbJSWfPnmXhwoWAZqnlVl26dAFg2rRpFkcicmOSnnPT+kPOI6byX7p0iQ0bNriaCp1at27NqlWr0nzcJ598wp9//snQoUMztJ2LFy9y+vTpZF/p8fb2BlQ5Eve3cOFCLly4QLly5ahZs6bV4Ug2uPvuu/H19eW3337TrDVxa85zrsPhsLzKbWlydPToUeLi4ihWrFiy5cWKFePgwYOpPmbnzp0899xzTJ06FR8fnwxt54033iAkJMT1VbJkyXTXV+VIcgtnNUGz1HKvggUL0qZNG0DVI3FvznOus0BhJcuH1SBlmcwYk+oHeVxcHF27dmX48OHcdNNNGX7+IUOGcOrUKdfX/v37U92uk/PAKDkSd3bixAnXkNqDDz5ocTSSnR544AEgITnSBSHFXdkpOcpY6SWbFC5cGG9v7xRVosOHD6eoJkHClOT169cTExPD448/DiSU4Ywx+Pj4sGTJElq0aJHicf7+/vj7+2c4LiVHkhvMnDmTS5cuUb16dapVq2Z1OJKN7rjjDgIDA/nzzz/ZsGEDdevWtTokkeuWkeTII3qO/Pz8iIyMZOnSpcmWL126lEaNGqVYP1++fGzevJlNmza5vvr27UvFihXZtGkTN998c5bEpeRIcoMvvvgCgK5du1ociWS3vHnzcscddwAaWhP3ZafKkeXDaoMHD2bixIlMmjSJ7du3M2jQIPbt20ffvn2BhCGx7t27Awm9QNWqVUv2VbRoUQICAqhWrRpBQUFZEpMassXd/f333yxfvhz4b8hFcjfnrLXp06frs0vckvN9a4fkyNJhNYDOnTtz7NgxXnnlFQ4cOEC1atVYuHAhERERABw4cOCa1zzKrGtd50iVI3FXX375JcYYbrnlFtfvkuRu7dq1IyQkhL///puVK1fStGlTq0MSuS7Oc67V1zgCG1SOAPr378+ePXu4ePEiGzZs4NZbb3X9bPLkya6/gFMzbNgwNm3alKXxaFhN3J2G1DyPv7+/63YiGloTd6SeI5tTciTubMeOHWzcuBEfHx9d+NHDOJPhGTNmcOHCBYujEbk+6jmyuaQ9R5oWK+7m888/BxIuplq4cGGLo5Gc1Lx5c8LDwzlx4gTz5s2zOhyR66LkyCaudZ0jUFO2uJe4uDimTJkCQI8ePSyORnKat7e3awKL830g4i7s1JDt0clRWpI2gyk5Enfy/fffExsbS4ECBVxTu8WzOJOjRYsWceDAAYujEcm4jDRkq+fIQkmzVvUdiTv55KOPAHigY0cCAgIsjkasULFiRRo2bEhcXBxThw+H2FirQxLJEA2r2ZySI3FHJ0aPZvbcuQA88tlnEB1tcURilYfLlwdgyvjxmFKl9F4Qt6DkyOaUHInbiY3lyyef5CJQDYg0Bvr0UdXAE8XGcv/nnxMAbAE26r0gbkLJkc0pORK3s3MnkxNnVj4COADi4mDXLiujEivs3El+Y7gr8dvJoPeCuAVd58jmNFtN3M02Y1hLwiXvuzkXentD4vCKeJAKFcDLi0cSv/0cOO/lpfeC2J7zfKsrZFvsWrcPAVWOxD1MnD8fgNuBopCQGI0fD+HhVoYlVggPhwkTaOnlRWngJDCjRw+9F8T2NKxmcw6Hw5U4KTkSuzt//jyTJ08GoPeUKbBsGezZA1FRlsYlFoqKwmvvXnolvgcm/P67xQGJXJuG1dyAbiEi7uKrr77ixIkTRERE0ObBB6FZM1UJBMLDeXTECHx8fFi1ahVbtmyxOiKRdKly5AaUHIm7GDduHAC9e/e2xYeK2Efx4sW58847ARg/frzF0YikT8mRTaRXnkt6fzURu/r1119ZvXo1Pj4+PProo1aHIzbUp08fAD777DPOnTtncTQiadPtQ9yAsylblSOxM2fVqFOnThQvXtziaMSObrvtNsqWLcupU6eYMWOG1eGIpEm3D3EDGlYTuztz5gyff/45AH379rU4GrErLy8vevXqBcBHH32ESbwelojdaFjNDSg5Erv7/PPPOXv2LDfddBPNmze3OhyxsaioKPz9/Vm/fj2//PKL1eGIpErJkU1kpOdIyZHYUXx8PKNHjwagf//+OVZqFvdUpEgRunbtCsAHH3xgcTQiqVNy5AbUkC12tmTJEnbs2EG+fPnUiC0ZMnDgQAC+/vprYnWfNbGhjDRkq+fIYmrIFjsbNWoUkDBcEhwcbG0w4hZq1arFrbfeSlxcHGPHjrU6HJEUMtKQnVOsj8CmNKwmdrVt2zYWL16Ml5cXAwYMsDoccSNPPPEEkHDNo/Pnz1scjUhyGlazCfUciTty9hrdeeedlClTxuJoxJ3ccccdlCpVimPHjvHFF19YHY5IMkqO3ICSI7GjY8eO8emnnwLw5JNPWhuMuB0fHx8ef/xxAEaOHKmeSrEV3VvNDSg5EjsaO3Ys58+fp3bt2jRp0sTqcMQN9erVi+DgYLZt28aCBQusDkfERZUjN+BsCNNfVmIX586dc03D/r//+z9N35dMyZ8/P/369QPgrbfesjgakf84z7dqyLaYeo7EnUycOJGjR49StmxZ7rvvPqvDETf25JNP4ufnx88//8zPP/9sdTgigCpHbkHJkdjJ5cuXeffddwF45pln8PHxsTgicWehoaF0794dUPVI7EM9R25AyZHYRmwsX7z0Evv376d48eL06NHD6ogkF3AOzc6bN4+tkyaBLgwpFlPlyCY0rCa2Fx1NfKlSrr/uBzVuTEBAgMVBSW5w0003cXedOgC8GRUFEREQHW1xVOLJlBy5Ad0+RCwXGwu9ezPbGLYD+YG+s2frL3zJGrGxDNm4EYAvgD/i46FPH72/xDK6fYgb0O1DxHI7dxIfH8+wxG8HAPni42HXLguDklxj504ijaEjEA+8ChAXp/eXWEa3D3EDGlYTy1WowNcOB1uAEGAQgLc3lC9vbVySO1SoAF5eDE389gvgdy8vvb/EMhpWswn1HImdxYWGMqx4cQAGAwW8vWH8eAgPtzYwyR3Cw2HCBCK9vbmDxOpRvXp6f4lllBy5ASVHYrXp06ez/cABCoSE8MS8ebBnD0RFWR2W5CZRUbBnD0PHjwdg2rp17Nixw+KgxFNpKr8bUEO2WOnKlSsMGzYMgKefeYaQDh30F71kj/Bw6vTuzR133JHQ45b4vhPJaRlpyM4pSo7SoIZssdKnn37Kzp07KVSoEAMGDLA6HPEAr7zyCg6Hg+nTp7Nu3TqrwxEPpIZsm1DPkdjRv//+y0svvQTAkCFDCA4Otjgi8QQ1a9akW7duADz77LMYYyyOSDyNeo7cgJIjscqoUaP4559/KF26NI8//rjV4YgHefXVV/Hz82PZsmUsWrTI6nDEw6jnyA0oORIrHD582HU17Ndeew1/f3+LIxJPEhER4RrGffbZZ/X5JzlKlSM3oORIrDB8+HDOnDlDZGQkXbp0sToc8UDPP/88+fPnZ/PmzXz++edWhyMeRA3ZNpFeec7ZEKbZapJTfv/9d8YnTql+9913bdGUKJ6nYMGCDBkyBIAXX3yRc+fOWRyReAo1ZLsBVY4kpz333HPExcXRoUMHmjVrZnU44sEGDBhAyZIliY2N5e2337Y6HPEQ6jlyA0qOJCctXryYb775Bm9vb1fPkYhVAgMDeffddwF466232LNnj7UBiUdQz5EbUHIkOeXixYuuJtiBAwdSpUoViyMSgfvuu4/mzZtz4cIFBg8ebHU44gGUHNmErnMkdvD++++zc+dOihUrxtChQ6/9AJEc4HA4GD16NN7e3syePZulS5daHZLkckqO3IBuHyI5Yf/+/bz66qsAvPPOO4SEhFgckch/qlWrxmOPPQYkVDUvXbpkcUSSmznPt+k1ZKvnyGK6fYhku9hYnu7enXPnznHLLbe4rk4sYifDhw+nSJEi7Nixgw8GDIDYWKtDklxKlSM3oGE1yVbR0SwpVYoZy5fjBfzvttty7C8ikeuRP39+3rz9dgCGTZjA7lKlIDra4qgkN1JyZBPqORJLxMZytlcv+iTeu+pxoOaIEfqLXOwpNpZHpkyhGXAO6GsMpndvvV8ly2kqvxtQciTZZudOXjKGPUAE8BpAXBzs2mVpWCKp2rkThzFMAPyBJcDU+Hi9XyXLqXLkBtSQLdllzdmzfJD4/3FAXgBvbyhf3rqgRNJSoQJ4eVEBeDlx0SDgaMGCFgYluZFuH2ITGbl9iCpHkpUuXbpEz+efxwDdHA7aQkJiNH48hIdbHJ1IKsLDYcIE8Pbm/4DqwFFgcOJFIkWyim4f4gY0rCbZ4c0332TLli0ULlyY9zdtgmXLYM8eiIqyOjSRtEVFwZ49+C5bxsS5c3E4HHz22WfMmzfP6sgkF1HPkRtQciRZbcOGDa5rGo0ePZrCNWpAs2aqGIl7CA+HZs2o37EjTz/9NAA9e/bkyJEjFgcmuYV6jtyAkiPJSufPn6dbt25cuXKFe++9ly5dulgdkkimvfLKK1SrVo3Dhw/Tt29fTOLMS5EboeTIJjSVX3LKc889x44dOwgNDWXcuHG6ppG4tYCAAD777DN8fX2ZNWsWU6dOtTokyQXUkO0GnA1hmq0mN+q7775j9OjRAEyaNIlChQpZHJHIjatVqxbDhg0D4PHHH2f//v3WBiRuTw3ZbkCVI8kKx48f5+GHHwagf//+tG3b1tqARLLQM888Q4MGDTh16pRr2FgkszSs5gaUHMmNMsbwyCOP8Pfff1OhQgXefvttq0MSyVI+Pj589tlnBAcH8+OPP7omHIhkhpIjm1DPkWSnUaNGMXfuXPz8/Jg+fTpBQUFWhySS5cqXL8/48eMBePXVV1m2bJnFEYm7UnLkBpQcSabFxrJ2zBieffZZAN5//31q165tcVAi2eeBBx4gKioKYwwPPvggh53X8NL91+Q66DpHbkAN2ZIp0dGcLFWKzo89xuXLl7k3MpJ+/fpZHZVIths9ejRVqlThwIEDdK9dm/gWLSAiAqKjrQ5N3ITzfKuGbBtT5UiuW2ws8b160SPxprJlgYkxMTj+/tviwESyX548eZgxejSBwGJgGEB8PPTpowqSZIiG1a4yZswYypQpQ0BAAJGRkaxcuTLNdWfNmkWrVq0oUqQI+fLlo2HDhixevDhT21XPkWSpnTt51RjmknD38hlAiO5eLh6kqpcXExL//yrwDUBcnH4HJEOUHCUxffp0nnzySV544QViYmJo0qQJ7dq1Y9++famu/+OPP9KqVSsWLlzIhg0baN68OR07diQmJiZL41JyJNdrzl9/Jfy1DIwHIiHhprLly1sWk0iOqlCBbl5ePJH4bXdgh5eXfgckQ9RzlMTIkSOJioqiZ8+eVK5cmVGjRlGyZEnGjh2b6vqjRo3imWeeoV69elSoUIHXX3+dChUqZPkNEJUcyfXYtm0b3Z58EoCBDgc9ICExGj9e904TzxEeDhMm8I6XF02BM8BdRYtyKjjY6sjEDahylOjSpUts2LCB1q1bJ1veunVrVq1alaHniI+P58yZMxQsWDDNdS5evMjp06eTfV2L8+CoIVuu5cSJE9x1112cPXuWpk2b8u6ffybM1NmzJ+Fu5iKeJCoK3717mTFrFuGhofx+8CBdunTRBSLlmnT7kERHjx4lLi6OYsWKJVterFgxDh48mKHneO+99/j333+5//7701znjTfeICQkxPVVsmRJIP3ynLNbXpUjSc/Fixfp1KkTO3fupGTJksyYMQPfMmWgWTNVjMRzhYdTtFMnZs+dS2BgIIsWLWLgwIG6Qa2kKyO3D/GYYTVIubPGmAy9ANOmTWPYsGFMnz6dokWLprnekCFDOHXqlOsrI/cA0rCaXIsxhqioKFasWEFwcDALFixI930o4mnq1q3L1KlTcTgcjB07llGjRlkdktiYhtUSFS5cGG9v7xRVosOHD6eoJl1t+vTpREVFMWPGDFq2bJnuuv7+/uTLly/Z17UoOZJrGTp0KFOnTsXHx4eZM2dSvXp1q0MSsZ1OnTrxzjvvAPDUU0/xzTffWBuQ2JaSo0R+fn5ERkaydOnSZMuXLl1Ko0aN0nzctGnTePjhh/niiy+4/fbbsyU2JUeSnujoaNd9pMaNG0erVq0sjkjEvgYPHkzfvn0xxvDAAw+ke7kW8VxKjpIYPHgwEydOZNKkSWzfvp1Bgwaxb98++vbtCyQMiXXv3t21/rRp0+jevTvvvfceDRo04ODBgxw8eJBTp05d97Yzcp0jNWTL1b766it69+4NwAsvvECUmq5F0uVwOPjwww+5/fbbuXDhAh06dGDTpk1WhyU2k5GGbI/pOercuTOjRo3ilVdeoVatWvz4448sXLiQiIgIAA4cOJDsmkfjx4/nypUrPPbYY4SGhrq+nnjiibQ2kSlqyJYUYmNZ9NZbPPjgg8THx9OrVy/dhVwkg3x8fJgxYwZNmjTh9OnTtGnThp0rV+oebOKSkYbsnOJjdQAA/fv3p3///qn+bPLkycm+X758efYHhIbV5CrR0azs1Yu7jeEy0LlePcaOHZtjf8WI5AZ58uRh3rx5NGvWjE2bNtHq1ltZCZT08oIJE3TpCw+nYTU3oORIXGJjWd2rFx2M4TzQHvh0wwa8DxywOjIRtxMSEsLiTz7hJmAv0AzYp3uwCUqO3IKSI3FaOXMmrY3hNNAU+Brw0z3TRDKt6IkTfEfCzZn/IiFB2qt7sHm0pP296jmyMSVHAgnDuG2HDOEs0AJYAASC7pkmciMqVKCklxfLgXLAbhISpD3+/lZGJRZKeq5V5cjGnA1hmq3muZYsWUL79u05d/48ratWZb6XF0Gge6aJ3KjEe7CV9PZmBVAB2APc2rkz27dvtzY2sUTSc60dGrKtj8BCGZnKr8qRZ/r888+5/fbbOX/+PLfffjtz1q8ncO9e3TNNJKtERcGePYQtW8bydeuoVKkS+/fv55ZbbmH16tVWRyc5TJUjN6HkyDMZY3j33Xd56KGHuHLlCl26dGHmzJkEBAQk/LWre6aJZJ3E36kSdeuycuVKbr75Zo4fP85tt93GggULrI5OclBGkyP1HFlMyZHniY+PZ/Dgwfzf//0fkHCB0qlTp+KvPgiRbFe4cGG+//572rVrx/nz57nzzjtTXMpFci9VjtyEkiMPEhvL2YULua9DB9eNMd99913ee+89W4x9i3iKoKAg5syZQ7du3YiLi+ORRx7hueeeI845pK2p/rmWkiMbSa885+OTcH3MK1eu5FQ4YoXoaPaUKkXj229n1rff4ufjw+eff85TTz1ldWQiHsnX15cpU6bw/PPPA/DWW2/RqXRpzrRoAREREB1tcYSSHZImR3b4o9T6CGxKyZEHiI3lx169qGcMvwHFgGXx8TzYtKnVkYl4NC8vL1577TWmjh6NPzAPaATs1sUicy3nudbHxyfdwoV6jizm6+sLKDnKrYwxfPjWW9xmDEeBOsA6oJEu7ihiG12rVeNHoDiwBYgEFuhikbmS81xrhyE1UHKUJmfl6PLlyxZHIlnt1KlT3H///Qz83/+4AnSGhPs7gS7uKGInFSpQ38uLdUA94ATQAXj+66/1h2suk7RyZAcenRyp58jzxMTEEBkZyddff42vry+junRhmpcXeUAXdxSxm8SLRYZ7e7MSeCzxM/uNjz6iZcuWHND9DXONjCZHGlazmIbVchdjDOPGjaNhw4b8+eefRERE8NNPP/HEtGk4dHFHEftKvFik/7Jl/G/fPr788kvy5s3LihUrqF27NosXL7Y6QskCzoZsVY5sLumwmjHG4mgkU2JjYdkyDsXEcMcdd9CvXz8uXrxIx44d2bhxI/Xr109YTxd3FLG3JL+jnTt3Zv369VSrVo1Dhw7Rtm1bBg4cyPnz512/82rYdj8aVnMTSQ+Q7q/mhqKjISKCOS1aUL1OHebPn4+fnx/vvfcec+bMoWDBglZHKCKZVLFiRdasWcPjjz8OwIcffkhkuXLElCoFmvLvlpQc2Uh6Y5fOYTXQ0JrbiY3lTK9e9IyP5y7gCFADWD9/PoMHD86xMWsRyT558uThww8/5Ntvv6V40aJsP3CAm43hLSBOU/7djnqO3ETSA6TkyL0snTaNGsYQDTiAZ4C1QPUkCa+I5A5t27Zl8/jxdAIuA8+RcE2kLZry71Y0ld9NJK0caTq/ezh+/DgPP/wwrZ95hj1ABLAMeAvw1xR9kVyrcN26zHQ4mATkI+GPoTrA8HnzuHTpkrXBSYZoWM1NqHLkPowxzJgxg8qVKzNlyhQcDgcDWrRgs5cXTUFT9EVyu/BwHB9/zCPe3mwD7iChijRs5EgiIyNZu3atxQHKtSg5spH0xi69vLxcP1dyZF9//fUXd955J507d+bw4cNUrlyZn3/+mdHff0+wpuiLeI7EKf9hy5bxTeKU/yJFirBlyxYaNGhAv379OH78uNVRShrUc+RGnENrGlazmdhYzn37LS8/+SRVqlRh3rx5+Pr6MnToUGJiYmjYsGHCepqiL+JZEn/nHSVL0rlzZ7Zt20a3bt1c1zm76aabmDBhAnHOP5zUsG0bqhy5EV0l237MxInMLFWKyu3b8+oHH3Dx4kVatmzJr7/+yrBhw/D397c6RBGxicKFC/PZZ5+xfPlyqlWrxrFjx+jTpw8NSpdmjab824ouAmkj1yrPKTmyl1XffMOtvXpxrzHsA0oBX3t5sWTSJCpXrmx1eCJiU02bNmXjxo2MGjaMfMB6oAHQJT6eXb17q4JkA6ocuRENq9nDtm3buOuuu2jcqRM/AYHAS8B24J74eBx//mltgCJie76+vjxx6638ATxMwmU+pgOV4+N57PHHOXTokKXxebqMTuVXz5ENqHJkrT/++IOHH36Y6tWrM2fOHLy8vOgF7ARegf9uFqsp+iKSERUqUMzLi0+ATUB74AowZs4cypUrx5AhQzh8+LClIXoqVY7ciJKjHJZ4X6Tfli6lS5cuVKpUiSlTphAfH0+nTp3YunUrEyZOJMz5l4Wm6IvI9QgPhwkTwNubGsACb2+WPf009evX599//+XNN9+kdOnSDBo0iL///lv3astBdkuO7BGFRa5VntOwWs4xEyeysndv3jOGuUmWd+zYkRdffPG/m8RWqgRt2iRc+bZ8eSVGInJ9oqKSfYY0Cw/nF2OYN28eI0aMYN26dYwaNYox//sfD1+5wpNAZS+vhKRKlwTJNprK70ZUOcp+Fy5cYPLIkdTp1YumiYmRA7jf4WDT4sXMnTv3v8TISVP0ReRGXPUZ4nA4uOOOO1izZg2LFy/m1ptv5tKVK0wAqgBt4+NZ1Ls38fv2WRl1rma3ypGSo3QoOco+Bw4c4OWXX6ZUqVI88tRTbCKh0bo3sA2Ybgw1/fwsjVFEPIvD4aB169aseOMNfgTuIuGPtcVAu/h4qtxyC2PHjuXs2bOWxpkbKTlyIxpWyyKJ4/bx+/axdOlS7rvvPkqVKsWrr77KkSNHCA8N5U2Hg/3AeKASqNFaRKxToQJNvLyYDewCBgHBwO/799O/f39CQ0Pp27cvMTExCeurN+mGKTmyEV3nKAdER3OgVCleb9GC8hERtG7dmq+//porV67QqFEjZsyYwe59+3j2448ppEZrEbGDJI3bZYGR3t7EfvghH3zwARUqVODs2bOMHz+eOnXqUK9MGT4uVYqzuqjkDXFeBFJT+d2AkqPMi4uL49vPPuPunj0paQwvALuBEODxhx/m119/5eeff+a+++5LeJ0T74uke6GJiC1c9ZmU7/HHGThwIL///js//PADXbp0wdfXl/V79tDbGEKBvvHxbNRFJTPFbpUje0RhUxpWu35//vknn332GZ988gn7kjQvNgZ6AfcBeXr0gBo1Uj44PFzVIhGxj1Q+kxwOB82bN6d58+YcmT2bKXffzQQSrr82HhgfH0/NZs3o8dhjdO3alWLFilkRuduxW3KkylE6VDlKR5Ix9pMnTzJhwgRuueUWypcvz/Dhw9m3bx8FQkJ4AtgC/AT0APKol0hEcoki9erxtJcXvwPLgC6AH/Drn38yePBgwsLC6NChA1999RUXLlxQb1I67JYc2SMKi6jnKJOioznfqxeLjOFLYI6PDxcTXyMvLy9atWpF9+7d6dSpE4FffAF9+kBcnHqJRCR3SexNcvTpQ7O4OJp5e3P8vff40teXTz/9lDVr1rBgwQIWLFhA/jx56HLuHPcDTRwOfD7+WO0DSdjtOkcenRxdi4bVkjtz5gwLPv2UmY8/zkLgnPMHV65Q9aab6NGzJw8++CAlSpT470FXXXBNiZGI5CpXfcYVDA+nP9C/f3927NjBp59+ymeTJxN74ADjgHFAEWO4q1cv7vH3p/n99+Ony5aocuROPLJyFBsLO3dChQqYsDC2bt3KkiVLWLJkCcuXL+fixYuuVSOAe4BuQK1x43A0b576c6qXSERyszQ+4ypVqsTrr7/Oqy1asLxVK6YCc4AjwMfG8PFDD5F/wABatWpF69atadOmDSVLlkx4cJLPYk/4/FRy5EY8LjmKjuZIr158ZwxLgCX58/PPyZPJVqlQpgz37N7NPUAkCRdIw9s74RdYRERS8K5Uidu8vLgtPp7LwApgpsPB7MKFOXTkCF999RVfffUVAJUrV6ZNWBitvv+eJsYQ7CG3LrFbcuTRDdkedW+1NBoBz58/z9KlS3mmXz/q9OxJUWPoCkwG/jl5ksCAANq2bcvIkSPZsmULv//5J29MnEhdb+//EiP1EYmIpC3JdZN8gZbe3oz9+GP+PnCA1atXM2zYMBo0aICXlxfbt29n1HffcbsxFAAaxsfzQq9efDdtGufOnUv53LmkyduZHNnlOkf2SNFsKrOVoyNHjnDmzBnKlCmTYwcyXdHR0Ls3xMcT73AQ88ILfJc3L0uXLuWnn35KNlQGUANoA7QGbpkzh4DWrZM/n/qIRESuTyqfm95AgwYNaNCgAUOHDuX48eN8/8EHLH7lFX4g4dpwvwC/GMPrXbvi5+dHgwYNXJcSaLB9O/6PPQbx8WCTClNcXBw7d+4kLCyM4ODgDD/ObpUje0RhU5lJjkaOHMkzzzxDXFwc7dq147PPPqNQoULZFeK1xcayO3Go7Dvge2M4NmJEslXCwsJo1agRrb7+mtuMwXVVDm9vqFIl9edVH5GIyPW5xudmwYIFua9XL+4bMQLi49lDwiUCljkc/FCsGH8fPMiPP/7Ijz/+yPDhwwkg4RpyLYDm8fHU7d0b3zZtLPts3rFjB/fddx9btmwhODiYL7/8kvbt22fosc4RGueIjdWUHKXjeofVfvrpJ5566inX999++y233XYbP/30E3nz5s2WGK9u2rt8+TK7du3i119/5YcffuC7+fPZbUyyhwQDzRs1otUDD9CyZUsqVqyYUOGKjta0exERKzmH4Pr0oXRcHI94e/PI+PGYRx9l165dLFu2jGXLlvHD4sUcPnGC74HvEx+aNz6eJvfeS/N77qF58+bUrl37v2GqbG7w3rNnD02aNOHo0aNAwuzmLl26sGvXLooWLXrNxys5spGsvs7RiMSKzMMPP8ygQYNo1aoVv/76K927d+frr7/GyyvrWrxOnz7NjrfeYscbb7DdGHYA24sX58+jR1PE6wM0AFoCrYB6Xl74Tp+e8hdEw2UiItZL5bPYAVSoUIEKFSrQu3dvzP79bI+IYJkx/AAsB44D365Zw7dr1gAQEhJC06ZNqQOUmzePcsZQzuGgyIQJOHr2zLJwz507R6dOnTh69Ci1a9dm7ty53HXXXWzYsIFRo0bx+uuvX/M5MpocqefIBpwHKSPJ0T///MOSJUsAeOmllyhbtiyzZ8+mefPmzJ49mxEjRvDyyy9nfOOJWb4pX54dZ8+yfv16NmzYwJYtW9i+fTv//PNPysccPAhA3rx5qVSpEk2aNKFly5bcuns3eZ94ImMVIQ2XiYhY7xqfxY6SJany8cdU6dOHx+LiiPfyYvNLL/FDSAjLli1jxYoVnDp1irlz5zI36QONIbhXL8qNGkX5ypUpX748kZGRNGnSJOFWJ9dZYTLG0KtXLzZt2kSRIkWYM2cO4eHhDBkyhHvvvZfPPvuMESNGXLM4oMqRG3FWjjIyrDZ//nyMMTRs2JCyZcsC0KhRI8aNG8ejjz7K0KFDqV27Nh1r1772Gy86mt969eJjY5gL7Et9LYoDlYFKSf+dMYOwe+9NmV3feacqQiIiuUmSCpNX+fLUDA+nJjBo0CCuXLlCTEwMK6Kj2TF+PH8Cu4BY4AywaetWNm3dmuzpKoeG0vngQR40hvLXavBOTKLeWrKEL774Ah8fH7766ivXdZo6dOhAcHAwsbGxxMTEEBkZme6uOM+zasi2gawcVnNWjdq1a5ds+SOPPMKGDRv46KOP6Na5M99fuEBdY1KdWRAXF8fcSZP4oHdvViR5jgCgbr16RDZqRM2aNalcuTKVgoPJX6NGwiwFJ29vaNgQUtsvVYRERHKfND7bfXx8qFevHvVCQ+Hjj13nigvAbi8vdk2cyJ+nTvHHH3+watUqfvvtN7YfOMAwYBhwW3w8fXv35s4WLfAtUyb5kyfOgP4iPp4hiYtGjRpF06ZNXav4+/vTokUL5syZw5IlS66ZHDnPsxpWcwPXM6z2y88/A9Asldld77//Pls2bGDFL79wG/AxcF98PI4+faBNGw75+jJp0iTGjx/P3r17AfAG7ga6kzATIc/bb0OzZsmfOLFpTw3UIiKSqiQN3sTFEeDtTeXx46n8yCPJVjsxdy7z77yTz4GlJDR5fx8fT/G6dYnq149evXoREREBsbFc7tWLkcbwfOJjBzscPHbnnSk23bx5c+bMmcMv8+fDQw+le36y27CaR18E8lpcw2q7d6d7ga3D77/P3wcP4gBq33dfQladhK+vL/NefJFbgdNAZxKGwe6Oi6PubbcRFhbG888/z969eylUoABDgD3ADKAD6dzJPioK9uxJuADYnj2WX99CRERsKAPnigJ16vCQlxeLSbi+0osktG4cPH6c1157jTJlynDrrbfSqUsXIozhOSAe6AW8Y0xC28ZV6iT2xm5ctQoiIlKcG5O6fOYMAL6J/1rOeKBTp04ZwIwYMSLd9YZ27GgA0w+M8fIyZuLElCvt328WORwGMDeBMWCMt7cx+/enWO+iw2FeAJMHDFd91a9f33zyySfm3LlzCdvx9v7vuVLbroiISFa66txzadw48/XXX5uWLVumOGcVBjMRTHw657xTiedGwBxJa73E7TZLXG+aw5HuOe++++4zgDl16lQW73xyHj2s5jh9Ou0fxsbiO38+AFcgYbw2cRgsWWlw505iEq8jVNu5LC4uIYtOul54OH4ff8yIPn14Ki6OFV5e/PPAAxTq2JHGjRsTnnRdTakXEZGcdtW5xzc8nHuAe+65hz///JOff/6Zc+fOUfaPP2j6wQf4x8en3dKxcyf5jKE8CY3gMUCr1M6NsbHQuzfOaU++xqR+rk3kOH8+e/b9Kh6dHPH223DTTakPR+3ciU9i0uOaq5baga1QgZjE/9ZxLktvGKxNGwrs2sVd10p61EAtIiI5LY1zT7ly5ShXrtx/CwYPTv8P+AoVwMuLOvHx/yVHqZ0bd+6ExBvyAvhC6udaSBiWSyxaZDf1HPXpk3o/UYUK+CR2xbvasVM7sOHhbC1RAki4J1mGriPUrJkSHxERcV/XOpclNoLXSDyPbnU4Uj83JiZRyZKj1M61iRWmnOLRyVEt+C9DvVp4OL6dOwOJyVEaSY8xhr9OnACg/OefqzFaREQEICqK8v/7HwB/1q2b+rkxMYlyJUdeXmkO0xEfT8vsjdjFo5OjWyDtITDAp0kTAC7femuaSc+BAwc4f/483t7eRNx/vypCIiIiicrVrw/An/v3p71SVBSXE4fsfL/8MvUkKrHC1Dk7gkyFRydHpJWhJnJdBLJAgTTX+euvvwAoVaqUba7PICIiYgfOPqWDBw/y77//prne5cQeX9+wsNRXcF6vKQvvUZoez06OtmxJdwgsIxeB/PPPPwFctwwRERGRBAUKFCB//vwA7N69O831MnQRyKiohPN2DvDs5CitDDVRRu6t5kyOknXxi4iICPDf+dF5vkxNhq+QfY3zdlbx7OToGjJybzUlRyIiImnL0uQohyg5SkdGhtWcZUINq4mIiKTkPD86e3RT40yOnEUJqyk5SkdGhtViE6+RVLJkyRyJSURExJ04z49///13muuocuRGrjWsFh8fz4EDBwAokXghSBEREflPWGKfUHrJkfM8q+QoiTFjxlCmTBkCAgKIjIxk5cqV6a6/YsUKIiMjCQgIoGzZsowbNy5b4rrWsNrhw4e5cuUKDoeD4sWLZ0sMIiIi7uxayZExRpWjq02fPp0nn3ySF154gZiYGJo0aUK7du3Yt29fquvv3r2b9u3b06RJE2JiYnj++ecZOHAgM2fOzPLYrjWs5jzQxYoVs80BFRERsRNncnTw4MFUiw1xcXGu/9vlXGp5cjRy5EiioqLo2bMnlStXZtSoUZQsWZKxY8emuv64ceMoVaoUo0aNonLlyvTs2ZNHH32Ud999N8tju9awmjM5CsuhqYUiIiLupmjRonh7exMfH8+hQ4dS/DxpAULJEXDp0iU2bNhA69atky1v3bo1q1atSvUxq1evTrF+mzZtWL9+fbqN05lxrWE1JUciIiLp8/b2JjQ0FEh9aM2OyZGlc+aOHj1KXFwcxYoVS7a8WLFiHDx4MNXHHDx4MNX1r1y5wtGjR10HIKmLFy9y8eJF1/enTp0C4PTp0+nG53zMhQsXUl3XOY2/SJEi13wuERERT1WsWDFiY2PZuXMnlSpVSvaz48ePu/5//vz5dAsdznOtSbzdSHaxxQUFHA5Hsu+NMSmWXWv91JY7vfHGGwwfPjzF8oxOv4+NjSUkJCTNn0dHRxMdHZ2h5xIREfFU3bp1S/fnhQoVytDzHDt2LN3z8o2yNDkqXLgw3t7eKapEhw8fTlEdcipevHiq6/v4+KT5og4ZMoTBgwe7vj958iQRERHs27cvW19cuzl9+jQlS5Zk//795MuXz+pwcoz2W/vtCbTf2m9PcOrUKUqVKkXBggWzdTuWJkd+fn5ERkaydOlSOnXq5Fq+dOlS7rzzzlQf07BhQ+bNm5ds2ZIlS6hbt26aY5X+/v74+/unWB4SEuJRbyqnfPnyab89iPbbs2i/PYun7reXV/a2TFs+W23w4MFMnDiRSZMmsX37dgYNGsS+ffvo27cvkFD16d69u2v9vn37snfvXgYPHsz27duZNGkS0dHRPP3001btgoiIiOQilvccde7cmWPHjvHKK69w4MABqlWrxsKFC4mIiADgwIEDya55VKZMGRYuXMigQYP46KOPKFGiBKNHj+aee+6xahdEREQkF7E8OQLo378//fv3T/VnkydPTrGsadOmbNy4MdPb8/f3Z+jQoakOteVm2m/ttyfQfmu/PYH2O3v322Gyez6ciIiIiBuxvOdIRERExE6UHImIiIgkoeRIREREJAklRyIiIiJJ5Nrk6LXXXqNRo0bkyZOH/PnzZ+gxxhiGDRtGiRIlCAwMpFmzZmzdujXZOhcvXmTAgAEULlyYoKAg7rjjDmJjY7NhDzLnxIkTPPTQQ4SEhBASEsJDDz3EyZMn032Mw+FI9eudd95xrdOsWbMUP+/SpUs2703GZWa/H3744RT71KBBg2Tr5LbjffnyZZ599lmqV69OUFAQJUqUoHv37vzzzz/J1rPb8R4zZgxlypQhICCAyMhIVq5cme76K1asIDIykoCAAMqWLcu4ceNSrDNz5kyqVKmCv78/VapUYfbs2dkVfqZdz37PmjWLVq1aUaRIEfLly0fDhg1ZvHhxsnUmT56c6u/6hQsXsntXrsv17Pfy5ctT3acdO3YkWy+3He/UPr8cDgdVq1Z1rWP34/3jjz/SsWNHSpQogcPh4JtvvrnmY3Lsd9vkUi+//LIZOXKkGTx4sAkJCcnQY958800THBxsZs6caTZv3mw6d+5sQkNDzenTp13r9O3b14SFhZmlS5eajRs3mubNm5uaNWuaK1euZNOeXJ+2bduaatWqmVWrVplVq1aZatWqmQ4dOqT7mAMHDiT7mjRpknE4HObPP/90rdO0aVPTq1evZOudPHkyu3cnwzKz3z169DBt27ZNtk/Hjh1Ltk5uO94nT540LVu2NNOnTzc7duwwq1evNjfffLOJjIxMtp6djveXX35pfH19zccff2y2bdtmnnjiCRMUFGT27t2b6vp//fWXyZMnj3niiSfMtm3bzMcff2x8fX3N119/7Vpn1apVxtvb27z++utm+/bt5vXXXzc+Pj7ml19+yanduqbr3e8nnnjCvPXWW2bt2rXmjz/+MEOGDDG+vr5m48aNrnU++eQTky9fvhS/83Zyvfu9bNkyA5jff/892T4l/R3Njcf75MmTyfZ3//79pmDBgmbo0KGudex+vBcuXGheeOEFM3PmTAOY2bNnp7t+Tv5u59rkyOmTTz7JUHIUHx9vihcvbt58803XsgsXLpiQkBAzbtw4Y0zCm9HX19d8+eWXrnX+/vtv4+XlZRYtWpTlsV+vbdu2GSDZm2D16tUGMDt27Mjw89x5552mRYsWyZY1bdrUPPHEE1kVapbK7H736NHD3HnnnWn+3FOO99q1aw2Q7EPYTse7fv36pm/fvsmWVapUyTz33HOprv/MM8+YSpUqJVvWp08f06BBA9f3999/v2nbtm2yddq0aWO6dOmSRVHfuOvd79RUqVLFDB8+3PV9Rj8PrXS9++1Mjk6cOJHmc3rC8Z49e7ZxOBxmz549rmXucLydMpIc5eTvdq4dVrteu3fv5uDBg7Ru3dq1zN/fn6ZNm7Jq1SoANmzYwOXLl5OtU6JECapVq+Zax0qrV68mJCSEm2++2bWsQYMGhISEZDi+Q4cOsWDBAqKiolL8bOrUqRQuXJiqVavy9NNPc+bMmSyL/UbcyH4vX76cokWLctNNN9GrVy8OHz7s+pknHG9IuJGjw+FIMfxsh+N96dIlNmzYkOwYALRu3TrNfVy9enWK9du0acP69eu5fPlyuuvY4bhC5vb7avHx8Zw5cybFDTrPnj1LREQE4eHhdOjQgZiYmCyL+0bdyH7Xrl2b0NBQbrvtNpYtW5bsZ55wvKOjo2nZsqXr7hJOdj7e1ysnf7dtcYVsOzh48CAAxYoVS7a8WLFi7N2717WOn58fBQoUSLGO8/FWOnjwIEWLFk2xvGjRohmOb8qUKQQHB3P33XcnW/7ggw9SpkwZihcvzpYtWxgyZAi//vorS5cuzZLYb0Rm97tdu3bcd999REREsHv3bl566SVatGjBhg0b8Pf394jjfeHCBZ577jm6du2a7OaVdjneR48eJS4uLtXfy7T28eDBg6muf+XKFY4ePUpoaGia69jhuELm9vtq7733Hv/++y/333+/a1mlSpWYPHky1atX5/Tp03zwwQc0btyYX3/9lQoVKmTpPmRGZvY7NDSUCRMmEBkZycWLF/nss8+47bbbWL58ObfeeiuQ9nsitxzvAwcO8O233/LFF18kW2734329cvJ3262So2HDhjF8+PB011m3bh1169bN9DYcDkey740xKZZdLSPr3IiM7jekjB+uL75Jkybx4IMPEhAQkGx5r169XP+vVq0aFSpUoG7dumzcuJE6depk6LmvV3bvd+fOnV3/r1atGnXr1iUiIoIFCxakSA6v53lvVE4d78uXL9OlSxfi4+MZM2ZMsp9ZcbzTc72/l6mtf/XyzPyu57TMxjht2jSGDRvGnDlzkiXQDRo0SDbpoHHjxtSpU4cPP/yQ0aNHZ13gN+h69rtixYpUrFjR9X3Dhg3Zv38/7777ris5ut7ntEpmY5w8eTL58+fnrrvuSrbcXY739cip3223So4ef/zxa86YKV26dKaeu3jx4kBCZhoaGupafvjwYVcWWrx4cS5dusSJEyeSVRMOHz5Mo0aNMrXdjMjofv/2228cOnQoxc+OHDmSIpNOzcqVK/n999+ZPn36NdetU6cOvr6+7Ny5M9tOljm1306hoaFERESwc+dOIHcf78uXL3P//feze/dufvjhh2RVo9TkxPFOTeHChfH29k7xV1/S38urFS9ePNX1fXx8KFSoULrrXM/7JTtlZr+dpk+fTlRUFF999RUtW7ZMd10vLy/q1avnes9b7Ub2O6kGDRrw+eefu77PzcfbGMOkSZN46KGH8PPzS3ddux3v65Wjv9vX1aHkhq63Ifutt95yLbt48WKqDdnTp093rfPPP//YrkF3zZo1rmW//PJLhht0e/TokWLWUlo2b95sALNixYpMx5tVbnS/nY4ePWr8/f3NlClTjDG593hfunTJ3HXXXaZq1arm8OHDGdqWlce7fv36pl+/fsmWVa5cOd2G7MqVKydb1rdv3xRNm+3atUu2Ttu2bW3XoHs9+22MMV988YUJCAi4ZmOrU3x8vKlbt6555JFHbiTULJWZ/b7aPffcY5o3b+76Prceb2P+a0jfvHnzNbdhx+PtRAYbsnPqdzvXJkd79+41MTExZvjw4SZv3rwmJibGxMTEmDNnzrjWqVixopk1a5br+zfffNOEhISYWbNmmc2bN5sHHngg1an84eHh5rvvvjMbN240LVq0sN3U7ho1apjVq1eb1atXm+rVq6eY2n31fhtjzKlTp0yePHnM2LFjUzznrl27zPDhw826devM7t27zYIFC0ylSpVM7dq13Xa/z5w5Y5566imzatUqs3v3brNs2TLTsGFDExYWlquP9+XLl80dd9xhwsPDzaZNm5JN77148aIxxn7H2znFOTo62mzbts08+eSTJigoyDUr57nnnjMPPfSQa33ndN9BgwaZbdu2mejo6BTTfX/++Wfj7e1t3nzzTbN9+3bz5ptv2nZqd0b3+4svvjA+Pj7mo48+SvMSDMOGDTOLFi0yf/75p4mJiTGPPPKI8fHxSZZgW+169/v99983s2fPNn/88YfZsmWLee655wxgZs6c6VonNx5vp27dupmbb7451ee0+/E+c+aM69wMmJEjR5qYmBjXzFkrf7dzbXLUo0cPA6T4WrZsmWsdwHzyySeu7+Pj483QoUNN8eLFjb+/v7n11ltTZOPnz583jz/+uClYsKAJDAw0HTp0MPv27cuhvbq2Y8eOmQcffNAEBweb4OBg8+CDD6aY4nr1fhtjzPjx401gYGCq17LZt2+fufXWW03BggWNn5+fKVeunBk4cGCKawJZ6Xr3+9y5c6Z169amSJEixtfX15QqVcr06NEjxbHMbcd79+7dqf5eJP3dsOPx/uijj0xERITx8/MzderUSVbB6tGjh2natGmy9ZcvX25q165t/Pz8TOnSpVNN+r/66itTsWJF4+vraypVqpTsZGoX17PfTZs2TfW49ujRw7XOk08+aUqVKmX8/PxMkSJFTOvWrc2qVatycI8y5nr2+6233jLlypUzAQEBpkCBAuaWW24xCxYsSPGcue14G5NQ3Q4MDDQTJkxI9fnsfrydVa+03rNW/m47jEnsZhIRERGR3Hv7EBEREZHMUHIkIiIikoSSIxEREZEklByJiIiIJKHkSERERCQJJUciIiIiSSg5EhEREUlCyZGIiIhIEkqORERERJJQciQiIiKShJIjEclVXnnlFapXr05QUBDFihWjX79+XL582eqwRMSN+FgdgIhIVjHGEBcXx/jx4wkLC2Pbtm10796dGjVq0K9fP6vDExE3oRvPikiu1rVrV4oUKcIHH3xgdSgi4iY0rCYiucbevXt5/PHHqVatGgUKFCBv3rzMmDGD8PBwq0MTETei5EhEcoWjR49Sv359jh49ysiRI/npp59YvXo13t7e1KpVy+rwRMSNqOdIRHKFhQsXcuXKFaZNm4bD4QDgo48+4tKlS0qOROS6KDkSkVyhYMGCnD59mrlz51KlShXmzZvHG2+8QVhYGEWKFLE6PBFxI2rIFpFcwRhDv379+OKLLwgMDKRbt25cuHCBvXv3Mn/+fKvDExE3ouRIREREJAk1ZIuIiIgkoeRIREREJAklRyIiIiJJKDkSERERSULJkYiIiEgSSo5EREREklByJCIiIpKEkiMRERGRJJQciYiIiCSh5EhEREQkCSVHIiIiIkkoORIRERFJ4v8BUsGyxqfnCAwAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4NklEQVR4nO3dd3gU5dfG8e+mhxBCJyGBUKXXAFJEinRBxQYighq6YkFfFRug2BURf9IkCCgiKiJVigqIgNSgVA1KC70X6cnz/pHsmpBCAklmkr0/15ULMpndObOz2Tk5z3lmHMYYg4iIiIgA4GF1ACIiIiJ2ouRIREREJAklRyIiIiJJKDkSERERSULJkYiIiEgSSo5EREREklByJCIiIpKEkiMRERGRJJQciYiIiCSh5Ehyhf379zN06FA2btyY4mcPP/ww+fPnv+7nvnTpEv369SMkJARPT09q1659/YFmgdGjRzNp0qQUy3ft2oXD4Uj1Z3mJw+Fg6NChVoeRJYYOHYrD4cj2x3788cdUqFABHx8fHA4HJ0+e5OGHH6ZMmTLJ1nvzzTf5/vvvryue9Bw/fpyuXbtSvHhxHA4Hd911V6afo0yZMjz88MNZHpud7N27l86dO1OuXDkCAgIICgqiTp06/O9//+PKlSvJ1nUe/6u//Pz8LIrevXhZHYBIRuzfv59hw4ZRpkyZLE9exowZw7hx4/j444+JiIi4oUQrK4wePZqiRYumOFGEhISwatUqypcvb01gkmm9evWiXbt22bqNjRs38sQTT9CrVy969uyJl5cXgYGBvPLKKzz55JPJ1n3zzTe59957ryt5Sc/rr7/OzJkzmThxIuXLl6dw4cJZ+vx5xb///kuBAgV45ZVXKF26NJcuXWL+/PkMHDiQjRs3MmHChBSPWbBgAUFBQa7vPTxU08gJSo7E7W3evBl/f38ef/xxq0NJl6+vLw0bNrQ6DMmEsLAwwsLCsnUbW7ZsAaB37940aNDAtTwnk+jNmzdTvnx5HnzwwRzbZlY5d+4c+fLly5FtVa5cmcmTJydb1r59ew4fPszkyZP55JNP8PX1TfbziIgIihYtmiPxyX+UgrqhI0eO0KdPH0qVKoWvry/FihWjSZMm/Pjjj651mjdvTvXq1Vm1ahWNGzfG39+fMmXK8NlnnwEwb9486tatS758+ahRowYLFixIsZ1ff/2V2267jcDAQPLly0fjxo2ZN29eivU2b97MnXfeSaFChfDz86N27drJPkCWLl1K/fr1AXjkkUdc5eWrh1527NhBhw4dyJ8/P6VKleKZZ57h4sWL6b4WDoeDCRMmcP78edfzTpo0Kd0hrKu37Sx/b9myhQceeICgoCBKlCjBo48+yqlTp5I9Nj4+no8//pjatWvj7+9PwYIFadiwIbNnzwYShha2bNnCsmXLXPE4h0bSiikjr/OkSZNwOBwsWbKE/v37U7RoUYoUKcLdd9/N/v37032N0lOmTBk6duzIzJkzqVmzJn5+fpQrV45Ro0alWHfPnj10796d4sWL4+vrS5UqVfjggw+Ij49P8/l37dqFl5cXb731Voqf/fLLLzgcDr755hsgc8fhwoULDB48mLJly+Lj40NoaCiPPfYYJ0+eTHX/5s6dS506dfD396dKlSrMnTsXSHhdq1SpQkBAAA0aNGDdunXJHp/a0Nj06dNp06YNISEhrud74YUX+Pfff9N+odPQvHlzunfvDsDNN9+Mw+FwVRyvHlZzOBz8+++/TJ482fXeat68ebrPf/z4cQYMGEBoaCg+Pj6UK1eOl156yfV75XxP/vjjj2zbts31vEuXLk3zOS9fvsxzzz1HcHAw+fLl45ZbbmHNmjWprnvw4EH69u1LWFgYPj4+lC1blmHDhqUYgoqNjeXee+8lMDCQggUL8uCDD7J27doUvy/OIfhNmzbRpk0bAgMDue2224CE4fXhw4dTuXJl1+fiI488wpEjR1LENX36dBo1akRAQAD58+enbdu2REdHp/tapqdYsWJ4eHjg6el53c8hWcyI22nbtq0pVqyYGT9+vFm6dKn5/vvvzauvvmq++uor1zrNmjUzRYoUMZUqVTJRUVFm4cKFpmPHjgYww4YNMzVq1DDTpk0z8+fPNw0bNjS+vr5m3759rscvXbrUeHt7m4iICDN9+nTz/fffmzZt2hiHw5FsO9u3bzeBgYGmfPnyZsqUKWbevHnmgQceMIB55513jDHGnDp1ynz22WcGMC+//LJZtWqVWbVqldm7d68xxpiePXsaHx8fU6VKFfP++++bH3/80bz66qvG4XCYYcOGpftarFq1ynTo0MH4+/u7nvfw4cNm586dBjCfffZZiscAZsiQIa7vhwwZYgBTqVIl8+qrr5rFixebESNGGF9fX/PII48ke+xDDz1kHA6H6dWrl5k1a5b54YcfzBtvvGE++ugjY4wxGzZsMOXKlTN16tRxxbNhwwZjjEk1poy+zs7Xr1y5cmbgwIFm4cKFZsKECaZQoUKmRYsWyWJ0rpvavl8tPDzchIaGmtKlS5uJEyea+fPnmwcffNAA5r333nOtd/jwYRMaGmqKFStmxo4daxYsWGAef/xxA5j+/fun+/p27tzZlC5d2ly5ciXZevfdd58pWbKkuXz5cqaOQ3x8vGnbtq3x8vIyr7zyilm0aJF5//33TUBAgKlTp465cOFCsv0LCwsz1atXd73fb775ZuPt7W1effVV06RJE/Pdd9+ZmTNnmptuusmUKFHCnDt3zvV4Z0xJvf766+bDDz808+bNM0uXLjVjx441ZcuWTXEcUnvs1bZs2WJefvll1/FatWqV2bFjhzEm4fciPDzcte6qVauMv7+/6dChg+u9tWXLljSf+/z586ZmzZomICDAvP/++2bRokXmlVdeMV5eXqZDhw7GGGMuXLhgVq1aZerUqWPKlSvnet5Tp06l+bw9e/Y0DofD/N///Z9ZtGiRGTFihAkNDTUFChQwPXv2dK134MABU6pUKRMeHm7GjRtnfvzxR/P6668bX19f8/DDD7vWO3v2rKlQoYIpXLiw+eSTT8zChQvN008/bcqWLZvifdyzZ0/j7e1typQpY9566y3z008/mYULF5q4uDjTrl07ExAQYIYNG2YWL15sJkyYYEJDQ03VqlWTHdM33njDOBwO8+ijj5q5c+ea7777zjRq1MgEBASk+3omFR8fby5fvmyOHz9uvvrqKxMQEGAGDx6cbB3n8Q8ODjYeHh6mePHi5qGHHjK7d+/O0Dbkxig5ckP58+c3Tz31VLrrNGvWzABm3bp1rmXHjh0znp6ext/fP1kitHHjRgOYUaNGuZY1bNjQFC9e3Jw5c8a17MqVK6Z69eomLCzMxMfHG2OM6dq1q/H19TV79uxJtv327dubfPnymZMnTxpjjFm7dm2aJ+yePXsawHz99dfJlnfo0MFUqlTpGq9GwuMDAgKSLbue5Ojdd99Ntt6AAQOMn5+fa19/+eUXA5iXXnop3XiqVatmmjVrlmJ5ajFl9HV2JjwDBgxI9pzvvvuuAcyBAwdcyyZPnmw8PT3N5MmT043TmITkweFwmI0bNyZb3rp1a1OgQAHz77//GmOMeeGFFwxgVq9enWy9/v37G4fDYf7880/Xsqtf3yVLlhjAzJw507Vs3759xsvLK1nym9HjsGDBglTXmz59ugHM+PHjk+2fv7+/iY2NdS1zvt9DQkJc+2eMMd9//70BzOzZs1PElBbnSXLZsmUGML///nuGH+vkPLZr165Ntvzq5MgYYwICApIlIOkZO3Zsqr9X77zzjgHMokWLXMuaNWtmqlWrds3n3LZtmwHM008/nWz51KlTDZAstr59+5r8+fOnSAbef/99A7gSkU8++cQA5ocffki2Xt++fVNNjgAzceLEZOtOmzbNAGbGjBnJljs/d0aPHm2MMWbPnj3Gy8vLDBw4MNl6Z86cMcHBweb++++/5mtgjDFvvfWWAQxgHA5Hqp8JU6ZMMW+88YaZP3+++fnnn83bb79tChcubEqUKJHs/SjZQ8NqbqhBgwZMmjSJ4cOH89tvv3H58uVU1wsJCSEiIsL1feHChSlevDi1a9emZMmSruVVqlQBYPfu3UBC0+Hq1au59957kzU3e3p68tBDDxEbG8uff/4JwM8//8xtt91GqVKlkm374Ycf5ty5c6xatSpD++RwOOjUqVOyZTVr1nTFlBPuuOOOFNu/cOEChw8fBuCHH34A4LHHHsuS7WXmdU4vRiDZ69SjRw+uXLlCjx49MhRHtWrVqFWrVrJl3bp14/Tp02zYsAFIOM5Vq1ZN1hMDCcfZGMPPP/+c5vM3b96cWrVq8cknn7iWjR07FofDQZ8+fVKsf63j4NzW1Q3v9913HwEBAfz000/JlteuXZvQ0FDX9873e/PmzZP1qlz9e5CWf/75h27duhEcHIynpyfe3t40a9YMgG3btqX72Jz0888/ExAQwL333ptsufN1u/p1yoglS5YApOhNuv/++/HySt4CO3fuXFq0aEHJkiW5cuWK66t9+/YALFu2zPVvYGBgisb3Bx54IM047rnnnhTbKliwIJ06dUq2rdq1axMcHOwaJly4cKHrdyPpen5+fjRr1izd4cSkHn74YdauXcvChQt57rnneO+99xg4cGCydR566CFefPFF2rdvT4sWLXj++ef54YcfOHLkCO+++26GtiPXTw3Zbmj69OkMHz6cCRMm8Morr5A/f346d+7Mu+++S3BwsGu91Gac+Pj4pFju4+MDJPRxAJw4cQJjDCEhISke70yqjh075vo3I+tdS758+VJMcfX19XXFlBOKFCmSYvsA58+fBxJ6vTw9PZO9xjciM69zRmO8Hqntj3NZ0uN89bTy9OK8mnM21p9//km5cuX49NNPuffee1Pd9rX28dixY3h5eVGsWLFk6zkcDoKDg1PEktb7/Vq/B6k5e/YsTZs2xc/Pj+HDh3PTTTeRL18+9u7dy913331DxyGrHTt2jODg4BQ9U8WLF8fLyyvDv5tXPyekfM94eXmlOG6HDh1izpw5eHt7p/pcR48edT1niRIlUvw8tWWQ8FlRoECBFNs6efKk6ximta1Dhw4BuHogr5bRmWTBwcGu16BNmzYUKlSIF154gUcffZQ6deqk+bgGDRpw00038dtvv2VoO3L9lBy5oaJFizJy5EhGjhzJnj17mD17Ni+88AKHDx9OtbE6swoVKoSHhwcHDhxI8TNn869z9kWRIkUytF5OcyZaVzd0X88JwalYsWLExcVx8ODBVBOazMrM65ydDh48mOYy5wnvRo9zt27deP755/nkk09o2LAhBw8evO4KXJEiRbhy5QpHjhxJliAZYzh48GCaJ76s8PPPP7N//36WLl3qqhYBKRrB7aBIkSKsXr0aY0yyBOnw4cNcuXLlut5bzvfDwYMHk1Xjrly5kuJ3q2jRotSsWZM33ngj1edyJtZFihRJtaE7tfclkOq1o5wTFNL6/AsMDHStB/Dtt98SHh6e6rrXw1lR/euvv9JNjiDhfarp/NlPr7CbK126NI8//jitW7d2DYHcqICAAG6++Wa+++67ZH8Jx8fH88UXXxAWFsZNN90EwG233eY6YSQ1ZcoU8uXL55q6nhUVjswoUaIEfn5+/PHHH8mWz5o167qf0zkcMGbMmHTX8/X1zdB+ZuZ1zk5btmzh999/T7bsyy+/JDAwkLp16wIJx3nr1q0p3mNTpkzB4XDQokWLdLfh5+dHnz59mDx5MiNGjKB27do0adLkuuJ1zk764osvki2fMWMG//77r+vn2cF5Yr56uva4ceOybZtJZfS9BQmv09mzZ1NcNHLKlCmun2eWc3bc1KlTky3/+uuvU8xA69ixo+sSAfXq1Uvx5UyOmjVrxpkzZ1zD1k5fffVVhuPq2LEjx44dIy4uLtVtVapUCYC2bdvi5eXF33//nep69erVy+xLAvw33FihQoV01/vtt9+IiYnRJT1ygCpHbubUqVO0aNGCbt26UblyZQIDA1m7di0LFizg7rvvzrLtvPXWW7Ru3ZoWLVrw7LPP4uPjw+jRo9m8eTPTpk1znSSGDBni6i149dVXKVy4MFOnTmXevHm8++67rouflS9fHn9/f6ZOnUqVKlXInz8/JUuWTNb7lJUcDgfdu3d3XdSuVq1arFmzhi+//PK6n7Np06Y89NBDDB8+nEOHDtGxY0d8fX2Jjo4mX758rp6DGjVq8NVXXzF9+nTKlSuHn58fNWrUSPU5M/o6Z8aUKVN49NFHmThxYob6jkqWLMkdd9zB0KFDCQkJ4YsvvmDx4sW88847rp6cp59+milTpnD77bfz2muvER4ezrx58xg9ejT9+/fPUBI3YMAA3n33XdavX5/qxfIyqnXr1rRt25bnn3+e06dP06RJE/744w+GDBlCnTp1eOihh677ua+lcePGFCpUiH79+jFkyBC8vb2ZOnVqiuQyu9SoUYOlS5cyZ84cQkJCCAwMdJ34r9ajRw8++eQTevbsya5du6hRowa//vorb775Jh06dKBVq1aZ3n6VKlXo3r07I0eOxNvbm1atWrF582bef//9FENdr732GosXL6Zx48Y88cQTVKpUiQsXLrBr1y7mz5/P2LFjCQsLo2fPnnz44Yd0796d4cOHU6FCBX744QcWLlwIZGyoq2vXrkydOpUOHTrw5JNP0qBBA7y9vYmNjWXJkiXceeeddO7cmTJlyvDaa6/x0ksv8c8//9CuXTsKFSrEoUOHWLNmDQEBAQwbNizN7QwZMoRDhw5x6623EhoaysmTJ1mwYAGffvop9913X7Iez1q1atG9e3eqVKmCn58fa9as4b333iM4OJjnnnsu06+9ZJKV3eCS8y5cuGD69etnatasaQoUKGD8/f1NpUqVzJAhQ5LNvElr9kl4eLi5/fbbUywHzGOPPZZs2fLly03Lli1NQECA8ff3Nw0bNjRz5sxJ8dhNmzaZTp06maCgIOPj42Nq1aqV6iyxadOmmcqVKxtvb+9kM5pSm21mTMZn+6T1+FOnTplevXqZEiVKmICAANOpUyeza9euNGerHTlyJNnjnbOIdu7c6VoWFxdnPvzwQ1O9enXj4+NjgoKCTKNGjZK9Lrt27TJt2rQxgYGBBnDNOEprBl1GXue0ZjQ5Z4ItWbIkxboZncp/++23m2+//dZUq1bN+Pj4mDJlypgRI0akWHf37t2mW7dupkiRIsbb29tUqlTJvPfeeyYuLi7Zele/vkk1b97cFC5cONnUaqfMHIfz58+b559/3oSHhxtvb28TEhJi+vfvb06cOJHq/l0ttfe78/gkvYRBau/BlStXmkaNGpl8+fKZYsWKmV69epkNGzakeM2zY7baxo0bTZMmTUy+fPkMkOqsyKSOHTtm+vXrZ0JCQoyXl5cJDw83gwcPTna5A2MyPlvNGGMuXrxonnnmGVO8eHHj5+dnGjZsaFatWmXCw8NTzKQ7cuSIeeKJJ0zZsmWNt7e3KVy4sImIiDAvvfSSOXv2rGu9PXv2mLvvvtvkz5/fBAYGmnvuucfMnz/fAGbWrFnJXpPUfteNMeby5cvm/fffN7Vq1TJ+fn4mf/78pnLlyqZv374mJiYm2brff/+9adGihSlQoIDx9fU14eHh5t577zU//vhjuvs+e/Zs06pVK1OiRAnj5eVl8ufPbxo0aGBGjRrluiSFU9euXU2FChVMQECA8fb2NuHh4aZfv35m//79GXmZ5QY5jDEmJ5MxEck7ypQpQ/Xq1V0XRcxOhw8fJjw8nIEDB2q2jlzTm2++ycsvv8yePXuy/SrlkvdoWE1EbC02NpZ//vmH9957Dw8PjxT3CxP53//+ByTcnuPy5cv8/PPPjBo1iu7duysxkuui5EhEbG3ChAm89tprlClThqlTpyab5SQCCdPzP/zwQ3bt2sXFixcpXbo0zz//PC+//LLVoUkupWE1ERERkSQsn8r/yy+/0KlTJ0qWLInD4UgxbTQ1y5YtIyIiwnWTy7Fjx2Z/oCIiIuIWLE+O/v33X2rVquUaM76WnTt30qFDB5o2bUp0dDQvvvgiTzzxBDNmzMjmSEVERMQd2GpYzeFwMHPmTO66664013n++eeZPXt2snsQ9evXj99//z3D9+ESERERSUuua8hetWoVbdq0Sbasbdu2REVFcfny5VTvw3Px4sVkt4GIj4/n+PHjFClS5LoukiciIiI5zxjDmTNnKFmyZLbeRiXXJUcHDx5McUPBEiVKcOXKFY4ePZrqPaveeuutdK9aKiIiIrnH3r17s/UyDbkuOYKUNw50jgymVQUaPHgwgwYNcn1/6tQpSpcuTbVq1Vi5cmWyddu1a8eqVauYPHlyusN7ImID+/ZxcO1a2r/6Kv/s3o2/vz+RkZFUqlSJFStWMH36dIwxtGjUiOnPPotvlSqgSwGI2NrQoUP58MMP6d+/P2+//bZruTGGggULAv/dDDi75LrkKDg4OMXdlg8fPoyXl5frjs9X8/X1TXGjRwBPT88U9/NxDsv5+fml+JmI2EhUFBd796aHMfwDhBcpwqKVK133aXv88cd59NFH6dypE0tWreKFe+4hysMDxo+HyEhrYxeRNKV1Hk7aIp3dLTGWz1bLrEaNGrF48eJkyxYtWkS9evVS7TfKLOcYpo361EXkarGx0KcPrxnDaqAQ8OOJE9yUeKNbp9ZVqvDdpUt4ABOBr+LjoW/fhMeLiC05z7/Z2VN0LZYnR2fPnmXjxo1s3LgRSJiqv3HjRvbs2QMkDIklvTN4v3792L17N4MGDWLbtm1MnDiRqKgonn322UxvO7XM07ksPj7+OvZGRHJETAyb4uNx3mEtCqgQHw87dqRYr40xOK+T/BRwOi4u5XoiYhvO8+/V5+icnEBleXK0bt066tSpQ506dQAYNGgQderU4dVXXwXgwIEDrkQJoGzZssyfP5+lS5dSu3ZtXn/9dUaNGsU999yTJfGociRif6ZCBfoDV4C7gc4Anp5QoULyFStWBA8PXgJuAg4BrzscKdcTEduwQ+XI8p6j5s2bp5uITJo0KcWyZs2asWHDhmyJx3kwVDkSsa+FW7awAvAHRkFCYjRuHFw9eyUsDMaPx6dvX0bGxdEB+MjDgwGXL1M2x6MWkYxwnn/deljNbpxlO1WOROzJGMOQIUMA6N+7N6FLlsCuXWk3WUdGwq5dtF+yhFZNm3I5Lo73338/5wIWkUy51gz0nODWyVFqL7wqRyL2tnjxYtasWYO/vz/Pvf46NG+esmJ0tbAwaN6cl157DYCoqKgUs15FxB5UObIhNWSL2NuoUaMA6N27d4oLwl5Ls2bNaNiwIRcvXuSjjz7KjvBE5Aal1ZCdk5QcXUUN2SL29ffffzN//nwg4TpGmeVwOHjuueeAhOrRpUuXsjQ+EblxdmjIVnJ0FVWOROxr9OjRGGNo164dFStWvK7n6NSpEyVLluTIkSN8//33WRugiNwwVY4sll7PkSpHIvZy+fJlJk+eDFxf1cjJy8uLyMTm7XHjxmVJbCKSdVQ5siE1ZIvY08KFCzl27BjBwcG0bdv2hp4rMjISh8PBzz//zD///JNFEYpIVlBDtg1pKr+IPX3xxRcAPPDAA3h53dgl2sLDw2nVqhUA06ZNu+HYRCTraCq/DalyJGI/p0+fZtasWQB07949S56zW7duAEydOlV/DInYiCpHFtO91URyh++++44LFy5QuXJl162GblTnzp3x9fVl27Zt/PHHH1nynCJy49JryM6papJbJ0epUUO2iP1MnToVSKgaZdWHY1BQEB07dgTgyy+/zJLnFJEbp4ZsG1LlSMRejh8/zpIlSwDo0qVLlj638/lmzpypP4hEbEJT+W1IlSMRe5k/fz5xcXFUr16dChUqZOlzt2vXDh8fH2JiYti+fXuWPreIXJ/0KkcaVssBureaiP05G7HvvPPOLH/uwMBAWrZsmWw7ImItNWTbkKbyi9jHhQsXWLBgAZA9yVHS51VyJGIPmspvQ6ocidjHzz//zNmzZwkNDSUiIiJbtnHHHXcA8Ntvv3HgwIFs2YaIZJwqRzakypGIfTirOXfccUe2fVCWLFmSBg0aADBnzpxs2YaIZJym8tuQKkci9mCMYd68ecB/1Z3s4hxac25PRKyjqfw2pKn8IvawdetW9u3bh5+fH82aNcvWbbVr1w5IGMa7dOlStm5LRNKnqfw2pKn8IvawcOFCAJo1a4a/v3+2bqt27doUK1aMs2fPsmrVqmzdloikT5Uji2kqv4h9LVq0CIA2bdpk+7Y8PDxo3bo18F9SJiLWSK8hWz1HFlFDtoj1zp8/z7JlywBo27ZtjmzTuR0lRyLW0lR+G1LlSMR6yxNvNBsaHEzVqlVzZJvOCtWGDRs4/N13EBubI9sVkeQ0ld+GVDkSsVhUFIu6dweg7cGDOCZOzJHNBgcHU6tUKQB+vOceCA+HqKgc2baI/EeVI4up50jEZmJjoU8fFid+2wagb9+cqeLExtJ2714AFgHEx+fctkXERT1HNqSp/CIWionhWHw8fyR+2wIgLg527MiRbbdM/O8y57Kc2raIuGgqvw1pKr+IhSpW5JfED8RqQHEAT0+oUCFHtt3E4cAT2JX4lWPbFhEXTeW3IQ2riVgoLIylLRPqN80hITkZNw7CwnJk2/k//ZT6id8uczhybtsi4qKGbIuld98WVY5ErLHk8GEAmg8dCrt2QWRkzm08MpLmjz2WEMc99+TstkUESL8hWz1HFlHlSMQ6R48eZdOmTQA0GzDAkqpNi8T7uC1duzbHty0iqhzZkipHItb55ZdfAKhevTrFihWzJIbGjRvj5eXF7t272bVrlyUxiLgzTeW3IVWORKyzdOlSAJo3b25ZDPnz56d+/frJ4hGRnKOp/BZTz5GIvdghOUq6fSVHIjlPw2o2pMqRiDWS9hvdeuutlsai5EjEOhpWsyElRyLWWL58OQDVqlWzrN/IKWnf0e7duy2NRcTdqHJkQxpWE7HGihUrALjlllssjiSh76h27drAf3GJSM7QVH6L6d5qIvaxcuVKAJo0aWJxJAmccTjjEpGcocqRDalyJJLzLly4wPr16wH7JUeqHInkLPUc2ZAqRyI5b926dVy6dIng4GDKli1rdTjAf8nRH3/8wZkzZyyORsR9qHJkQ6ocieQ8Z3WmcePGlv61mFTJkiUpU6YM8fHxrF692upwRNyGrnNkMfUcidiDMzmyy5CaU+PGjQENrYnkJA2r2ZCSI5GcZYyxXTO2k/qORHKehtVsSMNqIjnrr7/+4tixY/j5+VGnTh2rw0nGmRz99ttvxMXFWRyNiHtQ5chiGlYTsZ6zKlO/fn18fHwsjia56tWrU6BAAc6cOcPmzZutDkfELajnyIZUORLJWXbtNwLw9PSkYcOGgIbWRHKKKkc2pMqRSM6yc3IEasoWyWnqObIh58FQ5Ugk+x09epQ///wTgEaNGlkcTerUlC2Ss5znXyVHFknvvi2qHIlkP+f1gypVqkSRIkUsjiZ1N998Mx4eHuzevZsDBw5YHY5Inuc8/+reajaiYTWRnLNmzRogIQGxq8DAQKpVqwagi0GK5AANq9mQGrJFcs7atWsBaNCggcWRpM+ZvCk5Esl+asi2IVWORHKGMcZVOVJyJCJOmspvsfTGM1U5Esleu3bt4tixY3h7e1OzZk2rw0mXMzlau3atLgYpks1UObIhVY5EcoazalS7dm18fX0tjiZ9VatWJSAggLNnz7J9+3arwxHJ09RzZEOayi+SM5zJUf369S2O5No8PT2pV68eoKE1keymqfw2pKn8IjkjtzRjO6nvSCRnaCq/xdK7t5oqRyLZ58qVK6xfvx7IHZUjUHIkklM0rGZDqhyJZL9t27Zx7tw5AgMDqVSpktXhZIgzOdq0aRP//vuvxdGI5F1qyLYhNWSLZD9nv1FERASenp4WR5MxoaGhhIaGEh8f76p6iUjWU+XIhjSVXyT75bZ+IydnvBpaE8k+6VWO1HOUA9LrOVLlSCT75JaLP15NfUci2U+VIxtSQ7ZI9jp//jx//PEHkHuasZ2cyZEzuRORrKep/DakhmyR7LVx40bi4uIoUaIEpUqVsjqcTKlXrx4eHh7s3buXAwcOWB2OSJ6U3lT+nKLk6CqqHIlkr6QXf7Tyw+965M+fn2rVqgEaWhPJLrq3WqLRo0dTtmxZ/Pz8iIiIYPny5emuP3XqVGrVqkW+fPkICQnhkUce4dixY5nebnrNXqociWSP3NqM7aS+I5Hspan8wPTp03nqqad46aWXiI6OpmnTprRv3549e/akuv6vv/5Kjx49iIyMZMuWLXzzzTesXbuWXr16ZUk8asgWyV656bYhqdGMNZHspYZsYMSIEURGRtKrVy+qVKnCyJEjKVWqFGPGjEl1/d9++40yZcrwxBNPULZsWW655Rb69u3LunXrsiQeTeUXyT4nTpwgJiYGyL3JkbNytHbtWuLi4iyORiTvcfuG7EuXLrF+/XratGmTbHmbNm1YuXJlqo9p3LgxsbGxzJ8/H2MMhw4d4ttvv+X2229PczsXL17k9OnTyb5AU/lFctq6H34AoHx4OEWKFLE4mutTrVo1AgICOHv2LH9OmQKxsVaHJJKnuP291Y4ePeqatZJUiRIlOHjwYKqPady4MVOnTqVLly74+PgQHBxMwYIF+fjjj9PczltvvUVQUJDrK70ZMmrIFskmUVGs7d4dgPq7d0NUlMUBXR9PT08iQkMBWPPooxAenmv3RcSO3L5y5HR1JmiMSTM73Lp1K0888QSvvvoq69evZ8GCBezcuZN+/fql+fyDBw/m1KlTrq+9e/deMxZVjkSyUGws9OnDmsQPvQYAffvmzqpLbCz1//oLgDUA8fG5d19EbMgOU/m9LNsyULRoUTw9PVNUiQ4fPpyimuT01ltv0aRJE/7v//4PgJo1axIQEEDTpk0ZPnw4ISEhKR7j6+uLr69vhmJS5UgkG8TEQHw8zksn1geIi4MdOyAszMLArkNMDM55dq5LQebWfRGxofQqR24xrObj40NERASLFy9Otnzx4sU0btw41cecO3cuxQvmvHFlZhMaTeUXySEVK7LP4eAA4AnUAfD0hAoVrI3relSsSIPEz4k/gAuQe/dFxIbsUDmyfFht0KBBTJgwgYkTJ7Jt2zaefvpp9uzZ4xomGzx4MD169HCt36lTJ7777jvGjBnDP//8w4oVK3jiiSdo0KABJUuWvOF4VDkSyQZhYazp3x+AakCApyeMG5c7Ky1hYYSPH08x4DLwu4dH7t0XERuyQ8+RpcNqAF26dOHYsWO89tprHDhwgOrVqzN//nzCw8MBOHDgQLJrHj388MOcOXOG//3vfzzzzDMULFiQli1b8s4772RJPKociWSPtUFBADS4/XYYOzZXJxOOXr1o8NVXzPvpJ9YMHcrNkZFWhySSJyQtTLh1cgQwYMAABgwYkOrPJk2alGLZwIEDGThwYLbEoqn8ItnDefHHBnfemasTI6f6TZsmJEeJzdkicuOSnnvdeljNSuld50jDaiJZJz4+3nWh1tx68cerOa+U7Uz6ROTG2aVy5NbJUWo0rCaS9WJiYjh16hT+/v6uG7fmds4k76+//uLkyZPWBiOSR6hyZFOqHIlkPWd1pU6dOnh7e1scTdYoWrQo5cqVA8iy2xeJuDtVjmxKlSORrLd27Vrgv6GovMJZPdLQmkjWuFblyC2uc2Q19RyJ5Axn8pBX+o2c1HckkrWSJkeqHNmIKkciWevSpUts3LgRyHuVI+f+OCtjInJjNKxmU5rKL5K1Nm3axMWLFylUqBDly5e3OpwsVadOHTw9Pdm/fz/79u2zOhyRXE8N2TalYTWRrOWsqtSvX9/SD7vsEBAQ4Jp9p6E1kRt3rcqReo5ygO6tJpL9XBd/zGNDak7qOxLJOqoc2ZQqRyJZK682Yzup70gk66jnyKZUORLJOmfOnGHr1q2AeyRH+twQuTGqHNmUKkciWWfDhg0YYwgLCyMkJMTqcLJFtWrV8Pf35/Tp0/yl+6yJ3BBd58imnMlRXFycxZGI5H559eKPSXl5eVG3bl1AfUciNyppYUKVIxtR5Ugk6+T1fiMn9R2JZA1n5cjT09PSOJQcXUXXORLJOu5QOQLNWBPJKs5zb1rN2BpWywHp3T5EyZHIjTl8+DC7du3C4XAQERFhdTjZypkcbdy4kYsXL1ocjUjuda3kKKe4dXKUGiVHIlnDWTWqVKkSQUFBFkeTvcqWLUuRIkW4dOkSf/zxh9XhiORaSo5sSsmRSNZwlyE1SKhCO/uq1Hckcv2UHNmUkiORrOEuzdhO6jsSuXHqObIB9RyJZA9jjFtVjkDJkUhWUOXIppQcidy4Xbt2cfToUby9valVq5bV4eQIZ4Vs+/btnD592uJoRHInJUc2peRI5MY5q0a1atXC19fX4mhyRvHixQkPD8cYw/r1660ORyRXUnJkU0qORG6cu/UbOWloTeTGqOfIBtRzJJI93K3fyEnJkciNUeXIppQcidyYK1eusG7dOsD9kiNnpUzJkcj1UXJkU0qORG7Mtm3bOHfuHPnz56dSpUpWh5OjIiIi8PDwIDY2lgMHDlgdjkiuo+TIppLeeFY3nxXJPGfVpF69epbfPDKn5c+fn6pVqwK6GKTI9VDPkQ2k13MEKDkSuQ7O5MjdhtSc1Hckcv1UObKppAdEQ2simedMCm6++WaLI7GG+o5Erp+SI5tSciRy/c6dO8emTZsAVY7Wrl2r6rNIJmlYzaaUHIlcv+joaOLi4ggJCSE0NNTqcCxRo0YNfH19OXnyJDt27LA6HJFcRZUjG7hWz5GSI5HMWb16NZBQPcmpv/Dsxtvbm7p16wIaWhPJLCVHNqXkSOT6uXsztpOaskWuj5Ijm1JyJHL9lBwlUFO2yPVRz5FNKTkSuT5Hjhxh586dQMI1jtyZMzmMjo7m8uXLFkcjknuocmQD6jkSyTrOix5WqlSJggULWhuMxSpUqEDBggW5ePGia/aeiFybkiObUnIkcn00pPYfh8OhviOR66DkyKaSVpOUHIlknLtf/PFq6jsSyTz1HNlAWi+ybj4rkjnGGFWOrpL0YpAikjGqHNmYkiORzPnnn384duwYPj4+1KxZ0+pwbMFZOdqyZQtnzpyxOBqR3EHJkY0pORLJHGfVqHbt2vj6+locjT2EhIRQqlQpjDFs2LDB6nBEcgUlRzam5Egkc9b89BMADapWtTgSe3H1HX35JcTGWhyNiP2p58gG1HMkkgWiolgTFQVAg8mTIfH/Ag0SP2PWjh8P4eF6bUSuQZUjG1NyJJJBsbFc7t0b56BRA2Ogb19VSQBiY2nw3XcArAGIj9drI3INSo5sTMmRSAbFxLDJGC4AQUBFgLg40N3oISaGCGNwALuBQ6DXRuQalBzZmJIjkQyqWJE1iUNHDUj8QPH0hAoVrIzKHipWpICHB5UTv10Lem1ErkE9RzagniORGxQWxprGjYGE5AhPTxg3DsLCLA3LFsLCYPz4//qOHA69NiLXoMqRjSk5Esm4NSdPAtBg+HDYtQsiIy2Nx1YiI2nw+usArGnWTK+NyDUoObIxJUciGXPmzBm2bt0KQP1HH1VVJBUN2rYFYM0ff2CMsTgaEXvTsJqNKTkSyZg1a9ZgjKFUqVKEhIRYHY4t1axZEx8fH44fP84///xjdTgitqbKkQ2o50jkxqxatQqARo0aWRyJffn4+FC7dm1AN6EVuRYlRzam5EgkY5QcZYxuQiuSMUqObEzJkci1GWP47bffACVH1+JMjlQ5Ekmfeo5sTMmRyLXFxMRw/PhxfH19qVOnjtXh2JozOdqwYQOXL1+2OBoR+1LlyAbUcyRy/ZxDahEREfj4+Fgcjb1VrFiRAgUKcP78ebZs2WJ1OCK2peTIxpQciVyb+o0yzsPDg/r16wPqOxJJj5IjG1NyJHJtSo4yR31HItemniMbU3Ikkr4zZ86wefNmQMlRRjmTo9WrV1sciYh9qXJkA+o5Erk+a9asIT4+ntKlS1OyZEmrw8kVnMnRli1bOHPmjMXRiNiTkiMbU3Ikkj4NqWVeyZIlKVOmDPHx8aoeiaRByZGNKTkSSZ+So+vTuHFjAFasWGFxJCL2pJ4jG9Cwmkjm6eKP169JkyaAkiORtKhyZGNKjkTS9tdff3H8+HH8/Pxc9wyTjHEmR7/99htxcXEWRyNiP0qOkhg9ejRly5bFz8+PiIgIli9fnu76Fy9e5KWXXiI8PBxfX1/Kly/PxIkTsyweJUciadPFH69f9erVCQwMTDbbT0T+o+Qo0fTp03nqqad46aWXiI6OpmnTprRv3549e/ak+Zj777+fn376iaioKP7880+mTZtG5cqVsywmJUciaVO/0fXz9PSkYcOGgIbWRFKjnqNEI0aMIDIykl69elGlShVGjhxJqVKlGDNmTKrrL1iwgGXLljF//nxatWpFmTJlaNCggavRMTPUcySSeUqOboz6jkTSpsoRcOnSJdavX0+bNm2SLW/Tpg0rV65M9TGzZ8+mXr16vPvuu4SGhnLTTTfx7LPPcv78+TS3c/HiRU6fPp3sKz1KjkRSd/r0aV388QY5/5BL6zNOxJ3ZJTnysnLjR48eJS4ujhIlSiRbXqJECQ4ePJjqY/755x9+/fVX/Pz8mDlzJkePHmXAgAEcP348zb6jt956i2HDhmU4LiVHIqn77bffMMZQpkwZQkJCrA4nV2rYsCEeHh7s2rWL/fv36yKaIknYJTmyfFgNUg5vGWPSHPKKj4/H4XAwdepUGjRoQIcOHRgxYgSTJk1Ks3o0ePBgTp065frau3dvuvEoORJJnXOyRNOmTS2OJPcKDAykZs2agIbWRK6m5AgoWrQonp6eKapEhw8fTlFNcgoJCSE0NJSgoCDXsipVqmCMITY2NtXH+Pr6UqBAgWRfoJ4jkcz69ddfASVHN0pDayKpU3IE+Pj4EBERweLFi5MtX7x4cZoN1k2aNGH//v2cPXvWteyvv/7Cw8ODsLCwLIlLyZFISpcuXXLd9uKWW26xOJrcTU3ZIqlTcpRo0KBBTJgwgYkTJ7Jt2zaefvpp9uzZQ79+/YCEIbEePXq41u/WrRtFihThkUceYevWrfzyyy/83//9H48++ij+/v5ZEpOSI5GUNmzYwPnz5ylSpEiWXjrDHTmTo+joaM6dO2dxNCL2YZep/JY2ZAN06dKFY8eO8dprr3HgwAGqV6/O/PnzCQ8PB+DAgQPJrnmUP39+Fi9ezMCBA6lXrx5FihTh/vvvZ/jw4VkWk5IjkZScQ2pNmjTJsQ+ovKp06dKULFmS/fv3s3btWpo1a2Z1SCK2YJfKkeXJEcCAAQMYMGBAqj+bNGlSimWVK1dOMRR3PdRzJJJx6jfKOg6HgyZNmvDNN9+wYsUKJUciieySHFk+rGZHSo5EkjPGuJIj9RtlDfUdiaSk5MjGlByJJLd9+3aOHTuGn58fdevWtTqcPCHpjDV91ogksEvPkZKjVCg5EknOWTW6+eabdbPZLFKnTh3y58/PyZMn2bRpk9XhiNiCKkc2oJ4jkYxRv1HW8/Lycg2t/fLLLxZHI2IPSo5sTMmRSHLOK2Or3yhr3XrrrYCSIxEnJUc2puRI5D/79u1j586deHh46GazWSxpcmSMsTgaEeup58jGlByJ/Mc5m6pmzZquW+9I1qhfvz5+fn4cPnyYP//80+pwRCynypENqOdI5No0pJZ9fH19adiwIaChNRFQcmRrSo5E/rN06VIAXagwmzhf12XLllkciYj1lBzZmJIjkQRHjhxh8+bNwH/9MZK1nK/rsmXL1Hckbk89Rzam5EgkgXOop1q1ahQvXtziaPKmhg0b4u3t7Wp8F3FnqhzZmJIjkQRL584FoHm9ehZHknfly5eP+vXrA/DLuHEQG2txRCLWUXJkY0qORICoKJYm3vi5xZQpEBVlbTx52K1BQQD88u67EB6u11rclobVbEzJkbi92FiO9O7N5sRvbzUG+vZVVSM7xMbSbMECAJYBxMfrtRa3pcqRDWgqv0gaYmL4JbE5uDpQDCAuDnbssDKqvCkmhsbG4AH8A8SCXmtxW0qObEzJkbi9ihVZmvjf5s5lnp5QoYIl4eRpFStSwMODOonfLgO91uK2lBzZmJIjcXthYSwNDQUSkyNPTxg3DsLCrIwqbwoLg/HjaZFYyV7icOi1FrelniMbU3Ik7u7IkSNs3rcPgFtnzoRduyAy0tqg8rLISFpOngzAz6VK6bUWt6XKkQ2o50gkdc7rG1WvXp1id92lKkYOaNq5M15eXuzcs0fXOxK3peTIxpwHJS4uzuJIRKzhvGVI8+bNLY3DneTPn5+bb74ZgJ9//tniaESsoeTIxlQ5Enen5MgaLVu2BOCnn36yOBIRa6jnyMaUHIk70/3UrHPbbbcBCZUj3WdN3JEqRzagniORlJxVi1q1alGsWDGLo3EvDRs2xN/fn0OHDrFt2zarwxHJcUqObEzJkbizH3/8EYBWrVpZHIn78fX15ZZbbgE0tCbuScmRjSk5EndljGHx4sUAtG7d2uJo3JOz70hN2eKO1HNkY0qOxF3t2LGDPXv24OPjQ9OmTa0Oxy05k6OlS5dqxqy4nTxROTp8+DAHDx7MqlhynHqORJJzVo2aNGlCvnz5LI7GPdWtW5egoCBOnjxJdHS01eGI5KhcnRz98ccfVKtWjZCQEEJDQwkNDeXll1/m33//zer4LKHkSNyV+o2s5+XlRbNmzQD1HYn7ydXJUWRkJCVKlODXX38lOjqa4cOH88MPP1CvXj1OnDiR1THmOCVH4o7i4uJcfS5Kjqyl6x2Ju8rVPUdbt25l9OjRNGrUiJo1a/LII4+wbt06qlWrxsCBA7M6xhyn5Ejc0bp16zh16hQFCxYkIiLC6nDcmjM5Xb58OefPn7c4GpGck6srR6lViBwOB2+++SazZs3KksBygnqORP7jHFJr2bIlnp6eFkfj3qpWrUpoaCgXLlxg+fLlVocjkmNyXXJ0++238+KLL/L111/Tr18/nn76aQ4dOpRsnVOnTlGoUKEsDzKnKTkSd+RsxtaQmvUcDgdt2rQBYOHChRZHI5Jz7DKs5pXRFWvUqMGGDRv47LPPXElRuXLluP/++6lduzZxcXF89tlnfPjhh9kWbE5RciTu5t9//2XlypWArm9kF+3ateOzzz5j4cKFfPDBB1aHI5Ij7FI5ynBy9Pbbb7v+f+jQIaKjo9m4cSMbN25kzJgx7NixA09PT4YNG8Y999yTLcFmNQ2riSRYvnw5ly9fJjw8nPLly1sdjpBQwfPw8GDLli3ExsYSFhZmdUgi2S7XJUdJlShRgnbt2tGuXTvXsvPnz/P777/z+++/Z1lwVlFyJO5m0aJFQMIJOafK1pK+woULU79+fVavXs2iRYt49NFHrQ5JJNvZJTnKsq37+/vTsGFD+vbtm1VPaRklR+JufvjhB4Bkf/CI9dq2bQvAggULLI5EJGfYpedItw9JhZIjcSc7d+5k+/bteHp6qhnbZpzJ0Y8//qhbiYhbyHOVo9xIPUci/1WNGjduTMGCBa0NRpJp0KABQUFBnDhxgrVr11odjki2U3JkY0qOxJ04k6MOHTpYHIlczcvLy1XN05R+cQdKjmxMyZG4iwsXLrhuGdK+fXuLo5HUOIfWlByJO1DPkY0pORJ3sXz5cs6dO0fJkiWpWbOm1eFIKpzJ0erVq/PEvStF0qPKkQ2o50jc3fz584GEWWqawm9PpUuXpkqVKsTHx7uuYi6SVyk5sjElR+Iu1G+UOziPz7x58yyORCR7KTmyMSVH4g527tzJn3/+mazpV+ypY8eOQEKlT1P6JS9Tz5GNKTkSd5B0Cn9QUJDF0Uh6mjRpQsGCBTl69CirV6+2OhyRbKPKkQ2o50jcmbPfSLPU7M/b29t19fK5c+daHI1I9lFyZGNKjiSvO3/+PEuWLAHUb5RbOIfWlBxJXqbkyMaUHEle99NPP3Hu3DlKlSpFjRo1rA5HMqB9+/Z4eHiwadMmdu/ebXU4ItlCPUc2puRI8rpZX34JwB0tW2oKfy5RuHBhmjRpAsDcESMgNtbiiESynipHNqCeI3FH8Z9+ypxp0wC4c8oUiIqyOCLJqE4lSgAwd9QoCA/XsZM8R8mRjSk5kjwrNpY1fftyCCgANDMG+vZVFSI3iI2l44wZAPwMnI2P17GTPEfDajam5EjyrJgYZhkDQHvAByAuDnbssDIqyYiYGCobQzngEvAj6NhJnqPKkY0pOZI8q2JFZiX+907nMk9PqFDBooAkwypWxOHhQafEb+eAjp3kOUqObEA9R+JuYs6fZxvgRULlCE9PGDcOwsKsDUyuLSwMxo+nU+Ln01wgbswYHTvJU5Qc2ZiSI8mrZs+eDUDzpk0puGQJ7NoFkZHWBiUZFxnJrTt2UCgwkMPAikqVrI5IJEup58jGlBxJXjVrVsKg2h333QfNm6vqkAt5ly3LHXffDcB3331ncTQiWcck9kOCKkeW0rCauJOjR4+yYsUKAO644w6Lo5EbcXeS5CjpCUUkN0t6zlVyZENKjiQvmjdvHvHx8dSuXZvw8HCrw5Eb0Lp1awICAti7dy/r16+3OhyRLKHkyOaUHEleNCPxGjl33nnnNdYUu/P393fdE09Da5JXZCQ5Us+RhZQcSV5z6tQpFi5cCMB9991ncTSSFZxDazNmzNDQmuQJqhzZhHqOxF3MnTuXS5cuUblyZapWrWp1OJIFOnTogI+PD3/99Rdbt261OhyRG6bkyOaUHEle88033wAJVSPdaDZvKFCgAG3atAE0tCZ5g5Ijm1NyJHnJmTNnWLBgAQD33nuvxdFIVrpbU/olD1FydJXRo0dTtmxZ/Pz8iIiIYPny5Rl63IoVK/Dy8qJ27dpZGo+SI8lL5s6dy8WLF7npppuoUaOG1eFIFurUqROenp5s3LiRf/75x+pwRG6IkqMkpk+fzlNPPcVLL71EdHQ0TZs2pX379uzZsyfdx506dYoePXpw2223Xfe21XMk7uDbb78FEqpGGlLLW4oWLUrz5s0B+Prrr60NRuQGKTlKYsSIEURGRtKrVy+qVKnCyJEjKVWqFGPGjEn3cX379qVbt240atQoy2NyHpS4uLgsf26RnHT27Fnmz58PaJZaXtW1a1cApk2bZnEkIjcm6Tk3rT/k3GIq/6VLl1i/fr2rqdCpTZs2rFy5Ms3HffbZZ/z9998MGTIkQ9u5ePEip0+fTvaVHlWOJK+YP38+Fy5coHz58tSqVcvqcCQb3H333Xh7e/PHH39o1prkaknvq2Z1ldvS5Ojo0aPExcVRokSJZMtLlCjBwYMHU31MTEwML7zwAlOnTsXLyytD23nrrbcICgpyfZUqVSrd9T09PQFVjiT3c1YTNEst7ypcuDBt27YFVD2S3M15zrV6SA1sMKwGKctkxphUP8jj4uLo1q0bw4YN46abbsrw8w8ePJhTp065vvbu3Zvqdp2UHElecOLECdeQ2oMPPmhxNJKdHnjgASAhOdIFISW3cp5znedgK2Ws9JJNihYtiqenZ4oq0eHDh1NUkyBhSvK6deuIjo7m8ccfBxLKcMYYvLy8WLRoES1btkzxOF9fX3x9fTMcl5IjyQtmzJjBpUuXqFGjBtWrV7c6HMlGd9xxB/7+/vz999+sX7+eevXqWR2SSKZlJDlyi54jHx8fIiIiWLx4cbLlixcvpnHjxinWL1CgAJs2bWLjxo2ur379+lGpUiU2btzIzTffnCVxKTmSvODLL78EoFu3bhZHItktf/783HHHHYCG1iT3slPlyPJhtUGDBjFhwgQmTpzItm3bePrpp9mzZw/9+vUDEobEevToASSMQ1avXj3ZV/HixfHz86N69eoEBARkSUxqyJbcbt++fSxduhT4b8hF8jbnrLXp06frs0tyJef71g7JkaXDagBdunTh2LFjvPbaaxw4cIDq1aszf/58wsPDAThw4MA1r3l0vdRzJHnVV199hTGGW265xfW7JHlb+/btCQoKYt++fSxfvpxmzZpZHZJIpqgh+yoDBgxg165dXLx4kfXr13Prrbe6fjZp0iTXX8CpGTp0KBs3bszSeJQcSW6nITX34+vr67qdiIbWJDdSz5HNKTmS3Gz79u1s2LABLy8vXfjRzTiT4a+//poLFy5YHI1I5qjnyOacB8Y5E04kN/niiy+AhIupFi1a1OJoJCe1aNGCsLAwTpw4wZw5c6wORyRTlBzZxLV6jgAlR5KrxMXFMXnyZAB69uxpcTSS0zw9PV0TWJzvA5HcQsmRzSVtBtPQmuQmP/30E7GxsRQqVMg1tVvcizM5WrBgAQcOHLA4GpGMS3r7kLSo58hCSbNWJUeSm3z2yScAPNCpE35+fhZHI1aoVKkSjRo1Ii4ujqnDhkFsrNUhiWSIKkc2p+RIcqMTo0Yxc/ZsAB75/HOIirI4IrHKwxUqADB53DhM6dJ6L0iuoOTI5pQcSa4TG8tXTz3FRaA6EGEM9O2rqoE7io3l/i++wA/YDGzQe0FyCSVHNpf0wOhKs5IrxMQwKXHywCOAAyAuDnbssDIqsUJMDAWN4a7EbyeB3guSK+g6RzanhmzJbbYawxoSLnnf3bnQ0xMSh1fEjVSsCB4ePJL47RfAeQ8PvRfE9ux0+xC3To4yMpVfyZHkBhPmzgXgdqA4JCRG48ZBWJiVYYkVwsJg/HhaeXhQBjgJfN2zp94LYnu6fYjNORwOV+Kk5Ejs7vz580yaNAmAPpMnw5IlsGsXREZaGpdYKDISj9276Z34Hhj/558WByRybRpWywV0CxHJLb755htOnDhBeHg4bR98EJo3V5VAICyMR4cPx8vLi5UrV7J582arIxJJlxqycwElR5JbjB07FoA+ffrY4kNF7CM4OJg777wTgHHjxlkcjUj6lBzZRHrlOeeYp2ariZ39/vvvrFq1Ci8vLx599FGrwxEb6tu3LwCff/45586dszgakbSpITsXUOVIcgNn1ahz584EBwdbHI3Y0W233Ua5cuU4deoUX3/9tdXhiKQpIw3Z6jmymJIjsbszZ87wxRdfANCvXz+LoxG78vDwoHfv3gB88sknupm22JaG1XIBJUdid1988QVnz57lpptuokWLFlaHIzYWGRmJr68v69at47fffrM6HJFUKTmyifTKc0qOxM7i4+MZNWoUAAMGDMixUrPkTsWKFaNbt24AfPTRRxZHI5I6JUe5gPPgqCFb7GjRokVs376dAgUKqBFbMuSJJ54A4NtvvyVW91kTG9J1jnIBZ0OYKkdiRyNHjgQShksCAwOtDUZyhdq1a3PrrbcSFxfHmDFjrA5HJAVnMUJXyLYxDauJXW3dupWFCxfi4eHBwIEDrQ5HcpEnn3wSSLjm0fnz5y2ORiQ5DavZhHqOJDdy9hrdeeedlC1b1uJoJDe54447KF26NMeOHePLL7+0OhyRZJQc5QJKjsSOjh07xpQpUwB46qmnrA1Gch0vLy8ef/xxAEaMGKGeSrEV9RzlAmrIFjsaM2YM58+fp06dOjRt2tTqcCQX6t27N4GBgWzdupV58+ZZHY6IiypHuYAassVuzp0755qG/X//93+avi/XpWDBgvTv3x+Ad955x+JoRP6jhmybUM+R5CYTJkzg6NGjlCtXjvvuu8/qcCQXe+qpp/Dx8WHFihWsWLHC6nBEAFWOcgUlR2Inly9f5v333wfgueeew8vLy+KIJDcLCQmhR48egKpHYh/qOcoFlByJbcTG8uUrr7B3716Cg4Pp2bOn1RFJHuAcmp0zZw5bJk4EXRhSLKbKkU1oWE1sLyqK+NKlXX/dP92kCX5+fhYHJXnBTTfdxN116wLwdmQkhIdDVJTFUYk7U3KUCzgbwjRbTSwTGwt9+jDTGLYBBYF+M2fqL3zJGrGxDN6wAYAvgb/i46FvX72/xDLO862G1WxMlSOxXEwM8fHxDE38diBQID4eduywMCjJM2JiiDCGTkA88DpAXJzeX2IZ5/lWs9VsTMmRWK5iRb51ONgMBAFPA3h6QoUK1sYleUPFiuDhwZDEb78E/vTw0PtLLKNhNZtQz5HYWVxICEODgwEYBBTy9IRx4yAszNrAJG8IC4Px44nw9OQOEqtH9evr/SWWUXKUCyg5EqtNnz6dbQcOUCgoiCfnzIFduyAy0uqwJC+JjIRduxgybhwA09auZfv27RYHJe5KU/lzAd0+RKx05coVhg4dCsCzzz1HUMeO+oteskdYGHX79OGOO+5I6HFLfN+J5LSMNGTnFCVHadDtQ8RKU6ZMISYmhiJFijBw4ECrwxE38Nprr+FwOJg+fTpr1661OhxxQ2rItgn1HIkd/fvvv7zyyisADB48mMDAQIsjEndQq1YtunfvDsDzzz+PMcbiiMTdqOcoF1ByJFYZOXIk+/fvp0yZMjz++ONWhyNu5PXXX8fHx4clS5awYMECq8MRN6Oeo1xAyZFY4fDhw66rYb/xxhv4+vpaHJG4k/DwcNcw7vPPP6/PP8lRqhzlAmrIFisMGzaMM2fOEBERQdeuXa0OR9zQiy++SMGCBdm0aRNffPGF1eGIG1FyZBPplefUkC057c8//2Rc4pTq999/3xZNieJ+ChcuzODBgwF4+eWXOXfunMURibtwFiPs8NlnfQQ2pWE1yWkvvPACcXFxdOzYkebNm1sdjrixgQMHUqpUKWJjY3n33XetDkfchHqOcgElR5KTFi5cyPfff4+np6er50jEKv7+/rz//vsAvPPOO+zatcvagMQtaFgtF1ByJDnl4sWLribYJ554gqpVq1ockQjcd999tGjRggsXLjBo0CCrwxE3oOTIJnSdI7GDDz/8kJiYGEqUKMGQIUOu/QCRHOBwOBg1ahSenp7MnDmTxYsXWx2S5HFKjnIBZ0OYZqtJdtq7dy+vv/46AO+99x5BQUEWRyTyn+rVq/PYY48BCVXNS5cuWRyR5GUZuX2Ieo4spsqRZLvYWJ7t0YNz585xyy23uK5OLGInw4YNo1ixYmzfvp2PBg6E2FirQ5I8SrcPyQWUHEm2iopiUenSfL10KR7A/267Lcf+IhLJjIIFC/L27bcDMHT8eHaWLg1RURZHJXmRhtVsQj1HYonYWM727k3fxHtXPQ7UGj5cf5GLPcXG8sjkyTQHzgH9jMH06aP3q2Q5TeXPBZQcSbaJieEVY9gFhANvAMTFwY4dloYlkqqYGBzGMB7wBRYBU+Pj9X6VLKfKUS6g24dIdll99iwfJf5/LJAfwNMTKlSwLiiRtFSsCB4eVAReTVz0NHC0cGELg5K8KCMN2TnFrZMj3T5EctqlS5fo9eKLGKC7w0E7SEiMxo2DsDCLoxNJRVgYjB8Pnp78H1ADOAoMSrxIpEhWUUN2LqBhNckOb7/9Nps3b6Zo0aJ8uHEjLFkCu3ZBZKTVoYmkLTISdu3Ce8kSJsyejcPh4PPPP2fOnDlWRyZ5iHqOcgElR5LV1q9f77qm0ahRoyhasyY0b66KkeQOYWHQvDkNOnXi2WefBaBXr14cOXLE4sAkr1DPUS6g5Eiy0vnz5+nevTtXrlzh3nvvpWvXrlaHJHLdXnvtNapXr87hw4fp168fJnHmpciNUHJkExmZyq+GbMkKL7zwAtu3byckJISxY8fqmkaSq/n5+fH555/j7e3Nd999x9SpU60OSfIAJUe5gBqyJav8+OOPjBo1CoCJEydSpEgRiyMSuXG1a9dm6NChADz++OPs3bvX2oAk13MWI9SQbWMaVpOscPz4cR5++GEABgwYQLt27awNSCQLPffcczRs2JBTp065ho1FrpcqR7mAkiO5UcYYHnnkEfbt20fFihV59913rQ5JJEt5eXnx+eefExgYyC+//OKacCByPZQc2YRuHyLZaeTIkcyePRsfHx+mT59OQECA1SGJZLkKFSowbtw4AF5//XWWLFlicUSSWyk5ygWUHMl1i41lzejRPP/88wB8+OGH1KlTx+KgRLLPAw88QGRkJMYYHnzwQQ47r+Gl+69JJug6R7mAsyFMs9UkU6KiOFm6NF0ee4zLly9zb0QE/fv3tzoqkWw3atQoqlatyoEDB+hRpw7xLVtCeDhERVkdmuQSasjOBVQ5kkyLjSW+d296Jt5UthwwIToax759Fgcmkv3y5cvH16NG4Q8sBIYCxMdD376qIEmGaFjtKqNHj6Zs2bL4+fkRERHB8uXL01z3u+++o3Xr1hQrVowCBQrQqFEjFi5ceF3bVc+RZKmYGF43htkk3L38ayBIdy8XN1LNw4Pxif9/HfgeIC5OvwOSIUqOkpg+fTpPPfUUL730EtHR0TRt2pT27duzZ8+eVNf/5ZdfaN26NfPnz2f9+vW0aNGCTp06ER0dnaVxKTmSzJr1zz8Jfy0D44AISLipbIUKlsUkkqMqVqS7hwdPJn7bA9ju4aHfAckQ9RwlMWLECCIjI+nVqxdVqlRh5MiRlCpVijFjxqS6/siRI3nuueeoX78+FStW5M0336RixYpZfgNEJUeSGVu3bqX7U08B8ITDQU9ISIzGjdO908R9hIXB+PG85+FBM+AMcFfx4pwKDLQ6MskFVDlKdOnSJdavX0+bNm2SLW/Tpg0rV67M0HPEx8dz5swZChcunOY6Fy9e5PTp08m+rkW3D5GMOnHiBHfddRdnz56lWbNmvP/33wkzdXbtSribuYg7iYzEe/duvv7uO8JCQvjz4EG6du2qC0TKNTnPt26fHB09epS4uDhKlCiRbHmJEiU4ePBghp7jgw8+4N9//+X+++9Pc5233nqLoKAg11epUqWA9Mtzun2IZMTFixfp3LkzMTExlCpViq+//hrvsmWheXNVjMR9hYVRvHNnZs6ejb+/PwsWLOCJJ57QDWolXc7zbXqz1dxmWA1S7qwxJkMvwLRp0xg6dCjTp0+nePHiaa43ePBgTp065frKyD2ANKwm12KMITIykmXLlhEYGMi8efPSfR+KuJt69eoxdepUHA4HY8aMYeTIkVaHJDamYbVERYsWxdPTM0WV6PDhwymqSVebPn06kZGRfP3117Rq1SrddX19fSlQoECyr2tRciTXMmTIEKZOnYqXlxczZsygRo0aVockYjudO3fmvffeA+CZZ57h+++/tzYgsS0lR4l8fHyIiIhg8eLFyZYvXryYxo0bp/m4adOm8fDDD/Pll19y++23Z0tsSo4kPVFRUa77SI0dO5bWrVtbHJGIfQ0aNIh+/fphjOGBBx5I93It4r6UHCUxaNAgJkyYwMSJE9m2bRtPP/00e/bsoV+/fkDCkFiPHj1c60+bNo0ePXrwwQcf0LBhQw4ePMjBgwc5depUpredkescqSFbrvbNN9/Qp08fAF566SUi1XQtki6Hw8HHH3/M7bffzoULF+jYsSMbN260OiyxmYw0ZLtNz1GXLl0YOXIkr732GrVr1+aXX35h/vz5hIeHA3DgwIFk1zwaN24cV65c4bHHHiMkJMT19eSTT6a1ieuihmxJITaWBe+8w4MPPkh8fDy9e/fWXchFMsjLy4uvv/6apk2bcvr0adq2bUvM8uW6B5u4ZKQhO6d4WR0AwIABAxgwYECqP5s0aVKy75cuXZr9AaFhNblKVBTLe/fmbmO4DHSpX58xY8bk2F8xInlBvnz5mDNnDs2bN2fjxo20vvVWlgOlPDxg/Hhd+sLNaVgtF1ByJC6xsazq3ZuOxnAe6ABMWb8ezwMHrI5MJNcJCgpi4WefcROwG2gO7NE92AQlR7mCkiNxWj5jBm2M4TTQDPgW8NE900SuW/ETJ/iRhJsz/0NCgrRb92Bza0n7e9VzZGNKjgQShnHbDR7MWaAlMA/wB90zTeRGVKxIKQ8PlgLlgZ0kJEi7fH2tjEoslPRcq8qRjTkbwjRbzX0tWrSIDh06cO78edpUq8ZcDw8CQPdME7lRifdgK+XpyTKgIrALuLVLF7Zt22ZtbGKJpOdaOzRkWx+BhTIylV+VI/f0xRdfcPvtt3P+/Hluv/12Zq1bh//u3bpnmkhWiYyEXbsIXbKEpWvXUrlyZfbu3cstt9zCqlWrrI5OcpgqR7mEkiP3ZIzh/fff56GHHuLKlSt07dqVGTNm4Ofnl/DXru6ZJpJ1En+nStarx/Lly7n55ps5fvw4t912G/PmzbM6OslBGU2O1HNkMSVH7ic+Pp5Bgwbxf//3f0DCBUqnTp2Kr/ogRLJd0aJF+emnn2jfvj3nz5/nzjvvTHEpF8m7VDnKJZQcuZHYWM7On899HTu6boz5/vvv88EHH9hi7FvEXQQEBDBr1iy6d+9OXFwcjzzyCC+88AJxziFtTfXPs5Qc2Uh65Tkvr4TrYyo5yuOiothVujRNbr+d7374AR8vL7744gueeeYZqyMTcUve3t5MnjyZF198EYB33nmHzmXKcKZlSwgPh6goiyOU7JD0XGuHP0qtj8CmnMnR5cuXLY5Esk1sLL/07k19Y/gDKAEsiY/nwWbNrI5MxK15eHjwxhtvMHXUKHyBOUBjYKcuFplnXblyBUg496ZXuFDPkcW8vb2B/w6Y5C3GGD5+5x1uM4ajQF1gLdBYF3cUsY1u1avzCxAMbAYigHm6WGSe5DzX2mFIDZQcpclZOVJylPecOnWK+++/nyf+9z+uAF0g4f5OoIs7ithJxYo08PBgLVAfOAF0BF789lt9NucxSStHduDWyVFGeo40rJa3REdHExERwbfffou3tzcju3ZlmocH+UAXdxSxm8SLRYZ5erIceCzxM/utTz6hVatWHND9DfOMjCZHGlazmIbV8hZjDGPHjqVRo0b8/fffhIeH8+uvv/LktGk4dHFHEftKvFik75Il/G/PHr766ivy58/PsmXLqFOnDgsXLrQ6QskCzoZsVY5sTsNqeUBsLCxZwqHoaO644w769+/PxYsX6dSpExs2bKBBgwYJ6+nijiL2luR3tEuXLqxbt47q1atz6NAh2rVrxxNPPMH58+ddv/Nq2M59NKyWSzgPkDFG0/lzo6goCA9nVsuW1Khbl7lz5+Lj48MHH3zArFmzKFy4sNURish1qlSpEqtXr+bxxx8H4OOPPyaifHmiS5cGTfnPlZQc2Uh6Y5fOYTVQ9SjXiY3lTO/e9IqP5y7gCFATWDd3LoMGDcqxMWsRyT758uXj448/5ocffiC4eHG2HTjAzcbwDhCnKf+5jnqOcomkB0jJUe6yeNo0ahpDFOAAngPWADWSJLwikje0a9eOTePG0Rm4DLxAwjWRNmvKf66iqfy5RNLKkWas5Q7Hjx/n4Ycfps1zz7ELCAeWAO8AvpqiL5JnFa1XjxkOBxOBAiT8MVQXGDZnDpcuXbI2OMkQDavlEqoc5R7GGL7++muqVKnC5MmTcTgcDGzZkk0eHjQDTdEXyevCwnB8+imPeHqyFbiDhCrS0BEjiIiIYM2aNRYHKNei5MhG0hu79PDwcP1cyZF9/fPPP9x555106dKFw4cPU6VKFVasWMGon34iUFP0RdxH4pT/0CVL+D5xyn+xYsXYvHkzDRs2pH///hw/ftzqKCUN6jnKRZxDaxpWs5nYWM798AOvPvUUVatWZc6cOXh7ezNkyBCio6Np1KhRwnqaoi/iXhJ/5x2lStGlSxe2bt1K9+7dXdc5u+mmmxg/fjxxzj+c1LBtG6oc5SK61pH9mAkTmFG6NFU6dOD1jz7i4sWLtGrVit9//52hQ4fi6+trdYgiYhNFixbl888/Z+nSpVSvXp1jx47Rt29fGpYpw2pN+bcVXQTSRq5VnlNyZC8rv/+eW3v35l5j2AOUBr718GDRxIlUqVLF6vBExKaaNWvGhg0bGDl0KAWAdUBDoGt8PDv69FEFyQZUOcpFNKxmD1u3buWuu+6iSefO/Ar4A68A24B74uNx/P23tQGKiO15e3vz5K238hfwMAmX+ZgOVImP57HHH+fQoUOWxufuMjqVXz1HNqDKkbX++usvHn74YWrUqMGsWbPw8PCgNxADvAb/3SxWU/RFJCMqVqSEhwefARuBDsAVYPSsWZQvX57Bgwdz+PBhS0N0V6oc5SJKjnJY4n2R/li8mK5du1K5cmUmT55MfHw8nTt3ZsuWLYyfMIFQ518WmqIvIpkRFgbjx4OnJzWBeZ6eLHn2WRo0aMC///7L22+/TZkyZXj66afZt2+f7tWWg+yWHNkjCotcqzynYbWcYyZMYHmfPnxgDLOTLO/UqRMvv/zyfzeJrVwZ2rZNuPJthQpKjEQkcyIjk32GNA8L4zdjmDNnDsOHD2ft2rWMHDmS0f/7Hw9fucJTQBUPj4SkSpcEyTaayp+LqHKU/S5cuMCkESOo27s3zRITIwdwv8PBxoULmT179n+JkZOm6IvIjbjqM8ThcHDHHXewevVqFi5cyK0338ylK1cYD1QF2sXHs6BPH+L37LEy6jzNbpUjJUfpUHKUfQ4cOMCrr75K6dKleeSZZ9hIQqN1H2ArMN0Yavn4WBqjiLgXh8NBmzZtWPbWW/wC3EXCH2sLgfbx8VS95RbGjBnD2bNnLY0zL1JylItoWC2LJI7bx+/Zw+LFi7nvvvsoXbo0r7/+OkeOHCEsJIS3HQ72AuOAyqBGaxGxTsWKNPXwYCawA3gaCAT+3LuXAQMGEBISQr9+/YiOjk5YX71JN0zJkY3oOkc5ICqKA6VL82bLllQID6dNmzZ8++23XLlyhcaNG/P111+zc88env/0U4qo0VpE7CBJ43Y5YISnJ7Eff8xHH31ExYoVOXv2LOPGjaNu3brUL1uWT0uX5qwuKnlDMnoRSPUc2YCSo+sXFxfHD59/zt29elHKGF4CdgJBwOMPP8zvv//OihUruO+++xJe58T7IuleaCJiC1d9JhV4/HGeeOIJ/vzzT37++We6du2Kt7c363btoo8xhAD94uPZoItKXpeMXucop9ijfmVTGlbLvL///pvPP/+czz77jD1JmhebAL2B+4B8PXtCzZopHxwWpmqRiNhHKp9JDoeDFi1a0KJFC47MnMnku+9mPAnXXxsHjIuPp1bz5vR87DG6detGiRIlrIg819GwWi6iylE6koyxnzx5kvHjx3PLLbdQoUIFhg0bxp49eygUFMSTwGbgV6AnkE+9RCKSRxSrX59nPTz4E1gCdAV8gN///ptBgwYRGhpKx44d+eabb7hw4YJ6k9Jht+TIHlFYRD1H1ykqivO9e7PAGL4CZnl5cTHxNfLw8KB169b06NGDzp074//ll9C3L8TFqZdIRPKWxN4kR9++NI+Lo7mnJ8c/+ICvvL2ZMmUKq1evZt68ecybN4+C+fLR9dw57geaOhx4ffqp2geSsNt1jtw6OboWDasld+bMGeZNmcKMxx9nPnDO+YMrV6h200307NWLBx98kJIlS/73oKsuuKbESETylKs+4wqHhTEAGDBgANu3b2fKlCl8PmkSsQcOMBYYCxQzhrt69+YeX19a3H8/PrpsiSpHuYlbVo5iYyEmBipWxISGsmXLFhYtWsSiRYtYunQpFy9edK0aDtwDdAdqjx2Lo0WL1J9TvUQikpel8RlXuXJl3nzzTV5v2ZKlrVszFZgFHAE+NYZPH3qIggMH0rp1a9q0aUPbtm0pVapUwoOTfBa7w+enkqNcxO2So6gojvTuzY/GsAhYVLAg+0+eTLZKxbJluWfnTu4BIki4QBqengm/wCIikoJn5crc5uHBbfHxXAaWATMcDmYWLcqhI0f45ptv+OabbwCoUqUKbUNDaf3TTzQ1hkA3uXWJ3ZIjt27Idqt7q6XRCHj+/HkWL17Mc/37U7dXL4obQzdgErD/5En8/fxo164dI0aMYPPmzfz599+8NWEC9Tw9/0uM1EckIpK2JNdN8gZaeXoy5tNP2XfgAKtWrWLo0KE0bNgQDw8Ptm3bxsgff+R2YygENIqP56Xevflx2jTOnTuX8rnzSJN3Rqfyq+fIBq63cnTkyBHOnDlD2bJlc+xApisqCvr0gfh44h0Ool96iR/z52fx4sX8+uuvyYbKAGoCbYE2wC2zZuHXpk3y51MfkYhI5qTyuekJNGzYkIYNGzJkyBCOHz/OTx99xMLXXuNnEq4N9xvwmzG82a0bPj4+NGzY0HUpgYbbtuH72GMQHw82qTDFxcURExNDaGgogYGBGX6c3SpH9ojCpq4nORoxYgTPPfcccXFxdOjQgSlTplCkSJHsCvHaYmPZmThU9iPwkzEcGz482SqhoaG0btyY1t9+y23G4Loqh6cnVK2a+vOqj0hEJHOu8blZuHBh7uvdm/uGD4f4eHaRcImAJQ4HP5cowb6DB/nll1/45ZdfGDZsGH4kXEOuJdAiPp56ffrg3batZZ/N27dv57777mPz5s0EBgby1Vdf0aFDhww91jlC4xyxsZqSo3RkdlhtxYoVPPPMM67v58+fT6tWrfj1118JCAjIlhivbtq7fPkyO3bs4Pfff+fnn3/mx7lz2WlMsocEAi0aN6b1Aw/QqlUrKlWqlFDhiorStHsRESs5h+D69qVMXByPeHryyLhxmEcfZceOHSxZsoQlS5bw88KFHD5xgp+AnxIfmj8+nqb33kuLe+6hRYsW1KlT579hqmxu8N61axdNmzbl6NGjQMLs5q5duxITE5OhC2EqObKRrL7O0euvvw7Aww8/zFNPPUWbNm3YuHEjPXr04JtvvsHDI+tavE6fPs32d95h+1tvsc0YtgPbgoP5++jRFPF6AQ2BVkBroL6HB97Tp6f8BdFwmYiI9VL5LHYAFStWpGLFivTp0wezdy/bwsNZYgw/A0uB48APq1fzw+rVAAQFBdGsWTPqAuXnzKG8MZR3OCg2fjyOXr2yLNxz587RuXNnjh49Sp06dZg9ezZ33XUX69ev56OPPuLNN9+85nNkNDlSz5ENOA9SRpKj/fv3s2jRIgBeeeUVypUrx8yZM2nRogXfffcdb7zxBq+88krGN56Y5ZsKFdh+9izr1q1j/fr1bN68mW3btrF///6Ujzl4EID8+fNTuXJlmjZtSqtWrbh1507yP/lkxipCGi4TEbHeNT6LHaVKUfXTT6naty+PxcUR7+HBplde4eegIJYsWcKyZcs4deoUs2fPZnbSBxpDYO/elB85kgpVqlChQgUiIiJo2rRpQoUnkxUmYwy9e/dm48aNFCtWjFmzZhEWFsbgwYO59957+fzzzxk+fPg1iwOqHOUizspRRobV5s6dizGGRo0aUa5cOQAaN27MmDFjiIyM5NVXX6V27dp0qlPn2m+8qCj+6N2bT41hNrAn9bUIBqoAlZP++/XXhN57b8rs+s47VRESEclLklSYPCpUoFZYGLWAp59+mitXrhAdHc2yqCi2jxvH38AOIBY4A2zcsoWNW7Yke7oqISF0OXiQB42hwrUavBOTqHcWLeLLL7/Ey8uLb775xnWdpo4dOxIYGEhsbCzR0dFERESkuyvO86wasm0gK4fVnFWj9u3bJ1v+6KOPsn79ekaPHk33Ll346cIF6hmT6syCuLg4Zk+cyEd9+rAsyXP4AfXq1yeicWNq1apFlSpVqBwYSMGaNRNmKTh5ekKjRpDafqkiJCKS96Tx2e7l5UX9+vWpHxICn37qOldcAHZ6eLBjwgT+PnWKv/76i5UrV/LHH3+w7cABhgJDgdvi4+nbpw93tmiBT+If/C6JM6CnxsczOHHRyJEjadasmWsVX19fWrZsyaxZs1i0aNE1kyPneVbDarlAZobVfluxAoDmqczu+vDDD9myYQPLfvuN24BPgfvi43H07Qtt23LI25uJEycybtw4du/eDYAncDfQg4SZCPnefReaN0/+xIlNe2qgFhGRVCVp8CYuDj9PT6qMG0eVRx5JttqJ2bOZe+edfAEsJqHJ+6f4eErUq0dk//707t2bMmXKQGwsl3v3ZoQxvJj42EEOB4/deWeKTbdo0YJZs2bx29y58NBD6Z6f7Das5tYXgbwW17Dazp3pXmDr8Icfsu/gQRxA7fvuS8iqk/Dx8WHOyy9zK3Aa6ELCMNjdcXHUu+02QkNDefHFF9m9ezdFChViMLAL+BroSDp3so+MhF27Ei4AtmuX5de3EBERG8rAuaJQ3bo85OHBQhKur/QyCa0bh06c4M0336RcuXLceuutdO7alXBjeAGIB3oD7xmT0LZxlbqJvbEbVq6E8PAU58akLp85A4B34r+WM27o1KlTBjDDhw9Pd70hnToZwPQHYzw8jJkwIeVKe/eaBQ6HAcxNYAwY4+lpzN69Kda76HCYl8DkA8NVXw0aNDCfffaZOXfuXMJ2PD3/e67UtisiIpKVrjr3XBo71nz77bemVatWKc5ZRcFMABOfzjnvVOK5ETBH0lovcbvNE9eb5nCke8677777DGBOnTqVxTufnFsPqzlOn077h7GxeM+dC8AVSBivTRwGS1YajIkhOvE6QnWcy+LiErLopOuFheHz6acM79uXZ+LiWObhwf4HHqBIp040adKEsKTrakq9iIjktKvOPd5hYdwD3HPPPfz999+sWLGCc+fOUe6vv2j20Uf4xsen3dIRE0MBY6hAQiN4NNA6tXNjbCz06YNz2pO3MamfaxM5zp/Pnn2/ilsnR7z7Ltx0U+rDUTExeCUmPa65aqkd2IoViU78b13nsvSGwdq2pdCOHdx1raRHDdQiIpLT0jj3lC9fnvLly/+3YNCg9P+Ar1gRPDyoGx//X3KU2rkxJgYSb8gL4A2pn2shYVgusWiR3dRz1Ldv6v1EFSvildgV72rHTu3AhoWxpWRJIOGeZBm6jlDz5kp8REQk97rWuSyxEbxm4nl0i8OR+rkxMYlKlhyldq5NrDDlFLdOjmrDfxnq1cLC8O7SBUhMjtJIeowx/HPiBAAVvvhCjdEiIiIAkZFU+N//APi7Xr3Uz42JSZQrOfLwSHOYjvh4WmVvxC5unRzdAmkPgQFeTZsCcPnWW9NMeg4cOMD58+fx9PQk/P77VRESERFJVL5BAwD+3rs37ZUiI7mcOGTn/dVXqSdRiRWmLtkRZCrcOjkirQw1kesikIUKpbnO33//DUDp0qVtc30GERERO3D2KR08eJBz586lud7lxB5f79DQ1FdwXq8pC+9Rmh73To42b053CCwjF4H8559/AFy3DBEREZEEhQoVomDBgsB/58vUZOgikJGRCeftHODeyVFaGWqijNxbzVk5StbFLyIiIsB/50fn+TI1Gb5C9jXO21nFvZOja8jIvdWUHImIiKQtS5OjHKLkKB0ZGVbbuXMnoGE1ERGR1DjPjxkZVnMWJaym5CgdGRlWi028RlKpUqVyJCYREZHcxHkHiH379qW5jipHuci1htXi4+M5cOAAAKE5NA4qIiKSmzjPj+klR87zrJKjJEaPHk3ZsmXx8/MjIiKC5cuXp7v+smXLiIiIwM/Pj3LlyjF27Nhsietaw2qHDx/mypUreHh4EBwcnC0xiIiI5GbXSo6MMaocXW369Ok89dRTvPTSS0RHR9O0aVPat2/Pnj17Ul1/586ddOjQgaZNmxIdHc2LL77IE088wYwZM7I8tmsNqzkPdIkSJWwzTioiImInzuTo4MGDqRYb4uLiXP9XcpRoxIgRREZG0qtXL6pUqcLIkSMpVaoUY8aMSXX9sWPHUrp0aUaOHEmVKlXo1asXjz76KO+//36Wx3atYTVncqQhNRERkdSVKFECT09P4uPjOXToUIqfJy1AKDkCLl26xPr162nTpk2y5W3atGHlypWpPmbVqlUp1m/bti3r1q1Lt3H6elxrWE3JkYiISPo8PT1drSepDa3ZMTmydCzo6NGjxMXFUaJEiWTLS5QowcGDB1N9zMGDB1Nd/8qVKxw9epSQkJAUj7l48SIXL150fX/q1CkATp8+nW58zsdcuHAh1XWd0/iLFSt2zecSERFxV8HBwezbt4+YmBgqV66c7GfHjx93/f/8+fPpFjqc51qTeLuR7GKLRhmHw5Hse2NMimXXWj+15U5vvfUWw4YNS7E8o9PvY2NjCQoKSvPnEyZMYMKECRl6LhEREXfVvXv3dH9epEiRDD3PsWPH0j0v3yhLk6OiRYvi6emZokp0+PDhFNUhp+Dg4FTX9/LySvNFHTx4MIMGDXJ9f/LkScLDw9mzZ0+2vrh2c/r0aUqVKsXevXspUKCA1eHkGO239tsdaL+13+7g1KlTlC5dmsKFC2frdixNjnx8fIiIiGDx4sV07tzZtXzx4sXceeedqT6mUaNGzJkzJ9myRYsWUa9evTTHKn19ffH19U2xPCgoyK3eVE4FChTQfrsR7bd70X67F3fdbw+P7G2Ztny22qBBg5gwYQITJ05k27ZtPP300+zZs4d+/foBCVWfHj16uNbv168fu3fvZtCgQWzbto2JEycSFRXFs88+a9UuiIiISB5iec9Rly5dOHbsGK+99hoHDhygevXqzJ8/n/DwcAAOHDiQ7JpHZcuWZf78+Tz99NN88sknlCxZklGjRnHPPfdYtQsiIiKSh1ieHAEMGDCAAQMGpPqzSZMmpVjWrFkzNmzYcN3b8/X1ZciQIakOteVl2m/ttzvQfmu/3YH2O3v322Gyez6ciIiISC5iec+RiIiIiJ0oORIRERFJQsmRiIiISBJKjkRERESSyLPJ0RtvvEHjxo3Jly8fBQsWzNBjjDEMHTqUkiVL4u/vT/PmzdmyZUuydS5evMjAgQMpWrQoAQEB3HHHHcTGxmbDHlyfEydO8NBDDxEUFERQUBAPPfQQJ0+eTPcxDocj1a/33nvPtU7z5s1T/Lxr167ZvDcZdz37/fDDD6fYp4YNGyZbJ68d78uXL/P8889To0YNAgICKFmyJD169GD//v3J1rPb8R49ejRly5bFz8+PiIgIli9fnu76y5YtIyIiAj8/P8qVK8fYsWNTrDNjxgyqVq2Kr68vVatWZebMmdkV/nXLzH5/9913tG7dmmLFilGgQAEaNWrEwoULk60zadKkVH/XL1y4kN27kimZ2e+lS5emuk/bt29Ptl5eO96pfX45HA6qVavmWsfux/uXX36hU6dOlCxZEofDwffff3/Nx+TY77bJo1599VUzYsQIM2jQIBMUFJShx7z99tsmMDDQzJgxw2zatMl06dLFhISEmNOnT7vW6devnwkNDTWLFy82GzZsMC1atDC1atUyV65cyaY9yZx27dqZ6tWrm5UrV5qVK1ea6tWrm44dO6b7mAMHDiT7mjhxonE4HObvv/92rdOsWTPTu3fvZOudPHkyu3cnw65nv3v27GnatWuXbJ+OHTuWbJ28drxPnjxpWrVqZaZPn262b99uVq1aZW6++WYTERGRbD07He+vvvrKeHt7m08//dRs3brVPPnkkyYgIMDs3r071fX/+ecfky9fPvPkk0+arVu3mk8//dR4e3ubb7/91rXOypUrjaenp3nzzTfNtm3bzJtvvmm8vLzMb7/9llO7dU2Z3e8nn3zSvPPOO2bNmjXmr7/+MoMHDzbe3t5mw4YNrnU+++wzU6BAgRS/83aS2f1esmSJAcyff/6ZbJ+S/o7mxeN98uTJZPu7d+9eU7hwYTNkyBDXOnY/3vPnzzcvvfSSmTFjhgHMzJkz010/J3+382xy5PTZZ59lKDmKj483wcHB5u2333Ytu3DhggkKCjJjx441xiS8Gb29vc1XX33lWmffvn3Gw8PDLFiwIMtjz6ytW7caINmbYNWqVQYw27dvz/Dz3HnnnaZly5bJljVr1sw8+eSTWRVqlrre/e7Zs6e588470/y5uxzvNWvWGCDZh7CdjneDBg1Mv379ki2rXLmyeeGFF1Jd/7nnnjOVK1dOtqxv376mYcOGru/vv/9+065du2TrtG3b1nTt2jWLor5xmd3v1FStWtUMGzbM9X1GPw+tlNn9diZHJ06cSPM53eF4z5w50zgcDrNr1y7XstxwvJ0ykhzl5O92nh1Wy6ydO3dy8OBB2rRp41rm6+tLs2bNWLlyJQDr16/n8uXLydYpWbIk1atXd61jpVWrVhEUFMTNN9/sWtawYUOCgoIyHN+hQ4eYN28ekZGRKX42depUihYtSrVq1Xj22Wc5c+ZMlsV+I25kv5cuXUrx4sW56aab6N27N4cPH3b9zB2ONyTcyNHhcKQYfrbD8b506RLr169PdgwA2rRpk+Y+rlq1KsX6bdu2Zd26dVy+fDnddexwXOH69vtq8fHxnDlzJsUNOs+ePUt4eDhhYWF07NiR6OjoLIv7Rt3IftepU4eQkBBuu+02lixZkuxn7nC8o6KiaNWqlevuEk52Pt6ZlZO/27a4QrYdHDx4EIASJUokW16iRAl2797tWsfHx4dChQqlWMf5eCsdPHiQ4sWLp1hevHjxDMc3efJkAgMDufvuu5Mtf/DBBylbtizBwcFs3ryZwYMH8/vvv7N48eIsif1GXO9+t2/fnvvuu4/w8HB27tzJK6+8QsuWLVm/fj2+vr5ucbwvXLjACy+8QLdu3ZLdvNIux/vo0aPExcWl+nuZ1j4ePHgw1fWvXLnC0aNHCQkJSXMdOxxXuL79vtoHH3zAv//+y/333+9aVrlyZSZNmkSNGjU4ffo0H330EU2aNOH333+nYsWKWboP1+N69jskJITx48cTERHBxYsX+fzzz7nttttYunQpt956K5D2eyKvHO8DBw7www8/8OWXXyZbbvfjnVk5+budq5KjoUOHMmzYsHTXWbt2LfXq1bvubTgcjmTfG2NSLLtaRta5ERndb0gZP2QuvokTJ/Lggw/i5+eXbHnv3r1d/69evToVK1akXr16bNiwgbp162bouTMru/e7S5curv9Xr16devXqER4ezrx581Ikh5l53huVU8f78uXLdO3alfj4eEaPHp3sZ1Yc7/Rk9vcytfWvXn49v+s57XpjnDZtGkOHDmXWrFnJEuiGDRsmm3TQpEkT6taty8cff8yoUaOyLvAblJn9rlSpEpUqVXJ936hRI/bu3cv777/vSo4y+5xWud4YJ02aRMGCBbnrrruSLc8txzszcup3O1clR48//vg1Z8yUKVPmup47ODgYSMhMQ0JCXMsPHz7sykKDg4O5dOkSJ06cSFZNOHz4MI0bN76u7WZERvf7jz/+4NChQyl+duTIkRSZdGqWL1/On3/+yfTp06+5bt26dfH29iYmJibbTpY5td9OISEhhIeHExMTA+Tt43358mXuv/9+du7cyc8//5ysapSanDjeqSlatCienp4p/upL+nt5teDg4FTX9/LyokiRIumuk5n3S3a6nv12mj59OpGRkXzzzTe0atUq3XU9PDyoX7++6z1vtRvZ76QaNmzIF1984fo+Lx9vYwwTJ07koYcewsfHJ9117Xa8MytHf7cz1aGUC2W2Ifudd95xLbt48WKqDdnTp093rbN//37bNeiuXr3atey3337LcINuz549U8xaSsumTZsMYJYtW3bd8WaVG91vp6NHjxpfX18zefJkY0zePd6XLl0yd911l6lWrZo5fPhwhrZl5fFu0KCB6d+/f7JlVapUSbchu0qVKsmW9evXL0XTZvv27ZOt065dO9s16GZmv40x5ssvvzR+fn7XbGx1io+PN/Xq1TOPPPLIjYSapa5nv692zz33mBYtWri+z6vH25j/GtI3bdp0zW3Y8Xg7kcGG7Jz63c6zydHu3btNdHS0GTZsmMmfP7+Jjo420dHR5syZM651KlWqZL777jvX92+//bYJCgoy3333ndm0aZN54IEHUp3KHxYWZn788UezYcMG07JlS9tN7a5Zs6ZZtWqVWbVqlalRo0aKqd1X77cxxpw6dcrky5fPjBkzJsVz7tixwwwbNsysXbvW7Ny508ybN89UrlzZ1KlTJ9fu95kzZ8wzzzxjVq5caXbu3GmWLFliGjVqZEJDQ/P08b58+bK54447TFhYmNm4cWOy6b0XL140xtjveDunOEdFRZmtW7eap556ygQEBLhm5bzwwgvmoYcecq3vnO779NNPm61bt5qoqKgU031XrFhhPD09zdtvv222bdtm3n77bdtO7c7ofn/55ZfGy8vLfPLJJ2legmHo0KFmwYIF5u+//zbR0dHmkUceMV5eXskSbKtldr8//PBDM3PmTPPXX3+ZzZs3mxdeeMEAZsaMGa518uLxdurevbu5+eabU31Oux/vM2fOuM7NgBkxYoSJjo52zZy18nc7zyZHPXv2NECKryVLlrjWAcxnn33m+j4+Pt4MGTLEBAcHG19fX3PrrbemyMbPnz9vHn/8cVO4cGHj7+9vOnbsaPbs2ZNDe3Vtx44dMw8++KAJDAw0gYGB5sEHH0wxxfXq/TbGmHHjxhl/f/9Ur2WzZ88ec+utt5rChQsbHx8fU758efPEE0+kuCaQlTK73+fOnTNt2rQxxYoVM97e3qZ06dKmZ8+eKY5lXjveO3fuTPX3Iunvhh2P9yeffGLCw8ONj4+PqVu3brIKVs+ePU2zZs2Srb906VJTp04d4+PjY8qUKZNq0v/NN9+YSpUqGW9vb1O5cuVkJ1O7yMx+N2vWLNXj2rNnT9c6Tz31lCldurTx8fExxYoVM23atDErV67MwT3KmMzs9zvvvGPKly9v/Pz8TKFChcwtt9xi5s2bl+I589rxNiahuu3v72/Gjx+f6vPZ/Xg7q15pvWet/N12GJPYzSQiIiIieff2ISIiIiLXQ8mRiIiISBJKjkRERESSUHIkIiIikoSSIxEREZEklByJiIiIJKHkSERERCQJJUciIiIiSSg5EhEREUlCyZGIiIhIEkqORCRPee2116hRowYBAQGUKFGC/v37c/nyZavDEpFcxMvqAEREsooxhri4OMaNG0doaChbt26lR48e1KxZk/79+1sdnojkErrxrIjkad26daNYsWJ89NFHVociIrmEhtVEJM/YvXs3jz/+ONWrV6dQoULkz5+fr7/+mrCwMKtDE5FcRMmRiOQJR48epUGDBhw9epQRI0bw66+/smrVKjw9Paldu7bV4YlILqKeIxHJE+bPn8+VK1eYNm0aDocDgE8++YRLly4pORKRTFFyJCJ5QuHChTl9+jSzZ8+matWqzJkzh7feeovQ0FCKFStmdXgikouoIVtE8gRjDP379+fLL7/E39+f7t27c+HCBXbv3s3cuXOtDk9EchElRyIiIiJJqCFbREREJAklRyIiIiJJKDkSERERSULJkYiIiEgSSo5EREREklByJCIiIpKEkiMRERGRJJQciYiIiCSh5EhEREQkCSVHIiIiIkkoORIRERFJQsmRiIiISBL/D3v3fmeMEB8aAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB58klEQVR4nO3dd3gU1dvG8e+mF0joEAiEFgHphC4IiNIRsSAWioYmYuNnw0bRV6yIDUUIRUXEBiKggFJEQUAIgoIUqUEggpDQU/a8f4RdE1JIIMnsbu7PdeUimZ2deWZnd+fhnOecsRljDCIiIiICgJfVAYiIiIi4EiVHIiIiIukoORIRERFJR8mRiIiISDpKjkRERETSUXIkIiIiko6SIxEREZF0lByJiIiIpKPkSERERCQdJUfiFv7++2/GjBnDpk2bMj02cOBAihUrdtnbTkpKYtiwYYSFheHt7U2jRo0uP9B8MGnSJGbMmJFp+d69e7HZbFk+5klsNhtjxoyxOox8MWbMGGw2W4E/9+2336ZmzZr4+flhs9k4ceIEAwcOpGrVqhnWe/HFF5k3b95lxZOTf//9l759+1KuXDlsNhs33XRTnrdRtWpVBg4cmO+xuZIDBw7Qu3dvqlevTnBwMKGhoTRu3Jh33nmHlJSUTOsbY5g+fTrNmzcnODiYkJAQmjRpwtdff21B9EWLj9UBiOTG33//zdixY6latWq+Jy/vvfcekydP5u233yYqKuqKEq38MGnSJMqUKZPpQhEWFsaaNWuoUaOGNYFJng0aNIguXboU6D42bdrEgw8+yKBBgxgwYAA+Pj4UL16cZ599loceeijDui+++CK33nrrZSUvOXn++eeZO3cu06ZNo0aNGpQqVSpft+8pTp8+TUhICM8++yxVqlQhKSmJRYsW8cADD7Bp0yamTp2aYf377ruPGTNm8MgjjzB+/HhSUlLYsmULZ86csegIig4lR1Lk/f777wQGBjJixAirQ8mRv78/LVu2tDoMyYPw8HDCw8MLdB9//PEHAIMHD6Z58+bO5YWZRP/+++/UqFGDu+66q9D2mV/OnDlDUFBQoeyrdu3azJw5M8Oyrl27Eh8fz8yZM3n33Xfx9/cHYN68eUyePJk5c+bQp08f5/qdO3culFiLOnWrFUH//PMPQ4YMoXLlyvj7+1O2bFmuueYavv/+e+c67du3p169eqxZs4bWrVsTGBhI1apVmT59OgALFy6kSZMmBAUFUb9+fb777rtM+/npp5/o2LEjxYsXJygoiNatW7Nw4cJM6/3+++/06tWLkiVLEhAQQKNGjTJ8gaxYsYJmzZoBcM8992Cz2bLsetm1axfdunWjWLFiVK5cmf/973+cP38+x9fCZrMxdepUzp4969zujBkzcuzCunjfju6PP/74gzvuuIPQ0FDKly/PvffeS0JCQobn2u123n77bRo1akRgYCAlSpSgZcuWzJ8/H0jrWvjjjz9YuXKlMx5H10h2MeXmdZ4xYwY2m43ly5dz3333UaZMGUqXLs3NN9/M33//neNrlJOqVavSo0cP5s6dS4MGDQgICKB69eq89dZbmdbdv38/d999N+XKlcPf3586derw+uuvY7fbs93+3r178fHxYfz48Zke+/HHH7HZbHz++edA3s7DuXPnGDVqFNWqVcPPz49KlSpx//33c+LEiSyPb8GCBTRu3JjAwEDq1KnDggULgLTXtU6dOgQHB9O8eXN+/fXXDM/Pqmtszpw5dOrUibCwMOf2nnzySU6fPp39C52N9u3bc/fddwPQokULbDabs8Xx4m41m83G6dOnmTlzpvO91b59+xy3/++//zJ8+HAqVaqEn58f1atX5+mnn3Z+rhzvye+//55t27Y5t7tixYpst5mcnMzjjz9OhQoVCAoKok2bNqxbty7LdQ8fPszQoUMJDw/Hz8+PatWqMXbs2ExdUHFxcdx6660UL16cEiVKcNddd7F+/fpMnxdHF/yWLVvo1KkTxYsXp2PHjkBa9/oLL7xA7dq1nd+L99xzD//880+muObMmUOrVq0IDg6mWLFidO7cmdjY2Bxfy5yULVsWLy8vvL29ncvefPNNqlatmiExkkJkpMjp3LmzKVu2rPnggw/MihUrzLx588xzzz1nPv30U+c67dq1M6VLlza1atUyMTExZvHixaZHjx4GMGPHjjX169c3s2fPNosWLTItW7Y0/v7+5uDBg87nr1ixwvj6+pqoqCgzZ84cM2/ePNOpUydjs9ky7OfPP/80xYsXNzVq1DAffvihWbhwobnjjjsMYF5++WVjjDEJCQlm+vTpBjDPPPOMWbNmjVmzZo05cOCAMcaYAQMGGD8/P1OnTh3z2muvme+//94899xzxmazmbFjx+b4WqxZs8Z069bNBAYGOrcbHx9v9uzZYwAzffr0TM8BzOjRo51/jx492gCmVq1a5rnnnjNLly41EyZMMP7+/uaee+7J8Nx+/foZm81mBg0aZL7++mvz7bffmv/7v/8zb775pjHGmI0bN5rq1aubxo0bO+PZuHGjMcZkGVNuX2fH61e9enXzwAMPmMWLF5upU6eakiVLmg4dOmSI0bFuVsd+sYiICFOpUiVTpUoVM23aNLNo0SJz1113GcC8+uqrzvXi4+NNpUqVTNmyZc37779vvvvuOzNixAgDmPvuuy/H17d3796mSpUqJiUlJcN6t912m6lYsaJJTk7O03mw2+2mc+fOxsfHxzz77LNmyZIl5rXXXjPBwcGmcePG5ty5cxmOLzw83NSrV8/5fm/RooXx9fU1zz33nLnmmmvMV199ZebOnWuuuuoqU758eXPmzBnn8x0xpff888+bN954wyxcuNCsWLHCvP/++6ZatWqZzkNWz73YH3/8YZ555hnn+VqzZo3ZtWuXMSbtcxEREeFcd82aNSYwMNB069bN+d76448/st322bNnTYMGDUxwcLB57bXXzJIlS8yzzz5rfHx8TLdu3Ywxxpw7d86sWbPGNG7c2FSvXt253YSEhGy3O2DAAGOz2cxjjz1mlixZYiZMmGAqVapkQkJCzIABA5zrHTp0yFSuXNlERESYyZMnm++//948//zzxt/f3wwcONC53qlTp0zNmjVNqVKlzLvvvmsWL15sHnnkEVOtWrVM7+MBAwYYX19fU7VqVTN+/Hjzww8/mMWLF5vU1FTTpUsXExwcbMaOHWuWLl1qpk6daipVqmSuvvrqDOf0//7v/4zNZjP33nuvWbBggfnqq69Mq1atTHBwcI6vZ3p2u90kJyebf//913z66acmODjYjBo1yvl4cnKy8ff3N7179zavv/66qVKlivHy8jLVqlUzr776qrHb7bnaj1w+JUdFULFixczDDz+c4zrt2rUzgPn111+dy44dO2a8vb1NYGBghkRo06ZNBjBvvfWWc1nLli1NuXLlzMmTJ53LUlJSTL169Ux4eLjzw923b1/j7+9v9u/fn2H/Xbt2NUFBQebEiRPGGGPWr1+f7QV7wIABBjCfffZZhuXdunUztWrVusSrkfb84ODgDMsuJzl65ZVXMqw3fPhwExAQ4DzWH3/80QDm6aefzjGeunXrmnbt2mVanlVMuX2dHQnP8OHDM2zzlVdeMYA5dOiQc9nMmTONt7e3mTlzZo5xGpOWPNhsNrNp06YMy2+44QYTEhJiTp8+bYwx5sknnzSAWbt2bYb17rvvPmOz2cz27dudyy5+fZcvX24AM3fuXOeygwcPGh8fnwzJb27Pw3fffZflenPmzDGA+eCDDzIcX2BgoImLi3Muc7zfw8LCnMdnjDHz5s0zgJk/f36mmLLjuEiuXLnSAOa3337L9XMdHOd2/fr1GZZfnBwZY0xwcHCGBCQn77//fpafq5dfftkAZsmSJc5l7dq1M3Xr1r3kNrdt22YA88gjj2RYPmvWLANkiG3o0KGmWLFiZt++fRnWfe211wzgTETeffddA5hvv/02w3pDhw7NMjkCzLRp0zKsO3v2bAOYL7/8MsNyx/fOpEmTjDHG7N+/3/j4+JgHHnggw3onT540FSpUMH369Lnka2CMMePHjzeAAYzNZsv0nXDo0CEDmJCQEBMeHm5mzpxpfvjhBzNs2DADmKeeeipX+5HLp261Iqh58+bMmDGDF154gV9++YXk5OQs1wsLCyMqKsr5d6lSpShXrhyNGjWiYsWKzuV16tQBYN++fUBa0eHatWu59dZbMxQ3e3t7069fP+Li4ti+fTsAy5Yto2PHjlSuXDnDvgcOHMiZM2dYs2ZNro7JZrPRs2fPDMsaNGjgjKkw3HjjjZn2f+7cOeLj4wH49ttvAbj//vvzZX95eZ1zihHI8Dr179+flJQU+vfvn6s46tatS8OGDTMsu/POO0lMTGTjxo1A2nm++uqrM9TEQNp5NsawbNmybLffvn17GjZsyLvvvutc9v7772Oz2RgyZEim9S91Hhz7urjg/bbbbiM4OJgffvghw/JGjRpRqVIl59+O93v79u0z1Kpc/DnIzu7du7nzzjupUKEC3t7e+Pr60q5dOwC2bduW43ML07JlywgODubWW2/NsNzxul38OuXG8uXLATLVJvXp0wcfn4wlsAsWLKBDhw5UrFiRlJQU50/Xrl0BWLlypfPf4sWLZyp8v+OOO7KN45Zbbsm0rxIlStCzZ88M+2rUqBEVKlRwdhMuXrzY+dlIv15AQADt2rXLsTsxvYEDB7J+/XoWL17M448/zquvvsoDDzzgfNzR1ZyYmMjnn39O//79ue6663jvvfe46aabmDBhAqdOncrVvuTyqCC7CJozZw4vvPACU6dO5dlnn6VYsWL07t2bV155hQoVKjjXy2rEiZ+fX6blfn5+QFodB8Dx48cxxhAWFpbp+Y6k6tixY85/c7PepQQFBREQEJBhmb+/vzOmwlC6dOlM+wc4e/YskFbr5e3tneE1vhJ5eZ1zG+PlyOp4HMvSn+eLh5XnFOfFHKOxtm/fTvXq1ZkyZQq33nprlvu+1DEeO3YMHx8fypYtm2E9m81GhQoVMsWS3fv9Up+DrJw6dYq2bdsSEBDACy+8wFVXXUVQUBAHDhzg5ptvvqLzkN+OHTtGhQoVMtVMlStXDh8fn1x/Ni/eJmR+z/j4+GQ6b0eOHOGbb77B19c3y20dPXrUuc3y5ctnejyrZZD2XRESEpJpXydOnHCew+z2deTIEQBnDeTFvLxy195QoUIF52vQqVMnSpYsyZNPPsm9995L48aNKVmyJDabjeLFi2cahNG1a1fmzZvH1q1bM/1nQ/KPkqMiqEyZMkycOJGJEyeyf/9+5s+fz5NPPkl8fHyWhdV5VbJkSby8vDh06FCmxxzFv2XKlAHSLmS5Wa+wORKtiwu6L+eC4FC2bFlSU1M5fPhwlglNXuXldS5Ihw8fznaZ44J3pef5zjvv5IknnuDdd9+lZcuWHD58+LJb4EqXLk1KSgr//PNPhgTJGMPhw4ezvfDlh2XLlvH333+zYsUKZ2sRkKkQ3BWULl2atWvXYozJkCDFx8eTkpJyWe8tx/vh8OHDGVrjUlJSMn22ypQpQ4MGDfi///u/LLflSKxLly6dZUF3Vu9LIMu5oxwDFLL7/itevLhzPYAvvviCiIiILNe9HI4kZ8eOHc7C/8jIyCyPwRgD5D4Rk8ujV7eIq1KlCiNGjOCGG25wdoFcqeDgYFq0aMFXX32V4X/Cdrudjz/+mPDwcK666ioAOnbs6LxgpPfhhx8SFBTk/F9TfrRw5EX58uUJCAhg8+bNGZZfyeRrju6A9957L8f1/P39c3WceXmdC9Iff/zBb7/9lmHZJ598QvHixWnSpAmQdp63bt2a6T324YcfYrPZ6NChQ477CAgIYMiQIcycOZMJEybQqFEjrrnmmsuK1zE66eOPP86w/Msvv+T06dPOxwuC48LseD87TJ48ucD2mV5u31uQ9jqdOnUq06SRH374ofPxvHKMjps1a1aG5Z999lmmEWg9evRwThHQtGnTTD+O5Khdu3acPHnS2W3t8Omnn+Y6rh49enDs2DFSU1Oz3FetWrWAtGH0Pj4+/PXXX1mu17Rp07y+JMB/3Y01a9Z0LrvllltITExk9erVGdZdtGgRxYoVo27dupe1L8kdtRwVMQkJCXTo0IE777yT2rVrU7x4cdavX893333HzTffnG/7GT9+PDfccAMdOnTg0Ucfxc/Pj0mTJvH7778ze/Zs50Vi9OjRztqC5557jlKlSjFr1iwWLlzIK6+8QmhoKJA2Z0tgYCCzZs2iTp06FCtWjIoVK2aofcpPNpuNu+++2zmpXcOGDVm3bh2ffPLJZW+zbdu29OvXjxdeeIEjR47Qo0cP/P39iY2NJSgoyFlzUL9+fT799FPmzJlD9erVCQgIoH79+lluM7evc158+OGH3HvvvUybNi1XdUcVK1bkxhtvZMyYMYSFhfHxxx+zdOlSXn75ZWdNziOPPMKHH35I9+7dGTduHBERESxcuJBJkyZx33335SqJGz58OK+88gobNmzINFleXtxwww107tyZJ554gsTERK655ho2b97M6NGjady4Mf369bvsbV9K69atKVmyJMOGDWP06NH4+voya9asTMllQalfvz4rVqzgm2++ISwsjOLFizsv/Bfr378/7777LgMGDGDv3r3Ur1+fn376iRdffJFu3bpx/fXX53n/derU4e6772bixIn4+vpy/fXX8/vvv/Paa69l6uoaN24cS5cupXXr1jz44IPUqlWLc+fOsXfvXhYtWsT7779PeHg4AwYM4I033uDuu+/mhRdeoGbNmnz77bcsXrwYyF0LS9++fZk1axbdunXjoYceonnz5vj6+hIXF8fy5cvp1asXvXv3pmrVqowbN46nn36a3bt306VLF0qWLMmRI0dYt24dwcHBjB07Ntv9jB49miNHjnDttddSqVIlTpw4wXfffceUKVO47bbbMtR4Pvroo8yaNYvbbruN559/nvDwcL744gvmz5/Pa6+9RmBgYJ5ff8kDK6vBpfCdO3fODBs2zDRo0MCEhISYwMBAU6tWLTN69OgMI2+yG30SERFhunfvnmk5YO6///4My1atWmWuu+46ExwcbAIDA03Lli3NN998k+m5W7ZsMT179jShoaHGz8/PNGzYMMtRYrNnzza1a9c2vr6+GUY0ZTXazJjcj/bJ7vkJCQlm0KBBpnz58iY4ONj07NnT7N27N9vRav/880+G5ztGEe3Zs8e5LDU11bzxxhumXr16xs/Pz4SGhppWrVpleF327t1rOnXqZIoXL24A54ij7EbQ5eZ1zm5Ek2Mk2PLlyzOtm9uh/N27dzdffPGFqVu3rvHz8zNVq1Y1EyZMyLTuvn37zJ133mlKly5tfH19Ta1atcyrr75qUlNTM6x38eubXvv27U2pUqUyDK12yMt5OHv2rHniiSdMRESE8fX1NWFhYea+++4zx48fz/L4LpbV+91xftJPYZDVe3D16tWmVatWJigoyJQtW9YMGjTIbNy4MdNrXhCj1TZt2mSuueYaExQUZIAsR0Wmd+zYMTNs2DATFhZmfHx8TEREhBk1alSG6Q6Myf1oNWOMOX/+vPnf//5nypUrZwICAkzLli3NmjVrTERERKaRdP/884958MEHTbVq1Yyvr68pVaqUiYqKMk8//bQ5deqUc739+/ebm2++2RQrVswUL17c3HLLLWbRokUGMF9//XWG1ySrz7oxacPnX3vtNdOwYUMTEBBgihUrZmrXrm2GDh1qdu7cmWHdefPmmQ4dOpiQkBDj7+9vIiIizK233mq+//77HI99/vz55vrrrzfly5c3Pj4+plixYqZ58+bmrbfeck5Jkd7+/ftN3759TcmSJY2fn59p0KBBppF2UjBsxlzowBQRyaOqVatSr14956SIBSk+Pp6IiAgeeOABXnnllQLfn7i3F198kWeeeYb9+/cX+Czl4nnUrSYiLi0uLo7du3fz6quv4uXllel+YSLvvPMOkHZ7juTkZJYtW8Zbb73F3XffrcRILouSIxFxaVOnTmXcuHFUrVqVWbNmZRjlJAJpw/PfeOMN9u7dy/nz56lSpQpPPPEEzzzzjNWhiZtSt5qIiIhIOpYP5f/xxx/p2bMnFStWxGazZRo2mpWVK1cSFRXlvMnl+++/X/CBioiISJFgeXJ0+vRpGjZs6OwzvpQ9e/bQrVs32rZtS2xsLE899RQPPvggX375ZQFHKiIiIkWBS3Wr2Ww25s6dy0033ZTtOk888QTz58/PcA+iYcOG8dtvv+X6PlwiIiIi2XG7guw1a9bQqVOnDMs6d+5MTEwMycnJWd6H5/z58xluA2G32/n3338pXbr0ZU2SJyIiIoXPGMPJkyepWLFigd5Cxe2So8OHD2e6oWD58uVJSUnh6NGjWd6zavz48TnOWioiIiLu48CBAwU6TYPbJUeQ+caBjp7B7FqBRo0axciRI51/JyQkUKVKFQ4cOJBpynoRcSMHD7Jv9Wq6PvMMBw8fpkSJEs5bTfz8889MmTKF5ORkWjRpwrynniLo6qtBUwGIuK3ExEQqV67svBlwQXG75KhChQqZ7lQcHx+Pj4+P847PF/P39890o0eAkJAQJUci7iomhjODB9PPGA4CtStUYMm6dVSuXBmAO++8k379+tG1Y0fWbtzIw7feymybDduUKRAdbW3sInJFCrokxvLRannVqlUrli5dmmHZkiVLaNq0aZb1RiLigeLiYMgQnjWG34BywJL4eCpf9IXZMjyc+WfP4gPMAWYaA0OHpj1fRCQblidHp06dYtOmTWzatAlIG6q/adMm9u/fD6R1iaW/M/iwYcPYt28fI0eOZNu2bUybNo2YmBgeffRRK8IXESvs3MlGu52JF/6cDlS222HXrkzrtTWG5y/8+ShwPDU183oiIulYnhz9+uuvNG7cmMaNGwMwcuRIGjduzHPPPQfAoUOHnIkSQLVq1Vi0aBErVqygUaNGPP/887z11lvccsstlsQvIoXP1KzJcMAO9AW6AXh7Q82aGVeMjAQvLx4F6gLHgLE2W+b1RETScal5jgpLYmIioaGhJCQkqOZIxA0tXLiQHj16EAT8BVTw9obJk7OuJYqJgaFD+SE1lesBby8vtu/YQY0aNQo5ahG5UoV1/ba85UhEJC+MMYwZMwaAEffdR4Xly2Hv3uyLrKOjYe9eOi5fTtcOHUi123n11VcLLV4RcT9qOVLLkYhb+fbbb+nWrRvBwcHs2bOHsmXL5vq5q1at4tprr8XPz4+9e/dmOS+aiLgutRyJiGTh7bffBmDIkCF5SowA2rZtyzXXXENSUhJvvvlmQYQnIh5AyZGIuI1du3bx3XffYbPZGD58+GVt47HHHgMgJiYmw22FREQclByJiNt47733MMbQtWtXal7miLPu3btTqVIljh49yrx58/I3QBHxCEqORMQtJCcnM3PmTIDLbjUC8PHxIfpC8fYHH3yQL7GJiGdRciQibmHx4sUcO3aMChUq0Llz5yvaVnR0NDabjWXLlrF79+58ilBEPIWSIxFxCx9//DEAffv2xcfnym4LWaVKFTp27AjAp59+esWxiYhnUXIkIi4vMTGRr7/+GoC77747X7Z55513AjBr1iyK4IwmIpIDJUci4vLmzp3LuXPnqFWrFk2aNMmXbd588834+/uzdetWtmzZki/bFBHPoORIRFzerFmzgLRWI5vNli/bDA0NpVu3bgDMnj07X7YpIp5ByZGIuLQTJ06wfPlyAG6//fZ83bZje3Pnzs3X7YqIe1NyJCIubdGiRaSkpHD11VcTGRmZr9vu2rUrvr6+bN++ne3bt+frtkXEfSk5EhGX5ijE7tWrV75vOyQkhA4dOmTYj4iIkiMRcVnnz5/n22+/BQomOUq/XSVHIuKg5EhEXNaKFSs4efIkYWFhNGvWrED2ceONNwKwZs0ajhw5UiD7EBH3ouRIRFyWozWnZ8+eeHkVzNdVeHg4UVFRGGNYsGBBgexDRNyLkiMRcUnGGBYtWgT817pTUBxda0qORASUHImIi9q5cyf79u3Dz8/PWTRdULp06QLAsmXLSE5OLtB9iYjrU3IkIi5pyZIlALRp04agoKAC3VeTJk0oXbo0iYmJrF27tkD3JSKuT8mRiLgkR3LUqVOnAt+Xt7c3119/fYb9ikjRpeRIRFxOUlKSc1bswkiOADp37gzA4sWLC2V/IuK6lByJiMv5Zf58Tp06RdnSpWnYsGGh7NORhK1fv55j8+ZBXFyh7FdEXI+SIxFxLTExLL3tNgCuP3YMr+nTC2W3lSpVom7Fihhj+KF3b4iIgJiYQtm3iLgWJUci4jri4mDIEBxVP50Ahg4tnFacuDg6//03QNr+7fbC27eIuBQlRyLiOnbu5F+7nfUX/rwBIDUVdu0qlH13vPDrSseywtq3iLgUJUci4joiI1lus2GAOkAlAG9vqFmzUPbdxmbDC9gFxBXmvkXEpSg5EhHXER7OygsTPnaAtORk8mQIDy+UfYdMmULUhT9X2myFt28RcSlKjkTEpaw8ehSAds89B3v3QnR04e08Opr2w4YBsKJv38Ldt4i4DCVHIuIy/v33X7Zs2QLAtffdZ0mrTfuePQFYvm5doe9bRFyDkiMRcRmrVq3CGEOtWrWoUKGCJTG0adMGLy8v/vrrLw4cOGBJDCJiLSVHIuIyVq5MGyfWrl07y2IICQkhKioqQzwiUrQoORIRl/Hjjz8C1iZHAO3btwdgxYoVlsYhItZQciQiLiEhIYHY2FhAyZGIWEvJkYi4hJ9//hm73U6NGjWoVKmSpbGkrzs6ePCgpbGISOFTciQiLsEV6o0cQkJCaNCgAQCrV6+2OBoRKWxKjkTEJbhKvZHDNddcA6S1aIlI0aLkSEQsd+7cOTZs2ACkdWm5AiVHIkWXkiMRsdyGDRtITk6mfPnyVKtWzepwgP+So9jYWE6fPm1xNCJSmJQciYjlHHU9rVu3xmazWRxNmsqVK1OpUiVSU1NZv3691eGISCFSciQilkufHLkKm82mrjWRIkrJkYhYyhjjkskRqO5IpKhSciQiltq9ezfx8fH4+fnRpEkTq8PJwJEcrVmzBrvdbnE0IlJYlByJiKUcrUZRUVEEBARYHE1GDRs2JCgoiBMnTrBt2zarwxGRQqLkSEQs5apdagA+Pj60aNECUNeaSFGi5EhELOXKyRH817WmmbJFig4lRyJimcTERLZs2QJAq1atLI4mayrKFil6lByJiGXWrl2LMYZq1aoRFhZmdThZatWqFTabjV27dhEfH291OCJSCJQciYhlXL1LDSA0NJTatWsDsG7dOoujEZHCoORIRCzjSI5ctUvNwVGUvXbtWosjEZHCoORIRCxhjHG2xCg5EhFXouRIRCyxa9cuTpw4gb+/P/Xr17c6nBw5kqN169ZpMkiRIkDJkYhYwtEK06RJE3x9fS2OJmf169cnMDCQhIQEduzYYXU4IlLAlByJiCUcXWrNmze3OJJL8/HxISoqClDXmkhRoORIRCzhSI4cXVauTnVHIkWHkiMRKXRJSUnExsYC7tFyBP/FqeRIxPMpORKRQvfbb7+RlJRE6dKlqV69utXh5Iqj5Wjz5s2cPXvW4mhEpCApORKRQpe+3shms1kcTe5UqVKF8uXLk5KS4mz1EhHPpORIRAqdOxVjO9hsNtUdiRQRSo5EpNA5kgt3So5ARdkiRYWSIxEpVCdOnGD79u0ANGvWzOJo8kbJkUjRoORIRArVr7/+CkD16tUpW7asxdHkTbNmzbDZbOzdu5f4+HirwxGRAqLkSEQKlTvWGzmEhIRQp04dQK1HIp7MJZKjSZMmUa1aNQICAoiKimLVqlU5rj9r1iwaNmxIUFAQYWFh3HPPPRw7dqyQohWRK+Gu9UYO6loT8XyWJ0dz5szh4Ycf5umnnyY2Npa2bdvStWtX9u/fn+X6P/30E/379yc6Opo//viDzz//nPXr1zNo0KBCjlxE8soY40wq3GVm7ItpMkgRz2d5cjRhwgSio6MZNGgQderUYeLEiVSuXJn33nsvy/V/+eUXqlatyoMPPki1atVo06YNQ4cOddYxiIjriouL48iRI3h7e9O4cWOrw7ksjqRu3bp12O12i6MRkYJgaXKUlJTEhg0b6NSpU4blnTp1YvXq1Vk+p3Xr1sTFxbFo0SKMMRw5coQvvviC7t27Z7uf8+fPk5iYmOFHRArf2kWLAGhQpw6BgYEWR3N56tevT2BgIImJiez46COIi7M6JBHJZ5YmR0ePHiU1NZXy5ctnWF6+fHkOHz6c5XNat27NrFmzuP322/Hz86NChQqUKFGCt99+O9v9jB8/ntDQUOdP5cqV8/U4RCQXYmJYN2wYAC1+/x1iYiwO6PL4+PjQpFIlANYNHAgREW57LCKSNcu71YBMtw8wxmR7S4GtW7fy4IMP8txzz7Fhwwa+++479uzZw7ALX7pZGTVqFAkJCc6fAwcO5Gv8InIJcXEwZAjrLvzZHGDoUPdsdYmLo/muXQCsB7Db3fdYRCRLPlbuvEyZMnh7e2dqJYqPj8/UmuQwfvx4rrnmGh577DEAGjRoQHBwMG3btuWFF14gLCws03P8/f3x9/fP/wMQkdzZuZNUux1HZWBzgNRU2LULwsMtDOwy7NyJY5ydI9lz22MRkSxZ2nLk5+dHVFQUS5cuzbB86dKltG7dOsvnnDlzBi+vjGF7e3sDaS1OIuKCIiPZarNxGigG1Abw9oaaNa2N63JERtL8Qsv2JuA8uO+xiEiWLO9WGzlyJFOnTmXatGls27aNRx55hP379zu7yUaNGkX//v2d6/fs2ZOvvvqK9957j927d/Pzzz/z4IMP0rx5cypWrGjVYYhITsLDWXfhc9yMC/+hmTzZPVtawsOp9sEHlAaSgM1eXu57LCKSJUu71QBuv/12jh07xrhx4zh06BD16tVj0aJFREREAHDo0KEMcx4NHDiQkydP8s477/C///2PEiVKcN111/Hyyy9bdQgikgvrLnRtN7/jDnjlFbdOJmyDBtFs1iy+W7GCdWPH0iw62uqQRCQf2UwR7ItKTEwkNDSUhIQEQkJCrA5HpEho3LgxmzZt4osvvuCWW26xOpwrNnr0aMaNG0f//v2ZOXOm1eGIFAmFdf22vFtNRDzf2bNn2bJlC+C+tw25mOM4HPeKExHPoeRIRArcpk2bnHOahbtxd1p6zZo1A+DPP/8kISHB4mhEJD8pORKRArd+/XogLaHIbg4zd1OuXDmqVq0KwIYNG6wNRkTylZIjESlw6ZMjT6KuNRHPpORIRAqcI3lQciQi7kDJkYgUqBMnTrBjxw5AyZGIuAclRyJSoBz1OFWrVqVMmTIWR5O/mjRpgpeXFwcPHuTgwYNWhyMi+UTJkYgUKE+tNwIIDg6mbt26wH/HKSLuT8mRiBQoT06OQF1rIp5IyZGIFKiikhyp5UjEcyg5EpECc+TIEQ4cOIDNZiMqKsrqcApE+uTIbrdbHI2I5AclRyJSYBytKbVr16Z48eIWR1Mw6tatS2BgIAkJCezcudPqcEQkHyg5EpEC4+ldagC+vr40adIEUN2RiKdQciQiBaYoJEfw3/EpORLxDEqORKRAGGOKTHKkEWsinkXJkYgUiH379nH06FF8fHxo2LCh1eEUKEdytGnTJpKSkiyORkSulJIjESkQjlajhg0bEhAQYHE0Bat69eqUKlWKpKQkNm/ebHU4InKFlByJSIEoKl1qADabTV1rIh5EyZGIFIiilByB6o5EPImSIxHJd3a73XnDWSVHIuJulByJSL7bvn07J0+eJCgoiDp16lgdTqFwJIF//vknCQkJFkcjIldCyZGI5DtHl1qTJk3w8fGxOJrCUa5cOSIiIjDGOFvNRMQ9KTkSkXzn6FoqKl1qDupaE/EMSo5EJN8VtWJsh/Q3oRUR96XkSETyVVJSEps2bQKKbnKkliMR96bkSETy1ZYtW0hKSqJkyZLUqFHD6nAKVZMmTfDy8iIuLo6///7b6nBE5DIpORKRfOXoUmratCk2m83iaApXsWLFqFu3LqCuNRF3puRIRPJVUa03clDXmoj7U3IkIvmqqCdHjuNWciTivpQciUi+OX36NH/88QdQdJOj9CPW7Ha7xdGIyOVQciQi+SY2Nha73U5YWBiVKlWyOhxL1KtXj4CAABISEti1a5fV4YjIZVByJCL5pqh3qQH4+vrSpEkTQF1rIu5KyZGI5BslR2lUlC3i3pQciUi+UXKURsmRiHtTciQi+eL48ePOGpumTZtaHI21HMlRbGwsSUlJFkcjInml5EhE8oWjlaRGjRqULl3a4misVb16dUqVKkVSUhKbN2+2OhwRySMlRyKSL9auXQtAixYtLI7EejabTfMdibgxJUciki+UHGWkuiMR96XkSESumDHGmRy1bNnS4mhcQ/rJIEXEvSg5EpErtnv3bo4dO4afnx8NGza0OhyX4OhW27ZtG4mJiRZHIyJ5oeRIRK6Yo9WocePG+Pv7WxyNayhfvjwREREYY9iwYYPV4YhIHig5EpEr9sv33wPQom5diyNxLc66o9mzIS7O4mhEJLeUHInIlYmJYe306QC0mD4dYmIsDsh1NL/w77opUyAiQq+NiJuwGWOM1UEUtsTEREJDQ0lISCAkJMTqcETcV1wc56tUIcQYkoBdQA1vb9i7F8LDLQ7OYnFxrKxShfbGEA4cANBrI3JFCuv6rZYjEbl8O3ey6UJiVAaoDpCaCrobPezcSZQxeAFxwCHQayPiJpQcicjli4xkrc0GQAvABmmtIzVrWhmVa4iMpJiXF1df+HM96LURcRNKjkTk8oWHs/ZC0XELSLv4T56sbiNIew0++IDmF5LHdTabXhsRN6HkSESuyC///ANAi1deSauniY62NiBXEh1N8xdfBGBdmzZ6bUTchJIjEbls//zzD7t37wag+eDBahXJQvPOnQFYv2ULdrvd4mhEJDeUHInIZXPcN6xWrVqUKFHC2mBcVL169QgICODEiRPsUjG2iFtQciQil033U7s0X19fmjRpAugmtCLuQsmRiFw2R3LUokULiyNxbY77rCk5EnEPSo5E5LLY7XYlR7nkuI3I+vXrLY5ERHJDyZGIXJYdO3aQkJBAQEAA9evXtzocl+ZIjmJjY0lKSrI4GhG5FCVHInJZHK1GUVFR+Pr6WhyNa6tRowYlS5bk/PnzbNmyxepwROQSlByJyGVRl1ru2Ww2Z+uR6o5EXJ+SIxG5LKtXrwagVatWFkfiHpQcibgPJUcikmeJiYnO7qHWrVtbHI17cCRHjhY3EXFdSo5EJM/WrVuH3W6natWqVKxY0epw3IIjOfrzzz85ceKEtcGISI6UHIlInjm61NRqlHvlypWjZs2aGGNYs2aN1eGISA6UHIlInik5ujzXXHMN8N/rJyKuScmRiORJamqqs+VDyVHeOF6vn3/+2eJIRCQnSo5EJE+2bt1KYmIiwcHBmvwxjxwtR2vXriU5OdniaEQkOy6RHE2aNIlq1aoREBBAVFQUq1atynH98+fP8/TTTxMREYG/vz81atRg2rRphRStSNHm6BJq0aIFPj4+FkfjXurUqUOJEiU4c+YMmzdvtjocEcmG5cnRnDlzePjhh3n66aeJjY2lbdu2dO3alf3792f7nD59+vDDDz8QExPD9u3bmT17NrVr1y7EqEWKLtUbXT4vLy/nvFDqWhNxXZYnRxMmTCA6OppBgwZRp04dJk6cSOXKlXnvvfeyXP+7775j5cqVLFq0iOuvv56qVavSvHlzfVGLFBJHcuToIpK8UVG2iOuzNDlKSkpiw4YNdOrUKcPyTp06ZfvFMX/+fJo2bcorr7xCpUqVuOqqq3j00Uc5e/Zstvs5f/48iYmJGX5EJO/i4+PZtWsXAC1btrQ4GvekomwR12dpwcDRo0dJTU2lfPnyGZaXL1+ew4cPZ/mc3bt389NPPxEQEMDcuXM5evQow4cP599//8227mj8+PGMHTs23+MXKWoc/2mpW7cuJUqUsDYYN9W8eXO8vb2Ji4tj//79VKlSxeqQROQilnerQdpNGdMzxmRa5mC327HZbMyaNYvmzZvTrVs3JkyYwIwZM7JtPRo1ahQJCQnOnwMHDuT7MYgUBao3unLBwcE0btwYUNeaiKuyNDkqU6YM3t7emVqJ4uPjM7UmOYSFhVGpUiVCQ0Ody+rUqYMxhri4uCyf4+/vT0hISIYfEck7JUf5Q11rIq7N0uTIz8+PqKgoli5dmmH50qVLs/3yveaaa/j77785deqUc9mOHTvw8vIiPDy8QOMVKcrOnz/Pr7/+Cig5ulKOomwlRyKuyfJutZEjRzJ16lSmTZvGtm3beOSRR9i/fz/Dhg0D0rrE+vfv71z/zjvvpHTp0txzzz1s3bqVH3/8kccee4x7772XwMBAqw5DxOPFxsZy/vx5ypQpQ2RkpNXhuDVHcvnbb79l+I+eiLgGy5Oj22+/nYkTJzJu3DgaNWrEjz/+yKJFi4iIiADg0KFDGeY8KlasGEuXLuXEiRM0bdqUu+66i549e/LWW29ZdQgiRUL6LrXsagIld8LDw6lSpQp2u521a9daHY6IXMQlprcdPnw4w4cPz/KxGTNmZFpWu3btTF1xIlKwfvrpJ0BdavnlmmuuYf/+/axevZqOHTtaHY6IpGN5y5GIuD5jDD/++CMAbdu2tTgaz6CibBHXpeRIRC5p27ZtHDt2jICAAJo2bWp1OB4h/UzZqampFkcjIukpORKRS3LcDLpVq1b4+flZHI1naNCgASEhIZw8eZLffvvN6nBEJB0lRyJySY4utWuvvdbiSDyHt7c3bdq0Af57fUXENSg5EpEcGWNYuXIloHqj/OZINpUcibgWJUcikqO9e/dy8OBBfHx8dLPZfJY+ObLb7RZHIyIOSo5EJEeOeqOmTZsSHBxscTSeJSoqiqCgII4dO8a2bdusDkdELlByJCI50hD+guPn50erVq0Ada2JuBIlRyKSIxVjFyzVHYm4HiVHIpKtw4cPs3PnTmw2m3NeHslfjuRo5cqVGGMsjkZEQMmRiOTAUW/UoEEDSpYsaXE0nqlFixb4+vpy6NAh/vrrL6vDERGUHIlIDn5ctAiAto0bWxyJ5woMDKR58+YA/PjBBxAXZ3FEIqLkSESyFhPDjxdu/HztzJkQE2NtPB6sXWgoAD+++ipEROi1FrGYzRTBTu7ExERCQ0NJSEggJCQk1887e/YsgYGBBRiZiIuIi+N4lSqUNgYDHAIqeHvD3r0QHm5xcB4mLo7FVarQxRiqAnsA9FqLZOlyr995pZajXHriiScIDQ0lNjbW6lBECt7Onay8kBjVBioApKbCrl3WxuWJdu6ktTF4AXuB/aDXWoqE7777jqpVq7J06VKrQ8lEyVEuvfLKKyQnJzNs2DCrQxEpeJGRLLvwawfHMm9vqFnTooA8WGQkxb28aHLhzx9Br7UUCV27dmXfvn0MGDDA6lAyUXKUR3v37rU6BJGCFx7O8kqVALgO0i7Wkyerm6cghIfDBx/QwWYDYLnNptdaipSzZ89aHUImSo5yITU11fl7YmKihZGIFI74+Hh+P3gQgPbz5qXVv0RHWxqTR4uO5rqZMwH4oVIlzL33WhyQSME6efKk8/cKFSpYGEnWlBzlQnx8vPN3Pz8/CyMRKRwrVqwA0uY3KtOrl1oxCkGb3r3x8fFhX1wce/bssTockQJ1/Phx5++nT5+2MJKsKTnKhUOHDjl/P3XqlO6eLR5v2bK0iqPrrrvO4kiKjmLFitGiRQvgv9dfxFOdOHHC+fuhQ4dc7rqq5CgXEhISnL/b7XZOnTplYTQiBU/JkTU6duwIKDkSz5e+5SglJcXlWo+UHOXCxcVi6TNeEU8TFxfHzp078fLy0s1mC5kjGV22bJnusyYe7eLrqKsVZSs5ygUlR1KULF++HICoqChCL8zcLIWjZcuWBAYGcuTIEbZu3Wp1OCIFRsmRB1ByJEWJIzlSl1rh8/f3p02bNoC61sSzXXwdPXfunDWBZEPJUS4oOZKixHFR7tChwyXWlIKQvmtNxFOp5cgDXJzRpi/QFvEke/bsYd++ffj4+DhbMKRwOZKjFStWZJhjTcSTXHwd9ajkKD4+nsOHD+dXLC7r4pN25swZiyIRKViO1oqWLVsSHBxscTRFU5MmTQgJCeHEiRNs2rTJ6nBECsTFo9M8IjnavHkzdevWJSwsjEqVKlGpUiWeeeYZlxuKl18uPmmeepwi33//PaAuNSv5+PjQvn17AH744QdrgxEpIBc3MnhEchQdHU358uX56aefiI2N5YUXXuDbb7+ladOmGeYu8BRKjqQosNvtzrtjd+rUyeJoijZH15qSI/FUHtlytHXrViZNmkSrVq1o0KAB99xzD7/++it169blgQceyO8YLaduNSkKYmNjOXbsGCEhIc6ZmsUajskgV61a5XKjeETyg0cmR1m1ENlsNl588UW+/vrrfAnMlajlSIqCJUuWAGmtFr6+vhZHU7TVrVuXihUrcvbsWX766SerwxHJdx7Trda9e3eeeuopPvvsM4YNG8YjjzzCkSNHMqyTkJBAyZIl8z1IqzlOWqlSpQAlR+KZFi9eDKhLzRXYbDbneXCcFxFP4riOOiaadbXkyCe3K9avX5+NGzcyffp0Z1JUvXp1+vTpQ6NGjUhNTWX69Om88cYbBRasVRwnrUyZMvz7779KjsTjnDx5ktWrVwNKjlxF586dmTFjBosXL+bVV1+1OhyRfOW4jpYpU4aEhAT3TY5eeukl5+9HjhwhNjaWTZs2sWnTJt577z127dqFt7c3Y8eO5ZZbbimQYK2SPjnasWOHao7E46xcuZLk5GSqV69OjRo1rA5HgBtuuAGbzcaWLVv4+++/qVixotUhieQbx3W0dOnS/PXXX+6bHKVXvnx5unTpQpcuXZzLzp49y2+//cZvv/2Wb8G5ivPnzwPqVhPP5ag36ty5s8WRiEPp0qVp2rQp69evZ8mSJQwcONDqkETyjeM6Wrp0aeC/66yryLcZsgMDA2nZsiVDhw7Nr026jOTkZABKlCgBKDkSz6N6I9fkSFZVdySexnEddVxXHddZV6Hbh+SCkiPxZHv37mXHjh14e3tr8kcX40iOli5dqluJiMdISUkhKSkJ+K8gW8mRG3KctJCQEMD1qupFroRj4seWLVs6v6jENbRo0YLixYtz7NgxNm7caHU4Ivki/TVUyZEbc5y04sWLA5lvRCvizhz1RupScz2+vr7OCSHVtSaeIn19UbFixQAlR25JyZF4qpSUFOf91FSM7ZpUdySexnEN9fPzw9/fH1By5JaUHImn+uWXXzhx4gSlSpWiadOmVocjWXAkR2vWrCEhIcHiaESunOMaGhAQ4JyNX8mRG7o4OTp79izGGCtDEskXCxYsAKBLly54e3tbHI1kpVq1akRGRpKamqob0YpHUHLkIVJSUoD/kiO73e5cJuLOFi5cCECPHj0sjkRy0q1bN+C/8yXizpQceYiLW45AXWvi/vbt28fvv/+Ol5eX6o1cnCN5XbhwIXa73eJoRK6MkiMPoeRIPJGjFaJ169bO2d/FNV177bUUL16cI0eOsGHDBqvDEbkiSo48hOOkpa+sV3Ik7k5dau7Dz8/P2brnqBMTcVdKjjyE46T5+voSEBAAaCJIcW9nzpxh2bJlAHTv3t3iaCQ3HEnsN998Y3EkIlcmfXLk45N2i1clR24oq+RILUfizpYtW8a5c+eoUqUKdevWtTocyYWuXbtis9mIjY3l4MGDVocjctnUcuQBjDHOexopORJPsXDOHAB6tG+PzWazOBrJjXLlytGiRQsAFk6YAHFxFkckcnkc109/f38lR+4q/Qnz9fUlMDAQUHIk7stMncrCjz8GoPtHH0FMjMURSW71DAsDYMGECRARoXMnbimrliNXmx5HydElXJwcqeZI3FpcHFuGDOEAEAh0MAaGDlUrhDuIi6PHvHkAfA+ctdt17sQtqVvNA2SXHKnlSNzSzp0suDC7e0fSEiRSU2HXLiujktzYuZP6xlAZOAssB507cUtKjjyAkiPxKJGRzLvwa0/HMm9vqFnTmngk9yIjsXl54Zh44RvQuRO3pOTIAzhOmLe3NzabTcmRuLU4YD1gA3pB2sV18mQID7c0LsmF8HD44AN6eqV9bc8H7O+9p3MnbkfJkQdIP4wfUEG2uLV5F2pWWjdrRvnly2HvXoiOtjQmyYPoaK7bsYPiQUH8DayrX9/qiETyTMmRB7g4OVJBtrizuXPnAtD79tuhfXu1Orgh/xo16NGrFwBfffWVxdGI5J2SIw/gOGGOWTzVrSbu6tixY6xcuRKA3r17WxyNXImbb74ZSEuOzIUCexF3oeTIAzjmXri45UjJkbibBQsWkJqaSoMGDahevbrV4cgV6NKlCwEBAfz1119s2bLF6nBE8kTJkQfIrltNyZG4G0e90U033WRpHHLlihUr5rwRrbrWxN1klxy5UiuokqNLUEG2eIIzZ86wePFiQF1qnsLRtfbll19aHIlI3mSVHAHOW3W5AiVHl+DoVru45kgF2eJOFi9ezNmzZ6latSoNGza0OhzJBz179sTHx4fff/+dHTt2WB2OSK6lT44c11ZwrVuIKDm6BEcm6+3tDahbTdzTF198AaS1GulGs56hZMmSXHfddcB/oxBF3EH65MhxbQW1HLkVx8nSaDVxV2fPnmX+/PkA9OnTx+JoJD+lH7Um4i6UHOXSpEmTqFatGgEBAURFRbFq1apcPe/nn3/Gx8eHRo0aFVhsjmY+xwlUzZG4m2+//ZZTp04RERFBixYtrA5H8lGvXr2w2WysW7eOAwcOWB2OSK4oOcqFOXPm8PDDD/P0008TGxtL27Zt6dq1K/v378/xeQkJCfTv35+OHTsWaHzqVhN3N2fOHCCt1Uhdap6lQoUKtGnTBoDPP//c4mhEcie75Eg1R+lMmDCB6OhoBg0aRJ06dZg4cSKVK1fmvffey/F5Q4cO5c4776RVq1YFGl92yZEKssUdnD59mgULFgDqUvNUt99+OwCffvqpxZGI5M758+eBtOupl5eX8z9tajm6ICkpiQ0bNtCpU6cMyzt16sTq1auzfd706dP566+/GD16dK72c/78eRITEzP85JZajsSdLVy4kDNnzlC9enWioqKsDkcKwG233YaXlxfr169n165dVocjcknpW47gv+urkqMLjh49SmpqKuXLl8+wvHz58hw+fDjL5+zcuZMnn3ySWbNmZRgCmJPx48cTGhrq/KlcuXKuY8yuIFstR+IOPvvsM0Bdap6sXLlyzvICRxeqiCtTcpRLF39pG2Oy/CJPTU3lzjvvZOzYsVx11VW53v6oUaNISEhw/uSlcPHigmzHyXQ0C4q4qpMnT7Jw4ULgv64X8Ux33HEHALNnz7Y4EpGcpaSkOK+rSo6yUaZMGby9vTO1EsXHx2dqTYK0L/tff/2VESNG4OPjg4+PD+PGjeO3337Dx8eHZcuWZbkff39/QkJCMvzklrrVxF198803nDt3jsjISE386OF69+6Nn58ff/zxB7///rvV4YhkK33DguN66uiZUUH2BX5+fkRFRbF06dIMy5cuXUrr1q0zrR8SEsKWLVvYtGmT82fYsGHUqlWLTZs2Fcgw5YuTI39/f0AtR+L6Zs2aBUDfvn3VpebhSpQoQdeuXQG1HolrS9+w4LiequUoCyNHjmTq1KlMmzaNbdu28cgjj7B//36GDRsGpHWJ9e/fHwAvLy/q1auX4adcuXIEBARQr149goOD8z0+tRyJOzpy5IjzXmp33323xdFIYXB0rX366acudQNPkfQc105fX1/nddUVk6PcVTQXoNtvv51jx44xbtw4Dh06RL169Vi0aBEREREAHDp06JJzHhWk7O6tpuRIXNmnn35KamoqzZs3z1N9nrivHj16EBQUxO7du1m3bp0m/BSXdHExNrhmcmR5yxHA8OHD2bt3L+fPn2fDhg1ce+21zsdmzJjBihUrsn3umDFj2LRpU4HFll23WlJSkv53Ji7r448/BqBfv34WRyKFJTg4mN69ewPw4YcfWhyNSNaySo4cjQ9KjtxIdt1qoLojcU1//vknv/76Kz4+PhqlVsQMGDAASKs70veTuKKcWo5UkO1GlByJu/noo48A6NKlC2XLlrU4GilM1113HZUqVeL48ePOmdFFXIm61TzExcmRr6+v8zHVHYmrsdvtzlFq6lIrery9vZ0F+DNnzrQ4GpHMlBx5iIsLsm02m4qyxWX99NNP7Nu3j5CQEHr27Gl1OGIBR9fat99+S3x8vMXRiGTkuG466ndByZFburjlCDTXkbiu6e+8A8CtXbsSGBhocTRihTp16tCsWTNSUlL4ZOxYiIuzOiQRJxVke4iskiO1HIkrSnznHT77/HMAoj/7DGJiLI5IrDIgMhKAmZMmQUSE3gviMlSQ7SGUHIlbiIvj0wcf5AxQB2hlDAwdqlaDoigujr6zZ+MLbAJ+s9v1XhCXoZojD6FuNXELO3cy9cK8W4MAG0BqKuzaZWVUYoWdOyltDL0u/DkF9F4Ql6HkyENcXJANajkS1/NbcjLrAV/AOUbN2xtq1rQuKLFGZCR4eTHkwp8fAWe8vPReEJeg5MhD5NStppYjcRUxF+a06QWUhbTEaPJkCA+3MiyxQng4fPABHb28qAYkAp8NGKD3grgEFWR7iJy61dRyJK7g3LlzztuFDProI1i+HPbuhehoawMT60RH47VvH4MHDQLggz//tDggkTQqyPYQKsgWV/fVV19x/PhxKleuzPV33AHt26uVQCA8nHuefx4fHx/WrFnDli1brI5IRPMceQrHyUpfc6SCbHEl7777LgDR0dEZkniRChUqcOONNwIwZcoUi6MR+e+6mX4eNiVHbsjRzKeWI3FFmzZtYvXq1fj4+DBkyJBLP0GKHMf74sMPP+TMmTMWRyNFnVqOPIS61cSVOVqNbrnlFsLCwiyORlzRDTfcQLVq1UhISGD27NlWhyNFXE4F2ao5ciOa50hc1fHjx503mb3//vstjkZclZeXF8OHDwfgrbfewlyYD0vEChrK7yHUciSuasaMGZw9e5b69evTpk0bq8MRFxYdHU1QUBCbN29m1apVVocjRZijUUHdam4uq4JsJUdiNbvd7uxSu//++7HZbBZHJK6sZMmS9OuXNj3oW2+9ZXE0UpSp5chDZFWQrW41sdqSJUv466+/CAkJ4a677rI6HHEDDzzwAABz585l//79FkcjRZWSIw+hbjVxRRMmTADgnnvuoVixYhZHI+6gbt26dOzYEbvdzqRJk6wOR4ooR6OCCrLdnG4fIq7mt99+Y+nSpXh5efHwww9bHY64kQcffBBIm/NIw/rFChrK7yF0+xBxNY5Wo1tvvZWqVataG4y4le7du1OtWjX+/fdfZs6caXU4UgSpW81DqCBbXMnff//tnKvmf//7n8XRiLvx9vZm5MiRALz22msu1Y0hRUNW3WpKjtyQCrLFlbz99tskJyfTpk0bmjdvbnU44obuueceSpcuze7du/nqq6+sDkeKmKy61RyND0qO3IgKssVVnDp1ivfffx+ARx991OJoxF0FBwczYsQIAF555RVNCimFKqduNVdqyVRydAlKjsRVTJ06lRMnThAZGUnPnj2tDkfc2IgRIwgMDGTDhg0sX77c6nCkCFHNkYew2+2AutXEWufOnePVV18F4LHHHsPLSx9duXxlypQhOjoaSGs9EikMxpgcZ8h2XG9dgb5hL8FxstJfjNRyJIUqLo4Zo0bx999/Ex4ezoABA6yOSDzAyJEj8fLyYvHixWyYPBni4qwOSTxccnKysxs3fcuR4/qq5MiNOJr5skqO1HIkBS4mhuQqVXhp4kQAnrj2Wvz8/KyNSTxCtWrVuKNZMwDGDRsGEREQE2NxVOLJ0jcoKDlyc1m1HGmeIykUcXEwZAgfG8M+oDwQ/emn+h++5I+4OJ5Ztw4vYD4Qa7fD0KF6f0mBSd+gkL5bzXF9Vc2RG8mq5kjdalIodu4k1W7nxQt//g8ItNth1y4roxJPsXMntY2h74U/xwKkpur9JQXGcc308/PLcLNs1Ry5oZxajtStJgUqMpLZNhu7gFLAMABvb6hZ09q4xDNERoKXF88CNuBrINbLS+8vKTBZjVQDdau5pZxqjtRyJAUpuXx5RpcpA6S1GhX39obJkyE83NrAxDOEh8MHH1Db29vZejSuYUO9v6TAZDU7NqhbzS3l1K2WmprqUpNWiWeZPn06u//5h3JlyvDgokWwdy9cGH4tki+io2HvXp6dMQObzca82FhiY2Otjko8VFazY4NajtxSTt1qoK41KRjnzp1j3LhxADz97LMU69pV/6OXghEeTp0BA+jbN6396LnnnrM4IPFU2XWrqebIDV0qOVLXmhSE9957j4MHD1K5cmWGDh1qdThSBIwePRpvb28WLFjAqlWrrA5HPJBqjjxIVjVHPj4+zhvlqeVI8tvJkyd58cW0MWqjR4/O1AQtUhBq1arlnDX78ccf1z3XJN9lNTs2qObILWVVcwSa60gKzptvvsnRo0eJjIzUbNhSqMaMGUNQUBC//PIL8+bNszoc8TBqOfIgWXWrgUasScE4cuSI815X48aNc7ZQihSGsLAwHnnkEQBGjRqlASeSr1Rz5EGyS44015EUhGeffZaTJ0/SrFkz+vTpY3U4UgQ9/vjjlC5dmu3btzNt2jSrwxEPoqH8HiSrmiNQy5Hkv82bNxNz4d5WEyZMyPSeEykMISEhPPvss0BazdupU6csjkg8hYbye5Dsao6UHEl+MsYwcuRI7HY7t912G23atLE6JCnChg0bRvXq1Tl8+DDjx4+3OhzxEKo58iDqVpPCsGDBAn744Qf8/Px4+eWXrQ5Hijh/f39ef/11AF577TX++usviyMST5Bdt5pqjtyQCrKloCUlJfHoo48C8Mgjj1CtWjWLIxKBXr16ccMNN5CUlMTIkSOtDkc8wKW61VRz5EYuVXOkliO5Um+++SY7duygXLlyPPXUU1aHIwKAzWbjzTffxMfHh/nz57N48WKrQxI3p241D6J5jqQgHThwgDFjxgAwfvx4QkJCrA1IJJ06derwwAMPAPDQQw+RlJRkcUTizjSU34OoW00KTFwcD915J2fOnOGaa65h4MCBVkckkslzzz1H2bJl2b59O289+CDExVkdkripS82QreTIjaggWwpETAwLq1Rh7k8/4Q28d8MNGrovLqlEiRK81L07AKMnT2ZvlSpwYcoJkby4VLeaao7ciOY5knwXF8eZwYN54MK9qx4B6j//vP5HLq4pLo6BM2dyLXAGuM8YzJAher9KnqnmyINoniPJdzt38qIx7AHCgdEAqamwa5e1cYlkZedOvIxhMuAHfAfMsdv1fpU801B+D6JuNclvm5KScMxk9CZQDMDbG2rWtC4okexERoKXF7WBpy8segj4t3RpC4MSd6Sh/B5E3WqSn5KTk7nnySdJAW4GekNaYjR5MoSHWxucSFbCw+GDD8DbmyeAOkA88Pibb1ocmLgbdat5kEuNVlPLkeTFSy+9xKZNmyhVqhSTNm7Etnw57N0L0dFWhyaSveho2LsX/+XL+eDLLwGIiYlhyZIlFgcm7uRSN55VcuRGNM+R5JctW7bw/PPPA/D2229TvnFjaN9eLUbiHsLDoX172tx8MyNGjADg3nvv5fjx4xYHJu4iu2411Ry5Ic1zJPkhJSWFe++9l+TkZG688UbuuOMOq0MSuWwvv/wykZGRHDx4kIceesjqcMRNaCi/B8mu5kgF2ZIXzz//PL/++islSpTg/fffx2azWR2SyGULCgpi5syZeHl58dFHHzF37lyrQxI3oJojD6Kh/HKlfv75Z1544QUAJk2aRFhYmMURiVy5Vq1a8fjjjwMwdOhQ4uPjLY5IXJ1myPYQxhjMhYn61K0mlyMhIYG77roLu91Ov3791J0mHmXMmDE0aNCAf/75h3vuucelLm7iei51bzV1q7kJR2IE6laTyzN8+HD27dtH9erVeeedd6wORyRf+fv789FHH+Hv78+iRYt44403rA5JXJi61TxE+ixWLUeSVx9//DGffPIJ3t7ezJo1i5CQEKtDEsl3DRo0YOLEiQA8+eSTrFu3ztqAxGVpKL+HSH+iVHMkuRYXxx/TpjF0yBAARo8eTcuWLS0OSqTgDB06lFtvvZWUlBT69u1LwtatsHy57r8mTikpKc4GB9Ucubn0Jyq7lqOzZ88Wakzi4mJiOFmlCrdER3Pm7Fk61qnDU089ZXVUIgXKZrMxZcoUqlatyp49exhUty7muusgIgJiYqwOT1xA+mtlYGBghsdUc+RmckqOgoKCACVHkk5cHGbwYAYZw3agEjB7+3a8Dx2yOjKRAleiRAnmvPUWPsAXwOsAdjsMHaoWJOHMmTPO39WtlkuTJk2iWrVqBAQEEBUVxapVq7Jd96uvvuKGG26gbNmyhISE0KpVKxYvXlwgceVUc+TIfJUcidPOnbxlDJ8BPsDnQFndvVyKkObFijHxwu9PAEsBUlP1GRDntTIgICDTPG9KjrIwZ84cHn74YZ5++mliY2Np27YtXbt2Zf/+/Vmu/+OPP3LDDTewaNEiNmzYQIcOHejZsyexsbH5HltONUdKjuRiK44e5dELv08AWkHaTWVr1rQuKJHCFBnJcJuNgYAd6Avs8fLSZ0Cc18qLu9RA3WpZmjBhAtHR0QwaNIg6deowceJEKleuzHvvvZfl+hMnTuTxxx+nWbNmREZG8uKLLxIZGck333yT77Hl1K2WPjlKP+RfiqZdu3Zxy7BhpAB32GyMgLTEaPJk3TtNio7wcGxTpvCelxfNgH+BmypW5HTJklZHJhZzJEeOkpT01HJ0kaSkJDZs2ECnTp0yLO/UqROrV6/O1TbsdjsnT56kVKlS2a5z/vx5EhMTM/zkdtsO2SVHoBFrRd2JEyfo0aMH//77L82bNydm+3Zsy5fD3r1pdzMXKUqiownYt4+vPvuMcmXKsDkujn79+rlUq4AUvpxajpQcXeTo0aOkpqZSvnz5DMvLly/P4cOHc7WN119/ndOnT9OnT59s1xk/fjyhoaHOn8qVK+dq2+k/zBf3kaY/wepaK7pSUlLo06cP27dvJzw8nHnz5hEYGQnt26vFSIqu8HDCb7uNL+fOxc/Pj7lz5/LYY49ZHZVYSMnRZbg48TDG5OrGnLNnz2bMmDHMmTOHcuXKZbveqFGjSEhIcP4cOHAgV3Fld181AF9fX3x8fAAlR0WVMYYRI0awdOlSgoKC+Oabb3TfNJF02rRpw4wZMwB44403ePvtt60NSCzjGK2mmqNcKFOmDN7e3plaieLj4zO1Jl1szpw5REdH89lnn3H99dfnuK6/vz8hISEZfnLDkRxd3KXmoKLsom3MmDFMnjwZm83GrFmzaNSokdUhibicO+64gxdffBGAhx9+mPnz51sckVhBLUd54OfnR1RUFEuXLs2wfOnSpbRu3Trb582ePZuBAwfyySef0L179wKLz5HFXio5Sj9/gxQNkyZNYty4cQC8++673HTTTdYGJOLCnnzySQYPHozdbqdv3745TtcinkkF2Xk0cuRIpk6dyrRp09i2bRuPPPII+/fvZ9iwYUBal1j//v2d68+ePZv+/fvz+uuv07JlSw4fPszhw4dJSEjI99jUciRZ+eyzzxgxYgSQ1np03333WRyRiGuz2Wy8++67dO/enbNnz9K9e3c2bNhgdVhSiNRylEe33347EydOZNy4cTRq1Igff/yRRYsWERERAcChQ4cyzHk0efJkUlJSuP/++wkLC3P+PPTQQ/keW041R6DkqMiJi2Ph+PHcfffdGGMYPnw4zz33nNVRibgFX19fPv/8c9q1a8fJkyfp3LkzW5ct0z3Yigh3m+fIx+oAAIYPH87w4cOzfMxRzOewYsWKgg/ogku1HOkWIkVITAzfDh7MzcaQDPRp2pS33norVwMHRCRNYGAg8+fP5/rrr2f9+vXc0LEjPwI1vLzggw809YUHy6kgWy1Hbia3NUdKjjxcXByLBw+mtzEkAbcAH2/cqHumiVyGkJAQvo2JoS7wN9AO2KF7sHk8dat5EHWrCcCSTz6hlzGcB3oDswFf3TNN5LKVPnqU74GrgYOkJUjbdA82j5ab5MiVutWUHOUgtwXZGq3mub755ht6Pfcc54FewKeAL+ieaSJXIjKSCl5eLAfqA4dJS5C2JCdbG5cUmJxGqzkaINRy5CY0Wq1o++ijj+jduzfnzp+nV6NGfOblhR/onmkiVyo8HD74gHLe3iwHGgP/AB3uuINff/3V4uCkIKhbzYOo5qjoevPNN+nfvz+pqan079+fL9avx2/fvrSRNbpnmsiVi46GvXspvXw5P2zZQrNmzTh27Bjt27dnyZIlVkcn+UwF2R7kUjVHGq3meYwxPPfcczz88MNA2oy+06dPT7tVTHi47pkmkp8ufKZK1qvH999/T8eOHTl9+jTdu3fn448/tjo6yUe5bTkyxhRqXNlRcpQDdasVLefPn2fAgAE8//zzADz//PNMmDAh2/MvIvknJCSERYsWcccdd5CSkkK/fv147bXXXOZiKVcmN/McAS5zvvWtnwNHcpTdXDYqyPYQcXEcnTePG669lo8++ghvb28mT57MM888o3mMRAqRn58fH3/8MSNHjgTgscceY/jw4STv2aPJIt1cbm4fAq4zYk3JUQ40lL8IiIlhe5UqtOzdm1Xr1hESGMiiRYsYMmSI1ZGJFEleXl68/vrrvP7669hsNt5//306V6/Oseuug4gIiImxOkS5DLnpVgO1HLmF3LYcKTlyU3Fx/DB4MK2M4S+gKrD6/Hk6XX21xYGJyMiRI5k/bRrFgOVAC2CbJot0WzkVZKe/xrpKUbaSoxyo5shzGWN4edw4OhnDcaAl8AtQV5M7iriMHhERrCHtPy5/kfY5XaTJIt2SWo48iOMk6d5qniUxMZFbb72VJ6dMwQ4MBJYB5UGTO4q4kshI6nl5sQ64FkgEegDPzp3rMrUpkjs5JUdqOXIzajnyPNu2baNFixZ89dVX+Pr68t7ddzPNy4tA0OSOIq7mwmSRZb29WQoMt9kwwAtvvUWnTp04cuSI1RFKLqnlyINotJrnMMYwffp0mjVrxp9//kmlSpVYtWoVwz76CJsmdxRxXRcmi/Rbvpx39+/nk08+ITg4mGXLltG4cWNWrVpldYSSCzmNVlPLkZvJbbeakiMXFRcHy5dz4o8/uOOOO7j33ns5ffo01113HRs3bqRFixZp62lyRxHXlu4zescdd7B+/XquvvpqDh06RIcOHRg7diwpKSnOz7wKtl1LUlKSsxtULUce4FLdasWKFQPg9OnThRaT5FJMDEREsPq662hUrx5z5szB29ubF198kSVLllCuXDmrIxSRy1SnTh3WrVvH3XffTWpqKmPGjKFNrVrsqlIFNOTf5Zw6dcr5u+O6mV76a6xajtzApbrVHCc5/YkXFxAXx/nBg3nGbudaYB9QDfh57lxGjRqV7bxVIuI+goOD+eijj5g1axahISGs3b2bRsYwFTAa8u9SHA0Ifn5++Pr6Zno8/TVWLUdu4FLdasHBwYBajlzN+m++IcoY/g9IBe4CNgEtihe3NC4RyX933nknmydPph1wGhgM3AjEaci/y3A0IGTVagRqOXI7ue1WO3v2rIaVuoBz587xxBNP0HLECP4AygFfAB8DIRqiL+KxqrRpww82G68AvsAC4Gpg0s8/u8zFtii7VHKkgmw3k9tuNVDrkdWWLFlCw4YNeeWVV7Db7dzZogV/eHlxC2iIvoinCw/He8oUHvP2Jpa0ySJPAvc/8wxt27Zl27ZtFgdYtDmSI0dvy8XUreZmLtWt5u/v76xfUd2RNfbv38+tt95K586d2bFjBxUqVGDu3LnM+uUXymiIvkjRcWHIf93ly/lp717efvttihUrxurVq2nYsCGPP/44iYmJVkdZJDkaD7JrOYL/EiS1HLmBS3Wr2Ww21R1ZIS6Oc4sX89KoUdSpU4cvv/wSb29vHnroIf78809uuummtPU0RF+kaLnwmfeOiGDEiBFs3bqVHj16kJyczKuvvkqtWrWYMWMG9v37NeS/EF2qWw3+u86q5cgNXKpbDTRirbClTpnCR1WqUKtLF0a99BJnzpyhTZs2bNy4kYkTJxIaGmp1iCLiIipXrsz8+fNZsGABkZGRHD58mHvuuYeWERH8pCH/hSYvyZFajtzApbrVQMlRYTHG8N1HH9FkyBD6G8N+oBLwoc3Gj598QoMGDawOUURckM1mo3v37vz++++8+vTTFAfWA22B7nY7m4YMUQtSActNcuRohFDLkRu4VLcaKDkqDD///DPXX389Xfv3ZzMQCrwE7AD6GYPtr7+sDVBEXJ6fnx+PduzIDmAI4A0sAhrb7dwxYAA7d+60NkAP5ig7ya4gG9Ry5FZy062mmqOCs3LlSjp27EibNm1YtmwZfn5+jAT+Ap4AgiBtJJqG6ItIbkRGUsHLi8nANqDvhcWfLltGnTp1uPfee9mxY4eFAXomtRx5GHWrFbK4OMyyZfzw6ae0a9eO9u3bs2zZMnx9fRk8eDDbt2/n9alTKe2Y4VpD9EUkL8LD4YMPwNubSGC2tzexzz1Ht27dSE1NZfr06dSpU4e+ffuyefNm3astn7hjzZGP1QG4MnWrFR77lCksGDqUl41h9YVlfn5+REdH88QTTxAREZG2MDoaOndOm/m2Zk0lRiKSNxd9hzQKD2ch8Msvv/B///d/LFiwgDlz5jBnzhx6Ak8DLby80pIqTQlyWTSU38PkZbSautUuz9mzZ5n80kvUGTKEXhcSowDgAZuNv376iUmTJv2XGDloiL6IXIksvkNatmzJN998w6ZNm+jTowc24BvSJpRsb7czf8iQtCkAJM8uNQkkaCi/W8lNy5HjZKvlKG/i4+MZM2YMVapUYdioUewASgBPAruBt4whXAmniBSyhg0bMmfkSLYBA0nrXlkJ9LLbqdW6Ne+8846+7/PIHbvVlBzlQDVH+SRdv/2GDRsYNGgQERERjB07lqNHj1K1cmXetNk4AIwHwkCF1iJinchIanl5MR3YQ9oAkBLAroMHeeCBB6hcuTJPPPEEBw4cSFtftUk5UkG2h1HNUT6IieFslSrMuO46WlSuTNOmTYmJieHcuXM0a9aMOXPmsHP3bh6cMoViKrQWEVeQrnA7HHjJ25sD77zDO++8Q82aNTlx4gSvvPIKVatWpVfjxiysUoVUTSqZrdzUHKnlyI2o5ujKbF66lP8NGkQlY7gHWEfaHbPv6NWLVatWsXbtWvr06YOPj4/zvki6F5qIuISLvpOK3X8/999/P9u3b2f+/Pl06NABu93O/E2b6GEM1YBxdjtxmlQyk9zUHKnlyI3kpltNNUcZHT58mAkTJtCoUSMadurEBOA4EEFal1kc8MnDD9OmTZvMSacKrUXElWTxneTl5UXPnj1ZtmwZ22bMYCRQCjgAjAYi7HY69+7NzJkzdaPbC1Rz5GHUrZaDdH3sR44cYcqUKXTp0oVKlSrxv//9j99++w1fX19uJm3Ex1+kFVuXUy2RiHiI2h078rqXFweBWUA7wA4s+fVXBg4cSPny5bn99tv5+uuvOXfuXJGtTXLHmiPNc5QD3Xg2GzEx7B48mHnGMBf42WbL8IZu1aoV/fv3p0+fPpSaOxeGDoXUVNUSiYhnuVCbFDB0KHempnKntzd/Pf88n6SkMGvWLLZv385nn33GZ599RjF/f7qeP09voJvNRuiUKUWifMAY45a3D1FylIPcdKuFhIQAeHzzqTGGzZs3M3fmTOa+8QabMz5I0wYN6H377dx6661cddVV/z2mSRtFxJNd9B1XIzycZ4FnnnmG2NhYZs2axZxPPuHg4cN8DnwO+BrDdYMG0fuff+g1cCAVKlSw+CAKzpkzZ0hNTQUgNDQ02/XUcuRGctOtVqJECQCOHz9eGCEVvLg42LkTIiNJDQtjzZo1zJ07l3nz5rF7927nat7AtUBv4Cag8ptvpvXNZyU8XEmRiHiuLL7jbDYbTZo0oUmTJrzWvTu/duzIXGAu8CewGFg8ahT3PfUUzZs3p0ePHvTo0YOGDRumJQrpvovd+fvzxIkTAPj4+BAUFJTtemo5ciO56VYrWbIkkPYGMMbkuK7Li4nh1ODBfG8MC4AFISEcSdciFhAQQKe2ben9/ff0NIbSjgdURyQiki3bVVfRzMuLZnY7L5KWHM2z2ZjbsCHrNm1i7dq1rF27lmeffZbw8HC616hBzx9/5DpjCHTzW5c4Gg5KlCiR4/XR1ZIjFWTnIDfdao6Wo6SkpLSCO1eVQyHg3r17eeeFF+gyaBCljaE3EAMcSUykRGgod999N19++SVHjx7l6yVLGDhlim7+KiKSW+nmTQKo7e3Nk1OmsDY2loMHDzJlyhR69epFUFAQcXFxTF65kh4X/gPa025n8uDBxK1fn/W2XbzI29Fy5GhIyI661dxIbkereXt7k5qayvHjxwkMDCys8HIvJgaGDAG7nXM2GxufeIJfypZl7dq1/PLLL+y/6H5B1YGeQA+g3Rdf4Hv99Rm3pzoiEZG8yeZ7s2LFigwaNIhBgwZx7tw5Vrz5Jt88+SQLgP2Q1opvDDRvTqNGjejUqRNt27aldevWaQNeLny346ItTOlbjnLiai1HSo5ykJtuNZvNRokSJTh27BgnTpygYsWKhRXeJRlj2P3zz/wyeDBrjeEXYJMxJL/0Uob1vL29uaZpU3qsW0cPY6gN2NIegNq1s9646ohERPLmEt+bAQEBdLnrLro89RTv2O38zoXkCFhjs7Fp0yY2bdrEK6+8AkBdoBXQAmhht3P1kCF4d+7sUt/NajnyQLnpVgOcyZElRdnpivbsFSuyceNGFi9ezC+//MIvv/zC0aNHMz2lHNCydWta9uhBy5Ytadq0KcWLF09rYdKwexER61zogrMNHUr91FTqe3szavJk/rnxRr777jt+/PFHfvrpJ/7880/+AP4Apl54ajG7nWY33kiLzp1p0aIFLVq0ICwsLO1Biwq8HcmRWo48SG661eC/k+54E+Rl+/Hx8fj5+VGqVKm8B3hRAfXC0FAOJyRkWMXPz4/GSUm0BOdPhJcXtjlzMn9A1F0mImK9LL6LywL9+vWjX79+APzz22+sbtyYX4xhLbAeOAUsj41leWysc1OVK1emRbly3LBxIzcZQ7nL6H4zxnDs2DFsNhulS5e+9BPSyW23mqu1HKkgOwe56VaDjCPWcismJoaqVasSFhZG6dKlqVWrFuPGjWPPnj1pK+RQZLdnzx7efv75TAXUhxMSKBYczM0338zEiRP55ZdfSExM5JepU5no7U1foKq3N7YPPsg+8dEtPERErHeJ7+KyDRvSa8oUxnt7sww44eXF5jFjmDJlCoMGDaJevXrYbDYOHDjAFxs2MNQYwoAOdjvvDh7MwVwUeP/5558888wz1KhRg7Jly1KmTBkaNGjA8uXLc30Yue1WU8uRG8lLtxrkcq6juDiee+opnv/oowyLd+zYwejRoxk9ejTX1KzJLX/9RTNjKGOzcfbZZ9lZty6rVq1i2bJlbN26NcNz0xdQt/3qK/w7dcq4T7UIiYh4nnTf7d41a1I/PJz6wKBBgwA4efIkv06Zws//+x/zgA3ACmCFMYxo3pyoqCi6du1KkyZNqFmzJr5ff82B555jjTF8DWzMYpdbtmyhY8eOzJ0yhV7Vq1+ymy6vBdmu0nKk5CgH+d6tFhPD0sGDef7CyR/XqxePffop586d45tvvmHmzJksW7aMn3ft4mfHc4yBceMybMbb25s2zZrRY+1aehhDLdIVUF99ddb7VgG1iIjnyeG7vXjx4nTo04cOjz3GM3Y7e4EvL/z8YrOxYcMGNmzYkO2mfYAu11/P3YMG0aNHD86ePctDDz3EJ598wh2DBvE7UP0S3XS5rTly9NC4SsuRutVykNduteObN2c/10RcHCmDBzPsQmJ0P/DsggUEHD1KiRIl6NevH99//z0HPv2U10lrBYoASgLlgWa1a3P//ffz2Wef8c8//7BizRoenTKF2t7e/yVGKqAWEZH00s2xVBX4n7c3q6dO5dChQ0ydOpUBAwbQpEkTSoeEEArUBm4hrcj7b+Cbp5/m9ttvJzg4mDJlyjDz//6Pa4GzwBOQNo3A0KHZXvtOHDkCQMlLJD3qVnMjzpajw4fTTnw2iUeJXbsAOPH55/Dll1ln0Tt3MtsYdgNlgZchbVTYrl0ZtlupdWtGenkxMv0bxNsbli5VAbWIiORdFteK8kB0dDTRjmtVXBxERKQlOw5Z3P3AZ88e3gEaAV8Am4BGWVzLAIiJ4fiaNQCUGDEC/P2zbWGypaQAYOLjr/Bg84dajnJgfv0VAK+FC9PeNDExmVeKi6PEvHkAnIBss2hTsyavXfj9ESAYsr7txkUzqV6yRUgF1CIicimXulbk9toTGUl9Ly9uu/DnJMe6F1/L4uJgyJC06yJQwpjsW5hiYvD6808A7HfdlfW1tpAV7eTo4MHsH4uLwz5/PnDhRcqu6XDnTkpe6CpzlmM7suh0Nh09ymbAHxgGOSc90dGwd2/aiIG9e11uxlMREfFAubn2XEii7r/QDTYLSHjjjczXsp07wW53XhdLQpbXRkcS5SheMTklUZDzdTsfFenkaPXVV2efoe7cif1C0uOsOMrqxEZGUvJCTdK/jmVZZNEffvghAL169KBkbpIetQiJiEhhy821JzqaNnv3UrtKFc4A87Mqto6MJMVmw3Hr8hKQdQvThSTKkYzYIetrLUBMDF9mN+gonxXp5GgjZJ+hRkbiGFDofJGy6QYr98wzAMQ71rmoRcgYw2effQZAv6FDlfSIiIhbs1WuTJ+BAwH4/PPPM68QHs4/r74KpF1DS3t5ZdtNh5eX8zprIMduuu/y8RhyUqSTIyD7DDU8HHv37sCFFymHbrByQ4YAEO/lhX337kwtQps3b+bvv/8mKCiI6y++iauIiIgbuu22tMqjxYsXk5iYmOnxIx07AlCmZEm89+3LsZvO0UNjzy6JutDCVFiUHGWVoV5gb9AAANstt+TYDVauXDkAUu12jgcHZ3r822+/BaBDhw4EBATkQ9AiIiLWqlu3LpGRkSQlJfHDDz9kevzIhWH85S81z150NF6NGwNgpk7N+lp7oYWpsCg5ymEkmHOG7CpVcjyxfn5+zrmOHG+G9BzJUdeuXa80WhEREZdgs9no0qULkNZ6dLH4C8Pyy5cvf+lt+fsDYM/uPqOO0XSFpGgnR48/nmNRdG5nyIb/Wo8uTo4SEhL4+ee0+a6VHImIiCdxJEffffddplt/OFuOcpEc5er2IdHR0KPHZUaaN0U7OQoNzfHh3M6QDVCxYkUA/v777wzLv//+e1JTU7nqqquoXr36ZQYqIiLietq1a4efnx/79u1j+/btGR47eGHYfVhY2CW3k+vbhwQFXV6geVS0k6NLyO2NZwEqV64MwP79+zMsV5eaiIh4quDgYK699logc9fagQMHAKhSpcolt+Nqtw9RcpSDvHSrOU6+480AacnVd9+lDTxUciQiIp6oc+fOAM7rnYOjscDReJCTXHWr5eLx/KLkKAd56VbLquXo999/5+DBgwQGBtKuXbuCCVJERMRCjrqjFStWcPbsWefyvLQc5bpbrZAoOcpBXrrVIiIiANi9e7dzmaNLrX379hrCLyIiHqlu3bpUqlSJc+fO8eOPPwJw5swZDh8+DOStW62wWoYuxSWSo0mTJlGtWjUCAgKIiopi1apVOa6/cuVKoqKiCAgIoHr16rz//vsFEldeutVq164NwK5du0i5cHfhRYsWAepSExERz2Wz2ejWrRsACxcuBHAWZ5cuXZoyZcrkahugliOnOXPm8PDDD/P0008TGxtL27Zt6dq1a6bCZoc9e/bQrVs32rZtS2xsLE899RQPPvggX375Zb7HltdutaCgIJKTk9m9ezdHjx51JnndL8y0LSIi4onSJ0fGGP78808A6tSpk6vnq+XoIhMmTCA6OppBgwZRp04dJk6cSOXKlXnvvfeyXP/999+nSpUqTJw4kTp16jBo0CDuvfdeXnvttXyPLS/dal5eXs7Wo82bNzN//nzsdjuNGjXSEH4REfFo119/PX5+fuzevZstW7awefNmAK7O5Y1i1XKUTlJSEhs2bKBTp04Zlnfq1InVq1dn+Zw1a9ZkWr9z5878+uuvJCcn52t8eelWA2jZsiUAP/30E1988QUAt9xyS77GJCIi4mqKFStGz549AZg+fbqz58RxXbwUV2s58rFy50ePHiU1NTXT7Jnly5d3FnJd7PDhw1mun5KSwtGjR7OcbOr8+fOcP3/e+XdCQgIAZ8+ezfJmeQ7nzp1zPj+n9RyaNm0KwJtvvulc1rVr11w9V0RExJ317duXL7/8kokTJzqXNWrUKFfXwNTUVABOnz6d4/qORpACT6KMhQ4ePGgAs3r16gzLX3jhBVOrVq0snxMZGWlefPHFDMt++uknA5hDhw5l+ZzRo0cbQD/60Y9+9KMf/XjAz19//ZU/iUg2LG05KlOmDN7e3plaieLj47O9F0uFChWyXN/Hx4fSpUtn+ZxRo0YxcuRI598nTpwgIiKC/fv3E3qJW4h4ksTERCpXrsyBAwcICQmxOpxCo+PWcRcFOm4dd1GQkJBAlSpVKJXdDWrziaXJkZ+fH1FRUSxdupTevXs7ly9dupRevXpl+ZxWrVrxzTffZFi2ZMkSmjZtiq+vb5bP8ff3x//CHX/TCw0NLVJvKoeQkBAddxGi4y5adNxFS1E97tzWAl/29gt067kwcuRIpk6dyrRp09i2bRuPPPII+/fvZ9iwYUBaq0///v2d6w8bNox9+/YxcuRItm3bxrRp04iJieHRRx+16hBERETEg1jacgRw++23c+zYMcaNG8ehQ4eoV68eixYtcs44fejQoQxzHlWrVo1FixbxyCOP8O6771KxYkXeeustjQoTERGRfGF5cgQwfPhwhg8fnuVjM2bMyLSsXbt2bNy48bL35+/vz+jRo7PsavNkOm4dd1Gg49ZxFwU67oI9bpsxLjKpgIiIiIgLsLzmSERERMSVKDkSERERSUfJkYiIiEg6So5ERERE0vHY5Oj//u//aN26NUFBQZQoUSJXzzHGMGbMGCpWrEhgYCDt27fnjz/+yLDO+fPneeCBByhTpgzBwcHceOONxMXFFcARXJ7jx4/Tr18/QkNDCQ0NpV+/fpw4cSLH59hstix/Xn31Vec67du3z/R43759C/hocu9yjnvgwIGZjunimyR62vlOTk7miSeeoH79+gQHB1OxYkX69+/P33//nWE9VzvfkyZNolq1agQEBBAVFeW8qWV2Vq5cSVRUFAEBAVSvXp33338/0zpffvklV199Nf7+/lx99dXMnTu3oMK/bHk57q+++oobbriBsmXLEhISQqtWrVi8eHGGdWbMmJHlZ91xH0lXkZfjXrFiRZbH9Oeff2ZYz9POd1bfXzabjbp16zrXcfXz/eOPP9KzZ08qVqyIzWZj3rx5l3xOoX22C/TmJBZ67rnnzIQJE8zIkSNNaGhorp7z0ksvmeLFi5svv/zSbNmyxdx+++0mLCzMJCYmOtcZNmyYqVSpklm6dKnZuHGj6dChg2nYsKFJSUkpoCPJmy5duph69eqZ1atXm9WrV5t69eqZHj165PicQ4cOZfiZNm2asdlsGe5d065dOzN48OAM6504caKgDyfXLue4BwwYYLp06ZLhmI4dO5ZhHU873ydOnDDXX3+9mTNnjvnzzz/NmjVrTIsWLUxUVFSG9VzpfH/66afG19fXTJkyxWzdutU89NBDJjg42Ozbty/L9Xfv3m2CgoLMQw89ZLZu3WqmTJlifH19zRdffOFcZ/Xq1cbb29u8+OKLZtu2bebFF180Pj4+5pdffimsw7qkvB73Qw89ZF5++WWzbt06s2PHDjNq1Cjj6+trNm7c6Fxn+vTpJiQkJNNn3pXk9biXL19uALN9+/YMx5T+M+qJ5/vEiRMZjvfAgQOmVKlSZvTo0c51XP18L1q0yDz99NPmyy+/NICZO3dujusX5mfbY5Mjh+nTp+cqObLb7aZChQrmpZdeci47d+6cCQ0NNe+//74xJu3N6Ovraz799FPnOgcPHjReXl7mu+++y/fY82rr1q0GyPAmWLNmjQHMn3/+mevt9OrVy1x33XUZlrVr18489NBD+RVqvrrc4x4wYIDp1atXto8XlfO9bt06A2T4Enal8928eXMzbNiwDMtq165tnnzyySzXf/zxx03t2rUzLBs6dKhp2bKl8+8+ffqYLl26ZFinc+fOpm/fvvkU9ZXL63Fn5eqrrzZjx451/p3b70Mr5fW4HcnR8ePHs91mUTjfc+fONTabzezdu9e5zB3Ot0NukqPC/Gx7bLdaXu3Zs4fDhw/TqVMn5zJ/f3/atWvH6tWrAdiwYQPJyckZ1qlYsSL16tVzrmOlNWvWEBoaSosWLZzLWrZsSWhoaK7jO3LkCAsXLiQ6OjrTY7NmzaJMmTLUrVuXRx99lJMnT+Zb7FfiSo57xYoVlCtXjquuuorBgwcTHx/vfKwonG9Iu5GjzWbL1P3sCuc7KSmJDRs2ZDgHAJ06dcr2GNesWZNp/c6dO/Prr7+SnJyc4zqucF7h8o77Yna7nZMnT2a6QeepU6eIiIggPDycHj16EBsbm29xX6krOe7GjRsTFhZGx44dWb58eYbHisL5jomJ4frrr3feXcLBlc93XhXmZ9slZsh2BYcPHwagfPnyGZaXL1+effv2Odfx8/OjZMmSmdZxPN9Khw8fply5cpmWlytXLtfxzZw5k+LFi3PzzTdnWH7XXXdRrVo1KlSowO+//86oUaP47bffWLp0ab7EfiUu97i7du3KbbfdRkREBHv27OHZZ5/luuuuY8OGDfj7+xeJ833u3DmefPJJ7rzzzgw3r3SV83306FFSU1Oz/Fxmd4yHDx/Ocv2UlBSOHj1KWFhYtuu4wnmFyzvui73++uucPn2aPn36OJfVrl2bGTNmUL9+fRITE3nzzTe55ppr+O2334iMjMzXY7gcl3PcYWFhfPDBB0RFRXH+/Hk++ugjOnbsyIoVK7j22muB7N8TnnK+Dx06xLfffssnn3ySYbmrn++8KszPtlslR2PGjGHs2LE5rrN+/XqaNm162fuw2WwZ/jbGZFp2sdyscyVye9yQOX7IW3zTpk3jrrvuIiAgIMPywYMHO3+vV68ekZGRNG3alI0bN9KkSZNcbTuvCvq4b7/9dufv9erVo2nTpkRERLBw4cJMyWFetnulCut8Jycn07dvX+x2O5MmTcrwmBXnOyd5/Vxmtf7Fyy/ns17YLjfG2bNnM2bMGL7++usMCXTLli0zDDq45ppraNKkCW+//TZvvfVW/gV+hfJy3LVq1aJWrVrOv1u1asWBAwd47bXXnMlRXrdplcuNccaMGZQoUYKbbropw3J3Od95UVifbbdKjkaMGHHJETNVq1a9rG1XqFABSMtMw8LCnMvj4+OdWWiFChVISkri+PHjGVoT4uPjad269WXtNzdye9ybN2/myJEjmR77559/MmXSWVm1ahXbt29nzpw5l1y3SZMm+Pr6snPnzgK7WBbWcTuEhYURERHBzp07Ac8+38nJyfTp04c9e/awbNmyDK1GWSmM852VMmXK4O3tnel/fek/lxerUKFCluv7+PhQunTpHNfJy/ulIF3OcTvMmTOH6OhoPv/8c66//voc1/Xy8qJZs2bO97zVruS402vZsiUff/yx829PPt/GGKZNm0a/fv3w8/PLcV1XO995Vaif7TxVKLmhvBZkv/zyy85l58+fz7Ige86cOc51/v77b5cr0F27dq1z2S+//JLrAt0BAwZkGrWUnS1bthjArFy58rLjzS9XetwOR48eNf7+/mbmzJnGGM8930lJSeamm24ydevWNfHx8bnal5Xnu3nz5ua+++7LsKxOnTo5FmTXqVMnw7Jhw4ZlKtrs2rVrhnW6dOnicgW6eTluY4z55JNPTEBAwCULWx3sdrtp2rSpueeee64k1Hx1Ocd9sVtuucV06NDB+bennm9j/itI37JlyyX34Yrn24FcFmQX1mfbY5Ojffv2mdjYWDN27FhTrFgxExsba2JjY83Jkyed69SqVct89dVXzr9feuklExoaar766iuzZcsWc8cdd2Q5lD88PNx8//33ZuPGjea6665zuaHdDRo0MGvWrDFr1qwx9evXzzS0++LjNsaYhIQEExQUZN57771M29y1a5cZO3asWb9+vdmzZ49ZuHChqV27tmncuLHbHvfJkyfN//73P7N69WqzZ88es3z5ctOqVStTqVIljz7fycnJ5sYbbzTh4eFm06ZNGYb3nj9/3hjjeufbMcQ5JibGbN261Tz88MMmODjYOSrnySefNP369XOu7xju+8gjj5itW7eamJiYTMN9f/75Z+Pt7W1eeukls23bNvPSSy+57NDu3B73J598Ynx8fMy7776b7RQMY8aMMd99953566+/TGxsrLnnnnuMj49PhgTbank97jfeeMPMnTvX7Nixw/z+++/mySefNID58ssvnet44vl2uPvuu02LFi2y3Karn++TJ086r82AmTBhgomNjXWOnLXys+2xydGAAQMMkOln+fLlznUAM336dOffdrvdjB492lSoUMH4+/uba6+9NlM2fvbsWTNixAhTqlQpExgYaHr06GH2799fSEd1aceOHTN33XWXKV68uClevLi56667Mg1xvfi4jTFm8uTJJjAwMMu5bPbv32+uvfZaU6pUKePn52dq1KhhHnzwwUxzAlkpr8d95swZ06lTJ1O2bFnj6+trqlSpYgYMGJDpXHra+d6zZ0+Wn4v0nw1XPN/vvvuuiYiIMH5+fqZJkyYZWrAGDBhg2rVrl2H9FStWmMaNGxs/Pz9TtWrVLJP+zz//3NSqVcv4+vqa2rVrZ7iYuoq8HHe7du2yPK8DBgxwrvPwww+bKlWqGD8/P1O2bFnTqVMns3r16kI8otzJy3G//PLLpkaNGiYgIMCULFnStGnTxixcuDDTNj3tfBuT1rodGBhoPvjggyy35+rn29Hqld171srPts2YC9VMIiIiIuK5tw8RERERuRxKjkRERETSUXIkIiIiko6SIxEREZF0lByJiIiIpKPkSERERCQdJUciIiIi6Sg5EhEREUlHyZGIiIhIOkqORERERNJRciQiHmXcuHHUr1+f4OBgypcvz3333UdycrLVYYmIG/GxOgARkfxijCE1NZXJkydTqVIltm7dSv/+/WnQoAH33Xef1eGJiJvQjWdFxKPdeeedlC1bljfffNPqUETETahbTUQ8xr59+xgxYgT16tWjZMmSFCtWjM8++4zw8HCrQxMRN6LkSEQ8wtGjR2nevDlHjx5lwoQJ/PTTT6xZswZvb28aNWpkdXgi4kZUcyQiHmHRokWkpKQwe/ZsbDYbAO+++y5JSUlKjkQkT5QciYhHKFWqFImJicyfP5+rr76ab775hvHjx1OpUiXKli1rdXgi4kZUkC0iHsEYw3333ccnn3xCYGAgd999N+fOnWPfvn0sWLDA6vBExI0oORIRERFJRwXZIiIiIukoORIRERFJR8mRiIiISDpKjkRERETSUXIkIiIiko6SIxEREZF0lByJiIiIpKPkSERERCQdJUciIiIi6Sg5EhEREUlHyZGIiIhIOkqORERERNL5f7sDA7i8v+btAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5ZElEQVR4nO3dd3gUVd/G8e+mF0joIRAILQLSCV0QEKUjYgMLRUMTsaGPyotK0cf+IDYUIRQVERtIU0AponQIgoIUqaEKkoC0hOx5/wi7JqSQQJLZ3dyf68pFMju7+5ud3Z2bc86csRljDCIiIiICgJfVBYiIiIi4EoUjERERkTQUjkRERETSUDgSERERSUPhSERERCQNhSMRERGRNBSORERERNJQOBIRERFJQ+FIREREJA2FI3ELhw4dYtSoUWzatCnDbf369aNIkSJX/dhJSUkMHjyY8PBwvL29qV+//tUXmgfGjx/P1KlTMyzfu3cvNpst09s8ic1mY9SoUVaXkSdGjRqFzWbL9/u+++67VKtWDT8/P2w2GwkJCfTr149KlSqlW+/ll19m9uzZV1VPdv7++2969epFmTJlsNls3Hbbbbl+jEqVKtGvX788r82VHDhwgB49elClShWCg4MJDQ2lQYMGvPfee1y8eDHdupUqVcJms2X6ExAQYNEWFB4+VhcgkhOHDh1i9OjRVKpUKc/DywcffMCECRN49913iY6OvqaglRfGjx9PqVKlMhwowsPDWbVqFVWrVrWmMMm1/v3707Fjx3x9jk2bNvHoo4/Sv39/+vbti4+PD0WLFuX555/nscceS7fuyy+/zJ133nlV4SU7L774IrNmzWLy5MlUrVqVEiVK5Onje4ozZ84QEhLC888/T8WKFUlKSmLBggU88sgjbNq0iUmTJjnXnTVrFhcuXEh3//3799OzZ0969OhR0KUXOgpHUuj99ttvBAYGMnToUKtLyZa/vz/NmjWzugzJhYiICCIiIvL1OX7//XcABgwYQJMmTZzLCzJE//bbb1StWpX77ruvwJ4zr5w9e5agoKACea4aNWowbdq0dMs6derEsWPHmDZtGu+//z7+/v4ANGjQIMP9Fy5cCKSGbslf6lYrhP766y8GDhxIhQoV8Pf3p3Tp0txwww388MMPznXatGlD7dq1WbVqFS1atCAwMJBKlSoxZcoUAObPn0/Dhg0JCgqiTp06fP/99xme5+eff6Zdu3YULVqUoKAgWrRowfz58zOs99tvv9G9e3eKFy9OQEAA9evXT/cFsmzZMho3bgzAAw884GxavrzrZdeuXXTu3JkiRYpQoUIFnnzyyQz/87qczWZj0qRJnDt3zvm4U6dOzbYL6/LndnR//P7779xzzz2EhoYSFhbGgw8+SGJiYrr72u123n33XerXr09gYCDFihWjWbNmzJkzB0htSv/9999Zvny5sx5H10hWNeXkdZ46dSo2m42lS5fy0EMPUapUKUqWLMntt9/OoUOHsn2NslOpUiW6du3KrFmzqFu3LgEBAVSpUoV33nknw7r79+/n/vvvp0yZMvj7+1OzZk3+97//Ybfbs3z8vXv34uPjwyuvvJLhtp9++gmbzcaXX34J5G4/nD9/nuHDh1O5cmX8/PwoX748Dz/8MAkJCZlu37x582jQoAGBgYHUrFmTefPmAamva82aNQkODqZJkyasX78+3f0z6xqbOXMm7du3Jzw83Pl4zz77LGfOnMn6hc5CmzZtuP/++wFo2rQpNpvN2eJ4ebeazWbjzJkzTJs2zfneatOmTbaP//fffzNkyBDKly+Pn58fVapUYcSIEc7PleM9+cMPP7Bt2zbn4y5btizLx0xOTubpp5+mbNmyBAUF0bJlS9auXZvpukeOHGHQoEFERETg5+dH5cqVGT16dIYuqPj4eO68806KFi1KsWLFuO+++1i3bl2Gz4ujC37Lli20b9+eokWL0q5dOyC1e/2ll16iRo0azu/FBx54gL/++itDXTNnzqR58+YEBwdTpEgROnToQFxcXLavZXZKly6Nl5cX3t7eWa5jjGHKlClUqVKFm2666aqfS3LISKHToUMHU7p0afPRRx+ZZcuWmdmzZ5sXXnjBfP755851WrdubUqWLGmqV69uYmNjzcKFC03Xrl0NYEaPHm3q1KljZsyYYRYsWGCaNWtm/P39zcGDB533X7ZsmfH19TXR0dFm5syZZvbs2aZ9+/bGZrOle54//vjDFC1a1FStWtV8/PHHZv78+eaee+4xgHnttdeMMcYkJiaaKVOmGMA899xzZtWqVWbVqlXmwIEDxhhj+vbta/z8/EzNmjXNm2++aX744QfzwgsvGJvNZkaPHp3ta7Fq1SrTuXNnExgY6HzcY8eOmT179hjATJkyJcN9ADNy5Ejn3yNHjjSAqV69unnhhRfM4sWLzdixY42/v7954IEH0t23d+/exmazmf79+5tvv/3WfPfdd+a///2vefvtt40xxmzcuNFUqVLFNGjQwFnPxo0bjTEm05py+jo7Xr8qVaqYRx55xCxcuNBMmjTJFC9e3LRt2zZdjY51M9v2y0VGRpry5cubihUrmsmTJ5sFCxaY++67zwDmjTfecK537NgxU758eVO6dGnz4Ycfmu+//94MHTrUAOahhx7K9vXt0aOHqVixorl48WK69e666y5Trlw5k5ycnKv9YLfbTYcOHYyPj495/vnnzaJFi8ybb75pgoODTYMGDcz58+fTbV9ERISpXbu28/3etGlT4+vra1544QVzww03mG+++cbMmjXLXHfddSYsLMycPXvWeX9HTWm9+OKL5q233jLz5883y5YtMx9++KGpXLlyhv2Q2X0v9/vvv5vnnnvOub9WrVpldu3aZYxJ/VxERkY61121apUJDAw0nTt3dr63fv/99ywf+9y5c6Zu3bomODjYvPnmm2bRokXm+eefNz4+PqZz587GGGPOnz9vVq1aZRo0aGCqVKnifNzExMQsH7dv377GZrOZ//znP2bRokVm7Nixpnz58iYkJMT07dvXud7hw4dNhQoVTGRkpJkwYYL54YcfzIsvvmj8/f1Nv379nOv9888/plq1aqZEiRLm/fffNwsXLjRPPPGEqVy5cob3cd++fY2vr6+pVKmSeeWVV8yPP/5oFi5caFJSUkzHjh1NcHCwGT16tFm8eLGZNGmSKV++vLn++uvT7dP//ve/xmazmQcffNDMmzfPfPPNN6Z58+YmODg429czLbvdbpKTk83ff/9tPv/8cxMcHGyGDx+e7X0WLVpkAPPSSy/l6Dnk2igcFUJFihQxjz/+eLbrtG7d2gBm/fr1zmUnTpww3t7eJjAwMF0Q2rRpkwHMO++841zWrFkzU6ZMGXP69GnnsosXL5ratWubiIgIY7fbjTHG9OrVy/j7+5v9+/ene/5OnTqZoKAgk5CQYIwxZt26dVkesPv27WsA88UXX6Rb3rlzZ1O9evUrvBqp9w8ODk637GrC0euvv55uvSFDhpiAgADntv70008GMCNGjMi2nlq1apnWrVtnWJ5ZTTl9nR2BZ8iQIeke8/XXXzeAOXz4sHPZtGnTjLe3t5k2bVq2dRqTGh5sNpvZtGlTuuW33HKLCQkJMWfOnDHGGPPss88awKxZsybdeg899JCx2Wxm+/btzmWXv75Lly41gJk1a5Zz2cGDB42Pj0+68JvT/fD9999nut7MmTMNYD766KN02xcYGGji4+Odyxzv9/DwcOf2GWPM7NmzDWDmzJmToaasOA6Sy5cvN4D59ddfc3xfB8e+XbduXbrll4cjY4wJDg5OF0Cy8+GHH2b6uXrttdcMYBYtWuRc1rp1a1OrVq0rPua2bdsMYJ544ol0y6dPn26AdLUNGjTIFClSxOzbty/dum+++aYBnEHk/fffN4D57rvv0q03aNCgTMMRYCZPnpxu3RkzZhjAfP311+mWO753xo8fb4wxZv/+/cbHx8c88sgj6dY7ffq0KVu2rLn77ruv+BoYY8wrr7xiAAMYm812xe8EY4zp2bOn8fb2TvdelPyjbrVCqEmTJkydOpWXXnqJ1atXk5ycnOl64eHhREdHO/8uUaIEZcqUoX79+pQrV865vGbNmgDs27cPSB10uGbNGu688850g5u9vb3p3bs38fHxbN++HYAlS5bQrl07KlSokO65+/Xrx9mzZ1m1alWOtslms9GtW7d0y+rWreusqSDceuutGZ7//PnzHDt2DIDvvvsOgIcffjhPni83r3N2NQLpXqc+ffpw8eJF+vTpk6M6atWqRb169dItu/feezl16hQbN24EUvfz9ddfn25MDKTuZ2MMS5YsyfLx27RpQ7169Xj//fedyz788ENsNhsDBw7MsP6V9oPjuS4f8H7XXXcRHBzMjz/+mG55/fr1KV++vPNvx/u9TZs26caqXP45yMru3bu59957KVu2LN7e3vj6+tK6dWsAtm3blu19C9KSJUsIDg7mzjvvTLfc8bpd/jrlxNKlSwEyjE26++678fFJPwR23rx5tG3blnLlynHx4kXnT6dOnQBYvny589+iRYtmGPh+zz33ZFnHHXfckeG5ihUrRrdu3dI9V/369Slbtqyzm3DhwoXOz0ba9QICAmjdunW23Ylp9evXj3Xr1rFw4UKefvpp3njjDR555JEs1//777+ZPXs2HTt2TPdelPyjAdmF0MyZM3nppZeYNGkSzz//PEWKFKFHjx68/vrrlC1b1rleZmec+Pn5ZVju5+cHpI7jADh58iTGGMLDwzPc3xGqTpw44fw3J+tdSVBQUIbTW/39/Z01FYSSJUtmeH6Ac+fOAaljvby9vdO9xtciN69zTmu8Gpltj2NZ2v18+Wnl2dV5OcfZWNu3b6dKlSpMnDiRO++8M9PnvtI2njhxAh8fH0qXLp1uPZvNRtmyZTPUktX7/Uqfg8z8888/tGrVioCAAF566SWuu+46goKCOHDgALfffvs17Ye8duLECcqWLZthzFSZMmXw8fHJ8Wfz8seEjO8ZHx+fDPvt6NGjzJ07F19f30wf6/jx487HDAsLy3B7Zssg9bsiJCQkw3MlJCQ492FWz3X06FEA5xjIy3l55ay9oWzZss7XoH379hQvXpxnn32WBx98MNOB2J9++ikXLlzQQOwCpHBUCJUqVYpx48Yxbtw49u/fz5w5c3j22Wc5duxYpgOrc6t48eJ4eXlx+PDhDLc5Bv+WKlUKSD2Q5WS9guYIWpcP6L6aA4JD6dKlSUlJ4ciRI5kGmtzKzeucn44cOZLlMscB71r387333sszzzzD+++/T7NmzThy5MhVt8CVLFmSixcv8tdff6ULSMYYjhw5kuWBLy8sWbKEQ4cOsWzZMmdrEZBhILgrKFmyJGvWrMEYky4gHTt2jIsXL17Ve8vxfjhy5Ei6FpCLFy9m+GyVKlWKunXr8t///jfTx3IE65IlS2Y6oDuz9yWQ6dxRjhMUsvr+K1q0qHM9gK+++orIyMhM170ajhbVHTt2ZBqOYmNjCQsLo2vXrnn2nJI9dasVchUrVmTo0KHccsstzi6QaxUcHEzTpk355ptv0v1P2G638+mnnxIREcF1110HQLt27ZwHjLQ+/vhjgoKCnKeu50ULR26EhYUREBDA5s2b0y3/9ttvr/oxHd0BH3zwQbbr+fv752g7c/M656fff/+dX3/9Nd2yzz77jKJFi9KwYUMgdT9v3bo1w3vs448/xmaz0bZt22yfIyAggIEDBzJt2jTGjh1L/fr1ueGGG66qXsfZSZ9++mm65V9//TVnzpxx3p4fHAdmx/vZYcKECfn2nGnl9L0Fqa/TP//8k2HSyI8//th5e245zo6bPn16uuVffPFFhjPQunbt6pwioFGjRhl+HOGodevWnD592tlt7fD555/nuK6uXbty4sQJUlJSMn2u6tWrA9ChQwd8fHz4888/M12vUaNGuX1JgH+7G6tVq5bhtvXr17N582bnHFZSMPRKFzKJiYm0bduWe++9lxo1alC0aFHWrVvH999/z+23355nz/PKK69wyy230LZtW5566in8/PwYP348v/32GzNmzHAeJEaOHOkcW/DCCy9QokQJpk+fzvz583n99dcJDQ0FUudsCQwMZPr06dSsWZMiRYpQrly5dGOf8pLNZuP+++93TmpXr1491q5dy2effXbVj9mqVSt69+7NSy+9xNGjR+natSv+/v7ExcURFBTkHHNQp04dPv/8c2bOnEmVKlUICAigTp06mT5mTl/n3Pj444958MEHmTx5co7GHZUrV45bb72VUaNGER4ezqeffsrixYt57bXXnGNynnjiCT7++GO6dOnCmDFjiIyMZP78+YwfP56HHnooRyFuyJAhvP7662zYsCHdZHm5dcstt9ChQweeeeYZTp06xQ033MDmzZsZOXIkDRo0oHfv3lf92FfSokULihcvzuDBgxk5ciS+vr5Mnz49Q7jML3Xq1GHZsmXMnTuX8PBwihYt6jzwX65Pnz68//779O3bl71791KnTh1+/vlnXn75ZTp37szNN9+c6+evWbMm999/P+PGjcPX15ebb76Z3377jTfffDNDV9eYMWNYvHgxLVq04NFHH6V69eqcP3+evXv3smDBAj788EMiIiLo27cvb731Fvfffz8vvfQS1apV47vvvnPOCZSTrq5evXoxffp0OnfuzGOPPUaTJk3w9fUlPj6epUuX0r17d3r06EGlSpUYM2YMI0aMYPfu3XTs2JHixYtz9OhR1q5dS3BwMKNHj87yeUaOHMnRo0e58cYbKV++PAkJCXz//fdMnDiRu+66K90YT4fY2FgAYmJicvNSy7WydDi4FLjz58+bwYMHm7p165qQkBATGBhoqlevbkaOHJnuzJuszj6JjIw0Xbp0ybAcMA8//HC6ZStWrDA33XSTCQ4ONoGBgaZZs2Zm7ty5Ge67ZcsW061bNxMaGmr8/PxMvXr1Mj1LbMaMGaZGjRrG19c33RlNmZ1tZkzOz/bJ6v6JiYmmf//+JiwszAQHB5tu3bqZvXv3Znm22l9//ZXu/o6ziPbs2eNclpKSYt566y1Tu3Zt4+fnZ0JDQ03z5s3TvS579+417du3N0WLFjWA84yjrM6gy8nrnNUZTY4zwZYuXZph3Zyeyt+lSxfz1VdfmVq1ahk/Pz9TqVIlM3bs2Azr7tu3z9x7772mZMmSxtfX11SvXt288cYbJiUlJd16l7++abVp08aUKFEi3anVDrnZD+fOnTPPPPOMiYyMNL6+viY8PNw89NBD5uTJk5lu3+Uye7879k/aKQwyew+uXLnSNG/e3AQFBZnSpUub/v37m40bN2Z4zfPjbLVNmzaZG264wQQFBRkg07Mi0zpx4oQZPHiwCQ8PNz4+PiYyMtIMHz483XQHxuT8bDVjjLlw4YJ58sknTZkyZUxAQIBp1qyZWbVqlYmMjMxwJt1ff/1lHn30UVO5cmXj6+trSpQoYaKjo82IESPMP//841xv//795vbbbzdFihQxRYsWNXfccYdZsGCBAcy3336b7jXJ7LNujDHJycnmzTffNPXq1TMBAQGmSJEipkaNGmbQoEFm586d6dadPXu2adu2rQkJCTH+/v4mMjLS3HnnneaHH37IdtvnzJljbr75ZhMWFmZ8fHxMkSJFTJMmTcw777zjnJIirbNnz5rQ0FBz4403XulllTxmM8aYggxjIuI5KlWqRO3atZ2TIuanY8eOERkZySOPPMLrr7+e788n7u3ll1/mueeeY//+/fk+S7l4HnWriYhLi4+PZ/fu3bzxxht4eXlluF6YyHvvvQekXp4jOTmZJUuW8M4773D//fcrGMlVUTgSEZc2adIkxowZQ6VKlZg+fbrmeZEMgoKCeOutt9i7dy8XLlygYsWKPPPMMzz33HNWlyZuSt1qIiIiImlYfir/Tz/9RLdu3ShXrhw2my3DaaOZWb58OdHR0c6LXH744Yf5X6iIiIgUCpaHozNnzlCvXj1nn/GV7Nmzh86dO9OqVSvi4uL4v//7Px599FG+/vrrfK5URERECgOX6laz2WzMmjWL2267Lct1nnnmGebMmZPuGkSDBw/m119/zfF1uERERESy4nYDsletWkX79u3TLevQoQOxsbEkJydneh2eCxcupLsMhN1u5++//6ZkyZJXNUmeiIiIFDxjDKdPn6ZcuXI5vpbd1XC7cHTkyJEMFxQMCwvj4sWLHD9+PNNrVr3yyivZzloqIiIi7uPAgQP5Ok2D24UjyHjhQEfPYFatQMOHD2fYsGHOvxMTE6lYsSIHDhzIMGW9iLiRgwfZt3IlnZ57joNHjlCsWDHnpSZ++eUXJk6cSHJyMk0bNmT2//0fQddfD5oKQMRtnTp1igoVKjgvBpxf3C4clS1bNsPVlo8dO4aPj4/zis+X8/f3z3ChR4CQkBCFIxF3FRvL2QED6G0MB4EaZcuyaO1aKlSoAMC9995L79696dSuHWs2buTxO+9khs2GbeJE0HWqRNxafg+Jsfxstdxq3rw5ixcvTrds0aJFNGrUKNPxRiLigeLjYeBAnjeGX4EywKJjx6hw2Rdms4gI5pw7hw8wE5hmDAwalHp/EZEsWB6O/vnnHzZt2sSmTZuA1FP1N23axP79+4HULrG0VwYfPHgw+/btY9iwYWzbto3JkycTGxvLU089ZUX5ImKFnTvZaLcz7tKfU4AKdjvs2pVhvVbG8OKlP58CTqakZFxPRCQNy8PR+vXradCgAQ0aNABg2LBhNGjQgBdeeAGAw4cPO4MSQOXKlVmwYAHLli2jfv36vPjii7zzzjvccccdltQvIgXPVKvGEMAO9AI6A3h7Q7Vq6VeMigIvL54ErgdOAKNttozriYik4VLzHBWUU6dOERoaSmJiosYcibih+fPn07VrV4KAP4Gy3t4wYULmY4liY2HQIH5ISeEWwNvLi+07dlC1atUCrlpErlVBHb8tbzkSEckNYwyjRo0CYOhDD1F26VLYuzfrQdYxMbB3LzcvXUqntm1Jsdt54403CqxeEXE/ajlSy5GIW/nuu+/o3LkzwcHB7Nmzh9KlS+f4vitWrODGG2/Ez8+PvXv3Zjovmoi4LrUciYhk4t133wVg4MCBuQpGAK1ateKGG24gKSmJt99+Oz/KExEPoHAkIm5j165dfP/999hsNoYMGXJVj/Gf//wHgNjY2HSXFRIRcVA4EhG38cEHH2CMoVOnTlS7yjPOunTpQvny5Tl+/DizZ8/O2wJFxCMoHImIW0hOTmbatGkAV91qBODj40PMpcHbH330UZ7UJiKeReFIRNzCwoULOXHiBGXLlqVDhw7X9FgxMTHYbDaWLFnC7t2786hCEfEUCkci4hY+/fRTAHr16oWPz7VdFrJixYq0a9cOgM8///yaaxMRz6JwJCIu79SpU3z77bcA3H///XnymPfeey8A06dPpxDOaCIi2VA4EhGXN2vWLM6fP0/16tVp2LBhnjzm7bffjr+/P1u3bmXLli158pgi4hkUjkTE5U2fPh1IbTWy2Wx58pihoaF07twZgBkzZuTJY4qIZ1A4EhGXlpCQwNKlSwHo2bNnnj624/FmzZqVp48rIu5N4UhEXNqCBQu4ePEi119/PVFRUXn62J06dcLX15ft27ezffv2PH1sEXFfCkci4tIcA7G7d++e548dEhJC27Zt0z2PiIjCkYi4rAsXLvDdd98B+ROO0j6uwpGIOCgciYjLWrZsGadPnyY8PJzGjRvny3PceuutAKxatYqjR4/my3OIiHtROBIRl+VozenWrRteXvnzdRUREUF0dDTGGObNm5cvzyEi7kXhSERckjGGBQsWAP+27uQXR9eawpGIgMKRiLionTt3sm/fPvz8/JyDpvNLx44dAViyZAnJycn5+lwi4voUjkTEJS1atAiAli1bEhQUlK/P1bBhQ0qWLMmpU6dYs2ZNvj6XiLg+hSMRcUmOcNS+fft8fy5vb29uvvnmdM8rIoWXwpGIuJykpCTnrNi33HJLgTxnhw4dAFi4cGGBPJ+IuC6FIxFxOavnzOGff/6hVIkS1K9fv0Ce09FCtW7dOk7Mng3x8QXyvCLiehSORMS1xMay+K67ALjl77/xmjKlQJ62fPny1CpXDmMMP/boAZGREBtbIM8tIq5F4UhEXEd8PAwciGPUT3uAQYMKphUnPp4Ohw4BpD6/3V5wzy0iLkXhSERcx86d/G23s+7Sn7cApKTArl0F8tztLv263LGsoJ5bRFyKwpGIuI6oKJbabBigJlAewNsbqlUrkOduabPhBewC4gvyuUXEpSgciYjriIhg+aUJH9tCajiZMAEiIgrkuUMmTiT60p/LbbaCe24RcSkKRyLiUpYfPw5A6xdegL17ISam4J48JoY2gwcDsKxXr4J9bhFxGQpHIuIy/v77b7Zs2QLAjQ89ZEmrTZtu3QBYunZtgT+3iLgGhSMRcRkrVqzAGEP16tUpW7asJTW0bNkSLy8v/vzzTw4cOGBJDSJiLYUjEXEZy5ennifWunVry2oICQkhOjo6XT0iUrgoHImIy/jpp58Aa8MRQJs2bQBYtmyZpXWIiDUUjkTEJSQmJhIXFwcoHImItRSORMQl/PLLL9jtdqpWrUr58uUtrSXtuKODBw9aWouIFDyFIxFxCa4w3sghJCSEunXrArBy5UqLqxGRgqZwJCIuwVXGGznccMMNQGqLlogULgpHImK58+fPs2HDBiC1S8sVKByJFF4KRyJiuQ0bNpCcnExYWBiVK1e2uhzg33AUFxfHmTNnLK5GRAqSwpGIWM4xrqdFixbYbDaLq0lVoUIFypcvT0pKCuvWrbO6HBEpQApHImK5tOHIVdhsNnWtiRRSCkciYiljjEuGI9C4I5HCSuFIRCy1e/dujh07hp+fHw0bNrS6nHQc4WjVqlXY7XaLqxGRgqJwJCKWcrQaRUdHExAQYHE16dWrV4+goCASEhLYtm2b1eWISAFROBIRS7lqlxqAj48PTZs2BdS1JlKYKByJiKVcORzBv11rmilbpPBQOBIRy5w6dYotW7YA0Lx5c4uryZwGZYsUPgpHImKZNWvWYIyhcuXKhIeHW11Oppo3b47NZmPXrl0cO3bM6nJEpAAoHImIZVy9Sw0gNDSUGjVqALB27VqLqxGRgqBwJCKWcYQjV+1Sc3AMyl6zZo3FlYhIQVA4EhFLGGOcLTEKRyLiShSORMQSu3btIiEhAX9/f+rUqWN1OdlyhKO1a9dqMkiRQkDhSEQs4WiFadiwIb6+vhZXk706deoQGBhIYmIiO3bssLocEclnCkciYglHl1qTJk0sruTKfHx8iI6OBtS1JlIYKByJiCUc4cjRZeXqNO5IpPBQOBKRApeUlERcXBzgHi1H8G+dCkcink/hSEQK3K+//kpSUhIlS5akSpUqVpeTI46Wo82bN3Pu3DmLqxGR/KRwJCIFLu14I5vNZnE1OVOxYkXCwsK4ePGis9VLRDyTwpGIFDh3GoztYLPZNO5IpJBQOBKRAucIF+4UjkCDskUKC4UjESlQCQkJbN++HYDGjRtbXE3uKByJFA4KRyJSoNavXw9AlSpVKF26tMXV5E7jxo2x2Wzs3buXY8eOWV2OiOQThSMRKVDuON7IISQkhJo1awJqPRLxZC4RjsaPH0/lypUJCAggOjqaFStWZLv+9OnTqVevHkFBQYSHh/PAAw9w4sSJAqpWRK6Fu443clDXmojnszwczZw5k8cff5wRI0YQFxdHq1at6NSpE/v37890/Z9//pk+ffoQExPD77//zpdffsm6devo379/AVcuIrlljHGGCneZGftymgxSxPNZHo7Gjh1LTEwM/fv3p2bNmowbN44KFSrwwQcfZLr+6tWrqVSpEo8++iiVK1emZcuWDBo0yDmOQURcV3x8PEePHsXb25sGDRpYXc5VcYS6tWvXYrfbLa5GRPKDpeEoKSmJDRs20L59+3TL27dvz8qVKzO9T4sWLYiPj2fBggUYYzh69ChfffUVXbp0yfJ5Lly4wKlTp9L9iEjBW7NgAQB1a9YkMDDQ4mquTp06dQgMDOTUqVPs+OQTiI+3uiQRyWOWhqPjx4+TkpJCWFhYuuVhYWEcOXIk0/u0aNGC6dOn07NnT/z8/ChbtizFihXj3XffzfJ5XnnlFUJDQ50/FSpUyNPtEJEciI1l7eDBADT97TeIjbW4oKvj4+NDw/LlAVjbrx9ERrrttohI5izvVgMyXD7AGJPlJQW2bt3Ko48+ygsvvMCGDRv4/vvv2bNnD4MvfelmZvjw4SQmJjp/Dhw4kKf1i8gVxMfDwIGsvfRnE4BBg9yz1SU+nia7dgGwDsBud99tEZFM+Vj55KVKlcLb2ztDK9GxY8cytCY5vPLKK9xwww385z//AaBu3boEBwfTqlUrXnrpJcLDwzPcx9/fH39//7zfABHJmZ07SbHbcYwMbAKQkgK7dkFEhIWFXYWdO3GcZ+cIe267LSKSKUtbjvz8/IiOjmbx4sXpli9evJgWLVpkep+zZ8/i5ZW+bG9vbyC1xUlEXFBUFFttNs4ARYAaAN7eUK2atXVdjagomlxq2d4EXAD33RYRyZTl3WrDhg1j0qRJTJ48mW3btvHEE0+wf/9+ZzfZ8OHD6dOnj3P9bt268c033/DBBx+we/dufvnlFx599FGaNGlCuXLlrNoMEclORARrL32OG3PpPzQTJrhnS0tEBJU/+oiSQBKw2cvLfbdFRDJlabcaQM+ePTlx4gRjxozh8OHD1K5dmwULFhAZGQnA4cOH08151K9fP06fPs17773Hk08+SbFixbjpppt47bXXrNoEEcmBtZe6tpvccw+8/rpbhwlb//40nj6d75ctY+3o0TSOibG6JBHJQzZTCPuiTp06RWhoKImJiYSEhFhdjkih0KBBAzZt2sRXX33FHXfcYXU512zkyJGMGTOGPn36MG3aNKvLESkUCur4bXm3moh4vnPnzrFlyxbAfS8bcjnHdjiuFScinkPhSETy3aZNm5xzmkW4cXdaWo0bNwbgjz/+IDEx0eJqRCQvKRyJSL5bt24dkBoosprDzN2UKVOGSpUqAbBhwwZrixGRPKVwJCL5Lm048iTqWhPxTApHIpLvHOFB4UhE3IHCkYjkq4SEBHbs2AEoHImIe1A4EpF85RiPU6lSJUqVKmVxNXmrYcOGeHl5cfDgQQ4ePGh1OSKSRxSORCRfeep4I4Dg4GBq1aoF/LudIuL+FI5EJF95cjgCda2JeCKFIxHJV4UlHKnlSMRzKByJSL45evQoBw4cwGazER0dbXU5+SJtOLLb7RZXIyJ5QeFIRPKNozWlRo0aFC1a1OJq8ketWrUIDAwkMTGRnTt3Wl2OiOQBhSMRyTee3qUG4OvrS8OGDQGNOxLxFApHIpJvCkM4gn+3T+FIxDMoHIlIvjDGFJpwpDPWRDyLwpGI5It9+/Zx/PhxfHx8qFevntXl5CtHONq0aRNJSUkWVyMi10rhSETyhaPVqF69egQEBFhcTf6qUqUKJUqUICkpic2bN1tdjohcI4UjEckXhaVLDcBms6lrTcSDKByJSL4oTOEINO5IxJMoHIlInrPb7c4LziociYi7UTgSkTy3fft2Tp8+TVBQEDVr1rS6nALhCIF//PEHiYmJFlcjItdC4UhE8pyjS61hw4b4+PhYXE3BKFOmDJGRkRhjnK1mIuKeFI5EJM85upYKS5eag7rWRDyDwpGI5LnCNhjbIe1FaEXEfSkciUieSkpKYtOmTUDhDUdqORJxbwpHIpKntmzZQlJSEsWLF6dq1apWl1OgGjZsiJeXF/Hx8Rw6dMjqckTkKikciUiecnQpNWrUCJvNZnE1BatIkSLUqlULUNeaiDtTOBKRPFVYxxs5qGtNxP0pHIlInirs4cix3QpHIu5L4UhE8syZM2f4/fffgcIbjtKesWa32y2uRkSuhsKRiOSZuLg47HY74eHhlC9f3upyLFG7dm0CAgJITExk165dVpcjIldB4UhE8kxh71ID8PX1pWHDhoC61kTclcKRiOQZhaNUGpQt4t4UjkQkzygcpVI4EnFvCkcikidOnjzpHGPTqFEji6uxliMcxcXFkZSUZHE1IpJbCkcikiccrSRVq1alZMmSFldjrSpVqlCiRAmSkpLYvHmz1eWISC4pHIlInlizZg0ATZs2tbgS69lsNs13JOLGFI5EJE8oHKWncUci7kvhSESumTHGGY6aNWtmcTWuIe1kkCLiXhSOROSa7d69mxMnTuDn50e9evWsLsclOLrVtm3bxqlTpyyuRkRyQ+FIRK6Zo9WoQYMG+Pv7W1yNawgLCyMyMhJjDBs2bLC6HBHJBYUjEblmq3/4AYCmtWpZXIlrcY47mjED4uMtrkZEckrhSESuTWwsa6ZMAaDplCkQG2txQa6jyaV/106cCJGRem1E3ITNGGOsLqKgnTp1itDQUBITEwkJCbG6HBH3FR/PhYoVCTGGJGAXUNXbG/buhYgIi4uzWHw8yytWpI0xRAAHAPTaiFyTgjp+q+VIRK7ezp1suhSMSgFVAFJSQFejh507iTYGLyAeOAx6bUTchMKRiFy9qCjW2GwANAVskNo6Uq2alVW5hqgoinh5cf2lP9eBXhsRN6FwJCJXLyKCNZcGHTeF1IP/hAnqNoLU1+Cjj2hyKTyutdn02oi4CYUjEbkmq//6C4Cmr7+eOp4mJsbaglxJTAxNXn4ZgLUtW+q1EXETCkcictX++usvdu/eDUCTAQPUKpKJJh06ALBuyxbsdrvF1YhITigcichVc1w3rHr16hQrVszaYlxU7dq1CQgIICEhgV0ajC3iFhSOROSq6XpqV+br60vDhg0BXYRWxF0oHInIVXOEo6ZNm1pciWtzXGdN4UjEPSgcichVsdvtCkc55LiMyLp16yyuRERyQuFIRK7Kjh07SExMJCAggDp16lhdjktzhKO4uDiSkpIsrkZErkThSESuiqPVKDo6Gl9fX4urcW1Vq1alePHiXLhwgS1btlhdjohcgcKRiFwVdanlnM1mc7YeadyRiOtTOBKRq7Jy5UoAmjdvbnEl7kHhSMR9KByJSK6dOnXK2T3UokULi6txD45w5GhxExHXpXAkIrm2du1a7HY7lSpVoly5claX4xYc4eiPP/4gISHB2mJEJFsKRyKSa44uNbUa5VyZMmWoVq0axhhWrVpldTkikg2FIxHJNYWjq3PDDTcA/75+IuKaFI5EJFdSUlKcLR8KR7njeL1++eUXiysRkewoHIlIrmzdupVTp04RHBysyR9zydFytGbNGpKTky2uRkSy4hLhaPz48VSuXJmAgACio6NZsWJFtutfuHCBESNGEBkZib+/P1WrVmXy5MkFVK1I4eboEmratCk+Pj4WV+NeatasSbFixTh79iybN2+2uhwRyYLl4WjmzJk8/vjjjBgxgri4OFq1akWnTp3Yv39/lve5++67+fHHH4mNjWX79u3MmDGDGjVqFGDVIoWXxhtdPS8vL+e8UOpaE3FdloejsWPHEhMTQ//+/alZsybjxo2jQoUKfPDBB5mu//3337N8+XIWLFjAzTffTKVKlWjSpIm+qEUKiCMcObqIJHc0KFvE9VkajpKSktiwYQPt27dPt7x9+/ZZfnHMmTOHRo0a8frrr1O+fHmuu+46nnrqKc6dO5fl81y4cIFTp06l+xGR3Dt27Bi7du0CoFmzZhZX4540KFvE9Vk6YOD48eOkpKQQFhaWbnlYWBhHjhzJ9D67d+/m559/JiAggFmzZnH8+HGGDBnC33//neW4o1deeYXRo0fnef0ihY3jPy21atWiWLFi1hbjppo0aYK3tzfx8fHs37+fihUrWl2SiFzG8m41SL0oY1rGmAzLHOx2OzabjenTp9OkSRM6d+7M2LFjmTp1apatR8OHDycxMdH5c+DAgTzfBpHCQOONrl1wcDANGjQA1LUm4qosDUelSpXC29s7QyvRsWPHMrQmOYSHh1O+fHlCQ0Ody2rWrIkxhvj4+Ezv4+/vT0hISLofEck9haO8oa41EddmaTjy8/MjOjqaxYsXp1u+ePHiLL98b7jhBg4dOsQ///zjXLZjxw68vLyIiIjI13pFCrMLFy6wfv16QOHoWjkGZSscibgmy7vVhg0bxqRJk5g8eTLbtm3jiSeeYP/+/QwePBhI7RLr06ePc/17772XkiVL8sADD7B161Z++ukn/vOf//Dggw8SGBho1WaIeLy4uDguXLhAqVKliIqKsroct+YIl7/++mu6/+iJiGuwPBz17NmTcePGMWbMGOrXr89PP/3EggULiIyMBODw4cPp5jwqUqQIixcvJiEhgUaNGnHffffRrVs33nnnHas2QaRQSNulltWYQMmZiIgIKlasiN1uZ82aNVaXIyKXcYnpbYcMGcKQIUMyvW3q1KkZltWoUSNDV5yI5K+ff/4ZUJdaXrnhhhvYv38/K1eupF27dlaXIyJpWN5yJCKuzxjDTz/9BECrVq0srsYzaFC2iOtSOBKRK9q2bRsnTpwgICCARo0aWV2OR0g7U3ZKSorF1YhIWgpHInJFjotBN2/eHD8/P4ur8Qx169YlJCSE06dP8+uvv1pdjoikoXAkIlfk6FK78cYbLa7Ec3h7e9OyZUvg39dXRFyDwpGIZMsYw/LlywGNN8prjrCpcCTiWhSORCRbe/fu5eDBg/j4+Ohis3ksbTiy2+0WVyMiDgpHIpItx3ijRo0aERwcbHE1niU6OpqgoCBOnDjBtm3brC5HRC5ROBKRbOkU/vzj5+dH8+bNAXWtibgShSMRyZYGY+cvjTsScT0KRyKSpSNHjrBz505sNptzXh7JW45wtHz5cowxFlcjIqBwJCLZcIw3qlu3LsWLF7e4Gs/UtGlTfH19OXz4MH/++afV5YgICkciko2fFiwAoFWDBhZX4rkCAwNp0qQJAD999BHEx1tckYgoHIlI5mJj+enShZ9vnDYNYmOtrceDtQ4NBeCnN96AyEi91iIWs5lC2Ml96tQpQkNDSUxMJCQkJMf3S0pK0qUTpHCIj+dkxYqUNAYDHAbKenvD3r0QEWFxcR4mPp6FFSvS0RgqAXsA9FpLIWGMwWaz5Xj9qz1+55ZajnLoueeeIzQ0VNdAksJh506WXwpGNYCyACkpsGuXtXV5op07aWEMXsBeYD/otZZCYdasWZQoUYK5c+daXUoGCkc59N///pfz58/z0EMPWV2KSP6LimLJpV/bOpZ5e0O1ahYV5MGioijq5UXDS3/+BHqtpVC4/fbbSUhIoF+/flaXkoHCUS7t3r3b6hJE8l9EBEvLlwfgJkg9WE+YoG6e/BARAR99RNtLXQtLbTa91lKouOLoHoWjHEhJSXH+npiYaGElIgXj2LFj/HbwIABtZs9OHf8SE2NpTR4tJoabpk0D4Mfy5TEPPmhxQSL569SpU87fw8LCLKwkcwpHOfDXX385f9eAbCkMli1bBqTOb1Sqe3e1YhSAlj164OPjw774ePbs2WN1OSL56uTJk87fT58+bWElmVM4yoFDhw45f//nn39csglQJC8tWZI64uimm26yuJLCo0iRIjRt2hT49/UX8VQJCQnO348cOYLdbreumEwoHOVA2q40u93OP//8Y2E1IvlP4cga7dq1AxSOxPOlDUcpKSmcOXPGumIyoXCUA+fOnUv3d9rmQBFPEx8fz86dO/Hy8tLFZguYI4wuWbJELdTi0S4/jl5+nLWawlEOXL7T0iZeEU+zdOlSAKKjowm9NHOzFIxmzZoRGBjI0aNH2bp1q9XliOSby4+jCkdu6Pz58+n+VjgST+YIR+pSK3j+/v60bNkSUNeaeDaFIw+gliMpTBwH5bZt215hTckPabvWRDyVwpEHuHynpZ2fQcST7Nmzh3379uHj4+NswZCC5QhHy5YtSzfHmognufw46lHh6NixYxw5ciSvanFZl+80VxtVL5JXHK0VzZo1Izg42OJqCqeGDRsSEhJCQkICmzZtsrockXxx+XHUI8LR5s2bqVWrFuHh4ZQvX57y5cvz3HPPeWxoUDiSwuKHH34A1KVmJR8fH9q0aQPAjz/+aG0xIvnEI8NRTEwMYWFh/Pzzz8TFxfHSSy/x3Xff0ahRI488zf3ynXb27FmLKhHJP3a7ncWLFwPQvn17i6sp3BxdawpH4qkuP45efuKT1a4qHG3dupXx48fTvHlz6tatywMPPMD69eupVasWjzzySF7XaDm1HElhEBcXx4kTJwgJCXHO1CzWcEwGuWLFCpc7aIjkBY9sOcqshchms/Hyyy/z7bff5klhrkThSAqDRYsWAamtFr6+vhZXU7jVqlWLcuXKce7cOX7++WeryxHJcx4Tjrp06cL//d//8cUXXzB48GCeeOIJjh49mm6dxMREihcvnudFWs2x00qUKAEoHIlnWrhwIaAuNVdgs9mc+8GxX0Q8iaNbrVixYoDrhSOfnK5Yp04dNm7cyJQpU5yhqEqVKtx9993Ur1+flJQUpkyZwltvvZVvxVrFsdNKlSrF33//rTFH4nFOnz7NypUrAYUjV9GhQwemTp3KwoULeeONN6wuRyRPORoZSpUqRUJCgvuGo1dffdX5+9GjR4mLi2PTpk1s2rSJDz74gF27duHt7c3o0aO544478qVYqzj6/EuVKsWOHTvUciQeZ/ny5SQnJ1OlShWqVq1qdTkC3HLLLdhsNrZs2cKhQ4coV66c1SWJ5BnHcbRkyZLs2rXLfcNRWmFhYXTs2JGOHTs6l507d45ff/2VX3/9Nc+KcxWOcOToMlQ4Ek/jGG+kViPXUbJkSRo1asS6detYtGgR/fr1s7okkTzj6IEpWbIk4CFnq2UmMDCQZs2aMWjQoLx6SJeRnJwMKByJ53KMa+nQoYPFlUhajv2hcUfiaRzHUcfFrR3HWVehy4fkgGOnOXaixhyJJ9m7dy87duzA29tbkz+6GEc4Wrx4sS4lIh7j4sWLJCUlAf8OyL548aKFFWWkcJQDjnAUEhICKByJZ3FM/NisWTPnfwDENTRt2pSiRYty4sQJNm7caHU5Inki7fgix3FVLUduyLHTihYtCrhe36jItdB4I9fl6+vrnBBSXWviKdIeQ4sUKQIoHLklhSPxVBcvXnReT03hyDVp3JF4Gscx1M/PD39/f0DhyC05+kIdzX8KR+IpVq9eTUJCAiVKlKBRo0ZWlyOZcISjVatWkZiYaHE1ItfOcQwNCAhwzsavcOSG1HIknmrevHkAdOzYER+fq5rZQ/JZ5cqViYqKIiUlRReiFY+gcOQhLg9HKSkpLrcjRa7G/PnzgdTLA4nr6ty5M/Dv/hJxZwpHHuLycARqPRL3t2/fPn777Te8vLzSTegqrqdr165Aajiy2+0WVyNybRSOPITCkXgiRytEixYtnBdVFtd04403UrRoUY4ePcqGDRusLkfkmigceQjHTks7sl7hSNydIxw5WiXEdfn5+TkHZjvGiYm4K4UjD+HYab6+vgQEBAC43EXyRHLj7NmzLFmyBNB4I3fhCLFz5861uBKRa6Nw5CEyC0dqORJ3tmTJEs6fP0/FihWpVauW1eVIDnTq1AmbzUZcXBwHDx60uhyRq6Zw5AGMMc5rGikciaeYP3MmAF3btMFms1lcjeREmTJlaNq0KQDzx46F+HiLKxK5OgpHHiDtDlM4Ek9gJk1i/qefAtDlk08gNtbiiiSnuoWHAzBv7FiIjNS+E7d04cIFQOHIrV0ejgIDAwGFI3FT8fFsGTiQA0Ag0NYYGDRIrRDuID6errNnA/ADcM5u174Tt5S25cgx+azCkZvJquVIA7LFLe3cyTxjAGhHakAiJQV27bKyKsmJnTupYwwVgHPAUtC+E7ekbjUPoG418ShRUcy+9Gs3xzJvb6hWzZp6JOeiorB5eeGYeGEuaN+JW1I48gCOHebt7Y3NZlM4ErcWD6wDbEB3SD24TpgAERGW1iU5EBEBH31EN6/Ur+05gP2DD7TvxO1kFo4cF3h3FQpHV+AIR45+UYUjcWezL41ZadG4MWFLl8LevRATY2lNkgsxMdy0YwdFg4I4BKytU8fqikRyTS1HHiDtHEeABmSLW5s1axYAPXr2hDZt1OrghvyrVqVr9+4AfPPNNxZXI5J7CkcewNHU59iBGpAt7urEiRMsX74cgB49elhcjVyL22+/HUgNR+bSAHsRd6Fw5AEubzlSt5q4q3nz5pGSkkLdunWpUqWK1eXINejYsSMBAQH8+eefbNmyxepyRHJF4cgDKByJp3CMN7rtttssrUOuXZEiRZwXolXXmribrMKRK7WCKhxdgcYciSc4e/YsCxcuBNSl5ikcXWtff/21xZWI5I7j+Onv7+88tgLOS3W5AoWjK3CMObr8bDWNORJ3snDhQs6dO0elSpWoV6+e1eVIHujWrRs+Pj789ttv7Nixw+pyRHIssxmywbVO51c4ugJHkvX29gbUrSbu6auvvgJSW410oVnPULx4cW666Sbg37MQRdxB2nDkOLaCWo7cimNnaZ4jcVfnzp1jzpw5ANx9990WVyN5Ke1ZayLuQuEoh8aPH0/lypUJCAggOjqaFStW5Oh+v/zyCz4+PtSvXz/fanM086nlSNzVd999xz///ENkZCRNmza1uhzJQ927d8dms7F27VoOHDhgdTkiOZJVt5rCURozZ87k8ccfZ8SIEcTFxdGqVSs6derE/v37s71fYmIiffr0oV27dvla3+XdahqQLe5m5syZQGqrkbrUPEvZsmVp2bIlAF9++aXF1YjkTFYtRxpzlMbYsWOJiYmhf//+1KxZk3HjxlGhQgU++OCDbO83aNAg7r33Xpo3b56v9WU15kgDssUdnDlzhnnz5gHqUvNUPXv2BODzzz+3uBKRnEkbjmw2m/M/bWo5uiQpKYkNGzbQvn37dMvbt2/PypUrs7zflClT+PPPPxk5cmSOnufChQucOnUq3U9OaUC2uLP58+dz9uxZqlSpQnR0tNXlSD6466678PLyYt26dezatcvqckSuKG04gn+PrwpHlxw/fpyUlBTCwsLSLQ8LC+PIkSOZ3mfnzp08++yzTJ8+PV1fZXZeeeUVQkNDnT8VKlTIcY1ZDchWy5G4gy+++AJQl5onK1OmjHN4gaMLVcSVKRzl0OVf2saYTL/IU1JSuPfeexk9ejTXXXddjh9/+PDhJCYmOn9yM3AxqwHZFy5cyPFjiFjh9OnTzJ8/H/i360U80z333APAjBkzLK5EJHsXL150hiDH8dTR+KAxR5eUKlUKb2/vDK1Ex44dy9CaBKlf9uvXr2fo0KH4+Pjg4+PDmDFj+PXXX/Hx8WHJkiWZPo+/vz8hISHpfnJK3WrirubOncv58+eJiorSxI8erkePHvj5+fH777/z22+/WV2OSJbSHjvVcpQFPz8/oqOjWbx4cbrlixcvpkWLFhnWDwkJYcuWLWzatMn5M3jwYKpXr86mTZvy5TTly8ORv78/oJYjcX3Tp08HoFevXupS83DFihWjU6dOgFqPxLWlDUeO46nCUSaGDRvGpEmTmDx5Mtu2beOJJ55g//79DB48GEjtEuvTpw8AXl5e1K5dO91PmTJlCAgIoHbt2gQHB+d5fWo5End09OhR57XU7r//fourkYLg6Fr7/PPPXeoCniJpOY6dvr6+zuOqK4ajnI1ozkc9e/bkxIkTjBkzhsOHD1O7dm0WLFhAZGQkAIcPH77inEf5KasB2Wo5Elf2+eefk5KSQpMmTXI1Pk/cV9euXQkKCmL37t2sXbtWE36KS7p8MDa4ZjiyvOUIYMiQIezdu5cLFy6wYcMGbrzxRudtU6dOZdmyZVned9SoUWzatCnfart8QHbabjX970xc1aeffgpA7969La5ECkpwcDA9evQA4OOPP7a4GpHMZRaONCDbDWXVrQZqPRLX9Mcff7B+/Xp8fHx0lloh07dvXyB13JG+n8QVOd6Xajlyc1kNyAaFI3FNn3zyCQAdO3akdOnSFlcjBemmm26ifPnynDx50jkzuogrUbeah7g8HPn5+Tlv06BscTV2u915lpq61Aofb29v5wD8adOmWVyNSEYKRx7i8gHZNptNZ6yJy/r555/Zt28fISEhdOvWzepyxAKOrrXvvvuOY8eOWVyNSHoKRx7i8gHZoLmOxHVNee89AO7s1InAwECLqxEr1KxZk8aNG3Px4kU+Gz0a4uOtLknESQOyPcTl3WqguY7ENZ167z2++PJLAGK++AJiYy2uSKzSNyoKgGnjx0NkpN4L4jLUcuQhsgtHajkSlxEfz+ePPspZoCbQ3BgYNEitBoVRfDy9ZszAF9gE/Gq3670gLkPhyENkFo4c3WpqORKXsXMnky7Nu9UfsAGkpMCuXVZWJVbYuZOSxtD90p8TQe8FcRkKRx7C0Qfq6BMFdauJ6/k1OZl1gC/gPEfN2xuqVbOuKLFGVBR4eTHw0p+fAGe9vPReEJeQ3ZgjhSM3om41cQexl+a06Q6UhtRgNGECRERYWZZYISICPvqIdl5eVAZOAV/07av3griE7FqONCDbjahbTVzd+fPnnZcL6f/JJ7B0KezdCzEx1hYm1omJwWvfPgb07w/AR3/8YXFBIqnUreYhdLaauLpvvvmGkydPUqFCBW6+5x5o00atBAIRETzw4ov4+PiwatUqtmzZYnVFIs7jZtqrTSgcuaHsWo7UrSau4P333wcgJiYm3ftUpGzZstx6660ATJw40eJqRNRy5DE0IFtc2aZNm1i5ciU+Pj4MHDjwyneQQsfxvvj44485e/asxdVIYZfZhWc1INsNqVtNXJmj1eiOO+4gPDzc4mrEFd1yyy1UrlyZxMREZsyYYXU5Ushl162mAdluRN1q4qpOnjzpvMjsww8/bHE14qq8vLwYMmQIAO+88w7m0nxYIlZQt5qHUMuRuKqpU6dy7tw56tSpQ8uWLa0uR1xYTEwMQUFBbN68mRUrVlhdjhRiCkceQvMciSuy2+3OLrWHH34Ym81mcUXiyooXL07v3qnTg77zzjsWVyOFmeO4qbPV3FxmA7I1z5FYbdGiRfz555+EhIRw3333WV2OuIFHHnkEgFmzZrF//36Lq5HCSjNkewh1q4krGjt2LAAPPPAARYoUsbgacQe1atWiXbt22O12xo8fb3U5UkhphmwPoQHZ4mp+/fVXFi9ejJeXF4899pjV5YgbefTRR4HUOY90Wr9YIbNT+dWt5obUciSuxtFqdOedd1K5cmWLqxF30qVLFypXrszff//NtGnTrC5HCiHNkO0hHDtLk0CKKzh06JBzrponn3zS4mrE3Xh7ezNs2DAA3nzzTZfqxpDCQWereQjHl4e61cQVvPvuuyQnJ9OyZUuaNGlidTnihh544AFKlizJ7t27+eabb6wuRwoZzZDtIdStJq7in3/+4cMPPwTgqaeesrgacVfBwcEMHToUgNdff12TQkqB0gzZHkLzHImrmDRpEgkJCURFRdGtWzeryxE3NnToUAIDA9mwYQNLly61uhwpRNSt5iHsdjuQebeaWo6koJw/f5433ngDgP/85z94eemjK1evVKlSxMTEAKmtRyIFwRiTbThyHG9dgb5hr8Cxs9IejNStJgUqPp6pw4dz6NAhIiIi6Nu3r9UViQcYNmwYXl5eLFy4kA0TJkB8vNUliYdLTk52/p62W81xfFU4ciOZhSMNyJYCExtLcsWKvDpuHADP3Hgjfn5+1tYkHqFy5crc07gxAGMGD4bISIiNtbgq8WRpGxTSthwpHLkhRx+oWo6kwMXHw8CBTDeGfUAYEPP55/ofvuSN+HieW7sWL2AOEGe3w6BBen9Jvkl7zMys5UhjjtxIZmOOFI6kQOzcSYrdzsuX/nwSCLTbYdcuK6sST7FzJzWModelP0cDpKTo/SX5xtHb4ufnl+5i2Rpz5IbUrSaWiYric5uNnUAJYDCAtzdUq2ZtXeIZoqLAy4vnARvwLRDn5aX3l+SbzAZjg7rV3JK61cQqyWFhjCxVCkhtNSrq7Q0TJkBEhLWFiWeIiICPPqKGt7ez9WhMvXp6f0m+uVI4UreaG8nubLWUlBSXmrRKPMuUKVP486+/KFOqFI8uWAB798Kl069F8kRMDOzdy/NTp2Kz2ZgdF0dcXJzVVYmHymx2bFDLkVvKbp4jUNea5I/z588zZswYAEY8/zxFOnXS/+glf0REULNvX3r1Sm0/euGFFywuSDxVZrNjg8YcuaXsxhyButYkf3zwwQccPHiQChUqMGjQIKvLkUJg5MiReHt7M2/ePFasWGF1OeKBNObIg2Q25sjHx8eZdNVyJHnt9OnTvPxy6jlqI0eOzPC/LJH8UL16dees2U8//bSuuSZ57krdahpz5EYy61YDDcqW/PP2229z/PhxoqKiNBu2FKhRo0YRFBTE6tWrmT17ttXliIfJqltNLUduKLNuNVA4kvxx9OhR57WuxowZg4+Pj8UVSWESHh7OE088AcDw4cN1wonkqay61TTmyA1lFY4015Hkh+eff57Tp0/TuHFj7r77bqvLkULo6aefpmTJkmzfvp0pU6ZYXY54EJ3K70EyG3MEajmSvLd582ZiL13bauzYsRnecyIFISQkhOeffx5IHfP2zz//WFyReApHY4K61TyAxhxJQTDGMGzYMOx2O3fddRctW7a0uiQpxAYPHkyVKlU4fPgwr7zyitXliIdQt5oHUbeaFIR58+bx448/4ufnx2uvvWZ1OVLI+fv787///Q+AN998kz///NPiisQT6FR+D6IB2ZLfkpKSeOqppwB44oknqFy5ssUViUD37t255ZZbSEpK4sknn7S6HPEAOpXfg1xpzJFajuRavf322+zYsYMyZcrwf//3f1aXIwKAzWbj7bffxsfHh2+//ZaFCxdaXZK4OZ3K70GyGnPk2LlqOZJrceDAAUaNGgXAK6+8QkhIiLUFiaRRs2ZNHnnkEQAee+wxkpKSLK5I3JnGHHkQdatJvomP57F77+Xs2bPccMMN9OvXz+qKRDJ44YUXKF26NNu3b+edRx+F+HirSxI3pW41D6IB2ZIvYmOZX7Eis37+GW/gg1tu0an74pKKFSvGq126ADBywgT2VqwIl6acEMkNdat5EM1zJHkuPp6zAwbwyKVrVz0B1HnxRf2PXFxTfDz9pk3jRuAs8JAxmIED9X6VXNPZah5E8xxJntu5k5eNYQ8QAYwESEmBXbusrUskMzt34mUMEwA/4Htgpt2u96vkmsYceRB1q0le25SUhGMmo7eBIgDe3lCtmnVFiWQlKgq8vKgBjLi06DHg75IlLSxK3NGVZsjWmCM3om41yUvJyck88OyzXARuB3pAajCaMAEiIqwtTiQzERHw0Ufg7c0zQE3gGPD0229bXJi4G3WreZArna2mliPJjVdffZVNmzZRokQJxm/ciG3pUti7F2JirC5NJGsxMbB3L/5Ll/LR118DEBsby6JFiywuTNyJwpEH0TxHkle2bNnCiy++CMC7775LWIMG0KaNWozEPUREQJs2tLz9doYOHQrAgw8+yMmTJy0uTNxFVt1qGnPkhjTPkeSFixcv8uCDD5KcnMytt97KPffcY3VJIlfttddeIyoqioMHD/LYY49ZXY64iSu1HGnMkRvJasyRBmRLbrz44ousX7+eYsWK8eGHH2Kz2awuSeSqBQUFMW3aNLy8vPjkk0+YNWuW1SWJG1C3mgfRqfxyrX755RdeeuklAMaPH094eLjFFYlcu+bNm/P0008DMGjQII4dO2ZxReLqrjRDtsKRmzDGYC5N1KduNbkaiYmJ3Hfffdjtdnr37q3uNPEoo0aNom7duvz111888MADLnVwE9eT1QzZjsYHdau5CUcwAnWrydUZMmQI+/bto3Llyrz33ntWlyOSp/z9/fnkk0/w9/dnwYIFvPXWW1aXJC5M3WoeIm2KVcuR5Nann37KZ599hre3N9OnTyckJMTqkkTyXN26dRk3bhwAzz77LGvXrrW2IHFZCkceIu2O0pgjybH4eH6fPJlBAwcCqVc1b968ucVFieSfQYMGceedd3Lx4kV69epF4tatsHSprr8mThcvXnQeU3Uqv5tLu6Oyajk6d+5cgdYkLi42ltMVK3JHTAxnz52jXc2ajBgx4sr3E3FjNpuNiRMnUqlSJfbs2UP/WrUwN90EkZEQG2t1eeICzp496/w9MDAw3W06ld/NZBeOgoKCAIUjSSM+HjNgAP2NYTtQHvhs+3a8Dx+2ujKRfFesWDFmvvMOPsBXwP8A7HYYNEgtSJLuWKlutRwaP348lStXJiAggOjoaFasWJHlut988w233HILpUuXJiQkhObNm7Nw4cJ8qSu7MUeO5KtwJE47d/KOMXwB+ABfAmV09XIpRJoUKcK4S78/AywGSEnRZ0Ccx8qAgIAM87wpHGVi5syZPP7444wYMYK4uDhatWpFp06d2L9/f6br//TTT9xyyy0sWLCADRs20LZtW7p160ZcXFye15bdmCOFI7ncsuPHeerS72OB5pB6Udlq1awrSqQgRUUxxGajH2AHegF7vLz0GRDnsdLR65KWTuXPxNixY4mJiaF///7UrFmTcePGUaFCBT744INM1x83bhxPP/00jRs3JioqipdffpmoqCjmzp2b57Vl162WNhylPeVfCqddu3Zxx+DBXATusdkYCqnBaMIEXTtNCo+ICGwTJ/KBlxeNgb+B28qV40zx4lZXJhZzhKPLxxuBWo4ySEpKYsOGDbRv3z7d8vbt27Ny5cocPYbdbuf06dOUKFEiy3UuXLjAqVOn0v3k9LEdsgpHoDPWCruEhAS6du3K33//TZMmTYjdvh3b0qWwd2/q1cxFCpOYGAL27eObL76gTKlSbI6Pp3fv3i7VKiAFT+EoF44fP05KSgphYWHploeFhXHkyJEcPcb//vc/zpw5w913353lOq+88gqhoaHOnwoVKuTosdN+mC/vI027g9W1VnhdvHiRu+++m+3btxMREcHs2bMJjIqCNm3UYiSFV0QEEXfdxdezZuHn58esWbP4z3/+Y3VVYiHH2WoKR7lwefAwxuTowpwzZsxg1KhRzJw5kzJlymS53vDhw0lMTHT+HDhwIEd1ZXVdNQBfX198fHwAhaPCyhjD0KFDWbx4MUFBQcydO1fXTRNJo2XLlkydOhWAt956i3fffdfagsQy2bUcaczRZUqVKoW3t3eGVqJjx45laE263MyZM4mJieGLL77g5ptvznZdf39/QkJC0v3khCMcXd6l5qBB2YXbqFGjmDBhAjabjenTp1O/fn2rSxJxOffccw8vv/wyAI8//jhz5syxuCKxQnYDstVydBk/Pz+io6NZvHhxuuWLFy+mRYsWWd5vxowZ9OvXj88++4wuXbrkW30KR5KV8ePHM2bMGADef/99brvtNmsLEnFhzz77LAMGDMBut9OrV69sp2sRz6QxR7k0bNgwJk2axOTJk9m2bRtPPPEE+/fvZ/DgwUBql1ifPn2c68+YMYM+ffrwv//9j2bNmnHkyBGOHDlCYmJintfmaOK7UjhKO/OneL4vvviCoUOHAqmtRw899JDFFYm4NpvNxvvvv0+XLl04d+4cXbp0YcOGDVaXJQUoJ+FI3Wpp9OzZk3HjxjFmzBjq16/PTz/9xIIFC4iMjATg8OHD6eY8mjBhAhcvXuThhx8mPDzc+fPYY4/leW3ZjTkCtRwVOvHxzH/lFe6//36MMQwZMoQXXnjB6qpE3IKvry9ffvklrVu35vTp03To0IGtS5boGmyFRHYDsl3x2mo+VhcAMGTIEIYMGZLpbY7BfA7Lli3L/4IuUbeaOMXG8t2AAdxuDMnA3Y0a8c477+ToxAERSRUYGMicOXO4+eabWbduHbe0a8dPQFUvL/joI0194cHUreZBrtStpuurFRLx8SwcMIAexpAE3AF8unGjrpkmchVCQkL4LjaWWsAhoDWwQ9dg83gKRx5E3WoCsOizz+huDBeAHsAMwFfXTBO5aiWPH+cH4HrgIKkBaZuuwebRcnK2msYcuYmcdqtpQLbnmjt3Lt1feIELQHfgc8AXdM00kWsRFUVZLy+WAnWAI6QGpC3JydbWJfkmJ/McqeXITWjMUeH2ySef0KNHD85fuED3+vX5wssLP9A100SuVUQEfPQRZby9WQo0AP4C2t5zD+vXr7e4OMkPmiHbg+T0VH6FI8/z9ttv06dPH1JSUujTpw9frVuH3759qWfW6JppItcuJgb27qXk0qX8uGULjRs35sSJE7Rp04ZFixZZXZ3kMZ3K70GuNOZIA7I9jzGGF154gccffxxIndF3ypQpqZeKiYjQNdNE8tKlz1Tx2rX54YcfaNeuHWfOnKFLly58+umnVlcneSgn3WrGGIwxBVpXVhSOsqFutcLlwoUL9O3blxdffBGAF198kbFjx2a5/0Uk74SEhLBgwQLuueceLl68SO/evXnzzTdd5mAp1yYnA7IBl9nf+tbPhiMcZTWXjcKRh4iP5/js2dxy44188skneHt7M2HCBJ577jnNYyRSgPz8/Pj000954oknAPjPf/7DkCFDSN6zR5NFurmcdKuB63StKRxlI6en8utsNTcWG8v2ihVp1qMHK9auJSQwkAULFjBw4ECrKxMplLy8vBg7dixvvvkmNpuNDz/8kA5VqnDippsgMhJiY60uUa5CTsORWo7cgFqOPFx8PD8OGEBzY/gTqASsvHCB9tdfb3FhIvLkk0/ybWwsRYClQFNgmyaLdFvZna2W9hjrKmesKRxlQ2OOPJcxhtfGjKG9MZwEmgGrgVqa3FHEZXSrVIlVpP7H5U9SP6cLNFmkW1LLkQdx7CRdPsSznDp1ijvvvJNnJ07EDvQDlgBhoMkdRVxJVBS1vbxYC9wInAK6As/PmuUyY1MkZ7ILR2o5cjNqOfI827Zto2nTpnzzzTf4+vrywf33M9nLi0DQ5I4irubSZJGlvb1ZDAyx2TDAS++8Q/v27Tl69KjVFUoO6Ww1D5LTMUcakO36jDFMmTKFxo0b88cff1C+fHlWrFjB4E8+wabJHUVc16XJIv2WLuX9/fv57LPPCA4OZsmSJTRo0IAVK1ZYXaFcgTFGLUeeJKfdagpHLio+HpYuJeH337nnnnt48MEHOXPmDDfddBMbN26kadOmqetpckcR15bmM3rPPfewbt06rr/+eg4fPkzbtm0ZPXo0Fy9edH7mNWDbtSQnJzu7QTXmyANcqVutSJEiAJw5c6bAapIcio2FyEhW3nQT9WvXZubMmXh7e/Pyyy+zaNEiypQpY3WFInKVatasydq1a7n//vtJSUlh1KhRtKxenV0VK4JO+Xc5//zzj/N3x3EzrbTHWLUcuYErdas5dnLaHS8uID6eCwMG8Jzdzo3APqAy8MusWQwfPjzLeatExH0EBwfzySefMH36dEJDQlizezf1jWESYHTKv0txNCD4+fnh6+ub4fa0x1i1HLmBK3WrBQcHA2o5cjXr5s4l2hj+C6QA9wGbgKZFi1pal4jkvXvvvZfNEybQGjgDDABuBeJ1yr/LcDQgZNZqBGo5cjs57VY7d+6cTit1AefPn+eZZ56h2dCh/A6UAb4CPgVCdIq+iMeq2LIlP9psvA74AvOA64Hxv/ziMgfbwuxK4UgDst1MTrvVQK1HVlu0aBH16tXj9ddfx263c2/Tpvzu5cUdoFP0RTxdRATeEyfyH29v4kidLPI08PBzz9GqVSu2bdtmcYGFW27CkbrV3MCVutX8/f2d41c07sga+/fv584776RDhw7s2LGDsmXLMmvWLKavXk0pnaIvUnhcOuW/1tKl/Lx3L++++y5FihRh5cqV1KtXj6effppTp05ZXWWh5Gg8cAxFyYwjIKnlyA1cqVvNZrNp3JEV4uM5v3Ahrw4fTs2aNfn666/x9vbmscce448//uC2225LXU+n6IsULpc+896RkQwdOpStW7fStWtXkpOTeeONN6hevTpTp07Fvn+/TvkvQFdqOYJ/j7NqOXIDV+pWA52xVtBSJk7kk4oVqd6xI8NffZWzZ8/SsmVLNm7cyLhx4wgNDbW6RBFxERUqVGDOnDnMmzePqKgojhw5wgMPPECzyEh+1in/BSY34UgtR27gSt1qoHBUUIwxfP/JJzQcOJA+xrAfKA98bLPx02efUbduXatLFBEXZLPZ6NKlC7/99htvjBhBUWAd0AroYrezaeBAtSDls5yEI0cjhFqO3MCVutVA4agg/PLLL9x888106tOHzUAo8CqwA+htDLY//7S2QBFxeX5+fjzVrh07gIGAN7AAaGC3c0/fvuzcudPaAj1YTsYcqeXIjeSkW01jjvLP8uXLadeuHS1btmTJkiX4+fkxDPgTeAYIgtQz0XSKvojkRFQUZb28mABsA3pdWvz5kiXUrFmTBx98kB07dlhYoGdSy5GHUbdaAYuPxyxZwo+ff07r1q1p06YNS5YswdfXlwEDBrB9+3b+N2kSJR0zXOsUfRHJjYgI+Ogj8PYmCpjh7U3cCy/QuXNnUlJSmDJlCjVr1qRXr15s3rxZ12rLI+445sjH6gJcmbrVCo594kTmDRrEa8aw8tIyPz8/YmJieOaZZ4iMjExdGBMDHTqkznxbrZqCkYjkzmXfIfUjIpgPrF69mv/+97/MmzePmTNnMnPmTLoBI4CmXl6poUpTglyV3LQcuUo4UstRNnJztpq61a7OuXPnmPDqq9QcOJDul4JRAPCIzcafP//M+PHj/w1GDjpFX0SuRSbfIc2aNWPu3Lls2rSJu7t2xQbMJXVCyTZ2O3MGDkydAkByLTdjjtSt5gZy0nLk2NlqOcqdY8eOMWrUKCpWrMjg4cPZARQDngV2A+8YQ4QCp4gUsHr16jFz2DC2Af1I7V5ZDnS326neogXvvfeevu9zyR271RSOsqExR3kkTb/9hg0b6N+/P5GRkYwePZrjx49TqUIF3rbZOAC8AoSDBlqLiHWioqju5cUUYA+pJ4AUA3YdPMgjjzxChQoVeOaZZzhw4EDq+hqblC0NyPYwGnOUB2JjOVexIlNvuommFSrQqFEjYmNjOX/+PI0bN2bmzJns3L2bRydOpIgGWouIK0gzcDsCeNXbmwPvvcd7771HtWrVSEhI4PXXX6dSpUp0b9CA+RUrkqJJJbPk6FZTy5GH0Jija7N58WKe7N+f8sbwALCW1Ctm39O9OytWrGDNmjXcfffd+Pj4OK+LpGuhiYhLuOw7qcjDD/Pwww+zfft25syZQ9u2bbHb7czZtImuxlAZGGO3E69JJTNwNB7k5NpqajlyAznpVtOYo/SOHDnC2LFjqV+/PvXat2cscBKIJLXLLB747PHHadmyZcbQqYHWIuJKMvlO8vLyolu3bixZsoRtU6cyDCgBHABGApF2Ox169GDatGm60O0lGnPkYdStlo00fexHjx5l4sSJdOzYkfLly/Pkk0/y66+/4uvry+2knvHxJ6mDrctoLJGIeIga7drxPy8vDgLTgdaAHVi0fj39+vUjLCyMnj178u2333L+/PlCOzbJHcccaZ6jbOjCs1mIjWX3gAHMNoZZwC82W7o3dPPmzenTpw933303JWbNgkGDICVFY4lExLNcGpsUMGgQ96akcK+3N3+++CKfXbzI9OnT2b59O1988QVffPEFRfz96XThArcBXWw2QidOLBTDB4wxbnn5EIWjbOSkWy0kJATA45tPjTFs3ryZWdOmMeutt9ic/kYa1a1Lj549ufPOO7nuuuv+vU2TNoqIJ7vsO65qRATPA8899xxxcXFMnz6dmZ99xsEjR/gS+BLwNYab+vfntmPH6N6vH+Hh4RZvRP45e/YsKSkpAISGhma5nlqO3EhOutWKFSsGwMmTJwuipPwXHw87d0JUFCnh4axatYpZs2Yxe/Zsdu/e7VzNG7gR6AHcBlR4++3UvvnMREQoFImI58rkO85ms9GwYUMaNmzIm126sL5dO2YBs0m9rttCYOH//R9DRoygadOmdO3ala5du1K3bt3UoJDmu9idvz8dx0YfHx+CgoKyXE8tR24kJ91qxYsXByAhIQFjTLbrurzYWP4ZMIAfjGEeMC8khKNpWsQCAgJo36oVPX74gW7GUNJxg8YRiYhkyXbddTT28qKx3c7LwHZgls3G7Pr1WRMXx+rVq1m9ejXPPfccERERdK1ala4//cRNxhDo5pcuSUhIAFKPldkdH10tHGlAdjZy0q3maDlKSkpKHXDnqrIZCLh3717ee+klOvbvT0lj6AHEAkdPnaJYaCj3338/X3/9NcePH+fbRYvoN3GiLv4qIpJTaeZNAqju7c2zEyeyeuNG4uPj+eijj7j11lsJDAwkPj6eD5cvp+ul/4B2s9uZMGAA8evWZf7YLj7I2xGOHMfKrKhbzY3k9Gw1b29vUlJSOHnyJIGBgQVVXs7FxsLAgWC3c95mY+Mzz7C6dGnWrFnD6tWr2X/Z9YKqAN2ArkDrr77C9+ab0z+exhGJiOROFt+b5cuXZ8CAAQwYMIBz586x7O23mTd8OHNJnR5gHjDPGGjShPr169O+fXtatWpFixYtUk94ufTdjou2MDm61a4Ujlyt5UjhKBs56Vaz2WwUK1aMEydOkJCQQLly5QqqvCsyxrD7l19YPWAAa4xhNbDJGJJffTXdet7e3tzQqBFd166lqzHUAGypN0CNGpk/uMYRiYjkzhW+NwMDA+l0//10GjGC9+x2fuNSOAJW2Wxs2rSJTZs28frrrwNQC2gONAWa2u1cP3Ag3h06uNR3c9puteyo5ciN5KRbDXCGI0sGZacZtGcvV46NGzeycOFCZx/28ePHM9ylDNCsRQuade1Ks2bNaNSoEUWLFk1tYdJp9yIi1rnUBWcbNIg6KSnU8fZm+IQJ/HXrrXz//ff89NNP/Pzzz/zxxx/8DvwOTLp01yJ2O41vvZWmHTrQtGlTmjZt+u+ZcBYN8FbLkQfKSbca/LvTHQk5N49/7Ngx/Pz8KFGiRO4LvGwA9fzQUI4kJqZbxc/PjwZJSTQD50+klxe2mTMzfkDUXSYiYr1MvotLA71796Z3794A/PXrr6xs0IDVxrAGWAf8AyyNi2NpXJzzoSpUqEDTMmW4ZeNGbjOGMlfR/WaM4cSJE9hsNkqWLHnlO6ThrmOONCA7GznpVoP0Z6zlVGxsLJUqVSI8PJySJUtSo0YNxowZw549e1JXyGaQ3Z49e3j3xRczDKA+kphIkeBgbr/9dsaNG8fq1as5deoUqydNYpy3N72ASt7e2D76KOvgo0t4iIhY7wrfxaXr1aP7xIm84u3NEiDBy4vNo0YxceJE+vfvT506dfDy8uLAgQN8tWEDg4whHGhrt/P+gAEczMEA723btvHcc89RpUoVSpcuTalSpahbty5Lly7N8WbktFtNLUduJDfdapDDuY7i43nh//6PFz/5JN3i7du3M3LkSEaOHMkN1apxx59/0tgYStlsnHv+eXbWqsWKFStYsmQJW7duTXfftAOoW33zDf7t26d/TrUIiYh4njTf7d7VqlEnIoI6QP/+/YHUKzesnziRX4YNYzawHlgGLDOGoU2aEB0dTadOnWjYsCHVqlXD99tvOfDCC6wyhm+BjZk85ZYtW2jXrh2zJk6ke5UqV+ymy223mqu0HCkcZSPPu9ViY1k8YAAvXtr5Y7p35z+ff8758+eZO3cu06ZNY8mSJfyyaxe/OO5jDIwZk+5hvL29adm4MV3XrKGrMVQnzQDq66/P/Lk1gFpExPNk891epEgR2tx1F22eeooRdjt7gW+Ar4DVNhsbNmxgw4YNWT60D9Dx5pu5v39/unbtyrlz53jsscf47LPPuKd/f34Dqlyhmy633Wqu0nKkbrVs5LZb7eTmzVnPNREfz8UBAxh8KRg9DDw/bx4Bx49TrFgxevfuzQ8//MCBzz/nf6S2AkUCxYEwoHGNGjz88MN88cUX/PXXXyxbtYqnJk6khrf3v8FIA6hFRCStNHMsVQKGeXuzctIkDh8+zKRJk+jbty8NGzakZEgIoUAN4E5SB3kfAuaOGEHPnj0JDg6mVKlSTPvvf2kNnAOegdRpBAYNyvLYl3D0KADFrxB61K3mRpwtR0eOpO74LIJHsV27AEj48kv4+uvMU/TOncwwht1AaeA1SD0rbNeudI9bvkULhnl5MSztG8TbGxYv1gBqERHJvUyOFWFATEwMMY5jVXw8REamhh2HTK5+4LNnD+8C9UltgdoE1M/kWAZAbCwnV60CoNjQoeDvn2ULk+3iRQDMsWPXuLF5Qy1H2TDr1wPgNX9+6psmNjbjSvHxFJs9G4AEyDJFm2rVePPS708AwZD5ZTcum0n1ii1CGkAtIiJXcqVjRU6PPVFR1PHy4q5Lf453rHv5sSw+HgYOTD0uAsWMybqFKTYWrz/+AMB+332ZH2sLWOEORwcPZn1bfDz2OXOASy9SVk2HO3dS/FJXmXM4tiNFp7Hp+HE2A/7AYMg+9MTEwN69qWcM7N3rcjOeioiIB8rJsedSiBpyqRtsOpD41lsZj2U7d4Ld7jwuFodMj42OEOUYvGKyC1GQ/XE7DxXqcLTy+uuzTqg7d2K/FHqcI44y27FRURS/NCbpb8eyTFL0tGnTAOjetSvFcxJ61CIkIiIFLSfHnpgYWu3dS42KFTkLzMlssHVUFBdtNhyXLi8GmbcwXQpRjjBih8yPtQCxsXyV1UlHeaxQh6ONkHVCjYrCcUKh80XKohuszHPPAXDMsc5lLULGGL788ksAeg8apNAjIiJuzVahAnf36wfgPL6lExHBX2+8AaQeQ0t6eWXZTYeXl/M4ayDbbrqFebgN2SnU4QjIOqFGRGDv0gW49CJl0w1WZuBAAI55eWHfvTtDi9DmzZs5dOgQQUFB3Hz5RVxFRETc0F13pY48WrhwIadOncpw+9F27QAoVbw43vv2ZdtN5+ihsWcVoi61MBUUhaPMEuol9rp1AbDdcUe23WBlypQBIMVu52RwcIbbv/vuOwDatm1LQEBAHhQtIiJirVq1ahEVFUVSUhI//vhjhtuPXjqNP+xK8+zFxODVoAEAZtKkzI+1l1qYCorCUTZngjlnyK5YMdsd6+fn55zryPFmSMsRjjp16nSt1YqIiLgEm81Gx44dgdTWo8sdu3RaflhY2JUfy98fAHtW1xl1nE1XQAp3OHr66WwHRed0hmz4t/Xo8nCUmJjIL7+kznetcCQiIp7EEY6+//77DJf+cLYc5SAc5ejyITEx0LXrVVaaO4U7HIWGZntzTmfIBihXrhwAhw4dSrf8hx9+ICUlheuuu44qVapcZaEiIiKup3Xr1vj5+bFv3z527NiR7raDl067L1u27BUfJ8eXDwkKurpCc6lwh6MryOmFZwEqVKgAwP79+9MtV5eaiIh4quDgYG688UYgtfUorQMHDgBQsWLFKz6Oq10+ROEoG7npVnPs/LThyBjjfLMoHImIiCfq0KEDkHHckeN4mJtwlG23Wg5uzysKR9nITbeao+XIkZQBtmzZwsGDBwkMDKR169b5U6SIiIiFHOOOli1bxrlz55zLHcdDx/ExOznuVisgCkfZyE23WmRkJAC7d+92LnN0qbVp00an8IuIiEeqVasW5cuX59y5c/z0008AnD17liNHjgD/Hh+zk9OWo4LiEuFo/PjxVK5cmYCAAKKjo1mxYkW26y9fvpzo6GgCAgKoUqUKH374Yb7UlZtutRo1agCwa9cuLl66urDGG4mIiKez2Wx07twZgAULFgCwfft2AEqWLEmpUqVy9BigliOnmTNn8vjjjzNixAji4uJo1aoVnTp1yjCw2WHPnj107tyZVq1aERcXx//93//x6KOP8vXXX+d5bbntVgsKCiI5OZndu3dz/PhxZ8jrcmmmbREREU/kCEfz58/HGMMff/wBQM2aNXN0f7UcXWbs2LHExMTQv39/atasybhx46hQoQIffPBBput/+OGHVKxYkXHjxlGzZk369+/Pgw8+yJtvvpnnteWmW83Ly8vZerR582bmzJmD3W6nfv36OoVfREQ8Wrt27fDz8+PPP/9ky5YtbN68Gch5OFLLURpJSUls2LCB9u3bp1vevn17Vq5cmel9Vq1alWH9Dh06sH79epKTk/O0vtx0qwE0a9YMgJ9//pmvvvoKgDvuuCNPaxIREXE1RYsWpeulCRqnTJni7Dlp3rx5ju7vai1HPlY++fHjx0lJSckwe2ZYWJhzINfljhw5kun6Fy9e5Pjx44SHh2e4z4ULF7hw4YLz78TERADOnTuX6cXyHM6fP++8f3brOTRq1AiAt99+27msU6dOObqviIiIO+vVqxfffPMN48aNcy6rX79+jo6BKSkpAJw5cybb9R2NIPkeooyFDh48aACzcuXKdMtfeuklU7169UzvExUVZV5++eV0y37++WcDmMOHD2d6n5EjRxpAP/rRj370ox/9eMDPn3/+mTdBJAuWthyVKlUKb2/vDK1Ex44dy/JaLGXLls10fR8fH0qWLJnpfYYPH86wYcOcfyckJBAZGcn+/fsJvcIlRDzJqVOnqFChAgcOHCAkJMTqcgqMtlvbXRhou7XdhUFiYiIVK1akRFYXqM0jloYjPz8/oqOjWbx4MT169HAuX7x4Md27d8/0Ps2bN2fu3Lnpli1atIhGjRrh6+ub6X38/f3xv3TF37RCQ0ML1ZvKISQkRNtdiGi7Cxdtd+FSWLc7p2OBr/rx8/XRc2DYsGFMmjSJyZMns23bNp544gn279/P4MGDgdRWnz59+jjXHzx4MPv27WPYsGFs27aNyZMnExsby1NPPWXVJoiIiIgHsbTlCKBnz56cOHGCMWPGcPjwYWrXrs2CBQucM2oePnw43ZxHlStXZsGCBTzxxBO8//77lCtXjnfeeUdnhYmIiEiesDwcAQwZMoQhQ4ZketvUqVMzLGvdujUbN2686ufz9/dn5MiRmXa1eTJtt7a7MNB2a7sLA213/m63zRgXmVRARERExAVYPuZIRERExJUoHImIiIikoXAkIiIikobCkYiIiEgaHhuO/vvf/9KiRQuCgoIoVqxYju5jjGHUqFGUK1eOwMBA2rRpw++//55unQsXLvDII49QqlQpgoODufXWW4mPj8+HLbg6J0+epHfv3oSGhhIaGkrv3r1JSEjI9j42my3TnzfeeMO5Tps2bTLc3qtXr3zempy7mu3u169fhm1yXDzYwdP2d3JyMs888wx16tQhODiYcuXK0adPHw4dOpRuPVfb3+PHj6dy5coEBAQQHR3tvKhlVpYvX050dDQBAQFUqVKFDz/8MMM6X3/9Nddffz3+/v5cf/31zJo1K7/Kv2q52e5vvvmGW265hdKlSxMSEkLz5s1ZuHBhunWmTp2a6WfdcR1JV5Gb7V62bFmm2/THH3+kW8/T9ndm3182m41atWo513H1/f3TTz/RrVs3ypUrh81mY/bs2Ve8T4F9tvP14iQWeuGFF8zYsWPNsGHDTGhoaI7u8+qrr5qiRYuar7/+2mzZssX07NnThIeHm1OnTjnXGTx4sClfvrxZvHix2bhxo2nbtq2pV6+euXjxYj5tSe507NjR1K5d26xcudKsXLnS1K5d23Tt2jXb+xw+fDjdz+TJk43NZkt37ZrWrVubAQMGpFsvISEhvzcnx65mu/v27Ws6duyYbptOnDiRbh1P298JCQnm5ptvNjNnzjR//PGHWbVqlWnatKmJjo5Ot54r7e/PP//c+Pr6mokTJ5qtW7eaxx57zAQHB5t9+/Zluv7u3btNUFCQeeyxx8zWrVvNxIkTja+vr/nqq6+c66xcudJ4e3ubl19+2Wzbts28/PLLxsfHx6xevbqgNuuKcrvdjz32mHnttdfM2rVrzY4dO8zw4cONr6+v2bhxo3OdKVOmmJCQkAyfeVeS2+1eunSpAcz27dvTbVPaz6gn7u+EhIR023vgwAFTokQJM3LkSOc6rr6/FyxYYEaMGGG+/vprA5hZs2Zlu35BfrY9Nhw5TJkyJUfhyG63m7Jly5pXX33Vuez8+fMmNDTUfPjhh8aY1Dejr6+v+fzzz53rHDx40Hh5eZnvv/8+z2vPra1btxog3Ztg1apVBjB//PFHjh+ne/fu5qabbkq3rHXr1uaxxx7Lq1Lz1NVud9++fU337t2zvL2w7O+1a9caIN2XsCvt7yZNmpjBgwenW1ajRg3z7LPPZrr+008/bWrUqJFu2aBBg0yzZs2cf999992mY8eO6dbp0KGD6dWrVx5Vfe1yu92Zuf76683o0aOdf+f0+9BKud1uRzg6efJklo9ZGPb3rFmzjM1mM3v37nUuc4f97ZCTcFSQn22P7VbLrT179nDkyBHat2/vXObv70/r1q1ZuXIlABs2bCA5OTndOuXKlaN27drOday0atUqQkNDadq0qXNZs2bNCA0NzXF9R48eZf78+cTExGS4bfr06ZQqVYpatWrx1FNPcfr06Tyr/Vpcy3YvW7aMMmXKcN111zFgwACOHTvmvK0w7G9IvZCjzWbL0P3sCvs7KSmJDRs2pNsHAO3bt89yG1etWpVh/Q4dOrB+/XqSk5OzXccV9itc3XZfzm63c/r06QwX6Pznn3+IjIwkIiKCrl27EhcXl2d1X6tr2e4GDRoQHh5Ou3btWLp0abrbCsP+jo2N5eabb3ZeXcLBlfd3bhXkZ9slZsh2BUeOHAEgLCws3fKwsDD27dvnXMfPz4/ixYtnWMdxfysdOXKEMmXKZFhepkyZHNc3bdo0ihYtyu23355u+X333UflypUpW7Ysv/32G8OHD+fXX39l8eLFeVL7tbja7e7UqRN33XUXkZGR7Nmzh+eff56bbrqJDRs24O/vXyj29/nz53n22We5995701280lX29/Hjx0lJScn0c5nVNh45ciTT9S9evMjx48cJDw/Pch1X2K9wddt9uf/973+cOXOGu+++27msRo0aTJ06lTp16nDq1CnefvttbrjhBn799VeioqLydBuuxtVsd3h4OB999BHR0dFcuHCBTz75hHbt2rFs2TJuvPFGIOv3hKfs78OHD/Pdd9/x2WefpVvu6vs7twrys+1W4WjUqFGMHj0623XWrVtHo0aNrvo5bDZbur+NMRmWXS4n61yLnG43ZKwfclff5MmTue+++wgICEi3fMCAAc7fa9euTVRUFI0aNWLjxo00bNgwR4+dW/m93T179nT+Xrt2bRo1akRkZCTz58/PEA5z87jXqqD2d3JyMr169cJutzN+/Ph0t1mxv7OT289lZutfvvxqPusF7WprnDFjBqNGjeLbb79NF6CbNWuW7qSDG264gYYNG/Luu+/yzjvv5F3h1yg32129enWqV6/u/Lt58+YcOHCAN9980xmOcvuYVrnaGqdOnUqxYsW47bbb0i13l/2dGwX12XarcDR06NArnjFTqVKlq3rssmXLAqnJNDw83Ln82LFjzhRatmxZkpKSOHnyZLrWhGPHjtGiRYuret6cyOl2b968maNHj2a47a+//sqQpDOzYsUKtm/fzsyZM6+4bsOGDfH19WXnzp35drAsqO12CA8PJzIykp07dwKevb+Tk5O5++672bNnD0uWLEnXapSZgtjfmSlVqhTe3t4Z/teX9nN5ubJly2a6vo+PDyVLlsx2ndy8X/LT1Wy3w8yZM4mJieHLL7/k5ptvznZdLy8vGjdu7HzPW+1atjutZs2a8emnnzr/9uT9bYxh8uTJ9O7dGz8/v2zXdbX9nVsF+tnO1QglN5TbAdmvvfaac9mFCxcyHZA9c+ZM5zqHDh1yuQG6a9ascS5bvXp1jgfo9u3bN8NZS1nZsmWLAczy5cuvut68cq3b7XD8+HHj7+9vpk2bZozx3P2dlJRkbrvtNlOrVi1z7NixHD2Xlfu7SZMm5qGHHkq3rGbNmtkOyK5Zs2a6ZYMHD84waLNTp07p1unYsaPLDdDNzXYbY8xnn31mAgICrjiw1cFut5tGjRqZBx544FpKzVNXs92Xu+OOO0zbtm2df3vq/jbm3wHpW7ZsueJzuOL+diCHA7IL6rPtseFo3759Ji4uzowePdoUKVLExMXFmbi4OHP69GnnOtWrVzfffPON8+9XX33VhIaGmm+++cZs2bLF3HPPPZmeyh8REWF++OEHs3HjRnPTTTe53KnddevWNatWrTKrVq0yderUyXBq9+XbbYwxiYmJJigoyHzwwQcZHnPXrl1m9OjRZt26dWbPnj1m/vz5pkaNGqZBgwZuu92nT582Tz75pFm5cqXZs2ePWbp0qWnevLkpX768R+/v5ORkc+utt5qIiAizadOmdKf3XrhwwRjjevvbcYpzbGys2bp1q3n88cdNcHCw86ycZ5991vTu3du5vuN03yeeeMJs3brVxMbGZjjd95dffjHe3t7m1VdfNdu2bTOvvvqqy57andPt/uyzz4yPj495//33s5yCYdSoUeb77783f/75p4mLizMPPPCA8fHxSRewrZbb7X7rrbfMrFmzzI4dO8xvv/1mnn32WQOYr7/+2rmOJ+5vh/vvv980bdo008d09f19+vRp57EZMGPHjjVxcXHOM2et/Gx7bDjq27evATL8LF261LkOYKZMmeL82263m5EjR5qyZcsaf39/c+ONN2ZI4+fOnTNDhw41JUqUMIGBgaZr165m//79BbRVV3bixAlz3333maJFi5qiRYua++67L8MprpdvtzHGTJgwwQQGBmY6l83+/fvNjTfeaEqUKGH8/PxM1apVzaOPPpphTiAr5Xa7z549a9q3b29Kly5tfH19TcWKFU3fvn0z7EtP29979uzJ9HOR9rPhivv7/fffN5GRkcbPz880bNgwXQtW3759TevWrdOtv2zZMtOgQQPj5+dnKlWqlGno//LLL0316tWNr6+vqVGjRrqDqavIzXa3bt060/3at29f5zqPP/64qVixovHz8zOlS5c27du3NytXrizALcqZ3Gz3a6+9ZqpWrWoCAgJM8eLFTcuWLc38+fMzPKan7W9jUlu3AwMDzUcffZTp47n6/na0emX1nrXys20z5tJoJhERERHx3MuHiIiIiFwNhSMRERGRNBSORERERNJQOBIRERFJQ+FIREREJA2FIxEREZE0FI5ERERE0lA4EhEREUlD4UhEREQkDYUjERERkTQUjkTEo4wZM4Y6deoQHBxMWFgYDz30EMnJyVaXJSJuxMfqAkRE8ooxhpSUFCZMmED58uXZunUrffr0oW7dujz00ENWlycibkIXnhURj3bvvfdSunRp3n77batLERE3oW41EfEY+/btY+jQodSuXZvixYtTpEgRvvjiCyIiIqwuTUTciMKRiHiE48eP06RJE44fP87YsWP5+eefWbVqFd7e3tSvX9/q8kTEjWjMkYh4hAULFnDx4kVmzJiBzWYD4P333ycpKUnhSERyReFIRDxCiRIlOHXqFHPmzOH6669n7ty5vPLKK5QvX57SpUtbXZ6IuBENyBYRj2CM4aGHHuKzzz4jMDCQ+++/n/Pnz7Nv3z7mzZtndXki4kYUjkRERETS0IBsERERkTQUjkRERETSUDgSERERSUPhSERERCQNhSMRERGRNBSORERERNJQOBIRERFJQ+FIREREJA2FIxEREZE0FI5ERERE0lA4EhEREUlD4UhEREQkjf8HePn3v+IQ9icAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6zUlEQVR4nO3dd3gU5drH8e9m00OvAQIBBAHpBKkiRbogdpSuASmCCq/nCKI0PWJFjkdAShBUUGzYQASUIhKlBVCKBqlRioCEDkn2ef8Iu2ZJIYGE2d38PteVC3Yyu3vPzu7Onft+5hmbMcYgIiIiIgD4WR2AiIiIiCdRciQiIiKShpIjERERkTSUHImIiIikoeRIREREJA0lRyIiIiJpKDkSERERSUPJkYiIiEgaSo5ERERE0lByJF7hzz//ZNy4cWzevDnd7/r160eBAgWu+rEvXrzIoEGDKFOmDHa7nXr16l19oLlg6tSpzJkzJ93yvXv3YrPZMvydL7HZbIwbN87qMHLFuHHjsNlseX7f//3vf1SpUoXAwEBsNhsnTpygX79+VKxY0W29F154gc8+++yq4snK8ePHeeCBByhVqhQ2m40777wzx49RsWJF+vXrl+uxeZIDBw5w1113UblyZcLCwihcuDD169fnzTffJDk5Od36n3zyCc2bN6dYsWIUKVKERo0a8e6771oQef7jb3UAItnx559/Mn78eCpWrJjrycu0adOYPn06//vf/4iKirqmRCs3TJ06lRIlSqQ7UJQpU4bY2FhuuOEGawKTHOvfvz8dO3bM0+fYvHkzjz32GP3796dv3774+/tTsGBBnn32WR5//HG3dV944QXuvffeq0pesvLcc8+xcOFCZs+ezQ033ECxYsVy9fF9xZkzZyhUqBDPPvssFSpU4OLFiyxevJhhw4axefNmZs2a5Vp39uzZREdHc8899/DMM89gs9mYO3cuffr04ejRowwfPtzCLfF9So4k3/vll18ICQlh6NChVoeSpaCgIJo0aWJ1GJIDERERRERE5OlzbNu2DYABAwbQqFEj1/LrmUT/8ssv3HDDDfTs2fO6PWduOXv2LKGhodfluapXr87cuXPdlnXq1IkjR44wd+5cpkyZQlBQEJCaHEVGRvLhhx/i55fa5OnQoQObN29mzpw5So7ymNpq+dBff/3FI488Qvny5QkKCqJkyZI0b96c5cuXu9Zp1aoVtWrVIjY2lmbNmhESEkLFihV5++23AVi0aBENGjQgNDSU2rVrs2TJknTPs2bNGm677TYKFixIaGgozZo1Y9GiRenW++WXX+jWrRtFixYlODiYevXquX2BrFy5kptvvhmAhx56CJvNlmHrZdeuXXTu3JkCBQpQvnx5/u///o8LFy5k+VrYbDZmzZrFuXPnXI87Z86cLFtYlz+3s/2xbds2HnzwQQoXLkzp0qV5+OGHSUxMdLuvw+Hgf//7H/Xq1SMkJIQiRYrQpEkTvvjiCyC1tbBt2zZWrVrlisfZGskspuy8znPmzMFms7FixQoGDx5MiRIlKF68OHfffTd//vlnlq9RVipWrEiXLl1YuHAhderUITg4mMqVK/PGG2+kW3f//v306tWLUqVKERQURI0aNXjttddwOByZPv7evXvx9/dn4sSJ6X63evVqbDYbH330EZCz/XD+/HlGjRpFpUqVCAwMpFy5cjz66KOcOHEiw+376quvqF+/PiEhIdSoUYOvvvoKSH1da9SoQVhYGI0aNWLDhg1u98+oNbZgwQLat29PmTJlXI83cuRIzpw5k/kLnYlWrVrRq1cvABo3bozNZnNVHC9vq9lsNs6cOcPcuXNd761WrVpl+fjHjx9nyJAhlCtXjsDAQCpXrszo0aNdnyvne3L58uXs2LHD9bgrV67M9DGTkpL497//TXh4OKGhodxyyy2sW7cuw3UPHTrEwIEDiYiIIDAwkEqVKjF+/Ph0LaiEhATuvfdeChYsSJEiRejZsyfr169P93lxtuB//vln2rdvT8GCBbntttuA1Pb6888/T/Xq1V3fiw899BB//fVXurgWLFhA06ZNCQsLo0CBAnTo0IG4uLgsX8uslCxZEj8/P+x2u2tZQEAABQoUcCVGkLoPCxUqRHBw8FU/l2STkXynQ4cOpmTJkmbGjBlm5cqV5rPPPjNjxowxH3zwgWudli1bmuLFi5tq1aqZmJgY880335guXboYwIwfP97Url3bvP/++2bx4sWmSZMmJigoyPzxxx+u+69cudIEBASYqKgos2DBAvPZZ5+Z9u3bG5vN5vY8O3fuNAULFjQ33HCDeeedd8yiRYvMgw8+aADz0ksvGWOMSUxMNG+//bYBzDPPPGNiY2NNbGysOXDggDHGmL59+5rAwEBTo0YN8+qrr5rly5ebMWPGGJvNZsaPH5/laxEbG2s6d+5sQkJCXI975MgRs2fPHgOYt99+O919ADN27FjX7bFjxxrAVKtWzYwZM8YsW7bMTJo0yQQFBZmHHnrI7b69e/c2NpvN9O/f33z++efm66+/Nv/5z3/Mf//7X2OMMZs2bTKVK1c29evXd8WzadMmY4zJMKbsvs7O169y5cpm2LBh5ptvvjGzZs0yRYsWNa1bt3aL0bluRtt+ucjISFOuXDlToUIFM3v2bLN48WLTs2dPA5hXXnnFtd6RI0dMuXLlTMmSJc1bb71llixZYoYOHWoAM3jw4Cxf37vuustUqFDBJCcnu6133333mbJly5qkpKQc7QeHw2E6dOhg/P39zbPPPmuWLl1qXn31VRMWFmbq169vzp8/77Z9ERERplatWq73e+PGjU1AQIAZM2aMad68ufn000/NwoULzY033mhKly5tzp4967q/M6a0nnvuOfP666+bRYsWmZUrV5q33nrLVKpUKd1+yOi+l9u2bZt55plnXPsrNjbW7Nq1yxiT+rmIjIx0rRsbG2tCQkJM586dXe+tbdu2ZfrY586dM3Xq1DFhYWHm1VdfNUuXLjXPPvus8ff3N507dzbGGHP+/HkTGxtr6tevbypXrux63MTExEwft2/fvsZms5l//etfZunSpWbSpEmmXLlyplChQqZv376u9Q4ePGjKly9vIiMjzfTp083y5cvNc889Z4KCgky/fv1c650+fdpUqVLFFCtWzEyZMsV88803Zvjw4aZSpUrp3sd9+/Y1AQEBpmLFimbixInm22+/Nd98841JSUkxHTt2NGFhYWb8+PFm2bJlZtasWaZcuXLmpptuctun//nPf4zNZjMPP/yw+eqrr8ynn35qmjZtasLCwrJ8PdNyOBwmKSnJHD9+3HzwwQcmLCzMjBo1ym2dTz75xPj5+Znnn3/eHDlyxPz111/mlVdeMXa73Xz44YfZeh65ekqO8qECBQqYJ554Ist1WrZsaQCzYcMG17Jjx44Zu91uQkJC3BKhzZs3G8C88cYbrmVNmjQxpUqVMqdOnXItS05ONrVq1TIRERHG4XAYY4x54IEHTFBQkNm/f7/b83fq1MmEhoaaEydOGGOMWb9+faYH7L59+xog3RdG586dTbVq1a7waqTePywszG3Z1SRHL7/8stt6Q4YMMcHBwa5tXb16tQHM6NGjs4ynZs2apmXLlumWZxRTdl9nZ8IzZMgQt8d8+eWXDWAOHjzoWjZ37lxjt9vN3Llzs4zTmNTkwWazmc2bN7stb9eunSlUqJA5c+aMMcaYkSNHGsD89NNPbusNHjzY2Gw28+uvv7qWXf76rlixwgBm4cKFrmV//PGH8ff3d0t+s7sflixZkuF6CxYsMICZMWOG2/aFhISYhIQE1zLn+71MmTKu7TPGmM8++8wA5osvvkgXU2acB8lVq1YZwGzZsiXb93Vy7tv169e7Lb88OTLGmLCwMLcEJCtvvfVWhp+rl156yQBm6dKlrmUtW7Y0NWvWvOJj7tixwwBm+PDhbsvnzZtnALfYBg4caAoUKGD27dvntu6rr75qAFciMmXKFAOYr7/+2m29gQMHZpgcAWb27Nlu677//vsGMJ988onbcuf3ztSpU40xxuzfv9/4+/ubYcOGua136tQpEx4ebu6///4rvgbGGDNx4kQDGMDYbLZMvxM+++wzU7hwYde6ISEh5r333svWc8i1UVstH2rUqBFz5szh+eef58cffyQpKSnD9cqUKUNUVJTrdrFixShVqhT16tWjbNmyruU1atQAYN++fUDqoMOffvqJe++9121ws91up3fv3iQkJPDrr78C8N1333HbbbdRvnx5t+fu168fZ8+eJTY2NlvbZLPZ6Nq1q9uyOnXquGK6Hu644450z3/+/HmOHDkCwNdffw3Ao48+mivPl5PXOasYAbfXqU+fPiQnJ9OnT59sxVGzZk3q1q3rtqxHjx6cPHmSTZs2Aan7+aabbnIbEwOp+9kYw3fffZfp47dq1Yq6desyZcoU17K33noLm83GI488km79K+0H53NdPuD9vvvuIywsjG+//dZteb169ShXrpzrtvP93qpVK7exKpd/DjKze/duevToQXh4OHa7nYCAAFq2bAnAjh07srzv9fTdd98RFhbGvffe67bc+bpd/jplx4oVKwDSjU26//778fd3HwL71Vdf0bp1a8qWLUtycrLrp1OnTgCsWrXK9W/BggXTDXx/8MEHM43jnnvuSfdcRYoUoWvXrm7PVa9ePcLDw11twm+++cb12Ui7XnBwMC1btsyynZhWv379WL9+Pd988w3//ve/eeWVVxg2bJjbOkuWLKFXr17cfffdfP311yxbtoz+/fvTr18/1/AGyTsakJ0PLViwgOeff55Zs2bx7LPPUqBAAe666y5efvllwsPDXetldMZJYGBguuWBgYFA6jgOgL///htjDGXKlEl3f2dSdezYMde/2VnvSkJDQ9P14YOCglwxXQ/FixdP9/wA586dA1LHetntdrfX+Frk5HXOboxXI6PtcS5Lu58vP608qzgv5zwb69dff6Vy5crMnDmTe++9N8PnvtI2Hjt2DH9/f0qWLOm2ns1mIzw8PF0smb3fr/Q5yMjp06dp0aIFwcHBPP/889x4442EhoZy4MAB7r777mvaD7nt2LFjhIeHpxszVapUKfz9/bP92bz8MSH9e8bf3z/dfjt8+DBffvklAQEBGT7W0aNHXY9ZunTpdL/PaBmkflcUKlQo3XOdOHHCtQ8ze67Dhw8DuMZAXi7t+KCshIeHu16D9u3bU7RoUUaOHMnDDz9M/fr1Mcbw8MMPc+uttzJ79mzX/dq2bUtiYiLDhg3j/vvvJywsLFvPJzmn5CgfKlGiBJMnT2by5Mns37+fL774gpEjR3LkyJEMB1bnVNGiRfHz8+PgwYPpfucc/FuiRAkg9UCWnfWuN2eidfmA7qs5IDiVLFmSlJQUDh06lGFCk1M5eZ3z0qFDhzJd5jzgXet+7tGjB0899RRTpkyhSZMmHDp06KorcMWLFyc5OZm//vrLLUEyxnDo0KFMD3y54bvvvuPPP/9k5cqVrmoRkG4guCcoXrw4P/30E8YYtwTpyJEjJCcnX9V7y/l+OHTokFs1Ljk5Od1nq0SJEtSpU4f//Oc/GT6WM7EuXrx4hgO6M3pfAhnOHeU8QSGz77+CBQu61gP4+OOPiYyMzHDdq+GsqP7222/Ur1+fw4cPc/DgQQYOHJhu3Ztvvpl33nmHvXv3UrNmzVyLQdyprZbPVahQgaFDh9KuXTtXC+RahYWF0bhxYz799FO3v4QdDgfvvfceERER3HjjjQDcdtttrgNGWu+88w6hoaGuU9dzo8KRE6VLlyY4OJitW7e6Lf/888+v+jGd7YBp06ZluV5QUFC2tjMnr3Ne2rZtG1u2bHFbNn/+fAoWLEiDBg2A1P28ffv2dO+xd955B5vNRuvWrbN8juDgYB555BHmzp3LpEmTqFevHs2bN7+qeJ1nJ7333ntuyz/55BPOnDnj+n1ecB6Yne9np+nTp+fZc6aV3fcWpL5Op0+fTjdp5DvvvOP6fU45z46bN2+e2/IPP/ww3RloXbp0cU0R0LBhw3Q/zuSoZcuWnDp1ytW2dvrggw+yHVeXLl04duwYKSkpGT5XtWrVgNRT6f39/fn9998zXK9hw4Y5fUmAf9qNVapUAXCdufvjjz+mWzc2NhY/P79c+QNLMqfKUT6TmJhI69at6dGjB9WrV6dgwYKsX7+eJUuWcPfdd+fa80ycOJF27drRunVrnnzySQIDA5k6dSq//PIL77//vusgMXbsWNfYgjFjxlCsWDHmzZvHokWLePnllylcuDCQOmdLSEgI8+bNo0aNGhQoUICyZcu6jX3KTTabjV69erkmtatbty7r1q1j/vz5V/2YLVq0oHfv3jz//PMcPnyYLl26EBQURFxcHKGhoa4xB7Vr1+aDDz5gwYIFVK5cmeDgYGrXrp3hY2b3dc6Jd955h4cffpjZs2dna9xR2bJlueOOOxg3bhxlypThvffeY9myZbz00kuuMTnDhw/nnXfe4fbbb2fChAlERkayaNEipk6dyuDBg7OVxA0ZMoSXX36ZjRs3uk2Wl1Pt2rWjQ4cOPPXUU5w8eZLmzZuzdetWxo4dS/369endu/dVP/aVNGvWjKJFizJo0CDGjh1LQEAA8+bNS5dc5pXatWuzcuVKvvzyS8qUKUPBggVdB/7L9enThylTptC3b1/27t1L7dq1WbNmDS+88AKdO3embdu2OX7+GjVq0KtXLyZPnkxAQABt27bll19+4dVXX03X6powYQLLli2jWbNmPPbYY1SrVo3z58+zd+9eFi9ezFtvvUVERAR9+/bl9ddfp1evXjz//PNUqVKFr7/+mm+++QbIXqvrgQceYN68eXTu3JnHH3+cRo0aERAQQEJCAitWrKBbt27cddddVKxYkQkTJjB69Gh2795Nx44dKVq0KIcPH2bdunWEhYUxfvz4TJ9n7NixHD58mFtvvZVy5cpx4sQJlixZwsyZM7nvvvtcYzyDgoIYMmQIkyZNok+fPnTv3h273c5nn33G/PnziY6O1kSbec3K0eBy/Z0/f94MGjTI1KlTxxQqVMiEhISYatWqmbFjx7qdeZPZ2SeRkZHm9ttvT7ccMI8++qjbsu+//960adPGhIWFmZCQENOkSRPz5Zdfprvvzz//bLp27WoKFy5sAgMDTd26dTM8S+z999831atXNwEBAW5nNGV0tpkx2T/bJ7P7JyYmmv79+5vSpUubsLAw07VrV7N3795Mz1b766+/3O7vPItoz549rmUpKSnm9ddfN7Vq1TKBgYGmcOHCpmnTpm6vy969e0379u1NwYIFDeA64yizM+iy8zpndkaT80ywFStWpFs3u6fy33777ebjjz82NWvWNIGBgaZixYpm0qRJ6dbdt2+f6dGjhylevLgJCAgw1apVM6+88opJSUlxW+/y1zetVq1amWLFirmdWu2Uk/1w7tw589RTT5nIyEgTEBBgypQpYwYPHmz+/vvvDLfvchm93537J+0UBhm9B9euXWuaNm1qQkNDTcmSJU3//v3Npk2b0r3meXG22ubNm03z5s1NaGioATI8KzKtY8eOmUGDBpkyZcoYf39/ExkZaUaNGuU23YEx2T9bzRhjLly4YP7v//7PlCpVygQHB5smTZqY2NhYExkZme5Mur/++ss89thjplKlSiYgIMAUK1bMREVFmdGjR5vTp0+71tu/f7+5++67TYECBUzBggXNPffcYxYvXmwA8/nnn7u9Jhl91o0xJikpybz66qumbt26Jjg42BQoUMBUr17dDBw40MTHx7ut+9lnn5nWrVubQoUKmaCgIBMZGWnuvfdes3z58iy3/YsvvjBt27Y1pUuXNv7+/qZAgQKmUaNG5o033nBNSeGUkpJiZs6caRo2bGiKFCliChUqZOrXr2/efPNNc/Hixey81HINbMYYcz2TMRHxHRUrVqRWrVquSRHz0pEjR4iMjGTYsGG8/PLLef584t1eeOEFnnnmGfbv35/ns5SL71FbTUQ8WkJCArt37+aVV17Bz88v3fXCRN58800g9fIcSUlJfPfdd7zxxhv06tVLiZFcFSVHIuLRZs2axYQJE6hYsSLz5s1zO8tJBFJPz3/99dfZu3cvFy5coEKFCjz11FM888wzVocmXkptNREREZE0LD+Vf/Xq1XTt2pWyZctis9nSnTaakVWrVhEVFeW6yOVbb72V94GKiIhIvmB5cnTmzBnq1q3r6hlfyZ49e+jcuTMtWrQgLi6Op59+mscee4xPPvkkjyMVERGR/MCj2mo2m42FCxdy5513ZrrOU089xRdffOF2DaJBgwaxZcuWbF+HS0RERCQzXjcgOzY2lvbt27st69ChAzExMSQlJWV4HZ4LFy64XQbC4XBw/PhxihcvflWT5ImIiMj1Z4zh1KlTlC1bNtvXsrsaXpccHTp0KN0FBUuXLk1ycjJHjx7NcEr1iRMnZjlrqYiIiHiPAwcO5Ok0DV6XHEH6Cwc6O4OZVYFGjRrFiBEjXLcTExOpUKECBw4cSDdlvYh4kT/+IOHHH2n/9NP8cegQRYoUYfDgwdSoUYMffviBWbNmkZKSQuMGDfjs6acJvekm0FQAIl7r5MmTlC9f3nUx4LzidclReHh4uqstHzlyBH9/f9cVny8XFBSU7kKPAIUKFVJyJOKtYmK4MGAAPYzhD6BaeDjf/Pij62rpvXv3pm/fvnRu25afNm1ixL33Ms9mwzZzJkRHWxu7iFyTvB4SY/nZajnVtGlTli1b5rZs6dKlNGzYMMPxRiLigxIS4JFHGGMMW4ASwNIjR4i0291Wa1q+PJ+dO4c/8D7wnjEwcGDq/UVEMmF5cnT69Gk2b97M5s2bgdRT9Tdv3sz+/fuB1JZY2iuDDxo0iH379jFixAh27NjB7NmziYmJ4cknn7QifBGxQnw86xwOXrl0cyZQweGAXbvSrdfSGCZcuvk48FdKSvr1RETSsDw52rBhA/Xr16d+/foAjBgxgvr16zNmzBgADh486EqUACpVqsTixYtZuXIl9erV47nnnuONN97gnnvusSR+Ebn+TJUqPAkYoBdwJ4DdDlWquK9YtSr4+fEvoB7wN/CCzZZ+PRGRNDxqnqPr5eTJkxQuXJjExESNORLxQosWLaJLly4EA/FAhN0O06dnPJYoJgYGDmR5SgrtgAC7nV/j46lUqdJ1jlpErtX1On5bXjkSEckJYwyjR48G4PEhQ4hYsQL27s18kHV0NOzdS9sVK2jXogVJKSk899xz1y9gEfE6qhypciTiVb799lvatm1LaGgoBw4coFixYtm+748//kjTpk0JCAhg3759Gc6LJiKeS5UjEZEMTJo0CYCHH344R4kRQJMmTWjWrBlJSUlMnTo1L8ITER+g5EhEvMbOnTtZvHgxNpuNxx9//KoeY/jw4QBMmzaNc+fO5WZ4IuIjlByJiNeYOXMmAF26dKHKVZ5xduedd1KhQgWOHTvGwoULczM8EfERSo5ExCskJSXx7rvvAjBgwICrfhx/f38eeughAN5+++1ciU1EfIuSIxHxCosWLeKvv/4iPDycTp06XdNj9evXD0gd3L13795rD05EfIqSIxHxCs4qT+/evfH3v7bLQlasWJE2bdpgjGHu3Lm5EZ6I+BAlRyLi8U6cOMHXX38NQN++fXPlMZ2Ps2DBglx5PBHxHUqORMTjffHFFyQlJXHTTTdRs2bNXHnMbt26ERAQwI4dO9i2bVuuPKaI+AYlRyLi8T7++GMA7r333lx7zMKFC9O+fXu3xxcRASVHIuLhEhMT+eabbwC47777cvWxnY/30Ucf5erjioh3U3IkIh7tyy+/5OLFi1SvXj3XWmpOztbatm3b2LFjR64+toh4LyVHIuLRnC2v++67D5vNlquPXaRIEdq1aweoeiQi/1ByJCIe6/z58yxduhSAu+++O0+ew/m4X331VZ48voh4HyVHIuKxVq1axblz5yhXrhx169bNk+fo3LkzAOvXr+fw4cN58hwi4l2UHImIx1q0aBGQmsDkdkvNqUyZMjRo0ACAJUuW5MlziIh3UXIkIh7JGOOWHOUl5+M7n09E8jclRyLikX777Td2795NQEAAbdu2zdPnuv322wFYunQpSUlJefpcIuL5lByJiEdavHgxAC1btqRAgQJ5+lw333wzJUqUIDExkbVr1+bpc4mI51NyJCIeyZkcOas6eclut9OxY0e35xWR/EvJkYh4nPPnz7NmzRoAOnTocF2e0/k8y5cvvy7PJyKeS8mRiHictZ9/zvnz5ylTqhTVq1e/Ls/Zpk0bAOLi4jj++eeQkHBdnldEPI+SIxHxLDExfPfAAwDcduQIttmzr8vTli1blhplymCMYeWdd0JkJMTEXJfnFhHPouRIRDxHQgI88gjfXrrZBmDgwOtTxUlIoM3BgwCpz+9wXL/nFhGPouRIRDxHfDwnHQ7WX7p5G0BKCuzadV2e+7ZL//3Ouex6PbeIeBQlRyLiOapWZZXNRgpQBagAYLdDlSrX5blb2WzYgJ3AH9fzuUXEoyg5EhHPERHBd7el1m/aQGpyMn06RERcl+cuOnMmDS7d/M5mu37PLSIeRcmRiHiUby9d/PW2MWNg716Ijr5+Tx4dzW2DBwPw3b33Xt/nFhGPoeRIRDzGkSNH+PnnnwFoPXSoJVWb2+68E4Bvf/wRY8x1f34RsZ6SIxHxGKtWrQKgdu3alCxZ0pIYmjdvTkBAAAcOHGD37t2WxCAi1lJyJCIe4/vvvwdSr6dmlbCwMBo2bAjgmqVbRPIXJUci4jGcycgtt9xiaRwtWrQA/knWRCR/UXIkIh7h5MmTbNmyBVByJCLWUnIkIh4hNjYWh8NBpUqVKFeunKWxNG/eHIDffvuNw5fOnhOR/EPJkYh4BE9pqQEULVqUWrVqARp3JJIfKTkSEY/gbGE5W1pWU2tNJP9SciQilrt48SI//fQT4BmVI1ByJJKfKTkSEctt2rSJ8+fPU7x4capXr251OMA/ydHmzZs5efKkxdGIyPWk5EhELOesztxyyy3YbDaLo0kVERFBxYoVcTgcxMbGWh2OiFxHSo5ExHKeNBg7LbXWRPInJUfZZIzh9OnTVoch4nMcDocrOfKUwdhOzlP6f/zxR4sjEfFNnjpVhpKjbHrqqacoUqQImzZtsjoUEZ+yc+dOjh8/TkhICPXr17c6HDdNmzYF4KeffiIlJcXiaER8y3//+1/Cw8OZPn261aGko+Qom1555RVSUlL417/+ZXUoIj7FeZbazTffTGBgoMXRuKtZsyYFChTg9OnTbN++3epwRHzKE088AcCgQYOsDSQDSo5y6MyZM1aHIOJT1q1bB0Djxo0tjiQ9u91Oo0aNADQoWyQfUXKUQ0qORHKXMzlyJiGepkmTJoDGHYnkleDgYKtDSEfJUTYYY1z/V3IkknvOnTvH1q1bAc9NjpzjjpQcieSetMfVAgUKWBhJxpQcZcO5c+dc/z9//ryFkYj4ls2bN5OcnEzp0qUpX7681eFkyNnu27FjB3///bfF0Yj4hrRnf6ty5KXSfiH6+eklE8ktzpbazTff7DGTP16uZMmSVKlSBfgnXhG5NmfPnnX9/8KFCxZGkjEd6bMhbXKUtookItfG08cbOTnHHWlQtkjuSHssPXHihFubzRMoOcqGxMRE1/+VHInkHm9JjjTuSCR3pT2WJiUledyQFSVH2XDx4kXX/8+dO+dxGa6INzp+/Di7du0CUttqniztGWsOh8PiaES8X9q2GqQmSJ5EyVE2XL7TPC3DFfFGGzZsAKBKlSoUK1bM4miyVqdOHUJCQkhMTOTXX3+1OhwRr3d5FyZtEcITKDnKhst3mlprItfOW1pqAP7+/q7qlsYdiVy7y4+jqhx5ocuTo8vLgSKSc96UHIHGHYnkpsuPo6oceaHLM1pVjkSujTHG65IjnbEmkntUOfIBaquJ5K4DBw5w+PBh/P39qVevntXhZIuzcrRt2zZOnjxpcTQi3k1jjnzA5Rmt2moi18ZZNapduzYhISEWR5M9pUuXpkKFChhj2LRpk9XhiHg1VY58gCpHIrnL21pqTs54NVO2yLXRmCMfoDFHIrnLW5Mj5xlr69evtzgSEe+mypEP0NlqIrknJSXFNceRtyVHqhyJ5A6NOfIBmgRSJPfs3LmTM2fOEBYWRo0aNawOJ0eioqKw2Wzs37+fw4cPWx2OiNe6/Diq5MgLXb7TPK38J+JNnFWXhg0bYrfbLY4mZwoWLOhK6NRaE7l6nn5c9YjkaOrUqVSqVIng4GCioqL4/vvvs1x/3rx51K1bl9DQUMqUKcNDDz3EsWPH8iy+y3eap2W4It7EW8cbOWnckci1u/w46mnHVcuTowULFvDEE08wevRo4uLiaNGiBZ06dWL//v0Zrr9mzRr69OlDdHQ027Zt46OPPmL9+vX0798/z2L09AxXxJt4e3KkcUci1+7ChQtutz3tuGp5cjRp0iSio6Pp378/NWrUYPLkyZQvX55p06ZluP6PP/5IxYoVeeyxx6hUqRK33HILAwcOdA3wzAuqHInkjnPnzrF161bAe5OjtJUjY4zF0Yh4J1WOsnDx4kU2btxI+/bt3Za3b9+etWvXZnifZs2akZCQwOLFizHGcPjwYT7++GNuv/32TJ/nwoULnDx50u0np3FmdVtEsmfz0qUkJydTqkQJypcvb3U4V6VOnToEBgZy7Ngx9syfDwkJVock4nU8vSNjaXJ09OhRUlJSKF26tNvy0qVLc+jQoQzv06xZM+bNm0f37t0JDAwkPDycIkWK8L///S/T55k4cSKFCxd2/eT0S/nyneZpO1HEK8TEsO6uuwBodPQottmzLQ7o6gQFBVG3bFkA1vfqBZGREBNjcVQi3uXytpqnFR0sb6sB2Gw2t9vGmHTLnLZv385jjz3GmDFj2LhxI0uWLGHPnj0MGjQo08cfNWoUiYmJrp8DBw7kKD5VjkSuUUICPPII6y61oRoBDBzonVWXhARu3rsXgHUADof3bouIRTy9cuRv5ZOXKFECu92erkp05MiRdNUkp4kTJ9K8eXP+9a9/Aakl7rCwMFq0aMHzzz9PmTJl0t0nKCiIoKCgq45TY45ErlF8PDgcOM/vagSQkgK7dkFEhIWBXYX4eBoBU8G1PV67LSIWcR5HAwICSEpK8rjjqqWVo8DAQKKioli2bJnb8mXLltGsWbMM73P27Fn8/NzDds6VkleDI507LSwsDPC8DFfE41WtynGbjfhLN28GsNuhShULg7pKVaty86XK9kYgGbx3W0Qs4jyuFixYEPC846rlbbURI0Ywa9YsZs+ezY4dOxg+fDj79+93tclGjRpFnz59XOt37dqVTz/9lGnTprF7925++OEHHnvsMRo1akTZS+MAcptzJxYoUMDttohkU0QEG554AoAqQDG7HaZP985KS0QE1aZPpyBwFtjh5+e92yJiEeeYI2fRwdOOq5a21QC6d+/OsWPHmDBhAgcPHqRWrVosXryYyMhIAA4ePOg251G/fv04deoUb775Jv/3f/9HkSJFaNOmDS+99FKexejMaD11J4p4g3XFigHQ6LbbYM4cr04m7AMGEPX226yMjWXdSy9ROzra6pBEvMrlRQdPqxxZnhwBDBkyhCFDhmT4uzlz5qRbNmzYMIYNG5bHUf3DudNCQ0PdbotI9rkmf+za1asTI6dGLVqwMjaW9bt2odRIJGc8vSNjeVvNG6SkpAAQEhICeN5OFPF0xhhXcuScRNHbObdDM2WL5JyzreY8rjqPs55CyVE2KDkSuTYHDhzg8OHD2O126tevb3U4ucI5w/fPP/+c7grjIpI153HU2ZFRcuSFkpOTAQgODgbUVhPJKWd1pU6dOq4/Mrxd+fLlKVWqFMnJyWzevNnqcES8ijM5UuXIi6lyJHJtvP1isxmx2Wy6CK3IVVJy5AOUHIlcm/XrU6dL9KXkCNwvQisi2acxRz7AudPUVhPJuZSUFDZs2AD4XnKkypFIzhljNObIF6hyJHL1du7cyenTpwkLC6NGjRpWh5OrnJWj3377jRMnTlgbjIiXcI7jBVWOvJqSI5Gr56yqNGzY0HWpH19RvHhxKleuDOCqjolI1tIeQ50dGSVHXujy5EhtNZHs88XB2Glp3JFIzqQ9hqpy5MVUORK5er42+ePlNBmkSM6kTY6CgoIAJUdeScmRyNU5d+4cW7duBXy3cuTcLlWORLLHmRzZ7Xb8/VOvYqbkyAuprSZydTZv3kxycjKlSpWiQoUKVoeTJxo0aICfnx9//PEHf/75p9XhiHg854Bsf39/1zhEJUde6PJT+VU5EsmetPMb2Ww2i6PJG2FhYdSsWRNQ9UgkO5wFhoCAACVH3kxtNZGr4+uDsZ00KFsk+5Qc+Qi11USuTn5LjjQoW+TKlBz5CLXVRHLu+PHjxMfHA757pppT2kHZxhiLoxHxbBpz5CMyqhzpC1Aka85JEatUqUKxYsUsjiZv1a5dm6CgIE6cOMGuXbusDkfEo6ly5CMuT47AffpzEUkvv7TUIPVLvn79+oDGHYlciZIjH3F5Ww3UWhO5El+f/PFyGnckkj1KjnxERpUjJUcimTPG5KvKEeiMNZHsUnLkIzKqHOmMNZHMHThwgMOHD2O3213tJl/nTALj4uL0/SCSBQ3I9hHOnWa32wkICABUORLJirN6UqdOHbeKqy+rWrUqhQoV4ty5c2zbts3qcEQ8lipHPsAYg8PhAFKTo8DAQEDJkUhW8ltLDcDPz0+tNZFsUHLkA5yJEbgnRyqbi2QuPyZHoEHZItmh5MgHpN1haquJXFlKSoprjqP8lhylnQxSRDKmMUc+4PLkSG01kazt3LmT06dPExYWRo0aNawO57pyVo5++eUXzp49a3E0Ip5JlSMfkFlypLaaSMacLaWGDRu6vvjyi3LlyhEeHk5KSgpxcXFWhyPikZQc+QC11URyJr9N/piWzWZTa03kCpQc+QC11URyJr8OxnbSoGyRrGnMkQ9QW00k+86fP8/WrVuB/JscqXIkkjVVjnyAc4fZbDZsNpsqRyJZiIuLIzk5mZIlS1KhQgWrw7FEw4YNAdi1axfHjx+3OBoRz6PkyAeknR0b0JgjkSz89NNPADRu3BibzWZxNNYoVqwYN9xwA4BrSgMR+YeSIx+QWXKktppIes5xNo0bN7Y4Ems5W2sadySSnnPMkZIjL6bkSCT70laO8jNdRkQkc87jpwZkezElRyLZc/ToUXbv3g3kz9P400pbOTLGWByNiGdRW80HXJ4c+fv7A/+UBUUklbOFVK1aNYoUKWJtMBarX78+drudQ4cO8ccff1gdjohHUXLkA1Q5EsketdT+ERoaSs2aNQG11kQup+TIByg5Esme/D754+U0KFskY5oE0gdklhyprSbyD2OMzlS7jAZli2RMlSMfkNmYI1WORP7x+++/c/z4cYKCgqhTp47V4XiEtDNlOxwOi6MR8RwZJUcOh8OjTl5QcnQFaquJXJlzvFH9+vVds8jndzVr1iQ4OJiTJ08SHx9vdTgiHiOj5AjwqD8ilBxdgZIjkSv76dtvAWh8aRCypH5XNGjQAID1c+dCQoLFEYl4hozGHIFntdaUHF2BM5P180t9qXQqv8hlYmJY9/bbADSaPRtiYiwOyHPcHBoKwLqJEyEyUq+NCO6VI+exFVQ58irOHqhzB6pyJJJGQgIXBgwg7tLNxsbAwIGqkgAkJHDzpYraegCHQ6+NCEqOfMLllSMlRyJpxMez1RguAsWBygApKbBrl7VxeYL4eBpd+uMqDrgAem1EyDw50oBsL6LkSCQLVavyk80GQCPABmC3Q5UqVkblGapWpYrNRjFSE6MtoNdGBPcxR6oceSmNORLJQkQEP12a16gxpB78p0+HiAhLw/IIERHYZs6kyaWbP9psem1EUFvNJ6hyJJK1dcePA9DoxRdh716IjrY2IE8SHU3TJ58EILZrV702Iig58glKjkQy9/fff/Pbb78B0Kh/f1VFMtCkQwcAfty61eJIRDyDkiMfoORIJHPOS2NUqVKF4sWLWxyNZ2rUqBE2m429e/dy6NAhq8MRsVza5Mh2acwiKDnyKhpzJJI558zYuths5goVKkTNS5Nj/vjjjxZHI2K9tAOybTabK0FScuRFVDkSyZzzYK+LzWatadOmAMTGxlociYj10laO4J/jq5IjL6LkSCRjDofDlRw5D/6SsSZNUs9ZU+VIRMmRT8gsOVJbTfK73377jePHjxMcHEzdunWtDsejOZPH9evX67tD8j0lRz4gszFHqhxJfudsEd18880EBgZaHI1nq1atGoULF+bcuXNs1Vlrks+lHXMESo68ktpqIhlzJkdqqV2Zn5+fa1yWWmuS36ly5AOUHIlkbO3atYCSo+zSoGyRVEqOfIBzZzlPNdSp/CKQmJjI9u3bASVH2aVB2SKplBz5AFWORNL76aefMMZQuXJlSpcubXU4XsHZVtu1axdHjx61OBoR62jMkQ8wxgBKjkTSUkst54oWLUr16tUBVY8k/0pJSXEdV53HU00C6YVUORJJzzluplmzZhZH4l2cyaSSI8mv0h471VbzYrp8iIg7Tf549ZzjjjQoW/IrJUc+QpUjEXfbt2/n5MmThIWFUbt2bavD8SrOZHLdunWkpKRYHI3I9Ze2sKDk6AqmTp1KpUqVCA4OJioqiu+//z7L9S9cuMDo0aOJjIwkKCiIG264gdmzZ+dJbEqORNw5qx6NGjVyVVIle2666SYKFizI6dOn2bZtm9XhiFx3aY+ddrsdUHKUoQULFvDEE08wevRo4uLiaNGiBZ06dWL//v2Z3uf+++/n22+/JSYmhl9//ZX333/fNdAxtyk5EnGnwdhXz26306hRI0CtNcmfnMdOf39/10BsJUcZmDRpEtHR0fTv358aNWowefJkypcvz7Rp0zJcf8mSJaxatYrFixfTtm1bKlasSKNGjfJsYKjGHIm402Dsa+N83X744QeLIxG5/i6f4wiUHKVz8eJFNm7cSPv27d2Wt2/f3vXX6eW++OILGjZsyMsvv0y5cuW48cYbefLJJzl37lymz3PhwgVOnjzp9pNdqhyJ/OPYsWP8+uuvwD+DiyVnbrnlFgDWrFljcSQi119WyZHzFH9PYOmAgaNHj5KSkpJuErnSpUtz6NChDO+ze/du1qxZQ3BwMAsXLuTo0aMMGTKE48ePZzruaOLEiYwfP/6qYswsOUpOTsYY4yoLiuQHzrPUbrzxRooXL25xNN6pSZMm+Pn5sWfPHv744w/KlStndUgi183lE0CCKkeZujzByCrpcDgc2Gw25s2bR6NGjejcuTOTJk1izpw5mVaPRo0aRWJiouvnwIED2Y4ts+QI1FqT/EcttWtXqFAh6tatC6i1JvmP2mrZUKJECex2e7oq0ZEjRzK9JEGZMmUoV64chQsXdi2rUaMGxhgSEhIyvE9QUBCFChVy+8muzMYcgZIjyX+crSAlR9dGrTXJr5QcZUNgYCBRUVEsW7bMbfmyZcsy/fJt3rw5f/75J6dPn3Yt++233/Dz8yMiIiLXY8yqcqRxR5KfXLhwgZ9++gmAFi1aWByNd1NyJPmVkqNsGjFiBLNmzWL27Nns2LGD4cOHs3//fgYNGgSktsT69OnjWr9Hjx4UL16chx56iO3bt7N69Wr+9a9/8fDDDxMSEpLr8Sk5Ekm1adMmzp8/T4kSJahWrZrV4Xi15s2bA7Bly5YcnSAi4u005iibunfvzuTJk5kwYQL16tVj9erVLF68mMjISAAOHjzoNudRgQIFWLZsGSdOnKBhw4b07NmTrl278sYbb+RJfJcnR3a73TUeSm01yU+ck7PecsstOhHhGpUrV45KlSq5XYpFJD/wlsqRR0xvO2TIEIYMGZLh7+bMmZNuWfXq1dO14vLK5ckRpGa8SUlJqhxJvuJMjtRSyx233HILe/bsYc2aNemmMxHxVd6SHFleOfJ0zp2V9i9lzXUk+Y3D4XCdWaXkKHdo3JHkR0qOfIRzUqq0lSMlR5LfbN++nb///pvQ0FDq1atndTg+wZkc/fjjj/oukXwjozFHzuKDkiMvkllbDTTmSPIPZ0utadOmbn/xydWrXr06xYoV49y5c8TFxVkdjsh1ocqRj8goOVLlSPIbjTfKfX5+fq6z1tRak/xCyZGPUHIk8s/B29kKktyhcUeS3yg58hFKjiS/27dvHwcOHMDf318Xm81laZMjT7ropkhecQ5HUXLk5TTmSPI7Z0utQYMGhIWFWRyNb4mKiiIoKIi//vqL+Ph4q8MRyXPOooImgfRyqhxJfqfxRnknKCiIRo0aAf+8ziK+TG01H6HkSPI7jTfKWy1btgRg1apVFkcikveUHPkIJUeSnx09epTt27cDSo7ySqtWrQBYuXKlxh2Jz1Ny5CM05kjyM2c1o2bNmpQoUcLiaHyTc+6oAwcOsGfPHqvDEclTuvCsj1DlSPKzlV99BUDrm2+2OBLfFRoa6hp3tPKttyAhweKIRPKOKkc+QsmR5FsxMay8dOHnVnPnQkyMtfH4sFZFigCw8pVXIDJSr7X4LCVHPkLJkeRLCQn8NWAAv1y62dIYGDhQVY28kJBAq8WLAVgJGIdDr7X4LJ3K7yM05kjypfh4Vl0aHFwbKAGQkgK7dlkZlW+Kj6epMQQAB4A9oNdafFZWk0B60gkJSo6uQJUjyZeqVmXFpf+2ci6z26FKFWvi8WVVqxLm50ejSzdXgl5r8Vlqq/kI586y2WyuZUqOxOdFRLCybFkAWkPqwXr6dIiIsDQsnxQRATNm0OrSd8xKm02vtfgsJUc+IqvKkdpq4qsOHz7M9j//xGazcetnn8HevRAdbXVYvis6mlbz5gGwskwZzMMPWxyQSN7I6FR+Z/FByZEXcfZAMxpzpMqR+Crn/EZ16tSheLduqmJcB03vuAN/f38O/Pmn5jsSn6XKkY/QmCPJj1auXAn8M3uz5L2wsDDXfEe6lIj4KiVHPkLJkeRHK1akDsdu3bq1xZHkL2kvJSLiizRDto/QqfyS3xw6dIidO3emjje69Varw8lXnMnRd99951GnNYvkFlWOfIQqR5LfOKsW9erVo2jRotYGk880b96cwMBAEhISiI+PtzockVyn5MhHKDmS/Oa7774DNN7ICqGhoTRv3hyAZcuWWRyNSO5TW81HKDmS/MQY4zoot23b1uJo8ifn6758+XKLIxHJfaoc+QiNOZL8ZPfu3ezdu5eAgACNN7KIMzlasWKFvmPE5+SL5OjIkSMcOnQot2LxSKocSX7irBo1bdqUAgUKWBxN/hQVFUWRIkVITExk48aNVocjkqt8uq22detWatasSZkyZShXrhzlypXjmWee4cyZM7kdn+WUHEl+4kyO2rVrZ3Ek+ZfdbqdNmzaAWmvie3y6chQdHU3p0qVZs2YNcXFxPP/883z99dc0bNiQv//+O7djtJSSI8kvUlJSXIOxlRxZS+OOxFf5dHK0fft2pk6dStOmTalTpw4PPfQQGzZsoGbNmgwbNiy3Y7SUxhxJfrFhwwZOnDhBkSJFaNiwodXh5GvO5Gjt2rU+WZGX/Mun22oZVYhsNhsvvPACn3/+ea4E5ilUOZL8wtlSa9OmDXa73eJo8rcqVapQoUIFLl68yPfff291OCK5xucqR7fffjtPP/00H374IYMGDWL48OEcPnzYbZ3ExESfmzROyZHkFxpv5DlsNptrP6i1Jr7EW5Ij/yuvkqp27dps2rSJt99+25UUVa5cmfvvv5969eqRkpLC22+/zeuvv55nwVrBubNsNptrmZIj8TWnT58mNjYW0PxGnqJt27bExMQoORKfklVbLSUlxZKYMpLt5OjFF190/f/w4cPExcWxefNmNm/ezLRp09i1axd2u53x48dzzz335EmwVtCYI8kPVq9eTVJSEhUrVuSGG26wOhwB1xlrW7Zs4ciRI5QqVcriiESuXUaVI2fxwZOuJ5jt5Cit0qVL07FjRzp27Ohadu7cObZs2cKWLVtyLThP4NxZqhyJL0vbUkv7XhfrlCpVirp167JlyxaWL19Ojx49rA5J5Jp5S3KUazNkh4SE0KRJEwYOHJhbD+kRnDtLY47El2m8kWfq0KEDAEuWLLE4EpHckVVbzSeTI1+V1ZgjtdXEFyQkJLBt2zZsNpurlSOeoVOnTkBqcuRJg1VFrlZWlSNPeo8rObqCjNpqzoxXlSPxBV9//TUAjRs3pnjx4hZHI2k1b96cggUL8tdff+lSIuIT8l1bzVeprSa+zpkcde7c2eJI5HIBAQGuswed+0nEm6mt5iN0Kr/4sosXL7rGGyk58kzO1pqSI/F2DofDdUxVW83LZdVW05gj8XZr1qzh9OnTlC5dmvr161sdjmTAmRz99NNPHDt2zOJoRK5e2oKC2mpeTm018WWLFy8GoGPHjm7vcfEcERER1K5dG2MMS5cutTockauWtqCgtpqXU1tNfJkzOVJLzbOptSa+4EqVI7XVvIgmgRRftXfvXnbs2IHdbtf8Rh5Op/SLL0h7zFTlyMtl1FbTmCPxBc4qRLNmzXzugtG+Rqf0iy9wHjP9/PzcjqmqHHkhtdXEV6ml5j10Sr/4gozmOAINyPZKGpAtvuj8+fN8++23wD8tG/Fszv3kTGpFvE1myZHaal7oSpcP8aSdKZJdq1at4ty5c5QtW5Y6depYHY5kg7PCt27dOg4dOmRxNCI5l9EEkKC2mlfKap4jgJSUlOsek8i1+uqDDwDo3LKl23tbPFe5cuVo2LAhxhi+evVVSEiwOiSRHFFbzYdk1VYDtdbE+5hZs/h8zhwA7vjgA4iJsTYgybZuEREAfP7aaxAZqX0nXkVtNR+SVVsNlByJl0lIIO6RRzgAhAJtjYGBA1WF8AYJCXT7/HMAlgNnHA7tO/Eqaqv5kKzmOQIlR+Jl4uP5/NJ7ugMQApCSArt2WRmVZEd8PLWMoSJwHlgG2nfiVdRW8yEZtdXS/l9zHYlXqVqVzy79907nMrsdqlSxJBzJgapVsfn50e3Szc9B+068itpqPiSjtprNZtPp/OKV9iQlsRWwA7dD6sF1+nS4NJZFPFhEBMyYQbdLB5KvgJRp07TvxGs4iwmZVY7UVvMiGbXVQHMdiXf6/NKYlRZNm1J8xQrYuxeio60NSrIvOppbdu2iSIECHAVia9SwOiKRbHMeLzMbc6TKkRfJqK0GuoSIeCdncnRn9+7QqpWqDl4ooFIlbu+W2lxz7k8Rb6C2mg/JqK0GqhyJ9zl27BirV68GoFu3bldYWzxZtzTJkScdUESyoraaD8mscqTkSLzNokWLcDgc1K1bl4oVK1odjlyDDh06EBAQQHx8PDt37rQ6HJFsyaytpsqRF1LlSHyFswWjqpH3K1SoELfddhsAn3zyicXRiGTPlU7lV+XIi2Q2IFtjjsSbnD17liVLlgBKjnzFfffdB8BHH31kcSQi2XOltpoqR15EbTXxBYsXL+bs2bNUqlSJ+vXrWx2O5II777wTf39/tm7dym+//WZ1OCJXpLaaD1FbTXyBs7pw33336UKzPqJYsWK0adMGgI8//tjiaESuTG01H6J5jsTbnT17lq+++gr4pxUjvkGtNfEmaqvl0NSpU6lUqRLBwcFERUXx/fffZ+t+P/zwA/7+/tSrVy/PYtM8R+Lt0rbUoqKirA5HctGdd96J3W5n8+bN7NI11sTDqa2WAwsWLOCJJ55g9OjRxMXF0aJFCzp16sT+/fuzvF9iYiJ9+vRxnbGRV9RWE2/34YcfAmqp+aISJUq4WmuqHomnU1stByZNmkR0dDT9+/enRo0aTJ48mfLlyzNt2rQs7zdw4EB69OhB06ZN8zQ+tdXEm505c4ZFixYBaqn5KrXWxFuorZZNFy9eZOPGjbRv395tefv27Vm7dm2m93v77bf5/fffGTt2bLae58KFC5w8edLtJ7t0tpp4M7XUfN9dd92F3W4nLi6O33//3epwRDKltlo2HT16lJSUFEqXLu22vHTp0hw6dCjD+8THxzNy5EjmzZuX7gXOzMSJEylcuLDrp3z58tmOMbO2msYciTfQWWq+r0SJErRu3RpQ9Ug8m9pqOXT5l7YxJsMv8pSUFHr06MH48eO58cYbs/34o0aNIjEx0fVz4MCBbN9XbTXxVqdOndJZavmEc/8uWLDA4khEMpdZW02Vo8uUKFECu92erkp05MiRdNUkSP2y37BhA0OHDsXf3x9/f38mTJjAli1b8Pf357vvvsvweYKCgihUqJDbT3aprSbe6rPPPuPcuXNUrVpVLTUfd8899+Dv78/mzZvZvn271eGIZCiztpoqR5cJDAwkKiqKZcuWuS1ftmwZzZo1S7d+oUKF+Pnnn9m8ebPrZ9CgQVSrVo3NmzfTuHHjXI/xSmerqa0mnmrevHkA9OzZUy01H1e8eHE6d+4M/LPfRTzNldpqqhylMWLECGbNmsXs2bPZsWMHw4cPZ//+/QwaNAhIbYn16dMHSK3e1KpVy+2nVKlSBAcHU6tWLcLCwnI9vivNc6TKkXiiQ4cOuf7o6Nmzp8XRyPXg3M/z5s3zqL/ARZy8qa2WvRHNeah79+4cO3aMCRMmcPDgQWrVqsXixYuJjIwE4ODBg1ec8ygvaZ4j8UYffPABDoeDJk2aUKVKFavDkeuga9euFCxYkH379vHDDz/QokULq0MScaO2Wg4NGTKEvXv3cuHCBTZu3Mitt97q+t2cOXNYuXJlpvcdN24cmzdvzrPYNCBbvFHalprkDyEhIdx7772AWmvimdRW8yG6fIh4m507d7Jhwwbsdjvdu3e3Ohy5jpzJ8IcffsiFCxcsjkbEnTe11ZQcXYHaauJtnFWDjh07UrJkSYujkeupVatWlC1blr///puvv/7a6nBE3Kit5kPUVhNv4nA41FLLx+x2Ow8++CAA7777rsXRiLhTW82HaJ4j8SarV69mz549FCxYkG7dulkdjljAeXbvl19+ydGjRy2ORuQfaqv5EF0+RLxJzP/+B8CDd9xBaGioxdGIFerUqUNUVBRJSUm8N3YsJCRYHZIIoLaaT1FbTbxF4v/+x8effgrAw/PnQ0yMxRGJVR6uXh2A2VOnYipU0HtBPILaaj5EbTXxCgkJfPD445wHagKNjIGBA1U1yI8SEugxfz7BwM/ARr0XxEOoreZDdLaaeIX4eGIufbE8DNgAUlJg1y4roxIrxMdTxBjuvnQzBvReEI+gtpoP0TxH4g1+Tk5mPalT3vdyLrTbQbNj5z9Vq4KfHw9fujkfOOvnp/eCWC6ztpoqR15IlSPxBm9fmtPmDqAUpCZG06dDRISVYYkVIiJgxgxa+/lRETgJLHz4Yb0XxHKZtdVUOfJCGpAtnu78+fO88847ADw8Zw6sWAF790J0tKVxiYWio/Hbt4+H+vUDYGZ8vLXxiHDltpoqR15EA7LF03388cccO3aM8uXL06FnT2jVSlUCgYgIHn7uOex2O6tWrWL79u1WRyT5nNpqPiLtjtI8R+Kppk6dCsDAgQPT/UUm+VtERAR33HEHANOmTbM4Gsnv1FbzEVklR6ociSeIi4sjNjaWgIAAotVGkwwMGTIEgLlz53L69GmLo5H8TG01H5F2R6mtJp7IWQ245557CA8Ptzga8URt2rThxhtv5NSpU67r7olYQW01H5G2xJdZ5UhtNbFKYmKi62A3ePBgi6MRT+Xn58egQYOA1BasJx2AJH9RW81HZGfMkSpHYpV33nmHs2fPUrNmTVq0aGF1OOLB+vXrR0hICFu3biU2NtbqcCSfUlvNR6itJp7K4XC4BmIPGTIkXfIuklbRokV58MEHAXjzzTctjkbyK7XVfER22mpKjsQK33zzDTt37qRQoUL06tXryneQfG/o0KEAfPTRRyToOmtiAbXVfIRO5RdPNWnSJAAGDBhAoUKFLI5GvEH9+vVp1aoVycnJqh6JJTJrq6ly5GXUVhNPtHXrVpYvX46fnx/Dhg2zOhzxIiNGjABg+vTpOq1frquUlBTXMVWVIy+ntpp4otdffx2Ae++9l8jISIujEW9y++23U7VqVU6cOMGcOXOsDkfykbTHysySI1WOvIQqR+JpDh486Dp931kFEMkuPz8/hg8fDsDkyZNJSUmxOCLJLy5evOj6f2BgoNvv1FbzMllVjjTmSKwwdepUkpKSaNasGY0bN7Y6HPFCffr0oVixYvz+++98+eWXVocj+UR2Kkdqq3kJXT5EPMnp06ddp+87//oXyamwsDDXpJAvv/yyR/21Lr7LWTny8/PDbre7/U5tNS+jtpp4kunTp3P8+HGqVKnCXXfdZXU44sWGDRtGUFAQsbGxrFq1yupwJB9wHisvb6mB2mpeRwOyxVOcP3+e1157DYCRI0em+8tLJCfCw8NdFyp+4YUXLI5G8gNn5ejylhqoreZ1sjvPkSdlu+KDEhKYM2oUBw8eJCIigt69e1sdkfiAf//73/j7+7Ns2TLWT5sGmhhS8pAzOcqocqS2mpfJzpgjQGd8SN6JiSG5QgVemjwZgH/dckuGXy4iORUZGUnPRo0AeGHIEIiMhJgYi6MSX6W2mg9xlvgyum5V2uRIrTXJEwkJ8MgjvG8Me4GSQP8PP9Rf+JI7EhIYGRuLDfgM+MXhgIED9f6SPKG2mg9xZrFKjsQS8fGkOBw4R4QMB0IdDti1y8qoxFfEx1PdGO65dPM/ACkpen9JnsiqcqS2mpdx7qjLz1QD92vDaK4jyRNVqzLfZmMnUBQYAmC3Q5Uq1sYlvqFqVfDz45lLNxcAP/v56f0leSKrypHaal4mq7Za2rOFVDmSvJBUujTjSpQA4CmgsN0O06dDRIS1gYlviIiAGTOoa7dzH2CAMXXr6v0leSI7A7LVVvMSWVWObDabTueXPPX222+z+6+/KFWiBEMXL4a9e+HS6dciuSI6GvbuZfycOfj5+fFZXBwbNmywOirxQRqQ7UOyqhzBP+VBtdUkt50/f57nnnsOgKefeYawTp30F73kjYgIavTtS69evQB49tlnLQ5IfJEGZPuQrAZkwz/jjlQ5ktw2ffp0EhISiIiIYODAgVaHI/nAmDFj8Pf3Z8mSJaxZs8bqcMTHaJ4jH5JVWw00S7bkjTNnzrhmLX722WcJDg62OCLJD2644QYefvhhAEaPHu1RByrxfmqr+ZDsttWUHElumjRpEkeOHKFy5co89NBDVocj+cgzzzxDUFAQq1ev5uuvv7Y6HPEhaqv5kOy21TTmSHLLwYMHeemllwD4z3/+k+EXiUheKV++PMOGDQPgySef1Heb5BrNc+RD1FaT6+3ZZ5/lzJkzNGnShO7du1sdjuRDo0ePpnjx4uzYsYOZM2daHY74CM1z5EPUVpPracuWLcyePRuA1157LdP3nUheKlKkCOPGjQNg7NixJCYmWhuQ+ATNc+RDrtRWU3IkucUYw5NPPokxhvvuu49mzZpZHZLkYwMHDqRatWr89ddfTJw40epwxAeoreZDrtRW05gjyS1ff/01y5cvJzAwkBdffNHqcCSfCwgI4JVXXgFg8uTJ7N2719qAxOupreZD1FaT6+HixYuMGDECgMcee4zKlStbHJEIdOnShdatW3PhwgX+9a9/WR2OeDm11XyI2mpyPbz22mv8+uuvlCpVitGjR1sdjgiQ+r33+uuv4+fnx8cff8zSpUutDkm8mOY58iFXaqs5d7IzIxbJqX379rkuE/Lqq69SpEgRawMSSaNu3bquU/uHDh3KhQsXLI5IvJXmOfIhV2qrKTmSa5KQwBM9e3Lu3DluvfVW17WtRDzJ+PHjCQ8PJz4+nlcGD4aEBKtDEi+kAdk+5EqVo6CgIEDJkVyFmBgWV6jAZz/8gB2YctttOnVfPFLhwoV5rWtXAP7z9tvsqVABYmIsjkq8jQZk+5DsVo5UapYcSUjg/IABDLv0RTAcqDVhgv4iF8+UkMCDs2bRGjgPPG4MDByo96vkiC4860OuNCBbbTW5KvHxjDeG3UA5YAxASgrs2mVtXCIZiY/HZgxTgADgS+BjvV8lh7LTVgPPSZCUHGVBbTXJCxvPneOVS/+fAhQEsNuhShXrghLJTNWq4OdHDWDkpUWPAseKF7cwKPE22WmrgZIjr6C2muS2ixcv8vCoUaQA3W02ukFqYjR9OkREWBydSAYiImDGDLDbGQ3UBI4AT7z8ssWBiTfJTlsNPOeMNSVHWVBbTXLbiy++yNatWylRogT/i4uDFStg716IjrY6NJHMRUfD3r0ErVjB7C++wM/Pj/fee49FixZZHZl4CbXVfIiSI8lNv/zyC88//zwAb7zxBiXr1oVWrVQxEu8QEQGtWtGoa1fXjO4DBw7UhWklW7IzzxEoOfIKV0qOnGOO1FaTK7l48SL9+vUjKSmJrl278sADD1gdkshVGz9+PFWqVOGPP/7giSeesDoc8QKqHPkQVY4kt4wbN46NGzdStGhRpk2bpjmNxKuFhoby9ttvY7PZmDNnDp988onVIYmHU+XIhyg5ktzw/fff8+KLLwIwY8YMypUrZ3FEItfulltuYeTI1PPXHnnkEf744w+LIxJPlt0B2UqOvIDaanKtEhMT6d27N8YY+vXrx7333mt1SCK5Zty4cURFRXH8+HH69evnMWcaiedRW82HqHIk1+rRRx9l3759VK5cmTfeeMPqcERyVWBgIO+99x4hISEsX76c//73v1aHJB5KbTUfouRIrsXcuXOZN28efn5+vPvuuxQsWNDqkERyXfXq1Zk0aRIAI0eOZMOGDRZHJJ5IbTUforaaXJWEBH6OiWHwoEEAjB07lmbNmlkclEjeGThwIN26dePixYvcd999/P3LL6lzeOn6a3KJs62mypEPUOVIciwmhlMVKnBf//6cO3+eDjVr8swzz1gdlUiecp61VqlSJfbu3Uvf2rVxtGkDkZEQE2N1eOIBVDnyIUqOJEcSEjADBtDfGH4FIoD3duzA788/rY5MJM8VKVKEj6dMIYjUi9O+CuBwwMCBqiCJBmRfjalTp1KpUiWCg4OJiori+++/z3TdTz/9lHbt2lGyZEkKFSpE06ZN+eabb/IkruwmR2qrCQDx8bxpDB8C/sCHQAmHQ1cvl3yjQXAwztMOngZWAqSk6DMgGpCdUwsWLOCJJ55g9OjRxMXF0aJFCzp16sT+/fszXH/16tW0a9eOxYsXs3HjRlq3bk3Xrl2Ji4vL9diyO+ZIlSMB+PbwYYZf+v8rQFNIvahslSrWBSVyPVWtygCbjV5ACnAvsMfPT58BUVstpyZNmkR0dDT9+/enRo0aTJ48mfLlyzNt2rQM1588eTL//ve/ufnmm6latSovvPACVatW5csvv8z12NRWk+yKj4/nviFDSAF622w8DqmJ0fTpunaa5B8REdhmzmS6nx9RwDGga3g4JwsVsjoysZAxRm21nLh48SIbN26kffv2bsvbt2/P2rVrs/UYDoeDU6dOUaxYsUzXuXDhAidPnnT7yQ611SQ7EhMTueOOO/j7779p0qQJM377DduKFbB3b+rVzEXyk+hoQvft4/MPPyS8VCm2/fknvXr1IiUlxerIxCLOxAjUVsuWo0ePkpKSQunSpd2Wly5dmkOHDmXrMV577TXOnDnD/fffn+k6EydOpHDhwq6f8uXLZ+ux1VaTK0lOTuaBBx5g586dREREsHDhQoKrVIFWrVQxkvwrIoJy993HZ198QVBQEF9++SVPP/201VGJRdIWEIKDg9P9XslRJi5PPowx2bow5/vvv8+4ceNYsGABpUqVynS9UaNGkZiY6Po5cOBAtuJSW02yYoxh8ODBLFmyhJCQED7//HPCw8OtDkvEYzRu3JiYS6fyv/zyy0ydOtXiiMQKaZMjZ1EhLSVHlylRogR2uz1dlejIkSPpqkmXW7BgAdHR0Xz44Ye0bds2y3WDgoIoVKiQ2092qK0mWRk3bhyzZs3Cz8+P+fPn06BBA6tDEvE4PXv2ZOzYsQAMHTqUTz/91OKI5HpzHiP9/f3x80ufdig5ukxgYCBRUVEsW7bMbfmyZcuynFH4/fffp1+/fsyfP5/bb789z+JTW00y89ZbbzFhwgQApkyZwp133mltQCIebOzYsQwYMABjDD169MhyuhbxPefPnwcyrhqBkqMMjRgxglmzZjF79mx27NjB8OHD2b9/P4MuXXph1KhR9OnTx7X++++/T58+fXjttddo0qQJhw4d4tChQyQmJuZ6bGqrSUY+/fRTHn30UQDGjBnjeq+KSMZsNhtTp07ljjvu4MKFC9xxxx1s3brV6rDkOnFWjjIab3Q5JUeXdO/encmTJzNhwgTq1avH6tWrWbx4MZGRkQAcPHjQbc6j6dOnk5yczKOPPkqZMmVcP48//niux5bd5CgpKQmHw5Hrzy8eJiGBr154gQceeACHw0H//v0ZN26c1VGJeAV/f3/ef/99mjVrxokTJ2jbti07VqzQNdjyAWdylFnlCP45znpKcuRvdQAAQ4YMYciQIRn+bs6cOW63V65cmfcBXZLdthqkJkhZ7XjxcjExLB0wgHuMIQm4v2FDpk2blq0TB0QkVWhoKF999RW33XYbcXFx3NamDauAqn5+MGOGpr7wUdlNjowxHpMcWV458mTZrRyBWms+LSGBFQMG0M0YLgJ3Ae9t2oR/NqebEJF/FC1alKVz5lAbOAi0AfboGmw+zRsrR0qOspCT5EhnrPmu5R98QBdjOA90AT4AAnTNNJGrVuLYMZYDNYAEoCUQr2uw+SzngOysxhwpOfIiznFEmSVHdrvddVqiKke+6bPPPuP20aM5C3QEPgICQddME7kWVatSys+Pb4FqwAGgBbA1zUzK4jtUOfIxV6ocgU7n92Xvvfce9957LxcvXuSeqCg+8/MjGHTNNJFrFREBM2ZQxm5nNVAXOAy06t6dn376yeLgJLcpOfIx2UmONBGkb3rrrbfo06cPKSkp9O3blw9+/JGgfftSz6zRNdNErl10NOzdS6kVK1jx8880bdqUv//+m7Zt27JixQqro5NcpOTIx+QkOVLlyDcYY3jmmWcYPHgwxhiGDh3K7Nmz8ff3T/1rV9dME8k9lz5TRWvVYunSpdx2222cPn2ajh078v7771sdneSSK00CCUqOvIraavnLhQsX6NWrF//5z38AePbZZ3njjTcynO5eRHJXgQIF+Oqrr7jnnnu4ePEiPXr0YOLEiR5zsJSrl51JIJUceRG11fKJhAT+/uILOrRqxfz58/H39ycmJoYJEyZoHiOR6yg4OJgPP/yQESNGAPD0008zcOBAkvfu1WSRXkxtNR+jtlo+EBPDbxUq0KxbN1b9+CMFg4NZtGgRDz/8sNWRieRLfn5+vPbaa7zxxhvYbDZmzpzJ7ZUq8XebNhAZCTExVocoOaTkyMeorebjEhJYPGAAjYxhJxABrLl4kfY33WR1ZCL53rBhw1g4cyahwFLgZuAXTRbplTTmyMeorea7jDFMHD+eLsaQCDQD1gN1NLmjiMfoVrkyPwCRwO9AE+BTTRbpdTTmyMfkpHKk5Mh7nD59mvvvv5+nZ83CAIOAFUA4aHJHEU9StSr1/PzYQOplRs4A9wDPLlxISkqKtbFJtqmt5mOykxyFhIQA/5QNxbNt3bqVhg0b8vHHHxMQEMD03r2ZZrf/M+u1JncU8RyXJossYbfzDTD80nfx82+8QYcOHTik6xt6BSVHPiY7yZGzTHju3LnrEpNcHWMM06dPp1GjRvz666+UK1eOFStW8Mg776RO6qjJHUU806XJIv1XrGDS/v28++67hIaG8u2331KvXj2+/fZbqyOUK8hJcuQplBxlQZUjL5eQACtWcHLHDh588EEGDRrEhQsX6NSpE5s3b6Z58+ap62lyRxHPluYz2qtXL9avX0+tWrU4fPgw7dq1Y8yYMSQnJ7s+8xqw7VmyMyDbSZUjL6DKkReLiYHISL5v04b6N93EggUL8Pf35+WXX+arr76iRIkSVkcoIlfppptu4qeffmLAgAEYY3juuedoVaMGv1eoADrl3+NoQLaPUeXISyUkcH7AAP7lcNAS2A1UAFZ//DH/+te/NOO1iA8IDQ1lxowZzJ8/n4IFCvDDrl3UNYa3AKNT/j2Kxhz5GFWOvNOmRYtoaAyvAgZ4CNgKNC1c2NrARCTXPfjgg2ydMYNWpJ7NNhjoBPyhU/49hpIjH6PKkXc5e/YsTz/9NI2HDmUbUAr4HJgNFNYp+iI+q2KLFnxrszEZCAa+AWoCM376CYfDYWlsokkgfY4qR95jyZIl1KpVi4kTJ5KcnMw9UVH84ufHHaBT9EV8XUQEfjNn8rjdThyps2knAgNHjqRFixb8/PPPFgeYv2nMkY/JSXKkypE1Dh48yAMPPECnTp3Ys2cPERERLFy4kI83bKDkvn06RV8kv7h0yn/1FStYu2cPkydPpkCBAqxdu5YGDRrw1FNPcebMGaujzJfUVvMxOWmrqXJ0HSUkcG7JEl546iluvPFGFixYgJ+fH8OHD2f79u3ceeedqevpFH2R/OXSZ96/YkUef/xxduzYwV133UVycjIvv/wy1apV491338Wxf79O+b+OlBz5GFWOPI9j5kzmV6hAtU6dGP3yy5w+fZpGjRqxfv16Jk2aRMGCBa0OUUQ8REREBJ9++ilffPEFkZGR/PHHH/Tp04dGkZGs1in/142SIx+jypHnMMbw7Qcf0PSRR+hpDAeA8sA8m43Yjz6iQYMGVocoIh6qa9eu7Ny5kxdHjaIgsBFoCdztcLDtkUdUQcpjGpDtY1Q58gyrV6+mVatWtH3wQdYBBYD/AL8CPYzBb/duawMUEY8XHBzMU+3asYvUi037AQuB2g4HPfr25ddff7U2QB+mAdk+RpUja61du5a2bdvSsmVLVq9eTWBgIMOAeOBpIARSz0TTKfoikh1Vq1LKz49ppM59dg+pc6G9/9133HTTTfTr14/ff//d2hh9kNpqPkaVo+ssIQHz3Xcsf/992rVrR/Pmzfn2228JCAhg8ODB/P7777wxaxbhdnvq+jpFX0RyIiICZswAu52awMd2O5vGjKFr1644HA7mzp1LtWrV6NmzJ1u3btW12nKJNyZH/lYH4Mk0CeT1kzJzJp8MHMjLxrDx0jJ/f38eeughRo8eTWRkZOrC6Gjo0CF15tsqVZQYiUjOXPYdUj8igi+AdevWMXbsWJYsWcL8+fOZP38+nYGRwC02G7aZMzUlyFVISUlJvSgw3pUcqXKUBU0CmffOnTvHWxMnUu2RR+h+KTEKAYbZbMSvXs2MGTP+SYycdIq+iFyLDL5DGjVqxNdff83GjRu5v0sX/IDFwK1Ac2P44pFHUqcAkBw5e/as6/9hYWGZrqfkyIuocpR3Dh8+zHPPPUfFihUZ/PTT/A4UA8YC+4E3jKHipVKsiMj10qBBAxaMGMFO4BEgEIgFujkc1LjlFt58801OnTplbZBexJkc2Ww2Dcj2Faoc5ZI0fft169bRu3dvKlSowJgxYzhy5AiRERG8YbOxHxgHlAANtBYR61StSlU/P6YDe4GngELAbwcOMGzYMCIiIhg+fPg/g7c1NilTzuQoNDQ0y2OpkiMvktPKkafsVI8SE8OFChWY16YNjcuXp3Hjxrz33ntcvHiRJk2aMH/+fOJ372bYzJmEaaC1iHiCNAO3ywAv2u0kvPkmb775JjfeeCMnT55k8uTJVK1alTvq1WNphQo4NKlkhpyXbAkNDc1yPSVHXiQnlSOHw0FSUtJ1ictbbFm6lCf696ecMfQC1pFaou5z772sX7+e2NhYHnzwQQICAlzXRdK10ETEI1z2nVTw0Ud59NFH2bFjB19//TWdOnXCGMOXW7bQwRgqA+MdDvZrUkk3aStHWVFy5EVyUjkCjTsCOHr0KFOmTCEqKop6HTrwX+AYUA54HjgAzH30URo2bJj+zhpoLSKeJIPvJD8/Pzp27MjixYvZOWcOQ4HCwD5ShwVUdDjocNddfPDBB7rQLd6bHOlU/ixkJzlKe2riuXPnKFSoUJ7H5RESEiA+HqpW5YAxLFy4kIULF7J69WocDgcAAQEB3JmUxMNAO8AOGkskIj6j2m238T8/P152OPgUiAFWAEs3bGDpgw8SGhpKly5d6N69O506dSLk2DHX92Z++SNQyZEPyk5y5ByBf/78+fxTOYqJYeeAAXxqDAuBDZf9ukGDBvTt25cePXpQ4vPPYeBASEnRWCIR8S2XxiaFDBxIz5QUetrt/P7cc8w5e5b58+eze/duPvzwQz788EMKBAVxx4ULdAM62mwUyifzJjmTo6xO4wclR14lO8kR4EqOfPmMNWMMGzduZOHcuXz65pvsTPM7G3BLo0bc/eCD3HnnnVSsWPGfX2rSRhHxZZd9x90QEcFzwIQJE9i4cSMLFixgwfz5HPjzT+YD84EAY2jTvz/dDh/mjr59KVeunMUbkXdUOfJB2U2OQkJCOHHihG9UjtK0y5LDw1mzZo2rZXbgwAHXagHAbcDdwB1A6ZdeSu3NZyQiQkmRiPiuDL7jbDYbDRs2pGHDhrzUsSM/tm3LZ8DnwG/AN8A3o0czZPRoGjZsSLdu3ejWrRu1atVKPeak+S725u9Pbz1bTclRFnJSOQIfmOsoJobTAwawzBi+AL4qUICjp0+7fh0aGkrn1q25a/FibjeGws5faByRiEim/KpVo5mfH80cDl4GdgKf2Wx8Xr8+P27axIYNG9iwYQPPPvsslStXptsNN9Bt+XKaG4O/n1/qtAJe2oLz1sqRzlbLQk4qR+DhZ6tlMUlZQkICb02cSOf+/SlhDHcDc4Cjp09TrEgR+vbty+eff87Ro0f56Kuv6DFzJoU1J5GISPakmTcJoLrdzsiZM4nduJGDBw8yY8YMbr/9doKCgti9ezevL1tGK2MoBTzgcPDOgAEc2bw548f28AkovTU5UuUoCz5TOYqJgUceAYcD/Pw4+tprrCpfnhUrVrBixQq2b9/utnplUltlXYEWH31EQNu27o+ncUQiIjmTyfdmeHg4AwYMYMCAAZw+fZpvXnuNz8eN4yvgb2ABsMAYqF+fhg0b0rFjR2655RYaN25MkU8+cftu98QKkwZk+6DsJkfOnZ72AnuewBjDnxs2EDdgAJuNIQ7Y7HCwe/hwt/VsNhtNo6LounEjdxhDDVIHWWO3Q/XqGT+4xhGJiOTMFb43CxQowD3R0dwzYQLJDgc/kXrx26+BOHC13yD1e7uGMTQFGgJRDgd1HnmEoA4dPOq7WZUjH5Td5KhAgQIAOboYYVJSEu+88w6bNm3ixhtvpHv37oSHh+c8yDSD9o4GB7Ny5UrWrVtHXFwcmzdv5ujRoxnerWbFirTu0oXWrVvTsmVLihcvnlph0mn3IiLWudSC8x84kOYpKTS32/nP9Okc7NyZJUuW8O233xIbG8vu3bvZDmwndX4lgACHg1pt2tCwVSuioqKIioqidu3aqfPxXcMA719//ZWPP/6YQ4cO0a5dO7p27XrF46KTkiMflN3kqGDBggCcTjN4OStnzpyhY8eOrFmzxrVs1KhR/Pvf/2bkyJFZXrnYTUwMfwwYwHvGsADYbLOle2PZ7XZqpKRQD6gP1APq+vlR/Pvv039A1C4TEbFeBt/FZYCHHnqIhx56CIDDcXH8GBXFT8awEdhI6tUI4uLjiYuPZ+bMmUDqZLwtbriBe3/9lbuNoXQO2m/nzp3j+eef5+WXXyY5ORmAN998k/79+zNjxoxsJUg6W80H5VXl6Mknn2TNmjUULlyY6Ohovv/+e9avX8/48eOZN28eU6ZMof1NN2Wa5Z89e5aFMTHMfewxlgOut5Ix1LzxRlq0aUODBg2oX78+NWvWJGT+/OxXhNQuExGx3hW+i0vXr0+3mTPpdum73fj5se+FF9hYpQobN25kw4YNbNy4kePHj/Pdzp18BwwF2jkc9B4wgDtbtCDsxhvTP/ClCtPyQ4cYPGYMu3btAqBt27ZUrVqV6dOnM2vWLBo1asSAAQOuuBneWjnC5EOJiYkGMImJiVmu9/zzzxvAREdHZ7ne448/bgAzatSoKz7372vWGD8/PwOYb7/91hhjjMPhMAsWLDBlypQxpOY65n4wv4Bx2GzGzJplTpw4YRYtWmT69OljChYs6FoPMLeAmQHmIBizYkXGT3zgQOrvDhy4YowiIuIlsvhudzgc5rd33jEvg7k5zTEDMGHBwaZ3795m6dKl5ty5c8YYY5JnzDDf22zm9jTrlStXznz66aeux3z11VcNYMqWLm3OL1lyxWNKu3btDGDefffdLNerW7euAcySJUuyXC+7x+9rpVP5s2Byu3IUE8Mrt9yCw+GgA9Bmzx7X499///3s3LmTx6Oj8QM+BGoBhY2hWP/+FClShNtvv5133nmHU6dOUbF8ecYAu4DvgQFAeFbzDemiriIivieL73abzUbV1q35l58f64B4YCxwA3Dm/Hneffdd2rdvT1hYGOGlSlHgkUdoYQyLSL0W5lCbje3LlnHXXXe5HnPo0KGUK1qUPw8f5p2OHSEyMnW8aia89Ww1JUdZyG5y5BpzFB+f+VwTCQlcGDCAeZduPgWpra406xcqVIjJPXuygdTT6AOBU6SezglQsWJFhg4dyvfff8/ve/cyftYsbtB8QyIikpk0cyxVAcbZ7cTPnMnatWsZPHgwJUqUwOFwcPivvzgPFAIeAnYA/zOGQocPuz1c0F9/MfzECQBmQ+o0Apcdy9I6m5gIQOilsUeZ8bTkSGOOsuBKjg4eTN3xmSQeBbZuBeDUN9+kZtEZDXaLj2eZMZwCygEtIXUM0K5d7o9btSr1/fz4wuHgArAHwM+PEnFxlKhTx/0xNYBaRESu5LJjhS0igqZA06ZNmTJlCocPH+bQli0U7NSJisZgd94vo25EfDwPGsOTwI/AH0C5jI5lADExnP3lFwBC+/SBCxcyHQhuuzTg2/z1Vy5t9LVR5SgLZuNGAGxffZV56TAhgYLvvw+kVnkyzaKrVuWTS/+9m0svfEZvvDRZfhCpM6lWnzEjfWKUdn21y0REJCuZHCtsNhvh4eHU69CBG2bOxH6lbkTVqpT186PZpZsLnetefixLSIBHHsFZLwo1JvMKU0wMtp9/BsD065dlm+56yd/J0R9/ZP67hATMF18AlyZEzCzpiY+nwKUKk+tEfmcWnYYpV47Fl9pvd0LWbbDoaNi7N3VK+L17PW7GUxER8UHZOfZc+gP+rkttsEWQ8bEsPh4cDpxTI4dChsdGZxLlHLxiskqiIOvjdi7K18nRDzfdlHmGGh/vOkXeNeIoox1btSoFL71JXMOxM8iif/vtN46cOkVQUBDNv/nmykmPKkIiInK9ZefYEx3NbYsXA/BDgQKk9OuXfp2qVcHPz5UchUGmbTocjn+SI8j4WAsQE8PHN92Ug425evk6OYqDzDPUqlXTJ0eZtMEKjBwJXKocZVIRWr16NQBNmjQhqH17JT0iIuK16rRrR+HChTl1+jSbM7oobkQEKW+9hfNy7KF+fpm26fDzc0+OsmjTfZOrW5G5fJ0cAZlnqBERmC5dgDTXGcukDVawRw8AThUunGlFyJkc3XrrrbkVuYiIiCXsdju33HIL8M/x7XKn7rvP9f9C8fFZtulcyVFmSdSlCtP1ouQoi7mBTN26ANjuuivLNphznqPTFy5kWhH64YcfAGjRosU1BiwiImI95/HMeXy73MmTJwEIDg4msHLlzB8oOhpbgwYAmOnTMz7WXqowXS9KjrKYG8h1Kv8VpnF3znN0/vx51/Vn0kpMTGTPpQkfo6KirjViERERy918880AxMXFZfh7Z3JUqFChKz6WLSgIAFO8eMYrOM/kvk7yd3L0739nOSg6pzNkQ8YXn916aR6kiIgIihUrdjWRioiIeJR69eoBsHv3bk5cmhgyrcRLE0BmKznKziSQ0dFwabhLXsvfyVHhwln+OrvJUVBQEAEBAUDGlxDZsmUL8M8bSURExNsVK1aMihUrAmQ4KDtHlaPszpB9hQvY5pb8nRxdQXaTI/intZZVclT30hgmERERX1C/fn0ANm3alO53eZIcXSdKjrKQk+TINSg7g7aaM6NWciQiIr7EmRxlNO5IyZGPyo3KUXJyMr9curaMkiMREfElDS6dZabKUT6Sk+TIufOdA9Cc4uPjOX/+PKGhodxwww25H6SIiIhFnJWjnTt3cvbsWbffOQdpKzm6SlOnTqVSpUoEBwcTFRXF999/n+X6q1atIioqiuDgYCpXrsxbb72VJ3HlJDlynoX2999/uy13jjeqU6fOPxf0ExER8QFlypShVKlSOBwOV5fE6fjx4wAUz+z0/DSUHF1mwYIFPPHEE4wePZq4uDhatGhBp06d2L9/f4br79mzh86dO9OiRQvi4uJ4+umneeyxx/jkk08yXP9aXE1y5HwzOGm8kYiI+CqbzeY6vjmnrXE6duwYoOToqkyaNIno6Gj69+9PjRo1mDx5MuXLl2fatGkZrv/WW29RoUIFJk+eTI0aNejfvz8PP/wwr776aq7HlpPkyLnznW8GJ52pJiIivqxOnTpA+uTIWSzIzvx+So7SuHjxIhs3bqR9+/Zuy9u3b8/atWszvE9sbGy69Tt06MCGDRtISkrK1fhyo3Kk5EhERHxZZsmRN1eO/K188qNHj5KSkkLp0qXdlpcuXZpDhw5leJ9Dhw5luH5ycjJHjx6lTJky6e5z4cIFLly44LrtHDR9/vx512j6jJw/n3o94YsXL2a5HkDopYmpDh065Fr36NGjHDx4EIDIyMgrPoaIiIi3qXzpumlbtmwhMTHRlegcPXoUSJ0o+UrHv5SUFADOnj2b5brOIkieJ1HGQn/88YcBzNq1a92WP//886ZatWoZ3qdq1armhRdecFu2Zs0aA5iDBw9meJ+xY8caQD/60Y9+9KMf/fjAz++//547iUgmLK0clShRArvdnq5KdOTIkXTVIafw8PAM1/f398+0dDdq1ChGjBjhun3ixAkiIyPZv38/ha9wCRFfcvLkScqXL8+BAweydWqlr9B2a7vzA223tjs/SExMpEKFCnl+nVJLk6PAwECioqJYtmwZd911l2v5smXL6NatW4b3adq0KV9++aXbsqVLl9KwYUPX9c0uFxQURNClK/6mVbhw4Xz1pnIqVKiQtjsf0XbnL9ru/CW/brefX94Ombb8bLURI0Ywa9YsZs+ezY4dOxg+fDj79+9n0KBBQGrVp0+fPq71Bw0axL59+xgxYgQ7duxg9uzZxMTE8OSTT1q1CSIiIuJDLK0cAXTv3p1jx44xYcIEDh48SK1atVi8eDGRkZEAHDx40G3Oo0qVKrF48WKGDx/OlClTKFu2LG+88Qb33HOPVZsgIiIiPsTy5AhgyJAhDBkyJMPfzZkzJ92yli1bZngdl+wKCgpi7NixGbbafJm2W9udH2i7td35gbY7b7fbZoyHTCogIiIi4gEsH3MkIiIi4kmUHImIiIikoeRIREREJA0lRyIiIiJp+Gxy9J///IdmzZoRGhpKkSJFsnUfYwzjxo2jbNmyhISE0KpVK7Zt2+a2zoULFxg2bBglSpQgLCyMO+64g4SEhDzYgqvz999/07t3bwoXLkzhwoXp3bs3J06cyPI+Npstw59XXnnFtU6rVq3S/f6BBx7I463JvqvZ7n79+qXbpiZNmrit42v7OykpiaeeeoratWsTFhZG2bJl6dOnD3/++afbep62v6dOnUqlSpUIDg4mKiqK77//Psv1V61aRVRUFMHBwVSuXJm33nor3TqffPIJN910E0FBQdx0000sXLgwr8K/ajnZ7k8//ZR27dpRsmRJChUqRNOmTfnmm2/c1pkzZ06Gn3XndSQ9RU62e+XKlRlu086dO93W87X9ndH3l81mo2bNmq51PH1/r169mq5du1K2bFlsNhufffbZFe9z3T7beXpxEguNGTPGTJo0yYwYMcIULlw4W/d58cUXTcGCBc0nn3xifv75Z9O9e3dTpkwZc/LkSdc6gwYNMuXKlTPLli0zmzZtMq1btzZ169Y1ycnJebQlOdOxY0dTq1Yts3btWrN27VpTq1Yt06VLlyzvc/DgQbef2bNnG5vN5nbtmpYtW5oBAwa4rXfixIm83pxsu5rt7tu3r+nYsaPbNh07dsxtHV/b3ydOnDBt27Y1CxYsMDt37jSxsbGmcePGJioqym09T9rfH3zwgQkICDAzZ84027dvN48//rgJCwsz+/bty3D93bt3m9DQUPP444+b7du3m5kzZ5qAgADz8ccfu9ZZu3atsdvt5oUXXjA7duwwL7zwgvH39zc//vjj9dqsK8rpdj/++OPmpZdeMuvWrTO//fabGTVqlAkICDCbNm1yrfP222+bQoUKpfvMe5KcbveKFSsMYH799Ve3bUr7GfXF/X3ixAm37T1w4IApVqyYGTt2rGsdT9/fixcvNqNHjzaffPKJAczChQuzXP96frZ9Njlyevvtt7OVHDkcDhMeHm5efPFF17Lz58+bwoULm7feessYk/pmDAgIMB988IFrnT/++MP4+fmZJUuW5HrsObV9+3YDuL0JYmNjDWB27tyZ7cfp1q2badOmjduyli1bmscffzy3Qs1VV7vdffv2Nd26dcv09/llf69bt84Abl/CnrS/GzVqZAYNGuS2rHr16mbkyJEZrv/vf//bVK9e3W3ZwIEDTZMmTVy377//ftOxY0e3dTp06GAeeOCBXIr62uV0uzNy0003mfHjx7tuZ/f70Eo53W5ncvT3339n+pj5YX8vXLjQ2Gw2s3fvXtcyb9jfTtlJjq7nZ9tn22o5tWfPHg4dOkT79u1dy4KCgmjZsiVr164FYOPGjSQlJbmtU7ZsWWrVquVax0qxsbEULlyYxo0bu5Y1adKEwoULZzu+w4cPs2jRIqKjo9P9bt68eZQoUYKaNWvy5JNPcurUqVyL/Vpcy3avXLmSUqVKceONNzJgwACOHDni+l1+2N+QeiFHm82Wrv3sCfv74sWLbNy40W0fALRv3z7TbYyNjU23focOHdiwYQNJSUlZruMJ+xWubrsv53A4OHXqVLoLdJ4+fZrIyEgiIiLo0qULcXFxuRb3tbqW7a5fvz5lypThtttuY8WKFW6/yw/7OyYmhrZt27quLuHkyfs7p67nZ9sjZsj2BIcOHQKgdOnSbstLly7Nvn37XOsEBgZStGjRdOs472+lQ4cOUapUqXTLS5Uqle345s6dS8GCBbn77rvdlvfs2ZNKlSoRHh7OL7/8wqhRo9iyZQvLli3LldivxdVud6dOnbjvvvuIjIxkz549PPvss7Rp04aNGzcSFBSUL/b3+fPnGTlyJD169HC7eKWn7O+jR4+SkpKS4ecys208dOhQhusnJydz9OhRypQpk+k6nrBf4eq2+3KvvfYaZ86c4f7773ctq169OnPmzKF27dqcPHmS//73vzRv3pwtW7ZQtWrVXN2Gq3E1212mTBlmzJhBVFQUFy5c4N133+W2225j5cqV3HrrrUDm7wlf2d8HDx7k66+/Zv78+W7LPX1/59T1/Gx7VXI0btw4xo8fn+U669evp2HDhlf9HDabze22MSbdsstlZ51rkd3thvTxQ87imz17Nj179iQ4ONht+YABA1z/r1WrFlWrVqVhw4Zs2rSJBg0aZOuxcyqvt7t79+6u/9eqVYuGDRsSGRnJokWL0iWHOXnca3W99ndSUhIPPPAADoeDqVOnuv3Oiv2dlZx+LjNa//LlV/NZv96uNsb333+fcePG8fnnn7sl0E2aNHE76aB58+Y0aNCA//3vf7zxxhu5F/g1ysl2V6tWjWrVqrluN23alAMHDvDqq6+6kqOcPqZVrjbGOXPmUKRIEe6880635d6yv3Pien22vSo5Gjp06BXPmKlYseJVPXZ4eDiQmpmWKVPGtfzIkSOuLDQ8PJyLFy/y999/u1UTjhw5QrNmza7qebMju9u9detWDh8+nO53f/31V7pMOiPff/89v/76KwsWLLjiug0aNCAgIID4+Pg8O1her+12KlOmDJGRkcTHxwO+vb+TkpK4//772bNnD999951b1Sgj12N/Z6REiRLY7fZ0f/Wl/VxeLjw8PMP1/f39KV68eJbr5OT9kpeuZrudFixYQHR0NB999BFt27bNcl0/Pz9uvvlm13veatey3Wk1adKE9957z3Xbl/e3MYbZs2fTu3dvAgMDs1zX0/Z3Tl3Xz3aORih5oZwOyH7ppZdcyy5cuJDhgOwFCxa41vnzzz89boDuTz/95Fr2448/ZnuAbt++fdOdtZSZn3/+2QBm1apVVx1vbrnW7XY6evSoCQoKMnPnzjXG+O7+vnjxornzzjtNzZo1zZEjR7L1XFbu70aNGpnBgwe7LatRo0aWA7Jr1KjhtmzQoEHpBm126tTJbZ2OHTt63ADdnGy3McbMnz/fBAcHX3Fgq5PD4TANGzY0Dz300LWEmquuZrsvd88995jWrVu7bvvq/jbmnwHpP//88xWfwxP3txPZHJB9vT7bPpsc7du3z8TFxZnx48ebAgUKmLi4OBMXF2dOnTrlWqdatWrm008/dd1+8cUXTeHChc2nn35qfv75Z/Pggw9meCp/RESEWb58udm0aZNp06aNx53aXadOHRMbG2tiY2NN7dq1053affl2G2NMYmKiCQ0NNdOmTUv3mLt27TLjx48369evN3v27DGLFi0y1atXN/Xr1/fa7T516pT5v//7P7N27VqzZ88es2LFCtO0aVNTrlw5n97fSUlJ5o477jARERFm8+bNbqf3XrhwwRjjefvbeYpzTEyM2b59u3niiSdMWFiY66yckSNHmt69e7vWd57uO3z4cLN9+3YTExOT7nTfH374wdjtdvPiiy+aHTt2mBdffNFjT+3O7nbPnz/f+Pv7mylTpmQ6BcO4cePMkiVLzO+//27i4uLMQw89ZPz9/d0SbKvldLtff/11s3DhQvPbb7+ZX375xYwcOdIA5pNPPnGt44v726lXr16mcePGGT6mp+/vU6dOuY7NgJk0aZKJi4tznTlr5WfbZ5Ojvn37GiDdz4oVK1zrAObtt9923XY4HGbs2LEmPDzcBAUFmVtvvTVdNn7u3DkzdOhQU6xYMRMSEmK6dOli9u/ff5226sqOHTtmevbsaQoWLGgKFixoevbsme4U18u32xhjpk+fbkJCQjKcy2b//v3m1ltvNcWKFTOBgYHmhhtuMI899li6OYGslNPtPnv2rGnfvr0pWbKkCQgIMBUqVDB9+/ZNty99bX/v2bMnw89F2s+GJ+7vKVOmmMjISBMYGGgaNGjgVsHq27evadmypdv6K1euNPXr1zeBgYGmYsWKGSb9H330kalWrZoJCAgw1atXdzuYeoqcbHfLli0z3K99+/Z1rfPEE0+YChUqmMDAQFOyZEnTvn17s3bt2uu4RdmTk+1+6aWXzA033GCCg4NN0aJFzS233GIWLVqU7jF9bX8bk1rdDgkJMTNmzMjw8Tx9fzurXpm9Z638bNuMuTSaSURERER89/IhIiIiIldDyZGIiIhIGkqORERERNJQciQiIiKShpIjERERkTSUHImIiIikoeRIREREJA0lRyIiIiJpKDkSERERSUPJkYiIiEgaSo5ExKdMmDCB2rVrExYWRunSpRk8eDBJSUlWhyUiXsTf6gBERHKLMYaUlBSmT59OuXLl2L59O3369KFOnToMHjzY6vBExEvowrMi4tN69OhByZIl+e9//2t1KCLiJdRWExGfsW/fPoYOHUqtWrUoWrQoBQoU4MMPPyQiIsLq0ETEiyg5EhGfcPToURo1asTRo0eZNGkSa9asITY2FrvdTr169awOT0S8iMYciYhPWLx4McnJybz//vvYbDYApkyZwsWLF5UciUiOKDkSEZ9QrFgxTp48yRdffMFNN93El19+ycSJEylXrhwlS5a0OjwR8SIakC0iPsEYw+DBg5k/fz4hISH06tWL8+fPs2/fPr766iurwxMRL6LkSERERCQNDcgWERERSUPJkYiIiEgaSo5ERERE0lByJCIiIpKGkiMRERGRNJQciYiIiKSh5EhEREQkDSVHIiIiImkoORIRERFJQ8mRiIiISBpKjkRERETSUHIkIiIiksb/AyFTsUg7RITaAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6wElEQVR4nO3dd3gUZdfH8e+mFzqhBwII0muQKlKkC2IvdAWkCCq+Po8gSrNgRR4UkBLEAooNCyBNKSJRWgClaJAapQhIqIEke79/hF2zaSSQMLub3+e6ckFmZ3fP7OzunJxzzz02Y4xBRERERADwsToAEREREXei5EhEREQkFSVHIiIiIqkoORIRERFJRcmRiIiISCpKjkRERERSUXIkIiIikoqSIxEREZFUlByJiIiIpKLkSDzCX3/9xbhx49i6dWu62/r160eBAgWu+rEvXbrE4MGDKVOmDL6+vtSvX//qA80F06ZNY+7cuemW79+/H5vNluFt3sRmszFu3Dirw8gV48aNw2az5fl933rrLapUqUJAQAA2m41Tp07Rr18/Klas6LLeSy+9xJdffnlV8WTl5MmTPPDAA5QsWRKbzcYdd9yR48eoWLEi/fr1y/XY3MmhQ4e48847qVy5MqGhoRQuXJgGDRrw9ttvk5SUlG79efPm0aBBA4KCgggLC6NHjx4cOnTIgsjzHz+rAxDJjr/++ovx48dTsWLFXE9epk+fzowZM3jrrbeIjIy8pkQrN0ybNo2wsLB0B4oyZcoQHR3NDTfcYE1gkmMDBgygU6dOefocW7du5bHHHmPAgAH07dsXPz8/ChYsyHPPPcfjjz/usu5LL73EPffcc1XJS1aef/55Fi5cyJw5c7jhhhsoVqxYrj6+tzh37hyFChXiueeeo0KFCly6dIklS5YwfPhwtm7dyuzZs53rvvXWW879+vLLLxMXF8dzzz1Hy5YtiYmJoWjRohZuifdTciT53q+//kpwcDDDhg2zOpQsBQYG0rRpU6vDkBwIDw8nPDw8T59jx44dAAwcOJDGjRs7l1/PJPrXX3/lhhtuoGfPntftOXPL+fPnCQkJuS7PVb16dd577z2XZZ07d+bYsWO89957TJ06lcDAQC5evMhzzz1Ht27dmDVrlnPdmjVr0rx5c15//XVefPHF6xJzfqW2Wj70999/88gjj1C+fHkCAwMpUaIELVq0YOXKlc51WrduTe3atYmOjqZ58+YEBwdTsWJF3n33XQAWL15Mw4YNCQkJoU6dOixdujTd86xbt45bb72VggULEhISQvPmzVm8eHG69X799Ve6d+9O0aJFCQoKon79+i5fIKtXr+amm24C4KGHHsJms2XYetmzZw9dunShQIEClC9fnv/7v//j4sWLWb4WNpuN2bNnc+HCBefjzp07N8sWVtrndrQ/duzYwYMPPkjhwoUpVaoUDz/8MPHx8S73tdvtvPXWW9SvX5/g4GCKFClC06ZN+frrr4GU1sKOHTtYs2aNMx5HaySzmLLzOs+dOxebzcaqVasYMmQIYWFhFC9enLvuuou//vory9coKxUrVqRr164sXLiQunXrEhQUROXKlZkyZUq6dQ8ePEivXr0oWbIkgYGB1KhRgzfeeAO73Z7p4+/fvx8/Pz8mTpyY7ra1a9dis9n49NNPgZzth4SEBEaNGkWlSpUICAigXLlyPProo5w6dSrD7Vu0aBENGjQgODiYGjVqsGjRIiDlda1RowahoaE0btyYTZs2udw/o9bYggUL6NChA2XKlHE+3siRIzl37lzmL3QmWrduTa9evQBo0qQJNpvNWXFM21az2WycO3eO9957z/neat26dZaPf/LkSYYOHUq5cuUICAigcuXKjB492vm5crwnV65cya5du5yPu3r16kwfMzExkf/+97+ULl2akJAQbr75ZjZs2JDhukeOHGHQoEGEh4cTEBBApUqVGD9+fLoWVFxcHPfccw8FCxakSJEi9OzZk40bN6b7vDha8L/88gsdOnSgYMGC3HrrrUBKe/2FF16gevXqzu/Fhx56iL///jtdXAsWLKBZs2aEhoZSoEABOnbsSExMTJavZVZKlCiBj48Pvr6+QMp3Ynx8PF26dHFZr1mzZhQrVozPP//8qp9LsslIvtOxY0dTokQJM3PmTLN69Wrz5ZdfmjFjxpiPP/7YuU6rVq1M8eLFTbVq1UxUVJRZtmyZ6dq1qwHM+PHjTZ06dcxHH31klixZYpo2bWoCAwPNn3/+6bz/6tWrjb+/v4mMjDQLFiwwX375penQoYOx2Wwuz7N7925TsGBBc8MNN5j333/fLF682Dz44IMGMK+88ooxxpj4+Hjz7rvvGsA8++yzJjo62kRHR5tDhw4ZY4zp27evCQgIMDVq1DCvv/66WblypRkzZoyx2Wxm/PjxWb4W0dHRpkuXLiY4ONj5uMeOHTP79u0zgHn33XfT3QcwY8eOdf4+duxYA5hq1aqZMWPGmBUrVphJkyaZwMBA89BDD7nct3fv3sZms5kBAwaYr776ynz77bfmxRdfNP/73/+MMcZs2bLFVK5c2TRo0MAZz5YtW4wxJsOYsvs6O16/ypUrm+HDh5tly5aZ2bNnm6JFi5o2bdq4xOhYN6NtTysiIsKUK1fOVKhQwcyZM8csWbLE9OzZ0wDmtddec6537NgxU65cOVOiRAnzzjvvmKVLl5phw4YZwAwZMiTL1/fOO+80FSpUMElJSS7r3XvvvaZs2bImMTExR/vBbrebjh07Gj8/P/Pcc8+Z5cuXm9dff92EhoaaBg0amISEBJftCw8PN7Vr13a+35s0aWL8/f3NmDFjTIsWLcwXX3xhFi5caG688UZTqlQpc/78eef9HTGl9vzzz5s333zTLF682Kxevdq88847plKlSun2Q0b3TWvHjh3m2Wefde6v6Ohos2fPHmNMyuciIiLCuW50dLQJDg42Xbp0cb63duzYkeljX7hwwdStW9eEhoaa119/3Sxfvtw899xzxs/Pz3Tp0sUYY0xCQoKJjo42DRo0MJUrV3Y+bnx8fKaP27dvX2Oz2cx//vMfs3z5cjNp0iRTrlw5U6hQIdO3b1/neocPHzbly5c3ERERZsaMGWblypXm+eefN4GBgaZfv37O9c6ePWuqVKliihUrZqZOnWqWLVtmRowYYSpVqpTufdy3b1/j7+9vKlasaCZOnGi+++47s2zZMpOcnGw6depkQkNDzfjx482KFSvM7NmzTbly5UzNmjVd9umLL75obDabefjhh82iRYvMF198YZo1a2ZCQ0OzfD1Ts9vtJjEx0Zw8edJ8/PHHJjQ01IwaNcp5+/r16w1g5syZk+6+ZcqUMT4+PubChQvZei65OkqO8qECBQqYJ554Ist1WrVqZQCzadMm57ITJ04YX19fExwc7JIIbd261QBmypQpzmVNmzY1JUuWNGfOnHEuS0pKMrVr1zbh4eHGbrcbY4x54IEHTGBgoDl48KDL83fu3NmEhISYU6dOGWOM2bhxY6YH7L59+xrAfPLJJy7Lu3TpYqpVq3aFVyPl/qGhoS7LriY5evXVV13WGzp0qAkKCnJu69q1aw1gRo8enWU8tWrVMq1atUq3PKOYsvs6OxKeoUOHujzmq6++agBz+PBh57L33nvP+Pr6mvfeey/LOI1JSR5sNpvZunWry/L27dubQoUKmXPnzhljjBk5cqQBzM8//+yy3pAhQ4zNZjO//fabc1na13fVqlUGMAsXLnQu+/PPP42fn59L8pvd/bB06dIM11uwYIEBzMyZM122Lzg42MTFxTmXOd7vZcqUcW6fMcZ8+eWXBjBff/11upgy4zhIrlmzxgBm27Zt2b6vg2Pfbty40WV52uTIGGNCQ0NdEpCsvPPOOxl+rl555RUDmOXLlzuXtWrVytSqVeuKj7lr1y4DmBEjRrgsnzdvngFcYhs0aJApUKCAOXDggMu6r7/+ugGcicjUqVMNYL799luX9QYNGpRhcpRR0vHRRx8ZwHz++ecuyx3fO9OmTTPGGHPw4EHj5+dnhg8f7rLemTNnTOnSpc199913xdfAGGMmTpxoAAMYm82W7jvhxIkTxsfHx/Tv399l+Z49e5z3++uvv7L1XHJ11FbLhxo3bszcuXN54YUX+Omnn0hMTMxwvTJlyhAZGen8vVixYpQsWZL69etTtmxZ5/IaNWoAcODAASBl0OHPP//MPffc4zK42dfXl969exMXF8dvv/0GwPfff8+tt95K+fLlXZ67X79+nD9/nujo6Gxtk81mo1u3bi7L6tat64zperj99tvTPX9CQgLHjh0D4NtvvwXg0UcfzZXny8nrnFWMgMvr1KdPH5KSkujTp0+24qhVqxb16tVzWdajRw9Onz7Nli1bgJT9XLNmTZcxMZCyn40xfP/995k+fuvWralXrx5Tp051LnvnnXew2Ww88sgj6da/0n5wPFfaAe/33nsvoaGhfPfddy7L69evT7ly5Zy/O97vrVu3dhmrkvZzkJm9e/fSo0cPSpcuja+vL/7+/rRq1QqAXbt2ZXnf6+n7778nNDSUe+65x2W543VL+zplx6pVqwDSjU2677778PNzHQK7aNEi2rRpQ9myZUlKSnL+dO7cGYA1a9Y4/y1YsGC6ge8PPvhgpnHcfffd6Z6rSJEidOvWzeW56tevT+nSpZ1twmXLljk/G6nXCwoKolWrVlm2E1Pr168fGzduZNmyZfz3v//ltddeY/jw4c7bixUrRs+ePXn//feZMWMGJ0+eZPv27fTs2dPZevPx0eE7L2lAdj60YMECXnjhBWbPns1zzz1HgQIFuPPOO3n11VcpXbq0c72MzjgJCAhItzwgIABIGccB8M8//2CMoUyZMunu70iqTpw44fw3O+tdSUhICEFBQS7LAgMDnTFdD8WLF0/3/AAXLlwAUsZ6+fr6urzG1yInr3N2Y7waGW2PY1nq/Zz2tPKs4kzLcdbOb7/9RuXKlZk1axb33HNPhs99pW08ceIEfn5+lChRwmU9m81G6dKl08WS2fv9Sp+DjJw9e5aWLVsSFBTECy+8wI033khISAiHDh3irrvuuqb9kNtOnDhB6dKl042ZKlmyJH5+ftn+bKZ9TEj/nvHz80u3344ePco333yDv79/ho91/Phx52OWKlUq3e0ZLYOU74pChQqle65Tp04592Fmz3X06FEA5xjItLKbsJQuXdr5GnTo0IGiRYsycuRIHn74YRo0aACknEVrjGHo0KEMHjwYHx8fevfuTalSpVi2bFm610tyl5KjfCgsLIzJkyczefJkDh48yNdff83IkSM5duxYhgOrc6po0aL4+Phw+PDhdLc5Bv+GhYUBKQey7Kx3vTkSrbQDuq/mgOBQokQJkpOTOXLkSIYJTU7l5HXOS0eOHMl0meML/Fr3c48ePXj66aeZOnUqTZs25ciRI1ddgStevDhJSUn8/fffLgmSMYYjR45keuDLDd9//z1//fUXq1evdlaLgHQDwd1B8eLF+fnnnzHGuCRIx44dIykp6areW473w5EjR1yqcUlJSek+W2FhYdStWzfTs7IciXXx4sUzHNCd0fsSyHDuKMcJCpl9/xUsWNC5HsBnn31GREREhuteDUdF9ffff3cmR6GhoXzwwQdMmTKFQ4cOUbZsWcLCwqhevTrNmzdPV2mT3KW6XD5XoUIFhg0bRvv27Z0tkGsVGhpKkyZN+OKLL1z+Erbb7Xz44YeEh4dz4403AnDrrbc6Dxipvf/++4SEhDhPXc+NCkdOlCpViqCgILZv3+6y/Kuvvrrqx3S0A6ZPn57leoGBgdnazpy8znlpx44dbNu2zWXZ/PnzKViwIA0bNgRS9vPOnTvTvcfef/99bDYbbdq0yfI5goKCeOSRR3jvvfeYNGkS9evXp0WLFlcVr+PspA8//NBl+eeff865c+ect+cFx4HZ8X52mDFjRp49Z2rZfW9Byut09uzZdJNGvv/++87bc8pxdty8efNcln/yySfpzkDr2rWrc4qARo0apftxJEetWrXizJkzzra1w8cff5ztuLp27cqJEydITk7O8LmqVasGQMeOHfHz8+OPP/7IcL1GjRrl9CUB/m03VqlSJd1tRYsWpW7duoSFhfH111/z22+/pZu/SnKfUs98Jj4+njZt2tCjRw+qV69OwYIF2bhxI0uXLuWuu+7KteeZOHEi7du3p02bNjz11FMEBAQwbdo0fv31Vz766CPnQWLs2LHOsQVjxoyhWLFizJs3j8WLF/Pqq69SuHBhIGXOluDgYObNm0eNGjUoUKAAZcuWdRn7lJtsNhu9evVyTmpXr149NmzYwPz586/6MVu2bEnv3r154YUXOHr0KF27diUwMJCYmBhCQkKcYw7q1KnDxx9/zIIFC6hcuTJBQUHUqVMnw8fM7uucE++//z4PP/wwc+bMyda4o7Jly3L77bczbtw4ypQpw4cffsiKFSt45ZVXnGNyRowYwfvvv89tt93GhAkTiIiIYPHixUybNo0hQ4ZkK4kbOnQor776Kps3b3aZLC+n2rdvT8eOHXn66ac5ffo0LVq0YPv27YwdO5YGDRrQu3fvq37sK2nevDlFixZl8ODBjB07Fn9/f+bNm5cuucwrderUYfXq1XzzzTeUKVOGggULOg/8afXp04epU6fSt29f9u/fT506dVi3bh0vvfQSXbp0oV27djl+/ho1atCrVy8mT56Mv78/7dq149dff+X1119P1+qaMGECK1asoHnz5jz22GNUq1aNhIQE9u/fz5IlS3jnnXcIDw+nb9++vPnmm/Tq1YsXXniBKlWq8O2337Js2TIge62uBx54gHnz5tGlSxcef/xxGjdujL+/P3FxcaxatYru3btz5513UrFiRSZMmMDo0aPZu3cvnTp1omjRohw9epQNGzYQGhrK+PHjM32esWPHcvToUW655RbKlSvHqVOnWLp0KbNmzeLee+91GeP5+eef89dff1GjRg0SEhJYvXo1//vf/xg8eDDdu3fP8WsvOWTlaHC5/hISEszgwYNN3bp1TaFChUxwcLCpVq2aGTt2rMuZN5mdfRIREWFuu+22dMsB8+ijj7os++GHH0zbtm1NaGioCQ4ONk2bNjXffPNNuvv+8ssvplu3bqZw4cImICDA1KtXL8OzxD766CNTvXp14+/v73JGU0ZnmxmT/bN9Mrt/fHy8GTBggClVqpQJDQ013bp1M/v378/0bLW///7b5f6Os4j27dvnXJacnGzefPNNU7t2bRMQEGAKFy5smjVr5vK67N+/33To0MEULFjQAM4zjjI7gy47r3NmZzQ5zgRbtWpVunWzeyr/bbfdZj777DNTq1YtExAQYCpWrGgmTZqUbt0DBw6YHj16mOLFixt/f39TrVo189prr5nk5GSX9dK+vqm1bt3aFCtWzOXUaoec7IcLFy6Yp59+2kRERBh/f39TpkwZM2TIEPPPP/9kuH1pZfR+d+yf1FMYZPQeXL9+vWnWrJkJCQkxJUqUMAMGDDBbtmxJ95rnxdlqW7duNS1atDAhISEGyPCsyNROnDhhBg8ebMqUKWP8/PxMRESEGTVqlMt0B8Zk/2w1Y4y5ePGi+b//+z9TsmRJExQUZJo2bWqio6NNREREujPp/v77b/PYY4+ZSpUqGX9/f1OsWDETGRlpRo8ebc6ePetc7+DBg+auu+4yBQoUMAULFjR33323WbJkiQHMV1995fKaZPRZN8aYxMRE8/rrr5t69eqZoKAgU6BAAVO9enUzaNAgExsb67Lul19+adq0aWMKFSpkAgMDTUREhLnnnnvMypUrs9z2r7/+2rRr186UKlXK+Pn5mQIFCpjGjRubKVOmOKekcFi4cKGpX7++83PdqFEjExUV5TzrUvKWzRhjrmcyJiLeo2LFitSuXds5KWJeOnbsGBEREQwfPpxXX301z59PPNtLL73Es88+y8GDB/N8lnLxPmqriYhbi4uLY+/evbz22mv4+PhovIWk8/bbbwMpl+dITEzk+++/Z8qUKfTq1UuJkVwVJUci4tZmz57NhAkTqFixIvPmzXM5y0kEUk7Pf/PNN9m/fz8XL16kQoUKPP300zz77LNWhyYeSm01ERERkVQsP5V/7dq1dOvWjbJly2Kz2dKdNpqRNWvWEBkZ6bzI5TvvvJP3gYqIiEi+YHlydO7cOerVq+fsGV/Jvn376NKlCy1btiQmJoZnnnmGxx57TFcpFhERkVzhVm01m83GwoULueOOOzJd5+mnn+brr792uQbR4MGD2bZtW7avwyUiIiKSGY8bkB0dHU2HDh1clnXs2JGoqCgSExMzvA7PxYsXXS4DYbfbOXnyJMWLF7+qSfJERETk+jPGcObMGcqWLZunF9/1uOToyJEj6S4oWKpUKZKSkjh+/HiG16yaOHFilrOWioiIiOc4dOhQnk7T4HHJEaS/cKCjM5hZFWjUqFE8+eSTzt/j4+OpUKEChw4dSjdlvYh4kD//JO6nn+jwzDP8eeQIRYoUYciQIdSoUYMff/yR2bNnk5ycTJOGDfnymWcIqVkTNBWAiMc6ffo05cuXd14MOK94XHJUunTpdFdbPnbsGH5+fs4rPqcVGBiY7kKPAIUKFVJyJOKpoqK4OHAgPYzhT6Ba6dIs++kn59XSe/fuTd++fenSrh0/b9nCk/fcwzybDdusWdC/v7Wxi8g1yeshMZafrZZTzZo1Y8WKFS7Lli9fTqNGjTIcbyQiXiguDh55hDHGsA0IA5YfO0aEr6/Las3Kl+fLCxfwAz4CPjQGBg1Kub+ISCYsT47Onj3L1q1b2bp1K5Byqv7WrVs5ePAgkNISS31l8MGDB3PgwAGefPJJdu3axZw5c4iKiuKpp56yInwRsUJsLBvsdl67/OssoILdDnv2pFuvlTFMuPzr48Dfycnp1xMRScXy5GjTpk00aNCABg0aAPDkk0/SoEEDxowZA8Dhw4ediRJApUqVWLJkCatXr6Z+/fo8//zzTJkyhbvvvtuS+EXk+jNVqvAUYIBewB0Avr5QpYrrilWrgo8P/wHqA/8AL9ls6dcTEUnFreY5ul5Onz5N4cKFiY+P15gjEQ+0ePFiunbtShAQC4T7+sKMGRmPJYqKgkGDWJmcTHvA39eX32JjqVSp0nWOWkSu1fU6flteORIRyQljDKNHjwbg8aFDCV+1Cvbvz3yQdf/+sH8/7Vaton3LliQmJ/P8889fv4BFxOOocqTKkYhH+e6772jXrh0hISEcOnSIYsWKZfu+P/30E82aNcPf358DBw5kOC+aiLgvVY5ERDIwadIkAB5++OEcJUYATZs2pXnz5iQmJjJt2rS8CE9EvICSIxHxGLt372bJkiXYbDYef/zxq3qMESNGADB9+nQuXLiQm+GJiJdQciQiHmPWrFkAdO3alSpXecbZHXfcQYUKFThx4gQLFy7MzfBExEsoORIRj5CYmMgHH3wAwMCBA6/6cfz8/HjooYcAePfdd3MlNhHxLkqORMQjLF68mL///pvSpUvTuXPna3qsfv36ASmDu/fv33/twYmIV1FyJCIewVHl6d27N35+13ZZyIoVK9K2bVuMMbz33nu5EZ6IeBElRyLi9k6dOsW3334LQN++fXPlMR2Ps2DBglx5PBHxHkqORMTtff311yQmJlKzZk1q1aqVK4/ZvXt3/P392bVrFzt27MiVxxQR76DkSETc3meffQbAPffck2uPWbhwYTp06ODy+CIioORIRNxcfHw8y5YtA+Dee+/N1cd2PN6nn36aq48rIp5NyZGIuLVvvvmGS5cuUb169VxrqTk4Wms7duxg165dufrYIuK5lByJiFtztLzuvfdebDZbrj52kSJFaN++PaDqkYj8S8mRiLithIQEli9fDsBdd92VJ8/heNxFixblyeOLiOdRciQibmvNmjVcuHCBcuXKUa9evTx5ji5dugCwceNGjh49mifPISKeRcmRiLitxYsXAykJTG631BzKlClDw4YNAVi6dGmePIeIeBYlRyLilowxLslRXnI8vuP5RCR/U3IkIm7p999/Z+/evfj7+9OuXbs8fa7bbrsNgOXLl5OYmJinzyUi7k/JkYi4pSVLlgDQqlUrChQokKfPddNNNxEWFkZ8fDzr16/P0+cSEfen5EhE3JIjOXJUdfKSr68vnTp1cnleEcm/lByJiNtJSEhg3bp1AHTs2PG6PKfjeVauXHldnk9E3JeSIxFxO+u/+oqEhATKlCxJ9erVr8tztm3bFoCYmBhOfvUVxMVdl+cVEfej5EhE3EtUFN8/8AAAtx47hm3OnOvytGXLlqVGmTIYY1h9xx0QEQFRUdfluUXEvSg5EhH3ERcHjzzCd5d/bQswaND1qeLExdH28GGAlOe326/fc4uIW1FyJCLuIzaW03Y7Gy//eitAcjLs2XNdnvvWy//93rHsej23iLgVJUci4j6qVmWNzUYyUAWoAODrC1WqXJfnbm2zYQN2A39ez+cWEbei5EhE3Ed4ON/fmlK/aQspycmMGRAefl2eu+isWTS8/Ov3Ntv1e24RcStKjkTErXx3+eKvt44ZA/v3Q//+1+/J+/fn1iFDAPj+nnuu73OLiNtQciQibuPYsWP88ssvALQZNsySqs2td9wBwHc//YQx5ro/v4hYT8mRiLiNNWvWAFCnTh1KlChhSQwtWrTA39+fQ4cOsXfvXktiEBFrKTkSEbfxww8/ACnXU7NKaGgojRo1AnDO0i0i+YuSIxFxG45k5Oabb7Y0jpYtWwL/Jmsikr8oORIRt3D69Gm2bdsGKDkSEWspORIRtxAdHY3dbqdSpUqUK1fO0lhatGgBwO+//87Ry2fPiUj+oeRIRNyCu7TUAIoWLUrt2rUBjTsSyY+UHImIW3C0sBwtLauptSaSfyk5EhHLXbp0iZ9//hlwj8oRKDkSyc+UHImI5bZs2UJCQgLFixenevXqVocD/Jscbd26ldOnT1scjYhcT0qORMRyjurMzTffjM1msziaFOHh4VSsWBG73U50dLTV4YjIdaTkSEQs506DsVNTa00kf1JylAO6zpJI7rPb7c7kyF0GYzs4Tun/6aefLI5ExDsdO3bM6hAypOQomyZOnEhYWBi7d++2OhQRr7J7925OnjxJcHAwDRo0sDocF82aNQPg559/Jjk52eJoRLzLlClTKFWqFLNmzbI6lHSUHGXTM888w8mTJ/m///s/q0MR8SqOs9RuuukmAgICLI7GVa1atShQoABnz55l586dVocj4lUef/xxAB555BGLI0lPyVEOnTx50uoQRLzKhg0bAGjSpInFkaTn6+tL48aNATQoWyQfUXKUQ+fOnbM6BBGv4kiOHEmIu2natCmgcUcieSUoKMjqENJRcpRDSo5Ecs+FCxfYvn074L7JkWPckZIjkdyT+gSnAgUKWBhJxpQcZUNCQoLz/xcuXLAwEhHvsnXrVpKSkihVqhTly5e3OpwMOdp9u3bt4p9//rE4GhHvcPbsWef/VTnyUKm/EH189JKJ5BZHS+2mm25ym8kf0ypRogRVqlQB/o1XRK7N+fPnnf+/ePGihZFkTEf6bEidHKWuIonItXH38UYOjnFHGpQtkjtSd2FOnTrldvMIKjnKhvj4eOf/1VYTyT2ekhxp3JFI7kp9LE1MTHS7woOSo2xIXfI7f/6822W4Ip7o5MmT7NmzB0hpq7mz1Ges2e12i6MR8Xyp22qQkiC5EyVH2XDp0iWX392xPyriaTZt2gRAlSpVKFasmMXRZK1u3boEBwcTHx/Pb7/9ZnU4Ih4vbRcm7XHWakqOsiFtRqvWmsi185SWGoCfn5+zuqVxRyLXLu1xVJUjD5Q2o01bDhSRnPOk5Ag07kgkN6U9jqpy5IHS7jRVjkSujTHG45IjnbEmkntUOfICaquJ5K5Dhw5x9OhR/Pz8qF+/vtXhZIujcrRjxw5Onz5tcTQink1jjryA2moiuctRNapTpw7BwcEWR5M9pUqVokKFChhj2LJli9XhiHg0VY68gCpHIrnL01pqDo54NVO2yLXRmCMvoDFHIrnLU5MjxxlrGzdutDgSEc+mypEXSLvT1FYTuXrJycnOOY48LTlS5Ugkd2jMkRdIu9PcbZpzEU+ye/duzp07R2hoKDVq1LA6nByJjIzEZrNx8OBBjh49anU4Ih4r7XFUlSMPlHanudtOFPEkjqpLo0aN8PX1tTianClYsKAzoVNrTeTqpS06qHKUgWnTplGpUiWCgoKIjIzkhx9+yHL9efPmUa9ePUJCQihTpgwPPfQQJ06cyLP43H0ningSTx1v5KBxRyLXzt2Pq5YnRwsWLOCJJ55g9OjRxMTE0LJlSzp37szBgwczXH/dunX06dOH/v37s2PHDj799FM2btzIgAED8izGtJUid9uJIp7E05MjjTsSuXZpr1Hqbh0Zy5OjSZMm0b9/fwYMGECNGjWYPHky5cuXZ/r06Rmu/9NPP1GxYkUee+wxKlWqxM0338ygQYOcAzzzQtpkyN12ooinuHDhAtu3bwc8NzlKXTkyxlgcjYhnUuUoC5cuXWLz5s106NDBZXmHDh1Yv359hvdp3rw5cXFxLFmyBGMMR48e5bPPPuO2227L9HkuXrzI6dOnXX5yQpUjkdyxdflykpKSKBkWRvny5a0O56rUrVuXgIAATpw4wb758yEuzuqQRDyOuxcdLE2Ojh8/TnJyMqVKlXJZXqpUKY4cOZLhfZo3b868efO4//77CQgIoHTp0hQpUoS33nor0+eZOHEihQsXdv7k9EvZ3TNcEY8QFcWGO+8EoPHx49jmzLE4oKsTGBhIvbJlAdjYqxdEREBUlMVRiXiWtG01dzuuWt5WA7DZbC6/G2PSLXPYuXMnjz32GGPGjGHz5s0sXbqUffv2MXjw4Ewff9SoUcTHxzt/Dh06lKP4dLaayDWKi4NHHmHD5TZUY4BBgzyz6hIXx0379wOwAcBu99xtEbGIu1eO/Kx88rCwMHx9fdNViY4dO5aumuQwceJEWrRowX/+8x8gpcQdGhpKy5YteeGFFyhTpky6+wQGBhIYGHjVcapyJHKNYmPBbsdxfldjgORk2LMHwsMtDOwqxMbSGJgGzu3x2G0RsYjjOOrv709iYqLbHVctrRwFBAQQGRnJihUrXJavWLGC5s2bZ3if8+fP4+PjGrZjrpS8Ghzp2GkhISEuv4tINlWtykmbjdjLv94E4OsLVapYGNRVqlqVmy5XtjcDSeC52yJiEcdxtGDBgoD7VY4sb6s9+eSTzJ49mzlz5rBr1y5GjBjBwYMHnW2yUaNG0adPH+f63bp144svvmD69Ons3buXH3/8kccee4zGjRtT9vI4gNzm2GmhoaEuv4tINoWHs+mJJwCoAhTz9YUZMzyz0hIeTrUZMygInAd2+fh47raIWMQx5shxXHW3ooOlbTWA+++/nxMnTjBhwgQOHz5M7dq1WbJkCREREQAcPnzYZc6jfv36cebMGd5++23+7//+jyJFitC2bVteeeWVPIvRsdMKFCjA33//7XY7UcQTbChWDIDGt94Kc+d6dDLhO3Agke++y+roaDa88gp1+ve3OiQRj5L6uAruV3SwPDkCGDp0KEOHDs3wtrlz56ZbNnz4cIYPH57HUf3LsdPUVhO5es7JH7t18+jEyKFxy5asjo5m4549KDUSyZm0yZG7HVctb6t5guTkZACCg4MB98twRdydMcaZHDkmUfR0ju3QTNkiOedoqzmOq47jrLtQcpQNaZMjd8twRdzdoUOHOHr0KL6+vjRo0MDqcHKFY4bvX375Jd0VxkUka47jqJIjD6bkSOTaOKordevWdX6OPF358uUpWbIkSUlJbN261epwRDxK2rPAlRx5ICVHItfG0y82mxGbzaaL0IpcJVWOvIBjpwUFBQEacySSUxs3pkyX6E3JEbhehFZEsk9jjryAKkciVy85OZlNmzYB3pccqXIkknPGGLXVvIGSI5Grt3v3bs6ePUtoaCg1atSwOpxc5agc/f7775w6dcraYEQ8RFJSkvP/qhx5MLXVRK6eo6rSqFEj56V+vEXx4sWpXLkygLM6JiJZS11gcBxXlRx5IFWORK6eNw7GTk3jjkRyJnWBQZUjD6bkSOTqedvkj2lpMkiRnEmdHAUGBgJKjjyS2moiV+fChQts374d8N7KkWO7VDkSyR7HMdTX1xc/v5SrmCk58kCqHIlcna1bt5KUlETJkiWpUKGC1eHkiYYNG+Lj48Off/7JX3/9ZXU4Im7PMSDbz8/POQ5RyZEHUnIkcnVSz29ks9ksjiZvhIaGUqtWLUDVI5HscFSO/P39lRx5Ml14VuTqePtgbAcNyhbJPiVHXiLtmCNVjkSyJ78lRxqULXJlSo68hNpqIjl38uRJYmNjAe89U80h9aBsY4zF0Yi4N4058hIZtdX0BSiSNcekiFWqVKFYsWIWR5O36tSpQ2BgIKdOnWLPnj1WhyPi1lQ58hJp22rgOv25iKSXX1pqkPIl36BBA0DjjkSuRMmRl0hbOQK11kSuxNsnf0xL445EskfJkZdwVIlSJ0c6Y00kc8aYfFU5Ap2xJpJdSo68hGOnOaY5B1WORLJy6NAhjh49iq+vr7Pd5O0cSWBMTIz+eBLJggZkewnHTvPz88Pf3x9QciSSFUf1pG7dui4VV29WtWpVChUqxIULF9ixY4fV4Yi4LVWOvIAxBrvdDqRcByYgIABQW00kK/mtpQbg4+Oj1ppINig58gKOxAhSkiNVjkSuLD8mR6BB2SLZoeTIC6TeYX5+fs7KkZIjkYwlJyc75zjKb8lR6skgRSRjGnPkBVLvMLXVRK5s9+7dnD17ltDQUGrUqGF1ONeVo3L066+/cv78eYujEXFPqhx5gbTJkdpqIllztJQaNWrk/OLLL8qVK0fp0qVJTk4mJibG6nBE3JKSIy+QWeVIyZFIxvLb5I+p2Ww2tdZErkDJkRdQW00kZ/LrYGwHDcoWyZrGHHkBtdVEsi8hIYHt27cD+Tc5UuVIJGuqHHkBxw6z2WzYbDa11USyEBMTQ1JSEiVKlKBChQpWh2OJRo0aAbBnzx5OnjxpcTQi7kfJkRdw7DDHDlRyJJK5n3/+GYAmTZpgs9ksjsYaxYoV44YbbgBwTmkgIv9ScuQF0iZHjraaxhyJpOcYZ9OkSROLI7GWo7WmcUci6WnMkRdImxz5+fkB/+5cEflX6spRfqbLiIhkTpUjL6DKkUj2HD9+nL179wL58zT+1FJXjowxFkcj4l6UHHkBJUci2eNoIVWrVo0iRYpYG4zFGjRogK+vL0eOHOHPP/+0OhwRt6LkyAsoORLJHrXU/hUSEkKtWrUAtdZE0lJy5AU05kgke/L75I9paVC2SMY0INsLqHIkcmXGGJ2ploYGZYtkTJUjL6DkSOTK/vjjD06ePElgYCB169a1Ohy3kHqmbLvdbnE0Iu4jo+TIbre71ckLSo6uQMmRyJU5xhs1aNDAOVFqflerVi2CgoI4ffo0sbGxVocj4jYySo4At/ojQsnRFTh2lo9PykulMUci6f383XcANLk8CFlSvvgbNmwIwMb33oO4OIsjEnEPGY05AvdqrSk5ugJHcqTKkUgmoqLY8O67ADSeMweioiwOyH3cFBICwIaJEyEiQq+NCK6VI0fhAVQ58ihpK0dKjkRSiYvj4sCBxFz+tYkxMGiQqiQAcXHcdLmithHAbtdrI4KSI6+g5EgkC7GxbDeGS0BxoDJAcjLs2WNtXO4gNpbGlweYxgAXQa+NCJknRxqQ7UE05kgkC1Wr8rPNBkBjwAbg6wtVqlgZlXuoWpUqNhvFSEmMtoFeGxFcxxypcuShVDkSyUJ4OD9fnteoCaQc/GfMgPBwS8NyC+Hh2GbNounlX3+y2fTaiKC2mldQciSStQ0nTwLQ+OWXYf9+6N/f2oDcSf/+NHvqKQCiu3XTayOCkiOvkFlypLaaCPzzzz/8/vvvADQeMEBVkQw07dgRgJ+2b7c4EhH3oOTIC2Q25kiVI5F/L41RpUoVihcvbnE07qlx48bYbDb279/PkSNHrA5HxHKO4oK/vz+2y2MWQcmRR1FbTSRzjpmxdbHZzBUqVIhalyfH/OmnnyyORsR6juOnn58fNpvNmSApOfIgSo5EMuc42Otis1lr1qwZANHR0RZHImK91G01+Pf4quTIg+hUfpGM2e12Z3LkOPhLxpo2TTlnTZUjESVHXkGVI5GM/f7775w8eZKgoCDq1atndThuzZE8bty4UX9YSb6n5MgLKDkSyZijRXTTTTcREBBgcTTurVq1ahQuXJgLFy6wXWetST6XehJIUHLkkRw7yzFgTMmRSApHcqSW2pX5+Pg4x2WptSb5nSpHXkBjjkQytn79ekDJUXZpULZICiVHXsBxITy11UT+FR8fz86dOwElR9mlQdkiKZQceQGNORJJ7+eff8YYQ+XKlSlVqpTV4XgER1ttz549HD9+3OJoRKyTdsyR5jnyQEqORNJTSy3nihYtSvXq1QFVjyT/Sk5OdnZkVDnyYBpzJJKeY9xM8+bNLY7EsziSSSVHkl+lLiwoOfJgqhyJuNLkj1fPMe5Ig7Ilv1Jy5CWUHIm42rlzJ6dPnyY0NJQ6depYHY5HcSSTGzZsIDk52eJoRK6/1F0XzXN0BdOmTaNSpUoEBQURGRnJDz/8kOX6Fy9eZPTo0URERBAYGMgNN9zAnDlz8iQ2JUcirhxVj8aNGzu/3CR7atasScGCBTl79iw7duywOhyR6y71sVPJURYWLFjAE088wejRo4mJiaFly5Z07tyZgwcPZnqf++67j++++46oqCh+++03PvroI+dAx9ymMUcirjQY++r5+vrSuHFjQK01yZ8cyZGfn5/zLDUlRxmYNGkS/fv3Z8CAAdSoUYPJkydTvnx5pk+fnuH6S5cuZc2aNSxZsoR27dpRsWJFGjdunGcDQ1U5EnGlwdjXxvG6/fjjjxZHInL9pZ3jCJQcpXPp0iU2b95Mhw4dXJZ36NDB+ddpWl9//TWNGjXi1VdfpVy5ctx444089dRTXLhwIdPnuXjxIqdPn3b5yS4lRyL/OnHiBL/99hvw7+BiyZmbb74ZgHXr1lkcicj1l1Vy5DjF3x1YOmDg+PHjJCcnp5tErlSpUhw5ciTD++zdu5d169YRFBTEwoULOX78OEOHDuXkyZOZjjuaOHEi48ePv6oYM0uOkpKSMMY4y4Ii+YHjLLUbb7yR4sWLWxyNZ2ratCk+Pj7s27ePP//8k3Llylkdksh1k3YCSFDlKFNpE4yskg673Y7NZmPevHk0btyYLl26MGnSJObOnZtp9WjUqFHEx8c7fw4dOpTt2DIbcwTobBPJd9RSu3aFChWiXr16gFprkv+orZYNYWFh+Pr6pqsSHTt2LNNLEpQpU4Zy5cpRuHBh57IaNWpgjCEuLi7D+wQGBlKoUCGXn+zKrHIEaq1J/uNoBSk5ujZqrUl+peQoGwICAoiMjGTFihUuy1esWJHpl2+LFi3466+/OHv2rHPZ77//jo+PD+Hh4bkeo5IjkRQXL17k559/BqBly5YWR+PZlBxJfqXkKJuefPJJZs+ezZw5c9i1axcjRozg4MGDDB48GEhpifXp08e5fo8ePShevDgPPfQQO3fuZO3atfznP//h4YcfJjg4ONfjyyo50un8kp9s2bKFhIQEwsLCqFatmtXheLQWLVoAsG3bthydICLi6TTmKJvuv/9+Jk+ezIQJE6hfvz5r165lyZIlREREAHD48GGXOY8KFCjAihUrOHXqFI0aNaJnz55069aNKVOm5El8jp2Vdj4GUOVI8hfH5Kw333yzTkS4RuXKlaNSpUoul2IRyQ88pXLkFtPbDh06lKFDh2Z429y5c9Mtq169erpWXF5xnFro2Hk2mw1/f38SExOVHEm+4kiO1FLLHTfffDP79u1j3bp16aYzEfFWnpIcWV45cndp22qguY4k/7Hb7c4zq5Qc5Q6NO5L8SMmRl8goOdIlRCS/2blzJ//88w8hISHUr1/f6nC8giM5+umnn/SHluQbGY05crTplRx5EFWORP5tqTVr1szlLz65etWrV6dYsWJcuHCBmJgYq8MRuS5UOfISSo5ENN4oL/j4+DjPWlNrTfILJUdeQsmRyL8Hb0crSHKHxh1JfqPkyEtozJHkdwcOHODQoUP4+fnpYrO5LHVy5E4X3RTJK47jppIjD6fKkeR3jpZaw4YNCQ0NtTga7xIZGUlgYCB///03sbGxVocjkuccx01NAunhlBxJfqfxRnknMDCQxo0bA/++ziLeTG01L6HkSPI7jTfKW61atQJgzZo1FkcikveUHHkJjTmS/Oz48ePs3LkTUHKUV1q3bg3A6tWrNe5IvJ6SIy+hypHkZ45qRq1atQgLC7M4Gu/kmDvq0KFD7Nu3z+pwRPKULjzrJZQcSX62etEiANrcdJPFkXivkJAQ57ij1e+8A3FxFkckkndUOfISSo4k34qKYvXlCz+3fu89iIqyNh4v1rpIEQBWv/YaRETotRavpeTIS2jMkeRLcXH8PXAgv17+tZUxMGiQqhp5IS6O1kuWALAaMHa7XmvxWjqV30s4dpbjwnigypHkA7GxrLk8OLgOEAaQnAx79lgZlXeKjaWZMfgDh4B9oNdavFZWk0C60wkJSo6uQG01yZeqVmXV5f+2dizz9YUqVayJx5tVrUqojw+NL/+6GvRai9dSW81LODLZjJIjtdXEa4WHs7psWQDaQMrBesYMCA+3NCyvFB4OM2fS+nJ1erXNptdavJaSIy+R1ZgjVY7EWx09epSdf/2FzWbjli+/hP37oX9/q8PyXv3703rePABWlymDefhhiwMSyRsZncrvGLai5MiDqK0m+ZFjfqO6detSvHt3VTGug2a3346fnx+H/vpL8x2J11LlyEsoOZL8aPXq1cC/szdL3gsNDXXOd6RLiYi3UnLkJXQqv+RHq1alDMdu06aNxZHkL6kvJSLijTRDtpdQ5UjymyNHjrB79+6U8Ua33GJ1OPmKIzn6/vvv3eq0ZpHcosqRl1ByJPmNo2pRv359ihYtam0w+UyLFi0ICAggLi6O2NhYq8MRyXVKjryEkiPJb77//ntA442sEBISQosWLQBYsWKFxdGI5D611byExhxJfmKMcR6U27VrZ3E0+ZPjdV+5cqXFkYjkPlWOvIQqR5Kf7N27l/379+Pv76/xRhZxJEerVq3SH2DidfJFcnTs2DGOHDmSW7G4JSVHkp84qkbNmjWjQIECFkeTP0VGRlKkSBHi4+PZvHmz1eGI5Cqvbqtt376dWrVqUaZMGcqVK0e5cuV49tlnOXfuXG7HZzklR5KfOJKj9u3bWxxJ/uXr60vbtm0BtdbE+3h15ah///6UKlWKdevWERMTwwsvvMC3335Lo0aN+Oeff3I7RktpzJHkF8nJyc7B2EqOrKVxR+KtvDo52rlzJ9OmTaNZs2bUrVuXhx56iE2bNlGrVi2GDx+e2zFaSpUjyS82bdrEqVOnKFKkCI0aNbI6nHzNkRytX7/eKyvykn95dVstowqRzWbjpZde4quvvsqVwNyFkiPJLxwttbZt2+Lr62txNPlblSpVqFChApcuXeKHH36wOhyRXON1laPbbruNZ555hk8++YTBgwczYsQIjh496rJOfHy8100a59hZjqsGg5Ij8U4ab+Q+bDabcz+otSbexFOSI78rr5KiTp06bNmyhXfffdeZFFWuXJn77ruP+vXrk5yczLvvvsubb76ZZ8FawTGFv8YciTc7e/Ys0dHRgOY3chft2rUjKipKyZF4lazaasnJyZbElJFsJ0cvv/yy8/9Hjx4lJiaGrVu3snXrVqZPn86ePXvw9fVl/Pjx3H333XkSrBVUOZL8YO3atSQmJlKxYkVuuOEGq8MRcJ6xtm3bNo4dO0bJkiUtjkjk2mVUOXIcX93peoLZTo5SK1WqFJ06daJTp07OZRcuXGDbtm1s27Yt14JzBxpzJPlB6pZa6j8ExDolS5akXr16bNu2jZUrV9KjRw+rQxK5Zp6SHOXaDNnBwcE0bdqUQYMG5dZDuoWM2mqOnaq2mngLjTdyTx07dgRg6dKlFkcikjuyaqt5ZXLkrTJqqzl2qipH4g3i4uLYsWMHNpvN2coR99C5c2cgJTlyp8GqIlcrq8qRO73HlRxdgSOT1Zgj8VbffvstAE2aNKF48eIWRyOptWjRgoIFC/L333/rUiLiFfJdW81bZdVWU3Ik3sCRHHXp0sXiSCQtf39/59mDjv0k4snUVvMSWbXVNOZIPN2lS5ec442UHLknR2tNyZF4Orvd7jymqq3m4dRWE2+2bt06zp49S6lSpWjQoIHV4UgGHMnRzz//zIkTJyyORuTqpT5mqq3m4dRWE2+2ZMkSADp16uTyHhf3ER4eTp06dTDGsHz5cqvDEblqqbstaqt5OE0CKd7MkRyppebe1FoTb3ClypHaah4ko7aaxhyJN9i/fz+7du3C19dX8xu5OZ3SL94gdXKkypGHU1tNvJWjCtG8eXOvu2C0t9Ep/eINHAUFHx8fl2OqKkceSG018VZqqXkOndIv3iCjOY5AA7I9ks5WE2+UkJDAd999B/zbshH35thPjqRWxNNklhypreaBMrrwbOoxR+60M0Wya82aNVy4cIGyZctSt25dq8ORbHBU+DZs2MCRI0csjkYk5zKaABLUVvNIWVWOAJKTk697TCLXatHHHwPQpVUrl/e2uK9y5crRqFEjjDEsev11iIuzOiSRHFFbzYtkNSAb1FoTz2Nmz+aruXMBuP3jjyEqytqAJNu6h4cD8NUbb0BEhPadeBS11bxIVgOyQcmReJi4OGIeeYRDQAjQzhgYNEhVCE8QF0f3r74CYCVwzm7XvhOPoraaF8lqniPQXEfiYWJj+erye7ojEAyQnAx79lgZlWRHbCy1jaEikACsAO078Shqq3mRjNpqvr6+zv+rciQepWpVvrz83zscy3x9oUoVS8KRHKhaFZuPD90v//oVaN+JR1FbzYtk1Faz2Ww6nV880r7ERLYDvsBtkHJwnTEDLo9lETcWHg4zZ9L98oFkEZA8fbr2nXgMtdW8SEZtNdBcR+KZvro8ZqVls2YUX7UK9u+H/v2tDUqyr39/bt6zhyIFCnAciK5Rw+qIRLJNbTUvklFbDXR9NfFMjuTojvvvh9atVXXwQP6VKnFb95TmmmN/ingCtdW8SEZtNVDlSDzPiRMnWLt2LQDdu3e/wtrizrqnSo7c6YAikhW11byI2mriLRYvXozdbqdevXpUrFjR6nDkGnTs2BF/f39iY2PZvXu31eGIZIsqR14ks7aaY+eqrSaewtGCUdXI8xUqVIhbb70VgM8//9ziaESy50pjjlQ58iCZtdUcZUFVjsQTnD9/nqVLlwJKjrzFvffeC8Cnn35qcSQi2eMoJmhAthe4UuVIyZF4giVLlnD+/HkqVapEgwYNrA5HcsEdd9yBn58f27dv5/fff7c6HJErchwv0445UlvNA2lAtngDR3Xh3nvv1YVmvUSxYsVo27YtAJ999pnF0YhcmdpqXiSzAdk6lV88xfnz51m0aBHwbytGvINaa+JJ1FbLoWnTplGpUiWCgoKIjIzkhx9+yNb9fvzxR/z8/Khfv36exaa2mni61C21yMhIq8ORXHTHHXfg6+vL1q1b2aNrrImbU1stBxYsWMATTzzB6NGjiYmJoWXLlnTu3JmDBw9meb/4+Hj69OnjPGMjr6itJp7uk08+AdRS80ZhYWHO1pqqR+Lu1FbLgUmTJtG/f38GDBhAjRo1mDx5MuXLl2f69OlZ3m/QoEH06NGDZs2a5Wl8mudIPNm5c+dYvHgxAPfdd5/F0UheUGtNPIXaatl06dIlNm/eTIcOHVyWd+jQgfXr12d6v3fffZc//viDsWPHZut5Ll68yOnTp11+skuXDxFPlrql1rBhQ6vDkTxw55134uvrS0xMDH/88YfV4YhkSm21bDp+/DjJycmUKlXKZXmpUqU4cuRIhveJjY1l5MiRzJs3L90LnJmJEydSuHBh50/58uWzHaPaauLJdJaa9wsLC6NNmzaAqkfi3tRWy6G0X9rGmAy/yJOTk+nRowfjx4/nxhtvzPbjjxo1ivj4eOfPoUOHsn1ftdXEU505c0ZnqeUTjv27YMECiyMRyVxmbTVVjtIICwvD19c3XZXo2LFj6apJkPJlv2nTJoYNG4afnx9+fn5MmDCBbdu24efnx/fff5/h8wQGBlKoUCGXn+zS2Wriqb788ksuXLhA1apVdZaal7v77rvx8/Nj69at7Ny50+pwRDKUWVtNlaM0AgICiIyMZMWKFS7LV6xYQfPmzdOtX6hQIX755Re2bt3q/Bk8eDDVqlVj69atNGnSJNdjvNLlQzTmSNzVvHnzAOjVq5daal6uePHidOnSBfh3v4u4myu11VQ5SuXJJ59k9uzZzJkzh127djFixAgOHjzI4MGDgZSWWJ8+fYCU6k3t2rVdfkqWLElQUBC1a9cmNDQ01+NT5Ug80ZEjR5x/dPTo0cPiaOR66NmzJ5CSHLnTX+AiDp7UVsveiOY8dP/993PixAkmTJjA4cOHqV27NkuWLCEiIgKAw4cPX3HOo7ykAdniiT7++GPsdjtNmzalSpUqVocj10G3bt0oWLAgBw4c4Mcff6Rly5ZWhyTiQm21HBo6dCj79+/n4sWLbN68mVtuucV529y5c1m9enWm9x03bhxbt27Ns9g0IFs8UeqWmuQPwcHB3HPPPYBaa+Ke1FbzIprnSDzN7t272bRpE76+vpr4MZ9xtNY++eQTLl68aHE0Iq48qa2m5OgK1FYTT+OoGnTq1IkSJUpYHI1cT61bt6Zs2bL8888/fPvtt1aHI+JCbTUvoraaeBK73e5MjhxVBMk/fH19efDBBwH44IMPLI5GxJXaal7kSmerqa0m7mTt2rXs27ePggUL0r17d6vDEQs4zu795ptvOH78uMXRiPxLbTUvcqV5jlQ5EncS9dZbADx4++2EhIRYHI1YoW7dukRGRpKYmMiHY8dCXJzVIYkAaqt5FbXVxFPEv/UWn33xBQAPz58PUVEWRyRWebh6dQDmTJuGqVBB7wVxC2qreRFNAikeIS6Ojx9/nASgFtDYGBg0SFWD/Cgujh7z5xME/AJs1ntB3ITaal5Elw8RjxAbS9TlL5aHARtAcjLs2WNlVGKF2FiKGMNdl3+NAr0XxC2oreZF1FYTT/BLUhIbSZny3jnto68vaHbs/KdqVfDx4eHLv84Hzvv46L0glsusrabKkQdSW008wbuX57S5HSgJKYnRjBkQHm5lWGKF8HCYOZM2Pj5UBE4DCx9+WO8FsVxmbTVVjjyQJoEUd5eQkMD7778PwMNz58KqVbB/P/Tvb2lcYqH+/fE5cICH+vUDYFZsrLXxiHDltpoqRx5Elw8Rd/fZZ59x4sQJypcvT8eePaF1a1UJBMLDefj55/H19WXNmjXs3LnT6ogkn1NbzUuk3lGqHIm7mjZtGgCDBg1K9xeZ5G/h4eHcfvvtAEyfPt3iaCS/U1vNSyg5EncXExNDdHQ0/v7+9FcbTTIwdOhQAN577z3Onj1rcTSSn6mt5iVS7ygNyBZ35KgG3H333ZQuXdriaMQdtW3blhtvvJEzZ844r7snYgW11bxE6hKf5jkSdxMfH+882A0ZMsTiaMRd+fj4MHjwYCClBetOByDJX9RW8xJqq4k7e//99zl//jy1atWiZcuWVocjbqxfv34EBwezfft2oqOjrQ5H8im11byE2mrirux2u3Mg9tChQ9Ml7yKpFS1alAcffBCAt99+2+JoJL9SW81LZNVWU3IkVlq2bBm7d++mUKFC9OrV68p3kHxv2LBhAHz66afE6TprYgG11bxEVm01jTkSK02aNAmAgQMHUqhQIYujEU/QoEEDWrduTVJSkqpHYgm11byE2mrijrZv387KlSvx8fFh+PDhVocjHuTJJ58EYMaMGTqtX66r5ORk5zE1s7aaKkceQm01cUdvvvkmAPfccw8REREWRyOe5LbbbqNq1aqcOnWKuXPnWh2O5COpj5WZtdVUOfIQ2akcqa0m19Phw4edp+87qgAi2eXj48OIESMAmDx5MsnJyRZHJPlF6uQoICDA5TYNyPYw2ZnnSJUjuZ6mTZtGYmIizZs3p0mTJlaHIx6oT58+FCtWjD/++INvvvnG6nAkn7h06ZLz/xqQ7eE0z5G4k7NnzzpP33f89S+SU6Ghoc5JIV999VW3+mtdvJcjOfLx8cHX19flNrXVPIwGZIs7mTFjBidPnqRKlSrceeedVocjHmz48OEEBgYSHR3NmjVrrA5H8gHHsTJtSw3UVvM4unyIuIuEhATeeOMNAEaOHJnuLy+RnChdurTzQsUvvfSSxdFIfuCoHKVtqYHaah4nu201d8p2xQvFxTF31CgOHz5MeHg4vXv3tjoi8QL//e9/8fPzY8WKFWycPh00MaTkIUdylFHlSG01D5Od5AjQGR+Sd6KiSKpQgVcmTwbgPzffnOGXi0hORURE0LNxYwBeGjoUIiIgKsriqMRbqa3mRRwlvoyuW5U6OdK4I8kTcXHwyCN8ZAz7gRLAgE8+0V/4kjvi4hgZHY0N+BL41W6HQYP0/pI8obaaF3FksRklR6mnP9e4I8kTsbEk2+04RoSMAELsdtizx8qoxFvExlLdGO6+/OuLAMnJen9JnsiqcqS2modx7Ki0Z6qBKkdyHVStynybjd1AUWAogK8vVKlibVziHapWBR8fnr386wLgFx8fvb8kT2RVOVJbzcNk1VZLfbaQkiPJC4mlSjEuLAyAp4HCvr4wYwaEh1sbmHiH8HCYOZN6vr7cCxhgTL16en9JnsjOgGy11TxEVm01m82muY4kT7377rvs/ftvSoaFMWzJEti/Hy6ffi2SK/r3h/37GT93Lj4+PnwZE8OmTZusjkq8kAZke5Gs2mqguY4k7yQkJPD8888D8MyzzxLaubP+ope8ER5Ojb596dWrFwDPPfecxQGJN9KAbC+SVVsNNEu25J0ZM2YQFxdHeHg4gwYNsjocyQfGjBmDn58fS5cuZd26dVaHI15G8xx5kStVjpQcSV44d+6cc9bi5557jqCgIIsjkvzghhtu4OGHHwZg9OjRbnWgEs+ntpoXUeVIrDBp0iSOHTtG5cqVeeihh6wOR/KRZ599lsDAQNauXcu3335rdTjiRdRW8yJZDcgGjTmS3Hf48GFeeeUVAF588cUMv0hE8kr58uUZPnw4AE899ZS+2yTXaJ4jL6K2mlxvzz33HOfOnaNp06bcf//9Vocj+dDo0aMpXrw4u3btYtasWVaHI15C8xx5EbXV5Hratm0bc+bMAeCNN97I9H0nkpeKFCnCuHHjABg7dizx8fHWBiReQfMceZErtdWUHEluMcbw1FNPYYzh3nvvpXnz5laHJPnYoEGDqFatGn///TcTJ060OhzxAmqreRHNcyTXy7fffsvKlSsJCAjg5Zdftjocyef8/f157bXXAJg8eTL79++3NiDxeGqreRG11eR6uHTpEk8++SQAjz32GJUrV7Y4IhHo2rUrbdq04eLFi/znP/+xOhzxcGqreRG11eR6eOONN/jtt98oWbIko0ePtjocESDle+/NN9/Ex8eHzz77jOXLl1sdkngwtdW8yJXaao6drORIrtaBAweclwl5/fXXKVKkiLUBiaRSr14956n9w4YN4+LFixZHJJ4qO201VY48xJXaao7kSF8YclXi4niiZ08uXLjALbfc4ry2lYg7GT9+PKVLlyY2NpbXhgyBuDirQxIPpMqRF8lu5ciREYtkW1QUSypU4Msff8QXmHrrrTp1X9xS4cKFeaNbNwBefPdd9lWoAFFRFkclnkYDsr3IlSpHgYGBgJIjyaG4OBIGDmT45S+CEUDtCRP0F7m4p7g4Hpw9mzZAAvC4MTBokN6vkiO68KwXudKAbLXV5KrExjLeGPYC5YAxAMnJsGePtXGJZCQ2FpsxTAX8gW+Az/R+lRzKTlsN3CdBUnKUBbXVJC9svnCB1y7/fypQEMDXF6pUsS4okcxUrQo+PtQARl5e9ChwonhxC4MST5OdthooOfIIaqtJbrt06RIPjxpFMnC/zUZ3SEmMZsyA8HCLoxPJQHg4zJwJvr6MBmoBx4AnXn3V4sDEk2SnrQbuc8aakqMsqK0mue3ll19m+/bthIWF8VZMDKxaBfv3Q//+Vocmkrn+/WH/fgJXrWLO11/j4+PDhx9+yOLFi62OTDyE2mpeJLvJkSpHkh2//vorL7zwAgBTpkyhRL160Lq1KkbiGcLDoXVrGnfr5pzRfdCgQbowrWRLVm01JUce5krJkdpqkl2XLl2iX79+JCYm0q1bNx544AGrQxK5auPHj6dKlSr8+eefPPHEE1aHIx5AlSMvoraa5JZx48axefNmihYtyvTp0zWnkXi0kJAQ3n33XWw2G3PnzuXzzz+3OiRxc6oceRG11SQ3/PDDD7z88ssAzJw5k3Llylkckci1u/nmmxk5MuX8tUceeYQ///zT4ojEnWV3QLaSIw+gtppcq/j4eHr37o0xhn79+nHPPfdYHZJIrhk3bhyRkZGcPHmSfv36uc2ZRuJ+1FbzImqrybV69NFHOXDgAJUrV2bKlClWhyOSqwICAvjwww8JDg5m5cqV/O9//7M6JHFTaqt5EbXV5Fq89957zJs3Dx8fHz744AMKFixodUgiua569epMmjQJgJEjR7Jp0yaLIxJ3pLaaF1FyJFclLo5foqIYMngwAGPHjqV58+YWByWSdwYNGkT37t25dOkS9957L//8+mvKHF66/ppc5mirqXLkBbI75khtNXGKiuJMhQrcO2AAFxIS6FirFs8++6zVUYnkKcdZa5UqVWL//v30rVMHe9u2EBEBUVFWhyduQJUjL6LKkeRIXBxm4EAGGMNvQDjw4a5d+Pz1l9WRieS5IkWK8NnUqQSScnHa1wHsdhg0SBUk0YDsqzFt2jQqVapEUFAQkZGR/PDDD5mu+8UXX9C+fXtKlChBoUKFaNasGcuWLcuTuJQcSY7ExvK2MXwC+AGfAGF2u65eLvlGw6AgHKcdPAOsBkhO1mdANCA7pxYsWMATTzzB6NGjiYmJoWXLlnTu3JmDBw9muP7atWtp3749S5YsYfPmzbRp04Zu3boRExOT67GprSY58d3Ro4y4/P/XgGaQclHZKlWsC0rkeqpalYE2G72AZOAeYJ+Pjz4DorZaTk2aNIn+/fszYMAAatSoweTJkylfvjzTp0/PcP3Jkyfz3//+l5tuuomqVavy0ksvUbVqVb755ptcj02VI8mu2NhY7h06lGSgt83G45CSGM2YoWunSf4RHo5t1ixm+PgQCZwAupUuzelChayOTCxkjFFbLScuXbrE5s2b6dChg8vyDh06sH79+mw9ht1u58yZMxQrVizTdS5evMjp06ddfrJDyZFkR3x8PLfffjv//PMPTZs2Zebvv2NbtQr270+5mrlIftK/PyEHDvDVJ59QumRJdvz1F7169SI5OdnqyMQijsQI1FbLluPHj5OcnEypUqVclpcqVYojR45k6zHeeOMNzp07x3333ZfpOhMnTqRw4cLOn/Lly2frsdVWkytJSkrigQceYPfu3YSHh7Nw4UKCqlSB1q1VMZL8Kzyccvfey5dff01gYCDffPMNzzzzjNVRiUVSHyODgoLS3a7kKBNpkw9jTLYuzPnRRx8xbtw4FixYQMmSJTNdb9SoUcTHxzt/Dh06lK24VDmSrBhjGDJkCEuXLiU4OJivvvqK0qVLWx2WiNto0qQJUZdP5X/11VeZNm2axRGJFVInR46iQmpKjtIICwvD19c3XZXo2LFj6apJaS1YsID+/fvzySef0K5duyzXDQwMpFChQi4/2aHkSLIybtw4Zs+ejY+PD/Pnz6dhw4ZWhyTidnr27MnYsWMBGDZsGF988YXFEcn15kiO/Pz88PFJn3YoOUojICCAyMhIVqxY4bJ8xYoVWc4o/NFHH9GvXz/mz5/Pbbfdlmfxqa0mmXnnnXeYMGECAFOnTuWOO+6wNiARNzZ27FgGDhyIMYYePXpkOV2LeJ+EhAQg46oRKDnK0JNPPsns2bOZM2cOu3btYsSIERw8eJDBly+9MGrUKPr06eNc/6OPPqJPnz688cYbNG3alCNHjnDkyBHi4+NzPTZVjiQjX3zxBY8++igAY8aMcb5XRSRjNpuNadOmcfvtt3Px4kVuv/12tm/fbnVYcp04CggZjTdKS8nRZffffz+TJ09mwoQJ1K9fn7Vr17JkyRIiIiIAOHz4sMucRzNmzCApKYlHH32UMmXKOH8ef/zxXI8tu8lRYmKi2+xQyUNxcSx66SUeeOAB7HY7AwYMYNy4cVZHJeIR/Pz8+Oijj2jevDmnTp2iXbt27Fq1StdgywccyVFmlSP49zjrLsdSP6sDABg6dChDhw7N8La5c+e6/L569eq8D+iy7CZHkFI9ymrHi4eLimL5wIHcbQyJwH2NGjF9+vRsnTggIilCQkJYtGgRt956KzExMdzati1rgKo+PjBzpqa+8FLZTY6MMW6THFleOXJn2R1zBGqtebW4OFYNHEh3Y7gE3Al8uGULftmcbkJE/lW0aFGWz51LHeAw0BbYp2uweTVPrBwpOcpCTitH4p1WfvwxXY0hAegKfAz465ppIlct7MQJVgI1gDigFRCra7B5LceA7KzGHCk58iBXSo58fX2dpyXqjDXv9OWXX3Lb6NGcBzoBnwIBoGumiVyLqlUp6ePDd0A14BDQEtieaiZl8R6qHHkZu90OZJ4cwb87W5Uj7/Phhx9yzz33cOnSJe6OjORLHx+CQNdME7lW4eEwcyZlfH1ZC9QDjgKt77+fn3/+2eLgJLcpOfIyV6ocgU7n91bvvPMOffr0ITk5mb59+/LxTz8ReOBAypk1umaayLXr3x/276fkqlWs+uUXmjVrxj///EO7du1YtWqV1dFJLlJy5GVykhypreYdjDE8++yzDBkyBGMMw4YNY86cOfj5+aX8tatrponknsufqaK1a7N8+XJuvfVWzp49S6dOnfjoo4+sjk5yyZUmgQQlRx4lO8mR2mre4+LFi/Tq1YsXX3wRgOeee44pU6ZkON29iOSuAgUKsGjRIu6++24uXbpEjx49mDhxotscLOXqZWcSSCVHHkRttXwiLo5/vv6ajq1bM3/+fPz8/IiKimLChAmax0jkOgoKCuKTTz7hySefBOCZZ55h0KBBJO3fr8kiPZjaal5GbbV8ICqK3ytUoHn37qz56ScKBgWxePFiHn74YasjE8mXfHx8eOONN5gyZQo2m41Zs2ZxW6VK/NO2LUREQFSU1SFKDik58jKqHHm5uDiWDBxIY2PYDYQD6y5dokPNmlZHJpLvDR8+nIWzZhECLAduAn7VZJEeSWOOvIzGHHkvYwwTx4+nqzHEA82BjUBdTe4o4ja6V67Mj0AE8AfQFPhCk0V6HI058jI5SY4cmbG4v7Nnz3LffffxzOzZGGAwsAooDZrcUcSdVK1KfR8fNpFymZFzwN3AcwsXkpycbG1skm1qq3mZ7CRHjkxYyZFn2L59O40aNeKzzz7D39+fGb17M93X999ZrzW5o4j7uDxZZJivL8uAEZe/i1+YMoWOHTtyRNc39AhKjrxMdpKj4OBgAC5cuHBdYpKrY4xhxowZNG7cmN9++41y5cqxatUqHnn//ZRJHTW5o4h7ujxZpN+qVUw6eJAPPviAkJAQvvvuO+rXr893331ndYRyBTlJjtyFkqMsqHLk4eLiYNUqTu/axYMPPsjgwYO5ePEinTt3ZuvWrbRo0SJlPU3uKOLeUn1Ge/XqxcaNG6lduzZHjx6lffv2jBkzhqSkJOdnXgO23Ut2BmQ7qHLkAVQ58mBRURARwQ9t29KgZk0WLFiAn58fr776KosWLSIsLMzqCEXkKtWsWZOff/6ZgQMHYozh+eefp3WNGvxRoQLolH+3owHZXkaVIw8VF0fCwIH8x26nFbAXqACs/ewz/vOf/2jGaxEvEBISwsyZM5k/fz4FCxTgxz17qGcM7wBGp/y7FY058jKqHHmmLYsX08gYXgcM8BCwHWhWuLC1gYlIrnvwwQfZPnMmrUk5m20I0Bn4U6f8uw0lR15GlSPPcv78eZ555hmaDBvGDqAk8BUwByisU/RFvFbFli35zmZjMhAELANqATN//hm73W5pbKJJIL2OKkeeY+nSpdSuXZuJEyeSlJTE3ZGR/Orjw+2gU/RFvF14OD6zZvG4ry8xpMymHQ8MGjmSli1b8ssvv1gcYP6mMUdeRpUj93f48GEeeOABOnfuzL59+wgPD2fhwoV8tmkTJQ4c0Cn6IvnF5VP+q69axfp9+5g8eTIFChRg/fr1NGzYkKeffppz585ZHWW+pLaal1HlyE3FxXFh6VJeevppbrzxRhYsWICPjw8jRoxg586d3HHHHSnr6RR9kfzl8mfer2JFHn/8cXbt2sWdd95JUlISr776KtWqVeODDz7AfvCgTvm/jpQceRlVjtyPfdYs5leoQLXOnRn96qucPXuWxo0bs3HjRiZNmkTBggWtDlFE3ER4eDhffPEFX3/9NREREfz555/06dOHxhERrNUp/9eNkiMvo8qR+zDG8N3HH9PskUfoaQyHgPLAPJuN6E8/pWHDhlaHKCJuqlu3buzevZuXR42iILAZaAXcZbez45FHVEHKYxqQ7WVUOXIPa9eupXXr1rR78EE2AAWAF4HfgB7G4LN3r7UBiojbCwoK4un27dlDysWmfYCFQB27nR59+/Lbb79ZG6AX04BsL6PKkbXWr19Pu3btaNWqFWvXriUgIIDhQCzwDBAMKWei6RR9EcmOqlUp6ePDdFLmPrublLnQPvr+e2rWrEm/fv34448/rI3RC6mt5mVUObrO4uIw33/Pyo8+on379rRo0YLvvvsOf39/hgwZwh9//MGU2bMp7eubsr5O0ReRnAgPh5kzwdeXWsBnvr5sGTOGbt26Ybfbee+996hWrRo9e/Zk+/btulZbLvHE5MjP6gDcWU4qR0qOrk3yrFl8PmgQrxrD5svL/Pz8eOihhxg9ejQREREpC/v3h44dU2a+rVJFiZGI5Eya75AG4eF8DWzYsIGxY8eydOlS5s+fz/z58+kCjARuttmwzZqlKUGuQnJycspFgfGs5EiVoyzkpHKkttrVuXDhAu9MnEi1Rx7h/suJUTAw3GYjdu1aZs6c+W9i5KBT9EXkWmTwHdK4cWO+/fZbNm/ezH1du+IDLAFuAVoYw9ePPJIyBYDkyPnz553/Dw0NzXQ9JUceRJWjvHP06FGef/55KlasyJBnnuEPoBgwFjgITDGGipdLsSIi10vDhg1Z8OST7AYeAQKAaKC73U6Nm2/m7bff5syZM9YG6UEcyZHNZtOAbG+hylEuSdW337BhA71796ZChQqMGTOGY8eOEREezhSbjYPAOCAMNNBaRKxTtSpVfXyYAewHngYKAb8fOsTw4cMJDw9nxIgR/w7e1tikTDmSo5CQkCyPpUqOPEhOK0fuslPdSlQUFytUYF7btjQpX54mTZrw4YcfcunSJZo2bcr8+fOJ3buX4bNmEaqB1iLiDlIN3C4DvOzrS9zbb/P2229z4403cvr0aSZPnkzVqlW5vX59lleogF2TSmbIccmWkJCQLNdTcuRBclI5stvtJCYmXpe4PMW25ct5YsAAyhlDL2ADKSXqPvfcw8aNG4mOjubBBx/E39/feV0kXQtNRNxCmu+kgo8+yqOPPsquXbv49ttv6dy5M8YYvtm2jY7GUBkYb7dzUJNKukhdOcqKkiMPkpPKEWjcEcDx48eZOnUqkZGR1O/Ykf8BJ4BywAvAIeC9Rx+lUaNG6e+sgdYi4k4y+E7y8fGhU6dOLFmyhN1z5zIMKAwcIGVYQEW7nY533snHH3+sC93iucmRTuXPQnaSo9SnJl64cIFChQrleVxuIS4OYmOhalUOGcPChQtZuHAha9euxW63A+Dv788diYk8DLQHfEFjiUTEa1S79Vbe8vHhVbudL4AoYBWwfNMmlj/4ICEhIXTt2pX777+fzp07E3zihPN7M7/8EajkyAtlJzlyjMBPSEjIP5WjqCh2DxzIF8awENiU5uaGDRvSt29fevToQdhXX8GgQZCcrLFEIuJdLo9NCh40iJ7JyfT09eWP559n7vnzzJ8/n7179/LJJ5/wySefUCAwkNsvXqQ70Mlmo1A+mTfJkRxldRo/KDnyKNlJjgBncuTNZ6wZY9i8eTML33uPL95+m92pbrMBNzduzF0PPsgdd9xBxYoV/71RkzaKiDdL8x13Q3g4zwMTJkxg8+bNLFiwgAXz53Por7+YD8wH/I2h7YABdD96lNv79qVcuXIWb0TeUeXIC2U3OQoODubUqVPeUTlK1S5LKl2adevWOVtmhw4dcq7mD9wK3AXcDpR65ZWU3nxGwsOVFImI98rgO85ms9GoUSMaNWrEK5068VO7dnwJfAX8DiwDlo0ezdDRo2nUqBHdu3ene/fu1K5dO+WYk+q72JO/Pz31bDUlR1nISeUIvGCuo6gozg4cyApj+BpYVKAAx8+edd4cEhJClzZtuHPJEm4zhsKOGzSOSEQkUz7VqtHcx4fmdjuvAruBL202vmrQgJ+2bGHTpk1s2rSJ5557jsqVK9P9hhvovnIlLYzBz8cnZVoBD23BeWrlSGerZSEnlSNw87PVspikLC4ujncmTqTLgAGEGcNdwFzg+NmzFCtShL59+/LVV19x/PhxPl20iB6zZlFYcxKJiGRPqnmTAKr7+jJy1iyiN2/m8OHDzJw5k9tuu43AwED27t3LmytW0NoYSgIP2O28P3Agx7Zuzfix3XwCSk9NjlQ5yoLXVI6iouCRR8BuBx8fjr/xBmvKl2fVqlWsWrWKnTt3uqxemZRWWTeg5aef4t+unevjaRyRiEjOZPK9Wbp0aQYOHMjAgQM5e/Ysy954g6/GjWMR8A+wAFhgDDRoQKNGjejUqRM333wzTZo0ocjnn7t8t7tjhUkDsr1QdpMjx05PfYE9d2CM4a9Nm4gZOJCtxhADbLXb2TtihMt6NpuNZpGRdNu8mduNoQYpg6zx9YXq1TN+cI0jEhHJmSt8bxYoUIC7+/fn7gkTSLLb+ZmUi99+C8SAs/0GKd/bNYyhGdAIiLTbqfvIIwR27OhW382qHHmh7CZHBQoUAMjRxQgTExN5//332bJlCzfeeCP3338/pUuXznmQqQbtHQ8KYvXq1WzYsIGYmBi2bt3K8ePHM7xbrYoVadO1K23atKFVq1YUL148pcKk0+5FRKxzuQXnN2gQLZKTaeHry4szZnC4SxeWLl3Kd999R3R0NHv37mUnsJOU+ZUA/O12ardtS6PWrYmMjCQyMpI6deqkzMd3DQO8f/vtNz777DOOHDlC+/bt6dat2xWPiw5KjrxQdpOjggULAnA21eDlrJw7d45OnTqxbt0657JRo0bx3//+l5EjR2Z55WIXUVH8OXAgHxrDAmCrzZbujeXr60uN5GTqAw2A+kA9Hx+K//BD+g+I2mUiItbL4Lu4DPDQQw/x0EMPAXA0JoafIiP52Rg2A5tJuRpBTGwsMbGxzJo1C0iZjLflDTdwz2+/cZcxlMpB++3ChQu88MILvPrqqyQlJQHw9ttvM2DAAGbOnJmtBElnq3mhvKocPfXUU6xbt47ChQvTv39/fvjhBzZu3Mj48eOZN28eU6dOpUPNmplm+efPn2dhVBTvPfYYKwHnW8kYat14Iy3btqVhw4Y0aNCAWrVqETx/fvYrQmqXiYhY7wrfxaUaNKD7rFl0v/zdbnx8OPDSS2yuUoXNmzezadMmNm/ezMmTJ/l+926+B4YB7e12eg8cyB0tWxJ6443pH/hyhWnlkSMMGTOGPXv2ANCuXTuqVq3KjBkzmD17No0bN2bgwIFX3AxPrRxh8qH4+HgDmPj4+CzXe+GFFwxg+vfvn+V6jz/+uAHMqFGjrvjcf6xbZ3x9fAxgvvvuO2OMMXa73SxYsMCUKVPGkJLrmPvA/ArGbrMZM3u2OXXqlFm0aJHp06ePKViwoHM9wNwMZiaYw2DMqlUZP/GhQym3HTp0xRhFRMRDZPHdbrfbze/vv29eBXNTqmMGYEKDgkzv3r3N8uXLzYULF4wxxiTNnGl+sNnMbanWK1eunPniiy+cj/n6668bwJQtVcokLF16xWNK+/btDWA++OCDLNerV6+eAczSpUuzXC+7x+9rpVP5s2Byu3IUFcVrN99Mst1OR6Dtvn3Ox7/vvvvYvXs3j/fvjw/wCVAbKGwMxQYMoEiRInTt2pX333+fM2fOULF8ecYAe4AfgIFA6azmG9JFXUVEvE8W3+02m42qbdrwHx8fNgCxwFjgBuBcQgIffPABHTp0IDQ0lNIlS1LgkUdoaQyLSbkW5jCbjZ0rVnDnnXc6H3PYsGGUK1qUv44e5f1OnSAiImW8aiY89Ww1JUdZyG5y5BxzFBub+VwTcXFcHDiQeZd/fRpSWl2p1i9UqBCTe/ZkEymn0QcAZ0g5nROgYsWKDBs2jB9++IE/9u9n/OzZ3KD5hkREJDOp5liqAozz9SV21izWr1/PkCFDCAsLw263c/Tvv0kACgEPAbuAt4yh0NGjLg8X+PffjDh1CoA5kDKNQJpjWWrn4+MBCLk89igz7pYcacxRFpzJ0eHDKTs+k8SjwPbtAJxZtiwli85osFtsLCuM4QxQDmgFKWOA9uxxfdyqVWng48PXdjsXgX0APj6ExcQQVreu62NqALWIiFxJmmOFLTycZkCzZs2YOnUqR48e5ci2bRTs3JmKxuDruF9G3YjYWB40hqeAn4A/gXIZHcsAoqI4/+uvAIT06QMXL2Y6ENx2ecC3+fvvXNroa6PKURbM5s0A2BYtyrx0GBdHwY8+AlKqPJlm0VWr8vnl/97F5Rc+ozdeqiw/kJSZVKvPnJk+MUq9vtplIiKSlUyOFTabjdKlS1O/Y0dumDUL3yt1I6pWpayPD80v/7rQsW7aY1lcHDzyCI56UYgxmVeYoqKw/fILAKZfvyzbdNdL/k6O/vwz89vi4jBffw1cnhAxs6QnNpYClytMzhP5HVl0KqZcOZZcbr/dAVm3wfr3h/37U6aE37/f7WY8FRERL5SdY8/lP+DvvNwGWwwZH8tiY8FuxzE1cghkeGx0JFGOwSsmqyQKsj5u56J8nRz9WLNm5hlqbKzzFHnniKOMdmzVqhS8/CZxDsfOIIv+/fffOXbmDIGBgbRYtuzKSY8qQiIicr1l59jTvz+3LlkCwI8FCpDcr1/6dapWBR8fZ3IUCpm26bDb/02OIONjLUBUFJ/VrJmDjbl6+To5ioHMM9SqVdMnR5m0wQqMHAlcrhxlUhFau3YtAE2bNiWwQwclPSIi4rHqtm9P4cKFOXP2LFszuihueDjJ77yD43LsIT4+mbbp8PFxTY6yaNMty9WtyFy+To6AzDPU8HBM165AquuMZdIGK9ijBwBnChfOtCLkSI5uueWW3IpcRETEEr6+vtx8883Av8e3tM7ce6/z/4ViY7Ns0zmTo8ySqMsVputFyVEWcwOZevUAsN15Z5ZtMMc8R2cvXsy0IvTjjz8C0LJly2sMWERExHqO45nj+JbW6dOnAQgKCiKgcuXMH6h/f2wNGwJgZszI+Fh7ucJ0vSg5ymJuIOep/FeYxt0xz1FCQoLz+jOpxcfHs+/yhI+RkZHXGrGIiIjlbrrpJgBiYmIyvN2RHBUqVOiKj2ULDATAFC+e8QqOM7mvk/ydHP33v1kOis7pDNmQ8cVnt1+eB6l8+fIUK1bsaiIVERFxK/Xr1wdg7969nLo8MWRq8ZcngMxWcpSdSSD794fLw13yWv5OjgoXzvLm7CZHgYGB+Pv7AxlfQmTbtm0A1LvcphMREfF0xYoVo2LFigAZDsrOUeUouzNkX+ECtrklfydHV5Dd5Aj+ba0pORIRkfyiQYMGAGzZsiXdbXmSHF0nSo6ykJPkyDkoO4O2miOjdpQgRUREvIGSo3woNypHSUlJ/Hr52jKqHImIiDdpePkss4wGZSs58lI5SY4cO98xAM0hNjaWhIQEQkNDueGGG3I/SBEREYs4Kke7d+/m3LlzLrc5BmkrObpK06ZNo1KlSgQFBREZGckPP/yQ5fpr1qwhMjKSoKAgKleuzDvvvJMnceUkOXKchfbPP/+4LHeMN6pTpw4+13GOBhERkbxWpkwZSpYsid1uZ8eOHS63nTx5EoDimZ2en4qSozQWLFjAE088wejRo4mJiaFly5Z07tyZgwcPZrj+vn376NKlCy1btiQmJoZnnnmGxx57jM8//zzD9a/F1SRHJ06ccFmu8UYiIuKtbDabc8iIY9oaB8fxUMnRVZg0aRL9+/dnwIAB1KhRg8mTJ1O+fHmmT5+e4frvvPMOFSpUYPLkydSoUYMBAwbw8MMP8/rrr+d6bDlJjhw735EpO+hMNRER8WZ169YF0idHjuNhdub3U3KUyqVLl9i8eTMdOnRwWd6hQwfWr1+f4X2io6PTrd+xY0c2bdpEYmJirsaXG5UjJUciIuLNMkuOPLly5Gflkx8/fpzk5GRKlSrlsrxUqVIcOXIkw/scOXIkw/WTkpI4fvw4ZcqUSXefixcvcvHiRefvjkHTCQkJztH0GUlISLme8KVLl7JcDyDk8sRUR44cca57/PhxDh8+DEBERMQVH0NERMTTVL583bRt27YRHx/vTHSOHz8OpEyUfKXjX3JyMgDnz5/Pcl1HESTPkyhjoT///NMAZv369S7LX3jhBVOtWrUM71O1alXz0ksvuSxbt26dAczhw4czvM/YsWMNoB/96Ec/+tGPfrzg548//sidRCQTllaOwsLC8PX1TVclOnbsWLrqkEPp0qUzXN/Pzy/T0t2oUaN48sknnb+fOnWKiIgIDh48SOErXELEm5w+fZry5ctz6NChbJ1a6S203dru/EDbre3OD+Lj46lQoUKeX6fU0uQoICCAyMhIVqxYwZ133ulcvmLFCrp3757hfZo1a8Y333zjsmz58uU0atTIeX2ztAIDAwm8fMXf1AoXLpyv3lQOhQoV0nbnI9ru/EXbnb/k1+3O66lxLD9b7cknn2T27NnMmTOHXbt2MWLECA4ePMjgwYOBlKpPnz59nOsPHjyYAwcO8OSTT7Jr1y7mzJlDVFQUTz31lFWbICIiIl7E0soRwP3338+JEyeYMGEChw8fpnbt2ixZsoSIiAgADh8+7DLnUaVKlViyZAkjRoxg6tSplC1blilTpnD33XdbtQkiIiLiRSxPjgCGDh3K0KFDM7xt7ty56Za1atUqw4vcZVdgYCBjx47NsNXmzbTd2u78QNut7c4PtN15u902Y9xkUgERERERN2D5mCMRERERd6LkSERERCQVJUciIiIiqSg5EhEREUnFa5OjF198kebNmxMSEkKRIkWydR9jDOPGjaNs2bIEBwfTunVrduzY4bLOxYsXGT58OGFhYYSGhnL77bcTFxeXB1twdf755x969+5N4cKFKVy4ML179+bUqVNZ3sdms2X489prrznXad26dbrbH3jggTzemuy7mu3u169fum1q2rSpyzretr8TExN5+umnqVOnDqGhoZQtW5Y+ffrw119/uaznbvt72rRpVKpUiaCgICIjI/nhhx+yXH/NmjVERkYSFBRE5cqVeeedd9Kt8/nnn1OzZk0CAwOpWbMmCxcuzKvwr1pOtvuLL76gffv2lChRgkKFCtGsWTOWLVvmss7cuXMz/Kw7riPpLnKy3atXr85wm3bv3u2ynrft74y+v2w2G7Vq1XKu4+77e+3atXTr1o2yZctis9n48ssvr3if6/bZztOLk1hozJgxZtKkSebJJ580hQsXztZ9Xn75ZVOwYEHz+eefm19++cXcf//9pkyZMub06dPOdQYPHmzKlStnVqxYYbZs2WLatGlj6tWrZ5KSkvJoS3KmU6dOpnbt2mb9+vVm/fr1pnbt2qZr165Z3ufw4cMuP3PmzDE2m83l2jWtWrUyAwcOdFnv1KlTeb052XY12923b1/TqVMnl206ceKEyzretr9PnTpl2rVrZxYsWGB2795toqOjTZMmTUxkZKTLeu60vz/++GPj7+9vZs2aZXbu3Gkef/xxExoaag4cOJDh+nv37jUhISHm8ccfNzt37jSzZs0y/v7+5rPPPnOus379euPr62teeukls2vXLvPSSy8ZPz8/89NPP12vzbqinG73448/bl555RWzYcMG8/vvv5tRo0YZf39/s2XLFuc67777rilUqFC6z7w7yel2r1q1ygDmt99+c9mm1J9Rb9zfp06dctneQ4cOmWLFipmxY8c613H3/b1kyRIzevRo8/nnnxvALFy4MMv1r+dn22uTI4d33303W8mR3W43pUuXNi+//LJzWUJCgilcuLB55513jDEpb0Z/f3/z8ccfO9f5888/jY+Pj1m6dGmux55TO3fuNIDLmyA6OtoAZvfu3dl+nO7du5u2bdu6LGvVqpV5/PHHcyvUXHW12923b1/TvXv3TG/PL/t7w4YNBnD5Enan/d24cWMzePBgl2XVq1c3I0eOzHD9//73v6Z69eouywYNGmSaNm3q/P2+++4znTp1clmnY8eO5oEHHsilqK9dTrc7IzVr1jTjx493/p7d70Mr5XS7HcnRP//8k+lj5of9vXDhQmOz2cz+/fudyzxhfztkJzm6np9tr22r5dS+ffs4cuQIHTp0cC4LDAykVatWrF+/HoDNmzeTmJjosk7ZsmWpXbu2cx0rRUdHU7hwYZo0aeJc1rRpUwoXLpzt+I4ePcrixYvp379/utvmzZtHWFgYtWrV4qmnnuLMmTO5Fvu1uJbtXr16NSVLluTGG29k4MCBHDt2zHlbftjfkHIhR5vNlq797A77+9KlS2zevNllHwB06NAh022Mjo5Ot37Hjh3ZtGkTiYmJWa7jDvsVrm6707Lb7Zw5cybdBTrPnj1LREQE4eHhdO3alZiYmFyL+1pdy3Y3aNCAMmXKcOutt7Jq1SqX2/LD/o6KiqJdu3bOq0s4uPP+zqnr+dl2ixmy3cGRI0cAKFWqlMvyUqVKceDAAec6AQEBFC1aNN06jvtb6ciRI5QsWTLd8pIlS2Y7vvfee4+CBQty1113uSzv2bMnlSpVonTp0vz666+MGjWKbdu2sWLFilyJ/Vpc7XZ37tyZe++9l4iICPbt28dzzz1H27Zt2bx5M4GBgflifyckJDBy5Eh69OjhcvFKd9nfx48fJzk5OcPPZWbbeOTIkQzXT0pK4vjx45QpUybTddxhv8LVbXdab7zxBufOneO+++5zLqtevTpz586lTp06nD59mv/973+0aNGCbdu2UbVq1VzdhqtxNdtdpkwZZs6cSWRkJBcvXuSDDz7g1ltvZfXq1dxyyy1A5u8Jb9nfhw8f5ttvv2X+/Pkuy919f+fU9fxse1RyNG7cOMaPH5/lOhs3bqRRo0ZX/Rw2m83ld2NMumVpZWeda5Hd7Yb08UPO4pszZw49e/YkKCjIZfnAgQOd/69duzZVq1alUaNGbNmyhYYNG2brsXMqr7f7/vvvd/6/du3aNGrUiIiICBYvXpwuOczJ416r67W/ExMTeeCBB7Db7UybNs3lNiv2d1Zy+rnMaP20y6/ms369XW2MH330EePGjeOrr75ySaCbNm3qctJBixYtaNiwIW+99RZTpkzJvcCvUU62u1q1alSrVs35e7NmzTh06BCvv/66MznK6WNa5WpjnDt3LkWKFOGOO+5wWe4p+zsnrtdn26OSo2HDhl3xjJmKFSte1WOXLl0aSMlMy5Qp41x+7NgxZxZaunRpLl26xD///ONSTTh27BjNmze/qufNjuxu9/bt2zl69Gi62/7+++90mXRGfvjhB3777TcWLFhwxXUbNmyIv78/sbGxeXawvF7b7VCmTBkiIiKIjY0FvHt/JyYmct9997Fv3z6+//57l6pRRq7H/s5IWFgYvr6+6f7qS/25TKt06dIZru/n50fx4sWzXCcn75e8dDXb7bBgwQL69+/Pp59+Srt27bJc18fHh5tuusn5nrfatWx3ak2bNuXDDz90/u7N+9sYw5w5c+jduzcBAQFZrutu+zunrutnO0cjlDxQTgdkv/LKK85lFy9ezHBA9oIFC5zr/PXXX243QPfnn392Lvvpp5+yPUC3b9++6c5ayswvv/xiALNmzZqrjje3XOt2Oxw/ftwEBgaa9957zxjjvfv70qVL5o477jC1atUyx44dy9ZzWbm/GzdubIYMGeKyrEaNGlkOyK5Ro4bLssGDB6cbtNm5c2eXdTp16uR2A3Rzst3GGDN//nwTFBR0xYGtDna73TRq1Mg89NBD1xJqrrqa7U7r7rvvNm3atHH+7q3725h/B6T/8ssvV3wOd9zfDmRzQPb1+mx7bXJ04MABExMTY8aPH28KFChgYmJiTExMjDlz5oxznWrVqpkvvvjC+fvLL79sChcubL744gvzyy+/mAcffDDDU/nDw8PNypUrzZYtW0zbtm3d7tTuunXrmujoaBMdHW3q1KmT7tTutNttjDHx8fEmJCTETJ8+Pd1j7tmzx4wfP95s3LjR7Nu3zyxevNhUr17dNGjQwGO3+8yZM+b//u//zPr1682+ffvMqlWrTLNmzUy5cuW8en8nJiaa22+/3YSHh5utW7e6nN578eJFY4z77W/HKc5RUVFm586d5oknnjChoaHOs3JGjhxpevfu7VzfcbrviBEjzM6dO01UVFS6031//PFH4+vra15++WWza9cu8/LLL7vtqd3Z3e758+cbPz8/M3Xq1EynYBg3bpxZunSp+eOPP0xMTIx56KGHjJ+fn0uCbbWcbvebb75pFi5caH7//Xfz66+/mpEjRxrAfP755851vHF/O/Tq1cs0adIkw8d09/195swZ57EZMJMmTTIxMTHOM2et/Gx7bXLUt29fA6T7WbVqlXMdwLz77rvO3+12uxk7dqwpXbq0CQwMNLfccku6bPzChQtm2LBhplixYiY4ONh07drVHDx48Dpt1ZWdOHHC9OzZ0xQsWNAULFjQ9OzZM90prmm32xhjZsyYYYKDgzOcy+bgwYPmlltuMcWKFTMBAQHmhhtuMI899li6OYGslNPtPn/+vOnQoYMpUaKE8ff3NxUqVDB9+/ZNty+9bX/v27cvw89F6s+GO+7vqVOnmoiICBMQEGAaNmzoUsHq27evadWqlcv6q1evNg0aNDABAQGmYsWKGSb9n376qalWrZrx9/c31atXdzmYuoucbHerVq0y3K99+/Z1rvPEE0+YChUqmICAAFOiRAnToUMHs379+uu4RdmTk+1+5ZVXzA033GCCgoJM0aJFzc0332wWL16c7jG9bX8bk1LdDg4ONjNnzszw8dx9fzuqXpm9Z638bNuMuTyaSURERES89/IhIiIiIldDyZGIiIhIKkqORERERFJRciQiIiKSipIjERERkVSUHImIiIikouRIREREJBUlRyIiIiKpKDkSERERSUXJkYiIiEgqSo5ExKtMmDCBOnXqEBoaSqlSpRgyZAiJiYlWhyUiHsTP6gBERHKLMYbk5GRmzJhBuXLl2LlzJ3369KFu3boMGTLE6vBExEPowrMi4tV69OhBiRIl+N///md1KCLiIdRWExGvceDAAYYNG0bt2rUpWrQoBQoU4JNPPiE8PNzq0ETEgyg5EhGvcPz4cRo3bszx48eZNGkS69atIzo6Gl9fX+rXr291eCLiQTTmSES8wpIlS0hKSuKjjz7CZrMBMHXqVC5duqTkSERyRMmRiHiFYsWKcfr0ab7++mtq1qzJN998w8SJEylXrhwlSpSwOjwR8SAakC0iXsEYw5AhQ5g/fz7BwcH06tWLhIQEDhw4wKJFi6wOT0Q8iJIjERERkVQ0IFtEREQkFSVHIiIiIqkoORIRERFJRcmRiIiISCpKjkRERERSUXIkIiIikoqSIxEREZFUlByJiIiIpKLkSERERCQVJUciIiIiqSg5EhEREUlFyZGIiIhIKv8PXZO57os6fOAAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6XElEQVR4nO3dd3gU5drH8e+mhwChQyAQqhTpoSNSlCLFfhBBAQ1NBBXLUV4Loii2g9hQSgD1SNGDgAiISBGVIB2RJkgJoYN0IUD2ef9Idk1I20CS2fL7XFcuzWR2556d3Z2b+2k2Y4xBRERERADwszoAEREREXei5EhEREQkFSVHIiIiIqkoORIRERFJRcmRiIiISCpKjkRERERSUXIkIiIikoqSIxEREZFUlByJiIiIpKLkSDzCwYMHefnll9m4cWO6v/Xt25eCBQte83NfunSJQYMGERERgb+/P/Xr17/2QHPBuHHjmDp1arrte/fuxWazZfg3b2Kz2Xj55ZetDiNXvPzyy9hstjx/7AcffEDVqlUJCgrCZrNx6tQp+vbtS8WKFdPs9/rrrzNnzpxriicrf/31Fz169KBUqVLYbDbuvPPOHD9HxYoV6du3b67H5s5++OEHbDYbNpuN48ePp/v77t27ufvuuylSpAgFCxakffv2rF+/3oJIfY+SI/EIBw8eZOTIkRkmR9fr448/Zvz48Tz//PP8/PPPfP7557l+jJzILDmKiIggLi6OLl265H9Qck369etHXFxcnh5j48aNPPbYY7Rt25alS5cSFxdHoUKFePHFF5k9e3aaffMqOXr11VeZPXs27777LnFxcbz11lu5fgxvc+7cOfr370/ZsmUz/PuxY8do1aoVf/zxB5MnT+bLL7/k4sWLtGnThh07duRztL4nwOoARKz2+++/ExoaypAhQ6wOJUvBwcE0a9bM6jAkByIjI4mMjMzTY2zZsgWA/v3706RJE+f2KlWq5OlxU/v999+pUqUKvXr1yrdj5pa///6bAgUK5Ptxn3vuOYoWLUqXLl0YNWpUur+//fbbHDt2jJUrVxIVFQXATTfdRJUqVXjppZeYOXNmfofsU1Q58kHHjh1jwIABlC9fnuDgYEqWLEnLli354YcfnPu0adOG2rVrExcXR4sWLQgNDaVixYpMmTIFgPnz59OwYUMKFChAnTp1+O6779Id5+eff+aWW26hUKFCFChQgBYtWjB//vx0+/3+++/ccccdFC1alJCQEOrXr8+nn37q/Pvy5ctp3LgxAA899JCzDH1108uuXbvo3LkzBQsWpHz58jz11FMkJiZm+VrYbDYmTZrEhQsXnM87derULJuwrj62o/ljy5Yt3H///YSHh1O6dGkefvhhTp8+neaxdrudDz74gPr16xMaGkqRIkVo1qwZ33zzDZDctLBlyxZ+/PFHZzyOppHMYnLldZ46dSo2m41ly5bxyCOPUKJECYoXL87dd9/NwYMHs3yNslKxYkW6du3K7NmzqVu3LiEhIVSuXJn3338/3b7x8fE88MADlCpViuDgYGrWrMl//vMf7HZ7ps+/d+9eAgICGD16dLq/rVixApvNxldffQXk7DpcvHiR4cOHU6lSJYKCgihXrhyPPvoop06dyvD8vv32Wxo0aEBoaCg1a9bk22+/BZJf15o1axIWFkaTJk1Yu3Ztmsdn1DQ2c+ZMOnToQEREhPP5nnvuOc6fP5/5C52JNm3a8MADDwDQtGlTbDabs2nq6mY1m83G+fPn+fTTT53vrTZt2mT5/H/99ReDBw+mXLlyBAUFUblyZZ5//nnn58rxnvzhhx/Ytm2b83mXL1+e6XNevnyZf//735QpU4YCBQpw0003sXr16gz3PXz4MAMHDiQyMpKgoCAqVarEyJEjuXLlSpr9EhISuPfeeylUqBBFihShV69erFmzJt3nxdEEv3nzZjp06EChQoW45ZZbgOTm9VGjRlGjRg3n9+JDDz3EsWPH0sU1c+ZMmjdvTlhYGAULFqRjx45s2LAhy9cytZ9++okJEyYwadIk/P39M9xn9uzZtGvXzpkYARQuXJi7776befPmpXsNJJcZ8TkdO3Y0JUuWNBMmTDDLly83c+bMMS+99JKZMWOGc5/WrVub4sWLm+rVq5vY2FizaNEi07VrVwOYkSNHmjp16pjp06ebBQsWmGbNmpng4GBz4MAB5+OXL19uAgMDTXR0tJk5c6aZM2eO6dChg7HZbGmOs337dlOoUCFTpUoV89lnn5n58+eb+++/3wDmzTffNMYYc/r0aTNlyhQDmBdeeMHExcWZuLg4s3//fmOMMX369DFBQUGmZs2a5p133jE//PCDeemll4zNZjMjR47M8rWIi4sznTt3NqGhoc7nPXr0qNmzZ48BzJQpU9I9BjAjRoxw/j5ixAgDmOrVq5uXXnrJLF682IwZM8YEBwebhx56KM1jH3zwQWOz2Uy/fv3M3LlzzcKFC81rr71m3nvvPWOMMevXrzeVK1c2DRo0cMazfv16Y4zJMCZXX2fH61e5cmUzdOhQs2jRIjNp0iRTtGhR07Zt2zQxOvbN6NyvFhUVZcqVK2cqVKhgJk+ebBYsWGB69eplAPP222879zt69KgpV66cKVmypPnkk0/Md999Z4YMGWIA88gjj2T5+t51112mQoUK5sqVK2n2+9e//mXKli1rLl++nKPrYLfbTceOHU1AQIB58cUXzffff2/eeecdExYWZho0aGAuXryY5vwiIyNN7dq1ne/3pk2bmsDAQPPSSy+Zli1bmq+//trMnj3b3HDDDaZ06dLm77//dj7eEVNqr776qnn33XfN/PnzzfLly80nn3xiKlWqlO46ZPTYq23ZssW88MILzusVFxdndu3aZYxJ/lxERUU5942LizOhoaGmc+fOzvfWli1bMn3uCxcumLp165qwsDDzzjvvmO+//968+OKLJiAgwHTu3NkYY8zFixdNXFycadCggalcubLzeU+fPp3p8/bp08fYbDbzzDPPmO+//96MGTPGlCtXzhQuXNj06dPHud+hQ4dM+fLlTVRUlBk/frz54YcfzKuvvmqCg4NN3759nfudO3fOVK1a1RQrVsx89NFHZtGiRWbYsGGmUqVK6d7Hffr0MYGBgaZixYpm9OjRZsmSJWbRokUmKSnJdOrUyYSFhZmRI0eaxYsXm0mTJply5cqZWrVqpbmmr732mrHZbObhhx823377rfn6669N8+bNTVhYWJavp8Pff/9tqlWrZp555hljzD/X+dixY2n2cbxGV/vwww8NYHbs2JHtseTaKTnyQQULFjRPPPFElvu0bt3aAGbt2rXObSdOnDD+/v4mNDQ0TSK0ceNGA5j333/fua1Zs2amVKlS5uzZs85tV65cMbVr1zaRkZHGbrcbY4zp0aOHCQ4ONvHx8WmOf9ttt5kCBQqYU6dOGWOMWbNmTaY37D59+hjAfPnll2m2d+7c2VSvXj2bVyP58WFhYWm2XUty9NZbb6XZb/DgwSYkJMR5ritWrDCAef7557OM58YbbzStW7dOtz2jmFx9nR0Jz+DBg9M851tvvWUAc+jQIee2Tz/91Pj7+5tPP/00yziNSU4ebDab2bhxY5rt7du3N4ULFzbnz583xhjz3HPPGcD8+uuvafZ75JFHjM1mS/NFf/Xru2zZMgOY2bNnO7cdOHDABAQEpEl+Xb0O3333XYb7zZw50wBmwoQJac4vNDTUJCQkOLc53u8RERHO8zPGmDlz5hjAfPPNN+liyozdbjeXL182P/74owHMpk2bXH6sg+ParlmzJs32q5MjY4wJCwtLk4Bk5ZNPPsnwc/Xmm28awHz//ffOba1btzY33nhjts+5bds2A5hhw4al2f7FF18YIE1sAwcONAULFjT79u1Ls+8777xjAGci8tFHHxnALFy4MM1+AwcOzDA5AszkyZPT7Dt9+nQDmFmzZqXZ7vjeGTdunDHGmPj4eBMQEGCGDh2aZr+zZ8+aMmXKmO7du2f7Gjz11FOmcuXKzoQro+TowIEDBjCjR49O9/hp06YZwKxcuTLbY8m1U7OaD2rSpAlTp05l1KhRrFq1isuXL2e4X0REBNHR0c7fixUrRqlSpahfv36aToQ1a9YEYN++fQCcP3+eX3/9lXvvvTfNKDJ/f38efPBBEhISnB0Kly5dyi233EL58uXTHLtv3778/fffLndmtdlsdOvWLc22unXrOmPKD7fffnu641+8eJGjR48CsHDhQgAeffTRXDleTl7nrGIE0rxOvXv35sqVK/Tu3dulOG688Ubq1auXZlvPnj05c+aMc2TN0qVLqVWrVpo+MZB8nY0xLF26NNPnb9OmDfXq1eOjjz5ybvvkk0+w2WwMGDAg3f7ZXQfHsa4eGfWvf/2LsLAwlixZkmZ7/fr1KVeunPN3x/u9TZs2afqqXP05yMzu3bvp2bMnZcqUwd/fn8DAQFq3bg3Atm3bsnxsflq6dClhYWHce++9abY7XrerXydXLFu2DCBd36Tu3bsTEJC2C+y3335L27ZtKVu2LFeuXHH+3HbbbQD8+OOPzv8WKlSITp06pXn8/fffn2kc99xzT7pjFSlShG7duqU5Vv369SlTpoyzmXDRokXOz0bq/UJCQmjdunWWzYkAq1evZuzYsYwfP57Q0NAs9wWyHK14raMgxTXqkO2DZs6cyahRo5g0aRIvvvgiBQsW5K677uKtt96iTJkyzv2KFSuW7rFBQUHptgcFBQHJ/TgATp48iTGGiIiIdI93JFUnTpxw/teV/bJToEABQkJC0mwLDg52xpQfihcvnu74ABcuXACS+3r5+/uneY2vR05eZ1djvBYZnY9jW+rrfPWw8qzivNpjjz1Gv3792LFjB5UrV2bixInce++9GR47u3M8ceIEAQEBlCxZMs1+NpuNMmXKpIsls/d7dp+DjJw7d45WrVoREhLCqFGjuOGGGyhQoAD79+/n7rvvvq7rkNtOnDhBmTJl0t2ES5UqRUBAgMufzaufE9K/ZwICAtJdtyNHjjBv3jwCAwMzfC7H0PcTJ05QunTpdH/PaBskf1cULlw43bFOnTrlvIaZHevIkSMAzj6QV/Pzy7re8PDDD3P33XfTqFEjZ/82x/vlzJkzBAcHU6hQIYoWLYrNZsvwNf7rr7+AjL+fJfcoOfJBJUqUYOzYsYwdO5b4+Hi++eYbnnvuOY4ePZphx+qcKlq0KH5+fhw6dCjd3xydf0uUKAEk38hc2S+/ORKtqzt0X8sNwaFkyZIkJSVx+PDhDBOanMrJ65yXDh8+nOk2xw3veq9zz549efbZZ/noo49o1qwZhw8fvuYKXPHixbly5QrHjh1LkyAZYzh8+HCmN77csHTpUg4ePMjy5cud1SIgXUdwd1C8eHF+/fVXjDFpEqSjR49y5cqVa3pvOd4Phw8fTlONu3LlSrrPVokSJahbty6vvfZahs/lSKyLFy+eYYfujN6XkHHFxTFAIbPvv0KFCjn3A/jf//6XpqO0q7Zs2cKWLVucgwhSq1KlCvXq1WPjxo2EhoZStWpVNm/enG6/zZs3ExoaSuXKlXN8fHGdmtV8XIUKFRgyZEiuTi4WFhZG06ZN+frrr9P8S9hut/Pf//6XyMhIbrjhBgBuueUW5w0jtc8++4wCBQo4h67nRoUjJ0qXLk1ISAi//fZbmu1z58695ud0NAd8/PHHWe4XHBzs0nnm5HXOS1u2bGHTpk1ptk2bNo1ChQrRsGFDIPk6b926Nd177LPPPsNms9G2bdssjxESEsKAAQP49NNPGTNmDPXr16dly5bXFK9jdNJ///vfNNtnzZrF+fPnnX/PC44bs+P97DB+/Pg8O2Zqrr63IPl1OnfuXLp5kT777DPn33PKMTruiy++SLP9yy+/TDf6qmvXrs4pAho1apTux5EctW7dmrNnzzqbrR1mzJjhclxdu3blxIkTJCUlZXis6tWrA9CxY0cCAgL4888/M9yvUaNGWR5n2bJl6X769OkDwJw5c5g0aZJz37vuuoulS5eyf/9+57azZ8/y9ddfc/vtt6drhpTcpVfXx5w+fZq2bdvSs2dPatSoQaFChVizZg3fffcdd999d64dZ/To0bRv3562bdvy9NNPExQUxLhx4/j999+ZPn268yYxYsQIZ9+Cl156iWLFivHFF18wf/583nrrLcLDw4Hkf1WFhobyxRdfULNmTQoWLEjZsmUznUDtetlsNh544AEmT57s/Bfd6tWrmTZt2jU/Z6tWrXjwwQcZNWoUR44coWvXrgQHB7NhwwYKFCjA0KFDAahTpw4zZsxg5syZVK5cmZCQEOrUqZPhc7r6OufEZ599xsMPP8zkyZNd6ndUtmxZbr/9dl5++WUiIiL473//y+LFi3nzzTedfXKGDRvGZ599RpcuXXjllVeIiopi/vz5jBs3jkceecSlJG7w4MG89dZbrFu3Ls1NJKfat29Px44defbZZzlz5gwtW7bkt99+Y8SIETRo0IAHH3zwmp87Oy1atKBo0aIMGjSIESNGEBgYyBdffJEuucwrderUYfny5cybN4+IiAgKFSrkvPFfrXfv3nz00Uf06dOHvXv3UqdOHX7++Wdef/11OnfuzK233prj49esWZMHHniAsWPHEhgYyK233srvv//OO++8k66p65VXXmHx4sW0aNGCxx57jOrVq3Px4kX27t3LggUL+OSTT4iMjKRPnz68++67PPDAA4waNYqqVauycOFCFi1aBGTf1AXQo0cPvvjiCzp37szjjz9OkyZNCAwMJCEhgWXLlnHHHXdw1113UbFiRV555RWef/55du/eTadOnShatChHjhxh9erVhIWFMXLkyEyPk9HUCY5+Si1btkxTjXv66af5/PPPnZ+Z4OBg3njjDS5evOg1M8i7NUu7g0u+u3jxohk0aJCpW7euKVy4sAkNDTXVq1c3I0aMSDPyJrPRJ1FRUaZLly7ptgPm0UcfTbPtp59+Mu3atTNhYWEmNDTUNGvWzMybNy/dYzdv3my6detmwsPDTVBQkKlXr16Go8SmT59uatSoYQIDA9OMaMpotJkxro/2yezxp0+fNv369TOlS5c2YWFhplu3bmbv3r2ZjlZLPdrEmH9GEe3Zs8e5LSkpybz77rumdu3aJigoyISHh5vmzZuneV327t1rOnToYAoVKmQA54ijzEbQufI6ZzaiyTESbNmyZen2dXUof5cuXcz//vc/c+ONN5qgoCBTsWJFM2bMmHT77tu3z/Ts2dMUL17cBAYGmurVq5u3337bJCUlpdnv6tc3tTZt2phixYqlGVrtkJPrcOHCBfPss8+aqKgoExgYaCIiIswjjzxiTp48meH5XS2j97vj+qSewiCj9+DKlStN8+bNTYECBUzJkiVNv379zPr169O95nkxWm3jxo2mZcuWpkCBAgbIcFRkaidOnDCDBg0yERERJiAgwERFRZnhw4enme7AGNdHqxljTGJionnqqadMqVKlTEhIiGnWrJmJi4szUVFR6UbSHTt2zDz22GOmUqVKJjAw0BQrVsxER0eb559/3pw7d865X3x8vLn77rtNwYIFTaFChcw999xjFixYYAAzd+7cNK9JRp91Y4y5fPmyeeedd0y9evVMSEiIKViwoKlRo4YZOHCg2blzZ5p958yZY9q2bWsKFy5sgoODTVRUlLn33nvNDz/84NJrkFpm71tjjNm1a5e58847TeHChU2BAgXMLbfcYtatW5fjY0jO2YwxJh9zMRHxIhUrVqR27drOSRHz0tGjR4mKimLo0KFankKy9frrr/PCCy8QHx+f57OUi/dRs5qIuLWEhAR2797N22+/jZ+fH48//rjVIYmb+fDDDwGoUaMGly9fZunSpbz//vs88MADSozkmig5EhG3NmnSJF555RUqVqzIF198kWaUkwgkD89/99132bt3L4mJiVSoUIFnn32WF154werQxEOpWU1EREQkFcuH8q9YsYJu3bpRtmxZbDZbumGjGfnxxx+Jjo52LnL5ySef5H2gIiIi4hMsT47Onz9PvXr1nG3G2dmzZw+dO3emVatWbNiwgf/7v//jscceY9asWXkcqYiIiPgCt2pWs9lszJ49mzvvvDPTfZ599lm++eabNGsQDRo0iE2bNrm8DpeIiIhIZjyuQ3ZcXBwdOnRIs61jx47ExsZy+fLlDNfhSUxMTLMMhN1u56+//qJ48eJavE9ERMRDGGM4e/YsZcuWdWmCz2vlccnR4cOH0y0oWLp0aa5cucLx48czXLNq9OjRWc5aKiIiIp5j//79eTpNg8clR5B+4UBHy2BmVaDhw4fz5JNPOn8/ffo0FSpUYP/+/emmrL/at99+S69evWjcuDE//PADn3/+OUOGDKFDhw4ZLh4oIvnowAH2x8Vx24svsv/gQQoVKsSjjz5K9erVWblyJZMnTyYpKYkW0dF8PXw4obVqgaYCELFU9erVOXz4MCtWrKBevXpERETw999/s3HjRipVqpTlY8+cOUP58uWdiwHnFY9LjsqUKZNuteWjR48SEBDgXPH5asHBwekWegQoXLhwtslRaGgoAIGBgRQuXJiCBQsCyev1ZPdYEclDsbFc6N+fB41hP1C1VCkW//orFStWBKBv37707t2bLh06sHLdOp68917+a7NhmzgRYmIsDV3ElzkKGuHh4RQuXNjZPFawYEGX76t53SXG8tFqOdW8eXMWL16cZtv3339Po0aNMuxvdL0cF9Fx8fz9/QFISkrK9WOJiIsSEmDAAEYYwwagBPDD8eNUvGql8psqVmTuxYv4A9OA/xoDAwcmP15ELOG4fzrup45Ex43Gh1mfHJ07d46NGzeyceNGIHmo/saNG4mPjweSm8RSrww+aNAg9u3bx5NPPsm2bduYPHkysbGxPP3003kSn91uB/65eEqORNzAzp1ssNsZk/LrFCDKboddu9Lt18YYHD0OnwROJSWl309E8o2SIxesXbuWBg0a0KBBAwCefPJJGjRowEsvvQTAoUOHnIkSQKVKlViwYAHLly+nfv36vPrqq7z//vvcc889eRLf1f2ZlByJWM9UrcpgIAnoDnQF8PeHqlXT7litGvj58W+gJnAcGGmzpd9PRPKNo+jguJ86WmYc292B5X2O2rRpk2W2OHXq1HTbWrduzfr16/Mwqn8oORJxPws3b2YVEAqMheTEaPx4uHr0SmQkTJhA4MCBvJeURAfgQz8/hiQmUiW/gxYR4J/7pyMpUuXIA2XW58idMlwRX2KMYcSIEQA8OnAgEcuWwd69mXeyjomBvXtpv2wZndq04UpSEm+//Xb+BSwiaahZzQtc3efIkSSpciRijUWLFrF27VoKFCjAM6+8Am3apK8YXS0yEtq0YXjKfGdTpkzh0KFDeR+siKSj5MgLqFlNxL188MEHAAwYMIBSpUrl6LGtWrWiRYsWXLp0iffeey8vwhORbCg58gJKjkTcx65du1i4cCE2m41HH300x4+32Ww888wzAMTGxqZZVkhE8sfVyZE7dshWcpQNzXMk4j4+/vhjjDF06tSJqtc44qxr166UK1eO48ePM2fOnNwNUESylLo6pMqRB9M8RyLu4dKlS3z66acA11Q1cggICCAmpfP2hAkTciU2EXFN6nunRqt5MDWribiHRYsWceLECcqUKUPHjh2v67liYmLw8/Nj6dKl7N69O5ciFJHspL53qnLkwZQcibiHL774AoAePXoQEHB9U7RVqFCBW265BYDp06dfd2wi4holR15C8xyJWO/MmTPMnTsXgAceeCBXnrNnz54ATJs2za2+lEW8WUbJkTpkeyDNcyRiva+//pqLFy9So0YNGjZsmCvPeddddxEcHMzWrVvZvHlzrjyniGRNlSMvoWY1EetNmzYNgF69ejk/i9crPDycLl26pHl+EclbqatDSo48mJIjEWudPHmSpUuXAnDffffl6nM7nk9D+kXyh0areQnNcyRirQULFpCUlMSNN95ItWrVcvW5O3XqRGBgIDt27GD79u25+twikp7j3mmz2ZxJkeO/6nPkQTTPkYi1HB2x77jjjlx/7sKFC9OuXbs0xxGRvHP17NjwT/FBlSMPomY1EeskJiaycOFCIG+So9TPq+RIJO9llBypWc0DKTkSsc6yZcs4d+4cERERNGrUKE+OcfvttwOwatUqjhw5kifHEJFkSo68hOY5ErGOo5pz++23Oz+Dua1cuXI0atQIYwzz5s3Lk2OISDLHvVPJkYfTPEci1jDGsGDBAuCf6k5ecTStffvtt3l6HBFf57h3pv7HjjpkeyA1q4lY448//iA+Pp6goCDatGmTp8fq1KkTAEuXLuXy5ct5eiwRX6YO2V5CyZGINb7//nsAWrVqRYECBfL0WA0bNqR48eKcPXuWVatW5emxRHyZ+hx5Cc1zJGINR3LUoUOHPD+Wn58f7du3B2DRokV5fjwRX6XkyEtkNs9R6r+JSO66dOkSy5YtA/InOQLo2LEj8E9SJiK5T8mRl8isWQ1UPRLJK3Fz53L+/HlKlShB3bp18+WYjiRs7dq1HJ8zBxIS8uW4Ir7EUVRQh2wPl1mzGig5EskTsbF83707ALceP47flCn5ctiyZctSp1w5jDH8cNddEBUFsbH5cmwRX6EO2V5CzWoi+SghAQYMwNGw1QFg4MD8qeIkJNDhwAEAFgPY7fl3bBEfoWY1L3F1s1rqUqAqRyK5bOdOTtjtrEv5tT1AUhLs2pUvx74l5X+XO7bl17FFfISSIy+hPkci+ahaNZbZbBjgRqAsgL8/VK2aL8duabPhD+wG4vPz2CI+QsmRl1CfI5F8FBnJj23bAtAWkpOT8eMhMjJfjl144kSiU3790WbLv2OL+Iislg9xp64qSo6ykdnyIaDkSCQv/HjsGACtX34Z9u6FmJj8O3hMDG0eeQSA5d275++xRXxARsuHqEO2B7q6Wc1ms2l9NZE8cuLECTZv3gzAzY88YknVpk23bgAsX7Mm348t4u3UrOYlrk6OQLNki+SVn376CYCaNWtSqlQpS2Jo2bIl/v7+7N69m/j4eEtiEPFWSo68xNV9jkDJkUhe+fHHHwFo3bq1ZTEULlyY6OjoNPGISO7IKjlSnyMPcnWfI/jnorrThRTxBu6QHAG0adMGgOXLl1sah4i3UeXIS2TUrKY+RyK579SpU2zcuBFQciTirTIaraYO2R5IfY5E8sfPP/+MMYZq1aoRERFhaSw33XSTs99RgmbIFsk1GY1WU+XIA6nPkUj+cJcmNYBChQpRr149AH755ReLoxHxHmpW8xJZ9TlSciSSexwj1W6++WaLI0nWokULAFauXGlxJCLeQx2yvYSa1UTy3sWLF1m/fj2Q3KTlDlq2bAmociSSm1Q58hJKjkTy3rp167h8+TJlypShYsWKVocD/JMcbdy4kXPnzlkcjYh3yCg5UodsD6Q+RyJ5z9F01bx58zT/ELFS+fLlKV++PElJSaxevdrqcES8QlZrqyk58iCa50gk7zmSI0c/H3fhqB6p35FI7tBoNS+heY5E8pYxhri4OMD9kiNHPOp3JJI71CHbS6jPkUje2rNnD0eOHCEwMJCGDRtaHU4ajspRXFycW31xi3gqdcj2EupzJJK3HE1W0dHRhISEWBxNWnXr1iUsLIzTp0+zdetWq8MR8XjqkO0lNM+RSN5y1yY1gICAAJo1awaoaU0kN6hy5CXUrCaSt1KPVHNHmu9IJPdotJqXUHIkknfOnj3Lb7/9Brhn5QjUKVskN2U1Ws2d+vUpOcqG+hyJ5J01a9Zgt9uJioqibNmyVoeToWbNmmGz2di9ezdHjhyxOhwRj6ZmNS+heY5E8o67N6kBhIeHU6tWLQBNBilyndQh20toniORvOOukz9erUmTJgD8+uuvFkci4tlUOfISalYTyRt2u51Vq1YB7p8cNW3aFFByJHK9NAmkl9BQfpG8sWPHDk6ePEloaCh169a1OpwsOZKj1atXu9UXuIincXx+tHyIh9NoNZG84ajCNGrUiMDAQIujyVrt2rUpUKAAZ86cYceOHVaHI+Kx1KzmJZQcieQNR+dmR1XGnQUEBBAdHQ2oaU3keqhDtpdQnyORvLFmzRoAGjdubHEkrlG/I5Hrp8qRl1CfI5Hcd/HiRTZt2gT8MxLM3Sk5Erl+6pDtJbJqVnOnCyniSTZt2sTly5cpWbIkUVFRVofjEkcS99tvv/H3339bHI2IZ1LlyEtoniOR3Ofob9SkSZM0ny13Vr58ecqUKUNSUhIbNmywOhwRj6TkyEuoz5FI7vO0/kaQ/AWupjWR66MO2V5CfY5Ecl/qypEnUXIkcn1UOfISGsovkrtOnTrlnCvIkypHoORI5HqpQ7aXUHIkkrvWrl0LQOXKlSlRooTF0eRMo0aNsNls7Nu3jyNHjlgdjojHcSRAqhx5OPU5EsldjiY1T6saARQuXJhatWoBqh6JXAvHfVPLh7hg3LhxVKpUiZCQEKKjo/npp5+y3P+LL76gXr16FChQgIiICB566CFOnDiRJ7Gpz5FI7nJ0xva0/kYOjriVHInknDpku2jmzJk88cQTPP/882zYsIFWrVpx2223ER8fn+H+P//8M7179yYmJoYtW7bw1VdfsWbNGvr165cn8WmeI5Hc5amdsR3U70jk2qnPkYvGjBlDTEwM/fr1o2bNmowdO5by5cvz8ccfZ7j/qlWrqFixIo899hiVKlXipptuYuDAgc5+DLlN8xyJ5J4DBw5w8OBB/P39adCggdXhXBNHcrRmzRq3+jIX8QQareaCS5cusW7dOjp06JBme4cOHVi5cmWGj2nRogUJCQksWLAAYwxHjhzhf//7H126dMn0OImJiZw5cybNj6vU50gk96xesACA2tWrExYWZnE016Z27dqEhoZy5swZdnz2GSQkWB2SiMdQcuSC48ePk5SUROnSpdNsL126NIcPH87wMS1atOCLL77gvvvuIygoiDJlylCkSBE++OCDTI8zevRowsPDnT/ly5d3OUb1ORLJJbGxrBkwAIDGW7dCbKzFAV2bgIAAoiMjAVjz0EMQFeWx5yKS35Qc5cDVywcYYzJdUmDr1q089thjvPTSS6xbt47vvvuOPXv2MGjQoEyff/jw4Zw+fdr5s3//fpdj01B+kVyQkAADBrA65dcmAAMHembVJSGBJjt3AiSfj93uueciks88pUN2gJUHL1GiBP7+/umqREePHk1XTXIYPXo0LVu25JlnngGgbt26hIWF0apVK0aNGkVERES6xwQHBxMcHHxNMSo5EskFO3dit9tZk/JrE4CkJNi1C1KqMB5j504cXckdyZ7HnotIPlOHbBcEBQURHR3N4sWL02xfvHgxLVq0yPAxf//9d5r+P/DPi5wXWaf6HInkgmrV+MNm4wwQCtwI4O8PVataG9e1qFaNxilf5huBRPDccxHJZ2pWc9GTTz7JpEmTmDx5Mtu2bWPYsGHEx8c7m8mGDx9O7969nft369aNr7/+mo8//pjdu3fzyy+/8Nhjj9GkSRPKli2b6/Gpz5FILoiMZM3DDwPQEAjw94fx4z2z0hIZSaUJEygOXAY2+fl57rmI5DNPSY4sbVYDuO+++zhx4gSvvPIKhw4donbt2ixYsICoqCgADh06lGbOo759+3L27Fk+/PBDnnrqKYoUKUK7du1488038yQ+zXMkkjtWh4YC0OTee+Hddz06mbD160eTadNYuGwZq0eOpElMjNUhiXgET1k+xPLkCGDw4MEMHjw4w79NnTo13bahQ4cydOjQPI4qmeY5Eskdzskf77nHoxMjhyY338zCZctYk9I5W0Syl9HyIe7YIdvyZjV3pz5HItcvMTGRjRs3Ap47M/bVHOfhSPpEJHvqkO0l1OdI5Pr99ttvXLp0ieLFi1OpUiWrw8kVjoVzt2/fzunTpy2ORsQzeEqfIyVH2dBQfpHr51hstnHjxpnOYeZpSpYsScWKFQHybPkiEW+j5MhLKDkSuX6evthsZtS0JpIzSo68hJIjkeun5EhEQMmR11ByJHJ9zpw5w/bt24F/+ul4C0dy5Gg2FJGsKTnyEprnSOT6rFu3DmMMUVFRlCpVyupwclXDhg3x8/PjwIEDHDhwwOpwRNyekiMvoXmORK6Po8nJ26pGAGFhYdSuXRtQ9UjEFUqOvIya1USuTeqRat7IcV7qdySSvaySI3ei5CgbGWWySo5EXOftyZE6ZYu4LqPkyEGVIw+iDtki1+7o0aPEx8djs9mIjo62Opw8kbpTtvohimTN8RlJveqEmtU8kJIjkWvnqBrVqFGDwoULWxxN3rjxxhsJDQ3lzJkz7NQ6ayJZUp8jL6HkSOTaeXuTGkBgYCANGzYE1LQmkh0lR15CyZHItfOF5AjU70jEVUqOvIzmORLJGWOMVw/jT00j1kRco9FqXiKjTFbzHIlkb9++fRw/fpyAgADq1atndTh5ylE52rhxI5cuXbI4GhH3pdFqXkLNaiLXxtGkVq9ePUJCQiyOJm9VrlyZYsWKcenSJX777TerwxFxW2pW8xJKjkSuja/0N4Lk7wf1OxLJnpIjL6HkSOTa+FJyBOqULeIKJUdeQsmRSM7Z7XbWrVsHKDkSkWTGGOc9VcmRl1ByJOK6HTt2cPbsWQoUKEDNmjWtDidfOJLA7du3c/r0aYujEXE/qe+ZGq3m4bS2mkjOOZrUGjZsSEBAgMXR5I9SpUoRFRWFMcZZNRORf6Se/ib18iEOqhx5kIya1RwXVfMciWTMV+Y3ulrqddZEJK3sKkdKjjyI+hyJ5JwjOXAkC75C/Y5EMqfkyIsoORLJmUuXLrFx40bAdytHSo5E0lNy5EWUHInkzObNm7l06RLFihWjcuXKVoeTrxo2bIifnx8JCQkcPHjQ6nBE3IqSIy+k5EjENY4mtUaNGrnlKJS8VLBgQWrVqgWo35HI1TRazYtotJpIzvja5I9XU9OaSMYc90ybzZZhQqTKkQdRs5pIzig50og1kYxktuismtU8kJIjEdedP3+eLVu2AL43Us0hdXKk6T5E/qHkyItoniMR161fvx673U65cuWIiIiwOhxL1K5dm5CQEE6dOsWuXbusDkfEbSg58iKqHIm4zteb1AACAwNp2LAhoH5HIqkpOfJCSo5EsqfkKJnj/JUcifzD0dpy9dIhSo48kEaribhOyVEyjVgTSS+zypE7UnKUDTWribjmr7/+4s8//wSS5zjyZY7kaOPGjVy6dMniaETcg5rVvIiSIxHXrF27FoCqVatStGhRi6OxVpUqVShatCiJiYls3rzZ6nBE3IKSIy+SVXIEGrEm4uCri81mxGazqWlN5CpKjrxIdsmRqkciyRxJgK/3N3JQciSSlpIjL5LVPEegypEIJH9Ofv31VwCaNm1qcTTuQSPWRNJScuSFVDkSydy+ffs4cuQIgYGBNGjQwOpw3IIjOdq2bRtnz561OBoR62WXHLkTJUfZyGooPyg5EgGcVaP69esTEhJicTTuoUyZMlSoUAFjDOvWrbM6HBHLZTeUX5UjD6I+RyLZW7V4MQBNb7zR4kjci7Pf0fTpkJBgcTQi1lKzmhdRciSSjdhYfo2NBaDZp59Cyv8LOMbtrZ4wAaKi9NqIT1Ny5EWy65Ct5Eh8WkICl/r3Z33Kr02NgYEDVSUBSEigyaxZAKwGsNv12ohP0/IhXiSj5MhmszkvrpIj8Wk7d7LJGBKB4kAVgKQk0Gr0sHMn0cbgB+wHDoFeG/Fpqhx5oat702uWbBGgWjVWpXw2mgI2AH9/qFrVyqjcQ7VqFPTzo2bKr2tAr434NI1W8yKZZbKOypHmORKfFhnJrymdjptC8s1//HiIjLQ0LLcQGQkTJtAk5Yt/jc2m10Z8mkareZGMmtVAlSMRh1XHjwPQ7K23YO9eiImxNiB3EhNDk9deA2B1q1Z6bcSnqVnNiyg5Esnc8ePH+fPPPwFo0r+/qiIZaNKxIwCrf/vNrb78RfKbkiMvouRIJHOOyR+rV69OkSJFrA3GTdWpU4fg4GBOnTrFLnXGFh+m5MiLKDkSyZwjOWrWrJnFkbivwMBAGjZsCGidNfFtSo68kJIjkfRWrVoFaLHZ7GgRWhGNVvMqmWWySo7E19ntdufNXpWjrDmWEVmzZo3FkYhYR6PVvIia1UQy9scff3D69GlCQ0OpU6eO1eG4NUdytH79ei5fvmxxNCLWULOaF8ksOdI8R+LrHE1q0dHRBAQEWByNe6tatSpFihQhMTGRzZs3Wx2OiCUc90slR15AlSORjKkztutsNpuzeqR+R+KrHPdLra3mBZQciWRMnbFzRsmR+Do1q3khJUci/zh//ryzeUiVI9doxJr4Oo1W8yIarSaS3po1a0hKSqJs2bJEalZslzgqbFu3buXUqVPWBiNiAY1W8yJqVhNJ75dffgGgZcuWFkfiOUqXLk2VKlUwxjj7a4n4EjWreRElRyLprVy5ElBylFMtWrQA/kkuRXyJkiMvouRIJC273a7k6Bo5Xi8lR+KLlBx5Ec1zJJLWtm3bOHXqFAUKFKBevXpWh+NRHMnRr7/+ypUrVyyORiR/KTnKoXHjxlGpUiVCQkKIjo7mp59+ynL/xMREnn/+eaKioggODqZKlSpMnjw5T2JT5UgkLUfVqEmTJgQGBlocjWepVasW4eHhnD9/nt9++83qcETylZKjHJg5cyZPPPEEzz//PBs2bKBVq1bcdtttxMfHZ/qY7t27s2TJEmJjY9mxYwfTp0+nRo0a+Ri1kiPxXeqMfe38/Pxo3rw5oKY18T0ayp8DY8aMISYmhn79+lGzZk3Gjh1L+fLl+fjjjzPc/7vvvuPHH39kwYIF3HrrrVSsWJEmTZo4OzrmNlWORNJyVI7y6jPn7RxJpeN1FPEVGsrvokuXLrFu3To6dOiQZnuHDh0y/eL45ptvaNSoEW+99RblypXjhhtu4Omnn+bChQuZHicxMZEzZ86k+XGVkiORfxw9epSdO3cCOCsgkjMasSa+ytFH1xOWD7F0tcjjx4+TlJRE6dKl02wvXbo0hw8fzvAxu3fv5ueffyYkJITZs2dz/PhxBg8ezF9//ZVpv6PRo0czcuTIa4pRyZHIPxz/aLnxxhspWrSoxdF4piZNmuDv78/+/fvZv38/5cuXtzokkXyhPkc5dHXiYYzJtA3Sbrdjs9n44osvaNKkCZ07d2bMmDFMnTo10+rR8OHDOX36tPNn//79Lsem5EjkH2pSu34FCxZ0jvJT05r4EiVHLipRogT+/v7pqkRHjx5NV01yiIiIoFy5coSHhzu31axZE2MMCQkJGT4mODiYwoULp/lxlZIjkX+oM3bu0HxH4ouUHLkoKCiI6OhoFi9enGb74sWLM/2XacuWLTl48CDnzp1zbvvjjz/w8/PL0zWeNM+R+LqLFy+ydu1aQMnR9VJyJL5Io9Vy4Mknn2TSpElMnjyZbdu2MWzYMOLj4xk0aBCQ3CTWu3dv5/49e/akePHiPPTQQ2zdupUVK1bwzDPP8PDDDxMaGprr8WnhWZFk69ev59KlS5QsWZIqVapYHY5Hc/zjb9OmTWn+oSfizTRaLQfuu+8+xo4dyyuvvEL9+vVZsWIFCxYsICoqCoBDhw6lmfOoYMGCLF68mFOnTtGoUSN69epFt27deP/99/MkPjWriSRL3aTmjv/S8yTly5enfPnyJCUlsXr1aqvDEckXntSsZuloNYfBgwczePDgDP82derUdNtq1KiRrikuryg5Ekmm9dRyV8uWLZkxYwYrV66kXbt2Vocjkuc8KTmyvHLk7pQciSR/DhyVI41Uyx2a70h8jZIjL6LkSAR27tzJsWPHCA4OJjo62upwvELqmbL1PSK+QMmRF1JyJL5sxYoVADRt2pTg4GCLo/EO9erVo1ChQpw5c0aL0IpP0Gg1L6LRaiL/JEc333yzxZF4D39/f2666Sbgn9dXxJtltnyIgypHHiSzZjXNcyS+5McffwSUHOW21q1bA/+8viLeTM1qXkR9jsTX7du3j/j4eAICAtQZO5c5ks0VK1a41Y1BJC8oOfIiSo7E1zmafKKjowkLC7M4Gu8SHR1NaGgoJ06cYNu2bVaHI5KnlBx5ESVH4uvUpJZ3goKCnNU4Na2Jt1Ny5IWUHImvUmfsvJW6aU3Em2m0mhfRaDXxZYcOHWLnzp3YbDbnyCrJXep3JL5Ca6t5ETWriS9zVDPq1atHkSJFrA3GSzVt2pSgoCAOHjzIn3/+aXU4InlGzWpeRMmR+LIVCxYAcHPDhhZH4r1CQ0Np0qQJACsmTICEBIsjEskbSo68iOY5Ep8VG8uKzz4D4OYpUyA21uKAvNfNhQsDsOLttyEqSq+1eCUlR15ElSPxSQkJnOjfn99Tfr3ZGBg4UFWNvJCQwM0LFwKwAsBu12stXknJkRdSciQ+ZedOfkr5oqoJlARISoJdu6yMyjvt3EkLY/AH9gD7Qa+1eKXMlg/RaDUvouRIvFq1ajhm3Wnl2ObvD1WrWhSQF6tWjUJ+fjh6df0Ieq3FK2m0mpdIfaFUORKfEhnJ0shIANpB8s16/HhI2Sa5KDISJkygbcp3zFKbTa+1eCU1q3kJJUfiq44dO8ZvKX1e2syaBXv3QkyMtUF5s5gY2qV0fl9Stizm4YctDkgk9yk58hJKjsRXLV++HIDatWtT+u67VcXIBzfddRcBAQHEHzjAnj17rA5HJNcpOfISSo7EVy1duhSAW265xeJIfEdYWBjNmjUD/nn9RbyJkiMvkVVypHmOxJstWbIEgHbt2lkciW9xJKOO11/Emyg58kKqHImv2L9/Pzt37sTPz0+LzeYzRzK6dOlSt7pRiOQGLTzrJbL6clJyJN5q2bJlADRq1EjrqeWzpk2bEhoaytGjR9m6davV4YjkKg3l9xLqcyS+yNHfRU1q+S84OJibbroJUL8j8T5qVvMSSo7E1xhj1N/IYup3JN5KyZGXUHIkvmbXrl0kJCQQFBREy5YtrQ7HJzmS0uXLl+v7RbxKdsuHeE1ydPToUQ4fPpxbsbgdJUfiaxxNOc2bN6dAgQIWR+ObGjRoQHh4OKdPn2bDhg1WhyOSa7y+cvTbb79x4403EhERQbly5ShXrhwvvPAC58+fz+343IaSI/EF6m9kvYCAAFq3bg2o35F4F68frRYTE0Pp0qX5+eef2bBhA6NGjWLhwoU0atSIkydP5naMlskqi9U8R+Jt7Ha7c6SaJn+0lvodiTfy+tFqW7duZdy4cTRv3py6devy0EMPsXbtWm688UaGDh2a2zFaRs1q4ks2bdrEsWPHCAsLo3HjxlaH49McydFPP/3ExYsXLY5GJHd4fbNaRhUim83G66+/zty5c3MlMHeg5Eh8yaJFi4DkJrWgoCCLo/FttWrVoly5cly4cIGffvrJ6nBEcoVXJkddunTh//7v//jyyy8ZNGgQw4YN48iRI2n2OX36NEWLFs31IK2i5Eh8iSM56tixo8WRiM1mo0OHDsA/10XE03lSchTg6o516tRh/fr1TJkyxZkUVa5cme7du1O/fn2SkpKYMmUK7777bp4Fm9+UHImvOHfuHL/88gug5MhddOzYkSlTprBo0SLeeecdq8MRuW5emRy98cYbzv8/cuQIGzZsYOPGjWzcuJGPP/6YXbt24e/vz8iRI7nnnnvyJFgrKTkSb7Zs2TIuX75M5cqVqVq1qtXhCHDrrbdis9n4/fffOXDgAOXKlbM6JJFrZoxxJj+eMFrN5eQotdKlS9OpUyc6derk3HbhwgU2bdrEpk2bci04q2ltNfEValJzP8WLF6dx48asXr2a77//noceesjqkESuWep7pdeOVstIaGgozZo1Y+DAgbn1lJZTs5r4CiVH7slxPdTvSDxdVsmROzarafmQLGSVHAUEJBfdlByJp9u9eze7du0iICCAtm3bWh2OpOJIjhYvXqzvGvFoqd+/jvung5IjD+NK5ejKlSv5GpNIbnNUJVq0aEHhwoUtjkZSa9q0KeHh4fz111+sW7fO6nBErlnqe6UqRx5OlSPxBWpSc18BAQHOCSHVtCaeTJUjL6XKkXijy5cvO9fvcsyrI+5F8x2JN3ClcuROlBxlIassVpUj8QZxcXGcPXuWEiVK0LBhQ6vDkQw4KnqrVq3i9OnTFkcjcm0c90o/P79MkyFVjjyE+hyJt/vuu+8AaN++vXMxZXEvFStW5IYbbiApKYkffvjB6nBEronjXpnRMH41q3kYVypHSo7Ek82fPx9IXh5I3Jfj+jiul4incVSOru5vBEqOPI7jQmVUAtQ8R+Lp9u3bx2+//Yafn1+aCV3F/XTt2hVITo7sdrvF0YjknCpHXiSr5EiVI/F0jipEixYtKF68uMXRSFZuuukmChcuzNGjR1mzZo3V4YjkmONeqcqRF1HlSLzRt99+C/xTlRD3FRQU5OyY7bhuIp4ks0VnQaPVPI76HIm3On/+vHMIv5Ijz9CtWzdAyZF4pqwqRw6qHHkIV5rVVDkST7RkyRISExOpWLEitWrVsjocccFtt92GzWZj48aNJCQkWB2OSI6oQ7YXcaVDtjFGHSTF48ybMQOAbm3bumVJW9IrUaIEzZs3B+Db//wHlCCJB1GHbC/iSuUIVD0Sz2KfOJH506cD0HXqVIiNtTYgcVnXMmUA+HbsWIiK0rUTj6HKkRdxpXIE6nckHiQhgQ0DB3IICANaGwMDB6oK4QkSEug2ezYAS4C/7XZdO/EYqhx5EVWOxOvs3Mm3Ke/rDkAwQFIS7NplZVTiip07udEYooCLwFLQtROPocqRF1LlSLxGtWo4xjo5x6j5+0PVqhYFJC6rVg2bn5/zun0LunbiMVypHLkTJUdZcGUoPyg5Es+RAKwFbEBnSL65jh8PkZGWxiUuiIyECRPolrIG3jeA/eOPde3EI2RVOXJQ5chDZNWslnqRTjWriaeYM2cOAM0bNaLMsmWwdy/ExFgak+RATAxtd+6kcFgYh4Bfa9e2OiIRl6jPkRfJKjkCTQQpnufrr78G4O4ePaBNG1UdPFBQ5cp0u/NOAGbNmmVtMCIuUp8jL5JdcqQlRMSTHD9+nBUrVgBw1113WRyNXI+7774bSE523emGIpIZVY68iCpH4k3mzZtHUlIS9erVo3LlylaHI9ehY8eOhIaGsmfPHjZt2mR1OCLZUuXIC6lyJN7A2aSWUnUQzxUWFkanTp2Af66riDvTaDUvkl0Wq8qReIqzZ8+yePFiQE1q3iJ105qIu9PCs15EfY7EWyxcuJDExESqVq1KbY1w8gpdu3YlICCALVu2sGPHDqvDEcmSmtW8iPocibdI3aTmjiVsybkiRYpwyy23ADA7ZVkREXelDtlexNXkSJUjcWcXLlxg/vz5gJrUvI2a1sRTqHJ0DcaNG0elSpUICQkhOjqan376yaXH/fLLLwQEBFC/fv08icvVZjVVjsSdLVy4kHPnzlG+fHmaNGlidTiSi+644w5sNhtr1qwhPj7e6nBEMqXKUQ7NnDmTJ554gueff54NGzbQqlUrbrvttmw/6KdPn6Z3797OsnJeUrOaeLKZM2cC0L179zQzu4vnK126NK1atQLgyy+/tDgakcy5UjlyJ5Z/U44ZM4aYmBj69etHzZo1GTt2LOXLl+fjjz/O8nEDBw6kZ8+eNG/ePM9iyy6LVYdscXfnzp1j3rx5APTo0cPiaCQvOK7r9OnTLY5EJHNZVY4cVDlKcenSJdatW0eHDh3SbO/QoQMrV67M9HFTpkzhzz//ZMSIES4dJzExkTNnzqT5cYU6ZIun+/bbb7lw4QKVK1cmOjra6nAkD9x77734+/uzfv16/vjjD6vDEcmQ+hzlwPHjx0lKSqJ06dJptpcuXZrDhw9n+JidO3fy3HPP8cUXX2Q5X0Jqo0ePJjw83PlTvnx5lx6nofzi6RxNaj169HDL0rVcv5IlS9K+fXtA1SNxX+pzdA2u/tI2xmT4RZ6UlETPnj0ZOXIkN9xwg8vPP3z4cE6fPu382b9/v0uPU+VIPNnp06dZsGABAPfdd5/F0Uheuv/++wGYMWOGW91gRBw8rXLkWuklj5QoUQJ/f/90VaKjR4+mqyZB8iy/a9euZcOGDQwZMgQAu92OMYaAgAC+//572rVrl+5xwcHBBAcH5zg+VY7Ek82dO5dLly5Rs2ZN6tSpY3U4kofuvPNOQkJC2L59O5s2bcqzEbwi10qVoxwICgoiOjrauayBw+LFi2nRokW6/QsXLszmzZvZuHGj82fQoEFUr16djRs30rRp0zyJU5Uj8UQzZswAkqtGalLzboULF6ZLly6AmtbEPWm0Wg49+eSTTJo0icmTJ7Nt2zaGDRtGfHw8gwYNApKbxHr37g2An58ftWvXTvNTqlQpQkJCqF27NmFhYbkam0ariac6duyY8x8dalLzDamb1ux2u8XRiKTlaaPVLG1Wg+Qv7hMnTvDKK69w6NAhateuzYIFC4iKigLg0KFDlk1upj5H4qlmzJjBlStXaNSoETVq1LA6HMkHnTt3plChQsTHxxMXF0fLli2tDknEydP6HFleOQIYPHgwe/fuJTExkXXr1nHzzTc7/zZ16lSWL1+e6WNffvllNm7cmCdxaYZs8VSfffYZgLPqKt4vNDSUO++8E1DTmrgf9TnyIlpbTTzRtm3bWLt2LQEBAZr40cf07NkTSK4cXrp0yeJoRP7hSI7U58gLqHIknujzzz8H4LbbbqNkyZIWRyP5qX379pQtW5YTJ044FxsWcQeudsh2l+qRkiMXqHIknsJutzuTIzWp+R5/f38efPBBILlLgoi7cKVZzZ0oOcpCdhmsOmSLu1m+fDkJCQkUKVKErl27Wh2OWKBPnz4AzJ8/nyNHjlgcjUiyrCpHqaly5AE0CaR4ms8/+QSA7l26EBISYnE0YoWaNWvSpEkTkpKSmDZyJCQkWB2SiMuVIyVHHkBD+cWTnPvoI/731VcAPDhtGsTGWhyRWKVvtWoATPn4Y0yFCnoviOXU58iLqHIkHiMhgRlDh3IOuAFoaQwMHKiqgS9KSKDHtGkEAZuBjXoviBtQ5cgLqXIkbm/nTiamfKn0A2wASUmwa5eVUYkVdu6kqDHcmfLrFNB7QSyn5UO8iJYPEU/x25UrrAYCgT6Ojf7+ULWqdUGJNapVAz8/Hkr59XPggp+f3gtiKVeWDwFVjjyC+hyJp5g0bx4AdwClIDkxGj8eIiOtDEusEBkJEybQ3s+PKOAU8FXfvnoviKXU58gLaRJIcWcXLlxwzm3U7/PPYdky2LsXYmKsDUysExOD/7599E95D4zfvt3igMTXaZ4jL+LqPEdqVhMrff3115w6dYqoqCja9+wJbdqoSiAQGcnDr75KQEAAK1euZPPmzVZHJD5M8xx5ES0fIp5g4sSJAMTExODnp4+0/CMiIoI77rgDgPHjx1scjfgyVY58iCpHYrXff/+dH3/8EX9/fx566KHsHyA+Z+DAgUDymnvnz5+3OBrxVa4uPKvKkQdQ5Ujc3UcffQTAnXfeSaSa0iQDt9xyC5UrV+bMmTPMnDnT6nDERzmKCBqt5kW08Ky4o1OnTvHZZ58BMGTIEIujEXfl5+fHgAEDABg3bpzb3HzEt7haOXIXSo6yoIVnxZ1NnTqVv//+m9q1a9O6dWurwxE3FhMTQ0hICOvWrWPlypVWhyM+SB2yvYiWDxF3ZbfbnU1qQ4YMcct/eYn7KFGiBL169QLgvffeszga8UVaPsQLaRJIcTeLFi1i165dhIeHO296Ill5/PHHgeSpH+Lj4y2ORnyNlg/xIq4uH6LkSPLbhx9+CMDDDz9MwYIFLY5GPEGdOnVo27YtSUlJzqqjSH7R8iFexNXlQ9SsJvlp69atLFiwAJvNxuDBg60ORzyIo3o0ceJEDeuXfKXKkQ9R5Uis8J///AdIHr5fVYuJSg507dqVSpUqcfLkSf773/9aHY74EPU58iKqHIm7OXTokPOm9swzz1gcjXgaf39/hg4dCsCYMWP03SX5RqPVvJAmgRR38cEHH3Dp0iVatGhB8+bNrQ5HPFC/fv0oUqQIf/zxB3PnzrU6HPERWj7Ei2jhWXEnZ8+e5eOPPwZUNZJrV6hQIR599FEA3nzzTbf5l7p4N1WOvIiWDxF3Ehsby6lTp7jhhhu4/fbbrQ5HPNhjjz1GSEgIq1evZvny5VaHIz5AlSMfosqR5JdLly7x7rvvAvDUU0/h56ePrly7UqVK8fDDDwPJ1SORvObqaDVVjjyAKkfiFhIS+Oz//o/4+HgiIiLo3bu31RGJF3Ak2YsWLWLDhAmQkGB1SOLFNM+RF9FoNbFcbCyXK1Tg9ZTh+8+0akVISIjFQYk3qFy5Mvc1agTA6IEDISoKYmMtjkq8lRae9SGqHEmeSkiAAQOYZgx7gFLAwP/9T//Cl9yRkMDwNWsA+ArYbLfDwIF6f0mecBQRNM+RF3C1cqTkSPLEzp0k2e28lvLrU0ABux127bIyKvEWO3dSxxjuTfl1JEBSkt5fkieyqhylpuTIg6hZTSxRrRozbTZ2AsWBwQD+/qBZsSU3VKsGfn6MAGzALGCjn5/eX5IntHyIF9HCs2KlK2XK8Grp0gAMAwr6+8P48RAZaW1g4h0iI2HCBGr7+9M9ZdPIevX0/pJcZ7fbnfdTdcj2AmpWEyt9/vnnbD98mGJFijBk3jzYuxdiYqwOS7xJTAzs3cuIqVOx2WzM2bCBDRs2WB2VeJnU90hVjnxAYGAgAJcvX7Y4EvE2Fy9eZMSIEQD83wsvEN61q/5FL3kjMpKaffpw//33A/Dyyy9bG494ndT3SMd9MzV1yPYwqhyJVT7++GP2799PZGQkgwcPtjoc8QEvvfQSfn5+fPPNN6xatcrqcMSLZFc5Sk3JkQfILjlS5UjywpkzZ3j99dcBGDFiBKGhoRZHJL6gevXq9OnTB0heu89dblLi+bKrHLkjJUfXwXGRVTmS3DRmzBiOHz/ODTfcQN++fa0OR3zIK6+8QmhoKD///DPffPON1eGIl3DcI/38/DJd+shRhHCXpFzJURZcbVZT5Uhyy7Fjx/hPymzYo0aNyrYELZKbIiMjGTZsGADPPvus/uEnucJxj3Tl+0zJkQfJrllNXyCSW1566SXOnTtHw4YNueeee6wOR3zQv//9b0qUKMGOHTuYNGmS1eGIF3AkR1k1qbnbiDUlR1nILoNV5Uhy02+//caECRMAePfddzMtP4vkpfDwcF566SUguc/b2bNnLY5IPJ2rs2ODKkceQR2yJb8YYxg2bBh2u517772Xm2++2eqQxIcNHDiQqlWrcvToUd5++22rwxEPp8qRj1GzmuSWb775hqVLlxIcHMxbb71ldTji44KCgnjjjTcAeOutt9i9e7fFEYknc6VypA7ZHsTVDtl2ux273Z5vcYl3SUxM5KmnngLgySefpFKlShZHJAJ33303t9xyC4mJiTz55JNWhyMezJXKkYOSIw/garMaqHok1+7999/nzz//pEyZMgwfPtzqcESA5O+9999/n4CAAObOncvChQutDkk8lOP+qGY1H5G6RKh+R3It9u/fz8iRIwEYPXo0hQoVsjgikX/UqlWLxx57DIDHH3+cxMREiyMST+TKUH41q3kQVY4kTyUk8HjPnpw/f54WLVrQu3dvqyMSSWfEiBGULl2anTt3MnboUEhIsDok8TA5aVZzF0qOroMqR3LNYmOZV6ECs3/+mQDgkw4dNHRf3FLhwoV5u2tXAF6ZOJF9FSpAbKzFUYknUYdsL5Nd5cjf39/5NyVH4rKEBM7378+QlPfXk0CdV1/Vv8jFPSUk8MDkybQC/gYeMQYzYIDer+Iydcj2MtklR6Dh/HINdu5kpDHEA1HASwBJSbBrl7VxiWRk505sxjABCAIWAtPtdr1fxWU5qRy5CyVH10mzZEtObbx0iTEp//8hEAbg7w9Vq1oXlEhmqlUDPz9qAC+mbHocOF6smIVBiSfJySSQqhx5AFWOJLddunSJvs8+SxJwD9AVkhOj8eMhMtLa4EQyEhkJEyaAvz//BmoDx4GnUhZIFsmOmtW8jCvJkSpHkhOvv/46mzZtonjx4ny0fj0sWwZ790JMjNWhiWQuJgb27iVo2TImffMNNpuNzz77jEWLFlkdmXgANav5IFWOxFUbN27ktddeA+DDDz+kdIMG0KaNKkbiGSIjoU0bmnbr5pz7KCYmhpMnT1ocmLg7Nat5mZw0q6lyJFm5dOkSffr04cqVK9x9993cd999Vockcs1ef/11brjhBg4cOMCjjz5qdTji5lypHLkbJUfXSc1q4opRo0bx22+/Ubx4ccaNG+d2JWSRnChQoACfffYZ/v7+TJ8+nZkzZ1odkrgxVY68jDpkS2746aefnM1p48aNo3Tp0hZHJHL9mjZtyv/93/8B8Mgjj3DgwAGLIxJ35cryIQ5KjjyAOmTL9Tp58iS9evXCbrfTu3dvunfvbnVIIrnmxRdfJDo6mpMnT/Lwww9jt9utDknckBae9UGqHElmjDEMHDiQ/fv3U6VKFT788EOrQxLJVYGBgXz++eeEhITw/fffM2bMmOwfJD5HzWpeRh2y5XpMmTKFr776ioCAAKZPn06hQoWsDkkk19WsWZOxY8cCMHz4cFatWmVtQOJ21CHby7iSwToutipH4pSQwLapUxk6ZAiQ3Bm7cePGFgclkncGDBjAfffdx5UrV7jvvvv4a/Pm5Dm8tP6aoMqR11LlSFwWG8uZChW466GH+PvCBW6pWZNnnnnG6qhE8pTNZmPChAlUqVKF+Ph4Hq5bF9OuHURFQWys1eGJxVzpkK3kyIOoQ7bkSEICpn9/HjaGHUAkMG3HDvwOHrQ6MpE8V7hwYb784AOCgLmQvH6g3Q4DB6qC5ONc6ZDtbtwiORo3bhyVKlUiJCSE6Ohofvrpp0z3/frrr2nfvj0lS5akcOHCNG/e3NIp7NUhW5x27uQ/xjALCAT+B5TS6uXiQxqGhPBuyv//G/gBIClJnwEfp8rRNZg5cyZPPPEEzz//PBs2bKBVq1bcdtttxMfHZ7j/ihUraN++PQsWLGDdunW0bduWbt26sWHDhlyPTR2yJSeWHz/Osyn//x7QFJIXla1a1bqgRPJTtWo8YrPRF7AD9wG7/fz0GfBxOakcKTlKMWbMGGJiYujXr59z1EP58uX5+OOPM9x/7Nix/Pvf/6Zx48ZUq1aN119/nWrVqjFv3rxcjy0nzWqqHPm2Xbt2cc+gQdiBB202BkFyYjR+vNZOE98RGYlt4kQ+9vOjCfAXcGdEBOeKFLE4MLFSTjpkuwtLk6NLly6xbt06OnTokGZ7hw4dWLlypUvPYbfbOXv2LMWKFct0n8TERM6cOZPmJ7eociQnT56ka9eu/PXXXzRu3JhPduzAtmwZ7N2bvJq5iC+JiSFk3z6+/vJLypQqxeYDB+jbt68miPRhrgzlV7NaKsePHycpKSndcgqlS5fm8OHDLj3Hf/7zH86fP5/lzMOjR48mPDzc+VO+fHmXnluVI8nO5cuX+de//sWOHTuIjIxk7ty5FKhWDdq0UcVIfFdkJOX+9S9mzZ5NYGAgs2bN4rnnnrM6KrGIK5Ujd2N5sxqkTz6MMS6V2KZPn87LL7/MzJkzKVWqVKb7DR8+nNOnTzt/9u/f71JcrmSwqhz5LmMMQ4cOZcmSJYSFhTFv3jwiIiKsDkvEbbRo0YLJkycD8Pbbb/PRRx9ZHJFYQR2yc6hEiRL4+/unqxIdPXo028U5Z86cSUxMDF9++SW33nprlvsGBwdTuHDhND85oaH8kpHXXnuN8ePHY7PZmD59OvXr17c6JBG388ADDzgXXn7sscf45ptvLI5I8ltO1lZTcgQEBQURHR3N4sWL02xfvHgxLVq0yPRx06dPp2/fvkybNo0uXbrkWXw5Ga2mZjXf8sknn/Diiy8CyYMEunXrZnFEIu5r+PDh9O/fH7vdTo8ePbTEiI9xpXLkbixvVnvyySeZNGkSkydPZtu2bQwbNoz4+HgGDRoEJH+oevfu7dx/+vTp9O7dm//85z80a9aMw4cPc/jwYU6fPm1J/GpW8z1fffUVgwcPBuCFF17gscceszgiEfdms9kYN24ct912GxcuXOC2225j48aNVocl+USVo2tw3333MXbsWF555RXq16/PihUrWLBgAVFRUQAcOnQozZxH48eP58qVKzz66KNEREQ4fx5//PFcj00dsiWNhAQWv/02vXr1whjDwIEDeeWVV6yOSsQjBAQE8NVXX9GyZUtOnTpFhw4d2L58udZg8wE56ZDtLsmRW9S4Bg8e7PyX+NWmTp2a5vfly5fnfUApNAmkOMXGsqR/f243hsvAvdHRfPTRR243N4eIOwsLC2P+/Pm0a9eO9evXc2vbtvwEVPLzgwkTNPWFl8pJh2x3YXnlyNOpcuQDEhJY2r8/3YzhItAF+O+GDfgfOmR1ZCIeJzw8nEVTplALOAC0BXZrDTavpmY1L6PKkQAsnTmTrsZwgeTEaBYQrDXTRK5ZiRMnWAxUBfYBNwM7tAab11KHbC+jeY5k4cKFdH3hBS4AnUlJjEBrpolcj2rVKOvnxwqgJskVpNbA76rAeyVVjryUOmT7pmnTpnH77bdz4eJFutStyyw/v38SI62ZJnLtIiNhwgQi/P1ZDtQDjgBtevRg/fr11sYmuU6TQHoZNav5rg8//JAHHniAK1eu0LNnT2avXUvIvn3JI2u0ZprI9YuJgb17KbVsGUt/+43GjRtz4sQJ2rZty9KlS62OTnKRlg/xQaoceRdjDC+//DJDhw7FGMOQIUP4/PPPkz/UkZFaM00kN6V8porVqcPixYu5+eabOXPmDJ06dWLatGlWRye5RM1qXkaVI9+SmJhI3759GTlyJAAvv/wy77//Pn5++piI5LXw8HAWLVpE9+7duXz5Mr169eKtt95ym5ulXDt1yPYyOemQrcqRB0tI4PicObS/+WY+++wz/P39GTduHCNGjHC7uTdEvFlISAjTp09n2LBhADz77LMMGTKEy3v2aLJID6bKkZfSwrNeLDaWHRUq0Oyuu/hp9WoKh4Yyf/58HnnkEasjE/FJfn5+jBkzhjFjxjiXHelUuTIn2rWDqCiIjbU6RMkhdcj2MmpW83IJCSzu359mxvAnUBFYmZhIxxtvtDgwERk2bBizJ06kILAUaAz8rskiPZI6ZHsZVzJYdcj2THa7ndEjR9LJGE4BzYFfgRs1uaOI27ijcmXigErAHpI/p3M1WaTHcdwfVTnyMqoceZfTp09z991383+TJmEHYkj+l2kp0OSOIu6kWjVq+/mxhuRlRs4BdwLPz5qlf5B6EFcqR0qOPIgrzWqqHHmW33//ncaNGzN37lyCgoKY2Ls3k/z9CQFN7ijiblImiyzu788iYGjKd/HrH37IrbfeysGDB62NT1ziSodsd6Pk6DqpcuQZjDFMnDiRJk2asHPnTipUqMDPP/9Mv08/TZ7UUZM7irinlMkiA5ct4/34eKZPn07BggX58ccfadCgAUuWLLE6QsmGOmR7GXXI9nAJCbBsGSd//51//etfDBgwgAsXLtChQwfWrVtH48aNk/fT5I4i7i3VZ7RHjx6sXbuWOnXqcPToUdq3b89LL72U/B2c8plXh233kZSU5LyXqnLkJVzJYIOCggC4dOlSXocjOREbC1FR/NSuHfXq1GHWrFkEBgby9ttvs3DhQkqUKGF1hCJyjapXr86vv/5KTEwMxhheffVVWt5wA39UqAAa8u9WUt8bHffLjKhy5IGyqhwFBwcDybMri5tISOBi//4Mt9tpA+wHqgIrZ8/m6aef1ozXIl4gNDSUSZMmMX36dIqEh7Nm717qG8PHgNGQf7eR+t7ouF9mRMmRB3GlWU2VI/ez+ptviDaGNwA70BtYDzQKC7M2MBHJdT169OC38eNpB1wABgNdgAQN+XcLqe+NalbzEq5ksKocuY+LFy/y3HPP0XzoULYCpYHZwKdAIQ3RF/Fa5Vu2ZLHNxrtAMLAQqAWM++UX7Ha7tcH5OMe9MTAwMMuqvSpHHkiVI/f3ww8/UK9ePd58803sdju9mjZli58fd4KG6It4u8hI/CZO5Al/f9YDzYCzwKMvvECrVq3YunWrxQH6Lse9Mav+RpD1fdYKSo6yoMqR+0tISKB79+60b9+eP/74gzJlyjBnzhz+u2oVxfft0xB9EV+RMuS/1rJl/Lx3Lx988AEFCxZk5cqV1K9fnxdeeIFz585ZHaXPcdwbs+pvlJoqRx5ElSM3k5DApe+/5+0XXqBGjRp89dVX+Pn58dhjj7F9+3buuOOO5P00RF/Et6R85v2johgyZAhbt26lW7duXL58mddee43q1avz+eefY4+P15D/fJLTypGSIw/gSodsRzZst9tJSkrKl7h8mX3iRGZUqEDNjh3592uvcf78eVq0aMH69et57733CA8PtzpEEXET5cuXZ+7cucyePZvKlStz8OBBevfuTYuoKFZpyH++cCRHrlaO3IWSoyzkZJ4jUNNaXlv25Zc0HTCA+41hN1AGmGKz8dP06dSrV8/q8ETEDdlsNu688062bNnC6OeeoyDJi0w3B+6y2/l9wABVkPKQ476oypEXcqVyBGpayysrV66kU6dOtLvvPtYCBYFXgV1AX2Pw273b2gBFxO2FhITwXIcO/AE8RPLNbw5Q126nV9++7NKw/zzhauVIyZEHycnCs6DKUW5bsWIFt956Ky1btmTRokUEBAQwBPgTeAEIg+SRaBqiLyKuqFaNCD8/JgObgXsBA0xbsoQaNWrQr18/JUm5zNXKkbtRcpQFVzJYm83mzIhVObpOCQmYpUtZOnMmbdq0oXXr1ixZsoSAgAD69evHjh07+GDSJEr5+yfvryH6IpITkZEwYQL4+1ML+Mrfn3Uvvkjnzp1JSkoiNjaW6tWrc//997Np0yat1ZYLPLVylPkSueKU3fwLQUFBJCYmqnJ0HZImTmTOwIG8YwyrUrYFBQURExPDs88+S1RUVPLGypWhY8fkmW+rVlViJCI5ExOT5jukYWQk80luvn/ttddYsGABM2bMYMaMGXQBhgMt/fySkypNCZJjOe1z5C5UOcqCqxmsKkfX7vz583w4ahQ3DBjAvSmJUTAw1Gbjz59/Zty4cf8kRg4aoi8i1yOD75AWLVowf/58NmzYwH3duuEHzAduAlrZ7cweMICkffssCthz5XS0mrtUjpQcucCVyhGoz1FOHD58mBdeeIHy5csz9MUX2Q0UA14E9gHvG0Pk+fPWBikiPqd+/frMGDaMHUB/IAj4Gbjbbqda8+aMHTuWM2fOWBukB9FoNS/kSods0ESQ2UrVbr9mzRr69u1LVFQUr732GidPnqRqxYp8ZLMRD7xC8ppo6mgtIpapVo2qfn5MAPYA/0fyP972HDrEsGHDiIyMZNiwYex2jJRV36RMaZ4jL5TTZjVVjjIQG8uFChWY2q4djcuXp0mTJnz66adcunSJFi1a8PXXX7N91y4GT5xImDpai4g7SNVxuyzwmr8/+z/6iPHjx1OzZk3Onj3L2LFjqVatGnc2aMCCChVI0qSSGVLlyIupcnRttixZwtP9+hFpDA8Ba0kuUT94zz3ExcXxyy+/cNddd+Hv7+9cF0lroYmIW7jqO6nA4MEMGDCALVu28N1339GxY0fsdjtzN26kizFUAkba7ezXpJJpeOpoNSVHWXC1WU2Vo38cO3aM999/n+joaGrfeiv/Af4CooDRQALw2ZAhNGvWLP2D1dFaRNxJBt9JNpuNjh078t1337F1yhSeILnJbT/wMlDRbqfLvfcyc+ZMzqvfpMfOc6Sh/FlwNYP1ycpRQgLs3AnVqnE8JIRvv/2WWbNm8d1333HlyhUgeYLMrleu8DDQGfAH9SUSEa9R89ZbedfPj9F2O18DE4HlwIJff2VBjx4UKFCA22+/nR49etCpUyeCjx1zfm/6yj8CPbVypOTIBaocXSU2lj39+zPXGOYAP9ls2FO9oRs1akSfPn3o0aMHJebOhYEDISlJfYlExLuk9E0KGTiQnklJ9PT3Z+crrzD1/HlmzJjB7t27nXMmhYeG0vnCBe4AbrPZKDxxok90H/DUeY6UHGVBlaN/GGPYtGkTcz77jDnvvsumtH+kQe3a3Pmvf3HvvfdSq1atf/521YRrSoxExKtc9R1XLTKS14BRo0axdu1aZsyYwcxp0zhw+DDTgelAoDG07dePOw4f5vY+fYj04u9FT53nSMmRC3yqcpSquexKmTL8/PPPzJkzhzlz5rAv1QRofsDNwJ3AHUDFDz5IbpvPSGSkkiIR8V4ZfMfZbDYaN25M48aNebtzZ1bdeitzgbnADuB74PsXXuDRF16gYcOG3HHHHdxxxx3UrVs3+Z6T6rvYk78/PXW0mpKjLPjcPEexsfzdvz/fpzSXzQsL469UHQpDQ0PpePPN3Pn993QxhhKOP6gfkYhIpvyqV6eFnx8t7HbeJDk5mmuzMTc6mrh161i/fj3r169nxIgRREVF0a1KFbotW0ZrYwj28KVLNM+RF/KqeY6ymKTs4MGDTH7nHe7s148SxnAX8Cnw1/nzFC9alL59+zJnzhyOHz/O7O++o8/EiZTQnEQiIq5JNW8SQHV/f/49cSK/rFnD4cOHiY2N5fbbbyc0NJR9+/bx4dKldEz5B+i9djtT+/fn2KZNGT+3m09AqcqRF8uLylFiYiLvvfceGzZsoFWrVgwYMICAgDy6HLGxMGAA2O3g58fJd99ldfXqLFmyhO+++47Nmzen2T0KuIvkJrOWX31FwC23pH0+9SMSEcmZTL43S5UqxcMPP8zDDz/M33//zQ9jxvDtiy/yLXAImAXMMgZbgwY0a9aMLl260KpVK6KjowmbMSPNd3teVZhOnz7N2LFj2b59O506daJ3794ud6DO6Wg1d6HkKAt5tfCs3W7nrrvuYuHChQDMmDGD//73v8ybN4/ixYtfW7AZuHLlCrtXrmRb//5sM4bNwBq7nZ2PP55mP5vNRqO6dem8aRN3AvUAGyT/K6d69YyfXP2IRERyJpvvzQIFCnB7377cPmIEdrud9cC8lJ8NxhAXF0dcXBwA/v7+1EtKohHQAGhgt1NnwAAKdOyYq9/NW7ZsoUuXLs4+pzNmzOCPP/7gtddec+nxjvuiq/McuUvlSM1qWchpnyNXm9U+++wzFi5cSGhoKE8//TTh4eHExcXRvn17Tp48mbMgU0qqZv9+tmzZwieffMKDDz5I3bp1CQsLo3rr1txpDMOBacDOlIdVLVeOPn36MG3aNI4ePcrqjRt5edIk6vv7/5MYqblMRCR/pTTB+fn70wgY6e/P+kmTSEhI4JNPPuGee+6hbNmyJCUlsR6YADwCNAMK2e3UuukmevXqxTvvvMOSJUs4ceJE8vNeQ/PbH3/8wS233MK+ffuoVKkSQ4cOBWD06NFs3LjRpedw3Bc9bZ4jjA86ffq0Aczp06ez3O/VV181gOnfv3+W+z3zzDMGME8//XS2x7bb7aZGjRoGMG+88YYxxpitW7eakiVLGsA0btzYnDp1yrUTmTTJ7LbZzHAwlcGQwU9oSIhpAKYnmFFgvgNz3M/PmP37M37O/fuNWbYs87+LiEjey+a7OP7XX81Mm808B6YjmFKZ3AMA06BCBfMfm80cAWP8/IyZNCnbw+/evdtERkYawNSrV8+cOHHCGGNM9+7dDWDuv/9+l06jbdu2BjDTp0/Pcr/o6GgDmAULFmS5n6v37+ulylEWTA7nOXKlcrR69Wq2b99OgQIFGDx4MAA1a9ZkyZIlFC9enDVr1tC5c2fObt+eZZYfN3cu9/brR1VjGA3sBkKAW266iREjRvDtt9+ye/duzp0/z/pJk/jC35/ngY7+/hSfMCHzipCW8BARsV4238XlmzSh+8SJjPb35zvgsJ8fB955h/nz5zNq1CjuueceqlSpAsCG+HieMoYoYJDdzh9Zrf+WkMCeadNo06oVCQkJ1KxZk++//55ixYoB8MwzzwAwe/ZsTp8+ne1puFo5cnD1vpvX1OfIBbnZIfvbadMAuP3WWylUqJBze506dVi8eDHt2rVj5cqVtKpZkxlAjVSd7C5fvszXX3/N2LFjWbVqlfOxHYAYoAsQ9uqr6ecbUgdqERHvk+q73Va1KmUjIykLdO7c2bnL8Tlz+Oquu5hM8uLf44EJdjvd7ruPJ0aNok2bNv/c42JjWdK/Pw8Yw2HghtKlWbJkCaVKlXI+X3R0NNWqVWPnzp0se/997nzooSzvKa72OXK3ZjVVjrJgXOxz5PJQ/thYlrz/PgDt581LHkWWSoMGDfj+888pCWwCagPd7Hae7N+f7t26UaZMGXr06MGqVasICgriIWAzsAjoDoRlNd+QKkIiIt4nm+/2Eo0a8YifH6uBH4GuJLe1fbNyJe3ataNixYr07duXYf36cVO/ftyakhjVBpYdO0ZEUlKa57PZbLRPOdaSl16CqKh097LUclo5chdKjrKQ02a1S/v3Z1mqPNO/P6tTfr3VmOQ1x67av3FYGOuBbkAS8C3wrjF89e23/PXXX5QqVYoRI0awb98+Jk+aRG3NNyQiIplJ6eBt8/fnZmCevz/bXn2VRx55hAIFChAfH8+nn37K2NhYfiF5gfDBwCqgrN2e3OKQWkICty5fDsAPkDyNQAb3ModLf/8NQNCpU1mG6W6VIzWrucB28GDyhc8k8Qhetw6AxCVLkrPojOaa2LmTFcaQBFQFKkDyYqy7dqV93mrViPTz4xu7nd9Jrgodsdko9uyz3NSlC82aNftnPiQ1l4mISHauulfUiIxkHPDOO++wbNky1q1bx/nDh6n4ySd0NYbyjsdl1BqxcydtjMEP2A4cBMpmdC8DiI0l8c8/AQju3h2yWGzXdvly8v8cP54753y98rS7t5tytbf7iG7dDGAGZdXDf/9+M9FmM4DpBsaAMf7+6UcY7N9vXk7Zr3dW+xmTfBx//3/2cWFkgYiIyHVx5d6zf78xfn6mdspIuHlZ3POMn58pm7Lf+mzueU1S9vvGZsvynqfRavnhwIHM/5aQgJk3D0iZEDGz0uHOnQSnlAGdPY4cWXRqkZFsrF8fSJ6wK8tmsJgY2Ls3ebTa3r0eu6aOiIh4EFfuPSnNdPVTmsE22mwZ38t27gS73XlfDIaM740JCTBgAI6evSaTLidOWd23c5FPJ0e/1KqVeUeynTud/+vsjp3Rha1WjaCUN4lzrFomHaM3pkzwWP/dd7NPetSBWkRE8psr956YGOo//zwAG2+7LeN7WbVq4OfnvC8GQabNdNjtpBn2lNG9FiA2lv/VquXyqVwPn06ONkDmGWq1aqTrFpbRhY2MJDhlvqJExz4ZZNGnTp1i7969ANTr00dJj4iIeKz6KVPGbNyxI+MdUipMzsqRn1/GFaaUJMrBQMb32pQK06LcCN4FPp0cAZlnqJGR0LUrQLbLaQSlzCmRWK1aphWhTSkrKkdFRVG0aNHcil5ERCTf1atXD4A///yTM2fOZLiPefjhfypHa9dm2UznrBxllkSlVJjyi5KjLOYGMil9hLjzziybwUJDQwG4GBiYaUVo69atQPJkjyIiIp6sRIkSREREALB9+/YM90k9919oymzdGYqJgehoAMz48Vk20+UXJUdZzA1kHJNAZrOSsiM5unDhQqb7/PHHHwDccMMN1xqpiIiI23Dczxz3t6ulvic67pOZsaVMEmmKF894h5QKU37x7eTo3/92aSRYdjNku5Ic7Uzp4K3kSEREvIHjfrYz1QCm1Bz3RH9/fwIDA7N8ruzus0Dy/Tqlu0te8+3kKDw8yz8bF2fqzElyVK1aNReDExERcV+O+1l2laPsqkapZXvfLVDA5ee6Hr6dHGXDuLi2muPC/50yTfrVrly5wu7duwElRyIi4h0c97PsKkeuJEfutnyIkiMXuJocXb58maSrFukD2Lt3L1euXCE0NJRy5crlSYwiIiL5KXWzWkZJzbUkR+5CyVEWctqsBhk3rTmy6qpVq+KXj73tRURE8krlypWx2WycOXOGo0ePpvt7njSr5RPdqV3gauUIMk6OHJM/Vq5cOVfjEhERsUpISAiRKSO59+zZk+7vqhxdp3HjxlGpUiVCQkKIjo7mp59+ynL/H3/8kejoaEJCQqhcuTKffPJJnsTlagbr5+dHUFAQkHFytG/fPiB5AkgRERFv4bivOe5zqalydB1mzpzJE088wfPPP8+GDRto1aoVt912G/Hx8Rnuv2fPHjp37kyrVq3YsGED//d//8djjz3GrFmzcj02VztkQ9Yj1hznUqFChVyMTkRExFq5lRypQ/ZVxowZQ0xMDP369aNmzZqMHTuW8uXL8/HHH2e4/yeffEKFChUYO3YsNWvWpF+/fjz88MO88847eRbj9SZHqhyJiIg3yu3kyF1YmhxdunSJdevW0aFDhzTbO3TowMqVKzN8TFxcXLr9O3bsyNq1a7l8+XKuxpeTDFaVIxER8TXe2qwWYOXBjx8/TlJSEqVLl06zvXTp0hw+fDjDxxw+fDjD/a9cucLx48eda72klpiYmGaNl9OnTwNw8eLFTBfMczwOkpO4rPYDCE6Z+vz48eNp9r18+TIHDhwAoGjRotk+j4iIiKcoUaIEALt37053fzt58iSQPEN2dvc+xzQ458+fz3JfRxEkz5MoY6EDBw4YwKxcuTLN9lGjRpnq1atn+Jhq1aqZ119/Pc22n3/+2QDm0KFDGT5mxIgRBtCPfvSjH/3oRz9e8PPnn3/mTiKSCUsrRyVKlMDf3z9dlejo0aPpqkMOZcqUyXD/gIAAimeyYN3w4cN58sknnb+fOnWKqKgo4uPjCc9mCRFvcubMGcqXL8/+/fspXLiw1eHkG523ztsX6Lx13r7g9OnTVKhQgWLFiuXpcSxNjoKCgoiOjmbx4sXcddddzu2LFy/mjjvuyPAxzZs3Z968eWm2ff/99zRq1CjThe2Cg4OdzV6phYeH+9SbyqFw4cI6bx+i8/YtOm/f4qvnndcTKls+Wu3JJ59k0qRJTJ48mW3btjFs2DDi4+MZNGgQkFz16d27t3P/QYMGsW/fPp588km2bdvG5MmTiY2N5emnn7bqFERERMSLWFo5Arjvvvs4ceIEr7zyCocOHaJ27dosWLDA2QP+0KFDaeY8qlSpEgsWLGDYsGF89NFHlC1blvfff5977rnHqlMQERERL2J5cgQwePBgBg8enOHfpk6dmm5b69atWb9+/TUfLzg4mBEjRmTY1ObNdN46b1+g89Z5+wKdd96et80YN5lUQERERMQNWN7nSERERMSdKDkSERERSUXJkYiIiEgqSo5EREREUvHa5Oi1116jRYsWFChQgCJFirj0GGMML7/8MmXLliU0NJQ2bdqwZcuWNPskJiYydOhQSpQoQVhYGLfffjsJCQl5cAbX5uTJkzz44IOEh4cTHh7Ogw8+yKlTp7J8jM1my/Dn7bffdu7Tpk2bdH/v0aNHHp+N667lvPv27ZvunJo1a5ZmH2+73pcvX+bZZ5+lTp06hIWFUbZsWXr37s3BgwfT7Odu13vcuHFUqlSJkJAQoqOj+emnn7Lc/8cffyQ6OpqQkBAqV67MJ598km6fWbNmUatWLYKDg6lVqxazZ8/Oq/CvWU7O++uvv6Z9+/aULFmSwoUL07x5cxYtWpRmn6lTp2b4Wb948WJen0qO5OS8ly9fnuE5bd++Pc1+3na9M/r+stls3Hjjjc593P16r1ixgm7dulG2bFlsNhtz5szJ9jH59tnO08VJLPTSSy+ZMWPGmCeffNKEh4e79Jg33njDFCpUyMyaNcts3rzZ3HfffSYiIsKcOXPGuc+gQYNMuXLlzOLFi8369etN27ZtTb169cyVK1fy6ExyplOnTqZ27dpm5cqVZuXKlaZ27dqma9euWT7m0KFDaX4mT55sbDZbmrVrWrdubfr3759mv1OnTuX16bjsWs67T58+plOnTmnO6cSJE2n28bbrferUKXPrrbeamTNnmu3bt5u4uDjTtGlTEx0dnWY/d7reM2bMMIGBgWbixIlm69at5vHHHzdhYWFm3759Ge6/e/duU6BAAfP444+brVu3mokTJ5rAwEDzv//9z7nPypUrjb+/v3n99dfNtm3bzOuvv24CAgLMqlWr8uu0spXT83788cfNm2++aVavXm3++OMPM3z4cBMYGGjWr1/v3GfKlCmmcOHC6T7z7iSn571s2TIDmB07dqQ5p9SfUW+83qdOnUpzvvv37zfFihUzI0aMcO7j7td7wYIF5vnnnzezZs0ygJk9e3aW++fnZ9trkyOHKVOmuJQc2e12U6ZMGfPGG284t128eNGEh4ebTz75xBiT/GYMDAw0M2bMcO5z4MAB4+fnZ7777rtcjz2ntm7daoA0b4K4uDgDmO3bt7v8PHfccYdp165dmm2tW7c2jz/+eG6Fmquu9bz79Olj7rjjjkz/7ivXe/Xq1QZI8yXsTte7SZMmZtCgQWm21ahRwzz33HMZ7v/vf//b1KhRI822gQMHmmbNmjl/7969u+nUqVOafTp27Gh69OiRS1Ffv5yed0Zq1aplRo4c6fzd1e9DK+X0vB3J0cmTJzN9Tl+43rNnzzY2m83s3bvXuc0TrreDK8lRfn62vbZZLaf27NnD4cOH6dChg3NbcHAwrVu3ZuXKlQCsW7eOy5cvp9mnbNmy1K5d27mPleLi4ggPD6dp06bObc2aNSM8PNzl+I4cOcL8+fOJiYlJ97cvvviCEiVKcOONN/L0009z9uzZXIv9elzPeS9fvpxSpUpxww030L9/f44ePer8my9cb0heyNFms6VrfnaH633p0iXWrVuX5hoAdOjQIdNzjIuLS7d/x44dWbt2LZcvX85yH3e4rnBt5301u93O2bNn0y3Qee7cOaKiooiMjKRr165s2LAh1+K+Xtdz3g0aNCAiIoJbbrmFZcuWpfmbL1zv2NhYbr31VufqEg7ufL1zKj8/224xQ7Y7OHz4MAClS5dOs7106dLs27fPuU9QUBBFixZNt4/j8VY6fPgwpUqVSre9VKlSLsf36aefUqhQIe6+++4023v16kWlSpUoU6YMv//+O8OHD2fTpk0sXrw4V2K/Htd63rfddhv/+te/iIqKYs+ePbz44ou0a9eOdevWERwc7BPX++LFizz33HP07NkzzeKV7nK9jx8/TlJSUoafy8zO8fDhwxnuf+XKFY4fP05ERESm+7jDdYVrO++r/ec//+H8+fN0797dua1GjRpMnTqVOnXqcObMGd577z1atmzJpk2bqFatWq6ew7W4lvOOiIhgwoQJREdHk5iYyOeff84tt9zC8uXLufnmm4HM3xPecr0PHTrEwoULmTZtWprt7n69cyo/P9selRy9/PLLjBw5Mst91qxZQ6NGja75GDabLc3vxph0267myj7Xw9XzhvTxQ87imzx5Mr169SIkJCTN9v79+zv/v3bt2lSrVo1GjRqxfv16GjZs6NJz51Ren/d9993n/P/atWvTqFEjoqKimD9/frrkMCfPe73y63pfvnyZHj16YLfbGTduXJq/WXG9s5LTz2VG+1+9/Vo+6/ntWmOcPn06L7/8MnPnzk2TQDdr1izNoIOWLVvSsGFDPvjgA95///3cC/w65eS8q1evTvXq1Z2/N2/enP379/POO+84k6OcPqdVrjXGqVOnUqRIEe6888402z3leudEfn22PSo5GjJkSLYjZipWrHhNz12mTBkgOTONiIhwbj969KgzCy1TpgyXLl3i5MmTaaoJR48epUWLFtd0XFe4et6//fYbR44cSfe3Y8eOpcukM/LTTz+xY8cOZs6cme2+DRs2JDAwkJ07d+bZzTK/ztshIiKCqKgodu7cCXj39b58+TLdu3dnz549LF26NE3VKCP5cb0zUqJECfz9/dP9qy/15/JqZcqUyXD/gIAAihcvnuU+OXm/5KVrOW+HmTNnEhMTw1dffcWtt96a5b5+fn40btzY+Z632vWcd2rNmjXjv//9r/N3b77exhgmT57Mgw8+SFBQUJb7utv1zql8/WznqIeSB8pph+w333zTuS0xMTHDDtkzZ8507nPw4EG366D766+/OretWrXK5Q66ffr0STdqKTObN282gPnxxx+vOd7ccr3n7XD8+HETHBxsPv30U2OM917vS5cumTvvvNPceOON5ujRoy4dy8rr3aRJE/PII4+k2VazZs0sO2TXrFkzzbZBgwal67R52223pdmnU6dObtdBNyfnbYwx06ZNMyEhIdl2bHWw2+2mUaNG5qGHHrqeUHPVtZz31e655x7Ttm1b5+/eer2N+adD+ubNm7M9hjtebwdc7JCdX59tr02O9u3bZzZs2GBGjhxpChYsaDZs2GA2bNhgzp4969ynevXq5uuvv3b+/sYbb5jw8HDz9ddfm82bN5v7778/w6H8kZGR5ocffjDr16837dq1c7uh3XXr1jVxcXEmLi7O1KlTJ93Q7qvP2xhjTp8+bQoUKGA+/vjjdM+5a9cuM3LkSLNmzRqzZ88eM3/+fFOjRg3ToEEDjz3vs2fPmqeeesqsXLnS7Nmzxyxbtsw0b97clCtXzquv9+XLl83tt99uIiMjzcaNG9MM701MTDTGuN/1dgxxjo2NNVu3bjVPPPGECQsLc47Kee6558yDDz7o3N8x3HfYsGFm69atJjY2Nt1w319++cX4+/ubN954w2zbts288cYbbju029XznjZtmgkICDAfffRRplMwvPzyy+a7774zf/75p9mwYYN56KGHTEBAQJoE22o5Pe93333XzJ492/zxxx/m999/N88995wBzKxZs5z7eOP1dnjggQdM06ZNM3xOd7/eZ8+edd6bATNmzBizYcMG58hZKz/bXpsc9enTxwDpfpYtW+bcBzBTpkxx/m63282IESNMmTJlTHBwsLn55pvTZeMXLlwwQ4YMMcWKFTOhoaGma9euJj4+Pp/OKnsnTpwwvXr1MoUKFTKFChUyvXr1SjfE9erzNsaY8ePHm9DQ0AznsomPjzc333yzKVasmAkKCjJVqlQxjz32WLo5gayU0/P++++/TYcOHUzJkiVNYGCgqVChgunTp0+6a+lt13vPnj0Zfi5Sfzbc8Xp/9NFHJioqygQFBZmGDRumqWD16dPHtG7dOs3+y5cvNw0aNDBBQUGmYsWKGSb9X331lalevboJDAw0NWrUSHMzdRc5Oe/WrVtneF379Onj3OeJJ54wFSpUMEFBQaZkyZKmQ4cOZuXKlfl4Rq7JyXm/+eabpkqVKiYkJMQULVrU3HTTTWb+/PnpntPbrrcxydXt0NBQM2HChAyfz92vt6Pqldl71srPts2YlN5MIiIiIuK9y4eIiIiIXAslRyIiIiKpKDkSERERSUXJkYiIiEgqSo5EREREUlFyJCIiIpKKkiMRERGRVJQciYiIiKSi5EhEREQkFSVHIiIiIqkoORIRr/LKK69Qp04dwsLCKF26NI888giXL1+2OiwR8SABVgcgIpJbjDEkJSUxfvx4ypUrx9atW+nduzd169blkUcesTo8EfEQWnhWRLxaz549KVmyJO+9957VoYiIh1Czmoh4jX379jFkyBBq165N0aJFKViwIF9++SWRkZFWhyYiHkTJkYh4hePHj9OkSROOHz/OmDFj+Pnnn4mLi8Pf35/69etbHZ6IeBD1ORIRr7BgwQKuXLnC9OnTsdlsAHz00UdcunRJyZGI5IiSIxHxCsWKFePMmTN888031KpVi3nz5jF69GjKlStHyZIlrQ5PRDyIOmSLiFcwxvDII48wbdo0QkNDeeCBB7h48SL79u3j22+/tTo8EfEgSo5EREREUlGHbBEREZFUlByJiIiIpKLkSERERCQVJUciIiIiqSg5EhEREUlFyZGIiIhIKkqORERERFJRciQiIiKSipIjERERkVSUHImIiIikouRIREREJBUlRyIiIiKp/D846N3rZe6ooAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5NElEQVR4nO3dd3hU1dbH8e+khwCRTiAQQJAiPXREivRiv4iggIYuFixXeS2Iol7LRWz0ADaKXgSkiUgTJUhHpAlSQqiCdIFAZr9/JDMmpDCBJGfK7/M880BOzsysM2dmzsrea+9tM8YYRERERAQAP6sDEBEREXEnSo5EREREUlFyJCIiIpKKkiMRERGRVJQciYiIiKSi5EhEREQkFSVHIiIiIqkoORIRERFJRcmRiIiISCpKjsQjHDp0iFdffZVNmzal+13v3r3Jnz//dT92YmIiAwYMICIiAn9/f2rXrn39geaA0aNHM2XKlHTb9+3bh81my/B33sRms/Hqq69aHUaOePXVV7HZbLl+348++oiKFSsSFBSEzWbj1KlT9O7dm3LlyqXZ780332T27NnXFU9W/vrrL7p160bx4sWx2Wzcfffd2X6McuXK0bt37xyPzZ398MMP2Gw2bDYbx48fT/O7rVu3MmjQIBo3bkxYWBg2m43ly5dbE6gPUnIkHuHQoUMMHz48w+ToRo0ZM4Zx48bx4osv8tNPP/H555/n+HNkR2bJUUREBHFxcXTq1Cnvg5Lr0qdPH+Li4nL1OTZt2sQTTzxBy5YtWbp0KXFxcRQoUICXX36ZWbNmpdk3t5Kj119/nVmzZvH+++8TFxfHO++8k+PP4W3OnTtH3759KVWqVIa/X7duHbNnz6Zw4cLccccdeRydBFgdgIjVfvvtN0JDQxk8eLDVoWQpODiYRo0aWR2GZENkZCSRkZG5+hxbt24FoG/fvjRo0MC5/eabb87V503tt99+4+abb6ZHjx559pw55e+//yZfvnx5/rwvvPAChQoVolOnTowYMSLd7x9++GF69eoFwP/+9z/mzp2b1yH6NLUc+aA///yTfv36UaZMGYKDgylWrBhNmzblhx9+cO7TokULqlevTlxcHE2aNCE0NJRy5coxefJkAObPn0/dunXJly8fNWrU4Lvvvkv3PD/99BN33HEHBQoUIF++fDRp0oT58+en2++3337jrrvuolChQoSEhFC7dm0+/fRT5++XL19O/fr1AXjkkUeczdBXd73s3r2bjh07kj9/fsqUKcMzzzzDpUuXsnwtbDYbEydO5MKFC87HnTJlSpZdWFc/t6P7Y+vWrTz44IOEh4dTokQJHn30UU6fPp3mvna7nY8++ojatWsTGhrKTTfdRKNGjfj222+B5K6FrVu3smLFCmc8jq6RzGJy5XWeMmUKNpuNZcuWMXDgQIoWLUqRIkW49957OXToUJavUVbKlStH586dmTVrFjVr1iQkJIQKFSrw4Ycfpts3Pj6ehx56iOLFixMcHEzVqlX573//i91uz/Tx9+3bR0BAAG+99Va63/3444/YbDa+/vprIHvn4eLFiwwdOpTy5csTFBRE6dKleeyxxzh16lSGxzdv3jzq1KlDaGgoVatWZd68eUDy61q1alXCwsJo0KAB69atS3P/jLrGZsyYQdu2bYmIiHA+3gsvvMD58+czf6Ez0aJFCx566CEAGjZsiM1mc3ZNXd2tZrPZOH/+PJ9++qnzvdWiRYssH/+vv/5i0KBBlC5dmqCgICpUqMCLL77o/Fw53pM//PAD27dvdz5uVt0/ly9f5t///jclS5YkX7583HbbbaxZsybDfY8cOUL//v2JjIwkKCiI8uXLM3z4cK5cuZJmv4SEBO6//34KFCjATTfdRI8ePVi7dm26z4ujC37Lli20bduWAgUKOFtlEhMTGTFiBFWqVHF+Lz7yyCP8+eef6eKaMWOGs7srf/78tGvXjo0bN2b5Wqa2cuVKxo8fz8SJE/H3989wHz8/XZ4tZcTntGvXzhQrVsyMHz/eLF++3MyePdu88sorZvr06c59mjdvbooUKWIqV65sYmNjzaJFi0znzp0NYIYPH25q1Khhpk2bZhYsWGAaNWpkgoODzcGDB533X758uQkMDDTR0dFmxowZZvbs2aZt27bGZrOleZ4dO3aYAgUKmJtvvtl89tlnZv78+ebBBx80gHn77beNMcacPn3aTJ482QDmpZdeMnFxcSYuLs4cOHDAGGNMr169TFBQkKlatap57733zA8//GBeeeUVY7PZzPDhw7N8LeLi4kzHjh1NaGio83GPHTtm9u7dawAzefLkdPcBzLBhw5w/Dxs2zACmcuXK5pVXXjGLFy82I0eONMHBweaRRx5Jc9+HH37Y2Gw206dPHzNnzhyzcOFC88Ybb5gPPvjAGGPMhg0bTIUKFUydOnWc8WzYsMEYYzKMydXX2fH6VahQwTz++ONm0aJFZuLEiaZQoUKmZcuWaWJ07JvRsV8tKirKlC5d2pQtW9ZMmjTJLFiwwPTo0cMA5t1333Xud+zYMVO6dGlTrFgxM3bsWPPdd9+ZwYMHG8AMHDgwy9f3nnvuMWXLljVXrlxJs9+//vUvU6pUKXP58uVsnQe73W7atWtnAgICzMsvv2y+//57895775mwsDBTp04dc/HixTTHFxkZaapXr+58vzds2NAEBgaaV155xTRt2tR88803ZtasWeaWW24xJUqUMH///bfz/o6YUnv99dfN+++/b+bPn2+WL19uxo4da8qXL5/uPGR036tt3brVvPTSS87zFRcXZ3bv3m2MSf5cREVFOfeNi4szoaGhpmPHjs731tatWzN97AsXLpiaNWuasLAw895775nvv//evPzyyyYgIMB07NjRGGPMxYsXTVxcnKlTp46pUKGC83FPnz6d6eP26tXL2Gw289xzz5nvv//ejBw50pQuXdoULFjQ9OrVy7nf4cOHTZkyZUxUVJQZN26c+eGHH8zrr79ugoODTe/evZ37nTt3zlSsWNEULlzYfPLJJ2bRokVmyJAhpnz58unex7169TKBgYGmXLly5q233jJLliwxixYtMklJSaZ9+/YmLCzMDB8+3CxevNhMnDjRlC5d2lSrVi3NOX3jjTeMzWYzjz76qJk3b5755ptvTOPGjU1YWFiWr6fD33//bSpVqmSee+45Y8w/5/nPP//M9D5ff/21AcyyZcuu+fiSM5Qc+aD8+fObp556Kst9mjdvbgCzbt0657YTJ04Yf39/ExoamiYR2rRpkwHMhx9+6NzWqFEjU7x4cXP27FnntitXrpjq1aubyMhIY7fbjTHGdOvWzQQHB5v4+Pg0z9+hQweTL18+c+rUKWOMMWvXrs30gt2rVy8DmK+++irN9o4dO5rKlStf49VIvn9YWFiabdeTHL3zzjtp9hs0aJAJCQlxHuuPP/5oAPPiiy9mGc+tt95qmjdvnm57RjG5+jo7Ep5Bgwalecx33nnHAObw4cPObZ9++qnx9/c3n376aZZxGpOcPNhsNrNp06Y029u0aWMKFixozp8/b4wx5oUXXjCA+eWXX9LsN3DgQGOz2czOnTud265+fZctW2YAM2vWLOe2gwcPmoCAgDTJr6vn4bvvvstwvxkzZhjAjB8/Ps3xhYaGmoSEBOc2x/s9IiLCeXzGGDN79mwDmG+//TZdTJmx2+3m8uXLZsWKFQYwmzdvdvm+Do5zu3bt2jTbr06OjDEmLCwsTQKSlbFjx2b4uXr77bcNYL7//nvntubNm5tbb731mo+5fft2A5ghQ4ak2f7ll18aIE1s/fv3N/nz5zf79+9Ps+97771nAGci8sknnxjALFy4MM1+/fv3zzA5AsykSZPS7Dtt2jQDmJkzZ6bZ7vjeGT16tDHGmPj4eBMQEGAef/zxNPudPXvWlCxZ0nTt2vWar8EzzzxjKlSo4Ey4lBy5J7Xb+aAGDRowZcoURowYwerVq7l8+XKG+0VERBAdHe38uXDhwhQvXpzatWunKSKsWrUqAPv37wfg/Pnz/PLLL9x///1pRpH5+/vz8MMPk5CQwM6dOwFYunQpd9xxB2XKlEnz3L179+bvv/92uZjVZrPRpUuXNNtq1qzpjCkv3Hnnneme/+LFixw7dgyAhQsXAvDYY4/lyPNl53XOKkYgzevUs2dPrly5Qs+ePV2K49Zbb6VWrVpptnXv3p0zZ86wYcMGIPk8V6tWLU1NDCSfZ2MMS5cuzfTxW7RoQa1atfjkk0+c28aOHYvNZqNfv37p9r/WeXA819Ujo/71r38RFhbGkiVL0myvXbs2pUuXdv7seL+3aNEiTa3K1Z+DzOzZs4fu3btTsmRJ/P39CQwMpHnz5gBs3749y/vmpaVLlxIWFsb999+fZrvjdbv6dXLFsmXLANLVJnXt2pWAgLQlsPPmzaNly5aUKlWKK1euOG8dOnQAYMWKFc5/CxQoQPv27dPc/8EHH8w0jvvuuy/dc91000106dIlzXPVrl2bkiVLOrsJFy1a5PxspN4vJCSE5s2bX3M02Zo1axg1ahTjxo0jNDQ0y33FWirI9kEzZsxgxIgRTJw4kZdffpn8+fNzzz338M4771CyZEnnfoULF05336CgoHTbg4KCgOQ6DoCTJ09ijCEiIiLd/R1J1YkTJ5z/urLfteTLl4+QkJA024KDg50x5YUiRYqke36ACxcuAMm1Xv7+/mle4xuRndfZ1RivR0bH49iW+jxfPaw8qziv9sQTT9CnTx927txJhQoVmDBhAvfff3+Gz32tYzxx4gQBAQEUK1YszX42m42SJUumiyWz9/u1PgcZOXfuHM2aNSMkJIQRI0Zwyy23kC9fPg4cOMC99957Q+chp504cYKSJUumq5kqXrw4AQEBLn82r35MSP+eCQgISHfejh49yty5cwkMDMzwsRxD30+cOEGJEiXS/T6jbZD8XVGwYMF0z3Xq1CnnOczsuY4ePQrgrIG82rXqhB599FHuvfde6tWr56xvc7xfzpw5Q3BwMAUKFMjyMSRvKDnyQUWLFmXUqFGMGjWK+Ph4vv32W1544QWOHTuWYWF1dhUqVAg/Pz8OHz6c7neO4t+iRYsCyRcyV/bLa45E6+qC7uu5IDgUK1aMpKQkjhw5kmFCk13ZeZ1z05EjRzLd5rjg3eh57t69O88//zyffPIJjRo14siRI9fdAlekSBGuXLnCn3/+mSZBMsZw5MiRTC98OWHp0qUcOnSI5cuXO1uLgHSF4O6gSJEi/PLLLxhj0iRIx44d48qVK9f13nK8H44cOZKmNe7KlSvpPltFixalZs2avPHGGxk+liOxLlKkSIYF3Rm9L4EM545yDFDI7PvPkbA4jvl///sfUVFRGe6bla1bt7J161bnIILUbr75ZmrVqpUr05VI9qlbzceVLVuWwYMH06ZNG2cXyI0KCwujYcOGfPPNN2n+Erbb7XzxxRdERkZyyy23AHDHHXc4LxipffbZZ+TLl885dD0nWjiyo0SJEoSEhPDrr7+m2T5nzpzrfkxHd8CYMWOy3C84ONil48zO65ybtm7dyubNm9Nsmzp1KgUKFKBu3bpA8nnetm1buvfYZ599hs1mo2XLllk+R0hICP369ePTTz9l5MiR1K5dm6ZNm15XvI7RSV988UWa7TNnzuT8+fO5OqeM48LseD87jBs3LteeMzVX31uQ/DqdO3cu3bxIn332mfP32eUYHffll1+m2f7VV1+lG4HWuXNn5xQB9erVS3dzJEfNmzfn7Nmzzm5rh+nTp7scV+fOnTlx4gRJSUkZPlflypUBaNeuHQEBAfzxxx8Z7levXr0sn2fZsmXpbo7h+rNnz2bixIkuxyy5Sy1HPub06dO0bNmS7t27U6VKFQoUKMDatWv57rvvuPfee3Psed566y3atGlDy5YtefbZZwkKCmL06NH89ttvTJs2zXmRGDZsmLO24JVXXqFw4cJ8+eWXzJ8/n3feeYfw8HAg+a+q0NBQvvzyS6pWrUr+/PkpVapUphOo3SibzcZDDz3EpEmTnH/RrVmzhqlTp173YzZr1oyHH36YESNGcPToUTp37kxwcDAbN24kX758PP744wDUqFGD6dOnM2PGDCpUqEBISAg1atTI8DFdfZ2z47PPPuPRRx9l0qRJLtUdlSpVijvvvJNXX32ViIgIvvjiCxYvXszbb7/trMkZMmQIn332GZ06deK1114jKiqK+fPnM3r0aAYOHOhSEjdo0CDeeecd1q9ff0MXkTZt2tCuXTuef/55zpw5Q9OmTfn1118ZNmwYderU4eGHH77ux76WJk2aUKhQIQYMGMCwYcMIDAzkyy+/TJdc5pYaNWqwfPly5s6dS0REBAUKFHBe+K/Ws2dPPvnkE3r16sW+ffuoUaMGP/30E2+++SYdO3akdevW2X7+qlWr8tBDDzFq1CgCAwNp3bo1v/32G++99166rq7XXnuNxYsX06RJE5544gkqV67MxYsX2bdvHwsWLGDs2LFERkbSq1cv3n//fR566CFGjBhBxYoVWbhwIYsWLQJcGxLfrVs3vvzySzp27MiTTz5JgwYNCAwMJCEhgWXLlnHXXXdxzz33UK5cOV577TVefPFF9uzZQ/v27SlUqBBHjx5lzZo1hIWFMXz48EyfJ6OpExx1Sk2bNk3TGvf333+zYMECAFavXg0k11cdP36csLAw5x9bkkssLQeXPHfx4kUzYMAAU7NmTVOwYEETGhpqKleubIYNG5Zm5E1mo0+ioqJMp06d0m0HzGOPPZZm28qVK02rVq1MWFiYCQ0NNY0aNTJz585Nd98tW7aYLl26mPDwcBMUFGRq1aqV4SixadOmmSpVqpjAwMA0I5oyGm1mjOujfTK7/+nTp02fPn1MiRIlTFhYmOnSpYvZt29fpqPVrh5t4hhFtHfvXue2pKQk8/7775vq1auboKAgEx4ebho3bpzmddm3b59p27atKVCggAGcI44yG0Hnyuuc2Ygmx0iw1KNgsjuUv1OnTuZ///ufufXWW01QUJApV66cGTlyZLp99+/fb7p3726KFCliAgMDTeXKlc27775rkpKS0ux39eubWosWLUzhwoXTDK12yM55uHDhgnn++edNVFSUCQwMNBEREWbgwIHm5MmTGR7f1TJ6vzvOT+opDDJ6D65atco0btzY5MuXzxQrVsz06dPHbNiwId1rnhuj1TZt2mSaNm1q8uXLZ4AMR0WmduLECTNgwAATERFhAgICTFRUlBk6dGia6Q6McX20mjHGXLp0yTzzzDOmePHiJiQkxDRq1MjExcWZqKiodCPp/vzzT/PEE0+Y8uXLm8DAQFO4cGETHR1tXnzxRXPu3DnnfvHx8ebee+81+fPnNwUKFDD33XefWbBggQHMnDlz0rwmGX3WjTHm8uXL5r333jO1atUyISEhJn/+/KZKlSqmf//+ZteuXWn2nT17tmnZsqUpWLCgCQ4ONlFRUeb+++83P/zwg0uvQWqZvW8d76eMblefV8l5NmOMyZMsTES8Trly5ahevbpzUsTcdOzYMaKionj88ce1PIVc05tvvslLL71EfHx8rs9SLt5H3Woi4tYSEhLYs2cP7777Ln5+fjz55JNWhyRu5uOPPwagSpUqXL58maVLl/Lhhx/y0EMPKTGS66LkSETc2sSJE3nttdcoV64cX375ZZpRTiKQPDz//fffZ9++fVy6dImyZcvy/PPP89JLL1kdmngodauJiIiIpGL5UP4ff/yRLl26UKpUKWw2W7phoxlZsWIF0dHRzkUux44dm/uBioiIiE+wPDk6f/48tWrVcvYZX8vevXvp2LEjzZo1Y+PGjfzf//0fTzzxBDNnzszlSEVERMQXuFW3ms1mY9asWdx9992Z7vP888/z7bffplmDaMCAAWzevNnldbhEREREMuNxBdlxcXG0bds2zbZ27doRGxvL5cuXM1yH59KlS2mWgbDb7fz1118UKVLkuibJExERkbxnjOHs2bOUKlXKpQk+r5fHJUdHjhxJt6BgiRIluHLlCsePH89wzaq33nory1lLRURExHMcOHAgV6dp8LjkCNIvHOjoGcysFWjo0KE8/fTTzp9Pnz5N2bJlOXDgQLop6682b948evToQf369fnhhx/48ssvGTRoEK1bt1adk4jVDh7kQFwcHV5+mQOHDlGgQAEee+wxKleuzKpVq5g0aRJJSUk0iY7mm6FDCa1WDTQVgIilKleuzJEjR1ixYgW1a9cmIiKCv//+m02bNlG+fPks73vmzBnKlCnjXAw4t3hcclSyZMl0qy0fO3aMgIAA54rPVwsODk630CNAwYIFr5kchYaGAhAYGEjBggXJnz8/kLxez7XuKyK5KDaWC3378rAxHAAqFi/O4l9+oVy5cgD07t2bnj170qltW1atX8/T99/PFzYbtgkTICbG0tBFfJmjQSM8PJyCBQs6u8fy58/v8nU1t0tiLB+tll2NGzdm8eLFabZ9//331KtXL8N6oxvlOImOk+fv7w9AUlJSjj+XiLgoIQH69WOYMWwEigI/HD9OuYC0f+/dVq4ccy5exB+YCnxhDPTvn3x/EbGE4/rpuJ46Eh03Gh9mfXJ07tw5Nm3axKZNm4DkofqbNm0iPj4eSO4SS70y+IABA9i/fz9PP/0027dvZ9KkScTGxvLss8/mSnx2ux345+QpORJxA7t2sdFuZ2TKj5OBKLsddu9Ot18LY3BUHD4NnEpKSr+fiOQZJUcuWLduHXXq1KFOnToAPP3009SpU4dXXnkFgMOHDzsTJYDy5cuzYMECli9fTu3atXn99df58MMPue+++3IlvqvrmZQciVjPVKzIICAJ6Ap0BvD3h4oV0+5YqRL4+fFvoCpwHBhus6XfT0TyjKPRwXE9dfTMOLa7A8trjlq0aJFltjhlypR025o3b86GDRtyMap/KDkScT8Lt2xhNRAKjILkxGjcOLh69EpkJIwfT2D//nyQlERb4GM/PwZfusTNeR20iABqOfIKqjkScS/GGIYNGwbAY/37E7FsGezbl3mRdUwM7NtHm2XLaN+iBVeSknj33XfzLmARScNx/XRcV5UceSDVHIm4l0WLFrFu3Try5cvHc6+9Bi1apG8xulpkJLRowdCU+c4mT57M4cOHcz9YEUlHLUdeQN1qIu7lo48+AqBfv34UL148W/dt1qwZTZo0ITExkQ8++CA3whORa1By5AWUHIm4j927d7Nw4UJsNhuPPfZYtu9vs9l47rnnAIiNjU2zrJCI5I2rkyN3LMhWcnQNqjkScR9jxozBGEP79u2peJ0jzjp37kzp0qU5fvw4s2fPztkARSRLqVuH1HLkwVRzJOIeEhMT+fTTTwGuq9XIISAggJiU4u3x48fnSGwi4prU104lRx5M3Woi7mHRokWcOHGCkiVL0q5duxt6rJiYGPz8/Fi6dCl79uzJoQhF5FpSXzs1Ws2DKTkScQ9ffvklAN26dSMg4MamaCtbtix33HEHANOmTbvh2ETENWo58hKqORKx3pkzZ5gzZw4ADz30UI48Zvfu3QGYOnWqW30pi3izjJIjFWR7INUciVjvm2++4eLFi1SpUoW6devmyGPec889BAcHs23bNrZs2ZIjjykiWVPLkZdQt5qI9aZOnQpAjx49nJ/FGxUeHk6nTp3SPL6I5K7UrUNKjjxYZsmROzX/iXizkydPsnTpUgAeeOCBHH1sx+NpSL9I3lDLkZe4uubI8a9ajkTyxoIFC0hKSuLWW2+lUqVKOfrY7du3JzAwkJ07d7Jjx44cfWwRSS/1tdORFCk58kCqORKxlqMQ+6677srxxy5YsCCtWrVK8zwiknuunh0bVJDtkVRzJGKdS5cusXDhQiB3kqPUj6vkSCT3ZZQcqeXIAyk5ErHOsmXLOHfuHBEREdSrVy9XnuPOO+8EYPXq1Rw9ejRXnkNEkjlah5QceTjNcyRiHUdrzp133un8DOa00qVLU69ePYwxzJ07N1eeQ0SSqeXIS6jmSMQaxhgWLFgA/NO6k1scXWvz5s3L1ecR8XVZJUeqOfIg6lYTscbvv/9OfHw8QUFBtGjRIlefq3379gAsXbqUy5cv5+pzifiyrAqy1XLkQTLrVrPb7W51IkW8zffffw9As2bNyJcvX64+V926dSlSpAhnz55l9erVufpcIr7MkRyl7iZXt5oHyqxbLfXvRCTnOZKjtm3b5vpz+fn50aZNGwAWLVqU688n4qtUc+QlMutWA3WtieSWxMREli1bBuRNcgTQrl074J+kTERynkareQklRyJ5L27OHM6fP0/xokWpWbNmnjynIwlbt24dx2fPhoSEPHleEV+igmwvkVnNESg5EskVsbF837UrAK2PH8dv8uQ8edpSpUpRo3RpjDH8cM89EBUFsbF58twivkIF2V4iq5ojJUciOSwhAfr1w9Gx1Ragf/+8acVJSKDtwYMALAaw2/PuuUV8hGqOvIS61UTy0K5dnLDbWZ/yYxuApCTYvTtPnvuOlP8ud2zLq+cW8REareYllByJ5KFKlVhms2GAW4FSAP7+ULFinjx3U5sNf2APEJ+Xzy3iI9Ry5CWurjmy2WzOE6nkSCSHRUayomVLAFpCcnIybhxERubJcxecMIHolB9X2Gx599wiPiKr0WoqyPYgV9ccgWbJFslNK/78E4Dmr74K+/ZBTEzePXlMDC0GDgRgedeuefvcIj5ABdle4upuNUg7S7aI5JwTJ06wZcsWAG4fONCSVpsWXboAsHzt2jx/bhFvp241L5FRcuTIctVyJJKzVq5cCUDVqlUpXry4JTE0bdoUf39/9uzZQ3x8vCUxiHgrJUde4uqaI1C3mkhuWbFiBQDNmze3LIaCBQsSHR2dJh4RyRkareYlVHMkknfcITkCaNGiBQDLly+3NA4Rb6OCbC+RVc2RkiORnHPq1Ck2bdoEKDkS8VYqyPYSSo5E8sZPP/2EMYZKlSoRERFhaSy33Xabs+4oQTNki+QY1Rx5CdUcieQNd+lSAyhQoAC1atUC4Oeff7Y4GhHvoeTIS6jmSCRvOEaq3X777RZHkqxJkyYArFq1yuJIRLxHVsmRao48iLrVRHLfxYsX2bBhA5DcpeUOmjZtCqjlSCQnabSal1ByJJL71q9fz+XLlylZsiTlypWzOhzgn+Ro06ZNnDt3zuJoRLxDRqPVVJDtgVRzJJL7HF1XjRs3TvOHiJXKlClDmTJlSEpKYs2aNVaHI+IVVHPkJVRzJJL7HMmRo87HXThaj1R3JJIzlBx5CXWrieQuYwxxcXGA+yVHjnhUdySSM1SQ7SWUHInkrr1793L06FECAwOpW7eu1eGk4Wg5iouLc6svbhFPpZYjL+H4QlTNkUjucHRZRUdHExISYnE0adWsWZOwsDBOnz7Ntm3brA5HxONphmwvoZYjkdzlrl1qAAEBATRq1AhQ15pITsiowUEtRx5IyZFI7ko9Us0dab4jkZyjbjUvoaH8Irnn7Nmz/Prrr4B7thyBirJFcpIKsr2EhvKL5J61a9dit9uJioqiVKlSVoeToUaNGmGz2dizZw9Hjx61OhwRj6aWIy+RVbeaO2W5Ip7I3bvUAMLDw6lWrRqAJoMUuUEqyPYSGSVHjhOpliORG+Oukz9erUGDBgD88ssvFkci4tkyWj5ELUceSDVHIrnDbrezevVqwP2To4YNGwJKjkRulBae9RKqORLJHTt37uTkyZOEhoZSs2ZNq8PJkiM5WrNmjbrTRW6ACrK9hIbyi+QORytMvXr1CAwMtDiarFWvXp18+fJx5swZdu7caXU4Ih5LBdleQsmRSO5wFDc7WmXcWUBAANHR0YC61kRuhAqyvYRqjkRyx9q1awGoX7++xZG4RnVHIjdOLUdeQjVHIjnv4sWLbN68GfhnJJi7U3IkcuNUc+Ql1K0mkvM2b97M5cuXKVasGFFRUVaH4xJHEvfrr7/y999/WxyNiGdSy5GXUHIkkvMc9UYNGjRI89lyZ2XKlKFkyZIkJSWxceNGq8MR8UhKjryEao5Ecp6n1RtB8he4utZEbowKsr2Eao5Ecl7qliNPouRI5MY4rqmaBNLDqVtNJGedOnXKOVeQJ7UcgZIjkRulgmwvoeRIJGetW7cOgAoVKlC0aFGLo8meevXqYbPZ2L9/P0ePHrU6HBGPo5ojL6GaI5Gc5ehS87RWI4CCBQtSrVo1QK1HItdDyVE2jB49mvLlyxMSEkJ0dDQrV67Mcv8vv/ySWrVqkS9fPiIiInjkkUc4ceJErsSmmiORnOUoxva0eiMHR9xKjkSyTwXZLpoxYwZPPfUUL774Ihs3bqRZs2Z06NCB+Pj4DPf/6aef6NmzJzExMWzdupWvv/6atWvX0qdPn1yJT91qIjnLU4uxHVR3JHL91HLkopEjRxITE0OfPn2oWrUqo0aNokyZMowZMybD/VevXk25cuV44oknKF++PLfddhv9+/d31jHkNCVHIjnn4MGDHDp0CH9/f+rUqWN1ONfFkRytXbvWrQpIRTyBCrJdkJiYyPr162nbtm2a7W3btmXVqlUZ3qdJkyYkJCSwYMECjDEcPXqU//3vf3Tq1CnT57l06RJnzpxJc3NVVjVH7nQiRTzBmgULAKheuTJhYWEWR3N9qlevTmhoKGfOnGHnZ59BQoLVIYl4DLUcueD48eMkJSVRokSJNNtLlCjBkSNHMrxPkyZN+PLLL3nggQcICgqiZMmS3HTTTXz00UeZPs9bb71FeHi481amTBmXY8yo5siRKKnlSCQbYmNZ268fAPW3bYPYWIsDuj4BAQFER0YCsPaRRyAqymOPRSSvKTnKhquXDzDGZLqkwLZt23jiiSd45ZVXWL9+Pd999x179+5lwIABmT7+0KFDOX36tPN24MABl2NTt5pIDkhIgH79WJPyYwOA/v09s9UlIYEGu3YBJB+P3e65xyKSxzylIDvAyicvWrQo/v7+6VqJjh07lq41yeGtt96iadOmPPfccwDUrFmTsLAwmjVrxogRI4iIiEh3n+DgYIKDg68rRg3lF8kBu3Zht9tZm/JjA4CkJNi9G1JaYTzGrl04SskdyZ7HHotIHlPLkQuCgoKIjo5m8eLFabYvXryYJk2aZHifv//+O02iAv+8yLnxwmoov0gOqFSJ3202zgChwK0A/v5QsaK1cV2PSpWon/J9sAm4BJ57LCJ5LKvlQ9ypjtfybrWnn36aiRMnMmnSJLZv386QIUOIj493dpMNHTqUnj17Ovfv0qUL33zzDWPGjGHPnj38/PPPPPHEEzRo0IBSpUrleHzqVhPJAZGRrH30UQDqAgH+/jBunGe2tERGUn78eIoAl4HNfn6eeywiecxTWo4s7VYDeOCBBzhx4gSvvfYahw8fpnr16ixYsICoqCgADh8+nGbOo969e3P27Fk+/vhjnnnmGW666SZatWrF22+/nSvxKTkSyRlrQkMBaHD//fD++x6dTNj69KHB1KksXLaMNcOH0yAmxuqQRDyCkqNsGDRoEIMGDcrwd1OmTEm37fHHH+fxxx/P5aiSqeZIJGc4J3+87z6PTowcGtx+OwuXLWNtSnG2iFybpxRkW96t5u5UcyRy4y5dusSmTZsAz50Z+2qO43AkfSJybZoE0kuoW03kxv36668kJiZSpEgRypcvb3U4OcKxcO6OHTs4ffq0xdGIeAZP6VZTcnQNSo5Ebpxjsdn69etnOoeZpylWrBjlypUDyLXli0S8jZIjL6HkSOTGefpis5lR15pI9ig58hJKjkRunJIjEQElR15DyZHIjTlz5gw7duwA/qnT8RaO5MjRbSgiWVNy5CWUHIncmPXr12OMISoqiuLFi1sdTo6qW7cufn5+HDx4kIMHD1odjojbU3LkJZQcidwYR5eTt7UaAYSFhVG9enVArUcirshq+RB3ouTIRUqORK5P6pFq3shxXKo7Erm2jFqOHNRy5EEyOllKjkRc5+3JkYqyRVynbjUvoW41ket37Ngx4uPjsdlsREdHWx1OrkhdlO1OM/yKuCMlR14io+TI0VeqL0KRrDlajapUqULBggUtjiZ33HrrrYSGhnLmzBl2aZ01kSwpOfISajkSuX7e3qUGEBgYSN26dQF1rYlci5IjL6HkSOT6+UJyBKo7EnFVVsmRO1Fy5CIlRyLZY4zx6mH8qWnEmohrNFrNS2i0msj12b9/P8ePHycgIIBatWpZHU6ucrQcbdq0icTERIujEXFf6lbzEupWE7k+ji61WrVqERISYnE0uatChQoULlyYxMREfv31V6vDEXFbSo68hJIjkevjK/VGkPz9oLojkWtTcuQllByJXB9fSo5ARdkirnBMgaPkyMMpORLJPrvdzvr16wElRyKSzBiT5dpqSo48kJIjEdft3LmTs2fPki9fPqpWrWp1OHnCkQTu2LGD06dPWxyNiPtJPXGyhvJ7OI1WE8k+R5da3bp1CQgIsDiavFG8eHGioqIwxjhbzUTkH6mvmRrK7+HUrSaSfb4yv9HVUq+zJiJpZZYcqVvNAyk5Esk+R3LgSBZ8heqORDKn5MiLKDkSyZ7ExEQ2bdoE+G7LkZIjkfSUHHkRJUci2bNlyxYSExMpXLgwFSpUsDqcPFW3bl38/PxISEjg0KFDVocj4laUHHkRJUci2ePoUqtXr55bjkLJTfnz56datWqA6o5Ernat5MidKDlykZIjEdf42uSPV1PXmkjGHNdMm82WYUKkliMPoqH8Itmj5Egj1kQyktHSIaBuNY+UVbda6gmtRATOnz/P1q1bAd8bqeaQOjnSd4TIP5QceZGMkiPHtOdqORJJa8OGDdjtdkqXLk1ERITV4ViievXqhISEcOrUKXbv3m11OCJuI6OlQ0DJkUdSQbaI63y9Sw0gMDCQunXrAqo7EklNLUde5Frdau50MkWspuQomeP4lRyJ/ONayZE7UXLkooySI1DdkUhqSo6SacSaSHqZJUcO7tTYoOToGrIarQbqWhNx+Ouvv/jjjz+A5DmOfJkjOdq0aROJiYkWRyPiHtSt5kWy6lYDJUciDuvWrQOgYsWKFCpUyOJorHXzzTdTqFAhLl26xJYtW6wOR8QtKDnyIkqORFzjq4vNZsRms6lrTeQqSo68iJIjEdc4kgBfrzdyUHIkkpaSIy+i5Ejk2owx/PLLLwA0bNjQ4mjcg0asiaSl0WpeSMmRSOb279/P0aNHCQwMpE6dOlaH4xYcydH27ds5e/asxdGIWE+j1bxIRicr9aJ5So5EcLYa1a5dm5CQEIujcQ8lS5akbNmyGGNYv3691eGIWE7dal4ko2410CzZIqmtXrwYgIa33mpxJO7FWXc0bRokJFgcjYi1tHyIF1FyJHINsbH8EhsLQKNPP4WU/ws4xu2tGT8eoqL02ohPU8uRF1FyJJKFhAQS+/ZlQ8qPDY2B/v3VSgKQkECDmTMBWANgt+u1EZ+m5MiLKDkSycKuXWw2hktAEeBmgKQk0Gr0sGsX0cbgBxwADoNeG/FpSo68kJIjkQxUqsTqlM9GQ8AG4O8PFStaGZV7qFSJ/H5+VE35cS3otRGfpqH8XiSzTFbJkQgQGckvKUXHDSH54j9uHERGWhqWW4iMhPHjaZDyxb/WZtNrIz5NQ/m9iLrVRLK2+vhxABq98w7s2wcxMdYG5E5iYmjwxhsArGnWTK+N+DR1q3mRzJIjx1BEx9BEEV90/Phx/vjjDwAa9O2rVpEMNGjXDoA1v/7qVl/+InlNyZEXUcuRSOYckz9WrlyZm266ydpg3FSNGjUIDg7m1KlT7FYxtvgwJUdeRMmRSOYcyVGjRo0sjsR9BQYGUrduXUDrrIlvU3LkhZQciaS3evVqQIvNXosWoRXRaDWvotFqIhmz2+3Oi71ajrLmWEZk7dq1FkciYh1Hja5Gq3kBdauJZOz333/n9OnThIaGUqNGDavDcWuO5GjDhg1cvnzZ4mhErOG4XmptNS+g5EgkY44utejoaAICAiyOxr1VrFiRm266iUuXLrFlyxarwxGxhGqOvIiSI5GMqRjbdTabzdl6pLoj8VVKjryIkiORjKkYO3uUHImvU3LkRZQciaR3/vx5Z/eQWo5coxFr4us0Ws0LKTkS+cfatWtJSkqiVKlSRGpWbJc4Wti2bdvGqVOnrA1GxAJaW82LaCi/SHo///wzAE2bNrU4Es9RokQJbr75ZowxznotEV+ibjUvom41kfRWrVoFKDnKriZNmgD/JJcivkTJkRdRciSSlt1uV3J0nRyvl5Ij8UVKjryIkiORtLZv386pU6fIly8ftWrVsjocj+JIjn755ReuXLlicTQieUvJUTaNHj2a8uXLExISQnR0NCtXrsxy/0uXLvHiiy8SFRVFcHAwN998M5MmTcqV2JQciaTlaDVq0KABgYGBFkfjWapVq0Z4eDjnz5/n119/tTockTyl0WrZMGPGDJ566ilefPFFNm7cSLNmzejQoQPx8fGZ3qdr164sWbKE2NhYdu7cybRp06hSpUquxqnkSCSZirGvn5+fH40bNwbUtSa+x7G22tXLhzio5SiVkSNHEhMTQ58+fahatSqjRo2iTJkyjBkzJsP9v/vuO1asWMGCBQto3bo15cqVo0GDBs5Cx5ym0WoiaTlajnLrM+ftHEml43UU8RXqVnNRYmIi69evp23btmm2t23bNtMvjm+//ZZ69erxzjvvULp0aW655RaeffZZLly4kOnzXLp0iTNnzqS5uSqzbjVH5uvIhEV8wbFjx9i1axeAswVEskcj1sRXeVJyZOlqkcePHycpKYkSJUqk2V6iRAmOHDmS4X327NnDTz/9REhICLNmzeL48eMMGjSIv/76K9O6o7feeovhw4dfV4yqORL5h+OPlltvvZVChQpZHI1natCgAf7+/hw4cIADBw5QpkwZq0MSyROelBxZ3q0G6RMPY0ymBVp2ux2bzcaXX35JgwYN6NixIyNHjmTKlCmZth4NHTqU06dPO28HDhxwOTYlRyL/UJfajcufP79zlJ+61sSXKDlyUdGiRfH390/XSnTs2LF0rUkOERERlC5dmvDwcOe2qlWrYowhISEhw/sEBwdTsGDBNDdXKTkS+YeKsXOG5jsSX6TRai4KCgoiOjqaxYsXp9m+ePHiTP8ybdq0KYcOHeLcuXPObb///jt+fn65usaTkiPxdRcvXmTdunWAkqMbpeRIfJHWVsuGp59+mokTJzJp0iS2b9/OkCFDiI+PZ8CAAUByl1jPnj2d+3fv3p0iRYrwyCOPsG3bNn788Ueee+45Hn30UUJDQ3M8Po1WE0m2YcMGEhMTKVasGDfffLPV4Xg0xx9/mzdvTvOHnog3U7daNjzwwAOMGjWK1157jdq1a/Pjjz+yYMECoqKiADh8+HCaOY/y58/P4sWLOXXqFPXq1aNHjx506dKFDz/8MFfiU7eaSLLUXWru2AzuScqUKUOZMmVISkpizZo1Vocjkic8KTmydLSaw6BBgxg0aFCGv5syZUq6bVWqVEnXFZdblByJJNN6ajmradOmTJ8+nVWrVtGqVSurwxHJdZ6UHFnecuTulByJJH8OHC1HGqmWMzTfkfgaJUdeRMmRCOzatYs///yT4OBgoqOjrQ7HK6SeKVvfI+ILMls+RMmRB1NyJL7sxx9/BKBhw4YEBwdbHI13qFWrFgUKFODMmTNahFZ8gobyexGNVhP5Jzm6/fbbLY7Ee/j7+3PbbbcB/7y+It5MQ/m9iLrVRGDFihWAkqOc1rx5c+Cf11fEm6nmyIsoORJft3//fuLj4wkICFAxdg5zJJs//vijW10YRHKDkiMvouRIfJ2jyyc6OpqwsDCLo/Eu0dHRhIaGcuLECbZv3251OCK5SsmRF1FyJL5OXWq5JygoyNkap6418XZKjryQkiPxVSrGzl2pu9ZEvJlGq3kRjVYTX3b48GF27dqFzWZzjqySnKW6I/EVGq3mRdStJr7M0ZpRq1YtbrrpJmuD8VINGzYkKCiIQ4cO8ccff1gdjkiuUbeaF8ksOXLM8OmY8VPEG/24YAEAt9eta3Ek3is0NJQGDRoA8OP48ZCQYHFEIrlDyZEXUcuR+KzYWH787DMAbp88GWJjLQ7Ie91esCAAP777LkRF6bUWr6TlQ7yIkiPxSQkJnOjbl99SfrzdGOjfX60auSEhgdsXLgTgRwC7Xa+1eCW1HHkhJUfiU3btYmXKF1VVoBhAUhLs3m1lVN5p1y6aGIM/sBc4AHqtxStptJoXUnIkPqVSJRyz7jRzbPP3h4oVLQrIi1WqRAE/PxxVXStAr7V4JY1W8xJZnSglR+LVIiNZGhkJQCtIvliPGwcp2yQHRUbC+PG0TPkDbKnNptdavJK61bxE6hOlliPxJX/++Se/ptS8tJg5E/btg5gYa4PyZjExtEopfl9SqhTm0UctDkgk5yk58hJKjsRXLV++HIDq1atT4t571YqRB2675x4CAgKIP3iQvXv3Wh2OSI5TcuQllByJr1q6dCkAd9xxh8WR+I6wsDAaNWoE/PP6i3gTJUdeQsmR+KolS5YA0KpVK4sj8S2OZNTx+ot4E41W80JKjsRXHDhwgF27duHn56fFZvOYIxldunSpW/0VLZITNFrNS2i0mviiZcuWAVCvXj2tp5bHGjZsSGhoKMeOHWPbtm1WhyOSo9St5iXUrSa+yFHvoi61vBccHMxtt90GqO5IvI+SIy+h5Eh8jTFG9UYWU92ReCutreYllByJr9m9ezcJCQkEBQXRtGlTq8PxSY6kdPny5fp+Ea/iMy1Hx44d48iRIzkVi9tRciS+xtGV07hxY/Lly2dxNL6pTp06hIeHc/r0aTZu3Gh1OCI5xuuTo19//ZVbb72ViIgISpcuTenSpXnppZc4f/58TsfnNpQciS9QvZH1AgICaN68OaC6I/EuXj+UPyYmhhIlSvDTTz+xceNGRowYwcKFC6lXrx4nT57M6Rgto9Fq4kvsdrtzpJomf7SW6o7EG3n9UP5t27YxevRoGjduTM2aNXnkkUdYt24dt956K48//nhOx2iZrLrVHAVljgIzEU+3efNm/vzzT8LCwqhfv77V4fg0R3K0cuVKLl68aHE0IjnD67vVMmohstlsvPnmm8yZMydHAnMHqjkSX7Jo0SIguUstKCjI4mh8W7Vq1ShdujQXLlxg5cqVVocjkiO8Mjnq1KkT//d//8dXX33FgAEDGDJkCEePHk2zz+nTpylUqFCOB2kVJUfiSxzJUbt27SyORGw2G23btgX+OS8ins6TkqMAV3esUaMGGzZsYPLkyc6kqEKFCnTt2pXatWuTlJTE5MmTef/993Mt2Lym5Eh8xblz5/j5558BJUfuol27dkyePJlFixbx3nvvWR2OyA3zyuToP//5j/P/R48eZePGjWzatIlNmzYxZswYdu/ejb+/P8OHD+e+++7LlWCtpORIvNmyZcu4fPkyFSpUoGLFilaHI0Dr1q2x2Wz89ttvHDx4kNKlS1sdksh1M8Y4kx9PGK3mcnKUWokSJWjfvj3t27d3brtw4QKbN29m8+bNORac1TRaTXyFutTcT5EiRahfvz5r1qzh+++/55FHHrE6JJHrlvpa6bWj1TISGhpKo0aN6N+/f049pOXUrSa+QsmRe3KcD9UdiadLfa3U8iEeTsmR+II9e/awe/duAgICaNmypdXhSCqO5Gjx4sX6rhGPlvr9GxgYmOZ3So48jJIj8QWOVokmTZpQsGBBi6OR1Bo2bEh4eDh//fUX69evtzocket25coV5/89oSBbyVEWlByJL1CXmvsKCAhwTgiprjXxZKmvlQEBacudlRx5MCVH4o0uX77sXL/LMa+OuBfNdyTewJWWI3ei5CgLGq0m3i4uLo6zZ89StGhR6tata3U4kgFHi97q1as5ffq0xdGIXB/HtdLPzy/TZEgtRx5C3Wri7b777jsA2rRpk24EibiHcuXKccstt5CUlMQPP/xgdTgi18XRcpTRMH51q3kYtRyJt5s/fz6QvDyQuC/H+XGcLxFP47hWXl1vBEqOPI7jRGXUBKjkSDzd/v37+fXXX/Hz80szoau4n86dOwPJyZHdbrc4GpHsU8uRF1FyJN7M0QrRpEkTihQpYnE0kpXbbruNggULcuzYMdauXWt1OCLZppYjL+JKcpR6vRgRTzJv3jzgn1YJcV9BQUHOwmzHeRPxJK60HLkTJUcuyCo5ArUeiec5f/68cwi/kiPP0KVLF0DJkXimrFqOHNypoUHJURayOlGpR/YoORJPs2TJEi5dukS5cuWoVq2a1eGICzp06IDNZmPTpk0kJCRYHY5ItqjmyIu40q0GqEBSPM7c6dMB6NKypVs2aUt6RYsWpXHjxgDM++9/QQmSeBBHcqSaIy/ganKkliPxJPYJE5g/bRoAnadMgdhYawMSl3UuWRKAeaNGQVSUzp14DMd1Ui1HXkDJkXidhAQ29u/PYSAMaG4M9O+vVghPkJBAl1mzAFgC/G2369yJx1DLkRdRciReZ9cu5qW8r9sCwQBJSbB7t5VRiSt27eJWY4gCLgJLQedOPIYrQ/ndiZIjFyg5Eq9RqRKOsU7OMWr+/lCxokUBicsqVcLm5+c8b/NA5048RlYF2Q5qOfIQWZ0om83mTJqUHImnSADWATagIyRfXMeNg8hIS+MSF0RGwvjxdEkZKfstYB8zRudOPIImgfQiWXWrgWbJFs8ze/ZsABrXq0fJZctg3z6IibE0JsmGmBha7tpFwbAwDgO/VK9udUQiLtFQfi+i5Ei8zTfffAPAvd26QYsWanXwQEEVKtDl7rsBmDlzprXBiLhILUdeRMmReJPjx4/z448/AnDPPfdYHI3ciHvvvRdITnbd6YIikhm1HHkRJUfiTebOnUtSUhK1atWiQoUKVocjN6Bdu3aEhoayd+9eNm/ebHU4ItekliMvpORIvIGzSy2l1UE8V1hYGO3btwf+Oa8i7kwLz3qRa2WxSo7EU5w9e5bFixcD6lLzFqm71kTcnRae9SLqVhNvsXDhQi5dukTFihWprhFOXqFz584EBASwdetWdu7caXU4IllSzZEXUXIk3iJ1l5o7NmFL9t10003ccccdAMxKWVZExF2p5siLKDkSb3DhwgXmz58PqEvN26hrTTyFWo6uw+jRoylfvjwhISFER0ezcuVKl+73888/ExAQQO3atXMlLiVH4g0WLlzIuXPnKFOmDA0aNLA6HMlBd911FzabjbVr1xIfH291OCKZ0sKz2TRjxgyeeuopXnzxRTZu3EizZs3o0KHDNT/op0+fpmfPns5m5dyk5Eg82YwZMwDo2rUrfn6Wf+QlB5UoUYJmzZoB8NVXX1kcjUjmtPBsNo0cOZKYmBj69OlD1apVGTVqFGXKlGHMmDFZ3q9///50796dxo0b51psGq0mnu7cuXPMnTsXgG7dulkcjeQGx3mdNm2axZGIZE4Lz2ZDYmIi69evp23btmm2t23bllWrVmV6v8mTJ/PHH38wbNgwl57n0qVLnDlzJs3NFdfqVnP8FW632116PJG8Nm/ePC5cuECFChWIjo62OhzJBffffz/+/v5s2LCB33//3epwRDKkguxsOH78OElJSZQoUSLN9hIlSnDkyJEM77Nr1y5eeOEFvvzyyyznS0jtrbfeIjw83HkrU6aMS/dTzZF4OkeXWrdu3dyy6VpuXLFixWjTpg2g1iNxXyrIvg5Xf2kbYzL8Ik9KSqJ79+4MHz6cW265xeXHHzp0KKdPn3beDhw44NL9lByJJzt9+jQLFiwA4IEHHrA4GslNDz74IADTp093qwuMiIOntRy51vSSS4oWLYq/v3+6VqJjx46la02C5Fl+161bx8aNGxk8eDCQ3KVljCEgIIDvv/+eVq1apbtfcHAwwcHB2Y5PyZF4sjlz5pCYmEjVqlWpUaOG1eFILrr77rsJCQlhx44dbN68OddG8IpcL7UcZUNQUBDR0dHOZQ0cFi9eTJMmTdLtX7BgQbZs2cKmTZuctwEDBlC5cmU2bdpEw4YNcyVOJUfiiaZPnw4ktxqpS827FSxYkE6dOgHqWhP3pNFq2fT0008zceJEJk2axPbt2xkyZAjx8fEMGDAASO4S69mzJ5BcAF29evU0t+LFixMSEkL16tUJCwvL0dg0Wk081Z9//un8o0Ndar4hddeaBomIu/G00WqWdqtB8hf3iRMneO211zh8+DDVq1dnwYIFREVFAXD48GHLJjdTt5p4qunTp3PlyhXq1atHlSpVrA5H8kDHjh0pUKAA8fHxxMXF0bRpU6tDEnHytJojy1uOAAYNGsS+ffu4dOkS69ev5/bbb3f+bsqUKSxfvjzT+7766qts2rQpV+K6VnLkOMlKjsTdfPbZZwDOVlfxfqGhodx9992AutbE/ajmyIu4mhw5TrqIO9i+fTvr1q0jICBAEz/6mO7duwPJLYeJiYkWRyPyD9UceRElR+KJPv/8cwA6dOhAsWLFLI5G8lKbNm0oVaoUJ06ccC42LOIOXGk5AvdpPVJylAUlR+Jp7Ha7MzlSl5rv8ff35+GHHwaSSxJE3IUrC8+6EyVHLlByJJ5i+fLlJCQkcNNNN9G5c2erwxEL9OrVC4D58+dz9OhRi6MRSeboVstqtBqo5cgjXOskKTkSd/P52LEAdO3UiZCQEIujEStUrVqVBg0akJSUxNThwyEhweqQRFxuOVJy5AHUrSae5Nwnn/C/r78G4OGpUyE21uKIxCq9K1UCYPKYMZiyZfVeEMu5WpCt5MgDKDkSj5GQwPTHH+cccAvQ1Bjo31+tBr4oIYFuU6cSBGwBNum9IG5ABdleSMmRuL1du5iQ8qXSB7ABJCXB7t1WRiVW2LWLQsZwd8qPk0HvBbGchvJ7EdUciaf49coV1gCBQC/HRn9/qFjRuqDEGpUqgZ8fj6T8+Dlwwc9P7wWxlCvLh4BajjyCutXEU0ycOxeAu4DikJwYjRsHkZFWhiVWiIyE8eNp4+dHFHAK+Lp3b70XxFKqOfJCSo7EnV24cME5t1Gfzz+HZctg3z6IibE2MLFOTAz++/fTN+U9MG7HDosDEl/nas2Ru1BylAV1q4kn+Oabbzh16hRRUVG06d4dWrRQK4FAZCSPvv46AQEBrFq1ii1btlgdkfiwrFqOUlPLkQdQt5p4ggkTJgAQExODn58+0vKPiIgI7rrrLgDGjRtncTTiy9Ry5EOUHInVfvvtN1asWIG/vz+PPPLIte8gPqd///5A8pp758+ftzga8VVqOfIiajkSd/fJJ58AcPfddxOprjTJwB133EGFChU4c+YMM2bMsDoc8VGa58gLKTkSd3Tq1Ck+++wzAAYPHmxxNOKu/Pz86NevHwCjR492m4uP+BbNc+RFVJAt7mzKlCn8/fffVK9enebNm1sdjrixmJgYQkJCWL9+PatWrbI6HPFBmufIi6hbTdyV3W53dqkNHjzYLf/yEvdRtGhRevToAcAHH3xgcTTii7TwrBdSciTuZtGiRezevZvw8HDnRU8kK08++SSQPPVDfHy8xdGIr1G3mhdRt5q4q48//hiARx99lPz581scjXiCGjVq0LJlS5KSkpytjiJ5Rd1qXkTdauKOtm3bxoIFC7DZbAwaNMjqcMSDOFqPJkyYoGH9kqfUcuRDlByJFf773/8CycP3K2oxUcmGzp07U758eU6ePMkXX3xhdTjiQ9Ry5EXUciTu5vDhw86L2nPPPWdxNOJp/P39efzxxwEYOXKk8695kdymhWe9kJIjcRcfffQRiYmJNGnShMaNG1sdjnigPn36cNNNN/H7778zZ84cq8MRH6HlQ7yICrLFnZw9e5YxY8YAajWS61egQAEee+wxAN5++223+UtdvJuWD/Ei6lYTdxIbG8upU6e45ZZbuPPOO60ORzzYE088QUhICGvWrGH58uVWhyM+QC1HXkjJkVgtMTGR999/H4BnnnkGPz99dOX6FS9enEcffRRIbj0SyW2qOfIi6lYTt5CQwGf/93/Ex8cTERFBz549rY5IvIAjyV60aBEbx4+HhASrQxIvptFqXkTdamK52Fguly3LmynD959r1oyQkBCLgxJvUKFCBR6oVw+At/r3h6goiI21OCrxVprnyIcoOZJclZAA/fox1Rj2AsWB/v/7n/7Cl5yRkMDQtWsB+BrYYrdD//56f0muUMuRF7lWy5HjJCs5klyxaxdJdjtvpPz4DJDPbofdu62MSrzFrl3UMIb7U34cDpCUpPeX5AotPOuF1K0mlqhUiRk2G7uAIsAgAH9/0KzYkhMqVQI/P4YBNmAmsMnPT+8vyRWObjWNVvMCKsgWK10pWZLXS5QAYAiQ398fxo2DyEhrAxPvEBkJ48dT3d+frimbhteqpfeX5Di73e68nqpbzQuoIFus9Pnnn7PjyBEK33QTg+fOhX37ICbG6rDEm8TEwL59DJsyBZvNxuyNG9m4caPVUYmXSX2NDAwMTPd7tRx5GSVHklsuXrzIsGHDAPi/l14ivHNn/UUvuSMykqq9evHggw8C8Oqrr1obj3id7CRHajnyAGo5EquMGTOGAwcOEBkZyaBBg6wOR3zAK6+8gp+fH99++y2rV6+2OhzxIpcvX3b+X8uHeAElR2KFM2fO8OabbwIwbNgwQkNDLY5IfEHlypXp1asXkLx2n7tcpMTzpU6OMmo5ckdKjm6AkiPJDSNHjuT48ePccsst9O7d2+pwxIe89tprhIaG8tNPP/Htt99aHY54Ccc10mazXXPpI3dJypUcZUEtR5LX/vzzT/6bMhv2iBEjrtkELZKTIiMjGTJkCADPP/+8vtskRzhajrJqNXJcZ5UceRAlR5JXXnnlFc6dO0fdunW57777rA5HfNC///1vihYtys6dO5k4caLV4YgXcFwjXUmO3IWSoyxoniPJS7/++ivjx48H4P33379m87NIbggPD+eVV14Bkmvezp49a3FE4ukcLUeutISr5cgDqFtN8ooxhiFDhmC327n//vu5/fbbrQ5JfFj//v2pWLEix44d491337U6HPFw2elWcxdKjm5A6uTIXbJd8UzffvstS5cuJTg4mHfeecfqcMTHBQUF8Z///AeAd955hz179lgckXiyrNZVc1DNkQdxteUIkqdHF7kely5d4plnngHg6aefpnz58hZHJAL33nsvd9xxB5cuXeLpp5+2OhzxYK60HDkoOfIA2UmO1LUm1+vDDz/kjz/+oGTJkgwdOtTqcESA5O+9Dz/8kICAAObMmcPChQutDkk8VHZajtyFkqMboORIbtSBAwcYPnw4AG+99RYFChSwOCKRf1SrVo0nnngCgCeffJJLly5ZHJF4IrUceRm1HEmuSkjgye7dOX/+PE2aNKFnz55WRySSzrBhwyhRogS7du1i1OOPQ0KC1SGJh1FBto9RciTXLTaWuWXLMuunnwgAxrZtq6H74pYKFizIu507A/DahAnsL1sWYmMtjko8iQqyvcy1Wo5SX8yUHInLEhI437cvg1PeX08DNV5/XX+Ri3tKSOChSZNoBvwNDDQG06+f3q/iMnWreZlrJUc2m01zHUn27drFcGOIB6KAVwCSkmD3bmvjEsnIrl3YjGE8EAQsBKbZ7Xq/istUkO2DlBxJdm1KTGRkyv8/BsIA/P2hYkXrghLJTKVK4OdHFeDllE1PAscLF7YwKPEkWlvNy1yr5QiUHEn2JCYm0vv550kC7gM6Q3JiNG4cREZaG5xIRiIjYfx48Pfn30B14DjwTMoCySLXouVDvIySI8lpb775Jps3b6ZIkSJ8smEDLFsG+/ZBTIzVoYlkLiYG9u0jaNkyJn77LTabjc8++4xFixZZHZl4AC0864OUHImrNm3axBtvvAHAxx9/TIk6daBFC7UYiWeIjIQWLWjYpYtz7qOYmBhOnjxpcWDi7lSQ7WXUciQ5JTExkV69enHlyhXuvfdeHnjgAatDErlub775JrfccgsHDx7kscceszoccXMqyPZBSo7EFSNGjODXX3+lSJEijB492u2+CESyI1++fHz22Wf4+/szbdo0ZsyYYXVI4sZUkO1l1HIkOWHlypXO7rTRo0dTokQJiyMSuXENGzbk//7v/wAYOHAgBw8etDgicVeutBw5KDnyAEqO5EadPHmSHj16YLfb6dmzJ127drU6JJEc8/LLLxMdHc3Jkyd59NFHsdvtVockbkjLh/ggJUeSGWMM/fv358CBA9x88818/PHHVockkqMCAwP5/PPPCQkJ4fvvv2fkyJHXvpP4HFeG8qtbzYOo5UhuxOTJk/n6668JCAhg2rRpFChQwOqQRHJc1apVGTVqFABDhw5l9erV1gYkbseVofzuRslRFlzJYJUcSToJCWyfMoXHBw8Gkoux69evb3FQIrmnX79+PPDAA1y5coUHHniAv7ZsSZ7DS+uvCSrI9lpqORKXxcZypmxZ7nnkEf6+cIE7qlblueeeszoqkVxls9kYP348N998M/Hx8TxasyamVSuIioLYWKvDE4upINvLZKdbzZEZiw9LSMD07cujxrATiASm7tyJ36FDVkcmkusKFizIVx99RBAwB5LXD7TboX9/tSD5OBVkX6fRo0dTvnx5QkJCiI6OZuXKlZnu+80339CmTRuKFStGwYIFady4saVT2DtOtlqOhF27+K8xzAQCgf8BxbV6ufiQuiEhvJ/y/38DPwAkJekz4ONUkH0dZsyYwVNPPcWLL77Ixo0badasGR06dCA+Pj7D/X/88UfatGnDggULWL9+PS1btqRLly5s3Lgxx2NzpeXIkRwlJibm+POLZ1l+/DjPp/z/A6AhJC8qW7GidUGJ5KVKlRhos9EbsAMPAHv8/PQZ8HHZKchWcpRi5MiRxMTE0KdPH+eohzJlyjBmzJgM9x81ahT//ve/qV+/PpUqVeLNN9+kUqVKzJ07N8djy05ypG4137Z7927uGzAAO/CwzcYASE6Mxo3T2mniOyIjsU2YwBg/PxoAfwF3R0Rw7qabLA5MrJSdliN3YWlylJiYyPr162nbtm2a7W3btmXVqlUuPYbdbufs2bMULlw4030uXbrEmTNn0txySlBQEKDkyJedPHmSzp0789dff1G/fn3G7tyJbdky2LcveTVzEV8SE0PI/v1889VXlCxenC0HD9K7d29NEOnDXGk5UrdaKsePHycpKSndcgolSpTgyJEjLj3Gf//7X86fP5/lzMNvvfUW4eHhzluZMmVcemx1q8m1XL58mX/961/s3LmTyMhI5syZQ75KlaBFC7UYie+KjKT0v/7FzFmzCAwMZObMmbzwwgtWRyUWcaUg291Y3q0G6ZMPY4xLTWzTpk3j1VdfZcaMGRQvXjzT/YYOHcrp06edtwMHDrgUlysZrFqOfJcxhscff5wlS5YQFhbG3LlziYiIsDosEbfRpEkTJk2aBMC7777LJ598YnFEYgUVZGdT0aJF8ff3T9dKdOzYsWsuzjljxgxiYmL46quvaN26dZb7BgcHU7BgwTS37FDLkWTkjTfeYNy4cdhsNqZNm0bt2rWtDknE7Tz00EPOhZefeOIJvv32W4sjkrymguxsCgoKIjo6msWLF6fZvnjxYpo0aZLp/aZNm0bv3r2ZOnUqnTp1yrX4VJAtmRk7diwvv/wykDxIoEuXLhZHJOK+hg4dSt++fbHb7XTr1k1LjPgYFWRfh6effpqJEycyadIktm/fzpAhQ4iPj2fAgAFA8oeqZ8+ezv2nTZtGz549+e9//0ujRo04cuQIR44c4fTp05bEr2413/P1118zaNAgAF566SWeeOIJiyMScW82m43Ro0fToUMHLly4QIcOHdi0aZPVYUkeUUH2dXjggQcYNWoUr732GrVr1+bHH39kwYIFREVFAXD48OE0cx6NGzeOK1eu8NhjjxEREeG8PfnkkzkemwqyJY2EBBa/+y49evTAGEP//v157bXXrI5KxCMEBATw9ddf07RpU06dOkXbtm3ZsXy51mDzAa60HDm4S3J07UjzwKBBg5x/iV9typQpaX5evnx57geUQt1q4hQby5K+fbnTGC4D90dH88knn7hdU7CIOwsLC2P+/Pm0atWKDRs20LplS1YC5f38YPx4TX3hpbR8iA9St5oPSEhgad++dDGGi0An4IuNG/E/fNjqyEQ8Tnh4OIsmT6YacBBoCezRGmxeTd1qXkbdagKwdMYMOhvDBZITo5lAsNZME7luRU+cYDFQEdgP3A7s1BpsXis73WruQslRFjTPkSxcuJDOL73EBaAjKYkRaM00kRtRqRKl/Pz4EahKcgtSc+A3LeDtldRy5KXUcuSbpk6dyp133smFixfpVLMmM/38/kmMtGaayPWLjITx44nw92c5UAs4CrTo1o0NGzZYG5vkOE8syFZylAUVZPuujz/+mIceeogrV67QvXt3Zq1bR8j+/ckja7RmmsiNi4mBffsovmwZS3/9lfr163PixAlatmzJ0qVLrY5OcpAKsn2QutW8izGGV199lccffxxjDIMHD+bzzz9P/lBHRmrNNJGclPKZKlyjBosXL+b222/nzJkztG/fnqlTp1odneQQR7ealg/xEirI9i2XLl2id+/eDB8+HIBXX32VDz/8ED8/fUxEclt4eDiLFi2ia9euXL58mR49evDOO++4zcVSrp8WnvUyKsj2EQkJHJ89mza3385nn32Gv78/o0ePZtiwYW7X1CvizUJCQpg2bRpDhgwB4Pnnn2fw4MFc3rtXk0V6MBVkeynVHHmx2Fh2li1Lo3vuYeWaNRQMDWX+/PkMHDjQ6shEfJKfnx8jR45k5MiRzmVH2leowIlWrSAqCmJjrQ5Rsik7a6spOfIA6lbzcgkJLO7bl0bG8AdQDlh16RLtbr3V4sBEZMiQIcyaMIH8wFKgPvCbJov0SK60HLkbJUdZULea97Lb7bw1fDjtjeEU0Bj4BbhVkzuKuI27KlQgDigP7CX5czpHk0V6HLUceSm1HHmX06dPc++99/J/EydiB2JI/su0OGhyRxF3UqkS1f38WEvyMiPngLuBF2fOdLZGiPvLTkG2kiMP4Eq3mlqOPMtvv/1G/fr1mTNnDkFBQUzo2ZOJ/v6EgCZ3FHE3KZNFFvH3ZxHweMp38Zsff0zr1q05dOiQtfGJS7IzlN9dKDm6QSrI9gzGGCZMmECDBg3YtWsXZcuW5aeffqLPp58mT+qoyR1F3FPKZJGBy5bxYXw806ZNI3/+/KxYsYI6deqwZMkSqyOUa8jOJJBqOfIAKsj2cAkJsGwZJ3/7jX/961/069ePCxcu0LZtW9avX0/9+vWT99PkjiLuLdVntFu3bqxbt44aNWpw7Ngx2rRpwyuvvJJ8AU75zKtg230kJSU5r6VaeNZLqCDbg8XGQlQUK1u1olaNGsycOZPAwEDeffddFi5cSNGiRa2OUESuU+XKlfnll1+IiYnBGMPrr79O01tu4feyZUFD/t1K6oaD4ODgTPdTy5EH0jxHHiYhgYt9+zLUbqcFcACoCKyaNYtnn31WM16LeIHQ0FAmTpzItGnTuCk8nLX79lHbGMYARkP+3calS5ec/1dy5CWyU5CtbjX3sebbb4k2hv8AdqAnsAGoFxZmbWAikuO6devGr+PG0Qq4AAwCOgEJGvLvFlJfGzXPkZdwJYNVy5H7uHjxIi+88AKNH3+cbUAJYBbwKVBAQ/RFvFaZpk1ZbLPxPhAMLASqAaN//hm73W5tcD7O0XIUGBiYZau9Wo48kAqy3d8PP/xArVq1ePvtt7Hb7fRo2JCtfn7cDRqiL+LtIiPxmzCBp/z92QA0As4Cj730Es2aNWPbtm0WB+i7HNdGRy+Lp1BylAUVZLu/hIQEunbtSps2bfj9998pWbIks2fP5ovVqymyf7+G6Iv4ipQh/9WWLeOnffv46KOPyJ8/P6tWraJ27dq89NJLnDt3zuoofY4jOcqq3gjUcuSRXGk5unLlitucVK+XkEDi99/z7ksvUaVKFb7++mv8/Px44okn2LFjB3fddVfyfhqiL+JbUj7z/lFRDB48mG3bttGlSxcuX77MG2+8QeXKlfn888+xx8dryH8ecXSrXavlSMmRB8nOPEeg1qO8YJ8wgelly1K1XTv+/cYbnD9/niZNmrBhwwY++OADwsPDrQ5RRNxEmTJlmDNnDrNmzaJChQocOnSInj170iQqitUa8p8nXG05cjdKjrKQnW41UHKU25Z99RUN+/XjQWPYA5QEJttsrJw2jVq1alkdnoi4IZvNxt13383WrVt564UXyE/yItONgXvsdn7r108tSLlILUdeTC1H1lq1ahXt27en1QMPsA7ID7wO7AZ6G4Pfnj3WBigibi8kJIQX2rbld+ARki9+s4Gadjs9evdmt4b95wrVHHmh7HaracRazvrxxx9p3bo1TZs2ZdGiRQQEBDAY+AN4CQiD5JFoGqIvIq6oVIkIPz8mAVuA+wEDTF2yhCpVqtCnTx8lSTnM1ZYjd6PkKAuuZLA2m825Xoxajm5QQgJm6VKWzphBixYtaN68OUuWLCEgIIA+ffqwc+dOPpo4keL+/sn7a4i+iGRHZCSMHw/+/lQDvvb3Z/3LL9OxY0eSkpKIjY2lcuXKPPjgg2zevFlrteUAT2058pxV4CyUVcsRJLceXblyRS1HNyBpwgRm9+/Pe8awOmVbUFAQMTExPP/880RFRSVvrFAB2rVLnvm2YkUlRiKSPTExab5D6kZGMp/k7vs33niDBQsWMH36dKZPn04nYCjQ1M8vOanSlCDZppYjL+RqBqu5jq7f+fPn+XjECG7p14/7UxKjYOBxm40/fvqJ0aNH/5MYOWiIvojciAy+Q5o0acL8+fPZuHEjD3Tpgh8wH7gNaGa3M6tfP5L277coYM/lqS1HSo5c4ErLESg5yo4jR47w0ksvUaZMGR5/+WX2AIWBl4H9wIfGEHn+vLVBiojPqV27NtOHDGEn0BcIAn4C7rXbqdS4MaNGjeLMmTPWBulBNFrNC7lSkA1afPaaUvXbr127lt69exMVFcUbb7zByZMnqViuHJ/YbMQDr5G8JpoKrUXEMpUqUdHPj/HAXuD/SP7jbe/hwwwZMoTIyEiGDBnCHsdIWdUmZUrzHHkhVzNYtRxlITaWC2XLMqVVK+qXKUODBg349NNPSUxMpEmTJnzzzTfs2L2bQRMmEKZCaxFxB6kKt0sBb/j7c+CTTxg3bhxVq1bl7NmzjBo1ikqVKnF3nTosKFuWJE0qmSG1HHkxdatdn61LlvBsnz5EGsMjwDqSm6gfvu8+4uLi+Pnnn7nnnnvw9/d3rouktdBExC1c9Z2Ub9Ag+vXrx9atW/nuu+9o164ddrudOZs20ckYygPD7XYOaFLJNFRz5IXUrZZ9f/75Jx9++CHR0dFUb92a/wJ/AVHAW0AC8NngwTRq1Cj9nVVoLSLuJIPvJJvNRrt27fjuu+/YNnkyT5Hc5XYAeBUoZ7fT6f77mTFjBudVN+mxo9U0lD8L6lbLQkIC7NoFlSpxPCSEefPmMXPmTL777juuXLkCQEBAAJ2vXOFRoCPgD6olEhGvUbV1a9738+Mtu51vgAnAcmDBL7+woFs38uXLx5133km3bt1o3749wX/+6fze9JU/Aj215UjJkQvUcnSV2Fj29u3LHGOYDay02bCnekPXq1ePXr160a1bN4rOmQP9+0NSkmqJRMS7pNQmhfTvT/ekJLr7+7PrtdeYcv4806dPZ8+ePc45k8JDQ+l44QJ3AR1sNgpOmOAT5QNqOfJCrmawjozYm5MjYwybN29m9mefMfv999mc9pfUqV6du//1L+6//36qVav2z++umnBNiZGIeJWrvuMqRUbyBjBixAjWrVvH9OnTmTF1KgePHGEaMA0INIaWffpw15Ej3NmrF5Fe/L2oliMvdq2Wo5CQEAAuXryYF+HkrlTdZVdKluSnn35i9uzZzJ49m/2pJkDzA24H7gbuAsp99FFy33xGIiOVFImI98rgO85ms1G/fn3q16/Pux07srp1a+YAc4CdwPfA9y+9xGMvvUTdunW56667uOuuu6hZs2byNSfVd7Enf3966mg1JUdZcLUg22uSo9hY/u7bl+9TusvmhoXxV6qCwtDQUNrdfjt3f/89nYyhqOMXqiMSEcmUX+XKNPHzo4ndztskJ0dzbDbmREcTt349GzZsYMOGDQwbNoyoqCi63HwzXZYto7kxBHv40iWa58gLuZrBekRylMUkZYcOHWLSe+9xd58+FDWGe4BPgb/On6dIoUL07t2b2bNnc/z4cWZ99x29JkygqOYkEhFxTap5kwAq+/vz7wkT+HntWo4cOUJsbCx33nknoaGh7N+/n4+XLqVdyh+g99vtTOnblz83b874sd18Akq1HHmx3Gg5unjxIh988AEbN26kWbNm9O/fn4CAXDodsbHQrx/Y7eDnx8n332dN5cosWbKE7777ji1btqTZPQq4h+Qus6Zff03AHXekfTzVEYmIZE8m35vFixfn0Ucf5dFHH+Xvv//mh5Ejmffyy8wDDgMzgZnGYKtTh0aNGtGpUyeaNWtGdHQ0YdOnp/luz60WptOnT/PBBx+wY8cO2rdvz8MPP3zN66JDdmuO3IWSoyzkVsuR3W7n3nvvZeHChQDMmDGDL774gnnz5lGkSJHrCzYDV65cYc+qVWzv25ftxrAFWGu3s+vJJ9PsZ7PZqFezJh03b+ZuoBZgg+S/cipXzvjBVUckIpI91/jezJcvH3f27s2dw4Zht9vZAMxNuW00hri4OOLi4gDw9/enVlIS9YA6QB27nRr9+pGvXbsc/W7eunUrnTp1ctacTps2jd9//50RI0a4dH9HcuTqaDV3aTlSt1oWcqvm6LPPPmPhwoWEhoby7LPPEh4ezurVq2nTpg0nT57MXpApTarmwAG2bt3K2LFjefjhh6lZsyZhYWFUbt6cu41hKDAV2JVyt4qlS9OrVy+mTp3KsWPHWLNpE69OnEhtf/9/EiN1l4mI5K2ULjg/f3/qAcP9/dkwcSIJCQmMHTuW++67j1KlSpGUlMQGYDwwEGgEFLDbqXbbbfTo0YP33nuPJUuWcOLEieTHvY7ut99//5077riD/fv3U758eQYPHgzAm2++yaZNm1x6DEe3mqeNVsP4oNOnTxvAnD59Osv9Xn/9dQOYvn37Zrnfs88+awDz3HPPXfO57Xa7qVKligHM22+/bYwxZtu2baZYsWIGMPXq1TOnTp1y7UAmTjR7bDYzFEwFMGRwCw0JMXXAdAczAsx3YI77+Rlz4EDGj3nggDHLlmX+exERyX3X+C6O/+UXM8NmMy+AaQemeCbXAMDUKVvW/NdmM0fBGD8/YyZOvObT79mzx5QpU8YApmbNmubEiRPGGGO6du1qAPPggw+6dBgtW7Y0gJk2bVqW+9WtW9cAZsGCBVnu5+r1+0ap5SgLJhe61dasWcOOHTvIly8fAwcOBKBq1aosWbKEIkWKsG7dOjp06MDZHTuyzPLj5szh/j59qGgMbwF7gBDgjttuY9iwYcybN489e/Zw7vx5NkycyJf+/rwItPP3p8j48Zm3CGkJDxER613ju7hMgwZ0nTCBt/z9+Q444ufHwffeY/78+YwYMYL77ruPm2++GYCN8fE8YwxRwAC7nd+zWv8tIYF906bR8vbbOXDgAFWqVGHx4sUULlwYgOeeew6AWbNmcfr06Wsehqe2HKnmyAU52a02b+pUAO5s3ZoCBQo4t9eoUYMffviBVq1aERcXR7OqVZkOVElVZHf58mW++eYbRo0axerVq533bQvEAJ2AsNdfTz/fkAqoRUS8T6rvdlvFipSKjKQU0LFjR+cux2fP5ut77mESyYt/jwPG2+10eeABnhoxghYtWvxzjYuNZUnfvjxkDEeAW0qUYMmSJRQvXtz5eNHR0VSqVIldu3ax7MMPufuRR7K8prhac+RuyZFajrJgcrrmKDaWJR9+CECbuXOTR5GlUrt2bb7//HOKAZuB6kAXu52n+/ala5culCxZkm7durF69WqCgoJ4BNgCLAK6AmFZzTekFiEREe9zje/2ovXqMdDPjzXACqAzyX1t365aRatWrShXrhy9e/dmSJ8+3NanD61TEqPqwLI//6SU3Z7m8Ww2G21SnmvJK69AVFS6a1lqrrYcuRslR1nIdrdafHyWTZVn+vZlTcqPrY1JXnPsqv3r5cvHBqALkATMA943hq/nzeOvv/6iePHiDBs2jP379zNp4kSqa74hERHJTEqBt83fn9uBuf7+bH/9dQYOHEi+fPmIj4/n008/ZVRsLD+TvED4IGA1JCdGu3enfbyEBFovXw7AD5A8jUAG1zKHxL//BiDo1Kksw3S3liN1q7nAduhQ8onPJPEIWbsWgIsrViRn0RnNNbFrFz8aQxJQESgLyYux7t6d9nErVSLSz49v7XZ+I7lV6IjNRpHnn+e2Tp1o1KjRP/MhqbtMRESu5aprRZXISEYD7733HsuWLWP9+vWcP3KEcmPH0tkYyjjul1FvxK5dtDAGP2AHcAgoldG1DCA2lkt//AFAcNeukMViu7bLl5P/c/x4zhzzjcrVcm835Wq1+7AuXQxgBmRV4X/ggPnCZjOAaQPGgDH+/ulHGBw4YF5N2a9nVvsZk/w8/v7/7OPCyAIREZEb4sq158ABY/z8TPWUkXBzs7jmGT8/Uyplvw3XuOY1SNnvW5sty2ueRqvlhYMHM/9dQgJm7lwgZULEzJoOd+0iJKUZ0Flx5MiiU4uMZFPt2kDyhF1ZdoPFxMC+fcmj1fbt89g1dURExIO4cu1J6aarndINtslmy/hatmsX2O1cSvkxGDK+NiYkQL9+OCp7TSYlJ05ZXbdzkE8nRz9Xq5Z5IdmuXc7/OsuxMzqxlSoRkvImcSZHmRRGb0qZ4LH2++9fO+lRAbWIiOQ1V649MTHUfvFFADZ16JDxtaxSJfDzIzHlxyDItJuOq4q+M7zWAsTG8r9q1Vw8kBvj08nRRsg8Q61UiXRlYRmd2MhIQp5+GkhJjjJpETp16hT79u0DoFavXkp6RETEY9VOmTJm086dGe+Q0sLkbDny88u4hSkliXK2HEHG19qUFqZFORP+Nfl0cgRknqFGRkLnzgDXXE4j5J57ALgYGZlpi9DmlBWVo6KiKFSoUE5FLyIikudq1aoFwB9//MGZM2cy3Mc8+ug/LUfr1mXZTefsocksicqohSkXKTnKYm4gk1IjxN13Z9kN5hzKb7Nl2iK0bds2IHmyRxEREU9WtGhRSpUqBcCOHTsy3McxxxFAaMps3RmKiYHoaADMuHFZdtPlFSVHWcwNZByTQF5jJWVXJoHclVLDdMstt1xvpCIiIm6jUqVKQPICtRm5cOGC8/+hoaFZPpYtZZJIU6RIxjuktDDlFd9Ojv79b5dGguXEDNmON4+SIxER8QaO69muVAOYUnMkR/7+/gQGBmb5WNe6zgLJ1+uUcpfc5tvJUXh4lr82ObjwrOPN48i0RUREPJmrLUfXajVK7ZrX3Xz5XH6sG+HbydE1mGyurXb58mWSkpLS/f7KlSvs2bMHUHIkIiLewXE9u1bLkSvJkbstH6LkyAWuJkeQtgDNYd++fVy5coXQ0FBKly6d4/GJiIjkNUe32u+//55hUnM9LUfuQslRFlzNYFOvNpxR15ojq65YsSJ+eVhtLyIiklsqVKiAzWbj7NmzHDt2LN3v1XLk5a7VchQQEOBcDDaj5Mgx+WOFChVyPDYRERErhISEEJkyknvv3r3pfn89yZG7cIvkaPTo0ZQvX56QkBCio6NZuXJllvuvWLGC6OhoQkJCqFChAmPHjs2VuLKTwWZVlL1//34geQJIERERb+G4rjmuc6nlSkF2HrE8OZoxYwZPPfUUL774Ihs3bqRZs2Z06NCB+Pj4DPffu3cvHTt2pFmzZmzcuJH/+7//44knnmDmzJk5HpurBdmQdXLkOJayZcvmYHQiIiLWyqnkSN1qVxk5ciQxMTH06dOHqlWrMmrUKMqUKcOYMWMy3H/s2LGULVuWUaNGUbVqVfr06cOjjz7Ke++9l2sx3mhypJYjERHxRjmdHLkLS5OjxMRE1q9fT9u2bdNsb9u2LatWrcrwPnFxcen2b9euHevWrePy5cs5Gl9Odaup5UhERLyRt3arBVj55MePHycpKYkSJUqk2V6iRAmOHDmS4X2OHDmS4f5Xrlzh+PHjREREpLvPpUuX0gyxP336NJCcyGS2YJ7jfpCcxGW1H+Cc/fP48eNp9r18+TIHDx4EoFChQtd8HBEREU9RtGhRAPbs2ZPu+nby5EkgeYbsa137HHMEnj9/Pst9HY0guZ5EGQsdPHjQAGbVqlVpto8YMcJUrlw5w/tUqlTJvPnmm2m2/fTTTwYwhw8fzvA+w4YNM4Buuummm2666eYFtz/++CNnEpFMWNpyVLRoUfz9/dO1Eh07dixd65BDyZIlM9w/ICCAIpksWDd06FCefvpp58+nTp0iKiqK+Ph4wq+xhIg3OXPmDGXKlOHAgQMULFjQ6nDyjI5bx+0LdNw6bl9w+vRpypYtS+HChXP1eSxNjoKCgoiOjmbx4sXcc889zu2LFy/mrrvuyvA+jRs3Zu7cuWm2ff/999SrVy/The2Cg4PTTNToEB4e7lNvKoeCBQvquH2Ijtu36Lh9i68ed25PqGz5aLWnn36aiRMnMmnSJLZv386QIUOIj49nwIABQHKrT8+ePZ37DxgwgP379/P000+zfft2Jk2aRGxsLM8++6xVhyAiIiJexNKWI4AHHniAEydO8Nprr3H48GGqV6/OggULnBXwhw8fTjPnUfny5VmwYAFDhgzhk08+oVSpUnz44Yfcd999Vh2CiIiIeBHLkyOAQYMGMWjQoAx/N2XKlHTbmjdvzoYNG677+YKDgxk2bFiGXW3eTMet4/YFOm4dty/QcefucduMcZNJBURERETcgOU1RyIiIiLuRMmRiIiISCpKjkRERERSUXIkIiIikorXJkdvvPEGTZo0IV++fNx0000u3ccYw6uvvkqpUqUIDQ2lRYsWbN26Nc0+ly5d4vHHH6do0aKEhYVx5513kpCQkAtHcH1OnjzJww8/THh4OOHh4Tz88MOcOnUqy/vYbLYMb++++65znxYtWqT7fbdu3XL5aFx3Pcfdu3fvdMfUqFGjNPt42/m+fPkyzz//PDVq1CAsLIxSpUrRs2dPDh06lGY/dzvfo0ePpnz58oSEhBAdHc3KlSuz3H/FihVER0cTEhJChQoVGDt2bLp9Zs6cSbVq1QgODqZatWrMmjUrt8K/btk57m+++YY2bdpQrFgxChYsSOPGjVm0aFGafaZMmZLhZz2jBbOtlJ3jXr58eYbHtGPHjjT7edv5zuj7y2azceuttzr3cffz/eOPP9KlSxdKlSqFzWZj9uzZ17xPnn22c3VxEgu98sorZuTIkebpp5824eHhLt3nP//5jylQoICZOXOm2bJli3nggQdMRESEOXPmjHOfAQMGmNKlS5vFixebDRs2mJYtW5patWqZK1eu5NKRZE/79u1N9erVzapVq8yqVatM9erVTefOnbO8z+HDh9PcJk2aZGw2W5q1a5o3b2769u2bZr9Tp07l9uG47HqOu1evXqZ9+/ZpjunEiRNp9vG2833q1CnTunVrM2PGDLNjxw4TFxdnGjZsaKKjo9Ps507ne/r06SYwMNBMmDDBbNu2zTz55JMmLCzM7N+/P8P99+zZY/Lly2eefPJJs23bNjNhwgQTGBho/ve//zn3WbVqlfH39zdvvvmm2b59u3nzzTdNQECAWb16dV4d1jVl97iffPJJ8/bbb5s1a9aY33//3QwdOtQEBgaaDRs2OPeZPHmyKViwYLrPvDvJ7nEvW7bMAGbnzp1pjin1Z9Qbz/epU6fSHO+BAwdM4cKFzbBhw5z7uPv5XrBggXnxxRfNzJkzDWBmzZqV5f55+dn22uTIYfLkyS4lR3a73ZQsWdL85z//cW67ePGiCQ8PN2PHjjXGJL8ZAwMDzfTp0537HDx40Pj5+Znvvvsux2PPrm3bthkgzZsgLi7OAGbHjh0uP85dd91lWrVqlWZb8+bNzZNPPplToeao6z3uXr16mbvuuivT3/vK+V6zZo0B0nwJu9P5btCggRkwYECabVWqVDEvvPBChvv/+9//NlWqVEmzrX///qZRo0bOn7t27Wrat2+fZp927dqZbt265VDUNy67x52RatWqmeHDhzt/dvX70ErZPW5HcnTy5MlMH9MXzvesWbOMzWYz+/btc27zhPPt4EpylJefba/tVsuuvXv3cuTIEdq2bevcFhwcTPPmzVm1ahUA69ev5/Lly2n2KVWqFNWrV3fuY6W4uDjCw8Np2LChc1ujRo0IDw93Ob6jR48yf/58YmJi0v3uyy+/pGjRotx66608++yznD17NsdivxE3ctzLly+nePHi3HLLLfTt25djx445f+cL5xuSF3K02Wzpup/d4XwnJiayfv36NOcAoG3btpkeY1xcXLr927Vrx7p167h8+XKW+7jDeYXrO+6r2e12zp49m26BznPnzhEVFUVkZCSdO3dm48aNORb3jbqR465Tpw4RERHccccdLFu2LM3vfOF8x8bG0rp1a+fqEg7ufL6zKy8/224xQ7Y7OHLkCAAlSpRIs71EiRLs37/fuU9QUBCFChVKt4/j/lY6cuQIxYsXT7e9ePHiLsf36aefUqBAAe69994023v06EH58uUpWbIkv/32G0OHDmXz5s0sXrw4R2K/Edd73B06dOBf//oXUVFR7N27l5dffplWrVqxfv16goODfeJ8X7x4kRdeeIHu3bunWbzSXc738ePHSUpKyvBzmdkxHjlyJMP9r1y5wvHjx4mIiMh0H3c4r3B9x321//73v5w/f56uXbs6t1WpUoUpU6ZQo0YNzpw5wwcffEDTpk3ZvHkzlSpVytFjuB7Xc9wRERGMHz+e6OhoLl26xOeff84dd9zB8uXLuf3224HM3xPecr4PHz7MwoULmTp1aprt7n6+sysvP9selRy9+uqrDB8+PMt91q5dS7169a77OWw2W5qfjTHptl3NlX1uhKvHDenjh+zFN2nSJHr06EFISEia7X379nX+v3r16lSqVIl69eqxYcMG6tat69JjZ1duH/cDDzzg/H/16tWpV68eUVFRzJ8/P11ymJ3HvVF5db4vX75Mt27dsNvtjB49Os3vrDjfWcnu5zKj/a/efj2f9bx2vTFOmzaNV199lTlz5qRJoBs1apRm0EHTpk2pW7cuH330ER9++GHOBX6DsnPclStXpnLlys6fGzduzIEDB3jvvfecyVF2H9Mq1xvjlClTuOmmm7j77rvTbPeU850defXZ9qjkaPDgwdccMVOuXLnreuySJUsCyZlpRESEc/uxY8ecWWjJkiVJTEzk5MmTaVoTjh07RpMmTa7reV3h6nH/+uuvHD16NN3v/vzzz3SZdEZWrlzJzp07mTFjxjX3rVu3LoGBgezatSvXLpZ5ddwOERERREVFsWvXLsC7z/fly5fp2rUre/fuZenSpWlajTKSF+c7I0WLFsXf3z/dX32pP5dXK1myZIb7BwQEUKRIkSz3yc77JTddz3E7zJgxg5iYGL7++mtat26d5b5+fn7Ur1/f+Z632o0cd2qNGjXiiy++cP7szefbGMOkSZN4+OGHCQoKynJfdzvf2ZWnn+1sVSh5oOwWZL/99tvObZcuXcqwIHvGjBnOfQ4dOuR2Bbq//PKLc9vq1atdLtDt1atXulFLmdmyZYsBzIoVK6473pxyo8ftcPz4cRMcHGw+/fRTY4z3nu/ExERz9913m1tvvdUcO3bMpeey8nw3aNDADBw4MM22qlWrZlmQXbVq1TTbBgwYkK5os0OHDmn2ad++vdsV6GbnuI0xZurUqSYkJOSaha0Odrvd1KtXzzzyyCM3EmqOup7jvtp9991nWrZs6fzZW8+3Mf8UpG/ZsuWaz+GO59sBFwuy8+qz7bXJ0f79+83GjRvN8OHDTf78+c3GjRvNxo0bzdmzZ537VK5c2XzzzTfOn//zn/+Y8PBw880335gtW7aYBx98MMOh/JGRkeaHH34wGzZsMK1atXK7od01a9Y0cXFxJi4uztSoUSPd0O6rj9sYY06fPm3y5ctnxowZk+4xd+/ebYYPH27Wrl1r9u7da+bPn2+qVKli6tSp47HHffbsWfPMM8+YVatWmb1795ply5aZxo0bm9KlS3v1+b58+bK58847TWRkpNm0aVOa4b2XLl0yxrjf+XYMcY6NjTXbtm0zTz31lAkLC3OOynnhhRfMww8/7NzfMdx3yJAhZtu2bSY2NjbdcN+ff/7Z+Pv7m//85z9m+/bt5j//+Y/bDu129binTp1qAgICzCeffJLpFAyvvvqq+e6778wff/xhNm7caB555BETEBCQJsG2WnaP+/333zezZs0yv//+u/ntt9/MCy+8YAAzc+ZM5z7eeL4dHnroIdOwYcMMH9Pdz/fZs2ed12bAjBw50mzcuNE5ctbKz7bXJke9evUyQLrbsmXLnPsAZvLkyc6f7Xa7GTZsmClZsqQJDg42t99+e7ps/MKFC2bw4MGmcOHCJjQ01HTu3NnEx8fn0VFd24kTJ0yPHj1MgQIFTIECBUyPHj3SDXG9+riNMWbcuHEmNDQ0w7ls4uPjze23324KFy5sgoKCzM0332yeeOKJdHMCWSm7x/3333+btm3bmmLFipnAwEBTtmxZ06tXr3Tn0tvO9969ezP8XKT+bLjj+f7kk09MVFSUCQoKMnXr1k3TgtWrVy/TvHnzNPsvX77c1KlTxwQFBZly5cplmPR//fXXpnLlyiYwMNBUqVIlzcXUXWTnuJs3b57hee3Vq5dzn6eeesqULVvWBAUFmWLFipm2bduaVatW5eERuSY7x/3222+bm2++2YSEhJhChQqZ2267zcyfPz/dY3rb+TYmuXU7NDTUjB8/PsPHc/fz7Wj1yuw9a+Vn22ZMSjWTiIiIiHjv8iEiIiIi10PJkYiIiEgqSo5EREREUlFyJCIiIpKKkiMRERGRVJQciYiIiKSi5EhEREQkFSVHIiIiIqkoORIRERFJRcmRiIiISCpKjkTEq7z22mvUqFGDsLAwSpQowcCBA7l8+bLVYYmIBwmwOgARkZxijCEpKYlx48ZRunRptm3bRs+ePalZsyYDBw60OjwR8RBaeFZEvFr37t0pVqwYH3zwgdWhiIiHULeaiHiN/fv3M3jwYKpXr06hQoXInz8/X331FZGRkVaHJiIeRMmRiHiF48eP06BBA44fP87IkSP56aefiIuLw9/fn9q1a1sdnoh4ENUciYhXWLBgAVeuXGHatGnYbDYAPvnkExITE5UciUi2KDkSEa9QuHBhzpw5w7fffku1atWYO3cub731FqVLl6ZYsWJWhyciHkQF2SLiFYwxDBw4kKlTpxIaGspDDz3ExYsX2b9/P/PmzbM6PBHxIEqORERERFJRQbaIiIhIKkqORERERFJRciQiIiKSipIjERERkVSUHImIiIikouRIREREJBUlRyIiIiKpKDkSERERSUXJkYiIiEgqSo5EREREUlFyJCIiIpKKkiMRERGRVP4fkxuzu5HtCAoAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6KElEQVR4nO3dd3hU1dbH8e+khwCRTiAQWqQjEHoRRKmCBayooIZuBfW1oCLKBSty9dIJRUVERUQEBVRAlEgNSBOD1EhHegmQ7PePZMaEFCYhyZny+zxPHuXkzMw6c6asrLXP3jZjjEFEREREAPCxOgARERERV6LkSERERCQNJUciIiIiaSg5EhEREUlDyZGIiIhIGkqORERERNJQciQiIiKShpIjERERkTSUHImIiIikoeRI3ML+/ft57bXX2LBhQ4bfPfzwwxQuXDjX933x4kUGDBhAWFgYvr6+1K9fP/eB5oFx48Yxffr0DNt3796NzWbL9HeexGaz8dprr1kdRp547bXXsNls+X7bDz/8kGrVqhEQEIDNZuPEiRM8/PDDVKpUKd1+I0eO5Ouvv85VPNn5559/uO+++yhdujQ2m4077rgjx/dRqVIlHn744TyPzZX98MMP2Gw2bDYbR48eTfe7KVOmcMcdd1CpUiWCg4OpVq0aAwcO5MCBAxZF6138rA5AxBn79+9n+PDhVKpUKc+Tl/HjxzNx4kQ+/PBDoqKirinRygvjxo2jZMmSGb4owsLCiI2NpWrVqtYEJjnWp08fOnXqlK+PsWHDBp588kn69OlD79698fPzo0iRIrzyyis89dRT6fYdOXIkd911V66Sl+y88cYbzJ07l6lTp1K1alWKFy+ep/fvic6cOUPfvn0pV64c+/fvz/D7YcOGcdNNNzFy5EjKly/P9u3beeONN5g3bx5xcXGUKVPGgqi9h5Ij8XqbN28mODiYxx9/3OpQshUYGEizZs2sDkNyIDw8nPDw8Hx9jC1btgDQt29fmjRp4thekEn05s2bqVq1Kg888ECBPWZeOXfuHIUKFSrwx33hhRcoVqwYt956KyNGjMjw+7i4OEqXLu34d5s2bWjYsCGNGzdm8uTJvPzyywUZrtdRW80LHTlyhH79+lGhQgUCAwMpVaoULVu25IcffnDs07ZtW+rUqUNsbCwtWrQgODiYSpUqMW3aNAAWLFhAw4YNKVSoEHXr1uX777/P8Di//PILN998M0WKFKFQoUK0aNGCBQsWZNhv8+bN3H777RQrVoygoCDq16/PjBkzHL9ftmwZjRs3BuCRRx5xlKGvbL3s2LGDLl26ULhwYSpUqMAzzzxDYmJits+FzWZjypQpnD9/3nG/06dPz7aFdeVj29sfW7Zs4f777yc0NJQyZcrw6KOPcvLkyXS3TU5O5sMPP6R+/foEBwdz3XXX0axZM7755hsgpbWwZcsWli9f7ojH3hrJKiZnnufp06djs9lYunQpAwcOpGTJkpQoUYLu3btn+lersypVqkTXrl2ZO3cu9erVIygoiCpVqvDBBx9k2Hfv3r08+OCDlC5dmsDAQGrWrMl7771HcnJylve/e/du/Pz8GDVqVIbf/fzzz9hsNr744gsgZ+fhwoULvPjii1SuXJmAgADKly/PY489xokTJzI9vm+//ZYGDRoQHBxMzZo1+fbbb4GU57VmzZqEhITQpEkT1q5dm+72mbXGZs+eTYcOHQgLC3Pc3wsvvMDZs2ezfqKz0LZtWx588EEAmjZtis1mc1Qcr2yr2Ww2zp49y4wZMxyvrbZt22Z7///88w+DBg2ifPnyBAQEUKVKFYYOHep4X9lfkz/88APbtm1z3O+yZcuyvM9Lly7xf//3f5QtW5ZChQrRqlUrVq9enem+Bw8epH///oSHhxMQEEDlypUZPnw4ly9fTrdfQkICd911F0WKFOG6667jgQceYM2aNRneL/YW/KZNm+jQoQNFihTh5ptvBlLa6yNGjKBGjRqOz8VHHnmEI0eOZIhr9uzZNG/enJCQEAoXLkzHjh2Ji4vL9rlMa8WKFUyaNIkpU6bg6+ub6T5pEyO7qKgofH192bdvn9OPJblkxOt07NjRlCpVykyaNMksW7bMfP311+bVV181n332mWOfNm3amBIlSpjq1aubmJgYs2jRItO1a1cDmOHDh5u6deuaWbNmmYULF5pmzZqZwMBA8/fffztuv2zZMuPv72+ioqLM7Nmzzddff206dOhgbDZbusf5448/TJEiRUzVqlXNRx99ZBYsWGDuv/9+A5i33nrLGGPMyZMnzbRp0wxgXn75ZRMbG2tiY2PNvn37jDHG9O7d2wQEBJiaNWuad9991/zwww/m1VdfNTabzQwfPjzb5yI2NtZ06dLFBAcHO+738OHDZteuXQYw06ZNy3AbwAwbNszx72HDhhnAVK9e3bz66qtmyZIlZvTo0SYwMNA88sgj6W770EMPGZvNZvr06WPmzZtnvvvuO/Of//zH/Pe//zXGGLN+/XpTpUoV06BBA0c869evN8aYTGNy9nm2P39VqlQxTzzxhFm0aJGZMmWKKVasmLnpppvSxWjfN7Njv1JERIQpX768qVixopk6dapZuHCheeCBBwxg3nnnHcd+hw8fNuXLlzelSpUyEyZMMN9//715/PHHDWAGDhyY7fN75513mooVK5rLly+n2+/uu+825cqVM5cuXcrReUhOTjYdO3Y0fn5+5pVXXjGLFy827777rgkJCTENGjQwFy5cSHd84eHhpk6dOo7Xe9OmTY2/v7959dVXTcuWLc1XX31l5s6da66//npTpkwZc+7cOcft7TGl9cYbb5j333/fLFiwwCxbtsxMmDDBVK5cOcN5yOy2V9qyZYt5+eWXHecrNjbW7NixwxiT8r6IiIhw7BsbG2uCg4NNly5dHK+tLVu2ZHnf58+fN/Xq1TMhISHm3XffNYsXLzavvPKK8fPzM126dDHGGHPhwgUTGxtrGjRoYKpUqeK435MnT2Z5v7179zY2m80899xzZvHixWb06NGmfPnypmjRoqZ3796O/Q4cOGAqVKhgIiIizMSJE80PP/xg3njjDRMYGGgefvhhx35nzpwx1apVM8WLFzdjx441ixYtMoMHDzaVK1fO8Dru3bu38ff3N5UqVTKjRo0yP/74o1m0aJFJSkoynTp1MiEhIWb48OFmyZIlZsqUKaZ8+fKmVq1a6c7pf/7zH2Oz2cyjjz5qvv32W/PVV1+Z5s2bm5CQkGyfT7tz586ZyMhI89xzzxlj/j3PR44cueptly5dagDH54XkHyVHXqhw4cLm6aefznafNm3aGMCsXbvWse3YsWPG19fXBAcHp0uENmzYYADzwQcfOLY1a9bMlC5d2pw+fdqx7fLly6ZOnTomPDzcJCcnG2OMue+++0xgYKDZu3dvusfv3LmzKVSokDlx4oQxxpg1a9Zk+YXdu3dvA5jPP/883fYuXbqY6tWrX+XZSLl9SEhIum25SY7efvvtdPsNGjTIBAUFOY71559/NoAZOnRotvHUrl3btGnTJsP2zGJy9nm2JzyDBg1Kd59vv/22AcyBAwcc22bMmGF8fX3NjBkzso3TmJTkwWazmQ0bNqTb3r59e1O0aFFz9uxZY4wxL7zwggHMqlWr0u03cOBAY7PZzPbt2x3brnx+7V8Ic+fOdWz7+++/jZ+fX7rk19nz8P3332e63+zZsw1gJk2alO74goODTUJCgmOb/fUeFhbmOD5jjPn6668NYL755psMMWUlOTnZXLp0ySxfvtwAZuPGjU7f1s5+btesWZNu+5XJkTHGhISEpEtAsjNhwoRM31dvvfWWAczixYsd29q0aWNq16591fvctm2bAczgwYPTbZ85c6YB0sXWv39/U7hwYbNnz550+7777rsGcCQiY8eONYD57rvv0u3Xv3//TJMjwEydOjXdvrNmzTKAmTNnTrrt9s+dcePGGWOM2bt3r/Hz8zNPPPFEuv1Onz5typYta+65556rPgfPPPOMqVKliiPhcjY5OnXqlKlZs6apUKFCuve75A+11bxQkyZNmD59OiNGjOC3337j0qVLme4XFhZGVFSU49/FixendOnS1K9fn3Llyjm216xZE4A9e/YAcPbsWVatWsVdd92VbnCzr68vDz30EAkJCWzfvh2An376iZtvvpkKFSqke+yHH36Yc+fOERsb69Qx2Ww2unXrlm5bvXr1HDEVhNtuuy3D41+4cIHDhw8D8N133wHw2GOP5cnj5eR5zi5GIN3z1KtXLy5fvkyvXr2ciqN27drccMMN6bb17NmTU6dOsX79eiDlPNeqVSvdmBhIOc/GGH766acs779t27bccMMNjB071rFtwoQJ2Gw2+vXrl2H/q50H+2NdOeD97rvvJiQkhB9//DHd9vr161O+fHnHv+2v97Zt26Ybq3Ll+yArO3fupGfPnpQtWxZfX1/8/f1p06YNANu2bcv2tgXpp59+IiQkhLvuuivddvvzduXz5IylS5cCZBibdM899+Dnl34I7LfffstNN91EuXLluHz5suOnc+fOACxfvtzx3yJFimQY+H7//fdnGUePHj0yPNZ1111Ht27d0j1W/fr1KVu2rKNNuGjRIsd7I+1+QUFBtGnTJtt2IsDq1asZM2YMEydOJDg4ONt907pw4QLdu3dnz549fPHFF5ZfNOINNCDbC82ePZsRI0YwZcoUXnnlFQoXLsydd97J22+/TdmyZR37ZXbFSUBAQIbtAQEBQMobGOD48eMYYwgLC8twe3tSdezYMcd/ndnvagoVKkRQUFC6bYGBgY6YCkKJEiUyPD7A+fPngZSxXr6+vume42uRk+fZ2RhzI7PjsW9Le56vvKw8uzivZL8aa/v27VSpUoXJkydz1113ZfrYVzvGY8eO4efnR6lSpdLtZ7PZKFu2bIZYsnq9X+19kJkzZ87QunVrgoKCGDFiBNdffz2FChVi3759dO/e/ZrOQ147duwYZcuWzTBmqnTp0vj5+Tn93rzyPiHja8bPzy/DeTt06BDz58/H398/0/uyX/p+7NixTK/cyupqrkKFClG0aNEMj3XixAnHOczqsQ4dOgTgGAN5JR+f7OsNjz76KN27d6dRo0aO8W3218upU6cIDAykSJEi6W6TmJjInXfeyS+//MK3335L06ZNs30MyRtKjrxQyZIlGTNmDGPGjGHv3r188803vPDCCxw+fDjTgdU5VaxYMXx8fDKdj8M++LdkyZJAyheZM/sVNHuideWA7tx8IdiVKlWKpKQkDh48mGlCk1M5eZ7z08GDB7PcZv/Cu9bz3LNnT55//nnGjh1Ls2bNOHjwYK4rcCVKlODy5cscOXIkXYJkjOHgwYNZfvHlhZ9++on9+/ezbNkyR7UIyDAQ3BWUKFGCVatWYYxJlyAdPnyYy5cv5+q1ZX89HDx4MF017vLlyxneWyVLlqRevXr85z//yfS+7Il1iRIlMh3QndnrEsh07ij7BQpZff7ZExb7MX/55ZdERERkum92tmzZwpYtWxwXEaRVtWpVbrjhhnRzuSUmJnLHHXewdOlS5s2b5xg8LvlPbTUvV7FiRR5//HHat2/vaIFcq5CQEJo2bcpXX32V7i/h5ORkPvnkE8LDw7n++usBuPnmmx1fGGl99NFHFCpUyHHpel5UOHKiTJkyBAUF8fvvv6fbPm/evFzfp70dMH78+Gz3CwwMdOo4c/I856ctW7awcePGdNs+/fRTihQpQsOGDYGU87x169YMr7GPPvoIm83GTTfdlO1jBAUF0a9fP2bMmMHo0aOpX78+LVu2zFW89i+YTz75JN32OXPmcPbs2Xz9ArJ/Mdtfz3YTJ07Mt8dMy9nXFqQ8T2fOnMkwaeRHH33k+H1O2a+OmzlzZrrtn3/+eYYr0Lp27eqYIqBRo0YZfuzJUZs2bTh9+rSjbW332WefOR1X165dOXbsGElJSZk+VvXq1QHo2LEjfn5+/PXXX5nu16hRo2wfZ+nSpRl+evfuDcDXX3/NlClTHPvaK0Y//fQTc+bMoWPHjk4fj1w7VY68zMmTJ7npppvo2bMnNWrUoEiRIqxZs4bvv/+e7t2759njjBo1ivbt23PTTTfx7LPPEhAQwLhx49i8eTOzZs1yfEkMGzbMMbbg1VdfpXjx4sycOZMFCxbw9ttvExoaCqT8VRUcHMzMmTOpWbMmhQsXply5cunGPuUlm83Ggw8+6JjU7oYbbmD16tV8+umnub7P1q1b89BDDzFixAgOHTpE165dCQwMJC4ujkKFCvHEE08AULduXT777DNmz55NlSpVCAoKom7dupnep7PPc0589NFHPProo0ydOtWpcUflypXjtttu47XXXiMsLIxPPvmEJUuW8NZbbznG5AwePJiPPvqIW2+9lddff52IiAgWLFjAuHHjGDhwoFNJ3KBBg3j77bdZt25dui+RnGrfvj0dO3bk+eef59SpU7Rs2ZLff/+dYcOG0aBBAx566KFc3/fVtGjRgmLFijFgwACGDRuGv78/M2fOzJBc5pe6deuybNky5s+fT1hYGEWKFHF88V+pV69ejB07lt69e7N7927q1q3LL7/8wsiRI+nSpQu33HJLjh+/Zs2aPPjgg4wZMwZ/f39uueUWNm/ezLvvvpuh1fX666+zZMkSWrRowZNPPkn16tW5cOECu3fvZuHChUyYMIHw8HB69+7N+++/z4MPPsiIESOoVq0a3333HYsWLQKu3uoCuO+++5g5cyZdunThqaeeokmTJvj7+5OQkMDSpUu5/fbbufPOO6lUqRKvv/46Q4cOZefOnXTq1IlixYpx6NAhVq9eTUhICMOHD8/ycTKbOsE+Tqlly5bpqnF33XUX3333HUOHDqVEiRL89ttvjt8VLVqUWrVqXfW45BpYOhxcCtyFCxfMgAEDTL169UzRokVNcHCwqV69uhk2bFi6K2+yuvokIiLC3HrrrRm2A+axxx5Lt23FihWmXbt2JiQkxAQHB5tmzZqZ+fPnZ7jtpk2bTLdu3UxoaKgJCAgwN9xwQ6ZXic2aNcvUqFHD+Pv7p7uiKbOrzYxx/mqfrG5/8uRJ06dPH1OmTBkTEhJiunXrZnbv3p3l1WpXXm1iv4po165djm1JSUnm/fffN3Xq1DEBAQEmNDTUNG/ePN3zsnv3btOhQwdTpEgRAziuOMrqCjpnnuesrmiyXwm2dOnSDPs6eyn/rbfear788ktTu3ZtExAQYCpVqmRGjx6dYd89e/aYnj17mhIlShh/f39TvXp1884775ikpKR0+135/KbVtm1bU7x48XSXVtvl5DycP3/ePP/88yYiIsL4+/ubsLAwM3DgQHP8+PFMj+9Kmb3e7ecn7RQGmb0GV65caZo3b24KFSpkSpUqZfr06WPWr1+f4TnPj6vVNmzYYFq2bGkKFSpkgEyvikzr2LFjZsCAASYsLMz4+fmZiIgI8+KLL6ab7sAY569WM8aYxMRE88wzz5jSpUuboKAg06xZMxMbG2siIiIyXEl35MgR8+STT5rKlSsbf39/U7x4cRMVFWWGDh1qzpw549hv7969pnv37qZw4cKmSJEipkePHmbhwoUGMPPmzUv3nGT2XjfGmEuXLpl3333X3HDDDSYoKMgULlzY1KhRw/Tv39/Ex8en2/frr782N910kylatKgJDAw0ERER5q677jI//PCDU89BWlm9boEsf6523uTa2YwxpiCSMBHxPJUqVaJOnTqOSRHz0+HDh4mIiOCJJ57g7bffzvfHE/c2cuRIXn75Zfbu3Zvvs5SL51FbTURcWkJCAjt37uSdd97Bx8cnw3phIv/73/8AqFGjBpcuXeKnn37igw8+4MEHH1RiJLmi5EhEXNqUKVN4/fXXqVSpEjNnzkx3lZMIpFye//7777N7924SExOpWLEizz//vNYfk1xTW01EREQkDcsv5f/555/p1q0b5cqVw2azZbhsNDPLly8nKirKscjlhAkT8j9QERER8QqWJ0dnz57lhhtucPSMr2bXrl106dKF1q1bExcXx0svvcSTTz7JnDlz8jlSERER8QYu1Vaz2WzMnTuXO+64I8t9nn/+eb755pt0axANGDCAjRs3Or0Ol4iIiEhW3G5AdmxsLB06dEi3rWPHjsTExHDp0qVM1+FJTExMtwxEcnIy//zzDyVKlMjVJHkiIiJS8IwxnD59mnLlyjk1wWduuV1ydPDgwQwLCpYpU4bLly9z9OjRTNesGjVqVLazloqIiIj72LdvX75O0+B2yRFkXDjQ3hnMqgr04osvMmTIEMe/T548ScWKFdm3b1+GKeuv1KBBA3bu3Mn3339P8+bNgZSVma+//npsNptLLhgp4jX+/pu/V62i8yuvsCchgcKFCzuWI1m5ciUfffQRSUlJtGrcmDkvvEBQzZqgqQBELLF582ZatmxJqVKl2LFjh2P7+PHjeeGFF+jRowdTp07N9j5OnTpFhQoVHIsB5xe3S47Kli2bYbXlw4cP4+fn51jx+UqBgYEZFnqElPVprpYc+fr6AlC4cGHHvhcuXABSkrKr3V5E8klMDOf79uUhY9gDVC1ViiWrVlG5cmUA+vTpQ+/evenWqRO/rFnDsz168JGPD0yaBNHR1sYu4oXsay36+fml++4MDg4GwN/f3+nv1PweEmP51Wo51bx5c5YsWZJu2+LFi2nUqFGm442uVWbj1dP2OV1oPLuI90hIgH79eM0Y1gElgCXHjlH5is+ANlWr8nViIr7Ax8AnycnQv3/K7UWkQCUnJwNZLwbsSt+nlidHZ86cYcOGDWzYsAFIuVR/w4YN7N27F0hpiaVdGXzAgAHs2bOHIUOGsG3bNqZOnUpMTAzPPvtsvsaZNktNe2LtJ1tEClB8PBuSk3kv9Z9TgcrJyZCmVG/fr50xDEv95xDgRFJSxv1EJN9llRy54oVRlidHa9eupUGDBjRo0ACAIUOG0KBBA1599VUADhw44EiUACpXrszChQtZtmwZ9evX54033uCDDz6gR48e+RLf1SpHSo5ECp6pVo1BQBJwF3AbgK8vVKuWfsfISPDx4QWgBnAEeN1my7ifiOQ7d6ocWT7mqG3bttk+IdOnT8+wrU2bNqxfvz4fo8pIlSMR1/Hdpk3EAsHAfyElMZo4Ea68eiU8HCZNwr9/f/6blERH4EMfHx6/eJEqBR61iHdT5ciDqHIk4lqMMQwbltIoG9SvH+WWLoXdu7MeZB0dDbt302HpUjq2acPlpCTeeeedggtYRAD3qhwpOXKSKkcirmHRokWsXbuWQoUK8X9vvAFt22asGF0pPBzatuWl118HYNq0aRmuehWR/KXKkQdR5UjEtXz44YcA9OvXj9KlS+fotq1bt6ZFixYkJiby3//+Nz/CE5EsqHLkQTKbYFLJkYg1duzYwXfffQfAY489luPb22w2nnvuOQCmTJmSblkhEclf9u/TrCpHSo7ckJIjEeuNHz8eYwydO3emWi6vOOvatSvlypXj6NGjfP3113kboIhkyf59eWUbTW01N6S2mohruHjxIjNmzAByVzWy8/PzIzp18PakSZPyJDYRuTq11TxQ2sw27f8rORIpGIsWLeLYsWOULVuWjh07XtN99enTB5vNxk8//cTOnTvzKEIRyY4GZHuQzDJZm83mOJlKjkQKxsyZMwG4//778fO7tinaKlasyC233ALArFmzrjk2Ebk6VY480JWZrf3kKjkSyX+nTp1i3rx5ADzwwAN5cp89e/YE4NNPP3WpD2URT6XKkQfJ6kNTyZFIwfnqq6+4cOECNWrUoGHDhnlyn3feeSeBgYFs3bqVTZs25cl9ikjWVDnyQKociVjn008/BeDBBx/Ms78yQ0NDufXWW9Pdv4jkH1WOPIgqRyLWOn78OD/99BMA9957b57et/3+5s6dm6f3KyIZqXLkgVQ5ErHGwoULSUpKonbt2rme2ygrnTp1wt/fnz///JM//vgjT+9bRNLTJJAeRJUjEWvZB2LffvvteX7fRYsWpV27dukeR0Tyx9UqR67E9SO0WGbLh4CSI5GCkJiY6FguJD+So7T3q+RIJH9dbcyRKkduSMmRSMFbunQpZ86cISwsjEaNGuXLY9x2220A/Pbbbxw8eDBfHkNENCDbo6itJmId+9pnt99+e76V4suXL0/jxo0xxjB//vx8eQwRyXptNTtVjtyQKkciBcsYw8KFC4F/qzv5xd5aW7BgQb4+jog3U+XIg2SVyWr5EJH8tX37dvbt20dgYCBt2rTJ18fq1KkTAD/99BOXLl3K18cS8Va6lN8DZVU5cqWTKeJJFi9eDEDr1q0pVKhQvj5WgwYNKFmyJKdPnyY2NjZfH0vEW6ly5EE05kjEGvbkqEOHDvn+WD4+PrRv3z7d44pI3lLlyANpzJFIwUlMTGTp0qUAjqQlv3Xs2BGARYsWFcjjiXgbXcrvQVQ5Eil4sd98w7lz5yhdsiT16tUrkMe0V6jWrVvH0a+/hoSEAnlcEW+R1QzZrsj1I3QRqhyJFJCYGBbfcw8A7Y8exWfatAJ52LCwMOqWL48xhiV33gkRERATUyCPLeINVDnyIKociRSghATo148lqf/sANC/f8FUcRIS6Pj33wApj5+cXHCPLeIFtHyIB9HyISIFKD6eo8nJrEv9Z3uApCTYsaNAHvvm1P9dZt9WUI8t4gVUOfJASo5ECkBkJEttNgxQBwgD8PWFatUK5LFb2mz4AruAPQX52CJeQJfyexC11UQKUHg4y9u2BaAtpCQnEydCeHiBPHaRyZOxr+C23GYruMcW8QJaPsQDqXIkUjCWHzkCQJvXXoPduyE6uuAePDqatoMGAbDs7rsL9rFFPJwqRx5ElSORgnP06FE2b94MwI0DB1pStWnbrRsAy9asKfDHFvFkmgTSA6lyJJL/VqxYAUDNmjUpXbq0JTG0bNkSX19fdu3axZ49eyyJQcQTqXLkQVQ5Eik4y5cvB8j3hWazU6RIERo1apQuHhG5dlebBFKVIzekypFI/nOF5Aigbeqg8GXLllkah4gn0aX8HkSVI5GCcfz4cTZu3AgoORLxRJoE0gOpciSSv3755ReMMURGRhIWFmZpLGnHHe3bt8/SWEQ8hSpHHkSVI5GC4SotNUgZd1S/fn0Afv31V2uDEfEQqhx5EC0fIlIw7FequUJyBNCiRQsAVq5caXEkIp5BlSMPpORIJP+cP3+e9evXA9CqVSuLo0nRsmVLQJUjkbyiS/k9iNpqIvlv7dq1XL58mbCwMCIiIqwOB/g3Odq4cSNnzpyxOBoR96dJID2QKkci+cfeumrRooXL/BUZHh5OxYoVSUpKYtWqVVaHI+L2slpbzVXe82kpOboKVY5E8l/a5MiVaNyRSN7RwrMeSJUjkfxhjHHZ5EjjjkTyjv370tfXN912Dch2Q6ocieSvHTt2cPToUQIDA2nQoIHV4aRjT45iY2NJSkqyOBoR95ZVcuSKlBw5SZUjkfxhrxo1atSIwMBAi6NJr27duhQuXJhTp06xdetWq8MRcWu6lN+DZHWy7CdTyZHItXHVlhqAn58fzZo1A9RaE7lWmgTSA2VVOXKlTFfEHblycgT/xqXkSOTaqHLkQTTmSCT/nDhxgi1btgDQvHlzi6PJnH3cka5YE7k2qhx5EC0fIpJ/Vq1ahTGGqlWrUqZMGavDyVSzZs2w2Wzs3LmTgwcPWh2OiNtS5cgDKTkSyXuu3lIDKFq0KLVq1QJg9erVFkcj4r7sV3xq+RAPoLaaSP6xJ0eu2lKza9q0KYBmyha5Ble7lF+VIzekypFI3kpOTmbNmjUAjivCXJWSI5Frp7aaB1HlSCR/xMfHc/LkSYKDg6lTp47V4WTLnhytWbNG73mRXNKAbA+kypFI3rKP32nYsCH+/v4WR5O92rVrU6hQIU6dOsUff/xhdTgibkmVIw+iypFI/rC3qJo0aWJxJFfn5+dHo0aNALXWRHJLlSMPpMqRSN6yV47cITmCf+PUFWsiuaPKkQdR5Ugk7yUmJrJhwwbg3/E8rk6DskWujSpHHkSTQIrkvY0bN3Lp0iVKlixJpUqVrA7HKfbk6Pfff+fcuXMWRyPifq42z5EqR25IyZFI3kk73sgVJ4DLTHh4OGFhYSQlJbF+/XqrwxFxO1eb58iVKDm6CrXVRPKeu403gpQ/kNRaE8k9jTnyQKocieQde3LkLuON7JQcieSekiMPosqRSN46fvw4f/75JwCNGze2OJqcUXIkknsakO2BVDkSyRv2JUOqVq1KiRIlLI4mZ6KiorDZbOzdu5eDBw9aHY6IW1HlyIOociSSt9xxvJFd0aJFqVWrFqDqkUhOqXKUQ+PGjaNy5coEBQURFRXFihUrst1/5syZ3HDDDRQqVIiwsDAeeeQRjh07lq8xqnIkkjfcdbyRnT1uTQYpkjO6lD8HZs+ezdNPP83QoUOJi4ujdevWdO7cmb1792a6/y+//EKvXr2Ijo5my5YtfPHFF6xZs4Y+ffoUaNxKjkRyzhjj1pUj0LgjkdzSpfw5MHr0aKKjo+nTpw81a9ZkzJgxVKhQgfHjx2e6/2+//UalSpV48sknqVy5Mq1ataJ///6sXbs2X+NU5Ujk2u3du5dDhw7h5+dH/fr1rQ4nV9JWjvT+F3Gexhw56eLFi6xbt44OHTqk296hQwdWrlyZ6W1atGhBQkICCxcuxBjDoUOH+PLLL7n11luzfJzExEROnTqV7scZ2Z0oJUciObf6u+8AqFezJsHBwRZHkzu1a9emUKFCnD59mu0ffQQJCVaHJOIWNObISUePHiUpKYkyZcqk216mTJksrwRp0aIFM2fO5N577yUgIICyZcty3XXX8eGHH2b5OKNGjSI0NNTxU6FCBafiS5scqXIkco1iYlg9cCAATTdtgpgYiwPKHT8/P6LKlwdg9SOPQESE2x6LSEFS5SiHrkw8jDFZLimwdetWnnzySV599VXWrVvH999/z65duxgwYECW9//iiy9y8uRJx8++ffuuOUYlRyI5kJAA/fphH8LcBKB/f/esuiQk0Dg+HiDleJKT3fdYRAqQO1WO/Kx88JIlS+Lr65uhSnT48OEM1SS7UaNG0bJlS5577jkA6tWrR0hICK1bt2bEiBGEhYVluE1gYCCBgYE5jk9tNZE8Eh/P5eRk7CMDmwAkJcGOHRAebmFguRAfj30o+Rr7Nnc9FpECpMqRkwICAoiKimLJkiXpti9ZsoQWLVpkeptz585leGLtI9/z84m9snJk/7eSIxEnREay1WbjHFAEqA7g6wvVqlkbV25ERtIk9f2/AUgE9z0WkQKk5CgHhgwZwpQpU5g6dSrbtm1j8ODB7N2719Eme/HFF+nVq5dj/27duvHVV18xfvx4du7cya+//sqTTz5JkyZNKFeuXJ7G5kzlyJVOpojLCg9n9UMPAdCY1D9oJk50z0pLeDiVJk2iJHAJ2Ojj477HIlKAsprnyBVZ2lYDuPfeezl27Bivv/46Bw4coE6dOixcuJCIiAgADhw4kG7Oo4cffpjTp0/zv//9j2eeeYbrrruOdu3a8dZbb+VrnBpzJHJtVqe2tpv07AlvveXWyYStTx+azJrFwp9+YvXw4TSJjrY6JBGXl9U8R65YObI8OQIYNGgQgwYNyvR306dPz7DtiSee4IknnsjnqDTmSCQv2Sd/bNyjh1snRnaNW7dOSY5SF9EVkey504Bs14/QRahyJJJ7586dY/PmzYD7zox9JftxaBkREedozJGHUOVIJG9s2LDBMadZ+dQ5gtxd48aNAdi+fTsnT560OBoR16fKkQdS5Ugk99asSbnovXHjxlnOYeZuSpUqReXKlQHyffkiEU+gypGHUOVIJG+kTY48iVprIs5T5chDaPkQkbzhqcmR/XiUHIlcXVaX8qty5MaUHInkzokTJ/gz9YouT0uOVDkScZ47Xcqv5CgbaquJXLt169YBUKlSJUqWLGlxNHmrYcOG+Pj4sH//fv7++2+rwxFxaWqreSBVjkRyx1NbagAhISHUqVMH+Pc4RSRzGpDtIVQ5Erl2npwcgVprIs5S5cgDqXIkkjtKjkQEVDnyGKociVybQ4cOsW/fPmw2G1FRUVaHky/sSd+aNWv0eSCSDVWOPJAqRyI5Z68a1ahRgyJFilgcTf6oXbs2wcHBnDp1ivj4eKvDEXFZqhx5CFWORK6Np7fUAPz9/WnYsCGg1ppIdrKa58gVuX6ELkKVI5Gc84bkCDTuSMQZmufIQ6hyJJJ7xhglRyLicLUxR0qO3ISWDxHJvT179nD06FH8/Py44YYbrA4nX9mTvw0bNpCYmGhxNCKu6WpjjlyJkiMnKTkSyRl71ahevXoEBQVZHE3+qlKlCsWLF+fixYv8/vvvVocj4pI0INtDqK0mknve0lKDlA93e2tNM2WLZE6X8nsgVY5EcsabkiPQuCORq1HlyEOociSSO8nJyY4FZ5UciQjoUn6PpMqRiPO2b9/O6dOnCQ4OplatWlaHUyDsSeAff/zByZMnLY5GxPWocuQhsjtR9pOp5EgkI3tLrWHDhvj5+VkcTcEoXbo0ERERGGMcVTMR+VdW8xy5IiVHTlLlSMR53jbeyE6DskWypsqRh3BmzJErnUwRV+HtyZHGHYlkpKvVPJAqRyLOuXjxIhs2bACUHIlIirSFBFWO3JyuVhPJuc2bN5OYmMh1111HtWrVrA6nQDVs2BAfHx8SEhLYv3+/1eGIuIy035VaPsTNafkQkZyzt9QaNWrkkssC5KfChQs7rs7TuCORf2WXHLni54SSIycpORJxjreON7LToGyRjOxzHIHaam7PmbZa2hMuIkqONO5IJKO0hQRdyu9BVDkSubpz586xZcsWQMnRmjVr9PkgksqZtpoqR24iuxNlz3z14Sfyr7i4OJKSkihbtizly5e3OhxL1KlTh6CgIE6cOMGOHTusDkfEJTgzINuVuH6ELkptNZGM0rbUXHGQZUHw9/enQYMGgFprInaqHHkQXcovkjPePt7ITuOORNJT5cgDZfYXsNpqIhkpOUqhK9ZE0lPlyIPoajUR5504cYL4+HggZY4jb2ZPjuLi4rh48aLF0YhYL+13ZVYtdyVHbkaVI5Grs1dJKleuTMmSJS2OxlpVq1alWLFiJCYmsmnTJqvDEbFcduuqueL4RCVH2dCYIxHnrVq1CoBmzZpZHIn1bDabo7WocUci/35XZjfHkSpHbsJ+ojLLatVWE0nPnhw1bdrU4khcgwZli/xLlSMPpLaaSPaMMUqOrqBB2SL/ciY5UuXITaitJuKcXbt2ceTIEfz9/alfv77V4bgEe1tt69atnD592uJoRKyVXXLkitwjSouprSaSPXvVqH79+gQFBVkcjWsoW7YsFStWxBjDunXrrA5HxFKqHHkQLR8i4pxVP/4IQNPatS2OxLU4xh3NmgUJCRZHI2IdVY48kCpHItmIiWFVTAwATWfMgNT/F2ic+gfW6kmTICJCz414Lft3pSpHHkBjjkSuIiGBi337Epf6z2bGQP/+qpIAJCTQ5KuvAFgDkJys50a8li7l90C6Wk0kC/HxbDSGRKAEUBUgKQm0Gj3ExxNlDDZgL3AQ9NyI19Kl/B5Ey4eIXEVkJKtSP9iaADYAX1+oVs3KqFxDZCRFfHyolfrPNaDnRryWM2OOVDlyE85MAqnKkXi18HB+Sx103BRSvvwnToTwcEvDcgnh4TBpEk1SPz9W22x6bsRrqXLkgdRWE8naqmPHAGj61luwezdER1sbkCuJjqbxiBEArG7dWs+NeC1VjjyIM201Y4xLnVCRgnTs2DF2pI6hadKnj6oimWjSsSMAazZt0meFeC1VjjxQdm01UPVIvJd93bDIyEiKFy9ucTSuqW7dugQGBnL8+HH++usvq8MRsYQmgfQgzkwCCUqOxHvZZ8Zu1qyZxZG4roCAABo0aABoEVrxXtnNc+SK3CNKi12tcqQr1sRbabFZ5zhmylZyJF4qu3mOVDlyM6ociWTNGKPkyEn2RWiVHIm30oBsD6TKkUhG8fHxHD9+nMDAQOrVq2d1OC7NXjmKi4vj0qVLFkcjUvA0INuDOHO1GqhyJN7JXjVq2LAhAQEBFkfj2qpVq8Z1113HhQsX2Lx5s9XhiBQ4VY48UHbzHIGSI/FOaqk5z8fHR6018WqqHHkQZytHaquJN4qNjQV0pZqzNChbvJkqRx4ku+VD0m5T5Ui8zZkzZ9i4cSMALVu2tDga92BPjuwVNxFvkt2l/KocuamskiOtrybeavXq1SQlJVGhQgXCNSu2U+zJ0datWzl58qTF0YgUrOwu5bdT5chNXO1E2ZMjtdXE26xcuRJQ1SgnypYtS5UqVTDG8Ntvv1kdjkiB0pgjD5TViVPlSLyVPTlq0aKFxZG4F/vzZX/+RLyFlg/xIFc7UfbyoJIj8SbJycmOwdhKjnLGXmn79ddfLY5EpGA5MyDblbhHlBa7WuVIbTXxJtu2bePEiRMUKlRIkz/mkD05+u2337h8+bLF0YgUHFWOcmHcuHFUrlyZoKAgoqKiWLFiRbb7JyYmMnToUCIiIggMDKRq1apMnTo1z+NydsyRKkfiTewtoSZNmuDv729xNO6lVq1aFC1alLNnz7Jp0yarwxEpMLqUP4dmz57N008/zdChQ4mLi6N169Z07tyZvXv3Znmbe+65hx9//JGYmBi2b9/OrFmzqFGjRr7FmFXlyN5WU+VIvIkGY+eer68vzZs3B9RaE++iAdk5NHr0aKKjo+nTpw81a9ZkzJgxVKhQgfHjx2e6//fff8/y5ctZuHAht9xyC5UqVaJJkyb5MvZBlSORjDQY+9po3JF4o+zmObJT5SjVxYsXWbduHR06dEi3vUOHDllezfHNN9/QqFEj3n77bcqXL8/111/Ps88+y/nz57N8nMTERE6dOpXuJyeuVjlSciTe4siRI/z555+AZsbOLV2xJt4ou3mOXLFy5Gflgx89epSkpCTKlCmTbnuZMmU4ePBgprfZuXMnv/zyC0FBQcydO5ejR48yaNAg/vnnnyzHHY0aNYrhw4fnOD7NcySSnv0qtZo1a1K8eHGLo3FPTZs2xdfXl71795KQkKBJNMUraMxRLlyZNRpjsswkk5OTsdlszJw5kyZNmtClSxdGjx7N9OnTs6wevfjii5w8edLxs2/fPqfiym75EFBbTbyPWmrXrnDhwtxwww2AWmviPTTmKAdKliyJr69vhirR4cOHM1ST7MLCwihfvjyhoaGObTVr1sQYQ0JCQqa3CQwMpGjRoul+ckJtNZEUSo7yhlpr4m1UOcqBgIAAoqKiWLJkSbrtS5YsyfLDt2XLluzfv58zZ844tv3555/4+PjkeXlabTWRf128eJE1a9YAulLtWmlQtngbVY5yaMiQIUyZMoWpU6eybds2Bg8ezN69exkwYACQ0hLr1auXY/+ePXtSokQJHnnkEbZu3crPP//Mc889x6OPPkpwcHC+xKi2mgjExcVx4cIFihcvzvXXX291OG7Nnhxt2LCBs2fPWhyNSP7TJJA5dO+99zJmzBhef/116tevz88//8zChQuJiIgA4MCBA+nmPCpcuDBLlizhxIkTNGrUiAceeIBu3brxwQcf5HlsWj5E5F9pW2qu+JeeO6lQoQLh4eEkJSWxevVqq8MRyXfudim/pVer2Q0aNIhBgwZl+rvp06dn2FajRo0Mrbj8pOVDROCXX34BNN4or7Rs2ZLZs2fz66+/ctNNN1kdjki+UlvNg2gSSJEUxhjHsj433nijxdF4BntrTYOyxRtkN8+RnStVjpQcOUHLh4i32759O0eOHCEoKIhGjRpZHY5HSHvFmj5DxNOpcuRBVDkSSfHzzz8DKRMYBgYGWhyNZ7jhhhsoUqQIJ0+e1CK04vF0Kb8H0tVq4u3syZFaannHz8+PVq1aAbB8+XKLoxHJX6oceRBnr1ZTSVw8nZKj/GF/Pu3Pr4inUuXIg2j5EBHYs2cP+/btw8/Pj+bNm1sdjkdJmxy50heDSF5T5cgDKTkSb2avakRFRRESEmJxNJ6lUaNGBAcHc/ToUbZt22Z1OCL5xt3mOVJylA211UTUUstPAQEBjmqcWmviybK7lF+VIzelypF4M/uXduvWrS2OxDNp3JF4A7XVPIiWDxFvd+jQIf78809sNpvjyirJW23atAFSrlhzpbaCSF5yZkA2uE5rTcmRE7R8iHgr+6zYdevWpVixYhZH45maNm2Kv78/+/fvZ+fOnVaHI5IvVDnyIJoEUrzdzwsXAnBjw4YWR+K5goODadKkCQA/T5wICQkWRySS9+zfk1dLhFQ5ciNaPkS8UkwMP0+bBsCNM2ZATIzFAXmuNqGhACx/5x2IiNBzLR7H/j2pAdkeQJUj8VoJCRzv25ffU//Z2hjo319VjfyQkMCN330HwM8Aycl6rsXjZJccpaXKkRvR1WrideLj+dkYDFAdKAuQlAQ7dlgblyeKj6eFMfgCu4B9oOdaPI4u5fcgmudIvFZkJD+l/m87+zZfX6hWzaKAPFhkJEV8fLCP6loOeq7F4zgzCSSocuQWtHyIeK3wcH4qXx5ITY58fWHiRAgPtzQsjxQeDpMm0Tb1c2apzabnWjyOs2OOlBy5ESVH4m0OHz7M5r//BqDt11/D7t0QHW1pTB4tOpp2M2YA8FN4uJ5r8Thqq3kRtdXEUy1btgyAevXqUfL221XFKACtu3fHz8+P3fv2ab4j8TjOttVchXtEaRFdrSbe6qefUkYctWvX7ip7Sl4JCQmhWbNmwL/Pv4in0NVqHkhtNfE2So6sYX++lRyJp1FbzYPoajXxRgkJCcTHx+Pj4+NYFFUKxs033wykJEeu8he0SF5QW80DqXIk3mTp0qUAREVFEZo6c7MUjKZNmxIcHMyhQ4fYunWr1eGI5BldreZFVDkST6SWmnUCAwNp1aoVoNaaeJbs2mquSMlRNjQgW7yNMUbJkcXsrbUff/zR4khE8o4mgfRAaquJt9i1axd79+7F39+fli1bWh2OV7InpcuWLVNVWjyGVy08e/jwYQ4ePJhXsbgcDcgWb2OvGjVt2pSQkBCLo/FODRs2JDQ0lJMnTxIXF2d1OCJ5wivaar///ju1a9cmLCyM8uXLU758eV5++WXOnj2b1/G5BFWOxFv88MMPgFpqVvL19aVt27aAWmviObJrq3nMgOzo6GjKlCnDL7/8QlxcHCNGjOC7776jUaNGHD9+PK9jdFlKjsSTJCUlsWTJEgA6dOhgcTTezZ6cKjkST+HsJJCuIlfJ0datWxk3bhzNmzenXr16PPLII6xdu5batWvzxBNP5HWMllFbTbzJ+vXr+eeffyhatChNmza1OhyvZh+UvWLFCs6fP29xNCLXztm2mltXjjKrENlsNkaOHMm8efPyJDBXoraaeIPFixcDKV/Mfn5+Fkfj3WrVqkX58uW5cOECK1assDockWvmbFvNVTidHN1666289NJLfP755wwYMIDBgwdz6NChdPucPHmSYsWK5XmQVnH2Un5VjsQT2JMjtdSsZ7PZHOdh0aJFFkcjcu3cra3m9J+HdevWZf369UybNs2RFFWpUoV77rmH+vXrk5SUxLRp03j//ffzLVirZJXV2k+yKkfi7k6dOsXKlSsBJUeuomPHjkybNo1Fixbx3nvvWR2OyDVxdm01V2mrOZ0cvfnmm47/P3ToEHFxcWzYsIENGzYwfvx4duzYga+vL8OHD6dHjx75EqyrUVtNPMWyZcu4fPky1apVo0qVKlaHI8Att9yCzWZjy5YtJCQkEB4ebnVIIrnmbmur5WpgQZkyZejUqROdOnVybDt//jwbN25k48aNeRac1dRWE2+hlprrKVGiBI0bN2b16tUsXryYRx991OqQRHLN2baaq1SO8iyFCw4OplmzZvTv3z+v7tJlqK0mnk7JkWvq2LEjoHFH4v6cbau5Cveob1lEa6uJN9i1axfx8fH4+flx0003WR2OpGFPjpYsWaIKtbg1d2uruUeUFrta5UgfWuLO7FWj5s2bU7RoUYujkbSaNm1KaGgox48fZ+3atVaHI5Jrzq6t5nFtNW+kypF4ArXUXJefn59jQki11sSdecXaat5CbTXxdJcuXXIsUaHkyDVp3JF4AmfbaqocuRG11cRTrVy5kpMnT1KiRAmioqKsDkcyYU+OVq1axYkTJ6wNRiSXnG2ruQolR9lQ5Ug83YIFCwDo3Lmz25S7vU1ERATVq1cnKSmJH374wepwRHJFbTUPdLW11VQ5EndlT466du1qcSSSnS5dugD/ni8Rd+Ps2mpqq3kAzXMk7mzXrl1s3boVX19fR+tGXFO3bt2AlORIf4yJO3K3tdWUHGVDbTXxZPYqRKtWrbjuuuusDUay1apVK4oWLcqRI0dYs2aN1eGI5JizbTVVjtyI2mriib799lsAbr31Vosjkavx9/d3LNdkP28i7sTZtpqrUHKUjatlsGqribs6e/Ysy5YtA5QcuQt7a03JkbgjtdU80NUqR0qOxN38+OOPJCYmUrlyZWrWrGl1OOKETp064ePjw8aNG9m3b5/V4YjkiLNrq6mt5gHUVhN39e3s2QDc2qaNS5a0JaOSJUvSvHlzABaMHg0JCRZHJOI8ra3mQdRWE09kpkxhwaefAtB1xgyIibE4InFW1zJlAJg/ZgxEROjcidtwtq2mypEbUVtNPEZCAhv69WM/UAhoYwz0768qhDtISKDb3LkA/AicTU7WuRO34WxbzVUoOcqGs5fyq60mbiM+nm9TX9e3AEEASUmwY4eVUYkz4uOpZQyVgETgJ9C5E7ehtpoHutraaqociduIjGRu6v/ebt/m6wvVqlkUkDgtMhKbjw/2ucy/BZ07cRvOrq2mtpoHUOVI3M3uy5eJI+WN3w1SvlwnToTwcGsDk6sLD4dJk+iW+rnzDZA8frzOnbgFexFBlSMPoAHZ4mnmpo5Zad2sGaWWLoXduyE62tqgxHnR0bSNjyc0JISDwG+1a1sdkYhTNCDbA2lAtngKe3J05333Qdu2qjq4oYAqVeh2550AzJkzx+JoRJzjbFvNVSg5yoYGZIsnOXz4ML/88gsAd6Z+uYp76t69OwBfffWVy/ylLZIdtdU8kAZkiyf45ptvMMYQFRVFxYoVrQ5HrkHHjh0JDg5m9+7dbNiwwepwRK5KA7I9iLOVIyVH4g4cLTVVjdxeoUKF6Ny5M5BSPRJxZcYYx/ep1lbzIFcbc6S2mri6U6dO8cMPPwBKjjxF2taaiCtLW0C4WltNlSMPoLaauIuFCxdy8eJFrr/+ei006yFuvfVW/P392bp1K3/88YfV4YhkKW0BQQOyPYDaauIp7C217t27u+QHkeTcddddx8033wyoeiSuLe13pNpqHkRtNXFn58+fZ+HChYBaap6mR48egJIjcW1pvyPVVsuBcePGUblyZYKCgoiKimLFihVO3e7XX3/Fz8+P+vXr50tczk4CqeRIXNnChQs5c+YMFStWpHHjxlaHI3notttuw8fHh3Xr1rF7926rwxHJ1NXaaq7I8uRo9uzZPP300wwdOpS4uDhat25N586d2bt3b7a3O3nyJL169XKUlfPT1S7lV3Ikrmz27NkA3HvvvWqpeZjSpUvTunVrAL744guLoxHJXE7aaqocpRo9ejTR0dH06dOHmjVrMmbMGCpUqMD48eOzvV3//v3p2bMnzZs3L6BIM1JyJK7uzJkzfPvtt0BKciSe57777gNg1qxZFkcikjln2mqu9oebpcnRxYsXWbduHR06dEi3vUOHDqxcuTLL202bNo2//vqLYcOGOfU4iYmJnDp1Kt2PM9RWE3c3f/58zp8/T9WqVWnYsKHV4Ug+uOuuu/Dz8yMuLo7t27dbHY5IBjkZc+QqLI3y6NGjJCUlUaZMmXTby5Qpw8GDBzO9TXx8PC+88AIzZ87Ez8/PqccZNWoUoaGhjp8KFSrkKE611cRd2Vtq9913n8v9ZSZ5o2TJkrRv3x5Q9UhcU9qlQ7L6HLJvV1stjSufLGNMpk9gUlISPXv2ZPjw4Vx//fVO3/+LL77IyZMnHT/79u1z6nZXO0n25Ozy5ctOxyJSUE6cOMF3330HqKXm6e6//34gJTlylS8XETt7AcFdqkYAzpVe8knJkiXx9fXNUCU6fPhwhmoSwOnTp1m7di1xcXE8/vjjQEpGaozBz8+PxYsX065duwy3CwwMJDAwMNdxqnIk7mjevHlcvHiRWrVqUadOHavDkXx0xx13EBQUxJ9//smGDRto0KCB1SGJOGS3rpqdKkdpBAQEEBUVxZIlS9JtX7JkCS1atMiwf9GiRdm0aRMbNmxw/AwYMIDq1auzYcMGmjZtWlChA0qOxLXpKjXvUaRIEbp27QqotSaux95Wc5fL+MEF2mpDhgxhypQpTJ06lW3btjF48GD27t3LgAEDgJSWWK9evYCUklydOnXS/ZQuXZqgoCDq1KlDSEhInsamAdnirg4fPuz4o0MtNe9gv2rts88+06z94lLUVsuFe++9l2PHjvH6669z4MAB6tSpw8KFC4mIiADgwIEDV53zKL+prSbu5rPPPuPy5cs0btyY6tWrWx2OFIAuXbpQpEgR9u3bx8qVK2nVqpXVIYkAaqvl2qBBg9i9ezeJiYmsW7eOG2+80fG76dOns2zZsixv+9prr7Fhw4Z8iUuVI3FXH330EQAPPfSQxZFIQQkODnYsD6PWmrgStdU8lCpH4k62bt3KunXr8PPzc7RaxDv07NkTSKkcJiYmWhyNSApn2mqqHHkQJUfiij7++GMgpc1SqlQpi6ORgnTLLbdQrlw5/vnnHxYsWGB1OCKAc201V6PkKBtqq4m7SU5O5pNPPgHUUvNGvr6+jvM+ffp0a4MRSaW2modSW03cxbJly0hISOC6665zXNot3qV3794ALFy4kEOHDlkcjYjaah7H2coRoEtnxSV8PGECAPd27UpQUJDF0YgVatasSdOmTUlKSmLm8OGQkGB1SOLl1FbzUFerHIGqR2K9M2PH8uUXXwDw0MyZEBNjcURilYcjIwGYPn48pmJFvRbEUs601VQ58iBKjsRlJCTw2RNPcAaoDrQwBvr3V9XAGyUkcO/MmQQCm4ANei2IxdxxEkj3idQCOWmrKTkSS8XHMzn19doHsAEkJcGOHVZGJVaIj6eYMdyR+s9poNeCWEptNQ+ltpq4ut8vX2Y14A/0sm/09YVq1awLSqwRGQk+Pjyc+s+PgfM+PnotiGXUVvMwVztJfn7/rr5y+fLl/A5HJEtT5s8H4HagNKQkRhMnQni4lWGJFcLDYdIk2vv4EAGcAL54+GG9FsQyaqt5KFWOxJWdP3/eMfFjn48/hqVLYfduiI62NjCxTnQ0vnv20Df1NTDxjz8sDki8mdZW8zJps2AlR2KVOXPmcOLECSIiImjfsye0basqgUB4OI++8QZ+fn6sXLmSzZs3Wx2ReClNAulhnMlgNRGkWG3y5MkAREdHu1XZWvJfWFgYt912GwATJ060OBrxVmqreais2mqg5EistXnzZn7++Wd8fX155JFHrA5HXFD//v2BlDX3zp07Z3E04o3UVvMwqhyJqxs7diwAd9xxB+FqpUkmbrnlFqpUqcLJkyeZPXu21eGIF1JbzUOpciSu6MSJE3z00UcAPP744xZHI67Kx8eHvn37AinJtKv8ZS7eQ2ureSElR2KVGTNmcO7cOWrXrk2bNm2sDkdcWHR0NIGBgaxbt47Y2FirwxEvo0kgPYzaauKqkpOTHS21xx9/PNvqpkipUqV44IEHAPjvf/9rcTTibdRW81Bqq4mrWbx4MfHx8YSGhvLggw9aHY64gaeeegpImfph3759Fkcj3kRtNQ+jypG4qv/9738APPLIIxQuXNjiaMQd1KtXj7Zt25KUlOSoOooUBLXVPJQqR+JKtm3bxoIFC7DZbAwaNMjqcMSN2KtHkyZN0mX9UmC0tpoXUnIkBW306NEA3H777URGRlocjbiTbt26UblyZY4fP84nn3xidTjiJTQJpIdRW01czcGDBx2X7z/33HMWRyPuxtfX1zHtw+jRox1/0YvkJ7XVPJTaauIqPvzwQy5evEjz5s1p0aKF1eGIG+rTpw+hoaFs376defPmWR2OeAG11TyMMyfJz88PgMuXL+d3OOLlzpw5w/jx4wFVjST3ihYt6hir9tZbb7nMl5F4LrXVPJQqR+IKpk6dyvHjx4mMjHQsJiqSG0899RSBgYGsWrWKn3/+2epwxMNpbTUvpORICsLFixcdA7GHDBniVr17cT1lypRxLFT85ptvWhyNeDpNAulhNCBbXEJCAh8PHcqePXsoU6YMvXv3tjoi8QDPPvssPj4+fP/992ycMgUSEqwOSTyU2moeSm01sUxMDJcrVmTku+8C8H9t2hAcHGxxUOIJqlatyt1RUQCM7NsXIiIgJsbiqMQTqa3mYVQ5EkslJEC/fswyhp1ASaD/l1/qL3zJGwkJvLR2LQBfAFuSk6F/f72+JM+preahVDkSS8THk5SczIjUfz4LhCQnw44dVkYlniI+nnrG0AMwwHCApCS9viTPaW01L6TkSPJNZCRf2Gz8CRQHBgH4+kK1atbGJZ4hMhJ8fBiW+s8vgN99fPT6kjynSSA9jNpqYqWksDDeCAsDYDBQxNcXJk6E8HBrAxPPEB4OkyZR19eXe1I3Da9fX68vyXNqq3kotdXECp988glb9++nWGgoT8yfD7t3Q3S01WGJJ4mOht27GTZtGjabja/Wr2fDhg1WRyUeRm01D6PKkVglMTGRV199FYCXXn6Z0K5d9Re95I/wcGo9/DD33nsvAK+99pq18YjHsa8gYV9Rwh0oOXKCKkdS0CZMmMDevXspX748jz32mNXhiBcYNmwYPj4+zJs3j1WrVlkdjngQ+/djdsmRKkduRJUjscLp06cZMSLlGrVhw4ZpXiMpEDVq1KBXr14A/N///Z/LfEmJ+1PlyEOpciQF6f333+fo0aNERkY6lngQKQivv/46QUFB/Pzzz8yfP9/qcMRD2JMjDcj2IvaTbT/5ItfiyJEjvJs6G/aIESPc6i8tcX8VKlTg6aefBuD555/X55rkCbXVPIwzJ8l+slU5krwwbNgwTp8+TcOGDbnrrrusDke80AsvvECJEiX4448/mDp1qtXhiAdQ5chDqa0mBWHTpk1MnDgRgNGjR7vVIo3iOUJDQx1XSr766qucOXPG4ojE3Tkz5kiVIzeiAdlSUIwxDB48mOTkZHr06EGbNm2sDkm82IABA6hatSqHDh3inXfesToccXPOtNVcjZIjJ6hyJPntm2++4ccffyQwMFBfRmK5gIAA3nrrLQDefvttdu3aZXFE4s6caatl9z1rBSVH10jJkVyrxMREnnnmGQCGDBlC5cqVLY5IBLp3787NN9/MhQsXGDx4sNXhiBvLyaX8aqu5AbXVpCB88MEH/PXXX5QtW5YXX3zR6nBEgJS/5D/44AP8/PyYN28e3333ndUhiZvSwrMeSm01yS/79u1j+PDhAIwaNYoiRYpYHJHIv2rVqsVTTz0FwFNPPUViYqLFEYk70oBsD6PKkeSrhASevP9+zp49S8uWLR2zE4u4kldffZWyZcsSHx/P+48/DgkJVockbkYDsj2UKkeS52Ji+KZiRb7+9Vf8gPHt2+vSfXFJRYsW5Z1bbwXgjSlT2F2xIsTEWByVuBMNyPZCSo4kxxISONO3L4+nViaHAHXfeEN/kYtrSkjggalTuRE4BwwwBtOvn16v4jQNyPYwaqtJvoiPZ7gx7AMigFcBkpJgxw5r4xLJTHw8NmOYBAQAi4BPk5P1ehWnqa3modRWk7wUl5jI+6n/PxYIAfD1hWrVrAtKJCuRkeDjQ3VSE3ngKeBIsWIWBiXuJCdtNVWO3IAqR5LXLl68yMPPP08ScBdwK6QkRhMnQni4tcGJZCY8HCZNAl9fngPqAseAIakLJItcTU7aaq5CyZETVDmSvDJixAh+//13SpYsydi4OFi6FHbvhuhoq0MTyVp0NOzeTcDSpUz55ht8fHz45JNPNPeROMWZeY40INvD2E+2PTMWycr69esZOXIkAGPHjqV0/frQtq0qRuIewsOhbVuadOvmmPsoOjqaf/75x+LAxNVpQLaHceYk2U+2KkeSnYsXL/Lwww+TlJTEXXfdxT333GN1SCK5NmLECKpXr86BAwcYNGiQ1eGIi9OAbA+ltppcq9dff51NmzaltNPGjrU6HJFrUqhQIT7++GN8fX2ZPXs2s2bNsjokcWEakO1hNCBb8sLPP//MqFGjABg3bhylS5e2OCKRa9e4cWNefvllAAYNGkSC5j2SLGhAtodS5Uhy6/jx4zzwwAMkJyfz8MMPc/fdd1sdkkieGTp0KI0aNeLEiRM8+uijJCcnWx2SuCBn2moakO1hlBxJVowx9O3bl4SEBCIjI/nwww+tDkkkT/n7+/Pxxx8TFBTEkiVLeOedd6wOSVyQM201O7XV3IDaanItYmJimDNnDv7+/nz66acULlzY6pBE8lyNGjX44IMPgJRK0sqVKy2OSFyN2moeSm01yZGEBLZMncpTTz4JwH/+8x8aNWpkcVAi+adPnz7cf//9JCUlcd9993Fs06aUObw0DknI2TxHqhy5AVWOJMdiYjhVsSLdo6M5d/48HWrX5plnnrE6KpF8ZbPZmDhxIpGRkezbt49H6tXDtGsHEREQE2N1eGIxVY48lCpH4pSEBEzfvjxiDH8CFYCZ27bhs3+/1ZGJ5LsiRYrw+YcfEgjMB94FSE6G/v1VQfJyziRHGpCdiXHjxlG5cmWCgoKIiopixYoVWe771Vdf0b59e0qVKkXRokVp3rw5ixYtKsBo01NyJA7x8bxrDF+Rsnr5l0BJrV4uXqR+QABjUv//BWAxQFKS3gNezpm2mp3aaqlmz57N008/zdChQ4mLi6N169Z07tyZvXv3Zrr/zz//TPv27Vm4cCHr1q3jpptuolu3bsTFxeV5bGqrSU4sPXKEF1L//wOgCaQsKlutmnVBiRSkyEj622xEA8nAfcBfPj56D3g5tdVyYfTo0URHR9OnTx9q1qzJmDFjqFChAuPHj890/zFjxvB///d/NG7cmMjISEaOHElkZCTz58/PtxjVVpOr2bFjB3cNHEgy0Ntmox+kJEYTJ2rtNPEe4eHYJk9mrI8PzYDjwO1ly3LmuussDkyslJN5jlQ5ImW9qXXr1tGhQ4d02zt06OD05aDJycmcPn2a4sWLZ7lPYmIip06dSvfjDFWOxBnHjx+na9eu/PPPPzRp0oTx27djW7oUdu9OWc1cxJtERxO4Zw9zvviCsNKl2bJ/P7169dIEkV4sJ/McuQpLk6OjR4+SlJREmTJl0m0vU6YMBw8edOo+3nvvPc6ePZvtQp6jRo0iNDTU8VOhQoUcxanKkWTl0qVL3H333Wzfvp0KFSowb948giMjoW1bVYzEe4WHU+6uu/hq3jwCAgKYO3cuzz//vNVRiUU0IDuXrnxSjDFOPVGzZs3itddeY/bs2dmuV/Xiiy9y8uRJx8++ffuuOWY7+8m2n3zxHsYYnnjiCX788UdCQkKYP38+ZcuWtTosEZfRrFkzpk2bBsC7776rRZe9UNqKoQZkO6lkyZL4+vpmqBIdPnw4QzXpSrNnzyY6OprPP/+cW265Jdt9AwMDKVq0aLofZ6itJtkZOXIkEydOxGazMWvWLG644QarQxJxOT179uQ///kPAE8++STffPONxRFJQUpbONCAbCcFBAQQFRXFkiVL0m1fsmQJLVq0yPJ2s2bN4uGHH+bTTz/l1ltvze8w1VaTDCZOnOhYkXzMmDF069bN4ohEXNeLL75I3759SU5O5r777mPVqlVWhyQFxNnkSAOyrzBkyBCmTJnC1KlT2bZtG4MHD2bv3r0MGDAASHlT9erVy7H/rFmz6NWrF++99x7NmjXj4MGDHDx4kJMnT+Z5bKocSWa+/PJLBg4cCKSsJfVk6jIhIpI5m83GuHHj6NSpE+fPn6dTp05s3LjR6rCkAKT9btSA7By49957GTNmDK+//jr169fn559/ZuHChURERABw4MCBdHMeTZw4kcuXL/PYY48RFhbm+HnqqafyLcbsKkf+/v6Axhx5hYQEfnj3XR544AGMMfTr14833njD6qhE3IKfnx9ffvklLVq04MSJE7Rv357ty5drDTYPl9PKkatwiQbgoEGDGDRoUKa/mz59erp/L1u2LP8DygH7yb506ZLFkUi+ionhp759uc0YLgLdGzZk3LhxLveGFnFlISEhLFiwgHbt2hEXF8ctbduyAqjk4wOTJmnqCw+UNjnSgGwP4cxJ0tVqXiAhgWV9+9LVGM4DnYFPN2zA98ABqyMTcTvXXXcdi6ZNoyaQALQDdmsNNo9lb6vZbDZ8fNwn5XCfSC2ktpp3W/7ll9yamhh1Ar4CArVmmkiulfrnH5YAVYFdwI1AvNZg80jOLh2iAdluJCeVI7XVPNOiRYvo8tJLnCMlMZoLBIHWTBO5FpGRlPfxYTlQA9hHSoK0VbNoe5ycLDrrSpQcOUGVI+80e/ZsunXrxrnz5+lUpw5zfXz+TYy0ZppI7oWHw6RJlPf1ZTlQFzgItLn3XjZs2GBtbJKnclo5chVKjq6Rxhx5pvHjx3P//fdz6dIl7rvvPuatW0fQnj0pV9ZozTSRaxcdDbt3U3rpUpb+/jtRUVEcPXqUtm3bsnTpUqujkzzibHJkp7aaG1BbzfsYYxgxYgSDBg3CGMOgQYP45JNPCAgISPlrV2umieSd1PdUibp1+fHHH2nVqhUnT56kU6dOfPbZZ1ZHJ3lAbTUPpraad7h48SLR0dG88sorALz66qv873//c7s3tYg7Cg0NZcmSJfTo0YOLFy9y//338+6777pMJUFyRwOyPZAqR14iIYFjX39NhzZtmDZtGj4+Pvzvf/9j+PDhLtcHF/FkQUFBfP75545JfZ977jmefPJJLu/ercki3ZQ9OXK3PzKVHDnBmcpRUlKSy2S8kgMxMWyvWJFmd97J8t9+o0hQEAsWLOCxxx6zOjIRr+Tj48OYMWN47733APjf//5Hp8qVOdauHUREQEyMxRFKTtjbahqQ7WXSnnCtr+ZmEhJY0rcvzYxhB1AJWHnxIp3q1LE4MBEZMmQIX02aRAjwI9AE2KzJIt2OBmR7oJy01UCtNXeSnJzMyNdeo6MxnACaA6uAOprcUcRl3FmtGrFAZWAn0AyYq8ki3Yraah7MmbYaaFC2uzhx4gR33HEHQ2NiMEA08BNQGjS5o4griYykro8Pa0hZZuQs0B148csv9XnrJnLaVlPlyA3ktHKkN6vr+/3332nUqBHz588nMDCQyb16McXXV5M7irii1MkiS/j68j3wZOoX6Jtjx9KuXTv+/vtva+OTq8ppW81VKDlyQnaVI7XV3IMxhgkTJtC0aVP++usvKlasyC+//EKfGTNSJnXU5I4iril1skj/pUv57969zJ49myJFirBixQoaNGjA4sWLrY5QsuHsPEcakO1GnKkc2Ww2x0lX5cjFJCTA0qUc27SJ7t27M3DgQC5cuECnTp1Yt24djRo1StlPkzuKuLY079F77rmHdevWUb9+fY4cOUKnTp0YOnRoyh+nqe95Ddh2HRqQ7cGultFqriMXFBMDEREsa9eOG+rV4+uvv8bf35/33nuPBQsWULJkSasjFJFcioyMJDY2lv79+2OMYeTIkTSPjOSPihVBl/y7FA3I9mKaJdvFJCRwoW9f/i85mXbA38D1wG/z5jFkyBB8fPSyF3F3QUFBTJgwgc8//5xioaGs27OHhsYwFjC65N9laEC2B3L2JGnxWdfy27x5NDCGdwADPAKsAxoGB1sbmIjkubvvvptNkybRHjgPPA50Afbpkn+XoAHZHkxtNfdw/vx5nnvuOVo++SR/AGWBecBUoLAu0RfxWOVbtOB7m43/AkHA90AtYOwvv5CcnGxtcF7O2baaBmS7EWcrR2qrWW/JkiXccMMNvPvuuyQnJ/NQ8+Zs8fHhNtAl+iKeLjwcn8mTedLXl/VAC+AM8Pgrr9CqVSu2bNlicYDey9m2mp3aam7E2cqRkqOCl5CQwD333EOHDh2Ij48nLCyMb775ho9WrqT4nj26RF/EW6Re8l9z6VJW7NnD2LFjKVKkCLGxsTRo0IChQ4dy5swZq6P0OqoceTF75UhttQKSkMDFxYt575VXqFGjBl988QU+Pj489dRTbNu2jW7duqXsp0v0RbxL6nvep2JFBg0axJYtW+jWrRuXLl1i5MiRVK9enU8++YTkvXt1yX8BUeXIA2lAtusxU6bwecWK1OrYkWdHjODs2bM0b96cdevWMWbMGEJDQ60OUURcRIUKFZg3bx5z586lSpUq7N+/n4ceeogWERGs0iX/BUIDsj2Y2mquYfkXX9Csb1/uNYa/gDJAjM3GL599Rv369S2OTkRckc1m44477mDLli2MeuEFQkhZZLoZcFdyMlv79VMFKR+preaBcjogW221/PHbb7/RpUsX2t5zD6uBEGA4sAN41Bh8du60NkARcXlBQUG80KEDfwK9ARswB6ibnMzDffqwa9cuawP0UGqreTBVjqzx66+/0rFjR5o3b853332Hr68vA4G/gFeBwpByJZou0RcRZ0RGUs7Hh+nA78CdQDIwY9EiqlevTr9+/dihuZHylLNtNVWOPJAqR3kkIQHz008s/+ILbr75Zlq1asXixYvx9fXlkUce4Y8//mDclCmUsZdndYm+iOREeDhMmgS+vtQBvvL1ZfXQobRv355Lly4xefJkqlevTs+ePfn999+1VlseyOnyIa5SOXKvEVIFTAOyC87lSZOYO2AA7xnDqtRtfn5+PPLII7zwwgtUqVIlZWO1atCxY8rMt9WqKTESkZyJjk73GdI4PJzFwC+//MKoUaNYuHAhs2bNYtasWdwKvAS08PFJSao0JUiO5bSt5ipUOXKC2mr558yZM3zw+utc378/96QmRoHAAJuNHStWMGnSpH8TIztdoi8i1yKTz5BWrVqxYMEC4uLiuLdbN2zAAqAl0DI5mS/79ePy7t3WxOvGNCDbA2lAdv45cOAAL730EhUqVOCpYcPYBZQgZSzRHmC8MURcuGBtkCLiderXr89ngwezHegD+AMrgbuTk6nWrBnvvfceJ0+etDZIN5LTS/ldpa2m5MgJqhxdo9S+vdm3j1WrVtGrVy8iIiIYNWoUJ06cILJyZcbbbOwl5Sq0MqCB1iJinchIIn18mEzKH2svAyWBPYcO8eyzzxIeHs6TTz757+BtjU3Kkr1oYC8iZEWVIw+ktdWyERPD+YoVmdauHY0rVqRZs2Z8/PHHXLp0iVatWjF37ly2xcczYPJkCmmgtYi4gjQDt8OAN3x92TtuHJMnT6Z27dqcOXOGDz/8kOuvv57b6tdnQcWKJGlSyUw5mxzZqXLkBnI6IFtttfS2/Pgjz/bpQ3ljeBRYR8p4ol533cWqVatYsWIFd9xxR0ovOnVdJK2FJiIu4YrPpOCBA+nTpw+bNm1i8eLFdOnSBWMM8zdupKsxVAaGJyezT5NKppPT5MhVKDlygtpqzvvnn38YO3YsTZo0oc4tt/AecByIAN4EEoAZjz1GkyZNMt5YA61FxJVk8plks9lo3749CxYs4I/p0xkCFAf2Aa8BlZKT6Xr33Xz++eecO3fOkrBdibu21dzr2roCpgHZ2UhIgPh4iIzkn0KFmD9/Pl999RXff/89Fy9eBFKSxlsvX6YP0BnwBY0lEhGPUf3mm3nPx4f/JCczF5gELAMW/PYbC+69l5CQEG677Tbuv/9+OnToQOCRI47PTW/5I9BeNHC3tpqSIyeocnSFmBgO9u3L18YwB1jq40NScrLj1w0aNKB379707NmTUt98A/37Q1KSxhKJiGdJHZsU1L8/9yclcb+vL38OH870s2f57LPP2LVrl2POpOsKFeLWc+e4Hehos1F08mSvGD6gypEX85bkaPv27cz76CPmjRxJLODI75OTqVezJt3vvZcePXpQp06df290xYRrSoxExKNc8Rl3fXg4I4H//Oc/rF69ms8++4zZn37KgcOHmQnMBPyN4aY+fbjtwAG69epFxYoVLT6I/GNPjtztUn4lR9nI77bamTNnSEhI4Prrr8fHx0WGf6VplyWFhfHbb78xb9485s2bx59//plu1yZAD6A7UG3cuJTefGbCw5UUiYjnyuQzzmaz0bRpU5o2bcq7t95KbPv2fAN8A2wHFgOLX3mFx195hfr163P77bdz22230aBBg5QqSprPYlf4/ExMTGTnzp1Uq1YtR4OrNSDbg+VHW2358uVUqFCBmjVrEhUVxf79+68pxjyRetn9N+3aEV2hAmHFitGqVSveeecd/vzzT/z9/elw442MtdnYB6wC/g+opnFEIiJZ8q1Rg1Y+PrwN/JH687bNRqvGjfHx8WHDhg0MHz6cqKgoKlSowMC2bVlYsSIXXGR6gLVr11KlShVq1apFzZo12Z2DmcLdta2m5CgbOa0cOZscnT17lvvuu48TJ04AsGHDBjp06MDp06dzFadTspmk7NChQ8S8+y639+lDCWO4HZgKHDl9mtCiRenZsyezZ8/myJEjLFq+nEGTJxOuOYlERJyTZt4kgOq+vjw3eTIrVq/m4MGDTJ8+ne7duxMSEsLff//NhOXLudUYSgJ3JiczrW9fDm/YkPl95/MElPHx8XTs2NHxB/xff/3Fo48+6vT3o+Y58mDOVo6cbavNmDGDgwcPUrlyZbZs2UK5cuXYsmULzz///DXHmqmYmJS/PlL/Cjk7bhw//PADr776Ki1atCAsLIw+zz3HN8B5oCLwBPADcGTOHGbOnMk999xDaGhoyv1pTiIRkZzJ4nOzVKlS9O7dmzlz5nD06FEWjhrFQKA8cBb4GnjUGMo2bEiLFi0YNWoUa9euTbkq+IrP9ryuMCUlJfHwww/zzz//0KRJE37//XcCAgJYunQpq1evduo+3LVypDFHeSCnbbVPPvkEgCeeeIJatWrx8ccfc/PNNzN+/Hi6d+/OLbfckidxnTlzhh2//sqOvn3ZZgybgS3JyWx/7DGujDSqbl1u37yZ24yhHmCDlL9yatTI/M41jkhEJGeu8rkZFBRE5wcfpPPQoYxNTmYDOMYprTeG2NhYYmNjeemllwgICKD+xYvUA6oBkcnJRPbrR2SbNgTl0TCHDz/8kJUrV1KkSBG++OILKlasyN13383MmTP55JNPaNq06VXvQ5UjD5QfA7KPHTvGb7/9BsA999wDQLt27Rg0aBAA0dHRnDp1yvkgU0uql3fv5scff+SVV16hffv2lCtXjiJFitCgUyfuNoZXgc+BLcBlILxUKR544AEmTZrEvn37WPv777wyeTI3+Pr+mxipXSYiUrBSW3A2X18aAMN8fVk3ZQr79u1j/Pjx3HrrrRQvXpyLFy+yGpgCvEDKxTH1kpMJqV6dyMhI7rjjDt58803Wr19PcnJyjttvO3bs4KWXXgLgnXfecVxRZ//eWrhwoVP3k9N5jlyFKkdOyMsB2cuXL8cYQ61atShfvrxj+1tvvcX333/Pzp07GTJkCFOmTLl6YDExHOjbl7eN4RPgaCa7lChWjMjjx7keqAPUBur4+FBh3TpsFSqk31mX3YuIWC+Tz+JwYMCAAQwYMABjDDt//ZU1N97IH8YQD46fE8nJ7Nixgx07djBv3jxefPFFKpcsSd9jx+hjDKV8fFLGP2UzHOLy5cv06tWL8+fP065dO/r16+f43U033YSfnx87d+5k165dVK5cOdtDcde2mipH2ciPAdlr164FoGXLlum2Fy5cmOnTp2Oz2YiJiWH+tGnZZvlHNm7kuT59qGIMY0hJjEoAD/XowYQJE1i1ahX//PMPR//5h9gpU5jh68tzQBdfXypOmpQxMbLTEh4iItbL5rPYZrNRtVUr7ps8mdd8fZkJrPb15Z/Jkzlw4AA//vgj77//PrfddhuFQ0LYdfQoLxlDFeDV5GROZrf+W0ICo/r1IzY2lqJFizJ16tR0iUuRIkVo2LAhAKtWrbrqYait5sHyckD2htSWWoNKlTL8rnXr1gwePBiABx59lHWZDLI7ceIEr7zyClWaN+dd4ALQHFgAHAA+evxx+vfvT5MmTShWrFjKjTSAWkTE81zx2W7r04eyZcvSrl07nn76aebNm8ehL75gGtAQOAO8AVRJTubtN97IuPZbTAyzKlbk1WnTAPjwrruIiIjI8LD2tTFXffnlVdt0qhx5MafbajExxC1dCkD9l1/O9MqCkYMG0RY4DdwIjE5OZnu/fsTOm8czzzxDxYoVGTFiBGfOn6chsBD4FegC+Gc335AqQiIinucqn+2F6tblYR8f1gJzgJrAP8DzkyZRrVo1RowYwfr169m0ZAlD+vShZ2rl5nHgoenTM01+Gp45A8CmOXOuepWcKkceKMdttf37sy1VHuzbl4OkXAlWz5iUNceu2D9w716+BtoD54BngBrJybS44w5Gjx7N6dOnqVu3LnPnzmXt5Ml01gBqERHJSpoB3t2B3318mP7II0RERHDgwAFeeeUVoqKiqNehA++n3uQxYAxgS05OGfeUVkICNWfMAFImsyQ5OdPvMrtL588D4PfPP3l/bPlIyZETbNklPYBfat/10vLlWWfR8fFsSE22qgMhkLIY65UvvMhIQn18WAhMBhql7lu2dGl69OjBt99+y8aNG7njjjuw9emjdpmIiGQvTfvNb88eek+dyvbt25k2bRqdO3emRIkSXBcays3At8D/AF9I+aP7ym5EfDw1Ur/L/gZOQebfZQAxMVzatQsA/7vvzrbCZLMPSzma2aVFFjBe6OTJkwYwJ0+ezHa/Yd26GcAMBGN8fIyZMiXjTvv2mRibzQCmKxgDxvj6GrNvX4b9xqTu1yO7/YxJeRxf33/3yexxRURE8pIz3z379hnj42PKpqw9blZn851nfHxM+dT91l7lO69J6n7f2GzZfuc5+/19rby7cvT331n/LiEB5s8HUidEzKp0GB+PX2oW7RiOnVkWHR7OznbtAKgK2bfBNIBaREQKmjPfPaltOvv0wH/YbJl/l8XHQ3KyY8Jhf8j8uzEhAfr1wzEcO4shJw7ZfW/nIa9Ojn6tVSvrMl98fMZtWbTB/FJH2TuGY2cxMHpncDAAVQYPvnrSowHUIiJS0Jz57omOpsaDDwLwx2OPZf5dFhkJPj6OooE/ZNmmIznZ8U8D2bbpvqxVy/ljuQZenRzFQdYZamQkGYZjZ3Ziw8Px798fSE2OsqkI7dy5E4AqnTsr6REREbdVo1EjAP48eDDzHVIrTI7kyMcn8+/G1CQqncy+a1MrTIuuPXSneHVyBGSdoYaHQ7duAFe9GsyvQwcALtWunWVFyBjzb3JUpUpeRS8iIlLg7PMf7d27N+udoqO5FBgIgP+vv2bbpnO01bJKoq6oMOU3JUfZzA1k6tdP+Z877si2DeaY5ygkJMuK0IEDB7hw4QI+Pj6ONWpERETckf17bN++fdnud8m+tlp233vR0ZA667bJammTzCpM+UjJkRNzA9muspKyfZ6jixcvZrmPvWpUsWJFt1uAT0REJK0KqUtQHThwgMTExEz3SU5OJikpCXBihuzUChMlS2a+Q2qFqaB4d3L0f/+XJ1eCBQQEANkvH7J7926Aqy7SJyIi4upKlixJUFAQAH9ncQVZ2u9E+/fk1ZjsJl+OjoauXZ0P8hp4d3IUGprtr7M9SWnYT3p2lSP7iydcA7FFRMTN2Ww2R/Uoq9Za2u9EZ5OjqypUKG/u5yq8Ozly0tUWxAtMLQdmlxzt378fgHLlyuVdYCIiIhaxjzvKalB2TpIjLTzrRvKjclS+fPlrD0xERMRiVxuUbf9O9PX1xdfX16n7dPZ7N78pOXLC1TJaZ5IjVY5ERMST2Ntqe/bsyfT39oHazrTUVDnyQPYTn9WIfVByJCIinsU+hvbAgQOZ/t5eMMjJeCNVjtIYN24clStXJigoiKioKFasWJHt/suXLycqKoqgoCCqVKnChAkT8iWuvGqrJScnKzkSERGPUrZsWQAOZjFLdm6SI1dheXI0e/Zsnn76aYYOHUpcXBytW7emc+fOWQ7w2rVrF126dKF169bExcXx0ksv8eSTTzJnzpx8izEnbbXMEqpjx445LmkMCwvL+wBFREQKWF4mR2qrXWH06NFER0fTp08fatasyZgxY6hQoQLjx4/PdP8JEyZQsWJFxowZQ82aNenTpw+PPvoo7777bp7HltPKEcDly5cz/N5eNSpVqpRbZtAiIiJXSpscZfZ9qbZaLl28eJF169bRIXVtMrsOHTqwcuXKTG8TGxubYf+OHTuydu3abCdhvBbOVo4g89aa/Uo1tdRERMRTlC5dGkiZ7PH48eMZfu/OlSM/Kx/86NGjJCUlUaZMmXTby5Qpk2WZ7uDBg5nuf/nyZY4ePZpp2yoxMTHdYOmTJ08CcOHCBU6dOpVlfPbbJCYmZrtf2qTsyJEjjunS7eyzY5csWTLb+xEREXEnxYoV4/jx48THx1OzZs10v7MnTL6+vlf97rN3Xc6ePevU922+V5iMhf7++28DmJUrV6bbPmLECFO9evVMbxMZGWlGjhyZbtsvv/xiAHPgwIFMbzNs2DAD6Ec/+tGPfvSjHw/4+euvv/ImEcmCpZWjkiVL4uvrm6FKdPjw4QzVIbuyZctmur+fnx8lSpTI9DYvvvgiQ4YMcfz7xIkTREREsHfvXkKvsoSIJzl16hQVKlRg3759FC1a1OpwCoyOW8ftDXTcOm5vcPLkSSpWrEjx4sXz9XEsTY4CAgKIiopiyZIl3HnnnY7tS5Ys4fbbb8/0Ns2bN2f+/Pnpti1evJhGjRpluepvYGCgY4mPtEJDQ73qRWVXtGhRHbcX0XF7Fx23d/HW4/bxyd8h05ZfrTZkyBCmTJnC1KlT2bZtG4MHD2bv3r0MGDAASKn69OrVy7H/gAED2LNnD0OGDGHbtm1MnTqVmJgYnn32WasOQURERDyIpZUjgHvvvZdjx47x+uuvc+DAAerUqcPChQuJiIgAUmbeTDvnUeXKlVm4cCGDBw9m7NixlCtXjg8++IAePXpYdQgiIiLiQSxPjgAGDRrEoEGDMv3d9OnTM2xr06YN69evz/XjBQYGMmzYsExbbZ5Mx63j9gY6bh23N9Bx5+9x24xxkRmXRERERFyA5WOORERERFyJkiMRERGRNJQciYiIiKSh5EhEREQkDY9Njv7zn//QokULChUqxHXXXefUbYwxvPbaa5QrV47g4GDatm3Lli1b0u2TmJjIE088QcmSJQkJCeG2224jISEhH44gd44fP85DDz1EaGgooaGhPPTQQ5w4cSLb29hstkx/3nnnHcc+bdu2zfD7++67L5+Pxnm5Oe6HH344wzE1a9Ys3T6edr4vXbrE888/T926dQkJCaFcuXL06tWL/fv3p9vP1c73uHHjqFy5MkFBQURFRbFixYps91++fDlRUVEEBQVRpUoVJkyYkGGfOXPmUKtWLQIDA6lVqxZz587Nr/BzLSfH/dVXX9G+fXtKlSpF0aJFad68OYsWLUq3z/Tp0zN9r1+4cCG/DyVHcnLcy5Yty/SY/vjjj3T7edr5zuzzy2azUbt2bcc+rn6+f/75Z7p160a5cuWw2Wx8/fXXV71Ngb2383VxEgu9+uqrZvTo0WbIkCEmNDTUqdu8+eabpkiRImbOnDlm06ZN5t577zVhYWHm1KlTjn0GDBhgypcvb5YsWWLWr19vbrrpJnPDDTeYy5cv59OR5EynTp1MnTp1zMqVK83KlStNnTp1TNeuXbO9zYEDB9L9TJ061dhstnRr17Rp08b07ds33X4nTpzI78NxWm6Ou3fv3qZTp07pjunYsWPp9vG0833ixAlzyy23mNmzZ5s//vjDxMbGmqZNm5qoqKh0+7nS+f7ss8+Mv7+/mTx5stm6dat56qmnTEhIiNmzZ0+m++/cudMUKlTIPPXUU2br1q1m8uTJxt/f33z55ZeOfVauXGl8fX3NyJEjzbZt28zIkSONn5+f+e233wrqsK4qp8f91FNPmbfeesusXr3a/Pnnn+bFF180/v7+Zv369Y59pk2bZooWLZrhPe9KcnrcS5cuNYDZvn17umNK+x71xPN94sSJdMe7b98+U7x4cTNs2DDHPq5+vhcuXGiGDh1q5syZYwAzd+7cbPcvyPe2xyZHdtOmTXMqOUpOTjZly5Y1b775pmPbhQsXTGhoqJkwYYIxJuXF6O/vbz777DPHPn///bfx8fEx33//fZ7HnlNbt241QLoXQWxsrAHMH3/84fT93H777aZdu3bptrVp08Y89dRTeRVqnsrtcffu3dvcfvvtWf7eW8736tWrDZDuQ9iVzneTJk3MgAED0m2rUaOGeeGFFzLd///+7/9MjRo10m3r37+/adasmePf99xzj+nUqVO6fTp27Gjuu+++PIr62uX0uDNTq1YtM3z4cMe/nf08tFJOj9ueHB0/fjzL+/SG8z137lxjs9nM7t27Hdvc4XzbOZMcFeR722Pbajm1a9cuDh48SIcOHRzbAgMDadOmDStXrgRg3bp1XLp0Kd0+5cqVo06dOo59rBQbG0toaChNmzZ1bGvWrBmhoaFOx3fo0CEWLFhAdHR0ht/NnDmTkiVLUrt2bZ599llOnz6dZ7Ffi2s57mXLllG6dGmuv/56+vbty+HDhx2/84bzDSkLOdpstgztZ1c43xcvXmTdunXpzgFAhw4dsjzG2NjYDPt37NiRtWvXcunSpWz3cYXzCrk77islJydz+vTpDAt0njlzhoiICMLDw+natStxcXF5Fve1upbjbtCgAWFhYdx8880sXbo03e+84XzHxMRwyy23OFaXsHPl851TBfnedokZsl3BwYMHAShTpky67WXKlGHPnj2OfQICAihWrFiGfey3t9LBgwcpXbp0hu2lS5d2Or4ZM2ZQpEgRunfvnm77Aw88QOXKlSlbtiybN2/mxRdfZOPGjSxZsiRPYr8WuT3uzp07c/fddxMREcGuXbt45ZVXaNeuHevWrSMwMNArzveFCxd44YUX6NmzZ7rFK13lfB89epSkpKRM35dZHePBgwcz3f/y5cscPXqUsLCwLPdxhfMKuTvuK7333nucPXuWe+65x7GtRo0aTJ8+nbp163Lq1Cn++9//0rJlSzZu3EhkZGSeHkNu5Oa4w8LCmDRpElFRUSQmJvLxxx9z8803s2zZMm688UYg69eEp5zvAwcO8N133/Hpp5+m2+7q5zunCvK97VbJ0Wuvvcbw4cOz3WfNmjU0atQo149hs9nS/dsYk2HblZzZ51o4e9yQMX7IWXxTp07lgQceICgoKN32vn37Ov6/Tp06REZG0qhRI9avX0/Dhg2duu+cyu/jvvfeex3/X6dOHRo1akRERAQLFizIkBzm5H6vVUGd70uXLnHfffeRnJzMuHHj0v3OivOdnZy+LzPb/8rtuXmvF7Tcxjhr1ixee+015s2bly6BbtasWbqLDlq2bEnDhg358MMP+eCDD/Iu8GuUk+OuXr061atXd/y7efPm7Nu3j3fffdeRHOX0Pq2S2xinT5/Oddddxx133JFuu7uc75woqPe2WyVHjz/++FWvmKlUqVKu7rts2bJASmYaFhbm2H748GFHFlq2bFkuXrzI8ePH01UTDh8+TIsWLXL1uM5w9rh///13Dh06lOF3R44cyZBJZ2bFihVs376d2bNnX3Xfhg0b4u/vT3x8fL59WRbUcduFhYURERFBfHw84Nnn+9KlS9xzzz3s2rWLn376KV3VKDMFcb4zU7JkSXx9fTP81Zf2fXmlsmXLZrq/n58fJUqUyHafnLxe8lNujttu9uzZREdH88UXX3DLLbdku6+Pjw+NGzd2vOatdi3HnVazZs345JNPHP/25PNtjGHq1Kk89NBDBAQEZLuvq53vnCrQ93aORii5oZwOyH7rrbcc2xITEzMdkD179mzHPvv373e5AbqrVq1ybPvtt9+cHqDbu3fvDFctZWXTpk0GMMuXL891vHnlWo/b7ujRoyYwMNDMmDHDGOO55/vixYvmjjvuMLVr1zaHDx926rGsPN9NmjQxAwcOTLetZs2a2Q7IrlmzZrptAwYMyDBos3Pnzun26dSpk8sN0M3JcRtjzKeffmqCgoKuOrDVLjk52TRq1Mg88sgj1xJqnsrNcV+pR48e5qabbnL821PPtzH/DkjftGnTVR/DFc+3HU4OyC6o97bHJkd79uwxcXFxZvjw4aZw4cImLi7OxMXFmdOnTzv2qV69uvnqq68c/37zzTdNaGio+eqrr8ymTZvM/fffn+ml/OHh4eaHH34w69evN+3atXO5S7vr1atnYmNjTWxsrKlbt26GS7uvPG5jjDl58qQpVKiQGT9+fIb73LFjhxk+fLhZs2aN2bVrl1mwYIGpUaOGadCggdse9+nTp80zzzxjVq5caXbt2mWWLl1qmjdvbsqXL+/R5/vSpUvmtttuM+Hh4WbDhg3pLu9NTEw0xrje+bZf4hwTE2O2bt1qnn76aRMSEuK4KueFF14wDz30kGN/++W+gwcPNlu3bjUxMTEZLvf99ddfja+vr3nzzTfNtm3bzJtvvumyl3Y7e9yffvqp8fPzM2PHjs1yCobXXnvNfP/99+avv/4ycXFx5pFHHjF+fn7pEmyr5fS433//fTN37lzz559/ms2bN5sXXnjBAGbOnDmOfTzxfNs9+OCDpmnTppnep6uf79OnTzu+mwEzevRoExcX57hy1sr3tscmR7179zZAhp+lS5c69gHMtGnTHP9OTk42w4YNM2XLljWBgYHmxhtvzJCNnz9/3jz++OOmePHiJjg42HTt2tXs3bu3gI7q6o4dO2YeeOABU6RIEVOkSBHzwAMPZLjE9crjNsaYiRMnmuDg4Eznstm7d6+58cYbTfHixU1AQICpWrWqefLJJzPMCWSlnB73uXPnTIcOHUypUqWMv7+/qVixoundu3eGc+lp53vXrl2Zvi/Svjdc8XyPHTvWREREmICAANOwYcN0FazevXubNm3apNt/2bJlpkGDBiYgIMBUqlQp06T/iy++MNWrVzf+/v6mRo0a6b5MXUVOjrtNmzaZntfevXs79nn66adNxYoVTUBAgClVqpTp0KGDWblyZQEekXNyctxvvfWWqVq1qgkKCjLFihUzrVq1MgsWLMhwn552vo1JqW4HBwebSZMmZXp/rn6+7VWvrF6zVr63bcakjmYSEREREc9dPkREREQkN5QciYiIiKSh5EhEREQkDSVHIiIiImkoORIRERFJQ8mRiIiISBpKjkRERETSUHIkIiIikoaSIxEREZE0lByJiIiIpKHkSEQ8yuuvv07dunUJCQmhTJkyDBw4kEuXLlkdloi4ET+rAxARySvGGJKSkpg4cSLly5dn69at9OrVi3r16jFw4ECrwxMRN6GFZ0XEo/Xs2ZNSpUrx3//+1+pQRMRNqK0mIh5jz549PP7449SpU4dixYpRuHBhPv/8c8LDw60OTUTciJIjEfEIR48epUmTJhw9epTRo0fzyy+/EBsbi6+vL/Xr17c6PBFxIxpzJCIeYeHChVy+fJlZs2Zhs9kAGDt2LBcvXlRyJCI5ouRIRDxC8eLFOXXqFN988w21atVi/vz5jBo1ivLly1OqVCmrwxMRN6IB2SLiEYwxDBw4kE8//ZTg4GAefPBBLly4wJ49e/j222+tDk9E3IiSIxEREZE0NCBbREREJA0lRyIiIiJpKDkSERERSUPJkYiIiEgaSo5ERERE0lByJCIiIpKGkiMRERGRNJQciYiIiKSh5EhEREQkDSVHIiIiImkoORIRERFJQ8mRiIiISBr/D2NcBESLJlRAAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6RUlEQVR4nO3dd3hU1dbH8e+khxAinUAgtEivoRdBlCrYsKKCGLoFQX3Fi4ooF6zI1UuVULwioiIiggIqIArSQZoYpEZ67wGS/f6RzJiQwiQkOVN+n+fJo5ycmVlnzpSVtfbex2aMMYiIiIgIAD5WByAiIiLiSpQciYiIiKSi5EhEREQkFSVHIiIiIqkoORIRERFJRcmRiIiISCpKjkRERERSUXIkIiIikoqSIxEREZFUlByJWzhw4ACvvfYaGzduTPe7xx9/nIIFC+b4vi9fvky/fv0IDw/H19eXunXr5jzQXDBu3DimTZuWbvuePXuw2WwZ/s6T2Gw2XnvtNavDyBWvvfYaNpstz2/74YcfUrlyZQICArDZbJw6dYrHH3+c8uXLp9lv5MiRfP311zmKJysnTpzgoYceokSJEthsNu6+++5s30f58uV5/PHHcz02V/bDDz9gs9mw2WwcO3Ysze9mzpzJLbfcQsmSJQkMDKR06dJ06dKFFStWWBStd/GzOgARZxw4cIDhw4dTvnz5XE9exo8fz8SJE/nwww+Jjo6+oUQrN4wbN45ixYql+6IIDw9n5cqVVKpUyZrAJNt69epFhw4d8vQxNm7cyDPPPEOvXr3o0aMHfn5+hIaG8sorrzBw4MA0+44cOZL77rsvR8lLVt544w3mzJnDlClTqFSpEkWKFMnV+/dE586do3fv3pQuXZoDBw6k+/3x48dp3rw5AwcOpFixYhw8eJDRo0dzyy238OOPP9KqVSsLovYeSo7E623ZsoXg4GCeeuopq0PJUmBgIE2aNLE6DMmGiIgIIiIi8vQxtm7dCkDv3r1p1KiRY3t+JtFbtmyhUqVKPPLII/n2mLnlwoULFChQIN8fd8iQIRQuXJg77riDESNGpPt9Rp9HHTt2pHjx4sTGxio5ymNqq3mho0eP0qdPH8qWLUtgYCDFixenefPm/PDDD459WrduTc2aNVm5ciXNmjUjODiY8uXLM3XqVADmz59P/fr1KVCgALVq1eL7779P9zi//PILt912G6GhoRQoUIBmzZoxf/78dPtt2bKFu+66i8KFCxMUFETdunWZPn264/dLly6lYcOGAPTs2dNRhr629bJz5046depEwYIFKVu2LM899xwJCQlZPhc2m43Jkydz8eJFx/1OmzYtyxbWtY9tb39s3bqVhx9+mLCwMEqWLMkTTzzB6dOn09w2KSmJDz/8kLp16xIcHMxNN91EkyZN+Oabb4Dk1sLWrVtZtmyZIx57aySzmJx5nqdNm4bNZmPJkiX079+fYsWKUbRoUe69994M/2p1Vvny5encuTNz5syhdu3aBAUFUbFiRT744IN0++7bt49HH32UEiVKEBgYSLVq1XjvvfdISkrK9P737NmDn58fo0aNSve7n3/+GZvNxhdffAFk7zxcunSJl156iQoVKhAQEECZMmV48sknOXXqVIbH9+2331KvXj2Cg4OpVq0a3377LZD8vFarVo2QkBAaNWrE2rVr09w+o9bYrFmzaNeuHeHh4Y77GzJkCOfPn8/8ic5E69atefTRRwFo3LgxNpvNUXG8tq1ms9k4f/4806dPd7y2WrduneX9nzhxggEDBlCmTBkCAgKoWLEiQ4cOdbyv7K/JH374ge3btzvud+nSpZne55UrV/i///s/SpUqRYECBWjRogWrV6/OcN9Dhw7Rt29fIiIiCAgIoEKFCgwfPpyrV6+m2S8+Pp777ruP0NBQbrrpJh555BHWrFmT7v1ib8Fv3ryZdu3aERoaym233QYkt9dHjBhB1apVHZ+LPXv25OjRo+nimjVrFk2bNiUkJISCBQvSvn17NmzYkOVzmdry5cuZNGkSkydPxtfX1+nbhYaGEhQUhJ+f6hp5zojXad++vSlevLiZNGmSWbp0qfn666/Nq6++aj777DPHPq1atTJFixY1VapUMbGxsWbhwoWmc+fOBjDDhw83tWrVMjNnzjQLFiwwTZo0MYGBgebvv/923H7p0qXG39/fREdHm1mzZpmvv/7atGvXzthstjSP88cff5jQ0FBTqVIl8/HHH5v58+ebhx9+2ADmrbfeMsYYc/r0aTN16lQDmJdfftmsXLnSrFy50uzfv98YY0yPHj1MQECAqVatmnn33XfNDz/8YF599VVjs9nM8OHDs3wuVq5caTp16mSCg4Md93vkyBGze/duA5ipU6emuw1ghg0b5vj3sGHDDGCqVKliXn31VbN48WIzevRoExgYaHr27Jnmto899pix2WymV69eZu7cuea7774z//73v81//vMfY4wx69evNxUrVjT16tVzxLN+/XpjjMkwJmefZ/vzV7FiRfP000+bhQsXmsmTJ5vChQubW2+9NU2M9n0zOvZrRUZGmjJlyphy5cqZKVOmmAULFphHHnnEAOadd95x7HfkyBFTpkwZU7x4cTNhwgTz/fffm6eeesoApn///lk+v/fcc48pV66cuXr1apr97r//flO6dGlz5cqVbJ2HpKQk0759e+Pn52deeeUVs2jRIvPuu++akJAQU69ePXPp0qU0xxcREWFq1qzpeL03btzY+Pv7m1dffdU0b97cfPXVV2bOnDnm5ptvNiVLljQXLlxw3N4eU2pvvPGGef/99838+fPN0qVLzYQJE0yFChXSnYeMbnutrVu3mpdfftlxvlauXGl27txpjEl+X0RGRjr2XblypQkODjadOnVyvLa2bt2a6X1fvHjR1K5d24SEhJh3333XLFq0yLzyyivGz8/PdOrUyRhjzKVLl8zKlStNvXr1TMWKFR33e/r06Uzvt0ePHsZms5kXXnjBLFq0yIwePdqUKVPGFCpUyPTo0cOx38GDB03ZsmVNZGSkmThxovnhhx/MG2+8YQIDA83jjz/u2O/cuXOmcuXKpkiRImbs2LFm4cKFZtCgQaZChQrpXsc9evQw/v7+pnz58mbUqFHmxx9/NAsXLjSJiYmmQ4cOJiQkxAwfPtwsXrzYTJ482ZQpU8ZUr149zTn997//bWw2m3niiSfMt99+a7766ivTtGlTExISkuXzaXfhwgUTFRVlXnjhBWPMP+f56NGjGe5/9epVc/nyZbN7927Tp08fU7BgQbN27drrPo7cGCVHXqhgwYLm2WefzXKfVq1aGSDNm/D48ePG19fXBAcHp0mENm7caADzwQcfOLY1adLElChRwpw9e9ax7erVq6ZmzZomIiLCJCUlGWOMeeihh0xgYKDZt29fmsfv2LGjKVCggDl16pQxxpg1a9Zk+oXdo0cPA5jPP/88zfZOnTqZKlWqXOfZSL59SEhImm05SY7efvvtNPsNGDDABAUFOY71559/NoAZOnRolvHUqFHDtGrVKt32jGJy9nm2JzwDBgxIc59vv/22AczBgwcd26ZPn258fX3N9OnTs4zTmOTkwWazmY0bN6bZ3rZtW1OoUCFz/vx5Y4wxQ4YMMYBZtWpVmv369+9vbDab2bFjh2Pbtc/vkiVLDGDmzJnj2Pb3338bPz+/NMmvs+fh+++/z3C/WbNmGcBMmjQpzfEFBweb+Ph4xzb76z08PNxxfMYY8/XXXxvAfPPNN+liykxSUpK5cuWKWbZsmQHMpk2bnL6tnf3crlmzJs32a5MjY4wJCQlJk4BkZcKECRm+r9566y0DmEWLFjm2tWrVytSoUeO697l9+3YDmEGDBqXZPmPGDAOkia1v376mYMGCZu/evWn2fffddw3gSETGjh1rAPPdd9+l2a9v374ZJkeAmTJlSpp9Z86caQAze/bsNNvtnzvjxo0zxhizb98+4+fnZ55++uk0+509e9aUKlXKPPDAA9d9Dp577jlTsWJFR8J1veSoSpUqBnC85n755ZfrPobcOLXVvFCjRo2YNm0aI0aM4LfffuPKlSsZ7hceHk50dLTj30WKFKFEiRLUrVuX0qVLO7ZXq1YNgL179wJw/vx5Vq1axX333ZdmcLOvry+PPfYY8fHx7NixA4CffvqJ2267jbJly6Z57Mcff5wLFy6wcuVKp47JZrPRpUuXNNtq167tiCk/3Hnnneke/9KlSxw5cgSA7777DoAnn3wyVx4vO89zVjECaZ6n7t27c/XqVbp37+5UHDVq1KBOnTpptnXr1o0zZ86wfv16IPk8V69ePc2YGEg+z8YYfvrpp0zvv3Xr1tSpU4exY8c6tk2YMAGbzUafPn3S7X+982B/rGsHvN9///2EhITw448/ptlet25dypQp4/i3/fXeunXrNGNVrn0fZGbXrl1069aNUqVK4evri7+/v2P8yPbt27O8bX766aefCAkJ4b777kuz3f68Xfs8OWPJkiUA6cYmPfDAA+laRd9++y233norpUuX5urVq46fjh07ArBs2TLHf0NDQ9MNfH/44YczjaNr167pHuumm26iS5cuaR6rbt26lCpVytEmXLhwoeO9kXq/oKAgWrVqlWU7EWD16tWMGTOGiRMnEhwcnOW+drNnz2bVqlV88cUXVK9enY4dO173ceTGqXHphWbNmsWIESOYPHkyr7zyCgULFuSee+7h7bffplSpUo79MppxEhAQkG57QEAAkDyOA+DkyZMYYwgPD093e3tSdfz4ccd/ndnvegoUKEBQUFCabYGBgY6Y8kPRokXTPT7AxYsXgeSxXr6+vmme4xuRnefZ2RhzIqPjsW9LfZ6vnVaeVZzXss/G2rFjBxUrVuSjjz7ivvvuy/Cxr3eMx48fx8/Pj+LFi6fZz2azUapUqXSxZPZ6v977ICPnzp2jZcuWBAUFMWLECG6++WYKFCjA/v37uffee2/oPOS248ePU6pUqXRjpkqUKIGfn5/T781r7xPSv2b8/PzSnbfDhw8zb948/P39M7wv+9T348ePU7JkyXS/z2gbJH9WFCpUKN1jnTp1ynEOM3usw4cPAzjGQF7LxyfresMTTzzBvffeS4MGDRzj2+yvlzNnzhAYGEhoaGia29SoUQNI/qP27rvvpl69egwcOJBNmzZl+VhyY5QceaFixYoxZswYxowZw759+/jmm28YMmQIR44cyXBgdXYVLlwYHx8fDh48mO539sG/xYoVA5K/yJzZL7/ZE61rB3Tn5AvBrnjx4iQmJnLo0KEME5rsys7znJcOHTqU6Tb7F96Nnudu3brx4osvMnbsWJo0acKhQ4dyXIErWrQoV69e5ejRo2kSJGMMhw4dyvSLLzf89NNPHDhwgKVLl6aZbXTtQHBXULRoUVatWoUxJk2CdOTIEa5evZqj15b99XDo0KE01birV6+me28VK1aM2rVr8+9//zvD+7In1kWLFs1wQHdGr0sgw7Wj7BMUMvv8sycs9mP+8ssviYyMzHDfrGzdupWtW7c6JhGkVqlSJerUqZPhWm52fn5+1K9fn88//zzbjy3Zo7aalytXrhxPPfUUbdu2dbRAblRISAiNGzfmq6++SvOXcFJSEp988gkRERHcfPPNANx2222OL4zUPv74YwoUKOCYup4bFY7sKFmyJEFBQfz+++9pts+dOzfH92lvB4wfPz7L/QIDA506zuw8z3lp69at6f6K/fTTTwkNDaV+/fpA8nnetm1butfYxx9/jM1m49Zbb83yMYKCgujTpw/Tp09n9OjR1K1bl+bNm+coXvvspE8++STN9tmzZ3P+/HnH7/OC/YvZ/nq2mzhxYp49ZmrOvrYg+Xk6d+5cukUjP/74Y8fvs8s+O27GjBlptn/++efpZqB17tzZsURAgwYN0v3Yk6NWrVpx9uxZR9va7rPPPnM6rs6dO3P8+HESExMzfKwqVaoA0L59e/z8/Pjrr78y3K9BgwZZPs6SJUvS/fTo0QOAr7/+msmTJ2d5+0uXLvHbb79RuXJlp49NckaVIy9z+vRpbr31Vrp160bVqlUJDQ1lzZo1fP/999x777259jijRo2ibdu23HrrrTz//PMEBAQwbtw4tmzZwsyZMx1fEsOGDXOMLXj11VcpUqQIM2bMYP78+bz99tuEhYUByX9VBQcHM2PGDKpVq0bBggUpXbp0mrFPuclms/Hoo486FrWrU6cOq1ev5tNPP83xfbZs2ZLHHnuMESNGcPjwYTp37kxgYCAbNmygQIECPP300wDUqlWLzz77jFmzZlGxYkWCgoKoVatWhvfp7POcHR9//DFPPPEEU6ZMcWrcUenSpbnzzjt57bXXCA8P55NPPmHx4sW89dZbjjE5gwYN4uOPP+aOO+7g9ddfJzIykvnz5zNu3Dj69+/vVBI3YMAA3n77bdatW3fdL5GstG3blvbt2/Piiy9y5swZmjdvzu+//86wYcOoV68ejz32WI7v+3qaNWtG4cKF6devH8OGDcPf358ZM2bkW4ukVq1aLF26lHnz5hEeHk5oaKjji/9a3bt3Z+zYsfTo0YM9e/ZQq1YtfvnlF0aOHEmnTp24/fbbs/341apV49FHH2XMmDH4+/tz++23s2XLFt599910ra7XX3+dxYsX06xZM5555hmqVKnCpUuX2LNnDwsWLGDChAlERETQo0cP3n//fR599FFGjBhB5cqV+e6771i4cCFw/VYXwEMPPcSMGTPo1KkTAwcOpFGjRvj7+xMfH8+SJUu46667uOeeeyhfvjyvv/46Q4cOZdeuXXTo0IHChQtz+PBhVq9eTUhICMOHD8/0cTJaOsE+fqh58+ZpqnHNmjXjzjvvpFq1aoSFhbFnzx7Gjx/PX3/9xZw5c5x4tuWGWDocXPLdpUuXTL9+/Uzt2rVNoUKFTHBwsKlSpYoZNmxYmpk3mc0+iYyMNHfccUe67YB58skn02xbvny5adOmjQkJCTHBwcGmSZMmZt68eeluu3nzZtOlSxcTFhZmAgICTJ06dTKcJTZz5kxTtWpV4+/vn2ZGU0azzYxxfrZPZrc/ffq06dWrlylZsqQJCQkxXbp0MXv27Ml0ttq1s03ss4h2797t2JaYmGjef/99U7NmTRMQEGDCwsJM06ZN0zwve/bsMe3atTOhoaEGcMw4ymwGnTPPc2YzmuwzwZYsWZJuX2en8t9xxx3myy+/NDVq1DABAQGmfPnyZvTo0en23bt3r+nWrZspWrSo8ff3N1WqVDHvvPOOSUxMTLPftc9vaq1btzZFihRJM7XaLjvn4eLFi+bFF180kZGRxt/f34SHh5v+/fubkydPZnh818ro9W4/P6mXMMjoNbhixQrTtGlTU6BAAVO8eHHTq1cvs379+nTPeV7MVtu4caNp3ry5KVCggAEynBWZ2vHjx02/fv1MeHi48fPzM5GRkeall15Ks9yBMc7PVjPGmISEBPPcc8+ZEiVKmKCgINOkSROzcuVKExkZmW4m3dGjR80zzzxjKlSoYPz9/U2RIkVMdHS0GTp0qDl37pxjv3379pl7773XFCxY0ISGhpquXbuaBQsWGMDMnTs3zXOS0XvdGGOuXLli3n33XVOnTh0TFBRkChYsaKpWrWr69u1r4uLi0uz79ddfm1tvvdUUKlTIBAYGmsjISHPfffeZH374wannILXMXrfPPfecqVOnjgkLCzN+fn6mVKlS5p577jG//vprth9Dss9mjDH5mIuJiAcpX748NWvWdCyKmJeOHDlCZGQkTz/9NG+//XaeP564t5EjR/Lyyy+zb9++PF+lXDyP2moi4tLi4+PZtWsX77zzDj4+PumuFyby3//+F4CqVaty5coVfvrpJz744AMeffRRJUaSI0qORMSlTZ48mddff53y5cszY8aMNLOcRCB5ev7777/Pnj17SEhIoFy5crz44ou8/PLLVocmbkptNREREZFULJ/K//PPP9OlSxdKly6NzWZLN200I8uWLSM6OtpxkcsJEybkfaAiIiLiFSxPjs6fP0+dOnUcPePr2b17N506daJly5Zs2LCBf/3rXzzzzDPMnj07jyMVERERb+BSbTWbzcacOXO4++67M93nxRdf5JtvvklzDaJ+/fqxadMmp6/DJSIiIpIZtxuQvXLlStq1a5dmW/v27YmNjeXKlSsZXocnISEhzWUgkpKSOHHiBEWLFs3RInkiIiKS/4wxnD17ltKlSzu1wGdOuV1ydOjQoXQXFCxZsiRXr17l2LFjGV6zatSoUVmuWioiIiLuY//+/Xm6TIPbJUeQ/sKB9s5gZlWgl156icGDBzv+ffr0acqVK8f+/fvTLVl/rXr16rFr1y6+//57mjZtCiRfmfnmm2/GZrO55AUjRbzG33/z96pVdHzlFfbGx1OwYEHH5UhWrFjBxx9/TGJiIi0aNmT2kCEEVasGWgpAxBJbtmyhefPmlChRgri4OMf28ePHM2TIELp27cqUKVOyvI8zZ85QtmxZx8WA84rbJUelSpVKd7XlI0eO4Ofn57ji87UCAwPTXegRoFChQtdNjnx9fQEoWLCgY99Lly4ByUnZ9W4vInkkNpaLvXvzmDHsBSoVL87iVauoUKECAL169aJHjx506dCBX9as4fmuXfnYxwcmTYKYGGtjF/FC9mst+vn5pfnuDA4OBsDf39/p79S8HhJj+Wy17GratCmLFy9Os23RokU0aNAgw/FGNyqj8eqp+5wuNJ5dxHvEx0OfPrxmDOuAosDi48epcM1nQKtKlfg6IQFf4H/AJ0lJ0Ldv8u1FJF8lJSUBmV8M2JW+Ty1Pjs6dO8fGjRvZuHEjkDxVf+PGjezbtw9IbomlvjJ4v3792Lt3L4MHD2b79u1MmTKF2NhYnn/++TyNM3WWmvrE2k+2iOSjuDg2JiXxXso/pwAVkpJg5850+7UxhmEp/xwMnEpMTL+fiOS5zJIjV5wYZXlytHbtWurVq0e9evUAGDx4MPXq1ePVV18F4ODBg45ECaBChQosWLCApUuXUrduXd544w0++OADunbtmifxXa9ypORIJP+ZypUZACQC9wF3Avj6QuXKaXeMigIfH4YAVYGjwOs2W/r9RCTPuVPlyPIxR61bt87yCZk2bVq6ba1atWL9+vV5GFV6qhyJuI7vNm9mJRAM/AeSE6OJE+Ha2SsRETBpEv59+/KfxETaAx/6+PDU5ctUzPeoRbybKkceRJUjEddijGHYsORG2YA+fSi9ZAns2ZP5IOuYGNizh3ZLltC+VSuuJibyzjvv5F/AIgK4V+VIyZGTVDkScQ0LFy5k7dq1FChQgP974w1o3Tp9xehaERHQujX/ev11AKZOnZpu1quI5C1VjjyIKkciruXDDz8EoE+fPpQoUSJbt23ZsiXNmjUjISGB//znP3kRnohkwv59mVkypMqRG8logUklRyLW2LlzJ9999x0ATz75ZLZvb7PZeOGFFwCYPHlymssKiUjesn+fZlY5UnLkhpQciVhv/PjxGGPo2LEjlXM446xz586ULl2aY8eO8fXXX+dugCKSKbXVPIjaaiKu4fLly0yfPh3IWdXIzs/Pj5iUwduTJk3KldhE5Po0INsDpc5sU/+/kiOR/LFw4UKOHz9OqVKlaN++/Q3dV69evbDZbPz000/s2rUrlyIUkayocuRBMspkbTab42QqORLJHzNmzADg4Ycfxs/vxpZoK1euHLfffjsAM2fOvOHYROT6VDnyQNdmtvaTq+RIJO+dOXOGuXPnAvDII4/kyn1269YNgE8//dSlPpRFPJUqRx4ksw9NJUci+eerr77i0qVLVK1alfr16+fKfd5zzz0EBgaybds2Nm/enCv3KSKZU+XIA6lyJGKdTz/9FIBHH3001/7KDAsL44477khz/yKSd1Q58iCqHIlY6+TJk/z0008APPjgg7l63/b7mzNnTq7er4ikp0UgPZAqRyLWWLBgAYmJidSoUSPHaxtlpkOHDvj7+/Pnn3/yxx9/5Op9i0ha16scKTlyI6ociVjLPhD7rrvuyvX7LlSoEG3atEnzOCKSNzJbIdsVuX6EFsvo8iGg5EgkPyQkJDguF5IXyVHq+1VyJJK3VDnyQEqORPLfkiVLOHfuHOHh4TRo0CBPHuPOO+8E4LfffuPQoUN58hgiogHZHkVtNRHr2K99dtddd+VZKb5MmTI0bNgQYwzz5s3Lk8cQEU3l90iqHInkL2MMCxYsAP6p7uQVe2tt/vz5efo4It5MlSMPklkmq8uHiOStHTt2sH//fgIDA2nVqlWePlaHDh0A+Omnn7hy5UqePpaIt1LlyANlVjlypZMp4kkWLVoEQMuWLSlQoECePla9evUoVqwYZ8+eZeXKlXn6WCLeSpUjD6IxRyLWsCdH7dq1y/PH8vHxoW3btmkeV0RylypHHkhjjkTyT0JCAkuWLAFwJC15rX379gAsXLgwXx5PxNtktkK2pvK7IVWORPLfym++4cKFC5QoVozatWvny2PaK1Tr1q3j2NdfQ3x8vjyuiLfQIpAeSJUjkXwSG8uiBx4AoO2xY/hMnZovDxseHk6tMmUwxrD4nnsgMhJiY/PlsUW8gRaB9CCqHInko/h46NOHxSn/bAfQt2/+VHHi42n/998AyY+flJR/jy3iBa435siVuH6EFtPlQ0TyUVwcx5KSWJfyz7YAiYmwc2e+PPZtKf+71L4tvx5bxAuocuSBlByJ5IOoKJbYbBigJhAO4OsLlSvny2M3t9nwBXYDe/PzsUW8gKbyexC11UTyUUQEy1q3BqA1JCcnEydCRES+PHboRx9hv4LbMpst/x5bxAtoKr8HUuVIJH8sO3oUgFavvQZ79kBMTP49eEwMrQcMAGDp/ffn72OLeDhVjjyIKkci+efYsWNs2bIFgFv697ekatO6SxcAlq5Zk++PLeLJVDnyQKocieS95cuXA1CtWjVKlChhSQzNmzfH19eX3bt3s3fvXktiEPFE11sE0pUoOboOVY5E8s+yZcsA8vxCs1kJDQ2lQYMGaeIRkRunypEHUuVIJO+5QnIE0DplUPjSpUstjUPEk2S2Qram8rshVY5E8sfJkyfZtGkToORIxBNpEUgPpMqRSN765ZdfMMYQFRVFeHi4pbGkHne0f/9+S2MR8RRaBNKDqHIkkj9cpaUGyeOO6tatC8Cvv/5qbTAiHkKVIw+iy4eI5A/7TDVXSI4AmjVrBsCKFSssjkTEM6hy5IGUHInknYsXL7J+/XoAWrRoYXE0yZo3bw6ociSSW7QIpAdRW00k761du5arV68SHh5OZGSk1eEA/yRHmzZt4ty5cxZHI+L+NJXfA6lyJJJ37K2rZs2aucxfkREREZQrV47ExERWrVpldTgibk+VIw+iypFI3kudHLkSjTsSyT2ZrZBtp8qRG1LlSCRvGGNcNjnSuCOR3GP/vvT19U2zXQOy3ZAqRyJ5a+fOnRw7dozAwEDq1atndThp2JOjlStXkpiYaHE0Iu5NU/k9UGYXylNyJHJj7FWjBg0aEBgYaHE0adWqVYuCBQty5swZtm3bZnU4Im5NU/k9yPUqR650MkXckau21AD8/Pxo0qQJoNaayI1S5cgDacyRSN5w5eQI/olLyZHIjVHlyINozJFI3jl16hRbt24FoGnTphZHkzH7uCPNWBO5MaoceRBdPkQk76xatQpjDJUqVaJkyZJWh5OhJk2aYLPZ2LVrF4cOHbI6HBG3ZZ/UoMqRB1FyJJL7XL2lBlCoUCGqV68OwOrVqy2ORsR9aRFID6K2mkjesSdHrtpSs2vcuDGAVsoWuQGZrXNkp8qRG1LlSCR3JSUlsWbNGgDHjDBXpeRI5MZpQLYHUeVIJG/ExcVx+vRpgoODqVmzptXhZMmeHK1Zs0bveZEc0oBsD6TKkUjuso/fqV+/Pv7+/hZHk7UaNWpQoEABzpw5wx9//GF1OCJuSZUjD6LKkUjesLeoGjVqZHEk1+fn50eDBg0AtdZEckqVIw+kypFI7rJXjtwhOYJ/4tSMNZGcUeXIg6hyJJL7EhIS2LhxI/DPeB5Xp0HZIjcms3WOXJHrR+giVDkSyT2bNm3iypUrFCtWjPLly1sdjlPsydHvv//OhQsXLI5GxP1kNpVflSM3pMqRSO5LPd7IFReAy0hERATh4eEkJiayfv16q8MRcTsac+RBdPkQkdznbuONIPkzQK01kZzTmCMPpORIJPfYkyN3GW9kp+RIJOeUHHkQtdVEctfJkyf5888/AWjYsKHF0WSPkiORnFNbzQOpciSSO+yXDKlUqRJFixa1OJrsiY6OxmazsW/fPg4dOmR1OCJuRZUjD6LKkUjucsfxRnaFChWievXqgKpHItmlqfzZNG7cOCpUqEBQUBDR0dEsX748y/1nzJhBnTp1KFCgAOHh4fTs2ZPjx4/naYyqHInkDncdb2Rnj1uLQYpkjypH2TBr1iyeffZZhg4dyoYNG2jZsiUdO3Zk3759Ge7/yy+/0L17d2JiYti6dStffPEFa9asoVevXvkat5Ijkewzxrh15Qg07kgkpzJb58gVWZ4cjR49mpiYGHr16kW1atUYM2YMZcuWZfz48Rnu/9tvv1G+fHmeeeYZKlSoQIsWLejbty9r167N0zhVORK5cfv27ePw4cP4+flRt25dq8PJkdSVI73/RZynypGTLl++zLp162jXrl2a7e3atWPFihUZ3qZZs2bEx8ezYMECjDEcPnyYL7/8kjvuuCPTx0lISODMmTNpfpyR1YlSciSSfau/+w6A2tWqERwcbHE0OVOjRg0KFCjA2bNn2fHxxxAfb3VIIm5Bs9WcdOzYMRITEylZsmSa7SVLlsx0JkizZs2YMWMGDz74IAEBAZQqVYqbbrqJDz/8MNPHGTVqFGFhYY6fsmXLOhVf6uRIlSORGxQby+r+/QFovHkzxMZaHFDO+Pn5EV2mDACre/aEyEi3PRaR/KTKUTZdm3gYYzK9pMC2bdt45plnePXVV1m3bh3ff/89u3fvpl+/fpne/0svvcTp06cdP/v377/hGO3/VnIk4oT4eOjTB/sQ5kYAffu6Z9UlPp6GcXEAyceTlOS+xyKSj9ypcuRn5YMXK1YMX1/fdFWiI0eOpKsm2Y0aNYrmzZvzwgsvAFC7dm1CQkJo2bIlI0aMIDw8PN1tAgMDCQwMzHZ8aquJ5JK4OK4mJWEfGdgIIDERdu6EiAgLA8uBuDjsQ8nX2Le567GI5CNVjpwUEBBAdHQ0ixcvTrN98eLFNGvWLMPbXLhwId0Tax/5npdPbGZtNVc6mSIuKyqKbTYbF4BQoAqAry9UrmxtXDkRFUWjlM+DjUACuO+xiOSjzNY5UnKUgcGDBzN58mSmTJnC9u3bGTRoEPv27XO0yV566SW6d+/u2L9Lly589dVXjB8/nl27dvHrr7/yzDPP0KhRI0qXLp2rsalyJJJLIiJY/dhjADQk5Q+aiRPds9ISEUH5SZMoBlwBNvn4uO+xiOQjd5rKb2lbDeDBBx/k+PHjvP766xw8eJCaNWuyYMECIiMjATh48GCaNY8ef/xxzp49y3//+1+ee+45brrpJtq0acNbb72Vp3FqQLbIjVmd0tpu1K0bvPWWWycTtl69aDRzJgt++onVw4fTKCbG6pBEXJ47tdUsT44ABgwYwIABAzL83bRp09Jte/rpp3n66afzOCpVjkRyk33xx4Zdu7p1YmTXsGXL5OQo5SK6IpI1dxqQ7foRughVjkRy7sKFC2zZsgVw35Wxr2U/Dl1GRMQ57lQ5UnKUBVWORHLHxo0bHWualUlZI8jdNWzYEIAdO3Zw+vRpi6MRcX2qHHkgVY5Ecm7NmuRJ7w0bNsx0DTN3U7x4cSpUqACQ55cvEvEEqhx5CFWORHJH6uTIk6i1JuI8VY48hC4fIpI7PDU5sh+PkiOR69M6Rx5IyZFIzpw6dYo/U2Z0eVpypMqRiPMyW+dIyZGbUVtN5MatW7cOgPLly1OsWDGLo8ld9evXx8fHhwMHDvD3339bHY6IS1NbzQOpciSSM57aUgMICQmhZs2awD/HKSIZ04BsD6HKkciN8+TkCNRaE3GWKkceSJUjkZxRciQioMqRx1DlSOTGHD58mP3792Oz2YiOjrY6nDxhT/rWrFmjzwORLKhy5IFUORLJPnvVqGrVqoSGhlocTd6oUaMGwcHBnDlzhri4OKvDEXFZmsrvIVQ5Erkxnt5SA/D396d+/fqAWmsiWVHlyAOpciSSfd6QHIHGHYk4Q+sceQhVjkRyzhij5EhEHK5XOVJy5CZ0+RCRnNu7dy/Hjh3Dz8+POnXqWB1OnrInfxs3biQhIcHiaERc0/Vmq7kSJUdOUnIkkj32qlHt2rUJCgqyOJq8VbFiRYoUKcLly5f5/fffrQ5HxCVpKr+HUFtNJOe8paUGyR/u9taaVsoWyZgGZHsgVY5EssebkiPQuCOR61HlyEOociSSM0lJSY4Lzio5EhHIfJ0jV+T6EbqIaytH9n8rORJJb8eOHZw9e5bg4GCqV69udTj5wp4E/vHHH5w+fdriaERcj6byewhnKkeudDJFXIW9pVa/fn38/PwsjiZ/lChRgsjISIwxjqqZiPxDY448kMYciTjP28Yb2WlQtkjmNObIQ2jMkUjOeHtypHFHIulpEUgPpMqRiHMuX77Mxo0bASVHIpIsdeKjRSDdnCpHItm3ZcsWEhISuOmmm6hcubLV4eSr+vXr4+PjQ3x8PAcOHLA6HBGXkfq7UpUjN6fLh4hkn72l1qBBA5f8izAvFSxY0DE7T+OORP5hn8YPqhx5FCVHIs7x1vFGdhqULZJeVpUjDch2M8601VJnwyKi5EjjjkTSS50cXbvOkStScuQkVY5Eru/ChQts3boVUHK0Zs0afT6IpFDlyINkdaLsma8+/ET+sWHDBhITEylVqhRlypSxOhxL1KxZk6CgIE6dOsXOnTutDkfEJTgzINuVuH6ELkqVI5H0UrfUXHGQZX7w9/enXr16gFprInaqHHkQjTkSyR5vH29kp3FHImmpcuSBMvoLWG01kfSUHCXTjDWRtFQ58iCqHIk479SpU8TFxQHJaxx5M3tytGHDBi5fvmxxNCLWS/1dmVnLXcmRm8noRGrMkUha9ipJhQoVKFasmMXRWKtSpUoULlyYhIQENm/ebHU4Ipazf1dmNI3fFccnKjnKgmariThv1apVADRp0sTiSKxns9kcrUWNOxK5/kVnQZUjt2E/UVlVjtRWE0lmT44aN25scSSuQYOyRf6RVXKkypGbUltNJGvGGCVH19CgbJF/OJMcqXLkJtRWE3HO7t27OXr0KP7+/tStW9fqcFyCva22bds2zp49a3E0ItZypq3mStwjSouprSaSNXvVqG7dugQFBVkcjWsoVaoU5cqVwxjDunXrrA5HxFKqHHkQVY5EnLPqxx8BaFyjhsWRuBbHuKOZMyE+3uJoRKyjypEH0pgjkSzExrIqNhaAxtOnQ8r/CzRM+QNr9aRJEBmp50a8lr3LosqRB9AikCLXER/P5d692ZDyzybGQN++qpIAxMfT6KuvAFgDkJSk50a8VlbrHNkpOXIzunyISCbi4thkDAlAUaASQGIi6Gr0EBdHtDHYgH3AIdBzI15LU/k9iCpHItcRFcWqlA+2RoANwNcXKle2MirXEBVFqI8P1VP+uQb03IjX0iKQHkhjjkQyERHBbymDjhtD8pf/xIkQEWFpWC4hIgImTaJRyufHaptNz414LVWOPIhmq4lc36rjxwFo/NZbsGcPxMRYG5AriYmh4YgRAKxu2VLPjXgtVY48iDOXDzHGuNQJFclPx48fZ2fKGJpGvXqpKpKBRu3bA7Bm82Z9VojXUuXIA2WVHIGqR+K97NcNi4qKokiRIhZH45pq1apFYGAgJ0+e5K+//rI6HBFLaCq/B3GmrQZKjsR72VfGbtKkicWRuK6AgADq1asH6CK04r2cmcrvSpQcOeF6lSPNWBNvpYvNOsexUraSI/FSunyIB3FmKj+ociTeyRij5MhJ9ovQKjkSb6UB2R4oq0UgQcmReKe4uDhOnjxJYGAgtWvXtjocl2avHG3YsIErV65YHI1I/tOAbA/ibOVIbTXxRvaqUf369QkICLA4GtdWuXJlbrrpJi5dusSWLVusDkck36ly5IFUORJJTy015/n4+Ki1Jl5NlSMPosqRSOZWrlwJaKaaszQoW7yZKkceJKtFIFNvU+VIvM25c+fYtGkTAM2bN7c4GvdgT47sFTcRb+LMOkeuRMmREzJLjnR9NfFWq1evJjExkbJlyxKhVbGdYk+Otm3bxunTpy2ORiR/ObPOkSpHbuJ6J8qeHKmtJt5mxYoVgKpG2VGqVCkqVqyIMYbffvvN6nBE8pXGHHmgzE6cKkfirezJUbNmzSyOxL3Yny/78yfiLbQIpAe53omylweVHIk3SUpKcgzGVnKUPfZK26+//mpxJCL5y5kB2a7EPaK02PUqR2qriTfZvn07p06dokCBAlr8MZvsydFvv/3G1atXLY5GJP+ocpQD48aNo0KFCgQFBREdHc3y5cuz3D8hIYGhQ4cSGRlJYGAglSpVYsqUKbkel7NjjlQ5Em9ibwk1atQIf39/i6NxL9WrV6dQoUKcP3+ezZs3Wx2OSL7RVP5smjVrFs8++yxDhw5lw4YNtGzZko4dO7Jv375Mb/PAAw/w448/Ehsby44dO5g5cyZVq1bNsxgzqxyprSbeSIOxc87X15emTZsCaq2Jd9FU/mwaPXo0MTEx9OrVi2rVqjFmzBjKli3L+PHjM9z/+++/Z9myZSxYsIDbb7+d8uXL06hRozwZ+6DZaiLpaTD2jdG4I/FGqhxlw+XLl1m3bh3t2rVLs71du3aZzub45ptvaNCgAW+//TZlypTh5ptv5vnnn+fixYuZPk5CQgJnzpxJ85Mdmq0mkuzo0aP8+eefgFbGzinNWBNvlNU6R65YOfKz8sGPHTtGYmIiJUuWTLO9ZMmSHDp0KMPb7Nq1i19++YWgoCDmzJnDsWPHGDBgACdOnMh03NGoUaMYPnx4tuNzdraaKkfiLeyz1KpVq0aRIkUsjsY9NW7cGF9fX/bt20d8fLwW0RSvoMpRDlybNRpjMs0kk5KSsNlszJgxg0aNGtGpUydGjx7NtGnTMq0evfTSS5w+fdrxs3//fqfiyuryIaDKkXgftdRuXMGCBalTpw6g1pp4Dy0CmQ3FihXD19c3XZXoyJEj6apJduHh4ZQpU4awsDDHtmrVqmGMIT4+PsPbBAYGUqhQoTQ/2aEB2SLJlBzlDrXWxNuocpQNAQEBREdHs3jx4jTbFy9enOmHb/PmzTlw4ADnzp1zbPvzzz/x8fHJ9fK0BmSL/OPy5cusWbMG0Ey1G6VB2eJtVDnKpsGDBzN58mSmTJnC9u3bGTRoEPv27aNfv35Ackuse/fujv27detG0aJF6dmzJ9u2bePnn3/mhRde4IknniA4ODhPYlRbTQQ2bNjApUuXKFKkCDfffLPV4bg1e3K0ceNGzp8/b3E0InlPi0Bm04MPPsiYMWN4/fXXqVu3Lj///DMLFiwgMjISgIMHD6ZZ86hgwYIsXryYU6dO0aBBAx555BG6dOnCBx98kOux6fIhIv9I3VJzxb/03EnZsmWJiIggMTGR1atXWx2OSJ7Lap0jO1dKjiydrWY3YMAABgwYkOHvpk2blm5b1apV07Xi8pIuHyICv/zyC6DxRrmlefPmzJo1i19//ZVbb73V6nBE8pS7TeW3vHLkynT5EJFkxhjHZX1uueUWi6PxDPbWmgZlizfQgGwPpNlq4u127NjB0aNHCQoKokGDBlaH4xFSz1hT9Vk8nQZkexDNVhNJ9vPPPwPJCxgGBgZaHI1nqFOnDqGhoZw+fVoXoRWPp8qRB9JsNfF29uRILbXc4+fnR4sWLQBYtmyZxdGI5C1VjjyILh8ikkzJUd6wP5/251fEU6ly5EF0+RAR2Lt3L/v378fPz4+mTZtaHY5HSZ0cudIXg0huy2oqvypHbkrJkXgze1UjOjqakJAQi6PxLA0aNCA4OJhjx46xfft2q8MRyTNaBNKDqK0mopZaXgoICHBU49RaE0+W1TpHrkjJkRNUORJvZv/SbtmypcWReCaNOxJvoAHZHkSLQIq3O3z4MH/++Sc2m80xs0pyV6tWrYDkGWuu1FYQyU3ODMgG12mtKTlywvUWgVRbTTyVfVXsWrVqUbhwYYuj8UyNGzfG39+fAwcOsGvXLqvDEckTqhx5EFWOxNv9vGABALfUr29xJJ4rODiYRo0aAfDzxIkQH29xRCK5z/49eb1ESJUjN6LLh4hXio3l56lTAbhl+nSIjbU4IM/VKiwMgGXvvAORkXquxePYOyy68KwH0OVDxGvFx3Oyd29+T/lnS2Ogb19VNfJCfDy3fPcdAD8DJCXpuRaPk1VylJoqR25Es9XE68TF8bMxGKAKUAogMRF27rQ2Lk8UF0czY/AFdgP7Qc+1eJyspvKrcuRmtM6ReK2oKH5K+d829m2+vlC5skUBebCoKEJ9fLCP6loGeq7F42S1QnZqqhy5AV0+RLxWRAQ/lSkDpCRHvr4wcSJERFgalkeKiIBJk2id8jmzxGbTcy0ex9kxR0qO3IiSI/E2R44cYcvffwPQ+uuvYc8eiImxNCaPFhNDm+nTAfgpIkLPtXgctdW8iNpq4qmWLl0KQO3atSl2112qYuSDlvfei5+fH3v279d6R+JxnG2ruQr3iNIiWudIvNVPPyWPOGrTps119pTcEhISQpMmTYB/nn8RT6HZah5IbTXxNkqOrGF/vpUciadRW82DaLaaeKP4+Hji4uLw8fFxXBRV8sdtt90GJCdHrvIXtEhu0Gw1D6TKkXiTJUuWABAdHU1YysrNkj8aN25McHAwhw8fZtu2bVaHI5JrtEK2F9EK2eKJ1FKzTmBgIC1atADUWhPPklVbzRUpOcqCs201VY7EUxhjlBxZzN5a+/HHHy2ORCT3qK3mgdRWE2+xe/du9u3bh7+/P82bN7c6HK9kT0qXLl2qqrR4DK9qqx05coRDhw7lViwuRwOyxdvYq0aNGzcmJCTE4mi8U/369QkLC+P06dNs2LDB6nBEcoWzbTW3rhz9/vvv1KhRg/DwcMqUKUOZMmV4+eWXOX/+fG7H5xJUORJv8cMPPwBqqVnJ19eX1q1bA2qtiefIqq3mMZWjmJgYSpYsyS+//MKGDRsYMWIE3333HQ0aNODkyZO5HaPLUnIkniQxMZHFixcD0K5dO4uj8W725FTJkXgKZxeBdBU5So62bdvGuHHjaNq0KbVr16Znz56sXbuWGjVq8PTTT+d2jJZRW028yfr16zlx4gSFChWicePGVofj1eyDspcvX87FixctjkbkxnlFWy2jCpHNZmPkyJHMnTs3VwJzJWqriTdYtGgRkPzF7OfnZ3E03q169eqUKVOGS5cusXz5cqvDEblhHttWu+OOO/jXv/7F559/Tr9+/Rg0aBCHDx9Os8/p06cpXLhwrgdpFV1bTbyJPTlSS816NpvNcR4WLlxocTQiN87d2mpO/3lYq1Yt1q9fz9SpUx1JUcWKFXnggQeoW7cuiYmJTJ06lffffz/PgrVKZlmt2mriKc6cOcOKFSsAJUeuon379kydOpWFCxfy3nvvWR2OyA1x9tpqrtJWczo5evPNNx3/f/jwYTZs2MDGjRvZuHEj48ePZ+fOnfj6+jJ8+HC6du2aJ8G6GlWOxFMsXbqUq1evUrlyZSpWrGh1OALcfvvt2Gw2tm7dSnx8PBEREVaHJJJjzi4C6SpyNLCgZMmSdOjQgQ4dOji2Xbx4kU2bNrFp06ZcC85qzrbVVDkSd6eWmuspWrQoDRs2ZPXq1SxatIgnnnjC6pBEcszZtpqrVI5yLYULDg6mSZMm9O3bN7fu0mVcr62mypG4OyVHrql9+/aAxh2J+3O2reYq3KO+ZRENyBZvsHv3buLi4vDz8+PWW2+1OhxJxZ4cLV68WBVqcWvu1lZzjygtdr2p/PrQEndmrxo1bdqUQoUKWRyNpNa4cWPCwsI4efIka9eutTockRxz9tpqHtdW80Zqq4knUEvNdfn5+TkWhFRrTdyZs4tAugolR1lQW0083ZUrVxyXqFBy5Jo07kg8gbNtNVWO3IjWORJPtWLFCk6fPk3RokWJjo62OhzJgD05WrVqFadOnbI2GJEccrat5iqUHGVBlSPxdPPnzwegY8eOblPu9jaRkZFUqVKFxMREfvjhB6vDEckRtdU8kK6tJp7Knhx17tzZ4kgkK506dQL+OV8i7sbZa6upreYB1FYTd7Z79262bduGr6+vo3UjrqlLly5AcnKkzxtxR+52bTUlR1lQW008mb0K0aJFC2666SZrg5EstWjRgkKFCnH06FHWrFljdTgi2eZsW02VIzeidY7EE3377bcA3HHHHRZHItfj7+/vuFyT/byJuBNn22quQslRFq6XwWqdI3FX58+fZ+nSpYCSI3dhb60pORJ3pLaaB9KAbPE0P/74IwkJCVSoUIFq1apZHY44oUOHDvj4+LBp0yb2799vdTgi2eLstdXUVvMAaquJu/p21iwA7mjVyiVL2pJesWLFaNq0KQDzR4+G+HiLIxJxnq6t5kHUVhNPZCZPZv6nnwLQefp0iI21OCJxVueSJQGYN2YMREbq3InbcLatpsqRG1FbTTxGfDwb+/ThAFAAaGUM9O2rKoQ7iI+ny5w5APwInE9K0rkTt+FsW81VKDnKgrNT+dVWE7cRF8e3Ka/r24EggMRE2LnTyqjEGXFxVDeG8kAC8BPo3InbUFvNA13v2mqqHInbiIpiTsr/3mXf5usLlStbFJA4LSoKm48P9rXMvwWdO3Ebzl5bTW01D6C2mribPVevsoHkN34XSP5ynTgRIiKsDUyuLyICJk2iS8rnzjdA0vjxOnfiFnRtNQ+itpp4mjkpY1ZaNmlC8SVLYM8eiImxNihxXkwMrePiCAsJ4RDwW40aVkck4hRn22qqHLkRtdXEU9iTo3seeghat1bVwQ0FVKxIl3vuAWD27NkWRyPiHGfbaq5CyVEWVDkST3LkyBF++eUXAO5J+XIV93TvvfcC8NVXX7nMX9oiWVFbzQOpciSe4JtvvsEYQ3R0NOXKlbM6HLkB7du3Jzg4mD179rBx40arwxG5LmevreYqyb6SoxugAdniThwtNVWN3F6BAgXo2LEjkFw9EnFlxhhH0qPKkQdQW008xZkzZ/jhhx8AJUeeInVrTcSVpS4gaIVsD6K2mri7BQsWcPnyZW6++WZdaNZD3HHHHfj7+7Nt2zb++OMPq8MRyVTqAsL12mquQslRFpytHCk5Eldnb6nde++9LvlBJNl30003cdtttwGqHolrS50cqa3mQa53bTW11cSVXbx4kQULFgBqqXmarl27AkqOxLWlLiBonaNsGDduHBUqVCAoKIjo6GiWL1/u1O1+/fVX/Pz8qFu3bp7Edb2TZM+AlRyJK1uwYAHnzp2jXLlyNGzY0OpwJBfdeeed+Pj4sG7dOvbs2WN1OCIZUuUoB2bNmsWzzz7L0KFD2bBhAy1btqRjx47s27cvy9udPn2a7t27O8rKeel6Y46UHIkrmzVrFgAPPvigWmoepkSJErRs2RKAL774wuJoRDKWneRIlaMUo0ePJiYmhl69elGtWjXGjBlD2bJlGT9+fJa369u3L926daNp06b5FGl6So7E1Z07d45vv/0WSE6OxPM89NBDAMycOdPiSEQy5kxbzdX+cLM0Obp8+TLr1q2jXbt2aba3a9eOFStWZHq7qVOn8tdffzFs2DCnHichIYEzZ86k+XGG2mri7ubNm8fFixepVKkS9evXtzocyQP33Xcffn5+bNiwgR07dlgdjkg615ut5oosjfLYsWMkJiZSsmTJNNtLlizJoUOHMrxNXFwcQ4YMYcaMGfj5+Tn1OKNGjSIsLMzxU7Zs2WzFqbaauCt7S+2hhx5yub/MJHcUK1aMtm3bAqoeiWtKvTp2Zp9D9u1qq6Vy7ZNljMnwCUxMTKRbt24MHz6cm2++2en7f+mllzh9+rTjZ//+/U7dTpUjcWenTp3iu+++A9RS83QPP/wwkJwcucqXi4idva3mLlUjAOdKL3mkWLFi+Pr6pqsSHTlyJF01CeDs2bOsXbuWDRs28NRTTwHJT7oxBj8/PxYtWkSbNm3S3S4wMJDAwMAcx5lZpmuvXF29ejXH9y2SV+bOncvly5epXr06NWvWtDocyUN33303QUFB/Pnnn2zcuJF69epZHZKIg72AkNVgbFWOUgkICCA6OprFixen2b548WKaNWuWbv9ChQqxefNmNm7c6Pjp168fVapUYePGjTRu3Di/QgdUORLXpllq3iM0NJTOnTsDaq2J67FXjtxlGj+4QFtt8ODBTJ48mSlTprB9+3YGDRrEvn376NevH5DcEuvevTuQXJKrWbNmmp8SJUoQFBREzZo1CQkJydXY1FYTd3XkyBHHHx1qqXkH+6y1zz77TKv2i0tJPebIXVjaVoPkD+7jx4/z+uuvc/DgQWrWrMmCBQuIjIwE4ODBg9dd8yivaUC2uJvPPvuMq1ev0rBhQ6pUqWJ1OJIPOnXqRGhoKPv372fFihW0aNHC6pBEALXVcmzAgAHs2bOHhIQE1q1bxy233OL43bRp01i6dGmmt33ttdfYuHFjnsSlypG4q48//hiAxx57zOJIJL8EBwc7Lg+j1pq4ErXVPJQqR+JOtm3bxrp16/Dz83O0WsQ7dOvWDUiuHCYkJFgcjUgyZ9pqqhx5ECVH4or+97//AcltluLFi1scjeSn22+/ndKlS3PixAnmz59vdTgigHNtNVej5CgLaquJu0lKSuKTTz4B1FLzRr6+vo7zPm3aNGuDEUmhtpqHUltN3MXSpUuJj4/npptuckztFu/So0cPABYsWMDhw4ctjkZEbTWP42zlCNDUWXEJ/5swAYAHO3cmKCjI4mjECtWqVaNx48YkJiYyY/hwiI+3OiTxcmqreajrVY5A1SOx3rmxY/nyiy8AeGzGDIiNtTgiscrjUVEATBs/HlOunF4LYiln2mqqHHkQJUfiMuLj+ezppzkHVAGaGQN9+6pq4I3i43lwxgwCgc3ARr0WxGLuuAik+0Rqgey01ZQciaXi4vgo5fXaC7ABJCbCzp1WRiVWiIujsDHcnfLPqaDXglhKbTUPpbaauLrfr15lNeAPdLdv9PWFypWtC0qsERUFPj48nvLP/wEXfXz0WhDLqK3mYVQ5Encxed48AO4CSkByYjRxIkREWBmWWCEiAiZNoq2PD5HAKeCLxx/Xa0Eso7aah8qscuTn98+l6a5evZpf4YikcfHiRcfCj73+9z9YsgT27IGYGGsDE+vExOC7dy+9U14DE//4w+KAxJvp2mpeJnUWrMqRWGX27NmcOnWKyMhI2nbrBq1bq0ogEBHBE2+8gZ+fHytWrGDLli1WRyReSotAehhnMlgtBClW++ijjwCIiYlxq7K15L3w8HDuvPNOACZOnGhxNOKt1FbzUJm11UDJkVhry5Yt/Pzzz/j6+tKzZ0+rwxEX1LdvXyD5mnsXLlywOBrxRmqreRhVjsTVjR07FoC7776bCLXSJAO33347FStW5PTp08yaNcvqcMQLqa3moVQ5Eld06tQpPv74YwCeeuopi6MRV+Xj40Pv3r2B5GTaVf4yF++ha6t5ISVHYpXp06dz4cIFatSoQatWrawOR1xYTEwMgYGBrFu3jpUrV1odjngZLQLpYdRWE1eVlJTkaKk99dRTWVY3RYoXL84jjzwCwH/+8x+LoxFvo7aah1JbTVzNokWLiIuLIywsjEcffdTqcMQNDBw4EEhe+mH//v0WRyPeRG01D6PKkbiq//73vwD07NmTggULWhyNuIPatWvTunVrEhMTHVVHkfygtpqHUuVIXMn27duZP38+NpuNAQMGWB2OuBF79WjSpEma1i/5RtdW80JKjiS/jR49GoC77rqLqKgoi6MRd9KlSxcqVKjAyZMn+eSTT6wOR7yEFoH0MGqrias5dOiQY/r+Cy+8YHE04m58fX0dyz6MHj3a8Re9SF5SW81Dqa0mruLDDz/k8uXLNG3alGbNmlkdjrihXr16ERYWxo4dO5g7d67V4YgXUFvNw2SncnT16tW8Dke83Llz5xg/fjygqpHkXKFChRxj1d566y2X+TISz6W2mofKqnLk5+cHqHIkeW/KlCmcPHmSqKgox8VERXJi4MCBBAYGsmrVKn7++WerwxEPp2ureSG11SQ/XL582TEQe/DgwW7VuxfXU7JkSceFit98802LoxFPp0UgPYwGZItLiI/nf0OHsnfvXkqWLEmPHj2sjkg8wPPPP4+Pjw/ff/89myZPhvh4q0MSD6W2mofSgGyxTGwsV8uVY+S77wLwf61aERwcbHFQ4gkqVarE/dHRAIzs3RsiIyE21uKoxBOpreZhVDkSS8XHQ58+zDSGXUAxoO+XX+ovfMkd8fH8a+1aAL4AtiYlQd++en1JrlNbzUOpciSWiIsjMSmJESn/fB4ISUqCnTutjEo8RVwctY2hK2CA4QCJiXp9Sa7TtdW8kJIjyTNRUXxhs/EnUAQYAODrC5UrWxuXeIaoKPDxYVjKP78Afvfx0etLcp0WgfQwaquJlRLDw3kjPByAQUCory9MnAgREdYGJp4hIgImTaKWry8PpGwaXreuXl+S69RW81Bqq4kVPvnkE7YdOEDhsDCenjcP9uyBmBirwxJPEhMDe/YwbOpUbDYbX61fz8aNG62OSjyM2moeRpUjsUpCQgKvvvoqAP96+WXCOnfWX/SSNyIiqP744zz44IMAvPbaa9bGIx7HfgUJ+6LJ7kDJkRNUOZL8NmHCBPbt20eZMmV48sknrQ5HvMCwYcPw8fFh7ty5rFq1yupwxIPYvx+zSo5UOfIwSo4kt509e5YRI5LnqA0bNkzrGkm+qFq1Kt27dwfg//7v/1zmS0rcnypHHkZtNbHC+++/z7Fjx4iKinJc4kEkP7z++usEBQXx888/M2/ePKvDEQ9hT440INvDqK0m+eXo0aO8m7Ia9ogRI9zqLy1xf2XLluXZZ58F4MUXX3R8qYncCLXVPIwzJ8l+svUhIrlh2LBhnD17lvr163PfffdZHY54oSFDhlC0aFH++OMPpkyZYnU44gFUOfJQqhxJfti8eTMTJ04EYPTo0W51kUbxHGFhYY6Zkq+++irnzp2zOCJxd86MOVLlyI1ozJHkF2MMgwYNIikpia5du9KqVSurQxIv1q9fPypVqsThw4d55513rA5H3JwzbTVXo+TICaocSV775ptv+PHHHwkMDNSXkVguICCAt956C4C3336b3bt3WxyRuDNn2mpZfc9aQcnRDVJyJDcqISGB5557DoDBgwdToUIFiyMSgXvvvZfbbruNS5cuMWjQIKvDETeWnan8aqu5AbXVJD988MEH/PXXX5QqVYqXXnrJ6nBEgOS/5D/44AP8/PyYO3cu3333ndUhiZtSW81Dqa0meWX//v0MHz4cgFGjRhEaGmpxRCL/qF69OgMHDgRg4MCBJCQkWByRuKPstNVUOXIDqhxJnoqP55mHH+b8+fM0b97csTqxiCt59dVXKVWqFHFxcbz/1FMQH291SOJmVDnyUKocSa6LjeWbcuX4+tdf8QPGt22rqfvikgoVKsQ7d9wBwBuTJ7OnXDmIjbU4KnEnGpDthZQcSbbFx3Oud2+eSqlMDgZqvfGG/iIX1xQfzyNTpnALcAHoZwymTx+9XsVpGpDtYdRWkzwRF8dwY9gPRAKvAiQmws6d1sYlkpG4OGzGMAkIABYCnyYl6fUqTlNbzUOprSa5aUNCAu+n/P9YIATA1xcqV7YuKJHMREWBjw9VSEnkgYHA0cKFLQxK3IkGZHsYVY4kt12+fJnHX3yRROA+4A5ITowmToSICGuDE8lIRARMmgS+vrwA1AKOA4NTLpAscj3Zaau5CiVHTlDlSHLLiBEj+P333ylWrBhjN2yAJUtgzx6IibE6NJHMxcTAnj0ELFnC5G++wcfHh08++URrH4lT7N+PGpDtRZQcibPWr1/PyJEjARg7diwl6taF1q1VMRL3EBEBrVvTqEsXx9pHMTExnDhxwuLAxNVpQLaHceYk2U+2/eSLZOTy5cs8/vjjJCYmct999/HAAw9YHZJIjo0YMYIqVapw8OBBBgwYYHU44uLUVvNQaqvJjXr99dfZvHlzcjtt7FirwxG5IQUKFOB///sfvr6+zJo1i5kzZ1odkriw7LTVVDlyAxqQLbnh559/ZtSoUQCMGzeOEiVKWByRyI1r2LAhL7/8MgADBgwgXuseSSZUOfJQqhxJTp08eZJHHnmEpKQkHn/8ce6//36rQxLJNUOHDqVBgwacOnWKJ554gqSkJKtDEhfkzDpHGpDtYZQcSWaMMfTu3Zv4+HiioqL48MMPrQ5JJFf5+/vzv//9j6CgIBYvXsw777xjdUjigpxZ58hObTU3oLaa3IjY2Fhmz56Nv78/n376KQULFrQ6JJFcV7VqVT744AMguZK0YsUKiyMSV6O2modSW02yJT6erVOmMPCZZwD497//TYMGDSwOSiTv9OrVi4cffpjExEQeeughjm/enLyGl8YhCRqQ7XFUOZJsi43lTLly3BsTw4WLF2lXowbPPfec1VGJ5CmbzcbEiROJiopi//799KxdG9OmDURGQmys1eGJxVQ58lCqHIlT4uMxvXvT0xj+BMoCM7Zvx+fAAasjE8lzoaGhfP7hhwQC84B3AZKSoG9fVZC8nDPJkQZkZ2DcuHFUqFCBoKAgoqOjWb58eab7fvXVV7Rt25bixYtTqFAhmjZtysKFC/Mx2rSUHIlDXBzvGsNXJF+9/EugmK5eLl6kbkAAY1L+fwiwCCAxUe8BL+dMW81ObbUUs2bN4tlnn2Xo0KFs2LCBli1b0rFjR/bt25fh/j///DNt27ZlwYIFrFu3jltvvZUuXbqwYcOGXI9NbTXJjiVHjzIk5f8/ABpB8kVlK1e2LiiR/BQVRV+bjRggCXgI+MvHR+8BL6e2Wg6MHj2amJgYevXqRbVq1RgzZgxly5Zl/PjxGe4/ZswY/u///o+GDRsSFRXFyJEjiYqKYt68eXkWo9pqcj07d+7kvv79SQJ62Gz0geTEaOJEXTtNvEdEBLaPPmKsjw9NgJPAXaVKce6mmywOTKyUnXWOVDki+XpT69ato127dmm2t2vXzunpoElJSZw9e5YiRYpkuk9CQgJnzpxJ8+MMVY7EGSdPnqRz586cOHGCRo0aMX7HDmxLlsCePclXMxfxJjExBO7dy+wvviC8RAm2HjhA9+7dtUCkF8vOOkeuwtLk6NixYyQmJlKyZMk020uWLMmhQ4ecuo/33nuP8+fPZ3khz1GjRhEWFub4KVu2bLbiVOVIMnPlyhXuv/9+duzYQdmyZZk7dy7BUVHQurUqRuK9IiIofd99fDV3LgEBAcyZM4cXX3zR6qjEIhqQnUPXPinGGKeeqJkzZ/Laa68xa9asLK9X9dJLL3H69GnHz/79+284Zjt7cmQ/+eI9jDE8/fTT/Pjjj4SEhDBv3jxKlSpldVgiLqNJkyZMnToVgHfffVcXXfZCqSuGGpDtpGLFiuHr65uuSnTkyJF01aRrzZo1i5iYGD7//HNuv/32LPcNDAykUKFCaX6c4cxJsmfCqhx5n5EjRzJx4kRsNhszZ86kTp06Vock4nK6devGv//9bwCeeeYZvvnmG4sjkvyUunCgAdlOCggIIDo6msWLF6fZvnjxYpo1a5bp7WbOnMnjjz/Op59+yh133JHXYaqtJulMnDjRcUXyMWPG0KVLF4sjEnFdL730Er179yYpKYmHHnqIVatWWR2S5BNnkyMNyL7G4MGDmTx5MlOmTGH79u0MGjSIffv20a9fPyD5TdW9e3fH/jNnzqR79+689957NGnShEOHDnHo0CFOnz6d67FpQLZk5Msvv6R///5A8rWknkm5TIiIZMxmszFu3Dg6dOjAxYsX6dChA5s2bbI6LMkHqb8bNSA7Gx588EHGjBnD66+/Tt26dfn5559ZsGABkZGRABw8eDDNmkcTJ07k6tWrPPnkk4SHhzt+Bg4cmGcxZlU58vf3BzTmyCvEx/PDu+/yyCOPYIyhT58+vPHGG1ZHJeIW/Pz8+PLLL2nWrBmnTp2ibdu27Fi2TNdg83DZrRy5CpdoAA4YMIABAwZk+Ltp06al+ffSpUvzPqBssJ9sJUceLjaWn3r35k5juAzcW78+48aNc7k3tIgrCwkJYf78+bRp04YNGzZwe+vWLAfK+/jApEla+sIDpf5u1IBsD5GdAdlXrlzJ63DEKvHxLO3dm87GcBHoCHy6cSO+Bw9aHZmI27nppptYOHUq1YB4oA2wR9dg81j2tprNZsPHx31SDveJ1EJqq3m3ZV9+yR0piVEH4CsgUNdME8mx4idOsBioBOwGbgHidA02j+TspUM0INuNqHIkCxcupNO//sUFkhOjOUAQ6JppIjciKooyPj4sA6oC+0lOkLZpFW2Pk52LzroSJUdOUOXIO82aNYsuXbpw4eJFOtSsyRwfn38SI10zTSTnIiJg0iTK+PqyDKgFHAJaPfggGzdutDY2yVXZrRy5CiVHN0gDsj3T+PHjefjhh7ly5QoPPfQQc9etI2jv3uSZNbpmmsiNi4mBPXsosWQJS37/nejoaI4dO0br1q1ZsmSJ1dFJLnE2ObJTW80NqK3mfYwxjBgxggEDBmCMYcCAAXzyyScEBAQk/7Wra6aJ5J6U91TRWrX48ccfadGiBadPn6ZDhw589tlnVkcnuUBtNQ+mtpp3uHz5MjExMbzyyisAvPrqq/z3v/91uze1iDsKCwtj8eLFdO3alcuXL/Pwww/z7rvvukwlQXJGA7I9UHYqR0qO3Fh8PMe//pp2rVoxdepUfHx8+O9//8vw4cNdrg8u4smCgoL4/PPPHYv6vvDCCzzzzDNc3bNHi0W6Kft3o7v9kankyAnOVo5cJeOVbIiNZUe5cjS55x6W/fYboUFBzJ8/nyeffNLqyES8ko+PD2PGjOG9994D4L///S8dKlTgeJs2EBkJsbEWRyjZYW+raUC2l0l9wnV9NTcTH8/i3r1pYgw7gfLAisuX6VCzpsWBicjgwYP5atIkQoAfgUbAFi0W6XY0INsDZaetBhqU7U6SkpIY+dprtDeGU0BTYBVQU4s7iriMeypXZiVQAdgFNAHmaLFIt6K2mgdzpq0GGnfkLk6dOsXdd9/N0NhYDBAD/ASUAC3uKOJKoqKo5ePDGpIvM3IeuBd46csv9XnrJrLbVlPlyA1kt3KkN6vr+/3332nQoAHz5s0jMDCQj7p3Z7KvrxZ3FHFFKYtFFvX15XvgmZQv0DfHjqVNmzb8/fff1sYn15XdtpqrUHLkhKwqR2qruQdjDBMmTKBx48b89ddflCtXjl9++YVe06cnL+qoxR1FXFPKYpH+S5bwn337mDVrFqGhoSxfvpx69eqxaNEiqyOULDi7zpEGZHsYm83mOOmqHLmY+HhYsoTjmzdz77330r9/fy5dukSHDh1Yt24dDRo0SN5PizuKuLZU79EHHniAdevWUbduXY4ePUqHDh0YOnRo8h+nKe95Ddh2HRqQ7YGcPUla68gFxcZCZCRL27ShTu3afP311/j7+/Pee+8xf/58ihUrZnWEIpJDUVFRrFy5kr59+2KMYeTIkTSNiuKPcuVAU/5digZke7Drlfvsg7LVVnMR8fFc6t2b/0tKog3wN3Az8NvcuQwePBgfH73sRdxdUFAQEyZM4PPPP6dwWBjr9u6lvjGMBYym/LsMDcj2QKocuaff5s6lnjG8AxigJ7AOqB8cbG1gIpLr7r//fjZPmkRb4CLwFNAJ2K8p/y5BA7I92PUqR7r4rGu4ePEiL7zwAs2feYY/gFLAXGAKUFBT9EU8VplmzfjeZuM/QBDwPVAdGPvLLyQlJVkbnJdztq2mAdluxNnKkS4+a73FixdTp04d3n33XZKSknisaVO2+vhwJ2iKvoini4jA56OPeMbXl/VAM+Ac8NQrr9CiRQu2bt1qcYDey9m2mp3aam7E2cqRkqP8Fx8fzwMPPEC7du2Ii4sjPDycb775ho9XrKDI3r2aoi/iLVKm/FdbsoTle/cyduxYQkNDWblyJfXq1WPo0KGcO3fO6ii9jrNtNVWOPJAGZOez+HguL1rEe6+8QtWqVfniiy/w8fFh4MCBbN++nS5duiTvpyn6It4l5T3vU64cAwYMYOvWrXTp0oUrV64wcuRIqlSpwieffELSvn2a8p9PsjtbTZUjN6AB2a7HTJ7M5+XKUb19e54fMYLz58/TtGlT1q1bx5gxYwgLC7M6RBFxEWXLlmXu3LnMmTOHihUrcuDAAR577DGaRUaySlP+80V222quQsmRE9RWcw3LvviCJr1786Ax/AWUBGJtNn757DPq1q1rcXQi4opsNht33303W7duZdSQIYSQfJHpJsB9SUls69NHFaQ8pAHZHii7A7LVVssbv/32G506daL1Aw+wGggBhgM7gSeMwWfXLmsDFBGXFxQUxJB27fgT6AHYgNlAraQkHu/Vi927d1sboIfSgGwPpsqRNX799Vfat29P06ZN+e677/D19aU/8BfwKlAQkmeiaYq+iDgjKorSPj5MA34H7gGSgOkLF1KlShX69OnDTq2NlKs0INuLqXKUS+LjMT/9xLIvvuC2226jRYsWLFq0CF9fX3r27Mkff/zBuMmTKWkvz2qKvohkR0QETJoEvr7UBL7y9WX10KG0bduWK1eu8NFHH1GlShW6devG77//rmu15QJ3HZDtXiOk8pkGZOefq5MmMadfP94zhlUp2/z9/enZsydDhgyhQoUKyRsrV4b27ZNXvq1cWYmRiGRPTEyaz5CGEREsAn755RdGjRrFggULmDlzJjNnzuQO4F9AMx+f5KRKS4JkmwZkezC11fLOuXPn+OD117m5b18eSEmMAoH+Nhs7ly9n4sSJ/yRGdpqiLyI3IoPPkBYtWjB//nw2bNjAg126YAPmA82B5klJfNmnD1f37LEmXjemAdkeSAOy887Bgwf517/+RdmyZRk4bBi7gaIkjyXaB4wzhnIXL1obpIh4nbp16/LZoEHsAHoB/sAK4P6kJCo3acJ7773H6dOnrQ3SjWT32mqu0lZTcuQEVY5uUErf3uzfz6pVq+jevTuRkZGMGjWKU6dOEVWhAuNtNvaRPAutBGigtYhYJyqKKB8fPgL2Ai8DxYC9hw/z/PPPExERwTPPPPPP4G2NTcqUvWhgLyJkRpUjD6Rrq2UhNpaL5coxtU0bGpYrR5MmTfjf//7HlStXaNGiBV9//TV/7NxJv48+ooAGWouIK0g1cDsceMPXl33jxvHRRx9Ro0YNzp07x4cffsjNN9/MnXXrMr9cORK1qGSGnE2O7FQ5cgPZHZCttlpaW3/8ked79aKMMTwBrCN5PFH3++5j1apVLF++nLvuugsfHx/HdZF0LTQRcQnXfCYF9+9Pr1692Lx5M4sWLaJTp04YY5i3aROdjaECMDwpif1aVDKN7CZHrkLJkRPUVnPeiRMnGDt2LI0aNaLm7bfzHnASiATeBOKB6U8+SaNGjdLfWAOtRcSVZPCZZLPZaNu2LfPnz+ePadMYDBQB9gOvAeWTkuh8//18/vnnXLhwwZKwXYm7ttXca25dPtOA7CzEx0NcHERFcaJAAebNm8dXX33F999/z+XLl4HkpPGOq1fpBXQEfEFjiUTEY1S57Tbe8/Hh30lJzAEmAUuB+b/9xvwHHyQkJIQ777yThx9+mHbt2hF49Kjjc9Nb/gi0Fw3cra2m5MgJqhxdIzaWQ71787UxzAaW+PiQmJTk+HW9evXo0aMH3bp1o/g330DfvpCYqLFEIuJZUsYmBfXty8OJiTzs68ufw4cz7fx5PvvsM3bv3u1YM+mmAgW448IF7gLa22wU+ugjrxg+oMqRF/OW5GjHjh3M/fhj5o4cyUrAkd8nJVG7WjXuffBBunbtSs2aNf+50TULrikxEhGPcs1n3M0REYwE/v3vf7N69Wo+++wzZn36KQePHGEGMAPwN4Zbe/XizoMH6dK9O+XKlbP4IPKOPTlyt6n8So6ykNdttXPnzhEfH8/NN9+cPCjZFaRqlyWGh/Pbb78xd+5c5s6dy59//plm10ZAV+BeoPK4ccm9+YxERCgpEhHPlcFnnM1mo3HjxjRu3Jh377iDlW3b8g3wDbADWAQseuUVnnrlFerWrctdd93FnXfeSb169ZKrKKk+i13h8zMhIYFdu3ZRuXLlbA2u1oBsD5YXbbVly5ZRtmxZqlWrRnR0NAcPHryhGHNFyrT7b9q0IaZsWcILF6ZFixa88847/Pnnn/j7+9PullsYa7OxH1gF/B9QWeOIREQy5Vu1Ki18fHgb+CPl522bjRYNG+Lj48PGjRsZPnw40dHRlC1blv6tW7OgXDkuucjyAGvXrqVixYpUr16datWqsScbK4W7a1tNyVEWsls5cjY5On/+PA899BCnTp0CYOPGjbRt25azZ8/mKE6nZLFI2eHDh4l9913u6tWLosZwFzAFOHr2LGGFCtGtWzdmzZrF0aNHWbhsGQM++ogIrUkkIuKcVOsmAVTx9eWFjz5i+erVHDp0iGnTpnHvvfcSEhLC33//zYRly7jDGIoB9yQlMbV3b45s3JjxfefxApRxcXG0b9+eAwcOAPDXX3/Rs2dPp78ftc6RB3O2cuRsW2369OkcOnSIChUqsHXrVsLDw9m6dSsvvvjiDceaodjY5L8+Uv4KOT9uHD/88AOvvvoqzZo1Izw8nF4vvMA3wEWgHPA08ANwdPZsZsyYwQMPPEBYWFjy/WlNIhGR7Mnkc7N48eL06NGD2bNnc+zYMRaMGkV/oAxwHvgaeMIYStWvT7NmzRg1ahRr165NnhV8zWd7bleYEhMTefzxxzlx4gSNGjXi999/JyAggKVLl7J69Wqn7sNdK0cac5QLsttW++STTwB4+umnqV69Op988gm33XYb48eP59577+X222/PlbjOnTvHzl9/ZWfv3mw3hi3A1qQkdjz5JNdGGl2rFndt2cKdxlAbsEHyXzlVq2Z85xpHJCKSPdf53AwKCqLjo4/ScehQxiYlsREc45TWG8PKlStZuXIl//rXvwgICKDu5cvUBioDUUlJRPXpQ1SrVgTl0jCHDz74gBUrVhAaGsoXX3xBuXLluP/++5kxYwaffPIJjRs3vu59qHLkgfJiQPaJEyf47bffAHjggQcAaNOmDQMGDAAgJiaGM2fOOB9kSkn16p49/Pjjj7zyyiu0bduW0qVLExoaSr0OHbjfGF4FPge2AleBiOLFeeSRR5g0aRL79+9n7e+/88pHH1HH1/efxEjtMhGR/JXSgrP5+lIPGObry7rJk9m/fz/jx4/njjvuoEiRIly+fJnVwGRgCMmTY2onJRFSpQpRUVHcfffdvPnmm6xfv56kpKRst9/i4uIYOnQoAO+8845jRp39e2vBggVO3U921zlyFaocOSE3B2QvXboUYwzVq1enTJkyju1vvfUW33//Pbt27WLw4MFMnjz5+oHFxnKwd2/eNoZPgGMZ7FK0cGGiTp7kZqAmUAOo6eND2XXrsJUtm3ZnTbsXEbFeBp/FEUC/fv3o168fxhh2/fora265hT+MIQ4cP6eSkti5cyc7d+5k7ty5vPTSS1QoVozex4/TyxiK+/gkj3/KYjjE1atX6d69OxcvXqRNmzb06dPH8btbb70VPz8/du3axe7du6lQoUKWh+KubTVVjrKQFwOy165dC0Dz5s3TbC9YsCDTpk3DZrMRGxvLvKlTs8zyj27axAu9elHRGMaQnBgVBR7r2pUJEyawatUqTpw4wbETJ1g5eTLTfX15Aejk60u5SZPSJ0Z2uoSHiIj1svgsttlsVGrRgoc++ojXfH2ZAaz29eXERx9x8OBBfvzxR95//33uvPNOCoaEsPvYMf5lDBWBV5OSOJ3V9d/i4xnZuze//fYbhQoVYsqUKWkSl9DQUOrXrw/AqlWrrnsYaqt5sNwckL0xpaVWr3z5dL9r2bIlgwYNAuCRJ55gXQaD7E6dOsUrr7xCxaZNeRe4BDQF5gMHgY+feoq+ffvSqFEjChcunHwjDaAWEfE813y223r1olSpUrRp04Znn32WuXPncviLL5gG1AfOAW8AFZOSePuNN9Jf+y02lpnlyjFs2jQAPrzvPiIjI9M9rP3amKu+/PK6bTpVjryY02212Fg2LFkCQN2XX85wZsHIAQNoDZwFbgFGJyXxR58+rPj6awYPHky5cuUYMWIE5y5epD6wAPgV6AT4Z7XekCpCIiKe5zqf7QVq1aKHjw9rgdlANeAE8OKkSVSuXJkRI0awfv16Ni9ezOBeveiWUrl5Cnhs2rQMk5/6584BsHn27OvOklPlyANlu6124ECWpcpDvXtziOSZYLWNSb7m2DX7B+7bx9dAW+AC8BxQLSmJ5vfcw/vvv8/Zs2epVasWc+bMYe1HH9FRA6hFRCQzqQZ43wv87uPDtJ49iYyM5ODBg7zyyitER0dTu1073k+5yZPAGMCWlJQ87im1+HiqTZ8OJC9mSVJSht9ldlcuXgTA78SJ3D+2PKTkyAm2rJIewC+l73pl2bLMs+i4ODamJFtVgBBIvhjrtS+8qCjCfHxYAHwENEjZt1SJEnTt2pVvv/2WTZs2cffdd2Pr1UvtMhERyVqq9pvf3r30mDKFHTt2MHXqVDp27EjRokW5KSyM24Bvgf8CvpD8R/e13Yi4OKqmfJf9DZyBjL/LAGJjubJ7NwD+99+fZYXJZh+WciyjqUUWMF7o9OnTBjCnT5/Ocr9hXboYwPQHY3x8jJk8Of1O+/ebWJvNAKYzGAPG+Poas39/uv3GpOzXNav9jEl+HF/ff/bJ6HFFRERykzPfPfv3G+PjY0olX3vcrM7iO8/4+JgyKfutvc53XqOU/b6x2bL8znP2+/tGeXfl6O+/M/9dfDzMmwekLIiYWekwLg6/lCzaMRw7oyw6IoJdbdoAUAmyboNpALWIiOQ3Z757Utp09uWB/7DZMv4ui4uDpCTHgsP+kPF3Y3w89OmDYzh2JkNOHLL63s5FXp0c/Vq9euZlvri49NsyaYP5pYyydwzHzmRg9K7gYAAqDhp0/aRHA6hFRCS/OfPdExND1UcfBeCPJ5/M+LssKgp8fBxFA3/ItE1HUpLjnwaybNN9Wb2688dyA7w6OdoAmWeoUVGkG46d0YmNiMC/b18gJTnKoiK0a9cuACp27KikR0RE3FbVBg0A+PPQoYx3SKkwOZIjH5+MvxtTkqg0MvquTakwLbzx0J3i1ckRkHmGGhEBXboAXHc2mF+7dgBcqVEj04qQMeaf5KhixdyKXkREJN/Z1z/at29f5jvFxHAlMBAA/19/zbJN52irZZZEXVNhymtKjrJYG8jUrZv8P3ffnWUbzLHOUUhIphWhgwcPcunSJXx8fBzXqBEREXFH9u+x/fv3Z7nfFfu11bL63ouJgZRVt01mlzbJqMKUh5QcObE2kO06V1K2r3N0+fLlTPexV43KlSvndhfgExERSa1syiWoDh48SEJCQob7JCUlkZiYCDixQnZKhYlixTLeIaXClF+8Ozn6v//LlZlgAQEBQNaXD9mzZw/AdS/SJyIi4uqKFStGUFAQAH9nMoMs9Xei/XvyekxWiy/HxEDnzs4HeQO8OzkKC8vy11mepFTsJz2rypH9xROhgdgiIuLmbDabo3qUWWst9Xeis8nRdRUokDv3cx3enRw56XoXxAtMKQdmlRwdOHAAgNKlS+deYCIiIhaxjzvKbFB2dpIjXXjWjeRF5ahMmTI3HpiIiIjFrjco2/6d6Ovri6+vr1P36ez3bl5TcuSE62W0ziRHqhyJiIgnsbfV9u7dm+Hv7QO1nWmpqXLkgewnPrMR+6DkSEREPIt9DO3Bgwcz/L29YJCd8UaqHKUybtw4KlSoQFBQENHR0SxfvjzL/ZctW0Z0dDRBQUFUrFiRCRMm5ElcudVWS0pKciRHaquJiIgnKFWqFACHMlklOyfJkauwPDmaNWsWzz77LEOHDmXDhg20bNmSjh07ZjrAa/fu3XTq1ImWLVuyYcMG/vWvf/HMM88we/bsPIsxO221jBKq48ePO6Y02l9MIiIi7iw3kyO11a4xevRoYmJi6NWrF9WqVWPMmDGULVuW8ePHZ7j/hAkTKFeuHGPGjKFatWr06tWLJ554gnfffTfXY8tu5Qjg6tWr6X5vrxoVL17cLTNoERGRa6VOjjL6vlRbLYcuX77MunXraJdybTK7du3asWLFigxvs3LlynT7t2/fnrVr12a5COONcLZyBBm31uwz1TTeSEREPEWJEiWA5MUeT548me737lw58rPywY8dO0ZiYiIlS5ZMs71kyZKZlukOHTqU4f5Xr17l2LFjhIeHp7tNQkJCmsHSp0+fBuDSpUucOXMm0/jst0lISMhyv9RJ2dGjRx3LpdvZV8cuVqxYlvcjIiLiTgoXLszJkyfZuXMnVatWTfM7e8Lk6+t73e8+e9fl/PnzTn3f5nmFyVjo77//NoBZsWJFmu0jRowwVapUyfA2UVFRZuTIkWm2/fLLLwYwBw8ezPA2w4YNM4B+9KMf/ehHP/rxgJ+//vordxKRTFhaOSpWrBi+vr7pqkRHjhxJVx2yK1WqVIb7+/n5UbRo0Qxv89JLLzF48GDHv0+dOkVkZCT79u0j7DqXEPEkZ86coWzZsuzfv59ChQpZHU6+0XHruL2BjlvH7Q1Onz5NuXLlKFKkSJ4+jqXJUUBAANHR0SxevJh77rnHsX3x4sXcddddGd6madOmzJs3L822RYsW0aBBg0yv+hsYGOi4xEdqYWFhXvWisitUqJCO24vouL2Ljtu7eOtx+/jk7ZBpy2erDR48mMmTJzNlyhS2b9/OoEGD2LdvH/369QOSqz7du3d37N+vXz/27t3L4MGD2b59O1OmTCE2Npbnn3/eqkMQERERD2Jp5QjgwQcf5Pjx47z++uscPHiQmjVrsmDBAiIjI4HklTdTr3lUoUIFFixYwKBBgxg7diylS5fmgw8+oGvXrlYdgoiIiHgQy5MjgAEDBjBgwIAMfzdt2rR021q1asX69etz/HiBgYEMGzYsw1abJ9Nx67i9gY5bx+0NdNx5e9w2Y1xkxSURERERF2D5mCMRERERV6LkSERERCQVJUciIiIiqSg5EhEREUnFY5Ojf//73zRr1owCBQpw0003OXUbYwyvvfYapUuXJjg4mNatW7N169Y0+yQkJPD0009TrFgxQkJCuPPOO4mPj8+DI8iZkydP8thjjxEWFkZYWBiPPfYYp06dyvI2Npstw5933nnHsU/r1q3T/f6hhx7K46NxXk6O+/HHH093TE2aNEmzj6ed7ytXrvDiiy9Sq1YtQkJCKF26NN27d+fAgQNp9nO18z1u3DgqVKhAUFAQ0dHRLF++PMv9ly1bRnR0NEFBQVSsWJEJEyak22f27NlUr16dwMBAqlevzpw5c/Iq/BzLznF/9dVXtG3bluLFi1OoUCGaNm3KwoUL0+wzbdq0DN/rly5dyutDyZbsHPfSpUszPKY//vgjzX6edr4z+vyy2WzUqFHDsY+rn++ff/6ZLl26ULp0aWw2G19//fV1b5Nv7+08vTiJhV599VUzevRoM3jwYBMWFubUbd58800TGhpqZs+ebTZv3mwefPBBEx4ebs6cOePYp1+/fqZMmTJm8eLFZv369ebWW281derUMVevXs2jI8meDh06mJo1a5oVK1aYFStWmJo1a5rOnTtneZuDBw+m+ZkyZYqx2Wxprl3TqlUr07t37zT7nTp1Kq8Px2k5Oe4ePXqYDh06pDmm48ePp9nH0873qVOnzO23325mzZpl/vjjD7Ny5UrTuHFjEx0dnWY/Vzrfn332mfH39zcfffSR2bZtmxk4cKAJCQkxe/fuzXD/Xbt2mQIFCpiBAweabdu2mY8++sj4+/ubL7/80rHPihUrjK+vrxk5cqTZvn27GTlypPHz8zO//fZbfh3WdWX3uAcOHGjeeusts3r1avPnn3+al156yfj7+5v169c79pk6daopVKhQuve8K8nucS9ZssQAZseOHWmOKfV71BPP96lTp9Ic7/79+02RIkXMsGHDHPu4+vlesGCBGTp0qJk9e7YBzJw5c7LcPz/f2x6bHNlNnTrVqeQoKSnJlCpVyrz55puObZcuXTJhYWFmwoQJxpjkF6O/v7/57LPPHPv8/fffxsfHx3z//fe5Hnt2bdu2zQBpXgQrV640gPnjjz+cvp+77rrLtGnTJs22Vq1amYEDB+ZWqLkqp8fdo0cPc9ddd2X6e28536tXrzZAmg9hVzrfjRo1Mv369UuzrWrVqmbIkCEZ7v9///d/pmrVqmm29e3b1zRp0sTx7wceeMB06NAhzT7t27c3Dz30UC5FfeOye9wZqV69uhk+fLjj385+Hlopu8dtT45OnjyZ6X16w/meM2eOsdlsZs+ePY5t7nC+7ZxJjvLzve2xbbXs2r17N4cOHaJdu3aObYGBgbRq1YoVK1YAsG7dOq5cuZJmn9KlS1OzZk3HPlZauXIlYWFhNG7c2LGtSZMmhIWFOR3f4cOHmT9/PjExMel+N2PGDIoVK0aNGjV4/vnnOXv2bK7FfiNu5LiXLl1KiRIluPnmm+nduzdHjhxx/M4bzjckX8jRZrOlaz+7wvm+fPky69atS3MOANq1a5fpMa5cuTLd/u3bt2ft2rVcuXIly31c4bxCzo77WklJSZw9ezbdBTrPnTtHZGQkERERdO7cmQ0bNuRa3DfqRo67Xr16hIeHc9ttt7FkyZI0v/OG8x0bG8vtt9/uuLqEnSuf7+zKz/e2S6yQ7QoOHToEQMmSJdNsL1myJHv37nXsExAQQOHChdPtY7+9lQ4dOkSJEiXSbS9RooTT8U2fPp3Q0FDuvffeNNsfeeQRKlSoQKlSpdiyZQsvvfQSmzZtYvHixbkS+43I6XF37NiR+++/n8jISHbv3s0rr7xCmzZtWLduHYGBgV5xvi9dusSQIUPo1q1bmotXusr5PnbsGImJiRm+LzM7xkOHDmW4/9WrVzl27Bjh4eGZ7uMK5xVydtzXeu+99zh//jwPPPCAY1vVqlWZNm0atWrV4syZM/znP/+hefPmbNq0iaioqFw9hpzIyXGHh4czadIkoqOjSUhI4H//+x+33XYbS5cu5ZZbbgEyf014yvk+ePAg3333HZ9++mma7a5+vrMrP9/bbpUcvfbaawwfPjzLfdasWUODBg1y/Bg2my3Nv40x6bZdy5l9boSzxw3p44fsxTdlyhQeeeQRgoKC0mzv3bu34/9r1qxJVFQUDRo0YP369dSvX9+p+86uvD7uBx980PH/NWvWpEGDBkRGRjJ//vx0yWF27vdG5df5vnLlCg899BBJSUmMGzcuze+sON9Zye77MqP9r92ek/d6fstpjDNnzuS1115j7ty5aRLoJk2apJl00Lx5c+rXr8+HH37IBx98kHuB36DsHHeVKlWoUqWK499NmzZl//79vPvuu47kKLv3aZWcxjht2jRuuukm7r777jTb3eV8Z0d+vbfdKjl66qmnrjtjpnz58jm671KlSgHJmWl4eLhj+5EjRxxZaKlSpbh8+TInT55MU004cuQIzZo1y9HjOsPZ4/799985fPhwut8dPXo0XSadkeXLl7Njxw5mzZp13X3r16+Pv78/cXFxefZlmV/HbRceHk5kZCRxcXGAZ5/vK1eu8MADD7B7925++umnNFWjjOTH+c5IsWLF8PX1TfdXX+r35bVKlSqV4f5+fn4ULVo0y32y83rJSzk5brtZs2YRExPDF198we23357lvj4+PjRs2NDxmrfajRx3ak2aNOGTTz5x/NuTz7cxhilTpvDYY48REBCQ5b6udr6zK1/f29kaoeSGsjsg+6233nJsS0hIyHBA9qxZsxz7HDhwwOUG6K5atcqx7bfffnN6gG6PHj3SzVrKzObNmw1gli1bluN4c8uNHrfdsWPHTGBgoJk+fboxxnPP9+XLl83dd99tatSoYY4cOeLUY1l5vhs1amT69++fZlu1atWyHJBdrVq1NNv69euXbtBmx44d0+zToUMHlxugm53jNsaYTz/91AQFBV13YKtdUlKSadCggenZs+eNhJqrcnLc1+ratau59dZbHf/21PNtzD8D0jdv3nzdx3DF822HkwOy8+u97bHJ0d69e82GDRvM8OHDTcGCBc2GDRvMhg0bzNmzZx37VKlSxXz11VeOf7/55psmLCzMfPXVV2bz5s3m4YcfznAqf0REhPnhhx/M+vXrTZs2bVxuanft2rXNypUrzcqVK02tWrXSTe2+9riNMeb06dOmQIECZvz48enuc+fOnWb48OFmzZo1Zvfu3Wb+/PmmatWqpl69em573GfPnjXPPfecWbFihdm9e7dZsmSJadq0qSlTpoxHn+8rV66YO++800RERJiNGzemmd6bkJBgjHG9822f4hwbG2u2bdtmnn32WRMSEuKYlTNkyBDz2GOPOfa3T/cdNGiQ2bZtm4mNjU033ffXX381vr6+5s033zTbt283b775pstO7Xb2uD/99FPj5+dnxo4dm+kSDK+99pr5/vvvzV9//WU2bNhgevbsafz8/NIk2FbL7nG///77Zs6cOebPP/80W7ZsMUOGDDGAmT17tmMfTzzfdo8++qhp3Lhxhvfp6uf77Nmzju9mwIwePdps2LDBMXPWyve2xyZHPXr0MEC6nyVLljj2AczUqVMd/05KSjLDhg0zpUqVMoGBgeaWW25Jl41fvHjRPPXUU6ZIkSImODjYdO7c2ezbty+fjur6jh8/bh555BETGhpqQkNDzSOPPJJuiuu1x22MMRMnTjTBwcEZrmWzb98+c8stt5giRYqYgIAAU6lSJfPMM8+kWxPIStk97gsXLph27dqZ4sWLG39/f1OuXDnTo0ePdOfS08737t27M3xfpH5vuOL5Hjt2rImMjDQBAQGmfv36aSpYPXr0MK1atUqz/9KlS029evVMQECAKV++fIZJ/xdffGGqVKli/P39TdWqVdN8mbqK7Bx3q1atMjyvPXr0cOzz7LPPmnLlypmAgABTvHhx065dO7NixYp8PCLnZOe433rrLVOpUiUTFBRkChcubFq0aGHmz5+f7j497Xwbk1zdDg4ONpMmTcrw/lz9fNurXpm9Zq18b9uMSRnNJCIiIiKee/kQERERkZxQciQiIiKSipIjERERkVSUHImIiIikouRIREREJBUlRyIiIiKpKDkSERERSUXJkYiIiEgqSo5EREREUlFyJCIiIpKKkiMR8Sivv/46tWrVIiQkhJIlS9K/f3+uXLlidVgi4kb8rA5ARCS3GGNITExk4sSJlClThm3bttG9e3dq165N//79rQ5PRNyELjwrIh6tW7duFC9enP/85z9WhyIibkJtNRHxGHv37uWpp56iZs2aFC5cmIIFC/L5558TERFhdWgi4kaUHImIRzh27BiNGjXi2LFjjB49ml9++YWVK1fi6+tL3bp1rQ5PRNyIxhyJiEdYsGABV69eZebMmdhsNgDGjh3L5cuXlRyJSLYoORIRj1CkSBHOnDnDN998Q/Xq1Zk3bx6jRo2iTJkyFC9e3OrwRMSNaEC2iHgEYwz9+/fn008/JTg4mEcffZRLly6xd+9evv32W6vDExE3ouRIREREJBUNyBYRERFJRcmRiIiISCpKjkRERERSUXIkIiIikoqSIxEREZFUlByJiIiIpKLkSERERCQVJUciIiIiqSg5EhEREUlFyZGIiIhIKkqORERERFJRciQiIiKSyv8DPxD2dnBatPYAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6TUlEQVR4nO3dd3xT1fvA8U+aTkopmxZKS9l7lY3sjYAgCojIsIyCiIALRBmK4ETEr+wC6g8RlaGyUcoQKiAUZWpRSilQNmW2tM35/dEmNnSQzpvxvF+vvqC3N8lzc5PcJ+c85xydUkohhBBCCCEAcNI6ACGEEEIIayLJkRBCCCFEGpIcCSGEEEKkIcmREEIIIUQakhwJIYQQQqQhyZEQQgghRBqSHAkhhBBCpCHJkRBCCCFEGpIcCSGEEEKkIcmRsAkXLlxg+vTpHDlyJN3fhg4dSuHChXN83w8ePCAkJARfX1/0ej3169fPeaB5YP78+axYsSLd9qioKHQ6XYZ/syc6nY7p06drHUaemD59OjqdLt9v+9lnn1G5cmVcXV3R6XTcvHmToUOHUqFCBbP9Zs2axfr163MUT1auX7/OgAEDKF26NDqdjt69e2f7PipUqMDQoUPzPDZr9vPPP6PT6dDpdFy9ejXLfQcNGoROp6NHjx4FFJ1jc9Y6ACEsceHCBWbMmEGFChXyPHlZsGABixYt4rPPPiMoKChXiVZemD9/PiVLlkx3ofD19SU8PJxKlSppE5jItuHDh9O1a9d8fYwjR44wbtw4hg8fzpAhQ3B2dsbLy4u33nqLl156yWzfWbNm8dRTT+UoecnKO++8w7p161i2bBmVKlWiePHieXr/9ujOnTuMGDGCsmXLcuHChSz33bhxI+vXr6dIkSIFFJ2Q5Eg4vGPHjuHh4cHYsWO1DiVLbm5uNGvWTOswRDb4+fnh5+eXr49x/PhxAEaMGEGTJk1M2wsyiT527BiVKlXi2WefLbDHzCv37t2jUKFCBf64kyZNolixYjz++OPMnDkz0/3i4uIYNWoU77zzDp9++mkBRujYpFvNAV25coWRI0dSvnx53NzcKFWqFC1btuTnn3827dO2bVtq165NeHg4LVq0wMPDgwoVKrB8+XIg5ZtMw4YNKVSoEHXq1GHLli3pHufXX3+lQ4cOeHl5UahQIVq0aMHGjRvT7Xfs2DGeeOIJihUrhru7O/Xr1+eLL74w/X3nzp00btwYgGHDhpmaoR/uejl9+jTdu3encOHClC9fnpdffpmEhIQsnwudTsfSpUu5f/++6X5XrFiRZRfWw49t7P44fvw4zzzzDN7e3pQpU4bnn3+euLg4s9saDAY+++wz6tevj4eHB0WLFqVZs2b8+OOPQErXwvHjx9m1a5cpHmPXSGYxWfI8r1ixAp1OR1hYGKNHj6ZkyZKUKFGCJ5988pHfWrNSoUIFevTowbp166hbty7u7u5UrFiRefPmpds3OjqaQYMGUbp0adzc3KhRowYff/wxBoMh0/uPiorC2dmZ2bNnp/vb7t270el0fPfdd0D2zkN8fDyTJ08mMDAQV1dXypUrxwsvvMDNmzczPL4NGzbQoEEDPDw8qFGjBhs2bABSntcaNWrg6elJkyZN+P33381un1HX2OrVq+ncuTO+vr6m+5s0aRJ3797N/InORNu2bRk0aBAATZs2RafTmVocH+5W0+l03L17ly+++ML02mrbtm2W93/9+nXGjBlDuXLlcHV1pWLFikyZMsX0vjK+Jn/++WdOnjxput+dO3dmep+JiYm89tpr+Pj4UKhQIR577DEOHDiQ4b6xsbGMGjUKPz8/XF1dCQwMZMaMGSQlJZntFxMTw1NPPYWXlxdFixbl2Wef5eDBg+neL8Yu+KNHj9K5c2e8vLzo0KEDkNK9PnPmTKpXr276XBw2bBhXrlxJF9fq1atp3rw5np6eFC5cmC5duhAREZHlc5nWnj17WLx4MUuXLkWv12e578svv4yvry/jxo2z+P5FHlDC4XTp0kWVKlVKLV68WO3cuVOtX79eTZ06VX3zzTemfdq0aaNKlCihqlWrpkJDQ9XWrVtVjx49FKBmzJih6tSpo1atWqU2bdqkmjVrptzc3NT58+dNt9+5c6dycXFRQUFBavXq1Wr9+vWqc+fOSqfTmT3OqVOnlJeXl6pUqZL68ssv1caNG9UzzzyjAPX+++8rpZSKi4tTy5cvV4B68803VXh4uAoPD1fnzp1TSik1ZMgQ5erqqmrUqKE++ugj9fPPP6upU6cqnU6nZsyYkeVzER4errp37648PDxM93v58mV15swZBajly5enuw2gpk2bZvp92rRpClDVqlVTU6dOVdu3b1dz5sxRbm5uatiwYWa3fe6555ROp1PDhw9XP/zwg9q8ebN699131aeffqqUUurw4cOqYsWKqkGDBqZ4Dh8+rJRSGcZk6fNsfP4qVqyoXnzxRbV161a1dOlSVaxYMdWuXTuzGI37ZnTsDwsICFDlypVT/v7+atmyZWrTpk3q2WefVYD68MMPTftdvnxZlStXTpUqVUotXLhQbdmyRY0dO1YBavTo0Vk+v3369FH+/v4qKSnJbL+nn35alS1bViUmJmbrPBgMBtWlSxfl7Oys3nrrLbVt2zb10UcfKU9PT9WgQQMVHx9vdnx+fn6qdu3aptd706ZNlYuLi5o6dapq2bKlWrt2rVq3bp2qWrWqKlOmjLp3757p9saY0nrnnXfUJ598ojZu3Kh27typFi5cqAIDA9Odh4xu+7Djx4+rN99803S+wsPD1enTp5VSKe+LgIAA077h4eHKw8NDde/e3fTaOn78eKb3ff/+fVW3bl3l6empPvroI7Vt2zb11ltvKWdnZ9W9e3ellFLx8fEqPDxcNWjQQFWsWNF0v3FxcZne75AhQ5ROp1Ovvvqq2rZtm5ozZ44qV66cKlKkiBoyZIhpv4sXL6ry5curgIAAtWjRIvXzzz+rd955R7m5uamhQ4ea9rtz546qXLmyKl68uPr888/V1q1b1YQJE1RgYGC61/GQIUOUi4uLqlChgpo9e7b65Zdf1NatW1VycrLq2rWr8vT0VDNmzFDbt29XS5cuVeXKlVM1a9Y0O6fvvvuu0ul06vnnn1cbNmxQa9euVc2bN1eenp5ZPp9G9+7dU1WqVFGvvvqqUuq/83zlypV0+27fvl25uLioI0eOKKVSXo+PP/74Ix9D5J4kRw6ocOHCavz48Vnu06ZNGwWo33//3bTt2rVrSq/XKw8PD7NE6MiRIwpQ8+bNM21r1qyZKl26tLp9+7ZpW1JSkqpdu7by8/NTBoNBKaXUgAEDlJubm4qOjjZ7/G7duqlChQqpmzdvKqWUOnjwYKYX7CFDhihAffvtt2bbu3fvrqpVq/aIZyPl9p6enmbbcpIcffDBB2b7jRkzRrm7u5uOdffu3QpQU6ZMyTKeWrVqqTZt2qTbnlFMlj7PxoRnzJgxZvf5wQcfKEBdvHjRtO2LL75Qer1effHFF1nGqVTKh7VOpzN9eBt16tRJFSlSRN29e1cppdSkSZMUoPbv32+23+jRo5VOp1N//fWXadvDz29YWJgC1Lp160zbzp8/r5ydnc2SX0vPw5YtWzLcb/Xq1QpQixcvNjs+Dw8PFRMTY9pmfL37+vqajk8ppdavX68A9eOPP6aLKTMGg0ElJiaqXbt2KUD98ccfFt/WyHhuDx48aLb94eRIKaU8PT3NEpCsLFy4MMP31fvvv68AtW3bNtO2Nm3aqFq1aj3yPk+ePKkANWHCBLPtK1euVIBZbKNGjVKFCxdWZ8+eNdv3o48+UoApEfn8888VoDZv3my236hRozJMjgC1bNkys31XrVqlALVmzRqz7cbPnfnz5yullIqOjlbOzs7qxRdfNNvv9u3bysfHR/Xr1++Rz8HLL7+sKlasaEq4MkuObt++rSpUqKAmT55s2ibJUcGRbjUH1KRJE1asWMHMmTP57bffSExMzHA/X19fgoKCTL8XL16c0qVLU79+fcqWLWvaXqNGDQDOnj0LwN27d9m/fz9PPfWUWXGzXq/nueeeIyYmhr/++guAHTt20KFDB8qXL2/22EOHDuXevXuEh4dbdEw6nY6ePXuabatbt64ppoLQq1evdI8fHx/P5cuXAdi8eTMAL7zwQp48Xnae56xiBMyep8GDB5OUlMTgwYMtiqNWrVrUq1fPbNvAgQO5desWhw8fBlLOc82aNc1qYiDlPCul2LFjR6b337ZtW+rVq8fnn39u2rZw4UJ0Oh0jR45Mt/+jzoPxsR4ueH/66afx9PTkl19+Mdtev359ypUrZ/rd+Hpv27atWa3Kw++DzPz7778MHDgQHx8f9Ho9Li4utGnTBoCTJ09meduCtGPHDjw9PXnqqafMthuft4efJ0uEhYUBpKtN6tevH87O5iWwGzZsoF27dpQtW5akpCTTT7du3QDYtWuX6V8vL690he/PPPNMpnH07ds33WMVLVqUnj17mj1W/fr18fHxMXUTbt261fTeSLufu7s7bdq0ybI7EeDAgQPMnTuXRYsW4eHhkeW+kyZNwsXFhalTp2a5n8gfUpDtgFavXs3MmTNZunQpb731FoULF6ZPnz588MEH+Pj4mPbLaMSJq6truu2urq5ASh0HwI0bN1BK4evrm+72xqTq2rVrpn8t2e9RChUqhLu7u9k2Nzc3U0wFoUSJEukeH+D+/ftASq2XXq83e45zIzvPs6Ux5kRGx2PclvY8PzysPKs4H2YcjfXXX39RsWJFlixZwlNPPZXhYz/qGK9du4azszOlSpUy20+n0+Hj45Mulsxe7496H2Tkzp07tGrVCnd3d2bOnEnVqlUpVKgQ586d48knn8zVechr165dw8fHJ13NVOnSpXF2drb4vfnwfUL614yzs3O683bp0iV++uknXFxcMrwv49D3a9euUaZMmXR/z2gbpHxWPDzq69KlS9y8edN0DjN7rEuXLgGYaiAf5uSUdXvD888/z5NPPkmjRo1M9W3G18utW7dwc3PDy8uLAwcOMH/+fNauXUt8fLxpH4PBQFJSEjdv3sTDw8P02hZ5T5IjB1SyZEnmzp3L3LlziY6O5scff2TSpElcvnw5w8Lq7CpWrBhOTk5cvHgx3d+Mxb8lS5YEUi5kluxX0IyJ1sMF3Tm5IBiVKlWK5ORkYmNjM0xosis7z3N+io2NzXSb8YKX2/M8cOBAXn/9dT7//HOaNWtGbGxsjlvgSpQoQVJSEleuXDFLkJRSxMbGZnrhyws7duzgwoUL7Ny509RaBKQrBLcGJUqUYP/+/SilzBKky5cvk5SUlKPXlvH1EBsba9Yal5SUlO69VbJkSerWrcu7776b4X0ZE+sSJUpkWNCd0esSyHDuKOMAhcw+/7y8vEz7AXz//fcEBARkuG9Wjh8/zvHjx02DCNKqVKkS9erV48iRI5w4cQKlFH369Em337lz5yhWrBiffPIJ48ePz3YMwjLSrebg/P39GTt2LJ06dTJ1geSWp6cnTZs2Ze3atWbfhA0GA//3f/+Hn58fVatWBaBDhw6mC0ZaX375JYUKFTINXc+LFo7sKFOmDO7u7vz5559m23/44Ycc36exO2DBggVZ7ufm5mbRcWbnec5Px48f548//jDb9vXXX+Pl5UXDhg2BlPN84sSJdK+xL7/8Ep1OR7t27bJ8DHd3d0aOHMkXX3zBnDlzqF+/Pi1btsxRvMbRSf/3f/9ntn3NmjXcvXvX9Pf8YLwwP/yNf9GiRfn2mGlZ+tqClOfpzp076SaN/PLLL01/zy7j6LiVK1eabf/222/TjUDr0aOHaYqARo0apfsxJkdt2rTh9u3bpm5ro2+++cbiuHr06MG1a9dITk7O8LGqVasGQJcuXXB2duaff/7JcL9GjRpl+ThhYWHpfoYMGQLA+vXrWbp0KQBdu3bNcN8yZcrQrFkzwsLC0nV3irwlLUcOJi4ujnbt2jFw4ECqV6+Ol5cXBw8eZMuWLTz55JN59jizZ8+mU6dOtGvXjldeeQVXV1fmz5/PsWPHWLVqlekiMW3aNFNtwdSpUylevDgrV65k48aNfPDBB3h7ewMp36o8PDxYuXIlNWrUoHDhwpQtW9as9ikv6XQ6Bg0aZJrUrl69ehw4cICvv/46x/fZqlUrnnvuOWbOnMmlS5fo0aMHbm5uREREUKhQIV588UUA6tSpwzfffMPq1aupWLEi7u7u1KlTJ8P7tPR5zo4vv/yS559/nmXLlllUd1S2bFl69erF9OnT8fX15f/+7//Yvn0777//vqkmZ8KECXz55Zc8/vjjvP322wQEBLBx40bmz5/P6NGjLUrixowZwwcffMChQ4dMF5Gc6NSpE126dOH111/n1q1btGzZkj///JNp06bRoEEDnnvuuRzf96O0aNGCYsWKERISwrRp03BxcWHlypXpksv8UqdOHXbu3MlPP/2Er68vXl5epgv/wwYPHsznn3/OkCFDiIqKok6dOvz666/MmjWL7t2707Fjx2w/fo0aNRg0aBBz587FxcWFjh07cuzYMT766KN0XV1vv/0227dvp0WLFowbN45q1aoRHx9PVFQUmzZtYuHChfj5+TFkyBA++eQTBg0axMyZM6lcuTKbN29m69atwKO7ugAGDBjAypUr6d69Oy+99BJNmjTBxcWFmJgYwsLCeOKJJ+jTpw8VKlTg7bffZsqUKfz777907dqVYsWKcenSJQ4cOICnpyczZszI9HEymjrBWKfUsmVLU8uUj49Phl3G7u7ulChR4pFTMIg8oGU1uCh48fHxKiQkRNWtW1cVKVJEeXh4qGrVqqlp06aZjbzJbPRJZqMlAPXCCy+YbduzZ49q37698vT0VB4eHqpZs2bqp59+Snfbo0ePqp49eypvb2/l6uqq6tWrl+EosVWrVqnq1asrFxcXsxFNGY02U8ry0T6Z3T4uLk4NHz5clSlTRnl6eqqePXuqqKioTEerPTzaxDiK6MyZM6ZtycnJ6pNPPlG1a9dWrq6uytvbWzVv3tzseYmKilKdO3dWXl5eCjCNOMpsBJ0lz3NmI5qMI8HCwsLS7WvpUP7HH39cff/996pWrVrK1dVVVahQQc2ZMyfdvmfPnlUDBw5UJUqUUC4uLqpatWrqww8/VMnJyWb7Pfz8ptW2bVtVvHhxs6HVRtk5D/fv31evv/66CggIUC4uLsrX11eNHj1a3bhxI8Pje1hGr3fj+Uk7hUFGr8F9+/ap5s2bq0KFCqlSpUqp4cOHq8OHD6d7zvNjtNqRI0dUy5YtVaFChRSQ4ajItK5du6ZCQkKUr6+vcnZ2VgEBAWry5Mlm0x0oZfloNaWUSkhIUC+//LIqXbq0cnd3V82aNVPh4eEqICAg3Ui6K1euqHHjxqnAwEDl4uKiihcvroKCgtSUKVPUnTt3TPtFR0erJ598UhUuXFh5eXmpvn37qk2bNilA/fDDD2bPSUbvdaWUSkxMVB999JGqV6+ecnd3V4ULF1bVq1dXo0aNUpGRkWb7rl+/XrVr104VKVJEubm5qYCAAPXUU0+pn3/+2aLnIK2shvI/TEarFRydUkoVYC4mhLAjFSpUoHbt2qZJEfPT5cuXCQgI4MUXX+SDDz7I98cTtm3WrFm8+eabREdH5/ss5cL+SLeaEMKqxcTE8O+///Lhhx/i5OSUbr0wIf73v/8BUL16dRITE9mxYwfz5s1j0KBBkhiJHJHkSAhh1ZYuXcrbb79NhQoVWLlypdkoJyEgZXj+J598QlRUFAkJCfj7+/P666/z5ptvah2asFHSrSaEEEIIkYbmQ/l3795Nz549KVu2LDqdLt2w0Yzs2rWLoKAg0yKXCxcuzP9AhRBCCOEQNE+O7t69S7169Ux9xo9y5swZunfvTqtWrYiIiOCNN95g3LhxrFmzJp8jFUIIIYQjsKpuNZ1Ox7p16+jdu3em+7z++uv8+OOPZmsQhYSE8Mcff1i8DpcQQgghRGZsriA7PDyczp07m23r0qULoaGhJCYmZrgOT0JCgtkyEAaDgevXr1OiRIkcTZInhBBCiIKnlOL27duULVvWogk+c8rmkqPY2Nh0CwqWKVOGpKQkrl69muGaVbNnz85y1lIhhBBC2I5z587l6zQNNpccQfqFA409g5m1Ak2ePJmJEyeafo+Li8Pf359z586lm7I+rTNnzlC/fn0KFSqUbtHM69evExgYCPy3yrcQooCdP8+F/fvp9tZbRMXE4OnpSUhICNWqVWPv3r189dVXGAwGWjVpwvevv457jRogUwEIUeAOHTpE+/btKVeuHCdOnDD72z///EPDhg3x8vIiJiYmy/u5desW5cuXNy0GnF9s7oru4+OTbrXly5cv4+zsbFrx+WFubm7pFnoEKFKkSJbJkfHJ1+l06fYzGAxm+2XUnSeEyEehocSPGMFzShEFVCxViu2//UbFihUBGDFiBEOHDqVXt27sOXCAV/v25QsnJ1i8GIKDNQ1dCEfj6ekJgLOzc7rradpEJ6trclr5XRKj+Wi17GrevDnbt28327Zt2zYaNWqU5wlKVrXqaU9M2kRJCFEAYmJg5EimK8XvQHHg52vXqOjqarZb28qVWZeQgBPwJbDSYIBRo1JuL4QoMMbrpK3U+WqeHN25c4cjR45w5MgRIKUr68iRI0RHRwMpXWJpVwYPCQnh7NmzTJw4kZMnT7Js2TJCQ0N55ZVX8i3GjE5m2kIwKxrwJ4RjiIzkD4OBj1J/XQYEGgxw+nS6/TooxbTUXycCccnJ6fcTQuQr43UyoyJqa0yYNE+Ofv/9dxo0aECDBg0AmDhxIg0aNGDq1KkAXLx40ZQoAQQGBrJp0yZ27txJ/fr1eeedd5g3bx59+/Yt0Lil5UgI7ajKlRkDJAN9gScA9HqoXNl8xypVwMmJSUB14DLwtk6Xfj8hRL56VG1w2n2sgeY1R23bts3yCVmxYkW6bW3atOHw4cP5GNWjScuRENrZcuwY+wAPYB6kJEaLFsHDo1f8/GDxYlxHjWJucjJdgXlOToxNTCSwwKMWwnFJt5odkZojIayPUopp01I6ysaMHEnZsDCIisq8yDo4GKKi6BIWRufWrUlKTubDDz8suICFENKtZo+k5kgI67Ft2zYOHjxIoUKFeO2dd6Bt2/QtRg/z84O2bXnj7bcBWLZsWbpRr0KI/GNJy5E1XUslOcohaTkSQhvz5s0DUobqly5dOlu3bd26Nc2bNychIYFPP/00P8ITQmQgq5Yja2QbUVohaTkSouCdPn2azZs3AzB27Nhs316n0/Haa68BsHTpUrNlhYQQ+SergmzpVrMxUnMkhHVZsGABSim6detG5RyOOOvRowdly5bl6tWrrF+/Pm8DFEJkSLrV7JDUHAmhvQcPHvDFF18A8MILL+T4fpydnQlOLd5evHhxnsQmhMiadKs5CGk5EqJgbd26lWvXruHj40OXLl1ydV/Dhw/HycmJHTt28O+//+ZRhEKIzGTVciTdanbGeEKl5UiI/Ldy5UoAnnnmmVwv9Ozv70+HDh0AWLVqVa5jE0JkzZKWI2u6lkpylIVHnShjciQtR0Lkr1u3bvHDDz8A8Oyzz+bJfQ4cOBBISbqs6UNZCHtkyQzZ1kSSIwtkdjKNGbB8sAqRv9auXUt8fDzVq1enYcOGeXKfffr0wc3NjZMnT/Lnn3/myX0KITIm3WoORFqOhCgYxi61QYMG5dkHqbe3Nz169ACka02I/CbdanbkUSdKWo6EyH83btwgLCwMgP79++fpfffr1w+AdevW5en9CiHMydpqdiizkyktR0Lkv02bNpGcnEytWrVyPLdRZrp27Yqrqyt///03p06dytP7FkL8R9ZWcyDSciRE/jNO1PjEE0/k+X0XKVKE9u3bA5gKvoUQec+SgmxrupZKcpQL0nIkRP5KSEhgy5YtAPTu3TtfHsOYdMls2ULkH+lWsyNScySEtnbs2MGdO3coW7YsQUFB+fIYvXr1AmD//v3Exsbmy2MI4egs6VazpmupJEcWkJojIbRh7Orq1atXvi07ULZsWRo3boxSip9++ilfHkMIRyfzHDkQaTkSIv8opdi4cSPwX+tOfjF2rW3YsCFfH0cIR2VsRJC11RyAtBwJkX9OnjxJTEwM7u7utG3bNl8fq2vXrgCEhYWRmJiYr48lhCPKquVIutVsjKXLh1jTCRXCXmzduhWA1q1b4+Hhka+P1aBBA0qVKsXt27cJDw/P18cSwhFJy5EdetTyIdJyJETe27ZtGwCdO3fO98dycnKiU6dOwH9JmRAi70jNkQORliMh8kd8fDy7du0CoEuXLgXymMYkTJIjIfKedKs5EGk5EiJ//LpuHffv36ecjw+1atUqkMc0JkeHDx/myrp1EBNTII8rhCOQbjU7IjVHQmggNJStAwcC0Dk2Ft2yZQXysL6+vtT180Mpxc9PPgkBARAaWiCPLYS9k241OyQ1R0IUkJgYGDmS7am/dgYYNapgWnFiYuiS+jjbAQyGgntsIexcVi1H1tjQIMlRLljjCRXCpkVGct1g4M/UX9sDJCfD6dMF8tjtU/+707itoB5bCDsnLUd2xNLlQ6TlSIg8UqUKu3U6FFATKA2g10PlygXy2C11OvTAGeBsQT62EHZOkiM79KjlQ6TlSIg84ufHzg4dAGgLKcnJokXg51cgj+21ZAmNUn/dpdMV3GMLYeekW82BSMuREHlv55UrALSdNg2ioiA4uOAePDiYtmPGpMTx9NMF+9hC2DFpOXIg1pjtCmHLrl+/zp9/plQctRkzRpNWm7Y9ewKw8+DBAn9sIeyVDOW3I1JzJETB2r17N0opatasSenSpTWJoWXLluj1es6cOcPZs2c1iUEIeyOTQNohqTkSomCEhYUB5PtCs1nx8vKiUaOUyqOdO3dqFocQ9kS61RyItBwJkbeMyUi7du00jcP4+JIcCZE3pFvNgUjLkRB559q1a6Z6o9atW2sai7HlSpIjIfKGdKvZEak5EqLg/PrrrwCa1hsZGeuOoqKiiI6O1jQWIeyBtBzZIak5EiL/7d27F4DHHntM40igcOHC1K9fH4B9+/ZpG4wQdkBqjhyIMQOW5EiI3DMmRy1bttQ4khTGOIxxCSFyzpJuNWsiyVEuGE+odKsJkTvx8fH8/vvvALRo0ULjaFJIciRE3pFuNTtiac2RtBwJkTuHDh3iwYMHlC5dmkqVKmkdDvBfkvbHH39w584djaMRwrZZ2q1mLddTSY4s8KiaI2k5EiJ3jHU9LVu2tJomdj8/P/z9/TEYDOzfv1/rcISwacakJ6u11ayJJEe5IC1HQuQNa6s3MpKuNSHyhrERwRoToYxIcpQL0nIkRO4ppUwtR9ZSb2RkTI5kxJoQuZNVy1FG+2lNkqMsSM2REPkvMjKSK1eu4ObmRsOGDbUOx4wxWQsPDyc5OVnjaISwXVm1HFlja5IkRxaQmiMh8o+xVaZx48a4ublpHI25OnXqULhwYW7dusXx48e1DkcImyXzHDkQmQRSiNwz1vNYW5cagLOzM82aNQOk7kiI3JBuNTsiy4cIkf+stRjbSOqOhMg96VazQ7J8iBD54/r165w8eRKwzpYjkBFrQuQFS1uOrIVtRGmlpOVIiNz57bffAKhatSolS5bUOJqMNW3aFJ1Ox5kzZ4iNjdU6HCFskqVD+a2lsUGSo1yQliMhcufgwYNASgJirYoUKUKtWrUAOHDggMbRCGGbZG01OyI1R0LkL2Oy0aRJE40jyZoxPpkpW4ickW41OyQ1R0LkPaWUqeWocePGGkeTNWPLliRHQuSMdKs5EGk5EiLnzp49y5UrV3BxcaFevXpah5MlY3J08OBBeb8LkQPSreZApOVIiJwzdqnVrVsXd3d3jaPJWq1atShUqBC3bt3i1KlTWocjhM0xfqmQbjU7IDVHQuQfY5eatdcbQcpkkI0aNQKka02InJCaIzskNUdC5D1bKcY2krojIXLO0pYja7meSnKUC9JyJETOJCcnc+jQIcD6i7GNJDkSIudkhmwHIi1HQuTMyZMnuXv3LoULF6Z69epah2MRYwvX0aNHuXfvnsbRCGFbpObIjkjNkRD5w9ilFhQUhF6v1zgay/j5+eHr62vW6iWEsIzUHNkhqTkSIm/ZUjG2kU6nM3WtyUzZQmSP1Bw5EGk5EiJnbK0Y20jqjoTIGak5siOPymCl5UiI7IuPj+fPP/8EbKcY20iSIyFyRrrV7FBmWa20HAmRfUeOHCEpKYnSpUvj7++vdTjZ0qhRI3Q6HdHR0cTGxmodjhA2QwqyHYi0HAmRfcYutcaNG1tlc3pWvLy8qFWrFiCtR0Jkh6ytlgPz588nMDAQd3d3goKC2LNnT5b7r1y5knr16lGoUCF8fX0ZNmwY165dK6Bo/yMtR0Jkny0WY6dljFuSIyEsl1W3mjV+SdI8OVq9ejXjx49nypQpRERE0KpVK7p160Z0dHSG+//6668MHjyY4OBgjh8/znfffcfBgwcZPnx4nscmNUdC5D1bLcY2krojIbJPutWyac6cOQQHBzN8+HBq1KjB3LlzKV++PAsWLMhw/99++40KFSowbtw4AgMDeeyxxxg1ahS///57vsUoNUdC5I2bN2/y999/A5jWKrM1xuTo4MGD8t4XwkKWdqtZC02TowcPHnDo0CE6d+5str1z587s27cvw9u0aNGCmJgYNm3ahFKKS5cu8f333/P4449n+jgJCQncunXL7CcvSMuRENnz++bNAFT096dkyZIaR5MztWrVolChQty+fZu/vvwSYmK0DkkIq2fpaDVruZ5qmhxdvXqV5ORkypQpY7a9TJkymY4EadGiBStXrqR///64urri4+ND0aJF+eyzzzJ9nNmzZ+Pt7W36KV++fJ7ELy1HQmRDaCgHnn0WgMbR0RAaqnFAOePs7ExQuXIAHBg2DAICbPZYhCgoWXWrWWNrkubdapD+iVFKZfpknThxgnHjxjF16lQOHTrEli1bOHPmDCEhIZne/+TJk4mLizP9nDt3zqK4pOZIiDwSEwMjR3Iw9b3SBGDUKNtsdYmJoUlkJAAHAAwG2z0WIQqIrXWrOWv54CVLlkSv16drJbp8+XK61iSj2bNn07JlS1599VUA6tati6enJ61atWLmzJn4+vqmu42bmxtubm45jlNqjoTIpchIMBgwLrrRBCA5GU6fBj8/DQPLgchIjFNXmhYRsdVjEaKAyCSQ2eDq6kpQUBDbt2832759+3ZatGiR4W3u3buX7sk1LlxZ0C040nIkhIWqVOG8TscFUj50GgDo9VC5srZx5USVKjRJfe//ASSA7R6LEAVE1lbLpokTJ7J06VKWLVvGyZMnmTBhAtHR0aZussmTJzN48GDT/j179mTt2rUsWLCAf//9l7179zJu3DiaNGlC2bJlCzR2Y3IkLUdCPIKfHwfHjAGgNuCp18OiRbbZ0uLnR4XFiykJJAJ/ODnZ7rEIUUBsbW01TbvVAPr378+1a9d4++23uXjxIrVr12bTpk0EBAQAcPHiRbM5j4YOHcrt27f53//+x8svv0zRokVp374977//fp7H9qgM1pgBW0umK4Q1O1CkCACNu3e3+WRCN3w4TVatYtOOHRyYMYMmwcFahySEVbO1bjXNkyOAMWPGMCb1W+XDVqxYkW7biy++yIsvvpjPUf0ns6xWWo6EsJxpZuwnnrDpxMioSevWKclR6rxNQojMySSQDkRajoSwjMFgsPllQx7WuHFKWbZxxm8hROZkbTUHIi1HQlgmMjKSuLg43N3dTQu32jpjcvTXX39x8+ZNbYMRwsrJ2mp2RGqOhMgbxlajhg0b4uLionE0eaNUqVIEBgYCcOjQIY2jEcK6SbeaHXpUzZEkR0Jkzdj1ZGxtsRfGLkLpWhMia7Y2CaQkR7kgk0AKYRl7qzcykuRICMvI2mp2RJYPESL3Hjx4QEREBGB/yZEUZQthGVlbzQ7J8iFC5NzRo0dJSEigWLFiVKpUSetw8lTDhg1xcnLiwoULnD9/XutwhLBa0q3mQKTlSIhHM3apNW7c2GY+GC3l6elJ7dq1gf+OUwiRnq1NAmkbUVopaTkS4tHstRjbSOqOhHg0WVvNjkjNkRC5Z6/F2EaSHAnxaLa2tpokRxaQmiMhcub27dscP34csN+WI+NxHTx4UD4LhMiEdKs5EGk5EiJrhw8fRimFn58fvr6+WoeTL2rVqoWHhwe3bt3ib1lnTYgMySSQDkRajoTImr13qQG4uLjQsGFDQIqyhciMrK1mR6TmSIjcsfdibCOpOxIia7K2mh2SmiMhcsYRWo5AkiMhHkW61RyItBwJkbnLly8TFRWFTqcjKChI63DylbFl7MiRIyQkJGgcjRDWRyaBdCDSciRE5oytRtWqVcPb21vjaPJXxYoVKV68OA8ePODPP//UOhwhrI60HNkRqTkSIuccpUsNUj4LjMcpRdlCpGdpzZG1XE8lObKA1BwJkX2OUoxtJHVHQmROWo4ciLQcCZExpZRDtRyBJEdCZEVqjuzIo5IeaTkSImNRUVFcvXoVFxcX6tWrp3U4BcLYQnbq1Cni4uI0jkYI6yIzZNuhzDJdaTkSImPG1pN69erh5uamcTQFo3Tp0gQEBKCU4tChQ1qHI4RVyapbTWqO7IzxhErLkRDmHK1LzUiKsoXImHSrORBjBmwtma4Q1sLRirGNpO5IiIxJt5odsXQov7QcCfGfpKQkU7eSo7YcSXIkhDkZrWaHHjWUX1qOhPjPyZMnuXfvHoULF6ZatWpah1OgGjZsiJOTEzExMVy4cEHrcISwGll1q0nNkZ2RliMh0kvbpabX6zWOpmAVLlyYmjVrAlJ3JERa0q3mQKTlSIj0jMmRo3WpGUlRthDpSbeaHZGaIyGyb//+/YAkR1J3JMR/ZLSaHZKaIyEsc/fuXY4dOwZIcnTw4EH54iREKllbzYFIy5EQ5iIiIkhOTsbX15dy5cppHY4mateujbu7Ozdv3uT06dNahyOEVZBuNQciLUdCmDN2JTVt2tRmms/zmouLCw0aNACka00II+lWsyNScyRE9jh6MbaRFGULYU5Gq9khqTkSwjKOXoxtJEXZQpiTtdUciLQcCfGfy5cvExUVBUCjRo20DUZjxuQoIiKCBw8eaByNENqTbjUHIi1HQvzH2IVUvXp1vL29NY5GW5UqVaJYsWIkJCRw9OhRrcMRQnPSrWZHpOZICMtJvdF/dDqdadFd6VoTQkar2SWpORLi0dKOVBNSlC1EWrK2mgORliMhUiilpOXoIVKULcR/pFvNjjwqg5WWIyFS/PPPP1y/fh1XV1fq1q2rdThWwditduLECW7fvq1xNEJoS7rV7FBm3WrSciRECmPrSIMGDXB1ddU4Guvg4+ND+fLlUUpx6NAhrcMRQlMyWs2BSMuRECkO7NgBQJOaNTWOxLqYutZWrYKYGI2jEUI7sraaA5GWIyGA0FAOhIYC0GTFCkj9vwBj9dXBxYshIECeG+GwpFvNjkjNkRCPEBND4ogRHE79talSMGqUtJIAxMTQZO1aAA4AGAzy3AiHJd1qdkhqjoTIRGQkfypFAlAUqAyQnAyyGj1ERhKkFDogGogFeW6Ew5LRag5EWo6Ew6tShQOpXxKaADoAvR4qV9YyKutQpQpeTk7USP31IMhzIxyWrK3mQIwn1FpOphAFzs+PA82bA6n1NXo9LFoEfn6ahmUV/Pxg8WKapH5OHNDp5LkRDku61eyIpTVH0q0mHNmBmzcBaPLuuxAVBcHBmsZjVYKDaTJzJgAHW7eW50Y4LOlWs0OPqjmSliPhqG7dusXJkycBaBIcLK0iGWjSpQsAB/78Uz4rhMOS0WoORAqyhaM7cOAASikCAgIoU6aM1uFYpTp16uDm5saNGzf4559/tA5HCE1Y2q1mLV8gJDnKBSnIFo4uPDwcgOapdUciPVdXV+rXrw/IOmvCcUm3mh15VNIjLUfC0UlyZBlZhFY4MqWUJEf2KLNmQGk5Eo7MYDDw22+/AZIcPYoxOTp48KDGkQhR8NJeI2W0mgOQliPhyP7++29u3LiBu7s79erV0zocq2ZMjg4fPkxiYqLG0QhRsNJeIzNrObK2AU6SHGVBlg8RInPGLrVGjRrh6uqqcTTWrXLlyhQtWpT4+HiOHTumdThCFKi010jpVrMjsnyIEOlJvZHlnJycaNy4MSB1R8LxWNJyZG1sI0orJS1HwpFJcpQ9khwJR5U2OZKaIwcgLUfCUcXFxXH8+HFAkiNLyYg14ags6VaTmiMbIsuHCJEx4+SPFSpUwMfHR+twbELTpk0BOH78OHFxcRpHI0TBkW41OyVD+YUwJ11q2efj40NgYCBKKfbv3691OEIUGOlWczDSciQclSRHOdOyZUsA9u7dq3EkQhQcGa3mYCQ5Eo5IJn/MOUmOhCOSeY7sjNQcCZHeX3/9xc2bN/Hw8JDJH7OpRYsWAOzfv5+kpCSNoxGiYEi3Wg7Nnz+fwMBA3N3dCQoKYs+ePVnun5CQwJQpUwgICMDNzY1KlSqxbNmyfIvvUTVHkhwJR5J28kcXFxeNo7EttWrVokiRIty5c4ejR49qHY4QBUK61XJg9erVjB8/nilTphAREUGrVq3o1q0b0dHRmd6mX79+/PLLL4SGhvLXX3+xatUqqlevXoBRp5DkSDgiqTfKOb1eb3repGtNOAppOcqBOXPmEBwczPDhw6lRowZz586lfPnyLFiwIMP9t2zZwq5du9i0aRMdO3akQoUKNGnSxNRcXZAkORKOSJKj3DF+Vu3bt0/jSIQoGMZrZFaJkdQcpfHgwQMOHTpE586dzbZ37tw50w+OH3/8kUaNGvHBBx9Qrlw5qlatyiuvvML9+/czfZyEhARu3bpl9mMJqTkSwlxcXBwnTpwAJDnKKSnKFo7GeC21lS41AGctH/zq1askJydTpkwZs+1lypQhNjY2w9v8+++//Prrr7i7u7Nu3TquXr3KmDFjuH79eqZ1R7Nnz2bGjBk5jlNqjoRIER4ejlKKihUrpnvfCss0bdoUJycnoqOjiYmJwc/PT+uQhMhXxmukLSVHVhHpw8mHUirThMRgMKDT6Vi5ciVNmjShe/fuzJkzhxUrVmTaejR58mTi4uJMP+fOncuTuCU5Eo7m119/BaBVq1YaR2K7ChcubBrlJ11rwhFY0q1mbTRNjkqWLIler0/XSnT58uVMv5X6+vpSrlw5vL29Tdtq1KiBUoqYmJgMb+Pm5kaRIkXMfvKCJEfC0RhHkj722GMaR2LbpGtNOBJLutWk5igNV1dXgoKC2L59u9n27du3Z1pg3bJlSy5cuMCdO3dM2/7++2+cnJzyvHn6USdJFp4VjiQhIcG0aKokR7kjyZFwJNKtlgMTJ05k6dKlLFu2jJMnTzJhwgSio6MJCQkBUrrEBg8ebNp/4MCBlChRgmHDhnHixAl2797Nq6++yvPPP4+Hh0e+xCg1R0LA4cOHiY+Pp2TJklSrVk3rcGya8cvfkSNHuHv3rsbRCJG/pFstB/r378/cuXN5++23qV+/Prt372bTpk0EBAQAcPHiRbM5jwoXLsz27du5efMmjRo14tlnn6Vnz57MmzevwGOXhWeFIzHWGz322GM29SFnjfz9/fHz8yM5OdnUGieEvZLRajk0ZswYxowZk+HfVqxYkW5b9erV03XF5QcZyi/Ef6TeKG+1bNmS1atXs3fvXtq1a6d1OELkG0u61aTmyAZJt5pwdAaDwVQfI8lR3pDJIIWjkG41ByPJkXAUp06d4vr163h4eNCwYUOtw7ELxqLsffv2kZycrHE0QuQfW+xWs51IrZAkR8JRGLvUmjVrJovN5pF69erh5eVFXFycLEIr7JqMVrMzUnMkRIq0xdgibzg7O5taj3bt2qVxNELkH1lbzU5JzZFwdJIc5Y82bdoAsHv3bo0jESL/SLeag5HkSDiCmJgYoqKicHJyksVm81jr1q2BlOTIWr4xC5HXpFvNwUhyJByBsdWofv36eHl5aRyNfWnUqBEeHh5cvXqVkydPah2OEPlCRqvZGak5EuK/YmxjfYzIO66urqbWOOlaE/ZK1lazU4+qOVJKWc0JFSKvGYuF27Ztq20gdipt15oQ9ki61RxM2hMtyZGwR5cvX+b48ePAfxdxkbeMz+uuXbvkc0TYJelWczBpkyPpWhP2yNiaUadOHUqWLKlxNPbJOHfUhQsX+Pfff7UOR4g8J6PV7IylNUcgyZGwTzs3bACgbaNGGkdivzw8PGjSpAkAuxctgpgYjSMSIm9lZ201ayHJkQUeVXMEkhwJOxQays4vvgCg7YoVEBqqbTx2rLW3NwC7PvwQAgLkuRZ2JTvdatbStSzJUS6kPdGSHAm7EhPD5REjOJ76a2ulYNQoadXIDzExtNm8GYDdAAaDPNfCrkhBtp3JTreatWS7QuSJyEh2p76m6wAlAZKT4fRpLaOyT5GRtFAKPXAGOAfyXAu7IjVHdkq61YTDqVKFnan/bWvcptdD5cqahGPXqlTBy8mJhqm/7gJ5roVdkZojByPJkbBbfn7sLFsWSE2O9HpYtAj8/LSMyj75+cHixbRNvTiE6XTyXAu7IjVHDkaSI2GvLl++zPELFwBovX49REVBcLCmMdm14GDapxa/7/Dzk+da2BXpVrMzMpRfOCqz+Y2eeEJaMQpAqyefxNnZmahz52S+I2FXpCDbTknNkXA0O3fuBGTJkILk6elJs2bNANixY4fG0QiRdyzpVpOaIzsiQ/mFvZLkSBvt27cHJDkS9iU73WpSc2QnjCdbkiNhL2Q9Ne106NABSEmOrOUiIURuSbeanbHkw0mSI2FvfvnlFwDq168v66kVsKZNm+Lh4cGlS5c4ceKE1uEIkSdk4Vk7ldUJleRI2Juff/4ZgI4dO2ocieNxc3PjscceA6RrTdgPS7rVrC1xkuQolyQ5EvZEKcX27dsBSY60YuxaM7bgCWHrstOtZi3dyZIc5ZIkR8KeREZGcu7cOVxdXWnVqpXW4TgkY1H2zp07SU5O1jgaIXLP4brVLl++TGxsbF7FYnWk5kg4GmOXWsuWLSlUqJDG0Timhg0b4u3tTVxcHBEREVqHI0SuOcwkkH/++Se1atXC19eXcuXKUa5cOd58803u3r2b1/FZBak5Eo5C6o20p9frTVMoSNeasAcOs7ZacHAwZcqU4ddffyUiIoKZM2eyefNmGjVqxI0bN/I6RqsmyZGwF0lJSaYi4E6dOmkcjWMzdq1JciTsgcOsrXbixAnmz59P8+bNqVu3LsOGDeP333+nVq1avPjii3kdo1UznmxJjoStO3ToEHFxcRQtWpSGDRs++gYi3xiLsvfs2cP9+/c1jkaI3HGYbrWMWoh0Oh2zZs3ihx9+yJPArEF2ao6sJdsVIqeMXWrt27dHr9drHI1jq1mzJuXKlSM+Pp49e/ZoHY4QuWLXk0A+/vjjvPHGG3z77beEhIQwYcIELl26ZLZPXFwcxYoVy/MgtSY1R8IRyBB+66HT6ejcuTMAW7du1TgaIXLHFtdWc7Z0xzp16nD48GGWL19uSooqVqxIv379qF+/PsnJySxfvpxPPvkk34K1RpIcCXtw9+5d9u3bB0i9kbXo0qULy5cvZ+vWrXz88cdahyNEjtni2moWJ0fvvfee6f+XLl0iIiKCI0eOcOTIERYsWMDp06fR6/XMmDGDvn375kuwBU2G8gtHsWfPHhITEwkICKBSpUpahyNIacHT6XQcP36cmJgY/Pz8tA5JiByxxW41i5OjtMqUKUPXrl3p2rWradv9+/f5448/+OOPP/IsOGsh3WrC3m3btg3474IstFeiRAmaNGnC/v372bZtG88//7zWIQmRIw43CWRaHh4eNGvWjFGjRuXVXdoESY6EPdi8eTOA2Rceob0uXboAUnckbJusreaAJDkSti4qKopTp06h1+ulGNvKGJOj7du3y1IiwmbJ2mp2RmqOhCMwthq1aNGCokWLahuMMNOkSRO8vb25ceMGv//+u9bhCJEjDt2tZs+k5kjYM2Ny1K1bN40jEQ9zdnY2teZJ15qwVQ4zCaT4jyRHwpYlJCSYlqiQ5Mg6Sd2RsHUOs7aa+I8kR8KW7d69m3v37uHr60u9evW0DkdkwJgc7d+/n5s3b2objBA54DBrqzkKqTkS9i7tKDVr++YmUvj7+1O9enWSk5NNs5gLYUukW81OSc2RsFfG5Kh79+4aRyKyYjw/Gzdu1DgSIbLPFieBtJ1IrZQkR8JWyRB+29GjRw8ANm3aJEP6hc2xxbXVJDnKJUmOhK2SIfy247HHHsPb25srV65w8OBBrcMRIltscW01SY6yYMlJMma7khwJWyND+G2Hi4uLafbyn376SeNohMge6VazU1JzJOxNfHw8O3bsACQ5shXGrrUNGzZoHIkQ2SOTQDogY3JkLU2BQljil19+4e7du/j5+ckQfhvRrVs3nJyc+PPPP4mOjtY6HCEsJmur2RkZyi/s1Y+rVgHQq317q/tQEhkrUaIELVq0AGDjnDkQE6NxREJYRtZWs1PSrSbsiWHJEn5cuRKAXl99BaGhGkckLNWjTBkANnz6KQQEyLkTNkG61RyQJEfCpsTEcHDUKGIBL6CtUjBqlLRC2IKYGHqsXQvAL8Bdg0HOnbAJUpDtgCQ5EjYlMpIfU5utuwFuAMnJcPq0llEJS0RGUlMpKgAJpCRIcu6ELZCaIzsjNUfC7lSpwg+p/+1l3KbXQ+XKGgUkLFalCjonJ3qm/voTyLkTNkFqjuyU1BwJe/FPQgLHAT3QHVIurosWgZ+ftoGJR/Pzg8WL6ZH6mfMTkLxggZw7YfWk5sgBSXIkbMkPP6S0G7Vu0YJiYWEQFQXBwdoGJSwXHEzbyEiKFi7MJeC3mjW1jkiIRzK2Bkly5EAkORK25McffwTgiX79oG1baXWwQa4VK9KzTx8A1qYWaAthzYzXR71en+k+1pY4SXKUBak5Evbk2rVr7NmzB4BevXo9Ym9hzZ588kkgJTmylhoNITJjXCxZao7sjNQcCXuwceNGDAYDderUITAwUOtwRC507tyZQoUKERUVxZEjR7QOR4gsWdJyZG0kOcolSY6ErVizZg0AvXv31jYQkWuFChUyrYlnPK9CWCuZ58gBSXIkbMGtW7fYunUrAE899ZTG0Yi8kLZrTQhrZkm3mtQc2RCpORL2YuPGjSQkJFC1alXq1KmjdTgiDzz++OO4uLhw8uRJTp48qXU4QmRK5jmyU1JzJGzd999/D6S0GlnbNzSRM97e3nTs2BGAdevWaRyNEJmTmiMHZLzQSHIkrNWdO3fYtGkTAE8//bTG0Yi8JF1rwhZIzVEOzZ8/n8DAQNzd3QkKCjINN36UvXv34uzsTP369fMlrux0q1lLU6AQD9u0aRPx8fFUqlSJevXqaR2OyEO9evXCycmJQ4cOERUVpXU4QmRIao5yYPXq1YwfP54pU6YQERFBq1at6NatG9HR0VneLi4ujsGDB9OhQ4d8j1G61YQtM3apPf3001b3ASRyp3Tp0rRu3RqA7777TuNohMhYdrrVrKWhQfPkaM6cOQQHBzN8+HBq1KjB3LlzKV++PAsWLMjydqNGjWLgwIE0b968gCLNmCRHwprdu3ePjRs3AjJKzV4NGDAAgFWrVmkciRAZk261bHrw4AGHDh2ic+fOZts7d+7Mvn37Mr3d8uXL+eeff5g2bZpFj5OQkMCtW7fMfvKKJEfCmm3evJl79+4RGBhIw4YNtQ5H5IO+ffvi7OxMREQEf/31l9bhCJFOdmbIthaaRnr16lWSk5MpU6aM2fYyZcoQGxub4W0iIyOZNGkSK1euxNnZ2aLHmT17Nt7e3qaf8uXLW3Q7GcovbJ2xNUG61OxXyZIl6dSpEyCtR8I6ydpqOfTwk6KUyvCJSk5OZuDAgcyYMYOqVatafP+TJ08mLi7O9HPu3LlcxZeWJEfCWsXFxbFhwwYABg4cqHE0Ij8988wzQEpyZC01G0IY2eI8R5Y1veSTkiVLotfr07USXb58OV1rEsDt27f5/fffiYiIYOzYsUDKk66UwtnZmW3bttG+fft0t3Nzc8PNzS1fjkGSI2Gt1q5dS0JCAjVr1qRu3bpahyPyUe/evXF3d+fvv/8mIiJCulCFVZFutWxydXUlKCiI7du3m23fvn07LVq0SLd/kSJFOHr0KEeOHDH9hISEUK1aNY4cOULTpk0LKnQTSY6Etfr6668BePbZZ62uyVrkLS8vL3r06AFI15qwPlKQnQMTJ05k6dKlLFu2jJMnTzJhwgSio6MJCQkBUrrEBg8eDKQ8sbVr1zb7KV26NO7u7tSuXRtPT888jU1qjoStunjxIjt27AD+63IR9s14nlevXi2fR8Kq2GLNkabdagD9+/fn2rVrvP3221y8eJHatWuzadMmAgICgJQP+UfNeZTfpOZI2BrjBbJ58+YEBgZqHY4oAN27d6dIkSKcO3eOffv28dhjj2kdkhBA9rrVrKXmSPOWI4AxY8YQFRVFQkIChw4dMk1qBrBixQp27tyZ6W2nT5/OkSNH8j/ITEhyJKxR2i414Rjc3d3p06cP8N/5F8IaSLeaA5LkSFibyMhIDh48iF6vl7XUHEzarrWEhASNoxEihSw8a2ek5kjYoq+++gqATp06Ubp0aY2jEQWpY8eOlC1bluvXr5tmRhdCa5a0HFlbzZEkRxaQmiNhKwwGA1988QWAaSCDcBx6vZ7nnnsOSClJEMIaSM2RA5LkSFiTsLAwoqOj8fb2pnfv3lqHIzQwZMgQADZt2sSlS5c0jkYIqTlySMZWJUmOhDVY/vnnADzTsyceHh4aRyO0UKNGDZo2bUpycjIrZ8yAmBitQxIOTmqO7IzUHAlbEvfZZ6xZtw6AYStXQmioxhEJrQytUgWAFQsWoPz95bUgNGVJt5rUHNkgS2qOrKWfVDiomBhWv/QS8UBNoLFSMGqUtBo4opgY+q9ciRtwFDgirwWhMelWc0DSciSsQmQky1MT9GGADiA5GU6f1jIqoYXISIopxROpvy4HeS0ITWWnW81aGhokOcqCdKsJW3ES+A3QA4OMG/V6qFxZs5iERqpUAScnhqX++n/AfScneS0IzcjCs3ZKhvILaxeaOqdNd8AHUhKjRYvAz0/LsIQW/Pxg8WI6OTkRANwAvhs6VF4LQjMyz5EDkuRIaO3+/fssX74cgFErVkBYGERFQXCwpnEJDQUHoz97lhGpr4FFp05pHJBwZDJazQFJciS09v3333P9+nX8/f3pOmgQtG0rrQQC/Px4/p13cHZ2Zt++fRw7dkzriISDyk5BttQc2QCpORK2YOHChQCMHDnSpr6Zifzn6+tLr169AFi0aJHG0QhHJTVHdkpqjoS1+vPPP9m3bx/Ozs4ESzeayMCoUaOAlDX37t27p3E0whFJzZEDkuRIaMnYatSnTx98fHw0jkZYo44dO1KxYkXi4uJYvXq11uEIByQ1Rw5IkiOhldu3b/PVV18BEBISonE0wlo5OTkxYsQIAObPn281NR3CccjCs3ZGao6ENVu5ciV37tyhatWqtGvXTutwhBULDg7Gzc2N33//nfDwcK3DEQ5GZsi2U1JzJKyNwWDg008/BWDMmDFW118vrEupUqUYOHAggOl1I0RBsaRbzdo+wyQ5yiVJjoQWtm7dyqlTpyhSpAjPP/+81uEIG/DSSy8BsGbNGs6dO6dxNMKRyGg1ByTJkdDC3LlzARg+fDheXl7aBiNsQr169WjTpg3JycnMnz9f63CEA5F5juyM1BwJa3T8+HG2bduGk5MTY8eO1TocYUOMrUeLFy+WYf2iwEjNkZ3Kqi/U+DdJjkRBMdaM9O7dm8DAQI2jEbakV69eVKhQgevXr7Ny5UqtwxEOwtitJjVHDsSYCVtLU6Cwb1evXjUN358wYYLG0Qhbo9frTa2Nc+bMkS91okBIy5GdkW41YW0+//xz4uPjCQoKomXLllqHI2zQiBEj8Pb25tSpU/z4449ahyMcgNQc2SkZyi+swZ07d5g3bx4Ar776qtU1QwvbUKRIEUaPHg3A+++/bzUXI2G/ZIZsByTJkSgoS5Ys4fr161SuXJmnnnpK63CEDXvppZdwc3Pjt99+Y8+ePVqHI+ycJUP5re3LniRHuSTJkSgICQkJfPzxxwC89tprNvUNTFgfHx8fhg4dCsB7772nbTDC7knNkZ2RmiNhFWJi+L833+T8+fOULVuWwYMHax2RsAOvvPIKTk5ObN68mT+XLoWYGK1DEnYqO91q1tLNK8mRBaTmSGgmNJRkf3/e/+gjACa2bImbm5vGQQl7ULlyZZ5q2BCAWSNGQEAAhIZqHJWwRzJDtgOS5Ejkm5gYGDmS75UiEigGjFyzRr7hi7wRE8Mbhw4B8C1w3GCAUaPk9SXynCXdalJzZGckORL5JjKSZIOBGam/jge8DAY4fVrDoITdiIyknlI8CSjgbYDkZHl9iTwnNUd2RmqOhKaqVOEbnY6TpLQavQSg10PlytrGJexDlSrg5MT01F+/BY46OcnrS+Q5S2bINpKaIxsiNUdCC0k+PswoXRqAVwBvvR4WLQI/P20DE/bBzw8WL6aOXs/TqZtmNGggry+R56TlyAFJciTyy8qVK4m8dImSxYvz4saNEBUFwcFahyXsSXAwREUxbdkydDodaw4d4siRI1pHJeyM1Bw5IEmORH5ITEzk7bffBuC1SZPw6t5dvtGL/OHnR61hw+jfvz8AM2bMeMQNhMgemSHbzkjNkdDKsmXL+PfffyldujRjxozROhzhAKZOnYpOp2P9+vUcOHBA63CEnVBKydpq9kpqjkRBun37NtOmTQNgypQpeHp6ahyRcAQ1atQwTTD66quvWs1FSti2tK8jqTlyIMbESZIjkVc+/vhjLl26ROXKlQkJCdE6HOFA3nnnHdzd3dm9ezcbNmzQOhxhB9JeG7PqVpOaIzsjLUciL128eJEPP/wQgNmzZ+Pq6qpxRMKRlC9fnvHjxwMpa/glJSVpG5CwecZh/CAtR3YjOzVH0gQt8sL06dO5d+8ezZo1o2/fvlqHIxzQpEmTKFGiBKdOnWLZsmVahyNsXNqGA6k5sjNScyQKwokTJ1i6dCkAH330kdU1MwvH4O3tzdSpU4GUIu07d+5oHJGwZdlNjqyF7URqpYwnO23ToRA58dprr2EwGOjTpw8tW7bUOhzhwEJCQqhUqRKXLl3igw8+0DocYcPSXhul5shOWNK8ZzzZkhyJ3NiwYQMbN27ExcWF2bNnax2OcHCurq68//77AHzwwQf8+++/GkckbJW0HNmxrDJaSY5EbsXHx5uKYCdMmEC1atW0DUgI4Mknn6RDhw4kJCQwceJErcMRNkpqjhyUMTmSmiORUx9//DH//PMPZcuW5c0339Q6HCGAlC+F8+bNw9nZmR9++IHNmzdrHZKwQZYO5bc2khzlktQcidw4e/Ys7777LpBShO3l5aVxREL8p2bNmrz00ksAjBs3joSEBI0jErYm7bUxq14YqTmyIVJzJPJVTAwvDx7M/fv3ad26NQMGDNA6IiHSmTp1Kj4+Ppw+fZo5Y8dCTIzWIQkbkp2lQ6yJbUWrEak5EnkuNJQt/v6s2b0bPfBZu3ZW981JCIAiRYrw4eOPAzBz6VKi/P0hNFTjqIStyG5yJDVHdkKSI5FtMTHcGTGCkNQPgReBujNnyjdyYZ1iYnh22TJaA/eAEKVQI0fK61VYxHhttKV6I5DkKNekIFtkW2QkbynFWSAAeAcgORlOn9Y2LiEyEhmJTikWA27AVmClwSCvV2ERS1uOrK3lXJKjLGRn+RBpORKW2n/nDp+m/n8hUBhAr4fKlbULSojMVKkCTk5UA6ambhoPXClWTLuYhM2QmiM7JjVHIq88ePCAEVOmoIBBOh1dISUxWrQI/Pw0jk6IDPj5weLFoNfzKlAXuAZMSF0gWYisZLdbTWqO7IQkRyI7PvjgA44ePUrJkiX55MgRCAuDqCgIDtY6NCEyFxwMUVG4hIWx9KefcHJyYuXKlWzatEnryISVk5YjByU1R8JSERERzJgxA4C5c+dSsm5daNtWWoyEbfDzg7Ztadyjh2lG9+HDh3Pt2jVt4xJWTWqO7JDUHIm8Eh8fz3PPPUdSUhJ9+vRh4MCBWockRI698847VKtWjYsXLzJmzBir6QoR1kdGq9kxqTkSufXmm29y/PhxypQpw6JFi6zuW5IQ2VGoUCG++uor9Ho93377LatWrdI6JGGlZJ4jByXJkXiUXbt2MWfOHACWLl1KqVKlNI5IiNxr3Lgxb731FgAvvPACMTLvkciA1BzZIVk+RORWXFwcQ4YMQSnF8OHD6dGjh9YhCZFn3njjDRo3bszNmzcZNmyY1F6KdKTmyI5Z0q0mHwriYcaE6OzZswQGBppaj4SwFy4uLnz11Vd4eHjw888/88EHH2gdkrAyUnPkoNJmw5IgibQWLlzI999/j7OzM9988w1eXl5ahyREnqtWrRqfffYZkFJbt3fvXo0jEtZEao4cVNpsWLrWBAAxMRxZsoQJEyYA8P7779OkSRONgxIi/zz//PMMHDiQ5ORkBgwYwLWjR1Pm8JI6JIcnNUd2KDs1RyDJkQBCQ7nt70+/kSNJSEigR926piRJCHul0+lYuHAhVatWJSYmhqF166Lat4eAAAgN1To8oSFLu9Wk5sgGWVJzBNKt5vBiYlAjRjBCKSIBP2DFsWPozp/XOjIh8p2Xlxer583DDdgAfAhgMMCoUdKC5MCk5SgX5s+fT2BgIO7u7gQFBbFnz55M9127di2dOnWiVKlSFClShObNm7N169YCjNactBwJk8hIPlKK1YAz8A1QQlYvFw6kvquraVHlycBWgORkeQ84MKk5yqHVq1czfvx4pkyZQkREBK1ataJbt25ER0dnuP/u3bvp1KkTmzZt4tChQ7Rr146ePXsSERFRwJGnSHvCJTlybFvPn2dS6v8/BVpCyqKylStrF5QQBalKFUbqdAQDBmAAcNrJSd4DDsx4XZSWo2yaM2cOwcHBDB8+nBo1ajB37lzKly/PggULMtx/7ty5vPbaazRu3JgqVaowa9YsqlSpwk8//ZTnsUnNkbDU6dOnGfDiixiA4TodoyElMVq0SNZOE47Dzw/dkiV87uREM+Am0NvHhztFi2obl9CMseVIao6y4cGDBxw6dIjOnTubbe/cuTP79u2z6D4MBgO3b9+mePHime6TkJDArVu3zH6yw9KaI0mOHNOtW7fo06cPN2/epFmzZvwvMhJdWBhERaWsZi6EIwkOxu3sWdZ89x0+pUtz/MIFBg8eLDWZDkpqjnLg6tWrJCcnU6ZMGbPtZcqUITY21qL7+Pjjj7l79y79+vXLdJ/Zs2fj7e1t+ilfvnyu4k5Lp9OZkid58zuexMREnn76aY4dO4avry9r1qzBrVIlaNtWWoyE4/Lzo+xTT7F2/XpcXV1Zt24dr7/+utZRCQ1IzVEuPNwyo5SyqIlt1apVTJ8+ndWrV1O6dOlM95s8eTJxcXGmn3PnzuU65rRkCRHHpJQiJCSEbdu2UahQIX766SfKli2rdVhCWI3mzZuzbNkyAD766CM+//xzjSMSBU1myM6BkiVLotfr07USXb58OV1r0sNWr15NcHAw3377LR07dsxyXzc3N4oUKWL2YwlLM1hjRizJkWN59913WbZsGU5OTqxevZqgoCCtQxLC6jz77LPMnDkTgHHjxuVLfaiwXrK2Wg64uroSFBTE9u3bzbZv376dFi1aZHq7VatWMXToUL7++msef/zx/A7zkSdNWo4czxdffGFakfx///ufLCgrRBbeeOMNhg8fjsFgYMCAAezfv1/rkEQBkZqjHJo4cSJLly5l2bJlnDx5kgkTJhAdHU1ISAiQ0iU2ePBg0/6rVq1i8ODBfPzxxzRr1ozY2FhiY2OJi4vT6hAkOXIwa9eu5fnnnwfg1VdfZfTo0RpHJIR10+l0zJ8/n65du3Lv3j26devGn3/+qXVYogBkt1tNao5S9e/fn7lz5/L2229Tv359du/ezaZNmwgICADg4sWLZnMeLVq0iKSkJF544QV8fX1NPy+99JJWh2A66VKQbediYtjy/vsMGDAAg8HAsGHDeO+997SOSgib4OLiwnfffUfz5s25ceMGnTp14u/du2UNNjtnqy1HzloHADBmzBjGjBmT4d9WrFhh9vvOnTvzP6BUlmaw0nLkAEJD2T1iBH2UIhHo16gRS5Yssbk3vBBaKly4MJs2baJdu3YcOXKEjm3asAcIcHKCxYtl6gs7JDVHduxRJ00Ksu1cTAy/jhhBD6WIBx4Hvjp8GP3Fi1pHJoTNKVq0KNtWrKA6cA5oD5yVNdjslsyQ7cCk5ci+7Vi9mi5KcZuUD/LvAFdZM02IHCt1/To/AxWBf4HWwD+yBptdsnSGbGsjyVEWstutJjVH9mfr1q08PmUK94AupKw27gGyZpoQuVGlCuWcnNgFVAWigTbAX1bWtSJyTyaBtGMylN8x/fDDD/Tq1Yv4hAR61qvHeien/xIjWTNNiJzz84PFi/HT69kF1ATOA23695dRbHbG0m41qTmyQ5Ic2Z9Fixbx5JNP8uDBA/r27cv3Bw7gfvZsysgaWTNNiNwLDoaoKHzCwth55Aj16tXj0qVLtGrVirCwMK2jE3lEutUcmBRk2w+lFG+99RYhISEYDAaCg4P55ptvcHV1Tfm2K2umCZF3Ut9TperVIywsjFatWnHr1i26du3K6tWrtY5O5AFbHcpvW9EWMBnK71gSExMJDg42LXUwbdo0lixZgrOzVcx4IYRdK1asGNu2baNv3748ePCAAQMG8Mknn2gdlsglqTmyY5bWHElBto2KieH6Dz/QvUMHli9fjpOTE4sXL2b69OlW1w8uhD1zd3dn9erVjB07FkhZQeGFF14g8cwZmSzSRknNkQOTliMbFhrKSX9/mvbuzc979lDI1ZV169YxYsQIrSMTwiHp9XrmzZvH+++/D8D8+fPpUrEi19q3h4AACA3VOEKRHVJz5MAkObJRMTFsHDGCpkpxGggA9iUl0athQ60jE8Kh6XQ6XnvtNdYvXUphIAxoDByTySJtjtQc2SFL+z6lINv2KKV4/+236Zk6uWNr4CBQTyZ3FMJqPFGxIuFAIHAGaA6sl8kibUp2Z8iWmiMbIjVH9uXGjRv07t2bSUuWoICRwHagFMjkjkJYkypVqO3kxEGgHXAH6AO8+s03JCYmahubsIil3WpSc2SHpFvNdhw8eJCGDRvy448/4urqyoJBg1jo5IQryOSOQlib1MkiS+j1bAXGp15AP1q0iLZt2xIj3WtWT7rVHJgkR9ZPKcX//vc/WrZsSVRUFBUrViQ8PJyQr75CJ5M7CmG9UieLdAkL45PoaNasWUORIkXYt28f9evXZ8uWLVpHKLIgC8/aIak5snExMRAWxvWjR+nXrx8vvvgiiYmJ9OnTh0OHDtHQWHgtkzsKYd3SvEeffPJJDh8+TMOGDbl27RrdunVj8uTJPHjwwPSel4Jt65Hd0WpSc2RDZG01GxQaCgEB/Ny+PXXq1uX777/H2dmZTz75hDVr1lC0aFGtIxRC5FClSpXYu3cvo0ePBuC9996jWZUqnPD3Bxnyb1Us7VaTmiM7JAXZViYmhvsjRjDeYKATcIGUlb/3rVvH+PHjre5NKITIPnd3d+bPn8/3339PiWLFiIiOJkgp5pH6WSxD/q2C1BzZIVk+xDb9vmEDjZTi09TfRwOHgcaFC2sYlRAiP/Tt25ejixfTDYgHXgK6ADEy5N8qSM2RHZNuNdtw9+5dXnnlFZq+8AIngDLARmA+4ClD9IWwW77NmrFRp2M+4AH8DNQE5u/dKy36GjNeF6XmyAFJQbb2tm/fTp06dfj4448xGAw806QJR52c6A4yRF8Ie+fnh27JEkbr9UQAzYDbwAtvvsljjz3G8ePHNQ7QcVmaHFlbuYMkR3lAWo60c/HiRQYPHkznzp05c+YM5cuXZ8OGDXy9fz+lZIi+EI4jdch/tbAwfo2K4n//+x9eXl6Eh4fToEED3nrrLe7du6d1lA4nuy1H1kKSoyxkt+ZImm8LSEwMCVu38t7kyVStWpWvvvoKnU7H2LFjOX78OI8//njKfjJEXwjHkvqe1wcE8MILL3DixAl69epFYmIiM2fOpFq1anz99deoc+dkyH8BMSZHzs7OGkeSPZIcWUBqjqyHWrqUH/z9qdW1K5Pfe487d+7QtGlTwsPD+eyzz/Dy8tI6RCGElfDz82P9+vV8//33BAQEEBMTw7PPPktLf38OyJD/ApGUlARIzZFDkuSoYOz87jtajRhBb6X4B/AFvtTp2PfttzRt2lTr8IQQVkin09G3b19OnjzJzFdfxRMIB5oCzxgM/D1ypLQg5SOpOXJgUpCdv/bv30+nTp1o168fewF3YDLwN/CcUjj9+6+2AQohrJ6HhwdTunXjb2Bo6rZvgBoGA8NGjODMmTPaBWfHpObIDknNkbYOHDhAr169aNasGT///DMuLi6MAf4BZgGFIWUkmgzRF0JYokoVyjo5sRw4AvQCDMCKLVuoWrUqISEh/CtftvKUJEd2TGqOCkhMDGrHDratXEn79u1p2rQpP/30E05OTgwbNoy///6bz5cupazxTSZD9IUQ2eHnB4sXg15PPeAHvZ79b7xBly5dSEpKYtGiRVSpUoWBAwfyxx9/yFptecBW5zmyrfJxKyXJUe4lL1nCmlGjeE8pIlK3OTs7M2jQICZNmkS1atVSNgYHQ5cuKTPfVq4siZEQInse+gxp4ufHFmDPnj3MmjWLLVu2sGrVKlatWkV3YBLwmE6HbskSmRIkB6TmyIFJcpRzd+/eZcGsWVQbOZL+qYlRIWC8Tse/e/eyfPny/xIjIxmiL4TIjQw+Q1q1asXmzZs5fPgwA3r1wgnYBLQGWirFdyNHkhQVpU28Nky61eyQpc17UpCdfefOneP111/Hz8+PMVOm8A9QHJgORAOfKEV5mbBNCFHAGjRowKrx4/kLGAW4kjK6rZ/BQMWmTfnwww+5ceOGtkHaEEmO7JilNUdSkJ2J1H57de4c4eHh9O/fn8DAQD744ANu3rxJpYAAPtXpiAamASVACq2FENqpUoXKTk4sBM4CU4FSwLnLl3nttdfw8/PjhRde4K+//krZX2qTMmWrNUeSHOUB6VbLQmgo9/39+b/27Wnm70+LFi349ttvSU5Opn379vz444/89c8/jFuyJGVxWJBCayGEttIUbvsAM/R6ohcsIDQ0lDp16nDv3j3mz59P9erVebxuXbb6+2OQSSUzZJwE8lEzZEvNkR2S5Chjx3/5hfHDh1NOKZ4DDgBuwPP9+/PHH3/wyy+/0LNnz5TnL3VdJFkLTQhhFR76THIPCeH55583fXb16tULnU7HpqNH6aoUFYF3DAbOy6SSZqRbzQ5ld56j7CRHSim++eYbpk+fztmzZ3MUnzW6dOkSixcv5rHHHqN2x458CtwAAoB3SKknCg0JoW7duulvLIXWQghrksFnkk6no3379vzwww/8/eWXjAOK8l/3m7/BQM9+/Vi3bh3x8fGahJ0fDh06xFtvvcXOnTuzdTtbTY5kKL8FHtXcZyzIzk7N0f/+9z/GjRsHwKJFi4iIiMDHxyfnQRa0mBiIjIQqVYhKSmLdunWsXbuWvXv3mpJKvV5Pr+RkRgKdAH3KRqklEkLYhcpt2/KpkxPvGQx8DywFdgMbwsPZ8OSTFClShN69e9O/f386duyI6+XLps9NW/oSGB4eTtu2bXnw4AHvvvsuO3fupHXr1hbdVmqOHFh2W44SEhKYPn266ffY2FgmTZqUH6HlC7V0KSf8/ZnZvj0Ny5cnMDCQiRMn8uuvv6KUokmTJrz33nucO3eOtUuX0lWv/y8xkloiIYS9SK1N8tDreQ7YpddzauZMXn31Vfz8/Lh16xZffvkljz/+OD7FijGkfHnWtm/PHX9/m6lNSk5OZvTo0Tx48ABISV6mTp2arduDzHNkV/KrW23Lli1cv36dcuXKsXfvXgC++OIL/vzzz5wFWgCUUhw8eJDJY8dSfcQIainFW0AEKS+idi1aMG/ePKKjo9m/fz+vv/46vr6+UkskhLBvD33GVZsyhQ8++ICzZ8+yZ88exo4dS5lSpbhx7x5fAn2BkkrRY/hwFr//PrGxsRofQNZWrlzJH3/8QdGiRTl8+DA6nY5du3YRHR1t0e1ttVtNkiML5PXyIT///DMAvXv3pkWLFjz11FMAfPrpp7mIMo+kGZKalJTEzp07GTduHAEBASktQp9/zt+kzP3xOBAKxAI73n2XF198kfLly6e/T6klEkLYsww+45ycnHjsscf47LPPOP/11+wCJgKVgARgIzBq0iR8fX1p1qwZs2fP5sSJE/99KbeC6QGUUnzyyScAvP766zRo0ICmTZsCsGPHDovuQ5IjB5bd5GjXrl0AtGvXDoDx48cDKRn6lStX8j5AS4WGkuDvz8b27Rlevjy+xYrRrl07PvvsM86dO4enpyf9evTgG52OK8AG4HmglNQRCSFEpvTVq9PayYmPgUjgGPCuTkeT+vUB2L9/P2+88Qa1atWiatWqvNKlC3v8/UnWeHqAPXv2cOTIETw8PBg5ciTw33XLeB17FKk5cmDZKciOj4/nxIkTADRr1gyAFi1aEBQUREJCAosXL86fILP4FnLnzh2+W7iQZ4YPp5RS9CClRejqnTsUL1qUoUOH8uOPP3LlyhVW//QT/ZcsoYjMSSSEEJZJM2+SDqil1/PGkiXsj4jg/PnzLFy4kG7duuHq6srp06f5eNs2WiuFDzDMYGD9yJHc/fvvjO87H1uY5s2bB8Bzzz1H8eLFgf+uW4cPH7boPqTmyA7lR83R8ePHSU5OpkSJEpQtWxZIeVG89NJLACxYsIDExMQcRpyJ0NCUbx+p30ISU0fHffTRR3To0IHixYvTb/RovgFuA2WBF4BfgEvff8/y5cvp2bMnHh4eKfcndURCCJE9mXxuli1bllGjRrFp0yauXr3Kd9OmMQgoBlwFVgB9DAZK1qlDz549WbJkCSdOnEj5Mv7QZ3tetjCdPXuWdevWAZhGVgPUq1cPgJMnT5qKtLNiq91qMpTfAnlZc3Ts2DEA6tata3a//fr149VXX+X8+fOsXbuW/v375yLilNagc+fOce7wYc6OGMFZpYgCThsM/BESwsOzb1QKCKDv2bP0AZqQmjXr9fDwoq9Gfn7SWiSEENnxiM9NLy8vnho+nKfeeYckg4FfgR9Sf848eMCGDRvYsGEDAEW8vGh4+zaVgECggsGA/8iR+NeqRdmgIFxcXHIV6vz58zEYDHTo0IFatWqZtvv7++Pt7U1cXBynTp3KeM66NCydIdva2Fa0Vio7ydG///4LQOWHanTc3NwICQlhxowZzJs3z/LkKHW+oVhvb77bu5ewsDB+++03Ll68mOXNvD09adG6NV27dqVr165UqVIF3bJlMGoUJCdLd5kQQmghtQvOedQo2iYn01avZ87ChRxr2pQffviB7du38/vvv3Pr9m12AjvT3tZggObNcXJyIiAggFatWtGhQweefPJJCt+8afEcS/fu3WPJkiUApl4NI51OR7Vq1Thw4ACnT59+ZHJkqzVHkhzlAWPNkSXJ0ZkzZwAIDAxM97eQkBBmzZrFvn372Lt3Ly1btsz6zkJD+XvECN5RilXAw4/u7e1NeR8f/P/6iwqkzFJdAWjg5ESlEydw8vc3v0FwMHTpAqdPpxRYS2IkhBAF76HPYp2fH3WAOnXq8Oabb5KUlMSJsDD+6NKFM6m9AmeAc8A5V1cePHjAmTNnOHPmDF9++SVjR41iZHw8k4ESTk4p9U9ZlEOEhoZy48YNKlasSPfu3dP9vXLlyhw4cIDIyMhHHorUHNmh7NYcWVKQHRUVBWScHPn4+DB06FAA3nrttSyL7JKiopg9YgR1lOL/SEmMmgEfTJnCr7/+SlxcHDdv3uToqVNsXLqUz/V6XgP66fVUWbw4fWJkJMPuhRBCe1l8Fjs7O1O3UyeeW7KEqXo9y4AwvZ7TS5dy//59Ll68yLZt25g8eTJVAgO5HR/Px0Bl4AuDAZXF+m/3IiN5d9o0AF599dUMk5oqVaoA5GlyZG0kObJAXtYcnTl9GoAKhQpl+Pc333wTV2dnwvbt49tMiuxOnDhBi65deUMpHgBdgENAOPBqx460bNmSIkWK/HcDKaAWQgj7k8Fnu5OTEz4+PnTq1IlZs2bx19KlbALqAjeBoUBvg4HYAwfS319oKDOqVuXSjRsEAs9ncu0zfrmPPnLkkaPkJDlyYJYmRwkLF3I+tRYosHfvDEcW+Ds5MSm1gG0M8JfBkFIHFBPDgwcPmDVrFg0bNuTgX3/hDXwBbAYapgSS+XxD0iIkhBD25xGf7bqqVenm5MQhYDbgAvwI1Hz+eb788kuzSSc3jxjBR6m3+wRwfeGFDJOfcqmrOZw/dOiRo+RsteZIkqM8YEqOYmMzz6JjYogeMwYFFAJKK2VKesxERjIFaARcAx4D3klOZua0adSqVYspU6aQkJBA9+7dOf7hhwxOnTdDCqiFEEKkYyzw1uuZBBxycqKhvz834uIYMmQILVu2ZM6cOUycMIHeSmEgpXXpCUgZnJPa22ESE0PZ1Fmzz0NKEXhG17JUyanD/fXXrmUZptQc2RBTBnvhQpZNh0779gFg2Ls38yw6MpIzqfdXAVISmoxeeFWq4OrkxGagPinzXEwF3lq2jNOnT1OqVCn+7//+jw0bNlDulVeku0wIIUTW0nS/1Tl7lv3//MN7772Hm5sb4eHhvPzyy3zy/fc8IGXtt0XG22XUGxEZSbnUa1kccBcyvpYBhIaSnLoGm75Pn6znYTLOmXT1ak6PMk/JaLWspM4AqvvpJ9i4MeMK/5gY9F99BaSOFjNm0V26mLfiVKlCjE4HSmEqhc7ohZea5ZccNYr9ycks1+kIa9QIXaVKtGnThkGDBlG4cGHz/aW1SAghRFbSXCucSVkrbciQISxfvpyDBw/i5eVFHy8vnliwAJ3BkHlvRJUqFNHp8FSKu6S0HlXN6FoWEwMjR5pGUeuNvSUPXxshJWmKiEj5f3BwynVU4y/7jp0cnT8PaQuX04qJgZ9++u/3zJKeyMiUk06aofTGLDrtfn5+XOrTB9aupQxk3Q2WOozT9fRpRlWuzChJfoQQQuQxHx8fJk+ebL5x0qSsp3Px80O3ZAnlhg/nb+C8kxNVM7qWRUaCwUBS6q/OkPG1MTWJMlJZJVGQct0uAA7drba3Zs3Mm/kiI9MXhmXSDaZP7Ss1JUeZFEZfSl2xvsyAAY/uBpMCaiGEEAXNkmtPcDDlWrQA4Pwnn2R8LatSBZyc/ms5gky76TAYMKs4yqKb7vuaNS0+lNxw6OQoAjIvJEudxwH476Rl0g2mHz4cSE2OsmgRunTpEgBlGjeWpEcIIYTNKlexIgDn79/PeIfUEhFTcuTklGk3HU4PpSJZdNNtzX3oFnHo5AjIPEP184OePf/7PYukx6lDBwAM9etn2SJ0+fJlAMqUKZPbqIUQQgjNlCtXDoDzWXVzBQeT7OUFgD4sLONrY2oSZZJZEpXawlRQJDnKam6ghg1T/u3VK8ukxzSU38sryxYhU8uRJEdCCCFsWNmyZQEeuY5ncmpCo09NpjIUHGy63qrMljbJqIUpH0lylMXcQKaao3Llskx6LJ0E0pgclS5dOgeBCiGEENahZMmSAFx7xPxFFq+t5uZmvOOMd3i4hSmfOXZy9NprFg0XzIvlQ5KSkkwvImk5EkIIYcuMydHVR8xLlKfLhwQHQ48eub8fCzh2cuTtnSd3Y8nCs1evXkUphZOTk+lFJYQQQtgiTZIjgEzWJc1rjp0c5RHjSU9KSsp0H2OXWsmSJW1uAT4hhBAirbTdapmth6aUMjUayNpqdsTSk+TsnDKXZlbdalJvJIQQwl6UKFECgAcPHnDnzp0M90l7TXRxccny/mRtNRv0qJNmTI6yajm6cuUKIMmREEII21eoUCHc3d2BzLvW0l4TjddJWyHJUR6wJDm6fv068F+2LYQQQtgqnU73yBFrkhzl0vz58wkMDMTd3Z2goCD27NmT5f67du0iKCgId3d3KlasyMKFCwso0oxZkhzduHEDgGLFihVITEIIIUR+elRRdk6SI6k5SrV69WrGjx/PlClTiIiIoFWrVnTr1o3o6OgM9z9z5gzdu3enVatWRERE8MYbbzBu3DjWrFmT57Flt+bIkpYjSY6EEELYA2NPSF4kR1Jz9JA5c+YQHBzM8OHDqVGjBnPnzqV8+fIsWLAgw/0XLlyIv78/c+fOpUaNGgwfPpznn3+ejz76KN9izIuaI2PLUfHixfMuMCGEEEIjlnar6XQ6nApwduu8oGm0Dx484NChQ3Tu3Nlse+fOndm3b1+GtwkPD0+3f5cuXfj9999JTEzMt1izIi1HQgghHI2l3Wq2Vm8EoGnEV69eJTk5Od2M0WXKlCE2NjbD28TGxma4f1JSElevXsXX1zfdbRISEkhISDD9HhcXB0B8fDy3bt3KND7jbR48eJDlfvHx8QAkJiZmup9xtJqbm1uW9yWEEELYAq/URWUvXLiQ4XXN2GPi5OT0yOueMZG6e/dulvsaG0HyvTZJaej8+fMKUPv27TPbPnPmTFWtWrUMb1OlShU1a9Yss22//vqrAtTFixczvM20adMUID/yIz/yIz/yIz928PPPP//kTSKSCU1bjoyzRT/cSnT58uVM1x/z8fHJcH9nZ+dMh8lPnjyZiRMnmn6/efMmAQEBREdH451HS4jYglu3blG+fHnOnTtHkSJFtA6nwMhxy3E7AjluOW5HEBcXh7+/f77X72qaHLm6uhIUFMT27dvp06ePafv27dt54oknMrxN8+bN+emnn8y2bdu2jUaNGmU6A6ebmxtuxhV/0/D29naoF5VRkSJF5LgdiBy3Y5HjdiyOetz5XeCtefn4xIkTWbp0KcuWLePkyZNMmDCB6OhoQkJCgJRWn8GDB5v2DwkJ4ezZs0ycOJGTJ0+ybNkyQkNDeeWVV7Q6BCGEEELYEc1LyPv378+1a9d4++23uXjxIrVr12bTpk0EBAQAcPHiRbM5jwIDA9m0aRMTJkzg888/p2zZssybN4++fftqdQhCCCGEsCOaJ0cAY8aMYcyYMRn+bcWKFem2tWnThsOHD+f48dzc3Jg2bVqGXW32TI5bjtsRyHHLcTsCOe78PW6dUlYyV7cQQgghhBXQvOZICCGEEMKaSHIkhBBCCJGGJEdCCCGEEGlIciSEEEIIkYbdJkfvvvsuLVq0oFChQhQtWtSi2yilmD59OmXLlsXDw4O2bdty/Phxs30SEhJ48cUXKVmyJJ6envTq1YuYmJh8OIKcuXHjBs899xze3t54e3vz3HPPcfPmzSxvo9PpMvz58MMPTfu0bds23d8HDBiQz0djuZwc99ChQ9MdU7Nmzcz2sbfznZiYyOuvv06dOnXw9PSkbNmyDB48mAsXLpjtZ23ne/78+QQGBuLu7k5QUBB79uzJcv9du3YRFBSEu7s7FStWZOHChen2WbNmDTVr1sTNzY2aNWuybt26/Ao/x7Jz3GvXrqVTp06UKlWKIkWK0Lx5c7Zu3Wq2z4oVKzJ8rxvXh7QW2TnunTt3ZnhMp06dMtvP3s53Rp9fOp2OWrVqmfax9vO9e/duevbsSdmyZdHpdKxfv/6Rtymw93a+Lk6ioalTp6o5c+aoiRMnKm9vb4tu89577ykvLy+1Zs0adfToUdW/f3/l6+urbt26ZdonJCRElStXTm3fvl0dPnxYtWvXTtWrV08lJSXl05FkT9euXVXt2rXVvn371L59+1Tt2rVVjx49srzNxYsXzX6WLVumdDqd2do1bdq0USNGjDDb7+bNm/l9OBbLyXEPGTJEde3a1eyYrl27ZraPvZ3vmzdvqo4dO6rVq1erU6dOqfDwcNW0aVMVFBRktp81ne9vvvlGubi4qCVLlqgTJ06ol156SXl6eqqzZ89muP+///6rChUqpF566SV14sQJtWTJEuXi4qK+//570z779u1Ter1ezZo1S508eVLNmjVLOTs7q99++62gDuuRsnvcL730knr//ffVgQMH1N9//60mT56sXFxc1OHDh037LF++XBUpUiTde96aZPe4w8LCFKD++usvs2NK+x61x/N98+ZNs+M9d+6cKl68uJo2bZppH2s/35s2bVJTpkxRa9asUYBat25dlvsX5HvbbpMjo+XLl1uUHBkMBuXj46Pee+8907b4+Hjl7e2tFi5cqJRKeTG6uLiob775xrTP+fPnlZOTk9qyZUuex55dJ06cUIDZiyA8PFwB6tSpUxbfzxNPPKHat29vtq1NmzbqpZdeyqtQ81ROj3vIkCHqiSeeyPTvjnK+Dxw4oACzD2FrOt9NmjRRISEhZtuqV6+uJk2alOH+r732mqpevbrZtlGjRqlmzZqZfu/Xr5/q2rWr2T5dunRRAwYMyKOocy+7x52RmjVrqhkzZph+t/TzUEvZPW5jcnTjxo1M79MRzve6deuUTqdTUVFRpm22cL6NLEmOCvK9bbfdatl15swZYmNj6dy5s2mbm5sbbdq0Yd++fQAcOnSIxMREs33Kli1L7dq1TftoKTw8HG9vb5o2bWra1qxZM7y9vS2O79KlS2zcuJHg4OB0f1u5ciUlS5akVq1avPLKK9y+fTvPYs+N3Bz3zp07KV26NFWrVmXEiBFcvnzZ9DdHON+QspCjTqdL1/1sDef7wYMHHDp0yOwcAHTu3DnTYwwPD0+3f5cuXfj9999JTEzMch9rOK+Qs+N+mMFg4Pbt2+kW6Lxz5w4BAQH4+fnRo0cPIiIi8izu3MrNcTdo0ABfX186dOhAWFiY2d8c4XyHhobSsWNH0+oSRtZ8vrOrIN/bVjFDtjWIjY0FoEyZMmbby5Qpw9mzZ037uLq6UqxYsXT7GG+vpdjYWEqXLp1ue+nSpS2O74svvsDLy4snn3zSbPuzzz5LYGAgPj4+HDt2jMmTJ/PHH3+wffv2PIk9N3J63N26dePpp58mICCAM2fO8NZbb9G+fXsOHTqEm5ubQ5zv+Ph4Jk2axMCBA80Wr7SW83316lWSk5MzfF9mdoyxsbEZ7p+UlMTVq1fx9fXNdB9rOK+Qs+N+2Mcff8zdu3fp16+faVv16tVZsWIFderU4datW3z66ae0bNmSP/74gypVquTpMeRETo7b19eXxYsXExQUREJCAl999RUdOnRg586dtG7dGsj8NWEv5/vixYts3ryZr7/+2my7tZ/v7CrI97ZNJUfTp09nxowZWe5z8OBBGjVqlOPH0Ol0Zr8rpdJte5gl++SGpccN6eOH7MW3bNkynn32Wdzd3c22jxgxwvT/2rVrU6VKFRo1asThw4dp2LChRfedXfl93P379zf9v3bt2jRq1IiAgAA2btyYLjnMzv3mVkGd78TERAYMGIDBYGD+/Plmf9PifGclu+/LjPZ/eHtO3usFLacxrlq1iunTp/PDDz+YJdDNmjUzG3TQsmVLGjZsyGeffca8efPyLvBcys5xV6tWjWrVqpl+b968OefOneOjjz4yJUfZvU+t5DTGFStWULRoUXr37m223VbOd3YU1HvbppKjsWPHPnLETIUKFXJ03z4+PkBKZurr62vafvnyZVMW6uPjw4MHD7hx44ZZa8Lly5dp0aJFjh7XEpYe959//smlS5fS/e3KlSvpMumM7Nmzh7/++ovVq1c/ct+GDRvi4uJCZGRkvl0sC+q4jXx9fQkICCAyMhKw7/OdmJhIv379OHPmDDt27DBrNcpIQZzvjJQsWRK9Xp/uW1/a9+XDfHx8Mtzf2dmZEiVKZLlPdl4v+Sknx220evVqgoOD+e677+jYsWOW+zo5OdG4cWPTa15ruTnutJo1a8b//d//mX635/OtlGLZsmU899xzuLq6ZrmvtZ3v7CrQ93a2KpRsUHYLst9//33TtoSEhAwLslevXm3a58KFC1ZXoLt//37Ttt9++83iAt0hQ4akG7WUmaNHjypA7dq1K8fx5pXcHrfR1atXlZubm/riiy+UUvZ7vh88eKB69+6tatWqpS5fvmzRY2l5vps0aaJGjx5ttq1GjRpZFmTXqFHDbFtISEi6os1u3bqZ7dO1a1erK9DNznErpdTXX3+t3N3dH1nYamQwGFSjRo3UsGHDchNqnsrJcT+sb9++ql27dqbf7fV8K/VfQfrRo0cf+RjWeL6NsLAgu6De23abHJ09e1ZFRESoGTNmqMKFC6uIiAgVERGhbt++bdqnWrVqau3atabf33vvPeXt7a3Wrl2rjh49qp555pkMh/L7+fmpn3/+WR0+fFi1b9/e6oZ2161bV4WHh6vw8HBVp06ddEO7Hz5upZSKi4tThQoVUgsWLEh3n6dPn1YzZsxQBw8eVGfOnFEbN25U1atXVw0aNLDZ4759+7Z6+eWX1b59+9SZM2dUWFiYat68uSpXrpxdn+/ExETVq1cv5efnp44cOWI2vDchIUEpZX3n2zjEOTQ0VJ04cUKNHz9eeXp6mkblTJo0ST333HOm/Y3DfSdMmKBOnDihQkND0w333bt3r9Lr9eq9995TJ0+eVO+9957VDu229Li//vpr5ezsrD7//PNMp2CYPn262rJli/rnn39URESEGjZsmHJ2djZLsLWW3eP+5JNP1Lp169Tff/+tjh07piZNmqQAtWbNGtM+9ni+jQYNGqSaNm2a4X1a+/m+ffu26doMqDlz5qiIiAjTyFkt39t2mxwNGTJEAel+wsLCTPsAavny5abfDQaDmjZtmvLx8VFubm6qdevW6bLx+/fvq7Fjx6rixYsrDw8P1aNHDxUdHV1AR/Vo165dU88++6zy8vJSXl5e6tlnn003xPXh41ZKqUWLFikPD48M57KJjo5WrVu3VsWLF1eurq6qUqVKaty4cenmBNJSdo/73r17qnPnzqpUqVLKxcVF+fv7qyFDhqQ7l/Z2vs+cOZPh+yLte8Maz/fnn3+uAgIClKurq2rYsKFZC9aQIUNUmzZtzPbfuXOnatCggXJ1dVUVKlTIMOn/7rvvVLVq1ZSLi4uqXr262cXUWmTnuNu0aZPheR0yZIhpn/Hjxyt/f3/l6uqqSpUqpTp37qz27dtXgEdkmewc9/vvv68qVaqk3N3dVbFixdRjjz2mNm7cmO4+7e18K5XSuu3h4aEWL16c4f1Z+/k2tnpl9prV8r2tUyq1mkkIIYQQQtjv8iFCCCGEEDkhyZEQQgghRBqSHAkhhBBCpCHJkRBCCCFEGpIcCSGEEEKkIcmREEIIIUQakhwJIYQQQqQhyZEQQgghRBqSHAkhhBBCpCHJkRBCCCFEGpIcCSHsyttvv02dOnXw9PSkTJkyjB49msTERK3DEkLYEGetAxBCiLyilCI5OZlFixZRrlw5Tpw4weDBg6lbty6jR4/WOjwhhI2QhWeFEHZt4MCBlCpVik8//VTrUIQQNkK61YQQduPs2bOMHTuW2rVrU6xYMQoXLsy3336Ln5+f1qEJIWyIJEdCCLtw9epVmjRpwtWrV5kzZw6//vor4eHh6PV66tevr3V4QggbIjVHQgi7sGnTJpKSkli1ahU6nQ6Azz//nAcPHkhyJITIFkmOhBB2oXjx4ty6dYsff/yRmjVr8tNPPzF79mzKlStHqVKltA5PCGFDpCBbCGEXlFKMHj2ar7/+Gg8PDwYNGkR8fDxnz55lw4YNWocnhLAhkhwJIYQQQqQhBdlCCCGEEGlIciSEEEIIkYYkR0IIIYQQaUhyJIQQQgiRhiRHQgghhBBpSHIkhBBCCJGGJEdCCCGEEGlIciSEEEIIkYYkR0IIIYQQaUhyJIQQQgiRhiRHQgghhBBpSHIkhBBCCJHG/wM4YATxDBcdCAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6hklEQVR4nO3dd3xTVRvA8V+aTkopmxZKS9l7lY3sjYAMBUSmZRREBF4HiAooAqIi4iu7gPoiogIONkoZQgWEokwtSillzzJb2ua8f7SJDR2k82Y838+nH+jtTfLc3CT3yTnPOUenlFIIIYQQQggAnLQOQAghhBDCmkhyJIQQQgiRiiRHQgghhBCpSHIkhBBCCJGKJEdCCCGEEKlIciSEEEIIkYokR0IIIYQQqUhyJIQQQgiRiiRHQgghhBCpSHIkbMKFCxeYNm0aR44cSfO3oUOHUrBgwWzf98OHDwkJCcHX1xe9Xk/dunWzH2guWLBgAStXrkyzPSoqCp1Ol+7f7IlOp2PatGlah5Erpk2bhk6ny/PbfvLJJ1SsWBFXV1d0Oh23bt1i6NChlCtXzmy/mTNn8t1332UrnszcuHGD/v37U7JkSXQ6HT179szyfZQrV46hQ4fmemzW7KeffkKn06HT6bh27ZrZ34zn/9Efd3d3jaJ1LM5aByCEJS5cuMD06dMpV65cricvCxcuZPHixXzyyScEBQXlKNHKDQsWLKB48eJpLhS+vr6Eh4dToUIFbQITWTZ8+HA6d+6cp49x5MgRxo0bx/DhwxkyZAjOzs54eXnx5ptv8tJLL5ntO3PmTJ5++ulsJS+Zeeedd1i/fj3Lly+nQoUKFC1aNFfv3x7dvXuXESNGULp0aS5cuJDhflu2bMHb29v0u5OTtGnkB0mOhMM7duwYHh4ejB07VutQMuXm5kaTJk20DkNkgZ+fH35+fnn6GMePHwdgxIgRNGrUyLQ9P5PoY8eOUaFCBZ577rl8e8zccv/+fQoUKJDvjztp0iSKFCnCk08+yYwZMzLcLygoiOLFi+djZAKkW80hXb16lZEjR1K2bFnc3NwoUaIEzZs356effjLt07p1a2rWrEl4eDjNmjXDw8ODcuXKsWLFCgA2btxI/fr1KVCgALVq1WLLli1pHueXX36hXbt2eHl5UaBAAZo1a8bGjRvT7Hfs2DGeeuopihQpgru7O3Xr1uWzzz4z/X3nzp00bNgQgGHDhpmalx/tejl9+jRdu3alYMGClC1blv/85z/Ex8dn+lzodDqWLVvGgwcPTPe7cuXKTLuwHn1sY/P38ePHefbZZ/H29qZUqVI8//zzxMbGmt3WYDDwySefULduXTw8PChcuDBNmjThhx9+AJK7Fo4fP86uXbtM8Ri7RjKKyZLneeXKleh0OsLCwhg9ejTFixenWLFi9O7dO9NvrY9Trlw5unXrxvr166lduzbu7u6UL1+e+fPnp9k3OjqagQMHUrJkSdzc3KhWrRoffvghBoMhw/uPiorC2dmZWbNmpfnb7t270el0fPPNN0DWzkNcXByTJ08mMDAQV1dXypQpwwsvvMCtW7fSPb4NGzZQr149PDw8qFatGhs2bACSn9dq1arh6elJo0aN+O2338xun17X2Jo1a+jYsSO+vr6m+5s0aRL37t3L+InOQOvWrRk4cCAAjRs3RqfTmVocH+1W0+l03Lt3j88++8z02mrdunWm93/jxg3GjBlDmTJlcHV1pXz58kyZMsX0vjK+Jn/66SdOnjxput+dO3dmeJ8JCQm8+uqr+Pj4UKBAAZ544gkOHDiQ7r6XLl1i1KhR+Pn54erqSmBgINOnTycxMdFsv5iYGJ5++mm8vLwoXLgwzz33HAcPHkzzfjF2wR89epSOHTvi5eVFu3btgOTu9RkzZlC1alXT5+KwYcO4evVqmrjWrFlD06ZN8fT0pGDBgnTq1ImIiIhMn8vU9uzZw5IlS1i2bBl6vd7i24l8pITD6dSpkypRooRasmSJ2rlzp/ruu+/UW2+9pb766ivTPq1atVLFihVTVapUUaGhoWrr1q2qW7duClDTp09XtWrVUqtXr1abNm1STZo0UW5ubur8+fOm2+/cuVO5uLiooKAgtWbNGvXdd9+pjh07Kp1OZ/Y4p06dUl5eXqpChQrq888/Vxs3blTPPvusAtR7772nlFIqNjZWrVixQgHqjTfeUOHh4So8PFydO3dOKaXUkCFDlKurq6pWrZr64IMP1E8//aTeeustpdPp1PTp0zN9LsLDw1XXrl2Vh4eH6X6vXLmizpw5owC1YsWKNLcB1NSpU02/T506VQGqSpUq6q233lLbt29Xc+fOVW5ubmrYsGFmtx00aJDS6XRq+PDh6vvvv1ebN29W7777rvr444+VUkodPnxYlS9fXtWrV88Uz+HDh5VSKt2YLH2ejc9f+fLl1Ysvvqi2bt2qli1bpooUKaLatGljFqNx3/SO/VEBAQGqTJkyyt/fXy1fvlxt2rRJPffccwpQ77//vmm/K1euqDJlyqgSJUqoRYsWqS1btqixY8cqQI0ePTrT57dXr17K399fJSYmmu33zDPPqNKlS6uEhIQsnQeDwaA6deqknJ2d1Ztvvqm2bdumPvjgA+Xp6anq1aun4uLizI7Pz89P1axZ0/R6b9y4sXJxcVFvvfWWat68uVq3bp1av369qly5sipVqpS6f/++6fbGmFJ755131EcffaQ2btyodu7cqRYtWqQCAwPTnIf0bvuo48ePqzfeeMN0vsLDw9Xp06eVUsnvi4CAANO+4eHhysPDQ3Xt2tX02jp+/HiG9/3gwQNVu3Zt5enpqT744AO1bds29eabbypnZ2fVtWtXpZRScXFxKjw8XNWrV0+VL1/edL+xsbEZ3u+QIUOUTqdTr7zyitq2bZuaO3euKlOmjCpUqJAaMmSIab+LFy+qsmXLqoCAALV48WL1008/qXfeeUe5ubmpoUOHmva7e/euqlixoipatKj69NNP1datW9WECRNUYGBgmtfxkCFDlIuLiypXrpyaNWuW+vnnn9XWrVtVUlKS6ty5s/L09FTTp09X27dvV8uWLVNlypRR1atXNzun7777rtLpdOr5559XGzZsUOvWrVNNmzZVnp6emT6fRvfv31eVKlVSr7zyilLq3/N89epVs/2M2318fJSTk5MqWbKkGjRokDp79uxjH0PknCRHDqhgwYJq/Pjxme7TqlUrBajffvvNtO369etKr9crDw8Ps0ToyJEjClDz5883bWvSpIkqWbKkunPnjmlbYmKiqlmzpvLz81MGg0EppVT//v2Vm5ubio6ONnv8Ll26qAIFCqhbt24ppZQ6ePBghhfsIUOGKEB9/fXXZtu7du2qqlSp8phnI/n2np6eZtuykxzNmTPHbL8xY8Yod3d307Hu3r1bAWrKlCmZxlOjRg3VqlWrNNvTi8nS59mY8IwZM8bsPufMmaMAdfHiRdO2zz77TOn1evXZZ59lGqdSycmDTqdTR44cMdveoUMHVahQIXXv3j2llFKTJk1SgNq/f7/ZfqNHj1Y6nU79+eefpm2PPr9hYWEKUOvXrzdtO3/+vHJ2djZLfi09D1u2bEl3vzVr1ihALVmyxOz4PDw8VExMjGmb8fXu6+trOj6llPruu+8UoH744Yc0MWXEYDCohIQEtWvXLgWo33//3eLbGhnP7cGDB822P5ocKaWUp6enWQKSmUWLFqX7vnrvvfcUoLZt22ba1qpVK1WjRo3H3ufJkycVoCZMmGC2fdWqVQowi23UqFGqYMGCaZKBDz74QAGmROTTTz9VgNq8ebPZfqNGjUo3OQLU8uXLzfZdvXq1AtTatWvNths/dxYsWKCUUio6Olo5OzurF1980Wy/O3fuKB8fH9W3b9/HPgf/+c9/VPny5U0JV0bJ0eeff67effddtWnTJrVjxw41e/ZsVbRoUVWqVCmz16PIG9Kt5oAaNWrEypUrmTFjBr/++isJCQnp7ufr60tQUJDp96JFi1KyZEnq1q1L6dKlTdurVasGwNmzZwG4d+8e+/fv5+mnnzYrbtbr9QwaNIiYmBj+/PNPAHbs2EG7du0oW7as2WMPHTqU+/fvEx4ebtEx6XQ6unfvbratdu3appjyQ48ePdI8flxcHFeuXAFg8+bNALzwwgu58nhZeZ4zixEwe54GDx5MYmIigwcPtiiOGjVqUKdOHbNtAwYM4Pbt2xw+fBhIPs/Vq1c3q4mB5POslGLHjh0Z3n/r1q2pU6cOn376qWnbokWL0Ol0jBw5Ms3+jzsPxsd6tOD9mWeewdPTk59//tlse926dSlTpozpd+PrvXXr1ma1Ko++DzLyzz//MGDAAHx8fNDr9bi4uNCqVSsATp48melt89OOHTvw9PTk6aefNttufN4efZ4sERYWBpCmNqlv3744O5uXwG7YsIE2bdpQunRpEhMTTT9dunQBYNeuXaZ/vby80hS+P/vssxnG0adPnzSPVbhwYbp37272WHXr1sXHx8fUTbh161bTeyP1fu7u7rRq1SrT7kSAAwcOMG/ePBYvXoyHh0em+w4aNIjXX3+dLl260KZNG1577TU2b97M1atXmTNnTqa3FTknBdkOaM2aNcyYMYNly5bx5ptvUrBgQXr16sWcOXPw8fEx7ZfeiBNXV9c0211dXYHkOg6AmzdvopTC19c3ze2NSdX169dN/1qy3+MUKFAgzRBXNzc3U0z5oVixYmkeH+DBgwdAcq2XXq83e45zIivPs6UxZkd6x2Pclvo8PzqsPLM4H2UcjfXnn39Svnx5li5dytNPP53uYz/uGK9fv46zszMlSpQw20+n0+Hj45Mmloxe7497H6Tn7t27tGjRAnd3d2bMmEHlypUpUKAA586do3fv3jk6D7nt+vXr+Pj4pKmZKlmyJM7Ozha/Nx+9T0j7mnF2dk5z3i5fvsyPP/6Ii4tLuvdlHPp+/fp1SpUqlebv6W2D5M+KQoUKpXmsW7dumc5hRo91+fJlAFMN5KMeN5Ls+eefp3fv3jRo0MBU32Z8vdy+fRs3Nze8vLwyvH2jRo2oXLkyv/76a6aPI3JOkiMHVLx4cebNm8e8efOIjo7mhx9+YNKkSVy5ciXdwuqsKlKkCE5OTly8eDHN34zFv8bRF8WKFbNov/xmTLQeLejOzgXBqESJEiQlJXHp0qV0E5qsysrznJcuXbqU4TbjBS+n53nAgAG89tprfPrppzRp0oRLly5luwWuWLFiJCYmcvXqVbMESSnFpUuXMrzw5YYdO3Zw4cIFdu7caWotAtIUgluDYsWKsX//fpRSZgnSlStXSExMzNZry/h6uHTpkllrXGJiYpr3VvHixalduzbvvvtuuvdlTKyLFSuWbkF3eq9LIN25o4wDFDL6/DMmLMZj/vbbbwkICEh338wcP36c48ePmwYRpFahQgXq1KmT7lxuqSmlZDh/PpBn2MH5+/szduxYOnToYOoCySlPT08aN27MunXrzL4JGwwG/ve//+Hn50flypUBaNeunemCkdrnn39OgQIFTEPXc6OFIytKlSqFu7s7f/zxh9n277//Ptv3aewOWLhwYab7ubm5WXScWXme89Lx48f5/fffzbZ9+eWXeHl5Ub9+fSD5PJ84cSLNa+zzzz9Hp9PRpk2bTB/D3d2dkSNH8tlnnzF37lzq1q1L8+bNsxWvcXTS//73P7Pta9eu5d69e6a/5wXjhdn4ejZavHhxnj1mapa+tiD5ebp7926aSSM///xz09+zyjg6btWqVWbbv/766zQj0Lp162aaIqBBgwZpfozJUatWrbhz546p29roq6++sjiubt26cf36dZKSktJ9rCpVqgDQqVMnnJ2d+fvvv9Pdr0GDBpk+TlhYWJqfIUOGAPDdd9+xbNmyTG//66+/EhkZKVN65ANpOXIwsbGxtGnThgEDBlC1alW8vLw4ePAgW7ZsoXfv3rn2OLNmzaJDhw60adOGl19+GVdXVxYsWMCxY8dYvXq16SIxdepUU23BW2+9RdGiRVm1ahUbN25kzpw5psnPKlSogIeHB6tWraJatWoULFiQ0qVLm9U+5SadTsfAgQNNk9rVqVOHAwcO8OWXX2b7Plu0aMGgQYOYMWMGly9fplu3bri5uREREUGBAgV48cUXAahVqxZfffUVa9asoXz58ri7u1OrVq1079PS5zkrPv/8c55//nmWL19uUd1R6dKl6dGjB9OmTcPX15f//e9/bN++nffee89UkzNhwgQ+//xznnzySd5++20CAgLYuHEjCxYsYPTo0RYlcWPGjGHOnDkcOnTosReRzHTo0IFOnTrx2muvcfv2bZo3b84ff/zB1KlTqVevHoMGDcr2fT9Os2bNKFKkCCEhIUydOhUXFxdWrVqVJrnMK7Vq1WLnzp38+OOP+Pr64uXlZbrwP2rw4MF8+umnDBkyhKioKGrVqsUvv/zCzJkz6dq1K+3bt8/y41erVo2BAwcyb948XFxcaN++PceOHeODDz5I09X19ttvs337dpo1a8a4ceOoUqUKcXFxREVFsWnTJhYtWoSfnx9Dhgzho48+YuDAgcyYMYOKFSuyefNmtm7dClg2aWL//v1ZtWoVXbt25aWXXqJRo0a4uLgQExNDWFgYTz31FL169aJcuXK8/fbbTJkyhX/++YfOnTtTpEgRLl++zIEDB/D09GT69OkZPk56UycY65SaN29u1hpXp04dBg4cSLVq1XB3d+fAgQO8//77+Pj48Oqrr1rwbIsc0bIaXOS/uLg4FRISomrXrq0KFSqkPDw8VJUqVdTUqVPNRt5kNPokICBAPfnkk2m2A+qFF14w27Znzx7Vtm1b5enpqTw8PFSTJk3Ujz/+mOa2R48eVd27d1fe3t7K1dVV1alTJ91RYqtXr1ZVq1ZVLi4uZiOa0httppTlo30yun1sbKwaPny4KlWqlPL09FTdu3dXUVFRGY5We3S0iXEU0ZkzZ0zbkpKS1EcffaRq1qypXF1dlbe3t2ratKnZ8xIVFaU6duyovLy8FGAacZTRCDpLnueMRjQZR4KFhYWl2dfSofxPPvmk+vbbb1WNGjWUq6urKleunJo7d26afc+ePasGDBigihUrplxcXFSVKlXU+++/r5KSksz2e/T5Ta1169aqaNGiZkOrjbJyHh48eKBee+01FRAQoFxcXJSvr68aPXq0unnzZrrH96j0Xu/G85N6CoP0XoP79u1TTZs2VQUKFFAlSpRQw4cPV4cPH07znOfFaLUjR46o5s2bqwIFCigg3VGRqV2/fl2FhIQoX19f5ezsrAICAtTkyZPNpjtQyvLRakopFR8fr/7zn/+okiVLKnd3d9WkSRMVHh6uAgIC0oyku3r1qho3bpwKDAxULi4uqmjRoiooKEhNmTJF3b1717RfdHS06t27typYsKDy8vJSffr0UZs2bVKA+v77782ek/Te60oplZCQoD744ANVp04d5e7urgoWLKiqVq2qRo0apSIjI832/e6771SbNm1UoUKFlJubmwoICFBPP/20+umnnyx6DlLL6HXbv39/VbFiReXp6alcXFxUQECACgkJURcuXMjyY4is0ymlVD7mYkIIO1KuXDlq1qxpmhQxL125coWAgABefPFFGa0jHmvmzJm88cYbREdH5/ks5cL+SLeaEMKqxcTE8M8///D+++/j5OSUZr0wIf773/8CULVqVRISEtixYwfz589n4MCBkhiJbJHkSAhh1ZYtW8bbb79NuXLlWLVqldkoJyEgeXj+Rx99RFRUFPHx8fj7+/Paa6/xxhtvaB2asFHSrSaEEEIIkYrmQ/l3795N9+7dKV26NDqdLs2w0fTs2rWLoKAg0yKXixYtyvtAhRBCCOEQNE+O7t27R506dUx9xo9z5swZunbtSosWLYiIiOD1119n3LhxrF27No8jFUIIIYQjsKpuNZ1Ox/r16+nZs2eG+7z22mv88MMPZmsQhYSE8Pvvv1u8DpcQQgghREZsriA7PDycjh07mm3r1KkToaGhJCQkpLsOT3x8vNkyEAaDgRs3blCsWLFsTZInhBBCiPynlOLOnTuULl06T5dRsbnk6NKlS2kWFCxVqhSJiYlcu3Yt3TWrZs2alemspUIIIYSwHefOncvTaRpsLjmCtAsHGnsGM2oFmjx5MhMnTjT9Hhsbi7+/P+fOnUszZX1qZ86coW7duhQoUCDNopk3btwgMDAQSF6xOaOVo4UQeej8eS7s30+XN98kKiYGT09PQkJCqFKlCnv37uWLL77AYDDQolEjvn3tNdyrVQOZCkCIfHfo0CHatm1LmTJlOHHihNnf/v77b+rXr4+XlxcxMTGZ3s/t27cpW7asaTHgvGJzyZGPj0+a1ZavXLmCs7OzacXnR7m5uaVZ6BGgUKFCmSZHxidfp9Ol2c9gMJjt5+rqavExCCFyQWgocSNGMEgpooDyJUqw/ddfKV++PAAjRoxg6NCh9OjShT0HDvBKnz585uQES5ZAcLCmoQvhaDw9PQFwdnZOcz1Nnehkdk1OLa9LYjQfrZZVTZs2Zfv27Wbbtm3bRoMGDXK99SazWvXUJyZ1oiSEyAcxMTByJNOU4jegKPDT9euUf+RLSuuKFVkfH48T8DmwymCAUaOSby+EyDfG66St1PlqnhzdvXuXI0eOcOTIESC5K+vIkSNER0cDyV1iqVcGDwkJ4ezZs0ycOJGTJ0+yfPlyQkNDefnll/MsxvROZupCMCsa8CeEY4iM5HeDgQ9Sfl0OBBoMcPp0mv3aKcXUlF8nArFJSWn3E0LkKeN1Mr0iamtMmDRPjn777Tfq1atHvXr1AJg4cSL16tXjrbfeAuDixYumRAkgMDCQTZs2sXPnTurWrcs777zD/Pnz6dOnT77GLS1HQmhHVazIGCAJ6AM8BaDXQ8WK5jtWqgROTkwCqgBXgLd1urT7CSHy1ONqg1PvYw00rzlq3bp1pk/IypUr02xr1aoVhw8fzsOoHk9ajoTQzpZjx9gHeADzITkxWrwYHh294ucHS5bgOmoU85KS6ALMd3JibEICgfketRCOS7rV7IjUHAlhfZRSTJ2a3FE2ZuRISoeFQVRUxkXWwcEQFUXnsDA6tmxJYlIS77//fv4FLISQbjV7JDVHQliPbdu2cfDgQQoUKMCr77wDrVunbTF6lJ8ftG7N62+/DcDy5cvTjHoVQuQdS1qOrOlaKslRNknLkRDamD9/PpA8VL9kyZJZum3Lli1p2rQp8fHxfPzxx3kRnhAiHZm1HFkj24jSCknLkRD57/Tp02zevBmAsWPHZvn2Op2OV199FYBly5aZLSskhMg7mRVkS7eajZGaIyGsy8KFC1FK0aVLFypmc8RZt27dKF26NNeuXeO7777L3QCFEOmSbjU7JDVHQmjv4cOHfPbZZwC88MIL2b4fZ2dnglOKt5csWZIrsQkhMifdag5CWo6EyF9bt27l+vXr+Pj40KlTpxzd1/Dhw3FycmLHjh38888/uRShECIjmbUcSbeanTGeUGk5EiLvrVq1CoBnn30WZ+ecTdHm7+9Pu3btAFi9enWOYxNCZM6SliNrupZKcpSJx50oY3IkLUdC5K3bt2/z/fffA/Dcc8/lyn0OGDAASE66rOlDWQh7ZMkM2dZEkiMLZHQyjRmwfLAKkbfWrVtHXFwcVatWpX79+rlyn7169cLNzY2TJ0/yxx9/5Mp9CiHSJ91qDkRajoTIH8YutYEDB+baB6m3tzfdunUDpGtNiLwm3Wp25HEnSlqOhMh7N2/eJCwsDIB+/frl6n337dsXgPXr1+fq/QohzMnaanYoo5MpLUdC5L1NmzaRlJREjRo1sj23UUY6d+6Mq6srf/31F6dOncrV+xZC/EvWVnMg0nIkRN4zTtT41FNP5fp9FypUiLZt2wKYCr6FELnPkoJsa7qWSnKUA9JyJETeio+PZ8uWLQD07NkzTx7DmHTJbNlC5B3pVrMjUnMkhLZ27NjB3bt3KV26NEFBQXnyGD169ABg//79XLp0KU8eQwhHZ0m3mjVdSyU5soDUHAmhDWNXV48ePfJs2YHSpUvTsGFDlFL8+OOPefIYQjg6mefIgUjLkRB5RynFxo0bgX9bd/KKsWttw4YNefo4QjgqYyOCrK3mAKTlSIi8c/LkSWJiYnB3d6d169Z5+lidO3cGICwsjISEhDx9LCEcUWYtR9KtZmMsXT7Emk6oEPZi69atALRs2RIPD488fax69epRokQJ7ty5Q3h4eJ4+lhCOSAqy7ZAsHyJE/tu2bRsAHTt2zPPHcnJyokOHDsC/SZkQIvdYMkO2NbGNKK2UdKsJkTfi4uLYtWsXAJ06dcqXxzQmYZIcCZH7pFvNgUjLkRB545f163nw4AFlfHyoUaNGvjymMTk6fPgwV9evh5iYfHlcIRyBFGTbEUtrjqTlSIhcFBrK1gEDAOh46RK65cvz5WF9fX2p7eeHUoqfeveGgAAIDc2XxxbC3slQfjskNUdC5JOYGBg5ku0pv3YEGDUqf1pxYmLolPI42wEMhvx7bCHsXGYtR9KtZmek5UiIXBYZyQ2DgT9Sfm0LkJQEp0/ny2O3TfnvTuO2/HpsIeyctBzZEVk+RIh8VqkSu3U6FFAdKAmg10PFivny2M11OvTAGeBsfj62EHZOkiM7JMuHCJFP/PzY2a4dAK0hOTlZvBj8/PLlsb2WLqVByq+7dLr8e2wh7Jx0qzkQaTkSIvftvHoVgNZTp0JUFAQH59+DBwfTesyY5DieeSZ/H1sIOyYtRw5EWo6EyF03btzgjz+SK45ajRmjSatN6+7dAdh58GC+P7YQ9kqG8tsRqTkSIn/t3r0bpRTVq1enZMmSmsTQvHlz9Ho9Z86c4ezZs5rEIIS9kUkg7ZDUHAmRP8LCwgDyfKHZzHh5edGgQXLl0c6dOzWLQwh7It1qDkRajoTIXcZkpE2bNprGYXx8SY6EyB3SreZApOVIiNxz/fp1U71Ry5YtNY3F2HIlyZEQuUO61eyI1BwJkX9++eUXAE3rjYyMdUdRUVFER0drGosQ9kBajuyQ1BwJkff27t0LwBNPPKFxJFCwYEHq1q0LwL59+7QNRgg7IDVHDkRajoTIPcbkqHnz5hpHkswYhzEuIUT2WdKtZk0kOcoBaTkSInfExcXx22+/AdCsWTONo0kmyZEQuUe61eyI1BwJkT8OHTrEw4cPKVmyJBUqVNA6HODfJO3333/n7t27GkcjhG2ztFvNWq6nkhxZQGqOhMhbxrqe5s2bW00Tu5+fH/7+/hgMBvbv3691OELYNGPSk9naatZEkqMckJYjIXKHtdUbGUnXmhC5w9iIYI2JUHokOcoBaTkSIueUUqaWI2upNzIyJkcyYk2InJFuNTsiNUdC5L3IyEiuXr2Km5sb9evX1zocM8ZkLTw8nKSkJI2jEcJ2ZVaQbY2tSZIcWUBqjoTIO8ZWmYYNG+Lm5qZxNOZq1apFwYIFuX37NsePH9c6HCFslsxz5ECk5UiInDPW81hblxqAs7MzTZo0AaTuSIicyKwgO739tCbJUSYed5Kk5UiInLPWYmwjqTsSIucyK8i2xtYkSY4s8LhuNWvJdIWwNTdu3ODkyZOAdbYcgYxYEyI3SLeaA5FuNSFy5tdffwWgcuXKFC9eXONo0te4cWN0Oh1nzpzh0qVLWocjhE2ydIZsa7meSnKUA9KtJkTOHDx4EEhOQKxVoUKFqFGjBgAHDhzQOBohbJOsrWZHZCi/EHnLmGw0atRI40gyZ4xPZsoWInssLci2FrYRpcZkKL8QuU8pZWo5atiwocbRZM7YsiXJkRDZY+kM2dbS2CDJUQ5Iy5EQ2Xf27FmuXr2Ki4sLderU0TqcTBmTo4MHD8qXISGyQbrVHIi0HAmRfcYutdq1a+Pu7q5xNJmrUaMGBQoU4Pbt25w6dUrrcISwOZYWZFsL24hSI1JzJETeMXapWXu9ESRPBtmgQQNAutaEyA6pObJDUnMkRO6zlWJsI6k7EiL7ZCi/A5GWIyGyJykpiUOHDgHWX4xtJMmRENknM2Q7EGk5EiJ7Tp48yb179yhYsCBVq1bVOhyLGFu4jh49yv379zWORgjbIt1qdkRqjoTIG8YutaCgIPR6vcbRWMbPzw9fX1+zVi8hhGWkINsOSc2RELnLloqxjXQ6nalrTWbKFiJrZJ4jByItR0Jkj60VYxtJ3ZEQ2ZNZt5rUHNmYxyU90nIkRNbFxcXxxx9/ALZTjG0kyZEQ2SPdanYoo6xWWo6EyLojR46QmJhIyZIl8ff31zqcLGnQoAE6nY7o6GguXbqkdThC2AxLu9WshSRHOSAtR0JknbFLrWHDhjbzQWnk5eVFjRo1AGk9EiIrZJ6jbFiwYAGBgYG4u7sTFBTEnj17Mt1/1apV1KlThwIFCuDr68uwYcO4fv16PkX7L2k5EiLrbLEYOzVj3JIcCWE5qTnKojVr1jB+/HimTJlCREQELVq0oEuXLkRHR6e7/y+//MLgwYMJDg7m+PHjfPPNNxw8eJDhw4fnemxScyRE7rPVYmwjqTsSIuuk5iiL5s6dS3BwMMOHD6datWrMmzePsmXLsnDhwnT3//XXXylXrhzjxo0jMDCQJ554glGjRvHbb7/lWYxScyRE7rh16xZ//fUXgGmtMltjTI4OHjwoX4yEsJDUHGXBw4cPOXToEB07djTb3rFjR/bt25fubZo1a0ZMTAybNm1CKcXly5f59ttvefLJJzN8nPj4eG7fvm32kxuk5UiIrPlt82YAyvv7U7x4cY2jyZ4aNWpQoEAB7ty5w5+ffw4xMVqHJITVs3SGbGtpbNA0Obp27RpJSUmUKlXKbHupUqUyHAnSrFkzVq1aRb9+/XB1dcXHx4fChQvzySefZPg4s2bNwtvb2/RTtmzZXIlfWo6EyILQUA489xwADaOjITRU44Cyx9nZmaAyZQA4MGwYBATY7LEIkV8y61azxtYkzbvVIO0To5TK8Mk6ceIE48aN46233uLQoUNs2bKFM2fOEBISkuH9T548mdjYWNPPuXPnLIpLao6EyCUxMTByJAdT3lONAEaNss1Wl5gYGkVGAnAAwGCw3WMRIp/YWreas5YPXrx4cfR6fZpWoitXrqRpTTKaNWsWzZs355VXXgGgdu3aeHp60qJFC2bMmIGvr2+a27i5ueHm5pbtOKXmSIgciowEgwHjohuNAJKS4PRp8PPTMLBsiIzEOHWlaRERWz0WIfKJLDybBa6urgQFBbF9+3az7du3b6dZs2bp3ub+/ftpnlzjwpX5naRIy5EQFqpUifM6HRdI/tCpB6DXQ8WK2saVHZUq0Sjlvf87EA+2eyxC5BOZ5yiLJk6cyLJly1i+fDknT55kwoQJREdHm7rJJk+ezODBg037d+/enXXr1rFw4UL++ecf9u7dy7hx42jUqBGlS5fO19il5UgIC/n5cXDMGABqAp56PSxebJstLX5+lFuyhOJAAvC7k5PtHosQ+SSzbjVr7GrTtFsNoF+/fly/fp23336bixcvUrNmTTZt2kRAQAAAFy9eNJvzaOjQody5c4f//ve//Oc//6Fw4cK0bduW9957L9djk5ojIXLPgUKFAGjYtavNJxO64cNptHo1m3bs4MD06TQKDtY6JCGsmq11q2meHAGMGTOGMSnfKh+1cuXKNNtefPFFXnzxxTyO6l8ZZbXG7dJyJMTjmWbGfuopm06MjBq1bJmcHKXM2ySEyJhMAulApFtNCMsYDAabXzbkUQ0bJpdlG2f8FkJkzNLRatZyPZXkKAekW00Iy0RGRhIbG4u7u7tp4VZbZ0yO/vzzT27duqVtMEJYOVlbzY48LoOVliMhLGNsNapfvz4uLi4aR5M7SpQoQWBgIACHDh3SOBohrJt0q9mhx9UcScuREJkzdj0ZW1vshbGLULrWhMicrU0CKclRDkjLkRCWsbd6IyNJjoSwjKytZkdkKL8QOffw4UMiIiIA+0uOpChbCMvI2mp2SJYPESL7jh49Snx8PEWKFKFChQpah5Or6tevj5OTExcuXOD8+fNahyOE1ZJuNQciLUdCPJ6xS61hw4Y288FoKU9PT2rWrAn8e5xCiLRsbRJI24jSSknLkRCPZ6/F2EZSdyTE48naanZEao6EyDl7LcY2kuRIiMeztbXVJDmygNQcCZE9d+7c4fjx44D9thwZj+vgwYPyRUmIDEi3mgORliMhMnf48GGUUvj5+eHr66t1OHmiRo0aeHh4cPv2bf6SddaESJdMAulApOVIiMzZe5cagIuLC/Xr1wekKFuIjMhoNTsiNUdC5Iy9F2MbSd2REJmzdG01a2lskOTIAlJzJET2OELLEUhyJMTjSLeaA5GWIyEyduXKFaKiotDpdAQFBWkdTp4ytowdOXKE+Ph4jaMRwvpIt5oDkZYjITJmbDWqUqUK3t7eGkeTt8qXL0/RokV5+PAhf/zxh9bhCGF1ZLSaHZGaIyGyz1G61CD5s8B4nFKULURalq6tZi2NDZIcWUBqjoTIOkcpxjaSuiMhMibdag5EWo6ESJ9SyqFajkCSIyEyI91qduRxLULSciRE+qKiorh27RouLi7UqVNH63DyhbGF7NSpU8TGxmocjRDWRUar2aGMmgGl5UiI9BlbT+rUqYObm5vG0eSPkiVLEhAQgFKKQ4cOaR2OEFbF0rXVrKWxQZKjHJCWIyHS52hdakZSlC1E+qRbzYFIy5EQ6XO0YmwjqTsSIn3SrWZHLB3KLy1HQvwrMTHR1K3kqC1HkhwJYU6SIzv0uKH80nIkxL9OnjzJ/fv3KViwIFWqVNE6nHxVv359nJyciImJ4cKFC1qHI4TVkJojByItR0KklbpLTa/XaxxN/ipYsCDVq1cHpO5IiNSk5siBSEG2EGkZkyNH61IzkqJsIdKSbjU7IsuHCJF1+/fvByQ5krojIf4lM2TbIVk+RAjL3Lt3j2PHjgGSHB08eFC+OAmRIrNuNak5sjPSciSEuYiICJKSkvD19aVMmTJah6OJmjVr4u7uzq1btzh9+rTW4QhhFaRbzYFIy5EQ5oxdSY0bN7aZ5vPc5uLiQr169QDpWhPCSLrV7IjUHAmRNY5ejG0kRdlCmJPRanZIao6EsIyjF2MbSVG2EOYy61aTmiM7Iy1HQvzrypUrREVFAdCgQQNtg9GYMTmKiIjg4cOHGkcjhPakW82BSMuREP8ydiFVrVoVb29vjaPRVoUKFShSpAjx8fEcPXpU63CE0Jx0q9kRqTkSwnJSb/QvnU5nWnRXutaEkNFqdklqjoR4vNQj1YQUZQuRmqyt5kCk5UiIZEopaTl6hBRlC/Ev6VazI4/LYKXlSIhkf//9Nzdu3MDV1ZXatWtrHY5VMHarnThxgjt37mgcjRDakm41O5RRt5q0HAmRzNg6Uq9ePVxdXTWOxjr4+PhQtmxZlFIcOnRI63CE0JSMVnMg0nIkRLIDO3YA0Kh6dY0jsS6mrrXVqyEmRuNohNCOrK3mQKTlSAggNJQDoaEANFq5ElL+L8BYfXVwyRIICJDnRjgs6VazI1JzJMRjxMSQMGIEh1N+bawUjBolrSQAMTE0WrcOgAMABoM8N8JhSbeaHZKaIyEyEBnJH0oRDxQGKgIkJYGsRg+RkQQphQ6IBi6BPDfCYcloNQciLUfC4VWqxIGULwmNAB2AXg8VK2oZlXWoVAkvJyeqpfx6EOS5EQ5L1lZzINJyJByenx8HmjYFUupr9HpYvBj8/DQNyyr4+cGSJTRK+Zw4oNPJcyMclnSr2RGpORLi8Q7cugVAo3ffhagoCA7WNB6rEhxMoxkzADjYsqU8N8JhSbeaHZKaIyHSd/v2bU6ePAlAo+BgaRVJR6NOnQA48Mcf8kVKOCwZreZApOVIOLoDBw6glCIgIIBSpUppHY5VqlWrFm5ubty8eZO///5b63CE0ISl3WrWcj2V5CgHpOVIOLrw8HAAmqbUHYm0XF1dqVu3LiDrrAnHJd1qduRxGawxObKWTFeI/CbJkWVkEVrhyJRSkhzZo4yaAY0nWVqOhCMyGAz8+uuvgCRHj2NMjg4ePKhxJELkv9QNCDJazQFIy5FwZH/99Rc3b97E3d2dOnXqaB2OVTMmR4cPHyYhIUHjaITIX6mvkRm1HFnb9VSSo0zIUH4hMmbsUmvQoAGurq4aR2PdKlasSOHChYmLi+PYsWNahyNEvkrduyLdanZEhvILkZbUG1nOycmJhg0bAlJ3JBxP6mukdKs5AGk5Eo5MkqOskeRIOCpLutWsjW1EaaWk5Ug4qtjYWI4fPw5IcmQpGbEmHJUl3WpSc2RDLK05kuRIOBrj5I/lypXDx8dH63BsQuPGjQE4fvw4sbGxGkcjRP6RmiM79bih/NaS6QqRX6RLLet8fHwIDAxEKcX+/fu1DkeIfCM1Rw5GWo6Eo5LkKHuaN28OwN69ezWORIj8IzVHDkaSI+GIZPLH7JPkSDgiqTmyM1JzJERaf/75J7du3cLDw0Mmf8yiZs2aAbB//34SExM1jkaI/CHdatm0YMECAgMDcXd3JygoiD179mS6f3x8PFOmTCEgIAA3NzcqVKjA8uXL8yw+WT5EiH+lnvzRxcVF42hsS40aNShUqBB3797l6NGjWocjRL6QbrVsWLNmDePHj2fKlClERETQokULunTpQnR0dIa36du3Lz///DOhoaH8+eefrF69mqpVq+Zj1MkkORKOSOqNsk+v15ueN+laE45CWo6yYe7cuQQHBzN8+HCqVavGvHnzKFu2LAsXLkx3/y1btrBr1y42bdpE+/btKVeuHI0aNTI1V+cnSY6EI5LkKGeMn1X79u3TOBIh8ofxGplZYiQ1R6k8fPiQQ4cO0bFjR7PtHTt2zPCD44cffqBBgwbMmTOHMmXKULlyZV5++WUePHiQ4ePEx8dz+/Ztsx9LSM2REOZiY2M5ceIEIMlRdklRtnA0xmuprXSpAThr+eDXrl0jKSmJUqVKmW0vVaoUly5dSvc2//zzD7/88gvu7u6sX7+ea9euMWbMGG7cuJFh3dGsWbOYPn16tuOUmiMhkoWHh6OUonz58mnet8IyjRs3xsnJiejoaGJiYvDz89M6JCHylPEaaUvJkVVE+mjyoZTKMCExGAzodDpWrVpFo0aN6Nq1K3PnzmXlypUZth5NnjyZ2NhY08+5c+dyJW5JjoSj+eWXXwBo0aKFxpHYroIFC5pG+UnXmnAElnSrWRtNk6PixYuj1+vTtBJduXIlw2+lvr6+lClTBm9vb9O2atWqoZQiJiYm3du4ublRqFAhs5/cIMmRcDTGkaRPPPGExpHYNulaE47Ekm41qTlKxdXVlaCgILZv3262ffv27RkWWDdv3pwLFy5w9+5d07a//voLJyenXG+elpojIf4VHx9vWjRVkqOckeRIOBLpVsuGiRMnsmzZMpYvX87JkyeZMGEC0dHRhISEAMldYoMHDzbtP2DAAIoVK8awYcM4ceIEu3fv5pVXXuH555/Hw8MjT2LMqCnQuF2SI+EIDh8+TFxcHMWLF6dKlSpah2PTjF/+jhw5wr179zSORoi8Jd1q2dCvXz/mzZvH22+/Td26ddm9ezebNm0iICAAgIsXL5rNeVSwYEG2b9/OrVu3aNCgAc899xzdu3dn/vz5+R67tBwJR2KsN3riiSds6kPOGvn7++Pn50dSUpKpNU4IeyWj1bJpzJgxjBkzJt2/rVy5Ms22qlWrpumKywuWdqtZSx+pEHlJ6o1yV/PmzVmzZg179+6lTZs2WocjRJ6xpFtNao5skAzlF47OYDCY6mMkOcodMhmkcBTSreZgJDkSjuLUqVPcuHEDDw8P6tevr3U4dsFYlL1v3z6SkpI0jkaIvGOL3Wq2E6kVkuRIOApjl1qTJk1ksdlcUqdOHby8vIiNjZVFaIVdk9FqdkaG8guRLHUxtsgdzs7OptajXbt2aRyNEHlH1lazU1JzJBydJEd5o1WrVgDs3r1b40iEyDvSreZgJDkSjiAmJoaoqCicnJxksdlc1rJlSyA5ObKWb8xC5DbpVnMwkhwJR2BsNapbty5eXl4aR2NfGjRogIeHB9euXePkyZNahyNEnpDRanZGao6E+LcY21gfI3KPq6urqTVOutaEvcrK2mrWQpIjCzyu5kgpJU3iwm4Zi4Vbt26tbSB2KnXXmhD2KCvdatZyLZXkKAdSn2hrOaFC5KYrV65w/Phx4N+LuMhdxud1165d8jki7JJ0qzmY1MmRdK0Je2RszahVqxbFixfXOBr7ZJw76sKFC/zzzz9ahyNErpPRanbG0pojkORI2KedGzYA0LpBA40jsV8eHh40atQIgN2LF0NMjMYRCZG7srK2mrWQ5MgCj6s5AkmOhB0KDWXnZ58B0HrlSggN1TYeO9bS2xuAXe+/DwEB8lwLu5KVbjVr6VqW5CgHUp9oSY6EXYmJ4cqIERxP+bWlUjBqlLRq5IWYGFpt3gzAbgCDQZ5rYVekW83OSLeacFiRkexOef3XAooDJCXB6dNaRmWfIiNpphR64AxwDuS5FnZFJoG0U5Z0q1lLU6AQuaJSJXam/Le1cZteDxUrahKOXatUCS8nJ+qn/LoL5LkWdiUra6tZC0mOckBajoTd8vNjZ+nSQEpypNfD4sXg56dlVPbJzw+WLKF1ysUhTKeT51rYlax0q1lLQ4MkRzkgyZGwV1euXOH4hQsAtPzuO4iKguBgTWOya8HBtE0pft/h5yfPtbAr0q1mZ6TmSDgqs/mNnnpKWjHyQYvevXF2dibq3DmZ70jYFZkE0k7JUH7haHbu3AnIkiH5ydPTkyZNmgCwY8cOjaMRIvfIPEcORobyC3slyZE22rZtC0hyJOyL1Bw5IOPJluRI2AtZT0077dq1A5KTI2u5SAiRU1JzZGcs+XCS5EjYm59//hmAunXrynpq+axx48Z4eHhw+fJlTpw4oXU4QuQKqTmyU5mdUEmOhL356aefAGjfvr3GkTgeNzc3nnjiCUC61oT9sKRbzdoSJ0mOckiSI2FPlFJs374dkORIK8auNWMLnhC2LivdatbSnSzJUQ5JciTsSWRkJOfOncPV1ZUWLVpoHY5DMhZl79y5k6SkJI2jESLnHK5b7cqVK1y6dCm3YrE6UnMkHI2xS6158+YUKFBA42gcU/369fH29iY2NpaIiAitwxEixxxm4dk//viDGjVq4OvrS5kyZShTpgxvvPEG9+7dy+34rILUHAlHIfVG2tPr9aYpFKRrTdgDh5nnKDg4mFKlSvHLL78QERHBjBkz2Lx5Mw0aNODmzZu5HaNVk+RI2IvExERTEXCHDh00jsaxGbvWJDkS9iAr3Wo2XXN04sQJFixYQNOmTalduzbDhg3jt99+o0aNGrz44ou5HaNVk+RI2ItDhw4RGxtL4cKFqV+//uNvIPKMsSh7z549PHjwQONohMgZh+lWS6+FSKfTMXPmTL7//vtcCcwaWJLBGjNhSY6ErTN2qbVt2xa9Xq9xNI6tevXqlClThri4OPbs2aN1OELkiF1PAvnkk0/y+uuv8/XXXxMSEsKECRO4fPmy2T6xsbEUKVIk14PUmiU1R9bSFChEdskQfuuh0+no2LEjAFu3btU4GiFyxpJuNWurOXK2dMdatWpx+PBhVqxYYUqKypcvT9++falbty5JSUmsWLGCjz76KM+CtUbSrSbswb1799i3bx8g9UbWolOnTqxYsYKtW7fy4Ycfah2OENlmi2urWZwczZ492/T/y5cvExERwZEjRzhy5AgLFy7k9OnT6PV6pk+fTp8+ffIk2PwmQ/mFo9izZw8JCQkEBARQoUIFrcMRJLfg6XQ6jh8/TkxMDH5+flqHJES22GK3msXJUWqlSpWic+fOdO7c2bTtwYMH/P777/z++++5Fpy1kKH8wt5t27YN+PeCLLRXrFgxGjZsyIEDB9i2bRvPP/+81iEJkS0ONwlkah4eHjRp0oRRo0bl1l3aBEmOhD3YvHkzgNkXHqG9Tp06AVJ3JGybrK3mgCQ5ErYuKiqKU6dOodfrpRjbyhiTo+3bt8tSIsJmydpqdkZqjoQjMLYaNWvWjMKFC2sbjDDTuHFjvL29uXnzJr/99pvW4QiRLQ7drWbPpOZI2DNjctSlSxeNIxGPcnZ2Nk0IKV1rwlY5zCSQ4l+SHAlbFh8fb1qiQpIj6yR1R8LWOczaauJfkhwJW7Z7927u37+Pr68vderU0TockQ5jcrR//35u3bqlbTBCZIPDrK3mKKTmSNi71KPUrO2bm0gWEBBAlSpVSEpKMs1iLoQtkW41OyU1R8JeGZOjrl27ahyJyMyTTz4JwMaNGzWORIiss8VJIG0nUislyZGwVTKE33Z069YNgE2bNsmQfmFzbHFtNUmOckiSI2GrZAi/7XjiiSfw9vbm6tWrHDx4UOtwhMgSW1xbTZKjTEjNkbBnMoTfdri4uJhmL//xxx81jkaIrJFuNTtlSVOgJEfClsTFxbFjxw5AkiNbYexa27Bhg8aRCJE1MgmkA5KWI2GLfv75Z+7du4efn58M4bcRXbp0wcnJiT/++IPo6GitwxHCYrK2mp3JSreatfSTCmGJH1avBqBH27ZW96Ek0lesWDGaNWsGwMa5cyEmRuOIhLCMrK1mp2Qov7AnhqVL+WHVKgB6fPEFhIZqHJGwVLdSpQDY8PHHEBAg507YBOlWc0CSHAmbEhPDwVGjuAR4Aa2VglGjpBXCFsTE0G3dOgB+Bu4ZDHLuhE2QSSAdkCRHwqZERvJDygdVF8ANICkJTp/WMiphichIqitFOSCe5ARJzp2wBbK2mp2RofzC7lSqxPcp/+1h3KbXQ8WKGgUkLFapEjonJ7qn/PojyLkTNkHWVrNTUnMk7MXf8fEcB/RAV0i+uC5eDH5+2gYmHs/PD5YsoVvKZ86PQNLChXLuhNWTeY4ckCRHwpZ8/31yu1HLZs0oEhYGUVEQHKxtUMJywcG0joykcMGCXAZ+rV5d64iEeCxja5C1dZ1lRpKjHJLkSNiSH374AYCn+vaF1q2l1cEGuZYvT/devQBYl1KgLYQ1M14f9Xp9hvtYW+IkyVEmpOZI2JPr16+zZ88eAHr06PGYvYU16927N5CcHFlLjYYQGTEulizzHNkZqTkS9mDjxo0YDAZq1apFYGCg1uGIHOjYsSMFChQgKiqKI0eOaB2OEJmypOXI2khylEOSHAlbsXbtWgB69uypbSAixwoUKGBaE894XoWwVlKQ7YAkORK24Pbt22zduhWAp59+WuNoRG5I3bUmhDWzpFtNao5siNQcCXuxceNG4uPjqVy5MrVq1dI6HJELnnzySVxcXDh58iQnT57UOhwhMiRrq9kpqTkStu7bb78FkluNrO0bmsgeb29v2rdvD8D69es1jkaIjEnNkQMyXmgkORLW6u7du2zatAmAZ555RuNoRG6SrjVhC6TmKJsWLFhAYGAg7u7uBAUFmYYbP87evXtxdnambt26eRKXdKsJe7Bp0ybi4uKoUKECderU0TockYt69OiBk5MThw4dIioqSutwhEiX1Bxlw5o1axg/fjxTpkwhIiKCFi1a0KVLF6KjozO9XWxsLIMHD6Zdu3Z5HqMl3WrW0k8qxKOMXWrPPPOM1X0AiZwpWbIkLVu2BOCbb77ROBoh0peVbjVruZZqnhzNnTuX4OBghg8fTrVq1Zg3bx5ly5Zl4cKFmd5u1KhRDBgwgKZNm+ZTpOmTliNhze7fv8/GjRsBGaVmr/r37w/A6tWrNY5EiPRJt1oWPXz4kEOHDtGxY0ez7R07dmTfvn0Z3m7FihX8/fffTJ061aLHiY+P5/bt22Y/uUWSI2HNNm/ezP379wkMDKR+/fpahyPyQJ8+fXB2diYiIoI///xT63CESCMrM2RbC00jvXbtGklJSZQqVcpse6lSpbh06VK6t4mMjGTSpEmsWrUKZ2dnix5n1qxZeHt7m37Kli1r0e2k5kjYOmNrgnSp2a/ixYvToUMHQFqPhHWStdWy6dEnRSmV7hOVlJTEgAEDmD59OpUrV7b4/idPnkxsbKzp59y5czmKLzVJjoS1io2NZcOGDQAMGDBA42hEXnr22WeB5OTIWmo2hDCyxXmOLGt6ySPFixdHr9enaSW6cuVKmtYkgDt37vDbb78RERHB2LFjgeQnXSmFs7Mz27Zto23btmlu5+bmhpubW54cgyRHwlqtW7eO+Ph4qlevTu3atbUOR+Shnj174u7uzl9//UVERIR0oQqrIt1qWeTq6kpQUBDbt2832759+3aaNWuWZv9ChQpx9OhRjhw5YvoJCQmhSpUqHDlyhMaNG+dX6CaSHAlr9eWXXwLw3HPPWV2TtchdXl5edOvWDZCuNWF9pCA7GyZOnMiyZctYvnw5J0+eZMKECURHRxMSEgIkd4kNHjwYSH5ia9asafZTsmRJ3N3dqVmzJp6enrkam9QcCVt18eJFduzYAfzb5SLsm/E8r1mzRj6PhFWxxZojTbvVAPr168f169d5++23uXjxIjVr1mTTpk0EBAQAyR/yj5vzKK9JzZGwNcYLZNOmTQkMDNQ6HJEPunbtSqFChTh37hz79u3jiSee0DokIQDbrDnSvOUIYMyYMURFRREfH8+hQ4dMk5oBrFy5kp07d2Z422nTpnHkyJG8DzIDkhwJa5S6S004Bnd3d3r16gX8e/6FsAZSc+SAJDkS1iYyMpKDBw+i1+tlLTUHk7prLT4+XuNohEgmC8/aGak5Erboiy++AKBDhw6ULFlS42hEfmrfvj2lS5fmxo0bppnRhdCaJd1q1lZzJMmRBaTmSNgKg8HAZ599BmAayCAch16vZ9CgQUBySYIQ1kC61RyQJEfCmoSFhREdHY23tzc9e/bUOhyhgSFDhgCwadMmLl++rHE0QkhBtkOS5EhYkxWffgrAs9274+HhoXE0QgvVqlWjcePGJCUlsWr6dIiJ0Tok4eCk5sjOWJLBGrvcJDkSWov95BPWrl8PwLBVqyA0VOOIhFaGVqoEwMqFC1H+/vJaEJqypFtNao5skCU1R9bSFCgcVEwMa156iTigOtBQKRg1SloNHFFMDP1WrcINOAockdeC0JjMkO2ApFtNWIXISFakJOjDAB1AUhKcPq1lVEILkZEUUYqnUn5dAfJaEJrKSreatTQ0SHKUCRnKL2zFSeBXQA8MNG7U66FiRc1iEhqpVAmcnBiW8uv/gAdOTvJaEJqR0Wp2SobyC2sXmjKnTVfAB5ITo8WLwc9Py7CEFvz8YMkSOjg5EQDcBL4ZOlReC0IzMs+RA5LkSGjtwYMHrFixAoBRK1dCWBhERUFwsKZxCQ0FB6M/e5YRKa+BxadOaRyQcGQyWs0BSXIktPbtt99y48YN/P396TxwILRuLa0EAvz8eP6dd3B2dmbfvn0cO3ZM64iEg5J5juyM1BwJW7Bo0SIARo4caVPfzETe8/X1pUePHgAsXrxY42iEo5KaIzslNUfCWv3xxx/s27cPZ2dngqUbTaRj1KhRQPKae/fv39c4GuGIpObIAUlyJLRkbDXq1asXPj4+GkcjrFH79u0pX748sbGxrFmzRutwhAOSmiMHJMmR0MqdO3f44osvAAgJCdE4GmGtnJycGDFiBAALFiywmpoO4Tiy0q1mLa9PSY4yITVHwpqtWrWKu3fvUrlyZdq0aaN1OMKKBQcH4+bmxm+//UZ4eLjW4QgHIzNk2ympORLWxmAw8PHHHwMwZswYq+uvF9alRIkSDBgwAMD0uhEiv1jSrWZtn2GSHOWQJEdCC1u3buXUqVMUKlSI559/XutwhA146aWXAFi7di3nzp3TOBrhSGS0mgOS5EhoYd68eQAMHz4cLy8vbYMRNqFOnTq0atWKpKQkFixYoHU4woHIPEd2RmqOhDU6fvw427Ztw8nJibFjx2odjrAhxtajJUuWyLB+kW+k5shOZdYXavybJEcivxhrRnr27ElgYKDG0Qhb0qNHD8qVK8eNGzdYtWqV1uEIByE1Rw5IWo5Efrp27Zpp+P6ECRM0jkbYGr1eb2ptnDt3rnxuiXwhNUd2JivdatbSTyrs26effkpcXBxBQUE0b95c63CEDRoxYgTe3t6cOnWKH374QetwhAOQmiM7JUP5hTW4e/cu8+fPB+CVV16xumZoYRsKFSrE6NGjAXjvvfes5mIk7JfMkO2AJDkS+WXp0qXcuHGDihUr8vTTT2sdjrBhL730Em5ubvz666/s2bNH63CEnbOkW83avuxJcpRDkhyJ/BAfH8+HH34IwKuvvmpT38CE9fHx8WHo0KEAzJ49W9tghN2T0Wp2RobyC6sQE8P/3niD8+fPU7p0aQYPHqx1RMIOvPzyyzg5ObF582b+WLYMYmK0DknYqax0q1lLN68kRxaQmiOhmdBQkvz9ee+DDwCY2Lw5bm5uGgcl7EHFihV5un59AGaOGAEBARAaqnFUwh7JaDUHJMmRyDMxMTByJN8qRSRQBBi5dq18wxe5IyaG1w8dAuBr4LjBAKNGyetL5DpLutWk5sjOSHIk8kxkJEkGA9NTfh0PeBkMcPq0hkEJuxEZSR2l6A0o4G2ApCR5fYlcJzVHdkZqjoSmKlXiK52OkyS3Gr0EoNdDxYraxiXsQ6VK4OTEtJRfvwaOOjnJ60vkOmO3mtQc2RmpORJaSPTxYXrJkgC8DHjr9bB4Mfj5aRuYsA9+frBkCbX0ep5J2TS9Xj15fYlcJy1HDkiSI5FXVq1aReTlyxQvWpQXN26EqCgIDtY6LGFPgoMhKoqpy5ej0+lYe+gQR44c0ToqYWek5sgBSXIk8kJCQgJvv/02AK9OmoRX167yjV7kDT8/agwbRr9+/QCYPn36Y24gRNbIDNl2RmqOhFaWL1/OP//8Q8mSJRkzZozW4QgH8NZbb6HT6fjuu+84cOCA1uEIO6GUkrXV7JXUHIn8dOfOHaZOnQrAlClT8PT01Dgi4QiqVatmmmD0lVdesZqLlLBtqV9HUnPkQIyJkyRHIrd8+OGHXL58mYoVKxISEqJ1OMKBvPPOO7i7u7N79242bNigdTjCDqS+NkrNkQORliORmy5evMj7778PwKxZs3B1ddU4IuFIypYty/jx44HkNfwSExO1DUjYPOMwfpCaI7uRlZojaYIWuWHatGncv3+fJk2a0KdPH63DEQ5o0qRJFCtWjFOnTrF8+XKtwxE2ztKWIyNruZZKcmQBqTkS+eHEiRMsW7YMgA8++MDqmpmFY/D29uatt94Ckou07969q3FEwpZlNTmyFrYTqZUynuzUTYdCZMerr76KwWCgV69eNG/eXOtwhAMLCQmhQoUKXL58mTlz5mgdjrBhlnarWduXQUmOMmFJ857xZEtyJHJiw4YNbNy4ERcXF2bNmqV1OMLBubq68t577wEwZ84c/vnnH40jErZKWo7sWGYZrSRHIqfi4uJMRbATJkygSpUq2gYkBNC7d2/atWtHfHw8EydO1DocYaOk5shBGZMjqTkS2fXhhx/y999/U7p0ad544w2twxECSP5SOH/+fJydnfn+++/ZvHmz1iEJG5T62iij1RyI1ByJnDh79izvvvsukFyE7eXlpXFEQvyrevXqvPTSSwCMGzeO+Ph4jSMStib1tTGzXhipObIhUnMk8lRMDP8ZPJgHDx7QsmVL+vfvr3VEQqTx1ltv4ePjw+nTp5k7dizExGgdkrAhWVk6xJrYVrQakZojketCQ9ni78/a3bvRA5+0aWN135yEAChUqBDvP/kkADOWLSPK3x9CQzWOStiKrCZHUnNkJyQ5ElkWE8PdESMISfkQeBGoPWOGfCMX1ikmhueWL6clcB8IUQo1cqS8XoVFjNdGW6o3AkmOckwKskWWRUbyplKcBQKAdwCSkuD0aW3jEiI9kZHolGIJ4AZsBVYZDPJ6FRaxtOXI2lrOJTnKRFaWD5GWI2Gp/Xfv8nHK/xcBBQH0eqhYUbughMhIpUrg5EQV4K2UTeOBq0WKaBeTsBlSc2THpOZI5JaHDx8yYsoUFDBQp6MzJCdGixeDn5/G0QmRDj8/WLIE9HpeAWoD14EJKQskC5GZrHarSc2RnZDkSGTFnDlzOHr0KMWLF+ejI0cgLAyioiA4WOvQhMhYcDBEReESFsayH3/EycmJVatWsWnTJq0jE1ZOWo4clNQcCUtFREQwffp0AObNm0fx2rWhdWtpMRK2wc8PWremYbduphndhw8fzvXr17WNS1g1qTmyQzLPkcgtcXFxDBo0iMTERHr16sWAAQO0DkmIbHvnnXeoUqUKFy9eZMyYMVbTFSKsj7Qc2bHMMlopyBaWeOONNzh+/DilSpVi8eLFVvctSYisKFCgAF988QV6vZ6vv/6a1atXax2SsFJSc+SgpOVIPM6uXbuYO3cuAMuWLaNEiRIaRyREzjVs2JA333wTgBdeeIEYmfdIpENajuyQdKuJnIqNjWXIkCEopRg+fDjdunXTOiQhcs3rr79Ow4YNuXXrFsOGDZPaS5GG1BzZMUuG8suHgniUMSE6e/YsgYGBptYjIeyFi4sLX3zxBR4eHvz000/MmTNH65CElZEZsh1U6mxYEiSR2qJFi/j2229xdnbmq6++wsvLS+uQhMh1VapU4ZNPPgGSa+v27t2rcUTCmsjaag4qdTYsXWsCgJgYjixdyoQJEwB47733aNSokcZBCZF3nn/+eQYMGEBSUhL9+/fn+tGjyXN4SR2Sw5OaIzuUlZojkORIAKGh3PH3p+/IkcTHx9Otdm1TkiSEvdLpdCxatIjKlSsTExPD0Nq1UW3bQkAAhIZqHZ7QkKXdalJzZIMsqTkC6VZzeDExqBEjGKEUkYAfsPLYMXTnz2sdmRB5zsvLizXz5+MGbADeBzAYYNQoaUFyYNJylAMLFiwgMDAQd3d3goKC2LNnT4b7rlu3jg4dOlCiRAkKFSpE06ZN2bp1az5Ga05ajoRJZCQfKMUawBn4Cigmq5cLB1LX1dW0qPJkYCtAUpK8BxyY1Bxl05o1axg/fjxTpkwhIiKCFi1a0KVLF6Kjo9Pdf/fu3XTo0IFNmzZx6NAh2rRpQ/fu3YmIiMjnyJOlPuGSHDm2refPMynl/x8DzSF5UdmKFbULSoj8VKkSI3U6ggED0B847eQk7wEHZrwuSstRFs2dO5fg4GCGDx9OtWrVmDdvHmXLlmXhwoXp7j9v3jxeffVVGjZsSKVKlZg5cyaVKlXixx9/zPXYpOZIWOr06dP0f/FFDMBwnY7RkJwYLV4sa6cJx+Hnh27pUj51cqIJcAvo6ePD3cKFtY1LaMbYciQ1R1nw8OFDDh06RMeOHc22d+zYkX379ll0HwaDgTt37lC0aNEM94mPj+f27dtmP1lhac2RJEeO6fbt2/Tq1Ytbt27RpEkT/hsZiS4sDKKiklczF8KRBAfjdvYsa7/5Bp+SJTl+4QKDBw+WmkwHJTVH2XDt2jWSkpIoVaqU2fZSpUpx6dIli+7jww8/5N69e/Tt2zfDfWbNmoW3t7fpp2zZsjmKOzWdTmdKnuTN73gSEhJ45plnOHbsGL6+vqxduxa3ChWgdWtpMRKOy8+P0k8/zbrvvsPV1ZX169fz2muvaR2V0IDUHOXAoy0zSimLmthWr17NtGnTWLNmDSVLlsxwv8mTJxMbG2v6OXfuXI5jTk2WEHFMSilCQkLYtm0bBQoU4Mcff6R06dJahyWE1WjatCnLly8H4IMPPuDTTz/VOCKR32SG7GwoXrw4er0+TSvRlStX0rQmPWrNmjUEBwfz9ddf0759+0z3dXNzo1ChQmY/lrA0gzVmxJIcOZZ3332X5cuX4+TkxJo1awgKCtI6JCGsznPPPceMGTMAGDduXJ7UhwrrJWurZYOrqytBQUFs377dbPv27dtp1qxZhrdbvXo1Q4cO5csvv+TJJ5/M6zAfe9Kk5cjxfPbZZ6YVyf/73//KgrJCZOL1119n+PDhGAwG+vfvz/79+7UOSeQTqTnKpokTJ7Js2TKWL1/OyZMnmTBhAtHR0YSEhADJXWKDBw827b969WoGDx7Mhx9+SJMmTbh06RKXLl0iNjZWq0OQ5MjBrFu3jueffx6AV155hdGjR2sckRDWTafTsWDBAjp37sz9+/fp0qULf/zxh9ZhiXwgQ/mzqV+/fsybN4+3336bunXrsnv3bjZt2kRAQAAAFy9eNJvzaPHixSQmJvLCCy/g6+tr+nnppZe0OgRTciQF2XYuJoYt771H//79MRgMDBs2jNmzZ2sdlRA2wcXFhW+++YamTZty8+ZNOnTowF+7d8sabHbO0qH8RtZSkO2sdQAAY8aMYcyYMen+beXKlWa/79y5M+8DSmHpSZKWIwcQGsruESPopRQJQN8GDVi6dKnNfRsSQksFCxZk06ZNtGnThiNHjtC+VSv2AAFOTrBkiUx9YYek5siOPe6kSUG2nYuJ4ZcRI+imFHHAk8AXhw+jv3hR68iEsDmFCxdm28qVVAXOAW2Bs7IGm92SbjUHJi1H9m3HmjV0Uoo7JH+QfwO4ypppQmRbiRs3+AkoD/wDtAT+ljXY7FJWu9WshSRHmchqt5rUHNmfrVu38uSUKdwHOpG82rgHyJppQuREpUqUcXJiF1AZiAZaAX9aWdeKyDmZBNKOyVB+x/T999/To0cP4uLj6V6nDt85Of2bGMmaaUJkn58fLFmCn17PLqA6cB5o1a+fjGKzM1Jz5MAkObI/ixcvpnfv3jx8+JA+ffrw7YEDuJ89mzyyRtZMEyLngoMhKgqfsDB2HjlCnTp1uHz5Mi1atCAsLEzr6EQukRmyHZgUZNsPpRRvvvkmISEhGAwGgoOD+eqrr3B1dU3+titrpgmRe1LeUyXq1CEsLIwWLVpw+/ZtOnfuzJo1a7SOTuQCmQTSDslQfseSkJBAcHCwaamDqVOnsnTpUpydrWLGCyHsWpEiRdi2bRt9+vTh4cOH9O/fn48++kjrsEQOSc2RHbO05kgKsm1UTAw3vv+eru3asWLFCpycnFiyZAnTpk2zun5wIeyZu7s7a9asYezYsUDyCgovvPACCWfOyGSRNsrSofzW9lkryVEukJYjGxYaykl/fxr37MlPe/ZQwNWV9evXM2LECK0jE8Ih6fV65s+fz3vvvQfAggUL6FS+PNfbtoWAAAgN1ThCkRUylN+BSXJko2Ji2DhiBI2V4jQQAOxLTKRH/fpaRyaEQ9PpdLz66qt8t2wZBYEwoCFwTCaLtDlSc2SHLO37lIJs26OU4r2336Z7yuSOLYGDQB2Z3FEIq/FU+fKEA4HAGaAp8J1MFmlTsjpDttQc2RCpObIvN2/epGfPnkxauhQFjAS2AyVAJncUwppUqkRNJycOAm2Au0Av4JWvviIhIUHb2IRFLO1Wk5ojOyTdarbj4MGD1K9fnx9++AFXV1cWDhzIIicnXEEmdxTC2qRMFllMr2crMD7lAvrB4sW0bt2aGOles3rSrebAJDmyfkop/vvf/9K8eXOioqIoX7484eHhhHzxBTqZ3FEI65UyWaRLWBgfRUezdu1aChUqxL59+6hbty5btmzROkKRCVl41g5JzZGNi4mBsDBuHD1K3759efHFF0lISKBXr14cOnSI+sbCa5ncUQjrluo92rt3bw4fPkz9+vW5fv06Xbp0YfLkyTx8+ND0npeCbeuR1dFqUnNkQ2RtNRsUGgoBAfzUti21atfm22+/xdnZmY8++oi1a9dSuHBhrSMUQmRThQoV2Lt3L6NHjwZg9uzZNKlUiRP+/iBD/q2KrK3mwKQg28rExPBgxAjGGwx0AC6QvPL3vvXrGT9+vNW9CYUQWefu7s6CBQv49ttvKVakCBHR0QQpxXxSPotlyL9VkJojOyTLh9im3zZsoIFSfJzy+2jgMNCwYEENoxJC5IU+ffpwdMkSugBxwEtAJyBGhvxbBak5smPSrWYb7t27x8svv0zjF17gBFAK2AgsADxliL4Qdsu3SRM26nQsADyAn4DqwIK9e6VFX2PG66LUHDkgKcjW3vbt26lVqxYffvghBoOBZxs14qiTE11BhugLYe/8/NAtXcpovZ4IoAlwB3jhjTd44oknOH78uMYBOi5LkyNrK3eQ5CgXSMuRdi5evMjgwYPp2LEjZ86coWzZsmzYsIEv9++nhAzRF8JxpAz5rxIWxi9RUfz3v//Fy8uL8PBw6tWrx5tvvsn9+/e1jtLhZLXlyFpIcpSJrNYcSfNtPomJIX7rVmZPnkzlypX54osv0Ol0jB07luPHj/Pkk08m7ydD9IVwLCnveX1AAC+88AInTpygR48eJCQkMGPGDKpUqcKXX36JOndOhvznE2Ny5OzsrHEkWSPJkQWk5sh6qGXL+N7fnxqdOzN59mzu3r1L48aNCQ8P55NPPsHLy0vrEIUQVsLPz4/vvvuOb7/9loCAAGJiYnjuuedo7u/PARnyny8SExMBqTlySJIc5Y+d33xDixEj6KkUfwO+wOc6Hfu+/prGjRtrHZ4QwgrpdDr69OnDyZMnmfHKK3gC4UBj4FmDgb9GjpQWpDwkNUcOTAqy89b+/fvp0KEDbfr2ZS/gDkwG/gIGKYXTP/9oG6AQwup5eHgwpUsX/gKGpmz7CqhmMDBsxAjOnDmjXXB2TGqO7JDUHGnrwIED9OjRgyZNmvDTTz/h4uLCGOBvYCZQEJJHoskQfSGEJSpVorSTEyuAI0APwACs3LKFypUrExISwj/yZStXSXJkx6TmKJ/ExKB27GDbqlW0bduWxo0b8+OPP+Lk5MSwYcP466+/+HTZMkob32QyRF8IkRV+frBkCej11AG+1+vZ//rrdOrUicTERBYvXkylSpUYMGAAv//+u6zVlgtsdZ4j2yoft1KSHOVc0tKlrB01itlKEZGyzdnZmYEDBzJp0iSqVKmSvDE4GDp1Sp75tmJFSYyEEFnzyGdIIz8/tgB79uxh5syZbNmyhdWrV7N69Wq6ApOAJ3Q6dEuXypQg2SA1Rw5MkqPsu3fvHgtnzqTKyJH0S0mMCgDjdTr+2buXFStW/JsYGckQfSFETqTzGdKiRQs2b97M4cOH6d+jB07AJqAl0Fwpvhk5ksSoKG3itWHSrWaHLG3ek4LsrDt37hyvvfYafn5+jJkyhb+BosA0IBr4SCnKyoRtQoh8Vq9ePVaPH8+fwCjAleTRbX0NBso3bsz777/PzZs3tQ3ShkhyZMcsrTmSguwMpPTbq3PnCA8Pp1+/fgQGBjJnzhxu3bpFhYAAPtbpiAamAsVACq2FENqpVImKTk4sAs4CbwElgHNXrvDqq6/i5+fHCy+8wJ9//pm8v9QmZchWa44kOcoF0q2WidBQHvj787+2bWni70+zZs34+uuvSUpKom3btvzwww/8+fffjFu6NHlxWJBCayGEtlIVbvsA0/V6ohcuJDQ0lFq1anH//n0WLFhA1apVebJ2bbb6+2OQSSXTZZwE8nEzZEvNkR2S5Ch9x3/+mfHDh1NGKQYBBwA34Pl+/fj999/5+eef6d69e/Lzl7IukqyFJoSwCo98JrmHhPD888+bPrt69OiBTqdj09GjdFaK8sA7BgPnZVJJM9KtZoeyOs9RVpIjpRSrV69m2rRpnD17NlvxWaPLly+zZMkSnnjiCWq2b8/HwE0gAHiH5Hqi0JAQateunfbGUmgthLAm6Xwm6XQ62rZty/fff89fn3/OOKAw/3a/+RsMdO/bl/Xr1xMXF6dJ2Hnh0KFDvPnmm+zatStLt7PV5EiG8lvgcc19xoLsrNQc/fe//2XcuHEALF68mIiICHx8fLIfZH6LiYHISKhUiajERNavX8+6devYu3evKanU6/X0SEpiJNAB0CdvlFoiIYRdqNi6NR87OTHbYOBbYBmwG9gQHs6G3r0pVKgQPXv2pF+/frRv3x7XK1dMn5u29CXw119/pXXr1sTHxzNz5kzCwsJo2bKlRbeVmiMHltWWo/j4eKZNm2b6/dKlS0yaNCkvQssTatkyTvj7M6NtW+qXLUtgYCATJ07kl19+QSlFo0aNmD17NufOnWPdsmV01uv/TYyklkgIYS9SapM89HoGAbv0ek7NmMErr7yCn58ft2/f5vPPP+fJJ5/Ep0gRhpQty7q2bbnr728ztUlJSUmMHj2a+Ph4ILkR4K233srS7UHmObIredWttmXLFm7cuEGZMmXYu3cvAJ999hl//PFH9gLNB0opDh48yOSxY6k6YgQ1lOJNIILkF1GbZs2YP38+0dHR7N+/n9deew1fX1+pJRJC2LdHPuOqTJnCnDlzOHv2LHv27GHs2LGUKlGCm/fv8znQByiuFN2GD2fJe+9x6dIljQ8gc6tWreLIkSMULlyYQ4cOodPp2LVrF9HR0Rbd3la71SQ5skBuLx/y008/AdCzZ0+aNWvG008/DcDHH3+cgyhzSaohqYmJiezcuZNx48YREBCQ3CL06af8RfLcH08CocAlYMe77/Liiy9StmzZtPcptURCCHuWzmeck5MTTzzxBJ988gnnv/ySXcBEoAIQD2wERk2ahK+vL02aNGHWrFmcOHHi3y/lVjA9gFKKjz76CIDXXnuN+vXr07hxYwB27Nhh0X1IcuTAspocGQva2rRpA8D48eOB5Az96tWruR+gpUJDiff3Z2PbtgwvWxbfIkVo06YNn3zyCefOncPT05O+3brxlU7HVWAD8DxQQuqIhBAiQ/qqVWnp5MSHQCRwDHhXp6NR3boA7N+/n9dff50aNWpQuXJlXu7UiT3+/iRpPD3AL7/8wpEjR/Dw8GDkyJHAv9ctSwuzpebIgWWlIDsuLo4TJ04A0KRJEwCaNWtGUFAQ8fHxLFmyJG+CzORbyN27d/lm0SKeHT6cEkrRjeQWoWt371K0cGGGDh3KDz/8wNWrV1nz44/0W7qUQjInkRBCWCbVvEk6oIZez+tLl7I/IoLz58+zaNEiunTpgqurK6dPn+bDbdtoqRQ+wDCDge9GjuTeX3+lf9952MJk7M0YNGgQRYsWBf69bh0+fNii+5CaIzuUFzVHx48fJykpiWLFilG6dGkg+UXx0ksvAbBw4UISEhKyGXEGQkOTv32kfAtJSBkd98EHH9CuXTuKFi1K39Gj+Qq4A5QGXgB+Bi5/+y0rVqyge/fueHh4JN+f1BEJIUTWZPC5Wbp0aUaNGsWmTZu4du0a30ydykCgCHANWAn0MhgoXqsW3bt3Z+nSpZw4cSL5y/gjn+252cJ09uxZ1q9fD2AaWQ1Qp04dAE6ePMnDhw8fez+22q0mQ/ktkJs1R8eOHQOgdu3aZvfbt29fXnnlFc6fP8+6devo169fDiKGO3fucO7cOWIiIjg7YgRnlSIKOG0w8HtICI/OvlEhIIA+Z8/SC2hEStas18Oji74a+flJa5EQQmTFYz43vby8eHr4cJ5+5x0SDQZ+Ab5P+Tnz8CEbNmxgw4YNABTy8qL+nTtUAAKBcgYD/iNH4l+jBqWDgnBxcclRqAsWLMBgMNCuXTtq1Khh2u7v74+3tzexsbGcOnUq/TnrUrF0hmxrY1vRWqmsJEf//PMPABUfqdFxc3MjJCSE6dOnM3/+fMuTo5T5hi55e/PN3r2EhYXx66+/cvHixUxv5u3pSbOWLencuTOdO3emUqVK6JYvh1GjIClJusuEEEILKV1wzqNG0TopidZ6PXMXLeJY48Z8//33bN++nd9++43bd+6wE9iZ+rYGAzRtipOTEwEBAbRo0YJ27drRu3dvCt66ZfEcS/fv32fp0qUApl4NI51OR5UqVThw4ACnT59+bHJkqzVHkhzlAmPNkSXJ0ZkzZwAIDAxM87eQkBBmzpzJvn372Lt3L82bN8/8zkJD+WvECN5RitXAo4/u7e1NWR8f/P/8k3Ikz1JdDqjn5ESFEydw8vc3v0FwMHTqBKdPJxdYS2IkhBD575HPYp2fH7WAWrVq8cYbb5CYmMiJsDB+79SJMym9AmeAc8A5V1cePnzImTNnOHPmDJ9//jljR41iZFwck4FiTk7J9U+ZlEOEhoZy8+ZNypcvT9euXdP8vWLFihw4cIDIyMjHHorUHNmhrNYcWVKQHRUVBaSfHPn4+DB06FAA3nz11UyL7BKjopg1YgS1lOJ/JCdGTYA5U6bwyy+/EBsby61btzh66hQbly3jU72eV4G+ej2VlixJmxgZybB7IYTQXiafxc7OztTu0IFBS5fyll7PciBMr+f0smU8ePCAixcvsm3bNiZPnkylwEDuxMXxIVAR+MxgQGWy/tv9yEjenToVgFdeeSXdpKZSpUoAuZocWRtJjiyQmzVHZ06fBqBcgQLp/v2NN97A1dmZsH37+DqDIrsTJ07QrHNnXleKh0An4BAQDrzSvj3NmzenUKFC/95ACqiFEML+pPPZ7uTkhI+PDx06dGDmzJn8uWwZm4DawC1gKNDTYODSgQNp7y80lOmVK3P55k0CgeczuPYZv9xHHzny2FFykhw5MEuTo/hFizifUgsU2LNnuiML/J2cmJRSwDYG+NNgSK4Dionh4cOHzJw5k/r163Pwzz/xBj4DNgP1kwPJeL4haRESQgj785jPdl3lynRxcuIQMAtwAX4Aqj//PJ9//rnZpJObR4zgg5TbfQS4vvBCuslP6d9/B+D8oUOPHSVnqzVHkhzlAlNydOlSxll0TAzRY8aggAJASaVMSY+ZyEimAA2A68ATwDtJScyYOpUaNWowZcoU4uPj6dq1K8fff5/BKfNmSAG1EEKINIwF3no9k4BDTk7U9/fnZmwsQ4YMoVmzZsydO5eJEybQUykMJLcuPQXJg3NSejtMYmIoM28eAOchuQg8vWtZiqSU4f7669czDVNqjmyIKYO9cCHTpkOnffsAMOzdm3EWHRnJmZT7KwfJCU16L7xKlXB1cmIzUJfkeS7eAt5cvpzTp09TokQJ/ve//7FhwwbKvPyydJcJIYTIXKrut1pnz7L/77+ZPXs2bm5u/Prrr/znP//ho2+/5SHJa78tNt4uvd6IyEjKpFzLYoF7kP61DCA0lKSUNdj0vXplPg+Tcc6ka9eye5S5SkarZSZlBlDdjz/Cxo3pV/jHxKD/4gsgZbSYMYvu1Mm8FadSJWJ0OlAKUyl0ei+8lCy/+KhR7E9KYoVOR1iDBugqVKBVq1YMHDiQggULmu8vrUVCCCEyk+pa4UzyWmlDhgxhxYoVHDx4EC8vL3p7edFj4UJ0BkPGvRGVKlFIp8NTKe6R3HpUOb1rWUwMjBxpGkWtN/aWPHpthOSkKSIi+f/BwcnXUY2/7Dt2cnT+PKQuXE4tJgZ+/PHf3zNKeiIjk086qYbSG7Po1Pv5+XG5Vy9Yt45SkHk3WMowTtfTpxlVsSKjJPkRQgiRy3x8fJg8ebL5xkmTMp/Oxc8P3dKllBk+nL+A805OVE7vWhYZCQYDiSm/OkP618aUJMpIZZZEQfJ1Ox84dLfa3urVM27mi4xMWxiWQTeYPqWv1JQcZVAYfTllxfpS/fs/vhtMCqiFEELkN0uuPcHBlGnWDIDzH32U/rWsUiVwcvq35Qgy7KbDYMCs4iiTbrpvq1e3+FBywqGTowjIuJAsZR4H4N+TlkE3mH74cCAlOcqkRejy5csAlGrYUJIeIYQQNqtM+fIAnH/wIP0dUkpETMmRk1OG3XQ4PZKKZNJNtzXnoVvEoZMjIOMM1c8Punf/9/dMkh6ndu0AMNStm2mL0JUrVwAoVapUTqMWQgghNFOmTBkAzmfWzRUcTJKXFwD6sLD0r40pSZRJRklUSgtTfpHkKLO5gerXT/63R49Mkx7TUH4vr0xbhEwtR5IcCSGEsGGlS5cGeOw6nkkpCY0+JZlKV3Cw6XqrMlraJL0WpjwkyVEmcwOZao7KlMk06bF0EkhjclSyZMlsBCqEEEJYh+LFiwNw/THzF1m8tpqbm/GO09/h0RamPObYydGrr1o0XDA3lg9JTEw0vYik5UgIIYQtMyZH1x4zL1GuLh8SHAzduuX8fizg2MmRt3eu3I0lC89eu3YNpRROTk6mF5UQQghhizRJjgAyWJc0tzl2cpRLjCc9MTExw32MXWrFixe3uQX4hBBCiNRSd6tltB6aUsrUaCBrq9kRS0+Ss3PyXJqZdatJvZEQQgh7UaxYMQAePnzI3bt3090n9TXRxcUl0/uTtdVs0ONOmjE5yqzl6OrVq4AkR0IIIWxfgQIFcHd3BzLuWkt9TTReJ22FJEe5wJLk6MaNG8C/2bYQQghhq3Q63WNHrElylEMLFiwgMDAQd3d3goKC2LNnT6b779q1i6CgINzd3SlfvjyLFi3Kp0jTZ0lydPPmTQCKFCmSLzEJIYQQeelxRdnZSY6k5ijFmjVrGD9+PFOmTCEiIoIWLVrQpUsXoqOj093/zJkzdO3alRYtWhAREcHrr7/OuHHjWLt2ba7HltWaI0tajiQ5EkIIYQ+MPSG5kRxJzdEj5s6dS3BwMMOHD6datWrMmzePsmXLsnDhwnT3X7RoEf7+/sybN49q1aoxfPhwnn/+eT744IM8izE3ao6MLUdFixbNvcCEEEIIjVjarabT6XDKx9mtc4Om0T58+JBDhw7RsWNHs+0dO3Zk37596d4mPDw8zf6dOnXit99+IyEhIc9izYy0HAkhhHA0lnar2Vq9EYCmEV+7do2kpKQ0M0aXKlWKS5cupXubS5cupbt/YmIi165dw9fXN81t4uPjiY+PN/0eGxsLQFxcHLdv384wPuNtHj58mOl+cXFxACQkJGS4n3G0mpubW6b3JYQQQtgCr5RFZS9cuJDudc3YY+Lk5PTY654xkbp3716m+xobQfK8Nklp6Pz58wpQ+/btM9s+Y8YMVaVKlXRvU6lSJTVz5kyzbb/88osC1MWLF9O9zdSpUxUgP/IjP/IjP/IjP3bw8/fff+dOIpIBTVuOjLNFP9pKdOXKlQzXH/Px8Ul3f2dn5wyHyU+ePJmJEyeafr916xYBAQFER0fjnUtLiNiC27dvU7ZsWc6dO0ehQoW0DiffyHHLcTsCOW45bkcQGxuLv79/ntfvapocubq6EhQUxPbt2+nVq5dp+/bt23nqqafSvU3Tpk358ccfzbZt27aNBg0aZDgDp5ubG27GFX9T8fb2dqgXlVGhQoXkuB2IHLdjkeN2LI563Hld4K15+fjEiRNZtmwZy5cv5+TJk0yYMIHo6GhCQkKA5FafwYMHm/YPCQnh7NmzTJw4kZMnT7J8+XJCQ0N5+eWXtToEIYQQQtgRzUvI+/Xrx/Xr13n77be5ePEiNWvWZNOmTQQEBABw8eJFszmPAgMD2bRpExMmTODTTz+ldOnSzJ8/nz59+mh1CEIIIYSwI5onRwBjxoxhzJgx6f5t5cqVaba1atWKw4cPZ/vx3NzcmDp1arpdbfZMjluO2xHIcctxOwI57rw9bp1SVjJXtxBCCCGEFdC85kgIIYQQwppIciSEEEIIkYokR0IIIYQQqUhyJIQQQgiRit0mR++++y7NmjWjQIECFC5c2KLbKKWYNm0apUuXxsPDg9atW3P8+HGzfeLj43nxxRcpXrw4np6e9OjRg5iYmDw4guy5efMmgwYNwtvbG29vbwYNGsStW7cyvY1Op0v35/333zft07p16zR/79+/fx4fjeWyc9xDhw5Nc0xNmjQx28fezndCQgKvvfYatWrVwtPTk9KlSzN48GAuXLhgtp+1ne8FCxYQGBiIu7s7QUFB7NmzJ9P9d+3aRVBQEO7u7pQvX55Fixal2Wft2rVUr14dNzc3qlevzvr16/Mq/GzLynGvW7eODh06UKJECQoVKkTTpk3ZunWr2T4rV65M971uXB/SWmTluHfu3JnuMZ06dcpsP3s73+l9ful0OmrUqGHax9rP9+7du+nevTulS5dGp9Px3XffPfY2+fbeztPFSTT01ltvqblz56qJEycqb29vi24ze/Zs5eXlpdauXauOHj2q+vXrp3x9fdXt27dN+4SEhKgyZcqo7du3q8OHD6s2bdqoOnXqqMTExDw6kqzp3Lmzqlmzptq3b5/at2+fqlmzpurWrVumt7l48aLZz/Lly5VOpzNbu6ZVq1ZqxIgRZvvdunUrrw/HYtk57iFDhqjOnTubHdP169fN9rG3833r1i3Vvn17tWbNGnXq1CkVHh6uGjdurIKCgsz2s6bz/dVXXykXFxe1dOlSdeLECfXSSy8pT09Pdfbs2XT3/+eff1SBAgXUSy+9pE6cOKGWLl2qXFxc1LfffmvaZ9++fUqv16uZM2eqkydPqpkzZypnZ2f166+/5tdhPVZWj/ull15S7733njpw4ID666+/1OTJk5WLi4s6fPiwaZ8VK1aoQoUKpXnPW5OsHndYWJgC1J9//ml2TKnfo/Z4vm/dumV2vOfOnVNFixZVU6dONe1j7ed706ZNasqUKWrt2rUKUOvXr890//x8b9ttcmS0YsUKi5Ijg8GgfHx81OzZs03b4uLilLe3t1q0aJFSKvnF6OLior766ivTPufPn1dOTk5qy5YtuR57Vp04cUIBZi+C8PBwBahTp05ZfD9PPfWUatu2rdm2Vq1aqZdeeim3Qs1V2T3uIUOGqKeeeirDvzvK+T5w4IACzD6Erel8N2rUSIWEhJhtq1q1qpo0aVK6+7/66quqatWqZttGjRqlmjRpYvq9b9++qnPnzmb7dOrUSfXv3z+Xos65rB53eqpXr66mT59u+t3Sz0MtZfW4jcnRzZs3M7xPRzjf69evVzqdTkVFRZm22cL5NrIkOcrP97bddqtl1ZkzZ7h06RIdO3Y0bXNzc6NVq1bs27cPgEOHDpGQkGC2T+nSpalZs6ZpHy2Fh4fj7e1N48aNTduaNGmCt7e3xfFdvnyZjRs3EhwcnOZvq1atonjx4tSoUYOXX36ZO3fu5FrsOZGT4965cyclS5akcuXKjBgxgitXrpj+5gjnG5IXctTpdGm6n63hfD98+JBDhw6ZnQOAjh07ZniM4eHhafbv1KkTv/32GwkJCZnuYw3nFbJ33I8yGAzcuXMnzQKdd+/eJSAgAD8/P7p160ZERESuxZ1TOTnuevXq4evrS7t27QgLCzP7myOc79DQUNq3b29aXcLIms93VuXne9sqZsi2BpcuXQKgVKlSZttLlSrF2bNnTfu4urpSpEiRNPsYb6+lS5cuUbJkyTTbS5YsaXF8n332GV5eXvTu3dts+3PPPUdgYCA+Pj4cO3aMyZMn8/vvv7N9+/ZciT0nsnvcXbp04ZlnniEgIIAzZ87w5ptv0rZtWw4dOoSbm5tDnO+4uDgmTZrEgAEDzBavtJbzfe3aNZKSktJ9X2Z0jJcuXUp3/8TERK5du4avr2+G+1jDeYXsHfejPvzwQ+7du0ffvn1N26pWrcrKlSupVasWt2/f5uOPP6Z58+b8/vvvVKpUKVePITuyc9y+vr4sWbKEoKAg4uPj+eKLL2jXrh07d+6kZcuWQMavCXs53xcvXmTz5s18+eWXZtut/XxnVX6+t20qOZo2bRrTp0/PdJ+DBw/SoEGDbD+GTqcz+10plWbboyzZJycsPW5IGz9kLb7ly5fz3HPP4e7ubrZ9xIgRpv/XrFmTSpUq0aBBAw4fPkz9+vUtuu+syuvj7tevn+n/NWvWpEGDBgQEBLBx48Y0yWFW7jen8ut8JyQk0L9/fwwGAwsWLDD7mxbnOzNZfV+mt/+j27PzXs9v2Y1x9erVTJs2je+//94sgW7SpInZoIPmzZtTv359PvnkE+bPn597gedQVo67SpUqVKlSxfR706ZNOXfuHB988IEpOcrqfWoluzGuXLmSwoUL07NnT7PttnK+syK/3ts2lRyNHTv2sSNmypUrl6379vHxAZIzU19fX9P2K1eumLJQHx8fHj58yM2bN81aE65cuUKzZs2y9biWsPS4//jjDy5fvpzmb1evXk2TSadnz549/Pnnn6xZs+ax+9avXx8XFxciIyPz7GKZX8dt5OvrS0BAAJGRkYB9n++EhAT69u3LmTNn2LFjh1mrUXry43ynp3jx4uj1+jTf+lK/Lx/l4+OT7v7Ozs4UK1Ys032y8nrJS9k5bqM1a9YQHBzMN998Q/v27TPd18nJiYYNG5pe81rLyXGn1qRJE/73v/+Zfrfn862UYvny5QwaNAhXV9dM97W2851V+frezlKFkg3KakH2e++9Z9oWHx+fbkH2mjVrTPtcuHDB6gp09+/fb9r266+/WlygO2TIkDSjljJy9OhRBahdu3ZlO97cktPjNrp27Zpyc3NTn332mVLKfs/3w4cPVc+ePVWNGjXUlStXLHosLc93o0aN1OjRo822VatWLdOC7GrVqpltCwkJSVO02aVLF7N9OnfubHUFulk5bqWU+vLLL5W7u/tjC1uNDAaDatCggRo2bFhOQs1V2TnuR/Xp00e1adPG9Lu9nm+l/i1IP3r06GMfwxrPtxEWFmTn13vbbpOjs2fPqoiICDV9+nRVsGBBFRERoSIiItSdO3dM+1SpUkWtW7fO9Pvs2bOVt7e3WrdunTp69Kh69tln0x3K7+fnp3766Sd1+PBh1bZtW6sb2l27dm0VHh6uwsPDVa1atdIM7X70uJVSKjY2VhUoUEAtXLgwzX2ePn1aTZ8+XR08eFCdOXNGbdy4UVWtWlXVq1fPZo/7zp076j//+Y/at2+fOnPmjAoLC1NNmzZVZcqUsevznZCQoHr06KH8/PzUkSNHzIb3xsfHK6Ws73wbhziHhoaqEydOqPHjxytPT0/TqJxJkyapQYMGmfY3DvedMGGCOnHihAoNDU0z3Hfv3r1Kr9er2bNnq5MnT6rZs2db7dBuS4/7yy+/VM7OzurTTz/NcAqGadOmqS1btqi///5bRUREqGHDhilnZ2ezBFtrWT3ujz76SK1fv1799ddf6tixY2rSpEkKUGvXrjXtY4/n22jgwIGqcePG6d6ntZ/vO3fumK7NgJo7d66KiIgwjZzV8r1tt8nRkCFDFJDmJywszLQPoFasWGH63WAwqKlTpyofHx/l5uamWrZsmSYbf/DggRo7dqwqWrSo8vDwUN26dVPR0dH5dFSPd/36dfXcc88pLy8v5eXlpZ577rk0Q1wfPW6llFq8eLHy8PBIdy6b6Oho1bJlS1W0aFHl6uqqKlSooMaNG5dmTiAtZfW479+/rzp27KhKlCihXFxclL+/vxoyZEiac2lv5/vMmTPpvi9Svzes8Xx/+umnKiAgQLm6uqr69eubtWANGTJEtWrVymz/nTt3qnr16ilXV1dVrly5dJP+b775RlWpUkW5uLioqlWrml1MrUVWjrtVq1bpntchQ4aY9hk/frzy9/dXrq6uqkSJEqpjx45q3759+XhElsnKcb/33nuqQoUKyt3dXRUpUkQ98cQTauPGjWnu097Ot1LJrdseHh5qyZIl6d6ftZ9vY6tXRq9ZLd/bOqVSqpmEEEIIIYT9Lh8ihBBCCJEdkhwJIYQQQqQiyZEQQgghRCqSHAkhhBBCpCLJkRBCCCFEKpIcCSGEEEKkIsmREEIIIUQqkhwJIYQQQqQiyZEQQgghRCqSHAkhhBBCpCLJkRDCrrz99tvUqlULT09PSpUqxejRo0lISNA6LCGEDXHWOgAhhMgtSimSkpJYvHgxZcqU4cSJEwwePJjatWszevRorcMTQtgIWXhWCGHXBgwYQIkSJfj444+1DkUIYSOkW00IYTfOnj3L2LFjqVmzJkWKFKFgwYJ8/fXX+Pn5aR2aEMKGSHIkhLAL165do1GjRly7do25c+fyyy+/EB4ejl6vp27dulqHJ4SwIVJzJISwC5s2bSIxMZHVq1ej0+kA+PTTT3n48KEkR0KILJHkSAhhF4oWLcrt27f54YcfqF69Oj/++COzZs2iTJkylChRQuvwhBA2RAqyhRB2QSnF6NGj+fLLL/Hw8GDgwIHExcVx9uxZNmzYoHV4QggbIsmREEIIIUQqUpAthBBCCJGKJEdCCCGEEKlIciSEEEIIkYokR0IIIYQQqUhyJIQQQgiRiiRHQgghhBCpSHIkhBBCCJGKJEdCCCGEEKlIciSEEEIIkYokR0IIIYQQqUhyJIQQQgiRiiRHQgghhBCp/B/kEdB7DyUyUQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9MklEQVR4nO3dd3gUZdfH8e9mUwm9B0JCMdJr6F1AQBG7WEBQQxNFxfIIYgHlBSvyWECEAOqDiA1FQRSUKkhHpEiTYuggXSAkud8/wi4J2TTYZLb8PteVCzKZ3T2zM5s5OfeZe2zGGIOIiIiIABBgdQAiIiIinkTJkYiIiEgaSo5ERERE0lByJCIiIpKGkiMRERGRNJQciYiIiKSh5EhEREQkDSVHIiIiImkoORIRERFJQ8mReIV9+/YxbNgw1q1bl+FnDzzwAAULFrzi505MTKR///5ERERgt9upV6/elQfqBmPHjmXKlCkZlu/atQubzebyZ77EZrMxbNgwq8Nwi2HDhmGz2fL8se+++y7XXHMNwcHB2Gw2jh8/zgMPPEDFihXTrTdy5Ei++eabK4onK//88w/33HMPpUuXxmazceutt+b6OSpWrMgDDzzg9tg82bx587DZbNhsNo4cOZLh58YYJk+eTOPGjQkPD6dw4cI0aNCAb7/91oJo/Uug1QGI5MS+ffsYPnw4FStWdHvyMm7cOMaPH8+7775LbGzsVSVa7jB27FhKliyZ4UQRERHBsmXLqFKlijWBSa717t2bzp075+lrrFu3jscee4zevXvTq1cvAgMDKVSoEC+88AKPP/54unVHjhzJnXfeeUXJS1ZeeeUVZsyYwaRJk6hSpQrFixd36/P7otOnT9OnTx/KlSvHvn37XK7z8MMPM2XKFAYNGsSoUaNISkrijz/+4N9//83naP2PkiPxexs2bCAsLIxHH33U6lCyFBISQtOmTa0OQ3IhMjKSyMjIPH2NjRs3AtCnTx8aN27sXJ6fSfSGDRuoUqUK3bt3z7fXdJd///2XAgUK5PvrDh48mGLFitGlSxdGjBiR4efffPMN48ePZ/r06XTr1s25vFOnTvkZpt/SsJofOnz4MH379qVChQqEhIRQqlQpWrRowbx585zrtG3bllq1arFs2TKaN29OWFgYFStWZPLkyQDMmjWLBg0aUKBAAWrXrs2cOXMyvM6SJUto3749hQoVokCBAjRv3pxZs2ZlWG/Dhg3ccsstFCtWjNDQUOrVq8dHH33k/PmCBQto1KgRAA8++KCzDH350Mv27du58cYbKViwIBUqVOCpp57i/PnzWb4XNpuNiRMncvbsWefzTpkyJcshrMtf2zH8sXHjRu69916KFClCmTJleOihhzhx4kS6x6akpPDuu+9Sr149wsLCKFq0KE2bNmXmzJlA6tDCxo0bWbhwoTMex9BIZjHl5H2eMmUKNpuN+fPn8/DDD1OyZElKlCjB7bffnulfrTlRsWJFbrrpJmbMmEGdOnUIDQ2lcuXKvPPOOxnW3bNnDz169KB06dKEhIRQvXp13nrrLVJSUjJ9/l27dhEYGMioUaMy/GzRokXYbDa++OILIHf74dy5cwwZMoRKlSoRHBxM+fLleeSRRzh+/LjL7fv++++pX78+YWFhVK9ene+//x5IfV+rV69OeHg4jRs3ZtWqVeke72pobPr06XTs2JGIiAjn8w0ePJgzZ85k/kZnom3btvTo0QOAJk2aYLPZnBXHy4fVbDYbZ86c4aOPPnIeW23bts3y+f/55x8GDBhA+fLlCQ4OpnLlygwdOtT5uXIck/PmzWPz5s3O512wYEGmz3nhwgX+85//ULZsWQoUKEDLli1ZsWKFy3UPHDhAv379iIyMJDg4mEqVKjF8+HCSkpLSrZeQkMCdd95JoUKFKFq0KN27d2flypUZPi+OIfg//viDjh07UqhQIdq3bw+kDq+PGDGCatWqOX8vPvjggxw+fDhDXNOnT6dZs2aEh4dTsGBBOnXqxNq1a7N8L9NavHgxH374IRMnTsRut7tc57///S8VK1ZMlxhJPjLidzp16mRKlSplPvzwQ7NgwQLzzTffmBdffNF89tlnznXatGljSpQoYapWrWri4+PNjz/+aG666SYDmOHDh5vatWubadOmmdmzZ5umTZuakJAQs3fvXufjFyxYYIKCgkxsbKyZPn26+eabb0zHjh2NzWZL9zp//vmnKVSokKlSpYr5+OOPzaxZs8y9995rAPPaa68ZY4w5ceKEmTx5sgHM888/b5YtW2aWLVtm/v77b2OMMb169TLBwcGmevXq5s033zTz5s0zL774orHZbGb48OFZvhfLli0zN954owkLC3M+76FDh8zOnTsNYCZPnpzhMYB56aWXnN+/9NJLBjBVq1Y1L774opk7d64ZPXq0CQkJMQ8++GC6x95///3GZrOZ3r17m2+//db88MMP5v/+7//Mf//7X2OMMWvWrDGVK1c29evXd8azZs0aY4xxGVNO32fH+1e5cmUzcOBA8+OPP5qJEyeaYsWKmeuuuy5djI51XW375aKjo0358uVNVFSUmTRpkpk9e7bp3r27Acwbb7zhXO/QoUOmfPnyplSpUuaDDz4wc+bMMY8++qgBzMMPP5zl+3vbbbeZqKgok5SUlG69u+66y5QrV85cuHAhV/shJSXFdOrUyQQGBpoXXnjB/PTTT+bNN9804eHhpn79+ubcuXPpti8yMtLUqlXLebw3adLEBAUFmRdffNG0aNHCfP3112bGjBnm2muvNWXKlDH//vuv8/GOmNJ65ZVXzNtvv21mzZplFixYYD744ANTqVKlDPvB1WMvt3HjRvP8888799eyZcvM9u3bjTGpn4vo6GjnusuWLTNhYWHmxhtvdB5bGzduzPS5z549a+rUqWPCw8PNm2++aX766SfzwgsvmMDAQHPjjTcaY4w5d+6cWbZsmalfv76pXLmy83lPnDiR6fP26tXL2Gw288wzz5iffvrJjB492pQvX94ULlzY9OrVy7ne/v37TYUKFUx0dLQZP368mTdvnnnllVdMSEiIeeCBB5zrnT592lxzzTWmePHi5v333zc//vijGTRokKlUqVKG47hXr14mKCjIVKxY0YwaNcr8/PPP5scffzTJycmmc+fOJjw83AwfPtzMnTvXTJw40ZQvX97UqFEj3T79v//7P2Oz2cxDDz1kvv/+e/P111+bZs2amfDw8CzfT4d///3XxMTEmGeeecYYc2k/Hz582LnOhQsXTEhIiLntttvMW2+9ZaKiokxAQICpVKmSeeONN0xKSkq2ryNXR8mRHypYsKB54oknslynTZs2BjCrVq1yLjt69Kix2+0mLCwsXSK0bt06A5h33nnHuaxp06amdOnS5tSpU85lSUlJplatWiYyMtL54b7nnntMSEiI2bNnT7rXv+GGG0yBAgXM8ePHjTHGrFy5MtMTdq9evQxgPv/883TLb7zxRlO1atVs3o3Ux4eHh6dbdiXJ0euvv55uvQEDBpjQ0FDnti5atMgAZujQoVnGU7NmTdOmTZsMy13FlNP32ZHwDBgwIN1zvv766wYw+/fvdy776KOPjN1uNx999FGWcRqTmjzYbDazbt26dMuvv/56U7hwYXPmzBljjDGDBw82gFm+fHm69R5++GFjs9nMli1bnMsuf3/nz59vADNjxgznsr1795rAwMB0yW9O98OcOXNcrjd9+nQDmA8//DDd9oWFhZmEhATnMsfxHhER4dw+Y4z55ptvDGBmzpyZIabMpKSkmAsXLpiFCxcawPz+++85fqyDY9+uXLky3fLLkyNjjAkPD0+XgGTlgw8+cPm5eu211wxgfvrpJ+eyNm3amJo1a2b7nJs3bzaAGTRoULrlU6dONUC62Pr162cKFixodu/enW7dN9980wDOROT99983gPnhhx/SrdevXz+XyRFgJk2alG7dadOmGcB89dVX6ZY7fu+MHTvWGGPMnj17TGBgoBk4cGC69U6dOmXKli1runXrlu178NRTT5nKlSs7Ey5XydH+/fsNYAoXLmwiIyPNRx99ZH7++WfTv39/A5jnnnsu29eRq6NhNT/UuHFjpkyZwogRI/jtt9+4cOGCy/UiIiKIjY11fl+8eHFKly5NvXr1KFeunHN59erVAdi9ezcAZ86cYfny5dx5553pmpvtdjv3338/CQkJbNmyBYBffvmF9u3bU6FChXSv/cADD/Dvv/+ybNmyHG2TzWaja9eu6ZbVqVPHGVN+uPnmmzO8/rlz5zh06BAAP/zwAwCPPPKIW14vN+9zVjEC6d6nnj17kpSURM+ePXMUR82aNalbt266Zffddx8nT55kzZo1QOp+rlGjRrqeGEjdz8YYfvnll0yfv23bttStW5f333/fueyDDz7AZrPRt2/fDOtntx8cr3V5w/tdd91FeHg4P//8c7rl9erVo3z58s7vHcd727Zt0/WqXP45yMxff/3FfffdR9myZbHb7QQFBdGmTRsANm/enOVj89Mvv/xCeHg4d955Z7rljvft8vcpJ+bPnw+QoTepW7duBAamb4H9/vvvue666yhXrhxJSUnOrxtuuAGAhQsXOv8tVKhQhsb3e++9N9M47rjjjgyvVbRoUbp27ZruterVq0fZsmWdw4Q//vij87ORdr3Q0FDatGmT5XAiwIoVKxgzZgzjx48nLCws0/UcQ80nT57kiy++oGfPnrRr145x48Zx6623Mnr0aE6fPp3la8nVUXLkh6ZPn06vXr2YOHEizZo1o3jx4vTs2ZMDBw6kW8/VFSfBwcEZlgcHBwOpfRwAx44dwxhDREREhsc7kqqjR486/83JetkpUKAAoaGh6ZaFhIQ4Y8oPJUqUyPD6AGfPngVSe73sdjtly5Z1y+vl5n3OaYxXwtX2OJa5az8/9thj/Pzzz2zZsoULFy4wYcIE7rzzTpevnd02Hj16lMDAQEqVKpVuPZvNRtmyZTPEktnxnt3nwJXTp0/TqlUrli9fzogRI1iwYAErV67k66+/ThejJzh69Chly5bN0DNVunRpAgMDc/zZvPw5IeMxExgYmGG/HTx4kO+++46goKB0XzVr1gRwXvp+9OhRypQpk+G1XC2D1N8VhQsXzvBax48fJzg4OMPrHThwwPlaBw8eBKBRo0YZ1ps+fbrLy/HTeuihh7j99ttp2LAhx48f5/jx487j5eTJk5w6dQqAYsWKYbPZKFy4cIaLMG644QbOnTvHpk2bsnwtuTq6Ws0PlSxZkjFjxjBmzBj27NnDzJkzGTx4MIcOHXLZWJ1bxYoVIyAggP3792f4maP5t2TJkkDqiSwn6+U3R6J1eUP3lZwQHEqVKkVycjIHDhxwmSjkVm7e57x0eVKddpnjhHe1+/m+++7j2Wef5f3336dp06YcOHDgiitwJUqUICkpicOHD6dLkIwxHDhwwNn8nxd++eUX9u3bx4IFC5zVIiBDI7gnKFGiBMuXL8cYky5BOnToEElJSVd0bDmOhwMHDqSrxiUlJWX4bJUsWZI6derwf//3fy6fy5FYlyhRwmVDt6vjEnA5d5TjAoXMfv8VKlTIuR7Al19+SXR0tMt1s7Jx40Y2btzovIggrSpVqlC3bl3WrVtHWFgYMTExLrfBGANAQIBqG3lJ766fi4qK4tFHH+X66693DoFcrfDwcJo0acLXX3+d7i/hlJQU/ve//xEZGcm1114LQPv27Z0njLQ+/vhjChQo4PyryR0VjtwoU6YMoaGhrF+/Pt3yq5l8zTEcMG7cuCzXCwkJydF25uZ9zksbN27k999/T7fs008/pVChQjRo0ABI3c+bNm3KcIx9/PHH2Gw2rrvuuixfIzQ0lL59+/LRRx8xevRo6tWrR4sWLa4oXsfVSf/73//SLf/qq684c+aM8+d5wXFidhzPDuPHj8+z10wrp8cWpL5Pp0+fzjBp5Mcff+z8eW45ro6bOnVquuWff/55hivQbrrpJucUAQ0bNszw5UiO2rRpw6lTp5zD1g6fffZZjuO66aabOHr0KMnJyS5fq2rVqkDqZfSBgYHs2LHD5XoNGzbM8nXmz5+f4atXr15A6qX7EydOdK57xx13cPLkSZYuXZruOWbPnk3BggWdFTTJG6oc+ZkTJ05w3XXXcd9991GtWjUKFSrEypUrmTNnDrfffrvbXmfUqFFcf/31XHfddTz99NMEBwczduxYNmzYwLRp05wniZdeesnZW/Diiy9SvHhxpk6dyqxZs3j99dcpUqQIkPpXVVhYGFOnTqV69eoULFiQcuXKpet9ciebzUaPHj2ck9rVrVuXFStW8Omnn17xc7Zq1Yr777+fESNGcPDgQW666SZCQkJYu3YtBQoUYODAgQDUrl2bzz77jOnTp1O5cmVCQ0OpXbu2y+fM6fucGx9//DEPPfQQkyZNylHfUbly5bj55psZNmwYERER/O9//2Pu3Lm89tprzp6cQYMG8fHHH9OlSxdefvlloqOjmTVrFmPHjuXhhx/OURI3YMAAXn/9dVavXp3uJJJb119/PZ06deLZZ5/l5MmTtGjRgvXr1/PSSy9Rv3597r///it+7uw0b96cYsWK0b9/f1566SWCgoKYOnVqhuQyr9SuXZsFCxbw3XffERERQaFChZwn/sv17NmT999/n169erFr1y5q167NkiVLGDlyJDfeeCMdOnTI9etXr16dHj16MGbMGIKCgujQoQMbNmzgzTffzDDU9fLLLzN37lyaN2/OY489RtWqVTl37hy7du1i9uzZfPDBB0RGRtKrVy/efvttevTowYgRI7jmmmv44Ycf+PHHH4GcVVjuuecepk6dyo033sjjjz9O48aNCQoKIiEhgfnz53PLLbdw2223UbFiRV5++WWGDh3KX3/9RefOnSlWrBgHDx5kxYoVhIeHM3z48Exfx9XUCY4+pRYtWqSrxj399NNMnTqVu+66i1deeYXIyEi+/PJLZs6cyZtvvpllz5K4gZXd4JL/zp07Z/r372/q1KljChcubMLCwkzVqlXNSy+9lO7Km8yuPomOjjZdunTJsBwwjzzySLplixcvNu3atTPh4eEmLCzMNG3a1Hz33XcZHvvHH3+Yrl27miJFipjg4GBTt25dl1eJTZs2zVSrVs0EBQWlu6LJ1dVmxuT8ap/MHn/ixAnTu3dvU6ZMGRMeHm66du1qdu3alenVammvNjHm0lVEO3fudC5LTk42b7/9tqlVq5YJDg42RYoUMc2aNUv3vuzatct07NjRFCpUyADOK44yu4IuJ+9zZlc0Oa4Emz9/foZ1c3opf5cuXcyXX35patasaYKDg03FihXN6NGjM6y7e/duc99995kSJUqYoKAgU7VqVfPGG2+Y5OTkdOtd/v6m1bZtW1O8ePF0l1Y75GY/nD171jz77LMmOjraBAUFmYiICPPwww+bY8eOudy+y7k63h37J+0UBq6OwaVLl5pmzZqZAgUKmFKlSpnevXubNWvWZHjP8+JqtXXr1pkWLVqYAgUKGMDlVZFpHT161PTv399ERESYwMBAEx0dbYYMGZJuugNjcn61mjHGnD9/3jz11FOmdOnSJjQ01DRt2tQsW7bMREdHZ7iS7vDhw+axxx4zlSpVMkFBQaZ48eImNjbWDB061Jw+fdq53p49e8ztt99uChYsaAoVKmTuuOMOM3v2bAOYb7/9Nt174uqzbkzq5fNvvvmmqVu3rgkNDTUFCxY01apVM/369TPbtm1Lt+4333xjrrvuOlO4cGETEhJioqOjzZ133mnmzZuXo/cgrcyOW8d23XPPPaZYsWImODjY1KlTJ8OVdpI3bMZcHMAUEcmlihUrUqtWLeekiHnp0KFDREdHM3DgQF5//fU8fz3xbiNHjuT5559nz549eT5LufgeDauJiEdLSEjgr7/+4o033iAgICDD/cJE3nvvPQCqVavGhQsX+OWXX3jnnXfo0aOHEiO5IkqORMSjTZw4kZdffpmKFSsyderUdFc5iUDq5flvv/02u3bt4vz580RFRfHss8/y/PPPWx2aeCkNq4mIiIikYfml/IsWLaJr166UK1cOm82W4bJRVxYuXEhsbKzzJpcffPBB3gcqIiIifsHy5OjMmTPUrVvXOWacnZ07d3LjjTfSqlUr1q5dy3PPPcdjjz3GV199lceRioiIiD/wqGE1m83GjBkzuPXWWzNd59lnn2XmzJnp7kHUv39/fv/99xzfh0tEREQkM17XkL1s2TI6duyYblmnTp2Ij4/nwoULBAUFZXjM+fPn090GIiUlhX/++YcSJUpc0SR5IiIikv+MMZw6dYpy5crl6S1UvC45OnDgQIYbCpYpU4akpCSOHDni8p5Vo0aNynLWUhEREfEef//9d55O0+B1yRFkvHGgY2QwsyrQkCFDePLJJ53fnzhxgqioKF544QWefvrpTF/nySefJD4+nsGDBzNkyBA3RC4ibrV3L3uWLuX6IUM4cPgwJUqU4PHHH6d69eosXryYcePGceHCBWLr1OG7F14gvGZN0FQAIh7n7rvvZs6cObzzzjvO+8258sADDzBjxgznzYDzitclR2XLls1wp+JDhw4RGBjovOPz5UJCQjLc6BFSb2Z5+f180goODs7ReiJigfh4/u3Th3uM4QBQs1w5flyxwjkP0p133sn9999Pp7ZtWb1+PY/fdRfTbTZsEyZAXJy1sYtIOo6WmLCwsCzPt4718rolxvKr1XKrWbNmzJ07N92yn376iYYNG7rsNxIRH5SQAH378owxbATKAj8eOED5y64vaVi2LDP//Zcg4AtgijHQr1/q40VEMmF5cnT69GnWrVvHunXrgNRL9detW8eePXuA1CGxtHcG79+/P7t37+bJJ59k8+bNTJo0ifj4+CyHx0TEx2zbxuqUFMZd/PYToHxKCmzfnmG9FsYw4uK3g4BDyckZ1xMRScPy5GjVqlXUr1+f+vXrA6l9PvXr1+fFF18EYP/+/c5ECaBSpUrMnj2bBQsWUK9ePV555RXeeecd7rjjDkviF5H8Z665hscAA/QAOgDY7XDNNelXjImBgACeBBoAJ4ARNlvG9URE0rC856ht27ZkNdXSlClTMixr06YNa9asycOoRMSTfb1iBUuBAsCrkJoYjR8Pl1+9EhkJH35IYL9+vJ6cTAfgg4AAnkhMpHK+Ry0i3sLyypGISG4YYxg1ahQAgwYOpPz8+bBrV+ZN1nFxsGsX7efP5/pWrbiQnMzLL7+cfwGLiNdRciQiXmXevHmsXr2asLAwHn/hBWjbNmPF6HKRkdC2La+88QYAn376Kfv378/7YEXEKyk5EhGv8vrrrwPQp08fSpUqlavHNmnShObNm3PhwgXGjh2bF+GJiA9QciQiXmPbtm3MmzcPm83GoEGDrug5HBPCjhs3jrNnz7ozPBHxEUqORMRrTJw4EYAbbriBihUrXtFz3HrrrURHR3P06FFmzJjhxuhExFcoORIRr5CYmMjkyZMB6Nu37xU/j91u54EHHgBwPp+ISFpKjkTEK3z//fccPnyYcuXK0aVLl6t6Lse9m37++Wd2797tjvBExIcoORIRrzBt2jQAunfvTmDg1U3RVqlSJdq1a4cxho8++sgd4YmID1FylANZTVIpInnv1KlTfP/99wDce++9bnlOR/Vo+vTpbnk+EfEdSo5ExOPNnDmTc+fOce2111KvXj23POfNN99MUFAQmzZtYtOmTW55ThG5Mo4ihM1msziSVEqOsnAlO+ns2bP079+fOXPm5EFEIv7ps88+A+Cee+5x2y/PokWL0rFjRwC+/PJLtzyniMCoUaMYOHCgV4+6KDlys9dee43x48dzww03WB2KiE84duwYP/74IwB33323W5/7zjvvBOCLL75w6/OK+KuUlBSee+453nvvPVavXm11OFdMyZGbefPBIOKJZs6cyYULF6hduzY1atRw63PfcsstBAYGsmHDBv7880+3PreIPzp16pTz//v27bMwkquj5MjNjh8/bnUIIj7F0Yh96623uv25ixUrRocOHQBVj0Tc4dixY87/KzkSp7QHhjePt4p4gsTEROeQWteuXfPkNe644w7gUhImIlcu7Tlw586dFkZydZQcudmFCxec/z99+rSFkYh4v0WLFnHq1CnKli1LbGxsnrzGjTfeCMDKlSs5dOhQnryGiL9IO3py+PBh6wK5SkqO3Cwg4NJbqiE2kavz3XffAdClS5d0ny13KleuHPXq1cMYo6tMRa5S2srR+fPnLYzk6ig5crO0B0Pag0REcscY40yObrrppjx9LcftSGbPnp2nryPi69IWBZQciZOSIxH32Lx5Mzt37iQkJITrr78+T1/LMbT2448/kpSUlKevJeLLVDkSl9IeDGfOnLEwEhHv5mjEbtu2LeHh4Xn6Wk2aNKF48eIcP36cZcuW5elrifiytOc9JUfilPZgOHfunIWRiHi3efPmAeR51QjAbrfTuXNnQENrIlcj7TlQyZE4+cqBIWKlxMREFi5cCOCchyivderUCbiUlIlI7qUtCiQmJloYydVRcuRGKSkp6S7lV+VI5Mos/+47zpw5Q6kSJahdu3a+vGb79u2B1Fnuj82cCQkJ+fK6Ir4k7XnPmwsESo5yIKeTOV6eJSs5ErkC8fHMu3jPs/ZHjxIweXK+vGz58uWpWrYsxhgW3nILREdDfHy+vLaIr/CV0RMlR250+YGg5EgklxISoG9fHANbHQD69cufKk5CAu0OHADgZ4CUlPx7bREfcbWVI5vN5s5wrpiSIze6/EDw5qxZxBLbtnEyJYXlF7/tAJCcDNu358trt7/4318cy/LrtUV8xJUmR552uy0lR1nIbQarypHIVYqJYaHNRjJwDRANYLfDNdfky2u3tdmwAZuA/fn52iI+Qj1HkoGSI5GrFBnJvHbtgItVI7sdxo+HyMh8ee0SEyZQ7+K3v9hs+ffaIj5CPUeSgZIjkav3y8GDALQfNgx27YK4uPx78bg42vfrlxpHt275+9oiPkCVI8ng8qvVvPnAELHC0aNH2bBhAwCtH37YkqpN+1tvBeDn337zuD4IEU93eXLkrZ8hJUdupMqRyNX59ddfAahWrRqlS5e2JIaWLVsSGBjI7t272bVrlyUxiHiry897aef+8yZKjtxIyZHI1Vm8eDEArVq1siyGggULEhsbC8CSJUssi0PEG/nKVdtKjtxIyZHI1Vm0aBEArVu3tjQOR3LmSNZEJGcuP+8pORL1HIlchdOnT7NmzRrA2spR2tdXciSSO0qOJIOkpKR036tyJJJzv/32G0lJSVSoUIHo6GhLY2nRogUAf/75J4cPH7Y0FhFvcvl5Lzk52aJIro6SIzdSciRy5RxVGquH1ABKlChBzZo1AfUdieTG5ZUiJUeS4SDw1i59ESt4QjN2Wi1btgQ0tCaSU8aYDO0llxcNvIWSIze6/CBQciSSM4mJiSxbtgzwnORIfUciueOqSqTKkTiTo5CQEEDJkUhOrV69mnPnzlGyZEmqV69udTjApeRo7dq1nD592uJoRDxf2qpRWFgYoMqRT8vpDJ+ODNlxUCg5EskZR3WmZcuWub7hc16JiooiKiqK5ORkfvvtN6vDEfF4ac95jvOgKkfizJBDQ0MBJUciOeVp/UYOGloTybm0lSPHeTC3lSNP+eNIyZEbqXIkknvGGGdlpnnz5hZHk57jkn5HP5SIZM5xzrPb7QQHBwM5rxx52j3YlBxlIbcZrCNDVnIkknO7du3iyJEjBAUFUa9ePavDSadZs2YALF++nJSUFIujEfFsjspRUFAQdrsdUM+RcClD1rCaSM6tWLECgLp16zo/O56iVq1ahIeHc/LkSTZv3mx1OCIezXHOCw4OJjAwEFDPkaDKkciVcCRHjRs3tjiSjAIDA2nUqBGgoTWR7KhyJC6pciSSe56cHMGloTVdsSaSNVWOxKXLK0eXzxQqIuklJSWxevVqwHOTo6ZNmwKqHIlkR5UjcenyypExxmuzZpH8sHHjRs6ePUuhQoWoWrWq1eG45EiONm3axPHjx60NRsSDOZKjtJUjJUeSoXIEGloTyYpjSK1Ro0YEBHjmr6PSpUtTuXJl4FK8IpKR43yXtnLkrQUCz/xt5KUurxyBkiORrHh6v5GD+o5EsqfKkbikypFI7nhLcqS+I5Hspa0cqSFbnBwHgePGs6DkSCQzZ86cYcOGDQA0adLE4miypskgRbKXtnKkhmxxchwEgYGBBAUFAUqORDKzZs0aUlJSKF++POXKlbM6nCzVqVOHsLAwjh07xtatW60OR8QjqXIkLjkOAiVHItnzliE1SP1l37BhQ0B9RyKZUeXIz+T0hniOg8Butys5EsmGNyVHoL4jkez4UuUo0OoAfImG1URybvny5YD3JEe6Yk0ka2krR44bt+e2cpTbG77nFVWO3EjDaiI5c/DgQXbv3o3NZiM2NtbqcHLEUTnasGEDp06dsjgaEc/jS5UjJUdupGE1kZxZuXIlANWqVaNIkSIWR5MzERERVKhQgZSUFNasWWN1OCIe52p6jnLavpJflBxlIbflPVWORHLG2/qNHBo1agRcSu5E5BJVjsQlVY5EcsZbkyNHvLqNiEhGjnOgL9x4Vg3ZbqTKkUj2jDFemxypciSSOcf5LjAw0DlZqipHosqRSA7s2LGDY8eOERwcTJ06dawOJ1diY2Ox2Wzs2rWLw4cPWx2OiEdJe8W2t1eOlBy5kSpHItlzVI3q169PcHCwxdHkTpEiRahatSqg6pHI5dIOq+nGs24wduxYKlWqRGhoKLGxsSxevDjL9adOnUrdunUpUKAAERERPPjggxw9ejSfos2cKkci2fPWITUH9R2JuOaqcqRhtSs0ffp0nnjiCYYOHcratWtp1aoVN9xwA3v27HG5/pIlS+jZsydxcXFs3LiRL774gpUrV9K7d+98jjwjVY5EsqfkSMQ3pe05UuXoKo0ePZq4uDh69+5N9erVGTNmDBUqVGDcuHEu1//tt9+oWLEijz32GJUqVaJly5b069ePVatW5XPkGalyJJK1CxcuOOcIatKkicXRXJm0TdmeNjeLiJVcDaupcnQFEhMTWb16NR07dky3vGPHjixdutTlY5o3b05CQgKzZ8/GGMPBgwf58ssv6dKlS6avc/78eU6ePJnuKy+ociSStT/mzeP8+fMULVKEa665xupwrkjdunUJCgriyJEj7Jo2DRISrA5JxCOoIdtNjhw5QnJyMmXKlEm3vEyZMhw4cMDlY5o3b87UqVO5++67CQ4OpmzZshQtWpR3330309cZNWoURYoUcX5VqFDBrdvhoMqRSBbi41lx8Y+YxidOYJs0yeKArkxISAh1y5cHYGX37hAdDfHxFkclYj1Xw2qqHF2Fy2eiNsZkOjv1pk2beOyxx3jxxRdZvXo1c+bMYefOnfTv3z/T5x8yZAgnTpxwfv39999ujd9BlSORTCQkQN++rLg4DNUYoF8/76y6JCTQeNcuAFYApKR477aIuJEmgXSTkiVLYrfbM1SJDh06lKGa5DBq1ChatGjBM888A0CdOnUIDw+nVatWjBgxgoiIiAyPCQkJISQkxP0bcBlVjkQysW0bpKTgaGFuDJCcDNu3Q2SkhYFdgW3baHTxv86L+b11W0TcSFeruUlwcDCxsbHMnTs33fK5c+fSvHlzl4/5999/CQhIH7ZjJ+RVc2ROn9cxI6iSI5HLxMRw0mZj08VvGwHY7eCNfUcxMTS+WNleDSSD926LiBu5So4c50VvY/mw2pNPPsnEiROZNGkSmzdvZtCgQezZs8c5TDZkyBB69uzpXL9r1658/fXXjBs3jr/++otff/2Vxx57jMaNG1OuXDmrNgO4dBAEBAQoORJJKzKS1U89hQGigLJ2O4wf752VlshIqo4fT0HgDLA5IMB7t0XEjdL2HDmKGLlNjnJ7w/e8Yvm91e6++26OHj3Kyy+/zP79+6lVqxazZ88mOjoagP3796eb8+iBBx7g1KlTvPfeezz11FMULVqUdu3a8dprr1m1CU5KjkQyt6JkSQAat2kD//ufVycT9j59aDh5MguWLWPFa69RKy7O6pBELJe258iRHHnrsJrlyRHAgAEDGDBggMufTZkyJcOygQMHMnDgwDyOKvccB4GSI5GMnJM/duni1YmRQ6OWLVmwbBkrd+zgIauDEfEAVzOs5mlzhlk+rObJclvec9VzlJiY6Pa4RLyRt8+MfTnNlC2SnjuG1TyFkiM30rCaiGv79u0jISGBgIAAYmNjrQ7HLRwzZa9fv55z585ZHI2I9VwNqyk5EiVHIplw3MG+Ro0aFCxY0OJo3CMqKorSpUuTlJTEunXrrA5HxHJph9W8vedIyZEbqedIxDVfG1KD1GF3R/VIQ2siGlaTTKTtOQoODgaUHImAbyZHcGl7HJUxEX/maoZsJUeiYTURF1JSUpzJg68lR6ociVzialhNyZEoORJxYdu2bZw4cYKwsDBq1apldThu5UiOtm7dyvHjx60NRsRiSo7EJfUciWTkqKo0aNDA+bnwFSVLlqRSpUoArFq1yuJoRKzlqudIDdmie6uJuOCr/UYO6jsSSaWeI3FJw2oiGfl6cqS+I5FUGlYTl5QciaR3/vx55xxAvpocqXIkkkqX8vuZnN7zRcmRSHrr168nMTGREiVKOHtzfE2DBg0ICAhg79697Nu3z+pwRCzjSzeeVXLkRq4ash0Hi4g/Wr58OZBaXcntvQq9RXh4ODVr1gRUPRL/djU3nnXwlN8TSo7cKG1DdmBgIKDkSPybr/cbOajvSEQ9R5KJtMNqjuRIw2riz/wlOVLfkcil851uPCvpuOo5UuVI/NXx48fZsmULcKmy4qsc27dy5coc9yiK+JqrufGsp31ulBxlIbdjn2l7jjSsJv7OMSlipUqVKFWqlMXR5K3atWsTEhLC8ePH2b59u9XhiOS7lJQUZ4FAw2qSjqueIw2rib/ylyE1SB1GqF+/PqChNfFPaQsBV9OQ7SmUHLmRq54jVY7EX/lTcgRqyhb/lvZcp54jcUo7XqqeI/F3xph0l/H7AzVliz+7vHKk5EiA9E1nqhyJv9u7dy8HDhzAbrfToEEDq8PJF47K0Zo1azScLn4ns+RIk0D6ubTZsXqOxN85hpZq165NgQIFLI4mf8TExFCkSBHOnTvHxo0brQ5HJF+lPdfZ7Xb1HEmqtAeAhtXE3/lbvxGkfu4bNmwIqO9I/E/ay/htNpuG1STV5cmRhtXEn/ljcgTqOxL/lTY5ApQcSarMkiMNq4m/SU5Ods5x5G/Jka5YE3+VdnZsQD1HkkoN2SKptmzZwqlTpwgPD6dGjRpWh5OvHMngxo0bOXPmjMXRiOSfyytH6jnyAzmZ1vzyhmxH9myM8dqDQ+RKOKomsbGxzl+Q/qJ8+fJERESQnJzM2rVrrQ5HJN9oWE1cymxYDVQ9Ev/ib/MbXU59R+KP3JUc5fa2XXlFyZGbpD0AbDZbuuRIfUfiT/y1GdtBfUfij9RzJC45DgCbzYbNZnMeIKDKkfiPs2fPsn79esB/kyNVjsQfaVhNXEp701lAw2ril9atW0dSUhKlS5cmKirK6nAs4ZjraMeOHRw9etTiaETyhxqyxaW0N511/OsYO9WwmviLtENqntI7kN+KFSvGNddcA+Cc0kDE12U2rJbT5CgnFz7lJyVHWcjNL/fLkyNAl/OL3/H3fiMHx/ar70j8hYbVxCVHz1Ha5Ei3EBF/47hSrUmTJhZHYi1HU7b6jsRfZJYcqSHbz6lyJP7uyJEj7NixA7iUHPirtJUjTxsuEMkLjvOcoyigniMBMjZkA7qFiPgVxxDStddeS7FixSyOxlr16tXDbrdz8OBBEhISrA5HJM85znMaVpN0VDkSf6chtUsKFChA7dq1AfUdiX9Qz5G45Co5Us+R+BMlR+mp70j8iXqOxCVXDdkaVhN/YYxxVkiUHKXSZJDiTy6/lF89RwJk3XOkypH4um3btnHs2DFCQkKoU6eO1eF4BEflaNWqVV57ghDJKQ2riUsaVhN/5qgaNWjQgODgYIuj8Qw1a9YkLCyMkydPsnXrVqvDEclTSo7EJTVkiz9b/vPPADSpUcPiSDxHYGAgDRo0AGDFRx+BrloTH3b5pfxKjvxATuYpUc+R+K34eJZPmQJAk0mTID7e2ng8SOMCBQBY+eqrEB2t90Z8VmaX8oN3JkhKjtxEPUfilxISONenD+suftvEGOjXT1USgIQEGs2bB8AKgJQUvTfiszK78SzkLjnylHsyKjlyE/UciV/ato11xnABKAVUBEhOhu3bLQ3LI2zbRuOLVed1wHnQeyM+K7NhNVDlyK9l1XOkYTXxWTExLL/4l15jwAZgt8PFu9L7tZgYKttslAQSgbWg90Z8lobVxKWseo5UORKfFRnJ8ouXrDeB1JP/+PEQGWlpWB4hMhLbhAk0vfjtbzab3hvxWZldrQbeORGkkiM30bCa+KvlR44A0OT112HXLoiLszYgTxIXR7P//AeAZV266L0Rn3W1PUeedoNmJUdZyE1jmBqyxR8dPnyYv/76C4DGffqoKuJC006dAPht/XqLIxHJO5fPkK1hNQHUcyT+yTH5Y9WqVSlatKi1wXioRo0aERAQwJ49e9i3b5/V4YjkiayG1ZQc+TFNAin+SPdTy16hQoWoVasWAL/99pvF0YjkDfUciUuuGrLVcyS+bvny5YCSo+w0bZralq3kSHyVLuUXlzSsJv7GGKPKUQ41a9YMgGXLllkciUjeuPxSfrh0PlTlyI85Ou01rCb+YuvWrRw7dozQ0FDq1KljdTgezVE5WrVqlf5YEp90+bAaXLqoydOuRMsJJUduop4j8TeOKkjDhg2dpXRx7dprr6VYsWKcO3eO33//3epwRNzu8mE1uHQ+VHLkxxzJUdrL/9VzJL5s6dKlADRv3tziSDxfQECAc+hRfUfii1wNqznOh+o58mNZDaupjC6+SMlR7jj6jpQciS9yNaymypGPy8mOdVU50rCa+Krjx4+zadMm4NJJX7Lm6DtSU7b4oqx6jlQ58mOuKkcaVhNftXz5cowxVKlShdKlS1sdjldo0qQJNpuNv/76i0OHDlkdjohbuavnKDd3pshLSo7cJKvKkYbVxNdoSC33ihQpQvXq1QENrYnvUc+RuKRL+cWfOJIjDanljiaDFF+lniNxST1H4i+Sk5OdM2OrcpQ7mgxSfFVWw2qqHPkxV/McqedIfNHGjRs5deoUBQsWdN4zTHLGUTlauXKlfi+IT9GwWh4YO3YslSpVIjQ0lNjYWBYvXpzl+ufPn2fo0KFER0cTEhJClSpVmDRpUj5F65ou5Rd/4RhSa9q0KXa73eJovEuNGjUoXLgwZ86cYePGjVaHI+I2Vzus5mlDb5YnR9OnT+eJJ55g6NChrF27llatWnHDDTewZ8+eTB/TrVs3fv75Z+Lj49myZQvTpk2jWrVqbo8tN13zGlYTf6F+oysXEBBA48aNgUvvo4gvcDWspsrRVRg9ejRxcXH07t2b6tWrM2bMGCpUqMC4ceNcrj9nzhwWLlzI7Nmz6dChAxUrVqRx48aW9z7oUn7xF45+Gas/c96qRYsWAPz6668WRyLiPmrIdqPExERWr15Nx44d0y3v2LFjpn9VzZw5k4YNG/L6669Tvnx5rr32Wp5++mnOnj2b6eucP3+ekydPpvtyN13KL/7g0KFDbN++HbjUPyO507JlSwCWLFlicSQi7uNrPUeB2a+Sd44cOUJycjJlypRJt7xMmTIcOHDA5WP++usvlixZQmhoKDNmzODIkSMMGDCAf/75J9O+o1GjRjF8+HC3x5+WLuUXf+CoGtWoUYOiRYtaG4yXatKkCXa7nd27d/P3339ToUIFq0MSuWqqHOWBy3t7jDGZ9vukpKRgs9mYOnUqjRs35sYbb2T06NFMmTIl0+rRkCFDOHHihPPr77//dvs2qOdI/IEmf7x6hQoVol69eoCG1sR3qOfIjUqWLIndbs9QJTp06FCGapJDREQE5cuXp0iRIs5l1atXxxhDQkKCy8eEhIRQuHDhdF/upp4j8QfqN3IPDa2Jr3E1rKZ5jq5QcHAwsbGxzJ07N93yuXPnZvrLt0WLFuzbt4/Tp087l23dupWAgAAiIyPzNN6suJrnSD1H4ksSExNZuXIloOToajmSI1WOxFdoWM3NnnzySSZOnMikSZPYvHkzgwYNYs+ePfTv3x9IHRLr2bOnc/377ruPEiVK8OCDD7Jp0yYWLVrEM888w0MPPURYWJhVm6FhNfF5a9as4dy5cxQvXpxrr73W6nC8muOKtfXr13PixAmLoxG5ehpWc7O7776bMWPG8PLLL1OvXj0WLVrE7NmziY6OBmD//v3p5jwqWLAgc+fO5fjx4zRs2JDu3bvTtWtX3nnnHas2AdCwmvg+x+SsrVq18pg7Z3uriIgIqlSpQkpKiu6zJj7B1ypHll6t5jBgwAAGDBjg8mdTpkzJsKxatWoZhuLyUk52rC7lF1+XNjmSq9eyZUt27NjBkiVL6NSpk9XhiFwVX7uU3/LKka/Qpfziy1JSUpzNw0qO3ENN2eJLsrrxbG4qR55SlVZy5CbqORJftnHjRo4dO0aBAgWoX7++1eH4BEdytHz5chITEy2ORuTquBpWU+VI1HMkPs0xpNasWbN0fxnKlatatSolSpTg7NmzrF271upwRK5YSkqK8xzoKz1HSo7cRD1H4svUb+R+NptNQ2viE9Ke4zTPkaSjniPxVcYYZ3LUunVri6PxLUqOxBekPcdpWE3SyWoSSCVH4s127drF3r17CQoKokmTJlaH41Mc8x0tWbLEK4ceRCD9Oe5KG7I97fhXcpSF3HTNuxpWcxwkGlYTb+aoGsXGxlKgQAGLo/EtDRo0IDQ0lCNHjrB161arwxG5IqocSaY0rCa+atGiRYD6jfJCSEgIjRs3Bi4loSLexnGOs9ls6c6BasgWXcovPkvN2HmrTZs2ACxcuNDiSESujKsJIEGVI0GX8otvOnjwoHO4x9EfI+7lSI4WLFjglX9hi7iaABJUORJ0Kb/4JsdVVLVr16Z48eIWR+ObHHNHJSQk8Ndff1kdjkiuuZoAElQ5ErLvOfLGzFlk0ezZALTSrNh5pkCBAs6rABd88AEkJFgckUjuZJYcqXIkWVaO0v5cxGvEx7Ng0iQA2nzyCcTHWxyQ72pbtCgAC958E6Kj9V6LV8ms50iTQIrLeY7Sjr9qaE28SkICR/r0Yf3Fb9saA/36qaqRFxISaDNrFgALAZOSovdavIqG1fxUbiawcjWsBmrKFi+zbRsLLx7TNYHSAMnJsH27lVH5pm3baGYMQcDfwE7Qey1eRQ3ZkqnshtWUHIlXiYlh/sX/XudYZrfDNddYFJAPi4khPCCAxhe/XQB6r8WruLNylJvJl/OSkiM3UeVIfEpkJPPLlQMuJkd2O4wfD5GRloblkyIj4cMPaXvxpLDAZtN7LV5FDdmSKVeVo4CAAOfBoZ4j8SYHDx5k07592Gw22nzzDezaBXFxVoflu+LiaPO//wGwICIC89BDFgckknOaBFIy5apyBJolW7zTggULAKhTpw4lbrlFVYx80PyWWwgMDOTvffvYuXOn1eGI5JgqR5IpV5UjUHIk3mn+/NSOo+uuuy6bNcVdwsPDnfdZ061ExJtk1pCtypFkWjlyHCwaVhNvouTIGm3btgUuVe5EvIEqR5IpV/McgSpH4n327dvH1q1bCQgIoHXr1laH41ccydEvv/zilScU8U/umATS0453JUdZyM0lhRpWE1/hqBrVr1+fohdnbpb80bx5c4KDg0lISGDbtm1WhyOSI5oEUjKV3bCakiPxFo4hHQ2p5b/w8HCaN28OwLx58yyORiRnNAmkZCq7ypF6jsRbqN/IWh06dACUHIn3UOVIMqVL+cUX7N69mx07dmC322nZsqXV4fil66+/HkjtO0pOTrY4GpHsqSH7MocOHeLAgQPuisWrqedIfMHcuXMBaNq0KYULF7Y4Gv8UGxtLkSJFOHHiBKtXr7Y6HJFsaRLIi9avX0/NmjWJiIigfPnylC9fnueff54zZ864Oz6voUv5xRf89NNPwKXqheQ/u91Ou3btAA2tiXdQ5eiiuLg4ypQpw5IlS1i7di0jRozghx9+oGHDhhw7dszdMXoFVY7E2yUnJ/Pzzz8DSo6spr4j8SaaBPKiTZs2MXbsWJo1a0adOnV48MEHWbVqFTVr1mTgwIHujtFyOcl61XMk3m7NmjX8888/FC5c2DlTs1jDkRz9+uuv/PvvvxZHI5K17CpHfpMcuaoQ2Ww2Ro4cybfffuuWwLyNJoEUb+foN2rXrl2GX3KSv2JiYqhQoQKJiYksWbLE6nBEspTdJJA+PazWpUsXnnvuOT7//HP69+/PoEGDOHjwYLp1Tpw4QbFixdwepDfIbFhNPUfiLRz9Rh07drQ4ErHZbBpaE6/hzkv5czP5cl7K8Z+HtWvXZs2aNUyePNmZFFWuXJlu3bpRr149kpOTmTx5Mm+//XaeBevJNKwm3uz06dMsXboUUL+Rp+jQoQOTJ09WciQezxcngcxxcvTqq686/3/w4EHWrl3LunXrWLduHePGjWP79u3Y7XaGDx/OHXfckSfBejI1ZIs3W7hwIRcuXKBixYpUqVLF6nAEaN++PQBr167lyJEjlCxZ0uKIRFzzxUkgr6ixoEyZMnTu3JnOnTs7l509e5bff/+d33//3W3BeRNdyi/ezNFv1LFjR48pa/u7MmXKUKdOHdavX8+8efO45557rA5JxCVdyp+FsLAwmjZtSr9+/dz1lF5FlSPxZprfyDM5+r/mzJljcSQimdMkkJIp9RyJt0pISGDz5s3YbDbn5IPiGW644QYAfvjhB688wYh/UOVIMqXKkXgrx5Bao0aNKF68uMXRSFotW7akYMGCHDp0iLVr11odjohL2TVke2Nir+TITdRzJN7KMWSjITXPExwc7GzM/uGHHyyORsQ1dzRke1p1SclRFnLTmKpJIMUbXbhwgR9//BFInctMPE/aoTURT6RhNcmUhtXEGy1btowTJ05QokQJ3TLEQzmSo99++41//vnH4mhEMlJDtmRKw2rijWbNmgVA586dsdvtFkcjrkRFRVGjRg1SUlKc/WEinsQXJ4FUcuQmqhyJN5o9ezagITVPp6E18WS+OAmkkiM30aX84m327NnDhg0bCAgIoFOnTlaHI1lwJEdz5szxyhON+Db1HEmmVDkSb+OoGjVr1kyX8Hu4li1bEh4ezsGDB1m3bp3V4Yiko54jP5WTrFc9R+JtHP1GGlLzfCEhIbqkXzyWKkeSKV3KL97k3Llz/PzzzwDceOONFkcjOeEYWnNU/EQ8hTsngfSUezsqOXITDauJN1mwYAFnz56lfPny1KlTx+pwJAccFb5ly5Zx6NAhi6MRuUQN2ZIpDauJN5n9+ecA3Nimjcf8pSZZq1ChAg0aNMAYw/dvvgkJCVaHJAJoWE2yoMqReAszcSKzJk8GoMu0aRAfb3FEklM3R0YCMPONNyA6WvtOPIIasiVTupRfvEJCApv69uUvIARobwz066cqhDdISOCW774D4Cfg35QU7TvxCJoEUjKlypF4hW3b+ObiL6oOQEGA5GTYvt3KqCQntm2jrjFEAWeBeaB9Jx5BPUeSKfUciVeIieGbi/+91bHMbodrrrEkHMmFmBhsAQHcfPHbmaB9Jx5BPUeSKVWOxBskAKsAG9AVUk+u48fDxV4W8WCRkfDhh9xy8YTzHZA8bpz2nVhOPUeSKfUciTeYOXMmAM0bNaLM/PmwaxfExVkblORcXBxttm+nSHg4h4AVtWpZHZGIWypHnlZdUnKUhdxc4pzdJJAaVhNP8M033wBwa7du0Latqg5eKKhSJW68OXVw7dtvv7U4GhH3TgLpKZQcuUlmw2qOg0WVI7Ha8ePHmT9/PgC33HKLxdHI1bhZyZF4EDVkS6Y0rCaebvbs2SQlJVGzZk1iYmKsDkeuwg033EBQUBB//vknW7dutToc8XNqyJZMqSFbPJ1zSO3WWy2NQ65ekSJFuO666wD46quvLI5G/J0asiVTjsw4s2E19RyJlc6ePeu8m7uG1HzDnXfeCcAXX3xhcSTi79Rz5KdyUhLMriFblSOx0pw5czh9+jRRUVE0bNjQ6nDEDW677Tbsdjtr165lx44dVocjfiy7niMNq/mxzCpHSo7EE3x+8Uazd911l2406yNKlizpHFpT9Uis5M7kyFN+Pyk5cpPskiMNq4lVzp49y3cX78nVrVs3i6MRd7rrrrsAJUdiHWOMKkd5ZezYsVSqVInQ0FBiY2NZvHhxjh7366+/EhgYSL169fI2wBzIrudIlSOxyg8//MCZM2eIjo6mUaNGVocjbuQYWluzZg1//fWX1eGIH0pOTnb+X8mRG02fPp0nnniCoUOHsnbtWlq1asUNN9zAnj17snzciRMn6NmzJ+3bt8+nSLOmYTXxVI6qgobUfE+pUqVo27YtoOqRWCPtue3yhmwlR1dh9OjRxMXF0bt3b6pXr86YMWOoUKEC48aNy/Jx/fr147777qNZs2b5FGnWlByJJ/r333+dQ2qOIRjxLRpaEyulPbepcuQmiYmJrF69mo4dO6Zb3rFjR5YuXZrp4yZPnsyOHTt46aWXcvQ658+f5+TJk+m+3E2X8osn0pCa77vtttsICAhg9erVGlqTfKfkKA8cOXKE5ORkypQpk255mTJlOHDggMvHbNu2jcGDBzN16tQMOyIzo0aNokiRIs6vChUqXHXsl1PlSDyRhtR8X+nSpZ1Da19++aW1wYjfSfuHv5IjN7v8l7YxxuUv8uTkZO677z6GDx/Otddem+PnHzJkCCdOnHB+/f3331cd8+WUHImnOXPmjIbU/IRj/06fPt3iSMTfOM5tdrs9w/lPydEVKlmyJHa7PUOV6NChQxmqSQCnTp1i1apVPProowQGBhIYGMjLL7/M77//TmBgIL/88ovL1wkJCaFw4cLpvtxNl/KLp/nmm2/4999/qVKliobUfNydd95JYGAga9asYfPmzVaHI34ks8v4QcnRFQsODiY2Npa5c+emWz537lyaN2+eYf3ChQvzxx9/sG7dOudX//79qVq1KuvWraNJkyb5FXoGupRfPM3//vc/AHr06KEhNR9XsmRJOnfuDMDUqVMtjkb8ibuSI09LoCwfVnvyySeZOHEikyZNYvPmzQwaNIg9e/bQv39/IHVIrGfPnkDqrTlq1aqV7qt06dKEhoZSq1YtwsPD3Rpbbk4o2VWOkpOTPW7ni+86ePAgP/30EwDdu3e3OBrJDz169ABSkyNvvJeVeKfMbjoL3l05yllHcx66++67OXr0KC+//DL79++nVq1azJ49m+joaAD279+f7ZxHniC75AhSE6ScNpGLXI3PPvuMlJQUmjRpQkxMjNXhSD7o2rUrhQoVYteuXSxdupSWLVtaHZL4AQ2r5aEBAwawa9cuzp8/z+rVq2ndurXzZ1OmTGHBggWZPnbYsGGsW7cu74PMRk6SI/UdSX5JO6Qm/qFAgQLccccdwKX9L5LXHMnR5RNAgpIjIfueI1DfkeSPLVu2sGrVKux2O3fffbfV4Ug+ciTDn3/+OYmJiRZHI/5AlSPJUk4qR0qOJD84GnI7depEqVKlLI5G8lPbtm2JiIjg2LFj/PDDD1aHI35AyZEfy02nvYbVxEopKSkaUvNjdrud++67D4CPP/7Y4mjEH/hqQ7aSIzfJLDmy2WzY7XZAlSPJewsXLmTnzp0UKlSIW265xepwxAKOq3u/++47Dh8+bHE04uvcXTnylGlHlBy5SWbJEWiWbMk/k957D4B7b76ZAgUKWByNWKFOnTrExsZy4cIFpg4bBgkJVockPiwnDdneOLWEkiM3UXIkVjv+7rt8+fXXAMR9+inEx1sckVglrlo1AOLHjsVERelYkDyjniPJUk6SI/UcSZ5JSOCzxx/nHFATaGQM9OunqoE/Skjg3k8/JRTYAKzSsSB5KKueo4CA1BRDyZEfc+x8x8GQlm4hInlu2zbiLx6DcYANIDkZtm+3MiqxwrZtFDWGOy5+Gw86FiTPqHIkWXKMqWpYTaywPimJVUAQ4LxGzW6Ha66xLiixRkwMBAQQd/HbacC/AQE6FiRPaBJIyZKG1cRKk2bNAuBmoBSkJkbjx0NkpJVhiRUiI+HDD2kTEEAl4CTw1YMP6liQPKHKkWQpq+RIw2qSl86ePcsnn3wCQNzHH8P8+bBrF8TFZf1A8V1xcQTs3s1DDz0EwIdbtlgckPgqJUeSJV2tJlb5/PPP+eeff4iKiqLjffdB27aqEghERvLQK69gt9tZsmQJf/zxh9URiQ/SJJCSJSVHYpWxY8cC0L9/f+eEoyIA5cqV47bbbgNg3LhxFkcjvshdlSNPS6CUHGUhNzN1qudIrLBq1SpWrFhBUFAQcRpGExcGDBgAwCeffMLJkyctjkZ8jRqyJUvqORIrOKoBd911F6VLl7Y4GvFEbdu2pVq1apw+fdp53z0Rd1HPkWRJw2qS344dO8ann34KXKoOiFzOZrM5j4+xY8d65YlKPJd6jiRLGlaT/DZlyhTOnTtHnTp1aN68udXhiAfr2bMnBQoUYOPGjSxevNjqcMSHOM5rGlbzQ7lpJtOwmuSHlJQUZyP2gAEDPOZO1uKZihQpQo8eqdODvnfx5sQi7qDkSLKkYTXJT99//z3bt2+naNGidO/e3epwxAs88sgjAHz11Vfs2rXL2mDEZ7g7OfKUP/SUHLmJkiPJT2+//TYAffv2pWDBghZHI96gTp06dOjQgZSUFN59912rwxEfocqRZEk9R5Jf1qxZw4IFCwgMDGTgwIFWhyNe5MknnwRgwoQJuqxf3ELJkWRJPUeSXxxVo27duhGpmbAlFzp16kT16tU5deoU8fHxVocjPkDJkWRJw2qSH/bu3ctnn30GwKBBgyyORrxNQECA87j573//q99JctWUHEmWNKwm+eG9994jKSmJ1q1b07BhQ6vDES/Uo0cPSpYsye7du5kxY4bV4YiXU3IkWVLlSPLayZMnnTNiq2okVyosLMw5KeTrr7/ulScu8RxKjiRL6jmSvDZ27FhOnDhBtWrVuPnmm60OR7zYo48+SoECBVi1ahVz5861OhzxYkqOJEuqHEle+vfffxk9ejQAQ4YMISBAH125cqVKlaJv374A/N///Z/F0Yg3U3IkWVLPkeSZhAQmDR7M4cOHqVixIvfee6/VEYkPePrppwkODmbRokUseecdSEiwOiTxQomJiUDWyVFKSkq+xuQOSo7cRMNqkifi40mMiuL1i5P2/adFC5e/hERyq3z58jzQtCkA//f44xAdDbq8X3LJXZUjT6suKTnKQm6mMdewmrhdQgL07ctUY/gbKAM8OG2a/sIX90hI4NnFi7EDc4DVKSnQr5+OL8kVDatJljSsJm63bRtJKSmMuvjtU0BoSgps325lVOIrtm2jsjE4BmlHAiQn6/iSXHGc14KDgzP8TMmRqHIk7hcTwyc2G9uAkkB/ALsdrrnG2rjEN8TEQEAAQy5++zXwR0CAji/JFVWOJEvqORJ3SyxdmuHFiwMwGChkt8P48aBbhog7REbChx9Sw27nrouLXqhTR8eX5IqSIz+Wm2YyVY7EXeLj49l99CgRpUvz8A8/wK5dEBdndVjiS+LiYNcuXv7oIwICAvh23TqWL19udVTiRbJKjhxTjig58mOOne9q/hn1HElunT17lhEjRgAw9MUXKdC5s/6il7wRGUm1nj3p2bMnAM8//7zFAYk3cXflKDcXQuUlJUdu4pjHQcNq4g4ffPAB+/btIyoqit69e1sdjviBl156iaCgIObNm8f8+fOtDke8hIbVJEsaVhN3OX36NKNGpV6j9uKLLxISEmJxROIPKlas6Jw1e+jQoV55QpP8p+RIckSX8svVGj16NIcPH6ZKlSrOoQ6R/DB06FDCwsJYtmwZs2bNsjoc8QJKjiRTaXe8KkdyNfbv38/rr78OwMiRIzUbtuSriIgIBg4cCMCzzz6r31mSLSVHkqnskiP1HElOvfDCC5w5c4ZmzZpx1113Zf8AETcbPHgwJUqUYNOmTUycONHqcMTDKTmSTKlyJO6wfv16Jk2aBMBbb73lMVdtiH8pVqwYw4YNA1J73k6cOGFtQOLRlBxJpnKaHKnnSDJjjOHpp5/GGEO3bt1o1qyZ1SGJH+vXrx9Vq1bl8OHDjBw50upwxIMpOZJM5XRYTcmRZObHH39k7ty5BAcHO69UE7FKUFAQb775JgBjxoxh586dFkcknkrJkWQqu+TIcUM+JUfiSmJiIk8++SQAAwcOpHLlyhZHJAJdunShQ4cOJCYm8uyzz1odjnggY4ySI8lcTpOjxMTEfItJvMd///tfNm/eTKlSpTQ7sXgMm83GW2+9RUBAAF988YUmhpQMkpOTnf+/2uTI0xIoJUdZyGlDbE6H1ZQcyeUSEhIYPnw4AG+88QZFixa1NiCRNOrUqUP//v0BeOSRR/Q7TNJJezyociQZaFhNrkhCAk/26MGZM2do0aIF999/v9URiWQwYsQISpcuzebNmxn9yCOQkGB1SOIh0p7TlBxJBhpWk1yLj2duVBRfLFyIHRjboYPLmxaLWK1YsWK82bUrAC9PnMjuqCiIj7c4KvEESo78XHY7VsNqkisJCZzv04dHLx43jwJ1RozQX+TimRIS6DFpEq2Bs8DjxkC/fjpexZkcBQQEYLfbM/xcyZGf07Ca5Mq2bYw0hq1AGWA4QHIybN9ubVwirmzbhs0YxgKBwLfAdzpehawv44crS448ZfJbJUduoGE1yY31SUk4ptV7BygCYLfDNddYF5RIZmJiICCAmsBTFxc9DJwoXdrCoMQT5DQ5SklJybeY3EXJkRtoWE1yKikpiYeGDCEJuA24C1ITo/HjITLS2uBEXImMhA8/BLudF4FrgL3AU6NHWxyYWC0vKkeeQsmRG2hYTXJq9OjRrF69mqJFi/L+qlXY5s+HXbsgLs7q0EQyFxcHu3ZRYP58Jn35JTabjfj4eH766SerIxMLKTmSLOUmOfLGg0TcY8uWLbz44osAvP3220TExkLbtqoYiXeIjIS2bWl1xx08+uijAPTp04dTp05ZHJhYRcmRZCmnw2qg6pG/SkpK4sEHH+T8+fN06tSJXr16WR2SyBUbNWoUlSpVYs+ePbq1iB9TciRZymnlCJQc+auRI0eybNkyChcuzPjx4z3migyRKxEeHk78xbmOxo0bxw8//GBxRGIFJUeSpdwkR2rK9j+//fYbL7/8MgBjx44lOjra4ohErt51113HY489BsADDzzAwYMHLY5I8puSI8lSdslRYGCg8/9KjvzLqVOn6NGjB8nJydx77710797d6pBE3Oa1116jVq1aHDp0iIceesgrT4Jy5ZQcSZayS45sNpvz4NGwmn954okn2LFjB1FRUYwdO9bqcETcKjQ0lGnTphESEsLs2bN57733rA5J8pGSI8lSdskRaCJIf/TZZ58xadIkbDYbH3/8MUWLFrU6JBG3q1WrFm+88QYAzzzzDOvXr7c4IskvSo4kSznZ8UqO/EhCApsmT6b3xbmLnnvuOdq0aWNxUCJ559FHH+XGG2/k/Pnz3HXXXZzcvBnmz9f913xcdsmR42baOTlHeloCpeQoCzm9osgxNXpWd1XXsJqfiI/ndFQUdz70EGf+/Zd21aoxfPhwq6MSyVM2m42PPvqIChUqsHXrVh6sUQPTrh1ER8PFq9rE96hyJFly7PiskilVjvxAQgKmTx/6GsNmoBwwbetW7Pv3Wx2ZSJ4rWbIkX7z/PkHA18BbACkp0K+fKkg+SslRHhs7diyVKlUiNDSU2NhYFi9enOm6X3/9Nddffz2lSpWicOHCNGvWjB9//DFP48tuxyo5EgC2bWOsMUwD7MB0oHRKiu5eLn6jScGC/Pfi/wcDCwGSk/UZ8FGO85mSozwwffp0nnjiCYYOHcratWtp1aoVN9xwA3v27HG5/qJFi7j++uuZPXs2q1ev5rrrrqNr166sXbs2nyO/JCfJkYbVfN/PBw/y+MX/vwa0hNSbyl5zjXVBieSnmBj622zcDyQD3YDdAQH6DPiovKgcecoEuZYnR6NHjyYuLo7evXtTvXp1xowZQ4UKFRg3bpzL9ceMGcN//vMfGjVqRExMDCNHjiQmJobvvvsunyO/RJUj2bp1K3cNGEAy0MNm40lITYzGj9e908R/REZimzCBDwICqAccArpGRHCqSBGLA5O8oGG1PJKYmMjq1avp2LFjuuUdO3Zk6dKlOXqOlJQUTp06RfHixTNd5/z585w8eTLdlzspOfJvx44do2vXrhw7doymTZsyYetWbPPnw65dqXczF/EncXEU2L2b7z7/nLKlS/PH3r3ce++9JCcnWx2ZuJnjfBYSEuLy50qOrtCRI0dITk6mTJky6ZaXKVOGAwcO5Og53nrrLc6cOUO3bt0yXWfUqFEUKVLE+VWhQoWrivtyGlbzXxcuXODuu+9m69atVKhQgW+++YbQa66Btm1VMRL/FRlJ5F13MfP77wkNDWXWrFk888wzVkclbuZIjtLeIistJUdX6fKkwhiTo3HHadOmMWzYMKZPn07p0qUzXW/IkCGcOHHC+fX3339fdcxpqXLkn4wx9O7dm7lz51KgQAFmzpyZIdEX8WeNGjXi448/BuDtt9/m/ffftzgicafz588Dqhy5XcmSJbHb7RmqRIcOHcr2JDN9+nTi4uL4/PPP6dChQ5brhoSEULhw4XRf7qTkyD8NHjyYjz/+GLvdzvTp06lXr57VIYl4nLvuuosRI0YAMHDgQKZPn25xROIuqhzlkeDgYGJjY5k7d2665XPnzqV58+aZPm7atGk88MADfPrpp3Tp0iWvw8yWhtX8z5gxY3j99dcBmDBhAjfddJPFEYl4rueee44BAwZgjOH+++/P8DtfvJMqR3noySefZOLEiUyaNInNmzczaNAg9uzZQ//+/YHUIbGePXs61582bRo9e/bkrbfeomnTphw4cIADBw5w4sQJqzZBlSM/M3XqVAYNGgTAyJEjefDBBy2OSMSz2Ww23nnnHbp168aFCxe47bbbWLlypdVhyVVS5SgP3X333YwZM4aXX36ZevXqsWjRImbPnk10dDQA+/fvTzfn0fjx40lKSuKRRx4hIiLC+fX4449n9hJ5TsmRn0hI4IuXXnIm6wMHDmTw4MEWByXiHex2Ox9//DEdOnTgzJkzdO7cmd9/+kn3YPNivlw5CrQ6AIABAwYwYMAAlz+bMmVKuu8XLFiQ9wHlkobV/EB8PDP69OFeY0gBHmzRgjFjxnjMhGUi3iAkJMR5l4Ply5fTvlMnfgHqBATAhx9q6gsvk9PKkeP+o97E8sqRL1DlyMclJPBdnz7cbQzJwP3AhGXLCNi3z+rIRLxOoUKFmBMfT0PgKNAe2KB7sHklX64cKTlyAyVHvm3WJ59wpzFcAO4BJgN23TNN5IoVPXSIn4BY4AjQDtioe7B5HfUcSZY0rOa7pk+fzq0vvkgicCfwCak3ldU900SuQkwMxQIC+AmoDxwGrgPWnjtnbVySK+6sHHlaAqXkKAs57SdR5cg3TZw4kXvvvZekpCTubdyYTwMCUpv0dM80kasTGQkffkhxu515QANSE6S2d9/N4sWLLQ5OckqVI8mSkiPfM3r0aPr06YMxhn79+vHJ0qUE7d6demWN7pkmcvXi4mDXLorPn88vGzfSunVrTp48SceOHZk9e7bV0UkOqOfIz2W3Y3OTHGlYzbMZYxg6dChPPfUUAM888wzjxo3Dbren/rWre6aJuM/Fz1SRGjWYM2cOXbp04dy5c9xyyy1MmzbN6ugkG6ocSZZy03OkypHnOn/+PD169GDkyJEAjBgxgtdee02X64vkg7CwMGbMmMF9991HUlIS9913H6+++qpXnlj9RV5Ujjzl962SIzfQsJqXS0jgn2+/pWObNnz66acEBgYyadIkhg4d6jEfVBF/EBQUxCeffMITTzwBpN4hoU+fPlzYuVOTRXogVY4kSxpW82Lx8fwVFUXzW29l0fLlFA4L44cfftAtQUQsEhAQwNtvv827775LQEAA8fHx3FC5MsfbtYPoaIiPtzpEuUg9R5IlDat5qYQEFvbpQ1Nj2AJUAH49f54O1apZHZmI33v00Uf5Nj6ecOBnoAWwQ5NFehRVjiRLGlbzPsYY3nntNdobw2FSLyX+DailyR1FPMZN0dEsBsoBm4CGwA+aLNJjqHIkWdKwmnc5d+4cDz74II+/9x7JQA9gCam/gDW5o4gHiYmhfkAAK4AmwHGgC/DK99975f26fI0qR5Kl3AyrOTJtscaOHTto2bIlH330EXa7ndHduvFxQABhoMkdRTzNxckiy9vtLAT62WwY4MW33uK2227jxIkTVkfo13JaOfJGSo7cwJEcBQRk/nY6Dh4Nq1ln+vTp1K9fn9WrV1OiRAl+/PFHBk2fjk2TO4p4rouTRYbMn88He/YwceJEQkJCmDlzJg0aNGDFihVWR+i3sqscpT0nelv1SMmRGzjKu1llyaGhoUDqkI7kk4QEmD+ff7dto2/fvtxzzz2cOnWKli1bsnbtWtq3b5+6niZ3FPFsaT6jcXFxLF68mKioKP766y9atGjBq6++mvp7+OJnXg3beS8pKcl57stJ5UjJkR/KybCa4+DRsFo+iY+H6GhWtWtHo2uvZcKECdhsNp5//nnmz59PhQoVrI5QRK5Qo0aNWLduHXfddRdJSUkMGTKE62vWZG9UFOiS/3yRdhQku54jUHLkl3KSHKlylI8SEkjs04cXUlJoSupVLmWAn6ZO5ZVXXiEwMNDiAEXkahUrVozp06cTHx9PgbAwfvnzT2oZwxTA6JL/PJf2D31VjsSl3CRHqhzlvd/nzKGxMYwAkoFuwAagQ0SEtYGJiFvZbDYeeugh1owbR0NSr2Z7ELgR2KNL/vNU2spRZn9wKjnyc7kZVlPlKO+cOXOG//znP8T278/vQAlg+sWvkrpEX8RnVW3fnmU2G68BIcAcoBbwwbJluuQ/j6S9Ui2zc19ukiNPS56UHGUhp5chaljNet9++y01atTgjTfeIDk5mdsbNGBjQADdQJfoi/i6yEgCJ0zgP3Y764BmwCng4eeeo3nz5qxevdra+HxQdleqgSpHPi+nGa8asvPfX3/9xS233MKtt97Knj17qFixIt9//z1frV5NGV2iL+I/Ll7yX23+fBbv2sWYMWMoVKgQy5cvp1GjRvTv35+jR49aHaXPyG6OI1By5PdyWznytoPE4yQkcPy773imf3+qV6/OzJkzCQwMZMiQIWzcuJEuXbqkrqdL9EX8y8XPvD06mscff5wtW7bQvXt3jDGMHz+ea6+9lrFjx3Jh505d8n+V8qpy5CkTRyo5coPcJEegW4hcjQvjx/NeVBTX3Hwzb44fT2JiItdffz3r1q1j5MiRFChQwOoQRcRDRERE8L///Y+FCxdSu3Zt/vnnHx555BFqVa7MN+3aYaKidMn/Fcpt5cjber+UHLlBbobVQH1HV8IYw7fx8dTu35+BxnAUqAHMDgjgx/h4atasaXWIIuKhWrduzZo1a3jvlVcoBWwFbgNaG8NvffuqgnQF1HMk2VJylHeMMcydO5emTZtya+/ebAFKAeOA34EbUlKw7dhhbZAi4vECAwN5pEULtgNDgTBSbzjdLCWFO7t3Z9OmTdYG6GXUcyTZyklyZLPZnBm2mrJzZvHixbRt25aOHTuyYsUKCoSFMQTYDvQHAiH1SjRdoi8iORETQ+GAAEaQWj16CLABXy1aRK1atejevTtbtmyxNkYvocqRZCsnyRHocv5sXbwv0orvvqNz5860bt2aRYsWERISwhNPPMHOXbsYOXEihe321PV1ib6I5EZkJHz4IdjtRALxdju/DxvG7bffjjGGTz/9lBo1atCzZ0+2b9+ue7VlwdcrR7qPghvkJjk6efKkKkcumIkT+aVvX0YZw88XlwUGBhIXF8fzzz9PpCMBiouDTp1SZ7695holRiKSO5f9DqkdGclXwNq1axk2bBgzZ87kk08+4dOpU+mRksJ/gBoBAalJlaYEcVLlSLKV0+RIs2RnlJKSwjcTJ9K0Tx86XEyMAoFeNht/zp/PBx98cCkxctAl+iJyNVz8Dqlfvz7ffvstK1eupEv79iSnpPARUBO4OSWFJX37Yv7+26qIPY6vV46UHLmBhtVy7+TJk7z77rtUr16d2/r0YQUQCgwktadoijFUSUqyNkgR8TsNGzbk+6FDWQ7cTmpP0ndAq5QUmnfuzFdffUWSfjepciTZy23lyO+G1dKM22/ZsoWBAwdSvnx5HnvsMbZu3UrhQoV4DtgNvANEgxqtRcQ6MTE0DgjgK+BPoC+p92z7bdMm7rzzTqKjoxk2bBh79+5NXd8Pe5NUOZJsqXKUhfh4TkRFMaFdO1pWqEC1atV47733OH36NNWrV+f9998nYe9e/m/iREqr0VpEPEGaxu1rgfF2O7vfeouhQ4dSqlQp9u3bx/Dhw4mOjub2Bg34PiqKC+3aQXS030wq6TiPKTmSTOU2OfKHylFycjJzP/2U7r17U9YY+gK/knrA3Xz99cydO5eNGzcyYMAAChUq5Lwvku6FJiIe4bLfSWWefJIRI0bw999/M23aNFq3bk1ycjIz1q6lqzGUBx5PSWG1n/QmnT17FiDLuxIoOfJzasi+5I8//mDw4MFER0fTsXt3PgXOkTqb9evA38C3zz1Hhw4dMr5farQWEU/i4ndSSEgI99xzDwsXLmTjpEk8AZQGDpPaFtAwJYWarVrx6quv8rcPJ0mO5CgsLCzTdZQc+Tm/HFZLM8aekJDA66+/Tt26dalTpw6vvfYae/fupViRIjwCrAA2AM8A5dRLJCI+osb11/N2QAB7gVnA3aReWLJ5926GDBlCVFQUrVu3Zty4cRw+fNinepPcnRx5WvKk5CgLOb07sN81ZMfHczwqivh27biuQgWioqJ49tlnWb9+PUFBQdx666188cUX7D94kPcmTqSR3Y4N1EskIr7lYm9SoN3OjcBndjsH3nmHiRMn0rp1ayB1pv8BAwYQUbYsN1SowMft2nHSB254+++//wJZJ0dpeVrykx1NApkDOc14fb1ydO7cOX745BOm9u3L94AzxTOG1k2a0P2hh7jzzjspXrz4pQdp0kYR8WWX/Y4rEhlJHBAXF8fff//N9OnTmfbxx6z54w/mAHOAUGO4qXdv7k1J4cb773eeG7xJTipHkHpeNMYoOfJHPtWQnZAA27ZBTAxERnLy5Elmz57NjBkzmD17NqdPn3auWhPoAdwLRL/6aurYvCuRkUqKRMR3ZfI7rkKFCjz99NM8HRvL1nbtmAZMA7YAXwJf9u1L4aef5rbbbuPee++lTZs2lxKly34Xe5q8So5yOmKT15QcuUFeN2QnJiayefNmKlSokL4q42YpEyawtV8/fjOG34BlkZFs2LePlJQU5zqRERHcu38/3YE6cGm4TH1EIiKuxcRwbUAAL6Wk8CKwDvjUZuOzsmVJ2L+fjz76iI8++ojQ0FBatGhBu8KFafvNN8QaQ0ge37okISGBkydPUq1aNQICct5pk5Or1eDSedHbKkfqOXKDvBxWW7duHTExMdSrV49y5crx7LPPcuHChdwH6aIR8OTJk8yZM4dhw4bRuW1bSvTtS3VjeBAYD6xPSCAlJYVrr72WwYMHs2LFCvbs3cvrEydSV31EIiI5k2beJBtQ327njQkT2J2QwKJFi3j44YcpW7Ys586d4+eff2bojBm0MIYiQMuUFJ7t04eZkyZx5MiRjM99hU3ex44d45577qFChQrUrFmTZs2acejQoRw/PjeVI/C+5EiVIzdw7PTssu7cNmSfOnWKrl27kpCQQHBwMOfPn+f1119nzZo1zJgxg4IFC+YswPh46NsXUlL402Zj2k038dPhw6xcuZLk5OR0q4YBDYGmQDOgyRdfUO7OO9M/n/qIRERyx8XvzQCgVatWtGrVivfff58///yTn8eN45d332UJqdMD/Ar8aoyzclS1alWaN29OixYt6PTPP0QOHgwpKZCLCtPhw4fp2LEj69atAyAoKIgVK1Zwzz338PPPP+doaCunyZHjvOhtyZEqR27gGHZyd+Xo7bffJiEhgSpVqnDo0CG++uorwsPDmTdvHp06deL48ePZP0lCAsl9+vBlSgpNgerG8PJ33/Hbb7+RnJxM5cqVuf/++3l/xAhW22ycABaROifRbXY75Zo2df28mpNIRCR3svi9abPZqF69Oo/+5z98HRDAQWArMBnobbNRPSYGgC1btjB58mR69+5N9H/+w80pKfwEmJQU6Ncv2wrS3r17ad26NevWraNMmTKsWLGCP/74g7CwMObPn8+sWbNytCk5vVrNWytHSo7cIC+G1ZKTkxk7diwAr7zyCkWKFOH222/nl19+oWjRoixdupT27dtzZP36TEuqiYmJTBwzhurGcBewnNRSYRdg8rPPsnv3bnbs2MHHH3/MgKFDaTBhAkG6hYeIiHUuDsHZ7HZigAfsdiZMmMCmrVs5cuQI33//PUOGDKFZjRqkkHpT3E5AXeCj5GQSN292/bwJCWz9+GNaNG3Kn3/+SYUKFVi0aBGNGjWiatWqPPLIIwC89957OQrT14fVlBy5QV7Mc7R06VIOHjxI0aJFuTPNsFbjxo1ZsGABpUqVYs2aNbSqW5c1l93T5+TJk7z33ntUqVKFPm+9xTagGPACsBf43m7ngUcfJSoqKv2L6hYeIiLWy+R3cYkSJejSpQsjR45k6Y8/stlm4zEgHPgDeACodP/9vPbaa+lGFszEicyMiqJFr17sTkjgmtKlWbx4Mddee61znT59+gDw888/52hUQsmRZCsvKkfffPIJAF3btycoKCjdz+rWrcvC6dMpR+odo2OBtikp9OvThy7t21OmTBkGDhxIQkICERERvNWtG3sCAngZUm/umlVFSMNlIiLWy+53cWQk1SZM4L92O38Dr9psRBQpwr6DBxk8eDAVKlTgrrvuove991K/Tx9uMYYjpPaU/nrkCNGOUYKLrr32WmrUqEFSUhKz3ngj2+E5JUeSrVxXjvbty/rAi4/n2wkTALjt669dzqRaHVgL3EPq5fQLgQ+NYfYvv3Du3DmqVq3K+++/z19//cWT06dTcPduVYRERHzJxQpTsfnzeXbPHnYdOsSUKVOoVasWp0+f5ssvvyT+s8/4ndTbmvwHWAyUTklJbQy/zG2VKgHw7ciR6UYjXDl7seeowIkTWYboOC+mnRLGG+hqNTfIaXIU9ttvAPy7fHnqgefqyoKEBPb36cMOUjPXDsakNtl16pT+L4iYGEoHBDAtJYX/A34GDthsFH/5ZZp36UK9evXSx6OJGEVEfE+a3+3BQK9evejZsydLlixh5cqVnNm3j8qjR9PRGEo5HuNqbrqEBDrNns3/kZpAmZQUbK7OPaQO0zmSo7BWrWDChEz/6PbWypGSIzdwJkcnTqRWhFwlIQkJhF+sBp2B1EsvXR1427bx28XnqwUUAkhOTs3y067nmDejXz8qJydT2TFcpqqQiIhfs9lszikCAKhePfV8k5yc+cU227YRawyBwAFgDxDt6tyTkMCFvn1x1IHCMvsD3hHLxX/N/v1eNVmwhtVyYu/eLIfBzC+/AGBbty7zUuS2bYRfTHrOOJY5Dry0YmJYdvG/zovoM5uBWg3UIiKSnZycK2JiKBAQQN2L3/4Grs8927bxb5oqUBi4PpcBxMdju3jLKdOmTdY3201MTP3X1USXFlBylJW1a1P//fbbzJOehATMxYqQDS5VhC5PpmJiKHixvOhMjlwdeJGR/HZxPotmjnXUQC0iIlcjBw3efPghzS6ep5bZbK7PPTExnL24jo3UobzMhuno2/dS5chRYXJVaIiPhzVrUv/fu3fWSVQ+8e/kKKtGsoQE+O67S99nlvRs23ZpWM2xzFUWHRlJ+LBhAJyGTJMeYwxr9u0DoPHkyaoIiYhI/oiLo8mYMQCsatjQ9bknMpKzI0cCqVUjWxbDdKSkXEqOwPW58WIS5axFZZVEAVzsdcpr/p0cvf565hnqtm3pdypkOgxm0mTRQKbDYOE9ewJwJjg406Rn//79nDlzhoCAAK657z5VhEREJN/UadsWgA1bt2baRH22a1cAwgoXznKYjoCA9OfRTIbpuPxKtiyG6fj++5xuylXx7+QIMs9QLw5tpZPJMJh56CGAbG/E6rgX2rnERJIjIlyGs23bNgAqVqxIcHBwjjdDRETkalWtWhW73c6JEyfYd3EU43KOOY4KFCmS7TCdMzkKCMh0mI409yV1nkczGabLL36dHNWDzDPUyEi4mB0DWSY9pk0bAGwNG2Y5DBYeHu78/5kzZ1yu40iOYlwlZyIiInkoJCTEOXP2hg0bXK6T0wkgiYvDVqwYAOannzIdpuPDDy99n1kSdbHC1CFnm3HV/Do5agmZXwkG0KBB6r8335xl0uPsOSpRIsthsNDQUOecD9klR2mndRcREckvtWrVAjJPjnJ601m42JMEmDJlMl8pLg7q10/9/8SJWQ7T3Z3tK7qHXydHmWaolytfPst1cjoJpM1mcw6tqXIkIiKeyJEc/fHHHy5/nuPKEbmYBNLRRlKypOufOypMAfmTtvh3crRhg1uuBMtpcgSXhtZOX5z74XJKjkRExErVq1cHYMuWLS5/nifJUU7ExaWet/OBfydH5cu75WmuJDlyVTlKSUlh+8X+JyVHIiJiBcf5Z7urflwsTI7Abeft7Ph3cuQmuUmOshpWS0hI4Ny5cwQFBREdHe3eIEVERHKgSpUqABw5coTjx49n+LmlyVE+UXLkBu4aVnMMqVWuXJnAQN32TkRE8l+hQoUoc7GBeseOHRl+7jh/Of7Yz4qSIz/mrmE19RuJiIgnuObiVdyuhtZOnToFpCZR2VFy5MfcNaym5EhERDyBkiMPMHbsWCpVqkRoaCixsbEsXrw4y/UXLlxIbGwsoaGhVK5cmQ8++CCfInXNXcNqW7duBTTHkYiIWEvJkcWmT5/OE088wdChQ1m7di2tWrXihhtuYM+ePS7X37lzJzfeeCOtWrVi7dq1PPfcczz22GN89dVX+Rz5JRpWExERX6LkyGKjR48mLi6O3r17U716dcaMGUOFChUYN26cy/U/+OADoqKiGDNmDNWrV6d379489NBDvPnmm/kc+SXuGFZLSkrir7/+ApQciYiItZQcWSgxMZHVq1fTsWPHdMs7duzI0qVLXT5m2bJlGdbv1KkTq1at4sKFC3kWa1bcMay2Z88eLly4QGhoKJHZzdgtIiKShxyX8x84cCDD+cofkiNLrxc/cuQIycnJzksGHcqUKcOBAwdcPubAgQMu109KSuLIkSNEuLjb/fnz5zl//rzz+xMnTgBw8uTJLONzPOb8+fNZruu4z0xSUlK2z+m4RP/YsWPp1l23bh0AFStWzHT2bBERkfxgt9spVqwYx44dY926ddSpU8f5M8c5NCAgINtznsPp06ezXDcpKQlIPZ9mtZ7jZ3mebBkL7d271wBm6dKl6ZaPGDHCVK1a1eVjYmJizMiRI9MtW7JkiQHM/v37XT7mpZdeMoC+9KUvfelLX/ryga8dO3a4JxHJhKWVo5IlS2K32zNUiQ4dOpShOuRQtmxZl+sHBgZSokQJl48ZMmQITz75pPP748ePEx0dzZ49eyhSpMhVboX3OHnyJBUqVODvv/+mcOHCVoeTb7Td2m5/oO3WdvuDEydOEBUVRfHixfP0dSxNjoKDg4mNjWXu3LncdtttzuVz587llltucfmYZs2a8d1336Vb9tNPP9GwYUOCgoJcPiYkJISQkJAMy4sUKeJXB5VD4cKFtd1+RNvtX7Td/sVftzsgIG9bpi2/Wu3JJ59k4sSJTJo0ic2bNzNo0CD27NlD//79gdSqT8+ePZ3r9+/fn927d/Pkk0+yefNmJk2aRHx8PE8//bRVmyAiIiI+xPIbeN19990cPXqUl19+mf3791OrVi1mz57tvPHq/v370815VKlSJWbPns2gQYN4//33KVeuHO+88w533HGHVZsgIiIiPsTy5AhgwIABDBgwwOXPpkyZkmFZmzZtWLNmzRW/XkhICC+99JLLoTZfpu3WdvsDbbe22x9ou/N2u23GeNnkAyIiIiJ5yPKeIxERERFPouRIREREJA0lRyIiIiJpKDkSERERScNnk6P/+7//o3nz5hQoUICiRYvm6DHGGIYNG0a5cuUICwujbdu2bNy4Md0658+fZ+DAgZQsWZLw8HBuvvlmEhIS8mALrsyxY8e4//77KVKkCEWKFOH+++/n+PHjWT7GZrO5/HrjjTec67Rt2zbDz++555483pqcu5LtfuCBBzJsU9OmTdOt42v7+8KFCzz77LPUrl2b8PBwypUrR8+ePdm3b1+69Txtf48dO5ZKlSoRGhpKbGwsixcvznL9hQsXEhsbS2hoKJUrV+aDDz7IsM5XX31FjRo1CAkJoUaNGsyYMSOvwr9iudnur7/+muuvv55SpUpRuHBhmjVrxo8//phunSlTprj8rJ87dy6vNyVXcrPdCxYscLlNf/75Z7r1fG1/u/r9ZbPZqFmzpnMdT9/fixYtomvXrpQrVw6bzcY333yT7WPy7bOdpzcnsdCLL75oRo8ebZ588klTpEiRHD3m1VdfNYUKFTJfffWV+eOPP8zdd99tIiIizMmTJ53r9O/f35QvX97MnTvXrFmzxlx33XWmbt26JikpKY+2JHc6d+5satWqZZYuXWqWLl1qatWqZW666aYsH7N///50X5MmTTI2my3dvWvatGlj+vTpk26948eP5/Xm5NiVbHevXr1M586d023T0aNH063ja/v7+PHjpkOHDmb69Onmzz//NMuWLTNNmjQxsbGx6dbzpP392WefmaCgIDNhwgSzadMm8/jjj5vw8HCze/dul+v/9ddfpkCBAubxxx83mzZtMhMmTDBBQUHmyy+/dK6zdOlSY7fbzciRI83mzZvNyJEjTWBgoPntt9/ya7Oyldvtfvzxx81rr71mVqxYYbZu3WqGDBligoKCzJo1a5zrTJ482RQuXDjDZ96T5Ha758+fbwCzZcuWdNuU9jPqi/v7+PHj6bb377//NsWLFzcvvfSScx1P39+zZ882Q4cONV999ZUBzIwZM7JcPz8/2z6bHDlMnjw5R8lRSkqKKVu2rHn11Vedy86dO2eKFCliPvjgA2NM6sEYFBRkPvvsM+c6e/fuNQEBAWbOnDlujz23Nm3aZIB0B8GyZcsMYP78888cP88tt9xi2rVrl25ZmzZtzOOPP+6uUN3qSre7V69e5pZbbsn05/6yv1esWGGAdL+EPWl/N27c2PTv3z/dsmrVqpnBgwe7XP8///mPqVatWrpl/fr1M02bNnV+361bN9O5c+d063Tq1Mncc889bor66uV2u12pUaOGGT58uPP7nP4+tFJut9uRHB07dizT5/SH/T1jxgxjs9nMrl27nMu8YX875CQ5ys/Pts8Oq+XWzp07OXDgAB07dnQuCwkJoU2bNixduhSA1atXc+HChXTrlCtXjlq1ajnXsdKyZcsoUqQITZo0cS5r2rQpRYoUyXF8Bw8eZNasWcTFxWX42dSpUylZsiQ1a9bk6aef5tSpU26L/WpczXYvWLCA0qVLc+2119KnTx8OHTrk/Jk/7G9IvZGjzWbLMPzsCfs7MTGR1atXp9sHAB07dsx0G5ctW5Zh/U6dOrFq1SouXLiQ5TqesF/hyrb7cikpKZw6dSrDDTpPnz5NdHQ0kZGR3HTTTaxdu9ZtcV+tq9nu+vXrExERQfv27Zk/f366n/nD/o6Pj6dDhw7Ou0s4ePL+zq38/Gx7xAzZnuDAgQMAlClTJt3yMmXKsHv3buc6wcHBFCtWLMM6jsdb6cCBA5QuXTrD8tKlS+c4vo8++ohChQpx++23p1vevXt3KlWqRNmyZdmwYQNDhgzh999/Z+7cuW6J/Wpc6XbfcMMN3HXXXURHR7Nz505eeOEF2rVrx+rVqwkJCfGL/X3u3DkGDx7Mfffdl+7mlZ6yv48cOUJycrLLz2Vm23jgwAGX6yclJXHkyBEiIiIyXccT9itc2XZf7q233uLMmTN069bNuaxatWpMmTKF2rVrc/LkSf773//SokULfv/9d2JiYty6DVfiSrY7IiKCDz/8kNjYWM6fP88nn3xC+/btWbBgAa1btwYyPyZ8ZX/v37+fH374gU8//TTdck/f37mVn59tr0qOhg0bxvDhw7NcZ+XKlTRs2PCKX8Nms6X73hiTYdnlcrLO1cjpdkPG+CF38U2aNInu3bsTGhqabnmfPn2c/69VqxYxMTE0bNiQNWvW0KBBgxw9d27l9Xbffffdzv/XqlWLhg0bEh0dzaxZszIkh7l53quVX/v7woUL3HPPPaSkpDB27Nh0P7Nif2clt59LV+tfvvxKPuv57UpjnDZtGsOGDePbb79Nl0A3bdo03UUHLVq0oEGDBrz77ru888477gv8KuVmu6tWrUrVqlWd3zdr1oy///6bN99805kc5fY5rXKlMU6ZMoWiRYty6623plvuLfs7N/Lrs+1VydGjjz6a7RUzFStWvKLnLlu2LJCamUZERDiXHzp0yJmFli1blsTERI4dO5aumnDo0CGaN29+Ra+bEznd7vXr13Pw4MEMPzt8+HCGTNqVxYsXs2XLFqZPn57tug0aNCAoKIht27bl2ckyv7bbISIigujoaLZt2wb49v6+cOEC3bp1Y+fOnfzyyy/pqkau5Mf+dqVkyZLY7fYMf/Wl/VxermzZsi7XDwwMpESJElmuk5vjJS9dyXY7TJ8+nbi4OL744gs6dOiQ5boBAQE0atTIecxb7Wq2O62mTZvyv//9z/m9L+9vYwyTJk3i/vvvJzg4OMt1PW1/51a+frZz1aHkhXLbkP3aa685l50/f95lQ/b06dOd6+zbt8/jGnSXL1/uXPbbb7/luEG3V69eGa5ayswff/xhALNw4cIrjtddrna7HY4cOWJCQkLMRx99ZIzx3f2dmJhobr31VlOzZk1z6NChHL2Wlfu7cePG5uGHH063rHr16lk2ZFevXj3dsv79+2do2rzhhhvSrdO5c2ePa9DNzXYbY8ynn35qQkNDs21sdUhJSTENGzY0Dz744NWE6lZXst2Xu+OOO8x1113n/N5X97cxlxrS//jjj2xfwxP3twM5bMjOr8+2zyZHu3fvNmvXrjXDhw83BQsWNGvXrjVr1641p06dcq5TtWpV8/XXXzu/f/XVV02RIkXM119/bf744w9z7733uryUPzIy0sybN8+sWbPGtGvXzuMu7a5Tp45ZtmyZWbZsmaldu3aGS7sv325jjDlx4oQpUKCAGTduXIbn3L59uxk+fLhZuXKl2blzp5k1a5apVq2aqV+/vtdu96lTp8xTTz1lli5danbu3Gnmz59vmjVrZsqXL+/T+/vChQvm5ptvNpGRkWbdunXpLu89f/68Mcbz9rfjEuf4+HizadMm88QTT5jw8HDnVTmDBw82999/v3N9x+W+gwYNMps2bTLx8fEZLvf99ddfjd1uN6+++qrZvHmzefXVVz320u6cbvenn35qAgMDzfvvv5/pFAzDhg0zc+bMMTt27DBr1641Dz74oAkMDEyXYFstt9v99ttvmxkzZpitW7eaDRs2mMGDBxvAfPXVV851fHF/O/To0cM0adLE5XN6+v4+deqU89wMmNGjR5u1a9c6r5y18rPts8lRr169DJDha/78+c51ADN58mTn9ykpKeall14yZcuWNSEhIaZ169YZsvGzZ8+aRx991BQvXtyEhYWZm266yezZsyeftip7R48eNd27dzeFChUyhQoVMt27d89wievl222MMePHjzdhYWEu57LZs2ePad26tSlevLgJDg42VapUMY899liGOYGslNvt/vfff03Hjh1NqVKlTFBQkImKijK9evXKsC99bX/v3LnT5eci7WfDE/f3+++/b6Kjo01wcLBp0KBBugpWr169TJs2bdKtv2DBAlO/fn0THBxsKlas6DLp/+KLL0zVqlVNUFCQqVatWrqTqafIzXa3adPG5X7t1auXc50nnnjCREVFmeDgYFOqVCnTsWNHs3Tp0nzcopzJzXa/9tprpkqVKiY0NNQUK1bMtGzZ0syaNSvDc/ra/jYmtbodFhZmPvzwQ5fP5+n721H1yuyYtfKzbTPmYjeTiIiIiPju7UNEREREroSSIxEREZE0lByJiIiIpKHkSERERCQNJUciIiIiaSg5EhEREUlDyZGIiIhIGkqORERERNJQciQiIiKShpIjERERkTSUHImIT3n55ZepXbs24eHhlClThocffpgLFy5YHZaIeJFAqwMQEXEXYwzJycmMHz+e8uXLs2nTJnr27EmdOnV4+OGHrQ5PRLyEbjwrIj7tvvvuo1SpUvz3v/+1OhQR8RIaVhMRn7F7924effRRatWqRbFixShYsCCff/45kZGRVocmIl5EyZGI+IQjR47QuHFjjhw5wujRo1myZAnLli3DbrdTr149q8MTES+iniMR8QmzZ88mKSmJadOmYbPZAHj//fdJTExUciQiuaLkSER8QvHixTl58iQzZ86kRo0afPfdd4waNYry5ctTqlQpq8MTES+ihmwR8QnGGB5++GE+/fRTwsLC6NGjB+fOnWP37t18//33VocnIl5EyZGIiIhIGmrIFhEREUlDyZGIiIhIGkqORERERNJQciQiIiKShpIjERERkTSUHImIiIikoeRIREREJA0lRyIiIiJpKDkSERERSUPJkYiIiEgaSo5ERERE0lByJCIiIpLG/wM2QZs5n1H/wgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB86klEQVR4nO3dd3xT5ffA8U+a7gJlQ6G0rLJ32VtAQBAngjLVskRRwQXiAOQLior8VJZQlgLiAkEQBNlSdhEZsqGUDULZdOT5/dEmNG2SpiXtzTjv16sv6O1Ncm5v2nt6nvM8V6eUUgghhBBCCAC8tA5ACCGEEMKZSHIkhBBCCJGOJEdCCCGEEOlIciSEEEIIkY4kR0IIIYQQ6UhyJIQQQgiRjiRHQgghhBDpSHIkhBBCCJGOJEdCCCGEEOlIciRcwtmzZxk1ahR79uzJ9LXnn3+efPny5fi5ExMTGTRoECEhIej1eurUqZPzQB1gypQpzJkzJ9P2kydPotPpLH7Nneh0OkaNGqV1GA4xatQodDpdrj/2q6++omLFivj6+qLT6bh27RrPP/88ZcuWNdtv3LhxLFmyJEfx2PLff//x7LPPUrx4cXQ6HU888US2n6Ns2bI8//zzDo/Nma1ZswadTodOp+Py5ctmXytbtqzpaxk//P39NYrYc3hrHYAQ9jh79iyjR4+mbNmyDk9epk6dyvTp0/nqq6+IjIx8oETLEaZMmULRokUzXShCQkKIiYmhQoUK2gQmsq1fv3507NgxV19jz549vPrqq/Tr14++ffvi7e1N/vz5ef/993nttdfM9h03bhxdu3bNUfJiy0cffcTixYuZNWsWFSpUoHDhwg59fnd08+ZN+vfvT6lSpTh79mymry9evJh79+6ZbYuLi6N79+48+eSTeRWmx5LkSHi8ffv2ERAQwCuvvKJ1KDb5+fnRuHFjrcMQ2RAaGkpoaGiuvsb+/fsB6N+/Pw0bNjRtz8sket++fVSoUIGePXvm2Ws6yu3btwkMDMzz1x0+fDiFChWic+fOjB07NtPX69atm2nbqlWrgNSkW+QuGVbzQJcuXWLAgAGUKVMGPz8/ihUrRrNmzVizZo1pn9atW1OjRg1iYmJo2rQpAQEBlC1bltmzZwOwfPly6tWrR2BgIDVr1mTlypWZXmfz5s20bduW/PnzExgYSNOmTVm+fHmm/fbt28fjjz9OoUKF8Pf3p06dOsydO9f09fXr19OgQQMAXnjhBVNpOePQy9GjR+nUqRP58uWjTJkyvPHGG5n+8spIp9Mxc+ZM7ty5Y3reOXPm2BzCyvjaxuGP/fv389xzzxEcHEyJEiV48cUXSUhIMHuswWDgq6++ok6dOgQEBFCwYEEaN27M0qVLgdRS+v79+9mwYYMpHuPQiLWY7Pk+z5kzB51Ox7p163jppZcoWrQoRYoU4amnnrL4V6u9ypYty6OPPsrixYupVasW/v7+lC9fni+//DLTvnFxcfTq1YvixYvj5+dH1apV+fzzzzEYDFaf/+TJk3h7ezN+/PhMX9u4cSM6nY4ff/wRyN55uHv3LiNGjKBcuXL4+vpSunRpXn75Za5du2bx+H777Tfq1q1LQEAAVatW5bfffgNSv69Vq1YlKCiIhg0bsnPnTrPHWxoaW7RoEe3btyckJMT0fMOHD+fWrVvWv9FWtG7dml69egHQqFEjdDqdqeKYcVhNp9Nx69Yt5s6da3pvtW7d2ubz//fffwwePJjSpUvj6+tL+fLlGTlypOnnyvieXLNmDQcPHjQ97/r1660+Z1JSEm+//TYlS5YkMDCQ5s2bs337dov7nj9/noEDBxIaGoqvry/lypVj9OjRJCcnm+0XHx9P165dyZ8/PwULFqRnz57s2LEj08+LcQj+n3/+oX379uTPn5+2bdsCqcPrY8eOpUqVKqbfiy+88AKXLl3KFNeiRYto0qQJQUFB5MuXjw4dOhAbG2vze5nepk2b+Oabb5g5cyZ6vd6uxyilmD17NuXLl6dNmzZ2v5bIISU8TocOHVSxYsXUN998o9avX6+WLFmiPvjgA/X999+b9mnVqpUqUqSIqly5soqOjlarVq1Sjz76qALU6NGjVc2aNdXChQvVihUrVOPGjZWfn586c+aM6fHr169XPj4+KjIyUi1atEgtWbJEtW/fXul0OrPX+ffff1X+/PlVhQoV1Lx589Ty5cvVc889pwD1ySefKKWUSkhIULNnz1aAeu+991RMTIyKiYlRp0+fVkop1bdvX+Xr66uqVq2qPvvsM7VmzRr1wQcfKJ1Op0aPHm3zexETE6M6deqkAgICTM978eJFdeLECQWo2bNnZ3oMoD788EPT5x9++KECVOXKldUHH3ygVq9erSZOnKj8/PzUCy+8YPbY3r17K51Op/r166d+/fVX9fvvv6v//e9/6v/+7/+UUkrt3r1blS9fXtWtW9cUz+7du5VSymJM9n6fjd+/8uXLqyFDhqhVq1apmTNnqkKFCqmHHnrILEbjvpaOPaPw8HBVunRpFRYWpmbNmqVWrFihevbsqQD16aefmva7ePGiKl26tCpWrJiaNm2aWrlypXrllVcUoF566SWb398nn3xShYWFqeTkZLP9nnnmGVWqVCmVlJSUrfNgMBhUhw4dlLe3t3r//ffVH3/8oT777DMVFBSk6tatq+7evWt2fKGhoapGjRqm93ujRo2Uj4+P+uCDD1SzZs3UL7/8ohYvXqwqVaqkSpQooW7fvm16vDGm9D766CP1xRdfqOXLl6v169eradOmqXLlymU6D5Yem9H+/fvVe++9ZzpfMTEx6ujRo0qp1J+L8PBw074xMTEqICBAderUyfTe2r9/v9XnvnPnjqpVq5YKCgpSn332mfrjjz/U+++/r7y9vVWnTp2UUkrdvXtXxcTEqLp166ry5cubnjchIcHq8/bt21fpdDr11ltvqT/++ENNnDhRlS5dWhUoUED17dvXtN+5c+dUmTJlVHh4uJo+fbpas2aN+uijj5Sfn596/vnnTfvdvHlTVaxYURUuXFhNnjxZrVq1Sg0dOlSVK1cu0/u4b9++ysfHR5UtW1aNHz9e/fnnn2rVqlUqJSVFdezYUQUFBanRo0er1atXq5kzZ6rSpUuratWqmZ3T//3vf0qn06kXX3xR/fbbb+qXX35RTZo0UUFBQTa/n0a3b99WERER6q233lJK3T/Ply5dsvm4P/74QwFq7NixWb6GeHCSHHmgfPnyqddff93mPq1atVKA2rlzp2nblStXlF6vVwEBAWaJ0J49exSgvvzyS9O2xo0bq+LFi6sbN26YtiUnJ6saNWqo0NBQZTAYlFJKPfvss8rPz0/FxcWZvf4jjzyiAgMD1bVr15RSSu3YscPqBbtv374KUD/88IPZ9k6dOqnKlStn8d1IfXxQUJDZtpwkRxMmTDDbb/Dgwcrf3990rBs3blSAGjlypM14qlevrlq1apVpu6WY7P0+GxOewYMHmz3nhAkTFKDOnTtn2jZ37lyl1+vV3LlzbcapVGryoNPp1J49e8y2P/zww6pAgQLq1q1bSimlhg8frgC1bds2s/1eeuklpdPp1KFDh0zbMn5/161bpwC1ePFi07YzZ84ob29vs+TX3vOwcuVKi/stWrRIAeqbb74xO76AgAAVHx9v2mZ8v4eEhJiOTymllixZogC1dOnSTDFZYzAYVFJSktqwYYMC1N9//233Y42M53bHjh1m2zMmR0opFRQUZJaA2DJt2jSLP1effPKJAtQff/xh2taqVStVvXr1LJ/z4MGDClBDhw412z5//nwFmMU2cOBAlS9fPnXq1CmzfT/77DMFmBKRyZMnK0D9/vvvZvsNHDjQYnIEqFmzZpntu3DhQgWon3/+2Wy78ffOlClTlFJKxcXFKW9vbzVkyBCz/W7cuKFKliypunXrluX34I033lDly5c3JVz2Jkfdu3dXer3e7L0oco8Mq3mghg0bMmfOHMaOHcvWrVtJSkqyuF9ISAiRkZGmzwsXLkzx4sWpU6cOpUqVMm2vWrUqAKdOnQLg1q1bbNu2ja5du5o1N+v1enr37k18fDyHDh0CYO3atbRt25YyZcqYvfbzzz/P7du3iYmJseuYdDodXbp0MdtWq1YtU0x54bHHHsv0+nfv3uXixYsA/P777wC8/PLLDnm97HyfbcUImH2f+vTpQ3JyMn369LErjurVq1O7dm2zbT169OD69evs3r0bSD3P1apVM+uJgdTzrJRi7dq1Vp+/devW1K5dm8mTJ5u2TZs2DZ1Ox4ABAzLtn9V5ML5Wxob3Z555hqCgIP7880+z7XXq1KF06dKmz43v99atW5v1qmT8ObDm+PHj9OjRg5IlS6LX6/Hx8aFVq1YAHDx40OZj89LatWsJCgqia9euZtuN37eM3yd7rFu3DiBTb1K3bt3w9jZvgf3tt9946KGHKFWqFMnJyaaPRx55BIANGzaY/s2fP3+mxvfnnnvOahxPP/10ptcqWLAgXbp0MXutOnXqULJkSdMw4apVq0w/G+n38/f3p1WrVjaHEwG2b9/OpEmTmD59OgEBATb3Te+///5jyZIldOzY0ey9KHKPNGR7oEWLFjF27FhmzpzJ+++/T758+XjyySeZMGECJUuWNO1nacaJr69vpu2+vr5Aah8HwNWrV1FKERISkunxxqTqypUrpn/t2S8rgYGBmaa3+vn5mWLKC0WKFMn0+gB37twBUnu99Hq92ff4QWTn+2xvjDlh6XiM29Kf54zTym3FmZFxNtahQ4coX748M2bMoGvXrhZfO6tjvHLlCt7e3hQrVsxsP51OR8mSJTPFYu39ntXPgSU3b96kRYsW+Pv7M3bsWCpVqkRgYCCnT5/mqaeeeqDz4GhXrlyhZMmSmXqmihcvjre3t90/mxmfEzK/Z7y9vTOdtwsXLrBs2TJ8fHwsPpdx6vuVK1coUaJEpq9b2gapvysKFCiQ6bWuXbtmOofWXuvChQsAph7IjLy8bNcbXnzxRZ566inq169v6m8zvl+uX7+On58f+fPnz/S47777jnv37kkjdh6S5MgDFS1alEmTJjFp0iTi4uJYunQpw4cP5+LFixYbq7OrUKFCeHl5ce7cuUxfMzb/Fi1aFEi9kNmzX14zJloZG7pzckEwKlasGCkpKZw/f95iQpNd2fk+56bz589b3Wa84D3oee7RowfvvPMOkydPpnHjxpw/fz7HFbgiRYqQnJzMpUuXzBIkpRTnz5+3euFzhLVr13L27FnWr19vqhYBmRrBnUGRIkXYtm0bSimzBOnixYskJyfn6L1lfD+cP3/erAKSnJyc6WeraNGi1KpVi//9738Wn8uYWBcpUsRiQ7el9yVgce0o4wQFa7//jAmL8Zh/+uknwsPDLe5ry/79+9m/f79pEkF6FSpUoHbt2hbXcouOjqZEiRI8+uij2X5NkTMyrObhwsLCeOWVV3j44YdNQyAPKigoiEaNGvHLL7+Y/SVsMBj47rvvCA0NpVKlSgC0bdvWdMFIb968eQQGBpqmrjuiwpEdJUqUwN/fn71795pt//XXX3P8nMbhgKlTp9rcz8/Pz67jzM73OTft37+fv//+22zbggULyJ8/P/Xq1QNSz/OBAwcyvcfmzZuHTqfjoYcesvka/v7+DBgwgLlz5zJx4kTq1KlDs2bNchSvcXbSd999Z7b9559/5tatW6av5wbjhdn4fjaaPn16rr1meva+tyD1+3Tz5s1Mi0bOmzfP9PXsMs6Omz9/vtn2H374IdMMtEcffdS0RED9+vUzfRiTo1atWnHjxg3TsLXR999/b3dcjz76KFeuXCElJcXia1WuXBmADh064O3tzbFjxyzuV79+fZuvs27dukwfffv2BWDJkiXMnDkz02N27tzJ3r17TWtYibwh32kPk5CQwEMPPUSPHj2oUqUK+fPnZ8eOHaxcuZKnnnrKYa8zfvx4Hn74YR566CHefPNNfH19mTJlCvv27WPhwoWmi8SHH35o6i344IMPKFy4MPPnz2f58uVMmDCB4OBgIPWvqoCAAObPn0/VqlXJly8fpUqVMut9ciSdTkevXr1Mi9rVrl2b7du3s2DBghw/Z4sWLejduzdjx47lwoULPProo/j5+REbG0tgYCBDhgwBoGbNmnz//fcsWrSI8uXL4+/vT82aNS0+p73f5+yYN28eL774IrNmzbKr76hUqVI89thjjBo1ipCQEL777jtWr17NJ598YurJGTp0KPPmzaNz586MGTOG8PBwli9fzpQpU3jppZfsSuIGDx7MhAkT2LVrl8WLiL0efvhhOnTowDvvvMP169dp1qwZe/fu5cMPP6Ru3br07t07x8+dlaZNm1KoUCEGDRrEhx9+iI+PD/Pnz8+UXOaWmjVrsn79epYtW0ZISAj58+c3Xfgz6tOnD5MnT6Zv376cPHmSmjVrsnnzZsaNG0enTp1o165dtl+/atWq9OrVi0mTJuHj40O7du3Yt28fn332WaahrjFjxrB69WqaNm3Kq6++SuXKlbl79y4nT55kxYoVTJs2jdDQUPr27csXX3xBr169GDt2LBUrVuT33383rQmU1VAXwLPPPsv8+fPp1KkTr732Gg0bNsTHx4f4+HjWrVvH448/zpNPPknZsmUZM2YMI0eO5Pjx43Ts2JFChQpx4cIFtm/fTlBQEKNHj7b6OpaWTjD2KTVr1sxiNS46OhqAqKioLI9DOJCm7eAiz929e1cNGjRI1apVSxUoUEAFBASoypUrqw8//NBs5o212Sfh4eGqc+fOmbYD6uWXXzbbtmnTJtWmTRsVFBSkAgICVOPGjdWyZcsyPfaff/5RXbp0UcHBwcrX11fVrl3b4iyxhQsXqipVqigfHx+zGU2WZpspZf9sH2uPT0hIUP369VMlSpRQQUFBqkuXLurkyZNWZ6tlnG1inEV04sQJ07aUlBT1xRdfqBo1aihfX18VHBysmjRpYvZ9OXnypGrfvr3Knz+/AkwzjqzNoLPn+2xtRpNxJti6desy7WvvVP7OnTurn376SVWvXl35+vqqsmXLqokTJ2ba99SpU6pHjx6qSJEiysfHR1WuXFl9+umnKiUlxWy/jN/f9Fq3bq0KFy5sNrXaKDvn4c6dO+qdd95R4eHhysfHR4WEhKiXXnpJXb161eLxZWTp/W48P+mXMLD0HtyyZYtq0qSJCgwMVMWKFVP9+vVTu3fvzvQ9z43Zanv27FHNmjVTgYGBCrA4KzK9K1euqEGDBqmQkBDl7e2twsPD1YgRI8yWO1DK/tlqSil179499cYbb6jixYsrf39/1bhxYxUTE6PCw8MzzaS7dOmSevXVV1W5cuWUj4+PKly4sIqMjFQjR45UN2/eNO0XFxennnrqKZUvXz6VP39+9fTTT6sVK1YoQP36669m3xNLP+tKKZWUlKQ+++wzVbt2beXv76/y5cunqlSpogYOHKiOHDlitu+SJUvUQw89pAoUKKD8/PxUeHi46tq1q1qzZo1d34P0bM1Wu337tgoODlYtW7bM9vOKB6NTSqk8zMWEEG6kbNmy1KhRw7QoYm66ePEi4eHhDBkyhAkTJuT66wnXNm7cON577z3i4uJyfZVy4X5kWE0I4dTi4+M5fvw4n376KV5eXpnuFybE119/DUCVKlVISkpi7dq1fPnll/Tq1UsSI5EjkhwJIZzazJkzGTNmDGXLlmX+/PmyzovIJDAwkC+++IKTJ09y7949wsLCeOedd3jvvfe0Dk24KBlWE0IIIYRIR/Op/Bs3bqRLly6UKlUKnU6XadqoJRs2bCAyMtJ0k8tp06blfqBCCCGE8AiaJ0e3bt2idu3apjHjrJw4cYJOnTrRokULYmNjeffdd3n11Vf5+eefczlSIYQQQngCpxpW0+l0LF68mCeeeMLqPu+88w5Lly41uwfRoEGD+Pvvv+2+D5cQQgghhDUu15AdExND+/btzbZ16NCB6OhokpKSLN6H5969e2a3gTAYDPz3338UKVIkR4vkCSGEECLvKaW4ceMGpUqVsmuBz5xyueTo/PnzmW4oWKJECZKTk7l8+bLFe1aNHz/e5qqlQgghhHAdp0+fztVlGlwuOYLMNw40jgxaqwKNGDGCYcOGmT5PSEggLCyM999/nzfffNPq6wwbNozo6GiGDx/OiBEjHBC5EMKhzpwhbssWHh4xgvOXLlGkSBFee+01qlatyqZNm5g6dSpJSUlE1qrFsvffJ6h6dZClAIRwOt27d2flypV8+eWXpvvNWfL888+zePFi082Ac4vLJUclS5bMdLflixcv4u3tbbrjc0Z+fn6ZbvQIqTezzHg/n/R8fX3t2k8IoYHoaG7378+zSnEeqF6qFKu2bzetg9S1a1d69+5Nh9at2bV3L6898wyLdDp0M2aA3KdKCKdibIkJCAiweb017pfbLTGaz1bLriZNmrB69WqzbX/88Qf169e32G8khHBD8fEwYABvKcV+oCSw6vx5SmeYX1K/ZEmW3r6ND/AjMEcpGDgw9fFCCGGF5snRzZs32bNnD3v27AFSp+rv2bOHuLg4IHVILP2dwQcNGsSpU6cYNmwYBw8eZNasWURHR9scHhNCuJkjR9hpMDA17dNvgdIGAxw9mmm/ZkoxNu3TocDFlJTM+wkhRDqaJ0c7d+6kbt261K1bF0jt86lbty4ffPABAOfOnTMlSgDlypVjxYoVrF+/njp16vDRRx/x5Zdf8vTTT2sSvxAi76mKFXkNUEAvoB2AXg8VK5rvGBEBXl4MA+oBCcBYnS7zfkIIkY7mPUetW7fG1lJLc+bMybStVatW7N69OxejEkI4s1+2b2cLEAh8DKmJ0fTpkHH2SmgofPMN3gMHMiElhXbANC8vXk9MpHyeRy2EcBWaV46EECI7lFKMHz8egKFDhlB63To4edJ6k3VUFJw8Sdt163i4RQuSUlIYM2ZM3gUshHA5khwJIVzKmjVr2LVrFwEBAbz2/vvQunXmilFGoaHQujUfffopAAsWLODcuXO5H6wQwiVJciSEcCkTJkwAoH///hQrVixbj23UqBFNmzYlKSmJKVOm5EZ4Qgg3IMmREMJlHDlyhDVr1qDT6Rg6dGiOnsO4IOzUqVO5c+eOI8MTQrgJSY6EEC5j5syZADzyyCOULVs2R8/xxBNPEB4ezpUrV1i8eLEDoxNCuAtJjoQQLiExMZHZs2cDMGDAgBw/j16v5/nnnwcwPZ8QQqQnyZEQwiX89ttvXLp0iVKlStG5c+cHei5jcvTnn39y6tQpB0QnhHAnkhwJIVzCwoULAejZsyfe3g+2RFvZsmVp06YNSinmzp3riPCEEG5EkiM72FqkUgiR+27cuMFvv/0GwHPPPeeQ5zTe+XvRokUOeT4hhPuQ5EgI4fSWLl3K3bt3qVSpEnXq1HHIcz722GP4+Phw4MABDhw44JDnFELkjLEIodPpNI4klSRHNuTkJCUnJzNhwgS5vYkQDvT9998D8Oyzzzrsl2fBggVp3749AD/99JNDnlMIAe+++y59+/Z16VEXSY4cbPLkybzzzjtERkZqHYoQbuHq1ausWrUKgO7duzv0ubt27QrAjz/+6NDnFcJTGQwGxo8fz7x589i+fbvW4eSYJEcOtnbtWq1DEMKtLF26lKSkJGrWrEm1atUc+tyPP/44Pj4+7Nu3j3///dehzy2EJ7p+/brp/+fPn9cwkgcjyZGDJSQkaB2CEG7F2Ij9xBNPOPy5CxUqRLt27QCpHgnhCFevXjX9/8yZMxpG8mAkOXKw9G8MVx5vFcIZJCYmmobUunTpkiuv8dRTTwH3kzAhRM5du3bN9P8TJ05oF8gDkuTIwdLfq+n27dsaRiKE69u4cSM3btygZMmSudbH16lTJwB27NjBxYsXc+U1hPAU6QsEV65c0TCSByPJkYOlX5wufQYthMi+ZcuWAdC5c2e8vHLn11WpUqWoU6cOSilWrlyZK68hhKdInxzdu3dPw0gejCRHDpb+zZD+TSKEyB6llCk5evTRR3P1tYy3I1mxYkWuvo4Q7i59UUCSI2GS/s0glSMhcu7gwYOcOHECPz8/Hn744Vx9LePQ2qpVq0hOTs7V1xLCnUlyJCxK/2ZIP6VRCJE9xkbs1q1bExQUlKuv1ahRIwoXLsy1a9eIiYnJ1dcSwp3dunXL9H9JjoRJ+jeDK78xhNDamjVrAHK9agSg1+vp2LEjIENrQjyIu3fvmv7vytdASY4cTJIjIR5cYmIiGzZsADCtQ5TbOnToANxPyoQQ2ecu10BJjhxIKUViYqLp8/QZtBDCftuWLePWrVsUK1KEmjVr5slrtm3bFoBdu3ZxdelSiI/Pk9cVwp1I5ciD2LuYY/rECCQ5EiJHoqNZk3bPs7ZXruA1e3aevGzp0qWpXLIkSik2PP44hIdDdHSevLYQ7kKSI5FJxjeCJEdCZFN8PAwYgHFgqx3AwIF5U8WJj6dN2r2g/gQwGPLutYVwEw+aHOl0OkeGk2OSHDlQxjeCK2fNQmjiyBGuGwxsS/u0HUBKChw9miev3Tbtv6bbR+fVawvhJnLac+Rst9uS5MiG7GawUjkS4gFFRLBBpyMFqAiEA+j1ULFinrx2a50OHXAAOJeXry2Em0h/3cvYauJKJDlyIEmOhHhAoaGsadMGSKsa6fUwfTqEhubJaxeZMYM6aZ+u1eny7rWFcBPScyQykeRIiAe39sIFANqOGgUnT0JUVN69eFQUbQcOTI2jW7e8fW0h3IAkRyIT6TkS4sFcuXKFffv2AdDypZc0qdq0feIJAP7cutXp+iCEcHYZe45c9WdIkiMHksqREA/mr7/+AqBKlSoUL15ckxiaN2+Ot7c3p06d4uTJk5rEIISrynjdS0pK0iiSByPJkQPJOkdCPJhNmzYB0KJFC81iyJcvH5GRkQBs3rxZsziEcEUZr3uuOoIiyZEDSeVIiAezceNGAFq2bKlpHMbkzJisCSHsI8mRyER6joTIuZs3b7J7925A28pR+teX5EiI7HGX66AkRw6UnJxs9rlUjoSw39atW0lOTqZMmTKEh4drGkuzZs0A+Pfff7l06ZKmsQjhSjJe91JSUjSK5MFIcuRAGd8EkhwJYT9jlUbrITWAIkWKUL16dUD6joTIjoyVIkmORKbKkSuvDipEXnOGZuz0mjdvDsjQmhD2Ukpluu5lvC66CkmOHCjjm8BVpzAKkdcSExOJiYkBnCc5kr4jIbLHUiIklSNhehP4+voCkhwJYa9du3Zx9+5dihYtStWqVbUOB7ifHMXGxnLz5k2NoxHC+aW/5gUEBABSOXJr9q7waXwT+Pv7A5IcCWEvY3WmefPm2b7hc24JCwsjLCyMlJQUtm7dqnU4Qji99ENqxuRIKkfC9CYwvikkORLCPs7Wb2QkQ2tC2C/9Nc9YJMhu5chZ/jiS5MiBjG8CSY6EsJ9SylSZadq0qcbRmDNO6Tf2QwkhrDNWjvR6vam9xN7kyNnuwSbJkQ3ZzWClciRE9p08eZLLly/j4+NDnTp1tA7HTJMmTQDYtm0bBoNB42iEcG7Ga56Pjw96vR6QYTWBVI6EyInt27cDULt2bVMp3lnUqFGDoKAgrl+/zsGDB7UORwinZqwc+fr64u3tDUhDtuB+hiwN2ULYz5gcNWzYUONIMvP29qZBgwaADK0JkZX0lSNjciSVIyGVIyFywJmTI7g/tCYz1oSwLX3lyDisJpUjIZUjIbIpOTmZXbt2Ac6bHDVu3BiQypEQWTFe89IPq0nlSGSqHBkMBmniFMKG/fv3c+fOHfLnz0/lypW1DsciY3J04MABrl27pm0wQjgxY+UofUO2VI5EpsoRSPVICFuMQ2oNGjTAy8s5fx0VL16c8uXLA/fjFUJkJpUjYVHGyhFIciSELc7eb2QkfUdCZE0qR8IiqRwJkT3G5KhRo0YaR2Kb9B0JkTWpHAmLMt5bDSQ5EsKaW7dusW/fPsB1KkeyGKQQ1knlSFhkfBN4e3ubsmZJjoSwbPfu3RgMBkqXLk2pUqW0DsemWrVqERAQwNWrVzl8+LDW4QjhlKRyJCwyvgm8vb3x8fEBJDkSwhpX6TeC1L+E69evD0jfkRDWSOXIw9h7Qzzjm0Cv10tyJEQWtm3bBrhGcgTSdyREVtypcuStdQDuRCpHQtjPlSpHIDPWhMhK+sqR8cbt2a0cZfeG77lFKkcOJJUjIexz4cIFTp06hU6nIzIyUutw7GKsHO3bt48bN25oHI0QzsedKkeSHDmQVI6EsM+OHTsAqFKlCsHBwRpHY5+QkBDKlCmDwWBg9+7dWocjhNN5kJ4je9tX8ookRzZkt7wnlSMh7ONqQ2pGDRo0AO4nd0KI+4zXOx8fH1PlSBqyhVSOhLCTqyZHxnjlNiJCZGYpOXLVYTVpyHYgqRwJkTWllMsmR1I5EsK69Gv9GRdLlcqRkMqREHY4duwYV69exdfXl1q1amkdTrZERkai0+k4efIkly5d0jocIZyKMRFyh8qRJEcOZKlyZGxQE0KkMlaN6tati6+vr8bRZE9wcDCVK1cGpHokREbpK0eyCKQDTJkyhXLlyuHv709kZCSbNm2yuf/8+fOpXbs2gYGBhISE8MILL3DlypU8itY6qRwJkTVXHVIzkr4jISwzXu/S30JLKkc5tGjRIl5//XVGjhxJbGwsLVq04JFHHiEuLs7i/ps3b6ZPnz5ERUWxf/9+fvzxR3bs2EG/fv3yOPLMpOdIiKwZk4pGjRppHEnOSHIkhGXph9WkcvSAJk6cSFRUFP369aNq1apMmjSJMmXKMHXqVIv7b926lbJly/Lqq69Srlw5mjdvzsCBA9m5c2ceR55Z+pKiJEdCZJaUlGRaI8hVK0fpm7KdbW0WIbRk6ebrUjnKgcTERHbt2kX79u3Ntrdv354tW7ZYfEzTpk2Jj49nxYoVKKW4cOECP/30E507d7b6Ovfu3eP69etmH7nB+CbQ6/WmXgpJjoS47581a7h37x4Fg4OpWLGi1uHkSO3atfHx8eHy5cucXLgQ4uO1DkkIp5B+WE0qRw/g8uXLpKSkUKJECbPtJUqU4Pz58xYf07RpU+bPn0/37t3x9fWlZMmSFCxYkK+++srq64wfP57g4GDTR5kyZRx6HEZSORLChuhotqf9EdMwIQHdrFkaB5Qzfn5+1C5dGoAdPXtCeDhER2sclRDak8qRg2VciVopZXV16gMHDvDqq6/ywQcfsGvXLlauXMmJEycYNGiQ1ecfMWIECQkJpo/Tp087NH4jacgWwor4eBgwgO1pw1ANAQYOdM2qS3w8DU+eBGA7gMHguscihAO5U8+RpotAFi1aFL1en6lKdPHixUzVJKPx48fTrFkz3nrrLQBq1apFUFAQLVq0YOzYsYSEhGR6jJ+fH35+fo4/gAykIVsIK44cAYOBbWmfNgRISYGjRyE0VMPAcuDIERqk/dc0md9Vj0UIB5Kp/A7i6+tLZGQkq1evNtu+evVqmjZtavExt2/fxsvLPGzjScit5kh7n9e4IqgkR0JkEBHBdZ2Og2mfNgDQ68EV+44iImiYVtneBaSA6x6LEA5kqefIVSctaD6sNmzYMGbOnMmsWbM4ePAgQ4cOJS4uzjRMNmLECPr06WPav0uXLvzyyy9MnTqV48eP89dff/Hqq6/SsGFDSpUqpdVhAPeTIy8vL0mOhEgvNJRdb7yBAsKAkno9TJ/umpWW0FAqT59OPuAWcNDLy3WPRQgHSj+sZixiGK+L9sruDd9zi+b3VuvevTtXrlxhzJgxnDt3jho1arBixQrCw8MBOHfunNmaR88//zw3btzg66+/5o033qBgwYK0adOGTz75RKtDMJHkSAjrthctCkDDVq3gu+9cOpnQ9+9P/dmzWR8Tw/ZPPqFGVJTWIQmhufTDasbkyFUbsjVPjgAGDx7M4MGDLX5tzpw5mbYNGTKEIUOG5HJU2SfJkRDWmVbG7tzZpRMjowbNm7M+JoYdx47xotbBCOEELA2r2Vs5crbhN82H1ZxZdst7xgxZkiMhMnP124ZkJCtlC2HOEcNqzkKSIweShmwhLDt79izx8fF4eXkRGRmpdTgOYVwpe+/evdy9e1fjaITQnqVhNUmOhAyrCWGF8Q721apVI1++fBpH4xhhYWEUL16c5ORk9uzZo3U4QmjOnXqOJDlyIEmOhLDM3YbUIHXY3Vg9kqE1IR6s58jZSHLkQNJzJIRlxuShUaNGGkfiWMZkz1gZE8KTSc+RsEh6joTIzGAwmJIHd6ocAVI5EiId6TkSFsmwmhCZHTlyhISEBAICAqhevbrW4TiUMTk6fPgw165d0zYYITSWflhNeo6EiSRHQmRmrKrUq1fP9HPhLooWLUq5cuUA2Llzp8bRCKEtSzeelcqRkJ4jISxwx2bs9KTvSIhUMqwmLJKeIyEyc/fkSPqOhEglyZGwSIbVhDB379490xpA7pocSeVIiFTG653MVvMQ9t7zRZIjIcz9/fffJCYmUqRIEVNvjrupV68eXl5enDlzhrNnz2odjhCakUUghUWSHAlhLv2QWnbvVegqgoKCTLPwpHokPFn65CinDdnO8ntCkiMHstSQbXyzCOGJ3L3fyEj6joSwPJVfhtWEWUO2t7c3IMmR8GyekhxJ35EQskK2sCL9sJoxOZJhNeGprl27xqFDh4D7lRV3ZTy+HTt22N2jKIS7eZCeI2f7uZHkyIbsjn1aSo6kciQ8lXFRxHLlylGsWDGNo8ldNWvWxM/Pj2vXrnH06FGtwxEizxkMBtM1UG48K8xIz5EQ93nKkBqkDiPUrVsXkKE14ZnSX+tkWE2YkZ4jIe4zJkeNGjXSOJK8IU3ZwpOlv9ZJQ7YwST9eKj1HwtMppdi2bRvgGZUjkKZs4dmsJUeyzpGHS58dy7Ca8HRnzpzh/Pnz6PV603CTuzNWjnbv3i1/FAmPk/49L8NqwiR9diwN2cLTGYeWatasSWBgoMbR5I2IiAiCg4O5e/cu+/fv1zocIfJU+mudl5eXNGSLVOnfAOl7juQvSOGJPKkZ28jLy4v69esD0nckPE/6afw6nU4qRyJVxmE1qRwJT+aJyRFI35HwXOmTI0CSI5FKeo6ESJWSkmJKDjwtOZIZa8JTGUdJjNc+acgWgFSOhDD6999/uXnzJkFBQVSrVk3rcPKUMRncv38/t27d0jgaIfJOxsqR9Bx5AHuWNbfWkJ1+1VAhPIGxahIZGWn6BekpSpcuTUhICCkpKcTGxmodjhB5RobVhEUZG7KNpUWQ6pHwLJ7ab2QkfUfCE1kbVstucpTd23blFkmOHCT9G0Cn05myZ5DkSHgWT0+OpO9IeCJrlSPpOfJwxuRIp9NlSo5kOr/wFHfu3GHv3r2A5yZHUjkSnkh6joRF6W86C0jlSHikPXv2kJycTPHixQkLC9M6HE0Y1zo6duwYV65c0TgaIfKG8Tr3oMNqzkKSIwdJf9NZ47/GsVNJjoSnSD+k5iy9A3mtUKFCVKxYEYCdO3dqHI0QecM4QpLThmx7Jj7lJUmObMjOL3fjG8D4hgBkOr/wOJ52s1lrjMcvfUfCU0jPkbDIVnIkPUfCUxiTgUaNGmkcibaMTdnSdyQ8hUzlFxZl7DkCqRwJz3L58mWOHTsGSOUofeXI2YYLhMgNGafyS0O2ADL3HAFyCxHhUYxVo8qVK1OwYEFtg9FYnTp10Ov1XLhwgfj4eK3DESLXSeVIWCTDasLTSb/RfYGBgdSsWROQviPhGSQ5EhZJQ7bwdMbkyNP7jYyk70h4EmtT+aUh28NZSo5kWE14CqWUNGNnIItBCk+ScSq/9BwJwHZDtgyrCXd35MgRrl69ip+fH7Vq1dI6HKdgrBzt3LnTZS8QQthLhtWERZYasmVYTXgK45BavXr18PX11Tga51C9enUCAgK4fv06hw8f1jocIXKVrJAtLJKeI+HJtq9dC0CjatU0jsR5eHt7U69ePQC2z50LMmtNuDFbK2S74nIWkhzZwZ4TKz1HwmNFR7NtzhwAGs2aBdHR2sbjRBoGBgKw4+OPITxcvjfCbVm78Sw4361B7CHJkYNIz5HwSPHx3O3fnz1pnzZSCgYOlCoJQHw8DdasAWA7gMEg3xvhtqz1HEH2htac5Z6Mkhw5iPQcCY905Ah7lCIJKAaUBUhJgaNHNQ3LKRw5QsO0v5j3APdAvjfCbWVcITunyZGzkOTIQWRYTXikiAi2pf2l1wjQAej1kHZXeo8WEUF5nY6iQCIQC/K9EW7LUZUjZyHJkYPICtnCI4WGsi1tynpDSL34T58OoaGahuUUQkPRzZhB47RPt+p08r0RbstWcuSKC0FKcuQgcuNZ4am2Xb4MQKMJE+DkSYiK0jYgZxIVRZO33wYgpnNn+d4It5VxKn/6FhN7KkfO1rQtyZEN2WkMk54j4YkuXbrE8ePHAWjYv79URSxo3KEDAFv37tU4EiFyj7Wp/CDDah5Neo6EJzLeMqRy5coULFhQ22CcVIMGDfDy8iIuLo6zZ89qHY4QuUJ6joRF0nMkPJHcTy1r+fPnp0aNGgBs3bpV42iEyB3WVsgG6TnyaLJCtvBExtuGSHJkW+PGqW3ZkhwJdyXDasIiSw3ZMqwm3JlSSipHdmrSpAkAMTExGkciRO7IOKwG96+HUjnyYMZOexlWE57i8OHDXL16FX9/f2rVqqV1OE7NWDnauXOn/D4QbslScmSc1ORsM9HsIcmRgxjLhulnuMmwmnBnxipI/fr1TVVSYVmlSpUoVKgQd+/e5e+//9Y6HCEcLmPPEdwvFkhy5MFsVY4kORLuaMuWLQA0bdpU40icn5eXl2noUfqOhDvK2HME94sF0nPkwWQqv/A0khxlj7HvSJIj4Y5s9RxJ5chN2XNibQ2rSY+BcDfXrl3jwIEDwP2LvrDN2HckTdnCHVkaVpPKkZBhNeFRtm3bhlKKChUqULx4ca3DcQmNGjVCp9Nx/PhxLl68qHU4QjiUpWG1nFSOsnNnitwkyZGDWKocybCacFcypJZ9wcHBVK1aFZChNeF+bA2rSeXIg8lUfuFJjMmRDKlljywGKdyVDKsJi2Qqv/AUKSkpppWxpXKUPbIYpHBX0pAtLJKeI+Ep9u/fz40bN8iXL5/pnmHCPsbK0Y4dO+T3gnArMpU/F0yZMoVy5crh7+9PZGQkmzZtsrn/vXv3GDlyJOHh4fj5+VGhQgVmzZqVR9FaJj1HwlMYh9QaN26MXq/XOBrXUq1aNQoUKMCtW7fYv3+/1uEI4TAPWjlytuqS5snRokWLeP311xk5ciSxsbG0aNGCRx55hLi4OKuP6datG3/++SfR0dEcOnSIhQsXUqVKFYfHlp2ueVs3npWeI+FOpN8o57y8vGjYsCFw//sohDuQniMHmzhxIlFRUfTr14+qVasyadIkypQpw9SpUy3uv3LlSjZs2MCKFSto164dZcuWpWHDhpr3PsiwmvAUxn4ZrX/mXFWzZs0A+OuvvzSORAjHcdRUfmehaXKUmJjIrl27aN++vdn29u3bW/2raunSpdSvX58JEyZQunRpKlWqxJtvvsmdO3esvs69e/e4fv262YejSUO28AQXL17k6NGjwP3+GZE9zZs3B2Dz5s0aRyKE49i68awrVo68s94l91y+fJmUlBRKlChhtr1EiRKcP3/e4mOOHz/O5s2b8ff3Z/HixVy+fJnBgwfz33//We07Gj9+PKNHj3Z4/OlZqhwZy4syrCbchbFqVK1aNQoWLKhtMC6qUaNG6PV6Tp06xenTpylTpozWIQnxwOTGs7kgY2+PUspqv4/BYECn0zF//nwaNmxIp06dmDhxInPmzLFaPRoxYgQJCQmmj9OnTzv8GKRyJDyBLP744PLnz0+dOnUAGVoT7kMWgXSgokWLotfrM1WJLl68mKmaZBQSEkLp0qUJDg42batatSpKKeLj4y0+xs/PjwIFCph9OJr0HAlPIP1GjiFDa8LdyFR+B/L19SUyMpLVq1ebbV+9erXVX77NmjXj7Nmz3Lx507Tt8OHDeHl5ERoamqvx2iJT+YW7S0xMZMeOHYAkRw/KmBxJ5Ui4CxlWc7Bhw4Yxc+ZMZs2axcGDBxk6dChxcXEMGjQISB0S69Onj2n/Hj16UKRIEV544QUOHDjAxo0beeutt3jxxRcJCAjQ6jDk9iHC7e3evZu7d+9SuHBhKlWqpHU4Ls04Y23v3r0kJCRoHI0QD87dGrI1T466d+/OpEmTGDNmDHXq1GHjxo2sWLGC8PBwAM6dO2e25lG+fPlYvXo1165do379+vTs2ZMuXbrw5ZdfanUIgO11jqRyJNyBcXHWFi1aOM2ds11VSEgIFSpUwGAwyH3WhFtwt6n8ms5WMxo8eDCDBw+2+LU5c+Zk2lalSpVMQ3G5yZ4TKw3Zwt2lT47Eg2vevDnHjh1j8+bNdOjQQetwhHggUjkSFslUfuHODAaDqXlYkiPHkKZs4U4c1XPkLFVpSY4cRCpHwp3t37+fq1evEhgYSN26dbUOxy0Yk6Nt27aRmJiocTRCPBipHAmLZCq/cGfGIbUmTZqY/WUocq5y5coUKVKEO3fuEBsbq3U4QuSYwWAwXQPdpedIkiMHkan8wp1Jv5Hj6XQ6GVoTbiF964gsAinMyFR+4a6UUqbkqGXLlhpH414kORLuIH0BIH1lWYbVhPQcCbd18uRJzpw5g4+PD40aNdI6HLdiXO9o8+bNLjn0IASYX+NyOqzmbO9/SY5syE7XvPQcCXdlrBpFRkYSGBiocTTupV69evj7+3P58mUOHz6sdThC5Ii15EgqR8LiIpAylV+4g40bNwLSb5Qb/Pz8aNiwIXA/CRXC1RivcTqdzuwaKA3ZQobVhNuSZuzc1apVKwA2bNigcSRC5IylafwglSOBDKsJ93ThwgXTcI+xP0Y4ljE5Wr9+vUv+hS2EpQUgQSpHApnKL9yTcRZVzZo1KVy4sMbRuCfj2lHx8fEcP35c63CEyDapHAmrsprK74qZsxAbV6wAoIWsip1rAgMDTbMA10+bBvHxGkckRPZYS46kciRs9hyl/7oQLiM6mvWzZgHQ6ttvITpa44DcV+uCBQFY/9lnEB4u32vhUowN2daSI1e8/kly5CC2KkcgQ2vCxcTHc7l/f/amfdpaKRg4UKoauSE+ntbLlwOwAVAGg3yvhUux1nMkw2puzp6SoK2eI5Dp/MLFHDnChrT3fXWgOEBKChw9qmVU7unIEZoohQ9wGjgB8r0WLkWG1YRVltY5ksqRcFkREaxL++9Dxm16PVSsqFFAbiwigkAvLxqmfboe5HstXIojG7Kzs/hybpLkyEFkWE24ldBQ1pUqBaQlR3o9TJ8OoaGahuWWQkPhm29onXZRWK/TyfdauJSseo6kcuTBLA2reXl5md4ckhwJV3LhwgUOnD2LTqej1ZIlcPIkREVpHZb7ioqi9fz5AKwPCUG9+KLGAQlhP5nKL6yyVDkC8+n8QriK9evXA1CrVi2KPP64VDHyQJPHHsPb25vTZ89y4sQJrcMRwm6yCKSwylLlCGSVbOGa1q1L7Th66KGHsthTOEpQUJDpPmtyKxHhSrJqyJbKkQfLqnIkyZFwJZIcaaN169bA/cqdEK5AhtWEVdYqR8YyowyrCVdx9uxZDh8+jJeXFy1bttQ6HI9iTI7Wrl3rkkMRwjM5oiHb2d7vkhzZkJ0phVI5Eu7CWDWqW7cuBdNWbhZ5o1mzZvj6+hIfH8+RI0e0DkcIu0jlSFhlaZ0jkORIuB7jkI4MqeW9wMBAmjVrBsCaNWs0jkYI+0hDtrBKGrKFu5B+I221a9cOkORIuA6pHAmrrA2rSc+RcCWnTp3i2LFj6PV6mjdvrnU4HsmYHK1du5aUlBSNoxEia7IIZAYXL17k/PnzjorFpUnlSLiD1atXA9C4cWMKFCigcTSeKTIykuDgYBISEti1a5fW4QiRJakcpdm7dy/Vq1cnJCSE0qVLU7p0ad577z1u3brl6PhchjRkC3fwxx9/APDwww9rHInn0uv1tGnTBpChNeEapOcoTVRUFCVKlGDz5s3ExsYyduxYfv/9d+rXr8/Vq1cdHaNLkKn8wtWlpKTw559/ApIcaU36joQrkUUg0xw4cIApU6bQpEkTatWqxQsvvMDOnTupXr06Q4YMcXSMmsvOGg1SORKuavfu3fz3338UKFDAtFKz0IYxOfrrr7+4ffu2xtEIYZsMq6WxVCHS6XSMGzeOX3/91SGBuRrpORKuzthv1KZNm0y/5ETeioiIoEyZMiQmJrJ582atwxHCJo9uyO7cuTPvvvsuP/zwA4MGDWLo0KFcuHDBbJ+EhAQKFSrk8CBdgVSOhKsz9hu1b99e40iETqeToTXhMhxZOcrO4su5ye4/D2vWrMnu3buZPXu2KSkqX7483bp1o06dOqSkpDB79my++OKLXAvWmVlbBFJ6joQruHnzJlu2bAGk38hZtGvXjtmzZ0tyJJyeOzZk250cffzxx6b/X7hwgdjYWPbs2cOePXuYOnUqR48eRa/XM3r0aJ5++ulcCdaZybCacGUbNmwgKSmJsmXLUqFCBa3DEUDbtm0BiI2N5fLlyxQtWlTjiISwzB17jnLUWFCiRAk6duxIx44dTdvu3LnD33//zd9//+2w4FyJDKsJV2bsN2rfvr3TlLU9XYkSJahVqxZ79+5lzZo1PPvss1qHJIRFWc1Wc8XKkcNWyA4ICKBx48YMHDjQUU/pUmQqv3Blsr6RczL2f/3+++8aRyKEddYasl25ciS3D3EQqRwJVxUfH8/BgwfR6XSmxQeFc3jkkUcAWLlypUteYIRncMeeI0mOHER6joSrMg6pNWjQgMKFC2scjUivefPm5MuXj4sXLxIbG6t1OEJYJItACqukciRc1cqVKwEZUnNGvr6+psZsGVoTzsoRDdnOVl2S5MiG7DSmSs+RcEVJSUmsWrUKSF3LTDgf49CaJEfCWXn0IpDCNmvrHEnlSDizmJgYEhISKFKkiNwyxEkZk6OtW7fy33//aRyNEJm541R+SY4cRIbVhCtavnw5AB07dkSv12scjbAkLCyMatWqYTAYTP1hQjgTacgWVsmwmnBFK1asAGRIzdnJ0JpwZlI5ElZJ5Ui4mri4OPbt24eXlxcdOnTQOhxhg0zpF85MFoEUVslUfuFqjFWjJk2ayBR+J9e8eXOCgoK4cOECe/bs0TocIczIIpAeyp6sVypHwtUY+41kSM35+fn5yZR+4bSk50hYJT1HwpXcvXuXP//8E4BOnTppHI2wh3FozVjxE8JZOHIRSGe5t6MkRw4ilSPhStavX8+dO3coXbo0tWrV0jocYQdjhS8mJoaLFy9qHI0Q90lDtrBK1jkSrmTFDz8A0KlVK6f5S03YVqZMGerVq4dSit8++wzi47UOSQhAFoEUNsiwmnAVauZMls+eDUDnhQshOlrjiIS9HgsNBWDpp59CeLicO+EUpHIkrJJhNeES4uM5MGAAxwE/oK1SMHCgVCFcQXw8jy9bBsAfwG2DQc6dcArSkC2skqn8wiUcOcKStF9U7YB8ACkpcPSollEJexw5Qm2lCAPuAGtAzp1wClI5ElZJ5Ui4hIgIlqT99wnjNr0eKlbUJByRDRER6Ly8eCzt06Ug5044BVkEUlglPUfCFcQDOwEd0AVSL67Tp0NaL4twYqGh8M03PJ52wVkGpEydKudOaC6rhmypHHkwqRwJV7B06VIAmjZoQIl16+DkSYiK0jYoYb+oKFodPUpwUBAXge01amgdkRBWe46yM6zmbNUlSY5syM4UZ+k5Eq5gyZIlADzRrRu0bi1VBxfkU64cnR5LHVz79ddfNY5GCBlWEzZkVTmSYTWhtWvXrrFu3ToAHn/8cY2jEQ/iMUmOhBORhmxhlbVFII1lRqkcCa2tWLGC5ORkqlevTkREhNbhiAfwyCOP4OPjw7///svhw4e1Dkd4OFkEUlglw2rC2ZmG1J54QtM4xIMLDg7moYceAuDnn3/WOBrh6aRyJKwyZsaSHAlndOfOHdPd3GVIzT107doVgB9//FHjSISny2oRSEmO3JQ9JcGshtWk50hoaeXKldy8eZOwsDDq16+vdTjCAZ588kn0ej2xsbEcO3ZM63CEB8uqciTDah5MKkfCmf2QdqPZZ555Rm406yaKFi1qGlqT6pHQkiOTI2f5/STJkYNIciSc1Z07d1iWdk+ubt26aRyNcKRnnnkGkORIaEcpJZWj3DJlyhTKlSuHv78/kZGRbNq0ya7H/fXXX3h7e1OnTp3cDdAOWSVHMqwmtPL7779z69YtwsPDadCggdbhCAcyDq3t3r2b48ePax2O8EApKSmm/0ty5ECLFi3i9ddfZ+TIkcTGxtKiRQseeeQR4uLibD4uISGBPn360LZt2zyK1DZryZFM5RdaM1YVZEjN/RQrVozWrVsDUj0S2kh/bbO2QrYkRzkwceJEoqKi6NevH1WrVmXSpEmUKVOGqVOn2nzcwIED6dGjB02aNMmjSG2TYTXhjG7fvi1Dam5OhtaEltJf26Ry5CCJiYns2rWL9u3bm21v3749W7Zssfq42bNnc+zYMT788EO7XufevXtcv37d7MPRJDkSzsg4pFa2bFmZpeamnnzySby8vNi1a5cMrYk8l75lRJIjB7l8+TIpKSmUKFHCbHuJEiU4f/68xcccOXKE4cOHM3/+/Ewnwprx48cTHBxs+ihTpswDx55RVsNq0nMktCBDau6vePHipqG1n376SdtghMeRylEuyvhLWyll8Rd5SkoKPXr0YPTo0VSqVMnu5x8xYgQJCQmmj9OnTz9wzBlJ5Ug4m1u3bpmG1IxDL8I9Gc/vokWLNI5EeBrjtU2v12e6/klylENFixZFr9dnqhJdvHgxUzUJ4MaNG+zcuZNXXnkFb29vvL29GTNmDH///Tfe3t6sXbvW4uv4+flRoEABsw9Hk+RIOJslS5Zw+/ZtKlasKENqbq5r1654e3uze/duDh48qHU4woNYm8YPkhzlmK+vL5GRkaxevdps++rVq2natGmm/QsUKMA///zDnj17TB+DBg2icuXK7Nmzh0aNGuVV6JnIVH7hbL777jsAevbsKUNqbq5o0aJ07NgRgPnz52scjfAkjkqOnC2B0nxYbdiwYcycOZNZs2Zx8OBBhg4dSlxcHIMGDQJSh8T69OkDpN6ao0aNGmYfxYsXx9/fnxo1ahAUFOTQ2LJzQcmq5yglJcXpTr5wXxcuXOCPP/4AUpMj4f569eoFpCZHrngvK+GajH/4u1vlyL6O5lzUvXt3rly5wpgxYzh37hw1atRgxYoVhIeHA3Du3Lks1zxyBllVjiA1QbK3iVyIB/H9999jMBho1KgRERERWocj8kCXLl3Inz8/J0+eZMuWLTRv3lzrkIQHkGG1XDR48GBOnjzJvXv32LVrFy1btjR9bc6cOaxfv97qY0eNGsWePXtyP8gs2JMcSd+RyCvGITVjNUG4v8DAQJ5++mng/vkXIrcZr2sZF4AESY4EWQ+rgfQdibxx6NAhdu7ciV6vp3v37lqHI/KQMRn+4YcfSExM1Dga4QmkciRsksqRcBbGhtwOHTpQrFgxjaMReal169aEhIRw9epVfv/9d63DER7AXXuOJDmyQ3Y67TMmR3q93vR/SY5EbjMYDDKk5sH0ej09evQAYN68eRpHIzyBVI6ETdaSIy8vL7y8Ur/NMqwmctuGDRs4ceIE+fPn5/HHH9c6HKEB4+zeZcuWcenSJY2jEe7O0T1HzrLsiCRHDmItOYL7bxqpHIncNuvrrwF47rHHCAwM1DgaoYVatWoRGRlJUlIS80eNgvh4rUMSbsyeypErLi0hyZGD2EqOZJVskReuffUVP/3yCwBRCxZAdLTGEQmtRFWpAkD0lCmosDB5L4hcI8NqwiZ7kiMZVhO5Jj6e7197jbtAdaCBUjBwoFQNPFF8PM8tWIA/sA/YKe8FkYtsNWQbW0okOfJgMqwmNHXkCNFp78EoQAeQkgJHj2oZldDCkSMUVIqn0z6NBnkviFwjlSNhk/HkGzPl9GRYTeS2vcnJ7AR8ANMcNb0eKlbULiihjYgI8PIiKu3ThcBtLy95L4hcIYtACpuMDWfScyS0MGv5cgAeA4pBamI0fTqEhmoZltBCaCh88w2tvLwoB1wHfn7hBXkviFwhlSNhk/QcCa3cuXOHb7/9FoCoefNg3To4eRKiomw/ULivqCi8Tp3ixRdfBOCbQ4c0Dki4K0mOhE3ScyS08sMPP/Dff/8RHh5O+x49oHVrqRIICA3lxY8+Qq/Xs3nzZv755x+tIxJuSFbIFjbJVH6hlSlTpgAwaNAgsxXZhShVqhRPPvkkAFOnTtU4GuGOHNVz5GwJlCRHNmRnpU4ZVhNa2LlzJ9u3b8fX19c0hCJEeoMHDwbg22+/5fr16xpHI9yNDKsJm6RyJLRgrAY888wzFC9eXONohDNq3bo1VapU4ebNm6b77gnhKJIcCZuk50jktatXr7JgwQLgfnVAiIx0Op3p/TFlyhSXvFAJ5yU9R8ImqRyJvDZnzhzu3r1L7dq1adKkidbhCCfWp08fAgMD2b9/P5s2bdI6HOFGjMmRrHPkgbLTTCY9RyIvGAwGUyP24MGDneZO1sI5BQcH06tX6vKgX6fdnFgIR5DkSNgkw2oiL/32228cPXqUggUL0qNHD63DES7g5ZdfBuDnn3/m5MmT2gYj3IajkyNn+UNPkiMHkWE1kZe++OILAAYOHEi+fPk0jka4glq1atGuXTsMBgNfffWV1uEINyGVI2GTDKuJvLJ7927Wr1+Pt7c3r7zyitbhCBcybNgwAGbMmCHT+oVDSHIkbJLKkcgrxqpRt27dCJWVsEU2dOjQgapVq3Ljxg2io6O1Dke4AUmOhE3ScyTywpkzZ/j+++8BGDp0qMbRCFfj5eVlet/83//9n/xOEg9MkiNhk1SORF74+uuvSU5OpmXLltSvX1/rcIQL6tWrF0WLFuXUqVMsXrxY63CEi5PkSNgkPUcit12/ft20IrZUjUROBQQEmBaFnDBhgkteuITzkORI2CTDaiK3TZkyhYSEBKpUqcJjjz2mdTjChb3yyisEBgayc+dOVq9erXU4woVJciRskmE1kZtu377NxIkTARgxYgReXvKjK3KuWLFiDBgwAID//e9/GkcjXFliYiIgyZGwQobVRK6Jj2fW8OFcunSJsmXL8txzz2kdkXADb775Jr6+vmzcuJHNX34J8fFahyRckD2VI4PBkKcxOYIkRw4ilSORK6KjSQwLY0Laon1vN2tm8ZeQENlVunRpnm/cGID/vfYahIeDTO8X2WRMjnx9fTN9LTuVI2erLklyZEN2ljGXniPhcPHxMGAA85XiNFACeGHhQvkLXzhGfDzvbNqEHlgJ7DIYYOBAeX+JbJGeI2GTVI6Ewx05QrLBwPi0T98A/A0GOHpUy6iEuzhyhPJKYRykHQeQkiLvL5EtkhwJm6TnSDhcRATf6nQcAYoCgwD0eqhYUdu4hHuIiAAvL0akffoL8I+Xl7y/RLZIciRskmE14WiJxYszunBhAIYD+fV6mD4d5JYhwhFCQ+Gbb6im1/NM2qb3a9WS95fIFkmOPFh2mslkWE04SnR0NKeuXCGkeHFe+v13OHkSoqK0Dku4k6goOHmSMXPn4uXlxa979rBt2zatoxIuxFZyZFxyRJIjDybDasKR7ty5w9ixYwEY+cEHBHbsKH/Ri9wRGkqVPn3o06cPAO+9957GAQlX4ujKUXYmQuUmSY4cxHjyLS3OJ5UjkV3Tpk3j7NmzhIWF0a9fP63DER7gww8/xMfHhzVr1rBu3TqtwxEuQobVhE3GRa6k50g8qJs3bzJ+fOoctQ8++AA/Pz+NIxKeoGzZsqZVs0eOHOmSFzSR9yQ5EnaRniPxoCZOnMilS5eoUKGCaahDiLwwcuRIAgICiImJYfny5VqHI1yAJEfCqvQnXnqOxIM4d+4cEyZMAGDcuHGyGrbIUyEhIQwZMgSAd955R/6gE1mS5EhYlVVyJMNqwl7vv/8+t27dokmTJjzzzDNZP0AIBxs+fDhFihThwIEDzJw5U+twhJOT5EhYZW/lSJIjYcvevXuZNWsWAJ9//rnTzNoQnqVQoUKMGjUKSO15S0hI0DYg4dQkORJWybCaeFBKKd58802UUnTr1o0mTZpoHZLwYAMHDqRy5cpcunSJcePGaR2OcGKSHAmr7B1Wk+RIWLNq1SpWr16Nr6+vaaaaEFrx8fHhs88+A2DSpEmcOHFC44iEs5LkSFiVVXLk6+sLSHIkLEtMTGTYsGEADBkyhPLly2sckRDQuXNn2rVrR2JiIu+8847W4QgnpJSS5EhYZ2/lKDExMc9iEq7j//7v/zh48CDFihWT1YmF09DpdHz++ed4eXnx448/ysKQIpP0fbQPmhw5WwIlyZEN9jbE2ls5kuRIZBQfH8/o0aMB+PTTTylYsKC2AQmRTq1atRg0aBAAL7/8svwOE2bSj4ZI5UhkIsNqIkfi4xnWqxe3bt2iWbNm9O7dW+uIhMhk7NixFC9enIMHDzLx5ZchPl7rkISTkORI2CTDaiLboqNZHRbGjxs2oAemtGtn8b58QmitUKFCfNalCwBjZs7kVFgYREdrHJVwBpIcebisTqwMq4lsiY/nXv/+vJL2vnkFqDV2rPxFLpxTfDy9Zs2iJXAHeE0pGDhQ3q/ClBx5eXmh1+szfV2SIw8nw2oiW44cYZxSHAZKAKMBUlLg6FFt4xLCkiNH0CnFFMAb+BVYJu9Xge1p/JCz5MhZFr+V5MgBpHIksmNvcjLGZfW+BIIB9HqoWFG7oISwJiICvLyoDryRtuklIKF4cQ2DEs7A3uTIYDDkWUyOIsmRA0jPkbBXcnIyL44YQTLwJPAMpCZG06dDaKi2wQlhSWgofPMN6PV8AFQEzgBvTJyocWBCa7lROXIWkhw5gAyrCXtNnDiRXbt2UbBgQSbv3Ilu3To4eRKiorQOTQjroqLg5EkC161j1k8/odPpiI6O5o8//tA6MqEhSY6ETdlJjlzxTSIc49ChQ3zwwQcAfPHFF4RERkLr1lIxEq4hNBRat6bF00/zyiuvANC/f39u3LihcWBCK5IcCZvsHVYDqR55quTkZF544QXu3btHhw4d6Nu3r9YhCZFj48ePp1y5csTFxcmtRTyYJEfCJnsrRyDJkacaN24cMTExFChQgOnTpzvNjAwhciIoKIjotLWOpk6dyu+//65xREILkhwJm7KTHElTtufZunUrY8aMAWDKlCmEh4drHJEQD+6hhx7i1VdfBeD555/nwoULGkck8pokR8KmrJIjb29v0/8lOfIsN27coFevXqSkpPDcc8/Rs2dPrUMSwmE++eQTatSowcWLF3nxxRdd8iIock6SI2FTVsmRTqczvXlkWM2zvP766xw7doywsDCmTJmidThCOJS/vz8LFy7Ez8+PFStW8PXXX2sdkshDkhwJm7JKjkAWgvRE33//PbNmzUKn0zFv3jwKFiyodUhCOFyNGjX49NNPAXjrrbfYu3evxhGJvCLJkbDJnhMvC0F6kPh4DsyeTb+0tYveffddWrVqpXFQQuSeV155hU6dOnHv3j2eeeYZrh88COvWyf3X3FxWyZHxZtr2XCOdLYGS5MgGe2cUGU+qrbuqy0KQHiI6mpthYXR98UVu3b5NmypVGD16tNZRCZGrdDodc+fOpUyZMhw+fJgXqlVDtWkD4eGQNqtNuB+pHAmbjPeNsZVMybCaB4iPR/XvzwClOAiUAhYePoz+3DmtIxMi1xUtWpQfJ0/GB/gF+AzAYICBA6WC5KaM1zNJjnLJlClTKFeuHP7+/kRGRrJp0yar+/7yyy88/PDDFCtWjAIFCtCkSRNWrVqVq/FldWKNX7eVHMmwmgc4coQpSrEQ0AOLgOIGg9y9XHiMRvny8X9p/x8OrAdISZGfATcllaNctGjRIl5//XVGjhxJbGwsLVq04JFHHiEuLs7i/hs3buThhx9mxYoV7Nq1i4ceeoguXboQGxubx5HfZ09yJMNq7u/PCxd4Le3/nwDNIfWmshUraheUEHkpIoJBOh29AQPQDTjl5SU/A24qN5IjZ1kgV/PkaOLEiURFRdGvXz+qVq3KpEmTKFOmDFOnTrW4/6RJk3j77bdp0KABERERjBs3joiICJYtW5bHkd+XneRIKkfu6fDhwzwzeDApQC+djmGQmhhNny73ThOeIzQU3YwZTPPyog5wCXg0JITrBQpoHJjIDVI5yiWJiYns2rWL9u3bm21v3749W7Zsses5DAYDN27coHDhwlb3uXfvHtevXzf7cCQZVvNsV69epUuXLly9epXGjRsz4/BhdOvWwcmTqXczF8KTREUReOoUy374gZLFi7PvzBl69OhBSkqK1pEJBzNez/z8/Cx+XZKjHLp8+TIpKSmUKFHCbHuJEiU4f/68Xc/x+eefc+vWLbp162Z1n/HjxxMcHGz6KFOmzAPFnZEMq3mupKQkunfvzuHDhylTpgxLlizBv2JFaN1aKkbCc4WGEvrMMyz97Tf8/f1Zvnw5b731ltZRCQczJkfpb5GVniRHDyhjUqGUsmvcceHChYwaNYpFixZRvHhxq/uNGDGChIQE08fp06cfOOb0ZFjNMyml6NevH6tXryYwMJClS5dmSvSF8GQNGjRg3rx5AHzxxRdMnjxZ44iEI927dw+QypHDFS1aFL1en6lKdPHixSwvMosWLSIqKooffviBdu3a2dzXz8+PAgUKmH04kiRHnmn48OHMmzcPvV7PokWLqFOnjtYhCeF0nnnmGcaOHQvAkCFDWLRokcYRCUeRylEu8fX1JTIyktWrV5ttX716NU2bNrX6uIULF/L888+zYMECOnfunNthZik7PUcyrOYeJk2axIQJEwCYMWMGjz76qMYRCeG83n33XQYPHoxSit69e2f6nS9ck1SOctGwYcOYOXMms2bN4uDBgwwdOpS4uDgGDRoEpA6J9enTx7T/woUL6dOnD59//jmNGzfm/PnznD9/noSEBK0OQSpHHmb+/PkMHToUgHHjxvHCCy9oHJEQzk2n0/Hll1/SrVs3kpKSePLJJ9mxY4fWYYkHJJWjXNS9e3cmTZrEmDFjqFOnDhs3bmTFihWEh4cDcO7cObM1j6ZPn05ycjIvv/wyISEhpo/XXnvN2kvkOkmOPER8PD9++KEpWR8yZAjDhw/XOCghXINer2fevHm0a9eOW7du0bFjR/7+4w+5B5sLc+fKkbfWAQAMHjyYwYMHW/zanDlzzD5fv3597geUTTKs5gGio1ncvz/PKYUBeKFZMyZNmuQ0C5YJ4Qr8/PxMdznYtm0bbTt0YC1Qy8sLvvlGlr5wMfZWjoy32HIlmleO3IFUjtxcfDzL+venu1KkAL2BGTExeJ09q3VkQric/PnzszI6mvrAFaAtsE/uweaS3LlyJMmRA0hy5N6Wf/stXZUiCXgWmA3o5Z5pQuRYwYsX+QOIBC4DbYD9cg82lyM9R8ImGVZzX4sWLeKJDz4gEegKfEvqTWXlnmlCPICICAp5efEHUJfU24w8BMTevattXCJbHFk5crYESpIjG+ztJ5HKkXuaOXMmzz33HMnJyTzXsCELvLxSm/TknmlCPJjQUPjmGwrr9awB6pGaILXu3p1NmzZpHJywl1SOhE2SHLmfiRMn0r9/f5RSDBw4kG+3bMHn1KnUmTVyzzQhHlxUFJw8SeF161i7fz8tW7bk+vXrtG/fnhUrVmgdnbCD9Bx5uKxOrAyruQ+lFCNHjuSNN94A4K233mLq1Kno9frUv3blnmlCOE7az1RwtWqsXLmSzp07c/fuXR5//HEWLlyodXQiC1I5EjZJ5cg93Lt3j169ejFu3DgAxo4dyyeffCLT9YXIAwEBASxevJgePXqQnJxMjx49+Pjjj13ywuopcqNy5Cy/byU5cgBJjlxcfDz//for7Vu1YsGCBXh7ezNr1ixGjhzpND+oQngCHx8fvv32W15//XUg9Q4J/fv3J+nECVks0glJ5UjYJMNqLiw6muNhYTR94gk2bttGgYAAfv/9d7kliBAa8fLy4osvvuCrr77Cy8uL6OhoHilfnmtt2kB4OERHax2iSCM9R8ImqRy5qPh4NvTvT2OlOASUAf66d492VapoHZkQHu+VV17h1+hogoA/gWbAMVks0qlI5UjYJMmR61FK8eUnn9BWKS6ROpV4K1BDFncUwmk8Gh7OJqAUcACoD/wui0U6DakcCZuykxzJsJr27t69ywsvvMBrX39NCtAL2EzqL2BZ3FEIJxIRQV0vL7YDjYBrQGfgo99+c8n7dbkbqRwJm7LTc2TMtIU2jh07RvPmzZk7dy56vZ6J3boxz8uLAJDFHYVwNmmLRZbW69kADNTpUMAHn3/Ok08+SUJCgtYRejR7K0euSJIjB7AnOTK+eWRYTTuLFi2ibt267Nq1iyJFirBq1SqGLlqEThZ3FMJ5pS0W6bduHdPi4pg5cyZ+fn4sXbqUevXqsX37dq0j9FhZVY68vO6nGK5WPZLkyAGMJz39GyEjf39/QCpHeSo+Htat4/aRIwwYMIBnn32WGzdu0Lx5c2JjY2nbtm3qfrK4oxDOLd3PaFRUFJs2bSIsLIzjx4/TrFkzPv7449RhtrSfeWnYzn3JycmmoU17KkeSHHkg4xvEnsrRXbmxYt6IjobwcHa2aUODSpWYMWMGOp2O9957j3Xr1lGmTBmtIxRC5FCDBg3Ys2cPzzzzDMnJyYwYMYKHq1fnTFgYyJT/PJF+FCSrniOQ5Mgj2TOsZqwcSXKUB+LjSezfn/cNBhqTOsulBPDH/Pl89NFHeHt7axygEOJBFSpUiEWLFhEdHU1gQABr//2XGkoxB1Ay5T/XpR8FkcqRsCg7PUcyrJb7/l65koZKMRZIAboB+4B2ISHaBiaEcCidTseLL77I7qlTqU/qbLYXgE5AnEz5z1XpK0fW/uCU5MjDSeXIOdy6dYu3336byEGD+BsoAixK+ygqU/SFcFuV27YlRqfjE8APWAnUAKbFxMiU/1ySfqaatWtfdpIjZ0ueJDmywd5piJIcae/XX3+lWrVqfPrpp6SkpPBUvXrs9/KiG8gUfSHcXWgo3jNm8LZezx6gCXADeOndd2natCm7du3SNj43lNVMNZDKkduzN+OVYbW8d/z4cR5//HGeeOIJ4uLiKFu2LL/99hs/79pFCZmiL4TnSJvyX2XdOjadPMmkSZPInz8/27Zto0GDBgwaNIgrV65oHaXbyGqNI5DkyONlt3Lkam8SpxMfz7Vly3hr0CCqVq3K0qVL8fb2ZsSIEezfv5/OnTun7idT9IXwLGk/8/rwcF577TUOHTpEz549UUoxffp0KlWqxJQpU0g6cUKm/D+g3KocOcvCkZIcOUB2KkcgtxB5EEnTp/N1WBgVH3uMz6ZPJzExkYcffpg9e/Ywbtw4AgMDtQ5RCOEkQkJC+O6779iwYQM1a9bkv//+4+WXX6ZG+fIsadMGFRYmU/5zKLuVI1fr/ZLkyAGyUzkC6TvKCaUUv0ZHU3PQIIYoxRWgGrDCy4tV0dFUr15d6xCFEE6qZcuW7N69m68/+ohiwGHgSaClUmwdMEAqSDkgPUciS9mtHElyZD+lFKtXr6Zx48Y80a8fh4BiwFTgb+ARgwHdsWPaBimEcHre3t683KwZR4GRQACpN5xuYjDQtWdPDhw4oG2ALkZ6jkSW7EmOdDqdKcOWpmz7bNq0idatW9O+fXu2b99OYEAAI4CjwCDAG1JnoskUfSGEPSIiKODlxVhSq0cvAjrg540bqVGjBj179uTQoUPaxugipHIksmRPcgQynT9LafdF2r5sGR07dqRly5Zs3LgRPz8/Xn/9dU6cPMm4mTMpoNen7i9T9IUQ2REaCt98A3o9oUC0Xs/fo0bx1FNPoZRiwYIFVKtWjT59+nD06FG5V5sN7l45kvsoOIC9yZFM57dOzZzJ2gEDGK8Uf6Zt8/b2Jioqivfee49QYwIUFQUdOqSufFuxoiRGQojsyfA7pGZoKD8DsbGxjBo1iqVLl/Ltt9+yYP58ehkMvA1U8/JKTapkSRATqRyJLEnlKOcMBgNLZs6kcf/+tEtLjLyBvjod/65bx7Rp0+4nRkYyRV8I8SAs/A6pW7cuv/76Kzt27KBz27akGAzMBaoDjxkMbB4wAHX6tFYROx13rxxJcuQAkhxl3/Xr1/nqq6+oWrUqT/bvz3bAHxhCak/RHKWokJysbZBCCI9Tv359fhs5km3AU6T2JC0DWhgMNO3YkZ9//plk+d0klSORNRlWy0K6cftDhw4xZMgQSpcuzauvvsrhw4cpkD8/7wKngC+BcJBGayGEdiIiaOjlxc/Av8AAUu/ZtvXAAbp27Up4eDijRo3izJkzqft7YG+SVI5ElqRyZEN0NAlhYcxo04bmZcpQpUoVvv76a27evEnVqlWZPHky8WfO8L+ZMykujdZCCGeQrnG7EjBdr+fU558zcuRIihUrxtmzZxk9ejTh4eE8Va8ev4WFkdSmDYSHe8yiksbrWPo1/DKS5MjDSeUos5SUFFYvWEDPfv0oqRQDgL9IfcM99vDDrF69mv379zN48GDy589vui+S3AtNCOEUMvxOKjFsGGPHjuX06dMsXLiQli1bkpKSwuLYWLooRWngNYOBXR7Sm3Tnzh0AAgICrO4jyZGHk8rRff/88w/Dhw8nPDyc9j17sgC4S+pq1hOA08Cv775Lu3btMn+/pNFaCOFMLPxO8vPz49lnn2XDhg3snzWL14HiwCVS2wLqGwxUb9GCjz/+mNNunCRJciSy5JHJUbox9vj4eCZMmEDt2rWpVasWn3zyCWfOnKFQcDAvA9uBfcBbQCnpJRJCuIlqDz/MF15enAGWA91JnVhy8NQpRowYQVhYGC1btmTq1KlcunTJrXqTbt++DTguOXK25EmSIxvsvTuwxw2rRUdzLSyM6DZteKhMGcLCwnjnnXfYu3cvPj4+PPHEE/z444+cu3CBr2fOpIFejw6kl0gI4V7SepO89Xo6Ad/r9Zz/8ktmzpxJy5YtgdSV/gcPHkxIyZI8UqYM89q04bob3PDWnspRes6W/GRFFoG0g70Zr7tXju7evcvv337L/AED+A0wpXhK0bJRI3q++CJdu3alcOHC9x8kizYKIdxZht9xwaGhRAFRUVGcPn2aRYsWsXDePHb/8w8rgZWAv1I82q8fzxkMdOrd22ZTs7OyNznS6XQopSQ58kRuVTmKj4cjRyAiAkJDuX79OitWrGDx4sWsWLGCmzdvmnatDvQCngPCP/44dWzektBQSYqEEO7Lyu+4MmXK8Oabb/JmZCSH27RhIbAQOAT8BPw0YAAF3nyTJ598kueee45WrVrdT5Qy/C52NrmVHNk7YpPbJDlygNyuHCUmJvLvv/8SGhpqXpVxMMOMGRweOJCtSrEViAkNZd/ZsxgMBtM+oSEhPHfuHD2BWnB/uEz6iIQQwrKICCp5efGhwcAHwB5ggU7H9yVLEn/uHHPnzmXu3Ln4+/vTrFkz2hQoQOslS4hUCr9cvnVJfHw8169fp0qVKnh52d9pY0yOAgMDbe5nvC66WuVIeo4cIDeTo7///ptKlSpRu3ZtSpUqxTvvvENSUlL2g7TQCHj9+nVWrlzJqFGj6Ni6NUUGDKCqUrwATAf2xsdjMBioVKkSw4cPZ/v27cSdOcOEmTOpLX1EQghhn3TrJumAuno9n86Ywan4eDZu3MhLL71EyZIluXv3Ln/++ScjFy+mmVIEA80NBt7p35+ls2Zx+fLlzM+dwybvq1ev8uyzz1KmTBmqV69OkyZNuHjxot2Pz07lCFwvOZLKkQMYT3pWWXd2h9Vu3LjBo48+Snx8PL6+vty7d48JEyYQGxvLL7/8Qr58+ewLMDoaBgwAg4F/dToWPvoof1y6xI4dO0hJSTHbNQCoDzQGmgCNfvyRUl27mj+f9BEJIUT2WPi96QW0aNGCFi1aMHnyZP7991/+nDqVtV99xWZSlwf4C/hLKVPlqHLlyjRt2pRmzZrR4b//CB0+HAwGyEaF6dKlS7Rv3549e/YA4OPjw/bt23n22Wf5888/7Rrasjc5Ml4XXS05ksqRAxiHnRxdOZo0aRLx8fGUL1+eCxcu8NNPPxEUFMTq1avp0KEDCQkJWT9JfDwp/fvzk8FAY6CqUoxZtoytW7eSkpJC+fLl6d27N5PHjmWXTkcCsJHUNYme1Osp1bix5eeVNYmEECJ7bPze1Ol0VK1alVfefptfvLy4ABwGZgP9dDqqRkQAcOjQIWbPnk2/fv0If/ttHjMY+ANQBgMMHJhlBenMmTO0bNmSPXv2UKJECbZv384///xDQEAA69atY/ny5XYdij1T+Y3HBZIceaTcaMhOSUlhypQpAIwdO5aCBQvy9NNP8+eff1KwYEG2bNlCmzZtuLx3r9WSamJiIjMnTaKqUjwDbCO1VNgZmP3OO5w6dYpjx44xb948Bo8cSb0ZM/CRW3gIIYR20obgdHo9EcDzej0zZszgwOHDXL58md9++40RI0bQpFo1DKTeFLcDUBuYm5JC4sGDlp83Pp7D8+bRrHFj/v33X8qUKcPGjRtp0KABlStX5uWXXwbg66+/titMdx9Wk+TIAXKj52jLli2cP3+eggUL0jXdsFajRo1Yt24dRYsWZffu3bSoXZvdGe7pc/36db7++msqVKhA/88/5whQCHgfOAP8ptfz/CuvEBYWZv6icgsPIYTQnpXfxUWKFKFz586MGzeOLatWcVCn41UgCPgHeB4o17s3n3zyCdeuXTM9nZo5k6VhYTTr25dT8fFULF6cTZs2UalSJdM+/fv3B+DPP/80e6w1khyJLOVGcrTk228B6NK2LT4+PmZfq1OnDht/+IFSpN4xOhJobTAwsH9/OrdtS4kSJRgyZAjx8fGEhITwebduxHl5MQZSb+5qqyIkw2VCCKG9rH4Xh4ZSZcYM/k+v5zTwsU5HSHAwZy9cYPjw4ZQpU4ZnnnmGfs89R93+/XlcKS6T2lP61+XLhBtHCdJUqlSJatWqkZyczPJPP81yeE6SI5GlbA+rnT1r+40XHc2vM2YA8OQvv1hcSbUqEAs8S+p0+g3AN0qxYu1a7t69S+XKlZk8eTLHjx9n2KJF5Dt1SipCQgjhTtIqTIXWreOduDhOXrzInDlzqFGjBjdv3uSnn34i+vvv+ZvU25q8DWwCihsMqY3hGTxZrhwAv44bZzYaYcmdtJ6jwCx6X43XxfRLwrgCma3mAPYmRwFbtwJwZ9u21DeepZkF8fGc69+fY6Rmru2USm2y69DB/C+IiAiKe3mx0GDgf8CfwHmdjiIffUSTTp2oU6eOeTyyEKMQQrifdL/bfYG+ffvSp08fNm/ezI4dO7h19izlJk6kg1IUMz7G0tp08fF0WLGC/5GaQCmDAZ2law+pw3TG5CigRQuYMcPqH92uWjmS5MgBTMlRQkJqRchSEhIfT1BaNegWpE69tPTGO3KErWnPVwPID5CSkprlp9/PuG7GwIGUT0mhvHG4TKpCQgjh0XQ6nWmJAACqVk293qSkWJ9sc+QIkUrhDZwH4oBwS9ee+HiSBgzAWAcKsPYHvDGWtH/VuXMutViwDKvZ48wZm8Ngau1aAHR79lgvRR45QlBa0mO6AYfxjZdeRAQxaf81TaK3tgK1NFALIYTIij3XiogIAr28qJ326VawfO05coTb6apAAWD5WgYQHY0u7ZZTqlUr2zfbTUxM/dfSQpcakOTIltjY1H9//dV60hMfj0qrCOngfkUoYzIVEUG+tPLiLeM2S2+80FC2pq1n0cS4jzRQCyGEeBB2NHjzzTc0SbtOxeh0lq89ERHcSdtHR+pQnrVhOgYMuF85MlaYLBUaoqNh9+7U//frZzuJyiOenRzZaiSLj4dly+5/bi3pOXLk/rCacZulLDo0lKBRo4C0ypGVpEcpxe6zZwFoOHu2VISEEELkjagoGk2aBMDO+vUtX3tCQ7kzbhyQWjXS2Rimw2C4nxyB5WtjWhJlqkXZSqIA0nqdcptnJ0cTJljPUI8cMT+pYHUYTKXLogGrw2D5+vYF4Javr9Wk59y5c9y6dQsvLy8q9ughFSEhhBB5plbr1gDsO3zYahP1nS5dAAgoUMDmMB1eXubXUSvDdGScyWZjmI7ffrP3UB6IZydHYD1DTRvaMmNlGEy9+CJAljdiDQoKAuBuYiIpISEWwzly5AgAZcuWxdfX1+7DEEIIIR5U5cqV0ev1JCQkcDZtFCMj4xpHgcHBWQ7TmZIjLy+rw3Skuy+p6TpqZZgur3h0clQHrGeooaGQlh0DNpMe1aoVALr69W0OgxmTI4Bbt25Z3MeYHEVYSs6EEEKIXOTn52daOXvfvn0W97F3AUiiotAVKgSA+uMPq8N0fPPN/c+tJVFpFaZ29h3GA/Po5Kg5WJ8JBlCvXuq/jz1mM+kx9RwVKWJzGMzf3990h+KskqP0y7oLIYQQeaVGjRqA9eTI3pvOQlpPEqBKlLC+U1QU1K2b+v+ZM20O03XP8hUdw6OTI6sZakalS9vcx95FIHU6nal6ZC05Onz4MCCVIyGEENqoXr06AP/884/Fr9tdOSIbi0Aa20iKFrX8dWOFyStv0hbPTo727XPITDB7kyOAfPnyAXDz5k2LX5dhNSGEEFqqVq0aAIcOHbL49VxJjuwRFZV63c4Dnp0clS7tkKfJTnJkq3JkMBg4duwYIMmREEIIbRivP0ct9eOiYXIEDrtuZ8WzkyMHcVRyFB8fz927d/Hx8SE8PNyxQQohhBB2qFChAgCXL1/m2rVrmb6uaXKURyQ5cgBHDasZ+43Kly+Pt7fc9k4IIUTey58/PyXSGqiNoxnpGa9fxuuZLZIceTBHVY6k30gIIYQzqJg2i9vS0NqNGzeA1CQqK5IcebCcVI4kORJCCOGsJDlyAlOmTKFcuXL4+/sTGRnJpk2bbO6/YcMGIiMj8ff3p3z58kybNi2PIrUsJ5UjS8NqssaREEIIZyDJkcYWLVrE66+/zsiRI4mNjaVFixY88sgjxMXFWdz/xIkTdOrUiRYtWhAbG8u7777Lq6++ys8//5zHkd/nqGE1WeNICCGEM5DkSGMTJ04kKiqKfv36UbVqVSZNmkSZMmWYOnWqxf2nTZtGWFgYkyZNomrVqvTr148XX3yRzz77LI8jv88Rw2rJyckcP34ckORICCGEtiQ50lBiYiK7du2iffv2Ztvbt2/Pli1bLD4mJiYm0/4dOnRg586dJCUl5VqstjhiWO3UqVMkJyfj7+9PaFYrdgshhBC5yDid//z585muV56QHGk6X/zy5cukpKSYpgwalShRgvPnz1t8zPnz5y3un5yczOXLlwmxcLf7e/fuce/ePdPnCQkJAFy/ft1mfMbH3Lt3z+a+xvvMJCcnZ/mcxin6V69eNdt3z549AJQtW9bq6tlCCCFEXtDr9RQqVIirV6+yZ88eatWqZfqa8Rrq5eWV5TXP6ObNmzb3TU5OBlKvp7b2M34t15MtpaEzZ84oQG3ZssVs+9ixY1XlypUtPiYiIkKNGzfObNvmzZsVoM6dO2fxMR9++KEC5EM+5EM+5EM+5MMNPo4dO+aYRMQKTStHRYsWRa/XZ6oSXbx4MVN1yKhkyZIW9/f29qZIkSIWHzNixAiGDRtm+vzatWuEh4cTFxdHcHDwAx6F67h+/TplypTh9OnTFChQQOtw8owctxy3J5DjluP2BAkJCYSFhVG4cOFcfR1NkyNfX18iIyNZvXo1Tz75pGn76tWrefzxxy0+pkmTJixbtsxs2x9//EH9+vXx8fGx+Bg/Pz/8/PwybQ8ODvaoN5VRgQIF5Lg9iBy3Z5Hj9iyeetxeXrnbMq35bLVhw4Yxc+ZMZs2axcGDBxk6dChxcXEMGjQISK369OnTx7T/oEGDOHXqFMOGDePgwYPMmjWL6Oho3nzzTa0OQQghhBBuRPMbeHXv3p0rV64wZswYzp07R40aNVixYoXpxqvnzp0zW/OoXLlyrFixgqFDhzJ58mRKlSrFl19+ydNPP63VIQghhBDCjWieHAEMHjyYwYMHW/zanDlzMm1r1aoVu3fvzvHr+fn58eGHH1ocanNnctxy3J5AjluO2xPIcefuceuUcrHFB4QQQgghcpHmPUdCCCGEEM5EkiMhhBBCiHQkORJCCCGESEeSIyGEEEKIdNw2Ofrf//5H06ZNCQwMpGDBgnY9RinFqFGjKFWqFAEBAbRu3Zr9+/eb7XPv3j2GDBlC0aJFCQoK4rHHHiM+Pj4XjiBnrl69Su/evQkODiY4OJjevXtz7do1m4/R6XQWPz799FPTPq1bt8709WeffTaXj8Z+OTnu559/PtMxNW7c2GwfdzvfSUlJvPPOO9SsWZOgoCBKlSpFnz59OHv2rNl+zna+p0yZQrly5fD39ycyMpJNmzbZ3H/Dhg1ERkbi7+9P+fLlmTZtWqZ9fv75Z6pVq4afnx/VqlVj8eLFuRV+jmXnuH/55RcefvhhihUrRoECBWjSpAmrVq0y22fOnDkWf9bv3r2b24eSLdk57vXr11s8pn///ddsP3c735Z+f+l0OqpXr27ax9nP98aNG+nSpQulSpVCp9OxZMmSLB+TZz/buXpzEg198MEHauLEiWrYsGEqODjYrsd8/PHHKn/+/Ornn39W//zzj+revbsKCQlR169fN+0zaNAgVbp0abV69Wq1e/du9dBDD6natWur5OTkXDqS7OnYsaOqUaOG2rJli9qyZYuqUaOGevTRR20+5ty5c2Yfs2bNUjqdzuzeNa1atVL9+/c32+/atWu5fTh2y8lx9+3bV3Xs2NHsmK5cuWK2j7ud72vXrql27dqpRYsWqX///VfFxMSoRo0aqcjISLP9nOl8f//998rHx0fNmDFDHThwQL322msqKChInTp1yuL+x48fV4GBgeq1115TBw4cUDNmzFA+Pj7qp59+Mu2zZcsWpdfr1bhx49TBgwfVuHHjlLe3t9q6dWteHVaWsnvcr732mvrkk0/U9u3b1eHDh9WIESOUj4+P2r17t2mf2bNnqwIFCmT6mXcm2T3udevWKUAdOnTI7JjS/4y64/m+du2a2fGePn1aFS5cWH344YemfZz9fK9YsUKNHDlS/fzzzwpQixcvtrl/Xv5su21yZDR79my7kiODwaBKliypPv74Y9O2u3fvquDgYDVt2jSlVOqb0cfHR33//femfc6cOaO8vLzUypUrHR57dh04cEABZm+CmJgYBah///3X7ud5/PHHVZs2bcy2tWrVSr322muOCtWhcnrcffv2VY8//rjVr3vK+d6+fbsCzH4JO9P5btiwoRo0aJDZtipVqqjhw4db3P/tt99WVapUMds2cOBA1bhxY9Pn3bp1Ux07djTbp0OHDurZZ591UNQPLrvHbUm1atXU6NGjTZ/b+/tQS9k9bmNydPXqVavP6Qnne/HixUqn06mTJ0+atrnC+TayJznKy59ttx1Wy64TJ05w/vx52rdvb9rm5+dHq1at2LJlCwC7du0iKSnJbJ9SpUpRo0YN0z5aiomJITg4mEaNGpm2NW7cmODgYLvju3DhAsuXLycqKirT1+bPn0/RokWpXr06b775Jjdu3HBY7A/iQY57/fr1FC9enEqVKtG/f38uXrxo+ponnG9IvZGjTqfLNPzsDOc7MTGRXbt2mZ0DgPbt21s9xpiYmEz7d+jQgZ07d5KUlGRzH2c4r5Cz487IYDBw48aNTDfovHnzJuHh4YSGhvLoo48SGxvrsLgf1IMcd926dQkJCaFt27asW7fO7GuecL6jo6Np166d6e4SRs58vrMrL3+2nWKFbGdw/vx5AEqUKGG2vUSJEpw6dcq0j6+vL4UKFcq0j/HxWjp//jzFixfPtL148eJ2xzd37lzy58/PU089Zba9Z8+elCtXjpIlS7Jv3z5GjBjB33//zerVqx0S+4PI6XE/8sgjPPPMM4SHh3PixAnef/992rRpw65du/Dz8/OI83337l2GDx9Ojx49zG5e6Szn+/Lly6SkpFj8ubR2jOfPn7e4f3JyMpcvXyYkJMTqPs5wXiFnx53R559/zq1bt+jWrZtpW5UqVZgzZw41a9bk+vXr/N///R/NmjXj77//JiIiwqHHkBM5Oe6QkBC++eYbIiMjuXfvHt9++y1t27Zl/fr1tGzZErD+nnCX833u3Dl+//13FixYYLbd2c93duXlz7ZLJUejRo1i9OjRNvfZsWMH9evXz/Fr6HQ6s8+VUpm2ZWTPPg/C3uOGzPFD9uKbNWsWPXv2xN/f32x7//79Tf+vUaMGERER1K9fn927d1OvXj27nju7cvu4u3fvbvp/jRo1qF+/PuHh4SxfvjxTcpid531QeXW+k5KSePbZZzEYDEyZMsXsa1qcb1uy+3Npaf+M23Pys57XchrjwoULGTVqFL/++qtZAt24cWOzSQfNmjWjXr16fPXVV3z55ZeOC/wBZee4K1euTOXKlU2fN2nShNOnT/PZZ5+ZkqPsPqdWchrjnDlzKFiwIE888YTZdlc539mRVz/bLpUcvfLKK1nOmClbtmyOnrtkyZJAamYaEhJi2n7x4kVTFlqyZEkSExO5evWqWTXh4sWLNG3aNEevaw97j3vv3r1cuHAh09cuXbqUKZO2ZNOmTRw6dIhFixZluW+9evXw8fHhyJEjuXaxzKvjNgoJCSE8PJwjR44A7n2+k5KS6NatGydOnGDt2rVmVSNL8uJ8W1K0aFH0en2mv/rS/1xmVLJkSYv7e3t7U6RIEZv7ZOf9kptyctxGixYtIioqih9//JF27drZ3NfLy4sGDRqY3vNae5DjTq9x48Z89913ps/d+XwrpZg1axa9e/fG19fX5r7Odr6zK09/trPVoeSCstuQ/cknn5i23bt3z2JD9qJFi0z7nD171ukadLdt22batnXrVrsbdPv27Ztp1pI1//zzjwLUhg0bchyvozzocRtdvnxZ+fn5qblz5yql3Pd8JyYmqieeeEJVr15dXbx40a7X0vJ8N2zYUL300ktm26pWrWqzIbtq1apm2wYNGpSpafORRx4x26djx45O16CbneNWSqkFCxYof3//LBtbjQwGg6pfv7564YUXHiRUh8rJcWf09NNPq4ceesj0ubueb6XuN6T/888/Wb6GM55vI+xsyM6rn223TY5OnTqlYmNj1ejRo1W+fPlUbGysio2NVTdu3DDtU7lyZfXLL7+YPv/4449VcHCw+uWXX9Q///yjnnvuOYtT+UNDQ9WaNWvU7t27VZs2bZxuanetWrVUTEyMiomJUTVr1sw0tTvjcSulVEJCggoMDFRTp07N9JxHjx5Vo0ePVjt27FAnTpxQy5cvV1WqVFF169Z12eO+ceOGeuONN9SWLVvUiRMn1Lp161STJk1U6dKl3fp8JyUlqccee0yFhoaqPXv2mE3vvXfvnlLK+c63cYpzdHS0OnDggHr99ddVUFCQaVbO8OHDVe/evU37G6f7Dh06VB04cEBFR0dnmu77119/Kb1erz7++GN18OBB9fHHHzvt1G57j3vBggXK29tbTZ482eoSDKNGjVIrV65Ux44dU7GxseqFF15Q3t7eZgm21rJ73F988YVavHixOnz4sNq3b58aPny4AtTPP/9s2scdz7dRr169VKNGjSw+p7Of7xs3bpiuzYCaOHGiio2NNc2c1fJn222To759+yog08e6detM+wBq9uzZps8NBoP68MMPVcmSJZWfn59q2bJlpmz8zp076pVXXlGFCxdWAQEB6tFHH1VxcXF5dFRZu3LliurZs6fKnz+/yp8/v+rZs2emKa4Zj1sppaZPn64CAgIsrmUTFxenWrZsqQoXLqx8fX1VhQoV1KuvvpppTSAtZfe4b9++rdq3b6+KFSumfHx8VFhYmOrbt2+mc+lu5/vEiRMWfy7S/2w44/mePHmyCg8PV76+vqpevXpmFay+ffuqVq1ame2/fv16VbduXeXr66vKli1rMen/8ccfVeXKlZWPj4+qUqWK2cXUWWTnuFu1amXxvPbt29e0z+uvv67CwsKUr6+vKlasmGrfvr3asmVLHh6RfbJz3J988omqUKGC8vf3V4UKFVLNmzdXy5cvz/Sc7na+lUqtbgcEBKhvvvnG4vM5+/k2Vr2svWe1/NnWKZXWzSSEEEIIIdz39iFCCCGEEDkhyZEQQgghRDqSHAkhhBBCpCPJkRBCCCFEOpIcCSGEEEKkI8mREEIIIUQ6khwJIYQQQqQjyZEQQgghRDqSHAkhhBBCpCPJkRBCCCFEOpIcCSHcypgxY6hZsyZBQUGUKFGCl156iaSkJK3DEkK4EG+tAxBCCEdRSpGSksL06dMpXbo0Bw4coE+fPtSqVYuXXnpJ6/CEEC5CbjwrhHBrPXr0oFixYvzf//2f1qEIIVyEDKsJIdzGqVOneOWVV6hRowaFChUiX758/PDDD4SGhmodmhDChUhyJIRwC5cvX6Zhw4ZcvnyZiRMnsnnzZmJiYtDr9dSpU0fr8IQQLkR6joQQbmHFihUkJyezcOFCdDodAJMnTyYxMVGSIyFEtkhyJIRwC4ULF+b69essXbqUatWqsWzZMsaPH0/p0qUpVqyY1uEJIVyINGQLIdyCUoqXXnqJBQsWEBAQQK9evbh79y6nTp3it99+0zo8IYQLkeRICCGEECIdacgWQgghhEhHkiMhhBBCiHQkORJCCCGESEeSIyGEEEKIdCQ5EkIIIYRIR5IjIYQQQoh0JDkSQgghhEhHkiMhhBBCiHQkORJCCCGESEeSIyGEEEKIdCQ5EkIIIYRIR5IjIYQQQoh0/h/CTnlIp6W6fwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7r0lEQVR4nO3dd3xT5ffA8U+a7rJnSwtlVUA2Ze8lU3CLgAJatoLCzwGiAoooDuCrAjJaAUWGMpQlgpQlZReRocwCZVUQyi4dz++PNrGhSZqWtDfjvF+vvqC3N8m5uUlz+pzzPFenlFIIIYQQQggAPLQOQAghhBDCkUhyJIQQQgiRiSRHQgghhBCZSHIkhBBCCJGJJEdCCCGEEJlIciSEEEIIkYkkR0IIIYQQmUhyJIQQQgiRiSRHQgghhBCZSHIknML58+cZN24c+/fvz/Kzfv36UaBAgVzf97179xg8eDBBQUHo9Xrq1KmT+0DtYPr06cydOzfL9ri4OHQ6ndmfuRKdTse4ceO0DsMuxo0bh06ny/Pbfvnll1SuXBlvb290Oh3Xrl2jX79+lC9f3mS/iRMnsmLFilzFY82///7Lc889R6lSpdDpdDz++OM5vo/y5cvTr18/u8fmyDZs2IBOp0On03H58uUsP1+6dCnNmjWjWLFiFClShIYNG/Ltt99qEKn7keRIOIXz588zfvx4s8nRg5oxYwYzZ85kzJgxbNu2TfNfPpaSo6CgIGJiYujatWv+ByVypX///sTExOTpY+zfv5/hw4fTpk0bNm7cSExMDAULFuTdd99l+fLlJvvmVXL0wQcfsHz5cqZMmUJMTAyffPKJ3R/D1dy8eZMBAwZQpkwZsz+Piori6aefJigoiAULFrBo0SIqVapEnz59mDJlSj5H6348tQ5ACK0dPHgQPz8/XnnlFa1DscrHx4fGjRtrHYbIgZCQEEJCQvL0MQ4dOgTAgAEDaNiwoXF7pUqV8vRxMzt48CCVKlWid+/e+faY9nL79m38/f3z/XFHjRpF0aJF6dq1KxMmTMjy86ioKEJDQ1myZAkeHunjGB07dmT//v3MnTuXESNG5HfIbkVGjtzQP//8w8CBAylbtiw+Pj6ULFmSZs2asWHDBuM+rVu3pkaNGsTExNC0aVP8/PwoX74833zzDQCrV6+mXr16+Pv7U7NmTX755Zcsj7Nt2zbatWtHwYIF8ff3p2nTpqxevTrLfgcPHuSxxx6jaNGi+Pr6UqdOHebNm2f8+aZNm2jQoAEAL774onEY+v7Sy/Hjx+nSpQsFChSgbNmy/N///R9JSUlWnwudTsecOXO4c+eO8X7nzp1rtYR1/2Mbyh+HDh2iZ8+eFC5cmNKlS/PSSy+RmJhoctu0tDS+/PJL6tSpg5+fH0WKFKFx48b8/PPPQHpp4dChQ2zevNkYj6E0YikmW57nuXPnotPpiI6OZsiQIZQoUYLixYvz5JNPcv78eavPkTXly5fn0UcfZfny5dSqVQtfX18qVqzIF198kWXfM2fO8Pzzz1OqVCl8fHyoVq0an3/+OWlpaRbvPy4uDk9PTz766KMsP9uyZQs6nY4ffvgByNl5uHv3LqNHj6ZChQp4e3sTHBzMyy+/zLVr18we36pVq6hbty5+fn5Uq1aNVatWAenPa7Vq1QgICKBhw4bs2bPH5PbmSmOLFy+mQ4cOBAUFGe9v1KhR3Lp1y/ITbUHr1q15/vnnAWjUqBE6nc5Ymrq/rKbT6bh16xbz5s0zvrZat25t9f7//fdfhg4dSnBwMN7e3lSsWJExY8YY31eG1+SGDRs4cuSI8X43bdpk8T6Tk5N58803CQwMxN/fn+bNm7Nr1y6z+168eJFBgwYREhKCt7c3FSpUYPz48aSkpJjsFx8fz9NPP03BggUpUqQIvXv3Zvfu3VneL4YS/J9//kmHDh0oWLAg7dq1A9LL6xMmTKBq1arG34svvvgi//zzT5a4Fi9eTJMmTQgICKBAgQJ07NiR2NhYq89lZlu3bmXWrFnMmTMHvV5vdh8vLy8KFChgTIwg/RwWKlQIX19fmx9L5JISbqdjx46qZMmSatasWWrTpk1qxYoV6r333lOLFi0y7tOqVStVvHhxVaVKFRUZGanWrVunHn30UQWo8ePHq5o1a6qFCxeqNWvWqMaNGysfHx917tw54+03bdqkvLy8VHh4uFq8eLFasWKF6tChg9LpdCaP89dff6mCBQuqSpUqqfnz56vVq1ernj17KkBNmjRJKaVUYmKi+uabbxSg3nnnHRUTE6NiYmLU2bNnlVJK9e3bV3l7e6tq1aqpzz77TG3YsEG99957SqfTqfHjx1t9LmJiYlSXLl2Un5+f8X4TEhLUqVOnFKC++eabLLcB1NixY43fjx07VgGqSpUq6r333lPr169XkydPVj4+PurFF180ue0LL7ygdDqd6t+/v/rpp5/U2rVr1Ycffqj+97//KaWU2rdvn6pYsaKqW7euMZ59+/YppZTZmGx9ng3PX8WKFdWwYcPUunXr1Jw5c1TRokVVmzZtTGI07Gvu2O8XGhqqgoODVbly5VRUVJRas2aN6t27twLUp59+atwvISFBBQcHq5IlS6qvv/5a/fLLL+qVV15RgBoyZIjV5/eJJ55Q5cqVUykpKSb7PfPMM6pMmTIqOTk5R+chLS1NdezYUXl6eqp3331X/frrr+qzzz5TAQEBqm7duuru3bsmxxcSEqJq1KhhfL03atRIeXl5qffee081a9ZMLVu2TC1fvlw99NBDqnTp0ur27dvG2xtiyuyDDz5QU6ZMUatXr1abNm1SX3/9tapQoUKW82Dutvc7dOiQeuedd4znKyYmRh0/flwplf6+CA0NNe4bExOj/Pz8VJcuXYyvrUOHDlm87zt37qhatWqpgIAA9dlnn6lff/1Vvfvuu8rT01N16dJFKaXU3bt3VUxMjKpbt66qWLGi8X4TExMt3m/fvn2VTqdTb7zxhvr111/V5MmTVXBwsCpUqJDq27evcb8LFy6osmXLqtDQUDVz5ky1YcMG9cEHHygfHx/Vr18/4343b95UlStXVsWKFVPTpk1T69atUyNGjFAVKlTI8jru27ev8vLyUuXLl1cfffSR+u2339S6detUamqq6tSpkwoICFDjx49X69evV3PmzFHBwcHq4YcfNjmnH374odLpdOqll15Sq1atUsuWLVNNmjRRAQEBVp9Pg9u3b6uwsDD1xhtvKKX+O8///POPyX5Lly5VHh4easKECSohIUH9888/6tNPP1V6vV4tWbIk28cRD0aSIzdUoEAB9dprr1ndp1WrVgpQe/bsMW67cuWK0uv1ys/PzyQR2r9/vwLUF198YdzWuHFjVapUKXXjxg3jtpSUFFWjRg0VEhKi0tLSlFJKPffcc8rHx0edOXPG5PE7d+6s/P391bVr15RSSu3evdviB3bfvn0VkOUXRpcuXVSVKlWyeTbSbx8QEGCyLTfJ0SeffGKy39ChQ5Wvr6/xWLds2aIANWbMGKvxVK9eXbVq1SrLdnMx2fo8GxKeoUOHmtznJ598ogB14cIF47Z58+YpvV6v5s2bZzVOpdKTB51Op/bv32+y/ZFHHlGFChVSt27dUkopNWrUKAWonTt3muw3ZMgQpdPp1N9//23cdv/zGx0drQC1fPly47Zz584pT09Pk+TX1vPwyy+/mN1v8eLFClCzZs0yOT4/Pz8VHx9v3GZ4vQcFBRmPTymlVqxYoQD1888/Z4nJkrS0NJWcnKw2b96sAPXHH3/YfFsDw7ndvXu3yfb7kyOllAoICDBJQKz5+uuvzb6vJk2apAD166+/Gre1atVKVa9ePdv7PHLkiALUiBEjTLYvWLBAASaxDRo0SBUoUECdPn3aZN/PPvtMAcZEZNq0aQpQa9euNdlv0KBBZpMjQEVFRZnsu3DhQgWopUuXmmw3/N6ZPn26UkqpM2fOKE9PTzVs2DCT/W7cuKECAwPVs88+m+1z8H//93+qYsWKxoTLUnKkVPprqnDhwgpQgPLz81Pfffddto8hHpyU1dxQw4YNmTt3LhMmTGDHjh0kJyeb3S8oKIjw8HDj98WKFaNUqVLUqVPHpImwWrVqAJw+fRqAW7dusXPnTp5++mmTWWR6vZ4XXniB+Ph4/v77bwA2btxIu3btKFu2rMlj9+vXj9u3b9vczKrT6ejWrZvJtlq1ahljyg/du3fP8vh3794lISEBgLVr1wLw8ssv2+XxcvI8W4sRMHme+vTpQ0pKCn369LEpjurVq1O7dm2Tbb169eL69evs27cPSD/PDz/8sElPDKSfZ6UUGzdutHj/rVu3pnbt2kybNs247euvv0an0zFw4MAs+2d3HgyPdf/MqGeeeYaAgAB+++03k+116tQhODjY+L3h9d66dWuTXpX73weWnDx5kl69ehEYGIher8fLy4tWrVoBcOTIEau3zU8bN24kICCAp59+2mS74Xm7/3myRXR0NECW3qRnn30WT0/TFthVq1bRpk0bypQpQ0pKivGrc+fOAGzevNn4b8GCBenUqZPJ7Xv27GkxjqeeeirLYxUpUoRu3bqZPFadOnUIDAw0lgnXrVtnfG9k3s/X15dWrVpZLScC7Nq1i6lTpzJz5kz8/Pys7vvLL7/w/PPP8+STT7J27VrWr19P//796devn7G9QeQdach2Q4sXL2bChAnMmTOHd999lwIFCvDEE0/wySefEBgYaNyvWLFiWW7r7e2dZbu3tzeQ3scBcPXqVZRSBAUFZbm9Iam6cuWK8V9b9suOv79/ljq8j4+PMab8ULx48SyPD3Dnzh0gvddLr9ebPMcPIifPs60x5oa54zFsy3ye759Wbi3O+w0fPpz+/fvz999/U7FiRWbPns3TTz9t9rGzO8YrV67g6elJyZIlTfbT6XQEBgZmicXS6z2794E5N2/epEWLFvj6+jJhwgQeeugh/P39OXv2LE8++eQDnQd7u3LlCoGBgVl6pkqVKoWnp6fN78377xOyvmY8PT2znLdLly6xcuVKvLy8zN6XYer7lStXKF26dJafm9sG6b8rChUqlOWxrl27ZjyHlh7r0qVLAMYeyPtl7g8y56WXXuLJJ5+kfv36xv42w+vl+vXr+Pj4ULBgQZRSvPTSS7Rs2ZKoqCjj7du3b09iYiLDhg3j2WefJSAgwOrjidyT5MgNlShRgqlTpzJ16lTOnDnDzz//zKhRo0hISDDbWJ1TRYsWxcPDgwsXLmT5maH5t0SJEkD6B5kt++U3Q6J1f0N3bj4QDEqWLElqaioXL140m9DkVE6e57x08eJFi9sMH3gPep579erFW2+9xbRp02jcuDEXL17M9Qhc8eLFSUlJ4Z9//jFJkJRSXLx40eIHnz1s3LiR8+fPs2nTJuNoEZClEdwRFC9enJ07d6KUMkmQEhISSElJydVry/B6uHjxosloXEpKSpb3VokSJahVqxYffvih2fsyJNbFixc329Bt7nUJmF07yjBBwdLvv4IFCxr3A/jxxx8JDQ01u681hw4d4tChQ8ZJBJlVqlSJ2rVrs3//fi5dusSFCxcYNGhQlv0aNGjA/PnziYuLo3r16jmOQdhGympurly5crzyyis88sgjxhLIgwoICKBRo0YsW7bM5C/htLQ0vvvuO0JCQnjooYcAaNeunfEDI7P58+fj7+9vnLpujxGOnChdujS+vr4cOHDAZPtPP/2U6/s0lANmzJhhdT8fHx+bjjMnz3NeOnToEH/88YfJtu+//56CBQtSr149IP08Hz58OMtrbP78+eh0Otq0aWP1MXx9fRk4cCDz5s1j8uTJ1KlTh2bNmuUqXsPspO+++85k+9KlS7l165bx53nB8MFseD0bzJw5M88eMzNbX1uQ/jzdvHkzy7pI8+fPN/48pwyz4xYsWGCyfcmSJVlmoD366KPGJQLq16+f5cuQHLVq1YobN24Yy9YGixYtsjmuRx99lCtXrpCammr2sapUqQKkT6X39PTkxIkTZverX7++1ceJjo7O8tW3b18AVqxYwZw5cwCMM3d37NiR5T5iYmLw8PCwyx9YwjIZOXIziYmJtGnThl69elG1alUKFizI7t27+eWXX3jyySft9jgfffQRjzzyCG3atOH111/H29ub6dOnc/DgQRYuXGj8kBg7dqyxt+C9996jWLFiLFiwgNWrV/PJJ59QuHBhIP2vKj8/PxYsWEC1atUoUKAAZcqUsbiA2oPS6XQ8//zzREVFGf+i27VrF99//32u77NFixa88MILTJgwgUuXLvHoo4/i4+NDbGws/v7+DBs2DICaNWuyaNEiFi9eTMWKFfH19aVmzZpm79PW5zkn5s+fz0svvURUVJRNfUdlypShe/fujBs3jqCgIL777jvWr1/PpEmTjD05I0aMYP78+XTt2pX333+f0NBQVq9ezfTp0xkyZIhNSdzQoUP55JNP2Lt3r/FDJDceeeQROnbsyFtvvcX169dp1qwZBw4cYOzYsdStW5cXXngh1/ednaZNm1K0aFEGDx7M2LFj8fLyYsGCBVmSy7xSs2ZNNm3axMqVKwkKCqJgwYLGD/779enTh2nTptG3b1/i4uKoWbMm27ZtY+LEiXTp0oX27dvn+PGrVavG888/z9SpU/Hy8qJ9+/YcPHiQzz77LEup6/3332f9+vU0bdqU4cOHU6VKFe7evUtcXBxr1qzh66+/JiQkhL59+zJlyhSef/55JkyYQOXKlVm7di3r1q0Dsi91ATz33HMsWLCALl268Oqrr9KwYUO8vLyIj48nOjqaxx57jCeeeILy5cvz/vvvM2bMGE6ePEmnTp0oWrQoly5dYteuXQQEBDB+/HiLj2Nu6QRDn1KzZs2MI1M+Pj4MHTqUyZMn06dPH3r06IFer2fFihV8//33REREmG17EHakZTe4yH93795VgwcPVrVq1VKFChVSfn5+qkqVKmrs2LEmM28szT4JDQ1VXbt2zbIdUC+//LLJtq1bt6q2bduqgIAA5efnpxo3bqxWrlyZ5bZ//vmn6tatmypcuLDy9vZWtWvXNjtLbOHChapq1arKy8vLZEaTudlmStk+28fS7RMTE1X//v1V6dKlVUBAgOrWrZuKi4uzOFvt/tkmhllEp06dMm5LTU1VU6ZMUTVq1FDe3t6qcOHCqkmTJibPS1xcnOrQoYMqWLCgAowzjizNoLPlebY0o8kwEyw6OjrLvrZO5e/atav68ccfVfXq1ZW3t7cqX768mjx5cpZ9T58+rXr16qWKFy+uvLy8VJUqVdSnn36qUlNTTfa7//nNrHXr1qpYsWImU6sNcnIe7ty5o9566y0VGhqqvLy8VFBQkBoyZIi6evWq2eO7n7nXu+H8ZF7CwNxrcPv27apJkybK399flSxZUvXv31/t27cvy3OeF7PV9u/fr5o1a6b8/f0VYHZWZGZXrlxRgwcPVkFBQcrT01OFhoaq0aNHmyx3oJTts9WUUiopKUn93//9nypVqpTy9fVVjRs3VjExMSo0NDTLTLp//vlHDR8+XFWoUEF5eXmpYsWKqfDwcDVmzBh18+ZN435nzpxRTz75pCpQoIAqWLCgeuqpp9SaNWsUoH766SeT58Tce10ppZKTk9Vnn32mateurXx9fVWBAgVU1apV1aBBg9SxY8dM9l2xYoVq06aNKlSokPLx8VGhoaHq6aefVhs2bLDpOcjM0us2NTVVzZ49W9WvX18VKVJEFSpUSNWtW1d99dVX6t69ezl+HJEzOqWUysdcTAjhQsqXL0+NGjWMiyLmpYSEBEJDQxk2bJhcnkJka+LEibzzzjucOXMmz1cpF65HympCCIcWHx/PyZMn+fTTT/Hw8ODVV1/VOiThYL766isAqlatSnJyMhs3buSLL77g+eefl8RI5IokR0IIhzZnzhzef/99ypcvz4IFC0xmOQkB6dPzp0yZQlxcHElJSZQrV4633nqLd955R+vQhJOSspoQQgghRCaaT+XfsmUL3bp1o0yZMuh0uizTRs3ZvHkz4eHhxotcfv3113kfqBBCCCHcgubJ0a1bt6hdu7axZpydU6dO0aVLF1q0aEFsbCxvv/02w4cPZ+nSpXkcqRBCCCHcgUOV1XQ6HcuXL+fxxx+3uM9bb73Fzz//bHINosGDB/PHH3/YfB0uIYQQQghLnK4hOyYmhg4dOphs69ixI5GRkSQnJ5u9Dk9SUpLJZSDS0tL4999/KV68eK4WyRNCCCFE/lNKcePGDcqUKWPTAp+55XTJ0cWLF7NcULB06dKkpKRw+fJls0uqf/TRR1ZXLRVCCCGE8zh79myeLtPgdMkRZL1woKEyaGkUaPTo0YwcOdL4fWJiIuXKlePdd9/l9ddft/g4o0ePZvr06YwYMYJx48ZZjenEiRPUq1ePAgUKcO7cOSB9gbyrV6+ya9cui0v0CyEewLlznNm+nUdGj+biP/9QrFgxXn31VapVq8bWrVv5+uuvSU5Opn7t2vz8zjsEVK8OshSAEHb3ww8/0L9/f1q2bMnKlSs5f/481apVw8PDg6tXr2Z7+8cff5zo6GhmzZpFjx49LO7Xr18/li9fbrwYcF5xuuQoMDAwy9WWExIS8PT0NF7x+X4+Pj5ZLvQI6RezvP96PvffzvCvtf0AChQoAKRfx8ewr6dn+tPr5+eX7e2FEDkUGcntAQN4TikuAg+XKcO6nTuNf00+88wzvPDCC3Rq04Y9f/zBq888w2KdDt3s2RARoW3sQriY+z8vb926ZfyZLZ9/hs9Lf39/q/sbWmfyuiVG89lqOdWkSRPWr19vsu3XX3+lfv36ZvuN8ou50Su9Xg9AamqqJjEJ4bLi42HgQN5QikNAIPDrxYvcP8jeICiIn2/fxgv4AZirFAwalH57IYTdpKWlAf997hk+Cw3bnY3mydHNmzfZv38/+/fvB9Kn6u/fv58zZ84A6aWtzFcGHzx4MKdPn2bkyJEcOXKEqKgoIiMjrZbH8oMkR0Lko2PH2JuWxoyMb+cDwWlpcPx4lv2aKcWEjG9HAAmpqVn3E0I8EMPnnKFJOnOztANNireZ5snRnj17qFu3LnXr1gVg5MiR1K1bl/feew+ACxcuGBMlgAoVKrBmzRo2bdpEnTp1+OCDD/jiiy946qmnNInfwHDyM78gJDkSIm+oypV5FVBAb+ARAL0eKlc23TEsDDw8GAnUBRKBD3W6rPsJIR6I4XPu/pEjcM7kSPOeo9atW1t94ubOnZtlW6tWrdi3b18eRpVzhqFDGTkSIu8t372b3wF/4GNIT4xmzoT7Z6+EhMCsWXgOGsSnqam0B2Z4ePDqvXtUzPeohXBd9ydHMnIkAPNlNcOLw1lrrkI4IqUUEydOBGDEsGGEREdDXJzlJuuICIiLo110NI+0aEFyaioffPBB/gUshBuw1HOU+WfORJIjO5GeIyHyx4YNG9i7dy9+fn68+u670Lp11hGj+4WEQOvWfPDppwAsWLCACxcu5H2wQrgJ6TkSZklyJET++OSTTwAYMGAAJUuWzNFtGzVqRNOmTUlOTmb69Ol5EZ4Qbslaz5GMHLkxSY6EyHtHjx5lw4YN6HQ6RowYkav7MCwIO2PGDO7cuWPP8IRwW9JzJMyS2WpC5L05c+YA0LlzZ8qXL5+r+3j88ccJDQ3lypUrLF++3I7RCeG+rPUcSXLkxmS2mhB5KykpiW+++QaAgQMH5vp+9Ho9/fr1AzDenxDiwVjrOZKymhuTspoQeWvVqlVcvnyZMmXK0LVr1we6L0Ny9Ntvv3H69Gk7RCeEe3O1dY4kObITmcovRN5atGgRAL179zZehym3ypcvT9u2bVFKMW/ePHuEJ4Rbs9Zz5IyfgZIc2YmMHAmRd27cuMGqVasA6Nmzp13us2/fvgAsXrzYLvcnhDuTniNhliRHQuSdn3/+mbt37/LQQw9Rp04du9xn9+7d8fLy4vDhwxw+fNgu9ymEu5KeI2GWzFYTIu8YSmrPPfecyR8gD6JIkSJ06NABgB9++MEu9ymEu5KeI2GWzFYTIm/8+++/rFu3DoAePXrY9b6feeYZAH788Ue73q8Q7kZ6joRZUlYTIm+sXLmS5ORkatasycMPP2zX+zaU1g4ePMhff/1l1/sWwp1Iz5EwS5IjIfLGypUrgfTFG+2taNGitG/fHpDSmhAP4v6eI/jv81BGjtyYTOUXwv7u3btnLKl169YtTx7jySefBDDOhhNC5Nz9ZTX47/NQRo7cmIwcCWF/mzdv5ubNmwQGBhIeHp4nj9GlSxcAdu/eTUJCQp48hhCuTpIjYZbMVhPC/gyjOV27djV5b9lTmTJlqFu3Lkopfvnllzx5DCFc3f09RyDJkcuz5cTKbDUh7EspZew3yquSmoFh9GjNmjV5+jhCuCprPUe2fIY6WgIlyZEVOVlPRcpqQtjXkSNHOHXqFD4+Psam6bxiuFbbunXrSElJydPHEsIV2ausZq91zB6UJEd2IsmREPZlaMRu3bo1AQEBefpYDRs2pFixYly7do2YmJg8fSwhXJH0HAmzJDkSwr42bNgAwCOPPJLnj6XX6+nUqRMAq1evzvPHE8LVSM+RMEum8gthP/fu3WPz5s0AeV5SMzAkR7/99lu+PJ4QruRBe44cjSRHdiKz1YSwn50rV3Lr1i1KFi9OzZo18+Ux27ZtC8DevXu5+vPPEB+fL48rhCuQspowS2arCWEnkZFsePppANpduYLHN9/ky8MGBwdTJTAQpRSbH3sMQkMhMjJfHlsIZyfJkTBLeo6EsIP4eBg4kA0Z37YHGDQof0Zx4uNpd/EiAL8BpKXl32ML4eSk50iYJcmREHZw7BjX09LYmfFte4DUVDh+PF8eu23Gf41dR/n12EI4Oek5EmZJciSEHYSFsVmnIxWoDIQC6PVQuXK+PHYbnQ4dcAS4kJ+PLYSTk7KaMEuSIyHsICSEDRmN0e0hPTmZORNCQvLlsYvNnk3djG836nT599hCODlJjoRZ5marGf4vyZEQttt46RIA7ceNg7g4iIjIvwePiKDtoEHpcTz7bP4+thBOTHqOhFnWZqvJOkdC2ObKlSscPHgQgJZDh2oyatPu8ccB+G3HDqf8pS6EFqTnSJglZTUhHty2bdsAqFatGiVLltQkhhYtWuDp6cnp06eJi4vTJAYhnI2U1YRZkhwJ8eC2bNkCQMuWLTWLISAggPDwcAC2bt2qWRxCOBNJjoRZkhwJ8eAcITmC9NEjkORICFtJz5EwS5IjIR7MjRs32LdvH/BfcqIVw+MbynxCCOvM9RwZ/i/JkRuTa6sJ8WBiYmJIS0ujfPnylC1bVtNYmjVrBsBff/3FP//8o2ksQjgDa2U1Z5yUJMmRnZibrSZT+YWwnaOU1ACKFy9O9erVARk9EsIW0nMkzLJWVnPGrFmI/OZIyRFI35EQOSE9R8Is6TkSIvfu3r3Lzp3pV1ST5EgI5yPrHAmzJDkSIvd2797NvXv3KF26NJUd5FpmhuQoNjaWmzdvahyNEI5NymrCLGnIFiL3tm/fDqQ3Qmf+A0NLZcuWpVy5cqSmphITE6N1OEI4NEmOhFnWLh8iyZEQ1hmSjyZNmmgciSkprQlhG+k5EmZJWU2I3FFKOWxy1Lx5cwB27NihcSRCODbpOXJDtpxYc8mRTOUXInunTp0iISEBLy8v42U7HEXjxo0B2Llzp8w6FcKKBy2rOVoCJcmRFTnpfZCp/ELkjqHfqF69evj6+mocjakaNWoQEBDA9evXOXLkiNbhCOGw7NVz5Cg9h5Ic2YmU1YTIHUctqQF4enrSoEEDAGnKFsIK6TkSZslsNSFyx5GTI/gvLuk7EsIy6TkSZslsNSFy7tatWxw4cABw3OTI0HckI0dCWCZT+YVZUlYTIud2795NamoqwcHBml9s1hJDcnT48GGuXbumbTBCOChJjoRZkhwJkXOOXlIDKFWqFBUrVgRg165dGkcjhGOSniNhlkzlFyLnnCE5Auk7EiI70nMkzJKp/ELkjCMv/ng/6TsSwjopqwmzZLaaEDlz/PhxLl++jLe3N/Xq1dM6HKsMyZssBimEeZIcCbNktpoQOWMYhQkPD8fHx0fjaKyrVasWfn5+XL16laNHj2odjhAOx/AZKGU1YUIasoXIGWcpqQF4eXlRv359QPqOhDBHRo6EWZIcCZEzO3fuBP7r53F0hiRO+o6EyEqSI2GWJEdC2O7OnTvGxR8bNWqkcTS2MSRxMnIkhCmllPEzUJIjYUKm8gthu/3795OamkqpUqUcdvHH+xlGjg4ePMiNGzc0jkYIx5F5koL0HAkTMltNCNsZFlNs2LChw1yFOzuBgYGULVuWtLQ09u3bp3U4QjiMzJ9xMnIkTFibrSZTf4UwtXv3bgDjFe+dRcOGDYH/4hdCSHIkrJCeIyFsl3nkyJkYkjm5jIgQ/8k8ACDJkTAhyZEQtrl69SrHjh0DME6PdxaGZE6SIyH+k/kzTnqOhAlJjoSwzZ49ewCoWLEiJUqU0DianAkPD0en03H69GkSEhK0DkcIhyBlNWGRJEdC2MZZ+40AChUqRNWqVQHpOxLCwFJyZBhFkuQol6ZPn06FChXw9fUlPDycrVu3Wt1/wYIF1K5dG39/f4KCgnjxxRe5cuVKPkVrnrnZajKVX4isnLXfyMCQ1ElyJES67KbyO+OkJM2To8WLF/Paa68xZswYYmNjadGiBZ07d+bMmTNm99+2bRt9+vQhIiKCQ4cO8cMPP7B792769++fz5GbkmurCWEbZx45Auk7EuJ+hs+4zIkRSFntgUyePJmIiAj69+9PtWrVmDp1KmXLlmXGjBlm99+xYwfly5dn+PDhVKhQgebNmzNo0CBjH4NWrJXVnDFrFiIvnDt3jvPnz+Ph4UG9evW0DidXMo8cOeMvfSHszdylQ0CSo1y7d+8ee/fupUOHDibbO3TowPbt283epmnTpsTHx7NmzRqUUly6dIkff/yRrl27WnycpKQkrl+/bvKVE7acWOk5EiJ7u9euBaBGlSoEBARoHE3u1K5dGy8vLy5fvkzcwoUQH691SEJoSpIjO7t8+TKpqamULl3aZHvp0qW5ePGi2ds0bdqUBQsW0KNHD7y9vQkMDKRIkSJ8+eWXFh/no48+onDhwsYvWy9XkJOVeyU5EiIbkZHsGjAAgAZHjkBkpMYB5Y6Pjw+1g4MB2N27N4SGOu2xCGEPhurIgyRHjpZAaV5Wg6xJiFLKYmJy+PBhhg8fznvvvcfevXv55ZdfOHXqFIMHD7Z4/6NHjyYxMdH4dfbsWbvGb4gZJDkSwqz4eBg4EEMLc0OAQYOcc9QlPp6GcXEA7AJIS3PeYxHCDuzZc+QolxPy1PLBS5QogV6vzzJKlJCQkGU0yeCjjz6iWbNmvPHGGwDUqlWLgIAAWrRowYQJEwgKCspyGx8fH3x8fOx/AJlYu7ZaWlqa1YRPCJd37BhpaWnG5KgBQGoqHD8OISEaBpYLx45haCU3zldz1mMRwg6krGZn3t7ehIeHs379epPt69evp2nTpmZvc/v27SzZqeGEaHkCzM1WyxynNGULtxYWxnGdjkTAF6gBoNdD5craxpUbYWE0zHif7wVSwXmPRQg7kOQoD4wcOZI5c+YQFRXFkSNHGDFiBGfOnDGWyUaPHk2fPn2M+3fr1o1ly5YxY8YMTp48ye+//87w4cNp2LAhZcqU0eowrJbVQEprws2FhLDrpZcAqAt46fUwc6ZzjrSEhFBl5kwKALeAIx4eznssQtiBPXqOHI2mZTWAHj16cOXKFd5//30uXLhAjRo1WLNmDaGhoQBcuHDBZM2jfv36cePGDb766iv+7//+jyJFitC2bVsmTZqk1SEA2SdHMnIk3N3ujNlpDZ96CqZOdepkQj9gAPW/+YZNMTHsmjSJGhERWockhGZccZ0jzZMjgKFDhzJ06FCzP5s7d26WbcOGDWPYsGF5HFXOyMiRENYZFk1s8MQTTp0YGTRo3pxNMTHsPnGCl7QORggNSVlNWCTJkRCWJScnExsbCzjvZUPuJytlC5FOkiNhkbXZaiDJkXBvf/75J0lJSRQpUoTKLtK4bFgp+8CBA9y9e1fjaITQjiv2HElyZCfWrq0GkhwJ95b5emqusqRFuXLlKFWqFCkpKezfv1/rcITQjCv2HElyZCfmymqZ/y/JkXBnxn4jJ73YrDk6nc54PFJaE+5MymrCIkvJkSGTluRIuDPDyJGr9BsZGI7HcHxCuCNJjoRF5pIjMF0lWwh3dOvWLQ4dOgS4XnIkI0dCSM+RsCK75EhGjoS72rdvH2lpaQQHB5u9vI8zMyRHR48e5dq1a9oGI4RGpOdIWGRuthpIciSEYVTF1UaNIP36kBUqVABgz549GkcjhDakrCYsMjdbDSQ5EsIVm7Ezk74j4e4kORIWSVlNCPNctRnbQPqOhLuTniNhkaXkSGarCXd2+fJlTp06BUB4eLjG0eQNGTkS7k56joRFMnIkRFaGhOGhhx6iSJEi2gaTR+rVq4eHhwfnzp3j/PnzWocjRL6TspqwKLuGbJnKL9yRq5fUAAICAqhevTogo0fCPUlyJCyShmwhsnL1ZmwD6TsS7kx6joRFUlYTwpRSyi1GjkD6joR7k54jYZEkR0KYOnv2LAkJCXh6elKnTh2tw8lThpGj3bt3O+UHgRAPQspqwiJJjoQwZSgx1apVC19fX42jyVs1a9bEx8eHa9eucfz4ca3DESJfSXLkpmw5sTKVXwhThhKTq/cbAXh5eVG3bl1ASmvC/dij58jREihJjqy4P9GxRi4fIoQpd2nGNpCmbOGuLPUcGb7PSeKTk8/dvCTJkZ3IbDUh/pOWlsbevXsB12/GNpCmbOGusiurOeNSNpIc2Ul2PUfO+OIQIrf+/vtvbty4gb+/P9WqVdM6nHxhGDnat28fycnJGkcjRP6RniNhkTRkC/EfQ2kpPDwcT09PjaPJH2FhYRQuXJi7d+9y6NAhrcMRIt/IOkfCIkmOhPiPOzVjG3h4eFC/fn1A+o6Ee5F1joRFkhwJ8R93TI5A+o6Ee5KymrDI0mw1mcov3M29e/fYv38/4D7N2AYyY024I0mOhEUyW02IdAcOHODevXsUL16cChUqaB1OvjIkg4cOHeLWrVsaRyNE/pCeI2GRlNWESGcoKdWvX99h1izJL8HBwQQFBZGamkpsbKzW4QiRL6TnSFgkU/mFSGcoKblbSc0g83XWhHAHUlYTFsnIkRDp3LUZ28CQFErfkXAXkhwJiyQ5EgJu3LjB4cOHAfdNjmTkSLgb6TkSFsm11YRIXx1aKUXZsmUJDAzUOhxNGNY6OnHiBFeuXNE4GiHynvQcCYsszVaTqfzCnbh7SQ2gWLFiVK5cGYA9e/ZoHI0QeU/KasIiKasJIc3YBrIYpHAnkhwJiyQ5EkJGjgxkMUjhTgyVEymriSxkKr9wd//88w9xcXHodDrCw8O1DkdTmWesOeMHgxA5ISNHwiIZORLuzjBqVKVKFQoXLqxxNNqqU6cOer2eS5cuER8fr3U4QuQpSY6ERTJbTbg7Kan9x9/fn5o1awLSdyRcnyRHwiK5tppwd4YkwN2bsQ2k70i4C+k5EhZZKqvJVH7hDpRSxiRARo7SyWKQwl3IyJGwSHqOhDs7c+YM//zzD56entSuXVvrcByCYQRtz549MiFDuDRJjoRFkhwJd7Zjxw4gvRHZ19dX42gcQ/Xq1fHz8+P69escPXpU63CEyDOSHAmLZCq/cGc71q8HoHGNGhpH4jg8PT2pV68eALvmzQOZtSZclPQcuSlbTqzMVhNuKzKSnZGRADSeNw8y/i+ggZ8fALs//hhCQ+W5ES7JHiNHjpZASXJkxf2jQNbIbDXhluLjSRowgH0Z3zZWCgYNklESgPh4Gv72GwC7ANLS5LkRLsmeZbWcfO7mJUmO7ER6joRbOnaMP5QiCSgBVARITYXjx7WNyxEcO0aDjN8L+4EkkOdGuCTD4ID0HIksZCq/cEthYezIeM03AnQAej1kXJXerYWFUUmnowRwD4gFeW6ESzJ8vknPkchCRo6EWwoJYUfGej6NIf3Df+ZMCAnRNCyHEBKCbvbs9OcF0pNIeW6EC5LZasIiSY6Eu9p5+TIAjT79FOLiICJC24AcSUQEjd94A4Adjz4qz41wSZaSI8NIkiRHbkxmqwl3lJCQwMmTJ9HpdDQcMEBGRcxo0qkTADF//KFxJELkjex6jpxxKRtJjuwku9lqzvjiECI7O3fuBKBatWoULlxY42gcU4MGDfDw8ODMmTOcP39e63CEsDvpORIWSVlNuCPDytiNGzfOZk/3VbBgQWpkLI5peL6EcCXScyQskuRIuCPDh32jRo00jsSxGZJHSY6EK5LkSFgkU/mFu0lNTTVecV5Gjqxr0qQJADExMRpHIoT9yTpHwiIZORLu5siRI9y4cYOAgACqV6+udTgOzZA87tmzh+TkZI2jEcK+pOdIWGTpwnuSHAlXZSgRNWzYMMtfjMLUQw89RNGiRbl79y4HDhzQOhwh7ErKasIiGTkS7kb6jWzn4eFhfJ6ktCZcjSRHwqLskiOZyi9cjcxUyxlpyhauSnqOhEUyciTcyfXr1zl8+DAgI0e2kqZs4aqk50hYJMmRcCe7d+9GKUX58uUJDAzUOhyn0LBhQwBOnjxJQkKCxtEIYT9SVhMWWbp8iEzlF65I+o1yrkiRIjz88MOAlNaEa5HkSFiU3eVDJDkSrmT79u2A9BvllPQdCVckPUfCIimrCXeRlpZmTI6aNWumcTTOxdB3JMmRcCXScyQskuRIuIsjR45w7do1/P39qVOnjtbhOBXDyNGuXbtISUnROBoh7EPKanlk+vTpVKhQAV9fX8LDw9m6davV/ZOSkhgzZgyhoaH4+PhQqVIloqKi8ila82Qqv3AXv//+O5DeYOzl5aVxNM7l4YcfplChQty6dYtDhw5pHY4QdiHJUR5YvHgxr732GmPGjCE2NpYWLVrQuXNnzpw5Y/E2zz77LL/99huRkZH8/fffLFy4kKpVq+Zj1JbJyJFwdYbkSEpqOefh4WGctWYoTQrh7LLrOXJGmidHkydPJiIigv79+1OtWjWmTp1K2bJlmTFjhtn9f/nlFzZv3syaNWto37495cuXp2HDhjRt2jSfIzdlKTOW5Ei4GkmOHozheTM8j0I4O0s9RwYycpRD9+7dY+/evXTo0MFke4cOHSz+VfXzzz9Tv359PvnkE4KDg3nooYd4/fXXuXPnjsXHSUpK4vr16yZfOWHLibVUVpOp/MKVXLp0iRMnTqDT6YzNxSJnmjdvDsC2bds0jkQI+3DFspqnlg9++fJlUlNTKV26tMn20qVLc/HiRbO3OXnyJNu2bcPX15fly5dz+fJlhg4dyr///mux7+ijjz5i/PjxOY4vJ0OC0pAt3IFhtKN69eoUKVJE22CcVKNGjdDr9Zw+fZqzZ89StmxZrUMS4oFklxzZwtESKM3LapD1CVRKWXxS09LS0Ol0LFiwgIYNG9KlSxcmT57M3LlzLY4ejR49msTEROPX2bNn7X4MBpIcCVcmJbUHV7BgQeMsPymtCVdgqefIICeJj6P0KWmaHJUoUQK9Xp9llCghISHLaJJBUFAQwcHBFC5c2LitWrVqKKWIj483exsfHx8KFSpk8mVv0nMk3IEkR/YhpTXhSmSdIzvz9vYmPDyc9evXm2xfv369xQbrZs2acf78eW7evGncdvToUTw8PAgJCcnTeK2RqfzC1d25c4d9+/YBkhw9KENyJCNHwhXYo6zmaDQvq40cOZI5c+YQFRXFkSNHGDFiBGfOnGHw4MFAekmsT58+xv179epF8eLFefHFFzl8+DBbtmzhjTfe4KWXXsLPz0+rw5CeI+Hydu/eTXJyMoGBgVSoUEHrcJyaIbk8cOAAiYmJGkcjxIOxlBwZyMhRLvTo0YOpU6fy/vvvU6dOHbZs2cKaNWsIDQ0F4MKFCyZrHhUoUID169dz7do16tevT+/evenWrRtffPGFVocASHIkXJ9hlKN58+ZO/RehIwgKCqJSpUqkpaXJpUSE05PZanlk6NChDB061OzP5s6dm2Vb1apVs5TiHIVM5ReuSvqN7Kt58+acOHGCbdu20bFjR63DESLXDJfC8fQ0TSmcOTnSfOTIVUhDtnBlcrFZ+5OmbOEKMvfTSs+RyELKasKV/fXXX1y9elUuNmtHhuRo586d3Lt3T+NohMidzJ9t0nMkspDkSLgyudis/VWpUoXixYtz584dYmNjtQ5HiFyxlhxJWU0YyVR+4YoMpR8pqdmPTqeT0ppwerYkR85IkiM7kZ4j4co2b94MQMuWLTWOxLVIciScnZTVhFVSVhOu6vTp05w+fRq9Xm9xcVaRO4aRuG3btjnlB4gQUlYTVllKjmQqv3B2W7ZsASA8PJwCBQpoHI1rqVevHr6+vly+fJmjR49qHY4QOSZlNWETGTkSrsZQUmvVqpXGkbgeHx8fGjZsCMDWrVs1jkaInMv82Xb/tdUMZOTIjUnPkXBVkhzlLcPzaniehXAm1i4dImU1IT1HwiWdP3+e48ePo9PpZKZaHjEkR5s2bXLKDxHh3iytjg2SHAkkORKuydBvVKdOHYoUKaJtMC6qSZMmeHl5ER8fz8mTJ7UOR4gcsWXkyBlJcmRnlpIjcM7sWbi3zatXA9CyXj2NI3Fd/v7+NGrUCIBNX38N8fEaRySE7awlRwbO+NknyZGdZNdzBDJ6JJxMZCSbv/sOgFZRURAZqXFArqt1xqjcps8+g9BQea6F05CeI2FVdlP5QZIj4UTi40kYMIAjGd+2UAoGDZJRjbwQH0/rjBG6zYBKS5PnWjgNKasJq7LrOQJJjoQTOXaMrRmv6epACYDUVDh+XMuoXNOxYzRRCi/gLHAK5LkWTkPKasIqSY6ESwkLwzCx3DiBX6+HypU1CsiFhYXh7+FBw4xvN4E818JpSFlN2ESSI+ESQkLYHBICZCRHej3MnAkZ24QdhYTArFm0zvjdsUmnk+daOA0pq7kxW7JeacgWruTff//lz3PnAGjx448QFwcREdoG5coiImi9YAEAm4KCUC+9pHFAQtjGXmU1RxtdkuTIipxkvbaU1dLS0uwTmBB5zLAgYbVq1Qh66ikZxcgHTbp3x9PTk7Pnz3Pq1CmtwxHCJvYuqznKaJMkR3ZiKTnS6XTGbTJyJJzFb7/9BkDbtm01jsR9BAQEGK+zJpcSEc7ClhWynZEkR3Zm7sVgmM4vyZFwFobkqF27dhpH4l5at24NpI/cCeEMZLaasMrayZdLiAhncu7cOf7++288PDyMH9Yifxie740bNzrlB4pwPzJbTVhlqawGkhwJ57Jx40YA6tWrR9GiRTWOxr00a9YMb29v4uPjOXbsmNbhCJEtSY6EVZIcCVchJTXt+Pv706xZMwA2bNigcTRCZE+m8gubSHIknJlSSpqxNda+fXtAkiPhHKTnSFhlS8+RTOUXju7YsWPEx8fj7e1N8+bNtQ7HLRmSo40bN8ofVMLhSVnNjISEBC5evGivWJyalNWEKzCMGjVp0gR/f3+No3FP4eHhFC5cmMTERPbu3at1OEJYJWW1TA4cOED16tUJCgoiODiY4OBg3nnnHW7dumXv+JyGteRIpvILZ2FoxpZ+I+3o9XpjSVNKa8LRSVktk4iICEqXLs22bduIjY1lwoQJrF27lvr163P16lV7x+hUZORIOKu0tDSio6MBSY60Jn1HwllIWS2Tw4cPM336dJo0aUKtWrV48cUX2bNnD9WrV2fYsGH2jtEpyDpHwtn98ccfXLlyhQIFCtCgQQOtw3FrhuTo999/5/bt2xpHI4RlskJ2JuZGiHQ6HRMnTuSnn36yS2DORnqOhLMz9Bu1bNkSLy8vjaNxb2FhYZQtW5Z79+6xbds2rcMRwiK3L6t17dqVt99+myVLljB48GBGjBjBpUuXTPZJTEx020XjJDkSzu7XX38F/hu1ENrR6XQ88sgjAKxfv17jaISwzFXLalnHwSyoWbMm+/bt45tvvjEmRRUrVuTZZ5+lTp06pKam8s033zBlypQ8C9aR2ZIcyVR+4ahu377Nli1bAOjUqZPG0QhIT1KjoqKk70g4NLdPjj7++GPj/y9dukRsbCz79+9n//79zJgxg+PHj6PX6xk/fjxPPfVUngTrDGTkSDijzZs3k5SURLly5ahatarW4Qj+W4Rz//79/PPPP5QsWVLjiITIylWn8tucHGVWunRpOnXqZPIX5p07d/jjjz/4448/7BacM7GWGctUfuHofvnlFwA6duzo1L/QXEnp0qWpVasWBw4cYMOGDfTs2VPrkITIwu17jrLj5+dH48aNGTRokL3u0qlIz5FwZuvWrQOkpOZoOnbsCPyXvArhaFy1rCaXD7ETSY6Eszp16hR///03er1e1jdyMJ07dwbSkyPpWRSOyFXLapIc2ZkkR8LZGEaNmjRpQuHChTWORmTWrFkzChQoQEJCArGxsVqHI0QWUlYTVskikMJZGZIjQwlHOA5vb2/j0gpr167VOBohspKymrBKymrCGSUnJxsXf5R+I8dkKK1JciQckayQLaySdY6EM4qJieHGjRuUKFGCevXqaR2OMMOQHO3YsYN///1X42iEMCVlNWETc8mRTOUXjsowC6pDhw7G16lwLGXLlqV69eqkpaXJatnC4UhZzY3ZcmKl50g4o8zrGwnHJaU14ajslRw5WgIlyZEVOamXSs+RcDYXLlwwzoDq0KGDxtEIazInR1KeF47E3lP5HaVPSZIjO5HkSDib1atXA9CgQQMCAwM1jkZY07x5c5nSLxyS9BwJqyQ5Es5m5cqVAHTr1k3jSER2vL29jQt0SmlNOBLpORI2keRIOIM7d+4Ym3slOXIOhtLamjVrNI5EiP/ICtnCKlsasqVXQDiKjRs3cufOHcqWLUvt2rW1DkfYoGvXrkD6lP6EhASNoxEinZTVhFXWymoylV84mpWLFgHwaOvWTv3XnTsJCQmhXr16KKVY9dlnEB+vdUhCSFlNWCc9R8JZqDlzWPXddwB0++47iIzUOCJhq+4hIQD89OmnEBoq505oTlbIFjaR5Eg4tPh4YgcO5BwQALRRCgYNklEIZxAfz2MZTfTrgdtpaXLuhOakrCaskkUghVM4doyVGa/VRwBfgNRUOH5cy6iELY4do7ZShAJ3gA0g505oTspqwiopqwmnEBbGyoz/Gueo6fVQubJGAQmbhYWh8/Cge8a3P4OcO6E5ma0mrJLkSDiD8x4e7AV0QFdI/3CdORMyelmEAwsJgVmz6J4xwWMlkDpjhpw7oSkpqwmbWEuOZCq/0NqqVasAaFi3LqWjoyEuDiIitA1K2C4iglbHj1M4IIAEYGf16lpHJNyclNWEVdZOvkzlF45i2bJlAHR/+mlo3VpGHZyQV4UKdOmeXlz7+eefNY5GuDtJjoRVUlYTju7atWv89ttvADz11FMaRyMeRPeM5Oinn37SOBLh7qTnSFglyZFwdCtXriQlJYXq1atTpUoVrcMRD6Bz5854eXnx119/cfToUa3DEW5Meo6ETSQ5Eo5q6dKlgIwauYLChQvTpk0b4L/zKoQWpKwmck2SI6G1mzdvsm7dOgCefPJJjaMR9vD0008D8MMPP2gciXBnskK2sChzViwjR8IRrV27lrt371KpUiVq1aqldTjCDp544gn0ej2xsbGcOHFC63CEm5KymrDI1uRIpvILrWQuqTnzX3PiPyVKlDCW1mT0SGhFymrCouySI5nKL7R09+5dVq9eDUhJzdU888wzgCRHQjsyWy0PTZ8+nQoVKuDr60t4eDhbt2616Xa///47np6e1KlTJ28DzAEpqwlHs379em7evElISAgNGjTQOhxhR4bS2r59+zh58qTW4Qg3JGW1PLJ48WJee+01xowZQ2xsLC1atKBz586cOXPG6u0SExPp06cP7dq1y6dILcvuxEtyJLS0ZMkSIH3UyDCKKVxDyZIlad26NSCjR0IbUlbLI5MnTyYiIoL+/ftTrVo1pk6dStmyZZkxY4bV2w0aNIhevXrRpEmTfIrUMmnIFo7q9u3brFixAoDnnntO22BEnpDSmtCSJEd54N69e+zdu5cOHTqYbO/QoQPbt2+3eLtvvvmGEydOMHbsWJseJykpievXr5t85UR2J1aSI+Go1qxZw82bNwkNDaVx48ZahyPywBNPPIGHhwd79+6V0prId9JzlAcuX75MamoqpUuXNtleunRpLl68aPY2x44dY9SoUSxYsMDsugrmfPTRRxQuXNj4VbZsWZtul5sTK8mRcCQLFy4E0keNnPkXlbCsVKlSxtLajz/+qG0wwu3Yq+fI0UaXNC+rQdaEQill9hd5amoqvXr1Yvz48Tz00EM23//o0aNJTEw0fp09e/aBY87M1p4jmcov8tP169eNs9R69uypcTQiLxlKa4sXL9Y4EuFu7F1Wc5Q/4jRNjkqUKIFer88ySpSQkJBlNAngxo0b7Nmzh1deeQVPT088PT15//33+eOPP/D09GTjxo1mH8fHx4dChQqZfNmTTOUXjmjFihUkJSVRtWpVWfjRxT399NN4enqyb98+jhw5onU4wo3ICtl5wNvbm/DwcNavX2+yff369TRt2jTL/oUKFeLPP/9k//79xq/BgwdTpUoV9u/fT6NGjfIrdBPScyQc0aJFi4D0USNn/iUlsleiRAk6deoEwIIFCzSORrgTmcqfR0aOHMmcOXOIioriyJEjjBgxgjNnzjB48GAgvSTWp08fIH0EpkaNGiZfpUqVwtfXlxo1ahAQEKDloQCSHAnHcPnyZeMfHTJLzT08//zzQHpyJCV8kV9cdbaabR3NeahHjx5cuXKF999/nwsXLlCjRg3WrFlDaGgoABcuXMh2zSOtyTpHwtH8+OOPpKSkUK9evRz15wnn1a1bNwoWLEhcXBzbt2+nefPmWock3IDMVstDQ4cOJS4ujqSkJPbu3UvLli2NP5s7dy6bNm2yeNtx48axf//+vA/SCimrCUczb948AHr16qVxJCK/+Pv789RTTwFSWhP5R8pqwiJJjoQj+fvvv9mxYwd6vZ7evXtrHY7IR4bzvXjxYu7du6dxNMIduGpZTZIjO5DkSDiS+fPnA9CxY0cCAwM1jkbkpzZt2hAUFMTVq1dZu3at1uEINyDJkcg1w1R+aZIUeS01NdWYHPXt21fjaER+0+v1xlLqt99+q3E0wh1Iz5GwyNaRI8N6EELklejoaOLj4ylSpAjdu3fXOhyhAcPs3p9//pnLly9rHI1wddJzJCzKLjkyLI4lZTWR1+ZlXLD5uUcfxdfXV+NohBZq1apFeHg4ycnJfDd2LMTHax2ScGG2LAIpyZGbkuRIOIIb06axbNkyAPouWACRkRpHJLTyUtWqAEROn44qV05eCyLPGD7XZIVsYZW15EjKaiLPxMfzw7Bh3AYeAhopBYMGyaiBO4qPp9f33+MLHAT2yGtB5CFrI0cGMnLkprI78ZIciTx37BizM16HLwI6gNRUOH5cy6iEFo4do4hSPJXxbSTIa0HkCaWUlNWEZbaW1SQ5EnnlQEoKO0hf8v5Fw0a9HipX1i4ooY2wMPDw4KWMbxcCtz085LUg7C7zDGwpq4ksZLaa0Nqsn34C4HGgNKQnRjNnQkiIhlEJTYSEwKxZtPbwoAJwHVj64ovyWhB2l/kzTWarCaukIVvkt9u3bxvXtBm4YAFER0NcHEREaBuY0E5EBB6nT/PSS+njR7OPHtU4IOGKMidHUlYTWUjPkdDSkiVLuH79OhUrVqTdc89B69YySiAgJIQX338fvV7P1q1bOXjwoNYRCRcjyZGwSnqOhJZmzpwJwIABA4yrsQsBEBwczOOPPw7AjIw1sISwl8zVEOk5EllIciS08ueff7Jjxw48PT3p16+f1uEIBzR06FAg/Zp7N27c0Dga4Uoyf6ZZ+8NMRo6EWZIcibwybdo0AB577DG5yKwwq02bNlSpUoWbN2/y3XffaR2OcCGZp/GbGxiQspqbk54joYWrV68aLzI7bNgwjaMRjkqn0xlHj6ZPn+6UH1TCMRk+0yzNVJOympsz/LKx9EIwvHBktpqwp8jISO7cuUOtWrVo2bKl1uEIB9anTx/8/f05ePAg27Zt0zoc4SJsWR0bZOTIZWV3YrNLjmTkSNhbamqqsaQ2fPhwp/4LTeS9IkWK0Lt3bwC++uorjaMRriK75CgnZTVHS6AkObLC1g8cSY5Eflu1ahVxcXEUK1aMXr16aR2OcAKvvPIKAEuXLuX06dMaRyNcgbWLzkLuymqO8oeeJEd2JMmRyC9ffPEFAAMHDsTPz0/jaIQzqFWrFu3atSM1NZUvv/xS63CEC5CymrAqJw3ZzvgiEY7l4MGDbNy4Eb1ez5AhQ7QORziRkSNHAjB79myuX7+ucTTC2dmzrOZoJDmyA1vLamB6oT4hcuPzzz8H4IknnqBcuXIaRyOcSadOnahatSrXr18nKipK63CEk5PZasIqW2ergcxYEw8mPj6eBQsWAPD6669rHI1wNh4eHowYMQKA//3vf1LqFw9EymrCJraMHMkvI/Eg/ve//5GcnEyrVq1o1KiR1uEIJ/TCCy9QokQJ4uLiWLFihdbhCCcmZTVhla09RyDJkci9a9euGa+j9uabb2ocjXBWfn5+xkUhJ02a5JQfXMIx2DpbzRlfY5Ic2UFOeo4kORK5NXPmTG7cuEGNGjXo3Lmz1uEIJ/bKK6/g5+fHnj17WL9+vdbhCCdl68iRM5LkyA5y0nMkyZHIjaSkJKZOnQrAG2+84dS/dIT2SpYsycCBAwH48MMPNY5GOCvpORI2sfSBpdPpjAmSJEcix+Ljmff221y8eJGQkBCee+45rSMSLuD111/Hy8uLLVu2sO2LLyA+XuuQhJOxdbaaJEduypYTL9dXE7kSGcm9cuX4cPJkAF5v3hxvb2+NgxKuICQkhH5NmgDw4auvQmgoREZqHJVwJlJWE1ZlV1YDWSVb5EJ8PAwcyDylOAMEAgOXLJG/8IV9xMfz1tateAC/AHvT0mDQIHl9CZtJWU1YJcmRyBPHjnEvLQ1DR8gowC8tDY4f1zIq4SqOHaOSUvTM+HYiQGqqvL6EzWQqv7CJJEfCrsLCmK/TcZqMUSMAvR4qV9Y2LuEawsLAw4PRGd8uA/708JDXl7BZXlx41lFIcmQHtmTFkhyJnEouXZoPixcH4C3AT6+HmTMhJETbwIRrCAmBWbOortfzTMamd2vVkteXsJmU1YRVUlYTeWH+/PnEXb5M6ZIlGfTLLxAXBxERWoclXElEBMTF8f68eXh4ePDT/v3s3LlT66iEk5DZasKqnCRHMltN2CIpKYkPPvgAgLdGj8avY0f5i17kjZAQqvbpQ58+fQB45513NA5IOAvpORJW2ZIcyTpHIidmzJjB6dOnCQ4OZtCgQVqHI9zA2LFj8fLyYsOGDURHR2sdjnACMpVf2ETKasIeEhMTmTBhAgDjx4/H399f44iEOyhfvrxx1ewxY8Y45V/7In9Jz5GwShqyhT198sknXLlyhWrVqtG3b1+twxFuZMyYMfj5+RETE8OqVau0Dkc4OLnwrLBKGrKFvZw/f54pU6YA8NFHH2X7F5kQ9hQUFMSwYcMAGDVqlPy+ElbZ2pDtjCQ5sgNJjoS9jB8/njt37tC0aVO6d++udTjCDY0aNYrixYtz+PBhZs+erXU4woFJWU3YRGariQdx5MgRIjOubTVp0iSn/qtLOK+iRYsybtw4AN577z0SExO1DUg4LJmtJqzKyYVnZeRImKOUYsSIEaSmptK9e3eaN2+udUjCjQ0aNIiqVaty+fJlJk6cqHU4wkHJbDU3l13yI2U18aBWrVrFunXr8Pb25vPPP9c6HOHmvLy8+OyzzwCYOnUqJ0+e1Dgi4YjsWVZztNElSY6ssDXrleRIPIikpCRGjBgBwMiRI6ks17YSDqBLly60b9+ee/fuMWrUKK3DEQ4oL2arOcpokyRHdiTJkciNKVOmcOLECYKCgnj77be1DkcIIP332eTJk/Hw8OCHH36QhSFFFnL5EGFVTtY5koZskdn58+eNCz5OmjSJggULahyREP+pWbMmgwcPBmDo0KHcu3dP44iEI5GeI2GVlNVErsTH82bfvty6dYvGjRvTu3dvrSMSIosPP/yQUqVK8ddffzH55ZchPl7rkISDkKn8wipJjkSORUayvlw5FmzYgA74sn17PDzk7SgcT5EiRfi8WzcA3p8zh9PlykHGkhPCvclUfmGVXHhW5Eh8PLcHDGBwxuvmFaD+Rx/JX+TCMcXH0zsqilbAHWC4UjBokLxehZTVhG1k5EjY5NgxPlCKk0AI8CFAaiocP65tXEKYc+wYOqWYDngCPwM/y+tVIGU1kQ258KzIiQMpKXya8f9pQEEAvR5kCr9wRGFh4OHBw8D/ZWwaAlwrWVLDoIQjMEwwktlqwqyc9BzJbDX3lpqaysB33yUVeBLoDumJ0cyZEBKibXBCmBMSArNmgV7PWCAMOA+8nnGBZOG+pKwmrJKGbGGrqVOnsnPnTgoVKsQXu3ZBdDTExUFEhNahCWFZRATExeEXHU3U0qXodDoiIyP59ddftY5MaEjKasImkhwJaw4dOsSYMWMA+Oyzzwhu0ABat5YRI+EcQkKgdWuaP/kkw4YNA2DAgAHcuHFD48CEVmS2mrBKLjwrspOcnEzfvn1JSkqic+fO9O/fX+uQhMi1iRMnUrFiRc6cOcObb76pdThCI5IcCaukrCayM3HiRPbu3UvRokWZM2eOU9fihQgICCAyY62jr7/+mrVr12ockdCC9BwJqyQ5Etbs3bvXeImQadOmUaZMGY0jEuLBtW7dmuHDhwPQr18/Ll26pHFEIr9lN1vNQEaO3JzMVhP3u3nzJr179yYlJYVnnnmG5557TuuQhLCbSZMmUbNmTRISEnjppZec8kNQ5J6U1YRVss6RsOTll1/m77//Jjg4mOnTpzv1MLMQ9/P19eX777/Hx8eHNWvW8NVXX2kdkshHUlYTVklZTZgzf/585s+fj4eHBwsXLqREiRJahySE3dWoUYPPPvsMgDfeeIMDBw5oHJHILzKVX1gl11YTJuLj+WvePIYOGQLAuHHjaNGihcZBCZF3Xn75Zbp27UpSUhLPPPMM148cSV/DS66/5tKkrCZsIiNHgshI7pQrR49+/bh1+zZtq1bl7bff1joqIfKUTqdj7ty5lC1blqNHj/Liww+j2raF0FDImNUmXI/h8yy7y4c4I0mO7EB6jgQA8fGoAQMYqBQHgJLAd0ePor9wQevIhMhzJUqU4Idp0/AClgGfA6SlwaBBMoLkoqSslsemT59OhQoV8PX1JTw8nK1bt1rcd9myZTzyyCOULFmSQoUK0aRJE9atW5eP0WYl11YTABw7xlSl+A7QA0uAoLQ0uXq5cBuNChTgfxn/HwVsBkhNlfeAizJ8nklZLQ8sXryY1157jTFjxhAbG0uLFi3o3LkzZ86cMbv/li1beOSRR1izZg179+6lTZs2dOvWjdjY2HyO/D/SkC0Afrt0idcz/j8ZaA3pF5WtXFmzmITIV2FhDNbpeB5IBZ4FTnt4yHvARclstTw0efJkIiIi6N+/P9WqVWPq1KmULVuWGTNmmN1/6tSpvPnmmzRo0ICwsDAmTpxIWFgYK1euzOfI/yPJkTh16hQ9XnmFNKCvTscwSE+MZs6Ua6cJ9xESgm72bGZ6eFAbSAC6BQVxo3BhrSMTecDWspoz0jQ5unfvHnv37qVDhw4m2zt06MD27dttuo+0tDRu3LhBsWLFLO6TlJTE9evXTb5ywtYhQUmO3NO1a9fo1q0bV65coUGDBnx99Ci66GiIi0u/mrkQ7iQiAv/Tp1m5eDGBpUrx57lz9OzZU1oKXFBORo6crbSmaXJ0+fJlUlNTKV26tMn20qVLc/HiRZvu4/PPP+fWrVs8++yzFvf56KOPKFy4sPGrbNmyNt23rUOCcuFZ93Xv3j2efPJJDh06RJkyZVi2bBm+lStD69YyYiTcV0gIZZ99lp9WrsTX15fVq1fzxhtvaB2VsLOczFbL7nPS0ZInzctqkDUJUUrZlJgsXLiQcePGsXjxYkqVKmVxv9GjR5OYmGj8Onv27APHnJmU1dyTUor+/fsTHR1NgQIFWL16NSGSEAlh1LBhQ+bNmwfAlClTmDZtmsYRCXvKi54jR+lT0jQ5KlGiBHq9PssoUUJCQpbRpPstXryYiIgIlixZQvv27a3u6+PjQ6FChUy+7Elmq7mnsWPH8u2336LX6/nxxx+pU6eO1iEJ4XCeffZZPvjgAwCGDRvGkiVLNI5I2Et2s9Uyc7SRoexomhx5e3sTHh7O+vXrTbavX7+epk2bWrzdwoUL6devH99//z1du3bN6zBtZktylJycnF/hiDz0xRdfGH/hz5w5k44dO2ockRCOa8yYMQwZMgSlFM8//zwbNmzQOiRhB4bPM+k5ygMjR45kzpw5REVFceTIEUaMGMGZM2cYPHgwkF4S69Onj3H/hQsX0qdPHz7//HMaN27MxYsXuXjxIomJiVodgk0n3cvLC5DkyBVERUXx6quvAumjRxHSdC2EVTqdji+//JJnnnmG5ORkHn/8cXbv3q11WOIBGT7PDJ9v93OUElluaJ4c9ejRg6lTp/L+++9Tp04dtmzZwpo1awgNDQXgwoULJmsezZw5k5SUFF5++WWCgoKMX4YPKy3YUlaT5MgFxMezZOxYBgwYAMCIESMYO3asxkEJ4Rz0ej3ffvst7dq149atW3Tu3JkD69fLNdicmOHzzNvbO9t9nW3kyCEWJxg6dChDhw41+7O5c+eafL9p06a8DyiHbEmODC+ee/fu5UtMws4iI1k1YAC9lSINGNiyJZ9//rlT/2UkRH7z8fFh+fLltG/fnl27dtGuQwc2AjU9PGDWLFn6womkpaUZe45sGTlytuRI85EjVyIjRy4qPp7VAwbwtFKkAL2A6du2oTt3TuvIhHA6BQsWZF1UFPWBy0Bb4KBcg83pZP4sk7KaMEt6jlzb8qgonlCKJOAJYC6gl2umCZFrRRIS+BUI578E6ZBcg82p2JIcZSYjR25Ieo5c1+LFi3nm/fdJJv06UYsBL5BrpgnxIMLCKOrhwXqgHvAP0AaIvXtX27iEzXI6ciTJkRuS5Mg1zZ8/n169epGamsoLTZqwwMPjv8RIrpkmRO6FhMCsWRTV600SpNY9erB161aNgxO2kORI2EySI9cxZcoU+vbtS1paGv3792futm14nj6dPrNGrpkmxIOLiIC4OIpFRxN9+DAtW7bk+vXrdOjQgTVr1mgdnciGYXKRp6enxc8+6Tlyc7ZkxDJbzTmkpaXx+uuvM3LkSABeffVVZs6ciYeHR/pfu3LNNCHsJ+M9VahaNX755RceffRR7t69y2OPPcb333+vdXTCiuzWOLqfjBy5ISmruYZ79+7xwgsv8PnnnwMwadIkpkyZkp4YCSHylJ+fH8uWLaN3796kpKTQu3dvPvroI6f7UHUXtiRHUlZzc5IcObn4eK6tXEnX9u35/vvv8fT0ZP78+bz55ptOPSwshLPx8vJi/vz5jBgxAoC3336b/v37k3zqlCwW6WBymhw5G0mO8okkRw4qMpKj5crRqHt3NmzdSoCPD6tWreKFF17QOjIh3JKHhweTJ0/mq6++wsPDg6ioKDpXrMi1tm0hNBQiI7UOUSBlNWGDnIwcZV5VVGgsPp4NAwbQSCmOAmWBbcnJdKxeXevIhHB7L7/8Mj9HRREA/AY0A07IYpEOw5ZLh0hZTQC2JUcgo0eOQCnFtE8/pZNSXAOaALuBOrK4oxAOo2u5cmwFygCHgfrAWlks0iEYJhdJWU1YlJPZaiDJkdbu3LlD//79eeWLL0gF+gDRQGmQxR2FcCRhYdT18GAX0Bi4BnQFPli1irS0NE1Dc3dSVhM2k5Ejx3fs2DEaN25MVFQUHh4eTHrqKeZ6eOADsrijEI4mY7HIYL2eTcBgnQ4FvPf55zzxxBMkJiZqHKD7ktlqIlu2nHS9Xm/8vyRH2li6dCnh4eEcOHCAUqVKsX79et788Ud0srijEI4rY7FIn+hoZpw5Q2RkJD4+Pvz888/Uq1ePXbt2aR2hW5LkSGTLloZsnU4nM9byW3w8REdz6+hRhg4dytNPP82NGzdo0aIFsbGxtG3bNn0/WdxRCMeW6T360ksvsXXrVsqVK8fJkydp1qwZkyZNSi+zZbznpWE77+W0IdvZSHJkR9m9ECQ5ykeRkRAayu62balXpQozZswA4M0332Tjxo2UKVNG4wCFELnVoEED9u/fzzPPPENKSgqjRo2iQ40anC9XDmTKf76QniORLVtPuuFFJJcQyWPx8aQMGMAHaWk0AY4CwcD6779n0qRJeHp6ahygEOJBFS1alMWLFzNnzhz8/fz47cgRaijFt4CSKf95Lqez1SQ5ckG2ntTsRo4Mw48ycpS39q5eTUOleA9IBZ4FDgDtg4K0DUwIYVc6nY6IiAj2zphBOHCV9Nmn3YBzMuU/T9l7hWxHS54kObLC1hOb05EjSY7yxq1bt3j99ddpOHQosUBR4FtgEVBMpugL4bKqtmvHDp2OiYA3sBp4GJi1c6dM+c8jeVVWc5Q+JUmO7MCWhmyQ5CgvrV27lho1avD555+TlpbGcw0bcsTDg+cBnUzRF8K1hYTgOXs2o/V6YoGGwHVg0KhRNGnShL1792ocoOuRFbKFzSQ5yn9Hjx6lW7dudOnShbi4OMqVK8fq1atZuHMnpWWKvhDuI2PK/8PR0fx+6hRTpkyhYMGC7Nq1iwYNGjB06FD+/fdfraN0GXLhWZEtKavls/h4Eleu5PVBg6hRowarVq3C09OTkSNHcujQIbp06ZK+n0zRF8K9ZLznPcuX57XXXuPvv/+mV69eKKWYMWMGVapU4auvviL51CmZ8v+AZLaasJmtDdkyWy33kmfOZGa5coR1787ns2aRnJxMly5dOHjwIJ9//jkFChTQOkQhhIMICgpiwYIFREdH8/DDD3P58mWGDRtG9YoVWd62LapcOZnyn0syW01kS0aO8l5aWhpLZsyg+uDBDFaKf4AqwBoPD1bPnEmVKlW0DlEI4aBat27N/v37mf7hh5QEjgFPAi2UYsfAgTKClAsyciSyJQ3ZeUcpxa+//kqDBg3oMXQox4ASwFTgT6BzWppM1xVCZMvLy4shTZpwHBgD+AG/A03S0niqVy8OHjyobYBOxtbkyFn7jiQ5siNJjuxrx44dtGvXjo4dO7Jv3z4KBAQwXqfjJPAq4AXpF4uVKfpCCFuEhVHIw4MJpC8O+yKgA5Zt3UqtWrXo2bMnf/31l7YxOglbZqtlJiNHbkjKanaScV2krUuX0qFDB5o0aUJ0dDTe3t6MGDGCk6dO8d7s2RQ0XMRXpugLIXIiJARmzQK9nhAgSq/nz/Hjefrpp1FKsWjRIqpXr06fPn04fvy4XKvNipyOHDlbciTXUbAjGTnKPTVnDpsGDuR9pdiUsc3T05M+ffowduxYypUrl74xIgI6dkwvpVWuLImRECJn7vsdUj0khB+AP/74g7Fjx/LTTz/x7bff8v2CBfROS+NNoLqHR3pSJUuCGElZTWTL1oxYZqtllZqayoo5c2gxYABtMxIjL2CQTsexLVuIjIz8LzEykCn6QogHYeZ3SO3atVmxYgW7d++mS9u2pKalMR+oAXRPS2O7NG6bsGW2WmbONnIkyZEdSEN2zt28eZMvv/ySKlWq8MSAAfxO+rL/LwMngK+VonxSkrZBCiHcTv369Vn9zjvsAp4ivSdpJdAsLY0WXbqwbNkyUlJStA3SAUhZTdhMkiML4uPh2DFU5crsv3yZefPmMXfuXBITEwEoUrgwgxITGQYEG24jjdZCCK2EhdHAw4Mf09I4CnwKzAe2/fkn2556iuDgYAYOHMiAAQMICgoy/o4jLMxtRrRtbciWspobk4ZsKyIjuVCuHJ+1bUutcuWoV68e//vf/0hMTCQsLIxp06YRf+4cH8+ZQ7A0WgshHEGmxu2HgNl6Pac++4zRo0dTsmRJzp07Z+yFfLp+fVaWK0dy27YQGuo2i0q6+jpHMnJkRzJy9J87d+6wIjKS+cOG8StguC62D/DYo4/Sd8gQOnXqhIdHRn4ujdZCCEdy3++kMiEhTATGjh3LsmXLmD59Otu2bWPp3r0sJX39tZ5pafQZOJDwDh3QlS2r8QHkLVcvq8nIkR3IyFE6pRRbt26lf//+BAYG0mvYMH4hPTFqCswELgCL/+//6NKly3+JkYE0WgshHImZ30k+Pj707NmTrVu38sfs2YwESgOXgS+BBmlpVG/Rgo8++ohTp05pE3c+kNlqIlu2NmS71Gy1TOt/nDx5knHjxlGpUiVatmxJZGQk169fJzQkhHdJX6r/d2AgUFR6iYQQLqJWp0587uFBPLAGeA7wBY6cPs3bb79NxYoVadKkCV988QUXL150qXWTZLaasJnblNUiI0ksV445bdvSsmxZKlWqxPjx4zl16hQFChTgxRdfZNOmTZw8fZr358yhsvQSCSFcUUZvkqdeT2dgoV7PxS++IDIyknbt2uHh4cGOHTt49dVXCS5ThnZlyzKnbVuuusAFb3PakO1syZH0HNlBXpfVVq9ezZo1a2jcuDG9e/fOWo7KJ3fv3uWX775j0YAB/ATczdiuAx5p2ZI+AwfyxBNP4O/v/9+NpJdICOHK7vsdVzgkhJeAl156iYsXL7JkyRIWzpvHjn372AhsBIYqRaf+/el55w7dX3yRgIAATUJPSkpi+vTpnDp1in79+lGvXj2bb+vqPUeSHNlRXowcRUVFEZGxKuv06dNZv349c+fOzbsE6b4pqTdv3iQ6Opoff/yRFStWcP36deOuDwN9gd5A8Pjx6bV5c0JCJCkSQrguC7/jAgMDGT58OMNr1uRU27YsAhaSftHslcDKYcPwf+stunfvTs+ePenUqdN/IzF5vDxAYmIiXbp0Yfv27QDMnDmTLVu20KhRI5tu7+o9R5Ic2UFejRxdv36dkSNHAtC+fXuio6P59ttvqVChAuPHj89dsFaoOXM4N3AgsUoRq9MR/dBD/H7ypEm8IUFBPHvhAj2BcNJHjWRNIiGEsCIsjAoeHoxOS2M0cAhYqNOxsGxZTp45w6JFi1i0aBGFCxemZcuWNPf2ptmyZdRVCv88uHSJUoohQ4awfft2ihQpQsWKFdm3bx9Dhw5lz549NiU0rj6VX3qO7MjeI0ffffcdiYmJPPzww6xbt47IjBr1hAkTiImJyVlw9zUCKqX4+++/WbhwIW+++SaPtGxJqQEDKKsU3YGxSrHp779JTk6mfPnyvPLKK2zdupXT8fF8PmcO9fX6/xIj6SMSQgjLMq2bBFBdr2fC7Nkcj4tj165djBgxgjJlypCYmMjKlSt5a+lSmitFIaB2WhoRAwYwY+JEdu/eTdL9Vw7IRZP3d999x8KFC9Hr9axdu5Z169bh5+fHvn37jCNJ2bG1IVvKam4sr66ttnLlSgD69euHh4cHffv2ZcOGDXz33Xf06dOH/fv321arjoyEgQNRaWls1+mY36IFq0+c4Ny5c1l21QPVgLpAY6DDd99RqVcv08RP+oiEECJnzPze1AENGjSgQYMGfPrpp+zdu5dtc+eybcYMtgOXgAPAAaWIGjMGxozBy8uLGjVq8Mgjj/BSoUJUee89SEsDG0eYTp48ycsvvwzAuHHjaNy4MQDPPPMM8+fPZ8mSJTRr1izbw5EVskW28uLaardv3yY6OhqArl27Grd/+eWXhISEcPz4cV599dXsg4uPRw0YwA9padQFmivFrC1bOHfuHL6+vjRu3JghQ4Ywa9Ikdut03CS9Hj4fGKrXU7lVK/PHJWsSCSFEzlj5vanX62nYsCEj336bZR4eXADigRXAOzodnVq3pkSJEiQnJxMbG8snn3xC1XfeoX1aGjGQniANGmR1BOnevXv07NmTGzdu0KJFC0aPHm382VNPPQXA2rVrbToUKasJm0+qPZOj6OhokpKSKF++PNWqVTNuL1KkCPPmzUOn0xEZGcn8qVOtDqn+vnw5TZXiWeAP0tfgeBFYO2kSV69eJSYmhunTpzPgzTepP3s2vjLtXgghtJNRgtPp9QQDj+n1fDB7Nmujo0lISCAuLo6FCxfSrUkT9MBvpC+y2w34KzU1fWTKnPh43uzZk127dlG0aFG+/fZb9Ibf90CrVq3w8PDg2LFjnD17Ntsw7T1bzdGSJ0mOrLB1ODAvGrINdd/27dtniaNt27aMHTsWgEEjRvCbmWv6nD59mh49etB8+HB2AP7Ae8A5IEqvp1OvXvj6+po+aEQExMWlJ1txcXZtABRCCGEjC7+LdTodoaGhPPfcc/y8ZAkndDr6k94OsQqoAbwydy6XL182vb/ISKaVK8f/li0DYP7zzxMaGmqyS+HChalTpw4Au3btyjbEvJqt5ihlOEmO7MieI0exGQ3X9SpUMPvzd/r1oxvpaw11BsakpbF34EB+W7SIAQMGULVqVZYsWYJOp6N/ixYc9/BgPFAsuxEhKZcJIYT2svtdHBJC6OzZzNbrOQx0B1KBafPmUblyZd59911iYmL4ffly+vXvzysZf8S/Bzw6fbrZakPdunUB2L9iRbYN3lJWE9nKaUN2kmEZeUsiI9mf0W9U5513zK6kqj95kh+AZ4BkYCJQPy2N9j17MmfOHO7evUvr1q2JjY1l9pYtBJ0+LSNCQgjhSjJGmB6Kjuans2f57bffqFOnDomJiUyYMIGmTZvS/MknmUf6sivvAeMALJTf6ty5A8D+777LUo24372MWXPe//5rNURnna0myZEd2NqQ7bttGwBJ+/dbfuHFx3NpwAAukP5irqmU+Sa7sDB8PDxYDCwB2gFBQMVy5XjhhRfYsmULGzdupHbt2un7y4iQEEK4nky/29u2bcuePXtYtGgR3bp1Izg4mJCgIJ4GtgLjsbI2XXw8dRYuBGA/WG/wjowkKWNBYJ/Wra0mUZIcCXT//mt5RCg+Ht8ZM4CMy25YeuEdO8YfGS+iMKAAmM/yMzXtPQNs0Os5P2cOJ06fZv78+bRo0cJhardCCCHyh16vp0ePHvz888/Ex8dz9vx5fpgzh2bZTbY5doxaGZ898cBlMP/ZkzED2rDako+lP+Az6AxJ0cWL9ji8fCPJkS3OnbNaBlNbtqT/Z8cOyyNCx47hm/EiMS7hZe6FFxbGnxlJTS3DNksrUEsDtRBCiOzY8lkRFkYhDw8qZnz7J5j/7Dl2jBSlMIwD+YDFMh2RkZCYCIBq08b6xXYN6//d30yuEUmOrNm3L/3fn36yWgZj3jwgY7jS0ohQWBg+GUmP4YKtZl94ISEcb9kSgIcM+0gDtRBCiAdhQ4M3s2YRlvHtCZ3O/GdPWBhJmaoSPmCxTMfAgRj2VNZGmCIjITY2/f8REdaTqHzi3slRRkZrVnw8ZKxQDVgtg2WppVoog/m+8w6QkRxZSXpOZDRuV3rjDRkREkIIkT8iIqjUpw8AJ4YONf/ZExJC0pQpxm99PDwslulIS8OkucNCmY6BA//7PpsyHbdv2348D8C9k6NPPrGcoR47lnWbhTKYysiijS8CC2Uw3+eeA+BuoUJWk54TJ04AUPnRR2VESAghRL6plDGJ50RCgsV9kp55BgC9hwf606ctlunw+C/FUGCxTEdamuk2a2W6VatsOYwH5t7JEVjOUMPCsm6zUAbjhRcAsr0Qq2HRxbupqRaTnuTkZE6fPg1ApUqVbD4MIYQQ4kFVzviMM/yRbo7h4rfePj7ZlumMZTVLI0z3JVGA1TJdfnHr5KgOWM5QQ0KgW7f/vreS9KjmzdP/07Sp1REhQ3KU5arKmZw5c4bU1FR8fX0JCgqy7UCEEEIIOzD8UX78+HGL0+8Nn2E+Pj7W7ywiAl3x4un///VXi2U6Zs367/tsynTtbTqKB+fWyVFzsDwTDKBevfR/H3vMpt4fXcmSVstghhdSSkoKKSkpZvc5npGoVaxYEY/7s2khhBAiD1WsmD5f7fr161y5csXsPjYnR2AcFVKlS1veJyICMlbnZs4cq2W6Htk/ol2496evpQz1fsHBVvexdXGrzNcyszR6dOrUKUBKakIIIfKfn58fZcqUASyX1nKSHNm8CGTGRCRKlDD/c8MIUz4NGrh3cnTwoF1mgtm6QnbmF9Ldu3fN7nPu3DkAQqQRWwghhAbKlSsHQLyFGWN5khzZIiIi/XM7H7h3chQcbNe7yy458vT0xNPTE7CcHJ0/fx7AmLkLIYQQ+als2bKAfZMju7Hz57Yl7p0c2UlOMmLDi8lSWe3ChQsA0owthBBCE4bKhT2SIwO5tpobsyVDNk7ntzByZEiOZORICCGEFuyZHMmFZ91YTk56dsmRoawmI0dCCCG0kF1ydC/jOmialNXyiSRHdmBrQzZYT46Sk5P5559/AEmOhBBCaMOePUcGMnKUC9OnT6dChQr4+voSHh7O1q1bre6/efNmwsPD8fX1pWLFinz99df5FKl1tiRHhheTueTo0qVLKKXQ6/WULFnS7vEJIYQQ2TGMHJ07d460+y/tgZTV8sXixYt57bXXGDNmDLGxsbRo0YLOnTtz5swZs/ufOnWKLl260KJFC2JjY3n77bcZPnw4S5cuzefI/5Obspq5hmxDv1FgYKAsACmEEEIThs+g5ORkEsxcY03T2Wr5RPNP4MmTJxMREUH//v2pVq0aU6dOpWzZssyYMcPs/l9//TXlypVj6tSpVKtWjf79+/PSSy/x2Wef5XPkWT1oWU2asYUQQmjNy8uLwMBAwHxp7c6dO0D6gpG2kpGjHLh37x579+6lQ4cOJts7dOjA9u3bzd4mJiYmy/4dO3Zkz549JCcn51ms1tirIVuasYUQQjiC4Iz1hAyfS5nlJDly1rKap5YPfvnyZVJTUyl93zVXSpcuzcWLF83e5uLFi2b3T0lJ4fLly2YTi6SkJJMyVmJiIpB+7RhrDLdJSkqyuq/hhZKSkpLtfer1egCuXr2aZd+4uDgAihcvnu39CCGEEHnF0Pd64sSJLJ9Hhs9QDw+PbD+rDEnRjRs3rO5ruN7o7du3re5n+FmeJ1tKQ+fOnVOA2r59u8n2CRMmqCpVqpi9TVhYmJo4caLJtm3btilAXbhwwextxo4dqwD5ki/5ki/5ki/5coGvEydO2CcRsUDTkaMSJUqg1+uzjBIlJCRkGR0yCAwMNLu/p6cnxYsXN3ub0aNHM3LkSOP3165dIzQ0lDNnzlC4cOEHPArncf36dcqWLcvZs2cpVKiQ1uHkGzluOW53IMctx+0OEhMTKVeuHMWKFcvTx9E0OfL29iY8PJz169fzxBNPGLevX7+exx57zOxtmjRpwsqVK022/frrr9SvXx8vLy+zt/Hx8THbVV+4cGG3elEZFCpUSI7bjchxuxc5bvfirsed1zO6NZ+tNnLkSObMmUNUVBRHjhxhxIgRnDlzhsGDBwPpoz59+vQx7j948GBOnz7NyJEjOXLkCFFRUURGRvL6669rdQhCCCGEcCGajhwB9OjRgytXrvD+++9z4cIFatSowZo1awgNDQXSp7dnXvOoQoUKrFmzhhEjRjBt2jTKlCnDF198wVNPPaXVIQghhBDChWieHAEMHTqUoUOHmv3Z3Llzs2xr1aoV+/bty/Xj+fj4MHbs2Bwtfe4K5LjluN2BHLcctzuQ487b49Yp5WSLDwghhBBC5CHNe46EEEIIIRyJJEdCCCGEEJlIciSEEEIIkYkkR0IIIYQQmbhscvThhx/StGlT/P39KVKkiE23UUoxbtw4ypQpg5+fH61bt+bQoUMm+yQlJTFs2DBKlChBQEAA3bt3N3vVYq1cvXqVF154gcKFC1O4cGFeeOEFrl27ZvU2Op3O7Nenn35q3Kd169ZZfv7cc8/l8dHYLjfH3a9fvyzH1LhxY5N9XO18Jycn89Zbb1GzZk0CAgIoU6YMffr0yXJxSUc739OnT6dChQr4+voSHh7O1q1bre6/efNmwsPD8fX1pWLFinz99ddZ9lm6dCkPP/wwPj4+PPzwwyxfvjyvws+1nBz3smXLeOSRRyhZsiSFChWiSZMmrFu3zmSfuXPnmn2vm7sQtpZyctybNm0ye0x//fWXyX6udr7N/f7S6XRUr17duI+jn+8tW7bQrVs3ypQpg06nY8WKFdneJt/e23l6cRINvffee2ry5Mlq5MiRqnDhwjbd5uOPP1YFCxZUS5cuVX/++afq0aOHCgoKUtevXzfuM3jwYBUcHKzWr1+v9u3bp9q0aaNq166tUlJS8uhIcqZTp06qRo0aavv27Wr79u2qRo0a6tFHH7V6mwsXLph8RUVFKZ1OZ3LtmlatWqkBAwaY7Hft2rW8Phyb5ea4+/btqzp16mRyTFeuXDHZx9XO97Vr11T79u3V4sWL1V9//aViYmJUo0aNVHh4uMl+jnS+Fy1apLy8vNTs2bPV4cOH1auvvqoCAgLU6dOnze5/8uRJ5e/vr1599VV1+PBhNXv2bOXl5aV+/PFH4z7bt29Xer1eTZw4UR05ckRNnDhReXp6qh07duTXYWUrp8f96quvqkmTJqldu3apo0ePqtGjRysvLy+1b98+4z7ffPONKlSoUJb3vCPJ6XFHR0crQP39998mx5T5PeqK5/vatWsmx3v27FlVrFgxNXbsWOM+jn6+16xZo8aMGaOWLl2qALV8+XKr++fne9tlkyODb775xqbkKC0tTQUGBqqPP/7YuO3u3buqcOHC6uuvv1ZKpb8Yvby81KJFi4z7nDt3Tnl4eKhffvnF7rHn1OHDhxVg8iKIiYlRgPrrr79svp/HHntMtW3b1mRbq1at1KuvvmqvUO0qt8fdt29f9dhjj1n8ubuc7127dinA5JewI53vhg0bqsGDB5tsq1q1qho1apTZ/d98801VtWpVk22DBg1SjRs3Nn7/7LPPqk6dOpns07FjR/Xcc8/ZKeoHl9PjNufhhx9W48ePN35v6+9DLeX0uA3J0dWrVy3epzuc7+XLlyudTqfi4uKM25zhfBvYkhzl53vbZctqOXXq1CkuXrxIhw4djNt8fHxo1aoV27dvB2Dv3r0kJyeb7FOmTBlq1Khh3EdLMTExFC5cmEaNGhm3NW7cmMKFC9sc36VLl1i9ejURERFZfrZgwQJKlChB9erVef3117lx44bdYn8QD3LcmzZtolSpUjz00EMMGDCAhIQE48/c4XxD+oUcdTpdlvKzI5zve/fusXfvXpNzANChQweLxxgTE5Nl/44dO7Jnzx6Sk5Ot7uMI5xVyd9z3S0tL48aNG1ku0Hnz5k1CQ0MJCQnh0UcfJTY21m5xP6gHOe66desSFBREu3btiI6ONvmZO5zvyMhI2rdvb7y6hIEjn++cys/3tkOskO0ILl68CEDp0qVNtpcuXZrTp08b9/H29qZo0aJZ9jHcXksXL16kVKlSWbaXKlXK5vjmzZtHwYIFefLJJ0229+7dmwoVKhAYGMjBgwcZPXo0f/zxB+vXr7dL7A8it8fduXNnnnnmGUJDQzl16hTvvvsubdu2Ze/evfj4+LjF+b579y6jRo2iV69eJhevdJTzffnyZVJTU82+Ly0d48WLF83un5KSwuXLlwkKCrK4jyOcV8jdcd/v888/59atWzz77LPGbVWrVmXu3LnUrFmT69ev87///Y9mzZrxxx9/EBYWZtdjyI3cHHdQUBCzZs0iPDycpKQkvv32W9q1a8emTZto2bIlYPk14Srn+8KFC6xdu5bvv//eZLujn++cys/3tlMlR+PGjWP8+PFW99m9ezf169fP9WPodDqT75VSWbbdz5Z9HoStxw1Z44ecxRcVFUXv3r3x9fU12T5gwADj/2vUqEFYWBj169dn37591KtXz6b7zqm8Pu4ePXoY/1+jRg3q169PaGgoq1evzpIc5uR+H1R+ne/k5GSee+450tLSmD59usnPtDjf1uT0fWlu//u35+a9nt9yG+PChQsZN24cP/30k0kC3bhxY5NJB82aNaNevXp8+eWXfPHFF/YL/AHl5LirVKlClSpVjN83adKEs2fP8tlnnxmTo5zep1ZyG+PcuXMpUqQIjz/+uMl2ZznfOZFf722nSo5eeeWVbGfMlC9fPlf3HRgYCKRnpkFBQcbtCQkJxiw0MDCQe/fucfXqVZPRhISEBJo2bZqrx7WFrcd94MABLl26lOVn//zzT5ZM2pytW7fy999/s3jx4mz3rVevHl5eXhw7dizPPizz67gNgoKCCA0N5dixY4Brn+/k5GSeffZZTp06xcaNG01GjczJj/NtTokSJdDr9Vn+6sv8vrxfYGCg2f09PT0pXry41X1y8nrJS7k5boPFixcTERHBDz/8QPv27a3u6+HhQYMGDYyvea09yHFn1rhxY7777jvj9658vpVSREVF8cILL+Dt7W11X0c73zmVr+/tHHUoOaGcNmRPmjTJuC0pKclsQ/bixYuN+5w/f97hGnR37txp3LZjxw6bG3T79u2bZdaSJX/++acC1ObNm3Mdr7086HEbXL58Wfn4+Kh58+YppVz3fN+7d089/vjjqnr16iohIcGmx9LyfDds2FANGTLEZFu1atWsNmRXq1bNZNvgwYOzNG127tzZZJ9OnTo5XINuTo5bKaW+//575evrm21jq0FaWpqqX7++evHFFx8kVLvKzXHf76mnnlJt2rQxfu+q51up/xrS//zzz2wfwxHPtwE2NmTn13vbZZOj06dPq9jYWDV+/HhVoEABFRsbq2JjY9WNGzeM+1SpUkUtW7bM+P3HH3+sChcurJYtW6b+/PNP1bNnT7NT+UNCQtSGDRvUvn37VNu2bR1uanetWrVUTEyMiomJUTVr1swytfv+41ZKqcTEROXv769mzJiR5T6PHz+uxo8fr3bv3q1OnTqlVq9erapWrarq1q3rtMd948YN9X//939q+/bt6tSpUyo6Olo1adJEBQcHu/T5Tk5OVt27d1chISFq//79JtN7k5KSlFKOd74NU5wjIyPV4cOH1WuvvaYCAgKMs3JGjRqlXnjhBeP+hum+I0aMUIcPH1aRkZFZpvv+/vvvSq/Xq48//lgdOXJEffzxxw47tdvW4/7++++Vp6enmjZtmsUlGMaNG6d++eUXdeLECRUbG6tefPFF5enpaZJgay2nxz1lyhS1fPlydfToUXXw4EE1atQoBailS5ca93HF823w/PPPq0aNGpm9T0c/3zdu3DB+NgNq8uTJKjY21jhzVsv3tssmR3379lVAlq/o6GjjPoD65ptvjN+npaWpsWPHqsDAQOXj46NatmyZJRu/c+eOeuWVV1SxYsWUn5+fevTRR9WZM2fy6aiyd+XKFdW7d29VsGBBVbBgQdW7d+8sU1zvP26llJo5c6by8/Mzu5bNmTNnVMuWLVWxYsWUt7e3qlSpkho+fHiWNYG0lNPjvn37turQoYMqWbKk8vLyUuXKlVN9+/bNci5d7XyfOnXK7Psi83vDEc/3tGnTVGhoqPL29lb16tUzGcHq27evatWqlcn+mzZtUnXr1lXe3t6qfPnyZpP+H374QVWpUkV5eXmpqlWrmnyYOoqcHHerVq3Mnte+ffsa93nttddUuXLllLe3typZsqTq0KGD2r59ez4ekW1yctyTJk1SlSpVUr6+vqpo0aKqefPmavXq1Vnu09XOt1Lpo9t+fn5q1qxZZu/P0c+3YdTL0mtWy/e2TqmMbiYhhBBCCOG6lw8RQgghhMgNSY6EEEIIITKR5EgIIYQQIhNJjoQQQgghMpHkSAghhBAiE0mOhBBCCCEykeRICCGEECITSY6EEEIIITKR5EgIIYQQIhNJjoQQQgghMpHkSAjhUt5//31q1qxJQEAApUuXZsiQISQnJ2sdlhDCiXhqHYAQQtiLUorU1FRmzpxJcHAwhw8fpk+fPtSqVYshQ4ZoHZ4QwknIhWeFEC6tV69elCxZkv/9739ahyKEcBJSVhNCuIzTp0/zyiuvUKNGDYoWLUqBAgVYsmQJISEhWocmhHAikhwJIVzC5cuXadiwIZcvX2by5Mls27aNmJgY9Ho9derU0To8IYQTkZ4jIYRLWLNmDSkpKSxcuBCdTgfAtGnTuHfvniRHQogckeRICOESihUrxvXr1/n55595+OGHWblyJR999BHBwcGULFlS6/CEEE5EGrKFEC5BKcWQIUP4/vvv8fPz4/nnn+fu3bucPn2aVatWaR2eEMKJSHIkhBBCCJGJNGQLIYQQQmQiyZEQQgghRCaSHAkhhBBCZCLJkRBCCCFEJpIcCSGEEEJkIsmREEIIIUQmkhwJIYQQQmQiyZEQQgghRCaSHAkhhBBCZCLJkRBCCCFEJpIcCSGEEEJkIsmREEIIIUQm/w//nqT+mrtuMwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHFCAYAAAD40125AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+KUlEQVR4nO3dd3xT1fvA8U+6B6usUmgpIAXKhiJTZEkZgri+DpBl2SoqLhAVQRRRRNQfyCrgQEQFBAVZ0iJI2XuIBVmFliWU2X1+f6SJDV1pSXIznvfr1Rf09iZ5bu5N8uSc55yjU0ophBBCCCEEAG5aByCEEEIIYU8kORJCCCGEyEGSIyGEEEKIHCQ5EkIIIYTIQZIjIYQQQogcJDkSQgghhMhBkiMhhBBCiBwkORJCCCGEyEGSIyGEEEKIHCQ5Eg7h3LlzvPvuu+zduzfX3wYMGECJEiWKfd9paWkMGzaMoKAg3N3dady4cfEDtYAZM2awYMGCXNtPnjyJTqfL82/ORKfT8e6772odhkW8++676HQ6q9/2iy++oGbNmnh5eaHT6bh69SoDBgygWrVqJvt98MEH/Pzzz8WKpyD//vsvTz31FBUrVkSn0/Hwww8X+T6qVavGgAEDLB6bPVu/fj06nQ6dTselS5dy/X3hwoU0adIEHx8fypcvT+/evTlz5owGkboeSY6EQzh37hzjx4/PMzm6W19++SWzZs1i7NixbN68mW+++cbij1EU+SVHQUFBxMXF8eCDD9o+KFEsgwYNIi4uzqqPsXfvXkaOHEmHDh3YsGEDcXFxlCxZkrfffptly5aZ7Gut5Oi9995j2bJlfPrpp8TFxfHRRx9Z/DGczY0bNxg8eDCVK1fO8+9ffPEFzzzzDM2aNWP58uVMnjyZ2NhY2rZty5UrV2wcrevx0DoAIbR28OBBfH19ef7557UOpUDe3t60bNlS6zBEEQQHBxMcHGzVxzh06BAAgwcPpnnz5sbt99xzj1UfN6eDBw9yzz330KdPH5s9pqXcunULPz8/mz/u6NGjCQgI4MEHH2TixIkmf0tNTeXtt9+mZ8+ezJkzx7i9bt26tG7dmilTpvD+++/bOmSXIi1HLujixYsMGTKEkJAQvL29qVChAm3atGH9+vXGfdq3b0/9+vWJi4ujdevW+Pr6Uq1aNebPnw/AypUradq0KX5+fjRo0IDVq1fnepzNmzfTqVMnSpYsiZ+fH61bt2blypW59jt48CC9evUiICAAHx8fGjduzFdffWX8e2xsLPfeey8AAwcONDZD39n1cuzYMbp3706JEiUICQnhlVdeITU1tcDnQqfTMXfuXG7fvm283wULFhTYhXXnYxu6Pw4dOsTTTz9N6dKlCQwM5NlnnyU5OdnktllZWXzxxRc0btwYX19fypQpQ8uWLVmxYgWg71o4dOgQGzduNMZj6BrJLyZznucFCxag0+mIiYlh+PDhlC9fnnLlyvHoo49y7ty5Ap+jglSrVo0ePXqwbNkyGjZsiI+PDzVq1ODzzz/Pte/p06d55plnqFixIt7e3oSHh/PJJ5+QlZWV7/2fPHkSDw8PJk2alOtvf/zxBzqdjh9//BEo2nlISUlhzJgxVK9eHS8vL6pUqcJzzz3H1atX8zy+X3/9lSZNmuDr60t4eDi//voroH9ew8PD8ff3p3nz5uzcudPk9nl1jS1evJjIyEiCgoKM9zd69Ghu3ryZ/xOdj/bt2/PMM88A0KJFC3Q6nbFr6s5uNZ1Ox82bN/nqq6+M11b79u0LvP9///2XESNGUKVKFby8vKhRowZjx441vq4M1+T69es5cuSI8X5jY2Pzvc/09HRef/11KlWqhJ+fH/fddx/bt2/Pc9+kpCSGDh1KcHAwXl5eVK9enfHjx5ORkWGyX0JCAo8//jglS5akTJky9OnThx07duR6vRi64A8cOEBkZCQlS5akU6dOgL57feLEidSpU8f4vjhw4EAuXryYK67FixfTqlUr/P39KVGiBF26dGHPnj0FPpc5bdq0idmzZzN37lzc3d1z/f3gwYMkJyfTvXt3k+2tWrWibNmyLFmyxOzHEsWkhMvp0qWLqlChgpo9e7aKjY1VP//8s3rnnXfU999/b9ynXbt2qly5cqp27doqOjparVmzRvXo0UMBavz48apBgwZq0aJFatWqVaply5bK29tbnT171nj72NhY5enpqSIiItTixYvVzz//rCIjI5VOpzN5nL/++kuVLFlS3XPPPerrr79WK1euVE8//bQC1OTJk5VSSiUnJ6v58+crQL311lsqLi5OxcXFqTNnziillOrfv7/y8vJS4eHhasqUKWr9+vXqnXfeUTqdTo0fP77A5yIuLk51795d+fr6Gu/3woUL6sSJEwpQ8+fPz3UbQI0bN874+7hx4xSgateurd555x21bt06NXXqVOXt7a0GDhxoctu+ffsqnU6nBg0apJYvX65+++039f7776vPPvtMKaXU7t27VY0aNVSTJk2M8ezevVsppfKMydzn2fD81ahRQ73wwgtqzZo1au7cuSogIEB16NDBJEbDvnkd+51CQ0NVlSpVVNWqVdW8efPUqlWrVJ8+fRSgPv74Y+N+Fy5cUFWqVFEVKlRQM2fOVKtXr1bPP/+8AtTw4cMLfH4feeQRVbVqVZWRkWGy3//+9z9VuXJllZ6eXqTzkJWVpbp06aI8PDzU22+/rdauXaumTJmi/P39VZMmTVRKSorJ8QUHB6v69esbr/cWLVooT09P9c4776g2bdqopUuXqmXLlqlatWqpwMBAdevWLePtDTHl9N5776lPP/1UrVy5UsXGxqqZM2eq6tWr5zoPed32TocOHVJvvfWW8XzFxcWpY8eOKaX0r4vQ0FDjvnFxccrX11d1797deG0dOnQo3/u+ffu2atiwofL391dTpkxRa9euVW+//bby8PBQ3bt3V0oplZKSouLi4lSTJk1UjRo1jPebnJyc7/32799f6XQ69dprr6m1a9eqqVOnqipVqqhSpUqp/v37G/dLTExUISEhKjQ0VM2aNUutX79evffee8rb21sNGDDAuN+NGzdUzZo1VdmyZdX06dPVmjVr1Msvv6yqV6+e6zru37+/8vT0VNWqVVOTJk1Sv//+u1qzZo3KzMxUXbt2Vf7+/mr8+PFq3bp1au7cuapKlSqqbt26Juf0/fffVzqdTj377LPq119/VUuXLlWtWrVS/v7+BT6fBrdu3VJhYWHqtddeU0r9d54vXrxo3GfLli0KUPPmzct1+6CgIOXm5qZu375d6GOJ4pPkyAWVKFFCvfTSSwXu065dOwWonTt3GrddvnxZubu7K19fX5NEaO/evQpQn3/+uXFby5YtVcWKFdX169eN2zIyMlT9+vVVcHCwysrKUkop9dRTTylvb291+vRpk8fv1q2b8vPzU1evXlVKKbVjx458P7D79++vAPXDDz+YbO/evbuqXbt2Ic+G/vb+/v4m24qTHH300Ucm+40YMUL5+PgYj/WPP/5QgBo7dmyB8dSrV0+1a9cu1/a8YjL3eTYkPCNGjDC5z48++kgBKjEx0bjtq6++Uu7u7uqrr74qME6l9MmDTqdTe/fuNdneuXNnVapUKXXz5k2llFKjR49WgNq2bZvJfsOHD1c6nU4dPXrUuO3O5zcmJkYBatmyZcZtZ8+eVR4eHibJr7nnYfXq1Xnut3jxYgWo2bNnmxyfr6+vSkhIMG4zXO9BQUHG41NKqZ9//lkBasWKFbliyk9WVpZKT09XGzduVIDat2+f2bc1MJzbHTt2mGy/MzlSSil/f3+TBKQgM2fOzPN1NXnyZAWotWvXGre1a9dO1atXr9D7PHLkiALUyy+/bLJ94cKFCjCJbejQoapEiRLq1KlTJvtOmTJFAcZEZPr06QpQv/32m8l+Q4cOzTM5yivpWLRokQLUkiVLTLYb3ndmzJihlFLq9OnTysPDQ73wwgsm+12/fl1VqlRJPfHEE4U+B6+88oqqUaOGMeHKKzm6fPmycnNzU1FRUSa3PXbsmAIUoM6dO1foY4nik241F9S8eXMWLFjAxIkT2bp1K+np6XnuFxQUREREhPH3smXLUrFiRRo3bmxSRBgeHg7AqVOnALh58ybbtm3j8ccfNxlF5u7uTt++fUlISODo0aMAbNiwgU6dOhESEmLy2AMGDODWrVtmF7PqdDp69uxpsq1hw4bGmGzhoYceyvX4KSkpXLhwAYDffvsNgOeee84ij1eU57mgGAGT56lfv35kZGTQr18/s+KoV68ejRo1MtnWu3dvrl27xu7duwH9ea5bt65JTQzoz7NSig0bNuR7/+3bt6dRo0ZMnz7duG3mzJnodDqGDBmSa//CzoPhse4cGfW///0Pf39/fv/9d5PtjRs3pkqVKsbfDdd7+/btTWpV7nwd5Oeff/6hd+/eVKpUCXd3dzw9PWnXrh0AR44cKfC2trRhwwb8/f15/PHHTbYbnrc7nydzxMTEAOSqTXriiSfw8DAtgf3111/p0KEDlStXJiMjw/jTrVs3ADZu3Gj8t2TJknTt2tXk9k8//XS+cTz22GO5HqtMmTL07NnT5LEaN25MpUqVjN2Ea9asMb42cu7n4+NDu3btCuxOBNi+fTvTpk1j1qxZ+Pr65rtf2bJl6dOnD19//TWzZs3i33//Zf/+/fTp08fYDefmJh/f1iQF2S5o8eLFTJw4kblz5/L2229TokQJHnnkET766CMqVapk3K9s2bK5buvl5ZVru5eXF6Cv4wC4cuUKSimCgoJy3d6QVF2+fNn4rzn7FcbPzw8fHx+Tbd7e3saYbKFcuXK5Hh/g9u3bgL7Wy93d3eQ5vhtFeZ7NjbE48joew7ac5/nOYeUFxXmnkSNHMmjQII4ePUqNGjWYM2cOjz/+eJ6PXdgxXr58GQ8PDypUqGCyn06no1KlSrliye96L+x1kJcbN27Qtm1bfHx8mDhxIrVq1cLPz48zZ87w6KOP3tV5sLTLly9TqVKlXDVTFStWxMPDw+zX5p33CbmvGQ8Pj1zn7fz58/zyyy94enrmeV+Goe+XL18mMDAw19/z2gb694pSpUrleqyrV68az2F+j3X+/HkAYw3knQpLWJ599lkeffRRmjVrZqxvM1wv165dw9vbm5IlSwL6UbRKKUaMGMGwYcNwc3Ojb9++BAYGsmbNmlzPl7AsSY5cUPny5Zk2bRrTpk3j9OnTrFixgtGjR3PhwoU8C6uLKiAgADc3NxITE3P9zVD8W758eUD/QWbOfrZmSLTuLOguzgeCQYUKFcjMzCQpKSnPhKaoivI8W1NSUlK+2wxv4Hd7nnv37s0bb7zB9OnTadmyJUlJScVugStXrhwZGRlcvHjRJEFSSpGUlJTvB58lbNiwgXPnzhEbG2tsLQJyFYLbg3LlyrFt2zaUUiYJ0oULF8jIyCjWtWW4HpKSkkxa4zIyMnK9tsqXL0/Dhg3zHZVlSKzLlSuXZ0F3XtclkOfcUYYBCvm9/xkSFsMx//TTT4SGhua5b0EOHTrEoUOHjIMIcrrnnnto1KiRcboSf39/vvnmGz7//HPOnDlD5cqVKV++PHXq1KF169a5WtqEZUm7nIurWrUqzz//PJ07dzZ2gdwtf39/WrRowdKlS02+CWdlZfHtt98SHBxMrVq1AOjUqZPxAyOnr7/+Gj8/P+PQdUu0cBRFYGAgPj4+7N+/32T78uXLi32fhu6AL7/8ssD9vL29zTrOojzP1nTo0CH27dtnsu27776jZMmSNG3aFNCf58OHD+e6xr7++mt0Oh0dOnQo8DF8fHwYMmQIX331FVOnTqVx48a0adOmWPEaRid9++23JtuXLFnCzZs3jX+3BsMHs+F6Npg1a5bVHjMnc68t0D9PN27cyDUv0tdff238e1EZRsctXLjQZPsPP/yQawRajx49jFMENGvWLNePITlq164d169fN3ZbG3z//fdmx9WjRw8uX75MZmZmno9Vu3ZtALp06YKHhwfHjx/Pc79mzZoV+DgxMTG5fvr37w/Azz//zNy5c3PdJiAggIYNG1K+fHlWrFjB0aNHefHFF80+NlE8knq6mOTkZDp06EDv3r2pU6cOJUuWZMeOHaxevZpHH33UYo8zadIkOnfuTIcOHXj11Vfx8vJixowZHDx4kEWLFhk/JMaNG2esLXjnnXcoW7YsCxcuZOXKlXz00UeULl0a0H+r8vX1ZeHChYSHh1OiRAkqV66c7wRqd0un0/HMM88wb9484ze67du389133xX7Ptu2bUvfvn2ZOHEi58+fp0ePHnh7e7Nnzx78/Px44YUXAGjQoAHff/89ixcvpkaNGvj4+NCgQYM879Pc57kovv76a5599lnmzZtnVt1R5cqVeeihh3j33XcJCgri22+/Zd26dUyePNlYk/Pyyy/z9ddf8+CDDzJhwgRCQ0NZuXIlM2bMYPjw4WYlcSNGjOCjjz5i165deX6ImKtz58506dKFN954g2vXrtGmTRv279/PuHHjaNKkCX379i32fRemdevWBAQEMGzYMMaNG4enpycLFy7MlVxaS4MGDYiNjeWXX34hKCiIkiVLGj/479SvXz+mT59O//79OXnyJA0aNGDz5s188MEHdO/enQceeKDIjx8eHs4zzzzDtGnT8PT05IEHHuDgwYNMmTIlV1fXhAkTWLduHa1bt2bkyJHUrl2blJQUTp48yapVq5g5cybBwcH079+fTz/9lGeeeYaJEydSs2ZNfvvtN9asWQOYV5vz1FNPsXDhQrp3786LL75I8+bN8fT0JCEhgZiYGHr16sUjjzxCtWrVmDBhAmPHjuWff/6ha9euBAQEcP78ebZv346/vz/jx4/P93HymjrBUKfUpk0bk9a4JUuWcO7cOcLDw0lJSSE2NpbPPvuMYcOG0atXLzOebXFXtKwGF7aXkpKihg0bpho2bKhKlSqlfH19Ve3atdW4ceNMRt7kN/okNDRUPfjgg7m2A+q5554z2bZp0ybVsWNH5e/vr3x9fVXLli3VL7/8kuu2Bw4cUD179lSlS5dWXl5eqlGjRnmOElu0aJGqU6eO8vT0NBnRlNdoM6XMH+2T3+2Tk5PVoEGDVGBgoPL391c9e/ZUJ0+ezHe0Ws7RJkr9N4roxIkTxm2ZmZnq008/VfXr11deXl6qdOnSqlWrVibPy8mTJ1VkZKQqWbKkAowjjvIbQWfO85zfiCbDSLCYmJhc+5o7lP/BBx9UP/30k6pXr57y8vJS1apVU1OnTs2176lTp1Tv3r1VuXLllKenp6pdu7b6+OOPVWZmpsl+dz6/ObVv316VLVvWZGi1QVHOw+3bt9Ubb7yhQkNDlaenpwoKClLDhw9XV65cyfP47pTX9W44PzmnMMjrGtyyZYtq1aqV8vPzUxUqVFCDBg1Su3fvzvWcW2O02t69e1WbNm2Un5+fAvIcFZnT5cuX1bBhw1RQUJDy8PBQoaGhasyYMSbTHShl/mg1pZRKTU1Vr7zyiqpYsaLy8fFRLVu2VHFxcSo0NDTXSLqLFy+qkSNHqurVqytPT09VtmxZFRERocaOHatu3Lhh3O/06dPq0UcfVSVKlFAlS5ZUjz32mFq1apUC1PLly02ek7xe60oplZ6erqZMmaIaNWqkfHx8VIkSJVSdOnXU0KFDVXx8vMm+P//8s+rQoYMqVaqU8vb2VqGhoerxxx9X69evN+s5yCm/63bZsmWqcePGxtd1s2bNVHR0tHHUpbAunVJK2TAXE0I4kWrVqlG/fn3jpIjWdOHCBUJDQ3nhhRdkeQpRqA8++IC33nqL06dPW32WcuF8pFtNCGHXEhIS+Oeff/j4449xc3OTeguRy//93/8BUKdOHdLT09mwYQOff/45zzzzjCRGolgkORJC2LW5c+cyYcIEqlWrxsKFC01GOQkB+uH5n376KSdPniQ1NZWqVavyxhtv8NZbb2kdmnBQ0q0mhBBCCJGD5kP5//jjD3r27EnlypXR6XS5ho3mZePGjURERBgXuZw5c6b1AxVCCCGES9A8Obp58yaNGjUy9hkX5sSJE3Tv3p22bduyZ88e3nzzTUaOHCmrFAshhBDCIuyqW02n07Fs2TIefvjhfPd54403WLFihckaRMOGDWPfvn1mr8MlhBBCCJEfhyvIjouLIzIy0mRbly5diI6OJj09Pc91eFJTU02WgcjKyuLff/+lXLlyxZokTwghhBC2p5Ti+vXrVK5c2aqL7zpccpSUlJRrQcHAwEAyMjK4dOlSnmtWTZo0qcBZS4UQQgjhOM6cOWPVaRocLjmC3AsHGnoG82sFGjNmDKNGjTL+npycTNWqVXn77bd59dVX832cSZMm8eGHHzJo0CA++eSTfPdbvHgxQ4YMoUOHDgUWlL/yyivMnTuX0aNHM2bMmHz3E0KY6exZln/9Nf0+/BCAhx9+mMmTJ1OpUiWOHz/O888/z5YtW/Dx9uaX996jeY8eIFMBCFGg48eP07RpU0qWLElCQkKuv3/33XcMHz6cBx54oNB63wYNGnD69Gl+//33Atee69ixI7t27eL77783rkOZl2vXrhESEmJcDNhaHC45qlSpUq7Vli9cuICHh4dxxec7eXt751roEfSLWd65ns+dtwPw8vIqcD9fX18APDw8CtzPy8vLeL8F7SeEMEN0NEcHD2Z49pejYe3aMWPpUuOXpCZNmhAbG8vDERGsOnCAga+/zr433qDsnDkQFaVl5ELYNX9/f0C/Ll1en1WGzzxPT89CP8sMXV8lSpQocF8PD3064ufnZ9bno7VLYjQfrVZUrVq1Yt26dSbb1q5dS7NmzfKsNxJCOKGEBNTgwQxViptAB+CLTZvQnT1rspvn+fMsPniQMCABeFEpGDoU8vg2LITQK6w35s79nJHmydGNGzfYu3cve/fuBfRD9ffu3cvp06cBfZdYzpXBhw0bxqlTpxg1ahRHjhxh3rx5REdHF9g9Zm+c+YISwibi4/laKTYCvsA8wCMrC44dy7VfCaX4FtAB3wJxmZm59xNCGBWWHLnCQCbNk6OdO3fSpEkTmjRpAsCoUaNo0qQJ77zzDgCJiYnGRAmgevXqrFq1itjYWBo3bsx7773H559/zmOPPaZJ/EXhCheUELZwOziY0dn/HwdUA3B3h5o1TXcMCwM3N5oDA7M3vQhk1ahhm0CFcEDmthw5M81rjtq3b19gS8qCBQtybWvXrh27d++2YlRCCHs2e9UqkoCqwMugT4xmzYI7R68EB8Ps2TB0KO9nZvIjsAP4de9eHqpa1dZhC+EQJDmyg5YjIYQoipSUFCZPngzAm5Mm4RUTAydP5l9kHRUFJ09SKSaG5557DtCPRJXubSHylpWVBVDoPELO/BqS5EgDznxBCWFt33zzDYmJiYSEhDBw1Cho3z53i9GdgoOhfXtefOstvL292bp1K5s2bbJJvEI4Gqk5kuTIplzhghLCmpRSTJ8+HYAXX3zROD2GuSpVqsSAAQMAmDp1qqXDE8IpSLeaJEdCCAeyZcsW9u3bh4+PDwMHDiz8BnkYOXIkAL/++ivnzp2zZHhCOAVJjiQ5EkI4kBkzZgDQu3dvypYtW6z7qFu3Lvfddx+ZmZnMnz/fkuEJ4RRkniNJjjThzBeUENZy7do1li5dCujnO7sbQ4YMAWDOnDlkZmbedWxCOBOpOZLkyKZc4YISwlqWLVtGSkoKtWvXLnCNJnM8/vjjlClThlOnTklhthB3MIxWc+XPLEmOhBAOYeHChQD06dPnrt+0fX19jRPHLlq06K5jE8KZGFqOChvK78xc98iFEA4jKSmJ33//HdDXG1nCU089BcBPP/1EWlqaRe5TCGcgNUeSHGnCmS8oIazh+++/Jysri5YtW3LPPfdY5D47dOhAYGAg//77b67FrIVwZVJzJMmRTbnCBSWENRi6vizVagTg7u7OE088AcAPP/xgsfsVwtHJUH5JjoQQdu7cuXNs374d0BdSW5Kh7ujXX38lIyPDovcthKOS5EiSIyGEnfvll18AaNGiBUFBQRa97zZt2lC2bFn+/fdf/vzzT4vetxCOytzRas5cIiLJkQac+YISwtJWrFgBQK9evSx+3x4eHvTo0QOA5cuXW/z+hXBEUnMkyZFNucIFJYQl3bhxwzhK7aGHHrLKYxiSrhUrVsgXFyGQofwgyZEQwo6tWbOG1NRU7rnnHurWrWuVx4iMjMTb25vjx49z+PBhqzyGEI5Eao4kORJC2LGcXWrWeqMuUaIEnTp1AqRrTQiQeY5AkiNNOPMFJYSlZGVlsXr1agB69uxp1ccy3P9vv/1m1ccRwhFIzZEkRzblCheUEJayf/9+Lly4gL+/P61bt7bqY3Xp0gWAuLg4rl27ZtXHEsLeSbeaJEdCCDu1du1aQD+TtZeXl1Ufq3r16oSFhZGZmUlMTIxVH0sIeydD+SU5EkLYKUNy1LlzZ5s8XmRkJKAvAhfClUm3miRHQgg7dOvWLTZv3gz8l7RYm6FrzZCUCeGqZCi/JEeacOamSCEsYdPSpaSmphJSuTK1a9e2yWO2b98eDw8Pjh8/zvFvv4WEBJs8rhD2RmqOJDmyKVe+0IQwW3Q0a/v2BaDzuXPo5s2zycOWLFmSNjVqAOgfPzQUoqNt8thC2BMZyi/JkRDCniQkwJAhrMv+NRJg6FDbtOIkJBAZHw/AeoCsLNs9thB2RGqOJDkSQtiT+HgSs7I4AOiATgCZmXDsmE0eu0P2h8JGIMuWjy2EHTF3tJozk+RIA87cFCnEXQkLY0P2G3IToDyAuzvUrGmTx26m0+EHXAYO2fKxhbAjUnMkyZFNufKFJoRZgoPZ2LYtAO1Bn5zMmgXBwTZ5bM85c7gv+9dYnc52jy2EHZGaI0mOhBB2ZmNSEgDtJk6EkychKsp2Dx4VRfs33gAgtmtX2z62EHZCao4kORJC2JHExET+/vtvdDodbUeM0KTVpn2vXgBs3L7dWHshhCuReY4kOdKEMzdFCnE3/vjjDwAaNmxIQECAJjE0a9YMPz8/Ll++zKFDhzSJQQgtSc2RJEc25coXmhDm2LhxIwDt2rXTLAZPT0/uu09feRQbG6tZHEJoRdZWk+RICGFHDC1HWiZHoJ8tGyQ5Eq5Jao4kORJC2IlLly4Zu7Huv/9+TWMxJEcbN26UuiPhcqRbTZIjTThzU6QQxWVoNapXrx7ly5fXNJacdUd//fWXprEIYWuSHElyZFOufKEJURh7qDcy8PT0pHnz5gD8+eefGkcjhG3JPEeSHAkh7MSmTZsA+0iOANq0aQNIciRcT2FD+V3hi74kR0IIzd24cYN9+/YBGEeKaa1169aAJEfC9Ui3miRHmnDmpkghimPbtm1kZWURGhpK5cqVtQ4HgFatWgFw7NgxLly4oHE0QtiOLDwryZFFmJvsuPKFJkRBtmzZAvzXWmMPAgICqFevHvBffEK4Aqk5kuTIoiT5EaJ47DE5Aqk7Eq5J5jmS5EgIobGsrCzi4uIASY6EsAdScyTJkSacuSlSiKI6cuQIycnJ+Pn50bBhQ63DMWFIjnbt2kVKSorG0QhhG5IcSXJkU658oQmRH0OXWosWLfDw8NA4GlM1atQgMDCQtLQ0du3apXU4QthEYUP579zPGUlyJITQlL3WG4H+C410rQlXU9hoNVf4oi/JkRBCU4akw5CE2BtJjoSrsWS3mqO2LklyJITQzMWLF4mPjwegZcuWGkeTt5yTQTrqG70QRWGNofyO1tokyZEG5A1WCD3DKLW6desSEBCgcTR5a9q0Kd7e3ly+fJljx45pHY4QVifLh0hyZFOucEEJURT2XG9k4OXlRdOmTQH9TN5CODuZIVuSIyGEhgzJkWGpDnvVokULQJIj4RrMHa3mzFz3yIUQmsrIyDAOj7fXeiMDSY6EKzG35ciZS0QkOdKAM19QQpjr0KFD3Lp1i5IlS1KnTh2twymQITnau3evTAYpnJ4sHyLJkU25wgUlhLm2b98OwL333mv3zffVqlWjQoUKpKens2fPHq3DEcKqpFtNkiMhhEYMXVSGVhl7ptPpjF1/0rUmnJ0UZEtyJITQiKHlqHnz5hpHYh6pOxKuwhrzHDkaSY404MwXlBDmuHHjBocOHQIco+UIJDkSrkPmOZLkyKZc4YISwhy7du0iKyuL4OBggoKCtA7HLPfeey86nY4TJ05w4cIFrcMRwmqkW02SIyGEBhyp3sigdOnSxlF10noknJkl11ZzVJIcCSFsztHqjQyka024AnNHqzlziYgkRxpw5gtKCHM4YssRSHIkXENh3Wqu0KIkyZENucIFJURhzp07R0JCAm5ubkRERGgdTpEYkqPt27cbP0CEcDYyz5EkR0IIGzN0qdWrV48SJUpoHE3RNGjQAF9fX65du8bRo0e1DkcIq5CCbEmOhBA25qj1RgAeHh40a9YMkK414bxkniM7SY5mzJhB9erV8fHxISIigk2bNhW4/8KFC2nUqBF+fn4EBQUxcOBALl++bKNo754zX1BCFMZR640MDHFv3bpV40iEsA6Z58gOkqPFixfz0ksvMXbsWPbs2UPbtm3p1q0bp0+fznP/zZs3069fP6Kiojh06BA//vgjO3bsYNCgQTaOvOhc4YISoiBZWVns2LEDcMyWI5CibOH8pFvNDpKjqVOnEhUVxaBBgwgPD2fatGmEhITw5Zdf5rn/1q1bqVatGiNHjqR69ercd999DB06lJ07d9o4ciFEUf31119cv34dPz8/6tWrp3U4xWJIjg4cOMCtW7c0jkYIy5N5jjROjtLS0ti1axeRkZEm2yMjI9myZUuet2ndujUJCQmsWrUKpRTnz5/np59+4sEHH8z3cVJTU7l27ZrJjxDC9ravXg1ARP36eHh4aBxN8Rhm9c7MzGT33LmQkKB1SEJYlMxzpHFydOnSJTIzMwkMDDTZHhgYSFJSUp63ad26NQsXLuTJJ5/Ey8uLSpUqUaZMGb744ot8H2fSpEmULl3a+BMSEmLR4ygqZ76ghMhXdDTbXnkFgBbbt0N0tMYBFY9Op6N59nvW9hdfhNBQhz0WIfIi8xzZQbca5H6ilVL5PvmHDx9m5MiRvPPOO+zatYvVq1dz4sQJhg0blu/9jxkzhuTkZOPPmTNnLBq/uVzhghIiTwkJMGQI27N/bQ4wdKhjtrokJNB83z4A/fFkZTnusQiRB+lWA03btcuXL4+7u3uuVqILFy7kak0ymDRpEm3atOG1114DoGHDhvj7+9O2bVsmTpyY5yKW3t7eeHt7W/4AhBDmiY/ndlYW+7N/bQGQmQnHjkFwsIaBFUN8PM2zPzwMyZ7DHosQeZBJIDVuOfLy8iIiIoJ169aZbF+3bh2tW7fO8za3bt3KdcLc3d0B6a4Swm6FhbFHpyMDCARCANzdoWZNbeMqjrAwmmV/oz4BXATHPRYh8mDuaDVn/szVPC0cNWoUc+fOZd68eRw5coSXX36Z06dPG7vJxowZQ79+/Yz79+zZk6VLl/Lll1/yzz//8OeffzJy5EiaN29O5cqVtTqMInHmC0qIPAUHs+1//wP0rUY6d3eYNcsxW1qCgykzZw61s3/d4ebmuMciRB4K61Zzhe42zYeLPPnkk1y+fJkJEyaQmJhI/fr1WbVqFaGhoQAkJiaazHk0YMAArl+/zv/93//xyiuvUKZMGTp27MjkyZO1OgSzucIFJUR+tme3+DaPioJ333XsZCIqiharV3P0p5/Y/uKLdI+K0joiISxGutXsIDkCGDFiBCNGjMjzbwsWLMi17YUXXuCFF16wclRCCEsyLhvy5JOOnRhla96+PV//9BPb//pL61CEsCjpVrODbjUhhPO7fPky//zzD4BxbTJHZ5jhe/v27U79ISFcjywfIsmREMIGDDPY16xZk4CAAI2jsYyGDRvi5eVlkvgJ4Qxk+RBJjjQh3zKFqzGsp3bvvfdqHInleHt707hxY+C/LkMhnIHMcyTJkU258oUmXJujLzabn5xda0I4C1k+RJIjIYQNOGPLEUhyJJyTLB8iyZEQwsrOnj1LYmIi7u7uNGnSROtwLMqQHO3evZv09HSNoxHCMqRbTZIjTThzU6QQdzK0qtSrVw8/Pz+No7GssLAwypQpQ0pKCgcPHtQ6HCEsQuY5kuTIplw5Cxeuy1m71ED/4WE4LulaE85C5jmS5EgIYWXOnByB1B0J5yPLh0hyJISwIqWUcY4jZ0+Otm3bpnEkQliGdKtJcqQJZ26KFCKnY8eOcfXqVby9vWnQoIHW4ViFIek7fPgw169f1zgaIe6eTAIpyZFFmJvsuPKFJlyToUutSZMmeHp6ahyNdQQFBRESEoJSil27dmkdjhB3TeY5kuTIoiT5EcKUs9cbGUjdkXAmMs+RJEdCCCsyJAuSHAnhOGSeI0mONOHMTZFCGGRkZLBnzx5AkiMhHIkUZEtyZFOunIUL13Po0CFu375NqVKlqFWrltbhWFWzZs1wc3PjzJkzJCYmah2OEHdF5jmS5EgIYSWGeiND4uDMSpQoQd26dYH/jlsIRyXzHElyJISwElcpxjaQ+Y6Es5BuNUmONOHMTZFCGLhqciR1R8LRyTxHkhzZlCtfaMK1pKSkcODAAcD1kqMdO3YYP1yEcETmjlZz5i/6khwJISxu7969ZGRkULFiRUJCQrQOxybq16+Pj48PycnJxMfHax2OEMVWWLeaK3zRl+RICGFxOec3coU3UgBPT0+aNm0KSNeacGzSrSbJkSacuSlSCPiv3sjQ1eQqpO5IOAOZBFKSI5ty5QtNuBZXK8Y2aNGiBSDJkXBshpYjWVtNCCEsJDk5maNHjwKulxwZWo727t1LamqqxtEIUTyWnOfIURMoSY6EEBZlWJm+WrVqlC9fXuNobKt69eqUK1eOtLQ09u/fr3U4QhSLNeY5crSeE0mOhBAW5apdaqD/AJDJIIWjk+VDJDnShDNfUEK4cnIEUpQtHJ8sHyLJkU25wgUlhCEpcLWRagaSHAlHJ8uHSHIkhLCg8+fPc+bMGXQ6nXHOH1djaDE7evQoV69e1TYYIYpB5jmS5EgIYUGGLrXw8HBKliypcTTaqFChAtWrVwdg586dGkcjRNHJ8iGSHGnCmS8o4dpcvd7IQOY7Eo5Mlg+R5MimXOGCEq5NkiM9qTsSjky61SQ5EkJYiFJKkqNsOYfzS0uxcDSyfIgkR0IICzl16hSXLl3C09OTRo0aaR2Oppo0aYK7uztJSUmcPXtW63CEKBJzR6s5c+IvyZEGnPmCEq7L0IXUqFEjvL29NY5GW35+fjRo0ACQySCF4ymsW80VWpQkObIhV7ighOuSLjVTUnckHJXMcyTJkRDCQgxJgCRHepIcCUclBdmSHAkhLCAjI8M4p49hGLurMyRHO3fuJDMzU+NohDCfzHMkyZEmnPmCEq7p0KFD3Lp1i1KlSlGnTh2tw7ELdevWxd/fnxs3bvDXX39pHY4QZpN5jiQ5silXuKCEa9q6dSugby1x5TqFnNzd3WnWrBkgXWvCsUi3miRHQggL2LZhAwAtwsM1jsS+GOuOli2DhASNoxHCPDLPkSRHQoi7FR3Nth9+AKDF//0fREdrHJD9aH79OgDbf/kFQkPluREOQeY5kuRIE858QQkXk5BA8uDBHMn+tYVSMHSotJIAJCTQfNYsAPYDt7Oy5LkRDkHmOZLkyKZc4YISLiY+nh1KoYBqQEWAzEw4dkzTsOxCfDwhShEIZAB7QJ4b4RCkW02SIyHE3QgLY1v2G2hLwzZ3d6hZU7OQ7EZYGDo3N5pn/7od5LkRDkEmgZTkSAhxN4KD2dawIQAtQP/hP2sWBAdrGpZdCA6G2bNpnp08btfp5LkRDsHc0WrOXCLioXUArsiZLyjhWpRSbEtMBLKLsXv1kg//nKKiaOHrC336sL1qVYiK0joiIQol8xxJy5FNucIFJVzLyZMnuXDhAp6enjSJipLEKA/NunUD4PipU1y+fFnjaIQonMxzJMmREOIuGFacb9SoET4+PhpHY58CAgKoVasW8N/ivELYMynIluRICHEXDMlRy5YtC9nTtckitMKRyDxHkhwJIe6CITmSxWYLJsmRcCQyz5EkR5pw5mxbuI60tDR2794NSHJUGENytG3bNnn9C7sn3WqSHNmUK19owvns27eP1NRUypYtS02Zu6dAjRo1wtPTk0uXLnHy5EmtwxGiQNKtJsmREKKYDF1qzZs3l8S/ED4+PjRq1AiQrjVh/6RbTZIjIUQxSb1R0UjdkXAU0q0myZEmnLkpUrgOGalWNIYkUpIjYe9k+RBJjizC3GTHlbNw4VwuX75MfHw88F+LiCiY4XnatWsXGRkZGkcjRP5k+RBJjixKkh/hKrZu3QpArVq1KFu2rMbROIZatWpRqlQpbt++zaFDh7QOR4h8Fdat5gqfdZIcCSGKbMuWLQC0adNG40gch5ubG/feey/wX3IphD2SbjVJjjThzE2RwjX8+eefALRu3VrjSByLoT7LkFwKYY9kbTVJjmzKlS804TzS09ONRcWSHBWNoaVNkiNhz2SeI0mOhBBFtG/fPm7fvk1AQAB16tTROhyH0qpVK3Q6HceOHeP8+fNahyNEnmSeIztJjmbMmEH16tXx8fEhIiKCTZs2Fbh/amoqY8eOJTQ0FG9vb+655x7mzZtno2iFcG2GVo9WrVq5dE1CcZQpU4Z69eoB0nok7JfMc2QHydHixYt56aWXGDt2LHv27KFt27Z069aN06dP53ubJ554gt9//53o6GiOHj3KokWLHOobrDM3RQrnJ/VGd8fQtWZ4HoWwN1KQbQfJ0dSpU4mKimLQoEGEh4czbdo0QkJC+PLLL/Pcf/Xq1WzcuJFVq1bxwAMPUK1aNZo3b+4Qb9SunIUL52Fo8XCE15w9MjxvkhwJeyXzHGmcHKWlpbFr1y4iIyNNtkdGRubb5LxixQqaNWvGRx99RJUqVahVqxavvvoqt2/fzvdxUlNTuXbtmsmPEKLozpw5Q0JCAu7u7jL5YzEZWo527dpFSkqKxtEIkZvMc6RxcnTp0iUyMzMJDAw02R4YGEhSUlKet/nnn3/YvHkzBw8eZNmyZUybNo2ffvqJ5557Lt/HmTRpEqVLlzb+hISEWPQ4hHAVhi8tjRs3xt/fX+NoHFONGjUIDAwkPT2dnTt3ah2OELlIt5oddKtB7ixUKZVvZpqVlYVOp2PhwoU0b96c7t27M3XqVBYsWJBv69GYMWNITk42/pw5c8bix1AUztwUKZyb1BvdPZ1OJ3VHwq7JPEcaJ0fly5fH3d09VyvRhQsXcrUmGQQFBVGlShVKly5t3BYeHo5SioSEhDxv4+3tTalSpUx+tODKF5pwDjIztmVIciTsmbmj1Zz5i76myZGXlxcRERGsW7fOZPu6devy/Wbapk0bzp07x40bN4zb/v77b9zc3AgODrZqvEK4sps3b7J3715AWo7uVs7JIJ35A0Y4psK61Vzhi77m3WqjRo1i7ty5zJs3jyNHjvDyyy9z+vRphg0bBui7xPr162fcv3fv3pQrV46BAwdy+PBh/vjjD1577TWeffZZfH19tToMIZzejh07yMzMJDg4WOr27lKTJk3w8fHh8uXL/P3331qHI4QJ6Vazg+ToySefZNq0aUyYMIHGjRvzxx9/sGrVKkJDQwFITEw0mfOoRIkSrFu3jqtXr9KsWTP69OlDz549+fzzz7U6hCKTb4rCEckQfsvx8vIyLkIrXWvC3khBNnhoHQDAiBEjGDFiRJ5/W7BgQa5tderUydUV5whcOQsXjs/wIS71RpbRpk0bNm3axJ9//smzzz6rdThCGMk8R3bQciSEsH9ZWVnExcUB0nJkKVKULeyVzHMkyZEQwgxHjhzhypUr+Pr60qhRI63DcQqtWrUC4OjRo1y6dEnjaIT4j3SrSXKkCWduihTO6Y8//gD0rUaenp4aR+McypUrZ1wTUhahFfZECrIlObIpV77QhGPbtGkTAPfff7/GkTiX++67D/jv+RXCHlhyniNHbQyQ5EgIUSCllLHlSJIjy2rXrh3wX8ucEPbAGvMcOVrjgCRHQogCnThxgrNnz+Lp6UmLFi20DsepGJLNXbt2mUxsK4SWpFtNkiMhRCEMrRr33nuvTLRqYVWrVqVatWpkZmZK3ZGwG7J8iCRHmnDmC0o4H+lSsy7D8ypda8JeyPIhkhzZVHEvqOjoaN58800yMzMtHJEQhZPkyLoMz+vGjRs1jkQIPelWs5MZskX+lFIMGjQIgJCQEIYPH65xRMKVnD17luPHj+Pm5iaTP1qJoSh7+/bt3L59W7ouhebM7VZzZtJyZOeuXLli/P/69es1jES4IsMQ88aNG1O6dGmNo3FO99xzD0FBQaSlpbF9+3atwxHC2HJU2CSQzlwiIsmRBopyQSUmJhr/n5ycbI1whMjXH6tWAdC2SRONI3FeOp3O2Hq0ccECSEjQNiDh8mT5EEmObKo4F1TO5OjixYuWDEeIgkVH88c33wBw/7x5EB2tcUDO6353dwD+WLAAQkPluRaakuVDJDmye5IcCU0kJHBp8GAOZf/aVikYOlRaNawhIYH7v/sOgC1AWlaWPNdCU1KQLcmR3cuZEF26dMmp+3iFHYmPZ3P2tRYOVADIzIRjx7SMyjnFx1NXKcoDt4FdIM+10JTMcyTJkSaKckHlnDU3PT1d6o6EbYSFYZh1p61hm7s71KypUUBOLCwMnZub8Xn+A+S5FprJ+fkk8xwJmyjOBXXr1i2T3y9fvmypcITIX3AwG0JCAOgA+g/rWbMgOFjTsJxScDDMnk277PeHjSDPtdBMzuTIFZKg/Mg8R3buzuTo+vXrGkUiXMmlS5fYd+YMAB2WLIHmzeXD2pqiori/ShXo1o1N/v6k9+uHp9YxCZckyZGetBzZuZs3b5r8LsmRsIXY2FgA6tWrR+Cjj0piZAONIiMpW7YsN27eZOfOnVqHI1yUOd1qee3rbCQ50kBRLqg7W45k5W5hCxs2bACgU6dOGkfiOtzc3OjQoQPw3/MvhK0ZRqqBzHMkbKQ4F5S0HAktGD6cO3bsqHEkrsXwfP/+++8aRyJclXSr6UlyZOek5UjY2tmzZzl69Chubm7GmZuFbRha6rZs2cLt27c1jka4oqJ0qzkz1z1yB2FIjry9vQFpORLWFxMTA0DTpk0pU6aMtsG4mFq1alG5cmVSU1PZsmWL1uEIF2ROt5qB1BwJiyrKBWXoVgsMDAQkORLWJ11q2tHpdMbWI6k7ElqQeY70JDmyobuZ58iQHEm3mrAmpZSx3kWSI20YnndJjoQWitJy5MwkObJz0nIkbOnEiROcPn0aDw8P7rvvPq3DcUmG5GjHjh1cu3ZN42iEq5GCbL27So4uXLhAUlKSpWIReTC0HFWsWBGQliNhXYbWipYtW+Lv769xNK6patWq1KxZk8zMTP7444/CbyCEBck8R3rFSo72799PvXr1CAoKokqVKlSpUoW33nor17BzkbeiXFCpqakAxsJYGcEirEnmN7IPMqRfaEXmOdIrVnIUFRVFYGAgmzdvZs+ePUycOJHffvuNZs2aceXKFUvH6DSKc0GlpaUBkhwJ61NKSTG2nZCibKEV6VbTK1ZydPjwYWbMmEGrVq1o2LAhAwcOZOfOndSrV48XXnjB0jG6rMzMTGMWX7p0aUCSI2E9Bw4c4Pz58/j5+dGiRQutw3Fphpmy9+/fz4ULFzSORrgS6VbTK1ZylFcLkU6n44MPPmD58uUWCcyRWOsCMbQagSRHwvrWrFkDQPv27Y3zagltVKhQgYYNGwLSeiRsS7rV9MxOjh588EHefPNNfvjhB4YNG8bLL7/M+fPnTfZJTk4mICDA4kE6CktfMJIcCVsyJEddunTROBIB0LlzZwDWrl2rcSTClUi3mp6HuTs2aNCA3bt3M3/+fGNSVKNGDZ544gkaN25MZmYm8+fP59NPP7VasM7C3JYmQzE2/JccpaSkWCUm4dpu3rzJpk2bAEmO7EXXrl355JNPWLNmDUopl/6gErYjyZGe2cnRhx9+aPz/+fPn2bNnD3v37mXv3r18+eWXHDt2DHd3d8aPH89jjz1mlWAdXVEvNEPLkaenJ35+foC0HAnr2LhxI2lpaYSGhlKrVi2twxHAfffdh6+vL+fOnePgwYM0aNBA65CECzB0q5nzeeXMNUdmJ0c5BQYG0rVrV7p27Wrcdvv2bfbt28e+ffssFpyrMyRHXl5e+Pr6ApIcCevI2aXmyt8W7YmPjw8dOnRg1apVrF69WpIjYROGhKegYmxXeI+w2AzZvr6+tGzZkqFDh1rqLl2eJEfCVlavXg1Il5q9MZwPQ/IqhLUVpeXImcnyIRowtykyZ3Lk4+MDSHIkLO/kyZP8/fffuLu7y+SPdsaQHG3atEkm2RU2Yfh8kuRI2Exxa45ythylp6eTmZlp8diE6zK0SrRs2dJY+C/sQ61atahWrRppaWnExsZqHY5wAeZ0q925rzOS5MiOGUareXt7G5MjkNYjYVkyhN9+6XQ643kxdH0KYU3mdKu5QquSJEd2LK+WI5DkSFhOenq6cf0uSY7sk2Hgi9QdCVuQbjU9SY40UJyaIzc3N7y8vABJjoTlbNu2jWvXrlG2bFkiIiK0DkfkoWPHjnh4eBAfH88///yjdTjCyRWlW82ZufbR29jd1BwBMmJNWJyhq6Zz5864u7trHI3IS6lSpWjdujUgrUfC+mSeIz1JjuyYITkyrHMlyZGwtJUrVwLQvXt3jSMRBZG6I2Er5nSruUKXmyRHdsxQkH1ny5EsISIs4cyZM+zduxedTke3bt20DkcUwHB+1q9fL69/YVXSrabn2kevkeLUHIG0HAnLMrQatWrVigoVKmgcjShI48aNqVKlCrdu3SImJkbrcIQTk0kg9SQ5siGpORL25NdffwWgR48eGkciCqPT6Yzn6ZdfftE4GuHMijJaTWqOhCak5khYy61bt4xD+CU5cgw9e/YE9EmtM38oCW3J2mp6khzZMUNy5OnpCUhyJCxnw4YNpKSkULVqVerXr691OMIMHTt2xNfXlzNnzsgC38JqpFtNT5IjDZj7rS8jIwP4LzmS9dWEpfy6eDEAPdq3d/k3QUfh6+tL586dAfjl888hIUHjiIQzkoJsPdc+ehsr6oeQITny8PAApOVIWIaaO5dfv/0WgJ7ffAPR0RpHJMzVs0wZAH6ZPx9CQ+XcCYuTeY70JDmyY+np6YAkR8KCEhLYO2QIZwE/oL1SMHSotEI4goQEHvzmGwB2AIlZWXLuhMXJPEd6khzZMWk5EhYXH88v2W9+DwA+AJmZcOyYllEJc8THE6QU92b/uhLk3AmLk241Pdc+eo0Ut+ZIkiNx18LCWJb934cN29zdoWZNbeIR5gsLAzc3emb/+gvIuRMWJwXZepIc2ZDUHAmtnUhPZy/6F35P0H+4zpoFwcGaxiXMEBwMs2fTM/sb/Trg9hdfyLkTFiXzHOlJcmTHpOZIWNqyZfp2o/tbtaJ8TAycPAlRUdoGJcwXFUWjkycJqViR28B6SYyEhck8R3qSHNmx/FqODGuuCVFUhuTo0aefhvbtpdXBAelCQnj4yScBWLp0qcbRCGcj3Wp6khzZsTtrjgwzZcvCk6I4zp8/z59//gnAww8/rG0w4q489thjACxfvtzYwiyEJVi6W81Ru94kOdJAUQuyDS1HhkkgJTkSxbF8+XKUUjRr1oyQkBCtwxF34b777qNixYpcuXKF2NhYrcMRTsRa3WqO1hIlyZENFfXiuLPmSJIjcTcMXTCPPvqoxpGIu+Xu7m5s/VuyZIm2wQinIt1qepIc2bH8Wo6k5kgUVXJyMhs2bADgkUce0TgaYQmGrrVly5aRmZmpcTTCWcg8R3quffR2TmqOhKWsXLmS9PR0wsPDqVOnjtbhCAvo0KEDAQEBXLhwgc2bN2sdjnASsnyIniRHGpCaI2FrP/zwAyBdas7E09OThx56CJCuNWE5snyIniRHNiQ1R0ILycnJ/PbbbwA8mT0EXDgHQ9fa0qVLjd/4hbgb0q2mZxdHP2PGDKpXr46Pjw8RERFs2rTJrNv9+eefeHh40LhxY+sGqJE7u9Wk5kgUx/Lly0lLSyM8PJz69etrHY6woM6dO1OiRAnOnj3Ltm3btA5HOAEpyNbTPDlavHgxL730EmPHjmXPnj20bduWbt26cfr06QJvl5ycTL9+/ejUqZONIrW9O7vVpOZIFMfixYsBfauRq7/hORsfHx9j19r333+vcTTCGcjyIXqaJ0dTp04lKiqKQYMGER4ezrRp0wgJCeHLL78s8HZDhw6ld+/etGrVykaRWo7UHAlb+ffff1m7di0gXWrO6umnnwb0dWUyak3cLVk+RE/T5CgtLY1du3YRGRlpsj0yMpItW7bke7v58+dz/Phxxo0bZ9bjpKamcu3aNZMfLUjNkbC1ZcuWkZGRQcOGDWWUmpOKjIwkICCApKQkmRBS3DXpVtPTNDm6dOkSmZmZBAYGmmwPDAwkKSkpz9vEx8czevRoFi5caEwaCjNp0iRKly5t/HGU2YELqjly5uZMYTk5u9SEc/Ly8uLxxx8HYNGiRRpHIxxdUbrVnJnm3WqQ+yQopfI8MZmZmfTu3Zvx48dTq1Yts+9/zJgxJCcnG3/OnDlz1zHbQn7daqBvdROiIBcvXjRO/CjJkXMzdK0tWbJEBmyIu1KU0WrO/CXdvKYXKylfvjzu7u65WokuXLiQqzUJ4Pr16+zcuZM9e/bw/PPPA/omQKUUHh4erF27lo4dO+a6nbe3t7GY2R4Ut+Yo5zGkpKTY1TEJ+/PTTz+RmZlJREQE99xzj9bhCCu6//77CQoKIjExkTVr1hiLtIUoKnO61VyhVUnTliMvLy8iIiJYt26dyfZ169bRunXrXPuXKlWKAwcOsHfvXuPPsGHDqF27Nnv37qVFixa2Cr1Y7rbmyMvLy/g3qTsShfn222+B/1oVhPNyd3c3tg5K15q4GzLPkZ6mLUcAo0aNom/fvjRr1oxWrVoxe/ZsTp8+zbBhwwB9l9jZs2f5+uuvcXNzyzVPS8WKFfHx8XHK+VvurDnS6XT4+PiQkpIiyZEo0PHjx9myZQtubm707t1b63CEDTz99NNMmzaNFStWcPPmTfz9/bUOSTggKcjW0zw5evLJJ7l8+TITJkwgMTGR+vXrs2rVKkJDQwFITEwsdM4jZ3VntxpgTI6krkAUxNBq9MADDxAUFKRxNMIW7r33Xu655x6OHz/O0qVL6du3r9YhCQck8xzp2UW72YgRIzh58iSpqans2rWL+++/3/i3BQsWFDg89d1332Xv3r3WD9KCzL2g7uxWA5kIUhROKcU333wDIB+QLkSn09GvXz8AvvrqK42jEY5K5jnSs4vkyFUU9YLKr+UIJDkS+du6dSvHjx/H39+fRx55ROtwhA0ZkqMNGza4bIu7uDvSraYnyZEdu7PmCCQ5EoUztBo9+uijUnfiYqpVq0b79u1NWg+FKAqZ50hPkiMLsFa/a0EtR1JzJPKSlpZmnPhRutRc04ABAwB915oz14QI65B5jvQkObIgczPtos5z5O7ubtwmNUeiIKtWreLff/+lcuXKec75JZzfY489hr+/P/Hx8cTFxWkdjnAwMs+RniRHNlTUC8qwiGTO5Ei61URB5k2fDkCfhx4yuW6E6yhRooRxOZGvJk2ChASNIxKORLrV9CQ5smOSHImiOPfJJ6xcvx6AZ2fNguhojSMSWulfoQIA3//6K7erVpVrQZhNJoHUc+2jt3MFJUdScyRMJCTw1WuvkQXcB9RRCoYOlVYDV5SQQLtPPqEacA34Sa4FUQRFGa0mNUfCosy9oAwXac4MXmqORF6yjh4lOvu6ijJszMyEY8c0i0loJD4eN6WM18EskGtBmM2cbjVX6HKT5MiGpOZIWMsf//7LcaAk8D/DRnd3qFlTu6CENsLCwM2NZwF34E/gkJubXAvCLNKtpufaR2/HDK1GIMmRKNzc5csBeFqnwx/0idGsWRAcrGlcQgPBwTB7NpXd3Xkoe9Os9u3lWhBmkW41PUmO7JSh1Qik5kgU7MqVKyxZsgSAQStWQEwMnDwJUVEF31A4r6goOHmSoZMnA/D1rl3cunVL46CEI5DlQ/QkObJT+bUcSc2RuNO3335LSkoKDRo0oNmDD4K0EgiA4GA6v/oq1atXJzk5mR9++EHriIQDyKvW1RW59tFrxJymyJwtRzkvUulWEzkppfjyyy8BGDJkiEt8oxPmc3NzY/DgwQDMmjVL42iEI5DkSM+1j97GivLBVVi3miRHAiA2NpYjR47g7+9vXHRUiJwGDhyIh4cHW7duZf/+/VqHI+xcUZIjqTkSNic1R8Ic07NnxO7bty+lSpXSOBphjypVqsTDDz8MwMyZM7UNRtg9c5IjV2ihluTITuWXHEnNkTA4e/YsP//8MwAjRozQNhhh14YPHw7A119/zdWrV7UNRtg16VbTc+2j14g5TZE5C7Kl5kjkZfbs2WRmZtK2bVsaNGigdTjCjnXo0IH69etz8+ZNomUpEVGAogzld2aSHNlQcWqOdDqdye0kORIA6enpzJ49G4DnnntO42iEvdPpdLz44osAfPHFF2RkZGgckbBXRZkEUmqOhM3lNTs2SHIk9JYuXUpSUhKBgYE88sgjWocjHECfPn0oV64cp06dYsWKFVqHI+yU1BzpSXJkpwpLjqQg23UppZg6dSoAQ4cOxcvLS+OIhCPw9fVl2LBhAEybNk3bYITdkpojPdc+eo0UZZ6jO5MjKcgWcXFxbN++HW9vbynEFkUyYsQIPDw82LRpE7t379Y6HGGHJDnSc+2jt7GiNEUaLlDpVhN3MrQaPfPMMwQGBmocjXAklStX5oknngDgs88+0zgaYY9kniM9SY7slKHl6M4LVJIj1/bPP/+wbNkyAF5++WWNoxGOyFCYvWjRIhITEzWORtgbc0arSc2R0IzUHIm8fP7552RlZdGlSxfq1aundTjCATVv3pw2bdqQnp7Op59+qnU4ws4UZbSaM3Pto9eI1ByJ4rh69apxjppRo0ZpHI1wZKNHjwbgyy+/5MqVKxpHI+yJ1BzpufbR21hx5jmSmiNhMHPmTG7cuEG9evXo3Lmz1uEIB9a9e3fq16/PjRs3mDFjhtbhCDsiNUd6khzZqfwu0Jzdas58YQpTt27dMhZiv/HGGy7R5y+sx83Nzdh6NG3aNG7duqVxRMJeyDxHepIc2anCWo4A0tLSbBqT0EhCAtFvvMHFixepVq0aTz31lNYRCSfw5JNPUr16dS5dukT0G29AQoLWIQk7IN1qeq599BqxRM0RSNeaS4iOJq1qVT7+v/8D4I377sPT01PjoIQz8PDw4LXWrQGY8n//R3rVqiDrrrk8SY70XPvobcwSNUc5Z0OW5MjJJSTAkCF8qxRngErAgO++k2/4wjISEhj43XcEAqeBRUrB0KFyfbm4oiw868ylHZIc2an8kiOdTidF2a4iPp7MrCw+zP71FcAnKwuOHdMyKuEs4uPxUQrDbFkTgYzMTLm+XJw5Q/ml5khopqCmTZnryEWEhfGDTkc8EAAMA3B3h5o1tY1LOIewMHBzYwRQDogHvtXp5PpycdKtpufaR6+Ru6k5ApnryFVkVKrEuxUrAjAKKOHuDrNmQXCwtoEJ5xAcDLNnU9LdnTeyN00oV450WZLGpUlypOfaR29jlqg5ApnryFV8++23/H3+POUCAnhx5Uo4eRKiorQOSziTqCg4eZLnfvuNwAoVOHHpEgsWLNA6KqEhmedIT5IjOyXJkWtLS0tj/PjxALwxZgwlu3eXFiNhHcHB+HXtyug33wTgvffeky57FybzHOlJcmSnDBdoQcmRvIE5r/nz53Py5EkCAwN57rnntA5HuIBhw4ZRuXJlzpw5w9y5c7UOR2ikKKPVzOGorUuSHNkpQ8tRXtm71Bw5t5SUFN577z0Axo4di5+fn8YRCVfg4+PD2LFjAXj//fe5ffu2xhEJLRRl4dmiJD6O1tokyZEG7rYgW7rVnNv06dM5e/YsISEhDBkyROtwhAuJiooiNDSUxMREpk2bpnU4QgPSraYnyZENSUG2KMzly5eZOHEiAOPHjzeZEV0Ia/P29ub9998HYNKkSVy4cEHjiIStyWg1Pdc+ejsmyZFreu+997h69SqNGjWiX79+WocjXNDTTz9NREQE169fNw4KEK5DkiM91z56O1ZQQbahNUEKsp1LfHw806dPB2DKlCl5nnshrM3NzY0pU6YAMGvWLP766y+NIxK2JEP59SQ50kBRao4KmiFbWo6cy+jRo8nIyKBbt2488MADWocjXFj79u156KGHyMzM5I033ij8BsJpSM2RniRHNiQ1RyI/mzdvZunSpbi5ufHxxx9rHY4QTJ48GXd3d1asWMHGjRu1DkfYiKWH8jsqSY7slCRHriMzM5OXX9Yv/zlo0CDq1auncURCQJ06dYyjJUeOHElGRobGEQlbKMpQfmfm2kdvx8xJjqTmyDnMnTuXnTt3UqpUKSmAFXZlwoQJBAQEsH//fmbMmKF1OMIGpOZIT5IjDZhzQZlTkC0tR47v0qVLjBkzBtCPVKtUqZLGEQnxn/LlyzNp0iQA3n77bZKSkjSOSFib1BzpSXJkQ8WpOZKCbCeWkMDo/v25cuUKjRo1YsSIEVpHJEQugwYN4t577+XatWu81rcvJCRoHZKwIhnKr+faR2/HpObIyUVHs7VqVaJXrQJgRrdueHh4aByUELm5u7szPTISHfDt+vX8UbUqREdrHZawEkmO9Fz76C3EGv2uUnPkxBISyBw8mBHZ181AoPXHH8s3cmGfEhK4d9IkDAvZjFCKtCFD5Hp1UlJzpCfJkQWZ2212t2urSc2Rg4uP5zOl2AOUAT4EyMyEY8c0DUuIPMXHQ1YW7wPlgUPAh1lZcr06KXOG8kvNkbCoolxQBWXv0q3m2I55ePBW9v8/BioCuLtDzZraBSVEfsLCwM2NcsDn2ZsmAgfS0zUMSliLDOXXc+2jt2NSc+ScsrKyGPzOO9wGOgFRoE+MZs2C4GBtgxMiL8HBMHs2uLvzFNALSAcGjhkjcx85Iak50nPto7djUnPknObMmUNsbCx+fn7M+fNPdDExcPIkREVpHZoQ+YuKgpMn0cXE8OXOnZQpU4Zdu3bxySefaB2ZsDCpOdKT5EgDUnPkms6cOcNrr70GwAcffED11q2hfXtpMRKOITgY2rcnKCKCadOmATBu3DiOHDmibVzComSeIz1JjmyoODVH0q3mHJRSDB48mOvXr9OqVSuef/55rUMSotj69etHt27dSE1N5ZlnniEtLU3rkISFSLeanmsfvR2TSSCdy/Tp01mzZg0+Pj5ER0fnmfQK4Sh0Oh1z586lXLly7N69m7feeqvwGwmHIAvP6klyZKek5sh5HD582Nid9vHHHxMeHq5xRELcvcqVKxOdPRnkxx9/zPr16zWOSFiCjFbTc+2j14jUHLmO1NRU+vTpQ0pKCl27duW5557TOiQhLKZXr14MGzYM0He1Xbx4UeOIxN2SmiM9SY5sqDhrq0nNkWN755132Lt3L+XLl2f+/Pku8aYiXMsnn3xCeHg4iYmJPPvss049gskVSM2RnmsfvR0zpyA7NTVV3ojs2Pr16/n4448B/RD+SpUqaRyREJbn5+fHokWL8PLy4tdff+Wjjz7SOiRxFyQ50nPto7dj5hRkAzJKxB4lJHD2hx/o/dRTKKUYMmQIDz/8sNZRCWE1jRo14osvvgDgzTffZMPixRATI+uvOaCiJkfO+gVdkiM7ZU7NEUjXmt2Jjia9alWeevJJLl6+TOOQED777DOtoxLC6gYPHsyAAQPIysriqaee4kzHjhAaCtlF28IxSM2RniRHGrjbgmwvLy/j/yU5siMJCTBkCG8pxWagJPDj2bP4XLqkdWRCWJ1Op2PGm2/SGLgI/A9IzcqCoUOlBcmByFB+PbtIjmbMmEH16tXx8fEhIiKCTZs25bvv0qVL6dy5MxUqVKBUqVK0atWKNWvW2DDa4rNUQbZOp5OibHsUH8+KrCwMFRfzgZqyerlwIb4JCSwBAoBtwAhAZWbKa8CBFHUov3SrWcnixYt56aWXGDt2LHv27KFt27Z069aN06dP57n/H3/8QefOnVm1ahW7du2iQ4cO9OzZkz179tg4cusqqCAbZMSaPTqsFM9k//9F4DHQLypbs6Z2QQlhS2Fh1HBz4zv0Hy7zgE90OnkNOBDpVtPTPDmaOnUqUVFRDBo0iPDwcKZNm0ZISAhffvllnvtPmzaN119/nXvvvZewsDA++OADwsLC+OWXX2wcuXUVVJANMhGkvbl8+TIPDRnCdeB+0LceubvDrFmydppwHcHBMHs2Xd3d+TR70+vA8l27tIxKFIGMVtPT9OjT0tLYtWsXkZGRJtsjIyPZsmWLWfeRlZXF9evXKVu2bL77pKamcu3aNZMfLd1tzRHIRJD2JD09nf/9738cP36catWqsWTfPrxiYuDkSf1q5kK4kqgoOHmSFzZsYES/fiil6N27t9O17jsrSY70ND36S5cukZmZSWBgoMn2wMBAkpKSzLqPTz75hJs3b/LEE0/ku8+kSZMoXbq08SckJOSu4i4uS9UcgXSr2ZOXXnqJmJgYSpQowYoVKyjfsCG0by8tRsJ1BQej69CBz6KjiYyM5NatW/Ts2ZNz585pHZkohAzl17OL1PDOpEEpZVYisWjRIt59910WL15MxYoV891vzJgxJCcnG3/OnDlz1zFbmyRHjmHKlCnMmDEDnU7Ht99+S4MGDbQOSQi74eHhweLFiwkPD+fs2bN07dqVq1evah2WKIA5o9Wk5sjKypcvj7u7e65WogsXLuRqTbrT4sWLiYqK4ocffuCBBx4ocF9vb29KlSpl8mPvzC3Ilpoj7XzzzTfGBWUnT55Mr169NI5ICPtTpkwZVq5cSaVKlThw4AAPPfQQt2/f1joskQ9ZeFZP06P38vIiIiKCdevWmWxft24drVu3zvd2ixYtYsCAAXz33Xc8+OCD1g7T4opSc5TfBSo1R9pavXo1zz77LACjRo3i1Vdf1TgiIexX9erVWb16NaVKlWLTpk08/fTTZGRkaB2WyIPUHOlpfvSjRo1i7ty5zJs3jyNHjvDyyy9z+vRp40rPY8aMoV+/fsb9Fy1aRL9+/fjkk09o2bIlSUlJJCUlkZycrNUhmE1qjpzDtm3beOyxx8jIyKBPnz58/PHHLtHMLMTdaNSoEStWrMDb25vly5czfPhwp61XcWRSc6SneXL05JNPMm3aNCZMmEDjxo35448/WLVqFaGhoQAkJiaazHk0a9YsMjIyeO655wgKCjL+vPjii1odglVIcmSHEhLY8eWXdMkuMI2MjGTevHku/w1LCHO1a9eORYsW4ebmxty5c3l9+HDUhg0yg7YdkXmO9Dy0DgBgxIgRjBgxIs+/LViwwOT32NhY6wdkB8xNjqTmyEaio9kxeDCdlSIZuC8sjCVLlpgs5SKEKNwjjzzCzJkzGTJkCFNmzcJr1iwm6nTo5syRqS/sgHSr6bn20WvEnGbIwi5QqTmyoYQEduZMjIDfjh+nhIy6EaJYBnfrxufZrQ8fAO8pJWuw2QlJjvRc++htTGqOHNPmpUt5IEditAooIWumCVF88fG8oBSfZP86DvhQ1mCzC0VdeFZqjoRNSXJkH3755Rc6v/66SWJUEmTNNCHuRlgYuLkxCpiUvWkM8Mnvv2sYlADzhvK7Qs2RJEd2SmqOtDd//nweeeQRUlJT6dGwIWvc3P5LjGTNNCGKL3sNNtzdGQ28m/1h++rEiUycONFpWyMcgXSr6bn20WukKDVHsraa7SmleP/993n22WfJzMxkwIABLNu1C79Tp0DWTBPCMrLXYCMmhndOnWLChAkAvP3227z++uuSIGlEkiM9uxit5iqKU3OU3wUq3WrWkZKSwqBBg1i4cCEAr7/+Oh9++KH+3AUHS2uREJaU/ZrSoU+KSpYsycsvv8yUKVO4du0aM2bMyPcLorAOmedIT5IjOyU1R7Z3/vx5HnnkEeLi4nB3d2f69OkMHTpU67CEcBkvvfQSJUuWZPDgwcyePZvk5GS++uorY0u5sD6Z50jPtdvN7JjUHNlQQgL7586leUQEcXFxlClThjVr1khiJIQGoqKiWLRokXHR2s6dO3P5wAF9l7YM9be6oo5Wc1bScqSBoqytJjVHVhYdzY+DBzNQKW4CYYGB/LJxI7Vr19Y6MiFc1pNPPkm5cuV47LHH2LRpE60aNmQVUNPNTV/ILTV/ViMLz+q59tHbWFEy8cIKsqVb7e5lnDzJa4MG8UR2YtQR2HrxIrX9/bUOTQiX98ADD7Bl6VKqAvFASyAmK0smi7QyqTnSk+TITklBtnVduHCByEceYUr2768Ba4CyMrmjEHajnpsb24BmwGXgAeDjzExUfLy2gTkxqTnSk+TITklBtvVs376diIgIYvbuxR/4AfiI7D5mmdxRCPsRFkYlNzc2Av2ALOB14H9TpnD9+nVtY3MAhkSnOLeRbjVhc5asOZKC7KKZM2cObdu2JSEhgVq1arF9wgT+Z3iOZXJHIexL9mSRfu7uLAC+1OnwdHdnyapVNG3alG3btmkdoV26desWXbt2pVy5csTExBTptpIc6bn20duYrK2mnRs3bjBgwACGDBlCWloaDz/8MDt27KDu228bJ6KTyR2FsEPZk0XqYmIYdvo0m/78k5CQEI4dO0abNm2YMGECGRkZWkdpV2bOnMmaNWu4evUqzz33XJFuKzVHepIc2SkpyLaAhASIiWH/unXce++9fPXVV7i5ufHBBx+wZMkSSpUqpd8vOBjat5cWIyHsVY7XaIsWLdi3bx9PPfUUmZmZjBs3jrZt23L8+HHja97VC7a/+eYb4/+PHDlCfBFqtMwZyl+UL/qOmjxJcmSnpCD7LkVHo6pWZXbHjrSIjOSvv/6icuXKbNiwgTFjxrh8k7EQjiwgIIBFixaxcOFCSpUqxdatW2lQty4fV61KRseOEBoK0dFah6mJf//9l3379gEYpyTZvHmz2be31lB+Ryvilk8IOyWTQN6FhAQuDx7MU0oxFEgBugF7V62iXbt2GgcnhLCU3r17s3//fjq2acPttDReV4rmwG4XHvK/ceNGlFKEh4fTpUsXAA4dOmT27aVbTU+SIw3IJJDWtfKbb6ivFD+gH4H2EfArUOHKFW0DE0JYXGhoKOsnTGAeEADsAe4FXs3M5OaBA9oGp4HY2FgAOnToQP369QE4UITnQYby60lyZEPWKMhOTU112sy9qJKTkxk0aBA93nyTJKAOsAX9HEZuMkRfCKelq1WLgW5uHAGeRD/k/xOg3pAhLFu2zKXeI+Pi4gBo164dderUAeBYEeZuk9Fqeq599HassAvUkByBdK0ppfjuu++oXbs20dHR6HQ6RnXuzG43N+4FGaIvhLPLHvIf6O7O98Cvbm5ULVuWUwkJPProo3Tr1o2///5b6yitLjMzk4MHDwLQpEkTQkNDAThz5ozZcx5JcqTn2kdvIdb4ViLJkXmOHDlCp06d6NOnD+fPn6d27drExsbyydq1+J46JUP0hXAV2UP+iYnhwVOnOHz6NGPHjsXLy4s1a9bQoEED3nzzTW7evKl1pFZz/Phxbt++ja+vLzVq1KBy5cq4ubmRnp7O+fPnzboPqTnSk+TIgsztNjPnYipsKL+np6fx8W7fvm1mhE4iIYFzP/7I0GeeoUGDBsTExODj48PEiRPZt28f999/v34/GaIvhGvJ8Zr39/dn4sSJHDx4kG7dupGWlsakSZMIDw9nyezZqA0bnK5g21BbVL9+fdzd3fHw8KBKlSoAnD592qz7sPRQfkclyZENFWfh2fyyd51Oh6+vL6CfDdVVJH/xBWNDQqj5xBPMXriQzMxMevXqxeHDhxk7dqyxUF0IIQDCwsJYuXIlP//8M6GhoZw5c4bHhw6lU6dO7K5a1amG/O/fvx+ABg0aGLeFhIQA+q41c1hrKL+jce2jt2PmNG36Z68e78zNxAa3b99myltvcc/IkXwA3AZaA5vc3Pj5//6P6tWraxyhEMJe6XQ6/Zeodet4B/AGYoAIpeg7eDCntm7VOELLMLQcNWzY0LgtMDAQ0C+2bQ6pOdJz7aO3Y5Ic6aWlpTFz5kxq1qzJa++/z2UgHPgZ2Azcl5UFRRiJIYRwXX4JCYwHjgJ9srd9qxS177+f119/nYsXL2oY3d3Lq+WoYsWKgHnJUc6SD6k5EjZXlJojV02OMjMz+eabbwgPD2f48OGcO3eOqlWqME+nYz/QC9CBfiSaDNEXQpgjLAzc3AgFvgV2Ah2A1PR0Pv74Y0JDQxk1ahTnzp3TNs5iuHHjBv/88w9Q/OQo54g2medI2Iwla47ACZOjhATUhg0smzOHhg0b0q9fP/755x8CAwP54osv+Pv4cQbOmYOHoUhdhugLIYoie8g/2e8hEe7u/D5nDr/++ivNmjXj9u3bfPrpp1SvXp1hw4ZxbNMmh1mr7dChQyilCAoKokKFCsbt1kiOXIGH1gGIvLlacqTmzmX9kCGMVYod2dvKlCnDG2+8wQsvvGA8VqKioEsXfVdazZqSGAkhiuaO9xBdcDAPAt27d2ft2rVMnDiRzZs3M2vWLGbPmsWjwGs6HS3mzLHrKUEM9UY5W42gaDVHOZMjV2gdKogkR3bKnOGUzpIcbfn5Z8YOHkxs9u/+wMs6Ha9s3kyZevVy3yA4WJIiIUTx5fEeotPp6NKlC126dGHjjz/y0RNPsApYAixRiraDBvGqTkePAQPsslXFUG+UsxgboHz58gBcunSp0PuQmqP/2N8ZdgGFXUxKKbOGUzpycqSUYvPmzfTo0YM2jzxCLOAFvAQcB95TijIOXhwphHBM7cqXZyVwEBgAeAKbgF5RUdSrV4+5c+fa3bqWeRVjA5QuXRrQL69UGKk5+o8kRzZUnEkinSI5Skgw9ttfu3aNBQsW0KJFC9q2bcvKlStxd3dnEBAPfAoEghRaCyG0k124XQ+YD5wAXtfpKFWyJH/99ReDBw+mWrVqfPDBB1y5csXkPU4LSin27dsHQKNGjUz+VqZMGQCuXr1a6P1IzdF/XPvo7ZQzJUeZc+awv2pV/q9jRx4JCaFiuXIMHDiQHTt24O3tzeDBgzly5Ahz5s6lqhRaCyHswR2F21Xc3Zk8Zw5nEhKYMmUKwcHBnD9/nrFjxxISFMRLISGc6tgRQkM1mVTyzJkzXL16FQ8PD+NiswaG5OjWrVukp6cXeD+SHP1Hao7skLkX6N0kR/Hx8Zw5c4YWLVr8V+xsASdPnmTjxo3s3r2b3XFx7NmxA5PoMjIIDwujT//+DB482DiSgrAwKbQWQtiPPAZ/lAJeeeUVRo4cyffff8+USZPYf+QInwH/B/TOymLskCHU7tLFpu9hhlaj8PDwXKsElCpVyvj/5ORkYw1SXoqTHDlrzZEkRxoo7GKydnI0duxYPvjgAwCCgoL4+uuveeCBB4p0HzklJSUxZ84cFi1axJEjR3LHCbQB7gd6AA1nzULXoUPuO5JCayGEPcnnPcnT05O+ffvyTJUqrOvUiY+B9cA3wLdZWTzZvz9vff459fIaUGIF+XWpAXh4eFCiRAlu3LjB1atXLZIcuULNkSRHNmTuBWXN5OjHH380JkYBAQEkJibSvXt3li9fTrdu3cy+HxISSN6zhw9++43P5s0jNTUV0C+U27JlS5o3b07TatVo+tJL1FYK4/K57u76ViIhhHBwulq1iHRzIzIri53Ae8AK4PsNG/i+fn3at2/PM888Q2RkpH6Ns4QEiI/Xvwda8ItgQckR6LvWDMlRQWQo/38kObJD1kqOMjMzGTNmDKBvPXrzzTcZMGAAP/74I48//jgbN26kWbNmhd9RdDQxgwfTXykMSxk2b96c5557jp49exIQEJAzSBg6FDIzpZZICOFcDLVJQ4fSLDOT5e7u7HvrLSYeOsSSJUuIjY0lNjYWgHIlSlD5xg10QDpws2xZbup03Lx5k5IlS9KkSRP69OlD79698fAo2kdzfsP4DcqUKUNCQkKhyVFxhvI7K0mO7JC1kqONGzdy/PhxAgICGDNmDH5+fnz77bckJyezdu1aevTowdatW6lWrVq+95H2zz+8NWgQUwAF3ANMc3PjwZ9+Qpe9+rMJmbRRCOHM7niPaxQczI/A6dOnWbhwIUuWLGHv3r1cvnGDyzlv9++/xv+mpKSwdu1a1q5dy6effsqPP/5ITTNH6968eZP4+Hig4JYjKHw4f3Fajpy15si1U0ONFKXmyJKTQC5atAiAxx9/3HhbLy8vfvzxRxo1asT58+fpHhnJlRUr8hySevz4cdp0787H6BOjwcBeoEdWFrrjx/N/4OBgaN9eEiMhhHPK4z2uatWqjBkzhp07d3J1xQr2AWuAdUAMsA04OG8eJ06cYNeuXbz33nsEBASwd+9eWrVqxeENG8yaHmD//v0opQgMDDTOhn0nw1xH5narFdZq5ApdbpIc2ZCla478/PwA85Kj9PR0lixZAsDTTz9t8rdSpUqxcuVKggMCOBIfT/devUiqWtU4JDUzM5PZs2fTpEkTdh49SllgGTAbKAEyJ5EQQhSgRMOGNHRzIxJ4AGgPNHd3p17nzlSrVo2mTZvy1ltvceDAAZo0acKlS5fo2qkTl82YHiAuLg7Qlzbkx9y5jsxNjlyBPAN2qKjdardu3Sr0PnevXs2VK1coW6YM999/f66/V1GKVVevUhrYCoQrxXODB/PKkCHUrVuXoUOHcv36de677z72fvQRD8ucREIIYZ475k3K732zSpUqrPvqK8KAM8CzgMrK0tdt5tOCFLdhAwCtCxgZJ8lR0ckzYIcsXnMUHc3GXr0AuP/qVdwXLMi9T3w8DZRiG9AIuArMUIqpc+bw999/ExAQwLRp04iJiSHktdfg5El9k+/Jk3a9GKMQQtiFqCiz3jfLXbrEYvTLKa0A5oJ+QMuxY7n2VXPnsmXlSgDaTJ6cbwtTUZOjonSbOWvNkRRk2yGL1hwlJMCQIfyRfQHfD/pvIXdOUpY9XX7trCx2A78Cm3Q6Mp59lsZt2/Lwww8b+60BmZNICCGKypz3zbAwmri5MSkri1eA0cAjbm6Uv7N0ISGBU0OGcA79B3kzpfJ+b8f89dXMWdMTpOZIWIm5BdmFXaA5kyN15kzeO8XHk5mVxebsX++HvL+F5Gj2dQMecnfn4zlz+HTuXPr372+aGAkhhLCO7PfikW5uNAL+BUa3bp07qYqPZ3X2Z0lzwBfybWEythwdO1Zggbd0q/1HngEbKurQyEKTo+wC66ysLFLzK9oLC+OETkcy4IO+yyzfAmozm32FEEJYUVQUHqdOMeOLLwCI3rzZWHhtFBbGiuz/PmTYls97e5nduwG4GhdXYIF3cZIjZ+1Wk+TIDhkvUJ0u/yw/IQH/F180/nrT0KR65/7BwRx+7jkA6gAehRVQy7B7IYTQXnAwrZ9/noEDBwIwdOhQk4Vjb5Qpw+/Zk0U+BPkPjklIoNSsWQAkAxRQ4G387MnKKrCFSbrVhHXcvFlw0+Z33wHglp6ef5YfH4+HUvqmVOAa5NukeiT7xVK3UydpERJCCAfy0UcfUa5cOQ4cOMDUqVON23/44QfSMjIIq16dOhs25P/eHh9PiezWHWN1aj6fFVk//ACA282bhU4hYHT2bBGPyDFIcmRLq1YBoE6cyP/CS0gga/RoIPvk5JflZxdQGyqBrkK+TaqHDx8GIFxahIQQwqGUL1+eTz75BIC3336bLVu2kJaWxkcffQTA4OHD9Qt55/feHhaGf3ZLjzE5yuuzIiGBrHfeAQr57AGYN++//zdoYF4S5WAkObKkS5cK7AbT5cj6873w4uPJys7yjQ2XBRRQl8n+NdnNLd/usiNHjgBQt27dIh2OEEII7fXr14/HHnuM9PR0HnzwQTp16sTRo0epUKECQ4cOLfjGwcH4T5wIZCdH+XW/mfvZk5AAw4cbf1X5lXTkvA+A8+cLPU57IsmROc6eLXgK902b9P9u3VpgNxh3Fq7ldeGFhZGVneUbT04BBdSlmzQBIHn27DybVJVSxuQoPDw8/2MQQghhl3Q6HQsWLKB169ZcvXqVzZs34+Hhwfz58ylVqlSht/cfMACAm25u+p6LvLrfwsJQ5nz2xMejM+ezDPSfhYakqFu3gluY0tL0/166VOCx2IokRwXJrvBn+fICu8H4+uv/fi+oG+zOIra8LrzgYLLeew/IPjmFFFCXrlABgKv5rOKckJDAjRs38PDwMHshQyGEEPalRIkSxMTEMG/ePN566y127NjBgw8+aPZtIXtkc/ZnRi7Bwabdavl99pj7WZY9x55RQS1M0dGwZ4/+/1FRdtFN59rJUUETYiUkwC+//Pd7Ad1gZrUIBQfDK68A+kVbC0p6sh57DAC3kiULLaAubLVlQ71RWFgYnp6e+d6PEEII++bl5cXAgQN57733aNy4sdm3M8yJB3Djxo1898vKXknBrXz5/D97goNh5sz/fs+vpCM+Xv+5mVN+3XTmJlFgswJw106OPvoo/ww1Pj73tny6wczKogGdIcsPDS0w6TEOp/TyKrSAurCZT6XeSAghXJu7uzve3t5AwSsqGD97fHwK/ux59lnjf9Xevfl203HnfEn5dNOZlUQBREfzgY0+y1w7OYL8M9SwsNzb8ukGo18/030KW4jV37/AvxdlIi5DcpTfmjnGkWpSbySEEC7LnOWmzP3sMZnnqEqVvHcyrLpgkF8Lk7lJVHYL04kCI7Mcl06OIiD/DDU4GHr2/O/3gpKetm31/7ZqZZF5hIqSHBXWrSYtR0IIIYqSHFlskseoKAgM1P9/1ar8u+nMSaLyamGyIpdOjlpB/iPBAJo21f/bq5d5SU+5cmbNI2SptdWg4G41pZS0HAkhhDAWZReUHJm7dFWRuLvr/zUkSXmJioLskdfMnWt+N50VuXRylG+GeqcqVSwyeaKl11aDgrvVLl68yL///otOp6N27drmByqEEMKpGFqOCizI1nJtNS8v/b/ly+f99ztbmKzMtZOjgwftcikNS3WrGVqNqlevjq+vb66/CyGEcA1Wqzmypago6NHDJg/l2slRfoVkGitKv29B3WpSbySEEAIsmxxpys/PJg9jx8+A87JkzZGh5SivbjWpNxJCCAFOlBzZiDwDNmRuU6SlCrKl5UgIIQSYV5Ctac2RnZHkyA4VJzlKTU0lJSXF5G/SciSEEAKKVpBd2Bd5zWqObEiSIztUlOSoVKlSxgs1Z9fa1atXSUxMBCQ5EkIIV2dOt5pVhvI7KLt4BmbMmEH16tXx8fEhIiKCTYZV7vOxceNGIiIi8PHxoUaNGszMuc6LA7BkzZGbmxvls4c+Xrx40bjd0KVWpUoVs1ZtFkII4byk5qhoNH8GFi9ezEsvvcTYsWPZs2cPbdu2pVu3bpw+fTrP/U+cOEH37t1p27Yte/bs4c0332TkyJEsWbLExpEXnTVqjgAqZK+yfOHCBeM2qTcSQghhIDVHRaN5cjR16lSioqIYNGgQ4eHhTJs2jZCQEL788ss89585cyZVq1Zl2rRphIeHM2jQIJ599lmmTJli48itp6gXaMWKFQHTliOpNxJCCGFgyUkgpebIytLS0ti1axeRkZEm2yMjI9myZUuet4mLi8u1f5cuXdi5cyfp6elWi9WWipscScuREEKIvEi3WtF4aPngly5dIjMzk8A71lwJDAwkKSkpz9skJSXluX9GRgaXLl0iKCgo121SU1NJTU01/m4Y9n7t2rUC4zPcJjU1tcB9b9++DUB6enqB+xkuyoyMjAL3u379OqC/UAuLEf6b6+jMmTPG/Q8ePAhA1apVzboPIYQQzsvQ2pOcnJzvZ4KhVSkzM9Psz41r167h7e2d798NCdeNGzcKvM+MjAxA/zlZ0H6GRhCrd+cpDZ09e1YBasuWLSbbJ06cqGrXrp3nbcLCwtQHH3xgsm3z5s0KUImJiXneZty4cQqQH/mRH/mRH/mRHyf4OX78uGUSkXxo2nJUvnx53N3dc7USXbhwIVfrkEGlSpXy3N/Dw4Ny5crleZsxY8YwatQo4+9Xr14lNDSU06dPG+cJcgXXrl0jJCSEM2fOuNQINjluOW5XIMctx+0KkpOTqVq1KmXLlrXq42iaHHl5eREREcG6det45JFHjNvXrVtHr1698rxNq1at+OWXX0y2rV27lmbNmuHp6Znnbby9vfNs9itdurRLXVQGpUqVkuN2IXLcrkWO27W46nFbuy5K86qrUaNGMXfuXObNm8eRI0d4+eWXOX36NMOGDQP0rT79+vUz7j9s2DBOnTrFqFGjOHLkCPPmzSM6OppXX31Vq0MQQgghhBPRtOUI4Mknn+Ty5ctMmDCBxMRE6tevz6pVqwgNDQUgMTHRZM6j6tWrs2rVKl5++WWmT59O5cqV+fzzz3nssce0OgQhhBBCOBHNkyOAESNGMGLEiDz/tmDBglzb2rVrx+7du4v9eN7e3owbN67ACntnJMctx+0K5LjluF2BHLd1j1unlJNObymEEEIIUQya1xwJIYQQQtgTSY6EEEIIIXKQ5EgIIYQQIgdJjoQQQgghcnDa5Oj999+ndevW+Pn5GdceK4xSinfffZfKlSvj6+tL+/btOXTokMk+qampvPDCC5QvXx5/f38eeughEhISrHAExXPlyhX69u1L6dKlKV26NH379uXq1asF3kan0+X58/HHHxv3ad++fa6/P/XUU1Y+GvMV57gHDBiQ65hatmxpso+zne/09HTeeOMNGjRogL+/P5UrV6Zfv36cO3fOZD97O98zZsygevXq+Pj4EBERwaZNmwrcf+PGjURERODj40ONGjWYOXNmrn2WLFlC3bp18fb2pm7duixbtsxa4RdbUY576dKldO7cmQoVKlCqVClatWrFmjVrTPZZsGBBnq/1lJQUax9KkRTluGNjY/M8pr/++stkP2c733m9f+l0OurVq2fcx97P9x9//EHPnj2pXLkyOp2On3/+udDb2Oy1bdXFSTT0zjvvqKlTp6pRo0ap0qVLm3WbDz/8UJUsWVItWbJEHThwQD355JMqKChIXbt2zbjPsGHDVJUqVdS6devU7t27VYcOHVSjRo1URkaGlY6kaLp27arq16+vtmzZorZs2aLq16+vevToUeBtEhMTTX7mzZundDqdydo17dq1U4MHDzbZ7+rVq9Y+HLMV57j79++vunbtanJMly9fNtnH2c731atX1QMPPKAWL16s/vrrLxUXF6datGihIiIiTPazp/P9/fffK09PTzVnzhx1+PBh9eKLLyp/f3916tSpPPf/559/lJ+fn3rxxRfV4cOH1Zw5c5Snp6f66aefjPts2bJFubu7qw8++EAdOXJEffDBB8rDw0Nt3brVVodVqKIe94svvqgmT56stm/frv7++281ZswY5enpqXbv3m3cZ/78+apUqVK5XvP2pKjHHRMTowB19OhRk2PK+Rp1xvN99epVk+M9c+aMKlu2rBo3bpxxH3s/36tWrVJjx45VS5YsUYBatmxZgfvb8rXttMmRwfz5881KjrKyslSlSpXUhx9+aNyWkpKiSpcurWbOnKmU0l+Mnp6e6vvvvzfuc/bsWeXm5qZWr15t8diL6vDhwwowuQji4uIUoP766y+z76dXr16qY8eOJtvatWunXnzxRUuFalHFPe7+/furXr165ft3Vznf27dvV4DJm7A9ne/mzZurYcOGmWyrU6eOGj16dJ77v/7666pOnTom24YOHapatmxp/P2JJ55QXbt2NdmnS5cu6qmnnrJQ1HevqMedl7p166rx48cbfzf3/VBLRT1uQ3J05cqVfO/TFc73smXLlE6nUydPnjRuc4TzbWBOcmTL17bTdqsV1YkTJ0hKSiIyMtK4zdvbm3bt2rFlyxYAdu3aRXp6usk+lStXpn79+sZ9tBQXF0fp0qVp0aKFcVvLli0pXbq02fGdP3+elStXEhUVletvCxcupHz58tSrV49XX32V69evWyz2u3E3xx0bG0vFihWpVasWgwcP5sKFC8a/ucL5Bv1CjjqdLlf3sz2c77S0NHbt2mVyDgAiIyPzPca4uLhc+3fp0oWdO3eSnp5e4D72cF6heMd9p6ysLK5fv55rgc4bN24QGhpKcHAwPXr0YM+ePRaL+27dzXE3adKEoKAgOnXqRExMjMnfXOF8R0dH88ADDxhXlzCw5/NdVLZ8bdvFDNn2ICkpCYDAwECT7YGBgZw6dcq4j5eXFwEBAbn2MdxeS0lJSVSsWDHX9ooVK5od31dffUXJkiV59NFHTbb36dOH6tWrU6lSJQ4ePMiYMWPYt28f69ats0jsd6O4x92tWzf+97//ERoayokTJ3j77bfp2LEju3btwtvb2yXOd0pKCqNHj6Z3794mi1fay/m+dOkSmZmZeb4u8zvGpKSkPPfPyMjg0qVLBAUF5buPPZxXKN5x3+mTTz7h5s2bPPHEE8ZtderUYcGCBTRo0IBr167x2Wef0aZNG/bt20dYWJhFj6E4inPcQUFBzJ49m4iICFJTU/nmm2/o1KkTsbGx3H///UD+14SznO/ExER+++03vvvuO5Pt9n6+i8qWr22HSo7effddxo8fX+A+O3bsoFmzZsV+DJ1OZ/K7UirXtjuZs8/dMPe4IXf8ULT45s2bR58+ffDx8THZPnjwYOP/69evT1hYGM2aNWP37t00bdrUrPsuKmsf95NPPmn8f/369WnWrBmhoaGsXLkyV3JYlPu9W7Y63+np6Tz11FNkZWUxY8YMk79pcb4LUtTXZV7737m9OK91WytujIsWLeLdd99l+fLlJgl0y5YtTQYdtGnThqZNm/LFF1/w+eefWy7wu1SU465duza1a9c2/t6qVSvOnDnDlClTjMlRUe9TK8WNccGCBZQpU4aHH37YZLujnO+isNVr26GSo+eff77QETPVqlUr1n1XqlQJ0GemQUFBxu0XLlwwZqGVKlUiLS2NK1eumLQmXLhwgdatWxfrcc1h7nHv37+f8+fP5/rbxYsXc2XSedm0aRNHjx5l8eLFhe7btGlTPD09iY+Pt9qHpa2O2yAoKIjQ0FDi4+MB5z7f6enpPPHEE5w4cYINGzaYtBrlxRbnOy/ly5fH3d0917e+nK/LO1WqVCnP/T08PChXrlyB+xTlerGm4hy3weLFi4mKiuLHH3/kgQceKHBfNzc37r33XuM1r7W7Oe6cWrZsybfffmv83ZnPt1KKefPm0bdvX7y8vArc197Od1HZ9LVdpAolB1TUguzJkycbt6WmpuZZkL148WLjPufOnbO7At1t27YZt23dutXsAt3+/fvnGrWUnwMHDihAbdy4sdjxWsrdHrfBpUuXlLe3t/rqq6+UUs57vtPS0tTDDz+s6tWrpy5cuGDWY2l5vps3b66GDx9usi08PLzAguzw8HCTbcOGDctVtNmtWzeTfbp27Wp3BbpFOW6llPruu++Uj49PoYWtBllZWapZs2Zq4MCBdxOqRRXnuO/02GOPqQ4dOhh/d9bzrdR/BekHDhwo9DHs8XwbYGZBtq1e206bHJ06dUrt2bNHjR8/XpUoUULt2bNH7dmzR12/ft24T+3atdXSpUuNv3/44YeqdOnSaunSperAgQPq6aefznMof3BwsFq/fr3avXu36tixo90N7W7YsKGKi4tTcXFxqkGDBrmGdt953EoplZycrPz8/NSXX36Z6z6PHTumxo8fr3bs2KFOnDihVq5cqerUqaOaNGnisMd9/fp19corr6gtW7aoEydOqJiYGNWqVStVpUoVpz7f6enp6qGHHlLBwcFq7969JsN7U1NTlVL2d74NQ5yjo6PV4cOH1UsvvaT8/f2No3JGjx6t+vbta9zfMNz35ZdfVocPH1bR0dG5hvv++eefyt3dXX344YfqyJEj6sMPP7Tbod3mHvd3332nPDw81PTp0/OdguHdd99Vq1evVsePH1d79uxRAwcOVB4eHiYJttaKetyffvqpWrZsmfr777/VwYMH1ejRoxWglixZYtzHGc+3wTPPPKNatGiR533a+/m+fv268bMZUFOnTlV79uwxjpzV8rXttMlR//79FZDrJyYmxrgPoObPn2/8PSsrS40bN05VqlRJeXt7q/vvvz9XNn779m31/PPPq7JlyypfX1/Vo0cPdfr0aRsdVeEuX76s+vTpo0qWLKlKliyp+vTpk2uI653HrZRSs2bNUr6+vnnOZXP69Gl1//33q7JlyyovLy91zz33qJEjR+aaE0hLRT3uW7duqcjISFWhQgXl6empqlatqvr375/rXDrb+T5x4kSer4ucrw17PN/Tp09XoaGhysvLSzVt2tSkBat///6qXbt2JvvHxsaqJk2aKC8vL1WtWrU8k/4ff/xR1a5dW3l6eqo6deqYfJjai6Icd7t27fI8r/379zfu89JLL6mqVasqLy8vVaFCBRUZGam2bNliwyMyT1GOe/Lkyeqee+5RPj4+KiAgQN13331q5cqVue7T2c63UvrWbV9fXzV79uw878/ez7eh1Su/a1bL17ZOqexqJiGEEEII4bzLhwghhBBCFIckR0IIIYQQOUhyJIQQQgiRgyRHQgghhBA5SHIkhBBCCJGDJEdCCCGEEDlIciSEEEIIkYMkR0IIIYQQOUhyJIQQQgiRgyRHQgghhBA5SHIkhHAqEyZMoEGDBvj7+xMYGMjw4cNJT0/XOiwhhAPx0DoAIYSwFKUUmZmZzJo1iypVqnD48GH69etHw4YNGT58uNbhCSEchCw8K4Rwar1796ZChQp89tlnWocihHAQ0q0mhHAap06d4vnnn6d+/foEBARQokQJfvjhB4KDg7UOTQjhQCQ5EkI4hUuXLtG8eXMuXbrE1KlT2bx5M3Fxcbi7u9O4cWOtwxNCOBCpORJCOIVVq1aRkZHBokWL0Ol0AEyfPp20tDRJjoQQRSLJkRDCKZQtW5Zr166xYsUK6tatyy+//MKkSZOoUqUKFSpU0Do8IYQDkYJsIYRTUEoxfPhwvvvuO3x9fXnmmWdISUnh1KlT/Prrr1qHJ4RwIJIcCSGEEELkIAXZQgghhBA5SHIkhBBCCJGDJEdCCCGEEDlIciSEEEIIkYMkR0IIIYQQOUhyJIQQQgiRgyRHQgghhBA5SHIkhBBCCJGDJEdCCCGEEDlIciSEEEIIkYMkR0IIIYQQOUhyJIQQQgiRw/8DzoWl3nevhd4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "let a = range(-1,1,length=50),\n", + " afine = range(-1,1,length=1000),\n", + " b = 1 ./ (1 .+ 25 * a.^2),\n", + " fig = figure()\n", + " # @manipulate for n=slider(1:50, value=3)\n", + " for n=1:50\n", + " display(\n", + " withfig(fig) do\n", + " plot(a, b, \"r.\")\n", + " A = a .^ (0:n-1)'\n", + " x̂ = A \\ b\n", + " plot(afine, (afine .^ (0:n-1)') * x̂, \"k-\")\n", + " xlabel(L\"a\")\n", + " ylabel(L\"b\")\n", + " xlim(-1,1)\n", + " ylim(0,1)\n", + " title(\"smooth function: polynomial fit of degree $(n-1)\")\n", + " end\n", + " )\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Be careful not to draw the wrong lesson from this. You have to be *especially careful* when fitting to high-degree polynomials, but this does *not* mean that you should never do it.\n", + "\n", + "In particular, fitting smooth functions to high-degree polynomials can be a *great* thing to do, as **long as you choose the correct points**. (Separately, as mentioned above, the construction of the interpolating polynomial should technically not be done by this matrix method once you go to high degrees — you run into roundoff-error problems — but there are better methods like the barycentric formula.)\n", + "\n", + "For example, here we fit the same $1/(1+25a^2)$ function as above to a degree-49 polynomial, with no Runge problems at all, by choosing the points to be [Chebyshev nodes](https://en.wikipedia.org/wiki/Chebyshev_nodes) (which cluster together at the edges of the domain):" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHFCAYAAAAudofcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1dklEQVR4nO3dd1wT5x8H8E8IGxkiMgREXKCCguDCvXe1y624V1vr6k+tddZWba21tW5Bbeuu1klddVaxKuIexYFAFTfDwczz+wOTEhMQMHAJfN6vFy/Nccl97y539+Ge5+5kQggBIiIiItIZI6kLICIiIipuGLCIiIiIdIwBi4iIiEjHGLCIiIiIdIwBi4iIiEjHGLCIiIiIdIwBi4iIiEjHGLCIiIiIdIwBi4iIiEjHGLAK4O7du5g+fTrOnTun8bv+/fujVKlSBf7stLQ0DB8+HC4uLpDL5fDz8yt4oTqwePFirF69WmN4dHQ0ZDKZ1t9JSaFQ4JdffkGrVq3g4OAAExMTODo6olOnTti5cycUCgUA4PDhw5DJZPjtt990Nu3p06dDJpPh0aNHOvvMNymM+dA3yuVaXMhkMkyfPr1Q3/s208hpm9dXym3g8OHD+X7vlStXMH36dERHR2v8rn///qhQocJb11eYnjx5gh49esDR0REymQxdu3bN92dUqFAB/fv313lt+uzAgQOQyWQ57q/Xrl0Lf39/mJubw8HBAb169UJsbGy+p2Osi2JLmrt372LGjBmoUKGCzgPQkiVLsGzZMixcuBABAQFvFdZ0YfHixXBwcNDYAF1cXBAeHo5KlSpJU5gWKSkp6Nq1K/bt24cePXpgyZIlcHZ2xsOHD7Fnzx58+OGH2LhxI7p06SJ1qVSChYeHw83NTW+nkdM2XxxduXIFM2bMQLNmzTTC1JQpU/Dpp59KU1geffnll/j9998RGhqKSpUqwd7eXuqS9N6zZ88wZMgQlCtXDnfv3tX4/cKFCzFq1CgMHjwYc+bMQVxcHKZMmYLGjRsjMjISpUuXzvO0GLD0zKVLl2BhYYGPP/5Y6lJyZWZmhvr160tdhpqxY8di7969WLNmDfr166f2u/feew+fffYZXr58KVF1RFmKYrvRt21TCIGUlBRYWFhIXUqe6dMfjzm5dOkSKlWqhN69e0tdSr69ePEClpaWRT7diRMnonTp0ujYsSNmzZql9rvU1FRMmTIFnTt3xooVK1TDq1evjqCgIMybNw9fffVVnqcleRPhw4cPMXToULi7u8PMzAxly5ZFw4YNceDAAdU4zZo1g4+PD8LDwxEUFAQLCwtUqFABq1atAgDs3r0btWvXhqWlJXx9fbFnzx6N6fz1119o2bIlrK2tYWlpiaCgIOzevVtjvEuXLqFLly4oXbo0zM3N4efnhzVr1qh+f/jwYdSpUwcAMGDAANVpxtdPx9+4cQMdOnRAqVKl4O7ujnHjxiE1NTXXZSGTybBy5Uq8fPlS9bmrV6/OtTnu9Wkrm1MuX76Mnj17wtbWFk5OThg4cCASExPV3qtQKLBw4UL4+fnBwsICdnZ2qF+/Pnbs2AEg69Tx5cuXceTIEVU9yr/ycqopL8t59erVkMlkOHToEEaMGAEHBweUKVMG7733nta/KPIiPj4eK1euRNu2bTXClVKVKlVQs2ZNtWHp6emYPHkyypUrBxsbG7Rq1QrXr1/XeO+BAwfQsmVL2NjYwNLSEg0bNsSff/6pdTqxsbF47733YGNjA1tbW/Tp0wcPHz5U/X7QoEGwt7fHixcvNN7bokUL1KhRQ/V68+bNqFevHmxtbWFpaYmKFSti4MCBGu/T1Xxs27YNMplM67wtWbIEMpkMFy5c0DrfwH/rdv/+/RgwYADs7e1hZWWFzp0749atWxrjh4aGolatWjA3N4e9vT3effddXL16NcfPB/K3/GQyGT7++GP88ssvqFatGiwtLVGrVi3s2rVL4735+e4ePHgQQ4YMQZkyZWBjY4N+/frh+fPniI+PR7du3WBnZwcXFxeMHz8e6enpap/x+jb78OFDjBw5EtWrV0epUqXg6OiIFi1a4NixY7kuh9y8Po28bnO5bfMAkJSUhPHjx8PT0xOmpqZwdXXF6NGj8fz5c43pf/zxx1i6dCmqVasGMzMzrFmzRrXf+Oabb/DVV1+hfPnyMDc3R2BgoNbvXF732687c+YMevTogQoVKqiOFz179sSdO3fUlsmHH34IAGjevLnaPhfQ3kSYkpKCSZMmqc3/Rx99hISEBLXxKlSogE6dOmHPnj2oXbs2LCws4O3tjdDQ0DfWDmQ1/Y0cORKurq4wNTVFxYoVMXnyZNUxRLkcDxw4gKtXr6pqz62ZND09Hf/73//g7OwMS0tLNGrUCKdOndI6bnx8PIYNGwY3NzeYmprC09MTM2bMQEZGhtp4cXFx+OCDD2BtbQ07Ozv07t0bp0+f1jg2KLvOXLx4EW3atIG1tTVatmwJIKtbzKxZs+Dt7a3KAAMGDFDbZypt3LgRDRo0gJWVFUqVKoW2bdsiMjIyT8sUAI4dO4bly5dj5cqVkMvlGr+/dOkSEhMT0aFDB7XhDRo0gL29PbZs2ZLnaQEAhMTatm0rypYtK5YvXy4OHz4stm3bJqZOnSo2bNigGqdp06aiTJkywsvLS4SEhIi9e/eKTp06CQBixowZwtfXV6xfv16EhYWJ+vXrCzMzM/Hvv/+q3n/48GFhYmIiAgICxMaNG8W2bdtEmzZthEwmU5vOtWvXhLW1tahUqZL4+eefxe7du0XPnj0FADF37lwhhBCJiYli1apVAoD44osvRHh4uAgPDxexsbFCCCGCg4OFqampqFatmpg3b544cOCAmDp1qpDJZGLGjBm5Lovw8HDRoUMHYWFhofrcBw8eiNu3bwsAYtWqVRrvASCmTZumej1t2jQBQHh5eYmpU6eK/fv3i/nz5wszMzMxYMAAtff27dtXyGQyMXjwYLF9+3bxxx9/iK+++kr88MMPQgghzp49KypWrCj8/f1V9Zw9e1YIIbTWlNflrFx+FStWFJ988onYu3evWLlypShdurRo3ry5Wo3KcbXNe3br1q0TAMSSJUtyHU/p0KFDAoCoUKGC6N27t9i9e7dYv369KF++vKhSpYrIyMhQjfvLL78ImUwmunbtKrZu3Sp27twpOnXqJORyuThw4IDGsvfw8BCfffaZ2Lt3r5g/f76wsrIS/v7+Ii0tTQghxPnz5wUAsWLFCrWaLl++LACIRYsWCSGEOHHihJDJZKJHjx4iLCxMHDx4UKxatUr07du30OYjPT1dODo6it69e2sss7p164ratWvnulyV68vd3V0MHDhQ/PHHH2L58uXC0dFRuLu7i6dPn6rG/frrrwUA0bNnT7F7927x888/i4oVKwpbW1vxzz//aCxXpbwuPyGEatnUrVtXbNq0SYSFhYlmzZoJY2NjcfPmTdV4+f3uenp6inHjxol9+/aJuXPnCrlcLnr27Clq164tZs2aJfbv3y8mTJggAIjvvvtOrc7Xt9lr166JESNGiA0bNojDhw+LXbt2iUGDBgkjIyNx6NChXN+bk9fHy+s2l9s2//z5c+Hn5yccHBzE/PnzxYEDB8QPP/wgbG1tRYsWLYRCoVCbvqurq6hZs6ZYt26dOHjwoLh06ZJqv+Hu7i4aNWoktmzZIjZv3izq1KkjTExMxIkTJ/K9TpTbQPZltXnzZjF16lTx+++/iyNHjogNGzaIpk2birJly4qHDx8KIYR48OCB6ju4aNEitX2uEFn7cg8PD9VnKhQK0bZtW2FsbCymTJki9u3bJ+bNm6favlNSUlTjenh4CDc3N1G9enXx888/i71794oPP/xQABBHjhzJdd29fPlS1KxZU1hZWYl58+aJffv2iSlTpghjY2PRoUMHIYQQKSkpIjw8XPj7+4uKFSuqak9MTMzxc4ODg4VMJhOfffaZ2Ldvn5g/f75wdXUVNjY2Ijg4WDXevXv3hLu7u/Dw8BDLli0TBw4cEF9++aUwMzMT/fv3V4337NkzUblyZWFvby8WLVok9u7dK8aMGSM8PT019tnBwcHCxMREVKhQQcyePVv8+eefYu/evSIzM1O0a9dOWFlZiRkzZoj9+/eLlStXCldXV1G9enXx4sUL1Wd89dVXQiaTiYEDB4pdu3aJrVu3igYNGggrKytx+fLlXJepEEK8ePFCVKlSRXz22WdCiP/2K8rvgxBZ+1wAIjQ0VOP9Li4uwsjISLx8+fKN01KSPGCVKlVKjB49OtdxmjZtKgCIM2fOqIY9fvxYyOVyYWFhoRamzp07JwCIH3/8UTWsfv36wtHRUSQnJ6uGZWRkCB8fH+Hm5qbaMfTo0UOYmZmJmJgYtem3b99eWFpaioSEBCGEEKdPn87xoB8cHCwAiE2bNqkN79Chg/Dy8nrD0sh6v5WVldqwggSsb775Rm28kSNHCnNzc9W8Hj16VAAQkydPzrWeGjVqiKZNm2oM11ZTXpezcmc/cuRItc/85ptvBABx79491bA1a9YIuVwu1qxZk2udc+bMEQDEnj17ch1PSblTVu6wlDZt2iQAiPDwcCFE1kHF3t5edO7cWW28zMxMUatWLVG3bl3VMOWyHzNmjNq4a9euFQDEr7/+qhrWtGlT4efnpzbeiBEjhI2NjWr5zZs3TwBQfe+Kaj7Gjh0rLCws1KZ75coVAUAsXLgwx1qE+G/dvvvuu2rDjx8/LgCIWbNmCSGEePr0qbCwsNCoOyYmRpiZmYlevXqphr0esITI2/ITImv7cHJyEklJSaph8fHxwsjISMyePVs1LL/f3U8++URt2l27dhUAxPz589WG+/n5aYTSN4WkjIwMkZ6eLlq2bKmxHN82YOVlm8tpm589e7YwMjISp0+fVhv+22+/CQAiLCxMbfq2trbiyZMnauMq9xvlypVTO1AlJSUJe3t70apVK9WwvK4TbQHrdRkZGeLZs2fCyspK9QekEFlBLKf3vh6w9uzZo3XfunHjRgFALF++XDXMw8NDmJubizt37qiGvXz5Utjb24thw4blWKcQQixdulTrMWTu3LkCgNi3b59qWNOmTUWNGjVy/TwhhLh69Wqu+6bsAWvYsGGiVKlSarUL8d/+SBlmFi1aJACIP/74Q228YcOGaQ1Y2oLL+vXrBQCxZcsWteHKY+zixYuFEFn7BWNjY43tLjk5WTg7O4tu3bq9cRmMGzdOVKxYURXatAWsx48fCyMjIzFo0CC19964cUMAEADE3bt33zgtJcmbCOvWrYvVq1dj1qxZOHnypMbpdCUXFxcEBASoXtvb28PR0RF+fn4oV66cani1atUAQHUq+Pnz5/j777/xwQcfqHUYl8vl6Nu3L+Li4lRNKQcPHkTLli3h7u6uNu3+/fvjxYsXCA8Pz9M8yWQydO7cWW1YzZo11U5PF7Z33nlHY/opKSl48OABAOCPP/4AAHz00Uc6mV5+lnNuNQJQW079+vVDRkZGjs1+b+tNNZw4cQJPnjxBcHAwMjIyVD8KhQLt2rXD6dOnNZpHXu8P0a1bNxgbG+PQoUOqYZ9++inOnTuH48ePA8hqevnll18QHBysWn7Kpuhu3bph06ZN+Pfff4tkPgYOHIiXL19i48aNqs9btWoVzMzM0KtXrxxryG0ZBAUFwcPDQ7UMwsPD8fLlS42O1O7u7mjRokWOza9KeVl+Ss2bN4e1tbXqtZOTExwdHQu0j1Dq1KmT2mvlfqdjx44aw/Oy3S9duhS1a9eGubk5jI2NYWJigj///PONzaX5lZdtLie7du2Cj48P/Pz81L5Dbdu21do81aJFixw7BL/33nswNzdXvba2tkbnzp1x9OhRZGZmFmidZPfs2TNMmDABlStXhrGxMYyNjVGqVCk8f/68wMv04MGDAKDxnf3www9hZWWl8Z318/ND+fLlVa/Nzc1RtWrVNy7rgwcPwsrKCh988IHacOV037RtaKPc7nLaN2W3a9cuNG/eHOXKlVNbz+3btwcAHDlyRPWvtbU12rVrp/b+nj175ljH+++/rzEtOzs7dO7cWW1afn5+cHZ2Vn2n9u7dqzoOZB/P3NwcTZs2feMVpKdOncKCBQuwbNmyXPsB2tvbo3fv3vj555+xbNkyPHnyBBcuXEDv3r1VTYpGRnmPTZIHrI0bNyI4OBgrV65UtXP269cP8fHxauNpuzrC1NRUY7ipqSmArLZyAHj69CmEEHBxcdF4vzKYPX78WPVvXsZ7E0tLS7WdB5DVKVxZU1EoU6aMxvQBqDp5P3z4EHK5HM7OzjqZXn6Wc15rzA/ljuz27dv5et+barh//z4A4IMPPoCJiYnaz9y5cyGEwJMnT9Q+4/VlamxsjDJlyqjNf5cuXVChQgUsWrQIQFZ/kOfPn6sF3iZNmmDbtm2qHYubmxt8fHywfv36Qp2PGjVqoE6dOqo+jpmZmfj111/RpUuXPF+lpO175ezsrLatAcjx+/KmbS0vy0/p9WUDZC0f5bIpyHc3p/2OtuFv2u7nz5+PESNGoF69etiyZQtOnjyJ06dPo127djq/KONttrn79+/jwoULGt8fa2trCCE0LnfXtjyVcvp+pKWl4dmzZwVaJ9n16tULP/30EwYPHoy9e/fi1KlTOH36NMqWLVvgZfr48WMYGxujbNmyasNlMpnad1vpTd+73Kbj7OyscWsSR0dHGBsb5/k49PpnAjnvm7K7f/8+du7cqbGelX0blev58ePHcHJy0piWtmFA1nHRxsZGY1oJCQkwNTXVmF58fLxqWsr9V506dTTG27hx4xtvjTNw4EC89957CAwMREJCAhISElTbZVJSEpKTk1XjLlmyBN27d8fIkSNRpkwZ+Pv7w9vbGx07doSZmZnW9ZoTya8idHBwwIIFC7BgwQLExMRgx44dmDhxIh48eKC1s3p+lS5dGkZGRrh3757G75SdOx0cHABkbRB5Ga+oKcPa653kC7KhKZUtWxaZmZmIj4/PdUeYV/lZzoWhefPmMDExwbZt2zB8+HCdfa6y5oULF+Z4ZdbrO5T4+Hi4urqqXmdkZODx48dqG6aRkRE++ugjfP755/juu++wePFitGzZEl5eXmqf1aVLF3Tp0gWpqak4efIkZs+ejV69eqFChQpo0KBBoc3HgAEDMHLkSFy9ehW3bt3CvXv3MGDAgDxP7/U/kJTDKleuDOC/g09O35c3fVfyuvzyQurv7q+//opmzZphyZIlasOz7/T1gYODAywsLHLsqP36Msrt3mU5fT9MTU1RqlQpGBsbF3idJCYmYteuXZg2bRomTpyoGp6amqrxx1B+lClTBhkZGXj48KFayBJCID4+XnXG+W2VKVMGf//9N4QQasvwwYMHyMjIKNB3Ubm95bRvys7BwQE1a9bM8Wo5ZcAtU6aM1k7y2tYtoP37oLzYIqdjvfLMs3Kef/vtN3h4eGgdNzeXL1/G5cuXsXnzZo3fVapUCbVq1VLd19LKygq//PILfvzxR8TGxqJcuXJwcHCAt7c3goKCNM745UbyM1jZlS9fHh9//DFat26Ns2fP6uQzraysUK9ePWzdulXtLweFQoFff/0Vbm5uqFq1KgCgZcuWOHjwoMaVbD///DMsLS1VB6a3OdNSEE5OTjA3N9e4emv79u0F/kzl6d7Xd+qvy8tfXED+lnNhcHZ2Vv21+vPPP2sd5+bNm7leAadNw4YNYWdnhytXriAwMFDrj/LshdLatWvVXm/atAkZGRlo1qyZ2vDBgwfD1NQUvXv3xvXr13O9NYeZmRmaNm2KuXPnAkC+rpwpyHz07NkT5ubmWL16NVavXg1XV1e0adMmz9N7fRmcOHECd+7cUS2DBg0awMLCAr/++qvaeHFxcaqm+jfJz/LLjdTfXZlMptqnKF24cCHPXRJ0LadtvlOnTrh58ybKlCmj9fuTn5tybt26Ve3MXnJyMnbu3InGjRtDLpe/1TqRyWQQQmgs05UrVyIzM1NjXoG87cuV38nXv7NbtmzB8+fP8/SdzYuWLVvi2bNn2LZtm9pw5X6tINNRbnc57Zuy69Spk+r2D9rWszJgNW3aFMnJyaruJkobNmzIc12dOnXC48ePkZmZqXVayj+Y2rZtC2NjY9y8eTPH/VduDh06pPETHBwMIOvK6ZUrV2q8p3Tp0qhZsyYcHBywY8cOXL9+Pd/3RZP0DFZiYiKaN2+OXr16wdvbG9bW1jh9+jT27NmD9957T2fTmT17Nlq3bo3mzZtj/PjxMDU1xeLFi3Hp0iWsX79elaynTZuman+eOnUq7O3tsXbtWuzevRvffPMNbG1tAWQlXgsLC6xduxbVqlVDqVKlUK5cObW+YLokk8nQp08f1c3katWqhVOnTmHdunUF/szGjRujb9++mDVrFu7fv49OnTrBzMwMkZGRsLS0xCeffAIA8PX1xYYNG7Bx40ZUrFgR5ubm8PX11fqZeV3O+fHzzz9j4MCBCA0NfWM/rPnz5+PWrVvo378/9u7di3fffRdOTk549OgR9u/fj1WrVmHDhg0at2rITalSpbBw4UIEBwfjyZMn+OCDD+Do6IiHDx/i/PnzePjwoUZI3bp1K4yNjdG6dWtcvnwZU6ZMQa1atdCtWze18ezs7NCvXz8sWbIEHh4eGv32pk6diri4OLRs2RJubm5ISEjADz/8ABMTEzRt2jTP81CQ+bCzs8O7776L1atXIyEhAePHj89X34MzZ85g8ODB+PDDDxEbG4vJkyfD1dUVI0eOVH3+lClT8Pnnn6Nfv37o2bMnHj9+jBkzZsDc3BzTpk174zTetPzyozC+u3nVqVMnfPnll5g2bRqaNm2K69evY+bMmfD09NQ4+BWFnLb50aNHY8uWLWjSpAnGjBmDmjVrQqFQICYmBvv27cO4ceNQr169PE1DLpejdevWGDt2LBQKBebOnYukpCTMmDFDNU5B14mNjQ2aNGmCb7/9Fg4ODqhQoQKOHDmCkJAQ2NnZqY3r4+MDAFi+fDmsra1hbm4OT09Prc1ArVu3Rtu2bTFhwgQkJSWhYcOGuHDhAqZNmwZ/f3/07ds3j0s4d/369cOiRYsQHByM6Oho+Pr64q+//sLXX3+NDh06oFWrVvn+zGrVqqFPnz5YsGABTExM0KpVK1y6dAnz5s3TaLabOXMm9u/fj6CgIIwaNQpeXl5ISUlBdHQ0wsLCsHTpUri5uSE4OBjff/89+vTpg1mzZqFy5cr4448/sHfvXgB566vUo0cPrF27Fh06dMCnn36KunXrwsTEBHFxcTh06BC6dOmCd999FxUqVMDMmTMxefJk3Lp1C+3atUPp0qVx//59nDp1ClZWVmrfnde9/sctAFW/rYYNG6qdFdyyZQvu3r2LatWqISUlBYcPH8YPP/yA4cOH5/8m1XnuDl8IUlJSxPDhw0XNmjWFjY2NsLCwEF5eXmLatGni+fPnqvFyulLCw8NDdOzYUWM4APHRRx+pDTt27Jho0aKFsLKyEhYWFqJ+/fpi586dGu+9ePGi6Ny5s7C1tRWmpqaiVq1aWq/eW79+vfD29hYmJiZqV+xouwpQCO1XQmmT0/sTExPF4MGDhZOTk7CyshKdO3cW0dHROV5FmP3KCCH+u4ro9u3bqmGZmZni+++/Fz4+PsLU1FTY2tqKBg0aqC2X6Oho0aZNG2Ftba26BYEQOV/ZmJflrKzl9auRtF0NlNfbNChlZGSINWvWiBYtWgh7e3thbGwsypYtK9q3by/WrVsnMjMz1aa1efNmtffnNF9HjhwRHTt2FPb29sLExES4urqKjh07qr1fuewjIiJE586dRalSpYS1tbXo2bOnuH//vtZ6Dx8+LACIOXPmaPxu165don379sLV1VWYmpoKR0dH0aFDB3Hs2DGNZabL+VDat2+f6sqZ7LdNyI1yfe3bt0/07dtX2NnZqa4WjIqK0hh/5cqVombNmqrvX5cuXTQuuc5t28lt+QmhfV8gRNa+I/uVU0K83Xc3p+1O2/b8+jabmpoqxo8fL1xdXYW5ubmoXbu22LZtm8ZVbNrem5PXx8vPNpfTNi9E1qX5X3zxhfDy8lKtM19fXzFmzBgRHx+vNn1ty135vZw7d66YMWOGcHNzE6ampsLf31/s3btXY/y8rBNt8xAXFyfef/99Ubp0aWFtbS3atWsnLl26pHW9L1iwQHh6egq5XK62zWhb/i9fvhQTJkwQHh4ewsTERLi4uIgRI0ao3X5EiJyPTU2bNtV6hebrHj9+LIYPHy5cXFyEsbGx8PDwEJMmTVK7FYTy8/JyFaEQWd+zcePGCUdHR2Fubi7q168vwsPDtS6Thw8filGjRglPT09hYmIi7O3tRUBAgJg8ebJ49uyZaryYmBjx3nvvqfZ177//vggLCxMAxPbt21Xj5XRcEyLr1jDz5s0TtWrVEubm5qJUqVLC29tbDBs2TGOfsW3bNtG8eXNhY2MjzMzMhIeHh/jggw/UbpeTVzlts7///rvw8/NTfecCAwNFSEiI2m1I8komhBD5i2REpCvjxo3DkiVLEBsbm6/Ok/pq9erVGDBgAE6fPv3G0/a6UNyWX3EXHR0NT09PfPvttxg/frzU5VAh+Prrr/HFF18gJiam0B8Jpe8k7+ROVBKdPHkS//zzDxYvXoxhw4YxHOQTlx+R9H766ScAgLe3N9LT03Hw4EH8+OOP6NOnT4kPVwADFpEkGjRoAEtLS3Tq1EnjeVj0Zlx+RNKztLTE999/j+joaKSmpqJ8+fKYMGECvvjiC6lL0wtsIiQiIiLSMclv03D06FF07twZ5cqVg0wm07g0VZsjR44gICAA5ubmqFixIpYuXVr4hRIRERHlkeQB6/nz56hVq5aqLfdNbt++jQ4dOqBx48aIjIzE559/jlGjRuX/KddEREREhUSvmghlMhl+//13dO3aNcdxJkyYgB07dqg9T2r48OE4f/68ZDfmIyIiIsrO4Dq5h4eHa9xRum3btggJCUF6ejpMTEw03pOamqr2mBmFQoEnT56gTJkyhXoDQSIiItIdIQSSk5NRrly5fN38WAoGF7Di4+M1nv3m5OSEjIwMPHr0SOtz9WbPnp3rXV6JiIjIcMTGxur9rSAMLmABmg+NVLZy5nQ2atKkSRg7dqzqdWJiIsqXL4/Y2FiNxwQQkWG5fv062rVrhydPnsDFxQUTJ05E1apVcezYMSxYsAAvXrxAzZo1sXv3bm7vRAYuKSkJ7u7uqgdB6zODC1jOzs4aT+t+8OABjI2Nc7zZoJmZmcaDP4GsZ1Zxh0tkuBITE9G7d288efIEgYGB2LNnj2o/0K5dO/To0QMtW7bEhQsXMHLkSGzfvp3dAoiKAUPYjvW7AVOLBg0aYP/+/WrD9u3bh8DAQK39r4io+Prf//6HqKgolC9fHmFhYRp/ZPn6+iIsLAympqbYuXMnli1bJlGlRFTSSB6wnj17hnPnzuHcuXMAsm7DcO7cOcTExADIat7r16+favzhw4fjzp07GDt2LK5evYrQ0FCEhITwuVZEJczx48exfPlyAMAvv/yCsmXLah0vMDAQc+bMAZC1P3n06FGR1UhEJZfkAevMmTPw9/eHv78/AGDs2LHw9/fH1KlTAQD37t1ThS0A8PT0RFhYGA4fPgw/Pz98+eWX+PHHH/H+++9LUj8RFT2FQoGPPvoIADBo0CA0adIk1/FHjRqFmjVrIiEhQbVvISIqTHp1H6yikpSUBFtbWyQmJrIPFpEB2rJ8OT4YNgw21ta4dft2nh72fPjwYTRv3hxGRka4umoVqrZoAej5VUhEpM6Qjt+Sn8EiIsoPxYoVmDFsGABgdHIyyuTh8VoA0KxZM3SqWRMKhQLfBgcDHh5ASEghVkpEJRnPYOl5AiaibOLisL18eXQVAjYAogGUlsuB6Og3n42Ki8OJ8uXRUAiYALgNwDWv7yUivWBIx2+ewSIiwxEVhZ9e/U04AkBpAMjMBG7cyNN7g4RAYwDpAH7Iz3uJiPKJAYuIDMY1mQwHkLXjGqEcKJcDlSu/+c1VqgBGRvjs1ctVAFKNjPL2XiKifGLAIiKDsXjrVgBAZwAeQFa4WrYsb018bm7A8uVob2QENwCPAGwbPJjNg0RUKBiwiMggpKam4pdffgEAjPz1V+DQoaz+U4MG5f1DBg2C8Z07GPjq3nrL2TxIRIWEndz1vJMcEWXZtm0b3n33Xbi6uuLOnTuQy+UF/qyYmBhUqFABQgjcvHkTFStW1GGlRFRYDOn4zTNYRGQQ1q5dCwDo2bPnW4UrAChfvjxatmwJANiwYcNb10ZE9DoGLCLSe4mJidi5cycAoHfv3jr5zF69egEA1q9fr5PPIyLKjgGLiPTeli1bkJqaiurVq6NWrVo6+cx3330XpqamuHTpEi5evKiTzyQiUmLAIiK9t27dOgBAnz59IJPJdPKZdnZ26NChAwCexSIi3WPAIiK99uTJExw+fBgA0K1bN51+dvfu3QFkdaAnItIlBiwi0mthYWHIzMyEj48PKlWqpNPPbt++PUxMTHD16lVERUXp9LOJqGRjwCIivbZ9+3YAQJcuXXT+2ba2tmjWrJnadIiIdIEBi4j0VmpqKvbs2QOgcAJW9s9lwCIiXWLAIiK9dfDgQTx79gzlypVDQEBAoUyjc+fOAIATJ07g4cOHhTINIip5GLCISG/t2LEDAPDOO+/AyKhwdlfly5eHv78/FAoFdu3aVSjTIKKShwGLiPSSEAK7d+8GkBWwCpOymVA5PSKit8WARUR66Z9//kFsbCzMzMzQtGnTQp1Wu3btAAAHDhxARkZGoU6LiEoGBiwi0kv79u0DADRq1AiWlpaFOq3AwECULl0aiYmJOH36dKFOi4hKBgYsItJLyoDVpk2bQp+WXC5Hq1atAAB79+4t9OkRUfHHgEVEeictLQ2HDh0CALRu3bpIptm2bVsADFhEpBsMWESkd06ePInnz5+jbNmyOnu485soz5SdOnUKT58+LZJpElHxxYBFRHpH2TzYunXrQrs9w+vc3d1RrVo1KBQK/Pnnn0UyTSIqvhiwiEjvZA9YRUnZTLh///4inS4RFT8MWESkV548eYIzZ84AKPqA1aJFCwDA4cOHi3S6RFT8MGARkV45dOgQhBCoXr06XF1di3TajRs3hkwmwz///IO7d+8W6bSJqHhhwCIivXLkyBEAQPPmzYt82nZ2dvD391erg4ioIBiwiEivKINNYd+9PSfNmjUDwGZCIno7DFhEpDeePHmCixcvAgCaNGkiSQ0MWESkCwxYRKQ3jh07BiEEvLy84OTkJEkN7IdFRLrAgEVEekPq5kGA/bCISDcYsIhIb+hDwALYTEhEb48Bi4j0QmJiIs6dOweAAYuIDB8DFhHphePHj0OhUKBSpUpFfv+r12Xvh3Xv3j1JayEiw8SARUR6QV+aB4Gsfli+vr4AgBMnTkhcDREZIgYsItILR48eBaAfAQsAGjZsCCDrzBoRUX4xYBGR5FJSUhAREQEAaNSokcTVZGHAIqK3wYBFRJKLiIhAeno6nJyc4OnpKXU5AP4LWGfPnsWLFy8kroaIDA0DFhFJTtnPKSgoCDKZTOJqsnh4eKBcuXLIyMjA6dOnpS6HiAwMAxYRSS57wNIXMplMdRaLHd2JKL8YsIhIUkIIvQxYwH/1sB8WEeUXAxYRSerWrVt48OABTE1NUbt2banLUZP9DJZCoZC4GiIyJAxYRCQp5dmrgIAAmJubS1yNOj8/P1haWuLp06e4du2a1OUQkQFhwCIiSelr8yAAmJiYoG7dugDYTEhE+cOARUSS0ueABYAd3YmoQBiwiEgySUlJuHjxIgCgQYMGElejHW84SkQFwYBFRJL5+++/IYSAp6cnXFxcpC5HK2Xwi4qKwsOHDyWuhogMBQMWEUlG35sHgawHP3t7ewMATp06JXE1RGQoGLCISDLKgKWvzYNK9erVA5B1xo2IKC8YsIhIEkII1RkhBiwiKm4YsIhIEjdu3EBCQgLMzMzg6+srdTm5UgasU6dO8YajRJQnDFhEJAnlA5T9/f1hYmIicTW58/X1hbm5ORISEvDPP/9IXQ4RGQAGLCKShLJ5UHkjT31mYmKCgIAAAGwmJKK8YcAiIkkoA1adOnUkriRv2A+LiPKDAYuIilx6ejoiIyMBGMYZLIABi4jyhwGLiIrcpUuXkJKSAjs7O1SuXFnqcvJEGbAuXLiAly9fSlwNEek7BiwiKnKn9u4FAAT6+sLIyDB2Q+XLl4eTkxMyMjJwduVKIC5O6pKISI8Zxp6NiIqPkBCcnjQJAFD32DEgJETigvJGJpOh/qvH+fw9ahTg4WEwtRNR0WPAIqKiExcHDB0K5QNn6gLAsGGGcTYoLg71zp8HAPwNAAqF4dROREWOAYuIik5UFJ4rFLj86mUdAMjMBG7ckLCoPIqKQj0hALwKWIDh1E5ERY4Bi4iKTpUqOCuTQQHAFUA5AJDLAUPo6F6lCgJlMsgA3AFwHzCc2omoyDFgEVHRcXPDqQ8+APCqeVAuB5YtA9zcJC0rT9zcYLNiBaq/evm3kZHh1E5ERU4vAtbixYvh6ekJc3NzBAQE4NixY7mOv3btWtSqVQuWlpZwcXHBgAED8Pjx4yKqlojeximZDABQZ/BgIDoaGDRI2oLyY9Ag1OveHQDw98iRhlU7ERUpyQPWxo0bMXr0aEyePBmRkZFo3Lgx2rdvj5iYGK3j//XXX+jXrx8GDRqEy5cvY/PmzTh9+jQGDx5cxJUTUUEon0FYt0cPgzz7U69FCwDA31evSlwJEekzyQPW/PnzMWjQIAwePBjVqlXDggUL4O7ujiVLlmgd/+TJk6hQoQJGjRoFT09PNGrUCMOGDcOZM2eKuHIiyq+HDx/i9u3bAIDAwECJqykY5Q1HT506BYVCIXE1RKSvJA1YaWlpiIiIQJs2bdSGt2nTBidOnND6nqCgIMTFxSEsLAxCCNy/fx+//fYbOnbsmON0UlNTkZSUpPZDREVPefbKy8sLtra2EldTMDVq1IClpSWSk5Nx/fp1qcshIj0lacB69OgRMjMz4eTkpDbcyckJ8fHxWt8TFBSEtWvXonv37jA1NYWzszPs7OywcOHCHKcze/Zs2Nraqn7c3d11Oh9ElDeq5kEDef6gNsbGxggICADw3wOriYheJ3kTIZB1h+TshBAaw5SuXLmCUaNGYerUqYiIiMCePXtw+/ZtDB8+PMfPnzRpEhITE1U/sbGxOq2fiPJGGUgMOWAB/9XPgEVEOTGWcuIODg6Qy+UaZ6sePHigcVZLafbs2WjYsCE+++wzAEDNmjVhZWWFxo0bY9asWXB59SiL7MzMzGBmZqb7GSCiPBNCqAJJnTp1JK7m7TBgEdGbSHoGy9TUFAEBAdi/f7/a8P379yMoKEjre168eKHxcFi5XA4gawdORPrpzp07ePToEUxMTFCrVi2py3kryoB1/vx5pKSkSFwNEekjyZsIx44di5UrVyI0NBRXr17FmDFjEBMTo2rymzRpEvr166cav3Pnzti6dSuWLFmCW7du4fjx4xg1ahTq1q2LcuXKSTUbRPQGyrM9tWrVgrm5ucTVvB0PDw+ULVsW6enpOP/q+YRERNlJ2kQIAN27d8fjx48xc+ZM3Lt3Dz4+PggLC4OHhwcA4N69e2r3xOrfvz+Sk5Px008/Ydy4cbCzs0OLFi0wd+5cqWaBiPKguDQPAln9RuvWrYvdu3fj1KlTqls3EBEpSR6wAGDkyJEYOXKk1t+tXr1aY9gnn3yCTz75pJCrIiJdKg5XEGaXPWAREb1O8iZCIir+MjIyVDcDLk4BC2BHdyLSjgGLiArd1atX8eLFC5QqVQpeXl5Sl6MTyqbOf/75B0+fPpW4GiLSNwxYRFTolM2DgYGBqqt+DV2ZMmVQqVIlAP/NHxGREgMWERW64nKD0dexmZCIcsKARUSFTnmGpzhcQZgdAxYR5YQBi4gK1cuXL3HhwgUAxfsMFm90TETZMWARUaE6d+4cMjIy4OjoWOwetO7v7w+5XI779+/zGadEpIYBi4gKVfb7X+X0EHdDZWFhgZo1awJgMyERqWPAIqJCVVw7uCuxHxYRacOARUSFqjg9IkcbBiwi0oYBi4gKzdOnTxEVFQWg+AesM2fOIDMzU+JqiEhfMGARUaFRPh6nUqVKKFOmjMTVFI5q1arBysoKz58/x9WrV6Uuh4j0BAMWERWa4t48CAByuRyBgYEA2ExIRP9hwCKiQpP9CsLijP2wiOh1DFhEVCiEEPj7778BMGARUcnDgEVEheLff/9FfHw85HI5/P39pS6nUCkD1oULF/Dy5UuJqyEifcCARUSFQtk86OPjA0tLS4mrKVzu7u5wcnJCZmYmIiMjpS6HiPQAAxYRFYrifoPR7GQyGZsJiUgNAxYRFYqScAVhdvXq1QPAgEVEWRiwiEjnFAqF6h5YJeEMFsCO7kSkjgGLiHTun3/+QVJSEiwsLFCjRg2pyykSynth3bx5E48fP5a4GiKSGgMWEemc8ixO7dq1YWxsLHE1RaN06dKoWrUqgP86+BNRycWARUQ6V1JuMPo6NhMSkRIDFhHpXEnr4K7EgEVESgxYRKRTqampOHfuHID/rqwrKbIHLCGExNUQkZQYsIhIpy5cuIC0tDSUKVMGnp6eUpdTpGrVqgUTExM8fPgQd+7ckbocIpIQAxYR6VT2G4zKZDKJqyla5ubmqFWrFgA2ExKVdAxYRKRTJekO7tqwHxYRAQxYRKRjDFgMWETEgEVEOpSYmIhr164BKHlXECopA1ZERAQyMjIkroaIpMKARUQ6o3w8jqenJ8qWLStxNdLw8vKCtbU1Xrx4gStXrkhdDhFJhAGLiHTm77//BlBymwcBwMjISHX2js2ERCUXAxYR6UxJ73+lxH5YRMSARUQ6IYTgGaxXGLCIiAGLiHTi33//RXx8PORyOfz9/aUuR1LKgHXp0iU8f/5c4mqISAoMWESkE8qzNT4+PrCyspK4Gmm5urqiXLlyyMzMRGRkpNTlEJEEGLCISCfY/0odmwmJSjYGLCLSCQYsdQxYRCUbAxYRvbXMzEzVPbAYsLIwYBGVbAxYRPTWrl+/juTkZFhaWqJ69epSl6MXAgMDAQC3b9/Gw4cPJa6GiIoaAxYRvTXlWZqAgAAYGxtLXI1+sLW1hbe3NwDg9OnTEldDREWNAYuI3hr7X2nHZkKikosBi4jeGgOWdgxYRCUXAxYRvZWUlBScP38eAAPW67IHLCGExNUQUVFiwCKit3Lu3DlkZGSgbNmy8PDwkLocvVKzZk2Ympri8ePHuHXrltTlEFERYsAioreSvXlQJpNJXI1+MTMzg5+fHwA2ExKVNAxYRPRW+IDn3LEfFlHJxIBFRG/l5MmTAID69etLXIl+YsAiKpkYsIiowB48eKDqW8QzWNopl8vZs2eRnp4ucTVEVFQYsIiowJRnr6pXrw47Oztpi9FTVapUga2tLVJSUnDp0iWpyyGiIsKARUQFFh4eDgBo0KCBxJXoLyMjI9SpUwcAmwmJShIGLCIqMGXAYv+r3LEfFlHJw4BFRAWSkZGhesYez2DljgGLqORhwCKiArl48SJevHgBGxsbVKtWTepy9JoyYF2+fBnJyckSV0NERYEBi4gKRNnBvV69ejAy4q4kNy4uLnBzc4MQAmfPnpW6HCIqAtwrElGBsIN7/rCZkKhkYcAiogI5+ddfAID6lStLXIlhqFevHgDg1K5dQFycxNUQUWFjwCKifHu0YAGibt8GANQLDgZCQiSuSP/VffgQAHDq6FHAw4PLjKiYkwkhhNRFFLWkpCTY2toiMTERNjY2UpdDZFji4rC7fHl0EgJeAK4BgFwOREcDbm7S1qav4uKQXL48bIWAAHAPgDOXGVG+GdLxm2ewiCh/oqIQ/urvMlXvq8xM4MYNyUrSe1FRsBYC1V+9PAVwmREVcwxYRJQ/Varg5Kv/qgKWXA6wL1bOqlQBjIygfFrjSYDLjKiYY8AionzJdHHB32ZmAID6QFZQWLaMTV25cXMDli9HQ5kMAHAc4DIjKuaMpS6AiAzL5cuX8Sw1FaWsrFBj+3bAy4tBIS8GDULDSpWA5s1xyswMaX37wlTqmoio0OjFGazFixfD09MT5ubmCAgIwLFjx3IdPzU1FZMnT4aHhwfMzMxQqVIlhIaGFlG1RCWb8gajdevVg7xlS4arfKjapAns7e2RkpqKyMhIqcshokIkecDauHEjRo8ejcmTJyMyMhKNGzdG+/btERMTk+N7unXrhj///BMhISG4fv061q9fD29v7yKsmqjk4g1GC87IyAhBQUEAgOPHj0tcDREVJskD1vz58zFo0CAMHjwY1apVw4IFC+Du7o4lS5ZoHX/Pnj04cuQIwsLC0KpVK1SoUAF169ZV7bSIqHD99eoGow0bNpS4EsOkXG4MWETFm6QBKy0tDREREWjTpo3a8DZt2uDEiRNa37Njxw4EBgbim2++gaurK6pWrYrx48fj5cuXOU4nNTUVSUlJaj9ElH/379/HjRs3IJPJeAargJQB68SJEyiBtyEkKjEk7eT+6NEjZGZmwsnJSW24k5MT4uPjtb7n1q1b+Ouvv2Bubo7ff/8djx49wsiRI/HkyZMc+2HNnj0bM2bM0Hn9RCWN8qyLr68v7OzspC3GQAUGBsLExATx8fG4ffs2KlasKHVJRFQIJG8iBADZq0uXlYQQGsOUFAoFZDIZ1q5di7p166JDhw6YP38+Vq9eneNZrEmTJiExMVH1Exsbq/N5ICoJ2Dz49iwsLBAQEACAzYRExZmkAcvBwQFyuVzjbNWDBw80zmopubi4wNXVFba2tqph1apVgxACcTk8QNXMzAw2NjZqP0SUf8qA1ahRI4krMWzsh0VU/EkasExNTREQEID9+/erDd+/f3+OndYbNmyIu3fv4tmzZ6ph//zzD4yMjODGy8WJCs3z589x9uxZAAxYb4sBi6j4k7yJcOzYsVi5ciVCQ0Nx9epVjBkzBjExMRg+fDiArOa9fv36qcbv1asXypQpgwEDBuDKlSs4evQoPvvsMwwcOBAWFhZSzQZRsff3338jMzMT7u7uKF++vNTlGDTlH5CXL19GQkKCtMUQUaGQPGB1794dCxYswMyZM+Hn54ejR48iLCwMHh4eAIB79+6p3ROrVKlS2L9/PxISEhAYGIjevXujc+fO+PHHH6WaBaISgc2DuuPk5ITKlStDCKG6rxgRFS968aickSNHYuTIkVp/t3r1ao1h3t7eGs2KRFS4lM1Z7OCuGw0bNsSNGzdw/PhxtG/fXupyiEjHJD+DRUT6LyMjQ3VvOp7B0g3e0Z2oeGPAIqI3unjxIp49ewYbGxv4+PhIXU6xoDwT+PfffyM9PV3iaohI1xiwiOiNlP2vgoKCIJfLJa6meKhWrRrs7Ozw8uVLnD9/XupyiEjHGLCI6I3YwV33sj/4+dixYxJXQ0S6xoBFRLkSQvAO7oWkSZMmAICjR49KXAkR6RoDFhHl6s6dO7h79y6MjY1Rt25dqcspVpo2bQog6wyWQqGQuBoi0iUGLCLKlfLsVUBAACwtLSWupnhRLtPHjx/jypUrUpdDRDrEgEVEuVL2D2LzoO6ZmJio+mEdOXJE4mqISJcYsIgoV4cPHwbwX3MW6ZZyubIfFlHxwoBFRDm6d+8e/vnnH8hkMjRu3FjqcoolZUf3I0eOQAghcTVEpCsMWESUI2WzlZ+fH0qXLi1xNcVT3bp1YWZmhvv37yMqKkrqcohIRxiwiChHbB4sfObm5qhXrx4A9sMiKk4YsIgoR8oDfrNmzaQtpJhjPyyi4ocBi4i0io+Px7Vr19j/qgiwHxZR8cOARURaKc9e1apVC/b29hJXU7w1aNAAxsbGiI2NxZ07d6Quh4h0gAGLiLRSBiz2vyp8VlZWqFOnDgD2wyIqLhiwiEgrZQd39r8qGtmbCYnI8DFgEZGG+/fv4+rVq5DJZKoDPxUu5ZlCZbAlIsPGgEVEGpRXs9WsWZP9r4pIo0aNIJfLcfv2bURHR0tdDhG9JQYsItLA+18VPWtra9StWxcAcPDgQYmrIaK3xYBFRBrY/0oaLVu2BAD8+eefEldCRG+LAYuI1Ny/fx9XrlwBAPa/KmLKgHXw4EHeD4vIwDFgEZEaZfOUv78/ypQpI3E1JUuDBg1gbm6O+Ph4XL16VepyiOgtMGARkZoDBw4AAFq1aiVxJSWPmZkZGjVqBID9sIgMHQMWEakIIbB//34ADFhSYT8souKBAYuIVKKiohAbGwtTU1PVmRQqWsqAdfjwYWRmZkpcDREV1FsFrAcPHiA+Pl5XtRCRxJTNgw0bNoSlpaXE1ZRMtWvXhq2tLRISEhAZGSl1OURUQAUKWBcuXECNGjXg4uICV1dXuLq64osvvsDz5891XR8RFSH2v5KeXC5X3R6DzYREhqtAAWvQoEFwcnLCX3/9hcjISMyaNQt//PEHAgMD8fTpU13XSERFIDMzU9WxmgFLWuyHRWT4ZKIAN1uxsrJCREQEvL29VcOEEPjwww9hbm6OX3/9VadF6lpSUhJsbW2RmJgIGxsbqcsh0gunTp1CvXr1YGtri8ePH0Mul0tdUol1+fJl+Pj4wMLCAk+fPoWZmZnUJRHpBUM6fhfoDJa2M1UymQxff/01tm/frpPCiKhoKZsHW7RowXAlserVq8PZ2RkvX77EyZMnpS6HiAogzwGrY8eO+Pzzz7Fp0yYMHz4cY8aMwf3799XGSUxMROnSpXVeJBEVPva/0h8ymUzVTLhv3z6JqyGigjDO64i+vr44e/YsVq1apQpWFStWRLdu3eDn54fMzEysWrUK33//faEVS0SF48WLFzh+/DgABix90a5dO6xduxZ79uzBV199JXU5RJRPBeqDdf/+fURGRuLcuXOqnxs3bkAul8PLywsXLlwojFp1xpDacImKwr59+9C2bVu4u7vjzp07kMlkUpdU4j148ABOTk4Asva5jo6OEldEJD1DOn7n+QxWdk5OTmjXrh3atWunGvby5UucP38e58+f11lxRFQ0lM1QrVq1YrjSE46OjqhduzbOnj2Lffv2oU+fPlKXRET5oLM7uVtYWKB+/foYNmyYrj6SiIrIH3/8AQBo27atxJVQdsr1sWfPHokrIaL84qNyiEq4mJgYXLlyBUZGRmjdurXU5VA2ylaCffv2QaFQSFwNEeUHAxZRCac8e1W/fn3Y29tLXA1l16BBA1hbW+Phw4d8bA6RgWHAIirhlAGrffv2EldCrzMxMVHdrmHv3r0SV0NE+cGARVSCpaWlqR7HwoCln9gPi8gwMWARlWB//fUXnj17BkdHR/j7+0tdDmmhDFjh4eFITEyUuBoiyisGLKISTNk82K5dOxgZcXegjzw9PVG1alVkZGSoHsZNRPqPe1SiEoz9rwyD8mpCNhMSGQ4GLKISKvbUKVy+fBlGRkZo06aN1OVQLpTNhH/s2gVx8CAQFydxRUT0JgxYRCVRSAj+qF8fAFBPoYD9779LXBDlpnnz5rAwNUXs3bu40LIl4OEBhIRIXRYR5YIBi6ikiYsDhg7FH68eQ9oeAIYN41kRPWbx+DFap6UBAHYCgELBdUak5xiwiEqaqCikKRT489XLDgCQmQncuCFhUZSrqCh0fvXfncphXGdEeo0Bi6ikqVIFh2UyJANwBuAPAHI5ULmytHVRzqpUQcdXD+E+BeAewHVGpOcYsIhKGjc37GjWDADQGYCRXA4sWwa4uUlaFuXCzQ0uK1agzquXu2UyrjMiPceARVTCCCGw41XTUpevvwaio4FBg6Qtit5s0CB0HjcOALCzVSuuMyI9x4BFVMKcO3cOsbGxsLS0RIvRo3kWxIB07tMHALD/r7/w8uVLiashotwwYBGVMNu3bwcAtGnTBhYWFhJXQ/lRq1YtuLu74+XLl7yrO5GeY8AiKmF27NgBAOjSpYvElVB+yWQydOrUCQCwc+fON4xNRFJiwCIqQWJjYxEZGQmZTIaOHTtKXQ4VQOfOWTds2LVrF8Sre5kRkf5hwCIqQZRnr4KCglC2bFmJq6GCaN68OaysrPDvv/8iMjJS6nKIKAcMWEQlCJsHDZ+5ubnq2YRbt26VuBoiygkDFlEJkZCQgEOHDgH4r5mJDNP7778PAPjtt9/YTEikpxiwiEqInTt3Ij09HdWrV4e3t7fU5dBb6NSpE0xNTXH9+nVcuXJF6nKISAsGLKIS4rfffgMAfPDBBxJXQm/LxsYGbdq0AQBs2bJF4mqISBsGLKISIDk5GXv37gXwX/MSGTblemTAItJPDFhEJcDu3buRmpqKKlWqwNfXV+pySAfeeecdGBsb48KFC4iKipK6HCJ6DQMWUQmQvXlQJpNJXA3pgr29PVq0aAGAZ7GI9BEDFlEx9/z5c/zxxx8A2P+quMl+NSER6Re9CFiLFy+Gp6cnzM3NERAQgGPHjuXpfcePH4exsTH8/PwKt0AiA7Znzx68ePECFSpUgL+/v9TlkA517doVRkZGiIiIQHR0tNTlEFE2kgesjRs3YvTo0Zg8eTIiIyPRuHFjtG/fHjExMbm+LzExEf369UPLli2LqFIiw8TmweLL0dERTZo0AcCbjhLpG8kD1vz58zFo0CAMHjwY1apVw4IFC+Du7o4lS5bk+r5hw4ahV69eaNCgQRFVSmR4Xr58iV27dgHg1YPFlXK9btq0SeJKiCg7SQNWWloaIiIiVPdzUWrTpg1OnDiR4/tWrVqFmzdvYtq0aXmaTmpqKpKSktR+iEqCXbt24dmzZ6hQoQLq1asndTlUCD744AMYGRnh77//xq1bt6Quh4hekTRgPXr0CJmZmXByclIb7uTkhPj4eK3viYqKwsSJE7F27VoYGxvnaTqzZ8+Gra2t6sfd3f2taycyBOvWrQMA9OzZk82DxZSzs7PqasINGzZIXA0RKUneRAhAY8cvhNB6MMjMzESvXr0wY8YMVK1aNc+fP2nSJCQmJqp+YmNj37pmIn339OlThIWFAQB69eolcTVUmJTrd+3atXw2IZGekDRgOTg4QC6Xa5ytevDggcZZLSDrbtRnzpzBxx9/DGNjYxgbG2PmzJk4f/48jI2NcfDgQa3TMTMzg42NjdoPUXG3detWpKWlwdfXFz4+PlKXQ4Xovffeg5mZGa5cuYKLFy9KXQ4RQeKAZWpqioCAAOzfv19t+P79+xEUFKQxvo2NDS5evIhz586pfoYPHw4vLy+cO3eOfUyIssnePEjFm62tLTp27Ajgv/VORNKSvIlw7NixWLlyJUJDQ3H16lWMGTMGMTExGD58OICs5r1+/foBAIyMjODj46P24+joCHNzc/j4+MDKykrKWSHSG/fu3cOhQ4cAAD169JC4GioKyiC9fv16KBQKiashorz1Ei9E3bt3x+PHjzFz5kzcu3cPPj4+CAsLg4eHB4CsA8Wb7olFROo2btwIIQSCgoLg6ekpdTlUBDp27Ahra2vExMTgxIkTaNSokdQlEZVoMlECe0QmJSXB1tYWiYmJ7I9FxVLdunVx+vRp/PTTT/joo4+kLoeKSP/+/bFmzRqMGDECixcvlrocIp0zpOO35E2ERKRbV69exenTp2FsbIwPP/xQ6nKoCCmvJtywYQNSU1MlroaoZGPAIipmVq9eDQDo0KEDHB0dpS2GilTLli3h5uaGp0+fYseOHVKXQ1SiMWARFSMZGRn4+eefAQADBgyQuBoqanK5XHVRkDJoE5E0GLCIipF9+/YhPj4eDg4O6NChg9TlkASCg4MBAHv27MHdu3clroao5GLAIipGlGctevfuDVNTU2mLIUlUrVoVDRs2hEKhwK+//ip1OUQlFgMWUTHx5MkTbN++HQCbB0u6/v37AwBWrVrFR+cQSYQBi6iYWL9+PdLS0uDn54datWpJXQ5JqFu3brCwsMC1a9dw6tQpqcshKpEYsIiKiVWrVgH47+wFlVw2NjZ4//33AQChoaESV0NUMjFgERUDZ8+eRUREBExMTFT3QqKSbeDAgQCynk2YnJwscTVEJQ8DFlExsGzZMgDA+++/j7Jly0pcDemDZs2aoWrVqnj27BnWr18vdTlEJQ4DFpGBS0pKwtq1awFA9ZB0IplMhqFDhwIAli5dys7uREWMAYvIwK1btw7Pnz+Ht7c3mjRpInU5pEeCg4NhZmaGyMhInDlzRupyiEoUBiwiAyZiY7F03jwAwLBhwyCTySSuiPSJg4MDPvjgAwDAsvnzgUOHgLg4iasiKhkYsIgMVUgITnl44PzNmzAD0I/hirRQNhuv37ABCS1aAB4eQEiIxFURFX8MWESGKC4OGDoUy171q+kGwH7cOJ6dIA0NPTxQHcALAL8CgEIBDBvG7wpRIWPAIjJEUVF4rFBAeW3YMADIzARu3JCwKNJHshs3oLz0YREABcDvClERYMAiMkRVqmC5TIYUAP4AggBALgcqV5a2LtI/VaogWCaDNYBrAPYD/K4QFQEGLCIDlO7khEV2dgCATwHI5HJg2TLAzU3SukgPubnBZsUKDHzVR+8HgN8VoiLAgEVkgLZu3Yp/nz6Fo4MDeuzdC0RHA4MGSV0W6atBg/DJ0aOQyWT4A8C1hg2lroio2GPAIjJAP/zwAwBg+MiRMGvThmcj6I0qNWqEd955BwDw448/SlwNUfHHgEVkYE6fPo3w8HCYmJhgxIgRUpdDBuTTTz8FAKxZswZPnz6VuBqi4o0Bi8jAKM9ede/eHc7OzhJXQ4akWbNmqFmzJl68eIGVK1dKXQ5RscaARWRAYmJisHHjRgD/nY0gyiuZTIbRo0cDABYuXIiMjAxpCyIqxhiwiAzI999/j4yMDDRv3hyBgYFSl0MGqGfPnihbtixiY2OxadMmqcshKrYYsIgMxJMnT7BixQoAwIQJEySuhgyVubm56uzn7NmzoVAoJK6IqHhiwCIyEIsWLcLz58/h5+eHNm3aSF0OGbCPPvoI1tbWuHTpEnbv3i11OUTFEgMWkQF48eKF6tL6//3vf5Dxwc70Fuzs7FRXoH799dcQr55pSUS6w4BFZABWrVqFR48ewdPTEx9++KHU5VAxMGbMGJiZmeHkyZM4cuSI1OUQFTsMWER6Li0tDfPmzQMAjBs3DsbGxhJXRMWBs7MzBg4cCCCrLxYR6RYDFpGeW7NmDaKjo+Hs7IwBAwZIXQ4VI5999hnkcjn27duHiIgIqcshKlYYsIj0WFpaGr766isAWVcOWlpaSlwRFSeenp7o0aMHAGDWrFkSV0NUvDBgEemx1atX486dO3B2dsawYcOkLoeKoc8//xwymQzbtm3jWSwiHWLAItJT2c9eTZw4ERYWFhJXRMVR9erV0atXLwDA1KlTJa6GqPhgwCLSU6tWrUJMTAxcXFwwdOhQqcuhYmzatGmQy+UICwtDeHi41OUQFQsMWER6iGevqChVqVIF/fv3BwBMmTJF2mKIigkGLCI9tHz5csTGxsLFxQVDhgyRuhwqAaZMmQITExP8+eefOHz4sNTlEBk8BiwiPZOUlISZM2cCAL744guevaIi4eHhoQrzU6ZM4d3did4SAxaRnpk3bx4ePnyIqlWr8uwVFanPP/8c5ubm+Ouvv/iMQqK3xIBFpEfu3buH7777DkDWM+JMTEwkrohKEldXV3z66acAsm5Cmp6eLnFFRIaLAYtIj0yfPh0vXrxA/fr18d5770ldDpVAkyZNgoODA65du4aVK1dKXQ6RwWLAItIT165dQ0hICADg22+/hUwmk7giKolsbW0xffp0AFm3b0hKSpK2ICIDxYBFpCcmTpyIzMxMvPPOO2jUqJHU5VAJNnToUHh5eeHhw4d8EDRRATFgEUktLg57v/kG27dvh1wux5w5c6SuiEo4ExMTfPPNNwCA77//HjEbNgBxcRJXRWRYGLCIpBQSgrTy5TFqwgQAwKgWLVCtWjWJiyICOnfujKZVqyI1NRX/69kT8PAAXjVhE9GbyUQJvNlJUlISbG1tkZiYCBsbG6nLoZIqLg7w8MC3CgX+B8AJwHUjI9jeuQO4uUldHZV0cXGILF8egUJAAeAAgJZyORAdze8nScaQjt88g0Uklago3FUoMPPVyzkAbBUK4MYNKasiyhIVBX8hMOLVy48BpGVm8vtJlEcMWERSqVIFEwA8A1AfQD8AkMuBypUlLYsIAFClCmBkhFkAHAFcA/C9TMbvJ1EeMWARSeTIzZv4FYAMwEIARnI5sGwZm19IP7i5AcuXw04ux7evBs00MUFsyetVQlQgDFhEEkhJSVE9Bmdonz4IPHQoq2/LoEHSFkaU3aBBQHQ0+h48iEZ16uBFWhrGjBkjdVVEBoEBi0gCX375JaKiouDi4oI5CxcCzZrxzBXpJzc3yJo3x+KQEMjlcmzZsgXbt2+XuioivceARVTEzp8/r7rH0KJFi2BnZydtQUR54Ovri/HjxwMARowYgadPn0pcEZF+Y8AiKkIZGRkYPHgwMjIy8N577+Hdd9+VuiSiPJs2bRq8vLxw7949jBs3TupyiPQaAxZREfrhhx9w5swZ2NraYuHChVKXQ5QvFhYWCAkJgUwmw6pVq7B3716pSyLSWwxYREXkypUrmDx5MoCshzmXK1dO4oqI8q9hw4b45JNPAABDhgzhw6CJcsCARVQE0tLS0KdPH6SmpqJdu3YYPHiw1CURFdjXX38NT09PxMbGsqmQKAcMWERFYMaMGYiMjIS9vT1CQ0Mhk8mkLomowKysrFTf45UrV+L333+XuiQivcOARVTIjh8/jjlz5gAAli9fDhcXF4krInp7zZo1w2effQYAGDx4MO7evStxRUT6hQGLqBAlJSWhX79+UCgU6NevH95//32pSyLSmS+//BK1a9fGkydPEBwcDIVCIXVJRHqDAYuokAghMHToUNy6dQseHh748ccfpS6JSKdMTU2xbt06WFhY4MCBA1iwYIHUJRHpDQYsokKyZMkSbNy4EcbGxtiwYQNsbW2lLolI57y8vFTBauLEiTh16pS0BRHpCQYsokIQERGhembbN998g/r160tcEVHhGTJkCN5//32kp6fjww8/xKNHj6QuiUhyDFhEOpaQkIAPP/wQaWlp6Nq1K0aPHi11SUSFSiaTITQ0FFWqVEFMTAx69+6NzMxMqcsikhQDFpEOKRQKBAcH4/bt2/D09OQtGajEsLGxwZYtW2BhYYF9+/bhyy+/lLokIknpRcBavHgxPD09YW5ujoCAABw7dizHcbdu3YrWrVujbNmysLGxQYMGDfi4BtIPcXGYFhyMHTt2wMzMDJs2bULp0qWlroqoyPj6+mLZsmUAgJkzZyLs55+BQ4eAuDiJKyMqepIHrI0bN2L06NGYPHkyIiMj0bhxY7Rv3x4xMTFaxz969Chat26NsLAwREREoHnz5ujcuTMiIyOLuHKibEJCsKl8ecz69VcAwMo+fRAYGChxUURFr2/fvhg+fDiEEOgZHIwrLVoAHh5ASIjUpREVKZkQQkhZQL169VC7dm0sWbJENaxatWro2rUrZs+enafPqFGjBrp3746pU6fmafykpCTY2toiMTERNjY2BaqbSCUuDpHly6OhEHgJYDyAb+VyIDoacHOTuDiiopd26xZaV6qEowAqAvgbgAO3CdIBQzp+S3oGKy0tDREREWjTpo3a8DZt2uDEiRN5+gyFQoHk5GTY29vnOE5qaiqSkpLUfoh05d7Jk+j6Kly1AzAHADIzgRs3pC2MSCKmd+5gCwBPALcAvA8gjdsElTCSBqxHjx4hMzMTTk5OasOdnJwQHx+fp8/47rvv8Pz5c3Tr1i3HcWbPng1bW1vVj7u7+1vVTaSUnJyMjjNmIAZAVQDrAcgBQC4HKleWtDYiyVSpAgcjI+wEYA3gKIARMhlEpUoSF0ZUdCTvgwVA4yorIUSerrxav349pk+fjo0bN8LR0THH8SZNmoTExETVT2xs7FvXTJSeno4PPvgAkZcuwdHaGmFGRrADssLVsmVsCqGSy80NWL4cNeRybETWgSZUCExfuVLqyoiKjLGUE3dwcIBcLtc4W/XgwQONs1qv27hxIwYNGoTNmzejVatWuY5rZmYGMzOzt66XSEkIgSFDhmDfvn2wtLTErj//RCUXl6wmkMqVGa6IBg0C2rZF+xs3sCg8HCM+/xwzZ86Es7MzRowYIXV1RIVO0jNYpqamCAgIwP79+9WG79+/H0FBQTm+b/369ejfvz/WrVuHjh07FnaZRBqmTp2KNWvWQC6XY/PmzahTp05WqGrWjOGKSOnVNjF80iRMmzYNAPDRRx9hy5YtEhdGVPgkbyIcO3YsVq5cidDQUFy9ehVjxoxBTEwMhg8fDiCrea9fv36q8devX49+/frhu+++Q/369REfH4/4+HgkJiZKNQtUwnz//feYNWsWAGDp0qXo0KGDxBUR6b9p06Zh2LBhEEKgV69eOHz4sNQlERUqyQNW9+7dsWDBAsycORN+fn44evQowsLC4OHhAQC4d++e2j2xli1bhoyMDHz00UdwcXFR/Xz66adSzQKVIEuXLsXYsWMBZN1IcfDgwRJXRGQYZDIZFi1ahHfffRdpaWl45513cPLkSanLIio0kt8HSwqGdB8N0h9r1qxB//79AQATJkzA7Nmz+RgconxKSUlBhw4dcOjQIdjY2ODPP//kTXkpzwzp+C35GSwiQ7Bp0yYMHDgQAPDJJ58wXBEVkLm5OXbu3InGjRsjKSkJrVu35pM4qFhiwCJ6g02bNqF3795QKBQYPHgwFixYwHBF9BasrKywe/duBAUFISEhAa1atcL58+elLotIpxiwiHLx888/o2fPnsjIyEDfvn2xdOlSGBlxsyF6W9bW1vjjjz9Qr149PHnyBC1atMCZM2ekLotIZ3ikIMrB8uXLERwcrDpztWrVKsjlcqnLIio2bGxssGfPHtStW1cVso4ePSp1WUQ6wYBF9Lq4OPz4yScYNmwYAODjjz/GsmXLGK6ICoGdnR0OHDiAZs2aITk5GW3btkXYzz8Dhw4BcXFSl0dUYAxYRNmIlSsx2d0dn/70EwDgs7Zt8eOPP7JZkKgQWVtbIywsDJ06dUJKSgq6BAdjY4sWgIcHEBIidXlEBcLbNOj5ZZ5UdNJv38aQihWx5tXrGQCmGBlBducO785OVATSb99Gv4oVseHV628BjOM2SNkY0vGbf5YTAXj27Bk6d++ONQDkAFYAmApAplBkPV+QiAqdSXQ0fgXw8avXnwH4WKFAxvXrElZFVDAMWFTixcXFoWnTpth7+jQsAGwDoLo/u1ye9fBmIip8VapAbmSEHwHMByADsBhA19mz8ezZM2lrI8onBiwq0U6ePIk6derg7NmzcHBwwKHPP0cnZWd2uRxYtoxNE0RFxc0NWL4cMrkcYwD8ZmQEcxMT7P7zTzRu3BjR0dFSV0iUZ+yDpedtuFR41qxZg6FDhyItLQ0+Pj7YsWMHPD09s65cunEj68wVwxVR0cu2DZ6Mi8M777yDhw8fokyZMtiwYQNatWoldYUkEUM6fvMMFpU46enpGDt2LPr374+0tDR07doVJ06cyApXQFaoataM4YpIKtm2wfr16yMiIgKBgYF4/Pgx2rZti++++w4l8NwAGRgGLCpRYmJi0LRpU3z//fcAgKlTp2LLli2wtraWuDIiyom7uzuOHTuG/v37Q6FQYPz48ejRowcSExOlLo0oRwxYVGLs3LkTfn5+CA8Ph62tLbZu3YoZM2bwHldEBsDc3ByhoaH46aefYGxsjE2bNsHf3x+nTp2SujQirXhkoeIrLg44dAgpN25g7NixeOedd/D06VPUqVMHkZGRePfdd6WukIjyQSaT4aOPPsKxY8dQoUIF3L59Gw0bNsS3334LhUKh2uZ5B3jSB+zkrued5KiAQkKAoUNxRqFAPwBXXw0ePXo05s6dC1NTUymrI6K3lJCQgKFDh2Lz5s0AgFbVqmHltWvwEAIwMgKWLwcGDZK4StI1Qzp+M2Dp+QqiAoiLQ1r58pglBL4GkAnACcCK0FB0HjBA4uKISFeEEFixYgVGf/opXqakwBrAd8i6j51MLgeio3mxSjFjSMdvNhFSsXNy+3bUFQJfIitcdQdwGUBn5VWCRFQsyGQyDB06FOeWLUMQgGQAQwG0BxCbmcmnMJCkGLCo2Hj69CmGDx+OoE8+wXkA9gA2vPopwzuyExVbVVu0wFGZDN8BMAewF4APgIXHjiEzM1Pa4qjEYsAigyeEwC+//AIvLy8sW7YMQgj0DwrCNSMjdAd4R3ai4s7NDfIVKzBWLsc5AA0AJAEYNXUq6tSpwysNSRIMWGTQwsPDERQUhH79+uHhw4eoXr06jhw5glXHj6PsnTtZVxRFR7OzK1FxN2gQEB0Nr0OHcCw6GkuWLIGdnR0iIyNRv359DB8+HE+ePJG6SipB2MldzzvJkXa3b9/GxIkTsWnTJgCAlZUVJk+ejHHjxvEKQSICANy/fx//+9//8PPPPwMASpcujWnTpmHEiBHcTxgoQzp+8wwWGYZX97dJuHwZ//vf/+Dt7Y1NmzZBJpNh0KBBiIqKwqRJk7jTJCIVJycnrFmzBocPH4aPjw+ePn2K0aNHo0aNGti2bVvW43Z47ywqJDyDpecJmACEhOD5kCFYKAS+AfD01eBWrVph3rx5qFWrlpTVEZEByMjIwKpVq/DFF1/gwYMHAICmVavim6go1OW9swyGIR2/GbD0fAWVdCk3bmBZ1ar4Wgg8eDWsGoB5a9agfd++kMlkUpZHRAYmOTkZc+bMwfzvvkNKaioAoDOAmQD8eO8svWdIx282EZJeSk9Px7Jly1C5QQOMfhWuKgL4BcBFAB3Kl2e4IqJ8s7a2xldffYXrq1cjGFkHwZ0A/AF8kJmJy/v3S1sgFRsMWKRXUlNTsWLFCnh7e2P48OH499EjuAFYDuAagD4A5LynFRG9pfKNGmG1kRGuAOgJQAZgCwDfQYPQq1cvXLhwQdoCyeAxYJFeeP78ORYsWIBKlSph6NChuHXrFpycnPDDDz8gaskSDJHLYQLwnlZEpBtubsDy5fCSy7EOwAUjI7xXuzaEEFi/fj1q1aqFDh064MiRIyiBPWlIB9gHS8/bcIuluDggKgqoUgUJpUph0aJFWLBgAR49egQAKFeuHD777DMMGTIEVlZW/73nxo2sM1cMV0SkK6/tWyIjIzFnzhz89ttvUCgUAIB69ephwoQJ6NKlC4zu3lXtv7gvKnqGdPxmwNLzFVTshIQAQ4filkKBnwCEWFgg6eVLAEDFihUxceJE9OvXD2ZmZtLWSUQl2o0bN/Ddd99h1apVSH3VGb5i2bIY+egRBgqB0rzqUBKGdPxmwNLzFVSciNhYHPHwwA9CYDsA5RevRtWq+HzaNHTr1g3GxsZSlkhEpOb+/fv48ccfsXjRIiQkJgIALJDVH/QjIyPUunOHZ7KKkCEdv9kHiwpdcnIyVqxYAf/mzdFcCGxDVrhqC+APABeWLEGvXr0YrohI7zg5OeGrr75C3Lp1WA7AF8BLACsA+CkUaNS+PVavXo1nz55JWyjpHZ7B0vMEbKiEEDhx4gRCQkKwceNGvHjxAgBgCaAfgFHIup8VeN8ZIjIEcXGAhweEQoG/APyErKsOM1/9ulSpUujRowcGDhyI+vXr8zYyhcSQjt8MWHq+ggxCtk7rsUJgw4YNCA0NxbVr11SjeHl5YfDgwRhoYgL7ceOAzMz/rghkHwYiMgQhIcCwYar91925c7EmLQ2hoaG4ceOGajRvb28MHDgQvXv3RjmFgp3idciQjt8MWHq+gvReSAgeDBmCzUJgA4C/sv3K0tIS3bt3x6BBgxAUFPTfX3S8IpCIDJWW/ZcQAseOHUNoaCg2b96sOmMvk8nQTAj0BPC+TAb7FSv4B+VbMqTjNwOWnq8gffX48WNsX7UKGz77DH8CUGT7XZN69dB74ED06NGDy5eISpSkpCRs2rQJq5cvx/HTp1XDTQC0A9Drp5/QuX///25BQ/liSMdvBiw9X0GSydbsp/wrLTo6Gtu3b8e2bdtw7NgxZGZmqkavA6AHgG4A3A4dApo1k6JqIiL9cOgQ7rRogQ0A1gM4n+1XlpaWaN++Pbp27YqOHTuidOnS//1Sy76X/mNIx28GLD1fQZJ4da8qoVDgnEyGbZ06YXtMDM6fP682Ws1q1dD92jV0FwKVlAPZaZ2ISNUpHq9uVnoFwHqZDOvc3XErJkY1mrGxMZo1a4auXbuiy4sXcJs4Mes9vM+WVoZ0/GbA0vMVVNQSLl/Gn76+2CME9gKIzfY7IyMjNGnSBF26dEGXLl3g6emp0emTndaJiF7Rsn8UAwfi7Nmz2LZtG7Zt24ZLly6pvcUXQJtXP42NjGDB+2ypMaTjNwOWnq8gndJy6lmhUODs2bPYs2cP9u7di/ATJ5Cp+K9HlSWy7lfVdeJEdBw/HmXKlNH+uey0TkSk6Q37xxs3bmR1vVizBscvXkT2A7I5gCaBgWjbsydatWoFHx8fGBkZ/fe5JbAp0ZCO3wxYer6CdCZbs99VmQyHe/XC4bQ0HDp0SPUMQCVvZHXGbAegCQALNvsRERWuuDg8Ll8eB4TAPgB7Afz72ij29vZo3Lgxmpmbo+mmTagpBOQlrCnRkI7fDFh6voLyJJe/ZIQQuHLwIA63bo3DQuAIgIevvd3a2hqtWrVC27Zt0bZtW1T48082+xERFbVsTYrCyAhXp0/H3lKlsHfvXvz11194/vy52ui2ABoDaCaToenOnfBr21bziRjF7EyXIR2/GbD0fAW90aszU8pOkc8XLsTp6tVx8uRJhIeH48SJExpnqCwABAFoNnAgmvbvj/r168PExET9c9nsR0RU9HLY96anp+Ps2bM4EhqKw8uX4y8Aya+91crKCnXq1EGDBg3QoEED1L95E2XHjStWneYN6fjNgKXnKyjXs1Oxsbjp4YFwIRAO4CSAC/jv0Q1KlhYWCHr5Es0ANEPWLRVM2exHRGR4Xl2dmKFQ4ByAIwAOAzhmY4PEpCSN0SsDqA+gAYD6RkbwiYqCacWK2j/XAM50GdLxmwFLn1dQtrNTGTIZrk2fjkhPT5w9exaRkZGIPHMGSa+dMgYAVwcHNGjWTPVXTEBAAEx/+YXNfkRExYGWqxMVAwbg6tWrCA8Pz/r5809cvXNH462mJibwrVkTtWvXRkBAAGrXrg3fiAiYf/SRQZzpMpjjNxiwpF9BWv5qSE5OxpXDh3G+SxdECoGzyDozlaLl7aYAaiPrr5MGABoYGcEtp8t62exHRFQ8vGl/HheHp+XL428hcBJAOIBTABK0fJQxgBoAApB1PAkwMkLNa9dgWaWK+vT04AyXXh2/34ABq7BXUC5fypSlS3Ft5EhcEgKXAFyqWROXk5IQHR2t9aNKAfDz9YV/s2aoXbs2/P39Ue3kSZh+9BHPTBERkbrXznSJpUsR3bIlIiIicPbsWURERCDi5Ek81tK0aGRkBG9vb9SoUQM1UlNRY+dO1BACVWQyGL/+TMUiDF8MWHquUFaQti9YSAjEkCG4KwSuy2S43qsXrjs44Pr167h+5QqiY2KQ08J3dnSE74MH8EfWXxT+ACobGcFI29kpnpkiIiJt3nB8ELGxiPXwwFkhEAHgLIAIAPdz+DhTAF4AqnbogCo1a6JKfDyqrFmDykLAWSaDrJDDFwOWnsvzCtL2xcghSD0bMgQ3XgWpa507ZwWq7dvxD4BnudRiD8Dn1U8NAD4LFqBGnz5ZN/TkXdKJiKiwaTnTdbd9e1y4cAGXt2/H5WXLcBnAZQAvcvmYUsjqVF+lUydU9vVFlXv3UGXNGlQRAo6vh6+8Hl9fw4Cl51QraNUq2Lx8CZQpAwQFZf1SuXL37lW7/YFi6VL8m5CA2xMm4LYQuAXgZr16uJWRgZsREXiQy/TkACoiK/V7desGr1at4FW6NLy6dYOjEJCpRtRyZR/PThERUWHL6ViT7ZmKCgB3AFwxMkLUlCmIOncOUdu348ar4QrtnwwAsMZ/4auKEPAMC0MFIeApk8Fj2bKsG6ZmO+Zi7lwgICDreAxkHZtLlULS5cuwHTCAAUtfqQIWgDQAUQBKIyt9PwRwXybDrVf9om69+rnzatzclMGrEAXAq1cveK1fD69XD0I2BTQDFM9QERGRvsvpWJUtfKUCuA0gysgIN774Iit87diBKAAxQI7dYYCsRwJVA1D91b/OAFyRdVw2Q9bx0wqAG4DnyLrBKgOWnlIGrFbIun9IRh7fZwzAA1lnozxf/Vtp7FhU/P57VBICtsoRlUFq7943ByieoSIiIn2X07Eqj+HrFrLCV1SvXrjx66+IBhCNrFCWmscSzJF1AuM8GLD0ljJgKbkDSELWXXHL4r/0XAtZpzQrAvA0MoKbQgF59g/KS5BigCIiouIsP+GrbVtV8AKybox928gIlxUKXAbwD4AHAOKQdVxOe/WTDPVWJAYsPaUMWNMAdEPWaUkg6xSmqj+U8onlCsV/XwyAQYqIiCivtB0btQUv4L9hWmQi6yzYCQD9wYClt7L3wVKtHtmraCWEetJ+/YvBIEVERPR2tB1LlcNOnwYmTcoKW0ZGWcflV1ElCeyDpddUAWv16v+uImzQIOuXDE9ERETSyh7AgKz/W1kh6coV2Pbvz4ClrwzpPhpERESUxZCO30ZSF0BERERU3DBgEREREekYAxYRERGRjjFgEREREekYAxYRERGRjulFwFq8eDE8PT1hbm6OgIAAHDt2LNfxjxw5goCAAJibm6NixYpYunRpEVVKRERE9GaSB6yNGzdi9OjRmDx5MiIjI9G4cWO0b98eMTExWse/ffs2OnTogMaNGyMyMhKff/45Ro0ahS1bthRx5URERETaSX4frHr16qF27dpYsmSJali1atXQtWtXzJ49W2P8CRMmYMeOHbh69apq2PDhw3H+/HmEh4fnaZqGdB8NIiIiymJIx29Jz2ClpaUhIiICbdq0URvepk0bnDhxQut7wsPDNcZv27Ytzpw5g/T09EKrlYiIiCivjKWc+KNHj5CZmQknJye14U5OToiPj9f6nvj4eK3jZ2Rk4NGjR3BxcdF4T2pqKlJTU1WvExMTAWQlYSIiIjIMyuO2ITyERtKApSRTPmj5FSGExrA3ja9tuNLs2bMxY8YMjeHu7u75LZWIiIgk9vjxY9ja2kpdRq4kDVgODg6Qy+UaZ6sePHigcZZKydnZWev4xsbGKFOmjNb3TJo0CWPHjlW9TkhIgIeHB2JiYvR+BelSUlIS3N3dERsbq/dt17rE+eZ8lwScb853SZCYmIjy5cvD3t5e6lLeSNKAZWpqioCAAOzfvx/vvvuuavj+/fvRpUsXre9p0KABdu7cqTZs3759CAwMhImJidb3mJmZwczMTGO4ra1tifpiKtnY2HC+SxDOd8nC+S5ZSup8GxlJfhOEN5K8wrFjx2LlypUIDQ3F1atXMWbMGMTExGD48OEAss4+9evXTzX+8OHDcefOHYwdOxZXr15FaGgoQkJCMH78eKlmgYiIiEiN5H2wunfvjsePH2PmzJm4d+8efHx8EBYWBg8PDwDAvXv31O6J5enpibCwMIwZMwaLFi1CuXLl8OOPP+L999+XahaIiIiI1EgesABg5MiRGDlypNbfrV69WmNY06ZNcfbs2QJPz8zMDNOmTdPabFiccb453yUB55vzXRJwvvV/viW/0SgRERFRcSN5HywiIiKi4oYBi4iIiEjHGLCIiIiIdIwBi4iIiEjHim3A+uqrrxAUFARLS0vY2dnl6T1CCEyfPh3lypWDhYUFmjVrhsuXL6uNk5qaik8++QQODg6wsrLCO++8g7i4uEKYg4J5+vQp+vbtC1tbW9ja2qJv375ISEjI9T0ymUzrz7fffqsap1mzZhq/79GjRyHPTd4VZL779++vMU/169dXG6e4re/09HRMmDABvr6+sLKyQrly5dCvXz/cvXtXbTx9W9+LFy+Gp6cnzM3NERAQgGPHjuU6/pEjRxAQEABzc3NUrFgRS5cu1Rhny5YtqF69OszMzFC9enX8/vvvhVV+geVnvrdu3YrWrVujbNmysLGxQYMGDbB37161cVavXq11W09JSSnsWcmX/Mz34cOHtc7TtWvX1MYrbutb2/5LJpOhRo0aqnH0fX0fPXoUnTt3Rrly5SCTybBt27Y3vsegtm1RTE2dOlXMnz9fjB07Vtja2ubpPXPmzBHW1tZiy5Yt4uLFi6J79+7CxcVFJCUlqcYZPny4cHV1Ffv37xdnz54VzZs3F7Vq1RIZGRmFNCf5065dO+Hj4yNOnDghTpw4IXx8fESnTp1yfc+9e/fUfkJDQ4VMJhM3b95UjdO0aVMxZMgQtfESEhIKe3byrCDzHRwcLNq1a6c2T48fP1Ybp7it74SEBNGqVSuxceNGce3aNREeHi7q1asnAgIC1MbTp/W9YcMGYWJiIlasWCGuXLkiPv30U2FlZSXu3Lmjdfxbt24JS0tL8emnn4orV66IFStWCBMTE/Hbb7+pxjlx4oSQy+Xi66+/FlevXhVff/21MDY2FidPniyq2Xqj/M73p59+KubOnStOnTol/vnnHzFp0iRhYmIizp49qxpn1apVwsbGRmOb1yf5ne9Dhw4JAOL69etq85R9Gy2O6zshIUFtfmNjY4W9vb2YNm2aahx9X99hYWFi8uTJYsuWLQKA+P3333Md39C27WIbsJRWrVqVp4ClUCiEs7OzmDNnjmpYSkqKsLW1FUuXLhVCZH2hTUxMxIYNG1Tj/Pvvv8LIyEjs2bNH57Xn15UrVwQAtS9SeHi4ACCuXbuW58/p0qWLaNGihdqwpk2bik8//VRXpepUQec7ODhYdOnSJcffl5T1ferUKQFAbUeuT+u7bt26Yvjw4WrDvL29xcSJE7WO/7///U94e3urDRs2bJioX7++6nW3bt1Eu3bt1MZp27at6NGjh46qfnv5nW9tqlevLmbMmKF6ndf9oZTyO9/KgPX06dMcP7MkrO/ff/9dyGQyER0drRpmCOtbKS8By9C27WLbRJhft2/fRnx8PNq0aaMaZmZmhqZNm+LEiRMAgIiICKSnp6uNU65cOfj4+KjGkVJ4eDhsbW1Rr1491bD69evD1tY2z/Xdv38fu3fvxqBBgzR+t3btWjg4OKBGjRoYP348kpOTdVb723ib+T58+DAcHR1RtWpVDBkyBA8ePFD9riSsbyDr4akymUyjKV0f1ndaWhoiIiLU1gEAtGnTJsd5DA8P1xi/bdu2OHPmDNLT03MdRx/WK1Cw+X6dQqFAcnKyxkNxnz17Bg8PD7i5uaFTp06IjIzUWd1v623m29/fHy4uLmjZsiUOHTqk9ruSsL5DQkLQqlUr1VNQlPR5feeXoW3benEnd30QHx8PAHByclIb7uTkhDt37qjGMTU1RenSpTXGUb5fSvHx8XB0dNQY7ujomOf61qxZA2tra7z33ntqw3v37g1PT084Ozvj0qVLmDRpEs6fP4/9+/frpPa3UdD5bt++PT788EN4eHjg9u3bmDJlClq0aIGIiAiYmZmViPWdkpKCiRMnolevXmoPjNWX9f3o0SNkZmZq3S5zmsf4+Hit42dkZODRo0dwcXHJcRx9WK9Aweb7dd999x2eP3+Obt26qYZ5e3tj9erV8PX1RVJSEn744Qc0bNgQ58+fR5UqVXQ6DwVRkPl2cXHB8uXLERAQgNTUVPzyyy9o2bIlDh8+jCZNmgDI+TtRXNb3vXv38Mcff2DdunVqw/V9feeXoW3bBhWwpk+fjhkzZuQ6zunTpxEYGFjgachkMrXXQgiNYa/LyzhvI6/zDWjWD+SvvtDQUPTu3Rvm5uZqw4cMGaL6v4+PD6pUqYLAwECcPXsWtWvXztNn51dhz3f37t1V//fx8UFgYCA8PDywe/dujYCZn899W0W1vtPT09GjRw8oFAosXrxY7XdSrO/c5He71Db+68MLsq0XtYLWuH79ekyfPh3bt29XC+H169dXu5CjYcOGqF27NhYuXIgff/xRd4W/pfzMt5eXF7y8vFSvGzRogNjYWMybN08VsPL7mVIpaI2rV6+GnZ0dunbtqjbcUNZ3fhjStm1QAevjjz9+45VMFSpUKNBnOzs7A8hKyC4uLqrhDx48UKVhZ2dnpKWl4enTp2pnNR48eICgoKACTTcv8jrfFy5cwP379zV+9/DhQ41Er82xY8dw/fp1bNy48Y3j1q5dGyYmJoiKiiq0A25RzbeSi4sLPDw8EBUVBaB4r+/09HR069YNt2/fxsGDB9XOXmlTFOtbGwcHB8jlco2/PrNvl69zdnbWOr6xsTHKlCmT6zj5+b4UpoLMt9LGjRsxaNAgbN68Ga1atcp1XCMjI9SpU0f1nZfa28x3dvXr18evv/6qel2c17cQAqGhoejbty9MTU1zHVff1nd+Gdy2XeS9vopYfju5z507VzUsNTVVayf3jRs3qsa5e/eu3nV6/vvvv1XDTp48medOz8HBwRpXk+Xk4sWLAoA4cuRIgevVlbedb6VHjx4JMzMzsWbNGiFE8V3faWlpomvXrqJGjRriwYMHeZqWlOu7bt26YsSIEWrDqlWrlmsn92rVqqkNGz58uEZH2Pbt26uN065dO73r9Jyf+RZCiHXr1glzc/M3dhZWUigUIjAwUAwYMOBtStWpgsz3695//33RvHlz1eviur6F+K+T/8WLF984DX1c30rIYyd3Q9q2i23AunPnjoiMjBQzZswQpUqVEpGRkSIyMlIkJyerxvHy8hJbt25VvZ4zZ46wtbUVW7duFRcvXhQ9e/bUepsGNzc3ceDAAXH27FnRokULvbtsv2bNmiI8PFyEh4cLX19fjcv2X59vIYRITEwUlpaWYsmSJRqfeePGDTFjxgxx+vRpcfv2bbF7927h7e0t/P39DXa+k5OTxbhx48SJEyfE7du3xaFDh0SDBg2Eq6trsV7f6enp4p133hFubm7i3Llzapdup6amCiH0b30rL18PCQkRV65cEaNHjxZWVlaqq6UmTpwo+vbtqxpfeSn3mDFjxJUrV0RISIjGpdzHjx8XcrlczJkzR1y9elXMmTNHby/bz+t8r1u3ThgbG4tFixbleHuN6dOniz179oibN2+KyMhIMWDAAGFsbKwW0qWW3/n+/vvvxe+//y7++ecfcenSJTFx4kQBQGzZskU1TnFc30p9+vQR9erV0/qZ+r6+k5OTVcdmAGL+/PkiMjJSdUWzoW/bxTZgBQcHCwAaP4cOHVKNA0CsWrVK9VqhUIhp06YJZ2dnYWZmJpo0aaLxV8HLly/Fxx9/LOzt7YWFhYXo1KmTiImJKaK5erPHjx+L3r17C2tra2FtbS169+6tcfny6/MthBDLli0TFhYWWu91FBMTI5o0aSLs7e2FqampqFSpkhg1apTGPaOklN/5fvHihWjTpo0oW7asMDExEeXLlxfBwcEa67K4re/bt29r3S6ybxv6uL4XLVokPDw8hKmpqahdu7bambTg4GDRtGlTtfEPHz4s/P39hampqahQoYLWPxw2b94svLy8hImJifD29lY7IOuL/Mx306ZNta7X4OBg1TijR48W5cuXF6ampqJs2bKiTZs24sSJE0U4R3mTn/meO3euqFSpkjA3NxelS5cWjRo1Ert379b4zOK2voXIOstuYWEhli9frvXz9H19K8++5fSdNfRtWybEqx5iRERERKQTvA8WERERkY4xYBERERHpGAMWERERkY4xYBERERHpGAMWERERkY4xYBERERHpGAMWERERkY4xYBERERHpGAMWERERkY4xYBERERHpGAMWERUrM2fOhK+vL6ysrODk5IQRI0YgPT1d6rKIqIQxlroAIiJdEUIgMzMTy5Ytg6urK65cuYJ+/fqhZs2aGDFihNTlEVEJwoc9E1Gx1qtXL5QtWxY//PCD1KUQUQnCJkIiKjbu3LmDjz/+GD4+PihdujRKlSqFTZs2wc3NTerSiKiEYcAiomLh0aNHqFu3Lh49eoT58+fjr7/+Qnh4OORyOfz8/KQuj4hKGPbBIqJiISwsDBkZGVi/fj1kMhkAYNGiRUhLS2PAIqIix4BFRMWCvb09kpKSsGPHDlSvXh07d+7E7Nmz4erqirJly0pdHhGVMOzkTkTFghACI0aMwLp162BhYYE+ffogJSUFd+7cwa5du6Quj4hKGAYsIiIiIh1jJ3ciIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItIxBiwiIiIiHWPAIiIiItKx/wPuBMCcIueLTwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'smooth function: Chebyshev polynomial interpolation of degree 49')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n = 50\n", + "a = @. cos(((1:n)-0.5) * pi/n) # = Chebyshev nodes of order n\n", + "afine = range(-1,1,length=1000)\n", + "b = 1 ./ (1 .+ 25 * a.^2)\n", + "plot(a, b, \"r.\")\n", + "A = a .^ (0:n-1)'\n", + "x̂ = A \\ b\n", + "plot(afine, (afine .^ (0:n-1)') * x̂, \"k-\")\n", + "xlabel(L\"a\")\n", + "ylabel(L\"b\")\n", + "xlim(-1,1)\n", + "ylim(0,1)\n", + "title(\"smooth function: Chebyshev polynomial interpolation of degree $(n-1)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(Technically, the way we are implementing the fit above is rather fragile in the presence of rounding errors due to the finite precision of computer arithmetic, but that's because monomials $1,x,x^2,\\ldots$ behave badly as a basis at high degrees. The same high-degree fit is fine if we use a different basis, e.g. [Chebyshev polynomials](https://en.wikipedia.org/wiki/Chebyshev_polynomials) by the [FastChebInterp.jl](https://github.com/stevengj/FastChebInterp.jl) package, or a formula like [barycentric Lagrange interpolation](https://people.maths.ox.ac.uk/trefethen/barycentric.pdf). The basic thing to remember here is that **high-degree polynomial interpolation/fitting can be fine** but **requires care**.)\n", + "\n", + "How this works goes far outside the bounds of 18.06, but is beautiful and fascinating mathematics. See, for example, [this book](https://people.maths.ox.ac.uk/trefethen/ATAP/) and [these video lectures](https://people.maths.ox.ac.uk/trefethen/atapvideos.html) by [Nick Trefethen](https://people.maths.ox.ac.uk/trefethen/).\n", + "\n", + "The great thing about fitting complicated functions to polynomials is that polynomials are usually easier to work with — finding roots, derivatives, and integrals of polynomials is easy, for example. A pioneering software package encapsulating this idea is [chebfun](http://www.chebfun.org/), and a Julia implementation of similar ideas is [ApproxFun](https://github.com/JuliaApproximation/ApproxFun.jl)." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "d347238e80cb49c4a89224fda53d1335", + "lastKernelId": "fb97620a-78f2-4cb0-950f-ec67309dee75" + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.1" + }, + "widgets": { + "state": { + "0830e586-a8c8-4ed4-93ee-ac3243f41542": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "27349d0c-9119-4fdb-be2c-04717452ec18": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "34d7b83b-e4fe-43fa-8919-b70077d8263e": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "36d1ded7-edb8-4e09-91b6-dfbd46ffdbeb": { + "views": [ + { + "cell_index": 19 + } + ] + }, + "58a292a0-1cde-4194-b267-e87802fdf709": { + "views": [ + { + "cell_index": 21 + } + ] + }, + "8c46751f-88fc-4e50-a563-f4fcb4e4acb3": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "8f459522-861e-4949-88ff-b2f73d719ef0": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "9c01dcd5-b682-4df6-82b0-05e1cc7c6dce": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "cde5b1cb-7a8f-48fb-97e4-7d1e3287b502": { + "views": [ + { + "cell_index": 2 + } + ] + }, + "d011e795-82d1-48db-93d6-7af4d3adbbd7": { + "views": [ + { + "cell_index": 2 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/lectures/Linear Transformations.ipynb b/notes/Linear Transformations.ipynb similarity index 100% rename from lectures/Linear Transformations.ipynb rename to notes/Linear Transformations.ipynb diff --git a/lectures/Lower-Triangular-and-Elimination.ipynb b/notes/Lower-Triangular-and-Elimination.ipynb similarity index 100% rename from lectures/Lower-Triangular-and-Elimination.ipynb rename to notes/Lower-Triangular-and-Elimination.ipynb diff --git a/lectures/Machine-Learning-with-Gaussian-elimination.ipynb b/notes/Machine-Learning-with-Gaussian-elimination.ipynb similarity index 100% rename from lectures/Machine-Learning-with-Gaussian-elimination.ipynb rename to notes/Machine-Learning-with-Gaussian-elimination.ipynb diff --git a/lectures/Markov.ipynb b/notes/Markov.ipynb similarity index 74% rename from lectures/Markov.ipynb rename to notes/Markov.ipynb index 9070563b..271c8155 100644 --- a/lectures/Markov.ipynb +++ b/notes/Markov.ipynb @@ -1,5 +1,14 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -18,18 +27,18 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 0.9 0.2\n", " 0.1 0.8" ] }, - "execution_count": 1, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -87,18 +96,18 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.0\n", - " 0.7" + "2-element Vector{Float64}:\n", + " 0.7\n", + " 1.0" ] }, - "execution_count": 2, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -116,18 +125,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 14.0\n", - " 7.0" + "2-element Vector{Float64}:\n", + " 14.000000000000089\n", + " 7.000000000000044" ] }, - "execution_count": 3, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -145,18 +154,18 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 14.0\n", - " 7.0" + "2-element Vector{Float64}:\n", + " 14.000000000000874\n", + " 7.000000000000437" ] }, - "execution_count": 4, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -174,18 +183,18 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 14.0\n", - " 7.0" + "2-element Vector{Float64}:\n", + " 14.000000000000874\n", + " 7.000000000000437" ] }, - "execution_count": 5, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -217,17 +226,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1×2 RowVector{Float64,Array{Float64,1}}:\n", + "1×2 adjoint(::Vector{Float64}) with eltype Float64:\n", " 1.0 1.0" ] }, - "execution_count": 6, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -239,18 +248,18 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " 1.0\n", " 1.0" ] }, - "execution_count": 7, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -268,18 +277,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " -0.1 0.2\n", " 0.1 -0.2" ] }, - "execution_count": 8, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -297,18 +306,18 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", - " 5.55112e-17\n", - " 5.55112e-17" + "2-element Vector{Float64}:\n", + " 5.551115123125783e-17\n", + " 5.551115123125783e-17" ] }, - "execution_count": 9, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -326,7 +335,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -351,7 +360,7 @@ "# for n=0,1,2,… nicely formatted with LaTeX.\n", "\n", "x = [3, 0]\n", - "pmatrix(x) = string(\"\\\\begin{pmatrix} \", round(x[1],3), \"\\\\\\\\\", round(x[2],3), \"\\\\end{pmatrix}\")\n", + "pmatrix(x) = string(\"\\\\begin{pmatrix} \", round(x[1],digits=3), \"\\\\\\\\\", round(x[2],digits=3), \"\\\\end{pmatrix}\")\n", "buf = IOBuffer()\n", "println(buf, \"\\$\")\n", "for k = 1:6\n", @@ -402,18 +411,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " 0.666667 0.666667\n", " 0.333333 0.333333" ] }, - "execution_count": 11, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -426,7 +435,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "(In fact, $A^n$ is pretty boring for large $n$: it just takes in any vector and redistributes it to the steady state.)" + "(In fact, $A^n$ is pretty boring for large $n$: it just takes in any vector and redistributes it to the steady state.)\n", + "\n", + "Another way of thinking about $A^{100}$ is\n", + "$$\n", + "A^{100} = A^{100} \\begin{pmatrix} 1 & 0 \\\\ 0 & 1 \\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + " A^{100} \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix} &\n", + " A^{100} \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix}\n", + "\\end{pmatrix}\n", + "$$\n", + "i.e. it multiplies $A^{100}$ by each column of the identity matrix (= different possible \"starting populations\"). Because of this, each column of $A^{100}$ tends towards an eigenvector with the biggest $|\\lambda|$." ] }, { @@ -465,18 +484,18 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Int64,2}:\n", + "2×2 Matrix{Int64}:\n", " 0 1\n", " 1 0" ] }, - "execution_count": 12, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -488,13 +507,13 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6-element Array{Array{Int64,1},1}:\n", + "6-element Vector{Vector{Int64}}:\n", " [1, 0]\n", " [0, 1]\n", " [1, 0]\n", @@ -503,7 +522,7 @@ " [0, 1]" ] }, - "execution_count": 13, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -521,18 +540,18 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2-element Array{Float64,1}:\n", + "2-element Vector{Float64}:\n", " -1.0\n", " 1.0" ] }, - "execution_count": 14, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -562,24 +581,46 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2×2 Array{Float64,2}:\n", + "2×2 Matrix{Float64}:\n", " -0.707107 0.707107\n", " 0.707107 0.707107" ] }, - "execution_count": 15, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = eigvecs(P) # the eigenvectors" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 1.0 1.0\n", + " -1.0 1.0" + ] + }, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "eig(P)[2] # the eigenvectors" + "X ./ X[1,:]' # normalize the first row to be 1, to resemble our hand solutions" ] }, { @@ -607,21 +648,21 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 0.915828 0.814153 0.10891 0.782796 0.67314 \n", - " 0.850579 0.215875 0.222305 0.879833 0.000556633\n", - " 0.88343 0.109569 0.812691 0.846754 0.386516 \n", - " 0.188322 0.536625 0.638316 0.954804 0.0335011 \n", - " 0.524708 0.682807 0.544681 0.111573 0.855667 " + "5×5 Matrix{Float64}:\n", + " 0.410618 0.306837 0.410031 0.707623 0.290909\n", + " 0.307687 0.22414 0.676996 0.0455438 0.904309\n", + " 0.999213 0.714056 0.357485 0.913338 0.715352\n", + " 0.647026 0.995701 0.789245 0.577309 0.391341\n", + " 0.73899 0.967951 0.914835 0.565266 0.447786" ] }, - "execution_count": 16, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -632,88 +673,88 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1×5 Array{Float64,2}:\n", - " 3.36287 2.35903 2.3269 3.57576 1.94938" + "1×5 Matrix{Float64}:\n", + " 3.10353 3.20869 3.14859 2.80908 2.7497" ] }, - "execution_count": 17, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sum(M,1) # not Markov yet" + "sum(M,dims=1) # not Markov yet" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5×5 Array{Float64,2}:\n", - " 0.272336 0.345122 0.0468049 0.218917 0.34531 \n", - " 0.252933 0.0915099 0.095537 0.246055 0.000285543\n", - " 0.262701 0.0464469 0.349258 0.236804 0.198276 \n", - " 0.0560004 0.227477 0.27432 0.267021 0.0171855 \n", - " 0.15603 0.289444 0.23408 0.0312026 0.438943 " + "5×5 Matrix{Float64}:\n", + " 0.132307 0.0956271 0.130227 0.251906 0.105797\n", + " 0.0991408 0.0698541 0.215016 0.0162131 0.328876\n", + " 0.32196 0.222539 0.113538 0.325138 0.260157\n", + " 0.20848 0.310314 0.250666 0.205515 0.142322\n", + " 0.238113 0.301666 0.290554 0.201228 0.162849" ] }, - "execution_count": 18, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "M = M ./ sum(M,1)" + "M = M ./ sum(M,dims=1)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1×5 Array{Float64,2}:\n", + "1×5 Matrix{Float64}:\n", " 1.0 1.0 1.0 1.0 1.0" ] }, - "execution_count": 19, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sum(M,1)" + "sum(M,dims=1)" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Complex{Float64},1}:\n", - " 1.0+0.0im \n", - " -0.0672606+0.097054im\n", - " -0.0672606-0.097054im\n", - " 0.251222+0.0im \n", - " 0.302368+0.0im " + "5-element Vector{ComplexF64}:\n", + " -0.17776058595953462 + 0.0im\n", + " -0.1352931760939033 + 0.0im\n", + " -0.0014416561523480091 - 0.07745841517651891im\n", + " -0.0014416561523480091 + 0.07745841517651891im\n", + " 1.0000000000000004 + 0.0im" ] }, - "execution_count": 20, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -724,21 +765,21 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", - " 1.0 \n", - " 0.118083\n", - " 0.118083\n", - " 0.251222\n", - " 0.302368" + "5-element Vector{Float64}:\n", + " 0.17776058595953462\n", + " 0.1352931760939033\n", + " 0.07747183006822272\n", + " 0.07747183006822272\n", + " 1.0000000000000004" ] }, - "execution_count": 21, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -749,47 +790,47 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", - " 0.217064\n", - " 0.22981 \n", - " 0.123454\n", - " 0.177032\n", - " 0.252639" + "5-element Vector{Float64}:\n", + " 0.05662283043686728\n", + " 0.13759834468209436\n", + " 0.3955727782747076\n", + " 0.09136601599437516\n", + " 0.3188400306119557" ] }, - "execution_count": 22, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = rand(5)\n", - "x = x / sum(x)" + "x = x / sum(x) # normalize x to have sum = 1" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Float64,1}:\n", - " 0.23845 \n", - " 0.132576\n", - " 0.234861\n", - " 0.152915\n", - " 0.241199" + "5-element Vector{Float64}:\n", + " 0.14590618751218656\n", + " 0.15842031877820567\n", + " 0.24194675375641556\n", + " 0.2186167846876927\n", + " 0.23510995526549555" ] }, - "execution_count": 23, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -800,42 +841,73 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5-element Array{Complex{Float64},1}:\n", - " 0.23845-0.0im\n", - " 0.132576-0.0im\n", - " 0.234861-0.0im\n", - " 0.152915-0.0im\n", - " 0.241199-0.0im" + "(1.0, 0.9999999999999962)" ] }, - "execution_count": 24, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "λ, X = eig(M)\n", - "X[:,1] / sum(X[:,1])" + "sum(x), sum(M^100 * x) # still = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{ComplexF64}:\n", + " 0.1459061875121874 + 0.0im\n", + " 0.15842031877820623 + 0.0im\n", + " 0.24194675375641644 + 0.0im\n", + " 0.21861678468769355 + 0.0im\n", + " 0.23510995526549633 + 0.0im" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(M)\n", + "X[:,end] / sum(X[:,end]) # eigenvector for λ=1, normalized to sum=1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, $M^n x$ is approaching a steady-state ($\\lambda = 1$) eigenvector of $M$ as $n$ grows large." ] } ], "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 1.8.0", "language": "julia", - "name": "julia-0.6" + "name": "julia-1.8" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "0.6.3" + "version": "1.8.2" }, "widgets": { "state": { diff --git a/notes/Matrix-Exponentials.ipynb b/notes/Matrix-Exponentials.ipynb new file mode 100644 index 00000000..a0fd4f7e --- /dev/null +++ b/notes/Matrix-Exponentials.ipynb @@ -0,0 +1,963 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra, PyPlot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Review: Solving ODEs via eigenvectors\n", + "\n", + "If we have a simple scalar ODE:\n", + "\n", + "$$\n", + "\\frac{dx}{dt} = a x\n", + "$$\n", + "\n", + "then the solution is\n", + "\n", + "$$\n", + "x(t) = e^{at} x(0)\n", + "$$\n", + "\n", + "where $x(0)$ is the initial condition.\n", + "\n", + "If we have an $m\\times m$ system of ODEs\n", + "\n", + "$$\n", + "\\frac{d\\vec{x}}{dt} = A\\vec{x}\n", + "$$\n", + "\n", + "we know that if $A = X \\Lambda X^{-1}$ is diagonalizable with eigensolutions $A\\vec{x}_k = \\lambda_k \\vec{x}_k$ ($k=1,2,\\ldots,m$), then we can write the solution as:\n", + "\n", + "$$\n", + "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2 + \\cdots\n", + "$$\n", + "\n", + "where the $\\vec{c}$ coefficients are determined from the initial conditions\n", + "\n", + "$$\n", + "\\vec{x}(0) = c_1 \\vec{x}_1 + c_2 \\vec{x}_2 + \\cdots\n", + "$$\n", + "\n", + "i.e. $\\vec{c} = X^{-1} \\vec{x}(0)$ where $X$ is the matrix whose columns are the eigenvectors and $\\vec{c} = (c_1, c_2, \\ldots, c_m)$.\n", + "\n", + "## Matrix exponential, first guess:\n", + "\n", + "It sure would be nice to have a formula as simple as $e^{at} x(0)$ from the scalar case. Can we **define the exponential of a matrix** so that \n", + "\n", + "$$\n", + "\\vec{x}(t) = \\underbrace{e^{At}}_\\mbox{???} \\vec{x}(0) \\, ?\n", + "$$\n", + "\n", + "But what is the exponential of a matrix? \n", + "\n", + "We can guess at least one case. For **eigenvectors, the matrix A acts like a scalar λ**, so we should have $e^{At} \\vec{x}_k = e^{\\lambda_k t} \\vec{x}_k$! \n", + "\n", + "This turns out to be exactly correct, but let's take it a bit more slowly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Writing ODE solution in matrix form\n", + "\n", + "Another way of saying this is that we'd like to write the solution $x(t)$ as $\\mbox{(some matrix)} \\times \\vec{x}(0)$. This will help us to understand the solution as a *linear operation on the initial condition* and manipulate it algebraically, in much the same way as writing the solution to $Ax=b$ as $x = A^{-1} b$ helps us work with matrix equations (even though we rarely compute matrix inverses explicitly in practice).\n", + "\n", + "To do so, let's break down\n", + "\n", + "$$\n", + "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2 + \\cdots\n", + "$$\n", + "\n", + "into steps.\n", + "\n", + "1. Compute $\\vec{c} = X^{-1} \\vec{x}(0)$. That is, write the initial condition in the basis of eigenvectors. (In practice, we would solve $X \\vec{c} = \\vec{x}(0)$ by elimination, rather than computing $X^{-1}$ explicitly!)\n", + "\n", + "2. Multiply each component of $\\vec{c}$ by $e^{\\lambda t}$.\n", + "\n", + "3. Multiply by $X$: i.e. multiply each coefficient $c_k e^{\\lambda_k t}$ by $\\vec{x}_k$ and add them up.\n", + "\n", + "In matrix form, this becomes:\n", + "\n", + "$$\n", + "\\vec{x}(t) = X \\underbrace{\\begin{pmatrix} e^{\\lambda_1 t} & & & \\\\\n", + " & e^{\\lambda_2 t} & & \\\\\n", + " & & \\ddots & \\\\\n", + " & & & e^{\\lambda_m t} \\end{pmatrix}}_{e^{\\Lambda t}} \\underbrace{X^{-1} \\vec{x}(0)}_\\vec{c}\n", + "= \\boxed{ e^{At} \\vec{x}(0) }\n", + "$$\n", + "\n", + "where we have *defined* the \"matrix exponential\" of a diagonalizable matrix as:\n", + "\n", + "$$\n", + "e^{At} = X e^{\\Lambda t} X^{-1}\n", + "$$\n", + "\n", + "Note that we have defined the exponential $e^{\\Lambda t}$ of a *diagonal matrix* $\\Lambda$ to be the diagonal matrix of the $e^{\\lambda t}$ values.\n", + "\n", + "* Equivalently, $e^{At}$ is the matrix with the **same eigenvectors as A but with eigenvalues λ replaced by** $e^{\\lambda t}$.\n", + "\n", + "* Equivalently, **for eigenvectors, A acts like a number λ**, so $e^{At} \\vec{x}_k = e^{\\lambda_k t} \\vec{x}_k$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example\n", + "\n", + "For example, the matrix\n", + "\n", + "$$\n", + "A = \\begin{pmatrix}\n", + "0 & 1 \\\\\n", + "1 & 0\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "has two eigenvalues $\\lambda_1 = +1$ and $\\lambda_2 = -1$ (corresponding to exponentially *growing* and *decaying* solutions to $d\\vec{x}/dt = A\\vec{x}$, respectively). The corresponding eigenvectors are:\n", + "\n", + "$$\n", + "\\vec{x}_1 = \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} , \\; \\vec{x}_2 = \\begin{pmatrix} 1 \\\\ -1 \\end{pmatrix} .\n", + "$$\n", + "\n", + "Hence, the matrix exponential should be:\n", + "\n", + "$$\n", + "e^{At} = \\underbrace{\\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}}_X\n", + " \\underbrace{\\begin{pmatrix} e^t & \\\\ & e^{-t} \\end{pmatrix}}_{e^{\\Lambda t}}\n", + " \\underbrace{\\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}^{-1}}_{X^{-1}}\n", + " = \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}\n", + " \\begin{pmatrix} e^t & \\\\ & e^{-t} \\end{pmatrix}\n", + " \\left[ \\frac{1}{2} \\begin{pmatrix} 1 & 1 \\\\ 1 & -1\\end{pmatrix} \\right]\n", + " = \\frac{1}{2} \n", + " \\begin{pmatrix} e^t & e^{-t} \\\\ e^t & -e^{-t} \\end{pmatrix}\n", + " \\begin{pmatrix} 1 & 1 \\\\ 1 & -1 \\end{pmatrix}\n", + " = \\frac{1}{2} \n", + " \\begin{pmatrix} e^t + e^{-t} & e^t - e^{-t} \\\\ e^t - e^{-t} & e^t + e^{-t}\\end{pmatrix}\n", + " = \\begin{pmatrix} \\cosh(t) & \\sinh(t) \\\\ \\sinh(t) & \\cosh(t) \\end{pmatrix}\n", + "$$\n", + "\n", + "In this example, $e^{At}$ turns out to have a very nice form! In general, no one ever, ever, calculates matrix exponentials analytically like this except for toy $2\\times 2$ problems or *very* special matrices. (I will never ask you to go through this tedious algebra on an exam.)\n", + "\n", + "The computer is pretty good at computing matrix exponentials, however, and in Julia this is calculated by the `exp(A*t)` function. (There is a famous paper: [19 dubious ways to compute the exponential of a matrix](http://www.cs.cornell.edu/cv/researchpdf/19ways+.pdf) on techniques for this tricky problem.) Let's try it:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 1.54308 1.1752\n", + " 1.1752 1.54308" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t = 1\n", + "[cosh(t) sinh(t)\n", + " sinh(t) cosh(t)]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 1.54308 1.1752\n", + " 1.1752 1.54308" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp([0 1; 1 0]*t)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, it matches for $t=1$.\n", + "\n", + "What happens for larger $t$, say $t=20$?" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 2.42583e8 2.42583e8\n", + " 2.42583e8 2.42583e8" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t = 20\n", + "[cosh(t) sinh(t); sinh(t) cosh(t)]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 2.42583e8 2.42583e8\n", + " 2.42583e8 2.42583e8" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp([0 1; 1 0]*20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For large $t$, the $e^t$ exponentially growing term takes over, and $\\cosh(t) \\approx \\sinh(t) \\approx e^t/2$:\n", + "\n", + "$$\n", + "e^{At} = \\begin{pmatrix} \\cosh(t) & \\sinh(t) \\\\ \\sinh(t) & \\cosh(t) \\end{pmatrix}\n", + "\\approx \\frac{e^t}{2} \\begin{pmatrix} 1 & 1 \\\\ 1 & 1 \\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 2.42583e8 2.42583e8\n", + " 2.42583e8 2.42583e8" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(20)/2 * [1 1; 1 1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But we could have seen this from our eigenvector expansion too:\n", + "\n", + "$$\n", + "\\vec{x}(t) = c_1 e^t \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix} + c_2 e^{-t} \\begin{pmatrix} 1 \\\\ -1 \\end{pmatrix} \\approx c_1 e^t \\begin{pmatrix} 1 \\\\ 1 \\end{pmatrix}\n", + "$$\n", + "\n", + "where $c_1$ is the coefficient of the initial condition: (nearly) every initial condition should give $\\vec{x}(t)$ proportional to $(1,1)$ for large $t$, except in the very special case where $c_1 = 0$.\n", + "\n", + "In fact, since **these** two eigenvectors are an **orthogonal basis** (not by chance: we will see later that it happens because $A^T = A$), we can get $c_1$ just by a dot product:\n", + "\n", + "$$\n", + "c_1 = \\frac{\\vec{x}_1 ^T \\vec{x}(0)}{\\vec{x}_1 ^T \\vec{x}_1} = \\frac{\\vec{x}_1 ^T \\vec{x}(0)}{2}\n", + "$$\n", + "\n", + "and hence\n", + "\n", + "$$\n", + "\\vec{x}(t) \\approx c_1 e^t \\vec{x}_1 = \\frac{e^t}{2} \\vec{x}_1 \\vec{x}_1^T \\vec{x}(0) = \\frac{e^t}{2} \\begin{pmatrix} 1 & 1 \\\\ 1 & 1 \\end{pmatrix} \\vec{x}(0) \n", + "$$\n", + "\n", + "which is the same as our approximation for $e^{At}$ above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Series definition of a matrix exponential\n", + "\n", + "Just plugging in $t=1$ above, we see that we have defined the [matrix exponential](https://en.wikipedia.org/wiki/Matrix_exponential) by\n", + "\n", + "$$\n", + "e^{A} = X e^{\\Lambda} X^{-1}\n", + "$$\n", + "\n", + "This works (for a diagonalizable matrix $A$, at least), but it is a bit odd. It doesn't *look* much like any definition of $e^x$ for scalar $x$, and it's not clear how you would extend it to non-diagonalizable (defective) matrices.\n", + "\n", + "Instead, we can **equivalently** define matrix exponentials by starting with the **Taylor series** of $e^x$:\n", + "\n", + "$$\n", + "e^x = 1 + x + \\frac{x^2}{2!} + \\frac{x^3}{3!} + \\cdots + \\frac{x^n}{n!} + \\cdots\n", + "$$\n", + "\n", + "It is quite natural to define $e^A$ (for **any square** matrix $A$) by the **same series**:\n", + "\n", + "$$\n", + "e^A = I + A + \\frac{A^2}{2!} + \\frac{A^3}{3!} + \\cdots + \\frac{A^n}{n!} + \\cdots\n", + "$$\n", + "\n", + "This involves only familiar matrix multiplication and addition, so it is completely unambiguous, and it converges because the $n!$ denominator grows faster than $A^n \\sim \\lambda^n$ for the biggest $|\\lambda|$.\n", + "\n", + "Let's try summing up 100 terms of this series for a random $A$ and comparing it to both Julia's `expm` and to our formula in terms of eigenvectors:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " -0.818911 -0.837843 -0.833094 -0.465218 -0.111137\n", + " 0.255629 1.16573 -1.20799 0.466481 -0.295185\n", + " -1.69869 -0.807249 -1.03416 -1.17902 0.329974\n", + " 1.62197 0.379368 0.15949 -0.0619288 -0.998135\n", + " -0.654186 -0.666233 1.09477 -0.164912 0.640717" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = randn(5,5)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 0.181729 -1.11919 0.148658 -0.412992 0.246856\n", + " 3.02992 4.29519 -2.92774 1.88224 -2.13708\n", + " -2.20443 -1.05848 1.66506 -1.03794 1.36019\n", + " 2.09946 0.722445 -1.26534 1.2118 -1.76688\n", + " -2.77878 -2.14487 2.53331 -1.26725 3.12757" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 0.181729 -1.11919 0.148658 -0.412992 0.246856\n", + " 3.02992 4.29519 -2.92774 1.88224 -2.13708\n", + " -2.20443 -1.05848 1.66506 -1.03794 1.36019\n", + " 2.09946 0.722445 -1.26534 1.2118 -1.76688\n", + " -2.77878 -2.14487 2.53331 -1.26725 3.12757" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "series = I + A # first two terms\n", + "term = A\n", + "for n = 2:100\n", + " term = term*A / n # compute Aⁿ / n! from the previous term Aⁿ⁻¹/(n-1)!\n", + " series = series + term\n", + "end\n", + "series" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 0.181729 -1.11919 0.148658 -0.412992 0.246856\n", + " 3.02992 4.29519 -2.92774 1.88224 -2.13708\n", + " -2.20443 -1.05848 1.66506 -1.03794 1.36019\n", + " 2.09946 0.722445 -1.26534 1.2118 -1.76688\n", + " -2.77878 -2.14487 2.53331 -1.26725 3.12757" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(A)\n", + "X * Diagonal(exp.(λ)) / X" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 0.181729 -1.11919 0.148658 -0.412992 0.246856\n", + " 3.02992 4.29519 -2.92774 1.88224 -2.13708\n", + " -2.20443 -1.05848 1.66506 -1.03794 1.36019\n", + " 2.09946 0.722445 -1.26534 1.2118 -1.76688\n", + " -2.77878 -2.14487 2.53331 -1.26725 3.12757" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "real(X * Diagonal(exp.(λ)) / X) # get rid of tiny imaginary parts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hurray, they all match, up to roundoff errors! (Though the eigenvector method doesn't realize that the result is real, and we see tiny imaginary parts due to roundoff errors.)\n", + "\n", + "But why does the eigenvector definition match the series definition? They look quite different, but they are not! We can see this simply by looking at what the series does to an eigenvector:\n", + "\n", + "## Series definition for eigenvectors\n", + "\n", + "Even simpler, the key fact is that the eigenvalues of $e^A$ are $e^\\lambda$. We can see this from the series definition:\n", + "\n", + "If $Ax = \\lambda x$, thend\n", + "$$\n", + "e^A x = \\left(I + A + \\frac{A^2}{2!} + \\cdots\\right)x = \\left(1 + \\lambda + \\frac{\\lambda^2}{2!} + \\cdots\\right) x = e^\\lambda x\n", + "$$\n", + "from the series definition of $e^\\lambda$.\n", + "\n", + "It follows that $e^A$ has the same eigenvectors as $A$ and the eigenvalues become $e^\\lambda$.\n", + "\n", + "If $A$ is diagonalizable, this means $e^A = X e^\\Lambda X^{-1}$: we get the same result as before!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Matrix exponentials and derivatives\n", + "\n", + "In first-year calculus, we learn that $\\frac{d}{dt} e^{at} = a e^{at}$. The same thing works for matrices!\n", + "\n", + "$$\n", + "\\boxed{\\frac{d}{dt} e^{At} = A e^{At}}\n", + "$$\n", + "\n", + "You can derive this in various ways. For example, you can plug $e^{At}$ into the series definition and take the derivative term-by-term.\n", + "\n", + "This is why $\\vec{x}(t) = e^{At} \\vec{x}(0)$ solves our ODE:\n", + "\n", + "1. It satisfies $d\\vec{x}/dt = A\\vec{x}$, since $\\frac{d}{dt} e^{At} \\vec{x}(0) = A e^{At} \\vec{x}(0)$\n", + "\n", + "2. It satisfies the initial condition: $e^{A\\times0} \\vec{x}(0) = \\vec{x}(0)$, since from the series definition we can see that $e^{A\\times0}=I$.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Products of matrix exponentials\n", + "\n", + "In high school, you learn that $e^x e^y = e^{x+y}$. (In fact, exponentials $a^x$ are essentially the *only* functions that have this property.)\n", + "\n", + "However, this is **not** in general true for matrices:\n", + "\n", + "$$\n", + "\\boxed{e^A e^B \\ne e^{A + B} }\n", + "$$\n", + "\n", + "unless $AB = BA$ (unless they **commute**).\n", + "\n", + "This can be seen from the series definition: if you multiply together the series for $e^A$ and $e^B$, you can only re-arrange this into the series for $e^{A + B}$ if you are allowed to re-order products of $A$ and $B$. For example, the $(A+B)^2=(A+B)(A+B)$ term gives $A^2 +AB+BA +B^2$ (not $A^2 +2AB +B^2$!), which requires both orders $BA$ and $AB$.\n", + "\n", + "Let's try it:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 0.323484 -1.42524 0.0588823 -0.336001 0.390326\n", + " -0.881855 4.45288 -4.68822 -1.15012 -2.35137\n", + " 0.308648 -1.45824 4.01309 1.19521 1.27798\n", + " -0.481631 1.64395 -4.93559 -1.08891 -1.70655\n", + " 1.03601 -2.15709 9.89571 3.02326 4.39306" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = randn(5,5)\n", + "exp(A) * exp(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " -0.572969 -2.44162 1.64648 -0.782038 1.11299\n", + " 0.681504 3.88447 -1.7922 1.01024 -1.21317\n", + " -0.830851 -2.25456 1.85245 -0.607258 0.658459\n", + " 1.08542 4.28899 -2.02442 1.72467 -0.937318\n", + " -2.03497 -4.54824 5.62928 -1.55535 3.48544" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(A + B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "They are not even close!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, since $A$ and $2A$ commute ($A\\times2A=2A^2 = 2A \\times A$), we *do* have $e^{A}e^{2A}=e^{3A}$:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " -47.5951 -36.0198 39.0739 -23.0627 36.4263\n", + " 226.625 155.117 -183.007 105.17 -174.234\n", + " -88.0121 -54.1272 70.0116 -39.1407 68.523\n", + " 85.1844 51.5045 -67.7549 37.6019 -67.0832\n", + " -174.238 -113.934 140.131 -79.2429 135.861" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(A) * exp(2A)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " -47.5951 -36.0198 39.0739 -23.0627 36.4263\n", + " 226.625 155.117 -183.007 105.17 -174.234\n", + " -88.0121 -54.1272 70.0116 -39.1407 68.523\n", + " 85.1844 51.5045 -67.7549 37.6019 -67.0832\n", + " -174.238 -113.934 140.131 -79.2429 135.861" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(3A)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " -47.5951 -36.0198 39.0739 -23.0627 36.4263\n", + " 226.625 155.117 -183.007 105.17 -174.234\n", + " -88.0121 -54.1272 70.0116 -39.1407 68.523\n", + " 85.1844 51.5045 -67.7549 37.6019 -67.0832\n", + " -174.238 -113.934 140.131 -79.2429 135.861" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(2A) * exp(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inverses of matrix exponentials\n", + "\n", + "As a special case of the above, since $A$ and $-A$ commute, we have $e^A e^{-A} = e^{A-A} = I$, so:\n", + "\n", + "$$\n", + "\\boxed{\\left(e^A\\right)^{-1} = e^{-A}}\n", + "$$\n", + "\n", + "For example" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 3.2008 1.52405 2.99 1.83183 0.523262\n", + " 1.20707 0.966905 1.95747 0.701775 0.110564\n", + " 3.10572 1.80607 4.97103 3.13859 0.60015\n", + " -3.26614 -1.27767 -2.92433 -0.296963 0.488793\n", + " -0.167361 0.0365872 -1.21242 -0.553745 0.572403" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "inv(exp(A))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 3.2008 1.52405 2.99 1.83183 0.523262\n", + " 1.20707 0.966905 1.95747 0.701775 0.110564\n", + " 3.10572 1.80607 4.97103 3.13859 0.60015\n", + " -3.26614 -1.27767 -2.92433 -0.296963 0.488793\n", + " -0.167361 0.0365872 -1.21242 -0.553745 0.572403" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp(-A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Matrix exponentials as propagators\n", + "\n", + "From above, we had $\\vec{x}(t) = e^{At} \\vec{x}(0)$ solving $d\\vec{x}/dt = A\\vec{x}$ given the initial condition at $t=0$.\n", + "\n", + "However, there is nothing that special about $t=0$. We could instead have given $\\vec{x}(t)$ and asked for $\\vec{x}(t+\\Delta t)$ and the result would have been similar:\n", + "\n", + "$$\n", + "\\boxed{ \\vec{x}(t+\\Delta t) = e^{A\\Delta t} \\vec{x(t)} } = e^{A\\Delta t} e^{A t} \\vec{x}(0) = \n", + "e^{A(t + \\Delta t)} \\vec{x}(0)\\, .\n", + "$$\n", + "\n", + "Viewed in this way, the matrix $T = e^{A\\Delta t}$ can be thought of as a \"propagator\" matrix: it takes the solution at any time $t$ and \"propagates\" it forwards in time by $\\Delta t$.\n", + "\n", + "The *inverse* of this propagator matrix is simply $T^{-1} = e^{-A\\Delta t}$, which propagates *backwards* in time by $\\Delta t$. \n", + "\n", + "If we multiply by this propagator matrix repeatedly, we can get $\\vec{x}$ at a whole sequence of time points:\n", + "\n", + "$$\n", + "\\vec{x}(0), \\vec{x}(\\Delta t), \\vec{x}(2\\Delta t), \\ldots =\n", + "\\vec{x}(0), T \\vec{x}(0), T^2 \\vec{x}(0), \\ldots\n", + "$$\n", + "\n", + "which is nice for plotting the solutions as a function of time! Let's try it for our [two masses and springs example](ODEs.ipynb):" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGxCAYAAACA4KdFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFHUlEQVR4nO2deXwT1fr/P5M0FAoUwbIUUmhZBNmRTVy5eFnclXtRXBECCCgKuFyXewXcisqifpUiEhHvTwWvirtCVUARwQJFkB2h0IEWLEsLlJY0md8fp6eTtkk7SWZNnvfrxevMpMnkcDJz5jPPeRZBkiQJBEEQBEEQUYbN6A4QBEEQBEFoAYkcgiAIgiCiEhI5BEEQBEFEJSRyCIIgCIKISkjkEARBEAQRlZDIIQiCIAgiKiGRQxAEQRBEVBJndAeMwufz4ciRI2jYsCEEQTC6OwRBEARBKECSJJw+fRotW7aEzVazrSZmRc6RI0eQkpJidDcIgiAIggiD3NxcOJ3OGt8TsyKnYcOGANggJSYmqnpsj8eDlStXYsiQIXA4HKoeO9qgsVIOjZVyaKyUQ2OlHBqr0NBqvIqKipCSklJxH6+JmBU5fIkqMTFRE5GTkJCAxMREuhBqgcZKOTRWyqGxUg6NlXJorEJD6/FS4mpCjscEQRAEQUQlJHIIgiAIgohKSOQQBEEQBBGVkMghCIIgCCIqsazIKSsrw7///W+kpaWhXr16aNu2LZ599ln4fD6ju0YQBEEQhAmwbHTVSy+9hAULFmDJkiXo0qULNm7ciNGjR6NRo0Z4+OGHje4eQRAEQRAGY1mR8+uvv+Lmm2/G9ddfDwBITU3Fhx9+iI0bNxrcM4IgCIIgzIBlRc4VV1yBBQsWYM+ePbjooovw+++/Y+3atXj11VcDvr+0tBSlpaUV+0VFRQBYHL/H41G1b/x4ah83GqGxUg6NlXJorJRDY6UcGqvQ0Gq8QjmeIEmSpOq364QkSXjqqafw0ksvwW63w+v14oUXXsCTTz4Z8P0zZszAzJkzq73+wQcfICEhQevuEgRBEAShAsXFxbjzzjtRWFhYazJfy4qcpUuX4rHHHsMrr7yCLl26YMuWLZgyZQrmzp2LUaNGVXt/IEtOSkoKCgoKNMl4nJmZicGDB1NWzFqgsVIOjZVyaKyUQ2OlHBqr0NBqvIqKipCUlKRI5Fh2ueqxxx7DE088gZEjRwIAunXrhoMHDyI9PT2gyImPj0d8fHy11x0Oh2Ynq5bHjjZorJRDY6UcGivl0Fgph8YqNNQer1COZVmRU1xcXK3Eut1upxByQntEEVi3jm1fdhlQSxVcgiAIwhgsK3JuvPFGvPDCC2jdujW6dOmC7OxszJ07F2PGjDG6a0Q043YD48YBfJVXEIC33wZcLmP7RRAEQVTDsiLn//7v//Cf//wHkyZNwrFjx9CyZUvcf//9eOaZZ4zuGhGtiGJlgQOw7fvvB4YOJYsOQRDhQdZhzbCsyGnYsCFeffXVoCHjBKE669ZVFjgcrxf49VdgxAj9+0QQhLUh67CmWLasA0HoitsNlDu5B2TkSPYegiAIpdRkHRZF4/oVRZDIIYjaEEVg/PjAVhyOz0cTE0EQofHzzzVbh4mIIZFDELWxdy8TMbXh9QL79mnfH4IgrI/bDdx5Z/C/k3VYFUjkEERtdOgAVElXAJut+mt2O9C+vX79IgjCmnDrcE2QdVgVSOQQRG04ncBtt8n7djuwcCH7Jwjy62+9RVERBEHUDlmHdcOy0VUEoRtuN7Bsmbyfni5HPqSlAddcAzgcwNVXG9M/giCsRYcO7AHJ3x+HW4b9xQ9ZhyOGLDkEUROBnI6ffFI2Ie/fz1qPB+jYkdbQCYKoHacTuPhieZ9bh996S37NZiPrsAqQyCGImghkVuYmZFFka+YcWkMnCEIJJSXAn3+y7TlzgJwcZh0eOxa49Vb2+k03sSSjRESQyDEjogisWgVkZbGWbprGwc3K/nATck0CiCAIIhj//jdQWsq2H3sMWLFC/tsFF7D2s8+ANm3IOhwhJHLMhtvNTuxBg4B+/VhLJ7pxOJ3ADTfI+3a7bEIOFHVFa+gEQdSEKAJz58r7/hZgUQSWLAn8NyIsSOSYCe7/UdU64POx1+lENwa7nbUPPCCblQEmdBYulP8OAK+/TmvoBEEEZ+/e6gkAuQWYrMOqQyLHTLz2WvCwQp+P/Z3Qny1bWPuPf1QXMC4XEz7cxNy3r44dIwjCcnToUP01bgEm67DqkMgxC6LIHNBqYt48suboTWEhEzEA0KNH4Pc4nUDv3mx72zZdukUQhEVp2LDyvv8SOLcOcz9AQaAIqwghkWMWApkwq0JmS/35/nvWJicDTZoEf1+3bqz95hsSogRBBOePP1jbogULLPFfAgfYNg8l79KFqpFHCIkcsxDIhFkVMlvqi9sNjBjBtvPyanb+PnWKtZ98Qo7iBEEEZ+tW1vbqBQwcGNhKc801rN2zh+XgIsKGRI5ZaNECqFdP3rfbgVGjKq/PTpyof79ilUBJAINFOYgi8N578j5FRBAEEQxeXTw1Nfh7UlOBxETg/Hk2t9BcEjYkcszCV18B586xE/v775kJ8913gYMHgcaN2XveeIOsBHoRSpQDRUQQBKEEtxv473/Z9oIFwedymw1o3pxtjx1L834EkMgxA243MHw42y4qYgLH34TJl0IAshLoRShRDhQRQRBEbVStPC5JNVuH/R+SaN4PGxI5RlPbskhNORUI7XA6meWM4x8BEei9CxfK+1RzhiCIqoRqHaZ5XxVI5BhNbSc+WQmM46qrWFu/PnDgQM1RDi6XXHPm8ccpIoIgiMqQddgQSOQYTW0nM1kJjGPvXtZ26gSkpNT+/u7dWXv8uHZ9IgjCmjidLJiEU5t1OD1d2XuJGiGRYzROZ+V12kAns7+VYNo0shLohb81TQlt27KWVxcmCILwhz8sXX999fw4VXn0UaBOHba9Zg3N+2FCIscMJCWx9rrrgp/4fOmEWxcI7eFjrdREzEXO/v3a9IcgCGvDH4CuvLJ2q4zNJs89Z85o268ohkSOGfj9d9YOGxb8xO/Th7W//EIe9nrBM5NeeKGy97drx9pDhyiBF0EQ1eEih88VtXHRRaylh9uwIZFjBjZtYm1ycvD3cCFUUEA5E/TA7QbWrWPbjzyibLxbtADi45kj+fr12vaPIAjrwUUOt/rWBl8q37NHm/7EACRyjOb114EjR9j27bcHvpmKIvDQQ/I+5UzQlqr5LJSO9zvvAKWlbHvgQBKiBEHInD4N/PUX21ZqyeEiZ/16mu/DhESOkYgiMHWqvB/sZkoZdfUlnPEOVxgRBBEbcF+9xEQmeJTALThZWWTBDxMSOUai9GZKORP0JZzxJiFKEERN8MriRUXKBIsoAnPnyvv04BQWJHKMpEMHQBAqvxboZspz5fjfeClngnY4ncDdd8v7SnJUkBAlCCIYoshqVXGUCBZ6cFIFEjlG4nQCvXrJ+zXdTF0u4Lvv2HZiIjBmjD59jFVat2btjTfWns8CICFKEERwwinTQA9OqkAix2i8Xta++GLtN9Mrr2QnfVERcPSoLt2LWQ4dYu1llykXKi4X8PHHbDslhZJ3EQTBCJRQtDbBQtnuVYFEjpFIkqzkhw+v/eStWxdIS2PbO3dq27dY5+BB1nKLjlJ692Ztfn51UzNBELGJ01l5LlFapsHlAu64g20/9BA9OIWBpUXO4cOHcffdd+PCCy9EQkICevbsiU0854wVOHoUOHuWKfTUVGWfufhi1n7+OTmgaQkXOW3ahPa55GTmZ+XxyOGiBEEQ586x9u23lS2Bc7p2Ze3Jk5p0K9qxrMg5efIkLr/8cjgcDnz77bfYsWMH5syZgwsuuMDorimHW3Fat2ZJ5JTAM+m+9hqFFGqF1ysLyFAtOQ4HSwoIkAglCIJRUiI/9Nx6a2hLTvxBiz94ESERZ3QHwuWll15CSkoKFi9eXPFaqlJriFkINcW3KAIrV8r73EN/6FBap1WTvDygrAyIiwNatgz98ykp7BiiKC9fEQQRuxw+zNq6dYEmTUL7LImciLCsyPniiy8wdOhQjBgxAmvWrEGrVq0wadIkjBs3LuD7S0tLUcqz0QIoKioCAHg8HnhUrjPEj1fbcW1ZWbAD8DZrBp+CPgg7dyIugId+2a5dkJo3D7e7hqJ0rPRE2L8fcQAkpxNlPl/IvjX2li1hA+DNyVH0uyrFjGNlVmislENjpZxwx0rIyZHnlLKy0L60ZUs4AEi5uSgrKWH+PBZBq3MrlONZVuTs378fGRkZmDZtGp566in89ttveOihhxAfH49777232vvT09Mxc+bMaq+vXLkSCQkJmvQxMzMz6N9aZ2ai55tvAgBsS5dia5MmODR4cI3Hq1tQgCGCAMFP6PhsNvxw8CBKvvlGnU4bRE1jpTepX3+NHgBO1qmDn8MY165lZWgHYP9PP2GHBtZFM42V2aGxUg6NlXJCHSvn6tXoDaCgXj2sC3VO8Xpxo90OW1kZfvx//w8lTZuG9nkToPa5VVxcrPi9giRVNQ1Ygzp16qBPnz5Yx4soAnjooYeQlZWFX3/9tdr7A1lyUlJSUFBQgMTERFX75vF4kJmZicGDB8PhcFR/gygirn17CH4WAsluR9nevbUuOwnvvAP7hAkQAEg2G7wZGZBGj1a1/3pS61jpjLB4MRtfSYIEwPvWWyGPr23uXNifeAK+O+6Ad8kS1fpmtrEyMzRWyqGxUk64Y2V7+WXY//1v+O6+G9533gn5e+M6doRw4AC8c+fCd8stlnFP0OrcKioqQlJSEgoLC2u9f1vWkpOcnIzOnTtXeu3iiy/GJ598EvD98fHxiA/g3OtwODS7sIMeOyen2hKI4PXCcfCgHCIejPvvB+bNA3bvhrBkCeL8M/NaGC1/B8WIIjBxYkXSLgFA3KRJwHXXheUoaNu+HbajR1WfkEwxVhaBxko5NFbKCXmsyosw29q0gS2cMa5TBwBgnzYN9kcfZflzLBROrva5FZLAVO1bdebyyy/H7t27K722Z88etAk15NcIIs1k2akTa8v9igiVUCuN+pYtrN26lSLgCIKQIy3DeeARRblQJ0A1rELEsiJn6tSpWL9+PV588UXs27cPH3zwARYuXIgHHnjA6K7VjtMJvPCCvK80MRSnbVvW8qq2hDqokUZdFIFXXpH3aUIiCILP1fXqhf7ZcEpCEBVYVuT07dsXy5cvx4cffoiuXbviueeew6uvvoq77rrL6K4pY8AA1rZqFVpiKEAOOech6IQ6qJFGnYrqEQThj9sN/PEH2x4zJnTLrtJCzkRALCtyAOCGG27Atm3bUFJSgp07dwYNHzclubms7dgxdBMmWXK0Y9QoeULJygp93ZuK6hEEwRFFYPx4eT8cy67TyUo6cEK1/Mc4lhY5loaLnJSU0D/LRc6ePfJxCHXIz2emYbsd6Nkz9M9TUT2CIDhqWXbHjGFtYmLolv8Yh0SOUUQiclatYm1JCat5RY6t6lEeBYHk5OoWGaW4XMAVV7DtefNoQiKIWEUty26rVqwtKgKSktTpW4xAIscoDh1ibagiRxQBf+dqcmxVF55+nU8q4cKTAPrlZiIIIsZwOllaCk64S01NmrCSEID8IEYogkSOUYRrySHHVm1RS+TwIp35+ZEdhwgdUYTwv/+h5dq1JP4J4+nShbWXXx7+UpMgyHMSn6MIRZDIMYpwRQ45tmqLWiInOZm1eXmRHYdQjigC06YBKSmIu+su9J09G3Ht2tFyLmEs/EGnW7fIfPP4Z0m4hwSJHCM4exY4eZJth1psjTu28gggQSDHVjXhpuBwqo/7Q5YcfXG7gdatmQ+UH4IkseiWrCyDOkbEPPxBhz/4hAtZcsKCRI4R+E/EXbuG/qTpcgGzZrHtgQPJsVVN1LbkkMjRHh6mG6wMn88HXHopWXQIY+BzAH/wCRc+J5ElJyRI5OiNKALTp8v74ToO8/Dmv/5SrWsE2Jo5UFErJmz4hEbLVdoTyE+tKuSgTxiFWpYcbq0nS05IkMjRG7Uch1u3Zu3Bg8GfYInQcLvlLNJ33hnZkz8XOadOsVB/QjsCZYQNBDnoE0agtiVn+3YS6yFAIkdv1ErRzUXO6dNAYaE6fYtl1MhM6s8FFwC86j0tWWnLihWVhb4gwHvHHZCqXmc2GznoE/ri88nXf6SWnM2bWbtzJxX+DQESOXrjdAKDBsn74eZNSEiQk0IdPKhe/2IVtUPzBYGcj/WgqjgFAEGA74UXsGXSJFSycUoSE0SxiCgCH33E/pEVQD9OnADKyth2s2bhH0cUZT9MgJZfQ4BEjhE0acLaBx6ILEV3mzas5YkFifDRIjSf/868OB+hPoHEqc8H4c8/caxXr8q/qSTF5o2BR57dfjv717o1WQH0gvvjJCVF5udH+dHChkSOEfAT/6qrIgv99vfLISLD6QQmTJD3Iy2C53YD2dlse/x4uqloRYcO1V+z2yG1a4cGeXkQYv3GkJUFjB1beTmPwur1g1txGzSITFxTfrSwIZFjBGp523NLDmV2VYfu3VkbSWZSoPoSSqxaEPSgaqSJnzg9k5wMKZZvDG430L9/4L9RWL0+LF3K2pycyPxoqPBv2JDI0RtJUk/k8MR1y5aRI5oaHD3K2s6dI5s8yLSsD243MGCAvP/oo5XEaUlSErwZGZWfgGPlxlBb7iCA/Dq0RhSBxYvl/UjH2+ViedEA4OWXKT+aQkjk6M3p00BxMduOROSIIvC//8n7NGFFzrFjrI3EQRAg07IeBLqJV8l2DADS6NHAhg1sRxCA227TqYMGoyR3EAB4vRB42gRCXfburS4yI33Y4YV/z58P/xgxBokcveFWnIYNgfr1wz+OFhdQrMMtOc2bR3YcblqORQuCXoRiLevTh90cJIn9DrHwIBAsd1Cg1zZu1L4/sUgQf7GIHnYoYjNkSOTojVpLVWQtUB+1LDkAMyUvW8a209LItKw2oZ7/XLg+9lhsLO1WzR1kswGLFgEvvVTtrfZ//xt1Cwp07FyM4HSypW9OpMEMAGVSDwMSOXqjZorvBQvkfTUuoFhHTZEDsLpkgFyMlVAPp5OFQ3NqOv9FEfjtN3k/2pd2A+UOAoChQ5lVqwqC14v6dNPUBoeDtS+9FFkwA4dq4oUMiRy9UUvkAMC4cbKyX76crAWRotZyFYeLpVOnaA1dC7xe1o4ZU/MNJNaWdoPkDsK+fQEtYJLdjrNqzEdEdfiD0+DB6jyA0nJVyJDI0Zs9e1jboIE6x+Nh5DyrJhEe58/LFhe1LDkXXADExbFtKqSqLpIErFnDtocNq/kGEmtLuzWVjgngL+YLZPUhIsfnk697teYUEjkhQyJHT9xuZlLn22r4BfCibVSZNjK4T4LdLmcqjhSbDWjalG3zJzpCHV56Sba8jRxZ87UUazlGnM7KxSCrLuW5XCyBaHlZGHtGBoaMGwfBP9yZiJxTp+SHTz4PRAq3uJ0+DZw9q84xoxwSOXqhVYI4LnKi1b9AL/gNs2nT6k/9kcCf4EjkqIcoAk89Je8r8bHxzzHy4ovRvbT7++/ysvhnnwVfyjt+vGJTkCTYJ02ieURN+DXfqFFkJR38adCA1S0EyJqjEBI5eqFVgjj+dEaWnMjYvp21F1yg7nFJ5KhPuD42vXuzlifRjEbcbqBXL3m/oCCwxSrAGArR7KdkBGovVQFU+DcMSOTohVZ+AbRcFTluN3DvvWx71y51w4v5BEc+OeoRbv4RHu3288/RabEIlCAxmIUriANy1PopGYHa0ZocLnK+/z46z2OVIZGjF04nkJEh76sV8k3LVZERyo0hHMgnR31atJBDcwHl1xK3UmRnR2eunFCsxdxPqdxBWRIEeOfPj14/JSPQSuSUlLB2xozoPI9VhkSOntx8s7y9b586fgH+y1U11akhAqN1nSlarlKfnTsBj4f5Jvzwg7L8I6IIpKfL+9GYKydUa7HLBcycCQAoSkmBNHiwxh2MMbQQOaLIRDonGs9jlSGRoyf8pE9KkmuQRAq35BQXAzt2qHPMWELr8GISOeqzciVru3cHBg1SZn2IhaKpTifw3HPyvhILV/mDUaNDhxDXvj1ZBdREC5ETazmfVIBEjp7wCB41T/oPPpC3u3enSSpUtA4v5r/1vn30tKUGbjcrzQCwwptKz/dYyZXTsSNrL7qodguXKFZYcgBAIKuAumghcmrKgUQEhESOnvCTXq2MulXD0mmSCg+XS3ZKXbxY3fDi9etZu3s3rZ9HSlX/qVDSMFTxQYEgRGeunK1bWXvFFbX/32LBumUkWogcpxOYPFnep3I+tUIiR0/UPulpklIPnu3Yv6BepIgiMGuWvE8iNDIiPd9dLjm/zo03RmeuHC5yunev/b2xYt0yCh7xGqjyeyTwSNALL1SnHlaUQyJHT9QWOTRJqYMkabd+TiJUPdQ433munGgtSLl5M2uV1KIqt25J5WMqAazoL1kFIsftBv78k23XlpE7VHgI+alTQMuW6h03SokKkZOeng5BEDBlyhSju1Izat9IY8UErzWnTrFoHUD99XMSoerhdFZeng3HVN+uHWv5DSiaePNN4NAhtn3HHcpurC4XynbuhDcuDgIAXHWVlj2MDbR2I2jWjM31Xm+lrNVEYCwvcrKysrBw4UJ0V2KeNRotrAUul7wk8re/kekyHPjvkpgI1K2r3nFjrWaSHpTXW8J114Vnqm/blrUnTjBxGy2IIvDQQ/J+KDfWtDSc4gkW3W5aTo0UrS24Dod8HUSrRVJFLC1yzpw5g7vuugtvv/02GjdubHR3aodHV6nleMzhTrMnTqh73FhBbYdwf1wu4OKL2fZ775EIjRTuc1Jb5fFgNGgg/87RZM2J8MZaFh/PNl5+mRzkI0UPCy6VdlBMnNEdiIQHHngA119/Pf7+97/j+eefr/G9paWlKC0trdgvKioCAHg8Hnj4UoVK8ONVPW7csWMQAJQ1aQJJze9s1gwOAJIookzl/4vWBBsrPREOH0YcAF/TpvBq0A97ixaw7dyJMq83ot/dDGNlNHGbN7NrqGnTGseyprGyt20L29GjKNu9G5IVLMBKSE1FnCBA8MuhItntKGvTRl6KDUJZTg6a/f67/ILPB+n++1GmNAdRDKHoGmzeHLYpU2CfOxcA+x288+dDat681t9CKfbmzWHbtg1loqjuvURltJqzQjmeZUXO0qVLsXnzZmRlZSl6f3p6Omb65YTgrFy5Egm8qqvKZGZmVtq/Pi8PcQBWbd+OYhWtLo6iIlwHQCgowHeffw6ff8p7i1B1rPQkddUq9ACQ7/Mh65tvVD9+n/Pn0QrAzp9/xv5GjSI+npFjZSRpX3+N7uVLKfY778SWSZNwqJYsvYHG6pL4eKQAEBcvxu5z51DCTf8W58p27dCk3HLjs9nw+4QJOLR1q2z9CkLStm24PECxzg3vv4/j3bpp1l8rU9s1mBwXh34AClu3xvpnnmHnmIpzSy+vF60B7F6zBvsuvFC142qF2nNWcXGx4vcKkmS9WgC5ubno06cPVq5ciR49egAABg4ciJ49e+LVV18N+JlAlpyUlBQUFBQgMTFR1f55PB5kZmZi8ODBcHDBcfYsHOVLap7jx4GGDdX7QklCXGIihNJSeHbvBtLS1Du2xgQcK52xPfss7M8/D+/48fC98Yb6x3/oIdgXLID36afhmz497OOYYawMQxQR1749S1hXjmS3o2zv3oDWhprGyj58OGxffcWOYbPBm5EBafRobfuvA3H9+0PIzoZ3xgz47r1XsRWmLCcHdTt2rG4FCjK2sYzSa9C2cCHsDz4I3003wfvxx6r3w/bkk7DPmQPvQw/BN3u26sdXC63mrKKiIiQlJaGwsLDW+7clLTmbNm3CsWPH0JuHgwLwer346aef8MYbb6C0tBR2u73SZ+Lj4xHP1539cDgcmt0wKh2b52FxOOA4exZo0kTdL2vVCti/H46jR1m2U4uh5e9QKwUFANiykl2LPpQX6bSfPKnK8Q0dK6PIyanmcyJ4vXAcPFijqK82VqIIfP21fAyfD3GTJjFHZivf0CWpwv/GPmIE7KE86KSmYsukSeg5fz4TOoIA4a234LDQw5Le1HoNls/3tmbNYNPiWi0v52M/dkybOUtl1J6zQjmWJR2Pr7nmGmzbtg1btmyp+NenTx/cdddd2LJlSzWBYwoWLWKtx8PqVqnt2OdfqJMIDa2qBXP4cki5mCLCQK109tFa++fYMeD0aTZGPIIsBA4NHgzfww+znVtuIQf5SOHXevkDjuqQ47FiLClyGjZsiK5du1b6V79+fVx44YXoyiONzIQeFZB5oU4SOaHDc4vEaWTY5GvmlNMifJxOOccNEH46+2jNXbR3L2tbtw47DYL0t7+xjY0bKYw8Uv76i7Va+XvxZI9//km/VS1YUuRYDj2eHrnI+fVXOulDwe1mkzoATJqkTegsWXIiR5LkFAzvvBN+OnunE5g/X96Plto/v/3G2kj+H3v2sDY3l8LII4Vf61qJnLVrWUu/Va1EjchZvXp1UKdjw9GjcmxuLms/+YROeqXoVeCURE7kHDzIlmMcDuDuuyO7md9/v7w0+cUX1l+acbuBRx9l2+vWhXXt1y0ogP1f/5JfoDprkaGlyBFFwD+AgX6rGokakWNqnE5g6FB5X+2nR1EEPvpI3qeTXhl61ZbyX66yXjCjOeBh0J07M6ETKamprD1/PvJjGUkkldn9aJCXVylyDUB0+CoZhZYih2rihQSJHL3gy0ljxqhfOTZanSm1Ri//DD7RlZQAIeR3IPz4+WfW+vvlRELr1qzl/lhWRaUb3pnk5IpCnRVEg6+SUWgpcqLVr0wjSOToBT/p+/ZVf/2fTvrwcDqBp56S97Xyz6hfH+DpC2jJKnTcboDnAlm+XJ2l2JQU1vJlXqui0rVfkpQEb0ZG5WNFg6+SERQXyw8zWogcqokXEiRy9EJLZR+tzpR6MGAAa9u3V9/CxhEEirAKl6p+U2Eux1SDixyrW3KcTsA/gWUE1740ejSwZYv8wvDhkfcvFuFzfZ066iZ99cflAgYNYtvp6db3K9MQEjl6wW9uWnnb33+/nGDwm2/opFcKz5HTrp22opBn5dy5U7vviEa08j/gy1VWt+QAAA/9rlcPOHAgsmu/Wzc5ueLmzZH3LRbxf6CtGnCiJtyvzMS1q8wAiRy94Ce+lnVG+MRdVqbdd0QbWlWG98ftBnbtYtv33EORb6Gg1VJstCxXASzyDGBCnf+/IqFPH9YuW0bBC+Ggdfg4h89ZfA4jAkIiRw98PoAX5NTyxG/ZkrVHjmj3HdGG1tmOtVpuiRWcTuDee+V9tZZiuRg4fJgtU1oZLnLatFHneNxy9vbblI4iHHbvZm2DBtp+D4kcRZDI0YNTp+SJQ0tLDomc0OEiRytLDoV7Rs4FF7D2H/9Qz2+qvEAnJIlZQKx8I+cih1tyI0EUmXM3h9JRhIbbDfDyGGHmLFIMfzDjcxgREBI5esDNlw0bMmc0raDSDqHDn4K0suRQ5Fvk8Bw511+vjt+UKAITJsj7Vr+Rc+dpNSw5JMrDp2rOIkDb84osOYogkaMHWjsdc8iSEzpaL1fxcE/ugCgIFPkWCpIkO8CqZW2Lthu5mstVJMrDR+/zikSOIkjk6IEeTseALHLIkqMcrZerALa8wkuOXHYZRb6Fwty5bLkXAG68UR3zf7TdyNUUOSTKw0fv84rPWSdOUIRVDZDI0QO9vO35chVZcpTh82lvyeFcdBFrz5zR9nuiCVEEHntM3ldrWSmabuRlZfJ4qFHuAmAi/N//ZttDh5IoV4reSfqaNGEiCiC/nBogkaMHei9XHTtGyl4JJ08yczIANG2q7Xfx356SASpHy3IlLhfwxBNs+9ZbrXsjnztXXiLp3189R9drrmHtpk3W9VUyApcL6NKFbb/7rrbnlc0mz1skcoJCIkcP9FquatqUKXtJArKztf2uaICvZTdurK1DOECVyMOhQ4fqr6lp/r/4YtYWFqpzPL0RReDJJ+V9NR2ot21j7V9/URh5qJw+zVpuvdUS8supFRI5esCjH9QyJwdj8WLZMjFgAE1MtbF9O2sbN9b+u7jApSKdynE6ZeskoH65En7svDx1jqc3Wjm6iqIcBg1YP/pMb7i1VuuHWkAWOatX0+8TBBI5WuN2Ax9+yLbnzNFOeFRNOkcTU8243cDtt7Pt/fu1F4QNGsjWIrLmKKO0VDbDL12qfm0xq0cjduhQvWyAGpauaIs+05PSUuDsWbath8gpKmLtSy+RxS0IJHK0RM9stzQxKUfvfBYAuxnRklVo7NzJHGsvuAC47Tb1HTiTk1l76hRw7py6x9YDpxP4+9/lfbUsXdEWfaYnPLO9zQY0aqTtd4kisGGDvE8PtgEhkaMhwr59+gkPmpiUY5QgpErkocGTAHbvrk2hw0aNWFFLwLpLVnyp9YEH1LN08Sgh//nEqtFnesOv7caNq8/HaqOlY34UQSJHQ6T27fUTHtEUFqs1RglCsuSExtq1rG3XTpvjC4L1l6x4Tqyrr1b3Wne5gB075PnkuuvUO3Y0wy05eixVabVcGWWQyNESpxNYsEDeV9txsiouFwspBYDLL7duWKzWVBWEWuez4JDIUY7bzQpEAiwUVytfA75kZVWRw/vNc2SpSceOQOfObHvTJvWPH41wS06TJtp/l9NZ2UFc6/uLRSGRozX//Ke8vXu39sKja1fW8icKIjAuF9CrF9tesEAfQUjLVcrQ05fNyhFWkiSLHP8oNDXp04e1//sf+XooQc/IKgAYNYq1jRur75gfJZDI0Rr+1N6ggXZmd3+oSKdyeLkA/rSqNWTJUYaePlNcHPz6q/Vu4sePs2geQDuRc/48a997j6J3lKC3yOEh5IWFslWSqASJHK3RK9sxh092hYVyKCMRGL1KOnD4xEcip2b09DXIzWXtsmXWu4nzB5mmTbVJZimKbFw4FL1TO3r65ADyfcXnIwtxEEjkaI1edas4iYlA/fps24omeL0oLpbrSGlZnNMfKu2gDKcT+Mc/5H2tfA1EEfj0U3nfajdxLnK08McBKC1FOOjpkwOwBLNcUFFph4CQyNEavUo6cPwjRmjJKjh8QoiPBxo21Oc7ablKOfHxrB0zRjtfA6uH4GotcigtRejovVwFUGmHWiCRozV6L1cB1g+L1QP/pSotcrAEgk98omgda4FR8Bw5t96qXbSI1W/iO3eyVqukc5SWInT0Xq4CSOTUAokcrdF7uQog52MlcJGj11IVAPzwA2sLCqzn/6EnpaUsRwugbXV4pxOYPVvet1IIrtsNvPoq2/7wQ+3OJZcLeO01tt22LTB0qDbfEy3k57OW1xDUAxI5NUIiR2v0Xq4CyJKjBD4h6OV0LIrA00/L+1bz/9CT9HT5JnHZZdqKwYceki0VGzZYIwS3alkSLUPsATmA4c8/SZzXhNsN7NnDtu++W79x4nMYiZyAkMjRGiOWq7glJzubbqLB0NuSQ06cyhBF4Nln5X2txaDdLt8k7HZtvkNt9DyXSJwrw8gCyXwOI8fjgJDI0RojLDm7drF29Wp68gqG3pYcq/t/6IURzsBWM/freS6ROFeGkeNktfNXZ0jkaI3elhxRlNPhA/TkFQy9c+RwJ06OXqUkrEaHDtVf01oM8psE96cwO3qWiyFxrgwjx4lETo2QyNEavR2P6clLGUY4HrtcQN++bHv+fGv4f+hNcnLlxHZ6OANb8SZx883y9r592p1LgSqSZ2SQOK+K01l5WU9PJ3Z+/h48SA+zASCRoyWSpH/eBHryUgafDPQKH+dQ6vWa2bWLlRKoVw/4/nt96vG0aMFaK4kcbnVq1gxITdX2u1wu9vDExedll2n7fVblqqtYm5qqbx2pVatYS1GbAbGsyElPT0ffvn3RsGFDNGvWDLfccgt2795tdLcqU1goR4noJXJoWaR23G5WLBUA7rlH30mBnwdUQDUwmZms7doVuOYafZ+ErShyuEDTmrZtgSuuYNuLFpHFIBD8gbZ1a/3mW1EEnnxS3if3hGpYVuSsWbMGDzzwANavX4/MzEyUlZVhyJAhOGumek18qapuXX2z3LpcQKdObHvJEloW8cfIKAiAKpHXhNsNTJvGtjdu1E98kshRBi8X8+qrZDEIhBHZjsk9oVbijO5AuHz33XeV9hcvXoxmzZph06ZNuIqbDf0oLS1FKa/YC6CoqAgA4PF44PF4VO1bxfHeeYe1JSWQ2rSBNyMD0ujRqn5XMOytW8O2axfKSkogqfz/UxM+Vmr/BsEQdu5EXIBJoWzXLkg6+OfYGjWCHYDvr7/gDfH/rPdY6YooIm78eAh+uV+k++9H2aBBYT0VhzJWwoUXIg6AlJ+PMouMre3wYXYeNWsW8nlUFUVjJYqI+/prVCzu+nwR/T5Wpaaxsv31F/tNGjeO+DdRTGoq4mw2CH5zmmS3o6xNG8AE57JWc1Yox7OsyKlKYWEhAKBJkMJo6enpmDlzZrXXV65ciYSEBNX7U7egAHFz5lTsCz4fbBMnItNuR4kOTsg9vV60AbB39Wrs0TJrrEpk8mUKjalbUIAhgiDfTAH4bDb8cPAgSr75RvPvb3PkCHoCOLprF34L8/v0Gis9Sdq2DZdXEZ+C14sN77+P4926hX1cJWOVeOAA/gagNDcXK3Q4B9Sgy/r1aA/gz7NnsUOlPtc0Vlr9PlYl0Fh13bQJ7QD8efKkar+JElpPnIieb74JAYAkCNgyYQIObd0ql0YxAWrPWcXFxYrfK0hS1aQUyvB4PMjPz0dxcTGaNm0aVFzogSRJuPnmm3Hy5En8/PPPAd8TyJKTkpKCgoICJCYmqtofj8eD7Llzcfl//lPtb2WZmZCuvlrV7wuEbfp02NPT4b3/fvj+7/80/75w8Xg8yMzMxODBg+FwOHT5Ttvjj8NenhJfstvhnT9fNwub8MkniLvjDvguuwze1atD+qwRY6Ubooi49u2rP5Hu3Ru2JUfxWOXnw9G6NSQAZXv2aO/IqwL2e+6BbdkyeF95Bb6HH47oWIrGSuXfx6rUNFb20aNhe/99eF98Eb5HH9W1X/Ybb4RtxQp4Z8yA76mndP3umtBqzioqKkJSUhIKCwtrvX+HZMk5c+YM3n//fXz44Yf47bffKokGp9OJIUOGYPz48ejLw2R14sEHH8TWrVuxdu3aoO+Jj49HPK9s7IfD4dDkhnEmORlSFYsB7HbEdeoE6HGDSklhX5mfD7sFboha/Q4B6dePtT16QPjqK8TpOUmXL4nZTp6ELcz/r65jpRdpacDIkcAHH7B9ux3CW2/BkZYW0WEVjVX50rcAwNGpE3PcN7sfW3kKBHurVqpd3zWOVVoaG5dx4yqSNQrp6RH/PlYl4FidOgUAsDdrpv+c27Yt+26v15TzvdpzVijHUux4PG/ePKSmpuLtt9/GoEGD8Omnn2LLli3YvXs3fv31V0yfPh1lZWUYPHgwhg0bhr1794bV+VCZPHkyvvjiC6xatQpOEz1RlCQlQbr2WvkFvYv/8dIOVL+qOjxHTqdO+j+FcosnOR4HZ9Qo/UJwRRGYMEHet0p0Sl4ea/V0PHa5gClT5P0nniDnY3+McDzmWNF5XicUW3LWrVuHVatWoVuQ9dd+/fphzJgxWLBgAdxuN9asWYMOgbKXqoQkSZg8eTKWL1+O1atXI82ETxRSmzZs4+67WdFBPW+ovEgnVSKvjt4lHfzxDyGXJP3z9JgZbokdPFi/a6Wm6BQTPTRVw4joKlGUK5IDsiAcOtTcY6UXXOQY4bpBIicoikXO//73P0Xvi4+Px6RJk8LukFIeeOABfPDBB/j888/RsGFD5Jdf9I0aNUK9evU0/34lCDwXyiWX6D8JcEtOfj6btK1SfFAP9C7p4A+fAMvKgNOnAZX9wSzLvHnAoUNs+957gZISfSw5PHmmv9Axe/LMkpKKpZGKPFx6YFVBqBdkyTElYeXJGTBgQEUItlFkZGSgsLAQAwcORHJycsW/ZcuWGdqvSpw8yVojlH2zZsxK4POxauSEjBElHTgJCSxvEkBLVhxRBB55RN7Xc8mIJ8/kFjVBMH/yzNdfl7d79NBvyYiyqQfH55PneyNEDn9gI5FTjbBEzoYNG1BSUlLt9aKiIjz22GMRd0oJkiQF/Hfffffp8v2K4JYcI0TOu+/K1Zz796e1c3+MXK4CKOtxVYyoPO6Py8WsRwAwebK5nY6NzHDLBaG/VXjkSO2/1wqcOiWfw0YuV/EHOKKCkETO8OHDMWvWLAiCgGMBBvPs2bOYO3euap2zOoJRlhyjs/qaHSMtOQA5H1fFiMrjVeE+fX4Ro6bE6Ay3LhdzCu/Yke2//z5lPwbka7lBg8oFZvWCz2Vnz7J/RAUhhZC3adMGX331FSRJQo8ePXDhhReiR48e6NGjB7p3746tW7cimQoQyvAndb3Nl7R2HhxJMt6Sw9Pj790LDBliTB/MRNVknHpHIgIAT9D511/6fWc4dOjAltSqpKbQfclozx55mxyQjZvrOQ0asKK2586x+a08pJwIUeTMmzcPAHMuXrt2LY4cOYLs7Gxs2bIFy5cvh8/nw8svv6xJRy2H1ys7B+ptybGiM6VenD3LJgLAGJHjdgPr17PtyZOZf46Zl0f04JNPWNumDVtmbd9e/5slzwpudpHjdALDh8tjZoQgrGl5MVZFjpFOxwATvs2bMysbiZxKhFXW4ezZs4iLYx+9+eabVe1QtOA4e1ZOBNi4sb5fztfOeeIuKzhT6gVfqkpIYE8/elJ1GVGS6AnY7WZjALDoqj//BAYO1L8fVhE5gHwDGzECmDtX/3Mn0EOUzRbbD1E8L5wGJYIU06yZLHKIChT75Bzi4Z1AhcCpicMxnp+lzpkzbKNhQ30yHFfF5QJeeYVtX3UVWQs4Ri5VGe1PYTa46PMrymmY7xgXOQUF+n93qHAh1quXMeK4akQawH67FSv074sZcLuBqVPZ9tq1xvkncb+cn38m/0s/FIucvn37Yty4cfjtt9+CvqewsBBvv/02unbtik8//VSVDlqVCpFjYE0v8MSNFMUjY2SOHArBrYyZRB/3yTl+XN/cM+HAhZiRhXeHDq0ucsaPB7KyjOuTEVQV6oBxQp27R8ydS87gfihertq5cydefPFFDBs2DA6HA3369EHLli1Rt25dnDx5Ejt27MD27dvRp08fvPLKK7jWv6RBDOI4fZptGClyKOtxdXbvZq0RSfj4E/D48fLNPZaXEc3iRAvIvhSSxB4KjBQQtcFFDhdmRhBIoPp8wKWXWqP2l1qYJchDFOWM4QA5g/uh2JLTpEkTzJ49G0eOHEFGRgYuuugiFBQUVNSouuuuu7Bp0yb88ssvMS9wAJNYcnjW4xMnWJbUWMftZvV2AOCHH4x50nG5mLABgJ49Y+dmEAins7KgMcKJluNwyL5zZvfL4f0zUogFskoC7OY6fnzsLJeYxTprdK4pExOy43HdunUxfPhwDB8+XIv+RA2msORccAGL3ikpYQX9TFjfSzeC+X8Y8aTDc4zEej6LN96QHTYFgdV3M1L0NW3Kstaa3S/HDJacQFZJjs/Halxxn0COKALr1rHttDTgzBkmEqxsaeDjMHYs27fZjBHqZrKKmoywMh4TtWMKS44g0JIVx0z+H5QMkN3wHnpI3pcklsnXSAuAFXLlnD8PFBaybaOX1Fwulg4hUJHZOXOAjAzmo/PRR6zSe+vWwO23s3/9+gGDBrHXqoohq+Fyyf6PbrcxQt3prFwaxUirqMnQTORs2rRJq0NbAocZRA4gL1kdOWJsP4zGLGZlQPb/OHmyuvCKFcxoXrdCGDkXxnY7s9QaTd++lW+uHEkCJk1iYub229kNt+rvzd/3+ONMBFl5iYvP99xKawRjxrC2fn0WSh7LS+F+aCZybr31Vq0ObQnqcZOy0dW/uSUn1kUONytzjDIrA7LwlSQ5IiLWCFQ+wWjzOhc5GzaY94bLBdiFFwb2iTGChx+OvC9vvWXtiCAj6xRy/Es7GG3lMxFhJQPk3HbbbQFflyQJJ2I4bFlYvBjJPKvtCy8AqanGqWpuyfn1V+Cf/4xt86XLBTz6KBMWK1YAf/+7Mf2oU4clIjxzhk2ORlv79MbtZokq/TGDeZ0/CLz7LvDee+aMEjKDP05VavLPCQXutGy1iKCyMnkJ0chruXFjIC6O9efYMSAlxbi+mIiIRM7333+P//73v2hQJXOsJEn46aefIuqYZRFF2CdORMUqtdFZbXNzWfvRR8DHH5tz4taLsjLZctK9u6FdQZMmTOQcPx5bzoGB8orYbEyE9+1rbL++/VbeN2sILrfkmEnkAGxO6d4d6N8/8LKUUoI5LZsZXogZ0D+7vT+CwPJ/HTnCkp6SyAEQ4XLVwIED0aBBA1x99dWV/g0cOBC9evVSq4/WYu9eCGZxcBVFJmw4sV6NnD8F22zG1Zjh8O+PNYtnsPwqRkeamdFHKBA8Go0XeTUTffsCb78d2BEZYK/ffz974Hr66eDvmzfPWnMUv4YbNWKWFCPhS1Y86SkRniXn9OnTaNiwYY1Zjb/77ruwO2VpOnSAZLNVFjpG+RpQIb3K8JIOSUnG+0pxkRNrEVaBMuIa7YsDWCME1+0GnnmGbX/3nXGRPDXhcjHr16+/sv3UVOYECwADBsjzzogRzNn4kUeY6PHH62WfHzFCr15Hhhn8cThc5FD9qgrCsuRceeWVyM/PV7sv0YHTCe+bb6JiqjTS18BMEUVmgD/d8InASGIxjDwrS07G6M+sWcaLbqeTWRc4ZvAR8sdMdb5qw+lkAmXECGbd4dtVx9LpZKHmgZyWR460jhOy0RXI/SGRU42wRE6fPn3Qv39/7Nq1q9Lr2dnZuO6661TpmJWR/vEP2Sdn1y7jnracTmD+fHnfbBO33hhZnLMqsbZc5XYH99fo00f//gSCO0PHxQEHDpjLSmKmPE9qwp2WqwodKy2tkyXH1IQlchYtWoQxY8bgiiuuwNq1a7Fnzx7cdttt6NOnD+Lj49Xuo/UoP+mlhATjrSb33y+HE375pbkmbr0xsjhnVaLNkiOKwKpVcvK3jz5ir4ki267qbMwxk2WRO/OWlTH/CjMRzVZZlwv48MPqr1tFxJlJ5PC5jUROBWF7SU2fPh116tTB4MGD4fV6MXToUGRlZeGSSy5Rs3+WRODe9mY46QG2Lv7XX4Fzk8QSZlquiiZLzuzZwL/+FTh8uKqfiz9G5ioKREIC+1dczK4XI4q4BsMs5QO04rLL2P/JDL6MoWLG5SpyPK4gLEtOXl4eHnroITz33HPo3LkzHA4HRo4cSQKHYyZlD7DU6YAcTh6rmGm5KhosOaLIlngeeyx4fpSaBM769eazLJo567HLJZ+7X39tvrGLBC7i/COu0tOtIeLMNN/TclU1whI5bdu2xc8//4z//e9/2LRpEz799FNMmjQJL730ktr9syZ8ucoMJz0g50uIdZFDlhz1mD2bnVeLFoX3+WnTjM2LEwwzixxJknOydOlibF+0wOVigpnzxBPWcD42o8jJzbWGP5MOhCVyFi9ejOzsbFx//fUAgKFDh2LVqlV47bXXMGnSJFU7aEUEftIbmRjKHxI5DDP65HC/FSvxyiuVb0ahYrOxUgBmhPvlmLESeVER4PGwbbMlA1QDUWTimWMV52MzLVf98ANrCwutXSZDRcISOSNHjqz22iWXXIJ169Zh9erVkfbJ+phJ2QMkcji8EnskGVnVYtUq1ubnW2syEkXmfxMudjtbljDrMoSZLTlceNWvD9SrZ2xftMCqEWRmme9FkZWt4VhFJGqMqhXeUlNT8csvv6h5SGtSblKWyJJjHhYtAvLy2PYttxgrKkRRTuoGWGsy+uWXmv1snnqKRVNNmCAnXOSvr1pl/urIZhY5Zi3poBZWjSDjFuKyMmP7YVWRqDGql7FtbJYbu4EIZlH2HO54fPgwO+ljDVFkIoJjtKiw6mTkdrMkbYGYMAE4eJAVpB0xAsjIYIJm1Sr59YEDzWvB4ZhZ5HBLTrRWmObOx/7ZyIOdb2bB7ZYfHocPN/bhyaoiUWNUFzkEzOd43Lw5O9m9XmDzZqN7oz9mExVWnIx4xt2q2GzAyy8zURMoo60VhI0/3EpiZpETrZYcgFn5cnLka+H99827nFv1mjD64YmLRE60pRkIExI5WsAjIMxi1Xr3XdmCc+ml5pwwtMRsosKKk1EgoQgAS5dG5oRsNriVxIyOx1x4Raslx58//5S3jRYPwTDbwxPARCK3fk2dau6lYZ0gkaMBplquMtvThhE4nXLKfsAc5S1cLqBHD7a9aJH5J6ONG6u/ZrezoovRhBWWq6LZkgNYpyK82R6eOB06sLa42Nh+mISwMx7/8MMP+OGHH3Ds2DH4qqjZd955J+KOWRozOR7X9LRhZsuB2nTuzNqrrwb+3/8zx/+9RQvg998rJ0AzI6Jo3sKaamNmkRMrlhwuHsye/djpBB5/nF0HgDkengAgOZm1R44Y2w+TEJYlZ+bMmRgyZAh++OEHFBQU4OTJk5X+xTSSJIcUmiFvglmfNvQmP5+13bsbPwlxrJIQMNhSlVkKa6oJFxBnzpjPchArlpyq2Y8FwRziIRCXX87aiy4yT+Rgy5as5dGkMU5YlpwFCxbg3XffxT333KN2f6zPmTMQeCihGZar+IQxfrx8ozLrhKElXOS0aGFsP/zhIsfspR0CCeJoFcoffyxvd+zIrh0z3LiA2LHkAGzMd+9miSdvvNE8v0FV+LWbmmqeOZUsOZUIy5Jz/vx5XHbZZWr3JWTmz5+PtLQ01K1bF71798bPP/9sdJcqTnpvXJx5bl4uF1uiAdiNyawThpaYUeRYpX7VH39U3jeLWV5tzJZqoCqxYsnhDB3K2g0bzPMbVMVMVnsOFzn5+cFrysUQYYmcsWPH4oMPPlC7LyGxbNkyTJkyBU8//TSys7Nx5ZVX4tprr8WhQ4cM7RfK/ZHsZWWIa9/ePJFMvE7Q4cPmyPirN2YUOVZYrnK7gfLyLQBYRlWzmOXVxozRMv7wootGJ53Ti507WXv0qHnDyM0UZMLhc1xZmTmjBHUmrOWqkpISLFy4EN9//z26d+8Oh8NR6e9z585VpXM1MXfuXLhcLowdOxYA8Oqrr2LFihXIyMhAenp6tfeXlpaitLS0Yr+oqAgA4PF44OH1YCJFFBH3/PPgbqSCzwfp/vtRNmiQ8U+9LVogThAgnDsHT16eaUzefOxV+w2CEJefDwGAJylJrv9jMEJiIuIA+AoK4FXQJ73GqgJRRNz48RD8RLE0bx7KJk0yzRgGI6yxSk1FnM0GwU/oSHY7ytq0Mfz/KyxahLjTp1mfrrkG3owMSKNHq3Js3c8rJYgi4h5+uGIuhUnm0qpjZfvrL9gBeBs1gs9E4xfXtCmEv/6C59AhQ1OZaHVuhXK8sETO1q1b0bNnTwDAH1VM2YIOkSLnz5/Hpk2b8ESViI8hQ4Zg3bp1AT+Tnp6OmTNnVnt95cqVSEhIUKVfSdu24fIqVhLB68WG99/H8W7dVPmOSBjSpAnqHT+OdR98gFM8zNAkZGZmandwrxc3Hj0KAcCP27ejxCQOec3278cAAEU5OVjzzTeKP6fpWPmRtG0bLq9i2TDT+ayEUMeq9cSJ6PnmmxAASIKALRMm4NDWrcDWrdp0UAF1Cwow5IEHKvYFnw+2iRORabejRMWlK73OKyWY/dzjY9V7+3Y4Aew4ehT7Q7iGtWZg/fpo9Ndf2PjllzjGa/YZiNrnVnEI4fGCJFlv7eLIkSNo1aoVfvnll0q+QS+++CKWLFmC3bt3V/tMIEtOSkoKCgoKkJiYqE7HRBFx7dtXfxLcu9d4Sw4A+8CBsK1bh7IPPoD0z38a3R0ATJFnZmZi8ODB1SyCqnHsGBxOJyRBQNnZs0Bc2JkTVEXIykLc5ZdDSklBmX/ysyDoMlb+iCLi2rWrbMkx0flcE5GMle2++2D/4AN4J0+Gb84cjXqoHGH1asQNGVLt9bLMTEhXXx3x8XU/r5Rg0rm06ljZr7sOtu+/R9k770C6+27D+lUV+403wrZiBbzTpsH34IOGjZlW51ZRURGSkpJQWFhY6/3bHLN9mFS1GkmSFNSSFB8fj/j4+GqvOxwO9QY/LQ1YuBDS/fdD8Hoh2e0Q3noLjrQ0dY4fKWlpwLp1iBNFwCyTWTmq/g5VKXfsFZo2hcNM1ZubNwfAkkeG8n/XdKz8SUtjyf64ddRs57MCwhqrtm0BAHafD3YzXCcXXxwwb0xcp06qXse6nVdKKJ9L/aNCzXTuVYxVuU9OXLNm5ppTz54FANjnzoX91VcNjxJU+9wK5VhhZzw+deoU5syZg7Fjx2LcuHGYO3cuCgsLwz1cSCQlJcFutyOfO5OWc+zYMTQvv3EYhsuFsr17sfa559hTh5kcNFNTWfvLL+aNVtACMzodA7Kz4tmzgJ+V0TRIEnDgANt++unodTiuCl8CMovTphkzduuBy1U5su/WW43rSzDMGF0limyO55gtSlBnwhI5GzduRLt27TBv3jycOHECBQUFmDdvHtq1a4fNOhSArFOnDnr37l1tnS8zM9MUoe1wOtm6sdkmIV4t9/PPzRutoAVmFTmNGsmJGs0YRj5rlpxQLD0dWLHC2P7oBb9hmUXkACyJJQBceWXsiE2AWbHKLWv4/Xdj+xIIM0ZXWaUshk6EJXKmTp2Km266CTk5Ofj000+xfPlyHDhwADfccAOmTJmichcDM23aNCxatAjvvPMOdu7cialTp+LQoUOYMGGCLt9vOURRzpUDxJa637WLtQ0bGtuPqths8uRotjByUWTWG04snS9ms+QAciLAzp3N9/CkNbzG2//+Z67zz+MByqN0TSVyOnSoXiomWpN3KiBsS86//vUvxPk5cMbFxeHxxx/HxkCF/DTg9ttvx6uvvopnn30WPXv2xE8//YRvvvkGbdq00eX7LYfZc4Bohdst15b59FPzWa/MmhAwlp8Gucgx028Sa4kA/fF6WZuRYS4LtH8JIzPUKeQ4nZVrzcXK8mYQwhI5iYmJAZPu5ebmoqGOT8uTJk1CTk4OSktLsWnTJlx11VW6fbfliMUaVrwCO79ZS5L5rBFmTQgYKMVAtJ8vHH9LjlmCT2OppIM/ogh8+aW8byaLIr9mL7iAXRtmgq9o2O3Mry5WljcDEJbIuf322+FyubBs2TLk5uZCFEUsXboUY8eOxR133KF2Hwk14DWsODZb9Kt7K1ivuCXHbM7gVR9WYulpkAvPkhIghHwcmhKrlhwzWxTN6I/D4f6HXi9gpohSAwgrhHz27NkQBAH33nsvyspTjDscDkycOBGz+NIAYT5cLuC//wXWrGFLONGu7rn1qkroramsEXyinDMHmDfP8FDPCrKyWOt0snOmffvYEDgA0KABUKcOcP48Exf16xvdo9gVOWa+hvlyppkiqzh16rBzpaCABQ/E2nnjR1iWnDp16uC1117DyZMnsWXLFmRnZ+PEiROYN29ewFw0hIno2pW1Zlse0QKzW69EEVi/Xt43kyl+5UrW9uoFDBxonjHTA0Ewn19OrC5XmfkaNrMlB6Bq5OWEnScHABISEtCtWzd0795dtdIIhMa0a8daBRl2o4K77pK3f//dHFYSjllN8W438MorbPurr8zj6KknZgojl6TYteQA7JrlOXIefdQ81/D+/aytW9fYfgSDixyTlLExCsXLVdOmTcNzzz2H+vXrY9q0aTW+V48CnUSYcDOv0TdSveCVm+vUAbp0MbYvVeGhnv5Cx2hTPHfW5nBn7aFDzfH0rBdmCiM/fZotnQGxKXIAoG9fYPlywAR1mABAWLwYeO45tvPFF+xBwCzii9OyJWtj3JKjWORkZ2dXVP7Mzs4O+j49CnQSEcAtObt2seSAKSnG9kdr/BMBmu3c5JlsuTneDM69NTlrx6LIMcNyFRdaCQnsXyxy8cWs3bHD2H6AFUy1T5xYPWrTbA8CZMkBEILIWbVqVcX2kiVL4HQ6YasSkixJEnJ5Vl3CnPz0E2vPnWNlHszi6KoVZs12zBkxgv0GqanAzz8bP0ma0bpkBGay5MSqP44/nTuzdtcuJsKrpsPQkQZ5eZUKhwIw54MAWXIAhOmTk5aWhoIAF/+JEyeQZpICakQARBF44AF530yOrlphdpHDnRZLS80xQTqdlWsEmcG6ZATcJ+f3342/PmLZH4fTti0rgHnuXGVnfQM4k5wMyQo5x8iSAyBMkSMFSZB15swZ1DWrExZhjbwxamN2keOfDNAsiefq1GHtuHGxVSfJH35NmKHOG1lygCVLWBkFALjiCkN/j5KkJHgzMuQXzBTx5Q8XOfv3Gy/UDSSkPDnc4VgQBDzzzDOVIqq8Xi82bNiAnj17qtpBQkXMnHNCK/hTDL/gzYa/Jae42Bw5WbZsYe2tt5pv4tYDUQSWLZP3ucXTKJ8LLrhiNambCZ3hpdGjmeOxKDKH6JtuMqQfNfLzz6w9epQJ9Wh3TQhCSJac7OxsZGdnQ5IkbNu2rWI/Ozsbu3btQo8ePfDuu+9q1FUiYnjOCe6AKwjmfAJRE7Nbcho0YGZ4wBy5i4qLgd272XazZsb2xSjMFNrvdgMvvsi2P/ssNsP5zWqBLixkLXeKNhOiCDz1lLwfC64JQQjJksOdj0ePHo3XXnsNiYmJmnSK0BCXiz0R3nUXkJYW/cre7CJHEJg15+hRFsljdLTbiy/KN/h+/WLz6c8sFs9gtdfMFsWjNWb5PfzxeFhoP2DOZIAUJVlBWD45ixcvJoFjZXgh04MH5fwb0Qp/cjEwGqNWuF+O0eHKoihbDYDYffpzOiuPg1HO12a1YOgNt0D7X8NGW6B5BXJBYAU6zUYsFmQOQli1q5599tka//7MM8+E1RlCJ1q1YgUYT59mEyYPz4w2Fi2Sk4fdeqt5rRJmqURe0zJNjD394YEHgCeeYNs7dgAXXaR/H8xowTAKl4tZFrt3Z/sjRxrbH/5AYsYK5IAsDMeNY9e0WZ2jdSAskbN8+fJK+x6PBwcOHEBcXBzatWtHIsfsCALQqRMrwrhzZ3SKHFFkVgiO0c6jNcHN3UZbcjp0qP5arN5U69cH4uOZQ7hR9fj4jWrsWLYfwzcqAEC3buxaOXGCCe8ePQzrisAtOWZcquK4XMz5eMkSYOJEcz7g6UBYNnx/h+Ps7Gz88ccfyMvLwzXXXIOpU6eq3UdCCzp1Yu3XX0fncoSVTP1mseQ4nUCjRvJ+rObIAdiDgBnqV7lcAHcN+OGHmL1RVcCF+N69xvbD7MU5OdwpmjtJxyCqOSokJibi2WefxX/+8x+1DkloydmzrF282Pg8IFpgpTVps1hyTp2SJ8Mvv4zdHDkcM2Q99niAoiK23bWrcf0wC3zZkESOMnggQwxXIlDVG/PUqVMojGHFaBl4bgdONDqYOp3AqFHyvpmtEmax5OzcydpWrYAbbjDnWOmJGepX8e+22YDGjY3rh1nglpw1awydrwR+rfJr16yQyAnPJ+f111+vtC9JEvLy8vDf//4Xw4YNU6VjhIbEioNp27asHTYMePtt8/7fzGLJ4cUPo9FHKxzMYMnh392kiTkdXPWGC5sVK4xNcGc1S44oGl7zyyjCEjnz5s2rtG+z2dC0aVOMGjUKTz75pCodIzQkVqI2eGRV377mFTiAeSw5Gzaw1uhcPWbBDD45VNJBRhRZxCTHyGACq4icVq2Yf9n58+xcat7c6B7pTlgi58CBA2r3g9CTWIna4CKnVStj+1EbfKI8dIhN5Eb8Dm43s3YBzE/rssti2x8HMJclJ5aLc3JMlODOMstVDgcraXPkCFuyikGRE3u2K4LhcgGjR7PtMWOi84bGTdtmFzlr1rA2N9cYJ/BgtYGiyUcrHMzgk0MiR8ZMwQRWCCHncMvsN9/E5DWt2JLDi3MqYe7cuWF1htCZK69kT+1mDKtWA27JMbOFShRZoT+OESZ4Ez0hmwozWHJouUrGRBZogQtfK4icsjLWTp8OzJxp3qSoGqFY5GRnZyt6n8CLPxLmp1cv1mZlMStCNPlinD8PHDvGts1syTGDwIgVH61QMYNPDllyKuNyscjQr78G/vMf427WXHx6vcZ8v1JEEdi8Wd43c1JUjVAscnhxTiKK4I6mZ88CqanRpfDz8lhbp465bxBmEBhOJ0v//tZb8vdHo49WqJAlx5x06cJEDl8y0pnWmZmylfiWW8w9b8ZKJG0NhO2Tc+rUKcyZMwdjx47FuHHjMG/ePMqRYyVEEZg0Sd6Ptlw5/v44ZrYuchM8xygTPLd2DR1KSQA5/j45VW8UekGWnOrw1BD79+v/3aKInvPno2JGMfu82aFD9fkvxqy0YYmcjRs3ol27dpg3bx5OnDiBgoICzJ07F+3atcNmf9MYYV6sVPYgHLZuZa0Vbg4ul1x4cNEiYwTGnj2svfrqmHnCqxW+XFVaKmcI1xuy5FQnLY21BkT5Cvv2QQhmGTEjTifgX0syBq20YYmcqVOn4qabbkJOTg4+/fRTLF++HAcOHMANN9yAKVOmqNxFQhPMFKmgNm43qyINMH8jK5Ss4JYUoywGu3eztmNHY77fjNSvz5Y7AWDbNmP6QJac6nBLzoEDul8vUvv2kKxmGfEPGvrjj5iz0oZtyfnXv/6FuDjZpScuLg6PP/44Nm7cqFrnCA3hyyT+WVT/7/+sr/B5OLT/5GdmczKHP6kb4f8hSbIlh9cGIoB33mEO7ABwxRX6i2VJkp3neYQMAbRuzdriYmDLFn2/2+nEvptvlvetYBlJTJSjwPj5HEOEJXISExNx6NChaq/n5uaiYcOGEXeK0AmXiz0N+ZvlzS4GasOqy3D8SZ0vT+jJsWNyYc66dfX/fjNSNXeQEb4X8+ezAp0AS85oBYukHvz3v/J2nz66j8tJ/iDQtat1/NcMXOIzmrBEzu233w6Xy4Vly5YhNzcXoihi6dKlGDt2LO644w61+0hoSUqKfAFMnWr9iuRWXYbjlhwjRI5/XquOHa39+6uF0WJZFIGHHpL3ze7gqhcmEJ/x/IGgfXtzW3D8iWGRE1ZZh9mzZ0MQBNx7770oKzejOhwOTJw4EbNmzVK1g4TGiCKwaZO8H2keBVEE1q1j22lpwJkzTHjoNRmYKGFYSBi1XCWKwCuvyPsxmEcjIEaH9pshf5IZMcG41CkqYhtWcgbnIicnx9BuGEFYlpw6dergtddew8mTJ7FlyxZkZ2fjxIkTmDdvHuLj49XuYyVycnLgcrmQlpaGevXqoV27dpg+fTrOx+BaoyrUlEchFEQReOwxtl5+++3sX79+wKBB+luH7rpL3s7OtoY52ajlKrV+/2iDi2XuZCoI+oplCv0NjAkstXVOn2YbVnIGj2FLTlgi59y5cyguLkZCQgK6deuGRo0aYeHChVi5cqXa/avGrl274PP58NZbb2H79u2YN28eFixYgKeeekrz745K1Jg0Zs9m4mb27MDRDj4fMzHrZVLOzWVtQgLQrZs+3xkpRi1XdehQ/TW6mTJcLuDhh9n23XfrK5adTuC+++R9Kzi46gEXn/5zls7jUmHJsaLI2bYt5pY8w1quuvnmmzF8+HBMmDABp06dQv/+/eFwOCry5UycOFHtflYwbNgwDBs2rGK/bdu22L17NzIyMjB79uygnystLUVpaWnFflH5ierxeODhzn0qwY+n9nE1oXlzCBkZsE+YAEGSIAHwvvACpObNZafHGhDmzoX9iSdQa7o9nw/eefPgq7KcqcVYCfv3Iw6AlJJSsZxqei64AA4AUkEByoKMhSbnVfPmiGvdGkJ5IIFkt8M7f77i39+sqDVWttatYQfgKy6GV+fxsHXqxL570CB4Fy1iN3IN+mCp+QoA7r0XQqNGiBsxAlKrVii7917dzlWPx1Phk1N2wQWQLDJmwm+/sZv9gQOQ2rSBNyMDEi/QrCFlOTlI2rYNZZ07s6z6KhHKuRqWyNm8eTPmzZsHAPj444/RvHlzZGdn45NPPsEzzzyjqcgJRGFhIZrUUigtPT0dM2fOrPb6ypUrkZCQoEm/MjMzNTmu6jRvjh5//ztSMzMhALA/+SS25Obi0ODBNX6s0Z49uFqJwCnHNm8efm7RAoUBwpTVHKvW33+PXgCOJSRg/TffqHZcLXGcOYPrAAinT+O7zz+Hz+EI+l5VzytJwnUFBXAA2Dx5Mv7q0QMlSUmsYnEUEOlYtcrNRR8Ax/fswTqdx6Tzhg3oAOBA/fr4Y+tWOcGlRlhmvgIQf/o0hgFAXh6+/eILSHFh3crC4ury5aqsnBwcs8B1UregAENmzKjYF3w+2CZORKbdzq51jb6z7Vdfof3nn+NySYL0zDPYMmlSrfcUpRQXFyt+ryBJoWdTSkhIwK5du9C6dWvcdttt6NKlC6ZPn47c3Fx07NgxpA5Eyp9//olLLrmkosREMAJZclJSUlBQUIDExERV++TxeJCZmYnBgwfDUcPNyjSIIuLat4fg59An2e0o27s3qBlYWLy4wvoTCpLNVukpQouxss2cCfsLL8A7dix88+erckzNkSTE1a8PoawMnv37A467JufViRNwtGjBjn/qFFviiwLUGishMxNx118PqVs3lPk76OuA/f77YVu8GN6ZM+F78knNvsdy8xXArpdGjSCUlMCzcyfQrp0uX+vxeIA2bZBQUICydesg9emjy/dGgrB6NeKGDKn2ellmJqSrr1b/++bMgf3JJ6s9/NZ2TwmFoqIiJCUlobCwsNb7d1jyt3379vjss89w6623YsWKFZg6dSoA4NixY2ELhhkzZgS0tPiTlZWFPn4n1ZEjRzBs2DCMGDGiRoEDAPHx8QGdoh0Oh2YXtpbHVpWcnGoRC4LXC8fBg/Jarj+iCEycGDzb6N13A5dfzrIOVz2uz4e4iROB666rdLKrOlbla872tDTYrTD+nKQkID8fjlOnAo97OaqOFc93lZwMR6NG6hzTREQ8VuUCUDh+XP9r+fhxAIC9RQtdzmPLzFectDRg5044cnOBTp10+1qh3NUhrkULwArjdfHFASMF4zp1Ur//r7wCBBHkNd5TQiSU8zQskfPMM8/gzjvvxNSpU3HNNddgwIABANjST69evcI5JB588EGMHDmyxvek+q3pHTlyBH/7298wYMAALPQvcEiETqBwWZuNpbUPxGuvVQ/jBFg0yEsvsSgrgF1A48dXf6/Px47hH7qsJgcPsrZNG22OrxXlIkfXMPI//2StTk/CloMnyiwoYKJez2KvVNKhZtq2BXbu1Ddi6OxZxPFIXqv8LtxZe9w4+RzWwllbFIF//Sv43w0KaAhL5Pzzn//EFVdcgby8PPTo0aPi9WuuuQa33nprWB1JSkpCksKT5vDhw/jb3/6G3r17Y/HixbBVjQ4iQoNfBPffz8KHASZELr2Uve4fVZKVxaKoqmKzAevXA337yq/xwpP9+1e3+sybxyJXmjdX///DqxNbLXuvERFWfKx4PSCiMnxOOn+e5XzSM6M7FeesGW4R0LMaebnwlOLjITRooN/3RorLxUTIjBnAsGHaRAquXRvUui/Z7RAMig4MWx20aNECvXr1qiQw+vXrh04amw2PHDmCgQMHIiUlBbNnz8Zff/2F/Px85Ofna/q9UY/LBfz6a+Un1aqh37Nns9w3gZg2rbLA4fTtCzzySPXXtcrF8vbb8hLMbbdZK3svv5mtW6dfmKeVqrUbQUKCLJbLl490gyw5NcOF+YYN+l0v/BxIStLXqqcGfO7mKTbUxO0GAlQ7kAAcGDqU+eIYlK/MciaQlStXYt++ffjxxx/hdDqRnJxc8Y+IkDNnqitxn4/539x9t7wMVRWbTc4nEoiHH66ei6em5bBwEUVgwgR532qp8PmT+5tv6pNA0e0Gli1j2/PmWUsQ6oUgyCJDz2XEsjLg5Em2TSInMHypdfVq3RKOCvwc4MuYVqJjR9YGyhodCVVLbXBsNnhnzcLWiRMNze9kOZFz3333QZKkgP+ICAmUZRUAvvoKeP/9wJ+x2diSVk0ncaCK5+XLYcLixZH12R+j6w1FgiiyyZqjtUCrOjFJkrUEoZ74++XoBbcYCIJcQZqQEUUgI0Pe1+uBpvxBRLKi8GzTBqhThxViDlBgO2yC+WguXQpp2jT1vidMLCdyCA1xOgMvLQVDEJgfjhIzZJDlMPukSair1s3Dyqnw9S6vYGVBqDdGWHL4dzVpUvnhgGAYdP4K3HpkxVQL/nPhRx+pIwhFEZgzJ/B3lQckGQ2JHKIygZaWgvHyy4H9cIIRYDlM8HpRPy8vhA7WgNMJXHutvG+lVPh6CzQT1ACyDFzk6OmTQ07HNWPE+et2w/bCCwAA4euvrbm8W6cOa//1L3WW+AI9nAHA1KmmmXdJ5BCVCVQbpio2GxM4jz4a2rEDTEySzYazavpT8YiHiRNZ/h8rFOcE2Lj7m3a1FmhOJzB5sn7fZ2WMWK4ip+Oa4fMUx2bT9vwtX97lyU8FKy7viiLw++/yvhpLfIHcG2rz0dQZEjlEdVwulmvm0Ucrn8SCwF47eDC4E3JNVK3sDACShGbZ2ZH3mcPN1cOGWe+GPWoUaxMT9RFo/Kn38sutJQj1xojlKrLk1I7Lxa5zAJg5U9vzNxqWd9VeEne7gUGDKr9mt9fuo6kzJHKIwDidLFnfoUNs/fajj9j2K69EdgIPHVpJ5AiShB4ZGeo8EUmStZPb8RvamTOAHtGCfKwuvdRUk5Lp4CJnxw79ntzJkqMMnrKkvGimZkTD8q6a/wceuOAvmmw25ndpsoclEjlEzTidwIgR7J8aN8IAT0Q2n0926IuE48flyc6Kye34sojPJ4cPawlPomZFQagn27ax9qefdAtVrsjiG6AUDeEHz4Kfk6Pt95RbofktXdJ6eUwLnE6WnoITyRJ1IMuWzwecPRtZHzWARA6hLwGeJnw2GyQ1brTc7NqqFVCvXuTH0xuHA7jgAratR9ZjLiytKAj1QhQrixo9QpXdboCnVnjzTWs6uOqFXiIHYBaK8geRsi+/NJ3FQhETJsj5chYtCv//0KFD9ddMatkikUPoS4CcOUfUCjX87TfWpqSoczwj4EtWWvt/SBJZcpSgty8G5S8KDS5yeL06LfH5gFOn2HbXrtp/n1bwItdHjoR/jE8/rbxvYssWiRxCf1wu9uTVpQsAwPnLL4hr3z6yJ1a3G5gyhW1v2GDdp1/ug6G1JSc/Hzh3jvlHUe234OjtixENDq56wovw/vWX9kslp05B4LX9rJjxmNO9O2szM8MTz6Ioz7X+DB0aUbe0gmY3wjh27KjYFCJZBqjqBGflp1+9inS+/jprJYndyK0qCrXG6QTeeEPe1zrUPhocXPXkggvkoqkbNmj7XeXWVU9CgpxvxorwvGThlsPYsydw+R+TCnESOYQxqBnOGE1Pv3osV4ki8NJL8r7VanzpzcSJsgPwTz9p64vhdDIRxaH8RTXjdgOnT7Ptv/9dW7Fefk2e17MSvdqIovyAA4R37Qd6r4mFOIkcwhgCPbHabOFdKNH09KvHcpXeJSSiAS4+HQ7tv2vkSHl7xw5rOrjqgd7+S+XXZGmjRtocXw8ifSB0u4H77qv8msmFOIkcwhh4SGaVxIBYsSK8Yz33nLxv8ouuRvRYrrJQZIRp0LO0A//t69UDLrpI+++zKnpbcLklJzFRm+PrQSQPhBbKjeMPiRzCOKokBozoSaxzZ9a2b2/t7L16LFc5nZXDxq0sCvVCz6zHlAhQGXpbcKNhuapq1nlBUH7tWyg3jj8kcgjj2LuXORz7E+6T2PbtrLV69l69HI/5xPTWW9YWhXqhZ/0qKumgjEB19rQU69FgyQHYtf7FF2w7MREYPVrZ5zZurP6aBSzAJHII4+jQgWUO9SfciyYri7VWFjiA/PSem6udb8GZM8DRo2z7ttusP2Z6QJYcc+JyAV9/zbaTkrQV69Hgk8MZOhRISGAZ4pcsqX2uEUXgiSeqvz5rlunnDxI5hHE4nfBmZFQWOmPGhH4ctxv4/HO2/dJL1g6H/vFH1hYUaFdCgJcMaNJEzrBM1IyePjlc5JAlRxn9+rG2oIDlftKKaFiu4jgcctLUMWNqn2sCLVUBcmJBE0MihzAUafRorFy4ED7+NPD226Hd3KMpQ6woAk89Je9rFdpN5RxCR09LDl+uIkuOMho3lnPlaJn5OFqWqwA2p+zZI+/XNtfExVV/zQJLVQCJHMIkCIcPyzuh3NyjKUeOXv8XKucQOnr65NByVWgIgj7lHfLzWVs1/YIVCSWNhNsNXH115dcsFKxAIocwnAZ5eRDCzdvSoUPlCC3AMk8Y1dArWuT331lLN1HlGGHJoeUq5fDyDloV6nS7KwRUv5degsALqFoVpXnKLBo27g+JHMJwziQnh++A7HRWfsqw0BNGNXi0CEeLonduN/Dee2x7/nxr+y/piRE+OSRClaNlNfIqS+KCJME+aZI1l8Q5VecaIHCeMouGjftDIocwnJKkJHgzMipbZNLTld/ci4pYO3269cOhXS5g2DC2PXOmuv+XaPJf0hv/5SqtlyvIkhM6XORs2KD++RzgRi9YdUncHyV5ynjUqj8Ws5STyCFMgTR6NDB1qvzCE08oszKcOwds3cq2x4yxpgWnKmlprD1/Xt3jRpP/kt5wq4rHI9dK0gqy5IQOd6ZftUr9qMQASzuSxW70AQnml/Prr2w7K8uyYeP+kMghzIEoAq++Ku8rdT5esQIoK2M3BB4SaXVatGAtd3RUi2iq8aU3CQlA3bpse9s27b6nrAw4cYJtkyVHGaJYuaip2lGJTicwebJ8eJsN3vnzLXWjD0ig+QBgtdPuuw/o3z+w1dICYeP+kMghTIGwb1/oVga3Gxg+nG0XFADvvKNdB/VEK5HjdFa2llnZf0lv3G6gpIRtX3WVdr5MXOAAQHGxNt8RbehhoezZEwDg69MHmQsXMsuz1QmUMRpgY7lkSWCBY8GHIhI5hCmQ2rcP7O1fv37gDwTy+o8W/5LmzVnLsxKrSadOrO3Xz/r+S3pR1ZdJq/xFALBggbzdti05hitBDwslvxY7dUJJNC0julzAhx8qe68WgRA6QCKHMAf8qcJul1/z+VgtqkATfTT7l2hlyQFk34W+fS03WRmGXueaKDJnc46WYiqa0CMqsVzkSM2aqXdMs3DZZdXTcFTFZgPWr7fkQxGJHMI8uFzM6c3/ggs20Uezf4m/yFE7kocSAYaOXudaNAt3rXG5gL/9jW2np6t/M+aWHG5ljSacTuCRR2p+z7Rp7MHIgpDIIczFmTPKMnE6ncCVV8r70eRfwifS8+dZAT01oZIOocMtBVx8C4I251o0JbY0gosvZq3a1wwQ3ZYcAHj44cBOyAB7/eGH9e2PipDIIcyF0kycbjewZo28r8XTm1HUrQvwSsdqL1lxkUOWnNBwuYApU9j2nXdqc645ncANN8j70STc9UDLhIDRbMkBArsLAGx/4UJLn4MkcghzUfWpGaieibOqIygAPPlkdPkuaOGXc/IkcOoU2yZLTujwMeNRVlrAbyb33kuO4aGiZf2qaLfkAOxcy8lhuYZ++421UXAOksghzEegTJzjx8vZN9eti37fBf7E+OOP6ok3bsVp3LhyqDKhDD1KOxw7xtp+/Sz99GwIWtWvKiuTEzRGqyWH43QCAwcy/5uBA6PiHLS0yCktLUXPnj0hCAK2bNlidHcItQhWL+XSS1mSqpEjq38m2nwXeI6U555TL4ProkWsPXlS/aywsYAeRTq5yIlmi4FWcEvOkSPqZgv/6y/2oGWzURZqC2JpkfP444+jZcuWRneDUJtgmTiDJamKNt8FUQQ2bZL31QglFsXKYbYUnhw6/vWrtIJETvg0bQrUq8fmh9xc9Y7L/XGSkqr7rBCmx7Ii59tvv8XKlSsxe/Zso7tCqE2wTJzB+PBDy68bVyJITRmBLzepeMyoWuLTGn9LjlZFOknkhI8gAPyhN1BhyXCJdqfjKCfO6A6Ew9GjRzFu3Dh89tlnSEhIUPSZ0tJSlJaWVuwXlVeu9ng88Hg8qvaPH0/t40YjQcfq3nuBiy9G3BVXQKjhhiLZ7Sjr04cVTowWUlMRJwiV/t+S3Q5PmzbAjh3hnVepqYgD4B+gLNntKGvTJrrGrhxNrsHERDgAoKwMnhMngMRE9Y4NAOfPw3HyJADA07ixbr9LtMxXwuLFsP/5JwQA0p13wltUpEr5BWHbNsQB8CUmRs1Y6YVW4xXK8SwnciRJwn333YcJEyagT58+yFHoZJaeno6Z/tlEy1m5cqVioRQqmZmZmhw3Ggk2Vp1vugkdPv886Of23XgjdmzdKlcijxL8/98+mw2/T5iAQzt2AAj/vLouIQGOcl+fimNG4dj5o/Y1eH18POJKS7H6449RzCPgVKLuiRMYCvbbfPPrr8otmSph5fmqbkEBhkyYUCHiBUmCbeJEZNrtEZVhaJ2ZiZ7z57Nj/vILdj/+ODB4sKXHygjUHq/iEOq6CZKkld01NGbMmBFQhPiTlZWFdevWYdmyZfjpp59gt9uRk5ODtLQ0ZGdno2d5EbVABLLkpKSkoKCgAIkqP5F5PB5kZmZi8ODBcDgcqh472qh1rEQRce3bQ6jqiAxAstlQtm9f9Pji+LNrFxzdu0OqVw9l27cDTmdk59WZM3A0aQIAKPv0U0g9e0bnuJWj1TUY164dhNxclP3yCyS1M8Bu2QJHv36QWrRA2aFD6h67BqJhvhJWr0bckCHVXi/LzIR09dXhHTTA3CPZ7Vj51lu48o47LDtWeqLVuVVUVISkpCQUFhbWev82jSXnwQcfxMhAUTN+pKam4vnnn8f69esRHx9f6W99+vTBXXfdhSVLlgT8bHx8fLXPAIDD4dDsZNXy2NFG0LFKS2P+Offfz3xIOHY7hLfegiMtTb9O6kl5pIhw7hwcSUmA39iEdV7xm+aFFyLu1ltV6qT5Uf0aTEoCcnMRd+pUpd9EFcqXqoRmzQyZNyw9X118MbN8+T8M2e2I69Qp/N8pJ6dalKfg9aJ+Xp61x8oA1B6vUI5lGpGTlJSEJAVmxddffx3PP/98xf6RI0cwdOhQLFu2DP3799eyi4RRuFwsd86+fawq+dmzLFw8ii0RaNiQ/Tt9moXEduwY2fH27mVthw6R9y2W0TJXDjkdhw8PVhg/XhYmkUZc8ijPKpacs8nJEXaW0BPTiByltG7dutJ+gwYNAADt2rWDM5pverGO0xndoiYQrVoBu3YBhw9HLnJ4FFU05RIyAi3DyEnkRIbLBfTqBfTuzSKt7r03suNx4TR2LNu32eCdPz8iHx9CfywbQk4QUU+rVqw9fDjyY5HIUQctEwKSyImcXr1Y7TdJUicHlMsF8MCU1atVidYi9MXyIic1NRWSJNXodEwQlkRNkfPHH6wtdz4mwoSLnK1b1U+keOAAawP4DhIKEQSAW/vVKO9w+rScfbxXr8iPR+iO5UUOQUQtaokctxvYsIFtT5lC5RwiYc8e1n71lbqlMdxu4KOP2PbLL9NvFAlqViM/coS1iYlAuWsEYS1I5BCEWeHZWyMROVUrtlM5h/ARRZZdm6PWWFb9jSSJfqNIUFPk8GuPygdZFhI5BGFWuCVn587wb3iBip1SOYfw0Ko0Bv1G6sJFzvr1kQtFbskhkWNZSOQQhFnhRTp37QLatIGweHHox+jQgfkp+BNtFdv1IlDhWDXGUqvjxirct2nlysiXFLnI4Q8chOUgkUMQZkQUgfR0ed/ng33SJNQNNarH6QSGD5f3o61iu544ncCcOfK+WmPpdAKvv67+cWMRUawsaiJdUiRLjuUhkUMQZiTAEgbPthoyF1zA2lGjmJ9CNFVs15vJk2XL2Pr16o3ltdeytk4dZomg3yg81F76I5FjeUjkEIQZCbCEEXa2VT7BDx5M1oFIsdvlPDZxKuZS5TlykpOBlBT1jhtrqL30RyLH8pDIIQgzwrOtciLJtkolHdSFixwuTNSAEgGqQ4DrJqKlP17zTU1BS+gKiRyCMCsuF/DPf7LtRx8NL9vq2bPy0yg5sqpD8+asPXpUvWOSyFEPl4tZLQFg5szwl/4WLQJyc9n2P/5BuYssCokcgjAzXbqwtrxCdcj8+SdrGzaUM7cSkUGWHPPTrRtrT5wI7/OiyByWOZRfyrKQyCEIM8Nzfhw8GN7nFyxg7enT6mbojWXIkmN+2rVjLRf5oRLEgVkI93iEYZDIIQgz06YNa8PJ3iqKssgB6GlULciSY3740my4UVVB8ktJXDwRloFEDkGYGX9LTtUny9rQKkNvrEOWHPPDxcj+/aFfNwBzVL79dnmfchdZFhI5BGFmnE4WIVJaGrrlIFA0FWXSjRyy5Jif1q3ZdVNSImcODxUeNn7bbZRfysKQyCEIM+NwVDw92pYvDy3jcatWQHy8vE9Po+pAlhzz8957sgXn0kvD80XjfnCXX07XjIWh4H+CMDvlQsX+8MMYIgjwer2Vq1YHQxSZBchuB777DujUiSZrNfC35EhSdd+NUPH5gL/+qnxsInyqVnXnvmhDh4Z2/nORw/3iCEtClhyCMDOiKCfzAyBIEuyTJilzHt6xg7UXXQT8/e8kcNSCCxGPRx7jSDhxQrY6lJREfrxYR63SDjwRIIkcS0MihyDMjJ/A4QhKJ2x+A+7cWeVOxTjvvy9vd+8eeVh+Roa83aEDhflHihqlHc6dk5cQSeRYGhI5BGFmAoSySkon7Kws1pIFRz2CLYWEG5YvisCMGeodj5BLO/gLnVB90bgVp0EDucAtYUlI5BCEmXE6gaefrtj1ldewqnXCdruBDz9k26+/TtYBtVC7yrXaxyMYLhfwyy9sOy4OGDUqtM/ziKyWLSP3uSIMhUQOQZidxx6r2Fw1b17tNayqWhskiawDaqF2lesgSecozF8F+vUD6tUDysqAAweUf87tBu6+m23v2UMPCBaHRA5BmJ3ERCA5GQDgKC2t/f1kHdAOvhTChYkgRBaW73QCQ4bI+xTmrx42G3O6B4Bdu5R9hj8g+CfRpAcES0MihyCsQKdOAIAGhw/X/l6yDmiLywX8619se/jwyJPEJSWxdvx4SjqnNuXXDXbvVvZ+ekCIOkjkEIQV6NgRgEKR43QCN9wg75N1QH34zbOoKPJj5eWx9sor6TdSG/47/fijMmuM2suRhOGQyCEIK1Aucprs2KFssuaWnAceIOuAFpQvH1YIlEjgx+DHJNTjyBHWfvstCwWvzb/G6WQPBBybjR4QLA6JHIKwAuVVyJN27EBc+/a1T9bZ2ay97TaaoLWARI75EcXK14nS8PybbpK3d++mBwSLQyKHIMyOKAL/938Vu0Jtk/Xx40BuLttu2lSHDsYgXJAcPw6cPx/+cc6dA06dqnxMQh3C9a/Zs4e1qam0TBUFkMghCLMT6mT94ovydteuFAKrBU2asOKpAJCfH/5x+Gfj4ynpnNqE61/DRQ6PzCIsDYkcgjA7oUzWogjMmyfvUwZdbbDZ5GrkkSxZcZ8RSjqnPuGG+5PIiSpI5BCE2SmfrKXyyVqqabLeu7dyjg+AQmC1Qg2/HPLH0RaXC3jkEbZ9663K/Gt+/521tNQbFZDIIQgr4HLBO2cOAEDq2TP4ZN2uXfXXKARWG0jkWIMrr2StEqHvdgPffce2Z8ygpd4ogEQOQVgEafBgAICwcydLVR+IqnlbKEeOdnBh8uuv4S8H8iR1DRuq0yeiOt27s3b7dmD//uDvo3IoUYllRc7XX3+N/v37o169ekhKSsLw4cON7hJBaEuHDvAkJEAoKQHefTfw5PvFF6zt0wdYtYpy5GgJt8L897/KcrBUxe0G5s9n20uWkNVAK77/nrVeL/NvCzbOlO04KrGkyPnkk09wzz33YPTo0fj999/xyy+/4M477zS6WwShLTYbSho3ZtvjxlW/sbrdcsXyTZuAP/8kC45WiCLw5ZfyfqgO3lVrJJHVQBtEkY0rp6bficqhRCWWEzllZWV4+OGH8corr2DChAm46KKL0LFjR/zzn/80umsEoS2iWLmsg/+ETaZ2fYnUwZusBvoQyjg7ncDQofI+LfVGBXFGdyBUNm/ejMOHD8Nms6FXr17Iz89Hz549MXv2bHTp0iXo50pLS1HqV8G5qNx3wePxwOPxqNpHfjy1jxuN0Fgpx7trFxzVXvSibNcuQJIQF2AyL9u1CxIPdY4hND+vUlMRZ7OxxIzlSHY7ytq0AZR8Z6SfV5GovgZDHGd7WRlsALxTp8I3eTITOH7vi+qx0gCtxiuU4wmSVPVxxNwsXboUd9xxB1q3bo25c+ciNTUVc+bMwcqVK7Fnzx40adIk4OdmzJiBmTNnVnv9gw8+QEJCgtbdJoiIqVtQgCHjxkHwu2R9goDMt98GAAwZOxb+xnafzYbMhQtRwqtcE6qS9uWX6F6+XOiz2fD7xIk4VO4crujz33yD7gsXhv15QhmtMzPRMyMDgs8HCcDW8eORc9111d8oSRh2772IP30aq2fPRiEtU5mW4uJi3HnnnSgsLERiYmKN7zWNyAkmQvzJysrCnj17cNddd+Gtt97C+HLzfGlpKZxOJ55//nnc77/+6kcgS05KSgoKCgpqHaRQ8Xg8yMzMxODBg+FwVHv2JvygsVKOx+PB7scfR88336wQM5IgwLtgAeDzwT5xovy6zQZvRgak0aON6q6h6HJeSRLiGjWCUFICz48/AldcEdrnd+yAo2dPSPXro2zbNsOWRWLiGszNRVz//hAKClC2ciWkgQOrv2fDBjiuvJJZek6dYlmoqxATY6UiWo1XUVERkpKSFIkc0yxXPfjggxg5cmSN70lNTcXp06cBAJ07d654PT4+Hm3btsWhQ4eCfjY+Ph7xAU5ah8Oh2cmq5bGjDRorZRzr1Ys5R5Y/mwiShLiJE6v5hwgA4q67Ti49EKNofl61bg3s2QOHIIQ+1uUlHYS0NDjS0jToXGhE9TXYti0waBDw0UeIW7oUuPjiyqLS7WbO/AAErxeOZctqjEqM6rHSALXHK5RjmUbkJCUlIUmBWb13796Ij4/H7t27cUX5k5PH40FOTg7atGmjdTcJwlAa5OVVWq4CUN2xkr+2bx85TWqN08nKAPCCqKHAncJTUtTtExEYXhrlnXdYCoaFC5mQqRrpBjCn/aFD6fqJAiwXXZWYmIgJEyZg+vTpWLlyJXbv3o2JEycCAEaMGGFw7whCW84kJ0OqWscqEBT6qg9coIQjcvhnSORojygCH30k7/tHJlKkW1RjGktOKLzyyiuIi4vDPffcg3PnzqF///748ccf0ZjnECGIKKUkKQnejAy2RBXIggNQ6KuecIESTqg+iRz9qEnI8AK4/n+nh4SowXKWHICtx82ePRtHjx5FUVERMjMzawwfJ4hoQho9Gvjww+Bv+PBDynKsF2TJsQZcyPhjszEh43QC/nnW6CEhqrCkyCGImOeyy6pnZwXYBD1ggP79iVX4jZBEjrlxOpkPjv81I0nAihXM6dh/KSs9nR4SoggSOQRhRZxO4O23K0/aNhs9gepNuMtVkkQiR2+GDq0ucsaPr5wpHACefJIyhUcRlvTJIQgC7Glz6FBWBRtgFhwSOPrCBcrx48zvo0MHZZ87dQo4e1azbhEBCOSXE8ivjfvq0LUUFZAlhyCsjNMJjBjB/tGkrD8ffyxvd+qkvJL4a6+F9zkifAL55QSCnI6jChI5BEEQ4RBKheuqn3v22dA/R0QG98upSeiQ03HUQSKHIAgiHMLNrxJpBXMifFwuikyMMUjkEARBhEOg5Q8lSx0dOlSPjKMlEv2gyMSYgkQOQRBEOFQNSxYEZUsdTifQtau8T0sk+kKRiTEFRVcRBEGEi8vFbpBjxgBduihf6vB4WDt7NnD77XRz1RuKTIwZSOQQBEFEQr9+rM3NZb42gZZC/PH5gAMH2Pbw4XRzNQoemUhENbRcRRAEEQlt27K2sBA4caL29x85ApSWAnFxlAiQIDSGRA5BEEQk1KsHtGzJtv/8s/b38/e0acOEDkEQmkEihyAIIlLatWPt/v21v5eLHP4ZgiA0g0QOQRBEpPAlq8zM2pP6ZWeztnlzbftEEASJHIIgiIg5dYq177zDlqGClWlwu4E33mDb/+//UTkHgtAYEjkEQRCRIIrAF1/I+8HKNIhi5YrXkkTlHAhCY0jkEARBRILSMg3hloEgCCJsSOQQBEFEgtLyDuGWgSAIImxI5BAEQUQCL+/ACVYiwOmsXLWcyjkQhOaQyCEIgogUlwu4/nq2/eSTwcs7NGvG2qFDgZwcqnhNEBpDIocgCEIN+vdn7aFDwd+zbRtrhwwhCw5B6ACJHIIgCDXo1o2169YFj5javJm1LVro0yeCiHFI5BAEQajBzp2s/fPPwLlyMjLYEhUA3HMP5cghCB0gkUMQBBEpogj8+9/yftVcOaIIPPhg8L8TBKEJJHIIgiAipbYcOJQjhyAMgUQOQRBEpNSWA6dDh+qfoRw5BKE5JHIIgiAihefK8Rc6CxbIEVTJyUC9evLfKEcOQegCiRyCIAg1cLmAXbsAh4PtOxyyz8133wHnzgH16wPff085cghCJ0jkEARBqEWHDkC7dmz7vvtYlNV99wE33sheO3uWCRyy4BCELpDIIQiCUAtRBHbvlvd9PmDJksoFPCmqiiB0g0QOQRCEWgSqSF4ViqoiCN0gkUMQBKEWgaKsqkJRVQShG5YUOXv27MHNN9+MpKQkJCYm4vLLL8eqVauM7hZBELGO0wnMmlXze2bNIp8cgtAJS4qc66+/HmVlZfjxxx+xadMm9OzZEzfccAPy8/ON7hpBELFOnz6R/Z0gCNWwnMgpKCjAvn378MQTT6B79+7o0KEDZs2aheLiYmzfvt3o7hEEEevUtGRFS1UEoStxRncgVC688EJcfPHFeO+993DJJZcgPj4eb731Fpo3b47evXsH/VxpaSlKS0sr9ouKigAAHo8HHo9H1T7y46l93GiExko5NFbKMXSsmjeHkJEB+6RJELxeSAAEAJLdDu/8+ZCaNwdM9BvSeaUcGqvQ0Gq8QjmeIEm1hQKYj8OHD+Pmm2/G5s2bYbPZ0Lx5c3z99dfo2bNn0M/MmDEDM2fOrPb6Bx98gISEBA17SxBELFK3oAD18/JQFh+PuNJSnE1ORklSktHdIgjLU1xcjDvvvBOFhYVITEys8b2mETnBRIg/WVlZ6N27N2655RZ4PB48/fTTqFevHhYtWoQvvvgCWVlZSE5ODvjZQJaclJQUFBQU1DpIoeLxeJCZmYnBgwfDwbOfEgGhsVIOjZVyaKyUQ2OlHBqr0NBqvIqKipCUlKRI5JhmuerBBx/EyJEja3xPamoqfvzxR3z11Vc4efJkxX9u/vz5yMzMxJIlS/DEE08E/Gx8fDzi4+Orve5wODQ7WbU8drRBY6UcGivl0Fgph8ZKOTRWoaH2eIVyLNOInKSkJCQpMOUWFxcDAGxVHPtsNht8Pp8mfSMIgiAIwnpYLrpqwIABaNy4MUaNGoXff/8de/bswWOPPYYDBw7g+uuvN7p7BEEQBEGYBMuJnKSkJHz33Xc4c+YMBg0ahD59+mDt2rX4/PPP0aNHD6O7RxAEQRCESTDNclUo9OnTBytWrDC6GwRBEARBmBjLWXIIgiAIgiCUQCKHIAiCIIiohEQOQRAEQRBRCYkcgiAIgiCiEhI5BEEQBEFEJSRyCIIgCIKISiwZQq4GvGQXr0auJh6PB8XFxSgqKqLU37VAY6UcGivl0Fgph8ZKOTRWoaHVePH7tpLSmzErck6fPg0ASElJMbgnBEEQBEGEyunTp9GoUaMa32OaKuR64/P5cOTIETRs2BCCIKh6bF7hPDc3V/UK59EGjZVyaKyUQ2OlHBor5dBYhYZW4yVJEk6fPo2WLVtWq2NZlZi15NhsNjidTk2/IzExkS4EhdBYKYfGSjk0VsqhsVIOjVVoaDFetVlwOOR4TBAEQRBEVEIihyAIgiCIqIREjgbEx8dj+vTpiI+PN7orpofGSjk0VsqhsVIOjZVyaKxCwwzjFbOOxwRBEARBRDdkySEIgiAIIiohkUMQBEEQRFRCIocgCIIgiKiERA5BEARBEFEJiRyVmT9/PtLS0lC3bl307t0bP//8s9FdMpwZM2ZAEIRK/1q0aFHxd0mSMGPGDLRs2RL16tXDwIEDsX37dgN7rB8//fQTbrzxRrRs2RKCIOCzzz6r9HclY1NaWorJkycjKSkJ9evXx0033QRRFHX8X+hDbWN13333VTvPLr300krviZWxSk9PR9++fdGwYUM0a9YMt9xyC3bv3l3pPXRuMZSMFZ1bjIyMDHTv3r0iud+AAQPw7bffVvzdjOcUiRwVWbZsGaZMmYKnn34a2dnZuPLKK3Httdfi0KFDRnfNcLp06YK8vLyKf9u2bav428svv4y5c+fijTfeQFZWFlq0aIHBgwdX1BeLZs6ePYsePXrgjTfeCPh3JWMzZcoULF++HEuXLsXatWtx5swZ3HDDDfB6vXr9N3ShtrECgGHDhlU6z7755ptKf4+VsVqzZg0eeOABrF+/HpmZmSgrK8OQIUNw9uzZivfQucVQMlYAnVsA4HQ6MWvWLGzcuBEbN27EoEGDcPPNN1cIGVOeUxKhGv369ZMmTJhQ6bVOnTpJTzzxhEE9MgfTp0+XevToEfBvPp9PatGihTRr1qyK10pKSqRGjRpJCxYs0KmH5gCAtHz58op9JWNz6tQpyeFwSEuXLq14z+HDhyWbzSZ99913uvVdb6qOlSRJ0qhRo6Sbb7456GdidawkSZKOHTsmAZDWrFkjSRKdWzVRdawkic6tmmjcuLG0aNEi055TZMlRifPnz2PTpk0YMmRIpdeHDBmCdevWGdQr87B37160bNkSaWlpGDlyJPbv3w8AOHDgAPLz8yuNW3x8PK6++uqYHzclY7Np0yZ4PJ5K72nZsiW6du0ak+O3evVqNGvWDBdddBHGjRuHY8eOVfwtlseqsLAQANCkSRMAdG7VRNWx4tC5VRmv14ulS5fi7NmzGDBggGnPKRI5KlFQUACv14vmzZtXer158+bIz883qFfmoH///njvvfewYsUKvP3228jPz8dll12G48ePV4wNjVt1lIxNfn4+6tSpg8aNGwd9T6xw7bXX4v3338ePP/6IOXPmICsrC4MGDUJpaSmA2B0rSZIwbdo0XHHFFejatSsAOreCEWisADq3/Nm2bRsaNGiA+Ph4TJgwAcuXL0fnzp1Ne07FbBVyrRAEodK+JEnVXos1rr322ortbt26YcCAAWjXrh2WLFlS4bxH4xaccMYmFsfv9ttvr9ju2rUr+vTpgzZt2uDrr7/G8OHDg34u2sfqwQcfxNatW7F27dpqf6NzqzLBxorOLZmOHTtiy5YtOHXqFD755BOMGjUKa9asqfi72c4psuSoRFJSEux2ezU1euzYsWrKNtapX78+unXrhr1791ZEWdG4VUfJ2LRo0QLnz5/HyZMng74nVklOTkabNm2wd+9eALE5VpMnT8YXX3yBVatWwel0VrxO51Z1go1VIGL53KpTpw7at2+PPn36ID09HT169MBrr71m2nOKRI5K1KlTB71790ZmZmal1zMzM3HZZZcZ1CtzUlpaip07dyI5ORlpaWlo0aJFpXE7f/481qxZE/PjpmRsevfuDYfDUek9eXl5+OOPP2J+/I4fP47c3FwkJycDiK2xkiQJDz74ID799FP8+OOPSEtLq/R3OrdkahurQMTyuVUVSZJQWlpq3nNKE3fmGGXp0qWSw+GQ3G63tGPHDmnKlClS/fr1pZycHKO7ZiiPPPKItHr1amn//v3S+vXrpRtuuEFq2LBhxbjMmjVLatSokfTpp59K27Ztk+644w4pOTlZKioqMrjn2nP69GkpOztbys7OlgBIc+fOlbKzs6WDBw9KkqRsbCZMmCA5nU7p+++/lzZv3iwNGjRI6tGjh1RWVmbUf0sTahqr06dPS4888oi0bt066cCBA9KqVaukAQMGSK1atYrJsZo4caLUqFEjafXq1VJeXl7Fv+Li4or30LnFqG2s6NySefLJJ6WffvpJOnDggLR161bpqaeekmw2m7Ry5UpJksx5TpHIUZk333xTatOmjVSnTh3pkksuqRSGGKvcfvvtUnJysuRwOKSWLVtKw4cPl7Zv317xd5/PJ02fPl1q0aKFFB8fL1111VXStm3bDOyxfqxatUoCUO3fqFGjJElSNjbnzp2THnzwQalJkyZSvXr1pBtuuEE6dOiQAf8bbalprIqLi6UhQ4ZITZs2lRwOh9S6dWtp1KhR1cYhVsYq0DgBkBYvXlzxHjq3GLWNFZ1bMmPGjKm4vzVt2lS65pprKgSOJJnznBIkSZK0sRERBEEQBEEYB/nkEARBEAQRlZDIIQiCIAgiKiGRQxAEQRBEVEIihyAIgiCIqIREDkEQBEEQUQmJHIIgCIIgohISOQRBEARBRCUkcgiCIAiCiEpI5BAEQRAEEZWQyCEIwrQMHDgQU6ZMMbobBEFYFCrrQBCEKRg4cCB69uyJV199teK1EydOwOFwoGHDhrr3Z8qUKcjJycFnn32m+3cTBKEOZMkhCMK0NGnSxBCBAwBZWVno16+fId9NEIQ6kMghCMJw7rvvPqxZswavvfYaBEGAIAjIycmptlw1cOBATJ48GVOmTEHjxo3RvHlzLFy4EGfPnsXo0aPRsGFDtGvXDt9++23FZyRJwssvv4y2bduiXr166NGjBz7++OOgffF4PKhTpw7WrVuHp59+GoIgoH///lr+9wmC0AgSOQRBGM5rr72GAQMGYNy4ccjLy0NeXh5SUlICvnfJkiVISkrCb7/9hsmTJ2PixIkYMWIELrvsMmzevBlDhw7FPffcg+LiYgDAv//9byxevBgZGRnYvn07pk6dirvvvhtr1qwJeHy73Y61a9cCALZs2YK8vDysWLFCm/84QRCaQj45BEGYgkA+OVVfGzhwILxeL37++WcAgNfrRaNGjTB8+HC89957AID8/HwkJyfj119/Rbdu3ZCUlIQff/wRAwYMqDju2LFjUVxcjA8++CBgXz777DOMHTsWBQUF2vxnCYLQhTijO0AQBBEK3bt3r9i22+248MIL0a1bt4rXmjdvDgA4duwYduzYgZKSEgwePLjSMc6fP49evXoF/Y7s7Gz06NFD5Z4TBKE3JHIIgrAUDoej0r4gCJVeEwQBAODz+eDz+QAAX3/9NVq1alXpc/Hx8UG/Y8uWLSRyCCIKIJFDEIQpqFOnDrxer6rH7Ny5M+Lj43Ho0CFcffXVij+3bds23Hrrrar2hSAI/SGRQxCEKUhNTcWGDRuQk5ODBg0aoEmTJhEfs2HDhnj00UcxdepU+Hw+XHHFFSgqKsK6devQoEEDjBo1KuDnfD4ftm7diiNHjqB+/fpo1KhRxH0hCEJ/KLqKIAhT8Oijj8Jut6Nz585o2rQpDh06pMpxn3vuOTzzzDNIT0/HxRdfjKFDh+LLL79EWlpa0M88//zzWLZsGVq1aoVnn31WlX4QBKE/FF1FEARBEERUQpYcgiAIgiCiEhI5BEEQBEFEJSRyCIIgCIKISkjkEARBEAQRlZDIIQiCIAgiKiGRQxAEQRBEVEIihyAIgiCIqIREDkEQBEEQUQmJHIIgCIIgohISOQRBEARBRCUkcgiCIAiCiEr+P6n24C/qa92wAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "C = [ 0 0 1 0\n", + " 0 0 0 1\n", + " -0.02 0.01 0 0\n", + " 0.01 -0.02 0 0 ]\n", + "Δt = 1.0\n", + "T = exp(C*Δt) # propagator matrix\n", + "\n", + "x₀ = [0.0,0,1,0] # initial condition\n", + "\n", + "# loop over 300 timesteps and keep track of x₁(t)\n", + "x = x₀\n", + "x₁ = [ x₀[1] ]\n", + "for i = 1:300\n", + " x = T*x # repeatedly multiply by T\n", + " push!(x₁, x[1]) # & store current x₁(t) in the array x₁\n", + "end\n", + "\n", + "plot((0:300)*Δt, x₁, \"r.-\")\n", + "xlabel(\"time \\$t\\$\")\n", + "ylabel(\"solution \\$x_1(t)\\$\")\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(This is **not** an approximate solution. It is the *exact* solution, up to the computer's roundoff errors, at the times $t=0,\\Delta t, 2\\Delta t, \\ldots$. Don't confuse it with approximations like [Euler's method](https://en.wikipedia.org/wiki/Euler_method).)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Stability of solutions in eᴬ vs. Aⁿ\n", + "\n", + "It is important to compare and contrast the two cases we have studied:\n", + "\n", + "* Multiplying by $A^n$ (e.g. in **linear recurrence** equations $x_{n+1} = Ax_n$) corresponds to multiplying each eigenvector by $\\lambda^n$, which:\n", + " - blows up if $|\\lambda| > 1$\n", + " - decays if $|\\lambda| < 1$\n", + " - oscillates if $|\\lambda|=1$\n", + " - If $\\lambda = 1$ you have a steady-state vector (a stable \"attractor\" if the other eigenvalue have $|\\lambda| < 1$).\n", + " - large-$n$ behavior dominated by biggest $|\\lambda|$\n", + "\n", + "versus\n", + "\n", + "* Multiplying by $e^{At}$ (e.g. **linear differential** equations $dx/dt=Ax$ ), corresponds to multiplying each eigenvector by $e^{\\lambda t}$, which\n", + " - blows up if $\\operatorname{Re}(\\lambda) > 0$\n", + " - decays if $\\operatorname{Re}(\\lambda) < 0$\n", + " - oscillates if $\\operatorname{Re}(\\lambda) = 0$ (purely imaginary λ)\n", + " - If $\\lambda = 0$ you have a steady-state solution (a stable \"attractor\" if the other eigenvalue have $\\operatorname{Re}(\\lambda) < 0$). \n", + " - large-$t$ behavior dominated by biggest $\\operatorname{Re}(\\lambda)$. (Note: not biggest magnitude! Remember, $0 > -1 > -2$.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Relating $e^{At}$ and $A^n$\n", + "\n", + "These two cases are **related by the propagator matrix** $T = e^{A\\Delta t}$! Solving the ODE for long time, or multiplying by $e^{At}$ for large $t$, corresponds to **repeatedly multiplying** by $T$!\n", + "\n", + "What are the eigenvalues of $T$ for a diagonalizable $A = X \\Lambda X^{-1}$? Well, since \n", + "\n", + "$$\n", + "T = e^{A \\Delta t} = X e^{\\Lambda \\Delta t} X^{-1} = \n", + "X \\begin{pmatrix} e^{\\lambda_1 \\Delta t} & & & \\\\\n", + " & e^{\\lambda_2 \\Delta t} & & \\\\\n", + " & & \\ddots & \\\\\n", + " & & & e^{\\lambda_m \\Delta t} \\end{pmatrix} X^{-1}\n", + "$$\n", + "\n", + "the eigenvalues of $T$ are just $e^{\\lambda \\Delta t}$ (the equation above is precisely the diagonalization of $T$).\n", + "\n", + "Equivalently, for an eigenvector $\\vec{x}_k$ of $A$, $T\\vec{x}_k = e^{\\lambda_k \\Delta t} \\vec{x}_k$, so $\\vec{x}_k$ is **also an eigenvector** of $T$ with eigenvalue $e^{\\lambda_k \\Delta t}$. Let's check:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 0.23567369540695432\n", + " 0.2899190400271146\n", + " 0.9169902702871335\n", + " 2.0483367693538845\n", + " 6.99042092346493" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(exp(A*Δt))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 0.235673695406957\n", + " 0.28991904002711205\n", + " 0.916990270287135\n", + " 2.0483367693538863\n", + " 6.990420923464918" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ = eigvals(A)\n", + "exp.(λ * Δt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, they match (although the order is different: Julia gives the eigenvalues in a somewhat \"random\" order)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does this mean for stability of the solutions?\n", + "\n", + "For example, if $A$ has an real eigenvalue with $\\lambda < 0$, a decaying solution, then $T$ has an eigenvalue $e^{\\lambda \\Delta t} < 1$, which is also decaying when you multiply by $T$ repeatedly!\n", + "\n", + "It is easy to verify that going from $\\lambda \\to e^\\lambda$ turns the **conditions for growing/decaying ODE (eᴬᵗ) solutions into the rules for growing/decaying Aⁿ solutions!**." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Matrix-mult-perspectives.ipynb b/notes/Matrix-mult-perspectives.ipynb similarity index 99% rename from lectures/Matrix-mult-perspectives.ipynb rename to notes/Matrix-mult-perspectives.ipynb index 4e3ded89..0c6eadf4 100644 --- a/lectures/Matrix-mult-perspectives.ipynb +++ b/notes/Matrix-mult-perspectives.ipynb @@ -1292,7 +1292,7 @@ "* elements in column $i$ of $A$ only multiply elements in row $j$ of $B$\n", "* a column times a row vector, sometimes denoted $xy^T$, is an [outer product](https://en.wikipedia.org/wiki/Outer_product) and produces a \"rank-1\" *matrix*\n", "\n", - "(See [this excellent paper by Gil Strang](http://mth1007.mathappl.polymtl.ca/MultFactMatrStrang.pdf) for more on this perspective applied to linear algebra. You will be in a better position to understand this at the end of 18.06, however.)\n", + "(See [this excellent paper by Gil Strang](https://doi.org/10.1080/00029890.2018.1408378) for more on this perspective applied to linear algebra. You will be in a better position to understand this at the end of 18.06, however.)\n", "\n", "For example, here is column 1 of $A$ times row 1 of $B$:" ] @@ -1372,7 +1372,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 0.6.2", "language": "julia", "name": "julia-0.6" }, diff --git a/lectures/Multidimensional-Newton.ipynb b/notes/Multidimensional-Newton.ipynb similarity index 100% rename from lectures/Multidimensional-Newton.ipynb rename to notes/Multidimensional-Newton.ipynb diff --git a/notes/Newton-Thomson-example.ipynb b/notes/Newton-Thomson-example.ipynb new file mode 100644 index 00000000..0e7698a4 --- /dev/null +++ b/notes/Newton-Thomson-example.ipynb @@ -0,0 +1,1320 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c5816487", + "metadata": {}, + "source": [ + "# Multidimensional Newton’s method\n", + "\n", + "Most real-life equations are nonlinear — everything in the real world \"goes nonlinear\" if you push it hard enough. But we can still use linear algebra to solve nonlinear equations!\n", + "\n", + "The key fact is that **derivatives** represent **linear approximations** of functions, so you can solve even *nonlinear problems* by a **sequence of linear approximations** using derivatives.\n", + "\n", + "The most famous example of this is [Newton’s method](https://en.wikipedia.org/wiki/Newton%27s_method). Given a system of nonlinear equation\n", + "$$\n", + "\\vec{f}(\\vec{x}) = \\vec{0}\n", + "$$\n", + "representing $n$ equations $\\vec{f} \\in \\mathbb{R}^n$ in $n$ unknowns $\\vec{x} \\in \\mathbb{R}^n$, the linear approximation around any given $\\vec{x}$ is\n", + "$$\n", + "\\vec{f}(\\vec{x} + \\delta\\vec{x}) ≈ \\vec{f}(\\vec{x}) + J\\delta\\vec{x} \\, ,\n", + "$$\n", + "where $J$ is the **Jacobian matrix** of $\\vec{f}(\\vec{x})$: $J_{ij} = \\partial f_i / \\partial x_j$. By setting this *approximation* to zero, we obtain a **Newton step**\n", + "$$\n", + "\\delta\\vec{x} = \\boxed{-J^{-1} \\vec{f}(\\vec{x})} \\, .\n", + "$$\n", + "Performing a sequence of these steps gives us Newton's method:\n", + "```jl\n", + "x = initial guess\n", + "while not converged\n", + " x = x - J(x) \\ f(x)\n", + "end\n", + "```\n", + "If you give it a reasonable starting guess, it converges amazingly fast: asymptotically, it **doubles the number of accurate digits** on **every step**." + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACZIAAAP8CAYAAADWINm8AAAMZ2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIaEEEJASehNEepESQotUqYKNkAQSSogJQcVeFhVcu4iCDV0VUXQtgKwFEbuLYu+LBQVlXSzYQHkTEtB1X/ne+b65898zZ/5T7sy9dwDQ+MiVSHJQTQByxfnSuLAg5riUVCbpGUCANiADX6DH5ckkrNjYSABlsP+7vL8JraFcc1Rw/XP8v4o2XyDjAYBMgDidL+PlQtwIAF7Bk0jzASAq9BZT8yUKPBdiHSkMEOI1CpypxLsUOF2Jjw7YJMSxIb4CAFmdy5VmAkC/D/XMAl4m5KH3Qews5ovEAGiMgNifJ+TyIVbEPiI3N0+ByyC2hfYSiGE8wCv9O87Mv/GnD/FzuZlDWJnXgJCDRTJJDnf6/1ma/y25OfJBH9awqQul4XGK/GENb2fnRSiwOsRd4vToGEWtIf4o4ivrDgBKFcrDE5X2qBFPxob1A3oQO/O5wREQG0EcKs6JjlTp0zNEoRyI4WpBp4nyOQkQ60O8WCALiVfZbJHmxal8obUZUjZLpT/HlQ74Vfh6KM9OZKn43wgFHBU/Ri8UJiRDTIXYskCUFA0xHWInWXZ8hMpmdKGQHT1oI5XHKeK3hDhOIA4LUvJjBRnS0DiVfXGubDBfbItQxIlW4QP5woRwZX2wZh53IH6YC3ZFIGYlDvIIZOMiB3PhC4JDlLljHQJxYryK56MkPyhOORenSnJiVfa4uSAnTKE3h9hNVhCvmosn5cPFqeTHMyT5sQnKOPHCLO6YWGU8+AoQCdggGDCBHLZ0kAeygKilq64L3ilHQgEXSEEmEABHlWZwRvLAiBhe40Eh+BMiAZANzQsaGBWAAqj/MqRVXh1BxsBowcCMbPAM4lwQAXLgvXxglnjIWxJ4CjWif3jnwsaD8ebAphj/9/pB7TcNC2oiVRr5oEemxqAlMYQYTAwnhhLtcEPcH/fFI+E1EDYX3Av3Hszjmz3hGaGV8Jhwg9BGuDNZNF/6Q5RRoA3yh6pqkf59LXBryOmOB+F+kB0y43q4IXDE3aAfFh4APbtDLVsVt6IqzB+4/5bBd09DZUdxpqCUYZRAiu2PM+n2dPchFkWtv6+PMtb0oXqzh0Z+9M/+rvp82Ef8aIktxg5iZ7GT2HnsKFYHmNgJrB67hB1T4KHV9XRgdQ16ixuIJxvyiP7hj6vyqaikzLnaudO5TzmWL5iWr9h47DzJdKkoU5jPZMGvg4DJEfOcRjBdnF1cAFB8a5Svr+7LA98QxEDrm25eEQCjd/b39x/5pos6AMChJXD7X/+ms9kEXxPwXXxuC08uLVDqcMWFAN8SGnCnGQATYAFsYT4uwAN+0wJBCBgDYkACSAGTYJWFcJ1LwVQwE8wDRaAErABrwQawGWwDu8BecADUgaPgJDgDLoIr4Aa4B1dPO3gJusF70IsgCAmhIQzEADFFrBAHxAXxQvyRECQSiUNSkDQkExEjcmQmsgApQVYhG5CtSBXyK3IEOYmcR1qRO8gjpBN5g3xGMVQd1UGNUWt0JOqFstAINAGdiGaiU9BCdCG6DC1DK9E9aC16Er2I3kDb0JdoDwYwNUwPM8McMS+MjcVgqVgGJsVmY8VYKVaJ1WAN8Dlfw9qwLuwTTsQZOBN3hCs4HE/EefgUfDa+FN+A78Jr8Wb8Gv4I78a/EmgEI4IDwYfAIYwjZBKmEooIpYQdhMOE03AvtRPeE4lEPaIN0RPuxRRiFnEGcSlxI3EfsZHYSnxC7CGRSAYkB5IfKYbEJeWTikjrSXtIJ0hXSe2kj2Q1sinZhRxKTiWLyfPJpeTd5OPkq+Tn5F6KJsWK4kOJofAp0ynLKdspDZTLlHZKL1WLakP1oyZQs6jzqGXUGupp6n3qWzU1NXM1b7WxaiK1uWplavvVzqk9Uvukrq1ur85Wn6AuV1+mvlO9Uf2O+lsajWZNC6Sl0vJpy2hVtFO0h7SPdAbdic6h8+lz6OX0WvpV+isNioaVBktjkkahRqnGQY3LGl2aFE1rTbYmV3O2ZrnmEc1bmj1aDK1RWjFauVpLtXZrndfq0CZpW2uHaPO1F2pv0z6l/YSBMSwYbAaPsYCxnXGa0a5D1LHR4ehk6ZTo7NVp0enW1dZ1003SnaZbrntMt00P07PW4+jl6C3XO6B3U+/zMONhrGGCYUuG1Qy7OuyD/nD9QH2BfrH+Pv0b+p8NmAYhBtkGKw3qDB4Y4ob2hmMNpxpuMjxt2DVcZ7jvcN7w4uEHht81Qo3sjeKMZhhtM7pk1GNsYhxmLDFeb3zKuMtEzyTQJMtkjclxk05Thqm/qch0jekJ0xdMXSaLmcMsYzYzu82MzMLN5GZbzVrMes1tzBPN55vvM39gQbXwssiwWGPRZNFtaWoZZTnTstryrhXFystKaLXO6qzVB2sb62TrRdZ11h02+jYcm0Kbapv7tjTbANsptpW21+2Idl522XYb7a7Yo/bu9kL7cvvLDqiDh4PIYaND6wjCCO8R4hGVI245qjuyHAscqx0fOek5RTrNd6pzejXScmTqyJUjz4786uzunOO83fneKO1RY0bNH9Uw6o2LvQvPpdzluivNNdR1jmu962s3BzeB2ya32+4M9yj3Re5N7l88PD2kHjUenZ6WnmmeFZ63vHS8Yr2Wep3zJngHec/xPur9ycfDJ9/ngM9fvo6+2b67fTtG24wWjN4++omfuR/Xb6tfmz/TP81/i39bgFkAN6Ay4HGgRSA/cEfgc5YdK4u1h/UqyDlIGnQ46APbhz2L3RiMBYcFFwe3hGiHJIZsCHkYah6aGVod2h3mHjYjrDGcEB4RvjL8FseYw+NUcbrHeI6ZNaY5Qj0iPmJDxONI+0hpZEMUGjUmanXU/WiraHF0XQyI4cSsjnkQaxM7Jfa3scSxsWPLxz6LGxU3M+5sPCN+cvzu+PcJQQnLE+4l2ibKE5uSNJImJFUlfUgOTl6V3DZu5LhZ4y6mGKaIUupTSalJqTtSe8aHjF87vn2C+4SiCTcn2kycNvH8JMNJOZOOTdaYzJ18MI2Qlpy2O62PG8Ot5Pakc9Ir0rt5bN463kt+IH8Nv1PgJ1gleJ7hl7EqoyPTL3N1ZqcwQFgq7BKxRRtEr7PCszZnfciOyd6Z3Z+TnLMvl5yblntErC3OFjfnmeRNy2uVOEiKJG1TfKasndItjZDukCGyibL6fB34U39Jbiv/Sf6owL+gvODj1KSpB6dpTRNPuzTdfvqS6c8LQwt/mYHP4M1ommk2c97MR7NYs7bORmanz26aYzFn4Zz2uWFzd82jzsue9/t85/mr5r9bkLygYaHxwrkLn/wU9lN1Eb1IWnRrke+izYvxxaLFLUtcl6xf8rWYX3yhxLmktKRvKW/phZ9H/Vz2c/+yjGUtyz2Wb1pBXCFecXNlwMpdq7RWFa56sjpqde0a5priNe/WTl57vtStdPM66jr5urayyLL69ZbrV6zv2yDccKM8qHxfhVHFkooPG/kbr24K3FSz2XhzyebPW0Rbbm8N21pbaV1Zuo24rWDbs+1J28/+4vVL1Q7DHSU7vuwU72zbFberucqzqmq30e7l1Wi1vLpzz4Q9V/YG762vcazZuk9vX8l+sF++/8Wvab/ePBBxoOmg18GaQ1aHKg4zDhfXIrXTa7vrhHVt9Sn1rUfGHGlq8G04/JvTbzuPmh0tP6Z7bPlx6vGFx/tPFJ7oaZQ0dp3MPPmkaXLTvVPjTl1vHtvccjri9LkzoWdOnWWdPXHO79zR8z7nj1zwulB30eNi7SX3S4d/d//9cItHS+1lz8v1V7yvNLSObj1+NeDqyWvB185c51y/eCP6RuvNxJu3b0241Xabf7vjTs6d13cL7vbem3ufcL/4geaD0odGDyv/sPtjX5tH27FHwY8uPY5/fO8J78nLp7Knfe0Ln9GelT43fV7V4dJxtDO088qL8S/aX0pe9nYV/an1Z8Ur21eH/gr861L3uO7219LX/W+WvjV4u/Od27umntieh+9z3/d+KP5o8HHXJ69PZz8nf37eO7WP1Ff2xe5Lw9eIr/f7c/v7JVwpd+BXAIMNzcgA4M1OAGgpADDgvwJ1vPIsOCCI8vw6gMB/wsrz4oB4AFADO8VvPLsRgP2wWQdCbtjHwD4hEKCurkNNJbIMVxclF70aAJJZf/+bPAAosPWF9ff3xvb3f6mAwV4H4HiH8gyqECI8M2xxVqCrpgfBj6I8n36X4489UETgBn7s/wWK3pARZhgO4wAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAACZKgAwAEAAAAAQAAA/wAAAAAQVNDSUkAAABTY3JlZW5zaG90dHoSEQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAdhpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTAyMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNDUwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cr19OoMAAAAcaURPVAAAAAIAAAAAAAAB/gAAACgAAAH+AAAB/gACSoFVQHIBAABAAElEQVR4AezdB6AU1b348d/u3n4v3AaE3sHeFcUOgoAlNuyJ5iW2GBPz1MSYWKLJS0xi8tf4EuNTE6PGBCuoFEFATUSwInZAVHrnNm6/u//f78zM7t4CXODKbd9JdmfmzDlnZj6zF2fP/PacUEwnYUIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOi0AiECyTrttefEEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEnQCAZHwQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQCAZnwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJMLEEjWyT8AnD4CCCCAAAIItJJATY1UzXxBahe+JXXLv5Do6pUSq62VcPcekrLXvpLxne9JpGdv7+BiscYHGQo1TiMFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ2EUBAsl2EY5iCCCAAAIIIIDArghEt2ySykmPSuXTj0tsy2YRjRGLaUyYFxZm737QWHq6dP3jX3U1KiVXfdPL4G+KhUNSOOtNCeXm7cohUAYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoJEAgWSMSEhBAAAEEEEAAga9GoPrV2bL1jp9ItGiL20EQNpY+7nRJOWKkRPoNkLovPpOKB+6V6MYNEu7ZS9JGHCOVzz0Vjy8LachZqFuB5M+Yr8FlXvjZV3O01IoAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp1JgECyznS1OVcEEEAAAQQQaBWBWGWllN9zp1Q++Q+N/YpJVHsWsxCwyP4HS5cbfy6Rffavd1yx4iLZct54iW3aGE+3cjHtusw6Jcs89SzJvv138W0sIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArsrQCDZ7gpSHgEEEEAAAQQQ2I5ArKxUSr73Lan98D2Xy+uFLCRpJ58qXX7xe40mizRZukp7ISvT3suCyQLIgg7Icu74g6RP+HqwiTkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCw2wIEku02IRUggAACCCCAAAJNC8RKS1wQWd1H72lPYsFAliLpp50jObfdqZFh4aYLamrdZ4ul6PwJuhSUs0EtdQpHJH/mfAnl5dsaEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINAiAgSStQgjlSCAAAIIIIAAAvUFYiXFUnLNf0ntR4v8WDAvICztmBOly90PJLoXq18svhbbsE42TzjG5dMbNpeuI1vqMJgHSN4jz8bzsYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0hACBZC2hSB0IIIAAAggggECyQG2NFF9xkdQuetdL1TgwG5Yy1L2H5D7+goTzC5JzN7lcqz2SFZ9/isQ0eiwUirp5WOvIuOwaybrqh02WIREBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYVQECyXZVjnIIIIAAAggggMA2BMruvE2qnvqHt1UjyGLao1hIo8C63veYpB525DZK1U+umf8fKfn+t8R6I7NhMb3+zERy//akpBxwSP3MrCGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK7KUAg2W4CUhwBBBBAAAEEEEgWqJo+RcpuuT6epGFkLhAs4xvfkewf3hRP39FCxQP/K+V/uVskrDm9kS0l1CVX8l96Q0KRyI6Ksx0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYKQECyXaKi8wIIIAAAggggMC2BeqWLZGSS86WaGWFjmOp+SwAzIa1LCyUgmfniGRnb7twgy0l3z5Xat7XoTH9Oqy+9DETJOfOexvkZBUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYfQECyXbfkBoQQAABBBBAAAEnUHLFhVLzzlu6bNFfQV9kIcm55VeSfsa5zVaKFhfJlrE6BGa0zi9jUWlRyb7lTsnYiXqavUMyIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBApxcgkKzTfwQAQAABBBBAAIGWEKieO0tKf3SVxo9p0FfMCySzeiNDhkneP6fqEJU2RmXzporHHpLyu3+tmXVYTK0vFPO6N8ufPk/C3Xs0rxJyIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAjshQCDZTmCRFQEEEEAAAQQQaFKgrlaKJo6T2hXLXT9kiTwxybn1N5L+9YmJpB0taS9kRWeMlro1qzVnLD5CZmTocMn717QdlWY7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsEsCBJLtEhuFEEAAAQQQQACBhEDllCdl6y9uSiToknVKFi4olPwXXpVQenq9bdtbqXppupT95BqLIfN7N7O5SOYll0vWD27cXtFtbouuXysVD/9FYmVlknPHXdvMxwYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOi8AgSSdd5rz5kjgAACCCCAQAsJlF59qdS88R+//7BEpZmXXiFZ3/9xImFHS9GoFF1wmtR9vjiRUwPKQlpzl/sek9QjRibSm7EU3bRBKh++Xyqf+afEqqolZfBQyX1iejNKkgUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDqbAIFkne2Kc74IIIAAAggg0KIC0U0bZfOEYySkQ1K6rsNCGvkVC7ngr65/fUJSDjy02furmPSIVPzuDtebmWg9VkvUas3MksI5b4ukpjarrljRFu2B7H6peuoxiVZVaX0xCWvJ8JBhkjeJQLJmIZIJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgU4mQCBZJ7vgnC4CCCCAAAIItKxA5VP/kK133qaVurEo3SykUVvRzBzpNleDvyKRZu0wVlIkRWeNkWhxUSK/BaTpsJYpx4+Srn/4v0T6NpZiJcVS8eiDUvXEI1K3dasLRHNRaVqHTZHBGkhGj2QeBu8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBPgECyehysIIAAAggggAACOydgQWQWTGaxWhZKFgSUpR1zonS550GX0py3sl/cJFVTnnTBXzGtyf5nPZJZfdk/uUMyJl68w2rKbrlBquZOl/RR4yXcp5+rL7phXfzYIvRItkNDMiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQWQUIJOusV57zRgABBBBAAIEWESj54eVS85+5Ln4sFtYhJGNhFwSWfvaFkvPTXzRrH9WzZ0jpjddoXgsc08EstRuykPZGFgSl5T03V8K9++6wrlhZqVc2O8flLX/gXqm4/x5d1rp0eMvIUIa23CEiGRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDopAIEknXSC89pI4AAAggggEDLCBRdeKrULvnUC/wKaT9iGrOlN1iSdcUPJPOKa3e4k+ja1VJ04WkSKy3xeg7zR8i04C/rlSzSf6DkP/PSDutpKkPV1Gel7NYfecekGVK0R7LcSdObykoaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0cgECyTr5B4DTRwABBBBAAIHdE9hyynESXb/GVeL6EPMDwTIuuUKyf/Dj7VdeVSlF3/2m1L33rvY41keia1d5nZAllcq44BLJvuHWpJTmL1bNmCJlN18fLxAZrD2SPUEgWRyEBQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiAsQSBanYAEBBBBAAAEEENh5geJvTZTaDxa6gl5vZF4d6SefJjm/unubFcY0iKzsv6+U6jfmiaSlSfaV18rWe3+j+W0YSh3aMhTV/shC0vWPD0nq0Sdss57tbaie/pyU3nKd19OZ1pYyeLjkEki2PTK2IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBpBQgk67SXnhNHAAEEEEAAgZYQKLvtBqmaOjkerOUCwSwErEuu5D07W8J5+Y12Eysvl5Ibviu1b74mOgqm5NzyK6n95EOpfPIffj1Wi/4vPVXyZ78joYyMRnU0J6FqmvZIduv1GpemdemOIkOGS96kac0pSh4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOhkAgSSdbILzukigAACCCCAQMsKVPz1z7L1z3+QsFZrQWHWK1nYjXEpkjruVOny87t0ITW+06o5L0r573+hw2GuFe10TDIu/75kXXWtFJ1+ghva0uqwyapIOfI46fqnv7n1XXmrmq6BZLfo0JZWZ0gDybRHMoa23BVJyiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQ8QUIJOv415gzRAABBBBAAIGvUKDm7QVScuXFLlArpFFkXhyYH0mm+40MHCypBx6qUWGpUvPBe1K3+KP40WSceb5k3/w/UrdsiRSdN0ED0WxIS68GG9Yy+79vksyLvx3Pv7MLQSCZHY2FpoUHDyWQbGcRyY8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAJxEgkKyTXGhOEwEEEEAAAQS+OoGyn/9Yqp5/RoPArPMv1/2X25kt2xCVbrJZVNc1kw01mX72hZJz423afVlEKv72Fyn/012ubNirxNWS9+SLEhk0xCu/C+/VM56T0puv80rq/iODLJBsxi7URBEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOjoAgSSdfQrzPkhgAACCCCAwFcuECstkS0XnCKxdetcMJjrVEwDtyyIzAssS4SUhdLTJeu/fyoZE7UXM38qvux8qVv4tgsec3FkGosW6dVH8p5/JciyS/OgRzIvvC0kKUN0aMtJ03apLgohgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDHFiCQrGNfX84OAQQQQAABBPaQQKxos5TffadUvqA9k+k+3QCVbsHvoSwUlvSTxknmtT9xQWLBYcWKi2TL2CO1t7I6r4yfPePsCyT7p78Msu3S3Asksx7JLKSNoS13CZFCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHQSAQLJOsmF5jQRQAABBBBAYM8I1H70vtS89brU6DxUXS3hHj0lZehwSRs9TkIF3RodRNW0yVJ66w1uWEyLJItp8Fk4FpOc390naaNObpR/ZxK8QLIbtEjUYskkMth6JJu+M1WQFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEOokAgWSd5EJzmggggAACCCDQNgXKfvZDqXrxBYvz0jgyfddxMUMpaZI3a4GEc7rs1kEHQ1tavXrT54a2zH2CoS13C5XCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHRQAQLJOuiF5bQQQAABBBBAoO0LxOpqZcuYERItK3W9kLnhMPWwUw45QnIf+Odun0DV9Oek7BYd2lKD06yrs8jgYZL3BD2S7TYsFSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQAQUIJOuAF5VTQgABBBBAAIH2IVDzzgIpvfJi0c7C4pP1TJZ5zQ2S+a2r4mm7uuB6JLv5ejdspu0iMsSGtqRHsl31pBwCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACHVmAQLKOfHU5NwQQQAABBBBo0wJb775TKh990DoLc0Nbeu8xyXv8eYkM32e3jz0Y2lLHzHRVpwwZJrmT6JFst2GpAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEOKEAgWQe8qJwSAggggAACCLQPgaKJJ0vdF8vcwVpPZFF9RQq7Sf6M1zXwy1J2b6qe8ZyU6tCWNrKlTeHBQ3VoyxneCu8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAkgCBZEkYLCKAAAIIIIAAAntKoG7lcik6c7TuLqa9kYV1eEuN9tLYsfRTz5Kc23/XIodRNf05Kbv5Oq+jM62RoS1bhJVKEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOiQAgSSdcjLykkhgAACCCCAQFsXqHj8YSn/wy/jh+mNPhmTnF/dI+knnxZP350FN7Tlrdd7XZ1pkFpk8DDtkYyhLXfHlLIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdFQBAsk66pXlvBBAAAEEEECgTQuUXHae1Lz7jtdbWEyjvMLaM1koInmzFkg4N69Fjt0Fkt1yvXZ0FnP9nkUY2rJFXKkEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgY4oQCBZR7yqnBMCCCCAAAIItGmB2o/el+JLztLgrviok+54I3vvJ3mPTWmxY6+aNlnKbr0hHqzmBZLRI1mLAVMRAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAh1IgECyDnQxORUEEEAAAQQQaPsCtUs/lbLrr5LoqhUukEy7CxNvQTsl+1ovyX9mlkh6RoucSMUjD0j5H3/j6g/pfkJ9+kr+lJdbpG4qQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBjiVAIFnHup6cDQIIIIAAAgi0MYHaRe9IzcK3Jbr8c6lZ9K7ULVuqEV061KQOZxmSqL504MmY9k0WCrv0cO9+knb0CRIq7Cah1DRJO3GsRAYM2qWzKrn6Eql583VXvw1vKTp0Zv6L8yRc0G2X6qMQAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0XAECyTruteXMEEAAAQQQQKANCGy98RqpnD3DOxJ/LEsL6opZCJmux8JeIJl1TGa9hkWj3tzbHpOc394r6SdNaNaZRLdsFgtcq1u9UmrmzJSad9+wMDW3L1eB7s+Gt8w4Y6KEBw6VSK8+EhkyrFl1kwkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDq2AIFkHfv6cnYIIIAAAggg0MoCtYs/lrovlmmQmBcwppFdGj2mYWJu3YLGLF17JtMeyVzPZLrZAso0+suFgKWNPF5CXbo26yyqX56lw2Z+V7SzM63Eq8PVo8uJOr1N1hNa5ODDJPfBfzWrbjIhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDHFiCQrGNfX84OAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEENihAIFkOyQiAwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQsQUIJOvY15ezQwABBBBAoMMJVFTVyCdL18raTaWyaXOZbNyyVTYXb5UNurxhS7ls3lKm5xySwrws6VaQI93yc6QwX5dtrmm9uufK3kN6SkZ6Soez4YQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBXRUgkGxX5SiHAAIIIIAAAntEIBYT+WTZWlmw8Et5feEy+WDxGqmtiYqEdfe6bVuTlQuFQpolqmFl+r+QZo/GXFokEpL99+orIw8eIEcdPEiGD+ou4bBVyIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0TgECyTrndeesEUAAAQQQaPMCq9cVy3Nz3pepcz7Q3sZKXTiYhXrpzYsMqdko/ao3S0FdhRREy6WgVl91WyW/rlwKo1tdfNnmcLZsScmSzWF9RfSVkiNbwhmyPK1AlqUWSm0orOFlMf1fSL5W2EVOG7WfnH7SAdK7R26bt+EAEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZYWIJCspUWpDwEEEEAAAQR2S+DzFZvk4WcWyMx/fyTWq5j2PSY96srk8IrlcljFCjmkcqVkRGtch2S2TTsac4FjNndrIS0U81Jdf2SuKzK/AzPrlUxzVYbSZWF6L3krq7+8ldlfNkZydF8xCUfCcvKxe8u3zhkpg/oWuBp5QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDqDAIFkneEqc44IIIAAAgi0A4FV64rkgUnz5MVXP5aoBnWlxKJy4talMr7sY9m3ao2egUWBufEqddnCwWymaaEG4WS2Sbsuc1njZVxu7y1eh1eLhZx9lNZTpnfdR17JHia1Wthiz8Yft69cfv7R0qdnXlJhFhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGOKUAgWce8rpwVAggggAAC7UagvKJa/vbUfHn8hbeltrZO0rQPspNLP5KJJe9Kj9qteh5+0JgGhVnQV7AWjxHTBBdPFj9jy2E5dQqCxvykYIubaxaNVRMd4VKHy7Sez0LaM1m2PJV7iMzosrdUa0BZWkpELjjtMPn2xJGSlZnm1ck7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0AEFCCTrgBeVU0IAAQQQQKC9CLz6xlL57YMvyYaNZdoLWExOKlsi3yhaID2iGkBm0V46WfhYVFf80DAvRszf5uXw3zUtFtbhKWNhzR0v7NdjUWOapkFjwSabu1EvrWLXqZmVsbJR2ZDSRR7LHSFzcobpeki6FeTIjy8fI8ePGOrvjBkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQsQQIJOtY15OzQQABBBBAoF0IbNVeyH7/0ByZOvcDd7x7V6+Tqzf9W4ZVb3TxXl7UWEiDuDS4SwPAQhrxZb2O2ar1Hua2u7klWBYNN3PdkmkJXdcbHFdvyALDdNmluRRvW8y6IbPKgimo21JdvbYhJEvTCuVPBcfK4vSero5TTthPfqQBZVkZqUFJ5ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAm1IIFZdJdWzpknNwrekbvkXElu9UmK1tRLu8TWJDNtHsi77noR79vaO2H+mVO/wrScCJgQ6qQCBZJ30wnPaCCCAAAIItJbA8tWb5Ud3TpbPV2+SzGidXKo9kJ1e/IGEXYRY46PyY7ySNngpFu/lhYPZuutSzIsvCwLBLHpMeyhLjhcLNlllMd2fBZ+5IDOvuCU3mmL6ZeH5nP3l4fwjpTKUIgP7FsrvbzpL+vbMa5SXBAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdYRiG7ZLFVPPiqVTz0u0S2bgsdHrlOC5OdFoYwM6XL3g+4gS676ht9/gY2Ro50TRCJSMHOBhHJ5DtQ6V5G9trYAgWStfQXYPwIIIIAAAp1I4OPP1soPf/m0FJVUyMCazXLT+lnSr7ZIBbyhK10PZHa7rtFdoVBiQMuglzBv4Em7kffiw5LnxuiCwixazJb1Zdtt8vIlp3jpXiZva708Tex/RVq+3Nl9jHyRWih5XTLl/918juw7tKdfETMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHWEqj59xwpvf1GiRVtcaPbWEcB9oAofdxpknrESIn0HSB1XyyT8gfukejGjRLp1VtSDh8pVc8/rdnsCZU9KdIpv1AKZ87Xsv66l8o7Ap1GgECyTnOpOVEEEEAAAQRaV+DTz9fJ9257Usq2VsoRFSvkxg0zJVNq3FCSwa14EOrlzS21fldhlh52t/NJ6daTmUWQuSlRgw13GdZkS7EvC4nhLi1jyKtZy1qQWuPSltZ4/xXaI9lvuo+TNzL7Sk52htx3+/kyfFAPt2feEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE9qxArLJCyu/5jfZE9pjuOPH8J2X/gyX7R7dJyr4H1DugaNFmKT7/FIlu2lgv3Z4LxfTpUfopZ0nOHXfV28YKAp1JgECyznS1OVcEEEAAAQRaSeCLlZvlqlv+KVu0J7KjK5bJTRtmScRCvCwezAK2tPcxF7hlgV8W+RVMtuyivJKCumwxSI/qigWDBdl0wWLKLIDMEuNbXAY/l20LSuzC/utCYbmz2xh5LXuw5HfJkvt/eYEM6FNglTIhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjsIYFYWamUXnOp1HywyH+e5D0LSh97muT8QoPBIilNHknVc09J2R0/0W320MjvvMB/tpTzyz9I+vivN1mORAQ6gwCBZJ3hKnOOCCCAAAIItKLAhs1lcvlPH5e1G0rlsIov5dYNL0pKrM6FcoX1fj6qUV/2Gw/3fzekpN3ke6FeYddjmIv8ChK0gG53wWNen2HxU9O0kJb3Svt3+/GNtlCvY+Ld2n+tBpPd0WO8vJXZX3p27yoP/foi6ZafU29vrCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHw1AtHSEg0i+5bUffi+hoLFB6aUjNPPkexbfq29DoS3uePapZ9I8QWnedvtwZL1UGDPn3SeP+sNCeflb7MsGxDo6AIEknX0K8z5IYAAAggg0IoCVdW1csXN/5RPPlsn+1avkf9Z84JkiAaR6f148pCSwSFaD2JhHYayXq9kwUYv9EvXEsNauhAzva+P2XeBeLLd8bstWsJbdmu2T/0S4Oq3Zd3k5YrvwOVv7v6rQhG5+Wuny0dpPWWvYT3l/jvOl4z01ERlLCGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLS4QEyDyEq+d6nUfvS+97BHn/+E9PlSytEnSNd7HtS0hk+A6h9CdP062XLKMX6iBaGF9RlRVIfBPEhyH3mmfmbWEOhkAgSSdbILzukigAACCCCwJwVuvXuqvPjvj6V3TZH8Ye1k6RqtdDf09QO6Ej2SWWSX3dsHgWSJkDA9arvn12Ax7QzM3x70MFYvlxc65id5NduKhZT5PZhZ/fUCynZ9/yXhNLmu51myOjVPTj52b/nFf/u/XtmTyOwLAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOgsArU1Unz5RVL7/rt6xonnP+HuPST3n1Ob1ZtY3bIlUnzeBPdMKfn5U8Z3rpGsq37YWSQ5TwSaFCCQrEkWEhFAAAEEEEBgdwUmz1okv75/pmRGa+TuNc9Ifw0m83oIi0d5+RFhFsjlBYW5fSbHhemy/YIkqv/zw71cTuvSzAWUWQFb1pqjGn0Wsq6Hrbwl68v94MRFpVmeYB/+DiwwrdG2oKDObWrG/penFGgw2ZmyNZQqP/3uODlz7IFeWd4RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRaVKD8t7dLxZOP1n/Go8+Hut73qKQedmSz9lWz4DUp/d637OmS5rfnR95714eelNSDDm1WHWRCoKMKEEjWUa8s54UAAggggEArCixfvUUuvu5hqampkx9vfElO2LrE7sB1skAve+kteVhfumw35zZ5QV/e5rButx7EXLouuWVb1czezK/DJeiyv82r3+rWrEGvY64Wv+BXtP9XsofKb7uNkXQd2vLRuy6R/r3z3V55QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaBmBqulTpPTm6ySsD5W850g2lI1I5jcuk6xrb2r2TioeuFcq7r9b82s9/jOmcJdcyZ/9pj5j0odMTAh0YgECyTrxxefUEUAAAQQQ+CoELEbsqlsnycIPV8hJ5Z/K9Rvnupt5venwdmc35DrZjXnYBZJ56XbLH7MIsJCua7pli2qKTa6Ifycf0wC0kC1bol+l5fEW7WuDbdBXvWA1Tf2K939Xt9EyO3uYHLJPP/nLLy7wAuPswJgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR2S8ANR3nJORKrKE/qrCAk4fwCyZ88W0LZOc2uv+i/JurQmAvdE6Ugkixt7ATpcue9za6DjAh0VAECyTrqleW8EEAAAQQQaCWBaS9/KD+/d7oU1JXL/WuekJy6ynhwWBDu5R2aBXvpks30lyNeL2TeFov5CllAmdvozbwtlterzsrGg8rcRlfIBYx5A2FaOT+gzA9O83YY1NSy+y+LpMmVfS6UolCG3HLNKXLqqP2CHTFHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYDYHSKy6Uqnfe9IK/kp7/ZP/s15Jx5nnNrjlWUixbxo6QWG2dewxlBfWJkWTdovWccW6z6yEjAh1VgECyjnplOS8EEEAAAQRaQaCqulYmXvOgrN9UKtdvmiujyxa7Dsa8u3o7ILsV9wK+Yhot5joetu6HLWYsPnnbXTZNc9usWNJkq96o9V6ixYm54DEXfGZ78Homs2qDeDQ/p868+r+K/c/NGSbWM1mPbl3kqXu/I+lpKd5ueUcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEENglgeq5M6X0x1fHHxoFz38iQ4dL3r+m6sOgBg+StrOXiscelIq772z0/KlgxjwJdeuxnZJsQqBzCBBI1jmuM2eJAAIIIIDAHhGYNPVt+cNDc2VIzUa5d81TLmYriB1LHo3SRpe3QC6vxzBd1vt77xbf3jXd/u/S/HVLtXX7ZmDL+j/tw0wXdPDLsA1b6aUnv7uSlu5XEezDkr6q/Vvd1/acKEvTu8l13x4l5596WPIhsYwAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIILATArHaGimaOE6iK5e7UsnPf3JuvVPSvz6x+bVFo7L5jBMltmaNlvEfLmmFkSEWkDat+fWQE4EOLEAgWQe+uJwaAggggAACe1IgqoFh53zvQVm9tkhu3vCiHF3xhbd7P5DLrbjgMVuyxHiMV3w5uZcxl2hvScFgXpqW9bsZsx7N/Nv8REbdhw2V6e1Bk/fw/l/PHCh39Bgvvbt3lWfuu1zCO/ErGO/8eEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDCBquefkrLbf+KeFyV3QhDKL5D8F16VUHpGs6GqZ0+X0hu/7+VPev6UecnlknXtjc2uJzljdP06qfjbfRLbWiY5d9yVvIllBNqlAIFk7fKycdAIIIAAAgi0PYF/v/mZ3PCbydK7plgeWP14opcwvRG3G3tv0n7ENAgsmoj+0uSY9hAWdj2UuXy6ranYq5CWi2kGK2o9iiWCzrxwspAV9roa8wLNgp3u4f1brNwVfc6XVSl5ctdNZ8lxhw/xTp13BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnRIo+e4lUvPW6/o4yR4gJR76ZF16pWR+/0fNr6uuToov/rrULv20Xhl7/tTlz49J6hEj66XvaCW2aaOUP3yfVD7zL412q5aUIUMld9L0HRVjOwJtXoBAsjZ/iThABBBAAAEE2ofAj+58Vl7VYLLLtsyTs4rf12Awu5nXY0+O+rJ7fI33imo3YRo65jZblmByYWLWm1g0JFEtH48/0wyWLx5g5gq5lKBokMOtW8BZa+7/6S4Hy0MFR7kgMgsmY0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEENg5gejmjbJlwtEidda9gMWSJZ7/5P51kqQcdFizK6x84lEp/+0d/tOpRLFQVo4UzH5TJDU1kbidpeiWzVLxyP9J1ZOPSayiUh9eeZlThgwjkGw7bmxqPwIEkrWfa8WRIoAAAggg0GYFSsoq5ZTv3CfRmhp5dNUjklfn3zjHo8SCoK8gwe6qddl6DfMXLeDMYs+8nsYs3bZbsJkNU2nlLGPTk20N6+aYK+znDep1RYLyNrfJ3/gV7b8okiXf7PtNCUVSZNpD35XcLpnebnlHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBolkDl049L+Z23Nnr+44K/5rwlos9hmjPFSoply5mjJVZSEn/+FDwrSjt+jHT5w/07rCZaXCSVjz0olZMekVh5ucvvj5mjyzGJDB4meU/M2GE9ZECgrQsQSNbWrxDHhwACCCCAQDsQeH7OB/LL/50hh1WtkF+sn6bRYBr+FbahKN1Yk+5e3P1KJB4Q5gV0BeFdiVO0AK9g0MpgaxBI5sWdxaxu67VM64ra3FWla65LY113VbT+/m/teYq8lTFAbv7eODl99P6JU2QJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBghwJb77xNKp/8h/ZLUP/5T8rRo6TrPQ/usHyQoeyOm6TquSd0NeiFQOfuGVNMsn9yh6RPvCjIus152a03SPXsGZI2+mQJ9+mv9T0l0Q1rvYdX+swqZchw7ZFMn5ExIdDOBQgka+cXkMNHAAEEEEBgVwVKS0ulRH95UVxcLEVFRW5uyyX6qtSx3KuqK6Va59XVulxV1WheU10j1TXVUllRIUUp+0lt6tfkB5tekfFlH7tDCsLAghUL8PIGs7Sb9MStevyeXdOsjBd6poFhNrSlJlgAmo516W7EXZCYFbbJpft5vCqTq3J1+cmu4j29/2k5+8j/Fp4gxx8xRH73E4a39C4a7wgggAACCCCAAAIIIIAAAggggAACCCDQEQXKysribc3W7ly0ZYsUWXuzLgfty9bWXK1tzVU6r6xKtD8HbdA1Ll23a57k9udqHQmjqtpLq6zUctY2reuWz35gnJGRIelpaZKWkS5pKamSrutpOkRdWrqmp2u6bktPT/delk+XU9M0X5rm97clz205w8pqfTk5OZKfny+5ublu3qVLF8nLy3PpHfE6ck4ItDWBkh9eJjX/ebnR85/Mcy6S7JvuaNbhVs+eLqU3ft+vo/7zp5A+f8qb8rJE+vTbYV1R7dUsFIlIKDvH5S3/vz9Kxf1/dB0c2PMveiTbISEZ2okAgWTt5EJxmAgggAACCGxLwL4oWwDYpk2bZOPGjY3nmzfLxg0b3LaNmmfTxk2yWceUr66u1So1EMu9W+0WsOW693KBV5YSJAVBYW5rooDLol2PyWGn3i5h/dL9yMrHpEfdVuuQzOsZzNXh9Ram765C22NI9+MCxLT3sbCuB72JBSNNuqyurB2S3X7HQ8LcMWkBV5dlcUv65gLPrG5Nawv735iaI5f2+YbkZGfIrIe/J2Ebe5MJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBowwL12ps3aXuzticntztv1jbmDdoOHU9zbc4bpUaDvbzGW5u5BltdaIH25wZWDZunvQgOayW2yW+D3QP7T9VAtcLCQunWvbsUFhRIt27dpFBf3Qq7Sffu3aRA07rrNpu7bZrXgtFstA0mBBBovkDxBadJzdJP3F938t9/1uXfl8wrr91hRdG1q6XowtMkVlbi6nCPl6yUVmbPn8IDBkve07N2WE9TGaqmPiult/1Iq7J/g8ISGaJDW9IjWVNUpLUzAQLJ2tkF43ARQAABBDqXgH1pX79+vSxfvlxWrFjh5l9++aWsXLlKVq9eJatWrZI1a9dIjfYc5r6SNwwEU67kG+tAr6k02+Z67Qq+cwclm8ycSMzK6yMHjP6h9KwpkYfWPO7tIl6H7T8pEMzSrai7qdYFfz1Itv1HtfMxr/cwDQqzO3rtosxmrphXu1+JPwSmbnDtAhaFpsNpusmf2XJr7v87fS6StSld5O93XSp7DerhHRvvCCCAAAIIIIAAAggggAACCCCAAAIIIIBAKwgktzevXLlSrK05aHtevXq1tjmvdm3ONTXej5DdIQbtr9ZC2wrtz8FuW6v9uyX3b72i9erVS3r37i19+vSRvn37Sv/+/d2rX79+bt6jRw+CzVrhb4Ndtl2BolOPk7p1Onxkg39/Mi+9QrK+/+PtHnhMezAs/t4lUvfeO5LSu6/UrFrZ6PlTxvmXSvYNt2y3nm1trJ7xnJTefJ23WZ9LuaEtn2Boy215kd5+BAgkaz/XiiNFAAEEEOiAAvbFfe3atfL555+7L+w2ty/vX3zxhXt9ufxLHTqysskz16/tLg7LNja5nJzYMJOtB6X8fA2zJ2dxyw3egvzdBx4pgw+dKCduXSI3bJztYrkspiuo3g7S9TTmF7AYL1uMZwgq0hQv5Mz77YbLo28uiCxRyJW0nNb3mBdK5i1bFntZLFlb2f9dhaNlTtZw+cl3x8pZYw/yj50ZAggggAACCCCAAAIIIIAAAggggAACCCDQ8gLW3rxmzRr50tqX/XZmCxT7fNky+VLn1vZcUVGR2HFS22wi0VtK3tTkcnKiFWm4HiT46Y02N1nG23fDTcll48vxBb9Mw/V2uv/MzCwNKOsngwYOlP4DBsrAgQP0ZfOBMmDAAOnZs6eOfqG/vmZCoJMIlHzrHKn54L1Gz3/SxpwiXX79x20qxHT43LLrrpSaBa9JSIeqzbji+1J+7++8erSUe46kz5O63POQpB1zwjbr2d6GqmlTpPTW611wmlXs9Ug2fXtF2IZAuxAgkKxdXCYOEgEEEECgPQvYF3MLEFumX9bt9dlnn7n1pUttvkwq9RcR3ndab1hGF0wV0pvY4C7Wnbwm2F2omzWxrFtDroxl9rc3mAeplsObklLc4q7tf8DBZ8jXBh8tlxXNl7OLF2rV9iVWj1X3HwSG2XrS3tx27TBY0zQUzM7TikR1/7oY0zTr3rvx+WtelyG5Jm/Z9hN2ZWy/bWf/T3c9SB7KP0pqtnwkfbI3yJAhQ2TQwEEydNhQGTx4sAwcOFAyMzP1mJkQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEdC1ToD4+tXTm5vTlod7YfKCcCxZLaUd3irrX/em29rdf+zP6tzTvhn6HtyQM1wGzo0KHa3jxYBg0a5Nqdrb3ZXhkZGTv+EJEDgXYkUHbbDVI9bbI+M6r//CfUNVfyn31JQrl5jc+molxKbrhKaubPc4+Msn/2K6lb/LFUPvFIvedPofR0yZ/ztgs0a1zJjlOqpj8nZbdcF3/+FRmsQ1s+QSDZjuXI0dYFCCRr61eI40MAAQQQaBcCtbW1LjhsyZIlsnjxYvf69NNPXdCYDUkZtfEabUr67u4lNPe9ccF4igZQaRyVP+lCfEOQljTf3rakbI0XGxcMUvY69nLp2n0vuX3DdBlR8XniG607EKtJj8mCxayAG4PSFupPdvhBavKylfX6G7OtVo+X0WZh2+aC0DTozI8x02i0NrX/N7L6y8+7T5DidUvk09ce8E7SDt6f7Jdj1oX58OHD46+99trLNQIMGjRIUlJSgqzMEUAAAQQQQAABBBBAAAEEEEAAAQQQQKCTCNRrb7Y2Z21rXrx4iSxZslhWrFyh7aFJjYzJJn4zanJS85YbF4yntHL7s/fj4uAs9LzjBxakJc23ty0pW+PFxgXjKe3o/MORsPTV4fuGDR8mw4fpS9uah9lc259pb2581UlpHwLlD/1ZKu77f3qwjZ//pJ18quT8/HcSSkuLn0z1nBdl6113SGz9OvdIKfPy70vWlddK0eknSO2aVfFnUfbAKXXk8dL13r/Fy+7sQtX0KVJ28/Xev0v6/CsyaDiBZDuLSP42KUAgWZu8LBwUAggggEBbFbDewyxQ7KMPP5KPP/lYPvroQ/n440/ks6VLpbKqSg87/vVyO6fg53Gz5GWvSKIGbymxnlxl/W2JPIml5Nz1l7081hNWrv5SIy8vV1950rVrVzfPzc2VrKwsSU1NlTT9NUa63oCn6SvdlvVly8F6muZ5cOoq2VRUKX9a86QMqN6iAsmNGLZs+/MmLyzMdT+msWX6C7ig17Wkw07EmnmJwaYgpCxRlxdMpv2XeUFlbs/2q7q2s/8vUgvk6t7nSUXpOnl/1l3+oftn5GbJy97m4HzT0tJdz2X77rOP7KOvfffd173sSz+/Kgs+BcwRQAABBBBAAAEEEEAAAQQQQAABBBBovwLWe5j9OPnDDz+UTz75RNubtd35449dWnV1tWtZDVpYvVbPoPVwe+ec3OaYvOyVSdTgLSXWk+usvy2RJ7GUnNuWM7VNuWvXLlKQX6Dtzrl+e3O+LneNtzcH7cvWvum1P2u7s7aD2rKlxdud/fZoa39O1/SgXNA2HZS3dJuqtG2+uqZGKtXTgvDMztrybW7bamxbE+tVur3Gz2t5XD1+GStbob0aFReX6KtYioqK3LzY5iUlUl5e7vbd+M03crPkZS9nQtBbSqwn11R/WyJPYik5d/1lP4+bJZbTUtNcUJm1Ne+3336y9957u3Zn+2Ez7c31BVlrWwK17yyQ4isu1ic/TT//iQwcLKkHHiox/WF+3YfvS+2nH8SfP2WceZ5k3/w/UvfZYik6/5Skvg68v43s634mGRf91y6fcPWM56T05utceXuGlTpkL8mdNG2X66MgAm1FgECytnIlOA4EEEAAgTYnsGrVKnnvvfdk0aJF/vx9+fTTT6Surs47VvdLpOSgpaZOwf+ippuC7ImUhmFnusVFUTVVj6Ull0yqUBct8KuwW6F0K+wm3bt3l8LCAunWrYc/76bL3XRZt+s8WG6pIRXHfetPUlRaIY+v/Lvk1VXYgbrJehl2Q1TaUJV27Hb4+ks5Ly0IKfPmrjHE9S6mS47Unzs0LWdlvQpsQfNoQlhfritjP0lnLpu36ja19v6LU7Lkwr7flLqqcnl32s+9Y7LD94/RjjdYdkffjOufkpqivyYbLgcddJAceOCB8Vffvn39WpkhgAACCCCAAAIIIIAAAggggAACCCCAQFsTWLVS25sXvRdvc37/fWtv/tQFPnnHWr+1MN6gvN0TSZRpyfZna2/22pkL4+3KQfuySy8o0Pbo7trW7LU527aWam/e7um2oY0WBLhp0ybZuHGjezW1vMlt2yQbdL5Z826t2JrcINzgbBLX0m0ILmiDXPVXE2WC7IkUr718R+3PFsRnvZYdeOBBcsAB+8vBhxwsBx5woNDeXF+atdYVKLXhLadOjh9Ew+dP7vPf4PlT5sSLJPvHP9dnSWGpfPh+2fqn3/l/f4nnT/lPvSjhgUPi9e7sguuR7JbrvX+udf+RIfRItrOG5G+bAgSStc3rwlEhgAACCOxhgbVr18rbb78tb7zxhrz11ltueZ12e+smvacMvnwF83qH5ydua1siNijIEczr1RJfcVvtzZ+ys7Jl4IAB0q9/fxmgL5v315cNidirVy/3ha5Lly5B9j0+P/aC/6e/2qqT51b8n6TYGJPJU71T1RU3BqX1SGYBZObqBZJ5p+sv2z28ZokTOP+YC0dzJb2Cmsk2aC7L6Ho09son7z5+4VyiZtzD+68JReTM/pdLXbRW3pr8Uz2K+MHXO8zkFTsd11FbkOjOfzslXQGRHhpAePgRR8jhhx8uR+j8sMMOc5+PoBrmCCCAAAIIIIAAAggggAACCCCAAAIIILBnBNasWSPvvPNOvL3Z2pzXr1/vdr6r7X9+M2D9E9DEnW1/zsnJkf4DtI25n9fO3K9fP9fu3Ed/qNq7d2/X7tya7c31T7BjrZWWlor9gN0+HytWrHCvL7/8Ulbq8pfLl8sKfZWWldU/af/Ct9T1d/XYWzBto/3ZAgYPP/wIbWs+XEaMGOHam3v27BmUYo7AHhWIlZZI0QWnSnTdmsR+9XOc/O9fSJ//xEL6FEmDI3NuuFnSz7konrfksvOleuHbEtbPuz1/sincs4/kP/+Kt7KL79XTtUeyW6xHMhuBJyrhoXtJHj2S7aImxdqSAIFkbelqcCwIIIAAAntEwLqwfvfdd+VNDRqbv2CBvP766/LlF1+4EB87APdFyj+S5OXg4IK0YB6ke3NNdXeu3lb37meML2tGG9LRC6USydEgsMGDBrkv6wN0PmjgQBmkcwsWG6jL9muutjwdNfEu62hMpn95v09gd+LubMXOMup+CmLDUHrJulVv1nWLC+rSuWZ1N+9+YJgraZnM0dWgM7cUzBNBZRa25u3Jm7v3ev6tu3874gkDr9ITj8lbz/w4HiCWfP3tBBJfdhLnY2WDc7PlYArSgnmQ7s2DyrytgwYNkiOPOkqO1C/69jrk0EPpprw+GGsIIIAAAggggAACCCCAAAIIIIAAAgjsloC1N1vQmGtvfmOBzH99vrY3fxlv//0q2/9cK6DfUBgsd8np4tqVBw0cKAMHDZQBAxLtzQP0B8s2YgVT2xWwns0+1+cVFlT2+eefyxe6nHh9qYFmJUnt7/FF+5h95e3PAwdae/MIOXrk0e7HzIdqe3MwvGjbFeXIOopAbMtmKbv7V9oz2RT9vNvzI33KpoFjMX3+4p4/ac9jaaPHSfa1P5Fwrz7x044VF8nmMUe4/O5ZjP/8KePsCyX7p7+M59uVhSp/aMvg+Vd48DDJnzR9V6qiDAJtSoBAsjZ1OTgYBBBAAIGvQsB+0WPBYvPnz3cvCyKrrq5u5q7coIz+l373VUzLBXOrInk5UaWLnbKbUd1uy/ZLriFDhsjgwYPdfOiQoTJo8CC3br/sac/TURN/pzfqIZn65V+chrt/17tmFxdmKd5C4hTdurnZbb4naAsWUOaluk3eWzzRzxkv63D9Qg3CyWxTG9m/ndGp/a8U+xHMtef0kc8++8y9rAFg6dKl7tdnSWfbxOLuf/48Za/qtLQ0OeSQQ2TkUSP1C/+RcpQGmQ0cOLCJ/ZKEAAIIIIAAAggggAACCCCAAAIIIIAAAk0JWHuztTXPm/e6LNAfKr/77js70d7csMadb/8LaYOzjVYxaJC1NXvtzcltzwSKNTTuWOs2lOayZctc+7LNrc05mK9evdoF1TT/jHf+82d12zMPa6pPS0vX9uaDXTuztTWPHDlSAxcHNH/35ERgFwTqPv5Aqt6YJ3WffChSVSnhHj3dkJIWRBYu1G2HKgAAQABJREFUbBwoWzVtipTden2jPeX89s+SPvrkRuk7kxAMbRmUiQweKnlPzAhWmSPQbgUIJGu3l44DRwABBBBoSqCmpsb1NjZv3jx57bXX9Mv8PLEvTxag5IceJYoFiTr3eoTyEuyrU9BbWCKzLTXYEpT3M1nPYcOHD3evvfbaS4YNG+aWhw4dKllZWfWr6kBrx51/t1TX1sqU5Q9IaqxOz8ykDUenIPDLTwq2uLlmcZ2SaZCV+Ud930DZG6gyGTn4UutVbbtw1WvZeLyZt1N9bxv7r9GItjMGXCFpKWH59yTr3rj+VFFRIUuWLJElixfLp/parK8li5fo8qdivzyrPwUyfmoyTf2MjdaazOonWpDjMUcfLSP1dcwxx7hAs1Tt+pkJAQQQQAABBBBAAAEEEEAAAQQQQACBzi4QtDcHbc1Be3NDl+21v1lT5a60P1tAWNDGHLQ727yjtzc3tGW9+QLl5eWyVNubF1ub8xJrb9a25k8/de3PGzdt1opifiu8tdA3nFqm/dnam4/225qtvfnggw/WkQZpb26ozfqeEyj72Q+l6sWpusOkz39qihS89JaEsnN260CqtUeyspuvc0/FrCICyXaLk8JtSIBAsjZ0MTgUBBBAAIGdFygtLXXBYv/5z39c4NgC7Tq8YmuF3rT5X4Ti3+D9hfi6ty+3Wi8tkS8YfrDB1yfp2aun7LvPvvraR/bbf3/ZR+f77ruvtPeexXZe3ytx8rf+JMWlFfL4ir9Lbqxch6nUroSb8reoLw0aCzbZ3P1yychdp2J2zayshpS5DV795q8j2wehYV6MmH95vRz+u6bFdIzMtrT/opRMuajPpZLXNUte/NvV9Q53RysbNmyQjz76SD7+6GP58KMP3bKtr123NmHYsBK1DD63blP8s534XMf9NYNLjeexEiENesyUI4880gWVHXfcce7XZF27dnXV8YYAAggggAACCCCAAAIIIIAAAggggEBHFigpKXGjW1h7s73efPNN2bp1a+KUtS1td9vfXONeUj29evaSffb12pitnTl4ddb25gQ2Sy0pYO3NH374oXz88cfu5ZatvXntOm0yTmpwr9de3OAIkj63bks8r78QX/fK2WpmdpYcOcJrbz722GNdr2W0NzdwZfWrE6irlS1jRki0VIeEdU9E9GGUPn9KPXiEdH3g8d3erwWSld6svZ35z79SBg+X3EnTdrteKkCgtQUIJGvtK8D+EUAAAQR2SsB6abIv8K+++qp72TCVdVHtBct9z2n8ZaVhEJjtzMvVxDcarSM5NTU1Tb+07yMHHXSQ9zr4IDnwgAM7bcDYti7UBT/8qyxbsVnuW/2kDKzZ5PUOZjfNztobnz65xzC9+XDj1teLhkq+dFbU1vXNfYHV/BZYZnXYdbZf78UvlK1oug2taQ04ttGbWSbb1Lr7/yK1m1zd61wZ2K9QJt3zX+6YdvfNui5/b+F78t4ifb3nvezLf3V1jVbteXh/D3b+jXvX8xi99/ix+Kv1U721SCTieik7/oTj5bhjj5Pjjz9eCgoK4kVZQAABBBBAAAEEEEAAAQQQQAABBBBAoL0KbN68Wf7973977c3/flXeefsdiUZt7ISk1sv4ir8QX9+59rc0bW+2HyXH25v9dmeGomyvn56OcdyuvdnambW9eeG7C2XRokUu0Ky6uto7wfjnffc+/0HTdThob9Z2Zmtrth8z097cMT5LbfEsat95Q4qvvCjx6MR/vpR59fWS9e3v7vYhV03XQLJbrnP/zbDKUgYPk9wnpu92vVSAQGsLEEjW2leA/SOAAAIIbFegqKhIXnnlFXn55Zdl7ty58v777+sXebvTCwKFbCn+TSZpyarVdK/P8Kb3ERTTeTgUlr333ltGjBghRxxxhHsdeOCBkp6e3nRZUuMC1/7iaZm/cJnctn6GHFXxpfvhhXchDFavk3epXH5bNHabYnpt3K/3NCHkeiTz0hu+W/6kKnTNS7E0r4MzW/cqcFuCnVhEWSvvf0F2f7m9+wQ56uCBcs8tE/U4v5qpqqrK/W288cYbYi/7peTHH3+ibupSHy9xAB5jwOmlB2mJXL52IiEcjsiBBx4gJ446UUadMEqOO/44yc/PT2RgCQEEEEAAAQQQQAABBBBAAAEEEEAAgTYq0Ki9+YMPJFZX16AJLdFI5i01XA9OTtO30f4cDmt78z57yxGHa1vziCNkxBEjtE2N9uZAjnnbFrAgMvsR81tvviU2Coy1N9sQmdF6fyvb/vy7swv+bIK5JSYv+wT2t3LAAQfIqFGj5MQTT3TBZbQ3+zjMdltg6z13SuUjD3qfvaTPX97jz0tk+D67XX/V9ClSdov2SKaTPYqJDBoq+U/OcOu8IdCeBQgka89Xj2NHAAEEOqBARUWF63Fszpw58tJLL4nrcUy/nART0n1ekFR/3iBDsNpwbt2C2/B99jrqqKNc4Fhubm79ulhrlsBdD86WJ6e/K9/Z8rqcXfqeazuxgkE8ly17/skplqqTS/K21stjPYxpdFkwoKXr4Ewz+ANfxr9vemW8+l11mmBtN25Z32y7TV6+Pb//Z7seJA/mj5TzJhwi1192kncwe+i9uLjYBZUtWLBA3tDXfH1t1O7LfR53FJ5L8ntwcE31ZRY4Bnm8edBj2UknnSQnjTlJjj3mWMnMzKyfiTUEEEAAAQQQQAABBBBAAAEEEEAAAQRaQcDam1977TXX1jxn9mx5x0a4cO3NzW//qnfYXlNaPClY7aHtzSNob467sNDxBFx785tvyIL52t6sP2Z27c3r18efAwSt77vb/hz0WDZ69GgZO2asHHPsMbQ3d7yP0x47o+Jzx0vt50vrPSOKFPaQvBmv6QMP+xd89yYLJNuqgWQ2uo79VyUyhKEtd0+U0m1FgECytnIlOA4EEECgkwrENEJo4cKFMmvWLHnxxRdl3rx5UllZ6WsEX8Pr4zT6it90NlfINkVSUlx34RY0dvTRR7vAsSFDhtSvlLVdFpg86z359V9myaitS+RHG1/SerwLYsNNhnXRvjjG9IbchrS0ybbau+tDTKO+LNlLSwSfWU67zkFPY1bCJksPa7rraSso5X7117iGtrD/33c/SeZkD5ObvjtOzhxzgDuH1nxbtmyZ+xubP3++vP7667Lo/UVSW1O7jUMyU++aJWfY0d9fRkaGHHPMMXLyySfLmDFj3LCYNjQpEwIIIIAAAggggAACCCCAAAIIIIAAAl+1QHJ788yZM+W1ea9JZUXQ3txw77vW/pWi7c3Wu9jIkSPdD5WtzZn25oa2rHcGgaVLl4q1NduPmee9Nk/e/+B9bW+u0VO3Nnyb6XvjJmafpnl/f8ntzdbmbEPD0t7sEzLbrkB05XLZfObo4EmS+yjapy79tLMl5+e/3W7Z5m50Q1veen38+RdDWzZXjnxtXYBAsrZ+hTg+BBBAoAMKbNy40QWOzZgxwwWPrVu3Xs/S73tK7+L8eCN3c5f4jpH0pSJYdPNgxQtGsvzWs9gxxxytQWPHuMAxCyDLysrqgJJt45Q+/Xy9fPOGR6R3bYk8tPJxDRrTYC//stivMNyVcTN/2bYF6RZNZldaex9zgWO6GFx/2xJk866uN3xl/INh9UStbHwvLn9b2v+3+1woa1Jy5ZHffVP2Gvw1d0pt6W3r1q3u12P2q8zX570ur8+fJ1u2FLlDNF67Yt6UtBYsunmw4l2hIL+LG9MVW+/Zs6cLKpswfryM1S/6hYWFQaXMEUAAAQQQQAABBBBAAAEEEEAAAQQQ2G2BzZs3u3Zm+6GytTmvW78uXqcXx+K1Ydm7tS0G7Y+Jli1/Q9AaFmxw85Dk5eW6oDELGLPXiBEjJCcnJ74PFhBAwBOw9mYXVKYdBlinAfZj5qKiYt3Ycs9/evToIRMmjJfx4yfI2LFjaW/mw7dNgcp/Pixbf/8/ur3+86ec/7lb0sedts1yO7OhesZzUvqz69xzKvsPTHiwDm35BENb7owhedumAIFkbfO6cFQIIIBAhxNYtGiRTJ06VV544QU3zF6tP1yl913c/2buolCCb+kegQWkBF/sXUqjBJG+ffvKscceK8cdd5x77bfffhIOhzucYVs9oWg0JmMv/V8p01/2PbLyH9KttkwPtf519I7dfoUUDFbpBRmF9ZpHNerM/T7JAo/ckJbug+CabcIWJGaRYTZZskWo6f684DGvzzK3zd40b0jzeqVbf/8bUrLl0j7fkJysdJn192v0M+mfR/yA295CNBqVDz74wHX3/+qrr7phZleuXJk40Cb+/uIb9fS8hjlLqe/vnbl+iYqE3a80TzvtNLHXAQe0fi9t8eNnAQEEEEAAAQQQQAABBBBAAAEEEECg3Qgktzdb4ErUH67S+8lp4jRcK1Xyrx4btltphobtz3379Im3N1u78/777097c4KUJQSaLdCwvdl+0LxixYp4+UbNzY0S4lldk3PD9udIJBJvbz711FNdT4FJJVjs5AIl3z5Pqt9/t/7zJ31OU/DSGxLKzWsRnWBoS/uARvXpVOrgYZL7xPQWqZtKEGhNAQLJWlOffSOAAAIdWKBGuy9+9ZVX5HkNHJs8ebJ8+eWX8dgS78u7nrwX8dNIYXvfFaySgQMHyIknnijHH3+8nHDCCTJ48OBGdZCwZwV+/Nsp8sr8JfKDza/K+LIPded2le0S20X2A76sUUaDwMJ6gS02zBpovFwuq3uz/G57k58NS7QAQb9nMl1y5TU5Vi/Z8nk1t+b+p+fsI38sPF5OHDFMfnvjmXpM7XOy4TAtqOwV/Xu21+effx4/keD6uVg/Y9/eZJk1j5v5ywMGDJAzzjhDvn766XKc/j2npaVtrwa2IYAAAggggAACCCCAAAIIIIAAAgh0UgHX3qxtVM8995xMmTLFa29uaNFE+1PDLLbesP150KBBcsKJJ8jxx9He3JQXaQi0pIC1N1s7c9DmnNze7Lcex3dnf9I2Nbf9eUD/AXLmmWfKadrefIK2N6empnoV8N7pBGo/el9KLjnLPaEKTt6eF6Xus7/kPjolSNrtedW0yVJ26w3eR1eff6UO3Uu6Tpq22/VSAQKtLUAgWWtfAfaPAAIIdCCB8vJymTlzpjz77LPy/PPP6xB5WzRoxOuFqt5pNvpC7yX4yY2+yPfr109GjRoVf1nwCVPbEnh+zgfyyz/NkMMqVsgd66e6nqksYihx/e0WfVsBZV4ud0dvZfQV/ArQYpPsc+EmW9AYspAGjXnbvc+W1wdZPJdXjV+wNfd/a89T5e2MfvKzq8fJ6Sd1nJ63li9fLnPmzJGXX37ZzZN/QeZfqfgs4R9P8i5ovYAyu3YxKcjPd1/wzzrrLDcUJsPRJpmxiAACCCCAAAIIIIAAAggggAACCHRCgcrKSjdUpdfe/IK2N29upLAz7U9eK5RI//799AfKJ8ro0aNdmzPtzY1YSUBgjwlYJwRz586VuS/PlZfnzJUVK1fE2/+t3Xh70/b+/pPbm8eNGyeZmZnbq4ptHUig9rPFUvbfV0rdGvsseZ+S4N//SM9e0vWpmRLOaJnPQ8UjD0j5H+/UT6rtRyTSp6/kTXm5A2lyKp1VgECyznrlOW8EEECghQRKSkpk2rRp8vTTT8v06dNla/nW+vf2wd2Z7q/RTX2DbVbQvhYUFBS4L/BjxoyRk046SYYNG9ZCR0s1X5VAcWmFnPKd+zTQq04eWfGI5NVVuGtpQWHetz67+kFQYTzKq4ltll9fVs4mXQ5pJVH9n1feNmmi3fxbQJnL422JanRZyIaPdInerLX2XxzJlG/2u1S/NYRl2oNXS26XDHc6HfFt6dKl8tJLL7mXBZdt2rQpcZoN/sa9v3B/c4NtdsX8SyfZ2dkyYcIEOfvss8W6JO/atWuiTpYQQAABBBBAAAEEEEAAAQQQQAABBDqsgLU3T506VZ555hltb56m7c3l2myUaFl07YZBI5IpNGhjSrQwJbYVFhbKqBNHyZgxJ8lo2ps77GeHE+sYAkuWLJHZs2dre/MsDS57WTZvsg4L/L/spL93d7ZJ60n/SngQSdtysnO0vXm8nEV7c8f4kDQ4i5r33pba996R6PLPpWbRO1K3bKn/3wb7j4V9MrwPg/tPh75F+vaT1GNOkHBBN5GUVEkdNVZSBgxuUGvzVkuuvkRq3pjn9uE+pfpQquDF+RIqKGxeBeRCoI0KEEjWRi8Mh4UAAgi0ZYGioiLXhfhTTz3leiCrqqpyN2Xe+PT+3Xm9WdKKnVjwxd8lh7R74RQ56qijZOzJY2XcyePksMMOExvbnql9Cfzozsny6pufyWWbX5OzyxYlhrF0p6F353a97U2vvwsuC2uaLrubd9viPg/e5rAGhdkvOLwS/rK/3Zvpu+uWzOrVZX+bV7+mWZBZMIymq8XyebXtif0/k3ugPJA3Uk44Yqj87qaz3BF0hre6ujp5++233b8LL774oixYsEBqamr11AN/W/S/0rtrFr9wiWuoSd6/JZ5YRkaG66HsnHPOka9//euSl5fXGSg5RwQQQAABBBBAAAEEEEAAAQQQQKDTCBQXF7v25ieffNK1K1Vre7PXNqhtSsEUbzPy25PqzZJWNH9KJFVGjjxK25TG6mu8tjcfSntz4MgcgXYkELQ3z5o1S2Zqe/Pr8629uTreluz95df/+99R+3N6err7t2HixHNpb25Hn4XtHWrZjddI1ZzpmkU/C/b8wZ4vuedPYf1vifffke09f+ry2z9J6ujx29tFfFtMe8Z0wWqrVkjN3JlS8+5bus2G0rEs3v5TBg6RtDMnSsqgYRLu1Vsig+ksIw7IQrsRIJCs3VwqDhQBBBBoXQELHpsy5Tl56in9Mj9rplRXJW7WGx6Zd9vuvbubJ3ef5q/7mfv06SPjx493vQ6NHTuWHocaIrbD9VffXCo33Pms9Kktlf9b9S8Jx/TmOR4s5t28u9Oyj4JOFk8WdoFk/o28u6XXCDAXReT9RiQa3OQHBSyP1hmywvU/Un5Oa2KyDfqyQLNW2L9FsV3e50JZHekqd/30TDnu8KF29J1yskZA+/XY1KnT5MUXZ8iqVasSDnYJ611/vWR23ZKuf/AlzysUkvT0NNdL4XnnnSdnnHEGQWUJTZYQQAABBBBAAAEEEEAAAQQQQACBdiVg7UaTn50sTzz5hOvpvrpa25tdu5626VnznjUZBvMGZ+Yl+xv9We/efVyPQxMmnOJ6HsvNzW1QilUEEGjvAvacytqbp0+f4dqbV65a6f1b0dQ/Fvpvw47an1PSUmTsmLFCe3P7/mTULv5Y6r5Y5ka3sQ+E64PAPyUb8SamCUEgmfuo6JulBf+hSTvqWAl1bd5/M6pfniWlN1ytRbf//Mn2Y5+/lEMOk64P/Kt9A3P0nVKAQLJOedk5aQQQQKB5AqWlpe6XYJMmTdKb8hfF+zKvZf0v564WdzOUdK9um/X+yW7B3GR3Z3pDFdYh/g4/9DA57fTT5bTTTpODDz7Yv6kLMjJv7wJR7QHs7GselLXriuRn62fK0RWf64fBu/5BcFDSJ0NP17b5M83n9ULmKdg9eMg+SEl5vC1axP/MWdl4UJnb6ArprmL+QJhWfM/vf37mQLm9+3jp3b2rPP3ny3R0Sw2OY3JfzBYuXCgvvPCCe1nPZfaLMjfpdXK/EmqOk15Su/bpaWly8rhx8S/5Xbp0aU5p8iCAAAIIIIAAAggggAACCCCAAAIItJKAtTdPnjxZrOexeu3NDY/Hb/9xyX5boLUUunZpm1kzoLa5HX744a6t+XRtcz7ooINob3ZgvCHQOQQsEMjam20o3Oeff17eevNNidqDhaamZrQ/p2l78zhtbz733HPlzDPPFNqbm4IkDQEEOosAgWSd5UpznggggEAzBSoqKmTatGnyr0n/kqkvTJVKXW/q1jv5u7xV7a3XT7UugkePHu26B7beg3r16tXMoyBbexWYNPUd+cNf58iQ6g3yxzVPu9MI4sG8c/I/I/rFzf0KRD9d3i9Cks/YWoI0n8002X33s4WkyVa1v7Og7cg1HkV1zQs+s6Jez2T22d2T+7edXdtroixNK5TrvnOSnH/KoUlHzWKywNq1a7WXwynuNWfOHHFD5AYZ3IX3r3+QljT3N8dTsjIz5VQNUD3//PPllFNOkUxdZ0IAAQQQQAABBBBAAAEEEEAAAQQQaH2BeHvzv7S9edpUqSiv8A5qJ9t/LHt6RoaMGjXK9VRv7c09e/Zs/RPkCBBAoE0IrFmzxnWM8Jy2Oc+eO1eqKiu95wf6j0ej+LId/Ptj7c2nnHqqXHDBBbQ3t4mry0EggMCeFiCQbE+Lsz8EEECgDQpYr0AWyPH4Px+XZ55+VkpKipOO0r+jtpSkRS9D47vt7OxsN1zl2Wef7W6w6UI8ibITLFZW1ci53/+rrN9UKjdsnCOjyxbHPzfJo1FaH12u62A/YCzYlsis2/Xj5Q1T6YUyxnsis7IuUExr0eEzY2Hrzaoxrvt0ukgyV8Cvz8ra4JM6t2+PLbz/OdnD5a7C0fK1bl3kiXu/LRnpqY0PjJRGAiUlJS6A9emnn5EZM6ZLWVmZnyfpH52kRW+jn9AgvWvXrmL//lx44YVuGMxIJNJofyQggAACCCCAAAIIIIAAAggggAACCHx1ArW1tTJXAzkef1zbm595RtubS5J21qAxJ7nRueEm3ZaTky3jx4+Xs846W3sfO1Ws7YcJAQQQ2J5ASXGJC1y1f39mzJjRdHuzqyDpH52kRa9uL6FL1y5y9lnnyMUXX+QCWVNSUra36w6xrVafGS75fIOsXFsk67eUyabNZbJxy1bZsLlUNm0p1+Uy93yle0GOdCvoIt3ybZ6tc+/Vr2e+DB/UQyI6UhETAgi0TwECydrndeOoEUAAgRYRePedd+TRxx6Tf+mvwezXGo3uk7e5lyCnhfnEJDcvT6z78HPOOUdOPvlkegPaplvn2DB17ody+/9Ol4K6Crl/9b8kJ1blRW/Z6bvgLVuwz1A8bCy+nNzLmEu0t6RgMC9Ny/rdjNnnzzZ7k59R9xHTADFvD7ol+Lhapq9w/2WRNLmy9wWyJZQpt/3gVDnlxH29w+J9pwTsV6o2tMGzzz7rfkFWVFTUoHxwQb1/f+LXP0iO5w5J7969XC9lF198sRx22GHxLSwggAACCCCAAAIIIIAAAggggAACCLS8wDva3vxYUnuz7SG5ySZ5eXt7z8/Pd0NW2o8Fbag5ep/fnhbbEEBgewLl5eUyc+ZMF9RqQ2A2bm9uWDr4l6px+7ONunPB+RfIN7/5TTnkkEMaFmzX62s3lMj8d7+Q+Qu/kDfe/0K2llfX+/c7/qBmG89fnFrS85ecrHQ5/ID+ctTBA2XkoYOlp/74ngkBBNqPAIFk7edacaQIIIBAiwisWr1a/qFf5h999FH54IMP4nU2uCWOpycvuM6b/KiNwoJC+foZX5eJEyfK2LFjJTWVnpeSrTrzsn1X+O6t/5R3P1olJ21dLNdvmON6A/NMQhLWILBoPPrHUmPaQ1jY/YLFeh2zyDD7rDWcbNjKmGawovY7lkTQmRdOFrLCXldjXqCZq0wzaoFg0Zquvqr9/0F7IpvdZS85eO/e8pdfXNjkOTQ8J9a3L1BdXS0vvfSSPPXUUzLluSmyedNmV8D/mPiFgzWdu0X7AOkm+6AkTfvtt59ccskl+suxi6VPnz5JW1hEAAEEEEAAAQQQQAABBBBAAAEEENhVgVWrVrmex/7+97/Lhx9+qNVoS7Nrx6tf447anwsKCtyQldbePGbMGElLS6tfAWsIIIDAbgoE7c1PP/20PDv5WdmyeUu8xuTnX/Wbl4M1nbtFr/15v333cwFlFlTWu3fveD3taaGqulZemvepTJm1SBZ9utJ//hKTiJ5or5oiGVK9UQrryrXTgK1SWKvzqL+s69b+viklW7aEs2RjSpZsjmS71xZdXpLaTVal5rkment6o09l5EB9bnLG2ANlzNF7SXpax+/VrT19DjhWBJoSIJCsKRXSEEAAgQ4mYD38TJ48WR5++GGZPXu2RLVbWrt1q9+bU9JJ2/2wC9ipH4nhvsyfeYacO/FcN2QcX+aTzFisJ7BizRb5xnV/l8qqWrlx00tyQtnSeHCPfSGLuq8OXm9iyZ8yFyamGULRkET/P3tnAqBT9f7x76zMYOzZaU9p0aJVCSUqLShLVLZR2dciSxHZZc2+pSRL/SMSQtGqKL+i0mbLvhvM8s7/ec69933vOwuDd/bvYd579nPu5973vec857nPEYGTzsscp/m8CmamkIlxkuXoC6vCmQqsTJRb60yi0qP9tZFXYkjxmsgbHoY5I59DuVKFTb9UaemHH36Avqmkk0nnz4QlrkzZsihZsiR0S1i6sxPQLRFWrFiB+fPnyyT/Ixw57JvkJy9pZvRWtMurEaGy1WX1GjXR/Pnn8WS9J5E3b97kxRlDAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQKoHTp08befOMGTOMvDnBk+D3Up8ljjm3/LlQ4UJ44okn8PTTTxt5M19WThU5E0iABAJMIC4uzvsSs+6OcVjlzc6ChC41nNX5hM4hIm+uWbMmnhd5s/6eZQcLirGiQLZoxU9458PvzJaVeqoRiQmofHo7qpySv5jtokB2QmIdIJrj/NZfDoVE4vuI8vg+sjw25imLU8FhUluibIGZH88+cQeeFKWycCqUKVg6EsiSBKhIliUvCztFAiRAAoEh8P3332P69Olm68qjsj1cWsa+ju6NGSBKoED+AmbbysaNG5ttK6k8Fphrkxtq+fCznzB40gpEeOLw1p6FKCdvsPgkSvZES02FOXMuUfjS+8+yNKbxElAzyZLBKJiZjCmT03s7WIokmsIactVrithx3m+B3WgA2t8RVhidStXDaZkIvRz9IJ6sdZO3k3///TfUEtZpUebUHqTmChYsZLZhVEUzR+lMrWapkpmG1a/H7DAJTe0cAxmvb4599tkK+W2ba7a/PH78uFEQVGt4XmdfYg27vN5k9RSSbXkbNWqEFi1aoEqVKn5pDJAACZAACZAACZAACZAACZAACZAACZAACfgTcMubzfZwLqGLy+tfyB2STFEFooy8WWUyum0llcfcgOgnARLIDAKWvPkzs5am218eO3YsWTf0BfVzyZ8LFSyIRrKWllXlzR45gU9W/4LJc9dj3+Hj5oSuFKtjdY9tRrWYvxCeGJ/svDVCxe4Xs/5yBqH4Mv8VWFzgevweXtzI60vIVpetG96Nh6tVQkiIWgOgIwESyEoEqEiWla4G+0ICJEACASBw6NAhzJGtK6dNm4bNm382pmjNMM/M5J3pvHNMqcEgsdCTB7Xr1MYzTZ7Bo48+Sos9KWFiXJoI9H3rEyz/cgtKxx/FyP8+QpTnlJTz3X+OepevMk1zNq10Uh1FMrmTJTlR9sUMUqtlMn3x6NEoD0lIZ3EaNlVInmDdCtPsdWmaNFbKzJQncO0fDcmLriXrYVdoIdSqWhEDOj/iOxXbN2DAAPTt19fqfJL2k2V2sfGmmXM0J4lChQv7WzUrI1bOSlmWzhwFND3myZPHWzyne9Ti4pIlSzB37lws+/RT6BuxOqPX+0CvuXzat5xz3Z2jP5kbb7wRLVu2RNOmTaHWF+lIgARIgARIgARIgARIgARIgARIgARIgAQAn7x5On7++SdBIrIVI15Ju/xFLcLXqVMH+rKyypv5siTvLBIggaxKwF/evExeEhd5s1dun/bfvxtuuAGtWrUWefMzWULe/PNvuzFsykr8/vdecz5XntmPpkc34HaxQGa9yG8tYaT3+su3EeUwp9Dt+DO8qOnHNZeXQPdWNXHDNdlze9Cseh+zXyRwsQSoSHaxBFmeBEiABLIAAVWg+fLLLzF58mR8uGgRYkSxIiWXVH3CGxZPcFAw7r//fuhWfPXq1TOWelKqg3EkcD4EdGvL6Fffw29/7UOl2D14Y+9i5BETyerc95/Rr5I4VZeyVL9k6iIaYpZRMskZJMplohRklMS0sDpjTczOo5WJ89Ypfq3LjjYBo1jkivXm9XqsMmltP1beoulV4lFsyVMS11xRApPeaIy8eUK1G35OJ56qpPTntm3OaZp0b7Nej1XMCsqnOXmNS5LByiaxOr2T85ewpWbmy1m0aDGvhbNJkyahQoUKdqmcfTh69KjZ+nLu3PexZs1qeDyqlGg5NyeN8Ya9HitfhAg26zdogFatW+G+e++Te04z0JEACZAACZAACZAACZAACZAACZAACZBA7iGg8uYvvvgCU6dMxcJFC/2s7ScRpfhBcafpdm/V7rsPTUTeXL9+fcqb/UgxQAIkkB0IqLx5wfz5eE9eYl6zdg0SEzxeWXzS/rt//zTNCasirf4GRkdH4957781weXPMqViMn/MFFi7fpO9fo2T8cTx7+DtUO/VHpq2/eITO2nxXYFahO7AnJArBYhSgnuz00q5ZNURGhCdFyzAJkEAmEKAiWSZAZ5MkQAIkECgCaj589juzMWniJPz666/eap0Bqi9CYnSEaJymijNKKkG44YbrjQWeJk2aoGzZslYaP0kggAQOHD6Jlj3fxZ79R1Hl1A703r8cYUiwrUV5RHHMZ03M6IZp267bVQYrtrqU3Slzg2sG6142PvkwimcSp7FitMyndCaKQCr8UrUrLaO+ILn/LWtVF9Z+nFg6G3BJbWyIKI+SxaMwbVATFCuS3+5g8sOyZcvw8MMPm/ZNqv390xM1p2NFWt9L9WtX1Umio0/mzef1WFmSfrqTdYsAtdSVG93OnTvx3nvv4R2x0Pi/zZttBEpHXBr5X1fpOrSJboPnnnsOBcUsOR0JkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5GQCRt48e7Z5YfmXX35J9VTd8ieTybzBaQm0Kl1/PZ5t9qy8sNwEZcqUSbUOJpAACZBAdiLgyJvnvPMONv/vf76uu37/jEBfU1KRP1933bVo0yYazz77XIYo1279ay96j1iCHf8dkjWZRNQ/thGN5C/cY29hKT/mmbn+EhscinkFbsbCQjcjTlaKypYqjIFd6uKayy/x8aWPBEggUwhQkSxTsLNREiABErg4Ahs3bsTbb08UJYl3cfLkSTM2tZRNzKjPqtxRRJFQ0on9JZeUEDPijYxyxM0333xxnWFpEkgDgX92HUKb3nNx5Ogp3H3qb/Ta/5lMC+Qm1ftUblD7YJS/1IiUmXtJgk5i1ESZHvQ+9jkNqbUpOep/STeKYfLminH2Qf2qOmapa0lA401Ftsf/kKb2E6RDg4s/iPWRl6JQgQhMHtgEFcqceytEtfT34YcfapdMF1xdNHEmXvqm52o57agE7IMT65emAUlP6fuv2zOqgmmJEiX8i+bCkP5mzpo1yyjV7du3L2WkijIV/pERkVBl27Zt26Jy5cq5kCBPmQRIgARIgARIgARIgARIgARIgARIICcT2LRpEyZMmGBeyjPyZnOyLqFUKvInh0lJkT81lBca9WU8ypsdKjySAAnkVAJuefN+kTd7Rfr2Cbt+Pf0QOPLnyMhIszvQSy+9lG7y5qVrf8GbE5YjNt6Dy+IOoPv+z3FZ/CHZxcOWg4uUPKusv/wTWgTDi9XAX+HFEBoSjN5ta6NOtev82DFAAiSQsQSoSJaxvNkaCZAACVwwgbi4OKOEMnbsWKxbt87U4x6Mpuh3RYaFheGRRx7B888/bywjaZiOBDKSwB//7MeLfebiWEwsbj+1HT0PrEReT6xRhHJmWpbKl2M7THon97BRItOZmN7PXmfsitmqZJZfs+if6pKpZTOvtpAd1kmaZtA8VlV2hH2QaEnz1WXyyIe7/dPBYXiz2IP4PqIcCuSLwITXn8bVl6Xt7ZgdO3bg2muvtZQ/tTGng8m7YVLdWXwRPp+r205NfkWmTp2Kli1b+grQB/0dXbp0KWZMn46lyz6VsO/+c/P0okohsmrVqmjfvj2efPJJ8HfUS4oeEiABEiABEiABEiABEiABEiABEiCBbEYgPj4eixYtwpixY7B+3foUe+8WjST1h4p8WS3wNxd5cx05hodzO7IUITKSBEggxxJQefMnn3yCmTNnQncliY0VebPX2b+a/gdvqvFI2r1V70W7du0CKm9+7+MNGDN7raxtJOLhE7+gzaGvEJYou8ScY/3D17mMX3+JCw7BpCJ3Y2n+SuaF747PVUfjurf6ukQfCZBAhhKgIlmG4mZjJEACJHD+BA4fPowpUyZj7Njx2Llzh6174h552n6p2nmbwaugIuolaiq3efPmaNasGS0TnT9+lggwgS1/7kXHAQtw9HgMKsQeQa8Dy1FOjmp1DB7dclKVuTxyFGUyow2mal/q9D53XpXx3fPOva4ToGBTRvNrZZa6mDMx0rC7lIalhMRJndpOGtrfEVYQg4rXwr9hRcUSWR681ecpXHvF+Vn7Gjx4MHr27Cn9U+fqkfHK+Uus6bN4kp+/nJOdT3P5+bU2U8aqt1q1+7B69WrDUWPokhNQy2SzZauG6aJUtmXrFnMfnA//cuXKioWy9oiObo3ChQsnb4AxJEACJEACJEACJEACJEACJEACJEACJJAFCai8efLkyRg3bpzIm3dJD1WOps6SjPjJnNyyKM0h4YoVrzUvLzZt2pTyZsONHyRAAiQA7N27F3PmzMG0adOwZYvIm53fVIVj/5Zav7KyViGepPL/cmXL4KV2bdEmus1FyZvnL9uI4VNXSpNBokC2Do8dk20407D+kdnrL077H+e/wSiU6YpO99YPoEFt7hDC7xcJZAYBKpJlBnW2SQIkQAJpILBt2zaMHj0aM2bMsC0YWUNMd1FvjBl1OimJiIiMwNNPPY1WrVpBrefQkUBWIrB992F0H/IR/tl5EHkT4/Hc4W9R9/j/ZC5jCa30U+9tyzmqYPbdbifqQfNb21mK0pmtY+ZMNiRBcji1iF+VxTRo9oB04q0W9DNJbm9JTfHI92uJTF5mFrkDpxNDcVn5ohja4wmUL33+ykP6htIN19+A337/zdd4mnzaZ+2lz3ljknz/8+TNg582/YRrrrnGl5m+sxJYv3491ILbBx98gJiYmBTyeml705yYfPnzmzdvO3bsiCuvvNKbTg8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJZCUCyeXNSXvnSDt88U5MZL58eKpBA7Ru3Rr33HOPLwN9JEACJEACyQiovHnKlCmYP39+KvLmpEWcX1sgv8ibdZvgTp06nbe8+bN1W9F31BJTefuDa1H7hCq0nX39QxW2nFfcnYUSXYnIqPWXlNpflv9ajCt6n+lF/86PoFbVinoadCRAAhlIgIpkGQibTZEACZBAWgh89dVXGDFiBD7++GPExydIER1GJVUh0ZqsWCdNj5Wuvx5t2rSBvg1WqFAhzURHAlmSQMzpOAyTt2KWrv5V+peIirF78dLBL3Fl7AGXrpf/Pe6olDkn5ExmxH6ZNamRozXpcCtcqV/rsZxVh3n9RnTLZHrkWD1zvkiSzadrFoRt4cXwdtGq2BJeQupOxKPVr0e3ljURGXHhpvpXrVqFBx54wP4K2w2725c+WGdgRbqS7LPQg3+aL08Q+vd/HX369HHlpTetBI4cOWLeGtO3cjdvlje1zB3lXA93Lcn5B4eE4PHHH0fXrl1x9913uzPTTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAKZRsBf3hxv+uGWJZ1N/nH99ZVE3hwt8uZmlDdn2hVkwyRAAtmVgL+8ebM5jbT+/oaEBIu8+TGRN3dLk7z5x192oF3/D5AgP/PNjnyLRsd+POf6h/v3PzPWX87W/nsFb8W7hW5DiMjdx/V7CjdXKpddbwP2mwSyJQEqkmXLy8ZOkwAJ5DQCHo8HH374IUaOHImvvv4qJa0F+5R9Q0wTIYowefPkQb169fDiiy/S+lhOuzFywfl88f02DJu8CnsPHUeInG/1k7/h2SMbUDz+mPU9cKxt6a1vlKfE9Jg6sx2lRBrLY3aUHEw2K2iSzBaZulWmpmiiR1TNpE6dFKnSmXmrRo5G3czUKT75vy80P+YUrIJV+a82Vs8uKVpAzCjXxH23B8biVMOGDY31K+2SpTSmndY+Wu1rKLnzz23bv/bLdt1112HTpk0ICwvzi2fg/AnoW2MTJkzAokWLcPr0aang3PydVu66605069YDTzzxOIKDVXGRjgRIgARIgARIgARIgARIgARIgARIgAQyjoDKmz/66CMMHz4c33z99XnJn8LDw9DgqQZ48QXKmzPuirElEiCBnE5g/TqRN789AQsXLsSZM2dSON3U5c933XUXunbriiefeDJFefOuPUfQ/JU5OHrsFGrEbEPXA6tM/amtf5hVCV2YyKT1l7S0nxgchOFFa2B1vqsQlT8vZg5pijIlaUAjhRuHUSSQLgSoSJYuWFkpCZAACaSNgConzJw50yiQ/fHHH95CZrioH46TAZ0zhHSO5cqVM9bHdPvKEiVKODl5JIFsR+DkqVjMWPA13l/yA2LjPQhPTMBDJ7fgqaObUDzhhJlTqKqXZXlMgmaCI6epHp3o6JfCbG1pKYf5AXC+MCZSAmYPTFXs0bxa1Cqj2TRuf0gBLIi6GZ8WvBZxomYWJm/9NHz0VrR86i5E5r1wK2SmetfHjh07UKlSJRw/ftwVa3lNl60OWREpfP/9CpkCQIgoLK394gtuL+AH5+IDe/fuxTTZ9vLtiROxa+dOc9/41Wrztw9+SVdddRW6dOmC559/Hnnz5vVLY4AESIAESIAESIAESIAESIAESIAESIAEAk3g1KlTmD17NkbIC8t//P57qtUbOYZ+OE7kT+XKlkWbF14w21decsklTgqPJEACJEACASSwb98+TJk6BRPfnoidu3bqskSy9T+/5lzy5yttebNufRkREWGynYmNR6te7+H3v/fjyjP7MGzv/yFPYryRYydd/zA7ukh7ibJE4n0EmPYzZv3lfNuPDQ5D15JP4M+wYrjm8uKYMugZ5AkP9cPDAAmQQPoQoCJZ+nBlrSRAAiRwVgKHDx82lm7GjhmDvTJo1BGb2xCRPS40dbj9GnFP1XvQsUNHsXTzBK0OnZUyE9ObQEJCAtatW4fFixdj+/btxsLWxbSpb81Mnrcen63bCk9CIkKRgPvl7ZmHjm/BdWf2eCc2bqUytU/mfEf06PsyWbEmr/1WjVEfk2iZFyFYrI8lGqUyOUrc1vCSWJa/ItaIBbIEUSALCgpGrXuvQXSjqihToqCpOdAfI+SN0G7du/u6bDdg9dwKuP1O+06cc3TiXxBB39tvv+0EeQwwgfj4eGM5cszo0Vgn1sqS8reak1jv3qg6LZb7TT6KFysuv9sd8FLbtihcuHCAe8bqSIAESIAESIAESIAESIAESIAESIAEcjsBlTePHz8eKm/ed2C/wRGk8i8jCZOgI7KwQRmZhe2vqvLmjp2MvDk0lAv0NhYeSIAESCBdCXjlzfK7ressjnN+n52jE28drR/zEpeUQPv27dFW5M1TFvyA+cs2Ir8nFmP3LEAJ2e0l6fpHsCqP2S/mm3p1kUTl2PJw0E91Gq9OY5yX+gO1/nIx7e8NjUK7Ug0QExyOBrVvNjvHWD3lJwmQQHoSoCJZetJl3SRAAiSQhMBOsWYzatQoTJ48GSdOiKWlNLkgozBWv349dO7cGbfffnuaSjETCaQHARVKffrpp1iyZAmWLVuGw4ePSDOJGDFihLG8FIg2/955UCyUfYMV61WhTCYuMoPRrS5vPb0Tt8ZsR+UzuxApkyLjVEsnKMl0Rmc+ojVm5kU6/bE8vq5JOCYkDzblLYMNecvhh4jyYoksv5kpBYu55FpVK+K5enfg8nLFfGXSwRcXF4fKlSvj119/PUvtZlNOIWxN6pS16ag5ajGd3llTPZ1s3nPPPRpJl84EvvvuO/NbrmbI9TomdUZ30VwW3/XRPPnz50d0dLT5rpQpUyZpMYZJgARIgARIgARIgARIgARIgARIgARI4LwIqNX7t9566zzlzYAqjNWvX9/IKChvPi/kzEwCJEACASfgyJsXLFiA+HhZFElB/u9u1JE/l6hwEyrc0tQsE7x8YCWqndxmr4eoXNq3mqDVmaUUdyUmg+QzWe11B1vZzNv+Ba6/mEWdALa/Vra3HFKspjEAMKZPA9x+U4WkZ8IwCZBAgAlQkSzAQFkdCZAACaRE4HcxIz50yBDMmTMHZ2JtBRjN6OgY6FhNB3J2hKqOqOJIVMEotG7VGh3Ekk358uVTqppxJJDuBHTbVbU6tmTJJ1i//kvExtqKM/b9q4IntUhWqlSpgPZl976j+HjVZnyy+n/Yd1C3gLSUqkLku3HZmf0oH38EhRNiUCQ+BoU9MSiacBKFxV/Uc1J0x4JwODQSh4IjcCg0Hw4HR+KgHA+FRGJHaGH8macoPGJ1zNnpskSRAni4eiU8VvMGlL4kfSyQpQRn7dq1qF69unz5rS02rV8B19uifoWcXwY70vn9sIPh4WHo3r0HevfuzW0U/bilX0Dv+zHyxtiUKVNw7NixVBtKcqkQHh6OZ59thh49XoZuf0lHAiRAAiRAAiRAAiRAAiRAAiRAAiRAAudDQOXNw4YNM9tYxtry5qTyB1OfEylHlT8XiBJ5c2vKm8+HNfOSAAmQQEYRUHnz2LFjMWnSJBw/IWsiqt+VigsODccNNbsgT76iRoFMFck0u/dnXzzO+of+/quVMV15cFYZrBUJJ7c2Yq2/eJvU8hIwa5fi15yWc1qRkKN4Zkc5Keao5cUGgCzDmDoutv2hxR/A2sgrZf0mCu+PbsEtLp3LwSMJpBMBKpKlE1hWSwIkQAJK4Mcff8TgwYOxaNEiJCSo1SQZPuloS0dRtjNBv7gglCtXFp06dUKrVq0QJZN7OhLISAJqUvnrr7/Gxx9/bBTIfv/td7llk960vh7Vrl3bWCfzxQTWpyaXt/61D99u+hvfbPoHm3/fLW/l6PcpiZMuJoqN5OBEURBz+uv9bolHJzVmf0sgJCQYN15dGndUvhR33nwpKl5e0nlJJkml6R985pln8N5779kN2R2Wg7P9gDOx8/bEe07eGJ9H0q6+6mpMnDjRUlDzpdCXjgRUiWzq1KkYLdte7ti+I+X7T+/JJNcuJDgY9eTt3169ehnrdOnYRVZNAiRAAiRAAiRAAiRAAiRAAiRAAiSQAwhs2rQJb775JhYsWAiPmvJX55U32B5v2Jdctnw5dJLtKylvtpjwkwRIgASyMgGVN+vLy/oSsyqXeZ38vjvrBmUqPogylWqhQMJpTN49DwXjT3nXP0x+FUdLfjUqJlpkWlA+dO1EVLpMgsklj5AgibHMXJiYJM8QK5d8SvG0rr+YMgFu/6gYDYgu8zROiNGAVk/fhVYN7/Z2jR4SIIHAE6AiWeCZskYSIAESwFdff4WBbww0WwAmelSlRQdoPmeNw5KMxiR40403oVu3bmjYsKHZztJXgj4SSF8CR44cwfLly43imG5ZeejQIWnQd48any/oSoFRgmrcuHH6dtBV++kzcdiybQ/2HDiOg4dPYL/8HTwcgwOHTuCA+A8cjZE5USKKFcmPooXyo1jhfChSOBLFC+dHcYkrWSwK11xeAhF5w1y1Zp73v//+Q8WKFY1FKxdi6ZAvdDb+vmx2fjno5K958+bmzdQiRYpk3snlspb1DeAP5n+A4cOG46effjLXIS2//zpxr1OnDl599VXcfTcnwLnstuHpkgAJkAAJkAAJkAAJkAAJkAAJkMA5CXz1lcibBw40L3PqS5c+eZAlB0pN/lD5ppvQpWsXNGrUiPLmc1JmBhIgARLIWgTi4uIwb948DB+u8uafpXPW739oeD5UfqgnQkLzot3BNah9Yot5LGjvdW0kUc2AudclfUsH5n17K7O9M4rkV/m0UTjT6nU5085vAuLXHWBUgU3D1kEzaTZRTDPtWUVMXDq2v6zAtRhT7D7kyxOGDydGo1CBCNMPfpAACQSeABXJAs+UNZIACeRiAmvWrMGAAQPw+eef2xSsgZV7vOaHxx6MVa9RHS/LFme1atWy3gTwy8QACaQPgW3bthnFscVLFmPdl+ugkxLvBMHVpH2bphhTMKogdv+3G5GRka50es+XwFtvvYXOnTufN3/r2viukM+nPQjCJSWKY9TIUWjSpMn5don5L4KATp4/++wzDBs+DKtWrkq5JudiOUfNJf77778ffXr3QY0aNVIux1gSIAESIAESIAESIAESIAESIAESIIFcQ2D16tXmheVVRt7sLNy71QNEmGD2HfNHUr26yJtfprzZnwpDJEACJJA9Cai8ecWKFRg6dChWrVqFspXqoPTVNXFp/AGM273A2BnTM3N0wIxfng3Gepk+JoxFspTP3S2etnJYMVqXpY6mYasCk+I0ohplskOMe/3TSdJ6EtOhfd0es32pBvg7vCiee/IOvNT0Xm2KjgRIIB0IUJEsHaCyShIggdxHQC05qQLZ+vXrjSKAe+BkDbl80U44JCQE9erVQ48ePXDbbbflPmg84wwnkJCQAH17ccmSJUaBbMsW6y0Vy2ix8+l0K9mGiibBuX+dXC1btMTUaVOdII8XSEC3E73t1lvx08/6VpG6tPHPny8/Tpw8YRWxivlN3JzrVUe2Hx0/YQIuu+wyX176MoTAhg0bMEwm+Atli2OPfAd1Mu046/q4P30p99xzN/r06YOHHnrIieSRBEiABEiABEiABEiABEiABEiABEgglxDwkzcnPWdH4GPHO8FQkTc/SXlzUloMkwAJkECOIvD1N9+h6/DViE8MwWv7l+GOmH/1/WSRO7vVuOxTNlFu+bOdRy2MiXaZtSokZe1oe+NLuz7/dU2t0TZKZip3t5aR7X+ftwJeu6QOosQa2ZLJbZAnPNQ+WR5IgAQCSYCKZIGkybpIgARyHYGlS5eif//++Pa7b/2UN9wgnIm8jMrMaCxv3rxo2rSpUSC76qqr3FnpJ4GAE9AtK9UykiqPLf1kKQ4eOmgmAToF0IF+Sm8s+jrhvXt9UVrElDWloVb4qlWr5pfOwIUR+PLLLw1Lsz2BqSJ1/qFhoVAFpaJFi6Jdu3b46KOPUmzUW4P8/kRGRJjfq44dOyI0lJOrFIGlY+Tvv/+OESNGYNasWYg9E5vm798dd9yBvn374uGHH07H3rFqEiABEiABEiABEiABEiABEiABEiCBrEDAkTd/9+13Ijuw5G+mX14hT/Je5gkPR7NnnzUWyK688srkGRhDAiRAAiSQYwh8svoX9B+3FJefOYhxexbKeel2k7JqY7TBLOUv/TQ2xHQrSnmU6CNEnT5VnMeJrvM4lsY0TZ2mB0t8om2BzEQaq5fJa9DtLoMlWstkZPuJ0sMOpephW1hx9G1fG49Wv950kx8kQAKBJUBFssDyZG0kQAK5hMDSZaJA9rqjQOYMu3wDMMWgemM6gtJBlLr8+fOjTZs2Zvu6MmXKWJH8JIF0IKBbVlqKY59gzdq11paV7nacMb/EmTmAPXUw0fJhzze8EwqrqH1Da8D2XnrZpfjrz7+4HasFKCCfzZs/j5kzZ5m6XMQl7AqJt+crPTFo0CBvmx9++CHat2+PXbt2WWXt7M7vjzejeCrfXBlTp0zFrWIBjS7jCezcuROjRo3C5MmTcfLECXlGWBdLP9Wb2vfvjturoE+/vnjk4UcyvtNskQRIgARIgARIgARIgARIgARIgARIIF0JLF26DK+//hq+++47qx1btmOJDZyAn4QIBQoUQJvoaHTq3BmUN6fr5WHlJEACJJBlCLTpPRc/bd2F7vtX4f6Tv0u/VKisB/NhPSisCEtPTNPF+phRHNOs7kUDu4hVyN7/0nnk6NGjZV22ziS/2dHSzuNNMfXYlWlaOre/Nv/VGFa0BipfVxYTBzTSBulIgAQCTICKZAEGyupIgARyNgE1Kd7vtdIVEuIAAEAASURBVNfw7TffpHyi1pjKDJGsgVciChcubBQ8OnToYKwHpVyQsSRwcQR028rXRNj04aIP8csvv0hl9kjertaM3SXOGtj72jK5/LQek5SToN/EQvPaEb179zZbuvpqo+9iCezbtw/XXHMN1JKcOhduq2qJuOLyy7F582ZEiIUxtzt27Bh69eqFt99+Gx6PTtr0z3J6VfWecK5/SEgoOnbsIALK142Sq5WLnxlJ4NChQxg9ejTGjhuHw4cP2Zfr3N+/O26/3Vw3bnmZkVeLbZEACZAACZAACZAACZAACZAACZBA+hAw8uZ+/fDtt7LjheOSCYScBDmK6KBI4SLGQj3lzS4u9JIACZBALiCw7+AJPNZmIqISzmD2ztkIS0xwnbUl/7fWAixxc7AsEXjEbJimmP9mS0tr3UA/g1VJTDXD1FkRUkA8RnnMsllmJcqnxAVJXqu0vxzbypNx7cchBM3KNsPxkAj836TWKFEsyttNekiABAJDgIpkgeHIWkiABHI4gc8//9xsLbZ+/Xo5U/8BkndQ5h+NSy65BJ07dUJb2XZO3w6jI4H0JjB//nw0adwY8aJUlqKz71FzSHK/uvOfTVblvv9/++03XH311e6i9AeAwPjx440wMKWqguTiqIDxwQcfTCnZxH399ddo3bq1rVDoypbC9a9QoQImTJjAbRNdmDLaqwqAE+Sajxz1Fvbv35dcedCvQ74v7t13320UOWvUqOGXgwESIAESIAESIAESIAESIAESIAESIIGsT8DIm/v0wfqvvkqhs775vyZqSF3xEiWMvPmll15CVBQXzS0q/CQBEiCB3EPgg6UbMWLaSjx2/H944dB6UepStS5b4UseFomiBBYsawiqG6b2AJznh0NI85t0SxvMibaPGhksf7ZlMvGZ8hKd6Bet+ayaM7P9SYXvwUdR16Nbywfw9MM3S5/oSIAEAkmAimSBpMm6SIAEchwBVRzrIxP6NatXW1r2OjaSMZJP0caOcJ15qVKl0L1HdzEr3gaRkZGuFHpJIP0JTJ8+Ha1atzITBm3NetdEB/Yu59zHEmVeNrE+zNDfTAEk3W2FzHuXO+XkeMcdd0IVlugCT0Cty1WpUgUbN240lbv5P9vsWcyaNeucjcbGxmL48OFG0ej06dP++Z3rKLHO9W/Y6GmMfms0SohAki5zCMTExGDSpEly3YZh9+7/vJ1wX/+Unj/Vq1c31/mee+7xlqGHBEiABEiABEiABEiABEiABEiABEggaxLwypvXiLzZJbI72/y/VKmS6N5d5M1tKG/OmleVvSIBEiCBjCHQccACfL3pH4z47yNcF7vHtf6jKl2pKZRZq0RmkVMeNr71TbPcadaFTO/1QSQ6ZEGiNGY9nxwLY2bVyHuCJmRH+dafMr79X/PKs7HkE7ij8qUY3aeBt3/0kAAJBIYAFckCw5G1kAAJ5DACqsCh2/YtXbrUnJlvMOR/ombApVGijVG2bBn06NED0dHRyJMnj39GhkggAwmMGjUKXbp0sVr0SqFSUCpLkqbTBpf8ytvjlO5/tZqlbz/SpQ+Bb2T7XFUM8ng83slg0aLFsHXrFhQrVizNjf7xxx9GyLhalGGTXcck11+34R0ydAhatmwpk0lNpMsMAqr4N2XKFAwdOhQ7d+5Mft3sTrmfPzqlr/Pwwxg4cCAqV66cGd1mmyRAAiRAAiRAAiRAAiRAAiRAAiRAAmchsGnTJvR+9VUjb06r/K1s2bJGgUzlzXnz5j1L7UwiARIgARLI6QTi4z144LmxCI05gbk7ZorcWFTHjIzf0uryyf+9Wl62RpimWEphhpGd7Ph1LcAj/6w8uo4kGWTN0yiUaSb1S5xHtMuCZJtMTTbR8pGZ7SdIB5uUew5xefNh5az2CAsLsTrGTxIggYAQoCJZQDCyEhIggZxC4Lfff0PfPv0wf8EHZh9wezwkgyR7bGR7rIP1qRP6V155xWwlFx4enlNQ8DyyOYHXX38dr732mn3vum5cPS974C8H4/eO/O1sWki2u3fmA8nu/zxyn+/+7z8UKVIkm1PK2t1v1aoVpk2b5uU/e/ZsNGvW7Lw7nSgTPLVi1q17Nxw8ePCc1/++++4zlrEqVqx43m2xQOAInDlzBlOnTsWQIUOwY8cOncGbL6V1cL6sdnv2d1Zn90891cBYKOO2s4G7FqyJBEiABEiABEiABEiABEiABEiABC6UwO8qb+7bDx988IFYeBGBmzOlt+fyKcmfy5ax5M0qG+ILyxdKnuVIgARIIGcR+HXbHjR/+V3cHfMneh/4zLeNpTlN+/miDxld+NHnTbD8id/7nLGfP5ocLOlqwUydpWImfjvdOsin1qGlVVvMTjMeU7ekONtomlo0n1VbRrY/8JLa+CryMswY0hTXXVnS9IQfJEACgSFARbLAcGQtJEAC2ZzA7t27jdLNzJkzERcXLwMeGfTIaMoaG+lgyXH2aEkOZUqXQc+ePcEJvcOGx6xGoFu3bhgxcoQZ67tG+r5uyn0cZCYS1j1u3d0m8qz3f7169bBw4UJfPfSlC4H9+/fjmorX4PChw3jggQewYsWKi2pn3759xlLdu+++a9VzluufN09e9HylJ15+5WUKLC+K+sUXdhTK3nxzMHbt2un7Kltf2GQNaHRIaBhatGguguq+KFOmTLI8jCABEiABEiABEiABEiABEiABEiABEkhfArt27YK+6DljxgwkxCfIUvy55W86h+/Zs5e8sNwKfGE5fa8PaycBEiCB7EZgwbKNGDp1JVoe/hYNjv0kazjyXPEqi8l6plH8krNSAbE4S2HMUhPTsOWTfStd658e17PJFNCnldSp60b2AqkWNc56iqn6mTYgf1mg/QWFbsL0QnehW6uaeKrOzXZPeSABEggEASqSBYIi6yABEsi2BI4ePYrBgwdj9OjROCXbielAyxoMpX5KJUuWxMsvv4wXXniBJsVTx8SULEBA33JU0/dq1SjpoD9Z9+StkrTc/1pu0aJFePLJJ5NVwYjAE5g8eTI6deqEzZs344orrghIA8uXL8eLL76Iv//+21dfKte/UqVKmDhxIqpWrerLS1+mENAtLydNmoQ3B7+JvXv2Wn3Q+bw8tMxzS+fv4rxh8UdERMr909Fsu1yoUCGTzg8SIAESIAESIAESIAESIAESIAESIIH0I3D48GEMHTrUkjefOuXfUCryl1KlShl5c5s2bShv9ifGEAmQAAmQgE1g6JQVWLj8JwzY+wluObXDLPkYa2Gq0GUrh9mSYruEKnuJVw/y/LGskFlJpoiWMYnWwUrRvFZ1WtarVGYStR1rHcnaCFPLaeUar5nF77fCqmmaR5PSp/0NkRXQt3gd1K99E3q0ftD0kh8kQAKBIUBFssBwZC0kQALZjIBaeBk/YQIGDRyIQ7rVmz3W8TsNe8xjH1CseDH06N4Dbdu2RWRkpF9WBkggqxJISEhAkyZNMF/N55tO6vsiojBpD/D1/k7L/e+cX7FixaAW/MLCwpwoHtORgMfjwZLFi/HY448HtJWYmBhjhXHUqFFISIi3rFS7W3D9/gUHB6NV69ZG6ZbKSG5ImeM/JULocePGGaH0gQMHTCesy+U8rZL3S7ehffXVV83zi1tiJOfDGBIgARIgARIgARIgARIgARIgARK4WAL6AtgElTcPGoSDBw+lSf5GefPFUmd5EiABEsg9BDr0X4hvf/obU3fPRam4I/Kc0ZUeS4dL13gs5wj2JU0UvDRHkKwFqa6Xz0nArA+ZpSErzVveV4tHvE606okZ5TGjfKb6YZZlssxuf1doQbQu3Rh3VK6AMX2f8p0ifSRAAhdNgIpkF42QFZAACWQnAjpwev/999GrVy/8+88/ZpCVvP/2QMtOKFiwEDp36YQunbugQIECybMzhgSyOIH4+Hg88cQT+OSTT7w99b/LvdHiSZriCou37UttjRKLuwT92ZfAxo0bjdW6DRs22Cfhut4mxhcuXbq0eZu2QYMG2feEc1DPjx8/DlUE1O1rjx09luzMfFfOl3T55ZdhwIA30LhxYyNA8KXQRwIkQAIkQAIkQAIkQAIkQAIkQAIkcCEEHHlz79698ddff/lVkdLcXDOovLlLl87y1wX58+f3K8MACZAACZAACaREoGHH6fhn5yEs3D4NEYlx1kqO0eSS3HJ070YpG1gaRTJHYcxJ867/ePP7nlReS2SmOlUUk1oSZfPLYLVClrxHpmQmtx8TFIb65VvisrJF8f7o5sk7yRgSIIELJkBFsgtGx4IkQALZjcAXX3yBbt264fvvv/frum+Y5B1CmfSIiAi0b9/ebAlWtGhRvzIMkEB2I/Dzzz+j8k03JVOeTO3+T+38vv32W9x+++2pJTM+GxJQRcOxY8eib9++OHHixDnP4LG6j2Hc+HEoV67cOfMyQ/oTOChWNYcMGYLx48dDLc35nP3t9j+Y5CpVqmDkiBGoeu+9vuz0kQAJkAAJkAAJkAAJkAAJkAAJkAAJnBeBdevWyQvIXbBB5c0pzL+dyhz5W0REJNq1a2u2saS82aHDIwmQAAmQQFoI1G4xXl4ojsHifyaaHWf02WKc85DRgNlmUj1WqjtJ/W4rY5rLOJcymBUhOY3mmL27jZ1NKhefpEkbuuON1mecehxFs0xo/9EK0WIEJBKfzWxnd4gHEiCBQBCgIlkgKLIOEiCBLE3gzz//NJPzhQsX2v2UAY4MgnQ843bOkCg0NBQtWrRAv379oBZ46EgguxP45Zdf8OCDD+K///6TUzn7/X+2c61YsSK2bNlytixMy8YE/v33X7P1odtynft07N1QTVSUWGcc8MYbJn9ISIg7G/2ZRGDXrl3o378/pk+fjnjZrtQ7effrj//3v169ehg2bBguv/xyv1wMkAAJkAAJkAAJkAAJkAAJkAAJkAAJpE5A5c09evTAog8XpWn+rfLmli1bok+fPihTpkzqFTOFBEiABEiABFIhULXhKATFxeKj7VMsRS81IaZO1jodr67/BMv6p8dv/TNRbIsFGwtlJp+kqaw/qbPWTa3tMtWimU/pTOPEQpkWtkydZan2nyzfGp7wcKx7v3PSU2KYBEjgIghQkewi4LEoCZBA1iZw7Ngx2cJrgLG0cyb2jN+k3lKQd1THfOfx1FNP4Q1Rjrj66qt9kfSRQDYm8N1336FOnTo4dOiQ9yxSu//dGXRSoJMDtxs0aBB69uzpjqI/BxKYN28eOnfqjP/2qOJhEudMMO1bQ63TTZo0CZUrV06SkcHMIvDHH3/g1VdfxYIFC4xwwLwa5voqJ/3+58mTR96Gbmcs0kVFRWVWt9kuCZAACZAACZAACZAACZAACZAACWR5AkePHjWyY7XsfuaMyJvdk25rwu09B2f+3aB+fQx6cxCuuuoqbxo9JEACJEACJHC+BO5sMBwhHg8+3j5Z5L7WC8NmCcet9WUriXlUocxe4XGJhiXWyhDkCYJHFM4ccb/2RfN5FcxMIRPj6qYvnJXaf+zSaCQgBN8s7OrqK70kQAIXS4CKZBdLkOVJgASyHIGEhARjkaV3797Yt3+fV4EsyVzer9/VqlXD0KFDuWWfHxUGsjuBNWvW4LHHHsPx48fdYq3UT0u+JGqx2MwRtIQvgODgYPz9998oX7586uWZkmMIHD582FhynDp1qqWMdJYzCwsLQ9euXc1btZGRkWfJyaSMJKBKpPp29Nq1a9P0/b/kkkswcOBANG/eHLQyl5FXim2RAAmQAAmQAAmQAAmQAAmQAAlkdQKOvFktiu3bt1dkJa4eu4TOLi8ob3YxopcESIAESOCiCdz11AgEyfrn4u2TpC5dv5GD93mkHneE7VcrYk60KJzpko9laUzjJaDbVEoGyw6ZZkzZae3BkpxoCtttOfWaInact0N2Yga0X7d8NBJl15Sv51ORLOWrx1gSuDACVCS7MG4sRQIkkEUJrFu3Dh06dsTGjRvNAMjais0esJiDM7Kxjtdeey2GDBmCunXrZtEzYrdI4MIILFmyBA0bPo2YmNNSgQziU7j/U67Z+Y64UuWLVOP++7Hq889dkfTmBgJffvkloqOj8dvWreZ0dd7nzAX9bim5wa644nK8/fbbZhvV3MAmu5yj/ha8/MrL+PUX3ZY26YQ+6VkE4eabK2P06NG49957kyYyTAIkQAIkQAIkQAIkQAIkQAIkQAK5joAlb+6AjT+KvNkSsFlHIxiR5Xc5qmUWR/523bXXYfDgwZQ357o7hSdMAiRAAulLwGxtGa9bW04VbTB5/gSLEliimiOz1n+MlbAk8l9HGuzrmT6vLFUyn6zYUSSTGH2mad3ycFPlMo8etRINqRa1hk0VWaf9J8q3QmIe2dpyLre29F1n+kjg4glQkeziGbIGEiCBLEBg165dxvLK3PfnmgGUGdek0C97So8SYnmlv2x7qZZX1JoOHQnkJAJz587Fc889j7i4WL/Tcu5/PY4eMwYP1KyJavdXx/4DPst9WsDKJ59ei2RBmDFjOp5//nlNpstlBHSrBt3W9M0335R7Ks579tZUUiaMEuP85qr/maZNMXLkSBQvXtybl57MJRAfH49p06ah32v9sHfPXtMZ73Xzeqw+alCkEGjUuCGGDR2GMmXKWAn8JAESIAESIAESIAESIAESIAESIIFcRGD37t3o1q0b5r0/T9brdZMwf/mHIwtxkKil7/79+6Nly5YIDQ11onkkARIgARIggYAQeKj5BJw4fhIf/6MWyaxnkpHl2gFV8FL7YtYKj7POYwfth5YeLNUzUQyT9R/LKJkUDBLlMtEiM0piWp861Spz8tgN6cF5/vlasiIzq/1HxSJZVFQ+LJ/ZVntNRwIkECACVCQLEEhWQwIkkDkEVKlBLaf0H9Afx48d93bCPZgxkWYEk4iIiAh06twZPV95BQUKFPDmp4cEcgqBKVOm4KUXX0S8mDj2Ovv+17BuWafbFTpKYWq9r0b16jhy9KikWhMDU86ZDUhUZEQk9u7di/z585skfuROAlu2bEEbsU725fp1vtliCij097dosWIYMWIEmjVrZt5eSiEbozKBwLFjx8QK51C89dZIr7VC3/My+fe/QFQB9OndB53luUkheCZcMDZJAiRAAiRAAiRAAiRAAiRAAiSQ4QRU3vzWW2/hjYFv4NjRY6m278ynVd6s8+ZXKG9OlRUTSIAESIAELp7A0x2m499dh7BoxzTkSYjzKX3J+o9aC1MLYrrGo74gUQCzrGV6RHHMStcCRjdMu+Ja/xFlEVPG20PzgPOpiRmffBjFM61bMorRsizR/ungMNQr3xKXlimKeaObe0+BHhIggYsnQEWyi2fIGkiABDKJwOrVq9GuXTv8+uuvXv0XYxtHVejV2Qf1hgQH46mnnzZmxStUqKBRdCSQ4wio4k737t3l1peb33X/O4Kt8PBwvPvuu2jQoIHfuX8pW8LWfughUSyJMYN/tVBsOavkM888gzlz5jiRPOZiAh6PB5MnT0bPnr1w5Mhh721i3lzSKWSS398HHngAEydOlG0vr8jF1LLeqf/7779GwD1v3jzLJLndRZfOqcTYvxxy0G05xo0bh+qidEpHAiRAAiRAAiRAAiRAAiRAAiRAAjmVgJ+82ZykPTdWv3jd8g/d9qvh0w0pb86pNwPPiwRIgASyGIH2/Rfgu5//wZRdc1EmTg0DWE5Vx8zaqAZ1bUcfXY7HDjvRKv8VEb+1DiQZVYlMTZTpwRTTosZpyN4CU7zm+adaaLKdpnH2Qf2Z2f6usIKILt0IVW66FGP7PmX1jZ8kQAIBIUBFsoBgZCUkQAIZSWDPnj3GrPh7771nRjfOeEWHNcn8Ennbrbdh1KhRqFq1akZ2k22RQIYS6Nu3LwbIdq3qvN8Fr0esikVGYtGiRXhIFMZScss//RRPPPkkTp8+7Z8sdSz/dDlq1arlH89Qribw33//oVPHjvhg/nzDwXWrJbv/8ubNi379+pnfbVq1ylq3zVdffYVOnTrh+++/9103dxddF1YF5E2aNMHw4cNRsmRJdy76SYAESIAESIAESIAESIAESIAESCBbE1A5R48ePcwLmGrVxe1cU2Pv3Pm2224zu2Tcfffd7qz0kwAJkAAJkEC6ERg6eSUWLN+EN/Yuxa2nt/sWguSxZSyN2Q8sfYqp15vB9SCzVM5U9cvOI2lGicwbYQrKh7FrZquSWX7Non+qS6bteR+KdliV1DSD5lGvN4MdrzGBbn9D3vLoW/xh1KtdGS9HP6BN0JEACQSIABXJAgSS1ZAACaQ/AbWEM2nSJPTs1RNHj6hZcRmOmAGIbxSiAxVrrh+EEiUuwZtvvonnnnsOwWKRjI4EciIBFW6p+Xzd4tV9//uG64koWLAgFi9ejHvvvfesCBYuXIhGjRohPj7erisIpUuXwvbt282WmGctzMRcSWDx4iVo2/Yl7NixI9X7z5kw3njjjdCtV2+//fZcySqrnrQ+W2fNniVbPvfEvr37rMm8eZb6nq3ONdRnbqGChTFo0EC0adOGz9aselHZLxIgARIgARIgARIgARIgARIggTQRcOTNvXqp5fUjUsaeC5tDcn+JEiUob04TWWYiARIgARIINIEFn27EsCkr0fzwd3jq2Eap3rEFZj2v7KeW3ayqbOmmlmJVzFgSk2iPbnmpK0ceOUpZow2mal/qtLRjqsxdk+U3tZkyml/XWy11MUcxTMPuUhrOiPbnR92EGYXvRI/WD6C+KJPRkQAJBI4AFckCx5I1kQAJpCOBnzf/jDbRbfDNN9/4teIdmFijH5MWFhaK9u3bQy00qQINHQnkVAIJCQlo3bo1ZsycaY3bzYk6CpbWWRcvXhzLli3DrbfemiYMs2bNQosWLcS8sZothrEiNWzYsDSVZabcSeD48ePo06cPxo8bj/iEeK/MNSUawSHBaPviSxg4aBAKFCiQUhbGZRKBY8eO4fXXXzdbWMbGxibphfdp642/8847jXK3KgjSkQAJkAAJkAAJkAAJkAAJkAAJkEB2I7B582ZER0cnkTcnn/9qTGhYGNp36IC+Iv+gvDm7XWn2lwRIgARyBoFf/9iD5q+8g7tP/YPe+z6Vk9InlDpZEzImycRr9qB04k2i+bDUvqyw228pfImCmaMGZifqIViVwYwSmiid2TpmPmUzdy3iz6T237ikFr6KuAzTBzdFpatK+U6YPhIggYsmQEWyi0bICkiABNKTwKlTp9BftusbKVtpxcbFJWnKmthbn9aQqXqNGhg7diyuu+66JHkZJIGcReDMmTNo2rQpFi5YoNMEZ5jv5ytTpgw+++yz8/4+6HeogwjHtNafftoEKorkrHsnvc7mu+++MwLYn3766RxNBKFcubLmt/rxxx8/R14mZzSBX3/91Xz/V636XJpO+iaZ0xvryauK2926dTeK27qFKR0JkAAJkAAJkAAJkAAJkAAJkAAJZHUCKm8eIPLm4SJvjjPyZn8Zs3//g1CjRnWMHTMG11Wq5J/EEAmQAAmQAAlkIIG4+ATUfHYc8pw+gfe2zxJFLzUG4KwOWR2xLISpxTCP6HaJephjdcxZSJUUn66Z//PPZ13MqctSJhP7ZZZSmRx9m1xaeTKzfY/0qkn55xCXNz9WzG6HsNAQp1M8kgAJBIAAFckCAJFVkAAJpA+BtWvXGqWE33//3dWAa7SjscYSWSJUYWbEiBFo2LChKy+9JJAzCcTExKB+/fr4dPlyGafrRCG5u/zyy7By5SpcdtllyRPTEDNw4EDoVpc//vhjGnIzCwlYBHRb1JEjR4plq9cQE3NKIn2/2fbPtSsGaCD38WgRxpYuXZoIsxiBDz74AF26dMGuXbvsnvmupYlwLqgErrrqKkyePBn333+/nZcHEiABEiABEiABEiABEiABEiABEsh6BNasWWN2vfh9m8ibUxapSaet+W+ZsiJvHk55c9a7iuwRCZAACeReAh0HLMA3m/7B8D0f4drTe6wtKnWrSn126ePLI6peIrdVpTBV+jJWxeRo1M2MdTHxmeeffTQyXimnZa0K1CN5JCJY/lzrT6YOK9XKIhFWW5nT/i/hJdG91JO4o3IFjOnTwNUzekmABAJBgIpkgaDIOkiABAJKQLfXevnllzFJFqUT1V6qOh2QWAfvUaNDQ0PRrl179O//OrdJUyB0OZ7A0aNHUbduXXz55Ze+c7W/HM53pJK8IamWyC5WOWfr1q2oWLGirx36SCCNBP7880+88MILWLlqpfWGkynn3KHO0apMt4QYPHiwURwODta3peiyCgHdtrRvv74YP3Yc4kRJ0P/K2b20I4NF6BDdpg2GDBmCqKiorHIK7AcJkAAJkAAJkAAJkAAJkAAJkAAJwCtvnjRJ5M26FG7LmnVO6zhb/hwi8uYO7dvjtdcpb3bQ8EgCJEACJJA1CHyw9EeMmLYKjx3/H144tN63cGq6Jw81swelythVkUyT3XbGbL8kJEoW7yPQPP8SjTqaKWkVlEyaILk0o9na0ipvmnI+NE3zGyeBDGx/YuF78HHBG9C1RQ08/fAtTid4JAESCBABKpIFCCSrIQESCAyB5WJhqXV0NHZu3+4de/iNQ+xmNO72O+7AJJn833TTTYFpnLWQQBYncODAAdSuUxs/bvjBngS4xuh232+7rQqWLv0ExYsXz+Jnw+7lBgJz5sxBl65dsX/fPksJSX+8xalJbWsqqwENA3ffcw8mTpyI66+/3uThR9YhsGnTJqMY+O2331rX0bps3ue0r6dBKFuuDKZNnYZatWr5oukjARIgARIgARIgARIgARIgARIggUwi8JnIm/XFp3+3/+t62c1aF3fWvh358x0ib1bZROXKlTOpt2yWBEiABEiABFInsPfAcTzWZhIKec5g9o5ZCEMCPLZVMaMEJg80fbYFq/zdKHXJUeKCJdIoUkte88zTTCqUl5B+qtN4dRpjbWdp9Mes/CbeSrUepqYWK28mtB+fGIJmZZvieGgkPpoUjRJFC2jn6EiABAJIgIpkAYTJqkiABC6cgL4VpltoTZ8+3ftWmK82e2BjhjNBKFgwCoMGDTKL2rRe46NEX84moNvLqWLGr7/+KidqDdKtM/b577vvPixevJjWgHL2rZDtzk4VILt164bZs2en8Pvufzrh4eHGImXPnj0RERHhn8hQphLweDxGmN6rVy+oZUTL+X5/3J3TZ/PzzzfHqFEj+XvkBkM/CZAACZAACZAACZAACZAACZBAhhFQeXPXLl0xbfq0c8ojoqLUWvqbaCMKZ5Q3Z9glYkMkQAIkQAIXQOCFPu9j05ad6Lp/FWqc3KYaYj4tMK3PsSSmXvlTCa56VKHM+DXsOG+kndNbVsPiTLruHOXIgeWoSaK1ZjWrYYlwV+ytw8pqkiSLtymt13HeSK3UqUtLaFgP4g9K3v7qAldhaNGauOW6cpg4oKGVl58kQAIBJUBFsoDiZGUkQAIXQuDzzz9H8+bNscNYIbMGCKo65rVW46q0Xr36GDt2zEVv2eeqkl4SyPIE/vrrLzz44IP466+//b8ZrvF0nTp1sHDhQirfZPmrmXs7uGrVKqMAvG2bTG7VOfevzgV1ImlH6O//1ddcbZSW7r//fpOVH1mHwH///Ye2bdviw48+9M7nU+td+fLljYJ4zZo1U8vCeBIgARIgARIgARIgARIgARIgARIIOAGVQbRo0QLbRd58NvmDyp/r1a+HsWPGUt4c8KvACkmABEiABNKDwCer/4f+4z7FFbEHMGb3fNl9UgTsjh6WNOgVu2u0bkkpSl8qf1crY7ry6qy/WhtVOrm1p5riEvlqeSlnZPfi1zTL2Y1pwFEay8D2takOpRrgz/Bi6NuuNh6pzh1OrOvCTxIILAEqkgWWJ2sjARI4DwIxMTF45ZVXMH7cOBnAyKNfn/7G2UMVHZiItrkOZkqXKo2x48aiXr16TiYeSSBXEFALZLUerIVdu3f5ztf+ijgRTz31FHQLQbXmREcCWZnAqVOn8MYbb2DYsGGIi4uzJqZ+97Pr919SVeg7dOhQFClSJCufVq7s26JFi9C+fXvs3r3bd/6u57aJlHCwSCpU8Wzw4MGIjIz05aWPBEiABEiABEiABEiABEiABEiABAJMwJE3jxs/ThbPvcLmFOUPpUqVxPjx4/Hkk08GuBesjgRIgARIgATSj8DpM3Go23oijp08g377l+GOmH+lMRHEqlKXKI1511olaHTMJEkWYXXBVT6CJVlUyhzlM42Wf7pGq9mMU4/vEWpHWnGJskdmcKLWYWfw5hVPBrX/fd7L8NoltVEgXx4smfIC8uYJ8/WRPhIggYARoCJZwFCyIhIggfMh8MMPP6Bp06bYunWrr5g94PCOO0yKKhI0x4gRI1CoUCFfXvpIIBcQ2LBhA9TSmG4NaL4Xri+H41VFm8mTJyMkJCQXEOEp5hQCP//8M9pEt8E3335jnZJ9Qzv3tTuyRIkSskXiKDRu3DinnH6OOY8jR46ga9eumDFjhpETGAmD6yI6b7fpCV9zzTVG4fW2227LMefPEyEBEiABEiABEiABEiABEiABEsg6BFSO1rRZU/y29TfTKWt66pqkaqwEda6qu2NQ3px1rh17QgIkQAIkcH4E3n73S8xc9A0uiz2Msf+JVTKXIpgof8iOkG6NMqnbfhyag+qAqceUkoDkV8Uy3UVS9cOMvpntNwHxJ0qiGv7QsHWwFMmCVDHNtGdXqbWmY/se6UK70g3wT1gRxB38GZOHdwTlzXot6Ugg8ASoSBZ4pqyRBEjgLAQSEhLw5ptv4vXXX0d8fLw1snAGLda4wxunW2JNmTIFtWrVOkuNTCKBnEngiy++QN26dXHs2DFnjO86UWsU36lzJ4wcMdJ6e8SVSi8JZAcCHo8HEyZMQM9ePXHi+Amry9at7dd9J0qVKjX/pZde6pfOQOYT+OyzzxAdHY3t//7rvIsmnZIrZ+ye+/oXFhaGPn36oGfPnggNDfUl0EcCJEACJEACJEACJEACJEACJEACF0hAZcxqBbt///7G+nmyahzBghzLl6O8ORkfRpAACZAACWQ7AoePxuDJF6fgVGwc2h9YizontphzcJZbNZAoslmz65OKaY1FspRP03lM+lKtGK3LUkfTsFWBSXEaUY0ysVDmEggbr+ZRlx7tf5r/WowpUg0Jnlj8tOxNkUCfQd8+fc3uV5Q3W9z5SQKBIkBFskCRZD0kQALnJLBt2zY8++yz+Obrr93jCltJxgw/jF9trbZq1cq8FVagQIFz1ssMJJDTCCxbtgy6XWXMyZN+3xU9T+ubAvTr1w+vvfZaTjt1nk8uJLBr1y6z9eHH//d/rvvdbcvKByVfvnxGEbljx45URPJhyRI+VXrt1r0bpk6Zat5C0045v1dJj3fddRdmz56NK6+8Mkv0nZ0gARIgARIgARIgARIgARIgARLIngT+/PNPNFN581dfeRevvevbrlMKVnlz69YYNmwYoqKiXCn0kgAJkAAJkED2JDD1g68xdd565E84jSm75yHKEyMnopJYlzMPRUs6a33aT0m1MCbaZc6GlmJEzBS1N75MUa6rtdpGyUwDzvNWA351m1T7I4DtHw2OQHTZhjgelBe7tnwmfyu8/bxb5M2zKG92k6efBC6aABXJLhohKyABEkgLAbUs1rVbVxw/dtxkt4YyamxVnMtiSenSpTFt2jTUrl07LdUyDwnkOALz58/HM02fQZy8SeIMv90nqSaG1fR+586d3dH0k0C2J7Bw4UJ06NABu3fvts/Fmn4mPTFVMbv5lpuNxcpbbrklaTLDmUzg008/NcrgqiDovYLyu6Um0tU5z/98+fNh5MiRaC2CfDoSIAESIAESIAESIAESIAESIAESOF8CKm/u0qULTpw4cdb5Z+kypTF16lTKm88XMPOTAAmQAAlkaQKnTsfisdbjcSwmAffG/Ime+1eY/jryV2NDTLeiFLGsFWcZD1O/0e8ysf6myjQ+WOITbQtkVoUSqxpkxlkltQbd7jJYojUmUeS/uqWlOitnkFVDANsfUvxBrI28HGdOHsbmlcPhSYgzbZlWpf18kZF46623jGzadIQfJEACF0WAimQXhY+FSYAEzkXgwIEDaNmyJT7++GP/rM6YQ2ItPbIgNGnSGOPGjUPhwoX98zJEArmEwIzpMxDdprVs+5pgzli/JtbQW4NBCA0JxsRJk8x3ymTgBwnkMAJHjx412x5Okvs8Uba+dN//3m+D/cUIDQtFxw4djYUytVRGl3UIHD58GB3at8ecd99N3qkkz/+6jz1mBPrFixdPnpcxJEACJEACJEACJEACJEACJEACJJCEwP79+0U21gqLF3+sG1sYcYFPfuDKLGlNmjTBuLGUN7uo0EsCJEACJJADCGzYsAGdO3XCz3/sQ8V79EXdILx8cAWqnfzT1uTSJ6M8CFVPTI9ifUxf0Nb/tr6XJlgid4kzCY7ymIbt4vBoGVEas3OoR3XKVIHM+J0Uk8HOpWlOfIDaX5PvSgwr9oDp+9b1k3F8/x92+9qWv6v7WF1MmzoNlDf7c2GIBM6XABXJzpcY85MACaSZwLJln6JFi+bYs2ePKWPGDjJKsYYcvmpUceztt99Gw4YNfZH0kUAuIzB69GhjZcwaxOuA23IqENO4sLAwzJkzB08//bSTxCMJ5FgCX8sWyGqp6tdff/Gf2DpfCNeZX3rppZgwYQLq1KnjiqU3KxCYN28eXnzxRRwRxTIVRiR9/uu4QN9WK1WypLFGymuYFa4a+0ACJEACJEACJEACJEACJEACWZfAsmXL0KJlC+z9b49ZorYWvl1yNNP1IBQqXIjy5qx7GdkzEiABEiCBCySwb98+8yL2zJmz4PFYBgkuvelJlLjibkR64jDmv/koFX/M1K5Px2D58IjWl9kfSvxqRSxIrXuIM+nGYpi1emtHSAFJMcpjRvXM5DUfEhck5a3SRrLrS7MySJqzWaZdv2S+2Pb/C41C+1INEBMShpuvjMIHk3vi8OEj0qLVE23aOgOf/LlkyVKYMWM6rZGa68IPErgwAlQkuzBuLEUCJHAWAqdPn0aPHj0wdtxY93PcKmGPLcxBPh6o+YA8zGegbNmyZ6mRSSSQswn0798f/fr1855kUl2ZiIgI6LZ/VLLwIqInFxCIjY3F0KFDMXDgQOhzxXL2Q8QVUq++BdW4UWOMGjUKJUqUsFN5yAoEdu7cKUrlLbBipZhWl7m98/x3zfPtbgahfft25prnzZs3K3SdfSABEiABEiABEiABEiABEiABEsgiBIy8uXt3jJMXydSC+dncAw+KvFms/lPefDZKTCMBEiABEshOBFRWPmbMGLwxYACOHrMUxZz+B4mCVaX72yGyUClccfoARuz9P4Qj3rygrbJYt1NFr2BZgPKzSubNoIpZwfLn2+7SlJfoRL9ozWfVbL04bCucSVSiKKGZ+tVvy4K91YvnfNuPDQpFtxKPY1ve4ri6wiWY+mYT7N+3B81bNMfKFSvdVduCZ3/5c3vZNUPXGChv9kfFEAmkhQAVydJCiXlIgATSTODnn3/GM888g//973/eMpauuw4sfC4iMgKD3xwsi8btRfvdGnD4UukjgdxBIFFG0t26dcPIkaPkhK03NcwQ3B5kK4WoqCizNWy1atVyBxSeJQkkIfD777+jTZs2WLN2jX5NzLYV1kRXnx3+z5YiRYpg6LChaNG8BZ8tSThmZlB/63Tr6pdffhmnTp+yrqNePXMJrevoXM0bbrherC++ixtvvDEzu8y2SYAESIAESIAESIAESIAESIAEsggBlTM3btzYT96ctGsqf84bkReDB1PenJQNwyRAAiRAAtmbwCeffIIuXbpA5eRJnbP+midfEVSq3hGh4ZGoHvMHuu5bhRARuKr81VghUzm6itIl7DZkYEdZ1aqAVnTIgkRpzJG/WxbG/HJZ1Th1SYWWMpmVU6vQNvwVyqxenm/7umI2rFh1rMl3FQoWiMT0wc+gbMlCpq9+8uZTIm92O+2E9M8c5OP6Stfjvffeww033ODORT8JkMA5CFCR7ByAmEwCJJA2AvrQHj9+PLrLm2Gnz4jlGB1EOM5+aGtQhws333Kz2aLv2muvdXLwSAK5joBH3p584YUXMGXKFHPu+t3QL477q1O0aFGoyf4qVarkOj48YRJwE9BnzHR5m7hHj+44dOiQSTITXvXJbNiZrtpfI9x///2YNGkSrr76anc19GcygS1btqBp06b48ccf7Zm81aGkv3/6htiwYcPQtm1bKgRm8jVj8yRAAiRAAiRAAiRAAiRAAiSQWQR88uZuIm8+k+L83+nbLbfcQnmzA4NHEiABEiCBHEFg69atRoFs2bJPk8m/vSfoWn+9qcoDiKxQGwmy9tT0yAY0OfaDPDstjS+XBF2XoSzZrFYifjX24ZF/Vh5NkkiVuatCmcljpXikriDZJtOKtA7GTkiyNuwGTN8s/4W0P7fwrXinYBWEhYVidO96uPX68tobP+eWN/u1oblcbCLyRoi8eSheorzZjx8DJHA2AlQkOxsdppEACaSJwIEDB8y2VYuXLNZts2UMYT+d/Q5BCA0NQbfu3fD6a68jPDw8TXUzEwnkRAJqhvjZZ5/FvA/myRfGNZp1vHIsJXu4r1ixApUqVcqJCHhOJHBBBPbu3YvOnTtj7tz3pbyZxlr1yHcm6fMnT3gevPrqq8YKFp85F4Q7XQqdEeH/a6+9ZibuCQl6De3r6Pr9s64lULfuY7L99XSoUi0dCZAACZAACZAACZAACZAACZBA7iHglTcvXiInnfr8P0TlzV27oX///pQ3557bg2dKAiRAAjmawNGjR+W5NgBjx45BXFycda4pyL/18agi1cKyS4c+B3VXj8+/2Ya+b30ilsUS0f7wWtQ+vsX7FLWUvqwlqWBR/rLWci3FMeO35bPWQT6Ngpg2In47zXg0XpXMnG0sTQ/tzmhGywya5JE48cuncefT/rL812FskfuMMttrHR/BQ/embphE19tU3qw7lSQkJJg2zYvnps/ejpuu1330MXlhfRqKFStm94oHEiCB1AhQkSw1MownARJIE4HVq1ejWbNm2LVrl19+69FsP6DlUKF8BcycOUusxFTzy8cACeQ2AqfEzO5TTz0FNUesY+ogM5C2htLO9+ayyy81+7tffvnluQ0Pz5cE0kRALfW99NJL+Oeff5Lld75HMmM03zE1Xf322xNRteo9yfIyIvMIrF271ijUbt++3XTCe92MFpm+P6ZXMBFlypTBO++8g+rVq2deZ9kyCZAACZAACZAACZAACZAACZBAhhFQebO+gLlz104ztfctXvt3oXz58pg9ezaqVaO82Z8MQyRAAiRAAtmVwNKlS9G8RXPs27vPyLa9WliuE3LkqGqpKzo62iiRFRFlMsct+HQThk1ZKY/PRLxw6CvUPb7ZJBnlKtUAc8lfPXYDWqdj9CBRFMB03Srp89daxVKVM80tf0ahTGLNGpfEGsUzK8mpLthv/Uulvedu/+OC12Ny4XvgEc2z7i1rokGdm7W6czqVNz/33HP4999/rbx6Cn7t67AiCGXKlsacd+aYXU3OWSkzkEAuJkBFslx88XnqJHAxBFQLfsCAAXhz0CDEexKscYdWqOMHPejYwfKiUaNGmDhxIgoWLGjH8EACuZPAsWPH8Pjjj2PNmjXJAcigWAfa11SsiJUrVxrlieSZGEMCJOAQOHnyJPr164cxo0cjLj4+xeePeVtKvlfBIcFo3ao1hgwZwmeRAzALHI8cOYIXX3wR78+bZ37/nHFD0q6FhISgV69e6Nu3r1g3DU2azDAJkAAJkAAJkAAJkAAJkAAJkEAOIBAvc3u1qDJI5M3GoojKmZ2JolkMtoPib9SoMd6eMAGFChXKAWfOUyABEiABEiABi8CmTZtw6223wpPgsSKSPP80Utdfq9eogbfeegs33HCDlS/J53sff4+xs7+AR6yGPXziV0Qf+Qp5PPHex6rqfAVpRUYhzDo4VRgdMk2SP69SmUk0hYwc19oIU8tJB01lmln83ha0gKbZB8lnWUHTeLtIkvbjgkKMAtknUdeZc+zw3P1o8thtVoE0fnrlze/rjiYuZ6+/aXfUOfJmXV9QPx0JkEByAlQkS86EMSRAAucgsHPnTjzzzDP48osvkg4JJOwbKERFRWHMmDFGA/wcVTKZBHI8gYMHD6JOnTr4/vsN8i2RNy/sAbZ+Y8x4Wkawt956K9TSUvHixXM8D54gCQSKwI8//og28ubVhh9+lCqdqaB/7c6TqbRYt1LFs/r16/tnYChTCcyaNQvtO7TH8WPHrX7YF8y5bk7n7r33XtnWdC4VbR0gPJIACZAACZAACZAACZAACZBADiHgyJu/EHmz2yWdF0YVKICx48YZi2XufPSTAAmQAAmQQE4hoC/eThLjHG5Jt/U8DMJll12K4cOHo169euc83WVfbMGgCcvkJWwPLjtzAN0OfI5L4w5JOanZrE+ZpSlrB0ttwOU0qKpsTrTqfBnlMaP8pTVYlsm0j44+mFXc6qnWnygKZroWFmT8Vqr1mbz9f/IUwfCiNfBXeDHkCQtBzxcfQp1q17kLnZd/llgs7dBe5c3HzEmorpufs7up8ub33nsPZcuW9UtmgARIQL/b+i2mIwESIIE0EtDt+NQ0qCrFWM4ZFEjI9WtSpUoV8/C98sor01gzs5FAziWwZ88e1KpVC5s3WyaE9Uztb473pKtWrWq2u1QFTDoSIIHzI6BvLavicp8+fRATE2MKJ/2OuWt8rO5jGD9hPCeIbiiZ7P/zzz/RuHETUbb9ztUT11W0vUWLFcWM6TNQt25dVz56SYAESIAESIAESIAESIAESIAEsiuBxYsXo3nzFiJvPmCdgmsq6I5QefO7776Lq666KrueKvtNAiRAAiRAAucksH//flx9zdU4cvio5FWlKyAyIp/s2NATXbp0QURExDnrcDJs+XMveo9cjB17jiCPqILVP7oJTx/90bJOJvVa21Rai7teS2SmVVUCk20oE2Xzy2DdTcep0Xc0j2uNt5/bprwpCy1pFMkchTUnzZdZ0qVcbFAo5hW8GQvlLzYoGOVKFMLArnVR8fISvoYu0Ldt2zY0aaLy5u9dNdid9cYEoWjRIpg5cyYeffRRbyw9JEAC8m2lIhlvAxIggbQQ0K0sdVupESNGWA9/Z2Rghhmqe245NQHatWtXvPHGGwgLC0tL1cxDAjmagO7HXrNmTaiSRNIhqp64xj34UC18uOhDREZG5mgWPDkSSG8C//zzD1566SVj2c87KbW/eEm/f1FRBeRZNdDkp/nq9L4yaatfxxq9e/c2b9V5PLb59mRFRXAhF1PHGrrdCccayQAxggRIgARIgARIgARIgARIgASyBQFH3jxy5EjZeiulOaA1kw8WeXM3ypuzxTVlJ0mABEiABAJDYLTsqtGpU2eIDhcaizLUkCFDLniXhpOnYjFhzpdY+OlGUSVLRMn4E3j+yLe47+Q2sz5lFnj9hOcSsM2Mmd11vKdka42JjSLdcUeLGOcuq/aLTIKV6k5Sv8/KWRDW5LsCMwvdgX0hBUyZ+g9VRrtm94nSXLhd8cUffPJmWdv2JHjXslOquVu3bpQ3pwSGcbmWABXJcu2l54mTQNoJbN++HY0aNcLXX39tKY/bWmPuAYA+5UuWLIHZYi70wQcfTHvlzEkCOZjA1q1bzfdBzfP7nCpByEDb/h7pFnu6VRuVIXyE6COBiyXw/vvvy0S7E/bu3ZukKv/vnybeeeedmDRpEm688cYkeRnMLAIrV65E02ZNsXeP7/qp8pjzu+mMP+666y7MmzcP5cqVy6yusl0SIAESIAESIAESIAESIAESIIELIOCWNyct7p7/lSpZCrNmz6K8OSkkhkmABEiABHI0AVWA0t2h2rVrh7vvvjsg5/rz1t0YNm0Vfv9zjyzpBuGK2P1odmQDbj/1r6nfWrdS1THLophb6ctsZakmxCxTY1JecmlYncura8XBkuax17+cDMFSUDfJ0yLf5a2AdwtXwTbZxlLdNWJ9rFvLGrixYhkrezp8rlixwmyLrbsHpeZ0/HHnnXdB1xbKly+fWjbGk0CuIUBFslxzqXmiJHBhBJYuXWoerr6tLKUee2zgVt3WbftUiaxEiYs3N3phPWUpEshaBDZu3IiHHnoIaobYfGdcA2f9Cqlh4OeefRbTZ0xHcLCOvulIgAQCSeDQoUPo0aMHpk+fblvStGp3vn/ut6lCQ0PRvXt3szXm+ZgGD2R/WZc/AVUCVGHJ8uXLfQkpjD+KFCmCd955Bw8//LAvH30kQAIkQAIkQAIkQAIkQAIkQAJZlsCyZcvQrFkzHDx0UNah3bNzV5dl/vdQrYfMVlMlS5Z0JdBLAiRAAiRAAiRwoQQ8ouG1dM0vmDx3PfYeOm6quUoUyh499gvui9km21/GW1Wb9Sz9cASyGu0LJ8rzWxXPTJQubzlaZxKlClkeKSeqYyZZS8UGheCLfFdiSYFK+CPPJQjyBKF4sXyIblQVj1SvJMpn7na0rcC7ffv2mfXu5Z8tP+v4o2iRopg1axYeeeSRwHeCNZJANiJARbJsdLHYVRLISAIJCQlmQX3o0KFQf2ouLCwcAwb0NwvwVIZJjRLjcxuBdevWmf3Ujx6TPex1lCxOh8G214Tbt28PNU8clAEDZNMgP0gglxJYu3YtXnjhBaiFwLM6+ZJedeVVmDBhAh544IGzZmVixhDQrU10HNK3b1/oW3ipOR1/vPLKK+jfvz+4TWlqlBhPAiRAAiRAAiRAAiRAAiRAAplLwJE36/ZciTLfs+RkMhl3FqLt7qnV/gEDBlDenLmXi62TAAmQAAnkYAJnYuPx0cqfMXvhNzhwJEbONBERnnjcfHoXbhMLZVVObUfRhJNeAvrM1m02E43CmIb0+W2K2XnsOO8qWBAOhkbie7E+tiGiPDbmLYdTIaHmkV+kcD48+8TtqCdbWYaHhdjlM+ag8uZhw4aZ9e+4eJE3W4ORZI2rYtsrPXtS3pyMDCNyEwEqkuWmq81zJYE0ElArII0bN8bq1at9JeShKT8YJmyslYpXTXvqlnyBMqvqa4w+Esi+BD777DPUq1cPJ0+eNG9e6JsZZjRqDpa/d+8+RgEz+54le04C2YvA6dOnMWjQIKiwOjZWFZJSmSHK7Fd1O5s2bYpRo0ahaNGi2etEc2hvv/rqKzRp3AT/7vjXe+lcP6ly1tZva/UaNTD3vfdoHTWH3gc8LRIgARIgARIggf9n7z7gpKa6NoA/uwtLr1IFGwqCHyoqIkVA6b0J0lWk996rFKVI7yAivUjvHaQJNsAGryiIgkiTDsvW756byUxmdhZ2YcuUJ/5kkkwmufefnUlycnIvBShAAQp4r0D0eLNxHedUI3VB/tSTT2DxYsabnVw4QQEKUIACFEgggdCwCGw/cAJrVVLZj8fP6a4no1SrZZJIlTvsKp4Ju4Is4beRKeIuMqvXxyLvILNKMHtMjUtI9r+gNLgSlFonjf0XmFZNp9bz/gh+DOeSZ7Q3VCZB3Zfy50atci+h/JvPqwSyZAlUo9it9sCBA2jcuDHOnDmj6hH9/resRc5U3irztoo3L2G8OXasXMrHBJhI5mM7lNWhwKMKSEtKDRo0wD/n1AmDHCbtT4TJIdNx47169eqYO3cub7I/Kjg/71MCq1atQhN18nlXJa24G+Tke6RKZJEu9DhQgAKJL/Drr7+iVcuWOKASk+xHNfuIUR5jMgCPZcmM8ePG6+42Er+k3KKrgHRV2uyDD7Bu/Xr9lrq8V2cl+kzFfnYi+y5HzpxYvnw53nzzTddVcJoCFKAABShAAQpQgAIUoAAFkkBg/759qN+gIf45f84aXrZdl6srOVv8WeLNX3zxBTJnzpwEpeQmKUABClCAAo8uIN0nZsuW7dFXlAQKTum4AABAAElEQVRr+PfSDRw6+ie+PnIa3/z4J+7eCVeJZSr+qm4Ny6ukVllD6cYcW0HVhLr9peO1spwMaVIlx+svPY2irzyDYq88jRxZ0tsW9oyXK1euoFmzZli/foMqkNTGeTDjz4+rePMyxpudcTjlFwJMJPOL3cxKUiB2AtL6Su/evaGb85SPmMdNx/U8pGlxadWle/fu6qTAOBmI3dq5FAV8W0D6TG/RogXCw8OdTqZ1rdV3RZLIpk+fjlatWvk2BGtHAQ8XkOarZ8+ejV69euOG6n5WjmTG4c52sJPyW45/5cuVx4wZM5AnTx4Pr5nvFy9KtYw6btw49FXNisfU1aXsz2TqXEVan+vatavvo7CGFKAABShAAQpQgAIUoAAFPFhgwoQJ6oHKXipeFhbj9TfjzR68A1k0ClCAAhSIlcDNmzf1vVM57kmvNSVLlozV5zx1ofCISPx2+iLOXbiGS//dwpX/buPi1Zu4rF6vXFXjap7cIs6aOS2yZEqLx1R3ldnU+GMZ0yDrY2mRO0dG5H0qK5IlS9yuK+PqKfHmsWPHon///ggLDTVuCzhuGNhXJ+cqjDfbOTjiJwJMJPOTHc1qUuB+Ardu3UJzlQCzfNkyvZgc/G29WKpp2xFTveTOlRtLly5FiRIl7rc6vkcBvxOYPHkyunTpgkjV5K9+PEMEzEQUNZoiOBhz1ROV0mUsBwpQwDME/vnnH3Tq1AkrV660Fyim41+qlKkwePBgdOvWTSdU2z/AkSQRkKbHpfXUs2fP6tMU4+F1daKin4xTRbL9/tavXx9z5sxBmjRpkqSc3CgFKEABClCAAhSgAAUoQAF/FZB4c4sWLVW8eal5ieZEYV5/586dG8tUTLp48eJO73OCAhSgAAUo4A0Ckoi0YMEC9OnTB+fPn9dFfvXV1/Dtt98gMDDQG6rAMioBp3izFrHdG5dxW9hZ+saoX/9dfPbZZ0ibNq1eiv9QwJcFmEjmy3uXdaNALAR+++031KlTB7/8+ou+8Wo5NDo+rWZWKF8BCxcuRNasWR3zOUYBCmD48OEYOHCgmXKpRezfIzWSMjiFbva2Ro0a1KIABTxQYL3qKrF9u3Y6KcmS/2mU1P5lNiZffvllzJo1C0WKFPHAmvhXkS5duoTGjZtg+/ZtMf7+yt2KF154AatXr0a+fPn8C4i1pQAFKEABClCAAhSgAAUokEQCJ0+eRO3atfHLLyrerAfbxbXzCypUqIBFixYhS5YsSVRSbpYCFKAABSjw8AKHDx9G586dIa96sMSSZ82ciZbsnebhcZPgkxJvbtKkiW5RTjZv2Z1O4wULFtQPpzPenAQ7iZtMVAEmkiUqNzdGAc8S2LBhgzooNsX169eMgumjotnHtcqtVtMBAUEqSWYABg0axOx5z9p9LE0SC8iTJn369Mbo0Z+qkhjpJ+bTlOYpZrp06bFu3Vq89dZbSVxabp4CFLifgDQ93r9ff0ybPg0RERH6+BcV5eZSUc0KCkyG9u3b6STSdOnS3W+1fC+BBaSb0qFDh2LYsGGqJdVIW2uq5n5zvGbIkF4/GVi9evUELhFXTwEKUIACFKAABShAAQpQwL8F5GGt95o2xbXr1y0Q5vWZmqVGA9V/AwcNZLzZIsRRClCAAhTwHoF///0XvXv3xsIFCxGpYpLm/SDL0Q7Zs2eHNOSRPn1676kYS6rvDUisWf7X+9Zyj8B6/0/268KFC8B4M/9ofFmAiWS+vHdZNwrEICA3XocNHYahw4aqrvjkJMf98Nhjj+lWyCpVquR+Ac6lgJ8KyPembdu2mK1aJtIpZPoM0sRQc9QVQ+ZMmbFx40YULVrUfIOvFKCAhwvI02OtW7fGsWPHXEpqDQMYbz3xxBOYOnUqLxZdpJJicsuWLWiqEuMvX7lsxm2iFUOakh80eBAG9B+AoKCgaO9zBgUoQAEKUIACFKAABShAAQo8vICON6ubrvKwj443R7+M1itnvPnhjflJClCAAhRIWoF79+5h/PjxGPHxCNy6ect9YSzHvx49emDMmDHul+NcjxYw4s1NVLz5ioo3q51qtCWhymzc/9Mvav6QIUMwYMAANsTi0XuThXtYASaSPawcP0cBLxW4oVpdadKkMdav26BqYB7wbGc2lhOcwoUL66Y5n3zySS+tKYtNgYQRCAsLwwcffIDFi5eoDUiv6MY5pPkqWQw5c2THtu3bIU3ccqAABbxLQL7j48aNw0cfDcXdu3fs33HnWhjfePn3nbp1MXnyZOTIkcN5EU4lqsCZM2dQV+2L77777r7brVmzpm6djK3J3ZeJb1KAAhSgAAUoQAEKUIACFIi1wI0bN/Dee+9h7dq1Lp+xRcv0SwAKF36N8WYXIU5SgAIUoIB3CKxbtw7dunXDH3+cUgW2ZxXFUPgAvPtuPdWbzWg89dRTMSzD2Z4uYMSb31Hx5u8t9whs5zaWwtesURPzF8xn63MWE476hgATyXxjP7IWFIiVgDSjWqtWLRw/ftxy0HNtvCMALVo0x6RJk5AqVapYrZcLUcBfBEJCQlCvXj1It7B6cLRlayeQC4MdO3bgueees8/jCAUo4H0Cp06d0q2TyffZGFwuEi3f/4wZM+KTkZ+gVctWfPooCXe1/EZ36tQJs2fPjrbPzN0lezF/gQJYs2YN8uXLl4Sl5aYpQAEKUIACFKAABShAAQp4v8D//vc/1K5dR8ebzRvr1usv81Z7yxYtMEk9hJUyZUrvrzRrQAEKUIACfiPw66+/okuXLtiuGg5wPzhixnL8e+mllzFx4kSULl3a/eKc61UC0gpdhw4d8Nlnn8VQbmP/F8iv4s1rGW+OAYmzvVSAiWReuuNYbArEVWDr1q1o2LAhrl69pj4ql/COkxtzXSlSpMCUKVNUIlkLcxZfKUABm8CtW7cgLdns3rUr+vMmtq9T/uef1y2RSZd3HChAAe8XiIqKwvz589FTNUN+6fJlN0dOVUfb919eSrz5JmbOnIkXXnjB+yvvxTWQRDK5wA8NC0WAOuUxblyY5z3Ga6ZMmVTLkovB7ru9eEez6BSgAAUoQAEKUIACFKBAkgpIvLlBwwa4JvFmdanl7vorODg5pk6dynhzku4pbpwCFKAABeIqcO3aNQwePBjTpk5DeGS4DjCa0UWnddmOf1myZsWw4cMhidOBgYFOi/jKhMS9rYPEzgNU9lzr1q2ts31yXBLJOqp4c4hKLHMaLOc/GVW8eemSJahYsaLTIpyggLcKMJHMW/ccy02BOAhIn909e/VCRHi4cb9bznbUEBAVoG6uGrdXc+XKhVWrVqFIkSLGm/yXAhSwC1y9ehWVK1fG4cOH9TzzgsF8lZmFChWCBNCyZctm/xxHKEAB3xC4rJLIpOnyBQsWmHlj9lfnGgYgeXAy9OvbD3379oUkaHNIGgH5vZYWJP8++7cj0ONy/pMsWTKMHDkS3bt3T5pCcqsUoAAFKEABClCAAhSgAAW8VGDcuHEq3twTkRESW1Y3kuVfW6DMHM/1eC7dleUbb7zhpbVksSlAAQpQwN8EIiIidG8HAwcOxBUVEzbuoFoV1FFOZ04bB73g4GC0bdcWgwYOQubMma0L+ty4JI05MseN+su/kSqhzB8GiTfXrVsPZ89JvNlRf+v5T2CyIIwaOYrxZn/4g/CDOjKRzA92MqvovwKhoaFo1ao15s2bpxBiPpC/qVpQWbFiBbJnz+6/WKw5BWIQ+Pfff3WLNceOHVNLGCeHjlf5UACKFy+GTZs2IUOGDDGshbMpQAFfEJBuLtu0aYM//vjDVh3zN8G5dnJNnS9fftU62Qw2Y+5Mk6hTFy5cUBf3dbF///77bveDDz7AjBkzmPh3XyW+SQEKUIACFKAABShAAQpQAJB4s7Q88sUXX2gOuf417h87Xx8z3sy/FgpQgAIU8DaBPXv26G4sjx37URXdvKfqfHwz6yTHv3LlKmDChPF+0zuFkUhmCFiP/1FRkSaLz7+a8eYDB/a7Pf8xAZp90AzTZ0xnvNkE4atXCjCRzCt3GwtNgQcLXLx4Ee+8847TzVN3pzvtVKb8xImTIK1ycKAABZwFzpw5g/Lly+PkyZO2NwJU2pjZjp+aJRcLZcthzZo1SJMmjfOHOUUBCvikQEhIiG7WfPyECQhTAfT7DXJx3bx5c4wePRrSlSKHxBcICwtD506d1IX7DOeNmydF6lUeIixeooRumZWtSjozcYoCFKAABShAAQpQgAIUoIApIPHmOnXq4MCBA+asaK9yqdW2bVtMmDgRyZMnj/Y+Z1CAAhSgAAU8TeDPP/9Ez549VYMbK6Pd/7Hnk1kK/dxzz2LcuPGoXr26Za7vj1oTyay1lS4u/WmQeHOXLl0wbdo0e7XNULN9hhqRpHrpCSyr6vaUAwW8UYCJZN6411hmCjxA4Keff0KN6jUgJz96sB/BbCPqJUVwCkyaNEm1WNbqAWvj2xTwT4HffvtNPVFSDn///be6eHBKH7M3SFarVi0sW7YM0nwxBwpQwL8Ejh09itaqdTKzy1tde3V8tXYbLcmmEmzIniMHJqrEs/r16/sXkgfVdvbs2ejQsQNC7zmS//Tuse0jKepTTz2N9evX4cUXX/SgkrMoFKAABShAAQpQgAIUoAAFkl7g559/1jfMrfFm1+tfxpuTfj+xBBSgAAUoEDeB4cOH45OPP8Gdu3ccH7TECx0zgfTp06N///7o3LmzX7Y0pRPJlI3r8T8q0r8Sycy/iZkzZ6JT5062eLPtj8blb+fpp57CuvXrGW820fjqVQJMJPOq3cXCUuDBAhs3bkSDBg1w6/Yte8urrkkw0tqGZEGXUK1vcKAABaILSDeWFStWxIULF9WbxkmwPv+znAQ2bdoUn3/+OVvzi87HORTwG4GIiAhMnToVAwYMwM2b6rgrvxeW3wnX42+VKlUwffp0PPnkk35j5EkVlS4upatL62+7Lp9tn8lL2nTpsGTJElStWtWTis6yUIACFKAABShAAQpQgAIUSDIBiTc3bNgQN2/dtIXJLBdRtnvH2bNlx4qVK3TrG0lWUG6YAhSgAAUoEEeBHj16YOzYsUZI1ymua94ZAgIDAyH3gz755BPkzJkzjlvwncUDAgJVZaLHvyP9qGtL170p8WbpHUxabTUH48/I8ceUjvFmk4avXibARDIv22EsLgXuJyAtjHXv3h0R4eG21BdZWh2spM8m20X9K6+8orvh403s+0nyPX8WOHToECTZ4+rVq3YGxymfMatdu/aYPHmSvoCwL8QRClDAbwWk5cKOHTti3dq15uFWWTgff00c6QZ32LBh6KS6WwwKCjJn8zWRBKTLYmlN8uixo8a5kfUH3jYu+2XcuHF6HyVSsbgZClCAAhSgAAUoQAEKUIACHikwefJkdO3WFZHhEep613EB5RgDChUqhLXqepjxZo/chSwUBShAAQrcR+DGjRvIly+fevD0gmUpx1GuWLFimKB6mihSpIjlff8clRbJHDJioKbU/Wd/bZHM/Cv466+/ULNmTRxVPZg4DSaWeg0KZLzZyYYTXiHARDKv2E0sJAXuLyAtokhTqtIqih7Mg5PtY+ZkXZUV/cW8eZCb2BwoQIHoAjt27EDt2rVx65a0LOTalpCxfJ8+ffSTJ9E/zTkUoIC/C8jT1506dsL58+c1hXn8dX2VN1977TVId4uS4M0hcQVu376N999/H6tWrrTfCDH3kVES4/e/Xfv2mDhxIhP+Enf3cGsUoAAFKEABClCAAhSggAcIRIs3u5bJdhElrT5/8cUXjDe7+nCaAhSgAAW8RmDOnDlo0aKFLq8ZI3z88cfx8ccf47333oPu0tFrapNwBTW7trQ8Sa0TyyKjbC2ZJNymPX7NzvFmR3GNvyfHv4w3O2w45vkCTCTz/H3EElLgvgKS8CJdWW7ctNHe6pjrB+QQ1V91uzV06FCe8LjicJoCNoE1a9agfv36CA0NtZiYlw3GLGm6WBLJOFCAAhSISeDatWv6d0KSxKIiI43ravW0FmwX1PKrIomqcnmdLHkQunTugiFDhjDorl0S758otT8GDR6EEcNHqF3jLthh/P5XqVIVy5YtRdq0aROvcNwSBShAAQpQgAIUoAAFKECBJBQw482bNm5S166W6yVLmCxQXef269+f8eYk3E/cNAUoQAEKxI9ApIrhvqFaHPvu+++RIkUKdOvWDf369WM80IXXXUKdnBowkcyAkhjz4MGDMXz4cH2/Xp9BWXoMMzmrVK2CZUuX8e/LBOGrxwowkcxjdw0LRoEHC0iLJ1WrVcWRH6S5TOOi3nI9r5LGgFQpU2H2Z5+hUaNGD14hl6CAnwosXLgQzZo1093CyiMUZk6B+X0KVM3OSlP+7dq19VMhVpsCFIirwMGDB9GyZUv8+uuvzh+VHxbbYFxHBuCZZ57G9GnTULFSJfMtviaSwOLFi9G8eXPcCwnRrbG7/v5LMaTVuA0bNkCeRORAAQpQgAIUoAAFKEABClDAlwXOnTuHGtWr44cjR/Q1kg456wCZGSUDUqZMic9UvLlx48a+TMG6UYACFKCAHwns338A48Z+itGfjsFzzz7nRzWPfVUlidxML5f7zzIh0+4f0o39en1tyUWLF+kW7kJUvNmM/4uUvi2g/pH4s8SbN27ciJw5c/pa9VkfHxJgIpkP7UxWxb8Efv75Z1StWhXS97LToA5CZoJztmzZsWbNakgf3hwoQAH3AtOnT0eHjh0RGRlhnPXq0znzdFi1GJQsCHPnfoEmTZq4XwHnUoACFIhBQFo4HDlypG4GPfReqLpcdPy2yEf09bblqluC8OPGjUO2bNliWCNnJ4TAoUOHULNmTVy8eEmt3rGPZNeYiWVPPvmkvrgvWLBgQhSB66QABShAAQpQgAIUoAAFKJDkAk7xZusFkaVkcr0qrfoz3mxB4SgFKEABClDADwQCAgPs958d2eYSP3XEU/2AIVZV/Prrr1G7dm1cvHABUZb4v9XNiDdvQMGCL8ZqnVyIAoktwESyxBbn9igQDwK7d+/WB6Dr16/rtcmNaBmi9B1pY/yFF17QrWc888wzxgz+SwEKRBOQriqliWLXwYyVSTPGS5cuRa1atVwX4TQFKECBWAv873//Q6vWrbD3q7225DH10Riurx97LDPGjPkUH3zwAbujjrXwoy946tQpVFdP3R8//qs9ecx1rRkzZsLKlStQpkwZ17c4TQEKUIACFKAABShAAQpQwKsFJN5cp04dXLt2zVYPS6BZzZGpAgUKYMOmjXjmacabvXpns/AUoAAFKECBhxBw17WlrIaJZO4xT58+jWrVqkXrscS8/yifypgxI1atWoW3337b/Uo4lwJJKMBEsiTE56Yp8DACS5YswYeqC757ofdsNzrlMt75bnS5cuXw5Zdf6gPQw2yDn6GAPwj07dsXo1RLQUYCpvE9Mr9NciKXOnUa/YSlfJ84UIACFHhUAbmgnjNnDnr17oWr/121JJRF//2Rh7jKqIvH6TNmIF++fI+6aX4+lgJyw+Tdd+th+/Yd9k+YxwVjhxlduHz++edo2LChfRmOUIACFKAABShAAQpQgAIU8GYBiTc3U/Hm0Hsq3iwVsV0IOW50BqBcubKMN3vzTmbZKUABClCAAo8o4C6RTLVRhsioyEdcs+9+XOLN9erVw44dO8zTK/XwuCTfOeosDVrMnTuX8WYHCcc8RICJZB6yI1gMCsRGYOzYsejZs5c6wDgOyvqAIx9W2TDSO3WzDz/EzJkzVXd8yWKzSi5DAb8TiIyMREfVleW0adPsgTFBkG+QJGXK+VumTJl0F2Zspl9kOFCAAvEpcEE1Z921a1csWbrEngdu/f2xbitlypQYMGAAevToAbmg5JDwAmFhYWjTpg0kWUwG4+zKcmWv5gUGBmLM6NHo1r27Xob/UIACFKAABShAAQpQgAIU8FaBcePGqXhzT0i8zN31j9RLHmqeoeLNyZMn99ZqstwUoAAFKOCjArdu3ULatGl9tHaeVS2dSGZ/6tZWNkmKinSOnXpWqZO+NOHh4WjTurWON7uT0vcGlKP0UtK9e7ekLzBLQAGbABPJ+KdAAS8QkFZMevXqhU8//dSe+GIcqx1HbDmADxs2DP379/eCGrGIFEgaATlh+7D5h1gwf6EKjqmkMf0VcnyPJJcse7Yc2Lp1C15++eWkKSS3SgEK+IXAJtUdSPv2HfDnn38a9TV/itRrgLqiNC8qZXbBF1/EDNU6WfHixf3CxhMqOXz4cAwaNFgiIca+sO0f48X4t7tKJBszZgy7IPWEHcYyUIACFKAABShAAQpQgAJxEpB4sySQjVMPLluvP/W47fonUMWbh3w0FAMHDojTurkwBShAAQpQIKEFzp49q++bHj16FMeOHWOyc0KDq/XLeUGU3ESTMwfLS6S1ea1EKIe3bmLY8GEYPGiI0lPJ+4rQ3flX926MN3vr/vXFcjORzBf3KuvkUwKhoaE68WXRwkW2elmOznKUUZPByYMxe/ZsvPfeez5Vd1aGAvEpEBISopuGXbNmjWO16vsToLLJjHbIgCeffBLbtm3D888/71iGYxSgAAUSSOD27dsYPHgwJkyYgMiICPVbpH+U1FVk9DbKAgOD0LZtG4wYMQIZMmRIoBJxtVaB+fPno2XLlpBzMafoiO38S672mzRporssDQ4Otn6U4xSgAAUoQAEKUIACFKAABTxWQB60bNbsQyxctMDt9adc/6RIEYxZs2Yx3uyxe5EFowAFKOCfAnfv3oX03jRy5Cjcvn1Lh+zGjxuPLl26+CdIItba7NrSuEtt/CvhbLZIFvudoOPNrVS8+V6Y0NnvTRprMOZIvFl6y2BLsLF35ZIJI8BEsoRx5VopEC8Cd+7cQd26dbF58+bo67MdozOkT48VK1eiXLly0ZfhHApQQAvId6lmzZq6H/KYSPLmzYvt27fjqaeeimkRzqcABSiQIALff/89WrVqhR9++OGB63881+OYPGky6tSp88BlucCjC+zYsQPvvPMObty4YazMdv6lJ9S4PD1WqXJlrFixAqlTp370DXINFKAABShAAQpQgAIUoAAFElDgvvFm23bTq3jzSsabE3AvcNUUoAAFKPAwAnJs6qFa0zxz+rQ832kMqpWsTBkz4n//+x+yZs1qzuVrAggEBEpg1IiHWv2jVPfYHGIvEC3e7PpRxVy5EuPNriycTnwBJpIlvjm3SIFYCVy9ehXVqlfDwQMHbVnJ0T/2eM6c2LhpEwoVKhT9Tc6hAAW0wLVr11ClShUc+vpr28WFtPQj3VqqszHV5K6c+r708kvYsmUrcuTIQTUKUIACSSIgT4RPnDhRt1B2+85teRwpxuO//G7VrFULkydPRu7cuZOkvP60UWkiX44j58+f19UWf3uwRI3LdPESJbB+/XpkypRJL8N/KEABClCAAhSgAAUoQAEKeJqAjjdXU/HmgwcdRbNd4JjXOTkfz4lNGxlvdgBxjAIUoAAFklrgxx9/RFfV4tiu3XtUUaxROUfJpFcBaUmTQ8IJBAQEqpVH95fusjnETcCMN/+r4s3u9OS8rFjx4tiwYQPjzXGj5dLxKMBEsnjE5KooEF8CcqOyYsWK+Omnn2yrNC/l1aRt9Pn8z2Pzps145pln4muzXA8FfE7gwoULqFSpEuSkzHUwv1VvvPEGNqmEzMyZM7suwmkKUIACiS5wWj1R1759e1trpOYvlSqGZdQoVADSp0+H4SOGo13bdggKCkr0svrTBs+cOaPPzeTpRtPfNduvYMGCunvknCrRnwMFKEABClCAAhSgAAUoQAFPErhvvFkXNAD5ns+LrepBy6efftqTis6yUIACFKCAnwpcuXIFgwYNwoyZMxAZEb3VK2u4NFmyZPjmm2/wyiuv+KlWwlfb7NrS3JLpz0QyUyRur3IfoHLlKqo1vRPGB01Q+2oC8OKLBbFl6xY8nvNx+1yOUCCxBJhIlljS3A4FYilw6tQpVKhQAX/88UeMn5DEl40bNuKxLI/FuAzfoIC/C5w9exZlVZevv8lNf9sJmOt5WNmyZbBmzVqkTZvW37lYfwpQwMMElixZgi7qSbuLFy+6lMz8JbO1rqjeLVq0KGbPng1JZOKQcAKXL19G9erVcejQIbURh7/eom23PPvss7obZd54Sbj9wDVTgAIUoAAFKEABClCAAnETkBuV5cuXt8ebzatK61ok3iytXmTJksU6m+MUoAAFKECBRBeQnhumT5+OIR99hKsqmczeYlO0A5gxIzg4GB07dMBAlXSWIUOGRC+vv2xQd21p3xlSa8OfiWQP/xeg482qtdhDhw9bVmL+oRvx5zwq3rx9+3Y2LGMR4mjiCDCRLHGcuRUKxErgxIkT+qJeEmBiGqSlMukHPE2aNDEtwvkU8HuB3377TbUcUwF//nnGjYU6+QqIUskANbBs2TKkTJnSzTKcRQEKUCDpBf777z/07NkTc+fOVYVRXfLaLtTNS0mjhMZU8uTJ9bL9+/dH6tSpk77wPlqC27dvo+4776gnwbbaamjuDfWqR6PwxBO5Vctk25E/f34fVWC1KEABClCAAhSgAAUoQAFvEZBWlcupBy3NeLPLIzG6GvJQ86pVqxhv9padynJSgAIU8GGBHTt26Idrf/3lF0cCmdlSgLza4m/mrCpVqmD8+PHIly+fD6t4RtV015Yu/lIyJpI92v6RePM7Kt68bdvWGOP/uXPn0slkjDc/mjU/HTcBJpLFzYtLUyDBBKTrPblov3TpkrENOR+KCpDbxvZtNmzYEPPmzYPcLOZAAQq4F5AuYSXh8vz5f9UCbrMu0LhxY52Ywe+Se0POpQAFPEtgz549aNOmDf73m61bRcepQbSC5subVzX3PhNvv/12tPc4I34E7t27hw8//BCLFy+OYYUByJYtK7aqZLNChQrFsAxnU4ACFKAABShAAQpQgAIUSFiBYxJvVjGyS6qla7eXkSr+3LBBI3zxxVxIay4cKEABClCAAkklIL019ejRA6vXrDaK4PbA5SidJNSMHTsWkkjGIXEEnLu21BllesNMJHt0/9DQUDRr1gyLl9jizW7+/rNly8Z486NTcw1xEGAiWRywuCgFEkrgsGqysnLlyrh69arOpleNJdku7nU2mZ5o27YtpkyZgsDAwIQqBtdLAa8X+Ea+S+rCQVrx0YPjXNZ8QAWtWrXSzSLzu+T1u5sVoIBfCYSEhGDEiBEYM2YMJJHJdQhQv3f2FsvUxPvvv49PP/0Ujz3GbrBdreJjOjIyEh07dsS0adP06qz+xgwgU8ZM2Lx5M6SLGA4UoAAFKEABClCAAhSgAAUSU+DQoUP65rqON7tu2BZybtuuHSZPnsx4s6sPpylAAQpQINEEbt26pWOeEyZMgMQ/7zdI/C19+gwYOHCgjssxCfp+WvH/XmCgavzEmuBku//GRLL4sXaNN7uuVf7+MzLe7MrC6QQUYCJZAuJy1RSIjcC+fftQrXp13Lh+3bK47ehrmzNgwAAMGzbM8j5HKUABV4Hdu3ejZs2auHnzlr15Y+PGvu37pF569uiJUaNGqa4tZR4HClCAAt4n8Itq1l0SYr8+eBCq4VJb5rk5ol71aJT6nQOyZMmGcePGokmTJt5XUS8psZyjjRjxsW1HOPtHqR2UPn06bNiwASVLlvSSGrGYFKAABShAAQpQgAIUoIC3C+zfvx9Vq1bFjRs3VVWsd3wdNevfvz+GDx/umMExClCAAhSgQCIKSPLRokWL0KdPH5z75x/VQ5NxvHLEO21hTh3rhEp6DlItNn2gk86yZ8+eiCXlpkwB475a9PhnVFSkuQhf40HAiDePMML8tr9/27dBrZ3x5ngg5ipiKcBEslhCcTEKJISAdFVVTV3U375zx3EMsG1Ijg0ICMTIUZ+gV89eCbF5rpMCPiOwbt061K9fXz+xYj+vcqmdBMckSMaBAhSggLcLREREYPas2ejbry+uX7tmvy0Q0++fdJ09ffp05MmTx9ur7pHll1bievfpDURaOyR3FDVNmjRYv349uxt1kHCMAhSgAAUoQAEKUIACFEggAXnQsoZ6aPnW7dv2LdivFdVIgPpPHrLs2bOn/X2OUIACFKAABRJT4JtvvkGXLl3w9aGvXR6SdS6FHLMk2laieHFMnDQJr732mvMCnEpUgTZt2uhGGqTlLGtjDTNmzEjUcvjDxkaPHo2+ffqqcLOyVhU2Hwswx9OkSavizesYb/aHP4YkrCMTyZIQn5v2b4EdO3agVq2auH37roJQLYfof8VEruijEKiaEpk6dRrkwMyBAhSIWWDJ0iW6C7ew0DD7Qo7vk/o6qe+SXGR07NDB/j5HKEABCviCwD/n/9HNuK9aucpeHevvn54pTZOpJ/pSp06NQYMHo3u3bkiWLJl9eY7Ej4AETNq3b48oFUgxL+xd/desWYPy5cvHzwa5FgpQgAIUoAAFKEABClCAAi4CO3buRM0aNXBHHlrW0WZ5UVcotuZdglRrLlOmTmG82cWNkxSgAAUokDgC0t1yNxWbnD9/HiLVA5l6MG6J6niaPa5pG8mdOzdGjxmNBvUbOCUuJU5puRUKJK2Ajjd3aI/ICOcW38zvicT7165di3LlyiVtQbl1nxVgIpnP7lpWzJMFtm3bppLIaiHk7l3nm422QidPnhxz5sxB06ZNPbkaLBsFklxg1qxZOvglT6XouJgtEVMXTF2HSLLEZ599phPNkrywLAAFKECBBBKQC8YOHTri7Lm/jS1YMpnMC0tz04UKvYJZs2bi9ddfN2fxNZ4EFixYgA+bf4jwsHD7Gq3+qVKlgiSTSQtxHChAAQpQgAIUoAAFKEABCsSngMSb69SubfR8YVmxeU0iMbI5n3+O9xhvtuhwlAIUoAAFElNAEp1feOEFnDlzxrZZ21HKPFjZ5qZMmVK1nNkLvXv3grT0z4EC/iowf/58NG/RHBEq3qybpJEboTLYXiTeLPcG+PCywcJ/41eAiWTx68m1UeCBAtu3b0cN9WRYSEiIbVnnE6Xg4GAsXLgQ9erVe+C6uAAF/FlAuhLr07uPbtpVHKzXGjIenCIFFi9ejDp16vgzE+tOAQr4icCNGzd0973ShaV0fen0oygGlh/JoMBAdOjYEdLlb9q0af1EKHGquWLFCjRq1Ahh4aqVTEtCn+kvgbC1kkxWsWLiFIhboQAFKEABClCAAhSgAAV8XkCSyKQlspB794y6Wq7/ZEby5MFYtIjxZp//Q2AFKUABCniBwLJly9CgQQNHSV2OWXXr1oXc+3n66acdy3CMAn4s8OWXX6JJ48YIDTN6ZbJ/ZWwjKdS90HXr1vHhZT/+G0moqjORLKFkuV4KuBGQJLJaNWvijmqJzDHYf/KRQt1cXLZ0KWqqZThQgAIxCwwcOFAnQBg35h3fIVsPbkijEiNWrVzJE6eYCfkOBSjgowKHDh9GyxYt8fPPP6saSiaT8Rvp+KU0Kx6AJ598QnWjPRXVqlUzZ/I1HgTWrl2H+vXr4949eWgguj+bHY8HZK6CAhSgAAUoQAEKUIACFNACEm+uWbMW7t41u7PU7VXYn2uRh1mWLl2mlqlBMQpQgAIUoECSC0RFRaF06dLYv38fomxdL0uhXnrpJUycOBFvvfVWkpeRBaCApwlIoti7776r4s3y0IAZ6Xe8pkqlHl5my2Settu8vjxMJPP6XcgKeIvArl279I3au5JEZv62WwovGcOrVq1ClSpVLHM5SgEKWAXkIqNz586YPHmynm3/KukMMmPJDBnSY/2G9Sj5ZknrRzlOAQpQwG8EwtTTSfLk3ogRIyBNxtsH+4+mfY4ekVZQJ02ahBw5cji/wamHFti4caNuXVaf95lrsfinUjdzNqhlypQpY77LVwpQgAIUoAAFKEABClCAAnEScIo3u35SXX+kDE6JlatWMt7sasNpClCAAhRIUoGjR4+icOHCuleFLFmyYOiwoWjVshWCgoKStFzcOAU8WWDTpk145513VAu06uFla08YtkJLN5cSk3777bc9uRosmxcJMJHMi3YWi+q9Al999RWqVa2GW7dvWSphu5soF/UpUmHNmtWoyG6OLD4cpYCzQHh4OFq0aIF58+bZ3jC+Q7Zvks7PzJI1K7Zs2YJXX33V+cOcogAFKOCHAr///jvatmmLHTt3WGpv+9XUL47xjBkyYtSoUWjZsiUCJDmXwyMLbN26FbVr1cbdEDct0SriNKnTqov7DfopzEfeGFdAAQpQgAIUoAAFKEABCviVgMSbq1atitu3b7utd4qUqpsj1VpyhQoV3L7PmRSgAAUoQIGkFOjQoQMCAwMxZMgQZM6cOSmLwm1TwGsEJN5cq1YthIRITxjRh9RpUmPzps0oVapU9Dc5hwJxFGAiWRzBuDgF4ipw4MBBVKpUCbdu3dQfNbves926hTQvLs1N8qI+rrJc3p8EpHWdhg0bYuXKVarallR78wul5ubOnRtyEvXCCy/4Ew3rSgEKUOC+AtKS4/x589G9R3dcuXLFqVFU81zEWIGaCojSrTnOnDkTBQoUuO96+WbsBLZt24aaNWriXmiIaq7fuVFa8U+bNh02bd6EN998M3Yr5FIUoAAFKEABClCAAhSggN8L7N+/H5UrV1bxZjcPLSsdxpv9/k+EABSgAAUoQAEK+KiA0a15DdWtuSSTOSL85u3StGnSYsvWLShRooSPCrBaiSXARLLEkuZ2/FLg8OHDKF++PG6qJDJ1b9aW/mL+qAcgRYpgSL/GTCLzyz8PVjqWAtItW+3atbFd3YyXFDLzG2T9+LPPPoudO3fiqaeess7mOAUoQAEK2AQuXbqE7t27Y8GChWqO/Jq6H+Q3Nlg9ud6ndx/07dtXnaukcL8g58ZaQCeTyZNi0r25m6NY+vTpIQGAIkWKxHqdXJACFKAABShAAQpQgAIU8E+Bb775BhVUvPn6jRvOAOpiTuLPKVW3RqvXrEFFtkTm7MMpClCAAhSgAAUo4CMC0qhGzZry8PI9t/kH6dKlxY4dOxhv9pH9nVTVYCJZUslzuz4v8N133+kEsatXrxq3DG3ZL/pF/ZMiOAVWr16tnx7zeQxWkAIPKXD9+nVUr14N+/btd1qD7eukv1v/V7Ag5CZ9zpw5nZbhBAUoQAEKRBeQ38u2bdvh1Kk/jDfVD6oj2d05zalAgfyYNWs2W8uKzhjnOZs3bULtd+rg3j25uA9QqXy2ZD6bf4aMGXUyWeHCheO8bn6AAhSgAAUoQAEKUIACFPAPge+//x7lypXDtWvXVIXNizkjSib/BqueL1atXIkqVar4BwhrSQEKUIACFKAABfxUYPPmzahTpw5C7qmWyVSoWZ8Ryj9qkPhzxowZsGPnDrz66mvGTP5LgTgKMJEsjmBcnAKxEfjpp5/w9ttv47//ruhujJxvy6qL+uBgrFixQiXIVI/N6rgMBfxS4OLFizrR8ocfjhgnQPqmuxEcM79Tr7/+OrZs2YLMmTP7pRErTQEKUOBhBO6qlrGGDBmCsWPHIiIi4j6rCEBgYCCaf9gMo0aPRqZMme6zLN96kMD69etRt25dhIaGul30sccew+7du/Hiiy+6fZ8zKUABClCAAhSgAAUoQAH/Ffj555/x1ltv4cqVK04IZjdGweqh5RUrvmS82UmHExSgAAUoEJ8CUVFROpaYLFmy+Fwt10UBCjykAOPNDwnHj8VKgIlksWLiQhSIvcCJEyf0Rf2FCxeifUhSYJInT45ly5ejluriiAMFKOBe4Ny5c7pb2OPHj7ssEKCSyox2XEqXLg05SUqXLp3LMpykAAUoQIHYCBw7dgwtW7bEd99+q35ZjURdx6+s8xpy5MiJSRMnoN677zq/wak4CaxRXcy8qwzDwsOMHkYVu9EinOGfI3sO7N6zG/nz54/TerkwBShAAQpQgAIUoAAFKOC7AveLN0utJd68nPFm3/0DYM0oQAEKeIDAkSNH0LlzZ33fZuDAgR5QIhaBAhQQAR1vrldPxZvDnUGMcDOyZ8+OPXv2MN7srMOpWAgwkSwWSFyEArEVOHXqFCS55ey5s9G6LZLGlJKpi/rFixahnvpB50ABCrgX+P3333W3sKf/PG3/HrkmNlStVhVfLv8SqVKlcr8SzqUABShAgVgJSItkU6dORf/+/XHr1m31GaMdbLP7RXe/v9OmTsOTTz4Zq/VzoegCX375JRo1aoQIdXGvWhk3Esr0YsZE7ty58dVXXyFPnjzRP8w5FKAABShAAQpQgAIUoIBfCUi8uVSpUpCHLp0Gdfkg121ByYKwSMWb5YEVDhSgAAUoQIH4Frh8+TL69euHzz//XLdGliZtGpw4fgISv+JAAQp4hoD0gtawYUOER6hkMhXeNwcdbVb/5M7FeLNpwtfYCzCRLPZWXJIC9xU4e/asvqg/ffpPtZzZGbHxEbkJGxgUiHnz56Fxo8b3XQ/fpIA/C/zyyy+oUL48/jl/3sZg3FSXCfOE591672LhwoX6aUt/tmLdKUABCsSnwF9//YX27dtjw4YNttVG//01L0LTpk2LYcOGoWPHjggKCorPYvjNuhYvXoymTZsiMjLS7K3Z1iacQfD0089g3769DMr5zV8EK0oBClCAAhSgAAUoQIHoApI8VrJkSZw+fdp4036ZZowEqa7F5s+bpx9Uif5pzqEABShAAQo8vEBoaKh++HTo0KG4dv2aLTnFOP40VA9ISqMZHChAAc8RkAcL3n//fUSqB8fN3kfspVNf3WdUvHnvXsab7SYceaAAE8keSMQFKPBgAcnIL1myFE6cMLrhM06lzM9JElkAPpv9GZo1a2bO5CsFKOAi8K3qWq1y5cq48t8Vp4x5Wcz8TrVo0QIzZsxg4oKLHScpQAEKxJeAtJYlzdSftyX0mr+/jvU75rz++uuYNWsWChUq5HibY7EWmDt3Lpq3aI6oSNtjYg5avY78BQrgK9XseLZs2WK9Ti5IAQpQgAIUoAAFKEABCviGwKVLl9RDy6Vd4s2Oi4bAwEB89hnjzb6xt1kLClCAAp4lsGXLFnTr1g3Hjx+33ZtxHH9kDAEB6gHIfShRooRnFZyloYCfC+h4c3MVb46yNHjj+PqigIo3SzeXjDf7+R9KLKvPRLJYQnExCsQkcPXqVZQrVw4//PCDYxHLj3KAuqifOmUK2rZt63ifYxSggJOAZMFXr14dN2/cMBu8Ue87d6gmFy6ffvqpukbRlypOn+cEBShAAQrEn8D169fRq1cvzJ4927jotK3acnpj31gy9QR8165dMWTIEKROndo+nyOxE5Dk6Hbt2qkE6ii3x79XXn0Fu3buQsaMGWO3Qi5FAQpQgAIUoAAFKEABCni9wLVr11CmTBkcOXLEbV0kNjZ12lS0bcN4s1sgzqQABShAgYcSOHnypE4gc/RY4GY1tgBh4cKFcfjwYUhiMwcKUMBzBMx4sySTGV9X67/AK6+8gt27dyNDhgyeU2iWxCMFmEjmkbuFhfIWgTt37qBChQo4cOCAo8kkl8JL4kv37t1d5nKSAhQwBTZt2oS6devi7t275izLq3GC89FHH2HQoEGW+RylAAUoQIGEFpAnC1u1am1/Al6255ziq2foViSfzZMH06ZP1+dFCV0uX1v/2LFj0aNHD5dq2aJyau6b6unOLVu3Ik2aNC7LcJICFKAABShAAQpQgAIU8DUBI95cUcWb98d4/cV4s6/tddaHAhSgQNIK3FAP+I8YPhwTJk5CaOi9GI8/ZikzZcqEwYMHo0OHDuw9xkThKwU8SMCIN/dUwXzVMpmtMwxr8UqUeBNbt25hvNmKwvFoAkwki0bCGRSInYD0D16zZk11Y2+L+hF23OxzjAFDPhqCwYMGx26FXIoCfiiwfPlyNGnSBGFh4ar2Rna8pMhLq6syBAYGYOzYcejSpYsxg/9SgAIUoECiCsj5zscff4JRIz9ByL17jsR5fcLjOOsxxxo1aoQJEyYga9asiVpOb9/Y0I+GqvPGwfbjn+lp1CsAlSpWwJq1a5EiRQpvryrLTwEKUIACFKAABShAAQrEIBAWFoZq1apj27atxhLmhYF+NSakNWi5ec+BAhSgAAUo8KgCkZGRmDdvHvr374/z5/9Vq7PdmHFz/JFtBQUFoUWLFhg2bBhjf4+Kz89TIIEFpIGOj9R5o7VdMuv910qVKmLt2nUIDg5O4JJw9d4qwEQyb91zLHeSCkREREBulEoSTLRBnWBJgm831QqZPB3GgQIUcC8wZ84ctGnTBhHh4SoX03Zloq9TjHHpLm3mzJn48MMP3a+AcylAAQpQINEETpw4gdbqN3vvV1+536bt/Ed+xh97LIs6BxqD999/n90Ru9dyO7dnz55O545yaDQTq+UD79avj8WLFvFJT7d6nEkBClCAAhSgAAUoQAHvFghX8bHGjRs74s2uFwSqetLrBePN3r2fWXoKUIACniJw6NAhdOrUCd99961T/EkF85wDUrYCly5dGhMnTsTLL7/sKVVgORJZQO7XSffa0mWi42ljoHXr1olcEm4utgLSC8bYcePU4mqfWe6/mp9/9913sXjxYsabTRC+OgkwkcyJgxMUiJ2AJL/IAdMc1GmVHsyGyVq1agXpg1gOqBwoQIHoAtJaTbdu3WwnnNHfT5EiGAsWLES9evWiv8k5FKAABSiQJAISJJg9ezb69OmDq1evygNMejDPf1wLVbZsWUxX3V3mzZvX9S1OuxEQXznHnDVrlpt3ZVaA6mq0pdM5aAwLcjYFKEABClCAAhSgAAUo4GUCrvFm6w1aqQrjzV62Q1lcClCAAh4qcO7cOR3bW7xoMSKjIt2UUiJ+OuNEv/fUU09hzOjRqKcSTjj4t0BM97yNxDL/tvHU2ruLN7vmikoioOQ0cKCAqwATyVxFOE2BBwgMGDhA9RU+wpKU73xSVV9ai1DZu4GBgQ9YE9+mgH8KSBP8Hw39SF+L6G+P4x+dlJAqdWqsWLEClStX9k8g1poCFKCAhwv8+++/usvhZcuW3bekAepXPUXKFBg4cCB69eoFaWmSw/0FpEsBafXWtLWfZdpG5EK/X7/+GD58+P1XxHcpQAEKUIACFKAABShAAa8RGDBAxZtHqHizKrG1sQjzRl/Dhg2xcOFCxpu9Zo+yoBSgAAU8TyAkJARjx47FyJEjcfv2LadWyNwdf1KlSq0TzqRFo1SpUnlehViiRBdwl0gm8V/3CYmJXjxuMAYBiTc3btIYy5Ys1eeZ5vmlubh8//up7m0ZbzZF+GoKMJHMlOArBWIhIK0ode3a1WlJ/YMrc1RzHFWqVMaaNWuQPHlyp2U4QQEKqK+IamlFWiGT75F9sF+hyHOWAUifPh3WrV+PUqVK2RfhCAUoQAEKeKbAxo0b0aFDR5z587TTzQ57aS2/8S+++KJuaato0aL2tzniXiAsLAy1atXCpk2b9LExyvIUqPmJ8ePH62Q+c5qvFKAABShAAQpQgAIUoIB3Ckg3YV26dNGFl9iY6/l/lSpVsHr1agQHB3tnBVlqClCAAhRIcgE5jvTo3gOnT59yE2Uy7s2Yxx9JFqrfoD5GjxqNJ554IsnLzgJ4joBOJLPEe3XJ1HRUpKMFO88pLUtiFZB4c20Vb96o4s2ug3n+OX78BHVO2tn1bU77sQATyfx457PqcRNYsmQJmjZtiojICP1omHGsdBwxS5YsiW3btiFlypRxWzGXpoAfCEREROh+0ud8PseorUq81KEx/RUyvkdZsmTBps2b8Hrh1/1AhFWkAAUo4BsCt27dwqBBgzB50iSER0hz+CpwYDs9Ml4cE9Jaa5vWbfHJJx+rxOH0vgGQQLW4e/cuKlashP379hoBPgejmg5QLREEqC6gF+jWyxKoCFwtBShAAQpQgAIUoAAFKJDAAtKrRdOmTRBpuwFrO+23X1NJvHnLli1IrVrv50ABClCAAhSIq8Avv/yCzp06Y+euncZHzQONeg1QITwz/cec/dprr0KSSeT4w4ECrgKBKslQ4pKu8d9I1YgEB88XuHP3DipVrIx9+/e6/f4HBQVi/nzGmz1/TyZeCZlIlnjW3JIXC2zduhU1atRAaGioqoXzQVImC71cCLt370bGjBm9uJYsOgUSRkC+N5KEuXz5l2oDLieU6vsToJLKHs/1uE7EfOGFFxKmEFwrBShAAQokqMC3336LVq1a4djRo9ECCvZzJ1sJcuXKhSlTpuhWtxK0UF6+8qtXr6JMmTI4qkzthrbTUDn/DE4ejPWqFc8KFSp4eU1ZfApQgAIUoAAFKEABCvifgDyQXL1GdYTeC7NFm60xswC88koh7Nq1i/Fm//vTYI0pQAEKxJuA9CZQvVp1FaszjjFGWEnflFG3auRhf7ljE4Vs2bLpbu2aN2/ObpTjTd/3VmR2bWn/O5K/KzXBFsm8Z19fv34db739Fo4eOWb//jtKH4AUKYKxbt06xpsdKH49xkQyv979rHxsBL7//nt9E+/GjRvOixtHSuR97jns3bcPOXLkcH6fUxSgAKRFlXfeeQebN2+23wN3ZcmTJw+2b98OeeVAAQpQgALeKxAeHo4JqsvFwUOG4M6dO+p3XyIJRkDBFq9yqlzt2rUxefJkSGIZB/cC//77r34K9PfffzcWsJ1/6gk1nj5tOuxSDzO89tpr7lfAuRSgAAUoQAEKUIACFKCAxwlIvPmtt96CtPDsbnhOxZv3Md7sjobzKEABClAgjgKVK1fWrVtKnE4lBTiF6JInT46OHTvq3gYyZMgQxzVzcX8TCFA9JMhgbc1O/q6iIqWXCg7eIhAt3uxS8LTp0mLP7j2MN7u4+OMkE8n8ca+zzrEW+OOPP1CiRAlcvHDB6eTKXMHjOXOqJiD3MwHGBOErBSwCN2/eRLVq1bB3714913Hv2+zWMgD/p1ogkxb/mERggeMoBShAAS8X+PPPP9GmTRv9+y5Vcff7LwlmMj99hvT4+ONP9PLS9SWH6AKnTp3Cm2++ifPnz+s3HZ7GsjmyZ8eBgwd5PhqdjnMoQAEKUIACFKAABSjgcQISb5bze7mJpwfbCb55np/z8Zyqi3vGmz1ux7FAFKAABbxU4MSJE3j55ZdUj0thTjWQBLNx48Yhf/78TvM5QYGYBAICJHZrbUHVWDKKXVvGROax8814878q3hx9jwISb95/4ACeffZZj60DC5bwAkwkS3hjbsFLBS5duqQv6n/77TdVA/NS3jGaIWMGnZFbqFAhL60hi02BhBO4fPkyKleugu+/+9btSYhsWVpP2bJlC7JkyZJwBeGaKUABClAgyQQWLVqE7t2744JKyLcOlrMq++zixYtj5syZKFiwoH0eRxwCP/74I0qVKgVpftwYnO82SYsFB9TFvXRFwIECFKAABShAAQpQgAIU8EwBiTfLQ8snT55UBXS9MgpQD9qkw96v9qob/i97ZgVYKgpQgAIU8EqBbt26YbzqRUCGfPmeVwlkY1G1alWvrAsLnXQCZteWZgnMMxkmkpki3vV69OhR1ULu2yrefM0ouLlDbdV47rm8OHjwALJmzepdFWNp402AiWTxRskV+ZKAdMdUpkwZHD582G21UqZMiS2bt6D0W6Xdvs+ZFPBngX/++Uf3n/3LL78oBucb3eZ5SMmSJbF+/XqwuWR//kth3SlAAX8QuHLlCnqoZLL58+cj0uXpNPOYIA4ynjw4GD179sSAAQMg51ocnAX27NmDKipJ+27IXfWGrXVPcxEF+EaRN7Br1y6kTp3anMtXClCAAhSgAAUoQAEKUMBDBKzxZuu1kFk8uQbavHmz7vLSnMdXClCAAhSgQHwIXLt2Da+/XgStW7dEp06dEaxicBwoEFcB3bWlU/NVxhkNE8niKuk5yxvx5soq3hxiKZR5phqAIkVex+7duxlvtuj40ygTyfxpb7OusRKIiIhA7dq1dZKLuw9It0vLli1D3bp13b3NeRTwadUBVAAAQABJREFUa4HTp0+jXLnyOHXqD3sOmStIJdVk8soVK3ji4QrDaQpQgAI+LCAJTm3atsXvJ3+TXi2dBpeUKPVkZD5Mnz5dJ/U7LcgJrFDHzwb1GyAiMsKm4biwl2y8alWrYc2a1QgKCqIWBShAAQpQgAIUoAAFKOAhAtZ4s+v1jxRRWvhYvnw5480esr9YDApQgAK+KCDHIsaLfHHPJl6ddNeWOhSpgrtmSFJtnolkibcPEmJLEm+uX7++2o+R9ri9ZfeiRo0aWLVqFX8/EgLfw9fJRDIP30EsXuILdOjQAVOnTtUHwYCoANUtn/PdzilTpqB9+/aJXzBukQIeLvDrr7/qlsjOnTtnK6nlVMM2KgmY0tUZn3jx8J3J4lGAAhRIAIEQ9WTT8OHDMWrUaESEh7mcYdk2qI4Xcv4lwYgPPvgAn376KTJnzpwApfHeVU6ePFk9Pdopxgq0a9fOOJeNcQm+QQEKUIACFKAABShAAQokpkD7du0xbfq06Ju0Xf9MmjwJEpPmQAEKUIACFKAABTxVwLlrS3USY4vuMpHMU/dY7MsluQ8dO3Y0EgTlY86pEWirHhCfNs3NuWzsN8ElvVCAiWReuNNY5IQTGDNmDHr17qVuYJq/kfpq3pxA7969MXLkyIQrANdMAS8V+P7771FZtTR2+fIle8a6rorjXBIffvghZs2axax1L93HLDYFKECB+BL4+eef0ap1K3x98GvHKp1OuRwTWbNmxYQJE9CoUSPHshxDv3798Mknn9glVAMGTsff0aNH625C7QtwhAIUoAAFKEABClCAAhRIEgEdb+7Vy3nbjkse9OnTx+nc3nlBTlGAAhSgAAUoQAHPEAgMVI2vWBOM1PmMJBwxkcwz9s+jlqJv3773zYEYM2Y0evTo+aib4ee9SICJZF60s1jUhBX48ssv0aBBA0RGRqoN2Y5+lk02adIE8+fP102NW2ZzlAJ+L7Bv3z5Ur14d16/fUBZyFinRMBmNUt8XeQlA586dMH78eH5//P6vhQAUoAAFDAFpTn/GjJkqIaovbtyQ44cM0c+/5ECiLlhQsWJF9QT/dDzzzDPGon7+rwRo3nv/PSxcsNDipvw0YZRK2g7EkiVLUa9ePT+XYvUpQAEKUIACFKAABSiQdAJffqm6pm9Q3xZvdi1HAJo0acx4sysLpylAAQpQwC4g8R/nVqDsb3GEAokuYPwtOuKP5v0/6RKRg/cL6HjzeyrevFDizbYws441G1OSSLh0KePNGsdP/mEimZ/saFbz/gJff/01ypYti7t379oXNH4b5YAYhTJvl8HmzZvZHZ9dhyMUMAS2bNmKunXfwZ3bt+0tndrPK2xIAwcOxNChQ0lGAQpQgAIUiCYg3SFLs9mrV6/W71nPv4wDi+OokiZ1agz56COVnNwZyZMnj7Yuf5sRFhaGypUqYeeuXRY7h0KqVKmwY8cOFC9e3DGTYxSgAAUoQAEKUIACFKBAogjoeHOZMrgbEuJ4ZMZxeaNj0Zs2bWK8OVH2BjdCAQpQwPsE1q9fj/79+mP1mtV49tlnva8CLLHPCUgimeVUxl4/tkhmp/D6kdDQUFSpUgU7d+5U+1q1QKf+s+7z1Co+v337dsabvX5Px64CTCSLnROX8mGBU6dOoVixYrh08aItEUb9JErfljKol4IFC2L//v3IkCGDMY//UoACWmDFihVo3Lgx5MTCdZATC2lFRprv7969u+vbnKYABShAAQo4CUgimSSUnfvnnNG4pbxrOyWztXVpnKepea8UekV3lVy4cGGndfjjxPXr1/Hmm29CuguVQY6/trNYPZ01WzYcUg9M5MmTR0/zHwpQgAIUoAAFKEABClAg4QUk3ly0aFFcunTZiDOr1vrlTN08X2e8OeH3AbdAAQpQwFsFTpw4gW7duunGLaQONWrWwNo1a721Oiy3DwmYreOZ5zNm1ZhIZkr4xqv0HlKiRAl7vNm1VtmyZsXXhw4x3uwK44PTTCTzwZ3KKsVe4Nq1azpr9vjx404fMprjBB5//HEcPnwYuXPndnqfExTwd4G5c+eiZctWiIgINyjUmaPkX+qQmBoJCgrC9GnT1TIt/Z2K9acABShAgVgK3Lx5E3379sV01YVlZKSkQ6n/XSMTel0BuutGSTwbNmwY0qZNG8st+OZif//9t7pJVQz/nFdJeDJYMsmEL3+BAjh48CAyZsyo3+Y/FKAABShAAQpQgAIUoEDCCbjGm10vaSTefEjdfHviiScSrhBcMwUoQAEKeJ2AHD+kZ5cpU6ZAWqG3BsW2bt2KChUqeF2dWGDfEggICDRuBEq1LPFHJpL51n6W2hjx5qL4559/9E+R9f6vvF8gP+PN4uDrAxPJfH0Ps34xCsiJWJXKlbFjp3QH5LhRaV7cy03Jffv2oVChQjGug29QwB8FJk2ahC5dukL6PTe/L+Jgjkt3YwsWLED9+vX9kYd1pgAFKECBRxSQmyqSiPzzL6qVLUtQwrpa85jz1FNPYerUqahatar1bb8bP3LkCEqVKoXbt24ZZCaQTaJ8+fLYuHEjuwT1u78MVpgCFKAABShAAQpQIDEFpNV+uTbZsXOHy7WMcYKeLl067NmzB6+++mpiFovbogAFKEABDxYIDw/HF198gX79+qmWLC85ldQM7xRQDwkeO3aMcR0nHU4ktkC0Fslsf6BMJEvsPZE425N4c8mSKt58+5b9/q9s2fxdKleuHKSbdrknzME3BZhI5pv7lbWKhUCbNm0wc+ZMtaT5k2eOGq1crF271u9vSsaCkYv4mcBw1fLLwMGDVDDM9r3RL47vUKpUqbB8+XJUq1bNz2RYXQpQgAIUiE8BSfiX7pHluHM35J5atZn07/74I8nLEyZMQI4cOeKzGF61LkkUq1mrFiJUANJxfmt4yb+t1bmvtPbGgQIUoAAFKEABClCAAhRIGAEz3uyIlJnbYbzZlOArBShAAQo4BKQxi86dO0MSNuyxHH0QsR1JLOMS95JlOVAgqQQCAwNUAxOydfNMx3hlIllS7ZGE3+7GjZtQU3WvGxERAbM3N+v+b9OmNePNCb8bkmwLTCRLMnpuOCkFJk6aiC6du8RYhMmTJ6NDhw4xvs83KOBvAnIi2LNnT4wdO9ap6ubpopxBpFOt+K1btw5vvfWW0zKcoAAFKEABCjyswMnfT6JNqzbYtVtakHUM1uOP2WpZpkwZMXr0aDRv3lwdlmQJ/xsmT5mMTh07ua+4Ipkwbjw6d4n5HNj9BzmXAhSgAAUoQAEKUIACFHiQgLTg73SD337RYnyS8eYHCfJ9ClCAAv4jIN3Gyf0WeSjfkYTjcuBQHOacPM8+i4kqkYwP8PvP34gn1lR3bWl/2NdRQsffsGMex3xHYIrqDaRjh462CpkPezvqxyRXh4WvjTGRzNf2KOvzQIEtqi/xqlWrIDJC0qbNHzzb6Zh6kR9DufDnQAEKGAKSad62bVvMnj3bhcT43si/mTJnxpYtW/D666+7LMNJClCAAhSgwKMJSDBCmviXANuVK1fUyhzHHzmbM6ZkG8ZY6dKlMWPGDOTPn19m+t0gN69iOpdNliwZNmzYgIoVK/qdCytMAQpQgAIUoAAFKECBhBKQmFh11Tp/uIqhOQ/GNUrHjow3O7twigIUoIB/Cty9e1c/BCkPQt65c0chOMe4nFUCkDZtGvTt2wfdunVHypQpnd/mFAUSWcB4cNcRiTU3z0QyU8J3Xx3x5uj7P1lQMqzfsB6VKlXyXQA/rRkTyfx0x/trtY8fP45ixYrh+vXrlpuO5qkaULlyFaxfvw5BQUH+SsR6U8BJIFx1j9W0aVMsXbrUNt/lJEG1+PJ4zpzYqhI0CxYs6PRZTlCAAhSgAAXiU+DChQvo3qM7Fi1cpE7e1PHIaEvd7SZSpEiJfv36ok+fPggODna7jK/OlGN3zZq1sGnTJlVFSbVzcMlRPH2GDPj6669RoEAB/R7/oQAFKEABClCAAhSgAAUeXuDXX39F8eIldLzZ3fl35SpVdAv+jDc/vDE/SQEKUMAXBJYtW6bjVH+e+dM8XLiplnH/JUB1Idi4UWOMHDUKuR5/3M1ynEWBxBdw3wOEdHcZmfiF4RYTVUAaHKlevTo2b97ssl3jNytDehVvPsR4swuO108ykczrdyErEFuB//77TyeR/fbbSfUR5/YrZB2SBHPgwAGkT58+tqvkchTwaYGQkBDUq1cPGzZu0F8Z43TAkXgplX/66aexbds25M2b16ctWDkKUIACFPAcATnutGnTBqdPn7YflMxjlFMp1cwX8hfALNWiZokSJZze8vUJeWjizTffxC8//2ymkqkqO85/8+XLp5PJMqsWRTlQgAIUoAAFKEABClCAAg8nIPHmosWK4qTEm9X1R4A65ZazbvNCpeCLL2L/vn3IoB7m4EABClCAAv4pcPToUXTp0gVfffWVHUDHseQfc1AHDz1PTRd5vQgmTJyg72eab/OVAp4gEKge7DXOcyylUX+4UZHR5loW4KivCNy4cUPH2H9W8Wb7oPa/ef6bV8WbDx86hEyZMtnf5oh3CzCRzLv3H0sfSwHJlJWnv7arG4/6ZEz+UUNAlBz0opA9e3YcUj9ukhTDgQIUAG7evIlatWph165d9gsYq4t8hfKpLsN27tiBXLlyWd/iOAUoQAEKUCDBBaQrgMGDB2P8+PGQFriMQR2d9JWrHKWiHOd8KpbRulUr/RRnxowZE7xsnrKBM2fOoMgbb+CiaslNi8g/ajDPf8uXL69bLZPuLjlQgAIUoAAFKEABClCAAnETkOuQylUqY8f2neqDztcfcuqdNXs2dTPtMOPNcWPl0hSgAAV8RuDSpUsYNHAgPpszR3V9HG5PtpAKGpEro6rmeI4cOfDxxx/j/fffR2BgoM84sCK+I2Dv2tIl/hp5n14jfKf2rIkI/PnnnyreXASXLl5WU9HPf8uWL4fNmzaD8Wbf+HthIplv7EfW4gECXbt2xYQJE9wulSJFCuxQyTDSagMHClAAkKcpK1eujG+++cbGEWC7sJGnCozLmldeeUV3Z5k1a1aSUYACFKAABZJM4MiRI2jdujW+/fZbexnUw3G2Xi/NUJzxVk7VFfPEiRN1a5v2hX18RFrbLVu2LO7du+e2pvJErCTjcaAABShAAQpQgAIUoAAF4ibQtWs3FW8eD3fXHxJv3rlzp9+1jBw3QS5NAQpQwDcFwsLCMG3aNHz00Ue4evXqAyuZPHkwunXrin79+rHHpAdqcYGkFGjTprXavCQ5qgQidQIUqVoik/OgGTNmJGWxuO1EFpB4c7ly5SC9Wpn3jK1FYLzZquHd40wk8+79x9LHQmDevHn44IMP9JLOtxOND8+dO9f+fixWx0Uo4NMC//77LypUqICff5KusNw1Rxugki6LY8OGjWyW36f/Elg5ClCAAt4jIC3PTp48GQPVU563bt2KVnDX87/q1atj6tSpeOKJJ6It64sz5Fz3ww8/dK6aiaJe5839Au+pp105UIACFKAABShAAQpQgAKxE7DGm10/Iafacz7/HM2aNXN9i9MUoAAFKODjAttUr0iSRHH8+HGjppb4i9H9mzFDHt2X+y8Soxo7dizy5s3r4zKsHgUo4EsCrufC5k+dWccvvvhCt65oTvPVOwWYSOad+42ljqWAtKhUqlQp3AtVrTDonBjbT5ntpVu3bvokLZar42IU8GkB6QJLssh///0PVU/1hVHfE7P7K/PCRpLMVq1ahTRp0vi0BStHAQpQgALeJ3DmrzNo3649Nm7caBTefgXrfP4nb6ZLlw7Dhg1Dhw4dEBQU5H2VjWOJu3fvjnHjx9nOh40PaxX1T6qUqbBnzx4UKVIkjmvl4hSgAAUoQAEKUIACFPA/AYk3v/XWW7gbctceN9MKtsuObt26q3jzp/4HwxpTgAIUoIBuBX/FyhVu4y/GPUpBCkCBAvl1L0pyv4UDBShAAW8UkByL8ap1Xnf5FylTpsRXX33FeLM37lhLmZlIZsHgqG8JXLhwAYULF8bZs2fVaZmR3W+tYaVKlVSrShv84uahtd4cp4A7gRMnTuiWyP7++2/JH3Nc01imateujSVLlkCa5+dAAQpQgAIU8FSB5cuX66c//z3/rzqeObeuaRzjHEc6SZ6aNWsWXn75ZU+tTryUKzw8HNWqVcO2rVuViKP+euVqMneu3Pjuu++QPXv2eNkeV0IBClCAAhSgAAUoQAFfFHDEm8+p6hkPYZqXHBJ/rlCxgo43J0uWzBerzzpRgAIUoMADBE6fPo3/+7//Q8jdu27jLxkzZMTgwYPRvn17JE+e/AFr49sUoAAFPFcgMjISVapUwVYVb7YOZvz9idy58c233yBHjhzWtznuRQJMJPOincWixl5A+iCXlpX27t2rPqR+sow2Y+0rkGZiDx06hMyZM9vncYQC/ipw5MgRSGLlxYsXDQKX+8sy87333sOcOXPAQJi//pWw3hSgAAW8S+Dq1avo3ac3Ppv9GaKinJPJdE3MY516TRaUDPIE1ZAhQ5AqVSrvqmgcSismkjj3+++/69NjfcPLdFDrKV26NLZv385AZhxMuSgFKEABClCAAhSggP8IyMMZZctKvPkrXWnLqbSaDkDefM/h8KHDyJQpk/+gsKYUoAAFKBBNYNCgQboVfP2G7WARGBSIFs1bYPjw4ciaNWu0z3AGBShAAW8UkHjzG2+8gZMnT0Yvvvr9K1WylI43BwcHR3+fczxegIlkHr+LWMCHEejcpTMmTZxk/6h5YS+v6dKnx9dff40XXnjB/j5HKOCvAgcPHkS1qlVx9dp1ReDaRonRll971e3XxIkTERgY6K9MrDcFKEABCnipgDxU0KZ1axxXLW+a54NmVYxpx7/P5MmDGTNmoHz58uYiPvd6/PhxFC1aFDdu3LB5OOov6XadOnXSx3yfqzgrRAEKUIACFKAABShAgUcU6NK5CyZOmuhYi+UCI32GDPhaxdgYb3bwcIwCFKCAvwrcvn1bHw/++usvTVC6VClMUPdXChUq5K8krDcFKODDAr/++iuKFyuG6/Z4s6OycrrcqXNn3ZWvYy7HvEWAiWTesqdYzlgLLFq0CE2aNHFa3ryuDwwKwsoVK1CrVi2n9zlBAX8UkFZHpLvK23duW/uydKLo168fRowY4TSPExSgAAUoQAFvEggNDdXHstGjR+NeSIgqunR5Li/qXzeNlTVt2hRjx4712SdE165dq4//uttPN/VfuHAhGjdu7E27mGWlAAUoQAEKUIACFKBAggrY481mkNmytYCAAKxevRo1a9a0zOUoBShAAQr4s8CSJUvQt09fjBo9Cu+++y7kWMGBAhSggK8KrFu3DrVr1UZkVKR+eNk1/s54s3fueSaSeed+Y6ljEPjxxx9RTGW93rlzRy+hz80s9wilSdmPPvoohk9zNgX8R2DV6lVo1KgR7t27Z7uPbkTC9OWM7Z+RI0eiV69e/oPCmlKAAhSggE8LSGtcrVq3wv79+3U9jTwy5+Of2QumdDMwZswY3bWzLwb7Bg8ejGFDh9rbIjWP/1L/1KlT6y7gX3zxRZ/+e2DlKEABClCAAhSgAAUoEBuBn376CUWLFcWd23fV4saTGMZVhPHpQYNVvHnIR7FZFZehAAUoQAE/EYhSAZYQ9TBjqlSp/KTGrCYFKODvAkOGDDFyMHSg2dAw4++pU6fSvcW99NJL/s7kVfVnIplX7S4W9n4C169fR+HChfH7H79bGphwXNZXq1YN0gIDu+e7nyLf8weB+fPno0Xz5ggLD9fV1d8SS9ZlkGq5b8qUKWjTpo0/cLCOFKAABSjgRwISyJs9ezb69OmDa1evIspy/JMnpcwbQ0Iib5UpU1Z3d/ncc8/5lFJkZKRuMWHDxo1GnfX9MEf9pb7ffvctMmbI6FP1ZmUoQAEKUIACFKAABSgQFwF7vPn3350/pk6d5cZYVcabnV04RQEKUIACFKAABSjglwL2ePOGDfb662izLf7+3LPP4fvvv0f69Ont73PEswWYSObZ+4eli6WA3BSso7roW7NurfX+n/3T+fLlw+HDh5ExI2+G2VE44pcCU6ZOQedOnRGlbiBHOe4X2y2CgpJh3rwv2KWVXYQjFKAABSjgiwLnz59H586d8eWXXzpVT65rpVUu65BKPTE1cMBA9OjRA8mTJ7e+5dXj165dQ5EiRXDy5El7Paz1l67gV61axe4X7DocoQAFKEABClCAAhTwJwGJN9dW8WZ5MFkGCaPJYMbT8uXNi8PffMN4s8HCfylAAQpQgAIUoAAF/FxA4s1vvPEGfjv5m9t8DcabvesPhIlk3rW/WNoYBKTroZi64EubNi0OHjwIds8TAx5n+43AJ598gn79+hn1tSWR6RfbPylTpcCypctQo0YNvzFhRSlAAQpQwL8FNqgnpNp3aI+/z/ylO6mxJlKJjO1wqUdeevEl3ZqZJF/5yiDd9BQrrrqFv3Xbbf1Hjx6Nnj17+kp1WQ8KUIACFKAABShAAQrEWkDizb1797I9aGK/MtCfZ3fwsWbkghSgAAUoQAEKUIACfiSg483FVLz5too3O25C2+PsjDd7zx8DE8m8Z1+xpDEI7N27F2XLlkV4eIT6EYrSN8Hsv0bqM4sXL0bDhg1j+DRnU8D3BeQJyr59+2LUqFHqq2H/lhgVt8XBJOFyzZo1+rvk+yKsIQUoQAEKUMAhcOvWLdXi2ABMVt06R0REON5QY67HzcCgQLRr2w4jRozwmWa45Vy5SePGxjm0U+2BZMmSYefOnShVqpTLO5ykAAUoQAEKUIACFKCA7wo44s3hupL6gRMZU3fDJLK2cNEiNGrUyHcBWDMKUIACfiYg8aAZM2Zgz56vVOv1y/2s9qwuBShAgfgVWLJkCRo1VufKtp4/5AxaJmRS4s27du1CyZIl43ejXFu8CzCRLN5JucLEFLh48SJeffVVnDt3ztis+h0KUL9CUbYfpA4dOmDy5MmJWSRuiwIeJSAXQPI9mDFjpiqX+nLIsVoGW+BLssEzZ8qMjRs3omjRosZ7/JcCFKAABSjghwLffvstWrVqhWNHj+qLWiEwLnEdI8Z0AHLnzoUpKvGsZs2aPiHVoWMHTJ0yVVfYOJc2qiX1zZU7N77//ntky5bNJ+rKSlCAAhSgAAUoQAEKUOB+ApcuXVLx5ldw9uw52/WA/apAf6xjx46YNGnS/VbB9yhAAQpQwIsEdu/eja5du+LYsWM6LrJyxUrUqVPHi2rAolKAAhTwPIGOKt48Zco0VTB7Npkxqk6tcz2eCz/88APjzZ6325xKxEQyJw5OeJNAZGQkKleujG3bt9l/g6zll6SYr776CsHBwdbZHKeA3wiEh4ejWbNm6inJhbbviHPgSyCyZ8+Obdu24aWXXvIbF1aUAhSgAAUoEJOAHDvHjx+PIYOH4M7dO5bFbMdQ81Bqe5XAotxEypUrl2VZ7xsNCwtTrY6VxqHDX6tzBuszYkZdKlSoiM2bNyEwMND7KscSU4ACFKAABShAAQpQIJYC9njztu3qE7YHMuXel+38n/HmWEJyMQpQgAJeIHDmzBl079YdK1ettJQ2AHnyPINffvkFKVOmtMznKAUoQAEKxEUgNDQUpUurePOhQ/pjxum0+lc/xRyACuXLY5OKNwcFBcVltVw2EQWYSJaI2NxU/AoMHz4cAwcONFZq/u7IlBrPkiUrflAtJzzxxBPxu1GujQJeIhASEoIGDRpg7dq16juhvhSqe0sz6GVW4cknn8SOHTuQN29ecxZfKUABClCAAhRQAqdOnUK7du2wdetWZw91SDUfopLjqlz3ps+QAZ988glat27t1YlWf/31F1577TVcvnzZuc62KTn37t+/v9v3OJMCFKAABShAAQpQgAK+ICBd2A9Q3d7bB8v5f5YsWXTLCYw323U4QgEKUMArBW7duoVRo0Zh7NixuHv3rts6DBs2zPl44HYpzqQABShAgfsJ/P3337pnuctXrqg4utG1pXV5Offu16+fdRbHPUiAiWQetDNYlNgL7N27F2XLlkWEajVCHgozB7m2D1SZqxs2bEClSpXM2XylgF8JyIVQrVq1sHPnTqd6O2JfAXg+X17Vmt92SDIZBwpQgAIUoAAF3AssWrgQXbt3w6WLl+wLOI6nxixjOgDFixfDrFmz8H//93/2Zb1tZMuWLaharSoiIyJd88/102HS3UPJkiW9rVosLwUoQAEKUIACFKAABR4oIPHmcireHKbizdZBzvcDVMu8GzduZLzZCsNxClCAAl4mEKWSGJYsWYLevXur7ovP2h+8d43zSLXSpk2LEydOeH0L9F62i1hcClDABwV0vLmqijernubsg+2HV1oj271rF0qWKmV/iyOeI8BEMs/ZFyxJLAWuqKzVQoUKGSd6+jO2Xxvbi7SUIC0mcKCAPwpcvXoVVapUcWkq1Fni5Zdfhhy4c+TI4fwGpyhAAQpQgAIUiCYg5549evTAvHnzVAOf5iMMzuef5oekS/VevXrpJ6lSpUplzvaqV2nx1ziXttVRSm8bzf1EbtXq7w/ImjWrV9WJhaUABShAAQpQgAIUoMD9BC5duqRaS3hNxZv/NhaznArLjP79B6hz5GH3WwXfowAFKEABDxb4XvVg1LlzZxw4cECV0uVH3jpte6uYelhwzmdzUKBAAQ+uFYtGAQpQwDsEpMVfaX3M3e9v7ty5cOTIEdXbXBbvqIwflZKJZH60s32hqnLzrmbNmli/fr2qjnmyF6DGjOYQpa/dXSpzNVA9JcaBAv4mcOHCBf1k5NGjRy1Vt31PzAugYsX0E5SZMmWyLMNRClCAAhSgAAUeJCAtfbZt0xYn/5+98wCQolj6+H8vE44kSRAFSQpIEAHBgJJBUHk+AxJERYIJRBRQMIAZeKCigoIBDPh8KiJIRhCVZCApIsEPyfnIXP6qemZ2Z/cOvDsu7N79W9np6dy/3b2trq6p3rxJivrkT1PPEUvtRqrXqIF3xDuZyqahFpKTk9GqVSssXrw4naF70FE8ls2YMUNOztZJM5AACZAACZAACZAACZBAaBNQfbN69lcZN23wiEx/rfH6rx4TGEiABEiABEKLgO6ZqPOJd997F6kpqd5dxTPNomLFinjppZfQtWtX6j3OBInpJEACJJBJAqpv1pPmlixZkm7NG8Rjmdp+UN+cLp48S6QhWZ6hZ8dZIfDqq6/ikUcGiDcIq7Z7z65s2XJisfoLKlSokJWmWYcEQpqAnjOtm75//imb2+aLIV8S9xdEZqc/0tOnTzdumUN6shw8CZAACZAACeQRgVOnTuG5kSMxavRoJCYmyiicH1u5Bvz+6sL3nnvuwSuvvIJSpUrl0Yiz1u3OnTvRoEEDqGcGDWoz5pa/x44bZ57kzVrrrEUCJEACJEACJEACJEACwUPgtddeSyPbOvKveuLVBzapbw6e94sjIQESIIGMEEhISMD48eMxYsQIHDlyxFQJeCTQr5mYmBgMHDgQQ4cO5f6JHxnekICPwMSJE82N6gjdz5f26dPHV4gxEjgDgV27dsmJc6pv3pduiXHUN6fLJS8TaUiWl/TZd6YIrFmzBk2aNEF8fLy1Uae1HYMy+cWaNWsW2rdvn6k2WZgE8gOBP//80xiRqTGZf3A2t2E8+U2bNg26IGIgARIgARIgARI4NwLr1q1D7969vUdJ+7fm+/1V47Jy8rDD2LFj0aVLF/9iQX6nx2B37NgR+sSYCTotDSJ/x0RHY9ny5ea4eSuRryRAAiRAAiRAAiRAAiQQegTUSKzplU1xOv50msF7wjz4ZtY3xvt/mkwmkAAJkAAJBC0B3St8VIzCNspD985pRmkGKzoOT6qV27lzZ4wZMwZVqlRJU4wJJEACPgL+3qJUUWht0qt3VwYSyAgB1TffIKddpCbrSXP+nxvdv162bBn1zRkBmUtlaEiWS6DZzbkROHnyJBo2bIg//vgj3YYef/xxvPzyy+nmMZEE8jOBNWvWom3bNlAXzRqcJya9cxZZruudXfH+++8jIiLCm8wICZAACZAACZDAuRFISUnBm2++iWHDhuHo0SNej12mVZ8uxXJUJolt27bFhAkTULly5XPrOKD2Rx99ZAy+ihcvHpBz7rcqY48aNSrdhi699FL89NNPKFy4cLr5TCQBEiABEiABEiABEiCBYCag3oZV37xhg+ibPbKR5b+XBeqbg/nd49hIgARIIC0BfeB+wIABmD17dtpMJ0X0Nc6f/Dp16kBPQWrRooWTyysJkMBZCISJkb2fzZit/6Qh2VmgMSsNgcGDB8sJHqJvdv4Yu0qovvnnn39GoUKFXKmM5hUBGpLlFXn2mykC/fr2w4S3J8rfFGtFLw8KeBf36qVs6dKliIyMzFSbLEwCoU5guXgC6dChAw7HHba/D84XQ1dDMjv5vvTr18+4cA4LCwv16XL8JEACJEACJBCUBHbs2IEHH3wQX301w/v7axl227/L5mLFixQpimeffQYPP/xwtsiuf//9N2rXriNHaN5tlJ/ZDUiP77z22muwYvkKuOVvZ0p9evcxxnHZ3S/bIwESIAESIAESIAESIIGcJtCnb1+8bR/R5O1LBHnVPzdpciW+W/pdtsjs3rYZIQESIAESyBECenSlHmH5+vjXkZiQJH3oPqKtk0mnx1KlSolu5lnocXzcV0wHEJNI4AwELI9k8t0yX69U27GFGpelnKEGk0kgLQHVN199zdVYuWKllWnL33qj+mfqm9Myy6sUGpLlFXn2m2EC07+ajs43d5byaQW/2NhYqAvyiy++OMPtsSAJ5AcCCxcuNMdVnjxx0rj/dH87nPjgwUPw4osviDCnKQwkQAIkQAIkQAI5SeDLL7/EAw88gN27d6fpxvltdjIub9AAb7/zjvGA4KRl5dpJjp6cKUc2hEeE4+effka9evWy0sxZ62zdutW4FD927Ji3nGyveeWPL6dPNzKJN5MREiABEiABEiABEiABEghyAl999RVuvvlmW9ss0rrXI4IHxYrH4tdffqW+OcjfQw6PBEiABNRT/Lvvvosnn3wS+/btM0AC9S/ee4lEhEegd+/eGDlyJNSYjIEESCBzBHSv0fudclWlRzIXDEYzRGDr1r9Qv0E9HDuq+ua0nyrVs6uszpC3BGhIlrf82fs/ENizZw/q1q2L/Qf2e9fz3j8nEvlw6ofo2rXrP7TCbBLIXwRmzJiBO7rcgVMnT51xYi++8AKGDB16xnxmkAAJkAAJkAAJZD8BfQp2qPz+ThTPBqrQ9D9zWqVYCWaTyiNHTocbz2T61GyRIkWsvEy8/u9//8Ott97qrdGsWTN8//33OWJA/vHHH1syt1cQ93aLMmXKYO3atShfvrwvkTESIAESIAESIAESIAESCFICbn2zGaJzpKXIuiqqfyhHx995551BOnoOiwRIgARIwCGwd+9e1KhRA0ePHj2r/kU9lLWU4yvHjhuHyy67zKnOKwmQQCYJOE4rAtWDNCTLJEgWNwSMvrlb13TtP8qUpr45GD4mNCQLhneBY0iXgP7w3HDDDXKe+RzJl1V8wC9Tt27dMHXq1HTrMpEE8iuBj0SZ1bNnTyQlqYtm15fCVnZ5wsLx2muvGo8o+ZUB50UCJEACJEACwU7gxx9/NE+5/v7bbyrF+gXXr7dJr1y5Mt588020b9/er9zZbuLi4nDppZdiz9499mLbEgT0Sdy7e959tqpZzuvRo4cte7tmYHWLdu07YNasmTlixJblAbMiCZAACZAACZAACZAACQQQ8OmbZ/s/82Hr2Lp3744pU6YE1OItCZAACZBAsBJ45ZVXMHjwYPdOiXeoqr2oXKUKRo0ahVtuucWbzggJkEDWCHg8YZbVvVZ3KTxpSJY1nqwFGH3zh2Lr4fo8WVw8oitvJ/rmWdQ35+EHhYZkeQifXZ+dwFtvvYX777/fKuTar9IEPcry119/RbFixc7eCHNJIB8RmDBhgjEQMx5O7Hm5vxqRERGYLBvIqvRiIAESIAESIAESyFsCCQkJePnll/GCeAk9HX86YEFs/4K7LrffcQfGydOx5cqV+8eB9+3TBxPfftuUc8sCZcuWxR9//IGSJUv+YxuZLaBP+DaQIzn1qEt3n05cjeH69euX2WZZngRIgARIgARIgARIgARyjYDq1lRmdWRYd8dVLq6CNavXIDY21p3MOAmQAAmQQBATiI+Px2V16mDT5s3WKO0/8Or5feiQIXh00CDExMQE8Qw4NBIIHQJpPJLZ3zcakoXOexhsI9XTPS6//HKjbw4cm368xr/xhs9WJLAA73OcAA3JchwxO8gKgU2bNpmNqpMnTyA11b20l2OAwsOweMkSXHXVVVlpmnVIICQJjNIna4YMle+DHpMlU3C+F3Y8OjoKn3zyCTp37hyS8+OgSYAESIAESCC/Evjzzz/RRwy/Fi9e7JqiS761f8v1UqJkCfOk7D333HPGp62WLl2K665rLkdnanPW41oeqSzOfCV40LdvX7z11pt6k+1BPa01b94cScniGdWRRaQX7b9w4SL4dfVqVK9WLdv7ZYMkQAIkQAIkQAIkQAIkcK4EHH3zCdE3qyxrxHCRp1WWDQ+PxJIli6HHxTOQAAmQAAmEFoGZM2eiU6cbZdCpCJM/6nd27SoP9b2ISpUuCK2JcLQkEOQEwsI8Xv2jft/szUpJS+NOKshnwuEFEwFL33ydnMSVmGb/u0jhouJY6BdUr149mIZcYMZCQ7IC81aHzkSTk5Nx9dVXY/ny5ekM2oOnnhqOZ599Np08JpFA/iTw5JNPGm8mjlDmnqUqvQrL0zVfTp+O1q1aubMYJwESIAESIAESCBICqlB5//33MejRQTh0+NA/jkqNtSZOnIiaNWv6lVUvZ/Xq1cNG8Tpm2Y2JJODV1UhEN8HkmGuVo6+44gq/utl189RTT+G5kSPT7f/KK6/E999/Lxtx4dnVHdshARIgARIgARIgARIggXMmcHZ9MzB8+HCMGDHinPthAyRAAiRAAnlDoF27djh48CBeffVVGgXnzVvAXgsAAXO0pWoEdWPSq4+UKA3JCsC7n7NTVH3zSNE3u4PzMbuyaVN8Lw9WU9/sppM7cRqS5Q5n9pIJAi+++CKeeOIJ1++Q9adCXxvKhphapkZGRmaiRRYlgdAkoEdY9u/fH+PHj3d9H9xz8aBEiRKYNfNrNKOHPjcYxkmABEiABEggKAns378fAwYMwMeffCxaFns57KyKZcS+qAdR4m10mBiTP/7444iOjjbz0YcpnnnmWYmL5wTz6l/H0eI0btwYy5YtQ1hYmKmXnS9qzKYPffy0apXRGTnjcEaisvwQOT6CgQRIgARIgARIgARIgASChYClb35ShuO/+amybCORnfVhCOqbg+Xd4jhIgARIIPMEDh06ZPZKckIPkvnRsAYJ5E8C1tGWPk2gM0sakjkkeM0qAUffvEr0zVawPmfOp4365qySPbd6NCQ7N36snc0E1qxZgyaNmyA+Md7ZB/P2oGea//zzz2k8M3gLMEIC+YhAYmIievXqhSlTpgTMyvnZBMqWLYu58+ahvngmYSABEiABEiABEggdAnPmzMH9/frhr//7P3vQ8vvukU0t19N8zmxq1aqFt99+G6VKlUKDyxsg/rTIyb6zLJ1iaa7q0ax3795p0rMjYaMc19nw8stx4oQcCxQQoqIisWrVz6hb97KAHN6SAAmQAAmQAAmQAAmQQO4TWLt2LRo1aoREeSDCJ25b8nfhQoXxyy+/UN+c+28LeyQBEiABEiABEggxApYhWeCg9bjLlMBE3pNApgls3LgRDRo0wKlTp6y6Lv13VFQUVq5caU7qyHTDrJBlAjQkyzI6VsxuAmo406RJEznr9lfTtDGX0Rc7vDruVTz88MPOLa8kkG8JxMfHo0uXLnJc5Ze+OboemNSvxQWVKmH+/PlUdPkIMUYCJEACJEACIUVAjbCefvppc+xCUlKSGXug/Ot2mGDyAmdoJ6aXd95550EX4HrNifDaa6+h/4D+gU4dTFf169c3i/uMenU4HZ+EDVv2YO/+ozgQdwIHDh+Xf3I9dByH5H6/xHWOpUoUQZnziuK84oVRuqRcSxVFGbmWKx2LS6qWQ6Foei3OifeabZIACZAACZAACZBAqBJQfbN66129enW6U1CZ9qGHHko3j4kkQAIkQAIkQAIkQAI+AmFi2OMzyrfTRWGXmpIm1VeJMRLIBIHXX389rS2Irfi+XIzMlq9YQS/CmeB5rkVpSHauBFk/2wiMGDECz8hmmvNz494Qa9WqJebNmy/OFzSVgQTyLwHdVO78r39hgXgaS++7oDOvVr0aFsxfgIsuuij/guDMSIAESIAESKCAENCHKO677z7jedct/7rjDgonzbk66dZVUo1XMytXX3uJR7K3xTNZTgR1W9+6dWssXLjQbt6/f5Xthw8fnm7XUhUbt+7FstV/YeWabVi7YQeSROlkRq4CkMzDI/85zzNaaipNSZX/rGuKuVpO3LReRHg46tQsj6YNLkaTuheJYVl547gt3QEwkQRIgARIgARIgARIoEAQsPTNzxgp0kzYEVnlpkXLlqJfo765QHwQOEkSIAESIAESIIFzJuA92jJA/5iiij4GEsgGAqpvbiP65gWibzZ64oA2n332WTz11FMBqbzNKQI0JMspsmw3UwT0qTD1RqZn4AaGYsWKYe3adWI0c2FgFu9JIF8RiIuLQ8eOHfHDDz8EzEs3THWjNBWXXXaZGFXOQ/ny5QPK8JYESIAESIAESCBUCSQnJxvPZLoQ9h0X6fv9F8sqmZqxsLKvOlMnTeO+4PP67UFYmAc//vijkbN9JbIv9vfff8sRlnVx5MgRb6NO/1FR0eKVbIWfy/Fd+47g64XrMPPb9dh78LiZgU4rVSqdTiyN+KSSYlBWBEnJheWfXFOLIDG5kLmqVVlE+ElEhp9ARJj+OyX3x+XfKcSEH0JM5EFpSMzLwgB9ELLcebG44brauLHlZahQrrh3fIyQAAmQAAmQAAmQAAkUDAJr1qwx3sjOpG9et24dLryQ+uaC8WngLEmABIKNwLFjx/D8888bncKdd94ZbMPjeEiABNIh4Hb24uj/VD/Joy3TgcWkLBNQfbPuhR89elTa8Nd/p6dvznJHrPiPBGhI9o+IWCCnCehRPmpE9suvv1hOFOw/Co7PgUmTJuHee+/N6WGwfRLIUwL79u1D+3bt5HugrvYdXxv+Vvzqin/27NkoVapUno6VnZMACZAACZAACeQMgW3btuH+++/HN998E9CBIxnbyf5r6ICy/rcNGzbECnH7HS4eu3IiTJ48Gb169Uq36QaXN8CK5SuwY+9RvPf5CsxfugHJ8mSZKpsSkoriRMJFOH66Eo4nVBLjr0hZBVg+xxyTOZ/xnJNjdyP19WFHfQBSlw6Kw+NJQNHoHSgatV2ufyMyTJQN0pHY0qHNNbXQ819NUKVSzhzzme7kmUgCJEACJEACJEACJJBnBPRIS9U3q/dfE1RgdGRHub5DfXOevTfsmARIoGATUG8zU6dOxRNDn8DOXTtxfoXzsfGPjYiNjS3YYDh7EggBAm5DMvdw9XvNQALZSUBtQ+7rfZ8lvwc03ECOuFy5ciUiIiICcnib3QRoSJbdRNlepgmMHDkST4v3hVRnQW9asG46dOiAWbNmZbpNViCBUCKwY8cOczTUH3/8YQ/b/jLIxSNfDPVE1uL6Fpj+1XQuqELpjeVYSYAESIAESCCLBKZNm4ZHBgzA3r37jBzgbcZPXvamWhGX3GASvGU9eOON8cZALaBGtt3ecMMN+Gb2N165xek/uvB5uKHLY9h1OEIciqlSKQJxJ6vi8MlaOJV4viX/i6cxYwlmXuRGjL8c+UfNx7SeTsUE75ycBPsqTaeGpSIsNczLq3DUbpQstAHFC22S9pLhETu6dtfUxn23N0XFciUCGuAtCZAACZAACZAACZBAfiKg+uannn7Kb/PJiJLy0qE99c356b3mXEiABEKHgG78P/zww/Kw20oZtCzk5W+yrv8HDxmMF198MXQmwpGSQAElYAzJ7O+t7luaIPepejQAAwlkM4EO7dtj9pw5/q3an79nRzyL4cOH++fxLtsJ0JAs25GywcwQWL9+Pa5oeAXiE+KtavIHwJYfUax4cWj+BRdckJkmWZYEQorA5s2b0apVK6gHErNLaq2fHBFM5uKR4y5vwGeffYaYmJiQmhsHSwIkQAIkQAIkkHUC27dvN0ftGPHYlpG1NVfUdWOnujLdPrxKlCiBjRs3omzZslkf0FlqqlF87dq1cfSYeAETWSY8IhoVL2mFctWuAcLEgksMvA6fqoUDxxsgMaWYtORSMLmHrsl6Ly+qkJLFqtiVSdyZl8pJEjcPOqo7MhO3DM+ksClnvJSZFqSeFIyIOI4yRX5BqcIbpEgSwiMjcGfHhuh5SxMUKRytnTGQAAmQAAmQAAmQAAnkIwJ6ZKV65VWvZJYY6QiTQHHqm/PRO82pkAAJhAqBXbt24YknnsCUKVPMOt33V1ln4EF0dBR+++03VK1aNVSmxHGSQIEk4PGEybwtfZyj2jMPgabqU6IMJJC9BFTfXKdOHRw5esRWJdu/HnKJiozCL7/8YvTR2dsrW3MToCGZmwbjuUpAj7S86qqrsHKVPH3gbBrpVYP8EZg8aTLuuece656vJJAPCahiq227tti9a7f5zDuCl63lMjO+4447jKtnuujMhx8ATokESIAESIAEzkJg4MCBGDd2rFc8sIr61K1WLPDeaVDS1aLKka0luWfPnnjvvfecAtl+fffdd81x9CUq1Ebluv9CVBExGJP+407VxL7jTZCQXNSIONpxqozNeB3TYXo9kqUdkm92Tp4vxYoF3Ot8TZK8iIcy9/wjwo+jXNEV4qHsT9NpuZLFMOi+lmjeuJrTOK8kQAIkQAIkQAIkQAIhTiA5ORnNmjUzx934TcUWG/VYduqb/cjwhgRIgARyjEB8fDzGjhuLF55/AceOH/Ot0X1LeW/fN910E6ZPn+69Z4QESCD4COjDnv5fX7nTBzvpkSz43qx8MiLVZd9zz70yG1X62mpfEwMaNWqEZcuWITxcHmJmyBECNCTLEaxsNCMExowZg0GDBpmi1g+P77Vtu3b45hs5HkddDjCQQD4ksGrVKrSTz/mhQ4dswcv3+bd+DoE+ffrgzTffRFiYWvkzkAAJkAAJkAAJFBQCP/30E6688kroRpgTLEnBuUvnGlDAuXWuYSJXL/3+e7Oxlk7tc046cSoB7e8YivgIObJSWjudWA67jlyL+KQycq/HU6qXMV8wdm5G1tc8Rx2gESkp1mVWqpWRKuXCXIdcajtOHb1qUK9l2qaJy4v9jKRdztd/TOR+VCj2HQpH7JU6HtxwXS0M6tUShQtFWZX5SgIkQAIkQAIkQAIkELIERo8ejccfe8zInY686ExG9XDUNzs0eCUBEiCBnCUwY8YM6ANyW7Zssdfl1l9l/7/NlqZAl/K33nYrPpz6IaKiuDbP2XeGrZNA1gk4R1u6FXz6nU4xRwdkvV3WJIEzEdDTJjp06IA5zhGX/j8iGDVqlNfW5ExtMD3rBGhIlnV2rHkOBFR4rFu3Lk6dPGX93pidJKvB2NhY48a2UqVK59ADq5JA8BJYsmQJOnXqhOPHjqf5/DujfnTQoxj1yigaUzpAeCUBEiABEiCBAkJAvfY2btwYv/76a5oZ+1SsdlbA4tldwZulxlq2QqdevXpQI7Xs9nS6ffdhPPbSdPy146Aoj8Kx91hTOcqyrulWjbX0iEoNOiZ9NU7I9IlFSbbSLEMya8w6Sw22VZiJW3dhkpNq1bZSLWs0u4Rz0XbF8Ewa0RbS618N284rshZlY5eLwVkSKlcshdFDO6PS+SWdRnglARIgARIgARIgARIIMQKbNm1C/fr1cfLUKREC/eXP2GKxWL9+PahvDrE3lcMlARIIOQJ6RKUakM2fN0/Gbj9Q5tr/C5yQ6ileffVVNG/ePDCL9yRAAkFGID3nL6rDoyFZkL1R+Ww427dvN0dcHj16NM3MCsXEYK2c/lWtGk+cSAMnGxJoSJYNENlE5gio9WjLli3x7eJvvRUtOdLaOpo4YSJ69+ntzWOEBPITgVkzZ8rTNbfh1GlRatnB/fnXb8GIkSMwbNhwJ5tXEiABEiABEiCBAkRAn6Qa/PjjLjMqS0Y2CJyouTo3ljGWtVUmcTvZufdDJ3njxo5D//79/ZLP5WbDlj0YMPJzxB09hdPJpbDzSFvEJ5aU8esIpENzseM6Njtdj7Q0XsckYkzHtKg9aC2mxmCWizFzpxV9E9WkFCtfqxjvYxLRKup5TRvKSP9REXGoVHI2YiIOo3ixQhj35C24tFp57YmBBEiABEiABEiABEgghAh49c3ffus/apUbJUx4a4Lx/G/d8ZUESIAESCC7CcTFxeHpp5/GW3LCSqI8IKfqACcE7n9o3nnnlcbIkSPRu3dvnsjigOKVBIKcgOrcbNWdn/5R5TAGEshJAhMnTkS/vn3T/fy1aNECCxYsoGOWHHgDaEiWA1DZ5NkJTJo0Cffdd59fIZUp1VtAi+uv55fdjwxv8hOBadOmoUePu5CYmOA3Lefzr0LY2LFj8fDDD/vl84YESIAESIAESKBgEPjrr79w2WWX4cSJE0Yh46eHsQ2k0iUhwoTvAV8jWXiL6Z1qcC3DKqB48RLYuPEPlCtXzlsmq5E//28f+j31KY6fPI3jpytje1wbeQpRj6HwKZCc/l2HVZrudLwp4jbMqKAkroZjOkWtqwZmYXq8pVqGWUlqIaaPOJqJWgdVWlnmVRrzSFmrV61jxTTPakG9oBmzNVPcpEsR7T/ck4BKxeeiSNR2xBaJwoSRd6B65TLecoyQAAmQAAmQAAmQAAkEPwG3vtmR/xz597rrrseiRQu5uRT8byNHSAIkEIIEkpOT8c4772D48OE4eOCAzMCnf3CmY1bpZsGfiojwCDzwwAPG6KxkSXoFdxjxSgKhQMCjejzRpwXq32hIFgrvXmiP0Tw00qolFi/6Ns3nT2emv0O9evUK7UkG4ehpSBaEb0p+HtLu3btRu3YtHD4cZzZ1zN6Qvc9TuHBhrF69GtWrV8/PCDi3AkpAf8T69euH5JRkI2VZiyeBYX/+w8PDMUnK9Lz77gJKiNMmARIgARIgARJo174d5s6ZewYQRnrw5umdBrc8baWk82pXNRd56da1G6ZOnZpOwYwn/d/Og+jz5DTEHT+FoyerYseRNq6FvIo4LnMv7ViMwNQFvj48oh7DAoOWN082ps2SotpWmLyaQzFNVW1SEpAqSiwrWSvqP5MjsYz37xEtWMXic1Ci0F8oEVsYE5+7AxfJcZcMJEACJEACJEACJEACwU/A6Jtrib5ZvOF4g4qEIhoWKVLEHBlPfbOXDCMkQAIkkG0EFi9ejAHi8XzN2rW+Nu2/v+Zix53M1q1bmwfpa9eu7STxSgIkEEIE0jvaUodPQ7IQehNDeKibN29GfTkO+cTJk2lmUaJECejRyhUqVEiTx4SsE6AhWdbZsWYWCNwmR/p99tlnVs0AgXLUK6MwaNCgLLTKKiQQ3ATGjBmDxx57zF+Ycn3+I6Oj8PFHH+OWW24J7olwdCRAAiRAAiRAAjlG4KOPPkL37t38bKy8OldHbpCrZYPlzTnjeCxfX2pY5Qp2NTXYWiTH/jRv3tyVmfHogcMncO/Qj7Bn/xEcj6+Mv+PaybgiLOMt25bL3b+dZGy8UsWgzBiMmblYpczTjHLvtjHTOubISh2WjltsyDyS4MzfMhTTTCdYTz1rW1o+s/0jLAUXyjGXRaO24fwyxfDOC3eiTKmiTuO8kgAJkAAJkAAJkAAJBCkBR9/slv+coeqx8dQ3OzR4JQESIIHsIbBt2zY89vhj+LsbhCYAAEAASURBVOy/1l5fen9/zTpe1ue6nK9avRrGjB6DG2+8MXsGwFZIgATyhECfPn38PLyaB0ZFUTdhwoQ8GQ87LXgERo8ebfbbnZm7f390TfDpp586WbxmAwEakmUDRDaRMQJff/21ERTdX2pTUyTJyxtcjpUrV0K9MjGQQH4i8PTTT2PEyBHmKUidV+DnX5+MVOPK9u3b56dpcy4kQAIkQAIkQAKZIHDw4EHUEi8K+/bt86sVKDc4mcbgSm/EHZn30AjVzqoRlRNc965SVq7k1a5V23gDjoiIcGpk6Ho6PhF9hn2CP7buw8nE87HtUCfxuBouRl7SqK0kVl9glq97y6rL1791bzTJxiJMc6yBmqHb2WYgEleFVIr8Z3kj01YlUeesBmVayJ5/irSVHf17kITKpWagcNQeXHJxOeOZLCY6MkNcWIgESIAESIAESIAESCD3CcyYMQM33XST1bElVpq4ypiXN7wcy5cvR2bl3dyfBXskARIggdAgcFK8wLz88svQjXyNe0PA31998EtDbGwxDBv2JB5++GHExMR4izNCAiRAAiRAAlkhkJKSgsaNm+Dnn3+yqgf8/nw14yt06tQpK02zTjoEaEiWDhQmZT+B48ePy5GWtfH3339bjyBoF/bGT3hEOFat+hn169fL/o7ZIgnkEQF15frII4/g1VdftbdH7V8zvWiQz3/x4sXw9dczcM0111ppfCUBEiABEiABEiiQBO6+5268/977Rk423rlsCt61sEuMMEZatlLWFJM8q45foTPKH8bwzBT1iPJ3FB599NFMMX9q3DeY+93vSEgujq0Hb0EyYnz9q3GYGnk5XsfMKNSVmHYhLyr/S5nUMDUI06MqLeWyGsZpVLIRpvmmgm7/pVhxO9+6yKv2oxW0ov6vdU37EjnH/iM9p1DlvC8QFX4E7a69FM/2v0EHz0ACJEACJEACJEACJBBkBLz65u2ib1bRUMbnyMoRkRFYtXKV6JvrB9moORwSIAESCF0CkydPxn29enn/1tp/eP3+/uqNPhTWvVsPvPTSizj//PNDd8IcOQmQAAmQQNARWL16NRo1boSkxKQ0vz8XXngh1q9bL4bMsUE37lAcEA3JQvFdC8ExDxw40Jx97izp3VN4/PHHzVMM7jTGSSCUCSQlJaF37954TzeEfZosiVsqLZ1bmdJlMHvObDRs2FBvGUiABEiABEiABAoogbi4OAwZMgQ7duzE7j27sHvXbuzdsxcpqWKA5Q22DOGIEs7Vm29FrOSAsi75w1tcinjEais2tih+37ABFStW9GadLfLFvDV4eeJ8Me+KxNYD/0Z8UklTXPbtTBAbLkuhbAzK1LpLzdYs4zEjB5lzJ6WQ3b/XkMypZyzC1IBMT7K0WtW4sTCTe7E9M0ZjgVPK7v5jIg6j8nmfyRGciRjapzU6t+EDL/o2MJAACZAACZAACZBAMBEwD3COG2fJnyo7quBoBEMPHpcj19RrDgMJkAAJkED2EdB9jwYNGmD9+vX2n1z7D6/r72+TJo3l4frXoFcGEiABEiABEsgJAoMHD8Err4is7/r9sRcCxsnLf/7zn5zotsC1SUOyAveW5/6Ef/31VzRu0kQsQxNdX2hrHFWrVsW6detQqFCh3B8YeySBHCCQkJCArt264XM5rtLZ1DTeMnRD1f5B083a+fPn49JLL82BEbBJEiABEiABEiCBUCegytm9e/di165d3n+7d+/Gzl1ibCaGZpqu9wcPHJBjJR2PXyJqiLhxJvnjTExuv/12TJs27UzZ3vS/dx1G10c/QEJCEnbEtUZcfDXxHmYOm5QyKudYBmN6EKWKPD75RwdlUqxymqcldKB6kXqWFzKTYZyNeYzBma+MXQMpkmSytEnxapaT/ReP2YwLis9HdEwEPhzdAxdWKGUNkK8kQAIkQAIkQAIkQAJ5TsDRNyeLvlnFShPUW63o31TfvGbNGhQpUsTJ4ZUESIAESCCbCHz77bdo0bJFGv1DxQoV8MILL6B79+7GI1k2dcdmSIAESIAESCANAT1euW7dutiydauR/40y2l4U6LH2K1euNIbPaSoyIVMEaEiWKVwsnFkCelZt06ZNzRdW68py3l7c6wZTKubMnYc2bVpntlmWJ4GgJKA/XP/+978xe/bsdMenn/+LRZmlRmRVqlRJtwwTSYAESIAESIAESCCjBNSAfc+ePebfzp07vQZmjgGapmn+wYMHLQMtkb/VcEtvVC7RF7V1X7BgAVq2bHnGbrVM36emYfXvO3DkVE1sP9LSqq9NSJ5pzVh4aRO6arcMzDTJdKfJkqap2r+2pwdbaiMa9ws6MCvLyjMD9ZXQW/XV5iTnZP8Vii9EiUIbUf/SipgwsouZi28kjJEACZAACZAACZAACeQFAdU3N2vWDCtWrEi3+7lz54q+uU26eUwkARIgARI4dwK6B/L555+bhqKjo433l6FDh6JYsWLn3jhbIAESIAESIIEMEJg3bx7atm1rStrqZIlb+udG4uBo2Y8/IixMz89gyCoBGpJllRzrZYjAm2++iQcfeMBsJwVWuPPOO/HRRx8FJvOeBEKSQNyROHTqeCO+/36p3/h9P15AnTp1oMqsCvJ0DgMJkAAJkAAJkAAJ5BaB+Ph448HMMSxzDM3Uq5nGixcvjk8//fSMi+tvlvyOZ1/7BkmphbFp/x1ISRFvwnL0ZmqYLM4DDcFkUkb+0XRbEFKHZBrVYOWppZjE5OLLMzkmzSps30sdU8bux2pW6+Z8/+Fhp1Gt9CcIDz+Jpx9ohxuur2PmwBcSIAESIAESIAESIIG8I/DGG6JvfvABvwE4kmM3OSVg6tSpfnm8IQESIAESyF4CW8UDTO3atc0G/ujRo1GtWrXs7YCtkQAJkAAJkEAGCKjsn56tia4Nxr/xBu6///4MtMIiZyJAQ7IzkWH6ORPQ43j06L7Dh+OkLd0s8l1KlCyJDRs2oFy5cufcDxsggbwmcECOlWrXrh1+/vln7+fcNybrg3/FFVcYT2WlS5f2ZTFGAiRAAiRAAiRAAkFO4HR8Im598F3sO3gMO4+0QtzpGjJi27uYd+yWeZfPMMwl+DvLAHU9psnWi7M08Lbl9jIW2KzvqRRpwFiu5V7/6pGsongmK3teLP73xr2IjorwDo8REiABEiABEiABEiCB3CVg9M2XXILD8kCnT0bUMXhQqlRJ/P7779Q35+5bwt5IgAQKKIG//voLVapUKaCz57RJgARIgASCgcC+fftwia4NDh926ZqtkZWkLco5v0U0JDtnhGzgTAT0LPQPP/owYFFvlX777bdx3333nakq00kgZAioZw91l//77xtkzPYmqtk7dXZNgWuvvRYzZ85EbGxsyMyLAyUBEiABEiABEiABJfDprF8w9r2FOJlYBlsP3CqLco/raEkj9IgIJFf1FG6MxUQG0nsNdtS6k5piBJbiE5GkJT0UUw65dIzMJE8S0gStlyptarZ24zM608J2JznUv/Zwcen/IibiAAbecz1uv6GhpDCQAAmQAAmQAAmQAAnkBYEePXrYHsdESjOioE+4nDhxInr37p0Xw2KfJEACJEACJEACJEACJEACeUDgnXfeca0BLP2zqpo10FuxxSGrrzQkyyo51jsrgSVLlqDF9debjSKzuaOl7X2epk2byvF/35/x6JyzNsxMEggiAlu2bEFbMSLbIq6c0w8edOjQHv/73/9QqJAcAcVAAiRAAiRAAiRAAiFEIEVW3f+6fxJ27TuC7XHtcSy+ii3a62pchXsn+O7V4EsNv9JYfUmSnmaZIvWMzZcpYNW3alsFPCliMGa8jjlta1N2m5qkhc1L7vUfG/0XLiw1G+eXKYbPx/eSoy51BgwkQAIkQAIkQAIkQAK5SUD1zdddd106XXrQtOmV1DenQ4ZJJEACJEACJEACJEACJJCfCaSkpODqq6/GsmXLzDRVY2x0yfoaFoZFixahefPm+RlBjs2NhmQ5hrbgNpyYmIgGDRrgt99+syBY31gTj4yMxKpVq1CvXr2CC4gzzxcE1FV+m9atsXPXLr/56AapY+l82223macko6Ki/MrwhgRIgARIgARIgARCgcB3qzbjsZe+REJSCWw+0NWy4fIbuHoJS0WYyj/GTZhlEuY8QKJFrRKuBYGTqV7LTLK8hMnCXqpansY0XW6MQGUKmFbswn69O63ndP86imqlP0FURBzGDO2Mq6+oGjAO3pIACZAACZAACZAACeQkgUB9s1v/FhERgZ9++on65px8A9g2CZAACZAACZAACZAACQQpgbVr16Jhw4ZISkpKM8LatWvj119/hdqoMGSOAA3JMseLpTNAYMyYMRg06DF7r0c2hWTnRT0TyCsGPDIAY/8zNgOtsAgJBC8BVU61b98eBw4c8O5/Wjurvs3Oe++9B+pSPzw8PHgnwpGRAAmQAAmQAAmQwFkIPPbSdCwVY7I9x5rhwMn6Yiymsr14BxPBJ0Wvajem0pAYfaXqvYpCWkYMw1JTLb9j/sKSIyvpysBaLmgLVjCVJeqU0avVl+brciIv+y9VZDXKFf0B1zauhtFDOuuQGEiABEiABEiABEiABHKJgNE3PzbIEiLd8qLIiAP698fYsdQ359JbwW5IgARClMCOHTswYsQIvPTSSyhVqlSIzoLDJgESIAESIIH0CTzyyCMYN26cZDq6ZV+50aNH49FHH/UlMJYhAjQkyxAmFsoogd27d6NmzZo4fuyYZVfjqnj++efjjz/+QLFixVypjJJAaBH47rvvcGOnTjhy9KgZuLW9KRumcmf2UuWqP1aq4NKNVgYSIAESIAESIAESCEUCR46dQvt7JiBJDMM27u2B5NTCMg1L4vGIVZceP2kch9nijlsW8jMSkxsVidRzmVXfaUVvNcORoJx0V9vGa5nk2214S+RB/5Hhp1Cz7AcIFyO52e8+gOKxMaH4tnLMJEACJEACJEACJBByBHbJaQC1Lq0lurgjfvo3lT/LU98ccu8nB0wCJJC7BE6dOmX2KtSA7MSJE3jwwQfx+uuv5+4g2BsJkAAJkAAJ5DCBo7Jvf2mtS7Frp3WSmFdXLZHYorHGRqVChQo5PIr81TwNyfLX+5nns+nevTs+/PBDMw7vF9Qe1ceffIIud9yR52PkAEggqwTmzJmDW265BSdPnnT2MdM09fTTT+OZZ55Jk84EEiABEiABEiABEgglAl8vWo/n35iNY/EX4e/DHS2DeSPg+wzCTEztvCRdswKyJUGMwsRQTD2YyfmVlimZWJ9Z3opTJMXKFxdmUlbLSLAv2pgxVJMk067mBXSgRR1jNs0KyJaE7O3/olIzUTRqG4Y90A6dWlymI2IgARIgARIgARIgARLIYQJufXNgVx9//DG6dOkSmMx7EiABEiABIfDFF1+IB5ZB+L//+8u7rtbjgPWIrzp16pARCZAACZAACeQrAro26Nq1m09hLIpmR6/ctWtXrw1Lvpp0Dk6GhmQ5CLegNf3999+jefPmSBGvBYEbQddffz0WLVpU0JBwvvmIwGeffYZu3bohISHBNSvn50c+8mEejBk9xngjcxVglARIgARIgARIgARCksDjL0/HklWbsOvI9Th8spZrDir/pMg/uer/IvobwzDx1GWCfdG4GpBZy3W50XRTxU4z974S6pwsRZrVq9aRharanvkMyyRqBSmQR/2XLPQ7KhRfguaNq+KVwTc7A+KVBEiABEiABEiABEgghwgsXbpU9M3Xibyp8qcElSdFTFR58frrr6O+2aLCVxIgARLwI7Bu3Tr0l2N/F3/7rVmK+2XKTatWrTB//vzAZN6TAAmQAAmQQMgTaNGiRbq/f3qKmK4trrrqqpCfY25NgIZkuUU6n/eTlJSExo0bY7U8yaB7Qhp0i0fjkZGR5gmH2rVrazIDCYQcgcnvTkaf3n2QnJycZuz6OfeEhePttyfi3nvvTZPPBBIgARIgARIgARIINQL6YEiru17H8ZMJ2LSvBxJTivpNQY/2TjHbd8bky8j8KverLZl6J/MuBOx7NQ7TQlpGo86rvQtoF7dyvWWkoNqS6UahXcnUtGrnTf+RYcdRQ463jC0cg7nvP4DwcLV0YyABEiABEiABEiABEsgJAqqHa9SoseiVf/GKl9qPypMR1DfnBHK2SQIkEOIEDh48CD0xZcKECa69DHtB7n8x3so6d+4c4jPm8EmABEiABEjAn8Bvv/2GBvXrIzFJ9/RVuey71G/QAKtWrRKdbrh/Jd6lS4CGZOliYWJmCUyc+Db69u1jqhkvArrhY38zH3lkIP7znzGZbZLlSSAoCIwbNw4DBw6UjUxnF9P50bF+eaKjozBlyoe47bZbg2K8HAQJkAAJkAAJkAAJnCuBjX/tQ49HpyAhpRg27e8uzTmuwuyVt+nAiYsxmSwALFnJcSHmeBqzyjglrXGpRzI91FLaVKszrZIipmkSTZU0qy13DY0HT//Vy0xFVPhRTB3dAzWqlLWmxFcSIAESIAESIAESIIFsJzBh4gT063u/tOuvi9OOHnnkEdE3/yfb+2SDJEACJBCKBNTw9q233jJGZIcPHdK/mq7gWl+bqAdRUZF4/vnnMWjQIFc5RkmABEiABEggfxB49NFHZa0wViZj/yLav396eWvCW+jTx7JpyR+zzblZ0JAs59gWmJYPHz6MmjVrYv+BA97vo7PAL1e2HP744w+UKFGiwPDgRPMPgREjRpjFl29GrkWXJMbExODzzz9Hhw4dfEUYIwESIAESIAESIIEQJ/Dl/DV4acI8xJ2ugZ1xbWQ2sujWdbeKQuYixmDGCEwMxmwbL0f+N27EnIJaWMupWzFzBpHdgKbbwdWsuwvJtY7AVO9npm1XQWOmlkf9Vyy+ACULbcTgPm3QuU09Zxq8kgAJkAAJkAAJkAAJZCOBI0eOoHr16ti/f79p1ZYIRab0oFzZsti4cSOKFy+ejT2yKRIgARIITQILFiwwD8LrcZbe4P2j6U3xRnQvQw1xdU+PgQRIgARIgATyIwFdS+jv3N69e9NMr0yZMmYtUbJkyTR5TPAnQEMyfx68ywIBfQLsVfHa5Ozt6NXaZUrF+++/j7vuuisLrbIKCeQdAfWooU/jWE82WquuwLVXsWLFMGPGDDRv3jzvBsqeSYAESIAESIAESCAHCIyetAifzf4Fe481w4ET9b1yvtWV5W3MOBKThDDb4Mt3yKUzIGd1oPdaR7yNWe7HxLZMzMPUEExbdglZPlszf/nL3ZLVlvo0M37Kcr3/0kVWo2zsj7itfX0M6tVKJ8dAAiRAAiRAAiRAAiSQzQRU36ynBFjBXzakvjmbYbM5EiCBkCSwdetWPPbYY+aIyvQn4F5ze2RDvQbGjh2L9u3bp1+cqSRAAiTwDwQmTpzoLeE7nQD07uSlwkgwEdA1w9133yNDCtA/S8oAejfO0FtFQ7IMYWKhMxFQb2N169VDYkJCmiJNmjTBDz/8wHNm05BhQjATUDfQffv2xaRJk84wTA9KnVcSc2bPQaNGjc5QhskkQAIkQAIkQAIkELoEBoz8HMtW/4Vth27A8YSLZCKOtZcsvG1PYJbnsfTnqN7KvEdVSl0Td06nlCpqdBYmhmVqDmaMxPQlTNvW9uyr1YDVdRD1Hxv1Ny48bxaa1q+CccNu0QEzkAAJkAAJkAAJkAAJZCMBo2+uK/rmRJe+2ciGqWjcuDGWLVuGsDB9rICBBEiABAoegWPHjuHFF180xranTp2yAThrdllCS1Sek/euotV74/Dhw/HQQw/JkZZRBQ8YZ0wCJJBtBNR4LG2Qh0f1uAIGEggyAikpKWjWtClWrFxpj0w+v+YpZiAyMhLqyZPeOc/+ptGQ7Ox8mPsPBDp16oSZM2dapWxZ1fyMyI/Jjz/+iCuvvPIfWmA2CQQPgcTERPTo0QPTpk2zFlpumchefJ1foQLmzZuH2rVrB8/AORISIAESIAESIAESyEYCdwx4D3/tOIgt+29HfFIpry8xVUZbQpIKRrJ5p4tvYyBmHUPpNwTf2tyqZDTZ1oLBasY5ulJrWXFjS+beE9RuJM/xZRYM/UdHHkS186ahSqXSmPbq3X5T5g0JkAAJkAAJkAAJkMC5E+jUsSNmzprlNYJwWtQjz39cRn2zw4NXEiCBgkVAT1H56KOPMGTwYOzctct/8oHrb1lHh4WHo6ecFqRGZ2XlSGAGEiABEjhXAmGy9686Pb8gf39SU9Kk+hXhDQnkFYHly5ejWbNmYuzo+4wa7bS8dGjfAbNkzcFwZgI0JDszG+b8AwE1pmnbtm2aRb1W6969B6ZM+eAfWmA2CQQPAX1657bbbvMaRpofEnt4TrxKlSqYP38+qlatGjwD50hIgARIgARIgARIIJsJtOk5HkePncaGfXcjKaWQkfe1C1UXWUdYWsdKOjKSXjXXeqrLSjUGYGpsJgt1tQ1TR2a6ZA+TiFm8azFRQMmC1L7XrUFT3LSjd87zjJquIRj6Dws7jUvLvotixQph3nsPWgPjKwmQAAmQAAmQAAmQQLYQUL1bmzZtvG0Z+VDu9Nqte3fRN0/x5jFCAiRAAgWFwKpVq/Dwww9DN8StIH8VjVcV66+kebWi5u9ls6uvwqvjXkXDhg0LCiLOkwRIIBcIWB7J0v79SXEZ6eTCMNgFCWSKgDqQ+XDqVK8RpP1zadqYO3eu39ojUw0XgMI0JCsAb3JOTFGP/6tfvz7Wr19vN+/72hUpUhgbN/6JihUr5kTXbJMEsp3A0aNHceONN2LJkiVnaNuDWrUuNZ7I+Lk+AyImkwAJkAAJkAAJ5BsC19w+FgmJKWJI1gcpqWoGJrK+KoWMC3v7CS61DPOoqZezDtAycifF9UFEYxZm6riweNuwjMq0plnFm4irnEmXFkyT2p9GtFEtqPd6kXge9O9BEmqVn4gocYG+dFp/ayx8JQESIAESIAESIAESOGcCSUlJuPzyy80xM0b+8wqKqShSpAj+/PNPVJCTAhhIgARIoKAQ2LNnD4YOHYqpUz9EcnJSmmmbNbNZIltr5QsuuAAvv/wyunTpIstnTWMgARIggewj4P674v77w6Mts48xW8p+Ajt37jRHWJ44cSJN47Vr18HatWsQFqb6b4ZAAjQkCyTC+wwReHviRPTp29cq69rP0YQRI0aYM9cz1BALkUAeEzh06BDat2+PlatWWg/x2JuhuvmpPjc0XN7wcsyZPQdlypTJ49GyexIgARIgARIgARLIeQJN/j3a2Gv9tqefdKbCvlsyspKMXZeKSpLtWw5ogi685WobfjkPSVuezCzpyiib9EhMKWry7RacXuxmrXZMnpMjSRqkw7zrPxW1z3/LTHHF54Os8fCVBEiABEiABEiABEjgnAlMFH1zX0ffLAKfTzMn+uaRIzF82LBz7oMNkAAJkEAoEWjVqhUWLlpo1p9nG3ehQoXw6KOPYsiQIcbw9mxlmUcCJEACWSXgNiRzt+E+NtCdzjgJBAuB53Qt8dTTMhy3htoa3YQJE9CnT59gGWpQjYOGZEH1doTGYI4dO4bq1atj7769aQTYSpUqmafDYmJiQmMyHGWBJrB7927jsvI38aynTi1suzGJ2Ddyufqqq81xl8WLFy/QrDh5EiABEiABEiCBgkPgylvGiFiUit/33G+Ol1TJyAQ/eclJlKvajYXJEZbivcwxxHfEKa/Vl7EvsxuQ8saYTG8dp2amglqXyaahHn8p/+n2YYq52n0FSf+1y79pnlRb9tlAFwRGSYAESIAESIAESIAEskpA9c01VN+8d59PntTGRP6rdEElOf1iI9RQgoEESIAEChKBFStWoOmVV8rfxYAgfxuddfMtt9yC0aNHo3LlygGFeEsCJEAC2UvAGJK5/v6Y1uU+VY8mYCCBICZw+vRp1KhRA9u375BRqmLa9ztavlx5/LnpT8TGxgbxDPJmaDQkyxvuId3rsOHD8Pxzz5s5yPfMJ8TKzYfiYrdr164hPT8OvmAQ2LZtG1q2bIktW7b4Jmx/oJ3Pddu2bfHFF1+gcOHCvjKMkQAJkAAJkAAJkEA+J3C1Hm2ZlIwNe3rLTCN8BveOAZjqh9SVmAhNqWL0pQpsvbcvho7xISFuw0yazUsWn3Jveyyz07QNe/1uvIyZe3kxhmRSXpVU2oZZdARB/2Fhybi07ERERobh+09pSOa8jbySAAmQAAmQAAmQwLkQGCbexp5/3qVvduQ/adTom7tR33wufFmXBEggdAn07NkTH3zwgVl/W5tx1h/IuvXqYtzYcbj++utDd3IcOQmQQEgR8Dg6PZecZh4CTdWnRBlIILgJfPTRR+jerZv1U2qG6vsgP/nkk3juueeCewJ5MDoakuUB9FDuUs+RVYvNkydPyjR8XzCNXdGoMVasWM6z10P5DS4gY9+wYQNat24N/Tx7P8a+j7NJu+Vft+Djjz9GVFRUAaHCaZIACZAACZAACZCARaDt3W8g7ugpbNx3N5JS3J4ffAKTFQu4NwZm0oZafomHMtfK3ES1tIZUMTozT09LgsfrkczKc7/6WndSfSlWLOA+F/qPCDuJmmXfQ8lihTHnvfudgfFKAiRAAiRAAiRAAiSQRQJufbNPurMaa0R9cxapshoJkEB+IaCnqlxS8xIcFc+NusguXbo0RowYgd69eyM8PDy/TJPzIAESCAEC+rCnv6wmd/pgKT2ShcC7xyHqEaxNmzYVW5YVfjD0M11IHMr8+eefqFixol9eQb+hIVlB/wRkcv733nsv3n333YAfCquR7777Dtdcc00mW2RxEshdAr/88gvat2uHffv3ezu2BB/f613ylM+kSZO4EPMSYoQESIAESIAESKAgEbij/7v4a8chbDl4O04nnCeGXx6EuQ6Z9NprCRSVoDS4vZFpvuN3zJKwrGMqNd0J6tBM21VFuPVq50hDHrEus1JNdlD1Hx1xCFVLf4Kqlcrgk3E97UHzQgIkQAIkQAIkQAIkkFUCvXr1wruTJ5sHD9xtqIy4hPpmNxLGSYAECiiBV155BeotpV+/fnjmmWdQqlSpAkqC0yYBEshLAs7Rlm6hTeW1FDHQYSCBUCCwdOlSXHvttTJUc5aG+6OMe+65B5NlTcLgI0BDMh8Lxv6BwPr169Ggfn0kJSebku6vWOfOnc0RgP/QBLNJIE8J/PDDD+jQoQOOHj1qb3rqsUkSzE6mNbQHH3wQr732Gj3r5ek7xc5JgARIgARIgATykkD/kf/D8tV/4e/DHXEs/iIzFJWZwkSCShWDMq/5mGUNFjBUeRJRjMHCRJOkddRYTI+01KDKJX01LegTi5JspVllNW6ZnGk5q47GNOhdMPRfNPovXFjyGzSpXxmvDf+3GRtfSIAESIAESIAESIAEskZg3bp1aNDgciQbfbO//Ed9c9aYshYJkED+IxAfH48tW7agVq1a+W9ynBEJkEDIEDCGZAGjVV0eDckCoPA2qAn861+d8eWX02WMlibaGWx4eARWr/4VderUcZIK/JWGZAX+I5BxAB07dsKsWbOkgr2ot79fkVGRWL9uvTnyMuOtsSQJ5C6BefPmQRVQ1rGs0rd+fu1g2ZF5MGzYkxg5cqSTzCsJkAAJkAAJkAAJFEgCYyYvxH9n/Yo9x5vh4IkGwsBf/jdyVIoIU2oMJrnG+5hEzImW6mVMLMSsHI1LARW2tJL8byeYIy2N1zHxPqYPqOj/zgOMWkyN0bz1gqj/0oVWo1zxH3FruwYY1KulToiBBEiABEiABEiABEggiwQ6duxo9M1G/vO24UFUZATWrl+HmjVqelMZIQESIAESIAESIAESyDsCYaLzUw2fBvuQAXOvRwYykECoENAjLNVYLCkx0ft5tpTWqehwQwfMmqm2MAxKgIZk/BxkiMB33y1B8+bX+craG0SacP/99+ONN97w5TFGAkFG4IsvvsCdd96JBHlyR38MrI1N3yDVil7dQw8aNMiXyBgJkAAJkAAJkAAJFFACX85bi5ffnou4kzWx40gry/ZLXYyliGLIGI8Z0y8fHUnziOGXpTYK3AbUYuqFzHtYpamntmUp0qapJXE1HDNKKCOpqUczqaHGZBq04SDp/4ISC1Cs0J94om8b3Ny6rhkeX0iABEiABEiABEiABDJPwHe0jFXXpW6mvjnzOFmDBEiABEiABEiABHKUgEf1eKrDM7349H80JMtR7Gw8Bwjo6WRq2+Jef1gfaw+WLF5sH3+ZAx2HWJM0JAuxNywvhqs/AFdddRWWLVvm6t76gYiNjcXmzZtRtmxZVx6jJBA8BD54/33c17s3EsWy2ARbtjEXedHtywkTJqC3lGEgARIgARIgARIgARIA/vxrH7oPmoKEpGLYdKCbIFEjsDB59R1rqbKUao5SjYGXxFWTZFRJJkdiWseKm4sYoanxvh516XU9pm3YQcubJxstbZST7M0Nlv6rl/kYUeFHMGVUd9S8uFzAOHPvNj4hFZ8vTMaydanY/HcKtu1OQVIyUL60B3WreTDknihcUNZ+L9Jhqm8DAwmQAAmQAAmQAAnkFQFH37x8+bI0omFsMdE3b6K+Oa/eG/ZLAiRAAiRAAiRAAukRSO9oSy1HQ7L0aDEtmAns27cP1apVw7FjxwKG6cGVVzbBjz/+aPTYAZkF7paGZAXuLc/8hL/66ivcfPPNZv/H7EHopoNEdPPh6aefkX9PZ75R1iCBXCDw+uuvY8CAAUiVjctAL2T6gY6MiMQHH3yALl265MJo2AUJkAAJkAAJkAAJhAaBFJGdWt01Xo4Ej8fGfT2QmFpU3IeJ/C9nWFre6i0Pr/62SHaaLhgkQ43IHPnLTjLpKpcZgzEpY7yQSSnzNKPWMWkWI61jjszUW0kPhv6jIo6jepkpKFokBvPffwBhakSXy+FAXComfp6MSV8mYv9hn2GfDsNwtmEXigK+GBNj0to/dNog1BflHxnuwdZZhVCqWO6PP5dxsTsSIAESIAESIIEgJeDVN6t8ovKLHVQ6eebZZ/HUU085SbySAAmQQEgS+PXXX7Fw4UKeghKS7x4HTQIkkB6B9AzJVP+Xkqr6KQYSCC0CI0aMMDYuuv4wyxE7ovrpL7740tjGhNaMsn+0NCTLfqb5qsXk5GTUq1cPv/32m/wU+DaDdJLly5fDJnk6rGhR2VhiIIEgI/Dcc89h+PDh1qi8vwK+Tc2YmBh89tln6NixY5CNnMMhARIgARIgARIggbwn8PjL0/Hdii3YefRaHD5VRxbU6mFMltV6BKUalOkQNS6xFNn9U/f2mmiJXfJqrMO0lJZx1hHWvVXIl6cV9c68aAMaJEEVVCnyn+WNLO/7L1X4N1SIXYLmTarilcGdrXHm4uvsH5LR9/kEHDrq8FKyKfh360hcf0U4KlcQb3LbUvDSB8nYcyAFlcQjWfOGYfjoGz1YVAlbzMudF4bNX8UYw71cHD67IgESIAESIAESIAFDQPXN9UXfvF70zYGhXDnVN2+CnoLBQAIkQAKhSGD//v0YNmwYJk+ebAxlV6xYjiuuuCIUp8IxkwAJkIAfAWNIZin+fOlyrw8tMpBAqBE4fvy48Uq2b+8+W2/qm0Ht2rWxevVqRERE+BILYIyGZAXwTc/MlKdM+QB33dXTVPH+NtgR9fakZ8gykEAwEVAXqoMHD8GoUa84O5nWXqX9qhdVRk3/8iu0aHF9MA2dYyEBEiABEiABEihABGbM+BqLF3+LRo0aoeEVDVG9WnVjOBUsCL5etB7PvzEbx+IvwrY4MbxXwy4ZnJpzWW4jNEHi+r9EvelqZOZ4HTM11JWZzkrrieGTyGqpYVpBj8qUq+ZovibJNUzzTQXLSMrE7XzrIq9SxlTI5f4rl5yJItHbMeyBtujUoo4OPVfCqXjgifEJmPRFksXGnn+jOuH4z6PRaFBTyfjCgbgUNOl+GnsPaZqwMtnKzeJ/R/twvDM82leBMRIgARIgARIgARLIRQJTpkzBXT3vMmKKyimWLGkNYPz48XjggQdycTTsigRIgASyh0BiYiLefPNN8ar4DOLi4qz1l6zHmlx5JY/Iyh7EbIUESCCPCZgTBoySydY12Rd9wJSBBEKRgK49Hn7oIdWeWvpT70fbIyeavY8ePXqE4rSybcw0JMs2lPmvoYSEBNSqVQtbt2yVL5D7R8CDqlUvxu+//46oKDkzhYEEgoRASkoK+vXrh7ffftsWZXTXzPtXX+IelCpVEt98MxtNmjQOklFzGCRAAiRAAiRAAgWRwC+//IKGDRuaqavEUqJkKTEouxyNGzVGw8sb4opGV+DCCy/MMzRxR0+hQ6+3kJScio1770ZyihyTKEZiutHn6IycwTkrBesoSjVYkhRjLKaeyCzjJVPJVLbqe8SoyVljWBKbvJpdRDUg05MsrVY1bizMtHQe9h8edgI1y31gjoX8ZnI/FI8tpCPL8XD0eCpufCQBP/2WbAzwlJsC+nfLCEx6KgoR4ekPYeqsJPR7IcHFX8oZmMDkp6Nwe5uC/URd+tSYSgIkQAIkQAIkkNME1NDikksuwV9bVd+sco3IfGrsLh1Xvrgy/tjwB/XNOf0msH0SIIFsJzB37lwMHDhQ9sw2SNvOCtnuRv7ATflgCrp3757t/bJBEiABEshNAs7Rliq3WQ+Byt87uaFHstx8F9hXdhKIj4+3bGFkbWIpTq3PtP6UX3zxxdiwYUOBXpvQkCw7P235rK0JEyYYo5z0pjV16lR069YtvSymkUCeEFBFVM+ePfHxJx+b/o0eyhmJequQDc3y55fH3DlzUbduXSeHVxIgARIgARIgARLIEwJqAK9H9xw4eFD2zxyTKv+hlC9f3hyBoV7L9CgMNTzTOrkVHntRjrf8aTP2HGuGQyfqI0VEKmMLJotp9SoWZozBdDS6yLYMxvQgSlUoGTdjalBmbw5qkilnriqbSUQvUs/yQmYyjA2ax3TiK6M52mZe9l+6yGqUK/Yjrr2iKkYNyZ1jLY8cUyOyePy8Qby6STA2ZMKta/sIvPVEFMLUcu8M4bct4pWsx2kXfwUu9n0C8v9mFUGp4meoyGQSIAESIAESIAESyEECRt98//3pyr8ffvghunbtmoO9s2kSIAESyF4CehSvGpDNnDVLFmy6/pX2raWXX0cVKlTAxo0bUbRoUb903pAACZBAKBHwqFJJQuD+a6roOBlIIFQJ6BrEz9jb9Vv+1ltvoW/fvqE6tXMeNw3Jzhlh/mzg9OnT5lzYnbt2GsHX9Z1BnTp1sGbNGtm4OMvORf7EwlkFKQH9vN52222Y+fXXsk5zf1p9A1aPHgsWLED16tV9iYyRAAmQAAmQAAmQQB4SuP322/Df/37mPwJblElfogEqX3SReCuzDMvMsZhiXFa8eM5YBX3/0xY8+uKXSEgqjs0H7jRylo5L1UN61WApj+TOGH9pimrN1duYlWTs+TVZ0owPMklQ/boebKmNaNwvaMNWlpXndGQX0tvc7z8V1ct8jKjwIxgtRmTXNKrqN+ScuIlTI7IB8fjlD39lXJsrw/H56GjrONCzdLxrfypq3HTKsuezyym7y2uFY8k7PNbyLOiYRQIkQAIkQAIkkEMEVH9XvXo17Ngh+mZ3ECGlTm3qm91IGCcBEghuAkePHsVzzz2H1157DerNxAm65rKWuL71ry5sS5YsiZkzZ6JZs2ZOUV5JgARIIOQIeDzWWQSBA09No9wLLMF7EgheAvqwd7169bB+/XrvIJ3f84oVK2Lz5s2IiYnx5hWkCA3JCtK7nYm5jhs3Do888oirhvOVAaZPn46bbrrJlccoCeQdgePHj5vP46JvFzmrNL/B6Ce3Rs2axojsggsu8MvjDQmQAAmQAAmQAAnkJQE9jrtPnz72EHzytpXgundF/fIkXfx5oUaN6l7PZWpcpovfIkWKnPPUkpNTcMuDk7Fr/xFsP9wex05XsQzEjAWYHD4pTyJ67cdcvZnhqvbcHrd9GqMpYeWppZjE5OLLcwrb9ZzKcut44tIGrGa1bu71HxvzFy4sMRvnly2Oz8ffi/DwnH2gJiExFe0fTMCK9ck6Ze/8zy/jwbL3o1G6xD/3v+GvFDTqJh7J/BgDQ3pGYth9kaZdvpAACZAACZAACZBAbhI4m775iy++QOfOueP1NTfnzL5IgATyF4Hk5GRMmTIFQ4cOxd69e83k7JVsuhMNDw9Hr169jNFZ6dKl0y3DRBIgARIIFQLO0ZbOeJ2/fzQkc4jwGqoE1Pal879kLaKKZ2+wPuFjx47FgAEDvKkFKUJDsoL0bmdwridOnEDVqlW9grC7mm5MrVixQvZ99MvDQAJ5S+DQoUPo0OEGrFyx3Pe33ZFc7KHVq18f8+fNQ5kyZfJ2sOydBEiABEiABEiABAIIbN261cjdAeJLQCn3rVPSfrrZyXKS7fvwiAhcJl6E9ShMPRJTZfjLLrsMUVFRTo0MXz+d9TP+M/lbnE4qg60HbjVGTWohZryLeVuxzLt8Rkv2gNwXfTpR760X82qtza223F7GApv1E/SM5Vpu9p+Kquf9DzER+/For5a4rUMD7/ByKjLwP4l4+/NES3lhM1Rn0N+Mj8HV9f/ZiEzH9e2qFHR6xDIkM03Y/BdMiMGVl4Xn1NDZLgmQAAmQAAmQAAmkS+DkyZOoevHF2JOO4QX1zekiYyIJkECQEVi2bBn69++PVT+tSnej2Vnk2ks4NG/eHGpAW1/2JxhIgARIID8QMEdbpmNoQ0Oy/PDuFuw56Ge4SZMmWLVKfuOdH3S5qv67bLlyUB1+4cKFCxwkGpIVuLf8nyc8evRoPPbYY+kWnDNnDtq2bZtuHhNJIDcJ7NmzB+3ks7hm7Vq7W2eJJldrtwzNrmqGWTNnoUSJErk5NPZFAiRAAiRAAiRAAhkmUK1qNWzZuuWs5Y3zLltR40g8VgXnzif/eNe6AS3GFCoknsrqotEV1rGYamB26aWX/uNx9fEJSfj3g5Ow7+Bx7IhriaOna7qOlrT7V5dhat9kjJVkoHqvwY5ad7L4FiOwFEmza5nFuHpUMwonX6JV1/Wq9VKlTUWg3fiMzuxKOdh/iUJ/4oIS81GmVDH8T7yRRUdFuEaW/dFP5yXj3md9R6NoDzr/h+6IxAsPZtwQ8MV3E/H8pETLm5kZpgcliwHbvikEcSTHQAIkQAIkQAIkQAK5SsCtbw58JGDu3Llo06ZNro6HnZEACZBARgns3LkTQ4YMwccff4KUFPUaLQsqsxR1LW5djV1U+SKMemUUbr31VlcqoyRAAiQQ+gTM0Zbp/P2jIVnov7ecAaBrknbt2hkU5mPuheLBqFGvYNCgQd6UghKhIVlBeaczOE89JrBatWqWNzKVh82GjW7ZAFdffTWWLl2awZZYjARyjsC2bdvQunVrbNq06YydtJH8L8UVZUG0ED4jFGaQAAmQAAmQAAkEHYHevXvjnXfescYVIH/7DVZXsBos0dyKp/vqWuq6olrUurW27m7o2BHTpk3L0BGY3yz+Hc+O/wZJyYWx+UAXJKeoQZMzIG1ZB2Xdq8GXGj6lsfqSJDWIS5FyxubMNRGrtlXAkyIGY1rfFVKljmlT00yWVcNXxHefnf2Hh8Wj2nmfyFGWJ/H0Q+1xw3W1fV3mQEyPo2x+bzxOxvvPv0zJMKz9NAaxmTittEWf01j5m5jc+azu8K8WEZgyMuPGaDkwRTZJAiRAAiRAAiRQAAno6RcXV7kY+/bvSzP7q66+Ct8v/T5NOhNIgARIIK8JnD59GmPGjMFLL70E3TdLP1irbM3TfYjBgwcbJw2F5EEuBhIgARLIbwT8Tyvz/f2jIVl+e6cL7nyuvuZq/PDDD2n07+XKlpUHwbdmSI+en+jRkCw/vZvZMJdRo0bh8cGPiwGZ8x2RHwL7ZsGCBWjZsmU29MImSCDrBDZu3GiMyLZv355uI7pBedNNN5uN0ejo6HTLMJEESIAESIAESIAEgoXAZ599httuv80RuWVYPvk7o2N0eywzdXy6HGPe5W+WBNx333148803ESFHYGYkqKOxvsOnYfWGHYg7VRM7jzhrAuuAS/VwlWoMlrQnHb9c7E6tEq4EJ1O9iJlkeQkTUzEpb9k8abrcaKdOWXM1hQOGm7P9Vyy+CCUK/YH6l16ACSO7GEO4gAFk623bB07jh9VCwUzVN/83hkTjrk4Ze690QIePpuKiG07J0/LalHhzszm+OTQaPTpmvJ1snRwbIwESIAESIAESKLAEjL758cf952+LfAsWLkSLFi3883hHAiRAAnlM4MsvvzQGYVu2pPUeHrj+VsOK22+/Ha+88goqVaqUxyNn9yRAAiSQcwT69etnnSoQ0MWECRMCUnhLAqFJYNGiRWe0hbG8kqV/ol9ozvafR01Dsn9mVGBKmKfDLpanw/bp02H+GzXXXXcdvv322wLDghMNTgKrV6+W4yzbYe/+va7NSYl6P64edO/eDe+++26GN0aDc6YcFQmQAAmQAAmQQEEhcPDgQZSVp5pS9MxHx/rKmbwopGXBZu588o4tqbvkH6ue7sZpE2I2JFf1zGXSzcWKqwv6Z599BsOHD3d6yPD1712H0O3RKdCjLnfGtcbh+OrG3st0Kn2m6li1G5mHRwzDUlMtv2PWmOyxuNYYjpmUbwCmsty6y0qbNhOdTqq2rf1IWopeDRrNyP7+i8dsliMtFyAmOgJTR/fAhRVK+oaaA7EZS5Jx5xOn/ecvc6xdxYNlU2IydRzla58k4onxSdKWADI4LaabvyqE8qU1zkACJEACJEACJEACuUPAX9/s32fz5s2xePFi/0TekQAJkEAeEli/fj0eGTAACxYtNMspHYprSeXcWVfJaFC/Pl599VVcc801WpSBBEiABEiABEggxAmoTcySJUvS/P6XLVsGWwuYVzIakoX4hzk7h69uet3nu1rbDfIqOzTfLvoW+sVhIIG8IrBs2TJ0uKED4g7H+Q3B2kq0/Cz0u/9+vP766wgL041LBhIgARIgARIgARIIDQJXXHEFfv75Z2uBqq/GI5eO3ZLIA2fhln8sM7MzlbRqaisRkZGYOHEi7r777sDmMnz/5bw1eGnifLHbisaWA/9CQlJJy6BfWnCP1M9ITG2ZJFP9YlmlXGVNhjMDJ13MxGT+BoFaj9kstKi3hKR7y5h0J0fLWPp+O9mypZKbzPQfFXEIVc/7n8wpCUP7tULn1vWshnPoNVFsvq7oehpbd6TIOF1zk3m+9WQketyQcS9i6oWs9q2nsH2PzdXmX6uqByum8HiVHHoL2SwJkAAJkAAJkMAZCIwZPRqDHnvMJyuqkGaLKWpEpsZkDCRAAiQQDAT27t2LiypfhPjT8X7DSW/9Xb5cOTw7YgR69erFvQg/WrwhARIgARIggdAmoGuU66+/XtYv+iizZX9gL1/MkdcDBw4M7QlmYvQ0JMsErPxcVM97v7jKxdi9Z7dMU1b0umGjQS58OsxCwde8I6DHqt58883Qpxi9+iZvxBrX0KFD8cILL+TdINkzCZAACZAACZAACWSRwE033YQZX8+wajsrU1sk11uv2OONpN9RmmzbUCs2Nhb//e9/0a5du/QrZiL1qXEzMXfpH0hILo4tB29BSnKMMSbTvk3/zoC1Tek/VT2kmd3CMPPqkXWG5S0tBWGaI/niwkz+2RO3L9qYbUNmtWvakxctb1KsPUhTRsvaqa5sScx8/xGe06hS6nNERR5B26svwYgBHbXnHA1TZibh/pcSrD5c8y9THPjjy8KIjsp4919+m4zuw+yND4Fi8Ar5/ndG4vkHMtbQwbhUzPguGb9tScHGbalITk5FrYvDULtqOK6q50GNi/jQRsbfEZYkARIgARIggYJL4OTJk6hatRr27BV9sz4gIDKJ9Up9c8H9VHDmJBDcBB566CG8MX68Wbt6/2C5hhwpD2g9+OCDeOqpp1CiRAlXDqMkQAIkQAIkQAL5hYA6V1KvZIGhfPnyxitZoUIF42FdGpIFfgIK6L16cXr44Ye9s7f3nMy9HmmpXxgGEsgLAl999RVuv/12OUZJNsScjTXvQCz1kxqQqSEZAwmQAAmQAAmQAAmEAoHdu3dj4cKFmC/G8gvl386dOy2vXV5Zx95ic3ba/CblSpSoZWxlR7Sctw3LuKr8+edj1qxZaNCggV8rWb05HZ+EvsM/wYYte3EysTy2HbpJjuUUj1lynKUJfv07z21JjqbrMCVithDNvffOzF+9aZl1iJQyR3qqvZKrPdO+0eZLQasxa/66MZkN/SM1CZVLzUChqD249OJymPjcHXK0ZaTVbQ6+duwfjyU/JwtHZ/5ylXkP7B6BEf0yZvylw0uW+k3vOoXft1rQfHSBWa9Fo3nD8LPO4qScrPnGp4kY+3Eyjh6TxpSp2fT1VYsI92BgtwgMvjsC0ZHCnYEESIAESIAESIAEzkDA0TerxBAo0i1atMg86X+GqkwmARIggTwhcPDgQdSoWQOHDh6y+/f9BWvXvh3G/mcsLrnkkjwZGzslARIgARIgARLIHQJqG9OiRQurMxEF3Pr31157DQ89+FDuDCSPe6EhWR6/AcHQfUJCAqpVq4btO7abVb1PNIY52/27774LhmFyDAWQwEcffYS7e/ZEYrKc9xOocRIeeoTleHlCqF+/fgWQDqdMAiRAAiRAAiQQKgSOHz9unmJSL6sL5s/Hb79vEE9RajUkMxAZxy1/e+eUbqKV685KN24nqoJ79uzZqFy5srfZ7IgcOHwc9wz5GHsPHMHx+Ivw9+EOUP9iXrsjZ1C2HZIah+k8VZzTqPNqr8Lt+Vu53jJS0HjT8iaYinZtj/RneTqz3IxbbZ9L//Ak48ISc1AkahsqlC2Gd17ogjKlYn2d5lBs76EU1Lw5HklqBSYkvNOV+S94KwZXXqbWdBkLb3+ehIH/Ec9mNm/DXOKxRTz4e1Yh8bJ25nZOnk5F637xWP1nivUenZG/cveIoZ0HCyYUQrEiZ26TOSRAAiRAAiRAAgWXQGJiongjq4rt20XfbIItoMjl6mZXYen33xdcOJw5CZBAUBN44403jNcxZ5A1qtfA6DGj0alTJyeJVxIgARIgARIggXxO4NprrpU1y1IzS3slY+IXXnghNm3ahKiojD/8G6qoaEgWqu9cNo578uTJ5ix306T5JujWgG7GpGLu3Llo06ZNNvbGpkggYwTefPNNqCvplBTdTtN/Guw/1XKJCI/Ee++9i27dullZfCUBEiABEiABEiCBICGQlJSElStXwhiOifHYiuXLkSCbab5gyzSaYKI++VuNrqyjH9PKP86RQE4dR0ay6ngbM41ec83VmD59OkqVKqUZ2R627TyE3sM+QdzRkzgWL5uEh9uIxBYu/VimUJbfMWuertma/FRzqKUYThlPYpKUIvPXeYt5mEciaeevRndawN2SExfDJlNH+3VcmDm+uKwyTkkpIEFHpodq+vpX72eVSsxDbMxmlCxWGBOe64LKFXOGmzUG3+uk6UkY8EqCNQfX/GMLAzvmFEK4Is1AOHw0FfXuiMehI45BmvH7ZmrecHU4Pn05+qyt3DU8AZ8vSvTyjwgXJuU92L0fOJ3g5u+L39UxHG8Mzf9Kk7OCYyYJkAAJkAAJkEC6BCZNmoT77rvPleeTyObOE31za+qbXXAYJQESCCICup6v36A+tv+9A8OGPYn+/fsXiM3iIHoLOBQSIAESIAESyHMC8+bPQ9s27WQclo7eqKZN1IN33nnbZ1uT5yPNuQHQkCzn2IZEy8nJybikZk1s3rIlzXibNGmC5bLpxUACuU3gpZdeOsNRlZbSKTo6Gv/9739x44035vbQ2B8JkAAJkAAJkAAJpEvg999/l6Mq58tRlQuxePFiHDt2zL+cb+/MP/0f79JW9KaYFazTgKxk7YxbbrkF6tlVZaacDJv+bz/6DJuGE6cSxJisEnYcaWsdc2kGYvesxl/q/9v4ANcQqrZcAABAAElEQVQB+gddfzup7rhl8KUGdvakXJnGTMwYoUnMtmsyi3pT1FVQu/qH/j2eRMuILHobihaNwVvP3IYaVcr6DzIH7waMTsCkL8X7rgT3yNs2DcPno2My3PP9LyZgyiz14uu0olcJMv+xj0Xhvs5y/OgZwmvTEvHE64mm/zpVwzBmYCQaXhqOQvLxSU5OxcrfUtFfjN1+/0uN1PT9EmM8m/+MsVFo0SiD1m5n6J/JJEACJEACJEAC+YuA0TeLZ9zNWzZbAo5reo0aNTIPXLiSGCUBEiCBoCOwbt06lC1bFuXKlQu6sXFAJEACJEACJEACuUNAbWVWrlrlWtOIvlX0z9WqVsOGDRsQEXFmfWvujDBne6EhWc7yDfrWP/30U9zR5Q6zwWC+BfY+jQ78q6/+n72zgLOq+OL4edtL99IpoRICSii5QVgoIgpYKP5BDERpLAwaRVEEFcWgFUQBlQ1KpFtA6W5p2F22/ufMjXffe7uwwMaL33x23507d+7cme+tmTPnnjMXijpufwa9r4IDBw4kUSSzX4pazFjPly8fzZkzhyIjI72v8WgRCIAACIAACICAxxA4fPgwxcXFUWxsrLI8dvjwEa67rryTYSv0Ho1aWOPaDkZ/R1Ot0ixKuZao5TLyGktjn1dffZXGjBmjXIBnWI0s3PDPnuPU670f6cz5BLqSXJgOnm1NibzUWEjtJIjqkbhMFIth7JSSFeBsoogkvOwNsOiaaYnGJmEgcS0oNSa9JLFBptk+0xwuWmlZ90r/+MEBp1mJ7A+SZcH8IfTxGx3o1ltKGgfKkeWj/RLpt+Up6lh2XTsbPfeQP33MCmCZCT8vSqEub7BVM4frz97+rT+GUoVSdoLWMkXv7PYO8XTgWBo93tqfPh0QTCHpHPYKG9R75u1E+mVJijqKcJcz2vWBAN4nnR2sB0EcBEAABEAABEDApwhMnz6dOnXqpLdZ79GphY3lzT9D3uxTVwMaCwIgAAIgAAIgAAIgAAKeSeAX1pVp99BDFvG1Prbh5kybNo0ef5x1bLw4QJHMi0/utZqWxrMG9erVo40bN1puANnLRrVr19LSxcoBAgjkAIHU1FR66aWX6PPPJ/AlyDNaMvflFIoULkzz5s+nxo0bO23BKgiAAAiAAAiAAAhkL4Hz58/T0mVLKSY6hmJYeWw7WyCT/kvGwT6wNExf21Mc9KfYZXcA1a1fl9as5i+c0g3WPTmDUaAlr5+fH40ePZp69+5tSc2Z6IEjZ6jviJ9p36H/KDUtgI5faEyn42ux1SpNvUtV1/CIyFWSVD9RKFNqYFrXj/yM/p++VDtxZjUcMdov2zjux//K8lb67RNrWdruouqkxy3HlzKL5tlEYflWc/lJVLlsMRo1oB2VKyUKcDkbGj4VT1vZWIdz+wc8G0RvdAu8ZmUOHk8jKeP8RXtWQaPcfTLjquX8aOP0UPtGp9iqLSkU0f0K1bvNRosmBrMrTWGdfjhxJo3qP55AZy4Z54qobg0/WjYp85bT0i8ZqSAAAiAAAiAAAt5CwJA3b9q0UXXXpGfBPQcVatdiefOmTaqfoidhAQIgAAIgAAIgAAIgAAIgAAJuSUDGNnfccQdt3rzZpX533FGX1q9f59VjGyiSuZx230n4/fc/qG1b8e3qGqZOnWr5csx1O1JAICsJJCcnU9euXemHH34wi1WCJss8lpiSXvjHQqpTp46ZBxEQAAEQAAEQAAEQyC4CSUlJtGrVKopjpbHomBhavWo1XUm64ng4fWbMOkFmZuBEu268kcNYElVn9/JiYVX+W7ZsSQULFqSOHTvSrB9nmUXIrJuxh7G0b+SYnhjCLiy//e47tb/D9hxcuczuLUd/FUPzF29VFYtPCqOj55pRfHJxraKadhPHxYKYVF2zJCZN0NJYuUz0k8RomRFU++22zJTumGqzbOCMAlgpiGllGbupJedz4K8fPyTwBJUqsJTyBB7jGtjo/ha3U5/nIylPyLWVthzKz6KV6g/H0+ETolTn2P7enQPpvZ5Xr1N8Yho90OsKrdqSTOVK+rFVMUOxURqvtf+FjoE0slfG5fT56ApN+DGJlnwVyu4srfDTb+B7XyXTiG8SeaN2jNBAGx2PDWULeOnnRyoIgAAIgAAIgIBvEfj9999Z3tyWG819Bb3Xpy2JIG/2rWsBrQUBEAABEAABEAABEAABTycglsc6d+5sjm6s7fntt9+oTZv0dW2s+Tw1DkUyTz1zWVBvmbBasniJmsJRxemTDZUrV6Z//v3X6/26ZgFCFJEFBBITE5XS4pyf51gm++ziJjlE+fLlKJqtf1SrVi0LjogiQAAEQAAEQAAEQMCVgHxhtI2tjBmuKpcsWUznz19wyOg6HWbdrHemdZeNKq++gyxKlAyjiPAIU3msXLly1p1V/IsvvqDu3buruL6rQx4jzVjKxsJssfXnn3+mZs2aOeTNrZWla3bTyInRdOrMBTYe5k9nLlelUxca0JW0/Goq0Y/5CGs1+mazYTwg1dfFdhhPM/Im6RTKmkUtSjXHqnwm2wwOslRrSnNMS5W8qaJsxgWKjlOA/wUqnn8NFQ7ZwWkpVKJYAerTLYKaN7hF7Z1bP+H/S6TVW5O5+sLC3v4OkYE0eUjGLiNFiaxjvysUtzaFQoNsNOi5QHprAis6mteftN9Gs0cFUevGARk2r8bDCVS+ZBot/Dxjq2XWnX+KTaZn3kpUZUt9WYeRTsXmkeojgAAIgAAIgAAIgAC1DA+nxYsWaf00vX8gLs2rVNHkzf7+/qAEAiAAAtlCYN78eVS4UGG65557sqV8FAoCIAACIAACIOB7BFJSUtQH4bt37+bG8wDHIn8WXZu4uDivhQJFMq89tVdv2Jo1a6hBgwbpZvr888+pR48e6W5DIghkJYHLly9Tu3btKIatfGQUqlatSgsXRlPFihUyyoJ0EAABEAABEAABELghAkeOHFH9EOmLiAKZrNuDrtjkYElBU1LS8ljjlr04WZSh8ubNx8pdTU3FsVrsykfcDV4t7NmzhyfZquhZrn18UbYXqw+33nrr1YrN8W2X4hPpmx9X0bRf11EyD7aJ/On05Vvp1MW6lJSaX9WHEakJRhOvcy15wlFwGfbLFFTFT/bkIApTNid1Mt4kumOpspTS+UQEBlykYnk3UOHQrZySQoGBAfT4/fWoa4fGlDc0Y0Ut7SDZ//v8e1do2u+sSOYUCuWz0ZZZoVS4gNMGXr0UT9RpICuRrUniNRt9NiCQNu8kmsiWxeztZyUvNkR26I9QCg3O+LrbujuVOdioYumM81hrsHZbKrV4PsHkX69GAC2dxNpkCCAAAiAAAiAAAj5PAPJmn78EAAAEcoXA9u3b6bXXXlNjY/Fmsm7dOoLSaq6cChwUBEAABEAABLySwMSJEx10Z5TMWomobezRZGWGOjeeDgOKZJ5+Bm+w/sptzizdbY7MGcjFzsuSJcJo7759FBIScoMlYzcQyByBM2fO0P33309/rfjLvP6UEq9ciHxByuRfrdq16I8//qCSJUtmrlDkAgEQAAEQAAEQAIGrEDh37hwtXbqUlcZilLXTbdu3aR8RWfofmuKScyHSM7FsMfrPlmwBAQF05513UlRUFEVERFDjxo0pKOj6FZXEOvDevXstJUvU9fh1atehBQsWUOnSpZ3yus/qkePnaOL0P2nhn/9Qimh3sd/KswnV6Gz8rXQpsZTpnVJ6fkb/TyjrQxOVpgYp6bRflPWk7yi72k+HJIj9sTR2XXmUCufZRoVCWMOKFc6k1Hz0H30/fgCVCSvEedwjjPo2iYZ8IQph9nZIXeWMd4j0p4mDgynYchnNXZxM/T5OpkPsDlPaP+DZQHqjWyDd+kg8HVSuLYUGBwYU0SiA5n6YtUpe85Ym0+ODrmh6fXz8LvcFcB0tFdSOjl8QAAEQAAEQAAEfJGDIm+19Mw1CWFgY7d+/ny2ZZm2/xAcRo8kgAAIWAmfPnqX33nuPxo0bR0lJ9jHVZ+PH0wsvvGDJiSgIgAAIgAAIgAAI3DiBhIQEqlixIh0/ftylkEc7PkozZ8x0SfeGBCiSecNZvM42iKWDatWrUUqyWAfQghrg88/QD4bSwIEDjWQsQSBbCJw4cUL5DN6wYYMq37j+eM5MDzZq1KghiW/hQoXcZ6LPqB2WIAACIAACIAACnkEgOTmZVq5caVodEysJV66w+z8O6fU/RAFJNoj7HUOZR1Nr0turdtLjvKhRo4ZpcaxFyxZUsEBB+8YbjIlryy+/+PKqx4+KjKSfZs+m/Pk16143eKgc223vof/om5/4PCzfQWIOXDAns2Wy81fK0aWE8nQxqSylpsrEIlsY40+6rPxFBUywq+DE30iW8vz8Eylf0BH+30/5gg8oS2SSLm40Tx/cQEd2xFHS5f/o33//JVHWc5ewbEMqtX2JTYwpBTij/QqRanfVCn7U8HYbW1Kz0drtqbR5h1hh08IzDwbQp/2DaPveNLrzycvkx4p65vXKrEa8EkQvdszYraVRzvUsP5iURMO+1iZpZL+xfQOp20Ns+gwBBEAABEAABEDApwmIq5fqNarr8ma906YvPvjgAxo0aJBP80HjQQAEso5Aamoqff311zR48Bt04oQ+oWuOFW1UrFhR2rFjBxUuXDjrDoqSQAAEQAAEQAAEfJrAsGHDaNDgQabcWsHg/keAf4DbyZuz6kRBkSyrSHpQOS+//DJ9+umn2uSZ/ivVz5cvHx04cAAdbA86l55YVbnGWrVqRTt4Es+wPmG2Qx/whYeH09y5c9U1aW5DBARAAARAAARAAASuQUCUhrZt26bcVEZHR9OSJUvowoUL5l5aV8OUMGvp+qpjqn1NxfTVUqVKkfRTIlmRS6yOlStXziw7qyIzZ86kxx57nItjLSgO1uPL+pNPPkmTJk1ixSLPU945euI8zY3ZTAsWb6Xj/+nnhRuYxop7iUnFKDG5MLu+zMvuMPPyMg8v87AlM46n5VE4AvwuUaB/PPnbZHmJAgL43xZPwf5nKCTwFOtiiZUujVtywkU6sW81ndi/mq5cOi3oFMuXeCz0ySefqHV3+Xn+vUSa/nuKsvKlKskVk1aIOqOyRadff5LIenYqX7f2ATSmdyC7bLHRmO+T6O0JSZq3T739NlZMWzslhKpXlJ2zLnTsn0gLlrEyIJtDK1vSRpum5XGwmJZ1R0JJIAACIAACIAACnkSgV69eNO6Tcdxd0fpiRt3lwwexRgaFDoMIliAAAjdDYNmyZSTPG/WBujFO4gKdbHjTK6+8Qh9//PHNHAr7ggAIgAAIgAAIgIBJQDytyVzApcuXNMEtbzH6Hy+9/JIaC5mZvSQCRTIvOZGZbYZc5BUqVHCYUOOrXF3wr776Kn300UeZLQr5QOC6CezcuVMpke1j96lmMAZ8+vLBBx8kmUCFuXuTECIgAAIgAAIgAAJXIXD48GFTcSw2NpaOHj3KubljofnMTn9Pp/6HymSkWfaQDy2aNWtmWh2rWbMmK/JIxuwLp06dInH/I19ZO1dp0KDB9P7772V7HbKvdVrJovD3z57jtHLjPlq1YR9t2XGUlcbs1pKN4zu3X9KNNG0pv2Khy8Zff7Fb9GplqOEdFdX/l5+NoLFjx8ouDsEdP545d5Go4dMJdEi5prRX12irPYUoNNhGw15mK2AP2y2NRfVMpJWbLIporJhXjj2ebv8x1LrrTcePnEyjup0S6FK89jnIF28GU6c2/jddLgoAARAAARAAARDwbALapEp5nlThTo2jHplS+EivT+bZLUbtQQAEcprAoUOHqG/ffjRjxnRlddpxrMRrTuP/atWq0caNGyk0NGvHRDndbhwPBEAABEAABEDAfQj07t3bIm+29z/y5s1L0lfxNi9rUCRzn2svR2oyYsQIGjBggDkBYxw0MCCAdrEJ8vLlyxtJWIJAlhLYvHkztWndmo4eO+Zy/WkDPxt17tyJJk+e7JEWNrIUFgoDARAAARAAARDIkMD58+dp0aJFFBcbR9Ex0bR9+3Ytr6Mk2exvGMnG0ijY6H/IbJexLYD7xA0aNFDWxsTqWKNGjSgoKMjYJceW9evXp/Xr15vH8/f3VxaFe/ToYaZ5UyQ+MYn+2X2cjp86T6fOXKZTpy/QqbOXOH6RTv3H/2cv8zlKpaKF81OxwvmoSKFQCitagJd5qXiRvBzPT7feUpJCgu1W2sTyxS233MLulZLVfKZxjoXb8OHDqX///m6F8NTZNBr0aRJNXZDCioJ2h56idCdmyPx5YqRdywD64MUgKs+WwIxw+nwaVbovnpIlmz5xK4vn2gXQJ/2y9trt/v4VmvKb8Eyj+jUCaPGXweTnZ9QESxAAARAAARAAAV8lMHLkSNW3MvpbxhLyZl+9ItBuEMg6AvHx8STPmFEjR2kWQIyijQeNvm6s5uePwQYMHEivvfYahYSEGLmxBAEQAAEQAAEQAIGbJmDIm5NZ3izB6H/IcpgbyptVJW/iB4pkNwHP03ZNSkqiKrdUoYMHDqqqy0Utl7hMNDz2eEeaPm26SsEPCGQ1gZUrV9J9991Hp9kinuazR3u4GtefzHp1/193Gj9+PE9GYTYqq/mjPBAAARAAARDwZALSh5W+RExMjPpfvXo1GYM1c7SWTgONgZwo4WTU/5COcI0aNZTiWFRUFDVv3twtvhwSJScRlkvImycPTZs+nR544IF0WomkqxF4/PHHaQZbunU+/2XKlqE9e/a45ccL6/9JpSXrUmjDv6mUkEhUpriNbqvsR+1a+FOJItoIztrm6X8kU7d3r3CSjOq0q15chU4bFkQPNrdbLbPucyPxTTtSqUnXRD5KKhXK70dLJwVT5TLot98IS+wDAiAAAiAAAt5EQPrqlStXVl/gO/e/pS82bdo0b2ou2gICIJCDBGbNmsVWyPoq97jqsOZDxrUSsqnLE0+QGFIoXZrNMyOAAAiAAAhkOYGJEycqLwnqo0e9dIl764evWQ4QBXoFASVvnjFDtcXsmvD8Q9nSZWjvvr0kH6p7S4AimbecyUy0YzpPQHXq1MmeU65uPaxauUpZXzDWsQSBrCIgFkPEXeXFi2ze3hos11/fPn3VIC+7XUVZD484CIAACIAACICAexIQAcS2bdsoOjqaFcdiafHixXTpkt6PMEZnammsGOozWnuU50nWqRG1GpfAu5QsWZIiIyKVu8qIiAgqW7asS7bcThClOVFsK1GiBM2d+wtbRmuY21XyyOOvWbPGcYwjl4wepk6Z6jg2MjZ42PKZt6/QTzFsJUyueW6fH/8HBdho3/wQyp/X0uCbaFcql932pQRavimVAvkAP40JovC74NLyJpBiVxAAARAAARDwGgJTp06lJ57oojrfzv3vVasgb/aaE42GgEAOEhCXlK+++iotWbrE8r2MjG20p4w9xrIAXmlwVwP6aOxYaty4cQ7WEocCARAAAd8j4McPXaO/Z5W/WhXLfI8KWuxrBGSM07hxo3THPzI2ctDF8XA4UCTz8BN4PdUX1zyr+eLWrEAZj3qiJk2a0LJly66nKOQFgUwR+PXXedSx46OUkJCg8ssgz/n6++CDD2jQoEFqC35AAARAAARAAAR8k8ChQ4coLo5dVbLyWGxsLB09etRqSEyDIhIK0ZZJL/AmceunbZUehz1fPnZtIZbGxFWl/N9+++3q67n0inGXNHHf0aDBXTRnzs/KPaO71MsT6yFjnb+W/8VXhP2akHY0bNhQWbrzxDYZdU5OIarAbi3PXUzl698uzLvnDj/647Osc+Py7hdJNPK7JGJjZPTZwCB6+gHv+bLOYIklCIAACIAACIDAjREQefOqVat5Z3tfS3rjd9/ThP78E/LmG6OKvUDANwmcOnWK3njjDfrqq68oJZUHH9cY/4fxR2JDhw6jp59+Cl5OfPOSQatBAARymICNPy5MT/4KRbIcPhE4XK4TaNKkKS1f/qdZDxn/iP5Dg4YNPF7ebDZKWsQ3t32UZ92CuFcREBdAMlmigj63phb8M2vmLOrQoYNXtReNyX0CYrr+KR7EJSdpfoLNGunXn7+/P43lL4VeeuklcxMiIAACIAACIAACvkHg3LlzytKYclfJymP//PuvavjVdMVkMOY8QSU7iRUmy7wV+Qf4U0P+IjmqVSvlslImtwIDAyWrRwVRxA8JyTplII9qfBZW9scff6RH+cMGuUbUpWK5XsRlqjlGysJj5lRRyzakUNuX2f8lz7GoxqkbwUbvdA+gPk8FZUk15v+ZQo8PYJeWfKMN6OpPb3TLmnKzpHIoBARAAARAAARAIFcJyNf40tdOL8ycNZMe7cB9MAQQAAEQuAYBcZE7fvx4GjJkCJ05c0bPbRm4cYqsSZDxf1BgEPXq1UspnRUoUEDbgF8QAAEQAIFsJ5CRVymommQ7ehzAzQj89NNPrro1etfFm6wyQ5HMzS687KpOly5dSMzpOQS+oCuUr0C7d+8mUepBAIGsIiB+snu+2JNSU2RWSwZ6YiHBrrMq/oHly6Knn346qw6JckAABEAABEAABNyYgAiGV6xYwa4qY9T/WnY5mJTCyua6Fpg+znKxQmakK6mxKAJxgvYZjLlFtbpGjRrKFaRYHGvRogVBmOzGF0MOVy0lJUVZddu3b582+2BRKOvcqTNNmTIlh2uUdYcb/OkV+nia/aMN6W3Ll6ErvgulWrfIPXJzYeO/qdSqZyJdTkyjZx8MoE/6QYns5ohibxAAARAAARDwLgLO8mZD/lehQgXas2cPLAR51+lGa0AgWwj88ccf9Pprr9HWbduMYb993JbO+P/++++nMWPGULVq1bKlPigUBEAABEAgYwLpKZJJ/y81TZsLznhPbAEB7yJgyJv379vvoP8grezc2bPlzdYzBUUyKw0vjR8/fpzKly9PV65cUS00BvWyMmrUKOrTp4+XthzNyg0Cck0NGDCAUsX8tBEsc73BwcFKqbF9+/bGVixBAARAAARAAAS8jIB8ifb3338rpTFxVylu1C9evGhvpaVvIH1TMRclSjDOwdpvtW4rVaokWxuLVMpjERERVKZMGetmxEHAgYD0T/v162dP06+/4KAg2rd/P5VklyieGOp3SaQd+1JYYJdG4l5AbqKwIkS7fsmjlC5vpk2HTqRRi24JdPS/VHokPIAmDwnmyeCbKRH7ggAIgAAIgAAIeBOBY8eOUcWKFSkxka2jGkHvY40cMYL6WvtexnYsQQAEQMBCYPLkydS1a1czJaPxv3xQVr16DeXdpHXr1mZ+REAABEAABHKWgFIk0/t75pF5PS01PamumQMREPBKAqNHj+YxT18lj5UGGv2YIJY3HzhwgMLCwjy+3VAk8/hTeO0GiEngIe+8w/MK+tNdFhxCQ/LQ4cOHqHDhwloCfkHgJgm8+eab9MH77ztea9x/0K48G+XLl5fE3GMrdjWFAAIgAAIgAAIg4F0EDh48SLGxsabVsRP8MYNz/1MskCk7papzoPdNBYMR5aVYVDLED0Zy/gL5qXmz5iQWx+T/tttuY0UZ2YoAAtcmIO5RypYrS5cvxbtcfzJWeuutt65diJvl2Hs4jWp1jFf3jnbP8P3AX4B2uS+QJg6+Octh5y6mUdQLibR9TwpFNgqkGcOD2H2MmwFAdUAABEAABEAABHKVwHvvvktvvf0O18EU/KkufWgekTcfpkKFCuVq/XBwEAAB9ydw4cIFVhCrTkePHlWVNcb/hnxA1gsWKkxvv/0WvfjiixQYiEGJ+59V1BAEQMCbCfixLNZB1qt3A+UDRwQQ8DUCp0+fVoacLl26zE3XbwaBwPMfQ4a845HyZudzCEUyZyJeti5uhCpXrkyHWGFMm5Ezu+P0v//9j8QFIQII3CwBsTrSq1cvGjdunFmUdqXp1xsvChUsRL/+Oo+aNLnHzIMICIAACIAACICA5xI4d+4cLVq0iBXHRHksmv79919d3mt//zv3P83WchYbD6oMO2TaHipRDbYC2Q32XQ3voqjIKKU41rBhQwiNTXiI3AiBHt170MQv9LGP5foTa3bi9lJcr3tSGD8zmfp9rFmc1sR1aeTHd+A3bDmsQ6T/DTclgYu8/5UEWrElle6u7UdzPwqhPCFXLy45OY0m/5pMXe4NpNDgq+fFVhAAARAAARAAAc8nIF4vKlWqREeOHHHp/3f/X3eaMGGC5zcSLQABEMgRAt9++y11faarKRvQDmrj8Zk/Pfvss/Q+f7RevHjxHKkLDgICIAACIHB1AsZHvaYcVwS/vAKLZFfnhq3eS6B79+70xRdfcAO1u8Joqcib9+7d6/HzGVAkM86oly5nzZpFHTt25OtXnuS6NqQ200CbN2+mWrVqeWnL0aycIpCcnEzdunWj73jQpy4teVZysFoTKV6iBC384w+64447tI34BQEQAAEQAAEQ8DgCMmH0119/KatjsTExtGbtWkrhfkBG7//0+p/pNpr7qTwooRq33qpcVYrFsebNm1OBAgXSzY5EELgRAlu2bKHatWu77srX38wZM+jRRx913ebGKREvxNPqzboqpnS8WWDhz/3wvfNCqUhBvUN+nfVPTiF6fEAC/f5XCtW/LYB+HRtEBfJeu6xR3yXR0K+TaffckBs+9nVWFdlBAARAAARAAARykYCSNz/G8mYOVvmf9P+3sLy5Zs2auVg7HBoEQMCTCKSmplLjxo1p9erVZrWbNm1KH3/8MdWtW9dMQwQEQAAEQCD3Cdj8NBmRc/8vjZ/lCCDgiwRMebPcGrr+jcFBxkwdOnQwVj1yCUUyjzxtma90eHi4shRh7GFcx814cm7J4sVGMpYgcEMEZEK5c+fOyl2lFKBdX8ZVphVZtmxZio6Opho1atzQMbATCIAACIAACIBA7hAQi6N/s/JNNCuNxfD/0qVL6dKlS07f16T//rfW2N4zMNxacgqXXbp0aYqIiDDdVco6AghkJ4EWMgZatkxdf3JdysUs39q0aNmCFsUtys5DZ2nZ6/9JpWbPJagyNeEdN4Qjdar70fKvr2E+LIOaCIfuHyTS1N9TqFYVP/rt02AqlF9RymAPjd2s6BTeL4nua2qjH96HObIMYWEDCIAACIAACHgRgfCWLWnR4iXcIsfZkmbNmtGSJZKOAAIgAAKZJ7By5Uq65+67qVz58jRixAhlGMGwepP5UpATBEAABEAguwnYbH58CMf+nxxTZMgIIOCrBGQM9CfLm7W7wD7/0bJFC4qLi/NoLFAk8+jTd/XKb9u2jb8AY4tjaakuj/Xp06fTY489dvUCsBUErkLg8uXL9PDDD9PChdGcix+PMs/k1FeoUqWKUiKrVKnSVUrCJhAAARAAARAAAXchcPDgQWVxbGH0QoqLXUTHjx/TqubyntcTXNIzyM7JBQrkp6ZNm5lWx2677TY2WiAFIIBAzhCQMVDnTp2cu6wkX1T+veVvkmvS3cPW3Sn02IAk2nc4hdK43qJIZoSyJfxo4/QQCrkBfa7XP0yiiT8lqaIa1vKjEoX9mFMqd/H5HuX7VISCcreminAwzY/OXUyl3YdT6ehJ7ehzPwqmiAY37lLTaAOWIAACIAACIAAC7k1g67atVPN28XBh6YTwmvQTpkHe7N4nD7UDATcmMHv2bGrTpg3lyZPHjWuJqoEACICAbxNwluNK/096hFAk8+3rwtdbP3PmTBedG7k3RJ7699+eIW/O6BxCkSwjMl6Q/sorr9C4cePkSuV/fpTri5JhYbT/wAEKCgryglaiCblB4Ny5c/TAAw/QMrHowBcWTy3ZxUf6dSZm7MUSWcmSJXOjijgmCIAACIAACIBAJgicOXNGWQ2IiYlmq2Ox9O+//15jL/1Fn8H7376zjfuagdSgQQNldSwqKkrFAwMD7VkQA4EcJiDWdMvzV+7Hjx83hkaqBnJVv/Tyy/TJJ5/kcI2ufbiVW1Jo5eZU2nUwjVb/nUbb9ibzTkq9y9L/FuUubgUreVUq609RDf0orKgfBQak0QPN/KlqefliNOPw9udXaPQPSXqplnwiDTRueZXMKzZxV+B4/Ipl/GjLjBCRjyCAAAiAAAiAAAh4OQFT3uzQRyAqwfLmQ/xRCvr7Xn4BoHkgAAIgAAIgAAI+S0C5thRZkRm0DiEUyUwgiPggASVvLleOTpw4YZfV6hxedlN5c2ZPExTJMkvKw/KJ2yFxKXj23FmlQ2at/sCBA2no0KHWJMRBINMETp48qb4OWr9+veO8krlmo7vuuosWLJhPxYoVy3S5yAgCIAACIAACIJD9BGRgs2LFCqXsHRsbS2vXrqWUZLZs5DLMcayLKIiIISIJjnNGxhorlnCm2269lSKjIpW7yubsRjB//vzaTvgFATchMHjwYIexkPFJRKFChenQoYOUN29eN6mpVo0nBifS3CXJfP9pn2748R2oqXLJdv3+EyUy5V2Ab1Ll61LSOfDq9x8E0cMtA7T1dH5Hf5dM70y4ohcl++v7WvLauMyrHf/t/wVS36ehJGpBhigIgAAIgAAIeCUBkTeXK1eezpw5ze3jPoN0G2SQwMuBAyBv9sqTjkaBAAiAAAiAAAiAgE5Auba09P8McTIUyXCJ+DqBQYMG0bBhwxiDzJGIHFUjUqhQITp8+LDHWlyFIpmXXtmTJk2ibt26qQvW1CTjh7sf+y/etWsXVapUyUtbjmZlJ4FDhw5R69atadv2bdph9Aeh9Zgt2OfvL7/8goljKxTEQQAEQAAEQCCXCMhAfvPmzWxtLEb9/8nWRC9eusxDmgxUx7i/aNMVVlyqLIICCZb3f+nSpZXSWGRkpLI8JusIIODOBPbu3Uu3VLmFXTSKOpZj+Oqrr+i5555zTMzltS07U2nHAe2mU3ctRw1XAnJ/a3HtfhalOBFYpHHbjHRxN1kov3HzujamaMtLlHBFU6fjndK9/+Xopn6ZqopK4dQ0CvC30b9zQtkCWsbHcD0qUkAABEAABEAABDyRgF3e7Fh7f39/2rlzJ+TNjliwBgIgAAIgAAIgAAJeRcCQR2mNEjmQEhKxHEpbelVj0RgQuA4CSt58C8ubU1kmy/uxxFYktOoOcUd5c2abBkWyzJLysHwNGzak1atXa7W2P8upbdu2bClqgYe1BtV1BwKigNiqVSuSh2FG4f777yfxBRwaGppRFqSDAAiAAAiAAAhkM4ED7MLcUBwTq2Mn0zGr7FIF7i8qQ0Zqg8OKQ9aCBQtSs2bNWHksiv8j6LbbbnPYjhUQ8AQCMib6/fff7VXVL/k72aquOYayb0UMBEAABEAABEAABECACVjlzaJkbswZtmnThn777TcwAgEQ8CECKSkp9P3331Pnzp0pKCjIh1qOpoIACICA7xLw85OPFy3t5/6gaMpAkczCBFGfJeAib9ZJiBc3T5U3Q5HMCy/nDRs2UL169eVjdDWi1wb22tN89uzZ9PDDD3thq9Gk7CSwdetWiopqRceOHlGHEe85So2WFyrKP491fEwNHgMD4dYmO88FygYBEAABEAABZwJnz56lRYsWsfJYLP9H044dO5T1IHFFp17Yxstavbz1NOdC1LrrtsDAIGrcqCGFR0Qoy2MyeRQQkLGbvHSLRSIIuBkBGRM98sgjTrXSrv9169bxWKqe0zasggAIgAAIgAAIgIBvE1Dy5vrcR1KTh8a4gZf8N/unnyBv9u3LA633MQIif3i1d29l/XzUyJHUp08fHyOA5oIACICAbxLQLJJp/T/RKDP0D8QyPgII+DqBOXPmUPv27RmDMVayE1m/fj3VrVvXnuAhMSiSeciJup5q9uzZkyZ8/rmh52PuWrJkSTp48CAm/0wiiGSGwOo1q+netvfSf/+d5uxWVXNtbzHO2O35bjR+/HhcW5kBijwgAAIgAAIgcJMEEhISaOXKVRQbG0PRCxfSWlZ8ka+BXYco9gM5bzPXzYiW148lALfdXpMiIsMpiq2OifWx/Pnz2wtCDAS8gEBSUhJVqFCRjh7jjyQs3Vu5HXq80JP7tZ95QSvRBBAAARAAARAAARDIOgIv9nyRxn8+3mHMIX2nMMibsw4ySgIBNycgnkr69etHP/74o/ksKFCgIH/M9i+FhYW5ee1RPRAAARAAgZslIIpkTqJkVSQskt0sWezvDQSSk5OpfIXydPTIUdUc817hyAs9XlB6FJ7WTiiSedoZu0Z9L126RGXKlKFz5865PMwHDhpEQz/44BolYDMI2AksWbKEHnzwQTp/4bzp7sr64JOJt9dee41Gjx7NmueyBQEEQAAEQAAEQCCrCchgfNOmTcpdpbiqXLp0KV2+fDndw5jvaWOr9mmYvqa/q5UPSy2n/JbmvmNkZKT6Dw8Pp9KlSxt7YwkCXktg8ODBNGzoUF2PjO8EuS84FOSJkMOHD1PevHm9tu1oGAiAAAiAAAiAAAhcDwGrvNl5v0EDB9IH3KdCAAEQ8F4C8gwYyZbHRo0eRfGX482GalIFomeffZYmTZpkpiMCAiAAAiDgnQSMeWDj+W+0EopkBgksfZ2A6OIMHzZckzPr3mLkfilQ0DPlzVAk87IrevLkydS167PmRIjxhb083Hft2kWVK1f2shajOdlFYMGCBdShQweKj0/gQ/DEmnPPgFOHDHmX3nrrzeyqAsoFARAAARAAAZ8lcODAAYqOjlbKY3FxcXTixAkLC8tLmaNKL0xe1LoijNH/kx0sOc39CxQoQC1atFCKYxHssvK2224ztyECAr5CYPfu3VS1alW2xK8pkFl1Lr/55ht65plnfAUF2gkCIAACIAACIAACVyWgyZu7anks4w/pP+3cuZOqVKly1f2xEQRAwDMJyFhp2rRp1L9/fzp06JASMKQnf/Dz86NVq1bRnXfe6ZkNRa1BAARAAAQyRcBm80tX/mzI1jJVCDKBgBcT0OTN1VitItU6RaNa/PXXX7MOjz6m8hAGUCTzkBOV2Wo2adKEli9frrLzWF67SDkS3qIlxfIkJAIIZIbAjBkz6MknnyRx+6OCeTHpqywp+uijj6hXr16ZKQ55QAAEQAAEQAAErkHg7NmzJApjMTEx6l8mZNLVAtPLsb6a041bEoOCgqhRo0YkSmNieeyuu+6iwMDAa9QIm0HA+wnI/SBW/iy3i2p0k3vuoWV//un9ANBCEAABEAABEAABEMgEAZE3/8XyZk393j5MEWvG0pdCAAEQ8D4C69atU7J/mWuyjpfSjXNiT3bZ9Nn48d4HAi0CARAAARAwCbhYJNNfClAkMxEhAgJqDkbmecxRk36fyJhq2bJlHkUIimQedbquXtnt27crixL2r+mNbr2Npk6dQp06dbp6AdgKAkzgq6++oh49elBKSgq7q2RlRN30ogbHRgH+fjThi4n03LPPgRcIgAAIgAAIgMANErhy5YpS/hfFMZl8WbtmLaWmypcqaem+f+3WQfX+nVoYfT0elqh3tlRG0ohq1apFUVGRJJM7zZs3p3z58ql0/IAACNgJTJ06lbo80YVvL5s+OWK//7Zt20q33nqrPTNiIAACIAACIAACIOCDBP755x+tT5TO+OOHH6ZQ586dfZAKmgwC3kvg+PHj9MbgwTTpm6/FmAYHw1NJ+vKH0qVL0fDhw+mJJ55guYQmj/BeOmgZCIAACPg2AT8/G88ZCwPjnaAtoUjm29cFWu9IYMqUqdwvYnmzeZ8YURt5mrwZimSO59aj1/qxieFRI0fpbTA6+ESFChWio0ePUkhIiEe3D5XPfgIffvgh9enTx3Tx43zEoMAgmsJKieLyEgEEQAAEQAAEQCDzBERJbMuWLRS9kN1VxsbQsqVL6XJ8fCYLMAbn9uxmitIgIypXtixFREao/8iISCpZsqQ9M2IgAALpErh8+TKV5XvnzJkzLtv79u1LI0eOdElHAgiAAAiAAAiAAAj4EgFxaSd9IufxR5HChenQ4UMUGhrqSzjQVhDwWgLysdunn35K7w55l86dP+fQTuf7XzaGhART7969adCgQfhwzYEWVkAABEDAewko15amgrG9nVAks7NADASuJm8WHYxRowxdHvdnBUUy9z9HmaqhdPTLly9PJ/iLEc3MuNm9p549e9Jnn32WqXKQyXcJvPPOOzTk3SHqIyOhYL+CtFiePHlo1qxZdO+99/ouJLQcBEAABEAABK6DwL59+yg2JpaiY6Jp0aJFdOLECd5bf8OqhTWuFaynmPns69YD26hgwQLUokVzdlUZxZbHoqh69erWDIiDAAhkksBLL71kjpXs95uNSoSVoEMHD8INbCY5IhsIgAAIgAAIgID3EUhKSqJy5crR8eMyjmHLrepXG9G8AHmz951wtMhnCSxYsIB6v/Ya7fz3X31uyYpCu/Ot93+7hx6iMWPGUOXKla0ZEQcBEAABEPByAprlSeONYG8sFMnsLBADASGg5M3jWTfH8Pqm3zZhYWF00IPkzVAk85Lr+ddff6UHH3ww3dasYVdJd95ZP91tSAQBecG/zgPFj8aO1WHw08zG6oiaRqJKK1CgAM2bN4+aNm0KYCAAAiAAAiAAAhkQOH36NC1evJitji1kq2NxtGvXLs6pq/jz61VMf1uH2ta42uL0/rUeJigomBo2bEBRraJILI7dddddFBAQYM2COAiAwA0QWLNmDTVo0NCl/ytF/fLLL/TAAw/cQKnYBQRAAARAAARAAAQ8n8DcuXPpIVYYUUFZQrYLC1evXq3GJJ7fSrQABHyXgLiuff3110kUyRyDo7SCfVYqgUbNmjXpo48+4g/aIh2zYw0EQAAEQMAnCKTvwljcXSpfyD7BAI0EgcwQWLt2rRorOfaoeI3nf+b+PDdDnZ7MlJ2TeaBIlpO0s/FYDz/0MP38y89qrtJ6UdasVZO2bN6SjUdG0Z5MIDk5mXr06EGTJk1yaYa6jvinWNFi9Ntvv7Ey4p0ueZAAAiAAAiAAAr5MIJ5dU65YsYJiY2MpJjqa1q1fTykpKXYk2tjAUCXjdJl4sfbU7FmNmPH+tXE+EdKKu8pWbHWsabNmcBdhQMISBLKYQO3atZXrWeP+M4pv164d/TyHx1gIIAACIAACIAACIOCDBNo/3J7m/DzHseXcYapVsxZt3rzZMR1rIAACHkPg/Pnz9O6779K4cePoStIVe70tH79ZJRdFihQh8Wbywgsv4IM2Oy3EQAAEQMDnCMh8shn4RZGWyhZrWdl4woQJZjIiIAACGgFD3uzMQz7UmTPHaYzlnMlN1qFI5iYn4maqcerUKSpdujSJuXF74Cc4azWOGT2GXmNrUwgg4ExA3KE+8cQTyl2l2qZdMqYhMhksli5ThhayVZXbbrvNeXesgwAIgAAIgIDPEUhNTaVNmzZRTEyMUh5bunQpiTKZPRgvU3mL6q5ftKimPiZxDjY2aZxmvHGNXTi9LLuNieIve8VVZXh4OImpYwQQAIHsJyBuWfr06eOg5im3a0BgIB0+fJiKFy+e/ZXAEUAABEAABEAABEDAjQicPHmSypQtQ8lXktTIRR/WqBqOHj1aWTFyo+qiKiAAApkgIDKNyZMn08CBA+nEiRMu4x+7zUGtsAB/f3q+e3d6/733SJTJEEAABEAABEAABEAABDJH4EOWN7/O8mbpcFkd0QSJvPnIESpWrFjmCsrFXFAky0X4WXXoTz75hHr1epWLc+zqi7ujQ4cOYRIyq0B7UTky6f3II48oS2MZNaty5cpKiaxKlSoZZUE6CIAACIAACHg9gX379inFMUN57NSp/7jNRp/LOp1iR2H3+pL+diOnuI4WhTFxCyH/1atXNzZhCQIgkIMEjh07RuVYkVOs9dqD2AUkdt3yIfV6VcZaCCAAAiAAAiAAAiDgOwQ0eXMvbrB1TGNja0T+kDf7zmWAlnoZAZkPmD17dgat0sY/2kdvNmrZsgWNHTuWxJoGAgiAAAiAAAiAAAiAwPUREHlz2bJlHT3Y6EWIq/BXPUDeDEWy6zvnbpm7PrscXL9unUvd7rvvXpo3b75LOhJ8m4CYrn7ggQdIrKioYMiDeKlpxNrYAtmtSomsDFskQwABEAABEAABXyJw+vRpiouLM5XHdu/erTdfhKqmHTHH+ZRrADJetUFBQdS4cWOlNBYVFcluo+8if/7CFwEEQCD3Cdx///20YP4C612uKlWvXj1al85YK/drjBqAAAiAAAiAAAiAQPYRqF//Ttqwfp35CY2hT3bfffexvHle9h0YJYMACGQbgR9//JE6Pvoo39ealMJJyqGOW6lSJRo1apT6CD3bKoKCQQAEQAAEQAAEQMAHCIi8ef6C+ab+hebFxkZ169X1CHkzFMk8/CL9+++/qVatWq6t4LHAjOkzqGPHjq7bkOKzBMQNatu2bWnturV2YypMQw0d9Vnu+vXrK0tlcOHjs5cJGg4CIAACPkUgISGB/vrrL4qOjub/GNqwYT2lpqWa7iddBKv6+zJdSLzN6rbS5mej2rVqU0SEWByLoGbNmlHevHnT3RWJIAACuUtgxoyZ9Pjjj6mOsXEfG/f/li1bqGbNmrlbQRwdBEAABEAABEAABHKIgIO82Wn8M2MG5M05dBpwGBDIFgIRERHq4zl9RsAc/+TNm4cGDBjILphep5CQkGw5NgoFARAAARAAARAAAV8iMHPmTHpM5M2Ggxvj6xweY23Z7P7yZiiSefjV2r9/fxo5cqTWCnNgb6NCBQvS0WNH0en38PObldU/wv52o1pF0bat21Sx2uViXjQqrWnTpuqrQnG1hQACIAACIAAC3kggNTWVNm7cqCyOifLY8uXLKT4hXnXmHd+K9jUVs68a3X0Nj5muRcpXqEAR7K4yKipKua0MCwvzRoxoEwh4HQFRKi1VqhSdPXuW22be2CrWt38/GjF8hNe1GQ0CARAAARAAARAAgfQIKHnzKJY36xMeRs+oUKFCdPQo5M3pMUMaCHgKgc2bN5NYXU5NSVG3uM1mo06dOtGIESOU+yVPaQfqCQIgAAIgAAIgAALuTiA+Pp5Kly5NZ8+xvJnHVsa4Surdrx/Lm7n/5c4BimTufHauUTeZCK1YsSIdPHhQv/Dsl1+3bt3oyy+/vEYJ2OwrBPbu3avcaO3Zs8e1yfpl07pNa5r902zKkyePax6kgAAIgAAIgIAHE5D3YGxsrLI6Jsv//vvP3mu3d5/saZa2WjdryfYUiRUsVJhatmyhFMfky95q1apZ9kYUBEDAkwh0e74bTfpqklll424vW7Ys7d+/n/z8/MxtiIAACIAACIAACICANxIQeXMF/jjm0KFDevOMHhHR892epy++/MIbm402gYBPEejZsyd9PuFzql+vPn388cd0zz33+FT70VgQAAEQAAEQAAEQyCkCz//vefrqy6+0w9mHVkqB393lzVAky6mrJBuOExcXx66SItItecnSJdSsabN0tyHRtwhs27aNWrdqRYcOHzY1XS3PKQXj0Q4daMrUqRQYGOhbcNBaEAABEAABryRw+vRppTgmSmMxMTG0Z/du7Utbbq1pRZjj2vvQ+mvgMBzaGevaUnIGBQdT48aNVR9MrI7deeed5O/v75gRayAAAh5JYOnSpdS8eQt+NqQ5PCukMfI8CWdrgwggAAIgAAIgAAIg4M0ErPJmZ/nhkiUsb24GebM3n3+0zTcIyMd1v/zyCz399NP4WMY3TjlaCQIgAAIgAAIgkEsEli1bpsZQjmMrbf4pxs3lzVAky6WLJisO++yzz9I333xjL0q/AivyV2N72PKGmCVG8G0C69atozZt2tB/p05pk2FyTaRpU+ja1WGjZ7o+o6zXYRLct68VtB4EQAAEPJmAuKT7888/TatjGzZsIPmSXu8ascaY6/tPvQ1t/Ku9FtNpvrG3jerUqc2WPaP4P4LEDXTevHnTyY8kEAABTyeQxv3kSpUqK+tjzg+Hrl270tdff+3pTUT9QQAEQAAEQAAEQOCqBLp2fZYmT/7GzGN8YiNWysTSM+TNJhpEQAAEQAAEQAAEQAAEQAAEQOCqBDR5cyVd3mzNaqOurKPhzvJmKJJZz5cHxcWnain2qXruLPtUVfOcxmQn0YABA2jYsGEe1BpUNTsIiEWFdu3aqWsk3TlyvmR6vdKLPvroIwiBsuMEoEwQAAEQAIFsIyBKYqIsJtbG5H/58uWUwH0j432ndOl5xVh3qIh0mfSg6ZFpfSiVzD+ib12+fHl2VRnJVscilWvo4sWLG7tgCQIg4OUEBg4cSCOGD7c8P7RnRIGCBej4seMUEhLi5QTQPBAAARAAARAAAV8lIB/olCxZis6dO8cI9NGU1hWiAQNZ3jwU8mZfvTbQbhAAARAAARAAARAAARAAgRsjYMibRadHt/ej1HsKFCxIx48fp2D2guOOAYpk7nhWMlGnn376iTqwO8L0wpYtW6hmzZrpbUKajxD4448/qH379nT5cjy32D6NLrIf0TwUZz1vvfUWDRkyRKXgBwRAAARAAATcncCePXtMxTFxtyKuGBwCv+TsBsbkjZf++8+6j8rFWmdFChemFi1aKKUxcRterVo1azbEQQAEfIjA1q1b1VjKYshQaz0n/DhrFj3yyCM+RANNBQEQAAEQAAEQ8CUCP/30I8ubH7U32dIhgrzZjgUxEAABEAABEAABEAABEAABEMgsAUPerFuHMneT4dasWT+6rbwZimTmqfKsiCiRiTKZEWQiVEKtOnVo08aN2gp+fZLAjz/+SE906UKJV66k336+WEaPGk2vv/56+tuRCgIgAAIgAAJuQEAUxURhTFkdi42hPbv3cK2U6pdZO6P/k+aYbG53iOh5ZBHEX3g0btyYrY6Ju8pIqlevHgUEBDhkxwoIgIDvEqjDY6rNmzc7AbDRww8/RLNnz3ZKxyoIgAAIgAAIgAAIeAcBZ3mzMf6qVatWOn0j72gzWgECnkLg4sWLtHLFCopkOQYCCIAACIAACIAACICAZxGoXbs2ycc5lm91VAPEMJBV58edWgVFMnc6G5msy/nz56lkWBglJCbo5u/ss6fi0lJcWyL4JoFvvvmGunXrRuLyyxpsuhUyf39/mjBhgspj3Y44CIAACIAACOQ2AXHb/eeff1IMK43FRMcoxfgUfp+ZvRxDEYyXmvlfc0uGVTfefzbund9xxx3sqjJCKY41bdqU8uTJk+F+2AACIODbBIaza0sxOW4+ZfRIaGgoHTt2jAoUKODbgNB6EAABEAABEAABryMg8uYwljcnsntLZdtZ7//IRMdQdmkJebPXnXI0yEMIpLEA5IcfflD34JkzZ2j79u1UoUIFD6k9qgkCIAACIAACIAACICAETHkzj68M95aSHhISotxbuqO8GYpkcoY8LHz77Xf0zDNPm7VWmou85mfzp127dlKlSpXMbYj4DoFx48ZRr169+OHD4h5d2GO2ntcDAwLp22+/pU6dOpnJiIAACIAACIBAbhEQped169ZRbGwsxcbE0vLlf1I8T1o4B0MZzCVdOtySyObINKfNHLe8/ypWrGgqjoWHh1OJEiWci8A6CIAACKRLYO/evVSlShX1kBGX8NYg/emnnnrKmoQ4CIAACIAACIAACHg8ge+++46efvppHlKZoyvVJpufjXbv2g15s8efYTTAEwmsXr2aXnnlFVq9epUp/+jY8VGaMWOGJzYHdQYBEAABEAABEAABnyVgyJuVHoeFgoy/vpn8jRqLWZLdIgpFMrc4DddXifvuu48WLFigz5XaZ0wbNWpEK9i8MYLvEXjvvfforbfeUhPoNp7rStOvDmMh1hNmzZpFcu0ggAAIgAAIgEBuEdi9ezdFs7WxWLY6Jm4rT58+w1XRlTSMLg0vtXeZVksj2XinaetmqpmpSKHC1KJlOFsc06yOVa1aNbeaieOCAAh4AYHGje+mVStXaE8o/ZEjizZt7+Wx2HwvaCGaAAIgAAIgAAIgAAJ2Ao7yZk7X+z+QN9sZIQYCOUXg6NGjykLy96zgmap9QWc/NN+bixctpubN5OpAhAAAQABJREFUm9vTEAMBEAABEAABEAABEHB7AiJvXrlqhcv8V9t776X5891P3gxFMre/pBwrePr0aSpZshQlJV0xB/TGwH7s2LHKIpXjHljzZgKitdq3b18aM2aMSzM1eY+NXe/kp7lz51KLFi1c8iABBEAABEAABLKTwKlTp2jRokW0cGG0Uh6Try7MwC8qG1sTM6z9GO8trRct32GIipmuZKZ20lKMfk9wcDDdc889ylVleHgE1a9fjwICAsziEQEBEACBmyEgY6vevXvrRdifP2LlV9xbFilS5GaKx74gAAIgAAIgAAIg4DYExF1eWIkwSkpOstRJ6/9A3mxBgigIZDOBxMREknvugw+G0oUL513mf4zD16lTh9auXQsZiAEESxAAARAAARAAARDwAAIff/wxvdr7VZ74cpz/Cgx0T3kzFMk84KKyVnHSpEnUrVs3LUmfz5AVPz8/OnDgAJUpU8aaHXEvJpCSkkIvvPACffnll2pQaVpvkeuCg6wXKVpUWa9r0KCBlohfEAABEAABEMhGAvHx8fTnn39STEyM+t+4aROl8vvKUP7K8NDsp5s7pQ5qY855pa8jwtIItjgWFRlFTZo0oTx58jhnwzoIgAAIZAmBI0eOULly5Ujc8JpBH3999dVX9Nxzz5nJiIAACIAACIAACICAJxNwkDdbGiJjsP3791PZsmUtqYiCAAhkB4Fff/2VXnvtNdq1a5e9eMv8j8hVrPL/33//nVq3am3PixgIgAAIgAAIgAAIgIBbEzh06BBVqFDBUd6s19gd5c1QJHPry8m1cq1bt2arHgvNDcZYolmzZrRkyRIzHRHvJpCUlKR85U6fNs1h0l27HrTfUqVKsfuwaLr99tu9GwZaBwIgAAIgkGsERKl5/fr1FCuKY7GxtHz5ckpISHCpj9FfEY0yZYOMFceIFcckXX446hj0HSpWrMhKY5GsPBZJ4eHhVLx4ccd8WAMBEACBbCQgFn2dx1jyeIpq1Yr++OOPbDwyigYBEAABEAABEACBnCNgyJv1YZh5YMibTRSIgEC2Edi2bZuyhBzNcz7OohE5qPN9eQd/YDeWrVnAtWW2nRIUDAIgAAIgAAIgAALZRkD6cEuXLRV3PA79vFZuKG+GIlm2XQZZX/B///1HpUqLW0s2M+4wqrDRuHGf0EsvvZT1B0WJbkdAJugfffRRmjdvnl43fThpGVWKNqtYg7nlllvcrv6oEAiAAAiAgGcTkK9jRVE5NjaO3VbG0ekzp536JVr7LK8llwZntK1IkaLUsmULioqKUopjVatWddkXCSAAAiCQUwTGfTqOXnn5FcdRPR88MDCIjh49QkXZ+i8CCIAACIAACIAACHgyAZE3ly5dmq5cucLNsIzUODruk3GQN3vyyUXd3ZqAuJQdMmQIff755+nef87zP8WKFaV333uXnu/2PFxauvWZReVAAARAwHsJTJw4kT8I54/D5SNxCfJ1OMe7d++ureMXBEDgmgQ+/fRTevnll/V89vFXUFAQiYcMd5I3Q5HsmqfTfTK4mhnXLi4/f386dPAgiQUqBO8mcOHCBWrXrh1P3C/ihhoPF926i970W2+9VVmtg9l5774W0DoQAAEQyCkCJ0+epLi4ONNd5b59+/nQotHu+P4xX0tmxfT3lOPC3CqR0JAQanR3Y+WqMjIigurVr0/+3K9BAAEQAAF3IHD06FEqU6aMEpJp9bH3v7/66ku4t3SHk4Q6gAAIgAAIgAAI3BQBV3mzVpy4tRTXK5A33xRe7AwCLgTEsvuXX3xBb771Fp06dcplu2OCjZXG/Klnz570zjvvUOHChR03Yw0EQAAEQAAEcpCAzY/lYk6GbiRBlMsQQAAEMkdA5M2iw5Gamuqyg7u5t4Qimcspct+Ee++9l3777TdR7lVKvlJTmcpo0rQpLV3KJvAQvJrA6dOnqW3btrRmzWqH829/Pduobt07lJsduP7y6ksBjQMBEACBbCVw+fJl5aJSXGnHsrvKTZs2qU6tc//D+v4xFMs0ZTLeYuhaONVUlN/r3lGHIiOjKIIVx5o0aUKhoaFOubAKAiAAAu5DQFw6/fnnMpf+t/TLFyxY4D4VRU1AAARAAARAAARA4AYIGPJm512bQt7sjATrIHDTBGQOp9crvWjjpo1XLcuQv4i19rFjx9Jtt9121fzYCAIgAAIgAAI5QcBm89Pl/o7yfyiS5QR9HMObCCj3lk66PdL/a9PGveTNUCTzkKvu7NmzVLJkSUpMTNRqLBO0EvhZ/fHHH9Mrr7DLFQSvJSDaqW3atKHNmzdrbbScf6PRd999N82fP58KFSpkJGEJAiAAAiAAAtckIF/Drl27Vlm7FJeVy/9aTlcSrsi3RK77pvP+cc0kKZJR279SpUqsOBap/sPDw6lYsWLp74JUEAABEHBDAp988gn16tVLe6xJ/fRHo5gbP3bsGKwCuOE5Q5VAAARAAARAAAQyR0DkzWElwygpMcll/Cd9ILvLlcyVh1wgAALpE9i3bx/179+fZs6c6ZiBRSe2NJvL/XfLLbfQ6NGjlWcSxx2wBgIgAAIgAAK5R8B0aamqYJf/Q5Es984JjuyZBEx5s1P1g4KD6Pix426j6wFFMqcT5K6rP/zwAz355JMu1fNj9cT9Bw4oE3guG5HgFQT279+vJt937dqVYXtatWpFs2fPprx582aYBxtAAARAAARAwCCwc+dO01WluEs+c+aMUpKwsYKEpiOhpJnGirHbVZfGF7NFihQhURgzlMeqVKly1f2wEQRAAATcmYC4dCpfvny6Zvq///57euKJJ9y5+qgbCIAACIAACIAACGRIYMqUKXpfxnH8J5OEByBvzpAbNoBAZgmIxfcRI0bQqNGjKP5yvH03h1vOvpIvXz4aPHgw9e7dm4KDg+35EQMBEAABEAABNyDgx64tHbxY8itMJhOgSOYGJwdV8CgCIm+uUKFCuu4tRSeoS5cubtEeKJK5xWm4diUeeeQRmj1nDn+hok3v8ocq6uHcqFEjWrFixbULQA6PJLB9+3Zq3bo1HTx4kCf4bS7nXxrVvn17mjp1KgaXHnmGUWkQAAEQyBkCJ0+eVG4qY2JiWIEslvbv35fBgfUOhnVrBu8flZN/QoJD6J57mrDiWIRSHqtXrx75+bGZawQQAAEQ8BICdze+m1as4jGXNhTTbC7y8+/hhx5WH3N4STPRDBAAARAAARAAAR8jIDLFOSxvdgg8/mvcqCH99RfkzQ5csAIC10lA5DD169/Jcv0DGexpl7+IDEWMCAwbNoxKlSqVQX4kgwAIgAAIgEDuEtAskvH7S73C0mTampXIRLksNXcrhqODgAcSEE9zSsfHaf7NneTNUCTzgAvr0qVLVKJECbqsvlrRZy/0essXLf369fOAVqCK10tgw4YN1LZtWzp+4rg+aWUfXBplyQDz66+/poCAACMJSxAAARAAARDgPsNlWrZsmbI6Ju4qlWtkVka39iLMt4oZ0cBpq/xrmidzzCACzjp16lCrqFYUGRVJ0uHNkycPqIMACICA1xIYNWqUw5iLP+/g52ka5QkNpZOnTuEZ6LVnHg0DARAAARAAAe8lIGNGJW9muTNPAzqM/0aOHEF9+/b13sajZSCQQwQeuP9+mjd/vjbfLsd0FK+o1YZsKOCjsR9Ro4aNcqhWOAwIgAAIgAAI3BgBUSRzepWpgmCR7MZ4Yi/fJjBy1Ejq368/Q3C8q2Su7cSJE27hhQ6KZB5wjf7888/0cPuHzflc83LiyM4dO+mWW27xgFagitdDYPny5XT//ffR2bPntN34XBvz+cb5f/nll2ns2LGw+nI9YJEXBEAABLyUQEpKCq1bt04pjsWy1bHlf/1FiYmJWmu1T4P0lstbhIN6qWhvFOO9ojqski7B0DjjjZJUmd1TRkRoFsdkKe4rEUAABEDAVwiIi/mqVauqx6T5fNQbL1Y8HnroIV9BgXaCAAiAAAiAAAh4CQFD3qya4zT+28l9nyo8BkQAARC4OQI7d+6kWrVqsnwmiQtSKpv6cMLGlsdK0vDhw9gS2VNs0UWX1dzc4bA3CIAACIAACGQrAeN9ZZ9P0A4HRbJsxY7CvZSAkjdXq+qi/yF6ZXNmu4e8GYpkHnDxde3alSZPnuwycVGzZk3asmWLB7QAVbweAmI5RkzLX7x4Ud9NfyVb3syDBg2iDz744HqKRV4QAAEQAAEvI7Bjxw6Sd0bcojhavGgxnT59RtP6knYaEwEctbw+TALppclGQ+esaNGiSnHMUB6rXLmyuS8iIAACIOCLBGrXrq2PvSxPUI4+89TT9I2M1RBAAARAAARAAARAwIMIPPPMM/Tdd9+yKyKj0lofR5ReNm+GvNmggiUI3CwB8SYjFo6NEBwcTL1796bBgwdTvnz5jGQsQQAEQAAEQMDtCdhsfunOP0CRzO1PHSropgSUvPlvHnuZYzKtok8//QzrBn2T67WGIlmun4KrVyA1NZVKhoXRyf9OuVxEb775Jr377rtXLwBbPYrAnNmzqXOXLpSQkOBYb32+SrS9hw8f7uBaxzEj1kAABEAABLyVgJizjY2NVVbHYtjq2MEDB8z+pUWtwa44Zk0UKM7rRgKnhwaHUJOmTU2rY3Xr1oXFS2+9kNAuEACBGyLw1ltv0Xvvvaf2tT5OixcrRkePHSN/f/8bKhc7gQAIgAAIgAAIgEBOE0hOTqbSpUvTyZMnHQ/NnZy33nyLhgwZ4piONRAAgRsmcO7cOapR41Y6duyosmQsSmXwMHPDOLEjCIAACIBALhJwsUimC8igSJaLJwWH9mgCb771Jr3/3vsubSjG8uZjbiBvhiKZy6lxr4SlS5dS8+YtuFKGKqL+VObF2jVrqX79+u5VYdTmhgl899139Fy3bpSclKxP7bO5az7PaWnaOff386NPP/uMevToccPHwI4gAAIgAAKeQ+DSpUu0bNkyEleV0fy/ZfNmSpX+gP5e0F4Wer+Am2VYE7NrjBnbtKWxJgRE4UGUxQyLY02aNKGQkBDPgYOaggAIgEAOE1i7di3ddVcDPio/h9UD1f5UXbJkMTVr1jyHa4TDgQAIgAAIgAAIgMCNEVi6jOXNzVqkK3+UPg/kzTfGFXuBQEYE5s79hfLkCaWoqKiMsiAdBEAABEAABNyegJ+fTbdma8jEtCUUydz+1KGCbkpg3bp1dOedd3Lt9HtKLbT4kiVLWN7cLFdrDkWyXMV/7YP37duXRo8ebcmoXTzlypWj/fv386SxrCN4OoHPWEHs5Zdf5hewoTDo2KLAwECa/O1k6typs+MGrIEACIAACHgNgZSUFBKhvVgdE5eVK1asoMTERL192vvf2lgzRWmQGVsMBQdj3b6sUqUKRURGUGR4BIVHRJC4r0QAARAAARDIHAHpp1esWJEOsDVI5+fv66+/zmM2u7uazJWIXCAAAiAAAiAAAiCQOwRc5c1aPSBvzp3zgaOCAAiAAAiAAAiAgCcQUK4tzQ8s7TXOaG7bngMxEACB9AjY5c0HebOjjogmb7bqCKVXQvamQZEse/nedOk1atSgf//dweWwdSr1qxXZs2dPEuUjBM8nMHToUBo8+A1uiOPkv3G+Q0JCafr0adSuXTvPbyxaAAIgAAIg4EBgx44dylWlKI/FxcXR2bNnLe977U1gvA8cdtRzGduMpfnlAmcW87cR4eEUGRmlFMgqVarkWATWQAAEQAAErovAiy++SOPHf8772Mdm8vytWq0aj9n+va6ykBkEQAAEQAAEQAAEcouAJm/W+i7WseQLPV+g8ZA359ZpwXFBAARAAARAAARAwK0JaMZt7L1Ho7JQJDNIYAkC109AkzePd9rRRtWqVc11eTMUyZxOizutymSEDOxdg41++20BtWnTxnUTUjyGgLxYBw4cSCNGjLAoDUj1+SVsY6Uy/suXLx/98ssv1LJlS49pFyoKAiAAAiCQMYHjx48ri2Mx7KpSlMcOsmUb+3cG9ud/+iU4DdKUJTL73iGhIdS0SVPlKiGcFcjEdaUfu0VGAAEQAAEQyBoCfyz8g9q05jGY0/NXSpexWzVWKEMAARAAARAAARAAAXcmIB8zVa9enavoOv78/fffqXXr1u5cfdQNBEAABEAABEAABEAglwik7yVN3F2m5lKNcFgQ8HwCCxcu1MdgrvN/O1jeXLVq1VxrJBTJcg39tQ/84Ycf0ut9Xrdn5LliuYTy5c9PJ0+epODgYPs2xDyKQGpqKr340ks04XOxaJB+KFy4MC1ghcFGDRulnwGpIAACIAACbk/g0qVLtHTpUs1dJSuP/b1lC6WmivKXXQHMuRGquyg/RtDf/7KHtSspSmL16tajyKhIpTx29913U0hIiLEXliAAAiAAAllMQNwNlyhRgs6fP6+VrD+UZTF6zBh67bXXsviIKA4EQAAEQAAEQAAEspaAkjezW24jqO4M/+TPB3mzwQRLEBAChw4dopSUFKpQoQKAgAAIgAAIgAAIMAE//rDSZVaD+5Fpar4DiEAABG6EQEJCAoWJvPnCBYf5Pylr9OjRJC4ucytAkSy3yGfiuBEREcrNlWRVg3p9n/bt29NPP/2UiRKQxR0JJCUlUdeuXWnK1ClseExeuvprl0+yboiMSoSFUTRroNauXdsdm4A6gQAIgAAIZEAgOTmZ1qxZo97f0dHRtHLlSkq8kqj0xtS7XH44ZPT8V9v4xxiQWd//sq3KLVUoKiKSXVXyP/cTROkYAQRAAARAIOcIPPLIIzRn9mzzOW0cOTw8gpWGY4xVLEEABEAABEAABEDALQmE8zhycVyc2ZcxxpyQN7vl6UKlcoGATOaN4Y9Ehg0fRi2aNad58+fnQi1wSBAAARAAARBwPwKma0s1ma31IuU3lT1wIYAACNw4AZE3z2Z5swRjfCbLlux5SDwb5VaAIllukb/GceUr9+LFi9OVK1f0nDb9wkmjr7/+WikiXaMIbHZDAjIQfeyxx5S7yoyqV758eRLlA7jGyYgQ0kEABEDAvQiIOzPpzMmze9GixXTu3FmL1zOj23djdS5WrBhFstKYuKqUZaVKlW6sIOwFAiAAAiCQJQS++eYbevbZZ7ksx+d7UFAwW40+QQUKFMiS46AQEAABEAABEAABEMhqAufOnVPWVe3yZvsRIG+2s0DMdwnMmTOHXmcrw3v37WcIMiluo/nz59G9997ru1DQchAAARAAARDQCVhdW7JxMnZpKRvg2hIXCAjcLAFN3vwcF6P1Pw1TE+Kd8MSJ3JM3Q5HsZs9sNu0vWocdHunAl4ujFq+4sTpy5AiFscUqBM8icPHiRXqoXTuK5a/+HIIxB8XL6lWr0UJWRBBlMgQQAAEQAAH3JCAdN1Eak+d5DC8PHjx4zYoaj3qHjEYiLzWLlDYKDQ2lZk2bKItjojhWp04dknc/AgiAAAiAgHsQOHbsGJUpW5ZS2c2NcxCr0WLNAwEEQAAEQAAEQAAE3JGAKMm0f6S9Of6UCQr5dNnmZ4O82R1PGOqUYwS2bNlCr776qukdRibFDT8i8rG3bA8KCsqx+uBAIAACIAACIOCOBKyKZNb6pcEimRUH4iBw3QSOHz9OpUuXYTexKXbNIH3+MDflzVAku+5TmTM7dOv2PE2a9JWMWUz3VzJ8ufOuO2n16tU5UwkcJcsInDlzhu677z5asWIll8nKgYbygH4EWa3NygIL2Z1lCfaDiwACIAACIOA+BEQReOnSpRQTE6P+/976N3foHBW9zdpa3tsqzXze6xFzXdsjwN+f6tavR1GRUcpVZePGjZUymVkeIiAAAiAAAm5HoEGDBsqNsUPF+Pne7blu9OWXXzokYwUEQAAEQAAEQAAE3IXA888/T1+JvNkczmoDVOnbrFq1yl2qiXqAQI4R+O+//+jtt9+miRMnUnJyMovsDfUxvQq6DGf06NH0+uuv51i9cCAQAAEQAAEQcEcCSpGM3422NMv7ktcznCtxx0agTiDgpgRMebPe/zSq2a1b7smboUhmnAU3WormbgW2SHXw0CG9VvYrRgY277zzjhvVFlW5FgGxXNOqVSvatGmTQ1btrGq/jRo1ogULFlDhwoUd8mAFBEAABEAg5wmI8HDNmjVsdSyGXVbG0MqVKymJXU3z+MgUuFuiFuVgPdWy0UUIyUVUrVpVKY2JxbEWLVpQ0aJFc76ROCIIgAAIgMANE5Dx2JAhQ1ye/2XLlaMD+/eze2N5ESCAAAiAAAiAAAiAgPsQEHlzOe6rHD582OzDGENXyJvd5zyhJjlDQOQ+EyZMUEpkp0+f5oMad4Mes6+qLUWLFaMDBw7gw7+cOT04CgiAAAiAgJsSsNnEc4qjsRSZ/0hNS3XTGqNaIOA5BN4ZwvLmd4aoClu6olSWPWNIPzQ35M1QJHPD60dMJdeuU9ucrDaqKBfNCp7MbtiwoZGEpZsTkBs7kq3M7Ny1w+V8GlWPiIygn+f8TPny5TOSsAQBEAABEMhhAv/884+yNhYbG0txi+Lo/LnzZg2snTYt0Z6ixZzXjV05nX1WFi9WnMLDwykqSrM6VrFiRSMDliAAAiAAAh5IQCx2NOYPQcQZlNHJN2KbN2+mWrVqeWCrUGUQAAEQAAEQAAFvJqDkzbVZ3mx0WqSxelw+noK82ZvPPtpmJSByH3FjKdbm7db5tBzW28NIuffetvThhx9S9erVrcUgDgIgAAIgAAI+R0AUWRzflbzG8x+wSOZzlwIanA0ERN4shofMQZoZs9HmzZtyRd4MRbJsONE3W+QYNpXcp29fvRi7LZNixYvR8WPHyc9PNH4R3J3Ajh07lCWy/WKVgCsrVuOdl+3ataPp06dTSEiIuzcH9QMBEAABryJw7NgxtjYWayqPHTx40HxGaw21v3+tDTee49Y0hzhnyBOah5o1a0aiKBwRHkF12HUx3t0OlLACAiAAAh5NICUlhUqVKkUnT560t0N/QcDtjR0JYiAAAiAAAiAAAu5DQPoo/VjebCjCG2PbYmxp6fhxyJvd50yhJtlFYM+ePdSX74HZs2dnSv5TrVo1pUB23333ZVeVUC4IgAAIgAAIeBQBw7WlVRFb+pSpbPkWAQRA4OYIpKamUlhYGJ06dcqloFGjRlGfPn1c0rM7AYpk2U34BsoXiyUxMTGWPbWhfefOnWnKlCmWdETdlYBYIhB3liKIkWAIZ9juIGuUaS/ULl260OTJkykgIMBdm4F6gQAIgIDXELh06RItWrRI/UdHR9PWv7dqAxz+YsY68HFssPn0dkh2VjHz9/en+vXrswXKSGV1rHHjxhQcHOywD1ZAAARAAAS8i4D05adOm+ryDpGx3MKFC72rsWgNCIAACIAACICAxxMQOWV0TLRL36VT5040dQr3aRBAwEsJXLx4kYYNG0YffvQhJcQnZNBKu/ynUMGC9Mabb9LLL79MQUFBGeRHMgiAAAiAAAj4HoH0XOvJGxSKZL53LaDF2UNA5M3Tpk7jKUuLcibfZFHs/S435M1QJMue83zDpcbHx1PRIkUpITHe0DcylZC+++57evLJJ264bOyYMwTEHHzbtvfS2bNnlN6Y3OuW211V4oUXXqBx48aRKB8ggAAIgAAIZD2B5ORkWrNmDYnSmFgek2fzlStXtAPJ6EYPmh6ZJjBUyfxjfECjpZo5OaI/zXlDtarVKCIiQimPtWzZkgoXLmxkxBIEQAAEQMAHCHz//ff01FNPqZZa3xehoaF0+vRpWBz2gWsATQQBEAABEAABTyEg8uYiRYpQYkICj2q1nov8SvTbb79jefOTntIU1BMEMk0gjYU7P0z5gQYOHEiHDx8Wz1su179V/mNjLzBduz5L77//HpUsWTLTx0FGEAABEAABEPAVAn5sLMWY7xa7KbIi6/LORQABELh5At9//x099fTT2o2l7jHtRhPPdiJvFrlzTgYokuUk7UwcS7QJW7duzTn1J7C+jzyQjx49pkzaZaIYZMklAqKs8NDDD9GlCxf1l6nTeeR69evfX30FlZ7mdi5VG4cFARAAAa8gsH37dqU0JspjixcvofPnz5ntkqexvFsdNPlVCvfJrKOedN6/Mg4KK1GCWoaHK8UxsTxWoUIFVSJ+QAAEQAAEfJOAWB4W95ZKWMYvGbuBSxv9/vtv+pjON9mg1SAAAiAAAiAAAu5FwJA3KymlZfzrx4ozR44cgbzZvU4XapMFBOTDwl69etGKFSvM0pyvf+v8yz333EMffzyWrc3faeZHBARAAARAAARAwJFAjxd68OwJz7EoxTH1ZlUZJkyY4JgRayAAAjdEwEHe7FTC77//nuPyZiiSOZ2E3F7ty/5NR48Zo6oh43pDifeOO+6gDRs25Hb1cPyrEPhl7lx6rFMnNpEdn2GuoUOHqq+gMsyADSAAAiAAApkmcPToUaU4FsOKYzFxcXT40KGr76uPbTThIWfN4EMZef/mCc1DTZo2NRXH6tSpw1YmZU8EEAABEAABENAI1OUx2sbNm1zeJ31ef51GjR4NTCAAAiAAAiAAAiDgFgT69u1Lo9Ppm0De7BanB5XIQgLHjh2jQYMG0eRvJ1Naqm5/T5cFpXeYcuXK0vDhI6gTy/Qh80mPENJAAARAAARAAARAAARykoCM0TZtYnkzB2NGMo0jfV7vQ6NGjcrJqvCH07A3mKPAr3WwuvXq0qYNG9XctlWRrF+/fjRixIhr7Y7tuURgypQp9Mwzz5C4UksvyBd+n3zyCb344ovpbUYaCIAACIBAJghcuHCBli5dalod27ZtG6Wmpl51T/WFjLPGmC5EVAv9xz/Aj+7kL0/F2pj8N2rUCG7JrkoWG0EABEAABPqzpeGRI0e6gKhbty6tX7/eJR0JIAACIAACIAACIJAbBKRvsmkjy5vtg2A1KdEX8ubcOB04ZjYRmDdvHnXp0oWt05+3HyEd+Y98BSLugfrwB/0DBgygvHnz2vMjBgIgAAIgAAIgAAIgAAK5SED6p5pOkN6R1esixi428pguJwMUyXKS9jWOderUKXadFcZWyFKdp7xJ3HTJxDaC+xH4/PPP6aWXX6LUFPnKSXeaZrm3AwMDadKkSfTkk0+6X+VRIxAAARBwYwKinLtq1SqKiYlR/ytXrmKF3SSzxkrhWtZYGp7e81dltDyPLbnUpurVq1M4u6ts1aoVtWjRggoVKqTS8QMCIAACIAACmSEgbu2jeIymDFxa3jfyEYlYQyhevHhmikEeEAABEAABEAABEMg2AidPnmTXlSW5v8IfYelWuWVsLCsLIW/ONu4oOOcJHDx4kGrUqEGXL1/mK9yUEmkVsfTVOzzSga0Hj6KKFSvmfCVxRBAAARAAARAAARAAARC4CgGZD42KimJrufrwTZ//lIQTJ05QsWLFrrJ31m6CIlnW8ryp0mbOnEmPPfaYZqdOBvZ8gdh4GRIaSqdPn4ZllJuimz07jxw5ir9c6q/7g7afM91wNgWHBNPUKVOpffv22VMBlAoCIAACXkZArIxpimPRtGTJUvUlqSnv0yPawkzVCPCqvDON568uF9cXWt4SYSUoIiKCIsIjuSMWSeXLl/cyemgOCIAACIBAThJISEigokWLUjxPVjm/f2bMmEEdO3bMyergWCAAAiAAAiAAAiDgQmDGjJnU6fHHHKyRSaaQ0BA6c/oM5M0uxJDgyQTeffddevvtt7X5FWmI8eEhi4Xq1KpDH439iFq2bOnJTUTdQQAEQAAEQAAEQAAEvJiAyJuLFGF5c/xleyv1+c/pPLbr2PFRe3o2x6BIls2Ar6f4F3r0oAkTJ9onvdWMuI0iedI7Oib6eopC3hwgMHjwYBo6dKg2MBXFP6cgZrHnzPlZKSs4bcIqCIAACICATuDIkSMUFxenLG/K8tChw7pGmPGNtPUBqymEGUpi5tKJppbLRvny5aUmTZoo7f3w8AiqU6c2K+3LVgQQAAEQAAEQyBoCkZFR7HI5RhVmvH9Erbl79+40YcKErDkISgEBEAABEAABEACBGyTQg+XNE1neLONnGyvV6L4U1Dh54cKFN1gqdgMB9yQgE2/Vq9egAwf2mxWUDz9EwUz65/7+/mY6IiAAAiAAAiAAAiAAAiDgjgTEIlmMyJut06Nc0f/973/a2C6HKg1FshwCnZnDVKtWjXbu2sWDemNIr+01fPhw6t+/f2aKQJ4cIJCamkqvvPIKfTb+M/sNrIQx+irHCxUqTPPnzaO77747B2qEQ4AACICA5xC4cOECWxpboqyOiUuwrVu3alYdWcHL+f2XYav4OWt2oCzPX/+A/7N3HoBRFF0cf0novUjvQuhVqUpNQhUEAQUEBAERFBGQrlQbICBIURBBBFREBVEUSaF3+KjSFZAO0osIIXzvzZbbvSSk3SV3yX+U7Ozs7JTf7u3OvH3znh9Vq1adgthdZSC7GpNncJo0aaItBgdAAARAAARAIKEExo8fT0OHDVXFaJYxtRL9/f3pyJEjCS0e54MACIAACIAACIBAgggoefPRo/YyeP497sMPIW+2U8FeMiGwZMkSZRk4VapUJIqUY8aMYasOOZJJ79ANEAABEAABEAABEACB5E5AyZuHsrzZ8v1T4v7+JenI4cOJ1n0okiUa6kdXdPr0aXaxVYg/pjvl45ti29Zt/GG8mtMB7CYFgfDwcOrevTt99dVXqnq+PKYugyTIfu48eWjlypVUuXJlSUIAARAAgRRN4P79+7R161a21hKqlMe2bttG4ffusXcBfmLyS0+em/InqvefPGDluPOrUT9FpZcqVYqCWGlM/ol7gqxZs8phBBAAARAAARBIFALbt2+n6tVrcF2R31Z///03FSpUKFHagUpAAARAAARAAARAwJmAkjfzWCSq+fc2nptD3uxMDPvJhcDgwYOpS5cuVK5cueTSJfQDBEAABEAABEAABEAghRDYsWOHba6mfSfV/p46dYoKFiyYKCSgSJYomGOuZOHChdS5c2dLRu1myJ49O128eJFkBQ1C0hL477//qEOHDrR02VKn70S6mgNvChYoxIoSwWxCu1TSNha1gwAIgEASEXjIGmEHDhxQSmMhwcG0dt06EitkzkF/cjon877zEcs+R/PkzsPWxgIpkF1VinlXfKCPAiGSQAAEQAAEEo2ALDTJlSsXXbt2zazTeHPJHK9jx45mOiIgAAIgAAIgAAIgkJgEDHmzMTYx6s6WLRtdvnyZfH19jSRsQQAEQAAEQAAEQAAEQAAEQAAEPICAJm/OzfLmq5E+mS5YsIA6deqUKK2EIlmiYI65kldeeYXmzJmjMlon9y1btqRly5bFXAByuJXA7du3qfVzz9EqVopwBONKsTs2tkBQvEQJpThRpEgRRxbEQAAEQCAFEDh79qx6/imrY+y3++yZs3qv9eekfWMjYjxJJdEaNzJlzJiR6tWtq1xVitWxChUqkI9YM0MAARAAARAAAQ8h8BzPE+xzNu2N1qNHD/r88889pJVoBgiAAAiAAAiAQEojYJU3S9+NOTfkzSntTkB/QQAEQAAEQAAEQAAEQAAEvIlAq1ataPlPPzl8YOiTucSUN0ORzEPumJIlS9LRo0d5Qi8qSQ63KFOnTqW+fft6SCtTZjOuXr1KLVq0oI0bNyoAujc2Lc5/5WqJYkMwK5nlYbeWCCAAAiCQ3AncuHGD1q1dS8EhIUqB7MCBg9xleRrySEYNZjhuSKgjweA3nQ+/6RyvOpXDeP+JBc6qVasqa2MBAQH01FNPUZo0aSKVggQQAAEQAAEQ8BQCMmfr178/vwrt7z+Z4x0+fNhTmol2gAAIgAAIgAAIpDACJdljwrGjRyLNv6dMmUJvvvlmCqOB7oIACIAACIAACIAACIAACICAdxBQ8uZ+/bixxsdW7furPxs2OnLkSKJ0AopkiYL50ZWIJZcCBQpEzsT3w+5du6lSpUqRjyElUQiIW9EmTZrQrl277PXJb1YCfyuqWbMmrVixgnLkyKGl4S8IgAAIJDMCYkZ1y5YtJBbHgtl977at2+j+/fsx9NIY3HA2S1RO0nYN1TGi0qVLU2Cg5qqyfv36lDVr1hjKxmEQAAEQAAEQ8BwCe/bsocqVK+sNsrz0OCpWOvPly+c5jUVLQAAEQAAEQAAEUgSBc+fOUf78+SPNv6XzIud0jF1SBA500gsIHDp0SMmHvKCpaCIIgAAIgAAIgAAIgAAIuJWAXd5sr0rmennz5rUnumEPimRugBrXIhcvXkzt27d3nMYfHNhYC+XImZNEkcnX19dxDLFEI3D69GllEefQ4UOaoZ0oam7QoAH9xGYFM2fOHMVRJIEACICAdxJ4yBZVDhw4oCmOsbXFNWvW0K1bt2LsjNVio8ps/5Zu2tuUAY4ojomrStkWKlQoxrKRAQRAAARAAAQ8lUBERATlzp2bLl++rDXR8v6Tud4LL7zgqU1Hu0AABEAABEAABJIpgUjyZr2fOSFvTqZX3Hu7denSJRoxYgTNmTOHFi1aRO3atfPezqDlIAACIAACIAACIAACIOACAs7yZuv312+//TZRxsxQJHPBhUxoEX369KEZM2Y4FeNDrVq1pKVLlzqlYzcxCBw7dkwpkZ04ccJRHf9C+Qej9h/yx6HmzzSnJUuWULp06Rx5EAMBEAABLyVw5swZ5aYyhN1ViuUx0Wg3g9Pzz9AIU9/JzY/lRoS3KvqQXViKly8fypQpI9WtV5eCAoOU8lj58uX5mGRCAAEQAAEQAIHkQeC51q1p2bJlyr2l8f6T1Sh93uhD0z6Zljw6iV6AAAiAAAiAAAh4DYE33niDpk+fzu1VE3Sz3a1atYK82aSBSFISEEv38k1k9JgxdP3aNdWUIkWK0sGDByh9+vRJ2TTUDQIgAAIgAAIgAAIgAAJJTuC51s/RsqUsbzbndDy34//7vP46TZvmfnkzFMmS/BYgqsyuK/fs3eu4B/Q2fTx5MvXr398DWpiymrBv3z7lzvIcuxxlNQi+Lqw8pvTHHIKXFzt0oC/nz6fUqVOnLDjoLQiAQLIhcPPmTVodFkYhrDQmymMHDx40+6Y97aJ+/pmZOGI4p3Q8HbVXma+fH1WvXoOVxjSrYzVq1KC0adNaT0UcBEAABEAABJIVgSlTplD/KOZulXiut3v37mTVV3QGBEAABEAABEDA8wmI60pxh2IEY94+meXNUY1ZjHzYgkBiEPj9999pwIABdJCt4TvL30ePHkWjRo1KjGagDhAAARAAARAAARAAARDwWAIibx7A8mbNzJFDlSix5M1QJEviW+PGjRuUPXsOioh4YOoSqtuAlZe2b99OVZ+smsQtTFnVb9u2jZo2bUpXrl7ROm75ZRr6ZD179qRPP/0ULkdT1q2B3oKA1xOQlZ5btmyhYLE4FhLK75itdP/+A+6XEtnpAxFdeUx6G8XzzxA8W15YJpfSpUsra2PirrJ+/fqUNWtW8xgiIAACIAACIJDcCezcuZOqVa1qvj5Vf9k0mZ+vr3J5ifdicr8D0D8QAAEQAAEQ8BwC169fJ3Fh+eBBhNYoJdTUZvQ7duygJ5980nMai5akKAJHjx6lt956i37++Rf+BKILnpzkTxkyZqQDrGBWuHDhFMUGnQUBEAABEAABEAABEAABK4Gd/9sZSVdIZnVizOPy5ctu/w4LRTLr1UiCuKy+adKkSaSa5UOD3AB+fCMgJA6BsNWrqVXLliRWejR3NEa9uuoEbwa+NZAmTJgAl2wGGmxBAAQ8lsBDdsX7xx9/KGtj4qpyzZo1dOvWLbO9+pPN3Dci0T3/7F/GifLmzacsjgUGalbHChYsaBSBLQiAAAiAAAikOAIPHjygHDlz0I3rN8y+G+/alStXUuPGjc10REAABEAABEAABEDAnQSc5c3GmCRLlixK3pwqVSp3Vo+yQSASAVlM//7779PHbFXh/r176vij5E8vv/wyzZ07N1I5SAABEAABEAABEAABEACBlEIgPDyccj6Wk26yvNm04iud54UYiSFvhiJZEt9pYqZ57Nh3tSuuz+pl04g/NMgNgJA4BH755Rdq164d3blzJypDO8pI3Lt8nd55553EaRBqAQEQAIF4EDh9+jSJ0pj8Cw4OpvMXzjssi0l5hvTYLNvy4uGBR6TDlnMyZcpE9erVM62OlStXDkq1JkdEQAAEQAAEQICUZWM1h3N6oY4cOZLGjBkDRCAAAiAAAiAAAiCQKASUvPndsXZ5AM/4GzduBHlzolwBVGIQiIiIoK/mz6dhw9+m8+fPmYInp+Gylp0T/Xz9qEePHvTuu+9Srly5jGKwBQEQAAEQAAEQAAEQAIEUSUAMUq1iw1QWI74qPmLECNYx4jmfGwMUydwINzZFN2rUiD/2h3BW/fKrWZQPT5bGQmkpNgBdkOfbbxfTSy91Zhdv9/XJrI+uTMG6nXI9yJemTPmY+vbt64LaUAQIgAAIuI6AuKtYs2YtWx0LVpbHDh8+RGyIjIMhkrNvjT1HCywpKup4/skK5erVq5uKYzVr1qTUqVM7TkUMBEAABEAABEDARuA9trIwQi08Md6v2lbcPouCNwIIgAAIgAAIgAAIJAaBhg0bUmhIiCFt1quEvDkx2KMOB4EtW7Yoefr27ds50RgfG1GH/EmzTOZDdevWoalTp1LlypUdhSAGAiAAAiAAAiDgMQRmzZql2uLDL2/xiCNB4j179lRx/AEBEHA9gffee49EaUwbM0v5hry5IcubV7m+QkuJUCSzwEjsqDJHlzMniWln5xAWFkYNGjRwTsa+iwl8/vnn1OvVVylCf+E5Fy+uRefMmUNdu3Z1PoR9EAABEEh0AqLwunnzZtPi2A4Wxt1n06baCMJoDg/gLfI5I9XcPuJYmTJllOKYCJ3F+pi4vUAAARAAARAAARCIHYHVq1dTQEBApMyZM2ema9euka+vb6RjSAABEAABEAABEAABVxJQ7rZzsLttkTc7zf8hb3YlaZQVHYEzZ87Q0KFDadHXi+hhhL54PrrMnF6kSBGaMGECvfDCC4/IhUMgAAIgAAIgAAJJTcDHR+Rakb8/GUplSd0+1A8CyZHA6tVrLPJmx+9PvEiJsRF3ypuhSJaEd9S+ffuoYsWK+qRen9nzJnWq1HT16lXKmDFjErYu+Vc9efJkGjRoECuRRfB7z8HfWK6XJk0a+uabb6h169bJHwZ6CAIg4JEEZAAu7wrDVeX69evp1q1belu155b+9LLIh42UR3VJy5MvXz4KDAw0lcfy58//qJNwDARAAARAAARA4BEE7ty5Q9mzZ6d79+5FyrV7926qVKlSpHQkgAAIgAAIgAAIgIArCezdu9dpzKHN/8XCOOTNriSNspwJ3L17lz6e/DF98OEHkWRXmtBKl1fpmwwZMtDgwYNpyJAhlC5dOufisA8CIAACIAACIOBhBMT6WKSVCpwCRTIPu1BoTrIiIPLmHCxv/k/Jm/WBtN7DPXv2aLpGbuoxFMncBDY2xYo1LMPco/WyV6tWjbZt2xabIpAnngRGjhxJ7737rqEzZlHAkAJ9KEPG9PTjDz9S48aN41kDTgMBEACB+BE4deqUUhwLYTcUslr43LlzloKsbwtOdtgyteRxjjrOEYsoYmlMXGzJv7JlyyrTw85nYB8EQAAEQAAEQCB+BKpVq0o7duzkkx3vX3ldz5o1m1555ZX4FYqzQAAEQAAEQAAEQCCWBAx5syEuMEYkVatWJc3FYCwLQjYQiAOBpUuX0cCBA+mvv/5UZznff5Jo3IsSa9++HY0fP54KFy4ch1qQFQRAAARAAARAICkJaIpkzi0QN5dssAUBBEDAbQREd2jHjh2Ryp89273yZiiSRUKeeAk9+EPCF+w20Tm8+eabNGXKFOdk7LuAgGhF9+vfnz6ZOpVLc0xfrUVny5aNfv75Z6pdu7Y1GXEQAAEQcAsBMT0qrrDE6pj8O3jwoPZ0kkeUERzWSqN+cumPM+enWqpUqahGjRrUUBTH2F1l9erVSVYhI4AACIAACIAACLiHwJv93uS5xidqquHD72/+n4MP9ejRneTDLgIIgAAIgAAIgAAIuJPAKz160JwvvuAqDAmBtoW82Z3UU27Z+/fvZ1l7PwoNCY00/tVGwsZ9qDGqUqUKTWW5fJ06dVIuNPQcBEAABEAABLyUgC9rimtyLksH+FUfG1fWljMQBQEQiCOBfv36Kd0W599f9+7daU4UukZxLD7a7FAkixaN+w9UqFCB/tj/Bz909cvOD1v52PD1119T+w4d3N+AFFbDgwcP+ANOD5r/5ZeaJ0vuvw+7tLTyz50rN/3222/0xBNPpDA66C4IgEBiERB3V5s3byaxOBbK/3bs3En3w++r578xCLCK2axxo41GmrE10mVbtmw5CgwKoEYNG1HdunUpS5Ys1sOIgwAIgAAIgAAIuJHA4sWL2cJCe4dSOL/c5X1drkJ52rd3nxtrRtEgAAIgAAIgAAIgQFShYkXav2+fYyzCUET++c03X1M7HqMggICrCAwf/jZN+Gg8PQgXKyQPHfecPv7l204Fuf9y5XqM3nv/ferWrRv5+fm5qgkoBwRAAARAAARAIBEJmK4t1cpJ7euU/I1gIy4IIAAC7iPw7bffUgelO8S/OMvvT3SN9u7d67aKoUjmNrSPLvjWrVsklq9Euck5HD9+nIoWLeqcjP0EEBDFjY4dO9L3338fbSkFChSg4OBgKlOmTLR5cAAEQAAE4kpALCHuYyGuKI7Jv3Xr1tHt27fjUIyPJoxTSsfa4Fz7JK0NzuXZFRAQQA3Z4lhgYCDlz58/DmUjKwiAAAiAAAiAgCsJnDx5Up/LGe9srXT5YHbt2jXKlCmTK6tDWSAAAiAAAiAAAiBgEoC82USBSCIQmDz5Y3rrrQHkw8Ne7fuxffwrTRCr+G+88QaNGDFCfQtJhGahChAAARAAARAAATcRsLq2tL7/4drSTcBRLAjoBBzyZi3B+P35+aViefNVt8mboUiWRLfg2rVrqX79+vrV5o3oA/BcK1+evHT23DktHX9dQuDOnTvUpk0bWrlypa6M4VQscy/+eHGlRFasWDGng9gFARAAgbgTOHXqlHJTKcqp4q7ywoUL0T5/jOe/5v5KE7qJ6phpLdFWvQ9lyZyJ6vH7w1AeK1u2LAvt5DwEEAABEAABEAABTyCQL18+On/+vGqK9mbXWrWGXVnLOxwBBEAABEAABEAABNxBwJA3W8cfUk/evHnpHOTN7kCeosu8f/8+VWCru4cPH7FxMO6/Jk2a0MeTJ1NpLNq28cEOCIAACIAACHgrgei+Q4kxBQQQAAH3ErDKm601rVmzhurVq2dNclkcimQuQxm3giZNmkQDBw40T1ITLP7TqmUrWrp0qZmOSMIIXL9+nZo3b04bNm7QlPUMVQ5jRsvFlytXjlatWgUrPglDjbNBIEUTEAsj8rIWpbHgkGA6cuiIQxHMfN7oEXNfQ6Z2bWmOfGL+P3XqVFSjRk12VxlIQUFBVL16dbWiM0UDR+dBAARAAARAwIMJtGzZkpb/vDzS/GPSxEk0YMAAD245mgYCIAACIAACIODNBBzyZodcQRavydhk2bJl3tw1tN1DCfz222/UrFkzrXX6befvX5ImT56kZPIe2mw0CwRAAARAAARAIB4ElCIZv+/lu5VpCIH3H0ZAkSweOHEKCMSJwHPPPUfLfloW6ffnTnkzFMnidIlcl1n8mC5mf6YPDcUmvegPPviAhg0b5rqKUnBJ//zzD8nKp507dzJly0tNZyJz2yerVlWWynLmzJmCSaHrIAACcSUg7nI3bdxEIaEhSnls+/btuqtiXWqmb6Tc6J4/zs9/43Xgy9bFyrCVMVEaCwwMYuuV9Shz5sxxbSLygwAIgAAIgAAIJBGBcePG0fBhwx1CNb0dMgf8+uuvk6hVqBYEQAAEQAAEQCC5E5Cxxrcsb7YGEU+8D3mzFQniLiYgi7hXrFhBWbJkpXfeeZv69u1LadOmdXEtKA4EQAAEQAAEQCCpCfj4+HITWGnM6ftXxMOIpG4a6geBZE/gww8/pOHDh0f6/bVr346++eYbt/QfimRuwRpzof7+/nTs2DEto/HA5W1IcAgrDgTGXAByPJLAmTNnqFGjRnTgwAHOx2A1n3G2c+rWrUs///wzT3Kz2NKxAwIgAALOBMQ07969eykkJET9W79+A92+fUtl0x7hxoPc9g7n41E/f8zy9dMKFCignv2iPCb/xEQpAgiAAAiAAAiAgHcSEAulQQ2DdItkjj4UL17cMQd0JCMGAiAAAiAAAiAAAi4h4F+S5c1HdXmzpUSRZUDebAGCqEsJHDlyhMaPn0Dvv/+ecqPq0sJRGAiAAAiAAAiAgMcQEItkji9h0izt+xcsknnMJUJDkjGBsLAwCmIdIof9P+33V6J4CTp69Khbep7oimT//fcfLV68mDZs2KCE6H/99ReFh4dTgfz5qXKVKvT2229T4cKFVWej8qkbnf9dt9BxU6HiAi1njhwUYfEZLA9eH19funz5MmXLls1NNaeMYuWekg83x/86bnbYeLEZWzG5/cMPP1C6dOnMPIiAAAiAgJXAqVOnKDg4WCmOhYaF0sULF9Vh4zlizWuLO2Uwdq3bLFmzkiizGopjZdkCGQIIgAAIgAAIgEDyIHD9+nXKkT27mu9Z3/+Y7yWP64tegAAIgAAIeCYBm8yZBel/HT9OD1jmnJ8XblWqVIktJb2TrGXOVnkzxh+eeY+iVSAAAiAAAiAAAiDgzQQM15YWTRalWGbVd/Dm/qHtIODJBETenD1HdpsrWZn3ESt4XrlyxS36RYmmSHbx4kWaMWMGzZo9my6cP6+ug+ocP2KU5pxuMSp9+vTKFLJkCAgIUPmURivn8vX1o4sXL5C3uyEUjUFZBebc/1IlS9GhQ4f0PmMTHwJ//PEHNWZLZGfOnrWdbghQ5Mf0fNu2tGjRIkqdOrUtD3ZAAARSNgERusrzWayIBIcE09EjosFtPj1scCK5q4w6mzpHDqXi502tWrWoQYMGylpi9erVKVWqVLYysQMCIAACIAACIJB8CJQuVYoOs3UGmX+QvoBIxgShPNaQ8QACCIAACIAACICAawhcunSJpk+fTp999hldYvmzJme2v39lbp8ufTr69ddf+bX80CJz1trg55eKLlw479Uy59WrV1Mgy9Kd+1+KxySQN7vmXkMpIAACIAACIAACIJCSCURl7EdkXVAkS8l3BfqemATKlC5Nhw4fNquU35/M/2QuWL9+fTPdVZFEUST75Zdf6OWXX6Z//vnHbLc8bMRnZ1BgEImLD5nQjh07ls6dO0dFChehwKAAmjt3nspvQMibNy+dZQWhqB5UZsFeEJk8eTK99dZbmn6C3l7Ro3uxY0dauHChF/TAM5u4Y8cOatq0KV3m+0wJTbiZ8t1Gdoz97t2702xWZvRl628IIAACKZuArFbevHmz6a5SniERDx6oZ7NhMNJ4/2ikLHtGVG2NHe2xbjxvKlQoTw2DGlIAKw7Xq1ePMmXKlLKBo/cgAAIgAAIgkIIIdOrUSS1esXWZhwwTP5qozQVtB7ADAiAAAiAAAiAQHwLLly+nbt268Qrsy6b8T2R+7dqxzDkoiB5//HE6eOggvfvuu0rmXLhQYbW4d968edoCX343y/w/T5486rg3y5xNebMTyBc7vkiLFi5ySsUuCIAACIAACIAACIAACMSNgC9/dDe+f1m/v0flYS5uJSM3CIBAbAh07NiJvv56UST9l4kT3SNvdqsi2b///ksDBw6imTNnmH2Xz+01ataiadM+oapVq5rpEhFFs4oVK6qJu/1zvKYQ1KlTZ/rqq69s53jjTlQfFYTLJFYw69+/vzd2KcnbvG7dOmrRogXduHFD3Tq6gTtul5DVXmvCdtKkSV6viJjksNEAEPBSAjKY3bNnj6k4tn79Brpz57b2lLCOei3PDemqHDIUy1TXIyVoQAqwuwxxq6uUx9THxJkAAEAASURBVHgVcL58+bQD+AsCIAACIAACIJDiCHz88cc0YMAA7SM1/32oz0lkwr9w4YIUxwMdBgEQAAEQAAFXElAy50ED6dMZM/U3rCb/q1mzJsucp0Urcz7PC5gfRjH/f+mll2j+/PmubGKil2WVNwsNkYnK+EMUzCBvTvTL4RUVyoJ+yK684lKhkSAAAiAAAiDgEQR8fNlXD39y1766a+NvaRgUyTzi8qARKYDAlClT9Lmd4/cn3e7oJmNVblMkEz+djdjF4LZt22yXrX379koZLDq3gvPmzqVubDVKgvO3enFH+OKLL9rK88adsuXK0sEDBzVVBct1Xrt2LdWtW9cbu5Skbf7tt9+oTZs2dJcVFx9aeFobNXr0aBo1apQ1CXEQAIEUQODEiRPKXWVwcLDaXrx0UY1y1aMimueFYHF+/9hRaSdmyZJFmQqVVc7irrhs2bL2bNgDARAAARAAARBIsQTWr1/vmNvpYw7ZlOHxwh9//JFiuaDjIAACIAACIJBQAteuXaPGTZrQtq1bbUW1ZytkC1l27OfnZ0s3dsQKmVgvcw4y/1/IFru8XeZcjscYBw4edHRPH3/I4ts6deo40hFL8QQO8n0iCx527dpFR9gVu8i3EEAABEAABEAABEAgJgLRWe+FIllM5HAcBFxDQOZ24gHLOcj3aXfIm92iSHb16lVq3Lgxbd++3ewH66jSS11eYneVcx/pVnDfvn1Uia2SiTar9UO+mCW/cOECPfbYY2aZ3hiRFXMyOQsPD5eFYaZCg4+fL127eo0yZ87sjd1KsjYvWbKEOnfuTOKiLqogLzVZedevX7+oDiMNBEAgmRG4cuUKrVmzxrQ6dvToUX7UOqyAmN21PH81BVQtQU+2vX/kHElPnSYNW9SsoVwyN2zYkKpVq0apUqUyi0QEBEAABEAABEAABAwCN2/epGzZslFERISRpAYUfr5+JMfSp0/vSEcMBEAABEAABEAgVgREiUwWLltlznJily5dYiVzrlipIsti7fN/P5bJnjt3nnLlyhWrNnhiJkPe/CD8gbJCZrTRl8cd165dhbzZAJLCt7Lwf+zYsTRt+jQKv3dffX8ZyJb9PprwUQong+6DAAiAAAiAAAjEhkBUimTy/S3ioUX2FZuCkAcEQCBeBJS8OTvLmx9ovznj+7cspnKHvNnlimSiRCYT+h07dyglKYNC06ZNacWKFfxxXibr0YczZ85QoYIFdbOIjnzywd7ZupnjqPfEtvJquVrs2tNwbaJazkj8S/irFUDe05Okb6koJfbs2ZM/zoiQhAMLgkx1EWbq6+NHs2d/Rt2790j6xqIFIAACbiFw9+5d2rx5M4WGhpJYHdu5cyc94GeC7SWiyYhV/ZanhNYep2Nyonqe8FF5X5UvX54Mi2NiMRLKvm65jCgUBEAABEAABJIlgVKlSqk5nvP4Q+a1Mr9FAAEQAAEQAAEQiD0BWTgmC5d37Nhpk/81adyUfv01Zpnz2bNnqUCBAqpCeTcb8//kIHMW62w12K2n3i2zj/4l/enw4cOxh4ycyZKALGwQOfrw4cPp0qVLfJs47v80vGhSFvaXLFkyWfYdnQIBEAABEAABEHAdAaXjYfmmpkrm/YcRxlc119WFkkAABKImULJkKTp69Ih20PJ7FB2k6tWrR31SPFNdqkh27949atCgAW3etIk/xOst502+vPlo7969sbImJmbXylcorykB8LmGr90RI0byipkx8eym55w2Z84ceqXnK1qDDMUn7mf7du3pm2++8ZyGenhLxAfsW2yCW3s3WV5Q+j2TOk1aWrDgK3rhhRc8vCdoHgiAQFwIiPBrz549SnEsJCSU1q9fR3fu3NGKMN8ZHBF1MNvGsiO5Lc9fYzWyJBdkReagoIb8L1C5q8ybN68kI4AACIAACIAACIBAnAm0b9+eFi9erI1J5Gx9/DFr9mx65RV9ThjnUnECCIAACIAACKQ8AiJzrl+/vlpIpnqvz//z5S/AMoLdsZc5l6/Ap+tyRF1MMGLECGWlyZupfv7552qxrdYlh/yjHbv7/Pabb725a2h7AgmsX7+BPXW8Sf/b9T81FnW+/0V29kyzZvTLLysSWBNOBwEQAAEQAAEQSO4EfNn4glX/w/gMF/HQ8p0+uUNA/0AgiQkoefN3LG82P4Nr87/Zn7O8uYdr5c0uVSR7/fXXaebMmSY+abYPm9BevTqMxJJLbIJYlGnMFs3Ug0hpkWlrZNZvWE9PP/10bIrw6Dx9+rxBM2ZMt7eRQY37cBwNGTLEno69KAmMGTOWRo8eZSqJGMoiRuZ06dLR999/T88884yRhC0IgIAXEzh+/LiuOBZCYWGrefXkxWh//0Y3tdem9tfxjND3jUy8zZo1qxJGi6vKwMBAKl26tOUooiAAAiAAAiAAAiAQfwITJkzgOd5QLsAuUOvTpw9NmzYt/gXjTBAAARAAARBIYQSUzPlTljlbXqliESEsLEzN6WODQ5M5N+YitEIMucHGjRvoqaeeik0RHpvnjTf60nR2V+gs/xg/bjwNHjLYY9uNhrmPwKlTp9S3hsXffssLsfme5xvehxc1ON//2ip+H1r1++/UsFFD9zUIJYMACIAACIAACHg9AcPrnDGONjRZYJHM6y8tOuBFBMaPH09Dhw7jFmtjfG1660N9+rzucnmzyxTJFi5cSC917my0VeEWPbABb71FEydOjDX+MWPG0JjRo7Vy9LOyZ89O//zzD/n6+sa6HE/NWK9ePVq3bl2k5q1cuVKZZ490AAkmgYc86R04cCBNnjxZS7PqhKjJMFHmLFlo+fLlJJwRQAAEvJPA5cuXac2aNRQSEqL+HTt2LHJHovj98ytHE5rKhnfUvkrjzLrQLE2q1FSzVi3lrlJcVoqZT/EdjQACIAACIAACIAACriawatUqatyksWVQotUgcxUZ6yCAAAiAAAiAAAjETGDBggX00ksvaRl1+Z/M99+Ko8x57NixNGrUKL0cXrjMcoKs2bIpmbO3ywVMeTMr1xnyDxGK/Pbbb9SkSZOYISNHsiFw9+5dksUM48aNo3///TfqfvF9Ive//I4yZcrEH6KGqt+TLM5GAAEQAAEQAAEQAIHoCPj4yoe5yN/fHrInIQQQAIHEIfA7LwAx53iW+V/d2nVobRQ6SAlplUsUycQdpXyMF/di8ggxzBrmzp2bRAEgc+bMsW6jrADbvHmzIz8X+Hzb5+m7775zpHlxLEeOHHT16lXugVha4wmbfoHPnTtHcKEW/YV98OAB9e7Viz5n16DWoN1vWspjOXPSrywgqVatmjUL4iAAAh5OQIRcm9glsiiOhYaG0s6dO0l+8/oLxdhE6oX19y8Hre8fI7OskChfvryyNiZWx8Q6pgjJEEAABEAABEAABEDA3QRkjlcgf371kc46/8vBC6VEcR4BBEAABEAABEDg0QRE5lyjRg26c/u2/j7V8udhmfPROMqcxdPFZpY9iPBA1ppJeP755CFzzsky0StXrmid4r+GvATyZhNJiogsWbJELcI+9fffkcafctPLfWHc/z68YP/FDh1ILBoUKFAgRfBBJ0EABEAABEAABBJGwMdHDP7oA2lLUWIIBgEEQCBxCJw/f57y5ctnq0zG+dlY3mydE9oyxHPHJYpk9erVZytbax2zVL0xc1jpp3v37rFumnROlM+UAoE55SWKazmxrjCRM545c4YKFixoq1UubC7u84ULF2zp2HEQuHfvHq887EKLF3+rJQo02zvJh/Lnz0e/r/qdypcr7zgRMRAAAY8kEMGrE3bv3m26q1y/fr3TKknnH7ll3xLVOqcnWNLlOStKY2JxLCAgAEq6HnkXoFEgAAIgAAIgkDIIyGIh61zPGLL8zR/4ChUqlDIgoJcgAAIgAAIgEE8CpqUtdb5j/v/57DnUo0ccZM6XWeacx5A5OxrzxRdfULdu3RwJXhg7ffq0GlMYYwyjCyJjt45BjHRskx+BPXv20Jt9+0ZrgcD53qhatSp98sknVIst9iOAAAiAAAiAAAiAQGwJGK4tjfzGGAOKZAYRbEEgcQjkzZuPLl44b1eX4apdLW9OsCLZ0qVLqXXrNqz2pZlDVnj4ySEKPTKJiYs7ykmTJqlVM8aDx0B99uzZSJp1xjFv2oo58WbNmllU5LTWN2wYRKtWBXtTVxKtrWKCW1YHrlixIoo6tTulWLHHKTh4FRUvXjyKPEgCARDwBALHjx/n32kwhYWFKQUycVdsBOsz3xo3jke9NXL6UNasWahBgwZKcUwUyEqWLBn1KUgFARAAARAAARAAgUQm0JAV28Xiqm0dDLfh119/paZNmyZya1AdCIAACIAACHgPAU3m3Job7Jj/i/y5HFsdd4XMWUo9zYt+87P1UG8OhrzZ5KTjksV1IodBSL4ERLY2YsQItQg/PJwt+8uIU7/+xq/G2vt8vMDh/Q8+oC5dusTpm421DMRBAARAAARAAARSLgHl2tIm4NJGHFAkS7n3BHqeNAQaN26s6xbZx/8rXCxvTpAi2f3796lc2bLKlLiGyZii+NAXX8yJ04ousUJWokQJOnnipFUljSpWrKiEA0lzGVxbq6EoZ7Dy8WHlO76+AwYMIDmGYCdw48YNatmyJa1Zs8Z2wHD3Kolly5ShVSwUgQluGyLsgECSExB3TatXr1buKsVl5Z9//mlpE7v21Z9/lkSWddlUkq2HzLj8/lOnTqNWTcqH2UD+JyspU6VKZeZBBARAAARAAARAAAQ8hcBbb71FkydP5ubYxz8fffSRWkTlKe1EO0AABEAABEDAkwiIzLksy5yPsftKCYbEWeJz586ll19+WaKxCobM+cSJE2Z+kT+Ur1Ce9u7da6Z5a+SjjybS4CGDnLw3QN7srdczNu0ODw+nmTNn0ujRY+jqVXZpav2B2ArQxp9p0qSlvmyx7J133qEsWbLYcmAHBEAABEAABEAABGJLoFevXiqr6DbItzojfPbZZ0YUWxAAgUQg8NZAljdPEnmzPUycOJFEFu2qkCBFMpm4R+W6MleuXMp0Wrp06WLdzh9++IHatm1rz88PoUEDB9GECRPs6dHsXb16laScI0eO0Llz5/gh5qNcSVaqVImtprVm5YPU0ZyZOMldu3al+fPnm5Vpczwfmsccu77c1UxHhEiUUJo2a0o7tu2wKRaabBjeE1WeIFl1J6baEUAABJKWgFgP3LRpk6k4tut//6MHEbI0Qf5x0B54WtzcfYTqGOf3eagplsmzXJSKAwMDlcvKOnXqUMaMGc2yEAEBEAABEAABEAABTyXw5Zdfmh+7jfmfjHC68Nxw3rx5ntpstAsEQAAEQAAEkpSAKXOWl6cEXbQgMueTJ09S+vTptfRY/NVkzs+zWMLiTYPPGzx4MI0fPz4WJRAr6zhkzuI5w5A5V65cmdq0aZOki9u6sVLdvC/ncz/s8hcZZ4gsGiF5Efj999/VovQDBw5YOqaNMlWCJSr7LZo3p0m8qMHf39+SH1EQAAEQAAEQAAEQAAEQAAFvJSD6RuZczzL+F8vDIot2VUiQIpm4EBNLM85h6NCh9OGHHzonR7svK8Nk4r1//34tD3eYjdWo6a+4AQkICIj2XDnw33//qRU1s2bNops3byotWNGGNQOXV6hgIfqATTd36tTJTE7sSPXq1WnH9u3GtN6sfjuniUUdBI2AKAGKSb59+/ZxguVmsACqXbu2cneJVVQWKIiCQCISiIiIoN27d/M7IJT/BdOGDRtIlMlkFYLz89d46PEhIxp9S/WffKHChU3FMXkH5MmTJ/pzcAQEQAAEQAAEQAAEPJTAzp07o5zrVatWjbZt2+ahrUazQAAEQAAEQCBpCYhbRpEJO4chQ4bQuHHjnJOj3RfLTVWqVHHInC05YytzFteBYmVBZM7WYMg/ChVKWpmzyJtFtmxdwCfyl22QN1svl9fHRZlRPhYtX75c9cW4/8yOWYRuEi1VurSyigtX6iYhREAABEAABEAABEAABEAgWRDYsWMHVatezfzobkwFqrG+kcwDXRXirUh24cIF5U5QlMBU44wW8t6GDevp6aefjnUbp02bpswr20/woUyZMtI///xDadOmtR+y7In7w1atWtHqNasVrOzZc9Ds2bNIJkl3795VWnfDhw+je/fC+ayH9O677yqlM0sRiRIV/8Ci9HTr9i1uhgHLh3x9fej69evc10yJ0g5Pr+T48ePK4tCff/7FTbVqA/Iuz5D5hlVKZj/8+CNlyJDB07uD9oFAsiIgv09RHpZ/YWFh6vns/PzXfrecqg481BXL9GeeLbOephPKli0bNWjQgERYLP9KliyZrNihMyAAAiAAAiAAAimTwJ07dyhz5iwUEfGAATjGP5kyZ6YbPA8UiyYIIAACIAACIAACDgIicy5YsAA9CH/gEKHyYXljrudFbHGROU+fPp3eeKMvn2mXMYocVrwhpEmTxlGxU8yUOa9mmTOH7Nmzs8x5tk3mPGz4cBI3nLKiLilkzqa8+dYtm/zF18+Xxxk3YM3d6Zp68658g6larSrt3rWbu2GMKXmrog75W7ZsWWnkyJHUp0+fJPfO4s280XYQAAEQAAEQAAEQAAEQ8FQCIm/OkiUzPXgg81z+p+YEmm6VzGNdJW+OtyLZp59+Sq+99priZzgnkzZmZmUpmYinSpUqVmxlNU2J4sXpCm/NOZB+Zstnn6VlP/0UbTkyWRZLNWvXrGVEDykDmzXfxRZynBUQli1bRs8995xZjlgu69mzp7mfGJG///6bihQpoqpS11KvtDj3/dixY4nRBI+v4+DBg9SoUSM6ffq0hRPTMszT8Q3Spm1r+nrR148U9Hh8R9FAEPASApcvX6HQsBAKZatjoaFh9OefkZ9V1ue/vK4kWJ9xWorjr3EsLQtrn2KF40B+hgexdUuxyujn5+fIiBgIgAAIgAAIgAAIJBMC/iVK0LE//zR7Y4yHTpw4Yc4RzYOIgAAIgAAIgEAKJ2CVOVtRZM2SlS5fuRxr2cGVK1fIv6Q/XWHZhgTj/SuRZ1s8Sz/FQua8Zs0ada640hSr7M4yZylDFjgbIbFlzqdOnaLCbNHdOTz++OMsw3GMPZyPY987Caxfv57q1a1rqkWa9zR3R2Rq3bp1UwqNsOrvndcXrQYBEAABEAABEAABEACB2BIowfJm65zPmBuIUZiiRYvGtphH5ou3IpkokX362afOC7qoWbNmyuXgI2u1HOzRozt98cU8TuGVM+qvHOQYKw/NnDGDevfWlNUk1TnMnTuXunfvbiY/auVX69ataSkrlMkKscy8+lvcJhqKXWYBboz8/vvv1IStpDl8vklvWXDxbHMWXGgmqd1YvccXvWvXLmrSuAldvHSR26pdf9Voi2ZK1y5d+V75gq24+Xp8f9BAEPBGAmLFUVxUalbHgmkXr3IUF5bGT1J+juZz2oxE3VPnwz78u61YoYKyNhYYGEh1WfCVMWPGqE9GKgiAAAiAAAiAAAgkIwLP8gKpn3/+ReuRWiSjjZRWrlyprC0no66iKyAAAiAAAiCQYAJK5swLmE25gh6Jq8xZZMZz54rMmYPl/SvFzZg5k2XOvdWhqP6IzLkHn6/EknzCu2Oj93DRhmXOPy5dqooRmfP+/fujVO6Kqp6Epom8uWmTJqZikSqPrZ22aN7cdIGY0DpwvmcRaN+hPS3+drHZKLmfa9epQ1OnTlVuXM0DiIAACIAACIAACIAACIAACCRbApq8+Wee6/KMgPWftOBDK1f+5jJ5c7wVyZrzhHTFihXcJpmu6I3jaK9Xe5GsHItN+P777+mF5583zradIn0W94bFihWzpRs7t9hkd6FChejateuc9JDSpUun3KxFp5iwdetWqlWzpllXp06daMGCBUZxbt9OmTKFBvTvb9ZvVDhkyBAaN26csZsit6K4IveTuPg0gu2e53usb983SBi6yhSfUQ+2IJCSCYiSmChxiuJYMP/btHEj/fvvv/Z3jvGMtzzqHcwsiRzVjAfqEc5UuFBh01WluKvMlSuX41TEQAAEQAAEQAAEQCCFEBg6dCiNHz9e9dYyeqLJH39M/fv1SyEU0E0QAAEQAAEQiB2B5s2fYZnzr06ZfahXr1fjJHN+nmXORrC+fyXtr78eLXMWK1/iRUNCbGTONVnmbITOnTvTV199Zey6dSuy0v4D+puiealM+joY8ma3ck/KwsXrSdkyZej2nX9ZYbGQGmO2a9cOMvOkvCioGwRAAARAAARAAARAAAQSmYAhb3ae637M8uZ+LpI3x1uRrFKlSrR3716FxNrAkSNH0pgxY2JEJZMeKePatWucVy/BsvEvWZIOHz4cbTnffPMNvfjii2b9zdkk+fLlP0WbX9xgiuLZmTNnVHUZ0megCxcuUKZMmaI9x5UHevfqRZ+xS00VLMC+nDePunTt6sqqvKqs33kVfus2bUh8uTrdBmY/3nnnHWWW20xABARAIN4ExKRlcHCwUh4LCwtjV8Ti4oGVgS3PX0Nv2azE8swy0/SI9VCO7NmpfoMGJBbHGrK7Sn9/f+fs2AcBEAABEAABEACBFEdAPiZ36dLF0m9tBCWWUGayRRQEEAABEAABEAABBwGrzNmRShRbmfPJkyepcuXKdO06y5xtAg7t/VuqVCk6dOiQtWhb3CpzlgOy0jsmN5hK5nyWZc5cn7jBvHjxYqLInGUsMeuzz7RuWgQ0X375pdPYw9ZF7Hg5AVmgIAtBBw8eTBkyZPDy3qD5IAACIAACIAACIAACIAACcSUwf/586mrVMdLng71YJym2Rr9iqjPeimQFCxWkM6fPcvk8Q1YN01onExhjtXV0lctER5QMNrL1m6JFi9KJEye1cuQEvSyxQCUmmaMLrZ5rRT8tE5eQWv2fz55D4ibzUeGVV16hOXPmGPoSNP/L+fRSl5cedYrLjgUEBNDq1Wu4PKsLTyKxlFa9enWX1eNNBf3w/Q/UqXMnunv3P8VFtV2//rKRCzVhwgQaOHCgOoQ/IAACcSdw+fJlfvasNpXHjvOqW5sc1XwictmW399DeVbx/sOHKlGvWI/r+dKmTUNPP/0UK441ZMtjgfTkk0+Sn59f3BuJM0AABEAABEAABEAgGROQOZ/VUok+6KL69eurcVoy7jq6BgIgAAIgAAJxJlCYFwKfOs1KWbrMl3S5xJAhg9mrg2bhM7pC7969qxa3bdq0iYoWKUInWKnMETSZRt++fR8pc2793HO0dJksVjZkzp+zzLmHo5goYj16vEJffPGFdg4LV+bP/5Jeesn9MucGvJhvzZq1Zr2qzVz/li2bqUaNGlG0FEkgAAIgAAIgAAIgAAIgAAIgAALeTsAhb9bmudpfcqm8Od6KZCIIlwZKMBomWgftXniBvv3222jZixKZrOQKCQ2hdGnS0egxo0lMrzmHX3/9lZo2beqcrPbFraW4SBPhgASpf9PmzU7CeXXI9kdMuQ0YMEBL45OCAoLYnVuwLY+7dgoWZMU7sYZmBB2aWGTLmjWrkZpitvO/mk89uvWg8AfhUfbZ19eXPuMVdaL8hwACIBB7AvKMFXex4q5S/onrSrHIaAvmQ9uWGuOODz9tK1epbFocq127NlY+xkgNGUAABEAABEAABFI6gevXr1O27Nm0b7sWGPny5aOzZ2VxFgIIgAAIgAAIgIBBoFatWqwIJTJnuyxD3Pc9SuYs3g5atWqlFtKJO8rRo1nmPIxlzvZi2G3mCmrWrJlRnW178+ZNyp0nN93917HodcuWLTEqZdlkzlxiUBDLnNkavLtDgQIF6Ow5Hks49TGlypvdzRvlgwAIgAAIgAAIgAAIgAAIgIAnEJA5X3b2FGYL/P0/f978dEasZbsgxFuRTFZVLViwgJugaSQYegk5c+Sgw0eOUM6cOSM1TxTAnuNVXaLcIEFWaomSw/QZ03nCq5fAm3Rp09GVK1eUKfBIhXDCd999RyI80IJ23qVLl+ixxx6LKruZ9ssvv1CLFi3MfbGcI6bGc3Cb3RlECJGNlcUinJQ58ufnC2lVLnNnIzyo7GnTp5NYnLNec2s8darUvHJvPnXo0MGDWo2mgIBnEoiIiKD/7dzJyrmhFMr/RInMZuUv2mY7nrnW358hfNSPUpEiRSmQrY01ZCGoWFbMnTt3tCXiAAiAAAiAAAiAAAiAQNQE8uXPR+fPXeCD/KVXDbRYRZ+3N27cSBTXV1G3CqkgAAIgAAIg4HkEHDJna9t8lJD8yJHDUcp/b9++rZTIDJmzeKTYtXs3zWAZpCG7lvdvurTpWeZ8OVqZ82KWOXdgmbNVL+uff/6JUs5tbZ0opzVv3txMkgWyF1lWLXJydwWRN2fNmo0XD0bYqkip8mYbBOyAAAiAAAiAAAiAAAiAAAiAQDInUIB1jc6eO2frpcxFZVFzpkyZbOnx2Ym3Itl7771HI0aM0OrU/J+Z9bdr3065jUybNq2Z9uOPP9Kbb75Jp0+fVgLzESNG0pgxY6ho0aJ0ks2MK1m6nrtxo8a08veV5rnOEVvdfFAUwcR9W0zh8OHDVLp0ad1dmyZG2LptG1WrVi2mUxN0/H//26VcvhnLwwxc9erVY/PjaxJUtred/P5779OIke+wkMMU46guGNc/LSsRfr9kCTVv4RC+eFsf0V4QcDeBY8eOUWhYKIUEhyh3SDE//4xfGP/uOBrd70/aLc/T+uxmSVbPyj9/f393dwflgwAIgAAIgAAIgECyJyDjq3Vr15ofpo3R2Y4dO/S5YrJHgA6CAAiAAAiAQKwIfPDBB/T2229zXuNtqZ/GAo0O7dvTvHnzyCpzXrp0qVqwelq5w/ShkSNHPELm3Ihlzr9H2w67zNmHLYpmpatXrkab3zhw6NAhKlOmDO862rzNzTLnnbyosGrVqkYT9K0P1atXN8XJm50geOTugwcPlHeVjBkzemT70CgQAAEQAAEQAAEQAAEQAAHvIlC/fgNau3aNarT1+/8Onis+8cQTCe5MvBXJRAGqQYMG9gboc2XZlGKFLTFFniZtGtqyeQvt2buHfFh5SFZ0vdKzJ82eNYv27/+DKlQoby+D98QceL9+/SKlGwmvv/46fTpzpimEL1euHJe13zgc7VasnGmW0oxJvQ/9+OMPykpatCe54ICYXe/wYgez/4ZQweDggio8vghxrTd0yBCa8NFH3FYHf0O5TjqQOXNm+umnnyLfVx7fOzQQBNxLQFa/iuJYWEgou+MNoRPHj5vPP7Nmy/PXunJWHedjxvPX+fcn7h6eeuoppTQWGBiohJCirYwAAiAAAiAAAiAAAiDgOgK9evWiWbNmc4H2kZrMFR3Wtl1XH0oCARAAARAAAW8lsHr1agpki+jyxjQkiNa+yCJhkWOkTp2atm7dSrvZ8pgRXnnlFZo9ezb98ccfVL58BU62lzJ58mTq37+/kT3SVmTOM1nmbNRbnmXO++Iic7bIX5YuW0atWraMVIerEhYvXkztWbHOFrj+V1/pSZ+x3B3BcwjIPS33nXwr+fTTTz2nYWgJCIAACIAACIAACIAACICA1xJ49dVX6XOe/2rSZmMW60PffPN15LliPHoZb0Uyqatrly40/6uvzMm1vX5j5qw1Wv3lP71e7UXTpk2jVKlS0bhx42j4sOHcOV2Yrp/yx4ED+ioue4nGXps2bVgB7Eez3urVqyvBgXE8uu3du3eV6XKjLZJv+rTpJEICd4b332crXO+wFS5VsS4E4fhHEz6igQMHurNqjyhbXO8J489mfabkN1b+PgxFrr8o+IkZ+Bo1anhEm9EIEEhKAnfu3KGNGzcqV5XBwcG0Z89uevDA7qpAf5yYz0F7e/mo0hzTcpm/OX7U+rJKcqUqlSkoULM4Vrt2bcqQIYP9dOyBAAiAAAiAAAiAAAi4lMDEiRNp0OBBPETT5j+qcB6kicXm4cOHu7QuFAYCIAACIAAC3k6gC8ucv2KZswRNsuHY2vvGR3X5R+/evWg6u7KUxXEffvghvc3vVyWLlTL09+9BljmXVpbD7KUYe23btqEffvjR2KVq1avRtq3bzP3oIv/99x/JQj2r/GU6y79f79MnulMSnC7y5nfeYW8hTvKfCTzmGPjWWwkuHwUknMCJEydo0KBB9MP3Pyj5t3wPEWu0lSpVSnjhKAEEQAAEQAAEQAAEQAAEQCBFE5g0aRINHMS6Rvz935yLMpH33n1Pt/KdMDwJUiS7du0aVaxYkU6dOsWtMKb19gYZZtTSpUtPkydPot69e5sZRIFBlCWsoUiRIiSTrEeFp59+mjZt2sRZtDrj4iJShAliHcsIIrSXibc7Q9euL9P8+fO5Cke9Ut8yXpnW0o0r0xLaJ1FmSaiCSXh4OHXu/BLJSnvn/hvty5s3L/3OZuXlXkIAgZRIQH4nu3btohC2Nib/5Pkmiq+O4KM/7eQZYjxrja3kssYtZ3GyPO6KFi3GFscCldWxAF7VmytXLkcmxEAABEAABEAABEAABNxOQCwvt2rVKlI9Xbt2VS66Ih1AAgiAAAiAAAikYALRy5wjyz9EgUu8W4j1TyMkROa8edNmpfQjspa4uIn08TGsu2vy32HDhpG46XRXePnll+nLL79UxRvyd2nzsmVLPVre7C4enlTu7du3afz48SQLCf79919b08TduVgoQwABEAABEAABEAABEAABEACBhBCITt78MusmzZ03NyFFq3MTpEgmJVy8eJFXVg+mr5SiVOT2+Pn5UevWrekjdmkoSmJGuHz5MuXJnZsesLUqUweCZQGxMb/t71+S/jx21FTLatqsGf3K1qxiEzKy5Z07lglct27d6IsvvojNqfHOU7duXVq/fr063yru2L9vH5UrH9m1Z7wrcvGJ8qHjtddeo0aNGsWrZFGEETcty5cvN8+39l8S5Z4ICQmmEiX8zTyIgEBKIHD06FFlcSw0NFQJkC5fuawtItUfiKI6ZlprtAFxOuL8o+K8OXLkUC5iGzZsSOKuskSJErYSsAMCIAACIAACIAACIJC4BDQXW/rczxi/8bZu7Tq0dt26xG0MagMBEAABEAABLyBw6dIlGsSeHMQbhgrG+1Nvu6+vD7Vp0/bRMmdLP199lV0+fvZol4/+/v507Ngx/Swfata0Ca349VdLKdFHM2bMSLIoV4I0VWTOc9woc7bKm1Wl+p/97IqzHLvkREh8ArJ4XRZTD+ZvJadPn7Y3wLh/efv9d0uoTdu29uPYAwEQAAEQAAEQAAEQAAEQAIE4EDDkzcZUwzi1Tp06tM4F8uYEK5IZDdq5c6dSipCtmPPOXyA/lS9Xnif0bShPnjxGNnO7cOFCtlTV2dxXHeQ/S39cGuVKbTMjRypUqEAyKTYU0Fo0b07Lf/7ZmiXaeMZMmegOrwoyzu3DJsbF1aY7Q/78+enc+XO6QS7tUvr6+dLtW7eV2XN31h3fss+ePUuFCxdWrkBXrlxJYgUuLuHW7VvU8tmWFBYWpp1m3sF6hDelS5WmVatWUaFCheJSNPKCgFcS+Oeff9Qz0rA6ZrW8qH4V5m9Euuf4nRjuF5zUx8wskjt9+vRUq1YtZXFMlMeqVKlCosSLAAIgAAIgAAIgAAIg4BkExBpF5syZ2V35A9UgY/xXIH+ByB8aPaPJaAUIgAAIgAAIeAQBcQUo8kVT5sxy1vK8MLctK+Lk5kXKzmHRokXUqZPInNkymEXW8uOPP9Jzzz3nnN22LzLnP/b/YS7sa9GihW2BrC2z0454dfj3LlufUgbJfKhPn9fdKnMuWLAgnTl7xnTbKc3xdHmzE7JktSv3ab9+/XTvKw65nnY/aF01xn/F2HOAfPQReR4CCIAACIAACIAACIAACIAACMSHgEPezIa7LPNf0U06c+ZMfIq0neMyRTJbqbHY6dChAy3mFToPLTP61KlTkyhbZMmS5ZElPNP8GbZApq0GkwlYYFAQBQcHP/IcORjB1s+syhVy7ugxY2jkyJExnhvfDHIBM7Hy2sMIsS2kJAmqKJnsay5B41uye89TPlV51Z+ELFmy0po1q5VySmxqvXLlCq/Ya0Zbt2/VhScit7FbV6pcubJSIoOLvdgQRR5vJCCrUDds2KCUx4KDQ2jPnt3qGWT0RRMpaX+NNONxaE917KkY/5Hf0xNPPKGsjQXx809cNkD4ZFJEBARAAARAAARAAAQ8koAs1Dl1SqxTOOaFPuyLStwfYSznkZcMjQIBEAABEPBCAiJzFqtQRhBZSqrUaVjmfClmmfMzLHNmC2SG/CUwIJA9KYQYRUW7NWTOVvnn6NGjadSoUdGek5ADIm8WC2hiAcuQJUl5BQsW4rHG3wkpGufGkYB4a3n77beVq/KIBxE2+b8Upe4ly0WSjzrjxo1jZcdOJONABBAAARAAARAAARAAARAAARCILwEx2GS1hqxmGD5s0IqNPiVU3pwkimSyCvuxxx6ja9euaUy0GRWJSe61a9fGyKlXr140a5aYItdOfOrpp2jjho0xnnfjxg3KmjWrLd+MGTOU+0Zbogt3Dh48SGXLsjlxH57YO74XxLqvLmxKnIoSRa89e/aY58gKP7k2pUuXNtOiipw/f56aNGlCe/lcR3f5Oln6L9bNfvnlF8qWLVtURSANBLySgDzXZHWsrJIVxdaNGzcq64zqOWW5/yN1Tn/+WWRKxqPNlrVYsWLK4pgojgUEBKhnqC0DdkAABEAABEAABEAABDyaQL169TSz4k7jvwMHDlCZMmU8uu1oHAiAAAiAAAh4A4Hw8HCSRaumzFlvdKxlzr170Wx2f2nINJ96imXOLN+JKWgyZ5ZzWuQ/M2fOpN69e8d0aryOa/LmsjZRkgiT6tZjl9lr1sarTJwUNwL379+nTz75hN599126fv06n2yXfzuXljZdWhrQfwANHz5cLTp3Po59EAABEAABEAABEPB0ArNnz9YWMjg19NVXX3VKwS4IgEBiEahfv36U+lWukDcniSKZKCQ14E4Zk3IBKbL0Dz78kIYOHRoj1w8++IDe4ZU+xvkVK1a0KT1FV4CYcCvElsDkPEN2/91339Hzzz8f3SkJTv/t19+o2TPNzPqMert27apWKiW4AjcUIApkokimBcdauoKFCtL6deupaNGiUdZ68uRJErd6R48edQA2S9H06Brx8R+XLlWr5qIsBIkg4EUE5F4XpTFRHpN/V69e1Vpv/ND1vhi7zlujq1q69S9Rjhw5lMWxwMBApUBWvHhxIzu2IAACIAACIAACIAACXkigW7du5hzQOvJbsWIFNWvWzAt7hCaDAAiAAAiAgGcREJmzCNKd5S8iSx42bFiMjZV8Yl3KCJUqVaLdu3cbu9Fuz549SwUKFLDVu9iNMmexmvYMW08zK9Rb5sny5mjheeEB4T9gwAA6fOSwbeG4831n7Ldq1YrE+8fjjz/uhb1Fk0EABEAABEAABEBAI6CsqRoDHB2K7EaIlVwEEACBJCHw8ssv0/wvv7TpP0lDXCFvThJFsoHsMlEmT/JwkRmverzwiq1d/9tlUWBSB6P8s3DhQurcuTOfqblLjK2byEOHDlGZsmV5gqc90KT+w0eOkL+/f5T1uCJRVp+9/vrrqq9aP7lWrl9WK73zzjuuqMLlZchE+OOPP7aUK6Q0Zv4lStDadesoX758luPM8fBhpUQWnbtOKaElT5oXL15MadKksZ2LHRDwFgKXLl1SrirFrUFISCidPHnC0XTHz8SRpsfMQ2Ky3vL8sT7/0qVNR2KtTxTHRCGzSpUqNle8kQpFAgiAAAiAAAiAAAiAgFcRkDngqJGjzPmvPsWiadOmUZ8+fbyqL2gsCIAACIAACHgiAUPmzD4DbfKX/+2Km8zZ6FucZM5sXdQq/znMcuiSJUsaRbl0a8ibnQsdM2YMjRw50jkZ+y4iIPJvkZuLIllUwXr9Rf5Xvnx5JWMX7wIIIAACIAACIAACIODtBKJyyy3jHyiSefuVRfu9mYDIm0eOGmWb/4r+wbTp05SOUkL6liSKZGV5Yn2QJ9Nqdq23Pm+evCSrt6J6CDl30FhdZszOfXx96OaNmzFaudqwYQPVqVPHLK5AwQJ0+tRpc98dkcFDBtPECR8Z3wjMKr766iulDGcmeEhETMAXLlSYzl84Z+i7GJj1FvpQhfLlKGz1atO1nqzMa9y4CV28eEHlMSfNvCdyG+l8J1b8mzdvHhRjdIrYeAeBO3fukDw3xOpYaGioWoX6UFcEM38Y6h533PWOmOP+19Qw7X2W55YoiwUFBimLY7Vr106wr2J7DdgDARAAARAAARAAARDwJAJfLfiKunTpopqkeb7SRo6DBw2m8RPGe1JT0RYQAAEQAAEQ8EoC4ipaFhJbQ568eejc2XNxkznrQh+Ra968eStGmfP69eupXt26pvw3tgpo1nbGJT54MMubP3LImw3563wPlTfHpW+emFdcl459dyxN+2Q63bv3n2rio+R/4mVgzOjR1Itdm6ZKlcoTu4Q2gQAIgAAIgAAIgECcCfjyoNP43mmMP2Xf/G4a5xJxAgiAQEIJGAa4zHJkosJh0MBBNGHCBG0nnn8TXZHszz//JP8S/vygMR41WstFoP4lm12LTbh58yYVKlyYrl+7ZmbfsXMHPfnEk+Z+VJGpU6dS/379+JBmyUysmolClzvDCy+0oyVLvjOr0K6dD1v1WmtTajMzJHFk5cqV1LRpU26FdTqsKcQY+jPSxGrVq1MoW2Xat2+fMqV+zXIt5FTtw4jk9KHXXuutVtn7+vpKAgIIeCyBiIgI2rFjh1IaE+WxzZs30927d60LWbW2ywjJ+oOw9sjp/lealPpxMWEvqxDlX0BAAOXMmdN6JuIgAAIgAAIgAAIgAALJmIB8ZK7LH5klqNmWLnV7vu3z9B27v0IAARAAARAAARCIPwGROZdgTwoS5D0rf0X+HBeZ842bN9QC2+vXr6sSRCC0Y/t2evLJmGTOn1C/fm9q5/Bfd8ucX3jhBVry/RKb/FXkT+vYi4R1EbXZIETiRUDkhLIwWtydXrigLaA2C4pC/ufn50c9e/ZUnkgg8zNJIQICIAACIAACIJBMCIiBDOv3f+P7JxTJkskFRje8koCxqMmY/xqdkDmjeApMSEh0RTJR5urXn5W5WI9ME55z8zn+zTffUPv27WPdl0GDBtHEiRPN/F988QV169bN3I8q0qlTJ1q0aJFeMZFo6HXs2DGqrC5Lq1mzJm3dutVeHnf875N/U6FChezpHrDXga/Bt/pN9ShdGQOiTJAfPHigC2j4UqqL6ujIsGHD6IMPPnAkIAYCHkbgCLu3FVeVYnFsdVgYXdWVImNz/xtdkdtegvP9L0KjgAYNqGGjRsplpSiSIYAACIAACIAACIAACKRMAqdPn+YFUTwHtK+pourVa/CccUvKhIJegwAIgAAIgICLCEydMoVlzv0dpekyym+//ZbatWvnSI8hZpc5+9CcOZ9T9+7dH3mWKXPWcy1YsIAkzV2hZq1atHVL5LHDqVOnSKyhISScwP/+9z+lFLZz506zsOjkf5KhQf36NPWTT6hChQpmfkRAAARAAARAAARAIDkRiM6rHBTJktNVRl+8jYDMAQuzAS5N8cqhf1WD5c1bopgzxqV/ia5IJu7bNm7cqLVRn9D7saWqCxcvxsk6jwjhixcvzuak73FZPmwVqxn98ssvj+x7yZIl6ejRoypP/vz56a+//qK0adM+8pyEHpR6zp1j8+n8n2GFLU2aNCQu80QJy5OCmOnOmy8v3b3zr/q24axIo18ux43ICZpRJvOI2R15mXw47kMaMniImYYICHgCgUuXLinFMVEek3+n/v5bVwDT7mPjbo7P/Z8+fXp66qmnqGHDhsrqmLiuhCU+T7jqaAMIgAAIgAAIgAAIJD0BWYAj48Xw+/dt4898+fLR2bNnk76BaAEIgAAIgAAIeDEBscS1ccNGU/4qXfH19aOLFy/EWeYsCwHvh99Xyt/Nmzenn3/++ZFkDJmzyH/z5c/ndpmzIW+2NspT5c3WNnpTXBTIarBHjoiHEdHKv6U/RYsVZTejE6lNmzbe1D20FQRAAARAAARAAATiTCAqRTIZ/8p4CQEEQCBpCBjy5vssb1ZBV3TIlzcvnWUdpYSERFUkE5dx1apV40eKQ6lKGi/mweVYXEPnlzrTwgULldu5VKlSK4Wt6MxGnzlzRlkAE61YqX/S5EnU37pKLa6VxyK/uMTLmDEDRUQY5te0k4oWLUrHjx+PRQmJm2Xu3LnUo3sPrtRQebPX73zdjKNK4UZ22ByTXFkfVgycMWMG9erVy8iCLQgkGQFR2hTT/kpxjN1V7mV3rDbteENzjFsod3Bc7n9REqtSpTIrjTVUymNPP/00pUuXLsn6iopBAARAAARAAARAAAQ8m0CxYo/TiZM8F9Stksn405ddA9zmMau7Fzl5Nhm0DgRAAARAAATiT2DHju0sc65uLn6VkuQdW+WJKmS1KBXbGqwWxlKnSU1nz5ylxx57LMrTZbFzYbY4qhbbslhp8qTJbpU5y6JqUUwXt4u6GEu1q1ixYkqBLcpGIjFeBHr06EHiBUWCs/w7Q8aMJJ445PtChgwZ4lU+TgIBEAABEAABEAABbyKgFMks31RV23n/oehBIIAACCQZgWJFi9JJ9oZo1fARg1a3bt1KkN5CoimS7d+/n5599llNgUoeMhJ0xaOC7OLx8OHDahKsHYjd371799ITTzzJrhXD1Qldu3alefPmRXnywIEDaRJP5EViL+5EDh44yEpeGaPM66pEsXhWvERx9ZFAe65qf+vUrUPr1q5zVTUuK6c+m+Beu3atQwjBzXX4OnYkG0IKa5+MRqROnZpEIc2d5tuNurAFgagIiOatKKYqxbHQENq0cRPdZyGbqJCaP0Y5UX/+aO4o9WOSbkR5G9X9L7/pwIBAZXEsICAgTqtapXgEEAABEAABEAABEACBlEugbt26tH7DejUWVWNTQcHjzj+P/Ulwg55y7wv0HARAAARAIP4ElMy5Jcuc/zqui3R0wQ5vCrHM+dDBQ3FW9NnHixCfYCW08PAHqswuXV9mmfPcKBupZM68YFmUxKW+gwfdK3M25M2azMrR19pP16b163mMgeAyAhcuXKBS7OHk+o2bXKb2gVQ+oL744os0btw4uBF1GWkUBAIgAAIgAAIg4A0EfHkcZPvWysMjGY1GaO7LvKELaCMIJEsCSsdn3Vqtbxb9hz+P/cXy5mLx7rPbFMnEfeWmTZvoyJGj7H9zM+3/Y78+39InuNYmc9LjvDK7WdOmlDtPHrUSu1WrViRmwWMKn332GfV+rbcxl6NZs2ZRz549baf99ttvSoktPDycMmfOwq41N1CFChVsedyxI1aQ6tWrz0XrT1I135TJZgdatGiRO6qMd5knTpyg4my2XR722hXiv0oiEZWNJv0a6hv9BFX30qXLqFWrlvFuB04EgfgQOHLkiOmuMiwsjK5fv+64j51+f+bDwqhI3eoOK4naba0SOasPPZYzJzUIbEAN2epYUFAQFStWzDgTWxAAARAAARAAARAAARCIEwFl4eTrRTzVso8/1/CCHlEyQwABEAABEAABEHg0AZE3i9xZFiVv3ryZFwsfiPRBS/ukpSn+iLyzCcuc87DMWdw/tm7dmvz9/R9dCR/97LNZ1Ls3e1vQBEVRypxXrFjBctBWSuEsa9YsSpHL3TJnTd5cz2y/Icfq2PFFWrhwoZmOiGsITJw4kQYNGqTugyd5QfvUqVNJPBIggAAIgAAIgAAIgEBKI2C4tjTGn4b+AyySpbQ7Af31NAIdO3air1nebAv8Q12zeg3rKjnmjrbjsdhxmyJZ2+efpx+//15UOLSg7D/znj75NpIjbTkfN4oWf/cdPc9lxCZMnjyZhg4dSuHs+1Pqa968OTVu0pjSpk5Dm1igsGDBAnrA5r6zZ8tGS5YsocDAwNgUm+A8X3/9NXXs2FErx9L/wYMG0/jx4xNcvisLeO+992jEiBF8fTT+5nV7VCXWa8lx0TsbPWYMjRw58lFn4RgIJJiArAgUi2OhoaEUxv9Onvpb03uUkuW+lA3fj+Z9bPn9ORK1fLa/nC89u6YUgVDDhpriWOXKldndkK8tG3ZAAARAAARAAARAAARAID4EZN5qmwvq868F/OHXnDvGp2CcAwIgAAIgAAIphMDzbdvS9z/8EG/5j8iG23IZsQkicx4ydAjLnDVvGErm3LixUkgTJTZ5f0fwwuWsLHP+nuXgiSFzNuXNTvKvIUOGKCtZsekX8sSewH///adkhF26dKGXX34ZMsLYo0NOEAABEAABEACBZEbAx1cbgDp/f30oLtcRQAAEkoxAJHmz3hIxbCXWlOMb3KZItmfPHjp06BDrJfFKa92koWwNbVWzwSI45x0jj0rnhEYNG1H27NnNbDFFtm3bRqNGjaLgVatYaUzUR0wVEjW579Wrl1KUeuyxx2IqymXHJ0yYQDKJtwbp6yfTplGfPn2syUkaF/alS5emo0eP8HVwaoq6OJpsxvmQ5NQPmyfJ/hRemdW3b18zDREQSCiB27dv03q28BfMymOiQCYuBtTzhAu23pfa/eh8VzpqdxyR5w57Cubnjx8riVWpUkVZGxOLY6JElo6VyRBAAARAAARAAARAAARAwNUEps+YQW/wXFDGpfLHmH+JctngwYNdXR3KAwEQAAEQAIFkRyAqmXNc5M+NGsVN5rx9+3a1aHYVy5wj9I9kmnzJh2XOqUlkziKTzpEjR6KwFnnzUJY3Gz4ljEqneZi82WgXtiAAAiAAAiAAAiAAAsmDgI+PGN2wfpXV+mXT8UgeXUUvQMCrCEyfPp3eeOMNbrND/0GEzgmVN7tNkSyp6J49e5YOHjxIp0+fpixZslCpUqWoePHiyl1mYrepX79+yty1Q3lFa8GPP/5Izz33XGI3J9r6tmzZQrVq1XI67txqy74lqp2kJxgbVs75/PPPqXv37k5lYhcEYkdA3NDu2LFDWRxbFbyKtmzeSvfu/aedHMP951xDpOycoUSJ4hQQEKhWFAYEBCSasM+5bdgHARAAARAAARAAARBIWQSWLl2qXGo59/rNN9+kKVOmOCdjHwRAAARAAARAwEMInDt3jg6wG83TZ05T5kxZeFFu0sic3+z3Jn0y9ZNIVH5gK23ithMBBEAABEAABEAABEAABNxBwNlYkPH9FYpk7qCNMkEg9gSWLVtm0z0yfpsJlTcnO0Wy2CN1f05xzSlmzU27XfpVE8WtGjVquL8Bsazh9ddeo08//dTUITZurphPN3Lq2o3GCZzs5+dH33z9TazdkxqnYptyCRw6fIhCQ0KVxbHVq1fT9evXY4AR/f1n3syqBB/KlesxVhwLUP/EZWWxYsViKBuHQQAEQAAEQAAEQAAEQMD1BLZu3Uo1a9ZUFsmMNZwyqm3DLrbE1RYCCIAACIAACIAACDyKgClvNsRiemZxtSljDAQQAAEQAAEQAAEQAAEQcAcB5drSEGapCrQBKRTJ3EEbZYJA7AmIvLkWzwVtP08+vW0C5c1QJIv9NYhzztq1a9PGTRsjWXn8+++/qVChQnEuzx0n3Lt3j/Lly0dXrlxRxTuphEVZJRscM12w2GUWxh5v+f80qVOTaEA2bdo0ynKQmLIJXLhwgcLCwig4OFgpj506dcowuPhIMLG5/9KnT091+PcX1DBIuaysVKkS+bILSwQQAAEQAAEQAAEQAAEQSEoCYjnbOhc05l/iXn3Dhg1J2TTUDQIgAAIgAAIg4AUE6tSpo48ZNPmrEtJy9O+TniNv9gSMIvNOkyaNJzQFbQABEAABEAABEACBZEFAubbkcacx/jS0VqBIliwuLzrhxQREx6Jw4cLcA5Y0+zw09XgSKm+GIpkbb4oS7FLzz7+Ocw26/h8/XH3Zf/Ddu3cpNStZeUIQN5tt27QxWmhvksgjHvrwMWf9Rc4mLwoJURzSDmiHMnDjAAAJ4UlEQVR/M2bMSL/++ivVrVvXmox4CiRw69YtWrdunVIaCwkJoT/276cIvn+iucPUPRbb+08s4FWpUkW5qgwKCqKnnnqK0qVLlwIpo8sgAAIgAAIgAAIgAAKeTOD+/fuULm06HgdH2Jr5+OOP059//mlLww4IgAAIgAAIgAAIOBOQMcPx48dtySIX+/fffz1G3mxrXCLvyIfMhQsX0rBhw5S111q1aiVyC1AdCIAACIAACIAACCRPAnbXlkqjTHUUimTJ83qjV95DQMmbWS8iIiJCqfA8FIUyVuJ5nHWVjh07Fu+OQJEs3uhiPjFDhgxqEq9fMXVC7ty5SSwxeUpo1aoV/fTTT/bmKAUyQ0fMtmPPF82e1WKUZMmSJYuyPPXkk09GcwaSkyOB8PBw2r59u6k4Ji5d7/NqwBh0D3UFspjvP39/fwoMDGSLYw2pQYP6lCNHjuSIEX0CARAAARAAARAAARBIZgTy5M1DFy9cdPSKp1wZ0meg27dvO9IQAwEQAAEQAAEQAIEoCBjyZqv81dPkzVE0O1GStm3bRm+++SZtZRmkyB+rVa1KW9jNC7wUJAp+VAICIAACIAACIJDMCfj6smqK9SOvrksGRbJkfuHRPa8gkCcPy5svWuTN3Grx4Hbnzp14tx+KZPFG9+gTr1+/TtmyZ2dtGNb54wfpQ7bsJaoxFStVpD279zz65EQ6+s8//1CBAgVITH1HDvrT33qAO8I3jErRu6PiKqeZ3YjwVkW1/ufMmYvWrl1DZcuWtZaIeDIjcOjQIV1xLJTWrFlN8juw3v/aPWG5R6JVKzPyOADlYiXMwAYNKJAtjonVsaJFizoOIgYCIAACIAACIAACIAACXkKgYsWKtG/fPqfW+tC1a1cpa9asTunYBQEQAAEQAAEQAAGNgJI3Z8vGO4bcjLf8f8UKFWjPHs+QNyfFtTp37hwNZwtkXy1YyKvwH+h4NEbz5n1JXbt2SYpmoU4QAAEQAAEQAAEQSFYENItk2vjTqv/w0MnqfrLqNDoDAl5CoFKlSrR3715urTYPMpp97dq1eMuboUhmUHTx9ujRo1SyZMlIpTZs2JBWrVoVKT0pEqZNm0Z9+/Z13E72+0pPlxcCK48p/TGnDHqjNeN4YiRPz8Zba1yyycqvZ599lr7//nsSc+sIyYOACGrCwlZTaGgIBfN9ffrMGdUx5+tv7a3zMXPfjGi5M7JFv9p16rLiWAAFBQaRPACxgtBKEnEQAAEQAAEQAAEQAAFvJNCI54TB7OrdedJ0+PDhKOeQ3thHtBkEQAAEQAAEQMD1BETeXIrlzdoyX8dQomHDRixv/t31FXp4ibI4evLkyfTBBx/SzZs3bK01xIx5eWX+EeaWOXNm23HsgAAIgAAIgAAIgAAIxI2AKJIZYyzrmbBIZqWBOAgkDYFGjRpRcHCwWbnxW02IvBmKZCZO10bWr19P9erWNSf2qnR+wHbq2JEWLFjg2sriWVqNGjVp2/atrP2l3UrGDaXEEKI8JsEimTD0ycx8ZkTL6vw3U8aMFMQfSZo3b07PPPMM5c2b1zkL9r2MgLjbWbNmDYWFhlII/xNLCtENECLdHnz/i4a6FuQoB3VTaTlT+aWiJ558QlkbE4tjtWrVonTszxcBBEAABEAABEAABEAABJITgc6dO9PChQstwjceD/O4eO3atVSXF1IggAAIgAAIgAAIgEBUBNZvWB9prCBStY6dOnmMvDmqdrsjbfny5fTWW2/Rn8eOmeJrVU8U8schQwbTuHHj3NEMlAkCIAACIAACIAACKYaAZpHMsZjB6Hh034mN49iCAAi4n4Amb16kVWTRv1i3bh3VqVMnXg2AIlm8sMV80g8//EBtn2/rUMTiU2Ri33/AAJo0aVLMBbg5h7ggLFOmjOXjhb1C25zbyKXp+9gzGscklY8XLlSIlcaaK+WxgIAAKAI50fK23fDwcNq+fbvSYA1hqwlbt251coVquSk4qikb6hHprKE3xlFLThODv7+/qThWv359ypEjh3kMERAAARAAARAAARAAARBIjgTko6dYz7AGmX8tWfI9tWnTxpqMOAiAAAiAAAiAAAiYBMTTw/MvPB9J/jagv2fIm82GujFy4MABGtC/P/2+ilfbiyBSwiPkj+LhYOrUqVSvXj0tL/6CAAiAAAiAAAiAAAjEi4CPj2+U4y8oksULJ04CAZcSsMqbrToZS3gO2Tae8mYokrn0EjkK+/TTT+n1117T5rGWqyWrn4YMGeLImESxt99+m81+f6DXrjfQvrG3zNIH6wHRPq5WtRo9w1bHnn22hXI/aGgkW/Mh7j0ERMlQTB+K4phYH7txg03DR3P9pVfWQ1HGLYm5c+emwMBA9U+sjhUpUsR7wKClIAACIAACIAACIAACIOACAuPHj6ehQ4eaA2ljuDxz5kzq3bu3C2pAESAAAiAAAiAAAsmRgIwVXn/99UiyuA89RN7sTuZXr16l0aPH0KefzqTw+/dN3TFjHGWDwg3JlSsXjRkzhnr27El+fn7ubBrKBgEQAAEQAAEQAIEUQcD4/u88/oIiWYq4/OikhxOYMGGCkw6S9ksVnaVevXrFq/VQJIsXtphPGjt2LI0aNZozypIo45HqQ198MYe6desWcwFuzBEREUGPP/44nTx5Uq/FaJ/RVMPH8UPSLJNZjnNfMmXMQAFBgdSieQvlsjJfvnxubC2KdjeB8+fPK6UxURwLZXeVp0+f0e/YqK+/uqfVLaHfF9a43EK8r3mw9KH06dNTXXbx2rBhkFIek1WAxkDD3f1C+SAAAiAAAiAAAiAAAiDgiQTmzZvnmBPqY2nZjB4zmkaOHOmJTUabQAAEQAAEQAAEPIDA2LHvsrxZGytY5W+eIG92F54HDx7QnDlzaMSId+jSpctcjWZ+zNp/q/w9VarU9NprvVnpbDRlz57dXc1CuSAAAiAAAiAAAiCQ4gj4+vqY33+t4y8okqW4WwEd9kACc+fOpe7du1tapoTOanFNfOXNUCSz4HRltG/fvjRt+jRjbmsWvXz5cmrRooW5nxSRsLAwCmRFMHPpViwaUbBgQWregl1WsttKsSiVLl26WJyFLJ5I4ObNm7Ru/ToKWRVCIaEh9Mf+/XG4FbSHjrVfZgpLcPx8fZWFOrm/xOJYrVq1KG3atNbsiIMACIAACIAACIAACIBAiibw888/szXnZyMxkDmkuF5CAAEQAAEQAAEQAIGoCGjy5ukWmS4rVbFgbvlPSS9vjqq9CU1bu3Yt9Wc3lrt27TKXaWsrWI2Stf4bgs1GjRop9+HlypUzMmALAiAAAiAAAiAAAiDgIgLKtaUMvMwPw1rBUCRzEWAUAwIJIKDkzS1Z3qytuzFL6tOnD02bxjpL8Qj/BwAA//8HzV0iAABAAElEQVTsXQeAFEXWfrvknJNkRbKKgiAKklFBBRR/c0Y9czwDYjySngoYTkVRPM+sYEZJEgyAKEEyKCA557QLy/++qq7u6p6e2dnZhd0dXsFOV1VX/Cp29dfvpRxmQ2ISQmDfgXRatGw9rd+yi7Zs3U2bt+2hrTv20Ca2z13wJ6Wl62TT9u+i9H07KP3ALrqoZzc6qfGJVKFscapWqQw1PKEqFS1SMKH8E410/Q030Mi33+boKfzHza8utp29UlKoefPmdOGFF9L5559PzZo1U36J5inxcg+BgwcP0vTp02nC+Ak0fsJ4msb29LQ0LpDd5rZdl9XxccN5brsuKVS//onUuXMn/utCHTt2pDJlytgBxC4ICAKCgCAgCAgCgoAgIAgIAhYCv/zyC5155lnsY57F9M3LL7+c3n//fSukWAUBQUAQEAQEAUHgWETg4KFDtHTFJlq9bjtt2sZnzs6585SfpvPZ8wEqUqwUw5JCB/bvpIP7dlKHdq2pQb3aVKl8CapYviTVqFqW6tetQgVScZqX/8yKFSvooYceoo8//tgpvD6VNGeT5mrONuvVq0fPPfcc9ejRI/9VVkosCAgCgoAgIAgIAoJAPkHgH//4h1tS8AgMxeS1115z/cUiCAgCuYPAtGnTqHXr1py587SkLil0+eWXJXzenCJEsvgbE5S7RX+tp+mzV9Ivs/+ieUvW0cH0DKJUToPvRTOIpyZUyuCm43/ccIczDiu/AgVSqGmDGtS6WW06o1ldfsivRKmpSPDImD179lC1atVo165dphupjNCXihcvQR2YCNSjx4XUrVs3Ou64445MISTVI47AggULaMKECTRu7FiaPGUq7dy5k/PUnVT1P/RJ18dvV64UDqCDR5S1cuUqTBjrQF26dqHOnTpTrVq1IsKIhyAgCAgCgoAgIAgIAoKAICAIhCOwZMkSatiggbXd5p0577+78IcZY3n/LkYQEAQEAUFAEBAEjj0ENmzeRT/P+oumzVpJv85dSXv24SNQPneGOcx7hSyeP5coXphOb1qLzji1LrU+rS5VrVhap5WHf/fu3UvPPvus+tu3bz8q7pXWHGh6PlSqVCl69NFH6e6776aiRYtad8QqCAgCgoAgIAgIAoKAICAICAKCwLGDAM6bG/B5c5D/0aVLV/p+7PcJASFEsjhgW7thB3058Q/6ZuI8lja2S9HB8OyekZFBe3espX27NlA6Sx1LO8Bfge1l6WMHdlDa/t3sx+Qdbq1ChUtRoWKlqXDRUlSwKK5lqHCRklS0TBUqXobJWimpHOww/0uhKhVK0fkdmtAFnU6i4yrnvGQnfOF+5ZVXcenxIJ7CZLFqSupY9+7dqVOnTlSsWLE4EJEgeQ2BNWvW0MSJExV5bML48bSa3T6j3005xy9mCjFXX0jXoe7yTwkmGLZt25Y6sdQxvNw6+eSTRTqdi5JYBAFBQBAQBAQBQUAQEAQEgawhsHXrVqpQoUJEpNNOO41+++23CH/xEAQEAUFAEBAEBIHkRCAt/RCN+3ERfcHnznMWrtaV5CNbnBPv3bWZ9vG5cxprucCZc/pe1nbhnD+nsxQyhCmIM2aWTlaIr4Vw5ozz5yKlqVjZ46hYqSp8/MtEND53xjnwKY1qUI9OTanzWQ2pSOGjqx0jntb75JNP6P7776dVq1Zx3czJtb764vPNVK7TVVddRYMGDZIPoX3giEMQEAQEAUFAEBAEBAFBQBAQBI5FBLZs2UIVK1bkqpunKY1Cds6bhUgWoyctX7WFRo6aTmOnLmDxjPobsLR922nHhkW0Y/1i2rVpKUskOxBoDpMgN5KS6qQbS/067ebaOWjBgsWodMUTqEzVBlS6akMqWqysEgWZWiCVurZpSNdd3Jrq1ihvEs329ZxzzqEtmzfTBY7KSnQeSEsTk78QgES5yZMn0zgmjU1kyWPz5893RYjqmnCbxtH/UviLRlAYlXGiQCJei5YtWdoYE8e6dFFiEAsXLpy/AJLSCgKCgCAgCAgCgoAgIAgIAnkUgUOsrqpIkSJ0KOOQ3rI75axTpw4tX748j5ZaiiUICAKCgCAgCAgCOYUACGSjx86md0bPoK3b9qhz50OHDqiz5m3rFtF2PntOZwIZDE5tcXJnrvDzjHOYB4llHEr9OgHxIXOZag35zLkRla10IqUWKMSJpFCFciXo2l6tqGeXk/MUoQxSxV568UVzSulW0amOW/9WrVrRsGHDCFcxgoAgIAgIAoKAICAICAKCgCAgCAgCRAcPHqQiRYsoQVg2/yM7581CJAvpWWs2bKc3PvqZvp+ykDKYQXaYD/i3rJpNm1ZMp11bcLAffIRFIsbPnyA4WiChRbvvD01Uqnwdqnh8K6pY81R+ti+A53s6t21juunSM6l61bLB4Fl2r1+/nqpWrZrleBIhdxFIS0ujmTNn0rhx42g8k8emT59O6ekHuVCqc/E1e/2vfv36ijTWuXNnat++PZUtm/2+lruISe6CgCAgCAgCgoAgIAgIAoJA3kWgXLlytH37dl8BS5cuTTt26JfGvhviEAQEAUFAEMhzCGC+HjPmWz5D6SDnbHmudfJugQ4dyqBvJy+g4R/8RBtZ6wXMnm2raeNfP9GW1XMo49BB54TPpo7ZZ3623atnZufPIJGVr3EKVTn+LCpRroY6TqxcsSTdcnkb6tauCaWmIt3cNdu2bSOcT27ZvIVPOyPrX61aNRo8eDBdffXV8lF07jaV5C4ICAKCgCAgCAgCgoAgIAgIAnkQgZw+bxYimdXIe/el0dufTqP3v/6NWXuHWATZIdrI5LE1SyYq8eFe0BR+qHflOEXj8HjBLVvo477x5KsSIsWpFy5Who5r0IEq1WnJ8roLUOGCBeiy85vTDb1bU/FiIh3KgjQprYeZfbhgwQJFGgNxDNLHIIVMm+z3vypVqihVpiCOQepYjRp8iCRGEBAEBAFBQBAQBAQBQUAQEASOCgLHH388LV+x3H3+wxtdqGk6kHaApVbnPXVTRwUUyUQQEAQEgXyEAEgvL7JUJMiAatiwPnXo0JFw1iJGEIiGwB+L19K/35hAi1dsUOv/7u1raM2Csaz1YqF9ymxFz/75n5WYe35dtlpjqtGoKxUvW13dblC3Cj1wUyc6ucFxvuC54Xjttdfo1ltvdbLW9S9StCjddddd1K9fPypVqlRuFEvyFAQEAUFAEBAEBAFBQBAQBAQBQSDPI6DOm422C4d/BM2EEFiUyHmzEMmcJp8yYxk9++Z42rR5Nz9YZ9DmlbNo9YIxlLZ/Bz/ca9pY4PHdfQAP7TWKFGbRzQxZzPmuzFxMXHXbDQNf7ShcvCw/3J9LFWuzCkr+V7F8SXrwps50dst6JqpckwSBtWvX0gRWU6mljk2gdevWqm6QE/2vRMkS1O7sdkwe60ydO3eik046Sb7eS5J+I9UQBAQBQUAQEAQEAUFAEMh/CDQ/7TT6ffYsT8Cw8/y3ZcsWKl++fP6rkJRYEBAEBIFjDAEQyYYNZSJZKhOBD6cqIlDDhg2VlHfRBHCMdYZMqrtvfzq99O5kGvXdbBVy/96ttHreGNqyht2OSkpsA3Li/M/ZTnA+ziGz76zZ8VV+rOKy5ilUo0k3KsJnzympqXRxl1Po9qvPztUPmKH+u0XzFjR7jsaqR48e9Pzzz9MJJ5yQCcpyWxAQBAQBQUAQEAQEAUFAEBAEBIFjG4HT+Lx51iw+b3aM8+inpD4nct58zBPJ9rAUsudHTKRvfpinIN29bSWtmDWa9vFXYUZpoPvwzSEM4Oam73ncdTgW1414FqnMbjzzYO/4GacVVeVavOxxVKdZL1Z9WVudMUDs+D+ZUFa8aCETU675DAFIGJs0aZKSOgby2MKFC92uFmx/84ZJ+Vs3LasbF5aCBQpQi5anU+dOnZTEsTPOOIMKFxZJdvmsi0hxBQFBQBAQBAQBQUAQEASSFIEOHTqoZ4Hg89+yZcvkZWmStrlUSxAQBJILAagnHjpkGB/BsMYCPpzhA1auIE7/UqhBwwbUrl07gio+Mcc2Aov+2kD9nv+KVq1n1dWHD9LaxZNo7aIJlHE4XR31+c71zKZA9SSPYwYEfeFch2Nx3boHWjo0FPj6thXISrAAq7ys1qAjVavfgclkBahGtXLU/97u1OiEqipubvxAK8Ptt99OQ4YOoS6du+RGESRPQUAQEAQEAUFAEBAEBAFBQBAQBPIdAh07dqRJP/zANCb/81+i583HNJHs77Vb6Z+DP6fla7cQ67Kkv+d/SxuW/cSdgg9//PiqjhLp5floW9Bt+hf7a52VxsN/NdHMFXdtuxMaoucqn3AW1eKvxVL4Qb9OjQr0/CO9qEbVsv70xJUnEUhPT6fp06e7UsdgP8j9zm1ru81tu2l/vnrkRnh6gWBr0LCRkjYGdZXt27enMmXKIJAYQUAQEAQEAUFAEBAEBAFBQBDIYwj06tWLPv/ic2+D72ztZ86cSc2bN89jpZXiCAKCgCAgCAQRUBLJWLWlmr41h0wzf1hCmT5WZJWXjRoqQplIKAuid2y4x0xZQP1f+Z7P/g7R3u1r6c/f3qd9OzbYx3l+uwOLd9pncPJ8tC3otsIleP5crHRVOuH0y6h4mepUqGAqPXrbuXReu8Ym4aN+zcjIoFSWkiZGEBAEBAFBQBAQBAQBQUAQEAQEAUEgPgTUefPnfN4MYx4b+Trz18TOm49ZItnCP9fTPf0/o+0799G+netp2bR3ad/uTYxqkKMXJkvMw141RNiPaRznnnEGryaq9rd/vTtBWWZFS1WhE1tdScVKV6MypYrR0H4XU+N6ufelmCnpkbxu3LiRDvPXnVWqVDmS2eRo2igvpIxpVZXjCV/U7WYpZO75opWb3fKmj+jb0ftflapVWVVlJ/UH8ljNmjWtFMUqCAgCgoAgIAgIAoKAICAICAJ5FYFrr72W/vvfd7l4/ufPiRMnEqSViREEBAFBQBDI2wgoiWRDhzrSyHRZcd4D6ot37sNzfEoqQeUlJJQJoSxvt2lOlu79r2bSsJE/8Nl9Cm1Y/gutnPMlHc446Jzl26eAJtfo53/oT1GN/xDRfldg9UMvtp2zP2oKpRZIpVon9aDKx7dWEe6+rj1dcUELL7LYBAFBQBAQBAQBQUAQEAQEAUFAEBAE8iwC+rz5v275zPPfhAnjCdLKsmqOSSLZ4uUb6PYnPqHde/bT9vWLaOn0/1FGxgF90hOKoP/R2gSJeMQPD6aCu7dYqhgzolw/UNKUK9YXY+4xgMmZD6YKFGYy2TVUpmp9KlmiKL361KVUv25lL0AS2ZYuXUrdunWjhx56iPr06ZOna7ZmzRqlqnLChAnqum7dOlXenGj/EiVK8sHj2Sx1rLP6a9q0KR9IImUxgoAgIAgIAoKAICAICAKCgCCQnxC486476eWXXo4o8ujRo6lnz54R/uIhCAgCgoAgkLcQMBLJfLQx1nGZimM/LuphPq/R6i71x6j4hcpLSJAXQlneasucLs2nY2bRsyMmUgpL1Vo59wva+Ce0XyR2/ouyHe3z5yontKHap1yocn6gTye65LxTUQwxgoAgIAgIAoKAICAICAKCgCAgCAgCeRiBu+66i8+bX+IS+p8/Ez1vPuaIZCtWb6V/PPYBbWNJZFvX/kF/znhXSbrSPC5N91HUHBz8OJ98aV/TKyyXsaqrcaBp9KERYiieD6fjJGUS0VcEdEwi+aewiO96p19F5WqcRGVLFqfhAy6j2tXLmyST4gr1jxdeeCFBItlll11GH3zwQZ6q1y6WMPYD65odP368+oMEspxq/wIFCtLpp59OXbp0UVLHWrduTYUKFcpT9ZfCCAKCgCAgCAgCgoAgIAgIAoJA1hHo27cvDRo0mCNqiWR4iMDz5zvvvEPXXHNN1hOUGIKAICAICAJHFYFt27bTi8NYIhnO/HgOT3U+HD2sTgAxqXNxcNiHCZ7/Ox7Kq0HDRkwoEwllQCXZzNgfF9ITQ7/lD5YP0/JZn9CmFTOc9tc1TeT81z1oRD9CZ3NOmT0bZ+E40OMiDO45Jt78K9c9g+qeepFK+Ol7zqeubRqaJKJeoZlBPniNCo/cEAQEAUFAEBAEBAFBQBAQBAQBQeCIIqDOmwcPcvMwz3/vvDMyofPmY4pItmnrbrqp7/u0ftMu2rZ+IauzfIcf7A8qMNXztu+p234c1w/khlimI/B9n4fbJuqAQDcM/ALp6Mj8yO9/tE80/9TUAlTvjOuobNWGVLVSaRox6AqqWK6kVZj8a/3yyy/piiuuoD179qgDkYoVK9H69esplQl0uWXS09Np2rRpLnFsxowZdPCg7kNumbgxE23/RqzuAOoqQR6D2oMyZcq4yYpFEMgLCBw4cIC2bNlCuBYrVowqV66cq2MyL2AiZRAEchsBe1wWL16cKlWqJOMyFxvFbo9kmyfxcmjFihW0aNEiApkea0D16tWpXr168tIoF/ucZJ0/ERg0aBD1ffRRLjw/F6pHQ/3c+Morr9Btt92WPyslpRYEBAFB4BhCQKm2HDaEz3+cL32jnP9l8CSPGd4YnBdlsNgySC5rUB8SyjqwhLIq5rZc8zECv81bRXc9/QkdPJRBaxZ+T2sXTuDWz5nz31BYsnH+GNx/mPQdPqRyHtewM9Vocg4V5HPYFx+/hJo3rWmC+a779++n559/gb766kv68ccfqWDBgr774hAEBAFBQBAQBAQBQUAQEAQEAUFAEDjyCKjzZv542Rh12swPea+8/HJC583HDJHsQNpBurnfB7Tozw20e+tyWjhlOJ/cHLQ/5DKYulf74dn1dC0Kep8LDuvDMPdehMWJqhsPkSJCKI94808tUIgatrmZSpWvQw1OrEqvP30pFS2SvyVXvfbaa3TnnXcwSeuQD5xZs2ZRs2bNfH5H0oEXpvPnz3eJY5OnTKbdu3ZzljnT/lWqVnVVVYJAVqNGjSNZHUlbEMgWAh999JFiLKelpXM6euKqwgfeM3+dKX03W8hKZEEgcQQ+/PBDupYl16Qd5HHp7CeqVOFxOVPGZeKoJh5Ttce111JaWpqbSH5vD+yFhg0bpqQkLV68mPbt2+fWDbshmPIVK6p++Oyzz1KBAgW0p/wKAoJATAReYjHjEDduGzz/DRw4iB5++GHbW+yCgCAgCAgCeRABRSQbMlQfD6mNuN4ZgTgEVYTK4MKSqSClCaouQz9IZW98VNiunai8zIPNHHeR1mzYTtc9+C7t2L2ftqyaTX/NfF/H5Wc0dINY58XRuoZOQMV2ywEXTKz0dAj+daJmJ/8TTr+CKtRsRqVLFqORz15N1av4P3gdNWoUPfDAA7R8+XKV7cv8guL22293iyAWQUAQEAQEAUFAEBAEBAFBQBAQBASBo4MAzpvv5vPm4PPioIED6eFHHslyIY4ZItnjQ7+h76cupP27N9H8Sa/QobQ9IQ/U+gnbec5WUrBsoWPG330QZw99370TtQFwiBT8Cs1Nh2PpBtXpmNSCBwnG343HHib/AoWLUZP2d1DRkpWUuPF/3Xt+1LLk5Rt4Wfkof5kPxmRY/Z/hF5T//Oc/j2gVVq9eTRMmTOC/8TR27DjasGGDyi8W/twSMctk2r9kyZL8tWl7JXWsc+fO1KRJE5HgERM5uZmXEOjXrx8NGDhAdXdvfKbQ1KlTqE2bNnmmqJASuHv3bipdurRIZcozrSIFOVIIqHE5gMdlwEydOjVPjctA8ZLWGWwPs/7n1/bAnuhaJsZNnDjR2zdb+8/g/ufjjz+mSy65JGnbVyomCOQkAm+99RbdeGMfTlJLqsHTBPZXjzzSlwaEzOs5mbekJQgIAoKAIJB9BBSRbCgTyZzzPkgaw3md2f9hfncpZdg/MaEM6i9x/neYf3BKyFb+1fN/RgZR40ZMKOMzo6r80aGY/IMAPl7u88j7tGTFRtq7fQ0tmPwKZRzCB3iOcRpaXbwfX/vn1fPn1JRC1LjD7VS8THWqX7cKvTnwcipSuCD98ccfdPfdd9MPP/xgaqmu5cuXpyVLllCFChV8/uIQBAQBQUAQEAQEAUFAEBAEBAFBQBA4sgio8+Y+N6qDBu/RM4W5N32pf//+Wc78mCCSfT5uLg16fSwLIDtA8ye+SPt3bVLHOS5azgM93DjKAbo4yAka7zDIf0cRKuDlHASpuFaaKrTljkgncC/R/IuWqkJN299JKQUKU99bz6GeXU72FzSPu6A2ss+NN9K7774bFf/OXTozuWtsjtZk586d6gWpIo+Nn8DqmhZGzT+sZ8Rq/4IFC1CrVme4xLFWrVpR4cKFc7T8kpggcLQQAMlzILOWbYP+P2VK3iCsjBkzhu655x76888/6dChQywVJ5U6duxEb7zxBtWuXdsuttiPEgLr1q0jSDCCWuK1a9fS5s2b1RxYrVo1Ou6446hmzZp00kkniQSjbLSHJi4N5N2Ls0I5e4qpU5jg2bZtNlKWqIkg8Nhjj/k35E57TOH2aJvP2gPjF4T37du2m97lgyRs//PMM8/Qgw8+6AsnDkFAEAhHABIML7/88ojnT+xlhgwZEh5JfAUBQUAQEATyDALbtm2jYSCSQUclHwSqbR82SHAoVhBO/8wuHSeFfE/d1nbcc8//nNu6cinUsGEDllDWjvDcJCbvI/DvN8bTZ9/NpvSD+/nceSgd2L1FFdprf6cOTveAy9f+zm1ziYjn3AjbfzvdyER1+ph2RqSTYP5FSpSnJh3vpUKFi1L39o1o4+LvCJok8BFfWP633XobQVW3GEFAEBAEBAFBQBAQBAQBQUAQEAQEgaOHADSLXXbZZTpD6/nvXj5vfiGB8+akJ5L9vXYbXXnfSEpPP0RLZ7xHW1fP1g+5gNAQvxSQFprGyld8UYjzHBjjbSza7fq6gXQcx993sRwIfQTyh7jxeqdfSUVYteW7z11DtY4rp8uVx39B5rr44ouVCkmDL65B/IuXKEFbtmzh+hVJuEZQNzVt2jQaN268kjr2668z+PCDP/00Le00U1j+qi9Yzeh9P+oUh+81btiIOnXuwiorOynpY5CKJEYQSAYEFEFiADOWeSDoYaB/84qkHRyyb2DCkjsunbF6IxNU33zzzWRognxRh4ULFxLUW3z+xedK7andV1THQS2s9a98ufLUoUMHOu+88+jyKy6n4sWK54t65pVCuhKwGGh7/5FXxmVewelolaNfv8dYkhDPk878Y/r/jz9OpbPOOutoFSNH8oGKmueff95UJaJO7r4JuTn9b/gbb1IffPEiRhAQBDJF4KuvvqYLL7xAh3PmDIylm/r0oeHD38g0vgQQBAQBQUAQyF0EIJEMRDL7+dOVOqZ2UHzOhPkdP3j+YXLZ4VQcMqZyHH3S6PLOOEgq7qsIoP9kUEpqKjVoAEKZSCjL3ZaOnfuMOSvprqc/UW26bMb7tI3Pne0+oWJbz7/oC+4+2lj5Gjz/jOf80X7+U10ncFaj/FCAHMi/fI1TCWouUfZFP71BOzct9T1/2vmnsqr7WbNmqY/GkL0YQUAQEAQEAUFAEBAEBAFBQBAQBASBI4/AV199xefNPfjxjM8X1POmfui86aab+Lx5eJYLkNREMnwA+I/HP6LZ81fR5lUz6a+ZHzFA5indwko9sJuvBE0I5ek8bOMxWR/y6FhOGiYpc7WShFV7B8IehfzrtriMKtY6jU5tVJNe+9dlSkVKoGh5yrlmzRrq3r07zZkzR5XLxU2diOAAzY8/JId17Ngx7jpAXea8efOUukqoqoQaPqi9cw1nkMKjybRxZvmbljVNCfJKp06dmDjWWV1r1KjhJi0WQSCZEDCSjzAiTf/HdWoekEgGFbS2+g93HHNZW7duTT///HMyNUWerAtU4EH1MCSs2Pi7fcWzeOXngPb8W6lSJbrjjjuUiowyZcp44cQWFQGXSGaFAP5TRLWlhcjRsyr13Cy50ffyiKdMSG5s2zbvqADODBGQ9mvXqk179rIqeNfokV2wUEFqflpzlpTRkPbv308//vgjYS8HA8kEt9xyixtDLIKAIBAdATzT4PkBxl03+fnnyiuupP/973/RI8odQUAQEAQEgTyBACSSDR02jMvCKit5Jlf7PxxEKrKYdoM8pgwmehi+4vnHnHLZ878m+xBTyHQcFQUEoFSiBiyhrL0QyhSEeeln/4F0uuzut2n9pp20ZfUcWjaD12/dqLqxnbZ0y8z37OffsPY3Z5M6jpOYSdNc3QTtUIGwXkG80BwkO/nXa3UVla9+Ch3Ys5X+GP88q+9MU2nrnL38u53XjYYNe5Hq1TvBy1tsgoAgIAgIAoKAICAICAKCgCAgCAgCRxSBCRMmKkFHKhPr+e+KK66g9957L8t5JzWR7NtJ8+nJl8bQwf27+AH3OTqYttd6oI+CFX8OqL4SjHLb5+08Iys/1RiKXqHzYE/7azLF5sIBkh3Hl5jjyIH8CxYuRid1fZDVh5Wgx+7oRt07NAnLKU/4zZ8/X5HIVq5cqcsTR/0feeSRCPV6wcqsWrVKEcfGj4fUsQm0nkkmSrVADuBfqlQppWIA5LEuXbpQ48aNuXmRsBhBILkR8BFWrLGUFyQfQZ1lvXr1QudfjFXMBWKODAIg6w4aNIilMA2gvft4nWWT3fUPai8hgrVNm/xDvDky6GaeKsblQMZevW5yliLgL0SyzLE7EiH6sWrLgaxrXr/+4xywP+AxkhfmyazU94knnqCnn346IgqkrI4ePTqC0I/6zZ49m6688koqX758RDzxEAQEgUgEQHJXkgoDzz89e/ZU4ywyhvgIAoKAICAI5CUEIJFs6DCoItbniCxDTB35mf2ffigyZ0Vmd4i9oYrCvLEURwqZrpX2Njd1GNxBCuCeYY8PIv/Z7VnlZVVReQlsctuM+ORnGv7Rz3TowB6aMxbnzvzRqrP/1w0Xo4SB9T9GSKcTOCGcvoCeojuc7hvKrfzQx9ilOo4TJ+ySQP6FCpekpl0fUOfNqxeMozWLx6qUzfN//fr16YUXXlDnvGFZip8gIAgIAoKAICAICAKCQP5G4PXXX+d9ZiSPQj4szt/tKqVPHgTc8+ZAlRI9b05aItmBtIPU+443aeOWXfQnSyLb8vdvCjLvORoHPBDrph+w4Y+HbDxr+4wTwbn4bsER9NfuoK8XzbtzZPOvWOtUOr7F5VS5Yin69KUbqUjhgl4h8oht8uTJ1Ouii2jb1q0Kx3jxP/3002nGjBm+WuzYsYN++OEHmsiksfH8B9VqYSYR/AsVLEQtW7ZUpDEQUlq1akWFChUKS178BIGkRsBHJOOamvGUFwgSkDJYmkmerhQgqyUg7WPcuHGWj1hzCoGDBw/SDTfcQO+++67TH0yviMzBuxPf+le8RHH6Y+4fdPzxx0cmJj4uAmZcanw9lCElKr+pUnQrlY8tpj2CVcgL82SwTLHcbc9uSz9O/dGd501YkThmkJCrIJB9BH7//Xdq0aJ5xPPnOeecQ9999132M5AUBAFBQBAQBI4oAopINoQlkoFFo7bhOFDESaPjxX76iNF7/sFHOCxgTIWPef6ok0JI1yALVpZJqXyO2ZAllInKSxeaXLFs37mPet36Ju3df4BWzPqMNi6f5iuH92TmtT8WffjjJ2b7+1LSDi892x309SJ6d3I2/8p1z6A6p15MGekHaPb3gxV5Dh+bPP7443TnnXcyyaywVwixCQKCgCAgCAgCgoAgIAgkFQIpEJfsPOXYFcNzjhhBQBDIfQTUeXNzPm8O8J+6dk3svDlpiWQfffMbvTDiB9q7Yy3NnziUp7XwScx7sA42bvCO5basOpbjEeHvuxvMQLmjROF7wTuW27L6cgj4N+lwD5UoV53uu6EDXdq9eWj+ueUJSTPXXHMNpaelxdkyXuUKFixIkDi2ePFiRQ6BmL6ZM3+lg4cOhq1fEUjadfZStX2JpYw1UaL/IHGsbdu2JCrW/PiI69hEQBEkBg4IjLMUpS42L0iOatXqDCaZTvc1Dsb4s//+Nz3wwAM+f3FkHwGotLvsssvpiy8+j1yynOTNHJuamkoVK1YkqK7cvn0bq8FbG2NuNrGI1WEMo7vuuiv7hU3iFMLHJaucFdWWudLqUG05kFVbwng9mZT6x/xE7CtXrhyP1e2+WuCl0Nq1a6lChQqqfvIjCAgC2UNgwYIF1KSJLTlazxrt27dXH8hkL/W8GfvJJ5/UcyMOGNWBBm8rudqouX/WdNxGxIk1oWpuBXscZuVvqfxyPOQxXwWHf8j5pr4n+Qv+6EPS/2T85f/5BxLK2rVjCWXVREIZVo6jaf7zv6n0zujpfO68juZPwLkzZNKpqSW0GNHvBe9YbsuqE3U8Ivx9d49w/kRNO99LxUtXo3VLfqDOp1dREsqrVKkSmq94CgKCgCAgCAgCgoAgIAgkDwJB7VxmWypEsuRpY6lJ/kbAnDebsWlqg3ODSZMmGWfc16QkkmXwwfTFt79Ja9dvpyXT3qHt6xYwIDgs9l18INmA2nZfoAiHCel83WXuG2/jDmQccZvD2X623U0i1GJChudfrloTqtf6OjquUmka9epN6qvF0GSOsufzzz9PDz74IGVk4FtKbUxN4LLtzu0oFxMyvP5eJCec/+LdZlt1VqPWkaWNQXIRpI5Vr17dd18cgoAgQOSXtOONv6lTp+QJFYQbWIXtq6++SvPmzaN9+/ZR5cqVmQh6Nl133bUEIpOYnEXg+uuvp5Ej3+E526Jqm27hZNWla1e6ilXd9ejRw0fI3bNnDy1btowJwYvonXf+S9+O+dZept2C4qvmp556ynWLJRIB37i08BeJZJFYHQ0fX3uYHQ23y5TJUxQx/WiUIbt5QMpr2bJlI5Jp1qwZzZo1K8JfPAQBQSAxBFy13Bzdmr6VJOTp0/3E+MRyyHuxnnzyCae2/jqj/ngyxNVn+BHeBkc99SnmmPf8p7BThDO2ucQg5evGVS5FXkPqcLm3XLvkb5BRkOgfwd/XUaT/8a5fxp+aPczzj5pb8sD8wwoyqUGDBtShQwcSMo81hx1BK7RgXHDTa7Rj9z5a8stI59wZGYasP4FyOCGUr20PBAs4TUhv/QtP4OjkX6ZqI6p/5g1Uongh+nbE7VQ0D2rBCAAoTkFAEBAEBAFBQBAQBASBHEAghT/ow9mLZ/T+U4hkHiJiEwRyEwH7vBnlME+SLVu2ounT/VK04ylnUhLJpv76Jz3wzOd0YPdmmjv2GRYX7pvVHFz44ZsPfIK3Ao/koRg60uDUPdMAOqBx8VVZOV/jFZHSkc8fWZ/c9UEqUqIiPfdIL2rb4oSIUhxNDxDH7rvvPiVhBsDkJv6lWOx6u7PPdtVVNm7cmMsDxMQIAoJANARAkBjIEsnMvGmmN5F8FA2x5PX/4osvqFfPntYzg+kNfOX/tWrWpOHDhxPUc8VjFi1aRM+x5Li3R470kYwfe+wxevrpp+NJ4pgNo4lLkIDlvO1VTXFYJJLlUo9wiWRmSDjlyE/z5OrVq6kmj+GgAdF+/PjxQW9xCwKCQIIIQMJyrVq18FTEM7j3vJrMpM2nnnqSMqxHZNQcBAj1vG7mTVwDRj83IrQWMuaRvpxIEKukpI8hcf6DG8axapd+/pT8vSMKwV/6n4y/5Jp/cKTVoEFDgmTLqlWr6nlQfo8IAt9OWkBPvfQt7d22luZNGsrrDdYfve5EZpi7558o2JE4f23S8W4qUaYGPX7XudS9vS1hNRIB8REEBAFBQBAQBAQBQUAQSA4ElGpLte/173/DeRjJUWephSCQnxBYvWYNv5+t4b7HN2VvdgoLCZiddSEBSUkk++fg0TSFyWR///EVrV86lTHiCQ0m8FCvncGjex3UhE/hQ2j7YN+9i8gwTtLaEfZrZWpZEfJo5F+1XjuqdfL5ikQGMlluGahAu+qqq+izzz5zi3A06m9QLlSoELVq1UpJHIPUsZYtWxL8xAgCgkD8CPgIEojmzH/5iSARf20lZDQENm3aRE2bNqWNGzeGBsFcO27cOCpVqlTo/VieP/30E0HS2dJlS/k9cAq9+tqrdMstt8SKcszfc8dlAAmRSBYA5Cg5vfawNn1snTplap6Q3BgPDAsXLqQmrOI7uP+99NJL6cMPP4wnCQkjCAgCcSCAdTRCcgzPF40aNKIFCyFRO/nMU6zaEoq/FOfLbCS5mthSKpoYsyDCnr/VfUyrMGr/qWNoD+OpAxzm/QNemKtwyMhjnannb8lf8Jf+h+GhBpIaQno08a+Mv+SZf7hlofJSCGWqix+Rn1v6fUCzF6yhv2a+T5tXmcN4rEPO2LKsKIB2Jtf5c8Wap9Lxp19OpzauSa/967IjgrMkKggIAoKAICAICAKCgCCQtxDwC2TxNr1CJMtb7SSlOXYRgOauavxhGT6dtBlOkGIOgR5ZNUlHJNu5ez91u/FVSktLo9lj/kXpB/aYJ3aFjTetxYCKA5mzZxXZc8SI5N3CV4BGYk8w06Odf6EiJalZt35UsGAhGjPiVipTqphX0KNk27p1q1JrhpfaR6v+aDdIGQNpDH/Q/ZoIqeEoQSTZCAL5AgGPIOEvrhDJ/Hgku+uOO+6gV155JbSaJ598stKzXa5cudD78XgeOHCAXn/9daVCD6qQy5cvH0+0YzaMPS7t/YeMy9zpEnZ72Jue/ETsg3rgk0462d4MKzBvuOEGGjFiRO4AK7kKAkmIwLZt27w1znr+rFu3Lv31119JWGMiT7Ulv2iH1DD1cMg/qXy8wV6a82XAwMt4FcC5hkOCUEqzgorsxDHRVExQZiwPY5f8BX/VLfhH+p+MvySdf1J5cqxfvyGfh51N1apVC59ExTfLCGzYvIt6/GM4nzfvptnf9meJ2ge9NKzlxrJ694M2DuQdOfscwZChbvv5TwWwMrWsoXFN+ITzTy1Azbs/TgUKFacvX7+ZqlQsHT0fuSMICAKCgCAgCAgCgoAgkBQI4BkjjP8gRLKkaF6pRBIgAE5OhQoVImpSt+7xfN78Z4R/Zh5JRyT7auI86v/yd7R942Ja8jO/7OIZTT9YO4/Q6mIep801DKaQe5wQA6YC49zZ96GZ6zYWvipr7uffsM2NVLpyI+p3+zl0QcemYZU9Yn4rVqygbt3Oo4ULF2vAFCYWRgbEiBKYMNaNTPCvflx16tQJxLFOfO1Exx13nBVZrIKAIJBdBECQGDiAVVtawxPWKVPzj6Sd7GJwrMffsWMH1ahRg3bv3q2gUF3B6Q+FCxehP/6Yyy8r6h/rMB3V+vd7rB8N6D+A8zQDk6/8f+qUKflGAtZRBewIZ9av32M0gFUAB/ef+YnYp4lkJ3lIOfuvG2+8kd54803PX2yCgCCQLQR27dpFpUvbL131PF69RnVavWp1ttLOq5GffPIpLprzPM021NgzcBnxYYYQpr+eQxTsPw+zXkp8/Yov6jLU3ITYuMFkMbhVEhyGiUGHD2u5UyoTd/OKAJI/UHMQhtUxCjy2G4z46mAt+DNeDIf0Pxl/+XX+wdzYkFVetmvfTlRemikvG9ePv/2dnh8xkTb8+ROtnPO5njfV1Jn7579oa0jmVLO8ujh2d24Pq7gJY93D/B/H+Xetky+kKvXa0gM3dqD/63aalYBYBQFBQBAQBAQBQUAQEASSEQEtkYz3j2oL6e1/Dx/GeY4YQUAQyG0E9HlzGS6GPv805cF73VWrVhln3NekI5I9+MznNHnGMlox61PauHx6KBDBR2TX7Vp0NO3kX/fzrEAAJ3V9lM0TJrtNs9j2YCGC91y3a8nZ/CvVaUV1T+tNZ59+Av374aOn3vK3336jCy64kNatW+uDIFBND7fADe3k3xj4n3/++dS1S1fq3KUzNWrUyJePOI4uApicPv30U4LaO7DPixcvTr169VKkE1OSvXv30pv8EvqLL76g5SxpYT9LHipXtiw1ZcknIBxC/WmBAgVM8Eyvf/75J3391df0088/0bq1a2k9i2zctXsXp1mOKlasyF/dHkdnn91WScSrWbNmpumFBQBxBipZN2/erOqFdFGvoJQk1HnSpEn0ySefEMq1fPly2rVrN1WuXEmRGuvVq0dXXHEFtW7dOiybmH7A9MsvvyQwiQ8ePEjFihWjM844Q/3FjBhyE9IvPv/8c9rMaR7KyKAihQtT8xYtGKezQ0L7vXySdpxbmP+m/jiVzjrrLH/gTFwgmU6bNo0WsQq1RYuX0OLFi3iuWKdeqELNUwMmI53Vpg2de+65cX89jf6FvrV+/Xrat28f98ESLFWnqSKW2sXJ4HqPGjWKVq5cSWncBwuymtsyZcrwfHVB3HnZ6Rk7+orClvsKpGoVKlSY56WGhHkqKwZ950uux08//0xref7csJ77NfelsuXKUOVKlZVY0rbcXhdeeCHVqlUrK0lnO+zQoUPp3nvvddOx17+HHn6YBg0a5N7LLQvmou+++47Gjx9Pq1evVio4Ic4VY6cCSzerwGO4SuXKqn917dKFGmZj7cDY/Oqrr2gLtznGU9GiRdUYh3rPrBozNrds2UIH09OpKI/zU087ldqd3S5mUo89xsSl/v0j9h/ZJS7t3LmLvh/LOI5zcNy0kTZu2KjKVg448lcN1apWozPPOpO6MI7ZWYNBTMTcadaPkiVKUI+eWD+q++q+Z88eeu+992js2LG0bNkyNTYqVqpIdWrXprrHH6/GWteuXX1xwhyYr6F+9X1Oa8nSZfT33ytZcmtB9WINa8X53btTz14X8bxgEzzCUor0Q3v05/YImmB7YB6awH30Y673kiVLaA3rrkf9qrLY4epMhEe/vPyKy6n5ac2DSeW4e+7cuWrdQsI4DMC8/EjfRyP2X+jXDz30kMofGKakpCrSxmGuS+szz4z7xSTmSozPsd9/T6u53lDvh7907vfoVxX5rwrjcEbrM+jcc85VqpkSrTT61scff6zWcGBesmTJiD2BvTfB2rSP15Jy5StQk6aNqXu37nHvTVD+X375hcaMGUPz589XdUKfTk1NVWsLJIEAw3POOYeaNGmSaJXceJBYhfnnRyZzY/+DtW8P17cUE5OqVKnK7VFFre05uVZg3fyZ1yaIwV6CtXvJYlrLbVia19DKVSqrl9TY53TnMYS+LCY2AmqvUqK49wDJwfH8U5n3QWjPZDRPsmpLGPexz7Uob8efaWL8/KceAfEyPIUPI/mKl+PGKPWXJozjbyflI0mxA3G1Kj8d2A3rWiR/IKDhEPyl/8n4S9b5B/s8PGe379BB1mmzoCRwvaf/ZzTt9+U0f8ortHvLCm9NC0krsMx4YQM3zPwb6/wTydvP33nh/LlkhTrUpN3t1PKUOvTi471DEBAvQUAQEAQEAUFAEBAEBIFkQkB/XOM7ylLVw1mxGEFAEMh9BPS7cT5vZuM+drIF75bxnjSrJqmIZBn8hXKXa16mXfv205wxAyh93w73xaoCRp0gm8kM8LFRJ0TuI7sTnt3wh7GCq6DspUPbFgSMNG44cyuX8i9cvCw1O/dRKlmiKI0beTu/0ELJjqz5nl8O/t8ll9BOfqHvmhyuf/kK5ZkMs5lfDBz5+rh1EEtUBP71r3/R448/7t5Hq3TjF4lff/218gPZ6+KLLnYmKqfNAuNv+BtvUJ8+fdw0olkmTpxIDz/yMP0649doQbxx6oTo0LEjDXnhBTrllFOixgm78fTTT9MTTz7hnueh5LfedptPtd+7/3uXEG4ZExKMQTgzfSg/p/83bNiQ/vOf/1AHPryN11x19VX0/v/eU+mZdFMLpGoSBZNismK0WsL/6CgW/iC/Hc9EjFjGR1gxBeEIIJK1OatNrKjuPRAI0FdeeullSks/wCDphLzk2GbNvyB39OjZgwYPGkwg48UyIG+gjDBeekQgtZ52mvd17PTp05mEx4Q+q/4IfyIfquPleKJzykUXXUSjR4/25V+YiXogIcajWhf9GiSNmb/NVGm4HciBBP3JrZdjQT8aMnQInXJy1vq1ziDrvyeeeKIi8HgF0WmUKVuG1qxeQyWYAJRbZsGCBdS3b1/69ttvFdkpbPzpsgE8Nk77N2hQn5544gm67LLLstz2IL+C2GQb9B+QYkA6zYpxx6bV/xE/s7EZRlxCDROVFKhxfIRxHKOIPWhrBRWn6XQ7y4ISagNJdCAIJIKjt344mXGSIPCY9QMkwIEDBxJUne7cuTM0f1OOZs2aKUIjSKhhBmned9/9tHTZkpjzT8kSJenDDz9UhJiwdKL5uZIb7QDcJ2wJcSA2PfDAA/wFyGoOxS9r1S8iePU347/Zqc3otVdfUwQkhMhpo8hbTAzcpaQMRuZvihQ2/9hlAZkQBL9YBn3rER6jY9C3DqbFxN/UH/nXP7E+PfXUU3TppZdmeYyqvsXjm5ngTtFSVJt+/fVXyg1SFPYm6zeAtBNe/zeGx96b4OEM6n4HDx5MIIJyKm7xVSbO+q/s6i7RqdyuGLs9e/bMcp1++OEHevDBB2nmTGet0Am7v2H5d2jfnoYM4bUii3sgkyjGHfY5L7/0Eh1IR9uZO5FX5F8Aa3cPXrsZk8zW7sgUjh0fzG2Fmcyu4fT6X/ly5VVfSkYklEQyXlQgLSWFpY+pF+IYn0xMxWKj+q/pXw4kcCp/AOIGgEV3RbVGIay5re44Pzz+FPEVKCMPlZjkL/hL/5Pxd2zPP6k8cTZs0EgklNnrRZz29IOHqPO1LzN5fyf9/uWTvKww2ZmNWp7sNEL2f+b5E4uRFx4LmLPwORfcVGubna4Xwc7FtUfcPlr5cz7Nz3+SP9YoQ+P+ewcVKhj/h6Fu4cUiCAgCgoAgIAgIAoKAIJBvEDDvzoL7TyGS5ZsmlIImOQJpaWlUpEhR56FSj1T8li1XTgmryWr1k4pItmT5Rrrmgf/Svt1bae44RyqKeRBnZIITG8AK81P+fMN952RChQa2PNmqH/YdCxLKI/mfcs7DVLREeXrnuWupQd3KKNkRM2+//Tbdcsst/JIw/YjXf9asWYSXxmJyHwGoVxvYn9UemlMvLlKnjp2U1BFIKrv2mmtoL79stY01epQ3iGh4WRzNbN++na677joldUqHsVJwhp2df3D8pbK0M7y8h9Qks+GJlpfxd0kaVlZQ7wXJapAWgb4OaWGm2rHyN9MBpJM88sgjoVJrTL72tXfv3vTZqM984wn3IYYS4iizYkDUGzGC1f6ysapEkEhz0kmWKrOQRCMlkukUprAKvbZt24bE8Ht99NFHdOeddyqpQ7hj52+H9J15OqHKsuQ6EGqCkuDseLp8A/VEjBsO4EFJQAtZ2k7jxo1D8//pp5/oTJask1WDvgnpLwcO8LwXOAgGy7syS8CKZhD3Wu7XkEIGE1b/0MI6nuhP/3zwnzRoYPz9OlpZYvkvXbo0oLbSa8Gbb7mZXn/t9VjRj9g9SBNC/Ye/Ppyljh2KwB8ZeyX1ihH0A9kQBJ8TTjjBC5SJTY1NlliIDOz1f9XfiY/NYPtDXWjTptHVUj/66KM0cNBAX/4o9tQpWVM5CzIM5sfhw4HjQafmDkpBsNRdy9Oq/2ksRS2rOD7qqM1Fsqb+UFENqVXodyDszZgxwymTuYTnDyAg2fLtt96mq6++2gRWUgpRPxB5YazYbhjlzzfM/g9E1heYgIx5K16j5iGl2tKLgbxA7APZ7tprr1US8+LJ35SyIL+QGTBgoCIPeanmjA0SpurUqeMmZvDXHk4pQwtrebIV6sUhATDM7N+/n+6//356/fXX6dAhHqNsrNi+KLHyP605j9GPsjZGw4h9pm9hb4I+gvIZE5Z/rL0JyFy9LupFa5gUGM/67+bDFixRkE4GMioksWVm/HsgC0G22vOPSsdsONhhQmJcZHUPhLSCa7dK301VZxAtf6zdkJxWjh9UxUQiACl5tiRe0/9APlek2cgo+d7nSSYcQy0lxovqN/yBkyZ6cV/lzsqQ6HVA3eeOzNwvNVh8NUevxot7dH7+z8Gijz+dl4qOcaGiSP6Cv/Q/GX88bxzL8w9Phw34A7f2TDQXCaJqhYj7Z8HSdXT9w+/RtrXzaNm0d2KsP5HLF1Yva4vm5mnWf+3hhAoNbHmyNfb6F5mXFdvNG5bs5n9i62uo3HFN6a1BV1KTE6v50haHICAICAKCgCAgCAgCgkByIQANFWojimpZm1shkiVXO0tt8i8C5rw5+PyX6HlzUhHJPh83lwa/NpY2rZpFf/36Ps6J9TzmWpyGD7pNSMc/4jaihXrq9OxboXbbMzQtJ4D/ohM3v8E0jD9f7VuhdvY8ofnlVKHmafTwrV2oV5cjJ7kGkh8g2cW8EFDriF0olDvoNh6Of8Tt0DjwJPr3v/+tXoppl/zmJgLBl7Vox45MBMALo44sNSndEBMiGthr+BeHDqM777ortBogbUFl2R9//OG7bycXarc9EZPd1117nSKC2S/vfIlajjBSAIhkUO+H8kClptkv2Vm5dtfiJGq5+/N4AYEiM3Nx74tp1GejIoIlQiS76aabVN29xHSB5s2bl6mqLYXFgAFeVLYh9uQ4iGS///67UvmXFiHJxAHEf/HlYaYISGHBYXc0Y5fPSU4VMIxQAwkpIKa5E5IT4S7uf8OGDYuWRVT/kSNH0g3XXx/RF6C+DNhGM1DnCSLBH/O4X3NHcsttRwj11AHsWyBZguAYT7+2k4/Xjjpez3W0jck/UQKenVYidhAroDoU+ZuyIB3X7lqc1INuE9Lxh1rVb775hpo3bx5XcS7pfQl9+tmnKqydNAg11av71TJmlmAfnlfeeusttw+Z8JmRPE2/t/OHPSsSySApsHu3bkplnZnPTP4GItdtWYJ5mrhZxdEQdu30QPZ59tlnWW1mZ/5SYpuVq2e1wwftKampSkIg1PpBShQklClpf6aQKhknlv/iZQAb3+v7SF8mcvnnPn8gz4X2GMhhVTZWoUCyRxpQyekZf8ZW8Igg8IBq2bvvvtu7lwO2v//+m2rXqZ3t+QfqOKGmMmjsMRrZl7JWf6QN9YnffvNt3GPUjA9VLic79K0nea/asVNnlrrH0rX8xfBXge+9OOzFUDIh1EpeeullTFLca5Kws3HTdRN08nHdTiyolp48ebLnHWJz1wprD2QnF2q3PZGm48Za8QZLgAVRMjPjrt38JVPQ2MmH2h1PSNvMihTWYD7J7k5hIkNw/Yd6eKi6TUbzhCKScXfkt9aKtKvfgjvdEzMn+/Ov4o8BGnYgiApgAaLlSYEOpShRKo6Kxz9K2K3plI4bL8kRCGFglfwFf+l/GAh6UOjhoUcHfmX86XkkWeefhg0b8TN1OyGQcV9PxHz23Wx65o3xtHreN7R+ySS1riAds+x4Fid194bJzfHwX8xNfY2I4922b4XabU9EC7qNh+MfcTs0Tuz8q9ZvT7WbdKcHbu5Mvc+VD309tMQmCAgCgoAgIAgIAoJA8iFgBHS4+0jHIkSy5GtrqVH+RcCMU/eBkMdp8aLFaA8L5ciqSSoi2XNvTqBPxvxOq/iBft2SyYyFmcr8V+PywLJ8lBVH0zho5oNptkD1A1zaOHZ1CbFzIO9rLhPPfzUuJ0HE4D8nfWXN+fyrntiOap3UnS4571R6oE8nL+scskF6ya233qpIDEez/uec01VJ9sihakgy2UDAvKy12x9qHHcw0WPd+nWcsu7nVm93cvN8QDoDETFodrGK1OYsLWjpMhB/eKw44yRoh7QqSPVYsWIFvxw+qMO648uf/zAmrd11dzhpzc7f1Ev76TQaNW7EaiU3Mrlhi78sHMiuvx7Xpn7+/JEeJElBDR+IRLGMK/XI1EUllcISyf7OlkQynacuFwh6saQeIayLhZO/wX/qlB+pTZuzolYBEqMg7Wnx4sWmBlbYFCpatAjVqVNHtd0aJiKAIAepNRpLXT5EwEt7kIaiGZRvIEsCUi+G3JxS6EdWvXnWWf7yQcIMiK+mX6o0OatqVaspqTpom6yYbkzCGTNmTET7Qx0fpM+Fmd2sSu7Ui5kdRgAAQABJREFUU09jYslSfdvBVdfYW3/Kly9HFblfL1+x0iI9OLg4cXRfI0WCAxnuSBiXhGjnyfYK5Suy+s5NRyLLmGkCP/S7OXNALtVraFbGn07cwREOp15lypRWEvpq1aqlg8T4veSS3vTppyB5+vOHysIaNbJIJGOS54g3Rzg912v/zCSS9ev3GBOU+qtS2vWfOnUK49MmRun1LeCI8TGXJZ/h7btGxMvf1M0dKw5Oyt+2c3J2/qVLl2bi71yKB0c1tygpXl7+iF+gQEHatm2rUwddMtNOmeWP+yecUI+mTJlM3VhN5pw5s5262ZA4acLLqYv28de/UMGCPP5WxEUO1PMkS0ZUfcKkr6/G5ZXA8lFWr/7B+Q8FLMCEk7HjxlFHVtWcUwZfqIC0ciDtABc5dv4RmDtlhj/KNGHCBF+x9Bhtw9hz3+IwVm2dcJZPHPU3+ZcpXZbH6Jy4+pYmKYIE6OXfqFEjAsFt3Tqos9RjN1b7g3QG8ottQPA844xWTCJj3Jw07P6v/Uz99NW4vHQ8n1jkU+yBsIYqEqKK4sSz7ZyouwdiKXPpivhl0tdX40L+L74YTo7zykaKyARSLdbusPFfrFhRql27LudbjtYyqd6s3W5Yp8UzW7vtPI9FO8jfGYdZupY1/ooUKeKTlJdMuGCvj/FxmKkqUK2n+gs6ZwbPP3yFijBN8rJ7rArAQRHA8VcXx86xdByMZ0WBUek6csfY7o1/dii35C/4S/+T8XcszT+YPxs0aMDE7vZUpUpVPRXKb0IIPMskss++m0NLfn6Ttq9fpJcmtZ00a5L/alxeZpaPsia+/0aa2dl/xtr/6vI6ZXXKifXUxFF2J/8yVRpQ/TNvoovOOZkeurmLjiq/goAgIAgIAoKAICAICAJJiUAqn08H379hbyhEsqRsbqlUPkVAnTdD7YNzPo9qFClalPYHtMbFU72kIpLd3f8z+uX3FbT0l7f4gX6BjU8kFtaze+TNWD6REV0fffrtRDYP2FHSciNFuR/VOzKi6xMj/7LVGlH91tfTGafUpWGP946aeqI3QJR47vnn6aAi7yCVo1P/YsWK8UvmbazvtUiiRZd4OYRAv8eYzMCqLbWJ3f6QVtPy9JZUuEhh+uWXX9QLSMSDyjEQEoPmhhtuIEhzCRvUderUoaeffppf6J5BJ554oooKHcALFy2kkW+PVBJcgulh7qxSqQr9+defVKJEiYjbtodLnlKe7mhzg7g+PP4qVaxIt99+B7VseTqV4xera1avUSqroPrSqPMKJtOuXTuaNGmSm16YJYJI5gRKRCKZUm351ghz7udml5nUIwT0Y6Gjov6ZST565pln6OGHH9YR8OuABlVXeMmPNi/Ki5gxBw4cUAQ7tPnXX3/tbkJBUohFoPARONyGISaS/RhBJFu0aBGBTBBmsio9ZevWrVS1WjV+cZ/uJKf7P46EodILfTTMeP068m7dunWVmtdgv8YLfUitgmQiGLea3P8w7VblsbXsz2WZ9uvIHDP3acRfry9avMgXEPl3Ycl833//vc//aDhuvvlmepOl6nC1GQhdf52vxv/M1mfSlVdeyV/c44VJFTUGIdVn0uRJ9M7b79Cs2bOiFhPSc9DfPOZ+eFB3bAby/5tJnjVr1AyPFMXXVjtrB8mM5Kn6PRMWNRCIqesfJonPTtfYoZ4X6iyjGah6verqq+jstmdTNe7nII5DQiQkBL7zDuPIKqbD8EcxML8hXGY4KvWcqENMo3s7ygOJSpD4Nn/+fKX+EuSqYP09dyBRnQwdxxK0QLoEgRYkGKxF77//PqunBTEo0vTtG59UMt0evBaqjhmZjjdoSZXhjjvuUCQhqACEdLD//ve/av4DwctvdME7d+5M41DfHDSjR4/2ScQCqekzqGz1mRSqw5LLevToodrTPhyA9DdIZAyqR8YYheQrn3Hwh5/qW6y2FKqR0bewTmKMQjoXJCCqvuVGtiKyH8Y15urM+paRdhclGdcbFqggbtWqldpT/vzzz97e5FXem/zD25tAFSaIXYtYTbJq5sD4L1mqJF14wYUqrZYtW6oyQqUy1tl3332XibebffnCEUsq6A038h7orZEcyt+pgEjtOrwHYlL0GVxuswdCHzZrRYSETQdGzImQyhlrDzR48GCLCO3hD8Ia+nnY2g2Jjm+PfJu++fqbuNdursYxbbwHew8GSItLT0/3PJLIpolk/gqhZ6OHwdh2uA7z+Eox5DHrJiSRqY+9cIDJ0yWGoYqtuqoT0HRbE09JXzI5Ibw25jZctl3yF/yl/8n4y/fzD8+uDRs2oPZMIKsqBDJn1s/e5a6nP6Hps1fS3PHP0v5dZk/Hq4dZc8KSj3UvLLzrFxnR9QnsP3Mz/6IlKtDJ5zxELU+pTS89folberEIAoKAICAICAKCgCAgCCQfAkq1JU5P3I2prqN9Vpx8tZYaCQL5C4GCLKDhUMYhX6ETPW9OKiLZpXe/TStXb6Y/JrxAe3dsYIBwFBzLODOduth2HcebB7XNc9tp+u95YTybHdpvd8Koi23P+fyLl65KTTvfT3VrVKAPh13vL0YOuaCCZfbs2fTrr7+qv5kzZyrpCZEvQ02Gdp1te9bqP3HiBFGZYyDNxSteKrrqvIK7CKdceOF7zz33KElQ9svLGTNm0JIlS6hXr14RLzW/++47Ou+880JT7NKlC33wwQdKklW0qoOIdD2TDjazajO/SaFBgwb6CU7+AMqlSAGsjszpoYEQ2hcs/Mcff4IeeughHyHKBP7iiy/o4osuDkzcXp+fP28+NW7c2ASPuF7cuzeN5pf6wRlt1d+rqEbNGhHhY3n0UVKP3uQgXv6Q7pCZ1COkGUn20GlMZdWWbZgIEM2AeAAynW3w4hRkiMzUXUGtVn/Gfw0TG0BWAtkimvEIA07dnIBTp04NlcyEF/y/zvyVlwobCyIQa1577bVo2UT4jxjxJvXpc5NBlO/r9GKpK0NdoGpPB/XnH2+/BpkGKvtMbc01lhS0iMJnwaNQoUKKRORF0Tk+8sjDLAlukOd9FGwav/M4J0/KiKk/QH388ccUES9aUfBgg7noxZdejGh/xEFabzOR5dprr42WhPIHkWyUMzbt/BORFuhKfHPy1+M9RUleChJ07EL16/coSyQb6PYD0//CCJR2PNhtHK0EXCsk9z311FPBaK4bON7Nkh1feullN47J3wQCIRR9NZYJkq9sLE0blyhZUhHeLr/88oikMPYH9O/vzJFe7IiAjsf999+vCMiQxGUbEJMwX+1hKW0Gf5N/OSbPQGKiTXq14xq7WTOMO+yKTfugQYMUka1w4cIRQUBou/rqqykjA6Xw+jgCYh0FEbZ+/foR8XLKA6Qm3ec0lgZRqHWG+tx4zNixY2NI20xh6aOPUxihxKSt+9bd3LdesvqWuYtrChPM34qvb/Ea4jdOjdSFX5LzFfNBf+5Ddp/A3mTxksXUq2cvKsn9zxhNsOrLTq9tDEYgOELS6Mknn2yC+66QLvbyyy+r9t+1excnoWOuZCliYdL7xvAeqDvvgXR/tJNKUWpf0VcqMok9mlF7ICb5+clrOs/M1gqzdpu6IQ9I68TaHYvUjXAgAQJPtXZzXyhTpgy8xYQggPlAPdg7jQy8UwsUCKy3IRHzqdeTTz7FJc/wE8SsTuZxvbSnuQV4YIcBUZ9TULLHQLlN5UgYjSCWgWDmGTsWRixCQWKZ5O8jSBmQGRnB35mWuafYc7zdk6T/yfjLD/MP9jZQYYmPOqpWFQlk3rqQfZs5d/71y350+GCas+pYE2nULJww6mLbdQQvBW3z3HaC/nteGM9mh/bbnTDqYtuzn39qwSLU4sL+fN5ckc+br/NnKy5BQBAQBAQBQUAQEAQEgaRCQH/UG7n/FCJZUjWzVCafI+C+y7We//BOHkIismqSikh2znWv0PZd++j3b56igwd2B7DwJjYcqkD0oufjtyuXOkUNJOE67ZjsaRJ074dZvDgmuOdz5PMvWLQUndrtMSpbqjiNHXl7WAGPiB+khf3++ywmls1wyWV4wZ6T+IPcgpdVYnIXgdgvz3Vvj1edpF2TTp06Kakjnp9Oq2evnvTZp5+pl5revXDb+PHj+YVrF3XTHn9lmJS0fPnyOMlJJm175BIhjQ/4RS7IbrHMkCFD6L777nOnCzsVSKTBy/JoxpV6pAJ4MROWSDbCqM/TOSLFuXGrtoTUIOslHQP6IxO1gqojdcr6twZLZlqzZrVyGPzPO/c8+nbMt3awbNuj9cFoRDJIagF5wEMURUihipUq0No1awmLbTwGqklBmgia15mMdjOT0sJMxw4d6YdJP6hbdv4gU3766afx92uWBqYmVCsTkO2g3jUnX9yDKKyJFHZpOVNu0Pf+9z+64oorrBIceeuZZ51Jv/z8S8T6CymHb414S0kii6cUkGYItXVej+b6Oes/VLqBEB3LXHLJJaq9gmFiqakLhjXuG2/so6TNmfyNf2YSyTwCpYmhr1OY4AlJT7EMJEJNY0lcwfoXKVyERvA8AYlu8RjgGKaWGHGbN2/BODJhM4Z5jNVz9lfqOT387eCQVgVyTrNmzWxvn/22226jV1991eenHV6fxWb5lVdeUWTRkIDKyyV5hgQYNWqUIjyH3HK9IuchL3/Mf+XKlaePP/6YsLbFMtjXoG39Rqd173330gvPv+C/lYMu9LkwIlRWiGRnntmapbxN41L56184W33LSwvVbdGihdpbxqq63R5m/bFTgX3YMFbzeNedsZJx70Hi6fEnHK8kjroLunMXaq+//+57qlmzphs+mgXkeZAiZzFZulSp0rR9x3ZODqXxGxC2INVPG6/kPXvyHohJrPGoYTZ7oGD9sVbE2gOhHpjLPJPCBOhzlBpnz09s2UWgUEEmaR/CQzy3r7P+oC9E/xAnuznmbvynWLUlCF2a0oXVJ1WRwpTUn1R2qwXJuapOq6Hx5hLcY6z4Iw7sf7xR4a+Xetbk+EpVJodSSTmSyyR/wV/6HyiVGGwy/kAKS7b5BwSy9u2FQOZfFXLOdc4N/+F92x6aMerBGIl6q5Naf3i4eT5+u3Ilwflzy17PUpnSxfi8+Y4YuMgtQUAQEAQEAUFAEBAEBIH8jkDY+SX2tIchLl6MICAI5AkEbIlk3rNoYuM0qYhkbS4bwqrFDtHMLx7mw/dD/sZipLxncwObufqDGpe6ix9jrIf/0JiOZ7R7uZl/KouxO73HICZGFKSpH95japQr1w0bNtBvv/1GMyC5jKU9wA6/oFE44seYKPhDqtD06dNNKLnmEgLmZW20/t/34UdoQKaqy/yFnzffSEVhf6v9QXJYsHABHX/88f4IMVztzj5bqWD0ju10SV9//XWC+q1oRtVrIEszsfI3dSxdurR6wQsVV/GYa665htVa/Y+DcmLWUSLSgaQbW+KJnZ4hkpl8zTURskqERDIno8zIKgj2GEudg3Qwk78pYyzCCsik5SuUj5h/r2MJKW+zisacNH6pRF7K0YhkUKEGCTBhLOwxY8ZoiWFeMqG2TZs2UbWqrJLtMK85Vh+Bul2kD/WdQQN1fE2bnsTe6AeegWQiSBqqW7eu55mJDVLPUD/TKKZtIFENktVyykBaTt06dQI9V6cOiTfdu3fPqawyTQeSbiLGnFPxF154ge69995M07ADQL1hkMipkuOf6dOms6ralnZwn92MzSD+2SF5IgOTP+x/zP1DqV+EPcw8+ihLgxzkn6MQLlq/N2lA2h/IcmEmERzvvpulR734YqBXc+px4GjWD1MWu/6VK1Wmn376ierVq2duh16XLVtGDVhKVwbYA7bhxLD/gvrFd0F6DJFoZgeHHWpvfWpcnbH9fBz9K1gX1N/s/0A8BvEW6jTjMap/jWIVk07+qBmwKcvzCtRxZiYdLZ48wsIoiWQnY45yjJP/DXFKJPONUav+KP2QIS8oAq9JOp7rnXfeSa+wFC9Tf1yNmTZtmlIhadzBK9ojUloqUNSpQDU7JHPFayAFNYI46yQHdZitW7eONylFFIIUXxC6GjRoEBHPbQcHf1P/goUKs+rKrK0VkEgyZQqvFQEUo60VO3bs4H7mSAC18oeE17eUqvGI4opHgggEVVuq7sQ/h5VEwgQTzcPRtEQyEJkwI2hCE+qMvqnIPXzjMISGGaP6n6aDwVtN8SoCUmAfTLCKIKbjm2jqyuHM/IvctA5MlYrkzwAJ/tL/MOZk/GG2yP/zD0Z0g4YNmUDGKixFAplaAo7UT5tLX6ADB9Jo5pePoOuoMYQVyWeC64+z6qgIvoCeA2NRCao1Xlba6p7xN1fHM9o93/p3FPJv0WOgejaZ+mHWnsVNdeQqCAgCgoAgIAgIAoKAIJA/EEhVH+0Fysqb0mQ9xwrUVJyCQL5AoABrwMg4FOBJcckTkRyYVESyM3o/xy8QiWbyl2HqQV49OevHavXrPGG7dgYNXx/i2EgZvuE9bPsPBJyoOpzza/zM1XcTxwl5LP8WF/8bvYRmfPZPf1HzgGvV338rYpkimDEpbCa/4N65fbtpmdDDGYM7VMJs3LgxlLCRB6p2zBTB//Lc3//xAhMqw+KRnGED1rdvX6X+ybS1uQfiB6RJZcVM/GEiderYSfclJMgG4/8+luzy3PPPa4+QX/9LaC9AYZZW9Q1LyOncubPnmYkNhKv2jIU5ILTnH0iogXSjMHPJJb1Z6hGTCSyDKqxctYpq1qhh+WZu7cNEgBGsDgzGzj8eIpndxqZNcJ0SRXUk8khPTycQ5fYf2M/zjzOvcqS6derSX3/9hSA5ZrzycQbW/BtLxd95rF7yO1Yz6U7ZTmmu45flUMmXmRk+fHgIYSuFevbqQaNHjQ6NDuLC4GcG+/BH/nffdTcNHTo0NE40T0iq6dixY+B2Ct173z05KrFo7ty5dMopp7j5cHHV/Izr1B9/jCmRzo2UQxZI8PsPS5XCym3KgaQhgQ3kymiEzGjZL2XJQPUbNtBdxglk0s1MtWO4RLIU+vvvlXFJJbLLFK7akolkmUgL9Pq9SY1Lz/3/x6mx2wU4QjqXMjqKwrQ04wh1dFnFERKWNBnGJKZRxO9jLPUNUmiimeA8q2OSUjM4adIkOv3006NF9fl34fl4/ISJvvGv0uKfZwY/Qw8+GEtygJfU87wmPPDAA8rDlAUOqMR87rnnvIAhtn4sXW3AwP48QHRMkz+kDn3HBNWOmUgis5OcMGECoU7OLtW9hTQ/YcmFF198seuXkxZPtaV/jMUrkez2O27nMQrpcHhF7ULBUgpK0+oYpOlodVi6dKlPladGVpftsUzUryqJfZB2Z60/yAfr39lnt6WJPIdmZW9y5VVX0gfvva/axJQD6YHcij1sThqsFc8MHhzR/onsgdy+hEKzMet/tD4NgjXmgLQDB3z51z2e1+4/c3bt1iU6dn9BcuUHchdn068SebDPDyg+8dSTlMrjT32pCjEt+M/jUyHAbmVXC7ymuGQ4lXK6LgdHSE1+yXDjqmQ4pPFAaIRiAloKE8cYX0UfY28kLfkL/tL/eGTJ+POmDMwM+Xb+SaHGTCBrJxLInNXiyF9aX/K8kiQ6c/TDVmbB9YfXG70UYWUKPf9xlywnFSe4ctl2k4nxM1fjr6/sa51/qDBOQNfOAc3+T8UxUZyEnODmllovnVs+Pzucdz+FTu81iPfUhWjap/d53mITBAQBQUAQEAQEAUFAEEg6BLREMrOZ1LtD/EZ83J10NZcKCQL5BwH1vsOct6LYzpBNZJwmGZHs33xOnEK/jv4nzouVwfmYtusJTfsm8qsPrPUxv0nLXJGebffSzzP5c0Fa9nyWJXKk8IP9/V4B86gNL0/w4nCGI7EMEhtmz55De/ZAZanB2lyJ4lE3lUermjTFiiQzcEtxE5UoUYqJEHOpTp06Wa5rmzZtlCQatLlubQzsFJo37w9q0qRJltLbv38/FStWLCIO1EONHh1O+EFgXa+BvvzxGuo///kP3XrrrRHpxfKAmiJ8IQwpVkHz7LPP0j//GU7yhFSaUZ+N4lx1/ZE/cICa2BpZJZL16aNU1gXzz4ysgvAGC5O/vhLFImohXnNWbff775Ev2BNRdYr0opmgij/0P8z/sSQz/Y8lFF199dURSYKUtH79+kwl/oDE9cMPkzg+2sQzUDl20UUXeR6WDeoGgVnQgLyRWL8uzkn588+sXwfzzsw9efJk9YU7+p3Oy1yJ5syZE6oGL7M0E70PlXt//DHPKQdS0WUBSeiZZ55JKFlXslsgdldWHQpVh9GMlkg2im/78c+uRDI7v7kskeykk6JLsAr2exM3s3F5ysmnsErbuSa4e8U8hPkoEWPjaMYf2qdr1y4xcQxbP5A/yJwgdcZrbCzs/C+99P/oww8/jDcZNWegLtp468+ll16aaTqKSMbEJTt/9I9E1gyQeapUqULbtm7jFNDHzLhLYULbvxWxLe5KZSGgTSRDnjrXwxQvkQxjFOt0cP+d/b6FedPGgQiqhb/77ruotYvWt0qzOsk5c+dQnTp1osYNu4HwK1f+zbfMmNfojBw5kq699tqwKAn76bXiJxd/0/6JrxVZ2wNBYiHU05v2N/mD8AwJhGJyBgE82IeRxsL8ciZHSUUQEAQEAUEgpxDYzh8/Dh06hJPj1ZK3BuCu4uNWtXvCRgiLqDHKrT34jr7lWkwg58rnmmovafY9blxEQNxUlkBWnzp06KD2ik4suRwFBPAB8+FD/IHu55EfqKg2U02kd0+JF8fbf+ueYjqKbn/Pz59DbuZ/es/BhK/ef/kk7583+1ETlyAgCAgCgoAgIAgIAoJAVhCwVVva+09RbZkVFCWsIHBkEcjJ8+akIpK1vXQopfFLt5mfP8LqYg6GtkLo47zx5Kv+Ilp74NFdv7gLJhW4Y+IHg4W4Q4MaT74eqfxTUwpQi16DqXDBVJr6Uf78QgwvVBcsWEAzZ86kmVCLyVcQGNIPptOt/7hVvaQNgVy8jhIC0V7WQuLNbbfdluVSpKWlKQlDIIDZpkiRorR79y6CJLqsmkqVKtHmzZt90U5m9V1z5kSSKUygyHrp8Z+oFKabmMj15ogRJnn3DBAvZaNJo3LV56lY3vzzN0vyq1mzppdWHLZo+WeFSOabGXnemsrqskD6i2ZAPniL1Viaqc4OB2ko//rXv0JJfna4eOyRbaVjxSKS7dmzhypXrkx79+2NmH9Hfz6aevToETVrqK6swfgHRYRCTRlIaFBvGTQR/doBBWF3796dY/0axCMQkHLKQCoUXlSgwwbb/9cZv1KLFi1yKquY6ezatYulT5alQ4ccGSVWp0pkPJjM3nnnHYLKNkd+klvLcuXL0ZbNW/hFDjKKNL1ZiuBnLBkqaBIhkumx+RYnpWWtmP1HZmMzWr+PRSTbuXOnkuKZcZhxdN5LmP1HItLUTP2BYxjxKzMcUQetflA3qOllscauydO+Qk1fGMH30Ucfpf79WSpVnAZqMk888cSI0G3atGWS2ZQIf9sjWntktS4mTeAJXLUxyLAEwxhrhomb6NVPJPNSufFGXr/efMPzCLFhjJYtW4b34eZFlw6Ell2ZwJplstB96/qI+adcWR6jW6KPUdMeumeZ1EhJ48vq3gQSD2vxnO/WzEkUaomhCjInVY2qtYJx3L/P3gOlUNEihWk3r1tQh5hVU5n3QJvsPRCX/yRWswyJk2HGrN3ePa//QYUwxlTx4iAyi8kOAmjLw/yhQXD9ESJZdlCVuIKAICAIHB0Etm3bRi+ypHS9N3A21cjaIX4F9x8qBHtiCw7Smdl/2/t/PANgxVWbdHVhyZXsZ/YfUMEOie+iwvLotHEwl7aXD+X92T6a+UXf4K0Id7D9VQDjydew9o9IRPUGr/1N14gMF+ljsvLdMZ45nH+LHgN4L1ycpn54jy87cQgCgoAgIAgIAoKAICAIJBcC0d6TyDlWcrWz1CZ/I1CAP1xW0scCz3/HvESyrte9Qjt27aNZXz/F6tR280O5ddxiwDJP3a5bdwbl9Pk5Dr6YdLzXJ04H8oUPdCornrrjhnUsrvvo5F+waEk6rdsTVLZ0cfr+7ayTegK1yzPOA6xyZ87s2bR+wwa68MIL80y5jsWCmJe1qu5W/4c6R0jVyKpRL7KZ5BUcfxUqVKBx48b5ksPmxWxUzEbGuHGFH/7OYTWGG7mvmGkAiZQoUUIReHwJWg5Tr+D4T5QUAELVjX1uVOfCJhtMBxexirJPQwgpCOOXSObE4kir/l6VmESyt5jIZk6iOTnkPzcT9XnI1WABu41hLMIKgkJazHnnnedFQoZW/ni5fR8TykAAgRrMRI1bPk7f9BuklVlbXXnllfT+B+9bZdIFvOKKK+i9996LWhyQJKEeMGhuuvkmGv768KC3cpt+bdcfuZWvWIHGjxuv+rHdZ00/DvY/O3FguwH92hhOsETx2P3aBI33OnvWbDr1tFO94Boi5YbKtEj1ml7QnLRhPsGLE7v/If1y5crR1q1bE85q4cKF1LhxYye+Uzm+oB9t275NkVrDEveTPL3oiYxNT7WlP39IDWvaNAsSyZxyT2HCUzSCJ8aEkbilcnOyzC6OixYtokaNG/nGn2krSGyApL8w445dddOrf2Yk1WBaX3/9NV1w4QUR+fd7tJ8irAbDR3OD1FmqdCk3HTP+IKEJZPZYBlLRBvQfwEPcmeSc6mQ2D0VLcwQTj2/qc5OXHgJymr0v7k2ffPJJtGjZ8jfzlJlHTf3jkUiGftf+7PZeeU3fKl+etjLhK1HjG6NOmiat+PqWE8m5JNIemOuUOutA/nXq1KHly5eb4uTIdf78+YrkZV4mm/4U3APFu//BWnIu9kCbNlprHVFJ3gPt4v4eZszabdrfDePUH+R8qIC95ZZboo5tN45YoiJQsFBBOnTwkHNfg4uvxg4dMn5Ro8oNQUAQEAQEgVxGAEQySNk+nMoqdA+zhMnA/k9t2kAqY9KYuYUrH024qg91FTD/g13Gq65zjon119CMEaZho4bUvl17IZBpwHLtt+t1L6tz5xmjLIlk3Hym3VTB9HLOVsfiunWxldPn54Uz6UTbf4VWnKObeLmVPzRglC1djL4fGXk+Elpm8RQEBAFBQBAQBAQBQUAQyJcIqPevIfvPw4GPivNl5aTQgkCSIFCoUCGCcCYY9bTJP6n8NVsi581JJZHssnveor9WbaX541+gvTvXuc/sGiiLVKagM7cVhI6PQdTcM95eGAO4OQTy7nhx3djWzYhDADe4FQjZOU6/r+dSNs9pgiOmG9e1WOGKl65GTTvdR3VqVqCPhl2vw8uvIJCDCHhEAKfjOZfMSEbRiuASRqxerpJ00kU8y2o5HF/rZmbjD1LK8HI2zHj1crJw0k3kJTTS//LLL5WUK52MV8hWrVrRtGnTwoqgiGRQlahCe1GYSMaqLbMokcxIGAnmn5nUIxRMYTFwgHsIbooSDxY333wzvfGGJ8kmmD/Sh+rR//u//yOEPfPMM+GVJaPbaiDHwem8viCBzMr3zTff0Pnnn+/GMVFBMty4cWNUiSsgNKGfKmMiccY//DCR2rdvr/0Dv0ZFZFj9TZndpPwJR7S/L5zrcCx8gSSt8kzeyAmzYsUKOr5uXd8LD5NlLDWeOZG3ncYnn35C/3fJ/ykvkz8cUKUHCZWJGhBRIDUr0HU4uRQmiPxFIIqEGZdI5hZGWxKRSNbHUTvrJqUyTFGqgWMRyfzj0onNl1gkLJBWL1E48lgxhuOcfFIO4MikPtOXkbSZf//66y+qy30ozNh1cGqggmU2doNpIbwiyFmJIP++j/bNkkQypAspQVqqlsYISZ7Wgolkv8YmkkH62cBBPA850Jr6g2DVliWaZdX41gyrXq1bt6aff/45q8nFFd6TSOZlCNsNTIJ+8403Y6bx8ccf06WXXRpR/5OYGD43hvTPmInyTXuMIqxXMlIkrmhjVK8LvG5ZBnGncF+JRrS0gvqsn37G46b3JcrPzv+ss84KVVfsi5xFh94DtedYXv/j98rG6au/53AC+MJl/vwDiW7R1gqzdqskfem6Rcn22p1FaJIuOCTsHspg0hg3tYFYiGRJ18xSIUFAEEhSBLA/GTpkGE/gTCHjSZwPWLmm2P3pD92Un1N33DsMMWRmkwh/Z+JXFx1VeYKQhhVcqbBkAlk7VrlerVo1xBCTywhcetfbtGLNZvrtq350KD2NS2M3oi6c2f/bRdWhnLDmRmRULz1js6JYVjdb12LdPNr5FyhYmE7r0Z/qVi/P5803mNrJVRAQBAQBQUAQEAQEAUEgCRFIMc80gf2n0nyShPWVKgkC+REBTSTDR8r63QLqkOh5c1IRye7+12c0bfZftOSXkbRj3QILHp7RtMzw8PY2E565IpRtd2JFenk+2hZ0m+zYP5fzL1utIdVvfQOd0awODXustymYXAWBHEPAflnrjQR+WctqD9u2ja72MFoBPv/8c+rVq5d7205Te3o+2hZ0m6jsn8n427RxE1WsWNFE8F1NvbzU9e2sEhxMoiCLgQDgGifhGjVqEMgnYeYSR32eN+UjVAqtXr2KqlevHhYlqp8n9cgJ4uQPqUdQcRXLGCx0GA+RH6f+SGe1OStWVIIKSZCrIqT5mGTMFamwveXpLZWkk4suuihuFV6mfHZSSAyq6GIRBsDMPu6442jTpk3BqhFIEcA/aNauXUu1atVSDG6dn/6tXbu2IjWoLzOCkdj9xRdfUM+ePb07prDmiju23QkZ6eX5aFvQTao+0fq1V4D4bFDbBpWdnvHyGzJkCN1zz9FRYTF8+HAl/cYGCSXpzkTAr776yiteAjaoaNvHakqC+M+aNYuaNWsWmmLvS3rTqE8/U695zKYM5fmbxzLGdFaMIZIF88+M5AkJWP1ZApadP+aKWHPU66+/Tv/4xz+8ujrNCUJljuGoKs8JO/NvLBzN2DVRzAYuVh1U2MDPTz/9xGStNiY639X5P9o3a6otkawidzgSgRx4KB6JZL66OPmjQFmti6naL7/8QmcxsTY4/9eqVZNWrlxpguXo1SOS6WRN/eORSOaNUcTV+KPwOdu3TIl0F/49xhjt91g/JSEuCFAi7QEyNIhVOlfdIihJbyZlfvzxR8EssuW290BebU2Sno+2Bd1WuEz2P2gbrH3R1oq9e/cqKZD+tTuYn+du2TLra7cp7bF6LVCQSasBdc2Yf9LT049VSKTegoAgIAjkGwSURDJWbalWQmwNlIV/WEKZvXkzt1Cxw7w2K+lRHCyFhZCpOCoe7mqDZ8kGDRqo52dRYWlQyRvXO5/+lH6ds4LmjH2W9u/W5wf+5kPD+tvfV3IT2Fxx07Y7gSO9PB9tC7pNLux/lPMvVrIindTlIWrZrDa99Hjk2YkpmVwFAUFAEBAEBAFBQBAQBPI/AnhW8XaiqI/ef4pEsvzftlKD5EFAC0mA1HOuk3MgUbBAYufNSUUke+7NCfTJmFm06o+vad2yyb6DGwsrg5l9ruNgqUOZsLrLhH3L5WEftVv5E7HbKlfyr1a/HdVsej7933mn0v19OkUtttwQBBJFwPfy3Or/ibysRRlGjhxJ119/A48dV0GEWzQredfPZwkEMM7gFXEyI/746uVkgnQSkWaC6FpdVdOI+eeEevVo6dKlTg7+iyv1yPE29UhU6tFbrCoNa4cxSO+PefOoSZMmxiv0arAw+ZtA8bZxWloa9e3bl4a88ILWz+wkoNOzf03KKdSCJQC9++671LBhQ+MZ9WrK5064Tsh4ynfXXXfRSy+9FIiaQhdd1IsgcStohvELgzDy1MMPP0yDBg0KBnfd6Nc3XH99BP743hyLlh/bxNef2rViE9rcAsVpgVo0vNjOyMgIlJHo6quupv+++984U8pesGeeeYYeYYzt/osUQe4AOSo7plSpUrSHVbx5aWv8Fy1eTPXr1w9N+mJWSTtq1Cj/PW7ERFRbgkjmH5s6/8zUzj7Wj4lkA/p7ZXA6USxpkM8++yw99NBDKo7d825hHF/LLo6sEnL3Lk9VnunTi2PgqMlw/QN9K3MSqFdpbUOd257NUr+8RlRp9mUpYf37WxgFI4a48dXGISaZWknFRyQLEJf+n73zAPCayP742wV2WXrvIE2aYgEFpKggWE8R61kAy1+9Q8CzACqKqCcq2EA4e1fACipW4FSQs4FSLKDSe6/SIf/3Jplkkl9+dX/LLrvfKJtkMjNv5jMlM5P3e6Pzn0g/FJIM9c4wLdLp+Bo1akR//vlnWJBcu9mKZMcwO//7NxFFsoeHP0y3D7rdTYNOb1rqVkQbtcXEqlv6vaDToc+plIe0m9u53Zh1QlLQr18/GjVqlJvndFy88sordPVVV0XI0umPKiPgQd8Gzzp8fVZ+XsTbckZTfhZ/+t39GL+7ef/liDTpuNTZEXTiiSfSq6++mtC72xe+CN5opVVdRoKgZMmStmJzEeSBLIMACIDA4URAWSR74gnHGpmdchknZPI/Odt9u8zxZFTlHUrPhz/AiC/tR3wrC2TNjmQFss7YwtLDVaCuHnpmMk34fA4tmPECbV07306b+RJnF30bPOuM2O7mX+9JcPwtT3Q82lfEOeBB3wbPOpztbv71nqQiv3yNZtS0/bV04ZnH0cDruurIcAYBEAABEAABEAABECiEBNQaoh5oOvmT24PKOnMhzDCyBAKHIQG93ixJ1zO/7Ows2r17d9K5KVSKZBMnz6EHn55MG5f/SAt/GOeD4fZrsljjdGjiJgjVgk6sX2xFmbbbi0HGcpArxCfakWIvJPGXmnyR3+jEy6hy3VZ0xz/PoPO7xrY6FJl6uIBAfAL6Y23QZyofayWOl156ia655hq+Cm9Y6Wh/JUvmqC3IwhSCdD7SnS+xytOqVSuVK7P/adQwulJAUJFM0ib5X7act7ZM0uqRubWlKX/e3HlkKivo/Jtnk4XJP9kylu3YRKnj008+Taj/zckpSU8//TT16tXLTE7EtZk+86FsEdapU+wt5b777jtq166dGUxdy8dc2d5SlIzMQ7Yy820r51RTUcCIpZCn67V4N/n7viyYglKo/zmc5mGszBarXvtEJHjTonlz+m2+vVhuln+LFi2UskuC0eTK27Bhw0i2DjTlS4RXs3Leiy++mKu4q1atSrLNrf/IoB9/nEXHH3+839m5c9tmoJtKVcnzBVby9B/Jbm3phY7VLoXjXYPvimh/V7HiitTR3BzVqlXzrPtxRBpNwhbJDOGx8mB4cy+VIlmgrYv8VBTJihdnRTJlkcwb57VufQJbVfzBlRd2oZXi9DOd/1iKfdpv2Hn27NkR9U/qf/0G9Um2C82LQ6zgyXaxXunZUhJRJBNFWlEY1ofOv7zPI+u39pXYuWrVatxG10e0/x9//DGCkY5RbTXK9T04/k5FGTxa/9OnTx8aM2aMFpmWs1amd2YPvjiD/Z/byHy+7BvNP5h/KdvsktlK8TnRd4VY/HvggQecd7fXLqLJl+2qn3rqKerdu3dIyuCkCYQp8ZUqVZotuXoKudovziAAAiAAAgWLgLZIZr+v7beuxftZZvKlvCktXv/jRVeVaHkq71/+TTC/llkxm51tN+VAzWCBTAAV+OOdT2fTiOem0PJfPqLVC74MTa9dE/hRPq3/Hmr5NZucyj9cPocGXHcaXXRm+Lw5FBQcQQAEQAAEQAAEQAAEDjsCssuJO950Ui9GCHL7I//DDgQSDAIFmECmzEW5parVCEf/SXZkkp3Dkj0KlSLZgsXrqOdtr9LevzbSnM8eUiwUKyalYAXpCEfnsDna3Z9y5j/Oek+gU7T9qGD6Up31jb0YpOUVFPktzxhEJUtXoVdH9KSmDavrbOMMAmkjoJV4vJZgr5tNl20PWekm2WPChAlsDeqCiPbXuFFDeuudt3lNLtN+phuqIUAGLnLIxzn5J/fBs7g1aNAgsF2fEYlz6VcK8HI3nS3fdEwhX1OnTqWuXflXmhKVc0j/07lLF5JnYYerrGLS4PArlq9IfmtLtnr0vCirBOTHs3ok6RrMiifDhskWenxoFHyeztuXxto60g4Q+Xfu3Lk0evRoGjduHO3YIS8w+xfZErcuVi0mKytbKW61bt0qMiLHRergMP7IHex/E1UYOPLII2mhWPgJyH+VLaJdeeWVrlxR4KtfvwFZbJ3L5mCnUrY/FGWZWIe7XZkEcQ4p/4ZsXeidd97RTu5Z11sRZNdjoST1OXr9Fyt7FStWdONI14VYCHz55Zfs6HTB8Dkzo5jaZrVmzZrpEhU1HlHW6Nu3r6/+iQmAM888gz755JOo4eI9kC3EsrOz7YrHeTLr3+IlS5TlwrA4ZGvLd98Ri2R2rdNYli1bRnXr1g0LEtVNWyQL1r94bVP3vRKxli/XsZSwRo8ZrawoqTCcdG0L4awzz6KPP/lYnFM6hKO0VRWjkxibDNGSGBx1HiSImf9kla9MRTLu+lWxiHyJ//7775fYEz6UBT5WJNPpl4SdwP3PDzNnxoxD95OmfAkQqzxiRfjFF19QF34/+EqX89aZLVX897//jRU05We2RbKWvvok8q+99hp6/vnnY8YrfbpY6Arm/8wzz8xVGxWrWKIkq37d5pStncAMrluLo7ZRXbd8iebwqby3xGqlWK90wah0ZFD37ueR9O3pPGQMdCGPgcz6JxW6EY+B3nn3PTsJuqMyBCc6/pF3S/369eOOgYyo3Uvpk8ZwOY8dN5atD9rvbnmoi0VdOzclsrJItvSOpozrRlpEL8TKZzE2K657YYEoxSrK69u2bSuiVJBtEAABEDh8CGzevIVGjWSLZNx385SE50V2R27b75RrzotM9qSD5/8dB7WlpVIyYw/NmjWnU049BRbIBM9hcPz65xq6euAbtHn1PPrj21dCxz9S4hGHKn/bVaqEnn8pZ/6jh3Vy74U37vSlOuub8PGXF95IhQRxjnTLb9y2N1WofTS9/PCV1KJxDS0GZxAAARAAARAAARAAARAAARAAgUNMQK03Fy/mStXzv7Jly6S23swfHArNceDAQavLlaOsNhcOt7JzKsjcmf+pVRvnWq3t8PqO30388ZxavszLXD48nOvuPBe/9vw+8sx+VXwFRH4Ws2hzwQjFRhjhAIG8IMBWP+y2EKj//PE8JXH88dxtW7we6143btw4pfhSDST5MuWrds/tP9V8sZURNy+6D5H+gi0BRU0ib5/nD+P0P7ytWdQw0R6wRRl/XCxb5LMFmmhBXHevjP39X6osdMTbt2+3+BcLlpStzcQfv+bftGlTa9euXTpYxFmlL1D/JL5E0zd06NBQ+eecc7ZP1qOPPhrBUOQ88sgjPn9hN2a9Nsu/ceMjw7wXKLdnn33WznfI+2/EiBGHJK2vv/66/a5m3pqfnI899thcyV+8eHHU9/+WrVuixh3ZNu32lErbZEWy0Po3b97cqPLlASvKeCyM+s9KvFHDKY4OQ3P8kw6O0cY/W7dujZoe3XbtMvXaf6JtV0cs/sPkS/zJHqxIprjq/kfS1rp167jReOXh5UPCJpsXLeiNN7jOO2Wlzk77YytP2kvaz/I+0DLN/Mv7I97xxhtvOGH9+U9H3TLzr9Mn57h1i/1IvTDH/6mUB283Gdr/JFIv4nELPv/yyy8j6p/ktfGRBeddod7dzz5j8Tardpkb/Y85/4r37g7mvSjds4KkXafcca7dbipXrlyUMCCvIAACIHDYEmCLZNY9Q4dYQ++5x7pH/RvqnO17cR96z1BriPvccx83fry1es2awzbvRTXhe/ftt06+7Amr9bn3ue/wsPmHjNuC4089flX+ZUwfeP+7z113Z84bMv/WfiWOfJWfmWGdeN79zORxa9++A0W1WiDfIAACIAACIAACIAACIAACIFAgCKj1Zp6P6jmjnn9WqlQppfTxr54K1zHg4YlWmx4jrGoN2rmQNCz37EzKbXgeTPe5A9j8eBZ8Zn4gkWcSV7z43DgOsfxq9dtaJ14w3Brw0ITCVdjITYEiMPjOO42FMK9dTZ82LaV0smWn0DbMWw2mFF+qgVzlKaPjlfbP2yWmFOXQe4eqfAX7C1l4jnZceumlARb2h8Y5c2IrmITFd82114TKT0SRLN0KEsH0yQuOtye02BJHpPKew58t8ASDufeDTYUao7zYSpHrJ9bFggULXM5m/1+iRAlr06ZNbtA2bdq4/nT/z78+t1auXOn6iXbx408/hvI/1PU6WvpiubOVIiffdv3T7zSpy0e1aBEraNqeffTRR5yGSPlVq1TJlQxRKtH5UWXqvKfjDa6kbYa9/9naXtLp4a3/3DSY9S9e25Q+KtifSB5iKcp8/PHHof11lSpVk063GSDIUTONxzHYz+r8x8qDKVdfR5OfkiJZMVuRTOdBzokoDAXzosMnmxedJ94q0q0Xdlx2/R8yZIj2kvazqUim0y/nRBTJ7DbqjQF0eN46NlfplH7czL+Ot3KcCZD33uI0GePvadOTf4e///77nIbI/qd6tWq5yltY4IIyBgpLW9BN3t0vsZK8vLt1uQTPsd7dwfiK0v3OnTsjmEn/V71a9aKEAXkFARAAgcOWgFIkG6KVyIa4SmRD7vGu7xnKz3ncppTN+HrsuHHW6tWrD9s8I+GW1f++t622vO5cpkqDiPd4cAxkjj/1dYQfHmfr+U/Ys7DxZ9j8LzSsMf7NC/llKjVQP1wWJjhAAARAAARAAARAAARAAARAAATyl4CsN4fNF6ul+H2m0CmSfTB1nprENu3wf74JvWmFwJ1cR0yo7Y9DCnDIRF6768m3N9H3f1Ry4+c49HV+yhcWbdki2QdTkv+wnb/VHdIPJwLRPp4nqsQTzOuOHTuszMxMow057Ynb7bp164Le8+xe5yvY/lPNV6tWrew8BfofUaCKdoiCSVC+9D+TJ0+OFiSqu2v1KCA/nrKKRKhY6HDOWRY1U1WQiJZI+YBeq1ZNt+ylH9X5j2X1S5eV7nf1OZn0aSUxr3+36x1v56aSqyxX+d4Pdv/P25VGy47PnfegtooVK+ZTaLDfKRmHtF77EpXgDZtEtZo2a6rKxePjvf/G86/q8/qIxl/KmrdPS1m8tkan65nO3znnnBMzzjALf5KWVNqmxBWUL3HFa5up1HuXI8ev65/IEvm54SgKsRKP+U/GP/E46jwE859M25WCEgVfU7adpwzVd8UsyJCHYe+f1ifEt0im86LTocd/yeZFJ6l9+/ZuvTDHny+88IL2kvZzUJFMl8u1/xffIpmuW8H8y/13332XclpVGw15/yRat3R61JnjSaU8fvnll9D+j7eJtNauXZty3sICirWv4vKucNqlTrec169fHxYk391+/PFHi7c49rVBXf9jvbvzPeH5mADevpJ5Rc4/a9eunY+pgmgQAAEQAIFECShFMh7/3qOtjjlKZWKFTMbF97BCmVgjk3HMuPFQIEuUa0H39+ZHs3jdebh1xLHdfeMeNV5TYzdvjqzd3HE8Pw/Ov8SPnn9q/3r87YYz1l+0n2hnPf7yPdfj6DTLFwayA8abH/9Y0IsN6QMBEAABEAABEAABEAABEACBQk9ArTeHzP/q1K2TUt4LnSLZlm07rfYXP8oT2YetEtllvEm9O+mWD6WBSX3gmTthlwm28S8inPNMTfhVHBkRH/vc8AEZrrs7ibdliYx0yhcGssDR/pJHrS3bom8Jl1LtQSAQMAiI1Q+37hr1PVWFK4n6uOOOc9ug2f4O5QdJrRRgypf2O/iuwUbuE7uUj/PBePTCYCxrHf37948Mx2kYNWpUYoIdX6KA520f6fRvTlmJtal4x51idc7p9/RZ+r9UPsjHk/X000/7ZGlul112edSguqw0U53GZNL3JDPV4cyzVhR76KGHfc91/y9bliZ6mPXaTOuhrNeJpjXob+RIPx+df/kQLgoEsbaYC8aV6n01tv6jy8aUn4i1pDCZoqFfvXp11cbcPsyp5//+97/Dgrhu/fr1cz8EuGG5TYwcOdL1k8jFhg0brCN5e1M3DqOdJaZIZowdnDYdzxqk5Nmsf9LGRH6qHGXbWVU2jnxdRiIjHkf7/WHkwcl/Mm1XOIt/M08qDSxf+oZkD6Xw6aRD9z+tWsVXJPNZwJLwDg/5mJjssXDhQlXXtXyXKcc7ZcqUZKNL2H+kIpk9br7mmviKZCKkalWvjer8S9pzU7fEopmZf7mW9h+vbrnvBfFvjP9TGZvs37/fKlPGm1uY/Y98IE73od8VZrol3488Gn8b5XSnJdH4ZJtqXzk59f/yyy5LNIoi5W/jxo1uGzf7/wYNGhQpDsgsCIAACByuBMRqtVgbU1bHRGGM/93DYwL73rZKNg4WyA7X4o2a7jXrt1ltL3rUanXOPTwe9X4k5o6BnPGPGq8a40/1PPDMfP+74QPjVp+7hFdxGHMnI84wGWZ4c2wuY8zcyM/MLMYMhlrtLnrEWr1+a1ReeAACIAACIAACIAACIAACIAACIHBoCMg6hTsHNOaKDRs0TCkBhU6RTCjc9uAEVp56xKrR+GT3A549OXYUyIITb2cSHgGW3c1JtXvtgPfFyRN9PWH3uYf5FTfl7kzaneu8kF+jycnWiT2GW7cNey+lCoJAIJAoAfWxlutysP6nugWkyP3HP25wOzyz/dWoUcMSpYVDceiP0KZ8aaty//TTzySVhDvuuMNu+4H2X4wX4GJtb/Hww8O9vkiFteV37NgpYfliCatdO97yV8IH5IsSUDxlFRGkFCQM+dqKRrLKHokkesmSJV6eHd7CvVevXlGDe8qMRl/PYZJJ35q1a6zixUsoRm6ZcxzFixdXFsPEIpEuf53/nJwcS7S8Ez3+8c9/cByR/b/U6527diYaTb74E0UxUaSw2UQqZXc/7zxLtjnLzXHgwAFLrJtdeOGF1tSpUyOiOvfcc0PlS7qSKQcd8fPPPe/2M+7COtdzyaNYx4t1PPywoVjohJGy7dixY6xgvmfSNtu2bWunwWlfkg5d/+K1Td1HeWHscolX74Wj7gvM8Ufp0ilyZKt9vnrh5CURjmYeVFqc/MfLgw8k34h/3S51WYp8iT/Zo1ixSIuYiVkku8tXliaTWJYnw9J37733qrjsOHTfTZZspbtq1aqwIGlxkzrnymR++jpRRTCvbumwdp0sXaZ0am2U65auF8H+N14bteuW01dJnVT1MnVLmqeccoq/njMfSZMoZu7evTst/HUk//iHvCs0Q512smoewjGQTkuiZ3l3h5VV7969E42iSPlbs2aNzUvqkdNnyrkZW//EAQIgAAIgUPAJiEUypTymLZDx1pWy/bi4iQLZmjXYwrLgl2JqKbx+8DirzYUjrCp1xeK8MdZ0x26GmzP+VGNq51qNlwLvfz3mDhv/2c+cOCWcE9bn7owlItzySH6Veq3U7hc33JX3lslTKyWEAgEQAAEQAAEQAAEQAAEQAIGiRcBeb478/tysWbOUQBRKRbKvvv/DOpGtcB17+u28KO98CHQm1O4EX0+83cm3NyF3J93uZNt7Zk/2jQUBJ7y7CGDE68bj8xOMy/5wYFobcMPlVj5/aDyGGbTpMcKa9sMfKVUQBAKBRAm4igBOG9D1OBWrH1qmWOky24bZ/kaPHq295el58J2DvY98Km9e+xeLNWPHjk1I/q+//mqVr1AhEJfd/rt06RIzjg8++MAI58kXHrNmzYoZVh6KospZZ53FcUTvfxKxSBbxQd7p25JV9oibYPYgW2RJeoPlf9ttA6IGN+ugrn/CKNn0nXXW2a6ygSn/5ptv9hjqdwqfL7300qhpCnswdep/vfLk8KaMMWPGhAUpUG4DBgzwffAOvv969Ohh7dmzJ6U0Sz1s29ZReOTyvzbEApJ8lDE/uJvyb7nllqTkysefpk3t7TolHrfecLnIloLxjg8//NArS2kPzj+JJ9G2eeaZZ/rCqXaq6pdd/+fOjb0ttVnvTfnx6r30XcLRrH86/wjKstYAAEAASURBVLfedmu8rPueC8cmTUI4MoeTTjrJ5zfsRlvx0vLt8mVln2nTw7xHddNbW7rxSHlwHiX+ZA9RHjXZCNvWrU+IG41YbgzKt8slQ21r+/Zbb8eNQzyINbKqVYJWuOw+vHPnzgnFkaon2yJZZP977bX/l1CUqm7p942qy9I27LTfdtttCcWhPckvaLw26n//JVK3vPbhf//Fax9afvD8+OOPR+1/xBpXModsgduiRQurbt26odtVTp0y1e0bdB1SZ2Z6qMZAyeRH/Eq/F1b/b701uXJPVu7h6n/ZsmVuGbvcuHzFGh0OEAABEACBgk9AximydeUQ3sJSlMeGDr3XGj9ufMwfiRX8XCGFiRCY9MXPakvHo7r8S73L3fe4M//wjd3ETf/j97w5x3DDqTFz5Phbj6GjzX91vG48h1C+5P1E3tbyw6nzEkEGPyAAAiAAAiAAAiAAAiAAAiAAAnlMYNmy5aHzz2OPPTYlyYVSkezAgYNW938+y7+MGm5VqHm0DYyVqvTHFz3RDj2zP3sCbkz09YQ/eFYTfcefWgzwru2Ps0Yc+SC/Uq2j1KS++w3PWPvZwgsOEMhLAu7HWmkXRntI9WOtTutRRx3ldXpGGyxVupT10ksvaW9Jnbds2WJ9/PHH1p9//hk3nJsvQ7bZl4hlmAceeCBmPMuXL7fq1avnfXwOxBUvH6JBLEoNvj7L6X9OO+00pSgWLQFiteaEE06I2//Fs3ok8ftYOPIlTbHK+JVXXlHKF8IoGWtRAwcO9OfXYfbWW29Fy6qdvkD9i5e+sMhef/31UNlh/MVNlImSPULrNdel0qVLW8laLdKyk6nXOkwqZ9kKsilbS3F5GO1dLXDzfXPWbg+zJhZN3i+//GJdf/31VokSbA3OaB/XXHNNRBBRUqtStYrnLyD/BrbiI1bN4h1//PEHW31pZsTjf/+/8cYb8aJQH4lshaPI938ibfPEE0+MKl9ziKfkKe3SHbcY9T9Wu5SMCUdzm1AKjH9uuOGGxDlqZTxDvk5/IhxV3xKQL+Hj5SFYQOLffP+oNHC8qSiSmVtb6ry0bh1/a8vB5jbPUpdZvp0Ou45k8P2wYcOCSffdr1271mrUqJFXN4w2IXG98MILPv/pvrEVyZw6bchO1CKZ1C13K8pA/iX9SdUts43qtEg94+uE65aEc8KosuD7ZOuWZizb0JbIMvopjle3v6zsLOull1/SXqOexaLq7bffbmVmelbvovWXRx/tzGN03p28yLsi3tghWgL0u0KUFaMd9ru7tRrfJPXuHjTI5aFYO+Uf690dLQ1FwV3GoZqTrkdy36ZNm6KQfeQRBEAABA57AvJjinuGshLZvUNZgWwcFMgO+xJNPAO79+yzuvZ6kpXJeN25VovQ8U9w/KnHoe6Zx0nm+991N8d9+tocyxrjTz3/9sUTMv4OjTsX8ivWbKEU6br2HmXtYhY4QAAEQAAEQAAEQAAEQAAEQAAE8p+Au96s55LOOdX15kKpSCbFNH7SLPvXYafxr8OMCbc3uXYm7M4EW9wzDH/uJNtx88L5P6wF3e17v9UDNy6R4RZc3suXX4fJosb4j+JbLMr/qo0UHO4EPGUGf/1P9WOt5iFKNV67iWx/l112mSXb7cU7RPnlk08+sS655BIrKztbxdmWt3qMd3j58suWdm2m6+yzz7bCLAf99ttvllYa8vx77b9BgwaWpC3eceWVV0YoFej4RBlFFA/MY//+/UohqWbNmm447V9+1aqujf4vaUUyI/+xyli46D5QlFbEmossuMc6nn32WefDqs3cSzdZixcvjhr0LlaocX+x6/a1ySsM7NixQyl06XeHKV/nRZd/lSpVUtrKUeq1VjCR+IPvn0TrtSgk6HqdnZWl8i/bJOb18cMPP1glAsqNNid/+z/55JOtJ554wvr9999dTgcPHrTECotYHJSy7tatW0T+FWd+/0bbDk0UE4PlYsqXbTE3btwYFcNnn31mVapcWdWzMP6S7kSU0UTAFVdc4cYTrH/R2qYoAtWsVcsNFyx/nX85x2ubSgnLbY8e/0SsQWqO0eQLR1GciXYojpUqufkI5j9RjjoPKt+67XL5x+pbwtIkefbF4cQlVsKSPYoVL2bky+6LElIkU/1QrPeF3f+exX3j7NmzI5IlCo4iJ1r/c8QRR+T51s5KkSxk/JuoIplkSuqWWRZee7Xzf+FFF8Vvo1y3vHB+psnWLS8eW36ydcssqKuuuioiXXb8dvsTq43yHgke+/btU31endp1Ivr/77//Puhd3at3hW4TxlnnJ+l3BVvQzM7KVvJlu+toh353ixzZtjORd/dzzz3nK3Oz/GO9u6OloSi4ixJ1WP97yqmnFIXsI48gAAIgcNgTkHnt+PGwQHbYF2SKGfjP69N4B4hHrKNPu4Xf594PBPQYSI/XwtZfwt7/0cb/kfGZ6yTe/E/70+e8ki95bcl5bsu7X/znjeQsSKeIGsFAAARAAARAAARAAARAAARAAAQSIKDWm+U7gvH9X+afp5xySgKhI71kiBNPMgvdwb8Oo4v7vUjrNm6nRTPH04Zls0LzyBNrNQOPfBh8Ytwbl3Y4xyHC3fc0UgS7RAkS8sTwaVz6JBjuVeq1poat/07Vq5Slt568hkpmlwiVD0cQSBcBtvhC/OE4Ijreaow6deoU4Z6og3RR5557Hn300SQ7iFHPtUOFCuWJtwGiFi2OoqOPPooaNGhAu3fvJlauotWrVtG3331H/NGYWGHLJ5athNHSpUt9bsGbwXcNpmEPPMjOTlcZIl89Y/cMyqRTTjmZ09GCsrKyiDtsmjJ5sg4ZjFq1/wkTJ1L37t0jngUdWOGAjj/++JBOw04QW0ih4449nlq3bkW8lSXNmDGDFi1aFKOP8UfFigPM7uigWN+9KuNhXMa+t0YGs51GHTt29PnVNx07dKAZ//ufvlXnnJySdP75PYgtpRFb3SFWdiNW+iFWNqLnX3iefp73C/szhdh5PPa4Y2n2T7N9cZk3gwffRcMkfcYhIadx2UdLn+HVd9mzZ09iy2SOmy1f3RiXcn/jjX1p9OgnHX+Jn1S9/tu59NHHH4UEsoVUrFiRjjn2GDr6qJbU4qjm1KhhI1Wv2UIdrV69mr755htm/zXt2sX12kgXb5NGrKgVEm96nf7zn/9Q3779WCH9oE++KcVIFrH1HapQoYJK765du80km0H42gvV58Y+NGb0mMBzIlaUpHYntaNZM3/kZ1xXvCCu3xIlsuiM07vR8a1aEStC0N69exWXj5n577//ERZEhS1TpizNnTtH9SNuZDEuVNtsxW3TrLKOf0lWCe4LpO224nTYbfNrWrgwVtv0ZyZe2wxvl6T6vHj1Xjjy9oA0c+ZMI4d++cLx9DO6UavjbY5sbYqWr1hOkz6cRH/+uZDDhfMvU6YMzZkzhxo2bGjEHX7pf3948pN9f7Aime99o2OS+O+///5w4VFc2Tqeqmdm5ZI+i5Uoo4SwnVkpjvuhYepGyw8LIM94MK/6Jul7c3Jy6Lf5v9Fnn35OBw8eMIIYsfDle+++R7x9rPE8/ZdsBY9atmzpROzJ/7//+z9iZaGEBKq61a4dzZwVffxdnBmfccYZqn2wojGxohW30eXqfc8KdRHydaMtU5br1uxU6paXdN42lTp2Cn9veb7Cr9atW0fNmjejzZu2sIfw+p+ZWYyaNjmSmjRtSlKXlixZQsJVxiZyeFTVLX366aeKhX3n/ZV3xd/O/Rt9/NHHkYGcWKRfPfbY49T4R8Yf8l5lJWNaK+8K/vcdj4GkLZljIJFfN8YYSMZt0p5MoVJHpe6xoqNq17Vq1VLv7gW/L6Dnn3uBxzw/ewk3Qsr47KeffvI9w41NgLfxVjw9HnbN4C2PiZXEPWdcgQAIgAAIgAAIFDgCm7fupB59nqNdu/fRkh/fpXVLvo0Y45mJDo7/vGfBJ8a9cWn7dxwi3H1PvaiNqyhB2EfwiXFvXGoJVeu3ofqtL6JSvAY14anrqGL5UoYUXIIACIAACIAACIAACIAACIAACOQXAb3eHJzKyXcY+QaR9MEfKArtMem/P6utHY8/Z4hVPCsnqnUHhuazLMBw5XNwAv/0L78c6z46jGPFwYvD8Rdi3UH7MWWa1/p5+DlcvuRV8tymx3Droy9+KbTli4wVLAKuRZlA/eePl7lOKH+0terVrRtok+H1n9fAwv2FtD9WuImbNlZACMSn48+9/F69esWVb3qQrfK8viA1+f/6F1tp1H2Vc5Y+Z+68uaao0Gu3jFU4T34syy5idUfJC+Gv02H2eea1fi7nShUrxt2KVKUvpPwTscwUzLBY+TLlR17b+WdlrmDQhO9Vva5XN+3vn0TqdcKJjONx7NixVpa5HWUIf8UuhfIvVapUqMUmnSSx9idWxXx1JpfyWVFCbXurZSR67tq1q6+ee/XFaScJ5F/api8vTvtM1CKZyVmuE633iqPPqpju42KdvfbvS7OTT+EobSjRQ/ctvriSyIOWI3n22Ev67XRK/MkeKW9t6bNIZsuvXbu2VbZMmdDyNfNsXvvzYZfF5Zdfnmw2UvKvLJI59c9MRzIWyUTwr7/+alUWy38J1H+REy//4kfVrY8Tr1vqHR4iP9Z7KxFo0vdJ/fKl2ZHjMUu8/cfaZlLeFdKvR8SbS/n1+P0T7dAWyTyZZn8Qu/17YTKsSty3JLKNeLR0FHZ3Vvp3y9WsS+eff35hzzryBwIgAAIgAAKFgsDzb/9P7YbR6pyhVvHs0u78I53jX3tslfj4S/kPGf/qMZo55jCv9fPwsy2/eHYZq/Xf7lV5fu7NGYWiDJEJEAABEAABEAABEAABEAABECgsBMz1Zpnb6TkfG3dJKYuFdmtLocG7Z1k33DVWTXAbnvB3d6HenhTzx5+IDz4CVE/OzQ8m/msznC4AHad7dkzG6cUD292MJ+/ksyUyq82Fj1jXDx6rGKRUMxAIBJIk4ClccRsy6n9uP9bqZKxYscJiiz6+dpvb9idbY8U7ZEs0s/3q9i9b8h1R7wjjme47/Pk3w3rXGVaPC3pYsv1kMod8jG3evLkrM5n8F+dtCNmClLV8+XIOH9n/sKWUuEkRZQydf8mLlh+rjAcNGuSm18y/GY92j9b/siWrhJRSbGWUSP6x0hct07IFWY0aNSLSbqb7yMaNowVP2F3Xa5unrkPmu8J/bcrX/G1+OmyGxZZkEpafDo+ff/45KznUc1hF8tfl650j618w/2zBRimhxEufKEHJVn9aYUidjf7Hk2lyDJdfsULFhJWvgukSJRC7bSaff1FYeuqpp5y2aabTvk5Mkcwrf93/JlPv58+fb9U/on5EfQ/yS6T+VWCOycgWlvL+CGv/ySoii1ydf3P8JfEne0ifGcx/UltbGmNM2ZqYrUKx4qNsAxpe/8Lyb8r/29/+5m4Pm2xekvWfLkUykStttH59s26lln9hUaFihaTbqFZS9Fja8hNVtIzFTsYB8n7Kbf9z3333xRKjnpnvCslLtP4/rP57eZc+xeMf611x++23R9T/RNq/KT/Rd3fczBdiD1OmTFGcg+1ftkzGAQIgAAIgAAIgUPAJ7Nq91+r+z+fUunPjtldEjJ/scZg3/jLHZcH3v/lMXyc7/tLh/Of0yW/U5gqV1x7/fN6SvIcdbBnfEqV4mWPiAAEQAAEQAAEQAAEQAAEQAAEQOHQEpk6d6vuOr+eGV1ye2npzoVYkk2JZtmqT1envj7N1rhFW5brH+Sb19kcYnlDzBxkN0nfmj4BRJ/bygdD4SOgL54tPf9yN9J8X8ivXOY4n9cNVniXvOEDgUBEIKlzZbSIjaYWCWOnlbeGs/v37W9kls3Pd/jp06GDNnZusFS6nr+C2LwoLK1eutBKz2uG1f97iypIP27w9XKysRn22bds2i7e5Sir/vNWV9f3336s4bUUy/RHa6//iKatIYPeDfKD/i6U0smnTJuv000+PSG+i/d9RRx1lvf/++1F5mA/c9Ll9sN3/xkqfGT54LXUttG938n/33XcHg6R0z9uNWf369bN4O1RPHstI5f3Tvn37hOp1SgmNEUja5r///W+rbNmyXh5MxWxh5pZLZP3Tz6S8x48fbx04cCCGNP+jVatWWWKpKVMrkLlyEnv/irKDhOdtbv0RJ3m3detWS5R9dF485RKv/etnuv63aN7C4q0SlSTejtQLa5R/vLYZWe9t1skqykh/JgpPGcLRkK/T7J6lLAPlKc+Ev3CUfCR7ROTBkZ9s2xX/bjqN+ifxJ3sULxapSMZbW8aNxsuLV/+0Ughvb2ideuqpzrjT63+9NDvtxOAvioYDBgyweEvEuLLT5UHqXFj/w1tbpiRC2qgwUHWL64qu//bZybPbbu36ZcrXbVTeX8keqjwC9VXkJlu3osmdOHGiVadOHaPe6fx45R9sLzr/TY5skpCStJat3xXZ2TwGMnmFXseWr94Vc+boqCPO7rs7GLewDPAMSwtv15rwuztCeBFy+PDDDyPLkvled911RYgCsgoCIAACIAAChzeBb2cvttpeOMI6sccjlqzJqrFRYLykx3+Jjn9946sEx1+JzD9zI1/W1GW9uS3/cPnbnxZHLbQLLrhAjRdl7euWW26xtmzZEtUvHoAACIAACIAACIAACIAACIAACKSPwAcffBD6/SXVbzuFXpFM0L/32Wz1i6kTzvu3lVO2WuSCfchHEm9ybX9Q9U3ig/4D9+YvxoILCF68+kNTyJkXCTx/icvPKVvdOqH7v9UChuQZBwgcSgIvv/yyssxh1n9RKom1XVOq6RPLHDfffLPVmC1CBdumKd9sf7KI1bZtW2vIkCHWnBgfT4Np8iyt+duqqaTxyiuvWKKsJfKiyS/D25qJkkUiymvBNATvRclm6NChVtUqVWLm/8gjj7SGDx/uU0AQRbTKzjZ2ml358uWtNWvWBMVE3EsZa0UAHbZs2XIJlbGY05StPGWbKx029Oz0f6JQ9Oabb7JVRTYtmeAh5WBbh/HKKjd1cPHixZYwDEtn/fr1rdWrVyeYssS8Sb2W7Q09mfH7/xIlsqw2bdqoeh1P4SixVOTO1/r1661nnnnG6t69u1W6NG/tIYvezjvSe695bvJM2s7AgQOVYkcyCmTBlEq7ljpWrZrxno8hv0aNmpZs1SeWotJ1SPrvueceq4pum1HkR22bvq06M6wKFSrEbZtmu9T9T27qvXDs2bOnzdFIvy7H4Fks9wlHrayaCks7D2zZieXpeiJ5kF+zJ3PI+0b6WjeNHJ/0CdI3JHu0bNnSV38lTq0QFiuu5557zidfwkl/rQ/p08QCnX5nuGmVdmLkv2TJktaFF17oKhrq8IfivHbtWrsOB8p/xIgRuRI/e/Zspazoa6OSb/3PyL98CKtZ026j3377bcpydfvQ9Upk5aZ9hCVEFGkfeOABn8VQlSeDn5YvYxHZCle2xky1vxOlT3lXNG7sfz/p9m/y1NeiqCzvClGATmYcIu9uUTCN++5mriI/lXd3GNOi4iaK07qMzPYv5YsDBEAABEAABEDg8CEw/NnJat259Xn3W9ml7TUPPf5z3/V6zGueA+Nfc/4cM5wTR6zxXzrlZ5eqbLU+936Vx+HPTolaMPLrd51uLb9a1aqWzJFSHftGFYYHIAACIAACIAACIAACIAACIAACPgLjx41z52R6bibnVNebMyR2jqDQH0Oe+Ig+m/4b7f5rA/36xWjav/cvzjNPa9X3q7DshzzjGToDU57lS6cOqi7de33BZ3XJ3wX5bOkAyk394Qj0OffyM7NL0VGn9KOSZarS6R2b0f03nxMWKdxAIE8JbN68mVi5hnhbQCpVqhTVrVuX+GN4nspkCyX0v//9j/jDN23cuJF4u0jaf+AAlcrJIVbmoKpVq1LDhg3pmGOOIf6QmnRa+KMrsaUlbq7+9j992nTq2LGjLz62LEQzZ86kFStWsqwStHfvXqpVqxbVr1+funTpQjmcpnQevBBHvPUb/fLLLyr/vBUbsdUaatCgIbVseTSddNJJoeLYGhqx1SBi6yaqfHhrwITLKbdlLK8c3kaTZs36kdatW8v/1hEro1FmZoYqJykr+Ve9evXQtMdzzG36wuJnazrEv6JV9ZqVADi9ZVXdDvObLjep1/wBn1gxS9VraVMHuG7ncLtKR71OVzpjxSP1TMpa2qaUs+SlXLly3JQyuF3U5n81qXbt2imXdTTZUsdYYYVYWULJ3LBhg6rfu3bvompVqyl5TZs2oxNOaK3SEi2e3LiHts093DbrN+C22TLhtil9B1sfipuUvKj3wpGVyhRHKb+NDsedu5hjNc2xKXM8IS0cg3lgK08p9ZnSB7J1OdUXCjtWdCNWyIvLMOhBylDa4fbt21X+KlasqOpr0F/YvfCSei91XVjJv7CDlRi5rs7hd8Zy0v03K0+R9MmdO3dW7SUs3KFwk/eXfk9Ivyd5qFy5clpE6zYq9WvDho38b73dRo261aRJEzrxxBPzpG7l5diElRlV3y3lv57rQekyZUjqkpSrtGfeTpJY2TEtHCWSyDHQAR4H2WOwdL4rvHf3LLc/l3ywomZa3t1pA3KYRfTiiy/RtddeY6Q6g68tYiu/xMqJhjsuQQAEQAAEQAAECjKBPXv30//dMZb+WLqWdmxeRb99NYYOHtzHr3X73Z7O9V83SndNmWUoMXmz/pxRvAQ179SHSlesQ03qV6XnH7yCsrOKRxSHrMW1bt2K548/8zNeO1dp8vLfqtXx9MQTT6jxcERgOIAACIAACIAACIAACIAACIAACOSawIsvvsjrzf/H8fjVv3jnFlvXIUkJRUaRbPee/XT94LG0YNE62rFpCf329TNkHdivcOlprTsHdyDa7vxXdodRvF2fPsysXsKPxZCEVyzmtc8z3wSfuffuhR3CvuW/ceRnZmZR007XUblK9alpo+r0zL8vo5LZkZP6YDpwDwIgEJ/A4LsG07AHhrFHfwPlbbEiFMnixwYfIAACIAACIAACIAACIED05JNPUv+b+nsTSIYio81hDz5Et98+CIhAAARAAARAAAQOIwKr1m6l3oNeo23bd9PGZT/SopnjOfWyWuwd7qqSe2E/s2/5b5z13/xYf250wmVUuV4rKlcmm14Z3otqVS/vZci4GjPmP9S3742GS3AVzb7/+2WX08MPP5TnP87zJQQ3IAACIAACIAACIAACIAACIFAECKj15v683syHO+3kiweHPcjrzbcnTaDIKJIJmQ2b/6Jr73iD1qzfSlvXLqDfv3mFLYWxMpnzcy4XqKCVybscesbvOMmt68+9UD4j/kQ8ZssULNDxJ0/5UIsEtk/PP18lKD8joxgd2e4qqlCjGdWoWo5eGHY5VamUPksHdiLxFwSKLgHe2pIeGPaAu56n2ylvbUkdOnQoumCQcxAAARAAARAAARAAgZQJPPTQQ3TnHXc4001v/jf6ydF0443+D7EpC0FAEAABEAABEACBQ0bgx1+WU//73qF9bJF2xS+f0ar5U1i2rCLJideDD7P159rNulLtFmdQiRLFaORdF1Hro+vaeQn5O2rUKGVVlbd957xynmOsf5dmS+sDBw2iAQMGpGSFOkQ8nEAABEAABEAABEAABEAABECgyBMY9uCDNPjOwRHzzydHp7beXKQUyaT2LFm5iW64axxt2bqLNq+aR39+/xrPbbVyl1e/fHNerTqmNUg8b3xlOPKlWhcQt6AimN+nG4MR2nWTi4TkZ2TSkW17UsVaR1GFsjn07AOX0xG1K/niwQ0IgEDuCHhbW3I8RlchW0rKFlU4QAAEQAAEQAAEQAAEQCBZArKF5YM8udeHnv+98sor1KtXL+2MMwiAAAiAAAiAwGFE4POvf6OhIz+mAwcP0uIf36X1S75Tqc/V+m8whkOw/ly1fltqcPxFaqv5e286m87o1DxuKaxcuZIGsYLY+HHjVP7NAGH5P+KII+iRRx6hiy66yPSKaxAAARAAARAAARAAgQJK4JlnnrFTFhjc3XDDDQU0xUgWCBQtAnq9OdBEKdX15iKnSCbV5Y8l6+kfd4+j7Tv30rY181mZ7HU6sH+PqxMWhKuqWKijXfnMR6HXpqMECd5rB8c94nFImGLFs6hRm55siawplS2dQ/+59xJq0qCanSD8BQEQSBsBbZHMVCKTyLG1ZdoQIyIQAAEQAAEQAAEQKHIE+vXrR6PHjFY/VDDnfxMnTqTu3bsXOR7IMAiAAAiAAAgUFgJvf/ITjXh+qvqR8NLZE2ntwhlO1vwLv+b73817qKP91HwUem06SpDgvXZw3CMeO2GqN+xA9Y7prpTIBlx3Gl105vF2AhL8O2PGDPrXv/5FM2fN9P0g001QQP6pp55KI0eOpGOOOSZBCfAGAiAAAiAAAiAAAiCQHwQy5FeQfLjjSOcizGBPfqQPMkGgqBNQ681sfcw+vInXhHffo/N79EgaT5FUJBNKvy1cSzfd/w5t3b6Tdm5bRwu/e5V2bV/n9H4ZTidoOZbB3C6RQ3rQtUly28nzo39N7vrVYZyz51OXl+GiLmPLzylblRq360k5ZWtS+bLZNPLui6l5o+o6MpxBAATSSEApkj3wgBOj01b5NH3adOrYsWMaJSEqEAABEAABEAABEACBokKgd+/e9Oqrr0bMP6dOnUpdunQpKhiQTxAAARAAARAolATGfjiTRr38pfpN4rrF39LSORPJYitlrmZVAuu/nra5txblrkVzTOlef6aMEnTEMedStYYn8Qp2Bt101Sl02bknpFQ+BzmvL7/8Mg0ePJjWrFnjxOHkQ+4C+S9WrBhdd911dP/991OVKlVSkolAIAACIAACIAACIAACeUsgMzPD2cFcj+vsMxTJ8pY7YgeBRAlcddVVyvqY7V+3U6Kp/+X15s7JrzcXWUUyAbhs1WYa8PBEWrJiI1kH9tGynz+mtYv4V2IhW116BeRB126ui5rBa1feA899oN2Mc6xnhjffJcdfvWFHqtfyLF4sKEEN6lWm4QPPp3q1Kvq84QYEQCB9BEIVyTj6r7/+mjp06JA+QYgJBEAABEAABEAABECgyBDowb8CE+tjwWPmzJnUunXroDPuQQAEQAAEQAAEDjMCn3z1Kw176lPau+8g7dyyihbNHMc/ZtZKVfEyE7lw7LrkwfpzTrka1OjEy6hU+ZpUokRxuvMfp9PZpx4VL5Fxn2/fvp3uu/c+GvXkKNq7d29c/xUrVqSh9w6lPv/sQ8WLF4/rHx5AAARAAARAAARAAAQOHYGMjEwWFqn/AEWyQ1cGkAQCsQhccMEFNGHChAgvqa43F2lFMqG4c/c+Njc+hT7+4le+s2jH5qW09KcJ9NeWlYYemD1VdyfsPvz+Z54f78rn3Xfj+FEn89r25MWQQaUr1Kb6x/Wg0pXqcSot+lvno+m2a0+jUjlZvhhxAwIgkF4CWpHMa492/NjaMr2cERsIgAAIgAAIgAAIFCUCXbqcRl988V/fj49kvPnnwoXUsGHDooQCeQUBEAABEACBQkvgt4Vr6O7HP6blqzfSwYMHaM3vX9GqBVP5ep/6BicZ99ab7Cvv3sTif+b58a5M3/5rx486mddEmcVKUK0mXahWs86ckOJUp0Z5euDWc6lZw/TufPHHH3/QLbfcQpMmfcRJ8398dFLE7vaV/G3WvLna7rJbt27+rOAOBEAABEAABEAABEAg3wjYW1t6ozedECiSaRI4g0D+EujcpTN9+cVXnAg957Lb68IU15uLvCKZLs5pP/xJI56dSms3badMZrt++Uxa+evntGfnZu3FOAc6Sc+WuOEneOmF0d49Fz1V1mH4SQYngv/PKlWB6jQ/gyrXa83T6QyqVrksDbjuNDq5TWPtGWcQAIE8JHD33XfTv//9b0OC3XKhSGYgwSUIgAAIgAAIgAAIgEBSBFq3akU//vSTE8ab/23YsIEqV66cVFzwDAIgAAIgAAIgUHAJ/LVrL415fRq9+9kcXu49SHv+2kLLfv2ENi2f7a7/hqfeXDlmH3pBOdyz4+qF0d49F2P9mR9Wrn0c1Tn6LMouJTtdWHTRma3oxis75emPlj/99FO65eZb6Lf5v0mG4ub/vPPOpccee4waNWoUM9d4CAIgAAIgAAIgAAIgkPcEbEWyoBzZ7lK2cMcBAiCQ3wRa8XrzbF5vZhUjdei54Pr166lKlSpJJw+KZAYymdi/9M43NH7SLNq7nzu9A/tp3dLvafXvX9DeXVs85T0Oo8EbwV3HaM8c3TAjdKhPFWVWTgX+RVhnqtqwLWVkFqPixTLp739rTddefBKVKgkrZD7uuAGBPCSgLJINeyCi/U+bPp06duyYh5IRNQiAAAiAAAiAAAiAQGElIFbHFi9e7MueLMjt27ePihUr5nPHDQiAAAiAAAiAwOFPYN6CVTT8uSm0YPE6ta7815YV/CPmybR1za9kyRKxPnjVX68Y67N+pM6OY7Rn8dafK9RoTrVbnMG7X9TiDwwZ1KxBNf7Rcldq2bSWT0xe3chYZ/To0XT//ffT5s2b7bxKZvQRyP+FF11Eb7/9tn6KMwiAAAiAAAiAAAiAQD4RyOR1K62g4iaBx3HWwQhX9zEuQAAEDh0B+QHOokWLWaDXJmW9ee/evVS8ePGkEwJFshBkK9dsoWffnEGffz2fDh6w6KC1nzatmE3rFn9HOzYucUPoCbs+uw/UBbuqmbv9VP11PLrX7C+DVwpkq0odpGyl+lS1fhu2QNaKMjOK8Y/NMun0Tk3p+r93pNrVy9v+8BcEQOCQEXj00UdpwG236Vaq5GZkZtDcOXPp6KOPPmTpgCAQAAEQAAEQAAEQAIHCQ6BSpUq0eQt/POWpoJ7alytXjrZu3Vp4MomcgAAIgAAIgAAI+Agc5I9sH335Cz3H685r12/jheEM2skKZWv+/B9tWsm/HOcfNetxgQ7oLCe7ymXa3T7z0wTWn4tlZlGl2sdQ9cYdqFTFOipI1Upl6PrLOtDZpx5FxTIz/dEegrt169bR4LvuopdeeIEOHLStWOi8avHZJbPpl59/gUUyDQRnEAABEAABEAABEMhHAu7WloHx50ErOILNx0RCNAgUYQIVK1WkLVu2+PSPyvJ687YU15uhSBajMi1esZEtlH1Lk2eIQpma2/NWl5toy7rfaevq+bRt/Z9stGy3E0Nwqms783oAm3SU6/DnxYqXpHLVGlP56k2pQvVmJJbIxGsmK6qc3rEZ9b6gLTWsm7ypOSdROIEACOSSwEFezJo2bRqtXr2a9u7ZQ6VKl6YWLVrQUUcdlcuYERwEQAAEQAAEQAAEQKAoEjhw4ACVKFGC54n+hbb69etHWCkrinyQZxAAARAAARAo7AT27N1PEybPodcm/EAbNu9Q2T24fy9tXfcHbV07n7as/pX27t7O7jJWMNeUzWuPUtj6c1ZOeV5vbkYVavC/6k0oo1iWiq1KxdLUu0dbOr/bMZSdlfyv0j2p6bn6ibde6d+/P3399dcqr3YO7XzfccftNGzYsPQIQiwgAAIgAAIgAAIgAAK5ImBubWmOP7G1Za6wIjAIpIWArDdnZWWR6DWYR27Wm6FIZpKMcr1q3Vb6YOo8+uiLn2ndRpnEZzhTeIv+2ryCdu9YT3t2baX9u7azosl22r97G+3hf3IWE+FZJctSiWz+l1OOr8tRCbkvWZ5yylalUhVq89aVmWz2kWPlH39Vr1SWzu58FJ13WkuqVQ0WyKIUCZxBAARAAARAAARAAARAAARA4LAksGnTJqpcubL6LmxbJLM/mbZu1Zpmzpp5WOYJiQYBEAABEAABEEiewN59B9QPmN+fPJdmz1/hrjhLTLu3b6CdW1fS3l3bWKlsG+3bw2e+lvXnPbu3qrXpErzOnJVjrzNn8bqzvf5cnkqXr8XrztVIPiFo1bPjmtem7l2PoW7tm/IHhvxXIDNpiXL9m2++SQMHDaTly5arR7Vq1aYFC+ZTmTJlTK+4BgEQAAEQAAEQAAEQyCcCpiKZmYTgDyXNZ7gGARA4NAQ2btxIVaoYxqmciWCrVq1o1qxZKSUCimRJYJOOcP6idfTd7MX07ewlNO/3VbR/v1+rT0XHP5qyMi3KtFhBTP3Wi131rF0u5JfnYjGcT8WKZdIxTWpR2+PqU7vj61OzhjXEqjkOEAABEAABEAABEAABEAABEACBQkjg999/p2ZNm5LlzhElkxnUrVtX+vzzzwthjpElEAABEAABEACBeATW8FaXst787U9L6Pu5S+mvXXvsIL7xghFLnPXn0jkl6IRj6lH7Vo2o3bFHUI2q5YzABfNy586dNPzh4TR8xHB65plnqGfPngUzoUgVCIAACIAACIAACBRBAkqRjMemGbygZeo/WLx9Ow4QAIH8JSDrzU2bNbWNWjtJkalk127dUl5vhiJZLsp095599Nufa2jNhu20kc2Qr+d/GzfvpA2bdtDPv/1Juw+wthgrje1T1sl28K/GttL5559Fx7Q4kqpWKkM1qpSjpg2rU07JErlIBYKCAAiAAAiAAAiAAAiAAAiAAAgcLgS++eYbat++vZ1c5+OwnP5+2WU0duzYwyUbSCcIgAAIgAAIgEAeEZAfLv++dB2tWL2Z15r/ovW81ryBz9NmfE+bt+1SO12IVdO9YqWM1507d2pHzZvUp8oVSqs151o1ylOT+tWoRPFieZTCvI12xYoVVLs27+KBX1vnLWjEDgIgAAIgAAIgAAJJEMiQrdXESo6zliVBZQ+3g7LtGg4QAIF8JfC///2POnTo4DRPr5Felov1ZiiS5VGR9u/fn5588kkndi4se88S+uCDD+jcc8/NI6mIFgRAAARAAARAAARAAARAAARAoCAT+HDSh3Teuef5Ft5klt+3b196cpSeQxbkHCBtIAACIAACIAAC+UHgpv430Si13mxbfdCfB7DenB+lAZkgAAIgAAIgAAIgULQIiJK/Hn/aObf1H2CRrGjVA+S2YBKYNGmSXwfJaax9+6W+3gxFsjwq6/vuv4/uGXKPG7vuWF944QW65pprXHdcgAAIgAAIgAAIgAAIgAAIgAAIFB0CL774Iv3ftdfybzjtWaKeK9577700ZMiQogMCOQUBEAABEAABEEiKwP333U9D7jHGCs4gQsYWV199dVJxwTMIgAAIgAAIgAAIgAAIJENAb20pRsn0IcPRg7w7Gw4QAIH8JeCtN3vpkPZ573330d133+05JnEFRbIkYCXj9emnn6Z//vOfbhBnXk8PP/wwDRw40HXHBQiAAAiAAAiAAAiAAAiAAAiAQNEhIHPC2++4Xe0GYOZ6zJgx1KdPH9MJ1yAAAiAAAiAAAiDgEnjqqaeoz408Vgh8q3vooYdo0KBBrj9cgAAIgAAIgAAIgAAIgEC6CYRtOw5FsnRTRnwgkBoBmRPecccd6mfLsg2GmjLyjon/GfMfn85SMrFDkSwZWkn4feedd+jiiy8mtvKoJvd6fn/LLbfQo48+mkRM8AoCIAACIAACIAACIAACIAACIFBYCNx66630+GOP+SySySz/7bffoQsvvLCwZBP5AAEQAAEQAAEQSDOBd999ly666CIVq/7Rstzceust9MgjWG8Ow93/pv50QY8L6NRTTw17DDcQAAEQAAEQAAEQAIEECWSy0oPWdzD1HyxYJEuQILyBQN4RuO2222wdJJkoOgfrkdHbrLOU6nozFMk0yTSfv/76a+rUqRPHak7ria688kp67bXX0iwN0YEACIAACIAACIAACIAACIAACBwOBHr16kWv85zQMlfdeN44bdpXzhzycMgF0ggCIAACIAACIHCoCUyfPp1OPvlkWywvOcuHAfmYd+WVPXm9+dVDnZwCL++DDz6g7t27q3TKD76HDx9O9evXL/DpRgJBAARAAARAAARAoCASyMjMcMefpv4DFMkKYmkhTUWNQM+ePen111/3ZVu0lL6aNi3l9WYokvlwpu/m999/p6ZNm0ZE2K1bN/r8888j3OEAAiAAAiAAAiAAAiAAAiAAAiBQ+AnInHDKlCkRGV2wYAE1adIkwh0OIAACIAACIAACICAEZL25Ga83W/7fLVPXbl1p8ueTAckgsHv3bmrZsiUt/PNPl1dOTg7JL/UHDhxIZcqUMXzjEgRAAARAAARAAARAIB6BsK0tJQwUyeKRw3MQyHsC3U7n9ebJU2wTV8Z8MTfrzVAky6Ny27p1K1WoUMGNnXV0+RdiFh1zzDE0Z84c1x0XIAACIAACIAACIAACIAACIAACRYfAccceS3PmzeWVNntWr+f2W7ZsofLlyxcdEMgpCIAACIAACIBAUgSC6806MNabNQnvLNbHBg0a5BrLUOMt50/denXo4Ycepr///e8U7YOoFxOuQAAEQAAEQAAEQAAEhEDYuEn0Hw5aBwEIBEAgnwkcd9xxtg6Ss9Cs5z9bNqe+3gxFsjws1JycUrR79y5bglNo1apWpbXr1uWhVEQNAiAAAiAAAiAAAiAAAiAAAiBQUAnUqFGD1q5dq5InC26yKVVJtpCxc+fOgppkpAsEQAAEQAAEQKCAEChdugzt2vmX2tLSGUZQtWrV3LFFAUlmviZj1apV1KxZM9q+fbuXDmdtXhz0+KtDx440cuRIatWqlecPVyAAAiAAAiAAAiAAAqEElCKZMaZSnvjeOiibreMAARDITwLVq1endaYOErfNktkladcuR1cphcRBkSwFaIkGadSoES1avEi+Czjz+gwqVixTFViJEiUSjQb+QAAEQAAEQAAEQAAEQAAEQAAECgGBffv2UcmS2XRQ/VjTWWjjiX3DBo1o4cI/C0EOkYXDnYBYUF+yZAnX0YPKQl7btm2pdOnSacvWnDmzOf5ldODAfjv+dm2pDCtF4ACBZAnIYuj8+fPpt99+oz9567rixYuTKOqecMIJajeAZOODfxA4XAjo9eYMHkZYzopzpqw379xFWVlZh0s28jSdM2bMoEsuvYREoUwswKp9QtRHT/XHlu1cCrtrrr6aHnhgmFLIy9OEIXIQAAEQAAEQAAEQOIwJZGbIqMoZRBmngxYUyQ7jYkXSCwGB/fv3U7Zab+YFZ2P+04jXm//MxXozFMnysHJ05F81zZjxP5bgapLxdQYtW7aU6tatm4eSETUIgAAIgAAIgAAIgAAIgAAIgEBBI7B8+XKqd0Q9yuBJvSXzRD5k7a19h4709dfT1T3+gEB+Efjuu+/opHYnuXVT0nHllT3ptddeTUuSvv32Wzqp/Um++t+zZ0969dX0xJ+WRCKSAk9g7969NGTIEBo+fARZzhYq9jcM70vGccceR1999RWVK1euwOcHCQSBZAnY680z3GC6/i9fvozq1Knjuhf1ix07dtCDDz5Ijz36KO3es0cNuILjL/UhVGnkZVB57i/uHnI39e/fn/AD8KJee5B/EAABEAABEACBMAJ6a0s9/tT6D7BIFkYLbiBw6AgsW7aMjjjiCL9Abqgd2nfg9eav/e5J3EGRLAlYyXq95OKL6e133rGDsZYur3CpSes3//uG2rVrl2x08A8CIAACIAACIAACIAACIAACIHAYExBFHd9ckOeJPCmnCy68kN7Rc8fDOH9IesEhIL9GHDduHM1lC2PyAb1mzZp0+eWXU/369aMmcsqUKdStWzff8/PPP58mTJjgc9M3YmFv/PjxNHfePNrD1qFqxJERET/X//O7d48av5ZTEM6ivPTmm2/S3Llzaffu3QnxLAjpLmxpWLp0KUmdnDN7tq2KK18w+LAtM9nXxPVK1t8++eQTOvPMMx1HnECg8BBw15sD9V+UdcWKJA4/gYULF9Jtt91GEydO9B5wPyHjL1ul33OWq6ZNm9Ljjz9OZ511lv8B7kAABEAABEAABECgiBPIyLQHoMH5l2Wb3S/idJB9EMg/AhHrzU5SLrroInr77bdTThgUyVJGFz/gTf/6F40aOdLnUbrYd997j3r06OFzxw0IgAAIgAAIgAAIgAAI5CcBUQhYsGABzWOFgBUrVlCtWrWoMW/V3qhxY6pSpYqbtO+//55++OEH6tSpE7Vs2ZK/1zpfsVwfh+5Cp/nnn38msfSk0szplS1/CmqaDx0dSCqIBCbwR8wLeC6oWg3/kd8ayXHTTTfRE088Yd/gLwikgcC9995L9w4d6tq9Ext4derVo8WLFlGxYsVCJWhFL6mf+uN6LEWy+++7j4bcM9TwTcr6+iKWIdsMBg8zfmkEUv9lbeQ9XiMp6Mf9999P97AVLM1F0luPLc0vWrw4Ks+CnqfDMX1XXHEFjR07ViXdrqdmbfXnaNq0aWqs4nfFHQgc/gT+5aw3u9sKOVmSvhTrzdHLd+rUqWq89euvv7jjL9e305WYPco555xDjz32GDVp0sT1hgsQAAEQAAEQAAEQKMoEMjIyOfvmrNimYenFraIMB3kHgXwkID8AveCCCzgF/IMZbqOW8wO73K43Q5EsDwt1+PDhNGjQIPWRwOxWn3zySerbt28eSkbUIAACIAACIAACIAACIJAYgd9//53uuusu/pX++7Rv314jkPcpRX6Rf/PNN9PMmTPp7rvvpgMHDrI/i2bOmkmtW7U2whyaS0nz4MGDaeL7E2n/vv0RQiXlZ7AVkltvvdVNs1jnkWPWzFnUqnUrdY0/IHCoCYwePZr69esXIfbhhx+mgQMHRrjDAQRSJXD66afT5MmTfcGlb1zISl4NGjTwuesb+cjetWtXvvX6/1iKXl27dqOpU6fo4OocS4ZWJDMDxIrf9Jff191O70ZTJkteHTbOSZTmovHM7zQXNvl//PEHNW/egscg/D73qqjKZv369alGjRq0YP582rxli3L77LPPSNoBDhAobAT0enMwX0+OGkV9Q8YYQX9F+V7mA0899RQNZUXrTZs2MYpAZ2Le86OsElnUr38/umvwXVShQoWijA55BwEQAAEQAAEQAAH6xz/+wQr5/HMG/aNiUSDj66effhp0QAAE8pHAmDFjfLpHepaT2/VmKJLlYaHKryTl15LupNQpNVEue+ihh/JQMqIGARAAARAAARAAARAAgdgEtm7dSoNuH0QvPP8iHdi/L+T3ZGHh9TQkg7KzStAWjqNkyZJhHvPEbevWbXQ7p/n551/wp1kny5XqOPhPlJWVRZLvQ5lmN0m4AAEmcPvtt5NM4s0qK9evv/GG2nYQkEAgXQRkezOxIGnWNbFEJtYbZZvLsCNM0SuWRTIl44fvfT9IzmQZK9mqpSj1BA8dv5mmWPEHw+fnvWxJK1sFyPqO+nUnXwlPseAZltf8TGthld2nTx9WAHna5S/5LF++vLJo16VLF5VtURL58ssvaQ5v6XrDDTdQmTJlCisO5KsIE3DXm83OlHkM5PXmh7HenFDN2LhxI/845i569tnnWDn1QJwwGVS9ejV64IEH6Oqrr6bMTLHEgQMEQAAEQAAEQAAEQAAEQAAECgaB23kuKD84Mg1bScreyOV6MxTJ8rB8v/rqKzq186m+RVURd/nll6uCy0PRiBoEQAAEQAAEQAAEQAAEohKQX+CLlY5Zs2YZn8SJKleuTKeddhqJckCpUqXo008/pffff19+XOZuAaO/WbVp08b5qB5VTFof6DT/yGn2JkUZnOZKJB+QTzrpJFYQy6HPPuc0s3W1yCOD83UiffutKALgAIH8IdCzZ096/fXXXeFaJUUUH0455RTXHRcgkFsC3bt3pw8++MCJhmtaBpu2585z/fr1vq1/TTmeRTLPNZai13nnnUcffjjJ+e0cR+68IKLJCMYv9b/7+d1JTPAX9EPyOunDD33vH1nsiZbXgp6fwzF9nTp2pK9nzHCSble23P669nDkgDSDwPTp0+nkk09mENwOVFOw+9/LL8N6c7K1Y+7cuSRbhX7xxRcRQcPmP61bt6ZRbPmtffv2Ef7hAAIgAAIgAAIgAAIgAAIgAAL5QeDKK690dI+89T9JR27Xm6FIloeluXjxYmrYsBFL4Am9HM6iaqdOnWjatGm2G/6CAAiAAAiAAAiAAAiAwCEkIB+9u57WlebOm+uTesYZZygFlypVqvjcZXvIxx57zB7LyhNnaHvTTTfRE0884fObVzcbNmyg07qeRvKxR8sXWaIMJ7+siZlmJ73iXz4UPf7443KJAwTyhYB8+P2aPwAb1VKlY+HChTx3bJgvaYLQwklg0qRJdMkll9CuXbtUBmU5olfv3vTyyy9HzbC2GGZ6iLX1ZFCGvCh69+4VVYbEf3q3br76Hyt+Mx35fS15vfjiS2j3bpunpKd3HJ75nebCJv+II+rTsmVLfdlasmQJHXHEET433IBAYScgY4bGjRsHsplBnTp1xHpzgEqit++88w4NGDCApE/xHfLylMMYuImlQ7Huia0ubTT4CwIgAAIgAAIgAAIgAAIgkL8E5MfJWvfIVkeyf7q8cNEiatCgQcqJgyJZyujiB9yzZ4+y5HDQOuhOOKXwjqhfn0TJDAcIgAAIgAAIgAAIgAAIHEoCsnXLSSe1px9kKzLj6N+/v1IKy5Cf3geOP/74g5o0aRJwJRo/fjxdeumlEe7pdrDTfBKn+Qdf1ImmWXKkv/0cqjT7EoobEDAIyOQ9+JFStkgSZR/ZehUHCKSTwLZt20gUDmRtonbt2lS3bt2Y0StFstO7eZ0m+45lkUwik+2CF/HC1N69e6lWrVoxZYQpqsWLP2aCD/FDO6+LOa974ub1ECet0Iuz2Jxeyexs2rtvn5vXbL7fvXu3e48LECgqBKRPL126NB08eMC1GCx5r4/15lxVAelPRowYQQ/x9qA7d+6MGpdscXnnnXdGfY4HIAACIAACIAACIAACIAACIHAoCciPk4O6R5nFMmnnXztJ1k5SPaBIliq5BMPJQuqaNat5Yu98wuJTieJZ/KFgJxUrVizBWOANBEAABEAABEAABEAABHJPYOTIUWyV6yZfRLIlpPxipXjx4j53fSOKCBXKlyc9nBV3GdkuWbqU6tWrp73FPMsHYPnocvCgqHTJ9moWnXnmmWoLzZgB+eHIkSPpZrYkZspPJM3ly1dQslRincBLk0hzWLpEiUDSYx5i8adZs2amE65BIJSAKEXm5OTQPkMRQjzWrFmTVq1aFRoGjiBwKAlMnjxZWXpUMlmxmBeMWJGsB7034b20JONwVyRLCwREkhKBtWvXUo0aNcxXOt/XpNWr0XemBBSBDnsCtWrVduo/j8rVkrPFCuklWAFqF9abc1m6K1asoNsHDaJx48bTQf5P/yJFMNdv2IB+/eVXKlmyZC6lIDgIgAAIgAAIgAAIgAAIgAAI5J6AWm8uxevNe/dzZPLtRU0QqXr16qyjtCZXAqBIlit88QO3a3cSfffdtz6PUnxLly2L+UtdXwDcgAAIgAAIgAAIgAAIgEAuCchHkeas8LTjr7+c6QRR2bJlad68eTG3hRLlK7FwYB61+ePVipUrTKeY17/++isdddRRrh8ZDz85ejTdeOONrlvYhUpzi+a0Y/sO97FsJ/Pzzz8nlWaRV7N2LVq5YqUbTyoXn3zyCZ199tnML0PU4RTHDz78kP72t7+lEh3CFDECy3gOKFuwSX1UVvKci7Zt29K33/rnjEUMDbJbQAhMnTqVunbr6qug6bQYJvF369rVV//TGX8BwYhk5AEB+WWt/MLWfP8eydZSFyxYkAfSECUIFHwC7dq14/Xm77wxhZNkGWvEsz5Z8HNXMFI4Y8YM+tdNN9HMWbNUgqT/efe9d0m2ZMYBAiAAAiAAAiAAAiAAAiAAAgWBQMR6s5Ootm3a0Lc8Z8zNAUWy3NBLIKxYKHj77bdtn/yLXm1z/KuvvqKTTz45gRjgBQRAAARAAARAAARAAARyT6Bnz570+utv8I9SWIXFsdB12223qS1cYsX+9ddf08mdOvk+/F9wwQX07rvvxgrme/b888/Tddddb7s58mfNmkmtWrWqQjupAABAAElEQVTy+Qve2Gl+3ftIxsPp226Nn+bp06fbY21j/J1smoNpkft77rmH7rvvPt+jDRs2UOXKlX1uuAGBMAKqXp7Cc0Cn/WmFsosvvpjeeuutsCBwCyEgFg03btpI69etV5YUq1WrRuXZamI6DyVjI8tYv15ZHZFtIYvC1qOuxTCunKqrZqjpVPRSimpdeetMRxFXFCqjxS9bZa5evZr+YuVn+RVlXvazYu1q3bp1SrlaFDAKu/V4sTQqitrSbsSKfti21tHak1hUXL5iOe3ds5ek7VWqVCma17S6y5bADRo08MXZtGlTmj9/vs8tlRvZzk7qwPbt26lcuXJUpUoVKlWqVCpRJRxG5En/IsrxRaHOJQwGHhMmYK436/GEBBYrw5143I4jPQQOHjxIL7/8strK8uijjyZ5T+IAARAAARAAARAAARAAARAAgYJCYPrX/B2kk9Y5ktkhH7yod/FFuV9vhiKZjTPP/g4cOND9OGdO7F999VWSD2M4QAAEQAAEQAAEQAAEQCCvCciHePngu3PnTlcpS7ay/PPPP2Na9pJ0PfHEE3TzzTcbSczg8e1wEiW0RI9rr72WXnzxReVdxsQleXs/+ZAdbTtN8WinuaraokcF5D/ycX/RokVxt9TUaTbH3yNGjEgqzVqmeT7ttNPov//9gp2UPSlq0pStocyHNRSTEa6jE3jttdeod69eTu3x/A0YMICGDx/uOeAqgoAoFL300kv04YeTaObMH2j/fjbXzg3cVnbK4C1DS9KpnU+l7ud1p6uuuoqys7Mj4ojnsGfPHnrjjTfozTffJPnh1569e3RTV4o2J554olKI7d27F5UoUUJFN2rUKPb/Fu3atZNKlylNfW/sS5deemmoKLGcdOuttyqFFVFUK1+hAg2+807q0qVLqP+g4/Lly6l//5tYAWg5idn68hXKs6WUf1H37t2DXtW9KLn26dOHxKqk8KrA8sQKpCjVRjtsRbLT+TH3cU4HGk3RS+IQRZgbOc9Lly6h/QdYBm8pHEuGq6hmJMCMXxR5RPH49ddfp59++lH/Dk/5ljLt3LkLXXPN1SoPiSh7ibLO9ddfTytXruQ4Mqg2W6Z87rnn1PtQFKJGs2XMRx99lLeWXenKEkudkqYXXnjBLWdJgCia9e3bT+VVwlasVJFu7BOd5++//0633HKLW97C/84kylsUvfr166cUvkSRQdIl7+Jo5e3PK1GdOnXo2WefVXmV9Ev9eeqpp+iVV17xbaUrXEUhSzhdc801avtd8W8eUt/kB5JPPfU0zZjxtap/uv2V4zI///zuqm63bNnSDJar6x07dqi6JGMBOaQ+f/XVNL6y378iPzMjky0DSX326qv4bd++vWIv12GHjD/efucdmsQWRb/88kvaunWLW/664kt5nXrqqXTGGWeoPiXRbex0Oazm7YoPcjsXJVRd56QdPvnkk6rO2XXSTl20OheWdriBgCYwiNebh494xH4RiqPTNLDerAml9yzb28u/evXqpTdixAYCIAACIAACIAACIAACIAACuSAga2hBnSNZ0rstHevNvICJIw8JjBkzRva8kem894/v2ZJBHkpF1CAAAiAAAiAAAiAAAiDgERg7dqw3FrW/uFqsTOB5iHF1+eWXB8KSxVbKYoSIfHTcccf54ujYsWOkp4ALT4J8YWQ8nXKaefydbJoDyVG3FStWUmniyZg69+7dO8wb3EAglIDMAe15oag/cR1y5okyZ8QRncDEiROtylUqO+yUPbeY18cff7z1xx9/RI8w5AlvX2U1a9bMjVeXjW8e77T7Vse3subN+1nFctyxx7phpF9gCzEhsdtOrNTj+PXK/8Y+faL6Dz6YMGGCCq/7H0lbLHmff/65Lc9Yj2AFqWC0vntW9EoqzOTJk508eeUSS8ZklSYv/5IH3iJMpYGtXFqs/BQhP1gGmjMr/vnSHnaj0mfkX+KSPLLCmsXbFCtZJk9XFofhLZR9Ueq8mv5j5fWZZ56JyEsq5e2mKU55h5WduMkhda906dJOWfn5m/kR/r/88osv3wsXLrRYMcsJ65WzpMsMy5a1rA8++MAXNjc3bv1lOSYDU2boNZdd6VKloor+5ptvrAYNGrj9rxmHKydQZ5o3b27NmjUrapzmA11PzLh0nTvrzDM5L9H5B+ucGS+uQSBIQK03O+3Drcdcd++7996gV9yDAAiAAAiAAAiAAAiAAAiAAAgUUgL38hxQrUEE1jL4x5O5zjH/6g5HXhKYNOkjb6HIWTCSCf7VV1+dl2IRNwiAAAiAAAiAAAiAAAi4BM4991zfh1j5kCkfluMd8qFeK0/ZihUZFlvisXbt2hUvqO/54sWLWfFinjVnzlx1ZksrvudhN16avY+uiaa5kqPwpT/YZnGaeeuqMDFJubFFIWvu3LnOv3kWWx5JKjw8F20CbCnLaYdOnZYPwDzJ/+ijj4o2mCi5l36GrVsZiyFeX6DbtiyU8A62Aa4ZFm/ZZ40fPz5KzH7nTz75xOJtK1UcdlxG+fiUPjz5OTmllNLMsaxIZsqPpdgVoUjGab+xb19/YmLcaUUy3RdL3mPJ0wotroIB+9dKW9HE2GH8+e8RQ/lM/Jv5lzT1ON9WDAuTYSs7GfFz2bEVOWvQoEFJ8ZfyP/300y22WhUmxnVT6eM0qQU15/zpp59avO2b7abqTgYrRNlp0uWfmZlpiQKVeWieJv9YimS6vE3+fZMo74lKcdCrc5LnWOXtKpLpOstnyeuVV17py7/ZdnRezPxXrVrNYmtqKusff/yxVa5sWUfpyp8WzdQs/4yMTIstbpnYUr6e8N57nO4QmU6Zhcm33ewwbEXNJ5utgVnDhg2zihcv4fGIUv46blN+iRJZKnwwXp8QvnHriZN2KX9fndN5kvpoyA+rc8G4cQ8CJgEZO5jtT9d/rDeblHANAiAAAiAAAiAAAiAAAiAAAoWbgF5vNtefZH740Ucf5zrjUCTLNcLYEfz666/eIpWzcCmFxybyYwfEUxAAARAAARAAARAAARBIE4FSbJ3D/mDpfVDXH4pjifjgww+8D7nOWLZNmzaxgqTtmUqzkul8SObrRKwMiUUU7yOwnd9Dlea0ZR4RFUoCp5x8SkTdlLoqc0YcfgK8daDFW0lG9D/CSy+MlGILS6J8YSp7BNv+e6yMEusQ60s5OTmh5WLH5fU/Om4tn7fmdWR7yi6xFH2efUZbJPP6YVGUS/QQy2xm/nm/zZiKRZ5Ci1ZYISuW4pOkwxfG6X9jKZ/Z/r38S/p468WoWYqM32Oh+frP0flL/tu1a2ft3bs3vjylsGPLam5anlN5DE/DnLlzfPFqRS1d/iI/Fk+tSKby48hPprwnTBQLdP78x6pfYWwrV3Ys+Rn59/MNz/s555xjTXx/opXFylNB/2b+7fT5y1+UzdesWeNjl8rN9z98H5F/SUs8+eKHt57ziZT+pEvnLhF5CeYt8t7PX5736tXLF3fwJsySWvMWzROSPWeOv84F48Y9CJgE7PVmf/uTOor1ZpMSrkEABEAABEAABEAABEAABECgcBM45RRjvdlY/0nHenOGoOOJJo48IsCWD4g/gonCnk9C7Tq1acXyFT433IAACIAACIAACIAACIBAugls3LiRqlSp4kTLn2D5u3H16tWJP/TGFXXZZZcRW/Xx+evfvz+NHDnS55buG51mO7V27ImmmbfipHHjxvmS1P+mm2jkE0/43HADAoeaACs30PLly1n3giWLOgS3RVaEIraqRKzMdKiTU6Dl/eep/1DfPjcqLRczoQ0bNiTeIpTatW1LjRo3Jplv83ZwxEo79Nxzz5le1XWLFi2IrSEqzhEP2aFnz57E2+iqR15/k0Elc0pSl86dia1ekchkhTPibcRoxYqV7Ff0cuWvU5RG6EsvvTSiz1SP+c/zzz9P1113na/82UIVsQUn7SXmmRXJqEePC9iPJz+WPFZ8om7duhlxZnD484mV6ww3/+XUqVOpa1cJ48lgZSlia2h+j86d7b8r32kiRHH9d2P/Tv03grmXmZnF6MKLLqQLL7iAqlatqtoMbxNJvCWhK0dLk/Obb71FF198sZMi/8nPwAmlTt41W+OizlzWdevWVXXlxx9/4kgsLusVVLt2bTdCO67T1TMnNPPsEZXn889xeV/P5e0eGdS3741JlncPN7RcsCIZvfnmmz43fePPq3Y1zxlUunQp+uc//0msXE2rVq0itmhErICmPOk86bL07r04WEGFWJGK2Mon/TBzJr344ovE24SyB7/vIUOGEG+t4AVM4YotiKmxxrp161RoGbO8+uprfO3VzZLZ2STvd31kiHkmXnuTdJ511lnaWTHv31/8catVSXXSy6duXN87dOhArLhK1apVI1bmom+/+46mcvtha6puHPYF1xaWMfOH76lV69aBZ/Zt9HLwZGZQJte5U0neCSLvp59+UslasXIl1apVKzReOIJAkIC33ixPvDXnunXq0DIZa+AosATef/991XdeccUVqk8psAlFwkAABEAABEAABEAABEAABAo8AXe92U0przpkZqRnvVkUyXDkLYFatWrLapXM6tU/WduSX07v3LkzbwUjdhAAARAAARAAARAAgSJPYPbs2e7WN/wZU41HTzjhhLhc+OOwVZot/thjWG8sy0paccNOmTLVuuGGG9SWWmKxpWvXrtZJJ51kidw+ffrEDS9WOfTYWctvfULruOFkm7NSpbR1oeTSHBb522+/bV1//fUWf+ixzjvvPKtrt67KAo5YSnrwwQfDgsANBEIJyNwvk7d90/Vat8WaNWuF+i/KjtL3sEKHy0rPpc848wxr06ZNUdGwgg1bFysZ0We98soroWFky91ixRyrYsYv9ipUqMDb8EZaBpLtcQcPHsxaLF7fostTny+55OJQWeJoWqjS5Z9If6gjtC1UcR9uyE/EQpXe+kxkxrKgJXLCrFqdH2OrylT96/zr/p21aFS5NW3a1BIrcWFH76t622Vr5F/Cn3LqKWHelZukz8y/Lictv3btOta0r6b5wsvWy7KFcfCYPGVyhPxYPHV5m/KTsUimLdDp+i9pj1XerMDk1H1h6dVRLb99+/YWK7L6snXw4EGrf7/+opllhA1eZ1jZ2dnWG2Pf8IWVm++//96qVLlSRNhq1aqnZTtpU+CiRYtsOUb5S32Jd2zbtk31J7rMhaNcF+e2z8qhUYPLeOK0007zsVT1h+XLtqrRjsmTpRwi+Wv5derUsb766itfcCkX2fobBwgkS6BmrZoR7Y+VcbHenCzIQ+hf+pa6deqqcpO50XfffXcIpUMUCIAACIAACIAACIAACIBAYSKg1pvVbg281uGs7cj6A/9ILS3ZxNaWacEYO5KOHTuqhTm9cKQXlX7+OXyBNHZseAoCIAACIAACIAACIAACiRNgiyPGR03746ZsWxXvGDBggPrIocew+rx06dJ4Qa2rrroqdPwr4+B420JJ5JMmTXI/bGu555x9dly5Os32x177Y7FcL1kSP81hkbOVGncbLZ0OFTfHOXTo0LAgcAOBUAKiHKPngboOyblTp06h/ouy41133RXR/mU7QtmeLt4x6PZBqt8SxRjdZhs0bGiJwkzwYGtgtl8uBykL8Z9dMjtCySMYbuzYsVaJ4iUi0ihxXHLpJUHv7v2zzz3nkyf+k1EsYqtg/vCcR7ZI5sYfvPCUvLRSS0bMbSclvFJGkoUnY/EplrKU+NecJT/yL9bWlmHb/ulworSzdevWYDbce9nCUvpk7d9MYzRz/bZylZd/NyynU7Z9/O2339z44114PO18ivxY235qRTKv3WckpEit0yHbsmq2+pxYedvlp8OIfFGEjvVDxmOPPc6WpcveKP/y5ctb06dP18mKOIuipslVXXN4UWJP5+Eqkjn1TPg3434h3nEPv6vt9Ol6QJZsv/npp5/GC6qU4aSMPZZO2XMapD6EHaqOc9q8MFpuhlWpUiVr/vz5YcHgBgIpETiZxxBh7Y8tdaYUHwLlPQE1xtH9GJ9F8U/mTatXr8574ZAAAiAAAiAAAiAAAiAAAiBQqAjI3C9s/UF0k9JxQJEsHRTjxCETQlWIxmKcLHrJL0xxgAAIgAAIgAAIgAAIgEBeEuDt1LyxqPq4mWFdekl0ZQdJC28hxpZ6POtJ+iNVrZo1E0qqfLwfOHCgVblKFfWByx0Ls/ynnnoqbhwvvPCCMQmyP9zGUtDQac7IlA+29kdbLbNGjRpx5UXzIIobN998M1s5K+Xlgz/6SNyJfISOFi/cix4BZV3IaX+6Pcmc8Oqrry56MGLkWKyRSXtT7df40CptMZFDLJaVK1fO6/Oc9srb+PmCb9myxSqZk+OTIzKlvSdy8HaY/Eu//2fvOuClJp7/PnrvvShNiqgIgqiIohQRKYoIKmJD7IjYRQWVIkUB/dlQ7AVRsSAIgoUifwsISlFBkGKjiCiCIAL5z3c3m2xyuVzuce9em/3wSLLZnZn9bsmWuRmtIIIxiu6pPsMUfaBYRI7x5Fgi2wClhzJb1KAVyUxswixUaQtaMj3xgnxhSmGQQylemUow4Xlc5SpVfuAQxsNNr+TRZSE3gRastCQKa9et89SZ7kuDB98UmBVKPWb5Nf4FCxa0FizwWiILJGBEatm1zOAdVlatOGjyPxTFQdAJq2+lpKfal8OT8kDRBNb0wsLj9F02y6XvYYls3rx5YVmlglq5cuVt5UOX/4yZM0LzJftSK5Jp2YB/Iotk27Zts0rBsqrd/nX9R1Fo1/KRa02rcJHCDj6af7du3XQSzxXtRKYBT5JR38MrQbJtzkOYHxiBAATkDzfs7485/33nXd5vDoAr26NgCVWuKWh80GOJHicwdxkzZkzC8TrbC8ECMAKMACPACDACjAAjwAgwAoxAjkHg3Xfftfdj3P0H7IFgrZiKwIpkqUAxAY3hw0eojWXaRMICUf+NGzcuQU5+zQgwAowAI8AIMAKMACPACBwaAm+++aYz/9Tz0DC3TLBagsNZHEjpQ1d9OBV2aB4kJea7mqe+RrFSomT28g+Tec+ePSRzY8lLm3HOrMxB5Rg4cKBdDlcJJMzFXhANjsvfCAT1BfSJESNG5G9gfKWHqzw1Vrj9P4rVIZNM167diIbbV0HPb1Hp888/t/m463OkW7JkiUkq9H7o0KExNBIpkqmyuTwzr1ikyhfGTys+mTzDLGihsK7FMBf/sHFfK55pHhh/e/Q4Oy5u/vTIV7t2bWvz5s1x8/hfNGvWLKZ+O3YMdjUYhAF43n777X6yCZ+9tBT+YXi6Fsnc+r7+uuiKg7GuLTNCFcmkApOtvKTbfz2yxhflW/XLL7/42rKq/5defDEhLkhwzjk9ZX7z+ztp0qRIeaMm0opkqq0p/BONDbNmzfKVS9XF0qVLo7KV6c4991xfm8uIq8Q2Zw5coHrHn8y2uaSE5MT5EgHMIVSfoEMDo//zfnPObA69evVy6kvXm/9av34Da/r06TmzACwVI8AIMAKMACPACDACjAAjwAjkKATi7TePHDEyJXKyIllKYAwn8tprrzkLRfMXR1cOGBCekd8yAowAI8AIMAKMACPACDACh4jAF1984cxF9WFFnTp1AqnCGlDXrl1j0uNQFPPYsWPHBuaLFzl69GjPL+5LkqWh/fv3x0vuxMfKnGHVqXO48968UTKfFSCzOjDGr/sPNQwYcKWnHEc0bHioJDl/PkPgyiuvdNuoPuyl61RaK3JwEZgyZYqLE405GLMuuqifmyDC3aBBgxwaev39/PPPe3JKZVXCX71XSh9HNjnSkybRg7YQpsdVXMMUuxzFIqP+r7/uukRsnPeOYpHOT/zCLFRJxSIbQy1jmFIYGHmVpRT+Z599jiOD/yY4fXxFMpley2/jn0gmP89777vPqV9driZNmviTyecg+Zo0aWzBTWaywVGC0/ITtmGyKwt0CkMtZ+YUB9X3FzTOO++8uGIHlTVMPpPQgQMHlLtWX3v56aefzGRx71EuXUZ9haJlKgMs+UjaBv6JLJL973//i5HrlFNOSVqsWe+/79Kx+RcpUsQCbv5g1oMef6DwlsgqnJ8OPzMCURAw95t138MVcw4OOQuBnTt3WsceC0Vo+i7Y3z+tdOr+cMf9ZuAHNPHcNueskrE0jAAjwAgwAowAI8AIMAKMACOQXQjo/Wa9/6DXhVgrpiKwIlkqUExAA79qlqb05aac/ctEWjS2a9cuQU5+zQgwAowAI8AIMAKMACPACBwaAnDppg8t9GIC1/nz53sIb9q0iQ44jrUPNzKsMqVLk5KF16qGP4+HQMDD+eefT7zd+e+pp54akCo2SsuciD8OuaXM9qFMaZLZKaN92JuszLHSWFbLli09GPbt2zcoGccxAnERQNt32ia1V7nApzaarGWcuAzyyIvhw4c7447u/1ASGj9+vDV+Av3hSn8TJkzw3JvPZ555Zsz6+5577vEg9OCDDxppcHCbYV1++eWeNIkePIpk8lA43GLU008/7bQBXf+ZcW1ptqMwRTKl+OSOv8iXSLEIeTTu+hqWx1GascsPHj169IgLnU6vyx9FJj8x12qae+BepmwZfzL5rPm5+zGJMQgkRJEOLXxv7L8wbFR9e/FPRpHsnbffcfhIfoRxWH175KO0Ctv4SoD+csIynFJuUDKj/qMqko0YOcJpN1rWzFh988tkPnstkqnyJVIkGzToRoWhjQdkg4XRZANcZJptSJaRaG3cuDGGlGyfDj+FZVg7iSHAEYxAEghgDmH2W93/eL85CRDTmBQ/pnn88cetSpUrGeO7+53Q3119LVy4sAXl+B07dqRRSmbFCDACjAAjwAgwAoxAfARgeRp/Tz75pPx74okn5DV+Dn7DCDACWYmAu9/sriuwLvzqq69SwpYVyVICYzgRWEkokFHAWCSqTa8aNWqEZ+S3jAAjwAgwAowAI8AIMAKMwCEicPDgQashWdDCIkL9OkUtLCpXrmy9/vrr1syZMy0oM1Su5B5qdOjQ0RpA1nOdPHQoWrBgQWv37t1JSQPLZ/JQi3jjGvVgGTIr95quwg3yV61a1Xp9qitzJUfmDKtDhw7WgCuVzEruDKtQoULWrl27kpLZnxhuMwsXKeyUAxg+8sgj/mT8zAiEIlC9enVP/5NtNCPDgoUKDi4C/fr1o75mb35QXzMVjlS/VmMJ7l3FDu9mie7/Mg3S0d+1117rMqE7x12trfABPnfddZcnTaIHV5HM5R+m6ONRLLLlSkaxCPzUGG5jQLKH8fMoFhE/5E2k0KLyePE/+5wEFsZ0fdlYhrl79MuEOkwkk78eli1bpsZjm59uL0F9ac7cOZ6xG2nPCbGw5udlPkN2P/5hsjsW6Oy6Rt5M1bdTzgT1/SFcKqq2oZUQwuQzy4Z7WM1S+d36j6pI9tBDDxn9EW0tI/L33i9HvGcokvnxT6RI1uWsLgYmwCbDyozLP8xJYIHMz/+TTz6JEddUxtT1kUw9xBDkCEYgBAGMe7K/G+MEnjHn4JBzEYDLYcxDsE7xjCtUd3rckPF2vVapUkUe0Eax6pxzS82SMQKMACPACDACjEBeQECvv939GLX+ywtl4zIwArkRgRrVazhrCL2WKFCgQMr2m1mRLE2tokbN2IpEhf75559pkoDZMAKMACPACDACjEBUBHBgxIERyEsIPPPMM95FhT5w0lccPtv3bdu2lYuNRnSobB5uNG/ePClItFUxvYjBddq0aZFpQGaTv6LjO2CxD1zgqgqHaVr5TG5sUHmSlTlIuEWLFhnYKf6ff/55UFKOYwQCEfjrr7+MNuT2Nf5hUSxcJ5xwgoNV1P6PscGblvqpObbR+zvuuMPDDFazPGkoPdzgJRNcRTKXf5hiF361K8cxLRtdk1UsUuOg5hduAS1GaYtwSKTQYubRmIbl0el1WsiXML1R/kTpg+oDyk2Kn/s9wGH85s2bY5Jr+TRukl+IYlwMASPCpKX5h5XVr0gG3pmtbyV/RqjrVFc+t/2HyWcUTd42atzI6XvghzJGVSSDlUAlo1LWQt+KqjjulyPes2mRTOOfSJHMnRNALvX32tTMuXeoVYssttk0NH+4m/UHWQ+6jdvpk6kHPz1+ZgQSIYC5hG6bev6LZ95vToRc9r9fuXKlBReWbv2pcUqNMe64pQ9sj21+rDV/nteidPaXgiVgBBgBRoARYAQYgfyEAOYt3rmKWn/mJwy4rIxATkEAaz7P3qa9B5HKHxZloLDU8TlkMQKnn3aa+GTePKpPVYv6SodQonXr1lnMnckzAowAI8AIMAKMQCIEyG+4oINmQcov4r//9osSJYqLE088Ubz77ruiZMmSibLnmfdbtmwR3333HX5sEFomvCeLq7TDbaSzJzgZGXSCFie//x2eW7RoIcqUKRPKj18eGgL79u0TJ510kiCzxg4hVV3m/0JcddVV4tFHHxVoB7Vq1XLS4oYs+ojHHnvMExf2QEpjolevXp7576+//SaqVasWls15J2VuQzIvUTLr+bOTwL6BzKQAIrZu3eqRGemvSVJmP2080wG5uPnmm51ykFUSQYpBolixYkHJOY4RiEHgiy++ECeecII5Wsr21I7WiB9//HFM+vwc0bRpU/Hdt996sAIe8fq/g5UvgX7EVdB3BnXQqlUrJ/kpbduKhZ8uomfsuag1OrlkEFdffbWTJtENKZEIsr6lktlE+vTpIzCfCAqTJ08WZOlRvlLJM8R1110rx9yg9P44Dz/7JSmuialTp/qTymeyjCQ6dewosdRlJIUWQQpwgekR+dFHH4mOHTp48A/LAx4diYcDItE4mzB5+623Anno9Lr8QP4ckumtEJn8hH6j7wgpTnijieBPm37yfAOQwMtPZQkrj5eo90nTMmPDaJEFOnHVlVd68CdFskzVt66/RPUt64IE1OmTwZZcyIrvv19Ned2ZHSmSxWBqll/fT5g4Qdw0+Cb9KPnfdvvtYvTo0U7cod6sX79e1KtXz0OGFMVI5u89ceZDlcqVxbbff3fwwDv0I1IkNZNFuifX2YIsnHrSou+hTsyAdpJsvzPz8z0jkCwCp51+mpj3yTwnm+7/vN/sQJLjbzAu3XrrrWLd2rWe7y8E1/VpFgLjztixY8Xhhx9uRvM9I8AIMAKMACPACDACWY4A9vH9ExTMV+gn+VnOmxkwAoyAFwFzv1mvG3BN6X4zHfJxSAMCdMCFUZR2qd1fzVJlWs8//3wauDMLRoARYAQYgbyCwH///Wft2LHDOnDgQF4pUo4px+WXX66+1eo8me7VN3vFihU5RsZ0CDJ02FAbB3fOIucwNi7aXZIT57O64MRTesx1guY/iob6xRLeP/fcc+koWr7nAReNF154oe1y3cUfdUBKZtb777/vYPTiiy/6+oOwEJdMGDx4sKf+6bAjmewy7T///GP1JZkzbDfxZvtr06aNR+aXXnrJIzPaX7IyBwnY+7zzHLrgT8ooQck4jhGIiwDGOPQztElz/COlpbh58usLZZnD+/3p1OkMa8qUKaF/pLzlef/qq6/KZ8TDkpE/9DibLJJRfZh/w0cM9ycLfTYtkmk6dLgbNw8sVJn1jzyHZKGKvr9h/JRlJBdLtL9Ebh2VVSs3D2Q8O8QVpGsFy8WSlKviYuDQN+YOsA6XTFi1apWqN4NGIXK9jDmyP5BSj1PHuv+FyefPbz7HlJX4h9GSFsl8+z+HUt9oOwnr227TKCvqLszNqFk23LsWydz6j2qRbMKECQ7O4Av+WWmRDDzo8EJaIfWXw3xu1qyZI5euf1gGzEwoXryEQ0vz/+yzz2JIoZ1o/PX+XzL1EEOQIxiBBAhcQ3MJ2SbRL+z+h+sLL7yQICe/zkkI7N2713rggQesUqVKeepT1ak7Lsu6pvGvePHi1rBhwyyslTgwAowAI8AIMAKMACOQLgTkXMSed+p7rH84MAKMQPoRgI6Rf/8B/TKV+83cu9NUr/6NNb3wS/XmWpqKw2wYAUaAEWAE0ozAzJnvW40aNrQKFKBNRNo4hAufDh07WBs2bEizJHmX3RX9ryBlFfcgVE/CVqxYmXcLHVCyyy67zHMIoRaFxua1xkhe3XiNF9IDR/NZ0bCxRT77T6XJsMhKVoAkHJVVCEAZFYfrOOSeOXOmtXbt2hhWl156qXGIoep59ZrVMenCIsiin0EjXOEhjA7eOTI//bRUHguS+eKLL1Ft12h/P/zwQyLSCd/Xru26s0LbHThwYMI8nIARMBGAW0W9/jPHP6wROXgRuOaaa3zfjwzrjttv9yZKwRNZWKQ6UWMbvkX4bt14441JUdaKZOb3rk+f+Ipkk54i15a+798VV1wRmefb5EbPaUe27GGKRaYSlc53dgK3jh4lGMIFGJFVq7gy+tMDx57nnBOaHhjo7z/kSqTc5iemFLq884/atQ/zJ5PPKq13/hGm/BVIxI6cq5XSUIc2/mG0yCKZqi+JI+WhfEnV99uob7ecyE8W7+KKOGfOnJj5V5h8fkKNyZ016sNsz5s2/eRPFvj80EMPqbxO3ca6kw3MmETkj+vXKzwN/BO5tkT5ZdtHHSAf/d17771JcFVJt23bpvJrOna9/P777zG0Yvod5UmmHmIIcgQjkAAB7VrWv/7i/eYEwOXQ17/88ot1ySWX0HjuHf/1d9z8LmC8xvcPyvYHD5IdEA6MACPACDACjAAjwAhkMQLmetGcf2YxWybPCDACAQjcqfebsVdh/I2fMD4gdeaiWJEsc7glnWv27NlqY40qUv0KWVVqt27dk6bFGRgBRoARYATyHwLVqla1D0+MDUX6pvRP4gAy/6GWXIn79+9PGHvxxYIov1kkA2p//PGHtCSB8puTUG1ZwROnJ6mU1l1M+nD0zX90fqQvSb+6Zgt7ybXVdKQmt5byQFrXVcWKFZNii1/VkwtIz/wXB11ZGVyFL9X+kpU5SDYc5mgMdPuH5TMOjEAyCHTr1s1tR/aYifEPa0QOXgRMhRTd92BJMdVh1KhRpBhCY4XzncuwunTpkhQbrUgGGvr717t3fEUfWEnTZZLpiX8yZXP42W0ItMIUybSSl7n/EGZdDIXXSjDm9z9MCUYqahnlxzwqYXqSW5cf2IWlD6oQcmXs4CjxJBqnnHJKUFJLYeCdk2TWOpRHKc2ugzDZUd8op4n/BRdEb8ue+rYVChLVt38eGyafHzCtSAZMdf0nb5HMxTrVSiywLKj7j74mUiSDZVQTf+Tr16+fv+gJnxcvXhzDu3z58oH5zHai6z+ZeggkypGMQAgCH3zwgd0+3f6Hto65B4fciwC5JrWOP/54NVeh+tTjnudqfH+nTHkt9xaWJWcEGAFGgBFgBBiBXIOAuf9hrj9zTQFYUEYgDyFg7jfr/QesF1K538yKZGlqMJs2bXIXfbTQQ0WiUuvVq5cmCZgNI8AIMAKMQG5FYPPmze43xKfoBIs/HFKDgHZtqQ/P9CZtflQk04iaLoEUHu4BBQ4tfvvtN+vXX3+VV9ybf4jH/Aeb4BMnTrRKlFQugTD/cQ/uhdWuXTvNjq85BIE1a9YYY46at5511llJSfcF1bvuQ/JK899FixYlRSOZxEEyd+3aNRkSgWmnTZtmlEO1/+9XJ2eZLZAwR+YrBOrVryfbkX/8Y6uisc3grbfeMvqcGn+g4JJqSxtw+eUZo+jbVKxYUWvnzp2xQsWJeeLxxz3fM9ALU/SZP39+TPoTWreOQz022rRwpTaIiF+IhSpHocXYf0ik0OLkwbfa/gvL41jpMtOHuKoMot++ffvYwobEwK2xLr+eT1x00UWBOSQ/o/yZUVzThGHxS2Oi+Z8dYn1t3rx5Kr3B/4QTTtDkEl4nT57s8NMb9GHtKwjbsLrzC9C4ibJIpsuI688//+xPFvisLSKZeVOtSLZu3ToHD41/IxobwoJUOjTwR/2XLFnS+vvvv8Oyxby7/vrrHd4oI/i3atkyJh0i5hrtROJBPJOph0CiHMkIhCCwceNGT/vU/ZD3m0NAyyWvMPeBu5pq1ao5dazHP/39Q30feeSR1r59+3JJqVhMRoARYAQYAUaAEcjNCOi5pv+am8vEsjMCuRWB+qRj5OmL9v4H1oipCqxIliokE9DB4q8UWdzwV2iBAgWsXbt2JcjNrxkBRoARYATyMwJw4Sa/H/ogxL7iUCnZwzfgmOrD2LxSN8oimWuFQX+z87MiWc+ePeVhmb/9FS1aNOnNaseyhm7HtOmNDfAhQ4bklSaUZ8rxxBNPOHNWHFag/u8Zek9S5cMBuGkFBNbJ9uzZkxSNZBKbMuu+e889yckcxO/WW2/1jL8VKlbgMTQIKI6Li8Du3butggULetoR+lWp0qW4LQWg9vXXX8eMP/hW4BuSyqCUfJRyqB7noEj+2mvRLHpASbpECaUgrcccXMMUfVaTEirSSH7yW5hhFS9RXFoBTVQ24FK2bFkbGyV3In4xikXEM5FCi19ZCjzC3GHG8KD0YRa/kN4sv8YDCudRgrJK5ZYf+fE3dOjQwOwe+STmcKUZ31VnIBE7Ultr00pdEpsQWrq+tYxox8WLR6/vMmXKqPq25Ub7DGtfZln19zdRfZvlbeJTJEM9RbVI5lckA/9UK5Kt164tjR/VJLJIBvfdJv64R7kmTZpkFj30HlZ6S5HymftDE9X+4rkpRTvR+GveydRDqDD8khEIQMC/36zbH/abMQfhkPsRgPIrxtRixYq5YxqNZXqMwQ+8ODACjAAjwAgwAowAI5AOBPT8w7xi/smBEWAE0ouA3m/W6z/dJ6GLlMrzX1YkS2O9tmrVSi7y/JW6ZMmSNErBrBgBRoARYARyGwLYONQTAfOKA40OHTpEKg4OX1q0aOFsPhYqVNhq0KCB9cUXX0TKnx8SXSFdW7obshrr/KxI1qlTp5jDMOCSGUt4//33n1WlShW3LdsHo++9915+aF65qow4qNbtX89bX3ttalJlgDsp85fyGH/MgMXOP//8Y0Yd0r2U2W5TWvapU5OTOUiAtm3bOliAbqczOgUl4zhGIC4CX375Zew4Sm21ZRxrNnEJ5ZMXcItboUIF2e/0+IO+d9xxx6UUAXyT4A4XPKRik30gC4tRkCEsrFq1yqpUuRLJaOS1x58wRR9YO5PjkzFWgf+4sWPD2Fnff/+9Vb16dWcskgotkkZGJMUiE8cwJS8IEaSM1KNHfMUrJ71RpjAeUhnLSKvxzyDXjbC6kihcfPHFSqHHLj/qDoqaUDALClCMM8sP/MPkC6Kh43RZTfzDFIR0ffv5jxs3TpMMvEIBDfXtzwfZw9qXqQSov79nh1iH8zM3XVuCF/jDsmyUMGHCBKd96jaeakUy7drSxD+RItmff/5pwc21lInKpGVr0qSJhXdRwp13DvHkB//ChQtb+KFPUAhq42HtJIgGxzECySLQsqXab9ZtXLd5uGXlkHcQgAXm7t2705jkzj96JDHO5x0kuCSMACPACDACjAAjkF0I+Oeb+jm75GG+jEB+RWAx7Tfr/qfXf9jHgS5SKgMrkqUSzQS0LrnkErdSjY3P5557LkFOfs0IMAKMACOQ3xHAwaY+FFIHnurX8IkOozRuM2bMUPmN7w/oPTjuQZ0k318v73+58502D5VXrlyZb7Fp0uRI94Bdth1lyWHw4JsyhUnfi/q6G992W/z9998zRYszZQ0C+MVK5cqVVV+QB8nq4PXhhx9OiuH5559vtx01VvW7uJ+TH25PmzY9UiokRj3IdTIH3EDmKlJm20qN3VaTldlPGoomcIFlLspSYeXMz4ef8zYCUI6R3297zJPfF7q/9NJL83bBD6F0t912m+x3zrfY7tMYV5IZM5YuXWrBWmE8ZZj77rvP079RT+DZt2/fuNK///77hmUwGh/tPNpKVe8+vePmxYtatWrZ8zl7vCJ+VatWtb799tvAfHCHWZEsIWIcUni4+RDXJ6prS4lhRkKLZFpZyuUXbpFMWV/Cd8Idf8MOtSV9WxY5tlIZZP+wr7AsFu+Xk3fffbfLB+ntPBdecEEgdoh0lHpsnsAws0o9Chsv/omU0qCs6O//qr6/C5QZlvJcRUq3jLo+evfuE5gPkS62bltJJJ9JDIpkTp8jnHAf3bWlrUgmcVZ5s0aRzIs/ZE4UHhr/kNPnZPnstnD00Udbv/zyS9zsBw4csG666SanfSpsFP9rr702bj6lvOjtE2FW/eIS4heMQBIIyP1mo//pMZn3m5MAMRclhQWypk2bWsXISvgPP/yQiyRnURkBRoARYAQYAUYgtyNgrov0Wh5xHBgBRiC9CGCtp/eK9PoPffKSSy9JqSDcu1MKZzixBx98MHbjkwZYbE5xYAQYAUaAEWAEwhDYvHkzue0ZZvXq1cvq0qWLhc3iZ5991tq/f39YNufd9OnvqQM3+u6YB3dRFdEcQnn4Bi5q5KTLPmDSliDyq0UyWIsqULCA216MQ+LMWnq69957XXqEc8OGDfNwi8qdRVu+fLnsB7r96/GiXLny1s0332y9+uqrkQrWtWtX5/AV/erUU0+VygGffvqpVb9+ffkOPO6///5I9MISffMNZFZjm7mhUa5cOSnzK69Ek9nPA1aDNV29IGMLen6U+DkRAlC8dduR/Q2m8Y+/v/GR27hxo6vEKfu2q6RUp04dC8pcO3bsiCEABaRly5ZZY8nCF5REFO4Z1p133hmTFhG//fabVahQIVdBy/j+w/LVhg0bnHywCnbZZZdZcBWmN0v99YrxJ0zRB8TGjBnjjH86P/KVL19Bjq/btm2TPHEwPGDAANstqlt+mUfKqdpSmIUqqUSlv932GJlIiUophnmVdc4++xwHB/9NrOJZRqjFL63sZH5jnHHbxv/4VsfLOv7333+lWza4J5RzNF1ufbXLhDqPF+bMmRvT/xJhEI+WU1aDfyJao0dTfdtyOlfKX758eWvKlCnW1q1bJTtYtxpw5QC7PXrx198ftLuw+lbyedtKjxDXm/5yNpauLWHlxuUf1bXlQw895PYjlJdkveOOO/wsDulZWyQz+1/Dho0S0oSFwcMPP9ytB5JNlxHjyZNPPmlB6RTK4whQLnvnnXeszp07O2OI2e/gJmLLli1x+TrKi7LeFZbJKPTFJcwvGIEQBDCnMMcKNd5k8H5zCGa5/RW+kQsXLsztxWD5GQFGgBFgBBgBRiCXIaDXtc463l7/5bJisLiMQK5H4KabblZ7FrTHodd/uKbacAgrkqWxqcyaNStw07ljx45plIJZMQKMACPACORHBKD8oCf65pUPst3W0J9dW7pg0B1coZhtxbmnySkO+TMTYBnGoUMTW7bIkxkUszbPxIkTPXVk1hfuax9WO5IAsNYhyFWZzG8vaIoVK+ahfQFZkdm3b18kemGJpMzgQX9qI8NeQNn8DzvssLDscd89/vjjHnlRlrDD47iE+EW+RgAuqP39CM9QhuIQH4GXXnopFjd7LNHjSs0aNazTTz/dwnr6mGbNrAqknONgbYw/YdaDLrzwQu+4QXXj0KD7SpUqWWXKlFFxPv7OeGOMP2GKPigtLKo59MCL5HTo2LyLkoURUwbnPoB/GD+vQosqVyLFJ0dZysAhLI9WDDPH34TpDdpB5dflhctKqbin0weUHz+uCAtB5cmsUo/fdSTqLaysur6heKTLFHOl+o9X33D36UlP5Q+rb09Z7byJ5DOx87u2BO+oimTjybWlpx0T/1Qrkq1bt87Fg7AAv0SuLXX5pGVI3Y7MK8mp5S5evLjHIqsHe+Sx29+oUaM02cCr6hPe+U8y9RBIlCMZgQQIYE7htFk9dlCbbd++fYKc/JoRYAQYAUaAEWAEGAFGgBGIjoBcF9nrMXP+GZ0Cp2QEGIFUIIC9UNkHjfUfnlO938yKZKmorYg04FJDb1Lhl2LynioYrg04MAKMACPACDACWYmAq0jmfn8wsWBFMhf1/lf0Nzbg1YErvtUrV6xwE+WjO1hocOctCg+0mRp0cJ/Z8Pbbb1vlypa1ypKlKFiLglU9DjkLAShvnHnmmc5fF+Me8bAqFyUoSzhuP5ILG3v+m0EWfYYMGRLXfVkU+mYayAxlAi23eQ+LIsOGDTOTR77v16+fOyZQ269bt27kvJyQEdAIVKlSxW5H3u9vPHeLOh9fLQtWjvwKqP7vknr2KdxQf1VjjlI2gavMeGH37t1Wl7O6OOm1soifj0kP91A6gXVYP/8wV5NaBiiiIF+GrZiiacurHefnD6WqF1980apVs6YrK9Ho0zu+K03XxR7wUO3v7HPiWxeDfFoZyeQfpgSj0nvxT5xe1YsuP8boIkWKqHLFKb/GyJQL1i3hKjks6PLo8kNxLbOKZMpam9u2INM5ESx+jRw50sFfK1gnqn9Z3y+8YNX01XdkRTKSDfKF1YUfN6lI5sM/siLZ+PGq/my+4B3W7/y8ozyvX78+Zl7auFFii2SgDTeVw4cPtwoVLizlTIS/2c5024NCYJR5q9vmVDuX9ZCg30UpP6dhBMIQQF/VbVVf0Y4xB+HACDACjAAjwAgwAowAI8AIpAoBrK31fNO8poo+02EEGIFoCFSrVs3TF/U+Rqr3m1mRLFp9pCxVhQoVAisWbjU4MAKMACPACDACWYXAjBkzAr8/rEjmIq4UyfyLoQxr+YrlbqJ8dHfxJRdTmzHwsA8Xz+kZfgidjyDioiZAAMoBOAw3NxaObX6sVFRIkDVHvD7iiIau7NT+oyiI5AjBWYgcgwDcUpvtH/dY2MOtHYdoCMCl5Mknn+zD0f422d+lIIx1HFzXffPNN6HM4NLuwgv7BvOg+tLKZZpmgwZHWJ999pkF5Wgdp69hij6mEJMmTbIK20otKq/xvQVP4/sLt3xQTkGoUbOG+47Kf9558RXJTIVeLV8ixSI3jytPmOJVoOvIHj3MonruTSUbLRPq55NPPrFq165t4Ony9+MPbI477jjrx/U/emgHPbjlUYpV6H+JMAiigzhXdrf99ehxdrzknnjUt+tGVcmiy++v/9pkRVPXd81apDhotPPzzjvPQ9d80PLpzUPQDas7My/uvRbJVBmjKpJB6VOXR/NPtUUyx7Wl7huESxTXlmY5F3+5WFox07K6V6O9+fof8G/evLm1evVqk1Tce4/lOkkL9RCtncQlyi8YgQgIVCAXybr/uW1bSDfOEbJzEkaAEWAEGAFGgBFgBBgBRiAhAuY8E/d6/pkwIydgBBiBlCEAnSKz/+l+mRX7zaxIlrJqi0bolLZtnYFVVyyus2fPjkaAUzECjAAjwAgwAplAYPr06YHfH1Ykc8Fk15YuFrjzHii6h55jx4z1JuQnRiAEgbVr11pTpkyxpk6dmlCZI4RM2l/9/PPPzqG4nrNPnjw57XIww9yNANZ4aD96Y023pVNPPSV3FyzN0sOa0COPPGI1adzE7pe2dTdbScNUtAHGUMS56KKLrHfffdfau3dvJGkPHjxojRgxIsYClK4zXPFrv3vuucfas2ePpOkokhmKPskonM6bP886/vjWMVbXNM8qlStLq05//fWXU4aWLVsSBm75Bw8e7Lzz30BBqwgpq5nt74YbbvAn8zwjj9/VYlieoPQDQ3gsW7aMFKoKOjIVL17CcZcNt5/XX3+9VZYsl2oMvNcM64gjjrDGk/Wr/fv3e+SO9/D111+71s7s9jIoRL54dBC//JvlNi0X/zBs/LTmz59P9X08WbMr5pQf5dP1U9mu7507dzpZVX3rOViGlai+Vd25im4DBw50aCW6cdwi2DjBVazZ9sLyv/HGG2RhTytjqeujjz4aliXpd39s/8NuGy7+nTp1SprOP//8Y916662O4qLG39vWFOZNmjSx7r//fuvff/+NzAdtTtaDPS6AfjLtJDIjTsgI+BA49dRT5fdBtmWj/fF+sw8ofoxBYMeOHdbYsWMjz5liCHAEI8AIMAKMACPACOQbBPz7L/pHcPkGAC4oI5ADEND7zbr/6X55yimp32/OQHlpkckhTQjQRp6gDTXiliG9Gmj0R48eLW6//fY0ScFsGAFGIN0IkNsc8frrr4tt27aJg9TxS5UsKegX4oLclXhEQbpXXnlF0C+ZBf3qWvzy6y+icqXKom7duvKva9eugjbMPXmCHjC0gwYd3os1a9YI+jW5IKswolr1aqJ2rdrirLPOEj179hRlypQJyp503Lp168THH38syDqDIBczgixwiN9/3yYOHDgoSlJZGzVqJJo2bSqOOuoo0aZNG0GuaJLmEZSBNK/FV199Jchahfj222/l9Y8//hClS5cWZcuVFfXq1hPHHnusIFd8UJyWJOiQQ97rKyIrVaok2rZtG8RC7Nq1S9DhiKq7gwcFuTURZMlA1KpVy5OeDrQEWf0SdKgogMdPP20iPkKQOwnJnzZ2BVkREIcddpgnX9QHOvQQdCAqUGY6zBAlihcXRx19tGjfvn0giSVLlsh6x0uUlSw9CDqExZPn+3PuuecKOmx18NHEkAd/HTp0kHWo4/UVbZmU0wTwpsNXQQcm4oQTTpB/Ok3UKx0cStx+//13ARzJjZWgg7O4dRKFLplwlX3u//7v/2R7RLvcf2C/qFmjpqwD9CWUHfWpwxVXXCGeeeYZ/ehcV6xYIduuE5HEDfoxuRUVn376qZRj85YtYtffO0W5cuUFHRgKOpQWaBvdu3cXZIkjCcpZm5Q2k0WFihXUUaLNipqDbNN0ECpoUpq1AjB1RiCbEcBYgDFBB7IkI7ZQ/yXrwjqKr4xAQgToUM5Y47nfX1KWEf/73/8S5ucEsQhgHrR48WI5L8MchJS66JtaTs7lKtGc+eijjxLVq1ePzRgxBnMazB02bNggfvnlFzkvqVq1qiAFJkGW0eR8WpPCvAxzQsyt8A8fyd59eoupr03VSSJdMfdZtWqVnNOCJ/g1aNBAzoPIapmHBinVyfkd5oKkcCXnEZ4EvgfMH4HZASpXWZr3g3aigPUI5vLgBR6J8mgeKAfqIlH6v//+W9IvUKCAnCOTm1CPSOCPuQbmclu3bpVzNdTpkUceKZo1a+ZJG+UB8qE8Wj7MzTMbdFmBDcqaGVq6vpcuXSrrEmXD2ghrkbD6xrotUds+VPnQ/lA/mNdjreOXJww3zOcxl8eaq2LFilnyvdy3b5/sl7hivYc13qGE7777TvY9yL19+3aBNol1Idow1q316tXLFHmzzUXpQ5liwpkYAR8C7n6z98WYMWMEuZr1RvITI2AgcNNNN4kJEyaIOnXqCLIwKfcKjdd8ywgwAowAI8AIMAKMgINARkYBZ/9D7YOoV/rszUnIN4wAI5BlCIwePUbcOeQOz9kdmGXJfjN1bg5pROCpp56CJoP8w3ksjbjyF6jnn39+GqVgVowAI5BuBPBLZt33cUX/79LlLEcMuNQZRi7AnF/gk64THTd68uj8cAs2a9YsJ6//Bi4MG9Kv9TG+6Dw0qXPvbf4lS5ayZrw3w5898jMdqFsjR460aLPJQ9vhGYc/KSdZZ3XpYpGiU2Re/oR0wGGR8q1VrGjROLzV+OrIElB+Pf7qNLCYExT8dQcsSRHPSQoLFg8//LBV3eeTOh7+d955pwXLGsmG4cOHq7KiLEZ5SJEuhhTqBu5zdNnM9Igzvz9OGop37om+bn/AOSjEuoCiPFS3pGAWlDw07rrrrnN5Qw6bPynkheYLegnrR53POMOigyCXpoGXWf5S1AdIkdtC/0MgpRGVxyg/0q9cuTKIVWgcKVZajhWJOPxVPbi4n3766RasGOSE8P7777v4GW2jUOFCFh3w5gQRWQZGIEsR8LvS69y5c5byY+J5EwFYp3K+rTSW6u/vU5OeypsFzmeleuuttzz1i7pOxiJZPoOLi8sIMAKMACOQhQg8/fTT7jfJWH/ydykLQc8DpEmh1ipcBNZL3f1D+rGitXz58jxQOi4CI8AIMAKMACPACKQaAXOPyzz/SjUfpscIMALxEYBOcA66NAAAQABJREFUkdn/9PkvdJBSHfBrQQ5pRODLL790F/bGwWzDhg3TKAWzYgQYgXQjcNddd9mHh67SCDZnEMhimHRzIidhUoFFp6GNHGMD0JykQUnoxRdf9BQDbnauu+5a7xhj5PcrrYBeQXItA1dByQTwufvuuwOVuMhiUWT+RYoUsSZNmpQMa5n25Zdfjut2KBn+Jp64Hzp0aKAsqDt/WrLSJdP++ON6q127ds77qPzJGpZluq0JZOyLDJIDci1cuNCX0rIWLFigZDLqI6j+/eVSCly6DlX7I0sbMfQR0evcc51yazooP1m/C0wfFum4lKT8rpwZSStwPfXUJKtEiRKuXBHLf9xxx1nr16+3IIfJX/e/ZDZR4RaiR48emcYffRvKe1BQzM4A1126/Lp+cW3evHkksaBId+WVV8q/a6+9NimXQJEYcCJGIAsRmDZtWkz7f+GFF7KQI5POqwhgjed+V/T3VVhffPFFXi1yviqXdm1pzv969+6drzDgwjICjAAjwAjkDAQwtzDXb3r+AZfAHBiBeAiceeaZ9v6Jd/8R+xL4wR9ZbIyXleMZAUaAEWAEGAFGIB8iYO5/yDMD+/wlH0LBRWYEsg0B7Deb/Q/3WP9lxX4zu7YkdNMZ4HqjdOky5CZiP7GlapXnCUIUIJdzf5IbKZjn58AIMAJ5DwFSvBIjR41Uw7ns9xnkkvB0ATcDnc44Q/xBrjTc4I4NThzN0GjAlo/4IoAEXG/AjSJc4sG1zxlndBZLliyml5RApqF9RLpaOoOMk/+pNPb4A6JkJUuMGjUKtwkD/aJVugxEQg9JZ0yjWPkiMX+4ToRbF7ifjBLgYhIug7Toh8rf5EnW1cSQIUPMKHlPCjViBL0z8W9/ensxfvx46fZxG7nwVPJIaShPtPIfeWQT6bYH7lOiBLShUSSHrk7kAccFCxdKV0smDVIuk64Ho9a/mdeuPCcK7h/ffPNN51nf9OrVS7w1bZohjyo/3Kj63X7qPPGuXpeSGkchyBKYdIkaL58ZP3nyZDFgwACKioa/04hsInCNA7m//BJ9SPU1TT+qa0u4jjqjc2eB9HBvdSj4X3LJJeLZZ5+V/VzLkc5rx44dxYcffqhYUkF0+7/6mmvE448/HioK3IIdTW5Xv/vuWzn+AAeMUXABlZ0B/QIuX3Ubp5k+1RGZ4/bVN2TEO4yx+l7eRPrPbb/xk6s0Jn/awBeNGzeOn4XfpA0BuLRr36G92Ltnr+JJDbgL9esZM2dKd79pE4QZ5XoE4B4O495B6yANKnpsyCDXiAXEX3/9Feg2OtcXOp8V4J133iFX9T2p1Jg3UB3Tv97kxnzq1ORcW+Yz2Li4jAAjwAgwAlmAAPaby5QpTW58ad6B75KcemTQmiZDwPUs7zdnAei5nCR5MxDdunVX7cUsi7H+L1+hgiAr/eKqq64SpFxmpuJ7RoARYAQYAUaAEciHCOA8T+9/mOcfFva+ODACjECWI+DsN9MZHLqjPv8nozFi5187BRnaSKkMrEiWUjijETuqaVOx6ttvncRybU9P8+fPlwf/zgu+YQQYgTyDAFmTkopaur+jYOTGUhSgkX4HbeqpTT63uCod/Q/r8lKnxczppmtQv4GYv2C+6EJKCN8sXy5fBKdUefzv9DM2hDZs2CBq1qzpEg+4g+JD0SJFxH/7oQwLsfGTA1LGoHsppoxT98WLlxB79vyDZE4w0yESz21POZXGv3l4DA2//PKLOOaYY6RCik7o51+nbh1Rvlx5Qe4NBT6o/hDEX8P7wvMviIsvvtifRUglwJFQstMltOuOlEz+3PFn3PLHEKIIP/97hw0Tw+69NyhpTJySg5QRjYDyL/x0oWjTpo0RK8TWrVtF1apVPXF48PN3np0blUU90v/U/obcOURAyc4foGD29ltvx5T/559/TtiO/LS8imRazgyxfPk3UiHJn97/PGfOHAFFHCgw+YriSep/5zw7Nyq5eqT/7f4XRZEM7a1FixZiHbU9t6V42EvZylesICqWryA2btok/tu3T6WNw3/iwxPEoBsGeYmk4Qk4licZd/79V8z4Q1aZAvuJKRa5VRFkjcyJOvLII8WqVauc5+y6ueiii8Qrr7zisHdgd27UK/VI/ycYf/3jD3L7SDm8gt45aelm3Nhx4pZbbvGk54f0IID594QJE+Qii1zLitXff0+KP8Tbrv/atQ8Ty5YtFRUrVkyPQMwlzyBA1kHFqaeeKsvj9Hd6akprQShKc8j9CLxDP+g4pycUydzxv3fvPqRI9lruLxyXgBFgBBgBRiDXIYA5xrcB+83z5s1z5iS5rlAscJYhQJbDxRNPPGGvYWm2GrL+Peqoo8TDDz8iTj/9tCyThwkzAowAI8AIMAKMQM5HAIpk5h6XlhjnhhwYAUYg6xHQRkT8nLLqDI4VyfxIp+FZHWS+qjjJRZoadmHdZvDgwWmQgFkwAoxAuhG4m6xajRwxwmaLPk/B6P/u5CtDnHTSieKSSy4m60i1pfLFhx99KOZ+MEcqnDjpnBtFyv8/XlcnC0s33HCDwIbPb5s3i/9btEi8+uqr4t9/96nkPv53kjWuIIUhk/auXbvUL1l9/EuWKinO63WeIDeIglwniLp164rixYtLpS8odb1OlsQm0kH9gQMHiBwy40KTS9tCx+uvvy7OIwsO8QImop3JIsxcUhiSU1KDf+EihcUDox4Q5JbQY/EIyj9kil/gw2qrZtvkFf/Rox8QRYsWlRZmKtCvLC+88EKyElIwRgTHEhi9cdg6N97kdancV199tTwkxq9+Fy9eLMhFmviZlODwCw0VFH+Uv3KlymITKRQVK1bMSyjgCZbR0Ib85Yci2cltTo7JQa5PpbU3+YIm+CtI0ZDcDdKjyx/4t2jRXJzStq2i61ABlwxZh/guValSxXmjb2CRDGXzh0OzSEayoV0g0CWKAtc+UsY6+pijxZrVa1Q++t+sHnKhKvqRgmAPstyHckC+Tz9dJCZPfkrs3r1HMnLTe/lLghS1YvkK2Y8cBgE3l19+uXjuued0Fg+edahd3H/ffeKEE06Q/QOJ/vvvP7LY9Z14/vnnZd9QpfbyhzLgunXr0m61BgoOsCimCyO7Kj0Ap+9XrxZkOle9C/gf7fnYZs2Ugqz9/kr69fKkJ58MSJ3eqHjzL5QrCH8pnV0leO+kc26C5Y95rX4aYifGWwrG+IeYseNYkUzikg3/3XrrreLBBx9Epah6gQyqQYjuPbqLB8c96PTbbBCPWeZiBKCgeNPNN8d8/y+6qK946aWXcnHJWHSNgLJIdo5+lN+J83r3ZotkDiJ8wwgwAowAI5BOBJwfzvjWH2q/+cZ0isK8cgkCM8nq8k03DRZr1vygJLaXRPHWv/hB4Thau9atWzeXlJDFZAQYAUaAEWAEGIFUIqAsksldVL19KsmzIlkqUWZajEB8BLDffPNNN3n6H86/+9L59ssvvxw/Y2bfUOfmkGYE6LAK6zH5R+sz5/7Cvn3TLAmzYwQYgXQhQMpITl8P6v+II1cDFil6BYoUlN8+8VZ0yTCYGk9IO4Hub7r5JouUvmJoffTRR1apUqVixh/wJ2srFrlDiMljRpAimEWKOXZZMixyBWjRLxgtssZkJgu8X7ZsmVW9enUHB3P869CxY2AeHTl37lwnn8YP5UdZPv/8c50s5kqWlayBAwfa2LjjLWgA0yiBrMlJTF2+mo7UeJJyFSlaxKIPuPXvv//GkNy8ebN1fKtWMfLr8gO/KEHKYXwzdP2TxZMo2a333nvPI4PmT5uAkfL7E517bi+XntH+SFHLnzTh8+X9+zu0aM7j3JNCU8K8kB9t3mz/eEZ9kdU/iywMBdIgN5RWv379HF66fk3+GuMVK5YH0tCRs2bNCuQPmuQi0tq+fbtOGnidTnWD/of0fv7kcjYwT1ZGkkUxGxe7jdt4VqhYIZQtuQRUfdyoQ5SJlBpD86XrZV+aZzn1THLpe/Pqx1++85VHpXf7f7z2p+nqvqafcfXHZbYfpgu7vMynz/nnW+TGVLYHfKNOPvlk69JLL7U+/fTTvFxsLlsaEMCY4+/r6P9YC3LIGwiQi/mY73/v3r3zRuG4FIwAI8AIMAK5DgG93+yff2BOwoERiIcA9rGwHsX+iVyzJlj/FitezML+VJR9wHg8OZ4RYAQYAUaAEWAEcicC8rwEcwXffCF3loalZgRyHwLyjMvX/7D+y6r9ZjKQwiHdCHzyySe+w0t1GNm4ceN0i8L8GAFGIE0IOEpAvgFeK6rg8Hrp0qWh0lxzzTW+scOrjICPBVnUsp588slQOrNnzzboeBVFcCCWKNx3331Wu3btrMcffzyh4pmf1lNPPWXwhiKH4k9WzPxJPc9kWc2XTymBkJUnT7qgh927d1uHH364ym/gX6Rw4UgbX0PuGhLIWyuDQAEokTIXNthQRv8EG+U/7rjjgsSOiXPaENWz3NyjK+o8EW9NSCqSGeVXNDLkhqFOk8yVfonqOSDXm9WZUSQj15ayTJqGLh9ZJEsoUoMGhKuNhc4HOmRtziIXHgnzjx07VvYbPw1NC3WWSKHttNNOC8SCLPRZUL6MEsjanoeG5l+uXFmLrNtFIZGyNGTdz2lj/jY7dOhQy/wjS3nWZZddZrVu3doqTH3Kg6Pd3n744YeUyXYohOgX+m65qI3o8UeX0d/+ZB3E9Blv/9P1ZOZ17v15/c/2+Af+46gdcsg+BMhCoIU/DoxAKhFo1LChO+YY/R9K/RzyBgKuIpn6NmD8Z0WyvFG3XApGgBFgBHIjAmSB3J17YL1jzz8aNWqUG4vDMqcZAfwI8rLLL3N+ZKPXuvrqrHOpbeG+Zs2aFlnZtfADTg6MACPACDACjAAjkD8QiJkX2PPN/FF6LiUjkP0IYG3nzMuN/WasBbMisGtLGvXSHeDujBQPBC20bNZU5VjfkxmMP/74w+OaLd2yMT9GgBHIGgTgHhFuI1VvN3lkiCpVK5Pbyf8T9evXN1/E3JMyhmjcqJE4iLMqfCpwlRd3DHn55ZfIRWPfmLz+iCZNmojvv/+eog2J6Hb8Q1nrYnf//v2iQYMGYuPGjbZIij8poIi9e/cKsgrjF1U+n9C6tfjiy8V075a5bNky4hdyGVmyZMnAPGakdC9F5j6N0srXX331Fbl2bGEmjbnXdedgJYkoSpUqVSTXmYtE48aNYvL5Ix599FFxw8CBKIERMsitZVFysbg7btl1YkcOgz8KtHDBp+Lkk9voZHGvM2bMEN27dYvhP27cWHHLLbfEzRfvhXRt+Ra5ttRtkRLSZ4xcdf5EbllrxcsWGE+KZOKZZ5+RtBSy+CYKsTyBS8kvv/xStG59AtFUqCKP8iCaId1MXnrpJYH8/JFwMXbJpZcK6yD22kFN8bfssoW52Fy5chW5gTxKkjT5o01///13ol69en52cZ9POeUU8enCT2P4wy0k3EOmKzRt2pTcbn5LWCo0FF/7Xl4C7imRWX5VJxmiWrWqgqy/pUv0UD4Y89asWUPzL4v6G82yZbOxe6RZVB8V8xVNxuV8TSYxsZARoEWRBIRsS/IWfGweeEvvgvgff/zxghSKJRX+jxFgBHI/An/99ZeA22z0d4yHehzBGLBjxw5BFh9yfyG5BGL69OmiR48enu/f+ef3EVOmTGF0GAFGgBFgBBiBtCPg7jfz/CPt4OchhkuWLBGDBg0SZHFcLm+dPR/f+lev/0866SQxceJE0apVqzyEAheFEWAEGAFGgBFgBIIQuPpqnFGY+98Zck+EvO4EJec4RoARSCECWO9hv9k911I7zhkZBUi/aHvW6BdlhXYa00yMQIMjGqhVvTppde4//PDDxJk5BSPACOQ6BDzWpAwt4RLFi1ukDBO5PB06dHDGC/r+QM3D3iHMsGBZKWp4cJzrYhd09N/NN98clUSm03Xr3s3hp/niumnTprg069SpQ3kMV3KUnjar4qb3v/BYYTPwJ5/R/qQxz27defkXK1bM+uyzz2LSx4vYuXOnVaZMGZwmx5R/7dq18bI58a4cbn7U/8KFC500YTeOa0sf/8y61PNYJMsANuovMxbJLr/88hhM0CYSWSQbMsS2FmfwR77KlSsnbV0I/cdsj+b9ipXxLaPdcccd0Cxyyi/zEcawopdsgJUak6++T0e/1LLC+pl286f5q6u3/SPOHH90/cu0Rhvr2bOnJs1XRoARYATyDQKBLrlpbGxQv0G+wSA/FBQWZ8eMGWNdd9311tVXX23deeedCa2Y5gdcuIyMACPACDAC2YeAtIROazVnLWevzXi/OfvqJDdyhpWxV155RVod020pbP2PPYRLL73UglUzDowAI8AIMAKMACPACDACjAAjkHoEsKbzn7/hmYy3pJ6ZTRFWEjhkAwJ9zu9jHzrT4l4u6tUB7QMPPJAN0jBLRoARyGoE7r7rbncjT27qqT7/3HPPJcWarFIZdBQNbOb06dMnKTpQPnI/OLaCCI1FydJJiqmd+Lrrrwsc/8IUokqVKmWUW22Knn/++ZHZ0y8pfflVmR966KGENIbcdZerMGNsyCZbd2DUsVMnWw4XcyjgRFEmdJSmHBkUjYULFiQsAxI4imRG+8P351AUydCG9GaivmZGkUy6UrQ3uE2aiRTJ0F41X30Fntdff30kTPyJunbtKuvHpAV5wuQga3CBeVatWuUnn/B5z549gbTgIjNd4YMPPnAwVcphbh3DbK7/r2HDI6waNWpYhcitrhxTfAqfWeWbPV14MB9GgBFgBDKDwKhRo+wx0TjIpe/JBRdckBlynIcRYAQYAUaAEWAEGIFICFxA+yRqXWbOQTIs3m+OBB8n8iGwa9cuCz9qxA8pzb0a/56JbnP48eS4seOsf//910eJHxkBRoARYAQYAUaAEWAEGAFG4FAQUPvN9tmyPOdVa74Lzs+6/WZWJDuUGjuEvDhYdRdd7iFt9+49DoEqZ2UEGIGcioC2JkWm3z2bL2HKU0FlIROx3k1BaQlJyI2doPTx4shNpkPHHIvatm0bL0vK4rGBafLU93PmzInLQ1kkA3buR7Jjx45x0/tfzJo1S+Huw3/atGn+pDHPuu78SjLJ1h0IDxw4UMlhfORR/k8+/iSGrz9CyeGWX8pD9f/pp5/6kwY+vzf9Pcvf/kDjkBTJ7PanNw1xzYwi2RX9r7DbI5XPUChbuXJlYFl0JKzSmbz1fRTFPE3DvEo5DP6aXjw5sDlanKwK6nT6ik3Wffv2maQj31eqXCmG3jHHHBM5/6EmvO+++2L4o1yNGzcOJY1fHh9e5/CYvMlY7QtlwC8zhYA5Zgb1fz3+qrbr7X+6PbvX2PHHfWceVJn3bp78wj9TFcWZ8hwCPXqcTeNhbPtn5do8V9VcIEaAEWAEGAFGIEchgLmGnqOb829yxZyj5GRhchcCP/74owWr9Lptxb+q+e95552XuwrI0jICjAAjwAgwAowAI8AIMAI5HIHu3bsHzMczrKzcb84AJjT555BmBBYsWCBOPbUdcfXCX61aNfHbb7+lWRpmxwgwAlmNwD133y1GjBxJbOjYXvZ7dSUlINGmTZvI7MmqlOjRvbtv5BCClIzEiBEjItOhXxWK0qVLx6Rv2bKlWLx4cUx8KiPICpi45ZZbiaR3/CM3UIJcdway6ty5s5jzwQcGckLUqlVLkNJSYHp/5EjCnqy5UbQX/3Xr1ol69er5k3uekQ/5vTmFSLbuQHTosGFi+P33052mpljNmDFDnHXWWeohzv+6DXlzCoHvCSkAxsnlRs+cOVN07dqNIoC7S4UUyag+bnETRryjjUHx5ptvqtQ2OVw2UZ2gbpIJV1xxhXjmmWecLJIc/bdi+Qpx1FFHOfH+m5o1a4pff/3VKQ7yFSpcWJCCF3mbxFNyYcCAAWLy5MkKHSP78m+Wi6OPPjqGGCmYqXikJVjti6hYsaJAe8YUS8uBq4M83VjWQUHuH2QaTRhpzjijs9i2dYvUMNfxJYqXELt379aPWXo988wzxQezZ3v4Q/DLL7tMPPPss6G8n376aXHllVc6aYoWLSrIpasoUqSIE8c36UUgo0CGVGVB23NbqG6pwbLIt/hPB8qsc+irfiWvdmS8dzhKyE/8eWnlaR359gFrui00lvvb/7z588Wpp5ySb3HhgjMCjAAjwAgwAoxA1iIwn+Yap7VrFzP/rlq1iqAf/2Qtc6ae5xH46KOPxODBgwVZbXfWiJ5C06KwAL1ZSHud9MM/zyt+YAQYAUaAEWAEGAFGgBFgBBiBzCNQo3p18Zt/TUfz73mfzCOdo1MzTzgkJyuShYCTla+gxFGuXDlx8MBBWtyr4zWswHDY8OP69aJOnTpZyZ5pMwKMQJoRuPuee8RIUvSibu4oaGSQXa4FCxeIk08+ObI0ZAVLnEIHkJIO5dLXZBXJwLBQwULiwMEDijcRwvjT4rjjxJIlS1RcEv8fPHhQLFq0SJA7P6kM++tvv4otm7dIJZ+tW7eKf/ftExalgbxbf98mKaP85vj34dwPRfv27QO53nzzzWL8+PHOO13uKVOmCHJx6cQH3UCRpX6DBuL3bds8+JcqWZqUXP5yFH2C8iJOK3CZ78F/PtVF2yTqDvlHP/CAuPOuIZKUWX4oCJJbRRkf7z+t0Ib3uvy4LiA5orQhRwkRmSho/qStLoBvsqFXr17irWnT9BfMyQ7lvmQVyfqTItlzpEhmfw2d8mFzMp4iGVn8EiVKlBAHDtht2Jagdu3DxKZNGx15krm5on9/qSyl8UVe3K8ghbGmTZvGkNL90fuCckjNAUVF/q9uPe1P4y/z6iw2ITu5fiVx2b59u6hQoYKXVYqfoABTgZTg/tqxI6YunnrqKQFFu7BAbjFF585nOuUnt58CGHHIPgQKQIExBe3PLIFun/pqvpM9Jgvav8lD89VX811O4A8lUQ75G4GNGzfKtZxso3ZDxaVAoYLizx1/CnLXnb8B4tIzAowAI8AIMAKMQJYhgB8glaX95gP798esP39c/6Oco2QZcyacLxDYT20L+wPDhg4Tv9M+hX//44K+fcUrL7+cL7DgQjICjAAjwAgwAowAI8AIMALpQGDDhg2ibt26xIp2mY3zl0KFCokddJ6XZfvNdGjIIZsQoMNxnJnH/JFiRDZJxGwZAUYgqxDwukd0+32y7hGRXo0b+FJoOhlJu7ZEOUmRzKChaB133HFJQQC3dXDXWL169Rha0F+IlVXHxV7JglNc3q+99pqPlip/1apVLbLiGDcf3Av2798/RjbIBbeIUQLqTtn0gcwa9wwr2boDL7iRdOvNxYCUvBKKotqQy1/TiezaknjoPOZ17NixCXkHJXDdGmiZVHky49oyXh2RIlkQaxlH1uTs8nj5H39867h5Er0IliPDiufa8u233zbahFufwDfZ9m/WifceKmcZ1rZt2xKJf8jvv/vuu4A2ovjHw8BkStbxnPwo/2233W6+5vtsQMAds7zt09vGwt6p+lfpdV/TV+Qz7106qW7/uYl/NlQzs8xhCMTOWVTfwNqPAyPACDACjAAjwAgwAlmNAO83ZzXCTB8I0I/drOuvH2jR4ZWz/1GyZCkrM3tCjCgjwAgwAowAI8AIMAKMACPACMRHwN1vVvvM+vzlqKOOjp8pBW/gUolDNiHQ//LL1YGrVrZQRiOsG264IZskYraMACOQVQgoZST3kF0f4n/66cKkWEJ5ifSNHWUNUj6W96CfbChYsCD53bNp2eNPVEUy0nC2evTo4eY3ZYpz75FbpzH4fxiiSEZWp6zmzZtLpQUPHcpfvnx5i1zqWfSrSA8EZB3NOvHEEx2sPPmI/4svvuhJH+9BKXBpzKFUoe6hNJNseNCvSGaXPxlFMs1ftiHKH1WhDTx0u3OulD+z/rN79uwZWP+Z2TSEApcql1JK0Yp7YYpkH3/8cSB/chGabLU46bUimeavcYonx3PPPxeLqW7bvqun3vQ7u/7RD4PKr/kffvjhZNDvoCNnVt0895wqj7/8ZcuWtdAHEwUolmqZcZ0+fXqiLPw+ixHQ9XEo7U/TgNKYh45uv7o9h1w9+XQ6nT9B+89t/LO4Spl8LkBg0KBBnrFQt398YzgwAowAI8AIMAKMACOQ1Qi462u9j6GugwbxfnNWY58f6WO/pEOHDnL+O3z48PwIAZeZEWAEGAFGgBFgBBgBRoARyFIEoDvknpO467ys3m9m15aEenaFyZMnO26i6IDBcT3UsmVLsXjx4uwSi/kyAoxAFiBwD7m2HDFiJFGmsV52eMWElIAiuSXUIpH1KdG2bVsPDbwjZSeiP0Ini3SFyUu4BTTHH1IkS+ja8ocffhBdzuoi1v6wNpgPEYS6gem2Un7WdMGN8oOA5h/m2hLpPvroI0GbU7iNKT+iihQpIho2bChKliwpyLISua3ciWgjrc2YLn169xGkwa3eJ/gfLiVHjRzllsemuXBBcnWHbHAjeetttyo1CpsvpJqepGtLDSVIoE20adPGphb/MmPGDNGtWzcDD5WWrKSJW265JX7GOG/g2nIaubb0h59+JteWNWv5o0OfryDXls+Qa0sV3HpasTy+a8tZs2aJLl26xNBt36G9QFvKTFByPEtZVT/V7XgludhsetRRMSSff/55cdlll3njSXydT76wi+MA7zyrbPLRE2c/0AV0ihUrKh54YLQYdOMgL58seLrqqqvIRcXTRNlb/jM6nSFmfzA7Icc9e/aI1WtWO+27UaNGonjx4gnzpSsBKR+KL774QrqzpVm9h20GfsJBcYimW08aUqyL6f+ACIkzChSQ+UBM0sALmzToIU7RRgr1QvNCjA7du3cPdJ+q3/OVEWAEcg8CrVq1UnMpZ2xXN1FcBOeeUrKkjAAjwAgwAowAI5BTEVD7zVeSeLT+cOYjQvB+c06tsbwhF/2QTHTq1In2MIrljQJxKRgBRoARYAQYAUaAEWAEGIEcgoC532yeP2b1fjMrkmVjA6Bf7IhjjmlGEtgnjpCFFviFCxWW/kyhDMGBEWAE8gYCUEYaORKKZCqovbwMsXDhguQUyRaRItnJpEhGwdgPzKQiWWFSJNuvBLIJHtciXJEMiiL4YJG1Lw9/9yFDlC5dSpzU5iRRvVp1UaNGDUHuJ6WSl1Qso+Hu3XffFXM++IBGPrMEQpBrS1dRzJXKubvxxhvFw4887AyZntzOg33jPAMnrxJIrVq1BMbfcuXKObTDbnTdSZIGXalI1vbksKwx76C0ddttt9kld4mRtTDRtWvXmPRmhJRjFLUh+5Ohc0dVRnxvxnuie7fukqTKq/4n15bi1ltJuS3J4FEk08JQyTZt2ihq166dFDWpwPUsKZJ597llPZFbjkBay5YuEy2Oa6HeGfybHXOM+PqbrwPzJIqEHM+SQpv7VVaE0V6C5CDXloIssxmdUaWv36CBePONNzzKSLr9u4pFiotWNoonW506dSK31Xg0osY3a9ZMrFi+PKb8w4YNE/fee29UMjk2Xd++fcWrr74a0/+kwHYbsi92Gdwneec+2jT8yewEnnTe8Qc51GsjEcVlVqHTloAvjAAjkEMQ+Oeff+SY/d9//1Ff9/b/b775htZ+x+QQSVkMRoARYAQYAUaAEcirCCynNR3Wdjro9UeRwoXF9j+2i1KlSulXfGUEGAFGgBFgBBgBRoARYAQYAUaAEcjBCLj7zTjP9x6iZvV+MyuSZWPDIDdsomLFimLn32Q1B+fJxpniJ598Itq1a5eN0jFrRoARSCUCWhnJTzOqEpDO51gkMwYMDB1DMmuR7OABz/iTyCKZsqwGy2fugKU3JY88somAstcFF1wQujEprXJpxSVNhq5z58RXJHv//fcFuSzUMATyVwUxJUNyIgxviUpnR1rueuKJJ8TRRx9t0Aq/RZlHkrU3m4SdOIMsgS2MZAnMpP7QQw95rX/Z5Z/+3nTRrStZCwsJ3jakgSOLZAvJItnJSVgkM3kQmXFjM2eR7LzzzhNvvvmm3RJcedauXSvq169vckl43/+K/qTABUtgFFxSoYpkv//+u6hcuXIM/5o1a4qff/5Z0Uryf1OhzcwaT5Fs3rx54vTTTqO24QqNOyiSwXJfbgp///23VH44aB10+ouWf/bs2eKMM87Qj7n22q9fP/Hyyy+78utq01e8Me/tlLFRboy68z9rFhRvjD861rnqbHTNbD90aPENI8AI5AgEsIY7/fTTSRZv/y9Tpoz4448/BLkVzxFyshCMACPACDACjAAjkHcRgOX5ChUquFbadVFpevLxRx+L02gNy4ERYAQYAUaAEWAEGAFGgBFgBBgBRiDnI+DuN3uPr0qVKi3+/HNH1u43kyUMDtmIALlpg24COa+CjgJOG9X98OHDs1EqZs0IMAKpRoBcT9r9XPd3qZdkkSJZUqyQXo0XKj/GDPyBfrKBDjOdMUePPy2POy4uGVJ+tcjCWCD/Fi1aWKSIEjev+YIs70i+WnY9/pFFMjOZ577BEQ2cPLr8hx9+uHXYYYc58Zoend164pCeLGRZZInIQzPqA7B1aNtjNJ6TrTvwQ9m1/JomnsntZEJxtBz+/FHlIKtnshz+/JApM6FPnz4eXHR5lq9YnjQ5UuAKkC3DIgWuuLQOHjxoFS5cOEaGIkWLWHv37o2bL+zFFf37G/RgIFa1pXhyLF261Ehvtztqf+TKIYxNjnxHrmOd8qq6VOUnC2rWjh07cqTMyQpFFsl8ZdTjsTv/0u0YY6KufzdOp/eOMeb7oPEH7zUtfdV51HOGHBuSLQ+nZwQYgZyHANZw3v6t+j/WfBwYAUaAEWAEGAFGgBFIFwIdPfvN7vqF95vTVQPMhxFgBBgBRoARYAQYAUaAEWAEGIFDR8DcbzbPnzp07HjoxBNQYItktNOfnWHo0KFi+HCy7uOzWAHLH7AAwoERYATyBgLKLeEoUifA+SJ1efv/Bcm6tvyUXFu2bUv5ve6SSMlIjCCrWckEuNHdT79UNccfUggTX331VSCZxYsXi+OPP96W3OUPKxtr1qyRLiwDM/oiYZXr1ltuoVil8aX5x3NtuXnzZlG9enUPlaJFi4m1a38Q1apVE1OnThVffvmlWLdunfzbtWuXqFu3rmjcuLFo1KiR/Gvfvr0oXry4h0bUB68lMJUL+Cdbd8gJ93XataVZ/vemR3RtabtHNeufFMkiuUedOXOm4z5Ttz+0xjFjR4vbbr1NFSyJ//v3Jytiz8ZaEfvwww8F8E4mSEtg5FLSH+JZAtPpUM8bNmwAlErly36Bsnbp0kUni3z1lEnmUoTjybF7925RtmxZcUBb9jM4bd26VVpMM6Jy9C1c76Kte0OGgKVBuLLNC8F0bWn2P3msElhAX8Oy05j9T0YFJ/O+yqBEvvFffg3s+R/GhlvkuBgoCEcaCMDCwq+//ip++ukncqW7ScCaHtzpYjzAX5EiRYzUfMsIpBeBzp07iw/IfTeCMzRQ/7+b5mm06E+vMMyNEWAEGAFGgBFgBPItAsOGDRP333+/LD/mJHr9c0bnTmL2LN5vlpDwfzkWAVgSx9kIrNBzYAQYAUaAEWAEGAFGgBFgBPIzAuZ+s4kDvGnpNZ8Zn8p7ViRLJZqZoIWDhs5ndrb1KNRxA/4vU7aM2L6d3Z9kAlLOwgjkSARcl5C2eGonTyxcEE0JSBfKcW2phgv7lDJD3HXXkKQVyQoVLiRwIK/0GBTBlse1FIuXLNbsPNdp094SvXqdq+IM/h07dBRz5szxpA17kK4tb7vVSaL5z507R5DFDide30ybNo349qJHzVRIhbYvvvhCJ8nSq6tI5vKHKNKlZJvELiVN4RzXliBlB5R/+nuJFcnuuutuMWrUSJVLi0LXqG2IrJ6Jbt1s95kG/ztuv0M88MADWpzIV7gxffiRh5WtJVsTB2QnPvywuOGGGyLTgYvKE088kRQD18oaxn+2vo1YuXKlaNq0aVxabU9pS/WwiN67Cpq4g0LY5MmT4+YLegHFlJNOPEls+mmjwx/lAb0VK1aKo44KlqN58+bi66+/liR1ejw8+NCD4uabbpbxueE/uI6dRS5kTfxRnsszgWVOLe/69evF6tWrqU7hjBSl8waz/vCGrLFRW6C0dCUDeHS109ONTKsbqkEG6RGQx8yv6eAaxB9uhXmT3ADSd7t9+3aBMeytt98Sc+d+KPb884/9SXBrTd1liDNpXj1mzJikXBj72PEjI5ApBMhyq3QjtWvX3/LjoUYDRQprvk6dOmWKLmdiBBgBRoARYAQYAUYgWQTkfjMpuMug1zH0UKY0u9tOFktOn14Eli1bJlq2bEk/2isjoBB57bXXCbJGn14hmBsjwAgwAowAI8AIMAKMACOQAxDAGX6FChXEzp071ZmULRPOqmbPTsN+Mx1occhGBP7880+rUKFCyuURuY+iVoAzB/rLsJYsWZKNkjFrRoARSCUCcEtI4zr9QW1I93NhkWJYUmzgxpC0Ezw0QA/0kw0FCxaSdCCXpEnjDykzxCXz2GOPKb4+/tddf13cPEEvyHKaR37NnyxZBSW3yIKXJz1kbdCggbVv377A9KmO1C4lnXqzyx/VpaQpD9xIOnTsdoDyw+1kouDI4cM/qhzz5s2LaX+QhZSuErEOfE+KGjFlwTeMLOYFpg+K/Oeff6zWrVs77U9h47bveC4lNa1rrrnGKwPxB55VqlSxaIKlkyW84lvcrFkzm5bLH/LQhCzUxebV11ztymDzR75q1apbe/bsScg7JySAm9Dy5csHlv+JJx7PCSKyDPkYgY5kohlzZTk++MY/NWbY31Sj/xUoUND63//+l49R46JnBwJk0TVwHC1ErsTxneHACDACjAAjwAgwAoxAuhDA3EPv+ZhzZqyXeb85XbXAfJJFAHsT2FNy2iyt/5o0aWKRYmSypDg9I8AIMAKMACPACDACjAAjkOsRWPLVEmNurM4/MVfGWi8d+82wtMAhmxE45phj3EZAla8XS+PHj89myZg9I8AIpAoBVwlI9XGlPCWsqEpAWg6pSOZTRgOtu4YM0UkiXwvSwaYeb/S1RYv4imRvvPGGnd6raNOjR4/IPMkdpFWqVCmp7OMqzipM5s6ZE0jnvvvu88mp+JPrQuv999/PcmUdp+6c8VnxX0BKfcmGsePGyrLo+te4R1EkI8togfhHbUNk8ctRVjb5Q5ErM2H69Pecspj0UCYcpicK5ILUIlcFvrq1+wcphIBOIkWypUuXyrbk54+8UNqLEiBHu3btPHJAeUzXTSI5Pvroo8D2jHyP5hJFFuBsltcs/6JFi6LAyGkYgSxDgFxVGu0zwypWrJh1xx13WN9//71Fbi2tVStXWoNuvJEWT95vWrGiRS2yQJdlcjFhRsCPANZu5liq76GozIERYAQYAUaAEWAEGIF0I3BMM7Xf7F8v835zumuC+UVFYMqUKb75tLv/2L17d+uHH36ISorTMQKMACPACDACjAAjwAgwArkeAazd/Os57DlDtygdgV1bEtrZHQYOHCgefexRqnZqCnR2rf4X4pxzzhZvvfV2dovH/BkBRiAFCLjuEW1idkcnJSBx8sknR+agXVvCbKXyoKYIkbJT8q4tCxUSB8ksphp6FB24V6NfpwbKs27dOtHgiAYYpsgomMu/TJnSYtWqVaJWrVqB+XQkKdzQuHaOoIN/2yWZ6Zksg9yVBbu2/PLLL8UJrVtLzR49QJr8ixcvJiB32bJlRfHixQUpqomSJUvKP31ft25d0bBhQ3HEEUcIUkrQIkW6ou5GjRwZw39Bkm5Jwczj2hI4Uhzwf296YteWsg3BtaUP/4ULF0RqQ3v37pX4yEKr6nb4/7juRwGMkgmbN28Whx12mPjvv/9isrVv315Mnz5dlChRIuYdIn777TdBm4DiK2prZvuzxXLaFyk4kUvJowJp6Ei4xfz888/1o3MtUKCAePvttyUfJ9J3A1eHpAgpXVcCWD9/nTyRHJARfcAf0P7IKpK49NJL/a8SPtOvCcRnn30m2239+vUTpj+UBBMnThSDBw8OLD9M5pYuXfpQyHNeRuCQEChatKggC5RywCxauIiYMXNmoBtkuLMkBTMPr1tvvVWMHTvWE8cPjEBWIYA5zjvvvOOQhxNcuLK9/vrr5bfAecE3jAAjwAgwAowAI8AIpAGBG264Qc1BfOv/s3ucLdfKaRCBWTACkREgi/WicePG4ueffsK2l71hRhdqv3r/s2jRImLQoEEC+2O8TxEZWk7ICDACjAAjwAgwAowAI5BLEfDvN+tipG2/OR3aaswjHIGpU6difST/4PYO6yM8V6xYMSnXXOFc+C0jwAhkJwLaqtWhurZcsGCBM15gnKANFWllijZRki6edHNgWF6CbC1DXFvCxHzp0mUC+ZPikEUKJ4EykKKRNXToUKsAmaT3l1+esdpj3ty5cwPzw0VhjRo1PHydMdMuP20tOWOnSVOmM8pIykVW06ZNraefftqCXFEC6i5GbpI5qiUwk0eMa0tbtigWyYaQ1Tldbn1F/ScjB/nS9tKw+Z966qnWX3/9ZYpqkbKXhfa2adMmT7z50LfvhbaVs1j8W7VqZW3dutVMbu3fv9965plnrOrVqys5jLoBxvr7p8uXyCIZiL/wwgtEy8hr0IT1u1mzZnlkwMO///5rPfXUU1alSpUcPIL4R5Xjueeec2U3+Mv89HzBBRdEMjMLV5iQt3fv3pa2wpRZi3ExhQ6JOI0ssgWVnxQBQ3LxK0YgPQjovoD+RIphcZliTC9XrpzTp5G+a9eucdPzC0YglQhgrmJ+U/T4jyssK3BgBBgBRoARYAQYAUYg3Qi89tprnrmx3ivBnAVzFw6MQE5C4N1335VWpoP23zCn1vuf2P/BnhL2Ybgd56QaZFkYAUaAEWAEGAFGgBFgBFKJAM5TK1aqGHj++dpr6dlvZotktBLJ7vDrb7+KmjVgyQfrewr2L8Vw/XrZ14Lcoah4/p8RYARyLQLSmhRZtZL9G6WA2gb1eXL1SNak2kYul2ORDCScwUKIzFgkK0wWyfYfPCBl0eNPmEUyCNm5c2fxwQcf2Jz1YKXEJ2UvceeddwpSIBJVq1YVW7ZsER9//LF48sknxaZNP0mJ/eWH9g2wAH9SJAu0MgPqa9asEeTKUqz7cZ0UVeXw8gdtGL13cLFfe9LiAYF41q5dSzzwwCjRt+9FKi7O/3fffQ9ZJBtBdCkYNMm1ZSRLYCbZBx96UMBCjq5/Xf733psuSOHBTBpzf88994gRJAcEMcuUjFW7rt26iplkzcfPH0RhUQ7W8apUqUoWupYLWDrbv/+AGDDgSvHUU5Ni5EHE119/LZo3b67ekVB+/AsXKizft2jRQpCSlFj46ULx448/BvKXRGx8dV0uj2CRDJbWIPv2P7bH8NdYtaQ2ibKVJut5P9GvWz+YPUf89usvdtPTTEkCfeuURRVt5cqVghQQ1UPA/zQ5lJbPZs6YQSxtIp5LhihfvpxodmwzSefIJk1F/fr1JCZbt2wVmAfAqtr8BfPF3j17pRwKS0FW3w4XGzduCOCamqjvv18tmjRprIj5yl+SLKpJC4KpYcVUGIFMIQCLYhg/0M+uu+46Ubly5bh0mjdvQePSMqcvt2nTRuC7yYERyGoEvvnmG3HssfgeOh9p51v9G43x1apVy2oRmD4jwAgwAowAI8AIMAIeBGAJvEbNGoHrb6zleb/ZAxc/5AAEli1bJq2lz58/31nTqW0KvVlhC0mP2DNpdXxr8fDDE8UJJ5yQA6RnERgBRoARYAQYgbyPwKRJOCdyv8vYr80gbe+rrroq7xeeS8gIpBkBtd98rOJqz3/1+eOvv/4q6McVWS9RKjXjmFbmESB3a9BRkH/UFnACgbZgPfzww5knyjkZAUYgxyAAi2Fqm0P1c93fk7EmhcIgvcyrrR7ZV1jNSjYULFhQjjPmr/1atmwZSmb16tVklay0zOeRwx6/dLmccQzxWla5zeMtP95p/vEskmmBvvjiCxdDTVNfM8mfJrnWtGnTNIvAq9cSGLaqVJmSrTsQD7JIhvLPmDEjkLcZqazaufwzI8eiRYuU/BovA3/Qc+pN4gorXxkWuWU0xYi579Chg5emScfGSrULW3bN234HHuRWUdLw81+xfEUMv6CIZ5991iODQycifyWfsG677Taio76/uOq2GcUyGqyvkUKbtxxJ8nfkNvCvVbtWUJFTEgcLTh07dnSwC+JPk9WU8GIijEBWIwCrmeTi2B3HqP+RieesZsv0GQGJwIQJEwLHf3KrzQgxAowAI8AIMAKMACOQbQg0PKKhs94z918mTpyYbTIxY0YgDAGs62BNj35Up9qu3vfTV+yzGH/Y1+vX72KLDtPCyPI7RoARYAQYAUaAEUgBAvob7Jwj2OcfKSDNJBgBRsCHANZsus+ZV+gUpSvg1/0ccgACV1xxhb04Mtxz0QDco0ePHCAdi8AIMAKHioBUJAvY9CBLKUmRjlEksydqmVYkMzZf6KcDFlkkSyjP888/byiHKaUqNXFU92pz0tjYIbryI2eX/+KLL7aOP/74mA9gmCLZ8uXLLbLm4eYxsaT7ZPibH1zcFy9e3Pryyy/jllspARrlsTHPjCIZWdZxy2BgH8W1pVIks+Uwyp+sHKeffnqgDKh/B0dDtj59+sTFBi/Wrl1rHdmkiaIJucz6kFh569/Ev1ChQtbjjz9ukZUwyhfLP4oClxbu9ttvV+0yCf5aFihVQskPilU6zrxGlePnn3+2WlAf8uDoa/8mXc99QPnx/pRTTtFFTNmVrLhZL730ktWOXFo6MsThj36HOvq///s/a/fu3SmTgQkxAqlGYOnSpTHjD9o5B0YgHQhgzRb0/RswYEA62DMPRoARYAQYAUaAEWAEAhFw9puNNT7WgLzfHAgXR+YgBLD/MGzYMKt4ieLGvkX8/b9SpUpZo0aNsrDfwYERYAQYAUaAEWAEsgYB7H0F7X9lDTemygjkbwRi9pvt/jeAdIrSFViRLF1IJ+CDgy6y/ugujOwFfrny5Sz4QOXACDACuRsBWLVylUtshRlS3Mi0IhmNES49YWVKkYyUeLCBCDp6/ElkkUzXApRuypYp4xmzlDwBVqf0eFaunPXYY49JEie3OZkmnCqt5h9PkeyPP/6w6tap4+Gl5T7rrLOkcgs2inbs2GGR6waLXCdaq1atsr766itr9uzZUgkGVrWgMKaUZlz8NZ1evc7VRYu5ehS47LIgX7IKXCCsLJLF8k9akQx1ZsuSrBw//PCD1aplqxj8FTbGd8j+JsFaWKLw119/Wd26diV849e/lldZ+hLWkU2bWosXL5akpSKZga2UhfhHVeDS8j366KNWsWLFYtqKrmdVRi/+sBZDbiUlCY8imV1+yL1yRTTLaCCCzc6BAwfGyOEvv7/9B+F/0kknWVCiTHV46623Ite/K3fm2nyqZWd6jEAQAvjV+mmnnebp+40aNWLlxyCwOC7lCGCtVr58BU/702P6iy++mHJ+TJARYAQYAUaAEWAEGIGoCMj9Zqy1ffsv5Wh/hvebo6LI6bITgU2bNln4gSMsj+k5ttqncJ91PK5169a13n777ewUmXkzAowAI8AIMAJ5FoF45z95tsBcMEYgmxDAWg1rNj3PNee/6fzxPCuSZVMD8LONPUR3F0Nw58aBEWAEcjcCL7zwglWgQAFn0MfgX7pUaWvdunVJFQxKUviVnf54YOIGus+/8HxSdJD46KOONugoBaKLLrooMp0tW7aQwswNVuHChWlT0lBAwial/YePW+XKla1BgwZZSK9Dv379HEUopC1atKhU/tLvzWvfvhc59Ew+PXv2lBakzLRh99u3bw9w46dkrVGjRtysHgtsdjlLlyktLXHFzRTnxbvvvmsVKkQuRanMWkEHCm5R3AdCjpg2VLpM0m0Iou3bt8+69957rSJFirjY2nVmLgZakeW49evXxymNNxoTG/xatGLFig5NXUbdHnBt2PAIa8zYMdbePXscAjt37jTyqe8fJklQDEw2rFy50oLVu5IlSzoYm/z1fePGjS24Ivvnn38cFlBGqV+/gSM/0paifpoZOWCd7EZq9w0aeOlp/kHYFC5SmKz1tbaGDh2atBKdU4gIN1DoDOKvZHPnH+ZzQWq3u3btikCdkzAC6Ufg4Ycf8fTbwoWLOIqq6ZeGOeY3BJTrbXfug7FTj7H4FnBgBBgBRoARYAQYAUYguxDQ+816bqLXo7jqH3Zll2zMlxFIBoH58+dbxx57bOj+o9m+O3ToYGF/iAMjwAgwAowAI8AIpA4B81uLez3HTB0HpsQIMAJAQO0322d1vvN3rPHSFTLAiDo7hxyAwBENjxBrf1hLehI0+hryjBkzRtx2221GDN8yAoxAbkSALGuJzZs3C7J6JEqUKCFq164tyHpS0kUh61ti08ZNYs/ePYIUsAS5nhOkdJM0HVKaERs3bhR///23yCiQISqUryBq1qyZNB2ywCTIvaEgS1fySkpKYs+ePbJ8ZO1JkJUYQa4DPXTx6dmwYYPkjTKQIpcoXbq0Jw0eSIFHHHbYYYKUlDzvjmhwhPhq6VeBeTwJfQ+QtWnTprLc+pUec4EFeAUFsnYmZTnUugNtst4lfvnlF9kOSIlM4oRrlKDl2P/ffkHm/TPdhjQv1NXq1avFylUrxZrVa8S///4rypYtKw4//HDRqlUrUb9+fZ008vXAgQNiwYIF4ttvvxW/UXsvUriwbA916tQRxxxzjDjxxBMDaYE36gBtB3igLjLTPzRx1PWHH34o6BBf4k1Kc/IV5GjSpIlo3bq1Tuq5Qn5S2BSkYCblQD+NWj8eQsYDTezEokWLxNatWwUpNMr2jDZdsmQJUbFiJUHKlqJevXri6KOPln3ayMq3jAAjkACBTz75RHTp0kXs/XevM4F+5JFHBFkGTJCTXzMCqUEAa7U77rzDaX+KaoYgxWn5jU0NF6bCCDACjAAjwAgwAoxA5hDAvgz2axD0/gfuR48eLW6//XbccmAEcgUC2K955plnxN133y22/b4tZv4tI+xGjkvBQoXENddcI+iHlKJChQq5oowsJCPACDACjAAjkJMRwDmiR4HBnl2yqklOrjWWLTciIPeb77hT2lZxdIao++FsfM2aNWkrEiuSpQ3qxIywsJn05CQag50mITO1b99eHoYnpsApGAFGgBHIWwiQ5SRx/fXXO4UiF5xkSVOIyZMni/79+zvxydx06NhRfPzRh5KOmQ9KRxhvOTACjAAjwAjkDgTILa3o1OkMUkreSQLTB4L+jRo5StwJpR4OjECaEOhI84oPP/zIPpmlSQq1QyznrrrqKvHkk0+mSQpmwwgwAowAI8AIMAKMQDACV199tZg0aZLnZQZNWNp3aC/mzp3riecHRiA3IPDnn3+K++67Tzz22OP0I819zvw7VnZq6WTIoUqVqvIHHvjhJAdGgBFgBBgBRoARyDwCGRkFYva/QI0VyTKPKedkBIIQ6ET7zXPpzFoFe7OZ1nBXXXVlWvebWZEsqHayKe71118Xffr0cbnjPIwMQxYrXkzAktGhWGZxifIdI8AIMAK5B4Gbb75ZjB8/3iswjY0b1m+QVrO8L6I9de3aVbw/cyad8WLr1FXd/eqrr0SLFi2iEeFUjAAjwAgwAtmKAKz8wRIZucZ15Bg3bpy45ZZbnGe+YQSyGgFY0SSXztKapstLLe6nTp0qevfu7UbzHSPACDACjAAjwAgwAtmAwBtvvEFzkj6e/Q+IAUv5sJjN+83ZUCnMMiUIfPfdd+KmwYPF7A/mED37h/n6nM3mgMcrBlwpnnrKq0yZEgGYCCPACDACjAAjkM8QyIClBye4H11WJHNA4RtG4JARgFey8uRBbC95JfOHdO83syKZvway8Xnbtm2iatVqtOw5SApkevlDAzE9zJ0zV3To0CEbpWPWjAAjwAikH4GLL75YvPTSS+dY+7UAAEAASURBVDGM4Tqxbdu2MfGJIvCrxQbkrnE7Kef6w++//y4Pg/3x/MwIMAKMACOQsxBYuHAhKZGdJXbt+lsKVohcluBg4LLLLs9ZgrI0eR4BWDOFRTJtMVUXGBtrW7Zska6LdRxfGQFGgBFgBBgBRoARyA4EnP1m66CXPW05fziXLbN7QeGn3IjAe++9J/BD1CAXruXKlZPufypXrpwbi8YyMwKMACPACDACOQqBAuTaEh6DnGDrkrEimYMI3zACh4zARx99FKgTVKBAAbF58+a07jezItkhV2dqCTRv3lx8/fXXRNTV5AWH22+/XYwePTq1zJgaI8AIMAI5HIHhw4eLoUOH0pBI1sPsGSoZahSXXnKpePbZZykaY2W0cPDgQQFrZLNmzaIM3jG2devWAi7SODACjAAjwAjkbASWLl0qTjvtNPE3WSLD96BI4SJiypQpomfPnjlbcJYuTyKANdrYseOobNhFowYppxeWaN78WLF06bI8WWYuFCPACDACjAAjwAjkPgTc/Wav7LfddpsYM2aMN5KfGIFciMC+ffvExIkTxciRI8XOv8lqNRaLNEef8P/snQegT+Ubx7+/u+09MlNGJSIVolIq0vhHVCLJKBqUGRUK2bNIMtOSSMrKKJsos2FF9sq+uOt3/8/znt/5jbvce919v2/5nfe8552fc+45533e5zzPqNF4443OmXBE7DIJkAAJkAAJZDwC1nqcR/5lfVipymUxPljIeF1nj0gg0xCw5M1DLTGz9UorfXegWrXbsHlz2sqbqUiWwS6b7t27Y/jw4aZX1rWhN+RoVLutWppfHBkMDbtDAiSQDQksWboEDz/0sIzc/bR0U2jWrBk++eQTMfFZwJ0WX2TdunV4//33sXjRItvYvclq1zphwgTxLf1yfMWZTgIkQAIkkAEI7Nq1C3Xr1oVaVVDnxMEhwVBXPaokzEAC6UGgerVq2LJ1q2nafqfQHXWxqq5WGUiABEiABEiABEggIxBQhbHh8m5iDEh4vbSogpl+qMFAAlmFwNGjR9G7d2/M+OwzVKxUyXywHxQUlFWGx3GQAAmQAAmQQLoSUEUyr1dJd19okcyNghESuGYC9kdA+tcWLf/Zf3PpIW+mItk1n86UrWDx4sVo2PARozxmanaZiHSIucijR46K68tiKdsgayMBEiCBDEzgwoULKFioIKIiIo3A035g2k/OwMBA1Lu/Hh4VF2dlypRB4cKFkTt3bpw4cQIHDx7EgQMHoG4wV8g/j81drUWC8SHswB131DDWyPz9/a10/pIACZAACWQ4AocOHULdOnXw78EDxvhTSEgIvv/+ezz8sCobM5BA2hM4fuI4rruuBKLF4qkd7PeURaK43qBBAzuZ22xKQK3hbhVFQ1WCPSauTqOd0XLNFDfm6QsVKpRNqaTisOUL6Midf8F5cD+c/50y7/6OQoURVLMuHPnyp2LDrFpvg9v3OLH7gBMnzwC6X6ywAw/c4YeC+VxzL2IiARJIVwI//fSTvJs0lD54FiL0gz21InHkyBEUL148XfvHxkkgpQls3LgRaqWsjswhGUiABEiABEiABFKGgO0hyJZ/2bVSkcwmwS0JXBuB4yI/LFGyBJxRHnmzXWN6yJupSGbTzyDby5cvo2DBgggLu+LReXBpTHz22XQ8/3yrDNJTdoMESIAE0oaAurbsP6C/URzwbdHrdVWiRi9M75ca0eDaaNQrp+6aoGklS5XCzz//jPLly7tSuSEBEiABEshoBM6dO4datWrh77//Nl0LFHeWCxbMN8oYcfVVFw3URY8KNyZNmoR8+fLFlY1pJHBNBD4TKwcvtH4h1vtHSHAITp8+jRw5clxT/SyceQmcF9e76oJ93EcfYc/evT4D0ffP/GJNd9q0aSgqH4n1VRfuEvR+pYJXdcl08803mzT+JI5AdOhFXJk3C2EzP0PUoYPuQvZ3m448+ZC73xD4FSqCyxNGeeQscjJydX0H/uU4D3BDS2LkQijw2Y+R+Hh2BPYfkcmXz/wrGvnyOPDJ28EoWtCBAZMipHbPPG3IG0G46Xq/JLbI7CRAAsklYMubr1y54lOFKpJNn/6ZyJuf90nnDgmQAAmQAAmQAAmQAAnEJOBwyBwujvU3KpLFJMV9EkgegRkzZqBVK9UFUgmiS4Yi0Rwib/4vHeTNVCRL3nlM1VL69bp+KeYT5CJp8VwLfP755z7J3CEBEiCBrE4gIiICHTp0MAtyMcfq9Sj1fqx64t4ZtLDXfqWKFTF/wQLceOONMavlPgmQAAmQQCII6Bfeq1evNtZ2dFHq1ltvxQMPPAA/v7gXhqOiorBt2zb8+eefOHz4MNSqWNGiRVG5cmVUqVIl3hbV9fDEiRPdxxNyR6wWgPRdeumypWaupZYpS5cu7S7LCAmkFIEWLVrgyy+/9H61MPEHH3oo9lwupRplPRmewMKFC9G6dWtjHdfurN4b9b6k1l7mzZuHVatWI0+e3Mai4uzZs32uoR07dph7ol02Lbba54EDB4oVKadRaFNNK6cIq/xEQByXMNg2rR+zb7YynKaHBAdjyNChuPPOO2NmS9H9iLUrcKFfDzhP/wc/1WOSd33/GysgsPa98CtYGOGrliNyy0Y4cuRCYK26CF++WHiripkEEX7n+2o+AspXStE+JaWy+fPnY/DgwdDnowbzdfc18tdn61Bhf8cddySlK0nO+9P6KHQYEI4TZ9TRAgz/m25w4KFa/igmimPzV0VhzTYn8uZy4H6xTPb9iihzrdsTso2f58DN5XRyxkACJJBWBNSS75IlS+w/Q/M3qX+/zz33HL744ou06gbbIQESIAESIAESIAESyKQEzJxV+u5eZnNF4pIdZNIhstskkK4EbHmzdsL9dybxh9JJ3kxFsnS9HOJufPjw4ejRvYcI48TcuFwl0SoNlXgRcdmmLjHiW5yLuzamkgAJkEDWIKCKtP369sXeff9Yq0S6ZGFuj57HqXXP1PHaab5b3btVlBW6vNkFLVq2gLrGZCABEiABEkg6gY8nfIxBHwwWN8LialKCff+td//9+PGHH5ArVy53pZGRkdCvaQYNGoTdu3e70u37M1C3bl1RrFjlzu8dWbFiBe6//wF5H3a67/l9+4oFH1PcU4fTGYVz586bejZv3ixVWMcuXbpEy1DeQBlPEQKqcFOsWHGcOnXS1Gdf/3rdDRs2FN26dUuRdlhJ5iEQFhaGHj17YuyYsa5ORyN//gJy3/sA7du3h7cL9TZt2mLq1ClWPte9TDclS5U0rtnTetSNHmkENY8fU/7g1UHfe66rzyqj0OB9/Vtp1v33lVdewbhx46xqUvo3IhyhY4bgyszp1t1elK/88uRHjle7IqTJs6LV5FFoDn2vJ678MNvVAx2ln5Rxwq/odSiwYHVK9yxJ9TV69FEsXLDQ9cTylf9YFVksrQxxxCVTXPxfffUVfCQW8VIjhIthsbfHRWDCtxFG0VAXEvLlBt7rEIzWj/vJta79tELHD8Lx+fxI15WiaRb/UkWBnd/RaqMLEzckkGYERowY4XlHMbcUVa0FChUuBHWhQnlzmp0KNkQCJEACJEACJEACmZKAn59aU9euu+an9mzWSsyUY2KnSSCjEFB5c9FiRfHfqdPSJd/172HDhnnmcmnYYSqSpSHsxDa1fft2VK1aNc7s69evR82aNeM8xkQSIAESyOoE9Gt9tZrw/fffY+nSpTjw779w6kuqWUGxR28/YO19GGs0d911F9q1a4eGDRt6DjBGAiRAAiSQJALqZlLNK/8gVnUsuYEIDkxEq7Huv/3f74933nnH1Hvq1Ck0adLEUhSzZQwxWuzUqRPGjBkTIxVQK2e3VbsNu3aq8pm7EZPPXVUC9/+cOXMiNFT8bjGQQAoT2LBhg3G3Gtf7x7at2xK0sJfCXWF1GYCA3qsaN26MRYsXuW9VxcRtpVp9icvaoro+LVSoUKye63vqp59+Gis9tROqV6+OLVu2xNOM+27rPu5OSeD+q5k7duyI8ePHu8ulVCQ6PAwXunZExPpVMDrG0iG/AgWR5+PP4rQuFn3uLE4/WEPOjfbcEnfrNuiJZsjdZ5BG0y0kzF675abt7qM7JQH+qaXEdyUsGs17hWHJelHu1gUE2aj1sR/GBKHyjR7lPbuzZ85Ho/Qjl2UY8gx38ddjLzwWgHG9guxs3JIACaQRAcqb0wg0m8lyBLZu3WqsaVeqlH5WTLMcVA6IBEiABEggUxIwri1d8l9vUS0tkmXK08lOZzACv/76q48OkLf8Z5u8j8YlY0ztIVCRLLUJJ6N+veGWKVMGhw8dct2HrUtFf9/t0wfvvfdeMmplERIgARLIegQuX74sCgY78a+4LlOrM6owoMpmuXPnFisQ+ZE3b15UFBeW6jqNgQRIgARI4NoIqKUCNaO8ffsOqUgsp5hf72VuK6VWrVpYt24d/v77bzz26GPY+89er4ZdpczGiqvFSTXbHDMMEyu9Pbt395ZLuLJY5Vw1ufvh3RPNWLpUKRw4eDBmtdwngWsm0K9fP7wvczJVb7SvQ42VEotS6k7VNvV/zQ2xggxPQC2RPfHEE+LOdIn01VJ41fdOtaZ40003xdv/uISvs2bNQtOmTeMtk1oHnn32WcycOdPnWva+x/u2m7j7r5Z55+130H9Af9/i17gXLbwvdO2ASFEiEx0msS0mzyJxYZl34pfwv/7GeGs/dceNMj5VdBKnnaKA5RClpjxDxiKo/iPxlkmLA82bN8fXX39tmvK+l1wr/7fffhsDBgxI0SGEhQNP9wzD0l+jDHdxhIriokS28KNgVCwbW4nMbjx3nUtylvSdwcP/i/7BePJ+fzsLtyRAAmlEwJI3l8WhQ/J+7LnpmGhfebfpKxbgGUiABHwJqGUIddWtipivv/4a+vTpi3z58vlm4h4JkAAJkAAJZBMClrzL60XSNW4qkmWTC4DDTFUCKm/26AB55G8ldY0jneTNVCRL1VOe/MrV/cWkSZNiVaATF9VIZCABEiABEiABEiABEiCBtCJw5MgR1KtXz+2aModY++rz7ruoUKECOnToIC7+Trm7UkxMMG/ZslW+oKklk5x/Tfr111+P1q1b4/fffse8H+aZNFvsoApncX3d3bt3b+MO06rYzu1qxlhisZQ2XCmxNtWqVcfmzb/HSmcCCVwrAbUQHdecTOdwEydOvNbqWT6TEFC3vY899hgWL17s7rHemhYvXiJKtw+60+KKFC1SBCfd900HAgL9ceL4CRQoUCCu7KmatvPvnZgirjZ1oVSDCoZVCGxvNc3siwUq1ZWzFSVtQbGlJCTKWaacpd4VEhIMtYp13XXXafGUCfKxyPnO7RCxYbV2yCg+OKXNvB9ORVCtugm2cbr+ncC5M0ahyag0BfijwNJNcOTOk2C51D74119/Yfr06eZDGLstm7u91fSk8A8JySnsO6Yo+4jIaDTrEY6l66NUe8+6DmTz/ehgPHBnwgphZR+9jP/OiNqZXh/yn7+/Hw4sCBF3mPpcZyABEkhrAi/Ju8qnbnmz/B0ai4EwijJxvdukdf/YHglkNAKTJk9C+3bt9QXIvH/oBwMDBw7Eiy++6OO6PKP1m/0hARIgARIggdQgoPO62EFlCJY8IfYxppAACSSWwF131cTGjV46QK73z/TyYKD9piJZYs9eGuebM2cOmj71lLf1fyOs8/fzw2FZyFNXGQwkQAIkQAIkQAIkQAIkkBYEfv/9d9x7zz0IFeuPRUQB4scff4S6DNbwzDPPYNY336h+gQllry+LIoWLYNNvskgviS2ffx7jxo1DnjzWgn25cuWwf/9+k1etR6qbt7gFEVZ9/CWBjETgxIkTRkHDKN2o/EwVa6wNZs+ebVy5ZqT+si+pR6C7WEwcLpYT7fOvLfV+uzcGDhiYYKOqgBYUFGSUg+yMderUwerVoiDFEC+B0NGDceVz/dhOnzaizSQPmJwvvoIcr3SJt4w5ILxP175Zdc8kmB8E3HY78k3+JuFyPOom8M64CIz+IsK62RmGDnRrFYh+Lwe688QViRS9swL3XRYXmLKo4LA00GpX9ceSj4Pjys40EiCBNCCg8uanRN7sHfQ55vD3x5HDhylv9gbDeLYncO7cOePlQN//3cH14lfj9tsxeswY1K2bsDK7uxwjJEACJEACJJAFCPiZD4RiDESejdFOa64d4wh3SYAEEklAPcGUKFHCyE9i/jWlp7yZimSJPIFpnU0nKsXkC5ewcPEfIMFbOD1lyhTz1Uta94ntkQAJkAAJkAAJkAAJZF8Cq1atwhudO2PKtGm4rWpVNwhdjNJFKfPGaqwaWG+u+tv+5Zcx4eOPfRTF+vfvj9nffivZHahxxx2Y7LaK4K6SERLIsASmTp2Ktm3auNRRPN0MCgrGiRPH6erGgyRLx1SI4+uG0oFq1W/Dpo2brmqdYt3atbhbFMd0ku8yBCMuIAeIK8i3szSzaxlc+PLFuNjjFfm7E8tnUpFTfgIr3oK80+fAERCQYNURW3/D+XbPmL9ZP3FpKVI55Hy1K0LavJJgOR60CHz/SxRavB0m3G3bc9GoUtEPKyflgBh2SzCs3xaFhzqGmQ8kVRCq/Pu8FIDuLySsgJZgpTxIAiRwTQTOnz+PwvJRSKTIm+0FCr2vapzy5mtCy8JZkEDXbl0xasRI8/dh/514D1NdlT/z7NMYNnSYuLgv5X2IcRIgARIgARLIkgSsD4HlqRhD/uu0vtzKkmPmoEggLQiovLmNyJs12O+dug2UD1FPnjyJvHnzmmNp/UNFsrQmnoT26tevj+XLl7tKWAJTFd01adLEfO2ehKqYlQRIgARIgARIgARIgARShUDFihXdLi+1AZfVZePybd68eT5KZKnSAVZKAmlIwEdx0r0ECzzwQH0sW7Y0DXvCptKLwL59+1CtWjXoYrx3WLlyJe4Ry41XC3369IEq1HqHTZs2oUaNGt5JjLsIRB0+iHPNH0O0WMS0LYqpZlLeSV8isLq4rLxKuDxhNC5N+kiKipqEPqAk5JvxHQJurnKVkjy8/4gTtV4Iw8VQm52ldvLT+BDcfZtaGEs4DJgUgcFTxZKZBhf/VZNDUP2mq5e1CvGXBEggNQj4yps9LVDe7GHBGAnoe97111+PM2fOCgzr+edZ1vPlkzt3bnTv3kP+dUOOHDl8D3KPBEiABEiABLIQAW+PErb8V5+PdG2ZhU4yh5IuBCx583fStr532qpkgM7dli5NP3kzFcnS5XJIXKMjR45E165dY2XOkyevaB+eQHAw3QHEgsMEEiABEiABEiABEiCBNCNw9uxZFCxYUAQGtnDdarpMmTLYvHmzOZZmnWFDJJDKBMLFekehQoVEqeKiZz3J1eaIESPQpctVXOylcv9YfdoQeNrlzte7taeffhozZ870Too3Xq3abdi6dZuRC+lHvEWKFsOxY0epdBsPsYtvdUL40gXuJVyVpwU92Ah5Bo2Np4RvsiqhRe7+2yTqk8pf/oYLLFov/C2lMt/c3PMm8Py7YfhueZSXCBN4qn4Apr8f5J0t3nitVpexY69+DmmJQQsXcGDfDzmIPl5iPEACaUNA5c3dRN6sVh71hUY/Xda/1Dx58+DkiZOUN6fNaWArmYDAoUOH0KtXL3z++efe63nx9lwVz4YNGxbDam282XmABEiABEiABDIdAW9FMu/Ox5QLex9jnARIIGECYWFhKCJWoy9cuOiambnyy3RtxPD0lTdTkSzhc5euR3ft2oVKN1USC5HeTgSsRbpFixahQYMG6do/Nk4CJEACJEACJEACJJC9CSxevBgNGza0IMjkxn5v/VZcV+qXNAwkkJUI+FzvMQa2c9dOVKxQMUYqd7MagTVr1qBu3bo+w/Lz88Off/2JShUr+aTHtbNixQrUq1fPWrq31u/RsmVLzJgxI67s2T4tUtxSnmv7jMXBxUt3CsxZAr8y5a7KJ+L3X3G+/XPiU1GyWqIUBD/yP+TuP+KqZbN7hvXbnajf4Yq5Vg0L84wHfvsyBBXLXt2i2OotTjR8NUy4C3gX/2cb+GNSH34Qmd2vLY4//QkYeXMl+5nlurmav3EHFi5aSHlz+p8i9iCDEVgrbsk7d+4MtSDrE1x/N5bKtBxx/TnVq3c/Ro8ehdtuu80nO3dIgARIgARIILMTMIpkcTz/op2uCXdmHyD7TwLpQOCnxT+hQUMvnR/XO6V2ReduFSpUSIdeWU1SkSzd0Ceu4Uoysd+1a7dktm7C5tqRn44dOmL8+PGJq4S5SIAESIAESIAESIAESCAVCHhctLlmOLKpeVdNrF8v1l4YSCCLEXj11VfxsczB3OIx12Wv7l137tyZxUbL4cRFQF1Xrl692jrkOv+PPPIIFixYEFf2WGmNGzfG3LlzPelSx+czPkeLFi08aTFiFy9ehLoJ3rt3L86dOwd1n6RygieffDJF3CfptTtlyhQ4nc4YLbt2pY8qFFaFuXi/MtY/Cj/NKJZtxNKXWk/Xv5fixYvHXWciU8+3exYRW2XRVuuXf2pELODu+5B37ORE1XC+W0dE/LLE5BXhl3jE9EOeASMQ1PCJRJWPFiuEYXNnImzZIuQbN00aD0xUucRmuip7rSiJ/NWl1iuvvHLN7B/qeBnrtykz6YOL/8O1/TFnROIUwZr3CsO8lZY1MzMM4T+pbzCeaRCgu3GG8xejsWBNFP7eH419h50oUcQPt9zoh5qVHYlSXouzUiaSAAnEScCSN++y9V5ceRxy/+iIcePGxVmGiSSQnQnoe9K0adPQu3dvHD9+XFC4HpD2c9KkWMYAlJO+N7300ksYMGCAsWisaQwkQAIkQAIkkNkJOGRObU3OrY2OR63bOqPjkSdoBgYSIIEECbjlzT7vlUCFDCBvpiJZgqcu/Q9269YN6iZFg9f1g9KlS+Pff/81Qtr07yV7QAIkQAIkQAIkQAIkkB0J1K//IJYvX2aGbr+rqns3dfPGQAJZiYAq0JQtez0OHjxghmVd79avztnUjQ1D1ibwzz//4MYbb4x1/lWJTJXJrhZ+++033HXXXZaAVRVz5PJRgasuRqoJ+7jC4MGDMWzoUJw+cwYBosRUunQpHJBr0BkZhcJFiuKDDwaiXbt2cRVNdFqzZs3w7exvLWUhr1L2Pd2T5EmxYjH37ZySLj47e3TvgSFDhtiJSd5GHTqAs08+YMrZ7enybJ4xkxBYp95V64v8+w+ce76xjMtp9KC0DiVecOkGOPIXTLh8VCSuzJ2Fy1PGw3lc3I5K7gKrd8AREpJwuSQeNezFgqdpQK8Jr2CN2SvBK5PNwz5pvnkd6NGzO4YMTj77/UeiUaXZZcPNuwdzRoTg4Vq6cJBw2LLLiXvbXJFr3cpnXe7R2D8/Jwrn1976BrmcMeHbCAydHonT56xC3mPylyZfbx6Id9sFIjhxXjV9G+AeCZBALALdu3fH8OHDY91/1D39/v37KW+ORYwJJGAROH/+PPr3748PP/wQ4eKGyPP4lieX+iz3JJgC+fPnx3vvvWeUvAMC4lemJl8SIAESIAESyAwEOnbs6POBmYjKoLplEz6ekBm6zz6SQIYjYMmby4q8+aBX3yyJSNeuXa05m9eRtI5SkSytiSexvVWrVuG+e++NOQcxIsSNYk65Ro0aSayR2UmABEiABEiABEiABEjg2glERkZCBeOhoaFWZTLHCQkOwX///YecOXMmuwGdQA0cONDHOo66dK9Zs2ay6lQLPmPGjDFl1VKO1q+KbjfddFOy6mOh7ElAlYDuuOOOOAev7grvlTkbQ9YmoEpdvXr18hlkrly5cPr0aQQFXV27Ra8Rnd9rsERCDrmmamDjxo0+depOVFQU2rdvj6lTp5pjjz76qHF/WaBAAZw8eRKtnm+FRYsXmWP9+vVD3759TTw5P7dXr47NW7a4iqpqm9tBk7s6q7/u3diRGBl0t4MImK/FivrlaZ/g0oeioCmVWX2SvuXIiQLLNsGRCN7n2j2DqC2/mdFYowL8b66C/DO+i91/O0W4h/04B5cmj4PzyCFrMdjVvqVIlsPOmSLb6sJ+q7D3rDmnDH8V7l8L+xEzItF3Qri1QCDPTbFFJ9bvHDi0MCeCEmGU7eFXrmDtVqfrOhcrdfJf9Zv9sXJS3NbMXhkUjs9+jBTektOhin96BcmuWZWw2te0uyr7Y/H4IAQGWMdT5CSwEhLIpgRWrlyJevfdF+f9R933Ud6cTS8MDjvRBNTNUJeuXTD/x/nuMvp00md6zK1mqFy5MkaNGoWHHnpIdxlIgARIgARIgARIgARIADHlzfZ7pKL55ZdfcJ/M2dIzUJEsPeknom0VIKs7iFOnTsXK/e677+L999+Plc4EEiABEiABEiABEiABEkhtAmaic6co1nhWwNGoUSPMn+8RpienD3/++acI2m+Vop6KP/roI+MmLTn1LVq0yG0tyFp6dmDeD/Pw2GOPJac6lsmmBNSN64D+A+Sq9FyXukpUuFBhHDt2DP7+/tmUTPYZ9t13341169Z5Bizn/9FGj+LHH3/0pMUTU0uNzZ99Vo6qSpRu5Ff+f+edd4xVi5jFRo4cCf3yUMPNN9+CrVu3IDDQo8ETJhYwbr31VuzZs8fk0fuu3n+TE7TcwoULvYp6i608ybFUnOLOZgroodc7dXIr8XpqSXzs3IvNELl9s7uAth9QR9xaikWyq4WwxT/g4ttvil6SlFJlJAnapxxtX0WOjm+a/Zg/kf/sxoWuHeE8+K8cssp45ym4ertYJEtZRTJVEIztFjVusEnh//rrr2Ps2LHe3U9SvP7LV7Bhh8c1id73Hrk7AN8Oi1sRzLvyWUsi0aafKKFJojf/ni+IRbGXPNewXWbczAj0GBthzk/VCn6oXdUPpYo5sHN/NL7/JRIXLunZENeqRp3NiX4vB6Fbq9j12PVxSwIkkDgCKm8uVqyY+QDEU8K6/1De7CHCGAlcjYC+Q3Xp0gV///23eZaZNwj1xe31/uH9/ve/J/5nvM/YVm6vVj+PkwAJkAAJkAAJkAAJZF0CKm9Wa7feQeU/hQoXyhDyZiqSeZ+ZDBp/8cUXMW3aNFfvPELFKlWrYtvWrRm01+wWCZAACZAACZAACZBAViagi9SdO3c2Q7TfUPUjB118upYwadIkvCSWeDzL+A5s2rQx2ZYRfCZk2lEJp06eQqFChawd/pJAIghUqVoFO3bssPRLzAVvXfUvvPCC11wtERUxS6YlcN111xkhjrVKaJ1/tQSmFsESCuq6skqVKjh56qQ7m6VH5sDq1atQp04dd7pG1Jz9zTff7LL26MAP8Si+zp49G02bNjXdKX5dCezevQtqIS2pYb4owg0eMlisoFmKQ7blRvdWKtT7se5rMMqUnhu0lWb2RdnHz8/0J1AshqnLtGuxaHOmQS04xcIloP2StuX/nO07IcdLnUyb8f1Enz6FM888gmhxB2p13PTelM83aSYCbovbqnuUWCALm/ctQho+DkfxEsYtZtS+ve72C4lrS6Swa0tVQlQXlM7oKHu92XBWS1zJ5R8SHIwh4g41PguK8XHzTr/hscs4ccbFzcW/d9sg9G6TsEuu46ejUfuFMJw4Lb4q9YSZKqx6lnwcLEpivgq3/4kbywpPqAvMaLzbPhBdWgbKuD09OXjMifb9w7F6i1wDmi5VqWvLg2IZLWfKehn1NMoYCWQjAi+2fhHTP5vmuf/I2PUvtkoVkTdvo7w5G10KHOo1EoiIiIB++KQuLNUatk/weq7Z73/B8jD7bs4cPJLMjwB86ucOCZAACZAACZAACZBApiVQVXR9tm/fLv13CT10JBJt/UJrt5eC9BwcFcnSk34i2547dy6aNGnsntibYq4vW3bv3o3y5csnsiZmIwESIAESIAESIAESIIGUIfCsWNdRKzsmyARHBeOLf/rpmt11tGvXDpMnTzaLyfohd44cOXD+/HkEBCS8gB3fqB588EEsX7ZcFsZ0aQyoWLESdu78O77sTCeBWATU6lOFihVlddW6hrwzfPfdd3jyySe9kxjPggTUApjei4yrPa/xTZgwAS+//LJXim9U8zdo0BBLlvzkc0DFQ/nETeV/Ynlcla+8gyrjDhwo1u/kcitUsCCOiSJaXPc/7VPhwoVxMfSiuf/O+PxztGjRwruqTBuPDg/D6btdlin1z85PiDmjkat3f4Q81Tz+cQm086+1RsSGNSaPclYJnDpL9M+T17jFFOAm9Wo/F3p1QviSBZZWhbRfaJUI9lJYkexqfUiP42HhYmnxgVC5/ix65tEpyMZ2C0KbJ+N/Duv1+r8uYVj+qyqRWcHmnzc3cGBhDvjHQD/l+yh0GhqGMd2D0fZJXyUzu46TotB2e4srOHNWGpAXDXVxuXJSCGrcHKMyuwC3JEACiSag8ubGjZtIfr3RWsE2pER5s02EWxJIPIETJ04Ya7NTZC7rlPcWe/5p16DPRbXWWaxoUZmP7kS+fPnsQ9ySAAmQAAmQAAmQAAlkMwIqb65YsYKvuNk1Icso8mYqkmWCi/LSpUsoUqQIdOsJZuphvjTt0b27J5kxEiABEiABEiABEiABEkgDAqVKlcKRw4dFGC6NyfqTn0x0TosFmGsViFevVh1bxI2bHe655x6sXLnS3k3ytqAoYpw5a1mm0a62ogWpJDPM7gWGDRuGHj16CgavhVbZU8Wik6IIlDNnzuyOKMuP/7Dc6/SeZwe9l2j4+JNP8PJLL1k7cfwOHDgQ77z7jrl0zK3Sdb/UrGpNbNasWbFK3XTTTWZxUQ+0bNkSM2bMiJXHTmjy1FPGooXuN2jQAOrKNysE54njONPIttSmqkN+8tfnRK5eAxJUJLs0eRwufzzKLNyqKwATdCOLuSEPNUKuwR8mGs/FPt0QtmCu5LfaL7BqGxzyN5/Vw5GT0aj45GWvYep9z0+UvQJE2St+l5JDp0fg/YkRppyl7mXzj8aT9wXg84Gx3WI2fPUyLoc58MunIT6WyLwaN9ERMyLQd4JouLnO6Uc9g9D6ifiV2mKW5z4JkEDcBEJDQ1FUFFouX77ku3gh2fXdp1u3bnEXZCoJkECCBH7//Xd06twJa1avMU8ue75sF/p04kS0EwvcDCRAAiRAAiRAAiRAAtmXgCVv7hEDgEPkzSE4efJksrwOxKjsmnepSHbNCNOmgiZNmmCufO1uli5cwmdVSqxZsxbWrVuXNp1gKyRAAiRAAiRAAiRAAiQgBNT1WpkyZXxYqPLDX3/95ZOWnJ19+/bh4sWL7qIFxGqPtwKH+0AiI7t27UJ4eLgskFlKQMWKFTOLZokszmwkgNp318b6devdVvIsZYZoseLRGHPELQ1D1ieg1r/UbWRUlMtlnzUzR+/evcV62MA4AYwZMwZvvPEGAgMDjdW6Wd+K0pjchsx0Xn4mfToJbdu29Sm7detWVKtWzaRpvsFDhogSY0yhkqeIWi8bMGCASfAP8Mehg4dQvHhxT4ZMGouWe/bpumKRzOlyaagbMUAV0rojcr7aNc5RXfl6OkKH9YcjMACB9R5C+NKFks+j0pT73Q8Q/L+n4ywbV6JbkUxPhLRfaK24tgzO+v4Uw0UXrNAD8hGjjNktf5J4j9ZB6PNS3Mpb476JQI8xEQiUc/REvQB8tzzS9Rdi8R/fKwgvPOZb9tzFaJRpdBnT+gWj8QNxWyOzz8vSDU407nrFpejiwEdvBaL147712Xm5JQESSBoBI2+eK/Jm6zXZFNbbXs1alDcnjSRzk4AvAZ17qvXuHj174OCBg+73v9ur346NGzfGskjrW5p7JEACJEACJEACJEACWZ3A3bVrY916kTfLQN3yF4noHG327NkZYvhUJMsQp+Hqnfhc3FS0er6VEYN653aINtm///6L0qVLeyczTgIkQAIkQAIkQAIkQAKpRuDLL79Ei5biQk0+r3a43lBbt26NqVOnplqbrJgE0oOApTRZVpo2U3rTBWNlXGKfz8g6rgTTg21ma7PcDeWwf99+S6FQOy/3v5IlSxjrYapkZgdVNvvggw/Qp08fkzRy5EgsWLAAS5cutbK4JERq5axEiRJ2MbPVcm+//baJ693129nfGgGSTyavnc8++wwviJVFW+o0efIktGnjq5zmlT1TRc8+Xg9RRw9Kn/UpY/36FSmOfLOXwM/bCqDwvjxtAi6JJTJFm7PrOwhf/bO4t1xtStlPqQILVsOvaOKV7CxFsu/c7RdeLYpk2cC1pQwYlZtexoGjqkvmFKYW/5JFHdj8ZQhy5VDKVoiMjMaIzyPRf5Jon8lJGvx6IH7aEI3lGyNl3zprWn7n3BCUKOIpZ5cPFcNn8qGt8Vxqp8W13b7bidqtJbO+c4iy2rJPQnBXZYkwkAAJXDMBlTc///zzPvXY980DBw5Q3uxDhjskkHQC6mFm6NChxsqfxlevXo06deokvSKWIAESIAESIAESIAESyDIEDh06ZD7S148P7PmXPTj1TKAeCjJCoCJZRjgLiejD2bNnzZfF+iW0XFFGSGdtHBgzZjQ6deqUiFqYhQRIgARIgARIgARIgASuncBrr72GcePGWRXJS6lD1ovHjf8YHTt2uPbKWQMJZCACH374oXFNo0oS9vxLJ2NBQUE4fvw48ufPn4F6y66kJgF1HfnTT0ukCVWQcQW5KOrf/wDGynVSqFAhrF271iiQ/bFjh+RyoGvXLujbty8KFymM8LAISRELTVKmSuUq2LZ9m12Le9uhw8v45JOJZl+vt63btqFKlSru4zEja9aswT1165q2tF/aVr9+/WJmy5T7F15vjYh1qw0vGZr77y/wzlrI1b0vHPnyI2r7ZlyaMBqRe3bJ8KOR4/k2CGnfCWfr34noSFFmUrNaAtL/xkrI//WCJHEI7SuuLefPdbdfcPV2OEKyvmtLhfS/N8Ow/Fe1Kibw9EJ08b+3hj9GdAlCwbzA+u2iMDklEn/scZp8rz/rj7fbBqFUw1Cx3Gcpn2nBW270w6+fXRu3OWLh7IV3xbKodEZrPrY0pyi0Jel0MjMJkEA8BFTerNZ6I9R6ryuP689e5M1jKG+OhxuTSSCpBPb/ux8/zvsRr73+WlKLMj8JkAAJkAAJkAAJkEAWIzB27Bh07vyGGZU9/1L5S1BgxpI3U5EsE114jRo1wsKF6p7BS5Ins/x77rkHK1euzEQjYVdJgARIgARIgARIgAQyM4Hq1atjy5YtPkPYtGkTatSo4ZOWmJ1ly5bh22+/FXeWobgYegGhur1wEeGR4ah5V02PwlpiKpM8s2Z9i2XLlhr3mKGhobggdYWGXjQu6dQVYa9evRJZE7ORAHDvvfdi1Sq1bOTWZDHTsUcaPmKsTJFR9iHw/fffGxeV9nQ85sitWbpnrt6+XXtRCvvEuD9t2rSpJ7tk6da1m7FM4Um0YnqP+n7u93K1Wcv5an08phth7zJbtmxF9eoeV5htpc1PP7UU0bzzZcZ4+IqluNBVlJNV8055qAEqxeLatcdkkRIlsiefQa63ByL8559woecrppxRPFIFs1btkbNzT7tIorYX+nRD+IK57vYLrsk+imQ/rozEM73CDWqbf7Sf0NRzEQf/1o/5i7vJYMxbEYUWveXjR8mr5ZT/G839MfC1oEQxjy/Te59EYOgM6Y/U2aiuP74ZEhxfVqaTAAkkg0CjR0XevGCR68/buqtqNffcc6/Im1cko0YWIQESIAESIAESIAESIAESIAESiI/Afffdh1UrV4ncxDP/UoFLo0aPYP78+fEVS/N0KpKlOfLkNzh58mS0a9fOU4FLgOfv54eDYgLvuuuu8xxjjARIgARIgARIgARIgARSgcCFCxdQsEABRDqjjCUyne7kyJkD58+dR0BAQJJbbNOmDaaJS0zvaZNdibpsmzZtmr2bqG39+vWxfPlymXvJy7K61vJa9H7vvffc7uYSVRkzZWsCR48eRalSpeB0ilUjDV7X0qRJk9C2bdZwIWgNjr+JIdCqVSuoiXm9FtQSo7lv6XUhwd7Ply8fxo8fj+eee86kq9vf6dOnm7j9o24u9V4VM9SqVQsbNmxwJ588eRKFCxd278eM7N69GxUrVTTJ2n7DR7KWgqPlXnKu9afn+vvTcTpFUcnPKCoJ9zy5kfut/ghq8LjhcLFfD7EkJi4pzf1fT5IDecd/hsC77o6JL8F9u23NpE0XWCWKZDmyjxms9u+H46vFatXNCoLRXON60atSmfLPm8uBUd0D8fRD1rP/5YHh+GKBlHE/f6Pxw+gQ3H+Hv11Nkrd6Guu2uYIt4t4yQPqw8fMcqFhWzwgDCZBAShGIJW92Vewn8mZ1uUJ5c0qRZj0kQAIkQAIkQAIkQAIkQALZnUAsebMXkIwmb6YimdfJyejR//77z0zeIyIi3F1V8ZnI1aAuV9TFEAMJkAAJkAAJkAAJkAAJpCaBJUuW4OGHH3Y3oe+jdcS12qpVq9xpSYmoRbKffvoJuoil77u2so7W+/GECXj55ZeTUh3mzp1rrPWqJaBLly7Z1UkdDixatBDqno6BBBJDYNxHH4n7mdd9sup1GRAYCJ30qytDhuxF4PLly1CF1JEjR0Ln5dZ83PUryjMPPfSQWAT71G1FTJUQS5QoIW5QT0hedWvpQO5cucy9Tt2jxgzlbiiH/fv2u+9bFy9eRC7JH1/QBf7SpcvIYZUKALfffjt+++03E88KP9FhV3B54lhc+UKUjSMt3qrWqcQdwjLwrjrI1WcQ/Iq5PqoTraMzDWsj6r9TRulJ9ZlE0xkFlwsT+btNSgjt2x1XVCHNFQqt2QEEh9i7WX57JRz4YHIEPvwqAhFR1nAVp/L3k8j9d/pj/FviyrKYpkq6Mxrln7yCE/9Z39Oqwp+6nzy0OCcCk65jburUn29+ikSb96QzEto9GYDR3WP/3ZiD/CEBEkg2ASNvLnGduLe0n2ueqihv9rBgjARIgARIgARIgARIgARIgASulcBHIm9+vZPIm0VuohIVS6KnYquMJ2+mItm1nu00Lq8LXz8t+clzVZn2HeJy5R6sWLEijXvD5kiABEiABEiABEiABLIbgYkTJ4pyl7gb85rtdOnSBSNGjLgmFMOHD0f37t296nBg8+bfUa2a5bbN60Ciop06dTIfW3hnPnXqFJV/vIEwniABNTO+cuVK31m9lHj44QZYvHhRgmV5MGsT2LNnj7jQXYatW7eJxbBCqF27tvmXP39+n4Fv3LgRd911lztNBUSPPf445s2b507zjtxyyy3466+/JMkSJV25cgXBwfG78Tt48KBbaU3r0X6sXbvWu8osEY86+C8iNq5F5K6/4J+/EAKqVod/lWrwy5PXZ3yRf2zD+ReaGGNktjQu8N76yDvqE598idlxu7Z0SfUKrt4BR0j2USSzGf1zOBo/b4zEjr3RKCC4a1cNwF2VHciXW8F4wqY/najX/oqFXaWgcrhR3QBxQ5l8xS9VZqv+3BUcPOpElQp+WDYhGDlDfNv19IAxEiCBayHQsGFDebdZLFW4bnpamUTvFfeWlDdfC1mWJYGUJxAeHg59x6xTp07KV84aSYAESIAESIAESIAEUpWAW95sWvHMv1QHaNGijCVvpiJZql4KKV+5r7lx++JywF8+Cf33wAGULFky5RtljSRAAiRAAiRAAiRAAiSQygSGDBmCt956y92KWuE5d+4c/P2T5xJLLZlN/HSiW9+tfIUK2LVrl7t+RkggIQKHDx9G2TJlEGW7tTSZrflXRjMzntA4eCx9Cbz77rsYOGCA++tC7c348ePQseMrcXbMfDgmFhrtcObMGcRUTrOP6fbvv//Gzbfc7P7Q7H//+5+xyuidJzvFL38yBpc+/UiGbH3WqVaxcvZ8DyHNWiQZw8U+3RG2QF1kWkWNRbJsqEiWWHADPo3AoGmWNSNTRm6XI98MxEtPJc0SnHd7730SjmHTI1G0oAO/TApBmeJ6D2YgARJIDQK+8mZPC+re8uCBgyhRsoQnkTESIIF0JTB69Gi82eVNNGvaDMOGDUPZsmXTtT9snARIgARIgARIgARIIHEEVN5cRuTN6sEgZsiI8mYqksU8Sxl8//Tp0yhevLhxo6FdtVXJND5mzBio5QUGEiABEiABEiABEiABEshsBJ599lnMnDnT3e177702Cwh33nknNm3a5K6vZcuWmDFjhnufERJIiIDOrd544w2TRd3jicc8E4ICg3D02FEULFgwoeI8RgKGgLqa3Lx5s8Qd4opRXP7JdbR3717ccMMNcRJq3749VHBkB3VdmdDHYpbFs5ouwUA02rRtg8mTJtvFs932XMsnEPn3n9a49W9W/nYLfP8z/EqWTjKLi+LaMkxcW1rnzYGCq7eLRTLx1cgQJ4G7W1/Btj3iAzPapewl/LfPCkG5kn5x5r9a4qK1UWjWI0wskAELPwrB7Tclr56rtcPjJEACFgFVXC5atCgiIyPdSOz3H1Va6dy5szudERIggfQjoBa2K8gHUmfPnjPvOTlEyV2tevfs2RM5c+ZMv46xZRIgARIgARIgARIggasS8JY3e2dWt5bHjh3LcPJmKpJ5n6VMEn/00UexYOECq7euBQ3dqVmzJtavX59JRsFukgAJkAAJkAAJkAAJkICHQLly5bD/3/1wyCK0qFugR48eUCtlyQnqDi5v3ryIiIxwW5MZO3YsXn/99eRUxzLZkIC6CPSZW7l0Ixo2aIiFCxdmQyIcclIJ6FeGpUqVchfTS+jG8hWwe3f8lhHff/999O3b111GLY5VqlTJvR8zsnz5ctSvX9+drOXVClp2DNEnj+O/hnWN4pexIiZ6R/6lrkf+75YmC0eoKJJdEUUyo48mJ6/gKiqSxQfyyMloVHzykihK+rn5ly/jwJavk6d499c+Jx7sGIaLodGYNTQED9emEll87JlOAilJwMibF7jkzXbFcv+rVbMW1q1bZ6dwSwIkkI4EXnrpJXz66acxeuBA6dKlzNxZP85yqBYoAwmQAAmQAAmQAAmQQIYjYOTNG9a71z/sDj7yyCNYEHMuZh9Mxy0VydIRfnKb/uyzz/DCCy/EKq6ThH/++QfXX399rGNMIAESIAESIAESIAESIIGMSuDo0aMoWaKEWbA3n1aL5Z45s+egcePGyery2rVrUadOHVNWxeiqCKALYLVq1UpWfSyUvQjs37/fWIyKts2QeQ1/+vTpaNWqlVcKoyQQN4GJEyeig7jY1fuPHVSZVZVa4wtTp041VsXsQipEUmFSfOG7777DU081cVvMW7FiBdSaY3YMV+Z8hdAPRInOvukLhBzPtkLObn2SheNCn24IV9eWak1Ofguu2QEEi3kshlgEpnwfiU5DwyRdSLn4d2gagOFvBsXKe7WEE6eB+9pdwsHjwJS+QXj64YCrFeFxEiCBFCKglnvjesdR95Z79uxBuXLlUqglVkMCJJAcAlu2bMEdd9yBqKgoURbzWEw2dbmev3Xr1jXvmtWrV09OEyxDAiRAAiRAAiRAAiSQSgT27duH8uXLu9xaysubrH/Y8r+MKm+mIlkqXQypWe358+dRrFgxqKUFDWae4JosDBo0CG+99VZqNs+6SYAESIAESIAESIAESCBFCcyePRtNmzaTOj0qF6pcpi7dkxNGjhyJrl27WfXJe3JQYDDOnz+H4ODg5FTHMtmMgFrCM3MqWaGRCbMZvXprCxElkuPHjxtrd9kMCYebDAJPPPEEfvjxB7mtuSbrMnOfP/9HNGrUKN7a/vjjD9x6663Wcbn+Rgwfji5dusSbv1+/fnjvvffkuAM5coSIm6OzCApKuvJOvA1kogPnu7yMiBXL4PBTF6JqwSoaecZMQlCdeskahbq2DBeLZBr0FNIiWfwYm/UMx8I14g7PKVeii//s4UFoUNs//kJxHLl4KRqPdgrDb385MbJrEF5qQiWyODAxiQRSjcCFCxdQrGgxXA674vP+o6/nlDenGnZWTAKJJtDs6Wb4dta3kt/zbmlFo12KZVa6n78f2rzYBgMHDjQuaxPdADOSAAmQAAmQAAmQAAmkGoHBgwejV6/eUr9n/UMbCwnJIfLmYxlS3kxFslS7HFK34mZNm+JbWXDToN/HqvsfnSpUqVoVW7duNen8IQESIAESIAESIAESIIHMQKBr165Q5S9L9C2uOcqUwoF/DyS7608//TRmzZrlLn/XnXdiw6+/uvcZIYGECFS9rSq2b9suWexFGit3kyZNoEqPDCRwNQL60VfBggVx+fJl91UULApeZ0TRK0eOhN39NWjYAD8t/kmacOD551tCLZLHF2w3ZHqlNsygZvDj63uKpoeH47/7bwdE+UHFccoDAYEo+MvvcIhALjnhYp/uCFswR5TSHPCTCguspmvLuDiGhQNlGl1G6GWX0q1kCgkEDi7MgZw5zJmIq1istHDRQ2vaPRzLNkai30uB6N5KKkkgTJkbgYZ1AlCiSOLbSKA6HiIBEnARaCry5tliFTjm4kaVKlWwbds2ciIBEkhHAqGhoRjQvz9GjR6NsLAw9ztmXF3Sp2PefPnQR1yed+rcGQEBVM6OixPTSIAESIAEkkbgk08+MS6UnU6nbK0PuLSGl8UaOwMJkEDCBG677TYzp9L3NKPV47JI1qTJUzIH048FMl6gIlnGOyeJ6pGx2tCsacx5vSm7fft2z1fMiaqNmUiABEiABEiABEiABEgg/QjcfffdWLd+ndUBWYtWRbCZM2cmu0NlypTBwYMHRZtApmZiUeq1117Dhx9+mOz6WDD7ENixYwd0sVRXZmwL49YEH0aJTJXJGEjgagSmTZuGF9u0MfcfK68DDz30EH76afHVimLp0qV46OGHzPWXv0ABqHXG+KwpFi1aFCdPnjR1Llu2DA888MBV68+KGcJ+mI3Q93oaJTJ7fIG16iLvR9Ps3SRvL4pry7AFc92LtIXo2jJOhjPmR6LjB+FuTprpgTv9MW904i2AyhoEXuwXhtnLotD9hUD0FUWyhMLyjU78r0sY/pgVgjLF9Q7NQAIkkFIEVN6sHy/bSrlGRdT1IkR5c0pRZj0kcG0E9u7dK9a3u+L777/3ef6aWn18XlrPyJtuqigfbY1K0F36tfWIpUmABEiABLILAYc+ZyS4Xg/dw452WfN3JzBCAiTgQ8CSN1e1hM16xPoWz/wxqcXZp556yid/RtmhIllGORNJ7Id+4azuLc+fvyAlXVeb3Ll1saOnuLZUk+MMJEACJEACJEACJEACJJDRCejX1Hnz5kVERLjqfJkwatQovPHGG8nq+pEjR1CyZElT1hZszJgxAy1btkxWfSyUvQj06tULgwcPkUHLxWhfQLKXT77oV4Weq1mTyl60ONq4CKgSa7169bDvn3/smbrJ9uKLL2LKlClxFYmVVr16dWzZusVchtOnT0erVq1i5fnhhx/wP3GfqV8x1qx5F9avXx8rT3ZIcB4/inMvPwfnYVEedj1DdNw5nmiKnH0GJxvBhZ6vIXzZInf5Aiu3wS9nTvc+I8ChE9F45NUw7DsqmmAaXPyffzQAH/dOvIvVN4dHYOKcCDxcyx+DOwfJFa02961bsP0bGRWN86HAhh1RGDgpHHWqBeC7EYlXVjP94w8JkMBVCai8uXjxYjh37nyMvA5x+92T8uYYVLhLAulJYMmSJXizy5v4Y8cf7m54TV9ipakl2xEjRqBSpUruY4yQAAmQAAmQQFIIGCtkqoigwWv+TUUyCwl/SSA+Apa8ebD9zbsrm0PkzXlx7NgxcW8ZEl/RdE2nIlm64r+2xtvIF85Tp071Xt8w8TJly2Lfvn3GvOS1tcDSJEACJEACJEACJEACJJC6BDZs2IDatWp5yx+wZs0aqJWy5IQ5c+bgqabyFY+XQGPXrl2oUKFCcqpjmWxEQAVfN9xwA/bv3++jRKYIkqIElI2QcahC4NKlS9CFvN27d0PvZ4sXL8aFC/rBlyu4VvTUpVC7tm3cJXC/AABAAElEQVRxW7VqyJUrF2rXro3y5cvbuXy269atgy72nTlzBoULFzam76+77jp3nnPnzqFy5co4cvgwcufJg9WrV6NqVfmyMRuEaFFyCF+/CtEH9yNyx1aEr1sF56VQ+Mk9X7xQev52/fwR3PgZBFa6GQgOQUCV6vAvc33iCMm94Gyzhojat9fWY0L+bxbC/4bs/Ry5fAVYvjEKuw448ftfTizdEIULl6zHrTf/ANl54fEAVKngj9zi3vKOWxwoX1rdnsQO74yLwOgvxT+mUR9z4ZbzqIrlZn1Cz6k7qNqkA6q29tUHwXjiPn/3EUZIgARSjoAtb45Z4/Vlr8c/+/6hvDkmGO6TQDoSiIqKwvjx49G3b1/z3ujuiuv9071vVo2ijZXb18Vadx/Jn0feIRlIgARIgARIICkEYlkkcz1vqEiWFIrMm90I6N9Hueuvx4EDB7yXKwyG1i+2xtQpUzMsEiqSZdhTc/WOLV++HPXr17ckbUZiKpI2CWpZ8pdfVuDee++9eiXMQQIkQAIkQAIkQAIkQALpSGDS5Mlo3669S7QdjcDAQLG6ez7ZX+L06NEDw4YNlxHpu7EDBQrkx3///cdFr3Q8x5ml6ZUrV4olqftEgcElCTMdt+LqbtDMvTLLYNjPNCOwffs2UeK6Tdqzrxvfrb3n6ZCV8tFHH+HVV1/1JMeIbdu2DQ8/3ADHjx9DMbEOM3TIUGNBYuOmjZg2dTp++20TgoKCoJbJHn744Rils+5u1J6dOPvsYzJAvceLYpEIQCyhtSoqWfd9tWelCkfmuCs1V4++CHn6edmLJ4h/xcjdf8N59DDCFs1D+NKFklHrELUlaSOgcjXkaNUe/mXLwb9EKTF5lv2sk/2x14maL4g2mfsemRB/i7MSHNE1CC81CbASvH4HT43EgE/FLaaeQ+FsnUvrvHlKW/ytNq14sYJ+2PmdKAdSj8yLJqMkkHIEfhZ58wP1H5QK5Z5q/iRdf5eyWfHLSpE335NyjbEmEiCBFCFw6tQpo0z2yScTERUV6XoL8q7a6/kq0WJFi+GDDz5A69at4ecXt7K3d2nGSYAESIAESEAJ+Pnp/Ftj9nPF2lKRTJkwkEDcBFTefJ/Im1Wu4fqLUTGTkT8vW7YUDzzwQNwFM0AqFckywElIbhecIugsK9bHDh86ZMSl1lVn1dauXVt8+umnya2a5UiABEiABEiABEiABEggTQi8+eabGD16tLut22+/XRQkfnPvh4aGQi35BAcnzoWVfkyxatUqd3lVsFALQQwkcDUCL730UhxzKAdKly5lrJRxkeVqBLPncZ2Xq1BItxpUgKrXircgVRVk9Lhu7aDuKwsUKGDvxrnds2cP3nnnHflQ7BdRKDtu8pgapJ6nmjbF4EGDcOONN8ZZNssmCseIzRsVtPUvxkBViczPofz1fFi8Fbtfpcrwy5M3Rm6v3SuX8d/9NQBxsywVi3xPBHy2wpQKyl2nTlWecvYagJCnmnsVzh5RpzMaa7Y4IRvhISQkYl3TSt21lCARh1lcUGU+K1Sr5I98uV07rs2Rk05UePKKO49d3jqs/KWeaJdyoNdB5d/1+SD06xDoWyH3SIAEUoyALW8+JPJm76B/023btYvjXck7F+MkQALpSUA/ROjcubN5dzQPWX2GJhDuvPNOMxdPrjXwBKrmIRIgARIggSxIwLi21Nmfvhh6PWO85R9ZcNgcEglcE4H27dtj0qRJseooVaoU/v333wyt1E9FslinLXMl9OzZE0OHDnXfs+17d/78BXD06JFkW3LIXBTYWxIgARIgARIgARIggcxKoEWLFvjyyy9N9/Vd9vlWrTB9+nSzf/ToUTz44IPImzcvFi1ahHz58iU4zMjISOTPnx+qfGaHd999F++//769yy0JxEngirjLKyGuA8+cPSvHrVmVPbdSK3dDhgyJsxwTSSCtCPz111/4+++/zcdkFStWRO7cMTRz0qojbIcESIAESCDLE7As/A7zGqf1VpQ/fz6RNx+jvNmLDKMkkBEJzJ49G127dcW/+w9I9+wFf9fsxp7kyBGNOuQDCP24a/hwterNQAIkQAIkQALxE7A+JPJ6kLiyUpEsfmY8kr0JqLz5OpE3nz0n8maX8qX9F5QZ5M1UJMvk1++OHTtQpWpVufi8VH9dY/rmm2/QrFmzTD5Cdp8ESIAESIAESIAESCArE3j00cewYMECkWDL+6z8f9999+Hnn3/G2rVrjasNtcijIu5+/foadx0Jsdi8eTPUopkVrGnZD/N+wGOPqxs0BhKIn4DOnZ555pk4M2zfvh233nprnMeYSAIkQAIkQAIkQAJZjYCRN1cRebO92qEDVPOOIn+eOXMmnn766aw2ZI6HBLIcgcuXLxvlMP0gRj+0shctrYHKnmv+rftff/11vHOhLAeGAyIBEiABEkg2AW8r655K1N2lZaHdk8YYCZCAEvCVN/u+f+mcq3LlyhkaFBXJMvTpSVznatSogd9//13X18z83p4UPProo/jxxx8TVwlzkQAJkAAJkAAJkAAJkEA6EHj11Vcxfvx407J5j5WfkOAQXAm74n63fbZ5c2OlLDAwYVdWWo/WZ1emsvETJ0+icOHC6TAyNpmZCDz2mCg0zp9v3Km5+y3XTw1RTNzk5WrVfYwREiABEiABEiABEsjCBFTevFnkzfI65BMob/bBwR0SyPAEDh48iLfeegtfffWVLPT7/kXr/LvuPfdgxYoVPi7YM/yg2EESIAESIIF0IeAnHxb4PkmkG/IwiXbGSk2X/rFREshoBFTePF/kzd5B379ul7nWpk2bvJMzZJyKZBnytCStUx9++CE6deoUo5AD/gF+OHzoMIoVKxbjGHdJgARIgARIgARIgARIIGMQWL58OerXr286oxMpW/SgcbV8oELvgQMHJkqw/Xyr5/H5jC9MLVr++htuwD9792pNDCQQL4Fjx46hVOnScIprVO/rT+OjR49G586d4y3LAyRAAiRAAiRAAiSQFQmMHTvWvAPZ7+f2NiAgAKqYUrx48aw4bI6JBLIsgbVr18gaUmf8Lh/J2HMef3FruVEWMatXr55lx82BkQAJkAAJpBwBt2tLY9XSejvUX2cMReWUa5E1kUDmJaDy5jJlyiAiMsLbEKyxCzV6zJg4dHsy3lipSJbxzkmSe3RSrCyUKlUK4eHhscqOGDECXbp0iZXOBBIgARIgARIgARIgARLIKAT69euH/v37w+n0mEJXYfawYcPcSmaJ6WvFihWxZ89ul9d3h7jneNq46UhMWebJvgR0ztStW7cYABwICgrCoUMHUaRIkRjHuEsCJEACJEACJEACWZuAyptLliyJiIhIGaitdmItGFLenLXPPUeXdQnofHvKlCl4++23ceLECbRv3x4TJ07MugPmyEiABEiABFKUgLdrS5fXc6mfri1TFDIryzIE4pY3A+px5dChQyhatGiGHysVyTL8KUpcBxs3boy5c+fGylylShVs27YtVjoTSIAESIAESIAESIAESCAjEdgrlsPUpLMKJW666SZUrVo1Sd3TCVhpsSrlHSZNmoS2bdt6JzFOArEI6Jxpx44dIvpSE/32Qinw5JNP4rvvvouVnwkkQAIkQAIkQAIkkB0INGnSWN6FXPJm2ySZDPzWW2/F9u3bswMCjpEEsiSBc+fOYdCgQcYAQWZYxMySJ4GDIgESIIFMSMBbkcy7+zFdJ3sfY5wEsiuBqlWryJxph3H/aoz4GVtk0Wj8ZGPM+W5OpsBCRbJMcZqu3skffvgBTzzxhCejTO4d0dZCyK+//oo777zTc4wxEiABEiABEiABEiABEshiBKZOnYq2bdq6FYECAgNw4vgJFChQIIuNlMNJSQK/iWuXO+64Q6p0rY56zaPmfT8Pjz/xeEo2x7pIgARIgARIgARIINMQmDdvHv735P88Bsm8eq4fgNSoUcMrhVESIAESIAESIAESIIGsTMAoknnJzcxYZT/a6fkoMyuPn2MjgcQS0LmS6uYYabP5sUs68P33c311euxDGXBLRbIMeFKS06WIiAhjgeH48eNS3HVFujavvvoqPvroo+RUyzIkQAIkQAIkQAIkQAIkkCkI3FP3Hqxeu9q90NWgQQMsWrQoU/SdnUw/AjpXGj9+vD2DcnXEgWLFiuLgwYPG3Hj69Y4tkwAJkAAJkAAJkED6EQgPD0fZsmVx/Ngxj81Wl7z5lVdewbhx49Kvc2yZBEiABEiABEiABEggTQk4HH7SniiNeSnGqHV/Z7QzTfvBxkggoxOw5c3ufrr+ZooXK4YDmUjeTEUy9xnM/JEePXpg2LBhZiBe93BjheHw4cPIkSNH5h8kR0ACJEACJEACJEACJEACMQio+8GnmjTxLHCJEGP69Glo1apVjJzcJQEPgUuXL6FUyVI4c+aMjxBMc+jcasiQIZ7MjJEACZAACZAACZBANiTQo0dPkTcPNSO35M3Wb8GCBaGu5SlvzoYXBYdMAiRAAiRAAiSQLQmoRTJv/QMjTBOffbRIli0vBw46HgKXLom8uZTIm8+KvFmN9Xn90XTv3h1Dh1pzq3iKZ6hkKpJlqNNxbZ3566+/cMstt1iVeF2UmvDFF1/gueeeu7YGWJoESIAESIAESIAESIAEMhiBtWvX4sEHH8TlK5fd1sgeadQI83/8EcbkegbrL7uTcQh89dVXZo7kO3VSoVg0/vjzT9x8880Zp7PsCQmQAAmQAAmQAAmkAwEfeXOM9r/4UuTNzSlvjoGFuySQ7Qjs2LEDlStX5vw72515DpgESCC7EbBdW3p9yWt0ZJzRdG2Z3a4Fjjd+Ara8WXNYMmfPb2aTN1ORLP7znCmP1K1bF2vWrInV9/vvvx/Lly+Plc4EEiABEiABEiABEiABEshMBFasWIFRo0YhZ86c2Lx5M3bu3IloL4FF6dKlTXqhQoUy07DY13QgUL9+/TjnSHXq1MHq1eImlYEESIAESIAESIAESAA+8mYvDfz6DzyApcuWkRAJkEA2JqCWCW+66SZUufVWjBk7FnfddVc2psGhkwAJkEDWJhDXB7v6akhFsqx93jm6pBFQefPPy3+29C3FYp+teHn33XfHqcOTtNrTNjcVydKWd6q3Nm3aNLR58UX7mpSvQKRJYzbPgT179uCGG25I9T6wARIgARIgARIgARIgARJILQLGnftwcecebb/o2l/3AI8//jhGjBiBChUqpFbzrDeLENi7d69cJxVFCdFpvg7TH1sfcerUqWjdunUWGSmHQQIkQAIkQAIkQALXRmD69Olo/WLrON6/Hdi9exfKly9/bQ2wNAmQQKYl0LJlC3z5xZdmCcrf3x/PP/88Bg8ejGLFimXaMbHjJEACJEACcRPwE6UD2/aYrX+g+94f+MZdkqkkkD0IqLy5fAXP3MjSI7PWMKZOEXmzzqkyUaAiWSY6WYnpamhoKEqWKonzZ8+5buaeBbZevXrhgw8+SEw1zEMCJEACJEACJEACJEACGZJA8+bN8c0338DpdKJ48eJm4UonaO3atoNakmIggcQQ6N27NwbJAoeIu8z/tjpi/vz5oV/V58qVKzHVMA8JkAAJkAAJkAAJZHkCRt5csiTOnTvnGauInHVh5C3Kmz1MGCOBbEZAPePcc8+95uMce+i6GpU7T168887b6Ny5M4KDg+1D3JIACZAACWRyAg4/h3n/s5TJPPoHVCTL5CeW3U8xAkbePGiQuz7zVyJal/nz5cuU8mYqkrlPZdaJvPLKK/j4449jDei6667DgQMHEBAQEOsYE0iABEiABEiABEiABEggsxCIiooyimSBgYGZpcvsZwYiEBkZiTJlyuDo0aM+vdKvKTt06Ijx48f7pHOHBEiABEiABEiABLI7AZU3T3DJm70MA4Py5ux+ZXD82ZWAftilbix/++232AhcugVqKXy4WAx/QiyHM5AACZAACWR+AnG5ttRRUZEs859bjuDaCURERKBs2bI4JvJm7/mS1tyhQ4c4dXeuvdXUrYGKZKnLN11q//3331GjRg2ftkVHWL61j8acOXPQuHFjn2PcIQESIAESIAESIAESIAESIIHsQuC7775Dk6eaiKTLWuFwrXNAFck2bfoNt99+e3ZBwXGSAAmQAAmQAAmQQKIIbNmyBdWrV48zL+XNcWJhIglkaQIzZ87Es88+6x6jvf7kTtCIa6LVsEEDjBw1CjfffLPPYe6QAAmQAAlkLgJxKZLp/d8Z7cxcA2FvSSAVCMydO9fSwXG9/5iN6+f333+Ldy6VCl1JsSqpSJZiKDNWRbVq1cKGDRs8nXJdtA3kpX3RokWedMZIgARIgARIgARIgARIgARIIBsRaNSoERYuXGhGrAIv9W2pZvnvvPNO/Prrr9mIBIdKAiRAAiRAAiRAAoknULNmTXlX2uj6XFnKueTNDRs2kHcrypsTT5I5SSDzE1CLZBMmTECfPn3w33//ue8HOrJYSmVyrwjwD8Drr79u8ufPnz/zA+AISIAESCAbEjCKZK73P/fwZT/aaTm7dKcxQgLZkMAjjzziq4Pj+ltRC64+OjuZiA0VyTLRyUpKVydPnoJ27dq6X+Cta9UBf38/7N69G+XKlUtKdcxLAiRAAiRAAiRAAiRAAiRAApmewL59+1C+/I3iGlWH4hJ0uSb2kyZNQtu2ModiIAESIAESIAESIAESiEVg8uTJIm9uZ+TNDnmNinZpkvmpvHnXbtxwww2xyjCBBEggaxM4ffo0+vbta5TKIiOjZLByc9D5lQaxAG385Jj5ljXpKlKkCPr372/uJf7+/lY+/pIACZAACWQKAn5iyt9+/3O9BpqNM5qKZJniBLKTqUZg//79uNHIm0XgHOP9Z9KkTzOtvJmKZKl2yaRvxRcvXkSZ0qVx5uw56Yjr5d3cxx3o1estfPDBB+nbQbZOAiRAAiRAAiRAAiRAAiRAAmlMoHfv3hg0eBAcMqm37JBZ6xz58hfAoUMHkStXrjTuEZsjARIgARIgARIggcxBIDQ0FKVKlcLZs2fdHbZUQxzo3bsXBg4c6E5nhARIIHsR+OOPP/Dmm29iyZKlMvAYCgVyo4g5/7qtWnWMGTMa9957b/YCxdGSAAmQQCYmYLu2tN//bP0DWiTLxCeVXU8RAr169cZgkTf7BPlDyZ8vPw4fPoycOXP6HMosO1QkyyxnKhn97NypE8Z++KFVUrSEoRrBsilWpCgOHDyIoKCgZNTKIiRAAiRAAiRAAiRAAiRAAiSQ+QiEh4ejTJkyOH78uKfzMk+SSTFefe01fGjPnTxHGSMBEiABEiABEiABEvAi0EnkzeadSVcQJViWyUTeXKwYDhw4QHmzhYW/JJBtCcydOxddu3bFP//8EzcD1/xLVc1UIaFZs2YYNmyYmafFXYCpJEACJEACGYVAhw4d9OZt5GjeKsPq6piBBLIrgYiICJQuUxrHj3nJm10w1K332LFjMy0aKpJl2lN39Y7/+eefqFKlirhtMX5bTAGd4+vN/euvv8Yzzzxz9UqYgwRIgARIgARIgARIgARIgASyAIGZM2fi2ebNzQc2Zu1Tfsy3Nn5+2LF9O2655ZYsMEoOgQRIgARIgARIgARSj4CRN996K5xm9dB7CZHy5tSjzppJIHMRCAsLw8iRIzFIvOJcEEuGOunynn/5jEYO5MyRE927d0ePHj0yrcUOnzFxhwRIgARIgARIINsQUJ2b50TebM2MbLfeDqgr2O2ZXN5MRbIsfhnff//9WPHLLzGNCeO+++7FL7+syOKj5/BIgARIgARIgARIgARIgARIwCKgblNWr1oVa25U7/56+Hn5z8REAiRAAiRAAiRAAiSQCAL16om8ecUvPjlVSeQeeddasYLyZh8w3CGBbExAXTn16tULn3/+ueiS+SqeGtc5PjMzh1glK42hQ4fi6aefNtbKsjE6Dp0ESIAESIAESCCTEKhXr16sOZDOje6T9J9/ztzyZiqSZZKLMLnd/Pbbb8U88NNSXF7U9ar1bLBt2zZjsSy5dbMcCZAACZAACWQHAtHnzyFy99+I2rMLzpPH4V+kGBwlS8G/zPXyr5wbQcS6lYj8YxsCqt2BQPmHgAD3sbSMaH+j9uxEhPQZ/50EChWBfwnpb9ly8fS3BgJvk/4GBqZlN9kWCZAACaQpAf0CrGrVqu42XVMjs//NNzNdcyb3YUZIgARIgARIgARIgATiITBr1iw8/YzIm0XO7AnW2xXlzR4ijJEACVgENqxfj06dO+PXX381Cd5zsbgY3XPPPZg/fz7y5MkT12GmkQAJkAAJkAAJkECGILBjxw5UqVrFR//G7tisWd+gadNm9m6m3FKRLFOetsR3Wv2ylitXDvr1h29w4KWX2uOTTz7xTeYeCZAACZAACZCAIRCxfTMufzgUEb9vNPsOR7R8QekwsnI/SVHH0QE33YqczV9AxI6tuDLrC5fSdjTyTZ6JgNtqmHJp9RO5fQtCpb+Rv4tgTvoK6asJKtx3RQNuqYKQp59H5J/bpb+fSx49qP39Js37a3WOvyRAAiSQNgRe7tABn078xLrteTVZShSD/9n3j+jSUpnWCwujJEACJEACJEACJBAvAbe8+cgRa07ppRXy8ssvY8KECfGW5QESIIHsScDpdBrLZL3e6oUjR+XekUBo2LAhFi5cmEAOHiIBEiABEiABEiCB9Cegc5+JEyd6dURcW8raXEmVN/+T+eXNVCTzOrVZNfr++++jb9++rsVtzyhz5cyJg4cOoUCBAp5ExkiABEiABEggmxNwnjqBS0PfR9jyRT4kjD6WSyHL+vLaS0PL5LT2HX5+KPjLZiBnLp/yqbUTdfIELg/T/qqQzeqgKrzpC6uP1pur75aMX32162HJI/0t8PPv8MuVO7W6yHpJgARIIF0JnDlzBqVKlcLlS5fkrqf3P3P3M33q16+fNVdK1x6ycRIgARIgARIgARLIXATc8mbTbWt2qdGcIm8+RHlz5jqZ7C0JpCGB8+fPY9CgQRg1ahTCwsPkO0jv2Zkayw+EWpOuVKlSGvaKTZEACZAACZAACZBA0giovLl06dIIvRRqrcO5iuvMqN9776FPnz5JqzAD5qYiWQY8KSndpWPHjqFs2bIIDw93LRp7WlCf8927d/ckMEYCJEACJJCqBKKOH8X5ds8g+P4GyPlmL9H7UdtWDBmFQPTxYzjboQWcBw/IuVFFLJdyWJ68CLyzNgKq3g6/HDkQvupnhK/+2d1tzeUnb4jRYqbMv2Il5P9qvvtYakacej11aInIg/+629d+O/Lml/7WQkCV2+EICUHkml8QJn32vNG6BP0isAuoUAn5vk6b/qYmC9ZNAiRAAvERGDZsGHr06BHrcFBQEP79918UL1481jEmkAAJkAAJkAAJkAAJxE/AW95scnl0yaDvXt26dYu/MI+QAAlkewJ79+5Fly5dMG/eDy75m4XkzTffxMiRI7M9HwIgARIgARIgARLI2ASGDx/u1rHxmgohK8mbqUiWsa/BFOtdixYt8eWXtsst+3J2iIJZGezZswcBAQEp1hYrIgESIAESiJtAdOhFnG/7DCL37JIM0Qi870HkHTgaEEUfhvQn4DxyCOdebgnn0YPSGc+zUhXIcg8cBb+ChX06GTq4Ly7P/sLom5n8onQW7XAg5KlnkbtXf5+8qbETdfggzneU/h5R99XSX1f7QaJAFmd/h/Sz3Fm6x2apleV4qjlypUF/U4MB6yQBEiCBqxGIiorCjTeWF4Wx/ZLVvrdbpZ577jl88YXMkRhIgARIgARIgARIgASSTKBFS5U3f2nmojIVlimp9a5V9vqy2LtnL/z9/ZNcJwuQAAlkLwKLFy9G165d8ccff6BI0aLYtXMn8ufPn70gcLQkQAIkQAIkQAKZioDKm8uXvxH794tBCvX6Y6ZB1lzouedaiLz580w1nvg6S0Wy+MhksfQNGzagVq1aZlTWZewZ4KxvvkHTZs08CYyRAAmQAAmkCoEosRp1rsXjiBbXWhr0fuxfuSryjJwIv0K+SkomA3/SjEC0mNM/1/wxRP27z6VmIKb1xbJXSOPmyP3We8b9Y8zORO3eibPNH7UMl+nJlKCbnH0GI+SJpmY/tX6iw67gfPMnEHngH5/2VSksR89+YugutsA+avffpr9WL61ftaSWu+8QBD/+VGp1lfWSAAmQQLoSmD17Npo1bapTenfQe7Xur1+/HjVr1nSnM0ICJEACJEACJEACJJB4Ar/++mu871KzZs1CU3kHYyABEiCBqxFQTzoff/wxChUqhJaioMpAAiRAAiRAAiRAAhmZwOzZc2Su47umZsub161b59bJychjSEzfqEiWGEpZJE+t2rWxQRZLrGCveEejzt11sHr16iwySg6DBEiABDI2gcidf+LCG+3hPHXcfK3rgBP+15VGnrGT4F+ufMbufBbu3eUJo3Fp0jjRrhK3kDJO9WgZcNOtyDd1FhAYGOfInadO4EzDu40yghQTxTNLOSv/7CXwL1suzjKxEi9ewMUP3jXJRslB6gh+qBGC6j0cK6t3wqUJo3BZ+ytBy2n7/rdURr4p38IRb39Pmv6aQlJAvxbX6y//7KWJ768p7PujCpKXPx4l/TAjgEM+RQ9u1hKB1e7wzcg9EiABEkgHAnXr1sWaNWukZb2760buVXL/q1WrJnRiz0ACJEACJEACJEACJJB8ArXlw+X18gGzO1imyVCnDuXNbiaMkAAJkAAJkAAJkAAJkAAJZBkCHnmzDMk1/9HB6QfL+uFyVglUJMsqZzIR4/j666/RvHlzn5y6nKLLvmqx7K677vI5xh0SIAESIIHUIeA8fhQXOrc1Li7Neraf3I1z50beoeOhbhQZ0pZA5L49OPvc43BERJh3PqdTDJDlCEH+r+bDr3TZeDsTtW8vzjZrYHQTzHkUJQVHvrwouHST9fIYb0nPgYi1K3FeroVo0VzTZ7K+c4a074ycL73uyRQjFvnPHpxv8QSiI8K0hPV/cA7k++oH+Je+PkZuz67pb1NXf43alwN+efOhwLLE99dTmycWNucrhIoynBmBgpCQuw+tnHkIMUYCJJBeBDZu3BhrjqP3Wr1TqRummHOj9Oon2yUBEiABEiABEiCBzErgq6++groLt4P9rqX7lDfbVLglARIgARIgARIgARIgARLICgRiWmX2nv9kNXkzFcmywhWbyDGoieAbb7wRhw4fslZP3OUceOaZp6GKZgwkQAIkQAJpQ8Cplqh6vo6IDWIlRZRvjP5NwP/ZOxMAm6o/jv/em303FEqbSIRISFK2ilQqLcpSilDJmiUqCSX7UraUiiit2izJruxbFFn6p0UUs+9v+f9+5977lpln5s1i5s1738O8e+6555z7O5+7nfO7v/s7IRT5wngKv6tT6QiBvSgCKYN7U87GtSquedUyUfhD3Slq2Oh8CeX8sIGS+vdkUy4xoZJfdl52UyuKnbEg33KuG9PnzWDPYrO0488bZP8xsxZS6I23uGZzi6cM6k3Zm9aqfdrUvnkKzgdZXp7SMr+gjNb6P6HklM6tyBx8U8tCyeup/tSXh1H215+peoWBmX/iPlvNXs6u9JQdaSAAAiBQagQefvhh+uijj5TBrbpJ6Xu+5JJL6Pjx4+xw0rPHyVITEDsCARAAARAAARAAgXJOwGKxUPXq1fPqm3nQ2fmhztA3l/PjC/FBAARAAARAAARAAARAAAScBOTDZGVT42pBxpsvvfRSOnbsmF/pm2FI5jzuARF7/fXX6fkRI1zfo3C7+UVycBAdPXqULr/88oDggEaCAAiAQHEIWI4covRJY7gK6SlI0M2PxIpGJZnZw5RNTfGnNqsf3qi2s8GReJ9i11N2Vrha9u/idC5k5kw2Nu3haHhf9kjVq5+zKGLnjYA9MYHOtmvG7K0O/nI4KnzG0z3m441MBMp4+01KnzOdY3JgtWMa0XcQRfR8RjZ7FVL6PUbZP7IxoX78ZVlx7S4yxcR6LG9LOKtNT2m1aOeaOndMPD0lT6dZkLw8FaZMiakFOWfNFPXUwELJ60moxE63kfXEce2c5nPbXKESxa/Z7ikr0kAABECg1AicOHGCP6KpSRYLe5vkvcqd2ggyJho2bJixiiUIgAAIgAAIgAAIgEAxCEjfasSI57kGpfRQS+l/BbPR/q+/HqErrri8GLWjKAiAAAgUjsDp06cpLi6OwsLCClcQuUEABEAABEAABEAgHwK///471bzqKrLw7Eb6CzrHcsKECTR8+PB8Spe/TTAkK3/HrFgSJyQk0GWXXUapaanub1O41gEDBtD06fJCHAEEQAAEQCA/Ajmb11HywCf5xTQb4+iGPGw3pozA2BpJi7BBjdaRkJo4LvlEk6rmQJSI21a1bvyIQVCFz783VrE8jwQyP11Caa+95LaHUPYqFuOFV7GUwX0oewMfJ56a1Dj+sbPfo5Cmzd3qy28loUMLsp3+x5El6IorqcInqx3ruSOZn7C8EzR5jfMvtEUh5N20RjsXuWI5C2Nmv18oeXPLY+cOc8LN9cmWY3Wc/yEtWlPsdO+9suWuE+sgAAIgUBIEBg8eTNOmGcazXKPc9PhxHBUVRX/88QfFx8eXxG5QBwiAAAiAAAiAAAgEPAHRN8sX+Glpae4suP81sP9AmjbdpU/mngNrIAACIFDiBO655x46cPAATZ44ie7rhFkfShwwKgQBEAABEACBACUwaNAgmj6DbWnk9a9L8Fd9MwzJXA5yoET7s8HYrJkzubn62xS1MFF0tPZSpUKFCoGCAu0EARAAgSIRyNm0jmR6QZlWUDmS4lrYBxn/E9MeY5JDo2pXgzLpX0gOrZSd3Y+ZxMCM04xbspQKqnYZVVi+1qgAy/NIILl3V8rZvc2Nf9RzL1L4w4/lu1d7ehqdvf0GMmVmiumgdvzNQVRx3R4ysZGCt8H2958kdSkrLDE+jIyioIsvOWfx5D5dKGfXdnWWGedfBMsbUaC86ZTA8toy053nn9lMldbvJRPvszjB+vtvZGKPP+JpT852c1w8mS+sXJwqURYEQAAEikVAXmZezh/PpKTyxzNuwUT9+z9LM2bMcEvFCgiAAAiAAAiAAAiAQPEI9O/fn2bNmpWnkpiYGBJPsdA350GDBBAAgfNAYPXq1dSuXTu9ZhPdemtb9YFRvXr1zsPeUCUIgAAIgAAIgECgEHA4a8qjbyZ69tlnaaayvfEvGjAk86/j6VVrjh8/TrVq1eJZvKzqha8U0s0YaNy4cTRq1Civ6kEmEAABEAhUAtZff6HUV18kE3uikmC3aYZgYgckU1MqUzLlokoMxnTjMbGwMW62kshxO9+HbT/v5xWzMkpTRmVmO0812I8i+w6UXAjnkwDzP9u8DpHV7sY/bsnXFHxV7Xz3nPXtckod/RwfRDEMlGPMR7FmLYr/8Nt8yxVrI8t75kaWy8ama7onPNl/haVfU1CB8n5BaSyvnKtqWlWWOKhmbarw4TfFEgmFQQAEQMAXCbz66mv6mEbuztqzWZ7RQWzw++uRX+nKK6/0RbEhEwiAAAiAAAiAAAiUWwLHj/+m9M1Wq0W1QXQj0v+S8fK48eNp5MiR5bZtEBwEQKB8ELBYLNTg2gb0y6GfHfcfGREGBwdT3z59aMwrr1DFihXLR2MgJQiAAAiAAAiAgE8RGP/qeHph1Au5ZDJRUJCZfv3VP/XNMCTLdbgDZbVz5860bNnH3Fzt5YrR7ipVqpDM74r54w0iWIIACIDA+SFg4ykf0kYNpOzN4nlMVKv8GxxEkcNfofD7Oqt1/JxfArZTJynhzhZCXt8RG1lFx7JXsd2cZKR5liGFpzbVjh0bC8p0pWzbFX7/wxQ1cpznAiWQavvnb0q86xalDNNEZnmjWN713sjbi+XdwKKyHzOTGDjaKbzTIyzv2BKQDFWAAAiAgO8QyGRPkZdffjmd/ve0Npu0Ek3u6XZ68KGHaNlHH/mOsJAEBEAABEAABEAABPyIwEPc1/rk4491bbPW/5LxduXKFyqvZNA3+9HBRlNAwAcJiCeQATwbj6bnk/dexn1IE7ZSpUo0ZswY6tu3L7/0DfLBFkAkEAABEAABEAABXySQlZVFV7C++Z9Tp9zF467GQw88SB8tW+ae7idrMCTzkwNZ2Gbs2LGDmt7QVE2ppk1ExTXwyS7vwmfPnk19n3qqsFUiPwiAAAiAgJcEbP+dppQBT5L10AG+8fJ0mHz/NUdGU9SEmRR64y1e1oJsxSVg2b+bkp94SPGX5588D801rqb4j/L3KmZPOEtn2t9IZvEopz87RT0VM3oihd3dKV+xMj9dQlmrviJKz+C/NLJnpJOV/8zsZcxcuy7FzV9yzvIibxLLKxOoih803jWZalzF8q44ZxnZYE9keW9neW3siZQLiaxmjkSNnsDy3p9vWU8bM96aSdnbfuBpPTPIms7TxmVkkI3/TNyG0Fs7UPRLr3kqhjQQAAEQKBUC8+bNUy8G5B4p9zy56RnxbVu3UdOmTUtFDuwEBEAABEAABEAABAKNwM6dO6lJ0yZu/S9hIN7X58yZTX3YeAMBBEAABM4HgaSkJKrOnqcTzp51jP9kP3L/yf3+S6a5nDZjOrVt0/Z8iII6QQAEQAAEQAAE/IzA3Llz6SllO8NaZvUyUVM6y+/Wbf6rb4YhmZ+dyIVpTuvWrWn9+vV5itSoUYMOHz6MrzLykEECCIAACBSfgPXYr5Tc/wmynfpHVSZGPUGVq1LsjAUFTk9Y/L2jBlcCWd99QynPD1AKJmVdxb2+kMbNKHbuYtdseeKpY0ZQ1lefaOlipWBid2RcS4VPVlHQFTXy5HdNSO7Xg3J+3MTZpYupGXWpGJ8IIS1a8nnwtmt2t3jWd99S6oj+elk5c4hCG99IMXMXueXLveImr2xU84t4J2/uumQ98f7byfr7cW2TS/ulNeGde1DU0Bc9FUNafgT0Y5JfFmwDARAomICVDXxr165NR48e5cxyd9XulVKyVatWtG7dOokigAAIgAAIgAAIgAAInCcC+embDx06pKaYO0+7RrUgAAIBTuDrr7+mwYMH05EjR7wi0alTJ5o0aRJdyQZoCCAAAiAAAgUTkI83DX2bid9v2Gz8uTur3/rw9MEIIOCvBNz1zVor5byXVzqtWrVmffNaf20628xx8NvWoWH5Eli5YgXd0aGDcc9XS80ji4mWLPmAHnnkkXzLYyMIgAAIgEDhCNj+PEEJXTsSpaVqdkvc2QiuVZdips8n84VVClcZchebQNbHiyllwsskMz0az7/Qm1tTzLT556w7Z8t6Sh7QS9uudxalrCkujip+v5MjnJhPyN64lnJ2baXMz5YSsUcvnmnSsf/wvgMpsle/c5bOXLaY0ie+7DSL4F2F3NSaYqe/dc4y2ZvXkUzDKVK5dvhMMSzv2oLl9VRx9sovKZu9o2V/9iHZLBbFTnYg+4h6ZQqFdbjHUzGknYOA7ex/lPrsExTx7DAKaSZTrSKAAAgUlcDSpUuoS5eubsWN+98KHvu0b9/ebRtWQAAEQAAEQAAEQAAESpbAypUrqcMdd7iNP9UeuFO2dMlSevjhh0t2h6gNBEAABFwIZGdn08wZM2jsuHGUnJysbTEGhbw09H+iJRNf/2HhYTRkyBB6/vnnKSoqyqUmREEABEAABHITEOMxTwGmJp6oIM1fCCxdupT1zV08Nsff9c0wJPN42AMjUW7sjRo1or1796qXv+JUxBjl169/Le3bx+nneCgEBiG0EgRAAARKloA9NYUSH3+AbL8dUxWLEVDMa9PJFAlFRcmS9q62rBXLKe3FIdrUZ5pTMQpu2JjiFnzosQJ7SjIlPnQH2f7jedBdrbI4d0jzWyh25jsey3lKTJv+GmUuelvZnannL+8/dva7FHLDuQ2JRN5Ulld7aGu1hjRqSrHnmA7TxvImdWZ5T8u87fyQl28H2GhOZA/hKVRjZ3kvr6c2pIx4lrLXuEyryfXGf7GGzJde4Sk70jwRYO9JST0fJMtP+/mgBFHU8Fco/L7OnnIiDQRAoAACMrZp2LAh7d/P15MEx9jGxOkNaPfu3RjbaGTwCwIgAAIgAAIgAALnjYDSN19/Pe3ds8elP6bt7tprr9X00NA3nzf+qBgEQEAj8M8//9ALL7xACxcuZI85tjzvvxw3KB43yvSX1apdTK+/PpEe6fIIxo04iUAABEDgHASUzYB+33SdNtjOnskQQMAfCXjSNxvTZjdo0ID28JjHn21pYEjmj2d1Idr04Ycfunse01+4yOKL5cupY0f2nIMAAiAAAiBQYgRsJ/+i5McfpJDWt/MUgC+xYY9Y9iCUBQHLnh2U9KTufVN//pkrxFP86q18XILcRLIlnKWUoX3Jsne3MsQSvbfy6arckRFF9h5IEU8+61Ymv5W0iWMoc5nLlJRcYcV1bOQQHXPOYg55eVxm7N8Uz/Ku2kqmIHd57SLvc0+RZd9ulpOHdSyvNFECd/4ovA97P+vtvbxaSfdf8cyWs2WdqtjOOzAXw8uZe82BtSbGeCkvP8ce6rLUMQrv0ZcinxGDQeOIBRYPtBYEikpgOY9d7r3vXnWPljrk63JDqbVkyRL3MU9Rd4JyIAACIAACIAACIAACBRJY+iF/tf+I9tW+jGrE74/RSZM+G/TNBSJEBhAAgRIisHPnTho4YCBt+WGLVqN+O3LelSTZuda8eXOaMXMGNb6+cQlJgGpAAARAwH8ImGRqF/lK3Xnb5ChPcSnTriCAgB8S+PLLL+mee3kGHmUr6d6JEBubzp392ykADMn88KQuTJPUvK51atPRI0fdbvzyEGjapClt27atMNUhLwiAAAiAAAiUGwK2v/+khI6ttOefjHWkH8h/MZPmUGir2xztsB4/QimDepP1rz9UFs35vWaeoHUdTRQz620KZS9f3oakJx5iL1S7uAPKNfD/oCtqUoWPV+ZbXORNZHlz7z96cm55j1LywF5k++svNojjHq7q5GpVS1Rkjp21kL2S3Zzv/gramNCuGdnP/KfkkZ2Esle2mEJ4ZSuo/kDaLgZ/yUP6kj3xrGp26G13UvSYiWQKDQskDGgrCBSLwA033EDbt2/X65B7q3b/q1mzJh0+fJjttmG4XSzAKAwCIAACIAACIAACXhIQfXOdOnXoyJEjzhIyEOXuWdOm0Dc7oSAGAiBQGgTkA0v5uGj48OH0l+jKJOj3JG1F+zWSZOzYo0cPGj9+PFWtWtU1C+IgAAIgENAExPOSca/UQPAa69/gkSygTwu/bnyzZs3YVkb0zdpLNuP8F33zoUOHKCiXgwd/gwFDMn87okVoz4IFC6j3k086XgQbF4FUtXr1arrtNufL9CJUjyIgAAIgAAIg4JsEbFZKvKctWdlLnHQEtecfL6OiKarfMHYzFkHZWzZSzqa1ZE9PV0ommUrSVOkCyv7uW9V1VGV4AFVp7S4yxcR6106Lhc7c0oAomz1QiZ0Dlw/reD9FvzQh//JK3ja6vFrXVfZPPDVq1LPDyBQRSTk/bqDsjSxvBsvLIeR6ljf+AspZI/JqJmhkNlH894WQV9Xk/iOe9c7e3dIxcBQ5Inr1o8i+A90zYs1rArY/fqfkAT3JeuJ/clJQSMPrKGbKPDKxlzwEEACB/AnImKVd+3bajVHPqt3Tid566y3q1atX/hVgKwiAAAiAAAiAAAiAQIkScOqbndVq/TMTrVq1km6//XbnBsRAAARAoBQIpLNu79VXX6WpU6ZQRmamvkdXX9ZOIeR+FRMbq6bH7N+/P4WF4UM/Jx3EQAAEApWAMbWlejGiQ5D7pU1N3RKoVNBufyWwatUqat++vXvzdIWzjHV69uzpvs0P12BI5ocHtbBNys7OpppX1aQ/TvyRp2iLFjfTpk0b86QjAQRAAARAAAT8gYBML5nK00xK/0+CfFeg9wV5acTUJgqufx3FzlhAiZ3vJNu/J/Wc7E2seg32JrZKy+TFr+XAXkru8SApJ2jyxQ7vNHrUeAq/r2A3uJkfvU/pk8aynIYLNZZX1WFI62xBUD1N3qSH7yTrf6fVlJYiXtAVLO8n3svrqUlZq7+h1JED1CZj/7HT36KQFq09ZUealwRsiQmUMqQP5bCHMjmiQZddTjHTF/DyCi9rQDYQCEwCN998M23evNmt8XIHv+TSS+nYsWMUEhLitg0rIAACIAACIAACIAAC55dAVlYW1apVi/XNJ3hHMuW4LPiX/7do0YL1zZvOrwCoHQRAAATOQeD48eM0dOhQ+uyzz/Qc7vo/o5joZeSjTLmXLVq0SHlUNLZhCQIgAAKBSEAZkuVquNxBYUiWCwpW/YKAQ9+cq5twKeubjx49SqGhoX7RzvwaAUOy/OgE0LZZs2ZR//7yQljzyMJ9ZPViWxCsW7eOWrVqJVEEEAABEAhIAvazZ8hy7Agb7Mhdku+TEhFlgocvLYw05eaX88m60c8wlipN1eGOU7ZLEAVrcJ16yjOWSsDPeSNgz8ygJDbqsh79hY8THwH+bxxWdbzkYHAk7C72GDZqLE9vydNLPshfTuvp4jnKK29iLi3IWLKQ0qeNUxWb2B5MPJJV+PBrCqp5tUsuz1F7RgYl93yQLL8eUnLJ/kUYEUcmbRPZJSni7vspauQ4sv79ByXeb8irCR3K22JGv+55B16mpk8dTxlLF2o70/df8bvtZI6v6GUN3mXL/Pwjylz0lmqXXDLq2uEpBrT3D9JYrR6tZdp2ab+ZM8uf1W5Tx1W4aOUlv1zDWlGT4mekmbWWqBOAzwbOY3Mpp5Xnsud5/3b2VGf7RwwVOfD+hWnM7PcouFYdLQ2/IAACbgRkrNK2TRvjdqCuXVnh/yRjnH79+rnlxwoIgAAIgAAIgAAIgEDpEFD65gH9HTvTxnE80OKe2rq1a6lV69aObYiAAAiAQGkTWMv3oYEDB9KBn35yjCd1ZZsmina7ogieseDngz/TFVdcUdoiYn8gAAIg4FMERN8u+jYJoiuXFVk33olJOgII+AOB9evXU+s2PFbR379Jm/RTnmbMmME2Nc4xjj+091xtgCHZucgEWHoGv5i+skYN+kdeXKqngHE5ELVs2ZLkgkEAARAAgUAlkD5vJmW8NVO7P/K0gJp1iTIpU50HBxfWiophitaZdt5HZbusya+Nt2pxlaAMYmxcpyolHW8uLx6eol+eyMZLnbRM+D2vBGQayLQxwylrzQoHf9mhHKmQ+tdSRI+nKbRlWyVD5icfUNpro/lQOo9/1Khx7E3sYa9lTB3Rn/f1rcqvFOnR0VRp/R6u0/XMOHd1YkyW+vJQyvp+pdu5JDKF1G9E4T36UugturwfL6a011/W82nnXwwbmIV18l5eT5Ik9XiActizmiGxudqlFL98naesxUrLeH8+pc+cqNUhF1YRrz+tArnKnNefqo5/PF1/kl/bHZcwjM3KcP/isS7MC491WjvxCwKBRUA+eNmwcYN6nsplKs9auYKrVq1K8qV5RESESsUPCIAACIAACIAACIBA6RIQfXONK6+kk//8o3asemn6W8eWt0DfXLpHA3sDARDwRMBqtdLcuXNp9OjRdObMGWcWuVfpX5q+8MILNHbsWOc2xEAABEAgQAmY5D0WK99c9W+CAoZkAXpC+HGzlb55wwb3FnLX4KKqF6nZLwJF3wxDMvdTIKDXpvDc8M8995yDgUtfGV7JHFQQAQEQCEQCqWNGUNZXn3DTxQhFvBa5TCsoQKTzLO6gOFndO1VXWlSksknKaHG1YBdH4q1MvFCJQkK2aB1vlV3lly87Yhctp+DadbVE/JYKAVtyElkPHSDb33+S+YIqFHR5dTJfernbvlOGPkPZ61ZymnZM5Td26dcUfFVtt3z5rSR2aEHWf085jn9w42YUO3dxfkU8brOnJJPl55/YS9ofFFSlKpkvq05BueRNHfYMZa3Vp7EUYfn8q7BsBQXVqOWxTm8S7TnZdPaWhkS8VBT4BA5tfzdFj5/mTfFC5cl4/y02JDO8p8mVol9oLvzlAjKuP4dA+na5/uRYKTn5x87tV19OSZw3qXQXiSS/2i7F8gRJLIP9swe02FnvUMgNLfJIhAQQCHQC69kbWeu2bfiCzktCxjaDBw/OuwEpIAACIAACIAACIAACpUZg6tSpNOS5IR77a5gFo9QOA3YEAiBQAIGzZ8/SSy+9RPPmzyNLjoVzi8bITpdccgkdOnSIoqKiCqgBm0EABEDA/wl4mtpSWg1DMv8/9oHUQhmjtOHZLyQY74+UrwHWP0+ePJmGDOGxTYAEGJIFyIH2pplpaWnslexK+vfUae21q/6SVcrCK5k3BJEHBEDAnwnY2chIvCNlLJzHU9tJ51haa3g4khWjS6Gn6UliwqIZs7iYlMn91c2gRcslNUgxc2QkVVi3m0xBwbyG4DMEeJrEhDZNyJ6a5Dj+xMdKeRNjYx9vgu2fvynh7lvcjn/4Y30pqp/TkNuberzKwyfp2TaNyZ6SxNm1888cFU0V+dwiL+X1tB/rwX2U+Nj9vMl5/kcNfoHCuzzuKXux0mTqUfHAZlxdqjIxxBQjTN0Y07j61ICVMypDTU7UN2tF5Nclv0qUJP5T5TliGJbJutTl5qrbKCDL87h/stl42tPxlLXyK22PEZEUM24aGR7xXMVAHARAgKhVK/ZGlvvrMAZTpUoV9XUYlP04S0AABEAABEAABECgbAkofTN7Jfv3NOub1QBMG4XJ7y2YBaNsDw72DgIgkIfAgQMHaOCggfT9mu+VGmnx4g+oS5cuefIhAQRAAAQCkYAnQzJ5s2Xj9yYIIOAvBFq3bq3P1KeNW4x2XXjhhfTbb78FlHE5DMmMo4+lIjBp0iQaPmyYeqmaG8n333/vsMDMvQ3rIAACIBAoBBIfuYusR35hSxPuIotBmTRc4hyLeeNdCq5VWxkJSbK4+tW+xuAOh1ipSLDkkO2/02Q5sI/SZ08he3oaJ0p5rVMiuUKuv4Fi530guRF8iIDllwOU2P1edayN4x/c+EaKnbPIaymz162mlKFPcX4+3uqQ2yl26nwK0aei9LoiLzJaD/9Mid066ueedo4FN2HvZ4WQ19NuMj98l9ImjXM7/2Pf/ohCGjTylB1p3hJgo7mUkQMpe8P36twwX1CZYqbNp+A69bytAflAIKAIrF27ltq2vVXdk9UTVnuMKgYypnH1tBxQYNBYEAABEAABEAABEPAxAvLl/tBhQ3UFiqYBkRXpw0Hf7GMHC+KAAAgoAp9//jl9+tmntOj9RWxQJoNNBBAAARAAAXU/dNG/KSK8Lk4TEEDAHwho+ua2qinKL4HE9Pe/r0+cSEOH8pgmgAIMyQLoYHvTVOMrsdP8lZh6x833fuP236JFC9q0aZM31SAPCIAACPgtAZnaMGfdKr43Sg9Z7pD8xz0Kc1gYxa/fy1ZgIV63PZvrSRnaj2vQ7rRKL8HRiCeeosinA8c9qtfAyjhj5uIFlDZ9gmb/pR//iEefpMgBw72WLGP+TEqfP4u4A8bTMfLB5jkZ41f9SOZKF3hdh7cZ03layEyeFlKbQFXmXeVzq3tviuzvvbye9pXKxk5Zq79xnv/BwVRp434ivgYQikbAduZfSh70JFl/PiDjEgq+8iqKnfE2mateXLQKUQoEAoCAjE22bNniMmbhi4fveJWrVKZjR49RdHR0AFBAE0EABEAABEAABEDA9wk49c3/srCa/kMfWNNNN91Emzdv9v1GQEIQAAEQAAEQAAEQCHAC2gwemv7N6MvJms1wohDgfND88k9A9M0/sL5Ze6emj1u4WYE6+wUMycr/OV3iLZgyZQp/wc8WlSZ5we3qI4do5cqV1K5duxLfJyoEARAAgfJCIKXf45S9jY1qpQ+h95lF9qD611GFhR8Xqhl2i4US77iJ7AlnXKozUcz0eRTaok2h6kLm808guX8vytmynqeF5H3pxz969EQKQBOlqwAAQABJREFUu6uT1zvXjLC+1vLz+WOufBHFf+M00rb+8TuZ2DDLfFE1r+s8V8aUAb0o+4d16lkuHV8xXoseM4nlve9cRbxKT+jYkmx//+U4/4Nr16W4xcu9KotMeQlYfztKyf17kv3kn3xamSnkhuYUO/FNIp6GFAEEQMAzgVWrVlH79u3zbJTH8sRJk3ksA2PsPHCQAAIgAAIgAAIgAAJlSEC8kg0bKrNgyGDaGE5y7431z6tWrqLbb7+9DKXDrkEABEAABEAABEAABAoiYHho1F6Lab/yjgweyQoih+3lgcCqVatZ38w2MPqp7Viy8IE6+wUMycrDmVvKMqanp1P16tVJeSXLte8mTZrQtm3b4M43FxesggAIBA6BxAfbk/V/R5Uhkdjb2tirlJmNbsO7PEGRg0cWGkTKC4Mpe+WXbLfLXs3ESxXXEP/9TjLHVSh0XShw/gjYrRY626oRmTLSlccoOVBy/MN7P0uRfQZ4veOkvt3IsvNHPb+JjYZaUOyb76r1nL07KZmNv8yhYRTD008G16zldb15Mury2nm6ROU5TzcOj3iycPLmrtd25j9KaN/M7fyP6NSVop5/JXdWrHtDwGqlxM53kOX339T1H9rxAYoeOY5dkgV7Uxp5QCAgCciU0c1uuIG279yhffciFGSAz6Fq5Sp07PhxioyM1BLwCwIgAAIgAAIgAAIg4BMEMjIylL751KlT3HfTPnQS/YcE6Js1DvgFARAAARAAARAAAV8mYDJrCjj1qsEQlPt1dhvPhoIAAuWYgOibb2B9844dOzQ9szFQ4VO+auWqrG8+FpD6ZhiSleOT+nyKPn36dBo0aJDjYjGML2WfMj/8vffeez53j7pBAARAwCcJ2LOyKOGWa8nOxh9yX5TusdZ1Jop5bSaF3tah0HJnzJ9BGW/N0mbJ5NLmy66g+M/WFLoeFDi/BCz7d1PSEw85dmIcf3NYuDruwXXqUXjnRx3bzxVJ6nE/WQ/sU4aD0jkNvrgaxbzxLuX8sJHS35xMdlauS91h9z/Cxlljz1VNgemGvNLflYGdTJuq4uHhFHZrBwqqU5/l7V5gPbkzZG9YQylD+rqd/9GjX6ewu+/PnRXrXhKw/HKAkvt0pYjH+/LfU16WQjYQCFwCX3zxBd13n9OzotwzDXfj06ZNo4EDBwYuHLQcBEAABEAABEAABHyYgOibBw8e5NB/OETlDt3nn0Hf7OCBCAiAgN8RSEhIoPj4eL9rFxoEAiAQWARMJmOqFvd2y3sOBBAozwQ865u1FgWyvhmGZOX5rD6PsmdmZlLNmjXpr7946ioVtFc0Eq1fvz7t3buXzGZ5YCCAAAiAQOAQsLLBR2J3zZBWGeWIOY3dRnb+EiP+y40UdNHFhYaR+ckSSnvtJeXlSu604WyQE8WGOQi+RSDj7Tcpfe40zRqLRct9/M0VKlHF77YVKHTq8/0p67tvlSGWGmDpFl7s1E6lyW9I81sodhJPbchGakUNIm/GnGmagt54hMtSD+b4ShTvhbxGfmOZ9sYkynx3nlv74z5ZRcHVaxpZsCwCAdvZ/8hc8YIilEQREAgsAjb+wvHaa6+lgwd/5obzndi4v/HaxRdfTMeOHaNwNphFAAEQAAEQAAEQAAEQ8D0C+emb69arS/v37Ye+2fcOGyQCARAoJgFxzNCzZ08aPXo0Pf300xQSElLMGlEcBEAABMqGgDG1pbF3Qy0HQzKDCJblkYDomxs0aEAHDh5wvP/T2mGiatUupiNHj1BEeER5bFqxZYYhWbER+m8Fc+fOpaee8uwZY9GiRdStWzf/bTxaBgIgAAIeCGR+upTSXn2R31tzF5ndPIkHFHbcS6YLKlP8yh88lCg4KXv9d5T68lDOqHW7Iwe/QOE8vR2CbxHI+vozylr9jRJKHX/xR2e4+eLUoKvrUOQzzxUotNSROrI/55PjbRx1FVUpoQ90oajn+BwLLp5SKfvbLyhz5VeaiPJFkNhbiJtpiXAIrnUNRfYrWF5NMudvcu+uZNm1nSvTz/+oKKq4fo9U7syEGAiAAAicJwIfLP6AunWXMYj2/NXuaGqV5syeQ3379j1Pe0a1IAACIAACIAACIAACJUFgztw59PRTT+saEPcaoW9254E1EACB8k9ADGjr1r2Gfjv+m9LIXXPNNTRt6lS6vV278t84tAAEQCDgCKipLR3KOGm+9k4LhmQBdyr4VYMXL15M3bu7zt6jnddyfs+ZMzug9c0wJPOrU71kG5OdnU3SsZUv+12DvCuuXv1K+uWXXyg0NNR1E+IgAAIg4NcExOAr6+vP1cBffDIaU1uGtWlH0RPZgxQCCHhBIG3yK5Tx4ftqmKVl5ykuq19FEU8PptDWt3tRQxllsVroTKvr1PSbxvkf2uRGip2zqIwEwm5BAAQCiYCMTerUqcMK+OO6Say0XhvYX3klxiaBdC6grSAAAiAAAiAAAuWXQE5ODtWpXYeOHXfXN0uL0Kcrv8cVkoMACHgm8Nprr9HIkSMdG41Pojp27EhTpkxRswI5NiICAiAAAj5OQE1tqVRx8tU6C6sblcGQzMcPHMQ7JwFD33yc9c3Kb4R+TsvpXR36ZvYngav7nCcPNhC9//779Nhjj+VFwVfQrJmzqF+/fnm3IQUEQAAE/JRA4gPtyPq7ruxUHQr5MVHks0Mp4rE+ftpqNOt8ELD87xhZD/1M8hWP+dIrKLh2XT6VpHvqu8Gybzcl9XpIE1A//yP7DaOIHjj3ffeoQTIQ8B8Cb7zxBj3b/1mHksq1Ze+99x49+uijrkmIgwAIgAAIgAAIgAAI+CgB6bv16NFDk46HwSa703u29PmeeeYZH5UcYoEACICA9wT+/usvqnV1bUpPSzVsLdwKh4WH0cABA2nUqFEUExPjtg0rIAACIOCLBNyntpR3GeolAcHUxBePFmTyhoDSNz/L+mYjGK/o+NSGvlnGabi6jVMDSw8ErFYrNWzYkA4c4Hlhc4WqVavSkSNHKDo6OtcWrIIACICA/xGwJyfS2TZN2GzMmBzQ2cbY+UsopFFTZwJiIOCHBNJnT6XMd2a7Kb8qLF9LQdUuK93W8lSd2WtXUdaXn5Llf0fJdvJvMnFfJKRWHQrv3b/Aa9F2+h/K+vwjshz5haw8v73t1Emi0DAyRYRTEE9TG3rPgxT+IKbvLt2Dir2BQP4EUlNT1Zfap06dypOxXr16tHfvXgoKCsqzDQkgAAIgAAIgAAIgAAK+R0D0zQ0aNKCfDx7Ux5fKmky9i6xcubKaHQP6Zt87bpAIBECgcATkYyeZsjdPcN7yeJOJLr74Inr11VepW7duGNfmgYUEEAABXyJg5o/iWTXvDLotGUxNnEgQKz8E0tLSqEaNGuRJ31y3bl3at29fwD+XYUhWfs7nMpP0yy+/pHvuuUd5SuETRsnBH4qpwf2YMWPopZdeKjPZsGMQAAEQKC0COT9soJT+PUnuf3abnZ1H6c7Ig4Op4vq9ZAqPKC1RsB8QKH0CrOhPvLslWf/9x3H+ixe1uMXLS1UWyy8HKGXUILKd+E0ZddrkOlRdE7kwOcKGJDGvz/I4RajtzL+U+e48yvzsQ7JnZSq5pah0aZyBPQz2eZYinuzvTEIMBECgzAm88sorNPrl0Wr8IcKooYj6Ifr888/p3nvvLXMZIQAIgAAIgAAIgAAIgID3BJYvX859uPu4gBrQOQvyGG/Myy9D3+wkghgIgEA5JbBnz14aMKA/bdq0yUML9AGty5amTZvSjBkzqFmzZi6piIIACICA7xDQPJLx/UvdwuQdmajkxbjM5jtCQhIQ8JLA2LFjtTGHesekjUkM+xfomzWIMCTz8mQK5GxiSXzTTTfRjz9uZQzug3v5OuzYsWMkX4shgAAIgIA/E0ifO53S33qD+KMLx51Qpl8IqnONV8Y0OTu3UvbqrxUiuzmIooe8QBQS4s/I0DY/IpD+xmRKXzjX7fyPGjSSwrs+UWqtzFz+MaW//jLZs7PUPtX0J2xFJoZkqoPPqTKGpSoXUUX2lEbBzusrZ+9OSh3Sl2xJCUYubbwr+dXAVyJaiJ31DoXceIuxiiUIgEAZEzh9+rT6Oky8khlBN+WmG1nBvuWHH5Rxt7ENSxAAARAAARAAARAAAd8nIPrmFi1a0I/cl+NRHY/LZGAncpsoJjaajh45Cn2z7x9GSAgCIFAAAbnXLfvoIxo2fASd+ON3p1KZy2nqKPf7n8lM1K1rN5owYQJ7Kru4gNqxGQRAAARKl4DmXMHtVqYEgEey0j0O2FvxCZw+/S/VqHklpaaIvll7Ihu13njjjbRlyxbom4UMX9zulkEGJSxBwIXAxo0bqVXLlmo877ic9MjTTz9Nb775pktuREEABEDA/wik9OtBOVs3G3pN7i3L49PEU+B1pajhY/JvMOdNeOgOsv12hPOxRoAt3Cuu28XT8cXkX+48b83Zs4Os7OHJCFqTDOWtlqq+MpENLLN0GdQ63//FK5ukGc8ETecrTCTZJa9Wjf784GlBVTEupdeh6jPySHFdeRx6U0sKuqKGvgWLsiJgz8ykrE8/oLRprzmOtUSC6zWkuLc+5EhwqYiW8dYsypg3I8/1Jzt3nDbaaaXkjF3yFQXzVJcSsld/QymjhxLliAEaX38S+DyTr6VMZOM/7Xwl0dZxevyanWSOq6Dlwy8IgECZE+jXrx/N5rGGesLwda5FNLE2bNhAt9wCw88yP0gQAARAAARAAARAAASKQED0zS1btXT272RMx50+6fdB31wEoCgCAiDgswQyMjLo9ddfp0mTJlF6eoZ2sxNp1UCXly73Pxn2igOHkaNG0aBBgygsLExyIoAACIBAmRMw3uXkUs+p90ZlLhwEAIFCEBB9s7JtyfX8lceyjFFuvvnmQtTmv1lhSOa/x7bEW3bXXXfSN998m6teEzvUCaaffvqJrr766lzbsAoCIAAC/kHAbrNRQutGZE9zekNRI3w2Qol6eRKF39Up34ZmL19GKWNHanm4JxJcoxbFLct9P823ivOyMeWFwZSz4kuyq7nt1TfAYhtG3Fy1lBQ1pbHY3hiKDYckMlzgjErTwb+83fEVseRxyc9mOto2I106Z3qaKudh/9EDR1B4915SAqGUCYjnr8x355IpNIwsvx3jY2l1O54UW4Hil3xJ5qql82Vk+puTKYO9oRnBzgZfYTe3oZBGTSjzq0/JevzXPOdfzIQ3KLRte8r88D3KmDKObMpKkmvg8zLoiitVxPr7b1o5l/Mv+LIrKO6zNcausAQBEChjAr/+epjq1atPOTk5LpLI88dOHTp04LHJNy7piIIACIAACIAACIAACJQ3AnfddZfep9P6eKJikHFbCHtwP3DgANWqVau8NQnyggAIgMA5CZw4cYKGDh1Kn3zyCetfRa8qwf3+p6VpvzVq1KTJkyfxVMD3uiYjDgIgAAJlQqBv377afvXbliHE3LlO3b2RhiUI+CqBX3/9lfXN9VjfbGEReeDhcj7feeed9PXXX/uq6KUuFwzJSh15+d3hwYMHqUGDBmS18gtllyDX17333UefffaZSyqiIAACIOA/BKzHj1Dig3doHQqXZokno7hPV1PQ5dVdUt2j1n/+pqSH7yRbaooyzpJ+SVinhyl65Dj3jGWwlvriEMpiQzKxphGDLgli8iUNlV9lP2Z0orRkyeIImj8nMR+TP62MKsc/aqpBl7KyLkZqUrFRlVHG0/6jxJCsGwzJHLBLMZLyfH/K+u5bj8c/pGlziho0ioKuKh3j8YwlCyl96njHSSOewmKmzKXgho0VkayVX1HqCwPznH/RU+bwCWymFJ7Okq3I1PkYzIZvkSNeodAWrVTZtNdepMxP2auay/kfckdHihk7tRRpY1cgAAL5Ebj//vs9jjGCg4Jp957dVL9+/fyKYxsIgAAIgAAIgAAIgICPExBjsYYNG2r6ZkOHoMt8H/TNPn70IB4IgEBRCYi3kwEDBtDevXu1KnLd/1zrlU1t2t5KM2ZMp7p167puQhwEQAAEQAAEQKCQBDp16kSff/65Vsrl+RsUFKSey2JkhqDjwdSWOBUKQ6Bnz570zjvviI2BbiXA5gB6fOPGDXD1VxiYyAsCIFBuCGR9sYxSx41ieflLMbGGUlZSdjX9Xfz3O8/ZDstPeyhlaD+y/Xea84ixlWYPE/3yRAorwIvZOSstwQ2pLz7HhmTcYZL2iNWYjU27pHncTm16SkNi2anE3dtv3P+1VnH7uLA2Y7bhwkyMyzQjM8njWpusM0FO4zo97D9ywAiK6P6k7BihlAkk9e1Kll3b1HExx8dT0KWXk/mSKyisQ0cKaXZzqUpj4elXkwf0JDu7/TfHxVLM3A8o+KraDhmsRw5R4iN38br7+Rc9aTalvfQc2TLS+Bwz8TSXtSlmxgIyX1jFUdZ+5j862+4Gt/MvatiLFN75UUceREAABMqOwKZNm/RpK/Wnh1po8Z49n6AFC94uO+GwZxAAARAAARAAARAAgRIjoOmbF3J98tmZBGf/b+MGTC2jMcEvCICAvxEQhw0LFiygF198if79V3THEpz3P0P/rCWxbis4iJ566ikaPXo0VapUScuOXxAAARAAARAAAa8JGPpm9R5Uf8+rFTZRzycepwVvQ9/sChMeyVxpIF4ggb/++ktNYZmWlubIq3dtqWnTprR161ZlSODYiAgIgAAI+AGBtHEjKfOLj7klrNQUvabc+NTCTuG9+vN9j5M5XVuyGdapk2T97ShZfjlIZNXdo0qnRMqx96MKn61VxjmqkjL8SeWpLbNX8tSWuWRwaSJvEW9ObIpjdKpcNiozMWUExjHdxsxpbOaSUXFztl9ThDgwetx/lDIkg0eyXIem1Fbt4n2UXeybeDqRsg6WfbuUIWfMmEkUdI279yHLvt2U1KtznvPPXOUisv1zUoluvuRSilv4KZnjK+ZpSlLXjmRhj4Pq4uWtcQs+ouBc+8hTCAkgAALnnYAYJTdr1oy2b9/O+5KHp/NJFRERQUeOHKFq1aqddzmwAxAAARAAARAAARAAgfNPQPTNMoVlenq6vjNn/w/65vPPH3sAARAoWwKJiYk0ZswYenP2m5STreuRXURy3BGV4pnoAjYimzhpIj3++OMuuRAFARAAARAAARDIj4C7vtk9Z2REJB05eoQuvvhi9w0BvgZDsgA/AYrS/BdeeIHGj+dpplTQurFGZ/aDDz6gLl26FKValAEBEAABnyWQ9FB7NjY5ql5jy/1Ogng5snGKcuTF62aOi88tzf+W84W3m+WZlKtYiSquZm9PPhCs/ztG1t9/U5IYxnCGRZy0T1pkrDuWhtxOyzllhOMor283yhu8hIjEbVzObNI8lrlScpTX6w2p14BMlS409oYlCHgkkPX1p5Ty8vBzXn/m2FiKe/9z9qh2ucfySAQBEPBNAjKm6Natm3puuD4rRNpRo0bRuHFlPz20b5KDVCAAAiAAAiAAAiBQPgkY+mZDx+zaisWLFlPXbl1dkxAHARAAAb8j8Msvv9DAgQNp9erVLm3T7orGvdFYTpgwgYYPH+6SD1EQAAEQAAEQAIH8COTVNzufsc+PHOli+5JfLYG1DYZkgXW8S6S1KSkpVPOqmnT6lO5u1/H2n+jSSy+lQ4cOUWRkZInsC5WAAAiAQFkTsKem0NnW17NBFbvc0kyhNJF0T1xiYGUM4nPLqtlEiUEWe3aSf5wxpOVtFDN5Tu6sWAcBECgCgfSp4ylzyUIxecwT5PqLGTuZp+S8N882JIAACPgugYyMDKpTpw79/vvvLkJqT9oqVavQkV+PUExMjMs2REEABEAABEAABEAABMo7gdTUVKpZsyadOnVKb4pT0yL65sOHD5N4pkUAARAAAX8n8NVXX9GgQYPo2LFjWlNd3r9JQo2aNejggYMUFhbm7yjQPhAAARAAARAoEQLi+fiaa66h30+wvjnXy6SqVavSr7/+Cn2zB9IwJPMABUkFE5g/bx716dvXPaM+vn/llVd4XvcX3bdhDQRAAATKKYGcrZsoud/jbAammYMpX1rS0Qgyq+kpxVhFLMnMum8yWbdnpJH9zH9seybzPfJ/SVPtN1HUwBEU3q1nOaUBsUHAtwgkPXY/WX7ep8+oqnkFNCQMubkNxU6bb6xiCQIgUE4IjB03ll566SVNWn546kMMtZwzdy716dOnnLQEYoIACIAACIAACIAACBSGwDzWN/dlfbNr/0/TpRBB31wYksgLAiBQ3glkZWXRjBkzlHeU5ORkrTn6zXH58uXUsWPH8t5EyA8CIAACIAACpUZg7Finvlk9TuVHD3PmzKG+fXLZvBgbA3wJQ7IAPwGK2nyr1UrXNWxIPx044BjcG3VFR0XRIf5KrFq1akYSliAAAiBQbglkLJhFaXNnKPmNvoWawPKKGhT/iaurcfcm2s+eocTHOpH95J9k56kcZf5tMUKLXfgJBddv6J4Za6VO4Gzjq/iYiKEfH00+sGYx9hMrQF5XHUnRVosFIK/JrwTX4y8+5oxpTVV+x3ZeU5aDWqoyQFRfDoqxIe+Dk6U+M0cCbf8X7DzKLS/BwEq1/1rxFKg5FsVUiKujxPzNMRUobtm3ZL6gcrF2mLNhDdnS0+Tk4Krl2Joo7NYORMHBxapXCuesW032zAx13pm4XjkvQrluU0hIsetGBSBQXgn89ddfVLt2bRKPFNpd1NmSevXr0d49eykoKMiZiBgIgAAIgAAIgAAIgIDfEBB9c0PWNx9gfbMRjD5hdHS0mgUD+maDDJYgAAKBQODkPydp1MhR9N5775GNP1i+/fbbadWqVYHQdLQRBEAABEAABEqEgKu+WSo0xhcSry/65r37yGyWt3cIuQnAkCw3Eax7TUDmam/Xrp2e3/WyI+re/VF6//33vK4LGUEABEDAVwkkP/sEWX7cxEYeYubB9zrdoCTs7vspevSEfMXO/PxDShvPHhpVGS4dGkbxG/bCUCRfaqWz8UzjmmpH+lFV1l1i5CVPM7fgSHQ//qqAZFTbjWlPjTyczv1O7bAb54xLrYZRkhTnP7VPjjh25ZLVmWjUzUsxaFIlZcFxU/nYf6USNiSz7NlBSb26eGx/9MsTKOzuB1xJFjpuz86iszezoRq/zHC9/uOWfEnBV19T6PrcCrBx2pmWDTUjMtmgH94KS76ioFp13LJiBQQCicCjjz5KixYt0pusG/bqF8iqVSuV0jyQeKCtIAACIAACIAACIBBoBL777ju9z2eMe40lkfQVxZgCAQRAAAQCjcCOHTtoyJAhJJ4b69SB3ijQjj/aCwIgAAIgUHQC7vpm93rEOFuMtBE8E4AhmWcuSPWSQIcOHWjFyhWO99lGMfGs8cMPP1CzZs2MJCxBAARAoPwRYIOfs20bkz05UZfdzEY/mklJ1MhxFN7p4XzblMMGaMn9eijDH1F9BjdsTLELPsy3DDaWDoH/2JBM7LGUUzI2+hInYuJlTI6v9ivHWYs7H3KGUYMuo5QXuy7+czcC062CJJthNKYnGVvUMsD2X2lXyXoky3xvPqXOmmg4juPjph0p8wUXUPw3m3n62eJ5DbPs301JTzyk1yoHkyewDdeMQYtbd/a2zZTC9wbX888eFk6V2NC0JLydibQIIFDeCGzbto2a39icbHJh5AodOtxJ33zzda5UrIIACIAACIAACIAACPgjgTvvvJO+/XaFGp/L2FkFHvDJiBz6ZgMIliAAAiAAAiAAAiAAAiAAAvkR2L59u2arwu/p5G2fvEEy3v91uLMDffP1N/kVD/htMCQL+FOgeAAOHTpE19avTzkWi3tFfC02bdKUfvzxR7gDdCeDNRAAgXJEwPq/Y5T0gHheNLGRkdbNUOLzPa7ChysoqMZV+bYmhz0mJfd+RLNu4ToiHutNkc8OzbcMNpYOAeWRjDXSyphM+o/KqZeoqHkaUjEpUxs0WaRjmfv4c6a8gdPsPEem2S516Bm0vinn5YgYlan5LfWivBpI+6+080heZsVISR7Um3I2rXXWoPOP7NWfIvsMcKYXMZa5+B1Kn/4ql3Ye/+DrmlDcW0uLWKOzWPr8mZQxb6bb8Q++vinFzV/izIQYCAQQAZmio1mzG2nHju3qdmli61zDmDc4JJj279+vprwMICRoKgiAAAiAAAiAAAgELAGlb772WsrJyVF9Q2N4LUCaNoW+OWBPDDQcBEAABEAABEAABEAABLwkIPrm5jfeSNtE36y/rjMGF6GhobRv3z7omwtgCUOyAgBhc8EEBg0aRNOnTzeuPS6gvzXnxcJ3FlKPHj0KrgQ5QAAEQMAHCWR+9SmljhnOdzXdSl2/vZmjY6jC2l1kKmDebOuBfZTU4wE1fZ14rIqZMo/CWrb1wZYGnkhnGosRoKP36ProUvZe6lGmjrxYJ/HxZ4svOYZSRDyQGY86tcLpdt4ohg+yri20uk1imCZfO8gmHTN3vnjd1aLMWZ/kEXszf9z/BSU8teXZtk3InnRWsXLlX2Hp1xR0VW2ddtEXKcOfpazvta/g1VcqfHDCH+1DUSVgDJr8TA/KYa9kjsB1R/ToS5HPPOdIQgQEAonAu+++S088/rjLXVndDRWCgQMH0rRp0wIJB9oKAiAAAiAAAiAAAgFPYNBg1jdPY30zB2fPUFuBvllhwQ8IgAAIgAAIgAAIgAAIgMA5CIi++XHWN6ugDyiMcQX0zeeAlisZhmS5gGC18AQSEhKUxebp0/9yYePFuRarUqUKHT58mOLi4gpfMUqAAAiAQBkTSHv1Bcr87EM3paV0NIKb3UyxbywsUDp7RgZZ//ifyiflgq6oQcSW7r4Scnb+SJaf9vGdWzOUE7nEYEqmFRN5lbpW9awclk2cxnHOo5K1HJrhk9QhxlbKCkrKagZRJjPn1C2jeLOKSh6Ja5WImV7e/Yfe0paCa9RS9eAHBHITsP3+GyXcf5t+HhpnIzt8q1iJ4ldtVedo7jKFXU/qcT9Z2BjUWTsbg06bT6E3tylsVXnyJ9x3K9n+/I0vCK5ddsAe8WKmv8V1t86TFwkg4O8EkpKS6Oqrr6ZTp0/xNeHe2gsvvFCNJeLj4903YA0EQAAEQAAEQAAEQMCvCYi+WfqI//77H7dT6yRqYzMTValSmX799VeKjY31awZoHAiAAAicLwJZWVkUFhZ2vqpHvSAAAiAAAiBQpgRE31y7Tm365+Q/+ntIXRweUFxQ6QI1loC+ueBDBEOyghkhhxcE5s+fT3369HHm1Eb2an3Q4ME0dcoU5zbEQAAEQKCcEEh65E6yHDmsSSt6S763idlTeG+eOq938afOK2sMqS8Opuxvv2RbFkMdK+pZvaFs4GIyuUzo6NJ+MfuSoCc5lipNGMkGPWg1G301zWDMZbPK62n/UQOep/DuPY1qsAQBNwJZX35KKa+It0DneSgZwjrcQ9GvlEyfw56ZQTyXirZf3UDSFBXNFqFBWloxfu0Z6Y66DQNME3s65PnAi1ErioJA+SQwmMcK09njmPPZoHwAqvW5c+e6jzHKZxMhNQiAAAiAAAiAAAiAQBEIzJs3j/r27euxpMyQMXXqVI/bkAgCIAACIHBuAqmpqVS/fn26//776aWXXoJR7rlRYQsIgAAIgEA5JSD6ZpnhQnt/5PpLBH2z9wcVhmTes0LOfAhYrVZq0qQJ7dmzJ0+ukJAQ2r17N9WrVy/PNiSAAAiAgK8SsKen0dlW17GnIHYVlCvEzlpIITfenCu1/K2mvDCEslctV17CpCslwd04zDDT0bYZv9orfuGilTLJdI5ieKbKO2uQNOWQTNLZWE2mdJSglxInTGysJmWNNOf+IweMoIjuvVR+/IBAbgKpY5+nrOUfq2TX8y9qxBgKe6Br7uxYBwEQ8FECBw8epOuuu45tNnWjTYecJk5vSDt27GDbzeIbbzqqRQQEQAAEQAAEQAAEQKDcEND0zU1Z37zbKbOupghlffOevXvpmmuucW5DDARAAARAoEACzz//PE2YMEHlq1y5Co0fP46eeOIJ/rYRHzcWCA8ZQAAEQAAEfJ6A6JsbXdeIskXfLF4vtNeSSm7RQ2/fvp2Cg4N9vh2+ICAMyXzhKPiJDJs3b6ZbbrmFL0jNn400S3dyQ61at6a1a9f6SUvRDBAAgUAgkLPjR0p5qrsyctIsn0RbyaZPfGOruG4PKe9B5RxECnsky3F4JJPpLLmN/F+391LNVnFpulpTpl9aVDpfks7GYtITk1VRN0h+SRIDMknUtvCKyq9+tHJaArHTM90jmvv+YUjG/BDOSSDpwfZk+d9ROXk4j/P8i130BQXXgeH6OcFhAwj4GIE2bdrQunXr1ONEfoznj5kfIhs2bKQWLVr4mMQQBwRAAARAAARAAARAoDQJbN6yhVqyvtlmV8oD3rXoFTS1QstWrbkvuVat4wcEQAAEQKBgAseOHaN6detRVnamY/wtmrVG119PM2fOpObNmxdcCXKAAAiAAAiAgA8TaN2mNa1fv15JqNmRae+QzCYzbdi4AfrmQhw7GJIVAhayFkyge/futPiDxS4GntrFKSWXLFlCjzzySMGVIAcIgAAI+ACBjHdmU9rsaWwQxdM7KmMVFor1lUE1rqIKy1b4gITFFyH1JfZI9s1ysvELe5myU/3ntoqHJwkyEWXu9isLMRtvF09ivF3u8o7AaSYur5V23v9lu5bPxKZ4UsoZZFee9h81cASFd4NHMiep/GPWE7+R7eRfZD91kix//0XEHvVMlatS0OXVKejSKyjossvZus8/vPrYk5PobJvr1Xnmdi5FhFPFDfuK3E57YgLZM1mRlsnTTmZlkU2mtuQ/O8dN/FVmSIvW+R+EfLbaEs5qdWVwfY56eV/Z2WQKDfMLD4f5NB+bQMAjgaVLl1KXruJBkB8E6sEhV7SKULdu3WjRokUeyyERBEAABEAABEAABEAgsAgoffPixe6N5q6j6BM+gL7ZnQvWQAAEQCAfAp06daLPP/+cczjH35JdOYTgtIcffpgmTpxIl1xyST61YBMIgAAIgAAI+CYBpW/u0sUhnHra6V6PunbpSotzjykcORHxRACGZJ6oIK3IBE6ePElXX301paSk5Knj4osvpl9++QVzruchgwQQAAFfJJAyoBdlb1mfSzQ7hd3TmaJffDVXevlctf55gmwn/qd0B3bDDQwrDTTlgd4m7Z2+pl+QJF7X/D+JkoG7Yfq6EddL5cmjFZXKxDiNDcrka2K1JtpfribX/oNr1yNTfEWVBz95Cdh5ylXrvl2UtXYVZX+/kmz//mM4zNPZSxdZO1Zi7hdcqw5FjhxHIfUa5K2snKVkb1pLKYN6K6lVK+UcZHd4wQ2aUNyCpUVqjfWvPyjxntaKnZyf2nntXlX8ih/IfGFl90Qv1qz/O06JD9yuXUNshCnXikz1Kp9+ivxyVcSv203mmFgvakMWEPAPAsnJyVSnTh36+++/3Rokl0ZMdAwdOnyYLrroIrdtWAEBEAABEAABEAABEAhMAtJnrF27NqXq+mbdMbWCAX1zYJ4TaDUIgEDhCaxZs4Zuu+02R0FdNeVYNyJRUVE0fPhwGjJkCEVGRhrJWIIACIAACICATxNISkpS096f5LGD63hBhI6JjqZfDh2iatWq+XQbfE04GJL52hHxA3kmT55MQ4cOdWuJvMQWw4OBAwfStGnT3LZhBQRAAAR8jgAbeJxp3YhYS6mMPNSUjSIkv+COHjGWwu6Hd0WfO2YBJlDCfbeS7Y/f1bNVnrCalZJA0J638mW2nK/G81eZK5mDKeLRJymy33OSsdyGjNlTKP2dOSy/3la9/eHde1HUgBFFalfOjxsp5dkntJqYm2HXKBjl+jfFX0Dx320tUt1Zq76i1FEDuW45GlIZ188GZWKwJgMaU5VqVPHrDUWqG4VAoLwSGDRoEE2fMZ0vBrkqnEaVosieOHESPfdc+b5PldfjArlBAARAAARAAARAwFcJTJ06VRk1eJIP+mZPVJAGAiAAAu4E/vzzTxo+Yjh9uGQpf+ArHzo69V+SUxudOyPVq1dX3skeeOAB94qwBgIgELAE5s6dqzkX0G8Y6oNpvp/06dMnYJmg4b5DYPDgwZoNinF+smia6tlEkydPOudYwnda4HuSwJDM945JuZcoJyeHGjVqRAcOHHC2Rb9og4OCaOeuXdSgQfn3iOJsHGIgAAL+RsB67FdK7NxBaxZbkqgOMU/KKEPq2LeXUUgDNjJDAIEyJHC2bWOi5ERl+CS9YVOQmQ0cu1DEAzxNHHvNsvEUl1kfL6bMzz9iT2VWllSMmDTDq9h5iynk+mZlKH3xdp3cpwvl7NzO002K+QkHaT/HoifNptDW7PmrKIH7Lra//6Ss71dQ+ptTBZcW9Os/+JY2FDt1XlFqJsrOUtON5mz8ntJnvs51iNS8A9U3Yi+Ht91J0a/NLFrdKAUC5ZDA/v37qXHjxiRjBglyBct1IVdG3bp1ac+ePRQSEiKbEEAABEAABEAABEAABEBAEcjOzlb65oMHf+beo+4nXetGUnBwEO3atZuuvfZa0AIBEAABECiAwA8//EADBgygnTt3uuU09IZuibzSqlVLmjFjJu6xucFgHQQCkICalUbvfzmaz+vy0TQCCJQlgb1791KTJk3IYrE4xdDPVeibnUgKG4MhWWGJIb9XBDZs2ECtW7fWhvXyEpZLGb4Gbmx+I23etJnMZvHxgQACIAACvkcgY+lCypgyTr9vyT1MM/wQ6/WK6/eSKSra94SGRAFFIKFtE7IlJnCb5SFrophxUym0fcc8DNKnjqeMJe9yOhtCysOYf8K7PEFRg0bKSrkLdksOJbS8juxZWdx0uS619kvb4lf8SOYLLix2mxIfvpNsRw+5Xf+Rzw6j8MeK/2VVUte7yXL4EHEHnKfjZNl5Ts7IgcMpoluvYsuNCkCgPBCwWq108803049bf+TzXxshKLk5yhMf07p1a6lly5bloSmQEQRAAARAAARAAARAoJQJuOqbxQu3oWuW8WCzG5rRli1boG8u5WOC3YEACJRPAjabjd59910aOXIknTp1SjXCMULXI9pC+w1iBxG9e/emsWPHUqVKlcpnoyE1CIBAsQmoGTak46V08s6FeDlEAIGyIiDPNNE3//DjD5oIuuMBUT2b+d9a6JuLfGhgSFZkdChYEIHu3bvT4sUfcDZ+gOjPFSMyf958erL3kwVVge0gAAIgUCYEkvt21Twe8d5tcg/jILcxU3gkVdy8X63jBwTKkoAyJEtmQzI+PcPa3U3R4z1PG2079Q8l3NmCs/F3hfqALqxtO4qe+GZZil/kfVt//okSH7tPtdvZt+Brs8pFVPGbTUWu17Vg0qP3kuXng6p64/qPm/8BhTS6wTVbkeKJnW4j64nftLJ8UzHxaCZ2wVIKbsge5hBAIAAIzJ8/X3N3r5//ui8Jdb117dadFi16PwAooIkgAAIgAAIgAAIgAAJFJaDpmxc7imsqZ+133rx5ytDBsREREAABEACBfAmkpKTQK2NeoRmzZlBOtuY1XNOCu7zT026xqp74+Hh6+eWX6amnnoIn8XzJYiMI+CcB5ZGMm+ba/5IVeCTzz+NdXlr11ltv8RhAnABo73IdcvO52a1rN9Y3L3IkIVI4AjAkKxwv5C4EAfmSoXbt2pSYmMhPFXmSODuf0uH85ZdfqEqVKoWoEVlBAARA4PwTsPx2jJIebKfdsuQTV9UT1hYUEUmVNsGQ7PwfBeyhIAKZny7hqRj/YodWJoro+CCZL73cYxHbyb8o4e6WfBrzuax7/4no/iRFDhjhMb+vJ2YuWUhp08arMYE0ycZevczcrlA1PeSM4ovPfZWzNzcgW0Y6d114B3z9m8zBFL9xDxuSRhSrfltaKiW0aqj1h1RN3Ddi76wVN+4rdt3FEgyFQaCUCMjYoE6dOpSQIN4UXQKPEyrExamxQdWqVV02IAoCIAACIAACIAACIAAC7gQc+uYk1jdzUENdPUt8xYp0iPXNlStX1lOwAAEQAAEQ8IbAkSNHaNCgQfTNN984s7PayvFOnuOO+y3H69atR9OmTqXbbrvNmR8xEAABvydg4ncREhz3A7XC8/mwRygEECgLAjI2uOaaa+hswlnnM0sXBLYoxT8iMCQrPkPUkA+BOXPm0NNPP+3I4ex7mtgKtAstWuz8gsyRCREQAAEQKCsCPOVWcv8nyLJti2Fzo31dodmTKKkqfPgNBdW8uqwkxH5BoFAEMpctorTXx2j23Koke8CauYBCmrcsVD2+kjl1RH/KWvOtui5leKoNXYmn6hxF4V0fL7aY1r9OUNI9bdyu/6Da9Shu8RfFrtuyZwclPdmFZWYfTGw4Y2ejtZBatSluydfFrhsVgEB5INCNvRUv4b6/nP9ira2uXy1Kb775ptuYoTy0BzKCAAiAAAiAAAiAAAiUDYHZs2fTM8/0452LssY9dOnShT74QGbIQAABEAABECgsgRUrViiDssOHD6uiMm53vdNq687Ue++9lyZPnkw1atQo7K6QHwRAoBwSMJnMLLXrXUFrhOi5EUCgLAh069ZN9f2dTyZ2DKC/f5nN+mbxoIlQdAIwJCs6O5T0goDMS3tjs2a0fccOj7lXrVpFt99+u8dtSAQBEACBUiOQnc3GKSsoa/kyytm1nXfr2vF1dkHkrbcpvhJF9h5AQWwAElLrGqLw8FITEzsCgcIQsGdkUFKvzmQ9/LN2SvP5G1SlKsV9sppM7F2vPIazdzQn+7+n1RUqQwL+3El5ZYt7exmFXNuo2E3KXvU1pYwa6FKPicIe7ErRw192SStaNGPRAkqfMUEVVncVHmCH3fcwRb/AHtYQQMDPCaxevZratWunWqnOf5f2Nm3alH788Ud20CfKKAQQAAEQAAEQAAEQAAEQyJ+AlT8CbN68OW3fLvobLbj2MaXvCS85BhksQQAEQKBwBCwWC82cOZNeGfsKJSUmcWH9Dut6o3WpMiw0lAYNHqymvAwLC3PZgigIgIC/ETCmtjTaZdwWYEhmEMGyNAmIjUn79u097hL6Zo9YCp0IQ7JCI0OBwhLYvXs3NWNjshwLz7HOthnGg0XqkS8V9u/fT5GR5fOFdmFZID8IgIBvEshat4pShz6j7k+GlyPXe5VuteKwL1MGLOy/N3bBhxTcsLFvNgpSBTQB2/GjlDJ+FFn27VIPXnE3bbqgMsXOX0JBl11RLtmoaTrvasnXKV+d3CDxZyRfl1BICMVv4OkhWXFV3JA2eSxlfvie7EFd9lJfzNipFHpHx+JWTanDn1Xe1FTl2o8yIgu7t3Ox60YFIODLBNLS0qhBgwZ07NgxNzHlOjMHB9GO7Tvouuuuc9uGFRAAARAAARAAARAAARDIj8DevXupSZMmJAYPWtBHcbyoUf1K2v/TT9A35wcQ20AABECgAAKnT/9Lo0aNpHcWLiQ7G/CyBk4LrkozlWKia6+tT7t27aLg4GAjF5YgAAJ+SEBNbem4GUgDtRsCDMn88GD7eJMy2IlCvfr16bjom53DAPWskmeRfHACfXPxDyIMyYrPEDV4QWAwf5Ewbdo0l5z88ldeAvMDZ9iwYfT666+7bEMUBEAABEqXQNanSyjttdFqqjmj06HbebgJot23lOkKmYOCKH7dHjLBENaNEVbKgAA/TG1n/yPb6VNkObifsjevI8sP69lZlz6q40Vws5uUV62gy6qXgYAls0vLT3so6fEH1WBA/BYZRp8h9RpS7LuflMhOkrrfS5afD2iDD73G+OXryFzt0mLXn3D3LWQ7eVL1f+TQyPgmjqfKDcZUucVmiwp8m8CIESP0vr6z/29ILGOEKVOmGKtYggAIgAAIgAAIgAAIgIDXBBz6Zv3lkWtB6JtdaSAOAiAAAkUnII4iBgwYQJs3b+FKRNfIN11139WVW7z4/vvvqU2bNkXfCUqCAAiUCwJqastc178IDkOycnH4/ErIEc+zvnmCJ9sSE0/RPJCmTp3qV+0tq8bAkKysyAfYflNTU6lu3bp04sQJR8u1Mb6JgtkYY+euncpTgWMjIiAAAiAAAiAAAl4RyHj/LUqfKZ1mXZkjMbtmsCFJMRNmUuhtHbyqK6AzZaTTmZYNGZ6NHZ6JwaidzDyVbfx324qNxXbmX0pod6Oqx+j/mHha3Iob97FLJkznV2zAqMBnCeT2FOE4//n6uuzyy+nAgQMUHR3ts/JDMBAAARAAARAAARAAAd8lIPrmevXq0e+/i75ZxsMctA6n8oqzY8cOatiQx3gIIAACIAACxSIgRiJLly6l5/lDsRN//OFSl4k6dbqPPv30U5c0REEABPyVgPvUlnqnixsLQzJ/PeK+2a59+/Ypz8Q5OTwTngTnqUiXXXYZ/XzwIEVB36yxKeYvDMmKCRDFvSfw1Vdf0T0dOxrDereC119/PW3duhWub92oYAUEQAAEQAAECiaQsWgBpc2YQGbuMLMNFHecdYMyRwfaRKENr6OIQaMouG6DgisM0Bw52zZTyjM9dE9nDI85ht7chmKmzi82kZwNayh5SF+uR3+5waObkEZNeKrRpcWuGxWAgK8SsPLUFzK9/a6dOx1nvqusX375Jd19992uSYiDAAiAAAiAAAiAAAiAQKEIiL65I+ubXV8gGUPh6xs1oq3btkHfXCiiyAwCIAAC5yYgU4nJ7EITJ04kiYfzR5I///wzVa9e/dyFsAUEQMBvCJj5BYTMNOYIeqcLhmQOIoicZwKGvnkn65s99f+XL1+ujQ3OsxyBUj0MyQLlSPtIOx/q/BB9vEymn9Jfcru8Vpo0aRI999xzPiIpxAABEAABEACB8kHAcvhnyl67iuyswLH9d5psp06S9eefiCxZPLATb1f8zJVBnSmIIp8aSBGPP1U+GlbKUqbPn0kZ82fxXo1JM+0U1W8YhffoU2xJ0t+YRBnvikGas/8T3q0nRQ18vth1owIQ8FUCkydPpqFDh+qDeuN1nrZ84IEH6OOPP/ZV0SEXCIAACIAACIAACIBAOSLw0EMP0SeffKw8czvGv+xlWuKTJk1mffOQctQaiAoCIAACvk/g999/V+P9WrVq0bhx43xfYEgIAiBQIgQ0j2Tcx1LdLDuZeCkzo9jV1+0lsgtUAgL5Epg8eQoNHcb6ZrZoNM4/o///4AMP0rJly/Itj42FIwBDssLxQu5iEjh58iTV4ykuzyYkOGrShvVEkZGRJO4Ia9as6diGCAiAAAiAAAiAQOEJ2M+eoYxli9h4aS4blFm0vrQM7PhfzPQFFNqideEr9fMSyc88RjnbtugfsvAAmD2Sxc1dQiHXNy12y5OffIQse3Yo/tpIW6YcnUWht95R7LpRAQj4IoGjR4+qaevT09OVeEZ/X1bi4+PpIE9pedHFF/ui6JAJBEAABEAABEAABECgnBEQfXNd1jcneNI3R0TQ/p9+oho1apSzVkFcEAABEPB9AuKFyH2qO9+XGRKCAAgUnYBc7646PqMmeCQzSGB5PgmIvlmmrU9LS8uzmwoVKigPmRdddFGebUgoOgEYkhWdHUoWkcCCBQvoySd7a6Vl+i39CzF5+LRq3Zq+//57dD6LyBbFQAAEQAAEQMCVQOZnSynttZf4Aw1W7LAZE5GZgmpcRRU++tY1G+LM52yr68ienmp8UEUUFEQVN+wjE7vpL1bg6f3OtGxIlCkGNeIhjgP3fyp8tZGCqsKQRgOCX38iIPebtm3b0rp16/hc5x4+r2tBevtECxa8RT179tSS8AsCIAACIAACIAACIAACJUBA0zc/6bH/2aZNK1qzBvrmEsCMKkAABEAABEAABAKYgGE4mtuYDIZkAXxSlFLTXfXNuc8/0T+/NX8+9erVq5SkCZzdwJAscI61z7Q034udpZw7dy716VP8aaR8psEQBARAAARAAATKkEBy93sp55cDmgRsz2EKMlP8+r1kYk+gCBoB64n/UWKnW5XNi41nthTbl+Da9Shu8RfFRmQ9dJASu92j1SP2NFy3udIFFL9qa7HrRgUg4IsE5s2bR3379lWi5R7Yt8ZHI754yCATCIAACIAACIAACJR7Aoa+eT1/zGB8xmA0Svqkc6BvNnBgCQIgAAIgAAIgAAJFImAy8UfS4iBGgkuHC4ZkGhL8nj8Cmr75KY/nX9s2bei7NWv4nY70+hFKkgAMyUqSJurymoC4H7z22mspIyODy+ivmPRFXFwc/cQuxy+99FKv60NGEAABEAABEAABzwRSx46kzOXLlHGUDPBkjFdh2QoKvvIqzwUCMDXru28p7fn+zEboaL7bIjo9TFEjxxWbRsZH71PapFfc+Ife0pZip84rdt2oAAR8jcCff/6pphVKTkl2UyhJdz8inKcV2r8f09j72kGDPCAAAiAAAiAAAiDgJwTc9M26ntloWmxsLB3g6dWhbzaIYAkCIAACvkPAyt78g3hmAAQQAAHfJmAY6ji6WXoEhmS+fdzKu3R//PEH1a9Xj5KSWd/MwfX8iwgLp32sb77qKrzrOh/HGYZk54Mq6vSKwOTJk2no0KGc13HJ61ETtW/fjr799ltYj3pFEplAAARAAAQCiYA9M4OyvvpUTRdnCgqmMDZ40qyUPFNIHTeKsr74yPVpSxXX7SZTTKznAgGYmvH+W5Q+Y6LCaCeb6n9EDhtD4Q92ddDIWDiHMpYupNg33qfgWrUd6QVFUl8cQlkrlrvxj3x6MEU88XRBRbEdBMoVAVEadbjzTlq5YgXLbfTvtaX8TuK+/5AhQ8pVmyAsCIAACIAACIAACIBA+SJg6JuN3qhTeuibnSwQAwEQAAHfItC/f3869c8/NHHSJLr88st9SzhIAwIg4CBgNvMH2PIddi69HwzJHIgQKWECSt/coQOtXLlSe3eT6/ybPHkS9M0lzNy1OhiSudJAvFQJWCwWat68Oe3YscPjft955x16/PHHPW5DIgiAAAiAAAj4KgF7Wirl/LiRLDxdosmSQ+YralBoy9vIFBbmUWQ7e+e0HNhD1uPHyPbvKZXPFBdPQWysFNKwcZ4y1qOHKfHhO3m4xv6z7CaKnTaPQtjDlcfAI7vEzneQ9dhRbXzHrqfNF1Sl+BVbPGYP1MT0aa9Rxgdvq+ZrPsmIooaNpvCHuqu09LdmUca8GcrDkrlCBYr7bA2Z4yp4hSvh3tZk469m1PhaXH/LMXvzXQq5oYVX5ZEJBMoLAem79+zVU10nuWVu0qQJbd26lcxmdoGPAAIgAAIgAAIgAAIgAALniYB4tRF98/bt253vOF32tWDBAurZk/usCCAAAiAAAj5B4ODBg9SwYUOS94XiyXzY8GE0bNgwioyM9An5IAQIgICTgJraUmb0yGWxD0MyJyPESpaApm/u5aJvdp5/jRs3pm3btkHfXLLI3WqDIZkbDqyUNgHpJDZq1Iiys3N4186LX+SQKS5le7Vq1UpbLOwPBEAABEAABApPgBXW6W/Ppiz2WmWTad1U4Gcbj6yCrrqa4uZ+QCYX4yN7RjplLltMmYsWkC3prKMzrNsaUXCd+hS36HO9HufCeuQQJT1yN/vNYqMwqb3apVRh4cdkqniBM5Mey3hnNqXPnupIl6kbo54ZShGP93WkIUKUMXsKpb8zR6Ew+AddXZfC2t9Flp1bKXvLBumlqDFyaNs7KHr8NDIFBxeIzp54ls7e2tSRT/ibTEHsEW4XmaJjHOmIgEB5JyBTWtYTF+NJSXmaEhoaSrt276Z6devm2YYEEAABEAABEAABEAABEChpAjKF5fX8Yik7K4ur1t90qoWJ9c2x0DeXNHDUBwIgAALFIHDbbbfTmjXfGXdrVZNMQzxx4kTq3LmzmjWgGNWjKAiAQAkS0Ka2zGVFxvXDkKwEIaMqBwFN31yX9c3JLs8I7fwLY6cNO3fuVPpoRwFESpwADMlKHCkqLCyBsWPH0uiXXlIvaLWyfBNQb3GJ7rjjDjXFZWHrRH4QAN1iP1MAAEAASURBVAEQAAEQKE0CttOnKPn5Z8m6b7djt+LmWQZXaqpE7upGdH2CIgeNVNttf/9JyYN6k+3YYV43K6MwE3uqIjMXEosl/om47xGKHDVO5Xf9UR7JOt/JeTk/70S6zhRfkUJuvJlCG99IQVUuImvCGZ7O8mPKYSMoY/8sCgVd/X/27gTAprJ/4Pjv3tkwjKFQ0h6lN1HJvoRkGbKlIgnVH2WLaBEiFCJblnYVKpJ9p+xLhfadSpvIMsww6/0/zzn33HvnzmDWO3f5nt537tnP83zOde5zfuc5z3ODxLyiKrQVi/bcZciPn1nxkSQMH5LB3zgPGs2qQaako1q1k+LDX1DrZa9VpeTNGyV+4MNqS/Wf3lW6Q8KuuEpiP1wX8uYABJeALrPrJsYzDvrq5JBRI0fJsOHDMi5iCgEEEEAAAQQQQACBAhTQ8ebhKt5slkjNA1njzZu3kFWrVhbg0dk1AggggEB2BBYvXizt2rXzWtW6WovUq1dPpkydKjffdJPXOkwigEBhCJgVybyPrLu7TPeeyTQCeRZoGRcnq1ZmXWYfNXKkijcPz/Mx2MG5BahIdm4flvpAQDdZW6NGDdm7d2+GoxnFRfXntVdpcjwDDBMIIIAAAn4lkPbH73Kyd1dJ//ugqjKhf708BjXprBstYddcK7HvrVDdWH6hKpE9LI5jqhUydy0lY1xvb9QlU/WUooeOkSJt7/HYmTmaarRI1sq5rVpRH0Ddq9nU59mOr2sxFbn/YSn2yGMi4RGZ9hnqMxwJCXKiw+2SeuSwy99lonhtYWFStNdjUrRbTw3tWnS+kUTV0tkZ1dKZUTdQVyZTN9WRrdpL8ZETzrcpyxEIGAHdxPhDqnsg83vukWz1T+XmajfJLtWtUHg2WvDz2JJRBBBAAAEEEEAAAQTyJJCSkiK1atWSPXt0vDlTSVVef/116dGjR56OwcYIIIAAArkXSFKtRv5PtWz+yy8/mzvR8Tc1pq/Y1qdeYFcvc/bo8aCMGTNaypYtq2cxIIBAIQnYVVw8U6lK/YPVL08zIJCfAkaXllZ39M4fBeu34SZVuVh3aRkRwXOu/DTPal9UJMtKhXk+F/jyiy+kuqpMlpqc7PoRsi4IMTEx8tVXX8lll13m83RxQAQQQAABBM4lkHbwN4l/uJOkHfnXCHJIRJQU7dFLwq+4Wk6NGSpyKl4cNrvRvLNdtQJWcu5SOdG9g8hx1f2bqlRkv6i8UbEo/ftvJGnbx0YlJaPimbr3KvnecgmveF3mwycnSZJq6Spt91Y5s3OrOP760xVkMUItxg50G1iqWll0tITXrCdRHbtI5K21M++LOS6BlD275eTT/UVUZTLdmpyuoKcVw1Urb0VVBbyIG292rZvdkZM9OkryV/vM86820o3ORQ8dqyoI3p3dXbAeAn4t8Pvvv0uVKlUkPl5356u+4M7rjw796ibG9U191apV/ToPJA4BBBBAAAEEEEAgOAW+UPFm/fJySnKKKp06H3A6i6wlSpSQL1W8+fLLLw/OzJMrBBBAwM8FEhMTZfTo0TJp0iSjK2LnVdqVauv5oPVZsmRJo6XJvn37UnnApcQIAr4VcHVt6RH/0/9G041gum/TwtGCV0DHm29Q8eZTKt7s/dsQGanjzTulWrVqwQvgRzmjIpkfnYxQT8qoUaNkxIgRWTI0btzE7Cc9B62AZLkjZiKAAAIIIJCPAqlf75P4/+skDhWYtpWIkZjJr0l4VbPC0Yn+D0nqtk2qPoUq7qo7Klt0cbFdUEbSf9uvJmwSeXsLo1KRXQWw9TpHW9YVx+F/zdRFFZELtnyhXrsLO29qHSdVgfroEVWZ7bCoyIu6c0sXW9GiqiZaKQm/7EpR0ZXz7oMVTAFHYoKkfvOFpB38XewXXChhV14jYZddkSuedNW96LFmqvJemm4uzrkL9RZl6bW7xBZbKlf7ZCME/EnAoa5bTZs2lQ0bNmRIli6u68veSNXEuO5OiAEBBBBAAAEEEEAAgcISOFe8uUmTJrJu3Tp1e27dsBVWKjkuAgggELoCv/zyiwwcOEiWLV3qrPSrr8kqqGAE0/SnHqx5Itddd62qfPaStGjRwlzEXwQQ8JmAZ5nJiv/pf590bemzUxD0B8ocb3Zf/3XmR44cpeLNw4LewV8ySEUyfzkTpEOMJsdr1pQ9e/cpDbMVENfbYmrOVNUXun7bgAEBBBBAAAF/Ekj5dIckTBwtxUeMk/DKN7iSFt+3u6Rs36zupXS7VmYIxFqouzcsodb37CYxcaZ6A0+1NKbXDat4rRQfNdFanc8AFEhavkhOjRic4fxH1KgjMTPeDsDckGQEMgtMmzZN+vXrl3mBmkMT41myMBMBBBBAAAEEEEDAxwLJqvcL3cXl3n2qi0tnvQSjEQ3nXTrxZh+fEA6HAAIInEVAV+wdMGCAfPvtd7painHJNlb1Dqo6t4+LaykvvTRZKlaseJY9MhsBBPJbwLMimee+deUfBgTyQ2C6ijf3teLNXtd/4s35IZyzfVCRLGderF3AAroLy+rVq0uyatnFuLtXFwmb6gdKFxujVZdgn+/5XK699toCTgW7RwABBBBAIO8CR5vVMloKMyMf6gdN31DZRSJr1JMS095Q42qCIWgF4lWLdCnbP3HWIDTPf/TTo6RIh85Bm2cyFjoC33//vVFmT0hIcGfaWW6PiIyQ3bt306WlW4YxBBBAAAEEEEAAgUIU+PLLL+XWW29VXVwmiwozO+/RdIJsUqxYUdm7d69UqlSpEFPIoRFAAAEEtEBqaqrMmDFDnn32WTl2/JjH9drLxyP+oBuf0K2hx8TEeK3EJAII5LdA7969jef15vMO/bhDNQqjXqKfNWtWfh+K/YWgwA8//CA333yzJJ5OzHT9j4yMlM8++0yqqC4vGXwnQEUy31lzpGwKPP/88zL06aet3yG1lfsOX9/0b9u2jT7Qs2nJaggggAAChSOQfviQHGtRR/2C2Y0bKh2s1r9m9gvLSuz85WIrVbpwEsZRfSKQ8tkOie/VJeP5D4+QUqu2ir3UBT5JAwdBoKAEdKsO9erVk08//dSjmO4sr6uPsWPGylNPPVVQh2e/CCCAAAIIIIAAAgjkWEDHm59W8WZjcBddjfgz8eYcc7IBAgggUKAChw8fNiqHvfrqq5KWlmYey3ntdgUiXNMiF5W7SMaMHSMPPPCAhIWFFWja2DkCCCCAQP4L6F7r6tarK5/uVvFmNXhc4o0J4s35b56dPVKRLDtKrONTAV0wrF+/vuzYsSPDca2LxrBhw2TUqFEZljGBAAIIIICAPwkkbVglp4aoLt/sqhUyj5adiz83SaJa3OlPSSUt+SyQrt6YjP+/TpL2yy8Zzn/xwcMl6p6u+Xw0doeA7wVGjBhhlMXNsrlVQjdv8GuqboO2bt1K4Nb3p4UjIoAAAggggAACCJxDQMeb9csQO3ftdN+ju4uyQrz5HHgsQgABBApJQLco2X9Af9n08ScqvOq+aLvHdMLUlNlnsdFyuu6yuHbt2oWUYg6LAAIIIJAbAd2y5HPPPefc1H2V12M1a9VW8eYtxJtzA5vHbahIlkdANi8YgZ9++kl0X7cJCYmqGOjRH7o6XHh4uGzatEnq1KlTMAdnrwgggAACCORRIHHSGDk9701XiEMXeO2VKkvs3KUquKGnGIJC4MxpSf3tgISVu1jSVCt0ad99LYnTX5T0o0eM7Fm3PJH1GkmJya8GRZbJRGgLbN++XRo2bGh0N+EtEV08Wvbu2SsVK1b0XsQ0AggggAACCCCAAAKFLqDjzbq7nFOnTrnu1c1E2VS8OYx4c6GfIRKAAAIIZC3w4cIP5fHBj8uvv/5qrmAF3JyrW5NGxFXFXTt37izjx4+X8uXLZ71D5iKAAAII+I2AZ7zZup5biSseXVz27N1DvNkC8fEnFcl8DM7hsi+g+0J/9NFH1Qbelw2Rq666Svbu3Uu/59nnZE0EEEAAAR8KnOjaTlK++Urs6idMN0jmUEGM4iPGSZFW7X2YCg5V0AJJq5dJwrABqvtSm7O0os+2WW7R8/T5t196hZR8c4HYYksVdHLYPwIFKhAfH69e9LhZ9u9Xre1Zg0cxfebMmdKrVy9rCZ8IIIAAAggggAACCPidgC6zPvLII1mky6bizVcSb85ChlkIIICAPwicPn1aXnzxRRk/bpycSkjIkCRXaEK/vOtwiN1uF10xoWbNmhnWYwIBBBBAwL8EdLy5WrWb5MCB/a6E6SctVhNDuq5I7969XcsY8a0AFcl8683RciDgUAW+uLg4Wb1qlfEQ3tzUVSSUrl27ypw5c3KwR1ZFAAEEEECg4AUcKrBxrPHNIqpfd7PAq367wsKl9IZPxVa8RK4T4DgZL6eeH6YaNLM79+GQyKZxEnlb0xzvM+3gb5I46yWj5XdzY4cUuburhFe7Jcf7CuUNEl4YIWcWzjXKKfqsqKKLqjSoKo/p/6u3ZaK695ainXuIRESEMhN5DxIBXfZ+59131JdcZUh9x40vu7OU3qJFC1mxYoW6PukFDAgggAACCCCAAAII+KeAZ7xZl2n1PZwejOKt+iTebHDwBwEEEPBbgYMHD8qQIU/Ie+/NNzt90LE4r9RyLfcCYRIBBBDwUwEj3vyOije7SuPu0RYtVbx5OfHmwjx1VCQrTH2OfV6BQ4cOSZUqVeTIkcOuG3tjI+ebBXPnzjWaqT3vjlgBAQQQQAABHwmk7Nkt8f93nzqaO4wRUb2WxMx6N08pSN6+WU72f1AkXe3Xpquo2SS6Z38p+nDfHO/3zKL3JGHsM0ZFsnRV60m/41F8+DiJat0hx/sK5Q0SXhguSRtWi6jKg7bYkhJ+6ZViq3CZhF92pUS2aCP2C8uEMg95DyKBefPmyX1duriftHnkrUyZMvLll1/KRRdd5DGXUQQQQAABBBBAAAEE/FPAijcfPnxEJdB93+4MNwvxZv88b6QKAQQQ8BTYunWr9O8/QPbs+dw1W1cKLl4iRr7//ju6tXSpMIIAAgj4p4CON3fpcl+W9T+IN/vHOaMimX+cB1JxDoElS5ZI27ZtvdYw3xOLiYkxmhzXXV0yIIAAAggg4A8Cp9+YIYkzJhlJMat72aRoj95S7JFBeUpe4uwpcubV6SrMna72o38HRWKmvSERtRsY4zn5c+rZIZK0fJHnex5ScuFaCb+C39OcOLIuAqEgcODAAdXEeDWJjz+psuvxoM2Z+Y9UWb3NnXeGAgV5RAABBBBAAAEEEAgSgcWLF0u7du2M1mysVsmsrMWUVPHmPXtVV5fcH1smfCKAAAL+KJCeni5vvP66PDNsmOhKwnoY+/xYeerJp/wxuaQJAQQQQMApsH//frnppptUvDney8Ss//GRKqu3bdPGaxmTvhagIpmvxTlergR69eolr8yebT66Mq8hrhv9WrVqyebNm1WvUXQblStcNkIAAQQQyFeB+AEPScqWT4y6XlZ/7iUmzZbIBk3ydJz4Pt0kZcdW0T1bGoFuNVJ642diU2/a5XQ41v52cfz+q9EznUP1xWhXrWmVXv9ZTnfD+gggEOQCKaqL3vr168uu3buMOmRWKw1Wc+M9e/aUWbNmBbkC2UMAAQQQQAABBBAIRgEj3vyKije735VwvWxVs1ZN2bJ5C/HmYDzx5AkBBIJO4MSJEzJq1ChZuXKlfPHFFxIZGRl0eSRDCCCAQLAI6HhzvXr1ZPfu3UaWnNU+rHCz6DL6zJkzgyW7AZ0PKpIF9OkLncQnJiZK9erV5bvvvsuUaf1Aa/DgITJu3LhMy5iBAAIIIICATwVUBPpo41tETsZ7VH52SKk1O8V+Qd66OTzasp6k//uP0Q2lrgEWduWVErtwXY6z51AF9aP1q4ikpVo10iSyXiMpMfnVHO+LDRBAILgFnnjiCRk/fnymTOry93XXVZbPP/9cihYtmmk5MxBAAAEEEEAAAQQQ8HeBrOLN1stgOu1DhhBv9vdzSPoQQAABT4GkpCSJiorynMU4AggggICfCXjHmz3L35UrV5bPPvtMihUr5mepDs3kUJEsNM97QOZav0mgWx87k3TGbBFB5cLhfE/MbrfLihUrpHnz5gGZNxKNAAIIIBAcAmn7f5LjHVuI6FbD0h1iV7UtbBdXkFLLPslzBtP//kPSExKMXz79eoYtOlrsF1+Sq/2m/XZAHCnJei/qt1Sls2Ss2MuUy9W+2AgBBIJTYPXq1dKqVStJS0tzvRFmviFmU4HZSNm5c6fR5WVw5p5cIYAAAggggAACCISCwL59+1S8uaYkJSUb2fVsEcGuWgEn3hwK3wLyiAACCCCAAAIIIOALAR1vjmsVJ460dPVUyhys8ndUkSjZuYN4sy/OQ3aPQUWy7Eqxnl8ITJkyRQYMeEylRV1erCuL87NMmTKyd+9eueSS3D1U94sMkggEEEAAgYAWOLNoviSOHaZ+pdSPk+4fw+6QqKatpfjYyQGdLxKPAAKhJfDnn39KtZuqyZHDR5wZdxa4nR+TJ0+W/v37hxYKuUUAAQQQQAABBBAISoGpU6fKgP4D1H289ThLZ9Ms+JYpW0b27d0n5cuXD8q8kykEEEAAAQQQQAABBHwh8Pfff0vVqtXk8JF/1bMz3cSBru3hLn9PnjxFxZv7+SIpHCObAlQkyyYUq/mHgEM9lG/Tpo0sW7bMup83E6auNjZ1rWnQsKFs2LBBwsLC/CPBpAIBBBBAIKQETj07RJKXfyjpqhisC8KiWiQr/tjTEtW5e0g5kFkEEAhcAd0CWZMmTWTTpk2ZM6EubK3iWsnSpUvV5c24ymVehzkIIIAAAggggAACCASQQIZ4s3e6VZG3YQPizd4sTCOAAAIIIIAAAgggkF2Bc8ab1U50rxjEm7Or6bv1qEjmO2uOlE8CR44ckZtuukn++OMPZ21V947146yhzzwjzz33nHsmYwgggAACCPhI4FjbxpL+5+9ma2TqV0q/T1Hy9fclouotOU7BmQ/nSfLq5eI4naj+nyAO1a2l48xpsaWnS1jlGyRm9txs7/P0K1MlZfd2Y3tHorkfx+nTImmpqsW0OIke9ny298WKCCAQ3ALPqLL0mDFjMpWzda4vvfRS2bNnj1x44YXBjUDuEEAAAQQQQAABBEJKwDPe7J1xHW9+euhQGT16tPciphFAAAEEglDg008/lYEDB8qkSZPk1ltvDcIckiUEEEDAtwJWvNl1VF3AVg/P9EcF4s0uFn8boSKZv50R0pMtgc2bN0vjJo3V8+80tb7H1UZddOx2uyxfvlxatGiRrX2xEgIIIIAAAvkhkP7fETnWrJZrV8avU1i4XLDlS5HISNf87I6c6NNNUnduU6vr6mhqcP7c6dHwug2l5JTX9Wi2huMd7pC03/a71jV2pbveVC0KFbmnq0QPHu5axggCCISuwOrVq403wPRbYhkuOuqiEWYPk40bN0qDBg1CF4icI4AAAggggAACCAStQIZ4s8f9t86wXZWFV6xYLs2bNw/a/JMxBBBAAAH9brBD6tatKzt27BCb3SYPdO0mzz8/Vi666CJ4EEAAAQRyIaDjzXFxcZKuGkjIEG9WU2Hq+dmGjeuNFoBzsWs2KWABKpIVMDC7LziBsWPGqtbHhqoD6O7DPHrRVTf6upWEPZ/vMVpNKLgUsGcEEEAAAQTcAimfrJP4x3sb9b5UF+/Gr1P49f+Tkm8vdq+Ug7GULRsl+bOdkrToPaNVMnd9MpsU7d1fij7UJ9t7S1q5RFK/3idnPlStmLkqiJjF9uhRL0pUy7bZ3hcrIoBAcAocPHhQbr75ZtGtMWQ16BYYhqqWGBgQQAABBBBAAAEEEAhWAd0yr24xwT1YNcpsUubCC+Rz1TqvbqWXAQEEEEAgOAXeffdduf/++1Xm3Nf/mJgSRjxkwIAB6l3hnL8sHJxS5AoBBBA4v4BnvNm6qnpuRbzZU8P/xqlI5n/nhBRlU0DXXG2pWh1bs3atcwvrEqQ+1f9q1awpmzZtomCXTU9WQwABBBDIm8CZD96VhAkj9atr6ndI/V/VJivSsYtEP/FsnnacOPkFOf3ua6rxMFVpWu1Tt09W8uU5ElGzbo73e+qpfpK8fqWk6yQ6ty710QaxX3p5jvfFBgggEDwCycnJ0rBhQ9m5c2eWmbrjjjtk1apVRsu/Wa7ATAQQQAABBBBAAAEEgkBAx5t1Lxfr1q01bu11lvS9s74P10Pt2nXkk08+Jt5scvAXAQQQCCqBU6dOyXXXXSd//vmnkS/P67/+NahY8RqZOHGitG7dOqjyTWYQQACBghDwjDd7NQlkHK5p06aiWyvTPc0x+KcAFcn887yQqmwKHDp0SKpXry5//PFHllv07dtXpk6dmuUyZiKAAAIIIBAIAokTRsnp9982AteqJ0rjs/TGPWIvEZPj5Mf3e0hSt3+i9qGL7ioEElNSSm34VI3oKQYEEAhVgX79+sm0adOMp2Q2o8Kq9ahM5JJLLpG9e/dKmTJlQpWHfCOAAAIIIIAAAgiEkMC///4rt9xyi/zxpzPe7C4aGwp9+vQxy84hZEJWEUAAgVAQ0K2wjx071oiNGPn1uv5bBs2aNZPJkycblc6seXwigAACCGQU6Nunr0x/eXrGmXpKPYqqUL6Caun3cylbtmzm5czxGwEqkvnNqSAhuRXYsmWrNG7cSFJTU41dGA/ZPQp4c+fOlc6dO+d292yHAAIIIIBAoQoc79FR0r7co9JgVv4Ku6qilPxgVa7SdPSOmuI4qrut0xXHHBJRq4HETH8zV/tiIwQQCA6BefPmyX1d7jMbUjSypK4PRquKImFhYfLxxx9L/fr1gyOz5AIBBBBAAAEEEEAAgWwIbNmyRcWbG7vizd6bzFPx5k7Em71ZmEYAAQQCWuC1116TJ598Uv7777+z5sN6/hgRESGPPvqojBgxQmJjY8+6PgsQCCaBV16Z7Wqx1TNfPXv29JxkHAEx4s333ZdRwhlyDgsPl40bNxJvzqjjl1NUJPPL00KiciowYcIEGTJkiNrMfDBufBqjDilePFq2b98hVapUyeluWR8BBBBAAIHCFUhNkaMNq4kkJRnpUA0FSVTru6T48BdynK70v/+UY60bqu2s30qRog/1kWK9BuR4X2yAAALBIfDVV1+p7nlqS0JCgsqQ+9pg5W78+PEyePBga5JPBBBAAAEEEEAAAQRCRsAdb3aWlF3FZZtERxeTHTuIN4fMl4GMIoBAyAgcPXpUnn32WZk5c6ZRmdi49Htc/82+ItQMY55DtaZTRp57brQ8+OCDxst4IQNFRkNSwGb0auL+/psVK22qcll6SHqQ6awFMsabvdexyfjx44g3e7P46TQVyfz0xJCsnAk4HA5p366dLF6yxNjQVa5z7qZixYqya9cuKVWqVM52zNoIIIAAAggUokDq1/vk+AMdVc+T6eqGzCZ29QMXPXSMRLW7J8epSl67Qk4+3U9tp38lzb8lJr8mEfVuM6b5gwACoSVw/PhxqVGjhvz000+ujJtlaPVXtUjWtk1bWbRokbr+mNcM10qMIIAAAggggAACCCAQAgJGvLl9e1m8eLG6i1YPSdV/ZnnZzHylSpVk586dxJtD4LtAFhFAIPQEvvnmG+nfv79s3LAx0/Xf87fAkqlatapMnTpVGjRoYM3iE4GgE9Axwqy+/7rMxICAFjDizbfeKj/9/LP7u+LxpWmn6nJ8+OGHxJsD5OtCRbIAOVEk8/wCJ06ckOrVq8vP6uKkB4/rkjHdqnVrWaJu/O12uzHNHwQQQAABBPxd4Mz8tyRx4nNGuNr6XYt9f6WEXV0px0lPnDRGTs97y9xOVRLRFdMuWL9bbLFUss4xJhsgEOAC6enp0rZtW1m+bJm6vuhBXWF0d5Z6UB/XXHONfPbZZ1KyZElzHn8RQAABBBBAAAEEEAhBgfj4eLnllltc8WZvgtatWhkvNhNv9pZhGgEEEAgOAV2ZeNDjg2T/L/szZMiK07pmOivY3H333TJu3Di5/PLLXYsYQSBYBKyXTb2//1QkC5YznLd86HjznW3ayIrlK8w4s+5ex3iyZbblSLw5b76FsTUVyQpDnWMWmMCXX36puuepI4mndfc8anA+D9Oj+nI1bPhwGTlypJ5kQAABBBBAwO8FTj7ZV5I3rHL9ntmKRUupT/aIzR6W47Sf6HaXpH61z6wvogvw5S+VUks/yfF+2AABBAJfYMSIETJq1KgMGTGboxcpVqyY0bIC3cJn4GECAQQQQAABBBBAIEQFzHhzbUlMTDTvp1W82WibzPkixvBhxJtD9KtBthFAIEQETp8+LZMnT5bnx46Vk6fUs0ePF/EsAs+KNTquMnjwYBkyZIgRY7HW4ROBQBew2VRDLVl8/6lIFuhnNn/S7xlv9rwm6r3r66LuFv7GG2/Mn4OxF58IUJHMJ8wcxJcCc+fOlS5durhbJPO4Wuna0voNgjvvvNOXSeJYCCCAAAII5ErgWIs6kn74X7Mimfo9i6heS2JmvZvjfTlSUuTYbdXEkZRk1LHWP41RzVpJ8TGTc7wvNkAAgcAW0C30tmvfQbVKmG48CNMXBY/isuiydOfOnQM7k6QeAQQQQAABBBBAAIF8FLDizXqXnmVnPa765pGPPvpI2qgWGBgQQAABBIJX4K+//pInn3xS3n1XxWZVV35GOxaePwo66x7Tl112mYwfP150K2VWS07Bq0POQkHA+h67vubOESqShcLZP3celyxZIh06dJC0tDSPFZ1fEPXx7tvvyH2q7gZDYAlQkSywzhepzaaA7rt86tRpam1dlLN+0szPkjExsmPnTqlcuXI298ZqCCCAAAII+F4g/Z+/5FirBs4D69+wdCnSrZdE9xmc48Skfv2FxHdTFUdcWzokeuAzUqRzd9ccRhBAIPgFvv3mW6lTt46cOBGvMuu8IhhFZJtRYu7br69MmTIl+CHIIQIIIIAAAggggAACORTo33+AijebZWWrNV8r7hwTU1K16ruDeHMOTVkdAQQQCESBner54oABA2TXrl0q+eZzR+vTmnLnyyYNGtQ3Yi3VqlVzz2YMgQAUsNttug6lGqxvuvlJRbIAPJn5mORvv/1W9RZXW06qLuHdz5/c35N+/foRb85Hb1/uiopkvtTmWD4TSFEtr9x+++2yefPmLI9ZsVJF2bljp5QuXTrL5cxEAAEEEECgsAWSP14rJwf3FoeKUNuc/cmXmDhbIhs2yXHSTs9/SxInjlb3eKoob+xLJOb19yWi6i053hcbIIBAYAocP35catxaQ376+acsM9CgQQPZsGGDhIeHZ7mcmQgggAACCCCAAAIIhLKAEW9u2lQ2b7Lizer+2nqOqmAqVapkdBFfqlSpUGYi7wgggEBICOhWd9555x156qmn5J9//smYZ4/fBmtB7969ZcaMGdYknwgEpIDRtaWuKuT1HaciWUCeznxJtBFvrqHizT85481e3w0db163bp1ERkbmy/HYiW8FqEjmW2+O5kOBQ4cOya233ioHDx7M8qjNmzeXFStWiN2u+nRmQAABBBBAwM8EEmdPldOvTnXdl+m3OUqv3Sn20hfmOKUnnx4gyWuXq9s8h9qfXWzhYVJq0z6xRRXJ8b7YAAEEAk9ABzhbxrWUtWvWqcRbAR/nnb36qHBJBfnss8+kXLlygZc5UowAAggggAACCCCAgI8EMsabvZ6UqTQ0b9Zclq9YLmFhYT5KEYdBAAEEEChMgZMnT8qY0aNVaztT5UzSGY+kuGMupUtdID/++INccMEFHssZRSDwBMyuLTOXf6hIFnjnMj9SrOPNcXFxsmbNGq/dmd+RChWIN3vBBNwkFckC7pSR4JwI6KZlb7utkZw5owtw+hG8qiitrl+66U19GXts4ECZOHGiMZ8/CCCAAAII+JNAwtP95czaFebPl/rRspcrL6VWWG8+q44u//hNJDxC7BeVP2+yj7VuKI5//hRHuqpIpn4Iw677n5R8d8l5t2MFBBAIDoFBgwbJpEmTXBVTda50WViXjqNUhdItqhXfW2vcqmczIIAAAggggAACCCCAwDkEdu/eLQ0aNpCkM0lea5kl7IHEm71cmEQAAQSCX+Dnn3+WQQMHybLlS13PH80nkiLTpk2TPn36BD8COQx6AbMimXc2dXeX6d4zmQ4BgUGDHjfizVnVv4gqUkQ2bdokNVRrZQyBK0BFssA9d6Q8mwJvvfWWdO/R3ezNy9jGemxmfr755pvSrVu3bO6N1RBAAAEEEPCNwIleXST1851GOVzdjkl4rQYSM/1N4+CpX3wu8f0eFImMkphZ70j41ZXOmijH0SNy9I5aarnuIjNd9Wxpl6j290rxp5876zYsQACB4BGYM2eOKut2VxnSIUyrHOzOny4rP/DAA+4ZjCGAAAIIIIAAAggggMA5BcwydreM66iitk0VuXWp+w0Vb+5OvDmjD1MIIIBACAisVV24PTZggHz77Xcqtw6pUqWK7NmzR8LDw0Mg92Qx2AXs6gV1Xc7JMKjyj355nSG0BIy6F91VvNmj/OuOO9vkzTffoO5FEHwlqEgWBCeRLJxfQL8J9tLkl4w7eXVNUw/RzW1saiQqKlI2bNwgderUPf+OWAMBBBBAAAEfCZx4oL2kffOlWO/zhJe/REpMf0tStm+WhOkTxKZa20xXv2dF23WS6HNUCkvetF7iB/VSHVqav3/6tq7E8HES1bqDj3LCYRBAoLAEtm3bJo0bN5aU5OQM5V/dza0eBqjg5ksvqTIyAwIIIIAAAggggAACCORI4LHHBsrkKTrebESbzVc2zFGJitTx5o1Sty7x5hyhsjICCCAQBAIpKSkyY8YMGTVylHzwwfvS5PbbgyBXZAEBVU1Id/nlqjnkLv+k627AGEJGYOvWrdK0aVOjNzjjW+As/1rjA/oTbw6WLwMVyYLlTJKPcwqkpqZKy5YtZZ16GyCroWzZsqK7wbziiiuyWsw8BBBAAAEEfC5w8ql+krx2ldkls1HpQxXFjb6ZnSVzlaLIOrdJ8fHTxFak6FnTlzj9RTn91iz3crWPUh+uFfsVV7vnMYYAAkEn8Ouvv0rNmjXl33//zTJvTZo0kdWrV/NWbJY6zEQAAQQQQAABBBBA4NwCOt7cokUL2bBhvXGr7m6FwdyOePO5/ViKAAIIBLvAyZMnpUSJEsGeTfIXQgKeXVvqOmVm/TG6tgyhr4BY8ebDh/91nX/1TXAR3K4qzq5atYp4s0sksEeoSBbY54/U50Dg6NGjUks9TPtJ9VWeYXA+j7/hhhtEt9oQExOTYTETCCCAAAIIFIZA8roVcvKp/urQVkHcrt73sdoREinS8T4pNugZsYVHnDN58b3uk9TPdrn2YisWLaU37dOvEJ1zOxYigEDgCsTHxxutH3z99ddmywheWalUqaLs3LlLSpUq5bWESQQQQAABBBBAAAEEEMiugI43165dW3788UfXJu5Xv0Ru+N//ZNv27cSbXTqMIIAAAggggECgCnhWJPPMg4MWyTw5gnbcM97snUld/q1YsaLs2LlTSpcu7b2Y6QAVoCJZgJ44kp07ge+++864uT8Rf8L9XF7tyrjBV3/iWsbJkiVLJCwsLHcHYCsEEEAAAQTyUSBhwihJev8d1b2lw/it0rsOu+oaKdZ7oEQ2uuO8R3KkpcqxRjeLI/G0+YqQ6t8y8ta6UmLGnPNuywoIIBCYAmlpadK6dWtZtXqVs7xrlHRdDSSULFlSduzYIZUrVw7MDJJqBBBAAAEEEEAAAQT8SEDHm2vVqiXxJ+OzLH/rXjKWLl1KvNmPzhlJQQABBBBAAIGcCxgVyVSY0aa69Xa97q6mHenWi/A53ydbBIaAjje3adNGVqxcken86xYMSpaMVfHm7cSbA+N0ZjuVVCTLNhUrBouAblJRP1xLVxc987G8xw+c+sHr26evTJ06NViySz4QQAABBAJcIO3AL5L647eqIpn677LLJeK6G7LdmljqF5/LiR73iLq3c1VEi+4zWIp06xngKiQfAQTOJtCvXz+ZNk11eav+cwV1nCuHh4fLsmXLpHnz5mfbnPkIIIAAAggggAACCCCQQ4E1a9ZIq7hWkqpe5vIc1K24EX/u27cP8WZPGMYRQAABBBBAIOAEbDb1lrquNWQWcIz06/hjuiM94PJCgnMmYMabp6uNMp9/e5hdli1fJi2at8jZTlnb7wWoSOb3p4gEFoTAlClTZMCAAeaurR8861PNnT59ujz66KMFcWj2iQACCCCAgM8EEmdOktOvz3AdT1edLrV4o4RVuMw1jxEEEAgeAV2G7du3r8qQKtja1L94/Y/eY3jppZfcZWCP+YwigAACCCCAAAIIIIBA3gQyxJu9d6WK59OmTpM+ffp4L2EaAQQQQACBcwqkp6dLhw53Sdeu90u7du3OuS4LEShIAd0imcejdHUoM/5Ii2QFqV74+3bHmzPUIXSd/8kvTZb+/fsXfkJJQb4LUJEs30nZYaAI9O7dW2bNmmUk1/zhc/+1q64tdReXcXFxgZId0okAAggggEBGAdXy5vHWDSTt30POGzyHhFeuIiXfWZxxPaYQQCAoBHTT4m3ubCO6qXE9WIEd67Nnz56usm9QZJhMIIAAAggggAACCCDgZwK9evWSV2bPNt7nsMrhVhLDdbxZdXGpu7pkQAABBBBAILsCs2fNll69exmrN2nSRCZPmSw3/E/1WMGAgI8FrK4tPV9c1eWddIfXm6w+TheHKziBlStWyp1t7nTFm10BZ+chiTcXnL0/7JmKZP5wFkhDoQikpKRInLpxX7d+Q5YtNkQXj5Ytm7fITTfdVCjp46AIIIAAAgjkRSBh2gRJmmMGsB36bSF1Qxf92NNS5L4eedkt2yKAgB8K7N27Vxo2aCAnT51ypc714Er9+2/SuLGsXr1adNeWDAgggAACCCCAAAIIIFAwAka8Wb2YvG7dOuMAukyuX/EwHq+qFoOLRxeXzZs3E282XPiDAAIIIHA+gWPHjkmlSpXkyH9HXK3OR6jYTk9VcXnkyJFSunTp8+2C5Qjkm4BRkcxrb1Qk8wIJokkdb26g4s2nElS8OYu6grfffrusWLFCIiMjgyjXZMVTgIpknhqMh5zA8ePHpU6dOvL9d9+pa6D5uM24wVd/dAXq8uXLy65du6RChQohZ0OGEUAAAQQCU8Bx+rQkLZoviS+NVb9tuoSvf9REIm6sJjGvvieqJklgZoxUI4BAlgIHDx6UWrVqyV9//WUsV/XGjH/z1v195cqVZceOHVKyZMkst2cmAggggAACCCCAAAII5J+AjjfXVfHmb1W82Qg3O3dt9jxvU/Hmi2Xnzp1y6aWX5t9B2RMCCCCAQFAK6O7ipqquka1aHM6Qj5HXCy+8UEaNGiUPP/wwLw4G5dn3v0zZVdDRijd6xh8dtEjmfycrjyn6448/pGatmvLXn3+rPZln3fP6c/31lWX7duLNeWT2+82pSOb3p4gEFrTAgQMHpGbNmnL4iKrRry+GxvXQfTm84YYbZMvWLRJbMragk8L+EUAAAQQQyJVA0pIFcnrOTLFFFJHUX38RSUtX+7Fu60TssbFS8t2lYr+ofK72z0YIIOCfAidOnJB69erJ1998rVodtP7Vu8uxZcqUMR5SXXXVVf6ZAVKFAAIIIIAAAggggEAQCuzfv9942ePw4cOu3BmldOdTV90l2bZt2yQmJsa1nBEEEEAAAQQ8Bb799lupWrWqpKamumerHxPv+E+VKlVk8uTJ0li1Rs+AQEEK2Oy615PM8UcqkhWkuu/37Yo3f/11xoM7rz8XEm/O6BLEU1QkC+KTS9ayL6BbadB9i59WrbhYg76vtypR62UrV66keUYLh08EEEAAAb8SOPV0f0las0KM3y6jApkOUeubOodE1qhrdGkZVvE6v0oziUEAgbwJJCcnS8sWLWTDxxutCE6GHRYrVkzWr18vtWvXzjCfCQQQQAABBBBAAAEEECh4AR1v1l3+JJ5OzLK8Try54M8BR0AAAQQCWWDb9u3SvVs3+fmnn4xsOHS41/3ecKastW/fXiZMmCC8TJiJhhn5JJBV15Z611QkyydgP9iNjje3UPHmjRtVvFkN5lMmdY6d159iRYvK+g0biDf7wbnyRRKoSOYLZY4REAILFiyQezvdKw7Viosui3lWJNMZ6NKli7z99ttqvnXZDIhskUgEEEAAgRAQiO/VRZI/26kK9uq/UqUkrMLlEn7ZFRLZ/E6JqF0/BATIIgKhJaADNF27dpV33303y4yHhYXJ/PnzpWPHjlkuZyYCCCCAAAIIIIAAAggUvIARb75XxZvTVbzZeABnPoVzPouT++/vInPmEG8u+DPBERBAAIHAFEhJSTFaGxs9erTEx8dnmQkdD9YvE+uhqKrkMXDgQHnqqackOjo6y/WZiUBuBbJ6Pq6/f+kO3TsKQ6ALWPHmuXPfdTa0Y5VYzZzp8//+++8Tbw70E52D9FORLAdYrBr8Arq2/hNDhmRZqV//GA55Yoi88MILwQ9BDhFAAAEEAk9ABaYlPU0kPCLw0k6KEUAgRwJPPfmkvDB+nPE6mCtc6HFvr8u0jz/+eI72ycoIIIAAAggggAACCCCQ/wIvvviiDB4y2NWKjI4x6wmrUZknVdn++eefz/8Ds0cEEEAAgaAROHTokFE5bM6cOWalHetHROfQIx5kVSqrUKGCjBs3Tjp16kTjGEHzLSj8jBgVyTy+b0aK1LQj3fMLWfjpJAW5E3jyyafUdcNdB8Ls/UbtS70NoePP48aPl8GDVZmWIWQEqEgWMqeajGZXoPcjvWXWzFlG4cvd17O7LDZt2jTp06dPdnfHeggggAACCCCAAAII5JvA9OkvS9++HmVRFbAxy6xmJKd3794yY8aMfDseO0IAAQQQQAABBBBAAIG8CTyi4s0zZ85WO3E+aLUewjrL8lOJN+cNmK0RQACBEBH49NNPpX//AbJjx3bXQ0vzJ8X5w6I/9OCs+FG7Th2ZMmWqVK9+izmfvwjkQaB3r16qJOP8rqn96BasdOWyWbPUM3WGgBZ4+eWXpY+ON6uiaoZrijNXjzzyiOh1GEJLgIpkoXW+yW02BNJViy5t27aTZcuXOgtb+rrprk1tt4fJBx+8Lx06dMjG3lgFAQQQQAABBBBAAIH8EVi4cKHcc889md8+de6+devW8tFHH4nu2pIBAQQQQAABBBBAAAEE/EMgLS1N2rVT8eZly4wEuR7QGW+E2MSuHsK+9/57dBXkH6eLVCCAAAJ+LaAr78ydO1d060F//vmHVetDpdldwceVATXLbrNL927dZMzYsVKuXDnXIkYQQAABLeCKNxsty7lqkrkuKTrevGjRIgkPDwcsxASoSBZiJ5zsZk8gISFBmjRpIrt27cpygyJFisjKlSulUaNGWS5nJgIIIIAAAggggAAC+SnwySefSPMWzSXpTJK5WxUMdLWeq8Zr1qwlGzdskGLFiuXnYdkXAggggAACCCCAAAII5INAYmKiNG7cWHbt3q3K8Z6vLZs7L1q0qBFvvu222/LhaOwCAQQQQCDYBU6dOiUvvPCCTJw4Sc6cOe2q9HG2fMfExMiwYcNUK/d9JSoq6myrMR8BBEJIYNOmTdK8eXN1DTnjzrWKM1vt69SoUUM+/vhj4s1unZAaoyJZSJ1uMpsTgcOHD0udunXk559+zqoev8TGxop+oFe1atWc7JZ1EUAAAQQQQAABBBDIkcAXX3whDRs2lBMnTmQql+p7+2sqVpRt27ZJmTJlcrRfVkYAAQQQQAABBBBAAAHfCeh4c926deWnn35yH9T5sE5/lCxZUj5RD/SIN7t5GEMAAQQQOLfAgQMHZNCgQbJYtVBv9q1kU7EjVWFZtXap+h404kj6jxo1hkqVKsmkSZMkLi7u3DtmKQIIBLWAZ7zZO6O6XHr1NdfI9u3biTd744TQNBXJQuhkk9WcC+zfv190H+L/HvpXbewsZemrp3P0oosvkm1bt8lVV12V852zBQIIIIAAAggggAAC5xHQ5dH69evLX3/95bGms0CqPsqWKadu6rfJ1Vdf7bGcUQQQQAABBBBAAAEEEPBHgV9++UXq1asn//xzSCXPGWQ2EmqW8S8uf7ERb77yyiv9MfmkCQEEEEDATwV0q0H9+/eXr776ykihM3KURWptctFF5UTHm3RrmAwIIBB6AroCah31csM/f/+jMp+5/kPZcmVl+7btxJtD76uRIcdUJMvAwQQCmQX27NkjuknxkydPei00i2HXXFNRtmzZrApeF3ktZxIBBBBAAAEEEEAAgdwL/PPPP8ZDJv2wyRysMKD5dmnxEiWM5sVvueWW3B+ELRFAAAEEEEAAAQQQQMCnAp9/9pk0Ut1cZo43m8m4RrUAsWXLFuLNPj0rHAwBBBAIfIHU1FSZPXu2DB8+XI4ePWpkyIok6Qlr/M0335Ru3boZy/mDAAKhJaDjzfql5Z9//jnLjMeUiJGNH28U4s1Z8oTUTCqShdTpJrO5FVi7dq20bt1akpOTxdkarLErq9BVrVo1o5tL3fw4AwIIIIAAAggggAACeRXQ3Vjedlsj2bdvb5blz8jISFm+fLk0bdo0r4diewQQQAABBBBAAAEEEPCxgGe82fvQOv5ctWo146WR2NhY78VMI4AAAgggcE6B//77T5599lmZNWuW6MplenB2eCm33nqr7Ny5U+x2+zn3wUIEEAg+ATPefJuKN+/LlDld/oyIiJRly5bJHXfckWk5M0JPgIpkoXfOyXEuBebPny9dunSR9PR0s9q+3o9H6+O6SXIdAKAp2FwCsxkCCCCAAAIIIICAIXD69Glp1qyZ0QqBi0S/waAHVf4MU8G+t995Rzp37mzO4y8CCCCAAAIIIIAAAggEnMC8efOk6/1dJS09LXPaVfm/fr36snr1ailWrFjm5cxBAAEEEEDgPAJfffmlPDZwoGzYsMFYU1ce27p1q9SuXfs8W7IYAQSCTeDMmTNGBbEtW7eIzWFTIWaPSg4qs2FhYfL2228Tbw62E5+H/FCRLA94bBp6AlOmTJEBAwacNeNxcXHy0UcfqRq7EWddhwUIIIAAAggggAACCJxNICUlRdq1aycrVqw42yoyefIU6d+/31mXswABBBBAAAEEEEAAAQQCQ8CINz+m4s0Zn+W5Et+yZUtZvHgx8WaXCCMIIIAAAjkVWLRokTz++GCpW7eOvKNeTGRAAIHQEtDx5rZt28qqlSudRU71xoJNFT49yp+TJ09W8eb+oQVDbs8pQEWyc/KwEIHMAsOeeUZGjx3jurjqxiFUxV3ntE3uvfcemTt3Ls3CZqZjDgIIIIAAAggggMA5BHTLt53v6yzvv/e+uZZqU1zdsBnjVnlz6NChMnr06HPshUUIIIAAAggggAACCCAQSALDhg0zy/hZlP91Pu69917izYF0QkkrAggg4IcCujUi3QJ+qVKl/DB1JAkBBApKQMeb77vvPnnvvffUIVwVGtyHU+XPoU8/TbzZLcKYU4CKZHwVEMiFQK9evWT27NnGlla/4p6X3p49e8rMmTPFpjsUZkAAAQQQQAABBBBA4DwCDlVhrLcuY77yqscbYZ4lTBFdxpw1a9Z59sRiBBBAAAEEEEAAAQQQCDQBM978ikq2R9MQzkzo+PP/9fw/4s2BdlJJLwIIIIAAAgggUIgCOt6sy5ivvKLLmOZgRpvVX2eLZMSbLRk+vQWoSOYtwjQC2RBIS0szau++/76ztYgstnl80CCZ8OKLWSxhFgIIIIAAAggggAACGQUef/xxmThpovu5kft+3nhX7O6775Z58+fT6m1GNqYQQAABBBBAAAEEEAgKAR1v7ty5s3zwwQfutiIyvlcig1S8+UXizUFxvskEAggggAACCCBQ0AKDBw+WiarsaL6m4Aw264M631u4+x4Vb547T8LCwgo6Kew/AAWoSBaAJ40k+4dAUlKStGnTVtasWW0myPWwz30hfnbEszJixAj/SDCpQAABBBBAAAEEEPBLgZEjR8rIkc+KsxdLlUbnEyPnR7NmzWTp0qUSGRnpl+knUQgggAACCCCAAAIIIJB3geTkZLnzzjtVvHmNx86cNwV6jhol3uxBwygCCCCAAAIIIIBAlgI63vzss89mWKY7UrPiz82bN5clS5YQb84gxISnABXJPDUYRyCHAgkJCdK8WXPZum2rsaXHbb31+M94S0y/LcaAAAIIIIAAAggggIC3gH4rTL8dlqkDG2fBsm7dusaDpOjoaO9NmUYAAQQQQAABBBBAAIEgE0hMTJQ77rhDtm3b5sqZd8xZ94JBvNnFwwgCCCCAgI8FZs+eLbqxjd69e0tERISPj87hEEDgfAI63vz44CFqNRVxdhYkPcuT9erVk9WrVwvx5vNJhvZyKpKF9vkn9/kgcPz4cWncuIns3bvH2Ju7Nq95Sbbb7PLyjJeNPojz4XDsAgEEEEAAAQQQQCBIBGbOnCmP9ukjjnSH855efaoipMNhliNvvukm2bBxo8TGxgZJjskGAggggAACCCCAAAIInE9Ax5sbNW4k+/Z+oVa1HgC6H//Z1E3Dyy+/bDzAP9++WI4AAggggEB+Chw6dEgqXXutxJ84Iddf/z+ZPPkladq0aX4egn0hgEAeBGbMmCl9+/aRdBVvNsqRel9GMdJmfFS7qZpsJN6cB+HQ2ZSKZKFzrslpAQocPnxYGjRsKN9/973zKNYNvjmp+xZ+9dVXpXv37gWYCnaNAAIIIIAAAgggECgCb775pjz44IOq0pi+qc88XHfddbJ582YpU6ZM5oXMQQABBBBAAAEEEEAAgaAW0PHmhire/N133zlfOlHZNd46MbNtt9vktddeI94c1N8CMocAAgj4n8BDDz0kr7/xuqt+ik6h7pZ54sSJcs011/hfgkkRAiEk8NZbb8mDPR6UdEd6lrkm3pwlCzPPIkBFsrPAMBuBnAr88ccfxs39/v371abuN8Ss/YSHhcuct+dI586drVl8IoAAAggggAACCISgwLx586Rr1wckLS01Q7HRKkFeeeVVsmnTJ3LppZeGoA5ZRgABBBBAAAEEEEAAAS2g480NGjSQAwcOuKLN1j2DvpEID7PL2++8I506dQIMAQQQQACBAhf4/PPPpUaNGqqlo8yVVKKiouSxxx6Tp556SmJiYgo8LRwAAQQyCsybP1/uv7+LpKc5WyIzCo3OkqP6uPKKK42XlitUqJBxQ6YQOIsAFcnOAsNsBHIjoCuR1W9QX/768y+vzc0Lta5MNm/+POnYsaPXciYRQAABBBBAAAEEQkFg4cKFxoOetNRU3UmNc1BlRZuaUv+75JJLZMuWLXLllVdaC/lEAAEEEEAAAQQQQACBEBXQ8WbdMpmuVJbVEB4eJvPmvafizXdltZh5CCCAAAII5IuAblG/Xv16sn3bdq/9mc8/9UzdcOZFF10szz//vHqBsqua1ssYEECgoAWseHOqije7/0Xq1w7MxgPLl79Etm4l3lzQ5yHY9k9FsmA7o+Sn0AW+//57ue2220T3E+4a1JXa+WxQIiIjZcEHH0ibNm1cixlBAAEEEEAAAQQQCH6BxUuWSMe77hJ9U5/VUK5cOflEtUR23bXXZbWYeQgggAACCCCAAAIIIBCCAka8uaGKNx9W8Wb18on1UNCiCA8PlwULFkjbtm2tWXwigAACCCCQrwLHjh2Ttuq55mb18mOGweP5p/sXyia33lpdpk+fbrRglmF9JgJWYPbs2RnSrisX6sqCPXv2zDCfCd8KLF68WO655x5JTk5RB9avLWcsKRrx5k9UvPk64s2+PTOBfzQqkgX+OSQHfijw1VdfyW2NbpOj/x1TqVM/pPqv87qtPyKiImXhgoXSunVrP0w9SUIAAQQQQAABBBDIb4Hly5dLhw4dJEXd1DuMm3p1BFUwtF42KH3BBfLJxx9LlSpV8vslKf5FAABAAElEQVTQ7A8BBBBAAAEEEEAAAQQCXEDHmxs1aiT//fefMyfWzYQZdNZdii1YuEBatyLeHOCnmuQjgAACfiugKw59oBrKGDxksBz8XbeUmfn5p/EsVC2xqRHdINn9qmWysWPHSvny5f02XyQsewJmC3MZyx+6FJKuvhcMhSNgxJvVS8vJSUnuuggqKfrfn44/X3jhhbJx40bizYVzegL+qFQkC/hTSAb8VUD3Fd70jqZy7KiuTGbe0HumVd/cL/5osTRv0dxzNuMIIIAAAggggAACQSawatUqadeunSSpm/qshtjYWFm/fr3ccsstWS1mHgIIIIAAAggggAACCCAgRry5qYo3q1ZhrEE/pDef39okSr28/NFHH0mLFi2sxXwigAACCCCQ7wKJiYkyYcIEeeGFcXLmzBm1/3NXJCpevLgMHTpUHnvsMfVbFZXv6WGHvhHw7KrUs/zhcKT7JgEcJYPAypUrpX37DirerP8NZh50vHndunVSvXr1zAuZg0A2BKhIlg0kVkEgtwK7d++WpurmPj4+3tiFd3WyIkWKyBLVxdEdd9yR20OwHQIIIIAAAggggIAfC6xZs0baqS5mThuBNWdCrUKh+ixZIkbWrF0rNWvW9ONckDQEEEAAAQQQQAABBBDwB4Fdu3apWLKON5/MMjlF9MvLKt7crFmzLJczEwEEEEAAgfwS+O2332TIkCFGK2VWqCvDvq2Z6lO3yH/V1VfLxIkTpY3qIpMh8AQ8K5J5pl63VMfgW4G1Kpas/x2ZFTkzN2cTExOjKpGtVV3LEm/27ZkJrqNRkSy4zie58UOBrVu3SouWLeTUyVMqdc5Sk1V4UnOoTOaHJ40kIYAAAggggAAC+SCg3/pqoyuRqTc1rWKgtVtdHIwuUVzWrF4jderUsWbziQACCCCAAAIIIIAAAgicU2D79u3SrHkzSTiZYHRbZKzsijfbpGjRIrJ48WJeXj6nIgsRQAABBPJLYPPmzdJ/wADZt3dvlvEvo7tLV10jm2qA43aZPHmyXH/99fmVBPbjAwGjIpkqb1jdJhqHVNOOdNfJ9UEqOISuRNZWx5tPn/b49+YsCKqPEsVLiO4do27dumAhkCcBKpLliY+NEciewKZNmyQuLk4SEhJcG5iXdPOvbspVt0zGm2IuHkYQQAABBBBAAIGAFtAtkembeuvNMJ0Zz/JfsWLFRDdB3rBhw4DOJ4lHAAEEEEAAAQQQQAAB3wt88skn0qp1a0k4pV9e1vcaNnelMjXNy8sGC38QQAABBHwkkJqaKq+99poMHz5cjhw+rH6TzCiY6/DOSWtueHi49OrVW0aNGimlSpVyrcaI/wrYbHaVOFVpzDqJakqXP9Lp2tJnJ2316tXSrn17OaMrkTn9HfqcOIfo6Ggj3tygQQNrFp8I5FqAimS5pmNDBHImsHHjRmnVqpVZQ9hzU+cPblSRKFn04SJp2bKl51LGEUAAAQQQQAABBAJMYMWKlXJXxw7qpv5MlikvWqyoLF+2XBo3bpzlcmYigAACCCCAAAIIIIAAAucTcMeb1X2H7jPM/RzR2FS/vLxoEfHm8zmyHAEEEEAg/wSOHz8uI0aMkJkzZ0pKaor52+RR8cizEpI+apkyZWTkyJHyf//3fxIWFpZ/CWFP+S6gWyTzPJVGjTJV/qBFsnynznKHupWx9roS2Rkr3qzOhkf5T7+0vGzZMuLNWeoxMzcCVCTLjRrbIJBLAaN7I91nsaop7Hlfb/7w2iQqKtLoS/zOO+/M5RHYDAEEEEAAAQQQQKAwBfQNe8e775ZkdVOvy3tWgMX6LFq0qNESbdOmTQszmRwbAQQQQAABBBBAAAEEgkBg/fr1cqeONycmZnn/oSuTffDBB0K8OQhONllAAAEEAkjgu+++kwGqu8t1qhs+q3UyKzZmZiNjW5rLly83enYKoCyGXFKtri09H3Drc5ru8HziHXIsPsnw0qVL5W4Vb05KTsrw4oD1b6qYijcvVj2fEW/2yekImYNQkSxkTjUZ9RcB3c1Ru3btnM1O6ibH1eBRY1g35zpv3jzp2LGjvySZdCCAAAIIIIAAAghkQ2DBggVy3333SUpKiqsCmai39cQZUKF7mWwgsgoCCCCAAAIIIIAAAgjkSGCtekjfRr2YfCZJPVz0uP/QDxf1qy3hEeEyd+5c4s05UmVlBBBAAIH8ENAVYAYNGiQ///xzFrszq8Hcdttt8vHHH2exnFn+JGBUJPNKkD6DVCTzQsnnSc94s/eutX9UkSKi/51Ricxbh+m8ClCRLK+CbI9ALgSMm/u26k0xZ/OTZj0ys8Ck/+qb+9dff0Puv//+XOydTRBAAAEEEEAAAQR8LfD2229Ljx49JD09zXgzzPtdPN0S2UeLP5JmdzTzddI4HgIIIIAAAggggAACCAS5gI4365eXE1XLZK5BB5qdQ3hYuLzxBvFmy4NPBBBAAAHfCSSpis5TpkyRMaPHyMlT8db7lsZLmHbVneXnn++RqlVv9F2COFKuBOyqsroV79T11vWEnnbQIlmuPLOz0TvvvGPEm1NTU90vLasNLf8i9HyRHUbWyaUAFclyCcdmCORVQDc73qZNW3Vzn2Be/K2rvvErbBO73SYzZsyQnj175vVQbI8AAggggAACCCBQgAKzZs2SPn36SFqaqkSW4bbenCpaLFp1Z7lYbr/99gJMBbtGAAEEEEAAAQQQQACBUBYw481t5HTiafVg13rUa4ro57029bB+xssvE28O5S8JeUcAAQQKUeDvv/+WoUOHypw5c9SLmOlGSnr16ikzZ84qxFRx6OwK2NRza3cHW86aZGpjKpJlVzBn6+l486Mq3pxuxJvVtorc079YsaIq3ryEeHPOWFk7BwJUJMsBFqsikN8CG1VTra1btcr4ppjzILpemapOJi+Me0EGDx6c34dmfwgggAACCCCAAAL5IDDhxRfliSFDzho0iY6OlqXLlkrjRo3z4WjsAgEEEEAAAQQQQAABBBA4u4DuGqxVaxVvTkh0vrys1vWoU6Yf+74wbpwMUfcwDAgggAACCBSGwO7du2VA//7y/Q8/yI8//igXXnhhYSSDY+ZQIKuuLfUuqEiWQ8hsrD5+wgR58oknNK6xtsNdb8+YLhZdTJYvXSaNGhNvzgYnq+RSgIpkuYRjMwTyS2Dr1q0S1ypO4k+cVLt0uNqw0BXJrNZAdQ390aNH59ch2Q8CCCCAAAIIIIBAPgg888wzMmbMmCz3pN7RkxIxJWT58uVSv379LNdhJgIIIIAAAggggAACCCCQ3wLbtm2Tli1bSvzJeB1u9qhQZj6F1H+fJt6c3+zsDwEEEEAgBwK68pGuRHbttdfmYCtWLUyBrCqS6fhnusNsXa4w0xZMxx42bJizToBX7TFnJmNiYog3B9MJ9+O8UJHMj08OSQsdgZ07d0pcXJwcO3pMZdq74XHT4ZFHHpGpU6dKmGqCnAEBBBBAAAEEEECg8AR0F5b9+vVT3ZDPVOESZ9nN696+VKlSsmrVKqlZs2bhJZQjI4AAAggggAACCCCAQEgK7Nq1S1q0aCHHjql4s8e9in7ga8Wfdbx52rRpYrfbQ9KITCOAAAIIIIBA9gWMimQeZQpjSzXtSPdo+jT7u2NNLwF3vHmGSatt9ZhqjsyKP5cuXVpWrFghtWrV8tqaSQTyX4CKZPlvyh4RyJXAvn37pFmzZvLv4X/NXwb1A+Hu69i83+/UubO8+eabEhkZmatjsBECCCCAAAIIIIBA3gSSk5OlW7duMn/+fHNHrjKbGnG+7l/mwjKydu1aqVatWt4OxtYIIIAAAggggAACCCCAQC4F9u7dJy2aN5NDRrzZeb+i92WNqs9O93aSt956i3hzLo3ZDAEEEEAAgVARsKuutFz9arnDoKpFMiqS5fU7kJKSIg90e0Dmz5vvLKZZhTXnntVkuTJlZfWaNcSb84rN9tkWoCJZtqlYEYGCF/j+++/ljjvukIMH/3DWIvN8R8w8frNmzWXRog+lWLFiBZ8gjoAAAggggAACCCDgEkhISJAOHTrImrVrnK+EuRYZI/oW/5IKl8r69etomj8jDVMIIIAAAggggAACCCBQCAI63ty0aVP5848/rbaU3Q8ojbeYbdJMxaMXfrhQihcvXggp5JAIIIAAAgggEAgCVteWZhUnZ0Un9UGLZHk7e65485q1akdWn+Rq1Ems916hQgXjpeXKlSvrSQYEfCJARTKfMHMQBLIvcODAAbn99ttl//79Z91Id5G0bNkyKVOmzFnXYQECCCCAAAIIIIBA/gkcOXJE4lrFye5du82dqpt5V+ux+sZeDddcdbWsXbdOrrzySnMGfxFAAAEEEEAAAQQQQACBQhb49ddfjXjzL7/8om5i1IvLquUQ77ZDdBdJOt584YUXFnJqOTwCCCCAAAI5Ezh48KDRVfPTTz8tsbGxOduYtbMtYLObAVBXPFRvqVspS0/P9j5YMaPAf//9J3FxcaK7JHcNmtkqqKlx4s0uGUZ8LEBFMh+DczgEsiPw999/G91cfvX1VxkqH3tue91118mqVavkiiuu8JzNOAIIIIAAAggggEA+C+gHL82bN5cffvjB82Uw4yjmvb1NqlS5Qdao5sUvvvjifD46u0MAAQQQQAABBBBAAAEE8iag483NVTeXX36p4s2eg/Nhpf649tprZdXq1cSbPX0YRwABBBDwe4F77rlHFnzwgZQtV07GjBkj3bt3F7vd7vfpDrQE2mza1Krh5E69g64t3Rg5GPOMN3tv5iyeqXhzFeLN3jhM+0yAimQ+o+ZACORM4NixY9K6dWvZtm2b2tD6ycg4etHFF8mqlavoDzlntKyNAAIIIIAAAghkW2Dfvn3SqlUr+fPPPz228XjaouInderUMd7eL126tMc6jCKAAAIIIIAAAggggAAC/iOg48363mb79u0qUR7xZiOJ5nT5S8rLyhUrpWrVqv6TcFKCAAIIIIDAWQQ2b94sjRo1knSPVrFuvuVmmTp5qtStV/csWzE7NwJW15bWtlZJgopklkj2P7/44gtp0bKl/P3X32ojZ+U8C9S5mzp16sry5cukVKlS2d8xayKQjwJUJMtHTHaFQH4LJCYmSseOHWXlypVZ7Nr8RYmJKSkffrjQaJ48i5WYhQACCCCAAAIIIJBLgfXr10v79u3l5MmTzj1Yd/SqOxh1k69v81u0aCELFy6UYsWK5fIobIYAAggggAACCCCAAAII+EZAx5vvuusuo6eLsx0xJiZGxZs/JN58NiDmI4AAAgj4hUBqaqrUqFFD9u7bm6l3J13pqXPnTvLCC+OkQoUKfpHeQE+E0bVlhgbJzDgpFclydmZ1vLlDhw4SHx9/lg1tKt7cXBYsWCDR0dFnWYfZCBS8ABXJCt6YIyCQJ4Hk5GR58MEH5d133zX2o8o+YrUSaj3KjIyMlNdff126dOmSp2OxMQIIIIAAAggggIAp8M4778hDDz0kuiyWVflLr3X//fcbZbCIiAjYEEAAAQQQQAABBBBAAIGAEEhJSZEePXq44s3eidb3PxERkfLaa68Z9zzey5lGAAEEEEDAHwReeeUV6dmzp1dS1MufNvXyp7PCk66I8+STT8qgQYOkaNGiXusymRMBo2tL48G0wrUeUKsdUJEs+4qe8Wbvraz4s37W/8Ybb6iyGPFmbyOmfStARTLfenM0BHIloH+EhwwZIi+++KK5vf6B1kOGmt8izz33nDzzzDPmMv4igAACCCCAAAII5Epg9OjRMnz48IyBEK/ylw5ATZgwQQWnrAW5OhQbIYAAAggggAACCCCAAAI+F9Dx5sGDB8ukiZOcbS17JUHd5uh2mEeOHCnDhg3zWsgkAggggAAChS/Qr18/mT59uvk75vG8VEfqHMavmNmbgE7p5ZdfLhMnTjRagir8lAdmCjLGQE1lnRMqkmXvfI4ZM8YoU+lvpc1h9XWRcdtBj6t483jizRlVmCosASqSFZY8x0UgFwKTJk0ybvA9+/r23o1uvWzmzJnUVPaGYRoBBBBAAAEEEDiPgH4zv1evXvLGm29kqrBvbRpmt8s4dUM/aNBAaxafCCCAAAIIIIAAAggggEBACuh4s36BOS0t7azp79HjQZk1i3jzWYFYgAACCCBQaALbtm2T/v37y57PP1fVc84zqLpPjRs1lpdeekluvPHG86zMYm8Bu11VfvJEdtYloyKZt1TGac94s2osz/k9VXjuCbGrePP48eONlvMybs0UAoUnQEWywrPnyAjkSmD+/PnSvXt3SUpKMrY3fqedP9ZWW6K3N20qCz74QGJjY3N1DDZCAAEEEEAAAQRCTeD48ePSsWNHWb9+vTvrqrUxdcNkTKsXxSQqMkrefPNN6dSpk3sdxhBAAAEEEEAAAQQQQACBABZ47733pHu37nImOSnD/Y/1RF6Hnps0vV3FmxcQbw7g80zSEUAAgWAV0I1v6Hjd0KHPyKFD/6hsuh6aZpFlm4SF2eXhhx8W3UJU6dKls1iHWVkJmC2SKVuDV7WqpT4dumUtR3pWqzNPCWSON2f+bkZFFVHf3zeIN/ON8TsBKpL53SkhQQicX+Djjz+W9u3bGz9AuolxoxlMtZlVEVz/DF1XubKsWLFCrrzyyvPvkDUQQAABBBBAAIEQFjhw4IC0bt1avv3mG1WeUiUp1xth7pv7UqqC/oeLFkmjRo1CWIqsI4AAAggggAACCCCAQDAKmPHmDirefCxT9qz48/Uq3ryceHMmH2YggAACCPiHwIkTJ+S50c/JtClTJVn1OuCK6rlGzHSakzYpVTpWRj47Unr37i3h4eH+kQk/ToXuxUFXJtMV9zy7uZw1a5Yfp7rwknZg/35p1fpO+fa7b9wP8FVyrO+fjj/HloyVRcSbC+8kceRzClCR7Jw8LETAfwW+UQ86W7ZsKb///nuWidQ/RGXKlpXFixdL7dq1s1yHmQgggAACCCCAQKgL7NixQ9q2bSv/Hv7XpPComW/VJ7vsssuMCvo33HBDqHORfwQQQAABBBBAAAEEEAhSga+//lpatWolv//2m/nCsteDd53tssSbg/Tsky0EEEAgeAR+/PFH1UXgQFm+fKXKlPHKqLMhDvXDpoN9evCI//3v+v/JlClTpEmTJuYy/iKQR4GdO3dKmzZt5N9//3VXaLReXtb7Vt8/4s15RGbzAhegIlmBE3MABApO4K+//jJu7vfu3WtUYTYfdmYsCBUpUkRef/116dy5c8ElhD0jgAACCCCAAAIBKDB33jx56MEH5cyZM87m2K1MOJ+YqI+bqt2kAk/LpXz58tZCPhFAAAEEEEAAAQQQQACBoBQw4s2tW8nePSrebAzOeyM97gw7RxUpquLNrxFvNoH4iwACCCDgpwKrVq2Sxx57TH744QdXCs3uGK1Jd/xPV+zRL5q++OKLcvXVV1sr8IlAjgXmqXjzg854s/fG1vfvpptuMl5avvjii71XYRoBvxGgIpnfnAoSgkDuBE6dOiX33HOvrFy5wqNWs9U0ptqn8wZ/6DPPyKhRozI0N5q7I7IVAggggAACCCAQ2AIOh0OGDx8uY8eONZtjV9mxXkR05UyVoeJaxsl7770nxYsXd81mBAEEEEAAAQQQQAABBBAIZgEdb7733nuNB5w6n87H7EaWrXHdpdUzKt48cuRI4s3B/GUgbwgggECACyQnJ8vLL7+surB8VuLj47OM/3nOjIqKkoEDB8rTTz9NPDDAz72vk2/Fm8eMGSN63FWCchaerDJUXFycvP/++xIdHe3rJHI8BHIkQEWyHHGxMgL+KZCWlib9+/c3CkNWbWbXD5TrVt8mHTq0lzlz5vDj5J+nkVQhgAACCCCAgA8EEhMT5YEHHpCFCxeaRzPu4m3OEpNq7l5NOxw2efTRR4xm7cPCwnyQKg6BAAIIIIAAAggggAACCPiPQGpqqgwYMMCIN5s3S9bjTxV1Nu6ZdFqJN/vPGSMlCCCAAALnEtBdDA59eqi88eYb5kulzvif+9VS5++c8WGTrl3vN56nnmufLEPAEkhISDDizR9++KE1S306v1N6jvN7RbzZg4dRvxegIpnfnyISiED2BaZOnSqDBg6S1LTUDL9PnnuoVq2aLF26VC699FLP2YwjgAACCCCAAAJBL/Dbb78ZzdTv27fvrHnVFccmTpxoVNI/60osQAABBBBAAAEEEEAAAQRCQMCMNw9U8eY0FW9WT0FdTTmrEefz0apVq8qyZcuIN4fA94EsIoAAAoEusGfPHqOi9JYtW7yy4q70o1sl+/LLL6VSpUpe6zCJQGaB33//Xdq0aSNGvNn9NcqwIvHmDBxMBIgAFckC5ESRTASyK7BixQrp1KmTnDx58qyblClbRj5a9JHUrVv3rOuwAAEEEEAAAQQQCCYBHSDq2LGjHDp0yPUWmPEUxOMGv0SJEkZXli1btgymrJMXBBBAAAEEEEAAAQQQQCDXAma8+V4Vbz5l1R1T+/K4kVJT5cqWlYWqFY569erl+jhsiAACCCCAgC8EdLeDumvBIUOekIMHf/f6RRN5/PHHZcKECb5ICscIcIGtW7fKXXfdZcabXXlxlpGMD5uUKFGceLPLhpFAEqAiWSCdLdKKQDYFvvrqK6P284EDB5xbuG/srabHIyMiZfrL0+Xhhx/O5l5ZDQEEEEAAAQQQCEyBV199Vfr06SMpycmuF+jdpSOdJ5tcfsVlsnTJMrnxxiqBmUlSjQACCCCAAAIIIIAAAggUkMDXX38trVu3ll9//fUsR7BJZGSETJ9OvPksQMxGAAEEEPAzgcTERHnhhReMngn0uI4Pli1XRn768SeJiYnxs9SSHH8TePXV14x4c3JykpE06/m7Z8z5issvl6Wq1dYqVYg3+9v5Iz3nF6Ai2fmNWAOBgBTQ/X2379Betm3dZrwgZlOtjZstj1s/YebnI488IpMnT5aIiIiAzCeJRgABBBBAAAEEziaQkpJiNFc/Y8ZMtYouCVnloIxb6LfmP1Rvz5dVb9EzIIAAAggggAACCCCAAAIIZBbQ8eYOHTqoePNW1ws6rrXUrZYVf+6t4s1Tp0yR8PBw12JGEEAAAQQQ8FcB3SjHE0OGyIKFC+X111+XHj16+GtSSZcfCOh4c/8B/WWmjjd7lH/ccWcz/ky82Q9OFknIkwAVyfLEx8YI+LdAsmp1o2fPnjLnrbfE4XxuanzoP2qwqZkO9V/9+vVlwYIFUq5cOXMBfxFAAAEEEEAAgQAX0A857lJdWW7ZvNmsPuZV/jGyp+Z179ZdZs6cKVFRUQGeY5KPAAIIIIAAAggggAACCBSsQFJSkvTq1UveemuOs+aYvtFyuO+51Ps7ek7d+vVk4YKFxJsL9nSwdwQQQACBfBTYuXOn1KhRQ+x2ez7ulV0Fk8ChQ4dUvPku2bpFNeKSRfnHeBavlnR7oJvMmjWLeHMwnfwQzAsVyULwpJPl0BOYOHGiPPHEE5KWlnbWzFeoUEEWqtr2NWvWPOs6LEAAAQQQQAABBAJBQAd+Ona8W/744+BZk6uDQuPHj5dBgwaddR0WIIAAAggggAACCCCAAAIIZBaYOHGSijcPkfT0NHEY3WCYFco817zkkktk0aJFxkN5z/mMI4AAAggggAACgSawa9cuueuujka82erG0t0KmZmbsLAwGTduHPHmQDu5pDdLASqSZcnCTASCT2D16tXSqVMnOX78eMbMWff46rNIZJRMnTZNHn744YzrMIUAAggggAACCASIwGuvvSZ9+vQR/aa8HqyijmfyS5UqJfPnz5dmzZp5zmYcAQQQQAABBBBAAAEEEEAgmwKrV6+Szp3vk2PHjrm28L7/0i0/T58+XR566CHXOowggAACCCCAAAKBJPDqq69K37463pycZbJ1+Sc2NlbmqXhz8+bNs1yHmQgEmgAVyQLtjJFeBPIg8OOPP0rbtm3lu++/0y1uugbjBt/jLv/BBx9SN/jTpEiRIq51GEEAAQQQQAABBPxZ4EzSGenbp6/oimTG4CrbOEecH5UrV5bFixdLpUqV/Dk7pA0BBBBAAAEEEEAAAQQQ8HsBHW9u06aNfP/D9854c8b7LysDuiLZNPUCM/FmS4RPBBBAAAEEEPB3Af2isn5h2TPebFP9Vzqsh+yuePP1Kt78EfFmfz+hpC9HAlQkyxEXKyMQ+AInTpyQrl27yrKlS63em92Z8rjPv6V6daOry8svv9y9nDEEEEAAAQQQQMAPBX777Te5q8Nd8tmez1yV5W2qLTLXTb0zzfoBx9tvvy0xMTF+mAuShAACCCCAAAIIIIAAAggEnsDJkyfl/vvvlyVLlmRIvBlqdgac1ZLqxJsz+DCBAAIIIBC8Arp7w3vvvVd4xhq459iIN9+l4s2fW/Fmj4fozsZadPy59Z2tjXhzyZIlAzezpByBLASoSJYFCrMQCHaB9PR0GTVqlDz33HOS7kg3H7i67+ldfUBdcMEF8u6779IMZ7B/IcgfAggggAACASygu+/WDy3+O3LEehdM5UYVbGzqjt55Ux8WFibDhg2TZ555RvQ4AwIIIIAAAggggAACCCCAQP4J6HizjjXrmLMezzBYcWf1eUFp4s0ZbJhAAAEEEAg6gZUrV0pcXJwULVZUBj8+WJ544gkpVqxY0OUzmDO0Zs0aua/LfXL0yH8ZGmWxijQ67zabXUaMGG7EnO12ezBzkLcQFaAiWYieeLKNgBZYtmyZ8eA1XrVS5tAPXF1/LR+bhNlt8ox68Dp8+HDhh9By4RMBBBBAAAEEClsgQ8V4/aDC805eJc6ajFVvg739zjvSunXrwk4yx0cAAQQQQAABBBBAAAEEglogY7zZnVXPyHOYethKvNltwxgCCCCAQPAIpKSkyI033ijff6+6fFaD/v279LLLRLdQds8996jKR3oOg78KZIo3eyfUGXCOjY01WiEj3uwNxHQwCVCR7P/ZOw/AKqrsjX956YEQegtlLbgKroJtEfWvKNLVFZQm0hGVLlUUUUAUERUBlaIIKgoIWBABEXQVbChYwAKuIr130l/+59yZeW/eS4IhhNRv1szcuXPr77Fz75z55tyi9GuyLySQAwK//fYbWrVuhY0/bcwitzUq3nxzY7zxxuuoUKFCFukYTQIkQAIkQAIkQAJ5Q2Dfvn3o2LEjVny0wud1LLhmncHUrlMHixcvRq1atYIv85wESIAESIAESIAESIAESIAESOAsEPj1119xhywFtfGnn6T0EMtRtMtjtFPlzY1vxhuvv0F7swOERxIgARIggUJP4Nlnn8WgBx6QfmQc/6699lo8//zzqFevXqHvZ1HsgGNv/mjFRzJ3sZe50I7a4jGnz3XE3rxo0SJccMEFThSPJFAkCVBIViR/VnaKBE6PwPHjx9GjRw/MmzfPjIe6S/et7+x/P1utWjWTpkGDBqdXAVOTAAmQAAmQAAmQQC4R+OKLL9CmbRts37ZDSrQmLO7nefNhn0S3ka/8Xn75ZZQoUSKXamYxJEACJEACJEACJEACJEACJEAC2SGg9ubuPbpj/vz5JrmlI7Oe3HTv2J/V3qxprr766uwUyzQkQAIkQAIkUGAJqBBJP2Y9cvSIr43B458n1INu3bpj7NixqFixoi8dA/lLYM2atWjfri22bd/uF46ZaYvf6qyhO9u0xcyZMxAbG5u/DWbtJJAHBCgkywPIrIIECguB5557DkOHDkVKSqo02a+21heyjrAsPDwc48aNw6BBg+iCtbD8sGwnCZAACZAACRQBAukyGZk4cSJGjBghc5WUwB7JXMX5wD08PELcxT+JgQMHBqbhGQmQAAmQAAmQAAmQAAmQAAmQQJ4SUM8sw4cPR0pyMtKdr36M2dn/YtayNz8u9ubBtDfn6a/DykiABEiABHKTgHqp6tChA5KSknzFmtEuk/GvTJkyGDlyJHr37o2IiAhf+oIaSPN68eTEl3AsIR0nEr1IkC6eSEzDyaR0RESXwoFDJ6TpIShXpgQqyF/5srGoUK4kysXFSLgkalQpg1r/qIBQEdIVpC2Dvdn9QtzVUJ2r6PKktDe7oDBY5AlQSFbkf2J2kAROj8Bnn32Gdu3aYdeunT7xWMYSQtCyZQu8+uqrKFeuXMbLjCEBEiABEiABEiCBXCRw8OBBdOnSBe+//76vVDXE6Jbuf/+AqlWrGu+p6iqeGwmQAAmQAAmQAAmQAAmQAAmQQP4T+Pzzz9FWPEbv3LkzoDHB72pvueUWzJ49G/pynRsJkAAJkAAJFEYCv//+OwYPHox33n3H7a8joCvu8e/CCy+Eiq6bNm0akKYgnOzZfwxffPc/fLH+D3yzcRtOHBf1mDHIqiLcsszqEpAhdth85euVK9JBt73WARETHYkrL6mBBvXOxdX1zkGl8vnr1Ssze7PVL5ejFelplSpVMG/BfFx7De3NBeHfJduQdwQoJMs71qyJBAoNgT179ohqvj1WrVrta7PvHa0d0IlO9eo18NZbb9H1uI8SAyRAAiRAAiRAArlNYO1acS0u85K/tv4lhgjHS6pvZuKrrmHDhnjzzTdRqVIlXxwDJEACJEACJEACJEACJEACJEAC+U9A7c3t27fH6tWrzetm8wra93xntU+f8qrXqGGe6xo0aJD/jWYLSIAESIAESCCHBD766CMMHDAAG3/e5PsK1rFm+u2bVuEa36JlS7MSwwUXXJDDGnMnW3JKGlau/RWLV2zAD7/sEpmYCsV01PYgKS0OiSkVkJIWg7S0EkhJL4FUOabKeYo3RtKEIDz0BMLkLzTkBCI8JxEWJn8SjorYh0iPLPkpS0o4/b/0wnjcdvMlaNTgn4iMCMudDmSzlDVr1uAu8R639S+xN0seIx2zA077tD8NG95Ae3M2mTJZ0SNAIVnR+03ZIxLIFQJpaWnGreqTTz4pnsksRblOGIK38PAwjBkzFkOGDIHHU7Bckga3leckQAIkQAIkQAKFh4BXXKZPmDABDz/8MFJTddlt/2Ye6PVUPm/TsC6VMnbsWM5F/IgYIgESIAESIAESIAESIAESIIECRUCf8fT5brzYm71ibw7e1KOJ2p/DwsLl+W4M7c3BgHhOAiRAAiRQqAjoe9YpU6Zg9OjROHTwkLQ9s7esKleyxr/w8AgMGNDfjJWlSpXK074mJafinY9+wOzFX8kylceNzTUd4TiWXA3Hk/6B44nVkSyisRCPGGJlCLc0V7IXYZi1vJX2wuqHSaApTCId761rYZ7jKBn5p/z9JX/b4QlJMUnLlymJu1tdidtvvvSsC8oce7MuK5qSIvXbrQv+ZdSr2vBhwzBG7M2hoaEmHXckUNwIUEhW3H5x9pcETpPA0qVL0alTZxw8sF/nBs7swBr/7b1GN2nSBHPmzEHFihX1lBsJkAAJkAAJkAAJ5JiAfq3euXMXrFi+7JTzD11i+7XXXkOzZs1yXBczkgAJkAAJkAAJkAAJkAAJkAAJ5B2BD5Z+gM6duuDAwf3W+2e7auultJzYAbU361KX9Dqdd78NayIBEiABEsh9Avv37zeOO6bPmA5vmq79KP+p/squKnj8q1K5MsY+Pg5dunQ+6x/Ner3pWPrpRkx/ay32HDhqGqVexw6cvARHE84T4beIqPQrXl+bJaBicPErki55PXJNXZEAVr9MQv3wV9Kke7STHrlu9VSL0aAuexmKFJSK+h1lY35CTPgeuRCCirLUZc+216D5DbURehYcl+zesxtdOnfF8hXLTsm/vNibZ8v77ubNm9u/EA8kUDwJUEhWPH939poETovA1q1bjevxL774QvLZI719cE61wMoyudGH+8aNG59W+UxMAiRAAiRAAiRAAg6BlStX4u6Od0Mf7v1bxvnH1fWvNkts15ClT7iRAAmQAAmQAAmQAAmQAAmQAAkUHgJ/yVJS7dq3wxdrv7TNy9ZLZqsH/ue/ypUqm4+Xb7755sLTObaUBEiABEiABDIh8MMPP6B//wH45NPVRk1ljXaZj38quLriiiswadIknK3lnn/4ZQeemvkxfvtjrxmLE1IqYt+xK3A05R9GaOV+/6vdcVqqa1MZ8ZgRlEmsKMPMulbG26j0SlVyupmg46XMebtsX1exmSTxSs7YyK2oGPsVokMPSEw6LjivIob2aIR//bOqlpIrmy412rlzZ+zaJfZmo+Kz6ndEblYlIcL6arOUJe3NuYKdhRRyAhSSFfIfkM0ngbwioC4+R4wYYdbo1qUuAyYQzrgvjfGEejB48BCMHTMG4eHhedU81kMCJEACJEACJFDICSQnJ5uv855++mmom/FMN51zyP8GDRqEcePGca6RKSRGkgAJkAAJkAAJkAAJkAAJkEDBJ5DB3hzcZH3DLGZo9UoyaPBgWe5yLJ8BgxnxnARIgARIoNARWLBggVm+WZ14ZLrZ459e0yUWO3TogPHjxyM+Pj7T5KcbeTIhGVNe+y8WrdhgnIulpMZiz4n6OJJQy7z69ar9VbVg8qdexTxGKKa16Lthy9uY11hoJUrdjJl3xppYG66bZtZNr9kHSeeRdM4Vk8VU4qRJR1zUFlQSQVl42FFTf+umdXF/x/9DiegIU1pOdjrX0GW1n544Eemy1KhTf3BZypn25mAqPC/uBCgkK+7/Ath/EjhNAkuWLBF3quJ6/MABM6FwD7o6RbBcmKbjyiuvNKrt88477zRrYHISIAESIAESIIHiRmDLli3GKPLNN98YG4M+1VvzikAS5cuXx6xZs9CyZcvACzwjARIgARIgARIgARIgARIgARIolATU3txV7M37xd4cvLmfC68Se/Mbc+fi/PPPD07GcxIgARIgARIoVAQSEhIwYcIEIxA7efJkhra7xz+9WLFCBWwVb55RUVEZ0p5OxC+/78HDz7yPbbsPi/7LgwMnLsO+45eJZ7CwgGK0fv3MV4+6GSdeembEXxqjb4fV25gVZfRkGi1xxgeZRKhYTBe21GwaDti0YOuSdc2uyBOSivIlvkWFEiJyC0lDjSplMPaBlrjw3EoB2bNz8vvvv5vVttat++aU9ZejvTk7OJmmGBKgkKwY/ujsMgmcKYHt27ejw10d8Nl/P5Oi3KN9YMmxsbGY/Pzz6CyGAG4kQAIkQAIkQAIkkBkBXRa7b7++OHb0uFx2WxXsOYZmkuB1116HufLSoFq1apkVwzgSIAESIAESIAESIAESIAESIIFCSsDYm8Xjymefib3Z9Shodcdvfy5ZIhZTpkw2y1MV0q6y2SRAAiRAAiTgI7Bt2zYMHToU8+bPE7GT2EXdplFnQJRhcNQjj+LRR0f58uUk8OF/N2Hc1BVITk1FYkp5bD/aCEkp5aQoq1J1KOboxDTGLP6YLotPetQLWcYazehsJTRFmPx2MuuaXLQVZv5r5opVpQadPkrIXX9k2AFUi1uFqLC9CIsIxUP3NkHzG+rYpf/9wdib+4q9+dixoMR2/Xbsddf9n9ib36C9OYgST0lACVBIxn8HJEACOSKQKhON0aNHY9wTT8ArYd8cInAMlrJDRPHdDi+88AJKly6do7qYiQRIgARIgARIoOgROHz4MO677z689dZbLpNBxn56ZBmThx56CI888gjCwgK/jsuYmjEkQAIkQAIkQAIkQAIkQAIkQAKFkYDP3jxuHNJk+Sn/y2Xbu4nTKbE/t2vbDi+++CLtzQ4THkmABEiABAo1gc8//xz9+/fHd999J/1wXrRa41+NmjXx888/Izo6Osd9nPv+Ojz/6ifiZSwdh09ejN3HroU3PdQqzyUGsyKkfqMcCxp/zZtguSbpLWGY3U73waxZqaVopL8nGlJPZW4vZyaB7rKoPyTEiyqxn6NMzE9Gj9a/S0O0b3m5L1tmAbe9Wa/bTTNJ3eHQUBGnib155MiRtDdnBpJxJCAEKCTjPwMSIIEzIrB69Wrcfffd2LFjp5Rjj/ZmNJawa1SuKRMdVYBff/31Z1QfM5MACZAACZAACRR+Ap9++ik6deqEv8Qle7BJwt27+PhqeO21OWjYsKE7mmESIAESIAESIAESIAESIAESIIEiSsBvb97hNi9Lbx1jsxzlvxrVq2POnDm0NxfRfwfsFgmQAAkUNwJerxevvPKKETjt27vXvHFVBvPnz8edd96ZYxxvL9uAp2d8bJZ33CUCsoMn/mUNqUElhoh4LF0UYvqm1yN/ftGXPf6qekwvGLGYpNJz3eygdSaWXinHK3F2Ljmmy58scumIzLQCO6vJb++yqr9szI+oXOpzo20b3PNG3NmsnjubL6z25s6dO4u9eatpou+CBNz25/j4eLz++uu44YYb3EkYJgESCCJAIVkQEJ6SAAmcPoH9+/eja9euWLJkSVBmZ5og0RIM9YRiyJAheOyxxxARERGUlqckQAIkQAIkQAJFnUBycjJGjRqFCU9NQJpXvzAP2mS+EGIMFum45ZZbMGvWLJQrpy7WuZEACZAACZAACZAACZAACZAACRQXAmpv7tatG95///1Tdlm9Vg8ePJj25lNS4kUSIAESIIHCRODIkSMyro3GVFnKuf7VV0MFUjndPvr8F4yc9AG8ouzaeeQGHE64SIyvIqvyirwraL1KlXupmMts5hCs+PKfq+DMpNUot+pMznU1S6+UZTRnPjmc44rESnC69ZeJ3oSqcaulbA9GD2iBxtde6EPiszdPEHuzeDSV6o10TQVs2jz3pvZmFeuVL1/eHc0wCZBAJgQoJMsECqNIgAROn4AqyXX5ShWKJSQk+AuwRmxz7gQvq1cPr7/xBi66SCYs3EiABEiABEiABIoFgU2bNhkvppaL9qAuyyRB7RT6cB8VFYWnn34a999/vxgHdPbAjQRIgARIgARIgARIgARIgARIoLgRUHvz1KlTxd48FImJfnuzPiaqUxPfJueX1bvMeBehvdlHhQESIAESIIFCTuDXX3+T8c6LCy/0i6ZOp0vfbdyGvo8tQGqaF3uPXYV9J68w9lfL05hjjNUBVe2vztEJu2uyJFkeuSTNsYy4mseV1ErhinAuqtcyEy07j0jVpJqc1l+p5DpUKPG1LEXpweRRd+KyOtXNkp8dO3bEelkS1D01cLdew1FR0Zgw4Sn07t2b9uZgODwngSwIUEiWBRhGkwAJ5IzAjz/+iA533YWffvrJPNFbD/b25MGZLMhwHh0dgyeffAJ9+/bloJ0z1MxFAiRAAiRAAoWCgBr/J0+ejOHDh4vYPFHanNVjfQguvrgO3hCx+SWXXFIo+sZGkgAJkAAJkAAJkAAJkAAJkAAJnF0Clr25A376UezNzotpPRpbs7yUlqN6RomOjhJ785O0N5/dn4OlkwAJkAAJFAICO/YcRpehr+PI8UQcSayFnYcbiUVWB079cxat9IvHVAimm+q+0sV7mX7cq3FePZpLZrCV6+qJTIuQNCIMS0+3/I5ZY7JecMq0y5MYjfVvJrOcutNadWmav6s/vsxKlI7+DXElonBDnTSMfXSE2JtP2sW5y7Tq1zIvvvhizJ07F//6lyzpyY0ESCDbBCgkyzYqJiQBEsgugaSkJONSfOrUF4xa3p3PGcaduJsbNcIrsmxVtWrVnCgeSYAESIAESIAEigiBbdu2oXv37lj50Ue2OcLqmG8+YAfUOKHi8vHjxxuPZEWk++wGCZAACZAACZAACZAACZAACZBALhBQe/MQWcJyingo04+VfM+UmZR98803m2WraG/OBA6jSIAESIAEijyBxKQU3PPQW/jtjz04mVIBfxxsJWNnqK/f1hgqMjFRiJkVIozXMBFeyX9GJGaPsiES70ujmWRzj78q1bKjfXmtxSStWF9aLdTlStSKd5V9GvV7QlLxj7KLER2+DycO78TPn06BNy0lQ9uctvYRe/NTTz1Fe7MhxB0JnB4BCslOjxdTkwAJnAaBDz/8EN26dcPu3but2YdvomBNIqwZSgjKli1jlsVs27btaZTOpCRAAiRAAiRAAgWZwLx583CfLE956OBBu5mB479aGDSmUuXKxsjfrFmzgtwdto0ESIAESIAESIAESIAESIAESCCfCbjtzdaLaFeDXC+qy5QpgxdffBG0N7v4MEgCJEACJFAsCEyY+THeXrYeaWmR+P3AHbK0ZZwRYYsLMXlXa3vqsg9qnDViMiHjG1dNwC8TMyHZGb2Xk85/2bz/tUTeGumxfJJJoeotVL2feaRkvZ5b9UeEHsW55RYg1JOEvf9biz+/f8clVNM6gSpVKuPll18G7c0GB3ckkCMCFJLlCBszkQAJZJfAvn370KNHD7z/3nsBnkg0v29SYhfWoUMHTJkyBfqgz40ESIAESIAESKBwEjh06BD69OljXIYHj/XaI3fcLbfeipdnzkSFChUKZ2fZahIgARIgARIgARIgARIgARIggTwl4Nib33v/Pf0+ybe5nzWdSNqbHRI8kgAJkAAJFAcCX3//J/qNWSjjoxfbDjfGkYRaltDL/qBXNddeWdnSaK/FSitCEdV+BYynFicdVe0lMCXo81wmy1maLWD8VT9kml42jdf0EjBx5tx3ZurNjfrjIjejWumPTIW/fT4Dh/du1trNdqvYm2fS3uzg4JEEckyAQrIco2NGEiCB0yEwffp0DBo0CMdPHA+akOjkQmYS9kFdjs+YMQNNmzY9neKZlgRIgARIgARIoAAQWL58uVnKcsfOHYHjvT3OO00sWbIknnnmGfTs2dOJ4pEESIAESIAESIAESIAESIAESIAEsk1AXxIPHDgwo7056PkzPr6avFCmvTnbYJmQBEiABEigUBJISk5Fu/6vYMfeoziWeL4IyZpY/bBdjlnDo6X0svVe5t2scRbmi/B3XWRmIiVTOZj+6d4y96qWzDgbc8Zb+1zFaZpI02nQ2Tsuz3K7/mqlVyAuaguSThzEjx9PRInoSEycOJH2ZsOeOxI4cwIUkp05Q5ZAAiSQTQJbtmxBp06d8MUXX7hyODMNiTJBmY7IUb2YPf300yhVqpQrLYMkQAIkQAIkQAIFkcCRI0cwZMgQzBSX4en6WZk1qPuOrtEeDRo0wJw5c3DeeecVxK6wTSRAAiRAAiRAAiRAAiRAAiRAAoWEgGVv7iz25rXSYuvJ0/38aXWD9uZC8nOymSRAAiRAAmdA4OX5azF93lqkeaOweX87pHpLyMgodlpVfanXMa81HqZLXIi8iLWWnlTZl246ejquytwjqRMWMZnJo+kdF2aOpzErjZNSS1M5WbpZ1PLs1R/mScR55edCj57jP+O1qQ/i/PPPt6rnngRI4IwJUEh2xghZAAmQwOkQSE1NxZPjn8ToR0cjJTXllFlr1KhhvJM1btz4lOl4kQRIgARIgARIIP8IrFixAvf0vAdb/9rq2O0zbUx4RDgeefgRDH9wOMLCwjJNw0gSIAESIAESIAESIAESIAESIAESOB0CKSkpeOqpp/DYY49Bw2YLfJvtK472Zh8KBkiABEiABIoQgUNHTuL2+2YiITkJuw43xMGE2gG983sJc3sM0yTWEpTqccxccSU0MjEjQpOQrTEzaUxSV0JTjESq5zPj/UwTBG7u1O7wmdZfJmYjqpb6BNGREVj8Uk+UKRUTWDHPSIAEckyAQrIco2NGEiCBMyHw7bff4u6778bPv/ws8wR7gmIftFwnGBLiQZeuXfCMuCMtXbr0mVTJvCRAAiRAAiRAArlI4NChQxg8eDBmv/qqfOkm1gTf6J2xkgsvughzZs/GlVdemfEiY0iABEiABEiABEiABEiABEiABEjgDAmsW7fO2Jt/+eUXuyS3zdkf1pflXbt2Nctf0d58htCZnQRIgARIoEAQeOGNzzB70VdITC2L3/e3NW1KFw9iIZm9fxUll4m2bbnO+9hAgZflbcw4MpPSPLbgzL/IpdNtdy7NI97OLPdnUsfZr189rp1XfgEiww6gS+v6uK/DtU7DeCQBEjhDAhSSnSFAZicBEsg5gZMnT2L48OGYOmUKvLoIt9lkymKv1+0uuWrVqpg8eTJatWrljmaYBEiABEiABEggHwgsWrwYffv0wc6dO09RuxgLZFjv07uP8UYaE8Mvwk4Bi5dIgARIgARIgARIgARIgARIgATOkIBjb54i9mZZs0teaFub85Lcdyb25yqVq0DT0d58htCZnQRIgARIIF8JJCWnomWPl3DsZCK2HmyG40nnmPFPRV8eEVrpEpNG7qU7j+zM4Ggf1Xir5zpQ2sIyE2F7ItOxNKtNl8a0sqt4zA47q2NKpryqv2TkH6hZZilKlYzCkhn3IjKCK2Fk9ZsxngROhwCFZKdDi2lJgATOCoGPP/4Y3bp1w19//eUr3zzcm4mLHSVzFT29XYRkKihTYRk3EiABEiABEiCBvCWgwrF+/fph4cKFVsVmwPabGdyt0SVDXnnlFdx0003uaIZJgARIgARIgARIgARIgARIgARI4KwSWLVqFbqqvXnr1izrMY+zsmt1O+3NWULiBRIgARIggQJP4INPNmL05A+RkFoBf+y7QzyBqR8xS0xt+RVTmZdu1jKWRkumSZzNvH/1+xIz2jEzSOoFSajOP4xAzMrvZDNHSef3DSInmlnVZXlafzrOKbcA0eEHMKpvUzS/oU5AE3lCAiSQMwIUkuWMG3ORAAnkMoGjR49i0KBBeHnmTJleyDxD/vSomzus53Gl4zDu8XHo1asXQkNDNYobCZAACZAACZDAWSTglaUrX3rpJTw0YgQOHzmSYWy2qpYRWywHHjEw6DIhzz77LGJjY89iq1g0CZAACZAACZAACZAACZAACZAACWROQO3NDzzwAGbJB05mNQzrkTVTm3NpsTc/Lvbme++9Fx6P++165mUzlgRIgARIgAQKCoF7H5mH7zZuw87DjXA46QIzznnEW1i6EXVJK0XYJYIQ+9wSlVliMWuhStGImU3fxermFp/pNecdrXXdGUytWE3rVbGZFKijpzoy03e7eV1/6ahfUT1uJerWqYaXRreTFnAjARI4UwIUkp0pQeYnARLIVQLLly9Hz549sW3bNle59sTGTD+syYlOXf7976vMS+26deu60jJIAiRAAiRAAiSQmwQ2bNhgjOlfffWVFOuMw1qDO2zVWL16dcwUUXjjxo2tCO5JgARIgARIgARIgARIgARIgARIIB8JZG5vDm6QZX++ivbmYDA8JwESIAESKMAE9uw/htt6TUOqNxq/7u0sb1EtUZflFcwSdakF1/d6NbgvvuUpbRcfRnzmsvmqMiwkSE4mSVU75tWj2odNHlfBvjJc1drFu1JZwVyqP8TjxT8rzEaoJwHvTeuFSuX5cXMG1owggdMkQCHZaQJjchIggbNPQL8WGzZsGKZNm2Yp5AOq1GmJuk+1trDwcPTt0wePPfYYvZ4EcOIJCZAACZAACZwZgWPHjmHUqFFmSenU1LSA8VdtBL7BWILqsbxXr3sxfvx4lCpV6swqZm4SIAESIAESIAESIAESIAESIAESyEUC+nw7dOhQTBd7s7741gfaQCuzv7KwsHD066f25tEoWbKk/wJDJEACJEACJFDACMz/4DtMfGUVDp74F3Yduy5gdFN7bbouSSmiL2v5Scug64x/fm2XE3Ku2J3U/HJJ86ot2Mqt1zTC+B+zE0g+ibK8kfnLyOv6K8d9hjIxP2JwtxvRpsVl2lBuJEACZ0CAQrIzgMesJEACZ5fAf//7X/To0QObN2/O+GDvn7GYRsTHx2PixIlo27bt2W0USycBEiABEiCBYkBg3rx5GCxLTu/YsVNMA2ocsLeg8Vdja9WqZbyQ/d///Z+TikcSIAESIAESIAESIAESIAESIAESKHAE/PbmLdI2edbVF+Py5lufe/2vvq1mx1cTe/PTtDcXuB+RDSIBEiABEvAR6D/2bXy5/k/8cbAVTiZVtvVdtgFXhzkJqsALjlMxIwdTdZmKv/zjn9eMg3axdnZfJU5AxWIe8XmW7jHjpon2pdWKJIHRl9mRbwtOtgAAQABJREFUeVx/TPhOnFN+Ma6uew6ee7i102oeSYAEckiAQrIcgmM2EiCBvCGQkJCAMWPG4Omnn0ZqSoo14ZHJh26++Ynr5MYbb8Tzzz+POnXqmDTckQAJkAAJkAAJZJ/Apk2b0LdvX6xatVoyWQOuGW9dg64TDBevoIMHD8bIkSMRHR2d/UqYkgRIgARIgARIgARIgARIgARIgATyiYDb3pwi9ma3lTmz59+GYm+ePHkyateunU8tZrUkQAIkQAIkkJFAapoXN909GScTQ/Hz3q62YkxGNRF0pasbMtu2a3LaBl1zUJOvBmRnhNSSPkSEZUZwptfkzwjQTDo9kSi5qMIz2Zl0xkuZKUHymfpMMi003+pXeduFlWahRFQqPprTF+FhoaY93JEACeSMAIVkOePGXCRAAnlM4IcffpAls3rhyy+/tGs20x0TtkL+c32xrS/BdTkuLq+Vxz8UqyMBEiABEiiUBHRZ6dGjR2PS85NEuJ3q64N/dHWirJj6V9fH9Jem41+X/Mu5wCMJkAAJkAAJkAAJkAAJkAAJkAAJFBoCwfbmrJ5/tUMR4RHo07cP7c2F5tdlQ0mABEig6BPYuHkXuj34Bo4mnINth5uZDhvtl931dFF7Ga9jMsCF+DySZeRyqvHPuuZPYUJOJSosEw9lbr2ac0lryY/6q5dehlJR/8MrT96FOrWqZOwsY0iABLJNgEKybKNiQhIggfwm4PV6MW3aNIwYMQKHDx/Oujn2nKZy5coYN24cOnfuDI9H1ffcSIAESIAESIAE3AR0bJ09ezZGPPggdu/ZY18KXtDDitbhNa50aTO23nPPPQgN5VddbpYMkwAJkAAJkAAJkAAJkAAJkAAJFC4CWdmbbfNyhs5UqlQJTzzxBO3NGcgwggRIgARIIK8JLFy+AROmr8TuY1fjwIl6lncx42XM3xL1HJau7sXkasDYph7GRF1mxZrLJp1H1sB04hxRmHPUUm2nZBqUdPZKlnK0ytac6uXMv+V1/eVLbECl2C8wpGcj3NG0rr8hDJEACZw2AQrJThsZM5AACeQ3gd27d5ultObOnWtcppr2BMyAAlt4xeWXi4eV59GgQYPACzwjARIgARIggWJMYO3atejfvz/WrVuXCYXAgTVE3KF36NDeLDWtQm1uJEACJEACJEACJEACJEACJEACJFBUCDj25jfF3uyVJbp0y/CJlesx+corr8Rzzz1He3NR+QfAfpAACZBAISQwfvpHWLz8e/x5qCWOJdc0S0pqN3S40r1xQiZKLh3WrDhL/GUNZzrK6eaWfTniMBWDuVyYWWowk9q/03JD4JFCtAQVq+mSmrpZ5eZP/SUj/8I/yixBqyZ1MfSeRqY93JEACeSMAIVkOePGXCRAAgWAwCeffILefXpj08afpTX+CYoz7bFF9uaKeiRr06YNxo8fjxo1ahSA1rMJJEACJEACJJA/BLZu3Yrhw4dj3rx5xpCgY6h5wNcHf3sQ1XNnPL3ootqYOnUKGjZsmD8NZq0kQAIkQAIkQAIkQAIkQAIkQAIkkAcEVq1ajX6yhOXGTZusN+H6YGwekP1Pyf4Q0L59Ozz5JO3NefDTsAoSIAESIIEgAv3HvI0vN/yBzfs6Ijk1TsYre9DSgcpYdkXcJXowY/mVgJGOybUA+6/PxZhrdHOCevTKTsVoEtR1nzSvZvHoC1g5sa5oWC4WgPojQo+gVsW5uOqSmpj8yJ3SKG4kQAI5JUAhWU7JMR8JkECBIJCSkoLnJj2HMaPH4NixY+bB3ojjTetk8mJmL1ZT9SwqOgYDBw4wL9BjY2OtC9yTAAmQAAmQQDEgoOPkk08+iWeffQ4JCSdtW7g9VurDvhXjIxEbWxIjRz6CAQMGIDw83BfPAAmQAAmQAAmQAAmQAAmQAAmQAAkUVQLG3izexsaMse3NwR2Vx2i3/Tk6OkrszQNpbw7mxHMSIAESIIGzSqBtv1fw546D+HlPT9F0qe1WvYDZHwzbNet45RW3YWbBSRWBiQrMOOEwEjD1KCY5VBmmm9qH1cWYVwKSUUuyr5jLGhciaTVZsB3ZSpf/9SMkGbUrzcA/qpXDvEldrXZzTwIkkCMCFJLlCBszkQAJFDQC27dvxzDxrqLux9MdOX1mjdTZjMxydFmuRx99FN27d0dYWFhmKRlHAiRAAiRAAkWCQGpqKma+PBOPjnoUe/fsMV+N2U/8GfqnhgQxIaCdfFX91FNPIT4+PkMaRpAACZAACZAACZAACZAACZAACZBAUSdg7M3DhuHNN9/UN++mu+ZduxXM0P1KlSrhscceQ7du3fgxVgY6jCABEiABEshtAk26TMHh40nYuOs+q2h9/ykisBAx8OpSk87Y5a5X5WHqTSzz16gqHfNICv+yllqk2pHTjcBMwqpMM4Zlc0VCLrlZAan/4irTEVcqAstn9dbWcyMBEsghAQrJcgiO2UiABAomgc8++wz9+/fH+vXrfQ20tPZBT/g6oZGoOrVr40lZ7rJly5a+9AyQAAmQAAmQQFEhsGTJEgwTw/cmXZZDN3v8Mwf/zonGZZfVw3PPTcJ1111npeeeBEiABEiABEiABEiABEiABEiABIoxgTVr1qBv374B9uZgHG77c506dfDEE0/glltuCU7GcxIgARIgARLINQLXtX8OSUnApj33mDL1Laiae3WXLoIyIxjTsHohU8GXJFBBtFtjpnnMkpV2PtWQhUiEJTTTXCoUc292nF2Ze/wrKPXXrjwNEWHp+HzeA+6GM0wCJHCaBCgkO01gTE4CJFDwCXi9XsycOVOW4xqJvXv3WjMnncHI5p7U2BEyIwJuuOEGjBdB2VVXXWWiuSMBEiABEiCBwkzgm2++wZAhQ/Dpp5+abmQ1/ulFvVaxYgWMGTvWfDkdGhpamLvOtpMACZAACZAACZAACZAACZAACZBArhJIS0vDrFmz8NBDD2WwN5uK9C17kP35+uuvx4QJE3DllVfmaltYGAmQAAmQAAkogfp3PgN5HYpNu3vJmVp4LZGXNSCpYkyijSLMuqbxZqjSnV7TTcLqwcwr/7O8kalwTCJVfKaCMpPGKtkrZYWoZzLNY7LK3qjTNJVVh1WDdW4l8l/TjHpmdmex/tqVXzQrdH759iCtjRsJkEAOCVBIlkNwzEYCJFDwCRw5cgRjxozBlClTRJWfLA2WKYpvcmJNfCx35PaURyZLrVu3xuOPP44LLrig4HeQLSQBEiABEiCBIAK//fYbHnr4Iby94G3/A/0pxr/IyAjzZbXmKR1XOqg0npIACZAACZAACZAACZAACZAACZAACTgEjh49irFib35+stqbE5036Vk+f+v79lbG3jxO7M21nGJ4JAESIAESIIEzJnBVqwky/oRi4x5d2lJdiWmRslMRmIi+0j3yTjRdl6o08i3jiUyD+l7Uo9dNBn1X6rXCmt9+jWquGRGaRsgF/U/zmvIloCIzx+uZKafg1F+70jRpnhdfLqSQTP9FcCOBnBKgkCyn5JiPBEig0BD4/fffzbJeCxcukjbLBMe9mcmPo9I3cyGEhoWjW/euGPXIKFStWtWdmmESIAESIAESKJAEduzYgccee8x8IZ2amiZt1Id86+AK+Nsu11rd3sp8HX3uuef64xkiARIgARIgARIgARIgARIgARIgARI4JYEtW7YYe/OiRYsl3d8/f4eFhqF7t24Y+cgjiI+PP2XZvEgCJEACJEAC2SFwXTtZ2jIl3XgkU4GXiseMHVgVX7pl8v7TCMHsNS7VdKwSMjupDGeWMVm0Z0Y05rctmyS+t6tyWcKSVuszYjV9x1pw6q9dRZa2DJelLd8aaDWcexIggRwRoJAsR9iYiQRIoDAS+OyzzzDogQfwzbp1mTdfVPVGpW9fjY6ORp8+fTB8+HCULVs28zyMJQESIAESIIF8JHDgwAGzNPOUqVOQkJBgfxlmN0i/FtMHessG4GulLqvxzDPP4Nprr/XFMUACJEACJEACJEACJEACJEACJEACJHB6BIy9edAgy96cyfN3cGnRMTHo07s3hg4divLlywdf5jkJkAAJkAAJZJtAky5TcfhYEjbuvtdSfhkhmGa3hWRG7CWnaiIWO7Hlhcwq3gxZRnCmF600ekXNyF7ZmUsSr17NPFKuVaLs7feouhCmpjXeykxhmtjESKSV2pSmQYnOy/p1acvSsZFY8WofbSE3EiCBHBKgkCyH4JiNBEigcBJIlwnNW2+9hYcfehj/+/MPmb0Y3bw1kXHmNk7XdM4jcXFxcUaANmDgQMTGxjpXeSQBEiABEiCBfCNw7NgxPPvss0YQdlSWcrZGs+CBzGqePZzhHPE89vjYsWjXrp084zsP9vnWBVZMAiRAAiRAAiRAAiRAAiRAAiRAAoWegGNvHjFiBLb++af9+lxfsMuyYfYHXuYJXHb6rl03tTc/IB88D6S92QLCPQmQAAmQwGkTaNt/Fv7YfgC/7O4pI054hvFHxxxd2NIIuYLNxrbB2Bz0mhmo/E3QU1ms0hdtnJjpmVGYaTork9nLzgx3Gi1pnPEvP+r3hKSgdqUZqFm9POY918W0iDsSIIGcEaCQLGfcmIsESKCQE0hMTMQLL7yAxx9/HAcPHgzqjZk6ueKs8/IVymPY0GG4//77ESNfj3EjARIgARIggbwmcPLkSUyZMkWWpHwa+/fvs57m9Yk9aHOPZOXKlYMatHvLV8+RkZFBKXlKAiRAAiRAAiRAAiRAAiRAAiRAAiRwpgSSk5MxdepUjJUPuBx7s/vZPLB860qFChUweMhg8VLWh/bmQEA8IwESIAES+BsCfR9bgK+/34rNB+5CckqccQimo4tuZpRRJZet8FJnYdY1c8XRgTkpTR6TxrYz68H4HEuXxS89EsrK/mwlNOX568i/+qPCDuP88nNx1SU1MXnUnaZf3JEACeSMAIVkOePGXCRAAkWEwOHDh82SYM9Neg6JCYnW5Opv+la5cmU8OPxB3NPrHkRFRf1Nal4mARIgARIggTMnoALoadOmmTFr165dUqD9dZdTtG0DcE71ekxMNPr162eWzChTpoz/EkMkQAIkQAIkQAIkQAIkQAIkQAIkQAJnhYBjb540aRISEhJMHe5HdnfYaYDam4cPH45evXrR3uxA4ZEESIAESOCUBMZP/wiLln+PrYda4HhSTev9phGPaTYdbWxBlx1ST2FuL2MmWncuMZgVJ3mNcizI/uwklPSWaMwe0dyHfK6/RMRW1Cy7BK2a1MOwexr5usgACZDA6ROgkOz0mTEHCZBAESSwc+dOPProo5g1axZSU1Oz7KHtjdxcrxZfDcMfHI4ePXrQw0uWxHiBBEiABEjgTAgkJSVh5syZeOKJJ7Bjxw5TlP1sbhfrnMnRBMWReXgYunTpilGjRiE+Pv5MqmdeEiABEiABEiABEiABEiABEiABEiCBHBDQZ/jRo0fjlVde8dmbg1/JBxerz/APPvgg7c3BYHhOAiRAAiSQgcDby9ZjwoyPsefo1dh3sp5POhYiIjCviL38VuN0Ccsil47IyxGOBZWo+dJFIaaXPfLnF53ZJal6TC+Ycmw1mZZhBzWV1pqf9ZcrsQFVSq3FkJ43o3WTS02LuCMBEsgZAQrJcsaNuUiABIoogc2bN+Phhx/GgrcXmFmSTJsy9tSaDVkqfblarVo1DBs2DD179qSgLCMtxpAACZAACeSAgCMgGz9+PLZt22aVEDT+BBcbImrnNm3aYMyYMahVq1bwZZ6TAAmQAAmQAAmQAAmQAAmQAAmQAAnkMYFff/3VfOg1f/586yW+U78844eYF/YZ7c/VqssHzMOGo3v37vRQ5vDikQRIgARIIIDAxs270G3YGziWfC7+OtjUpxxThxheIx3T15j+MUZDRiYmCUK8Egpar1LlZioCM5s5WDn8lfrPVXBm0mqUW3Um5/lZf/XSyxAX9T+8/ORdqFOrir/p+RBKSk7HolVerPk+DVu2peGv3SEiLPeiSgUPLjnfg6FdwlG9kmXwV21e8KYcuZFAfhKgkCw/6bNuEiCBAktg/fr1RlC29MOlPsHY3zW2evXqsnzYEPlirCcf8P8OFq+TAAmQAAlkSkCXsJwxYwYmTJjgF5BlmjIwskWLFkZAVq9evcALPCMBEiABEiABEiABEiABEiABEiABEsh3Am57s76nt94ZGzWZc5KhjdXlA+YhQ/UD5h60N2egwwgSIAESKN4EUlLTcFOnyUhIDMMve7uIWNm4C7OhqApJBxsdZzQoO49IxSTK8jSm8XpdRyOTwD46YTn1bSo/S4dHLqWbzHYeV1IrhSvCKTNP6wcurPQKSkSl4eM5/RAWpjzyftt/OB3TFqZi5jsp2HdA6newSHP8/IHoqBAsnBBhfoIW/RLthFZ7Q0OBP5bEoGypvG8/ayQBhwCFZA4JHkmABEggEwJr167FyIdHYtUnq2WA18mRNd+yn/R98y/r3JoNVKlaFUMGD0avXr0QExOTSamMIgESIAESIIFAAidPnsS0adOMgGzXrl3+i/qF2CnGn4Y3NDQCsmuuucafhyESIAESIAESIAESIAESIAESIAESIIECSWDNmjV4eORIfLJ6dWD7TvH8X7lqFbE3D6G9OZAYz0iABEig2BPoP2YhvtzwB/44eDtOJlcVHm5hmP/MD0rfYzqLVjppxf5sv/RU3Ve6rIupK19onNeMTZpbL4icTM9NEZJGhGk+8ZrGaeZ8rD86bDfOLbcI9eueg0kjW2uj83z7cE0a7huXgv2HlbFFQwV4dzQKxQ1XhOKcqiHY/Fc6xr2SjD0H0lGjUiiuv8KD1z9ItdJLWuVfqZwHv78XbbE2V7gjgbwnQCFZ3jNnjSRAAoWQwKpVqzDykZFYu2ZtQOutqZRMmCTWkpn5xeUVK1bCwIEDcP/996NUKcrGA8DxhARIgARIwBA4evQoXnjhBTz77LPYu3evPZ7IqOL7PNk9wvihXdPgGowZOwYNGzb0RzJEAiRAAiRAAiRAAiRAAiRAAiRAAiRQKAiovfmRRx7BmrVrbMNy5s//bvtzhYoVxd48EL1790ZsbGyh6CcbSQIkQAIkcPYIzF/6HSa+vAoHT1yC3ceulfeUjjjM/67SqJHsD5W1JdZoIzIxsT9bTskkxrZFG5GYk0KEYb40msmX1wr7a5JzOdG8+Vl/lbjPUTbmewzqdhPatLjMamQe7ROS0vHQlBRMX5QiNVqwdH9lnVA8/UA4Lrsw0DvagSNyreNJ7D0ozIzXNhGeydHiD7RrEoqZj0TmUetZDQlkToBCssy5MJYESIAEMiWwfPlyPDpqFL78+iszMco0kUTqBMERlpUpUwZ9+/VDv759Ua5cuayyMJ4ESIAESKAYEThw4AAmT56Myc9PxsFD8sSoI4c+sOvmDCB2lJ4640r9+vXx6KOPokmTJiYpdyRAAiRAAiRAAiRAAiRAAiRAAiRAAoWXgNqbRz06Cl9/+ZUxBzjP/z5DQCZdU3uz2prV5kx7cyaAGEUCJEACxYTAnv3HcNt905GSGoXf9nUSUVKYNZaIndkIlMT7mEcGlHQVkoXYaysqm1PYn63xx7FIW0mNzkxt1ZLVjFP+yxJhlS97uerJl/qRnibLWr6KUE8i3pvWSzx65Z3Y+ugJ4JYBifh2U5qho65HQgRY6xtD8cqjkdImic5ke028kN33RLK8ElD5ncrG7Z9FAq88EoE2jcMyycUoEsg7AhSS5R1r1kQCJFCECHzwwQcYPXoMvlZBmW4ysJuJlBPQOGciZl1GiZIlcc899+CBBx5AfHy8puBGAiRAAiRQzAjs3LkTEydOxPTp03H8+PGA3puvtnxjh/3oaB+uuuoqjBIhc/PmzQPy8IQESIAESIAESIAESIAESIAESIAESKDwE1i69AM89thosTd/7eqMbRTQmEzszyVL0N7sgsUgCZAACRRLAt2HzcFPW/Zi++FGOJJwgTVeyAtKs5aSEXypxMucGY9XXnF+ZXkPE/GSCsxU6OSzSTsIdfyxl8B0xh/1nCXLWZrNld5fulzReE3v1GjOfWdnrf646M2Ij1uJehdVw0tj21ltzIP9kePpuG1gEtZtspaydPp/V7NQvDgiEp4sRGTatE3/S8dVHRMspsrW3pTWn0tjUC7OH+dc45EE8pIAhWR5SZt1kQAJFDkCS5cuFUHZaHz11Vc6NzJzBO2kL+wL2F2X88iISHTq1AmDBw/GBRfIpI4bCZAACZBAkSewZcsWPPXUU5gzZw6SkpKkv/YAEXgI5CDX6v+7PkaOHEkBWSAZnpEACZAACZAACZAACZAACZAACZBAkSTgtjdrB22zgelrpmGJjAyPwN1ibx46dChq1apVJLmwUyRAAiRAAoEENm/ejAlib35/1U+oXrc1klIr4Pf9d8h7Ssu7lTWCSB7LC4Y9nlhKL1vvZZIYZ2W+CH8dWorXlGaVqEn0T7VkRvfkDEr2uVmWUcNapSnG2p/1+qXGc8svQHT4fjzSuylaNLzY1H62d4ePpeNW8UT23c8i05OuOv2/+epQLJoQaZ2fohE796XjgtsTxFuc9RPZ0HD5RaH4dCaXtTwFOl7KIwIUkuURaFZDAiRQtAmoC/IxY8Zg7do1ZtC3pknOdMl/dOZVSiMsLAytWrXCkCFDcMUVVxRtQOwdCZAACRRTAuvWrTMCssWLFiE1Td1bO5trRDBBx321PJjLeYMG1xgBGZewdHjxSAIkQAIkQAIkQAIkQAIkQAIkQALFh4Bjb14j9mbrjb3amK0X1frSOTP7c6isn6X25mHDhuHyyy/XRNxIgARIgASKGIF1336Lp8aPx+JFi8XenApPWATqNn0I4REx2HqoOY4l/UN6rD7IdFFL8ZRlPIlJlFfsz2J3Tpe4EAlYS19aY4s1pjiuylx2a6Nu0jRqs9Y8GnZcmDmexqz07lx5WX+pqK2oUfoDxJWMwvsz7hVnHmd/ScjklHQ065OML39Kc/Rf5li5ggdfvBqJ8qWVxqm3n//w4sqOiXYiTW/xH9YlHCN7hJ86M6+SQB4QoJAsDyCzChIggeJDYNWqVXj88cexavUqnSdlvgXOpkyaG2+80Xwx1rhxYzMZyzwjY0mABEiABAoDAX2gVoOvLmG5cuVKf5Mzuf/7L1ohHQ8eeugh6JEbCZAACZAACZAACZAACZAACZAACZBA8SbgtzevdtmbxfB8KhuDXLup4U0YMnQIaG8u3v9+2HsSIIGiQUDtzStWrMCECRPw8aqPXeOB1b9qtZuh6oU3IjG1LP63v63KvgI6rq8rnRh32BJ86QfO9qDiumhkYkaEJiFbY2YqNkldCbUm45JL4oz3M6cmfxPcqd3hM60/JMSL88otQGToAXRu/W/cf9d1/krPYmjgxGTMWJSqHbdqkf7rMpZLp0Th2rqnWM/S1aZV36QZj2YWOlucJ8V9PD0K/744e2W4imOQBHKdAIVkuY6UBZIACZAAxDPZWowbNw7qitxS6AdTsSdl5uAPX3rJpWbJy7Zt2yI8nIrzYGo8JwESIIGCTCAlJQXz5s0zArINGzZk0VT/Pd/5otgjT5lNmzY1ArIGDRpkkY/RJEACJEACJEACJEACJEACJEACJEACxZVAoL1ZKdgvr7MEYtkfLr2U9uYsEfECCZAACRRwAsnJyZg/f77L3mzbloPaHRZZApc2HQFPaDh2HWmIQwkXielZ5GGqUtLxwpXNr/WyIp1LOqpo2Nosb2MqZxINmfggUw9nGqeSM/f4486lV8TbmaTWXHlRf5nojaga9ymio8Lxzov3oHSpaKv5Z3H/1vJU9BidbNfg73//DuF4vHf23+uOeyUF415OEV7WiK6Ey8Z68OfSaIiDUW4kkO8EKCTL95+ADSABEijKBNav34AnnhiHhQsXwutVd7EyIZB5hTMx0L67w+ZMZnHVq1VH//79cc899yA2NrYoI2LfSIAESKDQEzh69Cimz5iO5yc9j23btrn647/DZ3b/DxUBWevWd2DY8GG47LLLXPkYJAESIAESIAESIAESIAESIAESIAESIIGMBL777js8+eSTWLRoEdLS0uwEp7Y/6NXq1Wugb7++Ym/uhVKlaG/OSJYxJEACJFBwCKi9ecbMmWJvnoS//vrrFA3z3//jL7oZ8RfeDG96NDbvb48Ub4xIukTQZWRg8vZRNU8e2elRd3o0Rms9apxTll6TsEf+zFKWei3jpktjWtlVPGaHbc9lWrSKzs5m/aEhiTi/4psIDTmJnm2uQc+2Z/8DbV2O8voeSTiZKLIv6aRZ7lMYVyztwffzo1CqhAGZEVYmMY16JZmlMa3fQROE4PaGIXhtbFQmqRlFAnlPgEKyvGfOGkmABIohgd9++824nJ3z2mtITkoSAs6ELHMY5qrsSsWWQs+ePdG3b1/UrFkz88SMJQESIAESyBcCW7duxeTJkzFTHuqPHjlinvkCGiL3cfOFl4l07vsh4nEyDJ07d8aQIUNwwQUXBGThCQmQAAmQAAmQAAmQAAmQAAmQAAmQAAn8HQG1Nz814SnMmT0HKani0UTf+5tMfvuDE+MuKy4uDj169EC/fv1Qo0YN9yWGSYAESIAE8pmAisaef/55Y28+IvZms9m3defuHtBEidT7f0RkJDp07IR9IXWx92ACjiSeh22HG8ubSMuTmObVMcGIu3S8cHu8knO3LzGjHTOV6QVJqBUYgZiVP7P6JYVskslSV0lY01rlWl7M9Hru1l8tbgXiYrYgvkIc3pzUFZERYVrJWd2a9E7Emg0uEbfNf+qDkejUMjTbdR86BtRscVIckEgWxSw7leO9NCISd7fIfjnZrpAJSSAHBCgkywE0ZiEBEiCBnBJQTzXPPfccpk+fjhPHT5hpkynLnmxYky0z3dK5g3MJoWFhuOOOOzBw4EBcddVV9hUeSIAESIAE8oPAV19/jUlyL1+wYAFSU1NdTXBu5nKUu7jZW0ETLhFbEvf0vMfcy6tVq+bKxyAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJnD6B7du3G3vzNLE3Hz92zG+LkKJ0STPrVb6e6Ll5X20qCVd78513YsCAAbQ3nz525iABEiCBXCXwtdibn332Wby98G2kpaSa94O2WTmoHudmbl3VFY16yspGA2SFo+rVq+Pr77ei75gF5v6/7VAjHEmqJTd/8RYmAq90W+RlcuoLSBkU1JOYapl003jd3OIzvWbV5FyXMzOYWLFGAKViMylbtWnqyEyL9uj4Y+rTAnK//rjILahWeoVxmjbpkTtx1SU1paKzu73/3zS0f1CWtAzq/0XnheKLVyNlOUplkr3t+TdTMWJKkrB180/H5ndjUKV89svJXm1MRQI5I0AhWc64MRcJkAAJnBGBQ4cO4cUXXsSk5ydh7969f1OWTiV08mVmdrjmmgZm2cvbb78dYfLAz40ESIAESODsE1DB2OLFizFJ3ImvWbPGrtC6OwfXblx66y3bvntXrFjRfOl7//33o0yZMsHJeU4CJEACJEACJEACJEACJEACJEACJEACZ0RA7c0vvPCC8WTz9/bmwKquueYaIyj7z3/+Q3tzIBqekQAJkMBZI+DYm9UD2eeffy71OLZm56hVu8P+plSqVAl9+vRF794Z7c0TZqzE28s2yBKXEdiyvw1S0kpZ6i4tKnjzLU9pvX90exQzSVUZFhIkJ5Okqh3z6lHb5wjGnLJtwZqe2qW6Ak4i+5iD+iM8R3FehfmiT0vGnc3qYUiPm4IKzf3TVHFCdlmHk/jfdik7oP/ACw9GiDey7L+rTROcF99xEtv2aFlCUBGKnK+OCNK+msNlLXP/12OJOSVAIVlOyTEfCZAACeQCgcTERMyePRsTJ07Els2bZbKgMznrKwDf12IB9ei0zLoSHx+P+0SU0FNckatIgRsJkAAJkEDuE1Dj64wZM/DSS9OwY/s2uQPbm3W7ds4yPdaqVQsPPPCAWcYyOjo60zSMJAESIAESIAESIAESIAESIAESIAESIIHcIpCQkGDszc+IvXnzli1+DYLYMSyPZFnbn9V7+r333ouePXvS3pxbPwjLIQESIIEgAj5787SXsH2bKpOczf/+z8RkYn+27M0D0aVLV0RFZS46SkxKQY8Rb2Lz1r1ISK6APw/eLlqvsAzvH30iL2Px1soy1m80YXZCf3M0wvgfk9eZEjYex4wmytThvMM0AikRTTmrYwa//8xJ/UAqzi2/CFFh+3HBORUxc1yHPFnScs6SVNz/hHgjM5u/5eXjgF/fiZE22JeycXhndRo6PpwkrKx3wfpOWLcBHSIwtnd4NkoADsqqp+98kopNv6fhl60i6ktLR+3zPKh9rgfX1PXgnzX19+FGAmdGgEKyM+PH3CRAAiSQKwS8shD2u+++iwkTJuCLL76UMnXyJf+JGt2ZTAQIy/wzNjNZbNWqFe677z5ce+21udIeFkICJEACxZ2AfgX24osvYtHCRUhMSvTjcN1//ZF2yL5v17+6PgYNGgT1HOnx8KEtAydGkAAJkAAJkAAJkAAJkAAJkAAJkAAJnFUCam9+55138PTTT+PLL74wy43Z76qlXtu4Ydsxgu3PkZGRaH1Ha9x3L+3NZ/VHYuEkQALFioDam1+QlYoWLVqIpGRZ1jAb7/8cQFdffTWGDBmCW2+9FaGhoU50lscdew6jy9DXcex4Ig4lXoAdhxvZafX+r+ouEY256vfKAKFXzGYPEc6p7yivLdM9soRluse8twxMK5lUVGb0ZXYB+ppTo/XUcWpmasl5/fFlPkKZqC2ILRmJV8d3RHzl0r7mnc1Ay/6J+OQboRTU/wc6hmH0fdlXkaWK4KtBl0Rs+kN4K09ptINn6fORuP7yU/+2CUnA5LdS8OzrKTh20s6shWgpNv/w0BAMuCsMD3YNR0T2dGlaADcSyECAQrIMSBhBAiRAAvlLYO3atcZDmQrL0tTHqf2Er5MJM+EykwJrcmEHfScXX3wx7pH10O+++26ULp03E6j8pcXaSYAESCD3CBw+fBivv/46pk+fjh9//EkKtu6y2bn/6gP8bbfehkFDBqHB1Q1yr1EsiQRIgARIgARIgARIgARIgARIgARIgATOgMCaNWvwzDPPmA+Z09LSzEtrn13ZdZaZ/aOO2Jt79eqFjh070t58Br8Bs5IACRRPArrs8BtvvGHbm3903XGVh7nrGjCZ3X89am++TezN8sFygwanb2/+buM29H1sAVLlPePe41dh3/ErrBp1ANAKZWeExCJAChHFl+/9o1w3AjCTTk9Uo2QJz1T9pOlUBGWVIPkkv4mzouSantsey+w4q2JTlNE75aT+iiXWoWLs1wgLD8XkkXfgsjrVndLP6nHvwXTU+k8C0lKlGmVh+m8BWPliNOpfkv0PyactTMWgieLZTMrQzSCWfcloD7Yti0b4KVbIPJmYjkb3JuL7LSpCs+oPEeVeVvwvPi8Ey1+IRFxJuzKrSu5JINsEKCTLNiomJAESIIG8JbBFXI9PmjQJs16dhZPHT9hyBqcNOvA7EwUNBZ5Hx8SgTZs26CHLXl5zzTVOJh5JgARIgAQyIaAG1ZkzZ2LBggU4ceJEQAr/3dWJ9sdoKKZESXTt2gUDBgzAeeed5yTikQRIgARIgARIgARIgARIgARIgARIgAQKFAHH3vzqq6/i+PHjAW3zWzucaH+MhqJjSoi9+U6z7GVOBA1OqTySAAmQQHEgYOzNL8/E/HnzcTJBXEdZr/NsJVUgAf/d1oovIfbmbt26ol+/fjj//PMDE5/m2YrPf8HI55YYj2A7j96AQwm1M5QQXL+7kdY1fwoTstRP0ic5Ew9dvr5Jyc4lrSRd1GbG65kkC/F5JMtQvevtpnMtqD5JUSbmJ1SN+6/KpvBY/xZofN1FTuKzfpy5OBUDnhZXYNIOd/9jo0OwbXk0wk7tRMzXvkNH03FpuyRZllJh+Dcts/m1oZg3PtIfmUmo8yPJWPRxqk+IFyr6tepVQrB7f7qsqGJlCObfpWU4pg7Pvse0TKplVDEmQCFZMf7x2XUSIIHCQUC/WFDvOFOmTMH27dszmVQF9cM/xzIXal90Ebp262a8lFWqVCkoMU9JgARIoHgS2LNnD1577TXMmjULmzZtCrq36kOhfo8VuLlvr/Hx8eZhvmfPnihTpkxgQp6RAAmQAAmQAAmQAAmQAAmQAAmQAAmQQAEl4Nibp06diu3btp3S/pFZFy6qfRG6de2GTp06oWLFipklYRwJkAAJFDsCwfZmBWDZk917B0tG+3O1atXQp08fs+pQbtqb3162ARNmrJS2hGDn0Wtw8OQlRgQWIuouy0mFtEn1YOKGzCNrUDpxjijJOWrL3d7INN7xO2b1UHOqVd2/meUb1b2ZXarvmhSU3frLxvyIKqU+N2UM6dkIdzSt668gD0IDnk6Gisl0c/e/SYNQLJxwavGXu3n3P5GMOUtSJEp4BPX/2cER6Hl71u7IJr+VigcnJ5v6Lz7Xg2cGReDyCz2IkurF0Si+3uhF/wlJ+Pl/ge80lP/7z0fhhiuy7zXN3WaGizcBCsmK9+/P3pMACRQiAikpKVi8eDEmT56MNZ+vkWmXb8rlzEYz7Y01RQMiIiPRtEkTdO/eHc2aNUN4OBfHzhQYI0mABIosgdTUVHzwwQdGPLZ06VKkpMqDm+tWGthx5+4ZGHvttdeib9++uP3223kfDUTDMxIgARIgARIgARIgARIgARIgARIggUJEwG1v/vxzfUnv3zJIHDIxk6h9uXnz5ujSpQtatGhBO4kfH0MkQALFhEBycjI+/PBDqKfHJUuWQO3PervUl3bG7GyUVFnBsG6seWFvnvveOkx6dbUIkUJw+GQd7Dp6nbRPXWkFGsf1zGPa7nIhZqnBgjohbyhFDOWRLmgeLde/3KImDRFJmuwlr67CaDGx0lq91lFGt6zrV6FZ5djPUbbET8azWb8uN6DDLVeYXHm5u2NIIpatdbyIaXutHnT/TzgmDcmet6/Fq1Nx98MiBPPl1lK0HIvzxrejUVO8i2W2Kb86dyTgr93paN8kDM8PC0d0ZMa0SSnp6DoqBe9/aq3BaSSBkqxTyzC8QK9kmaFl3N8QoJDsbwDxMgmQAAkURAIbvv8eL8gXY3PfnIsTx8Utrj3Z0qmDM+2yRf6+c3c/KlSsgA7tO6Bz586oV6+e+xLDJEACJFDkCKxfvx6zZ8/Gm2++ib379vr6Zz3HW3dO8+glO30w0819P42OjsFdd3XA/b3vR726vGdahLgnARIgARIgARIgARIgARIgARIgARIoKgQ2bPge6qHsLbE3Hz9xwm8YMQYSv5XEH5Ik9omaUnQljHbt2hlRWd26eestpqj8BuwHCZBA4SGg9uY5c+Zg7ty52LvXb282PdB7o71lZX+OibHtzff3Rl7dMz/8dBPGvbgcySlpSEwpjx1HbjJHUWlJa113dyeoR6/sVAwmQeN9TALqlcujA4AY0q0rGtYi7HLk1I4wS1oaD2ciCjPCKSubJrBq9Ln40kyaXzYJRoUeRHzplXI8ICJlDx66vwmaXZ9xWU4rw9nd1++UiB9/9wb1H3iwWwRGdMvai5jTqm170lG/UwKO6orSGfoP1Krpwfo3o5zkGY5f/+RFw16JuOIiD1ZNi0RoqLLKfNt7MB31OiTgyHHrt9AlRetJvv++nHX5mZfEWBLQ/0vLRhAkQAIkQAKFk8Dhw4fNZHXatGlmaTadhFgTU+2PTib8t3hrapFxsbaLL77YLHt51113QZdq40YCJEACRYGALgWsD/K6fOXGn36SLmW8/5m7pNvqGXTfrC1LNfTqda9ZqqF06dJFAQv7QAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJZEshgbw5OmQ37c52L6xh7c4cOHaBLtXEjARIggaJAQO3N+qGyCsh++mmjdOnv378F25/r1Kljlq5UJw9xcXF5juWX/+3FQxPfw/bdh+BND5NlLuti3/HLTdh0R12MeaVfRjzmeA2zmylxISL8snpteuZrv56p/d2/MKZ1Sd9XeqVMk0vC6sXMmOOlFBWYeXR5TRWT6abVetJQocQ6lC+xXk68qFGlDMY+0BIXnlvJSpMP+3/enoAde7Vx7v4DA+4Kw9j7T+2RLCEpHS37J+Orn9JQo1IItu6SYhSKr//puPeOcEwYkHU5g59Nxktvp+LTmVG4XERhf7eNmZGC8a/qEpqmyYiICsH+j6Nt7n+Xm9dJwE+AQjI/C4ZIgARIoNASUE3wZ+J+fLoIyhYtXIiExMTM+2LP7czBDjsJ9QuC62+4Qbzu3IXWrVuDogmHDI8kQAKFhYAaOxfKPfCNuW/g09WfyDOvPpTZ2ynuf04SPUZHR6FVq9bmgf66666TByzNyI0ESIAESIAESIAESIAESIAESIAESIAEig8BtTf/97PPMGP6dGNrSRJ7s3nX7zK1ZErDZX8J8Xhw/fXX096cKShGkgAJFAYCxt789tuY+9Zb+GT1ani9zhKHmbTedf9z3y+joqLQulUr9LznHvzf//1fvtubTyYkY+rrn2Hh8vVmdY6UtFjsOV4fRxLOV2mXSJys5Ra1h8YyLvf9dCMw0whLBGVfseVQtv1cDyJCU3u6LnVpCtdCXJvKx/RdpNtsb11OR1zUZlSK/RrhoUckKgR3NK2L+zv+H0pEZy2ychV91oINeyTgm1+k3z4syiAErW8MxewxkVnWqyKyNsOSsfqbVESGAyO6R+CRl5Iz9H/RxEg0rq/LjGa+/fO2k6hZLRQrpmZdlzvn4lVpuPuRJCPM0/hoybb34xgKydyQGM4WAQrJsoWJiUiABEig8BA4ePAgXn/9dbz88sv44YcfZDqjWn+d2Lg2ndBJlDn4d9a5XFIhRZMmTaFfjbVs2VLOo12ZGSQBEiCBgkMgISEBS5YsMd7Hli1bhkSXkPZ07n+XXHIJunfvjo4dO6Js2bIFp4NsCQmQAAmQAAmQAAmQAAmQAAmQAAmQAAnkI4Fge3NwU7Jjf4mKjEKz5s3Qvl172puDAfKcBEigQBFQ+/L777+Pt0Q8tnTp0gB7c3BDT3X/u1Tszd0KsL35x1934qmZK7FZvJTpG8SE1ArYd/QqHE+paQu9rHeL+grRv9lxlpYq4P2jHWVePKaLoMwIxiSz8UImNagGTQV2bo2Z5ikVuRUVSn6N6Ih9Rqx14fmVMKjbjbjkwoKxglLPMUl4c1maD4Hpp+zKxIXg+7eiUFaOwdvxhHR0GJ6MVd+mmf6/8GA4fvjVi2mLUgP6Hykaue3LokXslbEMp8yNsqxmiZgQ/KNK1mmctHpct8mL60X85vCve4EHn7/CpS3djBjOHgEKybLHialIgARIoFASWLdunRGU6YRXv5zIMKnVeYfOemTTa3pin5o43cXGxuLWW29F27Zt0bhxY0RGZk/17iuAARIgARLIZQLJyclYvnw55s2bJw/1S3Ds6BHr3uW6p5kqXeeZ3f/iSsWhffv26NatG6688spcbiWLIwESIAESIAESIAESIAESIAESIAESIIGiReCbb77BrFmz5IO+N3HkyGGrc39jf3EMzo79uaRtb27Xrp2xN0dE5K+3maL1C7E3JEACOSGQlJSEFSs+EnvzW3jv/ffE3nzMEvxoYaJ+8rlrcN3vTD2uc00VVzoOem/TD5avuOKKnDQlT/N4RfD1wScbMe3Nz7Dv4Alzu05KLY8Dxy/B0aTzxQlXmK//uvpHiHomk5eIVrdlb9Rh+lZRe+9Qss6tRP5rvvePmj8kFXHRW1A25kfEhO2HV5axrFi2FHq1vwYtbqgDj9ZTQLYJc1IxelqyWf3E6b82TXt2Z6NQTH84EhHicczZ3v0kFUMnpWLHPnFhJswe7BaBh7qHo07rRGzdLYI0o6azUt90VSjefTZ337ku+SwV7UTE5vDv2CIcL43gOOv8PjxmnwCFZNlnxZQkQAIkUGgJqMeed999F7NenYWPP/4Yaalea0pnZnvWlM90zgnK0cz/7B470WXLlsFtt/0Hd955Jxo1aoTwcNfsqNDSYcNJgAQKA4GUlBSsXLkSCxYswDvvvItDhw76m+27Z9l3q4CD60RyeEJC5f51E7p06Yz//Od2elz0U2SIBEiABEiABEiABEiABEiABEiABEiABLJFQO3N77zzjhGVrVq1CmlpuuaXqgPs7I7wwphlbNuMXnKCclT7c+kyZYx9pk0by94cFiaiBW4kQAIkkAcEHHvz27J0pd7PDqq92b6NiWRKWqBSIXuz71m+ePuyHjyham9uhM6d1d78n0Jpb05OScPiFRswe/HXwkEFZSEinArDiaRqOJZUE8eTayI1rYSJN+7KPELH8TpmWMkYoDB0p/d/EVCle4Rfui6VaXEMDz2O2Mi/UDJyK2IjthkxmeaoULYEOt3+b9zW6BJERhS8MeC/36Wheb8k+52p9k/6avqv7xpCUKumB/X/5UG4NP0b8Qb2w29Cz+5/11siMHlYODb9z4urOiUYNqoj8+h1YfVkvwj0aZu7fX785RQ8KX8W/xA8NyQCPf6Tu3Xo78at6BOgkKzo/8bsIQmQAAkEENixY4dZ+vK1117Dxk0bZULjfCXgPMfLLMb2MSsh3yTPKsSK0blg2TJlRVR2G+644w4zSeaXYwGYeUICJJALBPRLMBW/6sP8u+++h4MHDzg3Kv8xqB7rLuW/V1nPqSGoU6c2Ot3dCXd1vAvx8QXDLXZQ03lKAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoWOgNqb33jjDcyePQebxN4csImJJrv257Jl1d6sHzHfgZtuugm0NweQ5AkJkEAuENCVLvRj5YULF+KdxbZ4zFdukE3ZPvVdtgNWdAguvrgOOnbsiLvvvhtVq1YNTlYoz1NEULZizc9496Mf8f2vO/QFodn0kJxaGokp5ZHqLSl/JZCSFoPU9BikpEpYzvW1YnjoSYSFnkCY57gcTyLcI38iIIsUr2NRYc6qIpJQ3kte+s+quPXmf+Hmay4skAIy9w+oy1vONctbypKd8oLUCApFDCaKMEscJnEqHjOb/gORrcftYZg4MAKiM8TE11Lw6EvJkk8UaK73r9+8EYkL/yFxubi1HZ6EDz4Tz2fSjuoVQ7DhrWjhm4sVsKhiQ4BCsmLzU7OjJEACJJCRwPr166GCMl36ctfu3WaiY091MiZ2x7gn0BIuE1cGLW9piVatWqFJkyaF8osLd/cYJgESyD8C+kWrLlu5aNEiLFmyRDyPHQpsTND9xzx3aQqN14M+u1lBVJEH+PbiSvyuu+7CZZddZsfyQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkcDYIfPvtt0ZUZuzNu3YFViGeW4yXlsDYTM90ebhbb7mV9uZM6TCSBEjgdAi47c3vvfeeLMt75NTZT2F/rlJF7M1t28rHyh2LvL159/6j+GL9H/hy/Z/45oe/cCIhUYzv1n1c1zwy5ng5Nx7KbHGU3zKviPWafZB0JaPCccW/aqDBZeeift1/oHKFUqf+HQrQ1SPHgX+LR7Htey1vY6fqf2SEeBrrG46erfwrOjW6Lwlf/ZDme2+hmrOaVUKwaWF0rvZy5750XNouAQmJFvgZIyPQvim9keUq5GJUGIVkxejHZldJgARIICsCaWlpUBfkc9+ci0ULF+Ho0aOWKEPmGu45szt/cLx1LpPBkiXQtGlTtG7dGs2bN0epUoVnMujuH8MkQAJ5R0DvOR988IERjy1btgzHT8iTWQ7uP5pJ7zl6/2nfvj1uvPFG+eJHPvnhRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkGcEHHvzm2++aTz/HDt21GgNAhpgG5iD7cxOGie+ZMmSxt6sHzG3bNkSsbGxThIeSYAESCBTAmpvXrp0qbn/LF++DMeOib3ZvWXz/qNZjL1Z7j8d5GPlhg0bFkt7c6osX7z5z33YtusQ9h88jgNHTmDfgePYJ2E9HlCllbxNrFC2JMqXkT85VpBjuTIx5hhfuTT+eU5FYZe73rfcP+nZDh84DDw4WTyTLRdvX8b7mHomk17rewz59xQiXfvPDWF4vHc4qlfWf2DWdvBIOs5pmQCzArSJsjJ0vTUMk4fmrquwXo8nY+7SVHH4FoJ6//Tg0xmR8BRe5A5CHvOJAIVk+QSe1ZIACZBAQSWgX2foBFu/GlvywRIkJiRJU3U6JJvz9G6d+SMyxFsJIiMicKO4Idd14W+99VZUrlzZl5MBEiCB4k1gl3yVql+Avfvuu0bIqstYZrzJuG4urqBFzo6QQ1RkNFq0aI524n2sRYsW9IpYvP9psfckQAIkQAIkQAIkQAIkQAIkQAIkQAIFiIBjb1ZR2dIPlyLhpHi1cezNpp0uo48raHXBb//RLJGRkUbI4dibq1SpUoB6yqaQAAnkJwHH3vzOO+9g9erVsOzNwS0Kvsm4zl3BqKgosTO3lI+V26FZ82aIiY4JLojnxZTAd7948em3Xqz/JQ2JyUB8RQ9qn+vBbdd7ULGs/iMK3N4S4Vn30Unm9ar7/cfccRG49frc8xb2/W9eXNctEV4ZK8uI3vrTl6NxbnzG9gS2jmckkDUBCsmyZsMrJEACJFDsCRw/fhw66Z4/fz7US1BKSorNxJlRq/vadP9jvxPtI2dHyEHXDb/iyivNV2P65VjdunVFpa/XuZEACRQHAunylc6GDRvMcpW6ZOW3366DVz7DsWWqGXWqWUKx7isREZGylG5jtGnTBrfddhu/Rs2SFy+QAAmQAAmQAAmQAAmQAAmQAAmQAAmQQMEgoF6C9MNCtTcvX74cycnyFj7TzbYri8UoK/uzeqG/7PLLZQnMW8yHhbQ3ZwqSkSRQZAmovfn777/H+++/jyXyp0vrpnm9Af117iQa6Q4HJLJPIsQxQpMmTdC2TVvcetuttDdnBolxp02gy6gkvL0yzfz707chOqqFyyIqfy2LQWwu6RPTRD3Wom8yPl+fijDRpi16Ogo3XsWVWk77x2KGAAIUkgXg4AkJkAAJkEBWBA4fPmw8B+lD/sqVK5EiD/mOAMQ/BZepuJmNy5UsZ+UyTRJfr/Hx1cykvFmzZrj55pu5BGZW4BlPAoWYgBoH9X6hXg6XiQvxHdt3mv//G8/Prn4FmQRdV/xB1Z2Gh0egUaNG8jDfRh7mb0Pp0qX9CRgiARIgARIgARIgARIgARIgARIgARIgARIoNASOHDmCxYsXY8GCBcZ+pKIytf84dqNA87JzJkcTzGh/jo+PN0tgNm/eHDfJKhlxcXGFhgUbSgIkkD0Cam/+6KOV+HCZ2Js/FHvzjh1BGa33T859xLmYlf1ZxWNqb3Y+Vqa92SHGY24QSE1Lxz9aJuLIUR3bnHErHdfWC8OyqZG5UYUpY/SMZDz1aqqEQzD1wXB0bpl7ns5yrZEsqNARoJCs0P1kbDAJkAAJ5D8BR1S2cOFCrFix4u9dBDvP+XbTrVP/1D08PBz//ve/zYO+isquuOIKWbebC3fn/y/NFpDA6RHwyhdf+uWX3hf0q9Ivv/wSKaniydCvOrU1pv7//2eoQe2B6f5vTdWNuN4X7rzzTtwiX5jyYT4DMUaQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQKEmoKKyd999F2pvXr5iuWVvdtmTMu+cy+jsCmraCLU316+Pxjc3xv+3d++xVd73Hce/NraPbYJtbMzdNgYDARICuXC/BXKrmpFk7VR166ZN6rpu+2PSVFXVVk3RVu2PVatWbdMu0tapq9Spm7Y0TZU2N+63kAYwAQIGG2MgBIzBScB3s+/39zy/5zzn+MLFBnzs91Ee/57n91zOc17nnODfx7/n9zz73LPymI5cRt7cvyK1CIxkAcub9+/fr53H3nSZs8ub3Z1zYl/62Ky9lmBx4Pw5kZ9w/2/44he/KJs3byZvHskfgAw/t50He6PUkvIAAB54SURBVOW5P7bbOQd/IrG/eliP6Ze/livf+J3cYXl1r+3okS9/q8P9CeZbv5cr3/7q8Bx3WE6Og2S0AB3JMvrt4+QRQACB+y9gV4D8/Oc/d1ePvf7662K3w4wesV/gY7PR6j4zupEOViYTS0vlySefdJ1HNm7cKHPnzu2zKRUIIDAyBOrq6uSdd95xV45a2dLSEpxY7Esfmx34pMPvv2WE48ePF7t69KWXXnIlV5AOzMYaBBBAAAEEEEAAAQQQQAABBBBAYDQJWN5so9tbp7LXdcSha9eSeXN8xDL3mmOhU2y2D0epy5s36shDm9zoQzU1NX22oQIBBEaGwMmTJ13W/Pbbb7vc2efNd/r9t1c1fvwD8rnPPSdf+MIXXN5cVFQ0Ml4sZzGqBf78Hzrl+z/WkcLsjx46dob9/dNuvrrnB/myeN7QB9M4eLxXnvmjdmlrvyG/+0Ku/P0380a1Jy/u3grQkezeevNsCCCAwKgWaGtrc6MQ2ZDkdl/6q1ev6HCtYRPeFb4578v+OPquq6iolI1PbpAN2rnMOphVVVX1tyN1CCBwDwQaGxtly5YtwbR1izSdadJn9d9bLd3sjfBWBGG9K8L5aNvUk504caIbccw6jz3zzDNSWFiYugFLCCCAAAIIIIAAAggggAACCCCAAAJjSiA1b35NrlyxCxg1Y3Ix0+3nTwFellRUzJQNGza4W2Ba3lxZWTmmXHmxCIwkAZ83b9XM+R2dmposbw6/5j5SjjLlW//+250tNr/wgrz04ovy7LPPSkFBwUh62ZzLGBB49Dfb5USjdR2znmT2Yc6SKWU35ORPC93fT4ZCcPbiDdnw+x1yoblXfn3TOPmPlxM68uZQjsi+CKQK0JEs1YMlBBBAAIFhEujS4YW3b98ur776qrzyyity5syZ6Fd9/xR92gDhiqDeGgT6y5X9fpW2Z3V1taxbt042rN8g6zesF1vmgQACd0egvr5etm3b5r7P27Wsb2hwT+QHB4++x1obn08/m/R1tlxZNUteeGGzG0LcvtN2m1seCCCAAAIIIIAAAggggAACCCCAAAIIpAv4vNkuYLYLmS1vTn/0lz/1Ey+HGZZuHebP1dWzZf36dS5zXr9+vcyePTv90CwjgMAwCVjebH872rptq2zftl0aGk7rkd03NeUZ7iR/rpxVJZt/bbO8qJ3H1qxZI3l5jNCUgsrCPROoP9sri7+kt7VM+4fpK5/LkX/+9tA+l606UOfTf9guR+t7ZdOybPnvv0noLZ3tiXggMHwCdCQbPkuOhAACCCAwiEBtba27BeZrr70m+/a9Kz29Npxr8BtU8vconbPGuz18uyGsssVou2jGbSkzKypkzerVsnbtWtc4eOihh7TnPV3vAx1+InDrAr29vXL48GHZtWuX7NixQ3bu2innms5G18u4r2Xa9y/96H1Wx8YcHzdunCxfvkJHHnveDSG+ePHi9N1ZRgABBBBAAAEEEEAAAQQQQAABBBBA4KYCKXnzu5o3d2ve7B6WTunDdRILkqpkXqVzt5A/V1RWyOpVYd68do08tIi8OUDlJwK3J2B58wcffCA7d+4M8mYtz547e1t//0l/xuT3WcTlzStWyPOf/7x8Xify5nQtlu+XwD/+pEu++f1OvaNllt65Sf+yYn8n0f9+8HKe/MZTOXd8Wu0dIs//SbvsPdwrqxaPk5/+XUIKEoMfrqdHn/dn3fJb2ontZtsOfiTWjiUBOpKNpXeb14oAAgiMEIHLly/LG2+8Ib/4xS/crTA//vjj6MxifU60LmwSxFsGyS11LuxtZr9/6awOZu5mbMjilStWyqpVq2S1djBbvnw5t8mL3JhBIClw7do12adB227tOLZ7927Zt3evtFy5Em5wZ98/t3P41bT5aVOnytN6q8rnnnvO3bKyrKwsPD4FAggggAACCCCAAAIIIIAAAggggAACQxdoaWlxOXM8b+43UtanupP8uWRiiazSvHllmDcvW7ZMxo8fP/QT5wgIjDIBy5vf1bzZLlS2vHnPnj1y9erV6FXeyfcv/LNP9PefKVOmyLPPPEveHKkyMxIFnvq6dvaq1dta6pgXrh+ZnuS4cVnS8LN8KS22f6Fu/9GtHcK+/Gcd8vrOHnlsQba89v2ETBh/82N994dd8tf/1iWnflYopUW3/7zsMTYF6Eg2Nt93XjUCCCAwYgSsJ/6hQ4fkjV/+Ut586y13ZUp7uw736h8Dtfh1fXxVv/NhpV2V8sgjj7iOZdapbOXKlTJnzhz/DJQIjBmBU6dOucb7Xm3A79FOY3blZnePjQ6Y+n2KQOJfrKgymImvis8XFBS479oz2nns6aefliVLlmhAZ1vwQAABBBBAAAEEEEAAAQQQQAABBBBA4O4KWN588OBBeVMvZH7jzTddh5b2Ds2bhzH/ys3NlYcfftjlzCs0b16heXNNTc3dfWEcHYERKGB5s7tAed8+2at5s/2tpztldMDkFy+eIUcvpd/KYK1flZ+f7wYMIG+O1JgZ4QLvH+uRdV/t1LNM/fwvnp8lu/694I7O3jqj/cF3OuXHr3fLQ3Oz5fV/SEjJhMH/7mL7/M9bPfK1v+qQ59flyH9+Z2i31LyjE2enjBWgI1nGvnWcOAIIIDA6Bdra2lxnsrfffltsOnDggPTYuKu+25hrPYRNiPi8baHL9otRtK3fJyzDvWwDmTx5sixbtlxHK1vmRiyzq8iKi4vdOn4gMBoEWltbZf/+/a4Bv08b8u/qdPHSpdhLi30jwu9SUKNj++nMjfDWs8EO4bbhdskGUJZeRZMtS5culU2bNrlpzZq1UlCQH3seZhFAAAEEEEAAAQQQQAABBBBAAAEEELg/Aj5vfuedd+QtvZDZ5823k3+5LExPf7D8ubx8ksuZV+ht9pY9oZnziuVSVMTQL/fnXedZ74aAjSxmebPd4WLvnr2yX8uLly7aN0Mnd78Y6zYTe4SZstWEuXJQM3j+PC47R/PmJfLUU5tk48anZM2a1Zo331nnm9jJMIvAPRE4cqpXvvStDmk4bx97HZHM/s6io5LZ7Mwp2XLgv+xWlPZNuL3Hn/5tp/zr/3bpTtmy/KEsmVxqBw3+ddKbZ4YzwW007XvY+plI/dleOX9Rl3TTV7+XkI3Lxrl9+IHArQjQkexWlNgGAQQQQOC+CVzR2+xt37Fdtm7ZKlu3bnUjKPX26m9c+ggaHTajc1ELRWeiFW6z1B8DrMvOzpYHH3xQnnjiCdfgf/zxx90oZnl59NBPBWRpJAp0dna6q72sIW9Dh1t57Ngx7QwWfTGC0x7g83/z15Tc0Ub4W7RokTbiN8qGDRtk3bp1MnHixJsfgi0QQAABBBBAAAEEEEAAAQQQQAABBBC4zwKWN+/YsUO2bNnipsOHD0uQNyfzL3+KUc0d5M8ub54/X57QC5gtc7YLme2uGeTNXpdyJAuk5M2aNVunseMfHpeeXr3oP/pi9PMKBlvXz+ZWla0XKj+86GHZuGmjrF+/3k0lJSUDbE01AiNLYO/hHncLy7qmG7L/SK8crQ/+fhk/S/srjX017FE9I1ueXp6tHcGyJC9XZPP6HKmp8GuDbdJ//sU/dcn3fqR3lrHeaFGP5tiXzTqr2WKWPpMbICD1CFXTs+SDnxS4XVPXsITAwAJ0JBvYhjUIIIAAAiNQoKWlxTX0t2/fLtu2bddhyt/XEct6Y22X2C9PA55/uI0r4vPBDv4IeXkJeXDBg7JEG/iLFy92t+izxv6kSZMGPDIrELjbAs3NzXLo4CE5VKvToYM61Woj/kNp7+jQp/af3sHOIv6Zj88H+ySPEMzl2K1h9faU1oi3TmNr166V0tLSwZ6AdQgggAACCCCAAAIIIIAAAggggAACCGSEwOXLl90dMrZt2yaWOdttMeN3yPBZmS+Hkr/l5ebJggULXIeyJZq3WeZsU3l5eUZYcZKjU8DyZvvc19bWuouV7faUdpGydSbzn3tfDuXz7wcDsAuVH330UZczW9ZsmTN58+j8bI2FV/WVb3fKK1usk5eNd2Ej8wXDj93QDl9Z/q4vyS9QrK9XUPmj7yTkxScHHinsuz/skr/8l053ZDu6G30sgo13URv4+V/+ep5847dzor2YQeBWBOhIditKbIMAAgggMGIFPv30U9m9e7dr7O/YuUOvjNkv169fj51v8jc031E/WZPe7NE1rsd+bPeU2WDPqdOmysIFC2Whjsq0aOFC1/hfqCUN/hQsFoYoYA34I0eOuEa7lUePHpMjRz+Qjy98HBzZf6AHfZ7kp91vnqzp//NfWFDorpC0Rvzq1atl1apVMmHChEGfhZUIIIAAAggggAACCCCAAAIIIIAAAgiMBoHW1lbZu2+v7NyxU3bu2uVGYrp27dogLy2Ztt1q/uY71PiDTps2LcqYraOZ3Q2AvNnrUA6XQPMlzZuPWs581E3WWcxy5wsXLoRPkfwsuwr/gR70BJL7+M2TNUH+XFg4Xh7XUfnWrQvyZrv9a3Fx8aBHZSUCmSJwuK5XjjfqYBf2wbdH1LfLfxOC201mhRv4u8hk63KvbvzU8hwpeSDYtb+f5U9el7bOvmvsZjR2zBt6FOteZoe/0Wu3jbU636XthuToiH/H/i8hU8uCW2H2PRI1CPQvQEey/l2oRQABBBDIUIGuri45cOCA7NJGvk179uyRj86f11+b7JH8xS34ba7/F+m2sh/+Yb+Q6bz//S84ll+pZbhyUlmZzJ03T+aF09y5c2W+Dl9eU1MjhYWFsR2YRSAQsE6PJ0+elBMnTkhdXZ0cP348mm++3BxsdIufP/8ZTbHVymTfSL+FL4Mtp0+f7jqL+U5jS5culdxcHVOZBwIIIIAAAggggAACCCCAAAIIIIAAAmNcoEPvAmAjNNnFzLstc9byvObN0eMW8rdo23DGpXP2wz8GyP/KNG+eN1fz5vnzXM5sebNlz+TNHo4yXaCtrU1z5pOaM3/ocmefN1v+bKPv2eNWP3/Rsd0O0Z9Bomo3o+vS8+fpM2bISu0stmbNGpc7kzenkrGEAAIIZIIAHcky4V3iHBFAAAEEhiTQ2NjoGvr79u6Vve/ukwPvH5Cuzi7XJ98dOKWxk9ogCttIKc/v63yZstKaYdF9yG2gWX1kZ8u0qVOlZs4cmaOdymbPni1zbD4sy7hVZirhKFuykcWss1hDfb2csunUKanXsl7L8x99JL039IoRDYt8B8X45yo+71l8nS99fVBqbdrnLz56cm4iT5YuWSp21Zc15leuXCmVVVWph2AJAQQQQAABBBBAAAEEEEAAAQQQQAABBAYUOH36tOzbt89dxGzl+3phc6d2OHN5nf3Qh93SzMaECRbCyC5YCrbrZz6sitYPlv/NnDHT5czWqaxac+bZ1dVB3qzLk8ibPeWoLC9duiQNDQ1RznxSc+ZTmj+7vPnCR2IjHt3tz5+EoXMikZAlemHy8mXLgrxZ725RRd48Kj93vCgEEBhbAnQkG1vvN68WAQQQQEAF2tvb5eDBg7JXO5ZZQ99Ka/z3/7BBYa2TjzX6fdPdl7ZHfN6Wg4cbRtblBP2v99tZWVRU5BpXs2bNEj9ZY8vmq6pmacO/LL458yNMwK7kss6K9hk6fdrKBrdcX98gZ86ckU8+aR3CGQ/t8zdrVrV2Glsuy5cHk139lZ+fP4TzYVcEEEAAAQQQQAABBBBAAAEEEEAAAQQQiAtY3mx3ybCs+eZ5c3xPmx9a/tdfPm158yzNlatmVbncubq6Osyag8zZRjrjMXIFLG+2rNkyZ5us01hQ1mvZ5PLmLP2zg93arr/3//Ze2e19/nzebBcqP6G3q3z00UfJm28PnK0RQACBjBCgI1lGvE2cJAIIIIDA3Ra4cOGCvPfee7J//375lZbvamlX9qQ+rFEVXUd2W220fruT+UotgxGpgoq0Z5EHHnhAKisrddKGf2WFG0Fqhg4PXVFRIVbarQknTJiQeqosDYvAp59+6oaqP3funJw9e1bONjXJGZ2sId+ky2e0If/ZZ5/d9Ln8W52yoa+8yfuf3Cftk+H3DzcoLy93jffHH39clukVYI899phM1ZHweCCAAAIIIIAAAggggAACCCCAAAIIIIDAvRWwvPlXv7K8Ocic39O8+eKlZj0Ju4tFSsocO7G0NWn5X2zDPrP9buortYznzxMemCAVLmfWzLnCcudKlzXPnDnT5c2WOVsmzWP4BdLz5ibLm/Vi5GBqkqYzjfKpz5v9+3cLp9Hvpr4y7f1P+5TFjp66pnzyZHlCs2bLm63TmJXkzTEuZhFAAIFRLEBHslH85vLSEEAAAQSGJmAdh2pra6X2UK0cqj3k5k+cOCHdPd3J+xCmP4VrlMWCAN9Y03DA7RQtBzu6xZS65HZ++OnU5pvul7J9cJzCwkKxjkQ2bHlpaakr7coyW7Z6m48v2zYFBQXBzmPkZ1tbm9jVXDZZJ0Er7baTNrW0tLi6SxrmtLQkt7l+/XrfYKcf/4hQ1/n3zdVF24Yz0XKwh1tMqUtu54+T/v7n5ObIvLnzZPHixfLII4+40uYt6OGBAAIIIIAAAggggAACCCCAAAIIIIAAAiNTwPLmQ4eCnPnw4cNuvs7y5u6e+OXL/ea/0SvS+NDnhq4uyhaTuaK7uUa4g6uNtrHK5Hb+OOn5o21SWFAYZcs+b7acubRMs+eySVEObXWufgzmzZYdW66cnjfHc2fLni9b3twcZNLXr7fpe6BDianxYP7x9zB8K4Mitp+rCN/O+Psa39etjraxPcIFLfzz5+bkytx5c6Oc2WfO5M0BOT8RQACBsShAR7Kx+K7zmhFAAAEE7ljAOiPV1dXJ0SNH5diHx+ToUS2PHXN1nZ1detygEegba30a4bpF0FRLab35St+MC88vuY2bSy6mbhfVhzPRsh021qkt5ahZGgYUyISiCTJx4kQpLi52U0lJiSutk1leXp4kEolkmciTvNygLpGn9bactk1ubq7kF+S77ewWirZs2/jJ6rJ03G0b7r2zs9OVXV1dbr6jo2PQsrNLt29rF9u+o1231eX0fazx/omOInb1yhUd4vsTuXr1ajC1XnX7GkHAE0NKVqa6xpbc1rFdYrP+gNGRY7vp7MD+Kb0RwwPGj5ur1vO0Ab9gwQJZuHChLFi4QBY8uEDmz5/PcOH2nvFAAAEEEEAAAQQQQAABBBBAAAEEEEAgwwUsJ7WLl13OrHnzkQ+OyIcffhjmzZ3Bq4tCw74h4lDyx1iwGUSa0fPE1+gpRPWDP79lv5YvW95st9csKS6RomItta7fvDktW7a82To12XFcDp0fy6bDbS1vtszaT5Y728PnzZY5u/xYs2bLjn1+bPV+Pll2ah4dy6TD/Lm7uzs6nv09oLW11WXMUam5c6vmzrZuJPk7CP0RvEvRmxZU66KZzp2bzJsf1Kx50aKFmkHPI2/2eJQIIIAAAk6AjmR8EBBAAAEEEBgGAWtc2u0Ojx8/7hr51vg/fvyEnDxVp7dDPCu9vb19n8W35XxpW8Tnwz36ViVrgrn0Zf9UWh+MWe4rUku/my9tbXw+3LpvVbImmEtf9k+j9Tx/Sn8xL+NK5cnOynYjiVkD3hrs1kmspqbGzVdXV0tOTk7KLiwggAACCCCAAAIIIIAAAggggAACCCCAwOgX6Onpkfr6eqk7UScn6k64zmZ2gbPlzjayWZA3k7+SP+uF7fqff2RnZ7vbk1rWPG++Tnpni5q5NTJ/3nwhb/ZKlAgggAACNxOgI9nNhFiPAAIIIIDAEAXsyqSGhgbX8D916pSbP3nypFs+rfVtOrqWtfaS3bHsCfu7lslqU9qFtmHqI20Dv5he+p2C+vjP5Jq+Y2nx/N7RK/Up0zawxYReQTdbO4VVz54tc+bMcdNsnbfJGu9j7RajfcyoQAABBBBAAAEEEEAAAQQQQAABBBBAAIFbFrC82S5qtqzZJutwVm/zWgZ5c3t0rHjymxpdkj9nav6dn9C82bJly5vDnNlyZ/Lm6GPPDAIIIIDAEAXoSDZEQHZHAAEEEEBgKAJ25diFCxeksbHRdTCz8nTjaWk8raWGAWfOnHFDZMefo08TPzUBiG+a7Himt5OUG8GlSba5dQlzS4ONGJbcO+2YaU3sMf78NtR6VVWVzJo1S2ZpWWVlOFVWVsq0adPErgTjgQACCCCAAAIIIIAAAggggAACCCCAAAII3E2BeN5s+bJNLnPW0i52bmpqiuXN/Qe75M/3N//Ozy/QvLnSZcxR7hzLnKdMmULefDe/RBwbAQQQQEAH/NQHDggggAACCCAwMgXsn+lLly5pg79Rhyxvch3LrLFv07nz5+T8ufNy/vx56ezsTOn2lRVmAP3+I2/rwkfQjyzY2FXrD/+bQVAbbakz4dH8Clf6hdTRykbL8+fm5cn06dPdNEPLmRUVUmmdxbSD2MyZM8U6ik2ePFmy3Av2VpQIIIAAAggggAACCCCAAAIIIIAAAggggMDIE7C8+eLFiy5ntltkWiczy5rtguaPNGc+p9P5jz6Szg69i8YYyH+T+Xky546C9rvw+vMSeTJ16jR3+8kZM2aEGXOVVFjuXFkhFTpNmTyFvHnkfXU4IwQQQGBMCdCRbEy93bxYBBBAAIHRKGCN/9bWVrl8+bKbmpubpbnZ5q0MJlvn6y5b3eUW6eoKO5+l9PqKNZgVy1b5jmXOrk9FTFS3TQ5wlnacYGftipZsmluV2+oePX9Obp6UlZXKpEmTtJwk5eWTpLQ0WC4vL3fz6WVxcTGN9thbzCwCCCCAAAIIIIAAAggggAACCCCAAAIIjG6BeN5s+XKQLQelzduFz5c1X25uttJy52Bdd1f3fc1/LW2+l/lzbm6O5sxlYd5sZXmUP1sGHeTQZW4bnzuTN4/u7w6vDgEEEBgtAnQkGy3vJK8DAQQQQACB2xCwMODatWuuA5p1Qrty5Uo0/8knn0iHXnFmo5z50s/bcrzO1be3S2d3t3Ro2aX7tNs2nbp/e4d0WX24j6vr0M5r2nEsT0f6simRSATzubmSp/O2nJ+fkFzt9OXXWWlTrm7jS7udZLS/1RcUSF64vqioSEpKSqRYy4naUcyWrYE+fvx4OoXdxmeETRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVsRsLz5s88+E8uWbWq50iKtV1td5uzyZs2OOzQ7tjzZZ83xMj7fbjlzV1eUQ1vuHM+f7Tguo7YMW7ez5w6yZMuP86MM2efHbl0sf05o/pyn+bNfb6XlzfH8OaHLiTC/LpowQUo0Z7a82eXOmjWTN9/Kp4JtEEAAAQQyVYCOZJn6znHeCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMAwCdCRbJggOQwCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKkCdCTL1HeO80YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEhkmAjmTDBMlhEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFMFaAjWaa+c5w3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDBMAnQkGyZIDoMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZKoAHcky9Z3jvBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYRKgI9kwQXIYBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBTBehIlqnvHOeNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAyTAB3JhgmSwyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACmSpAR7JMfec4bwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgmAToSDZMkBwGAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhUATqSZeo7x3kjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsMkQEeyYYLkMAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBApgrQkSxT3znOGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYJgE6kg0TJIdBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDJV4P8BWbb1BA0URJIAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "3e5672a7", + "metadata": {}, + "source": [ + "## Example application: The Thomson problem\n", + "\n", + "The [Thomson problem](https://en.wikipedia.org/wiki/Thomson_problem) is one of the most famous unsolved problems in mathematics: given $N$ equal **point charges** constrained to lie on a sphere, **repelling each other** by the usual inverse-square [\"Coulomb\" force](https://en.wikipedia.org/wiki/Coulomb%27s_law) law, what is their [equilibrium configuration](https://en.wikipedia.org/wiki/Mechanical_equilibrium) where all the forces are zero and potential energy is minimized?\n", + "\n", + "Rigorous solutions on a sphere in 3 dimensions are known for only a few values of $N$!\n", + "\n", + "A much easier version of the Thomson problem is to formulate it in **2 dimensions** for point charges sliding (without friction) on a **circle**:\n", + "\n", + "![image.png](attachment:image.png)\n", + "\n", + "If all the charges $q_i$ are equal, then the solution is simply that they lie on the vertices of a [regular N-vertex polygon](https://en.wikipedia.org/wiki/Regular_polygon), which allows them to be **as far from one another as possible**.\n", + "\n", + "Let's pretend we don't know that solution, or have unequal charges, or perhaps we are \"warming up\" to solve the problem in 3d. Then we could attack the problem numerically in two basic ways:\n", + "\n", + "* We could have a vector of $N-1$ unknown angles $\\vec{\\theta}$ (fixing $q_0$ to lie at $[-1,0]$), compute the $N-1$ **tangential forces** $\\vec{f}(\\vec{\\theta})$ by the inverse-square law, and then solve for the **root** $\\vec{f}(\\vec{\\theta}) = \\vec{0}$ by **Newton’s method**.\n", + "\n", + "* We could instead compute the potential energy $V(\\vec{\\theta})$ and **minimize** over the $N-1$ angles, perhaps by [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent).\n", + "\n", + "In this notebook, we'll use the former approach: solve for the configuration with **tangential forces = 0** using Newton iterations." + ] + }, + { + "cell_type": "markdown", + "id": "7f9f7890", + "metadata": {}, + "source": [ + "### Computing the forces\n", + "\n", + "Let's write a little Julia function `forces(θ⃗, q⃗)` to compute the tangential forces on the $N-1$ charges `q⃗[1], q⃗[2], …` ($= q_1, q_2, \\ldots$) given the angles `θ⃗[1], θ⃗[2], …` ($= \\theta_1, \\theta_2, \\ldots$), fixing $q_0$ to lie at $(-1,0)$ as in the diagram above.\n", + "\n", + "(If you're wondering how I typed a variable name like `θ⃗`, it's easy: just type `\\theta` followed by `\\vec` using tab completion. It's nice to be able to write programs using a notation that mirrors how we might write it in mathematics!)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2c7fcfee", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "forces (generic function with 1 method)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using LinearAlgebra # for the norm(x⃗) function = ‖x⃗‖ = √x⃗ᵀx⃗\n", + "\n", + "function forces(θ⃗, q⃗)\n", + " x⃗₀ = [-1, 0] # q₀ is fixed at (-1,0)\n", + " q₀ = 1\n", + " F⃗ = map(1:length(θ⃗)) do i\n", + " x⃗ᵢ = [cos(θ⃗[i]), sin(θ⃗[i])] # position of charge i on unit circle\n", + "\n", + " # inverse-square force law: F⃗ = qᵢqⱼ r̂ᵢⱼ / rᵢⱼ² = qᵢqⱼ r⃗ᵢⱼ / rᵢⱼ³\n", + " \n", + " # force from x⃗₀:\n", + " F⃗ᵢ = (x⃗ᵢ - x⃗₀) * (q⃗[i] * q₀ / norm(x⃗ᵢ - x⃗₀)^3)\n", + "\n", + " for j = 1:length(θ⃗) # add forces from other charges\n", + " if i ≠ j\n", + " x⃗ⱼ = [cos(θ⃗[j]), sin(θ⃗[j])]\n", + " F⃗ᵢ += (x⃗ᵢ - x⃗ⱼ) * (q⃗[i] * q⃗[j] / norm(x⃗ᵢ - x⃗ⱼ)^3)\n", + " end\n", + " end\n", + " \n", + " # construct force component in tangential direction\n", + " F⃗ᵢ ⋅ [-x⃗ᵢ[2], x⃗ᵢ[1]] # dot product with tangent vector [-sin, cos]\n", + " end\n", + " return F⃗\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8d449c98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -1.1101484801582246\n", + " 0.23390271383615946" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "forces([1,2], [1,1])" + ] + }, + { + "cell_type": "markdown", + "id": "288ca804", + "metadata": {}, + "source": [ + "### Computing the Jacobian\n", + "\n", + "Computing derivatives is straightforward in principle, but can be pretty tedious in practice to carry out by hand.\n", + "\n", + "Fortunately, nowadays there are lots of tools for [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation) in many programming languages: given a function like our `forces` function above, they can *automatically* compute any derivative we want *exactly*.\n", + "\n", + "Julia has [lots of automatic-differentiation packages](https://juliadiff.org/) with different strengths and weaknesses. (In Python, the most famous ones are [JAX](https://github.com/google/jax) and [autograd](https://github.com/HIPS/autograd).)\n", + "\n", + "Here, we will use the [ForwardDiff package](https://github.com/JuliaDiff/ForwardDiff.jl) in Julia to compute the whole Jacobian matrix at once for us. (For a gentle introduction to how ForwardDiff works, see e.g. [Matrix Calculus Lecture 5](https://github.com/mitmath/matrixcalc#lecture-5-jan-21).)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ec122703", + "metadata": {}, + "outputs": [], + "source": [ + "using ForwardDiff" + ] + }, + { + "cell_type": "markdown", + "id": "b677e1be", + "metadata": {}, + "source": [ + "This provides a function `ForwardDiff.jacobian(f, x)` that computes the Jacobian of a function `f(x)` at `x`.\n", + "\n", + "Here, our `forces` function takes *two* arguments `θ⃗` and `q⃗`, but we only want the derivatives with respect to the angles `θ⃗`. We can wrap a two-argument function in a 1-argument function by [using a closure/anonymous function](https://m3g.github.io/JuliaNotes.jl/v0.3/closures/) `θ⃗ -> forces(θ⃗, q⃗)`, which effectively tells ForwardDiff to ignore `q⃗` (treat it as a constant parameter):" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4564d1a2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " -2.23542 2.00797\n", + " 2.00797 -3.36162" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ForwardDiff.jacobian(θ⃗ -> forces(θ⃗, [1,1]), [1,2])" + ] + }, + { + "cell_type": "markdown", + "id": "b90c6769", + "metadata": {}, + "source": [ + "### Newton's method\n", + "\n", + "Given a function and it's Jacobian, Newton's method is trivial to implement: just a loop of updates `θ⃗ = θ⃗ - J \\ f⃗`.\n", + "\n", + "Here, we'll run 8 iterations of Newton, starting at `θ⃗ = [1,2]`, using Julia's handy [`@show` macro](https://docs.julialang.org/en/v1/base/base/#Base.@show) to print out the values of the angles and forces at each step:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "08a96e08", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "θ⃗ .* (180 / π) = [57.29577951308232, 114.59155902616465]\n", + "f⃗ = forces(θ⃗, q⃗) = [-1.1101484801582246, 0.23390271383615946]\n", + "\n", + "θ⃗ .* (180 / π) = [3.6272305871204433, 86.52081245119722]\n", + "f⃗ = forces(θ⃗, q⃗) = [-0.43561688723970665, 0.10464402757105067]\n", + "\n", + "θ⃗ .* (180 / π) = [-49.452387906553305, 60.63693449859814]\n", + "f⃗ = forces(θ⃗, q⃗) = [-0.08648212799856117, 0.04386916996774379]\n", + "\n", + "θ⃗ .* (180 / π) = [-60.229832611790215, 59.28633181111147]\n", + "f⃗ = forces(θ⃗, q⃗) = [-0.0010745673439266357, 0.005015882462263949]\n", + "\n", + "θ⃗ .* (180 / π) = [-59.99776766680708, 60.00252816028715]\n", + "f⃗ = forces(θ⃗, q⃗) = [-8.130415691087745e-6, -1.185710069834256e-5]\n", + "\n", + "θ⃗ .* (180 / π) = [-60.000000012297534, 60.00000002720289]\n", + "f⃗ = forces(θ⃗, q⃗) = [2.174794511144995e-10, -2.800611131892339e-10]\n", + "\n", + "θ⃗ .* (180 / π) = [-59.999999999999986, 60.00000000000001]\n", + "f⃗ = forces(θ⃗, q⃗) = [-1.6653345369377348e-16, 5.551115123125783e-17]\n", + "\n", + "θ⃗ .* (180 / π) = [-60.00000000000001, 60.00000000000001]\n", + "f⃗ = forces(θ⃗, q⃗) = [1.1102230246251565e-16, -1.1102230246251565e-16]\n", + "\n", + "θ⃗ .* (180 / π) = [-59.99999999999999, 59.99999999999999]\n", + "f⃗ = forces(θ⃗, q⃗) = [-5.551115123125783e-17, 5.551115123125783e-17]\n" + ] + } + ], + "source": [ + "θ⃗ = [1,2] # initial \"guess\"\n", + "q⃗ = [1,1]\n", + "\n", + "for iteration = 1:8\n", + " @show θ⃗ .* (180/π)\n", + " @show f⃗ = forces(θ⃗, q⃗)\n", + " J = ForwardDiff.jacobian(θ⃗ -> forces(θ⃗, q⃗), θ⃗)\n", + " θ⃗ = θ⃗ - J \\ f⃗\n", + " println() # print a blank line\n", + "end\n", + "\n", + "# show the final values:\n", + "@show θ⃗ .* (180/π)\n", + "@show f⃗ = forces(θ⃗, q⃗);" + ] + }, + { + "cell_type": "markdown", + "id": "309fb1a5", + "metadata": {}, + "source": [ + "Notice how quickly the forces decrease, and how quickly the angles converge to $\\theta = \\pm \\pi / 3 = \\pm 60^\\circ$!\n", + "\n", + "Once the solution is even *slightly* close to the correct answer, the number of correct digits **double** on each step of Newton’s method.\n", + "\n", + "Eventually, the answers are limited by [roundoff error](https://en.wikipedia.org/wiki/Round-off_error) to about **15–16 digits**.\n", + "\n", + "(Note: there is also *another solution* where the positions of $q_1$ and $q_2$ are *swapped*. In general, *which* solution Newton’s method converges to — or even whether it converges at all — depends strongly on the *initial guess*.)" + ] + }, + { + "cell_type": "markdown", + "id": "66dda2dd", + "metadata": {}, + "source": [ + "### Visualizing the Newton iterations & Thomson solutions\n", + "\n", + "It is nice to plot these solutions graphically, and even to animate the progress of the Newton iterations.\n", + "\n", + "First, let's write a function `plotcharges(θ⃗)` to plot the locations of the charges at the angles `θ⃗` using the [PyPlot.jl package](https://github.com/JuliaPy/PyPlot.jl), which is a thin wrapper around Python's [matplotlib](https://matplotlib.org/):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6de99d15", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "plotcharges (generic function with 1 method)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "\n", + "function plotcharges(θ⃗)\n", + " gca().add_patch(plt.Circle((0,0), 1.0, clip_on=false, fill=false))\n", + " plot(-1, 0, \"ko\")\n", + " text(-1 + 0.05, 0, \"q₀\")\n", + " axis(\"equal\")\n", + " for (i,θ) in enumerate(θ⃗)\n", + " plot(cos(θ), sin(θ), \"o\")\n", + " text(cos(θ)+0.1, sin(θ), \"q\" * ('₀' + i))\n", + " end\n", + " xlabel(L\"x\")\n", + " ylabel(L\"y\")\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "1e31cd4d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHHCAYAAABN+wdFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABx5ElEQVR4nO3dd1wT9+MG8CdsEYgDWYriAFygGCqCCxyIC1cVF9U6qrW2tVZbbWsdrXVV664djlZQUHFgRRQVUAtYQRAnWIvVKoioLAfzfn/4JT+RFRS4hDzv1yuvyvHJ5cmRhofPXe4kgiAIICIiIqIyaYgdgIiIiEjZsTARERERVYCFiYiIiKgCLExEREREFWBhIiIiIqoACxMRERFRBViYiIiIiCrAwkRERERUARYmIiIiogqwMBERERFVgIWJiIiIqAIsTKSUduzYAYlEglu3bpW5rLQxixYtgkQiQVpaWpU+trIqer4ve538ERERWLRoEdLT0xW+T3Vt/8pkE/Nn5e/vj3bt2qFOnTqQSCSIi4ur1scLCgqCRCKBRCJBbGxsie8PHz4cJiYm1fb4cXFxGDhwIJo2bYo6deqgQYMGcHZ2ho+PT7U9phiq8jVVHf8/kHhYmEgpDRw4EJGRkTA3N3+jMdX12MrsdfJHRERg8eLFlSpMNbWdyssm1s/qwYMH8Pb2RsuWLREcHIzIyEjY2NhU62NeuHABAKCnp4eAgIBSv9+pU6dqe/z09HRYWlriu+++Q1BQEH7//XdYWVnB29sb3377bbU9LpGy0BI7AFFpGjVqhEaNGr3xmMp4+vQp9PX1q3y9Na268yvTdhIrQ2JiIvLy8jB+/Hj07NmzStZZtF3LcuHCBTRs2BADBw5EQEBAsZLy8OFD/Pvvvxg3blyVZCmNq6srXF1diy0bNGgQkpKS8PPPP+Orr76qtsem8lX02qGqwRkmKteNGzcwduxYmJiYQFdXF23atMGmTZtKjDty5Ag6duwIXV1dNG/eHN9//32J3UUTJ06ElZVVifu+7m6l8sbcuXMHw4cPh5GREaRSKcaPH48HDx6UeMwLFy7g7bffRv369dGyZcsy16to9qKv4+PjMXLkSEilUjRo0ACzZ89Gfn4+EhIS4OHhAUNDQ1hZWWHlypVlPr9XlbaNFdkuDx48wHvvvQdLS0vo6uqiUaNG6Nq1K06cOCHPPHfuXABA8+bN5bt9wsLCKr2dFN3+ldmeZWUrK8PZs2fRu3dvGBoaQl9fHy4uLjhy5Eipj3PlyhWMGTMGUqkUpqammDRpEjIyMsr+Ifwve7du3QAAXl5ekEgkxYpEZR6/tO1alpiYGMhkMgwfPhzXr1/HlStXin0PQLXOMJXF2NgYWlqK/e2t6PsJUPXvKX///TfeffddWFtbQ19fH40bN8bgwYNx6dIlxZ/sK65fv44xY8bA1NQUurq6aNq0Kd555x3k5OQUG3f//v0KX2eK5qvotXPo0CHY29tDV1cXLVq0wLp160rdHor8LCp671A3nGGiMl29ehUuLi5o2rQpVq9eDTMzMxw7dgwfffQR0tLSsHDhQgDAyZMnMWTIEDg7O8PPzw8FBQVYuXIl7t+/L1r2YcOGYdSoUZg+fTquXLmCBQsW4OrVqzh37hy0tbXl44YPH47Ro0dj+vTpePLkSZU9/qhRozB+/HhMmzYNISEhWLlyJfLy8nDixAnMmDEDc+bMwa5du/D555+jVatWGD58eLnre5Nt7O3tjQsXLmDp0qWwsbFBeno6Lly4gIcPHwIApkyZgkePHmHDhg3Yv3+/fPdW27Zt5cWksttJ0e1fkfKylSY8PBx9+/aFvb09tm7dCl1dXWzevBmDBw/G7t274eXlVWz8iBEj4OXlhcmTJ+PSpUuYP38+AGDbtm1lZlqwYAE6d+6MDz74AN999x3c3NxgZGT0Wo+v6HZ9+PAhbt++jbFjx6Jfv34wMDBAQEAA2rVrB6DiwiQIAgoKCspc/8sqKj+FhYUoLCzE48ePsXfvXhw7dgwbN26scL2Kvp8A1fOecu/ePTRs2BDLly9Ho0aN8OjRI/z2229wcnJCbGwsbG1tK7W+ixcvolu3bjA2NsaSJUtgbW2N5ORkBAYGIjc3F7q6uvKxirzOKpuvtNdOcHAwhg8fjh49esDf3x/5+fn4/vvvS2w3RX8WFb13qB2BqAz9+vUTmjRpImRkZBRbPnPmTEFPT0949OiRIAiC4OTkJFhYWAjPnj2Tj8nMzBQaNGggvPwSmzBhgtCsWbMSj7Nw4ULh1Zfi9u3bBQBCUlJSmctKG1O0rk8++aTY+nx9fQUAgo+PT7FxX3/9dYk8pa1X0exFX69evbrYuI4dOwoAhP3798uX5eXlCY0aNRKGDx9eYr2vUnQbl5bfwMBAmDVrVrnrX7VqVYnn/PLzUXQ7Kbr9K/NaKCtbaRm6dOkimJiYCFlZWfIx+fn5Qvv27YUmTZoIhYWFxR5n5cqVxdY3Y8YMQU9PTz6uLKGhoQIAYe/evcWWV/bxS9uupTl+/Hixxxs1apRgb28v//6IESOE+vXrV5hXkVtp2/ll06ZNk4/V0dERNm/erNBzUPT9RBCq5z3lVfn5+UJubq5gbW1d7PVa2uu6NL169RLq1asnpKamljnmTV5nZeUr77Xz1ltvCZaWlkJOTo58WVZWltCwYcNi20PRn4Ui7x3qhLvkqFTPnz/HyZMnMWzYMOjr6yM/P19+GzBgAJ4/f46oqCg8efIE58+fx/Dhw6Gnpye/v6GhIQYPHixa/leP5Rg1ahS0tLQQGhpabPmIESOq5fEHDRpU7Os2bdpAIpGgf//+8mVaWlpo1aoV/v3333LX9abbuHPnztixYwe+/fZbREVFIS8vr5LPpvLbSdHtX5WePHmCc+fO4e2334aBgYF8uaamJry9vfHff/8hISGh2H08PT2LfW1vb4/nz58jNTW1Rh5f0e1aNIMkk8kAvJhdiI+Px99//y3/fnm742QyGc6fP6/QzcLCotwsX3zxBc6fP48jR45g0qRJmDlzZpm7h4so+n4CvPnrvSz5+fn47rvv0LZtW+jo6EBLSws6Ojq4ceMGrl27Vql1PX36FOHh4Rg1apRCx9Ap8jqrbL5XXztPnjxBdHQ0hg4dCh0dHflyAwODYtutMj+LqnjvqE24S45K9fDhQ+Tn52PDhg3YsGFDqWPS0tLw+PFjFBYWwszMrMT3S1tWU159bC0tLTRs2LDEVHJ1fbqqQYMGxb7W0dGBvr5+sV8ARcszMzPLXdebbmN/f398++23+PXXX7FgwQIYGBhg2LBhWLlypcI/o8puJ0W3f1V6/PgxBEEoNWtRCXj18Rs2bFjs66LdKM+ePauRx1d0u164cAH169dH8+bNAbz4dKCenh727duH9957D7du3cLIkSPLvL+BgQE6duyo0GNVtEuuadOmaNq0KQBgwIABAID58+djwoQJZZYHRd9PgDd/vZdl9uzZ2LRpEz7//HP07NkT9evXh4aGBqZMmVLpn/fjx49RUFCAJk2aKDRekddZZfO9+topev2ZmpqWGPvyssr8LKrivaM2YWGiUtWvX1/+l/EHH3xQ6pjmzZtDT08PEokEKSkpJb7/6jI9Pb0SB0MCqJZzlKSkpKBx48byr/Pz8/Hw4cMSb1yvHghZlprM/qr69esrvI1LY2xsjLVr12Lt2rW4ffs2AgMDMW/ePKSmpiI4OFihDIpup5dzlbf9q2N7Fv2CSU5OLvG9e/fuAXixLarL6zy+otv11VMGGBgYwN3dHQEBAfJZp6L/liY8PBxubm4KPVZSUlKpB1KXpXPnztiyZQv++eefMguTou8nRWOr4z3Fx8cH77zzDr777rsSY+vVq1dqprI0aNAAmpqa+O+//yp1v/JUNt+rr52i7VbacV4vb7fK/Cyq4r2jNmFholLp6+vDzc0NsbGxsLe3LzbF+6rOnTtj//79WLVqlXwGJSsrC4cPHy42zsrKCqmpqbh//778L57c3FwcO3asyvP7+voW+wWyZ88e5Ofnl/hYtKJqMvur6tatq/A2rkjTpk0xc+ZMnDx5En/++ad8+ZvMrJSmou1fme2paLa6devCyckJ+/fvx/fff486deoAeHGQso+PD5o0aVKt50qqrsfPyMjAP//8U+KDAcOHD8fEiROxf/9+AOV/Qq5ol5wiKtol96rQ0FBoaGigRYsWZY6pzPtJZV7vlXkdSSSSYgdiAy8+iXf37l20atVK4ecLAHXq1EHPnj2xd+9eLF26tEqK+Jvmq1u3LhwdHXHw4EF8//338m2cnZ2NP/74Qz6uMj+Ll5X13qFOWJioTOvWrUO3bt3QvXt3vP/++7CyskJWVhb+/vtvHD58GKdOnQIAfPPNN/Dw8EDfvn3x6aefoqCgACtWrEDdunXx6NEj+fq8vLzw9ddfY/To0Zg7dy6eP3+O9evXK/zpncrYv38/tLS00LdvX/mntDp06IBRo0a91vpqMntpFN3Gr8rIyICbmxvGjh2L1q1bw9DQEOfPn5d/mqaInZ0dgBc/8wkTJkBbW7vSnxp6WUXbvzLbs6xshoaGJcYuW7YMffv2hZubG+bMmQMdHR1s3rwZly9fxu7duys9U1ZZ1fH4Fy5cgCAIJWaQPD09oa2tja1bt8LIyKjcX6qGhoZwdHSs9GO/7L333oORkRE6d+4MU1NTpKWlYe/evfD398fcuXMrPJZH0fcToHreUwYNGoQdO3agdevWsLe3R0xMDFatWqXwbrVXrVmzBt26dYOTkxPmzZuHVq1a4f79+wgMDMRPP/1U6uuzPFWRb8mSJRg4cCD69euHjz/+GAUFBVi1ahUMDAyKbTdFfhaKvneoFXGPOSdll5SUJEyaNElo3LixoK2tLTRq1EhwcXERvv3222LjAgMDBXt7e0FHR0do2rSpsHz58lI/qRIUFCR07NhRqFOnjtCiRQth48aN1fIpuZiYGGHw4MGCgYGBYGhoKIwZM0a4f/9+iXEPHjwo8ZzL+pSMItnLWu+ECROEunXrlnisnj17Cu3atSuxvDSKbuOX8z9//lyYPn26YG9vLxgZGQl16tQRbG1thYULFwpPnjwpdr/58+cLFhYWgoaGhgBACA0NrfR2UnT7K7o9y8tWVoYzZ84IvXr1EurWrSvUqVNH6NKli3D48OFi6yvreSn6CamyPiX3po9fmu+//14AICQmJpb4nru7uwBA6NGjR4XreVPbtm0TunfvLhgbGwtaWlpCvXr1hJ49ewo7d+5UeB2Kvp8IQtW/pzx+/FiYPHmyYGJiIujr6wvdunUTzpw5I/Ts2VPo2bOnfJyirwFBEISrV68KI0eOFBo2bCjPOXHiROH58+eCIFTudaZovopeOwcOHBDs7OyKbbePPvqoxKcoK/pZVOa9Q11IBEEQaqCXkRpatGgRFi9eDL7EiKgq8D2l8vLy8tCxY0c0btwYx48fFzuOSuMuOSIiolpi8uTJ6Nu3L8zNzZGSkoItW7bg2rVrWLdundjRVB4LExERUS2RlZWFOXPm4MGDB9DW1kanTp0QFBSEPn36iB1N5XGXHBEREVEFeKZvIiIiogqwMBERERFVgIWJiIiIqAI86LuKFBYW4t69ezA0NKz2k+MRERFR1RAEAVlZWbCwsICGRtnzSCxMVeTevXuwtLQUOwYRERG9hjt37pR7ZnUWpipSdBr8O3fuwMjISOQ0REREpIjMzExYWlpWeDkbFqYqUrQbzsjIiIWJiIhIxVR0OA0P+iYiIiKqAAsTERERUQVYmIiIiIgqwMJEREREVAEWJiIiIqIKsDARERERVYCFiYiIiKgCLExEREREFWBhIiIiIqoACxMRERFRBVSuMJ0+fRqDBw+GhYUFJBIJDh48WOF9wsPDIZPJoKenhxYtWmDLli0lxgQEBKBt27bQ1dVF27ZtceDAgWpIT0RERKpI5QrTkydP0KFDB2zcuFGh8UlJSRgwYAC6d++O2NhYfPHFF/joo48QEBAgHxMZGQkvLy94e3vj4sWL8Pb2xqhRo3Du3LnqehpERESkQiSCIAhih3hdEokEBw4cwNChQ8sc8/nnnyMwMBDXrl2TL5s+fTouXryIyMhIAICXlxcyMzNx9OhR+RgPDw/Ur18fu3fvVihLZmYmpFIpMjIyePFdIiIiFaHo72+tGswkisjISLi7uxdb1q9fP2zduhV5eXnQ1tZGZGQkPvnkkxJj1q5dW+Z6c3JykJOTI/86MzOzSnMTUdV68uQJkpOTce/ePaSmpiIzMxNZWVnIyspCdnZ2sX9nZ2cjLy8PhYWFKCgoQGFhISQSCTQ0NOQ3HR0dGBoawtDQEAYGBvJ/F30tlUphZmYGCwsLmJmZQVdXV+xNQERvoNYXppSUFJiamhZbZmpqivz8fKSlpcHc3LzMMSkpKWWud9myZVi8eHG1ZCaiyiksLMR///2HxMREJCQkICkpSV6Oiv6blZVV4n516tQpUXiKyo6Ojk6xglT0OEW358+fIysrS77ul0tXbm5uicdq0KABLCwsYG5uDgsLC1hYWKBly5awsbGBjY0NTExMIJFIqn1bEdHrqfWFCUCJN6GivZAvLy9tTHlvXvPnz8fs2bPlX2dmZsLS0rIq4hJRGXJycnD58mVcvnwZiYmJ8oJ048YNPH/+HACgra2NZs2ayUuJg4ODvKSYm5vD3NwcpqamMDIygpZW9bwF5ubmIiMjA8nJyfJbUXlLTk5GYmIiQkNDcefOHfn7kVQqlZcnW1tb2NjYwN7eHjY2NtDU1KyWnESkuFpfmMzMzErMFKWmpkJLSwsNGzYsd8yrs04v09XV5RQ7UTUqKkfR0dGIiYlBTEwMLl26hLy8PACApaUlbGxs0K1bN0yaNEleMpo1a1ZtRUhROjo6aNSoERo1agR7e/syxz1//hw3b96Ul7+iAnj8+HE8ePAAAFC3bl04ODhAJpNBJpPB0dGRJYpIBLW+MDk7O+Pw4cPFlh0/fhyOjo7Q1taWjwkJCSl2HNPx48fh4uJSo1mJ1FlqairCwsIQFhaGc+fOycuRpqYm2rVrB5lMhkmTJkEmk8HOzg5169YVO/Ib09PTQ7t27dCuXbsS33v06BHi4uLkZfHIkSNYt24dgP8vUS4uLnB1dUW3bt1gaGhY0/GJ1IrKfUouOzsbf//9NwDAwcEBa9asgZubGxo0aICmTZti/vz5uHv3Ln7//XcAL04r0L59e0ybNg1Tp05FZGQkpk+fjt27d2PEiBEAgIiICPTo0QNLly7FkCFDcOjQIXz11Vc4e/YsnJycFMrFT8kRVc6DBw8QHh6O0NBQhIWF4erVqwAAGxsbuLi4wNHRETKZDB06dECdOnVETqsc0tPTceHCBcTExCA6OhpnzpxBcnIyNDU14ejoCFdXV7i5uaFr164wMDAQOy6RSlD097fKFaawsDC4ubmVWD5hwgTs2LEDEydOxK1btxAWFib/Xnh4OD755BNcuXIFFhYW+PzzzzF9+vRi99+3bx+++uor/PPPP2jZsiWWLl2K4cOHK5yLhYmofHl5eTh79iwCAwNx4sQJXL58GQBgbW0NV1dX+c3CwkLkpKpDEATcuHEDYWFh8uKZkpICLS0tODo6ol+/fvD09ISDgwMPKCcqQ60tTMqKhYmopPT0dAQHByMwMBBHjx5Feno6GjduDA8PD7i5uaFnz55o0qSJ2DFrDUEQkJiYiLCwMJw6dQrHjh1DRkYGmjRpgsGDB8PT0xNubm48/pLoJSxMNYyFieiFO3fu4MCBAwgMDER4eDjy8/Ph4OAAT09PznbUsLy8PJw5cwaBgYEIDAxEUlIS6tatK5958vT0RP369cWOSSQqFqYaxsJE6iw9PR379u2Dr68vwsPDoaWlhV69esHT0xODBw/mKTeUgCAIuHr1qrw8nTt3Dtra2hg0aBDGjx+PAQMGcOaJ1BILUw1jYSJ1k5OTg6CgIPj6+uKPP/5AXl4eevXqhfHjx2PYsGH8/0DJ3bt3D/7+/vDx8cGFCxdQr149jBw5EuPHj0e3bt3kJ+skqu1YmGoYCxOpi+joaPzyyy/Ys2cP0tPT4eDggPHjx2P06NE8YFtFXbt2Db6+vvD19cWtW7fQtGlTjBs3DlOnTkXz5s3FjkdUrViYahgLE9Vmz549g7+/PzZv3ozz58+jadOmGD9+PMaNG4e2bduKHY+qiCAIiIiIgI+PD/z8/JCRkYH+/ftjxowZ8PDw4MkyqVZiYaphLExUG/3999/YsmULtm3bhsePH8PDwwMzZszAgAED+Muzlnv69Cn8/PywadMmXLhwAVZWVpg+fTomTZqERo0aiR2PqMqwMNUwFiaqLQoLC3H06FFs2LABx44dQ4MGDTBp0iRMnz4dLVu2FDse1TBBEHD+/Hls3rwZfn5+EAQBo0aNwkcffYS33npL7HhEb0zR3988qo+IAAD5+fnw9fVFhw4dMGjQIDx69Ag7duzAf//9h1WrVrEsqSmJRILOnTtjx44duHv3LpYuXYqIiAh07twZffr0wcmTJ8G/u0kdsDARqblnz55h8+bNsLa2xvjx42FpaYnTp0/jr7/+woQJE3hZEpJr2LAh5syZg8TEROzZswePHj1Cnz594OTkhAMHDqCwsLDGMz158gTvvPMODAwMYG5ujtWrV8PV1RWzZs2q8SxUu7EwEampjIwMLF++HM2bN8eHH34IJycnxMbGIigoCN27dxc7HikxTU1NjBw5EjExMQgODoa+vj6GDx+Odu3aYceOHcjLy6uxLHPnzkVoaCgOHDiA48ePIywsDDExMTX2+KQ+WJiI1Ex2dja+/fZbNGvWDAsXLsSQIUOQkJAAPz8/dOzYUex4pEIkEgn69euHsLAwREREwNraGu+++y5atWqF7du3o6CgoOSdCguApDPApX0v/ltYyhgFZWdnY+vWrfj+++/Rt29f2NnZ4bfffiv9cYneEAsTkZrIzc3Fpk2b0KpVK3zzzTeYOHEikpKS8NNPP6FVq1ZixyMV5+zsjMDAQFy6dAlOTk6YNGkS7O3tcfDgwf8/xulqILC2PfDbICBg8ov/rm3/YvlruHnzJnJzc+Hs7Cxf1qBBA9ja2gIADh48iBEjRsDDwwOurq74999/3/h5kvpiYSKq5QoLC7Fr1y60adMGH374ITw8PJCQkIC1a9fyRJNU5dq3b489e/bgr7/+grm5OYYNG4auXbviyr7lwJ53gMx7xe+Qmfxi+WuUpooONvf09ERAQACCg4Nha2uLP/74o9KPQVSEhYmolhIEAcHBwZDJZBg3bhzatWuH+Ph47NixA1ZWVmLHo1rurbfewokTJxASEoL83BwY/bm0jILzv2XB8yq9e65Vq1bQ1tZGVFSUfNnjx4+RmJgIAPLLuxw7dgwJCQl49913X+u5EAEsTES1UkJCAjw8PNC/f38YGBjg7NmzCAwMRPv27cWORmqmT58+iNrzAyylGpBIyholAJl3gX8jKrVuAwMDTJ48GXPnzsXJkydx+fJlTJw4sdh18NavX49t27bhjz/+gL6+/us/EVJ7LExEtUh2djbmzZsHOzs73LhxAwcPHsTp06fRtWtXsaORGtN4kqrYwOz7lV73qlWr0KNHD3h6eqJPnz7o1q0bZDIZAODHH3/EvHnz8OTJE4wePRrbtm2r9PqJimiJHYCI3pwgCNi3bx9mz56NtLQ0fPnll/jss894DiVSDgamVTvu5bsYGGDnzp3YuXOnfNmRI0cAAO+//z7ef//9Sq+TqDScYSJScdevX0ffvn0xatQodOrUCVevXsXChQtZlkh5NHMBjCwAlL5PrlAQ8DC/Dh7oW9dsLqJKYGEiUlE5OTn46quvYG9vj1u3buHIkSM4dOgQmjdvLnY0ouI0NAGPFf/7onhpEiCBRCLBJ8dyYNO6DbZu3cpLrZBSYmEiUkHR0dFwdHTEypUr8eWXX+Ly5csYMGCA2LGIytbWExj1O2BkXmyxxMgCklE7seboDQwdOhRTpkzBgAEDcOfOndd+qLCwMKxdu/YNAxMVJxFY5auEolc7JnoTOTk5WLJkCVasWAF7e3vs2LED9vb2YsciUlxhwYtPw2Xff3HMUjOXFzNQ/xMUFISpU6ciOzsba9aswaRJkyAp++N1RG9M0d/fnGEiUhExMTFwdHTEqlWrsHDhQpw7d45liVSPhibQvDtg9/aL/75UlgBgwIABuHLlCoYPH14ls01EVYWFiUjJ5ebm4quvvoKTkxO0tbURHR2NBQsWQFtbW+xoRNWiXr162L59O44cOYL4+Hi0b9+exzaR6FiYiJTYzZs34eLigpUrV3JWidTOq7NNb7/9NtLT08WORWqKhYlISfn5+cHBwQHp6emIjIzkrBKppaLZpv379+PUqVPo2LFjsUuhENUUFiYiJfP06VO89957GDNmDAYOHIgLFy7Iz1xMpK6GDRuG2NhYmJubo3v37li1ahUKCwvFjkVqhIWJSIlcvXoVnTt3ho+PD3755Rfs2rWLn7ok+h8rKyucPn0as2fPxmeffYZBgwbhwYMHYsciNcHCRKQktm/fDkdHRwiCgL/++gtTpkzhx6mJXqGtrY0VK1bg6NGjiI6ORseOHREeHi52LFIDLExEIsvLy8OMGTMwadIkjBkzBufPn0f79u3FjkWk1Dw8PBAXFwcbGxv07t0bGzdu5KfoqFqxMBGJKC0tDe7u7vjll1/w008/YevWrdDX1xc7FpFKsLCwQEhICD766CN8+OGHeO+995Cbmyt2LKqltMQOQKSu4uPjMWTIEGRnZ+PUqVPo3r272JGIVI6WlhbWrFkDOzs7TJ8+HdevX0dAQABMTEzEjka1jErOMG3evBnNmzeHnp4eZDIZzpw5U+bYiRMnQiKRlLi1a9dOPmbHjh2ljnn+/HlNPB1SQwcOHICLiwukUimio6NZloje0LvvvovQ0FDcuHEDb731FuLi4sSORLWMyhUmf39/zJo1C19++SViY2PRvXt39O/fH7dv3y51/Lp165CcnCy/3blzBw0aNMDIkSOLjTMyMio2Ljk5GXp6ejXxlEiNCIKAb775BsOHD4eHhwf+/PNPNGvWTOxYRLWCi4sLzp8/j0aNGqFr167Yu3ev2JGoFlG5wrRmzRpMnjwZU6ZMQZs2bbB27VpYWlrixx9/LHW8VCqFmZmZ/BYdHY3Hjx/j3XffLTZOIpEUG2dmZlYTT4fUSG5uLry9vfH1119j8eLF2LNnD+rWrSt2LKJaxdLSEqdPn4anpydGjRqFFStW8GBwqhIqdQxTbm4uYmJiMG/evGLL3d3dERERodA6tm7dij59+pT4qz47OxvNmjVDQUEBOnbsiG+++QYODg5lricnJwc5OTnyrzMzMyvxTEjdZGdn4+2338apU6fg5+cHLy8vsSMR1Vr6+vrYtWsXrK2tMW/ePCQnJ2PNmjXQ0FC5OQJSIipVmNLS0lBQUABTU9Niy01NTZGSklLh/ZOTk3H06FHs2rWr2PLWrVtjx44dsLOzQ2ZmJtatW4euXbvi4sWLsLa2LnVdy5Ytw+LFi1//yZDaePDgAQYOHIjr16/j6NGj6N27t9iRiGo9iUSCJUuWwMzMDDNnzkRqaip27NgBHR0dsaORilKpwlTk1ZP5CYKg0An+duzYgXr16mHo0KHFlnfp0gVdunSRf921a1d06tQJGzZswPr160td1/z58zF79mz515mZmbC0tKzEsyB1cOvWLfTr1w/p6ekICwtDp06dxI5EpFZmzJgBExMTjBs3DmlpaQgICIChoaHYsUgFqdT8pLGxMTQ1NUvMJqWmppaYdXqVIAjYtm0bvL29K/wLQ0NDA2+99RZu3LhR5hhdXV0YGRkVuxG9LD4+Hi4uLsjPz0dERATLEpFI3n77bQQHB+PcuXNwc3NDamqq2JFIBalUYdLR0YFMJkNISEix5SEhIXBxcSn3vuHh4fj7778xefLkCh9HEATExcXB3Nz8jfKS+jpz5gx69OgBMzMzREREoGXLlmJHIlJrbm5uCA8Px927d9G1a1ckJSWJHYlUjEoVJgCYPXs2fv31V2zbtg3Xrl3DJ598gtu3b2P69OkAXuwqe+edd0rcb+vWrXBycir1khOLFy/GsWPH8M8//yAuLg6TJ09GXFycfJ1ElXHq1Cn069cPnTp1QlhYWIWzn0RUMzp27IiIiAgIgoCePXvi5s2bYkciFaJyxzB5eXnh4cOHWLJkCZKTk9G+fXsEBQXJP/WWnJxc4pxMGRkZCAgIwLp160pdZ3p6Ot577z2kpKRAKpXCwcEBp0+fRufOnav9+VDtEhISAk9PT/To0QMHDx5EnTp1xI5ERC9p3rw5wsPD0atXL/Ts2ROhoaFlfriH6GUSgSeoqBKZmZmQSqXIyMjg8Uxq6tixYxgyZAh69eqF/fv388SnREosOTkZvXr1QkZGBkJDQ2Frayt2JBKJor+/VW6XHJEyCgkJwZAhQ9CnTx8cOHCAZYlIyZmbmyMsLAz169eHm5tbuR/yIQJYmIje2KlTp+Dp6YnevXsjICAAurq6YkciIgWYmpri5MmTMDIyQq9evfDPP/+IHYmUGAsT0Rs4c+YMBg8ejB49erAsEakgMzMznDp1CnXq1IGbmxv+/fdfsSORkmJhInpN8fHxGDRoEJycnHDw4EHuhiNSURYWFggNDYWmpib69euHtLQ0sSOREmJhInoNt27dgoeHB1q2bMlPwxHVAo0bN8axY8fw6NEjDBo0CE+ePBE7EikZFiaiSnrw4AH69esHfX19HD16lJ+KJKolrK2tcfToUVy5cgUjR45EXl6e2JFIibAwEVVCdnY2Bg4ciPT0dBw7downpSSqZWQyGQ4cOIATJ05g8uTJKCwsFDsSKQkWJiIF5ebmYsSIEbh+/TqCg4N5uROiWqpPnz7YuXMnfHx8MG/ePLHjkJJQuTN9E4mhsLAQkyZNQlhYGI4ePQoHBwexIxFRNfLy8kJqaio++ugjmJmZYfbs2WJHIpGxMBEp4Ntvv4Wvry/8/f3Rq1cvseMQUQ348MMPkZycjDlz5sDa2hqDBw8WOxKJiLvkiCpw4MABLFy4EEuWLMGoUaPEjkNENejbb7/F0KFDMXbsWFy5ckXsOCQiXkuuivBacrVTfHw8XFxcMGDAAPj7+0MikYgdiYhqWHZ2NlxcXPDkyRP89ddfaNiwodiRqArxWnJEb+jBgwfw9PSEtbU1tm/fzrJEpKYMDAxw6NAhZGRkYNSoUTzdgJpiYSIqRV5eHkaOHImnT5/i4MGDqFu3rtiRiEhEzZs3x759+3D69Gl8+umnYschEbAwEZXi448/RkREBPbv349mzZqJHYeIlICrqys2bNiADRs24NdffxU7DtUwfkqO6BXbtm3Djz/+iJ9//hndunUTOw4RKZHp06fj4sWLmDFjBuzt7dG5c2exI1EN4UHfVYQHfdcOV65cwVtvvYWxY8fyL0giKlVubi569OiB1NRUXLhwAfXq1RM7Er0BHvRNVElPnz7FqFGj0KJFC6xfv17sOESkpHR0dODn54dHjx5h6tSp4LyDemBhIvqfjz/+GElJSfD394e+vr7YcYhIiVlZWWHr1q3Yt28ffvrpJ7HjUA1gYSICsHv3bvz666/YsGED2rVrJ3YcIlIBI0aMwIwZMzBr1ixcvHhR7DhUzXgMUxXhMUyq6++//4aDgwM8PT3h4+PD8y0RkcKeP3+OLl264Pnz54iOjoaBgYHYkaiSeAwTkQJycnLg5eUFMzMzbNmyhWWJiCpFT08Pe/bswX///YcPPvhA7DhUjViYSK0tXrwYly5dgr+/PwwNDcWOQ0QqyMbGBj/++CN+//137Nu3T+w4VE1YmEhtnT9/HitWrMDChQvRqVMnseMQkQobP348hg8fjhkzZuDBgwdix6FqwGOYqgiPYVItOTk5kMlk0NXVRVRUFLS1tcWOREQq7v79+2jXrh169+4Nf39/seOQgngME1E5Fi9ejMTEROzYsYNliYiqhKmpKTZu3Ig9e/Zw11wtxMJEauflXXF2dnZixyGiWsTLy4u75mop7pKrItwlpxpycnLQqVMn1KlTB1FRUdDS4uUUiahqcdecauEuOaJSLFmyBDdu3MCOHTtYloioWnDXXO3EwkRq4+rVq1i5ciUWLFiA9u3bix2HiGoxLy8vDB06FB9//DGysrLEjkNVgIWJ1IIgCJg5cyaaN2+Ozz77TOw4RFTLSSQSrFu3Do8fP8aSJUvEjkNVQCUL0+bNm9G8eXPo6elBJpPhzJkzZY4NCwuDRCIpcbt+/XqxcQEBAWjbti10dXXRtm1bHDhwoLqfBtWgPXv2IDQ0FOvXr4eurq7YcYhIDTRt2hRffvkl1q5di6tXr4odh96QyhUmf39/zJo1C19++SViY2PRvXt39O/fH7dv3y73fgkJCUhOTpbfrK2t5d+LjIyEl5cXvL29cfHiRXh7e2PUqFE4d+5cdT8dqgHZ2dn49NNPMXToUHh4eIgdh4jUyJw5c2BlZYWZM2eCn7FSbSr3KTknJyd06tQJP/74o3xZmzZtMHToUCxbtqzE+LCwMLi5ueHx48eoV69eqev08vJCZmYmjh49Kl/m4eGB+vXrY/fu3Qrl4qfklNfnn3+O9evX49q1a7CyshI7DhGpmaNHj2LAgAHw8/ODl5eX2HHoFbXyU3K5ubmIiYmBu7t7seXu7u6IiIgo974ODg4wNzdH7969ERoaWux7kZGRJdbZr1+/cteZk5ODzMzMYjdSPteuXcOaNWvwxRdfsCwRkSj69++PIUOG4NNPP0V2drbYceg1qVRhSktLQ0FBAUxNTYstNzU1RUpKSqn3MTc3x88//4yAgADs378ftra26N27N06fPi0fk5KSUql1AsCyZcsglUrlN0tLyzd4ZlQdBEHARx99hGbNmmHu3LlixyEiNbZ27Vo8fPgQ33zzjdhR6DWp5IloJBJJsa8FQSixrIitrS1sbW3lXzs7O+POnTv4/vvv0aNHj9daJwDMnz8fs2fPln+dmZnJ0qRkjh49ihMnTiAwMBB6enpixyEiNWZlZYV58+bhu+++w4wZM9CsWTOxI1ElqdQMk7GxMTQ1NUvM/KSmppaYISpPly5dcOPGDfnXZmZmlV6nrq4ujIyMit1IeRQWFmL+/Pno0aMHBg0aJHYcIiJ8+umnqF+/PhYuXCh2FHoNKlWYdHR0IJPJEBISUmx5SEgIXFxcFF5PbGwszM3N5V87OzuXWOfx48crtU5SLrt27UJ8fDyWL19e7kwhEVFNMTAwwIIFC/D777/j8uXLYsehSlK5XXKzZ8+Gt7c3HB0d4ezsjJ9//hm3b9/G9OnTAbzYVXb37l38/vvvAF7sN7ayskK7du2Qm5sLHx8fBAQEICAgQL7Ojz/+GD169MCKFSswZMgQHDp0CCdOnMDZs2dFeY70ZnJzc7FgwQIMGTIEzs7OYschIpKbOnUq1qxZgy+//BKHDh0SOw5VgsoVJi8vLzx8+BBLlixBcnIy2rdvj6CgIPn+4OTk5GLnZMrNzcWcOXNw9+5d1KlTB+3atcORI0cwYMAA+RgXFxf4+fnhq6++woIFC9CyZUv4+/vDycmpxp8fvbmffvoJt2/fxpEjR8SOQkRUjI6ODr755huMGzcOf/75J7p27Sp2JFKQyp2HSVnxPEzKISsrCy1btsSgQYOwbds2seMQEZVQWFiITp06wdDQEKdPn+ZhAyKrledhIqrIDz/8gMzMTCxatEjsKEREpdLQ0MCyZctw9uxZBAUFiR2HFMQZpirCGSbxpaeno1mzZpg8eTLWrFkjdhwiojIJggA3NzdkZmYiJiaGs0wi4gwTqZ3NmzcjJycHn332mdhRiIjKJZFIsGDBAsTGxuL48eNixyEFcIapinCGSVxPnz6FlZUVRowYUew6g0REykoQBDg5OUFfXx9hYWFix1FbnGEitbJt2zY8fPiQl0AhIpUhkUgwf/58hIeHIzIyUuw4VAHOMFURzjCJJy8vD61atUK3bt3g6+srdhwiIoUVFhaiffv2aNWqFQIDA8WOo5Y4w0RqY/fu3bh9+zbmzZsndhQiokrR0NDA559/jsOHD/Ps30qOM0xVhDNM4ij666xly5Y4fPiw2HGIiCqtaJa8e/fu8PHxETuO2uEME6mFP/74A9euXcP8+fPFjkJE9Fq0tbUxZ84c+Pn54datW2LHoTKwMJFK27hxI7p06cILJRORSps0aRIMDQ3x008/iR2FysDCRCorMTERISEh+OCDD8SOQkT0RurWrYuJEyfi119/xfPnz8WOQ6VgYSKVtWXLFhgbG+Ptt98WOwoR0RubPn060tLSsG/fPrGjUClYmEglPX36FNu3b8fkyZOhp6cndhwiojdma2uLPn36YPPmzWJHoVKwMJFK8vPzQ0ZGBqZNmyZ2FCKiKjNjxgxERkYiNjZW7Cj0ChYmUjmCIGDTpk0YMGAAmjdvLnYcIqIqM3jwYDRu3JiXeFJCLEykcs6fP48LFy5gxowZYkchIqpSWlpamDZtGnx9fZGeni52HHoJCxOpnJ9//hlWVlbo16+f2FGIiKrclClTkJOTg127dokdhV7CwkQq5fnz59i7dy+8vb2hqakpdhwioipnbm4ODw8PnvVbybAwkUo5cuQIMjMzMW7cOLGjEBFVm3HjxiEyMhL//POP2FHof1iYSKX4+Pjgrbfegq2trdhRiIiqzZAhQ2BgYABfX1+xo9D/sDCRynj06BGOHDnC2SUiqvX09fUxfPhw+Pr6QhAEseMQWJhIhezduxeFhYUYPXq02FGIiKrduHHjkJCQgJiYGLGjEFiYSIX4+vqiT58+MDU1FTsKEVG169WrF8zMzHjwt5JgYSKVcOvWLZw5cwbjx48XOwoRUY3Q0tLCmDFj4Ofnh/z8fLHjqD0WJlIJ+/fvh66uLoYOHSp2FCKiGjNmzBjcv38ff/75p9hR1B4LE6mEwMBA9OnTBwYGBmJHISKqMTKZDBYWFggMDBQ7itpjYSKl9+jRI5w9exaenp5iRyEiqlEaGhoYNGgQDh06xE/LiYyFiZTe0aNHUVBQgEGDBokdhYioxnl6euLmzZu4fv262FHUGgsTKb3AwEA4OjrCwsJC7ChERDWuV69e0NfX5245kbEwkVLLzc3F0aNHuTuOiNRWnTp14O7ujsOHD4sdRa2xMJFSCw8PR1ZWFgsTEam1wYMHIyIiAg8ePBA7itpSycK0efNmNG/eHHp6epDJZDhz5kyZY/fv34++ffuiUaNGMDIygrOzM44dO1ZszI4dOyCRSErcnj9/Xt1PhSpw+PBhNG3aFPb29mJHISISzcCBAwEAf/zxh8hJ1JfKFSZ/f3/MmjULX375JWJjY9G9e3f0798ft2/fLnX86dOn0bdvXwQFBSEmJgZubm4YPHgwYmNji40zMjJCcnJysZuenl5NPCUqR0hICPr37w+JRCJ2FCIi0ZiamkImk+HEiRNiR1FbEkHFPqfo5OSETp064ccff5Qva9OmDYYOHYply5YptI527drBy8sLX3/9NYAXM0yzZs1Cenr6a+fKzMyEVCpFRkYGjIyMXns99P9SUlJgbm4OPz8/eHl5iR2HiEhUn332GXx9ffHff//xj8gqpOjvb5WaYcrNzUVMTAzc3d2LLXd3d0dERIRC6ygsLERWVhYaNGhQbHl2djaaNWuGJk2aYNCgQSVmoF6Vk5ODzMzMYjeqWmFhYQCAnj17ihuEiEgJuLq64t69e7hx44bYUdSSShWmtLQ0FBQUlLj4qqmpKVJSUhRax+rVq/HkyROMGjVKvqx169bYsWMHAgMDsXv3bujp6aFr167lviiXLVsGqVQqv1laWr7ek6IyhYWFoU2bNjAzMxM7ChGR6Lp16wZNTU35H5NUs1SqMBV5dSpSEASFpid3796NRYsWwd/fHyYmJvLlXbp0wfjx49GhQwd0794de/bsgY2NDTZs2FDmuubPn4+MjAz57c6dO6//hKhUYWFhcHV1FTsGEZFSMDIygkwmY2ESiUoVJmNjY2hqapaYTUpNTS0x6/Qqf39/TJ48GXv27EGfPn3KHauhoYG33nqr3BkmXV1dGBkZFbtR1bl37x4SEhJYmIiIXuLm5obQ0FBeJkUEKlWYdHR0IJPJEBISUmx5SEgIXFxcyrzf7t27MXHiROzatUv+0czyCIKAuLg4mJubv3Fmej3h4eEAePwSEdHLXF1dkZKSgsTERLGjqB0tsQNU1uzZs+Ht7Q1HR0c4Ozvj559/xu3btzF9+nQAL3aV3b17F7///juAF2XpnXfewbp169ClSxf57FSdOnUglUoBAIsXL0aXLl1gbW2NzMxMrF+/HnFxcdi0aZM4T5IQFhaGtm3bVjhzSESkToqOYwoNDYWtra3YcdSKSs0wAYCXlxfWrl2LJUuWoGPHjjh9+jSCgoLQrFkzAEBycnKxczL99NNPyM/PxwcffABzc3P57eOPP5aPSU9Px3vvvYc2bdrA3d0dd+/exenTp9G5c+caf370QlRUVLmzhkRE6sjAwAAdO3bEuXPnxI6idlTuPEzKiudhqjrPnj2DoaEhNm3ahGnTpokdh4hIqUybNg2RkZGIj48XO0qtUCvPw0TqIT4+HgUFBZDJZGJHISJSOjKZDFevXsWzZ8/EjqJWWJhI6URHR0NbWxt2dnZiRyEiUjoymQwFBQW4ePGi2FHUCgsTKZ2YmBjY2dlBV1dX7ChEREqnffv20NbWRkxMjNhR1AoLEymdmJgY7o4jIiqDrq4u7OzsWJhqGAsTKZVnz57hypUrLExEROWQyWQsTDWMhYmUCg/4JiKqmEwmw5UrV3jgdw1iYSKlcvnyZUgkErRv317sKERESqtDhw4oKChAQkKC2FHUBgsTKZXExERYWVlBT09P7ChERErLxsYGAHiJlBrEwkRKJTExUf5GQEREpWvQoAGMjY1ZmGoQCxMplYSEBBYmIiIF2NjYcJdcDWJhIqVRUFCAv//+m4WJiEgBNjY2nGGqQSxMpDT+/fdf5OXl8QrcREQKsLW1RWJiInhJ2JrBwkRKo2hqmTNMREQVs7GxQXp6Oh48eCB2FLXAwkRKIzExEbq6urC0tBQ7ChGR0uMn5WoWCxMpjaSkJLRo0QIaGnxZEhFVpGXLlgCAf/75R+Qk6oG/mUhp3Lt3DxYWFmLHICJSCXXq1EG9evWQnJwsdhS1wMJESiM5ORnm5uZixyAiUhnm5uYsTDWEhYmUBmeYiIgqx8LCAvfu3RM7hlpgYSKlIAgCZ5iIiCqJM0w1h4WJlEJmZiaePXvGwkREVAksTDWHhYmUQtGUMnfJEREprmiXHE9eWf1YmEgpFP2FxBkmIiLFmZub49mzZ8jMzBQ7Sq3HwkRK4f79+wAAU1NTkZMQEakOMzMzAP//HkrVh4WJlEJmZiY0NDRgYGAgdhQiIpVhZGQEAJxhqgEsTKQUsrKyYGBgAIlEInYUIiKVYWhoCODFeyhVLxYmUgrZ2dmcXSIiqqSiwpSdnS1yktqPhYmUQlZWlvx/fCIiUkzRH5qcYap+LEykFCpTmJ48eYJ33nkHBgYGMDc3x+rVq+Hq6opZs2ZVb0giIiWjr68PDQ0NFqYawMJESqEyu+Tmzp2L0NBQHDhwAMePH0dYWBhiYmKqOSERkfKRSCQwMDDgLrkaoCV2ACJA8Rmm7OxsbN26Fb///jv69u0LAPjtt9/QpEmT6o5IRKSUDA0NOcNUAzjDRKIrKCjAnTt3kJaWhrCwMBQUFJQ59ubNm8jNzYWzs7N8WYMGDWBrawsAyM/Px9SpU/HJJ59g9OjROHfuXLXnJyISEwtTzahUYbpz50515aiUzZs3o3nz5tDT04NMJsOZM2fKHR8eHg6ZTAY9PT20aNECW7ZsKTEmICAAbdu2ha6uLtq2bYsDBw5UV3x6yf79+2FlZYWLFy8iMjISbm5usLKywv79+0sdX9Hp/w8cOIDGjRvjhx9+wObNmzF37tzqiE1EpDS0tbWRn58vdoxar1KFqXXr1liwYAGePHlSXXkq5O/vj1mzZuHLL79EbGwsunfvjv79++P27duljk9KSsKAAQPQvXt3xMbG4osvvsBHH32EgIAA+ZjIyEh4eXnB29sbFy9ehLe3N0aNGsXZiWq2f/9+vP322/jvv/+KLb979y7efvvtUktTq1atoK2tjaioKPmyx48fIzExEcCLGSgbGxsAL2ae0tPTq+8JEBEpAQ0NDRQWFoodo9arVGEKCQnB8ePHYW1tje3bt1dXpnKtWbMGkydPxpQpU9CmTRusXbsWlpaW+PHHH0sdv2XLFjRt2hRr165FmzZtMGXKFEyaNAnff/+9fMzatWvRt29fzJ8/H61bt8b8+fPRu3dvrF27toaelfopKCjAxx9/XOqMUdGyWbNmldg9Z2BggMmTJ2Pu3Lk4efIkLl++jIkTJ0JD48VLuWXLlkhISAAAPHr0CPXq1aveJ0JEJDINDY1yD2WgqlGpwuTi4oJz585h+fLl+Prrr+Hg4ICwsLBqilZSbm4uYmJi4O7uXmy5u7s7IiIiSr1PZGRkifH9+vVDdHQ08vLyyh1T1joBICcnB5mZmcVupLgzZ86UmFl6mSAIuHPnTqm7W1etWoUePXrA09MTffr0Qbdu3SCTyQAAw4YNw927dzFr1iy8//77WLlyZbU9ByIiZcDCVDNe66Dvd955B4mJiRg8eDAGDhyIYcOG4e+//67qbCWkpaWhoKCgxAVaTU1NkZKSUup9UlJSSh2fn5+PtLS0cseUtU4AWLZsGaRSqfxmaWn5Ok9JbSUnJ7/2OAMDA+zcuRNPnjxBSkpKseOUtLS08Ouvv2Lt2rXw9/dHly5dqiwzEZEyEgRBPstO1ee1t7AgCHB3d8d7772HwMBAtG/fHp9++mmNHKn/6vXGBEEo9xpkpY1/dXll1zl//nxkZGTIb8pyQLyqMDc3r9JxRETqqrCwkIWpBlTqPExbtmzB+fPncf78eVy7dg2ampqwt7fHBx98gI4dO8LX11f+CTNHR8cqD2tsbAxNTc0SMz+pqaklZoiKmJmZlTpeS0sLDRs2LHdMWesEAF1dXejq6r7O0yAA3bt3R5MmTXD37t1Sj2OSSCRo0qQJunfvLkI6IiLVwcJUMyq1hZcuXYrMzExMmDABYWFhyMjIwF9//YX169dj0qRJOHnyJN5//31MnDixWsLq6OhAJpMhJCSk2PKQkBC4uLiUeh9nZ+cS448fPw5HR0doa2uXO6asddKb09TUxLp16wCUnN0r+nrt2rXQ1NRUaH1hYWE8SJ+I1BJ3ydUQoYqlpKQIGhoaVb1aOT8/P0FbW1vYunWrcPXqVWHWrFlC3bp1hVu3bgmCIAjz5s0TvL295eP/+ecfQV9fX/jkk0+Eq1evClu3bhW0tbWFffv2ycf8+eefgqamprB8+XLh2rVrwvLlywUtLS0hKipK4VwZGRkCACEjI6PqnqwaCAgIEJo0aSIAkN8sLS2FgIAAsaMREakEGxsbYc6cOWLHUFmK/v6u8kujmJiY4NSpU1W9WjkvLy88fPgQS5YsQXJyMtq3b4+goCA0a9YMwIuDhF8+J1Pz5s0RFBSETz75BJs2bYKFhQXWr1+PESNGyMe4uLjAz88PX331FRYsWICWLVvC398fTk5O1fY86IXhw4djyJAh6NGjB54+fYoffvgB3bt3V3hmiYhI3VXm4uX0+iSCUMGpk0khmZmZkEqlyMjIgJGRkdhxVM64cePw33//ITw8XOwoREQqxdDQEIsXL8bs2bPFjqKSFP39zZ2epBQMDQ15tW0iokoqLCxEdnY2Z5hqAAsTKQVePJKIqPKKLlXGwlT9WJhIKbAwERFVXtHMPAtT9WNhIqVgYGDAXXJERJVU9IemgYGByElqPxYmUgpFxzDxittERIorKkycYap+LEykFKRSKQDwIsZERJWQkZEBAPx0dg1gYSKlYGZmBgDlXvCYiIiKK7pAedF7KFUfFiZSCkUX2S36n5+IiCqWnJwMQ0NDHsNUA1iYSCkUFaZ79+6JnISISHXcu3cPFhYWYsdQCyxMpBQMDAxgaGjIGSYiokpITk6W/8FJ1YuFiZSGubk5CxMRUSWwMNUcFiZSGhYWFtwlR0RUCdwlV3NYmEhpcIaJiKhyOMNUc1iYSGlYWFjg7t27YscgIlIJmZmZyM7OZmGqISxMpDRatmyJW7duIS8vT+woRERK7++//wYAtGrVSuQk6oGFiZSGjY0N8vPzcevWLbGjEBEpvcTERAAv3jup+rEwkdKwtbUF8P9vAkREVLbExESYmJigXr16YkdRCyxMpDQsLCygr6/PwkREpIDExETOLtUgFiZSGhoaGrC2tkZCQoLYUYiIlF5CQgILUw1iYSKlYmNjwxkmIqIKCILAGaYaxsJESsXW1paFiYioAqmpqcjMzJQf+0nVj4WJlIqNjQ3u3r2LrKwssaMQESmtokMXrK2tRU6iPliYSKnY29sDAC5evChyEiIi5RUXFwddXV3ukqtBLEykVNq2bQtdXV3ExMSIHYWISGlFR0fD3t4e2traYkdRGyxMpFS0tbXRoUMHFiYionLExMTA0dFR7BhqhYWJlI5MJmNhIiIqw5MnT3D9+nXIZDKxo6gVFiZSOjKZDNeuXUN2drbYUYiIlE5cXBwKCwtZmGoYCxMpHUdHRwiCgLi4OLGjEBEpnZiYGOjq6qJdu3ZiR1ErLEykdHjgNxFR2WJiYnjAtwhYmEjpFB34HR0dLXYUIiKlEx0dzd1xImBhIqXk4uKCs2fPih2DiEippKWl4erVq3B2dhY7itpRqcL0+PFjeHt7QyqVQiqVwtvbG+np6WWOz8vLw+effw47OzvUrVsXFhYWeOedd3Dv3r1i41xdXSGRSIrdRo8eXc3Phsrj6uqKW7du4datW2JHISJSGqdPnwbw4j2SapZKFaaxY8ciLi4OwcHBCA4ORlxcHLy9vcsc//TpU1y4cAELFizAhQsXsH//fiQmJsLT07PE2KlTpyI5OVl+++mnn6rzqVAFevToAYlEgrCwMLGjEBEpjbCwMLRo0QJNmzYVO4ra0RI7gKKuXbuG4OBgREVFwcnJCQDwyy+/wNnZGQkJCaVegFAqlSIkJKTYsg0bNqBz5864fft2sRecvr4+zMzMqvdJkMLq16+Pjh07IiwsDBMnThQ7DhGRUggNDYWbm5vYMdSSyswwRUZGQiqVyssSAHTp0gVSqRQREREKrycjIwMSiQT16tUrttzX1xfGxsZo164d5syZU+HFX3NycpCZmVnsRlXL1dWVM0xERP/z4MEDXL58mbvjRKIyhSklJQUmJiYllpuYmCAlJUWhdTx//hzz5s3D2LFjYWRkJF8+btw47N69G2FhYViwYAECAgIwfPjwcte1bNky+bFUUqkUlpaWlXtCVCFXV1f8+++/SEpKEjsKEZHowsPDAfD4JbGIXpgWLVpU4oDrV29FHy+XSCQl7i8IQqnLX5WXl4fRo0ejsLAQmzdvLva9qVOnok+fPmjfvj1Gjx6Nffv24cSJE7hw4UKZ65s/fz4yMjLktzt37lTymVNFeBwTEdH/CwsLQ6tWrdCkSROxo6gl0Y9hmjlzZoWfSLOyskJ8fDzu379f4nsPHjyAqalpuffPy8vDqFGjkJSUhFOnThWbXSpNp06doK2tjRs3bqBTp06ljtHV1YWurm6566E3U69ePTg4OODUqVN49913xY5DRCSq0NBQzi6JSPTCZGxsDGNj4wrHOTs7IyMjA3/99Rc6d+4MADh37hwyMjLg4uJS5v2KytKNGzcQGhqKhg0bVvhYV65cQV5eHszNzRV/IlQt+vXrh19++QUFBQXQ1NQUOw4RkSiSkpJw9epVLFq0SOwoakv0XXKKatOmDTw8PDB16lRERUUhKioKU6dOxaBBg4p9Qq5169Y4cOAAACA/Px9vv/02oqOj4evri4KCAqSkpCAlJQW5ubkAgJs3b2LJkiWIjo7GrVu3EBQUhJEjR8LBwQFdu3YV5bnS//P09ERaWhqioqLEjkJEJJrDhw9DR0cHHh4eYkdRWypTmIAXn2Szs7ODu7s73N3dYW9vj507dxYbk5CQgIyMDADAf//9h8DAQPz333/o2LEjzM3N5beiT9bp6Ojg5MmT6NevH2xtbfHRRx/B3d0dJ06c4IyGEujcuTNMTEwQGBgodhQiItEEBgbCzc0NhoaGYkdRWxJBEASxQ9QGmZmZkEqlyMjIqPAYKaqcyZMnIyIiAteuXRM7ChFRjcvIyICxsTHWrVuHGTNmiB2n1lH097dKzTCRevL09MT169eRmJgodhQiohoXHByM/Px8DB48WOwoao2FiZRenz59oKenh8OHD4sdhYioxgUGBqJjx44835/IWJhI6dWtWxe9e/dmYSIitZOXl4egoKBSr4FKNYuFiVSCp6cnzpw5gwcPHogdhYioxpw+fRrp6encHacEWJhIJQwbNgwSiQR79+4VOwoRUY3ZtWsXWrRoAZlMJnYUtcfCRCqhUaNG8PDwgI+Pj9hRiIhqxPPnz7Fv3z6MHz9eoUuAUfViYSKVMX78eERGRuLmzZtiRyEiqnZ//PEHMjMzMW7cOLGjEFiYSIV4enrCwMAAu3btEjsKEVG18/HxwVtvvQUbGxuxoxBYmEiF6OvrY/jw4fDx8QHPt0pEtdmjR48QFBTE2SUlwsJEKmX8+PFITExETEyM2FGIiKrN3r17UVhYiNGjR4sdhf6HhYlUSq9evWBmZsaDv4moVvPx8UHfvn1hamoqdhT6HxYmUimampoYO3Ysdu3ahZycHLHjEBFVuRs3buDs2bMYP3682FHoJSxMpHLee+89PHjwAAEBAWJHISKqclu2bEGDBg0wYsQIsaPQS1iYSOXY2tqid+/e2Lx5s9hRiIiq1NOnT7F9+3ZMnjwZenp6Ysehl7AwkUqaMWMG/vzzT1y8eFHsKEREVcbPzw/p6emYPn262FHoFSxMpJI8PT1hYWHBWSYiqjUEQcCmTZvQv39/tGjRQuw49AoWJlJJWlpamDZtGnx8fJCRkSF2HCKiN3b+/HlcuHABM2bMEDsKlYKFiVTWlClTkJubi99//13sKEREb2zz5s2wsrKCh4eH2FGoFCxMpLIsLCwwbNgwbN68GYWFhWLHISJ6bWlpafDz88P06dOhqakpdhwqBQsTqbSPPvoI169fx5EjR8SOQkT02jZu3AgNDQ1MnjxZ7ChUBhYmUmndunVD165dsWzZMl5fjohUUnZ2NtavX4+pU6fC2NhY7DhUBhYmUnnz589HZGQkTp8+LXYUIqJK+/nnn5GVlYVPP/1U7ChUDonAP8urRGZmJqRSKTIyMmBkZCR2HLUiCAI6duwIc3NzBAcHix2HiEhhOTk5aNGiBdzd3bF9+3ax46glRX9/c4aJVJ5EIsG8efNw7NgxXLhwQew4REQK27lzJ5KTk/H555+LHYUqwBmmKsIZJnHl5+fD1tYWMpkMe/bsETsOEVGFCgoK0KZNG9jZ2fHamCLiDBOpFS0tLXz22WfYt28fEhMTxY5DRFShgIAA3LhxA/Pnzxc7CimAM0xVhDNM4nv+/DlatGiB3r17Y+fOnWLHISIqU0FBATp27AgzMzOEhISIHUetcYaJ1I6enh4WLFgAX19fxMfHix2HiKhMvr6+uHz5Mr799luxo5CCOMNURTjDpBzy8vLQpk0btG7dGn/88YfYcYiISsjJyZEfc8ljl8THGSZSS9ra2vj2229x5MgRnDlzRuw4REQlbNmyBXfu3OHskorhDFMV4QyT8igsLISjoyPq1KmDs2fPQiKRiB2JiAjAi98VLVu2xJAhQ/Drr7+KHYdQS2eYHj9+DG9vb0ilUkilUnh7eyM9Pb3c+0ycOBESiaTYrUuXLsXG5OTk4MMPP4SxsTHq1q0LT09P/Pfff9X4TKg6aWhoYPny5YiIiMDhw4fFjkNEJLd69WpkZWVh0aJFYkehSlKpwjR27FjExcUhODgYwcHBiIuLg7e3d4X38/DwQHJysvwWFBRU7PuzZs3CgQMH4Ofnh7NnzyI7OxuDBg1CQUFBdT0VqmZ9+/aFm5sbvvjiC/4ciUgppKamYvXq1fjwww/RpEkTseNQJWmJHUBR165dQ3BwMKKiouDk5AQA+OWXX+Ds7IyEhATY2tqWeV9dXV2YmZmV+r2MjAxs3boVO3fuRJ8+fQAAPj4+sLS0xIkTJ9CvX7+qfzJU7SQSCZYvXw4nJyds374dU6ZMETsSEam5RYsWQUtLi+ddUlEqM8MUGRkJqVQqL0sA0KVLF0ilUkRERJR737CwMJiYmMDGxgZTp05Famqq/HsxMTHIy8uDu7u7fJmFhQXat29f7npzcnKQmZlZ7EbKpXPnzhg3bhzmz5+PR48eiR2HiNTYhQsXsGXLFixcuBANGjQQOw69BpUpTCkpKTAxMSmx3MTEBCkpKWXer3///vD19cWpU6ewevVqnD9/Hr169UJOTo58vTo6Oqhfv36x+5mampa73mXLlsmPpZJKpbC0tHzNZ0bVadWqVcjJycGCBQvEjkJEaqqwsBAffPAB2rZti5kzZ4odh16T6IVp0aJFJQ7KfvUWHR0NAKV+2kkQhHI/BeXl5YWBAweiffv2GDx4MI4ePYrExEQcOXKk3FwVrXf+/PnIyMiQ3+7cuaPgM6aaZG5ujsWLF2PLli2IjY0VOw4RqaHffvsNUVFR2LRpE7S1tcWOQ69J9GOYZs6cidGjR5c7xsrKCvHx8bh//36J7z148ACmpqYKP565uTmaNWuGGzduAADMzMyQm5uLx48fF5tlSk1NhYuLS5nr0dXVha6ursKPS+KZOXMmtm7dig8++ABnz56FhobofycQkZp4/PgxPv/8c4wZMwY9e/YUOw69AdELk7GxMYyNjSsc5+zsjIyMDPz111/o3LkzAODcuXPIyMgot9i86uHDh7hz5w7Mzc0BADKZDNra2ggJCcGoUaMAAMnJybh8+TJWrlz5Gs+IlI22tjY2bdoEV1dX/P7775g4caLYkYhITXz99dd49uwZvv/+e7Gj0BtSmT+127RpAw8PD0ydOhVRUVGIiorC1KlTMWjQoGKfkGvdujUOHDgAAMjOzsacOXMQGRmJW7duISwsDIMHD4axsTGGDRsGAJBKpZg8eTI+/fRTnDx5ErGxsRg/fjzs7Ozkn5oj1dezZ0+MGTMGn332WYXn7iIiqgpxcXHYvHkzFi5cCAsLC7Hj0BtSmcIEvLhYoZ2dHdzd3eHu7g57e/sSV6VPSEhARkYGAEBTUxOXLl3CkCFDYGNjgwkTJsDGxgaRkZEwNDSU3+eHH37A0KFDMWrUKHTt2hX6+vo4fPgwNDU1a/T5UfX6/vvv8ezZM3zxxRdiRyGiWq6goADvv/8+WrdujY8//ljsOFQFeGmUKsJLo6iGTZs2YebMmTh58iR69eoldhwiqqVWr16NuXPn4vTp0+jWrZvYcagciv7+ZmGqIixMqqGwsBC9e/fGrVu3cOnSJRgYGIgdiYhqmYSEBHTs2BHTp0/HDz/8IHYcqkCtvJYc0ZvS0NDA1q1b8eDBA3z22WdixyGiWqagoADvvvsumjRpgqVLl4odh6oQCxOpnRYtWmDFihX48ccfcerUKbHjEFEtsnbtWkRFRWH79u3Q19cXOw5VIe6SqyLcJadainbNJSUl4dKlS8U+BEBE9Dq4K041cZccUTmKds2lpaXh888/FzsOEak47oqr/ViYSG29vGvu6NGjYschIhW2YsUK7oqr5ViYSK29//77GDBgAN555x3cvXtX7DhEpIL+/PNPfP311/jiiy94CoFajMcwVREew6S60tLS0KFDB1hbW+PkyZM8YSkRKezhw4dwcHBAs2bNEBoaCi0t0a84RpXEY5iIFGRsbIxdu3bhzJkz+Oabb8SOQ0QqQhAETJo0CU+ePMHu3btZlmo5FiYivLjW3MKFC7FkyRKEhoaKHYeIVMD69esRGBiIHTt2oEmTJmLHoWrGXXJVhLvkVF9BQQH69u2L69evIy4uDiYmJmJHIiIlFR0dDRcXF3z44YdYvXq12HHoDXCXHFElaWpqwtfXF/n5+ZgwYQIKCwvFjkRESigjIwOjR49Gx44dsWzZMrHjUA1hYSJ6ibm5OXx8fHDs2DEsWLBA7DhEpGQKCgowduxYPHz4EH5+ftDR0RE7EtUQFiaiV7i7u2PFihX47rvv4OfnJ3YcIlIiX3zxBYKDg+Hv748WLVqIHYdqEA/pJyrFnDlzEB8fj0mTJsHa2hoymUzsSEQkMl9fX6xcuRJr1qyBu7u72HGohvGg7yrCg75rn2fPnqFnz55ITk7G+fPnYWZmJnYkIhLJ+fPn0b17d4wZMwbbtm2DRCIROxJVER70TfSG6tSpgwMHDqCgoADDhw9HTk6O2JGISAT37t3D0KFD0alTJ2zZsoVlSU2xMBGVo3Hjxjhw4AAuXLiA999/H5yQJVIvz58/x7BhwyCRSLB//37o6uqKHYlEwsJEVAEnJyf8/PPP2L59O1asWCF2HCKqIYWFhZg4cSLi4+Nx8OBB7pZXczzom0gB77zzDm7evIn58+fD1NQU7777rtiRiKgaCYKAWbNmYe/evdi7dy8cHR3FjkQiY2EiUtCiRYuQkpKCqVOnolGjRhg0aJDYkYiomixfvhwbNmzAli1bMHz4cLHjkBLgLjkiBUkkEmzevBmenp4YNWoUIiMjxY5ERNVg69at+OKLL7B48WJMmzZN7DikJFiYiCpBU1MTu3btgqOjIwYOHIirV6+KHYmIqlBgYCDee+89TJ8+nWf7p2JYmIgqSU9PD4GBgWjSpAn69euHO3fuiB2JiKrAn3/+CS8vLwwdOhQbN27k6QOoGBYmotdQr149BAcHQ1NTE/369UNqaqrYkYjoDcTFxWHQoEFwcnKCr68vNDU1xY5ESoaFieg1WVhY4Pjx43j8+DF69+6NtLQ0sSMR0WuIj49Hnz590KpVKxw6dAh6enpiRyIlxMJE9AZsbGxw6tQppKamok+fPnj48KHYkYioEq5cuYLevXujadOmOH78OKRSqdiRSEmxMBG9oTZt2uDUqVO4e/cuSxORCrly5Qp69eqFxo0bIyQkBPXr1xc7EikxFiaiKtCuXTt5aerVqxcePHggdiQiKkd8fDxcXV1hbm6OEydOoGHDhmJHIiXHwkRURezs7BAWFob79+/Dzc0N9+/fFzsSEZUiLi4OvXr1QtOmTXHq1CkYGxuLHYlUAAsTURVq27YtwsLC8OjRI/To0QP//vuv2JGI6CV//vkn3Nzc0Lx5c5w4cQINGjQQOxKpCJUqTI8fP4a3tzekUimkUim8vb2Rnp5e7n0kEkmpt1WrVsnHuLq6lvj+6NGjq/nZUG3VunVrnD59Gvn5+XBxccGlS5fEjkREAA4fPow+ffrA3t4eJ06c4DFLVCkqVZjGjh2LuLg4BAcHIzg4GHFxcfD29i73PsnJycVu27Ztg0QiwYgRI4qNmzp1arFxP/30U3U+FarlWrVqhT///BMmJibo3r07zpw5I3YkIrW2bds2DBs2DAMGDMCxY8f4aTiqNJW5+O61a9cQHByMqKgoODk5AQB++eUXODs7IyEhAba2tqXez8zMrNjXhw4dgpubG1q0aFFsub6+fomxRG/CzMwM4eHhGDp0KPr27Qs/Pz8MHTpU7FhEakUQBCxbtgxffvklpk+fjo0bN/KklPRaVGaGKTIyElKpVF6WAKBLly6QSqWIiIhQaB3379/HkSNHMHny5BLf8/X1hbGxMdq1a4c5c+YgKyur3HXl5OQgMzOz2I3oVUZGRjh69CgGDx6MESNG4JdffhE7EpHaKCwsxMcff4wvv/wSixcvxubNm1mW6LWpzAxTSkoKTExMSiw3MTFBSkqKQuv47bffYGhoiOHDhxdbPm7cODRv3hxmZma4fPky5s+fj4sXLyIkJKTMdS1btgyLFy+u3JMgtaSrqws/Pz98/PHHeO+995CcnIwFCxbwOlVE1ej58+eYOHEi9u7diy1btmDatGliRyIVJ3phWrRoUYXF4/z58wBQ6i8YQRAU/sWzbds2jBs3rsRp76dOnSr/d/v27WFtbQ1HR0dcuHABnTp1KnVd8+fPx+zZs+VfZ2ZmwtLSUqEcpH40NTWxYcMGmJmZYcGCBbh+/Tq2bt2KOnXqiB2NqNa5d+8ehg0bhvj4eOzdu7fEH8lEr0P0wjRz5swKP5FmZWWF+Pj4Us9r8+DBA5iamlb4OGfOnEFCQgL8/f0rHNupUydoa2vjxo0bZRYmXV1d6OrqVrguoiISiQRfffUVbGxsMHHiRCQmJuLgwYNo0qSJ2NGIao3z589j6NChkEgkOHPmDBwdHcWORLWE6IXJ2NhYoZOGOTs7IyMjA3/99Rc6d+4MADh37hwyMjLg4uJS4f23bt0KmUyGDh06VDj2ypUryMvLg7m5ecVPgKiSRo0aBWtrawwZMgRvvfUWDhw4gC5duogdi0jl+fr6YvLkyXBwcMD+/fv5Hk5VSmUO+m7Tpg08PDwwdepUREVFISoqClOnTsWgQYOKfUKudevWOHDgQLH7ZmZmYu/evZgyZUqJ9d68eRNLlixBdHQ0bt26haCgIIwcORIODg7o2rVrtT8vUk8ODg44f/48WrZsiZ49e+K3334TOxKRyiooKMC8efMwfvx4jB49GqGhoSxLVOVUpjABL/56sLOzg7u7O9zd3WFvb4+dO3cWG5OQkICMjIxiy/z8/CAIAsaMGVNinTo6Ojh58iT69esHW1tbfPTRR3B3d8eJEyf4aQqqVqampjh58iS8vb0xceJEzJ49G/n5+WLHIlIpGRkZGDJkCFatWoU1a9Zg+/btJY5TJaoKEkEQBLFD1AaZmZmQSqXIyMiAkZGR2HFIhQiCgI0bN+KTTz5B165dsWvXLjRu3FjsWERKLyYmBl5eXkhLS4O/vz/69esndiRSQYr+/lapGSai2kgikeDDDz9EaGgobt68iQ4dOuDIkSNixyJSWoIgYP369XB2dka9evUQExPDskTVjoWJSEl0794dcXFx6NKlCwYNGoS5c+ciNzdX7FhESuXRo0cYNmwYPv74Y3zwwQf4888/0bJlS7FjkRpgYSJSIsbGxjh8+DBWr16NdevWoXv37khKShI7FpFSiIiIQMeOHXHmzBkEBgbihx9+4OldqMawMBEpGYlEgtmzZ+Ps2bN48OABHBwcsG/fPrFjEYmmoKAAy5YtQ48ePdC0aVPExcVh8ODBYsciNcPCRKSkOnfujNjYWLi7u2PkyJEYN24cHj58KHYsohqVmJiInj174ssvv8Tnn3+OsLAwXlWBRMHCRKTEpFIp/P398fvvvyMoKAjt2rXDoUOHxI5FVO0KCgrwww8/oEOHDkhJSUFYWBiWLl0KLa3i51t+8uQJ3nnnHRgYGMDc3ByrV6+Gq6srZs2aJU5wqrVYmIiUnEQigbe3N65evYrOnTtj6NChnG2iWq1oVmn27Nl47733cPHiRfTo0aPUsXPnzkVoaCgOHDiA48ePIywsDDExMTWcmNQBCxORijA3N8ehQ4c420QqraBQQOTNhzgUdxeRNx+ioPD/TwX46qxSeHg41q1bh7p165a6ruzsbGzduhXff/89+vbtCzs7O/z2228oKCioqadDaoSFiUiFlDbbNGbMGNy7d0/saEQVCr6cjG4rTmHML1H42C8OY36JQrcVpxB8ORnx8fHo0aOHQrNKRW7evInc3Fw4OzvLlzVo0EB+uayUlBSMGDECzZs3x44dO6rzqZEaYGEiUkFFs007d+7EyZMnYWtri9WrVyMvL0/saESlCr6cjPd9LiA543mx5SkZzzF9ZwxcvGbg0aNHFc4qvayiC1WYmZkhICAAPXv2fKPsRAALE5HKkkgkGD9+PBISEjBhwgR89tln6NixI8LCwsSORlRMQaGAxYevorR6IwAQIMBq2BxciI2rcFbpZa1atYK2tjaioqLkyx4/fozExMQ3D030ChYmIhVXv359bNy4ETExMahXrx7c3NwwZswY3L17V+xoRACAv5IelZhZeplEooHsQm3E3c2u1HoNDAwwefJkzJ07FydPnsTly5cxceJEaGjwVxtVPb6qiGqJojMg79ixA6dOnYKtrS1WrFiBZ8+eiR2N1FxqVtll6XXGvWzVqlXo0aMHPD090adPH3Tr1g0ymUz+/aFDh+LUqVNYv349vvjii0qvn6gICxNRLaKhoYEJEyYgISEBkydPxldffQUbGxts3boV+fn5YscjNWWoVajQOBNDvUqv28DAADt37sSTJ0+QkpKCuXPnFvv+wYMHcfv2bVy4cAHfffddpddPVISFiagWqlevHtatW4erV6+ia9eumDJlCuzs7LB///4KD5Qlqio5OTnYsGEDRvd2REFWGlDGa08CwFyqh87NG9RsQKJKYGEiqsWsra3h5+eH6OhoNG3aFCNGjECXLl0QGhoqdjSqxQoLC+Hj44PWrVtj1qxZGDRwIL57uxMkEgkkr4wt+nrh4LbQ1Hj1u0TKg4WJSA3IZDIcO3YMJ0+ehCAI6NWrF/r164ezZ8+KHY1qkYKCAgQEBMDBwQHe3t7o2LEj4uPjsW3bNni72eHH8Z1gJi2+281Mqocfx3eCR3vzKssRFhaGtWvXVtn6iABAInB+vkpkZmZCKpUiIyMDRkZGYschKpMgCNi/fz++/vprXL16Fd26dcP8+fPRv39/SCT8C58qLzc3Fz4+Pli5ciUSEhLg5uaGpUuXFjuhZJGCQgF/JT1CatZzmBi+2A3HmSUSk6K/vznDRKRmJBIJRowYgUuXLuHgwYPIy8vDwIED4eDgAD8/P15WghT25MkTrF27Fi1btsTkyZPRunVrREVF4dSpU6WWJQDQ1JDAuWVDDOnYGM4tG7IskcpgYSJSUxoaGhgyZAgiIyNx6tQpmJiYYMyYMbC1tcXPP/+M588r/xFvUg+PHj3CkiVL0KxZM8yZMwe9evXC5cuXcfDgQTg5OYkdj6hasDARqTmJRAI3NzccP34c0dHRcHBwwPTp02FpaYl58+YhKSlJ7IikJGJiYjB58mQ0adIEy5Ytw5gxY3Dz5k389ttvaNeundjxiKoVCxMRyclkMuzduxcJCQkYP348tmzZgpYtW2LQoEEICgpCYaFi59Oh2uPZs2f47bff4OTkBEdHR4SEhOCrr77Cv//+iw0bNqBZs2ZiRySqESxMRFSCtbU1fvjhB9y9exe//PIL7t27h4EDB6JVq1ZYtWoV0tLSxI5I1ezmzZv47LPP0KRJE0ycOBH169fHoUOHkJSUhC+++AImJiZiRySqUfyUXBXhp+SoNhMEAX/99Rc2b94Mf39/CIKAQYMGYdy4cRg4cCB0dXXFjkhVID09Hfv27YOPjw/Cw8NRv359TJo0CdOmTYO1tbXY8YiqhaK/v1mYqggLE6mLtLQ07Ny5E76+vvIL/o4cORLjxo1D9+7deeFTFZOTk4OgoCD4+Pjgjz/+QH5+Pnr37o3x48fj7bffhr6+vtgRiaoVC1MNY2EidXTt2jX4+vrC19cXt27dgqWlJcaNG4fRo0fD3t6e53VSUvn5+fjzzz+xa9cu7NmzB+np6ejUqZP8Z2dhYSF2RKIaw8JUw1iYSJ0JgoCIiAj4+Phgz549ePToEZo1awZPT094enqiR48e0NHRETumWsvKysKxY8cQGBiIoKAgPHz4EM2aNcO4ceMwbtw4tG3bVuyIRKJgYaphLExEL+Tm5iIsLAyHDx9GYGAgbt++DSMjI3h4eMDT0xP9+/dHgwa8yGpNuHPnjvznEBoaitzcXNjZ2cHT0xODBw/GW2+9xV2opPZYmGoYCxNRSYIgID4+HoGBgQgMDER0dDQ0NTXRpUsXuLq6ws3NDc7OzjxOpoo8evQIp0+fRlhYGE6dOoVLly5BS0sLPXv2lJek5s2bix2TSKmwMNUwFiaiit29exd//PEHTpw4gbCwMKSlpUFHRwdOTk5wdXWFq6srnJ2dUadOHbGjqoTHjx/jzJkzCA0NRVhYGC5evAhBEGBlZQVXV1f069cPHh4eqFevnthRiZQWC1MNY2EiqpzCwkJcvXoVYWFhCA0NRXh4OB4+fAgdHR106tQJjo6OkMlkkMlkaNOmDbS0tMSOLKpnz54hPj4eMTExiImJQXR0NC5dugRBENC0aVO4ubnJS6eVlZXYcYlURq0sTEuXLsWRI0cQFxcHHR0dpKenV3gfQRCwePFi/Pzzz3j8+DGcnJywadOmYqfxz8nJwZw5c7B79248e/YMvXv3xubNm9GkSROFs7EwEb2ZwsJCXLlyBaGhoTh37hxiYmKQmJgIQRBQp04ddOjQQV6gOnToAGtraxgaGoodu1o8fPgQCQkJiIuLQ3R0NGJiYnDlyhUUFBRAS0sLdnZ2kMlkcHZ2hpubG3ezEb2BWlmYFi5ciHr16uG///7D1q1bFSpMK1aswNKlS7Fjxw7Y2Njg22+/xenTp5GQkCB/s33//fdx+PBh7NixAw0bNsSnn36KR48eISYmBpqamgplY2EiqnqZmZmIi4srNqtSVKIAwMLCAjY2NvKbra0tbGxs0Lx5c2hra4ucvnxPnz7F33//jcTERPktISEBiYmJePToEQBAW1tbXo6KbnZ2djxRKFEVqpWFqciOHTswa9asCguTIAiwsLDArFmz8PnnnwN4MZtkamqKFStWYNq0acjIyECjRo2wc+dOeHl5AQDu3bsHS0tLBAUFoV+/fgplYmEiqhlZWVm4du1aiZKRmJiIp0+fAnhxQWFjY2NYWFjA3Nwc5ubmxf5tZmYGIyMjGBoawtDQEAYGBm902gNBEJCTk4OsrCxkZWUhOzsb6enpSE5Olt/u3btX7N8vv3/Vr19fXvaKip+1tTVat27NckRUzRT9/V2rDwpISkpCSkoK3N3d5ct0dXXRs2dPREREYNq0aYiJiUFeXl6xMRYWFmjfvj0iIiLKLEw5OTnIycmRf52ZmVl9T4SI5AwNDdG5c2d07ty52HJBEHDv3j0kJCQgKSmpWEm5cuUKTpw4gZSUFOTl5ZW6Xh0dHXl5MjQ0hLa2NjQ0NKChoQFNTU0IgoDCwkL57fnz58jOzpYXpPz8/FLXW6dOnWKlrV27dvLy1qpVK9jY2KBhw4Y8ySeRkqvVhSklJQUAYGpqWmy5qakp/v33X/kYHR0d1K9fv8SYovuXZtmyZVi8eHEVJyai1yWRSNC4cWM0bty4zDGFhYV4+PAh7t+/L58NKio8r/47Pz8fhYWFKCgoQEFBgbw8Fd2KCtbLJevlr6VSKczMzCCVSlmGiGoB0QvTokWLKiwe58+fh6Oj42s/xqtvVoIgVPgGVtGY+fPnY/bs2fKvMzMzYWlp+doZiaj6aWhooFGjRmjUqJHYUYhIxYhemGbOnInRo0eXO+Z1PyJrZmYG4MUskrm5uXx5amqqfNbJzMwMubm5ePz4cbFZptTUVLi4uJS5bl1dXR5bQEREpCZEL0zGxsYwNjaulnU3b94cZmZmCAkJgYODA4AXl20IDw/HihUrAAAymQza2toICQnBqFGjAADJycm4fPkyVq5cWS25iIiISLWIXpgq4/bt23j06BFu376NgoICxMXFAQBatWoFAwMDAEDr1q2xbNkyDBs2DBKJBLNmzcJ3330Ha2trWFtb47vvvoO+vj7Gjh0LAJBKpZg8eTI+/fRTNGzYEA0aNMCcOXNgZ2eHPn36iPVUiYiISImoVGH6+uuv8dtvv8m/Lpo1Cg0NhaurKwAgISEBGRkZ8jGfffYZnj17hhkzZshPXHn8+PFiJ7z74YcfoKWlhVGjRslPXLljxw6Fz8FEREREtZtKnodJGfE8TERERKpH0d/fGjWYiYiIiEglsTARERERVYCFiYiIiKgCLExEREREFWBhIiIiIqoACxMRERFRBViYiIiIiCrAwkRERERUARYmIiIiogqo1KVRlFnRCdMzMzNFTkJERESKKvq9XdGFT1iYqkhWVhYAwNLSUuQkREREVFlZWVmQSqVlfp/XkqsihYWFuHfvHgwNDSGRSMSOo3IyMzNhaWmJO3fu8Fp8VYDbs2pxe1Ytbs+qxe35ZgRBQFZWFiwsLKChUfaRSpxhqiIaGhpo0qSJ2DFUnpGREf+Hr0LcnlWL27NqcXtWLW7P11fezFIRHvRNREREVAEWJiIiIqIKsDCRUtDV1cXChQuhq6srdpRagduzanF7Vi1uz6rF7VkzeNA3ERERUQU4w0RERERUARYmIiIiogqwMBERERFVgIWJiIiIqAIsTCSapUuXwsXFBfr6+qhXr55C9xEEAYsWLYKFhQXq1KkDV1dXXLlypXqDqojHjx/D29sbUqkUUqkU3t7eSE9PL/c+EydOhEQiKXbr0qVLzQRWMps3b0bz5s2hp6cHmUyGM2fOlDs+PDwcMpkMenp6aNGiBbZs2VJDSVVDZbZnWFhYidehRCLB9evXazCxcjp9+jQGDx4MCwsLSCQSHDx4sML78LVZPViYSDS5ubkYOXIk3n//fYXvs3LlSqxZswYbN27E+fPnYWZmhr59+8qv5afOxo4di7i4OAQHByM4OBhxcXHw9vau8H4eHh5ITk6W34KCgmogrXLx9/fHrFmz8OWXXyI2Nhbdu3dH//79cfv27VLHJyUlYcCAAejevTtiY2PxxRdf4KOPPkJAQEANJ1dOld2eRRISEoq9Fq2trWsosfJ68uQJOnTogI0bNyo0nq/NaiQQiWz79u2CVCqtcFxhYaFgZmYmLF++XL7s+fPnglQqFbZs2VKNCZXf1atXBQBCVFSUfFlkZKQAQLh+/XqZ95swYYIwZMiQGkio3Dp37ixMnz692LLWrVsL8+bNK3X8Z599JrRu3brYsmnTpgldunSptoyqpLLbMzQ0VAAgPH78uAbSqS4AwoEDB8odw9dm9eEME6mMpKQkpKSkwN3dXb5MV1cXPXv2REREhIjJxBcZGQmpVAonJyf5si5dukAqlVa4bcLCwmBiYgIbGxtMnToVqamp1R1XqeTm5iImJqbY6woA3N3dy9x2kZGRJcb369cP0dHRyMvLq7asquB1tmcRBwcHmJubo3fv3ggNDa3OmLUWX5vVh4WJVEZKSgoAwNTUtNhyU1NT+ffUVUpKCkxMTEosNzExKXfb9O/fH76+vjh16hRWr16N8+fPo1evXsjJyanOuEolLS0NBQUFlXpdpaSklDo+Pz8faWlp1ZZVFbzO9jQ3N8fPP/+MgIAA7N+/H7a2tujduzdOnz5dE5FrFb42q4+W2AGodlm0aBEWL15c7pjz58/D0dHxtR9DIpEU+1oQhBLLagtFtydQcrsAFW8bLy8v+b/bt28PR0dHNGvWDEeOHMHw4cNfM7VqquzrqrTxpS1XV5XZnra2trC1tZV/7ezsjDt37uD7779Hjx49qjVnbcTXZvVgYaIqNXPmTIwePbrcMVZWVq+1bjMzMwAv/oIyNzeXL09NTS3xF1Vtoej2jI+Px/3790t878GDB5XaNubm5mjWrBlu3LhR6ayqytjYGJqamiVmP8p7XZmZmZU6XktLCw0bNqy2rKrgdbZnabp06QIfH5+qjlfr8bVZfViYqEoZGxvD2Ni4WtbdvHlzmJmZISQkBA4ODgBeHC8RHh6OFStWVMtjik3R7ens7IyMjAz89ddf6Ny5MwDg3LlzyMjIgIuLi8KP9/DhQ9y5c6dYIa3tdHR0IJPJEBISgmHDhsmXh4SEYMiQIaXex9nZGYcPHy627Pjx43B0dIS2tna15lV2r7M9SxMbG6tWr8OqwtdmNRLziHNSb//++68QGxsrLF68WDAwMBBiY2OF2NhYISsrSz7G1tZW2L9/v/zr5cuXC1KpVNi/f79w6dIlYcyYMYK5ubmQmZkpxlNQKh4eHoK9vb0QGRkpREZGCnZ2dsKgQYOKjXl5e2ZlZQmffvqpEBERISQlJQmhoaGCs7Oz0LhxY7Xbnn5+foK2trawdetW4erVq8KsWbOEunXrCrdu3RIEQRDmzZsneHt7y8f/888/gr6+vvDJJ58IV69eFbZu3Spoa2sL+/btE+spKJXKbs8ffvhBOHDggJCYmChcvnxZmDdvngBACAgIEOspKI2srCz5eyMAYc2aNUJsbKzw77//CoLA12ZNYmEi0UyYMEEAUOIWGhoqHwNA2L59u/zrwsJCYeHChYKZmZmgq6sr9OjRQ7h06VLNh1dCDx8+FMaNGycYGhoKhoaGwrhx40p8TPvl7fn06VPB3d1daNSokaCtrS00bdpUmDBhgnD79u2aD68ENm3aJDRr1kzQ0dEROnXqJISHh8u/N2HCBKFnz57FxoeFhQkODg6Cjo6OYGVlJfz44481nFi5VWZ7rlixQmjZsqWgp6cn1K9fX+jWrZtw5MgREVIrn6JTLrx6mzBhgiAIfG3WJIkg/O9oMCIiIiIqFU8rQERERFQBFiYiIiKiCrAwEREREVWAhYmIiIioAixMRERERBVgYSIiIiKqAAsTERERUQVYmIiIiIgqwMJEREREVAEWJiIiIqIKsDAREZVh9+7d0NPTw927d+XLpkyZAnt7e2RkZIiYjIhqGq8lR0RUBkEQ0LFjR3Tv3h0bN27E4sWL8euvvyIqKgqNGzcWOx4R1SAtsQMQESkriUSCpUuX4u2334aFhQXWrVuHM2fOsCwRqSHOMBERVaBTp064cuUKjh8/jp49e4odh4hEwGOYiIjKcezYMVy/fh0FBQUwNTUVOw4RiYQzTEREZbhw4QJcXV2xadMm+Pn5QV9fH3v37hU7FhGJgMcwERGV4tatWxg4cCDmzZsHb29vtG3bFm+99RZiYmIgk8nEjkdENYwzTEREr3j06BG6du2KHj164KeffpIvHzJkCHJychAcHCxiOiISAwsTERERUQV40DcRERFRBViYiIiIiCrAwkRERERUARYmIiIiogqwMBERERFVgIWJiIiIqAIsTEREREQVYGEiIiIiqgALExEREVEFWJiIiIiIKsDCRERERFQBFiYiIiKiCvwfBDAQESziNh8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'equilibrium distribution for $N=3$ equal charges')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plotcharges(θ⃗)\n", + "title(L\"equilibrium distribution for $N=3$ equal charges\")" + ] + }, + { + "cell_type": "markdown", + "id": "a07ba333", + "metadata": {}, + "source": [ + "Next, we'll create an interactive animation of the Newton iterations and the Thomson solutions using Julia's [Interact.jl package](https://github.com/JuliaGizmos/Interact.jl), which allows us to set up \"slider\" controls for the number of Newton steps, the number of charges, and the values of the charges $q_1$ and $q_2$:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "eb33cbec", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "1165d239-2351-4f7a-9e3a-6d8da5be731f" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "using Interact" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "581bbd4e", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Newton iterations" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 16, + "min": 0, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "2642626295010531411", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/61f613675da75f539731913573998184b30434d8-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/58abda19fb319e300ad7b22e44bebba074b4bb4d-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/624890bd43acdf6da9d12dfb47a1c50d9dc9f836-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0\",\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"2642626295010531411\",\"id\":\"7118009537228556294\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"2642626295010531411\",\"id\":\"1567206145029371058\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(0)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"2642626295010531411\",\"id\":\"7118009537228556294\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"2642626295010531411\",\"id\":\"1567206145029371058\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "7118009537228556294", + "sync": false, + "value": 0 + }, + "index": { + "id": "1567206145029371058", + "sync": true, + "value": 0 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "q₁" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 5, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "16934085386150246248", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/61f613675da75f539731913573998184b30434d8-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/58abda19fb319e300ad7b22e44bebba074b4bb4d-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/624890bd43acdf6da9d12dfb47a1c50d9dc9f836-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"1.0\",\"2.0\",\"4.0\",\"8.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"16934085386150246248\",\"id\":\"6593803308920195287\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"16934085386150246248\",\"id\":\"5194272591717699012\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"16934085386150246248\",\"id\":\"6593803308920195287\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"16934085386150246248\",\"id\":\"5194272591717699012\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "6593803308920195287", + "sync": false, + "value": 0 + }, + "index": { + "id": "5194272591717699012", + "sync": true, + "value": 2 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "q₂" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 5, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "8660176182996548301", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/61f613675da75f539731913573998184b30434d8-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/58abda19fb319e300ad7b22e44bebba074b4bb4d-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/624890bd43acdf6da9d12dfb47a1c50d9dc9f836-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.1\",\"1.0\",\"2.0\",\"4.0\",\"8.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"8660176182996548301\",\"id\":\"743243585442178168\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"8660176182996548301\",\"id\":\"11940918377296073908\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"8660176182996548301\",\"id\":\"743243585442178168\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"8660176182996548301\",\"id\":\"11940918377296073908\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "743243585442178168", + "sync": false, + "value": 0 + }, + "index": { + "id": "11940918377296073908", + "sync": true, + "value": 2 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "Number of particles" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 10, + "min": 2, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "7714821129390954338", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/61f613675da75f539731913573998184b30434d8-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/58abda19fb319e300ad7b22e44bebba074b4bb4d-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/624890bd43acdf6da9d12dfb47a1c50d9dc9f836-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"7714821129390954338\",\"id\":\"12193024432175028534\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"7714821129390954338\",\"id\":\"3933837571212610662\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(2)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"7714821129390954338\",\"id\":\"12193024432175028534\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"7714821129390954338\",\"id\":\"3933837571212610662\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "12193024432175028534", + "sync": false, + "value": 0 + }, + "index": { + "id": "3933837571212610662", + "sync": true, + "value": 3 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "13763013188917041949", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "3612878775601882862", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "13763013188917041949", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Newton iterations\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 16, :min => 0, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{Observables.AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing), \"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "0, nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/pVyN2/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000010d75d7b0, Task (runnable) @0x000000010d75d7b0), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0\\\",\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"2642626295010531411\\\",\\\"id\\\":\\\"7118009537228556294\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"2642626295010531411\\\",\\\"id\\\":\\\"1567206145029371058\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(0)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"2642626295010531411\\\",\\\"id\\\":\\\"7118009537228556294\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"2642626295010531411\\\",\\\"id\\\":\\\"1567206145029371058\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"q₁\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 5, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{Observables.AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing), \"index\" => (Observable{Any} with 2 listeners. Value:\n", + "2, nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/pVyN2/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000010bc2e230, Task (runnable) @0x000000010bc2e230), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"1.0\\\",\\\"2.0\\\",\\\"4.0\\\",\\\"8.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"16934085386150246248\\\",\\\"id\\\":\\\"6593803308920195287\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"16934085386150246248\\\",\\\"id\\\":\\\"5194272591717699012\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"16934085386150246248\\\",\\\"id\\\":\\\"6593803308920195287\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"16934085386150246248\\\",\\\"id\\\":\\\"5194272591717699012\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"q₂\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 5, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{Observables.AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing), \"index\" => (Observable{Any} with 2 listeners. Value:\n", + "2, nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/pVyN2/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000010dc15660, Task (runnable) @0x000000010dc15660), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.1\\\",\\\"1.0\\\",\\\"2.0\\\",\\\"4.0\\\",\\\"8.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"8660176182996548301\\\",\\\"id\\\":\\\"743243585442178168\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"8660176182996548301\\\",\\\"id\\\":\\\"11940918377296073908\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"8660176182996548301\\\",\\\"id\\\":\\\"743243585442178168\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"8660176182996548301\\\",\\\"id\\\":\\\"11940918377296073908\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"Number of particles\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 10, :min => 2, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{Observables.AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing), \"index\" => (Observable{Int64} with 2 listeners. Value:\n", + "3, nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/pVyN2/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x000000010dc15e40, Task (runnable) @0x000000010dc15e40), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"7714821129390954338\\\",\\\"id\\\":\\\"12193024432175028534\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"7714821129390954338\\\",\\\"id\\\":\\\"3933837571212610662\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(2)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"7714821129390954338\\\",\\\"id\\\":\\\"12193024432175028534\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"7714821129390954338\\\",\\\"id\\\":\\\"3933837571212610662\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable{Node{WebIO.DOM}} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Figure(PyObject
    )], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 9, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "1165d239-2351-4f7a-9e3a-6d8da5be731f" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "fig = figure()\n", + "@manipulate for iterations = slider(0:16, value=0, label=\"Newton iterations\"),\n", + " q₁ in slider([0.1,1,2,4,8], value=1, label=\"q₁\"),\n", + " q₂ in slider([0.1,1,2,4,8], value=1, label=\"q₂\"),\n", + " N in slider(2:10, value=3, label=\"Number of particles\")\n", + " n = N-1\n", + " θ⃗ = [1:n;] ./ n\n", + " q⃗ = ones(n)\n", + " q⃗[1] = q₁\n", + " if n > 1\n", + " q⃗[2] = q₂\n", + " end\n", + " for iteration = 1:iterations\n", + " f⃗ = forces(θ⃗, q⃗)\n", + " J = ForwardDiff.jacobian(θ⃗ -> forces(θ⃗, q⃗), θ⃗)\n", + " θ⃗ = θ⃗ - J \\ f⃗\n", + " end\n", + " f⃗ = forces(θ⃗, q⃗)\n", + " withfig(fig) do\n", + " plotcharges(θ⃗)\n", + " title(\"$N particles, forces = $(round.(f⃗, sigdigits=3))\")\n", + " end\n", + "end" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "4956013bfa3e491482bd44732419847f", + "lastKernelId": "1165d239-2351-4f7a-9e3a-6d8da5be731f" + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notes/Notice of Video Recording 18_06 S23.docx b/notes/Notice of Video Recording 18_06 S23.docx new file mode 100644 index 00000000..0ba91530 Binary files /dev/null and b/notes/Notice of Video Recording 18_06 S23.docx differ diff --git a/notes/ODEs.ipynb b/notes/ODEs.ipynb new file mode 100644 index 00000000..4defb650 --- /dev/null +++ b/notes/ODEs.ipynb @@ -0,0 +1,1618 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra, PyPlot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Review: An easy scalar ODE\n", + "\n", + "Suppose we have the first-order (first-derivative only) [ordinary differential equation (ODE)](https://en.wikipedia.org/wiki/Ordinary_differential_equation):\n", + "\n", + "$$\n", + "\\frac{dx}{dt} = a x\n", + "$$\n", + "\n", + "where $x$ and $a$ are *scalars*. Even if you haven't taken 18.03, you should be able to solve this by inspection, using only elementary calculus: the **only functions whose derivatives are a multiple of themselves are exponentials**:\n", + "\n", + "$$\n", + "x(t) = e^{at} c\n", + "$$\n", + "\n", + "for *any* constant $c$. To get $c$, we need to supply some more information, typically an [initial condition](https://en.wikipedia.org/wiki/Initial_value_problem): we tell you what $x(0)$ is. By inspection, $c = x(0)$, so\n", + "\n", + "$$\n", + "x(t) = e^{at} x(0)\n", + "$$\n", + "\n", + "## Generalization to matrices?\n", + "\n", + "Now, we would like to generalize this to a **system of ODEs**, where **x is a vector** and $a$ is **replaced by a matrix A**: how do we solve:\n", + "\n", + "$$\n", + "\\frac{d\\vec{x}}{dt} = A\\vec{x}\n", + "$$\n", + "\n", + "given $\\vec{x}(0)$? The trick will be to **use eigenvectors**, for which the matrix **becomes a single number λ** and the problem turns back into the simple scalar problem above.\n", + "\n", + "As you might already guess, **each eigenvector** will be multiplied by $e^{\\lambda t}$, so the eigenvalues will tell us whether the solutions are exponentially growing or decaying … or oscillating if λ is complex." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exponential growth and decay\n", + "\n", + "Consider the following system of two coupled first-order ordinary differential equations (ODEs): $$\\frac{d\\vec{x}}{dt} = A\\vec{x}$$ for the 2×2 matrix:\n", + "\n", + "$$\n", + "A = \\begin{pmatrix}\n", + "0.1 & -0.1 \\\\\n", + "0.5 & -1\n", + "\\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 0.1 -0.1\n", + " 0.5 -1.0" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 0.1 -0.1\n", + " 0.5 -1 ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To start with, let's \"blindly\" just plot the \"brute-force\" numerical solutions (never mind yet how we get these… we'll come back to it later) for an initial condition $\\vec{x}(0) = (1,10)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHGCAYAAACM+3qyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfYklEQVR4nO3dd3hTZf8G8DtN06QbSiltGW0ZInsVpAypYtki8hMVtGwHU0BkiGxlqYiioogM31eEFxkvvsiossQCAgVRKCDQAdJSRumgK22e3x/HhIamK016kvT+XFeuJCfnPOf75CTN3TMVQggBIiIiIjvnJHcBRERERJbAUENEREQOgaGGiIiIHAJDDRERETkEhhoiIiJyCAw1RERE5BAYaoiIiMghMNQQERGRQ2CoISIiIofAUENkJfPmzYNCoTBr2vPnz2PevHmIj48v8trw4cMRHBxcseKs7O7du3jxxRfh5+cHhUKBAQMGmByvoKAAy5cvR69evVCnTh24ubmhSZMmmDFjBu7du1epNVtLRT4HxSnPZ0Cr1WLVqlUICwuDt7c3XF1dDe/xnTt3iowfHh4OhUIBhUIBJycneHp6omHDhhg0aBC+//576HS6ItMEBwcbpnn4Fh4eXsHeEpWds9wFEFFR58+fx/z58xEeHl7kx2v27Nl444035CmsjBYuXIjt27dj7dq1aNCgAXx8fEyOl52djXnz5mHw4MEYPXo0fH19ERMTg3fffRc//PADTp48CVdX10qu3nFkZWWhT58+OHLkCF599VXMnj0brq6uOHr0KD744ANs3LgRUVFRaNy4sdF09evXx7fffgsAuH//PuLi4rBjxw4MGjQIXbt2xQ8//ABvb2+jaTp37owPPvigSA1eXl7W6yDRQxhqiOxMgwYN5C6hVH/++ScaNGiAl156qcTxXF1dERcXhxo1ahiGhYeHo169ehg0aBC2bt2Kl19+2drlOqzJkyfj0KFD2LRpE1544QXD8CeeeALPPfccOnTogP/7v//D77//DqVSaXjd1dUVHTt2NGpr9OjRWLduHUaOHIlXX30VmzdvNnq9WrVqRaYhqmzc/ERUyK1bt/Dqq6+ibt26UKvVqFmzJjp37oyffvrJaLy1a9eiVatW0Gg08PHxwbPPPovY2NhS21coFJg3b16R4cHBwRg+fDgAYP369Rg0aBAA6cdHvxp//fr1AExvesjJycHMmTMREhICFxcX1K5dG+PGjSuyCSc4OBj9+vXDnj170LZtW7i6uuLRRx/F2rVry/T+3L17F2PHjkXt2rXh4uKC+vXrY9asWcjNzQUAxMfHQ6FQ4KeffkJsbKyh9oMHD5psT6lUGgUavQ4dOgAArl27VmpNOp0OK1euROvWreHq6mr4cd25c6fROMuWLcOjjz4KtVoNPz8/DB06FNevXy/y/uiXQ2Hh4eFGm1EOHjwIhUKBf//735gyZQr8/f3h6uqKbt264fTp06XWDACbN29GWFgY3N3d4eHhgZ49e5qcdv369WjcuDHUajWaNGmCb775pkztJycnY+3atejZs6dRoNF75JFHMH36dJw7dw47duwoU5sjRoxAnz59sGXLFiQkJJRpmsLK+v0iMhdDDVEhkZGR2LFjB+bMmYN9+/ZhzZo1eOqpp4z2PVi8eDFGjRqFZs2aYdu2bfj4449x9uxZhIWF4a+//qpwDX379sWiRYsAAJ999hmOHj2Ko0ePom/fvibHF0JgwIAB+OCDDxAZGYldu3ZhypQp2LBhA5588klD4ND7/fff8eabb2Ly5Mn473//i5YtW2LUqFE4fPhwiXXl5OTgiSeewDfffIMpU6Zg165dePnll7Fs2TIMHDgQABAQEICjR4+iTZs2qF+/vqH2tm3blus92L9/PwCgWbNmpY47fPhwvPHGG2jfvj02b96MTZs2oX///kb7I40ZMwbTp09HREQEdu7ciYULF2LPnj3o1KkTbt++Xa7aCnv77bdx9epVrFmzBmvWrMGNGzcQHh6Oq1evljjdokWLMHjwYDRt2hT/+c9/8K9//QsZGRno2rUrzp8/bxhv/fr1GDFiBJo0aYKtW7finXfewcKFCw3vT0kOHDiA/Pz8YvdnAmB4LSoqqkz9BYD+/ftDCIFffvnFaLgQAvn5+UVuQgjDOGX5fhFViCAiAw8PDzFp0qRiX09NTRWurq6iT58+RsMTExOFWq0WQ4YMMQybO3euePgrBkDMnTu3SLtBQUFi2LBhhudbtmwRAMSBAweKjDts2DARFBRkeL5nzx4BQCxbtsxovM2bNwsAYvXq1Ubz0Wg0IiEhwTAsOztb+Pj4iNdee63YfgshxBdffCEAiP/85z9Gw5cuXSoAiH379hmGdevWTTRr1qzE9opz/fp1UatWLREaGioKCgpKHPfw4cMCgJg1a1ax48TGxgoAYuzYsUbDjx8/LgCIt99+2zDs4eWg161bN9GtWzfD8wMHDggAom3btkKn0xmGx8fHC5VKJUaPHm0Y9vDnIDExUTg7O4sJEyYYzSMjI0P4+/uL559/XgghREFBgQgMDCx2HoU/A6YsWbJEABB79uwpdpzs7GwBQPTu3duoryUtu927dwsAYunSpYZhQUFBAoDJ28KFCw3jlfb9IqoorqkhKqRDhw5Yv3493n33XRw7dgxardbo9aNHjyI7O7vIJoq6deviySefxM8//1yJ1Ur0/7U/XNOgQYPg7u5epKbWrVujXr16hucajQaPPPJIqZsT9u/fD3d3dzz33HNGw/XztUTf7969iz59+kAIgc2bN8PJqeQ/Ubt37wYAjBs3rthxDhw4YFSnXocOHdCkSZMK1T1kyBCjI5uCgoLQqVMnwzxN2bt3L/Lz8zF06FCjNRoajQbdunUzbKq7ePEibty4Uew8LKk8R2eJQmteCuvSpQtOnDhR5DZq1CjDOKV9v4gqiqGGqJDNmzdj2LBhWLNmDcLCwuDj44OhQ4ciOTkZAAyryQMCAopMGxgYKMtq9Dt37sDZ2Rk1a9Y0Gq5QKODv71+kJlP7sKjVamRnZ5c6H39//yI/gH5+fnB2dq5w31NTUxEREYG///4bUVFRqF+/fqnT3Lp1C0qlEv7+/iXWDVhnmZmar6n3vLCbN28CANq3bw+VSmV027x5s2FzmL6N4uZRGn1wjYuLK3Yc/Wt169YttT09ffgNDAw0Gu7t7Y3Q0NAit8Lve2nfL6KKYqghKsTX1xcrVqxAfHw8EhISsHjxYmzbts3wX74+ECQlJRWZ9saNG/D19S2xfbVaXWQfFwAV+mGtUaMG8vPzcevWLaPhQggkJyeXWlN55nPz5s0i/6mnpKQgPz+/QvNJTU3FU089hbi4OERFRaFly5Zlmq5mzZooKCgo8UexPMtMo9GYXD7F7Xdjar7Jyckmg6Oefn7ff/+9yTUbx48fN6q7uHmU5oknnoCzs3OJOwHrX4uIiCi1Pb2dO3dCoVDg8ccfL/M0eqV9v4gqiqGGqBj16tXD+PHjERERgZiYGABAWFgYXF1d8e9//9to3OvXr2P//v3o3r17iW0GBwfj7NmzRsP279+PzMxMo2FqtRoASl17AsAwz4dr2rp1K+7fv19qTWXVvXt3ZGZmFvmR1B+NY+589IHm6tWr2LdvH9q0aVPmaXv37g0AWLVqVbHjPPnkkwCKvj8nTpxAbGysUd2mls+lS5dw8eJFk21/9913RiEvISEB0dHRJZ5wrmfPnnB2dsaVK1dMrtkIDQ0FADRu3BgBAQHFzqM0/v7+GDlyJPbu3Vvk8Gt9v5YuXYpmzZqVuDNxYevWrcPu3bsxePBgo02Y5jD1/SKqKJ6nhugfaWlpeOKJJzBkyBA8+uij8PT0xIkTJ7Bnzx7D0T3VqlXD7Nmz8fbbb2Po0KEYPHgw7ty5g/nz50Oj0WDu3LklziMyMhKzZ8/GnDlz0K1bN5w/fx6ffvppkROZNW/eHACwevVqeHp6QqPRICQkxOQagIiICPTs2RPTp09Heno6OnfujLNnz2Lu3Llo06YNIiMjLfL+DB06FJ999hmGDRuG+Ph4tGjRAkeOHMGiRYvQp08fPPXUU+VuMzs723Ao84oVK5Cfn49jx44ZXq9Zs2aJ5+Xp2rUrIiMj8e677+LmzZvo168f1Go1Tp8+DTc3N0yYMAGNGzfGq6++ipUrV8LJyQm9e/dGfHw8Zs+ejbp162Ly5MmG9iIjI/Hyyy9j7Nix+L//+z8kJCRg2bJlRTbt6aWkpODZZ5/FK6+8grS0NMydOxcajQYzZ84stubg4GAsWLAAs2bNwtWrV9GrVy9Ur14dN2/exG+//QZ3d3fMnz8fTk5OWLhwIUaPHm2Yx7179zBv3rwybX4CgOXLl+PixYt4+eWXcfjwYTz99NNQq9U4duwYPvjgA3h6emLr1q1G56jRLxf9csjOzsbVq1exY8cO/O9//0O3bt3wxRdfFJnXvXv3jJadnlqtRps2bcr0/SKqMDn3UiayJTk5OeL1118XLVu2FF5eXsLV1VU0btxYzJ07V9y/f99o3DVr1oiWLVsKFxcX4e3tLZ555hlx7tw5o3FMHf2Um5srpk2bJurWrStcXV1Ft27dxJkzZ0wedbNixQoREhIilEqlACDWrVsnhCh69JMQ0lEs06dPF0FBQUKlUomAgAAxZswYkZqaajReUFCQ6Nu3b5G+P3x0T3Hu3LkjXn/9dREQECCcnZ1FUFCQmDlzpsjJySnSXlmOfoqLiyv2qBkAJo9EelhBQYH46KOPRPPmzQ3LIywsTPzwww9G4yxdulQ88sgjQqVSCV9fX/Hyyy+La9euGbWl0+nEsmXLRP369YVGoxGhoaFi//79xR799K9//UtMnDhR1KxZU6jVatG1a1dx8uRJozZNfQ6EEGLHjh3iiSeeEF5eXkKtVougoCDx3HPPiZ9++slovDVr1ohGjRoJFxcX8cgjj4i1a9ea/AwUJy8vT3z22WfiscceEx4eHkKtVovGjRuLadOmidu3bxcZv1u3bkbLwN3dXdSvX18899xzYsuWLSaPSCvp6KfatWsLIcr3/SIyl0KIYnZlJyIikw4ePIgnnngCW7ZsKXI0GBHJh/vUEBERkUNgqCEiIiKHwM1PRERE5BC4poaIiIgcAkMNEREROQSGGiIiInIIVebkezqdDjdu3ICnp2e5Lt5GRERE8hFCICMjA4GBgaVe5LbKhJobN26U66JtREREZDuuXbuGOnXqlDhOlQk1np6eAKQ3xcvLy6Jta7Va7Nu3Dz169IBKpbJo27aA/bN/jt5H9s/+OXof2T/zpaeno27duobf8ZJUmVCj3+Tk5eVllVDj5uYGLy8vh/2wsn/2zdH7yP7ZP0fvI/tXcWXZdYQ7ChMREZFDYKghIiIih8BQQ0RERA6hyuxTQ0RU1RQUFECr1cpdRplotVo4OzsjJycHBQUFcpdjcexf8VQqFZRKpUXqYKghInIwQggkJyfj3r17cpdSZkII+Pv749q1aw55LjH2r2TVqlWDv79/hd8bhhoiIgejDzR+fn5wc3Ozix9RnU6HzMxMeHh4lHqCNXvE/pkmhEBWVhZSUlIAAAEBARWqg6GGiMiBFBQUGAJNjRo15C6nzHQ6HfLy8qDRaBz2R5/9M83V1RUAkJKSAj8/vwptinK8d5aIqArT70Pj5uYmcyVEZaf/vFZ0HzCGGiIiB2QPm5yI9Cz1eWWoISIiIodgE6Hm8OHDePrppxEYGAiFQoEdO3YYvS6EwLx58xAYGAhXV1eEh4fj3Llz8hRLRERENskmQs39+/fRqlUrfPrppyZfX7ZsGZYvX45PP/0UJ06cgL+/PyIiIpCRkVHJlRIREZGtsolQ07t3b7z77rsYOHBgkdeEEFixYgVmzZqFgQMHonnz5tiwYQOysrKwceNGGao1lp0NJCYCqalquUshIrJ7pa25L014eDgmTZpkldqoZP369cPkyZNlrcHmD+mOi4tDcnIyevToYRimVqvRrVs3REdH47XXXjM5XW5uLnJzcw3P09PTAUh7VlvyDJvvvuuERYtU6NWrMZ5/3j7O3Fle+vfLXs5MWl6O3j/A8fvI/hmPK4SATqeDTqezdmkWI4QAAGRmZqJly5YYNmwYBg0aZFY/9P23Jfr+2WJtlqDvHwCz+qfT6SCEgFarLXJId3m+1zYfapKTkwEAtWrVMhpeq1YtJCQkFDvd4sWLMX/+/CLD9+3bZ9FDHW/erA+gBTIyXBAVFWWxdm0R+2f/HL2P7B/g7OwMf39/ZGZmIi8vrxKqsqwuXbqgS5cuhufZ2dmGf0oB4L///S+WLl2KuLg4uLq6omXLlvj222/h7u6OsWPH4tChQzh06BA++eQTAMDvv/+OevXqGc3j+++/x/jx4xETE4PAwEAAwMSJE3Hq1Cn8+OOP8Pb2LlKXTqfDJ598gm+++QZ///03atasieHDh2Pq1KkApH+k58yZg23btiEjIwOtW7fGokWL0LZtWwDSWoymTZtCqVTiu+++g4uLC95++20MGjQI06ZNw86dO+Hr64tly5YhIiLCMN9+/fqhSZMmAID//Oc/UCqVGDlyJGbNmmU4Yqgs827WrBnUajX+9a9/wcXFBSNGjMCMGTMM8xFC4JNPPsG6detw8+ZNNGjQAG+99RaeeeaZMrUxduxY/Prrr/j1119LfO+Lk5eXh+zsbBw+fBj5+flGr2VlZZWpDcAOQo3ew4d7CSFKPARs5syZmDJliuF5eno66tatix49esDLy8tidaWmKvD110BGhgsiIiKgUqks1rat0Gq1iIqKYv/smKP3kf17ICcnB9euXYOHhwc0Go00UAigHD8MFuXmBpThcF0hBDIyMuDp6Wn0t93V1dXwNzspKQmjR4/G0qVLMWDAAGRkZODIkSPw9PSEh4cHPvvsM8THx6NZs2aGf2pr1qxZ5D//ESNGYOXKlfjss8+wcuVKLFiwAAcOHEB0dDRq165tsr4ZM2ZgzZo1+PDDD9GlSxckJSXhwoULhtomTZqE//3vf1i/fj2CgoLw/vvv47nnnsOlS5fg4+MDpVKJTZs2YerUqTh+/Dj+85//4M0338TevXsxYMAAzJkzBytWrMCYMWMQHx9v+Ofb2dkZmzZtwsiRI3Hs2DGcPHkSr7/+Oho1aoRXXnmlTPPWtzF58mQcO3YMR48exciRI/HEE08YAtQ777yD7du3Y9WqVWjUqBEOHz6M1157DfXq1UO3bt1KbePTTz/F5cuX0apVqxLf++Lk5OTA1dUVjz/++IPP7T8Kh9pSCRsDQGzfvt3w/MqVKwKAiImJMRqvf//+YujQoWVuNy0tTQAQaWlplipVCCHEjz8KAQgREpIq8vLyLNq2rcjLyxM7duxg/+yYo/eR/XsgOztbnD9/XmRnZz8YmJkp/aGS45aZWaY+FhQUiNTUVFFQUGAY9vDvwalTpwQAER8fX2w73bp1E2+88Uap8/vhhx+EWq0W7733nqhevbr4888/ix03PT1dqNVq8dVXX5l8PTMzU6hUKvHtt98ahuXl5YnAwECxbNkyQ10dO3Y09C8/P1+4u7uLyMhIwzRJSUkCgDh69KhRf5o0aSJ0Op1h2PTp00WTJk3KNe8uXboY1dy+fXsxffp0QxsajUZER0cbjTNq1CgxePDgMrVRUFAgOnfuLCZOnGj6TSyFyc/tP8rz+20TOwqXJCQkBP7+/karXfPy8nDo0CF06tRJxsok+rOQZ2a6yFsIEZGDa9WqFbp3744WLVpg0KBB+Oqrr5CammpWW/rNQfPnz8f27dvRrFmzYseNjY1Fbm4uunfvbvL1K1euQKvVonPnzoZhKpUKHTp0QGxsrGFY4XkolUrUqFEDLVq0MAzT72ahvw6SXseOHY3WXoWFheGvv/5CQUFBmefdsmVLozYDAgIM8zl//jxycnIQEREBDw8Pw+2bb77BlStXytSGrbCJzU+ZmZm4fPmy4XlcXBzOnDkDHx8f1KtXD5MmTcKiRYvQqFEjNGrUCIsWLYKbmxuGDBkiY9USfajJyHABIEocl4hIFm5uQGamfPO2EKVSiaioKERHR2Pfvn1YuXIlZs2ahePHjyMkJKRcbe3duxcXLlxAQUFBkX02H6a/NlFxxD87yZa2m8TDmw4VCoXRMP245dnRtiLz1s9Hf79r164im9/U6gdH9pbUhq2wiTU1J0+eRJs2bdCmTRsAwJQpU9CmTRvMmTMHADBt2jRMmjQJY8eORWhoKP7++2/s27cPnp6ecpYN4EGoyclxRqGDrYiIbIdCAbi7y3Oz8OUaFAoFOnfujPnz5+P06dNwcXHB9u3bDa+7uLigoKCgxDZiYmIwaNAgfPnll+jZsydmz55d4viNGjWCq6srfv75Z5OvN2zYEC4uLjhy5IhhmFarxcmTJw07+VbEsWPHijxv1KgRlEqlRebdtGlTqNVqJCYmomHDhka3unXrlrnOsrz31mYTa2rCw8ONDgd7mEKhwLx58zBv3rzKK6qMvL0BpVKgoECBO3cADw+5KyIisl+ZmZm4evWq4XnhNfdJSUn4+eef0aNHD/j5+eH48eO4deuW0Y93cHAwjh8/jvj4eHh4eMDHx8foqtHx8fHo27cvZsyYgcjISDRt2hTt27fHqVOn0K5dO5M1aTQaTJ8+HdOmTYOLiws6d+6MW7du4dy5cxg1ahTc3d0xZswYvPXWW4YtDMuWLUNWVhZGjRpV4ffk2rVrmDJlCl577TXExMRg5cqV+PDDDwHAIvP29PTE1KlTMXnyZOh0OnTp0gXp6emIjo6Gh4cHhg0bVqZ26tWrh99++63Y974y2ESosWcKBVC9OnD7NnDnDhAUJHdFRET26+TJk0b7ruiPYh02bBimT5+Ow4cPY8WKFUhPT0dQUBA+/PBD9O7d2zD+1KlTMWzYMDRt2hTZ2dmIi4tDcHAwAODu3bvo3bs3+vfvj7fffhsA0K5dOzz99NOYNWsW9uzZU2xds2fPhrOzM+bMmYMbN24gICAAr7/+uuH1JUuWQKfTITIyEhkZGQgNDcXevXtRvXr1Cr8nQ4cORXZ2Njp06AClUokJEybg1Vdftei8Fy5cCD8/PyxevBhXr15FtWrV0LZtW8P7VBbjx4/HhAkTTL73lUUhSlpF4kDS09Ph7e2NtLQ0ix7SDQCNGwtcuqRAVFQ+nnrK8XKiVqvFjz/+iD59+jjs4bKO3D/A8fvI/j2Qk5ODuLg4hISEFDk01pbpdDqkp6fDy8ur0v+7rwzm9i88PBytW7fGihUrrFecBVR0+ZX0uS3P77fjfXJkUKOGlAvv3JG5ECIioiqMocYCfHyk+7t35a2DiIioKnO8bSUy0B8BdfeuZffyJyKiqu3gwYNyl2BXuKbGAvSbn7imhoiISD4MNRag3/x05w7X1BAREcmFocYCuKMwERGR/BhqLIA7ChMREcmPocYCuPmJiIhIfgw1FuDjwx2FiYiI5MZQYwEPDukGqsb5mYmIiGwPQ40F6ENNQYEC6eny1kJERFRVMdRYgEYDqNX5AHgEFBERkVwYaizE0zMPAEMNERGRXBhqLIShhojIdoWHh2PSpElyl0FWxlBjIZ6eWgAMNUREFbFkyRK0b98enp6e8PPzw4ABA3Dx4kW5yyIzVXaYZKixEK6pISKquEOHDmHcuHE4duwYoqKikJ+fjx49euD+/ftyl0Z2gKHGQhhqiIgqbvfu3Rg+fDiaNWuGVq1aYd26dUhMTMSpU6cASP/5T5w4EdOmTYOPjw/8/f0xb948ozbu37+PoUOHwsPDAwEBAfjwww9Lne93330HjUaDv//+2zBs9OjRaNmyJdLS0kxOo9PpsHTpUjRs2BBqtRr16tXDe++9Z3g9NzcXEydOhJ+fH9zc3NCrVy+cOHHC8Hp4eDgmTJiASZMmoXr16qhVqxZWr16N+/fvY8SIEfD09ESDBg2we/duo/mGh4dj/PjxGD9+PKpVq4YaNWrgnXfegfjnnCKF56vRaNClSxej+Zb1fRRCYNmyZahfvz5cXV3RqlUrfP/99ybb8PX1RePGjTF//nzD68OHD8ehQ4fw8ccfQ6FQQKFQID4+vtRlUREMNRaiDzU8AR8R2RohgPv35blV9Nxd+kDhoz91O4ANGzbA3d0dx48fx7Jly7BgwQJERUUZXn/rrbdw4MABbN++Hfv27cPBgwcNoag4L774Iho3bozFixcDAObPn4+9e/di9+7d8Pb2NjnNzJkzsXTpUsyePRvnz5/Hxo0bUatWLcPr06ZNw9atW7FhwwacPHkS9evXR+/evXG30A/Fhg0b4Ovri99++w0TJkzAmDFjMGjQIHTq1AkxMTHo2bMnIiMjkZWVZTTvDRs2wNnZGcePH8cnn3yCjz76CGvWrCky35iYGDRs2BA9e/Y0mm9Z3sd33nkH69atw6pVq3Du3DlMnjwZL7/8Mg4dOlSkjaNHj2L+/PlYuHChoY2PP/4YYWFheOWVV5CUlISkpCTUrVu3xOVQYaKKSEtLEwBEWlqaxdvOy8sTI0eeFYAQgwdbvHnZ5eXliR07doi8vDy5S7EKR++fEI7fR/bvgezsbHH+/HmRnZ1tGJaZKYQULyr/lplZtj4WFBSI1NRUUVBQYBim0+nE008/Lbp06WIY1q1bN6PnQgjRvn17MX36dCGEEBkZGcLFxUVs2rTJ8PqdO3eEq6ureOONN0qs4YcffhBqtVq89957onr16uLPP/8sdtz09HShVqvFV199ZfL1zMxMoVKpxLfffmvoX0pKiggMDBTLli0z2Zf8/Hzh7u4uIiMjDcOSkpIEAHH06FGj96BJkyZCp9MZhk2fPl00adKkyHyFkD4/hedrat5CGL+PmZmZQqPRiOjoaKNxRo0aJQb/80NXuA398ivchn6c0t53IUx/bvXK8/vtbN3IVHVwR2EiIssaP348zp49iyNHjhgNb9mypdHzgIAApKSkAACuXLmCvLw8hIWFGV738fFB48aNS51fv3790LRpU8yfPx/79u1Ds2bNih03NjYWubm56N69u8nXr1y5Aq1Wi86dOxuGqVQqtG/fHrGxsSb7olQqUaNGDbRo0cIwTL/mR98/vY4dO0KheHC9wbCwMHz44Ye4fPmyyfl26NDBaL4Pzxswfh/Pnz+PnJwcREREGI2Tl5eHNm3aFNuGv79/kVorE0ONhXCfGiKyVW5uQGamfPM2x4QJE7Bz504cPnwYderUMXpNpVIZPVcoFNDpdABg2K/EHHv37sWFCxdQUFBgtBnJFFdX1xJf19dROHjohxceZqovhYfpx9X3r6xKm29x89bPR3+/a9cu1K5d22g8tVpdpjbkwH1qLEQfam7flrkQIqKHKBSAu7s8t4d+R0slhMD48eOxbds27N+/HyEhIeWavmHDhlCpVDh27JhhWGpqKi5dulTidDExMRg0aBC+/PJL9OzZE7Nnzy5x/EaNGsHV1RU///xzsXW4uLgYrWXSarU4deoUmjRpUo4emVa4f/rnjRo1Kna+J0+eLNd8mzZtCrVajcTERDRs2NDoVp79YlxcXFBQUFDm8SuKa2osxMsrFwBDDRFRRYwfPx7fffcd/vvf/8LT0xPJyckAAG9v71LXjgCAh4cHRo0ahbfeegs1atRArVq1MGvWLDg5Ff8/fHx8PPr27YsZM2YgMjISTZs2Rfv27XHq1Cm0a9fO5DQajQbTp0/HtGnT4OLigs6dO+PWrVs4d+4cRo0aBXd3d4wZMwZvvfUWfHx8UKdOHSxatAhZWVkYNWqUeW9OIdeuXcOUKVPw2muvISYmBitXrsSHH35YZL716tXDsmXLyj1fT09PTJ06FZMnT4ZOp0OXLl2Qnp6O6OhoeHh4YNiwYWVqJzg4GMePH0d8fDw8PDzg4+NT4rKoKIYaC/HyktbU3L8PZGcDZfjuERHRQ7744gsA0uHCha1btw7Dhw8vUxvvv/8+MjMz0b9/f3h6euLNN98s9rDsu3fvonfv3ujfvz/efvttAEC7du3w9NNPY9asWdizZ0+x85k9ezacnZ0xZ84c3LhxAwEBAXj99dcNry9ZsgQ6nQ6RkZHIyMhA69atsXv3blSvXr1M/SjJ0KFDkZ2djQ4dOkCpVGLChAl49dVXTc43NDQUe/fuLfd8Fy5cCD8/PyxevBhXr15FtWrV0LZtW8P7VBZTp07FsGHD0LRpU2RnZyMuLg7BwcHlqqM8FKIiGyDtSHp6Ory9vZGWlgYvLy+Ltq3VarFr1494/vn+0GoVSEwErH3UWmXSarX48ccf0adPnyLbTx2Bo/cPcPw+sn8P5OTkIC4uDiEhIdBoNJVUYcXpdDqkp6fDy8vLqv/Jy8WS/QsPD0fr1q2xYsUKyxRnARXtX0mf2/L8fjveJ0cmCgVQs6b0+NYteWshIiKqihhqLMjXV7pnqCEiIqp83KfGgmrWFAAUDDVERGQ1Bw8elLsEm8U1NRZUo4Z0z1BDRERU+RhqLEhaU8PDuomIiOTAUGNB3KeGiIhIPgw1FsSjn4jIVlSRs3WQg7DU55WhxoJq1JAWCkMNEclFfx6brKwsmSshKjv957Wi55ni0U8WpF9Tw31qiEguSqUS1apVM1wp2c3NrciFDG2RTqdDXl4ecnJyHPbke+xfUUIIZGVlISUlBdWqVYNSqaxQHQw1FuTryzU1RCQ/f39/ADAEG3sghEB2djZcXV3tIoSVF/tXsmrVqhk+txXBUGNB+jU1d+8C+fmAM99dIpKBQqFAQEAA/Pz8oNVq5S6nTLRaLQ4fPozHH3/cYS91wf6ZplKpKryGRo8/uxbk4yNdLkEI4M4doFYtuSsioqpMqVRa7MfC2pRKJfLz86HRaBzyR5/9qxyOt2FPRkqlFGwAboIiIiKqbAw1FsadhYmIiOTBUGNhPFcNERGRPBhqLIyhhoiISB4MNRbGSyUQERHJg6HGwrhPDRERkTwYaiyMm5+IiIjkwVBjYQw1RERE8mCosTDuU0NERCQPhhoL45oaIiIieTDUWFjhHYWFkLcWIiKiqoShxsL0m5/y84G0NHlrISIiqkoYaixMowE8PaXHKSny1kJERFSVMNRYgZ+fdM9QQ0REVHkYaqygVi3p/uZNeesgIiKqShhqrIChhoiIqPIx1FgBQw0REVHls4tQk5+fj3feeQchISFwdXVF/fr1sWDBAuh0OrlLM4mhhoiIqPI5y11AWSxduhRffPEFNmzYgGbNmuHkyZMYMWIEvL298cYbb8hdXhHcUZiIiKjy2UWoOXr0KJ555hn07dsXABAcHIzvvvsOJ0+elLky07imhoiIqPLZRajp0qULvvjiC1y6dAmPPPIIfv/9dxw5cgQrVqwodprc3Fzk5uYanqenpwMAtFottFqtRevTt6e/r1FDAcAZN28KaLX5Fp2XHB7un6Nx9P4Bjt9H9s/+OXof2b+Kt10WCiFs/2T+Qgi8/fbbWLp0KZRKJQoKCvDee+9h5syZxU4zb948zJ8/v8jwjRs3ws3NzZrl4sYNd4wd+xQ0mnxs2rTLqvMiIiJyZFlZWRgyZAjS0tLg5eVV4rh2EWo2bdqEt956C++//z6aNWuGM2fOYNKkSVi+fDmGDRtmchpTa2rq1q2L27dvl/qmlJdWq0VUVBQiIiKgUqmQng74+qoAAPfuaWHlDGV1D/fP0Th6/wDH7yP7Z/8cvY/sn/nS09Ph6+tbplBjF5uf3nrrLcyYMQMvvvgiAKBFixZISEjA4sWLiw01arUaarW6yHCVSmW1D5S+bR8f6XIJOTlAaqoK3t5WmV2ls+Z7ZwscvX+A4/eR/bN/jt5H9s+8NsvKLg7pzsrKgpOTcalKpdJmD+lWKB4cAcWdhYmIiCqHXaypefrpp/Hee++hXr16aNasGU6fPo3ly5dj5MiRcpdWrFq1gMREhhoiIqLKYhehZuXKlZg9ezbGjh2LlJQUBAYG4rXXXsOcOXPkLq1YPKybiIioctlFqPH09MSKFStKPITb1jDUEBERVS672KfGHjHUEBERVS6GGivhpRKIiIgqF0ONlXBNDRERUeViqLEShhoiIqLKxVBjJQw1RERElYuhxkr0oSY1FcjLk7cWIiKiqoChxkqqVweUSukxdxYmIiKyPoYaK3Fy4hFQRERElYmhxoq4Xw0REVHlYaixIn2oSU6Wtw4iIqKqgKHGivz9pXuGGiIiIutjqLGiwEDpPilJ3jqIiIiqAoYaKwoIkO4ZaoiIiKyPocaK9KHmxg156yAiIqoKGGqsiGtqiIiIKg9DjRUVDjVCyFsLERGRo2OosSJ9qMnJAdLS5K2FiIjI0THUWJGrK+DtLT3mJigiIiLrYqixMu5XQ0REVDkYaqxMf64aHgFFRERkXQw1VsY1NURERJWDocbKGGqIiIgqB0ONlTHUEBERVQ6GGitjqCEiIqocDDVWxlBDRERUORhqrIyhhoiIqHIw1FiZPtRkZACZmfLWQkRE5MgYaqzM0xNwd5cec20NERGR9TDUWJlCwU1QRERElYGhphIw1BAREVkfQ00lYKghIiKyPoaaSsBQQ0REZH0MNZWAF7UkIiKyPoaaSlC7tnT/99/y1kFEROTIGGoqAUMNERGR9THUVII6daT769cBIeSthYiIyFEx1FQC/ZqarCzg3j1ZSyEiInJYDDWVwNUV8PGRHnMTFBERkXUw1FSSwpugiIiIyPIYaiqJfhMUQw0REZF1MNRUEv2aGm5+IiIisg6GmkrCzU9ERETWxVBTSXiuGiIiIutiqKkkXFNDRERkXQw1lYShhoiIyLoYaiqJfvNTaqp0Ej4iIiKyLIaaSuLtDbi7S4+5Xw0REZHlMdRUEoWCm6CIiIisiaGmEvEIKCIiIuthqKlEXFNDRERkPQw1lYhnFSYiIrIehppKxOs/ERERWQ9DTSXi5iciIiLrca7IxFqtFsnJycjKykLNmjXh4+NjqbocEkMNERGR9ZR7TU1mZia+/PJLhIeHw9vbG8HBwWjatClq1qyJoKAgvPLKKzhx4oQ1arV7detK98nJQG6uvLUQERE5mnKFmo8++gjBwcH46quv8OSTT2Lbtm04c+YMLl68iKNHj2Lu3LnIz89HREQEevXqhb/++staddslX1/A1VV6zLU1REREllWuzU/R0dE4cOAAWrRoYfL1Dh06YOTIkVi1ahXWrl2LQ4cOoVGjRhYp1BEoFEC9esDFi0BCAtCggdwVEREROY5yranZsmWLIdCEhYUhPT3d5HgajQZjx47F6NGjK17hP/7++2+8/PLLqFGjBtzc3NC6dWucOnXKYu1XlqAg6T4xUd46iIiIHI3ZRz8dP34cOTk5RYanp6fjrbfeqlBRD0tNTUXnzp2hUqmwe/dunD9/Hh9++CGqVatm0flUhnr1pPuEBHnrICIicjTlPvpp4MCB6NChAxQKBVJSUuDn52f0+v3797F8+XK8//77Fity6dKlqFu3LtatW2cYFhwcbLH2KxPX1BAREVlHuUNNUFAQ/ve//0EIgVatWqFGjRpo1aoVWrVqhZYtW+Ls2bMICAiwaJE7d+5Ez549MWjQIBw6dAi1a9fG2LFj8corrxQ7TW5uLnILHWKk31Sm1Wqh1WotWp++vbK0GxioAOCM+HgdtNoCi9ZhLeXpnz1y9P4Bjt9H9s/+OXof2b+Kt10WCiGEMGcmarUaR44cwY0bN3D69GmcOXMGf/zxB3Q6Hd577z0MGTLEnGZN0mg0AIApU6Zg0KBB+O233zBp0iR8+eWXGDp0qMlp5s2bh/nz5xcZvnHjRri5uVmstvL6888aeOedLggMzMTnn/8sWx1ERET2ICsrC0OGDEFaWhq8vLxKHNfsUJOfnw9n5wqdu6/MXFxcEBoaiujoaMOwiRMn4sSJEzh69KjJaUytqalbty5u375d6ptSXlqtFlFRUYiIiIBKpSpx3Lg4oHFjFdRqgbS0fDjZwTmdy9M/e+To/QMcv4/sn/1z9D6yf+ZLT0+Hr69vmUKN2amksgINAAQEBKBp06ZGw5o0aYKtW7cWO41arYZarS4yXKVSWe0DVZa2Q0KkQ7tzcxW4d0+FWrWsUopVWPO9swWO3j/A8fvI/tk/R+8j+2dem2VVrvUEieXcu/VvC12OunPnzrh48aLRsEuXLiFIv9etHVGpgMBA6TF3FiYiIrKccoWa9u3b45VXXsFvv/1W7DhpaWn46quv0Lx5c2zbtq3CBQLA5MmTcezYMSxatAiXL1/Gxo0bsXr1aowbN84i7Vc2fRbjYd1ERESWU65tSLGxsVi0aBF69eoFlUqF0NBQBAYGQqPRIDU1FefPn8e5c+cQGhqK999/H71797ZIke3bt8f27dsxc+ZMLFiwACEhIVixYgVeeukli7Rf2erVA6KjuaaGiIjIksoVanx8fPDBBx/g3XffxY8//ohffvkF8fHxyM7Ohq+vL1566SX07NkTzZs3t3ih/fr1Q79+/Szerhx4Aj4iIiLLM2tvX41Gg4iICAwcONDS9VQJPAEfERGR5Zl9QHHXrl2RnJxsyVqqDK6pISIisjyzQ01oaCgee+wxXLhwwWj46dOn0adPnwoX5si4poaIiMjyzA41a9aswciRI9GlSxccOXIEly5dwvPPP4/Q0FCT54ehB/Rrau7cAe7fl7cWIiIiR1GhM+jNnTsXLi4uiIiIQEFBAXr27IkTJ06gbdu2lqrPIXl7S7e0NGkT1EPnFSQiIiIzmL2mJikpCRMnTsTChQvRtGlTqFQqvPjiiww0ZRQSIt3HxclbBxERkaMwO9TUr18fv/zyC7Zs2YJTp05h27ZtGDt2LJYuXWrJ+hwWQw0REZFlmb35ad26dXjxxRcNz3v27IkDBw6gX79+SEhIwOeff26RAh1V/frS/dWr8tZBRETkKMxeU1M40Oi1bdsW0dHROHjwYEVqqhK4poaIiMiyzA41xQkODsavv/5q6WYdjj7UcE0NERGRZVg81ABA9erVrdGsQ9FvfoqLA4SQtxYiIiJHYJVQQ6ULDpbuMzKAu3dlLYWIiMghMNTIRKMBAgOlx9wERUREVHEMNTLizsJERESWU6EzCv/888/4+eefkZKSAp1OZ/Ta2rVrK1RYVVC/PvDrr1xTQ0REZAlmh5r58+djwYIFCA0NRUBAABQKhSXrqhK4poaIiMhyzA41X3zxBdavX4/IyEhL1lOl8AR8RERElmP2PjV5eXno1KmTJWupcrimhoiIyHLMDjWjR4/Gxo0bLVlLlaNfU5OQABQUyFsLERGRvTN781NOTg5Wr16Nn376CS1btoRKpTJ6ffny5RUuztEFBgIuLkBeHnD9OhAUJHdFRERE9svsUHP27Fm0bt0aAPDnn38avcadhsvGyUkKMn/9JW2CYqghIiIyn9mh5sCBA5aso8qqX18KNVevAuHhcldDRERkv3jyPZk1aCDdX74sbx1ERET2rkIn37t37x6+/vprxMbGQqFQoEmTJhg1ahS8vb0tVZ/Da9RIuv/rL3nrICIisndmr6k5efIkGjRogI8++gh3797F7du38dFHH6FBgwaIiYmxZI0OjaGGiIjIMsxeUzN58mT0798fX331FZydpWby8/MxevRoTJo0CYcPH7ZYkY6sYUPp/vJlQAiA+1gTERGZx+xQc/LkSaNAAwDOzs6YNm0aQkNDLVJcVRASIh0Fdf8+kJwMBATIXREREZF9Mnvzk5eXFxITE4sMv3btGjw9PStUVFXi4gIEB0uPuQmKiIjIfGaHmhdeeAGjRo3C5s2bce3aNVy/fh2bNm3C6NGjMXjwYEvW6PC4Xw0REVHFmb356YMPPoBCocDQoUORn58PAFCpVBgzZgyWLFlisQKrgkaNgL17GWqIiIgqwuxQ4+Ligo8//hiLFy/GlStXIIRAw4YN4ebmZsn6qgT9zsIMNUREROar0HlqAMDNzQ0tWrSwRC1Vln7zE0/AR0REZL5yhZopU6Zg4cKFcHd3x5QpU0oclxe0LLvCoYaHdRMREZmnXKHm9OnT0Gq1hsfF4QUtyyc4GFAqgaws4MYNoHZtuSsiIiKyP+UKNYUvYrlhwwbUqVMHTk7GB1AJIXDt2jXLVFdFqFTS+WouX5b2q2GoISIiKj+zD+kOCQnB7du3iwy/e/cuQkJCKlRUVVT4zMJERERUfmaHGiGEyeGZmZnQaDRmF1RV8Vw1REREFVPuo5/0OwgrFArMmTPH6BDugoICHD9+HK1bt7ZYgVWFPtRcuiRvHURERPaq3KFGv4OwEAJ//PEHXFxcDK+5uLigVatWmDp1quUqrCIefVS6v3BB3jqIiIjsVblDjX5n4REjRuDjjz+Gl5eXxYuqipo0ke4vXwa0WmnnYSIiIio7s/epWbduHQONBdWuDbi7A/n5wJUrcldDRERkf8w+o/CCBQtKfH3OnDnmNl0lKRTSJqhTp6RNUPrNUURERFQ2Zoea7du3Gz3XarWIi4uDs7MzGjRowFBjhiZNpFATGwsMGCB3NURERPbF7FBj6ozC6enpGD58OJ599tkKFVVVcWdhIiIi85m9T40pXl5eWLBgAWbPnm3JZqsM/c7CsbHy1kFERGSPLBpqAODevXtIS0uzdLNVQuE1NcWc25CIiIiKYfbmp08++cTouRACSUlJ+Ne//oVevXpVuLCqqGFD6cKWGRm8sCUREVF5mR1qPvroI6PnTk5OqFmzJoYNG4aZM2dWuLCqyMUFaNBAOqvwhQsMNUREROVhdqiJi4uzZB30jyZNpFATGwt07y53NURERPbD4vvUUMXwCCgiIiLzlGtNjf5ilmWxfPnychdDPAKKiIjIXOUKNabOTWOKQqEwqxh6sKaGoYaIiKh8yhVq9BezJOvRr6lJSgLu3gV8fOSth4iIyF6YvaMwIJ2T5uuvv0ZsbCwUCgWaNm2KkSNHwtvb21L1VTleXkBQEJCQAPz5J/D443JXREREZB/M3lH45MmTaNCgAT766CPcvXsXt2/fxvLly9GgQQPExMRYssYqp0UL6f6PP+Stg4iIyJ6YHWomT56M/v37Iz4+Htu2bcP27dsRFxeHfv36YdKkSRYsserRh5o//5S3DiIiIntSoTU106dPh7Pzgy1Yzs7OmDZtGk6ePGmR4oqzePFiKBQKhw1PzZtL91xTQ0REVHZmhxovLy8kJiYWGX7t2jV4enpWqKiSnDhxAqtXr0bLli2tNg+5FV5Tw2tAERERlY3ZoeaFF17AqFGjsHnzZly7dg3Xr1/Hpk2bMHr0aAwePNiSNRpkZmbipZdewldffYXq1atbZR62oHFjwNkZSEsDrl+XuxoiIiL7YPbRTx988AEUCgWGDh2K/Px8AIBKpcKYMWOwZMkSixVY2Lhx49C3b1889dRTePfdd0scNzc3F7m5uYbn6enpAACtVgutVmvRuvTtWapdhQJ45BFnnD+vwJkz+fD3l3d1jaX7Z2scvX+A4/eR/bN/jt5H9q/ibZeFQoiKbeDIysrClStXIIRAw4YN4ebmVpHmirVp0ya89957OHHiBDQaDcLDw9G6dWusWLHC5Pjz5s3D/PnziwzfuHGj1Wq0pA8+aIcjR+pg6NBzGDjwstzlEBERySIrKwtDhgxBWloavLy8ShzX7DU12dnZEELAzc0NLVq0QEJCAlavXo2mTZuiR48e5jZr0rVr1/DGG29g37590Gg0ZZpm5syZRpd1SE9PR926ddGjR49S35Ty0mq1iIqKQkREBFQqlUXa/P13Jxw5AhQUNEGfPo9YpE1zWaN/tsTR+wc4fh/ZP/vn6H1k/8yn39JSFmaHmmeeeQYDBw7E66+/jnv37uGxxx6DSqUynK9mzJgx5jZdxKlTp5CSkoJ27doZhhUUFODw4cP49NNPkZubC6VSaTSNWq2GWq0u0pZKpbLaB8qSbbduLd2fO+cElco2rjtqzffOFjh6/wDH7yP7Z/8cvY/sn3ltlpXZv5YxMTHo2rUrAOD7779HrVq1kJCQgG+++QaffPKJuc2a1L17d/zxxx84c+aM4RYaGoqXXnoJZ86cKRJoHIH+sO7YWOCfXZaIiIioBGavqcnKyjIcur1v3z4MHDgQTk5O6NixIxISEixWIAB4enqiuf5X/h/u7u6oUaNGkeGOIjgYcHcH7t8H/vrrwTWhiIiIyDSz19Q0bNgQO3bswLVr17B3717DfjQpKSkW32elKnJyAvSn4jlzRtZSiIiI7ILZoWbOnDmYOnUqgoOD8dhjjyEsLAyAtNamTZs2FiuwOAcPHiz2yCdHoX8bT5+Wtw4iIiJ7YPbmp+eeew5dunRBUlISWrVqZRjevXt3PPvssxYprqpjqCEiIio7s0MNAPj7+8Pf399oWIcOHSpUED2gPwLq9GnpcgkKhazlEBER2TTbOFaYTGreHFAqgTt3eLkEIiKi0jDU2DCNBmjaVHrMTVBEREQlY6ixcdyvhoiIqGwYamwcQw0REVHZMNTYOIYaIiKismGosXH6I6ASE6UdhomIiMg0hhob5+0N1K8vPeaZhYmIiIrHUGMH9JugYmLkrYOIiMiWMdTYgfbtpfsTJ+Stg4iIyJYx1NgB/Umaf/tN3jqIiIhsGUONHWjXTrpEQkICcPOm3NUQERHZJoYaO+DlBTRpIj3mJigiIiLTGGrsBDdBERERlYyhxk4w1BAREZWMocZOFA41QshbCxERkS1iqLETLVoAajWQmgpcuSJ3NURERLaHocZOuLg8OAkfN0EREREVxVBjR/Qn4WOoISIiKoqhxo489ph0f/SovHUQERHZIoYaO9K5s3QfEwNkZclbCxERka1hqLEjQUFAYCCQn8+T8BERET2MocaOKBQP1tYcOSJvLURERLaGocbO6EPNr7/KWwcREZGtYaixM126SPfR0YBOJ28tREREtoShxs60agW4uwNpacC5c3JXQ0REZDsYauyMs/ODQ7u5CYqIiOgBhho7pN8ExVBDRET0AEONHeIRUEREREUx1NihsDBAqQTi44GEBLmrISIisg0MNXbI0xMIDZUeHzggby1ERES2gqHGTj3xhHTPUENERCRhqLFThUONEPLWQkREZAsYauxU586ASgVcuwZcvSp3NURERPJjqLFT7u4Pzlezf7+8tRAREdkChho7xv1qiIiIHmCosWPcr4aIiOgBhho7FhYGqNVAcjJw4YLc1RAREcmLocaOaTQPLpmwb5+8tRAREcmNocbO9eol3e/ZI28dREREcmOosXP6UHPwIJCdLWspREREsmKosXPNmgG1awM5OcDhw3JXQ0REJB+GGjunUDxYW7N3r7y1EBERyYmhxgH07Cndc78aIiKqyhhqHMBTTwFOTkBsLJCQIHc1RERE8mCocQDVqwMdO0qPubaGiIiqKoYaB9Gnj3T/ww/y1kFERCQXhhoH8cwz0v1PPwGZmfLWQkREJAeGGgfRrBlQvz6Qm8uzCxMRUdXEUOMgFIoHa2v++195ayEiIpIDQ40D0YeaXbuA/Hx5ayEiIqpsDDUOpHNnwMcHuHMHiI6WuxoiIqLKxVDjQJydgX79pMfcBEVERFUNQ42DGTBAut+6FRBC1lKIiIgqFUONg+nVC/DwkM4sfPy43NUQERFVHoYaB+PqCvTvLz3evFneWoiIiCqTXYSaxYsXo3379vD09ISfnx8GDBiAixcvyl2WzXrhBel+yxZAp5O3FiIiospiF6Hm0KFDGDduHI4dO4aoqCjk5+ejR48euH//vtyl2aSePQFvb+Dvv4Fff5W7GiIiosrhLHcBZbHnoas0rlu3Dn5+fjh16hQef/xxmaqyXWq1tMPwhg3SJqiuXeWuiIiIyPrsItQ8LC0tDQDg4+NT7Di5ubnIzc01PE9PTwcAaLVaaLVai9ajb8/S7VbEwIEKbNjgjC1bBN5/Px/OFVjSttg/S3L0/gGO30f2z/45eh/Zv4q3XRYKIezrwF8hBJ555hmkpqbil19+KXa8efPmYf78+UWGb9y4EW5ubtYs0Sbk5yswcmRPpKer8c47RxEamiJ3SUREROWWlZWFIUOGIC0tDV5eXiWOa3ehZty4cdi1axeOHDmCOnXqFDueqTU1devWxe3bt0t9U8pLq9UiKioKERERUKlUFm27It580wkrVyrx3HM6bNxYYHY7tto/S3H0/gGO30f2z/45eh/ZP/Olp6fD19e3TKHGrjY/TZgwATt37sThw4dLDDQAoFaroVariwxXqVRW+0BZs21zjBgBrFwJ7NzphMxMJ1SvXrH2bK1/lubo/QMcv4/sn/1z9D6yf+a1WVZ2cfSTEALjx4/Htm3bsH//foSEhMhdkl1o3Rpo2RLIy+M5a4iIyPHZRagZN24c/v3vf2Pjxo3w9PREcnIykpOTkZ2dLXdpNk2hAIYNkx5v2CBvLURERNZmF6Fm1apVSEtLQ3h4OAICAgy3zVz9UKqXXgKUSuDYMSA2Vu5qiIiIrMcuQo0QwuRt+PDhcpdm82rVenDl7i+/lLcWIiIia7KLUEMV8/rr0v2GDUBWlry1EBERWQtDTRXQowdQvz5w7x6waZPc1RAREVkHQ00V4OQEvPaa9HjVKnlrISIishaGmipixAjAxQU4eRI4cULuaoiIiCyPoaaKqFkTeP556fEnn8hbCxERkTUw1FQhb7wh3W/aBFy/Lm8tRERElsZQU4WEhgLh4UB+PtfWEBGR42GoqWLefFO6//JLID1d3lqIiIgsiaGmiunTB3j0USnQrFkjdzVERESWw1BTxTg5PVhb8+GHQE6OvPUQERFZCkNNFRQZCdSpA9y4AXz9tdzVEBERWQZDTRWkVgMzZ0qPFy8GcnPlrYeIiMgSGGqqqFGjgNq1gb//5toaIiJyDAw1VZRaDcyYIT1evBjIzpa3HiIioopiqKnCRo+W9q25fp3nrSEiIvvHUFOFaTTAu+9KjxctAm7flrceIiKiimCoqeJefhlo3Vo6b83ChXJXQ0REZD6GmipOqQTef196/PnnwOXL8tZDRERkLoYawlNPAb16SdeEeustuashIiIyD0MNAQA++ABwdgZ27AB++EHuaoiIiMqPoYYAAM2aAVOmSI/Hjwfu35e3HiIiovJiqCGDOXOAoCAgMRFYsEDuaoiIiMqHoYYM3N2BTz+VHi9fDvz+u7z1EBERlQdDDRnp1w8YOFDaaXjoUF4XioiI7AdDDRXx+eeAry9w9iwwd67c1RAREZUNQ01FpadD+corcL15U+5KLKZWLWD1aunxsmXAr78q5C2IiIioDBhqKur11+G0YQM6LF3qUFeFfPZZYPhwQAhgxAglMjOd5S6JiIioRAw1FbV4MUSNGqh29SqUEydKKcBBfPwxEBwMxMcr8MknbaHTyV0RERFR8RhqKiooCAX//jeEkxOcNmx4sN3GAXh5AVu2AGq1wG+/BeD99/lxISIi28VfKQsQ3bvj/MsvS08mTACOHJG3IAsKDQU+/rgAADB3rhN++knmgoiIiIrBUGMhl599FrpnnwW0WuCZZ4ALF+QuyWJGjhR46qkE6HQKPP+8Q3WNiIgcCEONpSgUKFi3DnjsMeDuXaB3byA5We6qLObVV8+iY0cdUlOBPn0ABzrYi4iIHARDjSW5uUlXg2zYEIiPB/r2Be7dk7sqi3Bx0WHr1gI0aADExQFPP83rQxERkW1hqLG0mjWB3bul+5gYoEcPIC1N7qosQt+1GjWAEyekw75zcuSuioiISMJQYw0NGwI//fTg179nTyA9Xe6qLKJRI2lllLs7EBUlXVKBl1IgIiJbwFBjLS1bSsHGxwc4fhzo3h1ISZG7KosICwN27QJcXaU1N4MGMdgQEZH8GGqsqXVraXVGjRrAyZNA587A1atyV2UR3bpJa2w0Gum+b18gI0PuqoiIqCpjqLG2tm2BX38FgoKAy5eBTp2kTVIOoHt34H//Azw8gJ9/Bp54wmFWRhERkR1iqKkMjRsD0dHSJqmbN4GuXYENG+SuyiK6dwcOHJCu6n3qlJTZzp2TuyoiIqqKGGoqS2Ag8MsvQP/+0g4ow4cDEyc6xM4ooaHSyqjgYODKFaBjR+C//5W7KiIiqmoYaiqTlxewfTswd670fOVKKQHExspblwU88oi0VS08HMjMBAYMAN55RzrBMhERUWVgqKlsTk7AvHnAzp3SNpszZ6T9bj77DPZ+GWxfX2DfPunyVwDw3nvA4487zL7RRERk4xhq5PL008DZs9I5bHJygPHjpdUcdr5DikoFfPIJsHkz4O0NHDsmHQS2fj0ghNzVERGRI2OokVNAAPDjj8DHH0uXWPjlFykBvP22tA3Hjj3/PPD770CXLtKh3iNGSDsVX7okd2VEROSoGGrk5uQk7TAcGyvtRJyfDyxeLJ2698sv7XqnlKAg6ciopUulE/UdOCAdADZvHq8bRURElsdQYyvq1ZMOGdq+HQgJka7w/frrQPPmwMaNUtixQ87OwLRpwJ9/SlvacnOB+fOlzPbVV3bbLSIiskEMNbZmwADgwgVpk5Svr7S95qWXpMOLVq0CsrPlrtAs9etLl1TYvFnKbElJwKuvAi1aAP/6l12vkCIiIhvBUGOLXFykTVJXrgALFkjhJi4OGDtW2qYzY4b0mp1RKKR9bWJjgRUrpMtiXbgADB0qZbbPP7fbzEZERDaAocaWeXkBs2cDCQnSOW2CgoBbt6SdVBo2BHr0ADZtsrsdVNRq4I03pEO9Fy8GatYE4uOBceOA2rWBKVO4QzEREZUfQ409cHOTDvm+fFna56ZXL2m1R1QUMHiwlApeeAHYts2uVnV4e0srnRISgE8/lc5InJoKfPSRdGWJJ58E1q4F7t2Tu1IiIrIHDDX2xNlZ2udm925p89M770hrbLKzgf/8B/i//5OuCN6nj7Rm56+/5K64TFxdpbU0ly8Du3ZJp/BxcpKOlho1CqhVS+r2pk1AWprc1RIRka1iqLFXISHAwoXSdpqTJ4G33pKOoMrOlkLPxInSjioNGgAjR0qrPC5dsukz4CmVUh7buVPahei996SDv/LypAPDBg+Wdi8KDweWLZOOqLLh7hARUSVzlrsAqiCFAmjXTrotXSqdkXj3bmDPHulkflevSrd166Txa9YEHnsMaNPmwS0oSGrHhtSrJ52D8O23pfDy3XfA1q3AxYvAoUPSbfp0wN9fuui5/taihRSOiIio6mGocSQKhbRqo3lzac1NRgZw+LB0Ce0jR4DffpN2NP7f/6SbXrVq0jSPPCLtzNK48YO1PC4usnVHr3lzaa3Ne+9J+Wz3bulEzPv3S6fz2bJFugGAp6d0KS39rU0bqTvO/KQTETk8/ql3ZJ6eQN++0g2QznwXEyNtrjp9WrqdOyftiXvkiHQrTKkEateGsk4dtFMq4XTkiLQ3b7160mFKfn7Smh+1utK6VL++tP/NuHHSlrYTJ6QVUr/8ImW3jIwHa3L0NBopoz36qHRr3Fi6f+QRwMOj0konInsnhHTh4YKC8t/n5sLj2jXpb66Tk/ntlPW+pJsVxlHm56PzrVtQJCVJJ46VCUNNVaJWA2Fh0k0vLw84f146eczFi9J+N/r7zEwgMRFOiYmoA0jJwRQvrwcBR39fvbp0eFNJNw8P6QqYZm76cnWVrgL++OPS8/x86e/F6dNSdouJkS6Cfv++dO3Qs2eLtuHjA9St6wy1ugOiopwMmS0gQOpKrVpSqTa2dY7siRAPfgzLcjM1bm4u3JKSpJ3/lUrz2zHnVlo7FvohVmq1aJ2QAOXWrdL7Zs0ffHPu9e+FmVQAulvmE2WTnAD4Aii4elXWOhRC2M+ulp9//jnef/99JCUloVmzZlixYgW6du1apmnT09Ph7e2NtLQ0eHl5WbQurVaLH3/8EX369IFKpbJo27IRQjrtb2Ii8q9exYWoKDTx8IDy+nUgMVF67datil/nwMlJSidubtJ9cY9VqtJvLi5FhhVAiau3vXDxZjVcTPbChSRvXEzywoUbXriVrilTiS4qHfyq5cGvuha1quehZjUtqrnnw9s9H9U8TN97u2nhptHB1aVA2sen8Nfs4a9cWZ7r/6AWflyOYflaLc7+/jtatmgBZ/1/iRZo1yrDyvuDLAR0BQW4lZyMmr6+cDLnx9yaAcB+/sSSpSiV0t+2QvfCyQlanQ4qtRqKh19/aNwK3esfl+EmnJQQSmfoFNJjnZMzhNL5wWMnpfHjwuP+c69/XasT+CP2Ah4b/DRqPt7Som9neX6/7WZNzebNmzFp0iR8/vnn6Ny5M7788kv07t0b58+fR7169eQuz/EoFEBgIBAYCNGuHa64u6Nxnz5QFg5tQkibrlJSpICTkvLgcWoqkJ4uHYNt6qY/n45OJ61KsdIJBJUAGv1z6/fQa+nwRCLqIRH1kIAgw+NE1MNN1EIK/JCGasjTOuH6LQ2u3ypbCHqYGjlwx324IcvkTYMcuCAPLsiDCtoyP3ZGPpQogBN0xd4/POw4ThU7rgIPfnxNPS7t9YpMJ6Aw3Ffk8U0kGQ0veRolBJwtNu+KPn5wc4JwcoJQKCEUTtD98wOSrxNwclYBhV4TCifpx0VhPI2AwvC6cJKWsuF5MTepnX/mr3B66LH0/EE7/7wGxT/zdYJAoTb+eW4Yt9BznX64vsZ/7nUCuJuWjmrVqks/lvr2DXU8eH90UDz0eqHn/9x0Dz03ddOJh4cVWh5C/zoMzw3jFBqu0z00TCgMed14JZ1ARkYG3N09pU+/iXFEPiC0KPLaw/8HFDe8rP8/6G/WMM2rAEsft07bZWE3oWb58uUYNWoURo8eDQBYsWIF9u7di1WrVmHx4sUyV1dFKRTSZqbq1aUdVcpDqwWysqRbdrZ00z82NSwvT5qmvLfi/gMXAl46HZrrdGhakIp7d6+gmpeX9F9+oWly8p1xS1sNN/OqI6WgBm7m18CtAh+k6TyQpvPEvQIv3NN5Iq3AE/d0nrhX4Ik0nScydA921smFBrnQ4C5qWHgBkMPSFTOc10izYwoAlt1KYAsUCv1NQKEQcJL5RDF2EWry8vJw6tQpzJgxw2h4jx49EB0dbXKa3Nxc5ObmGp6np6cDkDYVaS189UR9e5Zu11ZYrX9ubtJNZlqtFr9ERSEiIqLI5kMlAP9/buWh02mRk/Mgt92/r89oCsOwB9lNYchgeXnG+U16rDAM07+eny89L3lXAEWh3R4EMjLuQ6NxhxAKk9Po6f+DM7XFrCLDSnpd/4cRMP24pNf0tNpcuLio4eRU/ulLevzwvTmPjZ+LEscrfHvQF4HU1Lvw8fGBUqkwOU5xfS1pPPPGEaWOY6qt0moSQoerV6+gYcP6UCqVFq+7pNoL12bZ+T14XFCQj5iYUwgNbQeVyrnc73lp75+px6W9bolxH3z/tIj65++oVmvZ3TDK89tjF6Hm9u3bKCgoQK1atYyG16pVC8nJySanWbx4MebPn19k+L59++BmpR/SqKgoq7RrK9g/y3FxkW7VqlXaLIls3mOPAcBFucuokMKbdgr/swAALVsCeXl7kZdX+XVVFmv8Hc3KyirzuHYRavQUhWMhACFEkWF6M2fOxJQpUwzP09PTUbduXfTo0cMqOwpHFfOfviNg/+yfo/eR/bN/jt5H9s98+i0tZWEXocbX1xdKpbLIWpmUlJQia2/01Go11CbOn6JSqaz2gbJm27aA/bN/jt5H9s/+OXof2T/z2iwru7j2k4uLC9q1a1dktVZUVBQ6deokU1VERERkS+xiTQ0ATJkyBZGRkQgNDUVYWBhWr16NxMREvC7jmQuJiIjIdthNqHnhhRdw584dLFiwAElJSWjevDl+/PFHBAUFyV0aERER2QC7CTUAMHbsWIwdO1buMoiIiMgG2cU+NURERESlYaghIiIih8BQQ0RERA6BoYaIiIgcAkMNEREROQSGGiIiInIIDDVERETkEBhqiIiIyCHY1cn3KkL8cy348lzts6y0Wi2ysrKQnp7ukBcqY//sn6P3kf2zf47eR/bPfPrfbf3veEmqTKjJyMgAANStW1fmSoiIiKi8MjIy4O3tXeI4ClGW6OMAdDodbty4AU9PTygUCou2nZ6ejrp16+LatWvw8vKyaNu2gP2zf47eR/bP/jl6H9k/8wkhkJGRgcDAQDg5lbzXTJVZU+Pk5IQ6depYdR5eXl4O+WHVY//sn6P3kf2zf47eR/bPPKWtodHjjsJERETkEBhqiIiIyCEw1FiAWq3G3LlzoVar5S7FKtg/++fofWT/7J+j95H9qxxVZkdhIiIicmxcU0NEREQOgaGGiIiIHAJDDRERETkEhhoiIiJyCAw1ZfD5558jJCQEGo0G7dq1wy+//FLi+IcOHUK7du2g0WhQv359fPHFF5VUafktXrwY7du3h6enJ/z8/DBgwABcvHixxGkOHjwIhUJR5HbhwoVKqrrs5s2bV6ROf3//Eqexp+UHAMHBwSaXx7hx40yOb+vL7/Dhw3j66acRGBgIhUKBHTt2GL0uhMC8efMQGBgIV1dXhIeH49y5c6W2u3XrVjRt2hRqtRpNmzbF9u3brdSDkpXUP61Wi+nTp6NFixZwd3dHYGAghg4dihs3bpTY5vr1600u05ycHCv3xrTSluHw4cOL1NqxY8dS27WHZQjA5LJQKBR4//33i23TlpZhWX4XbPV7yFBTis2bN2PSpEmYNWsWTp8+ja5du6J3795ITEw0OX5cXBz69OmDrl274vTp03j77bcxceJEbN26tZIrL5tDhw5h3LhxOHbsGKKiopCfn48ePXrg/v37pU578eJFJCUlGW6NGjWqhIrLr1mzZkZ1/vHHH8WOa2/LDwBOnDhh1L+oqCgAwKBBg0qczlaX3/3799GqVSt8+umnJl9ftmwZli9fjk8//RQnTpyAv78/IiIiDNd3M+Xo0aN44YUXEBkZid9//x2RkZF4/vnncfz4cWt1o1gl9S8rKwsxMTGYPXs2YmJisG3bNly6dAn9+/cvtV0vLy+j5ZmUlASNRmONLpSqtGUIAL169TKq9ccffyyxTXtZhgCKLIe1a9dCoVDg//7v/0ps11aWYVl+F2z2eyioRB06dBCvv/660bBHH31UzJgxw+T406ZNE48++qjRsNdee0107NjRajVaUkpKigAgDh06VOw4Bw4cEABEampq5RVmprlz54pWrVqVeXx7X35CCPHGG2+IBg0aCJ1OZ/J1e1p+AMT27dsNz3U6nfD39xdLliwxDMvJyRHe3t7iiy++KLad559/XvTq1ctoWM+ePcWLL75o8ZrL4+H+mfLbb78JACIhIaHYcdatWye8vb0tW5yFmOrjsGHDxDPPPFOudux5GT7zzDPiySefLHEcW16GD/8u2PL3kGtqSpCXl4dTp06hR48eRsN79OiB6Ohok9McPXq0yPg9e/bEyZMnodVqrVarpaSlpQEAfHx8Sh23TZs2CAgIQPfu3XHgwAFrl2a2v/76C4GBgQgJCcGLL76Iq1evFjuuvS+/vLw8/Pvf/8bIkSNLvXCrvSy/wuLi4pCcnGy0jNRqNbp161bsdxIofrmWNI2tSEtLg0KhQLVq1UocLzMzE0FBQahTpw769euH06dPV06BZjp48CD8/PzwyCOP4JVXXkFKSkqJ49vrMrx58yZ27dqFUaNGlTqurS7Dh38XbPl7yFBTgtu3b6OgoAC1atUyGl6rVi0kJyebnCY5Odnk+Pn5+bh9+7bVarUEIQSmTJmCLl26oHnz5sWOFxAQgNWrV2Pr1q3Ytm0bGjdujO7du+Pw4cOVWG3ZPPbYY/jmm2+wd+9efPXVV0hOTkanTp1w584dk+Pb8/IDgB07duDevXsYPnx4sePY0/J7mP57V57vpH668k5jC3JycjBjxgwMGTKkxIsEPvroo1i/fj127tyJ7777DhqNBp07d8Zff/1VidWWXe/evfHtt99i//79+PDDD3HixAk8+eSTyM3NLXYae12GGzZsgKenJwYOHFjieLa6DE39Ltjy97DKXKW7Ih7+j1cIUeJ/wabGNzXc1owfPx5nz57FkSNHShyvcePGaNy4seF5WFgYrl27hg8++ACPP/64tcssl969exset2jRAmFhYWjQoAE2bNiAKVOmmJzGXpcfAHz99dfo3bs3AgMDix3HnpZfccr7nTR3GjlptVq8+OKL0Ol0+Pzzz0sct2PHjkY72nbu3Blt27bFypUr8cknn1i71HJ74YUXDI+bN2+O0NBQBAUFYdeuXSX++NvbMgSAtWvX4qWXXip13xhbXYYl/S7Y4veQa2pK4OvrC6VSWSRFpqSkFEmbev7+/ibHd3Z2Ro0aNaxWa0VNmDABO3fuxIEDB1CnTp1yT9+xY0fZ/6MoC3d3d7Ro0aLYWu11+QFAQkICfvrpJ4wePbrc09rL8tMfuVae76R+uvJOIyetVovnn38ecXFxiIqKKnEtjSlOTk5o3769XSxTQFp7GBQUVGK99rYMAeCXX37BxYsXzfpO2sIyLO53wZa/hww1JXBxcUG7du0MR5PoRUVFoVOnTianCQsLKzL+vn37EBoaCpVKZbVazSWEwPjx47Ft2zbs378fISEhZrVz+vRpBAQEWLg6y8vNzUVsbGyxtdrb8its3bp18PPzQ9++fcs9rb0sv5CQEPj7+xsto7y8PBw6dKjY7yRQ/HItaRq56APNX3/9hZ9++smsMC2EwJkzZ+ximQLAnTt3cO3atRLrtadlqPf111+jXbt2aNWqVbmnlXMZlva7YNPfQ4vtcuygNm3aJFQqlfj666/F+fPnxaRJk4S7u7uIj48XQggxY8YMERkZaRj/6tWrws3NTUyePFmcP39efP3110KlUonvv/9eri6UaMyYMcLb21scPHhQJCUlGW5ZWVmGcR7u40cffSS2b98uLl26JP78808xY8YMAUBs3bpVji6U6M033xQHDx4UV69eFceOHRP9+vUTnp6eDrP89AoKCkS9evXE9OnTi7xmb8svIyNDnD59Wpw+fVoAEMuXLxenT582HP2zZMkS4e3tLbZt2yb++OMPMXjwYBEQECDS09MNbURGRhodofjrr78KpVIplixZImJjY8WSJUuEs7OzOHbsmE31T6vViv79+4s6deqIM2fOGH0nc3Nzi+3fvHnzxJ49e8SVK1fE6dOnxYgRI4Szs7M4fvx4pfdPiJL7mJGRId58800RHR0t4uLixIEDB0RYWJioXbu2QyxDvbS0NOHm5iZWrVplsg1bXoZl+V2w1e8hQ00ZfPbZZyIoKEi4uLiItm3bGh3uPGzYMNGtWzej8Q8ePCjatGkjXFxcRHBwcLEfalsAwORt3bp1hnEe7uPSpUtFgwYNhEajEdWrVxddunQRu3btqvziy+CFF14QAQEBQqVSicDAQDFw4EBx7tw5w+v2vvz09u7dKwCIixcvFnnN3paf/pDzh2/Dhg0TQkiHk86dO1f4+/sLtVotHn/8cfHHH38YtdGtWzfD+HpbtmwRjRs3FiqVSjz66KOyhbiS+hcXF1fsd/LAgQOGNh7u36RJk0S9evWEi4uLqFmzpujRo4eIjo6u/M79o6Q+ZmVliR49eoiaNWsKlUol6tWrJ4YNGyYSExON2rDXZaj35ZdfCldXV3Hv3j2TbdjyMizL74Ktfg8V/3SAiIiIyK5xnxoiIiJyCAw1RERE5BAYaoiIiMghMNQQERGRQ2CoISIiIofAUENEREQOgaGGiIiIHAJDDRERETkEhhoishnh4eGYNGmS3GUQkZ3iGYWJSBbh4eFo3bo1VqxYYRh29+5dqFQqeHp6Vno9kyZNQnx8PHbs2FHp8yYiy+CaGiKyGT4+PrIEGgA4ceIEOnToIMu8icgyGGqIqNINHz4chw4dwscffwyFQgGFQoH4+Pgim5/Cw8MxYcIETJo0CdWrV0etWrWwevVq3L9/HyNGjICnpycaNGiA3bt3G6YRQmDZsmWoX78+XF1d0apVK3z//ffF1qLVauHi4oLo6GjMmjULCoUCjz32mDW7T0RWwlBDRJXu448/RlhYGF555RUkJSUhKSkJdevWNTnuhg0b4Ovri99++w0TJkzAmDFjMGjQIHTq1AkxMTHo2bMnIiMjkZWVBQB45513sG7dOqxatQrnzp3D5MmT8fLLL+PQoUMm21cqlThy5AgA4MyZM0hKSsLevXut03EisiruU0NEsjC1T83Dw8LDw1FQUIBffvkFAFBQUABvb28MHDgQ33zzDQAgOTkZAQEBOHr0KFq0aAFfX1/s378fYWFhhnZHjx6NrKwsbNy40WQtO3bswOjRo3H79m3rdJaIKoWz3AUQEZWkZcuWhsdKpRI1atRAixYtDMNq1aoFAEhJScH58+eRk5ODiIgIozby8vLQpk2bYudx+vRptGrVysKVE1FlY6ghIpumUqmMnisUCqNhCoUCAKDT6aDT6QAAu3btQu3atY2mU6vVxc7jzJkzDDVEDoChhohk4eLigoKCAou22bRpU6jVaiQmJqJbt25lnu6PP/7As88+a9FaiKjyMdQQkSyCg4Nx/PhxxMfHw8PDAz4+PhVu09PTE1OnTsXkyZOh0+nQpUsXpKenIzo6Gh4eHhg2bJjJ6XQ6Hc6ePYsbN27A3d0d3t7eFa6FiCofj34iIllMnToVSqUSTZs2Rc2aNZGYmGiRdhcuXIg5c+Zg8eLFaNKkCXr27IkffvgBISEhxU7z7rvvYvPmzahduzYWLFhgkTqIqPLx6CciIiJyCFxTQ0RERA6BoYaIiIgcAkMNEREROQSGGiIiInIIDDVERETkEBhqiIiIyCEw1BAREZFDYKghIiIih8BQQ0RERA6BoYaIiIgcAkMNEREROQSGGiIiInII/w/dBL9vZxqFHAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = range(0, 20, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [1,10]:\n", + "x = [exp(A*t)*[1,10] for t in t]\n", + "plot(t, [x[1] for x in x], \"r-\")\n", + "plot(t, [x[2] for x in x], \"b-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "legend([L\"1st $x$ component\", L\"2nd $x$ component\"])\n", + "title(\"solution of 2 coupled ODEs\")\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At first, it looks like the solutions are decaying, but then they start to grow. If we plot it for a longer time, we can see that it eventually grows exponentially:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHGCAYAAACM+3qyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABziUlEQVR4nO3dd3hT5dsH8G+apumgLVBG2WUqZUNBWVLEgkyVn7wKAkWGMqUgQ2TvoSKoiIKCoCIoS5RZNsjeCAgKlFlkd9CVJs/7x2PShu42ycn4fq4rV5KTk3Pu8zRt7j5TJYQQICIiInJwbkoHQERERGQJTGqIiIjIKTCpISIiIqfApIaIiIicApMaIiIicgpMaoiIiMgpMKkhIiIip8CkhoiIiJwCkxoiIiJyCkxqiKxk0qRJUKlU+Xrv+fPnMWnSJERFRWV4rVevXggKCipYcFb28OFDvPnmmyhRogRUKhVeffXVTPfT6/WYO3cuXn75ZZQtWxbe3t6oXr06PvjgAzx+/NimMVtLQT4HWcnLZ0Cn02HhwoVo3Lgx/P394eXlZSrjBw8eZNg/NDQUKpUKKpUKbm5u8PX1RZUqVdClSxesXr0aBoMhw3uCgoJM73n6FhoaWsCrJco9d6UDIKKMzp8/j8mTJyM0NDTDl9f48eMxdOhQZQLLpalTp2LdunVYsmQJKleujKJFi2a6X2JiIiZNmoSuXbuib9++KFasGE6cOIFp06bht99+w7Fjx+Dl5WXj6J1HQkIC2rVrh/379+Odd97B+PHj4eXlhYMHD+Ljjz/GihUrEBkZiWeeecbsfZUqVcKPP/4IAHjy5AmuXr2K9evXo0uXLmjevDl+++03+Pv7m72nadOm+PjjjzPE4OfnZ70LJHoKkxoiB1O5cmWlQ8jRn3/+icqVK+Ott97Kdj8vLy9cvXoVAQEBpm2hoaEoX748unTpgjVr1qB79+7WDtdpDRs2DHv27MHKlSvxxhtvmLa3bNkSr7/+Oho1aoT//e9/OH36NNRqtel1Ly8vPP/882bH6tu3L5YuXYrevXvjnXfewapVq8xeL1y4cIb3ENkam5+I0rl37x7eeecdlCtXDlqtFsWLF0fTpk2xfft2s/2WLFmCOnXqwNPTE0WLFsVrr72GCxcu5Hh8lUqFSZMmZdgeFBSEXr16AQC+++47dOnSBYD88jFW43/33XcAMm96SEpKwpgxY1CxYkV4eHigTJkyGDRoUIYmnKCgIHTo0AFbtmxB/fr14eXlhWeffRZLlizJVfk8fPgQAwcORJkyZeDh4YFKlSph7NixSE5OBgBERUVBpVJh+/btuHDhgin23bt3Z3o8tVptltAYNWrUCABw48aNHGMyGAz4/PPPUbduXXh5eZm+XDds2GC2z5w5c/Dss89Cq9WiRIkS6NmzJ27evJmhfIw/h/RCQ0PNmlF2794NlUqFH374AcOHD0dgYCC8vLzQokULnDx5MseYAWDVqlVo3LgxfHx8UKhQIbRp0ybT93733Xd45plnoNVqUb16dSxfvjxXx79z5w6WLFmCNm3amCU0RtWqVcPo0aNx7tw5rF+/PlfHfPvtt9GuXTv88ssvuHbtWq7ek15uf7+I8otJDVE6PXr0wPr16zFhwgRs27YN33zzDV566SWzvgczZ85Enz59UKNGDaxduxbz58/HmTNn0LhxY/z9998FjqF9+/aYMWMGAGDBggU4ePAgDh48iPbt22e6vxACr776Kj7++GP06NEDGzduxPDhw7Fs2TK8+OKLpoTD6PTp03j//fcxbNgw/Prrr6hduzb69OmDvXv3ZhtXUlISWrZsieXLl2P48OHYuHEjunfvjjlz5qBz584AgFKlSuHgwYOoV68eKlWqZIq9fv36eSqDnTt3AgBq1KiR4769evXC0KFD0bBhQ6xatQorV65Ep06dzPojDRgwAKNHj0ZYWBg2bNiAqVOnYsuWLWjSpAnu37+fp9jS+/DDD3HlyhV88803+Oabb3D79m2EhobiypUr2b5vxowZ6Nq1K4KDg/Hzzz/j+++/R1xcHJo3b47z58+b9vvuu+/w9ttvo3r16lizZg3GjRuHqVOnmsonO7t27UJqamqW/ZkAmF6LjIzM1fUCQKdOnSCEwL59+8y2CyGQmpqa4SaEMO2Tm98vogIRRGRSqFAhERERkeXrjx49El5eXqJdu3Zm269fvy60Wq3o1q2badvEiRPF079iAMTEiRMzHLdChQoiPDzc9PyXX34RAMSuXbsy7BseHi4qVKhger5lyxYBQMyZM8dsv1WrVgkAYtGiRWbn8fT0FNeuXTNtS0xMFEWLFhXvvvtultcthBBfffWVACB+/vlns+2zZ88WAMS2bdtM21q0aCFq1KiR7fGycvPmTVGyZEkREhIi9Hp9tvvu3btXABBjx47Ncp8LFy4IAGLgwIFm2w8fPiwAiA8//NC07emfg1GLFi1EixYtTM937dolAIj69esLg8Fg2h4VFSU0Go3o27evadvTn4Pr168Ld3d3MWTIELNzxMXFicDAQPF///d/Qggh9Hq9KF26dJbnSP8ZyMysWbMEALFly5Ys90lMTBQARNu2bc2uNbuf3ebNmwUAMXv2bNO2ChUqCACZ3qZOnWraL6ffL6KCYk0NUTqNGjXCd999h2nTpuHQoUPQ6XRmrx88eBCJiYkZmijKlSuHF198ETt27LBhtJLxv/anY+rSpQt8fHwyxFS3bl2UL1/e9NzT0xPVqlXLsTlh586d8PHxweuvv2623XheS1z7w4cP0a5dOwghsGrVKri5Zf8navPmzQCAQYMGZbnPrl27zOI0atSoEapXr16guLt162Y2sqlChQpo0qSJ6ZyZ2bp1K1JTU9GzZ0+zGg1PT0+0aNHC1FR38eJF3L59O8tzWFJeRmeJdDUv6TVr1gxHjx7NcOvTp49pn5x+v4gKikkNUTqrVq1CeHg4vvnmGzRu3BhFixZFz549cefOHQAwVZOXKlUqw3tLly6tSDX6gwcP4O7ujuLFi5ttV6lUCAwMzBBTZn1YtFotEhMTczxPYGBghi/AEiVKwN3dvcDX/ujRI4SFheHWrVuIjIxEpUqVcnzPvXv3oFarERgYmG3cgHV+ZpmdN7MyT+/ff/8FADRs2BAajcbstmrVKlNzmPEYWZ0jJ8bE9erVq1nuY3ytXLlyOR7PyJj8li5d2my7v78/QkJCMtzSl3tOv19EBcWkhiidYsWKYd68eYiKisK1a9cwc+ZMrF271vRfvjEhiI6OzvDe27dvo1ixYtkeX6vVZujjAqBAX6wBAQFITU3FvXv3zLYLIXDnzp0cY8rLef79998M/6nfvXsXqampBTrPo0eP8NJLL+Hq1auIjIxE7dq1c/W+4sWLQ6/XZ/ulmJefmaenZ6Y/n6z63WR23jt37mSaOBoZz7d69epMazYOHz5sFndW58hJy5Yt4e7unm0nYONrYWFhOR7PaMOGDVCpVHjhhRdy/R6jnH6/iAqKSQ1RFsqXL4/BgwcjLCwMJ06cAAA0btwYXl5e+OGHH8z2vXnzJnbu3IlWrVple8ygoCCcOXPGbNvOnTsRHx9vtk2r1QJAjrUnAEznfDqmNWvW4MmTJznGlFutWrVCfHx8hi9J42ic/J7HmNBcuXIF27ZtQ7169XL93rZt2wIAFi5cmOU+L774IoCM5XP06FFcuHDBLO7Mfj6XLl3CxYsXMz32Tz/9ZJbkXbt2DQcOHMh2wrk2bdrA3d0dly9fzrRmIyQkBADwzDPPoFSpUlmeIyeBgYHo3bs3tm7dmmH4tfG6Zs+ejRo1amTbmTi9pUuXYvPmzejatatZE2Z+ZPb7RVRQnKeG6D8xMTFo2bIlunXrhmeffRa+vr44evQotmzZYhrdU7hwYYwfPx4ffvghevbsia5du+LBgweYPHkyPD09MXHixGzP0aNHD4wfPx4TJkxAixYtcP78eXzxxRcZJjKrWbMmAGDRokXw9fWFp6cnKlasmGkNQFhYGNq0aYPRo0cjNjYWTZs2xZkzZzBx4kTUq1cPPXr0sEj59OzZEwsWLEB4eDiioqJQq1Yt7N+/HzNmzEC7du3w0ksv5fmYiYmJpqHM8+bNQ2pqKg4dOmR6vXjx4tnOy9O8eXP06NED06ZNw7///osOHTpAq9Xi5MmT8Pb2xpAhQ/DMM8/gnXfeweeffw43Nze0bdsWUVFRGD9+PMqVK4dhw4aZjtejRw90794dAwcOxP/+9z9cu3YNc+bMydC0Z3T37l289tpr6NevH2JiYjBx4kR4enpizJgxWcYcFBSEKVOmYOzYsbhy5QpefvllFClSBP/++y+OHDkCHx8fTJ48GW5ubpg6dSr69u1rOsfjx48xadKkXDU/AcDcuXNx8eJFdO/eHXv37kXHjh2h1Wpx6NAhfPzxx/D19cWaNWvM5qgx/lyMP4fExERcuXIF69evx++//44WLVrgq6++ynCux48fm/3sjLRaLerVq5er3y+iAlOylzKRPUlKShL9+/cXtWvXFn5+fsLLy0s888wzYuLEieLJkydm+37zzTeidu3awsPDQ/j7+4tXXnlFnDt3zmyfzEY/JScni1GjRoly5coJLy8v0aJFC3Hq1KlMR93MmzdPVKxYUajVagFALF26VAiRcfSTEHIUy+jRo0WFChWERqMRpUqVEgMGDBCPHj0y269ChQqiffv2Ga796dE9WXnw4IHo37+/KFWqlHB3dxcVKlQQY8aMEUlJSRmOl5vRT1evXs1y1AyATEciPU2v14tPP/1U1KxZ0/TzaNy4sfjtt9/M9pk9e7aoVq2a0Gg0olixYqJ79+7ixo0bZscyGAxizpw5olKlSsLT01OEhISInTt3Zjn66fvvvxfvvfeeKF68uNBqtaJ58+bi2LFjZsfM7HMghBDr168XLVu2FH5+fkKr1YoKFSqI119/XWzfvt1sv2+++UZUrVpVeHh4iGrVqoklS5Zk+hnISkpKiliwYIF47rnnRKFChYRWqxXPPPOMGDVqlLh//36G/Vu0aGH2M/Dx8RGVKlUSr7/+uvjll18yHZGW3einMmXKCCHy9vtFlF8qIbLoyk5ERJnavXs3WrZsiV9++SXDaDAiUg771BAREZFTYFJDREREToHNT0REROQUWFNDREREToFJDRERETkFJjVERETkFFxm8j2DwYDbt2/D19c3T4u3ERERkXKEEIiLi0Pp0qVzXOTWZZKa27dv52nRNiIiIrIfN27cQNmyZbPdx2WSGl9fXwCyUPz8/Cx6bJ1Oh23btqF169bQaDQWPTalYTnbBsvZNljOtsFytg1rlnNsbCzKlStn+h7PjsskNcYmJz8/P6skNd7e3vDz8+MvjRWxnG2D5WwbLGfbYDnbhi3KOTddR9hRmIiIiJwCkxoiIiJyCkxqiIiIyCm4TJ8aInui1+uh0+mUDiNTOp0O7u7uSEpKgl6vVzocp+UI5azRaKBWq5UOgyjXmNQQ2ZAQAnfu3MHjx4+VDiVLQggEBgbixo0bnNPJihylnAsXLozAwEC7jpHIiEkNkQ0ZE5oSJUrA29vbLr8oDAYD4uPjUahQoRwnuqL8s/dyFkIgISEBd+/eBQCUKlVK4YiIcsakhshG9Hq9KaEJCAhQOpwsGQwGpKSkwNPT0y6/bJ2FI5Szl5cXAODu3bsoUaIEm6LI7tnnbxKREzL2ofH29lY4EqLcM35e7bUPGFF6TGqIbMwem5yIssLPKzkSJjVERETkFOwiqdm7dy86duyI0qVLQ6VSYf369WavCyEwadIklC5dGl5eXggNDcW5c+eUCZaIiIjskl0kNU+ePEGdOnXwxRdfZPr6nDlzMHfuXHzxxRc4evQoAgMDERYWhri4OBtHSkRERPbKLpKatm3bYtq0aejcuXOG14QQmDdvHsaOHYvOnTujZs2aWLZsGRISErBixQoFojUXGwtcuwbExHgoHQqRVeVUo5qT0NBQREREWCU2yh7LnlyF3Q/pvnr1Ku7cuYPWrVubtmm1WrRo0QIHDhzAu+++m+n7kpOTkZycbHoeGxsLQPbgt2Qv/vnz3TBhggZhYdXx+uscHWBNxp+bo47C0Ol0EELAYDDAYDAoHU6WhBCm+/RxxsXFoXbt2ggPD0eXLl3ydR1PH9OVZVXO1jxffs5jMBgghIBOp3PIId2O/nfDUViznPNyTLtPau7cuQMAKFmypNn2kiVL4tq1a1m+b+bMmZg8eXKG7du2bbPokNp//qkCoAb0ejdERkZa7LiUNUctZ3d3dwQGBiI+Ph4pKSlKh5Ojp5t3mzZtiqZNm5qeJyYmmv5ZAIBff/0Vs2fPxtWrV+Hl5YXatWvjxx9/hI+PDwYOHIg9e/Zgz549+OyzzwAAp0+fRvny5c3OsXr1agwePBgnTpxA6dKlAQDvvfcejh8/jk2bNsHf3z9DnAaDAZ999hmWL1+OW7duoXjx4ujVqxdGjBgBQP6DM2HCBKxduxZxcXGoW7cuZsyYgfr16wMAOnTogODgYKjVavz000/w8PDAhx9+iC5dumDUqFHYsGEDihUrhjlz5iAsLMx03g4dOqB69eoAgJ9//hlqtRq9e/fG2LFjTSOGcnPuGjVqQKvV4vvvv4eHhwfefvttfPDBB6bzCCHw2WefYenSpfj3339RuXJljBw5Eq+88kqujpHbss9KSkoKEhMTsXfvXqSmpubqPfbIUf9uOAr/K1dQ/vJl7L97F4klSlj02AkJCbne1+6TGqOnhxUKIbIdajhmzBgMHz7c9Dw2NhblypVD69at4efnZ7G4Ll2SLXh6vQphYWHQaDQWOzaZ0+l0iIyMdNhyTkpKwo0bN1CoUCF4enrKjUIAefiFtRhvbyCL3x8hBOLi4uDr65vt75iXl5fpdyk6Ohp9+/bF7Nmz8eqrryIuLg779++Hr68vChUqhAULFiAqKgo1atQw/bNRvHjxDP/5v/322/j888+xYMECfP7555gyZQp27dqFAwcOoEyZMpnG8cEHH+Cbb77BJ598gmbNmiE6Ohp//fWXKbaIiAj8/vvv+O6771ChQgV89NFHeP3113Hp0iUULVoU7u7uWLlyJUaOHInDhw/j559/xvvvv4+tW7fi1VdfxYQJEzBv3jwMGDAAUVFRpn+KjO/r3bs3Dh06hGPHjqF///6oWrUq+vXrl+O5ixQpAgBYuXIlhg0bhkOHDuHgwYPo3bs3WrZsaUqgxo0bh3Xr1mHhwoWoWrUq9u7di3fffRfly5dHixYtTHFkdYzcln1WkpKS4OXlhRdeeCHtc+tAHP3vhsMYMQKaBQuQ+vbbEF9/bdFDp//nKUfCzgAQ69atMz2/fPmyACBOnDhhtl+nTp1Ez549c33cmJgYAUDExMRYKlQhhBDz5wsBCNG8+Q2RkpJi0WOTuZSUFLF+/XqHLefExERx/vx5kZiYmLYxPl5+gGx9i4/PMk69Xi8ePXok9Hp9lvs8/Xt6/PhxAUBERUVl+Z4WLVqIoUOH5lhOv/32m9BqtWL69OmiSJEi4s8//8xy39jYWKHVasXixYszfT0+Pl5oNBrx448/mralpKSI0qVLizlz5pjiatasmen11NRU4ePjI3r06GHaFh0dLQCIgwcPml1P9erVhcFgMG0bPXq0qF69eq7OrdfrRdOmTc3OLYQQDRs2FKNHjzYdw9PTUxw4cMBsnz59+oiuXbtmGv/TxzDuk5uyz0ymn1sH4uh/NxyFoU4dIQCh+/57ix87L9/fdtFRODsVK1ZEYGCgWdVhSkoK9uzZgyZNmigYmeT+X12XXs8Jqsh11alTB61atUKtWrXQpUsXLF68GI8ePcrXsYzNQZMnT8a6detQo0aNLPe9cOECkpOT0apVq0xfv3z5MnQ6nVmzmUajQaNGjXDhwgXTttq1a5seq9VqBAQEoFatWqZtxuZv4zpIRs8//7xZbVbjxo3x999/Q6/X5/rc6c8DyDWWjOc5f/48kpKSEBYWhkKFCpluy5cvx+XLlzON/+ljEFndgwdQnT4NABChoYqGYhfNT/Hx8fjnn39Mz69evYpTp06haNGiKF++PCIiIjBjxgxUrVoVVatWxYwZM+Dt7Y1u3bopGLWUltTYfX5I9sjbG4iPV+a8FqRWqxEZGYkDBw5g27Zt+PzzzzF27FgcPnwYFStWzNOxtm7dir/++gt6vT5DX7qnGdcmyor4rzNuTs3XTzdLqFQqs23GffPS0bYg5zaex3i/cePGDM1vWq02V8cgsrrduwEAseXLwyuH31lrs4tv4mPHjqFevXqoV68eAGD48OGoV68eJkyYAAAYNWoUIiIiMHDgQISEhODWrVvYtm0bfH19lQwbAGtqqIBUKsDHx/Y3K0x9r1Kp0LRpU0yePBknT56Eh4cH1q1bZ3rdw8MDer0+22OcOHECXbp0wddff402bdpg/Pjx2e5ftWpVeHl5YceOHZm+XqVKFXh4eGD//v2mbTqdDseOHTN18i2IQ4cOZXhetWpVqNVqi5w7ODgYWq0W169fR5UqVcxu5cqVy3WcuSl7onzbuRMAcP+pWkcl2EVNTWhoqOm/msyoVCpMmjQJkyZNsl1QuWRMagwGJjXk3LKrUY2OjsaOHTvQunVrlChRAocPH8a9e/fMvryDgoJw+PBhREVFoVChQihatKjZ6tRRUVFo3749PvjgA/To0QPBwcFo2LAhjh8/jgYNGmQak6enJ0aPHo1Ro0bBw8MDTZs2xb1793Du3Dn06dMHPj4+GDBgAEaOHGmq+Z0zZw4SEhLQp0+fApfJjRs3MHz4cLz77rs4ceIEPv/8c3zyyScAYJFz+/r6YsSIERg2bBgMBgOaNWuG2NhYHDhwAIUKFUJ4eHiujpNT2RMVyH//VNyrVQu5T7Wtwy6SGkdmHEDAmhpydseOHUPLli1Nz42jC8PDwzF69Gjs3bsX8+bNQ2xsLCpUqIBPPvkEbdu2Ne0/YsQIhIeHIzg4GImJibh69SqCgoIAAA8fPkTbtm3RqVMnfPjhhwCABg0aoGPHjhg7diy2bNmSZVzjx4+Hu7s7JkyYgNu3b6NUqVLo37+/6fVZs2bBYDCgR48eiIuLQ0hICLZu3WoafVQQPXv2RGJiIho1agS1Wo0hQ4bgnXfeydW5c9s8NHXqVJQoUQIzZ87ElStXULhwYdSvX99UTrmRXdkTFcitW8DFixBubrhfs6bS0UAlsqsicSKxsbHw9/dHTEyMRYd0r1oFvPkmULPmPZw4UZhDBq1Ip9Nh06ZNaNeunUOWc1JSEq5evYqKFSva9dBYg8GA2NhY+Pn58b/5bISGhqJu3bqYN29evt7vKOXsKJ/brDj63w279/33QM+eMNSvj98mTLBKOefl+9t+f5McBDsKExGRy9q+HQAgXnxR4UAkfhMXEPvUEBGRSxIC+G+6FfHSSwoHI7FPTQExqSFyTbv/G8ZK5LIuXACiowFPT4gmTUyjoJTEmpoC4pBuIiJyScZJcZs3B+ykvxWTmgJiUkNERC7JmNSkW+hVaUxqCogdhYmIyOXodKaZhGEn/WkAJjUFxj41RETkcg4dAp48AYoXB+rUUToaEyY1BcTmJyIicjnGpqdWrQA7mmfJfiJxUExqiIjI5fw3P409NT0BTGoKjH1qiIjIpcTEAEeOyMd21EkYYFJTYOxTQ0RELmXXLkCvB6pVA8qXVzoaM0xqCojNT0RE5FLstOkJYFJTYExqiIjIpdjh/DRGTGoKiEkNUcGEhoYiIiJC6TCIKDeuXwcuXZIjnlq2VDqaDJjUFFBanxoWJTm3mTNnomHDhvD19UWJEiXw6quv4uLFi0qHRfnEZJLyxdj01KgR4O+vbCyZ4DdxAbGmhlzFnj17MGjQIBw6dAiRkZFITU1F69at8eTJE6VDIyJbseOmJ4BJTYEZkxohVDAYlI2FyJq2bNmCXr16oUaNGqhTpw6WLl2K69ev4/jx4wDkf/7vvfceRo0ahaJFiyIwMBCTJk0yO8aTJ0/Qs2dPFCpUCKVKlcInn3yS43l/+ukneHp64tatW6Ztffv2Re3atRETE5PpewwGA2bPno0qVapAq9WifPnymD59uun15ORkvPfeeyhRogQ8PT3RrFkzHD161PR6aGgohgwZgoiICBQpUgQlS5bEokWL8OTJE7z99tvw9fVF5cqVsXnzZrPzhoaGYvDgwRg8eDAKFy6MgIAAjBs3DkKIDOf19vbGyy+/bHbe3JajEAJz5sxBpUqV4OXlhTp16mD16tW5PkavXr2wZ88ezJ8/HyqVCiqVClFRUTn+LMjFGQx23UkYYFJTYMakBgBSU5WLgxyTEHKmcVvf/vuOLRBjQlG0aFHTtmXLlsHHxweHDx/GnDlzMGXKFEQa/7MDMHLkSOzatQvr1q3Dtm3bsHv3blNSlJU333wTzzzzDGbOnAkAmDx5MrZu3YrNmzfDP4vq7zFjxmD27NkYP348zp8/jxUrVqBkyZKm10eNGoU1a9Zg2bJlOHHiBKpUqYI2bdrg4cOHZtdSrFgxHDlyBEOGDMGAAQPQpUsXNGnSBCdOnECbNm3Qo0cPJCQkmJ172bJlcHd3x+HDh/HZZ5/h008/xTfffJPhvMeOHUOlSpXQtm1bs/PmphzHjRuHpUuXYuHChTh37hyGDRuG7t27Y8+ePbk6xvz589G4cWP069cP0dHRiI6ORrly5bL9ORDh+HHg/n3Azw9o3FjpaDInXERMTIwAIGJiYix63Ph4IeRXhBCPH6dY9NhkLiUlRaxfv16kpDhmOScmJorz58+LxMRE07b0nx9b3uLjs45Tr9eLR48eCb1en+U+BoNBdOzYUTRr1sy0rUWLFmbPhRCiYcOGYvTo0UIIIeLi4oSHh4dYuXKl6fUHDx4ILy8vMXTo0GzL7rfffhNarVZMnz5dFClSRPz5559Z7hsbGyu0Wq1YvHhxpq/Hx8cLjUYjfvzxR9O2lJQUUbp0aTFnzpxMryU1NVX4+PiIHj16mLZFR0cLAOLgwYNmZVC9enVhMBhM20aPHi2qV6+e4bx6vV7cvXvX7LyZnVsI83KMj48Xnp6e4sCBA2b79OnTR3Tt2jVXxzDuk1O5C5H559aROPrfDbsyZYr8A9K5c4aXrFnOefn+ds8h56EcqNVpj1lTQ65i8ODBOHPmDPbv32+2vXbt2mbPS5Uqhbt37wIALl++jJSUFDRO9x9e0aJF8cwzz+R4vg4dOiA4OBiTJ0/Gtm3bUKNGjSz3vXDhApKTk9GqVatMX798+TJ0Oh2aNm1q2qbRaNCoUSNcuHAh02tRq9UICAhArVq1TNuMNT/G6zN6/vnnoVKl9bFr3LgxPvnkE/zzzz+Znrdhw4Zm53363IB5OZ4/fx5JSUkIe6pPQ0pKCurVq5erYxDli7G59eWXlY0jG0xqCojNT1QQ3t5AfLwy582vIUOGYMOGDdi7dy/Kli1r9ppGozF7rlKpYPivs5koQJvX1q1b8ddff0Gv15s1I2XGy8sr29eNcaRPPIzb02/L7FrSbzPua8hjZ7qczpvVuY3nMd5v3LgRZcqUMdtPq9Xm6hhEefbwIXD4sHxsx0kN+9QUEGtqqCBUKsDHx/Y3VT4G6wkhMHjwYKxduxY7d+5ExYoV8/T+KlWqQKPR4NChQ6Ztjx49wqVLl7J934kTJ9ClSxd8/fXXaNOmDcaPH5/t/lWrVoWXlxd27NiRZRweHh5mtUw6nQ7Hjh1D9erV83BFmUt/fcbnVatWzfK8x48fz9N5g4ODodVqcf36dVSpUsXslpd+MR4eHtDr9bnen1zc9u2yo3CNGoAd979iTU0BqVSAWi2g16uY1JBTGzRoEFasWIFff/0Vvr6+uHPnDgDA398/x9oRAChUqBD69OmDkSNHIiAgACVLlsTYsWPh5pb1/1ZRUVFo3749PvjgA/To0QPBwcFo2LAhjh8/jgYNGmT6Hk9PT4wePRqjRo2Ch4cHmjZtinv37uHcuXPo06cPfHx8MGDAAIwcORJFixZF+fLlMWfOHCQkJKBPnz75K5x0bty4geHDh+Pdd9/FiRMn8Pnnn+OTTz7JcN6yZctixowZeT6vr68vRowYgWHDhsFgMKBZs2aIjY3FgQMHUKhQIYSHh+fqOEFBQTh8+DCioqJQqFAhFC1aNNufBbk4B2h6ApjUWIS7u1zbi//0kDNbuHAhADlcOL2lS5eiV69euTrGRx99hPj4eHTq1Am+vr54//33sxyW/fDhQ7Rt2xadOnXChx9+CABo0KABOnbsiLFjx2LLli1Znmf8+PFwd3fHhAkTcPv2bZQqVQr9+/c3vT5r1iwYDAb06NEDcXFxCAkJwdatW1GkSJFcXUd2evbsicTERDRq1AhqtRpDhgzBO++8k+l569ati82bN+f5vFOnTkWJEiUwc+ZMXLlyBYULF0b9+vVN5ZQbI0aMQHh4OIKDg5GYmIirV68iKCgoT3GQixACMP6+tW2rbCw5UImCNHQ7kNjYWPj7+yMmJgZ+fn4WPXahQgJPnqhw8aIO1appcn4D5YtOp8OmTZvQrl27DP0FHEFSUhKuXr2KihUrwtPTU+lwsmQwGBAbGws/Pz/+555HoaGhqFu3LubNm5fjvo5Szo7yuc2Ko//dsAunTgH16sm26wcPgHR9t4ysWc55+f62398kB2LsLMzmJyIicjrGWpoXX8w0obEnTGosgEkNERE5LQfpTwOwT41FMKkhIgDYvXu30iEQWVZMDHDggHzsAEkNa2osgEkNERE5pZ075ZdbtWpApUpKR5MjJjUWwJW6iYjIKTlQ0xPApMYiWFNDREROx4GGchsxqbEA46zCTGooN1xkFgVyEvy8urDz54EbNwBPT6BFC6WjyRUmNRbAmhrKDePcDQkJCQpHQpR7xs8r53hxQcampxYtgFzMGm4POPrJApjUUG6o1WoULlzYtFKyt7d3hoUM7YHBYEBKSgqSkpLselI4R2fv5SyEQEJCAu7evYvChQtDnX6hO3INv/0m7zt0UDaOPGBSYwHu7gIA136inAUGBgKAKbGxR0IIJCYmwsvLyy6TLmfhKOVcuHBh0+eWXMjDh8Aff8jH7dsrG0seMKmxANbUUG6pVCqUKlUKJUqUgE6nUzqcTOl0OuzduxcvvPACmxysyBHKWaPRsIbGVW3dKhc0rFEDqFhR6WhyjUmNBTCpobxSq9V2+2WhVquRmpoKT09Pu/2ydQYsZ7Jrv/8u7zt2VDaOPLK/hlwHxKSGiIicRmpqWidhB+pPAzCpsQgmNURE5DQOHAAePQKKFgWef17paPKESY0FcJ4aIiJyGsamp3bt0r7gHASTGgtIWyZB2TiIiIgKzEH70wBMaiyCNTVEROQULl8GLlyQ/623bq10NHnGpMYC0vrU2O9cE0RERDky1tI0bw4ULqxoKPnBpMYC2PxEREROwZjUONioJyMmNRbA0U9EROTwYmOBPXvkYwfsTwMwqbEIJjVEROTwtm0DdDqgWjWgalWlo8kXJjUWwKSGiIgcnoM3PQFMaixCLmjJpIaIiByUXg9s3CgfM6lxbaypISIih3bgAHD/PlCkCNCsmdLR5BuTGgswJjV2uugyERFR9tatk/cdOgAOvMAqkxoLMP78mdQQEZHDEQJYv14+fu01RUMpKCY1FmCcUZjz1BARkcM5cwa4ehXw9HTIWYTTY1JjAaypISIih2WspWnTBvDxUTSUgmJSYwFMaoiIyGEZk5pXX1UyCotwiKQmNTUV48aNQ8WKFeHl5YVKlSphypQpMBgMSocGIH1Sw7WfiIjIgVy9Cpw6Bbi5Oewswum5Kx1AbsyePRtfffUVli1bhho1auDYsWN4++234e/vj6FDhyodHkc/ERGRY/r1V3n/wgtAQICysViAQyQ1Bw8exCuvvIL27dsDAIKCgvDTTz/h2LFjCkcmGWtqOE8NERE5FONQbgcf9WTkEElNs2bN8NVXX+HSpUuoVq0aTp8+jf3792PevHlZvic5ORnJycmm57GxsQAAnU4HnYWrVNzcBAA1UlIM0Ok4BMpajD83S//8yBzL2TZYzrbBcs7GvXtw378fKgC6du0K1NxgzXLOyzEdIqkZPXo0YmJi8Oyzz0KtVkOv12P69Ono2rVrlu+ZOXMmJk+enGH7tm3b4O3tbdH4/v67AoC6uHXrHjZtOmLRY1NGkZGRSofgEljOtsFytg2Wc0bld+xAPYMBjytVwp5z54Bz5wp8TGuUc0JCQq73dYikZtWqVfjhhx+wYsUK1KhRA6dOnUJERARKly6N8PDwTN8zZswYDB8+3PQ8NjYW5cqVQ+vWreHn52fR+KKjZYflIkVKoF27dhY9NqXR6XSIjIxEWFgYNA4846W9YznbBsvZNljOWVMvXgwA8O3Ro8DfXdYsZ2NLS244RFIzcuRIfPDBB3jzzTcBALVq1cK1a9cwc+bMLJMarVYLrVabYbtGo7F4gWu1sjONXq/iL40NWONnSBmxnG2D5WwbLOenxMcD27cDANT/+x/UFioba5RzXo7nEEO6ExIS4OZmHqparba7Id3sKExERA5h61YgORmoXBmoWVPpaCzGIWpqOnbsiOnTp6N8+fKoUaMGTp48iblz56J3795KhwaAk+8REZGDWb1a3r/2GqBynjnWHCKp+fzzzzF+/HgMHDgQd+/eRenSpfHuu+9iwoQJSocGgEkNERE5kMRE4Lff5OMuXZSNxcIcIqnx9fXFvHnzsh3CrSTOKExERA5j61bgyROgfHmgYUOlo7Eoh+hTY+84ozARETmMX36R96+/7lRNTwCTGotgR2EiInIISUlO2/QEMKmxCCY1RETkELZuBeLigHLlgOeeUzoai2NSYwHsKExERA7B2PT0v/85XdMTwKTGItzdBQAmNUREZMeSkoANG+RjJ2x6ApjUWAQ7ChMRkd2LjJRNT2XKAM8/r3Q0VsGkxgLYp4aIiOxe+lFPbs759e+cV2Vj7FNDRER2LTkZ+PVX+fj115WNxYqY1FgAkxoiIrJrkZFAbCxQujTQpInS0VgNkxoLYJ8aIiKya+lHPTlp0xPApMYijDU1BoMKdrJwOBERkeQiTU8AkxqLMCY1ADsLExGRndm8GYiJkaOemjVTOhqrYlJjAemTGjZBERGRXfnpJ3n/xhtO3fQEMKmxCCY1RERkl+Li0tZ66tZN2VhsgEmNBRg7CgNMaoiIyI78+iuQmAhUrQrUr690NFbHpMYC3NwANzculUBERHbG2PTUtatTrvX0NCY1FqJWy2FPTGqIiMgu3L8PbNsmH3ftqmwsNsKkxkLUallTw9FPRERkF1avll9K9eoBzz6rdDQ2waTGQlhTQ0REdiV905OLYFJjIe7u7FNDRER24uZNYN8++fjNN5WNxYaY1FgIa2qIiMhurFoFCAE0bw6UK6d0NDbDpMZCjH1qmNQQEZHiVqyQ9y7U9AQwqbEYd3dZU8OOwkREpKhLl4ATJ+Qkal26KB2NTTGpsRDW1BARkV348Ud5HxYGFCumbCw2xqTGQtinhoiIFGcwAMuXy8fduysbiwKY1FgIa2qIiEhxf/wBREUBvr7Aq68qHY3NMamxEGOfGiY1RESkGGMtTZcugLe3srEogEmNhXBGYSIiUlRiIvDzz/Jxz57KxqIQJjUWwj41RESkqA0bgNhYoEIFOT+NC2JSYyHsU0NERIoyNj316AG4uebXu2tetRWwTw0RESnmzh1g61b5uEcPZWNREJMaC2FNDRERKWbFCkCvB55/HqhWTeloFMOkxkJYU0NERIoxNj2Fhysbh8KY1FgIa2qIiEgRp0/Lm4cH8H//p3Q0imJSYyHGmpqUFIUDISIi1/L99/K+Y0egaFFlY1EYkxoLYfMTERHZXGpq2lpPLjo3TXpMaixEo2FNDRER2dimTXLkU/HiwMsvKx2N4pjUWAibn4iIyOa+/Vbeh4fLPjUujkmNhRg7CjOpISIim4iOBjZulI/79FE2FjvBpMZCWFNDREQ2tWyZnJumSRPg2WeVjsYuMKmxEHYUJiIimxECWLJEPmYtjQmTGgthR2EiIrKZffuAv/8GChVy+blp0mNSYyHsU0NERDZj7CD85psysSEATGoshn1qiIjIJmJigF9+kY/Z9GSGSY2FMKkhIiKbWLkSSEwEgoOB555TOhq7wqTGQthRmIiIbMLY9NSnD6BSKRuLnWFSYyGsqSEiIqs7cwY4ehTQaIAePZSOxu4wqbEQd3d2FCYiIitbvFjed+okl0YgM0xqLIQ1NUREZFXx8cDy5fLxu+8qG4udYlJjIexTQ0REVrVyJRAbC1SpArRqpXQ0dolJjYWwpoaIiKxGCGDhQvm4f3/AjV/fmWGpWAiTGiIisppjx4ATJwCtFujVS+lo7BaTGgthR2EiIrIaYy3N//0fEBCgbCx2zL0gb9bpdLhz5w4SEhJQvHhxFC1a1FJxORzW1BARkVU8eiT70wCy6YmylOeamvj4eHz99dcIDQ2Fv78/goKCEBwcjOLFi6NChQro168fjh49ao1Y7Ro7ChMRkVUsXy5nEK5dG2jcWOlo7FqekppPP/0UQUFBWLx4MV588UWsXbsWp06dwsWLF3Hw4EFMnDgRqampCAsLw8svv4y///7bWnHbHdbUEBGRxQkBfPWVfNy/P2cQzkGemp8OHDiAXbt2oVatWpm+3qhRI/Tu3RsLFy7EkiVLsGfPHlStWtUigdo79qkhIiKL27MH+OsvuRJ39+5KR2P38lRT88svv5gSmsaNGyM2NjbT/Tw9PTFw4ED07du34BH+59atW+jevTsCAgLg7e2NunXr4vjx4xY7fkGxpoaIiCzO2EH4rbcAX19lY3EA+R79dPjwYSQlJWXYHhsbi5EjRxYoqKc9evQITZs2hUajwebNm3H+/Hl88sknKFy4sEXPUxDGpEavBwwGhYMhIiLHd/s2sHatfMwOwrmS59FPnTt3RqNGjaBSqXD37l2UKFHC7PUnT55g7ty5+OijjywW5OzZs1GuXDksXbrUtC0oKMhix7cEY1IDyM7CWq2CwRARkeP76isgNRVo1gyoW1fpaBxCnpOaChUq4Pfff4cQAnXq1EFAQADq1KmDOnXqoHbt2jhz5gxKlSpl0SA3bNiANm3aoEuXLtizZw/KlCmDgQMHol+/flm+Jzk5GcnJyabnxqYynU4HnYWHKOl0OrOk5skTHSd7tALjz83SPz8yx3K2DZazbThsOScnw/2rr6ACkDpwIISdx2/Ncs7LMVVCCJGfk2i1Wuzfvx+3b9/GyZMncerUKZw9exYGgwHTp09Ht27d8nPYTHl6egIAhg8fji5duuDIkSOIiIjA119/jZ49e2b6nkmTJmHy5MkZtq9YsQLe3t4Wi81Ir1fhf//rBABYvnwT/Pzs+wNIRET2q9yuXag/fz4SAwIQ+fXXEO4FmlbOoSUkJKBbt26IiYmBn59ftvvmO6lJTU2Fu40K2cPDAyEhIThw4IBp23vvvYejR4/i4MGDmb4ns5qacuXK4f79+zkWSl7pdDps2xaJzp07QQgVrl3TwcKVVQRZzpGRkQgLC4NGo1E6HKfFcrYNlrNtOGQ5CwF148ZwO3EC+mnTYBg1SumIcmTNco6NjUWxYsVyldTkOyuxVUIDAKVKlUJwcLDZturVq2PNmjVZvker1UKbSccWjUZjlQ+2SgV4eADJyYAQGjjK744jstbPkMyxnG2D5WwbDlXOf/wh13ny9IT63XehdpS4YZ1yzsvx8tTz4/r163kK5NatW3naPytNmzbFxYsXzbZdunQJFSpUsMjxLcXDQ97bedMnERHZs88+k/dvvQUUK6ZsLA4mT0lNw4YN0a9fPxw5ciTLfWJiYrB48WLUrFkTa41D0Qpo2LBhOHToEGbMmIF//vkHK1aswKJFizBo0CCLHN9SjEkN56ohIqJ8uXkTMLZCvPeesrE4oDy1IV24cAEzZszAyy+/DI1Gg5CQEJQuXRqenp549OgRzp8/j3PnziEkJAQfffQR2rZta5EgGzZsiHXr1mHMmDGYMmUKKlasiHnz5uGtt96yyPEtxVhDxqSGiIjyZeFCOeFZaKhc64nyJE9JTdGiRfHxxx9j2rRp2LRpE/bt24eoqCgkJiaiWLFieOutt9CmTRvUrFnT4oF26NABHTp0sPhxLYk1NURElG+JicDXX8vHrKXJl3z19vX09ERYWBg6d+5s6XgcGvvUEBFRvv30E/DgAVChAtCxo9LROKR8TxHXvHlz3Llzx5KxODw2PxERUb4IAXzyiXw8eDDgwvPSFES+k5qQkBA899xz+Ouvv8y2nzx5Eu3atStwYI6IzU9ERJQvW7YA58/LRSuzmS2fspfvpOabb75B79690axZM+zfvx+XLl3C//3f/yEkJCTT+WFcgUYj5zFkUkNERHliXC/xnXcAf39lY3FgBarfmjhxIjw8PBAWFga9Xo82bdrg6NGjqF+/vqXicyjGmpp0ExkTERFl7/hxYNcu2eQ0dKjS0Ti0fNfUREdH47333sPUqVMRHBwMjUaDN99802UTGiBtZW7W1BARUa4Z+9K88QZQrpyysTi4fCc1lSpVwr59+/DLL7/g+PHjWLt2LQYOHIjZs2dbMj6HYkxqWFNDRES5cu0a8PPP8vH77ysbixPId/PT0qVL8eabb5qet2nTBrt27UKHDh1w7do1fPnllxYJ0JGw+YmIiPJk3jw52V6rVkC9ekpH4/DyXVOTPqExql+/Pg4cOIDdu3cXJCaHxZoaIiLKtUePgMWL5eMRI5SNxUnkO6nJSlBQEP744w9LH9YhMKkhIqJcW7QIePIEqFkTaNNG6WicgsWTGgAoUqSINQ5r95jUEBFRriQnA/Pny8cjRgAqlbLxOAmrJDWuSquV89QwqSEiomwtWwZERwOlSwNduyodjdNgUmNBrKkhIqIcpaYCxpHCI0emjTKhAmNSY0Ec/URERDn6+WfgyhUgIIBLIlhYgWYU3rFjB3bs2IG7d+/CYDCYvbZkyZICBeaIWFNDRETZMhiAGTPk44gIwMdH0XCcTb6TmsmTJ2PKlCkICQlBqVKloGInJyY1RESUvd9+A86dkwtXDh6sdDROJ99JzVdffYXvvvsOPXr0sGQ8Do1JDRERZUmItFqaQYOAwoUVDccZ5btPTUpKCpo0aWLJWBwekxoiIsrSjh3AkSOApycwbJjS0TilfCc1ffv2xYoVKywZi8PjkG4iIsqSsZamXz+gRAllY3FS+W5+SkpKwqJFi7B9+3bUrl0bGo3G7PW5c+cWODhHw9FPRESUqYMHgV27AHd3OYybrCLfSc2ZM2dQt25dAMCff/5p9pqrdhpm8xMREWVqyhR537MnUK6csrE4sXwnNbt27bJkHE6BSQ0REWVw8CCwZQugVgMffqh0NE6Nk+9ZEJMaIiLKYNIkeR8eDlSurGgozq5Ak+89fvwY3377LS5cuACVSoXq1aujT58+8Pf3t1R8DoVJDRERmTlwANi2TfalGTdO6WicXr5rao4dO4bKlSvj008/xcOHD3H//n18+umnqFy5Mk6cOGHJGB0GkxoiIjIzcaK879ULqFhR0VBcQb5raoYNG4ZOnTph8eLFcHeXh0lNTUXfvn0RERGBvXv3WixIR+HhwSHdRET0n/37ge3bZS3N2LFKR+MS8p3UHDt2zCyhAQB3d3eMGjUKISEhFgnO0bCmhoiITIy1NL17A0FBiobiKvLd/OTn54fr169n2H7jxg34+voWKChH5ekp75nUEBG5uD17gJ07AY2GtTQ2lO+k5o033kCfPn2watUq3LhxAzdv3sTKlSvRt29fdO3a1ZIxOgzW1BAREYRIq6Xp0wcoX17ZeFxIvpufPv74Y6hUKvTs2ROpqakAAI1GgwEDBmDWrFkWC9CRGJOa1FS5urwbB8wTEbme7dtlTY2HB+elsbF8JzUeHh6YP38+Zs6cicuXL0MIgSpVqsDb29uS8TkUY1IDyNoaLy/lYiEiIgUYDMCYMfLxgAGcPdjGCjRPDQB4e3ujVq1alojF4TGpISJycWvWAMePA4UKsZZGAXlKaoYPH46pU6fCx8cHw4cPz3ZfV1zQMv2anuxXQ0TkYnS6tE7B77/PlbgVkKek5uTJk9DpdKbHWXHVBS1VKllbk5zMpIaIyOV89x3w999AsWJADv/4k3XkKalJv4jlsmXLULZsWbg91RtWCIEbN25YJjoHxKSGiMgFJSamrfE0dizg56doOLYWFwccPVoSbdsqG0e+x+dUrFgR9+/fz7D94cOHqOjCU0FzWDcRkQv64gvg9m05fLt/f6Wjsbm5c90wffrz6NdPrWgc+U5qhBCZbo+Pj4encRY6F8SkhojIxTx+DMycKR9Pnpw2E6uLuHMHmDdPphNt2xoUjSXPo5+MHYRVKhUmTJhgNoRbr9fj8OHDqFu3rsUCdDTGpCYpSdk4iIjIRmbPBh49AoKDgR49lI7G5iZPBp48UaFatYfo3FnZFQXynNQYOwgLIXD27Fl4eHiYXvPw8ECdOnUwYsQIy0XoYIzDuJnUEBG5gGvXgE8/lY9nzADUyja/2NqFC8DixfJxz57noVI9p2g8eU5qjJ2F3377bcyfPx9+LtYZKifGWkcmNURELuDDD2V/gxYtgE6dlI7G5kaOBPR6oGNHA2rWfKB0OPnvU7N06VImNJkw1tQkJiobBxERWdmRI8CKFXI+j7lz5b0LiYwENm4E3N2BmTP1SocDoAAzCk+ZMiXb1ydMmJDfQzs01tQQEbkAIeQEe4DsR1O/vrLx2Jhen3b5gwYB1aoB//yjbExAAZKadevWmT3X6XS4evUq3N3dUblyZZdPalhTQ0TkxNauBfbvl9Xz06crHY3NLV0KnD0LFCkC2NPXfb6TmsxmFI6NjUWvXr3w2muvFSgoR8aOwkRETi4lBRg9Wj4eMQIoW1bZeGwsLg4YP14+njABKFpUrhBhD/LdpyYzfn5+mDJlCsYbr9YFsaaGiMjJLVgAXL4MBAYCo0YpHY3NzZkj56apUgUYOFDpaMxZNKkBgMePHyMmJsbSh3UYrKkhInJi9+8DU6fKx9OmydW4XciNG8DHH8vHc+YA6WZ1sQv5bn767LPPzJ4LIRAdHY3vv/8eL7/8coEDc1TsKExE5MTGjZMT7dWuDfTqpXQ0NjdypPx+e+EF4NVXlY4mo3wnNZ8aJxv6j5ubG4oXL47w8HCMGTOmwIE5Kg7pJiJyUsePA4sWyceff+5yE+3t3g2sWgW4uQHz59vnCPZ8JzVXr161ZBxOgzU1REROyGAAhgyRQ7m7dpVVFS4kNVVePiDX67TX1ZAs3qfG1bGmhojICf3wA3DwIODjA3z0kdLR2NyXXwJ//gkEBKR1KbJHeaqpMS5mmRtz587NczDOgDU1REROJjY2bZTTuHFAmTLKxmNjd++mzUUzY4Ycwm2v8pTUZDY3TWZU9tjQZiOsqSEicjJTpgD//gtUrQoMG6Z0NDY3ZgwQEyMnTe7TR+lospenpMa4mCVljTU1RERO5MIF2SsWkPdarbLx2Njhw8CSJfLxF1/Yf9/ofHcUBuScNN9++y0uXLgAlUqF4OBg9O7dG/7+/paKz+GwpoaIyEkIAQweLHvJduwItG2rdEQ2pdfLyweA8HCgcWNl48mNfHcUPnbsGCpXroxPP/0UDx8+xP379zF37lxUrlwZJ06csGSMDoU1NURETuKHH4CdO+Uf9nnzlI7G5hYuBI4dA/z8gFmzlI4md/JdUzNs2DB06tQJixcvhru7PExqair69u2LiIgI7N2712JBOhLW1BAROYEHDwDj4JgJE4BKlZSNx8Zu3QI+/FA+njVLrgjhCApUUzN69GhTQgMA7u7uGDVqFI4dO2aR4LIyc+ZMqFQqREREWPU8+cGaGiIiJzB6tFwSITgYeP99paOxuaFD5cKVzz0HvPuu0tHkXr6TGj8/P1y/fj3D9hs3bsDX17dAQWXn6NGjWLRoEWrXrm21cxQEa2qIiBzcvn3At9/Kx19/bX8LHFnZ778Da9bITsGLFskZhB1FvkN944030KdPH6xatQo3btzAzZs3sXLlSvTt2xddu3a1ZIwm8fHxeOutt7B48WIUKVLEKucoKNbUEBE5sJQUOWUuAPTtCzRrpmw8NvbkCTBokHw8fLhc4sqR5LtPzccffwyVSoWePXsiNTUVAKDRaDBgwADMslKPokGDBqF9+/Z46aWXMG3atGz3TU5ORnJysul5bGwsAECn00Gn01k0LuPxdDodZGucBomJAjpdqkXP4+rSlzNZD8vZNljOtpHXcnabPRvq8+chihdH6rRpgIv9fCZMcMP162pUqCDw4Yepub58a36e83JMlRBCFORkCQkJuHz5MoQQqFKlCry9vQtyuCytXLkS06dPx9GjR+Hp6YnQ0FDUrVsX87LokT5p0iRMnjw5w/YVK1ZYLUYAePhQi969X4abm8CaNRvscsEvIiLKyOf2bbSMiIA6JQXHhw7FzZYtlQ7Jpq5c8cOIES1gMLhh3LiDCAm5q3RIAGSe0a1bN8TExMDPzy/bffOd1CQmJkIIYUoQrl27hnXr1iE4OBitW7fOzyGzdOPGDYSEhGDbtm2oU6cOAOSY1GRWU1OuXDncv38/x0LJK51Oh8jISISFheHJEw1KlNAAAOLjda7WFGtV6ctZo9EoHY7TYjnbBsvZNnJdzgYD1C+9BLf9+2F48UXoN2+2z2WorUSnA5o2dcepUyp07mzAypX6PL7fep/n2NhYFCtWLFdJTb6bn1555RV07twZ/fv3x+PHj/Hcc89Bo9GY5qsZMGBAfg+dwfHjx3H37l00aNDAtE2v12Pv3r344osvkJycDPVT0xxqtVpoM5n5UaPRWO0PiEajga9v2rH1eg34t8ryrPkzpDQsZ9tgOdtGjuW8YAGwfz/g4wO3b76Bm4v9RzpnDnDqlFzXacECN2g0+etya43Pc16Ol++OwidOnEDz5s0BAKtXr0bJkiVx7do1LF++HJ999ll+D5upVq1a4ezZszh16pTpFhISgrfeegunTp3KkNAoKX0exRFQREQOICpKDuEG5KQsFSsqGo6tnTsnl7cC5EoQjjInTWbyXVOTkJBgGrq9bds2dO7cGW5ubnj++edx7do1iwUIAL6+vqhZs6bZNh8fHwQEBGTYrjSVSo6ASkpiUkNEZPeEAPr1k8N+mjcHBg5UOiKbSk0F3n5bDvrq0AF46y2lIyqYfNfUVKlSBevXr8eNGzewdetWUz+au3fvWrzPiqMx9kNmUkNEZOe+/RbYvl3+N/rtt441KYsFfPopcPQo4O8PfPWV43cjyndNzYQJE9CtWzcMGzYMrVq1QuP/Vrratm0b6tWrZ7EAs7J7926rnyO/vL2Bhw+BhASlIyEioizdvJk2W/C0aUDVqsrGY2MXLwLjx8vHn34KlCmjbDyWkO+k5vXXX0ezZs0QHR1tGpEEyP4vr732mkWCc1TGmhomNUREdkoIOclebCzQqBFgh8vuWJNeD/TuDSQnA23aAL16KR2RZeQ7qQGAwMBABD7Vo6hRo0YFCsgZ+PjI+ydPlI2DiIiy8O23wMaNcgmEJUvkmgAuZP584MABwNdXLoXg6M1ORq7VeGgjrKkhIrJjly+n1cxMmwbUqKFoOLZ29iwwZox8/MknQPnyysZjSUxqrIBJDRGRnUpNBXr0kFXpLVrIBY5cSHKyHOFkHO3Ut6/SEVkWkxorMCY1bH4iIrIzc+YABw/Kdpdly1yu2WncOFlTU7w48M03ztPsZMSkxgqMfWpYU0NEZEeOHwcmTpSPv/gCqFBB2XhsbPdu2dwEyISmZElFw7EKJjVWwOYnIiI7k5gIdO8um5/+9z/ZBOVCHj8GevaUg7769gU6dVI6IutgUmMFTGqIiOyL24cfAn/9BZQqBXz9tfO1u+Rg8GDgxg2gcmU5J42zYlJjBexTQ0RkP0oePQr1ggXyyZIlQECAsgHZ2E8/AT/+KCdL/v57oFAhpSOyHiY1VsA+NUREduLmTdQzLrL83nvAyy8rG4+N/f038M478vG4ccB/k/87rQJNvkeZY/MTEZEdSE2FOjwcmrg4iHr1oJozR+mIbCo5GXjzTSA+Xq7VaVwSwZmxpsYKmNQQEdmBqVPhtm8fUj09kfrDD4BWq3RENjVqFHDihGxtW7ECcHeBagwmNVbAZRKIiBS2axcwdSoA4NSAAS63WOX69YCx1W3ZMqBsWUXDsRkmNVbAmhoiIgXduyenzRUChl69cKtFC6Ujsqlr14C335aP338faN9e2XhsiUmNFTCpISJSiMEAhIcD0dFA9erQO/P45UzodEDXrnJemkaNgBkzlI7ItpjUWAGTGiIihUybBmzeDHh6AqtWpfUHcBGjR8tVIPz9gZUr5SLkroRJjRWwTw0RkQI2bwYmTZKPv/oKqFVL0XBsbdWqtIn1li4FKlZUNh4lMKmxAtbUEBHZ2NWrpn406N9fNkG5kHPngD595OPRo4HXXlM2HqUwqbECJjVERDaUmCjXc3r0SHYkmTdP6YhsKiZGJjFPngCtWskWOFfFpMYKjElNYqLss0ZERFYiBDBwIHDyJFCsGLB6tUvNR2PsF/3330C5cnJJBFeYjyYrTGqsIH2/NNbWEBFZ0eLFwHffyYWNVq6U3+wuZPZs4NdfZYfgNWuA4sWVjkhZTGqswNs7bQHY+HhlYyEiclr798vlpwE5drlVK2XjsbEtW+R6TgDwxRdAw4bKxmMPmNRYgUqVtgoqkxoiIiuIigI6d5YTs7z+ulwTwIVcuAC88YZsfurbF+jXT+mI7AOTGisxJjVxccrGQUTkdOLjgU6d5MzB9erJ5idj9bgLePAA6NgRiI2VC1UuWKB0RPaDSY2V+PrKe9bUEBFZkMEAdO8OnD0LlCwpO5S40AR7Oh3QpQtw+TIQFCT70bjaBHvZYVJjJaypISKygvHjZSKj1cpVG12oY7AQwHvvybU6CxUCfvuNHYOfxqTGStinhojIwlasSFvMaPFi4PnnlY3HxhYskBMlq1SyKGrWVDoi+8OkxkrY/EREZEH79qUtPT16NNCjh7Lx2NiWLUBEhHw8a5bsU0MZMamxEjY/ERFZyF9/Aa+8AqSkAK++CkyfrnRENnXihBzgpdfLifZGjlQ6IvvFpMZKWFNDRGQBd+4AbdvKJRCef162u6jVSkdlM1FRQPv2cgmEl14CFi1yqYFeecakxkpYU0NEVEDx8UCHDvKbvUoVYMMGwMtL6ahs5uFDmc/duQPUri1XgOBIp+wxqbESdhQmIiqA1FTgzTeB48flmk6bN7vUUJ+kJNnS9tdfQNmywKZNgL+/0lHZPyY1VmJsfmJNDRFRHgkBDBoEbNwoa2Z++03W1LgI4yKV+/bJRGbzZqBMGaWjcgxMaqyENTVERPk0blxa55EVK1xq6LYQwJAhwM8/AxoNsG4dh27nBZMaK2FHYSKifPj447S5aL76SrbBuJDx44Evv5T53PLlQMuWSkfkWJjUWAk7ChMR5dG336aNV541C3jnHWXjsbFPPkkbrf7ll7JLEeUNkxorYU0NEVEerF6dlsSMGiUn2HMhS5YAI0bIxzNmAP37KxuPo2JSYyWsqSEiyqXISKBbN9lDtm9fWUvjQlavBvr1k49HjgQ++EDZeBwZkxorYVJDRJQLu3fL2YKNy08bFzdyERs3puVz/foBs2e71OVbHJMaK/Hzk/exsbI3OxERPWXfPjldbmKinGXu++9darbgzZuBzp1lPvd//wcsXMiEpqCY1FiJcZIknU5OokREROn88YdMZBISgNatgbVrAa1W6ahsZutW4LXX5HJW//sf8MMPLpXPWQ2TGivx9U3LuGNilI2FiMiuHDokE5onT4BWrYD16wFPT6Wjspnt2+VI9eRkef/TT3JOGio4JjVW4uaWNgKKSQ0R0X+OHgXatJEdDlu2dLn1nHbuBDp2lDX4nToBq1YxobEkJjVWZGyCYlJDRATZ5PTSS7Kz4QsvyOUPvL2VjspmIiPl+pxJSbIr0c8/c4FKS2NSY0VMaoiI/rNjh+w7Y0xoNm4EfHyUjspmfv1VJjSJiUC7dsCaNS7VhchmmNRYEZMaIiIAv/8uqyYSEmTT0+bNafNeuICffpKdgY2dgtetY0JjLUxqrIhJDRG5vF9+kcN8jL1if/3VpZqcvv0WeOstQK8HevYEVq5kk5M1MamxIiY1ROTSli+XCxilpsoZ5n7+2aWqKObPlxMkCyGXPVi6FHB3Vzoq58akxoqY1BCRy/r0UyA8PG3pg+XLXWaYjxDAlClARIR8PmKEXKDSjd+4VscitiImNUTkcgwGuYDR8OHyeUQEsGiRy8wsl5oqa2UmTpTPJ00C5szhTMG2woowK2JSQ0QuJSUF6N0b+PFH+XzOHFlN4SLf6AkJQNeucuodlQpYsAAYMEDpqFwLkxorYlJDRC4jLk4O7YmMlB1HliwBevRQOiqbefBATqp38KDsNvTTT7J/NNkWkxorYlJDRC7h33/l5CsnTsi5Z9askUO3XURUFPDyy8DFi0DhwnJOwWbNlI7KNTGpsSImNUTk9M6elbPKXb8OFC8ObNoEhIQoHZXNHDkCvPIKcOcOUK4csGULEBysdFSuix2FrahIEXn/6JGycRARWcXGjUCTJjKhqVoVOHDApRKalSuBFi1kQlOrlmx6YkKjLCY1VlS0qLxnUkNETkUIOWS7UycgPl4uTHnoEFClitKR2YQQwOTJslNwUpKsqPrjD6BMGaUjIyY1VmRMah4/lrNJEhE5PJ1OjlkePjxtDpotW9L+4Dm5xEQ5j+CkSfL5++8D69cDvr5KRkVGDpHUzJw5Ew0bNoSvry9KlCiBV199FRcvXlQ6rBwZm5+EYL8aInIC9+/LHrGLFskxy598Ih+7yLz/0dGyUmrlSjnAa/Fi4OOPXWYKHofgEEnNnj17MGjQIBw6dAiRkZFITU1F69at8eTJE6VDy5aHR9qabQ8eKBsLEVGBHD8ONGgA7NwpRzj9+qusrXGROWj27wfq1wcOH5b/sG7bJiupyL44xOinLVu2mD1funQpSpQogePHj+OFF15QKKrcCQiQTc4PHyodCRFRPi1bBrz7rlyUskoVucx0zZpKR2UTQgBffCHzt9RUednr1rlM9yGH4xBJzdNi/mvLKZpNG25ycjKSk5NNz2NjYwEAOp0OOp3OovEYj5fZcYsUcce1ayrcvZsKnU5Y9LyuJrtyJsthOduGQ5RzSgrcRoyA+quvAACGdu2g/+47ORmLPcedTkHKOSEBGDRIjR9/lI0aXboY8PXXehQq5DCXbzPW/Dzn5ZgqIYRDfdMKIfDKK6/g0aNH2LdvX5b7TZo0CZMnT86wfcWKFfC24bL3EyY0wZkzxTFs2HG0aHHTZuclIioIz4cPETJnDgL++gsA8Ncbb+DiG2+4zKqM//7rjVmzGuLq1cJwczMgPPw8OnW67CqtbXYlISEB3bp1Q0xMDPz8/LLd1+GSmkGDBmHjxo3Yv38/ypYtm+V+mdXUlCtXDvfv38+xUPJKp9MhMjISYWFh0Dy1Cm3XrmqsWeOGTz/VY9Agg0XP62qyK2eyHJazbdhzOau2bIG6d2+o7t+H8PeH/rvvINq3VzqsfMlPOa9dq8K776oRE6NC8eICK1bo0aKFQ31V2pw1P8+xsbEoVqxYrpIah2p+GjJkCDZs2IC9e/dmm9AAgFarhVarzbBdo9FY7Q9IZscuXlzex8SoodGwi7wlWPNnSGlYzrZhV+Ws0wFjxwIffSSf160L1c8/w71qVWXjsoDclHNSkuw7s3ChfP7888Avv6hQtqxDfVUqyhqf57wczyHqEYUQGDx4MNauXYudO3eiYsWKSoeUa8ZuP+woTER2LSoKeOGFtIRm0CA5Ra4TJDS58ddfwHPPpSU0o0cDe/cCOfz/THbGIdLPQYMGYcWKFfj111/h6+uLO3fuAAD8/f3h5eWlcHTZY1JDRHZv3Tqgd285U6i/v1xhu3NnpaOymWXLZA735ImsXf/+e5daj9OpOERNzcKFCxETE4PQ0FCUKlXKdFu1apXSoeXImNRwnhoisjtxcUC/fjKBefxYVlWcPOkyCc2jR8BbbwG9esmE5sUXgdOnmdA4MoeoqXGwvsxmjH1q7t9XNg4iIjN//AH07AlcuSIn0BsxApg+HbCX/j1WFhkJvP02cOuWHNA1eTIwZgxnB3Z0DpHUOLISJeT93bvKxkFEBABISQEmTgTmzJFrN5UvL9tfQkOVjswmEhJkf5kvvpDPq1YFli+XnYLJ8TGpsbL0SY0QLjOjOBHZoz//BLp3l20sABAeDsyfL/vRuIAjR4AePYBLl+TzQYOA2bPlqg/kHByiT40jMzY/JSbKNlsiIptLSQGmTZNrN50+LddvWbMG+O47l0hoUlLcMG6cG5o0kQlN6dLA1q2ytoYJjXNhTY2V+fjI25MnwL//pi1wSURkE0ePAn36AGfPyucdOsjlpQMDlY3LRvbtUyEioiVu35adZbp2BRYskItSkvNhTY0NsF8NEdlcQoLs/Pv88zKhCQgAfvwR2LDBJRKamBhgwACgVSt33L5dCKVKCaxdC6xYwYTGmbGmxgZKlACuXmVSQ0Q2snOnHKp95Yp83q0bMG9eWnu4k9uwARg4UI5sAoCwsCj8+GMZFC/uGiO7XBmTGhsw/h1hUkNEVhUdLWtnVqyQz8uWBb76CnDQdZvyKioKGDYMWL9ePq9SBfjyy1QkJJxG4cJllAyNbITNTzbA5icisqrUVFkT88wzMqFRqeTQnnPnXCKhSU6WU+wEB8uERq0GRo0CzpwBQkMdd54zyjvW1NgAkxoispr9+2Vbi7EjcKNGwJdfypFOLmDrVmDIEODvv+XzFi3kqKaaNeVznU652Mj2WFNjAyVLyvv/lqwiIiq4mzfljMDNm8uEpmhRYNEiuQilCyQ0V64A//sf8PLLMqEJDJT9oHftSktoyPWwpsYGSpeW97dvKxsHETmB+Hg5G/DHH8sJsFQq2Sl4xgw5wsnJPX4sm5o++0xOv6NWA++9B0yaBPj5KR0dKY1JjQ0wqSGiAtPr5XIGY8emVfs2awbMnQs0bKhsbDag0wFffy2TF+MCwS+9JC+/Vi1FQyM7wqTGBsr81+n+1i0ulUBE+bBjB/D++2nLG1SqBHz0EfDaa07/B0UIYONGOajr4kW5rXp1WVHVtq3TXz7lEfvU2ICxpiY5GXj4UNlYiMiBHD0KtG4tqyROn5ZLGnzyCXD+PNC5s9N/o+/fL9fZ7NhRJjTFi8s+0GfOAO3aOf3lUz4wqbEBrRYoVkw+Nk4GRUSUpT//lLUwjRoBkZGARiOH+PzzDzB8uPyj4sSOH5e1MM2bA3v3ysv94APZIXjAAMCdbQyUBSY1NsJ+NUSUo8uX5TLStWvLCVfc3IBeveQqjJ99lvbfkZM6d06OaAoJAbZskcnLu+/KXG7mTJdYe5MKiEmNjaTvV0NEZOaff4C+fYFnnwV++EF2JHn9dVljs3QpEBSkdIRWdf480L277PC7dq1sVureHfjrLzkhctmySkdIjoKVeDbCpIaInuZ74wbU4eHAqlWAwSA3tm0LTJsG1K+vbHA2cPKkHJ69dq3M4wDZVWjKFKBGDWVjI8fEpMZGjP9p3LihbBxEZAdOnoR66lS8uG5d2rb27eVw7caNlYvLRg4ckMnMpk1p2zp3lpfvArkcWRGTGhupWFHeR0UpGgYRKUUIYM8eORR70yZT27/htdfgNn48UK+eouFZmxCyz/OsWXLWX0B2GeraFRgzhjUzZBlMamzE2CR+9aqiYRCRrel0wM8/y1niTpyQ29zcYHjjDexu3BjN+/eHm0ajbIxWlJQk19icO1d2BAbkYK6ePeWIpipVlI2PnAuTGhsxJjXXr8uJQdVqRcMhImt7/FiuxfTZZ2md6by8gPBwYPhw6IOCEJe+/cXJ3LsnO/l+8UXaYr6FCgG9e8t5BMuXVzY+ck5MamykTBk5PFGnA6Kj2ZufyGn99ZecIW7JEuDJE7mtZEk5z8y776YNy3bS5aPPnpWJzPLlspYGkH/vhg6VA7wKF1Y0PHJyTGpsRK2W/5lcuSL71TCpIXIiOh3w668ymTF2GAHkctHvvy87jjjxhHnJycDq1cDChcAff6Rtb9BAXv7rr8smJyJrY1JjQ0FBaUlNs2ZKR0NEBXbzJrB4sbxFR8ttbm5Ahw7AoEFAWJhTz+V/5YpcZHLJEuD+fblNrQZefVXWzDRr5tSXT3aISU1BHT8Ot8hIlEhMlIuRZMM4Auqff2wQFxFZR2oqsHUr8O23wIYNspMcIJuY+vYF3nnHqTuMpKTIodiLFslZf43zy5QpIy+9b9+0GdSJbI1JTUH9/jvUkyahdKtWOe76zDPy3rjSLBE5kL/+krP7fv99Wq0MALzwAjBwoFyrycNDufis7PRp4Lvv5ITHxloZQK63OWCArJzimkykNH4EC6p6dQCA782bOe7KpIbIwcTEyNl+ly4FDh1K216sGPDWW7JaomZN5eKzsgcP5HDspUvl7L9GgYFySHa/fhySTfaFSU1BBQcDkNOdm+phs2BMai5dkruyrZnIDiUnA5s3AytXyualxES5Xa2WTcxvvy1n/3XSWpnEROD334GffgI2bpTNTYDs6Nupk7z8Nm1YK0P2iR/LgqpaFUKthiYhAbroaKBChSx3rVRJ/iF48kROW8ERUER2IjVVjlr66Se5EFFMTNprwcHym7x7d1lF4YR0OmDbNpnHrV8PxMenvVavnrz8bt2AgADFQiTKFSY1BaXVymzl77+hunAh26RGo5G7Xrokm6CY1BApyGAADh6U3+Q//5w2Qxwge72+8YYcit2ggVNWq+r1wN698vJXrwYePkx7LSgIePNNefm1aysWIlGeMamxAFG9OlTGpObll7Pdt3p1mdScOwfkom8xEVlSSgqwezewbp2skrhzJ+21gAA5oUrXrkDz5nJotpNJSgJ27JCXv2GDnPXXqGRJmce9+Sbw/PNOmceRC2BSYwGiRg1gwwaozp7Ncd86deQcXadOWT8uIoJs7926VTYr/f67edOSn5/sKNK1q5xTxglniIuNlUOw162T9+mblooUAf73P5nIhIZy+RZyfExqLED8t7quyrhYXTbq1JH3p09bMyIiF3fzpuzsu3GjTGiM8/UDskrilVfkEOyWLZ1ypt+oKHn5GzbImpn0KzKUKSMnx3vtNTka3QnzOHJhTGoswJjU4Nw5+cfT0zPLfY1Jzblzsm8iRxAQWUBqquwfs2mTvJ05Y/56xYryW/y114DGjZ2uSiI5Gdi3TyYymzcDFy6Yv/7MM2mXHxLilC1rRACY1FhG+fJI9vWFNi5OrubWsGGWu1asCPj6AnFxci4vJ57igsi6bt0CIiPlt/jWrebNSiqV7BjStq1sXqpd2+k6iVy/Li990yZZG2NcOxOQOVuTJvLyX33VNJ0WkdNjUmMJKhViKlVCidOngWPHsk1q3NzkEMm9e4GjR5nUEOXaw4eyk++OHfL29CyWAQGyo367dnKaW+Nq2E7i3j056nzHDmDnzozLrQQGpl1+WBhXwybXxKTGQh4++6xMavbvl3OGZ+P552VSc/CgnP+BiDKRkCB/n4xJzIkT5hNcurnJ4dZt28pbw4ZO1awUGyv/ThiTmKdb1Nzc5N+Sdu3k5dety2YlIiY1FvLgv5mFsW9fjvs2aSLvDxywYkBEjub+feCPP+Tv0P79wPHjsq9MetWry7kQWrWSw3WcqDri33/l5e/fL28nTqStlWlUq5a89BdflJ18/f2ViZXIXjGpsZBHzzwD4e4O1Y0bwLVr2U7C17ixvD9/Hnj82Kn+LhPljhDy98SYwOzbl7F3KwCUK5eWxLz4otMs/yyEnK9q+/byWLdOjQMHgL//zrhflSryso05XIkSNg+VyKEwqbEQvacnRP36UB05IuuKs2lXKlECqFpV/hHbu1f2YyRyarGxsr/Z4cPAkSPydvt2xv2qV5cT3zVrJu8rVHCKDr6PHsnLN176wYPAvXsaAPVM+6hUso9ds2Zpt/LllYuZyBExqbEgERYm/2Jt3pxjZ5mwMJnUbNvGpIacTEqKHAV45EhaEvPXXxkXfHV3l+OLjd/gTZs6RefepCQ5uaYxgTlyJPNaGK1WoHLlB+jQoQhatFCjcWM5GR4R5R+TGgsSbdsC06fLTEWny3ZWq7Aw4Msv5YhUIocVHy97sJ46BZw8Ke/PnpUTpzwtKAho1Ah47jl5X78+4O1t44AtKzY27fKNRXDmTMauQABQubLsy2wsgtq1U7Fjxx9o164dNBrn6eBMpCQmNRYkGjSQ/2nevy/blbJZ3KllSzlQ49Il+V9c1ao2DJQoP/791zx5OXlSfnifroEBZJVDo0bmNwfuECKEnBbHmLwYb5cvZ75/8eIycTEmMQ0bZlzhOv0sv0RkGUxqLEmtBjp3BhYtAn76Kdukxt9fdgCMjATWrAE++MCGcRJl58EDBJw7B7cbN+RcMOfOyVv6VazTK1VKTr5Ut27afeXKDtsX5u5d2Yn/3Lm0+z//BB48yHz/smXlJRtvISGyL4yDXj6RQ2NSY2ndusmkZvVq4Isvsl0y4fXXZVKzejWTGrIxIeRsbumTlv++xTX//otmmb1HpQKqVTNPYOrUkWspORghZPKSPnE5f17e7t/P/D1qtezHnD6BqVPHKboBETkNJjWW1ry5HIZ64wawahUQHp7lrq+9BgwaJKfj+PNPzi5MVhATI5uIjO2cly6lPU6/rMBTnpQoAa8GDeBWsyZQowYQHCxvPj42DL7gHj6Ul5q+CIy32NjM36NSyeVMgoPTLr1GDXnL5n8UIrIDTGoszc1Nzij84YfAZ58BPXtmWQ9dvLgc+bR2LbB4MTB/vo1jJcdnrHG5elUuzXzlivk3eFZNRoD8XJYvn+GbW1elCrbv3Yt27drBzc6XcBZCdvWJipJFkD5p+ftvmdRkRaUCKlUyv/zgYODZZx2+/zKRy2JSYw39+gFTpsgpQX//HejYMctd33lHJjVLlwITJmTsTEiER4/SkparV80fR0XJ5QSyExgom42qVjW/r1w586oHO+rBKoRsDjJeavrLNt6SkrI/RunSaZed/pbV5ROR42JSYw3FigFDhwKzZ8vOMu3aZbkmTViYbJc/fRqYO1eOCCcXEhsL3LyZdrtxI+PzbJqJAMgqhzJlZJtJUFDat3a1anJKWj8/m1xKXgkhL+3mTTmyKP1l37olJxzOTc6mUsnOukFBMlFJn8BUqeJwLWZEVABMaqzlgw9kh+Hz54HPPwciIjLdzc0NmDRJ9q/57DPgvfccst8lPS0pSbaL3Lkj76OjM35z37wJxMXl7nglS6YlLRUrmj8uVw7Qaq15NXlmvPz0l55Z4vLkSc7HUqlkbYvxcoOC0m4VK8qExsPDutdDRI6BSY21FC4MzJgh+9eMHi0XbqlbN9NdX3lFDgM9dkzuvmYNh4PaJZ1OtoUYk5Wnb+m3P36c++MWKSK/mcuWlQmK8bHxVqGCXXTySEmRXXTSX2pW9zlVLqUXECArmtJfcpkysijsNGcjIjvFpMaa3n1XLpmwYYPsV7N3r/wr/RSVCvjmG5nYrFsHfPddjqssUEEZDDLxuH9fdrS9fz/nW14SFUBWHwQGylvJkhmTFeO3twLtI6mpsqtO+st78EDe373rhlOn6mHRIjUePiz45RsvPX3iYnxcpgzg5WWVSyQiF8SkxppUKmDJErmuzV9/ydqa9evl/B5PqVMHmDgRGD9e5kJly8r+NpQNg0H2SXn0SH7j5ub+0SP57f3ggXx/XqlUcmZcY7KS1a1kSVlbZ8UqN71e1ogYLy/9pWb2PH0S8+hRdkdWA8h8JUV397TLL1nS/HKf3ubvzxpHIrItJjXWFhAA7NghE5q//wYaN5bDvUeMyNCk8OGHchKwlStlxc633wJvvaVM2Fal18s1g+LiZFISF5f94/+eqx8/Rovr1+EeESG/pWNiMp+iPy/8/GTH7qdvxYtnvr1IkSw7fedWamqGSzN7ntkts0Qlt91xslOkiLysgID0l6jH/fsX0bRpNZQs6W56rXhxoGhR2Q+MiMgeMamxhdKl5WrFPXvKId4TJwLz5snnnTsDzz8PeHjAzU02PSUlyQqd7t2B336Tg6gqVLBxzAaDDOTJEzn8JKf7rF7LLFnJaThLFtwAFM7sBS8v+e1cuHDG+8y2Gb+9AwKy7GGq1wOJiU9d4lUg4Zz5JWdVBPHxWScrOQ1Bzisfn4yXmtlzYwJjvPSiRWXNy9N0OgM2bfob7dpVzW5NViIiu+NQSc2XX36Jjz76CNHR0ahRowbmzZuH5s2bKx1W7hQpIvvW/PyzrJK5ckXOtjd/vvxS/m/GVm2ZMljTtDgmGMIw8/eaWLVKhV9+Eejc/B7eaPUArevfh59nivx3X683v09Olt+Y+bll9g1tbe7usqbE1zftPt1jUcgXKT5FkORZGEmehRGv8cXRf26iWsNmSPUJQJLGF0nuhZAsPDJcjllR3AaSr2a85OTkrBOTzBaZtjQPj7RLTn9LXxTGW1aJir8/R/4QERk5TFKzatUqRERE4Msvv0TTpk3x9ddfo23btjh//jzKl8+8/d/uqFTAG28AXboA27YBy5cD27fLjqrHj8sbZI3ENACdUQ+jMRvbDWFYvacEVu8pARUMqIZLqIPTCEIUyuImSuJfFEI8CiEePngCLyTCDQaoIDLc66FGKtwz3KeiMPQIyPw1jTd0Hj5I0foiReMjH7t7y8fuXkhRy5tO7YkUNy1SVJ7QuXkgBVroVB5IUWmRAg100CDFoEGKwR06gxopqSqkpKig0wEpsUDKfTnAKCVFJhW2SCxyw8tL1oZ4e8tb+seZPff2BgoVyj5J8fVlMkJEZGkOk9TMnTsXffr0Qd++fQEA8+bNw9atW7Fw4ULMnDlT4ejyyM0NePlleTMYZF+b8+dlZ+I7d2SSc+8e6icmIjJlLM7ELsaye+3wW1wL/K2riIt4FhfxrO3i1f13y8WcItbk6SmgVuvg66uBVquCpydMN60WZs8z25bZ85wSFU9P9iEhInIUDpHUpKSk4Pjx4/jgqaWsW7dujQMHDmT6nuTkZCSn+1c/9r/V63Q6HXQWngbeeLx8H7dSJXnr0CHTl6sDmPXf7d9/dTh9WoU//1T9N6GZCvfuySaT+HiVqQlFiLSbwZB27+4u+7mmvzc+Nt7SXhOm5x4egEYjb8bHHh7GxyLD65ntk/l70x9bmG3z8kpLQDQaIDVVh8jISISFhUFjo84eer28uZICf54pV1jOtsFytg1rlnNejqkSoqDDR6zv9u3bKFOmDP744w80adLEtH3GjBlYtmwZLl68mOE9kyZNwuTJkzNsX7FiBbztYCIzIiIiyllCQgK6deuGmJgY+OWw7ItD1NQYqZ6a9EIIkWGb0ZgxYzB8+HDT89jYWJQrVw6tW7fOsVDySqezfQ2CK2I52wbL2TZYzrbBcrYNa5azsaUlNxwiqSlWrBjUajXu3Lljtv3u3bsomcVCSVqtFtpM5lbXaDRW+2Bb89iUhuVsGyxn22A52wbL2TasUc55OZ5DdIH08PBAgwYNEBkZabY9MjLSrDmKiIiIXJdD1NQAwPDhw9GjRw+EhISgcePGWLRoEa5fv47+/fsrHRoRERHZAYdJat544w08ePAAU6ZMQXR0NGrWrIlNmzahgs2n2iUiIiJ75DBJDQAMHDgQAwcOVDoMIiIiskMO0aeGiIiIKCdMaoiIiMgpMKkhIiIip8CkhoiIiJwCkxoiIiJyCkxqiIiIyCkwqSEiIiKnwKSGiIiInIJDTb5XEEIIAHlb7TO3dDodEhISEBsbywXTrIjlbBssZ9tgOdsGy9k2rFnOxu9t4/d4dlwmqYmLiwMAlCtXTuFIiIiIKK/i4uLg7++f7T4qkZvUxwkYDAbcvn0bvr6+UKlUFj12bGwsypUrhxs3bsDPz8+ix6Y0LGfbYDnbBsvZNljOtmHNchZCIC4uDqVLl4abW/a9ZlympsbNzQ1ly5a16jn8/Pz4S2MDLGfbYDnbBsvZNljOtmGtcs6phsaIHYWJiIjIKTCpISIiIqfApMYCtFotJk6cCK1Wq3QoTo3lbBssZ9tgOdsGy9k27KWcXaajMBERETk31tQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RERE5BSY1BTQl19+iYoVK8LT0xMNGjTAvn37lA7Joc2cORMNGzaEr68vSpQogVdffRUXL14020cIgUmTJqF06dLw8vJCaGgozp07p1DEzmHmzJlQqVSIiIgwbWM5W8atW7fQvXt3BAQEwNvbG3Xr1sXx48dNr7OcCy41NRXjxo1DxYoV4eXlhUqVKmHKlCkwGAymfVjO+bN371507NgRpUuXhkqlwvr1681ez025JicnY8iQIShWrBh8fHzQqVMn3Lx50zoBC8q3lStXCo1GIxYvXizOnz8vhg4dKnx8fMS1a9eUDs1htWnTRixdulT8+eef4tSpU6J9+/aifPnyIj4+3rTPrFmzhK+vr1izZo04e/aseOONN0SpUqVEbGysgpE7riNHjoigoCBRu3ZtMXToUNN2lnPBPXz4UFSoUEH06tVLHD58WFy9elVs375d/PPPP6Z9WM4FN23aNBEQECB+//13cfXqVfHLL7+IQoUKiXnz5pn2YTnnz6ZNm8TYsWPFmjVrBACxbt06s9dzU679+/cXZcqUEZGRkeLEiROiZcuWok6dOiI1NdXi8TKpKYBGjRqJ/v37m2179tlnxQcffKBQRM7n7t27AoDYs2ePEEIIg8EgAgMDxaxZs0z7JCUlCX9/f/HVV18pFabDiouLE1WrVhWRkZGiRYsWpqSG5WwZo0ePFs2aNcvydZazZbRv31707t3bbFvnzp1F9+7dhRAsZ0t5OqnJTbk+fvxYaDQasXLlStM+t27dEm5ubmLLli0Wj5HNT/mUkpKC48ePo3Xr1mbbW7dujQMHDigUlfOJiYkBABQtWhQAcPXqVdy5c8es3LVaLVq0aMFyz4dBgwahffv2eOmll8y2s5wtY8OGDQgJCUGXLl1QokQJ1KtXD4sXLza9znK2jGbNmmHHjh24dOkSAOD06dPYv38/2rVrB4DlbC25Kdfjx49Dp9OZ7VO6dGnUrFnTKmXvMgtaWtr9+/eh1+tRsmRJs+0lS5bEnTt3FIrKuQghMHz4cDRr1gw1a9YEAFPZZlbu165ds3mMjmzlypU4ceIEjh49muE1lrNlXLlyBQsXLsTw4cPx4Ycf4siRI3jvvfeg1WrRs2dPlrOFjB49GjExMXj22WehVquh1+sxffp0dO3aFQA/z9aSm3K9c+cOPDw8UKRIkQz7WOO7kklNAalUKrPnQogM2yh/Bg8ejDNnzmD//v0ZXmO5F8yNGzcwdOhQbNu2DZ6enlnux3IuGIPBgJCQEMyYMQMAUK9ePZw7dw4LFy5Ez549TfuxnAtm1apV+OGHH7BixQrUqFEDp06dQkREBEqXLo3w8HDTfixn68hPuVqr7Nn8lE/FihWDWq3OkGnevXs3Q9ZKeTdkyBBs2LABu3btQtmyZU3bAwMDAYDlXkDHjx/H3bt30aBBA7i7u8Pd3R179uzBZ599Bnd3d1NZspwLplSpUggODjbbVr16dVy/fh0AP8+WMnLkSHzwwQd48803UatWLfTo0QPDhg3DzJkzAbCcrSU35RoYGIiUlBQ8evQoy30siUlNPnl4eKBBgwaIjIw02x4ZGYkmTZooFJXjE0Jg8ODBWLt2LXbu3ImKFSuavV6xYkUEBgaalXtKSgr27NnDcs+DVq1a4ezZszh16pTpFhISgrfeegunTp1CpUqVWM4W0LRp0wxTEly6dAkVKlQAwM+zpSQkJMDNzfzrTK1Wm4Z0s5ytIzfl2qBBA2g0GrN9oqOj8eeff1qn7C3e9diFGId0f/vtt+L8+fMiIiJC+Pj4iKioKKVDc1gDBgwQ/v7+Yvfu3SI6Otp0S0hIMO0za9Ys4e/vL9auXSvOnj0runbtyqGZFpB+9JMQLGdLOHLkiHB3dxfTp08Xf//9t/jxxx+Ft7e3+OGHH0z7sJwLLjw8XJQpU8Y0pHvt2rWiWLFiYtSoUaZ9WM75ExcXJ06ePClOnjwpAIi5c+eKkydPmqYuyU259u/fX5QtW1Zs375dnDhxQrz44osc0m2vFixYICpUqCA8PDxE/fr1TUOPKX8AZHpbunSpaR+DwSAmTpwoAgMDhVarFS+88II4e/asckE7iaeTGpazZfz222+iZs2aQqvVimeffVYsWrTI7HWWc8HFxsaKoUOHivLlywtPT09RqVIlMXbsWJGcnGzah+WcP7t27cr0b3J4eLgQInflmpiYKAYPHiyKFi0qvLy8RIcOHcT169etEq9KCCEsX/9DREREZFvsU0NEREROgUkNEREROQUmNUREROQUmNQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RERE5BSY1BAREZFTYFJDRHYjNDQUERERSodBRA6KMwoTkSJCQ0NRt25dzJs3z7Tt4cOH0Gg08PX1tXk8ERERiIqKwvr1621+biKyDNbUEJHdKFq0qCIJDQAcPXoUjRo1UuTcRGQZTGqIyOZ69eqFPXv2YP78+VCpVFCpVIiKisrQ/BQaGoohQ4YgIiICRYoUQcmSJbFo0SI8efIEb7/9Nnx9fVG5cmVs3rzZ9B4hBObMmYNKlSrBy8sLderUwerVq7OMRafTwcPDAwcOHMDYsWOhUqnw3HPPWfPyichKmNQQkc3Nnz8fjRs3Rr9+/RAdHY3o6GiUK1cu032XLVuGYsWK4ciRIxgyZAgGDBiALl26oEmTJjhx4gTatGmDHj16ICEhAQAwbtw4LF26FAsXLsS5c+cwbNgwdO/eHXv27Mn0+Gq1Gvv37wcAnDp1CtHR0di6dat1LpyIrIp9aohIEZn1qXl6W2hoKPR6Pfbt2wcA0Ov18Pf3R+fOnbF8+XIAwJ07d1CqVCkcPHgQtWrVQrFixbBz5040btzYdNy+ffsiISEBK1asyDSW9evXo2/fvrh//751LpaIbMJd6QCIiLJTu3Zt02O1Wo2AgADUqlXLtK1kyZIAgLt37+L8+fNISkpCWFiY2TFSUlJQr169LM9x8uRJ1KlTx8KRE5GtMakhIrum0WjMnqtUKrNtKpUKAGAwGGAwGAAAGzduRJkyZczep9VqszzHqVOnmNQQOQEmNUSkCA8PD+j1eoseMzg4GFqtFtevX0eLFi1y/b6zZ8/itddes2gsRGR7TGqISBFBQUE4fPgwoqKiUKhQIRQtWrTAx/T19cWIESMwbNgwGAwGNGvWDLGxsThw4AAKFSqE8PDwTN9nMBhw5swZ3L59Gz4+PvD39y9wLERkexz9RESKGDFiBNRqNYKDg1G8eHFcv37dIsedOnUqJkyYgJkzZ6J69epo06YNfvvtN1SsWDHL90ybNg2rVq1CmTJlMGXKFIvEQUS2x9FPRERE5BRYU0NEREROgUkNEREROQUmNUREROQUmNQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RERE5BSY1BAREZFTYFJDREREToFJDRERETkFJjVERETkFJjUEBERkVP4f2jnnJAq0calAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = range(0, 100, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [1,10]:\n", + "x = [exp(A*t)*[1,10] for t in t]\n", + "plot(t, [x[1] for x in x], \"r-\")\n", + "plot(t, [x[2] for x in x], \"b-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "legend([L\"1st $x$ component\", L\"2nd $x$ component\"])\n", + "title(\"solution of 2 coupled ODEs\")\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To understand this problem, we need only look at the eigenvalues and eigenvectors of $A$. \n", + "\n", + "Since this is $2\\times2$, we could solve for them analytically via a quadratic equation, but let's just do it numerically. (Partly because I am lazy, partly because the details of solving for the eigenvalues are unininteresting, and partly because in larger problems we will have no choice but to do it numerically anyway.)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -0.9524937810560445\n", + " 0.05249378105604463" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(A)\n", + "λ" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 0.0945865 0.903256\n", + " 0.995517 0.429103" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are two eigenvalues, $\\lambda_1 \\approx -0.95$ and $\\lambda_2 \\approx 0.05$. We can expand *any* solution in the basis of the eigenvectors $\\vec{x}_1$ and $\\vec{x}_2$ as:\n", + "\n", + "$$\n", + "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2\n", + "$$\n", + "\n", + "where the coefficients $c_1$ and $c_2$ are typically determined by suppling an initial condition $\\vec{x}(0)$: $\\vec{c} = X^{-1} \\vec{x}(0)$.\n", + "\n", + "(It is easy to verify that this solves $d\\vec{x}/dt = A\\vec{x}$ just by plugging it in to the ODE.)\n", + "\n", + "From the eigenvalues, we can easily see that the $\\vec{x}_1$ solution is *quickly exponentially decaying* and the $\\vec{x}_2$ solution is *slowly exponentially growing*. That's why, when we plot the solution, we see a rapid exponential decay followed by a slow exponential growth.\n", + "\n", + "Furthermore, we can solve for the coefficients when $\\vec{x}(0) = (1,10)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 10.020109607340812\n", + " 0.05782776958997378" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c = X \\ [1, 10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that this initial condition \"happens\" to almost entirely consist of the $\\vec{x}_1$ eigenvector, with only a small $\\vec{x}_2$ component. This means that it takes an especially long time for the $e^{\\lambda_2 t}$ exponential growth to amplify the $\\vec{x}_2$ component to the point where it becomes obvious on the plot of the solution." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key points\n", + "\n", + "For the easier case of purely real eigenvalues:\n", + "\n", + "* **Negative real λ** correspond to *exponentially decaying solutions*.\n", + "* **Positive real λ** correspond to *exponentially growing solutions*.\n", + "* **Zero real λ** correspond to *steady solutions* (neither decaying nor growing).\n", + "\n", + "Also (for any eigenvalues):\n", + "\n", + "* The **initial conditions** determine the coefficients of each eigenvector in the solution." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A mass and spring\n", + "\n", + "Let's consider the motion of a mass $m$ sliding without friction and attached to a spring:\n", + "\n", + "\n", + "\n", + "Newton's law for the position $x(t)$ gives the 2nd-order (has up to 2nd derivatives) ordinary differential equation (ODE):\n", + "\n", + "$$\n", + "m \\frac{d^2 x}{dt^2} = -kx\n", + "$$\n", + "\n", + "where $k$ is the spring constant. We can instead write this in terms of a *system* of first-order (1st derivatives only) ODEs by adding a variable $v = dx/dt$ (the velocity):\n", + "\n", + "$$\n", + "\\frac{d x}{dt} = v \\\\\n", + "\\frac{d v}{dt} = -\\frac{k}{m}x\n", + "$$\n", + "\n", + "which can be written in matrix form as $d\\vec{x}/dt = Ax$:\n", + "\n", + "$$\n", + "\\frac{d}{dt} \\underbrace{\\begin{pmatrix} x \\\\ v \\end{pmatrix}}_\\vec{x} =\n", + "\\underbrace{\\begin{pmatrix} 0 & 1 \\\\ -k/m & 0 \\end{pmatrix}}_A \\vec{x}\n", + "$$\n", + "\n", + "Let's choose $k/m = 1/100$. Then we have" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 0.0 1.0\n", + " -0.01 0.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [ 0 1 \n", + " -0.01 0 ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we have an initial position $x(0)=0$ and an initial velocity $v(0)=1$, so that $\\vec{x}(0) = (0,1)$, the solutions $x(t)$ look like:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHGCAYAAABpZb/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcO0lEQVR4nO2dd3iVRfbHv+8tCUlIAukJhNCkSVFBmoW2dLCgrmVXwbZrwV1A199iA1wVCwqWVdYGllV0V2AtKAQFFEGkSpGmhlCSENIbSW5y5/fHZG4h7Za33/N5njz3zXvfMu+5855z5syZGYkxxkAQBEEQBEG0iEXrAhAEQRAEQRgBcpoIgiAIgiB8gJwmgiAIgiAIHyCniSAIgiAIwgfIaSIIgiAIgvABcpoIgiAIgiB8gJwmgiAIgiAIHyCniSAIgiAIwgfIaSIIgiAIgvABcpqIkKOqqgrz58/Hxo0bG323fPlySJKEY8eOqV4uf3jkkUfQqVMn2Gw2tGvXTrH7HDt2DJMnT0ZcXBwkScKsWbNaPH7jxo2QJKlJ2bbEli1bMH/+fJSUlDT6buTIkRg5cqRf1/MXo/zuhPFRoz4TymHTugAEoTZVVVVYsGABADRSXpMnT8bWrVuRmpqqQcl843//+x+efPJJPPzww5g4cSLCw8MVu9fs2bOxbds2vP3220hJSWlVLhdddBG2bt2KPn36+HWfLVu2YMGCBZgxY0YjJ/DVV1/1t9gEoVuoPhsbcpoIwoPExEQkJiZqXYwW2b9/PwDgL3/5C5KSkhS/1+DBg3HVVVe1eJzD4YAkSYiJicHQoUNlLYO/DhhB6JGqqipERkZSfTY41D1H6Ib58+dDkiTs3bsX1113HWJjYxEXF4c5c+agrq4Ohw8fxoQJExAdHY3OnTvj2WefbXSN48eP449//COSkpIQHh6O3r174/nnn4fT6QTAu5uEU7RgwQJIkgRJkjBjxgwAzXfTvP322xgwYADatGmDuLg4XH311Th48KDXMTNmzEDbtm3xyy+/YNKkSWjbti3S09Nx//33o6amptXndzqdePbZZ9GrVy+Eh4cjKSkJt9xyC06ePOk6pnPnznjkkUcAAMnJyZAkCfPnz2/2mjt27MANN9yAzp07IyIiAp07d8aNN96I7OzsFssiutl++eUXfPnlly45HTt2zPXde++9h/vvvx8dOnRAeHg4fvnll2a757Zt24apU6ciPj4ebdq0Qbdu3VxdffPnz8ff/vY3AECXLl1c9xLXaKo7o6ioCPfccw86dOiAsLAwdO3aFQ8//HAjOUuShJkzZ+K9995D7969ERkZiQEDBuDzzz9v8fkF69evx5gxYxATE4PIyEhccskl+Prrr72OOXPmDP70pz8hPT0d4eHhSExMxCWXXIL169e7jtm9ezemTJniqpdpaWmYPHmy12/bFCNHjkTfvn2xdetWDB8+3PUbLlu2DADwxRdf4KKLLkJkZCT69euHr776yuv8X375BbfeeivOO+88REZGokOHDpg6dSr27dvndZzT6cQTTzyBnj17IiIiAu3atUP//v3x4osv+vWczbF582aMGTMG0dHRiIyMxPDhw/HFF194HSPevQ0bNuDuu+9GQkIC4uPjMW3aNOTk5LR6j0DruuC1117DgAED0LZtW0RHR6NXr1546KGHGpUvMzMTt956K+Li4hAVFYWpU6fit99+87qW+N2+/fZbDB8+HJGRkbjttttc33nW52PHjkGSJCxatAgvvPACunTpgrZt22LYsGH44YcfGpXzjTfeQI8ePRAeHo4+ffrggw8+wIwZM9C5c2efnpMIEkYQOmHevHkMAOvZsyf7xz/+wTIzM9mDDz7IALCZM2eyXr16sZdeeollZmayW2+9lQFgn3zyiev8/Px81qFDB5aYmMiWLl3KvvrqKzZz5kwGgN19992MMcaqq6vZV199xQCw22+/nW3dupVt3bqV/fLLL4wxxpYtW8YAsKysLNd1n3rqKQaA3XjjjeyLL75g7777LuvatSuLjY1lR44ccR03ffp0FhYWxnr37s0WLVrE1q9fzx577DEmSRJbsGBBq8//pz/9yfWsX331FVu6dClLTExk6enp7MyZM4wxxnbt2sVuv/12BoB99dVXbOvWrezEiRPNXvM///kPe+yxx9iqVavYpk2b2IoVK9iIESNYYmKi65pNUVpayrZu3cpSUlLYJZdc4pJTdXU127BhAwPAOnTowK699lr26aefss8//5wVFha6vtuwYYPrWl999RWz2+2sf//+bPny5eybb75hb7/9NrvhhhsYY4ydOHGC3XfffQwAW7lypetepaWljDHGRowYwUaMGOG63tmzZ1n//v1ZVFQUW7RoEVu3bh179NFHmc1mY5MmTfJ6DgCsc+fObPDgwezjjz9ma9asYSNHjmQ2m439+uuvruOa+t3fe+89JkkSu+qqq9jKlSvZZ599xqZMmcKsVitbv36967jx48ezxMRE9vrrr7ONGzey1atXs8cee4ytWLGCMcZYRUUFi4+PZ4MGDWIff/wx27RpE/voo4/YXXfdxX7++edmfwPx7PHx8axnz57srbfeYmvXrmVTpkxhANiCBQtYv3792IcffsjWrFnDhg4dysLDw9mpU6dc52/atIndf//97L///S/btGkTW7VqFbvqqqtYREQEO3TokOu4hQsXMqvVyubNm8e+/vpr9tVXX7ElS5aw+fPn+/yczbFx40Zmt9vZwIED2UcffcRWr17Nxo0bxyRJ8jpX/AZdu3Zl9913H1u7di178803Wfv27dmoUaNavAdjgdd1xhj78MMPGQB23333sXXr1rH169ezpUuXsr/85S+Nypeens5uu+029uWXX7LXX3+dJSUlsfT0dFZcXOz1u8XFxbH09HT28ssvsw0bNrBNmza5vvOsz1lZWa56OmHCBLZ69Wq2evVq1q9fP9a+fXtWUlLiOvZf//oXA8CuueYa9vnnn7N///vfrEePHiwjI4NlZGS0KiMieMhpInSDcJqef/55r/0XXHCBy6AKHA4HS0xMZNOmTXPt+/vf/84AsG3btnmdf/fddzNJktjhw4cZY4ydOXOGAWDz5s1rVIZzjWdxcTGLiIhoZIyPHz/OwsPD2U033eTaN336dAaAffzxx17HTpo0ifXs2bPFZz948CADwO655x6v/du2bWMA2EMPPeTaJ+TUmiFoirq6OlZRUcGioqLYiy++2OrxGRkZbPLkyV77hGN0+eWXNzq+KaepW7durFu3buzs2bPN3ue5555r5LQIzjUyS5cubVLOzzzzDAPA1q1b59oHgCUnJ7OysjLXvry8PGaxWNjChQtd+8793SsrK1lcXBybOnWq1z3q6+vZgAED2ODBg1372rZty2bNmtXss+3YsYMBYKtXr272mOYYMWIEA8B27Njh2ldYWMisViuLiIjwcpD27NnDALCXXnqp2evV1dWx2tpadt5557HZs2e79k+ZMoVdcMEFLZaltedsjqFDh7KkpCRWXl7uVY6+ffuyjh07MqfTyRhz/wbnvgPPPvssA8Byc3P9uq8/dX3mzJmsXbt2LR4jynf11Vd77f/+++8ZAPbEE0+49onf7euvv250neacpn79+rG6ujrX/h9//JEBYB9++CFjjNe9lJQUNmTIEK/rZWdnM7vdTk6TSlD3HKE7pkyZ4vV/7969IUkSJk6c6Npns9nQvXt3r9D7N998gz59+mDw4MFe58+YMQOMMXzzzTd+l2Xr1q04e/asq/tOkJ6ejtGjRzfqqpEkCVOnTvXa179//1a7CDZs2OAqqyeDBw9G7969G93HVyoqKvB///d/6N69O2w2G2w2G9q2bYvKyspG3Yv+cs0117R6zJEjR/Drr7/i9ttvR5s2bYK6n+Cbb75BVFQUrr32Wq/9QnbnymrUqFGIjo52/Z+cnIykpKQWf5MtW7agqKgI06dPR11dnevP6XRiwoQJ2L59OyorKwHw32j58uV44okn8MMPP8DhcHhdq3v37mjfvj3+7//+D0uXLsXPP//s1/OmpqZi4MCBrv/j4uKQlJSECy64AGlpaa79vXv3BgCv56qrq8NTTz2FPn36ICwsDDabDWFhYTh69KjX7z948GD89NNPuOeee7B27VqUlZU1Kkdrz9kUlZWV2LZtG6699lq0bdvWtd9qteLmm2/GyZMncfjwYa9zrrjiCq//+/fv3+i5miKYuj548GCUlJTgxhtvxP/+9z8UFBQ0e+wf/vAHr/+HDx+OjIwM1zssaN++PUaPHt3ifT2ZPHkyrFar6/9zn/vw4cPIy8vD73//e6/zOnXqhEsuucTn+xDBQU4ToTvi4uK8/g8LC0NkZGQjoxsWFobq6mrX/4WFhU2O7hKGpbCw0O+yiHOau+6512yqnOHh4V7llOM+vnLTTTfhlVdewR133IG1a9fixx9/xPbt25GYmIizZ88GdE2BLyMMz5w5AwDo2LFjUPfypLCwECkpKZAkyWt/UlISbDZbI1nFx8c3ukZ4eHiLz3/69GkAwLXXXgu73e7198wzz4AxhqKiIgDARx99hOnTp+PNN9/EsGHDEBcXh1tuuQV5eXkAgNjYWGzatAkXXHABHnroIZx//vlIS0vDvHnzfHI8zn0fAF73m3pPAHjVtTlz5uDRRx/FVVddhc8++wzbtm3D9u3bMWDAAK/nnzt3LhYtWoQffvgBEydORHx8PMaMGYMdO3a4jmntOZuiuLgYjDG/3stzfy8xOrS1+hpMXb/55pvx9ttvIzs7G9dccw2SkpIwZMgQZGZmNjo2JSWlyX3nPoe/I3Bbe25x/eTk5EbnNrWPUAYaPUeYhvj4eOTm5jbaL5JIExISAromgGavG8g1W7vPuQ5GoPcpLS3F559/jnnz5uHvf/+7a39NTY3L4AfDuU5LU4ik+9YSnv0hPj4e27ZtA2PMqwz5+fmoq6uT5TcR13j55ZebHQ0oDFVCQgKWLFmCJUuW4Pjx4/j000/x97//Hfn5+a7E7H79+mHFihVgjGHv3r1Yvnw5Hn/8cURERHj9NnLz/vvv45ZbbsFTTz3ltb+goMBragebzYY5c+Zgzpw5KCkpwfr16/HQQw9h/PjxOHHiBCIjI316znNp3749LBaL7O/luchR12+99VbceuutqKysxLfffot58+ZhypQpOHLkCDIyMlzHNeUk5uXloXv37l77fHk//EHoCOHQn3t/Qh0o0kSYhjFjxuDnn3/Grl27vPa/++67kCQJo0aNAuB7yxUAhg0bhoiICLz//vte+0+ePIlvvvkGY8aMkaXsIox/7n22b9+OgwcPBnQfSZLAGGs0j9Obb76J+vr6wAvrBz169EC3bt3w9ttvtziC0J/fZMyYMaioqMDq1au99r/77ruu74PlkksuQbt27fDzzz9j0KBBTf6JyI4nnTp1wsyZMzF27NhG9RDgv8mAAQOwePFitGvXrslj5ESSpEa//xdffIFTp041e067du1w7bXX4t5770VRUVGTE3629pyCqKgoDBkyBCtXrvT6bZ1OJ95//3107NgRPXr08P/BzkHOuh4VFYWJEyfi4YcfRm1tLQ4cOOD1/b///W+v/7ds2YLs7GzFJ6zs2bMnUlJS8PHHH3vtP378OLZs2aLovQk3FGkiTMPs2bPx7rvvYvLkyXj88ceRkZGBL774Aq+++iruvvtul3KOjo5GRkYG/ve//2HMmDGIi4tDQkJCk0N227Vrh0cffRQPPfQQbrnlFtx4440oLCzEggUL0KZNG8ybN0+Wsvfs2RN/+tOf8PLLL8NisWDixIk4duwYHn30UaSnp2P27Nl+XzMmJgaXX345nnvuOdfzbdq0CW+99Zais4ifyz//+U9MnToVQ4cOxezZs9GpUyccP34ca9eudRmgfv36AQBefPFFTJ8+HXa7HT179vTKRRLccsst+Oc//4np06fj2LFj6NevHzZv3oynnnoKkyZNwu9+97ugy9y2bVu8/PLLmD59OoqKinDttdciKSkJZ86cwU8//YQzZ87gtddeQ2lpKUaNGoWbbroJvXr1QnR0NLZv346vvvoK06ZNAwB8/vnnePXVV3HVVVeha9euYIxh5cqVKCkpwdixY4Mua0tMmTIFy5cvR69evdC/f3/s3LkTzz33XKNo5tSpU9G3b18MGjQIiYmJyM7OxpIlS5CRkYHzzjvPp+dsjoULF2Ls2LEYNWoUHnjgAYSFheHVV1/F/v378eGHH8oSkQm2rt95552IiIjAJZdcgtTUVOTl5WHhwoWIjY3FxRdf7HXsjh07cMcdd+C6667DiRMn8PDDD6NDhw645557gn6OlrBYLFiwYAH+/Oc/49prr8Vtt92GkpISLFiwAKmpqbBYKAaiCtrloBOEN82NCps+fTqLiopqdPyIESPY+eef77UvOzub3XTTTSw+Pp7Z7XbWs2dP9txzz7H6+nqv49avX88uvPBCFh4ezgCw6dOnM8aaHnrOGGNvvvkm69+/PwsLC2OxsbHsyiuvZAcOHPCpnOK5WqO+vp4988wzrEePHsxut7OEhAT2xz/+sdGUAv6Mnjt58iS75pprWPv27Vl0dDSbMGEC279/P8vIyHA9c0u0NHruP//5T6Pjmxo9xxhjW7duZRMnTmSxsbEsPDycdevWzWv0FmOMzZ07l6WlpTGLxeJ1jXNHGzHGR5DdddddLDU1ldlsNpaRkcHmzp3LqqurvY4DwO69994mn8vz+Zv73Tdt2sQmT57M4uLimN1uZx06dGCTJ092PXt1dTW76667WP/+/VlMTAyLiIhgPXv2ZPPmzWOVlZWMMcYOHTrEbrzxRtatWzcWERHBYmNj2eDBg9ny5csbletcmqrjovzn/i5NPW9xcTG7/fbbWVJSEouMjGSXXnop++677xrJ9Pnnn2fDhw9nCQkJLCwsjHXq1Indfvvt7NixYz4/Z0t89913bPTo0SwqKopFRESwoUOHss8++8zrGPEbbN++3Wt/c3XqXIKp6++88w4bNWoUS05OZmFhYSwtLY39/ve/Z3v37m1UvnXr1rGbb76ZtWvXzjWy9ujRo17Xa+53E981NXruueeea3Qsmhjl+/rrr7Pu3buzsLAw1qNHD/b222+zK6+8kl144YUtPiMhDxJjjKnvqhEEQRCEcVi+fDluvfVWbN++HYMGDdK6OC5KSkrQo0cPXHXVVXj99de1Lo7poe45giAIgjAAeXl5ePLJJzFq1CjEx8cjOzsbixcvRnl5Of76179qXbyQgJwmgiAIgjAA4eHhOHbsGO655x4UFRUhMjISQ4cOxdKlS3H++edrXbyQgLrnCIIgCIIgfIDS7QmCIAiCIHyAnCaCIAiCIAgfIKeJIAiCIAjCBygRXEacTidycnIQHR0t+xT6BEEQBEEoA2MM5eXlSEtLa3GiUHKaZCQnJwfp6elaF4MgCIIgiAA4ceJEiwuMk9MkI2LJhxMnTiAmJka26zocDqxbtw7jxo2D3W6X7bpmgeTTMiSfliH5tAzJp3lINi1jJPmUlZUhPT29yaWbPCGnSUZEl1xMTIzsTlNkZCRiYmJ0X/G0gOTTMiSfliH5tAzJp3lINi1jRPm0llpDieAEQRAEQRA+QE4TQRAEQRCED5DTRBAEQRAE4QPkNBEEQRAEQfgAOU0EQRAEQRA+QE4TQRAEQRCED5DTRBAEQRAE4QPkNBEEQRAEQfgAOU0EQRAEQRA+QE4TQRAEQRCEDxjSafr2228xdepUpKWlQZIkrF692ut7xhjmz5+PtLQ0REREYOTIkThw4ECr1/3kk0/Qp08fhIeHo0+fPli1apVCT0AQBEEQhNEwpNNUWVmJAQMG4JVXXmny+2effRYvvPACXnnlFWzfvh0pKSkYO3YsysvLm73m1q1bcf311+Pmm2/GTz/9hJtvvhm///3vsW3bNqUegyAIgiAIA2FIp2nixIl44oknMG3atEbfMcawZMkSPPzww5g2bRr69u2Ld955B1VVVfjggw+aveaSJUswduxYzJ07F7169cLcuXMxZswYLFmyRMEn0QHl5UBFhdalMD/V1UBxsdalMD91dcCZMwBjWpfE3DAGnD4NOJ1al8T8FBQAtbVal4JowKZ1AeQmKysLeXl5GDdunGtfeHg4RowYgS1btuDPf/5zk+dt3boVs2fP9to3fvz4Fp2mmpoa1NTUuP4vKysDwFd2djgcQTyFN+Jacl4TdXWwPPggLK+9BgBw3nsvnM88A1it8t1DJRSRj4xYXnkFlkcfhVRZCecVV6B+2TIgOlq1++tdPnIhffklrHfeCSk/H85Bg1D/738DXbq0el6oyCdQGsnnp59g++MfIR0+DNa5M+rffRds6FANS6gditadggJYb7wRlk2bwNq3R/2SJWA33ij/fRTESO+Wr2U0ndOUl5cHAEhOTvban5ycjOzs7BbPa+occb2mWLhwIRYsWNBo/7p16xAZGelPsX0iMzNTtmv1/PBD9ProI9f/1pdewpEzZ3Dk+utlu4fayCkfuUjdsgWDn33W9b/l009xetIk/Pj3vwOSpGpZ9CgfuYg5dgyXP/ggpIYWuWXHDlSOHo2NixfDGRbm0zXMLB85yMzMhL28HKPvuw/2khIAgHTsGOonT8bGxYtRnZCgbQE1RO66I9XV4ZJHHkH8oUP8/+JiWG+9FZtzclDUu7es91IDI7xbVVVVPh1nOqdJIJ1jkBhjjfYFe87cuXMxZ84c1/9lZWVIT0/HuHHjEBMTE0Cpm8bhcCAzMxNjx46F3W4P/oL79sH23/8CAOrefhuor4ftzjvR6z//Qff/+z+gT5/g76EisstHLsrKYLvtNgBA/axZYNdcA+vo0Ujdtg2Ta2vBrr5alWLoVj5ywRisl1wCS20tnOPHo/6ll2AbORLRp05h0t69cD72WIunm14+QeIpnzb33QdLSQlYz56o+/JL2K65BuG7d2Ps//6H+k8+0bqoqqNU3bEsXQrroUNgsbGoW78e1uefh2XFClz65puo27sXMEg9NdK7JXqKWsN0TlNKSgoAHjlKTU117c/Pz28USTr3vHOjSq2dEx4ejvDw8Eb77Xa7IhVEtuu+8AJQXw9cfTVst97K8xM+/RTSZ5/BvngxsHx58PfQAKXkHjBvvQUUFQE9e8L67LNc0T34IPDkk7AtXAhcd52q0SbdyUcuvvwS2LEDiIyE5Z13YElOBhYvBm64AdYlS2D9298AHxoxppWPTNhzc2F55x0AgPTmm7B36QK8/z7Qty8sn30Gy8GDQP/+GpdSG2StO9XVwFNPAQCkJ5+EfdAg4F//Ar7+GtKvv8K+ahXwhz/Icy+VMMK75Wv5DJkI3hJdunRBSkqKVziwtrYWmzZtwvDhw5s9b9iwYY1CiOvWrWvxHENy6hSwYgXffuQR/ilJwMMP8+0PPgByc7Upm5morwdefJFvz53rbhnOmQNERAB79gCbNmlWPFMh5HzXXYBo5Fx3HdCzJx/k8O672pXNRFiWLuX1evRo4NJL+c4+fbisAffvQATH6tVAXh7QsSNw5518X0wM8Ne/8u0XXtCsaIRBnaaKigrs2bMHe/bsAcCTv/fs2YPjx49DkiTMmjULTz31FFatWoX9+/djxowZiIyMxE033eS6xi233IK5c+e6/v/rX/+KdevW4ZlnnsGhQ4fwzDPPYP369Zg1a5bKT6cwK1ZwxXfJJcBFF7n3DxkCDB0KOBzAxx9rVz6zsGEDkJMDxMUBnsmbcXHAzTfz7YZWOxEEubmAaOzcfbd7v8UCzJzJt998U/1ymY36eljee49v/+Uv3t8JOf/3v8DZs+qWy4y8/Tb/vO02wDMf7667AJsN2LULOHhQm7IRxnSaduzYgQsvvBAXXnghAGDOnDm48MIL8VhD7sKDDz6IWbNm4Z577sGgQYNw6tQprFu3DtEeI5aOHz+OXI+IyvDhw7FixQosW7YM/fv3x/Lly/HRRx9hyJAh6j6c0nz4If9sKrwrjLtHgjgRIGJ6i+uu81Z8ACCc99WraShxsKxYwYe9DxsGdO/u/d2NN/LRoD/9BPz6qzblMwnxhw5BOn0aaN8emDTJ+8tLLgEyMoCyMuDzz7UpoFnIzwfWr+fbM2Z4fxcfD0yYwLeFHidUx5BO08iRI8EYa/S3vCEXR5IkzJ8/H7m5uaiursamTZvQt29fr2ts3LjRdbzg2muvxaFDh1BbW4uDBw82OQ+UoTl2DNi5k7fCr7mm8fcix2brVuDkSdWLZxrq64H//Y9vNzVE+NJLgZQUoKQE+PprVYtmOj79lH/ecEPj7+LjgVGj+HYIJinLSdqWLXzjyisbJyFbLG75i3pPBMYXX/Ac04suanq6DKFPqD5rhiGdJiJA1q7ln8OGAUlJjb9PTQUGD+bb69apVy6zsWMHTwCPjeWt8HOxWrnxAXgSMxEYpaXA5s18e/Lkpo8RDZ8vvlCnTCYlaedOvtHciE8RfVq7ljcaiMD47DP+OXVq099PmMCd1J9/Bk6cUK9chAtymkIJ4TSNH9/8MeI7cpoCRzhCY8fyHISmEJOvGmD+Et2yfj2fAbxHD6Bbt6aPEXLeupVmvg+UrCy0zcsDs9nckbtzGTaMJysXFPBGA+E/9fXurrkpU5o+Ji6O558Cbn1OqAo5TaFCfT3wzTd8uyWnydOY0xIJgSEUn8g/aIrRo3mL8dAh6goNlI0b+afH7P+N6NoV6NyZD3D47js1SmU6pAa9wYYMaX4me7sd+N3v+DZ1OQfGTz/xZa1iYoCGfN0mEfqbGlyaQE5TqHDgAO/OaNsWGDiw+eOGDAEiI3n3Eo3Q8J+aGndL+/LLmz+uXTtg0CC+LYw/4R/ff88/L7us+WMkiYx5kFga6idrLsokGDGCf5JzGhhCbpdc0vJyVkLOIs+MUBVymkIF8YINGdLyC2mzARdfzLe3blW+XGZj927uOCUkNB7NdS5iDrBt25Qvl9koL+ctc6DpvDFPxJxCP/ygbJlMivTjjwAA1pqchfO6ZQvlNQWCcJpaagQAXD9brTxCTXlNqkNOU6ggHKBhw1o/VhxDTpP/COd0+PDWZ/sWi5ySMfefbdt493FGBtChQ8vHihyQnTt5Nx3hO6dPQ8rKApMkMBEZbY7+/XnXUlkZsHevOuUzC4wB337Lt1tzmqKigAsu4Nuko1WHnKZQQbxcvsxwLpwmMub+4+k0tYZwmvbsoUkB/UV0zbUW/QB4onhsLF+eYt8+ZctlNhqioOUdO3IZtoTV6nZQG6JThI8cOQKcOQOEh7sj/S0h9At10akOOU2hwJkzwNGjfFsY6pYQx/z8M59LiPANxvwz5p068fma6ur4LL+E7/gjZ4vFbcypK9Q/GuRV3KOHb8eLfEkxRQHhG9u388+BA7nj1BqiYUtOk+qQ0xQKCEPRqxef0bc1kpLcQ7jJyPjOyZN8zSibreVke4EkURddIDDmNsq+ztgvjiM5+0eDvPx2mqgR4B+7d/NPz6WtWkJEmnbv5hFUQjXIaQoFxAvpS9hXICa5JOXnOw1rIaJ3b74ory8Ip4mcU985eZKP7rTZgPPP9+0cijT5j9PpioD47TTt20dLBPmD0NEtTTXgSadOfM6mujreI0CoBjlNoYAYZTRggO/niGPFuUTrCFmJJE1fEEqScm18x9M5bdPGt3NEEvORI0BlpSLFMh1ZWUB5OVhYGMo7dfLtnM6deTS7thbYv1/R4pkGxvyPNEkS6WiNIKcpFBAvVf/+vp8jXkgaBeM7gTin4jc5coSSwX1FOE3+OKfJybzbmTFqmfuKcOT79AFraZoSTyTJbfgpr8k3jh3juaN2O9Cnj+/nifpPTpOqkNNkdioq3Cu8B2LMDx8mY+4rwpj7I+fkZCAxkXeFkDH3jUCcJgDo149/UkPANxrkxITcfIWSwf1DRJn69gXCwnw/jyJNmkBOk9nZv5+3rlNSml6ktzlSU/kEjWTMfSNQ51SS3A4qGXPfCNRpEnKmrlDfCNRpEvWfuud8w998JoGn08SYvGUimoWcJrMTSJcRQH3m/rJvH1dcaWk8cuQP5DT5Tmkp8NtvfNvfOk1y9o9AnSaRnH/gABlzXxBOvL/1uXdvPhiiuJjWr1QRcprMTqBOE0BGxh9Izupw4AD/7NABiI/371zP7jky5i1TVQX88gsAgPXt69+5PXvyubFKSvgUHETLiDU+fR0JKggP544T4I6+EopDTpPZEUbG39YiQMng/iAUn78GBnA7TRRmb51Dh/inMBb+0KcPN+aFhWTMW0NEiZKSeN6dP7Rp457nTegfomlqalzOaUB1Wuh1WlxdNchpMjvBGBlxzuHD8pXHrAil1auX/+f27s27QwsL+eztRPMIOQdSnyMigPPO49uU19QyIh8pkMYW4N1FRzTP0aM8bzQmhueR+ovQN0LPE4pDTpOZKSoC8vP5ds+e/p8vzsnJ4YtwEs0jlFYgTlNEBF94FiAHtTWCaQR4nkdybhkhn0DqM+AeOk+DSFpGyKdPn9YX+G4K8ftQpEk1yGkyM0LxdewItG3r//mxsXzUnee1iMZUVAAnTvDtQI2McFBJzi0TTEQPIDn7ipBPII0tgCJNviKcpkAbAZ6RJuraVwVymsxMMNEPAYV/W0cYmKQkvrRBIJCcW6e6ms9SDQRuZMhp8o1gnSYRaaIRdC0jGgH+TGrpyXnn8QhVSYm7V4FQFHKazIycThMZmeaRQ85kzFtH5H+0a+d/crKA5Nw6dXXu5ORAnSZxXkkJUFAgS7FMSbCRpjZtgC5d+DY1uFSBnCYzI6cxpxeyeUjO6uCZBB5I/gcAiIVnT5ygNeia49gxwOHguXbp6YFdw/Pco0dlK5qpqK/nyycBgTtNAEWpVYacJjND3XPqEGyejee5WVm0OnxzyFGfExLcXahkzJtGROHOO49P0RAoYqQiyblpTp7k77rd7h4IEgiko1WFnCazUlvrXtZDDmN+9CgP2xONEa3FQLsyAD7cuG1b3voUvxvhjegyEsY4UKiLrmWE8Q2mPgPkNLWGeM+7dAF8XRC5KchpUhVymsxKdjY3wJGRfGmPQOnUic88W1sLHD8uX/nMAmPuZT26dw/8OpJEyq81hJEREycGinAGhLNLeBNsEriAnKaWEY2AYOuz0DvU2FIFcprMijDkXbsGnv8B8PC8SDQUI5cIN/n5PDdGkoILsQOk/FqDnCZ1EMZc5H8FiqjP5DQ1jajPwTS2APf7cOwYbygTikJOk1kRL2TXrsFfS1yDjHljhEzS03lELhiEnIXDS7ipqABOn+bbwTpN4nySc9MIuQQrZ89IE0070Bi5GgEdOvC8KIeDFu5VAXKazIpnpClYyJg3j1yKDyA5t4SIcsbF8SkHgoHk3DwOh3ui1mB1h4hyezq8hBsR0Qs20mS1unsDqE4rDjlNZkWu1qLnNeiFbAw5p+ogp3MqDExeHlBVFfz1zMTx43wurIiIwOfCErRpw3MiAeqiOxfGlGlwUW+A4pDTZFaU6J4jY94YJRQf5SY0Rs763L49XyII4LIm3Ih3vEuX4HIhBaKLTkRVCE5+Po/ASZLbiQ8Gatiqhimdps6dO0OSpEZ/9957b5PHb9y4scnjDxl1FJPniC7KaVIWOZ2mjh0Bm413kZw6Ffz1zISccpYkagg0h5x6A3A7BNnZ8lzPLMiZCwmQjlYRm9YFUILt27ej3qOlvn//fowdOxbXXXddi+cdPnwYMTExrv8TExMVK6OinDnjbsV07hz89cQLWVICFBfzljrBkdPIWK389/rlF35d0bVByOs0Afz32r2bnKZzkdtpEvqHRt56I1c+k4AiTaphykhTYmIiUlJSXH+ff/45unXrhhEjRrR4XlJSktd51mAmHNMS8eJ06MDzCoIlMhJISfG+NsGnGsjL49tyGnOA5HwucjtNNI1G0ygVaaJuUG+UaAR4XpdQDFNGmjypra3F+++/jzlz5kBqpY/+wgsvRHV1Nfr06YNHHnkEo0aNavH4mpoa1NTUuP4vKysDADgcDjgcjuAL34C4lq/XlI4cgQ2As0sX1MtUDmuXLrDk5aHuyBGw/v1luaZc+Csf2Th8GHYArH171LVty7vVgsTSuTOsAOqPHoVTpufRTD5yUVcHW3Y2JACOTp3kkXNGBqwAnL/8Ynz5yIjt118hAajr1AnsHLkEIh+pY0fYALBjx1BnQvkGKhvrkSOwAKjv0kWe9zw9HXYAKC6GIz9fN70BRnq3fC2j6Z2m1atXo6SkBDNmzGj2mNTUVLz++usYOHAgampq8N5772HMmDHYuHEjLr/88mbPW7hwIRYsWNBo/7p16xAZGSlH8b3IzMz06bgeX32F3gBOhIVhz5o1stz7orAwpAM48uWXOKrAs8mBr/KRi5Rt2zAEQGlcHDbJJOfuNTU4H0Du999jp0zXFKgtH7mIzMvD2Lo61NvtWLNnD7B3b9DXTCwowHAAFXv3YkODXIwqHzmZeOQIwgB8e/Ikys+pf4HIJ7yoCBMA4ORJfPnpp2A2c5ocf2Vz2e7diAOws6QEuTK95+PbtUObkhJ8/957KJWr208mjPBuVfk4klZizNyzjo0fPx5hYWH47LPP/Dpv6tSpkCQJn376abPHNBVpSk9PR0FBgVduVLA4HA5kZmZi7NixsNvtrR5vveMOWN59F/Xz58P50EOylMHy+OOwPvEEnLffjvrXXpPlmnLhr3zkwrJkCawPPgjntdei/oMPZLmmtHIlbDfcAOfgwajfvFmWa2olH7mQ1q+HbdIksF69UCeDwwQAOHoU9vPPB4uMxNn8fGSuX29Y+chGcTHsDdMMOEpKeLc8gqw/jMEWGwupuhqOQ4fk6/bTCYHKxtapE6S8PNRt3Qo2cKAsZbGOGAHL1q2o++ADsGuvleWawWIk3VNWVoaEhASUlpa2aL/N6fY3kJ2djfXr12PlypV+nzt06FC8//77LR4THh6O8CZGPtjtdkUqiM/XbcjTsJ53HqxylaNh6LDl2DFYdFr5lZJ7szSMCLJ07y6fTBqWrrBkZckuZ9XlIxcNIwmlLl3kK3+3boAkQaqqgr2kBICB5SMXYjbplBTYxZQMHgQsn4wM3pV98mTw69npFL9kU1PjyoW0devGZ/OWg27dgK1bYcvOlu+aMmGEd8vX8pkyEVywbNkyJCUlYfLkyX6fu3v3bqSmpipQKhUQya1ytuoo0bAxYhi1HCMUBULOZ84A5eXyXdfICDkHu7afJ+HhfIoHABIlg3M852iSE/F+UDI4R8y4HhEBJCTId11KulcF00aanE4nli1bhunTp8N2Tj/63LlzcerUKbz77rsAgCVLlqBz5844//zzXYnjn3zyCT755BMtih4cDgeQk8O35TQyQvGdPMknXjTqyEI5OX6cf8op59hYnsRZXMydX50l3WuCEnIGuIN64gR3FpqIrIQcSjlNZMy98WwEyDGBqEC8H+J9IRTBtJGm9evX4/jx47jtttsafZebm4vjHhWrtrYWDzzwAPr374/LLrsMmzdvxhdffIFp06apWWR5yMnhyyDY7cEvg+BJaip3lOrq3MPsQx1Rh+SeT0koP9EiDXWUknODMZfImHOEMVcq0kQRPY4SkVPA/X6Q06Qopo00jRs3Ds3luC9fvtzr/wcffBAPPvigCqVSAfHCpKcDFhl9YquVd2dkZ/N7dOgg37WNSFkZn+wT4LKWk06dgD17yGkSCCMjt9MkfreTJ4EBA+S9thFR2DmlSFMDStVncb3sbL4qhJxRLMKFaSNNIYtSis/zmtSSccugfXsgOlreawtjTnLmXcEiQVmhlrkkrh/qCCdd7kYA5TR5o1R3s/jdKiqA0lJ5r024IKfJbCjpNJExd6OU4gPIOfUkL4/n6VmtvItYToTTRHLmKKU7hNOUk8NHjoU6SnXPRUa6E8upTisGOU1mgyJN6kByVgchA7GYsZx4ds+FOhUVfPABIH+kKTGRG3TGqE4DyjlNgHcXHaEI5DSZDTLm6qCGnCmnSbn8D8DlHEilpbBVVsp/fSMh6lpsLCDjxLwAeG6NcMRCvU47nW4ZKOE00Qg6xSGnyWyQ06QOShpzcU0xvUMoo2Q3aNu2QFwcACCioED+6xsJJfUGQFE9QW6uu7s5LU3+65OOVhxymswGRUDUQUljTtM7uFHJmJPTpJLTFOq6Q8i5Qwf5u5sBcppUgJwmM1FayofCA/LnJQDuF7KwEAj17gwljYzV6p7SIdSVn5IRPY/rktOksNPUMPt6yDtNSuYzAeQ0qQA5TWZCvChxcbzrQW488x1CWfnV1bnWQ1PamIe0nAFlI3qAS86RZ84oc32joNR0AwLqnuOQ02R4yGkyE0q3Fj2vHcovZU4OzzWy24GUFGXuQXLmKB1pou45DkWa1EFpOYvr5uTw3ClCdshpMhNKt8oBMuaA9zB4OWdd94TkzLubxSR9SnfPhXqkiXKa1EFE2pSK6CUl8cWonU53NJyQFXKazARFmtRBDeeUJhJ1G5j27ZXpbgYo0gRwA6u0MRfXLS4O7XxI4cgotQyVxUK6Q2HIaTITnuvOKQU5TW4DI7oclIBympQ3MIA70lRYyJ2HUOTMGT5TtyQpJ+uYGLfjG8p5TWrUaYrqKQo5TWZCvJBKGnPKTVDVmIf0zL5qyDktDcxigaWuDjh9Wrn76BnRAEpL43l6SuA5wWWoOk0Oh7uOKVmnxbWpe04RyGkyE2oYGXoh1ZGzcE4LC4HqauXuo2fUkLPN5ppkUArVhoDSI+cEoR4Byc3lS8nY7XxpGaUgHa0o5DSZBcbIaVILNeTcvj3Qpg3fzslR7j56Rg05A2Di+iRnZe8T6lFqIee0NOUGkACkoxWGnCazUFICnD3Lt5WYnl8grl1RAZSXK3cfPaOGkZEkt6zJmCt7n9RUAIAUqnIWz62k3gCoe06t+kxOk6KQ02QWhOJr3x6IiFDuPtHR/A8IzZfS6eRhdkB5IxPqyo8iTeqgljEP9e45teQc6o0thSGnySyo9UJ63iMUjXl+Pp8RXJKUm9hSQMacf1KkSVnUijSJ7rlQjTSJ51Yr0pSTE7ojQhWEnCazoIXTFIpGRsg5OVm5kUYCYcRC0Tl1OLiDCigfaRJyFhHEUIMiTeqgxuhmgDfmJIk37kJ90lYFIKfJLFCkSR2Eo0hyVhbPkUYJCcreS4yeC0U5A+pFmkR9LikBqqqUvZceUUtH2+28Ued5T0I2yGkyC2oa81COgFBETx3UGmmEEI80VVQAZWV8W+k6HRMDREby7VCUNTVsTQE5TWbB08goTSi/kGoqPnJOVZWzVFoaekt8CIe8bVv3AA+lCOURoYypl9MEhLbuUBhymswCRUDUQSs5M6b8/fSEmnKOiUFdqM6JpaacgdB1moqK+FI1gLoN21CTswqQ02QWKPSrDmrKuWFUF86e5XkgoYTKxrw6Ls77vqGCmt36QOg6TaJeJSS4J61VklDW0QpDTpMZ8Fw3S83Qb24uUF+v/P30hJrdoBERgDDmoWpkVDLmZ+Pj+UaoylmN+gy4GwKhltOkZtec533IaZIdcprMQF4e776x2ZRd00iQksKTc+vrQ29Iq9rdGaGq/CjSpA4UaVIH0humgZwmMyBejNRUxUcaAeDOWSgOaa2qcneTqW1kQknOgHZOU6gac7UiTaHuNCk9R5MgVPWGCpDTZAbUbsUAoflSCkUfGQnExqpzz1BM6FRr8WkPKNJEkSZF0SrSVFzsXpOUkAVymsyA2orP816hZGQ8FZ8kqXPPUJSzWotPe0CRJoo0KYraOU3t2rnXIA01WSsMOU1mQItIUyhGQLSM6IWinOPilF182gNXIngoOadOp/oNLpEIXl7OJ9YMFdTWHZIUmg0uFSCnyQxo6TSF0gtJclYHDeRc3b493wilObEKC/kaf4Dyi08LoqP5RJpAaI2gy8vjn2pF9IDQ1B0qYEqnaf78+ZAkyesvpRWlsGnTJgwcOBBt2rRB165dsXTpUpVKKwNqh9g97xVKLyTljqmDBvW5RnTP1dZyZyIUEHJOSgLCwtS7b6hFTx0O9yhjtZxTgJwmhTCl0wQA559/PnJzc11/+/bta/bYrKwsTJo0CZdddhl2796Nhx56CH/5y1/wySefqFjiIKDuOXVQa2FTT4ScT5/m83GFAhq0yp12O5hYGDhU6rQW9dnzfqEi5/x8/mm1Kr/4tCeh2OBSAZvWBVAKm83WanRJsHTpUnTq1AlLliwBAPTu3Rs7duzAokWLcM011yhYSpkQYW4K/SqLMOYiL0MNkpK4sq2v546Tmo6xVoj6rGarHODvT0EBr9P9+6t7by3QorEFhJ7TJOpzcrI6U8IIhJyF3iJkwbRO09GjR5GWlobw8HAMGTIETz31FLp27drksVu3bsW4ceO89o0fPx5vvfUWHA4H7HZ7k+fV1NSgRqwnBKCsYbVwh8MBh8gVkAFxrSavWVUFu7hvQoI7R0FpEhJgB4DiYjgqKoDwcHXu2wQtykdGbLm5kADUJSSAqSVnALbUVEgnT6IuOxssKcnv89WSj1xYc3JgAVCflASnCmUWcnGmpMC6dy/qTpxQ9ffVCsuJE7CCP3d9C88rd/2xpKTACqD+5ElVfl8l8UU20smTsKF1OcuNlJDA75uTo+p9PTGS7vG1jKZ0moYMGYJ3330XPXr0wOnTp/HEE09g+PDhOHDgAOLFKBkP8vLykCwma2wgOTkZdXV1KCgoQGozkYWFCxdiwYIFjfavW7cOkZGR8jyMB5mZmY32ReblYSyAuvBwrPnuO/WGwjOGKTYbrHV12PDhhzgbgDGXm6bkIyeTG5TfxsOHUVlerui9PLk8IgLtAez84gvkBTEDu9LykYtLDx5EPIBdOTnIWbNGtfueYAydARzduBFHztEHZqT/jz+iC4AjFRU47IOc5ao/3YqL0RdA7s6d2Kni76skLckmIzMTFwDIt1iwTcXnjc/OxqUAKn/9Fd9oLGcj6J6qqiqfjjOl0zRx4kTXdr9+/TBs2DB069YN77zzDubMmdPkOdI5zgZrGEFz7n5P5s6d63W9srIypKenY9y4cYiJiQnmEbxwOBzIzMzE2LFjG0W9pK1bAQDWDh0wafJk2e7pC5a0NOD4cYzu0wds8GBV7+1JS/KRjYoK2KqrAQAjrr+ejwJSCeubbwJHj2Jgx45gkyb5fb4q8pER2/33AwAunDgRF1x6qeL3E/LpcNFFQGYmesTGonsAcjYa1rfeAgCcd9ll6NbC88pdf6TycmDZMqRJEpINLmdfZGPZvRsAkNS/Pyap+bxduwKPPoq2FRXq3tcDI+ke0VPUGqZ0ms4lKioK/fr1w9GjR5v8PiUlBXnn9Pvm5+fDZrM1GZkShIeHI7yJbim73a5IBWnyugUFAAApJUX9SpmSAhw/DltBAaCDF0IpuQMAior4Z2Qk7O3bqxfRA1y5CbYzZ4KSs6LykZOGd9GWnq5qvbI0yNmanw+rEeQULA2LfFs7dvTpeWWrP506AQAsubmwmETOLcqmIRHckpam7vOmpwMApNJS2OvqVJvzrCmMoHt8LZ9pR895UlNTg4MHDzbbzTZs2LBG4cN169Zh0KBBuv+hXUl+aifNet4zFBINPZOT1XSYxD2B0JBzRQVQWcm3Va7TLJTkDGinOzwTwUNhTiwtBpAAfKkn0ahvcJCJ4DGl0/TAAw9g06ZNyMrKwrZt23DttdeirKwM06dPB8C71W655RbX8XfddReys7MxZ84cHDx4EG+//TbeeustPPDAA1o9gu9oNdLI856hYGS0UnxAaMlZ1OeoKPckiGoRSnJmTDunSbxDlZV8ZnCzo5WOliS3rENpIlGFMaXTdPLkSdx4443o2bMnpk2bhrCwMPzwww/IyMgAAOTm5uL48eOu47t06YI1a9Zg48aNuOCCC/CPf/wDL730kjGmGyBjrg4U0VMHDeszE8nfeXnmj4CUlPCJPAE+FF5NoqIAkfMZCtMOkI42FabMaVqxYkWL3y9fvrzRvhEjRmDXrl0KlUhBtDTmodSKoYieOmhZn4XzUFXFuwlVTPZXHSHndu2ANm3Uv39aGlBWxt+rXr3Uv79aMEa6w2SYMtIUUlAERB300lo0ewRESwMTFeV2lMxep7XUG4DbQTV7rk1pKSDm8iMdbQrIaTI61IpRBz1EQM6eNX8OiJbOKRA6dVprpylU5Cz0c2ysNqPXQqk3QCXIaTIyTqe7paa102T2CIiWRiYy0p0DYnblR8ZcHUjO6kCNANNBTpORKSpyL+KqxQzG4p41NTwMbWa0jOh53tfsyk8vcibnVFlCpXtO1CNymkwDOU1GRrwICQnaTC4ZEcHDzp5lMSP19e6VyrVSfuK+ZpYzQC1ztdDaaSI5q0OoyFlFyGkyMlq3yoHQMOaFhdxxkiQgMVGbMoSK8iMjow4kZ3XQOtLkqZ/NnkKhEuQ0GRmtFZ/nvc3cnaF1RA8IDSOjh4heKMgZ0F53hEr3nNZyFgupOxzupaCIoCCnycho/UJ63tvMRkbr1iIQGnI+c4YPbrBYKKKnNFrrDnHf/HzuLJsVrXVHeDgQF8e3zV6nVYKcJiOjdf4HEBpGRmsD43nvUJBzYiJgtWpThlCQc10dd1AB7ep0YiLv7q6v593fZoV0h+kgp8nI0AupDiRnddC6VQ6ERgTkzBme32Kx8C5nLbDbgfh4vm3mLjo91Wkzp1CoCDlNRkYPieChYMz15DSZWfHpQc6hEAERck5O1i6iB5hfd9TUuPOIaLCOaSCnycjowciEwgupp9bimTPmjYDooT7b7e7oi1nrtB7kDLiTwc0qZxFBs9vdeUVaYHbnVGXIaTIyelB+FAFRh8RE3p3idLrzUcyGHpxTwPxGRg/12fP+Zu2e85SzJGlXDrPXZ5Uhp8mo1NQAxcV8Ww8RkIICPqzVjOjByFit7hFlZlV+epCz5/1JzspidjlTI8CUkNNkVMQLEBYGtGunXTni47lBZ4wiIEpj9q5QMubqoIdcSMD83XN6qc+0aK+skNNkVPQS+rVa3ROomVH5VVUBZWV8W2vlFyrGXGvn1Oxy1osxN3v3HNVnU0JOk1HRi+LzLIMZX0qh0Nu0AWJitC2LmeUM6KdOk5zVwexyFrpDi8XUPRFyLiriaR1EUJDTZFT0MLGlwMzdRnqJ6IkyAOaUc2UlUFHBt8mYK4tenCazd8+JJYG0dpri4tzLP4kyEQFDTpNR0Yvi8yyDGfvM9RJiB8wtZ9Eqj4gAoqO1LQs5Teog7l9YaM5BJMJBEekLWiFJ5tYdKkNOk1HRSzKnZxnMaGSEMdda8QGhIWetW+WAueVcWQmUl/NtrXWH2QeRkO4wJeQ0GRUyMuqglxA7EBpy1pOBKS42Xw6IniJ6Zp9GQ091WpSBuueChpwmo6InYy7KYMYXUk9yDgWnSQ9ybt/enQNitpFdesrRE+UAzCfnmhqgtJRv66FOizKYTc4aQE6TUdFjK8aML6Se5CwUX1kZUF2tbVnkRk9y9swBMZuDqqcINWBeOYv6bLNpO4+egCJNskFOk1HRU3+5mV9IPck5Nta8o2D0JGfAvNFTPUX0APOOoPNsBOghokeRJtkgp8mInD3rTubUg/ITZSguBmprtS2L3OgtAmJWB1Vvxtys0VM91WfAvN1zeq3PZtMbGkBOkxERI03CwrSfcBHgOSBWK9822ygYvSk/s7YY9WbMzWpk9BbRM3v3nF7kbFa9oQHkNBkRT8Wnh9CvxWLOlnltrXtRZL0oPzLm6kDdc+pg1u45vdVns+oNDSCnyYjorRUDmPOlFFEzq5VH0/SA2Y25Xuq0GRsBgP7kbPbuOb3IWeiNwkKgrk7bshgccpqMiN5ai4A5w79CzomJPJqmB8xozOvquDIH9FOnzeqc6i0CYtZIk950dHw812GMAQUFWpfG0OjEEhB+oTfFB5gz0qQ3xQeY05gXFnJlLklcuesBMzqngH4jICUl5hpEojc5W61AQgLfNludVhlymoyI3l5IwJzGXI9yNqMxF8+SkOAeUKA1ZqzPDgdf6R7QT0PArINIqGFrWkzpNC1cuBAXX3wxoqOjkZSUhKuuugqHDx9u8ZyNGzdCkqRGf4cOHVKp1H6gxwiImY05KT5l0bNzWlAA1NdrWxa5EN0yFgtf+V4PWCzupVTMpDv0WKfNmEKhAaZ0mjZt2oR7770XP/zwAzIzM1FXV4dx48ahsrKy1XMPHz6M3Nxc1995552nQon9RM8vJBlzZTGznPXUCEhI4N2FTqc738roCGOppxw9wHwNAcb0WafNJmeNsGldACX46quvvP5ftmwZkpKSsHPnTlx++eUtnpuUlIR2epj2viX0HAExUytGz4rvzBlu0PVk/AJFj86pzcbzqwoKePn0VLZA0aOcAfM1BIqL3SPURBRND1CkSRZM6TSdS2nDwolxPoSkL7zwQlRXV6NPnz545JFHMGrUqGaPrampQY3HKuhlZWUAAIfDAYfDEWSp3YhriU9bfj4kAI64OJ6noAfi4mAHwPLzUadymc6Vj1xYT5+GBUBdfDyYXuTcrh3sAFBfD8fp0+7kzhZQSj5yYcnJgRVAfUICnBqUsTn52BITIRUUoO7UKbCePVUvl9xIOTmwAXAmJaHeDzkrXX+sCQmwAKjPzdXk9w+GJmVz6hTXhbGxqLNYdKOjLfHxsAJw5uX59fsHg951jye+ltH0ThNjDHPmzMGll16Kvn37NntcamoqXn/9dQwcOBA1NTV47733MGbMGGzcuLHZ6NTChQuxYMGCRvvXrVuHyMhI2Z5BkJmZCTidmNrgNH2zfz+qc3Jkv08gtCkowHgA7PRprPn8c00iIJmZmbJeb8SRI2gHYEd2Nk6vWSPrtYNhYnQ0wsrL8d1//4vyTp18Pk9u+cjFBbt2IQPAkeJiHNFQzufKZ7jNhkQAe9atwykTLJDcbdMm9AVwyuHArgDkrFT9Ob+yEt0B/PbDD/hZR++ZP3jKJv7AAVwKoDIqCl/r6Hk6nT6NCwGc2b8fP6hcLr3qHk+qqqp8Oi4op8nhcCAvLw9VVVVITEz0KZKjNjNnzsTevXuxefPmFo/r2bMnenq0JocNG4YTJ05g0aJFzTpNc+fOxZw5c1z/l5WVIT09HePGjUOMjMubOBwOZGZmYuzYsbCXlsLidAIARl9/vXsBV62pqQHuuAOW+npMGj5c1URTL/nIKA/bzJkAgEGTJoENGiTbdYPFlpYGHD6My3v1Ahs5stXjlZKPXFhffx0AcN5ll6H7pEmq3785+Vj//W9g3z5cmJaGARqUS24s330HAEi74AKk+PE8Stcfy/79wKefolvbtuhsMDk3JRvp7FkAQGSXLpiko+eRGANeeQWJgGrl0rvu8UT0FLWG305TRUUF/v3vf+PDDz/Ejz/+6NU91bFjR4wbNw5/+tOfcPHFF/t7adm577778Omnn+Lbb79Fx44d/T5/6NCheP/995v9Pjw8HOHh4Y322+12RSqI3W6HXSzrERcHuwLRrICx24F27YCSEtiLijTJA5JV7h7JnLYOHfTjnAJ8FuXDh2ErKvKrXErVy6BpGNVlS03VVM6N5NMwW7W1sBBWPcrNXxoS2q0pKQE9j2L1JzUVAGApKIDFoHL2kk2DnC3Jyfp6ng4dAACW/HzVy6Vb3eOBr+Xzqw9l8eLF6Ny5M9544w2MHj0aK1euxJ49e3D48GFs3boV8+bNQ11dHcaOHYsJEybg6NGjARU+WBhjmDlzJlauXIlvvvkGXbp0Ceg6u3fvRmrDC60b9JrMCZhrdEZZmXuyPT0lcwLmS7rX48AGwHwJynoc2ACYV856q8+e+pkxbctiYPyKNG3ZsgUbNmxAv379mvx+8ODBuO222/Daa6/h7bffxqZNmzQZsn/vvffigw8+wP/+9z9ER0cjr2GK/tjYWERERADgXWunTp3Cu+++CwBYsmQJOnfujPPPPx+1tbV4//338cknn+CTTz5RvfwtolcDA3Dld+SIOYy5eIboaKChzugGMxkZvQ7PBsg5VQszNbYA/dfn2lqgtJT3DBB+45fT9J///Me1PWzYMKxdu7bJ3J02bdrgnnvuCb50AfLaa68BAEaek++xbNkyzJgxAwCQm5uL48ePu76rra3FAw88gFOnTiEiIgLnn38+vvjiC131SQPQ7wsJmEv56bW1CJjLmFdWAg05ILqTtZmcU0C/dfrcCIgkaVueYNGrnCMieCOwvJyXkZymgAg4EXzbtm2orq5u5DSVlZXhH//4B5577rmgCxcozIfQ4/Lly73+f/DBB/Hggw8qVCIZ0esLCZhrHhA9O6dmMubiGSIjgagobctyLmZyTvUc0RPd32aJgOg1ogfw3768nJexRw+tS2NI/B4XPm3aNDz99NOQJAn5TSjtyspKvPDCC7IUjmgCPb+QFGlSBzMZc6PUZ6PngJSV8RGugP5y9CIjgbZt+baZdIfenFPAXDpaI/yONGVkZODzzz8HYwwDBgxAfHw8BgwYgAEDBqB///7Yu3ev/pKnzQQZc3UwijE3Ono2MKJMZ8/ybkRh2I2IkHPbttxJ0RvJyUBFBS+n0SMgpKNNjd9O0+LFiwHw4fabN29GTk4Odu/ejT179mDVqlVwOp149tlnZS8o0YARjIyZjLkeFR/JWR2ioriDUVXFjYwZnCY9yhng5fr1V+PX6epq3sUI6FPWZtIdGhFwTlNlZSVsNn76lVdeKVuBiFbQs/IzUytGz86pkHNlJf/TWy6QP+g5ogfw3z8ri9eHbt20Lk3g6Lk+A+aJnp45wz/FvHV6w0w6WiMCXutCOEyEyujZyJipFaNn57RtW/c0CEaXtZ7lDJjHyOhZbwDmcZo867MeRwGaSUdrhF9Ok+cQfV84deqUX8cTrVBVxfv9AX22GIXiq6jgZTUyejbmkmQeY673CIhZjIye6zNgvvpMcjYtfjlNF198Me688078+OOPzR5TWlqKN954A3379sXKlSuDLiDhgQj9hofz+Tb0RkwMLxtgfCNDLXN1ICOjDnqXs1mcU73rDbPIWUP86mM7ePAgnnrqKUyYMAF2ux2DBg1CWloa2rRpg+LiYvz88884cOAABg0ahOeeew4TJ05UqtwhiaT30K+IgJw4wV/Kzp21LlFg1NYCYo0/ioAoi96NjFmcUyFnvdZns8hZ786pWRoBGuJXpCkuLg6LFi1CTk4OXnvtNfTo0QMFBQWuNeb+8Ic/YOfOnfj+++/JYVICvXdlAOaY4LJhAVlYrUD79tqWpTnMovz0bmTM4pzqXc5mc5r0qqNFucrK+Eg/wm8CyuZu06YNxo4di2nTpsldHqIlRPecXhUfYA7lJ8qemAhYAh4roSxmMOZ1da4V4XVrZMg5VQcz6A1A/3Ju146P7HM4eFk7ddK6RIYjYItw2WWXuRbCJdRB0ntXBmCOSJMR5GwGY15Y6F5rLD5e69I0jRmcU0D/xlyUq6iIG3Sjonfd4TmIxOh1WiMCdpoGDRqEIUOG4NChQ177d+/erb9Fbs2CiDTptVUOmOOF1HuIHTCHMRcGJiGBd4XqETM4pw4Hd0YA/dbp+Hh3VFfoOSNiBN1hhjqtIQE7TW+++SZuu+02XHrppdi8eTOOHDmC3//+9xg0aBDCxQgqQlYkvbcWAXO8kEaSs5GdJiMZGCNHQIQTYrEAcXHalqU5LBb3mnhmqNN61h1maHBpSFAzVM6bNw9hYWEYO3Ys6uvrMX78eGzfvh0XXXSRXOUjPKEXUh2MIGdyTtVBRECcTj5AwIjrahohRw/g9eD0aePqDqfTGHXaDLpDQwJ+g3Jzc/GXv/wF//jHP9CnTx/Y7XbccMMN5DApiGSklrmRX0i95yUA7jpQWMgTqo2IEQyMZwTEqHVa79MNCIwePS0pcb+Los7oETM0bDUkYKepa9eu+O677/Cf//wHO3fuxMqVK3HPPffgmWeekbN8hCdGGD1nhhfSCM6piIAw5p4iwWgYwTkFjF+njeCcAsZvcAk5t2vnnuRXjxhdzhoTcPfcsmXLcMMNN7j+Hz9+PDZs2IApU6YgOzsbr776qiwFJBqorzeG0yTKVlDAW11GXKPQCEbGauUJ1Pn5/C8lResS+Y8RnFPA+EbGCPUZIOdULYwuZ40JONLk6TAJLrroImzZsgUbN24MpkxEE4RVVEByOvk/CQnaFqYlEhL4sFbG3HPwGA2jKD8y5upg9G4jkrM6GCVyanS9oTGyZwV27twZ33//vdyXDXnCS0v5Rnw8n5xMr9hs7jl3jPhSMmYc5Wf0FiPJWR0op0kdjBI5NcNcehqiyFCK9npdesLAuJwmvRsYwNgvZVkZX3sO0L+szWJkjCJnI9ZnwHhypvqsLJ4pFKL3gvAZHY8/JTwJLynhG3p/IQF3GY04SZ1QfNHRQESEtmVpDSMbc8aM1zInY64sRq7PgHHkLEb2OZ3GTaHQEHKaDIIr0qR3AwMYu8VoFMUHGNuYV1YCZ8/ybb3Lmoy5OnjWZ8a0LUsgGKW72W53T3JqRN2hMeQ0GYQwI3XPGdnIGEXxAcZ2ToWcIyOBqChty9IaRnZOPXP09N7gEhGQmhqgvFzbsgSCUSKngLF1h8YENR7866+/xtdff438/Hw4z+kbffvtt4MqGOGNobrnjGxkSPGpg1GiH4C3nMUCw0bBM0dPzxMuAtx5joriUcj8fCAmRusS+YfR6vShQ8Zs2GpMwJGmBQsWYNy4cfj6669RUFCA4uJirz9CXqh7TiWMpvgAYyo+IzmnwtmoreVOiJEQcm7blkf19I6RdYeRotRGbthqTMCRpqVLl2L58uW4+eab5SwP0QyGGj1nZMVnJKfp3BwQI0VAjCTniAg+MKC8nBvG2FitS+Q7RumaEyQlAVlZxmsIVFe7HWoj1Gkj62iNCTjSVFtbi+HDh8tZFqIFDNU9Z+QX0kitRREBqa4GKiq0LYu/GEnOgHFb5kZyTgHjylmMFLbb+TIqesfIOlpjAnaa7rjjDnzwwQdyloVoAUN1z3nO02S0UTBG6jYSOSCA8VrmRpIzYFwjYzSnyahy9lziyggRXyN37WtMwN1z1dXVeP3117F+/Xr0798f9nNmqX7hhReCLhzRQGUlbNXVfNsIyk+U8exZntTZtq225fEHoxmZ5GTgt994ubt317o0vmM0ORvVmJOcVUGiyGnIELDTtHfvXlxwwQUAgP3793t9JxnB0zYSDRWbtWkDyQgOSFQUzwM5e5aX3QhlFhjRyAinyUgYUc6A8VrmRsxpAoxXn0WkieRsegJ2mjZs2CBnOYgWkIwW+pUkXtbsbP5Sdu2qdYl8w+EAior4ttGMudGUH7XM1YGcU1WQSM4hg6knt3z11VfRpUsXtGnTBgMHDsR3333X4vGbNm3CwIED0aZNG3Tt2hVLly5VqaStICJNRnkhAWOuPyecU6vVPWOu3jGq8qOcJnUwmjE3qnPq2bA1AkLOlZX8j/CZoCa3LCkpwVtvvYWDBw9CkiT07t0bt99+O2J1MCT3o48+wqxZs/Dqq6/ikksuwb/+9S9MnDgRP//8Mzp16tTo+KysLEyaNAl33nkn3n//fXz//fe45557kJiYiGuuuUaDJ/DAaC8kYEwjI8qamAhYDNKeMKKRqatzr3lllDptxPoMGC+iZ1A5Gy6nKToaCA/ns6+fOaP/Wfl1RMCWYceOHejWrRsWL16MoqIiFBQUYPHixejWrRt27dolZxkD4oUXXsDtt9+OO+64A71798aSJUuQnp6O1157rcnjly5dik6dOmHJkiXo3bs37rjjDtx2221YtGiRyiVvjOuF1PuMvp4YUfkZrVUOGFPOBQXueaXi47UujW9QRE8dhJwLC7lzbRSMltMkUigAY+mOkyeBEye4s6cRAUeaZs+ejSuuuAJvvPEGbDZ+mbq6Otxxxx2YNWsWvv32W9kK6S+1tbXYuXMn/v73v3vtHzduHLZs2dLkOVu3bsW4ceO89o0fPx5vvfUWHA5Ho9GBAFBTU4Majx+vrGFyM4fDAYfDEexjuMnLgxVAfUIC6uW8roJY4uN5mfPy4FS4zELWwcpcOnUKNgDOxETDyFmKi+NlPn262TLLJR/ZOHUKdgAsIQF1TidfbV1DfJJPXBwvc34+6vQix9aorYW9YXUGR/v2PGcvAFStPzExsFkskJxOOHJygNRU5e8ZBC6ZNDjTdXFxYAapH9akJFhOnEDdqVOKlVnuumO9/35YPv4Y9YsWwfmXv8hyTYGvZQzYadqxY4eXwwQANpsNDz74IAYNGhToZWWhoKAA9fX1SD7H609OTkZeXl6T5+Tl5TV5fF1dHQoKCpDaxMu7cOFCLFiwoNH+devWIVLGJQv6Z2Whk82GQ8XF+G3NGtmuqyRdCwvRD0Dunj3YqVKZMzMzgzq/27ffoi+AU3V12GUQOSdkZeESAJW//opvWilzsPKRi8SffsJwAOUREdigIzm3JB97WRkmAZCKi/Hl//4H1kQjSm+0KSrCeADMYsGaH34IustZrfozPjoabUpLsXnlSpR16aLKPYOl9sQJtAGw+cgRlNbXa10cnxgCIAXAvq+/xnGF0xHkqjvDDx5EIoDdp07hlMy6o6qqyqfjAnaaYmJicPz4cfTq1ctr/4kTJxAdHR3oZWXl3KkPGGMtTofQ1PFN7RfMnTsXc+bMcf1fVlaG9PR0jBs3DjEyLjbpGDsWn69bh7GjR6NXRIRs11USqbQUePttpNlsSJ40SdF7ORwOZGZmYuzYsU1GBH3F0jBQIO2CC5CicJllIyMDeOwxtD17FpOaKbNc8pELqWGi1rbdujVbZjXxST5OJ9itt0Kqr8fEQYOADh3ULWQg7N7NPxMTMWnKlIAvo3b9sXXsCJSW4rKePcF+9zvF7xcMDocDmWvXIry8HABwybRpxqgbAKwrVwI7d6J/Sgr6KvQeyl13bA8/DAC4YNw4DBgzJujreVLm47qSATtN119/PW6//XYsWrQIw4cPhyRJ2Lx5M/72t7/hxhtvDPSyspCQkACr1dooqpSfn98omiRISUlp8nibzYb4ZvIuwsPDER4e3mi/3W6XX7lIEuwREbowej6RlgYAsJw5A4tKZQ5a7g3JydaUFFiNIucGBS0VFsIuSYCt+VdakXoZCA1ytiQnq1Y3fKFV+SQmAnl5vMurc2fVyhUwDV1zUlKSLL+7avUnORk4cAC2oiK+LInOsVdWQmrIv7KnpRmizACAlBQAgLWgQHF9J1vdacgdsykgZ1/LF7DTtGjRIkiShFtuuQV1osLY7bj77rvx9NNPB3pZWQgLC8PAgQORmZmJq6++2rU/MzMTV155ZZPnDBs2DJ999pnXvnXr1mHQoEH6MDRGw4hJhkYbAQPwqREsFp4XVFDgUoS6xogJ9wA35nl5xqnTRksCFxgs6d61xFW7dkBYmKZl8Qujjbytr+c6DtB0UFTAHZlhYWF48cUXUVxcjD179mD37t0oKirC4sWLm4y+qM2cOXPw5ptv4u2338bBgwcxe/ZsHD9+HHfddRcA3rV2yy23uI6/6667kJ2djTlz5uDgwYN4++238dZbb+GBBx7Q6hGMjVB8BQW8shsBIxoZqxVISODbBjEyhpQzYLyGgJGdU8AwcjbUYuqeGK0+FxW5B40InacBQc3TBACRkZHo16+fHGWRleuvvx6FhYV4/PHHkZubi759+2LNmjXIyMgAAOTm5uL48eOu47t06YI1a9Zg9uzZ+Oc//4m0tDS89NJL2s/RZFQSEviwVsa442QEA2lkI5OfbxzlZ1Q5GywCYng5G6Q+G2oxdU8MJmdXOePiNO0C9ctpmjNnDv7xj38gKirKKwG6KfSwYO8999yDe+65p8nvli9f3mjfiBEjdDHHlCmw2fgcPAUFvLLrXaEwRkZGLYzYDQoYV856f/fOxWDOqctpMlp9NtqqDTrRz345Tbt373bNZbBbjMxoAlqwlwDAK7dwmvROWZl7wjSjKT+jGXOjds8ZrNtIL0bGbwxWn8OM6jSdm0JhtWpbntbQycoYfjlNnov0vvPOO+jYsSMs58zvwBjDiRMn5CkdYWySkoCffzaG8hNljI4GDDKtgwsjtcwpoqceRpWzwZxTw+Y0ibwgp5PnC+l9xQmd1OeAE8G7dOmCApHJ7kFRURG6GGRCMkJhjBT+1ckLGRBGMjKVlcDZs3zbaLI2knMKGLdOezqnDXPl6RnD5jTZ7e6FyY1Qp3VSnwN2mlgzlbmiogJt2rQJuECEiTBSy1wnL2RAGEnOQjlHRhpvkVAjOadmiOhVVwMNk0bqGcPmNAHGqtM6qc9+j54TCeCSJOGxxx7zWi6kvr4e27ZtwwUXXCBbAQkDY0RjbkTFZyQ5GzWfCWgcAdFz7qaRc/SiovhfZSWXtYyrKyiBYbvnAF7mgweNpTs07kb022kSCeCMMezbtw9hHpN5hYWFYcCAATS3EcEhY64ORuo20klrMSCEsq6t5U5JbKy25WkJIee2bXlUz2gkJQFZWfw5unfXujQtYtjuOcCYOtpokSaRDH7rrbfixRdflHWNNcJkUOhXHTzlrPcIiHDs9J502hQREXygQHk5fw4jOE1GrM+At9OkZ6qrYRcLvRpR1pR36jcB5zQtW7aMHCaiZYwYATGiMRdlrq4GKiq0LUtrGDmiBxinIaATAxMwRtEdDcPgmd2ubye6OSjS5DcBzwj++OOPt/j9Y489FuilCbNgpBfSqBMBAo1zQKKjtS5R8xjdaUpKAn75Rf91WicGJmAM4pxKnnLWc4S3OYyio2tqANENarScJsGqVau8/nc4HMjKyoLNZkO3bt3IaSLcL2RVFTfoeh4tZQZjnpXFnb9u3bQuTfMYOeEeMI6RMXIjADCOnI0coQaM0z0n5GyzAe3ba1qUgJ2mpmYELysrw4wZM3D11VcHVSjCJLRtC7Rpw7uN8vMBPc/fZXRjnpxsjBwQMzingHGMjFHrs8HkzJKTYcA4k/Gc06QkwBJwVpEsyHr3mJgYPP7443j00UflvCxhVCTJGC2Z2lqguJhvG92Y6135mcE5BfQvZ6M7TQaRs2T0SBPpDb+R3WUrKSlBqeh7JAgjvJRiTSOrVfPQb8AYrGWuB+UXEEaozwDJWS1EpMnocq6s5H96RUcR6oC751566SWv/xljyM3NxXvvvYcJEyYEXTDCJBhB+Xm2FjUO/QaMEeTscACFhXxbB8ovIMg5VQcj1Gd4RJqMWp+jo42RQqGj+hyw07R48WKv/y0WCxITEzF9+nTMnTs36IIRJsEIys/oig8wRneGWKvSYnGveWU0jFCfAfMkghcWcmfbbte2PM0hIk1G7Z6TJC7r48f17TTpqD4H7DRlZWXJWQ7CrBjBmOuovzxgjGDMPSN6Vqu2ZQkUI9Rnh4OvWg8Yt07Hx3Pn2unkznZqqtYlahLDR5oAb6dJr+go0mTQvgjCMBihO8Msig/Qt5zN5JwWF/MBBHrEDBE9qxVISODbBjDmho00AcYYrKMj3eFXpEks1usLL7zwgt+FIUyIESIgOnohA8YIctZRazFg2rfnBr2+ng8g6NBB6xI1Rsg5IcG4ET2A15P8fP0ac6fTPYjEDA0uI+gOHcjZL6epqbmZmkIy4syohDLQC6kOouyFhUBdHZ8ETm/oKC8hYCwW3r2Yl8frjZ6dJiM7p4D+dUdhISSnk2+LqJgR0bucAV01bP3SrGKxXoLwGSPkgOjohQyYuDjvHJCUFK1L1BizGPPkZLfTpEfM0AgA9K87GspVEx0Ni14T1X1B73LWWUQvqOZoSUkJ3nrrLRw8eBCSJKFPnz647bbbEGvEhQsJZRAGsqCAd2nosbvADMZc5ICI7gw9Ok1miDQB+m+Zm6ERABhGzrWxsWijcVGCQu/5kEVF3HYAuphENOBE8B07dqBbt25YvHgxioqKUFBQgBdeeAHdunXDrl275CwjYWRE2NrpdM/RozfM0jLXu5Exg3MK6N/IkJzVoUHO1e3aaVuOYDGK3mjfHggL07YsCMJpmj17Nq644gocO3YMK1euxKpVq5CVlYUpU6Zg1qxZMhaRMDQ2Gx8+DOjzpWTMPEZG72F2s8jZKEbG6HLWe332iDQZGr3XZ51FTgPuntuxYwfeeOMN2DwSTm02Gx588EEMGjRIlsIRJiE5mUeZ9PhSlpTweW0A3byUAWMU5Wf0iJ7ejTlFTtVB5DQZPdIk6oleUyh0Vp8DjjTFxMTg+PHjjfafOHEC0dHRQRWKMBl6Vn7CkMfGAuHh2pYlWPTcnWGmiJ6e6zNAclaLhvesxuiRJr2nUOgs0hSw03T99dfj9ttvx0cffYQTJ07g5MmTWLFiBe644w7ceOONcpaRMDp6NuY6a8UEhZ6NTGmpezJInSi/gNFzfQZ0Z2QCxlPOjGlblqYwS6RJ7ykUOtPRAXfPLVq0CJIk4ZZbbkFdXR0AwG634+6778bTTz8tWwEJE6BnY24WAwPou9tIlCk6GoiI0LYswaJnOZsxoldTA5SXAzEx2pbnXMwSaQL0nUKhMx0dsNMUFhaGF198EQsXLsSvv/4Kxhi6d++OyMhIOctHmAE9O01mMTCAvuWsM8UXFJ5yZowveqoXKir4ivWA8WUdFcX/Kiu5rPXmNJkl0gTwuvLzz/qMnuos0hRw99zZs2dRVVWFyMhI9OvXD7GxsXj99dexbt06OctHmAE9t8x19kIGhZ67jcwkZzFXTG0tUFambVnORchZOBxGR691mjFzRZr03ODSWcM2YKfpyiuvxLvvvguAT3I5ZMgQPP/887jyyivx2muvyVZAwgToVfEB5o6A6AmdKb6giIjg3YyA/uq0meQM6NeYV1YCZ88CMEmkSc8NW52Nug3Yadq1axcuu+wyAMB///tfJCcnIzs7G++++y5eeukl2QpImAC9Kj7AXBEQIefqat5Noyd0pviCRq9GxkyNAED3cmaRkahvY+j5wDl6btjqrCEQsNNUVVXlmlpg3bp1mDZtGiwWC4YOHYrs7GzZCugvx44dw+23344uXbogIiIC3bp1w7x581ArRu40w4wZMyBJktff0KFDVSq1ydGz02QmI+PZJaM3WetM8QWNXus0yVkdzNYI0KucKyv5H6AbWQfsNHXv3h2rV6/GiRMnsHbtWowbNw4AkJ+fjxgNE/YOHToEp9OJf/3rXzhw4AAWL16MpUuX4qGHHmr13AkTJiA3N9f1t2bNGhVKHAKIyu75AugFM0WaAP22GM3knAL6lbNZnSadypnpYC00WdCr0yTK06YN0LattmVpIODRc4899hhuuukmzJ49G2PGjMGwYcMA8KjThRdeKFsB/WXChAmYMGGC6/+uXbvi8OHDeO2117Bo0aIWzw0PD0eKHhc6NTpt2/JKX13NV6vWU4KqGY15VpZ+lZ/ZnFOSs7LovHvONHpD73JOTtbNKNWAnaZrr70Wl156KXJzczFgwADX/jFjxuDqq6+WpXByUVpairi4uFaP27hxI5KSktCuXTuMGDECTz75JJJaeClqampQU1Pj+r+sYSSNw+GAQyzNIQPiWnJeU21sSUmQjh9H3alTYB06yHrtgOVz9izs5eX83Pbt3cupGBhrYiIsAOpyc8HOkYuW9ceWlwcJQF1cnKtceiEQ+VgSEmAFUJ+XB6eOnsealwcLgPr4eNnKpWX9keLiYAPgPH0a9TqSsyU3F1YAzobZtI2smwEA7dvDDoCdPo06HdkuKSeH//6JiYr//r6WMWCnCQBSUlIaRWYGDx4czCVl59dff8XLL7+M559/vsXjJk6ciOuuuw4ZGRnIysrCo48+itGjR2Pnzp0Ib2Z5jYULF2LBggWN9q9bt06R+aoyMzNlv6ZaXB4WhvYAdqxZg9MFBYrcw1/5RJw5g3EA6m02rPn+e920ZIJhQE0NOgM4unkzjqSleX2nZf2ZlJMDO4BNhw6hQm9J6g34I58uZ86gP4C8vXuxQ0fd+MMPHUIigN2nTuGUzOXSov4kZGXhEgCVv/2Gb3Qk537bt6MrgF8b0g2MrJsBwHb2LCYDkKqqsHblStmT2wOVT8bXX+MCAPkAtin8+1dVVfl0nMSY3sYmN838+fObdFA82b59u9diwTk5ORgxYgRGjBiBN99806/75ebmIiMjAytWrMC0adOaPKapSFN6ejoKCgpkzetyOBzIzMzE2LFjYbfbZbuumlivugqWNWtQ969/gd16q6zXDlQ+0o4dsA0fDtaxI+p++03WMmmF5dFHYX3mGdTfcw+cS5YA0EH9qamBvWHQiCMvD/Ah6qsmgchH+s9/YPvDH+C89FLUf/ONwiX0HduAAZAOHkTdV1+BjR4tyzU1rT/798N+0UVgcXGoy8tT994tYL3xRlg++QS1zz2HL887z9C6GQDAGGzt2kE6exaOw4eBLl1kuWywdceycCGs8+bBOWMG6l9/XZYyNUdZWRkSEhJQWlraov0OKtKkJjNnzsQNN9zQ4jGdO3d2befk5GDUqFEYNmwYXg9A2KmpqcjIyMDRo0ebPSY8PLzJKJTdblfkBVLquqrQ0GduKywEFHoGv+VTVAQAkJKTjSvXc0lNBQBYCwpgPeeZNKs/wtjZbLAnJgKWgMefKIpf8mmI4lnOnIFFT3XnzBkAgC0tTfb3TJP607EjAEAqKoKdF0Ld+zdHg5wtDe+boXWzICkJyM6GvagI6NFD1ksHLJ+GXglLaqri75mv5TOM05SQkIAEsRpzK5w6dQqjRo3CwIEDsWzZMlgCUNKFhYU4ceIEUhteCiJI9DgKxmzJnIA+Ezo9R3Tp1GHyGz3Kua7OvUq9WRLB4+J4nXE6uQHViz72rNM+duvonganSVd1WoejQU2iwdzk5ORg5MiRSE9Px6JFi3DmzBnk5eUh75zQbq9evbBq1SoAQEVFBR544AFs3boVx44dw8aNGzF16lQkJCToLqndsOhxtJHZRhoB+pSzGZ1T8SzFxXw5FT1QWOheC0+sWm90rFZANJZ12OBiZqzTetQdOtLRhok0+cq6devwyy+/4JdffkHHhtCuwDN96/DhwygtLQUAWK1W7Nu3D++++y5KSkqQmpqKUaNG4aOPPnJN4EkEiR5b5mY25noyMGZ0Ttu35wa9vp531cg8IjQghJwTEnjZzEJyMn82veiO2lruLAP8fTt2TNPiyIYedbQOI02mc5pmzJiBGTNmtHqcpwMVERGBtWvXKlgqQpetGB2+kEEjFF9hIe+usengFTejnC0WvnBvXh5/Pj04TcJRNsuEiwK96Y6GfCZYrbob1BAUemxw6TDSZLruOUKn6PGFNGMEROSAAK4kSs0xY0QP0F/LXMjZbBP06s1pEuXQ8aCGgNCbnD1z9HSkO0z0ixO6RlT6ggLepaEHzGjM9ZgDYkbnFNCfkRF5m2Z1mvRSn3UY/ZAFvTUCRKPPYtFVjh45TYQ6CEPudLqG+msOGXN1MKNzCujXmJvNadKbMTe73tBbfdZZjh45TYQ62O3u1oIelJ9I4AXMZ8zJyKiD3pxTEWkiOSuL2RsBepGzTvUGOU2EeujppSwq4lEvgBJnlcasRkZvzil1z6mDTo150Ijn0UsKhU71BjlNhHroSfmJMsTH62OEmZzoSc5Op3kjenp1Ts3qNOlNzmarz/HxfI4vxtwJ2Fqi01G35DQR6qEn5afTF1IW9CTnoiJ3q9VsstaTcwqYt3tOPM/p09yga41ZI002mzuFQg91WqcJ9+Q0Eeqhp+4Ms3ZlAPqSc24u/4yPB8LCtC2L3OhJznV17oie2eq0kHNtLVBSomlRAJg30gToq8Gl04YtOU2EeojKr4fVys3sNOlJ8YWKnLWOgBQU8DJYLO6RqmYhIgKIjeXbetAdZnaa9NQQ0KnuIKeJUA9R+fUQ+tXpCykL5JyqgxhAUFsLlJVpWxYh56QkXQ3Plg1Rf7Su006n26EwY53WU5ezTnUHOU2EeuhF8XmWQWcvpCx4OqdaR0DMLOeICCAmhm9rXafNms8k0IvuKCzkOXqSZM5IE0WpW4WcJkI9UlP5p9aKz7MMokxmQigZz4VFtUKnik829GLMzTpyTqAXOYscvYQEPvec2dBL91x9vbsMOtPR5DQR6uGp+MQcSVphZmMeHg60b8+3tTYyZpYzoB9jbnY566XBZXY566Vr/8wZbiPEwtg6gpwmQj3EC1lXp/1SKmZXfmTM1UEYcxGB0ArqnlMHs9dnvck5MVF3OXrkNBHqERbmHtmj5UvpcJh3eLZAb8ZcZyF22dCLkaHuOXUwu9NEEb1WIaeJUBc9KD/RV2616mr1bFnRg5w9769D5ScL4rn04pyaXc5a12fxO5u1ESCe6/RpbVModFyfyWki1EUPRsazK8Ni0ldAD0ampsbdDatD5ScLemuZU/ecsujYmMtCUhIfGVhXp+1SKjqOUJvUYhC6RQ/Kz+yKD9BH95yI6Nnt7sR0s6GH+gyETvfcmTPcoGuF2XWH3e5OodBSd4h761DO5DQR6qKHlrmOWzGyoQdjHgoRPT04p6EQ0UtI4HWIMW2Hw5u9ew7Ql+7QYX02qSYjdAu9kOpAclYH8WwFBXyAgRaEQkTPatXHcPhQqNN6aAjoWM7kNBHqoqecJh2+kLJBclaHhARu0LWMgHiuBi9J2pRBDbSOUp89C5SW8m0z12nSHS1CThOhLnqIgOi4v1w2hIEpKuLdN1qgY8UnGxaLO/laqzodCnIGtNcdwjkND3cvIGxGtHZOAV13g5LTRKiLHl7IUDAy7du7l3nQKgISCs4poH3LPBTqM6C90+RpyM0c0dO6PldWAuXl3mXREeQ0EeoiXoLiYoqAKIlHBESiCIiyaN0QMPt0AwKtnSaqz+ogInoREUB0tDZlaAFymgh1adeOzwwOaK/8dBj6lRWtlV+oGBmtjbnZpxsQaC3nUKvPeoic6jCiR04ToS6SpK3yq6jg4V8gdFrmwqiqTagYGa1HG4WKnLV2mkKlu5kaWy1CThOhPlq+lOKebdvyPzPToHQ06Z5jLHQielob81DrntPaOQ2V+lxe7m5gqomOk8ABcpoILdDSyOi8FSMrWjqn5eV8iDZAxlxpqHtOHUJFd0RHA5GRfJt0dCPIaSLUR0sjo/MXUla0jDSJe0ZHA1FR6t9fTag7Qx2EnCsq+J/ahIqcPVMoSEc3gpwmQn20NDKhkpcAaJvTpHPFJyueBoYxde+t8+HZstK2rTsCokWdDiXdoWWens51BzlNhProoXtOp/3lstLwjJpGmnSq+GRFPGN1NVBWpu69hVFr21aXw7NlRctBJE6n21ELId1B3XONMaXT1LlzZ0iS5PX397//vcVzGGOYP38+0tLSEBERgZEjR+LAgQMqlTjE0IPTpNMXUlY85ax2BCSU5BwZCcTE8G2163RODv9MS1P3vlqhle4oLnavLSjWwDMzWnbP6TyiZ0qnCQAef/xx5Obmuv4eeeSRFo9/9tln8cILL+CVV17B9u3bkZKSgrFjx6JchL4J+aD+cnUQk1vW1MCm9iiYUJIzoF2dJqdJHcTvGhfHl1ExO1pFmgwQ0TOt0xQdHY2UlBTXX9sWhpczxrBkyRI8/PDDmDZtGvr27Yt33nkHVVVV+OCDD1QsdYjg+UJSBEQ5IiJca2S1KS5W996hJGdAOyNDTpM6hFK3PqBdI6CoCKir49s6jejZtC6AUjzzzDP4xz/+gfT0dFx33XX429/+hjAxE/U5ZGVlIS8vD+PGjXPtCw8Px4gRI7Blyxb8+c9/bvK8mpoa1HgsBVLWkM/gcDjgEKFcGRDXkvOamhIXBzsA1NbCceYMXyctCPyRjy0vDxIAR0KCO9xuYmwpKZBKS9GmpETV+mPNyYEFQF1iIpjO5SzH+2VNSoIFQP3Jk3Cq+LyWkydhBVCfkqLYffWkfyyJibACcObkoF7F8kgnT8IGwJmc7HVfPclGTqTERNgAsNxc1AXxbH7L58QJ2AGw+HjUSZKqOtrXMprSafrrX/+Kiy66CO3bt8ePP/6IuXPnIisrC2+++WaTx+c1tCKSz5lPJjk5GdnZ2c3eZ+HChViwYEGj/evWrUOkGOUhI5mZmbJfUysmtm2LsIoKfPvxx6hIT5flmq3Kp74eUxucpm8OHEC1VvPqqMhwux2JAMKLi1WtPyMPH0YsgO0nTyJ/zRrV7hsMwcinb3U1ugH4bcsW/HzeefIVqhUG7tiBjgB+LinBbwrLWQ/6p1NBAS4EkP/TT9imYr3qtmkT+gI4VV+PXU3cVw+ykZPY337DSAA12dlYK4OcfZVP4k8/YTiA8qgobFBZb1RVVfl0nGGcpvnz5zfpoHiyfft2DBo0CLNnz3bt69+/P9q3b49rr70WzzzzDOLj45s9XzpnnRvGWKN9nsydOxdz5sxx/V9WVob09HSMGzcOMSIxVAYcDgcyMzMxduxY2MXK9QbH1rEjcOgQRvToATZqVFDX8lk+eXmwOJ1gFgtG33ADYDNM9Q8Y6wcfAPv3o01xsar1x3bHHQCAQVdcAfTvr8o9A0WO98ty4ADw2WfoFhmJzpMmyVzC5rG+8AIAoPeoUeil0H31pH8kSQL++U8k19VhkopytmzcCABIu+gipHjcV0+ykZW8PGDOHISXlWHS+PGA1RrQZfyVj1RUBABo2727qr8v4O4pag3DWI2ZM2fihhtuaPGYzp07N7l/6NChAIBffvmlSacppaH/Ni8vD6kefdb5+fmNok+ehIeHI7yJpEC73a7IC6TUdTWhQwfg0CHY8vMBmZ6pVfnk5wMApJQU2CMiZLmn7unQAQCPNKlWf2pqgIICAIC9c2fZfl+lCUo+DXK25OfDoubzNkRLbZ06KS5nXeifjAwAgJSTo25ZGpKTrWlpsDZxX13IRk7S0gCLBZLTCXtxcdC5XD7Lp0HOlo4d1X2PAJ9/P8M4TQkJCUhISAjo3N27dwOAl0PkSZcuXZCSkoLMzExceOGFAIDa2lps2rQJzzzzTGAFJlpGJK6eOqXePcW9GgxcSNBQ59s0tOBUQXR7hofz0UahgBaTATIWeong4t09c4Y752qNZAs13WG18kTsvDz+p1YCvJCzjuuz6UbPbd26FYsXL8aePXuQlZWFjz/+GH/+859xxRVXoFOnTq7jevXqhVWrVgHgId9Zs2bhqaeewqpVq7B//37MmDEDkZGRuOmmm7R6FHMjlI+aTlOoGRjAJWdVnSZPxddC97apEHVK1DE18FxQNVRGdcXHA2JAj5oj6MTvGipOE6DNCDoDOKeGiTT5Snh4OD766CMsWLAANTU1yMjIwJ133okHH3zQ67jDhw+jtLTU9f+DDz6Is2fP4p577kFxcTGGDBmCdevWIdrss+xqhXgp1DQyBnghZafhWSPUdJpC0cCIZy0q4gsVq9H9K4xZbKz51/cTSBJ3UI8d4+9zQ3edojAWmrojNRXYs0ddp8kAusN0TtNFF12EH374odXj2DnzA0mShPnz52P+/PkKlYzwQotIkwFCv7IjIk2FhY3qvGKEopzbteOO0tmzXPF366b8PUMxcgq4nSa1GlwlJfx3FfcOFbTU0Tp2mkzXPUcYBC2753T8QspOw7PaamoAj8iqohhA8cmOJKlfp0PVaVJbzuI+cXHqRBD1gtpyrq93R7V0rDvIaSK0QSj63Fw+db4ahKIxj4gAE5OHkjFXFnKa1EHt/LFQ1BuA+3lPnlTnfvn53HGyWFxLQOkRcpoIbUhJ4S9HXZ1rKgDFCcVuI8D1vBIZGWVR28iEqtOkVaQp1OTcsSP/VFvOycm6nkOPnCZCG2w2d2tCjZfy7Fm+UjkQcsacqZ10T8ZcnfsJOYfKyDmBVk5TiOkNzeqzzuVMThOhHWq+lOKFjIx0LWIbMohIkxpyDtWRRgB1z6kFdc+pg3jeggKgulr5+xlEzuQ0EdqhZgQkFOcOaoCpaWTKygCxhlOoGXNymtTBU85qjAg1SAREduLi3JOHqqmjdS5ncpoI7VDTyBjkhVSEhmdWJdIk7tGuHY/qhRJq1udQnA1cIJ63spJP8Kk0oao7JEndvCaDyJmcJkI71FxKJVRbiwBYQ86LKongoWrIAe/IqdIjQktK3F0moZbTFBXl7mInY64sWjRsda47yGkitINeSFVQNRE8lA1MaipvndfV8bXRlET8lnFxQJs2yt5Lj6hVpx0O9+jeUKzTao4INUjDlpwmQjuoe04dhKOYn8+NgJKEcqTJbueLnALK1+lQHTknUCtKnZvLu0LtdiDABeMNDXXPNYKcJkI7tBg9p/MXUhESE+G02SAxpvw6UgZRfIqhlpE5cYJ/pqcrex+9opbu8IxQW0LQXKol56oq3uXseU+dEoK1gNAN4uUoKXGPuFKKEO6eg8WCajEruNLdGaHsnALqGZlQd5rUGhEaynoDUK97Tsg5KgqIiVH2XkFCThOhHTEx7tXZlVR+niONQtSYV8fF8Q01W+ahiFpOkzBiIrIVaqgl5xDXG6pFTg00JQw5TYR2SJI6uQlFRUBNDd8O0RyQs/HxfIOMjLJQpEkd1EoED/XuZrVGhBpIb5DTRGiLGkZGXDshwT1ZW4ihSqTJc5VyijQpe59Qd5rUSgQPdacpJcU9IlTJNUINJGdymghtUcPIiK4MA7yQSlGtRqQpN5c7TjYbV7ahiNpOU6h2zwlnMSeHG3SlMJAxVwS73f0uq9GwNYCcyWkitEWNRENhYDp1Uu4eOuesGpGm48f5Z4cOgNWq3H30jBpOU1mZeybsUI00JSdzg+50Kjsi1EDGXDGoYesFOU2EtghHRjg2SiCMeQg7TdVijhkl5UzOqTojQoWc27d3D6QINSwWd5RNvN9ywxhF9AB1nCbxG2ZkKHcPmSCnidAWYWCVUnye1w5hY14lnKaTJ5VL6CQ58xGhbdvybaUcVDLkHKV1R0EBX6rGcw22UEQ8u5K9AQbSHeQ0EdpCTpMqVMfHg0kSH0Wo1BIfJGduYEVrWak6HepJ4AKldYe4bkpKyA4gAaB8CkV1NXD6NN82gO4gp4nQFvGSnDkDnD2rzD3ImIPZbO4RR9nZytyEjDlH1DOl5CyMF8mZfyrlNInfL4T1BgDl5Szqc2QkX0tR55DTRGhLu3bKdmfU17v74kPcyDC1WuahbmTUijSFcpcR4H6fleoGNVCejaIo3Qjw1Bs6n9gSIKeJ0BpJUrYlc/o0X6TWag3ZiS1dCCNDTpOyKG1kKKLHoUaAOgin8cQJ3giVG4PJmZwmQnuUVH6ew+BtNvmvbyCYMLJKGPOqKqCwkG8bRPkphjAy5DQpCzlN6pCWxhuddXVAXp781zeYnMlpIrRHye4Mg72QiqKknIUhj44GYmPlv76RUNKYM0Y5TQLx/MXF7nmr5IRymjg2m7srWImGgMF0NDlNhPYo2Z1hsBdSSZiS3XMkZzdKdmeUlACVlXzbABMBKkpMDM+JBJTJa6KcJjdKRk8NpjvIaSK0R8mWOU246IKRc6oOqanKdWccO8Y/k5L4aKNQR6lk8LNn3WutUZ0mp8kDcpoI7VEjpynUuzIAt5wLC93RCrmgPBs3SnZnZGXxzy5d5L2uUVFKd4gu0KgoPvN6qKOU08QYOU0E4TeeS6nIPVu1wV5IRYmN5V0agPwtc5KzN0oZcxFp6txZ3usaFaXk7JnPZIBh8IqjlNNUWOien88gU2iQ00RoT4cOXDEpMVs1GXNvlFJ+JGdvlJIzRZq8Ucpponwmb5TWGwaadZ2cJkJ77Hb3bNVyKr+qKr5+FEDdRgKlIyDkNHGUGqlIkSZvlMrTo0aAN55OE2PyXdeAcjad07Rx40ZIktTk3/bt25s9b8aMGY2OHzp0qIolD3GUUH7CwMTGukfZhDpKOE11de7frVs3+a5rZJQy5uQ0edO1K/8UETi5MKAxVxTR6KysBIqK5LuuAad1MJ3TNHz4cOTm5nr93XHHHejcuTMGDRrU4rkTJkzwOm/NmjUqlZpwGQE5ld9vv/HPrl0pL0EgWozC+MrByZPccQoLc0cMQx0lIk2MUffcuQin6cQJoLZWvusKOVP3HCcigo/YBORtCHjqaINguimSw8LCkJKS4vrf4XDg008/xcyZMyG1YjjDw8O9ziVUREQoxEskB7/+6n1twm1s5ZSzMDCdOwMW07XDAkMY26ws7uzI4bR7jno0UMtcURIT+dQLVVXcmJ93njzXFe8H6Q43GRl8Gobjx4GLLpLnmkJHk9OkHz799FMUFBRgxowZrR67ceNGJCUloV27dhgxYgSefPJJJAnvuglqampQU1Pj+r+srAwAd9QcDkfQZReIa8l5Tb0hZWTABsD5yy+o9/M5m5OP5ZdfYAVQn5EBp4ll1xpe8snIgB0A+/VX1MkkE+noUf7bdeni92+nBxR5vzp0gE2SIFVUwJGT426lB4GQM0tLQ53VytdUVAG96x9bly6QDhxA3ZEjYHJ0W9bUwHbiBCQAjvT0FuWsd9nIiTU9HZbt21H/668+69PW5GP79VdIAOoyMsA0lqGvv6Hpnaa33noL48ePR3oricATJ07Eddddh4yMDGRlZeHRRx/F6NGjsXPnToQ3k9W/cOFCLFiwoNH+devWIVKBiecyMzNlv6ZeiM/Px6UAzu7bh/UBdoueK58hP/yAFAD7qqqQTV2tyMzMhK2iApMBSKdPY+0nn6A+IiLo6/bOzEQPANkWC/YaWM5yv1/j4uIQUViIre+/j+JevYK+Xtr33+NiAEUxMdisgZz1qn8GR0UhFcCBzz7Dsbq6oK/X9tQpjGEMdW3aYM2OHT5FCfUqGznpA+A8ANkbNmBf9+5+ndukfJxOTPntN1gBbMjORpXGuqOqqsqn4yTG5EyFV4758+c36aB4sn37dq+8pZMnTyIjIwMff/wxrrnmGr/ul5ubi4yMDKxYsQLTpk1r8pimIk3p6ekoKChAjJgPRwYcDgcyMzMxduxY2O122a6rK06ehL1rVzCrFXXl5X4trtucfGwDBkA6eBB1a9aA/e53SpTaEJwrH1tKCqSiIjh27AD69w/6+tY//hGWjz9G/TPPwDl7tgwlVhel3i/r734Hy7ffom7ZMrA//CHo61mefx7WuXPhvPFG1L/zjgwl9A296x/LAw/A+tJLqJ8zB86nnw76etJXX8F2xRVgffuibteuFo/Vu2zkRHrrLdjuvhvOCRNQ/+mnPp3TonxOnYK9Sxeu88vK+ChqDSkrK0NCQgJKS0tbtN+GiTTNnDkTN9xwQ4vHdD4nNLts2TLEx8fjiiuu8Pt+qampyMjIwNGjR5s9Jjw8vMkolN1uV+QFUuq6uiAjAwgPh1RTA3tubkB93F7y8UiatfXoofkLqQdc8unaFSgqgv3ECWDgwOAv3JBUbj3vPFgNLGfZ36/u3YFvv4UtO1ue+teQVG7p2hUWDeSsW/3TEPWwHjsmT/1rSHSWunf3+Xl1Kxs56dkTAGD59Ve/61+T8mmYYFfKyIBdB0sC+fr7GcZpSkhIQEJCgs/HM8awbNky3HLLLQFV5sLCQpw4cQKpqal+n0sEgMXCk5QPHeJJmMEmBublAdXV/LqUNOtNt27Ajh3uJMxgoRFdTSO6MOSSsxjxSHL2RugKuQY30ACSphHyOHaMj5b1ozegSQyYBA6YcMoBwTfffIOsrCzcfvvtTX7fq1cvrFq1CgBQUVGBBx54AFu3bsWxY8ewceNGTJ06FQkJCbj66qvVLHZoI15KOYyMUKCdOlGU6VzklHN5uXsWdzLm3sgpZ8B7lCLhxtNpkiPbxIDD4FWhY0c+a7fDIc8yTAaVs2mdprfeegvDhw9H7969m/z+8OHDKC0tBQBYrVbs27cPV155JXr06IHp06ejR48e2Lp1K6Kjo9UsdmgjZ4vRoK0YVZDTmAtDHh/PJxEl3Mgp5/p6GgbfHMKJLCuTZ+JFijQ1jcXi1qdyNmwNJmfDdM/5ywcffNDi95757xEREVi7dq3SRSJaQ4lIk8FeSFVQQvGRc9oYUfdOnwYqKoC2bQO/lpi8MSyMlgQ6l4gIPqlqTg6vj/HxgV+LMdIdLdGtG3DwIPDLL0Cwg2sM2rA1baSJMCByTnBJxrx5hJyzs3luQjCQnJunXTsgLo5vB1unjxzhn926AVZrcNcyI3JFqfPygLNnKReyOeTM0zOoc0pOE6EfPCMgweYmkDFvng4deG5CXV3wuQlCzpTP1DRyRU/FKF65Zrw2G3JFT8X5nTrxqB7hjajPv/wS3HXKy/ns4oDhdDQ5TYR+EIZXjtwE8VIb7IVUBTFSEQjeyBw+zD979AjuOmaFnCZ1EHJuYYoYn6B8ppYRkaZgnSaRCxkXZ7hcSHKaCP0QEcGjIIC7OyIQSkp4HgngmluEOAe5WubCaSI5Nw05TeogZlwX9TFQDJpnoxqe3XPB9AYI/e7nzOJ6gJwmQl/IofzEuWlpAI1+bBoRGQpGzpWV7u49cpqaRq6WOTlNLSPq36FDwRnzQ4f4pwzL3piSjAyeU3f2LJCbG/h1hJybGd2uZ8hpIvSFUFbipQoEUnytI5RVMHIWhjw+PrgRS2ZGGPODBwO/Rl2duzuDnKamOe88vkZccTFQUBD4dUh3tIzdzh0nILiuUAPLmZwmQl+IlygYI0NdRq0jh5yF4iM5N49wTk+d4rl6gSBmYG7Txt19TXgTGeke7RZo9LS+3t1tZEBjrhoh3rAlp4nQFyH+QqqGMObZ2YCPq3s3QhgnknPztGsHpKTw7UDrtDjvvPN4Ej/RNMJ5D9RpOnYMqKnhI0tFNIVojNAdP/8c2PmMGVpH0xtI6AvxQv76K5/MLxAoAtI6CQl85ApjgSfdU0TPN4LtCj1wgH+ef7485TErwTa4PPUGzYXVPH368M9AnaZTp3g+pM1myFGK5DQR+iItjc+cXF8f2Iijujp30q0BWzGqIUnBG3Nymnwj2K5Qcpp8I9hIk4GjH6oinKZA67OQc7duhlwXlJwmQl9IUnAtxqwsvqBkRAQtN9EawcjZ6SSnyVeEc0pOk7IEm3RPTpNveObpNazf6hcGlzM5TYT+CKZlLgxMr16U/9EawRjzrCweYg8PN+RcK6oSjJydTvd55DS1TN++/PO33wLL0xNyNqgxV43YWN4jAARWp8U5Bm1skVUh9IcwDvv2+X/uTz/xz/795SuPWRHGXDia/rB3L/88/3yem0A0j2eeXk2Nf+dmZfE5ccLDDZn/oSrJyUBSEnc0/c23YQzYv59vi+4nonmCyWsSOrpfP/nKoyLkNBH6Y8AA/ileLn8Qxlxcg2geIaNDh4Dqav/OFQ6tQRWfqqSl8VF09fX+t8w9I6eUnNw6orEk9ICvHD/Ou5rsdkNOuKg6wmnyt8HFmOF1NDlNhP4QL9Phw7yV7Q/ihaRIU+ukpfFJKevr/Vd+JGffkSTgggv49u7d/p1L+Uz+EajTtGcP/+zThxbq9QXRFeqvnI8d44v1hoUZthuUnCZCf6Sm8iHxTqc7ZO4LFRXuEXdkzFvH05j7G9Ujp8k/LryQfwrj7Cue3aBE64j66G99FscbNPqhOhddxD937fJv2Roh5z59DDlyDiCnidAjkhRQF5104AB/gVNSgMREhQpnMoTT5I8xr6pyT+tATpNvBCJnANi5k38OHChnacyLZ6QpEGMufieiZfr25bmMRUXu9Sd9wQTOKTlNhD4JJK9J5NkY+IVUHSErf4y5cE6Tkvgf0TqeTpPT6ds5paXu9b3IafKN3r157ldREZCT4/t5ov6T7vCN8HB39HPXLt/PM8FAHXKaCH0SQLeRZIIXUnU85exry3zHDu9zidbp3ZvncZSV8bwOXxDGKCODd1cTrdOmjTtXxldjXlbGpykAyGnyB9Hl7E+eHkWaCEIhxAu5axef5dsHLNu28Y3BgxUqlAnp1cttzIXhaI0ffuCfQ4cqVy6zYbe7k2d9NTLUNRcY4v0X9bQ1xO/RsSMfGEH4hqeO9oWCAreOEecaEHKaCH3SuzcQHc0nUPQhGdxaXe3uniNj7jt2uzupc+tW384RzumQIcqUyawI5+fHH307npymwBDvv69Ok6j3w4YpUx6z4pkM7gvi9+jZk697aVDIaSL0idXqVn4+GPN2v/wCqb6etxY7dlS4cCZj+HD++f33rR9bVORePoWcJv+45BL+uXmzb8cLp2nQIGXKY1aE3vjxRz6dRmuIei/eA8I3LryQ6+mcHCA7u/XjhR43uJzJaSL0i3i5tmxp9dA4YcgpyuQ/wpj74jSJKMl551FXhr8IOe/Y0fpkovn57iRwcpr84/zz+aLfFRWtz1jNmFu/GNyYq05UlDsK+t13rR8v5GzwiB45TYR+ES+XD05Te3KaAkcYi/37gZKSlo8VIXaKMvlPt258qY/aWncyfXOIaFTfvobuytAEq9X3vKYjR3j0tE0bGtgQCJddxj+//bbl4+rq3A0ucpoIQiGGDOFzNv32G5CX1/xxTidFmoIhJQXo2pW3ukW+UnOIFiXJ2X8kyfeonjBCwigR/iHqZ2sRENEgu/himgk8EC6/nH+2Jud9+/j8bjExhl/bj5wmQr+0a+de22zjxuaP27cP4aWlYFFR1JURKMKYb9rU/DFVVe4IyJgxypfJjFx6Kf9szciI30EYJcI/Ro3in+vXtzyVhtAr1DUXGKI+HzrEu5SbwbJhA9+45BLAYmy3w9ilJ8zPuHH886uvmj3E8vXXAAB2+eV80jXCf373O/7Zgpzx/fe8a6ljRz4ChvCfkSP558aNQE1N08fk5ronWxTGn/CPSy/lXW65uc3nNTmdwNq1fFvoGcI/4uLcU2kIx6gJpMxMvmECOZPTROibCRP459q1zbYYxQvJhOEn/EfIeffu5rtChYH53e94VxPhPxdcwNdWrKxsPqonHNeLL+Y5UIT/tGnj7toU9fZc9uwBTp/mCc0iYkL4j9Adn3/e5NfWmhpIIkI9frxKhVIOcpoIfXPppVyp5eUB27c3/r6wEFKD8XGa4IXUjKQkd9dmU8qPMeCTT/j2lCnqlctsSBIwaRLfbsbIuPaL44jAmDyZf65c2fT3n33GP8eMoXymYLjiCv75xRdNTkSctGsXpJoaoFMn92ztBoacJkLfhIcDU6fy7Q8/bPz96tWQ6upQ2rkz0KOHqkUzHdOm8c+m5LxrF1/+IzISmDhR1WKZjiuv5J8ff9zYyJSUcOPjeRwRGNdcwz+//x44dcr7O8aADz7wPo4IjGHD+PQjxcXAN980+rqDyN/7/e9NEaEmp4nQPzfeyD8/+ghwOLy/e+89AMApkchMBM5NN/HPDRuAkye9v3vnHf45eTJ3nIjAGT+eryV3+jSwbp33d//9L891Ov98GgIfLB07ugc4vP++93c7dvDpBtq0Aa6+Wv2ymQmbDbj+er799tve35WUIFlMryH0uMExnNP05JNPYvjw4YiMjES7du2aPOb48eOYOnUqoqKikJCQgL/85S+ora1t8bo1NTW47777kJCQgKioKFxxxRU4ea7hILRhwgTefZSby1vngt27gU2bwGw2nBAJtkTgZGQAI0bwVvjLL7v3l5UBy5bx7T/9SZuymYmwMLeD+tJL7v1Op1vuN99sila55tx+O/985RXvBteSJfzz6qv5ck1EcNxxB/9ctYrr6QYsb7wBW20t2PnnG3q9OU8M5zTV1tbiuuuuw913393k9/X19Zg8eTIqKyuxefNmrFixAp988gnuv//+Fq87a9YsrFq1CitWrMDmzZtRUVGBKVOmoN6XafgJZQkLA/76V779xBO8Jc4Y8NhjAAB27bWoTkzUsIAm4oEH+Oerr7qV3zPP8NmVe/emqQbk4i9/4ZMwrl3rnrPpk0+AvXu5ESfnVB5uvBFITOSR0zfe4Pt+/hlYsYJv/+1v2pXNTFx4IZ+2obYWWLCA7ysuhqWhUVA/e7Z5GgHMoCxbtozFxsY22r9mzRpmsVjYqVOnXPs+/PBDFh4ezkpLS5u8VklJCbPb7WzFihWufadOnWIWi4V99dVXPpeptLSUAWj2PoFSW1vLVq9ezWpra2W9rqEoLmYsIYExgLE//Ymx557j23Y7q929m+TTAn7VH6eTsUGDuGxHjmTs448Zs9n4/6tWKV5WLdDs/brtNi7Xzp0Z+/JLxuLi+P+PPKJuOVrB8PrnpZe4XKOjGfv8c8b69+f/X3FF0Jc2vGzkZNMmLldJYuy11xi7+mrGAFaelsZqKyq0Ll2r+Gq/bVo7bXKzdetW9O3bF2lpaa5948ePR01NDXbu3IlRTcx7snPnTjgcDozzmEMiLS0Nffv2xZYtWzC+mVFZNTU1qPGYa6WsrAwA4HA44Dg39yYIxLXkvKbhiIqC9PrrsE2bBrz+umt3/SOPwNGjB5CdHdryaQG/68/bb8M2bBikjRtdk/85p01D/eTJjXPKTIBm79dTT8G2cSOk335zJdc7Bw5E/f/9n67kbHj9c+edsH70ESzff+8a+ckSE1H38stBy9nwspGTYcNgufdeWP/5T6ChJ4hZrdj1179ikCTpqk43ha+/oemcpry8PCSfM7dJ+/btERYWhrxm5p/Jy8tDWFgY2rdv77U/OTm52XMAYOHChVggQpEerFu3DpEKJMtmignCQhWLBR3mzEGvDz+EtaYGWZMn42j//kCDXEJePq3gj3ziHn4Y/d58ExEFBci55BLsv/56ONesUbB02qNF/Yn8298wYOlStPv1VxT07Yu9f/4zahoma9UbRn6/7HffjX42G5J37UJ5x4746c9/Rvnu3TwvUgaMLBtZGT0afXJzkf7116iNjcWBGTNQ3LOnIeRTVVXl03G6cJrmz5/fpPPhyfbt2zHIxyUypCb6ThljTe5vidbOmTt3LubMmeP6v6ysDOnp6Rg3bhxiYmL8uldLOBwOZGZmYuzYsbDb7bJd15BMmgQ8/TQA4LyGP5JPywQkn0mTXPlNHRv+zIrm9achWTkRgB4zxjSXj1z8/vcAgBgAcq3oZxrZyEnDFDERAAYYSD6ip6g1dOE0zZw5EzfccEOLx3Tu3Nmna6WkpGDbOYuOFhcXw+FwNIpAeZ5TW1uL4uJir2hTfn4+hrewJlF4eDjCm1i2w263K1JBlLquWSD5tAzJp2VIPi1D8mkekk3LGEE+vpZPF05TQkICEhISZLnWsGHD8OSTTyI3NxepqakAeHdZeHg4Bg4c2OQ5AwcOhN1uR2ZmJn7f0BrJzc3F/v378eyzz8pSLoIgCIIgjI3hphw4fvw49uzZg+PHj6O+vh579uzBnj17UFFRAQAYN24c+vTpg5tvvhm7d+/G119/jQceeAB33nmnq8vs1KlT6NWrF3788UcAQGxsLG6//Xbcf//9+Prrr7F792788Y9/RL9+/fA7Ws+MIAiCIAjoJNLkD4899hjeEbMTA7iwYcKsDRs2YOTIkbBarfjiiy9wzz334JJLLkFERARuuukmLFq0yHWOw+HA4cOHvRK/Fi9eDJvNht///vc4e/YsxowZg+XLl8Nqtar3cARBEARB6BbDOU3Lly/H8uXLWzymU6dO+Ly5xTDB86MYY1772rRpg5dffhkve86ETBAEQRAE0YDhuucIgiAIgiC0gJwmgiAIgiAIHyCniSAIgiAIwgfIaSIIgiAIgvABcpoIgiAIgiB8gJwmgiAIgiAIHyCniSAIgiAIwgfIaSIIgiAIgvABcpoIgiAIgiB8wHAzgusZMct4WVmZrNd1OByoqqpCWVmZ7leK1gKST8uQfFqG5NMyJJ/mIdm0jJHkI+z2uauFnAs5TTJSXl4OAEhPT9e4JARBEARB+Et5eTliY2Ob/V5irblVhM84nU7k5OQgOjoakiTJdt2ysjKkp6fjxIkTiImJke26ZoHk0zIkn5Yh+bQMyad5SDYtYyT5MMZQXl6OtLQ0WCzNZy5RpElGLBYLOnbsqNj1Y2JidF/xtITk0zIkn5Yh+bQMyad5SDYtYxT5tBRhElAiOEEQBEEQhA+Q00QQBEEQBOED5DQZgPDwcMybNw/h4eFaF0WXkHxahuTTMiSfliH5NA/JpmXMKB9KBCcIgiAIgvABijQRBEEQBEH4ADlNBEEQBEEQPkBOE0EQBEEQhA+Q00QQBEEQBOED5DQZgFdffRVdunRBmzZtMHDgQHz33XdaF0l15s+fD0mSvP5SUlJc3zPGMH/+fKSlpSEiIgIjR47EgQMHNCyxsnz77beYOnUq0tLSIEkSVq9e7fW9L/KoqanBfffdh4SEBERFReGKK67AyZMnVXwK5WhNPjNmzGhUn4YOHep1jFnls3DhQlx88cWIjo5GUlISrrrqKhw+fNjrmFCuP77IJ5Trz2uvvYb+/fu7JqwcNmwYvvzyS9f3Zq875DTpnI8++gizZs3Cww8/jN27d+Oyyy7DxIkTcfz4ca2Lpjrnn38+cnNzXX/79u1zfffss8/ihRdewCuvvILt27cjJSUFY8eOda0HaDYqKysxYMAAvPLKK01+74s8Zs2ahVWrVmHFihXYvHkzKioqMGXKFNTX16v1GIrRmnwAYMKECV71ac2aNV7fm1U+mzZtwr333osffvgBmZmZqKurw7hx41BZWek6JpTrjy/yAUK3/nTs2BFPP/00duzYgR07dmD06NG48sorXY6R6esOI3TN4MGD2V133eW1r1evXuzvf/+7RiXShnnz5rEBAwY0+Z3T6WQpKSns6aefdu2rrq5msbGxbOnSpSqVUDsAsFWrVrn+90UeJSUlzG63sxUrVriOOXXqFLNYLOyrr75SrexqcK58GGNs+vTp7Morr2z2nFCST35+PgPANm3axBij+nMu58qHMao/59K+fXv25ptvhkTdoUiTjqmtrcXOnTsxbtw4r/3jxo3Dli1bNCqVdhw9ehRpaWno0qULbrjhBvz2228AgKysLOTl5XnJKTw8HCNGjAhJOfkij507d8LhcHgdk5aWhr59+4aMzDZu3IikpCT06NEDd955J/Lz813fhZJ8SktLAQBxcXEAqP6cy7nyEVD9Aerr67FixQpUVlZi2LBhIVF3yGnSMQUFBaivr0dycrLX/uTkZOTl5WlUKm0YMmQI3n33XaxduxZvvPEG8vLyMHz4cBQWFrpkQXLi+CKPvLw8hIWFoX379s0eY2YmTpyIf//73/jmm2/w/PPPY/v27Rg9ejRqamoAhI58GGOYM2cOLr30UvTt2xcA1R9PmpIPQPVn3759aNu2LcLDw3HXXXdh1apV6NOnT0jUHZvWBSBaR5Ikr/8ZY432mZ2JEye6tvv164dhw4ahW7dueOedd1wJmCQnbwKRR6jI7Prrr3dt9+3bF4MGDUJGRga++OILTJs2rdnzzCafmTNnYu/evdi8eXOj76j+NC+fUK8/PXv2xJ49e1BSUoJPPvkE06dPx6ZNm1zfm7nuUKRJxyQkJMBqtTbyvvPz8xt58qFGVFQU+vXrh6NHj7pG0ZGcOL7IIyUlBbW1tSguLm72mFAiNTUVGRkZOHr0KIDQkM99992HTz/9FBs2bEDHjh1d+6n+cJqTT1OEWv0JCwtD9+7dMWjQICxcuBADBgzAiy++GBJ1h5wmHRMWFoaBAwciMzPTa39mZiaGDx+uUan0QU1NDQ4ePIjU1FR06dIFKSkpXnKqra3Fpk2bQlJOvshj4MCBsNvtXsfk5uZi//79ISmzwsJCnDhxAqmpqQDMLR/GGGbOnImVK1fim2++QZcuXby+D/X605p8miKU6k9TMMZQU1MTGnVHg+Rzwg9WrFjB7HY7e+utt9jPP//MZs2axaKiotixY8e0Lpqq3H///Wzjxo3st99+Yz/88AObMmUKi46Odsnh6aefZrGxsWzlypVs37597MYbb2SpqamsrKxM45IrQ3l5Odu9ezfbvXs3A8BeeOEFtnv3bpadnc0Y800ed911F+vYsSNbv34927VrFxs9ejQbMGAAq6ur0+qxZKMl+ZSXl7P777+fbdmyhWVlZbENGzawYcOGsQ4dOoSEfO6++24WGxvLNm7cyHJzc11/VVVVrmNCuf60Jp9Qrz9z585l3377LcvKymJ79+5lDz30ELNYLGzdunWMMfPXHXKaDMA///lPlpGRwcLCwthFF13kNfQ1VLj++utZamoqs9vtLC0tjU2bNo0dOHDA9b3T6WTz5s1jKSkpLDw8nF1++eVs3759GpZYWTZs2MAANPqbPn06Y8w3eZw9e5bNnDmTxcXFsYiICDZlyhR2/PhxDZ5GflqST1VVFRs3bhxLTExkdrudderUiU2fPr3Rs5tVPk3JBQBbtmyZ65hQrj+tySfU689tt93mskeJiYlszJgxLoeJMfPXHYkxxtSLaxEEQRAEQRgTymkiCIIgCILwAXKaCIIgCIIgfICcJoIgCIIgCB8gp4kgCIIgCMIHyGkiCIIgCILwAXKaCIIgCIIgfICcJoIgCIIgCB8gp4kgCIIgCMIHyGkiCCKkGDlyJGbNmqV1MQiCMCA0IzhBEKZl5MiRuOCCC7BkyRLXvqKiItjtdkRHR6tenlmzZuHYsWNYvXq16vcmCCJ4KNJEEERIERcXp4nDBADbt2/H4MGDNbk3QRDBQ04TQRCmZMaMGdi0aRNefPFFSJIESZJw7NixRt1zI0eOxH333YdZs2ahffv2SE5Oxuuvv47KykrceuutiI6ORrdu3fDll1+6zmGM4dlnn0XXrl0RERGBAQMG4L///W+zZXE4HAgLC8OWLVvw8MMPQ5IkDBkyRMnHJwhCAchpIgjClLz44osYNmwY7rzzTuTm5iI3Nxfp6elNHvvOO+8gISEBP/74I+677z7cfffduO666zB8+HDs2rUL48ePx80334yqqioAwCOPPIJly5bhtddew4EDBzB79mz88Y9/xKZNm5q8vtVqxebNmwEAe/bsQW5uLtauXavMgxMEoRiU00QQhGlpKqfp3H0jR45EfX09vvvuOwBAfX09YmNjMW3aNLz77rsAgLy8PKSmpmLr1q3o168fEhIS8M0332DYsGGu695xxx2oqqrCBx980GRZVq9ejTvuuAMFBQXKPCxBEIpj07oABEEQWtO/f3/XttVqRXx8PPr16+fal5ycDADIz8/Hzz//jOrqaowdO9brGrW1tbjwwgubvcfu3bsxYMAAmUtOEISakNNEEETIY7fbvf6XJMlrnyRJAACn0wmn0wkA+OKLL9ChQwev88LDw5u9x549e8hpIgiDQ04TQRCmJSwsDPX19bJes0+fPggPD8fx48cxYsQIn8/bt28frr76alnLQhCEupDTRBCEaencuTO2bduGY8eOoW3btoiLiwv6mtHR0XjggQcwe/ZsOJ1OXHrppSgrK8OWLVvQtm1bTJ8+vcnznE4n9u7di5ycHERFRSE2NjboshAEoS40eo4gCNPywAMPwGq1ok+fPkhMTMTx48dlue4//vEPPPbYY1i4cCF69+6N8ePH47PPPkOXLl2aPeeJJ57ARx99hA4dOuDxxx+XpRwEQagLjZ4jCIIgCILwAYo0EQRBEARB+AA5TQRBEARBED5AThNBEARBEIQPkNNEEARBEAThA+Q0EQRBEARB+AA5TQRBEARBED5AThNBEARBEIQPkNNEEARBEAThA+Q0EQRBEARB+AA5TQRBEARBED5AThNBEARBEIQPkNNEEARBEAThA/8P/syVow0iMS4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = range(0, 20π*5, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [0,1]:\n", + "plot(t, [(exp(A*t)*[0,1])[1] for t in t], \"r-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "title(\"motion of a frictionless mass on a spring\")\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The key to understanding this behavior is to look at the eigenvalues of $A$, because each eigenvector has time dependence $e^{\\lambda t}$.\n", + "\n", + "$A$ has eigenvalues $\\lambda_1 = -0.1i$, $\\lambda_2 = +0.1i$, which can easily be computed by hand or via computer:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{ComplexF64}:\n", + " 0.0 - 0.1im\n", + " 0.0 + 0.1im" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(A)\n", + "λ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correpsonding eigenvectors are complex as well, but come in a **complex conjugate pair** since $A$ is real:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{ComplexF64}:\n", + " 0.995037-0.0im 0.995037+0.0im\n", + " 0.0-0.0995037im 0.0+0.0995037im" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we expand our initial condition in this basis, we have:\n", + "\n", + "$$\n", + "\\vec{x}(0) = \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix} = c_1 \\vec{x}_1 + c_2 \\vec{x}_2 = X \\vec{c}\n", + "$$\n", + "\n", + "where $\\vec{c} = X^{-1} \\vec{x}(0)$ is:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{ComplexF64}:\n", + " 0.0 + 5.024937810560445im\n", + " 0.0 - 5.024937810560444im" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c = X \\ [0, 1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the coefficients are complex conjugates as well!\n", + "\n", + "In fact, this *must* happen in order to get a real vector from the sum of our two complex-conjugate eigenvectors. Adding two complex conjugates cancels the imaginary parts and gives us twice the real part:\n", + "\n", + "$$\n", + "\\vec{x}(0) = c_1 \\vec{x}_1 + \\overline{c_1 \\vec{x}_1 } = 2\\operatorname{Re}[c_1 \\vec{x}_1]\n", + "$$\n", + "\n", + "which is real. Any coefficient $c_2 \\ne \\overline{c_1}$ would not have summed to a real vector. Let's check this formula (`real` computes the real part in Julia):" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 0.0\n", + " 1.0000000000000002" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2*real(c[1]*X[:,1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, for the eigenvectors, the matrix $A$ acts just like a scalar $\\lambda$, and the solution of the scalar ODE $dc/dt = \\lambda c$ is just $e^{\\lambda t} c(0)$.\n", + "\n", + "So, we just multiply each eigenvector component of $\\vec{x}(0)$ by $e^{\\lambda t}$ and sum to get the solution:\n", + "\n", + "\n", + "$$\n", + "\\vec{x}(t) = c_1 e^{\\lambda_1 t} \\vec{x}_1 + c_2 e^{\\lambda_2 t} \\vec{x}_2 = c_1 e^{\\lambda_1 t} \\vec{x}_1 + \\overline{c_1 e^{\\lambda_1 t} \\vec{x}_1 } = 2\\operatorname{Re}\\left[c_1 e^{\\lambda_1 t} \\vec{x}_1\\right]\n", + "$$\n", + "\n", + "where we have used the fact that the eigenvalues are complex conjugates.\n", + "\n", + "Now, let's try to write this in some more comprehensible form. The position $x(t)$ is just the first component of this result, i.e. it is some value of the form:\n", + "\n", + "$$\n", + "x(t) = \\operatorname{Re} \\left[ \\xi e^{\\lambda_1 t} \\right]\n", + "$$\n", + "\n", + "where $\\xi = 2c_1 (1,0)^T x_1$ is the first component of the coefficient vector. If we write $\\xi = r e^{i\\phi}$ in polar form, this simplifies even more:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0 + 10.000000000000002im" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ξ = 2 * c[1] * X[1,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10.000000000000002, 0.5)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# polar form of α:\n", + "r = abs(ξ)\n", + "ϕ = angle(ξ)\n", + "r, ϕ/π" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In terms of this, we have:\n", + "\n", + "$$\n", + "x(t) = \\operatorname{Re} \\left[ r e^{i(-0.1t + \\phi)} \\right] = r \\cos(-0.1t + \\phi)\n", + "$$\n", + "\n", + "using Euler's identity $e^{i\\theta} = \\cos \\theta + i \\sin \\theta$. Let's check this by plotting it along with the numerical solution:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHGCAYAAABpZb/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADgTklEQVR4nOydd3gU1drAf7vZ9N42jVASeu8daYKAIopYrwqKehXRK1yvig2wYUFAvZ9dxN6uiA3pXRBBQZAeIIW0Te99z/dHZkJCerK7M7uZ3/PkgUxmznnn7OzMO2/VCSEEGhoaGhoaGhoaDaJXWgANDQ0NDQ0NDXtAU5o0NDQ0NDQ0NJqApjRpaGhoaGhoaDQBTWnS0NDQ0NDQ0GgCmtKkoaGhoaGhodEENKVJQ0NDQ0NDQ6MJaEqThoaGhoaGhkYT0JQmDQ0NDQ0NDY0moClNGhoaGhoaGhpNQFOaNNochYWFLFmyhB07dtT625o1a9DpdMTGxtpcrubw5JNP0r59ewwGA35+flabJzY2liuvvJKAgAB0Oh0PPfRQg/vv2LEDnU5X59o2xN69e1myZAnZ2dm1/jZu3DjGjRvXrPGai7187hr2jy2uZw3rYVBaAA0NW1NYWMjSpUsBat28rrzySvbt20dYWJgCkjWN77//nueff54nnniCqVOn4urqarW5FixYwP79+1m9ejWhoaGNrsvAgQPZt28fPXv2bNY8e/fuZenSpcyZM6eWEvjmm282V2wNDdWiXc/2jaY0aWhUIzg4mODgYKXFaJC///4bgAcffBCj0Wj1uYYOHco111zT4H5lZWXodDp8fHwYPny4RWVorgKmoaFGCgsL8fDw0K5nO0dzz2mohiVLlqDT6Thy5AjXX389vr6+BAQEsHDhQsrLyzl16hRTpkzB29ubjh078vLLL9caIz4+nltvvRWj0Yirqys9evTg1VdfxWw2A5XuJlkpWrp0KTqdDp1Ox5w5c4D63TSrV6+mX79+uLm5ERAQwLXXXsuJEydq7DNnzhy8vLyIiYlh2rRpeHl5ERkZyb///W9KSkoaPX+z2czLL79M9+7dcXV1xWg0cvvtt3PhwoWqfTp27MiTTz4JQEhICDqdjiVLltQ75sGDB7npppvo2LEj7u7udOzYkZtvvpm4uLgGZZHdbDExMfzyyy9V6xQbG1v1t08++YR///vfRERE4OrqSkxMTL3uuf379zN9+nQCAwNxc3MjOjq6ytW3ZMkS/vOf/wDQqVOnqrnkMepyZ2RmZjJv3jwiIiJwcXEhKiqKJ554otY663Q65s+fzyeffEKPHj3w8PCgX79+/PTTTw2ev8yWLVuYOHEiPj4+eHh4MGrUKLZu3Vpjn7S0NO655x4iIyNxdXUlODiYUaNGsWXLlqp9Dh06xFVXXVV1XYaHh3PllVfW+GzrYty4cfTu3Zt9+/YxcuTIqs/www8/BODnn39m4MCBeHh40KdPHzZs2FDj+JiYGO644w66dOmCh4cHERERTJ8+naNHj9bYz2w289xzz9GtWzfc3d3x8/Ojb9++vPbaa806z/rYs2cPEydOxNvbGw8PD0aOHMnPP/9cYx/5u7d9+3buu+8+goKCCAwMZObMmSQlJTU6R0uvdZm33nqLfv364eXlhbe3N927d+fxxx+vJd/mzZu54447CAgIwNPTk+nTp3Pu3LkaY8mf265duxg5ciQeHh7ceeedVX+rfj3Hxsai0+lYvnw5K1asoFOnTnh5eTFixAh+++23WnK+9957dO3aFVdXV3r27Mnnn3/OnDlz6NixY5POU6OVCA0NlbB48WIBiG7duolnn31WbN68WTzyyCMCEPPnzxfdu3cXr7/+uti8ebO44447BCC+/fbbquNNJpOIiIgQwcHB4u233xYbNmwQ8+fPF4C47777hBBCFBcXiw0bNghAzJ07V+zbt0/s27dPxMTECCGE+PDDDwUgzp8/XzXuCy+8IABx8803i59//ll8/PHHIioqSvj6+orTp09X7Td79mzh4uIievToIZYvXy62bNkinn76aaHT6cTSpUsbPf977rmn6lw3bNgg3n77bREcHCwiIyNFWlqaEEKIP//8U8ydO1cAYsOGDWLfvn0iISGh3jG/+eYb8fTTT4vvvvtO7Ny5U3z55Zdi7NixIjg4uGrMusjJyRH79u0ToaGhYtSoUVXrVFxcLLZv3y4AERERIWbNmiV++OEH8dNPP4mMjIyqv23fvr1qrA0bNghnZ2fRt29fsWbNGrFt2zaxevVqcdNNNwkhhEhISBAPPPCAAMTatWur5srJyRFCCDF27FgxduzYqvGKiopE3759haenp1i+fLnYtGmTeOqpp4TBYBDTpk2rcR6A6Nixoxg6dKj4+uuvxfr168W4ceOEwWAQZ8+erdqvrs/9k08+ETqdTlxzzTVi7dq14scffxRXXXWVcHJyElu2bKna74orrhDBwcHi3XffFTt27BDr1q0TTz/9tPjyyy+FEELk5+eLwMBAMXjwYPH111+LnTt3iq+++krce++94vjx4/V+BvK5BwYGim7duokPPvhAbNy4UVx11VUCEEuXLhV9+vQRX3zxhVi/fr0YPny4cHV1FYmJiVXH79y5U/z73/8W//vf/8TOnTvFd999J6655hrh7u4uTp48WbXfsmXLhJOTk1i8eLHYunWr2LBhg1i1apVYsmRJk8+zPnbs2CGcnZ3FoEGDxFdffSXWrVsnJk+eLHQ6XY1j5c8gKipKPPDAA2Ljxo3i/fffF/7+/mL8+PENziFEy691IYT44osvBCAeeOABsWnTJrFlyxbx9ttviwcffLCWfJGRkeLOO+8Uv/zyi3j33XeF0WgUkZGRIisrq8bnFhAQICIjI8Ubb7whtm/fLnbu3Fn1t+rX8/nz56uu0ylTpoh169aJdevWiT59+gh/f3+RnZ1dte8777wjAHHdddeJn376SXz22Weia9euokOHDqJDhw6NrpFG69GUJg3VICtNr776ao3t/fv3r3qgypSVlYng4GAxc+bMqm2PPfaYAMT+/ftrHH/fffcJnU4nTp06JYQQIi0tTQBi8eLFtWS49OGZlZUl3N3daz2M4+Pjhaurq7jllluqts2ePVsA4uuvv66x77Rp00S3bt0aPPcTJ04IQMybN6/G9v379wtAPP7441Xb5HVq7EFQF+Xl5SI/P194enqK1157rdH9O3ToIK688soa22TF6LLLLqu1f11KU3R0tIiOjhZFRUX1zvPKK6/UUlpkLn3IvP3223Wu80svvSQAsWnTpqptgAgJCRG5ublV21JSUoRerxfLli2r2nbp515QUCACAgLE9OnTa8xRUVEh+vXrJ4YOHVq1zcvLSzz00EP1ntvBgwcFINatW1fvPvUxduxYAYiDBw9WbcvIyBBOTk7C3d29hoJ0+PBhAYjXX3+93vHKy8tFaWmp6NKli1iwYEHV9quuukr079+/QVkaO8/6GD58uDAajSIvL6+GHL179xbt2rUTZrNZCHHxM7j0O/Dyyy8LQCQnJzdr3uZc6/Pnzxd+fn4N7iPLd+2119bY/uuvvwpAPPfcc1Xb5M9t69attcapT2nq06ePKC8vr9r++++/C0B88cUXQojKay80NFQMGzasxnhxcXHC2dlZU5pshOae01AdV111VY3fe/TogU6nY+rUqVXbDAYDnTt3rmF637ZtGz179mTo0KE1jp8zZw5CCLZt29ZsWfbt20dRUVGV+04mMjKSCRMm1HLV6HQ6pk+fXmNb3759G3URbN++vUrW6gwdOpQePXrUmqep5Ofn8+ijj9K5c2cMBgMGgwEvLy8KCgpquReby3XXXdfoPqdPn+bs2bPMnTsXNze3Vs0ns23bNjw9PZk1a1aN7fLaXbpW48ePx9vbu+r3kJAQjEZjg5/J3r17yczMZPbs2ZSXl1f9mM1mpkyZwoEDBygoKAAqP6M1a9bw3HPP8dtvv1FWVlZjrM6dO+Pv78+jjz7K22+/zfHjx5t1vmFhYQwaNKjq94CAAIxGI/379yc8PLxqe48ePQBqnFd5eTkvvPACPXv2xMXFBYPBgIuLC2fOnKnx+Q8dOpS//vqLefPmsXHjRnJzc2vJ0dh51kVBQQH79+9n1qxZeHl5VW13cnLitttu48KFC5w6darGMVdffXWN3/v27VvrvOqiNdf60KFDyc7O5uabb+b7778nPT293n3/8Y9/1Ph95MiRdOjQoeo7LOPv78+ECRManLc6V155JU5OTlW/X3rep06dIiUlhRtuuKHGce3bt2fUqFFNnkejdWhKk4bqCAgIqPG7i4sLHh4etR66Li4uFBcXV/2ekZFRZ3aX/GDJyMhotizyMfWNe+mYdcnp6upaQ05LzNNUbrnlFv773/9y1113sXHjRn7//XcOHDhAcHAwRUVFLRpTpikZhmlpaQC0a9euVXNVJyMjg9DQUHQ6XY3tRqMRg8FQa60CAwNrjeHq6trg+aempgIwa9YsnJ2da/y89NJLCCHIzMwE4KuvvmL27Nm8//77jBgxgoCAAG6//XZSUlIA8PX1ZefOnfTv35/HH3+cXr16ER4ezuLFi5ukeFz6fYDKa7+u7wlQ41pbuHAhTz31FNdccw0//vgj+/fv58CBA/Tr16/G+S9atIjly5fz22+/MXXqVAIDA5k4cSIHDx6s2qex86yLrKwshBDN+l5e+nnJ2aGNXa+tudZvu+02Vq9eTVxcHNdddx1Go5Fhw4axefPmWvuGhobWue3S82huBm5j5y2PHxISUuvYurZpWActe07DYQgMDCQ5ObnWdjmINCgoqEVjAvWO25IxG5vnUgWjpfPk5OTw008/sXjxYh577LGq7SUlJVUP/NZwqdJSF3LQfWMBz80hMDCQ/fv3I4SoIYPJZKK8vNwin4k8xhtvvFFvNqD8oAoKCmLVqlWsWrWK+Ph4fvjhBx577DFMJlNVYHafPn348ssvEUJw5MgR1qxZwzPPPIO7u3uNz8bSfPrpp9x+++288MILNbanp6fXKO1gMBhYuHAhCxcuJDs7my1btvD4449zxRVXkJCQgIeHR5PO81L8/f3R6/UW/15eiiWu9TvuuIM77riDgoICdu3axeLFi7nqqqs4ffo0HTp0qNqvLiUxJSWFzp0719jWlO9Hc5DvEbJCf+n8GrZBszRpOAwTJ07k+PHj/PnnnzW2f/zxx+h0OsaPHw80/c0VYMSIEbi7u/Ppp5/W2H7hwgW2bdvGxIkTLSK7bMa/dJ4DBw5w4sSJFs2j0+kQQtSq4/T+++9TUVHRcmGbQdeuXYmOjmb16tUNZhA25zOZOHEi+fn5rFu3rsb2jz/+uOrvrWXUqFH4+flx/PhxBg8eXOePbNmpTvv27Zk/fz6TJk2qdR1C5WfSr18/Vq5ciZ+fX537WBKdTlfr8//5559JTEys9xg/Pz9mzZrF/fffT2ZmZp0FPxs7TxlPT0+GDRvG2rVra3y2ZrOZTz/9lHbt2tG1a9fmn9glWPJa9/T0ZOrUqTzxxBOUlpZy7NixGn//7LPPavy+d+9e4uLirF6wslu3boSGhvL111/X2B4fH8/evXutOrfGRTRLk4bDsGDBAj7++GOuvPJKnnnmGTp06MDPP//Mm2++yX333Vd1c/b29qZDhw58//33TJw4kYCAAIKCgupM2fXz8+Opp57i8ccf5/bbb+fmm28mIyODpUuX4ubmxuLFiy0ie7du3bjnnnt444030Ov1TJ06ldjYWJ566ikiIyNZsGBBs8f08fHhsssu45VXXqk6v507d/LBBx9YtYr4pfzf//0f06dPZ/jw4SxYsID27dsTHx/Pxo0bqx5Affr0AeC1115j9uzZODs7061btxqxSDK33347//d//8fs2bOJjY2lT58+7NmzhxdeeIFp06Zx+eWXt1pmLy8v3njjDWbPnk1mZiazZs3CaDSSlpbGX3/9RVpaGm+99RY5OTmMHz+eW265he7du+Pt7c2BAwfYsGEDM2fOBOCnn37izTff5JprriEqKgohBGvXriU7O5tJkya1WtaGuOqqq1izZg3du3enb9++/PHHH7zyyiu1rJnTp0+nd+/eDB48mODgYOLi4li1ahUdOnSgS5cuTTrP+li2bBmTJk1i/PjxPPzww7i4uPDmm2/y999/88UXX1jEItPaa/3uu+/G3d2dUaNGERYWRkpKCsuWLcPX15chQ4bU2PfgwYPcddddXH/99SQkJPDEE08QERHBvHnzWn0eDaHX61m6dCn//Oc/mTVrFnfeeSfZ2dksXbqUsLAw9HrNBmITlItB19CoSX1ZYbNnzxaenp619h87dqzo1atXjW1xcXHilltuEYGBgcLZ2Vl069ZNvPLKK6KioqLGflu2bBEDBgwQrq6uAhCzZ88WQtSdei6EEO+//77o27evcHFxEb6+vmLGjBni2LFjTZJTPq/GqKioEC+99JLo2rWrcHZ2FkFBQeLWW2+tVVKgOdlzFy5cENddd53w9/cX3t7eYsqUKeLvv/8WHTp0qDrnhmgoe+6bb76ptX9d2XNCCLFv3z4xdepU4evrK1xdXUV0dHSN7C0hhFi0aJEIDw8Xer2+xhiXZhsJUZlBdu+994qwsDBhMBhEhw4dxKJFi0RxcXGN/QBx//3313le1c+/vs99586d4sorrxQBAQHC2dlZREREiCuvvLLq3IuLi8W9994r+vbtK3x8fIS7u7vo1q2bWLx4sSgoKBBCCHHy5Elx8803i+joaOHu7i58fX3F0KFDxZo1a2rJdSl1XeOy/Jd+LnWdb1ZWlpg7d64wGo3Cw8NDjB49WuzevbvWmr766qti5MiRIigoSLi4uIj27duLuXPnitjY2CafZ0Ps3r1bTJgwQXh6egp3d3cxfPhw8eOPP9bYR/4MDhw4UGN7fdfUpbTmWv/oo4/E+PHjRUhIiHBxcRHh4eHihhtuEEeOHKkl36ZNm8Rtt90m/Pz8qjJrz5w5U2O8+j43+W91Zc+98sortfaljizfd999V3Tu3Fm4uLiIrl27itWrV4sZM2aIAQMGNHiOGpZBJ4QQtlfVNDQ0NDQ07Ic1a9Zwxx13cODAAQYPHqy0OFVkZ2fTtWtXrrnmGt59912lxXF4NPechoaGhoaGHZCSksLzzz/P+PHjCQwMJC4ujpUrV5KXl8e//vUvpcVrE2hKk4aGhoaGhh3g6upKbGws8+bNIzMzEw8PD4YPH87bb79Nr169lBavTaC55zQ0NDQ0NDQ0moAWbq+hoaGhoaGh0QQ0pUlDQ0NDQ0NDowloSpOGhoaGhoaGRhPQAsEtiNlsJikpCW9vb4uX0NfQ0NDQ0NCwDkII8vLyCA8Pb7BQqKY0WZCkpCQiIyOVFkNDQ0NDQ0OjBSQkJDTYYFxTmiyI3PIhISEBHx8fi41bVlbGpk2bmDx5Ms7OzhYb11HQ1qdhtPVpGG19GkZbn/rR1qZh7Gl9cnNziYyMrLN1U3U0pcmCyC45Hx8fiytNHh4e+Pj4qP7CUwJtfRpGW5+G0danYbT1qR9tbRrGHtensdAaLRBcQ0NDQ0NDQ6MJaEqThoaGhoaGhkYT0JQmDQ0NDQ0NDY0moClNGhoaGhoaGhpNQFOaNDQ0NDQ0NDSagKY0aWhoaGhoaGg0AU1p0tDQ0NDQ0NBoAprSpKGhoaGhoaHRBDSlSUNDQ0NDQ0OjCWhKk4aGhoaGhoZGE7BLpWnXrl1Mnz6d8PBwdDod69atq/F3IQRLliwhPDwcd3d3xo0bx7Fjxxod99tvv6Vnz564urrSs2dPvvvuOyudgYaGhoaGhoa9YZdKU0FBAf369eO///1vnX9/+eWXWbFiBf/97385cOAAoaGhTJo0iby8vHrH3LdvHzfeeCO33XYbf/31F7fddhs33HAD+/fvt9ZpaGhoaGhoaNgRdqk0TZ06leeee46ZM2fW+psQglWrVvHEE08wc+ZMevfuzUcffURhYSGff/55vWOuWrWKSZMmsWjRIrp3786iRYuYOHEiq1atsuKZKE9eUhL5KSlKi+HwFGdnk3X+vNJiODzlxcWknTiBMJuVFsWxEQJSU0FbZ6sj0tKgtFRpMTQkDEoLYGnOnz9PSkoKkydPrtrm6urK2LFj2bt3L//85z/rPG7fvn0sWLCgxrYrrriiQaWppKSEkpKSqt9zc3OBys7OZWVlrTiLmshjWXLM8uJiHh09mjePHAHg/v79eWnPHpxcXCw2h62wxvpYkv+74QaeXLeOAmBGaCirf/sN7/Bwm82v9vWxFLn/+x99b72VJLOZIR4efPrDD3S67LJGj2sr69NSaq3PX39huPVWdKdOEd+uHXGPP87wu+5SUELlsOa1k37qFLeMHs2qnBz6+vtTsWoV4uabLT6PNbGn71ZTZXQ4pSlFspqEhITU2B4SEkJcXFyDx9V1TEoDVphly5axdOnSWts3bdqEh4dHc8RuEps3b7bYWJueeII3q8V5vX74MBXDhzPpuecsNoetseT6WIoTH37Iou+/r/r9+5QU/jFgAP/84AN0etsaetW4PpbCJzaWyx55hPlmM48DBwoLuWrKFJatWYPBy6tJYzjy+liCzZs3U5GWxhUPP4xzTg7FwHUXLnD+/vtZlZ+Pd9euSouoGJa+diqKi3npjjv4vaiIXUC/rCyc7riDPUlJZPboYdG5bIE9fLcKCwubtJ/DKU0yOp2uxu9CiFrbWnvMokWLWLhwYdXvubm5REZGMnnyZHx8fFogdd2UlZWxefNmJk2ahLOzc6vHO7p2Le9ICtOHd91FeXk5L69Zw80nTjC0Y0fo2bPVc9gSS6+PxcjNZduNN+IEPDBwINfdcw8T7r2XDVlZ3LlnD9e8+KJNxFDt+lgKIXAaNQp9aSn/mTyZ6x55hHGTJ3OmvJy/3nmHp7ZubfBwh1+fVlJ9fR4cMICXcnJ4v2NH2v/8M+bBg8koKuKbV1/lfwkJSotqc6x17bzzj3/we1ERvsDoL77A/P33pH75JR+/8AKvJSTgbIWXcmtgT98t2VPUGA6nNIWGhgKVlqOwsLCq7SaTqZYl6dLjLrUqNXaMq6srrq6utbY7Oztb5QKx1LgrHnuMCuDasDDmvPcewmzmNpMJ1/XrYeVKWLOm1XMogbXWvcV88AGvlZSwICqKiN27cfbw4JFPPuH5X39l2Vtvcf3y5dCIIm9JVLc+FuLs6tWEHjyIp4cHho8/pmtICCvnz+em119n5e7dPJyaik+7do2O46jrYymS//iDNadPUwHk/Oc/+PbsySdffknvGTP4ITWVE99/T99Zs5QWUxEsee0UZ2fz/LffAvD89dcz4KabEFOnMvGbbziRl8e4RYv4x5tvWmQuW2EP362mymeXgeAN0alTJ0JDQ2uYA0tLS9m5cycjR46s97gRI0bUMiFu2rSpwWPsksREhsXFEQk8+corAOj0elyffrry759/DsnJysnnKFRUwGuvAdDx6aer3gwXfvQR/3Jy4quiIti5U0kJHYb7H3mEjsC2adNAesm5/tVX6ebiQj7w8SWxihot452HH6YCmODvz+h58wDoefXVXB8ZCcBrjz+uoHSOw7qnnybFbKadkxN3r14NgM7Xl3+MHw/ACjt9qXUU7FJpys/P5/Dhwxw+fBioDP4+fPgw8fHx6HQ6HnroIV544QW+++47/v77b+bMmYOHhwe33HJL1Ri33347ixYtqvr9X//6F5s2beKll17i5MmTvPTSS2zZsoWHHnrIxmdnZb78kgeE4NzIkQz8xz8ubh82jIQBA3i5rIyvHntMOfkchJhPPyUmKQkCAqBa8GZAdDSr5s6lC8BHHykmn6OQfPgwmzMySAfa33tv1Xa9wcD8q68G4LP16xWSznGoKC3l44MHAXiw2joDzH/kEQD+d+YMRZmZNpfN0Vj92WcA3DlqFC7V4vHuffNNDMCfRUWc+OknhaTTQNgh27dvF0Ctn9mzZwshhDCbzWLx4sUiNDRUuLq6issuu0wcPXq0xhhjx46t2l/mm2++Ed26dRPOzs6ie/fu4ttvv22WXDk5OQIQOTk5rTm9WpSWlop169aJ0tLS1g82aJAQIMSbb9b602szZwpADPfyav08NsSi62Mh7ujSRQDihaFDa/9xx47Kz8DPT4iSEqvLosb1sRQrZswQgBhRxzWbceaM+J9eL/JBiJiYesdw5PWxBKWlpeKNu+4SgPDX6URpQUGNv1eUlYkOTk4CEF8vWKCQlMpg6Wsn9e+/hU56np3bubPW368yGgUgnhozxiLzWRt7+m419fltl5amcePGIYSo9bNGMlvqdDqWLFlCcnIyxcXF7Ny5k969e9cYY8eOHVX7y8yaNYuTJ09SWlrKiRMn6qwDZc+kHjjAj3/8Qb5OB9ddV+vv1z/1FDrgt/x8Lhw4YHsBHYSK0lK+j4kBYGQ162YVo0ez2d+ff2Rns/XVV20snWPxg+TivKlaiRGZgM6duW7CBDwBpBgRjZZxYMsWAGZER9cKQtYbDNw0eDAA+375xeayORIVmzbxb+B6P786y2XcLMWMffv77zaWTEPGLpUmjZbx/WuvcTVwpbc3GI21/h7Wvz9DPT0B2GRngYZq4uAnn5ApBL7AqLrqgjk58W1oKJ8D33/5pa3Fcxhy4uPZk50NwJX331/3TvKLz88/20YoB2WPlBl37Q031Pn3+Q8/TAywIj29Mp5Po0WE7d7NK8DX//pXnX+fsnAheuB4SQkJWrcKRdCUpjbExu3bAbhceiusiysGDQJgUyNp2hr188snnwAwKSICg5tbnftMvuoqADafPGkzuRyNLW+8QTnQ1dmZ6AkT6tyndNw4HgdG7t6tVb5vIeazZ3miooKbdTrG16Octpsxg2gfH0hPByn2SaOZVFSAZNFDuj9cSkB0NEO9vPACTmgvXIqgKU1thIrSUrYmJQFwxa231rvf5JtuAmDzhQuYy8ttIpujseXPPwGYcvnl9e4z4f770QMnS0s1V2gL2bFxIwCTu3evdx/nbt34wmBgnxDsfvddW4nmUDjt2MGdwKcjR9Zfyd7ZGeTrXXvhahEXNm1ia14eBd7eMGBAvft9ddddZACTpfu5hm3RlKY2wrEffiAH8AIGVc+au4Rhd9yBB5ApBCc0l0azKcnN5aDUGPqyBtbZr0MHBkuu0B1SWrFG85hTWsrzwA11xOfJ6PR6Lo+OBmDrDz/YSDLHQr9jBwBCSnmvjz+jopgB/KOeRuoaDfO/d9/lcuBGNzdwcqp3v/YzZuACsHevrUTTqIamNLUR9q5dC8Awf/8G+8sZ3NwY4uuLKxBjB6Xv1cahr7+mBAjS6eg8cWKD+46U2k7s//VXG0jmYOTlMejMGR4HxjTS92z0mDEA/Hb6tA0Eczw+2bqVw0D58OEN7zhgAD8APyUnU6E1mG02u6Xg7lENWJkAGDKkUqm6cAERH28DyTSqoylNbYR9UtDgiF69Gt33s1tvJQeYUVRkZakcj+6pqXwLvNi3b6O95YbLD/OzZ20gmYOxfz+YzdChA0RENLjrsGuvBeCPvDzKmthfSqMS099/Myc9nYFAXiM9z/rNmoU3kAsc0bIVm4Uwm9ktFRUeM2NGwzt7evJ8SAg9gG9WrrS+cBo10JSmNsI+Kftl5KRJje4bMXkyrgC//WZdoRwQv0OHmAnMbUI38uFSJlJJYSEV+flWlsyx2LBmDV8DJilxoSG6Tp6MH1AMHP3uOytL5ljsl4KNuxkM+EqVv+vDycWF4QEBAPyuFV9sFqc3biRNCFyBIQ3EnMqkBgVxEtgruU41bIemNLUF0tJYW1bGu8CI229vfH/ZDH/8OEgp3RpNQAiQXW2jRjW6e/sRI8g0GjkCOP31l3VlczBW/PILNwL/a0K/KL3BwNDAQAB++/FHK0vmWPwmZdz2DQ5u0v6DJJfzH1IyhEbTOCDF2w3y9sa1Cc3eR0g1nPaeOWNVuTRqoylNbYH9++kN3N29O34dOza+v9HIUn9/+gGb33rLysI5DqmHDrEsJYVNej00wQKi0+vxl3sbala9JiPMZv7MygJgWD2p2ZcyrGdPjECp5gptFr+dOAFAV0kZaoxB0vX8hxZr0ywOSRm0A5tyfwZGSlnOhwoKKNZebG2KpjS1BQ4dqvx3yJAmH3LKx4cjwEHN/Ntkfv/uOx4H/u3sDO7uTTtItuppheqaTOLBg2QIgQHo1USl6cmFC0kBHpIyGzUax1xezgFJOe3QxHvHQKnf39HCQkq0tW4yhyRlfkATXrag0kodoNNRDhzXspxtiqY0tQHe/u47/gskdOjQ5GP6SUGff0lvmhqN89e+fQD0r6+WTR2cDAzkMmC45jZqMoeleJkebm64+fk16RiXESPQAZw+DQUFVpPNkTi/axd5gAsQOHRok47pNGYM7XQ6hgDpWlZo0xCC5eXlvAVMuP76Jh2i0+vp5+sLwF9aXSyboilNbYBX//6bB4CTUl2gptBXMrMfSU21klSOx2Gpunf/JmQoyvgNHcpu4EBxMYUZGVaSzLE4LD2Mm6OcEhJS2TpICMSxY1aSzLE4KpUc6eXujr6BMiXV0en1xI8fz69AhJR8otEIsbEMzM/nXmdnOjZQEPdS+nXqBMBfsidBwyZoSpODk5+SwtmyMgD6TZ/e5OP6XXklAKdKSynKzLSKbI7GXyYTAP2kUgJNIaR3b4J1OszA8fXrrSSZY1GlnF7ShLsxnvDwoB2wWuur2CTGAZuAZ0eMaNZxOrlN0x9/WFokx0RWenr3hiYqpwCDhgyhN2DMybGOXBp1oilNDs7fP/2EAEL1eozNsICE9e9PkPQwP6b5zBslLzm5RcqpTq+nr+RiOiJlKmk0zGFJOe1fRxf4higKCCAROKplKjYJvzNnmARMmTKleQf26wdA+dGjlhfKAfnp6695DzgnVa5vKrfedx9HgcezsyszdzVsgqY0OTh/SQ/ifv7+zTquxsN82zZLi+VwHP3xRwQQrtcT3EgRwEvpK5nZj2hm9sbJyWFTeTnfAoMbaJ9SF32lSstHYmMtL5cjcuQIAKJPn2YdFufvTzcgfN8+hNlsBcEci/d37uQe4KfmrlWPHmAwQFYWXLhgFdk0aqMpTQ7OX9Jbdb9mvsUADIiKoitoX8gmcETKMuwn1QNqDvLD/GhcnCVFckyOHSMKmBkRgU8T07Nl+owbB8CRnBztYd4IhenpPH7mDF8AFT17NuvYkBEjiAHShCBFUrw06ueEFMvYq7E2NZfi6go9emAGiqUWLBrWR1OaHJxjksLTZ+DAZh/7yvz5nALurKiwsFSOx2x/fw4BL0yd2uxj+0qNUP/KztYe5o0hxTPRTGseQM9p09ADGdrDvFGO/fwzy4CHdDr0YWHNOtbNz49oqejosU2brCCd41CSm0uM5Nbv0Uivyrp4rKICL+C1Dz6wsGQa9aEpTQ7OydxcAHo0oUL1pejkN8xTpywpkkPifuYM/YH+Y8c2+9geU6fSARgoBEVaUcAG+eq773gB+CsoqNnHugcE0EUKtD36yy8Wlsyx+HvnTgD6NLGkw6X0lCyux7WirQ1yZutWzIAvlXGkzcUzNJQi4KRWGdxmaEqTI5OZyUkh2Af0am4wJ0C3bgCIpCSElqHRMLIFpHv3Zh/qHhBAbMeObAI8tDTtBvn09995AtjbwuN7SA/zU1pmV4OcOn4cgO7t2rXo+F5RUQAc0+q8NcjxXbsA6OHl1WiD77roLgXdn0xJsahcGvWjKU2OzKlT+APD27XDrQVv5vj6crWrK/7AAa3Rab3kp6Twz4QEVgLmJrabqIWkoGpWvYY5IZW/6NHEYouXMqRLF0YDgZIFVqNuTkkWz24tvJ57SVaTY4mJlhLJITkhJX/0bKYLVKa75EE4WVCgufZthKY0OTKtsH7I5Lm7kwOc0szs9XJqyxbeBV7U6dC3RDmFqs+oTCu8WC/F2dmcLy8HoHsL4j8AHp8zh93ALVqKdoOckoKTuzWxrcel9JTKQRzLz9ce5g1w/Nw5AHq0UDntMnEiOiBbCEySdVDDumhKkwOz+uuveQjY04Su2fXRTaq6fFKruVIvJ/dWOou6t2Kd1xUVEQbM/PxzC0nleMjxH346HSHNLGxZhWbRa5Ty4mJiSksB6NbMWlgy3SZNYggwVQhKNGtTvbzh6clWYNbMmS063s3Pj04GAwAntXYqNkFTmhyY7w8f5jXgLyenFo/RXXoDOqnVtqkXWaHs3kITO4BP166kACelBqkatTmxZw8APTw9WxT/AYB0PRcnJFChuejqJPbXXykD3IHIYcNaNIZ7QAC/R0byOeCmxenVTUUFxnPnmAB0lMphtITuUg2+k1rZAZugKU0OzEnJxN69iR3K66K7ZJ4/pfVFq5cT588D0F22YrSA7lLZgfNlZZTm51tELkfjpFRzrDXKKUFBDHZywgMtg64+OhUUcBbYGB2NXrJitIguXSr/1TK76ubCBSgtBWdnaEYz9UsZ36MHM4F2WiNqm6ApTQ5KaX5+VVsP+YHcErpLb0BnSkooLy62hGgOx2k5/kMqUtkSwvr3xwuoAM5KhTI1ahIjFf/sIlVQbyku7u4I4NTelubgOTZOZ84QBYxpQW23GnTpQgWQo7n26+To5s08DqwNCoJWeAMevvVWvgWuLCmxmGwa9aMpTQ5K3L59VAAeQHgrbn7thw/HFSgF4rVg8FoIs5lzkjLZubkVfauh0+vp7uEBwMnduy0im6PxdnAwfwOzr722VeN0Cw0F4PTff1tAKgdEjvdqheUU4IPMTNyBe77+uvUyOSD7duxgGfC+lNzQYjp3rvz37NlWy6TROJrS5KCck/zbUa6uLY//APQGA+M9PbkCKNPimmphOn6cAkAHdGhmN/hL6SJl3p3VMujqxCM2ll5AeCvczQDdpJZCpyW3qkZNXty6laXAuRYWtpQJ7tKFMuBMerolxHI4zkpuy+jWuJsBoqMRQMr585gl74KG9dCUJgflnGQSj2pmo966+GXsWDYA3aSMGo2LhOTmkg38FRqKayuy5wCipEKC5zXltDb5+ZCaWvn/FvRRrE60VOn+nPYwr5O34+JYAqR4ebVqnM5SEPmZoiKt7EAdxEgtrjq38noW4eEEAmHl5SRoweBWR1OaHJR46S06qrVvMQBSdV+kmiIa1Th7Fl+gTwt6oV1K/759mQB01Xr91eLsrl3cDfzXwwNaaQGJktzV57TA2VqUFhSQIF1/Ua20nEZddhk6IB9I1VyhtTgrFWqN7tOnVePoDAaCpV5/5/bvb7VcGg2jKU0Oygvh4ZiAx2bNav1g0ptQiZYFUxtZkZQVy1Yw64Yb2Ar8S1OaanFk1y7eBz7W6Vo9VtTIkQCkmM0UatamGsT/9htmKssNtLgWloSbnx/tpQDnM1K7EI1KhNlMjBwL2cKyDtWJ8vUF4KyUYaphPTSlyUHRnTtHMBDSgiaQl7KzsJAgYNSGDa0ey9F49ccfuR/4XWoE2ypkxSs2FjTFqQZynFe01DuuNfh36sQVBgO3A4VakcsanD9wAIBOrYyFlOkiPcxj/vyz1WM5EtVjITuNHt3q8eS4qHPai63VcUilqWPHjuh0ulo/999/f53779ixo879T8ptSOwNISxqAQns0YMM4GxRUavHcjS+O32aN4FYV9fWD9auHRgMFJWVaUH3l3BWup6jWthAtgY6HRv69OEjIEgrJlqDqlhISdlpLZ2MRgDiNNd+DWKkQq2RTk6tjoUEiJLKcJyV4qQ0rIdDKk0HDhwgOTm56mfz5s0AXH/99Q0ed+rUqRrHdZGLs9kZ6SdPMiM/n38DohVF02SixowBKvsbZWkZRzU4K8XFRLe2pg2AkxOjDAY8gF9//LH14zkQZ6Ug8OiWNkS+FC1Or07OxcQAFoqFBEb37s2NQC+t118Nhru5EQt8Z4n7BhDdqxcA57QixFbHIZWm4OBgQkNDq35++uknoqOjGTt2bIPHGY3GGsc5taLgmJLE/PorPwBfOzmhc3dv9XgeQUGESqb6c7/+2urxHIUCk4kUKSsoygImdgAvT08AzmmxCTU4l5MDQLQF3M0AdOpEKZChNTmtwTmpT1yUBSzUALfPnMmXQMOvq20Pp/Pn6QAMtND1HCV1btC8AdanFTXy7YPS0lI+/fRTFi5ciK6RINIBAwZQXFxMz549efLJJxnfSCXtkpISSqpVYc2VelmVlZVRZsF6GfJYTR3zzB9/ABDl6WkxOaI8PUnJy+PMgQP0vfFGi4xpKZq7PpbitFS521+nw6tdO4vM38lohIwMYk6fttj5KLU+lqK8uJg4qQBg+yFDLHIen6WkMBeYtm4dX61YAdjv+liST4KCeCExEc/p02tdNy1ZH127dhgAERtLuQOub0vXxun0afRARadOFqmtFDl8ONcAUUJQlJSEITi41WNaAnu69zRVRodXmtatW0d2djZz5sypd5+wsDDeffddBg0aRElJCZ988gkTJ05kx44dXNZAl+9ly5axdOnSWts3bdqEh1Td2ZLIbsbGOCBZg0I8PVm/fr1F5g5xd4e8PH7fvRt3C41paZq6PpbitFTpuKOLi8XW2VO6bo6fOWOxMWVsvT6WIvfvvykHXIHDyckcscC6ZAmBGTiXmVm1Lva6PpZkakwMXYBt+fkcuGSdW7I+rpmZTAISExL447vv0Fsi9k+FNHdtdm/ejBswOC4OnYW+51/4+eGWnc2OL74gR64SrhLs4btVWFjYpP10Qji2s/mKK67AxcWFH5sZIzJ9+nR0Oh0//PBDvfvUZWmKjIwkPT0dHwsE98mUlZWxefNmJk2ahLNUj6Mh7u7Rg4/OnmXp+PEs2rjRIjI8O3Eiz+7ezd3duvF/Kusl1dz1sRSvzZzJf376ievbteMzC8XGfPfoo9y4ciXDPD3ZbaEgZaXWx1LotmyhZNo0LkRFEWWh5IwzW7bQa9o0PABTXh5btm612/WxGFlZOIeEAFCWnQ2SAt+a60eYzQS7uZELnNy8mahGQiTsjZauTQc3N5LNZvatXs2gW2+1iCxOY8ei37eP8s8/R1ii1IwFsKd7T25uLkFBQeTk5DT4/HZoS1NcXBxbtmxh7dq1zT52+PDhfPrppw3u4+rqimsdb07Ozs5WuUCaOu65tDQAOvfoYTE5Bg0cyOTdu+kthGovfmute30kJSQAEN2uncXm7SK1CDlXWGjxc7H1+liMxEQMQLdu3So7wluA6FGj0AGFQJYU/Gy362MhTu7ezYtAf29vHqoje66l6xPm4kJuaSmJhw/T7fLLLSCp+mjO2pTk5pIsxUJGDx9usWtOREWRum8fFUePEn7zzRYZ01LYw3erqfI5ZCC4zIcffojRaOTKK69s9rGHDh0izEIZJLbmvJTRFTVggMXGnDFrFhuBB7VWKlWsiIwkG3ikkazM5hA1ahQAaUKQl5RksXHtmri4yn8tkAkq4+rjQzsp0SNWq6IMwNG9e/kI+NrCzoeO3t4AnNeqggOQINXCcgeCWtkUuTrPJCQQCjz7/fcWG1OjNg6rNJnNZj788ENmz56NwVDToLZo0SJuv/32qt9XrVrFunXrOHPmDMeOHWPRokV8++23zJ8/39Zit5qK4mKypcKIHQYPttzAHTtW/nvhglZ4USY+Hl/AX+plZgl827dnhrMzdwDFp09bbFx7Zvkvv3AP8KuFH+ZRUm+184cPW3Rce+X8iRMAdLJAAdHqdJJcfrFnz1p0XHslTir02cHFxSIFRGXaSbWa4iRPg4Z1cFilacuWLcTHx3PnnXfW+ltycjLx8fFVv5eWlvLwww/Tt29fxowZw549e/j555+ZOXOmLUW2CE6pqeQCaQZDq9sg1CAsDJycyC8vp0xyS7V55GuofXuLDruuVy9WA8FabzQAfoqJ4T0gzsIlQDpJGUZxWhVlAOKk73UnSxQQrUZH6fsRqxVeBCBeUk47SBY4S9G+e/fK8aUsbg3r4LBK0+TJkxFC0LWOYnhr1qxhh5QuDvDII48QExNDUVERmZmZ7N69m2nTptlQWgsSH48OCGrfHr3BgiFrTk701+vxBv6wg0wIa5OXmMhV2dncD1SEh1t2cFkJ05RTAOIl5bGDVMDPUlzWowe3Ar0s+LZvz8SbTAC0l63KFqKj5II6rxVeBCBOsrh1sHBZgPb9+lWOX1KCkGKmNCyPdrdwNKxk/QDwkQplxkt9wNoycb//zs/AFzodTn5+lh08MpJiIFPri0ZFaSkJco0mqYCfpbjj6qv5BJhhyZcLOyZBslBEWqrqukQn6WEeq1lOAYiXYhXbW9iiFyklkeQDOdoLl9XQlCYH46N167gW+Ex60FiSSH9/AOKlbKO2TPyRIwC0t0LdmdcTEnAHHly3zuJj2xspR45QDjgB4ZaqBi4jvVjoqrnq2zLxUvkU2WJhKaJHjOAG4HazGVFcbNGx7ZF3IiI4D9x9zTUWHdcjKIggqYBzvBRsrmF5NKXJwdh//DjrAGu0Gm4vZRPGa28xxEtWoPYWamxaHaOUJRafmWnxse2NeClotp2TE06WVlAjIykFYjWliYLUVLKkQPtIC1v0Art14ysPD14AdNq9A+eEBDoCxr59LT52ezc34OJLnYbl0ZQmByNeypxoL2VSWBI51kGOfWjLxMfGAtBB6uJuSdpLsTsJTaxQ68jIruD2Uk8+S1IYGIgbEJWXR2kbzzjyzMykCDjj5YWPhd1G6HQQGVn5/7auNJnNF9fAgiU0ZG6MimIBEGkHbUvsFU1pcjDkzIn2Fqz/ISOPGS81T23LxCcnA9BefhhYkPZS5/ML5eVUtPG6WMlSpfUOFk6DB/AwGvGX3Bl5bT0dPj4eN6CzFV62ACrateMCkC5ljrVVTEePcltZGYt1OrB0AgnwyOWXswLopwWCWw1NaXIwrBWXANC+T5/KObS4BOIk11n7Ll0sPnZYv344AeVUxvS0ZR7q0IE8YOWMGVYZP1Jy+WXLBTTbKlZMIAG4Oz6eSOCdNh6nd3b/fj4F1uj1YI0EBPnz01zOVkNTmhyInPh4ZBtQpCULW0q0HzKEK4CZQlDRxmuBZBYVARddaZbEycWFCKkmkRzT02aJi8MLCJJq0FgaOSYtMzHRKuPbCx/9+CN3AD9ZyULRLjQUgIQ2vs5xUlX0DlZwNwOIyEhSgRMW6tGoURtNaXIg5IyJAJ0OL+kmZUl827dng48P7wJObbnFR3k5f1dUkAUMmjTJKlPIMTzxx49bZXy7QX5jtkL8B0CkVCsno43H6W0/fpw1wFErVfuPlOIhL7TxWk1yIVVruJsBfs/LIxSYrLKm6o6EpjQ5EOmnT+POxQwKq6CZfyEpCZ3ZjJ+zMy5WcmdM69SJO4B2bTygc+bx49wDZDTQdbw1yLVyTFlZVhnfXoiXlJn20dFWGb9d587AxVpQbZV4qSp6eyv1NZVbZyVVVFCmJZJYBU1pciDG+/lRAOyeMMF6k7RvX1k8rS2bf2WFsV07sFI16UVTp7IaGGXh1iH2RE58PN+Vl/Me4BoVZZU5IiUlISUvzyrj2wvx+fkARPboYZXxI6V4yAtSzGVb5UJ6OgDtrPSyZezZExfADCS1dde+ldCUJkdCaqHiZaUHDMCChAS8gVf/9z+rzaF2Nvz4I9OB16yp0MhZeW3Yonfh0CEA/K3kbgboPXgwtwFXt+FWKubyci7IVdcHDLDKHHLtp0whKGzD5R0SJUtbhJUsenqDgUhnZwDipO+PhmVpu3cKR0R+wFohDV7GKBe4bMMxTUeOHuUn4KCV4j8AaN+eYiC+DafCJ0rxXBEuLlabo++ECXwM/Ke4uLKGThsk7eRJSgAdECGVu7A0Pu3a4SX9P+HgQavMYQ8kSZnHEVay6MHFeMiENl7ewVpoSpMDcd/27VwDHLRibZ92Uh2XhDZcrTpRUhgjrFDYUuZYaSnuwMA23OcvUQqajfDyamTPVhAejtDr0ZeXQ2qq9eZRMfF//AFAuF6Ps4eHVebQ6fXcExDAfwDPtlrnrayMWLOZWKD3mDFWmyZCaneVKBXg1bAsmtLkQGxJT+d7oNBKQbMAEVJdosQ23HwzUYpLiLB05eRqhEl1tjKEoDg722rzqJlEyXIaERBgvUkMBkrCwogF8ttog+RkKT4x0koKk8yrgwfzMtCurdZ5S07GBejg7IyrFe8d8stcYhv2BlgTTWlyEITZTKKUaRVhhdpBMhE9ewKQ1IYrVSdKb8oRVowd8+/UCTkHMunwYavNo2YSparrEVaKZ5KZkJNDJ2Drpk1WnUetXB0eThHw/dix1p1IVhTaaisVuUZVeLjVEkgAxg0YwALgcisrwW0VTWlyEHLi4ymS/m/xbvDViJDGzgPy2uibTKJU2DLcCq1qZHR6PeFSxeCkNlqrKUuysEVYMUYPIEyyzCadP2/VeVRLUhJugNGKLwEAFRERXADOt9HredfmzdwGvGPljNgpkyaxApguNWDWsCya0uQgJP71F1BZ2NLdiu4Mr7AwZOdfkjRnW8JcXk6yFAAe0bu3VeeKkN4UE9uo2+jL0FDygNuuvdaq84RLhQaT2mq1avm8IyKsOs0aqZXK/Vu3WnUetXLo8GE+BbZa20ov97Rroy+11kZTmhwEOdMo3IqZRjI3+flxF+DSBqv7Zp46hRuVmUahUu0ZaxHu5we04YDOxES8AA8rpWfLhEsZoUlttCr4o7t2MQc4bOVCqu2keMgLbbQmVqJU2LKdVIXeWojwcFKAPxITMUulJDQsh6Y0OQg2yTSSeGfQIN4DOrVB829QcTF5QI7RaLVMI5kI6ebaJi0gZWUgKzFWtoCESYUGk9powP0Pycl8BGS6u1t1HrnAZUIbLXB5QbqeI6x8PZcHBREODK6oIK0tFyG2EprS5CAUpqXhjpUzjWTkL31bfJhLJm9vK8fZAIzq3Zs7gGGurlafS20kHT7MVCGYp9dDUJBV5wqXLFlJUlXstoac1BFuxdpBcDEeMlsICqUM1LZEohyjJ5VtsRbOHh4YpUDzxDYYQmFtNKXJQbg/MpIC4K3rr7f+ZOHh5ANpMTHWn0tt2Cj+A2Cm1ErleikgvC0Rd+gQG4D1Op1VM40AwtpwRmh+SgpyN7gIKyaQQGWBS9k2m3zkiFXnUiNymZaIrl2tPleE1H80qY3GQ1oTTWlyFBIT0QEuNrCAvH3+PN7AP9evt/pcauPtH37gKuBzW9SpkgM626BFTw5+j7BB2nS7fv24HZgHmNtYvI2czOEFeMvXm5XQ6fWESy0+2lpGqDCbSZTii9pZORYSIMLbG4DENtxRwFpoSpOjYEMLSEiHDgAktcGO5b/HxPAzcM4Wk0VEUATEXLiAaGMtPhKl9P8IX1+rz+UVHs4Hbm68AOhTUqw+n5pIlCrOW7NVTXXCJSU4SYrBbCtknz+PXNLTmiVhZCKkjNDEtloTy4poSpODMOXoUWYAF2zgypHrEyW2wcq+iVL7mAhJcbQmxf7+eABdSkrIjouz+nxqQs40irByppFMsRwL2MasekmSiz1C6ldmbW7o3Jn/AF3amMvZv6CAEiDe3x9XG7wIREgZoYlt7CXAFmhKkwNQXlzMptJSfgCcbeCei5DMy8kVFVS0sTiQRClYOKJzZ6vP5ebvT4BOVzlvGwvoTJQzjazsMpLJ9vcnFkhvYzEg6ZJyKpe3sDb3X3YZLwMDrVzgUXVcuIALECllalqbCDkjNCvLJvO1JTSlyQFIOXoUARiA4O7drT5faJ8+6IEKaHMprYmSkii3k7E2EVLmXFIb61huq0wjmQfT0ugEfPjDDzaZTy38KyqKIuCNq6+2zYRttfCiDcMnAAYOGcIC4JY2mHlrbTSlyQFIlDJRwpyc0NvA7G1wcyNETmltQ1kwhenpZEu1qaydaSQTLrlNEttYDEie5Pq1RaYRQJDkMkmS+t21GRITcQP8rNxCRaY8JIQE4EQbu54/Xr+e24DvrFxAVKbfmDGsAG4rLLTJfG0JTWlyAKoyjaxcnK464VJKa2IbsoDImUYegK8N3KBwse5WYny8TeZTBULwh15PPjBi0iSbTOkvr3Namk3mUw2yxcdGFpA9GRm0B65tY02od584wafAUVtV6JY/z6wsKCpqeF+NZqEpTQ5Akg0zjWRmREZyNxAu9WFrC2SeOYM3EO7sjM7KtYNkwkNCAEhqSwGd2dlQVIQn4GyDgHsAf3mdc3JsMp9auPWvv5gDJNgoxkguoNnWamIlSi2nImwU04SfHylubhwE8tuYVc/aaEqTA1CVaWTlysnVeWrCBN4FBkt1V9oCQ318yAWODB9uszkjJItWYlvq8yfHfwQEgI2spz7Sm3liG3orFxUVfF1QwEeAkJRGaxMmJZHkAXltyBV6wYYJJADodIypqGAI8OfOnbaZs42gKU0OQHluLh5AuI0yjYC22UpFOld3W70tAv0HDOBOYFobCujcu3kzU4ClNkxLl9viJJWXt5maWOmnTyNH2Fi7+bSMd3g43tL/k48etcmcaiBF6rcXboNEHRm5MGzi6dM2m7Mt4JBK05IlS9DpdDV+QkNDGzxm586dDBo0CDc3N6Kionj77bdtJG3reSU0lHzg3zfeaLtJpVYqbarirI0zYACGT5jAB8A/25A74+SRI2wE9tnQ9evZsSMApUBGG3FnyEkcRp0OFxs0+pYJk6zTyW0kHrKssJA0KYEk1Mr9/aojl5GQC8VqWAaHVJoAevXqRXJyctXP0Qbeas6fP8+0adMYM2YMhw4d4vHHH+fBBx/k22+/taHErUBqoWKwoQVkS2oq3sCU/fttNqfSPLZhA1cBW23Z2FVW0FJTwVZBpAqTIimn4bZoPi3h5OHBfW5uLAJ0qak2m1dJkqRyIXJSh62QM0KT2kjvSpPUMsYABEmFgW2BXBg2sa2Vd7AyDluW1WAwNGpdknn77bdp3749q1atAqBHjx4cPHiQ5cuXc91111lRSgshxwbY0D0XJr0xJbYhC8je5GR2A7fbqOUEAEYjhXo9SWYz7eLicIuOtt3cCpEsBb2H2jBGD+D/unZFd+QI2KKvoAqQrcRynzJbEe7rC9nZJMXG2nRepTBJ2c0her1NSsLIhEdEwMGDpLSleEgb4LBK05kzZwgPD8fV1ZVhw4bxwgsvEFVPLZJ9+/YxefLkGtuuuOIKPvjgA8rKynCuJ9i5pKSEEslXDZAr9WIrKyujzIL1OOSx6hqzMD2dSbm5hAKfe3vjaqM6IPIbU5YQ5Gdk4OrjY5N566Kh9bEkyVKQcHCHDlafqzrddToSgF+3b2dIC6yJtlofS5EstaoJCQ21iczyHObQUJyOHKE8IQFhJ2vVGi5IrXnC/P0bXGdLXz/TevWiXVwcA93c7OaarI+mrE0fT89Kt2+vXjY932DpJTolJ0exdbane09TZXRIpWnYsGF8/PHHdO3aldTUVJ577jlGjhzJsWPHCJQaGVYnJSWFkEuyR0JCQigvLyc9PZ0wqY/PpSxbtoylS5fW2r5p0yY8rNCdffPmzbW25Rw9ygHAHdiyf7/NUuGF2YwLlTEg3733Hj429NXXR13rY0lSpC9VXE4OuevXW3Wu6gQbDCRUVLB30ybSWtGLzdrrYynk/n6FFRWst+E6x5SX4wLErV9Pjo2yyZQkQVKaXA2GJq2zpa6ffiEh/AO4kJpq08/XmjS0Nh02b6Y/gKurTc83S3qhTywoUHyd7eHeU9jEQqAOqTRNnTq16v99+vRhxIgRREdH89FHH7Fw4cI6j9FJPb5khBS4d+n26ixatKjGeLm5uURGRjJ58mR8LGh5KSsrY/PmzUyaNKmW1WufFP8RajBw5VVXWWzOphDq5ER8RQVRAQEMnTbNpnNXp6H1sRT5KSnIkUxXz5mDtw1doe/7+fFnaiqezs5Ma8E622J9LMm/JeV0xIQJjLLBdSWvz0dFRSwD7ouJ4TUFr2dbMf2DD3grLo6SO+/EvYHztfT1o8vLgw8/JFynI8TO17kpa6M/dAgAY9++Lfr+tpRET0/iVq+mk8Fg03mrY0/3HtlT1BgOqTRdiqenJ3369OFMPVkxoaGhpFxSPNBkMmEwGOq0TMm4urriWkcquLOzs1UukLrGTZfiAkLd3W1+UYa6uRFfUEB6bKwqvhDWWneoLGwJldXA/SMjbWbRg0r3CamppCUnt+r8rLk+lqRYyppr17u3TeUNk4LuU7Oy7GKdWk1qKq6Aa3Q0NOF8LXX9VEREEA9knD/PAAdZ54bW5o2tW9kP3FZUxBU2PN+OgwezHKC4uDKJxIYdIy7FHu49TZXPYbPnqlNSUsKJEyfqdbONGDGilvlw06ZNDB48WPUfdLIcl2DjYE6AUGnOFEkGRyZZyjQKNRhsqjABhEouuRSTyabzKkJ+PheEoBCIGjLEplOHSPFiKXl5Np1XMeQXxSYmzFiK82YzHYAxCQltoibW9rNn+Qw4a+tz9fUF+aW+jWSE2gKHVJoefvhhdu7cyfnz59m/fz+zZs0iNzeX2bNnA5Vutdtvv71q/3vvvZe4uDgWLlzIiRMnWL16NR988AEPP/ywUqfQZFKkdNJQG6Zny1wRHc3dQFeVK5aWIC8xEW8gTIG3tVA5oFOK9XFopExQd09P9DZOLgiREkVS2kBVcGE2My0hgduBbBtf03JV8AIgrw2kwydLSnioDUvCAKDTkRIczEEgS8rg02g9Dqk0XbhwgZtvvplu3boxc+ZMXFxc+O233+gg9bFKTk4mvloD1E6dOrF+/Xp27NhB//79efbZZ3n99dftotxAitRgNNRotPnc8yZO5F1gvIJmX1sxNSyMXGDb5ZfbfO5Q6bptExYQ2fpRj1XYmoRKGaEpbaAqeHZcHL8IwSeAm40f5p5GI7I6nCQV2HRkUoqLAQizVQuValybnc0QYOf27Taf21FxyJimL7/8ssG/r1mzpta2sWPH8ueff1pJIitSWIgnEGrDKtVVyA+2ttBDSjpHF1u2qpHo3q8fc4FetqwPpRCbN21iBTC2rIzHbDx3iJQBWkhl4L8tg/1tTcqxYwD46XS4SZWjbUm4iwu5paUknzxJdzsPBm8IYTaTLBWlDbVhCxWZMG9vyM+vCuPQaD0OaWlqS7wXEkI+MHfWLJvPLUJCyAXi28IXUkELSM8RI3gfWFBUBFJWp6Ny4vhxNgB/2rCFioyn0XixL9rff9t8fluSIvUjC1XItR4iWadTHbzAZU5CAnIlv9DevW0+f6i/P3AxjEOj9WhKk70jWUD0CrwV78/IwBe4rA003nxo2zauBHY3MS3Vosg1g4qKwMFddCnS9axEjB7APH9/Hge8HLwqeIrUjyzUCvXkmkKoFK+WkpCgyPy2Qm5K7Au4K3BNh0r3juS2kERiIzSlyZ4xmy9mRdg4AwYumptTKiocPgZkV2oq64E8JeK3PDzI9/YmBig8d87289uQZClGL0yB6xngxd69eR4Id/A+f7KyEqpQJf9QqZRLioO79tOlVjVhCrnWq5JIsrIUmd8R0ZQmOyYjJoYh5eVcDZhbUSm6pYT07AlACZVmaEcmRaquG9qliyLzDyoupgtwcNcuRea3FSnZ2YBCMXpw8eXDwR/mVRa9BurQWZNJffvyKDBBwfZLtmBMcDClwJ6hQxWZvyqJxJZNxh0cTWmyY5KPHeMgsFenQ19HkU1r4x4QgK/0fzmw1BGpKC3FJFnSQhVqFyO7UZKlN1dHJVm6uYd27KjI/EVBQZwDEqSYH0clV1ZOFWoXc+W4cbwITHZyUmR+m5GSgjMQGBmpyPRh0ktespTBp9F6NKXJjqkK5lQwq0qeO8WBHzIZZ85QAeiAYAUyYKDtxICklJYCENa1qyLzr4yJIRpYvGmTIvPbirc6dqQEeHDmTGUEkC16l3RicDhki6UCCSQAnQYM4GHgP0I4fBKJrdCUJjsmWQrmDPP0VEyGMMkCkuLAFpDk48cBCNLpcFYqcLYNxICYy8ooly16kuvX1shuQdlN6LCkpOACuNu64KJERVAQccAfFy4oMr+teHHLFv4B7FAosSCoe3deAR40m6EtFMe1AZrSZMdUBXP6+jayp/VoCxYQ2YoWpoALVEZ2o6Skpysmg7XRZ2SQDhTqdFXxcrZGdgs6fAyIQi1UZFKdnOgIDEtPp0KyLjoiW+Li+By40EDjd6vi6gpy1p6jW/VshKY02TEpUuZcaFCQYjJc3rUr9wC9FFQorE1BSgo+QKiCFr02YQGRburuRiM6gzJ1d0Olqs1y4L8jUl5czCSTiduAAgV6VkKlm1sHVFDp/nZUkgsLAQjt1Ek5GQIDOQCkSf0zNVqHpjTZMbLVIVSht0WAuZdfzjvAJDc3xWSwNjPbtSMH+GnqVMVkqLKAOHL9IIXjP+BioL/JbHZYC0jayZNsAT4H3Nq1U0QGZw8PgiTrS4oDP8yrYvSkFj1KcGt6OkOBTVu2KCaDI6EpTXaMvrgYLyBMocwMoG0EdErn5qxgW42u/ftzN/APB842+uGXX5gCrFCwYW5bsICknDgBQIhej5OCSSQh0typDrrOJbm5ZErB10rF6AGESeEbyQ4cQmFLNKXJjvkkIIA84KZrr1VMBhEaSg4QW60BssOhAgtI9JAhvAs8XFgICrQYsQXHTp1iI3BUwfOrYQGRlAtHI0VSUkIVdqnL7u4UB22lkiqVYXEGAqKjFZOjKonEkV9sbYimNNkz0pdAiRYqMkfz8vADhp46pZgM1uaeXbuYBvyuZHBwcDDo9ZVV4KWq2Y5GsnQ9hylQqLU69wYH8wTg56C1bZIlJSXUy0tROUKkJJJUB82gS5aU7lAnJ3R65R61cvhGSkaGYjI4EprSZK+UlIBcGl8FMSDpQlAmBT06GjvT0/kFKFLyIePkRF5gIGeAfAdtpZIipUSHKng9AzzTrx/PAe0dtDVQSmIiAKF+forK4egWkIzz59EBYQrHe4ZK4RspOTmKyuEoaEqTnZJ4+DCDgJk6HSh48wvq2hUnQOC42RkpZWUAhCoYzAkwJi+PrsCebdsUlcNapEjNkEMVqh1UhYPH6clKipJZtwCX9+/PY8AkB22lMq1dO0qADWPGKCpHWFQUcDGTT6N1aEqTnXLh77/5Ezio14NSNUAAvbMzIZLp2RFjQArT08mV/h/aq5eissjuFEeNAUmWAsDDFIz/ACiWWqnEOqjLOV9WThW26E0ZO5ZlwBWOmtyQnIwz4C/1f1OKUKm6foqDZoPaGk1pslPkCtxKm37hYkBpSkyMwpJYnlSpGrgb4KNQeraMXMQ0xUFjQNRi0Xvz7Fmigce3blVUDmuxOjKSUuAeBRNIAIe36CHV0UOh/n4ykf368R/gCSEQDhqnZ0s0pclOSYmLAyBUoeJ01ZEtIMkOaAGRa8iEGQyKBnMChEoB0nJRU0eiKD0dZ+n/ilv0JOXYYWNApCaybgq7QSuCgjgPHHDQVPilO3dyC7AnL09ROXw6dOBlZ2cWAjoHTSKxJZrSZKekJCUBEOrvr7AkFwNKHdECkixZz0JVYNELk9wpjpgF456bSyZQ5OaGt4LZoAChUgxIiqPGgCjcQkUm09WVKGBoTo5DJpFsSUzkCyBFwfAJoDJ8Q/6sHbh3pa3QlCY7JVmyNoQZjQpLAhN69OBeYIAKFAtLU5SWhi8QonB6NlzMgknOzW1kTztEup7dFH6QA4R26QJcdBc6EoVpaVyel8etQKnck0whArt0QY5mcsQkklQpRs8oVfNXkuSAAA4AqQ64zrZGU5rslFSpB5lRBQ+Zf1x+OW8B0xxQafpHx45kA/+76iqlRXFsC4jJVPmvCl4CZPdglhCUOJiCmnLsGFuBtYCzwkqT3tkZowMnkZgkpTtE6meoJPckJzMU+NFB4/RsiaY02SnOpaX4ACFKtlCRkQMd5QefIyGdk5PCmUYA0f37809gjsKxVdbgu40buQJYqWQBUQn/Tp2q4qvkqs6OQoqUERiqghg9gBApiSRVSmxxFEpyc5Ej4ozduysqC4BRSiJJlcI6NFqO8t8ajRbxtb8/OcDMq69WWhREcDDZwHlHDOhUkQWkXb9+vA0sKikBB8uCOXb6NJuAY+XlSouCTq8nVEqDd7RmsqlSYdQQlViFHbWViuxuNAB+CpccAAiRanKZtEDwVqMpTfaKFAOiUzidFeBkfj7+wCAHu/EB3L1nD1OB39XgpvH1BWfJBuJgVj35Zm6UqkQrzT9DQngCCHawPn8mKVlDDTF6cLGMhqNZQFJPnwbAqNerwqJnlJ4TqVLVfY2Wo/ynqdF8iopATmNVgdIkm5+zhKBUBe4VS7I7M5MNQJGHh9KigE5HblAQZ4C88+eVlsaimKSWQCEqiNEDeKJ/f54DOimd+WRhUqXsKaPCLVRkZAuIo5XRyIyLQ8dF96PShEREAGBSuPyBI6ApTXZI4tGjDAKu0elABS0I/Dt1ctgsGDmY06iCYE6AcdnZdAV2bd+utCgWRb6ZG6Wbu+LI7lhHs+ilpwPqsehNHDCARcAVKriPWZJJ7dpRCmwbMUJpUQAwSi5COaNPo+VoSpMdknTihCpaqMjoDYaqLJhUB2o9UZqfT5YQABgVrlItEyLFgJji4xWWxLJUpWcr3XdOojAggBgg9swZpUWxKAWycqoSi96kyy7jBWCqCu5jFiU1tTKeSSUvASFSayKT1kql1WhKkx1iklwzIS4uCktyEaMki8mB3Eay1cyJSmuaGpCzYEwOVqROvpmHKNx3TuadmBi6AI87WHPkDzt0oBT45zXXKC1KJbLy5mDuOTUlkAC069OHR6lspYIKki3sGU1pskNkK4NRsjqoAVmWVKm9iyNgkqwMwXo9eoNBYWkqCZFq66Q6kNvIXFoKKrPoyW7CVDUkAFiS1FScAVeVWEAqpObIvztYN4GXtm3jZmCrSq4fv6goXtTreQhActFqtAxNabJDZCtDiGR1UAMhUkyCyYGyYExSerZRTRY9KfDf5EBZMPqsLNKAEiBYLUqT5CY0OVohUZVZQLLd3IgGhuXnO1QSyfb4eL4ELkgvA4rj5ARS0L3DWfVsjKY02SGylcGocEXf6lzerRv3Af3UkGVmIQpNJvyAEBWdU4gjWkCkm7hLcDA6tVj0pMB/R4oBKSss5PLMTG4BClXQ6Bsq3d7yJ+5ISSSpkrJtVEPxYYlEf39+B9KkcggaLcMhlaZly5YxZMgQvL29MRqNXHPNNZxqJEB5x44d6HS6Wj8nVfhFlq0MRhWUG5CZPX48bwKT3d2VFsViXBsZSRbwyxVXKC1KFfJN2KEsICqzfgAYu3YFIF0IKhxEcUo7dYqtwFeAm8JNkWX0BgPBUhKJyYEe5qaSEkA9MXoAs00mhgGbHCxOz9Y4pNK0c+dO7r//fn777Tc2b95MeXk5kydPpqCgoNFjT506RXJyctVPF6l5p5owlJRUNpFVSVwC4JitVOQWKirJNALo0q8f/wRuk4tcOgC/bNrEZOBFFaVDB3Xtig4wAxkOkkEnKyVqitEDx0siEWYzJrMZuKh8qwGjFELhaIVEbY16vjkWZMOGDTV+//DDDzEajfzxxx9cdtllDR5rNBrxU0nht/pYExwMyckItWTAUNlKJQvIiY9HHXlmFkBWAFVk0YsaOJC3AQoLwWwGFVQbbi0nT59mMxCooqweg5sbgTod6UKQeuoURqmJrz0j93dTU4wegNHDA4qLHSaJJDs2FvlKVkuMHkhJJHFxmLSYplbhkErTpeTkVLZODGhCDNCAAQMoLi6mZ8+ePPnkk4wfP77efUtKSiiRzLAAuVKcSVlZGWVSUURLII8l/2swmdAB5YGBYMF5WsOhtDSGAeGnThFrY5kuXR9LsWD7dmKARzMyGK2SdcbPr7KZbEUFZampF4M7G8Ba62MpUlJSAAj281NExvrW577AQER6Ot6Fhapdu+aQLLU5Mnp4NOt8rH39GH18IDOTlMREu1vnutbmwt9/A+AL6N3dVXNOQVJB05T0dJvJpPZ7T3WaKqPDK01CCBYuXMjo0aPp3bt3vfuFhYXx7rvvMmjQIEpKSvjkk0+YOHEiO3bsqNc6tWzZMpYuXVpr+6ZNm/CwQvDw5s2bwWxmuqQ0bfv7b4pVYmrNk6wyJrOZn374QRHz/+bNmy063p6UFP4CJsXHk7t+vUXHbg0jvLzIzs/nzGefUd4M97Gl18dSxEolNPQ6HesVXOdL1+eBsDCC09M5eOgQf6kkcLo1HDt0CABvJ6cWrbO1rh9XyVp65vRpRT//1lB9bZLWr0cHBLdwna1FqeQyvJCWZnO51HrvqU5hE+NEW/VkKysrIyUlhcLCQoKDg5tkybE18+fP58iRI+zZs6fB/bp160a3aqbUESNGkJCQwPLly+tVmhYtWsTChQurfs/NzSUyMpLJkyfjY8G2AGVlZWzevJlJkyaRFxvLYLOZUOC7669Hr5LeRiWjR8Mjj1AOjOzViwAbBkBWXx9nC8b6zJeatY6cNInB06ZZbNzW0re0lJPAZiGY3AS5rLU+luI9aZ179OnDNAXWub71cfrsMzh6lAHh4fRT0effUvY8/zwA7SMimrXO1r5+DGvXEnbuHKPbt2eina1zXWujKyrinnffJXvwYHzUdD6//w7btpFdXm6z75na7z3VyW1iRnKzlab8/Hw+++wzvvjiC37//fca7ql27doxefJk7rnnHoYMGdLcoS3OAw88wA8//MCuXbto165ds48fPnw4n376ab1/d3V1xbUOpcXZ2dkqF4izszMZMTEcAvx1OlxV0qkcwDkwED+djmwhyIyJIURq4mtTGSy47sJsxiQ9zMN79FDVFz7E3Z2TpaVkXLjQLLmsdV22FpOUoBHWvr2i8l26PoWBgSQCLufO0UGF69ZcivLy0AGhRmOL1tla18+VY8dy5ccfg4sL2Ok611ibjAwAAiMiVHU+4VJQuqmkxObfM7Xee6rTVPmaFUW6cuVKOnbsyHvvvceECRNYu3Ythw8f5tSpU+zbt4/FixdTXl7OpEmTmDJlCmcUyjoRQjB//nzWrl3Ltm3b6NTCFhiHDh0iLCzMwtK1DrngYogKL0Cj5JIzSQGn9kzuhQvIieZGBRTAhjBKrqJUB6mibCouBiAkKkphSWqyMiaGrsAzW7YoLYpF+G9UFKXAgpkzlRalJo6WeavCEhoAHfv04THgEaiqwK/RfJpladq7dy/bt2+nT58+df596NCh3Hnnnbz11lusXr2anTt3KpKyf//99/P555/z/fff4+3tXRVo6uvri7tUR2jRokUkJiby8ccfA7Bq1So6duxIr169KC0t5dNPP+Xbb7/l22+/tbn8DZEqpeUaVVgPyejuzumyMlKlgFN7xiTV5/IG3FXmdjb6+8OFC46RBSMEFXJ6tsrKexilF6bU7GxlBbEUUhNZg5pKlQDlAQHEA1kXLjBIaWEswKotW/gNmJ2by1SlhalGcI8eLAOoqICcHFB5lrhaaZbS9M0331T9f8SIEWzcuLHO2B03NzfmzZvXeulayFtvvQXAuHHjamz/8MMPmTNnDgDJycnEV+sUX1paysMPP0xiYiLu7u706tWLn3/+WZEYi4YwJSYCF60NaiLE2xtyczE5gAXEFBMDXLSeqYmQ4GAAUh2hh1RBAQlCUAY4DRigtDQ1qCok2oT6bnaBSi0giWYz0YCLyUSx2YzOzsto7I6NZS1wmeTeVw3u7uDtDXl5ldeCpjS1iBY/Efbv309xcXEtpSk3N5dnn32WV155pdXCtRTRBNPjmjVravz+yCOP8Mgjj1hJIsshWxeMKrzgr+jSBWNiIr3c3JQWpdUUpKTgT2X8kNqQLSAmqZSGXSM9yJ09PCpv6CoiRHLry+5De0aYzUy5cIEA4E03N/yVFqgasvu7FMhNSMC3QwdlBWolqXl5wMWmz2oiISCApLw8Op8+TaCKCm/aE81W6WfOnMmLL76ITqfDVIcPuqCggBUrVlhEOI3ayNYF2dqgJu4eN443gfEq6tXWUiaHh5MJ7JowQWlRamGUkhrkm7NdI7sYVWb9ADBK/edSKyoQkgvRXsm9cIFNQvAl4KqSFioy7oGByOpyqgrbVjWXqhi9FsbSWpObMzMZDuzYuVNpUeyWZluaOnTowE8//YQQgn79+hEYGEi/fv3o168fffv25ciRI6oLnnYknIqL8QOMKmrtUYX84HOEWBvpHJxUVA1cpke/ftwLdFdJuYnWsGPrVp4HRpWVsURpYS4hpGdPAIqB/NRUvO34vmaSem96AR5NKIhqa4wGA3nl5ZjOnsXe7R8mqUiiUUV952SMXl6Ql0dqQoLSotgtzVaaVq5cCVSm2+/Zs4ekpCQOHTrE4cOH+e677zCbzbz88ssWF1SjkrfCwngrNhYxa5bSotRCGI1kAXkJCdi3gR3Vxn8AdB86lLcAqpX7sFdOnzrFFsBdRS1UZDyNRjyAQiD1+HG7VppSpUxmNcboARjd3Dibn4/JzpNISnJykJ3masu6BSmsIzkZk5QcpdF8WvwNKigowCB9AWfMmGExgTQaQXqY61RoAdmbmspoIPrIEWKUFqaVPLJlC38B/87MZLLSwlyKrMgVFFT+eHoqK08rMCUnA2D09VVYkrr5l68vhpwcvFTUTLglmKS+biEqjTc0enlBfr7dJ5HIWbfOgJ8KY7NCJCtjalqawpLYLy1OUzCo9I3F4VFzDIiUMp6qQqtBc9mfmsomIFtlzU0B8PIiy82NU0BRtQxQe8Qk3bxDVOgyAnihe3eeAULt/Jo2Se4Yo4oK4lYnREpssXcLSMbZs+gBo16vyixAOazD5ChlNBSgWZ9qfDNv0IlSeryGZSjKyGBgfj5TgGIVvpkbpTY0+UChnafDmyTLglGFb4vodAwoK6M78NevvyotTaswZWUBYFSh5RRwmMKLsjKixqxbgGm9e/MEcJkF208pQX9/f0qBo716KS1KnYRIZTQcIolEIZqlNA0ZMoS7776b33//vd59cnJyeO+99+jduzdr165ttYAaF0k9eZJDwHbAVYVv5j7t2iGHJpvsPAsmVQ7mVFmVahnZzWKSip3aK2pOzwYo8PfnNJBw+rTSorSK/OxsdIBR6nSvNmZcdhnPAeNU2OmgWaSm4gT4qyxDUcbYsSMAqQ5QRkMpmuVjO3HiBC+88AJTpkzB2dmZwYMHEx4ejpubG1lZWRw/fpxjx44xePBgXnnlFaZOVVM9VPsnTSq4GOLkpErTr06vx+jkREJFBaYzZ+g4erTSIrWI0vx8sqRaXyE9eigsTd0YPT2hoMD+Y0Bki1779gpLUjfLzpzheWD+pk28obQwreDl6GiWHTpEmdpaqMjI4QZ2btFTcwIJQOd+/VgEtHdyUloUu6VZT96AgACWL19OUlISb731Fl27diU9Pb2qx9w//vEP/vjjD3799VdNYbICaXILFRWnmsuypUo98uyRdMmq4AT4q7DWClwMnE5NSlJYktZRLsUKhagwPRsuxoCkSm5Eu8VkwglwU6lFrywggLPAITuP0Xt782ZuBNbl5iotSp2E9+nDC8C9xcWgWZtaRIuiud3c3Jg0aRIz1frW4qDIVoUQFWdLhXh6QmFhVeCpPWKSXgKC9Xr0Kk14CAkKgjNnqgKp7ZLyck6ZzZUtVEaOVFqaOpHdhiZ7jwFRuQXkdGEhvYGAuDgylBamFew9d46vgcGSe191+PmBszOUlVVeEyq18KqZFvt4xowZU9UIV8M2mCSrglrTswGujI5mHtBNjVlnTSRfajcRouJzkAOnUzMzFZakFWRkgBA463ToVVjhHiBEigEx2XnJgavPnuUmIFWFbn0Ao9TSI1MIygoLFZam5aRKrY2MKo1pQqcjPiCA34CsGHsvDKMMLX6NHjx4MMOGDWPjxo10r1bE69ChQzzxxBOsX7/eIgJqXMQkZaSpNZgTYN7YsfDbb2DHrVRGG41kABUqjslyCAuIXD4jKAhUGmMhV3VOVavloAmUFhTwoyT/f9XYSQAI7NIFPWAG0k6eJHzgQKVFwmw2U1pa2uA+ZWVlGAwGiouLqaioQB8URAcvL8J79qRYpe6v+/z8OObmxjt//slYK1t4L10fJXF2dsbJAveZFitN77//PkuXLmX06NGsW7cOo9HIk08+ybfffsvVV1/dasE0auNUVIQfEKLW9GxwjFYqkitDjS1UZHr368d9QG8VNhRuKr/t2MGTwBAhWKa0MPUQIpXRkC0gznb4MpAutVDRAwEqjR3TGwwE6/Wkms2YzpxRXGkqLS3l/PnzmBvpOSiEIDQ0lISEBHQ6HQtXraICMAYFcV6lma2PvP46RWYzAV5eVpfx0vVRGj8/P0JDQ1slS6sCNhYvXoyLiwuTJk2ioqKCK664ggMHDjBQBW8JjsjyiAhWnDqlyhYqMubgYLKAgvh47NZbrvL4D4C+w4fzJlTGJtgpZ0+dYisgFH4DbYiAzp0vWkBOnSJ8wAClRWo2qVJig5pj9ACMLi6kFhdjUjiJRAhBcnIyTk5OREZGom/ApWk2m8nPz8fLywudTkdhQQEC6BQVhYtKFWznsjKyS0sxenpitHKiS/X1aWgdrY0QgsLCQkzSvb01/XFb/A1KTk5m2bJlvP/++/Ts2ZOTJ09y0003aQqTFdHJLVRUamIH2JaUxCSg9x9/cFRpYVrI4o0b2Qc8kJHBdKWFqQ/ZCpaRAeXloOKHYX2YpOK3Rm/vRvZUDr3BwEIPDzwKC3Gx0yrKprNnAXXH6AEY3d2huBiTwhl05eXlFBYWEh4ejkcjio/swnNzc8NcWoqQtnv5+qJXqcvZzdkZSkvRCYGbldvqVF8fJZUmAHfJKm8ymTAajS121bX4LKKioti9ezfffPMNf/zxB2vXrmXevHm89NJLLR1SozHkTCkVW0CqYkAaiQVQMweSktgMpKv0pgdAYCCZOh0nhaDETivvmyQXbkhAgMKSNMwrnTuzFAiyU6teVQsVlVo+ZEKkauAmha9nOfbGpZlKZrnUQNsJVKswwcUWaGV23hqoJchKcFkrvsstfj398MMPuemmm6p+v+KKK9i+fTtXXXUVcXFxvPnmmy0WSqM25rIyBqemEgR87eaGWvPn5CyYdCGoKCnBScU1perDVFAAqLfgIgBOTnQH0oC/DhygrxrbvTSCKaMyudyo0sy5Kuw8Ts8eLHoAM3r1IioujmEqkbO5cS9uej2DgAqV3/OcJWWwvJF4LUfEEnFVLbY0VVeYZAYOHMjevXvZsWNHa2TSqIOSlBT+BDYBHlL/IDUS1LUrOkAA6VK9I3sjVXpjtLa/v7XI7pZUO00drkrPbkV8gS3I8/fnFJBop9dzflZWZRNZlVv0bhg9mmeBUSp3I9ZLWRk6wKDyVjAGaX3LVBxLqGYs7mTs2LEjv9p5E1E1UijVaArU6VSdwWNwcyNQ0uZT7bD/nDCbMUk3E2PnzgpL0zCyu0XpGJCWUmXRa9dOYUkaZvHZs3QHXt+4UWlRWsTizp0pBV649lqlRWkYe2+lIru7VK40uXl4EAoYFc5mW7JkCf3797fYeGvWrMHPBg2prRKZ5e/vb41h2zQFcpdylX8hwb4tILkXLiBHYwVXqz+mRqpiQOy0lUq59GYeotKmyDKy+zA1w05rVUstVNxV2kJFptTfnxjgr9hYpUVpEem5uZwFMlVuwXF1d6cdEGw2gxCN7m8tHn74YbZu3arY/C1FneVhNWqRJ719Ge2gLo8sY5odtlIxSTVtvAAPFRcRBTBKLyep9liZXwj+dHKiFBg8dqzS0jRIiFTd2aTSfmKNYgclNAAOZ2fTBbha+g7aGwXFxWQBxQoqIk2ieqatAsHgQgjKy8vx8vIiUOX32LrQlCY7IVcOmlVJkGRDzOjUiflAtB3GJuTGxxMIhNqDRU96CJrssZVKQQEUFWEAnFQe0yQnBKTm5yssScu48fhxbgLiVR74KyeRmCoqECqXtS7kGCGDQuU/xo0bx4MPPsgjjzxCQEAAoaGhLFmyBIDY2Fh0Oh2HDx8GvZ4SJycu5OWhc3GpikHesWMHOp2OjRs3MmDAANzd3ZkwYQImk4lffvmFHj164OPjw80330xhtVY3QghefvlloqKicHd3p1+/fvzvf/+r+vuePXtwcnJi48aNDB48GFdXV3bv3l2ne2716tX06tULV1dXwsLCmD9/ftXfVqxYQZ8+ffD09CQyMpJ58+aRr8B30v6Ku7RRcqSg2RA7cH3+a/RoOHQIrFwDxBoM8vcnHagYNEhpURpFDqA2SdeGXSFnonl4gIobUMPFhACTHZbREGYz64qKKAVeUvlbvVGqvl4M5CUl4aOWWDchoL5+eGZz5QuAkxMV+fnozWacvb0rt1kCDw9oRuzRRx99xMKFC9m/fz/79u1jzpw5jBo1ii5dutTY74zZTH2tvpcsWcJ///tfPDw8uOGGG7jhhhtwdXXl888/Jz8/n2uvvZY33niDRx99FIAnn3yStWvX8tZbb9GlSxd27drFrbfeSnBwMGPGjKka95FHHmH58uVERUXh5+fHzp07a8z71ltvsXDhQl588UWmTp1KTk5OjfhovV7P66+/TseOHTl//jzz5s3jkUcesXmmfquUpq1bt7J161ZMJlOtcvOrV69ulWAaNTEUF+MPhKg9PRsuFl60x4BOuYWKiguIyvTr25d5wAAVJwbUx1+//spCoK/BwEqlhWmEkEssIDqVNr2tixoxepJSolY8goPxAvKpdJOrRmkqLAQvrzr/pAf8pP9bZXXz85v1UtG3b18WL14MQJcuXfjvf//L1q1baylNzg1cw8899xyjRo0CYO7cuSxatIizZ88SJcUezpo1i+3bt/Poo49SUFDAihUr2LZtGyNGjAAqazju2bOHd955p4bS9MwzzzBp0qQG5/33v//Nv/71r6ptQ4YMqfr/Qw89VPX/Tp068eyzz3LffffZj9K0dOlSnnnmGQYPHkxYWJgq+so4Mo8HB/PG+fOIG25QWpRGMQcFkQkUxcWh3uII9WAn8R8Ag0eNYjBUvu3aGedPnGAbUKDyoFm4qGyUAjkJCfjZUU2sGjF6QUHKCtMEjAYD+eXlmGJi6DxxotLi2B19+/at8XtYWFhV65DqGBoovll9jJCQEDw8PKoUJnnb77//DsDx48cpLi6upQyVlpYy4JKWQ4MHD653TpPJRFJSEhMb+My3b9/OCy+8wPHjx8nNzaW8vJzi4mIKCgrwtKG1usVK09tvv82aNWu47bbbLCmPRj24Si4YnYqbyMr8FB/PDGDob7+xX2lhmsmyX35hG3BPejrXKy1MY1S36AnRLDO+0pguXADAWM8bvJpwDwjgX87O+JWVoUtPB3tSmqTaUiF20mbH6ObGufx8TGpqduvhUWnxqQOz2Uxubi7enp78dbSycVTfXr0wWKrAZTOtyM6XxGLqdDrMZnNVCxMhBak7OzlRXk8QePUxdDpdvWMCVf/+/PPPRFySnel6yRo0pNi4N5LgFBcXx7Rp07j33nt59tlnCQgIYM+ePcydO7dV1b1bQou/SaWlpYwcOdKSsmg0gKvc98oOLCDGjh0BMElFIu2JPxMS2AJcbQ8KSHAwGYCpuJjOWVk4q7x4YXVMyckAhPiqtbZ9TVZ16AAxMVBUpLQozcIUFwdUKiP2gNHLC/Lzq5RqVaDT1e8iM5uhooJygwGzuzs6wMnfX3UvMMFSWEdycjIDBgzAYDBwWmrk3Bp69uyJq6sr8fHxjK0jC/bSsJ368Pb2pmPHjmzdupXx48fX+vvBgwcpLy/n1VdfrVIAv/7669YJ30JarDTdddddfP755zz11FOWlEejHiaaTPgAnzg5oXZbk1Hyn5vKy+3PAiK9Uaq94CIAnp50AAqAmEOHiLYjd4ZJ6qNotAOXEVD5shITY3dxevZk0QOY1a0b/VJSGGAn8so4Q2ULFWdnVYaquLu7M3z4cF588UU6duxIzJEjvPXWW60e19vbm4cffpgFCxZgNpsZPXo0ubm57N27Fy8vr2Z5opYsWcK9996L0Whk6tSp5OXl8euvv/LAAw8QHR1NeXk5b7zxBtOnT+fXX3/l7bffbrX8LaHFSlNxcTHvvvsuW7ZsoW/fvrVMeCtWrGi1cBqVFJhM7JfMqu528DA3SkUhC4H81FS87CCoWsYkWRKMduKCMRoMnC8vJzUmxq6UptSsLACMduBuBsj19ycJ8D1zBnUXSKhJXnp6ZQsVG1RKtgS3jRoFO3eqvqr2pejKy1XfQmX16tXceeedDB48mM5RUdx33301UvpbyrPPPovRaGTZsmWcO3cOPz8/Bg4cyOOPP96scWbPnk1xcTErV67k4YcfJigoiFmzZgHQv39/VqxYwUsvvcSiRYu47LLLWLZsGbfffnur5W82ooWMGzeu3p/x48e3dFi7JicnRwAiJyfHouOe2rJFAMINhLmiwqJjWwWzWXhUtp8TZ7dvt/p0paWlYt26daK0tLTVYwXodAIQx77/3gKSWZ/hXl4CEN899li9+1hyfSzFOD8/AYjP589XWpQmrc893bsLQCwZN86GklmAefNEBYjCRx9t8RA2vX5WrRIChLjhBuvPVQ9FRUXi+PHjoqioqNF9KyoqRFZWljCbTEIcOCDEqVM2kLD1FGVkiAsHDoi0Q4esOo+8PhUqeW419Nk29fndYkvT9u3bLaGzaTSBtLNnATA6OdlHurNOh9HJidiKCkwxMUSNG6e0RE2irLCQTMmiZ1R5erZMVQyInVVfLy8pqWyhYi8WPcmNaEpPV1iSZmIyoUf9LVRkSvz9iQeKz56lj9LCNIPM3FyyAV+zGXtwOLt5eBABdpl5qzR28ARuOW+++SadOnXCzc2NQYMGsXv37gb337lzJ4MGDcLNzY2oqCjFfKaXkib1YgqxVEaGDZADT1WVBdMI6VJ6th4IiI5WVpgmYpQCqeXAantht6cnpcBll1+utChNwii5mGW3ot1gRyU0AH5NS6MrcKOUiWYvFJaUkAUU2YsSIrsRpUB2jabTqjzU7OxsPvjgA06cOIFOp6NHjx7MnTsXXxVkxHz11Vc89NBDvPnmm4waNYp33nmHqVOncvz4cdpLbRGqc/78eaZNm8bdd9/Np59+yq+//sq8efMIDg7muuuuU+AMLpIqBXMGq7xycnWui4xk2MmTRNqDZUwiJzaWICoLv+ntJUVbqvKcmlZffV8VUl4OGRmVNx+pr5vaMUqWGlNensKSNI/Zhw9TDDxXWkqXRvdWHqNUD8hk4zTy1lImpe9fGturWvR6SnQ6yoTAvbQUJzvoaaoWWvxEO3jwINHR0axcuZLMzEzS09NZuXIl0dHR/Pnnn5aUsUWsWLGCuXPnctddd9GjRw9WrVpFZGRkvRkDb7/9Nu3bt2fVqlX06NGDu+66izvvvJPly5fbWPLapEld7I0qUEabyiMjR/I6MMBOUp0Bunt6kgYk9OqltChNJkSygJjkkhT2QHr6xaxKlbf2kAmRy2gUFysrSDP5KS+Pr4EyO7l3yP3nMoSg3I7WulyyMKk5ELwGOh2nhOAkUGypli+2oLS08kdBi16LX6cXLFjA1VdfzXvvvVfVoLC8vJy77rqLhx56iF27dllMyOZSWlrKH3/8wWOPPVZj++TJk9m7d2+dx+zbt4/JkyfX2HbFFVfwwQcfUFZWVucbRElJCSXVahHlSl3Qy8rKLFpwS+TnEwAYAwJsXsirpegDA3ECKlJSMFtZZnlNWrs2usREDIDOaLSbde7Xqxf3r13LYA+PemW21PpYitN79/Ig0MXVlTfMZsXjKpqyPv5S7JXJwt9ta1JWUFAVo+cfFdViuW15/fh07IgeMAPJf/9NaL9+Vp/zUsrKyhBCYDabG60zJKT1rWrW6+LS5NpESmPQ6yk1mykrKbGazPL6yOvZWsrj4tDn5ODUrh2iBS5ns9mMEIKysjKcLqmK3tTru8VK08GDB2soTFDZ3fmRRx5psFy6LUhPT6eiooKQS9KZQ0JCSElJqfOYlJSUOvcvLy8nPT2dsDo6sS9btoylS5fW2r5p0yY8LNgP7NaAAB43GDjWqxfr16+32LjWpENaGhFA7P79JNlI5s2bN7fq+Ohdu+gNJJaX86edrHOQszP/BfIKChq9Nlq7PpYi9vvv2QakVFSo6npuaH0KpZixLCH44X//w2AH/f4KpAQSPfDbqVPopd9biq2unyCdDpMQbPzqK4ITE20yZ3UMBgOhoaHk5+dT2sQmzeXVlCf55VntOEn1pAry88HKMudZyK2dmpdHHhCel4dHC7wYpaWlFBUVsWvXrloV0Qvra8p8CS1Wmnx8fIiPj6e7VJNHJiEhAW9v75YOa1EuLTImhGiw8Fhd+9e1XWbRokUsXLiw6vfc3FwiIyOZPHkyPj4+LRW7FmWTJvHTpk1MmjCBHnbie/5ywwYGAOPPnGHjtGlWnausrIzNmzczadKkVsUU/Pe113gIuM3VlVusLLPF6NABnn4ar6IiptUjs6XWx1J88csvAIR6etYrsy1pyvqYy8u5b/58QoTg8v798ejc2cZSNp9DX34JQLBez1VXX93icWx9/RhdXDCVlNDOz4+JClwfxcXFJCQk4OXlhVsjD2YhBLm5ucg2Ch9/f5ztQKEGyDIYoKICvU5n0edVdYQQ5OXl4e3tbZGin74uLlQUF6MLCkLXApmLi4txd3fnsssuq/XZNlXZbbHSdOONNzJ37lyWL1/OyJEj0el07Nmzh//85z/cfPPNLR3WIgQFBeHk5FTLqmQymWpZk2RCQ0Pr3N9gMBBYT9yFq6trrf46UBkMaPGbi06Hs7u7Kh56TSGsUyegslikrWRu7bofSUhgK3B5Hf2W1IoIDycdMGVk0M1sxqmBDEurXJctIEP6nhl9fFQhj0yD6+PszJshIZCSAsXFdlF8MSs+HqhUQiyxzra6fkI8PPi7pISMxERFro+Kigp0Oh16vb6qZUd9mM1mRDWLhbO7e6PHqAVngwFKSigvL7eazLJLTl7PVlNeXqm0uLpCC8bT6/VV/fQuvbaaeq21WGlavnw5Op2O22+/vcrM5ezszH333ceLL77Y0mEtgouLC4MGDWLz5s1ce+21Vds3b97MjBkz6jxmxIgR/PjjjzW2bdq0icGDB6vqxm4vVGXBNNG8rQZMUlNkYx2uWLVi9vMjBCkG5NQpQi/pcq5GTKmpABj9/RWWpJnISpOdtFKRa3eF2InlQ+bmzp0ZdeAAvezEqm4QorKFipMT+kviZNSMHLReVk/jXtUhRGXmLYCC2c0tVv1cXFx47bXXyMrK4vDhwxw6dIjMzExWrlxZp/XF1ixcuJD333+f1atXc+LECRYsWEB8fDz33nsvUOlaq16C/d577yUuLo6FCxdy4sQJVq9ezQcffMDDDz+s1CnYNXIWTLoQVNiJ4pQqZZEY6yhJoVacXFwIkszeqSdPKixN00jNyAAgxE5qB8nk+PtzAkg9c0ZpUZpEnsmEE2BUSbhEU5k7ciRLgf528rKqq6hQfQuVupCNAWXNrNM0btw4HnrooVbNHRsbi06n4/Dhw00+prykhBggDhB1KE06nY5169a1Sq6m0Gp1zcPDgz591Fe79cYbbyQjI4NnnnmG5ORkevfuzfr16+kgZcEkJycTL5mvATp16sT69etZsGAB//d//0d4eDivv/664jWa7JWgrl3RUdlLJeP0aYy9eystUqOYpEzIEMlKZi+EuLpiKi7GdO6c0qI0CXu06AHcHxvLZ8ArGzbwsAV6dlmbeV26cC9QMn260qI0D1mZthOLnl5WOuyktpuMh4cHYYCbla1j8+bNo6CggO+//75qW2RkJMnJyQQ1o2F3WXEx2VQqLR0UdIE261NeuHAhzz77LJ6enjUCoOtCDQ17582bx7x58+r825o1a2ptGzt2rCpqTDkCBjc3AnU60oXAZAdKkzCbMUk3P6MdBPlWx+juDsXFmKq9BKiZsuLiyiaydtB8ujrGgACIjcVkJw9zUlPtqoWKTLHUSqUsJgZ7qJiWX1hICuBjNhOstDDNwN3TU7FWKk5OToQ2s5F7mVS3y2CBgPLW0Cx17dChQ1W1DA4dOlTvT3NMbhqOi9HFBYDUVqY624K8xETkilvBl2SEqh2jlEVikoqgqp2N/v6Ugioy55qDUbKApGZmKixJE7GzFioymxMT6Qbc8ccfSovSJIpLS8kCCqVsayXZsGEDo0ePxs/Pj8DAQK666irOSvdf2SW2du1axo8fj0dQEP1uuYV9f/5ZGS8EZGRkcPPNN9OuXbsqL9IXX3xR73zPPPNMnZ6mQYMG8fTTT7N06VK++OILfvjhB3Q6HTqdjh07dtTpnjt27BhXXnklPj4+eHt7M2bMmCrZDxw4wNXXX8/ll1/OiHHjFDVwNMvSVL1J70cffUS7du1qRcQLIUiws+ahGtbhprAw0mNjad77hDJknztHEFAKeNhJlWoZo78/xMWRWk8NMlUhBEixNvbSQkVGdifK7kW1888DB8gCni4qQt123poYpczb1GqFg9VAQR2Vs81mM3n5+ZRUVOBcLXasrn1l9Ho97tWC3Ovb17MFbbMKCgpYuHAhffr0oaCggKeffpprr722hnLyxBNPsHz5crpER/PY/Pnc9OSTnLnpJlw8PCguLmbQoEE8+uij+Pj48PPPP3PbbbcRFRXFsGHDas135513snTpUg4cOMCQIUMAOHLkCIcOHeKbb74hKCiIo0ePUlhYWOXdCQgIIOmSF7zExEQuu+wyxo0bx7Zt2/Dx8eHXX3+tSjLLy8vj+muu4f4HH8THYOCbn39m2rRpnDlzxuYljlrshO3UqRPJyclVb18ymZmZdOrUiQqtCWCb56lhwyA21i7Ss9sbDKQBFXYWzwQXA6pN9mABKSiAoqLK/9uZBSREShAw2UnbiV+yskgA/mNHPSsBQqQkElNFBcJsRqeSFH4vL696/zZq1CjWfvxx1e9Go7HeYoljx45lx44dVb937NiR9PT0WvuJFliuLo3B/eCDDzAajRw/frxK/ocffpgrr7wSgH/ccw/f3Xgjx48epf+wYURERNRIfnrggQfYsGED33zzTZ1KU7t27bjiiiv48MMPq5SmDz/8kLFjxxIVFYXZbMbNzY2KiooG3XH/93//h6+vL19++WVVgHpX6ToAmDBhAt3Cw0nOzyfY3Z13rr4af39/du7cyVVXXdXsdWoNLb4a6/tA8/PzGy0IptFGsKeATklGp3rqeKmZYX36MB+Y3MBNXS3EHzrEBOAOJyews4e5bAGxhzIa9hyjF9ytGwDFQL5Uid0eUENpmrNnz3LLLbcQFRWFj48PnaRrtnrSU99qZUlCgyujsJIly09FRQXPP/88ffv2JTAwEC8vLzZt2lTj+Eu5++67+eKLLyguLqasrIzPPvuMO++8s1lyHz58mDFjxtS7hiaTiUeefprrrruOPsOH4+vrS35+foNyWYtmW5rkAHCdTsfTTz9do11IRUUF+/fvp3///hYTUMN+qQgKIgMoP38e1TtipNpB9mb9AJgwdiwTXn3VLrJ3Ek+cYDvQUeFgzpZg7NIFUJ8FpC5yL1yw2xg9T6MRT6AAMJ08ibdKAtnz8/NrbTObzRw/fJhyvR5DtVI7DSULXBrSEhsbazEZp0+fTmRkJO+99x7h4eGYzWZ69+5dox1MdcXERcqcK5P+/uqrr7Jy5UpWrVpFnz598PT05KGHHmqwncz06dNxdXXlu+++w9XVlZKSkmZnnbs3UpNrzpw5XJBKAg3o2pXwLl0YMWJEk9vcWJJm32UPHToEVFqajh49iosU7AuVtZv69eun1TbSAGD1mTPcA0zfvp0flBamEd75+We+Bm7KzORupYVpLrKiJyt+KsYkPSBCVFDLrbmE9OjBPCAEKM/MxLkZ6dK2xnTqFABegIeK5awPo8HA+fJyUmNiiJ44UWlxgLpjjMxmM87u7jgBztWu6ebEI7UkdqkuMjIyOHHiBO+88w5jxowBYM+ePQ0eY5AUODl2aPfu3cyYMYNbb70VqDy/M2fO0KNHj/rHMBiYPXs2H374Ia6urtx00001jCkuLi6Ntijp27cvH330EWVlZXVam3bv3s3/Pfkkt4waha5TJ5IKC+t0adqCZitNcjD4HXfcwWuvvWa1njUa9o8xMhIAUx1vaGrjaFwc24CRKsiAaS7CaCQDMKWk0EPlFpBUyZwebGeuOQA3f3/+z9sb8vIgMxNUrIyYYmKASuXDHglxc+N8fn6Vkq1WREUF8h3DoHBYir+/P4GBgbz77ruEhYURHx/PY4891uAxBsnSJMcgd+7cmW+//Za9e/fi7+/PihUrSElJaVBpArjrrruq9vn1119r/C0yMpLt27dz6tQpAgMD8fX1rXX8/PnzeeONN7jppptYtGgRvr6+/PbbbwwdOpRu3brRuXNnPv3+e4ZERZGbm8t/lixp1DplLVp8d/3www81hUmjQYwdOwIXi0aqGVNWFgDBduieK/T0JBjoVVpKvsoz6EySfCF+fsoK0lLkmDeVx+nJyobRTuNLb+/UicVAl2qeDDWiM5sZCPTX6XBSWFa9Xs+XX37JH3/8Qe/evVmwYAGvvPJKg8cYJKVaVpqeeuopBg4cyBVXXMG4ceMIDQ3lmmuuaXTuLl26MHLkSLp161YrYHz27Nl07dqVwYMHExwcXEupAggMDGTbtm3k5+czduxYBg0axHvvvVdldVq9ejVZOTkMuPVWbvvnP3nwwQdrJaHZiha/hjzzzDMN/v3pp59u6dAaDoIcgJpqB72NUvPyAAixs4KLUDMGJPXECbxVnMpvSksDIETFVpqGyA4IIAkIPnOG4NGjlRanXnJTUytbqNhBckBd3DdsGBw9qvo4PV1ZGTrAyWBAp4I4vcsvv5zjx4/X2FY9aevSBK6gwEAOHDiAn6ScBAQENNqKpHrmX/VxU1NT+ec//1nrb0FBQWzcuLHO8kTV6du3Lxs3bqxzzn59+/LFRx/hDET27YvexYVZs2Y1OJ61aPEV+d1339X4vaysjPPnz2MwGIiOjtaUJg1CJHNtIVBgMuGpYiuOSUqDD5GyTewNOQbEFBNDZ5XEgNRFqmTRM9phliLAHQkJrAPe3LSJ++64Q2lx6mV2VBS3AcVTpyotSsuwl8xb+YVQBZlzLcHTw4OwzEzcW+HSN5lMfPLJJyQmJnKHlb4T5UVFZAM6oL3Ca91ipUkOCK9Obm4uc+bM4dprr22VUBqOgWdICO5AEZVZMJ1UrDSlSpXujXZYpwnsJwakrKgIPfZp0QMw+vpCcnKVm1G1mEzoAQ8VWx0botDPjwRAnDmDmnP/cnJzyQC8zWbUe3erHw8vLzwa361BQkJCCAoK4t1338Xf398icl1KmRTiYQDFLXoWjRj18fHhmWee4amnnrLksBp2ik6vxygFGppU3Bm+ND+fLMm0a7Sz9GwZ2Q1jUnk1/rXBwZQC19m4IJ2lMEpuxVTJzaha7LSFiswPCQl0B+777TelRWmQouJisoACO0wgAS66P6WXxpYghCAtLY1bbrnFQkLVplxSmpxVkORicQmys7PJsZM2AxrW51ajkX8BAa34Ulqb7LNnCQacgQA7tTQZpYyUVLUXA5RaqDjbqQXEKFU1NmVnKytII/xr716uB/6wg8zVujB26ABAqlw9XqWUSe45OQvN3hAGQ2URUbMZs4pjT+U6UgYVKE0tds+9/vrrNX4XQpCcnMwnn3zClClTWi2YhmPw3MCB8PPPqg7oNJrNmICKkBD0KpazIYxSvzyTmi0gZWWQkVH5fzuNaZLdiiYpcUCtbE5L4wQwzw7rYQGEREcDYFLwZaspgcVyfSM1VANvEU5OHAME0KeoCFcb93FrKmXSdeDcSuXUEsHiLX5CrFy5ssbver2e4OBgZs+ezaJFi1otmIaDYA8BnXILlQZ6I6md0X368MDevYxT6U0PKuPabgDCgc/8/VE+16j5yBYQU3GxwpI0jKxs2FsLFRmj1HcsQwjKi4ow2LAmj5P0YC4tLW20FlCZ2QyAwU6VJp1OhzOVjcrLiotVqzSVS9dzay16cj/A1ii5LVaazp8/3+JJNdoOFcHBpAPm8+cJU1qY+rDjFioyU8eNY+o774CK69okHT/OTsCo16OzV4ueZAFJVbG7uaywkAw5Rq9a01N7IqBzZ/SAGUg/fZrQfv1sNrfBYMDDw4O0tDScnZ1rpcpXp1SqbyT0eopVrkjXh16nAyEoLCzEYOFzMJvNlJaWUlxc3OA6NkaJ7Dps4ToL6fxMJhN+fn5VinFLsM87l4bd8PqpUywEbtq0iS+UFqYePlq/no+AmdnZzFdamJZiB61UTOfOARCiYsWuMSJ69+Z+IEQIREkJOhW6v9JPnwYqA1YDJCXP3nBycSFIp8MkBKmnTtlUadLpdISFhXH+/Hni4uIa3Dc5LQ0zlQ9S14ICm8hnaTIyMigymxFFRXhJlhhLIYSgqKgId3f31mW9ZWbiXlxMrtlMfisMNn5+foS20qPQLKVJbtbbFFasWNFsYTQcD6MU8KvmGJC/z55lOzBAMrXbI2apOXJ6UhINNzxQjlTpAWRUqP2BJfDt0IH/OjlBRQWkp4NKmslWxyQpTUEqqFLdGkJcXDCVlGA6e9bmc7u4uNClS5cGG8Kay8u5ZupUSoCt33xDhJ3WeHvvvvtYGxvLglGj+OcHH1h07LKyMnbt2sVll13WurivBQvg5El47z3o27dFQzg7O7fKwiTTLKWprtpMdaF0HQUN9WBs3x4Ak4XfYCyJKTMTQLGy/JYg3WAgBCAnh7LiYsX7YNWFKTERgBB7br+k10NwMKSkVMbCqVFpkix6RjtWmADmtm9P9pkzdFDIlavX63Fr6HuUlsbJuDhyAPcePXBV4XeuKbgUFxMXF8d5f/+Gz7cFODk5UV5ejpubW+uUpr/+qvzOBQaCwuvcrKtRbtarodFUqmJAGnhjU5pUqURGiJ2mwQMEVosBSTt1ijAbujOaikkKuDcGBCgsSevICgwkKSWFsLNnCRgwQGlxapGTnIwBMHq0tmyhsvxr8GA4cwbUms5vMqED3L290avQTdtU5Or8qdLLo9owl5dzXUoKwcAKLy+UbgzUqqIH2dnZvPrqq9x1113cfffdrFy5UqvRpFGDkG7dAEgXggqVKk6yFcwYGamwJC1HjgEBMJ06pbA0dZMqlRsIsWOLHsCNycn0Bn7avFlpUepkVocOlAI/Xn650qK0DrVn3krxg6VSjTR7ZdTAgTwF3KTS88g6d451wHuAiwpebFusNB08eJDo6GhWrlxJZmYm6enprFixgujoaP78809LyqhhxwRJ2TsCyFBpVfBUqdqsvbZQkZHdMbJ7Rm2UFhZWNpENU20eZZMwSu5F2d2oOiQLiL22UJEp8PPjJHBaitFSG1u3beM6YJWKi0I2hWEjR/IMMEOlVc1TT54EwF+nw0UFDahbrDQtWLCAq6++mtjYWNauXct3333H+fPnueqqq3jooYcsKKKGPWNwcyNQtoCo8OYnzGZMUgB4iJ2mZ8vI7hhTfLzCktTN5+HhlAK3zZihtCitQnYvpqrVAmLnLVRkvoyNpQewcM8epUWpk7+PH2ctcEDF5SeahMotenIiQIhKamG1ytL06KOPYqgWpGcwGHjkkUc4ePCgRYTTcAzm+PvzL8BbhXVM8hISCKDyixBsp33nZIxSYbpUtVpAUlPRA84qDJ5uDnLCgEmlMSCP7tzJLODX3FylRWkVsrs8VaWp/CbJPeev0oKQTcUcHMxpYE9amipDKFKlJuRqybptsdLk4+NDfB1vtAkJCXjb+UWkYVmW9+3LKqCDCrMqfYqKSAVKfXxwU6lPv6mESBYQkxprNQnhMBaQEMm9aFJp/Oa2lBS+BTJV8mbeUkKkFH6T5D5XG6np6QD42XM2KGAOCKAbMEYIVYZQpF64AECISvSKFitNN954I3PnzuWrr74iISGBCxcu8OWXX3LXXXdx8803W1JGDXtHzYUXHaCFisy4Xr14EBilAr//peQmJDC2tJQbgAqpT569UlVGQ60WEDlGr2NHZQVpJcYuXQAwVVQgVFhDTVaafe08G1TtIRTyS6DR319hSSppcQGM5cuXo9PpuP3222s0Lbzvvvt48cUXLSaghv1TLhVe5Nw5VNem1QFaqMhcM34813z2meJ1TOoi5cQJdgHegJMKlbrmYJQsIGosoyHMZkxSaw9Z6bBXgqXM22IgPzkZb5W5dVPz8wHwtvOXAACjszMZpaWknj1Lb6WFuYQMOes2KEhhSSppsaXJxcWF1157jaysLA4fPsyhQ4fIzMxk5cqVuNpxzQoNy/PiyZOEAk9u3Ki0KLX4cv16xgMrVOpqaRYqDug0xcQA6gnmbA0d+vRhPvAAVLodVUR+Sgpy5KDRzmP0PI1GPKX/yxlUaiJVitH0ClHdq2CzkeOFTI20jVGCN7t0IRd4SCUJJC1WmoqKiigsLMTDw4M+ffrg6+vLu+++y6ZNmywpn4YDYFRxDMiJc+fYAcSo0PzfXMxBQZiAk1IMgJqoCuZUoRWsuRh79OAN4NGKClBZsLVJUi48qVQ67J0QKdHIpLZYGyHIkSx6nnZeQgMuVulXYxkNXVoa3oC35BZXmhYrTTNmzODjjz8GKotcDhs2jFdffZUZM2bw1ltvWUxADftHzoIxSeZsNZGalgaAUSWm39YQV1ZGCDAwOVl1MSAmSZEz2rlrDgB3d5CDUlUWpydb9IwKtR6xNPeGhbEEUJ1aUlBAJpAF+NppU+TqyPFCqkwikWVSiUWvxUrTn3/+yZgxYwD43//+R0hICHFxcXz88ce8/vrrFhNQw/6RA1JTVVhywJSdDVzMiLJnZHdMEZVuGjVhSk4GIMTPT1lBLERGUBB/A9kKNJNtiJwLF3AGjA4SIvGfAQNYDHRSW+Ztaio6wNfDA+y8XQ1cfGmUMwLVxPXx8dwNZKnkmm6x0lRYWFhVWmDTpk3MnDkTvV7P8OHDiVPQLxobG8vcuXPp1KkT7u7uREdHs3jx4ga7VQPMmTMHnU5X42f48OE2ktqxCencGQCTCivnytYvY7t2CkvSeqrHgJhUFgMi34wdwaIHcHV6On2orAqtJqa0a0cJsO2yy5QWxTKoNU5PZdaP1jJu4ECeBmaq7KWmwGTifxUVvA8YVPJi22KlqXPnzqxbt46EhAQ2btzI5MmTgcqmnD4K1q04efIkZrOZd955h2PHjrFy5UrefvttHn/88UaPnTJlCsnJyVU/69evt4HEjo+xRw8ACqj8EqgJ2fpl7+nZMrJbRnbTqIXS/HycgBAHKO0AF92MJrXFjzlICxWZfD8/TgAxKuunuGv7dq4FXlbhi2BLGDNqFEuBaSqz6KWeOAGAG+ClkntHix3fTz/9NLfccgsLFixg4sSJjBgxAqi0Og1QsPP3lClTmDJlStXvUVFRnDp1irfeeovly5c3eKyrqyuhKvlgHAmv0FDcqEwdTjt9WlUBqiapBYJsDbN3jK6unC8vx3T+vNKi1OD9yEjejYuj4tprlRbFIhh9fSE5mVTJ7aga5JcSB7GArD53jn8BN+zcyVdKC1ONE8ePsw4oLy3FvnMUJeTrRWUvtXICQIiTEzp9i208FqXFStOsWbMYPXo0ycnJ9OvXr2r7xIkTuVZlN8acnBwCmlCAbMeOHRiNRvz8/Bg7dizPP/98VcuEuigpKaGkWrXaXCmTpqysjDIL9iOSx7LkmLZmrpcXzvn5OGVkWPw8Wro+pTk5uAP5gH90tF2vr0ywlxcUFJAUH19rXZQ8P0NKCnrAbDSqbp1bsj5BUm2e1LQ0VZ3Pc1u38jdwb2Ym4ywkl5LXT6D0Epual6eqdU5JSgIuNm9Wk2wtocLHhzjAlJTEcBU9u5KlmEGjq6vV17ip47cqxSI0NLSWZWbo0KGtGdLinD17ljfeeINXX321wf2mTp3K9ddfT4cOHf6/vTePj6o6H//fM8lkJYTsk4QkQBAChE0QAVEQZBVQUYv6sZWq1KVQEW0rdUOtRa21aq1trX7V1gX9VbEqWIgLmyyy70QgK0kmgUD2kG3u74+cG7YQJsncuXfunPfrxYtk5t5znvvkzJ3nPudZyM7O5vHHH2f8+PFs27btgnWnlixZwlNPPXXe66tWrSJEg+DAjIwMt4/pKZ6x24k4fJhNP/zAdo3maK9+go8dwwE0+PmxfM8eLPv2aSOYBwkV23MH9+49b3tZz/UzrbAQG7Dm4EGqDJhFCe3Tj1PUZ8pzOAy1jf9Nbi7fA8Py8qhxs1x6rJ8TNTUAOKqrDaXnI8KTa/PzA7z73gxQf+IEPwGoq+P/++ADbG6ObeqofnZs2gRAN5tN879/jVhrF8Nr8lIXL17cqoFyJlu2bGH48OEtvxcWFjJlyhRuvvlm7r777jbPnT17dsvP6enpDB8+nJSUFJYvX86sWbNaPWfRokUsXLiw5feKigqSkpKYNGmSW+O6GhoayMjIYOLEidi8tDig3xtvwOHDDE9JQZk2za1jd1Q/FtFY2j8+nmunT3erTHpRM2wY9oICJicnc43Qs97rp66iggk1NcQBb117LcEGq+zcEf3UfPMNbNhAZWMj09y8njvD78TT8mVXXcU4N8ml5/rZ19AA77zD8aYmQ+n537/8JQB9RNVyb743Q3Ml+aA77+QUMKh7d3q6KZGgs2tnt8jE7x4bq/nfv8LFmmteYzTNmzePW265pc1jepwRzFtYWMjVV1/NqFGjeOONN9o9X3x8PCkpKRxqo6haYGBgq14om82myQdIq3E9QWNMDCWAX24uMRpdQ7v1I7rUW+LivFav53Lr+PHc+vnnzWnQ51yTXuvHcfgw62i+2XzUvTtWg9YQao9+4nv1AqC4ttZQa0eN0Yu/5BK3y6XH+kkcMACAUkXB0tiIv0E63R8T3tI4kXXrzfdmlVg/P/KamjiRnU2fCRPcOnZH9XNS3KPt0dGa69fV8Y1592qF6Ohool1MVy4oKODqq69m2LBhvP3221g7EEBWWlpKfn4+8QZJc/R2Hs/M5DnggRUrePnZZ/UWB4BlX33FK8CUykoe0VsYd2HAgE41mDPWajWswdReUgcNYj7Qw0DX03jqFKVi2zBWeEC8ncjU1OZYOOBYZibxQ4boLFEzxbW1AMSlpGDMts3tJy4oiLzqakMlkbzUty9P79yJc+ZMvUVpwRjh6G6ksLCQcePGkZSUxIsvvsixY8dwOBw4zin2l5aWxrJlywCoqqri4YcfZuPGjeTk5LB69WpmzJhBdHS04YLavRU1oL7k5EmdJTlN5uHDrAEyDVY9uzM0RUVRDPyYn6+3KC0UnxHMaRaSBg/mVWBhbS0YpHFv6eHDKIAFiPLyZr0qfgEBxIiH3hIDlR0oFx69aOFxNAOxoc1V3gxVRqO4mC5A15QUvSVpwTiPSW5i1apVHD58mMOHD9P9nIKFyhnNNTMzMykXvdD8/PzYs2cP//rXvygrKyM+Pp6rr76ajz76qKWAp6RzxIo4lhID9eoqFt6YWBcyK72FA1VVDASis7I4prcwghJhwMWZoHJyCxER4OcHTU1w7BgYIE5LNSqiLRb8AgJ0lsZ9zI+Joam4mCij1ESqr6dQUagAAkaMIHe7VqktniUuPBxKSlqq9xsC1WNuoDI1pjOa5syZw5w5cy563JkGVHBwMCtXrtRQKkmsaLZY7GKGgicoEfvlcSapaQOnt2VKFYXGU6fwN0CD3BI1PTs8XGdJ3IjVyvGoKIpKSkjJyqKrAYymsrw8bECMiQwmgEfT05srcJ9xz9aVY8eaW6j4+dFgoC/zzhIbFQWHDrU8TBqB2w4fJgR41s8Po9ylTbc9JzEmscKNXWKQrQxorv0Cp71gZiCqd2+sgAIc//FHvcUBTnv04kzk0QO4pqKCQcCGtWv1FgWAK2NjqQM2X3653qK4F6O1UlHliIkBgxRcdAcTRZ+/6aJ5r940njrFh/X1vAVYYmL0FqcF8/zFJYYmtk8fAI4rCk0GMZxKhNdL9YKZAb+AAKJFKwSjxIDUVVbij7k8egCxYruxJC9PZ0kEDgcWoIsJ+iieSWW3buwHsgyynjevWcP1wO/1FsTNjB8zhsXARIMYgsfE39uKsWL0jKEdiemJFkaTEzhhkM7wqtcrLjVVZ0ncS6zYninJytJZkmZeS0mhDnjAZEkVajXo4oICnSURqE1kTdYK6rUjRxgAPGOQ5siZ+/fzX2Ctl1cBPw/Vo6euI50xaoyeNJokHsEWEsLcwEAeBCylpXqLg9LYiM3pxI/TXjCzoHpAinNzdZZEUFKCFbCZaBsUTicQlBhk2+j3q1YxC1glElzMQqwo+1JikOtSjeQ4HRvTa0FjZCQHgQ0GeQhQH/piDWQwgQkDwSXG5Y1eveDAATDAE5rl5EnyafZ8WUQBPbMQ17UrnDzZEoCtO+qTq4mCZgHi1DIaIqFAb9bm55MBXG+Q7RV3EZuUBEBJtTEqIpWYMOsWoDQggH6ApayMhvp63b076kOf0bJuzfXpkhgbI7l/hQzWqCgsXl7J91ym9u3LAmCIAaonOxsbGedwcBNQboBMPndiNA+IQ8To2Xv21FkS9xInrqf4jOboelKsZt2a7CEgqndvLDQnkZS20QnDU5Sc0xTZKEijSeIxGqKjKQKOGyHWxoD1P9zFT8eO5c/A1QYwmk4cOcIa4BMg2EQB93BGGQ2DeEBUo8Leu7fOkrgXdfu8uKkJxQCFaFUjOTYhQWdJ3It/UBBRIomk+OBBnaWBUoNm3UqjSeIxFv74IwnAywboVr78q68YCzxz6pTeorgfA7VScezbB0CUxUJAly46S+Ne+g4ezK+AOw1Q6bzx1CmOiTpGcf366SyNe4nr3x+AeqDcAJmKaq25OJM9BICxkkieTUujClg8Y4beopyFNJokHiNW1NpwHNO/VnXmjz+yFjhggCdXd9MUFYUDOGSALxiHcPPbDRbM6Q56DxvGK8C8mhrdCy8ey8xEofmGHm2yxIbgyEjUsqhFe/fqKgtAhci6jTVRCxWVOOGdNkQZDYeDUCC8Rw+9JTkLGQgu8Rh2kT1VXFamryCAQ7QKsEdF6SyJ+9laWspIIGn/fvS+9RWJ5p92gwVzugW14F59PVRUgI4Vzx0HDgDNTZH1DuDVgoVRUVhLS+mmt2fY6eSwaKESMmaMvrJoQGxYGJSVGaP/nNov1mAlNKSnSeIx4sUTg6OqSl9BAIcoe2A3WcFFAHtaGmCMGBCH6DtnN1MLFZXgYI516cJuoErn2mNlubkEAnEmNJgAnkhP5zEgXu/M29JSLE4n4RaL6UpoAMSKauDFBkjWuf3gQe4GHP7G8u1Io0niMdQAVYcBsmCKhLcr3oRxCfaBA4HmGJCynBxdZXGIm298dLSucmjFlXV1DAa2rVunqxxX2+3UAt9fcYWucmiG6m1QvQ96oTazjY4Gk2XdAkwbMoTFwCSdW6k01dfz4alTvAWnYzQNgjSaJB7DLgJUHU1NOHXuWO4QGU92g+2Xu4PArl2JEFkweseA1FVU4A/YDeZidxfqtqND78BZ0UIl1GQtVFQqo6LYBxwW25B6sXn1aq4Dfm+yWlgqU8aM4UlgnLh/6MWxgwdx0mygxAjPuVEw519eYkjULJhG9G+l4hDBnHYD9TRyJ3bxFOzQud7Ka0lJ1AG/uvFGXeXQCruoIVOkd+Cs6oEx2FO5u3g9K4t04JlvvtFVjsy9e/kcE7ZQUTGIR0+N0YsxYIyeNJokHsMWGsovgoJ4CLDomEHXdOoUgYqCH2AXhpzZiA8NBYzhAbECNlHV2WzEi0QCNbFALxZ//TU3AN9UVOgqh1bYhQfNoXMhUYcIkLZ366arHFrRGBPDQeB7nVswGTnr1lgRVhLT84/evWHvXtAxC8avtJSjgNNqxWKy9GwVu2ilogZi64ZBM2DchbrtWKRzGY21R4/yHXCzn5+ucmiFuo3u0LmQaJFYz2aN0Sv296cf4H/8OHWNjVh1CsJWs27jDVjbTXqaJJ5F/fLU88lc3PisdjsWk37JTO3XjwXAUB2rgtdXVjLmxAluAmoM1grBXRjGA2LSFioq8eLhRu8kkpasW9FCx2zE9u+PheYQCj1bqThE02AjevSk0STxKA2xsRQAxXrG2pjc+wFw+4QJza1UdMzwKd6/n++Bz4Egk37JxAsjpUhnD4hDxNiYNkZPJJEcUxQadfRSO8T2p92k2822kBCi1SQSUc1fD9QWKnYDevSk0STxKI8eOkR34AUdW6n858svuQp4ziA9wzTBAAGdDtG/Ks7PTzc3v9b0GTqUXwFzdby+uooKTqotVEwaoxfVpw9+NDeTLdm/Xzc5Wjx6JqwGrmIXbYH0TCJ58ZJLqAIWXX+9bjJcCGk0STyK6tYuOn5cNxkOHjrEOuCwzq0vtKQpJoYi4ICOAZ2Ow4eB0zdhM9JDtFKZX10NOmVUlYhMIxsQYdLtOb+AAGJFmr9Dx7ID5eJvHN+3r24yaI2aRFKkZxKJaKHS1YAlYcz5+CcxLEaIAXGorl+1DYYJOVBTw0Ag6sgR9IoecwiDzW7AYE63ER0Nfn7Q1NTcIFmHKtFnefRMGqMH8Ku4OJqKiojRq8ZbbS0FikIlEHr55frI4AHs4eFQWtqSKagLBg6hkJ4miUdR3dqqm1sPHCdONMti0jgbgPj0dABKFYX6ykpdZGgJ5tS5urCmWK0cj45mF1AuPGuepjw/n0DM7dEDeGTIEB4Fkpqa9BGguBgL0DUwEL/ISH1k8ADx4mGySMet/RuzsrgLKA0K0k2GCyGNJolHsatZMDoWh2sJ5jRhCxWViJ49UUPAi3WKAVFbqJjZowcwpbKSIcA6nQovXiNaqKwdO1aX+T2G3nF6asZvfDzoXDFbSyYNG8ZTwAyd+kVWl5TwaWMj/w8M2d9PGk0Sj6J6QE4qCqd02qJz1NYCYE9N1WV+T2D19ydObNUUZ2bqIkNDdTU2zO3Rg9Pbjw694sdEC5XghAR95vcQlRER7AUydYppWv3118wEntfL0+Uhxl91FU8AE3SK+VQf8oKBMAOuaWk0STxKt5QU1BqvxTr1RXOImAi7iYM5AeKFa9uh07bRG/Hx1AH33HSTLvN7CrWWTJFeMSBqR3oDxn+4k7dzchgIPL56tS7zH9i/ny+ATTr3zdQcnWvpOcRDnt3fH4sBe/wZTyKJqbFYrdzbpQsPA4E6eJpqjx2jG80ZEPYBAzw+vydp8YDo1RdNeED8DehidyfxsbHA6QQDT/Po119zPfCdSVuoqKjb6Q6drrNIxOjFmzlGD2iKjeUAsFqnh4Ai8ZAXr2Nh3raQRpPE47wyYAB/BOw6xDUFl5dzFKgLDaWLyZ/M1QBsNSDboyjK6dgTs2/PietTEww8zdrCQv4LHDdpLSyVeDWJRGyvexqHaJVjN2lTZJXqsDD6A1fX1lKtw4NAS9ZtWJjH53YFaTRJPI+eAZ1qCxWTf5EDTEpPZyEwUtRd8SSVhYVcUVvLjUCDiTONAOJTUgAo0skD0hKjZ+KCi3B6O12vJBLHyZPNchgwzsadhCUkECJ+dugQQqE2v7Yb9L4hjSaJx2mIieEoUPTjj56f3MD1P9zNTePH8ydgsg4eCMe+fWwAVgE2A/aPcif23r0BcOjU3qNYbaFi8hg9u0giqQSq1TguD+KoqmqWQxjJZsVitWIX94wiUQPMk5xQ+/uJbW+jIY0micf5w+HDJAGLv/rK43O/9/nnXAn8yeTxH8Bpw1CHL5giEcwZr2PvO0/Ra8gQHgDmQ/O2pAepLilBrcJl9hi9Lnb7aQ+IDn3RioRRrBrJZkaNJ3IcOeLxuf+amko18KABW6iANJokOqC6t1V3tyc5cOQI64Ecj8/seZxxcRQCe3UIBHeIFgx2gwZzuhP7wIG8DDzY2AgeNsYLd+8GoAvGTM92J2d6QBweLqOhNDVRJUoNxJu0v9+Z2Lt2BaBIjzIaDgchQBcDtlABkxpNPXr0wGKxnPXvkUceafMcRVFYvHgxCQkJBAcHM27cOPbp2OXZzKjubYcOlapbgjkN6vp1J3lOJ4nAiKIiFKfTo3OrGXvqzdfUhISAep0ejtMrFDVtEnzAowfwy+7deRbwdD6mpayME0AFkDhokIdn9zzxIp6oqLDQ85OrpQ4MGkJhSqMJ4Omnn6aoqKjl32OPPdbm8S+88AIvvfQSr732Glu2bMFutzNx4kQqdWpBYWbUopJ6xIA4ysoAiBc98MyMul1TB9QJY9FTGD2Y090cj4lhJ3DCwx6Q8rw8goD4kJCLHmsGFl56Kb8Denj4IYCiIixAWGQkVh/wnsYLg8Xh4cbqzsZGphcWcidQYdCelaY1msLCwrDb7S3/urTxB1AUhZdffplHH32UWbNmkZ6ezrvvvktNTQ0ffPCBB6X2DVT3tqOpyfMeEDWY06CuX3cSFBFBN/FztYe36NSbrdnTs1VuOn6cocCqr7/26LwzExKoAb6aPNmj8+qGXpm3PlI+Q2Xc8OE8DfzEw57iE0eOsFxReBsISkry6NyuYtrCHs8//zzPPPMMSUlJ3Hzzzfz6178mICCg1WOzs7NxOBxMmjSp5bXAwEDGjh3Lhg0buOeee1o9r66ujrq6upbfK0Q8Q0NDAw1uTItVx3LnmHoSKfrP1QMlhw4R2clU6fboxyH+XtE9e5pGn21hDwigrL6e6sJCj15vU3U1AUBMfLzh9eyOz1dc165QXk5BTo5Hr9d69Ch+QED37prNa6T7T3XXruQDln376OtBeVZ99RX/AMbV1TH/jHmNpBt3MmLUKEYDSmNjp66tvfrJFzF6URYLlsBAj+rV1blMaTQ98MADXHrppURERPDDDz+waNEisrOzefPNN1s93iGeIuLOeSqOi4sjt41AuCVLlvDUU0+d9/qqVasI0cBdnpGR4fYx9SICOAks/9e/iBoxwi1jXkw/TfX1FAvP1uHjxylascIt8xqZKJsN6uupKC726Pp5NSCAd4D1ycms8BI9d0Y/ISJAOfPgQY9e77CtW+kO7C8rI0vjeY1w/9m2eTPPABO++Yb5HtTzurVr+QLwr6ggtZV5jaAbdxKelcU4oC43l5Vu0LOr+sn58ksAYv39PX7fqKmpcek4rzGaFi9e3KqBciZbtmxh+PDhPPjggy2vDRo0iIiICG666Saef/55oqKiLni+5ZzO1YqinPfamSxatIiFCxe2/F5RUUFSUhKTJk2iqxvdmg0NDWRkZDBx4kRsJgn4vCsyEk6cYFy/fiRNm9apsVzVz4mDB0kASoAb5s7FX/RmMzNLo6KgupqyY8c8un78774bCzDy+uvB4IGz7vh87f/b3yA7m9rGRqZ1cj23h/n33UcRsCglRbN5jXT/sW7bBt99R2l9vUf1vPrppwHomZR01rxG0o07cRYWsn/hQgrLy5l8zTX4XWCX5mK0Vz/vC6MpoUsXj/594fRO0cXwGqNp3rx53HLLLW0e0+MCcSojR44E4PDhw60aTXY16M3hIP6MPeuSkpLzvE9nEhgYSGBg4Hmv22w2TT5AWo2rB38cOhS++ab5Fzdd08X0E1dfTx7gjI/HatAS/e4mPjoa8vI4efKk59ZPXR2ImCZbjx5u+/tqTWf0kyDiL4rLyz36Gf32+HEOAQ9FRGg+rxHuP8miwGVBXZ1HZSkWBRfj7fZW5zWCbtxJU3w8AwGnolB46BDxQ4Z0ajxX9ePIzwcg0QPr+Vxcnc9rjKbo6Giio6M7dO6OHTsAzjKIzqRnz57Y7XYyMjIYOnQoAPX19axZs4bnn3++YwJL2katKePJvmhiLqsPZM6pjB80CMv27QzyoFft6Pbt3Az0slp530ey59S+aEXV1R6bU3E6KRRxGAk+UDsIIEF4LY8pCnUVFQR6KFC5QGTdJvbs6ZH59MYvIIBYqxWH04njwIFOG02uUiBKHCQYuCSM6bLnNm7cyJ///Gd27txJdnY2H3/8Mffccw8zZ84kWXTJBkhLS2PZsmVA87bcggUL+MMf/sCyZcvYu3cvc+bMISQkhNtuu02vSzE1DXY7+UDugQOem1StOWLyIoBnMn3iRP4EeNLRnbdrF5uAjVYrtLG9bSYS0tIAKKyv99iclYWFqCZa/MCBHptXT6L79EHdKHLs2eOxeQtEvEuiSGLxBexiF8WT7a7KVOPUwA+2pjOaAgMD+eijjxg3bhz9+/fniSeeYO7cuXz44YdnHZeZmUl5eXnL77/5zW9YsGAB999/P8OHD6egoIBVq1YR5iPbOJ7mH9nZJAMPeTBF+8+ffsoVwJtn/N1NT2JzGcDgEyc8NmWBuMkm+EjtIIDkSy/lAWCRoqC4GFDaWQqF0RAOhBr4ydydWKxWEkTQfYGHmskqTicFwqOXaPJWNWcSL8r0FGVne2zOfyckUA3ceeONHpuzvXjN9pyrXHrppWzatOmixynn9IiyWCwsXryYxYsXaySZ5EwSxXZGgQcNmD05OWwApunQwFYvlIQEioC8Y8e41EM1sQrETTYxPNwj8xmBrsnJvBwcDLW1zRWNRQFXLWmpBt7BIF1vJSE4mJzKSgo95AGpzM/HBpwCEjy0TWUEEiMj4dgxCjxZ462goLm/YCfL0GiJ6TxNEu8gQXRkL6it9dicBcLbkmjyLuVncioqikRgVEMD5SLIUmsKRexYQgdjEL0Si6XFq+epOL0i0Uw1ITTUI/MZhTv79uUPQH8PGYtdKyupACoiIgj2kRg9gESRIFWgtjXRmqam0y1U1M+SAZFGk0QXEkUMRlFTE87GRo/MWSiqgSd4wAtgFIIjI4kQcUUFu3Z5ZM6CkhIAEn0odgzgRGwsO4BCD20bVRcXEwwkRER4ZD6jcNcVV7AI6O+pbgLCCA4zcJyNFnQXMcBHReag1hw7cIDJTU3MBRQDbzdLo0miC/aBA7ECjUCJ2GbQmgIRpJvoI5lGKoniibzIQ0H3hSKYM8EHWtWcyfyCAi4FPvBQUb5fJCdTDbw5a5ZH5jMMHvbotczjYw8BI0eN4mngFx7yZObt2MEqYIXVisXA5Ruk0STRBf+gIOKszcuvQJTO15LaEyc4KeLYEn0oLgGaC8UBFIjtHK2x1NcTACRecolH5jMKieLpuMBTX+aFhVhobqHiS9TGxLAb2Oyhh4C3Pv+c6cC/PBTgbxTSr7iCx4HrhIdeawoOHgQgweBFh6XRJNGNRPHhKPDAza9w504AQoBwgzaC1IpEEYdR2EZLILehKHxrsXAKuHLqVO3nMxBqmnSBpzrD+2AJDYDNZWUMBn7moZIDW378keXAYY/MZiBUj97x43DqlObTFWRlNU/r4SbB7UUaTRLduK1XL34D9LRqvwwrRYmDHgEBWDwwn5FQC8UVeqIzfEUF1NRgwbeKiMLpwodHxfak1ly/fTvXAUfOyQQ2O2raf0FDA4oH4ppaEkh87GGLyEgybTYygIrMTM2nK1CrgRs8gcS3vj0khuLBq67iecATZfmGhISQC+wVLXV8CfVmX+CJgE51a6pbN/ChOk0AiR7MCFWcTlbW1PA5YGmj1ZMZSRg8GIBqoMIDW6EFoidZog8lkABgsXCtojAJ2LVunebTFRQXA5AgsvaMijSaJPrhyVYqYivD4mPeD4BLhw1jIXBLcLDmc32/ahUjgQd9zJsHpzNCCz2QEVqWm4u6YaIaEb5CaGwsagWwQg9khBbW1QGQ2K+f5nMZjUQRBF7ggZpY3lISxvfubBLD0ChaqRz0RJE6H82AAbj0qqv4E3CbB+ISDu/bx2Zgn+YzGY/4wYOx0JwRekwEtWpFoUieiLRYCOrWTdO5jIha0LNA48zbhpoaSsQWYKLoe+dLdBdr66iIN9KSKuGhTezdW/O5OoM0miS68W1JCcnATVu3aj7XA19+yRXAlx6KNzEUqqFYUgKiHYRWFIrqwb5WOwjAFhLC70JD+SMQoHEweKFInoj3sWrgKokiI7TwsLbh2UW7dqEANiBabL/6Ei0ZoWrSgYZsCAykBhg7ZYrmc3UGaTRJdKMloNMDTU63FxezAagRN1ufIiaGo35+bFEUqjUuO6BWD070sTgbld+npfEwEFFZqek8+SIwN8lHe2MmCqO8QOOM0NLMTMKAeD8/rD7Ufkmlu5oReuyYthPV1EBZGcFAgEioMCrSaJLoRqKIxShTFGo0fjL3xS7lLVitXKEoXA7s1jigs1D8HRN8MHYM8FjhxfycHACSDJ5ppBU3Dh3KEmCCxv0Nh3bpQgVwcNgwTecxKmqPUM0zQtXPS2goyJIDEknrhCcloeZXaRnQqTidFIrAXDVY19ewqzEgGqcOt2QaGbjhppaURUezHcjUuGBr/cmThADd4+M1nceozBg3jkeAEVq3YBLbUsGipYivkZiWBmifEbr122+ZBDwaENDcx9HASKNJohsWq5VEUS6/QMN+XSeOHKFO/Bzvg8GcALEiC6YwO1vTeQpFsLl6s/U1/pqXxzDg+a+/1nSeZ+12qoBFt96q6TyGRfXoaR1ro3pADNxAVksuGTGCZ4DfKwpoWBPrx927yQA2eEHNMWk0SXTFEymtaqPaaIuFQIO7frUiWlx3wdGjms2hNDYS2tREAJAg4tV8DTVdWk2f1oz8fCyAzeDxH1rREBvLbuBbjWP0Hlu+nGuBVdXVms5jVKL69eMxi4WfOp3NiSQaUSC2mxO9IBNUGk0SXVE/JOqHRguO7mtOgE8MDNRsDqMTKVqpFGh447M4HBwEav38SPCx/n4qarp0gdb9ukT1ZHw0dux4SAiDgYnHj9OoYSmN7wsKWAGU+uq9w2YDtdikhnF6anaemq1nZKTRJNGV6QMH8ltgpIaFF+sdDlKAXl7wFKMVEWrqsJYBnaLcgLV7dyw+mGkEkNi/P6BtRmjF0aNcWlnJdUCjj8Y0xaWnYwOcNJcF0IoC4WFK8LHm02eSFR3NKiBP9O/UgqMiOy/RCx4CpNEk0ZVbJk/mOeBKDffLr4+MJAf4ZNYszeYwOt1ETEa+lh4Q1fvho0GzAInCw6ZlRmj+tm3sANZaLPhrnD1mVKz+/nQXhnne9u2azKE4neSLumbdfTSBBGDhsWNMBpZrGKeXJx7mUrygFpY0miT6on7BCi+FJoixLQYvz68l0X36sBB4CDQL6Pz7Rx9xOfCqKO/gi3Tt3h21Elj+li2azJG/Zw8ASb66ZSRIFvGQeRpVBT+emckpwAJ0Hz5ckzm8ge4xMQAc1fAenSey85K9wDiVRpNEV5zdu3MU2KxlQKf6YfdhD0hIr168aLFwX2MjaFSobt/hw/wAFPlolWpozghNEcZMnkbbRkdF0oSvFrZUSY6KAiBPo6rgedu2AWC3Wn02gQQgUWwBH3U4NBm/obISRTzIJXuBcSqNJomulHfrRhIwsqyMWo0yjsZs3swVgAc63BkWxd//dDsVjaoo5wljLNmHPXoA83r35kUgVaP06Xzx9/PVwpYqyeLLPF+jjNA84dFLCQm5yJHmJjk1FYA8je7PtuJiioHq4GAixVxGRhpNEl3plpKi6XZGU309P9TVsYFmb4svcyw+ns3A0R07NBk/v7wcgGQviEvQknuvvJKHgF4aFQTMF61quvtg8+kzSe7RAzhtrLubyqNHCQOSfbCP4pkki+SGXK3iIcVOQEhKChar8U0S40soMTUWq5VkDbczivfupQHwo7kLvS/zQEkJI4GPV6zQZPw8kfqd5AVxCZqibgNr5NHLLy0FIMlHazSpXDFmDEuA+zTyBP0sLo4K4N833aTJ+N5Cimghk9/YSJMWWaFeFj4hjSaJ7iSL2Ixc0bndnaiZNYl+fvj5eOBskmiim6vBl3nN8eOUiu0ob4hL0JLa+Hi2A+s0imkKqKsjBEjy0arrKgOuvJJHgKlaldEQX+ZGbyCrNQlDh+IHNKJNeYe//ec/TALe1bDeljuRRpNEd5JFdkZeVpbbx84ThS3VTBtfpmU7Q4MCl+rWahgQ7iVPjFqxraaGYcAdYu25FUVhOVAFjJs+3f3jexNJSc3/nzwJlZXuH199uPDx9ewfFMSLERG8A4SdPOn28bcdOkQGkOcltd2k0STRnWRRQyhPgz5SeYcONc/h43EJAEmiQF+eBk/mlVlZpAK9g4KwGLzhptao2xlHtdjOKCuD6mosgFU1GnyVrl3ZHxbGcqBUBG27k3G7djEdKNCw8K63sGDgQO4AwsXWsDvJE/XMkr0k5lQaTRLdSRGtJ/K0+ECKzJokH62cfCZJollxngZu8OFBQRwGto0b5/axvY34wYPxAxoAx+7d7h1cbTcUGws+ntUFcEtDA9OBLd9959Zxa0+cYE1DA8uBYC/I6NIcNSNWg639PBFgntyvn9vH1gJpNEl059JRo/gNcJcG9X261NaSAvQUW1O+TPJllwFwXFGodvcWnagGbvHxrQxo3s7o7ucHuL9a9Yr//IehwCNifF8nWdRPys/MdOu4R0WNplAgwsdjmgBKRCuV7zdtcuu4itNJnvDGJntJv0ppNEl0p/9VV/E8cFtZmdurVf+hSxdygHv+7//cOq43Ep6UhFqiL3/rVvcO7mUZMFqjxtDl7t3r1nEP7t3LTiDHS+I/tKYlHjI7263j5omyHCkBAV6RBq81n5eWMhl4dsMGt45beugQamEOb6m6LleDRH8SE8Figbo691erll/mZ/Go3c7LQKSbA2dvXbGCy4E1PtxC5UxSNKpWnS2Mg54iDtDXSRYNXt0dD6lm8ib7cCXwM0kRW2e5FRVuHTdPPLzFe1HVdWk0SfTHZqMwLo7vgePujAGpqQG1aaqvB80KfjNsGA8AsW6++W0pLeUHaI61kbRUq85Vmxi7iZziYgB6eEnQrNao1apz3RwPqXqukn286rpKytChAOTW1bW0PHEH5VlZRAPJXhRsbzqjafXq1Vgsllb/bWmj4vScOXPOO37kyJEelNy3uamqijHA6v/9z21j7v/6axKB6f7+0K2b28b1ajRokNxUV0duYyMAqaNHu21cb2baFVfwR+BWN/eHyxFV13sOGODWcb2VniIOJtvN1apVz5XqyfJ1kkeMAKAaOOHGPqFXd+3KMWDd5MluG1NrTGc0jR49mqKiorP+3X333fTo0YPhF9kznTJlylnnrdCocrLkfHqI7YzsgwfdNuaRrVspBApttubtPwlVdjs/AJvc2LLm6JYtNAIBNBfCk8AVEybwMDDGjV/mitNJdl0dAD1EWQNfp9eoUQDkNzVR70Zd+1dVEcbpzF5fJygigjgR25X7ww/uG1jU5rN5kZ5NF00YEBCA3W5v+b2hoYHPP/+cefPmXbR+TGBg4FnnSjxHalIS5OaSpaZUu4EsEYTbKzLSbWN6OytOnmQ2MHrDBr5305hZ4iba02bDKgOUm1FTtLOzQVHcYrSXHjpEtfg5+fLLOz2eGYjt358lNhs9GhpQcnPBTR64N2w2/gE4ZQJJC8nBwRRXV5O3dy+XumtQ1WvlRdvNpr/Dff755xw/fpw5c+Zc9NjVq1cTGxtLt27dGDt2LM8++yyxbcRo1NXVUSee/AAqRJxIQ0MDDQ0NnZZdRR3LnWMajZTevWH9eg47HO2+zgvp54j4QPZMSDC17i7GmfpJEdsZR6qr3aaTQzt3AtAjPNwr9azJ5ysxkf3Akaoqxv34I2Fu+FI4tmsXaUCDnx9+oaEe07XR7z+/7dMHy759NObk0NCnT+cHrKvDPz8fC+Ds0QNnG9dtdN24k+Ru3dhSXU3W/v0uX+/F9DNz9WqagJesVvrqrENXr8n0RtNbb73F5MmTSbpIIPDUqVO5+eabSUlJITs7m8cff5zx48ezbds2Ai/Qs2zJkiU89dRT572+atUqQjQoPJeRkeH2MY3CKeGhOFJe3uFt0XP1c1AUYgsMDpZbrTTr55Qw8oudTj57/30C3FApfYfY6osJCfFqPbv78/VLq5UCp5PXX32VhEmTOj1ewtatHACO9+6ti56Nev8ZERpKPLDviy/IEbF1naFLQQETFIXGoCBWbN3qkpfQqLpxJ9f26MGMggKSKiravf5a04+zsZHvqqupA7YXF3NE53tHjYuZv15jNC1evLhVA+VMtmzZclbc0tGjR1m5ciUff/zxRcefPXt2y8/p6ekMHz6clJQUli9fzqxZs1o9Z9GiRSxcuLDl94qKCpKSkpg0aRJd3Zg+2dDQQEZGBhMnTsRms7ltXCNxNCaG+W++SV5TE5PGj8c/KMjlcy+kn9/VNlcAGTNpEhOmTXO7zN7CufqJuPdeTioKqcHBDHSDXvY+9hipwKWDBzPNC/Ws1eerd1gYBeXlhDY2ukUvVpEGH3nppR7Vs9HvP8VffMHyH36gS1mZW/Ty7XPPMQC4JjSUF6+9ts1jja4bd2IpKsL/++9xBgXR5KKe29JPwbZt1AF+wE3z52PTucJ9hYsZxV5jNM2bN49bbrmlzWN6nFP1+e233yYqKoqZM2e2e774+HhSUlI4JHqXtUZgYGCrXiibzabJB0ircY1AyogRBAJ1QNG2bfTqQDuOM/XjbGoiS1SavWTUKNPqrT2o+kkNDmZrTQ15O3dy6RkPCx3l0ZAQHgX4+c/Bi/Xs7s9Xamwsa8rLyfnxR/eMKzIerb16YdVBz0a9/ywrK+NXwKx16xjrBvkO7d7NfqBPQIDL12tU3biVvn0BsB450u7115p+8oSHOsXfn5DwcPfI2Alc/ft5jdEUHR1NdDtqZiiKwttvv83PfvazDi3m0tJS8vPziZc9yzyC1d+fp2Ji6HrsGOEnTnR6vKojRxgB5ALJsnTEWaRGRbG1poYj7qpWrVZjlu0mziK1Z084dIgjbirvcOtnn5EJvFBbyzVuGdEc9EpPh08+IevkSbeMp8ZCpiYkuGU8s9DUowff0ayfu06datduQGtk7doFQC8vKWqpYrqSAyrffvst2dnZ3HXXXa2+n5aWxrJlywCoqqri4YcfZuPGjeTk5LB69WpmzJhBdHQ0N9xwgyfF9ml+O2IE9wFRbqgK3vXYMdYAOT166O72NRqpIr7viDtaT1RWnq7iLo2ms0gVVZSPuKnK/c7SUnYAFpnhexa9REhGVm2tWwovZhUVNY/rRWnwnsCSlMR04F6nk3w3lB3I+vFHAHp5WUFc0xpNb731FqNHj6bfBTonZ2ZmUi4Kxfn5+bFnzx6uu+46+vTpwx133EGfPn3YuHEjYW4uTidpAzXDSNTu6BRemMrqKaaPHcvLwM9Ef7TOsHvlSuKAaTYbGMDFbiRSRS2lI9XVFzny4jTV17dsN6eK2kSSZnqIgqoVuKfw4hHhsUodOLDTY5kJq78/PUVT9cMbN3Z6vCOiWn6qlz1sec32XHv54IMP2nxfUZSWn4ODg1m5cqXWIkkuQmViIruBxk2bGNvJsZQjR7AAiDYLktOMmjSJUUuWgBtaT2Rt20YJcFzcTCWnSb3ySgAcTifVxcWExsV1eKz8H36gnuYCokmiOrOkmeDISBKsVgqdTrI2bCDqkks6PJbidJIlMkxT5bb+efTu1o2DJSUc2bWLiZ0cK6i6miig1wUcG0bFtJ4mifexurqaMcCDbqhW/fP33iMJeE94EyVnoBqSubnQyRTtrP37AVlAtDUievTgpZAQ/gP4dTKu6dC6dQCkBgTgJw3U8+jVpQsAWdu3d2ocx+7d1NL8xSgLiJ5Pb9Eo+nAbCVKu8pbFwnHgRi8rICqNJolhSBWxCUfcEJtw+NgxjgIBMpjzfBIT2WGz8VFjIyf27OnUUFkiLqqnuJlKzubBAQO4EQg6erRT4/y4YwcAl0jjtFV6iSShI6IsQ0cp37ePQcAAm40AYYhJTpMqHriOFBR0bqDKSigpAcDiZbsB0miSGIaeY8YA7olNOCziSHrJXmjnY7Vyq8XCLcD2ThblyxQ3zz5e5mL3GOoXQifXs1r6pI9sINsqd44dy/vALZ3MxEprbGQXsPuqq9wil9noPXgwAIc7m+GsJqFERnpdLKQ0miSGITgykkTRFPLH777r8DhlubkUC09V32tkcnZrpIob1RGR9ttRMsX2Z1+5ldEqhbGxLAO+XrOmU+NEVlfTF+jfv79b5DIbY6dM4TagV2Fh5waSCSRtosZ5Hamr69RuwLJ//5vewK+9cKtZGk0SQ5EmvswzO5HSmvn11wAkWK2Eye25VlE9FpkHD3Z4jOqSEvKbmgDoO368W+QyG6uqq5kFPL9hQ6fGeQI4CPz8jjvcIZb5EIUXOXiwuUFyB1HU7b20NDcIZT56jB7N/7NYWAkonTBQ9+3YwRHgmBsyeD2NNJokhiJNfJkf6EThxYObNjWP5WVuX0/ST3gsDoq0345QvnMnE4Ehfn6dylgyM31FptuBsrKOD9LYeHo7Q+q5dS65hAzg1ZMnKevEVujI5csZDOwwe3XvDmILCeHnPXtyJc2VwTvKQXFumhfWwpJGk8RQpIknRrXZbkfI3LcPgL7Sy3RB0sR22oFOVFFOOHGCVcAOuTV3QfpNngxAgdNJZQeDZ51ZWSiNjRAUBDLgvnVCQpjr58cDwJ4Olo9pqq9nV20tu4FwWaPpwqheuE54qQ+KIPA0L4w5lUaTxFBcM3UqfwEe6cSTXlJNDWOA4YMGuU0us5E2YQIAuY2N1Bw/3rFBMjPFYHIr40J0S0nBLuL0DnYw6H7Fe+8RAfxfYCBY5S37QvTt1g3o+NZ+zvr11AGBQIoomCk5n6z4eP4JLPviiw6drzidHKypASBN1DLzJuQnUGIo0iZPZh4wqrAQRAXk9nJffT3rgDtl/McFiUlLI9JiQQEOffNNh8aoEzWaWuJJJK2SJjK6DnQwrmnfli2UA0653dwm6tZ+prou28nBtWsB6BMUJGthtcHqpiZ+AbzewargBdu2UU1zZe3UDjRm1xtpNEmMRUICdOkCTU0dS9NubITDh5t/lh6QC2KxWnmld28+B3p0sM3HqC++IB5YL4LBJa3TT2ypHehgTax9okfXABnP1CZ9xec9s4Nxege3bQOgX0yM22QyI/2vuAKA/R2M0zsoMqNTAwK8si+oNJokxsJiYX9KCv8G9q1a1e7T6zIzqW1ogOBgEI1pJa1z+1VXMQMI70C1amdjIz/W1uIAokXtFknr9BNf5gdycjp0/j7RQHaA6GUnaZ2+Qj8HOlhD6KCohZXmZb3QPE2/SZMAKHQ6Ke/AvUPJy+MyYLiXNepVkUaTxHAsqanhZ8B/ly9v97lfvfceocAMm03Gf1wMtSBlB6ooZ69dSzXN8R+9ZbmBNpk2cyZLgeeCgtp9rrOxkQO1tQAMkHpuk/SpUwHIamjoUJzeAZFCnyZjIdskPDmZBHFvPdCBB9uJisIPwHu33eZmyTyD/FaRGI4BffoAsEcNNG4HuzZtQgGipIv9olT16MGnwF9ELEd72CNulgOCg/HvgDHgS6ROmMBsIC0/H0QzWFfJWbeOWpqN09Srr9ZCPNMQl55OrMWCE9i/YkX7TlYUBtTVkQYMkNXAL0p/EXS///vv23+yWlDXSzMUpdEkMRyDRebKLoej3efuFvEfg9PT3SqTGSlLTuZG4EGHg1PtjE/YLTKUBsqyDhcnIQG6dWuO02unV2+fCNJPk8HJLvH24MFsBtKFd85l8vL4R309B2w2Bl13nSaymYn+IvRhXzvj9BSnk1Oq0eSl2/rSaJIYjsHTpwOQWV9PbTvjE3YfOwbAIBGsKLkwicOGEWWx0ATs+/LLdp2rGqeDBgzQQDKTYbGwLTWVF4G1S5e269QuDgfTgPEpKZqIZjamjR/PCCCovVvOO3c2/9+/P0jj9KKkiy3M3WrRVRfJWb+eLlVVDLNYULw061YaTRLDET9kCNHCzb6vHbVAqhwOjjQ0ADBIGF6SC2OxWhki3Ow721l2YLcoTieNU9d4z+nk18An//tfu867urqa5cBLP/uZJnKZDjUeqZ09Fcs3b8YJXuv98DTX3nYbXwNLnc52ta3Z9dVXNAHOoCAsXmqcSqNJYjgsViuDxZf5rm+/dfm8fStWoAB2q5UYNchZ0iaDRWPSXdu3u3yOUl3N1IYGrgIGTpumkWTmYujw4QDsbG8GnUiDR2bOuUTNJZfwD2Dhxo3taij783ffJRz4sBNNaH2JhKuvZoK/P1FlZdCOEg+7RIurQV68rS+NJokhafkyV93mLrBHBDQPjojQQiRTMqQDX+aW/ft5BVgTG0ucjB1ziSEiTXtneTmKi3Wt6kpKKBJp8NJocg1r//78EvhzXR2F7XgQ2FVSQhUQN2SIVqKZi8BAULfm26Nnkdwz2Iu39aXRJDEkc2bNYjnwaHCwy+f0q6riDmCyTBl2mSETJwKwq6LC9SfzrVvFyUO0EcqE9Js2jQCgAshet86lcza89x4JwMiAAIiO1lI80xDUrRtpgYEAbP/vf106p+LoUbIaGwEYPHOmZrKZjc3du/Nb4N/vvuvyObtEzOngMWM0kkp7pNEkMSQDZ85kGhC3d29zlW8XGJuXxzvAg/ffr6VopiJt6tSWL/Os1atdOufgypVUAYwcqZ1gJsMWEkK6eADY4WL9sW1iazpRGkztYkRyMgCbXdza3/HJJwB09/MjSlZdd5kfgoJ4Afj/XGyncjwzs8U4HTprloaSaYs0miTGpF8/CAuD6mrYu/eih/udOgVq+qv8MncZW0gIn/bty2GgV0GBS+dct2IF4cAaL2yBoCfDRAbcDy7Wxdom1vMwL97K0IORI0YAsNHFDLqNX30FwKj4eM1kMiNDRbHVbcJ7dDE2f/ABAH0DAohMTdVMLq2RRpPEmPj5sblfPx4DvvjHPy56eMP27exqaqIxMRFE406Ja1x77bWkAhYXGsqeOHKEHxsacALpXvy0qAejRabh5oMHXTp+m2ifMlwWtWwXo264AYAfTp6kyYWm39/v2AHAaBHfJ3GNoTfdhB/N7VRyXShyGZWby23ALC/vCSqNJolh+So4mGeBj1euvOixazMyGAr8TLZOaT9q2QAXbnw/fPghAJfYbHIro51M/8Uv2ASsqq2FU6faPLZk3z4OifIZw3/yEw9IZx76z5hBF6AK2H+RkiWK08kG4SkZLeOZ2kVobCzDQkMBWPfeexc9fmRuLu8Df5g3T2PJtEV+w0gMyygRpLzBhZTWA6LI2nAZnNxunCNH8hJw0549lOfmtnnspq+/BuBy6c1rN9GXXcblcXEENDScDqa/AOtFcG16YKBXb2XogV9AACNEBu3ei9TFqtu7lwcUhWlWK0NuvtkT4pmKK4XXaO3F4iEbG0F0EWDUKG2F0hhpNEkMy+W3344FyGpsxLF79wWPczY2sr28vPkc0bRT4jrWhAT+6u/PJ8CmizwxrhN/h5FyK6P9WCwue/XWZWQAcFXv3lpLZUr+Pns2pcCtF+n1F7RtG08Ay6+4goAuXTwim5m4avJkANZmZbV53LG1a9lXU4MzLKy56roXI40miWHplpLCQNEMdvWbb17wuD3LlnFMUQgFhv/f/3lIOnNxhcg4WtNGZlfN8eOsP3kSgAlz5nhCLNOxv3dv7gHm/+1vbR43vbKS+cB1csuoQ1xy441EAnz9ddsVq1UPieh3KWkfY+68E4Dy+nqq2mip8t6rr5IO/CQkBLw8hMK7pZeYnkmieOL/2uha/u377wNwVUwMgV27ekQus3HNhAkA/K+NYqLfv/km9TSnZvedMsUzgpmMuiFDeAN4OzeXuoqK1g8qKmLCkSO8Ckx64AFPimcexoyBoCAoKoL9+1s9xNnYyMf//S/HAUTxUUn7iExNJbtPHwqBLur2WyusEpXAx3j51hxIo0licKaIINiV2dkXLL6ofiAnyqfFDjNFfDnvqK294FZoek4OfwUeGT4ci5c/LerFkNmzibdaqQbW/PWvrR+kxuFcdhnExXlMNlMRFMSHvXtzFfDa44+3esjOjz5idnk5qUCjLFPSYXrMnIkF4AJNvxsqKlgvGq9PvusuzwmmEfLOJzE0Y+65h1DA6nRS2Iq36cThw6wRH8hJc+d6WDrzEDtgAMNF3aUv//Sn8w9QFOJXruR+4Je//rVnhTMRFquVaSJO6culS1s95t+vv846oFF68zpFySWXsA5YKpIXzuULseU/zm7HX9Yc6zhiC7nxyy9paiWG7Minn1IHJPv5kWaCXpXSaJIYmsCuXdkydSp5QOI335z3frfvvmMN8ES3bvSRLvZOcYNobfBha2na27dDTg6EhIAMtu8U1wnv6cd799J4TumBstxc5m7dylXAHtl0ulPcuGgRAN9XVlJwTrai4nTygQjGv3HGDI/LZipGjWJBUBBxZWV889JL5729XrQN+snQoabwUHv/FUhMT79778UP4KOPQNSuUbG+/z6jgdnXXquHaKbitscfxx8IOXmSxnMa+L7wq1/xV6Bq8uRmw0nSYSb/9rdEWywUO52sev75s977zxNPUAcMCAxkyOzZ+ghoErpfdhlXhIUB8N45W3Rb//1vfmxoIAi4YfFizwtnJvz9aejdmxPA/zsnwaEsN5dvSksBuHXBAs/LpgFeZzQ9++yzjB49mpCQELp169bqMXl5ecyYMYPQ0FCio6P51a9+Rf1FKsPW1dUxf/58oqOjCQ0NZebMmRw9elSDK5C0mylTIDaWU0VFHH711ZaXle3bYc0aFH9/8seN008+k9BjzBhKRo/mC8D/jJtfxdGjPLNhA/OAjZdfrpt8ZiGgSxduE02lX/3LX1pedzY28pePPwbgp1dfbYqncr2566abAHgtI4OGmpqW119+8kkAbkhJISwhQRfZzMTdv/sdAMvy8yk6I5nk01//mlqa640NvfVWfYRzM173qayvr+fmm2/mvvvua/X9pqYmrr32Wqqrq1m/fj1Lly7lk08+4aGHHmpz3AULFrBs2TKWLl3K+vXrqaqqYvr06TQ1NWlxGZL2EBDAxhtuoCcw43e/o66iAsXp5CfTp3M3cGTKFE7FxOgtpSmIEFsavP56c+YR8Pzs2VQB/QICuEbGM7mFX730EvHAhNJSlPXrAfjkN79h96lThAG/eP11XeUzC7e+9BIxFgtHm5r4p0iP3//55ywVRVx/vWSJnuKZhqG33srosDDqgaduu635xZMnmbthAxnAH++/3zwPAYqX8vbbbyvh4eHnvb5ixQrFarUqBQUFLa99+OGHSmBgoFJeXt7qWGVlZYrNZlOWLl3a8lpBQYFitVqV//3vfy7LVF5ergAXnKej1NfXK5999plSX1/v1nG9iZM5OUq0xaIAyi/S0pQ/XnutAig2UHb85z8+r5+2aNf6cToVZfhw5SAo9yUkKB8/+KDiDwqgLHvkEe2F1QG9Pl/1c+YoCihKjx7K7tdfVyLF+n5szBiPynExvP3+8+qNNyqAEm+xKHXLlikfJScrgaDMtNs7Pba368adrHn1VQVQLKC8efvtivP66xUFlMqEBKW+qkpv8S6Kq9/f/vqZa9qwceNG0tPTSTjD5Tp58mTq6urYtm0bV7fS/HLbtm00NDQw6YxA4oSEBNLT09mwYQOTRdXTc6mrq6PujGyBClF3paGhgYZzYm86gzqWO8f0NkITEvjnI49ww5IlvHHwIIimp4+PH0+fqVPJzcjwaf20RXvXT+3rrzP28sspLizkb3/+MwA3JiZy7dNPm1LHun2+nnsOZe1aLFlZ/PH++zkBDA8J4beffWYoPXv7/Wfuu++y4ttvefTkSQJuuIGfAH0jIoj4/PNOX5O368adjLr3Xub985+8tmcPd7/3HoOA4X5+bH/gAYZbLOfFoxoNV/+GpjOaHA4HcefUNomIiCAgIACHw3HBcwICAogQ/YpU4uLiLngOwJIlS3jqqafOe33VqlWEaBAsmyFaK/gqlssv5/fTpvH2ypXUOJ3MHjKEgfPmtejF1/VzMdqjn8fnzuWf77xDQUMDU5KSuO7ZZ1nRRoFRM6DH+gn59a8Z/Pe/03X/fqZ26cLtTz7JN2K7zmh48+dr3quvkvLmm9Rv305l9+6U3nMPOYWF7CgsdMv43qwbd3L1449T99hj/PfQIf4eGsrdCxdysm9fr9BPzRkxb21hCKNp8eLFrRofZ7JlyxaGu9jvymKxnPeaoiitvt4WFztn0aJFLFy4sOX3iooKkpKSmDRpEl3dWJm6oaGBjIwMJk6ciM1mc9u43si0adP4zTmvSf20TYf0M20av3jtNW0FMwi6r5+77uLPnp/VZXTXj7sQ2YhdgSvdNKRpdONGZlx/PWrZVm/ST8WFKvSfgyGMpnnz5nHLLbe0eUyPHj1cGstut7N58+azXjt58iQNDQ3neaDOPKe+vp6TJ0+e5W0qKSlhdBtVpgMDAwkMDDzvdZvNpskC0WpcsyD10zZSP20j9dM2Uj8XRuqmbbxBP67KZwijKTo6mujoaLeMNWrUKJ599lmKioqIj48HmrfLAgMDGTZsWKvnDBs2DJvNRkZGBj8RheeKiorYu3cvL7zwglvkkkgkEolE4t14XQ5gXl4eO3fuJC8vj6amJnbu3MnOnTupqqoCYNKkSfTv35+f/vSn7Nixg2+++YaHH36YuXPntmyZFRQUkJaWxg+iwWB4eDh33XUXDz30EN988w07duzg9ttvZ+DAgVxzzTW6XatEIpFIJBLjYAhPU3t44oknePfdd1t+Hzp0KADfffcd48aNw8/Pj+XLl3P//fdzxRVXEBwczG233caLL77Yck5DQwOZmZlnBX79+c9/xt/fn5/85CfU1tYyYcIE3nnnHfz8/Dx3cRKJRCKRSAyL1xlN77zzDu+8806bxyQnJ/PlBTouQ3N8lKIoZ70WFBTEX/7yF/5yRoVeiUQikUgkEhWv256TSCQSiUQi0QNpNEkkEolEIpG4gDSaJBKJRCKRSFxAGk0SiUQikUgkLiCNJolEIpFIJBIXkEaTRCKRSCQSiQtIo0kikUgkEonEBaTRJJFIJBKJROIC0miSSCQSiUQicQGvqwhuZNQq4xUVFW4dt6GhgZqaGioqKgzfKVoPpH7aRuqnbaR+2kbq58JI3bSNN+lH/d4+t1vIuUijyY1UVlYCkJSUpLMkEolEIpFI2ktlZSXh4eEXfN+iXMyskriM0+mksLCQsLAwLBaL28atqKggKSmJ/Px8unbt6rZxzYLUT9tI/bSN1E/bSP1cGKmbtvEm/SiKQmVlJQkJCVitF45ckp4mN2K1Wunevbtm43ft2tXwC09PpH7aRuqnbaR+2kbq58JI3bSNt+inLQ+TigwEl0gkEolEInEBaTRJJBKJRCKRuIA0mryAwMBAnnzySQIDA/UWxZBI/bSN1E/bSP20jdTPhZG6aRsz6kcGgkskEolEIpG4gPQ0SSQSiUQikbiANJokEolEIpFIXEAaTRKJRCKRSCQuII0miUQikUgkEheQRpMX8Prrr9OzZ0+CgoIYNmwY69at01skj7N48WIsFstZ/+x2e8v7iqKwePFiEhISCA4OZty4cezbt09HibVl7dq1zJgxg4SEBCwWC5999tlZ77uij7q6OubPn090dDShoaHMnDmTo0ePevAqtONi+pkzZ85562nkyJFnHWNW/SxZsoTLLruMsLAwYmNjuf7668nMzDzrGF9eP67ox5fXz9/+9jcGDRrUUrBy1KhRfPXVVy3vm33tSKPJ4Hz00UcsWLCARx99lB07dnDllVcydepU8vLy9BbN4wwYMICioqKWf3v27Gl574UXXuCll17itddeY8uWLdjtdiZOnNjSD9BsVFdXM3jwYF577bVW33dFHwsWLGDZsmUsXbqU9evXU1VVxfTp02lqavLUZWjGxfQDMGXKlLPW04oVK85636z6WbNmDb/85S/ZtGkTGRkZNDY2MmnSJKqrq1uO8eX144p+wHfXT/fu3XnuuefYunUrW7duZfz48Vx33XUthpHp144iMTQjRoxQ7r333rNeS0tLUx555BGdJNKHJ598Uhk8eHCr7zmdTsVutyvPPfdcy2unTp1SwsPDlb///e8eklA/AGXZsmUtv7uij7KyMsVmsylLly5tOaagoECxWq3K//73P4/J7gnO1Y+iKModd9yhXHfddRc8x5f0U1JSogDKmjVrFEWR6+dcztWPosj1cy4RERHKm2++6RNrR3qaDEx9fT3btm1j0qRJZ70+adIkNmzYoJNU+nHo0CESEhLo2bMnt9xyC1lZWQBkZ2fjcDjO0lNgYCBjx471ST25oo9t27bR0NBw1jEJCQmkp6f7jM5Wr15NbGwsffr0Ye7cuZSUlLS850v6KS8vByAyMhKQ6+dcztWPilw/0NTUxNKlS6murmbUqFE+sXak0WRgjh8/TlNTE3FxcWe9HhcXh8Ph0Ekqfbj88sv517/+xcqVK/nnP/+Jw+Fg9OjRlJaWtuhC6qkZV/ThcDgICAggIiLigseYmalTp/L+++/z7bff8qc//YktW7Ywfvx46urqAN/Rj6IoLFy4kDFjxpCeng7I9XMmrekH5PrZs2cPXbp0ITAwkHvvvZdly5bRv39/n1g7/noLILk4FovlrN8VRTnvNbMzderUlp8HDhzIqFGjSE1N5d13320JwJR6OpuO6MNXdDZ79uyWn9PT0xk+fDgpKSksX76cWbNmXfA8s+ln3rx57N69m/Xr15/3nlw/F9aPr6+fvn37snPnTsrKyvjkk0+44447WLNmTcv7Zl470tNkYKKjo/Hz8zvP+i4pKTnPkvc1QkNDGThwIIcOHWrJopN6asYVfdjtdurr6zl58uQFj/El4uPjSUlJ4dChQ4Bv6Gf+/Pl8/vnnfPfdd3Tv3r3ldbl+mrmQflrD19ZPQEAAvXv3Zvjw4SxZsoTBgwfzyiuv+MTakUaTgQkICGDYsGFkZGSc9XpGRgajR4/WSSpjUFdXx4EDB4iPj6dnz57Y7faz9FRfX8+aNWt8Uk+u6GPYsGHYbLazjikqKmLv3r0+qbPS0lLy8/OJj48HzK0fRVGYN28en376Kd9++y09e/Y8631fXz8X009r+NL6aQ1FUairq/ONtaND8LmkHSxdulSx2WzKW2+9pezfv19ZsGCBEhoaquTk5Ogtmkd56KGHlNWrVytZWVnKpk2blOnTpythYWEtenjuueeU8PBw5dNPP1X27Nmj3HrrrUp8fLxSUVGhs+TaUFlZqezYsUPZsWOHAigvvfSSsmPHDiU3N1dRFNf0ce+99yrdu3dXvv76a2X79u3K+PHjlcGDByuNjY16XZbbaEs/lZWVykMPPaRs2LBByc7OVr777jtl1KhRSmJiok/o57777lPCw8OV1atXK0VFRS3/ampqWo7x5fVzMf34+vpZtGiRsnbtWiU7O1vZvXu38rvf/U6xWq3KqlWrFEUx/9qRRpMX8Ne//lVJSUlRAgIClEsvvfSs1FdfYfbs2Up8fLxis9mUhIQEZdasWcq+ffta3nc6ncqTTz6p2O12JTAwULnqqquUPXv26Cixtnz33XcKcN6/O+64Q1EU1/RRW1urzJs3T4mMjFSCg4OV6dOnK3l5eTpcjftpSz81NTXKpEmTlJiYGMVmsynJycnKHXfccd61m1U/rekFUN5+++2WY3x5/VxMP76+fu68886W76OYmBhlwoQJLQaToph/7VgURVE859eSSCQSiUQi8U5kTJNEIpFIJBKJC0ijSSKRSCQSicQFpNEkkUgkEolE4gLSaJJIJBKJRCJxAWk0SSQSiUQikbiANJokEolEIpFIXEAaTRKJRCKRSCQuII0miUQikUgkEheQRpNEIvEpxo0bx4IFC/QWQyKReCGyIrhEIjEt48aNY8iQIbz88sstr504cQKbzUZYWJjH5VmwYAE5OTl89tlnHp9bIpF0HulpkkgkPkVkZKQuBhPAli1bGDFihC5zSySSziONJolEYkrmzJnDmjVreOWVV7BYLFgsFnJycs7bnhs3bhzz589nwYIFREREEBcXxxtvvEF1dTU///nPCQsLIzU1la+++qrlHEVReOGFF+jVqxfBwcEMHjyY//znPxeUpaGhgYCAADZs2MCjjz6KxWLh8ssv1/LyJRKJBkijSSKRmJJXXnmFUaNGMXfuXIqKiigqKiIpKanVY999912io6P54YcfmD9/Pvfddx8333wzo0ePZvv27UyePJmf/vSn1NTUAPDYY4/x9ttv87e//Y19+/bx4IMPcvvtt7NmzZpWx/fz82P9+vUA7Ny5k6KiIlauXKnNhUskEs2QMU0SicS0tBbTdO5r48aNo6mpiXXr1gHQ1NREeHg4s2bN4l//+hcADoeD+Ph4Nm7cyMCBA4mOjubbb79l1KhRLePefffd1NTU8MEHH7Qqy2effcbdd9/N8ePHtblYiUSiOf56CyCRSCR6M2jQoJaf/fz8iIqKYuDAgS2vxcXFAVBSUsL+/fs5deoUEydOPGuM+vp6hg4desE5duzYweDBg90suUQi8STSaJJIJD6PzWY763eLxXLWaxaLBQCn04nT6QRg+fLlJCYmnnVeYGDgBefYuXOnNJokEi9HGk0SicS0BAQE0NTU5NYx+/fvT2BgIHl5eYwdO9bl8/bs2cMNN9zgVlkkEolnkUaTRCIxLT169GDz5s3k5OTQpUsXIiMjOz1mWFgYDz/8MA8++CBOp5MxY8ZQUVHBhg0b6NKlC3fccUer5zmdTnbv3k1hYSGhoaGEh4d3WhaJROJZZPacRCIxLQ8//DB+fn7079+fmJgY8vLy3DLuM888wxNPPMGSJUvo168fkydP5osvvqBnz54XPOf3v/89H330EYmJiTz99NNukUMikXgWmT0nkUgkEolE4gLS0ySRSCQSiUTiAtJokkgkEolEInEBaTRJJBKJRCKRuIA0miQSiUQikUhcQBpNEolEIpFIJC4gjSaJRCKRSCQSF5BGk0QikUgkEokLSKNJIpFIJBKJxAWk0SSRSCQSiUTiAtJokkgkEolEInEBaTRJJBKJRCKRuIA0miQSiUQikUhc4P8H+vq8wifNxbkAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t = range(0, 20π*5, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [0,1]:\n", + "plot(t, [(exp(A*t)*[0,1])[1] for t in t], \"r-\")\n", + "plot(t, [r*cos(-0.1*t + ϕ) for t in t], \"k--\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "title(\"motion of a frictionless mass on a spring\")\n", + "grid()\n", + "legend([\"numerical\", \"analytical\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, they fall right on top of one another!\n", + "\n", + "### Key points:\n", + "\n", + "* **A purely imaginary λ corresponds to an *oscillating* ODE solution**, and $\\omega = \\operatorname{Im} \\lambda$ is the **angular frequency**.\n", + "\n", + "* The amplitude and phase of the oscillations are determined by the **initial conditions**.\n", + "\n", + "* For **real A**, the eigensolutions come in **complex-conjugate pairs**, so that **real initial conditions lead to real solutions**.\n", + "\n", + "Given an angular frequency $\\omega$, corresponding to time dependence $e^{i\\omega t}$ or $\\cos(\\omega t + \\phi)$, the **period** of the oscillation (the time to repeat) is $2\\pi /\\omega$:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "62.83185307179586" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2π/0.1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, it repeats every 62 time units, which matches the graph above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Mass and spring with damping\n", + "\n", + "We can also add some *damping* or *friction* to the problem. For example, a [simple model of air resistance](https://en.wikipedia.org/wiki/Stokes%27_law) is a drag force that is *proportional to velocity* and *opposite in sign*.\n", + "\n", + "This changes our equations to:\n", + "\n", + "$$\n", + "\\frac{d x}{dt} = v \\\\\n", + "\\frac{d v}{dt} = -\\frac{k}{m}x - \\beta v\n", + "$$\n", + "\n", + "where $\\beta$ is the drag coefficient, which can again be written in matrix form as $d\\vec{x}/dt = Bx$:\n", + "\n", + "$$\n", + "\\frac{d}{dt} \\underbrace{\\begin{pmatrix} x \\\\ v \\end{pmatrix}}_\\vec{x} =\n", + "\\underbrace{\\begin{pmatrix} 0 & 1 \\\\ -k/m & -\\beta \\end{pmatrix}}_B \\vec{x}\n", + "$$\n", + "\n", + "Let's try it out for a drag coefficent $\\beta = 0.02$:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 0.0 1.0\n", + " -0.01 -0.02" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = [ 0 1 \n", + " -0.01 -0.02 ]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHGCAYAAACIDqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzYUlEQVR4nO3dd1gU59oG8HuBZQEFFLCggjX2LvbYYuzGJCYxlkRNLFFjcjSmmGrNMbF7otHEknK+YzSJmqZRMfbYULH3gqiIiAVUFBd4vz/eDEVgpczuzOzev+vymmHZnXl4WeHheZtJCCFARERE5CTctA6AiIiISE1MboiIiMipMLkhIiIip8LkhoiIiJwKkxsiIiJyKkxuiIiIyKkwuSEiIiKnwuSGiIiInAqTGyIiInIqTG7IqSUlJWH8+PHYvHlzts99++23MJlMiIqKcnhc+fHRRx8hNDQUHh4eKFasmNbhkEFERUXBZDLh22+/1ToUu3D2r48Kx0PrAIjsKSkpCRMmTAAAtG3bNsvnunXrhp07dyI4OFiDyPLm119/xaeffooPP/wQXbp0gcVi0TokMojg4GDs3LkTlStX1joUIodjckMuq0SJEihRooTWYdh05MgRAMCbb76JkiVLahwNGUFqaipSUlJgsVjQrFkzrcNJN378eHz77bcOr5QmJSXBx8fHofck7bFbijQxfvx4mEwmHDp0CC+88AL8/f0REBCAt956CykpKTh58iQ6d+4MX19fVKhQAVOnTs12jejoaLz00ksoWbIkLBYLatSogRkzZiAtLQ2ALFsrycuECRNgMplgMpkwcOBAALl3Sy1ZsgT16tWDl5cXAgIC8Oyzz+L48eNZnjNw4EAULVoUZ86cQdeuXVG0aFGEhIRgzJgxSE5OfuTXn5aWhqlTp6J69eqwWCwoWbIk+vfvj0uXLqU/p0KFCvjoo48AAKVKlYLJZML48eNzvebevXvRu3dvVKhQAd7e3qhQoQL69OmDCxcuPDIepcQ/bdo0fP755+nXaNu2LU6dOgWr1YqxY8eiTJky8Pf3x7PPPou4uLgs11i+fDk6duyI4OBgeHt7o0aNGhg7dizu3r2b5Xnnzp1D7969UaZMGVgsFpQqVQrt27fHgQMH0p+zceNGtG3bFoGBgfD29kZoaCiee+45JCUlFbpdAVnFq127NiIiItCqVSv4+PigUqVK+Oyzz9LfP7bMmzcPrVu3RsmSJVGkSBHUqVMHU6dOhdVqfeRrr127hqFDhyIkJAQWiwUlSpRAy5YtsWHDhmzxbdu2Dc2aNYO3tzfKli2Ljz/+GKmpqenPU75vU6dOxeTJk1GxYkVYLBZs2rQpx24b5f/d0aNH0adPH/j7+6NUqVJ49dVXkZCQkCXOW7duYdCgQQgICEDRokXRrVs3nDt37pHvQ3uIiYlBr1694OvrC39/f7z44ouIjY3N9jzl/+Xhw4fRsWNH+Pr6on379gCA8PBwPP300yhXrhy8vLxQpUoVvPbaa4iPj892nV9//RV169aFxWJBpUqVMGfOnPS2I2Ng5YY01atXL7z00kt47bXXEB4env4LYsOGDRgxYgTefvttLF26FO+99x6qVKmCnj17ApC/IFq0aIEHDx5g0qRJqFChAv744w+8/fbbOHv2LL788ksEBwdj7dq16Ny5MwYNGoTBgwcDgM1qzZQpU/DBBx+gT58+mDJlCq5fv47x48ejefPmiIiIwGOPPZb+XKvVih49emDQoEEYM2YMtm7dikmTJsHf3x+ffPKJza97+PDh+PrrrzFy5Eh0794dUVFR+Pjjj7F582bs378fQUFBWLVqFebNm4fFixdj7dq18Pf3R7ly5XK9ZlRUFKpVq4bevXsjICAAV65cwfz589G4cWMcO3YMQUFBj/x+zJs3D3Xr1sW8efNw69YtjBkzBk899RSaNm0Ks9mMJUuW4MKFC3j77bcxePBg/Pbbb+mvPX36NLp27YpRo0ahSJEiOHHiBD7//HPs2bMHGzduTH9e165dkZqaiqlTpyI0NBTx8fHYsWMHbt26lf51dOvWDa1atcKSJUtQrFgxXL58GWvXrsWDBw9s/hWel3ZVxMbGol+/fhgzZgzGjRuHVatW4f3330eZMmXQv39/m+109uxZ9O3bFxUrVoSnpycOHjyITz/9FCdOnMCSJUtsvvbll1/G/v378emnn6Jq1aq4desW9u/fj+vXr2d5XmxsLHr37o2xY8di4sSJWL16NSZPnoybN29i7ty5WZ77n//8B1WrVsX06dPh5+eX5X2ak+eeew4vvvgiBg0ahMOHD+P9998HgPTY09LS8NRTT2Hv3r0YP348GjZsiJ07d6Jz5842r2sP9+7dw5NPPomYmBhMmTIFVatWxerVq/Hiiy/m+PwHDx6gR48eeO211zB27FikpKQAkN+z5s2bY/DgwfD390dUVBRmzpyJxx9/HIcPH4bZbAYArF27Fj179kTr1q2xfPlypKSkYPr06bh69arDvmZSgSDSwLhx4wQAMWPGjCyP169fXwAQK1euTH/MarWKEiVKiJ49e6Y/NnbsWAFA7N69O8vrhw8fLkwmkzh58qQQQohr164JAGLcuHHZYvjmm28EAHH+/HkhhBA3b94U3t7eomvXrlmeFx0dLSwWi+jbt2/6YwMGDBAAxI8//pjluV27dhXVqlWz+bUfP35cABAjRozI8vju3bsFAPHBBx+kP6a007Vr12xeMycpKSnizp07okiRImLOnDk2n3v+/HkBQNSrV0+kpqamPz579mwBQPTo0SPL80eNGiUAiISEhByvl5aWJqxWq9iyZYsAIA4ePCiEECI+Pl4AELNnz841lp9//lkAEAcOHMjrlyqEyF+7tmnTJsf3T82aNUWnTp3ydd/U1FRhtVrF999/L9zd3cWNGzdsPr9o0aJi1KhRNp+jxPfrr79meXzIkCHCzc1NXLhwQQiR8X2rXLmyePDgQZbnKp/75ptv0h9T3k9Tp07N8twRI0YILy8vkZaWJoQQYvXq1QKAmD9/fpbnTZkyJdf/Tw+zWq1Z/n388ceifPny2R5X7pmb+fPn59oWD399yv/LJUuW2Lym8v68cOFCtms3btxYhISEiOTk5PTHbt++LQIDAwV/ZRoHu6VIU927d8/ycY0aNWAymdClS5f0xzw8PFClSpUs3SsbN25EzZo10aRJkyyvHzhwIIQQWSoFebVz507cu3cvvdtKERISgieeeAJ//fVXlsdNJhOeeuqpLI/VrVv3kd1AmzZtSo81syZNmqBGjRrZ7pNXd+7cSa9weXh4wMPDA0WLFsXdu3ezdavlpmvXrnBzy/ixUKNGDQBy8HVmyuPR0dHpj507dw59+/ZF6dKl4e7uDrPZjDZt2gBA+v0DAgJQuXJlTJs2DTNnzkRkZGS2bqD69evD09MTQ4cOxXfffYdz587lKfb8tmvp0qWzvX/y8v0DgMjISPTo0QOBgYHpX2v//v2RmpqKU6dO2XxtkyZN8O2332Ly5MnYtWtXrl1Zvr6+6NGjR5bH+vbti7S0NGzdujXL4z169EivPOTFw9etW7cu7t+/n97VuGXLFgCysppZnz598nwPs9mc5d+kSZNw4cKFbI9/9913Nq+zadOmXNsiN88991y2x+Li4jBs2DCEhITAw8MDZrMZ5cuXB5Dx/rx79y727t2LZ555Bp6enumvLVq0aLb/66RvTG5IUwEBAVk+9vT0hI+PD7y8vLI9fv/+/fSPr1+/nuMspzJlyqR/Pr+U1+R23YevmVOcFoslS5xq3Cev+vbti7lz52Lw4MFYt24d9uzZg4iICJQoUQL37t3L0zVy+n7Yelz5Wu/cuYNWrVph9+7dmDx5MjZv3oyIiAisXLkSANLvbzKZ8Ndff6FTp06YOnUqGjZsiBIlSuDNN9/E7du3AQCVK1fGhg0bULJkSbz++uuoXLkyKleujDlz5tiMPb/tGhgYmO15FovlkW0VHR2NVq1a4fLly5gzZw62bduGiIgIzJs3L8vXmpvly5djwIABWLRoEZo3b46AgAD0798/2xiSUqVKZXtt6dKlAWR/f+d3xt/DX7syC0+J/fr16/Dw8Mj2fc8pptxERERk+TdkyBAEBwdne/xRScP169dttsXDfHx84Ofnl+WxtLQ0dOzYEStXrsS7776Lv/76C3v27MGuXbuyfN03b96EECLH++XnayftccwNGVJgYCCuXLmS7fGYmBgAyNP4kpyuCSDX6xbkmo+6z8NjaAp6n4SEBPzxxx8YN24cxo4dm/54cnIybty4UbiA82Djxo2IiYnB5s2b06s1ANLH0WRWvnx5LF68GABw6tQp/Pjjjxg/fjwePHiABQsWAABatWqFVq1aITU1FXv37sUXX3yBUaNGoVSpUujdu3eOMdijXXPyyy+/4O7du1i5cmX6X/4AsgyItiUoKAizZ8/G7NmzER0djd9++w1jx45FXFwc1q5dm/68nMZ4KAnQw8mJ2gNdAwMDkZKSghs3bmRJcHIaxJubsLCwLB//8ccf8PT0zPZ4XmLZs2dPtsdziyWntjhy5AgOHjyIb7/9FgMGDEh//MyZM1meV7x4cZhMJpttT8bAyg0ZUvv27XHs2DHs378/y+Pff/89TCYT2rVrByD7X6S2NG/eHN7e3vi///u/LI9funQJGzduTJ91UVhPPPEEAGS7T0REBI4fP16g+5hMJgghsq2Ds2jRoiyza+xF+YXy8P2/+uorm6+rWrUqPvroI9SpUyfb9xIA3N3d0bRp0/SqSE7PUdijXXOS09cqhMDChQvzfa3Q0FCMHDkSHTp0yPa13b59O8uAbQBYunQp3Nzc0Lp16wJEnndKgrp8+fIsjy9btsyu981Ju3btcm2LvMrr+7NIkSIICwvDL7/8ggcPHqQ/fufOHfzxxx/5DZ00xMoNGdLo0aPx/fffo1u3bpg4cSLKly+P1atX48svv8Tw4cNRtWpVAHLcQvny5fHrr7+iffv2CAgIQFBQECpUqJDtmsWKFcPHH3+MDz74AP3790efPn1w/fp1TJgwAV5eXhg3bpwqsVerVg1Dhw7FF198ATc3N3Tp0iV9Vk9ISAhGjx6d72v6+fmhdevWmDZtWvrXt2XLFixevNghqxq3aNECxYsXx7BhwzBu3DiYzWb873//w8GDB7M879ChQxg5ciReeOEFPPbYY/D09MTGjRtx6NCh9IrTggULsHHjRnTr1g2hoaG4f/9++iyeJ598MtcY7NGuOenQoQM8PT3Rp08fvPvuu7h//z7mz5+PmzdvPvK1CQkJaNeuHfr27Yvq1avD19cXERER6TN0MgsMDMTw4cMRHR2NqlWrYs2aNVi4cCGGDx+O0NBQVb6W3HTu3BktW7bEmDFjkJiYiEaNGmHnzp34/vvvASDLuCx769+/P2bNmoX+/fvj008/xWOPPYY1a9Zg3bp1eb5G9erVUblyZYwdOxZCCAQEBOD3339HeHh4tudOnDgR3bp1Q6dOnfCvf/0LqampmDZtGooWLeqQKiipRNPhzOSycpsFNGDAAFGkSJFsz2/Tpo2oVatWlscuXLgg+vbtKwIDA4XZbBbVqlUT06ZNyzLbRwghNmzYIBo0aCAsFosAIAYMGCCEyD5bSrFo0SJRt25d4enpKfz9/cXTTz8tjh49mqc4la/rUVJTU8Xnn38uqlatKsxmswgKChIvvfSSuHjxYo7Xy8tsqUuXLonnnntOFC9eXPj6+orOnTuLI0eOiPLly6d/zblRZtZMmzYty+ObNm0SAMRPP/2U5XGl7SIiItIf27Fjh2jevLnw8fERJUqUEIMHDxb79+/PMqPl6tWrYuDAgaJ69eqiSJEiomjRoqJu3bpi1qxZIiUlRQghxM6dO8Wzzz4rypcvLywWiwgMDBRt2rQRv/322yPbIK/tmtP7SQj5fS1fvvwj7/P777+LevXqCS8vL1G2bFnxzjvviD///FMAEJs2bcr1dffv3xfDhg0TdevWFX5+fsLb21tUq1ZNjBs3Tty9ezdbfJs3bxZhYWHCYrGI4OBg8cEHHwir1Zr+vNy+b5k/l9NsqYffTzn9X7hx44Z45ZVXRLFixYSPj4/o0KGD2LVrlwDwyNl3ORk3blye2jYnynu7aNGiwtfXVzz33HNix44dOc6Wyun/pRBCHDt2THTo0EH4+vqK4sWLixdeeEFER0fnOPtr1apVok6dOsLT01OEhoaKzz77TLz55puiePHiBYqfHM8khBAOz6iIiChXbdu2RXx8fPoK1XqxdOlS9OvXD3///TdatGihdTgOY7VaUb9+fZQtWxbr16/XOhzKA3ZLERFRNj/88AMuX76MOnXqwM3NDbt27cK0adPQunVrp09sBg0ahA4dOiA4OBixsbFYsGABjh8//sgZe6QfTG6IiCgbX19fLFu2DJMnT8bdu3cRHByMgQMHYvLkyVqHZne3b9/G22+/jWvXrsFsNqNhw4ZYs2aNzTFfpC/sliIiIiKnwqngRERE5FSY3BAREZFTYXJDRERETsUlBxSnpaUhJiYGvr6+qi9bTkRERPYhhMDt27dRpkwZm4tJumRyExMTg5CQEK3DICIiogK4ePFitj3kMnPJ5MbX1xeAbJyHd48tDKvVivXr16Njx44wm82qXddZsH1sY/vYxvbJHdvGNraPbUZqn8TERISEhKT/Hs+NSyY3SleUn5+f6smNj48P/Pz8dP8G0QLbxza2j21sn9yxbWxj+9hmxPZ51JASDigmIiIip8LkhoiIiJwKkxsiIiJyKkxuiIiIyKkwuSEiIiKnwuSGiIiInAqTGyIiInIqTG6IiIjIqTC5ISIiIqfC5IaIiIicCpMbIiIicipMboiIiMipMLnROyGAa9eAtDStIyEiIjIEJjd6FhUF1K8PlCwJ1KgBHDqkdURERES6x+RGr+7fB3r2zEhoTp0CunUD7tzRNi4iIiKdY3KjVwsWAJGRQFCQPFasCFy6BEyerHVkREREusbkRo+sVmDmTHk+ebLsmpo9W348bx5w+7ZWkREREekekxs9WrsWuHhRjrUZMEA+9tRTQLVqslvqhx+0jY+IiEjHmNzo0c8/y+OLLwJeXvLcZAKGDpXn332nTVxEREQGwORGbx48AH79VZ6/8ELWz/XqJY87dwJxcY6Ni4iIyCCY3OjNrl1AQoLskmrZMuvnypUDGjaUa9/88Yc28REREekckxu92bhRHp94AnDL4dvTo4c8rlnjuJiIiIgMhMmN3mRObnLSvr08bt0qKzhERESUBZMbPbl3T3ZLAUC7djk/p3FjOcj42jXg+HHHxUZERGQQhktuUlJS8NFHH6FixYrw9vZGpUqVMHHiRKQ5w95LBw7INW5KlgQqV875ORYL0Ly5PN+yxWGhERERGYXhkpvPP/8cCxYswNy5c3H8+HFMnToV06ZNwxdffKF1aIW3Z488Nmkip37nplUreVSqPERERJTOQ+sA8mvnzp14+umn0a1bNwBAhQoV8MMPP2Dv3r0aR6aCiAh5bNLE9vMaN5ZHZ/iaiYiIVGa45Obxxx/HggULcOrUKVStWhUHDx7E9u3bMVvZniAHycnJSE5OTv84MTERAGC1WmG1WlWLTblWQa/psXs3TABSGjaEsHWNunVhBiBOnEDKzZtA0aIFup+jFbZ9nB3bxza2T+7YNraxfWwzUvvkNUaTEMaaciOEwAcffIDPP/8c7u7uSE1Nxaeffor3338/19eMHz8eEyZMyPb40qVL4ePjY89w88z9/n1069MHJiHw57ff4kGxYjaf3/HVV+F94wa2/fvfuFGzpmOCJCIi0lBSUhL69u2LhIQE+Pn55fo8wyU3y5YtwzvvvINp06ahVq1aOHDgAEaNGoWZM2digLIP00NyqtyEhIQgPj7eZuPkl9VqRXh4ODp06ACz2Zyv15r27YNH8+YQJUsi5dKlRz7f/dln4bZ6NVJnzEDaG28UNGSHKkz7uAK2j21sn9yxbWxj+9hmpPZJTExEUFDQI5Mbw3VLvfPOOxg7dix69+4NAKhTpw4uXLiAKVOm5JrcWCwWWCyWbI+bzWa7fCMLdN0TJwAAptq18/baxo2B1avhfuAA3HX+ZnyYvdrdWbB9bGP75I5tYxvbxzYjtE9e4zPcbKmkpCS4PbRyr7u7u/Gngh85Io+1a+ft+WFh8shBxURERFkYrnLz1FNP4dNPP0VoaChq1aqFyMhIzJw5E6+++qrWoRVOfpOb+vXl8dQpIDlZrn9DRERExktuvvjiC3z88ccYMWIE4uLiUKZMGbz22mv45JNPtA6tcPKb3JQpA/j5AYmJwOnTeX8dERGRkzNccuPr64vZs2fbnPptODdvApcvy/NatfL2GpNJPnfnTuDoUSY3RERE/zDcmBundPSoPIaEyGpMXilTwI8dUz8mIiIig2JyowenTsljjRr5ex2TGyIiomyY3OjBmTPyWKVK/l6ndGEplR8iIiJicqMLSnLz2GP5e51SuTl9GnjwQN2YiIiIDIrJjR6cPi2P+a3clCsH+PoCKSkZ1yAiInJxTG60JkTBu6VMJqB6dXmujNshIiJycUxutBYXB9y5IxOVihXz/3qlK4uVGyIiIgBMbrSnVG1CQwu2yrBS7VGuQ0RE5OKY3GhNqbjkdzCxgpUbIiKiLJjcaK2g420UrNwQERFlweRGa2fPymPlygV7vVK5uXQJSEpSJyYiIiIDY3KjtQsX5LFChYK9PiAAKFZMnp87p0ZEREREhsbkRmtKclO+fMFebzJx3A0REVEmTG609OABcOWKPC9ocgNkjLthckNERMTkRlMXL8pF/Ly8gBIlCn4dpXLDQcVERERMbjQVHS2PoaGye6mglMX/oqIKHRIREZHRMbnRUmHH2yiU1yvXIyIicmFMbrSkVnKjzLS6cAFISyvctYiIiAyOyY2W1EpuypUD3NyA5GTg6tXCx0VERGRgTG60pFZyYzbLBAfguBsiInJ5TG60pFZyA2TtmiIiInJhTG60kpYmp4IDcrZUYSkJEis3RETk4pjcaOX6dbmIHwCUKVP46ymVGyY3RETk4pjcaOXyZXksWRLw9Cz89ZjcEBERAWByo52YGHksW1ad6zG5ISIiAsDkRjtK5UaNLikg60J+QqhzTSIiIgNicqMVJblRq3ITEiK3cLh/H4iLU+eaREREBsTkRitKt5RalRtPz4xEiV1TRETkwpjcaEXtyg3AcTdERERgcqMdtQcUA9xAk4iICExutKP2gGIgYwsG5dpEREQuiMmNFh48AK5dk+dqVm6U5ObSJfWuSUREZDBMbrRw5Yo8enoCgYHqXZfJDREREZMbTWTukjKZ1LsukxsiIiJjJjeXL1/GSy+9hMDAQPj4+KB+/frYt2+f1mHlndrTwBVKcnPlCmC1qnttIiIig/DQOoD8unnzJlq2bIl27drhzz//RMmSJXH27FkUK1ZM69Dyzh7TwAG5T5XZLBOb2Fi5sB8REZGLMVxy8/nnnyMkJATffPNN+mMVlPVdjMIe08ABwM1NXjMqSnZNMbkhIiIXZLjk5rfffkOnTp3wwgsvYMuWLShbtixGjBiBIUOG5Pqa5ORkJCcnp3+cmJgIALBarbCq2H2jXOtR13S/eBFuAFJLlUKayt1H7mXLwi0qCilRURBhYapeu7Dy2j6uiu1jG9snd2wb29g+thmpffIao0kIY+2y6OXlBQB466238MILL2DPnj0YNWoUvvrqK/Tv3z/H14wfPx4TJkzI9vjSpUvh4+Nj13hz0uKjj1DiyBHsHT0al9u0UfXajWbMQLlt23D41VdxrkcPVa9NRESkpaSkJPTt2xcJCQnw8/PL9XmGS248PT0RFhaGHTt2pD/25ptvIiIiAjt37szxNTlVbkJCQhAfH2+zcfLLarUiPDwcHTp0gNlszvV5HnXqwHTyJFLWr4do21a1+wOA29ixcJ85E6n/+hfSpk1T9dqFldf2cVVsH9vYPrlj29jG9rHNSO2TmJiIoKCgRyY3huuWCg4ORs2aNbM8VqNGDaxYsSLX11gsFlgslmyPm81mu3wjH3ndf3bt9ihbVg4AVlNoKADAPSYG7jp9k9qr3Z0F28c2tk/u2Da2sX1sM0L75DU+w00Fb9myJU6ePJnlsVOnTqG8sq+S3iUnAzdvyvNSpdS/Pte6ISIiF2e45Gb06NHYtWsX/v3vf+PMmTNYunQpvv76a7z++utah5Y3/1Rt4OEBFC+u/vWZ3BARkYszXHLTuHFjrFq1Cj/88ANq166NSZMmYfbs2ejXr5/WoeXN1avyWLKknLqtNmX6d0wMkJqq/vWJiIh0znBjbgCge/fu6N69u9ZhFIyS3NijS0q5rru7TGyuXlV/FWQiIiKdM1zlxvCU5KZ0aftc3909I6G5eNE+9yAiItIxJjeOZu/KDZCR3Ci7jxMREbkQJjeO5ojkJjhYHpncEBGRC2Jy42iOTG6UPayIiIhcCJMbR2O3FBERkV0xuXE0dksRERHZFZMbR4uNlUd2SxEREdkFkxtHslqBGzfkObuliIiI7ILJjSMpWy+4uwOBgfa7j1K5iYsDUlLsdx8iIiIdYnLjSPbeekFRooRMoITIuCcREZGLYHLjSI4YTAzIxElZAZldU0RE5GKY3DiSo5IbgIOKiYjIZTG5cSRHJjccVExERC6KyY0jsXJDRERkd0xuHEmZLVWypP3vxcoNERG5KCY3jhQfL48lStj/XlylmIiIXBSTG0dSkpugIPvfi91SRETkopjcONK1a/LoiMoNu6WIiMhFMblxJC0qN1evAqmp9r8fERGRTjC5cZSkJPkPcEzlRlkFOS0tYyAzERGRC2By4yhK1cbTEyha1P73c3fPmHLOcTdERORCmNw4SubxNiaTY+7JGVNEROSCmNw4iiPH2yg4qJiIiFwQkxtHUSo3jkxuOB08f+7d4/gkIiInwOTGURy5gJ9CGXOjbPtAObt1C3jlFcDXV7ZZgwbA3r1aR0VERAXE5MZRtKjclC4tj0xucnf3LtCpE/DttxlT5g8cAB5/HPj7by0jIyKiAmJy4yis3OjTW28Be/YAAQHAtm2yrTp3BpKTgWefzfi+ERGRYTC5cRQtKjdKchMb67h7GsnffwNffy3Pf/5ZVmtKlgRWrABq15bfs3fe0TZGIiLKNyY3jqJF5YbdUrZ98ok8vvoq0K5dxuM+PsCiRfL8u++Ao0cdHxsRERUYkxtH0WIquFK5uXNHji2hDLt2ARs3AmYzMG5c9s83bQo8/zwgBDBxouPjIyKiAmNy4yiO3DRT4esLeHnJc1Zvslq4UB779AFCQ3N+zkcfyeOKFVwriIjIQJjcOEJqKnDjhjx3ZOXGZGLXVE5u3waWL5fngwfn/rx69YAWLeT3b8kSx8RGRESFxuTGEW7elBtYAkBgoGPvzUHF2f30k+yme+wxOYjYlqFD5XHhwozvIRER6RqTG0dQxtsUKybHeDgSKzfZLV0qj6+88uh9vnr1kt+3CxeArVvtHhoRERWe4ZObKVOmwGQyYdSoUVqHkjstpoErWLnJ6tYtYMsWef78849+vrc38Mwz8nzFCntFRUREKjJ0chMREYGvv/4adevW1ToU27SYBq7gQn5ZrV0LpKQANWrIbqm8UJKglSvZNUVEZACGTW7u3LmDfv36YeHChShevLjW4dimZeWG3VJZ/fabPPbokffXPPkk4OcnNyDdtcs+cRERkWo8tA6goF5//XV069YNTz75JCZPnmzzucnJyUhOTk7/ODExEQBgtVphtVpVi0m51sPXdLt6Fe4A0gIDkari/fLCFBgIDwBpV644/N4Py619HCYlBR5//gkTgJSuXSHyGoebG9y7doXbsmVIXbECaY0b2yU8zdtH59g+uWPb2Mb2sc1I7ZPXGA2Z3Cxbtgz79+9HREREnp4/ZcoUTJgwIdvj69evh4+Pj9rhITw8PMvHtSMiUBnA2YQEHFuzRvX72RJw7hxaAbh3/jw2OPjeuXm4fRyl2KlTaHPrFqw+PlgTHw/koz3KlimDMAB3VqzA5tat7RcktGsfo2D75I5tYxvbxzYjtE9SUlKenmcSQgg7x6KqixcvIiwsDOvXr0e9evUAAG3btkX9+vUxe/bsHF+TU+UmJCQE8fHx8PPzUy02q9WK8PBwdOjQAeZMs6LcBw6E29KlSJ0yBWljxqh2vzw5cwbmmjUhihRBys2bjr33Q3JrH0dxmzYN7h9+iLSnnkJqfgcHx8fDo2xZmISANSoKKFNG9fi0bh+9Y/vkjm1jG9vHNiO1T2JiIoKCgpCQkGDz97fhKjf79u1DXFwcGjVqlP5Yamoqtm7dirlz5yI5ORnu7u5ZXmOxWGCxWLJdy2w22+Ubme26168DANxLl4a7o9845coBAEx378KcnAwULerY++fAXu3+SP9M5XZr3x5u+b1/cDAQFgZERMC8aRMwcKD68f1Ds/YxCLZP7tg2trF9bDNC++Q1PsMNKG7fvj0OHz6MAwcOpP8LCwtDv379cODAgWyJjS5osa+UomhRuREk4NqDiq1WYPt2eZ55k8z86NRJHtetUycmIiKyC8NVbnx9fVG7du0sjxUpUgSBgYHZHtcNLZMbk0lOBz9/Xq51U7my42PQg7175arEgYFAQd8nnToBkycDf/0lN9R81AKARESkCcNVbgxJ2VfK0VsvKLjWTUbVpnVrwK2Ab/smTeRGpNeuASdPqhcbERGpynCVm5xs3rxZ6xByZ7XKjRoBICBAmxi41g2wZ488NmtW8Gt4esrXb94sx+9Ur65KaEREpC5WbuxNqdqYTHKPIi1wCwZg9255bNKkcNdRpoFv21a46xARkd0wubE3JbkpVgzQarCzq3dLXbkCXLwou6PCwgp3rVat5JGbaBIR6RaTG3tTkhutuqSAjG4pV63cKFWbWrUKPxW+eXPAwwOIjpY7hRMRke4wubE3PSQ3rl65UatLCgCKFAEaNpTn7JoiItIlJjf29s8CfprNlAKY3CiDiZs2Ved6HHdDRKRrTG7sTQ+Vm8zdUsbabaPwUlMBZQ8ytZKbli3lkTuEExHpEpMbe9NDcqNUbu7dA+7c0S4OLZw6Jafi+/gANWuqc02le+vIEbkwIBER6QqTG3vTQ7dU0aJyrAjgeoOKDxyQx7p15UBgNZQpA5QtC6SlAfv3q3NNIiJSDZMbe9ND5QbIqN7ExWkbh6MdPCiP/+wgrxqleqOM5yEiIt1gcmNvekluSpaUR1dLbg4dkkcmN0RELoPJjb0p3VJMbrTByg0RkcthcmNvWm+aqXDF5CY+HoiJked16qh77UaN5JYaUVGu1aZERAbA5Mbe2C2lHaVLqlIlwNdX3Wv7+2dsnMnqDRGRrjC5sSc97AiucMXkxl5dUgqla0pZR4eIiHSByY096WFHcIWS3LjSKsX2Tm6UbRiU6eZERKQLTG7sSQ87gitcuXJTt659rt+ggTxGRtrn+kREVCCFWtXMarUiNjYWSUlJKFGiBAK07nrRG72MtwFcb52blBTg2DF5bq/kRqkIXbwoZ8VpPWiciIgAFKByc+fOHXz11Vdo27Yt/P39UaFCBdSsWRMlSpRA+fLlMWTIEERwDIKkh9WJFUrl5vp1+Yvf2Z07Bzx4AHh7AxUr2ucefn5A5crynF1TRES6ka/kZtasWahQoQIWLlyIJ554AitXrsSBAwdw8uRJ7Ny5E+PGjUNKSgo6dOiAzp074/Tp0/aK2xj0VLkJDJRjfwA5RdrZHT8uj9WrA2527H2tX18e2TVFRKQb+eqW2rFjBzZt2oQ6uawZ0qRJE7z66quYP38+lixZgi1btuCxxx5TJVBD0lNy4+4OBAUB167Jrillp3BnpSQ3NWrY9z4NGgArVrByQ0SkI/lKbn766af08+bNm2PdunXw8/PL9jwvLy+MGDGi8NEZnZ66pQDZNaUkN87OUckNKzdERLpT4Hr97t27cf/+/WyPJyYm4p133ilUUE5DT5UbwLVmTDmycgMAJ04ASUn2vRcREeVJvpObnj174rPPPoPJZEJcDr8k7969i5kzZ6oSnOExudGGEBnJTc2a9r1XcDBQogSQlgYcOWLfexERUZ7keyp4+fLl8ccff0AIgXr16iEwMBD16tVDvXr1ULduXRw6dAjBwcH2iNV4mNxo49Il4M4dwMMDqFLFvvcymWT1Zv162TWlrFpMRESayXdyM2vWLACAxWLB9u3bERMTg8jISBw4cACrVq1CWloapk6dqnqghqTHMTeA869SrFRtqlQBzGb7309JbjiomIhIFwq8iN/du3fh4SFf/vTTT6sWkFNh5UYbjuqSUiiDipncEBHpQoEHFCuJDdmgt+TGVVYpVlYmtvdgYoWyNMKRI3K8DxERaSpfyU10dHS+Ln758uV8Pd+pPHiQsSO43rqlnD25OXFCHh2V3FStKru/7twB8vl/xOUcPAiMHg107Ag88wwwaxZw86bWURGRk8lXctO4cWMMGTIEe/bsyfU5CQkJWLhwIWrXro2VK1cWOkDDUn5gm0yAv7+2sShcJbk5dUoeq1VzzP3MZrkSMgAcPuyYexqN1SqTmgYNgNmzgfBw4Ndfgbfeksnhr79qHSEROZF89S0dP34c//73v9G5c2eYzWaEhYWhTJky8PLyws2bN3Hs2DEcPXoUYWFhmDZtGrp06WKvuPVPTzuCK5TkJikJuHsXKFJE23js4fZtIDZWntt7plRmtWvLxObIEaB7d8fd1whSUoBevYBffpEfP/ecbKMbN4BFi+QYqWefBebPB157TdNQicg55KtyExAQgOnTpyMmJgbz589H1apVER8fn76HVL9+/bBv3z78/fffrp3YAPqbKQUARYsCXl7y3FmrN2fOyGNQkEwsHUUZd8PKTXZvvikTG4sFWLUK+PlnYOBAWbU5cAAYMUKOVRoxghUcIlJFgUYFe3l5oUOHDujZs6fa8TgPvQ0mBmQXWcmSclxIXJz9dsvWkrJZq6P3NKtdWx65kF9WK1bIiozJBCxdKsfZZObpCcydK8eoLVoE9Osnx+Uou60TERVAgWdLtWrVCrFK+Z+y02NyAzj/uButk5sTJ+T4EpL7mA0bJs/HjgVy+2PIZJIJUJs2srt0wAAgNdVxcRKR0ylwchMWFoamTZvihDIz5R+RkZHo2rVroQMzPCW50VO3FMDkxl7Kl5fdfg8eZMTg6saNA+LjZZfduHG2n+vhAXz3HeDrC/z9N7BggWNiJCKnVODkZtGiRXj11Vfx+OOPY/v27Th16hR69eqFsLAwWCwWNWPMYsqUKWjcuDF8fX1RsmRJPPPMMzh58qTd7ldgypgbvVZunHWVYq2SGzc3oFYtec6uKeDkSeDrr+X53LlyvM2jlC8PfPaZPP/kk4w/EIiI8qnAyQ0AjBs3DmPGjEGHDh1Qu3Zt3Lt3DxEREVi1apVa8WWzZcsWvP7669i1axfCw8ORkpKCjh074u7du3a7Z4EoP5iLF9c2joc5e+VGGVDs6OQG4KDizD75RHYtPfUU0Lp13l83dKjs4rtxA5g0yX7xEZFTK3Byc+XKFbz55puYNGkSatasCbPZjN69e6Nhw4ZqxpfN2rVrMXDgQNSqVQv16tXDN998g+joaOzbt8+u9823W7fkUW/JjTOvUpyYmPF1aZHccFCxdPasnBEFAJ9+mr/XengA06fL8wULMqb1ExHlQ4H3UKhUqRKqV6+On376Cd26dcO6devQq1cvXLp0Ce+9956aMdqUkJAAQE5Tz01ycjKSk5PTP05MTAQAWK1WWFUc/Klcy2q1wv3GDbgBSPH1hdDRAFNTQAA8AKRdvYpUB8eVuX3s4vhxmAGIUqWQ4uXl8IG9pho14AFAHDmClALc2+7t4yBu06fDPS0NaZ07I7V69fx/H9q1g3uTJnDbswep06Yh7Z+uKmdpH3tg29jG9rHNSO2T1xgLnNx888036N27d/rHnTp1wqZNm9C9e3dcuHABX375ZUEvnWdCCLz11lt4/PHHUVv5qzkHU6ZMwYQJE7I9vn79evj4+KgeV3h4OFqfP4/iAPadO4fYNWtUv0dBlYiKQgsAt8+exWaN4goPD7fLdctu24YwADcCArBdg6/N89YtdAGAs2exbuVKpCprCuWTvdrHEcy3b6PTkiUAgJ0tWyK+gN+HUh06oNmePRBffonw+vVh9fNL/5yR28fe2Da2sX1sM0L7JCUl5el5JiHU3ekvKioKXbt2xTFl80I7ev3117F69Wps374d5cqVy/V5OVVuQkJCEB8fD79MPzQLy2q1Ijw8HB06dIB3vXownTmDlI0bIR5/XLV7FNqBAzA3aSKrGxcvOvTWmdvHbDarfn23Tz+F+4QJSBswAKkLF6p+/bzwKFsWpmvXkLJzJ0SjRvl6rb3bxxHc5s2D++jRELVrI2XfPjnNuyCEgEeTJjAdPIjUjz9G2scfO0X72Avbxja2j21Gap/ExEQEBQUhISHB5u9v1bf2rlChAv7++2+1L5vNG2+8gd9++w1bt261mdgAgMViyXEGl9lstss30mw2w/TPmBuPEiXk3kN6UbYsAMB07RrM7u5ylo+D2avdce4cAMCtWjW4adXmdeoAGzfC4/hxoFmzAl3Cbu1jb0IA334LADANHQqzp2fhrvfee0DfvnBftAjuH3+c/v/IsO3jAGwb29g+thmhffIan11+sxW34yBaIQRGjhyJlStXYuPGjaiox1V2hcjYONORWwDkRVCQPKalOd9UW2UauCP3lHqYMh3cAZVL3dm/X64ubLHIlYYL67nn5AD4K1fktg1ERHnk+D/bC+n111/H//3f/2Hp0qXw9fVFbGwsYmNjce/ePa1Dy3D3bsYKq3qbLeXpmRGTs82Y0mqNm8xq1pRHV0xuFi+Wx2efVWd9J09POTUcAObNK/z1iMhlGC65mT9/PhISEtC2bVsEBwen/1u+fLnWoWVQqjZmM2CHAcuF5oxr3dy6lbFwopaVG1dNbh48AH74QZ4PGqTedV97DXB3B7Zu5RR7IsozwyU3Qogc/w0cOFDr0DIoyU3x4gUfUGlPzrhK8fnz8liypNwGQSs1asjjhQuygucqNmyQCWbp0kC7dupdt2xZoEcPAIDb99+rd10icmqFGlD8119/4a+//kJcXBzS0tKyfG7JP9NBXZFJrwv4KZyxcvPPYGLNdzovUUKOa4qPl1sQ2HlRS9348Ud5fP55WWlR08CBwKpVcPvhB5hatVL32kTklApcuZkwYQI6duyIv/76C/Hx8bh582aWfy5Nr4OJFc64SrFSualUSds4ANfrmnrwAPjlF3n+wgvqX79LF6BECZiuXkXJyEj1r09ETqfAlZsFCxbg22+/xcsvv6xmPM7hn1WTWblxICW50bpyA8jkZutW4PhxrSNxjPBw+Z4PDgZatlT/+mYz0LcvMGcOQjZtkvtWERHZUODKzYMHD9CiRQs1Y3EapsxjbvTIGZMbpVtKD5UbZdyNq1RulH2knntO/S4pxYABAIDSe/ZkVEaJiHJR4ORm8ODBWLp0qZqxOA8mN46nt8oN4BrJTWoqsHq1PO/Z0373qV8fonZtuFutcFOSKSKiXBS4W+r+/fv4+uuvsWHDBtStWzfbqoEzZ84sdHCGxQHFjpWWps8xN2fPAsnJclE7ZxURAVy7Bvj7A/bcZsRkQtpLL8F97FiYfvwRGDHCfvciIsMrcHJz6NAh1K9fHwBw5KH1J0x6nP7sQOyWcrArV+SgVnd34BFbcThEcDDg5wckJsqFBW1s6mp4f/whj507232bkbTnnpPJzdatQGysnHZORJSDAic3mzZtUjMO56JUbvQ6W0pJbhITgfv3gQLuXq0bynib8uUBD9W3S8s/k0lWb3btkl1TrpDcdO9u/3uVL48bVasi4NQpYOVKVm/yQgjZdaiH/xdEDmS4RfwMQe/dUsWKZfywu3ZN01BUoafxNgqla8qZZ0xduiT3kjKZZOXGAWKUSQzKujqUXXw88NlnQPPmsoJoNstju3bArFkZP5+InFihkptbt25hxowZGDx4MIYMGYKZM2ciQZkG7cJ03y1lMjnXKsV6mimlcIUZU8pA4ubNMzZktbP05EbpmqIMqalwmzpVJvnvvy8rh3fuyM/dvg1s3gy89RYQEgJMnw5YrZqGS2RPBU5u9u7di8qVK2PWrFm4ceMG4uPjMWvWLFSuXBn79+9XM0bj0XvlBnCuhfz0XLlx5uRm/Xp57NrVYbe8V7Ik0po2ld0tK1Y47L66d+0aWn78Mdw/+kgmNA0aAF99JSuHcXHA4cPAF1/ILtI7d4B33gHatAEuX9Y6ciK7KHByM3r0aPTo0QNRUVFYuXIlVq1ahfPnz6N79+4YNWqUiiEakN4rN4BzDSrWY+VGSW5OnQJSUrSNxR5SU4GNG+V5hw4OvbV47jl58tNPDr2vbl24AI82bRB07BiEry/wzTfAvn1yR/Xq1eWWILVrAyNHym7EJUtk1/TOnUBYGDckJadUqMrNe++9B49MA9U8PDzw7rvvYu/evaoEZ0RuyckwJSfLD5jcOIYeKzehoXJH+AcPMpIvZ7Jvn6xQ+vsDjRo59NZpyno6W7fKmXKuLD4e6NABpjNnkFSiBFL+/lvuxZXbjFU3N+CVV4C9e2XCExsLtG0LuHq1nZxOgZMbPz8/REdHZ3v84sWL8PX1LVRQRuap7ATt5qbt7tSP4izJzf37GaV1PSU3bm7yr2bAObumNmyQxyeesN+qxLkJDQWaNZNdU7/+6th760lSkpyldvo0RGgotk2ZkvGee5TKlYEtW4DGjYHr14FOnYAzZ+wbL5EDFTi5efHFFzFo0CAsX74cFy9exKVLl7Bs2TIMHjwYffr0UTNGQzEryU2xYvIXnF45S3Jz4YI8Fi3qsEGteebMM6bCw+XxySe1uf8zz8ijKyc3//oXsHs3ULw4Un7/Hffz+/4PCJBJaliYrAB16SKPRE6gwIsfTJ8+HSaTCf3790fKP2MKzGYzhg8fjs8++0y1AI3GrMxO0HOXFOA8yY3S5VOxYu6leK0464ypu3eBHTvkuYPH26R7+mlg7Fjgr7/kek1+ftrEoZVly4BFi+R7/uef5XtN6Z7NDz8/4PffZSXszBmgVy+ZuDq6GkeksgKXFjw9PTFnzhzcvHkTBw4cQGRkJG7cuIFZs2bB4szLzT8CkxsH09O2Cw9z1hlT27fLsUShoUCVKtrEUL06UK2anM7855/axKCVixeB116T5x99JLsGC6N0aWDNGqBIEWDTJmDSpMLHSKSxQveb+Pj4oE6dOqhbty58fHzUiMnQmNw4WObKjd4oyc2JE3L/K2eRuUtKy2rZ00/Loyt1TQkhV2ZOTJTrC33yiTrXrVlTTh0HgIkTM2bCERlUvrql3nrrLUyaNAlFihTBW2+9ZfO5rrpxpmfmMTd6ljm5EUJ/XTp5pefKTaVKgKenHPgZHQ1UqKB1ROpQfvG1b69tHM88A0ydKhcTfPBAtrWzW7FCbnlhNgOLF6u7rUK/frJys3ixPD96VI7LITKgfP3PiIyMhPWfVS0jIyNzfZ4rb5zpoSQ3RqncWK1ySq/e481NVJQ86jFx8PAAqlaV64gcO6bPGPMrIQE4cECet22rZSRA06ZyMcqrV+XMH63G/zjKnTvAm2/K8w8+yBjTpab//Af4+29ZbRw1Cvj+e/XvQeQA+UpuMm+W+d1336FcuXJwe2hGkBACFy9eVCc6A/I0SreUl1fGztVXr+o/3twos6XKl9c2jtzUrCmTm+PHHbqSr938/bes9FWpApQpo20sbm7AU0/JgbW//OL8yc306XJdn0qV5PYK9uDjIxcBbNkS+O9/gRdekG1MZDAFHnNTsWJFxOcwbfDGjRuoqMfxDw5imDE3gPHH3dy9K9foAPSd3ADOM6h461Z5bN1a2zgUmaeEC6FpKHZ15QowbZo8/+wzwJ6TNpo1A8aMkedDh3KjTVuEkN+brVvlTvU//yy7bc+dc65xdgZU4ORG5PKD5M6dO/Dy8ipwQEZnNkq3FGD85Eap2vj7y3965GzTwbdskcc2bbSNQ9G+vZzlc/myXDXZWX3yiRy71awZ8Pzz9r/fxIlyNlpsrJyRRRmEkJuSDh8uq2hlysj/D889Jytd7dvLRRJLlpQf//QToKxaTw6T79FoykBik8mETz75JMsMqdTUVOzevRv169dXLUCjMVTlRtk806g7g+u9SwrIWrkx8sBtQFbKlK1V9FK58fICOneWA21//VUuSOdsjh+X+0EBwIwZjnkPeXkB8+fLaebz5wOvvgo0bGj/++qZEMDatcDHH2dNpN3c5Hi60qXl+bVrcizg9euykvPzz0BgoNyR/Y03ABdewd+R8l25iYyMRGRkJIQQOHz4cPrHkZGROHHiBOrVq4dvv/3WDqEaQ/qYG73PlgKMvzO4sv1HaKi2cdjy2GNyQbTEROPvg7Rrl9wENCREXwmlMiX8l180DcNuJk+WXRxPPw20aOG4+7ZrB/TpI+89fLhrd7NER8sVnLt2lYmNxQIMGCBnriUmAmfPyvFo27bJwdi3b8uP338fKFtWJjoffiiToHnz5MazZFf5rtwog4pfeeUVzJkzB36utjLoIxiyW4qVG/uxWOTg25Mn5dRarQfhFkbm8TZ6qkB16yYTyCNH5FgHPS4LUFCnT8vViAH11rTJjxkz5C/wPXvkwO2hQx0fg9aWLpVrCyUkyOUG3ngDeO89udt6bsxmmYi2aCEXRVy2THb1nTold2f/73+BhQuBOnUc93W4mAKPufnmm2+Y2OTAUMmN0Ss3RkhuAOcZVKy3wcSKgACgVSt57mwL+v3737Ji0q2bNt1CwcEZKxaPHetae0+lpACvvy7X/ElIkEsPHDkiZ63ZSmwe5u4ur3HsGDB3ruyW2r1bblq6YIFzD4TXUIFXgJo4caLNz3+ixV8ZWrNa4XH/vjw3UnLDyo191aoFrFpl7OQmOVl2SwH6GUyc2dNPA5s3y+Rm9Gito1HH+fPyL3xAjvPQyuuvy+nhBw/KrhVlJWNnlpAAvPgisG6drFJ+8okcWF2YRRPd3WVbPvOMrICtWSO7+zZulFUcvU6KMKgCf6dWrVqV5WOr1Yrz58/Dw8MDlStXds3k5ubNjHMjvFHZLeUYzlC52bsXuH9fvmeqVtU6muyeflomNdu3y/ENgYFaR1R4n30mx2Z07CirBlrx8JAVh1at5C/hoUOBRo20i8febtyQaybt3y/X/fnf/zKWHFBD2bJys9LZs2X31k8/yS7rP/7Q5zYyBlXgbqnMA4kjIyNx5MgRXLlyBe3bt8doZ/nLKb/+SW6Ev78xdtU1creU1QrExMhzoyQ3R48atwStdEm1aqWv8TaKihXl+IXUVPkXsdHFxQHKxAwtqzaKxx+XXStCyDEnzjq4+MYNuWfa/v2y62nrVnUTG4Wbm5w99fffchzesWMygd2xQ/17uahCb5yZmZ+fHyZOnIiP9fCfUQMmZbErI8yUAjIqN7dvA/fuaRtLfl2+LH/AenpmfB16VbWq/GF286YxE0kg44fu449rG4ctzrSR5tdfy/2ymjTRT5t//rlcU2jnTuD//k/raNSnJDaRkfJnyqZN9q9QNWkiB2s3bCinkLdrB/zwg33v6SJUTW4A4NatW0hISFD7ssZgtOTG3z9js0Gj/dJVuqRCQ2XioGfe3hkzeI4e1TaWghBC/kIDHDsVOb+U5GbtWtmFZlRWq1xbBsjYS0oPypbNqCK9956cAu0s7t+X75/MiU2tWo65d9myskLUs6dMaPv2Bb74wjH3dmIFHnPzn//8J8vHQghcuXIF//3vf9G5c+dCB2ZISrdU8eLQYeE+O5NJdk1dvCjH3ei9eyczo4y3UdSsCZw5I8vPTzyhdTT5c/q0HMfi5QXoeYHOhg1liT8mRg7SNOpeXqtWya+hVCm5wq2ejBoldw0/fVrOolK2hDCytDTgpZfkeC1/f+CvvzK6kh2lSBE59mb0aLl56ZtvykrOhAn67AY2gAInN7NmzcrysZubG0qUKIEBAwbgfXtt6qZzhuuWAuRfKUpyYyRGS25q1QJ++82Yg4qVqk1YWEalT4/c3IAePeT02l9/NW5yo/zh+Npr+mtvi0UOhO3WTR4HDQKqV9c6qsIZM0aucO3pKReCrF1bmzjc3GSblighK2STJskEZ+5cY4zh1JkC1/PPnz+f5d/Zs2exa9cu/Pvf/4avA5aX/vLLL1GxYkV4eXmhUaNG2LZtm93v+UjKbCkjTANXGHVQsdGSGyPPmFLG2zRvrm0ceaF0Tf32mzEHvUZGykGmHh4yudGjrl2B7t3lOjD/+pdxB8kDsvtn9mx5/t13QNu2WkYjqzQffQR8+aU8X7BAdlNxb6p80/lghZwtX74co0aNwocffojIyEi0atUKXbp0QbSyHL9W/qncCKNVbgBWbuzNGZIbPY+3UbRrJxdJi40FIiK0jib/lLEWL7yg79WsZ82SlY7162UiaUSbN2esifT550Dv3pqGk8Xw4XJVY7MZ+PFHmUzevq11VIaSr24pZdPMvJg5c2a+g8nPtQcNGoTBgwcDAGbPno1169Zh/vz5mDJlit3u+yiG7JYyauXGCPtKZVa9uvxL7No1+S8/K5xqKSEhYxC0ESo3FovcSPOnn+QvXS3Xh8mva9fkUv+AnG6tZ1WqAG+/LVdQHj1arsXj7a11VHkXHQ306iWXDujXD3jnHa0jyq5XL9kL8OyzwIYNMnFfs0b/s0N1Il/JTWRkZJ6eZ7LjAKgHDx5g3759GDt2bJbHO3bsiB25rBGQnJyM5ExlvcR/RvlbrVZYrVbVYjPduAE3AKl+fkhT8br25BYUBHcAaVeuINXOMSttXeg2FwIe0dEwAbCWKSNnl+id2QyPChVgOn8eKYcOQeSwhYFq7aMi099/w0MIiEqVkBIQoGlb57V9TN26weOnnyB++QUp48c7IDJ1uH31FdyTk5HWsCFSGzXKV1tr8t55+214fPcdTOfPI/Xzz5H24YeOu3c+ZWmfe/fg/uyzcLt2DaJePaTMmye72PSobVuYwsPh3qMHTPv2QbRsiZTVq1Vf7E+PP3tyk9cY85XcKJtmaik+Ph6pqakopVQc/lGqVCnExsbm+JopU6ZgwoQJ2R5fv349fHx8VIutxblzKAHg0MWLuGyQhcTKxcSgEYDrx49jh4NiDg8PL9TrLbduofP9+xAmE/48fBjixAmVIrOvpoGBKH3+PI7+9BOilN3jc1DY9lFTtWXLUB3ApZAQ7NfJe/pR7WP28EBnNze4HTuGzYsXIyk42EGRFZwpNRVPzpkDHwAHHn8cF//8s0DXcfR7p2zv3gibMQNiyhRsKlsW93ReVQhfvx4N/vMfhO7fj2RfX2wZMQL3Nm/WOqxHKjJhAlqMHw+fM2eQ2qwZdn7yCRLtsJqxWu8fz1u3UHbHDpy3w6D+pKSkPD2vEBtlyDVtFi9ejOPHj8NkMqFmzZp49dVX4e+ArQcerg4JIXKtGL3//vtZutQSExMREhKCjh07qrr5Z0rp0tj5xx+oP3Ag6hmku8RksQCzZiEoNRVd7Ty7xGq1Ijw8HB06dIDZbC7wdUzKWIoyZdBFGUBqAG7btgF796K2uztq5tDWarWPmtznzQMAlHnuOZTWePZRvtpn8WJg0yY8cfs20gYNckyAhWBauRIe8fEQJUqgzuTJqOPlla/Xa/be6dIFaXv2wGPbNjy5di1SlR3MdUZpny7nz8Nz0yYINze4//QT2hlpWYZu3SC6d4fXkSNoO24cUleuzLECXBBqvn9Mq1bB/e23YYqPR80OHSBU/hmdmMf1lQqc3OzduxedOnWCt7c3mjRpAiEEZs6ciU8//RTr169HQzvtYBsUFAR3d/dsVZq4uLhs1RyFxWKBxWLJ9rjZbFb3B0HDhoiLjYVHaKhufjk90j+DFk1xcQ6LudDtfvkyAMBUvrxx2hmQ2wMAcD9xAu424lb9fVlQaWly92IA7q1a2YzZkfLUPs88A2zaBPc//oC7HsdTPOzLLwEApqFDYS7EbFNN3jtffAE0bAi3lStlAq/ThCHw6FGYx40DAJimToVHp04aR5RP5csD27YBPXrAtG0bPLp2lbOpXnlFtVsU6v1z44acPaesXl2nDjyqVJGDolWU1/gKPFtq9OjR6NGjB6KiorBy5UqsWrUK58+fR/fu3TFq1KiCXvaRPD090ahRo2zls/DwcLQwwmwOvVESwuvX9dvv/LDMqxMbidFmTB07JlehLVJEu7U/CqpHD3ncvh2Ij9c2lkc5dEiuUOvuDgwbpnU0+VevnpzdA8jF5/Q4buPSJYRNnQpTSoqcFZWPyTG6UqyY3Kn8uefkasavvioXVtT6Z/eKFfLn2//9n1yv54MP5GxFDRf9LHBys3fvXrz33nvwyLQFvIeHB959913s3btXleBy89Zbb2HRokVYsmQJjh8/jtGjRyM6OhrDjPiDQWtBQXIWjxD6/yWgMNo0cIWy2FlsrPwrR++UAfpNm8p1V4ykQgWgbl1ZfVq9WutobFOmf/fsCZQrp20sBTVxotyJ/ejR9CqUbty/D/cXX4RXQgJEnTrAokXGXvXX21tOD/+nCoU5c4AuXbSZ8RobCzz/vPx39SpQo4Zcp+nTT+XMRQ0VOLnx8/PLcV2Zixcv2n0RvxdffBGzZ8/GxIkTUb9+fWzduhVr1qxBeaP9stMDd3eZ4ADGWetGed8Z7fvt65tRbTJC9UZZmdgIU8BzYoSNNK9fzyjj62kfqfwKCJC/0AD5S1cvS0sIAbz+OtwiIvCgaFGk/PSTrEQanZsbMH488PPP8uvZsEF2exdwIHq+paYCX30lqzUrVsg/fj76SC5C2ayZY2J4hAInNy+++CIGDRqE5cuX4+LFi7h06RKWLVuGwYMHo0+fPmrGmKMRI0YgKioKycnJ2LdvH1qrNLDKJRltrRujVm6AjM34jJDcGGnxvpwoyc26dfrdSHPxYhlb/fpAy5ZaR1M4gwfL/b0SEmS3hB4sWAAsWQLh5oa9b7+dsYGts3juOWDXLtltHBcnV48eOdK+m5pu2SJ3Sx82TK7K37Ch7IKaNEnzak1mBU5upk+fjp49e6J///6oUKECypcvj4EDB+L555/H559/rmaMZG9GW6XYyMmNUcbdxMcDp07Jc538JZZvDRvKbp6kJJng6E1qakYXzhtvGLurBJBVYKWLbckSOY5IS9u3p1fD0iZPxjU9b/paGLVrA3v2ZCz8OG8eUK2aXBBSzS1I9u2TfzC0bQscPCjH/8yZIycd6LBtC5zceHp6Ys6cObh58yYOHDiAyMhI3LhxA7NmzcpxZhLpmJEqN4mJ6dtcGG5AMWCc5GbXLnmsXl12ORiRySTHAgByxWK9+f13magHBgIOqHY7RIsWcjNNIYABA+xbQbDl8mX5vU9JAXr1QtqYMdrE4Sje3nLD1fBw4LHH5FiYfv3kYO+ffir4gOO0NPmHQbducuPc336TXWLDhsmd4d98U7fj8Qqc3Ny7dw9JSUnw8fFBnTp14O/vj6+//hrr169XMz5yBCW5MULlRqnaFC8ux7AYjVGSG6N3SSl69ZLHX38F7t3TNpaHKbt/DxlirK0LHmXmTDmgOyoqY+8mR7p3Tw7OvnpVjkNZssT4VbG8evJJ4PBhYPJkwM8POHJE/h8IDQXee09WWR6V6KSkyEHBY8cClSvL7UzWrJFJzcsvy0Hj8+dnjNXUqQKnXE8//TR69uyJYcOG4datW2jatCnMZjPi4+Mxc+ZMDFemBpL+Kd1SRqjcGLlLCpCzCQD5l2VCAuCABS8LxOiDiRVNmwIhIcDFi/Iv0Gee0Toi6cgRYNMm+QvD2X5W+vll7LC9ZImclu+oxTbT0oCXXpLdNMWLA6tWyQG3epyebi8WC/Dhh8CIEbLbaN484MoVYOpU+c/XV1ZhqlSRCYqXF9xu3UKDAwfg/u9/y+Qo8x8CxYoB/fvLbq8qVTT7svKrwJWb/fv3o1WrVgCAn3/+GaVKlcKFCxfw/fff4z/KXyRkDEaq3Bh1ppTC3x8oW1aeHz+ubSy5sVrlLwfA+JUbNze5wzYgp8/qxdy58vjMM8bsXn2U1q3lxpqA7KZS/iixt3ffBVaulDuW//KLrDy4quLF5Yyqy5fljKaePWWicvu2TKwXLgSmTAHGjYP7rFkI3bQJbnv2yMSmeHGgb1/ghx+AmBiZJBkosQEKUblJSkpKn/K9fv169OzZE25ubmjWrBkuOOqNTOow0oBio1duADlj6vJlWd7V42DdQ4fkINxixTLW5jGyXr1kV8lvv8kf3Fp3Ad28Cfz3v/Jc77t/F8akScDGjXIgas+ecoCvPdv+iy+AGTPk+TffyASLZKLXs6f8l5oq/38fOQKcPSvHL967h9SiRXEyLg5VO3eGR+PGMil0d9c68kIpcHJTpUoV/PLLL3j22Wexbt06jP6nbzUuLk7V/ZrIAYw0oNgZkpuaNYH16+UPGD1SuqSaNpWVD6Nr0kS+Xy5cANauBZ59Vtt4liyRyWOdOkCbNtrGYk8Wi6yiNGoE7N8vB6F++619xr8sWZKxTtCkSbLqQNm5uwMNGsh/maRZrTi9Zg0e69pV9e0StFLgn1yffPIJ3n77bVSoUAFNmzZF83/65tevX48GDzUc6Vzm5EYIbWN5FGdIburWlcfDh7WNIzfOMphYYTJlDCzWumsqJSVjuvSbbzr/QNfQUGD5cpkkf/89MGGC+vdYulSusQPIrQg+/FD9e5DhFDi5ef755xEdHY29e/di7dq16Y+3b98es2bNUiU4chClW+rBAznIVc+Muq9UZkpyc/CgPpNJpXLjLMkNkJHc/PabHHOgld9+y5j+3a+fdnE40hNPZIwxmjAhI7lTw5dfygHEQsjK0MyZzp8wUp4UquZcunRpNGjQAG6ZStdNmjRBdWfop3clXl5yhgOg73E3ycly1D9g7MpNzZryL9n4eP2195UrcgqvySS7c5xFo0ZyYbOkJDm4UiuzZ8vja69pP/bHkYYPl4NbAVmxmjq1cNdLSwM+/hh4/fWMxGbePCY2lM4JOtRJFUYYVHzpkjx6ewMlSmgbS2F4e8uFtgD9dU0pVZvatTMSXmdgMsnprICcpqyF/fuBbdvkomcjRmgTg5Y++USutQLI4xtvyGpxft24IaeWT54sP54wQVZwnGF8GKmG7waSjDCoWOmSCgkx/l9oderI46FD2sbxMGfsklK89JJ832zeLKtTjjZnjjz26pWxHIArMZmAzz7LqNrMnSv308rrgpZCyNV269QB/vhDDlheskQmTUb/eUCqY3JDkhHWujH6GjeZKeNu9JrcGH3xvpyEhgLt2slzZSq2o8TGAsuWyfN//cux99abd96RY4+KFwf27pX/F4YPz9jL7GEpKXLNmlatZGIYEyMrn7t2Aa+84tDQyTiY3JBkhFWKnWGmlEKPM6YePJC/bADnTG4Aud8RIGfuOHIw9/z5sn2bN3eusUwF9dRTwIEDsnspNVXu3l2tmqzKDBokdxUfM0Z+vmRJOX3/77/lmi2ffCIH4+tws0bSD33ueEWOZ6TKjZFnSimUbqmjR+VfpnrYfC4yUg7aDgzMGBPkbHr2lONdzpyRu1Y7Yp2ZO3cyZghpsdeSXoWGyorMli3AtGnAn3/KtZ9yWv8pKEjuwTVyJFCmjMNDJePRwU9U0gUjJTfOULmpUAEoWlT+4jt1KmNDTS1l7pJy1jEMRYvKBd4WLpTVFEckN19/LVclrlpVJleUVZs28t+1azLROX5cnlss8v96w4ZyQUmDr5hLjsXkhiQjdUs5Q+XGzU3OSNq1S3ZN6SG5cbbF+3IzYoRMblaulGNhSpe2372SkzO2BHj3Xf6CtqVECeD557WOgpwEx9yQpPfKjRDO1S0F6G9QsTMPJs6sfn35NVqtwOLF9r3Xf/8rB8CWLQu8/LJ970VE6ZjckKT3yk1cnPwr2GQCypXTOhp16Cm5uXhRriPk7g40bqx1NPanrDOzYIFMcuzBapW7LgNycKynp33uQ0TZMLkhSanc3L4td07WG6VqExzsPL8klEHFepgxpVRt6tUDihTRNhZHeP55+Z6/dCljirbaFi8Gzp2T9xk61D73IKIcMbkhyc9PDuAD9Fm9cbYuKSAjublwQfs9vVylS0rh5SU3WQSAzz+Xy/mrKSkJmDhRnn/0kWskjEQ6wuSGJJMpo2sqNlbbWHLiTGvcKIoXl6stA3LdDi0588rEuRk2DPD1ldPx16xR99pz58p9usqXl1OYicihmNxQhuBgedRjcuOMlRtATnMF5BozWrl/X+57BLhO5QYAihWTK+MCwKRJ6i3qd+OG3GYAkPseKRVRInIYJjeUQZkSq+fkxpkqN0BGcrNvn3Yx7NsnB7+WKiXX33Elo0fLLqM9e9TbLfzDD+W6NrVry/2siMjhmNxQBqVyc+WKtnHkxJnWuMlMSW6UyokWMq9v46yL9+WmdGk5kwkA3n+/YLtUZ7Z3L/DVV/J83jyua0OkESY3lMEIlRtnTW6OH5eDULWwbZs8tmypzf219vbbcrzZmTNy1eKCslrlOB4hZMWmdWv1YiSifGFyQxn0WrlJSgLi4+W5s3VLBQfL7qC0NJi0mBKelgZs3y7PW7Vy/P31wNc368wmJZHOrwkTZBdfsWLA1KmqhUdE+cfkhjIolRu9JTfKLxtfX8DfX9tY1GYypVdvTFoMKj52TI4P8fEBGjRw/P31YsgQWbm6c0euSZPfqeHbt2cs2Pf11xl/KBCRJpjcUAa9zpbK3CXljGNCGjUCAJi0GHejdEk1bw6YzY6/v164uQGLFsmZTevWZSQqeREdLRcFTEsDBgwAXnjBfnESUZ4wuaEMmZMbtabFqsFZZ0optKzcbN0qj67aJZVZ9epyEDAAfPwx8PPPj35NXBzQtavck61uXeCLL+wbIxHlCZMbyqBswWC1yrU69MJZZ0oplEHFR4/CzV77HOVEiIzKDQe/SoMGZQwK7tMH+OGH3J979izQpo1cBLB0aeD332XXKRFpjskNZfD0BAID5bmext04e+UmNBQICIApJQW+SiLnCFFRwOXLsjuqaVPH3Vfv5s4F+vUDUlKAvn1lwnPxYsbnk5KAOXPk7uInTshVprdscd7km8iAmNxQVnqcDu6s08AVmQYVFzt71nH3Vao2jRrJAcUkubsD334LfPCB/HjJErm4YYMGcmxSyZJyX6o7d2R33o4dQNWqGgZMRA9jckNZ6XE6uLN3SwFA48YAgOKnTjnunhxvkzsPD+DTT2VFpm1bOVj4wAFg1y7g7l2gUiVgwQJg0yagXDmtoyWihxgquYmKisKgQYNQsWJFeHt7o3Llyhg3bhweFHZVUcqgt8pNaipw6ZI8d9ZuKQBo1gyAg5MbpXLD5CZ3rVvLBObCBTmmZsUKucnp6dPAa69xBWIinfLQOoD8OHHiBNLS0vDVV1+hSpUqOHLkCIYMGYK7d+9i+vTpWofnHPRWubl6VQ5wdnd37rVD/hnz4nvpElISEoCgIPve7+pVQEmkXHVl4vwIDXXuyiGRkzFUctO5c2d07tw5/eNKlSrh5MmTmD9/PpMbtehtrRulS6psWdlV4KxKlYKoWBGm8+dh2rsXyPQ+t4vNm+WxTh0gIMC+9yIicjDD/7ZISEhAwCN+OCcnJyM5OTn948TERACA1WqFVcWpt8q11Lymo5mCguABIC0mBqkqfx0FaR/TuXMyntBQ1ePRG1NYGDzOn0fazp2wtm9v13u5h4fDDUBqu3ZIM0i7OsP/L3th29jG9rHNSO2T1xgNndycPXsWX3zxBWbMmGHzeVOmTMGECROyPb5+/Xr42GGWSHh4uOrXdJTACxfwOIC7Z85g45o1drlHftqnyvr1qAXgsrs79tspHr2o5O+POgBurFmD3craN3by5B9/oAiACD8/XDVYuxr5/5e9sW1sY/vYZoT2ScrjBsMmIbRfinb8+PE5Jh+ZRUREICwsLP3jmJgYtGnTBm3atMGiRYtsvjanyk1ISAji4+Ph5+dXuOAzsVqtCA8PR4cOHWA26lL2J07AXLcuhL8/Uq5dU/XSBWkft3/9C+7z5yP1vfeQNmmSqvHoTerOnfBq0wYiMBApMTH222ri/HmYq1WD8PBAytWrhll4zin+f9kJ28Y2to9tRmqfxMREBAUFISEhwebvb11UbkaOHInevXvbfE6FChXSz2NiYtCuXTs0b94cX3/99SOvb7FYYLFYsj1uNpvt8o2013Ud4p9Bk6aEBJhTUgBvb9Vvka/2+WemlHvFinA3apvmVaNGSDWb4X79OswXLgCPPWaf+/wzBdzUpAnMBhxvY+j/X3bGtrGN7WObEdonr/HpIrkJCgpCUB5nh1y+fBnt2rVDo0aN8M0338DNzVCz2fXPzw/w8gLu35eDiitW1DYeV1jjRuHpiVuVKyPwxAm5y7S9kpu//pJHO4/rISLSiqEyg5iYGLRt2xYhISGYPn06rl27htjYWMTqZWaPMzCZ9DUd3Nm3XnjI9Vq15MmWLfa5gRDAxo3ynMkNETkpXVRu8mr9+vU4c+YMzpw5g3IPrQqqg6FDzqN0aeD8ee2ngycmArduyfOQEE1DcZT42rVRdcUK+yU3R47Inax9fNIXDiQicjaGqtwMHDgQQogc/5GK9FK5Uao2xYsbZtBrYd2sXh3C3V1uammPTTQ3bJDHVq2AHMahERE5A0MlN+QgelnIz8W6pAAgxdsbQpkGbo/qjTLtu2NH9a9NRKQTTG4oO2V/Kb1UblxhMHEmQtnrSe3k5vbtjGt266butYmIdITJDWWnl8qN0i3jQpUbABCtW8sTtZObDRvkPl2VKwNVq6p7bSIiHWFyQ9mxcqMp0bIl4OYGnD2r7rib1avlsVs3+y0QSESkA0xuKDu9DCh2pTVuMvP3B5o3l+d//qnONYXIGG/DLikicnJMbii7MmXk8epVICVFuziiouQx0+rULqNrV3lUa9+nyEiZrBYpArRpo841iYh0iskNZVeyJODhAaSlaTfuJjkZiImR566c3Pz1l1wturB+/lkeO3XiFHAicnpMbig7N7eMrqnLl7WJ4eJF2ZXi4wOUKKFNDFqqV09+D5KSgG3bCnctIYAff5TnvXoVPjYiIp1jckM5U1aA1iq5ydwl5YqDX00m9bqmDhyQg5O9vDjehohcApMbylnZsvKoh+TGVXXpIo+//y6rLwWlVG26dQOKFi18XEREOsfkhnKmdXJz/rw8unJy06mTrLacPSsHBBcEu6SIyAUxuaGcKcnNpUva3J+VG1ll6d5dni9fXrBr7NwJnDsnxy6xS4qIXASTG8qZ1pUbJjfSiy/K448/FqxravFieezVS04DJyJyAUxuKGd6SW4qVtTm/nrRtatMSqKigL//zt9rb9/OqPgMGqR6aEREesXkhnKWebZUYQazFoSrr3GTmY9PxliZr7/O32v/9z/g7l2gWjWgZUv1YyMi0ikmN5QzZZXipCQgIcGx91a2XShSBAgMdOy99Wj4cHn88Ufg+vW8vSY1FZg5M+P1rjidnohcFpMbypm3NxAQIM8dPajY1de4eVhYGNCwoaxoKWNoHuXXX4HTp4HixdklRUQuh8kN5U6rcTccTJyVyQSMHCnPZ8yQXU22pKUBn34qz0eM4No2RORymNxQ7rROblx9MHFmL70EVKoExMUB8+bZfu5//wvs3w/4+gJvvumY+IiIdITJDeVO6+SGlZsMZjMwbpw8nzIl9w1NExKA99+X5x9/LDdBJSJyMUxuKHdaJTdcnThn/frJsTe3bgFDh8rup8yEAIYNA65cASpXZtWGiFwWkxvKnTIdXMsBxZTB3R1YsgTw9JT7Tb31VkaCk5YGvPMOsGyZfN7//R9gsWgbLxGRRjy0DoB0TIvKzb17GV0uTG6yq1cPWLgQGDAAmDMH2LULePJJYMMGYPdu+ZwFC4BmzbSNk4hIQ0xuKHdaJDfR0fJYtGjGVHTKqn9/OYPqtddkQqMkNd7eMrHp31/b+IiINMbkhnKnJDfXrsk1VhzRzaGMt6lYkWvc2PLyy7Ji8/33ctfwypVlUhMcrHVkRESaY3JDuQsMlAmNsh2CI6Zmc7xN3gUHA++9p3UURES6wwHFlDuTyfGDis+dk0cmN0REVEBMbsi20FB5VPZ7srezZ+WxcmXH3I+IiJwOkxuyrXx5eVQG+tobkxsiIiokJjdkmyMrN0JkJDdVqtj/fkRE5JSY3JBtjqzcXLsG3Lkjx/pwXykiIiogJjdkmyMrN0rVplw5rq5LREQFxuSGbMtcuRHCvvfieBsiIlIBkxuyTZkKfvcucPOmfe/F5IaIiFRg2OQmOTkZ9evXh8lkwoEDB7QOx3l5ewMlS8pze3dNnTkjj0xuiIioEAyb3Lz77rsoU6aM1mG4BkcNKmblhoiIVGDI5ObPP//E+vXrMX36dK1DcQ2OGlTM5IaIiFRguL2lrl69iiFDhuCXX36Bj49Pnl6TnJyM5OTk9I8TExMBAFarFVarVbXYlGupeU09cAsJgTuA1KgopBXia7PZPrdvwxwXJz8fGgo4WRvmhbO+f9TC9skd28Y2to9tRmqfvMZoqORGCIGBAwdi2LBhCAsLQ5SyyeIjTJkyBRMmTMj2+Pr16/OcIOVHeHi46tfUUqXbt1EHQOzu3di7Zk2hr5dT+/idP492AJJ9fbF2x45C38PInO39oza2T+7YNraxfWwzQvskJSXl6Xm6SG7Gjx+fY/KRWUREBHbs2IHExES8//77+br++++/j7feeiv948TERISEhKBjx47w8/MrUMw5sVqtCA8PR4cOHWA2m1W7rtZMViuweDGCrVZ07dq1wNex1T6mVasAAObq1Qt1DyNz1vePWtg+uWPb2Mb2sc1I7aP0vDyKLpKbkSNHonfv3jafU6FCBUyePBm7du2C5aEF3sLCwtCvXz989913Ob7WYrFkew0AmM1mu3wj7XVdzVSqBABwu3gRbip8XTm2zz/jedyqVFHlHkbmdO8flbF9cse2sY3tY5sR2iev8ekiuQkKCkJQUNAjn/ef//wHkydPTv84JiYGnTp1wvLly9G0aVN7hujalNlSsbFAUhJgh648DiYmIiK16CK5yatQZdbOP4oWLQoAqFy5Msopi82R+gICAH9/ICEBiIoCatZU/x5c44aIiFRiyKng5GAmU3rXVHqFRW0nT8pj1ar2uT4REbkMQ1VuHlahQgUIe+93RFLlykBkJHDunPrXvnsXuHRJnlerpv71iYjIpbByQ3ljz8rNqVPyGBgo/xERERUCkxvKG2UsjD0qN0qXFKs2RESkAiY3lDf2rNwwuSEiIhUxuaG8USo3588DaWnqXpvJDRERqYjJDeVNSAjg4QEkJwMxMepem8kNERGpiMkN5Y2HR8ZifmqOuxEiY0AxkxsiIlIBkxvKO3uMu4mJAe7cAdzduYAfERGpgskN5Z2SfKiZ3ChdUhUrAp6e6l2XiIhcFpMbyjulcqNmtxTH2xARkcqY3FDeKZUbZR8oNZw4IY9MboiISCVMbijvlH2fTp6UA4HVcOSIPNaurc71iIjI5TG5obyrUgVwcwMSE4GrV9W5JpMbIiJSGZMbyjsvLznwF8joTiqMuDj5DwBq1iz89YiIiMDkhvKrenV5VCO5OXpUHitVAooUKfz1iIiIwOSG8kvN5EbpkqpTp/DXIiIi+geTG8ofZVaTMoW7MA4flkeOtyEiIhUxuaH8sUflhskNERGpiMkN5Y+S3Fy4ACQlFfw6QjC5ISIiu2ByQ/kTFAQEBMjkpDDVm4sXgdu35Yacyvo5REREKmByQ/ljMgF168pzZcxMQSivrVaNe0oREZGqmNxQ/inJzaFDBb9GZKQ81qtX+HiIiIgyYXJD+adG5WbfPnls1Kjw8RAREWXC5IbyT43KDZMbIiKyEyY3lH+1asmxN1evFmyPqWvX5IBiAGjQQN3YiIjI5TG5ofzz8ZGbaAIF6poy7d8vT6pWBfz8VAyMiIiIyQ0VlNI1dfBgvl+antywS4qIiOyAyQ0VTMOG8hgRke+XmjjehoiI7IjJDRVM06byuHt3/l4nBEy7dsnzZs3UjYmIiAhMbqigwsLkoOKoKCAuLs8vK3LlCkxxcYDFIq9BRESkMiY3VDD+/hn7TO3Zk+eXBRw/Lk/CwmSCQ0REpDImN1RwBeiaClD2o3r8cTsERERExOSGCqMAyU2gUrlp2dIOARERETG5ocJo3lwed+wArNZHP//qVfheuiTPW7SwX1xEROTSmNxQwdWpAwQFAXfv5ql6Y1q/HgAgGjQAAgPtHR0REbkoQyY3q1evRtOmTeHt7Y2goCD07NlT65Bck5sb0L69PA8Pf/TT160DAKR16mTPqIiIyMUZLrlZsWIFXn75Zbzyyis4ePAg/v77b/Tt21frsFxXhw7yuGGD7eelpsL0z3MEkxsiIrIjD60DyI+UlBT861//wrRp0zBo0KD0x6tVq6ZhVC7uySflcfduIDEx972iIiJgunEDVh+fjIHIREREdmCo5Gb//v24fPky3Nzc0KBBA8TGxqJ+/fqYPn06atWqlevrkpOTkZycnP5xYmIiAMBqtcKal4GweaRcS81r6l6ZMvB47DGYTp9Gyu+/Q/TqlePT3H7+Ge4A4urXR3Eh8jYA2cW45PsnH9g+uWPb2Mb2sc1I7ZPXGE1CCGHnWFSzbNky9OnTB6GhoZg5cyYqVKiAGTNmYP369Th16hQCAgJyfN348eMxYcKEbI8vXboUPj4+9g7b6dX4739RdcUKxDRrhoixY7M/IS0NHYYOhU98PPa8+y6ucKYUEREVQFJSEvr27YuEhAT45dZTAJ0kN7klH5lFRETg1KlT6NevH7766isMHToUgKzKlCtXDpMnT8Zrr72W42tzqtyEhIQgPj7eZuPkl9VqRXh4ODp06ACz2azadXXv4EGYGzeGsFiQcvEiUKxYlk+btmyBR4cOEH5++GPhQrTv3t212iePXPb9k0dsn9yxbWxj+9hmpPZJTExEUFDQI5MbXXRLjRw5Er1797b5nAoVKuD27dsAgJo1a6Y/brFYUKlSJURHR+f6WovFAksOS/2bzWa7fCPtdV3datQIqF0bpiNHYP7f/4BRo7J+/ssvAQDihReQZrG4XvvkE9vHNrZP7tg2trF9bDNC++Q1Pl0kN0FBQQgKCnrk8xo1agSLxYKTJ0/i8X+W77darYiKikL58uXtHSblxmQC3ngDeO014D//AUaMADw95edOngR+/RUAkPrGG3KjTSIiIjsy1FRwPz8/DBs2DOPGjcP69etx8uRJDB8+HADwwgsvaBydi3vpJaBkSeD8eeCLL+RjQsgqTloa0L07kKniRkREZC+6qNzkx7Rp0+Dh4YGXX34Z9+7dQ9OmTbFx40YUL15c69Bcm48PMGUKMGgQ8MEHQGgosHcvsHYtYDYDM2ZoHSEREbkIwyU3ZrMZ06dPx/Tp07UOhR42cCCwZg2wYgWQeUr4F18AVaty+jcRETmE4ZIb0jE3N+B//wPKlpVHf3/go4+AV17ROjIiInIhTG5IXRYLMGeO/EdERKQBQw0oJiIiInoUJjdERETkVJjcEBERkVNhckNEREROhckNERERORUmN0RERORUmNwQERGRU2FyQ0RERE6FyQ0RERE5FSY3RERE5FSY3BAREZFTYXJDREREToXJDRERETkVJjdERETkVDy0DkALQggAQGJioqrXtVqtSEpKQmJiIsxms6rXdgZsH9vYPraxfXLHtrGN7WObkdpH+b2t/B7PjUsmN7dv3wYAhISEaBwJERER5dft27fh7++f6+dN4lHpjxNKS0tDTEwMfH19YTKZVLtuYmIiQkJCcPHiRfj5+al2XWfB9rGN7WMb2yd3bBvb2D62Gal9hBC4ffs2ypQpAze33EfWuGTlxs3NDeXKlbPb9f38/HT/BtES28c2to9tbJ/csW1sY/vYZpT2sVWxUXBAMRERETkVJjdERETkVJjcqMhisWDcuHGwWCxah6JLbB/b2D62sX1yx7axje1jmzO2j0sOKCYiIiLnxcoNERERORUmN0RERORUmNwQERGRU2FyQ0RERE6FyY2KvvzyS1SsWBFeXl5o1KgRtm3bpnVIDjd+/HiYTKYs/0qXLp3+eSEExo8fjzJlysDb2xtt27bF0aNHNYzYvrZu3YqnnnoKZcqUgclkwi+//JLl83lpj+TkZLzxxhsICgpCkSJF0KNHD1y6dMmBX4X9PKp9Bg4cmO391KxZsyzPcdb2mTJlCho3bgxfX1+ULFkSzzzzDE6ePJnlOa78/slL+7jy+2f+/PmoW7du+sJ8zZs3x59//pn+eWd/7zC5Ucny5csxatQofPjhh4iMjESrVq3QpUsXREdHax2aw9WqVQtXrlxJ/3f48OH0z02dOhUzZ87E3LlzERERgdKlS6NDhw7p+305m7t376JevXqYO3dujp/PS3uMGjUKq1atwrJly7B9+3bcuXMH3bt3R2pqqqO+DLt5VPsAQOfOnbO8n9asWZPl887aPlu2bMHrr7+OXbt2ITw8HCkpKejYsSPu3r2b/hxXfv/kpX0A133/lCtXDp999hn27t2LvXv34oknnsDTTz+dnsA4/XtHkCqaNGkihg0bluWx6tWri7Fjx2oUkTbGjRsn6tWrl+Pn0tLSROnSpcVnn32W/tj9+/eFv7+/WLBggYMi1A4AsWrVqvSP89Iet27dEmazWSxbtiz9OZcvXxZubm5i7dq1DovdER5uHyGEGDBggHj66adzfY0rtU9cXJwAILZs2SKE4PvnYQ+3jxB8/zysePHiYtGiRS7x3mHlRgUPHjzAvn370LFjxyyPd+zYETt27NAoKu2cPn0aZcqUQcWKFdG7d2+cO3cOAHD+/HnExsZmaSeLxYI2bdq4ZDvlpT327dsHq9Wa5TllypRB7dq1XabNNm/ejJIlS6Jq1aoYMmQI4uLi0j/nSu2TkJAAAAgICADA98/DHm4fBd8/QGpqKpYtW4a7d++iefPmLvHeYXKjgvj4eKSmpqJUqVJZHi9VqhRiY2M1ikobTZs2xffff49169Zh4cKFiI2NRYsWLXD9+vX0tmA7SXlpj9jYWHh6eqJ48eK5PseZdenSBf/73/+wceNGzJgxAxEREXjiiSeQnJwMwHXaRwiBt956C48//jhq164NgO+fzHJqH4Dvn8OHD6No0aKwWCwYNmwYVq1ahZo1a7rEe8cldwW3F5PJlOVjIUS2x5xdly5d0s/r1KmD5s2bo3Llyvjuu+/SB/KxnbIqSHu4Spu9+OKL6ee1a9dGWFgYypcvj9WrV6Nnz565vs7Z2mfkyJE4dOgQtm/fnu1zfP/k3j6u/v6pVq0aDhw4gFu3bmHFihUYMGAAtmzZkv55Z37vsHKjgqCgILi7u2fLZuPi4rJlxq6mSJEiqFOnDk6fPp0+a4rtJOWlPUqXLo0HDx7g5s2buT7HlQQHB6N8+fI4ffo0ANdonzfeeAO//fYbNm3ahHLlyqU/zvePlFv75MTV3j+enp6oUqUKwsLCMGXKFNSrVw9z5sxxifcOkxsVeHp6olGjRggPD8/yeHh4OFq0aKFRVPqQnJyM48ePIzg4GBUrVkTp0qWztNODBw+wZcsWl2ynvLRHo0aNYDabszznypUrOHLkiEu22fXr13Hx4kUEBwcDcO72EUJg5MiRWLlyJTZu3IiKFStm+byrv38e1T45caX3T06EEEhOTnaN944Gg5id0rJly4TZbBaLFy8Wx44dE6NGjRJFihQRUVFRWofmUGPGjBGbN28W586dE7t27RLdu3cXvr6+6e3w2WefCX9/f7Fy5Upx+PBh0adPHxEcHCwSExM1jtw+bt++LSIjI0VkZKQAIGbOnCkiIyPFhQsXhBB5a49hw4aJcuXKiQ0bNoj9+/eLJ554QtSrV0+kpKRo9WWpxlb73L59W4wZM0bs2LFDnD9/XmzatEk0b95clC1b1iXaZ/jw4cLf319s3rxZXLlyJf1fUlJS+nNc+f3zqPZx9ffP+++/L7Zu3SrOnz8vDh06JD744APh5uYm1q9fL4Rw/vcOkxsVzZs3T5QvX154enqKhg0bZpmS6CpefPFFERwcLMxmsyhTpozo2bOnOHr0aPrn09LSxLhx40Tp0qWFxWIRrVu3FocPH9YwYvvatGmTAJDt34ABA4QQeWuPe/fuiZEjR4qAgADh7e0tunfvLqKjozX4atRnq32SkpJEx44dRYkSJYTZbBahoaFiwIAB2b52Z22fnNoFgPjmm2/Sn+PK759HtY+rv39effXV9N9HJUqUEO3bt09PbIRw/veOSQghHFcnIiIiIrIvjrkhIiIip8LkhoiIiJwKkxsiIiJyKkxuiIiIyKkwuSEiIiKnwuSGiIiInAqTGyIiInIqTG6IiIjIqTC5ISJdatu2LUaNGqV1GERkQFyhmIg017ZtW9SvXx+zZ89Of+zGjRswm83w9fV1eDyjRo1CVFQUfvnlF4ffm4gKj5UbItKlgIAATRIbAIiIiECTJk00uTcRFR6TGyLS1MCBA7FlyxbMmTMHJpMJJpMJUVFR2bql2rZtizfeeAOjRo1C8eLFUapUKXz99de4e/cuXnnlFfj6+qJy5cr4888/018jhMDUqVNRqVIleHt7o169evj5559zjcVqtcLT0xM7duzAhx9+CJPJhKZNm9rzyyciO2ByQ0SamjNnDpo3b44hQ4bgypUruHLlCkJCQnJ87nfffYegoCDs2bMHb7zxBoYPH44XXngBLVq0wP79+9GpUye8/PLLSEpKAgB89NFH+OabbzB//nwcPXoUo0ePxksvvYQtW7bkeH13d3ds374dAHDgwAFcuXIF69ats88XTkR2wzE3RKS5nMbcPPxY27ZtkZqaim3btgEAUlNT4e/vj549e+L7778HAMTGxiI4OBg7d+5EnTp1EBQUhI0bN6J58+bp1x08eDCSkpKwdOnSHGP55ZdfMHjwYMTHx9vniyUiu/PQOgAioryqW7du+rm7uzsCAwNRp06d9MdKlSoFAIiLi8OxY8dw//59dOjQIcs1Hjx4gAYNGuR6j8jISNSrV0/lyInIkZjcEJFhmM3mLB+bTKYsj5lMJgBAWloa0tLSAACrV69G2bJls7zOYrHkeo8DBw4wuSEyOCY3RKQ5T09PpKamqnrNmjVrwmKxIDo6Gm3atMnz6w4fPoxnn31W1ViIyLGY3BCR5ipUqIDdu3cjKioKRYsWRUBAQKGv6evri7fffhujR49GWloaHn/8cSQmJmLHjh0oWrQoBgwYkOPr0tLScOjQIcTExKBIkSLw9/cvdCxE5FicLUVEmnv77bfh7u6OmjVrokSJEoiOjlblupMmTcInn3yCKVOmoEaNGujUqRN+//13VKxYMdfXTJ48GcuXL0fZsmUxceJEVeIgIsfibCkiIiJyKqzcEBERkVNhckNEREROhckNERERORUmN0RERORUmNwQERGRU2FyQ0RERE6FyQ0RERE5FSY3RERE5FSY3BAREZFTYXJDREREToXJDRERETkVJjdERETkVP4fdTKVczrDHj8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = range(0, 20π*5, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [0,1]:\n", + "plot(t, [(exp(B*t)*[0,1])[1] for t in t], \"r-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "title(\"motion of a mass on a spring + drag\")\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you might expect, adding drag causes the mass to slow down more and more.\n", + "\n", + "How is this reflected in the eigenvalues?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{ComplexF64}:\n", + " -0.010000000000000002 - 0.099498743710662im\n", + " -0.010000000000000002 + 0.099498743710662im" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The eigenvalues are $\\approx -0.01 \\pm 0.0994987i$.\n", + "\n", + "Again, for this $2\\times2$ matrix problem we could easily calculate the eigenvalues analytically. (In 18.03 you do this over and over again.) Skipping the simple algebra (just a quadratic equation), they are:\n", + "\n", + "$$\n", + "-\\frac{\\beta}{2} \\pm i \\sqrt{\\underbrace{k/m}_{0.01} - \\left(\\frac{\\beta}{2}\\right)^2} = -\\alpha \\pm i\\omega\n", + "$$\n", + "\n", + "where I've defined $\\alpha = -\\operatorname{Re} \\lambda$ and $\\omega = |\\operatorname{Im} \\lambda|$." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.099498743710662" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sqrt(0.01 - (0.02/2)^2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What will this do to the solutions?\n", + "\n", + "Well, the basic solution process will be the same. We will still get a solution of the form:\n", + "\n", + "$$\n", + "\\vec{x}(t) = 2\\operatorname{Re}\\left[c_1 e^{\\lambda_1 t} \\vec{x}_1\\right]\n", + "$$\n", + "\n", + "where $\\vec{x}_1$ is the first eigenvector of $B$ and $c_1$ is an expansion coefficient for the initial condition.\n", + "\n", + "But now we have $\\lambda_1 = -\\alpha - i\\omega$ and, similar to before, we get:\n", + "\n", + "$$\n", + "x(t) =\\operatorname{Re} \\left[r e^{-\\alpha t - i\\omega t + i\\phi} \\right]\n", + "= r e^{-\\alpha t} \\cos(-\\omega t + \\phi)\n", + "$$\n", + "\n", + "So, $\\alpha = -\\operatorname{Re} \\lambda$ is an **exponential decay** rate and $\\omega = |\\operatorname{Im} \\lambda|$ is still a frequency (with a value slightly changed from the frictionless case). It is nice to plot this $e^{-\\alpha t}$ factor on top of our solution:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHGCAYAAACIDqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcYklEQVR4nOzdd3hT1RvA8W/apgPaAi2FMsree+8lUEAQBBFlKKCAiqKCDHEgICLKEnCggAgOFH8IKDJs2bLLnsqm7A2ldKXN/f1xTGjpoCO77+d5+iS9uTn3zWnavD1Tp2mahhBCCCGEi3CzdwBCCCGEEJYkyY0QQgghXIokN0IIIYRwKZLcCCGEEMKlSHIjhBBCCJciyY0QQgghXIokN0IIIYRwKZLcCCGEEMKlSHIjhBBCCJciyY1waTExMYwbN46NGzememzBggXodDrOnj1r87iy4v3336dEiRJ4eHiQP39+e4cjnMTZs2fR6XQsWLDA3qFYhau/PpEzHvYOQAhriomJYfz48QC0atUqxWOdOnVi+/btFClSxA6RZc7vv//OxIkTee+993j88cfx8vKyd0jCSRQpUoTt27dTtmxZe4cihM1JciNyraCgIIKCguwdRoYOHz4MwBtvvEGhQoXsHI1wBklJSSQmJuLl5UWjRo3sHY7ZuHHjWLBggc1bSmNiYsiTJ49NrynsT7qlhF2MGzcOnU7HwYMH6dGjB/ny5SMgIIC33nqLxMRE/v33Xzp06ICfnx+lSpVi8uTJqcqIjIzkueeeo1ChQnh5eVG5cmWmTZuG0WgEVLO1KXkZP348Op0OnU5H//79gfS7pebPn0/NmjXx9vYmICCAbt26cezYsRTn9O/fH19fX06ePEnHjh3x9fUlJCSE4cOHEx8f/8jXbzQamTx5MpUqVcLLy4tChQrRt29fLly4YD6nVKlSvP/++wAULlwYnU7HuHHj0i1z9+7d9OzZk1KlSuHj40OpUqXo1asX586de2Q8pib+KVOm8Omnn5rLaNWqFcePH8dgMDB69GiKFi1Kvnz56NatG9euXUtRxuLFi2nXrh1FihTBx8eHypUrM3r0aO7fv5/ivNOnT9OzZ0+KFi2Kl5cXhQsXpk2bNuzfv998zvr162nVqhWBgYH4+PhQokQJunfvTkxMTI7rFVQrXrVq1YiIiKB58+bkyZOHMmXK8Mknn5jfPxn58ssvadGiBYUKFSJv3rxUr16dyZMnYzAYHvnc69ev89JLLxESEoKXlxdBQUE0bdqUtWvXporv77//plGjRvj4+FCsWDHGjBlDUlKS+TzTz23y5Ml89NFHlC5dGi8vLzZs2JBmt43p9+7IkSP06tWLfPnyUbhwYV588UXu3r2bIs47d+4wYMAAAgIC8PX1pVOnTpw+ffqR70NruHTpEs888wx+fn7ky5ePZ599litXrqQ6z/R7eejQIdq1a4efnx9t2rQBIDw8nCeffJLixYvj7e1NuXLlePnll7lx40aqcn7//Xdq1KiBl5cXZcqUYebMmea6E85BWm6EXT3zzDM899xzvPzyy4SHh5s/INauXcurr77KiBEjWLRoEW+//TblypXjqaeeAtQHRJMmTUhISGDChAmUKlWKP//8kxEjRnDq1Cm++uorihQpwpo1a+jQoQMDBgxg4MCBABm21kyaNIl3332XXr16MWnSJG7evMm4ceNo3LgxERERlC9f3nyuwWCgS5cuDBgwgOHDh7N582YmTJhAvnz5+OCDDzJ83YMHD2bOnDkMGTKEJ554grNnzzJmzBg2btzI3r17KViwIMuWLePLL7/k22+/Zc2aNeTLl4/ixYunW+bZs2epWLEiPXv2JCAggMuXLzN79mzq16/P0aNHKViw4CN/Hl9++SU1atTgyy+/5M6dOwwfPpzOnTvTsGFD9Ho98+fP59y5c4wYMYKBAwfyxx9/mJ974sQJOnbsyNChQ8mbNy///PMPn376Kbt27WL9+vXm8zp27EhSUhKTJ0+mRIkS3Lhxg23btnHnzh3z6+jUqRPNmzdn/vz55M+fn4sXL7JmzRoSEhIy/C88M/VqcuXKFfr06cPw4cMZO3Ysy5Yt45133qFo0aL07ds3w3o6deoUvXv3pnTp0nh6enLgwAEmTpzIP//8w/z58zN87vPPP8/evXuZOHEiFSpU4M6dO+zdu5ebN2+mOO/KlSv07NmT0aNH8+GHH7Jy5Uo++ugjbt++zRdffJHi3FmzZlGhQgWmTp2Kv79/ivdpWrp3786zzz7LgAEDOHToEO+88w6AOXaj0Ujnzp3ZvXs348aNo06dOmzfvp0OHTpkWK41xMbG0rZtWy5dusSkSZOoUKECK1eu5Nlnn03z/ISEBLp06cLLL7/M6NGjSUxMBNTPrHHjxgwcOJB8+fJx9uxZpk+fTrNmzTh06BB6vR6ANWvW8NRTT9GiRQsWL15MYmIiU6dO5erVqzZ7zcICNCHsYOzYsRqgTZs2LcXxWrVqaYC2dOlS8zGDwaAFBQVpTz31lPnY6NGjNUDbuXNniucPHjxY0+l02r///qtpmqZdv35dA7SxY8emiuG7777TAO3MmTOapmna7du3NR8fH61jx44pzouMjNS8vLy03r17m4/169dPA7Rff/01xbkdO3bUKlasmOFrP3bsmAZor776aorjO3fu1ADt3XffNR8z1dP169czLDMtiYmJWnR0tJY3b15t5syZGZ575swZDdBq1qypJSUlmY/PmDFDA7QuXbqkOH/o0KEaoN29ezfN8oxGo2YwGLRNmzZpgHbgwAFN0zTtxo0bGqDNmDEj3ViWLFmiAdr+/fsz+1I1TctavbZs2TLN90+VKlW09u3bZ+m6SUlJmsFg0L7//nvN3d1du3XrVobn+/r6akOHDs3wHFN8v//+e4rjgwYN0tzc3LRz585pmvbg51a2bFktISEhxbmmx7777jvzMdP7afLkySnOffXVVzVvb2/NaDRqmqZpK1eu1ABt9uzZKc6bNGlSur9PDzMYDCm+xowZo5UsWTLVcdM10zN79ux06+Lh12f6vZw/f36GZZren+fOnUtVdv369bWQkBAtPj7efOzevXtaYGCgJh+ZzkO6pYRdPfHEEym+r1y5Mjqdjscff9x8zMPDg3LlyqXoXlm/fj1VqlShQYMGKZ7fv39/NE1L0VKQWdu3byc2NtbcbWUSEhJC69atWbduXYrjOp2Ozp07pzhWo0aNR3YDbdiwwRxrcg0aNKBy5cqprpNZ0dHR5hYuDw8PPDw88PX15f79+6m61dLTsWNH3Nwe/FmoXLkyoAZfJ2c6HhkZaT52+vRpevfuTXBwMO7u7uj1elq2bAlgvn5AQABly5ZlypQpTJ8+nX379qXqBqpVqxaenp689NJLLFy4kNOnT2cq9qzWa3BwcKr3T2Z+fgD79u2jS5cuBAYGml9r3759SUpK4vjx4xk+t0GDBixYsICPPvqIHTt2pNuV5efnR5cuXVIc6927N0ajkc2bN6c43qVLF3PLQ2Y8XG6NGjWIi4szdzVu2rQJUC2ryfXq1SvT19Dr9Sm+JkyYwLlz51IdX7hwYYblbNiwId26SE/37t1THbt27RqvvPIKISEheHh4oNfrKVmyJPDg/Xn//n12795N165d8fT0ND/X19c31e+6cGyS3Ai7CggISPG9p6cnefLkwdvbO9XxuLg48/c3b95Mc5ZT0aJFzY9nlek56ZX7cJlpxenl5ZUiTktcJ7N69+7NF198wcCBA/nrr7/YtWsXERERBAUFERsbm6ky0vp5ZHTc9Fqjo6Np3rw5O3fu5KOPPmLjxo1ERESwdOlSAPP1dTod69ato3379kyePJk6deoQFBTEG2+8wb179wAoW7Ysa9eupVChQrz22muULVuWsmXLMnPmzAxjz2q9BgYGpjrPy8vrkXUVGRlJ8+bNuXjxIjNnzuTvv/8mIiKCL7/8MsVrTc/ixYvp168f8+bNo3HjxgQEBNC3b99UY0gKFy6c6rnBwcFA6vd3Vmf8PfzaTbPwTLHfvHkTDw+PVD/3tGJKT0RERIqvQYMGUaRIkVTHH5U03Lx5M8O6eFiePHnw9/dPccxoNNKuXTuWLl3KqFGjWLduHbt27WLHjh0pXvft27fRNC3N62XltQv7kzE3wikFBgZy+fLlVMcvXboEkKnxJWmVCaRbbnbKfNR1Hh5Dk93r3L17lz///JOxY8cyevRo8/H4+Hhu3bqVs4AzYf369Vy6dImNGzeaW2sA8zia5EqWLMm3334LwPHjx/n1118ZN24cCQkJfP311wA0b96c5s2bk5SUxO7du/n8888ZOnQohQsXpmfPnmnGYI16Tcvy5cu5f/8+S5cuNf/nD6QYEJ2RggULMmPGDGbMmEFkZCR//PEHo0eP5tq1a6xZs8Z8XlpjPEwJ0MPJiaUHugYGBpKYmMitW7dSJDhpDeJNT7169VJ8/+eff+Lp6ZnqeGZi2bVrV6rj6cWSVl0cPnyYAwcOsGDBAvr162c+fvLkyRTnFShQAJ1Ol2HdC+cgLTfCKbVp04ajR4+yd+/eFMe///57dDodjz32GJD6P9KMNG7cGB8fH3788ccUxy9cuMD69evNsy5yqnXr1gCprhMREcGxY8eydR2dToemaanWwZk3b16K2TXWYvpAefj633zzTYbPq1ChAu+//z7Vq1dP9bMEcHd3p2HDhuZWkbTOMbFGvaYlrdeqaRpz587NclklSpRgyJAhhIaGpnpt9+7dSzFgG2DRokW4ubnRokWLbESeeaYEdfHixSmO//LLL1a9bloee+yxdOsiszL7/sybNy/16tVj+fLlJCQkmI9HR0fz559/ZjV0YUfSciOc0rBhw/j+++/p1KkTH374ISVLlmTlypV89dVXDB48mAoVKgBq3ELJkiX5/fffadOmDQEBARQsWJBSpUqlKjN//vyMGTOGd999l759+9KrVy9u3rzJ+PHj8fb2ZuzYsRaJvWLFirz00kt8/vnnuLm58fjjj5tn9YSEhDBs2LAsl+nv70+LFi2YMmWK+fVt2rSJb7/91iarGjdp0oQCBQrwyiuvMHbsWPR6PT/99BMHDhxIcd7BgwcZMmQIPXr0oHz58nh6erJ+/XoOHjxobnH6+uuvWb9+PZ06daJEiRLExcWZZ/G0bds23RisUa9pCQ0NxdPTk169ejFq1Cji4uKYPXs2t2/ffuRz7969y2OPPUbv3r2pVKkSfn5+REREmGfoJBcYGMjgwYOJjIykQoUKrFq1irlz5zJ48GBKlChhkdeSng4dOtC0aVOGDx9OVFQUdevWZfv27Xz//fcAKcZlWVvfvn357LPP6Nu3LxMnTqR8+fKsWrWKv/76K9NlVKpUibJlyzJ69Gg0TSMgIIAVK1YQHh6e6twPP/yQTp060b59e958802SkpKYMmUKvr6+NmkFFRZi1+HMItdKbxZQv379tLx586Y6v2XLllrVqlVTHDt37pzWu3dvLTAwUNPr9VrFihW1KVOmpJjto2matnbtWq127dqal5eXBmj9+vXTNC31bCmTefPmaTVq1NA8PT21fPnyaU8++aR25MiRTMVpel2PkpSUpH366adahQoVNL1erxUsWFB77rnntPPnz6dZXmZmS124cEHr3r27VqBAAc3Pz0/r0KGDdvjwYa1kyZLm15we08yaKVOmpDi+YcMGDdD+97//pThuqruIiAjzsW3btmmNGzfW8uTJowUFBWkDBw7U9u7dm2JGy9WrV7X+/ftrlSpV0vLmzav5+vpqNWrU0D777DMtMTFR0zRN2759u9atWzetZMmSmpeXlxYYGKi1bNlS++OPPx5ZB5mt17TeT5qmfq4lS5Z85HVWrFih1axZU/P29taKFSumjRw5Ulu9erUGaBs2bEj3eXFxcdorr7yi1ahRQ/P399d8fHy0ihUramPHjtXu37+fKr6NGzdq9erV07y8vLQiRYpo7777rmYwGMznpfdzS/5YWrOlHn4/pfW7cOvWLe2FF17Q8ufPr+XJk0cLDQ3VduzYoQGPnH2XlrFjx2aqbtNiem/7+vpqfn5+Wvfu3bVt27alOVsqrd9LTdO0o0ePaqGhoZqfn59WoEABrUePHlpkZGSas7+WLVumVa9eXfP09NRKlCihffLJJ9obb7yhFShQIFvxC9vTaZqm2TyjEkIIka5WrVpx48YN8wrVjmLRokX06dOHrVu30qRJE3uHYzMGg4FatWpRrFgxwsLC7B2OyATplhJCCJHKzz//zMWLF6levTpubm7s2LGDKVOm0KJFC5dPbAYMGEBoaChFihThypUrfP311xw7duyRM/aE45DkRgghRCp+fn788ssvfPTRR9y/f58iRYrQv39/PvroI3uHZnX37t1jxIgRXL9+Hb1eT506dVi1alWGY76EY5FuKSGEEEK4FJkKLoQQQgiXIsmNEEIIIVyKJDdCCCGEcCm5ckCx0Wjk0qVL+Pn5WXzZciGEEEJYh6Zp3Lt3j6JFi2a4mGSuTG4uXbpESEiIvcMQQgghRDacP38+1R5yyeXK5MbPzw9QlfPw7rE5YTAYCAsLo127duj1eouV6yqkfjIm9ZMxqZ/0Sd1kTOonY85UP1FRUYSEhJg/x9OTK5MbU1eUv7+/xZObPHny4O/v7/BvEHuQ+smY1E/GpH7SJ3WTMamfjDlj/TxqSIkMKBZCCCGES5HkRgghhBAuRZIbIYQQQriUXDnmRgghrMFoNJKQkGDz6xoMBjw8PIiLiyMpKcnm13d0Uj8Zc6T60ev1uLu757gcSW6EEMICEhISOHPmDEaj0ebX1jSN4OBgzp8/L2t3pUHqJ2OOVj/58+cnODg4R7FIciOEEDmkaRqXL1/G3d2dkJCQDBcXswaj0Uh0dDS+vr42v7YzkPrJmKPUj6ZpxMTEcO3aNQCKFCmS7bIkuRFCiBxKTEwkJiaGokWLkidPHptf39Qd5u3tLR/eaZD6yZgj1Y+Pjw8A165do1ChQtnuopKfshBC5JBpnIKnp6edIxHC+Zn+QTAYDNkuQ5IbIYSwEEcYryCEs7PE75EkN0IIIYRwKQ6X3GzevJnOnTtTtGhRdDody5cvT/G4pmmMGzeOokWL4uPjQ6tWrThy5Ih9ghVCCCGEw3G45Ob+/fvUrFmTL774Is3HJ0+ezPTp0/niiy+IiIggODiY0NBQ7t27Z+NIhRBCCOGIHC65efzxx/noo4946qmnUj2maRozZszgvffe46mnnqJatWosXLiQmJgYFi1aZIdohRAi92rVqhVDhw51mHIs4ebNmxQqVIizZ89meN7TTz/N9OnTbROUyDKnmgp+5swZrly5Qrt27czHvLy8aNmyJdu2bePll19O83nx8fHEx8ebv4+KigLUSOycjMZ+mMFg4J9//kGn0/H4449brFxXYaprS9a5K5H6yZgj14/BYEDTNIxGo90W8TPd2vr6Wb1m69atqVmzJp999pn52JIlS9Dr9VaLPSv18/HHH/PEE09QokSJFOcOGzaMs2fPsmzZMgDef/992rRpw4svvoi/v79V4rYVe75/0mI0GtE0DYPBkGoqeGZ//50qubly5QoAhQsXTnG8cOHCnDt3Lt3nTZo0ifHjx6c6HhYWZtE1Kfbv38+HH36Ir68vM2fOpECBAhYr25WEh4fbOwSHJvWTMUesHw8PD4KDg4mOjrbL9gsmtu6eT0xMJCEhwfwPY3af4+HhgaZpWSonOx5VP7GxsXz77bf8+uuvqWLZsWMH7dq1Mx8vVaoUISEhfPvttwwYMMBqMduSowzvSEhIIDY2ls2bN5OYmJjisZiYmEyV4VTJjcnD08Q0Tctw6tg777zDW2+9Zf4+KiqKkJAQ2rVrZ9GMu0WLFixYsICzZ8/y888/88cff9h9QSRHYjAYCA8PJzQ0FL1eb+9wHI7UT8YcuX7i4uI4f/48vr6+eHt7g6ZBJv8IW4Kmady7dw8/Pz90efNCFqbSLlmyhAkTJnDy5Eny5MlD7dq1WbZsGXnz5iU+Pp5Ro0axePFioqKiqFevHtOmTaN+/fqASko8PT3Nf0fLlCnDm2++yZtvvmkuv06dOjz55JOMHTuWF154ga1bt7J161a+/vprAE6dOsWLL76YojXnUdcF1QJUvXp1vL29+fbbb/H09OTll19m7Nix6dbPypUrGTBgACdOnKBYsWIADBo0iIiICDZt2sTWrVvR6/W0bdvW/FyDwYCfnx8Gg4Fdu3bx0Ucf0aBBA7Zv307Xrl35/fffGTZsWKbr2xGleP84wHIGcXFx+Pj40KJFC/X7lExmE2CnSm6Cg4MB1YKTfFnma9eupWrNSc7LywsvL69Ux/V6vUX/SPr6+jJ8+HBGjhxJWFgYX3/9dYpfcqFYut5djdRPxhyxfpKSktDpdLi5ual/aO7fBxt3VeQ33YmOhrx5M/Wcy5cv06dPHyZPnky3bt24d+8ef//9t/m1jB49mqVLl7Jw4UJKlizJ5MmTefzxxzl58iQBAQEA5nNNHv4++bFZs2Zx4sQJqlWrxocffghAUFBQqudl5roA33//PW+99RY7d+5k+/bt9O/fn2bNmhEaGpri+qaulp49ezJ58mQ+/fRTvvjiC8aPH09YWBg7duygQIECbNmyhXr16qWIX6/Xs2XLFho2bMj+/fspXLiweSXfhg0b8sknn2AwGNL8jHEWpvpJ62dnD25ubuh0ujR/1zP7u2//V5EFpUuXJjg4OEWzdEJCAps2baJJkyZ2jOyBkJAQJk+eDMCoUaM4ePCgnSMSQoi0Xb58mcTERJ566ilKlSpF9erVefXVV/H19eX+/fvMnj2bKVOm8Pjjj1OlShXmzp2Lj48P3377bbauly9fPjw9PcmTJw/BwcEEBwenGlORlevWqFGDsWPHUr58efr27Uu9evVYt25dutfX6XRMnDiRefPm8fHHHzNz5kzWrFljbsU5e/YsRYsWTfEcNzc3Ll26RGBgIDVr1iQ4OJj8+fMDUKxYMeLj481DJoTjcLiWm+joaE6ePGn+/syZM+zfv5+AgABKlCjB0KFD+fjjjylfvjzly5fn448/Jk+ePPTu3duOUaf08ssv89dff7Fy5Ur69OnDrl27zPtlCCFygTx5VAuKjRiNRqKiovD398ctC+MIa9asSZs2bahevTrt27enXbt2PP300xQoUIBTp05hMBho2rSp+Xy9Xk+DBg04duyYNV4GQJauW6NGjRTfFylSxLzpYnqeeOIJqlSpYm61qVq1qvmx2NjYVN0gAPv27aNmzZqpjpv+rmd2HIiwHYdLbnbv3s1jjz1m/t40VqZfv34sWLCAUaNGERsby6uvvsrt27dp2LAhYWFh+Pn52SvkVHQ6HfPnz6d69eocPnyY77//Pt2ZXEIIF6TTZbpryCKMRkhKUtfMwpgJd3d3wsPD2bZtG2FhYXz++ee899577Ny50zyDJitjHN3c3MzPM8nq7LasXPfhLgqdTvfI2T5//fUX//zzD0lJSamGMxQsWJDbt2+nes7+/fvTTG5u3boFPOhaE47D4bqlWrVqhaZpqb4WLFgAqDfvuHHjuHz5MnFxcWzatIlq1arZN+g0FCpUiIULF/LVV1/x0ksv2TscIYRIk06no2nTpowfP559+/bh6enJsmXLKFeuHJ6enmzZssV8rsFgYPfu3VSuXDnNsoKCgrh8+bL5+6ioKM6cOZPiHE9PT/NGo2nJznUza+/evfTo0YNvvvmG9u3bM2bMmBSP165dm6NHj6Z63qFDh1K1EgEcPnyY4sWLU7BgwRzFJSzP4VpuXEmHDh3sHYIQQqRr586drFu3jnbt2lGoUCF27tzJ9evXqVy5Mnnz5mXw4MGMHDnSPCxg8uTJxMTEpDv1uXXr1ixYsIDOnTtToEABxowZk2pMTalSpdi5cydnz57F19c3xQBhIFvXzYzIyEg6d+7M6NGjef7556lSpQr169dnz5491K1bF4D27dvzzjvvcPv27RRLeRiNRg4ePMilS5fImzcv+fLlA+Dvv/9Ose6acBwO13Ljqu7evcvkyZMdYoEkIYQA8Pf3Z/PmzXTs2JEKFSrw/vvvM23aNPMipJ988gndu3fn+eefp06dOpw8eZK//vor3TW83nnnHVq0aMETTzxBx44d6dq1K2XLlk1xzogRI3B3d6dKlSoEBQURGRmZqpysXvdRbt26RY8ePejcuTPvvvsuAHXr1qVz586899575vOqV69OvXr1+PXXX1M8/6OPPmLx4sUUK1bMPMsrLi6OZcuWMWjQoGzFJKxMy4Xu3r2rAdrdu3ctWm5CQoK2fPlyLSEhIcVxg8GgVatWTQO0KVOmWPSaziS9+hGK1E/GHLl+YmNjtaNHj2qxsbF2uX5SUpJ2+/ZtLSkpyS7Xd3RZqZ+VK1dqlStXfuS5X3zxhRYaGmqpEO3K0d4/Gf0+ZfbzW1pubMDDw4PXX38dUP/Z7Nixw84RCSGESEvHjh15+eWXuXjxYobn6fV6Pv/8cxtFJbJKkhsbGTRoEM8++yyJiYk8++yzaY7IF0IIYX9vvvkmISEhGZ7z0ksvUbFiRRtFJLJKkhsb0el0zJkzh7JlyxIZGcmLL76YasqkEEIIIXJOkhsb8vf359dff8XT05Ply5fzxRdf2DskIYQQwuVIcmNjderUYerUqQB89tlnxMfH2zkiIYQQwrXIOjd2MGTIEO7fv8+AAQOcerM1IYQQwhFJcmMHOp2O0aNH2zsMIYQQwiVJt5QDWLhwIbNnz7Z3GEIIIYRLkJYbO1u/fj39+/fHw8ODGjVqpNgJVwghhBBZJy03dvbYY4+Z17955plnuHr1qr1DEkIIIazi9OnTrFixwurXkeTGznQ6HfPmzaNy5cpcunSJnj17kpiYaO+whBBCCItbvXo1//zzj9WvI8mNA/D19WXp0qX4+vqycePGFBu5CSGEEM5k3759tGrVinLlyrFw4UK6devGrVu32LRpE++//z5z586ldu3axMbGWi0GSW4cRKVKlZg/fz4AkydPZtmyZXaOSAghcodWrVoxdOhQh3yOs7l//z69evVi/vz5bNy4kTFjxlC2bFkCAgJo2bIl1apVY926dezbtw8fHx+rxSEDih1Ijx49GDZsGJ999plNmu2EECK3adWqFbVq1WLGjBnmY0uXLkWv19svKCdTt27dNBegDQsLY8eOHbRs2ZIyZcqQmJjI1atXGTZsmPmcCxcuPHLfLkuQ5MbBfPrpp3Tt2pUWLVrYOxQhhMgVAgIC7B2CU9mzZ0+6jx04cIDatWsDcPToUZo2bUqxYsUAldiY7lubdEs5GL1enyKxiYuLkw02hRBWo2kakydPpkyZMvj4+FCzZk2WLFkCwPXr1wkODubjjz82n79z5048PT0JCwsDVEvIkCFDGDJkCPnz5ycwMJD3338/xd+t+Ph43njjDQoVKoS3tzfNmjUjIiIiRRytWrXijTfeYNSoUQQEBBAcHMy4ceMyFWdmy3jhhRfYtGkTM2fORKfTodPpOHv2bKruojVr1tCsWTPz63niiSc4depUlur1/v379O3bF19fX4oUKcK0adOyVPcARqORTz/9lHLlyuHl5UWJEiWYOHFipuL8/vvvCQwMTNXC0r17d/r27Zth7OfPn6dPnz4UKFCAAgUK0Lt3b27fvp2p163X6zl//jxGo5ExY8aQkJBgfuzMmTMULVo0U+XklCQ3DiwyMpImTZqk+MMihBCW9P777/Pdd98xe/Zsjhw5wrBhw3juuefYtGkTQUFBzJ8/n3HjxrF7926io6N57rnnePXVV2nXrp25jIULF+Lh4cHOnTuZNWsWn332GfPmzTM/PmrUKH777TcWLlzI3r17KVeuHO3bt+fWrVspYlm4cCF58+Zl586dTJ48mQ8//JDw8PBHxpnZMmbMmEHjxo0ZNGgQly9f5vLly2l2kdy/f5+33nqLiIgI1q1bh5ubG926dcNoNGa6XkeOHMmGDRtYtmwZYWFhbNy4MVWLx6Ne0zvvvMOnn37KmDFjOHr0KIsWLaJw4cKZirNHjx4kJSXxxx9/mM+/ceMGf/75Jy+88EK6cZ88eZK6detStmxZtm/fztq1azl16hQjR47M1Ot+7rnn+PPPP6lcuTI9evQA4KuvvgKgWrVqnDhxgurVq1t/6IWWC929e1cDtLt371q03ISEBG358uVaQkKCRcqbP2eOBmg60P7o3l3ToqMtUq69WLp+XI3UT8YcuX5iY2O1o0eParGxsSmOR0dHp/uVlXNjYmIyPDcqKkq7cOGClpSUlKW4o6OjNW9vb23btm0pjg8YMEDr1auX+ftXX31Vq1ChgtanTx+tWrVqKWJv2bKlVrlyZc1oNJqPvf3221rlypXN19Dr9dpPP/1kfjwhIUErWrSoNnny5BTlNGvWLEUc9evX195+++1Mx5leGaNGjdJu376tJSUlaS1bttTefPPNFOekdSy5a9euaYB26NChTD3n3r17mqenp/bLL7+Yj928eVPz8fExP+dRrykqKkrz8vLS5s6dm25cj4pz8ODB2uOPP25+fMaMGVqZMmVS/Kw0TdOSkpLM9dOmTRvtgw8+SPH4kiVLtNKlS2c6jpxK7/dJ0zL/+S1jbhyVpvHC5s3sBr4C+vz2GzvPn6fytm3g7m7v6IQQmeDr65vuYx07dmTlypXm7wsVKkRMTEya57Zs2ZKNGzeavy9VqhQ3btxIdV5SUlKW4jt69ChxcXGEhoamOJ6QkGAeNwEwdepUqlWrxq+//sru3bvx9vZOcX6jRo3Q6XTm7xs3bsy0adNISkri1KlTGAyGFKuv6/V6GjRowLFjx1KUU6NGjRTfFylShGvXrmU6zozKyIpTp04xZswYduzYwY0bN8wtNpGRkVSrVi1Tz09ISKBx48bmYwEBAVSsWNH8/aNe07Fjx4iPj6dNmzbZjnPQoEHUr1+fixcvUqxYMb777jv69++f4meV3Llz51i3bh3btm1L0Y2WlJRkk0HAliTJjaNavBh+/JEZbm4cLl6czZGRPLlrFzunTKGAbLophLAA04fhypUrUw309PLyMt8/ffo0ly5dwmg0cu7cuVQJREa0/8bePPyBqmlaqmMPz1jS6XQYjcZMx5lRGVnRuXNnQkJCmDt3LkWLFsVoNFKtWrUU40cyomVinOSjXtOdO3dyHGft2rWpWbMm33//Pe3bt+fQoUMZrg584MABAgIC2LlzZ6rHrDlt2xokuXFESUnw3yA4/QcfsOTVV6lXqRInbt2i9wcf8Odrr+Hu52ffGIUQjxQdHZ3uY+4PtcBm1Lrg5pZyeOTZs2dTfG80GomKispyfFWqVMHLy4vIyEhatmyZ5jkJCQn06dOHZ599lkqVKjFgwAAOHTqUYuzHjh07Ujxnx44dlC9fHnd3d8qVK4enpydbtmyhd+/eABgMBnbv3p3pNV8yE2dmeXp6ZtjCdfPmTY4dO8Y333xD8+bNAdiyZUuWrlGuXDn0ej07duygRIkSANy+fZvjx4+b43/UawoKCsLHx4d169YxcODAbMc5cOBAPvvsMy5evEjbtm0zbIHR6/Xcu3ePIkWKkDdv3iy9ZkcjyY0jWr0a/v0XAgLgrbcI8vNj+V9/0bRBA9YYDEzo3ZtxNtibQwiRM1n5gMjJuUajMctdUgB+fn6MGDGCYcOGYTQaadasGVFRUWzbtg1fX1/69evHe++9x927d5k1axa+vr6sXr2aAQMG8Oeff5rLOX/+PG+99RYvv/wye/fu5fPPPzd3a+TNm5fBgwczcuRIAgICKFGiBJMnTyYmJoYBAwZYLM7MKlWqFDt37uTs2bP4+vqmmgZeoEABAgMDmTNnDkWKFCEyMpLRWWwt9/X1ZcCAAYwcOZLAwEAKFy7Me++9lyJJzcxrevvttxk1ahSenp40bdqU69evc+TIEQYMGJDpOPv06cOIESOYO3cu33//fYZxN2zYEH9/f55//nk++OADfH19OXnyJKtXr2bmzJlZqgN7k+TGEf34o7rt2xf+a6GpXa8e3z33HJ/+8AMvPPRfmxBCZNeECRMoVKgQkyZN4vTp0+TPn586derw7rvvsnHjRmbMmMGGDRvw9/cH4IcffqBGjRrMnj2bwYMHA9C3b19iY2Np0KAB7u7uvP7667z00kvma3zyyScYjUaef/557t27R7169fjrr78oUKCAReLMihEjRtCvXz+qVKlCbGwsZ86cSfG4m5sbv/zyC2+88QbVqlWjYsWKzJo1i1atWmXpOlOmTCE6OpouXbrg5+fH8OHDuXv3bpZe05gxY/Dw8OCDDz7g0qVLFClShFdeeSVLcfr7+9O9e3dWrlxJ165dM4w5ICCAVatW8fbbb9OyZUs0TaNcuXI8//zzWXrtjkCnZaZz0MVERUWRL18+7t69a/6FtQSDwcCqVavo2LFj9le7vHcPChWCuDjYvRvq1n3w2LVrJAYH46FpcOoUlCljmcBtxCL148KkfjLmyPUTFxfHmTNnKF26dKrBtrZg6pby9/dP1YVlbWmt+Oto7Fk/jiA0NJTKlSsza9asNB93tPrJ6Pcps5/f9n8VIqX161ViU7Ys1KmT8rFChfB47DF1f8kSli9fzunTp20foxBCCId369YtfvnlF9avX89rr71m73BsSrqlHM2aNeq2Y0dIa7pe9+6wfj0Lv/2W/sePU7lyZbZt20b+/PltGqYQQgjHVqdOHW7fvs2nn36aYhp6biDJjSPRtAfJTYcOaZ/Tvj0AbU+doljRohw7doxnnnmGlStXOlxTvRDC9SVff0c4lodn1eUmTtctlZiYyPvvv0/p0qXx8fGhTJkyfPjhh1lex8AhRUbC2bPg4QHpTXcsWxZKl6ZYUhIrRo0iT548hIeH8/rrr8seVEIIIQROmNx8+umnfP3113zxxRccO3aMyZMnM2XKFD7//HN7h5ZzW7eq2zp1IKNpof+taFn73Dl+/vlndDod33zzjUMP6BNCCCFsxemSm+3bt/Pkk0/SqVMnSpUqxdNPP027du3YvXu3vUPLOVNyk2yZ8jQ1a6Zud+ygS5cuTJkyBYDhw4dnuPqkEEIIkRs43ZibZs2a8fXXX3P8+HEqVKjAgQMH2LJlS4atFvHx8Sm2fTet5GkwGDAYDBaLzVRWdsv02LIFHZDYoAFaRmXUrYse0PbuJTE6mtdff51jx47x7bffsmPHDjqkN17HznJaP65O6idjjlw/BoMBTdNSbBVgS6YuaVMMIiWpn4w5Wv0YjUY0TcNgMKRayTuzv/9Ot86Npmm8++67fPrpp7i7u5OUlMTEiRN555130n3OuHHjGD9+fKrjixYtIk+ePNYMN9Pc4uPp1KsXbkYjf82bR1zBgumfrGl06NsXr3v32DR5MncqVCAxMZGIiIgUG7UJIWzDw8OD4OBgQkJC8PT0tHc4Qji1hIQEzp8/z5UrV0hMTEzxWExMDL17937kOjdOl9z88ssvjBw5kilTplC1alX279/P0KFDmT59erpLcKfVchMSEsKNGzcsvohfeHg4oaGhWZ65pNuzB4/GjdEKFiTx4sW0p4En4961K26rVpE0fTrGIUNSPR4XF0dMTEyqpcXtKSf1kxtI/WTMkesnPj6eyMhISpYsaZcNBjVN4969e/j5+aW743NuJvWTMUern9jYWM6dO0eJEiVSbYwaFRVFwYIFH5ncOF231MiRIxk9ejQ9e/YEoHr16pw7d45Jkyalm9x4eXmlqiBQm4RZ449ktso9fBgAXa1a6DPzn1/jxrBqFe4REbg/dK3bt2/TtWtX4uPjWb9+vcO0TplYq95dhdRPxhy1fnQ6HYmJiXZZ4dXUlaDT6RxihVlHI/WTMUern7i4OHQ6HT4+Pqm6pTL7u+90yU1MTEyqynd3d3eIfsIc2b9f3daunbnzGzVStw/txgtqd+HDhw9z69YtevXqxW+//YaHh9P9qIVwGh4eHuTJk4fr16+j1+tt/gFhNBpJSEggLi7OIT6cHI3UT8YcpX40TSMmJoZr166RP3/+VIlNVjjdJ17nzp2ZOHEiJUqUoGrVquzbt4/p06fz4osv2ju0nDElN7VqZe5809YMZ87A3buQL5/5oYoVK/LHH3/Qtm1b/vjjD4YMGcLs2bMdorlRCFek0+koUqQIZ86c4dy5cza/vqZpxMbG4uPjI7/naZD6yZij1U/+/PkJDg7OURlOl9x8/vnnjBkzhldffZVr165RtGhRXn75ZT744AN7h5Z9RiMcOKDuZza5CQiA4sXhwgXVpfXQ9PGmTZuyaNEiunfvzjfffENISAjvvfeeZeMWQph5enpSvnx5EhISbH5tg8HA5s2badGihUN22dmb1E/GHKl+9Hp9jlpsTJwuufHz82PGjBmutWDdqVMQHQ3e3lChQuafV7OmSm4OHEhzbZxu3boxa9YsXn/9dd5//32KFi3KCy+8YMHAhRDJubm52WVXcHd3dxITE/H29rb7h5MjkvrJmCvWj3Q+OoJDh9Rt1apq64XMqlFD3R48mO4pQ4YM4e233wZg9OjR3Lt3L7tRCiGEEE7B6VpuXNK//6rbypWz9rxMJDcAkyZNwmg00q9fP/z8/LIRoBBCCOE8JLlxBP/8o26zuiV98uTGaIR0RrnrdDomT56c4lhCQoIsNiaEEMIlSbeUIzC13FSqlLXnVagAXl5w/76aNZVJGzZsoGLFihw9ejRr1xNCCCGcgCQ39qZp2W+58fCAKlXU/f8WAXz05TTGjx/P2bNnCQ0N5UwWkiIhhBDCGUhyY2/Xrql1anQ6KF8+6883tfaYWn8eQafT8dtvv1G1alUuXbpEaGgoV65cyfp1hRBCCAclyY29mVptSpVSU8GzypTcmMrJhMDAQMLCwihVqhSnTp2iXbt23L59O+vXFkIIIRyQJDf2lt3xNibZSG4AihYtytq1awkODubQoUN06NCBqKio7MUghBBCOBBJbuwtu+NtTJInN1nc4L1s2bKEhYURGBjIrl27mDJlSvZiEEIIIRyIJDf2dvKkus3OeBvT83Q6uH0bbtzI8tOrV69OeHg4AwYMcO4tLIQQQoj/SHJjb6bZSmXLZu/5Pj5qvA5kuWvKpHbt2sybN8+87LamacTHx2cvHiGEEMLOJLmxJ02D06fV/TJlsl+OqUsrm8lNckajkVdffZWuXbtKgiOEEMIpSXJjT9euQUyM6lYqWTL75WRzUHFajh8/zvfff8+aNWvo0aOHXXY4FkIIIXJCkht7MrXaFC8OOdkKwbSTuGn8Tg5UqlSJFStW4O3tzYoVK+jVqxcGgyHH5QohhBC2IsmNPVmiSyr5803l5VDr1q1Zvnw5np6eLF26lGeffVZacIQQQjgNSW7syTSYOKfJjWkw8unTWZ4Onp727duzbNkyvLy8WLZsGd27d5cxOEIIIZyCJDf2ZKmWm5Il1Y7gMTFgwa0UOnbsyB9//IG3tzdr1qxh165dFitbCCGEsBYPeweQq5mSm9Klc1aOXg8lSsDZs3DqFBQpkuPQTNq1a8fKlSu5desWzZs3t1i5QgghhLVIcmNPlmq5AdU1dfasKrNZs5yXl0zr1q1TfH/+/HkKFCiAr6+vRa8jhBBCWIJ0S9mLwQAXLqj7pkX4csI07ubUqZyXlYHz58/TsmVL2YtKCCGEw5Lkxl4uXlSDf/V6KFw45+WZWn+snNxcu3aN27dvs3XrVtq1a8etW7esej0hhBAiqyS5sZfz59Vt8eJqMHBOJZ8xZUV169Zl3bp1BAQEsHPnTlq2bMnly5etek0hhBAiKyS5sRdTchMSYpnybNQtBVCnTh02bdpEkSJFOHz4MM2aNeOMaVq7EEIIYWeS3NiLpZMbU7fUtWtw755lysxAtWrV2LJlC2XKlOH06dM0bdqUfyyw/YMQQgiRU5Lc2IspuSlRwjLl5csHgYHqvo1aUcqUKcOWLVuoVq0aBQoUICgoyCbXFUIIITIiU8HtxTRTylItN6Bab27eVF1TNWpYrtwMFClShE2bNhEXF0egKbkSQggh7EhabuzF0t1SYPE9pjIrICCAokWLmr//5ptvWLZsmU1jEEIIIUwkubEXayQ3JUuq28hIy5WZRZs2bWLw4ME8/fTTfP3113aLQwghRO4lyY09xMXB9evqvjWSm3PnLFdmFjVt2pQBAwZgNBoZPHgw77//PpqFNvMUQgghMkOSG3swjbfJkwcKFLBcuQ6Q3Hh4eDBnzhzGjRsHwMSJE3nhhRcwGAx2i0kIIUTu4pTJzcWLF3nuuecIDAwkT5481KpViz179tg7rMxL3iWl01muXAfolgLQ6XSMHTuWuXPn4u7uzsKFC+ncuTP3bDBFXQghhHC65Ob27ds0bdoUvV7P6tWrOXr0KNOmTSN//vz2Di3zrDHeBh5MK791C6KjLVt2NgwcOJDff/+dPHny8Ndff8kgYyGEEDbhdFPBP/30U0JCQvjuu+/Mx0pZYuNJW7JWcuPvD/nzw507qmuqalXLlp8NnTp1YsOGDaxatYrnn3+e1atX2zskIYQQLs7pkps//viD9u3b06NHDzZt2kSxYsV49dVXGTRoULrPiY+PJz4+3vy9aTdrg8Fg0bEgprIeVabbuXO4A0lFi2K08FgUjxIl0N25Q+KpU2gVKli07OyqXbs2tWvXNtfL9evXOX78OE2bNrVzZI4ls++f3ErqJ31SNxmT+smYM9VPZmN0uuTm9OnTzJ49m7feeot3332XXbt28cYbb+Dl5UXfvn3TfM6kSZMYP358quNhYWHkyZPH4jGGh4dn+HjDvXsJBg7euUPkqlUWvXYDLy+KAEdWr+asA85SSkxMpGPHjhw+fJhXXnmF0NBQe4fkcB71/sntpH7SJ3WTMamfjDlD/cTExGTqPJ3mZPN0PT09qVevHtu2bTMfe+ONN4iIiGD79u1pPietlpuQkBBu3LiBv7+/xWIzGAyEh4cTGhqKXq9P9zyPunXRHTpE4ooVaO3bW+z6AG5Dh+L+1VckjRyJceJEi5adUwaDgZUrV/Lrr7+yZMkSAN566y0+/vhj3CyxM7qTy+z7J7eS+kmf1E3GpH4y5kz1ExUVRcGCBbl7926Gn99O13JTpEgRqlSpkuJY5cqV+e2339J9jpeXF15eXqmO6/V6q/wgH1nulSuA6kLC0tcvXRoA9wsXcHfAN6mnpyc//fQTVatWZfz48UyfPp3Tp0/z448/kjdvXnuH5xCs9b50FVI/6ZO6yZjUT8acoX4yG5/T/bvctGlT/v333xTHjh8/TknTNGhHZzA8WMCvSBHLl+8Aa908ik6nY9y4cfz00094enqyfPlyWrRowcWLF+0dmhBCCBfgdMnNsGHD2LFjBx9//DEnT55k0aJFzJkzh9dee83eoWXOf602eHg82MXbkkzTwe281k1m9O7dmw0bNhAUFMTevXt55plnZDVjIYQQOeZ0yU39+vVZtmwZP//8M9WqVWPChAnMmDGDPn362Du0zLl8Wd0WKQLWGGdiarm5dEm1Ejm4Jk2asHPnTho1asQ333yDzpKLGgohhMiVnG7MDcATTzzBE088Ye8wsid5cmMNhQqBlxfEx6ttHv4bg+PISpcuzbZt21IkNjt27KB+/fq4u7vbMTIhhBDOyOlabpzepUvq1lrJjZvbg8UBnaBryiR5YrN161ZatGhBx44duXXrlh2jEkII4YwkubE1a7fcABQvrm6ddIDu9evX0ev1hIWF0aBBAw4fPmzvkIQQQjgRSW5szZTcFC1qvWuYkhvT7uNOpmvXrmzbto1SpUpx6tQpGjVqxNKlS+0dlhBCCCchyY2t2bLlxkmTG4CaNWuye/duWrduzf379+nevTvvv/8+SUlJ9g5NCCGEg5PkxtasPeYGoFgxdeuk3VImgYGB/PXXXwwbNgyAiRMnmlc2FkIIIdLjlLOlnJq03GSJh4cH06dPp27duqxZs4ZnnnnG3iEJIYRwcNJyY0tJSXDtmrovY26ypE+fPvzwww/mWVX37t1j3rx5suifEEKIVCS5saVr18BoVNO1g4Ksdx1TcnPlCiQmWu86dqJpGi+99BKDBg2iR48eREVF2TskIYQQDkSSG1syjbcpXBisuThdoUJqewej8cF2Dy6madOm6PV6fvvtN+rVq8fBgwftHZIQQggHIcmNLdliGjioliHTNVyoa8pEp9MxZMgQ/v77b0JCQjhx4gQNGzZkzpw50k0lhBBCkhubssVgYhMXHHfzsIYNG7Jv3z4ef/xx4uLiePnll+nRowe3b9+2d2hCCCHsSJIbW7LFNHAT03RwF05uQE0X//PPP5k6dSp6vZ6tW7dicIINQ4UQQliPTAW3JdP4F1u23Dj5WjeZ4ebmxvDhw2nZsiUxMTEUKlTI/JjRaMTNGruvCyGEcFjyV9+Wrl5Vt4ULW/9auaBb6mH16tWjRYsW5u9/+ukn2rRpw8VckOAJIYR4QJIbWzKtcSPJjdXFx8czcuRINm7cSI0aNWRvKiGEyEUkubElU8tNsm4Tq3GRLRiyy8vLi40bN1KnTh1u3bpF9+7d6devH3fv3rV3aEIIIaxMkhtbMrXc2CK5ST7mxmi0/vUcUIUKFdi+fTujR4/Gzc2N77//nho1arBx40Z7hyaEEMKKJLmxlbg4MK2ka4tuqSJFQKeDhAS4ccP613NQnp6eTJo0ic2bN1OmTBkiIyNp06YNp0+ftndoQgghrERmS9mKqdVGr4d8+ax/PU9PlURduaLG3diitciBNW3alP379zN8+HB8fX0pU6aMvUMSQghhJdJyYyvJu6T+2/zR6nL5uJuH+fn5MWfOHKZOnWo+durUKT755BMSXXAPLiGEyK0kubEVW86UMsnlM6bSY1r3Jikpib59+/LOO+/QqFEj2Z9KCCFchCQ3tmLLmVImuWSV4uxyc3Pj5ZdfJn/+/OzZs4e6deowrmNHEg4csHdoQgghckCSG1ux5UwpE9PmmaY9rUQKOp2Ovn37cvSLL+iq15OYlMT41aupW6sWu599FqSrSgghnJIkN7Zij24p0zYPktykb/NmivTvz1KDgcVFilBQr+cw0PDXX1n35JP2jk4IIUQ2SHJjK/boljK13Jg27BQp3bkD/7XQ6Lp355mzZzl68SK9mjalOtBi1Sr44Qd7RymEECKLJLmxFXt0S0nLTcY++EBNla9YEb7/Hjw9CQoKYtGWLfz93nvoAd56i/jLlxkzZgy3bt2yd8RCCCEyQZIbW7Hlppkmppab69fVYn7igUuX4Jtv1P0vvoA8eVI87Dd2LFStCjduMKVnTz766CMqVarEDz/8gKZpdghYCCFEZklyYyv2aLkJDASP/9ZpNCVXQpk1SyV8TZtC27apH9fr4eOPAWgVEUGVihW5fv06ffv2pW3bthw/ftzGAQshhMgsSW5swWhUrSdg2+TGze1B15SMu3kgKgpmz1b33347/fM6d4ZatWgWG8u+fv34+OOP8fb2Zv369VSvXp1x48YRFxdnm5iFEEJkmiQ3tnDrFiQlqftBQba9toy7SW3JEpXgVKgAnTqlf55OB0OGAOD57be88/bbHDlyhA4dOpCQkMD48eN5/fXXbRS0EEKIzHL65GbSpEnodDqGDh1q71DSZ+qSKlBA7flkSzJjKrWfflK3/fqp1q2M9OwJ/v5w6hSsW0eZMmVYtWoVixcvpnTp0rydUcuPEEIIu3Dq5CYiIoI5c+ZQo0YNe4eSMXuMtzGRlpuULl6EDRvU/d69H31+3rzQt6+6/+23gFr875lnnuHEiROUK1fOfOobb7zBBx98QExMjKWjFkIIkQVOm9xER0fTp08f5s6dS4ECBewdTsbsMVPKRFpuUvrlF9A0aN4cSpXK3HNMyc2KFZAscXF3dzffP3r0KF988QUTJkygcuXKLFmyRGZVCSGEnThtcvPaa6/RqVMn2qY108XRSMuN4/j9d3X77LOZf069eioRiomBVavSPKVy5cr8+uuvlChRgsjISHr06EHbtm05cuRIzmMWQgiRJR72DiA7fvnlF/bu3UtERESmzo+Pjyc+Pt78fVRUFAAGgwGDwWCxuExlPVym2+XLuANJBQtitOD1MkNXqBAegHbxIok2vvbD0qsfm7l1C49t29ABhvbtIQtxuHXvjvu0aRh//pmkdLZlePLJJwkNDWXKlClMnTqV9evXU7NmTV566SXGjx9P/vz5M7yG3evHwUn9pE/qJmNSPxlzpvrJbIxOl9ycP3+eN998k7CwMLy9vTP1nEmTJjF+/PhUx8PCwsjz0OJtlhAeHp7i+5q7d1MKOHHnDv+m85+/tfifPs1jQPy5c/xl42un5+H6sZVimzdTLymJqBIl2HDkCGShVSVfkSK0Aox//smaZcswenmle279+vWZNWsW3333HTt27ODHH3+kWbNm5M2bN1PXslf9OAupn/RJ3WRM6idjzlA/mR3TqNOcbGDA8uXL6datW4rxDklJSeh0Otzc3IiPj0/xGKTdchMSEsKNGzfw9/e3WGwGg4Hw8HBCQ0PR6/Xm4+7du+O2YgVJX3yB8aWXLHa9TLl2DX3x4iq++/fV4nR2kl792Ip7v364/fwzScOHY5w0KWtP1jQ8ypRBd/EiiStWoLVvn6mnbdy4kZs3b9K9e/f/itFYs2YN7du3x+2hmVr2rh9HJ/WTPqmbjEn9ZMyZ6icqKoqCBQty9+7dDD+/na7lpk2bNhw6dCjFsRdeeIFKlSrx9ttvp0psALy8vPBK4z9tvV5vlR9kqnJv3ADAvUgR3G39xilSRK1SnJiI/tYt+C/RsSdr1XuGjEb4778S9y5dsvdz6NgR5s7FIywMnngiU08JDQ1N8f1vv/3G008/Tf369Zk6dSotWrRI9Ry71I8TkfpJn9RNxqR+MuYM9ZPZ+HI0oNhgMHD+/Hn+/fdfm20q6OfnR7Vq1VJ85c2bl8DAQKpVq2aTGLLMngOK3dwgOFjdz80zpo4cUUlmnjzQuHH2yujYUd2uXKlmXGXD7du38fPzIyIigpYtW9KtWzf+/fff7MUjhBAiTVlObqKjo/nmm29o1aoV+fLlo1SpUlSpUoWgoCBKlizJoEGDMj3QN9f4r+XG5qsTm8iMKdi4Ud02a5b9rrm2bdVzT5+GbCYkAwcO5MSJE7zyyiu4u7uzfPlyqlSpwoABA4iMjMxeXEIIIVLIUnLz2WefUapUKebOnUvr1q1ZunQp+/fv599//2X79u2MHTuWxMREQkND6dChAydOnLBW3Cls3LiRGTNm2ORaWWYwwN276n7BgvaJQda6eZDctGqV/TJ8fcHUjbR2bbaLKVy4MLNnz+bgwYN06dIFo9HI/Pnz6dOnT/ZjE0IIYZalMTfbtm1jw4YNVK9ePc3HGzRowIsvvsjs2bOZP38+mzZtonz58hYJ1GndvKlu3dzgEVOBrSa3t9wYjbBpk7qfk+QGoHVrWLdOrXL8375T2VWlShV+//13tm/fzrvvvstbb72F0WgE1IwAg8FAvnz5chavEELkQllqufnf//5nTmwaN25sXi/mYd7e3rz66qsMHDgw5xE6O1OXVEAApDHY2SZye8vNkSMqycyTRy3IlxOPPaZuN25USZMFNG7cmPXr19M+2QysGTNmULp0aSZPnizbOQghRBZle0Dxzp07iYuLS3U8KiqKkSNH5igol2JKbuzVJQUPkpvc2nKzfbu6bdQo51Ph69VT+03dugUPzdrLCZ1Oh06nA9R08ZUrV3L79m3efvttypQpw7Rp07h//77FrieEEK4sy8nNU089xSeffIJOp+OaaRZQMvfv32f69OkWCc4lOEJyY+qWyq0tNzt3qttGjXJell6vBiXDg3E8FqbT6di8eTMLFy6kVKlSXL16lREjRlCmTBmmTJkiSY4QQjxClpObkiVL8ueff6JpGjVr1qRQoUKEhoYyYsQIvv/+e6ZNm0YR04epcIzkJre33JiSm4YNLVOeqWvKtLu4Fbi7u9O3b1+OHz/OvHnzKF26NNeuXWPUqFEMHz7catcVQghXkOVF/D777DNALYy3ZcsWLl26xL59+9i/fz/Lli3DaDQyefJkiwfqtBwhuTElm9euQWKiWtQvt4iKgqNH1X1LJzebNkFSklXHUun1egYMGEDfvn358ccf+eSTTxg2bJj58atXr5InTx78/PysFoMQQjibbH/K3b9/H4//PiSfTGcjQYFjJDdBQeoDOCkJrl6FYsXsF4ut7d6tFtwrWRIKF7ZMmXXqgJ8f3LkDhw9DzZqWKTcDer2eF154gf79+5vH5gCMGDGCVatW8frrrzNkyBAK2vN9JoQQDiLbA4o9ctN//znhCMlNbl6l2NJdUqBavkzlmQYr20jyxCY+Pp69e/dy69Ytxo8fT8mSJXnzzTdlMUAhRK6XpeQmq380L168mKXzXZIjJDfwILm5etW+cdiaNZIbgCZN1O22bZYtNwu8vLw4ePAgixcvpnbt2sTExDBr1izKli1L3759OZKFXc+FEMKVZCm5qV+/PoMGDWLXrl3pnnP37l3mzp1LtWrVWLp0aY4DdHqOltxcuWLfOGxJ06yX3Jj2p7Jxy83D3N3deeaZZ9izZw9hYWG0bt2axMREfvjhB1asWGHX2IQQwl6y1Ld07NgxPv74Yzp06IBer6devXoULVoUb29vbt++zdGjRzly5Aj16tVjypQpPP7449aK23k4SnKTG1cpvnRJJXPu7mqcjCWZkqWTJ9VAbXtsipqMTqcjNDSU0NBQIiIimDlzJq+88or58XXr1nH79m26du0qXcpCCJeXpZabgIAApk6dyqVLl5g9ezYVKlTgxo0b5j2k+vTpw549e9i6daskNiaOktzkxpab/fvVbeXK4ONj2bILFIAqVdT9HTssW3YO1a9fnx9//JH8ybb7eO+99+jRowflypVj2rRp3DXtdyaEEC4oW//CeXt7ExoaylNPPWXpeFxLbCyYFlyT5Mb2DhxQt9aazdS4sZpmvm0bdOlinWtYgGkz21OnTnHu3DlGjBjBuHHjeOGFF3jjjTcoV66cvUMUQgiLyvZsqebNm3MlN31QZodp00wPD/D3t28suTG5MbXc1KplnfJNg4rtPO7mUTw8PJgwYQKRkZHMnTuXqlWrEh0dzeeff06FChUYM2aMvUMUQgiLynZyU69ePRo2bMg///yT4vi+ffvo2LFjjgNzCcm7pJJN4bULSW4szzSoOCJCLY7o4Hx8fBg4cCCHDh0iLCyMjh07omkatWvXNp8TFRXFvXv37BilEELkXLaTm3nz5vHiiy/SrFkztmzZwvHjx3nmmWeoV68eXl5elozReTnKeBtImdxomn1jsYV799RgX7Bet1TFiuDrq7ofjx2zzjWswDT4eOXKlfzzzz8pFuGcNWsWxYoVY8iQITKVXAjhtLKd3ACMHTuW4cOHExoaSrVq1YiNjSUiIoJly5ZZKj7n5ojJTUwMREfbNxZbOHRIJXFFi6oVmq3BzQ3q1lX3d++2zjWsrGLFirgn2z5iw4YN3Lt3jy+//JJq1arRsmVLFi9eTEJCgh2jFEKIrMl2cnP58mXeeOMNJkyYQJUqVdDr9fTs2ZM6lp5y68wcKbnJm1dtGQC5Yzq4aTCxtbqkTOrVU7dOmtw8LDw8nPDwcLp164a7uzubN2+mZ8+elChRgokTJ9o7PCGEyJRsJzdlypTh77//5n//+x979uxh6dKlvPrqq3z66aeWjM+5OVJyA7lr3I21x9uYuFhy4+bmRtu2bVm6dClnz57lgw8+oEiRIly9epVTp06Zz9M0TVpzhBAOK9vJzXfffce+ffvo1KkTAO3bt2fDhg3MnDmTV1991WIBOjVJbuzH1snNgQPgYh/2xYsXZ/z48Zw7d47//e9/DB8+3PzYnj17KFq0KEOHDuXQoUN2jFIIIVLLdnLTs2fPVMfq1KnDtm3b2LhxY05ich2S3NiH0QimwbDVq1v3WmXLQr58EB//4JouRq/X8/TTT1O1alXzscWLF3Pz5k1mzpxJjRo1aNCgAd988w1RUVF2jFQIIZQcDShOS6lSpdi6dauli3VOktzYR2SkWjxRrwdrL1Cn07lc11RmTJo0iT///JNu3brh4eFBREQEr7zyCsHBwfTr1487d+7YO0QhRC5m8eQGoECBAtYo1vlIcmMfR4+q24oV1QKK1pYLkxsPDw86derE0qVLuXDhAlOmTKFSpUrExsaydu1a/EyD14Ebpt8DIYSwEaskN+I/ktzYhym5SdaNYlW5MLlJrnDhwowYMYKjR4+ydetWZs2aZZ5enpiYSLVq1ahduzbTp0/ncm6YqSeEsDvZHthaNM3xkpvcsjO4KbkxbWxpbabk5tAhiIsDb2/bXNfB6HQ6mpi2pPjPwYMHuXXrFlevXmX//v2MHDmStq1b83z79nTt3BnfChXsv3q3EMLlSMuNtdy/rwaZguMkN7mt5cZWyU3JkhAYCAaDSnCEWZ06dbh8+TJffvkljevWxWg0ErZ2Lc+PHEmhSpX4ISgIpk1zuZlmQgj7ylHLzbp161i3bh3Xrl3DaDSmeGz+/Pk5CszpmVptvL0hTx77xmJiSm6uXYOkJEi2Mq3L0DTbJzc6HdSuDWvXqino9evb5rpOIjAwkFfLl+fV48c5CfwE/KjTcVLTqHzzJowYAYsWsW/SJCJjY2nfvj3eubT1SwhhGdluuRk/fjzt2rVj3bp13Lhxg9u3b6f4yvUcadNMk6AgFYvR+CA+V3PhgtpXysPD+jOlkjOtp2NaX0c8sGIFdOoE9+5RrlEjxm7fzvHERPZu3UrdOXMgIAD27mVW9+507dqVwoUL07dvX1auXCkLBQohsiXbLTdff/01CxYs4Pnnn7dkPK7D0cbbgPrADwpSLTdXrkDhwvaOyPJMrTbly4Onp+2ua0puTNs+COXIEejdW3XZPfMMfP89eHmhA2o3aQJNmkCbNhAaSsnTpynm4cHFqCh++OEHfvjhB/Lnz8+TTz5Jt27dePzxx+39aoQQTiLbLTcJCQmpBg+KZBwxuQHXH3dj6y4pk+TJzUNdtLlWXBx07642am3dGn76Cby8Up9Xpgxs2sS44GAiExPZ0ro1rw8ZQnBwMHfu3GHhwoW8++676JK1gMbGxtrwhQghnE22k5uBAweyaNEiS8biWiS5sQ9bTwM3qVhRfXBHR8Pp07a9tqP66CP49181S2/x4ozXHCpeHJYuxc3Dg6br1zOrWTMuXLjAxo0befPNNxk0aJD51NjYWIoUKULbtm358ssvuXjxog1ejBDCmWS7WyouLo45c+awdu1aatSogV6vT/H49OnTcxxcWiZNmsTSpUv5559/8PHxoUmTJnz66adUrFjRKtfLNklu7MNeLTceHmqrh9271bgbW473cUTHjoFpE90vvsjc70HjxvDeezB+PAwZgnubNrRs2ZKWLVsCYDAYANi2bRt37941T2gYMmQIDRo0oGvXrjzxxBNUq1YtRSuPECL3yXbLzcGDB6lVqxZubm4cPnyYffv2mb/2W3FQ5aZNm3jttdfYsWMH4eHhJCYm0q5dO+7fv2+1a2bLzZvqNiDAvnE8zJXXutG0B/s72Tq5ARlUnNx770FiInTuDE89lfnnvfuuShJv3ICxY9M8pU2bNpw4cYIpU6bQpEkTdDodu3bt4t1336VGjRp89dVXFnoRQghnle2Wmw0bNlgyjkxbs2ZNiu+/++47ChUqxJ49e2jRooVdYkrTrVvqNjDQvnE8zJVbbi5fhrt3wc0NKlSw/fVlULGyaxcsW6Zm5n3ySdae6+kJs2bBY4/BN9/Aa6+lmaiWK1eOESNGMGLECK5cucLvv//OihUrWL9+PW3atDGf98svv7Bw4UI6depEp06dKF26dE5fnRDCCTj9CsV3794FICCDFpL4+HjiTQvqgXnnYoPBYG7qtgRTWQaDAfcbN3ADEvPlQ7PgNXJKV7AgHoDx8mWSbBxX8vqxBt3Ro3gAWpkyJLq5qRk6NqSrVk1df/9+ErNxbWvXj624jx+PG2Ds04ek8uWz/nNo2hT3Ll1w++MPjO+8Q9KSJUD69RMYGMiLL77Iiy++SGxsLN7e3uZzlixZwpo1a1izZg2vv/46lSpVomPHjnTo0IEmTZrgacsZdVbkKu8da5H6yZgz1U9mY9RpmqZl9yJ37tzh22+/5dixY+h0OipXrsyAAQPIly9fdovMEk3TePLJJ7l9+zZ///13uueNGzeO8ePHpzq+aNEi8lhpgb2Wb71F/tOn2T5mDNfq1rXKNbIj8NAhmo0Zw71ixVj/5Zf2DseiSv71F7Vmz+ZK3brsHDPG5tf3iI2lU69eAKz+/nsS/P1tHoO9+V68SJvXXgNg7Zdfcr9YseyVc/48rd94A52msWHGDKJKlcpWOefPnyciIoI9e/Zw7NixFIuN+vj48N1338mCgUI4kZiYGHr37s3du3fxz+BvbLaTm927d9O+fXt8fHxo0KABmqaxe/duYmNjCQsLo06dOtkOPrNee+01Vq5cyZYtWyhevHi656XVchMSEsKNGzcyrJysMhgMhIeHExoaik+VKujOnSNxyxa0Bg0sdo0c++cf9DVqoOXLR+L16za9dPL6eXgAuiW4vf027p99RtIbb2CcOtXi5WeGR5Uq6E6eJHHNGrTWrbP0XGvXjy24vf467t98g7FTJ5KWLctRWe69euH2228Yn36apEWLclw/d+7cITw8nNWrVxMeHk5ISAjbtm0zP96nTx+8vb1p27Ytbdq0oVChQjmK35Zc4b1jTVI/GXOm+omKiqJgwYKPTG6y3S01bNgwunTpwty5c/H4b4pnYmIiAwcOZOjQoWzevDm7RWfK66+/zh9//MHmzZszTGwAvLy88EpjfQ29Xm+VH6Rer0f334Bij8KFwZHeLCEhAOju3kWfmAg+PjYPwVr1zsmTALhXqoS7veq8Vi04eRKPw4ehfftsFWG1+rG2mzfVIn2A2/DhuOX0NXzwAfz2G26//YbbyZPmGWjZrZ+goCB69+5N79690TSNGzdumMu5d+8ey5YtIzExkR9++AGAWrVq0a5dO9q2bUuTJk3Imzdvzl6PDTjte8dGpH4y5gz1k9n4sj1bavfu3bz99tvmxAbAw8ODUaNGsXv37uwW+0iapjFkyBCWLl3K+vXrHXOAYEKCWu8EHG+2VL58DxZSu3rVvrFY2vHj6tYeg4lNatZUt7lxxtR330FsrErwWrXKeXk1akDXrmoW3Gef5by8ZHQ6HUFBQebvvb29Wb16NSNHjqTmfz/D/fv3M3nyZNq1a0e/fv3M52qaRkxMjEXjEUJYVraTG39/fyIjI1MdP3/+PH5+fjkKKiOvvfYaP/74I4sWLcLPz48rV65w5coVx1qx1DRTSqdTyYQj0elcczq4wQCnTqn79kxucut0cE1TyQ3A4MGW20/trbfU7Y8/PlhewQr0ej1t27Zl8uTJ7N+/nytXrvDjjz/Sr18/QkJCzGvtAJw+fZr8+fPTvHlzxowZw/r16x3r748QIvvdUs8++ywDBgxg6tSp5rUmtmzZwsiRI+n136BKa5g9ezYArR76z/C7776jf//+VrtulpiSmwIFHHPn7eBgOHvWtaaDnz2r1lXx8YFsDmK1CFPLzT//qBY8F5mN80gREWoBRR8fePZZy5XbrJlKGPfvx23+fJutPF24cGH69OlDnz590DSNpKQk82Pbtm3DYDCwZcsWtmzZwkcffYSnpyeNGjWiZcuW9OnTx/EWFRUil8l2cjN16lR0Oh19+/YlMTERUP/9DB48mE+yurZFFuRgcpfN6Ey7ojtal5SJK651Y+qSKl9erXNjL8WLQ/78cOeOSnBq1LBfLLa0YIG6feopy7ZW6nTw5pvwwgu4ff01uhkzLFd2pkPQpeh+f+6552jSpAkbN25kw4YNbNiwgUuXLrF582Y2b95M/fr1zcnNkSNHOHjwIE2bNqVEiRI2j12I3CrbyY2npyczZ85k0qRJnDp1Ck3TKFeunNWmVjsVR12d2MSVkxt7/8es06kVdv/+Gw4ezB3JTVwc/Pyzuv/CC5Yvv2dPGDUK3fnzFN69W616bEc6nY6yZctStmxZBgwYgKZpnDp1ig0bNrB58+YUGwovXryYCRMmABASEkLTpk1p1qwZTZs2pXr16rg7YsuuEC4gx//i5smTh+rVq1OjRg1JbExMLTeOtjqxiSsnN/Ycb2NSvbq6PXTIvnHYysqVqqUqJEStLGxp3t7w34DeEmvXWr78HNLpdJQrV45Bgwbxww8/EJjs975IkSLUq1cPd3d3zp8/zy+//MKQIUOoXbs2BQoUSDFuMSEhwR7hC+GSstRy89ZbbzFhwgTy5s3LW6aBfumw1saZzkBnGnMjLTe240jJjam1JrckN//7n7rt2dN6XYIDBsDUqRTes4ekS5egZEnrXMfCBg8ezODBg4mOjmbXrl1s2bKFrVu3sn37dnQ6XYplLPr378+2bdto2LAhDRo0oGHDhtSpU0f+aRQiG7KU3Ozbt8+89PG+ffvSPS/X78hr6paSlhvbcaTkxtRyc/CgfeOwhdhY+PNPdb9HD+tdp1IljE2a4LZtG9oPP8D771vvWlbg6+tL69ataf3fwo5JSUmcPXsWt2TJYEREBOfOnePcuXP8+uuvALi7u1O9enWaNm3K559/Ln9bhcikLCU3yTfLXLhwIcWLF0/xywlqwO/58+ctE52zcvQBxa42Ffz+fbhwQd13hOSmWjV1e/Giei8UKGDfeKxp9WpV/6VKQb16Vr2U8YUXcNu2DbeFC9Wu4078Qe/u7k7ZsmVTHNu9ezd79uxh586d5q8rV66w/79lBZInNi+++CI+Pj7UqVOHOnXqUMER3vdCOJBsDyguXbo0ly9fTrVE+a1btyhdunSKqZO5jVN1S2maU39IAOaViQkMdIw69/dXH/Znz6quKUfard7STF1STz9t9feR1r07ia+/jsfJk7B5MyRbe8YV5MuXL0XrjqZpXLhwgV27dqU4z2Aw8NNPP6UYo+Pp6Unx4sVZsWIFbdu2pWfPnjaNXQhHk+3kJr0p2dHR0bIRnSm5cdRuqcKF1a3BoFoWHCEhyAlH6pIyqV5dJTcHD7puchMXZ5suKRNfXy40b06p8HC1zYOLJTcP0+l0hISEEPLflikmRqORBQsWsHfvXvPXnTt3OH36NKdPn+bu3bv0bNYM1q3DePAgL61cSaWiRalRvz7Vn3+e4KpVpXtLuLwsJzemgcQ6nY4PPvggxWC3pKQkdu7cSS3TKq25lMO33Hh5qa6S27dV642jxplZppWJ/9t7yCFUrw4rVrj2oOING9Q2I8WLQ/36NrnkhZYtVXKzZAl8+aWaSZXLeHl50atXL/NiqZqmcfz4cebPnw/Xr1Pn4EE14Npo5BzwLcC//6qf1+TJFPT0pEatWtRo0oROnTrRtm1be74cIawiy8mNaSCxpmkcOnQIz2QrsHp6elKzZk1GjBhhuQidkaOPuQHVNWVKbqpUsXc0OXP6tLotU8a+cSRnmjHlyoOKTa02Tzxhs67Nm1WqoIWEoDt/Xk1B797dJtd1ZDqdjjIlSjDg1CnKL1uGzmhUDzRsiE/16kw4fZqD585x8MIFTsTHcyMhgfW7drF+1y58/tt2AuDatWu89tpr1KxZk+rVq1OlShVKly6dYgFDIZxFlt+1pkHFL7zwAjNnzsxwy/Fcy9FnS4FKbo4dc40ZU46Y3JhmTB0+DEajfVdNtgZNS5nc2IqbG8ZnnsF92jT46SdJbgDu3sX9ySepsGmT+v7pp2HCBKhUiWAg+byy2IgIjo4ezcH16zkIhK5YAW+8AcWLc+DAAZYsWcKSJUvM53t6elKxYkUqV67MwIEDCQ0NteUrEyLbsp2Sf2faJE+k4GYwoLt/X33j6C034BrJzZkz6taRdogvX17tKxUdDefOOVZslnD4MERGqr2k/hsAayvGXr1UcrNypevPRnuUW7egfXvcdu/G4OODbv58PDIYTOxTvz51162j7p9/Qt++aouQBg1g3TrKly/P1KlTOXjwIIcOHeKff/4hNjaWQ4cOcejQIdq3b28uZ+vWrbz44otUqVKFypUrU6VKFapUqULFihXJmzevLV65EBnKdnLz4YcfZvj4Bx98kN2inZr+3j11x83N8XYET85VkpvERJU8gGO13Oj1qrtv/37VNeVqyY2p1aZNG5Xg2FKNGmq6/eHD8NtvMHCgba/vKO7fh3btYM8etIIF2fLuuzTLbEvWE0/A7t3QpQscOQKtWlFq7VqGDx9uPsVoNHLu3DmOHTvG0aNHad68ufmxw4cPc/z4cY4fP87y5ctTFF2sWDFmz55N5/+2ybh58ybXr1+nTJkyKYYxCGFN2U5uli1bluJ7g8HAmTNn8PDwoGzZsrk2ufGMjlZ3ChRw7K4IV1nr5vx5SEpSg6RNr8lRVK+ukptDh+DJJ+0djWWtWKFubdkllVyfPvDOO6prKjcmN0ajannZswcKFiQxPJwoU5KfWWXKwMaNKkHat0/dbt+uljEA3NzcKF26NKVLl6Zjx44pnvr0009TtmxZjh49ak5+jh49yo0bN7h48WKK4QrLly9n4MCB5vLKly9PhQoVzLcNGjQgf/78OasPIR6S7eQmrRWKo6Ki6N+/P926dctRUM7M3HLjyF1S4DotN6bxNqVKOV4y6arbMFy/Djt2qPudOtknht69VXKzaZNawDHZNga5wvjxsHSp6vpcvhyqVn3QgpkVBQvCunXQqpVqYXz8cdi69ZF/vwIDA2nbtm2qmVY3b97kxIkTVDMtZAncu3ePvHnzcv/+fU6dOsWpU6dYs2aN+fG1a9fSpk0bAMLDw1mxYgVlypQxf5UuXVq6ukSWWXQYvL+/Px9++CFPPPEEzz//vCWLdhqektzYlmm8jSN1SZm46jYMf/2lBhTXrGm/pKJECWjWDLZsUdPChw61Txz2sGmTGjAMMG8eNG2q1qzKrgIFYNUqaNRIjcF59llYswaysWN5YGBgio1DAYYOHcqbb77J5cuXOXHihLk7y3Q/+erKGzdu5PPPP09VbqFChShTpgzz5s2jatWqAFy9epX4+HiKFSsmu6uLVCw+x+/OnTvcvXvX0sU6DXO3lCPPlALXSW4ccaaUiSm5OX5cLXjnKmuyhIer2w4d7BvHM8+o5OZ//8s9yc3t2/Dccyq5fPFFsNQ/kcWKPUhw1q6FsWPho48sUzZqunrRokUpWrQoLTNYfLF169YkJSWZFyQ8ffo0t2/f5tq1a1y7di3FumpffvklEyZMwNPTk5IlS1KyZElKlChhvu3atat0d+Vi2U5uZs2aleJ7TdO4fPkyP/zwAx3s/UfPjvSm5MZZWm5u3FD/9en19o0nuxw5uSlSRCW5N2/C0aNQp469I8o5TXuQ3Nh7WnD37vDmm7Btmxp79dBKvi7prbdUN1z58jBzpmXLrl4d5s5V45kmToSGDeG/QcG20qZNG3MXlcmdO3c4c+YMp0+fTrFac3R0NB4eHiQkJHDixAlOnDiR4nktW7Y0JzfTp09n/vz5/PDDD5QqVcqcAJmSoQIFCsiqzS4m28nNZ599luJ7Nzc3goKC6NevH++8806OA3NW5m4pR2+5CQxUzc5JSXD1qvOOWXDEaeAmOp36wNi4UY27cYXk5uhRNQjd21t1h9hT0aKqa+rvv1XX1LBh9o3H2jZtggUL1Ptq4ULw9bX8NXr3VoOKv/gC+vdXM9LsPFA/f/781K5dm9q1a6c4Pn36dKZMmcKFCxc4c+YMkZGRnDt3jsjISCIjIylWrJj53EOHDpm7w9Jy6tQpyvz3D9Kvv/7K3r17KVasWIqv4OBgWdDQiWT7J3XG9KEiUnCaMTdubmqPqUuXVNeUsyY3jtxyAymTG1ewdq26bd7cMbrZevRQyc3//ufayU18PLzyirr/8svQuLH1rjVtmmoN27tXdX2tWuWwm+u6u7ubu6QyMnr0aEJCQggKCuLixYspEqHr169TPNnfvxUrVvDjjz+mKsPNzY3ChQuzd+9egv9r+d64caNKpIKDKZo/P0ULF8a/aFF0ztoS7kIkDbUwp+mWAvUf2aVLzjsd/N491a0GjtlyA663DYOjdEmZmLqmtm937a6pqVPVYN9CheDjj617LU9P+OEHqFtXDSz++msYPNi617SyihUr0qhRIzp27Ij+ocQjPj4+xfo7nTp1okCBAly8eNH8dfnyZZKSkrh8+TIBAQHq787vv/PthAn8+NAsNW8g2N2dwn5+rHrzTQJ69YKKFdmxYwdXrlwhODiY4OBgChcujI+t14jKRbKU3Jg2zcyM6dOnZzkYV+A03VLwoLnZWQcVm1oPAwPBUbcBMQ0qdoWWm4QE1QoFjpPc5IauqcuXHyQ006fbZkXmKlXg009V4jh8uFqFumJF61/XDry8vFJ837NnT3o+tMpzUlIS165d48rGjXj27QvLlkFCAtWBtsDF/76igDjgbFISZ+/cwXf8eDVtv04dvvT25sdt21KU6+/vb052fv/9d/MYoV27dnH16lWCgoLMX35+fjIuKAuylNyktbZNWnLzD8BpuqXA+Rfyc/QuKVDrj4BKIK9fh6Ag+8aTEzt2qFVxg4IetEg5gmeeUcnNr7+6ZnIzdizExKiZTL172+66Q4aoxRrXrlULJW7a5HhrSdmI++XLFBk2jCLJ9t2idm1Gde7MqObNoUIFKFSImPh4rv77L1f27+fGrl14XryoWjv37qUM0NDTkyt+flyJjiY+Pp6oqCiioqI4fvx4irV8Zs6cyaJFi1LE4OnpSVBQEAULFmTjxo3mRCgsLIwzZ86kSISCgoIoUKAAbrn05wVZTG5Mm2aK9DlVt5RpxpQkN9bj6wtly8KpU6r1xsb7MFmUqUuqbVvH+pDr3l1t/rhjh9rvqkQJe0dkOUePwrffqvtTp9p27Iubm7p21apqyv033zh991SWGY2qW270aNUNrtNBr14wYgQ8NMAZII+3N6UbNKB0gwbw0kvq4I0bMG8e42fOZPyVK3DzJlrNmtz95BOulCrFlStXuHnzZoruslKlSlGvXj2uX7/O9evXiYmJISEhwdxN5ptsMPmCBQv4+eefU8Xi5uZGYGAgx44dM6899NNPP7F//34CAgLMX4GBgfj5+XH9+nWSkpJSdds5qxyNublz5w7ffvstx44dQ6fTUaVKFV588UXyOfKeSlbmlN1Szp7cOOp4G5Pq1V0ruXGULimTIkXUAOfNm1XXVBa6zx3e22+rD9hu3ewzO61ECZg0CV5/XcXSubPzTj7Iqtu31TpCK1eq7xs1UgleVlstCxZUydGwYfDVVzB+PLoDB8jfsSP533qLShMmpNqfbeLEiUycONH8fUxMjDnRuX37dopZW/Xr1+f+/fvmx69fv87du3cxGo1cv349xefxypUr00yETDp16kSR/z4XJk6cyJo1a1IkQqZkKCAggCeeeMK87lBsbCweHh4OlRhlO7nZvXs37du3x8fHhwYNGqBpGtOnT2fixImEhYVRxxWmvWZVXBwe8fHqvjO03LjKmBtHbrkBldwsX+7cg4rv3oWICHX/oSX3HUKPHiq5+d//XCe52b5dbVDq7q4SDHsZPBgWLVLxvPoq/P67w86espiDB1VCefq02rdu8mR47bVsrdps5uWlEpznnoNRo9S0ftPu9j//DLVqpfvUPHnypDsrbNiwYQx7qDs2ISGBGzducPPmzRSJUJcuXShatCi3bt0yf928edN8m3zRw8OHD7Nly5Z0Y7p+/bo5uRk+fDizZ8/G19eX/Pnzkz9/fubNm0fDhg0zVzdWkO3kZtiwYXTp0oW5c+eaKy8xMZGBAwcydOhQNm/ebLEgncatWwBobm7oHHWAa3LSLWUbrrDH1NatqgWhXDnHnJGUvGvq3Dl4xNRgpzB+vLrt39++g3nd3dXifrVrqzE4//ufGufkqjZuVBvdRkWpPet++82ya1QFBcF336n37KBBahZc48aqVeeFFyxyCU9PT/OK0MmlNVga1MbXK1euTJEIvf3223Tv3j1FIpQ8GUqeCN25cwdQCytGR0dz4cIFi7yOnMhRy03yxAbAw8ODUaNGUa9ePYsE53T+S24ICHCsMQnpSd5yo2nO9d+Y0ejYC/glZ5oxdeSIWjTRGffB2bRJ3WawdL5dPdw1NXy4vSPKme3b1R5eHh7w7rv2jkaNu3n3XZVwvf66ar1zhtbprFq6VA3ajo+HFi3UrChrvc4nnlCLJPbrp1pvXnxR/RPx+eepuqls4eGJQLVq1aJWBq1JyX3//fd8/vnn3Llzh9u3b3Pnzh0qV65shSgzL9ufwP7+/kRGRqY6fv78efz8/HIUlLPS3b6t7thiqqYlmFpuEhJU/7IzuXJF/QFyd3fMloTkypVTC97FxDxobXI2jp7cwIPWhF9/tW8clmBqtenXz3FaJt95BypXhmvXYORIe0djeT/+qLo34+Oha1eVXFo7gQsMhD/+UNtdmAZwt2zpdK3pHh4eBAYGUrZsWerVq0fbtm3xt3PvRbaTm2effZYBAwawePFizp8/z4ULF/jll18YOHAgvXr1smSMzuPmTQA0ZxhMDKoP2PTL62S/TOYkoUQJx98Xy939wZRwZxx3Ex0Nu3er+46c3HTvrj4gdu2Cs2ftHU32OVqrjYmXl+qeApg/H1xp9uz//qcSSaMRBgxQ39tqBW43N/VzNiVTERHQoAHs32+b67uobCc3U6dO5amnnqJv377mjcj69+/P008/zaeffmrJGJ2HqfXDmZprnXXcjbPMlDJx5pWKt21T3WklSzr2NOvg4AfJlzO33nz4obp1pFYbk6ZNU24DERtr33gs4Y8/VFeU0ai6hubMUYmlrbVtqxLzSpXU5qjNmqnB2yJbsp3ceHp6MnPmTG7fvs3+/fvZt28ft27d4rPPPku14qM1fPXVV5QuXRpvb2/q1q3L33//bfVrPorONObGWbqlwHlnTDnLTCmTmjXVrTMmN87QJWXy7LPqdvFi+8aRXQcPqi0P3NxUN5Aj+uQT9XfjxAnVneLM1q5VXVGJiSrBmTPHvuMly5ZVLXehoWrBzG7d1EwtTbNfTE4q2z/F2NhYYmJiyJMnD9WrVydfvnzMmTOHsLAwS8aXpsWLFzN06FDee+899u3bR/PmzXn88cfTHANkU87WLQXOu9aNs8yUMjG13Bw4YN84ssOZkpunnlLdgHv3wsmT9o4m66ZMUbc9eqgPOkeUL5/aNRzUFg2HD9s3nuw6eFC9XxIS1O3ChY4x2D9/fjXAePBgldS8/bZqUTItMyIyJdvJzZNPPsn3338PqGlgDRs2ZNq0aTz55JPMnj3bYgGmZfr06QwYMICBAwdSuXJlZsyYQUhIiNWv+yhON6AYnL9bylmSG1PLzZkzaoqps4iJUU3l4BzJTVDQg4USna1r6tw5td4JOP6A3aeeUoNuExPVdOakJHtHlDUXLkDHjmrV4ZYt1To+9uiKSo9eD19+CTNnqpakBQtUt9W1a/aOzGlk+6e5d+9ePvvsMwCWLFlC4cKF2bdvH7/99hsffPABg620THdCQgJ79uxh9OjRKY63a9eObQ9tSmYSHx9PfLKsN+q/DxeDwYDBYLBYbLqbN3EDkvLlw2jBcq3JrVAh3AHjpUskWTlmU11bos49Tp9GBySGhKA5Q137+eFRvDi6CxdI3LcPrUmTVKdYsn4sRbdlCx4GA1qxYiSGhIAdY8ts/eiefhqP8HC0X34h0dGThGTcpk3DPSkJY+vWJNWokaW6tst7Z/p0PNatQ7djB0lffonRgbdmSFE/UVF4dOyI7uJFtEqVSPz1V5VAONDvndngwejKlMG9Tx90W7agNWhA4tKlD5aXsBBH/NuTnszGmO3kJiYmxjzlOywsjKeeego3NzcaNWrEuYe2gLekGzdukJSUROHChVMcL1y4MFfSGTcyadIkxpumViYTFhZmXmHREpqcPEkQcPDiRS6uWmWxcq2p2JUr1ANuHjnCNhvFHG5axj+b3BIS6Hzpkirr1CkSrl+3RFhW17BwYYIvXODIokWc/W/Rq7TktH4sqeLPP1MJuFC2LHtXr7Z3OMCj60efJw8d3N1xO3SIzXPmEO0E2wXoo6JoN2cOADuaN+d6Nn8Xbf3eKd2rFzXmzME4ejTr8+YlrmBBm14/q9auXk2jCRModOgQcQUKsPmtt4jdvt3eYT2S78SJNJw4Ed9z59A1bcqet97iSoMGFr+Opd4/+U6dotRff3HglVcsPoYpJiYmU+dlO7kpV64cy5cvp1u3bvz111/m5Z+vXbtmk/ntDy84pGlauruRv/POO7yVbEn2qKgoQkJCaNeunUVjTSxThr9XrKBu797ULFbMYuVaky5vXpg+nYIJCXTs2NGq1zIYDISHhxMaGpqzPUj++QcAzc+Pts8+6zSLD7pt2wZ79lDNaKRKGnVtsfqxIPfp0wEo0rOn1d8fj5Kl+vnpJ1izhlbXrmE0bWDowNw+/hj3+Hi0mjWp/+67WX5P2+2906EDxoMH0e/YQejy5ST99ptD/j4aDAbCw8Lo+PvveBw4gJYnD+6rV/OYM20T9PTTGHv1wmPjRhpMmoRxwgSMI0dapL4t9v6JisJt3DjcvvoKndFI8a5d0QYOzHF8KS+RuW79bCc3H3zwAb1792bYsGG0adOGxo0bA6o1pHYau6VaSsGCBXF3d0/VSnPt2rVUrTkmXl5eac7g0uv1lv1DUKkSt06fRl+smMN8OD3Sf//V6q5csVnMOa738+cB0JUujd7T00JR2cB/f0jdDx/GPYPXb/H3ZXbFxcHOnQB4tG7tMOsJZap+evaENWtwX7IE9zRabR1KbKwaXwHo3n47R+9pu7x35s6FOnVw+/NP3P78U43HcUAVfv0Vj59/Bjc3dL/+it6O+x5lS3AwhIXBG2+g+/pr3N9/H/edO9V4HAstP5Lt94+mqW0q3nwT/mtVp1cvPLp1s/jfjczGl+32oqeffprIyEh2797NmjVrzMfbtGljHotjDZ6entStWzdV81l4eDhN0hjHIB7BNFsqKkoNHnUGzjYN3CT5HlNGo31jyYxdu9QMjcKFoUIFe0eTNV27gqcnHD3q+LN5Fi6E69fVOkI9etg7mqyrVk3N6AEYMgQy6HK1F90PP1DZNFj7q6+gUyf7BpRder2Kf/Zs9f5esULt+WXPrrWjR6FdO/XevXRJrcgeFqYGaZsmrNhBjjrDgoODqV27Nm7J+tQaNGhApUqVchxYRt566y3mzZvH/PnzOXbsGMOGDSMyMpJXTItLiczz93+wj4mzrHXjbDOlTMqXV6ue3r8Pp07ZO5pHSz4F3AG7GjKULx906KDuO/KsqaQkmDpV3R8+3LFm7GTFe++pBPjyZbWBqSPZsAH3/z4bkoYPV4sPOjOdTi2kuGOHSiQiI9W+au+/b9vp4nfuwNCh6p+2tWtVsjVmjPrnLTTUdnGkwwl2d0zt2WefZcaMGXz44YfUqlWLzZs3s2rVqjS3gxePoNM533RwZ1ud2MTDQ/2XC86xmJ8zrW+TFtNeU4sXO+4iaEuXqkQ3IECtZeKsvL3VTtdubvDDD46ziOLRo9CtGzqDgYtNm2J09kUHk6tdG/bsgV69VJI8caI6ls6sYYuJjYUZM9Q/azNnqmt37QrHjqnVtW21bcUjOGVyA/Dqq69y9uxZ4uPj2bNnDy1atLB3SM7L2VYpdtZuKXCexfwSEh78kXTW5KZLF/WH9vhxx9ynR9PUInigunPy5rVvPDnVpIlqwQHVsnDhgn3juXJFrWVz9y7Gxo3Z++ab9l192Br8/VX3z2+/qe7jY8fUFhnPPGP5RSzj4tTijWXLwrBhcOOG2kg1LEztnu5gf49d7CctssWZVinWNOftloIHi/k5enKze7f6Dy0wUP0Bc0Z+ftC5s7r/ww/2jSUtGzeq/7y9vVVy4wrGjIH69VWXRb9+9lvcLyZGJbfnzkG5ciT99htGZ5p8kFVPPaVaqQYMUK3x//uf+r194YWcJ/Znz8Lo0Wryyeuvq8+JEiXUQPIDBxyiCyotktwI50pubt5Uq4oClCpl11CyxVn2mDJ1SbVo4dz/7fbtq25/+kmtputIJk9WtwMGqJWVXYFeDz/+CHnywPr1YI+ZagkJ8PTTanftwEBYtQocfP0diwgIgHnzVMLx+OPq/b5ggeqqatQIpk1T+4E9qovWaFSD8GfMUJt3li6tWhhv3lRJzVdfqXIGDnSYGZRpcdLRa8KiTGNunKFbytRqU7Sow/TtZompW+rsWbh7Vw18dUTOPt7GpH17lThcu6aaz+28Vo/ZgQMPNshMtgaXS6hQAb75Bp5/HiZMgAYN4IknbHPtpCR13dWr1USJP/5QY0OcYOVdi6leXSV027erMTFLlqglHXbuhBEjVMJXpw6EhKiuLDc33OLiqL13L+7TpqkBwQ/PeGvTRrXaPPGEY+y/lQmS3Ajnarlx5vE2oPYdCwlRa/UcPKhmOTiaxETYulXdd/bkRq9Xuz3PnAnff+84yU3yDTKd9b2ckeeeU7N5vvxSJRs7d1p/OQFNU2N9fv1V/dyXLVPjgHKrxo3V1+XLauD6b7+p3+ubN+GhpVTcgRLJD+TJo57bpYvq8nKCVb4fJsmNcK7kxpnH25jUqOHYyc2+fRAdrXYntvAeNnbRt69KbpYvV/+R5s9v33jOnYNfflH3R42ybyzWNH262p19+3Y1LX/7dtVSYA2apqYlz5unWsMWLVKtdkL9fX/tNfUVH6/+7hw8qP7eX70KQJK7O//euEGF9u3xqFJF/Y1y4C6nzJDkRjjXVHBnnQaeXM2asHKl4w4qNnVJNW/uNE3QGapdG6pWhSNHVBO9hZeDz7LPPlPdJ23bmletdkmeniqhbNJETXfv1EkNovb1tex1kpLU2jXffqu+nztXjbkRqXl5qQHf9eunOGw0GDixahXlO3Z0+qTGxIlHCgqLMbXcXL9uv9kNmeXs3VLg+IOKXWW8jYlO92Bg8cKF9o3l5k314Quu3WpjUqiQGlsUFKRmhnXs+GBCgCXExqp1Xr79VrXYLFjg3OsFCYuR5EaoPzxubmqU/LVr9o4mY67QLZU8uXG0ZDIpCf7+W913leQGoE8f9R7fskWtBWIvX32lpinXqqVabnKDcuVUS6W/v3pvtW2rkrycunRJzeb73//UApm//KKmnwuBJDcCVNeDqS/ckbumEhPVUuPg3N1S5curpvnYWPMO5w7j4EE1i8vPT30Au4pixR7M2Jkzxz4xxMbCrFnq/qhRzrelRU7Ur6+mhgcEqD3L6tXLWbdseLgqY/duVWZ4uHPuyyWsRpIboTjDdPDz51XLgpfXg640Z+Tm9iBx2LvXrqGkYuqSatbMefc5So9p77kFC1SiYWtz5qhVXUuVyp0fxHXrqpabMmXUUgiNGql9tbKy/tCNG/Dqq2qjxsuXoUoVlSy1amWtqIWTkuRGKM4wYyr5YGJnXlgO1B96UOMQHImrjbdJrl07lVjcuaO6MmwpNhY++UTdf+cd10scM6tKFbW4XocOajn/kSPVgO+ff844ybl0SS0IWK6c2hEb1OyfiAi1HYAQD8mlv2EiFWdLbpydaZaMI7XcGI2webO674rJjbs7DBqk9j/6+usHg4xtYe5c1SpaogT072+76zqigAC1yNx336md0A8fVmsRDRmikp7atdU4wIQENYFg82a1Zo5pfFrNmmrG2WOP2fd1CIcmyY1QnKFbyhUGE5uYWm727VNJhSO0RB0+DLduqQ0cTfG5mhdfhLFj1Zore/faZip2XNyDDTLfeUdNkc7tdDr1s+jaVQ2ynjVLzdZctEh9paVZM9Va06OHayxRIKxKkhuhOEPLjStMAzepWFEtDx8drfZpqVjR3hE96JJq0sRl1rpIJThY7Zi8aJEa75HeB6klzZunulVCQtRGhuKBgAB4/321MeP27bB2rdrF/c4dlcAUK6a2b2jd2jVabIXNSHIjFGdIblypW8rDQw0q3r5djbtxpOTGFbukkhs5UiU1v/4KkyZByZLWu1ZMjLoGqFYbLy/rXcuZeXioRSMdccVu4ZQcoC1cOARTciPdUrZj6hJxhEHFmvZgvI2rzzwxrTGTlKTGbljTjBmq1aZkSVlcTggbkuRGKMm3YNA0+8aSlqioBwt/uULLDTwY1+IIg4qPHVNjHnx8Ui3N7pJGjlS3c+eqcUbWcP36gxlSH38srTZC2JAkN0IxtdzExalF3ByNabxNwYJqpVNXkDy5MRrtG4upS6px49wx4DU0VM26iYlRm2paw4QJaquBOnWgZ0/rXEMIkSZJboTi7f1gt2RHHHfjSuNtTCpXVv/NR0U9eH32klvG25jodGogK6jdq69ft2z5//zzYD2WKVMcYzacELmI/MaJBxx5ULErzZQy0esf7DNlz3E3mqZ2a4bck9wAdO+uWs+io1W3kaVoGgwerBal69RJzfQRQtiUJDfigWLF1O3Fi/aNIy2uNpjYxBEGFR8/Dlevqlakhg3tF4et6XQPkpqvvrJc69lPP6lk0dsbPv/cMmUKIbJEkhvxgDMkN67ULQVq8z9Qy8jbi6lLqmFD9YGcm4SGQps2ajXcIUNyPpj+6lV46y11/4MPXO/9KoSTkORGPFC0qLp1xOTGFbulQG0eCCq5ycoGgpaU28bbJKfTwZdfqkHUq1fDkiXZL0vT1HTv69ehenW1tYAQwi4kuREPOGrLjdHouslN5cpq9tf9+3DkiO2vr2kPkhtXX98mPRUrwrvvqvtvvAHXrmWvnC+/VHsmeXmpRQJzw6wzIRyUJDfiAVNyc+mSfeN42OXLEB+vlmMPCbF3NJbl5qaWlwfcdu2y/fWPH1fJrKfng1ak3Gj0aLVj9ZUr8PzzWZ+av3nzg+6oyZOhWjXLxyiEyDRJbsQDjtpyYxpvU6KEWqbd1fyXVOh27rT9tdeuVbfNmkGePLa/vqPw8lLbMfj4QFgYvP125p97+DA89RQYDGrfqtdft16cQohMkeRGPGBKbi5fVkvTOwpX7ZIysWdys26dum3TxvbXdjRVq6oVi0FtqjlhwqMHGO/fr6Z637ypVnb+7js1jkcIYVeS3IgHChVS3SRJSdkfd2ANrjpTyuS/6de6f/9FHx1tu+smJcH69ep+27a2u64j69NHdSuBmu304otpr9htNKpEpkkTNYC4dm1YsyZ3t34J4UAkuREPeHg82GPKkbqmXHWNG5OCBaFcOQDynzhhu+vu2aM+uPPle7AVhFD7Ts2apRL9BQugUiUYN06tXbN9O3z9tUpIX3wRYmOhfXvVAhYQYOfAhRAmktyIlBxx3I2rd0uBuWsq4N9/bXdNU5dU69ZqsLZ44PXXITwcypdXg4zHj4fHHlMtNYMHw+7dkDcvTJoEK1dCgQL2jlgIkYxTJTdnz55lwIABlC5dGh8fH8qWLcvYsWNJSEiwd2iuwxFnTLl6yw2Yk5sCtkxuTIOJZbxN2lq3hkOH4McfoXNn1boWEgItWqiuq5Mn1SwrSQyFcDhONfXkn3/+wWg08s0331CuXDkOHz7MoEGDuH//PlOnTrV3eK7B0Rbyi419kGi56pgbSNlyk5Sk9p2ypthY2LpV3ZfxNunz8lLjcPr0sXckQogscKrkpkOHDnTo0MH8fZkyZfj333+ZPXu2JDeW4mjdUufOqVs/PwgMtG8s1lSzJpqfH/p79zAcPGhe+8Zqtm5VawcVLw4VKlj3WkIIYWNOldyk5e7duwQ8YiBffHw88fHx5u+joqIAMBgMGAwGi8ViKsuSZdqarnBhPADjhQskWfh1ZKd+dMeP4wFopUuTaK/tCWzErVEj3MPD0TZuxFC7tnWv9ddfuAPG1q1JcpJ6dYXfL2uRusmY1E/GnKl+MhujUyc3p06d4vPPP2fatGkZnjdp0iTGjx+f6nhYWBh5rDB1Mzw83OJl2krQxYs0AaL//ZcNq1ZZ5RpZqZ/SK1dSA7ji48MuK8XjKMoHB1MFuLFsGREVK1r1Wq2WLCEfsC8wkAtOVq/O/PtlbVI3GZP6yZgz1E9MTEymztNpWk63wc25cePGpZl8JBcREUE90w7KwKVLl2jZsiUtW7Zk3rx5GT43rZabkJAQbty4gb+/f86CT8ZgMBAeHk5oaCh6a4+ZsJZjx9DXrImWPz+JFl7rJjv14zZyJO4zZ5I0dChG0/ojLippyxa8W7dGCwwk8eJFNRXZGs6fR1+2LJqbm7qOk3T3ucTvl5VI3WRM6idjzlQ/UVFRFCxYkLt372b4+e0QLTdDhgyhZ8+eGZ5TqlQp8/1Lly7x2GOP0bhxY+bMmfPI8r28vPDy8kp1XK/XW+UHaa1ybaJkSQB0d+6gNxissihZlurnvzE37uXK4e6sdZpZDRuS6OWFx82b6E+csN7+RP/9d6Zr1Ai9aV0jJ+LUv19WJnWTMamfjDlD/WQ2PodIbgoWLEjBggUzde7Fixd57LHHqFu3Lt999x1u1vrvNrfy91frd9y/rwYVly9v33hcfXXi5PR6blWqRKEDB9RO3dZKblauVLedOlmnfCGEsDOnygwuXbpEq1atCAkJYerUqVy/fp0rV65w5coVe4fmOnQ6x5kxpWm5Y42bZG5WqaLubNxonQvExT1YvE+SGyGEi3KIlpvMCgsL4+TJk5w8eZLixYuneMwBhg65jmLF4Phx+yc3169DdLRKuJJ1S7qy6zVrUvnnn1UCkpRk+QXiNm6EmBg1BbxGDcuWLYQQDsKpWm769++PpmlpfgkLcpRVik+dUrfFioG3t31jsZE75cuj5c8Pt29DRITlL2DqkurYUXavFkK4LKdKboSNOMoqxaYuqbJl7RuHDWnu7mitW6tv1qyxcOGajLcRQuQKktyI1BxlzI2p5SYXJTcAxvbt1Z2//rJswfv2qU1IfXxkPykhhEuT5Eak5ijJTS4bTGyihYaqO7t2wa1blit4yRJ126mTmhEnhBAuSpIbkZqjJDe5tOWG4sWhalUwGs1r0uSYpsH//qfuP/20ZcoUQggHJcmNSM00E+3SJTVjx15yacsNAKYNYv/4wzLlHTwIJ0+qgdkdO1qmTCGEcFCS3IjUihRRU5ATE8FeawjFxj6YrZXbWm4AundXtytWqLVpcsrUJdWhg9phXQghXJgkNyI1d/cHXVORkfaJwdRqky8fPGLXd5fUsKH6Gdy7l/OuKaMRfvpJ3e/RI+exCSGEg5PkRqStRAl1e/68fa6fvEsqN67H4ub2oPXG1OqSXZs3q1lSfn7QtWuOQxNCCEcnyY1Imym5sVfLTW4dTJycaeDv779Dsl3ts+y779Rtz55W2QhVCCEcjSQ3Im0hIerW3t1SuXEwsUnTpmr809272V/z5t69By0/L7xgudiEEMKBSXIj0mbvbilpuVFdUz17qvvz52evjMWL1V5SlSpBo0aWi00IIRyYJDcibdIt5RgGDVK3f/4Jly9n7bmaBjNnqvsDBuTOsUtCiFxJkhuRNnt2SxmNagAs5O5uKYDKlVX3VFLSg7EzmRUeDocPg68vDBxonfiEEMIBSXIj0mZqublxQ3Vr2NLFi5CQAB4eD5Ks3Ozll9XtF19kbc2bqVPV7YABkD+/xcMSQghHJcmNSFv+/Oo/foALF2x7bdNg4pIlVYKT2z37rEryLl+GBQsy95xNm1TLjYcHvPmmVcMTQghHI8mNSJtOZ7+uKRlvk5KnJ4wYoe5/+umjW280Dd5+W90fNAhKl7ZufEII4WAkuRHps9egYlPLjSQ3DwwcqKaFnz0LU6ZkfO7ChbBzp1rT5oMPbBKeEEI4EkluRPrsNR3c1HKT2wcTJ5cnD0ybpu5//DGcOJH2eRcuPOiG+uADCA62TXxCCOFAJLkR6ZNuKcfSsye0aaO6pbp3h6iolI9HR0O3bup4o0YPurKEECKXkeRGpM/e3VLScpOSTqe6nAoXhkOH4LHH4J9/1GPHjqnvd++GwED44Qe1AaoQQuRCMhVFpM8e3VJ37sDNm+q+JDepFSsGq1dDu3awd69aBycoCK5fV48HBsKqVVCunH3jFEIIO5KWG5G+5N1Smmaba5rGkhQponaxFqnVrq1aaLp0Ua0516+r2yefhIgIaNDA3hEKIYRdScuNSF/x4uo2Nla1phQsaP1rHj+ubsuXt/61nFnJkmq38OvX1SDiEiVUq40QQghJbkQGvL3V+I6rV+HcOdskN6aWmwoVrH8tVxAUpL6EEEKYSbeUyJhpATjTXk/WZmq5keRGCCFENklyIzJmr+RGuqWEEEJkkyQ3ImO2TG40TbqlhBBC5JgkNyJjtkxurl1TC9DpdLKAnxBCiGyT5EZkzLTWjGlhPWsydUmVLAleXta/nhBCCJckyY3ImKnl5uxZMBqtey3pkhJCCGEBTpvcxMfHU6tWLXQ6Hfv377d3OK4rJEQt45+QAJcvW/daMphYCCGEBThtcjNq1CiKFi1q7zBcn4fHg5WKrT3uRlpuhBBCWIBTJjerV68mLCyMqVOn2juU3ME07sbayY2scSOEEMICnG6F4qtXrzJo0CCWL19Onjx57B1O7mCLGVNGI5w8qe5Lt5QQQogccKrkRtM0+vfvzyuvvEK9evU4e/Zspp4XHx9PfHy8+fuoqCgADAYDBoPBYvGZyrJkmY7ArUQJ3AHjyZMk5eC1ZVg/kZHo4+LQ9HoSixYFF6vDzHDV94+lSP2kT+omY1I/GXOm+slsjA6R3IwbN47x48dneE5ERATbtm0jKiqKd955J0vlT5o0Kc3yw8LCrNL6Ex4ebvEy7anYnTvUA27t3cvWVatyXF5a9RN04ABNgOhChVgfFpbjazgzV3v/WJrUT/qkbjIm9ZMxZ6ifmJiYTJ2n0zRNs3Isj3Tjxg1u3LiR4TmlSpWiZ8+erFixAp1OZz6elJSEu7s7ffr0YeHChWk+N62Wm5CQEG7cuIG/v79lXgQqowwPDyc0NBS9Xm+xcu1Nt2MHHi1aoIWEkHjqVLbLyah+3L78EvdhwzB26ULSkiU5Ddkpuer7x1KkftIndZMxqZ+MOVP9REVFUbBgQe7evZvh57dDtNwULFiQgpnYcXrWrFl89NFH5u8vXbpE+/btWbx4MQ0bNkz3eV5eXnilsSicXq+3yg/SWuXazX8DfHUXLqBPSlK7hedAmvXz778AuFWtipsr1V02uNz7x8KkftIndZMxqZ+MOUP9ZDY+h0huMqtEiRIpvvf19QWgbNmyFC9e3B4h5Q6FCoG/v9oa4fRpqFLF8tc4dkzdWqNsIYQQuYpTTgUXNqbTPZiebZqubWlHj6rbypWtU74QQohcw6labh5WqlQpHGDIUO5Qvjzs3m2d5ObGDbh+Xd2vVMny5QshhMhVpOVGZI6p5ca0irAlmbqkSpaEvHktX74QQohcRZIbkTnW7JYyJTfSJSWEEMICJLkRmWPN5MY03kYGEwshhLAASW5E5pi2RLhyRc2asiRpuRFCCGFBktyIzMmXT00JB8uPu5GWGyGEEBYkyY3IPGsMKo6KggsX1H1puRFCCGEBktyIzLPGuJvDh9Vt0aJQoIDlyhVCCJFrSXIjMs8ayc2BA+q2Zk3LlSmEECJXk+RGZJ4pufnnH8uVefCguq1Rw3JlCiGEyNUkuRGZZxoTc+wYGI2WKVNaboQQQliYJDci88qVA09PiImBc+dyXp7R+KDlRpIbIYQQFiLJjcg8D48Hez+ZBgLnxJkzcP8+eHk96PISQgghckiSG5E11aqp2yNHcl6WqUuqalWVOAkhhBAWIMmNyJqqVdWtJZIbGUwshBDCCiS5EVljSm4s0S0lg4mFEEJYgSQ3ImtM3VL//ANJSTkry5TcSMuNEEIIC5LkRmRN6dKQJw/ExcHJk9kv58YNNaAYoHZty8QmhBBCIMmNyCo3twctLfv2Zb+c3bvVbfnysu2CEEIIi5LkRmRdnTrqdu/e7JcREaFu69fPeTxCCCFEMpLciKyzZHLToEHO4xFCCCGSkeRGZF3y5EbTsv58TZOWGyGEEFYjyY3IuqpV1TYMt29nbxuGixfhyhVwd4datSwenhBCiNxNkhuRdZ6eUL26ur9nT5afrtuxQ92pXl3NvBJCCCEsSJIbkT2mrilT91IW6LZsUXeaN7dgQEIIIYQiyY3IniZN1O3WrVl+qpspuWnRwoIBCSGEEIokNyJ7mjZVt7t2qQX9MskjOhoOHVLfSMuNEEIIK5DkRmRPuXJQqBAkJGRp3E3gP/+g0zSoUAEKF7ZigEIIIXIrSW5E9uh00KyZum/qZsqEQNNu4tJqI4QQwkokuRHZl43kppBpy4bHHrNCQEIIIYQkNyInTK0vmzeDwfDo8y9eJN/Zs2g6HbRvb93YhBBC5FqS3Ijsq1MHgoIgKipTrTe6v/4CQGvQAAoWtHZ0QgghcimnTG5WrlxJw4YN8fHxoWDBgjz11FP2Dil3cnODxx9X91etevTpa9YAoHXoYM2ohBBC5HJOl9z89ttvPP/887zwwgscOHCArVu30rt3b3uHlXt16qRuV67M+LzYWHRr1wKS3AghhLAuD3sHkBWJiYm8+eabTJkyhQEDBpiPV6xY0Y5R5XLt2qk9oo4dg1OnoGzZtM9buRJddDQxQUHoa9e2bYxCCCFyFadKbvbu3cvFixdxc3Ojdu3aXLlyhVq1ajF16lSqVq2a7vPi4+OJj483fx8VFQWAwWDAkJmBsJlkKsuSZTq8vHlxb9UKt3XrSPrhB4zvvZfmae4//ogbcLF5c4olJWVuAHIukyvfP1kg9ZM+qZuMSf1kzJnqJ7Mx6jRN06wci8X88ssv9OrVixIlSjB9+nRKlSrFtGnTCAsL4/jx4wQEBKT5vHHjxjF+/PhUxxctWkQe2bgxx4pv2EDdmTOJDg5m3ezZag2cZLxv3SJ00CDckpJYP2MG90qVsk+gQgghnFpMTAy9e/fm7t27+Pv7p3ueQyQ36SUfyUVERHD8+HH69OnDN998w0svvQSoVpnixYvz0Ucf8fLLL6f53LRabkJCQrhx40aGlZNVBoOB8PBwQkND0ev1FivX4d2/j0dICLroaBJXrEB7aJq327hxuH/8MUlNmvDnqFG5r34yKde+fzJJ6id9UjcZk/rJmDPVT1RUFAULFnxkcuMQ3VJDhgyhZ8+eGZ5TqlQp7t27B0CVKlXMx728vChTpgyRkZHpPtfLywsvL69Ux/V6vVV+kNYq12Hlzw8vvQTTp+MxebIaZGxqvbl5E778EgBtyBAgF9ZPFkn9ZEzqJ31SNxmT+smYM9RPZuNziOSmYMGCFMzEuid169bFy8uLf//9l2b/rY5rMBg4e/YsJUuWtHaYIiPDhsEXX8Dff8Mvv0CvXur46NFw9y7UqoX21FPw33RwIYQQwlocIrnJLH9/f1555RXGjh1LSEgIJUuWZMqUKQD06NHDztHlcsWLw/vvwwcfwMsvg7+/2lBz3jzVivPZZ2pdHCGEEMLKnCq5AZgyZQoeHh48//zzxMbG0rBhQ9avX0+BAgXsHZp4+23YsEF9PfHEg+Pjx0OrVjJDSgghhE043b/Ser2eqVOncvXqVaKioggPD89wGriwIU9P+PNPeOUVCAiAUqVg/nzVoiOEEELYiNO13AgHlycPzJ6tvoQQQgg7cLqWGyGEEEKIjEhyI4QQQgiXIsmNEEIIIVyKJDdCCCGEcCmS3AghhBDCpUhyI4QQQgiXIsmNEEIIIVyKJDdCCCGEcCmS3AghhBDCpUhyI4QQQgiXIsmNEEIIIVyKJDdCCCGEcCmS3AghhBDCpUhyI4QQQgiX4mHvAOxB0zQAoqKiLFquwWAgJiaGqKgo9Hq9Rct2BVI/GZP6yZjUT/qkbjIm9ZMxZ6of0+e26XM8Pbkyubl37x4AISEhdo5ECCGEEFl179498uXLl+7jOu1R6Y8LMhqNXLp0CT8/P3Q6ncXKjYqKIiQkhPPnz+Pv72+xcl2F1E/GpH4yJvWTPqmbjEn9ZMyZ6kfTNO7du0fRokVxc0t/ZE2ubLlxc3OjePHiVivf39/f4d8g9iT1kzGpn4xJ/aRP6iZjUj8Zc5b6yajFxkQGFAshhBDCpUhyI4QQQgiXIsmNBXl5eTF27Fi8vLzsHYpDkvrJmNRPxqR+0id1kzGpn4y5Yv3kygHFQgghhHBd0nIjhBBCCJciyY0QQgghXIokN0IIIYRwKZLcCCGEEMKlSHJjQV999RWlS5fG29ubunXr8vfff9s7JJsbN24cOp0uxVdwcLD5cU3TGDduHEWLFsXHx4dWrVpx5MgRO0ZsXZs3b6Zz584ULVoUnU7H8uXLUzyemfqIj4/n9ddfp2DBguTNm5cuXbpw4cIFG74K63lU/fTv3z/V+6lRo0YpznHV+pk0aRL169fHz8+PQoUK0bVrV/79998U5+Tm909m6ic3v39mz55NjRo1zAvzNW7cmNWrV5sfd/X3jiQ3FrJ48WKGDh3Ke++9x759+2jevDmPP/44kZGR9g7N5qpWrcrly5fNX4cOHTI/NnnyZKZPn84XX3xBREQEwcHBhIaGmvf7cjX379+nZs2afPHFF2k+npn6GDp0KMuWLeOXX35hy5YtREdH88QTT5CUlGSrl2E1j6ofgA4dOqR4P61atSrF465aP5s2beK1115jx44dhIeHk5iYSLt27bh//775nNz8/slM/UDuff8UL16cTz75hN27d7N7925at27Nk08+aU5gXP69owmLaNCggfbKK6+kOFapUiVt9OjRdorIPsaOHavVrFkzzceMRqMWHBysffLJJ+ZjcXFxWr58+bSvv/7aRhHaD6AtW7bM/H1m6uPOnTuaXq/XfvnlF/M5Fy9e1Nzc3LQ1a9bYLHZbeLh+NE3T+vXrpz355JPpPic31c+1a9c0QNu0aZOmafL+edjD9aNp8v55WIECBbR58+bliveOtNxYQEJCAnv27KFdu3Ypjrdr145t27bZKSr7OXHiBP9v715Dmvz7MIBfy2cbojJc2pxaZkaRaFZKMpEUo0TwTUJYUKxCQUFhpm86UFCBERT5IoIiRKEwKJNCwgoPJXaQVFzaC0HNoA3RDoqW2vb9v4hnPEv9J0/q6r6vDwjzPu13X3yhi3WvwsPDER0djX379qG/vx8AMDAwAKfT6ZWTXq9HWlqaKnNaSB6vX7/GzMyM1zHh4eGIi4tTTWbNzc1YtWoVNmzYgPz8fAwPD3v2qSmfL1++AACMRiMAzs/Pfs7nvzg/gMvlQk1NDSYmJmCxWFQxOyw3i2BkZAQulwsmk8lru8lkgtPp9NGqfCM5ORnV1dVoaGjA9evX4XQ6kZKSgtHRUU8WzOmHheThdDqh0+kQHBw87zFKlpWVhZs3b6KxsREXL15Ee3s7MjIyMDU1BUA9+YgIjh49itTUVMTFxQHg/PyvufIBOD92ux2BgYHQ6/UoKCjAvXv3EBsbq4rZUeX/Cr5UNBqN1+8iMmub0mVlZXlex8fHw2KxICYmBlVVVZ4H+ZiTt/8nD7Vklpub63kdFxeHpKQkREVFob6+Hjk5OfOep7R8ioqK0N3djdbW1ln7OD/z56P2+dm4cSO6urrw+fNn3L17F1arFS0tLZ79Sp4dfnKzCEJCQuDn5zerzQ4PD89qxmoTEBCA+Ph49PX1eb41xZx+WEgeYWFhmJ6exqdPn+Y9Rk3MZjOioqLQ19cHQB35FBcX4/79+2hqakJkZKRnO+fnh/nymYva5ken02H9+vVISkpCeXk5EhISUFFRoYrZYblZBDqdDomJiXj8+LHX9sePHyMlJcVHq/ozTE1N4e3btzCbzYiOjkZYWJhXTtPT02hpaVFlTgvJIzExEVqt1usYh8OBN2/eqDKz0dFRvH//HmazGYCy8xERFBUVoba2Fo2NjYiOjvbar/b5+VU+c1HT/MxFRDA1NaWO2fHBQ8yKVFNTI1qtVm7cuCG9vb1is9kkICBABgcHfb20ZVVaWirNzc3S398vL168kOzsbAkKCvLkcP78eTEYDFJbWyt2u132798vZrNZxsbGfLzypTE+Pi6dnZ3S2dkpAOTSpUvS2dkp7969E5GF5VFQUCCRkZHy5MkT6ejokIyMDElISJDv37/76rYWzb/lMz4+LqWlpdLW1iYDAwPS1NQkFotFIiIiVJFPYWGhGAwGaW5uFofD4fmZnJz0HKPm+flVPmqfn2PHjsnTp09lYGBAuru75fjx47JixQp59OiRiCh/dlhuFtGVK1ckKipKdDqdbNu2zesriWqRm5srZrNZtFqthIeHS05OjvT09Hj2u91uOX36tISFhYler5cdO3aI3W734YqXVlNTkwCY9WO1WkVkYXl8/fpVioqKxGg0ir+/v2RnZ8vQ0JAP7mbx/Vs+k5OTsnv3bgkNDRWtVitr1qwRq9U6696Vms9cuQCQyspKzzFqnp9f5aP2+Tly5Ijnz6PQ0FDZuXOnp9iIKH92NCIiy/c5EREREdHS4jM3REREpCgsN0RERKQoLDdERESkKCw3REREpCgsN0RERKQoLDdERESkKCw3REREpCgsN0RERKQoLDdE9EdKT0+HzWbz9TKI6C/Ef6GYiHwuPT0dW7ZsweXLlz3bPn78CK1Wi6CgoGVfj81mw+DgIOrq6pb9vYno9/GTGyL6IxmNRp8UGwBob2/H9u3bffLeRPT7WG6IyKcOHTqElpYWVFRUQKPRQKPRYHBwcNZfS6Wnp6O4uBg2mw3BwcEwmUy4du0aJiYmcPjwYQQFBSEmJgYPHz70nCMiuHDhAtatWwd/f38kJCTgzp07865lZmYGOp0ObW1tOHHiBDQaDZKTk5fy9oloCbDcEJFPVVRUwGKxID8/Hw6HAw6HA6tXr57z2KqqKoSEhODVq1coLi5GYWEh9u7di5SUFHR0dCAzMxMHDx7E5OQkAODkyZOorKzE1atX0dPTg5KSEhw4cAAtLS1zXt/Pzw+tra0AgK6uLjgcDjQ0NCzNjRPRkuEzN0Tkc3M9c/PztvT0dLhcLjx79gwA4HK5YDAYkJOTg+rqagCA0+mE2WzG8+fPER8fj5CQEDQ2NsJisXium5eXh8nJSdy6dWvOtdTV1SEvLw8jIyNLc7NEtOT+4+sFEBEt1ObNmz2v/fz8sHLlSsTHx3u2mUwmAMDw8DB6e3vx7ds37Nq1y+sa09PT2Lp167zv0dnZiYSEhEVeOREtJ5YbIvpraLVar981Go3XNo1GAwBwu91wu90AgPr6ekRERHidp9fr532Prq4ulhuivxzLDRH5nE6ng8vlWtRrxsbGQq/XY2hoCGlpaQs+z263Y8+ePYu6FiJaXiw3RORza9euxcuXLzE4OIjAwEAYjcbfvmZQUBDKyspQUlICt9uN1NRUjI2Noa2tDYGBgbBarXOe53a70d3djQ8fPiAgIAAGg+G310JEy4vfliIinysrK4Ofnx9iY2MRGhqKoaGhRbnu2bNncerUKZSXl2PTpk3IzMzEgwcPEB0dPe85586dw+3btxEREYEzZ84syjqIaHnx21JERESkKPzkhoiIiBSF5YaIiIgUheWGiIiIFIXlhoiIiBSF5YaIiIgUheWGiIiIFIXlhoiIiBSF5YaIiIgUheWGiIiIFIXlhoiIiBSF5YaIiIgUheWGiIiIFOUfek9T6ROe7oQAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = range(0, 20π*5, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [0,1]:\n", + "plot(t, [(exp(B*t)*[0,1])[1] for t in t], \"r-\")\n", + "plot(t, 10*exp.(-0.01 * t), \"k--\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "title(\"motion of a mass on a spring + drag\")\n", + "legend([\"solution \\$x(t)\\$\", \"exponential decay \\$e^{-\\\\alpha t}\\$\"])\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key points:\n", + "\n", + "* For complex λ, **Re(λ) is an exponential growth rate (> 0) or decay rate (< 0)**.\n", + "\n", + "* **Im(λ) is an angular frequency**\n", + "\n", + "* If **all λ have Re(λ) < 0**, the solution decays to zero.\n", + "\n", + "* If **any λ have Re(λ) > 0**, the solution blows up (for most initial conditions).\n", + "\n", + "* A **λ = 0 solution corresponds to a *steady state***. If only the real part is zero, it is a solution that oscillates forever without growing or decaying." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overdamping:\n", + "\n", + "From the formula above for the eigenvalues of the damped-spring system:\n", + "\n", + "$$\n", + "-\\frac{\\beta}{2} \\pm i \\sqrt{\\underbrace{k/m}_{0.01} - \\left(\\frac{\\beta}{2}\\right)^2}\n", + "$$\n", + "\n", + "you might notice something: if $\\beta$ gets large enough, then the eigenvalues become *purely real* and negative. In particular, if $(\\beta/2)^2 > 0.01$, or equivalently if $\\beta > 0.2$, then the eigenvalues are\n", + "\n", + "$$\n", + "-\\frac{\\beta}{2} \\pm \\sqrt{\\left(\\frac{\\beta}{2}\\right)^2 - \\underbrace{k/m}_{0.01}}\n", + "$$\n", + "\n", + "which are real and negative. The solutions don't oscillate at all, they just decay! This is called **overdamping**. Let's check this for $\\beta = 0.3$:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -0.2618033988749895\n", + " -0.0381966011250105" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals([ 0 1 \n", + " -0.01 -0.3 ])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, two negative eigenvalues, as predicted. It is interesting to plot the solutions for different values of $d$ to compare them:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHGCAYAAACIDqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADSX0lEQVR4nOzdd3hUVd7A8e+dlmTSeycJNYQQQpemKII0RSyoqIAKK0Us6Lsui6sIiKuuFRcUC3ZxVYKAgISO0iEJEDoEkkB679Pu+8ckAyGFJCSZJJzP88yTzJlzzz1zZzLzy6mSLMsygiAIgiAIbYTC2hUQBEEQBEFoTCK4EQRBEAShTRHBjSAIgiAIbYoIbgRBEARBaFNEcCMIgiAIQpsightBEARBENoUEdwIgiAIgtCmiOBGEARBEIQ2RQQ3giAIgiC0KSK4EQSh0c2fPx9Jkqx2/iVLltCxY0c0Gg2SJJGbm9vsdajuGgQHBzNlypRKaTExMdx22204OzsjSRIffPABAFu2bKFPnz7Y29sjSRKrV69unoo3wOLFi2+4fhcuXECSJL766qtGqZNwc1NZuwKCILQ9U6dOZeTIkVY5d2xsLM8++yxTp05l8uTJqFQqHB0drVKXa0VFReHk5FQp7cknn6SoqIiVK1fi6upKcHAwsiwzYcIEOnfuzJo1a7C3t6dLly5WqvX1LV68mAceeIB7773X2lURBEAEN4IgNKLi4mK0Wi0BAQEEBARYpQ7x8fEATJs2jX79+jVKmRXP60b17NmzStqxY8eYNm0ao0aNsqRdunSJ7Oxsxo8fz7Bhw274vAB6vR5JklCpWvfHfmO9FkLbJrqlBKuraL4/cuQIDz74IM7Ozri5uTFnzhwMBgOnTp1i5MiRODo6EhwczNtvv13p+NLSUl588UUiIyMtxw4YMIDffvutyrl+/vln+vfvj7OzM1qtlvbt2/Pkk09aHjeZTCxatIguXbpgZ2eHi4sLERERfPjhh9d9HomJiTz22GN4eXlhY2ND165deffddzGZTJY8FU3v//nPf3jvvfcICQnBwcGBAQMGsHfv3uueIyMjg5kzZxIWFoaDgwNeXl7ccccd7Nq167rHAmzdupWhQ4fi7u6OnZ0d7dq14/7776e4uLhS/d5++23eeOMN2rVrh62tLX369GHLli2Vyqp43Q4fPswDDzyAq6srHTp0qPTY1YKDgxk7diwbN26kV69e2NnZERoaypdfflmlnn/++ScDBgzA1tYWf39//vWvf/H5558jSRIXLlyo8fkNHTqUxx57DID+/fsjSVKlbqAvv/ySHj16YGtri5ubG+PHj+fEiROVypgyZQoODg4cPXqUESNG4OjoeN0A4/fffycyMhIbGxtCQkL4z3/+U22+q7ulvvrqKyRJwmAwsGzZMiRJQpIk5s+fbwkMX375ZSRJIjg42FLGmTNnmDhxYqX32X//+99K59m+fTuSJPHtt9/y4osv4u/vj42NDWfPngVg8+bNDBs2DCcnJ7RaLYMGDarx9Y2Pj+eRRx7B2dkZb29vnnzySfLy8iz5JEmiqKiIr7/+2vIchg4dWuv1unz5MhMmTMDR0RFnZ2ceeughUlNTq+Sr7bWIjo5m3LhxBAQEYGtrS8eOHXn66afJzMysUs5vv/1GREQENjY2tG/fng8//LDa9+j1Ph+EVkQWBCt77bXXZEDu0qWLvHDhQjk6Olr++9//LgPyM888I4eGhsofffSRHB0dLT/xxBMyIP/666+W43Nzc+UpU6bI3377rbx161Z548aN8ksvvSQrFAr566+/tuTbvXu3LEmS/PDDD8vr16+Xt27dKq9YsUJ+/PHHLXnefPNNWalUyq+99pq8ZcsWeePGjfIHH3wgz58/v9bnkJ6eLvv7+8uenp7yJ598Im/cuFF+5plnZECeMWOGJV9CQoIMyMHBwfLIkSPl1atXy6tXr5a7d+8uu7q6yrm5ubWe5+TJk/KMGTPklStXytu3b5fXrVsnP/XUU7JCoZC3bdtW67EJCQmyra2tPHz4cHn16tXy9u3b5e+//15+/PHH5ZycnEr1CwwMlAcPHiz/+uuv8s8//yz37dtXVqvV8u7du6u8bkFBQfLLL78sR0dHy6tXr6702NWCgoLkgIAAOSwsTP7mm2/kP/74Q37wwQdlQN6xY4clX1xcnGxraytHRETIK1eulNesWSOPHj1aDg4OlgE5ISGhxucYHx8vv/LKKzIgr1ixQt6zZ4989uxZWZZlefHixTIgP/LII/Lvv/8uf/PNN3L79u1lZ2dn+fTp05YyJk+eLKvVajk4OFh+88035S1btsh//PFHjefcvHmzrFQq5cGDB8urVq2yXK927dpVew0mT54sy7L5PbNnzx4ZkB944AF5z5498p49e+SkpCR51apVMiDPnj1b3rNnj3z48GHL83N2dpa7d+8uf/PNN/KmTZvkF198UVYoFJXeo9u2bZMB2d/fX37ggQfkNWvWyOvWrZOzsrLkb7/9VpYkSb733nvlVatWyWvXrpXHjh0rK5VKefPmzVVe3y5dusivvvqqHB0dLb/33nuyjY2N/MQTT1jy7dmzR7azs5NHjx5teQ7x8fE1Xq/i4mK5a9eusrOzs7xkyRL5jz/+kJ999lnL9VqxYkWdXotly5bJb775prxmzRp5x44d8tdffy336NFD7tKli6zT6SxlbNiwQVYoFPLQoUPlqKgo+eeff5b79+9veT9VqMvng9B6iOBGsLqKD9F33323UnpkZKQMyKtWrbKk6fV62dPTU77vvvtqLM9gMMh6vV5+6qmn5J49e1rS//Of/8hArQHE2LFj5cjIyHo/h3/84x8yIO/bt69S+owZM2RJkuRTp07JsnwleOjevbtsMBgs+fbv3y8D8o8//liv81Y812HDhsnjx4+vNe8vv/wiA3JsbGyNeSrq5+fnJ5eUlFjS8/PzZTc3N/nOO++0pFW8bq+++mqVcmoKbmxtbeWLFy9a0kpKSmQ3Nzf56aeftqQ9+OCDsr29vZyRkWFJMxqNclhY2HWDG1mW5RUrVsiAfODAAUtaTk6O5Qv4aomJibKNjY08ceJES9rkyZNlQP7yyy9rPU+F/v3713i9agtuKgDyrFmzKqVVvA7vvPNOpfS77rpLDggIkPPy8iqlP/PMM7Ktra2cnZ0ty/KV4ObWW2+tlK+oqEh2c3OT77777krpRqNR7tGjh9yvXz9LWsVr+Pbbb1fKO3PmTNnW1lY2mUyWNHt7+yrPqybLli2TAfm3336rlD5t2rRqg5u6vBYmk0nW6/XyxYsXq5Tdt29fOTAwUC4rK7OkFRQUyO7u7pVen7p8Pgith+iWElqMsWPHVrrftWtXJEmqNBZBpVLRsWNHLl68WCnvzz//zKBBg3BwcEClUqFWq/niiy8qdTn07dsXgAkTJvC///2PS5cuValDv379iIuLY+bMmfzxxx/k5+fXqe5bt24lLCysyhiPKVOmIMsyW7durZQ+ZswYlEql5X5ERARAledVnU8++YRevXpha2trea5btmyp0r1yrcjISDQaDX/729/4+uuvOX/+fI1577vvPmxtbS33HR0dufvuu9m5cydGo7FS3vvvv/+6db66Du3atbPct7W1pXPnzpWe944dO7jjjjvw8PCwpCkUCiZMmFDn81xrz549lJSUVJmpFBgYyB133FGlSwbq9ryKioo4cOBAjderMZWWlrJlyxbGjx+PVqvFYDBYbqNHj6a0tLRK1+a1z2H37t1kZ2czefLkSsebTCZGjhzJgQMHKCoqqnTMPffcU+l+REQEpaWlpKenN+h5bNu2DUdHxyrlTpw4scZjqnst0tPTmT59OoGBgZa/g6CgIADL30JRUREHDx7k3nvvRaPRWI51cHCo8vrU5fNBaD1EcCO0GG5ubpXuazQatFptpS+NivTS0lLL/VWrVjFhwgT8/f357rvv2LNnDwcOHODJJ5+slO/WW29l9erVGAwGJk2aREBAAOHh4fz444+WPHPnzuU///kPe/fuZdSoUbi7uzNs2DAOHjxYa92zsrLw9fWtku7n52d5/Gru7u6V7tvY2ABQUlJS63nee+89ZsyYQf/+/fn111/Zu3cvBw4cYOTIkdc9tkOHDmzevBkvLy9mzZpFhw4d6NChQ7XjiXx8fKpN0+l0FBYWVkqv7nnX5NrnDebnfnXds7Ky8Pb2rpKvurS6qrj+Nb1G174+Wq22yqym6uTk5GAymWq8Xo0pKysLg8HAkiVLUKvVlW6jR48GqDLe5Nrnm5aWBsADDzxQpYy33noLWZbJzs6udExD36u1PY/qXsuarld1r4XJZGLEiBGsWrWKv//972zZsoX9+/dbgruKuuXk5CDLcp3eT3X5fBBaj9Y9bF4QgO+++46QkBB++umnSgMEy8rKquQdN24c48aNo6ysjL179/Lmm28yceJEgoODGTBgACqVijlz5jBnzhxyc3PZvHkz//znP7nrrrtISkqqcZaGu7s7KSkpVdIvX74MUKkV4kaf69ChQ1m2bFml9IKCgjodP2TIEIYMGYLRaOTgwYMsWbKE559/Hm9vbx5++GFLvuoGd6ampqLRaHBwcKiU3tjr2bi7u1u+hK89/42UCdT4Gl37+tT1Obm6uiJJUo3XqzG5urqiVCp5/PHHmTVrVrV5QkJCKt2/9nlUPM8lS5Zwyy23VFvGjQSRdeHu7s7+/furpNd0vap7LY4dO0ZcXBxfffUVkydPtqRXDJiuUPH61PX9dL3PB6H1EC03QqsnSZJlsbYKqamp1c6WqmBjY8Ntt93GW2+9BZgXUruWi4sLDzzwALNmzSI7O7vWWTrDhg3j+PHjHD58uFL6N998gyRJ3H777fV8VtWTJMnyn3OFI0eOsGfPnnqVo1Qq6d+/v2WWzbX1XrVqVaVWr4KCAtauXcuQIUMqdac1hdtuu42tW7dWaoUwmUz8/PPPDS5zwIAB2NnZ8d1331VKT05OZuvWrQ2ebm1vb0+/fv1qvF6NSavVcvvttxMTE0NERAR9+vSpcquuZexqgwYNwsXFhePHj1d7fJ8+fSp139TVta1vtbn99tspKChgzZo1ldJ/+OGHOp+v4m/92r+FTz/9tNJ9e3t7+vTpw+rVq9HpdJb0wsJC1q1bV2P5dfl8EFo20XIjtHpjx45l1apVzJw5kwceeICkpCQWLlyIr68vZ86cseR79dVXSU5OZtiwYQQEBJCbm8uHH36IWq3mtttuA+Duu+8mPDycPn364OnpycWLF/nggw8ICgqiU6dONdbhhRde4JtvvmHMmDEsWLCAoKAgfv/9d5YuXcqMGTPo3Llzoz3XhQsX8tprr3Hbbbdx6tQpFixYQEhICAaDodZjP/nkE7Zu3cqYMWNo164dpaWllmnYd955Z6W8SqWS4cOHM2fOHEwmE2+99Rb5+fm8/vrrjfI8ajNv3jzWrl3LsGHDmDdvHnZ2dnzyySeWsSAKRf3/J3NxceFf//oX//znP5k0aRKPPPIIWVlZvP7669ja2vLaa681uL4LFy5k5MiRDB8+nBdffBGj0chbb72Fvb19lS6eG/Xhhx8yePBghgwZwowZMwgODqagoICzZ8+ydu3aKmO7ruXg4MCSJUuYPHky2dnZPPDAA3h5eZGRkUFcXBwZGRlVWgXronv37mzfvp21a9fi6+uLo6NjjYsOTpo0iffff59Jkybxxhtv0KlTJ9avX88ff/xR5/OFhobSoUMH/vGPfyDLMm5ubqxdu5bo6OgqeRcsWMCYMWO46667eO655zAajbzzzjs4ODhUen3q8vkgtB4iuBFavSeeeIL09HQ++eQTvvzyS9q3b88//vEPkpOTK30Z9+/fn4MHD/Lyyy+TkZGBi4sLffr0YevWrXTr1g0w/1f566+/8vnnn5Ofn4+Pjw/Dhw/nX//6F2q1usY6eHp6snv3bubOncvcuXPJz8+nffv2vP3228yZM6fRnuu8efMoLi7miy++4O233yYsLIxPPvmEqKgotm/fXuuxkZGRbNq0iddee43U1FQcHBwIDw9nzZo1jBgxolLeZ555htLSUp599lnS09Pp1q0bv//+O4MGDWq051KTHj16EB0dzUsvvcSkSZNwdXXl8ccf57bbbuPll1/G2dm5QeXOnTsXLy8vPvroI3766Sfs7OwYOnQoixcvrjVwvZ7hw4ezevVqXnnlFR566CF8fHyYOXMmJSUljR4MhoWFcfjwYRYuXMgrr7xCeno6Li4udOrUyTLu5noee+wx2rVrx9tvv83TTz9NQUEBXl5eREZGVhlwXVcffvghs2bN4uGHH6a4uJjbbrutxvejVqtl69atPPfcc/zjH/9AkiRGjBjBypUrGThwYJ3Op1arWbt2Lc899xxPP/00KpWKO++8k82bN1casA4wcuRIfv31V1599dVKr8/ly5f59ttvLfnq8vkgtB6SLMuytSshCELLcOHCBUJCQnjnnXd46aWXrF2dSkaMGMGFCxc4ffq0tasitHJ6vZ7IyEj8/f3ZtGmTtasjNAHRciMIQoszZ84cevbsSWBgINnZ2Xz//fdER0fzxRdfWLtqQiv01FNPMXz4cHx9fUlNTeWTTz7hxIkTdVp5XGidRHAjCEKLYzQaefXVV0lNTUWSJMLCwvj2228tWysIQn0UFBTw0ksvkZGRgVqtplevXqxfv77KWDOh7RDdUoIgCIIgtCliKrggCIIgCG2KCG4EQRAEQWhTRHAjCIIgCEKbclMOKDaZTFy+fBlHR8dGXzpeEARBEISmIcsyBQUF+Pn51bqg500Z3Fy+fJnAwEBrV0MQBEEQhAZISkoiICCgxsdvyuDG0dERMF+cuuz8W1d6vZ5NmzYxYsSIWlezvVmJ61M7cX1qJ65PzcS1qZ24PrVrTdcnPz+fwMBAy/d4TW7K4KaiK8rJyanRgxutVouTk1OLf4NYg7g+tRPXp3bi+tRMXJvaietTu9Z4fa43pEQMKBYEQRAEoU0RwY0gCIIgCG2KCG4EQRAEQWhTbsoxN4IgCMLNyWg0otfrrV2NFkWv16NSqSgtLcVoNFq1Lmq1GqVSecPliOBGEARBuCmkpaVRUFBg7Wq0OLIs4+PjQ1JSUotY+83FxQUfH58bqosIbgRBEIQ2z9HRkfz8fLy9vdFqtS3iS7ylMJlMFBYW4uDgUOvCeE1NlmWKi4tJT08HwNfXt8FlieBGEARBaNOMRiOOjo54enri7u5u7eq0OCaTCZ1Oh62trVWDGwA7OzsA0tPT8fLyanAXlRhQLAiCILRpBoMBhUKBVqu1dlWEOqh4nW5kbJQIbgRBEIQ2TZZl4PoLvwktQ2O8TiK4EQRBEAShTRHBjSAIgiAIbYoIbgRBEARBaFNEcNPCybJMVmEZJpNs7aoIgiAIVvT1118TFhaGVqslNDSUdevWWbtKLZYIblqwpOxiRn24i96LNnPnezs4kZJv7SoJgiAIVhAVFcWsWbN45ZVXOHbsGKNGjWL69OmNeo5ly5YREhKCra0tvXv3ZteuXXU6bunSpbUe9+abb9K3b18cHR3x8vLi3nvv5dSpU41a92uJ4KaFKtUbmf7dIU6mmlfTPJ9ZxJNfHaCozGDlmgmCIAjN7d1332XOnDlMnDiR9u3bM3r0aAoLCxut/FWrVvHCCy8wb948YmJiGDJkCKNGjSIxMbHW43766Seef/75Wo/bsWMHs2bNYu/evURHR2MwGBgxYgRFRUWNVv9rieCmhfp+XyLxl/Nxs9fw+7ODCXSzIyWvlCVbz1q7aoIgCEIzKigoYM+ePYwZM8aStnHjRiIjIxvtHEuXLuXJJ59k6tSpdO3alQ8++IDAwECWLVtW63HvvfceTz31VK3Hbdy4kSlTptCtWzd69OjBihUrSExM5NChQ41W/2uJ4KYF0htNfLHrPAAvjuhMNz9nXh3bDYBv91ygULTeCIIg3BBZlinWGaxyq1h3p67i4uKQJImIiAiKi4v57LPPWLJkCS+++GKVvIsXL8bBwaHW27XdRjqdjtjYWIYPH14pfcSIEezevbvGeul0Og4dOsSIESPqdVxeXh4Abm5u133uDSW2X2iBdpzK4HJeKR4OGu7vFQDAnV29aO9pz/mMItbEXmZi/3ZWrqUgCELrVaI3EvbqH1Y59/EFd6HV1P3rNzY2ltDQUGJjYxk4cCAA48ePr9SSU2H69OlMmDCh1vL8/f0r3c/MzMRoNOLt7V0p3dvbm9TU1BrLachxsiwzZ84cBg8eTHh4eK31vBEiuGmB1h9LAWBshB+2avO+GpIkMbFfOxb9foJfDyeL4EYQBOEmERsbS8+ePQkPD2ffvn3s2bOHefPm8dprr7Fw4cJKed3c3BrcInLtysCyLNdpteD6HPfMM89w5MgR/vzzzwbVsa5EcNPC6Awmoo+nATC6e+UdUcdE+LLo9xMcTswhs7AMDwcba1RREASh1bNTKzm+4C6rnbs+YmNjmThxIo6OjvTr149+/fpx8uRJ9u7dWyXv4sWLWbx4ca3lbdiwgSFDhljue3h4oFQqq7S2pKenV2mVuVp9j5s9ezZr1qxh586dBAQE1FrHGyWCmxYmJjGHglIDHg4a+gS5VnrM19mOcH8njl3KZ+uJdCb0DbRSLQVBEFo3SZLq1TVkLQaDgfj4eEJDQyulx8XFMXLkyCr5G9ItpdFoiIyMZPPmzdx///2W9OjoaMaNG1djORqNht69exMdHc348eNrPE6WZWbPnk1UVBTbt28nJCSk1vo1hpb/yt5kdp/LAmBABw8UiqrNend29ebYpXy2nRLBjSAIQlt38uRJSktLWbRoEb6+vmi1WpYtW0ZCQgLTpk2rkr+h3VIzZ85k+vTp9O3blwEDBrB8+XISExMrraXz8ccfExUVxZYtWyxpc+bM4fHHH6dPnz41Hjdr1ix++OEHfvvtNxwdHS0tPc7OztjZ2dW7rnUhgpsWZk95cDOwg3u1jw/q6MEHm8+wPyG7zv2hgiAIQusUGxuLr68v9vb2DBkyBHt7ewYPHsy2bdvw9fW9fgF1dN9991FSUsKCBQtISUkhPDyc9evXExQUZMmTmZnJuXPnKh330EMPkZWVVetxFdPChw4dWunYFStWMGXKlEZ7DlcTwU0LUqo3EpOUA8CA9tUHNxEBztioFGQV6TibXkgnb8fmrKIgCILQjGJjY+nfvz9RUVFNfq4ZM2Ywa9asGh+fP38+8+fPr5I+c+ZMZs6cWeNx9Z363hha3To3BoOBV155hZCQEOzs7Gjfvj0LFizAZDJZu2o3LP5yPnqjjIeDhiB3bbV5bFRKerUzj8XZm5DdnNUTBEEQmllsbCwRERHWrkar0+qCm7feeotPPvmEjz/+mBMnTvD222/zzjvvsGTJEmtX7YbFJeUC0CPApdbupr4h5v7UmMSc5qiWIAiCYCVxcXEiuGmAVtcttWfPHsaNG2dZvCg4OJgff/yRgwcPWrlmN+5Ici4APQJdas3XI8AZgKPJeU1cI0EQBMGaMjIyrF2FVqnVBTeDBw/mk08+4fTp03Tu3Jm4uDj+/PNPPvjggxqPKSsro6yszHI/P9+8u7Zer0ev1zda3SrKamiZseUtN+G+DrWWEeptD8C5jEJyC0uwt2kdL+ONXp+2Tlyf2onrUzNxbWpnMJi3rJFluU0MYWhsFWNiWsr1MZlMyLKMXq9Hqay8JlBd3+OSbI2RPjdAlmX++c9/8tZbb6FUKjEajbzxxhvMnTu3xmPmz5/P66+/XiX9hx9+QKutfmxLcyszwsv7lchILOpjwFFde/5XDyrJ00s8281AB6fmqaMgCEJrpFKp8PHxITAwEI1GY+3qCNeh0+lISkoiNTXVEphWKC4uZuLEieTl5eHkVPOXX+v4l/8qP/30E9999x0//PAD3bp1IzY2lueffx4/Pz8mT55c7TFz585lzpw5lvv5+fkEBgYyYsSIWi9Ofen1eqKjoxk+fDhq9XWik2scvZSHvH8f7vYaHho34rr5f8uOYeupDByDujF6QNB187cEN3J9bgbi+tROXJ+aiWtTu8LCQs6fP4+9vX2TravSmsmyTEFBAY6Oji1ieZHS0lLs7Oy49dZbsbW1rfRYRc/L9bS64Ob//u//+Mc//sHDDz8MQPfu3bl48SJvvvlmjcGNjY0NNjZVtypQq9VN8kHQkHLPZZYA0MXHsU7HRgS6sPVUBidSClvdh1lTXfe2Qlyf2onrUzNxbaqnUpm/6iRJQqFodfNomlxFV1RLuT4KhQJJkqp9P9f1/W39Z1FPxcXFVS6+UqlsEf2EN+J0WgEAneu4bk1E+aDiI5fEoGJBEARBuFqra7m5++67eeONN2jXrh3dunUjJiaG9957jyeffNLaVbshp9IKAXPLTV2E+ZqDm4TMIsoMRmxU9duITRAEQRDaqlYX3CxZsoR//etfzJw5k/T0dPz8/Hj66ad59dVXrV21G3I6tX4tN95ONjjaqCgoM3Ahs7jOQZEgCIIgtHWtLrhxdHTkgw8+qHXqd2uTV6wnNb8UgM7eDnU6RpIkOnk7cDgxl9NpBSK4EQRBEIRyrW7MTVt0Ot3cauPnbIujbd0HA3byMgc0Z9ILm6RegiAIgtAaieCmBUjIKAKgg1fdWm0qdCpv5TlbHhwJgiAIgiCCmxbhQpY5uAl2t6/XcRU7gp9OEy03giAIbd3XX39NWFgYWq2W0NBQ1q1bZ+0qtVgiuGkBLmYVAxDsUc/gpryl50JmETpD654KLwiCINQsKiqKWbNm8corr3Ds2DFGjRrF9OnTG/Ucy5YtIyQkBFtbW3r37s2uXbvqdNzSpUtrPW7+/PlIklTp5uPj06h1v5YIblqAhMyKlpv6bQXh62yLg40Kg0m2tP4IgiAIbc+7777LnDlzmDhxIu3bt2f06NEUFjZeq/2qVat44YUXmDdvHjExMQwZMoRRo0aRmJhY63E//fQTzz///HWP69atGykpKZbb0aNHG63u1RHBjZXJsszF8sAkqJ7dUpIk0cHTfMz5DBHcCIIgtEUFBQXs2bOHMWPGWNI2btxIZGRko51j6dKlPPnkk0ydOpWuXbvywQcfEBgYyLJly2o97r333uOpp5667nEV+3tV3Dw9PRut7tURwY2VZRbqKNIZkSQIdKv/nicVXVmi5UYQBKEeZBl0Rda51XO/6ri4OCRJIiIiguLiYj777DOWLFnCiy++WCXv4sWLcXBwqPV2bbeRTqcjNjaW4cOHV0ofMWIEu3fvrrFeOp2OQ4cOMWJE5f0QqzvuzJkz+Pn5ERISwsMPP8z58+frdQ3qq9Wtc9PWVLTa+DnbNWiV4YrWnosiuBEEQag7fTEs9rPOuf95GTR1b6mPjY0lNDSU2NhYBg4cCMD48eMrteRUmD59OhMmTKi1PH9//0r3MzMzMRqNeHt7V0r39vYmNTW1xnLqelz//v355ptv6Ny5M2lpaSxatIiBAwcSHx+Pu7t7rXVtKBHcWFnFeJuQeg4mrhDioa1UjiAIgtC2xMbG0rNnT8LDw9m3bx979uxh3rx5vPbaayxcuLBSXjc3N9zc3Bp0nmt3BJdluU67hF/vuFGjRll+7969OwMGDKBDhw58/fXXzJkzp0F1vR4R3FhZxUypoHoOJq5wpeWmuNHqJAiC0OapteYWFGudux5iY2OZOHEijo6O9OvXj379+nHy5En27t1bJe/ixYtZvHhxreVt2LCBIUOGWO57eHigVCqrtNKkp6dXaZW5WkOPs7e3p3v37pw5c6bWet4IEdxY2cXsGwtuQsqDm5S8Ukp0Ruw0YgNNQRCE65KkenUNWYvBYCA+Pp7Q0NBK6XFxcYwcObJK/oZ0S2k0GiIjI9m8eTP333+/JT06Oppx48bVWI5Go6F3795ER0czfvz4Oh9XVlbGiRMnKgVYjU0EN1Z2Kccc3AS4VhPc6IpBqTbfauCiVeNkqyK/1EBitthAUxAEoS05efIkpaWlLFq0CF9fX7RaLcuWLSMhIYFp06ZVyd/QbqmZM2cyffp0+vbty4ABA1i+fDmJiYmV1tL5+OOPiYqKYsuWLZa0OXPm8Pjjj9OnT58aj3vppZe4++67adeuHenp6SxatIj8/HwmT55c73rWlQhurOxSbgkA/i5XzZTSl8LaZ+Hoz6Cyg6H/gEHPVnu8JEmEeNgTl5xHQmaRCG4EQRDakNjYWHx9fbG3t2fIkCHY29szePBgtm3bhq+vb6Od57777qOkpIQFCxaQkpJCeHg469evJygoyJInMzOTc+fOVTruoYceIisrq9bjkpOTeeSRR8jMzMTT05NbbrmFvXv3VsrT2ERwY0U6g4n0gjIA/F3LgxtZhjWz4ej/zPf1RRD9L7B1gt5Tqi0nyN0c3Ijp4IIgCG1LbGws/fv3JyoqqsnPNWPGDGbNmlXj4/Pnz2f+/PlV0mfOnMnMmTNrPG7lypWNUb16EevcWFFKXgmyDDYqBe72GnPi2S3mwEahgkd/gaH/NKev/zvkJVdbTsVaN2I6uCAIQtsSGxtLRESEtavR6ojgxoqu7pKSJMncarNtkfnB/tOh03C47e8QNAiMZbDj7WrLCSxv9UnOKWmWeguCIAjNIy4uTgQ3DSCCGyu6VB6MWLqkLh+GyzHmcTaDXzCnSRIMe9X8e+wPUJRZpZyK4y+J4EYQBKFNycjIqDSDSagbEdxYUZXBxLE/mn92HQv2HlcytrsF/HqCSQ9xP1YpJ7B8plVybgkmU/2W9RYEQRCEtkYEN1ZkablxsQOTEeJXmR/o8UjVzBWDiWO+q/KQj7MtCsk8QDmzsKyJaisIgiAIrYMIbqzI0nLjageXDkNxFtg6Q8htVTN3Gw8KNWSchIzTlR5SKxX4Optbf5JE15QgCIJwkxPBjRVV6pY684c5scMwUFYzQ9/WGdqXBz0n11Z52DLuJlcEN4IgCMLNTQQ3VmIyyaTklgLg52IHZzebH+g0vOaDut5t/nlqQ5WHAlwqZkyJPaYEQRCEm5sIbqwkp1iHzmgCwNtGDylx5geq65Kq0GGY+eelQ1CaV+mhADEdXBAEQRAAEdxYTWq+udXGw0GDJvUQyCZwaQfO/jUf5BIIbh3MeS/8Vemhir2pRHAjCIIg3OxEcGMl6fnmWU3eTraQWL5tfbsB1z+w/VDzz4QdlZKvtNyIbilBEATh5iaCGyupaLnxdrKFpH3mxMD+1z+wYlDx+e2Vkq9eyE+WxVo3giAIws1LBDdWkppXHtw42lwZb+Pf6/oHBg8BJPOU8MJ0S7Kvsx2SBGUGE5mFuiaosSAIgiC0DiK4sZL0AnNw09EmF0pyzBtleoVd/0CtG3h1Nf+efNCSrFEp8HGyNSeLrilBEIQ25+uvvyYsLAytVktoaCjr1q2zdpVaLBHcWElFy01n+bw5wTMUVDZ1Ozigj/ln8v7KyWLGlCAIQpsUFRXFrFmzeOWVVzh27BijRo1i+vTpjXqOZcuWERISgq2tLb1792bXrl3XPWbnzp3cfffd+Pn5IUkSq1evbtQ6NZQIbqwkrXxAcUDZWXOCTz12fQ3oa/55VcsNXNmjSizkJwiC0La8++67zJkzh4kTJ9K+fXtGjx5NYWFho5W/atUqXnjhBebNm0dMTAxDhgxh1KhRJCYm1npcUVERPXr04OOPP260ujQGEdxYSVrFVPCCk+YEn+51P7giuLl0GIwGS7JP+RYMFa1CgiAIQutXUFDAnj17GDNmjCVt48aNREZGNto5li5dypNPPsnUqVPp2rUrH3zwAYGBgSxbtqzW40aNGsWiRYu47777Gq0ujaGadf6FpqYzmMgqMg/61WYfNyf61qPlxqMzaBxBVwAZJyyBka+zecyNCG4EQRBqJ8syJQbrtHLbqeyQJKnO+ePi4pAkiYiICIqLi/n+++9ZsmQJv/76a5W8ixcvZvHixbWWt2HDBoYMGWK5r9PpiI2NZe7cuZXyjRgxgt27d9e5ni2JCG6soGIwsaeyGGXBJXNifVpuFErzzKqEHZB8wHKsT3lwk5IvghtBEITalBhK6P9DHZbfaAL7Ju5Dq9bWOX9sbCyhoaHExsYycOBAAMaPH1+pJafC9OnTmTBhQq3l+ftXXiw2MzMTo9GIt7d3pXRvb29SU1PrXM+WRAQ3VlDRJdXbPgN0gFOAeWPM+qgIbiqmkXN1y40YcyMIgtBWxMbG0rNnT8LDw9m3bx979uxh3rx5vPbaayxcuLBSXjc3N9zc3Bp0nmtbk2RZrlcLU0vSKoObS5cu8fLLL7NhwwZKSkro3LkzX3zxBb1797Z21eqkYjBxd9s0c3Dj0bH+hVS09KQevZJUHtykF5ShN5pQK8WQKkEQhOrYqezYN3Gf1c5dH7GxsUycOBFHR0f69etHv379OHnyJHv37q2StyHdUh4eHiiVyiqtNOnp6VVac1qLVhfc5OTkMGjQIG6//XY2bNiAl5cX586dw8XFxdpVq7OKMTGdlOVvJI/O9S/Ep4f5Z1q8eVCxUoWHvQ1qpYTeKJNRUGbebVwQBEGoQpKkenUNWYvBYCA+Pp7Q0NBK6XFxcYwcObJK/oZ0S2k0GiIjI9m8eTP333+/JT06Oppx48bdQO2tp9UFN2+99RaBgYGsWLHCkhYcHGy9CjVAWvmYmyBT+XibhgQ3bu1B4wC6Qsg6A15dUSgkvJ1sSc4pISWvVAQ3giAIrdzJkycpLS1l0aJF+Pr6otVqWbZsGQkJCUybNq1K/oZ2S82cOZPp06fTt29fBgwYwPLly0lMTKy0ls7HH39MVFQUW7ZssaQVFhZy9uxZy/2EhARiY2Nxc3OjXbt29a5HY2l1wc2aNWu46667ePDBB9mxYwf+/v7MnDmz2he5QllZGWVlZZb7+fn5AOj1evR6faPVraKs65WZUr7InpfuIgAGl/bIDaiH0qsbiuR9GC7FILuau7Z8nGxIzinhUnYhEX4O9S6zKdX1+tysxPWpnbg+NRPXpnYGg3nJDFmWMZlMVq5N/Rw+fNgS1AwZMgR7e3sGDRrEli1b8Pb2bpTnI8sy9913H8XFxSxYsICUlBTCw8NZt24dgYGBlnNkZGRw7ty5Sufcv38/w4YNs9yfM2cOAJMmTarUCFEfJpMJWZbR6/UolcpKj9X1PS7JrWyXRVtb87iSOXPm8OCDD7J//36ef/55Pv30UyZNmlTtMfPnz+f111+vkv7DDz+g1TZ/s+SSeAUX802ctJ2CEhN/dPuAUk39I+3uSd/QPnMzZ71GEe//CABfn1ZwOEvBvUFGbvdrVS+tIAhCk1CpVPj4+BAYGIhGo7F2derlX//6FwkJCXz33XfWrkqz0el0JCUlkZqaaglMKxQXFzNx4kTy8vJwcnKqsYxW13JjMpno06ePZcBUz549iY+PZ9myZTUGN3PnzrVEk2BuuQkMDGTEiBG1Xpz60uv1REdHM3z4cNRqdY35PjzzF+2k0ygxIWvsuWPco9CAEelSbDb8vpn22kKCRo8G4IjiFIf/uoirf3tGj+rS4OfSFOp6fW5W4vrUTlyfmolrU7vCwkLOnz+Pvb09dnatq7v+xIkTDBw4sFG/q64lyzIFBQU4Ojq2iNlRpaWl2NnZceutt1oaNCpU9LxcT6sLbnx9fQkLq7zBZNeuXatdzKiCjY0NNjZV921Sq9VN8kFwvXKzinT0ly4DILl3Qt3Q/yT8zAv/KTJOoig/n7+rPQDpBboW+yHXVNe9rRDXp3bi+tRMXJvqqVTmrzpJklAoWtcs0ri4OGbMmNGk9a7oZmop10ehUCBJUrXv57q+v1tdcDNo0CBOnTpVKe306dMEBQVZqUb1U2YwkleiJ8QyU6pTwwvzKG+ZKcqAoiywd7esdZMi1roRBEFo9TIyMqxdhVbJ+iFaPb3wwgvs3buXxYsXc/bsWX744QeWL1/OrFmzrF21OskqNG+7EKRINye4Bje8MBsHcCkfjZ5xAriy1o3YgkEQBEG4WbW64KZv375ERUXx448/Eh4ezsKFC/nggw949NFHrV21OsksNM/aaq/KNCfcSHAD4NnV/DPdHNxUTP9OKyjDaBIDigVBEISbT6vrlgIYO3YsY8eOtXY1GqQiuAmU0kEGXG6wO80rFM78ARnm3cU9HGxQKiSMJpnMwjK8nWyvU4AgCIIgtC2truWmtcss0KHAhLepvB+10VpuzMGNUiHh7WgePH05V4y7EQRBEG4+IrhpZhmFZfiQjQoDKNTg5HdjBXqVL8ldPuYGwMvpyh5TgiAIgnCzEcFNM8ssLCNQKm+1cQkEhbL2A67HowsgQXEWFJrL9SpvuRHBjSAIgnAzEsFNM8ss1NFOkWa+c6PjbQA0WnAtL6e89cbLqTy4yRczpgRBEISbjwhumllmQRkBUvXjbYr0Rby1/y3GrR7H9OjpHMs8VrdCrxl34+1Y3i2VL1puBEEQhJuPCG6aWWZhGe2kijVurrTcFOuLmbRhEt+d+I7zeef56/JfPLb+MbZc3FJDSVfxLF/Mr3zGlKXlpkC03AiCIAg3HxHcNLOMSmNurgQ3i/ct5nTOadxt3Xnn1ne4s92dGGUjL+96mXO552ovtCK4yTJvO+9V3nKTJlpuBEEQhJuQCG6akd5oIrdYj6+UZU4oX134VPYpfjv3GwDvDn2XkSEjeee2dxjoN5AyYxkL9izAJNeyrb17R/PPLHMQdKXlRgQ3giAIbcXXX39NWFgYWq2W0NBQ1q1bZ+0qtVgiuGlGWYXla9yQY04onwb+6ZFPARgVPIre3r0BUClUvD7wdexUdhxOP8y2xG01F1wR3OQng67I0nKTVVSGwVhLUCQIgiC0ClFRUcyaNYtXXnmFY8eOMWrUKKZPn96o51i2bBkhISHY2trSu3dvdu3aVWv+N998k759++Lo6IiXlxf33ntvlb0frUUEN80os7AMT3JRSSaQlODgTWZJpiVwmRYxrVJ+H3sfHuv6GADL4pYhyzVsp6B1AztX8+/Z53G316BUSMiyeXaWIAiC0Lq9++67zJkzh4kTJ9K+fXtGjx5NYWFho5W/atUqXnjhBebNm0dMTAxDhgxh1KhRJCYm1njMjh07mDVrFnv37iU6OhqDwcCIESMoKipqtHo1lAhumlFGYRm+Urb5jqMvKJSsPbcWg2wgwiOCTq5Vdwif3G0ydio7TuWc4mDawZoLt3RNnUWhkPB0EIOKBUEQ2oKCggL27NnDmDFjLGkbN24kMjKy0c6xdOlSnnzySaZOnUrXrl354IMPCAwMZNmyZTUes3HjRqZMmUK3bt3o0aMHK1asIDExkUOHDjVavRpKBDfNKLOg7Mp4m/IuqU0XNgEwruO4ao9xtnFmTHvzG/rnUz/XXPhVwQ1cGXcjBhULgiBUJcsypuJiq9xqbIWvQVxcHJIkERERQXFxMZ999hlLlizhxRdfrJJ38eLFODg41Hq7trtJp9MRGxvL8OHDK6WPGDGC3bt317meeXl5ALi5udXr+TWFVrlxZmuVWai70nLj7E96cTrHssxr2dzR7o4aj5vQeQK/nP6F6MRoskqycLdzr5rp2kHFjrZAnmi5EQRBqIZcUsKpXr2tcu4uhw8habV1zh8bG0toaCixsbEMHDgQgPHjx1dqyakwffp0JkyYUGt5/v7+le5nZmZiNBrx9vaulO7t7U1qamqd6ijLMnPmzGHw4MGEh4fX6ZimJIKbZpRZeHXLjT87kncAEOERgYedR43HdXXvSneP7hzNPMrv539nUrdJVTOJlhtBEIQ2KTY2lp49exIeHs6+ffvYs2cP8+bN47XXXmPhwoWV8rq5uTW45USSpEr3ZVmuklaTZ555hiNHjvDnn3826NyNTQQ3zSirsIyeFS03Tv7sS9kHwOCAwdc9dmz7sRzNPMofF/+oU3BTsUpxhmi5EQRBqEKys6PLYeuMDZHs7OqVPzY2lokTJ+Lo6Ei/fv3o168fJ0+eZO/evVXyLl68mMWLF9da3oYNGxgyZIjlvoeHB0qlskorTXp6epXWnOrMnj2bNWvWsHPnTgICAur4rJqWCG6aUXaxHp/y4EZ29OXw8V8A6OPd57rHDg8azr/3/5sjGUe4XHgZP4drdhN3a2/+WZIDxdlX7S8lWm4EQRCuJUlSvbqGrMVgMBAfH09oaGil9Li4OEaOHFklf0O6pTQaDZGRkWzevJn777/fkh4dHc24cdWPBwVzy87s2bOJiopi+/bthISE1OUpNQsR3DSjnCKdpVsqWa0hoyQDlUJFd4/u1z3WU+tJH58+HEg9wKYLm5gSPqVyBo0WnALMa91kncXL0bz6cZpouREEQWi1Tp48SWlpKYsWLcLX1xetVsuyZctISEhg2rRpVfI3tFtq5syZTJ8+nb59+zJgwACWL19OYmJipbV0Pv74Y6Kiotiyxbwt0KxZs/jhhx/47bffcHR0tLT8ODs7Y1fP1qnGJmZLNaPcwhLLAn6HdOYtGLq5d8NWZVun4+8KuguA6MTo6jO4dzD/zDyDt5PYPFMQBKG1i42NxdfXF3t7e4YMGcKtt95KUlIS27Ztw9fXt9HOc9999/H++++zYMECIiMj2blzJ+vXryco6Mo2QZmZmZw7d2U7oGXLlpGXl8fQoUPx9fW13H766adGq1dDiZabZqQozkClNCFLSg7nmd8gvbx71fn4oYFDWbRvEUczjpJTmoOrrWvlDO4dIWGHueWmg7lbKrOwDKNJRqmo26AwQRAEoeWIjY2lf//+REVFNfm5ZsyYwaxZs2p8fP78+cyfP99yv75T2puTaLlpJiU6I64Gc2uN7OhDTEYsAL296j4V0dvemy6uXZCR+evyX1UzeJQvAph1FncHGxQSmGTzQGZBEASh9YmNjSUiIsLa1Wh1RHDTTLKLdZbBxMVOvlzMvwhAuEf91gMYEmAe4b4ruZo9P66aMaVUSHg4iOnggiAIrVlcXJwIbhpABDfNJLtQh1/5YOKz9i7IyHjZeVW/IF8thvibg5u/Lv+F0WSs/GDFjKmcCyDLV+0OLgYVC4IgtEYZGRmVZjAJdSOCm2ZydcvNSVtz0NHFrUu9y4nwjMBR40heWR5HM49WftA5ECQF6IuhMN2y1k16gWi5EQRBEG4eIrhpJtlFZXhL5plSJ9EDEOoWWtsh1VIpVAzyGwTArkvXdE2pNObp4AA5CVetUixabuqiVG8kU4xPEgRBaPVEcNNMsov0eJILwGlDPtCwlhuAgX7mvUX2p+yv+qBbcPkJEyxjbsQXdu3ySvS89HMc3V77gz6LNjP6w10cSc61drUEQRCEBhLBTTPJLirDS8rFAJwuNc+a6uLasOCmn28/AI5lHqNIX1T5QdfyFSJzEvB0LA9uCnQNOs/NoFhnYNKX+/nlUDJGk3la4/GUfB74ZA8HL2RbuXaCIAhCQ4jgpplkF+nxlHJJVKsoM+mxU9kR6BjYoLL8Hfzxd/DHIBs4nHa48oOuweafORdEy00dLFx3grikXFy0an6ePoCDr9zJbZ090RlMPP3tIbKLRGAoCILQ2ojgppnkFxTgLBVzVq0GoKNLR5QKZYPL6+djbr05kHqg8gNu5S03V3VLZYjgploHL2Tz4/5EAJY+2ou+wW54ONjwyWO96eLtSFaRjsXrT1i5loIgCEJ9ieCmmciF6QAkaMwBR7BT8A2VV9E1tS91X+UHqu2WEsFNdd6LPg3AhD4BDOzgYUm30yj59/3m/b5+PZzM6bQCq9RPEARBaBgR3DQTRVF5cGPrAECwc/ANlVfRcnMy+yR5ZXlXHqjolirKwENj7lIp0hkp1hlu6HxtzeHEHHafy0KtlHjuzs5VHu/ZzpXR3X2QZfhwyxkr1FAQBEFoKBHcNBNN+SDiixoNcOMtN15aL4KdgjHJJg6lHbrygJ0L2Jn3nHIoTsZGZX6JxaDiylaWd0fd3cMPf5fqd6995nbzdhYbj6WSLqbTC4IgtBoiuGkGRpOMtiwTGbioNAEQ5BRU+0F10MenDwAx6TGVHyjvmpJyLli6psS4mysKywysO5ICwMN929WYL8zPid5BrhhNMv87mNRc1RMEQRBukAhumkFeiR4PKZdshYICTEhIjRLc9PTqCVQT3FQ3qFiMu7FYfySFYp2REA97+ga71pr3kX7m4OfH/UmYTC13B1xBENq+r7/+mrCwMLRaLaGhoaxbt87aVWqxRHDTDLKLdHiSx4XymVK+9r7YqmxvuNyK4CY+K55Sw1XdJldNB7cMKhYtNxa/xV0C4IHeAUiSVGvesRG+ONmquJRbwr4Ese6NIAjWERUVxaxZs3jllVc4duwYo0aNYvr06Y16jmXLlhESEoKtrS29e/dm165qNmiu5piIiAicnJxwcnJiwIABbNiwoVHr1RCtPrh58803kSSJ559/3tpVqVF2kQ4vKZcLahVw44OJKwQ4BOBh54HBZCA+K/7KA1fNmBItN5XllejZd94cpIzu7nvd/LZqJSO6+QCw8VhKk9ZNEAShJu+++y5z5sxh4sSJtG/fntGjR1NYWNho5a9atYoXXniBefPmERMTw5AhQxg1ahSJiYm1HhcQEMC///1vDh48yMGDB7njjjsYN24c8fHxtR7X1Fp1cHPgwAGWL1/e4reDzy7S4SnlWlpubnQwcQVJkqrvmrqqW8rTwTyAWbTcmO04nYHBJNPRy4EQD/s6HTO6e3lwE58quqYEQWh2BQUF7NmzhzFjxljSNm7cSGRkZKOdY+nSpTz55JNMnTqVrl278sEHHxAYGMiyZctqPe7uu+9m9OjRdO7cmc6dO/PGG2/g4ODA3r17G61uDdFqg5vCwkIeffRRPvvsM1xdax83YW3ZRTo8pDySy1tu2jnVPIi1vqoNbiq6pfKS8LI3LxQoghuzzcfTALizq3edjxnU0QNHGxVp+WXEJOU0VdUEQWhGsiyjLzNa5SbL9fsnKS4uDkmSiIiIoLi4mM8++4wlS5bw4osvVsm7ePFiHBwcar1d292k0+mIjY1l+PDhldJHjBjB7t2761xPo9HIypUrKSoqYsCAAfV6jo1NZdWz34BZs2YxZswY7rzzThYtWlRr3rKyMsrKrny55+ebN67U6/Xo9fpGq1NFWdeWmZlfjCe5XFKZF4rztvVutPNGuJlbrWLTYynTlaGQFGDniUppg2Qsw4dMANLzSxv1uTZETdenuRiMJrafMq83dHtn9zrXQwEM7eLB2iOprD9ymQg/xyapn7WvT0snrk/NxLWpncFgXudLlmVMJvOMVX2Zkc9fuP6YkqYw9f0hqG3qvkJ9TEwMoaGhHD58mMGDBwNw7733MmrUKMvzqfC3v/2NBx54oNby/P39Kx2XkZGB0WjEy8urUrqXlxepqalVznGto0ePMmjQIEpLS3FwcODXX38lNDT0usfVxGQymYNPvR6lsvJ1qut7vFUGNytXruTw4cMcOHDg+pkxj8t5/fXXq6Rv2rQJrVbb2NUjOjq60v2T54uxkQxcUplfpHMx5yg6UlTdofVmlI2oUZOvy+frdV/jrTS3SNyhcsPRmELusS1AJInpuaxfv75Rznmjrr0+zeViAeSXqrBTylw+upvUY3U/1rVEApSsj7lAhOlck9URrHd9WgtxfWomrk31VCoVPj4+FBUVWb4cDTqj1epTUJCPqqzuwc2BAwfo1q0b7dq1Y/PmzRw4cIBFixYxd+5c5s2bVymvSqXCy8ur1vKu/ce+YuxOSUmJ5Z//ivuyLFdKq46vry87d+4kLy+PNWvWMGXKFNatW0doaGidn+PVdDodJSUl7Ny50xKYViguLq5TGa0uuElKSuK5555j06ZN2NrWbcbR3LlzmTNnjuV+fn4+gYGBjBgxAicnp0arm16vJzo6muHDh6MuH18DEP/9WgryJfLLI9CHRj6Evbpu4z3qYu2WtRxMO4hTVydGdxwNgDL/GziXwq2dXCEBSmQVo0ff1WjnbIiark9z+XRnAhw7w6BOXowd07Nex95SpOPbt7aTUizRe/AdeDvd+Gy3a1n7+rR04vrUTFyb2hUWFnL+/Hns7e2xszMv2inLMlPfH2KV+qg0iuvO1Lza8ePHeeSRR/D398ff35/bb7+dCxcuEBMTU+U77M033+TNN9+stbzff/+dIUOuPHcbGxuUSiUFBQWVysvPz8fX17dO35MeHuaeidtuu42jR4/y5Zdf8sknn9T5OV6ttLQUOzs7br311irf89cLtCq0uuDm0KFDpKen07t3b0ua0Whk586dfPzxx5SVlVVpxrKxscHGxqZKWWq1ukk+CK4tVyrO4HL5eBsXGxdctC6Ner7e3r05mHaQI5lHeLjrw+ZE9w5wbjMuustAEMU6IzqThL2N9V/yprru17P/Yi4AAzt61vv83i5qIvydiUvOY09CLg/2adiO7nVhrevTWojrUzNxbaqnUpk/9yRJQqG4MtRUadfwzYubi8FgID4+nq5du1aq+5EjRxg5cmSlNIAZM2bw0EMP1Vqmv79/peNsbGyIjIxk8+bN3H///Zb0zZs3M27cuCrnuB5ZltHpdPU+roJCYQ7+qns/1/X9bf1vunoaNmwYR48erZT2xBNPEBoayssvv1wlsGkJ1MUZJJf/cfk7+Dd6+bUNKlbnJ2GnHkyJ3khmYVmLCG6sQW80cfCCeQr4gA7uDSrj1s6exCXnsfNMZpMGN4IgCBVOnjxJaWkpixYtwtfXF61Wy7Jly0hISGDatGlV8ru5ueHm5lbv88ycOZPp06fTt29fBgwYwPLly0lMTKy0ls7HH39MVFQUW7ZssaT985//ZNSoUQQGBlJQUMDKlSvZvn07GzdubNgTbiSt7pvO0dGR8PDwSmn29va4u7tXSW8pNKWZXNaaL7Wfg1+jl9/DswcSEsmFyWSWZOJh5wEu5hlZUu5FPBw1JGWXkFFQRpB743WHtSZHkvMo1hlx1arp4t2wAcG3dvZkydaz7D6biSzL9WpWFgRBaIjY2Fh8fX2xt7dnyJAh2NvbM3jwYLZt24av7/XX6qqr++67j5KSEhYsWEBKSgrh4eGsX7+eoKArq+lnZmZy7lzlMYdpaWk8/vjjpKSk4OzsTEREBBs3bqwy86q5tbrgpjWy0+dwqbzlJsAhoNHLd9A40MGlA2dzz3Ik4wh3tLsDXMvfkLmJeDjYkJRdclNPB69otekX4oZC0bCgpEeACzYqBVlFOs5lFNHRy6ExqygIglBFbGws/fv3JyoqqsnPNWPGDGbNmlXj4/Pnz2f+/PmV0r744osmrlXDtIngZvv27dauQo30RhOOxlyOlM+UurblxlhYRN6qVZQcPYrKzQ2ne+7Grlu3ep8nwjOCs7lnOZp51BzclLfcUJxFgJeJGCCj8ObdGTwuOReAnu0aviaSRqWgZzsX9p7PZn9CtghuBEFocrGxsQwaNMja1Wh1Wu0ifq1FbrEed6mAS+qqY250Fy5w4f77SVu8mPy1a8n++msu3P8AqYsXI18z/e16IjzM690cyThiTrB1BlsXADpqzK0WN/MWDLGJuYC59eVG9Asxj9c5cEHsMyUIQtOLi4tr8avwt0RtouWmJcsr0eEm5XP5mgHFxsJCkmbMRHfxIiofH1wefICys2cp2LCRnG++xZCWjv977yLVcYB0d8/uABzLPIbRZESpUJq7plJyCVJmAL43bbdUen4pl/NKUUgQEeB8Q2X1CzYP1NsvNtEUBKEZZGRkWLsKrZJouWliucV67KR8isqnxPnYm/cpylyyBF1CAipvb0J+/h+es2YR8P77+H/0IZJaTcEff5D+3nt1Pk8H5w5oVVqKDcWcyysf8FXeNeUvm1flvVlbbmKScgHo7O14w7PFegW5oFJIXMotITmnbotJCYIgCM1LBDdNLLdYj0FtXo3YUaVFq9aiS04m+4cfAfBdtAiVp6clv9OIEfiWL8CU/cWX5P+xqU7nUSqUhHuYZ4sdzSifKu9iHlTsaUwFbt79pWLLg5sb7ZIC0GpUdPM3t/6IrilBEISWSQQ3TSyvoJBClXn8jLfWvDVCzrffgV6P/cABOAwZXOUY57FjcJ82FYDU117DkJlZp3N19zB3TR3JLB93Ux7cOJelADdvcBNXHtxEtnNplPL6h1R0TYlNNAVBEFoiEdw0sbL8dNLKZ0p5O/hiKikhd/VqANwmT67xOM/Zs7Hp0gVjbi6pb7xRp3NFeF4zqLh8Orh98SXA3C1V391oWzujSeZIch4AkYEujVJm7yDzjKuYRBHcCIIgtEQiuGlihoKMK8GNvQ+F27djystD7eeH/eCqrTYVJI0Gv3+/CQoFBRs2UrRv/3XPVRHcnMs9R5G+yDLmRl2QBECp3kSRFTeLs4aEzEIKywzYqZV0aqSp2xVB0um0Aop19ZvVJgiCIDQ9Edw0MWNhBunlM568tF4UlO/a6zR61HVnQtl27Yrrw+Y9QtLeeOO608M97DzwtfdFRuZY5rErqxSX5eOjKQFuvkHF8ZfNm6yF+jqiUjbO293byRYfJ1tMMhy7VLdN3ARBEITmI4KbJiYVZ5JWPg3cR+VG4fYdADiOGFGn4z1mz0bp7EzZ6dPk/vzzdfNXtN4czTwKGnvQmndq7aY1d81k3WTjbk6kFADQ1bfxdn8H6BFoHlRcMZ5HEARBaDlEcNPEVCVZpJW30PifL8BUXIzKywvbOu6DpXJ1xWP2bAAyly7DVFJSa/6KQcVxGXHmhPJxN501WeYybrJVik+mmltWGj+4cQEgtnzlY0EQBKHlEMFNE1OXZVvG3LjEm8e+2A+4BakeW8G7TngQtZ8fhowMcsqnkNekh2cPwDwdXJZly4ypYJU5uMkqutlabszBTZhvwzbLrElk+bRy0XIjCILQ8ojgpompDVnklrfcqA6fAEDb/5Z6lSFpNHiUb2aW9dlnGAsLa8wb6haKSlKRVZrF5aLLlnE3gZJ5Ib+sm6jlJrtIR1q+OZjr4tO4LTfhAc5IEiTn3NwbkgqCILREIrhpYgbZvNCbk16J/vhJAOz796t3Oc7j7kETEoIxN5fsr76uMZ+typbObp2B8sX8yrulvEwVwc3N80V8srzVpp2bFocbXJn4Wk62ajp4mmdfidYbQRCaw9dff01YWBharZbQ0FDWrVtn7Sq1WCK4aUJ6owm90jygtWeGFoxGVD4+qP39r3NkVZJKheez5rE32d98U2vrTcUmmnEZcZaWG3dd+UJ+RTdPy83xlIrxNo3bJVWhYsXjuPJ1dARBEJpKVFQUs2bN4pVXXuHYsWOMGjWK6dOnN+o5li1bRkhICLa2tvTu3Ztdu3bV6/g333wTSZJ4/vnnG7VeDSGCmyaUW6zHoDLvPxSWrgbA7gZ2d3W86y407dtjys8n58eax95UmjHlEmw+tvQyIJN5E00Fb6qZUhXC/c3lHr8spoMLgtC03n33XebMmcPEiRNp3749o0ePprCWf3Lra9WqVbzwwgvMmzePmJgYhgwZwqhRo0hMTKzT8QcOHGD58uUtZgdzEdw0obwSHWUqczARfNkEgF1E9waXJykUuP9tGgDZK76qceZUxYypE1kn0DuYt3xQGUtwo4Csm6jlpmIwcWgjj7ep0M3PPB38+GXRciMIrY0sy+hLS61yq+9K8QUFBezZs4cxY8ZY0jZu3EhkZGSjXY+lS5fy5JNPMnXqVLp27coHH3xAYGAgy5Ytu+6xhYWFPProo3z22We4uro2Wp1uxA0NRNDr9aSmplJcXIynpydubm6NVa82Ia+gkCKleUVg7yRzC45t9xuLap3HjCFzycfoL10i9+dfcJv0eJU8QU5BONs4k1eWx6nCi4Q7+kJBCoFSOomF7jd0/tbCYDRxNt38X01TdUtVlHs5r5ScIh2u9pomOY8gCI3PUFbGR5MfsMq5n/36F9S2tnXOHxcXhyRJREREUFxczPfff8+SJUv49ddfq+RdvHgxixcvrrW8DRs2MGTIEMt9nU5HbGwsc+fOrZRvxIgR7N69+7r1mzVrFmPGjOHOO+9k0aJFdXxWTavewU1hYSHff/89P/74I/v376es7Eo3R0BAACNGjOBvf/sbffv2bdSKtkZFOelkKpVoS2W02eXBTVjXGypTUqtxnzaV1Pmvk/Xll7g+/BCSpvKXqiRJdPfozp+X/iQuI45wl3ZQkEKAlElcsR6D0dRoq/W2VInZxeiMJmzVCgJdtU1yDkdbNUHuWi5mFXM8JZ9BHT2a5DyCINzcYmNjCQ0NJTY2loEDBwIwfvz4Si05FaZPn86ECRNqLc//mnGfmZmZGI1GvL29K6V7e3uTmppaa1krV67k8OHDHDhwoC5PpdnUK7h5//33eeONNwgODuaee+7hH//4B/7+/tjZ2ZGdnc2xY8fYtWsXw4cP55ZbbmHJkiV06tSpqere4pXlpZGlVBJYvqm3yscHpeONtyI4jx9P5n+XYkhNJfe333B98MEqeSI8I/jz0p/l426CIGkfgYp0MEF2sQ4vx7r/19AaVbTadPB0QKGQmuw8Yb5OXMwqJv5ynghuBKEVUdnY8OzXv1jt3PURGxtLz549CQ8PZ9++fezZs4d58+bx2muvsXDhwkp53dzcGtyLIkmVPytlWa6SdrWkpCSee+45Nm3ahG09WqKaQ72Cm927d7Nt2za6d69+3Ei/fv148sknWbZsGV9++SU7duy4qYMbQ0EmWUolARnm/lWbRroWChsb3J58kvS33iLrs89xGT8eSVX5payYMXUk4wi4miP9juosMJjXumnzwU2GObjp2EibZdakm58TG46likHFgtDKSJJUr64ha4qNjWXixIk4OjrSr18/+vXrx8mTJ9m7d2+VvA3plvLw8ECpVFZppUlPT6/SmnO1Q4cOkZ6eTu/evS1pRqORnTt38vHHH1NWVobyOnsoNpV6BTc/X7W30YABA/jjjz9wcqo6WNPW1paZM2feeO1aOX1RFplKJbdklgc3HTtaHstNL+b4rstkpxRho1URGOZGx95eqNR1eyO4PjSBrE8/RZ+YSP6GjTjfPbbS4+Ee5u0dkgqSyA7wwA0IUpqbkG6GhfwqWm46ejZtcBPmZ37/x4vgRhCEJmAwGIiPjyc0NLRSelxcHCNHjqySvyHdUhqNhsjISDZv3sz9999vSY+OjmbcuHE1ljNs2DCOHj1aKe2JJ54gNDSUl19+2WqBDdzAgOJ9+/ZRWlpaJbjJz89n4cKFvPPOOzdcudbOVJxFjlpBYIZ5plRFcHPmQBpbvzmBQW+y5D29P40D6xK47ZEutOt2/UG/Cq0Wt8mTyPjwI7KWf4rTmNGVtnRwtnEmxDmEhLwEjimM3Ar4yxnAzbEFw7n05mq5Mc+YOpdRSInOiJ3Gen/MgiC0PSdPnqS0tJRFixbh6+uLVqtl2bJlJCQkMG3atCr5G9otNXPmTKZPn07fvn0ZMGAAy5cvJzExsdJaOh9//DFRUVFs2bIFAEdHR8Kv2SfR3t4ed3f3KunNrd6jSu+77z7+/e9/I0kS6enpVR4vKirivffea5TKtXYlZekYJYnAipabzp1IPpXD5hXHMehN+HVyYeijXegzOhh7Zw35maWsXRLHvrXnkU3Xnyro+uijKBwcKDtzlsKtW6s8btlEU2deJdnTlIaEqc1vninLsqXlppN30wY3Xo42uNtrMMlwKq2gSc8lCMLNJzY2Fl9fX+zt7RkyZAi33norSUlJbNu2DV9f30Y7z3333cf777/PggULiIyMZOfOnaxfv56goCBLnszMTM6dO9do52xK9W65CQoKYt26dciyTI8ePXB3d6dHjx706NGDiIgIjhw50qgXvDUr0WfiUCzjUmS+rwwMZuvbRzGZZDr19Wb4E2FI5YNde45ox96ocxzdcYmDv1+gIKuUOyZ1rXUwrNLJCdeJE8lavpzMTz7FYdiwSoO/enj2YM25NRwpuAiSArWsx5O8Nr8FQ0peKUU6IyqFRJC7fZOeS5Ikwvyc2HUmk/jLeUSW7xYuCILQGGJjY+nfvz9RUVFNfq4ZM2Ywq3wfw+rMnz+f+fPn11rG9u3bG7dSDVTv4Ob9998HwMbGhj///JPLly8TExNDbGwsUVFRmEwm3n777UavaGtUasq1zJRS+/tzdG8WBdmlOLjacPtjoZbABkBjq+LWR7rgGeTItu9OcWpvKiaDiTufCENRy7RttymTyf7mG0qPHaNo924cBg2yPFaxUvGxrHhMTv4o8pIIkDLa/EaPFa02Qe5a1M0w5b2bnzO7zmSKQcWCIDS62NhYBl31uS7UTYPH3BQVFaEqn6FT24Cjm1kpBfjkmLuXVCHtObotGYD+97RHbVP92IyuA/3Q2KnY9Hk8Zw6mo9Iouf3x0Bqn46nc3HCZ8CA533xL1iefVgpuOrp0xE5lR6G+kAQXPzrkJREopbf5AcWWLimvplm871oVg4or9rISBEFoLHFxccyYMcPa1Wh1GvxvrUrVuLsst0WlUgleuebgJtMzkqI8HXZOGjr1rXlqHUCHnl7cNS0cSYITu1PYt+Z8rfndn3wS1GqKDxyg+PBhS7pKoSLMPQyAI1pz90yglNHmN88800yDiSuE+piDqNOpBfVeVl0QBKE2GRkZlWYwCXVTr+CmrhtoVbh06VK98rclOoOJEmUZ3rnm+8lyIABhA31Rqq5/2dtHejL0UfPUv0MbLnJkW1KNedU+Prjca249y/zkk0qPVXRNHSmPRQOkjDY/5uZcM61xUyHEwx61UqJIZ+RSbvX7fQlmxy/ns2DtcR7/Yh/TvjnI57vOk1est3a1BEFoY+oV3PTt25dp06axf//+GvPk5eXx2WefER4ezqpVq264gq1VXomeYqUBr1wZo0JDar55C4AOvb3qXEbYYD/639MegF3/O8O5mKqz0yq4T50KCgVFO3dREh9vSe/h0QOAIwZzl0mglNHmu6USMs0juNt7Nu1g4gpqpYIO5evpnEoVM6aqozeaWLD2OGOW7OLLvxLYdSaT6ONpLPr9BLe/u51N8bUv8S4IglAf9QpuTpw4gbOzMyNHjsTb25sxY8Ywbdo0Zs+ezWOPPUavXr3w8vLiq6++4p133mH27NlNVe8WL6+omDwVeOdClltXjCYJJw9bPALq15rQe1QQ4bf5gwzRXx4n9Xz1O1BrgoJwGj0agKzln1nSu3uap4OfLc2gWJIIkDIo0Rsp1hka9sRauMIyAxkF5pappp4pdbXO3uauKTEdvCqD0cSs7w/z5V8JyDKMCvfhnQcieGVMVzp6OZBdpOPp7w7x/b6L1q6qIAhtRL2CGzc3N/7zn/9w+fJlli1bRufOncnMzOTMmTMAPProoxw6dIi//vqLUaNGNUmFW4uC3EwKjAqciyHHtQsAQd09at2nozqSJDFkQieCu7tj1Jv4fekRctOLq83r/jfzgk4FmzZRVr4WgZfWCx97H0zIxNto8JOyUGBqs603F8pbbdzsNTjbqZvtvF3Kx92Ilpuq5q+NZ9PxNDQqBZ8+3ptlj/XmwT6BTB3SnvXPDuHxW4KQZfjX6mOiBUdoEhWfu2JMXOvQGK9TgwYU29raMnz4cN5//32ioqLYuHEj3333HS+++KLVVyVsKYpzM1EUmC9vrpt57ExAZ9cGlaVQKhgxNRzPdo6UFupZ93EcJdUEJ7adO+Nw5zCQ5UqtNxX7TMXZ2qGWjPiS1Wang1/IMgc3we5NsxN4Tbp4i+CmOhuOpvDd3kQkCT56OJK7uvlUelyjUrBgXDce7huISYbnf4rlYvlrKAiNRaVSYTKZKC6u/h9DoWWpeJ3U6ob/g9rgKU9Dhgxh48aN+Pj4XD/zTag4LxW7fAU6tZYiO/PsKL9OLpbHZVnGZDSirOOsM7WNkjGzIvj17UPkpZewfulRxj0fieqa5f49np5O4eYt5K1bh8fsZ9AEBBDhGcGmi5s44uAEubkEKtruuJuKlptgj+brkoIrLTfnM4rQG03Nsr5OS5dVWMa81ccAmHFbB0aGV7+4pyRJLLo3nITMIvYlZPPi/+L46ekBKJtwN3fh5qJUKikoKCAjIwOFQoFWq613K3pbZjKZ0Ol0lJaWolBY77NLlmWKi4tJT0/HxcXlhvamanBw06dPH/r3788ff/xRaUOvmJgY5s2bx/r16xtcqbYgtyAZrzzIc+4AgLu/PbYOajIuJrD75++5cCQGQ1kZjh6etO/Zh4g7R+EV3L7WMu2dbRj7TA9WvXOI1PN5bF5x3Dxl/KovAbvu4dgPGkTRX3+R9dnn+L4+/8qMKbUSGcxr3bTR/aUSMs0Rf0gzjrcB8Hexw16jpEhn5EJmEZ28m2eNnZbs/c2nyS7SEerjyHN3dqo1r0qp4N0JPRj5wS4OXszh+30XmTQguHkqKtwUCgoK6Ny5c7XbBt3sZFmmpKQEOzu7FhH0ubi43HDDSYODm88//5zXX3+dwYMHs3r1ary8vHjllVf49ddfueeee26oUrV58803WbVqFSdPnsTOzo6BAwfy1ltv0aVLlyY7Z0PkF6fglSuT72ieAu4V7MS5Q/tZ9/6/MeivtJoUZGYQF72BuOgNdOw7gKGTpuLsVfM6OG6+9oye0Z3fPozlXEwGu1edZdADlb84PGZMp+ivv8j99Vfcpz5FV9+uqCQVWbKBFJWSAENGm91fytIt1cwtNwqFRCdvR2KTcjmVVnDTBzfnMgr5cb95+YLX7+mGjer6/4EFuGp5eWQX/vVbPO9Fn+aeHn64aDVNXVXhJuLt7Y2vry96vVh+4Gp6vZ6dO3dy66233lBXUGNQq9WNspv4Da3E99prr6HRaBg+fDhGo5G77rqLAwcO0KtXrxuuWE127NjBrFmz6Nu3LwaDgXnz5jFixAiOHz+OvX3zfqHVpqgsE688KHRoB4DWoYjfP3oHg15HcGRvhjwyGQc3d9LOnSF+xxZO7/2Lswf2cCH2EIMeeozeY+6ttMv31fw6uTJscleivzhO7OYkHN1tibg90PK4tk8fS+tN5n+X4vfvN+ni1oX4rHiO2NgQWJbB0TY65qZivEZIMwc3YF7MLzYpl1OpBYyNaPbTtyjvRZ/GaJK5s6sX/dtff5f7Co/0a8d3exM5lVbAR1vO8urdYU1YS+FmpFQqG+XLsy1RKpUYDAZsbW2tHtw0lgZ3rqWkpPDss8+ycOFCwsLCUKvVPPzww00a2ABs3LiRKVOm0K1bN3r06MGKFStITEzk0KFDTXre+io15OBScKXl5vyhX9GXlhAY1p3xf38Vr+D2aJ2cCenZh7HPv8ykd5YQGNYdg17Hju++5OeF88jPqLn5tHNfH26598oaOOdjMyo97vn8cwDkrVlD2blzV3YIt9G02S0YCkr1lhap5m65gaumg9/kg4ovZhWx4WgKAC/dVb8WVZVSwT/HdAXg+30XSS8obfT6CYLQ9jW45aZ9+/aEhoby888/M2bMGP744w8mTJhAcnIyL7/8cmPWsVZ5eeZ1X9zc3GrMU1ZWRlnZlZaK/HzzgnZ6vb5RmycrytLr9ZQY83AsdUavccJkSCLlzFEUShV3TJ2J0WTCaDJVOtbZx497575O/PbN7PruS5KOH+Xr/3uG25+YTpeBQ6o9X/c7/MjLKObEX6ls+iKeu5+NwCvY/AWrCg3F/o47KNq6lfQPP6LbM7cDcNTGhslSBpkFpc3eNHv19WkKZ1PNr6uHgwYbhdzsz6+jpx1gDm4acu6mvj7NZfmOc5hkuK2TBx3c7er9fAYEO9MjwJm45DyW7zjHy3d1BtrO9WkK4trUTlyf2rWm61PXOkpyAyeUr1y5kocffrhS2uHDhxk7diz33nsvS5cubUix9SLLMuPGjSMnJ4ddu3bVmG/+/Pm8/vrrVdJ/+OEHtNqmmTK85+xixv7iT1yPZzCUrMFQehanjl3x6jf4usfqC/JJ27ON0kxzy41jSCc8+wxEoa46/kA2QdZhO0ozVCg0JrwGFKPSml9STUoqQR9+iCTLxD0ziTccf0Aty+y9kMRwaQVzIttW0+zhTImvzyhp7yjzXLix2c9foIdXDqqQkHmrn5Ea9kZt04r08NohJXpZ4pkwI52cG7ZexbEcic9OKtEoZOb3MmLfNlrKBUG4QcXFxUycOJG8vDycnJxqzNfglptrAxuAXr16sXv3bkaXr5Tb1J555hmOHDnCn3/+WWu+uXPnMmfOHMv9/Px8AgMDGTFiRK0Xp770ej3R0dEMHz6cA/GvUWzvg2wqwVCWAMCYJ6bhGRRSp7JMDzzI/tX/48DqXyhIOIOiuJCRs+bg3b5j1fMON7L2wyNkJhVScsKTcXN6YFv+bZB66hSFGzYw4EgCLne4kFuWy3EbDR6GfEaPfrTRnntdXH19mqJf9/y2c3DmHD07+TN6tHXWW3rvxDayi/R07DWI7v7O9Tq2qa9Pc/hmbyJ6+SRdvB149uEBDZ55MUqW+XPpXk6kFpDq2IXZd3RoE9enqYhrUztxfWrXmq5PRc/L9TT61t7BwcH89ddfjV1sFbNnz2bNmjXs3LmTgICAWvPa2NhgY2NTJV2tVjfJC6lWq1EXGyjSemPUnwPZiGdwe/w6dq5PIQx5eBIhPXqxfsm75KWl8PPrcxn88OP0GTu+0mBjtVrN2Gd68MtbB8lLLyH68xPc81wkKrUSr2dnUxgdTfHOXdwd2Ztv7XOJsbXBMeMySqUKhRXWEmmq656UYx6f0d7T0Wp/oKE+Tuw+l8XZzBJ6BXs0qIymuj5NTZZlfjl8GTAPDNZobmym0/ShHXhuZSwrDyYz+87OVFyS1np9moO4NrUT16d2reH61LV+TbJaj6trw1birQtZlnnmmWdYtWoVW7duJSSkbi0hzUmWZdTFRoq13pj0FwDo2Kd/g8oK6BrOpLeX0Kn/QExGAzu/X8Gvb75GYU52pXwVa+Bo7FSknM1jy1cnkE0yNiEhuJa3st2xJgnJJHPYxoYAKZ3ckpbfv1ofCZbVia03a65iUPHZ9EKr1cFajl3K50RKPhqVgnt7+t9weaPCffFwsCG9oIw/xLYMgiDUQ6tbRnXWrFl89913/PDDDzg6OpKamkpqaiolJSXWrppFcZkBTbFMoZ0XJoN5M8DgHr0bXJ6tgwN3vzCX4X97BpXGhotHYvjm77M5H3OgUj53PwdGTe+OQilx9lA62747iWyS8Zg1E4WTE/YX0hl6VCbW1gZ/KZ2sNjYd/MrqxM279cLVOnqZN0Y9cxNuoPnTwUQA7urm0yjr02hUCib2M882/GaP2FRTEIS6a3XBzbJly8jLy2Po0KH4+vpabj/99JO1q2ZRUFiITZEWnbIE5DJs7B3w6Vj7Cq3XI0kSEcNG8tibH+AZFEJJfh5R/36dbV8tx3DV6PGALq7c+UQYkgQndqew/fuTKJ1d8JgxA4BHdpgoNSiw1aS0qYX88kr05BSbr4M1W246VQQ3N1nLjc5gYk2suUvqoT6B18lddxP7B6FUSOxPyOb0TRgwCoLQMK0uuJFludrblClTrF01i8KcNGzLPDAZzE3p/l26olA0ztQZ94BAJi56l56j7gbg8IY1/DBvDlnJSZY8nfp4c+eT5gDn+F8pbP/xFC6PPIK6XTtcimDcXhN5dm1r88ykbPO2Cx4OGuxtGn0oWZ1VtNxcyi2hWGewWj2a219nM8kvNeDpaMOADnVftO96fJxtubOrFwC/lo/nEQRBuJ4b+hbYsmULW7ZsIT09HdM167Z8+eWXN1Sx1iwv7xJ2eg8KjebgxqdDPQYS14FKo+GOKU8THNGLjUvfJ+NiAt/NfZ7bp0yj+x13IUkSnfv6IJtgy1fHOb7L/KXQ88UXSXnuOe7eL7O6Q2mb6paqCG4CXK3XJQXg7mCDm72G7CId5zOKCK/njKnWat0R86J9o8N9Gn3Dywd6B/JHfBprjqQQbp1JcIIgtDINbrl5/fXXGTFiBFu2bCEzM5OcnJxKt5tZdm4yNkY3ZENFcHNjXVI1ad+rL5Pe+Zh23SMx6MqIXv4xa95dTFGu+fp36e/DsMldQYLjuy6zL9GPsh6haAzQfZeCgtysJqmXNSTlmIObdm7WDW7gqnE36TdHN4rOYGLTcfN7fXT36nf+vhFDu3jibq8hs1DHyVzrb+onCELL1+CWm08++YSvvvqKxx9/vDHr0ybkFl1GjQuy6QIA3k0U3AA4uLrxwD8XcHBdFH+u/IazB/aQdPwItz32FOG3D6fLLb4oVAo2rzjO2UPpFPV8kZDjM+l6QU/+7l9hTJ8mq1tzSso2DygPdLOzck3M4272J2TfNDOm/jybQUGpAS9HG/oE17xSeEOplQruifRjxV8XOJAhghtBEK6vwS03Op2OgQMHNmZd2ozivBSKbcyzRWztXdA6NW3XhKRQ0Pee+3l08ft4t+9IWVERmz79iJ8XziMn9TKd+ngzZmYEKo2ClAs6dg94Fr3KjvCNGzAWto0v4MTsFthyk9Y2ru31rD9qbrUZ1QRdUhXu72Vey+potkReG1vCQBCExtfg4Gbq1Kn88MMPjVmXNkOfm06J2vwh7+xd+wKDjckruD0TF73LbY8/hUpjQ1L8Eb556Rn2Rf0Pv85O3PNcT2y0KlC0Z1+fl5BMTmR88GGz1a8pVXRLBVp5zA1AJ6+bZ60bo0lm20nzNiF3hfs02Xm6+TnRxdsBgyyx/phY80YQhNo1uFuqtLSU5cuXs3nzZiIiIqqsGvjee+/dcOVaK1N+HgalDozgHth8wQ2AQqmkz9jxdOw7gM2f/5eLR2L4c+U3HNsWzdDJ07h3Tk9+fmcbOnw41OsldGuX43jnPuxvadgigy2BySSTbOmWamBwU1YISXshOwEkBTgHQtAAsHGsd1GdvM0tNxeziykzGLFRtd1NpuKSc8kq0uFoq6JvE3RJVZAkiXsj/Xjrj9P8fjSVSQPbN9m5BEFo/Roc3Bw5coTIyEgAjh07Vumxhu4n02YUmjDJ5t3KvUOCrVIFF28f7v/nAk7+uZ0d368gNy2F1W8vICSyN937qoiOCcCrKIiYHrPR/ftHBn8XjtLBeuvD3Ij0gjJ0RhNKhYSvs239Di7MgO2LIe4n0BdVfkyhhm7jYciL4BVa5yK9HG1wtFFRUGbgQmYxXXzqHyC1FltPmFttbuvsiVrZtCtLjAr35q0/TrP/Qg7pBaV4OdbztRYE4abR4OBm27ZtjVmPNkUqsUM2mrdH8AhsZ716SBJdh9xOhz792Rf1Pw6uW01C7CEuHlGQ6x9NieMYggr6csznHor/tYoR7zyKUtXqlj6yjLfxd7FDVZ8v2JPrYfV0KDUHori0A+/uIEmQFg85CXD0fxC/CgY+C7f/E5TX39dEkiQ6ejsQk5jLmfSCNh3cbCnvkhpWvhZNU/J3sSPIQeZiocQfx1J5fEBwk5+ztZNlGaNJrt/fhSC0AdZb7awNU5TYIZvMX5hu/s3bLVUdjZ2WIROnEH77cLZ/8znnDx+gXZITOtUODK7pKPXDOV/izy+vbWf0iwNxdGtd/xFXrHFTr5lSe5fBxrmADD4RcNdiCB5sDmwqXI6BHW/DqfXw53uQuAcmfAMO1/8i7+RlDm7a8riblLwSTqTkI0lwW+emD24AIt1NXCxUsu5IighuapBdpGPlgUSij6dxOrWAIp0RBxsV4f5O3NnVmwf7BOJs17I3RxSEG3VDwU1ubi5ffPEFJ06cMLcSdO3KU089hbPzzbFwWU0kgz1QCiiwd2m6TUTry9XXn/Evv8aFQ3tZt+SfUKLFkHEKhfICsrIvGXJv/rdoH8OfCqddt8ZbZbap1Xum1MEVsPEf5t/7ToWR/66+RcavJzzyIxz/DX57xhzcrBgFk9aAc+0bQ3a8CbZh2FreatOrnStu9je+l1RdRLrL/HYR9l/IFl1T1zDJ8OnOBJbtOE+RzljpscIyA3vPZ7P3fDbvR5/muTs78cSgkCbvShQEa2nwO/vgwYN06NCB999/n+zsbDIzM3n//ffp0KEDhw8fbsw6tj4G8weuUqltkeOPgnvfwrAOF9gRmUGBVo/OWIZO9yf63M8ozDnMmo8OsfOn0xiu+YBsqSpmStVpdeLz2+H3OebfB8+BMe9ev6spbBxM2wbO7SDrLKwYCblJtR5imTHVhqeD7zqdCcDtXTyb7ZxuNhAZ6Iwsw0Yxa8oiq0jHx/FK/hN9hiKdkW5+Tiwe353Nc27j0Ct38sfzt/L6Pd3o4u1Ikc7I4vUneejTPaTmlVq76oLQJBoc3Lzwwgvcc889XLhwgVWrVhEVFUVCQgJjx47l+eefb8Qqtj6ybP4vVmNj/WnJNVGqfMAjj6hbLxMw/g60jk6YKMZQvIWyvC+I2bCGnxbtJiOx5a+ym1TXlpv8y/DLUyCbIPJRGPZq3U/i0RGeWA9uHSA3Eb5/AEpqXom7ouUmIbMIg9FUY77WymiS2X3OHNwM7tR8wQ3AqG7eAPxevuXDzS45p5iHP9vPuQIJexsl7zwQwbrZg5nYvx0dvRxwd7Chi48jkwcGs+G5Ibz9QAROtioOJ+Zy98d/ciq15f+NC0J93VDLzcsvv4xKdaVnS6VS8fe//52DBw82SuVaI51ejwlza43W0cW6lalFvo0f/UpLMSngfEgZU5euYMCA27DVGUAuwlCyndTTH/Hja/9l96p4jIaW+wWdVJdp4LIM616A4kzw6W5usalvq5pLIExeA45+kHESVj4Khup3Vvd3scNOrURnNFm6zdqSo5fyyC814Gironsz7581sjy42X8hm/T8m7vlIbtIx+Nf7OdCVjGuGplfn76FB/sE1thirFBITOgTyNrZg+ni7UhGQRkPL9/DsUt5zVxzQWhaDQ5unJycSExMrJKelJSEo2PbnR1yPaW6PIySORBw9W78fXYaS4lDAP1LzF8M+1P3o9bYMPD5/2P8LbcTnpSOnd4Icgn64j/Z89M8lj/zOif3HLdyrasq1RtJLf+CC3StZUDx8dVweqN5evd9n4O6gds0OAfAY7+AjRNc/As2zas2m0Ih0cHLPLW+LY67+eusudVmYAf3JluVuCZ+Lnb0bOeCLMOm42nNeu6WpERn5MmvDpCQWYSfsy3Phxvp4Fm35RyC3O356elb6BHgTE6xnklf7udCZtH1DxSEVqLBwc1DDz3EU089xU8//URSUhLJycmsXLmSqVOn8sgjjzRmHVuVEl02Rsy7bXu2C7JybWpmcGpH31JzPc/mniWzxPxl5fvSS4T16MNtxy8QmV2Mo6svYKA45xC/f/B3Ppv9Emf2H0CWZSvW/opLueZWG3uNsuZBrSW5sP7v5t+HzKnXmjXV8u4G931m/n3/cjjyv2qzteWVinedyQBgcEcPq5x/RJh5NeTomzi4eX1tPLFJuTjbqfliUi9cbOp3vItWw3dT+xMR4Ex2kY4pK/aTXVR9S6QgtDYNDm7+85//cN999zFp0iSCg4MJCgpiypQpPPDAA7z11luNWcdWRZ+XjglzN4RHxxAr16ZmkksQLiYTHXTmIOVA6gFzulKJ3zvvYNelC35JKQy7lMLdM1/G2TsMgPz0k6x593U+efop9q3+2bIDubUkWqaB1zJ4+68PoSgd3DuZF+RrDF1Gwq3/Z/59zbOQfqJKlopxN20tuCnWGTh8MRdo/vE2FYaHmbumdp/LpKD05ttrak3cZVYeSEKSYNmjvSzvtfpytFXz+eQ++LvYcSGrmFnfH8Zoahn/uAjCjWhwcKPRaPjwww/JyckhNjaWmJgYsrOzef/997Gxqee/EG2InJuPbDJ/mXkE1T5d2Jo0nubl6weUmJui96XsszymdLAncOl/UXl6ojtzDvV/P+aJxa8x5vn/oHXtC6gpzkvnzx+/5tMZU1jz3mIuxB5CNjX/uJzkq4KbahWkwr5PzL8PXwCqRnxvDp0LHe4AQwn8OhUMZZUevjIdvG0N2DxwIQed0YS/ix3B7tYZNN/Ry4H2nvbojTLbT2VYpQ7Wcjm3hHmrjgIw+/aODLzB1jMvR1u+eqIvWo2SPeez+GjLmcaopiBY1Q0vcqDVaunevTsRERFotS13dlBzkQp1gHkKtaN70+21c6McPNuhl5UMKDEHB1cHNwBqf3/arfgSpYsLpUeOkDxzJp17BvO3//6LO6a+g53rSCSlD7LJyJl9u/n1zdf4/Nmp/LnyW7KSa58m3ZgsLTc1TQPf+Q7oiyGgH3QZ1bgnVyjh3k9A6w5px2DrokoPdyoPbs6lF2FqQ/8N/1neJTWoo7tVlzqoaL25mbqmZFnmX6uPUVBmoFc7F54d1qlRyu3k7cji8d0B+GjrGXaXj6kShNaqXov4zZkzh4ULF2Jvb8+cOXNqzXuzbpwpFVW0XqhR27TcBcbcnbRclt3pXZqBSlKSXJhMYn4i7ZyubBdh07EjgZ9/TuLkyRTv30/S9BkE/vdjeg7vSNeBT3NwwwXiomPQlxzBqDtBfkY6+6J+Yl/UT3gFdyB08G2EDroVR7emG5dRMVOqXXWrE+clw6GvzL/fOb/+s6PqwtEb7lkCKyfC7iXQ+S7zSseYp6ZrlApK9EYu5ZY0fFPPFmb3uSwABllpvE2FEWE+fLrjPNtOpqMzmNC0wq1D6mvDsVS2nExHrZR4+4GIRt1W4d6e/uw5l8VPB5N47qdYol+4FRdt8yzOKAiNrV5/GTExMej1esvvNd1iY2Oboq6tQ3nPhEJq2R8K7vYakmRP7GWZHnbm7rNdl3ZVyWcX3o3ATz9BodVSvHcvF598EmNuLrb2agY/0InH37ibHsMfxdb1adT2o1Go24OkIP3COXZ+9yXLZz7B/16fS8zGtRRkNf5/g8m5tSzgt3cZmAwQPASCBzX6uS1Cx0CvSYAMUdOhNB8AlVJBiId59kpbGXeTX6rneIr5+d3S3rqrWPcMdMHDwYaCMgP7ErKsWpfmUFRmYP6aeABmDu1IR6/Gn5U6/55udPC0J6OgjAVrW97sSEGoq3q13Fy9WebXX39NQEAACkXl+EiWZZKSmq9bosXRm6+HJLXsvVts1UpSFd5APP1w5hDm4ObRro9Wyavt04d2X60gadrfKI07wsVJkwn89BPUvr44edhx++Nd6TUymIMbAjm1tysmQzFG/WkU0hl0RYkkHT9K0vGjwKfYuHlwQF9Ml1sG4+YfcMPdGpdyzC03/tdOAy/JvdJqM+j5GzpHndz1JiTshJwLsHk+jDW3XHb0duBUWgFn0wu5PbR59l9qSocu5CDLEOyuxdvJui2TCoXEnV29WHkgiU3xaQyx0uDm5rJ853nSC8po56Zl5u0dmuQcdhol7zzYgweW7WZVzCVGd/flzvLuP0FoTRrcphkSEkJmZtX/xLOzswkJabmzhJqc0XxJFYqWvydpjsa8Dk+fYvMYoYOpBykxlFSb1y4ignbffoPS04Oy06dJmDCBkrg4y+POnnYMm9SVifP7Ez60IzYOPVFoHsDGaSpatztw8moPkkRZdiZ7fv6er16cwYo5M9j+zedcOBKDQVf/KajFOgM5xeaWxCrBzcEvQVcIXt2g47B6l11vNg7m7imAg1/Ahb+AK+Nu2sqg4n0J5t3u+4W0jPFkI7pdGXfTUpYnaArp+aUs33kegJdHhmKjUjbZuXq1c2XaEPOEg7lRR8kruflmo9WVLMuk55ey73wWG4+lsP5oCrvPZpKYVdymxtm1Rg3+Bq7pg6SwsBBb25Y71qSpmeTy4EbZdB8+jSVf2w7yoEN+Kr6+vqQUpXAg9QC3BtxabX7bzp0J/nElyTNnUnb6NBcfn4TvooU433OPJY+Ll5ahE7vQ/54Qju24xNHtyZQUOKHTR2LrUoxkcwonbSYZF0+QczmZQ5eTOfT7alQaGwLDwgmO7E1wj164+vpft1WnotXG0VaFk+1VLWVGvXn9GYCBs5tmrE11Qm6FXpPh8NewZjbM+KvNbaBZ0f3TP6RlbKw6sIMHWo2S1PxSjl7KIyLAxdpVahLvRZ+mRG+kZzsXRnf3afLzvTC8M9En0jifUcS7m06xYFx4k5+ztZBlmZikXH49lMyO0xkk51T/D6GrVs2ADu6M6e7HnWFeTRqQClXVO7ipGEgsSRKvvvpqpRlSRqORffv2ERkZ2WgVbG0qgj6lpuW33JQ4moMbbUEig/s8wc+nf+bPS3/WGNwAaAL8CfrhBy7//e8Ubt3K5b+/TNHeffi8Mg/FVe8FOwcNfceE0HNEO84cSOf4n5dIPQ9yWU/yysCl3XA8/bMx6S5w+cwRinKySYg9RELsIQCcPL0IDIsgICycwLBwnDy9qwQ7yeUL+Pm7XNNqc3ojFKSA1gPC72+kq1VHIxbCmU2QfQ62/5tO3V8CzBtoyrLcIjdSratinYGjyeZl+ltKy42tWsltnT3ZcCyV6ONpbTK4OZtewP8Omrv6XxnTtVneQ7ZqJYvuDWfiZ/v4bu9FJvQJJLyZt9loaWRZZvvpDN7bdJqjV21XoZDMY/48HW1QSOZNTJNzSsgp1rP+aCrrj6biqlUzdUh7Jg8MxsGm5X83tAX1vsoxMTGA+YU+evQoGs2VgbMajYYePXrw0ksvNV4NWxlT+TRwjV3LHlAMYHIJgWSw02UzxLsPP5/+mV3Ju5D71f4lrHSwJ+DjJWT+dymZy5aRt2oVJTEx5sX/wrtVyqtSK+k60JeuA31Ju5jLxh/2os/QUpxr4GKuG+CGm98Qut5qQCElkXr2KJdOxpOfkU78js3E79gMgKO7JwFduxEQFk5A13Bcff25XFNwc3CF+Wevx0HVzK+DrTOMfR9+fBh2LyEk9B6UComCMgPpBWVWH6dyI2ISczGYZPycbQmobauLZjY8zJsNx1LZFJ/GiyO6WLs6jW7J1rOYZPPz7B3UfEHlwA4e3NPDjzVxl5m3+hhRMwaiaOatNlqKS7klzF11lJ2nzcsgaFQK7o7wY0yED7e0d0d7zT+zeqOJI8m5bDmRzqrDl0jNL+WdP07x2a7zzBnemUf7BzX7tiU3m3oHNxWDip944gk+/PBDnJycGr1SrZlJNgBg59zy99dycHYnS3bEXSqgv9oDtUJNcmEyCfkJtHduX+uxkkKB5+xn0Pbvx+X/+zu6hAQuTJiA25QpeM5+BoVd1S8/Nz97XMLKGDH8dpLjczl9II3E+CyyLxeRfRnAC89299L/gcews88kP/McySeOkXbuDAVZGZz4czsn/twOgK2jEyVOfvQrciCopDslBV2wc3SC7AQ4t8V8wl6TG/eC1VWXUeYWo2O/oln3HO3d5nMms4zTaQWtOri5erxNS2qBuiPUC6VC4lRaAYlZxbSz0sKCTSEhs4i1cZcBeK6R1rSpj1fGdGXryXTiknJZeSCJif3bXf+gNua32Eu8svoYBaUGNEoFkwcGMf22Drg71LwgqFqpoHeQG72D3HhxRBfWxl3moy1nOJ9ZxKu/xbPq8CX+fX93Qn3E92dTaXD72IoVKxqzHm2GjHlgrJO3ddcAqQtPBw2JsjfuUgHa/Mv08+nHX5f/YmviVtp3rz24qWDfrx8hq6NIW7iI/PXryf7ySwo2bcLr7/+H4/Dh1X4JqtQKOvX1plNfb0qL9JyPzeDMgTQuncohI7GAjETz4Ft7l04Ed7+FfuMckaRUUs+dIPn4MVLOnqK0IB+pIJ/+ANsPsnT7Cly8ffFxKMO30A/P9l3wtPHEaqHEyLfg3DZIO8ozbut4juGcSSts1TN69pePt+nXQsbbVHDRaugb7Mre89lsOp7K1CF1e++2Bv/dZm61uSPUyyrdQl5OtswZ3pkF647z1saTjAz3qXkPtzbGYDTx+trjfLv3IgCRgS68/1CkZXmHulIqJO7t6c/dPfz4ft9F3t54itikXO75+C9eHRvGo/3btah/FtqKBgc3CxYsqPXxV199taFFt1olpcXIsjm48QxquZtmVvBwsOGC7E1PzkJOAsOChvHX5b/YcnELU7tPrXM5KldX/N97F6d77ib19QXok5O59Oxz2PXqhfff/w+7WsZg2dqrCRvkR9ggP4rzdVw8lsmFI1kkHs+iKLeM+F2Xid8FkkLCOziUoJ4DuOVBR5TKbP797SbKUi/QXZOHPjuN3LQUctPgJB0gzQB7HsbJ0wvPoJBKNxcvHyRFEy/45uAJo96CVdMYk/MdS6SunElvvf/1lhmMxCTmAtC/fcsYb3O14WE+7D2fTfTxtDYT3CRlFxMVcwmA2Xd0tFo9Jg0I4udDyZxIyeedP07x5n3drVaX5pJfqueZH2LYeToDSYJn7+jE7Ds63tCiiUqFxKQBwYwI82HuqiNsO5XBK6uPsedcFm/e373ypAjhhjU4uImKiqp0X6/Xk5CQgEqlokOHDjdlcJN8/hRgnjYZFBZh3crUgbuDDbvl8jUsss9ze+/HWbhnIceyjpFSmIKvg2+9ynMcOhRtn75kf/kFWV+uoOTwYS48/Aj2tw7B429/Q92jR63Ha500dB3oR9eBfhj0Ri6dyuXCkUwSj2eRn1lK6vl8Us+bF5BTqhS4KrtxwaEL3e7uQq9uTuTF/UbK2ndJ07uRoe5AfmYG+Rnp5Gekc+7gle0l1LZ2uPkF4OYfgLt/oOV3Fx9flKpG/IDp/iAc/QXVmT94W72ct9LCGq/sZnY0OY8ygwkPBw3t6/mfa3MYEebNwnXHOXgxh5wiHa5toHVh6fZzGE0yQzp50LOdq9XqoVIqWDCuGw9+soeVBxKZ2K8d3QPa7uDi3GIdj32xj2OX8rFTK/ng4Uju6tZ4M9R8nG35YnJfvvwrgX9vOMnvR1M4nVbAl1P6tplVzFuCBgc3FQOLr5afn8+UKVMYP378DVWqtUo5ddLyu2dwy1/rx8NBw0VTRXCTgIedB728e3Eo7RBbErfwWNhj9S5T6WCP57PP4vLQQ2R89BF5Uasp2rmLop27sO3ZE4ewMOThw0FdexChUisJCncnKNzcBZKfWcKl0zkkn8wh+VQOxXk6fAwSPqg5+ct5Tv4CTnbu+Kjvp32oG/1GTcbRBfLSk0m/mEBG+S0z6QL60hLSzp8h7XzlDQIlhQIXbx/c/ANx9fXH2csHFy9vnH18cfLwrH/gI0kw9n2MH/ejl/4svdN+QZYHt8om6IrxNn2DW9Z4mwqBblpCfRw5mVrAtlPp3NcrwNpVuiGZhWX8eigZoNH2j7oRfYPduDfSj9Wxl3ltzTF+md42BxfnFut49PN9xF/Ox91ew1dP9GuSQE6hkJg6pD19gt14+tuDnEkv5N7//sXySb2bddB4W9aoc9KcnJxYsGABY8eO5fHHH2/MoluFnOTk8t9sUKpa/nQ/dwcbLpa33MjZ55GAO9vdyaG0Q0RfjG5QcFNB7e2N3xtv4PG3v5H1xZfkRUVRGhODX0wMFzZswOX++3Aefx827esWBDp52OHkYUfXgX7IssyJU9m8/OkBAk1KBrs5kpNSTH6JA/ncxul4IP5w+XG2eAQG4xEYTucBDrj62GHUZZOdeons5CSyLyebb5eS0JWUkJNymZyUy1XOL0kKHD08cPbyMQc93j44e3nj6OGFo7s79i5u1b/mzv6Y7lyAcsMcnpF/JDt5Ju6BrW9Gz+GLOQD0CW7kD16T0bxFhskACvUNzW4bHubNydQCoo+ntfrg5sd9ieiMJnoEutC3sa95A/1jVFc2HU/jcGIuUTGXuL93677G17o6sPFw0PDDtFvo7N20E0MiA134bdZgpn5zgGOX8nlk+T7eeTCCcZH+TXrem0GjfwPn5uaSl5d3/YxtUHGW+QtA0cK3XqjgZKvisqK86yn/MuhLGdZuGG8deIuY9BgySzLxsLuxgdGaoCB8F7yOxzOzyPr2OzJWroTsbLI++5yszz7HpnNnHEfehdPIkWhCQurUKiBJEvkaOGpjpMDdhqX/dwtlB34mbdUS0pT9SfN5jKxLhRTmlJGfWUp+ZinnYzIsxyvVCly87HDxDsMtsA/t+2hx8bZDrSmjMDuFrEtJ5KamkJuWQl5aKnnpaRh0ZZYurqT4I9XUSYG9iwsO7h44unng4O6Oo7snjm7uOLj2J9EQQV/FMXS/Pw9Pr2++hQUbgSzLHE40v7d7BzWweyQ7AS4dgpQ4SIuH/EvmtYhKr/msUGvB1gWc/cGtvfnm1RX8e4Nd7dtXDA/zZsnWs+w4nUGp3oitunUumqY3mvhun3kQ6xMDg61bmav4ONsy+45OvLXxJP/eeJIR3bxxbCPjREr1RqZ9c9AS2Pw47RY6NXFgU8HH2Zb/PT2AOT/FsTE+ledWxpJTpGPKoJbf+t+SNTi4+eijjyrdl2WZlJQUvv32W0aOHHnDFWuNdPnmdVckWscfvCRJKOw9KCizw1EqgdyL+Hp2Idw9nGNZx9iauJUJXSY0yrnUXl64PzubfSHB3Kq1pzAqisK//qLs9GnKTp8m86MlqP39sR80yHy7pT9K55qbg6/dU8rm5I+0s4mj3W0j4Xbz2J6SQh2ZyYVkJReSmVxIZlIhOWlFGPUmsi4VkXWpqEq5tvZqHN29cXIPwqu9LR372eHgZoNKU4ZJn0tRbkZ5wJNKbloqhdmZFGRlYTIaKMzJpjAnm1ROV1NjZ/YwCPVpI9qYh9F6BWLv7ILW2QV7F1e0zq7YODhQkpFKbuplHFzdsNFqUSis/wWdkFlETrEeG5WCMN86Tl01mSBxNxxfA2ejIft83Y7TF5tvBZch+UClh1T2XvRT+aPYdxE63WkOeq4KEsP9nPF2siEtv4w957Ja7V5ef8SnkpZfhoeDDaO712/cW1N7cnAw/zuYREJmEUu2nuWfo7tau0o3zGSSeeGnWA5cyMHRVsX3U5svsKmg1ahY+mgvFqw7zle7LzB/7XGyi3S8MLxzi+wGbg0aHNy8//77le4rFAo8PT2ZPHkyc+fOveGKtUaGUvNgYklq4pk4jcjd0ZaLpd6ESxfMX0CeXRgRPIJjWcdYd35dowU3FkolDsPuwHXkXRhzcynYspX8PzZStGcv+kuXyP3f/8j93/9AkrDp2AHbiAjsInpg1yMCm44dkcq7fi5dvYBfURac324uP+Ihy6nsHDQEhroRGHqlWd9kNJGfVUpuWjG5acXkpFb8LKKkQE9pkflWMR39WmpbJVrnIGydOuIcqCEwQovWSY1KowO5AKO+AH1JHsX52RRmZ1KYnUVBVga5WVlIRgN6WUlebhF5uSerLR/gm+i15l8kCVt7B2wdHLBzcMLWwQFbR6cq9+0cHLGxt0djp8VGa4+NnRaVjU2jfSgeLp8lFRHgjEZ1nfd2QZp5w9LY7yH34pV0hQr8eoJPBPh0B9dgcPQFew9QqkFSglEHpblQkgO5Seb3Y/Y5SDkCafFIRen4kg6bY2Dzv8DBB9oPNe8d1mEYCnt37uzqzff7Etl0PK3VBjdf/XUBgIn9213/ejczG5WSV8eG8cRXB/jyzwQm9Am0bDHSWi36/QQbjqWiUSpY/ngfuvhYZ40yhULitbvDcLfX8G70aT7aepasIh0LxoWLBf8aoMHBTUJCQmPWo96WLl3KO++8Q0pKCt26deODDz5gyJAhVq2TSW8CQGr4fqTNzsNBw8V0L8K5YO46AEaHjOb9Q+8Tkx5DUkESgY6BTXJupYsLLvffh8v992EqKqLowAGKdu+maPdudGfPUXbmLGVnzpL36yoAJLUaTUgINh074FHqwOACW7p0VWOM2YdSNpq/NN1r3y1ZoVTg4qXFxUsL18xozc3PJ+78cRIuJZOVXkBhdhmmfCWaInvsSpywMWrRlxrJKzWSl1ZaflRWNWdxRJbskWz9UWrB1leNnQ8cTclnpOpPXIzJyM4eGNsPxqgrQFdaQFlxPqUFeWSlpSAZ9ehLS0GWKS0soLSwgFxS6nVtJYUCGzstGq3W8rMi+NHY2ZX/NKepbW1Qa2xQ29qitjHfVDY25b/bcOhsKsgyvWqbsZN1Dv76EOJ+NAcpABpH6DYOOo+EkNvAtg6tPtryQNS/d+V0fQmG5MOcjP6GMNt0FIm7oTAVjqw035AgoA9TXQdwRPJiy3E1pnvDW92g12OX8jh4MQeVQuLRFrpg3u2hXgwL9WLLyXReXxvPN0/2a7WtC1/9lcCXf5k/9/4zoQcDOlh3DSdJkpg9rBMu9hpe/e0Y3+9LJLdEz3sTeoi9qeqp5Y96rcZPP/3E888/z9KlSxk0aBCffvopo0aN4vjx47RrZ70PBJOhPLhpRR+o5kHF5dMcy7sOvO29ucX3Fvak7GHd+XXM6DGjyeuhsLfHcehQHIcOBcCQmUnJkSOUxB2h5EgcpUePYSostHRj9QR6Ahz4ltOAQu2D2ltGffQZ1L6+qDzcUbq7oyq/Kd3dUbm5IdnZWT6Iy4xlHEg9wI6kHRxOP8zZ3LOYZFN5hQCP8ls5tcEGe70zWp0T9jpntHontLpr7zuhMdkiyQooUWAsgaIs835j3XHkkmEUlwAyy29UXtRPpQGVRoGDt4Rao0ep0qFU6pAUZSCXIptKMBlLMBlKMBqKMehKMOiKyn+WYigrRpZlZJOJ0qJCSotufMNOD2A2ICWr+e8qO9RXBT5qlQJVQRLKgmSUkgmVIhiVgwdK3zCUXl1QlWlRnSxBeW4LSrUalVqDSq1GqdGgUmtQqtQoNVfSFSo1SpUShfL/27vvwKjKdPHj33OmpTcS0knovaNUFXFBrCjqFQsLdtzFu1ju/tZ1r2LZq+uqK65dd72WdWGvBdcFV1ARRKT3FmpIT0hCejKZcn5/nJmQkELKTCaZPJ97Z2fmnDPnvHk5Zp687/O+rxHVYMBgNKG63jsTJnA8tpDBV16JigMyN+sTJR77FvL3QdY2+mZt40sLnLaFcebjmfQaczX0vxQCfTeUui3e35QOwJUj470zm7Wmgd2qv1ZUUA36cxuDk/++ehg/HC3kh6OFrD2YzywPDpXuLD8dL+LpVYcA+M0VQ7h2dIKPS3TW/EkpRAaZeHDFblbtzaW0ysab88fLulRt0Kaaci+a2RovvfRSmwvTlnPfdddd3H23PtHcyy+/zNdff80bb7zBs88+67Xrno/mWuJe7cBET53NPZEf0CAv4pr+1+jBzfF/sWjUok7/y8wYHU3ojBmEzpgBgOZ0YsvJxXrsKLXHj/PFyh+JLMxikL0UtbwMp03FmlWMNevb85zYiDM4gAqzk2JDDRUWjSQLRFlgqhlMQcFEhPYmNLQXoWExhIdGExwSSVBwBEEhkRgDgzBYAlBMJpyqghUbNdip0Wqp0KoptpVRVJNLUUU5pRXVlFZVU1ZRQ2WFFcVqIsAerD9sIVjsgZgdAZgdgZgcAZic+kghe60Tey1UowIBrsd5GMAQCGqABthBs+oTSp7zrCi1KIoNhVpwPzQbGnb9WbOhOWvRnDacThuauxUG0Ow2aspt1DTZY1fvL95SIDsNSDt/udtM4bV//C+qUQ9+9Ed/DMoAVKcV1VGNUluBQXFgOHUcw7cvoyovowaGYQiNQQmNRQ2KQDUYUFQVVVX1Z4MBRTXUvXdvq3uvuI6tt+3ssQZUg3ub4eznG5xPARQUVUFRVBQAVUVRlLpHWY2dLZt3Ee/QuC4xhtyjaaDo3dyKooD7WFVFsVWjVORDRR5KeQ7OykL6njhMRcnnqNYyFGsZirUUbNUozloUey2K0wqOWhQF9NJoejkUDQVFD3IMJjAFopiCwBzoeh0MpgAwB4E5BMUcQh9zMO/2reG7E1XsWLmRS+zjsQRFgCUEzMFgDgFLqP7aGNDlEuizS6pZ/PFOHE6N68YkcN/FXpj4UdP0UYAOG2gOXP+YrmdXQKmoZ7efE2RePSqB8EAT9324g43HCrnl7c28d8cFRLew7IM4q03BTVNz2zTFm1+EtbW17Nixg9/85jcNts+aNYtNmzY1+Rmr1YrVaq17X1amTwRns9mw2WweK5t7RXDVpHj0vN4UFWRkd73h4HZXuS+Ov5gAQwAZ5RnsyN3B6JiWJ+BrDXedtLdulNjeBMT2xjJlCn84mYDV7mTLlfnEfP0QtQEDqJnyPPbcHOx5ediLinEUF+EoKsZRXIy9qBCstWC3o5ZWEAY03UlS4Xo0TICtcj1aEggkuh5NcSoKThRUgwKaA03R9G2qihMNu6JiNwZgNwRiNwbiMAZgNwZiNwTgMAbiUM04DWYcqhlNteA0mNEMFpyqBU0143Q/FPfrEJyG1g0jbu6/WP2ePhv4gA00e73X+i9uPThyuI51oOEAzd7Ee/250Xv3Z3G6zuN0PRqVCIfdhsPe0j3URDBYCRSeBk433teFzHE973ptJa37bXuuQtdzK4PiVrOhR60NR7e5s1Ne3buvic80dVedu639xygt7j9nu6KApvHnv3+kv9fgNsV1TDr8aWUzp2i1tn3nteXoe9yfSIcPf/R8Wep79e/LPXIet0EThjHrV/+vw+epr7XfH20KbtyLZvpSYWEhDoeD2NjYBttjY2PJy8tr8jPPPvssTz75ZKPta9asISjIczNCaq4uDacKq1ev9th5vSnztEK6ayI/7UwGX636Ek3R+3aHGoayy7GLZd8v48bgGz12zbVr13bo82W1YLUbUdBwbP8A1aSRHjOctIpyCA3VH655z8qd5Wy0bmRbzRnUWgPBVoi0WhjlGMBQRwoxtUEYrFbUmhrUGiuqzYZit6HYbCg2O6pdf1ZsNn2fzYZit6M4nSgOBzidjV87m/pSBlXTUNH073AAFPSadh/vQP8WbjyKq700QFOMONV6D8WIds57p+reZnK9N+jv3fsUg+uhuh76a6faeJumGNEUS5PHa4qK0/1aNYDiaj+oe1bRUPT9GmiK/lNoiuuhaaBoaPpP5vo/JxqA4nRtd4LmdNWn/lqre+3aT71n1zbtnPdNHYPrek0e1+C967i6be5/jbp/lXrnOGdbvfcauI5pvK/BNq2p/U2dtzM1dU3PlaNNZ9LOefZsUdrMh5fuVPmZ2R7/LqyqOt+fmboOdeCVlJTwl7/8hUOHDqEoCsOGDePOO+8kvIUhvJ5ybuuQpmnNthg9+uijDbrUysrKSE5OZtasWR5d1fyfJ9LIO3qCkbNmMPnKKz12Xm8KP17ER8e2UYsJMzaumOIayQKkFKUw/+v5HHAc4MUZLxIZ0LG8BZvNxtq1a5k5cyam88xQ3JI9WaWwYwupoRrxlQcB6H/NQ/TvfXZ5g0pbJR8c+oAPD31IjaMGFBgQO5CfD/05s/rMwmzw3vT8mqaB3Y7mcIDDgWa3o9nsvL7uGH/bksGNY+NZMqM/yvHvMKzS70v77BexJU3mx40bmTppMkajAc3p+nLUNHA69fNqGjZ7LRXWcspry6iwllFpq6TCVoHVYaXWUUut3YrVcfZR66zF6XTg1Jw4NCdOTf8idzqcOHHg1ByAA1WxoVKDqqgoKKiKSkZxDZU1dlJDIbImB8VhxaBpqMG9UaP6oRjMGNC7Xwzo3ScGDBhUA6qioqJgUPTXBkVFVQwYUFBd29wPg6Ki4nqvqvo5XZ93H4sGR48cZejgIRiNpgZ/V7raTF31b+CjzRmkF1XxsyG9uTA1qi6O0Bw2KM2AwmMoRcehutjVOeM+m4KmGiEgAi0wCmdQJFjCwRQMphA0Y2Dd6C6natK7EjQNnA699cnpAHsNms0K9moUuxVs1WCtQKutQLGWo9VWoTjt9b5vz7m++4cyBuI0h4I5BM0SCuZQNEuI3uVjDgH17D3s0BxkZmaSlJyMQTFw7tenhobr/903ad22+ju0ev/b8KUeaTY4q+scG44WUVxZS2J4ABemRtb7iPPsBI0OGzjtev27t9Xf53C91hyuYxyua9cLDLV65UXjbMea6q46V9eO6iqDa58KGio1NVYcBjNnquxoqMSEBhBgNurHqe7z6IF1wy4j1fXPo7rO5+5eOrtfQwGDcvYY9/Hu49z/vA0r8Jzg9my9nvOPBejrux3OK6e61o5BVRjUO5iwQGOjf0MFZ716qldf9Y87Z7+mOSktLSU8PMxVb02UzV3/TX7Nnt1YbrWRW2rF4XQSPnUmV3r4u9Dd83I+7Q5utm/fzuWXX05gYCAXXnghmqbx0ksv8fvf/541a9Ywbty49p66RdHR0RgMhkatNAUFBY1ac9wsFgsWS+N+SpPJ1KEv2XNdu/hBVq9ezeQrr/Toeb0pNjwIDZVMYulPFqayU9Bbb/YYEzeGYb2GcbDoIKtOreKOEXd45Jodrff8cr1Z8pqgfSilVug1AFPCKP2vf01j5bGVLNu5jKIafSTT6JjRLBq9iKkJUzsvd8jcOHhKGWyneG8p+22BBPXpA30WQvUB2Po25m2PYxv+NbaYGIIGDzpv/XTGnLVOp8aFT/6Lewx/517bVyiqE8Li4NpXYNDlnVCChmw2G3mrVzOqFf997ep1kk++PIgaFMWi6yc3f2DRcX1ywZxd+iN3jz7PDhn6/hrXwxNMrodbUDRE9IGIPnxxysj2khDGjhzF3BlTIDxZz19pJZvNxurVq5nhg989qTllXP3nH3BqMHPWRKYM6NjEn95gs9l4Zflq3jhkwh6g8diVQ7nZG3k2XlZabeOe97ezNb0Ys6byzOUj+I8JHR/N6r5/ruzA/VNSVcuTXx7UF3uNgiFxoVw3bbTH78fWnq/dwc2DDz7ItddeyzvvvIPRNfeI3W7n7rvvZsmSJWzYsKG9p26R2Wxm/PjxrF27tsEaVmvXrmXOnDktfFI0xZ2cdtwRS39Dlv7LfsDP6vbPGzyPxzc9zoq0Ffx82M8xdIFJ5bJL9GbJ6c6t+oah14KikF6azpM/Pcn2/O0ApISlsGTcEi7rc1mXGKo60DUfyNGCeiOYLv8ffcbeUz9i/GQ+xsRHfFS6xjL3rWeF9l/0N+bqf7GNvgVmP9stRh79bGgsT355kO3pxRRX1hLV3EKavfrrj1Gu+ZycDijN0ufXKXI9ynOgshAqT+vP9hr9oZ3T/agawWDRh7wHRunD2gMj9CAmPBHCklzProdJz4k5lFvGr3b+gEFV+MUVl0J4oPcqxguGJYRx+6QUPvjpFEu/PMCq/7wIUxcbVJFbWsN7RwzYnRrXjE7g7ou65+y/4YEmPrjrQh5csZuv9ufx60/2cii3jMeuHNqhFcs76qt9ufz3FwcorLCiKnD/9P7852UDfTp8vUMtN/UDGwCj0civf/1rJkyY4JHCNeehhx5i/vz5TJgwgcmTJ/P222+TkZHBokWLvHpdfxQVbEZR4ISWAOyAwoaLSc7uO5sXtr9AdkU232Z8y6zUWb4paD3ZZ6oxYmdYlT6DrW3Q5by3923e2vMWtc5aAo2B/HLML7l16K2Y1K7TgtbfFdycLrdSUlVLRJBZ7+K46X14+xKUomOMt70BjjnnXVjUq2w1sO73JG96FVV1ckaNIvLm12HwFb4rUxvVX0jzu8MF3NjadZBUA0Sm6I/+M1o+1mEHh1UPalQTqO37cnEP/549PI74bhbYuD00cxBf7snhSH4FH/50ijundZ3gocbmYPHy3VTYFIbEhvCHG0Z2iT922ivAZOC1W8ex7NujLPv2KO/9mM7R/Apenjem00dSFZTX8MQXB/hqv96TMqB3CM/fOKrlObE6SbtDvbCwMDIyMhptz8zMJDTUuzM83nzzzbz88ss89dRTjBkzhg0bNrB69WpSUlK8el1/ZFAVooLMHNdc07wXHWuwP9AYyK1DbwXg3X3v1o0I86XskhrGKUcJcFSQExLNHfv/zJ93/ZlaZy1TE6by2bWfsWD4gi4V2ACEWIz6jMqc03oTEgPz/oZmDCCubA+GVb/Sly/whazt8NZFsOkVVJx86pjG38at6FaBjdusYXo39dqDTQ806DCD0TXU2dLuwOZMZa3ejA8snJrqwcJ1roggM49cri8I+6dvjlBYYT3PJzqHpmk8/sV+9maVEWTQeO3WMQSZu/9cMaqq8ODMQbxx2ziCzAY2Hitk9ssbWJdW0CnXdzg1/rblFDNf2sBX+/MwqgoPzBjAqv+c1iUCG+hAcHPzzTdz1113sWLFCjIzM8nKymL58uXcfffd3HLLLZ4sY5N+8YtfkJ6ejtVqZceOHVx88cVev6a/ig6xcMLZdHADcNuQ2wg0BnKo+BCbcpoebt+ZskuqudSwm2+DArkxJpQ9p/cSYgrh2Yue5Y2fvUFSaNddrXhgrKtrKv+cyfUSxuKY+xecqKj7/gFf/7ZeQl8nsNXA2ifgLzOh8AiExPK7gN/ysO0XDB+Q2nnl8KCZw/SJ5TYcKaTG5vBxaZq2YnsmVruTYfFhTGjvoqRdxLwL+jAiMYzyGjt//Lc35jhqu4+2ZPCP7VmoCiwY5KRPlOdGx3YFV4yM5/NfTGVwbCiFFbXc8d42Hv9iP+U13puKZPOJIq7+80Ye+3w/pdU2RiSG8cXiqTw8a3CXmkW53cHNCy+8wNy5c/n5z39OamoqKSkpLFy4kBtvvJE//OEPniyj8LJeIWZOuFtuSjOhtuFQu4iACG4cpA8Ff3vv2z5vvck6U8bJmN0siY2hHAcjo0fyf9f8H1f3u7rLNzefzbtpPBOeNvBydqXos1qw5Q1Y/UjntOCc2gRvToMfX9bzSEb+B2cW/sBHJSMAGNsnwvtl8IIRiWHEhwdQbXOw4UjXm9/G4dT48Cd9/a2FU1K7/L17PgZV4clrhwPwjx2ZbDnR1NIknWdbejFP/vMAAA/PHMiQCN+3OnvD4LhQvlg8lYWuFeQ/+OkUM15czxe7s3E6Pfcz78sq5e73tzPv7c0cyi0jLMDIE9cMY+UvpjI8wfsjpNuq3cGN2Wxm2bJlnDlzht27d7Nr1y6Ki4v505/+1OTIJNF1RYdYOEMYNUbXDVp8vNExC4YtwGKwsLNgJ+sy13VyCc86ePo4atyf+CpC/yJYMOhm3p/9fpduralvYG+9y/ZYQUWT+7OipuK44gVAgW3vwmf3gL22yWM7rKYM/vUgvHcFFB2FkFi4+W9wwzvsdMUC/WOC9dygbkhRFK4YoQftq/e1bW2uzvDNoXyyS6qJDDJx7ZiuM/V/R4xPieLmCcloGjz8f3u82oLQkrzSGu7/aCd2p8ZVo+K5Z1qqT8rRWQJMBpZeO5yP7ppI3+hgTpdb+dXy3Vyx7AdW7c3F7mjfH0lOp8b6I6e5472tXPPqRr45lI+qwG0T+/D9f13KHVP7+jSRuSXtLlV1dTVVVVUEBQUxcuRIwsPDefvtt1mzZo0nyyc6gTsJrTDAtS7XOUnFoK83NX/YfAD+tONP2Jyd/0tr1YlVLPj6FpyB+UQ4HLzmiOKRyb/DZOhauTUtGdBct1Q9znEL4YZ39UTV/Z/A/14FpdmeK4TTCbv/Dq9dCNv/qm8btwB+uRWGXg3AjlNnABjfzbtKrhqlBzdrD+Z3ua4p9+rf8y7sQ4Cp6zTnd9Tvrh5KUmQgWWeqefpfBzv9+jU2B/d9tIPCCitD4kL5442jun2rWGtNGxjNv5dcxCOzBhFqMZKWX84vP97JlOe+49mvDrEr48x5Ax27w8n29GKe++owF/9xHQv+upV1aadRFZg7NpE1D17C768f2fwIxC6i3ZlVc+bMYe7cuSxatIiSkhImTpyIyWSisLCQl156ifvv9/5ii8IzeoXoN2muMZEk9jWZdwNw14i7+OzoZ6SXpfOPtH9w29DbOqV81fZqntv6HJ8d1VcH71dt4q3T2cRdcmenXN+TBri6pfLKaiirsREW0ExgNvJGfRjxJ3dC1lY9yXf2H/Tt7f1FrWlw4nv45gl9PheAqH5wzTLo2zBnbWeGHtx0leTA9hqbHEFCeAA5pTWsP3Kay7vIAo9peeX8dKIIVYHbJ/nXQIjQABMv3jSaee9s5h/bs/jZ0NhOW1jT6dRYsnw3ezJLCA808db88QSZjd1mORxPsBgNLJ4xkPmTUvnrjyf5cPMpCsqtvLX+BG+tP0GIxcjIxHBSo4OIDDJjMRooq7ay75jKX9/aQlp+OTW2swFQWICRueOSWDglldToYB/+ZG3T7pabnTt3ctFFFwHwySefEBsby6lTp/jggw945ZVXPFZA4X0xrpabdFxN40203ACEmEP45ZhfAvDKzlfIrvBga0Izjp05xi3/uoXPjn6GgsLUyJv4MDeLOIfDJxPJdVRYgIk412rPzXVN1RnwM7h3PcSNhKoi+Oxu+PA6yNzWtovarbD/M3jnUv3zuXvAEgYzn4L7f2oU2NgcTvZk6msIdfeWG1VVuHKk3nqzam/X6Zp6/6d0AGYNi6sbQedPJvbrxb0X6ZPk/b9P95J1pnVT5nfUs18d4t8H8jAbVN6eP56UXt3ny9jTwoNMPDhzEJsfvYw3bx/H7OFxhAUYqbDa+elEEX/fmsnr3x/nT98c4S8/nmLraZU9WaXU2JyEB5qYMyaBV24Zy9bHfsbSa4d3q8AGOtByU1VVVTfke82aNcydOxdVVZk0aRKnTp3yWAGF97lbbo7YXX9dFTUd3ADcOOhGVp1Yxc6CnTzx4xO8PettfWp8D9M0jU+Pfsoftv6BGkcNMYExPHfRc5z4/iBhipUyUzRhsSM8ft3OMDA2hLyyGo7ml5+/ZSSqL9z9Hfy4DDY8r7e8nPgekifqE8/1nwGRfRu35lSfgVM/wbG1emBTU6JvNwbC+AVw8X9BcNMzyR7OLafa5iAswEj/mNbPkttVXTUqnnc3nuSbQ3rXlK+7gEqrbHy+U//DYIErCdQfPTRrEJuOF7Evu5RFH+3gk0VTvFr3//vjSd754SQAf7xpFBP79TrPJ3oGs1Fl9oh4Zo+Ix+HUOJRbxpH8ck4VVVFWY6PG5iTIpJCfeYKfTRrLqORIUnoFY1C7d1deu4ObAQMGsHLlSq6//nq+/vprHnzwQUBfBsGT6zUJ73Pn3Byw9tY3FB7TuzCa6P5QFZWnpz7NDf+8gS15W/jo4Ef8fPjPPVqekpoSlv60lG8zvgVgasJUfj/t9/QK7EVl/psA5MRcRFg37Ucf2DuUH44WkpZ3npYbN6MZLvkvvUvqhxdgz3LI3KI/AAIi9BlvLSH6zLlluVB5znwXoQkw9naYeF+zQY2bu0tqTJ9I1G7+Cw5gTHIEiRGBZJdU833aaWaP8G3X1D+2Z1JtczAkLpRJ/TpjIQ3fsBgNvDl/PNf8eSP7s8v47ef7ePGm0V7Jf/nHtkyWfqnn9zw8cxBzxiR6/Br+wKAqjEgMZ0Riw9FN+vILx7lyZFy3WTrofNr9J/fjjz/OI488QmpqKhMnTmTyZH39ljVr1jB27FiPFVB4X3SoHtzsqeqlLxpXWw4V+c0e3yesDw9N0Bd8fGnHS2zO3eyxsmzN3coNX97AtxnfYlSNPDT+IV7/2ev0CtT/Chtc/hMAlX0u89g1O9uQeL3FMy2/dQvA1YnqC3NegyX7YdYzkHQhGMx6q0zBAT3Yyd1zNrCJ6g8T7oT5K+HB/TDjsfMGNlAvmbib59u4KYrC1a7E4lU+HjVldzj5X9eMxP4w/Pt8EiMCefWWsagKfLYzm5e/ab5VuL2+2J3N//tsLwB3Tu3L4hkDPH4N0f20u+XmxhtvZNq0aeTm5jJ69Oi67ZdddlmDNZ9E19fLlfVe6TDgDO+DoSRdz7sJbf4v3HmD57G/cD//PP5PHlz3IO/MeocR0e3vJqqorWDZzmWsSFuBhkZqWCp/uPgPDOt1dqVvio6T4MihVjNgHnhpu6/la0Pj9JbNQ7nlLa5m36yweJjygP6w1ejdiBUFUFsJpkAI6gW9BuhrHLWDu+Wmu+fb1HfVqHje2nCCbw7mU2G1E2LxzSy19Yd/Xze2Z7QuTBkQzZNzRvDfK/ez7NujRAaZWDjVM8szfPhTOo//8wCapg9P/u+rh/p9wChap0PJEnFxcYwdOxa13tTjF154IUOGDOlwwUTnCTAZCHX9sq8Jc62U28yIKTdFUXh88uNMiJ1Aha2Ce9fey9bcrW2+tqZprElfw5yVc1iethwNjRsG3sCKq1c0DGwAe9q/AdjqHEJ8bEybr9VVDIwNQVWguLKW0x2dpt4UoCccD7gMhl0LA2dC4rh2BzYFZTVknalGUWB0ctebmKu9RiaG0y8mmGqbg6982Hrz143pANw60b+Gf5/P/EkpLPnZQACWfnmQN9c3nkurLZxOjRfXpPHfX5wNbJ6eM0ICG1Gna86+IzqdO6m4LNg1LLWZEVP1WQwWXrvsNcb2Hkt5bTn3rb2Pd/e926o5cDRNY1P2Jm5bfRsPr3+YguoC+oT24Z1Z77B0ylKCTI2nSbcd/hqAjcq4utam7ijAZKgbeZCW13imYl9yt9oMjg0ltLlh6t2QoijcME6f6PHTnVk+KcP+7FK2phdjVBXmT0r1SRl86VeXDWTRJf0BeO6rwzzxxX5q7W2fXK6kqpZ7PtjOn7/T/wB78GeDeOa6EX6RHyY8R4IbAdSbyC/Q1Vx8+lCrPhdkCuLtmW9zZd8rsWt2lu1cxtwv5vLJkU8ocY/QcdE0jdOO03x46EOu/+J67vvmPvYV7iPQGMii0Yv49NpPmRQ/qekLWSuwZOn5NodCJnX7v9CGxOl5N4dzu1pwUwLAOD/qknK7bmwiigKbTxSTWdw5Q5Pr++uP+kieq0bFExce0OnX9zVFUfjNFUN49Aq9Zf/9n05x45ubOJrfuv8GNE1j1d5cLn95A98eLsBsVHn+xlH86mcDu/3vA+F53X95VOER7uAmy5jCSICCw63+bIAxgOcueo5pidN4ftvzpJel8+RPT/LUT0+RFJpEVEAUtY5assqzKLeVwy79c4HGQG4YeAN3jbyL6MDzJLqe3IDqrOWUszfOqO6fMDgkLozV+/I4lNfGpGIv23nKPybva0piRCCT+/Vi0/EiPt+VzX9eNrDTrl1QXsO/9ujdYXd4KN+ku7rvkv70jwnh4f/bw96sUmYv+4F5FyRz17S+9Gti6gG7w8m3hwt4Z8MJtrvuz77Rwbx669guuaaR6BokuBHA2W6p44prCYbyHKgu0WfJbQVFUbim/zVcmnwpnxz5hH+d+BdpZ9LILM8kszyz7jgDBi6Iu4DLUi7jqn5XEWoObV0Bj+rLeqxzjiExsvuv7OtuuelK3VK1did7s/XJ+8Z108Uyz+eGcUlsOl7EZzuzeGDGgE77i/+jzRnUOpyM6xPBmOSITrlmV/azYbGs/tVFLP3nAdYezOdvWzL425YMBseGMjo5nOgQC7V2J+lFVWxLL6a0Wu/qNhtUFk3vzy+m9+9ROUui7SS4EcDZlpucGpM+Z0pZNpw+DH2a6SZqRog5hIUjFrJwxEIKqws5WXqSstoyjIqR2IBY9v+4nzkz5rRtLgVNqxfcjGW8H8zoOsQ1YupofgV2h7NLLD53IKeUWruTyCATfbvZbKStNXtEHP/9xX7Si6rYcrKYSZ0w0Vul1c77ruHfd03r5/XrdReJEYG88/MJbD5RxNsbTvB9WgFp+eWkNdFNFRVsZt4FySyYkkpsWM/r0hNtJ8GNAM7OdVNYboXeQ/XgpuBQm4ObBucMjG7Q3WSz2UhT0tp+ooKDUJaNVbGw2TmUa/0guEmKDCTYbKCy1sHJwkoGxrayBcuL6vJt+kT6bQ5DsMXInDEJ/H1rJh9tPtUpwc3ft2ZQWm2jX3SwzycQ7Iom9evFpH69KKqwsuVkMccKKiiurMVsVEmMCGREYhhjkiO7/Yy5onNJcCMAiHaNPiqqrIV+Q+DYN3pw0xW4Wm12qiOxYibBD4IbVVUYFBfKrowSDueVd43gxp1v44fJxPXdPimFv2/N5OsDeRSU19A71HstAVa7g3d+OAHAfZf0ky/oFvQKsdStAyZER/m+LVx0CXUtNxVW6O2aX6aVI6a87uhaAL6uHQXgNwsNurumDneRpGJ/WQn8fIYnhDOuTwQ2h8Y/tmWe/wMd8PnObPLLrMSFBXD92CSvXksIcZYENwI4O0txUUUt9HZNwtgVWm6qz0CGvrzDN/bRKAp+M4x2aHzXGQ6eU1JNbmkNBlXxq8n7mjN/sj6f09+2ZGBztH2uldawOZy8/r0+Wd3dF/XFbJRft0J0FvmvTQBnW24qrHZqIlxDrStPQ2WhD0sFHF8HmoOaiIFkaTH0DrX4zZfEYFdX1OEuMGLK3WozND6UILP/91ZfMSKe6BALuaU1fLknxyvXWLEtk4ziKqJDLNw6sY9XriGEaJp/fEuIDgu1GOuChsJaE0S4Zir2deuNq0sqJ+YiAL/It3Fzd0tll1RTVnP+WZ29aeepEsD/u6TcAkwG7pyWCsCb64/jdGoePX91rYNXvtVn+X5gxoAeETAK0ZVIcCMAfZ4ad1LxafeIKdCHg/uK0wnH9ODmUKi+6ry/5NsAhAeZSHB1sR3K8W3ejT8ulnk+t01MIcRi5Eh+BevSCjx67vd/Sqeg3EpiRCDzLkz26LmFEOcnwY2oE+OaP6JBcOPLlpvcXXrXmDmUnQwG/Cu4ARieqOe3HPBhcFNjc3Agxz15X88JbsIDTdw2Se8ueuW7Y2iaZ1pvSqpqecOVa/PgzEFYjDLZnBCdTYIbUSfGNZHf6QorxLiDm4O+K5CrS4r+l5JVqnfbJEb6V3AzwjV9/H7XzMC+sD+7FJtDIzrEQpKf1e/53DWtL0FmA3syS/hqf55HzvnHr9MorbYxODaU68cmeuScQoi2keBG1Okdpgc3BWVWiB2ub8w/oHcP+YJrfhsGziK7pBqAhHD/+vIdkajn3ezP8V1ws+OUu0sqwm8n72tO79AA7r5InzX4+X8fbtcq1fXtzSrh460ZADw1Z7jMayOEj0hwI+o0bLkZDAYLWMugJL3zC1NxGrJ36q8HziSnpAbwr4RigBGubqljBRVU1zp8UoZt6cUATEiJ8sn1fe3ei/sRHWImvaiKjzafavd5bA4nj32+H02D68cmMrETZj8WQjRNghtRp0HLjcF0Nu8md2/nF+bYN4AG8aOptsRQXFkL+F+3VO9QC9EhFpwaHG5iTR1vczo1tqXrLTcX9O2ZwU2IxciDMwcB8OKatLpWwrZa9s1R9mWXEhZg5NErhniyiEKINpLgRtSpa7kp11tJiNdnBCbPB8HN0a/153pdUiEWI2EB/jWkVlGUuq6pgz5IKj5aUEFptY1Ak4HhCWGdfv2u4pYL+jAhJZLKWgePfravzUPDt6UX8/r3xwB4du4oesvijkL4lAQ3ok7v+qOlAOJcwU1nt9w4bHDsO/31oNnkuPNtIgL8MidkpKtran9O57fcbHV1SY1LicDUBVYm9xVVVXjuhlGYjSobjpyuC1RaI7ukmvs/2olTgxvGJXHVKFkfSQhf67m/zUQjvUPP5txomt4lBHR+y03GZrCWQlA0JIyrC278bRi42/AE3w0H33pSD24uSO2ZXVL1DegdwtNz9ET6F9ceYfW+3PN+prDCyh3vbaWwwsqQuFCedH1eCOFbEtyIOtGubimbQ6OkyuYaMaVART6Ue2aYbKsc+bf+POhyUNWzI6X8NLhxd0sdLaigg4N12kTTNLa5gpsLe2i+zbluvqAPt03sg6bBf/59F1/szm722FNFldz81k8cya8gJtTCXxZeQIjFv7pNheiuJLgRdcxGlcggEwAF5VYwB0P0QH1nZ3ZNuYObgbMA6oIbf0smdkuMCCQiyITdqZFb1XnXzTpTTV5ZDSaDwtjknjN53/k8NWcE141JwO7U+NXy3fz6kz11rYegL63w140nuXLZDxw/XUlCeAAr7p3kty2LQnRH8meGaCAm1MKZKhuny60MjgvV824Kj0DeHhg0y/sFKDwGRcdANUL/GQB+3y2lKAojEsLZeKyQjMrOyylyd0mNSAwn0Cyz6LoZVIUXbhpNYmQgr607zj+2Z/HJjiyGxIVhMamk5ZVT5Rq2f2FqFMtuGUO8n82/JER3Jy03ooHeoXpScUHdiClX3k3O7s4pgHuUVMpUCDi7sCT4b7cUwKgkPe/mVHnnBzcXSr5NI0aDyn9dPoQV905iUr8onBoczC1jV0YJVbUO+kQF8fvrR/D3eydJYCNEF9StWm7S09N5+umn+e6778jLyyMhIYHbb7+dxx57DLPZ7Ovi+YUYd1Kxe8RU0gT9OWsbaBp4e7RSXb7NbAAcTo28Uj3Q8teWG4CxrjWdTlV0XnDjnrxPkombN7FfL5bfO5nskmoO55ZhczhJ6RXM4NhQVJl9WIguq1sFN4cPH8bpdPLWW28xYMAA9u/fzz333ENlZSUvvPCCr4vnF9wjpgrcwU38GL2LqCIfSrMgwosrHNeUwqlN+utBlwP6aBSbQ8OgKnVl80djkiMAyK+G8hobUSaTV693utzKicJKACakSr7N+SRGBPp1cC2Ev+lWwc3s2bOZPXt23ft+/fqRlpbGG2+8IcGNhzRquTEHQewIyN0NWVu9G9wc/w6cdug1EHr1B/SkV4C4sACMfjwPS0yovmhl1plq9maXMX1IkFevt/lEEQBD4kKJCJJWTyGEf+lWwU1TSktLiYpquVndarVitVrr3peV6fOJ2Gw2bDabx8riPpcnz9nZooL0WyK/rLru51ATxmPI3Y0jYwvOwde2+9znqx/D4a9QAceAmThdx2QWVQAQH27p1vXaGqMTQ8k6U83O9GKm9vfuukQbjxYAMKlvZLepV3/478tbpG5aJvXTsu5UP60to6JpWtvmGe9Cjh8/zrhx43jxxRe5++67mz1u6dKlPPnkk422f/zxxwQFefcv5O7maKnCqwcN9A7QeGysPiIkqXgT40+9SXFQf34Y/IRXrqtodmbvewCzo5KNAx6lKFRf1+rbbIV/ZhgYH+3k5wN9tDp5J1mfq/BZuoFhEU7uG+rdn/WpnQaKrAr3DnEwPLLb/goQQvQwVVVV3HrrrZSWlhIW1vySMV0iuGku+Khv27ZtTJgwoe59Tk4Ol1xyCZdccgnvvvtui59tquUmOTmZwsLCFiunrWw2G2vXrmXmzJmYvJwz4S3HT1cy+5UfCQ0wsvMxfSg2Z05iev0CNIMZ+yMnwdi+3JeW6kc5uQHjx3PRgnph/9UBPc8HePJfh/hoSyb3X9yXh2YO7NDP1tXtSC9i3l92EBFoYuuj07221ETmmSpmvLQRo6qw7beXdpuJ5/zhvy9vkbppmdRPy7pT/ZSVlREdHX3e4KZL/FZbvHgx8+bNa/GY1NTUutc5OTlceumlTJ48mbfffvu857dYLFgsjb+QTSaTV/4hvXXezpAQFQxAeY0dByoBJgPEDISgXihVRZiKDp8dQdVOTdbPkVUAKIOvxGQ5m7iZV6YHpUm9grttnbbWyKRIjIpGSbWN7DIbfaODvXKdremlAIxOjiAypPslyXbn/768TeqmZVI/LesO9dPa8nWJ4CY6Opro6OhWHZudnc2ll17K+PHjee+991BV/00y9YVQixGLUcVqd3K63EpyVJA+/DvpAn2YdsbmDgc3jTidcPhf+uthcxrscicU+/McN25mo0pyCJws14dpeyu4+fG4nkzs7bweIYTwlW4VGeTk5DB9+nSSk5N54YUXOH36NHl5eeTldeK6R35OURR6h7mHg9ec3ZEyRX9O3+j5i2Zt1YeaW8Kg7yUNdrlnJ07qAcENQP9QvZd4y4lir5xf0zR+Ol4IwJQBrfuDQgghupsu0XLTWmvWrOHYsWMcO3aMpKSkBvu6QOqQ34gJsZBZXH12ODhA6kX686lN4HSA6sHp+g/+U38eNBuMZ4cll9fYKKuxAxDfQ4KbAeEa3+TAlpNFXjl/Wn45hRW1BJoMjO0T4ZVrCCGEr3WrlpuFCxeiaVqTD+E5Z5dgqBfcxI8GSzhYSyF3j+cupmlw6Ev99bCGw8xzSvSWo/BAU7dJeu2ovqH6hIVZZ6rJOuP5VTQ3HtVbbS7oG4XFKOtJCSH8U7cKbkTncHdLNWi5UQ31uqZ+8NzFsrZDaQaYgqD/ZQ12+fuCmU0JMMDwhFDAO11T36edBuDigdIlJYTwXxLciEZiQlw5N2XWhjtSp+nPJzd47mL7/qE/D7lanw25np6wYGZT3AtZerprqsJqrzvnpUN6e/TcQgjRlUhwIxqpa7mpOCe46Tddf07/EWzVHb+Qwwb7P9Vfj7q50W53cJMU2dOCG32tpy0nPdtys/FoITaHRkqvIPp5aSSWEEJ0BRLciEZiQpsYLQUQOxzCEsFeDSc90DV1/DuoKoLgmLOBUz05dS03AR2/VjcyISUCVYFTRVUezbtZd1hfcuHSwb29NkGgEEJ0BRLciEbqEorP7ZZSFBg4S399dE3HL7TX1SU14kYwNE4Yzu5Bc9zUFxpgYlwfvfXGnSPTUZqmsS5ND25mSJeUEMLPSXAjGnF3SxVWWLE7zlnjaNDl+vPRr/WRTu1VVXx24r5RNzV5iHsCv6TInrf+lzsn5ntXQNJRB3LKKCi3EmQ2MLFfywvNCiFEdyfBjWgkOtiCUVVwak3k3fS9GAwWKMmA/APtv8iev4O9BuJGQsK4Rrutdgf5rm6xnpZzAzB9cAwAPx4rosbm6PD5Vu/LBeDigTEyBFwI4fckuBGNqKpCb1feTV7pOXk35mAYOFN/7U4GbitNg+1/1V9PuFPv7jpHbkkNmgaBJgO9gs2N9vu7YfFh9A61UG1zsC29Y4nFmqaxyhXcXDUq3hPFE0KILk2CG9GkuHA97ya/rKbxzhFz9ef9n7ara0o5tRGKjoE5BEaer0sqsEcmvyqKwqWD9a6pdYc7lndzIKeMU0VVWIyq5NsIIXoECW5Ek9zBTaOWG9CXSTAFQ8kpyN7R5nOrO1ytNqP+AyyhTR7jHiXUE7uk3NxdU98ezu/QLNzuVpsZQ3oT3ENmehZC9GwS3IgmxYa5gptzR0yB3jU1+Ar99a6P2nTekJpcFHci8QX3NHtcZl1w0/OSid0uHhSDxahyqqiKAzll7TqHpmms2itdUkKInkWCG9GkOHdwU9rMZH3jF+rPe1dAdUmrzzugYDUKGgy6AmKHNXtc/W6pnirYYuSyoXo30pd7c9p1jp0ZZ8goriLQZJAuKSFEjyHBjWhSXbdUUzk3oC/F0HsY2Kpg98etO+mZkyQXb9RfX/RQi4f25GHg9V09KgGAVXtz29U1tWJbJqC32gSZpUtKCNEzSHAjmuTulspvqlsK9BFOF7q6lTa/AfZmjqvH8N1TqJoDZ78ZkHxhi8e6c26So3puyw3oswkHmQ1knalm+6kzbfpshdXOv1xdUjdfkOyN4gkhRJckwY1oUny9hOJmWwxGzYOQOH1V721/afmEJ39APfwlGgqOy55s8VCr3VEXVPX0lptAs4GrRuq5Mn/fktGmz67clU1VrYN+McFMSIn0RvGEEKJLkuBGNMndclNtc1BWY2/6IHMQXPpb/fWG5/VZh5tSUworfwFAeq/p0Htoi9d2L7sQZDYQGWRqc9n9ze2TUgD4175czlTWtuozDqfGXzae1D8/MaVHDqcXQvRcEtyIJgWYDES4Aosmh4O7jblNz72pPgNfLAbnOcs1OJ3wzwegNAMtIoWDifPOe+2ePsfNuUYlhTMiMYxau5MV2zNb9Zm1B/M4WVhJeKBJuqSEED2OBDeiWXUjpppLKgZ9wcvr3wTVBGmrYNVD4LDp+2zVsPJ+OPgFqCYc176O3XD+HBpJJm5IURR+PjkVgHd/OEFVbTMtaS5Op8ar644BMH9SisxtI4TocSS4Ec2qSypuqeUGIH40zHkNUGDHe/DahfDJnfDKONi7HBQVrn8TLXliq65bl0zcg4eBn+v6sYn0iQqisKKWD3461eKxn+3KZn92GSEWIwunpnZOAYUQoguR4EY0q1UtN26jb4abP4TASCg+oS/NUJ4DYYlw+6cw8sZWX1dabhozGVR+ddlAAF5fd4yC8qb/TcpqbDz/78MAPDBjANEhlk4roxBCdBXSXi2aFXu+uW7ONfQa6Dcd0v4NZdnQqz8MmAmmgDZdN1OWXmjSdWMTeW/TSfZnl/Hbz/bx9vwJqOrZnCRN03js8/0UlFtJ6RUkrTZCiB5LWm5Es+JbWl+qOZZQGHUTTFuiBzttDGxAWm6aY1AVnr9hNGaDyjeHCnh61UGcTn2YvtOp8T+rD/HlnhwMqsKfbh6DxWjwcYmFEMI3pOVGNOvsEgxtCG46qMbm4HS5e44babk517CEMJ6dO5KH/28P7/2Yzq6MEqYNiGbjsUJ2Z5YA8PvrRjCuj8xrI4TouSS4Ec06O0tx5wU32SV6q02w+exQdNHQDeOTUBT47ef72J1ZUhfUBJhUfn/dSG4Yn+TbAgohhI9JcCOa5V5fqqiyFqvd0SndHJnF7mUXgmSOmxbMHZfEtAHRfLozm4ziSvpEBXPDuER6h7W9G1AIIfyNBDeiWZFBJsxGlVq7k4IyK8lR3s+BkdXAW693WAD3T+/v62IIIUSXIwnFolmKotQlFed2Ut6Nu+VGkomFEEK0lwQ3okUJ4XoLSnZJVadc71SRfp0+ndBKJIQQwj9JcCNalOjqHsop6ZyWm1OulpuUXhLcCCGEaB8JbkSLEiL04MadC+NNmqaRUVQJQEqvYK9fTwghhH+S4Ea0KCnC3XLj/eCmqLKWyloHigLJUZJQLIQQon0kuBEtcrfcZHdCcOPOt4kPC5DZdYUQQrSbBDeiRWdzbqrRNM2r18oo1ruk+ki+jRBCiA6Q4Ea0yD0UvKrWQWm1zavXcrfcpERJvo0QQoj267bBjdVqZcyYMSiKwu7du31dHL8VYDIQHWIGvJ9UXDcMXFpuhBBCdEC3DW5+/etfk5CQ4Oti9AiJnZRUfKpupJQEN0IIIdqvWwY3X331FWvWrOGFF17wdVF6hM5KKs4olm4pIYQQHdft1pbKz8/nnnvuYeXKlQQFte4vfKvVitVqrXtfVlYGgM1mw2bzXB6J+1yePGdXEB9mASCruLJDP1tL9VNhtVNYUQtAQpjJ7+qwNfz1/vEUqZ/mSd20TOqnZd2pflpbRkXz9hAYD9I0jSuvvJKpU6fyu9/9jvT0dPr27cuuXbsYM2ZMs59bunQpTz75ZKPtH3/8casDpJ7s+1yFz9MNjIlycsdgp1eukV0Jz+81EmzU+J8LHF65hhBCiO6tqqqKW2+9ldLSUsLCwpo9rku03DQXfNS3bds2Nm3aRFlZGY8++mibzv/oo4/y0EMP1b0vKysjOTmZWbNmtVg5bWWz2Vi7di0zZ87EZDJ57Ly+ZjpYwOfpu3EGRXDllZPafZ6W6ufrA/mwdw/948I7dI3uzF/vH0+R+mme1E3LpH5a1p3qx93zcj5dIrhZvHgx8+bNa/GY1NRUnnnmGTZv3ozFYmmwb8KECdx22228//77TX7WYrE0+gyAyWTyyj+kt87rK32iQwDILbV65Odqqn6yS/Vuw9ReIX5Vd+3hb/ePp0n9NE/qpmVSPy3rDvXT2vJ1ieAmOjqa6Ojo8x73yiuv8Mwzz9S9z8nJ4fLLL2fFihVMnDjRm0Xs0dyjpU6XW6mudRBo9vzswbJgphBCCE/pEsFNa/Xp06fB+5AQvUWhf//+JCUl+aJIPUJEkInQACPlNXayzlQxMDbU49dwDwPvEyXBjRBCiI7plkPBRedSFKUu6HBPtOdpJ07rwU2/GBkGLoQQomO6VcvNuVJTU72+3pHQpfQK4kBOWd1cNJ5UVWsnt7QGgH6u/B4hhBCivaTlRrRKsqvlxhvBjbvVJjLIRGSw2ePnF0II0bNIcCNaxT1rsFeCm0J3l5S02gghhOg4CW5Eq5zNuan0+LlPnK4AoF+05NsIIYToOAluRKu4h2hnnqnG6fRsntPZZGJpuRFCCNFxEtyIVokPD8CoKtTaneSX13j03CcKXS03MlJKCCGEB0hwI1rFaFBJjNQn88vw4HBwTdM46Wq56S/BjRBCCA+Q4Ea0Wl3ejQeTivPLrFTWOjCoCn2iJLgRQgjRcRLciFZzBzeebLlxJxMnRwZiNsrtKIQQouPk20S0Wh8vzHVzXIaBCyGE8DAJbkSruUdMeXI4+PECGQYuhBDCsyS4Ea3W17U0wonTlR5b9uJIfjkAg+I8vxinEEKInkmCG9FqKb2CUBUot9o5XWH1yDndwc1gL6w0LoQQomeS4Ea0WoDJULfG1PGCjndNFVZYKayoBWBgrOTcCCGE8AwJbkSb9Hcl/h53jXLqCHerTZ+oIILM3XqBeiGEEF2IBDeiTdwT7XkkuMlzdUlJvo0QQggPkuBGtIl7yLZ7PaiOSJN8GyGEEF4gwY1oE092S6XlyUgpIYQQnifBjWgTd7dUdkk11bWOdp9H0zSO5OsBkrTcCCGE8CQJbkSbRAWbiQgyoWkda73JKa2hwmrHqCr0lQn8hBBCeJAEN6JNFEVhiKsb6bCrW6k90vLKAOgXEyxrSgkhhPAo+VYRbTYkLgyAw7ll7T7HgWz9s0PjwzxSJiGEEMJNghvRZkPj9ZYb92in9tiXXQrAyMRwj5RJCCGEcJPgRrSZu+XmUG77g5v9ruBmhAQ3QgghPEyCG9Fmg2JDURR9+YTT5W1fY6qospac0hoAhidIt5QQQgjPkuBGtFmg2UBqL32EU1o7kooP5LiSiaODCQ0webRsQgghhAQ3ol3cI6YOtSOpeL8rmVi6pIQQQniDBDeiXdyByZ6skjZ/dr+r5UaSiYUQQniDBDeiXcYkRwCwO7OkTZ/TNNiZoX9mbJ8Ij5ZJCCGEAAluRDuNTApHUSDrTDWFFa1PKj5doycUm40qI5Ok5UYIIYTnSXAj2iUswFS3iOaeNrTenCxXABiVGI7FaPBG0YQQQvRwEtyIdmtP15Q7uJmQGuWFEgkhhBAS3IgOaE9wc8Id3KREeqFEQgghhAQ3ogPG9dEDlB2nzmBzOM97fGGFlfxqPbgZL8GNEEIIL5HgRrTbkLhQooLNVNU6WtV688PRIgCGJ4QSGWz2cumEEEL0VN0yuFm1ahUTJ04kMDCQ6Oho5s6d6+si9UiqqjClfy8AfjhaeN7j17uOuXhgtFfLJYQQomfrdsHNp59+yvz587njjjvYs2cPP/74I7feequvi9VjXeQKVH481nJw43Bq/HhMb7mR4EYIIYQ3GX1dgLaw2+386le/4o9//CN33XVX3fbBgwf7sFQ929QBeqCyO7OE8hpbs2tF7ckqoaTaRqBBY4zMbyOEEMKLulVws3PnTrKzs1FVlbFjx5KXl8eYMWN44YUXGD58eLOfs1qtWK1nJ5orK9On/7fZbNhsNo+Vz30uT56zq4sNMdG3VxAni6r49mAeV42Ma/K4r/bmADA4QkNzOnpUHbVWT7x/2kLqp3lSNy2T+mlZd6qf1pZR0TRN83JZPGb58uXccsst9OnTh5deeonU1FRefPFF1qxZw5EjR4iKanrulKVLl/Lkk0822v7xxx8TFBTk7WL7vS8zVL7JVhkV5eSuwY1HTTk1eHKngZJahTsGORjTq9vcckIIIbqQqqoqbr31VkpLSwkLC2v2uC4R3DQXfNS3bds2jhw5wm233cZbb73FvffeC+itMklJSTzzzDPcd999TX62qZab5ORkCgsLW6yctrLZbKxdu5aZM2diMjXdPeOPDuWWc+3rP2E2qvz060sIC2z4s285Wcztf91OiMXAE6OtXDW7Z9VPa/XU+6e1pH6aJ3XTMqmflnWn+ikrKyM6Ovq8wU2X6JZavHgx8+bNa/GY1NRUysvLARg2bFjddovFQr9+/cjIyGj2sxaLBYvF0mi7yWTyyj+kt87bVY1MjmRwbChp+eWs3JvPXdP6Ntj/4ZZMAK4aGYfZcKrH1U9bSf20TOqneVI3LZP6aVl3qJ/Wlq9LBDfR0dFER59/BM348eOxWCykpaUxbdo0QI8409PTSUlJ8XYxRTMURWHBlFR++/k+/nfTSeZPSsFs1AfiHT9dwdqD+QAsmJzC0e2nfFlUIYQQPUC3GgoeFhbGokWLeOKJJ1izZg1paWncf//9ANx0000+Ll3Pdv3YRKJDzGQWV/P+pnQANE3jqS8P4tTgsiG9Gdg7xLeFFEII0SN0iZabtvjjH/+I0Whk/vz5VFdXM3HiRL777jsiI2U6f18KNBv49eVD+PWne/nj12kkRASyN7uE9UdOYzIoPHbVUF8XUQghRA/R7YIbk8nECy+8wAsvvODroohz3Dg+iXVpBXy1P49ffryzbvvSa4fTLyakWwwzFEII0f11u+BGdF2qqvDyvDHErj7MF7uzCQ0wsXjGAP5jQrKviyaEEKIHkeBGeJTFaGDptcNZem3zkyoKIYQQ3tStEoqFEEIIIc5HghshhBBC+BUJboQQQgjhVyS4EUIIIYRfkeBGCCGEEH5FghshhBBC+BUJboQQQgjhVyS4EUIIIYRfkeBGCCGEEH5FghshhBBC+BUJboQQQgjhVyS4EUIIIYRfkeBGCCGEEH5FghshhBBC+BWjrwvgC5qmAVBWVubR89psNqqqqigrK8NkMnn03P5A6qdlUj8tk/ppntRNy6R+Wtad6sf9ve3+Hm9OjwxuysvLAUhOTvZxSYQQQgjRVuXl5YSHhze7X9HOF/74IafTSU5ODqGhoSiK4rHzlpWVkZycTGZmJmFhYR47r7+Q+mmZ1E/LpH6aJ3XTMqmflnWn+tE0jfLychISElDV5jNremTLjaqqJCUlee38YWFhXf4G8SWpn5ZJ/bRM6qd5Ujctk/ppWXepn5ZabNwkoVgIIYQQfkWCGyGEEEL4FQluPMhisfDEE09gsVh8XZQuSeqnZVI/LZP6aZ7UTcukflrmj/XTIxOKhRBCCOG/pOVGCCGEEH5FghshhBBC+BUJboQQQgjhVyS4EUIIIYRfkeDGg15//XX69u1LQEAA48eP54cffvB1kTrd0qVLURSlwSMuLq5uv6ZpLF26lISEBAIDA5k+fToHDhzwYYm9a8OGDVxzzTUkJCSgKAorV65ssL819WG1WnnggQeIjo4mODiYa6+9lqysrE78KbznfPWzcOHCRvfTpEmTGhzjr/Xz7LPPcsEFFxAaGkrv3r257rrrSEtLa3BMT75/WlM/Pfn+eeONNxg1alTdxHyTJ0/mq6++qtvv7/eOBDcesmLFCpYsWcJjjz3Grl27uOiii7jiiivIyMjwddE63fDhw8nNza177Nu3r27f888/z0svvcSrr77Ktm3biIuLY+bMmXXrffmbyspKRo8ezauvvtrk/tbUx5IlS/j8889Zvnw5GzdupKKigquvvhqHw9FZP4bXnK9+AGbPnt3gflq9enWD/f5aP+vXr+eXv/wlmzdvZu3atdjtdmbNmkVlZWXdMT35/mlN/UDPvX+SkpJ47rnn2L59O9u3b2fGjBnMmTOnLoDx+3tHEx5x4YUXaosWLWqwbciQIdpvfvMbH5XIN5544glt9OjRTe5zOp1aXFyc9txzz9Vtq6mp0cLDw7U333yzk0roO4D2+eef171vTX2UlJRoJpNJW758ed0x2dnZmqqq2r///e9OK3tnOLd+NE3TFixYoM2ZM6fZz/Sk+ikoKNAAbf369Zqmyf1zrnPrR9Pk/jlXZGSk9u677/aIe0dabjygtraWHTt2MGvWrAbbZ82axaZNm3xUKt85evQoCQkJ9O3bl3nz5nHixAkATp48SV5eXoN6slgsXHLJJT2ynlpTHzt27MBmszU4JiEhgREjRvSYOvv+++/p3bs3gwYN4p577qGgoKBuX0+qn9LSUgCioqIAuX/OdW79uMn9Aw6Hg+XLl1NZWcnkyZN7xL0jwY0HFBYW4nA4iI2NbbA9NjaWvLw8H5XKNyZOnMgHH3zA119/zTvvvENeXh5TpkyhqKiori6knnStqY+8vDzMZjORkZHNHuPPrrjiCv72t7/x3Xff8eKLL7Jt2zZmzJiB1WoFek79aJrGQw89xLRp0xgxYgQg9099TdUPyP2zb98+QkJCsFgsLFq0iM8//5xhw4b1iHunR64K7i2KojR4r2lao23+7oorrqh7PXLkSCZPnkz//v15//336xL5pJ4aak999JQ6u/nmm+tejxgxggkTJpCSksKqVauYO3dus5/zt/pZvHgxe/fuZePGjY32yf3TfP309Ptn8ODB7N69m5KSEj799FMWLFjA+vXr6/b7870jLTceEB0djcFgaBTNFhQUNIqMe5rg4GBGjhzJ0aNH60ZNST3pWlMfcXFx1NbWcubMmWaP6Uni4+NJSUnh6NGjQM+onwceeIB//vOfrFu3jqSkpLrtcv/omqufpvS0+8dsNjNgwAAmTJjAs88+y+jRo1m2bFmPuHckuPEAs9nM+PHjWbt2bYPta9euZcqUKT4qVddgtVo5dOgQ8fHx9O3bl7i4uAb1VFtby/r163tkPbWmPsaPH4/JZGpwTG5uLvv37++RdVZUVERmZibx8fGAf9ePpmksXryYzz77jO+++46+ffs22N/T75/z1U9TetL90xRN07BarT3j3vFBErNfWr58uWYymbS//OUv2sGDB7UlS5ZowcHBWnp6uq+L1qkefvhh7fvvv9dOnDihbd68Wbv66qu10NDQunp47rnntPDwcO2zzz7T9u3bp91yyy1afHy8VlZW5uOSe0d5ebm2a9cubdeuXRqgvfTSS9quXbu0U6dOaZrWuvpYtGiRlpSUpH3zzTfazp07tRkzZmijR4/W7Ha7r34sj2mpfsrLy7WHH35Y27Rpk3by5Elt3bp12uTJk7XExMQeUT/333+/Fh4ern3//fdabm5u3aOqqqrumJ58/5yvfnr6/fPoo49qGzZs0E6ePKnt3btX++1vf6upqqqtWbNG0zT/v3ckuPGg1157TUtJSdHMZrM2bty4BkMSe4qbb75Zi4+P10wmk5aQkKDNnTtXO3DgQN1+p9OpPfHEE1pcXJxmsVi0iy++WNu3b58PS+xd69at04BGjwULFmia1rr6qK6u1hYvXqxFRUVpgYGB2tVXX61lZGT44KfxvJbqp6qqSps1a5YWExOjmUwmrU+fPtqCBQsa/ez+Wj9N1Qugvffee3XH9OT753z109PvnzvvvLPu+ygmJka77LLL6gIbTfP/e0fRNE3rvHYiIYQQQgjvkpwbIYQQQvgVCW6EEEII4VckuBFCCCGEX5HgRgghhBB+RYIbIYQQQvgVCW6EEEII4VckuBFCCCGEX5HgRgghhBB+RYIbIUSXNH36dJYsWeLrYgghuiGZoVgI4XPTp09nzJgxvPzyy3XbiouLMZlMhIaGdnp5lixZQnp6OitXruz0awshOk5aboQQXVJUVJRPAhuAbdu2ceGFF/rk2kKIjpPgRgjhUwsXLmT9+vUsW7YMRVFQFIX09PRG3VLTp0/ngQceYMmSJURGRhIbG8vbb79NZWUld9xxB6GhofTv35+vvvqq7jOapvH888/Tr18/AgMDGT16NJ988kmzZbHZbJjNZjZt2sRjjz2GoihMnDjRmz++EMILJLgRQvjUsmXLmDx5Mvfccw+5ubnk5uaSnJzc5LHvv/8+0dHRbN26lQceeID777+fm266iSlTprBz504uv/xy5s+fT1VVFQC/+93veO+993jjjTc4cOAADz74ILfffjvr169v8vwGg4GNGzcCsHv3bnJzc/n666+984MLIbxGcm6EED7XVM7NudumT5+Ow+Hghx9+AMDhcBAeHs7cuXP54IMPAMjLyyM+Pp6ffvqJkSNHEh0dzXfffcfkyZPrznv33XdTVVXFxx9/3GRZVq5cyd13301hYaF3flghhNcZfV0AIYRorVGjRtW9NhgM9OrVi5EjR9Zti42NBaCgoICDBw9SU1PDzJkzG5yjtraWsWPHNnuNXbt2MXr0aA+XXAjRmSS4EUJ0GyaTqcF7RVEabFMUBQCn04nT6QRg1apVJCYmNvicxWJp9hq7d++W4EaIbk6CGyGEz5nNZhwOh0fPOWzYMCwWCxkZGVxyySWt/ty+ffu4/vrrPVoWIUTnkuBGCOFzqampbNmyhfT0dEJCQoiKiurwOUNDQ3nkkUd48MEHcTqdTJs2jbKyMjZt2kRISAgLFixo8nNOp5O9e/eSk5NDcHAw4eHhHS6LEKJzyWgpIYTPPfLIIxgMBoYNG0ZMTAwZGRkeOe/TTz/N448/zrPPPsvQoUO5/PLL+fLLL+nbt2+zn3nmmWdYsWIFiYmJPPXUUx4phxCic8loKSGEEEL4FWm5EUIIIYRfkeBGCCGEEH5FghshhBBC+BUJboQQQgjhVyS4EUIIIYRfkeBGCCGEEH5FghshhBBC+BUJboQQQgjhVyS4EUIIIYRfkeBGCCGEEH5FghshhBBC+BUJboQQQgjhV/4/hpYWbti3eFEAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "βs = [0.02, 0.05, 0.1, 0.2, 0.3, 0.4]\n", + "t = range(0, 20π*5, length=1000)\n", + "for β in βs\n", + " Bd = [ 0 1 \n", + " -0.01 -β ]\n", + " plot(t, [(exp(Bd*t)*[0,1])[1] for t in t], \"-\")\n", + "end\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solution $x(t)$\")\n", + "title(\"mass on a spring for different drags\")\n", + "legend([\"\\$\\\\beta=$β\\$\" for β in βs])\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's even more fun to use a slider control for $\\beta$:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "e6bd3247-5db8-4ea5-b626-96ff539aa9c2" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "β" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 31, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "12516790623686087753", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/dc651e248070c73d6a4eaa2766193d4a09a13f05-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/0318b018d0ff756043bf1ee25f56ab5c74ef7889-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/f798281fed8908611ae453136bda5c1a2e6bffd7-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.0\",\"0.01\",\"0.02\",\"0.03\",\"0.04\",\"0.05\",\"0.06\",\"0.07\",\"0.08\",\"0.09\",\"0.1\",\"0.11\",\"0.12\",\"0.13\",\"0.14\",\"0.15\",\"0.16\",\"0.17\",\"0.18\",\"0.19\",\"0.2\",\"0.21\",\"0.22\",\"0.23\",\"0.24\",\"0.25\",\"0.26\",\"0.27\",\"0.28\",\"0.29\",\"0.3\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"12516790623686087753\",\"id\":\"5478518166941226586\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"12516790623686087753\",\"id\":\"4377263344726521632\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"12516790623686087753\",\"id\":\"5478518166941226586\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"12516790623686087753\",\"id\":\"4377263344726521632\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "5478518166941226586", + "sync": false, + "value": 0 + }, + "index": { + "id": "4377263344726521632", + "sync": true, + "value": 16 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "4867369192601914552", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "4952140006036811342", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "4867369192601914552", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"β\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 31, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable(0), nothing), \"index\" => (Observable{Any}(16), nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/HReiN/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/Qhvxg/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/PENUy/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000130ec1880, Task (runnable) @0x0000000130ec1880), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.0\\\",\\\"0.01\\\",\\\"0.02\\\",\\\"0.03\\\",\\\"0.04\\\",\\\"0.05\\\",\\\"0.06\\\",\\\"0.07\\\",\\\"0.08\\\",\\\"0.09\\\",\\\"0.1\\\",\\\"0.11\\\",\\\"0.12\\\",\\\"0.13\\\",\\\"0.14\\\",\\\"0.15\\\",\\\"0.16\\\",\\\"0.17\\\",\\\"0.18\\\",\\\"0.19\\\",\\\"0.2\\\",\\\"0.21\\\",\\\"0.22\\\",\\\"0.23\\\",\\\"0.24\\\",\\\"0.25\\\",\\\"0.26\\\",\\\"0.27\\\",\\\"0.28\\\",\\\"0.29\\\",\\\"0.3\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"12516790623686087753\\\",\\\"id\\\":\\\"5478518166941226586\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"12516790623686087753\\\",\\\"id\\\":\\\"4377263344726521632\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"12516790623686087753\\\",\\\"id\\\":\\\"5478518166941226586\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"12516790623686087753\\\",\\\"id\\\":\\\"4377263344726521632\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/2df50fa7f121fedbb109a97bba894e56aef8c852-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/bb2c111220e03062c2973eb306d97c8fc96857d6-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Figure(PyObject
    )], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 25, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "e6bd3247-5db8-4ea5-b626-96ff539aa9c2" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "using Interact\n", + "t = range(0, 20π*5, length=1000)\n", + "fig = figure()\n", + "@manipulate for β in 0.0:0.01:0.3\n", + " Bd = [ 0 1 \n", + " -0.01 -β ]\n", + " withfig(fig) do\n", + " c = β < 0.1999 ? \"blue\" : β > 0.2001 ? \"red\" : \"black\"\n", + " plot(t, [(exp(Bd*t)*[0,1])[1] for t in t], \"-\", color=c)\n", + " xlabel(L\"time $t$\")\n", + " ylabel(L\"solution $x(t)$\")\n", + " T = c == \"blue\" ? \"underdamped\" : c == \"red\" ? \"overdamped\" : \"critically damped\"\n", + " title(\"$T mass on a spring for drag \\$\\\\beta=$β\\$\")\n", + " ylim(-4,8)\n", + " grid()\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The case of $\\beta=0.2$, where the discriminant $\\sqrt{\\cdots} = 0$ and the two eigenvalues are *equal*, is called [critically damped](https://en.wikipedia.org/wiki/Harmonic_oscillator). This is a bit of an odd case because the matrix becomes *defective* (non-diagonalizable): there is only a single eigenvector.\n", + "\n", + "We will analyze such defective cases later in 18.06. They are not our primary concern, though, because they are kind of a weird limiting case that doesn't show up most of the time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Two coupled masses on springs\n", + "\n", + "When we are solving things by hand, it is hard to go beyond $2\\times 2$ matrices, but on the computer we have no such limitations. **Practical engineering problems are solved every day involving millions of coupled differential equations**.\n", + "\n", + "Let's try upgrading to *two* coupled masses on springs:\n", + "\n", + "\n", + "\n", + "Now, our equations look like:\n", + "\n", + "$$\n", + "\\frac{d x_1}{dt} = v_1 \\\\\n", + "\\frac{d x_2}{dt} = v_2 \\\\\n", + "\\frac{d v_1}{dt} = -\\frac{k_1}{m_1}x_1 -\\frac{k_2}{m_1}(x_1 - x_2) \\\\\n", + "\\frac{d v_2}{dt} = -\\frac{k_3}{m_2}x_2 +\\frac{k_2}{m_2}(x_1 - x_2) \n", + "$$\n", + "\n", + "where the spring $k_2$ connecting the two masses exerts a force $\\pm k_2 (x_1 - x_2)$, with the two masses feeling an equal and opposite force from that spring.\n", + "\n", + "This can be written in matrix form as $d\\vec{x}/dt = Cx$:\n", + "\n", + "$$\n", + "\\frac{d}{dt} \\underbrace{\\begin{pmatrix} x_1 \\\\ x_2 \\\\ v_1 \\\\ v_2 \\end{pmatrix}}_\\vec{x} =\n", + "\\underbrace{\\begin{pmatrix} \n", + "0 & 0 & 1 & 0 \\\\ \n", + "0 & 0 & 0 & 1 \\\\ \n", + "-(k_1+k_2)/m_1 & k_2/m_1 & 0 & 0 \\\\\n", + "k_2/m_2 & -(k_3+k_2)/m_2 & 0 & 0\n", + "\\end{pmatrix}}_C \\vec{x}\n", + "$$\n", + "\n", + "Let's set $m_1 = m_2 = m$ and $k_1/m = k_2/m = k_3/m = 0.01$ for simplicity." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Matrix{Float64}:\n", + " 0.0 0.0 1.0 0.0\n", + " 0.0 0.0 0.0 1.0\n", + " -0.02 0.01 0.0 0.0\n", + " 0.01 -0.02 0.0 0.0" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "C = [ 0 0 1 0\n", + " 0 0 0 1\n", + " -0.02 0.01 0 0\n", + " 0.01 -0.02 0 0 ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, let's just try plotting the solutions $x_1(t)$ and $x_2(t)$ computed by \"brute force\" first, assuming an initial condition $\\vec{x}(0) = (0,0,1,0)$ where we start $x_1$ moving from rest:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHGCAYAAACIDqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACsXUlEQVR4nOydeVwU9f/HX7vLLaACIqgI3or3fSfe95lmmqamVqb2UzPL1FJLTcvU+pZlmUdlWaZ2eOJtHnjnrWkoqJg3KCAsML8/3n5YkGt3mdmZ3X0/H499zLA7+5k3n53jPe9TJ0mSBIZhGIZhGAdBr7YADMMwDMMwcsLKDcMwDMMwDgUrNwzDMAzDOBSs3DAMwzAM41CwcsMwDMMwjEPByg3DMAzDMA4FKzcMwzAMwzgUrNwwDMMwDONQsHLDMAzDMIxDwcoNwxSSpKQkTJ8+Hbt27crx2fLly6HT6XDlyhWby2UJU6dORdmyZeHi4oJixYrlud3atWsxYMAAVKxYEZ6enggLC8MLL7yAf/75x3bCMppl165d0Ol0uZ4LDGNLdNx+gWEKx507d1CiRAm89957mD59erbPbt++jcuXL6Nu3bpwd3dXR8AC+O2339CrVy9MmTIFnTt3hru7Oxo0aJDrto0bN0ZQUBB69eqF8uXLIzY2FrNnz0ZsbCwOHjyI6tWr21h6RkskJCTg7NmzCA8Ph6+vr9riME6Mi9oCMIwjU6JECZQoUUJtMfLl9OnTAIDXX38dgYGB+W77xx9/5NimTZs2CAsLw4IFC/DNN98oJiejXYxGI3Q6HXx9fdGkSRO1xWEYdksxjsv06dOh0+lw8uRJ9OvXD0WLFoWfnx8mTJiAtLQ0XLhwAZ06dYKPjw/CwsIwb968HGPExMRg0KBBCAwMhLu7O6pVq4b58+cjIyMDAHDlypVM5WXGjBnQ6XTQ6XQYOnQogLzdUt9++y1q164NDw8P+Pn5oXfv3jh37ly2bYYOHQpvb29cunQJXbp0gbe3N0JCQvDGG28gJSWlwP8/IyMD8+bNQ9WqVeHu7o7AwEC8+OKLuHbtWuY2YWFhmDp1KgCgZMmS0Ol0OaxPWclN+SlVqhTKlCmD2NjYAmWKiIhAjRo1cODAATRr1izTtbVs2TIAwIYNG1CvXj14eXmhZs2a2Lx5c7bvX7p0CcOGDUOlSpXg5eWF0qVLo3v37jh16lSO//2DDz5AlSpV4OnpiWLFiqFWrVpYtGhR5ja3b9/Gyy+/jJCQELi7u6NEiRJo3rw5tm3blm2sbdu2oW3btvD19YWXlxeaN2+O7du3Z9vG3LFy46+//kLbtm3h4+MDLy8vNGvWDBs2bMi2jTiOdu7ciVGjRiEgIAD+/v7o06cPbty4UeA+/v33Xzz//PMoVaoU3N3dUbJkSbRt2xYnTpzI3CYsLAzdunXDunXrUKtWLXh4eKB8+fL49NNPs40lXE/fffcd3njjDZQuXRru7u64dOlSrm4pS47ja9euoW/fvvDx8UGxYsXwwgsv4PDhw9DpdFi+fLlF/w/j3LDlhnF4nnvuOQwaNAivvPIKIiMjMW/ePBiNRmzbtg2vvfYaJk6ciFWrVuGtt95CxYoV0adPHwB0w2rWrBlSU1Px/vvvIywsDH/++ScmTpyIy5cv44svvkBwcDA2b96MTp06Yfjw4RgxYgQA5GutmTNnDt555x0MGDAAc+bMwd27dzF9+nQ0bdoUhw8fRqVKlTK3NRqN6NGjB4YPH4433ngDe/bswfvvv4+iRYvi3Xffzff/HjVqFJYsWYIxY8agW7duuHLlCqZNm4Zdu3bh2LFjCAgIwLp16/D5559j6dKl2Lx5M4oWLYoyZcpYNL///vsvrl69il69epm1/c2bNzFs2DBMmjQJZcqUwWeffYaXXnoJsbGxWLNmDd555x0ULVoUM2fORK9evfDvv/+iVKlSAIAbN27A398fH374IUqUKIF79+5hxYoVaNy4MY4fP44qVaoAAObNm4fp06dj6tSpeOaZZ2A0GnH+/Hk8ePAgU47Bgwfj2LFjmDVrFipXrowHDx7g2LFjuHv3buY233//PV588UX07NkTK1asgKurK7766it07NgRW7ZsQdu2bc0eKzd2796N9u3bo1atWli6dCnc3d3xxRdfoHv37vjxxx/Rv3//bNuPGDECXbt2xapVqxAbG4s333wTgwYNwo4dO/LdT5cuXZCeno558+ahbNmyuHPnDvbv359tPgDgxIkTGDduHKZPn46goCD88MMP+L//+z+kpqZi4sSJ2badPHkymjZtii+//BJ6vR6BgYG4efNmrvs35zhOTExE69atce/ePcydOxcVK1bE5s2bc8yBJf8P48RIDOOgvPfeexIAaf78+dner1OnjgRAWrt2beZ7RqNRKlGihNSnT5/M995++20JgBQVFZXt+6NGjZJ0Op104cIFSZIk6fbt2xIA6b333sshw7JlyyQAUnR0tCRJknT//n3J09NT6tKlS7btYmJiJHd3d2ngwIGZ7w0ZMkQCIP3888/Ztu3SpYtUpUqVfP/3c+fOSQCk1157Ldv7UVFREgDpnXfeyXxPzNPt27fzHTM3jEajFBERIfn6+koxMTEFbt+qVSsJgHTkyJHM9+7evSsZDAbJ09NTun79eub7J06ckABIn376aZ7jpaWlSampqVKlSpWk8ePHZ77frVs3qU6dOvnK4u3tLY0bNy7PzxMTEyU/Pz+pe/fu2d5PT0+XateuLTVq1MjssfKiSZMmUmBgoPTw4cPM99LS0qQaNWpIZcqUkTIyMiRJMh1HT/+e8+bNkwBIcXFxee7jzp07EgBp4cKF+coSGhoq6XQ66cSJE9neb9++veTr6yslJiZKkiRJO3fulABIzzzzTI4xxGc7d+7MfM/c4/jzzz+XAEibNm3Ktt0rr7wiAZCWLVtm0f/DODfslmIcnm7dumX7u1q1atDpdOjcuXPmey4uLqhYsSKuXr2a+d6OHTsQHh6ORo0aZfv+0KFDIUlSgU/LuXHgwAEkJydnuq0EISEhaNOmTQ53h06nQ/fu3bO9V6tWrWxy5sbOnTszZc1Ko0aNUK1atRz7sQZJkjB8+HDs3bsXK1euREhIiFnfCw4ORv369TP/9vPzQ2BgIOrUqZNpoQHodwKQ7X9NS0vD7NmzER4eDjc3N7i4uMDNzQ3//PNPNrdeo0aN8Pfff+O1117Dli1bkJCQkEOORo0aYfny5fjggw9w8OBBGI3GbJ/v378f9+7dw5AhQ5CWlpb5ysjIQKdOnXD48GEkJiaaNVZuJCYmIioqCn379oW3t3fm+waDAYMHD8a1a9dw4cKFbN/p0aNHtr9r1aqVY46exs/PDxUqVMBHH32ETz75BMePH890qz5N9erVUbt27WzvDRw4EAkJCTh27Fi295999tkC/0eBOcfx7t274ePjg06dOmXbbsCAAVb/P4zzwsoN4/D4+fll+9vNzQ1eXl7w8PDI8f7jx48z/7579y6Cg4NzjCduwAW5HHJDfCevcZ8eMzc53d3ds8kpx34sRZIkjBgxAt9//z2WL1+Onj17mv3dp38PgOY+t98JQLb/dcKECZg2bRp69eqFP/74A1FRUTh8+DBq166N5OTkzO0mT56Mjz/+GAcPHkTnzp3h7++Ptm3b4siRI5nbrF69GkOGDME333yDpk2bws/PDy+++GKma+W///4DAPTt2xeurq7ZXnPnzoUkSbh3755ZY+XG/fv3IUmSRceYv79/tr9FBl7W//1pdDodtm/fjo4dO2LevHmoV68eSpQogddffx0PHz7Mtm1QUFCO74v3npYlN7nzwpzj+O7duyhZsmSO7z79niX/D+O8cMwNw+SBv78/4uLicrwvAjgDAgKsGhNAnuNaM2ZB+3k6hqaw+xGKzbJly7B06VIMGjSoULJagoiBmT17drb379y5k60+j4uLCyZMmIAJEybgwYMH2LZtG9555x107NgRsbGx8PLyQkBAABYuXIiFCxciJiYGv//+O95++23cunULmzdvzpyjzz77LM8MIHHjLWis3ChevDj0er3sx1huhIaGYunSpQCAixcv4ueff8b06dORmpqKL7/8MnO73JQx8d7TipVOp5NFNoG/vz8OHTqU5/6zYu7/wzgvbLlhmDxo27Ytzp49m8Mcv3LlSuh0OrRu3RqAeU/PgqZNm8LT0xPff/99tvevXbuGHTt2ZAaoFpY2bdoAQI79HD58GOfOnbN6P5IkYeTIkVi2bBm++uorDBs2rNCyWoJOp8tRL2jDhg24fv16nt8pVqwY+vbti9GjR+PevXu5FlQsW7YsxowZg/bt22f+3s2bN0exYsVw9uxZNGjQINeXsC4VNFZuFClSBI0bN8batWuzHTsZGRn4/vvvUaZMGVSuXLmgKbGYypUrY+rUqahZs2YO+c6cOYO///4723urVq2Cj48P6tWrJ7ssWWnVqhUePnyITZs2ZXv/p59+yvd7+f0/jPPClhuGyYPx48dj5cqV6Nq1K2bOnInQ0FBs2LABX3zxBUaNGpV54/Hx8UFoaCh+++03tG3bFn5+fggICEBYWFiOMYsVK4Zp06bhnXfewYsvvogBAwbg7t27mDFjBjw8PPDee+/JInuVKlXw8ssv47PPPoNer0fnzp0zs6VCQkIwfvx4q8Z9/fXXsXTpUrz00kuoWbMmDh48mPmZu7s76tatK4v8edGtWzcsX74cVatWRa1atXD06FF89NFHOaxT3bt3R40aNdCgQQOUKFECV69excKFCxEaGopKlSohPj4erVu3xsCBA1G1alX4+Pjg8OHD2Lx5c2a2nLe3Nz777DMMGTIE9+7dQ9++fREYGIjbt2/j77//xu3bt7F48WKzxsqLOXPmoH379mjdujUmTpwINzc3fPHFFzh9+jR+/PFHWawjJ0+exJgxY9CvXz9UqlQJbm5u2LFjB06ePIm3334727alSpVCjx49MH36dAQHB+P7779HZGQk5s6dCy8vr0LLkh9DhgzBggULMGjQIHzwwQeoWLEiNm3ahC1btgAA9Hq9xf8P48SoGMzMMIqSVxbQkCFDpCJFiuTYvlWrVlL16tWzvXf16lVp4MCBkr+/v+Tq6ipVqVJF+uijj6T09PRs223btk2qW7eu5O7uLgGQhgwZIklSzmwpwTfffCPVqlVLcnNzk4oWLSr17NlTOnPmjFlyiv+rINLT06W5c+dKlStXllxdXaWAgABp0KBBUmxsbK7jmZMtFRoaKgHI9RUaGlrg93ObYzFu165dc7wPQBo9enTm3/fv35eGDx8uBQYGSl5eXlKLFi2kvXv3Sq1atZJatWqVud38+fOlZs2aSQEBAZKbm5tUtmxZafjw4dKVK1ckSZKkx48fS6+++qpUq1YtydfXV/L09JSqVKkivffee5lZQYLdu3dLXbt2lfz8/CRXV1epdOnSUteuXaVffvnF4rFyY+/evVKbNm2kIkWKSJ6enlKTJk2kP/74I9s24jg6fPhwtvdzy056mv/++08aOnSoVLVqValIkSKSt7e3VKtWLWnBggVSWlpa5nbiN1izZo1UvXp1yc3NTQoLC5M++eSTXPcp/v+C5LHkOI6JiZH69OkjeXt7Sz4+PtKzzz4rbdy4UQIg/fbbbxb9P4xzw+0XGIZhGISFhaFGjRr4888/1RYlG7Nnz8bUqVMRExNjcQ0mxnlhtxTDMAyjCf73v/8BAKpWrQqj0YgdO3bg008/xaBBg1ixYSyClRuGYRhGE3h5eWHBggW4cuUKUlJSULZsWbz11luZLUIYxlzYLcUwDMMwjEPBqeAMwzAMwzgUrNwwDMMwDONQsHLDMAzDMIxD4ZQBxRkZGbhx4wZ8fHxkLyHOMAzDMIwySJKEhw8folSpUpmFHXPDKZWbGzdumN3BmGEYhmEYbREbG5tveQCnVG58fHwA0OT4+vrKNq7RaMTWrVvRoUMHuLq6yjauo8Dzkz88P/nD85M3PDf5w/OTP/Y0PwkJCQgJCcm8j+eFUyo3whXl6+sru3Lj5eUFX19fzR8gasDzkz88P/nD85M3PDf5w/OTP/Y4PwWFlHBAMcMwDMMwDgUrNwzDMAzDOBSs3DAMwzAM41CwcsMwDMMwjEPByg3DMAzDMA4FKzcMwzAMwzgUrNwwDMMwDONQsHLDMAzDMIxDwcoNwzAMwzAOBSs3DMMwDMM4FKzcMAzDMAzjULBywzAMwzCMQ8HKDcMwjJOQkQHcvElLhnFkWLlhGIZxAlauBEqXBoKDgcqVgX371JaIYZSDlRuGYRTj+nXgtdeADh2AOXOA5GS1JXJOvvwSGDKErDYAcPky0KYNcOiQunIxjFKwcsMwjCKcOgXUrQssXgxERgLvvAM0bw7Ex6stmXNx+jQwbhytv/kmcPs20KULkJoKPPcckJSkqngMowis3DAMIzsPHwJ9+tCNtHZtYMECICAAOH4cGDQIkCS1JXQeJk4EUlKArl2BuXPpd1i1CihbFrh6Ffj0U7UlZBj5YeWGYRjZmTsXuHSJbqDbt5PlYOtWwM0N+PNPYM0atSV0Dv76C9iyBXBxARYtAnQ6er9oUWDWLFqfOxdITFRPRoZRAlZuGIaRlZs3gU8+ofVFiwB/f1qvWxeYPJnW33kHSE9XRz5n4n//o+XQoUCFCtk/GziQ3nvwAPjxR1tLxjDKwsoNwzCysmQJBQ43bAj07Jn9s4kTAT8/sur8/LM68jkLt24Ba9fS+muv5fxcrwdefZXWv/zSdnIxjC1g5YZhGNlISwO++orWx40zuUEE3t7A//0frS9ebFPRnI5lywCjEWjcmKxmuTF0KLmsjh4FLlywqXgMoyis3DAMIxs7dwI3blDQat++uW8zfDhZDfbuBS5etK18zsQPP9By5Mi8twkIANq1o/XVq5WXiWFsBSs3DMPIxi+/0LJPHwoezo3SpYFOnWh9+XKbiOV0/PMPpeK7uAC9e+e/bf/+tPz1V+XlYhhbwcoNwzCykJYGrFtH6/365b/tsGG0XLmSWwEogfgdWremGKf86NaN3IcnT5LVjWEcAVZuGIaRhV27gDt3yNUREZH/tt27U/zN9esU78HIiwgk7tOn4G0DAij4G6C0cYZxBFi5YRhGFjZsoGXPnuQOyQ93d6BzZ1pfv15RsZyO//4DoqJo/elstbwQbsLNm5WRiWFsDSs3DMPIwrZttOzY0bztxY33t9+UkcdZ2b6dlnXrUpNMcxCK5tat5F5kGHuHlRuGYQpNXBz1MNLpqCGjOXTpQhaeM2coAJaRB6HciCwoc2jYEChenAr6HT+uiFgMY1NYuWEYptCIG2q9eqaKxAVRvDjQsiWtc6yHPEgSNSkFgLZtzf+ewUBNTQFq2cAw9g4rNw5CejqVWq9alQI127QBjhxRWyrGWRAuKUusBQDQvn327zOF49IlIDaW0vBbtLDsu0LRZOWGcQRYuXEA0tKAF14Axo6lKqOJiVRMrVkz8qEzjNLs2kVLS6wFgEm52bmTYz3kYMcOuqQ3awYUKWLZd4UytHcvd21n7B9WbhyAyZOpuqirKzUqPHqUalcYjcCzzwJXr6otIePIXL9Ox5heDzRpYtl369alOiwJCcDhw8rI50xs3079Liy1oAFA/fqUxXb7NsdAMfYPKzd2zs6dwMcf0/oPPwCvv05xD7/+Sk9vjx7l3jSPYeTiwAFa1qoF+PhY9l2DwRSALGJFGOuQJGDvXlJuzA3qzoq7O/WhAsh6wzD2DCs3dkx6OjUnBICXX85eFdbNDfj2W7LmbNzIFytGOfbvp2WzZtZ9X1gZhGuLsY4bN7xx964OHh5khbEG8RseOiSfXAyjBppSbubMmYOGDRvCx8cHgYGB6NWrFy481ap26NCh0Ol02V5NLLWFOwjLllHJ9OLFgdmzc35epQrw0ku0PnOmbWVjnIfCKjcikPXgQXKlMtZx/jz1WWjYMO++XgXRoAEtORmBsXc0pdzs3r0bo0ePxsGDBxEZGYm0tDR06NABiYmJ2bbr1KkT4uLiMl8bN25USWL1MBqB99+n9XffzTv9dvJkioXYtg04f9528jHOwePHwLFjtG6tclO1KsXdJCebxmIs59w5Um6s/R0Ak8Xn1CkgJUUGoRhGJTSl3GzevBlDhw5F9erVUbt2bSxbtgwxMTE4+lTzGXd3dwQFBWW+/ArqDOeA/PILEBMDBAYCr76a93ahoUDXrrT+1Ve2kY1xHk6cIEU7MBAIC7NuDL3elKnDacjWIyw3ol6NNYSG0oOS0UgKDsPYKwV0gFGX+Ph4AMihvOzatQuBgYEoVqwYWrVqhVmzZiEwMDDPcVJSUpCS5TEkISEBAGA0GmGU0Q4uxpJzzNyQJGDuXBcAOrz2WjoMhox8zfkvvaTDH3+44McfJcyZkwaDQVHx8sRW82Ov2OP8HD6sB2BAvXoZSEtLt3qcpk31+P13A3bvzsDrr+c+jj3Oj6347z8jrl2jaO4GDYyFcu/Vr2/A1q16REWlo3Ztx2jZrtVjJyWFArnVRqvzkxvmyqhZ5UaSJEyYMAEtWrRAjRo1Mt/v3Lkz+vXrh9DQUERHR2PatGlo06YNjh49Cvc8jpI5c+ZgxowZOd7funUrvLy8ZJc9UuG0j3Pn/HDyZEu4uaWhfPmt2Lgx/x87LU2HIkU64b//3DB/fhRq1LirqHwFofT82Dv2ND+//14HQCh8fP7Bxo3W+z11uuIAnsGuXUZs2LAZOl3e29rT/NiKI0dKAmiCUqUe4dCh7YUaq2jRqgCqYP36ayhT5oQc4mkGLRw7qal6rFlTGVu3huLBAw8EBz9Cnz7/oF27mHyPe1ughfkpiKSkJLO200mSNss1jR49Ghs2bMBff/2FMmXK5LldXFwcQkND8dNPP6FPnz65bpOb5SYkJAR37tyBr6+vbDIbjUZERkaiffv2cHV1lW3cpxkxwoCVK/UYMiQDX39t3tOy+M6oUelYtEidpzFbzY+9Yo/z06iRC06c0OHnn9PQq5f1l5LUVCAgwAWPH+vw999GVKuWcxt7nB9bMWUK8NFHrhg8OA1Llxbukr5+vQ7PPeeCWrUkHDniGJUVtXLs3LkDdO3qguPHc2oxr7ySjk8/zVBFwdHK/JhDQkICAgICEB8fn+/9W5OWm7Fjx+L333/Hnj178lVsACA4OBihoaH4J5+qU+7u7rladVxdXRX5IZUaF6BiZ2vW0PrIkXq4upoXNtW/P7ByJbBunQGffWZQzTUFKDs/joC9zE9KCjW9BEjJKYzIrq5UY2X3biAqyhW1auW3rX3Mjy05epQeWJo1Q6HnRiSfnj2rQ1qaKzw9CyuddlDz2ElOBrp3p8akAQHA558DzzxD1+W33wa++sqAKlUMGD9eFfEA2Me5Za58mgooliQJY8aMwdq1a7Fjxw6UK1euwO/cvXsXsbGxCA4OtoGE6vPTT0BSEmWYWJIV0a4d4OsL3Lzp+F1/Hz0C1q6li8fOnUCGY4QNaI4zZyjw1M8PKFu28OOJ4zkqqvBjORMZGcDRo/S4X79+4Q3xZcpQgHhaGpWaYORhwgSqHh8QQHXHnnsOCAoCJk2iyvIAZbc+Vf2EsRJNKTejR4/G999/j1WrVsHHxwc3b97EzZs3kZycDAB49OgRJk6ciAMHDuDKlSvYtWsXunfvjoCAAPTu3Vtl6W3D0qW0HDECFpkv3dxMVUsdud/Uxo1AxYrUdmLMGPqf69ShrB5GXkTadr16lh2LedGoES1ZubGMy5eB+Hgd3NzSUb164cfT6agtBgD8/Xfhx2OAP/8EvvyS1n/4gR5OszJmDNCxI1lDJ0+2vXyOiKaUm8WLFyM+Ph4REREIDg7OfK1evRoAYDAYcOrUKfTs2ROVK1fGkCFDULlyZRw4cAA+ltZ9t0P+/Zcqh+r1wKBBln+/QwdaOqpy8/vvQI8ewH//kSWhe3eyVp06RanGO3aoLaFjkVW5kQNR+v/MGeDhQ3nGdAZEwb1y5eIL5RrMinALsuWm8CQnU1NjAHjjDdN1OCs6HfDJJ3RtX7eOLDxM4dBUzE1Bsc2enp7YsmWLjaTRHr/8QsvWrYGSJS3/vjip9u+nm4cj6YP//gsMHkwtKV54gSxcognggAHA9u1Ar15kFcgtWJWxHLmVm+BgICQEiI2li3tEhDzjOjpCualQ4QEAeU7qmjVpybVuCs9HHwFXrpC7L5ek3UzCw4HnnwdWrQIWLAC+/95mIjokmrLcMPnz88+0fO45675foQJQvjzFSThaH58xYyjYulkzaksh4sdLlAA2bKDAvYcPybLDVoHCk55ueqoXLgw5EK4p7m1kPqKbesWKD2QbM6vlRpv5tPbBgwfA/Pm0/vHHQJEi+W8/YQItV68mCzRjPazc2AmXLtGTssEAFCa8SDQp3L1bHrm0wNatwKZNlHGzfDlymObd3cnqFRJC8zhpkipiOhT//kvmdk9PUprlQrimOO7GPNLTTRa0SpUeyDZu1ap0rXnwALh+XbZhnY4vvqCHrvDw7I2N86J+feoNlpZGySOM9bByYycIl1SbNmSNsBbRpNCRytx/+CEtX3sNqFQp920CA4EVK2j9yy85/qawnD5Ny/BwyFpWgC03lnHhApCYCBQpIqFUKflMku7upqBXjruxjqQkYOFCWhc9/sxh8GBafvedImI5Dazc2AmFdUkJRA+fo0fp5LN3jh6ldG8XFwrWy4/WrYFRo2h9zBjuQF0YhHKTpXi4LNSvTzeBa9eAGzfkHdsRES6punUl2WtXcdxN4fj2W4r5CwujWBpzef55up4dPQqcO6eYeA4PKzd2wMWLlMpcWJcUQI3xSpcms6cjPB2LJ6P+/cntVBCzZ1OdiXPngMWLFRXNoVFKufH2RmY6syMcn0ojgonlqG/zNJwxZT1GIwUSA8Cbb5KyYi4lSgCdOtG6eKhlLIeVGztAuKTataOOvYVBp3OcDswPHwK//krrItWyIIoVA2bNovX33qNy6IzlKKXcAKa4G1ZuCkYoN/Xqya/csOXGelatAmJiKKt12DDLvy8eYv/8U165nAlWbuwAuVxSAhF3s3evPOOpxbp1FNRaubIpVsMchg8HatemYMmZMxUTz2FJSSFrIqCMcsPF/MzDaDQVp2zQQDnl5tw56v3FmEdGhikOcPx4WNW+oksXWh45AsTFySebM8HKjca5cIHMwi4uVKdFDpo2peXhw/ad5vnDD7R84QXLKuQaDFQwCyDXVD5tyZhcuHiR3JpFi5KLU26E5ebwYW6dkR9nzgCPH9PvIGfGmqBsWSqCmZbG54glrF8PnD9Pv4uI8bOUoCCTkr9xo2yiORWs3Ggc4ZJq3556+MhBjRrUjuH+fSA6Wp4xbc3t28C2bbT+wguWf79NG6BrV7pwv/22vLI5OlldUkp0MA4PB7y8yO14/rz84zsKooptvXrmZ+JYgk5nypjiwFbzkCRgzhxaHzOGlENr6daNluyasg5WbjSO3C4pgBSb2rVpXWRb2BsbN9JTfd261j+1zptHN4W1a4F9++SVz5FRMt4GICtl/fq0bq/Hpy0Q9W0aNFBuH6KaNys35rF9O7mSPD2B//u/wo3VuTMtd+6kekaMZbByo2HOnaNgPldXoGdPecdu2JCWIiDR3vjjD1p27279GOHh1IAUACZOtG8XnS1RWrkBTMcnKzd5I3f7i9wID6fl2bPK7cOREFabESMKV48MoAe3okWB+Hjg+PHCy+ZssHKjYbK6pIoXl3ds8bRnj8pNaiogWowJ0621zJhBJdEPHgTWrCm8bM6ALZUbzpjKnbQ0U8duJZUbttyYT1QUFQd1caGHpcJiMACtWtE6Fx21HFZuNIwSLimBUG6OHrW/oM09e4BHjyjNUrgvrCUoyNSO4e23KROIyZvERGq9AJjq0SiBCKb8+2/O1MmN8+cpU9DbG6hYUbn9COXmwgV2jRSEsNoMGkTB2HLQujUtd+6UZzxngpUbjXL6NGVDuLnJ75IC6KLl6UlBm/aWCbF1Ky07d5YnkPKNN6gj9b//cmG/ghBP8IGBhTe750e5clTTKTWVi8jlhnBJ1a2rTDCxoFw5asXw+DFw9apy+7F3zpwBfvuNgrDfeku+cYVys3cvV1S3FFZuNMrq1bTs2JEKz8mNi4vJnG1vcQ2io3nbtvKMV6QI8P77tD5zJmWRMbkjspdELIZS6HTsmsoPW8TbAOQaqVKF1tk1lTeiMGjv3qYMMzmoWZOyZBMTOe7GUli50SCSZFJuLOlJYin2GHcTH29KgY2IkG/coUMphuT+fWrRwOSOUG7EDU9JOKg4b2yl3AAm1xQHFefO+fOmDt5Tp8o7tl5vqkt28KC8Yzs6rNxokBMnyFXk4VG4bKCCqFuXliIw0R746y+KEapYEShTRr5xDQZTL5hPP7Xf+j9KI5QbOZ9O84ItN7mTkWF6irelcsOWm9x5/316IO3Z03RNlZMmTWh54ID8YyvFL79QC4qbN9WTgZUbDSKsNl27Aj4+yu0na2M8e0mDFi4pOa02go4dKTMtNRWYMkX+8R0BNZSbc+coNowhLl2igHoPD9v8Dqzc5M3588CPP9L6u+8qsw9hubEn5WbuXCquun+/ejKwcqMxsrqk+vdXdl/h4WSxuHcPuH5d2X3JhZLKjU5H1hudji5YmzfLvw97Jj3dFHxui5tqUBB1epckkxuGMc1F7dqWdZu2FhFfde6c/TwE2YqZM2lOevRQzorWqBFdk65etY8+U6mppmarSliyzIWVG41x+DBw5QoFuXbtquy+3N1NNyl7yEiJjzdd2JVQbgC6YYwZQ+vDhlGbB4a4coUuXB4e8qW6FgS7pnJiy3gbAKhUiWI/4uPVdTNojYMHTVab995Tbj8+PqaaUvYQd3P2LF0nihUDwsLUk4OVG40hTpbu3am/jtKINgz2EHezf78p3kaJho2CuXPpafXmTeCll+yvDpBSCJdU5crKph9nRdS74aBiE7ZWbtzdTS1O2DVFZGSY2isMHar8b2FPrilhtaldW5nec+bCyo2GMBqzd7q2BVnjbrSOeGpp1kzZ/Xh60u/g5kZN6+SsW2HPXLhAS1u4pAScMZWdrC66whawtATOmMrOypVkTfT2tk12pT0pN7aoYG4OrNxoiI0byQ1SsiTQqZNt9mlPlhuh3DRurPy+6tQBli2j9Y8/phRPZ483sGUauEDcwK9cYRchQHEX9+9TvzklK0Q/DQcVm7hxAxg/ntanTqUCoEojMqaOHqXWG1rmzBla2vL4zA1WbjSEuJkOHmybQEHAZLm5cIGqkGqVjAxT3IU40ZVm4EDqHA5Qka7+/YG7d/PePiWFyqS/8w49aQUG0pNdWBiNZe8l1G2ZKSUoWtS0vyNHVLRxawRhtalZkyyLtiJrULEzk54ODB8OPHhAdcImTLDNfitXpmtJcrLJgqpVtKLc2OgWyhTErVvAhg20PnSo7fYbHAwEBAB37tBBaUtTtyVcvEgXFA8PurDbijffpIC+MWOodsOWLcCQIVQWvUQJCrI8fZoa2/31F5CUlHOMxER64v7xR6BvX+Cbb+imbW+oodwA5Jo6f56UG60en7bC1vE2AmG5EceAszJtGmVRengAK1aQBc0W6PWUebR3L1lv1FYc8uLRI7KyAurLyJYbjbB8OZkbGza07UGh09lH3E1UFC0bNLDdBUXw6qvkEqtZE0hIAD77DOjTB2jZkrqSv/029btKSiKX4gsv0O954gTVJNm1Cxg1iqxxa9YALVqQMmlP3LtncgtVrmzbfYu4G7bcmKpz21q5Ea7IuDhS6J2RTz81Ncf85hvlW5A8jfjNtVwWQVj2Spak3nBqwpYbDZCWBnz+Oa2PGmX7/deoQZYHYU7UIraMt8mNBg1IWdmyBfj1V7rAPHxIKfsVKwLPPEPWnBo1cmYIVKgAtGpFmVc9epClp1s36m5uS9dCYRCm8DJlyDxuS0TG1JEjOrz8sm33rSUkST3lxtcXKFWK4k3On1fvPFQDo5EK9H34If09ZYrtEj6yYg/KjVZcUgArN5rg99+BmBhyDw0YYPv9iwNRy5kQQrmxVbxNbuj11Im8c2frvt+gAbB9O9C8OVmisl4wtY5aLinAVKzu9m0dbt/2tL0AGuHGDbKeGQwma6stqVrV/pWb+HiKfbt4kaywRYuSezk0lF5ly1K2JECfb9xI1hph1Z42DZgxQx3ZhUv2+HGKQbRVOQZLYOWGycann9Ly5ZfJl2trhHlVq5abpCRT7QR7vagKqlUDli4lt9a8eWTBadFCbakKRk3lxsODbubHjgH//FPc9gJoBPHEXq2a6QZsS6pWJQuvPcbd3L0LLFlSE/36ucBozH/bEiXIohoXZ6pxVawYsGQJ0K+f4qLmSZUq9Ls/ekTublu7h82BlRsmk6NHgd276WlMDZcUYFJuYmLI1aJkPytrOHOGshRKlJC3WaZa9O5N1Y+XLaOU0qgobT6FZUW4pWyZBp6VRo2EclNMHQE0gFrBxAJ7DSo+cQLo1s0F16+XB0D/R5MmZLWJjwf++48C/q9eJcUha8mBChXIBfX66xqIIXEhK+bBg3QsaFG50UqNG4CVG9URJs4BA9S7cfv5UR+fmzcpIEzEOGgFYRKuVUvdipdy8uGHFFx85AhlUanhw7cENS03AAUVf/klcOlSMXUE0ABqKzfit7cn5eboUWrV8uiRDmXKPMS333qiffvcb3uSRDWErl6lh6nSpW1Tw8YS6tUj5eboUeD559WWJjsJCUBsLK1rwXKj8edFx+boUeCPP+ipfepUdWUR1hstxt2IAoOi4KAjEBhIWVYAKbjp6erKkx9GI3D5Mq2rqdwAwKVLxTU9V0oigonVakYofvtLl1Cga0cLXL9OAfyPHgGtWmXgww/3ICIi70qcOh096NWtS/FxWlNsAG0HFYt7R6lS5MZTG1ZuVEKSgIkTaX3gQPXM/QKhaWsx7iar5caReP11ugj88w8puVrl338po69IEWV7euVHeDhQpIiEx49dNF/ETAlu3KCbtV6vnuWmdGk6BtLSTMquVpEkqhd24wYdO7/+mg5vb42X9jUD8YB38qT2KqZrKd4GYOVGNX75heqfeHgA77+vtjTatdxIkuMqN97epjirjz5SV5b8yNp2QS23oMEA1K1LV3NnrHcjemtVr277VHyBTmc/rqnly4Ft2+j6un49pbI7AuHhpODeuUOxQlqClRsGd+4A48bR+ttvq9sWXqDVdPBr18gPbjDYvmiWLRg7ljIz9u+nFE8tona8jaBhQ+dVbkTrEeGeUwt7UG7i401W8ZkzgUqV1JVHTry8TP+PyCDVCqzcODmSBIwYQWmGVasCkyapLREhFIcrV8hHrRWE1aZqVcDdXV1ZlCA4GOjVi9aXL9fm6agV5aZ+fedVboTlRu1gf3vImJo/nypqV6tmanDpSIj2M1qrKM/KTT7MmTMHDRs2hI+PDwIDA9GrVy9ceMrBLkkSpk+fjlKlSsHT0xMRERE4o8VAkTyYNg347Td6Wl+1Sp16Fbnh708lswFtXbgc1SWVleHDafnjj3qkpGjqlASgfhq4oEEDUm5OntRpusmr3GRkaEe50brl5s4dYMECWn//fds1ILYlWmyX8+ABxYQB2rGwa+pKunv3bowePRoHDx5EZGQk0tLS0KFDByQmJmZuM2/ePHzyySf43//+h8OHDyMoKAjt27fHw4cPVZS8YDIygOnTqbs0APzvf+plPeSFFov5OWKm1NO0bUuVUR880CEqSlspGpKkHctNuXJAsWKPkZqqy7zZOwOXLpmaxqpdP0QcA+fOaS+gFQC++IIsz3XrUqFMR0RYbrTklhL3jJAQ7TQF1pRys3nzZgwdOhTVq1dH7dq1sWzZMsTExODokxxISZKwcOFCTJkyBX369EGNGjWwYsUKJCUlYdWqVSpLnzeXLlFKoqhp88EHwMiR6sqUG1qMu3EGy43BAAweTOv79qmUjpQHt29TzJNOp37sgk4HhIffBUDdkZ0FEW9Tr57tm8Y+TcWKFNCakEB1sbRESgopNwDw5puOUxPracS18OxZylzTAlpzSQEaU26eJv5J+1k/Pz8AQHR0NG7evIkOHTpkbuPu7o5WrVph//79qsiYlb//Bo4fL4H163X4/nuy0nToQOb8DRvowvTNN9R4TYtozXLz+LHJJeLIyg1gKut+7FggtGSEFFab0FBtuFDDw+8BcC7lRlip1A4mBijurTwV+tWca+rnnymDqFQpoG9ftaVRjrAwSslPSaEyElpAi8qNZj2SkiRhwoQJaNGiBWo8scXefPKoUFIEhzyhZMmSuHr1ap5jpaSkICUlJfPvhIQEAIDRaIRRxmpUkybpsXNns1w/69QpA3PmpKN6de0WwKpSRQfABWfPSjAa5X8kEHNt7pz//TeQkeEKf38JJUqkaXbe5KBaNaBiRQMuXTLg99/T8MIL2vhnz56lY6JKlQwYjepWzzMajZmWm/37JTx+nAaDQVWRbEJUlAGAHvXqpcFozN0XZOm5VRgqVzbg0iU9zpxJR4sWGYrvz1wWL6Z5evXVdAAZ2a4XtpwfW1CjhgFRUXocO5aGihUL7x8s7PycPk1zX7Vq3seoXJgro2aVmzFjxuDkyZP466+/cnyme8reKElSjveyMmfOHMzIpZXr1q1b4eXlVXhhn+DuXgvlyhWHu3s63N3TUaxYCsqVi0fjxnEIDk7K7F+iVRIS3AB0RnS0DmvXboGHhzI3s8jISLO22769LIC6KFXqDjZtUt8ypzS1a1fDpUuV8dVXd1G8uDaCSjZtqg6gItzcorFx42m1xUFoKODlZURCgisWL96H8uXj1RZJUYxGHY4d6woASErahY0bE/Pd3txzqzC4uYUDqIQtW64gJET9YwIA4uKK4MCBdtDrJZQpE4mNG1Ny3c4W82MLihatDSAMv/12Gd7e8pnQrJ2f48c7AvDA/fv7sHHjA9nkyY2kpCSzttOkcjN27Fj8/vvv2LNnD8pkabgUFBQEgCw4wVlqY9+6dSuHNScrkydPxoQJEzL/TkhIQEhICDp06ABfGas7tW9vRGRkJNq3bw/XTOd4EACV00ws4I03JNy+rUNYWEfZK6EajbnNT97s2EFe09at/dClSxd5hdEgJUqk4ddfgRMngvHMM11UK9aWla++ItNIp05h6NKlrKqyiOOneXM9IiMBSWqJLl20YzlQgiNHdDAaDSheXMJLL7XKM47E0nOrMNy6pcP69UBKSjnVjwnB9Ol0rWjfXsKgQW1zfG7L+bEFV67osXUrkJRUCV26lC/0eIWZn3v3gPv36TsjRjRT/LolPC8FoSnlRpIkjB07FuvWrcOuXbtQrly5bJ+XK1cOQUFBiIyMRN0nqUapqanYvXs35s6dm+e47u7ucM+lSIqrq6siB7pS49qC8HDqUv7PP65o3FiZfZg7PyIboE4dA1xdHd//0KABEBT0CDdvemPHDlc8+6zaEplinsLDtfMbtGwJREYC+/cbMGGCNmRSioMHadm8uQ5ubgWfM7a49oi4ivPn9XB1VT9sMyODymoAwJAh+ctkz9fmrIhM29On5f0NrJmfixdpGRoKFC+u/NyaK5/6R2YWRo8eje+//x6rVq2Cj48Pbt68iZs3byI5ORkAuaPGjRuH2bNnY926dTh9+jSGDh0KLy8vDBw4UGXpHQNRpEvtjClHbruQFzod0KAB1VTftEllYUAB3Veu0LraaeBZadGCfPp792ozHVlO9u2jZYsW6sqRFVHvKDZWGwU/9+6l49TX11QQ09ER6eBXr1JFZjXRYjAxoDHlZvHixYiPj0dERASCg4MzX6tXr87cZtKkSRg3bhxee+01NGjQANevX8fWrVvh4+OjouSOg8iYOndOXTni4oC7dyntVGsnjZLUr29SbtS+cV+6RE/FRYuaCjxqgQYNJLi5AbduaSdbRAkkCRAhh82bqytLVvz9gRIlaF08tauJuD307auNjD5bULw4ICI2Tqsc9iT2r3YNpqfRlHIjSVKur6FDh2Zuo9PpMH36dMTFxeHx48fYvXt3ZjYVU3i0YrkRVpsqVah4mbNQvfpdeHlJuHFD/QqkWYv3aalmiIcH0KQJrW/frq4sSnL5MqU2u7mRy1JLaKVScUYGNcYETOUUnAWtVCpmyw1jFwjLzeXLVEdBLURlYmdxSQnc3DLQujWZbDZuVFeWrN3AtYYodbV1q7pyKIlwSTVooD0FXys9pqKiyMrr6wu0aaOuLLZGuKbUttywcsPYBcHBdKFIT1fX5C+eRhy57UJedOpEyo3acTcimFhL8TaCjh1puX27dutGFRbhktJSvI0gaxsGNVm7lpbdupGFy5kQDgs1lZvbt+ml05kUXq3Ayg2TDSpxT+tqXricLZg4K506UXrz/v3qBgtqpadUbtStS7EfDx/S07sjosV4G4EW3FKSBKxbR+u9e6snh1oI5ebUKfXi84TVplw5QMaScbLAyg2TA7XjblJSTBdNZ1RuQkOBypXJerZnjzoyaKlhZm4YDED79rS+ZYu6sihBXBzNv06nbeXm4kU6TtXg9Glyn3t4AJ06qSODmlStSufB/ft0vKiBVl1SACs3TC6obbk5d44awmXNCHA2RPyAWgGzN25Qmq/BAFSooI4MBSFcU44Yd7NtGy3r1SMLldYoW5aUitRUU7kAWyOU2jZtoImCl7bGw8PUzFYt1xQrN4xdobblJqtLSktZOrZEKDc7dqizf2G1KV9eu7EMwnJz+DD5/R0Jody0a6euHHlhMJB1EVDPNSXmSBwHzojacTes3DB2hbDcXLxIFhRb46yZUllp3ZqWp05RPRdbo+VgYkHp0mTZkCTg99/VlkY+JEn7yg2gbsbU48cml62W50hpRMaUqOZuSyTJpFSxcsPYBaGhVAwrJQWIjrb9/p05U0oQEGD6/3futP3+tRxvk5U+fWgpAksdgfPnyS3o4aHNTCmBmhlTBw4AyclAUJA2b6y2Qk3LzX//UV8pvV6b1wlWbpgcZD1Y1XBNOXOmVFbUdE1pucZNVoRyExkJmNlPT/OIxswtWmivvk1W1MyYymrZclbXNWBSbs6coYKGtkS4pCpU0GZlaFZumFwRJmdbP5XdvEluGGdru5AbWlButPhElpVq1UjG1FTgzz/VlkYehHKjdXeLVpQbZ6ZCBVKAk5OBf/+17b61HG8DsHLD5IGIu7G15UZYbSpV0l7dBFvzzDMUuHnpEhATY7v9JiZSU0RA+8oNADz3HC2/+05dOeQgMdF049Z6erMIKL57F7hzx3b7vX8fOHKE1p1duTEYTNdqW7umWLlh7BK1LDfskjLh62vqKWRL641ohhgQoM005Kd58UVabt0KXL+uriyFZetWCpYNC9P+OeDlRfF5gG2tNzt3kgumWjUKKnd21Iq7YeWGsUuy1rqxpS+XlZvsiKyp3bttt097ibcRVKhAVq6MDPmtN0lJwK5dwM8/A7/9prwF7bffaNmzp33EkqjxEMQuqeyokTElSazcMHZKhQqAiwuZya9ds91+RRq4M2dKZSUigpa2VG6EK9IeXFKCoUNpuWSJPBVzz5wBBg+mQpKtWwP9+wO9epGlokkT6mkkd8n7tDRT3FCvXvKOrRRqxN2wcpMdNSw3cXHAgwfkFtPqQxArN0yuuLqafOq2irtJTTU9AbLlhmjenC4g0dHA1au22ad4IhMXTXugf39yoUVHm5opWkNqKjBpEinX339Pf5cpA7RqRe8ZDNTL6tlnge7d5a1BtG0bxa/4+2s7BTwrtlZurl6lhr4GA/0mjOk8vXiRynfYAqFIVawIuLvbZp+WwsoNkye2NjlfuEAdnosWpfLuDJWVF3E3trLeaLkwV154eQGjR9P6vHnWWVX++48y1D76iKw/PXsChw6RK2rXLuDECYrpmTKFqjZv2AA0bGhypRaWlStpOWAAWU3tAVsrN8Jq07gxXScYijsqVowsf6L4ptLYwwMQKzdMntg6YyprZWJ7iDewFcI1tWuX8vt6/JiaEQLavnDlxpgxlBZ75Aiwfr1l3z16lJTIffvoprl+Pb0aNsx+LJYsCXzwAXD8OGX0xcTQ7yOyd6wlIcFUiFAESNsDQrmJjqZjR2nYJZUTnc72rimtx9sArNww+WBryw0HE+eOLZWb8+cpMLd4car+ak+UKAFMmEDrEyZQ7Q9z+PFHcgNdu0bxA4cOkdUmP8LDyT3VtCmlJrdrRz2urGX1alIOqlUzWersgcBAOlYkSfnrREYGKzd5wcpNTli5YfIkq+VG7uDJ3GDlJndsGXcjLo41atin9WzyZDLTX7kCTJ+e/7ZpaRRfM3AgKRZdu5LCImLNCqJ4cepM3bIlEB9PXcqtcVFJErBwIa0PH25f867Tmc5XpbN1Tp6kejpFipBbijFhy4wpSTJZ81m5YeySypXp4nX/vm2aN3KmVO74+Ngu7sYensjyw9sb+OwzWp83D/jpp9y3i4sDOnSg+BqAlKLffrM8jsPHB9i40WTBad/e8riHzZvpZuHjA4wYYdl3tYBQbuSKPcoLYbWJiNBup3q1sKXl5to1cqO6uJBrVquwcsPkiacnUL48rSsdd3PrFrVe0Ons98aqJLZyTdm7cgMAvXsD48bR+qBBwOzZJhdVfDzwySfk/tm5k5ShX36hbQwG6/bn7U0KTp06dBy3a0eWI3OQJGDuXFofOdI+g2RtrdywSyon4ny9cgV4+FDZfYlrROXK2lYyWblh8sVWcTfCnFqhAt0smOzYqt6NPWRBmMP8+eTiSU+n7KYSJSiepkQJ4I03SMlp0IDia/r2Lfz+ihWj6sLVqtGTbdu21Nm7IP78k35Td3eTQmZvCEursLwqwePHwJ49tM7KTU78/YHgYFoX57BS2MsDECs3TL7YKmOKXVL5I+Ju/v1XuSq5iYmm5ntav3AVhF4PfP01sHw5Fd5LTKQ6IEYjHdNLlgAHD5qUdzkoUYKsC+XL0zy2awfcvp339g8fAmPH0vq4cUBIiHyy2JLq1cnieusWpdMrwYEDZH0LCrL/Y1MpRNyN0q4peykVwcoNky+2stxwMHH++PgA9evTulLWG/EblyhBL3tHpwOGDCFF48wZmrfLl+niPHKk9W6o/ChVCti+nQr/nTtHcT253fAzMii+5upVUr7eeUd+WWyFl5cp9kIp11RWl5Q9BVzbElvF3bDlhnEIbGW5YeWmYJSOu3EUl9TT6PV0HD/zDFlVlL45hoWRglOyJBX+q1MH+PVXU4+2hARSun7+mSqBf/cdNUm1Z5SOu+F4m4IR562SGVMZGaZ7gdavE6zcMPkiinTdvEnZIEpgNJpurOyWyhullRt7MTfbA5Urk6WoenU6d/r2pXiydu3IUvP992Q5Wr6cUsntHSWVm/v3TUUS27aVf3xHwRZuqehocvG6u1PrBS3Dyg2TL76+ZGIHlHNNXbxIPXx8fOjCz+SO0nE3rNzIiygIOHUqHdtXrpBF58EDUn4iI6nGjiMgHkqUUG527iSLQdWqpmsRk5Nq1UyxT0qV7hBWofBw7bcIYeWGKRCl425OnKBlrVrkQmByx9dX2bib48dpWaeO/GM7K15ewPvvU0+qTZuof9S+fWSpbN1abenkQ1huzp4lS6ycCJdU+/byjutoFCliKt2hlPVGjCusRFqGbyVMgSgddyMypfimWjBKpYTHxVHgq17PcU9K4OMDdOoEDB4MNGum/adeSwkNpf8xNZUssXLC8Tbmo7RrSlhutB5vA7Byw5iBsNwopdwIyw0rNwWjVNyNsNpUqULWBoaxhKxtGMT5LAdXrwL//EPu2Fat5BvXUVE6Y0ooN2y5YRwCYblRwi0lSazcWIKIu7l8GYiNlW9codzUrSvfmIxzUa8eLQvbIT0rwmrTqJF9Vm+2NUpmTKWkmKxyrNwwDoFQbq5epTRWOYmLo0JnBgMHspqDUnE3rNwwhaVRI1oeOiTfmOySsoysbim5mx2fP08Vv4sXp3pOWoeVG6ZA/P2p0zIgfzaEsNpUqUK9rJiCEeZ5OV1TrNwwhaVhQ1oePy5PUHFGBmWXARxMbC6VKlHtpEeP5M+ozBpvYw+FFFm5YcxCuIzk7h/DwcSWI3fcTXy8qe0C/w6MtVSqRK6j5GR5+hsdP05WXW9voHHjwo/nDLi6mmqTye2asqd4G4CVG8ZMlGqOx/E2ltOiBWU1Xb5MTRoLi/gNQkLISscw1qDXm6w3hw8XfrwtW2jZpo22u09rDaUypli5YRwSodzImQmRdTxWbsxH7rgbdkkxciGUGzniboRy06lT4cdyJpTKmLKnGjcAKzeMmQjl4/RpCiqTg0ePKM0T4LYLliKna0o8ZQuFiWGsRa6g4oQEYP9+Wu/YsXBjORtC+ZDTyv7ggSk7014SPzSn3OzZswfdu3dHqVKloNPpsH79+myfDx06FDqdLturSZMm6gjrRFSoQPVPkpNNCklhOXWKIvqDg4HAQHnGdBbkVG4OHqRl06aFH4txboTl5swZ6kFkLTt2AGlp1L9IVN1lzEOk5J89CyQlyTOmsLCHhQHFiskzptJoTrlJTExE7dq18b///S/PbTp16oS4uLjM18aNG20ooXNiMMhfpEuMw1YbyxFxN5cuFS7u5tYtCibW6UxP3QxjLaVL0ys9vXBxN8IlxVYbywkOpo70GRnyZbceO0ZLoTjZA5pTbjp37owPPvgAffr0yXMbd3d3BAUFZb78/PxsKKHzIndQMbtDrEeuuJuoKFpWq8ZF0hh5EF3OrT0uJQnYvJnWOd7GcnQ607Xh6FF5xrRH5cYuO5zs2rULgYGBKFasGFq1aoVZs2YhMB+/RkpKClJSUjL/TnhSic5oNMIoY5c3MZacY2qJGjX0AAw4cSIDRqPlgTdPz8+hQy4AdKhbNw1Go8wVp+wQS4+fli31OHzYgB07MvDcc9YFQu3bR79po0bW/aa2xNHPr8Kgpblp3lyPn34yYPdu646pCxeAK1dc4eoqoXnzNFlq5mhpfmxB7dp6bNxowOHD5v0GBc3P0aN0ra5VS/1rtbm/od0pN507d0a/fv0QGhqK6OhoTJs2DW3atMHRo0fh7u6e63fmzJmDGTNm5Hh/69at8FKgkU5kZKTsY2qBxMTiAJ5BVFQqNm7cYvU4kZGRePzYgHPnugIAEhK2YePGlAK+5TyYe/x4eZUE0ASbNiVh48btVu1r48ZmAErAy+skNm68atUYtsZRzy850Mbc+ABog337MvDbb5vg6mrZzXDt2ooAqiM8/Db27Dkgq2TamB/lkaQgAI2xe/dDbNy4y+zv5TY/yckGXLhA1+p799S/VieZGUikkyS5izTLh06nw7p169CrV688t4mLi0NoaCh++umnPF1ZuVluQkJCcOfOHfj6+somr9FoRGRkJNq3bw9XV1fZxtUKjx4B/v4ukCQdrl0zWhwEnHV+oqLc0KaNC0qXlhAdnaaMwHaGpcdPfDxQsqQLMjJ0iI42ZlaRNpfUVCAw0AVJSTocO2bUfKdfRz+/CoOW5kaSgDJlXHD7tg67dqWhWTPLbjEtWhhw6JAen32WjldeyZBFJi3Njy2IjQUqVHCFi4uEe/fS4OGR//b5zc/+/TpERLigVCkJV66of61OSEhAQEAA4uPj871/253l5mmCg4MRGhqKf/JJ4XF3d8/VquPq6qrIga7UuGpTvDhlL/zzD3D6tKvVwX6urq44dowOvYYNdQ45V4XB3OMnIIB84EeOAH/95YpBgyzbT1QUZVOUKAHUqeNqFyXVAcc9v+RAK3PzzDPAr78Cf/3lYlE37+vXTWnkffoY4OpqkFUurcyP0pQrR9eHO3d0OHfO1exkgdzmRwQl16unjWu1uTJoLqDYUu7evYvY2FgEBwerLYpTIE4SEYhqLSKYWKSOMtYheu78+afl3925k5YREfbRK4axH0Sjy02bLPveb7/RsmlT+2jOqFWyBhWLYGBrscdgYkCDys2jR49w4sQJnHiSJxwdHY0TJ04gJiYGjx49wsSJE3HgwAFcuXIFu3btQvfu3REQEIDevXurK7iTIHq8sHKjDYTHduNGIMVCV7hQblq3llUkhkGXLrQ8cAC4e9f8761bR0u+nBceodwUthWGUG7srYJ5oZQbo9GI2NhYXLhwAffu3ZNFoCNHjqBu3bqo+2QmJ0yYgLp16+Ldd9+FwWDAqVOn0LNnT1SuXBlDhgxB5cqVceDAAfj4+MiyfyZ/sio31kZr3b1ratTYoIE8cjkrDRrQE+7Dh1T4zFwePzZVgGXlhpGbsmWpLlZGhimtuyBu3TIp3KzcFB5R21ac59aQmGhqu2BvJTssjrl59OgRfvjhB/z44484dOhQtkDdMmXKoEOHDnj55ZfR0MpH8oiICOQX47xli/VZOkzhqV2bmtjdvUuNGytWtHyMw4fJB1KxIsXxMNaj15P15osv6Km3c2fzvrd3L1l6goKAKlUUFZFxUrp2pXiNDRuAF14oePsffqDif40bW3ddYbIjKo6fP0/Xa2ua4h4+TApq6dLUWNeesMhys2DBAoSFheHrr79GmzZtsHbtWpw4cQIXLlzAgQMH8N577yEtLQ3t27dHp06d8g3yZewTd3eT79Va19Rff5Fy06KFTEI5OcI19dtv5vf9ErENXbtyvA2jDN260XLDBmrbkh+SBCxbRutDhyoqltMQEGB6cBEtVizlwJNMfHtszWKRcrN//37s3LkTR44cwbvvvotOnTqhZs2aqFixIho1aoSXXnoJy5Ytw82bN9GjRw/slqNlMaM5hGvK2hNm/35WbuQkIoKqC9+6BezbV/D2kgT8/jut9+ypqGiME9OkCRAaSk0wn2oRmIPjx6nXnLs70L+/TcRzCpo1o6W1ril77jtnkXLzyy+/oOaTlqNNmzbNrPT7NB4eHnjttdcwYsSIwkvIaI7CBBUbjfpMt5Qo084UDldX4NlnaX358oK3P3GC6mB4eZmyWhhGbvR6YMgQWl+xIv9tFy6kZe/e7KqWk+bNaWnOQ8/TSJITWW6yEhUVhcePH+d4PyEhAW+++WahhGK0jVBuTpwo2Nz8NJcuFUNKig6BgUClSrKL5rQMG0bLn3+mYov5ITJSOnQAPD2VlYtxbl58kZZbt5JCnRsxMcCPP9L6G2/YRi5nQVhuDh2CxW0soqOB27cpxtLe0sABK5SbPn364MMPP4ROp8OtW7dyfJ6YmIhPPvlEFuEYbVKuHGXoGI0mzd5czp6lqLYWLTjWQ06aNydlMTGRFJy8yMgAVq6k9X79bCMb47xUqEDZeJIE5HVbmD8fSEuj7Th7Ul6qVCFLWHKy5Q2P9+yhZf365C60NyxWbkJDQ/Hnn39CkiTUrl0bgYGBaN++PSZOnIiVK1di/vz5XFDPwdHpTOnDlqQfA8DJkwEAqIIpIx86HfDSS7S+YAEpMbmxcydw9SrF6HC6LWMLJk+m5Vdf5bTenD9PmX5Zt2PkQ683WW8sDYEV1/Y2beSVyVZYrNwsWLAAf/31F1xdXXHw4EF8/fXXaN68OS5duoQZM2bg119/xbx585SQldEQ4oAXdSnMITnZZLkRlXUZ+XjlFcDHh+pS/PFH7tuI2IaBA9klxdiGdu3IspicDIwaZVK8U1LIbZWWRplVfE1QhrZtabltm/nfkST7V26s7i2VmJgIFxf6ek9OuXA6xAF/6BDFeHh7F/ydv/7SwWg0oEwZCdWqsU9KbooXB0aPBj78EJg5k24Yhiytef7+m9o06HTA+PHqyck4FzodWW3q1qW08JdeAoYPB2bNojoqxYsDn32mtpSOi1Aad++m4p0FNdEEqH/g9esUb2OPwcRAIQKKhWLDOCdhYfRKS6OCcOawbRspNO3aSRxvoxDjx5P15tgx4PPPTe9nZACvvUbrzz3HwdyMbaleHfj2W1pfsYLc0lu2kPVw9Wq6ljDKUL06EBxMljNzU8KF1aZZM/u18Fqk3MTExFg0+PXr1y3anrEvxBPBhg3mbb91Kx1u7drlERDCFJrAQLLcAMDEifTbpKcDEybQhc3bG/joI3VlZJyTQYMoa6pJE+pE36ULpSizO0pZdDrTHEdGmvcd0QjAXl1SgIXKTcOGDTFy5EgcEj3pcyE+Ph5ff/01atSogbVr1xZaQEa7iMq469fnHcAquHQJOHNGB70+A23bWtmUijGLV1+lTCijkVxTJUoAixbRZ4sX218ZdcZxaN+eMixv3SLF296aMdorHTrQ8s8/C942Kcmk3HTvrpxMSmORb+ncuXOYPXs2OnXqBFdXVzRo0AClSpWCh4cH7t+/j7Nnz+LMmTNo0KABPvroI3Q2t9ENY5e0aUOWgOvXgaNH8+/w/csvtKxV6w78/blKl5Lo9cB331H59S+/BO7fB4oVoyyqQYPUlo5hGFvTpQsV+zx9mjLUqlbNe9utW8mFFRZGvQTtFYssN35+fvj4449x48YNLF68GJUrV8adO3cye0i98MILOHr0KPbt28eKjRPg4WFq1FhQefXVq2nZvDm7Km2Buzul2MbFkTvq6lXu2cMwzkrx4ibXlHjQzAtxLe/Vy75rkVkVFezh4YH27dujT58+csvD2Bm9e9PJ8uOPwPvvk9XgaS5coEwdFxcJjRvHAahhczmdlZIl6cUwjHPTrx+wcSMV+Zw2LfdtUlJMfefsvQ6W1dlSLVu2xM2bN+WUhbFDevYEfH2pVHdeNW++/pqW7dtL8PW1sAY4wzAMU2h69jS5po4fz32b337T4f59oHRpU18qe8Vq5aZBgwZo3Lgxzp8/n+3948ePo0uXLoUWjLEPvLyoIByQPfVYkJgILF1K66+8wllSDMMwalC8OCCcLbldqwFg6VJSCV56KXuNLHvEauXmm2++wUsvvYQWLVrgr7/+wsWLF/Hcc8+hQYMGcLfHRhSM1YwZQ77ZdeuAkyezf/bpp8CDB9RjpmNHzpJiGIZRizFjaPnDD5QIkpWLF4tj5049DAZTKxd7plCV+N577z24ubmhffv2SE9PR8eOHXH48GHUs8cWoozVVK8O9O1LsTevv04FoPR66vYraq7MmGH/TwLWkp6eDqMZLXmNRiNcXFzw+PFjpKen20Ay+4LnJ2/UnhtXV1cYnPUEtyOaN6fXvn3Ae+8B33xD70sS8N131QAAgwc7RlFFq5WbuLg4zJkzB9988w3Cw8Nx/vx5PP/886zYOCkffkjBart3A+PGkZLz3HNAQgLQqBEwYAAVk3MmJEnCzZs38eDBA7O3DwoKQmxsLHT2nKagEDw/eaOFuSlWrBiCgoL4t9EwOh0wdy7QogWFC3TuDDz7LLBwoR6nTpWAh4eEqVMd4/ezWrkpX748qlatil9++QVdu3bFli1b8Nxzz+HatWt466235JSRsQPKlyc/7tCh1CdG9Irx86M0cL3e+ZQbodgEBgbCy8urwIt+RkYGHj16BG9vb+hzSztzcnh+8kbNuZEkCUlJSbh16xYAIDg42Kb7ZyyjeXN6AF24kB5An3kG2LWLrG4ffJCBChUcwwJntXKzbNkyPP/885l/d+zYETt37kS3bt1w9epVfCH62DNOw5AhVF/ljTeAGzfoJFq2zDFMnJaSnp6eqdj4+/ub9Z2MjAykpqbCw8ODb965wPOTN2rPjeeTBkS3bt1CYGAgu6g0zty5VNxzxQpg1y56r2/fixg7thwAx/jtrFZusio2gnr16mH//v2cLeXEPP880L8/1Uswp/usoyJibLy8vFSWhGFsgzjWjUYjKzcax82NHjxHjKDU8Hr1jIiLOwedrpzaosmG7K29w8LCsG/fPrmHZewInc65FZuscPwB4yzwsW5f6HQUe9OiBfWhi4tTWyJ5UcR+Wbw49w5iGIZhGEYd2HHNMAzDMIxDwcoNwzA5kCQJL7/8Mvz8/KDT6VCsWDGMGzdObbEYhmHMQvaYG4Zh7J/Nmzdj+fLl2LVrF8qXLw+9Xp+ZEWMtERERqFOnDhYuXCiPkAzDMHlgtXKTnJwMSZIyI+SvXr2KdevWITw8HB06dJBNQIZhbM/ly5cRHByMZs2ambV9amoq3NzcFJaKYRjGPKx2S/Xs2RMrV64EADx48ACNGzfG/Pnz0bNnTyxevFg2ARmGsS1Dhw7F2LFjERMTA51Oh7CwMERERGRzS0VERGDMmDGYMGECAgIC0L59ewDAmjVrULNmTXh6esLf3x/t2rVDYmIihg4dit27d2PRokXQ6XTQ6XS4cuVKrvuPiIjA2LFjMW7cOBQvXhwlS5bEkiVLkJiYiNGjR6No0aKoUKECNm3alO17mzdvRosWLVCsWDH4+/ujW7duuHz5cubneclW0Ge58eOPP8LDwwPXszToGTFiBGrVqoX4+HhLp5xhGJmxWrk5duwYWrZsCYAuDCVLlsTVq1excuVKfPrpp7IJyDAOgyRRm3Q1XpL5TUsXLVqEmTNnokyZMoiLi8Phw4dz3W7FihVwcXHBvn378NVXXyEuLg4DBgzASy+9hHPnzmHXrl3o06cPJEnCokWL0LRpU4wcORJxcXGIi4tDSEhInjKsWLECAQEBOHToEMaOHYtRo0bhueeeQ6NGjXDkyBF07NgRgwcPRlJSUuZ3EhMTMWHCBBw+fBjbt2+HXq9H7969kZGRka9s+X2WF88//zyqVKmCOXPmAABmzJiBLVu2YNOmTShatKjZc80wjDJY7ZZKSkqCj48PAGDr1q3o06cP9Ho9mjRpgqtXr8omIMM4DElJgLd3nh/rARRTat+PHgFFipi1adGiReHj4wODwYCgoKA8t6tYsSLmzZuX+fexY8eQlpaGPn36IDQ0FABQs2bNzM/d3Nzg5eWV75iC2rVrY+rUqQCAyZMn48MPP0RAQACGDBkCX19fvPvuu1i8eDFOnjyJJk2aAACeffbZbGMsXboUgYGBOHv2LFJTU/OU7eLFi/nKnRs6nQ6zZs1C3759UapUKSxatAh79+5F6dKlC/zfGIZRHqstNxUrVsT69esRGxuLLVu2ZMbZ3Lp1C76+vrIJyDCMNmnQoEG2v2vXro22bduiZs2a6NevH77++mvcv3/fqrFr1aqVuW4wGODv759N4ShZsiQAZPYzAihOaODAgShfvjx8fX1RrhxVW42JiclXNmvl7tatG8LDwzFjxgysW7cO1atXt+p/ZRhGfqxWbt59911MnDgRYWFhaNSoEZo2bQqArDh169aVTUCGcRi8vMiCkscrIyEBD65dQ0ZCQr7bWfVSoA1EkacsQQaDAZGRkdi0aRPCw8Px2WefoUqVKoiOjrZ4bFdX12x/63S6bO+JargZGRmZ73Xv3h13797F119/jaioKERFRQGgYOf8ZLNW7i1btuD8+fNIT0/PVLYYhtEGVis3ffv2RUxMDI4cOYKtW7dmvt+2bVtO9WSY3NDpyDWkxstGpfF1Oh2aN2+OGTNm4Pjx43Bzc8O6desAkFsqXaHW8Hfv3sW5c+cwdepUtG3bFtWqVcthfclPtvw+y41jx46hX79++Oqrr9CxY0dMmzZNkf+LYRjrKFSdmzNnzmD79u34/PPPsz1BAcC3335bKMEYhrEvoqKisH37dnTo0AGBgYGIiorC7du3Ua1aNQDUdy4qKgpXrlyBt7c3/Pz8ZOtgXbx4cfj7+2PJkiUIDg5GTEwM3n77bbNkK0jup7ly5Qq6du2Kt99+G4MHD0Z4eDgaNmyIo0ePon79+rL8PwzDFA6rlZsZM2Zg5syZaNCgAYKDg7lpGsM4Ob6+vtizZw8WLlyIhIQEhIaGYv78+ejcuTMAYOLEiRgyZAjCw8ORnJyM6OhohIWFybJvvV6Pn376Ca+//jpq1KiBKlWq4NNPP0VERESBsp07dy5fubNy7949dO7cGT169MA777wDAKhfvz66d++OKVOmYPPmzbL8PwzDFBLJSoKCgqSVK1da+/U82b17t9StWzcpODhYAiCtW7cu2+cZGRnSe++9JwUHB0seHh5Sq1atpNOnT1u0j/j4eAmAFB8fL6PkkpSamiqtX79eSk1NlXVcR8GZ5ic5OVk6e/aslJycbPZ30tPTpfv370vp6ekKSma/8PzkjRbmxppj3lY407XHGuxpfsy9f1ttE05NTTW7eqklJCYmonbt2vjf//6X6+fz5s3DJ598gv/97384fPgwgoKC0L59ezx8+FB2WRiGYRiGsT+sVm5GjBiBVatWySkLAKBz58744IMP0KdPnxyfSZKEhQsXYsqUKejTpw9q1KiBFStWICkpSRFZGIZhGIaxP6yOuXn8+DGWLFmCbdu2oVatWjlSNz/55JNCC/c00dHRuHnzZrbeVe7u7mjVqhX279+PV155RfZ9MgzDMAxjX1it3Jw8eRJ16tQBAJw+fTrbZ0oFF9+8eRMActSUEK0f8iIlJQUpKSmZfyckJAAAjEYjjEajbPKJseQc05FwpvkxGo2QJAkZGRk5MgnzQnpS7l98j8kOz0/eaGFuMjIyIEkSjEYjDAaDKjLkhTNde6zBnubHXBmtVm527txp7VcLzdPKkyRJ+SpUc+bMwYwZM3K8v3Xr1syu5nISGRkp+5iOhDPMj4uLC4KCgvDo0SOkpqZa9F2OH8sfnp+8UXNuUlNTkZycjD179iAtLU01OfLDGa49hcEe5idrP7n8KFSdG1sjetLcvHkTwcHBme/funUr3wqhkydPxoQJEzL/TkhIQEhICDp06CBrqwij0YjIyEi0b98+h5uOca75efz4MWJjY+Ht7Q0PDw+zviNJEh4+fAgfHx8urZALPD95o4W5efz4MTw9PfHMM8+YfczbCme69liDPc2P8LwURKGUmwcPHmDp0qU4d+4cdDodqlWrhuHDhyvWFbdcuXIICgpCZGRkZouH1NRU7N69G3Pnzs3ze+7u7nB3d8/xvqurqyI/pFLjOgrOMD/p6enQ6XTQ6/VmF6oT7gTxPSY7PD95o4W50ev1mW0ytHp+a1k2LWAP82OufFafBUeOHEGFChWwYMEC3Lt3D3fu3MGCBQtQoUIFHDt2zNph8ejRI5w4cQInTpwAQEHEJ06cQExMDHQ6HcaNG4fZs2dj3bp1OH36NIYOHQovLy8MHDjQ6n0yDMMwDOM4WG25GT9+PHr06IGvv/4aLi40TFpaGkaMGIFx48Zhz549Vo175MgRtG7dOvNv4U4aMmQIli9fjkmTJiE5ORmvvfYa7t+/j8aNG2Pr1q3w8fGx9l9hGIZhGMaBsFq5OXLkSDbFBqAgykmTJqFBgwZWCxQREZEZ+Z8bOp0O06dPx/Tp063eB8MwDMMwjovVbilfX1/ExMTkeD82NpatKAzD2JyIiAiMGzdObTEYhtEAVis3/fv3x/Dhw7F69WrExsbi2rVr+OmnnzBixAgMGDBAThkZhmEYGZkzZw4aNmwIHx8fBAYGolevXrhw4UK2bb744guUK1cOHh4eqF+/Pvbu3auStAxjOVYrNx9//DH69OmDF198EWFhYQgNDcXQoUPRt2/ffDOXGIZhGPnp1q0bli9fbta2u3fvxujRo3Hw4EFERkYiLS0NHTp0QGJiIgBg9erVGDduHKZMmYLjx4+jZcuW6Ny5c67WeobRIlYrN25ubli0aBHu37+PEydO4Pjx47h37x4WLFiQa9o1wzD2w5o1a1CzZk14enrC398f7dq1y7zxSZKEefPmoXz58vD09ETt2rWxZs2azO9mZGRg7ty5qFixItzd3VG2bFnMmjUr8/OUlBS8/vrrCAwMhIeHB1q0aIHDhw9nfh4REYHXX38dkyZNgp+fH4KCgnLE2CUmJuLFF1+Et7c3goODMX/+/AL/p4iICIwdOxbjxo1D8eLFUbJkSSxZsgSJiYkYNmwYfHx8UKFCBWzatCnb9zZv3owWLVqgWLFi8Pf3R7du3XD58mWz5sqcz7Py448/wsPDA9evX898b8SIEahVqxbi4+ML/B/NZfPmzRg6dCiqV6+O2rVrY9myZYiJicHRo0cBUPuc4cOHY8SIEahWrRoWLlyIkJAQLF68WDYZGEZJCl0QwcvLCzVr1kStWrUUqfbLMI6CJAGJieq88onRz0FcXBwGDBiAl156CefOncOuXbvQp0+fzED/qVOnYtmyZVi8eDHOnDmD8ePHY9CgQdi9ezcAKpo5d+5cTJs2DWfPnsWqVauyFdmcNGkSfv31V6xYsQLHjh1DxYoV0bFjR9y7dy9zmxUrVqBIkSKIiorCvHnzMHPmzGzVU998803s3LkT69atw9atW7Fr167MG3N+rFixAgEBATh06BDGjh2LUaNGoV+/fmjWrBmOHTuGjh07YvDgwdmqoCYmJmLChAk4fPgwtm/fDr1ej969eyMjI6PAuSro86d5/vnnUaVKFcyZMwcAMGPGDGzZsgWbNm1SrH4YgEzFyc/PD6mpqTh69Gi2Hn4A0KFDB+zfv18xGRhGViQLGD9+vPTo0aPM9fxeWiY+Pl4CIMXHx8s6bmpqqrR+/XopNTVV1nEdBWean+TkZOns2bNScnJy5nuPHkkSqRm2fz05bc3i6NGjEgDpypUrOT579OiR5OHhIe3fvz/b+8OHD5cGDBggJSQkSO7u7tLXX3+d69iPHj2SXF1dpR9++CHzvdTUVKlUqVLSvHnzJEmSpFatWkktWrTI9r2GDRtKkyZNku7fvy/Fx8dLbm5u0k8//ZT5+d27dyVPT0/p//7v//L8v54eNy0tTSpSpIg0ePDgzPfi4uIkANKBAwfyHOfWrVsSAOnUqVP5zpUk5T+XefHHH39I7u7u0qxZs6TixYtLp0+fLvA76enpUvPmzaWlS5eavR9BRkaG1L1798y5uX79ugRA2rdvX7btZs2aJVWuXDnPcXI75rWCM117rMGe5sfc+7dFqeDHjx/PbFp1/PjxPLfj0ugMY7/Url0bbdu2Rc2aNdGxY0d06NABffv2RfHixXH27Fk8fvwY7du3z/ad1NRU1K1bF+fOnUNKSgratm2b69iXL1+G0WhE8+bNM99zdXVFo0aNcO7cucz3atWqle17wcHBuHXrVuYYqampaNq0aebnfn5+qFKlSoH/W9ZxDQYD/P39UbNmzcz3hIVJ7Evsb9q0aTh48CDu3LmTWQ04JiYGHTt2zHOuCprLvOjWrRvCw8MxY8YMbN26FdWrV891u9mzZ2P27NmZfycnJ+PIkSN4/fXXM9/btGkTWrZsme+cjBkzBidPnsRff/2V7X1Le/gxjJawSLnJ2ixzxYoVKFOmTI5S35IkITY2Vh7pGMaB8PICHj3K+/OMjAwkJCTA19dX9hL6lniMDQYDIiMjsX//fmzduhWfffYZpkyZgqioqMwb+4YNG1C6dOls33N3d8eDBw/yHVt64o4p6Mb5dIl1nU6XuW8xhjXkNm7W94QMWTtrd+/eHSEhIfj6669RqlQpZGRkoEaNGkhNTc13rsqVK1fg57mxZcsWnD9/Hunp6fn2zHv11Vfx3HPPZco7cOBA9OvXD88++2zmNk//Rk8zduxY/P7779izZw/KlCkDAAgICIDBYMDNmzezbVtQDz+G0RJWX0HLlSuHO3fu5Hj/3r17eZ60DOPM6HRAkSLqvCx94NbpdGjevDlmzJiB48ePw83NDevWrUN4eDjc3d0RExODihUrZnuFhISgUqVK8PT0xPbt23Mdt2LFinBzc8tmJTAajThy5AiqVatmlmwVK1aEq6srDh48mPne/fv3cfHiRcv+STO4e/cuzp07h6lTp6Jt27aoVq0a7t+/n22bvObK3M+zcuzYMfTr1w9fffUVOnbsiGnTpuUpm5+fX7b59/DwQIkSJbK95+npmet3JUnCmDFjsHbtWuzYsSPbNdvNzQ3169fP0SE6MjISzZo1K3DOGEYLWF2hOK+np0ePHmmuIyzDMOYTFRWF7du3o0OHDggMDERUVBRu376NatWqwcfHBxMnTsT48eORkZGBFi1aICEhAfv374e3tzeGDBmCt956C5MmTYKbmxuaN2+O27dv48yZMxg+fDiKFCmCUaNG4c0334Sfnx/Kli2LefPmISkpCcOHDzdLPm9vbwwfPhxvvvkm/P39UbJkSUyZMkWRhpHFixeHv78/lixZguDgYMTExODtt982a67M+TwrV65cQdeuXfH2229j8ODBCA8PR8OGDXH06FHUr19f1v9r9OjRWLVqFX777Tf4+PhkWmmKFi0KT09PTJgwAYMHD0aDBg3QtGlTLFmyBDExMXj11VdllYNhlMJi5Ub0etLpdHj33XezZUilp6cjKioKderUkU1AhmFsi6+vL/bs2YOFCxciISEBoaGhmD9/Pjp37gwAeP/99xEYGIg5c+bg33//RbFixVCvXj288847AIBp06bBxcUF7777Lm7cuIHg4OBsN8UPP/wQGRkZGDx4MB4+fIgGDRpgy5Yt+cahPM1HH32ER48eoUePHvDx8cEbb7wha6q0QK/X46effsLrr7+OGjVqoEqVKvj0008REREBoOC5Kuhzwb1799C5c2f06NEjcx7r16+P7t27Y8qUKdi8ebOs/5dI6Rb/h2DZsmUYOnQo+vfvj7t372LmzJmIi4tDjRo1sHHjRoSGhsoqB8MohU6y0IEtmlru3r0bTZs2hZubW+Znbm5uCAsLw8SJE1GpUiV5JZWRhIQEFC1aFPHx8fD19ZVtXKPRiI0bN6JLly6abxuvBs40P48fP0Z0dHRmhVdzUDLmxhHg+ckbLcyNNce8rXCma4812NP8mHv/tthyI4KKhw0bhkWLFsmqHDAMwzAMwxQWq2Nuli1bJqccDKM9Hj0C3NzoxTAMw9gNVis3M2fOzPfzd99919qhGUZd4uKAMWOAdesADw/gjTeAGTMAdoUwDCNITgYMBn740ShWKzdPpzIajUZER0fDxcUFFSpUYOWGsU/u3wfatQPOnqW/k5OBDz4Abt8GvvxSXdkYhlGf+/eB8eOB778HXFyAUaOAuXNZydEYVis3uVUoTkhIwNChQ9G7d+9CCcUwqjF+PCk2pUsDf/4JnDwJDB0KfPUV0KED0KePRcMVpuAcw9gTTnGsJyUBXboAosZSejqwcCFw5Qqwdq3lBaUYxZDVzu7r64uZM2fmW3iKYTTL/v3AihV0gVqzBqhTB3jxReCtt+jzN98EnrQfKQiRcZC1ASPDODLiWNd6tk2hmD6dFJvixYG9e4H16wF3d1p+9pnKwjFZsdpykxcPHjxQpN4EwyjOrFm0HDYMaNLE9P7UqcC33wL//gt89x3w0ksFDmUwGFCsWLHMHkVeXl4F9uXJyMhAamoqHj9+zKnOucDzkzdqzo0kSUhKSsKtW7dQrFgxGAwGm+7fZly8CCxYQOsrVwItWtD6/PkUo/fuu8ALLwD+/urJyGRitXLz6aefZvtbkiTExcXhu+++Q6dOnQotmNNx7x4wcSJZDIoVI2vBqFEcxGorzpwBNm6k+Z48OftnRYrQbzNpEvD552YpNwAQFBQEIHsTxvyQJAnJycnw9PTkBoW5wPOTN1qYm2LFimUe8w7JRx8BaWnklurWzfT+q68CS5aQC/vjj4E5c9STkcnEauVmgdBgn6DX61GiRAkMGTIEk5++OTD5k5AAPPMM3WAB4OFDehK4cAFYtIj9uLbgm29o2aMHULFizs+HDSMLzrFjwJEjQIMGBQ6p0+kQHByMwMBAGM1wZxmNRuzZswfPPPOMY5v2rYTnJ2/UnhtXV1fHtdgAwK1bZK0BgCcVpDMxGCibsndvUnKmTbOsUy2jCFYrN9HR0XLK4dy88gopNqVKUQT+iRPAhAnkw23UCBg0SG0JHZvUVJp3ABgxIvdtAgKAZ58FfvyRtjVDuREYDAazLvwGgwFpaWnw8PDgm3cu8PzkDc+Nwvz8M10n6tcHcmse2r07UK4cEB0N/PST2dZdRjnY56E2u3fTyaDXU12V1q0pY2fGDPp8/HhyWTHKsWMHcOcOULIk0LFj3ts9/zwt16wBMjJsIxvDMOqzahUtBw3K3ZJuMAAvv0zrP/xgO7mYPLHIciOaZprDJ598YrEwTsl779Hy5ZfJSiOYPJmeFs6cIdeUUHYY+RE1m3r3proVedGhA+DjA1y/ThkTuT3BMQzjWERHAwcOkFLTv3/e2z3/PF23d+6kQqDBwbaTkcmBRcpNbrVtcoOD/czk6FGy3Li4AFOmZP/M1ZUUmr59Sbl54w2A+3jJT3o68NtvtN6rV/7bengAXbuSpW3jRlZuGMYZ+PlnWrZpk7/CEhYGNG1KitAvvwCvv24T8ZjcsUi5EU0zGZn46itaPvccUKZMzs979waqVKHA4p9+Mpk9GfmIigL++w8oWpRcggXRsSP9Flu3UuVihmEcmw0baPnsswVvO2AAKTerV7NyozKFirl58OAB5s+fjxEjRmDkyJFYsGAB17gxl9RUit0AgOHDc99GrwdGjqT1r7+2jVzOxh9/0LJLF/PKp3foQMsjRyhOh2EYxyUhgZQVIP94PIGoYH7gAHD3rnJyMQVitXJz5MgRVKhQAQsWLMC9e/dw584dfPLJJ6hQoQKOHTsmp4yOSWQk9SgJCgJatcp7uxdfJBfVkSOURcXIy7ZttDS3NlOpUkDNmoAkmb7LMIxjsmMH1bapVAkoX77g7UuXNl0ftm5VXj4mT6xWbsaPH48ePXrgypUrWLt2LdatW4fo6Gh069YN48aNk1FEB+XHH2n53HMUaZ8XJUoAPXvS+nffKS+XM3H/PsU9AUDbtuZ/TzzB8cWLYRybLVtoaY7VRtC5My03bpRfHsZsCmW5eeutt+CSJbvExcUFkyZNwpEjR2QRzmExGk3ukPyi7wUDBtBy7Vp6ImDkYedOms+qVemJy1zatKHl3r3KyMUwjDYQDzDWKDdbtnDJCBWxWrnx9fVFTExMjvdjY2Ph4+NTKKEcnqgo8uX6+QGNGxe8fceOgKcndZ5l15R8bN9Oy3btLPte06aUFnrpEgUjMwzjeFy/Tv3k9HqqIG8uzZtTyYjbt/l6rSJWKzf9+/fH8OHDsXr1asTGxuLatWv46aefMGLECAwQlgYmd8TTQPv2+bukBEWKmJ4Gfv1VObmcjR07aGmJSwqg3l81atD6vn2yisQwjEYQ53atWpaV4XB1BVq2pPXdu+WXizELq5Wbjz/+GH369MGLL76IsLAwhIaGYujQoejbty/mzp0rp4yOhzV+XBGFv3697OI4JXfuAOfP07q4EFmC6Aj811/yycQwjHYQyo041y1BJIns2SOfPIxFWK3cuLm5YdGiRbh//z5OnDiB48eP4969e1iwYAHc3d3llNGxuHcPOHyY1tu3N/97nTuTefTMGeDaNWVkcyZEemfVqoC/v+Xfb96clqzcMIxjIs5ta5Qb4cbau5fjblTCauUmOTkZSUlJ8PLyQs2aNVG0aFEsWbIEWzmDJH9276Yg1vDw3Av35YWfH9CwIa1HRiojmzOxfz8tra0yLJSb48eBpCR5ZGIYRhs8fGiKlxHnuiXUq0edwe/eBc6dk1U0xjysVm569uyJlU9awD948ACNGzfG/Pnz0bNnTyxevFg2AR0OYeq0xhUiCsixAll4hHJjzYULAEJDgcBAqoFx8qR8cjE5SUujG0R0tNqSMM7C4cNkcSlb1rKHUIGbGyUeAOyaUgmrlZtjx46h5ZMb9Jo1a1CyZElcvXoVK1euxKeffiqbgA5HYUydQrmJjGRTZ2FITQUOHaJ1ay03Oh1Qvz6ti1o5jPz8/DNQrhwQHg7XKlXQctIkU6wUwyiFKGeStZmxpQjXFCs3qmC1cpOUlJSZ8r1161b06dMHer0eTZo0wdWrV2UT8GmmT58OnU6X7RUUFKTY/mQlKcl0I7RGuWncmFIM794ldwhjHSdOAI8fk6uvcmXrx2nQgJZc10kZPvqI6kBduwZ4ekIyGOB38SJcnnmGTf2MsohzWjzAWINQbkQoAmNTrFZuKlasiPXr1yM2NhZbtmxBhydWhVu3bsFX4e7V1atXR1xcXObr1KlTiu5PNg4fJhN7qVLk1rAUV1dTATmRccVYjnANNmtGQdrWwpYb5Vi7Fpg0idYnTQLu3UPapUu4V7kydA8eUNXu5GRVRWQcGHFOiwcYa2jcGHBxAeLigFxqwjHKYvWV/d1338XEiRMRFhaGxo0bo+kT/+LWrVtRt25d2QTMDRcXFwQFBWW+SpQooej+ZCOrS0qns24MkWHFHdqt5+BBWgqfuLUI5ebsWb7RysmtW8Arr9D6+PHA3LmAhwdQujSipk6FVLo08M8/wOzZ6sppS+7cAd5+m5IKmjcnq9bjx2pL5Zjcv0/F+wAKDLYWT0+qkQOY3OCMzXApeJPc6du3L1q0aIG4uDjUrl078/22bduid+/esgiXF//88w9KlSoFd3d3NG7cGLNnz0b5fJqapaSkICUlJfPvhIQEAIDRaITRaJRNLjFWXmMaDh6EHkB6o0bIsHa/zZrBFYC0fz/SkpLImmMnFDQ/tsLl2DHoAKTVqQOpMLIEBsIlMBC6W7eQdvQoJHOqTeeDVuZHbQyjR0N/5w6kWrWQ9v771K4ENC+pvr5I/egjuA8cCGn+fKS98gpQsqTKEivMhQtw6doVuqxP//v3Q1q+HGl//AGEhPCxUwCWzI/u0CG4AJDKlUOaj0/m8WcN+oYNYTh2DOkHDiCjVy+rx1Eaezp+zJXRauUGQKblJCuNChOAZQaNGzfGypUrUblyZfz333/44IMP0KxZM5w5cwb+edQrmTNnDmbMmJHj/a1bt8LLy0t2GSPzSNXucOAAPAHsT03FPWubqmVkoLO3N9wePcL+zz/Hg8LEjKhEXvNjC1ySk9H10iWS4/ZtpBayuV3jkBAE3bqFs999h+i7d+UQUdX5UZviFy/imTVrIOn12D10KOJz6by+2dMTz1SqhOL//IMrY8fi7NChthfURrg8eoSIN96A63//4VFwMC48/zxckpJQ5eef4XH2LFKaN8eeefNgfBIK4MzHjjmYMz8V165FdQA3goNxpJDXhxB3d9QD8GDzZvwlCvtpGHs4fpLMLL2hkyT7jnRKTExEhQoVMGnSJEyYMCHXbXKz3ISEhODOnTuyxgcZjUZERkaiffv2cH3aonLzJlzLloWk0yHt7l3A29vq/Rj69IH+zz+R/uGHyMjjf9Yi+c6PjdDt3w+XiAhIpUoh7cqVQo+nnz4dhtmzkfHii0j/5ptCjaWF+VEVSYKhQwfod+/OdT6zzo/bli1w6dMHUvHi9Dt6eqojs8IYhg+H/rvvIIWFIW3fPkC44GNi4NK2LXRXryKjY0c8/vVXRG7b5rzHTgFYcm4ZBgyA/tdfkT5rFjLefLNwOz5/Hq61akHy9ETanTuatbTb07UnISEBAQEBiI+Pz/f+XSjLjRYoUqQIatasiX/++SfPbdzd3XOtmuzq6qrID5nruE9qoeiqVoVr8eKF20GrVsCff8Kwfz8Mb71VuLFUQKl5N4snwee6OnXkkeGJpVJ/4gT0Mv1Pqs6PmuzeTS83N+jffz/P+XR1dYVLjx5AaCh0V6/Cdd06YMgQGwtrAw4dAr77DgCgW7UKrqVKmT6rUAH480+gQQPot2yB2w8/ACVLOu+xYyZmzc+TTFRDo0YwFHYuq1cHihaFLj4erhcuAArHoxYWezh+zJWvEKki2iAlJQXnzp1DcHCw2qLkj4i+L0xqoYBLe1uPqDoq10WmTh1anjtXKN88A+Djj2n50ktUPC0/DAZg5Ehaf6IAOBwffEDLF1/MPfi9Ro3MbQxvvgm3Bw9sJ5uj8uCBPMHEAr3eVCsnKqrw4zFmY3fKzcSJE7F7925ER0cjKioKffv2RUJCAoZo/clNTuWmbl0q7X3/PmXqMOYj6gMJpaSwlC1LHYONRuDCBXnGdEbOnydLhE5HGVLmMGAALXfupAwrR+LCBeCPP2h9ypS8txs/HqhfH7qEBFRdvdo2sjkyp0/TMiSE6mDJgUg0YOXGptidcnPt2jUMGDAAVapUQZ8+feDm5oaDBw8i1Jq6MbZETuXG1ZVLe1uD0Wi6eMlludHpgJo1aZ3bMFjPJ5/QskcP8wsrli9P51NGBrBunXKyqcHChbTs3j3/+TAYMi1eoVu2cPXmwiJqpolzWg6EciMaJjM2we6Um59++gk3btxAamoqrl+/jl9//RXh4eFqi5U///0HXL9ON0K5bqpZXVOMeZw7R60XfHyopL9ciAuhvRST1Br375tcS2+8Ydl3+/Wj5S+/yCuTmiQnA99/T+vmWLEiIpDRpQv0GRkwzJmjrGyOjhLKjXigPXeOm+zaELtTbuwSYbWpUqVQWVLZEI03WbkxHxFvU6dO4SoTPw1bbgrHDz9QQbqaNS1vSyKUm127KF7CEdiwAXj0iKqYm5k+nP7uuwAA3erVwOXLSkrn2AjLbo0a8o0ZHAwEBZGFka8RNoOVG1sgdxArQEFqBgNZhGJj5RvXkZE73kYgqpCy5cZyJAn4+mtaHznS8srd5cvTQ0N6OrBjh/zyqcGqVbQcMMB8JbxePfxXrx50GRlU0ZmxHElSxnIDmIKTuVWLzWDlxhaIpwFxE5SDIkVM4x04IN+4jowSSiZgesqLjXUc64GtOHqUnmbd3YEXXrBujI4daekI/dYePCDLDQAMHGjRVy/27Usry5fTQw9jGdev0/wbDEDVqvKOLVxTx47JOy6TJ6zc2ALxNCCnqRMwBRWLXklM3kiScspNsWKUXQGw9cZSRKG+Z5+1Pjslq3Jj3zVJ6X9ITQWqVbPYenAvPBwZLVpQ4PwXXygkoAMjzt0qVUjZlhNhuWHlxmawcqM0qammDAa5TZ1CuWHLTcFcvUpPZa6ugBIB6OyaspzERJMLZsQI68dp1Qpwc6PfOJ9innaBKPffrZtVX894/XVa+eorDl61FCXibQRCuTl9mhue2ghWbpTm4kUgLY0ydAoqTGYpTZrQ8tgxIEt7CSYXRLxN9ep0I5QbDiq2nF9+AR4+pGq7hem7U6QIdcoGgO3b5ZFNDTIygE2baL1LF6uGkLp3B8LCgLt3KVCbMR+l4m0AsuwGBNC9QChRjKKwcqM0WZ8GLA2WLIgKFeiESU013byZ3MmaKaUE4mmPiyqaj3BJDR9e+Ow1RyiNcPQocPs2PQgJZc1SDAZAWG8WLrR/N50tUVK50enYNWVjWLlRGqVPGHZNmYdQ/pTq7VKtGi3PnVNmfEfj/Hlg3z66GctRXTxraQR7vaELq02HDoVrsPjSS1Ry4uxZIJeu6kwupKWZzl0lrtUAZ0zZGFZulEZJPy5gck1xUHH+KG25qVqVlM07d+jpm8mfpUtp2bUrkLUhpLU0aQK4uADXrlHsjT0iUtnbty/cOEWLAsOG0bqodMzkz6VL5NovUoTcekrAGVM2hZUbpVHScgOw5cYc7t411QKqXVuZfXh5UdE1gK03BZGaCqxYQeuFCSTOSpEipidje3RNPX5sekBp3brw440dS8r2xo3c88wcxENoeLi8BT6zIo7Pkye5ya4NYOVGSR49AqKjaV0py03DhnQyxsZybYu8EFab8uXpqVYp2DVlHn/8Qdat4GCgc2f5xrXnqt1RUWQ5CAoCKlUq/HiVKpkyrj79tPDjOToio1XJVj7lylHZiNRU4MwZ5fbDAGDlRlnEARwURIG/SuDtbbIKsWsqd5SOtxGICyMHFeePCCQeNoxcSXIhgnDtsfvy7t20jIiQL/Fg3DhaLl9O1ksmb4RyIx5QlCBrUDHH3SgOKzdKonS8jYBdU/mjdLyNgC03BRMTY6ok/NJL8o7dqBEtz5yxvxovu3bRMiJCvjFbtyY3bFIS8OWX8o3riIhzVu7KxE8jlBvOblUcVm6UROl4GwFXKs4fttxoh2XLKJupTRsqZSAnpUuTqys93b5uHkaj6dwVKe1yoNMBEyfS+mefcS2svMjIMFlubKXccFCx4rByoyTiaaB6dWX3IzKmjhwhfy5jIjnZdOGyleXm+nUgIUHZfdkj6enAt9/SulyBxE/TsCEtDx1SZnwlOHWKjtNixaj0v5z0709K33//cVG/vLh+naxbLi4Ul6ckQrk5cYLOB0YxWLlRElv4cQEKHvT3pycz4YJhiFOn6MmsRAl5Uo7zo1gxshwA7JrKjW3byC3l5wf07q3MPoRyc/iwMuMrgYgRatRI/kwdV1dT7M3HH9O5wGRHXKcrVixcfSFzqFSJMvuSkzmLTWFYuVGKxES6kAPyP409jU7H9W7yImu8jdwVonOD427yZskSWg4eDHh4KLMPEXdjj8pN48bKjD9yJFU9PnfOVCiQMWErlxRAyquwINuT69QOYeVGKS5epGVAAFlVlEYoNxxUnB1bxdsIhHLDcTfZiY0FfvuN1pVySQFAgwa0vHQJuH9fuf3IiXggEeew3BQtCrz8Mq2//779VnBWCvEgorSFXcBxNzaBlRulsOXTAMAZU3lhq0wpgQgqZstNdhYvphiD1q2VzR708zMFKh85otx+5OL+fZN7QlidlGDiRMDTk6xEbL3Jjq2v1azc2ARWbpTC1ieM8NdfvQrcuGGbfWqd9HRTl2623KhHcrLJJSWaOiqJPbmmROCzaIKrFEFBwOjRtP7uu2y9yYqayg3HQCkGKzdKYesTxscHqFWL1vfts80+tc4//1AWhJeXPFVfzUFYbqKj6abOAKtWURG50FCge3fl9ycUWXsIrhfxNkq5pLIyaRIFsx49CqxZo/z+7IH4eCAujtaVjo0UVKsGuLtTRqWoYM/IDis3SiFMzbZSbgCgWTNa7t9vu31qGRFvU6sWdZ+2BYGBQPHi9GQs4q6cmfR0YN48Wh8zxja/g+gf9vffyu+rsAjLjVLBxFkpUcJU9+aNNyjpwdkR1+ngYGVbs2TF1dVU+4xdU4rByo0SZGSoo9yI8vNsuSFsHW8DUEYWF/Mz8csvpOT5+QGvvGKbfQrl5p9/tH8DFzc30TFaaSZNIgtabCwwa5Zt9qllbB1MLOBKxYrDyo0SxMRQl183NyAszHb7FcrN8eP2V35eCWydKSUQCq2zBxVnZAAffEDr48aR69QWlCxJL0kytUDRIv/9Ry4Rnc7kUlYaLy9g4UJa//hjU0yas2Lr8AEBBxUrDis3CqATVptKlWznDgGAsmWpGmlamn1VaFUCSVLHcgOYngLFhdNZ+fVX6vPk6wuMHWvbfduDa0ocn5UqUQNcW9GzJ9CjB7V9GDDAuR+EtKDccHC3IrByowA6NVxSAD0BCuuNs8fd3LgB3L5NGWRK9/Z6Gi7kR5bLt96i9fHjqXqzLbEH5UYty6JOR53Zg4PJdfrSS86btaOWclOzJj343r5N7R8Y2WHlRgnUUm4AU1Cxs8fdiKfiqlWpvoctEcrNxYtkRXNGFi2iTJBSpYA337T9/lm5yZ8SJSiLzdUVWL2aLGvOpuAYjVTsEbD9tdrDwxSbx64pRWDlRgFUs9wA2S03znaxyoqaN46yZenilZrqnKmeFy4A06fT+pw5lH5sa4Ryc/Kkds8DtdymgogIYPlyWv/iC6BPH+DOHXVkUYPLl+nho0gRoEwZ2++f424UhZUbBdCJFGA1lJvatSlo8MED53aLqHnjMBhMNTOcLe7GaASGDiW3VPv21EdKDapUoYD+hw+BK1fUkSE/Hj2ibC5AHQVcMHAgWXDc3Kg9RpUqVOTv+HH6DSWJriUXLwJ79gA//wx8/jnw5ZfAhg3ArVvqyV5YsrqkbNF37mk4Y0pRWLmRGZdHj6C7eZP+sFVRqKy4uppqZjhz3I2alhvAOeNuJIncGwcPUhDx0qXq3DQAOg+qV6d1Lbqm/v6b5qtUKaqNpCYDBgB//UUPRvfuUf+pevXInavXU92mKlWAVq2A/v2pXtGoUUC3blT5uHt3Kgxob6gVbyMQ1ya23CgCKzcy4yNaH5QqZbvU16dx9rib+Hjg339pXS2Tv7MpN5IEzJgBfPUVKTQ//ACEhKgrk5bjboRlUU2rTVYaNqReXD/9BHTunDMA3MeHsrpatgSefZYyrqpVo9/9zz/pgeqDD+wr80dt5UZcm65ds28LmEZxUVsAR8P72jVaUeuEAbiYn7iZhYTYpiN7bojf3xncUo8eUR2bpUvp7/nz6alebbSs3AjLolrKd264uJBlpn9/kzsqJYUq9+YVlH/xIjBtGrmrpk2jmJ0FC9Sz2FmCePBQ61rt4wNUrkxzePw40LGjOnI4KGy5kRlvkdanpnLTtCldXC5dokJhzoYWbhxZLTf29DRrLhkZFCz9ySeU9SEUm88+o9RvLSAK42mxkJ/abtOC0OnIHRUUlH+2YeXKlG31xRf096JFwNy5tpGxMEiS6cHD1tWJs8JBxYrByo3M+GjBclOsmOnCvmuXenKoha1L2udGpUoUrxAfD4gYLHvh6lVg5kygbVvqVl28OAWpu7vT071OR0HT5ctTj6LYWMoQ276d4jG0goi5uXxZW01M09JMCpeWLDeFYdQoCjQGgKlTKfhYy9y8SY0r9XqgYkX15GDlRjFYuZEZTVhuALoxAXTDcTbEhUJcONTAwwMoV47W7SXu5uFD4NVXSaF57z1gxw6KXXrwgJSD1FRqhClwcaH4riVL6Cm4TRvVRM+VwEByS2Z9StcCly7RXBYpYjpGHIFRoyg7Lj0dGDaMsq20ijgeypcnpV0thOWOM6Zkh5UbOTEaUSQujtbVVm7EjWbHDnXlsDXJySZlQk3lBrCvNgzR0TRfX31FN6e2bSndd98+ms/oaOqZduMGuTrv3CFlaN8+YORI2xdKNIesTUzPnFFXlqwIq014OFkOHAWdjqw3pUqRUiy6wWsRcU6qkdGaFaHcXL5MDxGMbNjtmfXFF1+gXLly8PDwQP369bF37161RQKio6FPT4fk5UU9ntSkZUtyHVy+TG4GZ+HUKbo5BwbSRVZN7CVj6t9/gWeeIYtCSAgpxNu2URfvZs1IUQ8Lo8+Cg00WEQ8PtSUvGOGa0qJyU6OGunIogY8PBZQDVMBRZI9qDS3E2wB0HoWG0rrIoGNkwS6Vm9WrV2PcuHGYMmUKjh8/jpYtW6Jz586IiYlRVa7MysSVK6v/RObrS+mdALBzp7qy2BLhkqpbV/2MDXtQbpKSgN69KR21alUgKgpo3VptqeRDKDdnz6orR1YcWbkBKNuqWTNyS338sdrS5I7aaeBZERZme6wVpGHsUrn55JNPMHz4cIwYMQLVqlXDwoULERISgsWLF6sql1BuJLVNnQLhmnKmuBstxNsI7CEdfOxYalEQGEjWmuBgtSWSFy1aboQsjqrc6HQUswWQa1OLGZtaUm7EQ2hUlLpyOBh2V+cmNTUVR48exdtvv53t/Q4dOmB/HhV5U1JSkJKSkvl3QkICAMBoNMJoNMomm+7JE3papUrQyTiutehatYLL7NmQduxAWmqq6pYMMddyzvnTGI4ehR5AWq1akNT+DSpWhCsAXL8O4927ZE3LB1vMT1Z0O3fC5dtvIel0SP/hB0iBgdQ+QaNYNT+VK8MVgPTvv0iLj6esLzV5/Bgu//wDHQBjlSqyzbetj50CiYiAoVEj6A8dQvqiRciYMUNVcbLNT2IiXJ9Y+Y0VKqh+zOsaNIALAOngQaSpJIvmjp98MFdGu1Nu7ty5g/T0dJQsWTLb+yVLlsTNPFJu58yZgxm5nFxbt26Fl4wXu5aHDsEPwN+PH+PGxo2yjWst+pQUdHF1heHGDez55hs8UjsO6AmRkZGKjKszGtH15EkAwM74eCRp4DfoWLw4PO7fx/5vv8WDypXN+o5S85MVvdGIiHHj4AMgunNnnEpMBDQwX+Zg6fx08vWFe0IC9i1divgKFRSSyjx8o6PROj0dqd7e2HT8uOxxFrY4dswlOCICjQ4dgnHxYmytVw+Sq6vaIiEyMhJF//0XEQBSihbFZg1YS1ySk9FFr4cuNhY7vv8ej/38VJNFS8dPXiQlJZm1nd0pNwLdU1YISZJyvCeYPHkyJkyYkPl3QkICQkJC0KFDB/gW8DRtCWllyuDw6tWo/sorqFO2rGzjFgZd8+bArl2ISE1FRpcuqspiNBoRGRmJ9u3bw1WJC92JEzCkpUEqWhQRw4apbqkCAEPt2sCuXWju5wepgPlXfH6yoF+8GIbr1yGVLImQ5csR8nS5fQ1i7fwYatcG9u5Fi+LFC/wNlEa3ahUAwKV2bXTp2lW2cW157JhN+/aQvv8eHjduoEtyMqSePVUTJev8uK1ZAwBwrVkTXVQ+HjKZPRs4dQptvb1VOUY1efzkgfC8FITdKTcBAQEwGAw5rDS3bt3KYc0RuLu7wz2XWgaurq7y/pC1auHGtWuoU7asdg6Qrl2BXbtg2LQJhnHj1JYGgALzLjh1CgCgq1cPrm5u8o9vDdWqAbt2weXSJWrmaAaKzY8gORn48EMAgG7aNLiWKKHcvhTA4vmpUQPYuxcuFy6Y/RsoxpNYD33NmtArIIvix44luLoCL78MTJ8Ol6+/Vq9DfDaRXOlcBKCvVk2R38AqmjYFTp2Cy5EjQL9+qomhqeMnD8yVz+4Cit3c3FC/fv0c5rPIyEg0Ew0jGROix8+uXVSXxJER2QZaKmmvxYypJUuAuDhK7R4xQm1plEdLGVOOHkz8NMOHkwV1717gyhW1pSG0FEwsaNyYlgcPqiuHA2F3yg0ATJgwAd988w2+/fZbnDt3DuPHj0dMTAxeffVVtUXTHlWqUMXZ1FTADvypheLQIVo2aqSuHFnRmnKTng4sXEjr77yjbnVWW6GljClHTwN/mjJlTKUFnrjkVEeLyk2TJrQ8fJjaczCFxi6Vm/79+2PhwoWYOXMm6tSpgz179mDjxo0IFcWQGBM6HdC9O63/+ae6sijJ48em7s/iKUgLiAvo5cukYKrN77/TE7SfH/Dii2pLYxuEchMdTXV91OLRI5Ihq0zOwKBBtPzuO/WbyKanUxduQFvKTdWqlE2ZnJzpXmcKh10qNwDw2muv4cqVK0hJScHRo0fxzDPPqC2SdhGuqQ0bqJuzI3L8OKV0BgaaKn5qgdKlqWprejpVAFabRYto+cor6qdF24oSJeglSepa0IRbrGRJICBAPTlsTZ8+ZCE8f179HkpXrwIpKSSPlq4Tej27pmTGbpUbxgJatqSnglu3gDxqAdk9IqWzUSNNZEllotOZnhDVdk398w+wezddSF97TV1ZbI0Wekw5m0tKULQo0KMHravsmspWRd5gUFWWHAjXFCs3ssDKjTPg5gaINMyfflJXFqUQyo2WXFICrcTdLF9Oy44dKRbCmdBC3I2zBRNn5fnnabl2raquqUzlRksuKUHTprTUQp9EB4CVG2dhwABa/vKLYwasaVm50UIbhvR0YOVKWh82TD051EILGVPOarkBSKH28KCYIxVjSjSt3DRvTtak6GhA5T6JjgArN85Cu3bUgfbWLer67Ejcvm0K1BR9WrSEFiw327dTc8zixU0B5s6EFiw3zqzcFCkCdOhA6+vXqyeHUG7U7gaeG76+QP36tL57t7qyOACs3DgLrq7Ac8/RunBPOArCalO1KqDFSrviQnr+vHoB3StW0HLgQHqCdjayZkwlJtp+//fuATdu0LqI/3E2evWi5bp1qomgacsNAERE0HLXLjWlcAhYuXEmhg+n5Zo1ZMFxFPbto6XwWWuN8uUBFxdKQ46Ntf3+k5MpBRwwpeU6GwEBlDEFqGNBExajsmULbKDqsHTvTsHsJ06oUtDPNSEButu36Q8z+7zZHKHcsOWm0LBy40zUr09uG6MRWLZMbWnkY88eWmq1HICrK1CpEq2rEXezdSvVWAkJ0WZMkq1QM+7GmYOJBQEBlLkJmJRtG+ItLGdly5KbTIs0b04K4OXL6jwIORCs3Dgbo0bRcvFiUnLsnaQkquoJaFe5AdSNu3nSKBDPPqutNHlbo2bcjTPH22RFNAvdvNnmu/a5do1WtOqSAjjuRkZYuXE2nn+eiohdvWrKnrFnoqJISStdGihXTm1p8kYt5SYlxfSU3LevbfetNdSsdcPKDdG5My137SJ3qQ3xFspNlSo23a/FiHYV27apK4edw8qNs+HpCbz1Fq1/8IH9W2+yuqS0bJVQKx182zYgIQEIDtZuTJKtUMstJUkm5caZ2i7kRvXq9CCSnGw6d22Er0iv1vpv0LEjLTdvdtyK8jaAlRtn5JVXyHpz5YqpiaI1XL4MfP89MGsW8OGHwG+/AffvyyWleWg93kagluUmq0tK7+Snu1oZU//9B9y9S8q3FlOQbYlOZ7Le2Ng15SOUG61bz1q0ALy96bhRu12FHePkVzsnxcuLlBEAeO89UlLMJSMDWL0aaNAAqFgRGDwYmDoVmDyZUj1LlwZGjwbu3FFE9GykpgIHDtC61pUbYbm5fZtudLYgLY0UToBdUoB6GVPCDVaxIllOnZ1OnWi5aZPt9pmQAC9xTdK65cbNDWjbltZtNUfx8fC4fRt48MA2+7MBrNw4K0OGAG3akHn4+ecL9n9LEt0o69Sh7Y8epWqazZtTxdvBg8mXnZwMfPEFPR0p7TM+dIj2FxCg/SfiIkUoSwOwnVtk/36ypPn50dMgo45ril1S2WnXjq4dFy6Yim8qjO7J7y2VLq3NWlhPI6xbGzcqt4/79+kht1o1uJYogY4jR8I1MJAexN5911SXyU5h5cZZ0emApUupavGRI2R1efgw53aSRN3EGzembU6dooj+mTOBuDjgr7+Ab7+l4ORz56j6cXg4mVQ7dwZ++EG5/0GYtdu103a8jaBmTVqePGmb/W3YQMvOnbXXJFAt1MiY4jTw7BQtCjRrRuu2ck0J5cZeCiiKrLKDB+k6Kzdr1tDD6OTJmXGA6S4u9NmFC8D775OlcfZsSkqwQ1i5cWbCwqiRnZcX1UKpXRtYsoSeNA8eBBYsAOrWBbp1o3RrLy86GaKjgWnTTCZ+gU5Hkf5Hj1Ivq7Q0suiIuA+5ERdGYebWOrVq0dLWyo24UDLqZEyx5SYn4py1kXKje/J7S/byG5QpQ13CJQn49Vf5xpUkYMoUoF8/cpFXrQosXw5jXBz+XLMGxps3qbly06ZkFZ8yhUIQLHXjSpLqwdCs3Dg7zzxDfYfKliWl5ZVXyMLQtCkwYQLw99/kUpk4kT6fPZvcHPnh4UGBxiNH0kH+wgvkIpGTW7dIiQJMPWu0Tu3atLSFcnP1Kt3A9XpT9gVje7eUJLHlJjfEMbljh00yNnX2ZrkBTO1yfvlFnvEyMoChQ+kaDlDW7IkTFKLg70/v+fkB/ftT1fcffgACA0k5b9DA1MLFHD77DOjSBbh5Ux7ZrYCVG4aeEE6fBubNI/eTnx89ObRrRwfp1avARx/RgW4uej0VCuzdmwJ/+/UjV5VcREbSsnZtSnO2B4Tl5tQp5Z9qhK++WbOClVFnwtYZU9euUSq+i4t2S/6rQd26FCv36BFZiRVGWG7sqq+XSALYu1ee+Je336bwARcXCiX48EPA3T33bXU66kP3998U3JyURIrR4MF0POfH338Db74JbNmiapNUVm4YwseHDsiDBymbJzaWFIgxY0xavaUYDHQyVasG3LgBw6BB0KWnyyOvKExnLy4pgFoweHjQTfXff5XdF7ukcsfWGVPCJVW5MmXBMIReD7RvT+tbtyq7r7t3oXtiQZC0nniQlZAQejiRpMIXXF28mB5QAWq9M2yYed8LCiIl5f336Tf7/ntKKhFZqk9z7RrQsyc90HbvTp4AlWDlhlEWb2/yGRcpAv3u3agoR0fg5GTTzbtPn8KPZytcXEyWg7//Vm4/yclk7gdYuckNW7qmuDJx3gh3stLKzROrTVKJEvQQZ0+MHEnLr7+23tq7cSM9pAKUCGJp81yDgcp97NkDhIaS1VNkyf79Nylf6enAH3+Q5f/qVXqQ+/ZbVRM9WLlhlKdaNeDzzwEAVX/6qfA39i1byPoREkKNQO0JW8Td7NxJCk6ZMnxTzQ1bZkyJfdhLIKstEZabw4eBe/eU28+T3yAhNFS5fSjFc89Rdtm//1JspKUcP05jiHibqVOtl6V5c7p2DxpECs3y5WTF8fen9PoePch9Fh5OVv+AAOv3JQOs3DC24cUXkdGjB/RpaXAZNqxw6YUi+6pvX/tIAc+KiLtR0nKT1SVlb/NjC2yZMcWWm7wpXZqUPkmy7sZtLk9+g4chIcrtQym8vCjOBQDmz7fsu7GxlOmamEhxM199VfjrQdGiwHffkVuqd2+K2bl/n2KnihYFJk2i0AYNKJKs3DC2QadD+hdfIKVoUehOn6bKyNbw8KGp6u6zz8onn61Q2nIj6hIB7JLKC1u5pTIyTPtgy03u2MI19US5SRBFNO2N8ePJpb1lS96xLk+TkEDn/40bdOytWSNvzFeTJlRG5N49upadPUup5XPnasb1x8oNYzsCA/H3qFG0/tFHlG5oKT/9RE8JlSqZCoHZE8JyEx1dcNaBNZw9Sz5vd3eqQM3kxFYZU9HR5B50dwcqVFBuP/aMUG62bCHFXG4kKdNKapduKQAoX57StQFyKxU0TykppoKrQUH0sKNUVWYvLyodUq0a4OqqzD6shJUbxqbENWmCjMGD6an2xRdzr4qcH0uW0PLll+3T5SLS7AG6+MiNsNq0bk31iZic2CpjSrikqlWjJ28mJ888Q8pfbCxVxpWbK1eA+HhIrq726ZYSTJ1KlpcdO4Aff8x7u7Q0ionZuZMsKBs2aMJFpAas3DA2J/2TT6ho4L//Am+8Yf4Xjxyhl6ur6UnGHlEy7oZdUuZhC9cUBxMXjJcX0LIlrSvhmhJdtatXh6Qxy4JFhIVRVXgAGDUqs2VCNpKTKQ5RuKDWrwfq1bOllJqClRvG9hQtStUudTpKcfzjD/O+JyprPv98ztYP9kTdurQUFZbl4v59k6uPlZv8sUXGFAcTm4eScTdPlBupTh35x7Y1kyZRxlJCArmcs8bfHDpEmaO//UaWsDVrnN4tzcoNow4RERQoB1A2wD//5L/9kSPAunWkEE2erLh4itKoES0PHZJ33MhIqjdRrRpQrpy8YzsatsiY4p5S5iGUm5075W/S6EjKjZsbBfHWqEHNNJs1Iytw9epUX+bMGaoiv2ULFdBzcli5YdRj9mzqYRUfT1Ut8wqwTUszFaEaNIhu3vaMqM1z9iwFR8vFn3/Skq02BaO0W8poNMWQsOUmf2rWBEqWpBL/5mYDmYsjKTcAKS9791LNGp2O4vbOnqVCey++SAp1q1ZqS6kJWLlh1MPdnaoXlypFgZ2dOpGi8zTTpwNRURQgN3euzcWUneBgCirOyACOHZNnzPR0Uz8pfmorGKUzpi5dohL0Xl5OG9BpNkq1Yrh1i1KhdTpINWvKN67aFCtGLRRu3KA2NBs2kCVnxQr7dtfLDCs3jLoEB1PMTfHi9NTWvDm5oAB6+n33XWDWLPr7q6/sp0lmQcjtmoqKop5gxYrZZ4q8rVE6Y0oEi9esSTdvJn+UiLs5cYKWFStqpvaKrAQF0YNMly6s1OQCn3WM+tSrRymOJUuS37hhQ2o0GBxMDdsAKvo3YIC6csqJcE0dPizPeCIou3NnTjs2FyWDioVy4yjuEKURlptjx6gYnByITCkRwM84FazcMNqgTh1T3xK9ngKM796lJ5IVK8g15UjIbbkR8TbduskznjMgXBVK1BsSVgNRkZrJn6AgmitJArZtk2dMYQFm5cYpYeWG0Q4lS1Lfklu36AK3fz9w/ToFyjka9etTQOCVK4V/Ur1yhQIJDQaKW2LMQ1hVhCIiJ2y5sRy5XVNRUbRs0kSe8Ri7gpUbRnv4+1Ojt6ZNNVfSWzaKFgWqVqX1gwcLN5Yo3Ne8OVVAZswjq3IjZ+n/W7cowFOnM1mHmILJqtwU9ve4cYOqHuv1QIMGhZeNsTtYuWEYtWjenJZ79xZuHHZJWUd4OMUn3b1LFkK5EFabihUBb2/5xnV0WrQAPDxIMSlsir6w2tSowb+Bk8LKDcOohahHsXu39WM8ekTB2AArN5bi4WGqmSSna4rjbazDw8N0ThTWNSWsoeySclrsTrkJCwuDTqfL9nr77bfVFothLOeZZ2h59KjlDUQFmzZRPZXy5U1uLsZ8hAIip3LD8TbW07EjLQur3AjLTePGhRuHsVvsTrkBgJkzZyIuLi7zNXXqVLVFYhjLKVuWGuKlp1tfmfWXX2jZt699dklXGyWCitlyYz0i7mb3buDxY+vGMBpNJRZYuXFa7FK58fHxQVBQUObLm32qjL0irDfWuKaSkkzBxP36ySeTMyG3cvP4saljM1tuLCc8nCqWJyebmsBayuHDdG4EBNh/qxbGauxSuZk7dy78/f1Rp04dzJo1C6mpqWqLxDDW0bo1La0xw2/cSBfxsDBKLWcsR1hXLl/Ou7eZJZw9S5Y4Pz+gdOnCj+ds6HQm682WLdaNsWsXLVu14urQTozdlTL9v//7P9SrVw/FixfHoUOHMHnyZERHR+Obb77J8zspKSlIydJtNuHJRcxoNMJoNMommxhLzjEdCZ6fXGjbFq4AcOQIjLGxAMyfH8Pq1dADSO/TBxlpaYqJqBUUOX6KFoVLmTLQXbuGtGPHIIkMNivRHT0KFwAZtWsj3Ya/iSOdW7o2beCyfDmkTZuQJlqvWIBh5046L1q2RMZT8+II86ME9jQ/5sqokyQ5CzxYx/Tp0zFjxox8tzl8+DAa5FKv4Ndff0Xfvn1x584d+Pv7WzT+qlWr4OXlZZ3QDCMTrd54A8UuX8axsWMR27atWd8xJCej07BhcHn8GLs/+ggPKlVSWErHpfEHHyDoyBGcHDkS0YXsqF7ryy9RbvNmXOrZE2eGDZNJQufCNSEBnYYOhT4jA9u++AKJpUqZ/V2d0YgugwbBJSUFOxYtwkNuWupwJCUlYeDAgYiPj4evr2+e22lCublz5w7u3LmT7zZhYWHw8PDI8f7169dRpkwZHDx4EI3zCB7LzXITEhKCO3fu5Ds5lmI0GhEZGYn27dvD1VGLzxUCnp/c0c+YAcOsWUjr3Rsbhgwxa350K1bAZeRISBUrIu3MGacIJlbq+NG/9x4Mc+YgY+hQpC9ZUqixDE2aQH/sGNJWrYLUt69MEhaMo51bhm7doN+6FekzZyLDgmxY3f79cImIgBQQgLTr1zPPC0ebH7mxp/lJSEhAQEBAgcqNJtxSAQEBCAgIsOq7x580RwvOp1u0u7s73N3dc7zv6uqqyA+p1LiOAs/PU3TvDsyaBcO2bdAPGGDe/KxcCQDQvfQSXN3cbCCkdpD9+HnSxFR/7Bj0hRn38WPg5EkAgEuzZqpU13aYc+u554CtW2H49VcYpk0z/3tP4nR0bdvmel44zPwohD3Mj7ny2VW01YEDB7BgwQKcOHEC0dHR+Pnnn/HKK6+gR48eKFu2rNriMYx1NGwIlCkD3cOHKCma/eXHpUtU1Vivd8y+W7ZGWHxPn6aiiNZy4gSQlgYEBlKaP2M9vXpR9ei//wYuXDD/e3/8QcsePRQRi7Ef7Eq5cXd3x+rVqxEREYHw8HC8++67GDlyJH788Ue1RWMY69HrgRdeAACEiEyP/Pjf/2jZsSNn5MhBqVJAmTJARoapk7Q1iA7vjRo5hZtQUfz9gXbtaP3nn837TnS0qYFs587KycbYBXal3NSrVw8HDx7EgwcPkJycjPPnz2P69OkcFMzYP4MHAwBKHj0K5Bd/dv8+IDIDx41TXi5nQZTpF5VtrSGrcsMUnueeo+XKleY10hRWmxYtgOLFlZOLsQvsSrlhGIelenVIdetCn54O/fLleW/35ZdAYiJQqxbQvr3NxHN4hGuKlRvt0K8f4ONDbtidOwvefs0aWrJLigErNwyjGdJHjwYA6D/7DMiS3ZfJ/fvARx/R+sSJ7PqQE6HcHDxonpXgae7dA/75h9afBCgzhcTbO9Ndi4Ky2P79l+LQdDqgf3/lZWM0Dys3DKMRpOefR7K/P3RxccCiRTk3mDaNFJwaNYCBA20voCNTvz7FasTFAdeuWf59YfGpWJGqEzPy8PLLtFy7FnhS5DJXVqygZbt2HIfGAGDlhmG0g5sbzokn1ZkzqZS/4I8/gM8/p/UFC+hGzMiHlxe5+gDrXFN79tCyZUv5ZGKAunWpjYLRCMyenfs2ycnA4sW0Pny47WRjNA0rNwyjIWIjIpAREUFxNZ06AevWkVIjgitHjzZlkTDyIoKK//rL8u+KxqeiESojH6K6/NKlwNWrOT9ftgy4fZvS75991rayMZqFlRuG0RJ6PdJXrQIqVSIzfJ8+wJgxVCCue3ey2jDKEBFBS3OCV7OSlESdqAGyMjDy0qoVNZg1GulcyBoT9eAB8N57tD5xItXGYRiwcsMw2iMggDJvRo8GypUDatYEPvmE4g40Xj3UrhHKzcmT+afjP82BA1S8LySEOrQz8vPZZ4CbG/Dnn8DcufReWhowdCj9VlWrAq++qqqIjLZgNZdhtEixYqZifYxtCAwEqlcHzpwBdu0CzO0NldUlxRlsylC9OmUK/t//AZMnA9u3A3fvAsePk9KzYgUr/kw22HLDMAwjaN2alpa4pp70M8r8LqMMr78OfPABVfTeto0UG29vYPVqri3E5IAtNwzDMII2bchitm2bedvfumWKt+GS/8ozZQrQsyewYQPg4UExaSEhakvFaBBWbhiGYQRt2pB74+JF4Px5iuXIjy1bKMC1bl3qUcUoT40a9GKYfGC3FMMwjKBoUZN76bffCt5+wwZaduminEwMw1gMKzcMwzBZ6dWLlgUpN6mppngbVm4YRlOwcsMwDJMV0Xjx4EFqx5AXmzdTnZXgYFNvKoZhNAErNwzDMFkpXRpo2pRiaVatyns78dmAAdwOg2E0Bis3DMMwTzNsGC2XLs29S/itW9QaA+AmpgyjQVi5YRiGeZr+/amZ5rlzuaeFL1lCMTeNGlFHcYZhNAUrNwzDME/j6wuMHEnr77+fs5+R6PE1dqzNRWMYpmBYuWEYhsmNiROptP/evcAPP5jenzYNuHcPqFYNeP559eRjGCZPuIgfwzBMbpQpA7z7LjB1KjVlLFoUOHvW1PPrk0+4CzXDaBQ+MxmGYfJi0iRqjBkZaUoRB6h5Y6dO6snFMEy+sFuKYRgmL1xdqZjfmDGAvz/1MfriC2DWLLUlYxgmH9hywzAMkx+ensBnn9GLYRi7gC03DMMwDMM4FKzcMAzDMAzjULBywzAMwzCMQ8HKDcMwDMMwDgUrNwzDMAzDOBSs3DAMwzAM41CwcsMwDMMwjEPByg3DMAzDMA4FKzcMwzAMwzgUrNwwDMMwDONQsHLDMAzDMIxDwcoNwzAMwzAOBSs3DMMwDMM4FKzcMAzDMAzjULioLYAaSJIEAEhISJB1XKPRiKSkJCQkJMDV1VXWsR0Bnp/84fnJH56fvOG5yR+en/yxp/kR921xH88Lp1RuHj58CAAICQlRWRKGYRiGYSzl4cOHKFq0aJ6f66SC1B8HJCMjAzdu3ICPjw90Op1s4yYkJCAkJASxsbHw9fWVbVxHgecnf3h+8ofnJ294bvKH5yd/7Gl+JEnCw4cPUapUKej1eUfWOKXlRq/Xo0yZMoqN7+vrq/kDRE14fvKH5yd/eH7yhucmf3h+8sde5ic/i42AA4oZhmEYhnEoWLlhGIZhGMahYOVGRtzd3fHee+/B3d1dbVE0Cc9P/vD85A/PT97w3OQPz0/+OOL8OGVAMcMwDMMwjgtbbhiGYRiGcShYuWEYhmEYxqFg5YZhGIZhGIeClRuGYRiGYRwKVm5k5IsvvkC5cuXg4eGB+vXrY+/evWqLZHOmT58OnU6X7RUUFJT5uSRJmD59OkqVKgVPT09ERETgzJkzKkqsLHv27EH37t1RqlQp6HQ6rF+/Ptvn5sxHSkoKxo4di4CAABQpUgQ9evTAtWvXbPhfKEdB8zN06NAcx1OTJk2ybeOo8zNnzhw0bNgQPj4+CAwMRK9evXDhwoVs2zjz8WPO/Djz8bN48WLUqlUrszBf06ZNsWnTpszPHf3YYeVGJlavXo1x48ZhypQpOH78OFq2bInOnTsjJiZGbdFsTvXq1REXF5f5OnXqVOZn8+b9f3v3HtLU/8YB/L38biNUhqa5qWVWdBFt3SgmUWJkBUIkRAXFKgqMFNblj24kVJAERYJRdCEKCoPKKOxmqCuxi5qiXf4Q0ozakO6lpbU9vz/id/jNyzf5NT11zvsFwvY5lz3nzQM9HM9yPw4ePIjCwkJUV1fDarVi3rx5yt/70pr29nbY7XYUFhb2ur0/ebhcLhQXF6OoqAiVlZX48uULMjMz4fP5BusyBsyv8gGABQsWBPTTtWvXArZrNR+3240NGzbg/v37KC0txY8fP5CRkYH29nZlHz33T3/yAfTbP/Hx8cjPz0dNTQ1qamqQnp6ORYsWKQOM5ntHKChmzJgh2dnZAWsTJkyQrVu3qlSROvLy8sRut/e6ze/3i9Vqlfz8fGXt27dvYrFY5OjRo4NUoXoASHFxsfK+P3l8+PBBjEajFBUVKfu8evVKhgwZIjdu3Bi02gdD93xERJxOpyxatKjPY/SUT1tbmwAQt9stIuyf7rrnI8L+6S4iIkJOnDihi97hnZsg6OrqQm1tLTIyMgLWMzIyUFVVpVJV6mlqakJsbCwSExOxbNkyPH/+HADQ3NwMr9cbkJPZbMacOXN0mVN/8qitrcX3798D9omNjUVycrJuMquoqMDw4cMxbtw4rFu3Dm1tbco2PeXz8eNHAEBkZCQA9k933fP5L/YP4PP5UFRUhPb2djgcDl30DoebIHjz5g18Ph9iYmIC1mNiYuD1elWqSh0zZ87EmTNncPPmTRw/fhxerxepqal4+/atkgVz+qk/eXi9XphMJkRERPS5j5YtXLgQZ8+eRVlZGQ4cOIDq6mqkp6ejs7MTgH7yERFs2rQJs2bNQnJyMgD2z//qLR+A/dPY2IiwsDCYzWZkZ2ejuLgYSUlJuugdXf5V8IFiMBgC3otIjzWtW7hwofI6JSUFDocDY8aMwenTp5UH+ZhToP8nD71ktnTpUuV1cnIypk+fjoSEBJSUlCArK6vP47SWT05ODhoaGlBZWdljG/un73z03j/jx49HfX09Pnz4gIsXL8LpdMLtdivbtdw7vHMTBFFRUQgJCekxzba1tfWYjPUmNDQUKSkpaGpqUr41xZx+6k8eVqsVXV1deP/+fZ/76InNZkNCQgKampoA6COf3NxcXLlyBeXl5YiPj1fW2T8/9ZVPb/TWPyaTCWPHjsX06dOxb98+2O12FBQU6KJ3ONwEgclkwrRp01BaWhqwXlpaitTUVJWq+jN0dnbi2bNnsNlsSExMhNVqDcipq6sLbrdblzn1J49p06bBaDQG7OPxePD48WNdZvb27Vu8fPkSNpsNgLbzERHk5OTg0qVLKCsrQ2JiYsB2vffPr/LpjZ76pzcigs7OTn30jgoPMWtSUVGRGI1GOXnypDx9+lRcLpeEhoZKS0uL2qUNqs2bN0tFRYU8f/5c7t+/L5mZmRIeHq7kkJ+fLxaLRS5duiSNjY2yfPlysdls8unTJ5UrHxifP3+Wuro6qaurEwBy8OBBqaurkxcvXohI//LIzs6W+Ph4uX37tjx69EjS09PFbrfLjx8/1LqsoPm3fD5//iybN2+WqqoqaW5ulvLycnE4HBIXF6eLfNavXy8Wi0UqKirE4/EoPx0dHco+eu6fX+Wj9/7Ztm2b3LlzR5qbm6WhoUG2b98uQ4YMkVu3bomI9nuHw00QHT58WBISEsRkMsnUqVMDvpKoF0uXLhWbzSZGo1FiY2MlKytLnjx5omz3+/2Sl5cnVqtVzGazzJ49WxobG1WseGCVl5cLgB4/TqdTRPqXx9evXyUnJ0ciIyNl6NChkpmZKa2trSpcTfD9Wz4dHR2SkZEh0dHRYjQaZeTIkeJ0Ontcu1bz6S0XAHLq1CllHz33z6/y0Xv/rFmzRvn3KDo6WubOnasMNiLa7x2DiMjg3SciIiIiGlh85oaIiIg0hcMNERERaQqHGyIiItIUDjdERESkKRxuiIiISFM43BAREZGmcLghIiIiTeFwQ0RERJrC4YaI/khpaWlwuVxql0FEfyH+D8VEpLq0tDRMnjwZhw4dUtbevXsHo9GI8PDwQa/H5XKhpaUFly9fHvTPJqLfxzs3RPRHioyMVGWwAYDq6mrMmDFDlc8mot/H4YaIVLVq1Sq43W4UFBTAYDDAYDCgpaWlx6+l0tLSkJubC5fLhYiICMTExODYsWNob2/H6tWrER4ejjFjxuD69evKMSKC/fv3Y/To0Rg6dCjsdjsuXLjQZy3fv3+HyWRCVVUVduzYAYPBgJkzZw7k5RPRAOBwQ0SqKigogMPhwLp16+DxeODxeDBixIhe9z19+jSioqLw8OFD5ObmYv369ViyZAlSU1Px6NEjzJ8/HytXrkRHRwcAYOfOnTh16hSOHDmCJ0+eYOPGjVixYgXcbnev5w8JCUFlZSUAoL6+Hh6PBzdv3hyYCyeiAcNnbohIdb09c9N9LS0tDT6fD3fv3gUA+Hw+WCwWZGVl4cyZMwAAr9cLm82Ge/fuISUlBVFRUSgrK4PD4VDOu3btWnR0dODcuXO91nL58mWsXbsWb968GZiLJaIB94/aBRAR9dekSZOU1yEhIRg2bBhSUlKUtZiYGABAW1sbnj59im/fvmHevHkB5+jq6sKUKVP6/Iy6ujrY7fYgV05Eg4nDDRH9NYxGY8B7g8EQsGYwGAAAfr8ffr8fAFBSUoK4uLiA48xmc5+fUV9fz+GG6C/H4YaIVGcymeDz+YJ6zqSkJJjNZrS2tmLOnDn9Pq6xsRGLFy8Oai1ENLg43BCR6kaNGoUHDx6gpaUFYWFhiIyM/O1zhoeHY8uWLdi4cSP8fj9mzZqFT58+oaqqCmFhYXA6nb0e5/f70dDQgNevXyM0NBQWi+W3ayGiwcVvSxGR6rZs2YKQkBAkJSUhOjoara2tQTnvnj17sGvXLuzbtw8TJ07E/PnzcfXqVSQmJvZ5zN69e3H+/HnExcVh9+7dQamDiAYXvy1FREREmsI7N0RERKQpHG6IiIhIUzjcEBERkaZwuCEiIiJN4XBDREREmsLhhoiIiDSFww0RERFpCocbIiIi0hQON0RERKQpHG6IiIhIUzjcEBERkaZwuCEiIiJN+Q+nqgCeuyXJ6QAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = range(0, 20π*5, length=1000)\n", + "# find solution by the brute-force eᴬᵗ [0,1]:\n", + "x = [(exp(C*t)*[0,0,1,0]) for t in t]\n", + "plot(t, [x[1] for x in x], \"r-\")\n", + "plot(t, [x[2]+20 for x in x], \"b-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solutions $x(t)$\")\n", + "title(\"motion of 2 masses on springs\")\n", + "legend([L\"first mass $x$\", L\"second mass $x+20$\"])\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, this looks a bit more complicated. But the eigenvalues should clarify the situation for us:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Vector{ComplexF64}:\n", + " -1.179497126567529e-17 - 0.09999999999999999im\n", + " -1.179497126567529e-17 + 0.09999999999999999im\n", + " 2.2285048252097095e-18 - 0.17320508075688779im\n", + " 2.2285048252097095e-18 + 0.17320508075688779im" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are four **purely imaginary** (=oscillating!) eigenvalues, coming in two complex-conjugate pairs. So, there are only **two frequencies** in this problem: $\\omega_1 = 0.1$ and $\\omega_2 = 0.1\\sqrt{2} \\approx 0.173205$.\n", + "\n", + "It is possible to get *only one of these solutions at a time* if we *choose our initial conditions to excite only one eigenvector* (or one complex-conjugate pair).\n", + "\n", + "In particular, for a given eigenvector $\\vec{x}_k$, there is a solution $\\vec{x}(t) = e^{\\lambda_k t} \\vec{x}_k$ with initial condition $\\vec{x}(0) = \\vec{x}_k$.\n", + "\n", + "Or, we could get a real solution from an eigenvector by adding the complex-conjugate solution (which is also an eigenvector since the matrix is real), corresponding to a solution:\n", + "\n", + "$$\n", + "\\vec{x}(t) = \\operatorname{Re} \\left[ c e^{\\lambda_k t} \\vec{x}_k \\right]\n", + "$$\n", + "\n", + "with an initial condition $\\vec{x}(0) = \\operatorname{Re} \\left[ c \\vec{x}_k \\right]$, where $c$ is an arbitrary complex number that determines the amplitude and phase of the oscillation.\n", + "\n", + "For an oscillating system, these are often called the [normal modes](https://en.wikipedia.org/wiki/Normal_mode) of oscillation. Let's plot these two \"eigensolutions\" for our 2-mass problem:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHICAYAAABAuJ5aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACu50lEQVR4nOydd3hU1daHfzOTSYMklBAIEGoooQRCQglFQCSQSBEEsVwUBe+HiopcLFhBr6KIgnqvKEWwXLAAIkoNIL2T0EMPhB4gkJCQPuf7Y7HnTMgkmZmcmdP2+zx55mQyc86alTN7r73aNgiCIIDD4XA4HA5H5xjlFoDD4XA4HA5HCXCjiMPhcDgcDgfcKOJwOBwOh8MBwI0iDofD4XA4HADcKOJwOBwOh8MBwI0iDofD4XA4HADcKOJwOBwOh8MBwI0iDofD4XA4HADcKOJwOBwOh8MBwI0iDofD4XA4HADcKOJwOBwOh8MBwI0iDsct/PLLL2jdujX8/PxgMBgwc+ZMGAwGnD17VrJrbN++HZMnT8atW7ckO6faWLBggeR6dReTJ0+GwWCQWwxZyM7Oxvjx41G3bl34+vqiffv2+Pnnnx167+3bt/Haa68hLi4OtWrVgsFgwOTJk90rMEe3cKOIw5GYa9euYeTIkWjatClWr16NHTt2YMiQIdixYwdCQ0Mlu8727dsxZcoUXRtFHHUwdOhQfP/993jvvfewatUqdOzYEY899hgWLlxY4Xtv3LiB2bNnIz8/Hw899JD7heXoGi+5BeBwtMaJEydQWFiIf/zjH+jZs6f1+YYNG1b43jt37sDf39+d4rkVtcvPkZ6VK1ciMTERCxcuxGOPPQYA6N27N86dO4dXX30VI0aMgMlkKvP9DRs2xM2bN2EwGHD9+nXMnTvXU6JzdAj3FHE4EjJq1Ch0794dADBixAgYDAb06tXLbpiHhVOSkpIwbNgwVK9eHU2bNgVA3qZ//vOfCAsLg4+PD2rVqoVu3bph3bp11ve++uqrAIDGjRvDYDDAYDBg48aNduVi1zpy5Agee+wxBAUFoXbt2njmmWeQmZlZ6vVbt25Fnz59EBAQAH9/f3Tt2hUrVqywe0578rO/HTx4EMOHD0dQUBBq1KiBCRMmoKioCMePH0f//v0REBCARo0aYdq0aSXOferUKTz99NNo1qwZ/P39Ua9ePQwcOBCHDh1y/p8igTzO6AUAVqxYgfbt28PHxweNGzfG9OnT7Z7v5MmTePzxxxESEgIfHx9ERETgv//9r8Of6/z58wgMDMSLL75o9++ZmZkwGAx47rnnHD6n1Pz++++oWrUqhg8fXuL5p59+GpcuXcKuXbvKfT+7tzkcT8A9RRyOhLzzzjvo1KkTXnjhBXz00Ufo3bs3AgMDsXv37jLfM3ToUDz66KMYO3YscnJyAAAjR45EUlISPvzwQzRv3hy3bt1CUlISbty4AQAYM2YMMjIy8NVXX2Hp0qXWsFyrVq3Kle/hhx/GiBEjMHr0aBw6dAiTJk0CAHz33XfW12zatAl9+/ZFZGQk5s2bBx8fH3z99dcYOHAgFi1ahBEjRlQoP+ORRx7BP/7xD/zf//0fEhMTMW3aNBQWFmLdunV4/vnnMXHiRCxcuBCvv/46wsPDMXToUADApUuXULNmTXz88ceoVasWMjIy8P3336Nz585ITk5GixYtHPl3lMJVeZzRy/r16zF48GDExsbi559/RnFxMaZNm4arV6+WkOXo0aPo2rUrGjRogM8++wx16tTBmjVr8NJLL+H69et47733Kvw8L730Ery9vfHhhx/a/XtQUBDq1q2LnTt3uqQvQRBQXFzs0Gu9vOxPJ4cPH0ZERESpv0dGRlr/3rVrV5fk43AkR+BwOJLy999/CwCE3377zfrc/PnzBQBCamqq9bn33ntPACC8++67pc5RtWpVYfz48eVe59NPPy11zrJg15o2bVqJ559//nnB19dXsFgs1ue6dOkihISECLdv37Y+V1RUJLRp00aoX7++9bXlyc/+9tlnn5V4vn379gIAYenSpdbnCgsLhVq1aglDhw4tU/6ioiKhoKBAaNasmfDKK69Yn7en1/I+f2XkcVQvnTt3FurWrSvk5uZaX5eVlSXUqFFDsB1y+/XrJ9SvX1/IzMwscZ1x48YJvr6+QkZGRrmfadeuXQIA4aOPPir3dV27dhWqV69u/f3rr78WoqKiBC8vL+G9994r973sXnbkp6z/QbNmzYR+/fqVev7SpUsOyW/LtWvXBAAVys3huAoPn3E4MvPwww+Xeq5Tp05YsGAB/v3vf2Pnzp0oLCyU5FqDBg0q8XtkZCTy8vKQnp4OAMjJycGuXbswbNgwVK1a1fo6k8mEkSNH4sKFCzh+/HiF8jMGDBhQ4veIiAgYDAbEx8dbn/Py8kJ4eDjOnTtnfa6oqAgfffQRWrVqBW9vb3h5ecHb2xsnT55ESkqK8x+8kvI4qpecnBzs2bMHQ4cOha+vr/V1AQEBGDhwoPX3vLw8rF+/HkOGDIG/vz+KioqsPwkJCcjLy6vQuzNr1iwYjUY888wz1uc2bNiARYsWlXhdTk4OBEGw/h4aGoopU6Y4lLQcHR2NPXv2OPRTt27dMs9TXviLh8Y4SoKHzzgcmbFXkfbLL7/g3//+N+bOnYt33nkHVatWxZAhQzBt2jTUqVPH5WvVrFmzxO8+Pj4AgNzcXADAzZs3IQiCXZnYpMdCeOXJz6hRo0aJ3729veHv71/CYGDPZ2VlWX+fMGEC/vvf/+L1119Hz549Ub16dRiNRowZM8Yqqyu4Ko+jeqlatSosFovd/5Htczdu3EBRURG++uorfPXVV3ZlvX79ermfJTExEa1bt0bt2rWtz02ePBm1atWyJjQDwNWrVxEeHm79nRlDf/zxR7nnB4CqVauiffv2Fb4OKDt8VrNmzVL3DABkZGQAKP0/4XDkhBtFHI7M2FspBwcHY+bMmZg5cybS0tKwfPlyvPHGG0hPT8fq1avdJgszPi5fvlzqb5cuXbLKZos7Vvo//fQTnnzySXz00Uclnr9+/TqqVasm+fUqwlG9VK9eHQaDAVeuXCn1OtvnqlevbvUyvfDCC3av2bhx4zLlyc3NxcWLF9GxY0frcxkZGdi5c2eJ8x0+fBhXrlzByJEjK/6Qdti0aRN69+7t0GtTU1PRqFGjUs+3bdsWixYtQlFRUQnDiSXNt2nTxiXZOBx3wI0iDkfhNGjQAOPGjcP69euxbds26/P3enmkoEqVKujcuTOWLl2K6dOnw8/PDwBgsVjw008/oX79+mjevLlk1ysLg8Fg/XyMFStW4OLFiyW8Hp7CUb0YDAZ06tQJS5cuxaeffmr1QN2+fRt//vmn9Xz+/v7o3bs3kpOTERkZCW9vb6fkYcnPeXl51ue++eYbmEwmFBQUWJ/74osvYDQa8fTTT7v0uVn4zBHKCp8NGTIEc+bMwZIlS0ok6X///feoW7cuOnfu7JJsHI474EYRh6MwMjMz0bt3bzz++ONo2bIlAgICsGfPHqxevbpENVTbtm0B0MT31FNPwWw2o0WLFggICKjU9adOnYq+ffuid+/emDhxIry9vfH111/j8OHDWLRokUdyQAYMGIAFCxagZcuWiIyMxL59+/Dpp5+ifv36br92WTiqlw8++AD9+/dH37598a9//QvFxcX45JNPUKVKFWvICKD/W/fu3dGjRw8899xzaNSoEW7fvo1Tp07hzz//xIYNG8qUpWrVqmjevDk2bNiA7777DgUFBZg+fTrGjRuHhQsXIj4+Hps3b8bcuXMxYcIEREREuPSZAwICEBMT49J7GfHx8ejbty+ee+45ZGVlITw8HIsWLcLq1avx008/lehRtGnTJvTp0wfvvvsu3n33Xevzq1atQk5ODm7fvg2AKvcWL14MAEhISOC9sTiSwY0iDkdh+Pr6onPnzvjxxx9x9uxZFBYWokGDBnj99dfx2muvWV/Xq1cvTJo0Cd9//z3mzJkDi8WCv//+G7169arU9Xv27IkNGzbgvffew6hRo2CxWNCuXTssX768VKKyu/jiiy9gNpsxdepUZGdno0OHDli6dCnefvttj1zfHo7qpW/fvli2bBnefvttjBgxAnXq1MHzzz+P3NxcTJkyxfq6Vq1aISkpCR988AHefvttpKeno1q1amjWrBkSEhIqlOeHH37As88+i+effx7NmjXDr7/+ig4dOmD37t0YNmwY6tati2nTpmHixIlu0YczLF26FG+99RbeffddZGRkoGXLlli0aBEeffTREq8T7rYAsFgsJZ5/7rnnSiS+//bbb/jtt98AlB2243BcwSDYliVwOBwOR9OwKrfnnnsO9erVw9tvvw2z2VxuV2kORy9wo4jD4XB0xOTJk0t4rABg/vz5GDVqlDwCcTgKghtFHA6Hw+FwOOB7n3E4HA6Hw+EA4EYRh8PhcDgcDgBuFHE4HA6Hw+EA4EYRh8PhcDgcDgDep8hhLBYLLl26hICAAL6BIYfD4XA4KkEQBNy+fRt169aF0Vi+L4gbRQ5y6dIlhIWFyS0Gh8PhcDgcFzh//nyFXfG5UeQgbOuE8+fPIzAwUNJzFxYWYu3atYiLi4PZbJb03GqH66Z8uH7Kh+unfLh+yobrpnzUpJ+srCyEhYU5tAUSN4ochIXMAgMD3WIU+fv7IzAwUPE3l6fhuikfrp/y4fopH66fsuG6KR816seR1BeeaM3hcDgcDocDbhRxOBwOh8PhAOBGEYfD4XA4HA4AbhRxOBwOh8PhAOBGEYfD4XA4HA4AbhRxOBwOh8PhAOBGEYfD4XA4HA4AbhRxOBwOh8PhAOBGEYfD4XA4HA4AbhRxOBwOh8PhAOBGEYfD4XA4HA4AbhRxOBwOh8PhAOBGEccFLBYgPR3Iy5NbEm0jCMD160B2ttySaJ+sLODmTbml0D537tA9LQhyS6JtCguBq1dprOY4BzeKOA6TlwdMmQKEhgK1awNBQcAjjwBnz8otmbYQBGDuXCA8HKhVCwgMBHr3BvbskVsy7bFmDRATQ/dyjRpAZCSwbJncUmmP/fuB/v2BgAC6pxs1Ar76ik/aUnPxIjByJFC1KlCnDlCzJjBpEpCbK7dk6oEbRRyHyMgA7r8fmDyZvEQAUFAA/PYb0L49sG2bnNJph6IiGtSefRY4c4aeEwRg40YgNhb48UdZxdMUH31EE/W+feJzhw4BQ4bQRMK9GdKweDHQpQsZoMwISksDXnoJGDqUxhFO5UlKAqKigJ9+EnV66xbw8cc0dly7Jqt4qoEbRZwKKSigiWLHDqBaNWDRIiA/H0hOBjp3BjIzgYQEICVFbknVz7hxwP/+B3h5AZ9+Cty+TZ64YcOA4mLgqaeAFSvkllL9fP018NZbdPzCCxRquHEDePVVeu7jj4Fp0+STTyts2AA8/jiNFw8+CJw8CeTkkJfI1xf44w9g1ChugFaW1FSgXz8yfNq1A3btonF76VIgJAQ4cACIj+ceI0fgRhGnQt5/H9i8mVzfmzYBjz4KeHuTh2jDBqBHD8rJGDaMBj+OayxeDHz7LWAwkAdu4kRygzdsCPzyCzB6NE0eTzwBXLokt7TqJTkZGD+ejt9/H/jPf2jiqFGDDKEvvqC/vfkmsHWrbGKqnmvX6F4tLARGjACWL6eQsL8/Gf9//EHG/6JFwOzZckurXoqLybt8/ToQHQ1s2QJ06gSYzbSY3bwZCA4mj+iECXJLq3y4UcQpl4MHgU8+oePvvqOcC1v8/YElSyjH6OhR4N//9ryMWuDGDfJYADQZP/RQyb8bjeTdiIkhz9wrr3hcRE1gsQBjx9JEPWQI8PbbpV/z0kvAk0/Sa0ePptdynOe114ArV4BWrYD58+ketiUuThxbXnuNvHUc55kxg9IXAgJoYRUQUPLvLVoACxfS8TffADt3el5GNcGNIk6ZCAJN1EVFFPsfNsz+62rVotU2AEyfTsl+HOd47z3K1WrdGnjnHfuv8famFbXRCPz6K5CY6FkZtcC8ecDu3TRx/Pe/5JWzx5df0n194gRNJBzn2LcPWLCAjufPB/z87L/u5ZfJu5GVRYYRxzlu3AA++ICOZ8ygBHZ79O1LYUoAePFFnuBeHtwo4pTJunUUPvDxoUmiPB5+GOjWTaxQ4zhOWhowZw4df/kl6bssoqIo9ACQ8cRzMRwnP1+8N99/n6ooyyIoSJxsJk8m7xzHcSZOpMeRIymUUxYmE3lAAeCHH8jbzHGcjz4ig7J9e+Dpp8t/7ccfUyXr3r0UnufYhxtFHLsIAvDuu3Q8dixQr175rzcYSobZzp1zr3xa4t//pqTI3r2pwq8i3nyTklR37QLWrSvD1cEpxYIF5MWsWxd47rmKXz96NNCyJVVe8pwXx9m5k6olzWbgww8rfn2nThTKBGji5jhGejp5OwFg6tTS4cl7qV1bzCmaOpUvqMqCG0Ucu2zbRoObry/w+uuOvadbN6BPH0r8++or98qnFa5doxUy4LiHrXZtMlQB4JNP+FfYEYqLS+avlOeNY3h5iSGdL77gpeOO8umn9DhyJBAW5th73nyTHhcupEoqTsXMmkXez06dqPLMEV58EahSharRVq92r3xqhY+oHLuwHKEnnig/zHAvLAF47lwqJ+eUz9y5NLDFxADduzv+vn/9i0IPmzcbkZYWUPEbdM7q1QakplKF2bPPOv6+xx+n+//iRaoA5JTP6dPA77/TMQuhOUJMDOW9FBfzHC5HyM8Xw46vvFJ2bty91KghLqhmznSLaKqHG0WcUly+TBVlgFgR5Sjx8VTtkJnJGw1WRFERrfYAWsE5OrABQP36wKBBdLx6dSPJZdMac+bQUPf001Qx6Sg+PmIOFw+hVcy8eRSW6d8fiIhw7r1srJk/n3vlKuK33yh8Vr8+5XM6w/PP02NiIvfK2YMbRZxSLFhAE3bXrpTY6wxGo7gSYdUnHPusXQucP089RB55xPn3s7yYjRvDkJMjrWxaIj3dD6tWkcX5z386//5Ro+i+3roVOH5cWtm0RFERGTSAc944xoMPUr7XtWuit4ljH1s9m83OvbdJE/LKCQIZsZyScKOIUwJBoDbxACWausLjj1M+xp49vJqkPP73P3p8/HHK3XKWPn2Apk0F3LljxvLlPOG6LDZtCoMgGHD//UDz5s6/v25d6tgOUBEBxz4rV1JfopAQYMAA59/v5SWOOXyyLptz54C//6bjp55y7RxscfDddxSy5Ihwo4hTgoMHyZDx8XHeLcsICaFVH8C9RWWRnS1uPPrEE66dw2gEHn2UGo78/DP/KpfFli1UOjlypOvneOYZevzxR97jpSzYYmrkSOqp5Qpskl+/njdzLIsff6TFa+/e1O3eFQYNovyiy5dplwKOCB9JOSVg3osHH6ReLa7CBreff+aln/ZYtgy4c4e2PejY0fXzPPYYzdBr1xr4ho92OHwYSEsLhLe3UKpLuDOw78Ply8D27ZKJpxlycsQ9+R57zPXzNG1K1VQWC++lUxasO7WrXiKAjFa26P3558rLpCW4UcSxYrHQPkSA694LRnw8lX6eP0/NwjglYcbnE084l2B9L82bA+HhN1FcbOCTiB1+/ZWGuH79BFSr5vp5vL2BwYPpmOu5NCtXkpHfuDHQoUPlzsWMKjb5c0RSUujHbBbvR1d59FF6XLyYJ7bbwo0ijpXt24ELF2hFzHIoXMXXVwyhsUo2DpGRIW7RUVnjEwC6d6d9VXhyakkEAfjtNxriHnmk8jEvts3NkiU8hHYvzFB85JHKGfkAbR5rMAA7dtCiiiOydCk99umDShn5ANCzJ1CnDnDzJu1ewCFUZxRNnToVHTt2REBAAEJCQvDQQw/heAUlIRs3boTBYCj1c+zYMQ9JrQ7++IMeBw50LfH3Xph7dskSHkKzZdUqSm5s2xZo1qzy5+vc+QoA6iJ861blz6cVkpOB06cN8PEpwoABlb8B4+Jom4SLF/mmmrbYhs6GD6/8+UJDgdhYOv7rr8qfT0uwBaar+Z62mExiJ/Hlyyt/Pq2gOqNo06ZNeOGFF7Bz504kJiaiqKgIcXFxyHGgJvn48eO4fPmy9aeZFDOShmBfDNb/prLEx1PC9qlTwKFD0pxTC0it59DQHERECCgqojAGh2ATalRUOqpUqfz5fHzE/xkPoYmsXi1d6IzB9Mwna5EzZ8jQNxorHzpjMD3/+SdfuDJUZxStXr0ao0aNQuvWrdGuXTvMnz8faWlp2LdvX4XvDQkJQZ06daw/JpPJAxKrg+PHaUdws9nxlvEVERAgnou5ffVOQQF5igDpjCIAGDiQ4jnM28cRjaKYGOnKmIYOLXlujugleuihyofOGOy7sWED74zPYOHxnj2BWrWkOWevXpT7eekSkJQkzTnVjpfcAlSWzLvbV9eoUaPC10ZFRSEvLw+tWrXC22+/jd69e5f52vz8fOTn51t/z8rKAgAUFhaisLCwklKXhJ1P6vM6w7JlRgAm9OxpgZ9fMaQSZeBAA5Yv98KKFRa89ZbzDTGUoBspWb/egNu3vVCnjoB27YoqrWeml4SEQkybZsKqVQKys4sc2ttLy1y5AuzZQ13toqOvorCwhSTn7dkTMJu9cOqUAUePFkoS/pSTyn6/LBZg1SovAAb061eEwkJp3A1NmwLh4aTnFSuK8PDDnndjKG3sWbHCBMCIAQOKUVgoTVKbyQT07WvCsmVG/P57MSIjHT+v0vRTHs7IqGqjSBAETJgwAd27d0ebNm3KfF1oaChmz56N6Oho5Ofn48cff0SfPn2wceNG3HfffXbfM3XqVEyxs0Pn2rVr4e/MPgFOkMiyb2Xgxx+7AQhG48aHsXKldL3fTSZfAP2wb58BixatQ1CQa2UOcupGSmbPbgugCdq2PYfVqw9Idt6MjDWoXr0fbt70xfTpexAVpe/6/HXrGgCIQrNmN1G9er6k90/Lll1x6FAtzJhxDAMGnJHsvHLiqn5Onw7ClSu94OtbhNu3V2HlSuky0Fu3bo1Tp8Lx7beX4ecnnxtDCWNPbq4JW7ZQ9Yuv799YuVK6FvYNGoQB6IBFi26jY0fnmxYpQT8VcefOHYdfaxAE9UYSX3jhBaxYsQJbt25F/fr1nXrvwIEDYTAYsLyMoLU9T1FYWBiuX7+OwMDASsl9L4WFhUhMTETfvn1hdrZnuwTcvAmEhnrBYjHg5MlClxuClUVMjBcOHjRgwYIiPP64c7eb3LqRmhYtvJCaasDSpdIk/9rqZ9w4X8yfb8QrrxTjk0/0XR41fLgJf/xhxNtvFyAmZpWk98+MGUa8/roJcXEW/PWXutsBV/b79eGHRkyZYsKgQRYsXiytLjZvNuCBB7wQHCzgwoUiGD2c7KGksefPPw14+GEvNGkiICWlSLIwJUDbqoSF0fh/5kwhHJ1KlaSfisjKykJwcDAyMzMrnL9V6yl68cUXsXz5cmzevNlpgwgAunTpgp9YC1Y7+Pj4wMdODMJsNrvtBnDnuctj61Zyg0dEAOHh0l8/Pp46ZScmernccEwu3UjJmTO0AaPZDPTt6+X0nkXlYTab0b+/EfPnA+vWmWA26zdfrqBALDEeMMCAK1ekvX8GDABefx3YtMmIggKjJEnccuOqftasoceBA40wm6W1Wu67D6haFbh+3YAjR8ySJXE7ixLGHnY/9+9vgLe3tLLUrQvExAC7dwObNpkxapRz71eCfirCGflUl2gtCALGjRuHpUuXYsOGDWjcuLFL50lOTkZoaKjE0qkT9oV74AH3nD8+nh7XrNF3fxfmZY6NpcFeavr0oUTXQ4eo87Je2bWLysSDg4H27aU/f0QEba+Qny/uQaVHbtwgXQPid1xKzGZKBAbE744eEQSxOMMdegZog1hA33pmqM4oeuGFF/DTTz9h4cKFCAgIwJUrV3DlyhXk5uZaXzNp0iQ8+eST1t9nzpyJZcuW4eTJkzhy5AgmTZqEJUuWYNy4cXJ8BMXhbqOoa1eqRLt+HXCgSFCzuFvPNWvSig/Q9+C2fj093n8/3BJyMRjEyWntWunPrxb+/psm7DZtgHr13HMNPllTVfDZs9RVvZzaoErB9Lxunb4XroAKjaJZs2YhMzMTvXr1QmhoqPXnl19+sb7m8uXLSEtLs/5eUFCAiRMnIjIyEj169MDWrVuxYsUKDGX1tTrm3Dng5EmqQujZ0z3XMJvJiwHod3ArLqbyYsB9RhFADQYBfU/WzChi95w7YOfWs6eI3c/33+++a7D7eetW6oWkR9hiqkcPuC1UGxtL505P5z3lVGcUCYJg92eUTSB0wYIF2Lhxo/X31157DadOnUJubi4yMjKwZcsWJFR2HwuNwCaQTp0qtwFsRbCB0+bfoiuSk2l7j8DAym0AWxFsEklM1OeKLztb7DbtTqOIhXUOH6aJRI94wihq0QKoX59ClVu2uO86SoYZ3u7Us7e3uCjW68KVoTqjiCMt7g7pMNgksm2bPjcfZHru3RvwcmN5Q5cu4orv8GH3XUepbNkCFBVRzk+TJu67TnAwEBlJx3o09C9epIavRqP7PMwAhSr1HEKzWMT7i42h7kLPeraFG0U6xmIRJ2v2hXAXrVvTRHLnDrBnj3uvpUTYQONu49PbG+jWjY43Od9yRPXYhs6kLFu2B8vvYB4TPcG8Fx06VH5j0opg3xk9Gp+HD1NCe5Uq7vUwA+IcsGWLPheuDG4U6ZhDh6hHRZUqQOfO7r2W0SiudPSWh5GbSx4ywP3GJyCu3PVsFLnb+ATEcIbe7mdA/MzuSvy1hfXXTU4G7m5goBuYIdi9OyRt4WGPVq1o4Zqbq++CGG4U6Rj2hevRgzwM7oYZRXpb8e3eTTkRoaFA8+buvx4zijZv1tcmj9evA/v307E78y8Y991Hxv6JExRO0hOeyCdi1K9PoVCLBdi+3f3XUxLM+HR36AwgzyozQPW4oGJwo0jHsMTFMnY6kRy2qty2jYwEvcD03KOH+0M6ALnZ/fzIC5iS4v7rKQWm59atgdq13X+9atWAqCg61pO3KDWVSsS9vMiD4Qn06P20WMTP6wmPHCDOBZs3e+Z6SoQbRTpFEEpO1p4gIgIICQHy8sh7ohfYAOMp49Pbm0psAX1NIlu30qOn7mdA9JToKa+IGYCdOrmnCak99DhZHzxIWzBVrQqPdfNmet66ldqI6BFuFOmUkyepQsnHx/0JfAyDQX95RUVFosvfk5O1HlfWzCjylPcCEO9nPZWLMz17ysgHxPt5zx7qVq4H2BjZo4f784kYkZHUmuX2bTEUrTe4UaRT2CDeqRMZRp5Cb5NIcjIN4tWqUedfT2FrFOkhrygnB0i6u5G6J40i5pE7dQq4etVz15UTVjTgST03agSEhdEig/Wh0jpsjHRny4N7MZnE/6uevHK2cKNIp3g6dMZg5eI7d9IAp3WYnrt3d8+WE2XRuTMZu1eukFdQ6+zeTfdT/fpAgwaeu2716pTDBOgjCTg9nRLLAdEg9AR6SwIWBHmMT0CfoUpbuFGkU+Qyilq3pq7O2dn6aC4ol559fcU2C3oY3GxDZ55IZreFGfpsEtMyzPBr1QqoUcOz17atqtQ6Z86QAertDURHe/batkaRHrvic6NIh1y6RF86o5E2a/UkJhN1XQa0P4lYLPIZRYA4We/Y4flrexo58okYejKK2Gdkn9mTsMl61y7tNxdkeo6OpgWOJ4mOBvz9aVuio0c9e20lwI0iHcIm6vbtyWvjadiAqvVww7Fj1I3Wz8/zqz1ANHi1bhTZJrPLaRTt20eN77SMnEZR8+bkncrL034SMLufPb1oBSipu1MnOtb62GEPbhTpEDlX1YD4Rdf6ypoNbJ07e6Y55r0wj1xKCq36tMqhQxSODQz0bDI7o0kT6otUWAjs3ev563uKvDyx07EcY4fBIOYxaX2yltP4BPSjZ3two0iH7NpFj3KsQgAyEoxG4Nw5bXcCZr2Y3L2FSlkEB4sdtLVcscMmkK5dKTzraQwGfYTQ9u6lsFXt2u7dbLc89DBZ37oFHDlCx3KN0XrQc1lwo0hn5OeLrmfmIvU0AQHiDuNaDqEx41MuPQP6GNzk9nwC+jCKmJ67dfN8MjtDD/fzrl1Ufda0qWc6s9uDeZmPHdO2l9ke3CjSGQcOkJs/OJh6f8iF1vOKcnLE6jq5PEWAuNLUqp4BZRlF27drt2JH7pAOQAsMoxFIS9Oul9nW8ykXtWoB4eF0zBZ3eoEbRTqD3eCdO8u32gO0n1eUlESTY926QL168snB9Mz6+GiNixfpx2TyXGd2e0RFUZVQRgZw/Lh8crgL281Y5TSKqlYVvcxa9RYpQc+APhZU9uBGkc5geS5yhnQA8QufnAzcuSOvLO7A1viUk1attN0Xit3PbdtSGbFceHuL3yktGvonT5LB5+srboIrF1oOodl27JbTUwRoW8/lwY0inaEUo6hBA/KgFBXRfkZaQyl6NhrF/AAtrviUomdAnMS0GG5geo6OlqeS0hYtT9aHDlHoPTBQ7JQuF0zPu3bpa3NYbhTpiJs3xRb9coYagJLltVqeRJQwWWt5ElGSnpkM/H52L+x+3rePCke0BPMSdeni2W2B7NGmDYUrs7PFajg9wI0iHcE8MuHhQM2a8soCiKElrU0iV69SuwGDAYiJkVsa7eYGWCziPa2EyZrdz0eO0ESiJZRkFDVtSoUiBQUUftcScrfxsMVk0mcTR24U6QglDWyAKAeTSyuwzxMRIU/H8HthSfVsPyWtcPw4cPs2UKUK5U7JTd26tCGtxSI2OdQCSmjjYYvBoF1DX2ljtJa9zGXBjSIdobQvXIcO5CK+cIH2Y9MKStNzUBDQsiUdayl/yzbPRY6mjfbQoqF/8CB5ZWrWBBo3llsagk3WWmpKmpVF3ecB+dMbGNwo4mgWQVBGM0FbqlYVt2XQ0iSiJBc4Q4uTtdKMT0CbIWGm544d5W3jYQv7n2vJyN+3j8bphg3la9p4L+x+PnGCOm3rAW4U6YS0NAqdeHnJX1Jri9Yma4tFmZO11vQMKFvPWjSKlKTn6Ggy0M6e1U5IWIl6Dg4WvYNa3tfPFm4U6QT2hWvXjnqNKAWtTdanTtGKyteXeucoBVs9C4K8skhBXh51ZweUNYnExGgvJKzEyVqLIWEl6hnQ3hhdEdwo0glKC50xmHt2zx5tbI/ABo4OHQCzWV5ZbImMpP4yGRmUcK129u+n7WpCQqjnlVKoWlXsL6OFSSQzk/a/ApST58Jg8nCjyL1wo4ijSZT6hWvVijoRZ2VpY3sEpRqf3t5A+/Z0rIVJxPZ+VkqeC0NLkwiromvUiAxQJaElPV+6RN5Fo5EWVEpCa8ZnRXCjSAcUFYmDm5KSfwHKcYqOpmMtDG5KNT4BbU0iStazlpKtlaxnLYWEmZ5btyZvo5JgVcKXLml3E15buFGkA44epf3FAgKAFi3klqY0WklOte3nojTjE+BGkaewrYxS+/YIStZzZCSFqG/coIRrNaNkPVepIlYJ68FbxI0iHcCMjY4d5W8dbw9mQKh9sj5wQHn9XGxhA25SEuXjqJWMDNqgFFBengtAq31/f2osqfaQsJInax8fMSSs9rFDiW08bGHfM7Xr2REUOEVypEbpXzg24B44QFVFakXJeS4A0KwZVe3k5qp7LyNWGhweDtSoIa8s9rANCavZ+3nxIv0oMc+FoQXvp9K2q7GHFvTsKNwo0gFKXu0BVD0UEkK5T2rey0jpxqfRKO7FpubBTen3M6AN7yebqNu0oRCKEtGCB+PECSo08fMTKxeVBtPz3r3aqBIuD24UaZzsbODwYTpW6iRiMGhjElFq5ZktWugErCajSM2eIjXo2TYkXFQkryyuYrtdjZeXvLKURZs21HstM1MMXWsVbhRpnKQksuzr1aMNK5WK2pOtb96kFR+gzDwXhtrd4IKgrsn64EEqclAjttt7KJUWLaiA5M4dKihRI2q4n81mMYSq5gWVI3CjSOMoPaTDULtRxPJcmjal1vhKhen58GEgJ0deWVzh/Hng6lVaUbMkWyUSFgbUqUPVZ6wiUU2oIc8FoJCw2kNoajCKAPXr2VG4UaRx1PaFO3OGSmzVhlr0XLcueQ0tFvIiqg2m58hIysFQKgaDur1yashzYah5srZt46H0sUPN97MzcKNI46ghzwUAqlen6ihAne5ZtegZUPckohbjE1D3JKLU7WrsoeY8uQMHqD1GcDB1DVcyTM/791PrEa2iOqNo6tSp6NixIwICAhASEoKHHnoIxx1oBrJp0yZER0fD19cXTZo0wTfffOMBaeXlyhUgLY1WraxEWMmodXCzzXNRepgSUK+eAXUZRdz49AxMxkOH1Je/ZbuYUmIbD1uaNqXFa34+6VqrqM4o2rRpE1544QXs3LkTiYmJKCoqQlxcHHLKSZBITU1FQkICevTogeTkZLz55pt46aWXsGTJEg9K7nnYpNeqFRAYKK8sjqDWlbVa8lwYatVzcbGYu6WGyZq1Pzh9Wn0hYTXkEzHq1RPzt9TW0kNNxqfBoG5D31FUZxStXr0ao0aNQuvWrdGuXTvMnz8faWlp2Mc297LDN998gwYNGmDmzJmIiIjAmDFj8Mwzz2D69OkelNzzqCmkA6h3LyOmZ6XnuTDYZJ2aCly7Jq8sznD0KCWHV60KtGwptzQVU6OGOkPCaspzAUrmb6lJz4A6KvxsUauenUGhXREcJzMzEwBQo5zWtjt27EBcXFyJ5/r164d58+ahsLAQZjtB8/z8fOTn51t/z8rKAgAUFhaiUOI9Etj5pD7vrl0mAEZERxejsFD5Hbdatwa8vLyQnm7A6dOFaNjQfbqRkp07jQBM6NjR83p2RT/+/kCLFl44ftyAHTuKEB+vDgt0xw4DAC9ER1tgsRQ71ERO7vsnJsaEkyeN2LGjGH36KO87aE8/SUkGFBR4oWZNAfXrF6liS5joaCOWLzdhxw4LXnhBmg3n3H3v3LoFnDhBc09UVKEq9BwVRd/BXbsE2b9bzuCMjKo2igRBwIQJE9C9e3e0YTvW2eHKlSuoXbt2iedq166NoqIiXL9+HaGhoaXeM3XqVEyZMqXU82vXroW/v3/lhbdDYmKiZOeyWIAdO+IBeCM/fwtWrsyU7NzupGHDnjh9uhpmz96Pbt0uWZ+XUjdSs2ZNNwDB8PY+gJUrz8sig7P6qVs3CsePN8DChacgCOrYoGvJknYAGqFGjdNYudK5pjRy3T9VqjQB0BYrV15Dhw7K7Tdhq5+VKxsDiETDhulYtWqnfEI5gSDUAtAVmzffwcqV6yU9t7vunQMHSObatXOwe/c6t1xDajIzfQD0R0oKsHz53/DzU/bYzLjjRLKZqo2icePG4eDBg9i6dWuFrzXck8Um3I3P3Ps8Y9KkSZgwYYL196ysLISFhSEuLg6BEifoFBYWIjExEX379rXrtXKF48eBnBwzfH0FjB3bTfEVJIxVq4w4fRooLu6AhIT2btGNlBQVAY8/Tl+j0aPbolWrth69vqv6OXfOiL//BjIzmyMhoakbJZSO994jPT/6aGMkJDRy6D1y3z81axowdy6QllYb8fEJikumtaefxYtNAICEhGAkJCTIKZ7DxMYCkycDV65URefOCahZs/LndPe9c/AgZa/cd5+favQMAO+9J+D8eQOqV++DvLw1ih2bbWGRHkdQrVH04osvYvny5di8eTPq169f7mvr1KmDK1eulHguPT0dXl5eqFnGt8fHxwc+Pj6lnjebzW67AaQ8N0s47NDBAH9/Zd+wtnTpAnz7LbB3rwlms8n6vDv1XhlSUqjiJSAAaNvWDKNMWXrO6ic2lh737DHCy8uouMn6Xu7cEber6drVy2kjX677JyaGEvDT0w24fNmMhg09LoJD2OqHJbPHxpb8DiqZkBCgeXPqr7R/vxn9+0t3bnfdO6xPWJcuRpjN6knv7diRikuSksxo1Uq5Y7Mtzsinnv/EXQRBwLhx47B06VJs2LABjRs3rvA9sbGxpVx8a9euRUxMjOL/ma6ipqoGW1jC4b59VE2idGwTJeUyiFwhMhLw9qaqqNRUuaWpmORkuh9CQ6naSC34+gLt2tGxGip2MjOBY8foWC3Jvwy1VVWqdYxm8u7dq/CVlIuoaBgnXnjhBfz0009YuHAhAgICcOXKFVy5cgW5ubnW10yaNAlPPvmk9fexY8fi3LlzmDBhAlJSUvDdd99h3rx5mDhxohwfwSOoqW+OLS1bUnVRTg55YZSO2ir8GD4+YvsANUwithOI0r1a96KmyZp5iRo1AmrVklUUp1GTni9eBC5dooVUVJTc0jgHm1O4UaQQZs2ahczMTPTq1QuhoaHWn19++cX6msuXLyMtLc36e+PGjbFy5Ups3LgR7du3xwcffIAvv/wSDz/8sBwfwe2oraTWFpNJLBlXw+CmVuMTUNckotZVNcD17CnU1NKDlbS3aQNUqSKvLM4SHU0Lk7Q0A27eLJ1ionZUl1MkOHC3L1iwoNRzPXv2RJIaN3tygQMHqA17zZqAA9FFxdGpE7BxIw1uI0fKLU3Z5OSIeS5qn0SUjponaxaG2ruXEvO9FDzqqlnP7drRliTXrgHnzil72wy19SeyJSCAGgIfOQKcPFlNbnEkR3WeIk7FqDnUAKhnsk5KotYH9erRRqtqg+k5KQmK7pFy/TptFAyIXkQ1wULCd+4oPySs5slaTflbauoYbg8m98mT1eUVxA1wo0iDsDwXNYZ0APELd/AgYJMqpjjUrudmzYCgINLxkSNyS1M2bIJr3hyoVk1WUVxCLSHhCxcoz8VkUsdeifZQw4LKYuFGkZLhRpEGUbMLHADq1xf3MjpwQLmuLrXr2WhUx15Gas7bYqhhsmayqTHPhaEGPZ88SVV+vr7UxV+NiEZRNYc6y6sJbhRpjJs3qVcHoE4XOHDvXkbcKHInaphE1O6RA9SxZ5RaKyltsW3pUVQkryxlwe6BDh2gmqa699K2LeDjIyAnxxunTsktjbRwo0hjsJLaJk2A4GB5ZakMbHBTqlF09SolcxoM6sxzYbAJcJdCd6AQBG15ipQcEtaCnlu0oETgO3doA2ElooXFlNkMREVR0ZNSx2hX4UaRxtDCqhpQfoMwNrC1akWDsFphej5yBLh9W15Z7HH6NJCRQX2VIiPllsZ1bEPCrNu8kiguFhdUah471JC/xTxFavXkMzp1IqNIqWO0q3CjSGNowQUOiAPbqVMG3L6tPB/zzrv7ZKpdz6GhNGELgrjtgJJg93NUFHXgViu2IWElTtYpKUB2NlXJRUTILU3lULKeCwpEo1jtY0dMDPcUcRSOIGjHU1SjBlVHAcCpU9VklcUeTM9dusgrhxQoeRLRQqiBoWQ9s4ktJoa8LWpGyXo+dIia61avDjRVxz7MZdKxIxlF+/cbUFAgszASwo0iDZGaSo3LKN4rtzSVR6lln8XF2si/YCh5EtGKkQ8oW8/MKNKS8Xn4MOUWKQnb0Jkae8jZ0qQJEBBQgIICAw4elFsa6eBGkYawDTX4+sorixTYln0qiWPHKP+mShX1ltTaotTJ2jbUoAWjiIWET5+mjXiVxO7dNBVoQc/16lFYWIn5W1ryfBoMQLNmNwEob+yoDNwo0hAsz0ULAxtQ0lOkpL2MmPEZE6PsLRscRdzLCLhyRW5pRGy3q2nSRG5pKk/16mJIWEml+Xl5JmvzTq1M1ko19NXcMdwe3CjiKBot5bkAtIu7l5eAW7d8cf683NKIaCmkAwCBgWJyrZIma9uiAbWHGhhKnKxPnw5CcbEBdetS0r0WUKKeb98W2wRoxyi6BUC5LT1cgRtFGiE/X1uhBoBCgG3b0rGSKhyYR04rxicg3jNKmkS0lLfFUGITR5azpwUvEUOJRlFSEhXDhIVReE8LME/RsWPUpVsLcKNII+zfT6GG4GBthBoYHTtSD3mlGEXZ2ZTACWhzslbSJKKV9hK22OpZKSHhEyfIKNLS/czyt86coQ2FlYBW2njYEhRUgMaNWb8imYWRCG4UaQTbfCKthBoAsexz3z5lfKh9+2hDx7AwoG5duaWRDqVN1rbb1WhpEqGQMJCeTjlcSkCLnqJq1ai7NaAcr9yOHfQYGyuvHFLD+hUpaUFVGbhRpBG0lk/EYF+4ffsMKC6WWRhoL5mdQXsZAbduQRF7GbGJLDycEq21gq8v0K4dHSthErlyBbh2zR8Gg6Dq7WrsoSTvpyAA27fTsdaMIrZwVYKepYAbRRpBq5N1y5aAr28RsrMNSEmRWxrtJVkzzGbaoBJQxuCmpdLle1HSZM3C0hERlHCvJZiemYdGTs6coR5y3t7i90wrMKNo1y5leJkrCzeKNEB6OjVutC1F1Qomk5jMxww/uRAEbSZZM9i9I7eeAe0an4CyNuHdvZuMIjaxaYmuXelx504KecsJM8w6dNBGDzlboqIEeHkBly/TJtlqhxtFGoANri1bAkFB8sriDlq2zAAAbNsmrxwXLtAX32TS3moPEN36zM0vF4IgTiJaND6Zobd3L1BYKK8sO3aQURQbK7PV4AYiI6nBamamWAovF1rNJwIAf39xPJR77JACbhRpAK3mEzGUYhQxPUdG0kCgNbp1o8cDB6jKTi6OH6eOz35+2tiu5l5atKC9/XJz5e24XFgohs9iY7XnKfLyEg1QuSdrLRtFgOiVk3uMlgJuFGkAreYTMVq0oPDZyZMUKpQLNrBpVc/16wMNGtD2CHKGdrZupcdOnSjXSWsYjcqYRJKTgdxcAwICCqyVWlpDCXrOzqaFBqBdo4gtqLhRxJGdoiLRKNLqF65q1UK0akUrWTlXfGyy7t5dPhncjRIGN3ZtJosWYZ+N3VNywPTcokUGjBqdCZie5Rw39uyhnKb69bXTMfxemPF56BCQlSWvLJVFo18F/XDgAJCTQ7lEbdrILY376NqVch7kGtzu3KGOtAA3ityNnoyibdvkq9hheo6IyJBHAA/AUgpOnQKuXpVHBq2HzgDq2daoERl/SiggqAzcKFI5bKXZrRs0u9oDgC5daOaQa7LevZu8cizEpFXYZL1jB2TpC5WeTmFSQNuTSMeOVJ599SqVa3saQRC/Sy1b3vC8AB6iWjWgdWs6lqs0n12XeVO0Cvt8cudvVRYNT6P6QA8hHQDo2lVsJZ+X5/nr2xqfWuoYfi9t2wIBAbR5JdvOxJOwAbV1a9pVXqv4+gLR0XQsh6GfmkqNG81mAeHhtzwvgAeRM4RmW0mpZSMfUIaXWQq4UaRiBEE/RlHTpkBICO3vtm+f56+vFz2bTGLIQY7Bzdb41DpyTiLsmh06CPDx0V45vi1yJlsfO0aVlL6+tMWLlmH3886d8niZpYIbRSrmzBla7Xl7kzteyxgM8k0ixcXiKlPrRhGgjMmaG0XuhV2TeWC1DNPz3r1Afr5nr715Mz126ULb6GiZNm3k9TJLBTeKVAxbVcfEaK9Lqj3kWvEdOkRf9IAACi9pHbkm69xc0QuoB6OI3c9HjtAGuJ6E/W+12J/oXpo2BWrVksfLzIyinj09e105kNvLLBXcKFIxegnpMGxzAzxZsSOuqumLr3U6d6ak/XPngIsXPXdd1uG5dm2gSRPPXVcuQkKAZs3o2JNJwLdukSEG6MMosvUyb9niuesKArBpEx3fd5/nrisnzNCXs9VEZeFGkYrRm1EUHU1djq9f92zbfj3luQDkEWM7uXtyEtFLMrstckzWrA1AeDgZoHqgVy96/Ptvz10zNZUWFWazdncbuBfmEdu4Ub2bw3KjSKWkp1MSH6D9Uk+Gt7c4iXhqcBME+oIDQI8enrmmEujdmx49OYmwa7EJTA/YTiKegumZ/Y/1APusW7d6br85Fjrr2FGb2wLZIzaWcqcuXwZOnJBbGtfgRpFKYQNbu3ZAzZryyuJJPD1ZHztGyey+vvpZ7QGinjds8Mz18vNFT5EeJ+s9eyhvzROw/6me9NymDY2TOTkUpvUEegudATROstYDnlxQSQk3ilTK+vX0eP/98srhadhAvnEjdU91N2wC6dZNH8nsjB49KK/o1CngwgX3X2/3bkq0rlVLbLanBxo2pETg4mLPhNAyMoD9++lYTx45o9HzXjnmKdKTUQSI95UnvZ9Swo0ilcIma70ZRTExQJUqNLgfOuT+6+lVz0FBYnNBT6z4bPWsl3wihie9cps3U0i4ZUsgNNT911MSnswrunCBWqYYjfrJRWTYLlzVmFfEjSIVcu4ccPo0VULpbRViNou5Pe6eRCwWcQDVm1EEiJ/ZE5O1HvNcGJ7Us16NfEC8t7Zto/J8d8K8JFFRQGCge6+lNDp3Jq/61atASorc0jgPN4pUCJtAOnbU3xcO8Fxe0YED1D8mIIA8VHrDU3rOzRVL0vU4WTMPxv795AF1J3o2Plu1AoKDaXPnPXvce63ERHp84AH3XkeJ+Ph4viBGSrhRpEL0mk/EYAP65s3ubSfPVtX33Qd4ebnvOkqlWzf63OfOUXmxu9i+nVbu9etTmbjeCA0FIiJK9rVxB+npYqdhPeUTMYxGz4TQBEE0ivr2dd91lIxtCE1tcKNIZQiCvl3ggOiSzswEkpLcdx2967lqVaBTJzp2Z2jHthpKb/lEDE+E0NgE1bYteUz0CNPzunXuu8aRI1SS7uurv3wihm2enNr2QVOlUbR582YMHDgQdevWhcFgwLJly8p9/caNG2EwGEr9HGONflTEiRPApUvUs0cv/YnuxctLHNzWrHHPNQoKxOoRvRpFANCnDz2uXeu+a7AJSs96ZpOIOydr9j/Us5779aPHbduArCz3XIN5iXr21FfFqi2dOlGxRkaG51ogSIUqjaKcnBy0a9cO//nPf5x63/Hjx3H58mXrTzPWY19FrF5Nj926UXdnvRIfT4+rVrnn/Nu2AdnZtBVDZKR7rqEGmJ7XrgWKiqQ/f3q6mN8RFyf9+dVCnz5UOHHsmHtClYIgflcSEqQ/v1po0gRo3pzuZZaGIDV6D50BtHBln5/NWWpBlUZRfHw8/v3vf2Po0KFOvS8kJAR16tSx/phUuJHVihX0+OCD8sohN2yy3rnTPcmpTM/x8ZSLoFc6dQJq1KD9snbulP78a9bQhB0VBdStK/351UK1amKoxR2G/sGD5GH299dfxeq99O9Pj+6YrPPzxbwwPRtFgKhndy1c3YWuhvuoqCiEhoaiT58++FuFafHZ2eIXTs+rPQAIC6MmfxaLuDKTkpUr6VHvejaZxJAD04mUcD2LMB24U8/336/fkA7D1iiSuo/Opk1U3RYaSrlbeobpefdu4MYNeWVxBl3U1ISGhmL27NmIjo5Gfn4+fvzxR/Tp0wcbN27EfWUsm/Lz85Gfn2/9PetuALqwsBCFEm+ew85X0XnXrDGgoMALjRsLaNq0yGN7+MhJebrp18+II0dMWLHCgqFDpcvmS00FUlLMMJkE9O6tbD07eu9Uhrg4AxYt8sLKlQKmTJEuhlZUBKxZ4wXAgLi4IhQWSt/pzRP6kYq+fYE33jBjwwYBWVlFkobHV640ATCiX79iFBaKreDVpB+p6NoV8PHxQlqaAYcOFSIiwv7rXNHNsmVGACY8+GAxioo80HJfRirST0gI0KaNFw4fNmDlyiI8+qh8nRyd+R/qwihq0aIFWrRoYf09NjYW58+fx/Tp08s0iqZOnYopU6aUen7t2rXwd9PufokVuDy+/bYdgEaIiEjFqlUeaOesIOzpJigoGEA3/PlnAf76a41kYa6VKxsDiETLljewffs2aU7qZiq6dyqD0egNg6E/Dhww4KefNqBGjTxJzpuSUgM3b/ZAQEABrl9f5RYPCcOd+pEKQQBq1ozDjRt++OyzvejQIV2S82Zne2H7doo3e3uvx8qVuaVeowb9SElERCz27w/B55+fwJAhp8p9raO6EQTgt9/6AvBH7dp7sHLlVQkkVT7l6adZs1Y4fLgZ5s27jMBAN5YKV8CdO3ccfq0ujCJ7dOnSBT/99FOZf580aRImTJhg/T0rKwthYWGIi4tDoMQdEwsLC5GYmIi+ffvCbDbbfY0gAC+8QP+u555rgH79wiSVQamUp5sHHgCmTxdw65YvgoMfRJcu0qxEvvmGcs0ef7w6EhQe13Hk3pGC//xHwJ49BuTmPoCEBGlWwNu2kRWbkOCFgQPdo2dP6UcqhgwxYu5c4Nq1TpLp+eefDbBYjGjZUsDTT5fs2qg2/UhFWpoRL70EHDsWgYSE5nZf46xuDhwArl83w89PwGuvRWu+EMYR/QQGGvD778CBA/XxwAN14O3tYSHvkuVEqaFujaLk5GSElrP5j4+PD3x8fEo9bzab3TZ4lHfuPXuAixcpUfKBB7ygo/ELgH3dmM3AwIHAwoXAH394Wbf/qAy3bolVKYMHm2A2qyMZ3533JQA8/DDdg8uWmfD885XXiSAAv/9Ox0OGGGE2uze90d36kYohQ4C5c0nP//mPSRLvJ+tY8vDDhjJ1oBb9SMXDDwMvvQTs2mVEeroR9eqV/VpHdcMSiuPiDAgM1I8uy9PPffcBtWsDV68asHWr2Zqf6GmcubdVmWidnZ2N/fv3Y//d7Z5TU1Oxf/9+pKWlASAvz5NPPml9/cyZM7Fs2TKcPHkSR44cwaRJk7BkyRKMGzdODvFd4pdf6HHgQJ4oacuwYfS4eLE0SZPLlwOFhbQlgJ52a6+Ihx+mxw0bgOvXK3++AweAU6foXtZ7JaUtDzxAlWiXL1NbiMqSnS0mWbPvCocqHVmfN2acV5Y//qDHQYOkOZ8WMJnI0AeAJUvklcVRVGkU7d27F1FRUYiKigIATJgwAVFRUXj33XcBAJcvX7YaSABQUFCAiRMnIjIyEj169MDWrVuxYsUKp0v65UIQgF9/peMRI+SVRWn060fes3PngH37Kn8+pufhwyt/Li0RHg60b0/dadngXxl++40eExKoczaH8PYGBg+mY6ajyrByJZCXBzRtCrRrV/nzaQk2/C9dWvlznTpF44/RCAwYUPnzaQm2oFq2zD29zqSmUkZRYWEhzp8/j+PHjyPD3TsZ2tCrVy8IglDqZ8GCBQCABQsWYKPNpiuvvfYaTp06hdzcXGRkZGDLli2KzxWxZdcu4Px5mjxYmSOH8PcXPQ2LF1fuXLduiV1/uVFUGqaTyuqZElJLnpMjwnSyZAm1nKgM7H81fLh+t1ApC2YUbdoEXLtWuXP9/DM99ulDVVcckZ49gZo1ScdbtsgtTcU4bRRlZ2fj22+/Ra9evRAUFIRGjRqhVatWqFWrFho2bIhnn30We9y9BbHOYKGzQYP03cW6LFhY4NdfKzeJ/PEHhc5at+ahM3swPa9bV7m+IwcPAidPUuiMr6pL07cvbZFw6VLlQmg5OWITUh46K03jxkB0NI0ZbIx1FWYUPfZY5eXSGmaz6P1ctEheWRzBKaNoxowZaNSoEebMmYP7778fS5cuxf79+3H8+HHs2LED7733HoqKitC3b1/0798fJ0+edJfcuqGoSAzpPPKIvLIolQEDgIAA6i9UmZUIK0bk3gv7NG9OnaeLiii53VW+/54eeejMPt7eYh7GDz+4fp7ffqNGguHhQIcO0simNVjq6d0gg0scPEibwNr+3zglGTmSHn/5he5JJeOUUbR9+3b8/fff2Lt3L9599130798fbdu2RXh4ODp16oRnnnkG8+fPx5UrVzBo0CBsYu2XOS6zahWtGIODeeisLPz9gUcfpePvvnPtHKmp4macNjn6nHt45hl6dFXPBQXAjz/S8dNPSyOTFmG6+flnSpZ2BfY/euYZHjori8ceo3269u0jw8YV5syhx4EDKUmeU5r77gMaNaJNeCvYv112nDKKfvvtN7S927s8Nja2zNp/X19fPP/88xgzZkzlJdQ57Av31FOAnQ4BnLuwSWTxYtd2v2YTSN++5Fbn2Ofxx+k+3L8fSHKhF9vy5VS9FhrKjfzy6NEDaNaMDCJXEq5PnCCvqdHIjfzyqFVLzEmcN8/599+5Ixr5//yndHJpDaOR5jDA9QWVp3A50XrXrl3Iyyvd2TYrKwuvvvpqpYTiEBcuiDkBzz4rryxKp0sXICKCBqn58517b0GB+EXldnz51Kghhgj++1/n3//NN/Q4ahSt0Dn2MRhEr9ysWc63m5g1ix779UO5PXg44tj63XfOe+V+/RXIzKSF1AMPSC+blhg1ioyj9etd98p5AqeNoqFDh+Ljjz+GwWBAenrpNvQ5OTn4/PPPJRFO78ycSUmAvXoBNruUcOxgMAAvv0zHM2dS6bijLFpEIco6dcSEQE7ZvPgiPf70E3DliuPvS0qiAdFk4qtqR3jmGUpG37PHuVy5mzdFDzP7TnDKJj6evHKZmWK+myMIAsCmumefhWTbDGmVRo2Ahx6i45kzZRSkApz+NzZs2BB//fUXBEFAu3btEBISgr59+2LixIn44Ycf8Nlnn5XbKZrjGBkZ4qr69dfllUUtjBxJpZ9nzzree8RiAT79lI7Hj+chSkfo2hWIjSUP21dfOf6+6dPpccQIGiA55RMSIoYcpk1z/H2zZ1PlWZs2QFyce2TTEkajaDzOmAGHN4BesQI4dIiKBcaOdZ98WuKVV+jxxx+BqwrdGs5po2jGjBnYunUrzGYzdu7ciTlz5qBbt244deoUpkyZgiVLlmCaM99gjl2++IIGtnbtIFtrdLXh7w+88AIdT57sWKOw338nV25AAPB//+dW8TTFxIn0+J//ONbjJSVFrKLk0XXH+de/yAu6YgV5jCoiM1M0Ptl7ORXz1FNUzHL6tGOVaIIAfPghHT/3HFC9ulvF0wzdugGdOwP5+cC//y23NPZx2eGXk5ODjh07YvDgwZg8eTKWLVuG06dPIzU1FY8//riUMuqOtDTRe/H223xgc4ZXXiFv0dGjFQ9ueXniBP3yy7xyxBkeeojKvLOyyACtiH/9i0KagwdTZ2yOYzRrBvzjH3T8yisV5xZ9/DElsrdoATzxhPvl0wpVq9JYC9D9XFHZ+M8/Azt3Ut845v3gVIzBAEydSsfffEOdwJWGy0aRF8+SdBv/+heQm0tljKxFOscxqlUD3nmHjt98s3wX7WefUSl+3bo8ROksRqPokfj22/K3WPnzT2otYTaLxj7HcT76iCbfbduA//2v7NcdP07hH4D0rKP9XSVh7FigYUPKL2QGkj1u3xY9pW++SZWUHMfp3ZsqT4uKyMtW2a7tUuOUUWS7n5gjXLx40anXc8i7sXgxTTpffsm9RK7w3HNA27YU1hk1yv6Xbvdu0cMxbRpvIugKvXtTo8viYuoTdft26ddcuiRW9L38Mnk+OM5Rvz5NvgDd2/Z64ubmkkcpP5/yiHincOfx8QG+/pqOZ8wANmwoPfgKAhlPly7RfnLMOOI4x8yZZOivW0fznJJwyijq2LEjnn32WezevbvM12RmZmLOnDlo06YNlkqx056OWLnSYK3KmTKFb+DoKt7e1HHZ1xdYvZqqpWyr0Q4dokmjqIi2P+DRXtf55hsgLIzc4EOHUh4c4+pV6lqdnk5Jvx98IJ+caueNN8hznJ1N9+6FC+LfcnPJKN27l3Jb5s3jiylXSUgQKyMffdSEkyerWf9msQCTJtHYYjLRAtbXVxYxVU+LFuSpB8iwZPmGSsCpGFhKSgo++ugj9O/fH2azGTExMahbty58fX1x8+ZNHD16FEeOHEFMTAw+/fRTxMfHu0tuzXDqFLB9uwE//NAeGzaYIAg0UU+aJLdk6qZNGypLfvJJWv0lJdFK+uxZ+v3OHdqygk8glaNGDWou2KcPrfrat6eE9bw86mN05QpQuzbtK8cnENfx8qLWEV26UGPGdu3I2A8KAubOpRw6s5mqLuvXl1tadTNjBhVfbNtmwJtvdkdaGvVA++UX2jwWoKrL7t3llVPtjB1LxQPz51NF6p9/kpezY0egZUsZBRNcIDc3V1iyZIkwfvx44aGHHhL69esnPPHEE8L06dOFQ4cOuXJKxZOZmSkAEDIzMyU971tvCQI5ZelnzBhByM+X9BKqpqCgQFi2bJlQUFDg0vsXLRKEKlVK6hgQhD59BOHaNYmFlYHK6kcqtm8XhHr1Suu5ZUtBOH5cPrmUoh+pSE0VhPbtS+s5OFgQ/v7b+fNpTT9SceuWIDz4YHEpPfv6CsLcuXJLpwykuHeKigTh5ZdL6vill6STkeHM/O1StrSvry/69u2LoUOHSmuh6ZAOHYDu3S3w90/DpEn10asXT2CXkkcfpRXd7Nm0NUW1atSRefBg3mxNSmJjaXX93XfA1q0UXnjgAb49jdQ0akT5cAsXUvJ6Xh7p/p//5GXhUhIUBCxdWowPPtiN8+c74cYNI9q2JT3zHlvSYTJRftETT5DH6OhRICZGXplcnoF79OiB1atXo06dOlLKozuGDgUGDizGypUH0K0b78fvDurXB95/X24ptE9QEJUn8xJl92I2k7HJGjty3IPBAMTEXMW77xbDbOYrKHfSsSP9KAGX/9MxMTHo3Lkzjh07VuL55ORkJCQkVFowDofD4XA4HE/islE0d+5cPPPMM+jevTu2bt2KEydO4JFHHkFMTAx8uL+cw+FwOByOyqhUAst7770Hb29v9O3bF8XFxejXrx/27NmDDh06SCUfh8PhcNyMxWJBXl6e3GIoisLCQnh5eSEvLw/FzuwwrROUpB+z2QyTySTJuVw2ii5fvoypU6di7ty5aNWqFY4dO4ZHH32UG0QcDoejIkwmE1JTUyFUtIeIzhAEAXXq1MH58+dh4H07SqE0/VSrVg116tSptCwuG0VNmjRBy5Yt8dtvv+HBBx/EmjVr8Mgjj+DChQt4ne+ZwOFwOIpHEAQEBQXBZDKhXr16MPKSTCsWiwXZ2dmoWrUq14sdlKIfQRBw584dpKenAwBCK7nvistG0fz58/Hoo49af+/Xrx/+/vtvDBgwAOfOncPXrF86h8PhcBRJcXEx/Pz8UKtWLfj7+8stjqKwWCwoKCiAr68vN4rsoCT9+Pn5AQDS09MREhJSqVCay5/E1iBidOjQAdu3b8fGjRtdFojD4XA4nqG4uBgGgwFmvnssR+Uwo76wsLBS55HcvGvUqBG2bdsm9Wk5HA6HIzEsj0gJOSEcTmWQ6h52i8+rOm+tyuFwOBwOR2XwQCmHw+FwOBwOuFHE4XA4HBUiCAL++c9/okaNGjAYDKhWrRrGjx8vt1gclcN3H+VwOByO6li9ejUWLFiAjRs3okmTJjAajdYqJFfp1asX2rdvj5kzZ0ojJEd1uGwU5ebmQhAEa8b3uXPn8Pvvv6NVq1aIi4uTTEAOh8PhcO7l9OnTCA0NRdeuXR16fUFBAby9vd0sFUftuBw+Gzx4MH744QcAwK1bt9C5c2d89tlnGDx4MGbNmiWZgBwOh8Ph2DJq1Ci8+OKLSEtLg8FgQKNGjdCrV68S4bNevXph3LhxmDBhAoKDg9G3b18AwOLFi9G2bVv4+fmhZs2aeOCBB5CTk4NRo0Zh06ZN+OKLL2AwGGAymZCWlmb3+r169cKLL76I8ePHo3r16qhduzZmz56NnJwcPP300wgICEDTpk2xatWqEu9bvXo1unfvjmrVqqFmzZoYMGAATp8+bf17WbJV9Dd7LFq0CL6+vrh48aL1uTFjxiAyMhKZmZlO61wvuGwUJSUloUePHgDon1W7dm2cO3cOP/zwA7788kvJBORwOByOhxAEICdHnh8nthn54osv8P7776N+/fq4fPky9uzZY/d133//Pby8vLBt2zZ8++23uHz5Mh577DE888wzSElJwcaNGzF06FAIgoAvvvgCsbGxePbZZ3H58mVcvHgR9erVK1OG77//HsHBwdi9ezdefPFFPPfccxg+fDi6du2KpKQk9OvXDyNHjsSdO3es78nJycGECROwZ88erF+/HkajEUOGDIHFYilXtvL+VhaPPvooWrRogalTpwIApkyZgjVr1mDVqlUICgpyWNd6w+Xw2Z07dxAQEAAAWLt2LYYOHQqj0YguXbrg3LlzkgnI4XA4HA9x5w5Qtao8187OBqpUceilQUFBCAgIgMlkQp06dcp8XXh4OKZNm2b9PSkpCUVFRRg6dCgaNmwIAGjbtq31797e3vD390edOnVgsViQlZVV5rnbtWuHt99+GwAwadIkfPzxxwgODsazzz4LAHj33Xcxa9YsHDx4EF26dAEAPPzwwyXOMW/ePISEhODo0aMoKCgoU7YTJ06UK7c9DAYDPvzwQwwbNgx169bFF198gS1btpRr6HEq4SkKDw/HsmXLcP78eaxZs8aaR5Seno7AwEDJBORwOBwOxxViYmJK/N6uXTv06dMHbdu2xfDhwzFnzhzcvHnTpXNHRkZaj00mE2rWrFnCUKlduzYAWPfkAigP6vHHH0eTJk0QGBiIxo0bAwDS0tLKlc1VuQcMGIBWrVphypQp+P3339G6dWuXPquecNkoevfddzFx4kQ0atQInTp1QmxsLADyGkVFRUkmIIfD4XA8hL8/eWzk+HHD3mtV7vE8mUwmJCYmYtWqVWjVqhW++uortGjRAqmpqU6f+96tUe7dLoV1WLZYLNbnBg4ciBs3bmDOnDnYtWsXdu3aBYCSwMuTzVW516xZg2PHjqG4uNhqpHHKx2WjaNiwYUhLS8PevXuxdu1a6/N9+vTh5YwcDoejRgwGCmHJ8eOhrUYMBgO6deuGKVOmIDk5Gd7e3vj9998BUPisuLjYLde9ceMGUlJS8Pbbb6NPnz6IiIgo5e0pT7by/maPpKQkDB8+HN9++y369euHd955xy2fS2tUqk/RkSNHsH79evz3v/8tYQ0DwHfffVcpwTgcDofDkZJdu3Zh/fr1iIuLQ0hICHbt2oVr164hIiICAO3duWvXLpw9exb+/v7w8pKulV/16tVRs2ZNzJ49G6GhoUhLS8Mbb7zhkGwVyX0vZ8+exYMPPog33ngDI0eORKtWrdCxY0fs27cP0dHRkn0mLeLyf3zKlCl4//33ERMTg9DQUL6hIIfD4XAUTWBgIDZv3oyZM2ciKysLDRs2xGeffYb4+HgAwMSJE/HUU0+hVatWyM3NxYEDB1CtWjVJrm00GvHzzz/jpZdeQps2bdCiRQt8+eWX6NWrV4WypaSklCu3LRkZGYiPj8egQYPw5ptvAgCio6MxcOBAvPXWW1i9erUkn0erGITyavrKITQ0FNOmTcPIkSOllkmRZGVlISgoCJmZmZInkhcWFmLlypVISEgoFafWO1w35cP1Uz5cP+Vz+/ZtnDhxAhEREdZGvByCVZ8FBgbCaOQ7Yt2L0vSTl5eH1NRUNG7cGL6+viX+5sz87fInKSgocLiTKIfD4XA4HI7ScdkoGjNmDBYuXCilLA6zefNmDBw4EHXr1oXBYMCyZcsqfM+mTZsQHR0NX19fNGnSBN988437BeVwOBwOh6MaXM4pysvLw+zZs7Fu3TpERkaWck1//vnnlRauLHJyctCuXTs8/fTTpZph2SM1NRUJCQl49tln8dNPP2Hbtm14/vnnUatWLYfez+FwOBwOR/u4bBQdPHgQ7du3BwAcPny4xN/cnXQdHx9vN8GsLL755hs0aNDA2iogIiICe/fuxfTp07lRxOFwOBwOB0AljKK///5bSjncyo4dO6wdtxn9+vXDvHnzUFhYaDcBMz8/H/n5+dbfWbv3wsJCFBYWSiofO5/U59UCXDflw/VTPlw/5VNUVAQAEAShVFsVvcNqkLhu7KM0/VgsFgiCgMLCQphMphJ/c+b7L10TBgVz5cqVUt08a9eujaKiIly/fh2hoaGl3jN16lRMmTKl1PNr1651W5VGYmKiW86rBbhuyofrp3y4fuzj5eWFOnXqICcnhxuOZXD79m25RVA0StFPQUEBcnNzsXnzZquxz7DdlLciKmUU3bp1C/PmzUNKSgoMBgMiIiIwevRoRe7Ae29Ij1m5ZYX6Jk2ahAkTJlh/z8rKQlhYGOLi4txSkp+YmIi+ffvysuF74LopH66f8uH6KZ/s7GycOXMGVapUgZ+fn9ziKApBEHD79m0EBATwPnx2UJp+8vLy4Ofnh/vuu89uSb6juGwU7d27F/369YOfnx86deoEQRAwY8YMfPTRR1i7di06dOjg6qklp06dOrhy5UqJ59LT0+Hl5YWaNWvafY+Pjw98fHxKPW82m902uLrz3GqH66Z8uH7Kh+vHPqxjs8FgUESvGSXBQkJcN/ZRmn6MRqN1/7l7v+vOfPddNopeeeUVDBo0CHPmzLF+sYqKijBmzBiMHz8emzdvdvXUkhMbG4s///yzxHNr165FTEwMHyg5HA6Hw+EAqESfor179+L1118vsTeMl5cXXnvtNezdu1cS4coiOzsb+/fvx/79+wFQyf3+/fuRlpYGgEJfTz75pPX1Y8eOxblz5zBhwgSkpKTgu+++w7x58zBx4kS3ysnhcDgcDkc9uGwUBQYGWo0QW86fP4+AgIBKCVURe/fuRVRUFKKiogAAEyZMQFRUFN59910AwOXLl0vI1rhxY6xcuRIbN25E+/bt8cEHH+DLL7/k5fgcDofD8Ri9evXC+PHj5RaDUw4uh89GjBiB0aNHY/r06ejatSsMBgO2bt2KV199FY899piUMpaiV69eKG/LtgULFpR6rmfPnkhKSnKjVBwOh8PhcKRg6tSpWLp0KY4dOwY/Pz907doVn3zyCVq0aOHW67psFE2fPh0GgwFPPvmktfzNbDbjueeew8cffyyZgBwOh8PhcNRPr169MGrUKIwaNarC127atAkvvPACOnbsiKKiIrz11luIi4vD0aNHUaVKFbfJ6HL4zNvbG1988QVu3ryJ/fv3Izk5GRkZGZgxY4bdqi0Oh8PhcKRi8eLFaNu2Lfz8/FCzZk088MADyMnJAUDl4tOmTUOTJk3g5+eHdu3aYfHixdb3WiwWfPLJJwgPD4ePjw8aNGiADz/80Pr3/Px8vPzyy2jWrBn8/f3RvXt37Nmzx/r3Xr164aWXXsJrr72GGjVqoE6dOpg8eXIJ+XJycvDkk0+iatWqCA0NxWeffVbhZ+rVqxdefPFFjB8/HtWrV0ft2rUxe/Zs5OTk4Omnn0ZAQACaNm2KVatWlXjf6tWr0b17d1SrVg01a9bEgAEDcPr0aYd05cjfbVm0aBF8fX1x8eJF63NjxoxBZGQkMjMzK/yMjrJ69WqMGjUKrVu3Rrt27TB//nykpaVh3759kl3DHpWuo/P390fbtm0RGRnptqaGHA6Hw3E/ggDk5MjzU05GRCkuX76Mxx57DM888wxSUlKwceNGDB061JpW8fbbb2P+/PmYNWsWjhw5gldeeQX/+Mc/sGnTJgBUjPPJJ5/gnXfewdGjR7Fw4cISDX5fe+01LF26FF9//TX27t2L8PBw9OvXDxkZGdbXfP/996hSpQp27dqFadOm4f333y/RJPTVV1/F33//jd9//x1r167Fxo0bHZrQv//+ewQHB2P37t148cUX8dxzz2H48OHo2rUrkpKS0K9fP4wcObJEQ8KcnBxMmDABe/bswfr162E0GjFkyBBYLJYKdVXR3+/l0UcfRYsWLawRoffffx9r1qzBqlWr3NqjkBlcNWrUcNs1AACCE7zyyitCdna29bi8H62RmZkpABAyMzMlP3dBQYGwbNkyoaCgQPJzqx2um/Lh+ikfrp/yycrKEvbu3Svk5OQIgiAI2dmCQOaJ53/uTi0OsW/fPgGAcPbs2VJ/y87OFnx9fYXt27eXeH706NHCY489JmRlZQk+Pj7CnDlz7J47OztbMJvNwo8//ijcvHlTKC4uFgoKCoS6desK06ZNEwRBEHr27Cl07969xPs6duwovP7664IgCMLt27cFb29v4eeff7b+/caNG4Kfn5/w8ssvl/m57j1vUVGRUKVKFWHkyJHW5y5fviwAEHbs2FHmedLT0wUAwqFDh8rVlSCUr8uy+PPPPwUfHx/h7bffFqpXry4cPnzYoff17NlTmD9/vsPXYVgsFmHgwIGldG5Lbm6ucPToUSE3N7fU35yZv53KKUpOTra2gk9OTi7zdUrobsnhcDgcbdKuXTv06dMHbdu2Rb9+/RAXF4dhw4ahevXqOHr0KPLy8tC3b98S7ykoKEBUVBRSUlKQn5+PPn362D336dOnUVhYiG7dulmfM5vN6NSpE1JSUqzPRUZGlnhfaGgo0tPTrecoKChAbGys9e81atRwKEnY9rwmkwk1a9ZE27Ztrc8xjxa7FrveO++8g507d+L69evWxoppaWno169fmbqqSJdlMWDAALRq1QrTpk3D6tWr0bp1a7uv++ijj/DRRx9Zf8/NzcXOnTsxbtw463OrVq1Cjx49ytXJuHHjcPDgQWzdurXc10mBU0aR7Saw33//PerXr1+qk6UgCDh//rw00nE4HA7HY/j7A9nZ8l3bUUwmExITE7F9+3asXbsWX331Fd566y3s2rXLahCsWLEC9erVK/E+Hx8f3Lp1q9xzC2VsASUIQonn7m38azAYrNdm53AFe+e1fY7JYLsJ68CBAxEWFoY5c+agbt26sFgsaNOmDQoKCsrVVePGjSv8uz3WrFmDY8eOobi4uNS+oraMHTsWjzzyiPX3J554Ag8//DCGDh1qfe7e/9G9vPjii1i+fDk2b96M+vXrl/taKXA5p6hx48a4fv16qeczMjLKVCSHw+FwlIvBAFSpIs+PswEGg8GAbt26YcqUKUhOToa3tzd+//13tGrVCj4+PkhLS0N4eHiJn7CwMDRr1gx+fn5Yv3693fOGh4fD29u7hFeisLAQe/fuRUREhEOyhYeHw2w2Y+fOndbnbt68iRMnTjj3IR3gxo0bSElJwdtvv40+ffogIiICN2/eLPGasnTl6N9tSUpKwvDhwzFr1izcf//91v6A9qhRo0YJ/fv5+SEkJKTUc/YQBAHjxo3D0qVLsWHDBo/ZFS6X5JdlCWdnZ5fajI3D4XA4HKnYtWsX1q9fj7i4OISEhGDXrl24du0aIiIiEBAQgIkTJ+KVV16BxWJB9+7dkZWVhe3bt6Nq1ap46qmn8Prrr+O1116Dt7c3unXrhmvXruHIkSMYPXo0qlSpgueeew6vv/46fH190bJlS0yfPh137tzB6NGjHZKvatWqGD16NF599VXUrFkTtWvXxltvveWWPcKqV6+OmjVrYvbs2QgNDUVaWhreeOMNh3TlyN9tOXv2LB588EG88cYbGDlyJBo2bIj7778f+/btQ3R0tKSf64UXXsDChQvxxx9/ICAgwLp/aVBQkFs3L3baKGI7xxsMBrz77rslKs6Ki4uxa9cutG/fXjIBORwOh8OxJTAwEJs3b8bMmTORlZWFhg0b4rPPPkN8fDwA4IMPPkBISAimTp2KM2fOoFq1aujQoQPefPNNAMA777wDLy8vvPvuu7h06RJCQ0MxduxY6/k//vhjFBcXY+zYscjOzkZMTAzWrFlTbp7NvXz66afIzs7GoEGDEBAQgH/961+SlqwzjEYjfv75Z7z00kto06YNWrRogS+//BK9evUCULGuKvo7IyMjA/Hx8Rg0aBDefPNNWCwWtG/fHgMGDMBbb72F1atXS/q5Zs2aBQDWz8GYP3++Q32OXMUgOBn87N27NwBqrBQbGwtvb2/r37y9vdGoUSNMnDgRzZo1k1ZSmcnKykJQUBAyMzMRGBgo6bkLCwuxcuVKJCQk8A1q74Hrpny4fsqH66d8bt++jRMnTiAiIoK3VLkHi8WCrKwsBAYGKmIXeKWhNP3k5eUhNTUVjRs3LhWtcmb+dtpTxJKtn376aXzxxReSGwgcDofD4XA4cuByTtH8+fOllIPD4XA4HA5HVlw2it5///1y/15eRjqHw+FwOByO0nDZKLq3XK+wsBCpqanw8vJC06ZNuVHE4XA4HA5HVbhsFNnraJ2VlYVRo0ZhyJAhlRKKw+FwOO6HNQKsTLNBDkcJSHUPS5oyHhgYiPfffx/vvPOOlKflcDgcjhswmUwQBMG6fROHo1bYBrmVrTJ12VNUFrdu3XJLLwYOh8PhSIvJZEJubi6uXbsGb29vRZRWKwWLxYKCggLk5eVxvdhBKfoRBAF37txBeno6qlWrBpPJVKnzuWwUffnll6UEu3z5Mn788Uf079+/UkJxOBwOx/0YDAbcunULtWrVwrlz5+QWR1EIgoDc3Fz4+fnxTc7toDT9VKtWDXXq1Kn0eVw2imbMmFHid6PRiFq1auGpp57CpEmTKi0Yh8PhcNyPxWJB48aNeV7RPRQWFmLz5s247777eONPOyhJP2azudIeIobLRlFqaqokAnA4HA5HXoxGo+wTm9IwmUwoKiqCr68v140dtKofHijlcDgcDofDgZOeIrYZrCN8/vnnTgvDUQHr1gH/+Q9w5AgQHAyMGAE8/zxgswceRwIOHQI+/RTYtQvw9wcefBCYOBGoVk1uybTFhQuk5w0bAIsFuO8+4PXXgUaN5JZMW2RmAl9+CSxfDmRlAR06ABMmAB07yi2ZtigsBObNAxYuBC5dApo3p/F5wAC5JVMNThlF9noT2UMJSVcciSkuBl55BfjqK/G5U6eAnTuB778HVq4EQkPlk09LfP018NJLpHPG/v3A/PnAX38BUVGyiaYp1qwho962WvboUeCHH4CffgJ4vzVpOHIEGDgQsE25OHEC+PVXYOpU4LXX5JNNS1y7Bjz0ELB9u/jc6dPAqlXAM88A334LeElecK45nNIQ2wyWo0Nefhn4738BgwF44QVg6FCaQCZPpgm7d29gxw6genW5JVU3s2eTfgEa4MaOBW7cAKZMoYnk/vtJzy1byiqm6tm0CRg0CCgoADp1At54gyaMTz8FtmwBhg8nr0ZCgtySqpszZ4A+fYCrV8n7NnkyULcu8N13wM8/k1fOaCQvKMd1bt8G+vUDkpOBoCDgvfdo8fTXX8CMGaTvwkJawHKnRblUymy8desW5s2bh5SUFBgMBrRq1QrPPPMMgoKCpJKPowR+/FE0iH76CXj8cXq+d28gPh7o1Qs4fhx48kmaSPiXzjWSksjVDQCTJgEffijq8sEHgf79yTP30EP0Wn9/2URVNZcvk9FTUEDeoF9+AViiaHw88PTTdJ8/9hhw8CDQsKG88qqVggLS89WrQLt2wPr1QM2a9Le+fYH27ckYff11IDqaxhOOa4wfTwZRSAgZ/GzR1KsXhYQffpjG8U6dgHHj5JRU8bicaL137140bdoUM2bMQEZGBq5fv47PP/8cTZs2RVJSkpQycuTk6lXyEgG0ymMGEaNJE+CPPyin6K+/6IvHcZ6CApqMi4tpALM1iABa/S1bRqvs48fp7xzX+Ne/KNQQGUnGj23ljJcXraq7dKHclzFjAF6q7hoff0zGe40aNDYwg4jx+ut0z1sswLPPAnl58sipdpYvp3vWYAB++620F3nQIGD6dDp+7TWA96MqF5eNoldeeQWDBg3C2bNnsXTpUvz+++9ITU3FgAEDMH78eAlF5MjKq68CN2/Sqq6s/lNRUWQwATTQ5eR4Sjrt8OWX5JUIDqacInvettq1KckdoDDP0aOelVELrF8PLFpEIZv58+1728xmMu59fKiwYMUKz8updi5cAD75hI7/8x+gfn37r/viCzL0T5+me5rjHAUF5CUCKAR53332X/fSS/S33Fwa0zllUilP0euvvw4vm8QtLy8vvPbaa9i7d68kwnFk5uhRWkkDlOtSXi+Kf/0LaNwYuHIFmDnTI+Jphtu3aVUNANOmkQu8LB56iCpJCgspb4DjOIIgJvU+/zxVQJVFeHjJyYbvDeYcb78N3LkDdOsGPPpo2a8LCAA++4yOp04F0tM9I59W+PZbSmAPDRUXpvYwGGjhZTSSN2nbNo+JqDZcNooCAwORlpZW6vnz588jICCgUkJxFMKUKTSRDBlScemstzfw73/T8bRpJSt6OOXzxReUTN28OTByZPmvNRho8gCAxYuBw4fdL59WWLWKwjlVqjhmUE6aRJ6748dpIuE4RmqquJiaMaPiHMMRI2h8yc3lCypnyM0FPviAjt97r+Icw3btqAoNAD76yL2yqRiXjaIRI0Zg9OjR+OWXX3D+/HlcuHABP//8M8aMGYPHHntMShk5cnDyJJXMAuWvQGx59FGgVSvKxZg3z22iaQrbiWDyZMdKZtu0obwjACYWouBUDDPan3uOjJ2KCAoS8+k+/ZTnFjnKjBmUGxcX51gfIoMBePNNOv7vf4Fbt9wqnmb46SfKjWvYUDR2KoJV+61cCRw44F75VIrLRtH06dMxdOhQPPnkk2jUqBEaNmyIUaNGYdiwYfiED9Tq5+uv6TEhgRJSHcFoFEMOX34JFBW5RTRN8csv5CVq0IAqdRzlrbcAAIYlS+Bz86abhNMOhn37qJWBtzeFeh3luedoBb5/P+Ujccrnxg1g7lw6dqb/0KBBQOvWtKCaP989smkJQRAXUy+9VH5qgy3h4eI4wxss28Vlo8jb2xtffPEFbt68if379yM5ORkZGRmYMWMGfHx8pJSR42lycsSBydnyzX/8g1bh585RVQSnbARBbIb5/PPONVaLigJiY2EoKkLDdevcI5+GMM6eTQfDhwPO7KRdsyZVSAHArFnSC6Y1fvqJvJ/t2lFPLUcxGoEXX6Tjb7/lXrmKWL+ecj6rVgVGj3buva+8Qo+//kpFNJwSuGwU5ebm4s6dO/D390fbtm0RFBSE2bNnY+3atVLKx5GDRYsoJ6hpU2oI5gx+flTGDFCZKKds9u2jHBcfH+cHNoC8GAAarl1bsvs1pwRe2dkw/PIL/TJ2rPMn+L//o8flyylcwbGPIIheov/7P+f7lT3+OE3yx48DmzdLL5+WYOkJTz1FYV5n6NSJvP95eWLuF8eKy0bR4MGD8cMPPwCgJo6dO3fGZ599hsGDB2MWX1GpG/ZFGTOGVnDOMmoUPa5eTdVoHPswPQ8Z4liOy70MHw6hRg34X7sGA+82Xyb1tm2D4c4dCs906+b8Cdq2pdyYoiLeh6s8du+mxH8/P2p86SwBAWIftDlzpJVNS9y6RT3LANGL6QwGA/WFAkjP3CtXApeNoqSkJPTo0QMAsHjxYtSuXRvnzp3DDz/8gC+//FIyATke5vx56ogKlG7U6CgtWgCxseS9+N//pJNNSxQVkUcOoJCjK/j6wnI3P8DIzsUpRX3mdXjqKde7rTNPHs93KZvvv6fHYcNc37iYJQwvW8b7nZXFr7+Sl6d16/LbSpTHP/5B+XWHDtEPx4rLRtGdO3espfdr167F0KFDYTQa0aVLF5zjHTPVy88/02OPHpT86yrMW8RX1vZZv556sgQHU5WOiwh3V+SGZcsol4NTkosXUZM1uRwxwvXzjBhByayHDwMpKdLIpiWKi4ElS+j4iSdcP0+nTtQlPycH+PNPaWTTGszDXBkjv1o1cV8/NuZzAFTCKAoPD8eyZctw/vx5rFmzBnF3B/b09HQEBgZKJiDHwzDPTmUGNoBKxk0mKvs8fbrycmkNpmc22bqIEBuLnJAQGG7f5pOIHYxLlsAgCLB07Vo5I79aNdqvC6D+UJySbN5MRn6NGs4lWN+LwSCG3rj3szRXrgBbt9JxeU0xHYHp+eefeQjNBpeNonfffRcTJ05Eo0aN0LlzZ8TGxgIgr1FUVJRkAnI8SEoKGTFeXuQCrww1a9JmhACwdGmlRdMUeXnA77/TcWWNT4MBF++Gsa0rdY4Vw91eW8Ijj1T+ZKyUmTdyLA3TyZAhlTLyAYiT9apVvAnsvSxbRgZMx45AWFjlzjVgADUyTU2lfDAOgEoYRcOGDUNaWhr27t2L1atXW5/v06cPZsyYIYlw5fH111+jcePG8PX1RXR0NLZs2VLmazdu3AiDwVDq59ixY26XU1Ww5L2+fUtv3ugKdxsM8sn6Hv7+G8jOBurVo41HK8mVzp3pYNUqID+/0ufTDGfPwrh7NwSjEZahQyt/vsGDacFw6BBVSHEI29CZM722yqJ1a9rUtLCQijU4IkzPbGytDP7+ZBgBtKk3B0AljCIAqFOnDqKiomC0qVDq1KkTWt67S6/E/PLLLxg/fjzeeustJCcno0ePHoiPj7e77Ygtx48fx+XLl60/zZo1c6ucqoP1FRo8WJrzPfQQucN37aINIjkE0/OgQa7nBNhwMzwcQmgo7aG2cWOlz6cZ/voLAHAjIsK53kRlUb068MADdMxDaCJbtkgTOrNl0CB65L3ORG7coAUVII1RBHA926FSRpFcfP755xg9ejTGjBmDiIgIzJw5E2FhYRW2AggJCUGdOnWsPyaTyUMSq4CrV8l4AcTVQ2UJDQW6dqVjHkIjBEF649NohIX9z5i3j2PNsbriyFYTjsLCynxlLcJy2QYNqnzojMEm65Ur+Wa8jD//JK9cZCR1ppaC+HjK/TxyBDhzRppzqhwnWugqg4KCAuzbtw9vvPFGiefj4uKwffv2ct8bFRWFvLw8tGrVCm+//TZ69+5d5mvz8/ORbxOKyMrKAgAUFhaiUOIvKTuf1Od1BsPy5fASBFg6dEBxSIhkA5Fx0CCYtm2D5c8/UXy32aAzKEE3kpKUBPOlSxCqVkVRt26V1rNVP/HxMM2ZA2H5chTNnOlafyktcfs2vDZuhAHA1ZgYNJHq/unbF2YAwt69KLp4EQgJkea8MiHF98trxQoYABT16wdBKj1HR8OrVi0Yrl1D0d9/QyhnrHYXSht7TMuXwwigeNAgWKSSqWpVmLp3h3HTJhQvWwYL6yruAErTT3k4I6PqjKLr16+juLgYtWvXLvF87dq1caWMRoGhoaGYPXs2oqOjkZ+fjx9//BF9+vTBxo0bcd9999l9z9SpUzFlypRSz69duxb+Fe1G7CKJiYluOa8jdJo7F6EAjrdogRMrV0p23qr+/ugDQNi4EWuWLkWxr69L55FTN1LSYtEitARwKTISeyXcSyuxuBjxvr7wunQJ27/6Crd0HhoO3bkTnQoKkF2nDrLr1ZP0/unZpAmqnTmDg59+igsyTNbuwFX9+F+5gr7Hj8NiNGKNxYIiCceO9pGRaLh+Pc599RUOy9huQgljj6GoCPFr1sAIYGtgIG5JqOcmTZui7aZNyPj+e2xv2tTp9ytBPxVx584dh1+rOqOIYbgnF0MQhFLPMVq0aIEWLVpYf4+NjcX58+cxffr0Mo2iSZMmYcKECdbfs7KyEBYWhri4OMlbDhQWFiIxMRF9+/aFWSr3szPk5cHrbqPG8PHjES5l9aAgQPj0U5jS0tDf1xcC643hILLrRmK87hratUePRoKTurAH00+fhAQY+/cHli1D95wcWCQ4t5ox3Q0j+gwdChgMkt4/xp07gY8/RtTly4hUuZ4r+/0yspSF7t0RJ0WStQ2GwkJg/Xo0OXoUDWTQs5LGHsPWrfC6cwdCzZro+uKLFPKSiubNge++Q/DRo0jo1s3hbUOUpJ+KYJEeR1CdURQcHAyTyVTKK5Senl7Ke1QeXbp0wU/l7Pvi4+Njd2Nbs9nsthvAneculy1bgDt3gNBQmDt2lCT5twTx8cC338Jr3TqX82hk042UXL8OJCcDALwefFC6/AuQfozx8cCyZTCtXw/Te+9Jdm7VIQjWqiXDwIFAfr6098+AAcDHH8OYmAijweDcRr4KxWX93NWz8cEHYZT6+9mvH+DlBcOZMzCfP09NHWVAEWPP3U2fDf36weyit71MIiKA5s1hOHEC5q1bqUDGCRShnwpwRj7VJR54e3sjOjq6lMsuMTERXVlSrwMkJycjNDRUavHUCdtl/YEHpDeIAKB/f3pctUr6c6sJFi6LjAScMOAdhjUX3LEDcGJlpDkOH6Ymd/7+ELp3l/78nTtTJdrNm2Jxgh7JzRWroR58UPrzBwSILStUEKJxK2zsZGOp1LCxQ+96hgqNIgCYMGEC5s6di++++w4pKSl45ZVXkJaWhrF3d8CeNGkSnnzySevrZ86ciWXLluHkyZM4cuQIJk2ahCVLlmDcuHFyfQRlwYwi9sWQmj59aDV9+jRw6pR7rqEG3K3nxo2BZs1oXzU9l+Yz47NHD8COt7fSeHmJW7PouY/O1q3UiLR+faBVK/dcg0/WZODf9TCjXz/3XIPr2YoqjaIRI0Zg5syZeP/999G+fXts3rwZK1euRMOGDQEAly9fLtGzqKCgABMnTkRkZCR69OiBrVu3YsWKFRgqRUM3tZORAezdS8d9+rjnGgEBAFuxr1njnmsoHUEQBxzW68YdsMl67Vr3XUPpMKPIXfczIE4izFOiRzZsoMc+fdzjYQbE+3n9eipH1yNsMdWhg/uqHXv1ojylkycBne9dqkqjCACef/55nD17Fvn5+di3b1+JhOkFCxZgo81K+bXXXsOpU6eQm5uLjIwMbNmyRZIkV03w9980YbdqBdSt677rsAlKrx6M06dpsPH2Jg+Gu9C7UVRUBGzaRMfuNIpY1dmuXfrdzZ0ZRVI1bLRHTAwl/t66JS7e9AYzvN25mAoKorAwoHtvkWqNIo5E2OYTuRO2D9rGjYDF4t5rKRE20HTtSvsNuYtevSi8c/IkcPas+66jVPbsoc7eNWoA7du77zqNG9MGs0VF4gadeiIzUzRS3NmWwMtLNLr0Olkzo4iNoe6Ch9AAcKOI4ymjqFMn2mvn+nXg6FH3XkuJeErPgYG0ugZEj4meYHru3du9DSwNBnGy1mMIbcsWWtyEh1d+Y9KKYJM180zpiXPnaMNWk0lMQXAXTM/r1+tz4XoXbhTpmbNnKfHZZAJ69nTvtby9gW7d6Fhvk0hxsTigu9soAsT/5ebN7r+W0vBEPhGDeUj0OFl7InTGYPfzjh1AQYH7r6ckWLpBx46Um+lO2ML1xg0gJcW911Iw3CjSM8w46dSJPAzuxjaEpicOHqSciIAAIDra/ddjk4jePEV37tDECXjWKNq3j8JJesKTRlFEBBAcTJVue/a4/3pKwlOhM4D6prG2NnpcUN2FG0V6ZssWenS3l4jBJhG95RUxPXfr5plGf926Uejo9Gng4kX3X08pME9C/frUmsDdhIVR+Mhi0dckcv06cOAAHXtisjYYAFZIoyc9C4JoFHlqOxmmZ70tqGzgRpGeYZO1O6uhbImJoSTjjAzg0CHPXFMJsIG8jC1lJCcwEGBbtehpcGMJz/fd574S8XthnhI9hdCYp7d1a/c0IbWHHr2fZ88CaWm0kHKiMXGlsDU+BcEz11QY3CjSK1euUD6RweC5L5zZLCYL6iWEJgieNz4BfU4izChyd0KqLWwFryc9e9rDbHutbduo4k8P2KY3VK3qmWt26kT5n5cvk6dZh3CjSK+wgS0yEqhWzXPXZe52vUwiJ08C6enUWbljR89dV29GUVGRmE/kSaOIXevAAWoFoAe2baNHT+q5TRsap7Kzxe7OWod9dz0RomT4+Yn9ivQydtwDN4r0ihzeC0AcSLdv14d7loXOOnVyz5YTZdGjB3kBjx8nr6DWOXCAmigGBVFYx1PUr0/9iiwWfeyDlp0N7N9Px6ya1BOYTOJYpZe8ou3b6dGTxiegz/wtG7hRpFfkMopiYsg9e/UqcOaMZ68tB0zPnsonYlSvTl5AQB+DGwudsSRzT8KMA+ZB0TK7d1OLCWYMehI9JQFfvSruExkb69lrc6OIozsyM8XqEU8bRb6+Ylk6WwlpGTaweFrPttfUg57lyCdi6MkokiN0xmAh4a1btV+9ykLBrVt7Nr0BICPMZBITvXUGN4r0CAtdNW0KhIZ6/vossVvrk8iFCzSwGI2eX+0B4jXZAKtVBEEZRtHOndrftJR9Zz0ZOmO0b085LzdvAidOeP76nkROPQcEiFvk6GFBdQ/cKNIjcoV0GOyLrvUvHBvY2rf3THPMe2HGZ1ISkJvr+et7ijNnKG/K29uzyeyMtm1pIrl9W9utJoqLxe+sHJO12Sz+f7U+drDP56nK4HvRy4LKDtwo0iMsIVQO7wUgftEPH6ZOz1pFbj03bEiewKIi6rqsVZiXKCaGwrOexmQCunShYy17Pw8fJsOvalUyBOVAD5N1Xp642a4cxiegDz2XATeK9EZxsdgqn5VeepratSl0JwjartjZvZseO3WS5/oGgzi4aXllLWfojKGHvCL22bp08UxndnvoYbJOSqLO7LVq0TgpB0zPycna9jLbgRtFeuP4cVrtVani2dLle9F6XlFhIQ1ugHxGESDqmRtF7kVPRpGcemaT9dGj2t1vzjafyFOd2e+lUSNavGrdy2wHbhTpDea9iI4mt79caD2v6PBhWmEFBQHNm8snh+3KWot9oW7eBI4do2O5wpQAeV2NRqrWuXBBPjnciZzJv4yQEKBJE217meXOJwJKepm17JWzAzeK9IbcIR2GbcWOFtv2Mz137Oj5vjm2dOhACcjp6drsC8VyL5o2pZ3U5SIgAGjXjo616C26eBE4d47uZbnC7gwtez8FQRnGJ8CNIo5OYKsruQe2Vq3Ii5KTo82KHaUYn76+ZBgB2hzclKJnQJysd+6UVw53wPTcpg0ZgHKi5cn69Gng2jVayLDvrVzY5iNq0ctcBtwo0hO5ucDBg3Qs9yRiNIoVO1oc3JRifALaXlkryShi/2smk5ZQkp7ZZL1rl/aaOLKxMDpankpKW2JiKKH+6lXqt6YTuFGkJ/bvp1BV7dpAWJjc0mh3Erl9mxJBAXn65twLM4q0Znza5pUoYbJmMiQlUaK9llCSUdS2LRWKZGYCKSlySyMtTM9KWEz5+QFRUXSstbGjHLhRpCdsJxC5qhps0apRtG8fTdhhYfJ0DL8XtrI+eFBbO7lfuECrWJNJHLzlpFkz2pIhL09bIWGLRczdUoJR5OUlLja0NlkryfgEtB2qLANuFOkJJa1CAHFgO3ZMW+W1SgqdAUDdumSgWSximwAtwO7nyEha1cqN0ShOZlqqjDpxAsjKIh3L2cbDFi2GhPPzyZsPcKNIRrhRpCeUtgqpVQto3Ji8KmwlqgWUpmdAlEVLXjmuZ89g28ZDrqaN98IWHKwRrRY4eJCaNtasSW0HlADL+zxwgDygOoAbRXrhxg2qbAAogU4paHFlzSdrz6BEPbPJmt/P7oV5mY8eBbKz5ZVFKmz1rIT0BoC2CqpVi3JRmRdL43CjSC+wL1zz5kD16vLKYovW8oouXaJcF6ORVtZKgU0iWllZFxcrK8+FwWTRUkhYiUZRaChQv762QsJK1LPBoM0FVTlwo0gvKC2fiGHrKdJCLwym59ataeNMpRAdTQPcuXOUnKx2jh0jD0GVKkBEhNzSiISE0BYJWgkJKzHPhaG1yVqJRhGgvQVVBXCjSC8o9QsXFUXVQ1euaGN7BKXqOTBQNB60MLgxPcfEyLtdjT20FEI7cIDaCwQHk7GnJLRkFGVmitvVKKGNhy1a0rMDcKNIDyitn4st/v5UPQRo40unVI8coK3BjevZMygxz4WhJQ8G8yo2bkw5PEqC6fnECeDWLVlF8QTcKNIDqamUaO3tLe7PpCS0MolYLOIArTTjE9COngHleuSAkp4itYeElaxnFhI+e5b29lMzStZzcDAZa4A2QsIVwI0iPcC+cO3bAz4+sopiF61UoB0/Tv1c/P2V08/FFqbnPXvUPVkrabsae9iGhM+fl1uaymG7sbHSCAoCWrakY7V7i5RsFAHaWlBVADeK9IBSQ2cMtrLeu5eqitSKEvu52NK2LXkLMzKAM2fklsZ1kpOpRLhOHapAUhpaCQnfukWGPqBMowgQ5VKzngHlG0VaClVWADeK9IDSv3AtW1KlVk6OuvcyUrrx6e0tboeh5klEyXkuDC0kWys5z4Vh6/1UKxcuUCsPpWxXYw/uKeJohsJCsY+HEpNSARoMWENJNU8iSjc+AW0MblzPnkFtelZrSJjpuU0bajGhRDp0oN5rly4BFy/KLY1b4UaR1jl8mNqzV6sGhIfLLU3ZqH0Sycuj8mVAucYnoH49A+qYrG1DwkVF8sriKkouGmBERgJmMxWSpKbKLY1rqOF+rlJFzJNUs1fOAbhRpHWY56VjR7L0lYraww0szyUkBGjQQG5pyoYNvElJ5EVUG0rdruZeWrYEAgKAO3doKwo1oobJ2seHCkgA9U7WatAzoI0FlQMoeJbkSILavnCHD9NEojbUkOcCkLcwKIg8W4cPyy2N87CJT2nb1dyL0SgabWqcRC5eVH6eC0PNk7XtdjVK9jAD2sjfcgBuFGkdJTe5s6VePdrPqLiYvC5qQy16NhrVXUmiFiMfUPdkrYY8F4aa9Xz8OHD7Num4VSu5pSkf23HDYpFXFjeiWqPo66+/RuPGjeHr64vo6Ghs2bKl3Ndv2rQJ0dHR8PX1RZMmTfDNN994SFIZycoSXfdKLallqH3jQaVXntmiZj2r0Sjixqd7YWPbvn3qy9+ybeOhtO1q7qVNG8DXl7YkOXlSbmnchiqNol9++QXjx4/HW2+9heTkZPTo0QPx8fFIS0uz+/rU1FQkJCSgR48eSE5OxptvvomXXnoJS5Ys8bDkHmbfPqrIaNCAerooHbVO1rZ5Lko3PgH16lkQ1DVZMxkPHVJfSFhNem7RgvK3cnPVl7+lJj2bzVSFBqjT0HcQVRpFn3/+OUaPHo0xY8YgIiICM2fORFhYGGbNmmX39d988w0aNGiAmTNnIiIiAmPGjMEzzzyD6dOne1hyD6OmLxyg3slaLXkuDKbnI0dop3m1cO4ccO0aDc5K3K7mXtQaElb6djX3YhsSVtvYoeSO4fZQq56dQHVGUUFBAfbt24e4uLgSz8fFxWH79u1237Njx45Sr+/Xrx/27t2LQjVW4DiKWvJcGCwx9cwZ4Pp1eWVxBrUZn6Gh1AnaYhF7WKkBpud27ciNr3TUGhJmeS5+fsrPc2GwyVpN1atqaeNhi5pDwg6iwL0Iyuf69esoLi5G7dq1Szxfu3ZtXLlyxe57rly5Yvf1RUVFuH79OkJDQ0u9Jz8/H/n5+dbfs7KyAACFhYWSG1LsfFKf12vXLhgAFHXoAEENxl+VKvBq1gyGkydRtGMHhP793aYbKTHt3AkjgOLoaFg8LKer+jHFxMB44QKKd+yAJTbWHaJJjnHnTpgAFMfEOKxnue8fY3Q0TH/8AcvOnShW4D1sTz+G7dvhBcDSoQOKBUEVrRsMHTrAC4CwezeKJJLX3feOYe9eeBUVQahVC0WhoarQM6KiYAYgJCejMCcHgLLHZoYzMqrOKGIY7il7FgSh1HMVvd7e84ypU6diypQppZ5fu3Yt/P39nRXXIRITEyU7l++NG+h38SIEoxGr09NRvHKlZOd2Jx3q1kXYyZM4uWgRTthUOEipG0kRBPTftg0+ALYWFuKWTHp2Vj/hgYFoDeDK8uXYyzbVVDjd1qxBMIAD3t4476Se5bp/agkCugLI3bQJ6xT8HbTVT+SSJWgM4EzNmjiiYJlt8b19G/0ACIcPY83vv6NYwo2v3XXvNP7rL0QCuNqwIXatWuWWa0iOICC+alV4Z2dj97x5QHi4csdmG+44kdOnOqMoODgYJpOplFcoPT29lDeIUadOHbuv9/LyQs2aNe2+Z9KkSZgwYYL196ysLISFhSEuLg6BgYGV/BQlKSwsRGJiIvr27Quz2SzJOQ1//EEHrVuj38MPS3JOT2BMTQU2bUKLzEyEJyS4RTeSkpoKc1YWBLMZXZ97jprJeRBX9WPw9wd++AF1L15EQkKCGyWUiKIieD3+OACg7ejRaBsR4dDbZL9/unYF3nsPVa5eRUKnTkBwsOdlKAd7+jF98AEAoNEjj6ChGu4NABAECO+8A+Ply+hfuzaErl0rfUp33zumX38FANRKSFDHd/AupthYIDERXb28sApQ7thsA4v0OILqjCJvb29ER0cjMTERQ4YMsT6fmJiIwYMH231PbGws/vzzzxLPrV27FjExMWX+M318fOBjZ4Izm81uuwEkPfe+fQAAQ+fOir9hS3A3lGPcswdGm53m3an3SnE3J8fQvj3MVavKJobT+uncGTAYYDh3DuaMDKCMBYViSEmhCq6AAJjbtHG6O7ts90+tWpSAf+IEzPv3A/HxnpfBAaz6yc8HDh4EAHh17UpJ7WqhUyfgjz/glZQE9Owp2Wnddu/cHaNNXbrApCY9d+4MJCbCKzkZaNRIuWOzDc7Ip7pEawCYMGEC5s6di++++w4pKSl45ZVXkJaWhrFjxwIgL8+TTz5pff3YsWNx7tw5TJgwASkpKfjuu+8wb948TJw4Ua6P4H7UlvzLaNeOBuJr16jaSOmoLZmdERgIMG+LGpIm1bJdjT3UlGx94ADltgQHA40ayS2Nc6hJz7duUUI7oJ7KM8ZdPRvUMG64gMpGF2LEiBGYOXMm3n//fbRv3x6bN2/GypUr0bBhQwDA5cuXS/Qsaty4MVauXImNGzeiffv2+OCDD/Dll1/iYRWFlZxCbSW1tvj6iuXWahjc1Gp8AuqaRLiePYNatquxh5r0zLb2aNxYcSHVCmFGXEoKvNTWf8sBVBc+Yzz//PN4/vnn7f5twYIFpZ7r2bMnktRUflwZWEmtv7+4s7Ga6NSJBo3duwGbEKniKCy0usBVO1kvWKCOSUQLRtGePdSAUsnGhpr1fG9LDyUbG2pdtALUCLhBAxjS0lCNNa3VEKr0FHEqgIUaoqMBLxXavWrphXH4MPUaqVYNaNZMbmmcx3ZlfbcaU5Hk5Iib16pxElFTSFjNRlG1atTdGlD+2KFmPQNWuatpcLsPbhRpEbV/4Zh7du9eZe9lZNuNVm15LgDQti1Vy928KW5TokSSkigkXLcudYlWG2oJCd+8qd48F4ZaQmhq62R9L3dzKKufOCGzINKjwpGcUyFqN4rYXkZ37lDVkVJR0yaw9vD2BqKi6FjJkwjTs9qS2W1Rw2TN8lyaNFF26Kk81KDnixeBS5doIcX2ElMbd/VcnXuKOIonN1d9rePvxWSy5gcY2ECtRNRaeWaLGiYRtRv5gDr0rDXjU6khYRbaa9MGqFJFXllcpUMHCEYj/G7cIANPQ3CjSGvs308hp5AQoEEDuaVxHaWXfd6+Le7IrVYXOMAna0/B9Lxvn3JDwmr3fAJi/tb168DZs3JLYx82pql53Kha1bovnqIXri7AjSKtoeaSWlvuDsxGpRpFe/fSSrRBA6rGUCtsAkxKUubeS1euAGlpdC+z6iI1YhsSZsa0khAEbXg+fXyA9u3pWKmGvhY8nwCEu0adYheuLsKNIq2hhdUeIMp/+DCMNhvzKgYteC8AIDycqnby84FDh+SWpjRsAmnViowKtWI0ikadEifrc+eA9HSqVmV5ZmpFyd5PNfeQuwcLN4o4qoBN1l26yCtHZalXDwgNhaG4GEGpqXJLUxqtGEUGg7InEa3oGVC0nq0TW7t2VC2nZhSsZ5w6BWRmko7V2EPOBsE279Nm8261w40iLXHtGjUuA9QdrwZKTNaKK/sUBGDnTjpWu/EJKHsS0UioAYCi+29ZjSItGZ9KzN9i93OHDuraV84ebdqgyNsbhqwsQGljdCXgRpGWYKvqiAgKiaidu4ad4so+z5+nXBcvL/WW1NqiVKPIYtFGnguD6fnQIcotUhAGjYR0ANAGvIGBVIl75Ijc0pRE7f2JbPHyQmbTpnSstLGjEnCjSEsw74UWJhBAuV1TmfEZGQn4+ckrixSwAfroUaqqUwrHjwNZWaTjNm3klqby3A0Jo7gYSE6WWxorhqIiGNgWSFoYO4xG8Z5W2mStJeMTwE3WyV9peq4E3CjSElrJJ2LcjVlXvXIFuHFDZmFs0FLoDLDuZQRBEPdyUwJsoFXrdjX3otD8rYC0NBhyc4GgIPKyaAEF6hkFBaIxrBWjiN0vStJzJeFGkVbQWqgBAKpXh3B3JWJQ0mStpeRfhhInEa5nj2ANT6t1uxp7KFDPOHyYqjyrVwdY2Enl3GKeov376bNpAI18Azg4doxCDf7+2gg13EVxvTAKC0VvCp+s3YvWjHxAkXq2FjJoxHsBoERLD+TkyCsLg3mYO3ZUdw85G+6EhEAIDqZxke2koHK4UaQV2BcuJkYboYa7KM4oOngQyMuj1R5bJWkBpU3WttvVaGmyZr2KzpyhrssKwOop0pLxyTYPtlioMakS2LGDHmNj5ZVDSgwG6xitmLGjknCjSCtoLZ/oLlajiHWQlhvb5phaCTUAlLdjNFJl3eXLcksjbldTu7a6t6u5l2rVxLwdJRj6WVkIOH+ejrVkfALKM/S1aBRB7FdkHRtVjoZGdZ2jtcqzuwiRkbB4ecGQnk7bPciNFvNcgBJ7GSliErHVs0ZCDVYUNFkbkpJgEAQIat+uxh5Mz2xslJP0dOD0aTrW2Nhh9RRxo4ijGLKzKXYOaM5TBF9fZDZqRMdKGNy0VnlmC5tElDC4aWW7GnsoySi6K4Oghb4598I8Mtu3y+9lZl6i1q210UPOBoHdzydPKiYkXBm4UaQFWJv1sDCKpWuMmy1a0MH27fIKkpEhdm7V4mTNDD259QyIk4jGVtUAxM+0c6fs2yMY7v6vBS3quWNHwGQCLl2S38us0dAZAKBGDaBlSzpmn1PFcKNIC2g1pHOXGxERdLBtm7yCsJV9s2ZAzZryyuIOunWjx927qZpELi5epA1KjUZt3tPt29PeVxkZ1KBSLiwWGO56PoWuXeWTw134+4ub28pt6GvZKALEsUPuMVoCuFGkBbQc0gGQwVYh+/dTqFAuNJq3ZaVlS6qqy82Vt+MyG1jbtQMCAuSTw114e4ueRjknkePHYcjIQLG3N4T27eWTw50oYbIuLBST6rVqFDGjWm7jUwK4UaR2BEG8ETVqFOUFB0MIC6PtEeTMw2ADqxZX1QB5ZpQwuDE9swlNi3TvTo9yTtZ3/8c3mzUjQ02LKOF+PnCAFhrVqgEsFUBrsO/qnj3UuVvFcKNI7Zw6RZUNPj5iDxQNIrAVllyTSFGR6AJnE5oWUcLKeuvWkrJoESXo+e61rZ5YLcKMogMH5PMys3GjSxdttfGwpXlzSinIy1PUvn6uoNH/kI5gE0jHjmQYaRRrzoNck8iBA9QZNyiIKki0iu1kLUfFTna22LRRy0YRM/JPnqRFjRwwo4jl7GmR+vWpz5XFIl9VpdbziQBqmyH3GC0R3ChSO8wo0rL3AoCFDSg7dlAYzdPYhnS0utoDyLg2m6mB49mznr/+rl30/w0Lox+tUr26aFzLEdq5ds1aSZmh1ZAOQ+4QGjOKtBp2Z7BFjMrzijQ8uusEnRhFaNsWqFKF9nc7etTz19dDSAcA/PyADh3oWI4VH7um1u9nQN4QGivFj4hAoRaT2W2Rc7K+dIkWF0ajNtt42GLrKZK7L1Ql4EaRmklPF/vmaH0V4uUlJpJ7ehIRBP0Yn4C8k7UekqwZ7DOye8uT3NWzJkvx74V9xh07PN8XatMmemzfHggM9Oy1PU1MDHmZr1wBUlPllsZluFGkZtgE0qYNueO1jlyTdWoqhZPMZgovaR259FxcLIYa9GQU7dtH1Ume5O7/1qLlPBdGZCR5mTMzPe9l3ryZHu+7z7PXlQNbL7OKQ2jcKFIzevJeAPIl8jE9x8TQF1/rsMn68GHg1i3PXffQIeD2bepN1Lat564rF02a0H5jhYXUld5T5OVZr6cLT5GXl9hbbMsWz16bGUU9e3r2unIhp/dTIrhRpGb0ZhTFxlJsPjUVuHDBc9fVU54LQDvTN21asgeWJ2B67tKFtmfQOgaDPJPI3r3USyYkhP7PeoAZJRs3eu6a166Jnim9jB09etAjCxuqEG4UqZXsbCApiY71EGoAKCYfHU3Hf//tueuyL7he9AwAvXrRoycnEXYtNrDqATkmEfbd6dWLDDM90Ls3PW7c6LkkYOaVat0aCA72zDXlpmdPuqeOHaOUAxXCjSK1snUrNRRs1Ih+9AIb3DxlFF28SPtTGY36cYEDop43bPDM9SwW8X96//2euaYSYJ91yxbPdQJm/1P2P9YDnTrRfnPp6UBKimeuqbfQGUC5rWzLGE8uqCSEG0VqhQ1seppAAM8bRew6HTpQm369wPScnOyZvKLDh4EbNyghVg/J7AzmRbhzxzNb2OTlicnsejKKfHxET6+nJmvm/dNDkrUtzMvsSW++hHCjSK2sX0+PejOKunenxMmzZz1T9qlX47NuXWrdb7GIK153wvTco4d29+Gyh9HoWUN/xw4gPx8IDaX/r57wpJ5v3RI7s+vNKLINVaoQbhSpkYwMcX8ZPa32AKBqVdGT4O7BTRD0a3wC4mf2RAiN/S/1dj8DntWzrZGvl3wihm2enLvzirZsoWuEh5MBqifuu4+M/ZMnKf1AZXCjSI1s2kRfuJYtaUWvNzy14ktNBdLSyDOll+oRWzyl5+JiMdSgR+OT6XnHDvf3K9Kz8dmxI+DvD1y/Dhw54t5rJSbSY58+7r2OEgkKEvsVqTCExo0iNcJWe3r8wgElJ2t3rviYnrt0oVwXvcFW1gcP0kTiLpKTqbFeUBAQFeW+6yiV5s1pcZOfL+b7uIOcHHFTVD0aRd7enssrYkZR377uvY5SUXEIjRtFakTPIR2AmjiazeSaPXXKfdfRaz4RIyRE3LTUnYMb03PPnvroT3QvBoNnqv1YxWqDBkDjxu67jpJhel63zn3XuHCBStKNRv2OHWxBtX696vZB40aR2rh8mUpKDQZ9lXra4u8vdrdeu9Y91xAEfZaI3wv77Gzl6w6Yka9H7wWD6Znpwh0wQ0CP+USMfv3ocf1697VAYN+Vjh31sf2SPe67jzxzZ89SbpGKUJ1RdPPmTYwcORJBQUEICgrCyJEjcauCkuFRo0bBYDCU+OnCNhdVG+wL1749ULOmrKLISnw8Pa5a5Z7zHzhAGxv6+4sb0eqR/v3pcdUq96z4cnLEfCI2YekRFmbZvZtaE7iDlSvpkf1P9Uj79uQBzc52X7d2vYfOACqIYY1J3TVGuwnVGUWPP/449u/fj9WrV2P16tXYv38/Ro4cWeH7+vfvj8uXL1t/VrIBQm0wuZlRoFfY59+wgXqvSA3T8wMPUI8TvdKrFzW9O3/ePZtp/v035dI0akSFA3olLIz2e7NY3OP9PHeO/n9GIxAXJ/351YLRKBrfq1dLf36LRfTI6dkoAkTj2x16diOqMopSUlKwevVqzJ07F7GxsYiNjcWcOXPw119/4fjx4+W+18fHB3Xq1LH+1KhRw0NSS0hREbBmDR0/+KC8sshN27ZAvXpUreOOPjorVtBjQoL051YT/v5ifoA7FhLsnAkJ+g3pMNi95g49s9V6bKx+QzoMW++n1CQl0Z5nVavq28MMiAvXjRvdX1UpIV5yC+AMO3bsQFBQEDqzHY8BdOnSBUFBQdi+fTtatGhR5ns3btyIkJAQVKtWDT179sSHH36IkJCQMl+fn5+P/Px86+9ZWVkAgMLCQhQWFkrwaUTY+So6r2HLFnjdugWhZk0UdehAu2trnPJ0Y4qLg3H+fBSvWAGLlPkoN27Aa+dOGAAUPvCAovXs6L1TGYz9+sG0ejUsK1eiePx46U4sCPBauRIGAEVxcRDc8Bk8oR+pMMTFweuTTyCsXo2ivDxJk85NK1bACKC4Xz9YbHShJv1IRq9e8DIYYDh4EIXnzpXZ1sQV3Rh//x0mAJa4OBQbDIoeOypLhfpp1gxeYWEwnD+PovXrIcgYHnfmf6gqo+jKlSt2DZmQkBBcuXKlzPfFx8dj+PDhaNiwIVJTU/HOO+/g/vvvx759++BTRmhk6tSpmDJlSqnn165dC39/f9c/RDkkVpDM2ur779EMwIU2bZDEPEY6wZ5uQmvVQicAd5YswQYJk6HrbdqEGIsFmQ0bYuPhw7QFhcKp6N6pDFV8ffEAAGzZgrWLF6NIovs/4Px53H/uHIrNZqzOz0exG0Pa7tSPVBiKihDv7w/z9evY8dVXuClRx2ljYSHi162DEcCWqlWRaUfPatCPlNwXHo7qJ0/i8KefIq2CMJczuum1cCGCACSHheGCWlM0nKQ8/bRr2RKNzp/HuW+/xeHiYg9KVZI7d+44/FpFGEWTJ0+2a4DYsmfPHgCAwY6LXRAEu88zRowYYT1u06YNYmJi0LBhQ6xYsQJDhw61+55JkyZhwoQJ1t+zsrIQFhaGuLg4BAYGliursxQWFiIxMRF9+/aF2Wwu83Veb74JAAgdPRoJOgnrlKubbt0gfP45Ai5eREJ4uGTbFph++QUAUHX4cMXr2dF7p7IIn30G46lT6GcwQJBIJ8bPPgMAGO6/H/2GDJHknPfiKf1IhSk+HliyBN1u3YJFIj0b1q6FV14ehDp10O2FF0qEKdWmH6kwJicDU6agXWoq2pShZ6d1c+4czGfPQjAaEfnGG4jUeCGMI/oxFBUBiYlocugQGsTHyxYiZ5EeR1CEUTRu3Dg8+uij5b6mUaNGOHjwIK5evVrqb9euXUPt2rUdvl5oaCgaNmyIk+WUCvr4+Nj1IpnNZrcNHuWe+8wZa6Kk14MPUp8eHWFXN8HB1MByzRqYly8HJk2q/IUKCqy5BqaBA2FSiZ7deV8CAB56CJg+HV5//AFU8F11mD/+AAAYBw6E0c16drt+pGLwYGDJEpj++AOmDz+U5px39WwYPBjmMvaVU41+pGL4cGDKFBjXrYMxNxcoZ6HrsG7uJhQbunWDuU4dqSRVPOXqJyEBqFIFhnPnYD54EIiJ8axwd3Hm3lZEonVwcDBatmxZ7o+vry9iY2ORmZmJ3Ta7Se/atQuZmZnoyvrWOMCNGzdw/vx5hKppT5pff6XH3r0BNSaJu4thw+hx8WJpzrduHW3mWKeO2P2WQ5MIAPz1lzRJk2lpwM6dtHJ8+OHKn08rDBxIC54jR6Sp9isqAn7/nY7Z/5ADtGoFtGhBiyBWVFFZli+nx0GDpDmfFvDzEwsIliyRVxYHUYRR5CgRERHo378/nn32WezcuRM7d+7Es88+iwEDBpRIsm7ZsiV+vzsQZGdnY+LEidixYwfOnj2LjRs3YuDAgQgODsYQN7ns3QIzimxCgRzQytpopKqPM2cqfz6m52HD9NlduSw6dqSy8exsaUrGmRHbowcZoByiWjWxZP633yp/vs2baYuWmjX12+zVHgYDwFInli6t/Plu3BCbvXKjqCRs0bNkiSq6W6vKKAKA//3vf2jbti3i4uIQFxeHyMhI/PjjjyVec/z4cWRmZgIATCYTDh06hMGDB6N58+Z46qmn0Lx5c+zYsQMBAQFyfATnOXmS9ocymQA1GXKeoFYtsWS8soNbfj6wbBkd81V1SQwG0SsnxWTNzsH1XBqmEyn1PGQIbWzMEWGT9cqVgBOJuHZZvJi8clFRkuU2aoaEBOr1dvKkKopWVPctqVGjBn766adyXyPYWKN+fn5Yo/ZKLea96NOH8mg4JRk2jJo4/vorMHGi6+dZt442Jg0N5aEzewwfDsyYQWGCvDxq6ugK58/z0Fl5DB4shtBSUoCICNfOU1wsLhS48VmaDh2Ahg2pseWff1bOC79oET0+9pg0smmJgABqmLl8OfDLL9RjTsGozlOkOwQB+PlnOuahM/sMHUpetD17aBJxlYUL6ZGHzuzTuTOF0G7fFvMnXIHpuXt3MkA5JbENoVWwACyXtWuB9HQKnel5X7myMBiAf/yDjr//3vXzXLwoNpDlY7R9nniCHn/4gbp+KxhuFCmdPXvI5ejry0NnZVG7ttjhe/58185x86aYCMgGSk5JjEbgqafoeN48184hCOJ72bk4pWG6WbCAwjKuwPT8j3/orlrVYZ58kh7XrKHNtl1hwQK6r3v0ABo0kEw0TTFoEBn758+TV1/BcKNI6cyZQ4/DhvH2/OXxzDP0+MMPrnWR/d//KKcoMpKSijn2efppekxMpAoyZ9myhXILqlQBHnlEWtm0xKBB5OG5dEnc2scZrl0TvXnsf8YpTfPmQNeu5L24JzfVIYqLxTH62WellU1L+PqKoUVXF64eghtFSub2bTFW/c9/yiuL0klIoN2vr14Vk6UdRRDEgW3MGL4HV3k0aUKhGFudOQN7z4gRlGvAsY+PD8A2unZFzwsW0OIgOhpo105S0TQHW1B9/bXzXrnERMpJqlZNLETg2IcZ54sXA+XsQCE33ChSMnPnAjk5tHt49+5yS6NszGZg7Fg6/vxz5967YQNw8CD11GCxb07ZPP88Pc6a5VzVzoULYn7c//2f9HJpDbYQWr4cOHHC8fcVFABffEHHzz0nvVxa4/HHySt37pzzuXJffkmPTz5J4wenbDp2pE1yCwpo7FAo3ChSKgUFwN1tEPCvf3HvhSM8/zzg7U2VTTt2OP6+Tz6hxzFjeGNMRxgyBGjcmHqzOJOg+sUXtBLv2RPo1Ml98mmFiAhgwADyyrGxwBF+/ZWSf2vX5vlxjuDnJy6oZsxwvJdOcjJ1vzcagZdecp98WuKVV+hx1ixpmsC6AW4UKZUff6SBrW5d0Y3OKR/bSWDyZMfes3cvucBNJsBmrztOOZhM4uA2bRrlYlXE9evAt9/S8auvuk82rcF09f335GmriKIiYOpUOn7pJQrDcSqGLai2bqXxwBGYnkeMAJo2dZ9sWmLoUGqDcO0ahSsVCDeKlMjt28A779DxhAl8YHOGN9+kUNratRUPboIgTu6PPw40auR28TTDM8+QwX72LPDVVxW//r336L5u3x6Ij3e3dNqhRw/6yc+ne7sivvuOtgepUUMMc3Iqpm5d4IUX6HjSpIrLxnfuFBtjvvGGe2XTEl5eNBYAwIcfUtWvwuBGkRL56CMqD23aVPyichyjaVNxMvjXv8r3Yvz6K60M/fzoC8pxnCpVgH//m47//e/yEycPHxa9RDNmULiB4xgGgxg6+/FHmozL4uZN4N136fi99yj5l+M4kyZR8n9SEuVzlkVxMTBuHB2PGkUVqxzHefJJoHVrul/Z4l9B8NFJaezYAUyfTseff+5612A988471Pn70CHgrbfsv+byZXFge/11akrIcY4nn6SuwJmZFOK1t7rOz6e/FRcDDz0kbsnCcZyOHcV+Ok88Qfq+F0GgBdTVq1RmznJkOI5TqxYwZQodT5gAnD5t/3Wffgrs2wcEBQEff+w5+bSCyUSLIwD4739daznhRrhRpCROn6ZtD4qKqIfLwIFyS6ROatYUG9d99lnp/iOZmaTb69cpnMPd365hMlHHZX9/2iLl9ddLJqkWFVETwv376X+i0BwCVTBzJuVinDlDhpGtB1QQyFu3aBH9T374gfJjOM7z8stUCJCTA6+HH4Z3VlbJv//+u7jQ+uwzymPkOE/fvsCLL9LxE0/QljYKgRtFcmOxAGfPosG6dfDq3p08GG3aALNn84qzyjBokJg4/dRTlDuUnEw9jDp3ppVecDCF0HjOlutERIjltdOnkzG/YwftGN63L+115OVFpfh8Sw/XqV5dvFdXrCCPW2IisHs3eZFY2GzmTLq/Oa5hNNIiqm5dGI4exX2vvgrD4sXAgQMUXhs2jMbs0aPF/kYc1/jkE/KC3rhBe01+8w0Z/cXF8solcBwiMzNTACBkZmZKe+JXXxUEWuvRT4cOgnDpkrTXUDEFBQXCsmXLhIKCAuffXFwsCC+9VFK/7KdePUFISpJeYA9TKf1IyaxZguDlVVrPVaoIwrJlsomlGP1IRWKiIAQGltazwSAIn37q9Ok0px+pOHpUsDRubH/seOYZQSgqkltC2ZHk3rlxQxC6di2p3//7P+mEvIsz8zf3FMlNeDgEsxlZDRqg+KOPgG3b+IpaKoxG6o2zYgXQpw+FcJo0oQTs/fuBqCi5JdQOY8cCu3ZR+Ld2barmYaGzwYPllk47PPAAJa4/+yxQvz55OwcOpHFj4kS5pdMOEREo2rULJ4YNg9CsGVXz3Xcf7Y84bx7fMFoqatQANm4kD2dkJIV9mzWTVSQvWa/OAZ56CkUjR+LvtWuRkJAAE9+4UXoSEuiH4146dKAW/hz3EhZG4XWOe6lWDSn/+AcaL1wIMx+X3YfZTLlcL79MoTNX9q6UEG4UyY2Pj+w3AYfD4XA4smMyye6F4+EzDofD4XA4HHCjiMPhcDgcDgcAN4o4HA6Hw+FwAHCjiMPhcDgcDgcAN4o4HA6Hw+FwAHCjiMPhcDgcDgcAN4o4HA6Hw+FwAHCjiMPhcDgcDgcAN4o4HA6Hw+FwAHCjiMPhcDgcDgcAN4o4HA6Hw+FwAHCjiMPhcDgcDgcAN4o4HA6Hw+FwAABecgugFgRBAABkZWVJfu7CwkLcuXMHWVlZMJvNkp9fzXDdlA/XT/lw/ZQP10/ZcN2Uj5r0w+ZtNo+XBzeKHOT27dsAgLCwMJkl4XA4HA6H4yy3b99GUFBQua8xCI6YThxYLBZcunQJAQEBMBgMkp47KysLYWFhOH/+PAIDAyU9t9rhuikfrp/y4fopH66fsuG6KR816UcQBNy+fRt169aF0Vh+1hD3FDmI0WhE/fr13XqNwMBAxd9ccsF1Uz5cP+XD9VM+XD9lw3VTPmrRT0UeIgZPtOZwOBwOh8MBN4o4HA6Hw+FwAHCjSBH4+Pjgvffeg4+Pj9yiKA6um/Lh+ikfrp/y4fopG66b8tGqfniiNYfD4XA4HA64p4jD4XA4HA4HADeKOBwOh8PhcABwo4jD4XA4HA4HADeKOBwOh8PhcABwo0h2vv76azRu3Bi+vr6Ijo7Gli1b5BZJFiZPngyDwVDip06dOta/C4KAyZMno27duvDz80OvXr1w5MgRGSV2H5s3b8bAgQNRt25dGAwGLFu2rMTfHdFFfn4+XnzxRQQHB6NKlSoYNGgQLly44MFP4T4q0s+oUaNK3UtdunQp8Rqt6mfq1Kno2LEjAgICEBISgoceegjHjx8v8Ro93z+O6EfP98+sWbMQGRlpbcgYGxuLVatWWf+uh3uHG0Uy8ssvv2D8+PF46623kJycjB49eiA+Ph5paWlyiyYLrVu3xuXLl60/hw4dsv5t2rRp+Pzzz/Gf//wHe/bsQZ06ddC3b1/rnnRaIicnB+3atcN//vMfu3///3buNSSqfQ0D+DO5Z4ZQGTRNRy2zooto041iRFKMNEGQhKigmAoDJYXp8qEbBRUoQZEfouiCFBQGpVJ0NdQpMctS0S4fBDWjZpDupaU18+4P55x1znjZydk6a+t6fiDM/Ndl3vXwgi/LNQ4nC7vdjrKyMpSUlKCmpgbfvn1DRkYG3G63ry5j1PwuHwBYuXKlVy/dvHnTa/t4zcfhcGDr1q2oq6tDRUUFfv36hdTUVHR3dyv7aLl/hpMPoN3+iYqKQmFhIZ48eYInT54gJSUFmZmZyuCjid4RUs2SJUskJyfHa23OnDmya9culSpSz4EDB8RisQy6zePxSHh4uBQWFiprP378EJPJJKdOnfJRheoAIGVlZcr74WTx6dMn0ev1UlJSouzz5s0bmTBhgty+fdtntftC/3xERGw2m2RmZg55jJby6erqEgDicDhEhP3TX/98RNg//QUFBcnZs2c10zu8U6SSvr4+PH36FKmpqV7rqampqK2tVakqdbW2tiIiIgIxMTFYu3Yt2traAADt7e1wuVxeWRmNRiQlJWkuq+Fk8fTpU/z8+dNrn4iICMTFxWkmr+rqakyePBmzZs3Cli1b0NXVpWzTUj6fP38GAAQHBwNg//TXP5//YP8AbrcbJSUl6O7uhtVq1UzvcChSybt37+B2uxEWFua1HhYWBpfLpVJV6lm6dCkuXLiAO3fu4MyZM3C5XEhISMD79++VPJgVhpWFy+WCwWBAUFDQkPuMZ+np6bh48SIqKytx9OhR1NfXIyUlBb29vQC0k4+IYPv27UhMTERcXBwA9s//GiwfgP3T0tKCgIAAGI1G5OTkoKysDLGxsZrpnT/ULkDrdDqd13sRGbCmBenp6crr+Ph4WK1WzJgxA+fPn1cecmRW//X/ZKGVvNasWaO8jouLw+LFixEdHY0bN24gKytryOPGWz55eXlobm5GTU3NgG3sn6Hz0Xr/zJ49G01NTfj06ROuXr0Km80Gh8OhbB/vvcM7RSoJCQmBn5/fgOm5q6trwCSuRf7+/oiPj0dra6vyLTRmhWFlER4ejr6+Pnz8+HHIfbTEbDYjOjoara2tALSRT35+Pq5du4aqqipERUUp6+yffxkqn8ForX8MBgNmzpyJxYsXo6CgABaLBUVFRZrpHQ5FKjEYDFi0aBEqKiq81isqKpCQkKBSVf8cvb29ePnyJcxmM2JiYhAeHu6VVV9fHxwOh+ayGk4WixYtgl6v99rH6XTi2bNnmssLAN6/f4/Xr1/DbDYDGN/5iAjy8vJQWlqKyspKxMTEeG3Xev/8Lp/BaKl/BiMi6O3t1U7vqPBwN/1bSUmJ6PV6OXfunLx48ULsdrv4+/tLR0eH2qX53I4dO6S6ulra2tqkrq5OMjIyJDAwUMmisLBQTCaTlJaWSktLi6xbt07MZrN8+fJF5cpH3tevX6WxsVEaGxsFgBw7dkwaGxvl1atXIjK8LHJyciQqKkru3bsnDQ0NkpKSIhaLRX79+qXWZY2Yv8rn69evsmPHDqmtrZX29napqqoSq9UqkZGRmsgnNzdXTCaTVFdXi9PpVH56enqUfbTcP7/LR+v9s3v3brl//760t7dLc3Oz7NmzRyZMmCB3794VEW30DocilZ04cUKio6PFYDDIwoULvb4aqiVr1qwRs9kser1eIiIiJCsrS54/f65s93g8cuDAAQkPDxej0SjLli2TlpYWFSsePVVVVQJgwI/NZhOR4WXx/ft3ycvLk+DgYJk4caJkZGRIZ2enClcz8v4qn56eHklNTZXQ0FDR6/UydepUsdlsA659vOYzWC4ApLi4WNlHy/3zu3y03j+bN29Wfh+FhobK8uXLlYFIRBu9oxMR8d19KSIiIqJ/Jj5TRERERAQORUREREQAOBQRERERAeBQRERERASAQxERERERAA5FRERERAA4FBEREREB4FBEREREBIBDERGNI8nJybDb7WqXQURjFP+jNRGNScnJyZg/fz6OHz+urH348AF6vR6BgYE+r8dut6OjowPl5eU+/2wiGhm8U0RE40ZwcLAqAxEA1NfXY8mSJap8NhGNDA5FRDTmbNy4EQ6HA0VFRdDpdNDpdOjo6Bjw57Pk5GTk5+fDbrcjKCgIYWFhOH36NLq7u7Fp0yYEBgZixowZuHXrlnKMiODIkSOYPn06Jk6cCIvFgitXrgxZy8+fP2EwGFBbW4u9e/dCp9Nh6dKlo3n5RDRKOBQR0ZhTVFQEq9WKLVu2wOl0wul0YsqUKYPue/78eYSEhODx48fIz89Hbm4uVq9ejYSEBDQ0NCAtLQ0bNmxAT08PAGDfvn0oLi7GyZMn8fz5c2zbtg3r16+Hw+EY9Px+fn6oqakBADQ1NcHpdOLOnTujc+FENKr4TBERjUmDPVPUfy05ORlutxsPHjwAALjdbphMJmRlZeHChQsAAJfLBbPZjIcPHyI+Ph4hISGorKyE1WpVzpudnY2enh5cunRp0FrKy8uRnZ2Nd+/ejc7FEpFP/KF2AUREo2nevHnKaz8/P0yaNAnx8fHKWlhYGACgq6sLL168wI8fP7BixQqvc/T19WHBggVDfkZjYyMsFssIV05EvsahiIjGNb1e7/Vep9N5rel0OgCAx+OBx+MBANy4cQORkZFexxmNxiE/o6mpiUMR0TjAoYiIxiSDwQC32z2i54yNjYXRaERnZyeSkpKGfVxLSwtWrVo1orUQke9xKCKiMWnatGl49OgROjo6EBAQgODg4L99zsDAQOzcuRPbtm2Dx+NBYmIivnz5gtraWgQEBMBmsw16nMfjQXNzM96+fQt/f3+YTKa/XQsR+R6/fUZEY9LOnTvh5+eH2NhYhIaGorOzc0TOe+jQIezfvx8FBQWYO3cu0tLScP36dcTExAx5zOHDh3H58mVERkbi4MGDI1IHEfkev31GREREBN4pIiIiIgLAoYiIiIgIAIciIiIiIgAcioiIiIgAcCgiIiIiAsChiIiIiAgAhyIiIiIiAByKiIiIiABwKCIiIiICwKGIiIiICACHIiIiIiIAHIqIiIiIAAB/At9wBNt//9WKAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "λ, X = eigen(C)\n", + "t = range(0, 20π*5, length=1000)\n", + "# initial condition from the real part of the first eigenvector:\n", + "x = [(exp(C*t)*X[:,1]) for t in t]\n", + "plot(t, [real(x[1]) for x in x], \"r-\")\n", + "plot(t, [real(x[2])+2 for x in x], \"b-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solutions $x(t)$\")\n", + "title(\"first normal mode \\$\\\\omega_1 = 0.1\\$\")\n", + "legend([L\"first mass $x$\", L\"second mass $x+2$\"])\n", + "grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHPCAYAAABOau4WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADHSUlEQVR4nOydd3xVRd7/P+eW9EZCKgkk9NARkCIIilSxYd9dFNvzUxcby9obui7qWtB9dnV17T6WtS5qaKI0FYTQpUNIAgSSQHq9yZ3fH8Pk3CQ3N+fe0+Zc5v165XVvzj1lvjNzZj7TviMRQggEAoFAIBAIBD6xmR0AgUAgEAgEAisgRJNAIBAIBAKBAoRoEggEAoFAIFCAEE0CgUAgEAgEChCiSSAQCAQCgUABQjQJBAKBQCAQKECIJoFAIBAIBAIFCNEkEAgEAoFAoAAhmgQCgUAgEAgUIESTQCAQCAQCgQKEaBIIBAKBQCBQgBBNAoFAIBAIBApwmB0AgUAgEAgEAjVIkqT6HoSQTs8RPU0CgUAgEAgszSOPPAJCiKo/JQjRJBAIBAKBwLJUV1cjOjrakGcJ0SQQCAQCgcCyLF++HFOnTjXkWUI0CQQCgUAgsCzbtm3D8OHDDXmWEE0CgUAgEAgsidvtht1uN+x5QjSdJTz55JOarC6wKu+++y4kScKRI0fMDkqnnO1ppTXV1dW49957kZaWhrCwMAwbNgyffPKJ5tf++uuvmDZtGqKjoxEVFYULLrgAP/30k6pzrXJPs58vbFJ+rtaoeb+qqqpw//33Y+rUqUhMTIQkSXjyySf9ev7PP/+MMWPGtDv+ww8/4Oabb0b//v0RGRmJbt264bLLLkNubq5f92+LEE0CgSComT17Nt577z088cQTWLp0KUaNGoXrr78eH330kWbXbtq0Ceeffz7q6urwwQcf4IMPPkB9fT0mT56MX375JaBzrXJPs58vbFJ+rh6oeb9OnTqFN954Aw0NDbj88ssDev6PP/6ICy64oN3x1157DUeOHME999yDnJwcvPLKKyguLsaYMWPwww8/BPQsAAARnBU88cQThKfkrqmpMfR577zzDgFA8vLyDH1uIPCWVlbmu+++IwDIRx991Or4lClTSFpaGmlqatLk2mnTppHk5ORW+bqyspJ07dqVjBs3rtX1Ss+1yj3Nfr6wSfm5WqPm/SKEELfbTdxuNyGEkJKSEgKAPPHEE36F4ZFHHvF6/OTJk+2OVVVVkeTkZDJ58mS/nuGJKJnbUFxcTG677TaSnp5OQkJCWjLeypUrW87Zv38/uf7660liYiIJCQkh/fv3J//7v//b7l579uwh1113HUlKSiIhISEkIyODzJkzh9TX17c6b926deTCCy8kUVFRJDw8nIwdO5Z8++23rc5hFemuXbvIddddR2JiYkhSUhK56aabSHl5eatzv/32WzJ06FASEhJCMjMzyd/+9jfFFbE/z/E37Lm5ueTKK68kcXFxJCUlpdVv27dvJ1dddRWJiYkhXbp0Iffddx9xuVxk7969ZNq0aSQqKor06NGDPPfcc63ufeDAATJ37lzSu3dvEh4eTtLS0sisWbPIjh07Wp2nVDSpDY/SOGEoTSulea4jCgoKSHR0NJk3b57X38vLywkAcvvttyu+pxW49dZbSVRUFHG5XK2Of/TRRwQA+emnnzS5Nioqilx77bXt7jF79mwCgBw/ftzvc61yT7OfL2xSfq7WqHm/2tKZaNq+fTuZMGECaW5ubjl24MAB8t577/kV5gsuuID07dvXr2s8EcNzbZgzZw6+/vprPP7441ixYgX+/e9/46KLLsKpU6cAALt378aoUaOwa9cuvPjii/j2229x8cUX4+6778bChQtb7rN9+3aMGjUKGzZswFNPPYWlS5di0aJFaGhoQGNjY8t5a9aswYUXXoiKigq89dZb+PjjjxEdHY1LLrkEn376abvwXXnllejbty+++OILPPjgg/joo49w3333tfy+atUqXHbZZYiOjsYnn3yCv/3tb/jPf/6Dd955x6946Ow5gYR99uzZ6N27Nz777DO8/vrrrX675pprMHToUHzxxRe47bbb8PLLL+O+++7D5ZdfjosvvhhfffUVLrzwQjzwwAP48ssvW647fvw4EhIS8Oyzz2LZsmX4xz/+AYfDgdGjR2Pfvn1+2axFePyJE6VppTTP+eLuu+9GSEgInnnmGa+/x8bGIi0tDRs2bPAzpiiEEDQ1NSn6M5Jdu3YhOzsbDkfrzQ+GDBnS8rsW1zY2NiI0NLTdPdixnTt3+n2uVe5p9vOFTcrP9USLd1bN++Uv1dXVqK6uxsaNG1uOffvtt5g5c6bie1RUVGDLli0YOHBg4AEJWG4FKVFRUeTee+/t8Pdp06aR9PR0UlFR0er4vHnzSFhYGDl9+jQhhJALL7yQxMXFkeLiYp/PGzNmDElKSiJVVVUtx5qamsigQYNIenp6S9cl6314/vnnW11/5513krCwsJbzRo8eTdLS0khdXV3LOZWVlSQ+Pt6vnqbOnhNI2B9//PEOn/fiiy+2Oj5s2DACgHz55Zctx1wuF0lMTCSzZ8/uMPxNTU2ksbGR9OnTh9x3330tx/3taQo0PErjhBDlaaU0z3XExo0bCQDy17/+1ed548aNI126dCGEEFJfX0/mzp1L0tPTSXR0NBk9erTPVuOPP/5IACj6M3KItE+fPmTatGntjh8/frzTOPHn2mHDhpG+ffu2agW7XC7Ss2fPdsMXSs+1yj3Nfr6wSfm5nmjxzqp5v9qiZHhu8eLF5IEHHmj5v6OhuY74/e9/TxwOB9m8ebNf13kiepracO655+Ldd9/FX/7yF2zYsAEul6vlt/r6eqxatQpXXHEFIiIiWinxmTNnor6+Hhs2bEBtbS3WrFmDa665BomJiR0+q6amBhs3bsRVV12FqKioluN2ux1z5szB0aNH2/WWXHrppa3+HzJkCOrr61FcXIyamhps2rQJs2fPRlhYWMs5rKfDH3w9J9CwX3nllR0+b9asWa3+z87OhiRJmDFjRssxh8OB3r17Iz8/v+VYU1MT/vrXv2LAgAEICQmBw+FASEgIDhw4gD179vhls9rw+BMnStNKaZ7zxWuvvQabzYabb7655dgPP/yAjz/+uNV5NTU1LVsJNDU1ISsrCz/99BPKy8txxx134NJLL0Vtba3XZ4wYMQKbNm1S9JeWluYzvACwevVqSJKk6G/btm0+7+VrJWJnqxSVXnvXXXdh//79mDdvHo4dO4bCwkLcfvvtLXnDZrP5fa5V7mn284VNys/1RKt3Vs375S+XXXYZlixZAgAoKytDQkKC4msfe+wx/N///R9efvlljBgxIvBABCy3gpSSkhJyzz33kB49ehAAJCoqisyZM4cUFRWRo0ePdqrI33///ZbznnrqKZ/PKiwsJADI008/3e63Dz74gAAg69evJ4TIPSAlJSWtzvPsQWH3+8tf/tLufg888IBfPU2+nhNo2L31unX0vBtvvJFERka2O3/ixIlk4MCBLf/fddddxGazkYceeogsW7aMbNy4kWzatIkMHTqUTJw4scPw+2u/kvD4EydK00ppnvNFt27dyODBg1sdmzBhQrseu5SUFDJy5MgO79OlSxeybds2r7+53W7icrkU/Snh+PHj5M0331T0d+rUqQ7vM2bMGDJq1Kh2x3ft2kUAkH/961+aXfvss8+SqKiolnQZO3ZsS1quW7cuoHOtck+zny9sUn4uQ4t3Vs371RalE8EHDx5M9u/fTz744AOyZ88eRfd+8sknCQDyzDPPKA5PRwjR5IP8/Hzy97//nURGRpJp06aRmpoaYrfbydy5c8mmTZu8/pWWlpLa2lpit9vJ//zP//i8f3V1NbHZbOTOO+9s99tzzz1HAJC9e/cSQpSJmerqaiJJktfJvjfeeKOmokmLsPv6Talo6tKlC5k7d26787p162a4aPInTpSmldI81xG1tbUEALn88stbjp06dYo4nc5Ww9A7d+4kAMif//xnr/fZs2cPCQsLazXs6Amvw3O33Xab14mqH3/8MQF8T1QN5Nr6+nqyc+dOcuTIEUIIIf/zP/9DIiMjSW1tbcDnWuWeZj9f2KT8XEK0eWfVvF9tUSqaHn30UfLCCy8oHppjgunJJ59UHBZfCNGkgMsvv5wkJiYSQgi56KKLyNChQ0lDQ4PPay688ELSpUsXr0LBk7Fjx5KUlJRWGbu5uZkMHjzY67ygzsSMVnOaOnuOFmH39ZtS0RQfH0/+3//7f63O+fbbbwkAw0UTIcrjhBDlaaU0z3mjqqqKACDTp09vOfbMM8+QsLCwVuLu1ltvJTabjezevbvdPWpqasjIkSO99op5hrsjUdf2LxA7AiUnJ4cAIJ988kmr49OnT+90SbSaawmhja7Y2FifcyT9Pdcq9zT7+cKmzs/V4p1V+454olQ0bdq0iYwePZosXLiw03s+9dRTBAB59NFHFYejM1pPeT/LqaiowAUXXIDf/e536N+/P6Kjo7Fp0yYsW7YMs2fPBgC88sorGD9+PCZMmIA77rgDmZmZqKqqwsGDB/HNN9+0OM166aWXMH78eIwePRoPPvggevfujZMnT2LJkiX417/+1bIj86JFizBlyhRccMEFWLBgAUJCQvDPf/4Tu3btwscff+z3mPDTTz+N6dOnY8qUKfjTn/6E5uZmPPfcc4iMjMTp06c1jS+twx4Is2bNwrvvvov+/ftjyJAhyM3Nxd/+9jekp6fr/mxv+BMnStNKaZ7zRlRUFPr27YsffvgBb7/9NhobG/HCCy9g3rx5+OijjzBjxgysXbsW//73vzF//nxkZ2e3ut7lcuGaa67BgAED8PDDD3f4nOjoaIwcOVJFzOnDjBkzMGXKFNxxxx2orKxE79698fHHH2PZsmX48MMPW7ZfWLNmDSZPnozHH38cjz/+uF/XAnSV0BdffIGRI0ciNDQU27dvx7PPPos+ffrg6aefbhUmpeda5Z5mP1/YpPxcT7R4Z/15R7y9YwCwdOlS1NTUoKqqCgBdLfz5558DAGbOnImIiIhWzxwxYgSOHj2KiRMn+gzbiy++iMcffxzTp0/HxRdf3G7upzcv4orQTH4FAfX19eT2228nQ4YMITExMSQ8PJz069ePPPHEE60ch+Xl5ZGbb76ZdOvWjTidTpKYmEjGjRvXriW+e/ducvXVV5OEhAQSEhJCunfvTubOnduhn6bIyEgSHh5OxowZQ7755ptW5/jTA7RkyRIyZMiQlmc+++yzfvtpUvIctWH39ZvSnp2ysjJyyy23kKSkJBIREUHGjx9P1q1bRyZOnGhKTxMhyuKEoTStlOY5b2zYsIEMHjyYhIaGkkGDBpGVK1eSU6dOkfPPP5+EhoaSrKws8vzzz7fqBSOE9pBdd9115NJLL1U8F4lHqqqqyN13301SUlJISEgIGTJkCPn4449bncOGKtq2cpVcSwgh+/btI+effz6Jj48nISEhpHfv3uTRRx8l1dXVAZ9rlXua/Xxhk/Jz9UDpO9LRO8bmD3v766i8Xrx4cadl0sSJE30OOQaKRMiZ5TICgUDgwW233YYDBw5g2bJlrVb4CQQCwdmKEE0CgaAd+fn5yMzMRFhYWKsu9qVLl2LChAkmhkwgEAjMQ4gmgUAgEAgEAgUI55YCgUAgEAgEChCiSSAQCAQCgUABQjQJBAKBQCAQKECIJoFAIBAIBAIFCOeWCnG73Th+/Diio6MNcdooEAgEAoFAPYQQVFVVIS0trcMNjJUiRJNCjh8/joyMDLODIRAIBAKBIAAKCwtV7xYhRJNC2LYnhYWFiImJ0fTeLpcLK1aswNSpU+F0OjW9t9URceMbET++EfHjGxE/HSPixjdWip/KykpkZGS01ONqEKJJIWxILiYmRhfRFBERgZiYGO4zn9GIuPGNiB/fiPjxjYifjhFx4xsrxo8WU2vERHCBQCAQCAQCBQjRJBAIBAKBQKAAIZoEAoFAIBAIFCBEk0AgEAgEAoEChGgSCAQCgUAgUIAQTQKBQCAQCAQKEKJJIBAIBAKBQAFCNAkEAoFAIBAoQIgmgUAgEAgEAgUI0SQQCAQCgUCgACGaBAKBQCAQCBQgRJNAIBAIBAKBAoRoOksgBCgtBZqbzQ6Jdpw6BTQ1mR0K7SgrA1wus0OhHeXlQGOj2aHQjspKoL7e7FBoR1UVUFtrdii0o6aG/gULdXU0jYKF+nr6DlkdIZrOAk6eBMaPBxITgd69gdxcs0OkjvJyYOpUoGtXoEcPYO1as0Okjpoa4IorgPh4IC0NWLrU7BCpo7ERmDMH6NIFSEoCPvvM7BCpo7kZuOMOIC6O5rm33zY7ROogBLj/fpo+KSkOLFnS0+wgqYIQ4JlnqD1dugBPP212iNTz97/T8qBLF+DPf6Y2Wpl336X1T1wc8P/+n7Ubu0I0BTmE0Ars55/p/0eOALNmUeFhVW65BVi5kn4/fhy49FKguNjcMKnh/vuBr7+m30tLgSuvBPbvNzVIqnj8ceDDD+n3igrg978Htm83N0xqePZZ4PXX6btUUwPceivwyy9mhypw3n4b+NvfqBisr5fw9tuD8c03ktnBCpjPPgMefZT20rpcrfOfFVm6FLj7btoz09wMvPACzX9WZfNmWmZXV9N36I03gL/8xexQBY4QTUHOV19RgREaCmzYAPTrB5w4Abz0ktkhC4y1a4EvvwTsdmDdOmD4cFoxP/GE2SELjNxc4J//pN+/+Qa48ELaLb9wobnhCpQDB+S89emnwGWX0Yrs4YfNDVegnDwJLFpEv7/1FhWAhAD33mvN1n95ObBgAf2+aBFw1110vP6RR+xwu80LV6DU1cn2PPSQXA48/LA1h1Kbm2nPEgDceScVTAAVhadPmxeuQCGE9tK63cA11wDvvUePP/+8hRu6RKCIiooKAoBUVFRofu/Gxkby9ddfk8bGRs3vfd55hACEPPww/f+LL+j/UVGEVFZq/jjNaRs3M2bQ8N9+O/199Wr6v9NJSEmJiQENkBtuoOG//nr6/5Yt9H+bjZCDBzu/Xs+8Ewh3303DP20a/f/AAULsdnosN9f48KiNn0ceoWEfNYoQt5uQoiJCIiPpsR9/1DasRrB4MQ17djYhLhchJSWNJDKygQCEfP652aHzn3feofZkZBBSW0v/unWjx954Q929zXi3vvyShr1LF0JOn6ZpNGAAPfbii4YFQxFK4mf9ehr28HBCTpyg79CoUfTYgw8aF1Yt62/R0xTE/PYb8NNPtFdm3jx67IorgD59aFcpGxKyCsePA8uX0+/z59PPiROBESNob8ZHH5kXtkA4fZr2xgDAPffQz+HDgWnTaMvsgw/MC1sg1NfLYb7vPvrZuzdw1VX0u9XscbuB99+n3xcsACQJSEkBfvc7euydd8wLWyAQIg/z/PGPgMMBxMYCM2YcAUDnnVgNNr/s9tuB8HD6d/fd9BhLOyvBemJuu43OZ3I4gLvuosfeest6vZv/+hf9vP56IDmZvkMPPkiPffABLNm7KURTEPPxx/Tz4ouB1FT6XZLoEAMA/N//mROuQPnoI/qSnXceFX6MuXPpp9UKyW++ARoagMGDgXPPlY//4Q/089NPrVVILl1KVwBmZAAXXSQfnzOHfn78sbUmgK5dCxQWUmFx6aXy8Ztuop+ff26t1We7dgF79wJhYXKaAMDEiUcB0AaJlYaAjhyhQ/Q2G3DjjfLx3/+elnPr1wN5eaYFz29OnQJycuj3G26Qj19/PRWDu3cDW7eaE7ZAqK+nUykAKgIZF19M36ljx2j6WQ0hmoKYb7+ln1df3fo4ayl//721loAye667rvXxa66hn7m5QFGRsWFSw3//Sz+vuIIW8oxLL6Vz0Pbupb2FVoGlz+zZtHeTMXUqXQl08iSwcaM5YQuEb76hn7NnU6HBGDMG6N6dCqbVq00JWkAwey66CIiJkY9nZFRh8GAClwtYssScsAUCExjnnQd06yYf79YNmDSJfmc2W4Fly2iP+eDBwMCB8vHYWNr7DADffWdO2AJh9Wq6cCItDRg9Wj4eGkrfKYA2PKyGEE1BSmEhXbEkScD06a1/69OH/jU3Az/+aE74/KWykg41AsDMma1/S0oCRo6k35ctMzZcgVJfLw81XnZZ699iYoDJk+n3FSuMDVeguN1yJTZrVuvfnE4qnADZZivA8lLb/CZJwIwZ9LuV3EMwQeTZa8aYNYuOk7BVqVaACYiLL27/G0sfK+U3Fta2+Q2QbWTvmBVggnXWrNaNQgC45BL6aaX8xhCiKUhhle2YMdS3TFtYJWaVSnnVKglNTUDfvkBPL25lrFaJbd5MeyqSk+k8praw4a3vvzc2XIGyYwddlRkVBUyY0P53q4mmggI6HGKzyQLWE1axWaUSq6gAfv2VfvdWKV90ER0H/v57a8wzaWgAfviBfvdmD+uZWb3aGqvo3G753WjbyAXk8m3jRjqMZwWYIPImai+4gL5b+/bRBr6VEKIpSGFjxRde6P13VqhYRemvXUubKlOmeP+dVcpr1lhjHtD69fRzwoT2rTBAFk1r1ljDqzZzMDp+PO1+bwtLn02baAXOO6wH9txz6YTctrBC//BhOjeDd9avp+9Fnz6th7IYo0cTRETQZeA7dxofPn/ZvJmKoaQkYNCg9r8PHkwn7dfWWmNIePduGvcREcC4ce1/79YNyM6mach63HmmqIi6H5Ek4Pzz2/8eFyfP47RKHcQQoilIYZWYt1Y/QCs3gGbskhJjwqSGn3+mWZWFuy0jRwIhIbTgOXTIwIAFCBNNHdkzaBDtIayttcbkT08R6I1u3WgPISHWqMRYxdSRPdHRwLBhrc/lmTVr6Ke3Cgyg7w6z1Qr2eL4/3hodkiTbwxz78gwL45gxNC28wcoKZjvPsEb70KFUIHnjggvopxXs8USIpiDk2DG6asRmA8aO9X5Oly7AgAH0+4YNxoUtEOrq7Nixg34/7zzv54SFAaNG0e+8v4Rut1wxdWSPJMlpx7v3aULkQrIjEQjILWgrVGKdpQ9gzUps4sSOz7FKfgP8y29WEIEsjN56mRhWym+s0d6RSAfk/MZ7/dMWIZqCENaSHzKk9SqZtrBMy3slduBAFzQ3S8jIoMvZO4JVcLwXkrt3U8/MkZFyb4U3xoyhn7wXKvn5dD6T09nadUJbrCKayspoGgG+KzGW33ivxFwuubeS5SlvWCW/ESILO1+ilv32yy/8z9PyR6Rv3kzndPHMpk30s6NGOyDntz176DtnFYRoCkLYhrxsRVlHWKVlefBgHADfBT4gL2vlfUNiVkCOHk2d13UEs5f39NmyhX4OGtR6aX5bmADZuJHvSozln1696CajHcEE4q5dfM87272bVrIxMdSmjmDvz8GDfA/Z5+dTf1JOJx3+6Yhhw2h+PH2a7yF7z/D5KuOysqjrDpeL5jlecbnkvSZHjOj4PLaBPGCNIXuGEE1BCKvEzjnH93lMVG3bxvfk6by8WADeV5l5wn7nvRJj6ePpu8Qbo0bRYbqCAr73aWK9GJ3ltwED6CTxykrqmJBXlNrTowcd5na5+Pan5Vke2HyU+HFxdG9Kz2t4hKXPwIHeFx0wnE46IRygZRyvsLD17Nnx/B+AlgWsjON5nuOePcpEOiA3PHjOb20RoinIIERuKXdW6Gdn04KlooK23njl8GFloikzkxY6Lpc8vMIjrJD0NTQH0MnGrNBhc7p4RKlIdzrllU48V2KsQuosfTwrMZ4LfaXlASDbzHoKeERpfgPk9OE5vyktDwDZZp7zm1KRDsg9hTznt7ZYTjQtWrQIo0aNQnR0NJKSknD55Zdj3759Pq9ZvXo1JElq97d3716DQm0cx4/TrnW7nc5p8kVIiOx5ltdCpboaOH48CkDnokmS5IKH15ZYc7O8pNvX0ALDCoWKP5UY7+kDyO9CZ/nN8xye7WGiyddQCYPlN17LA0COayXpY4X85o89VspvSsoDK+S3tlhONK1ZswZ//OMfsWHDBqxcuRJNTU2YOnUqampqOr123759KCoqavnr47mBWZDAKrDsbLpfUWewQoXXTLtzpwRCJKSmEiQnd34+74XKgQNAXR31x8LG833Bu2gqKqKTwG22zkU6wH9+q62lDveA4KjEmpqUzS9h8J7fgMBEOq/5DQisp2n7dtoA4xGWPkryG7P5wAG65YoV8DENlU+Wtdkn45133kFSUhJyc3Nxvq/1jQCSkpIQ52vQOAjwp0AB+Ff627ZRJyzDhhEAXhyytIH3SozF85Ahrfdn6wjeKzGW3/r3p0KwM3ivxHbupJPUk5Opc8TO8Bz+aW5WlqZGsm8fFelRUa03ue4Ilt/27aPOI31N7DeDEyeoUJckZT21gwfTc4uK6N6HShpeRlJfT+cAAcpEep8+dNVtTQ1NI+Y2hheam+V3W0kdlJxM/06epHNRO5vnyQOWE01tqTjjXjg+Pr7Tc4cPH476+noMGDAAjz76KC5g3rW80NDQgAaPdZ2VZ3a2dblccLlcKkPdGnY/Le67bZsdgA2DBzfD5ep8idKgQRIAB7ZvJ3C5+NuCfssWKpSoPZ03reicGSe2bSNoaGjqdEzdaHJzbQDsitOHFopO7NlDUFPT1M7xnZZ5JxC2bKH2DB3qVpQ+2dkA4MTRo0BRkcvrFj9a4m/8bN5M7Rk2TJk9PXsC4eEO1NZK2L3bhf791YRWe7Zvp+/3wIFuNDc3t+udaBs/iYlA164OlJZK2L7dpbjxZRS5udSePn0IQkKa0FmyhoYCffo4sH+/hNzcJkyZonzFixHv1rZtEpqbHejalSAxsXN7AGDIEDt++cWGzZub0KePeSt4vMXPoUNAba0TYWEEmZnK7Vm50obc3Gacc44+y2q1TENLiyZCCObPn4/x48djkDdf+mdITU3FG2+8gREjRqChoQEffPABJk+ejNWrV3fYO7Vo0SIsXLiw3fEVK1YgQkmTOgBWauBPfvPmCwFEo7p6I3JyOl83XF3tBDATR45I+M9/ViAqii/h9MsvEwDEw+3ehpyc452e39wsweG4GNXVdrz//o9ISqrTP5B+8MMPYwAkw27fhZycI52eTwgQGTkDNTUhePPN9cjKqvR6nhZ5JxBWrToHQAbs9r3IyTmg6JqUlMk4cSIKb775K4YOLdU3gGdQGj/ffTcEQBYiIw8hJ0fZaoJu3c7HwYNd8H//txVjxxapCKX2LFnSD0B/REUVIidnW4fnecZPWto4lJYm4sMPd+HEiQL9A+kHS5b0BDAYCQlFyMnZpOiapKQR2L8/HZ9+ug8u10G/n6nnu/X9990BDEdaWimWLlXmwCwmhubRb789hNhY8+flesbPr78mAxiD1NQKLF++RtH1UVEDAPTBN98UoFs3fVa81NbWanYvS4umefPmYceOHVjfiXe5fv36oR9bSwtg7NixKCwsxAsvvNChaHrooYcwf/78lv8rKyuRkZGBqVOnIsaXx8gAcLlcWLlyJaZMmQKn0xnwfRobgRMnaJLeeOMopKcru+6BBwiOHZPQvfs0jBnDj+8BQoAbbqD2XHPNIAxTMugPoG9fG3bvBlJSLsT06fzYAwB33UXtue66gRg3Tlnf+jnn2LFuHRATMwEzZ7a2R6u8EyhPPkntufzyvpg5U9kcwZEj7fj2WyA2dgxmztTXYZO/8fPyy3R87eKLszBzZqaiZ3z2mR0HDwIRESN0t8df3n+f2jN1ajpmzkxr97u3+Fm92oYdOwBJGoKZMztujJrBkiXUngsuSMZMbzv1emHLFtsZB6TZmDmzr+JnGfFurVlDu8LPPz9esT2HDtmwfDnQ2NgHM2d62b3cILzFz2+/UXtGj45RbE95uYSvvgKqqnpg5kyFlZafsJEiLbCsaLrrrruwZMkSrF27FulK1YEHY8aMwYcfftjh76GhoQj14gTE6XTq9gKpvfeBA3TiZ3Q0kJnp9Lonkzeys+nWKwcOODrca8sMjh+nPn1sNoLsbIfiuBkwgLocOHDAgUsu0TmQflBdLe/oPXiwA0qTetAgum3EwYMdX6NnvuwIt1ueNO2PPQMHAt9+C+zfb4fTacwkIKXxwxbU+msPAOzbZ5w9SmH2DBniO2ye8cPsMTJ9lCLnN+VhY4MQ+/fb4HT6P16v57vF7Bk4ULk9zPfUvn2B2aM1nvHD7Bk0SHnYjLBHy/QzP8b9hBCCefPm4csvv8QPP/yArKysgO6zdetWpKamahw6c2G+iQYM8L6JZUfQeSbyhEReYPakpNT4dGLXFl7tYQVKUhL17KsUNk+GNw8Z+fl0knFICJ3boxRe06esjE5IBeDX3CQ2GZc3e1wuYP9++t2fCcO85jdC5DKB5SEleOY33pz4sjgOxJ4DB/hz4sucvPqT39ggUGkp/eMdy/U0/fGPf8RHH32E//73v4iOjsaJEycAALGxsQg/s8b+oYcewrFjx/D+++8DABYvXozMzEwMHDgQjY2N+PDDD/HFF1/giy++MM0OPQikQAH4LSRZJZSeXgVAuWritVJm8evvZGF2fifuyAyH5bd+/XxvB9MW/vMb7a1VCstve/fS3jdeFh+wnueoKN97NraF2ZOfT10w6DSF02+Ki6mwtdmAvspH2dCnD72mooKuvuOlrVxXRzdWB/wrs7t1o/mzqopuecPLCjq3W36HWG+lEiIjge7d6c4He/f63oSZBzh5vZXz2muvoaKiApMmTUJqamrL36efftpyTlFREQoK5AmMjY2NWLBgAYYMGYIJEyZg/fr1+O677zB79mwzTNANlmH9fYl4FRksPBkZVX5dx+zZvZuvliWzJ1BRyypBXlAr0ouKaEXGC4GmT8+etLetro4vz/qB9jwnJKBlVSPrqeIBZg9dsaj8utBQ2bM+T2Xc/v20fIqP973HYVskqXUZxwsFBVRk+9vzDPDbkPKG5UQTIcTr39y5c1vOeffdd7F69eqW/++//34cPHgQdXV1OH36NNatW6d4kpqV8Cwk/YG9gHl51G8IL8gt/2q/ruvXjxYsZWV87dkWaE9Tejpt7btccsuUBwIV6bGxQNqZOck8FZLMHn/Tx+GQez54qpQDLQ8AOQ54tMdfUQvwaY+nSPdH1AJ8DgkH2vMMCNEkMAHPSbn+FirJybQic7tpbwYvtB6eU054ON0R3PMePBBoT4bNJo/781SoqKnEeOzdDDR9AD4rMdZLFIjvKB4rsUBFOsB3fgskfXjsaWL1j8dCdcV4DnHzjhBNQcLRo3RnaaeT7r7uD57dvbwUKuXl8qRcf3uaAP4K/aYmWZAGSyV28IzLm0AKSR5b/oFMymXwOO+MpY+S7XrawmN+Y++PP/OZGLyVb4A6ke45ZM8LLL8FsjsZj+VBRwjRFCSwDNuzZ2BbOfBWSDJ7UlIIwsP9n8jDXtxDhzQMlAry8ujwWni4f5NyGbylT1kZcOoU/c7mi/gDbyKjsRE4coR+D6RSZsKEl/wGyBVqsFRiWlTKPIkMFpZAGh0svx08yM+8TS3yG29TRLwhRFOQwDJsIK1Kz+t4KfRZOHr1CqxE8CxUeMCz1R/I6ipWsPIiMmRRS1dn+Qtv+S0/nw5Ph4cHtrqKt/x2+jT9AwITtUw48lIpe4raQMo4FgdHj/JRKRMi5/1A7OnZk44QVFTIjRezUdOzmZwMxMS0jhdeEaIpSFCTYT2v4yXDMnsCKfAB/ioxWQQGdj2v6aNFfuOhUva0x99Juew6gDov5aFSZvakpdEl3f7Sowftsa6ro6sczYaJ2ogIZRspt6VrV7lS5mExRUkJdRkgSfL8S38IC0PLjg889J41NsorRwPpaZIk+Toe7PGFEE1Bgpqua0CuzHmrlNX2NB06RAtbs1HTqgTk9Dlxgu5wbjZqRRNvlbJae3irlNXaExJCfecAfJQJnj3pgYhaSZLfIR4aUiwMGRnwy3GvJzw1DPPyaDkbFUV7jQJBiCaBoagtJD0r5Wr/511rjlrRxGulHGhPU1yc7EWch0pMrUj3XLDAkz2Bpo8k8VWJqR2uB/gUGWrs4am3Vm0jyvNa3tInEFELyEPCPPk684YQTUGA262+UOnSRa6UDx/WJlxqUFuJOZ1AZib9HiyFJE+9gVpUYjxVysFaiQUqagGR3/REbfkG8JXftBDpd91FV0z//e/ahEkvhGgKAo4fp/MoHA7/3Q14wstLWFNDe7wAoGfPwCe88GKP2y0LUTWFZLBVYjy1/LW0x+z8BmhTiYn00Y9gtUeNSO/ale7LGWhPlVEI0RQEsAybleW/J1ZPeKmU2fMTEmgPWKDwUqgcO0Z9aDkcgbkbYPCSPpWVsqd1LUSg2enT3CyL2mDryRA9TTI82RNsPZtaiHSrIERTEKBFgeJ5vdmFilb28FKJsfgMFlHL4jMxkXqSDxRe7CkspD60nE55RVIg8FKJqfWhxeDl/WlqkifXayEyjhwxfw9HLYbn2LWe7iXMQguRbhWEaAoCgk1kaC0CebFHTQHpeb3ZIkOrApKlz4ED5rodYPEZqGNYhmel3NioOlgBw9InNTUwH1oMlt/KyuifWRQUUJETGgp06xb4fdLS6FL9piZ6T7MoL9dG1EZGyj7FzCwT1PrQshpCNAUBajyxehJsPU28eM1V66OJwa7Pz6c9I2ahVfqwndArKsxtKWtlT2oqdY7pdpu7Akir/BYZKftEMrNM8Gx0BOIYlmGzyXnOzIYUi8vkZHWiFuCjYajWh5bVEKIpCGDzMViBECiskC0o4KOlrLbQz8qikwqrqoDSUvXhChStK+Xm5uColCMiaOvf855moFX6eLodMNPXDGv1B+I0sS089G5qVR4AfIgMrfKb5z3MtOfIETpzm3kpD3aEaAoCtCokk5Np69Ltlu9pBlqsNANae801s9DXSmR4tpTNtEePSpmHlr8WlTJLHzMdXLL0YS431MBD+jB71DYKAT7s0VI08ZDf2FCnmpXbVkKIJotTUUHHyAH1mdbTa65ZlXJTE90fCtCmUmb3MEsEeu6lpEWlbHb6AHIvlxaFJLPHTN9gWopAs/Ob57O1EE08DNkze7TMbzyIWi3yG0tjc/Mb7V7SIr9ZASGaLA6rwLp2DWyPqbawF9ms4Z+jR+nwU2ho4O74PTG7UCkvp0v0PcOiBrNFk9sttyy1sMfs/AZoKzLMzm+AtqKW9WSYKWqZPcGSPsGX36hoEj1NAkugZQHpeR+zXkJmT/fu6iZ9MswuVNhzk5LoHB61MHvMEhlFRXQSut0uz0dSg9n5rbJSXhmmxTvE0sesngxC9BEZQtRqh5ZlNmt0sBWGZqBlI8oKCNFkcbQsUDzvY7bI0NoesyoxrUUtL+mTkaHO5xTDbHtY+sTHA9HR6u9n9vBcSQndb1GS1DlSZbD0KSw0p1Kuq5MdqWrxDrF7lJfL0xqMxHNlpRZlXGoq9S/W3Eyd6JqB6GkSWAotx/sB8ysxre0xuxITotY3nj0Zbrc29/QHvXpqT52iqzaNhqVPWhoQEqL+fmZXyix9oqPV7Q7AiIqiUxk8720kJ0/Slck2mzqfUwybzdzeWpdLwvHj9LvoaRJYAi1bLZ73MbvlLypl73hWytXV2tzTH7S2p1s3OtTnctGhP6PRWgTGxsqVuxmVstb2eFbKZtjjmd+0Ws5uZhnHnpmeTsWoFpjZMCwtDQchEsLD6Q4BZwNCNFkcvXqaTp6kXeNGo7U96em0Um5ooDYZjdYiMDYWiItrfW8j0bpS9tyPz8xKTMuhBTMrMa1Free9zEwfLXsxzEwfPewxcwpCcTGdqKmlqOUdIZosjtaVclwcEBPT+t5GorU9DofsqylYKmUzW8p6VMo82BMslZielbLIb+oJNntKSiJaheFsQIgmC1NTI3u61uollCTzuuObm/VZiWFmJRZshWSwVcrBKmr1SJ9g6Nn0vJd4f9Tj2dN0tiBEk4VhhVhcnLrd5tti1kt4/DhdoeNwyBtRaoFZ3fFVVfKeanoMlxhdiRGij/ffYBUZQgSqJ9gaHXrYw8o3MxqFJSXhAERPk8Ai6FFAAuYVKp4+mtTsNt8Ws+3p0kUe8tQCs+w5eRKor6eTg9mQpxaYJQJraugSfSA45swQok9PRrDNaQrW4dOjR43fyFv0NAkshR4voOf9jC4kg00EBlv6MFGj1XJ2hln2sF6zmBh5cr0WmFUpnz5NhSBAGx5awewpKKBD6EbR0CCvqNSjp9ZzCyoj8HQ8qqU9ycl0BwW3W96CyiiYaBI9TQJLoMcLCJhfKQebyNA6fcxq+estAo12C6GXPSx9yspoxWwUzJ6UFLpZtVakpdEh86YmY91CFBZSoaH1cvbISPl+Rr5DWjseZdhs5pRxTU3AqVM0ownRJLAEwdaToXdPU7BUyux+JSVAba229/aFXiKQuYVobAROnND23r7Qy57oaCAhofUzjECvRofdLvdcGVkm6OGjiWFGGcfsSU2lPUNaYkbv5tGjgNttQ0gI0WSfUKsgRJOF0btn5sQJY3016SUymAPFxkZjW8p6VcpmuYXQK33Mcguhlz2AOfOa9Gp0eN5TpE/g6GmPGSKwoIAqWa32CbUKZ5GpwYdehWSXLnS7AUCe92EEeokMh8OclrJehaQkefaeGedRTq/0Acxt+etpj5Et/2CrlEV+U465Ip0Y91AOEKLJotTVyR6u9a2Utb13R2i9kWVbgq2QlFecGSeagq1SNsIeI0WTESIjGHo2Pe8p8lvgnG0b9TKEaLIorAcoKkqbjSzbYnShwjaytNu1Xc7OMLpQqa2Vd2fXs5A0qhLTa+UPw8xKTIiMzgm2RoeZojYYygPAc3hO9DQJLIDnC6jHnj9GF5LsOd260eE0rTHaFxATtdHR2i5nZxg9PHfqlD7L2RlGz5mpr5cnnQdLJaZnpRxsc5rMFLV69jwfO2acryZZ1ArRJLAAer6AgHmiSa+lq0YXknqLWqNFoOfKHy2XszOMzm9M1EZEyCvdtMRokVFeLrs30EPUevpqMmIFalMTFQCAPmUciyOjfDV59tTqUcYlJ9P30khfTayn6WxyNwAI0WRZjBIZRhX6enbFe97XaBGot6g1qqfJKHuMqpSNErVlZUBlpfb3bwtLn8RE6odIazxXoBrhFuLoUepIMySE+p3SGk9fTUY0PMrK6LZKgD6iVpKMXeziuU+oGJ4TWIJgFRl6i0AzKmU9YPc9eVJCQ4P+r7He9qSn02XLDQ3GVMp6i8DoaCA+nn43olLWO30cDtkhoxFlgueWSnotZzeyYcjsSU6mzjr1wMjedLpPqAS73Y20NP2fxxNCNFkUo0RGURGd/6E3eotA5kCxoUFedagnelfK8fGyW4jS0gh9HuKB3vY4nfICgGAQGZ73NsIevdPH895GiAy9yzfAHHuCJX1Ynu7atU7TfUKtgBBNFkVvkZGQIHfzFxbq8wxP9C4kHQ46xOD5LD3Ru1KWJDnti4t1arp6YITIEJVY4ASbCNS7fAPMsSdY0ofl6aQkA7ck4ATLiaZFixZh1KhRiI6ORlJSEi6//HLs27ev0+vWrFmDESNGICwsDD179sTrr79uQGj1obGRdo8CxlTKehf6ei9nZwRby5/ZwzbN1BMj7RGVmP8EmwgUPU3+Y4ZIT0w0cMsITrCcaFqzZg3++Mc/YsOGDVi5ciWampowdepU1LD10F7Iy8vDzJkzMWHCBGzduhUPP/ww7r77bnzxxRcGhlw79NrIsi1GrdDSayPLthhVqHjuzm5EoW+kaDLCHiNFRrBVysEiAoNV1AabPWdjT5MOHnH0ZdmyZa3+f+edd5CUlITc3Fycf/75Xq95/fXX0b17dyxevBgAkJ2djc2bN+OFF17AlVdeqXeQNcez1aLHyh+GURMl2f312MjSE6MKFU9R27Wrfs+RN+7Vd3iuvFxeAabHyh+GUSLDs6fWiJ6zYBmeEz0zgWNETzq7d2EhXd2m51wjIZosTMUZ5yTxbKmKF3755RdMnTq11bFp06bhrbfegsvlgtPpbHdNQ0MDGhoaWv6vPFNruFwuuDT2Hsbup/S+hw5JABzo3t0Nl6tZ07B4kp5uA2BHXp6+z2H29OjR/jn+xo0v0tPpc4yzh6CpqUm35zB7iosjNM+Tnhw4AABOJCYShIQ06eY8j9lz5AiBy6VNvHnLP3l5gNvtRFgYQXy8fvbQVUVO5OdrZ483qqqA06edZ57p8ssef94vOieQ2tPY2KRbg625GSgsdACQ0K2bf/b4A0uf06eB06ddiI5u/buWZc+RI/rb07Ur4HQ64HJJyM936dprz+xJTKzVtezRCi3DaGnRRAjB/PnzMX78eAwaNKjD806cOIHk5ORWx5KTk9HU1ITS0lKkpqa2u2bRokVYuHBhu+MrVqxARIQ+wyErV65UdN6qVf0B9IMk5SMnZ4cuYQGAsrI0AKOwdWsZcnLW6/ac5ct7AxgIp/MYcnK2eD1Hadz44sSJrgDOw2+/1SAn5wfV9+uIlSu7AxiOiIhi5ORs0O05R4/GAZiI4uIIrFy5QrfnbNyYAmA0YmPLkZOzVrfnHD8eCeAiHD7cjO++y9G0UvbMPzt20HwQH1+DpUtXafeQNlRXOwBcjJISCV9+uRxhYfoI9fz8aAAXIjq6EevWLQ3oHkreL5dLgs12CerrJXz88SrExTV0ek0glJaGweWaBrvdjW3bcrBzpy6PAQBER89AVVUIPvxwHXr0qPJ6jtqyp6bGgfLyiwEAe/cuR36+fg22+PiLcPJkJD75ZAMGDjytyzPcbuDIkVkA7EhKqtWkbNab2lrtesQsLZrmzZuHHTt2YP36zit0qU0JTAjxepzx0EMPYf78+S3/V1ZWIiMjA1OnTkVMTIyKULfH5XJh5cqVmDJlitder7Z89hntdx0/vjtmztRho7YzJCRIeOEFoLo6HjNnztTtOcuX06l1Y8akYebM1p7s/I0bX/TtCzzxBHDqVBRmzJipW0v511+pPSNHdtU13kaOBO6/HygrC8P5509BVJS6+OmIQ4eoPUOGxOpqT0MDcOedQGOjA+eeO1OT+Xre8k9JCU34gQMjdLUHAO68k6CyUkJ29jRkZ+vzjO++o/b06uX02x5/36+0NOp4snfvi3Duufo4Nfz5Z7anmYRLLtE3fXr1cmDbNqB79/Mxc2Zre7Qqe3acadcmJBBceeU0FaHtnAED7Dh5EkhLG9vOHq0oKgKamuyw2QgSEuo1KZv1plJDD7OWFU133XUXlixZgrVr1yK9kx1eU1JScKKNx7zi4mI4HA4kdLCHQmhoKEK9TLBxOp26ZRCl92YuAHr1ssPp1G/gundv+nnsmATACb3eC+ZZ1pc9WsR7z550DlhdnYSKCqduk+hZ+mRl6Zs+aWlAeDhBXZ2EEyecyM7WJ4HYtgxZWTY4nfqtHXE66by2oiLg2DGnpk7zPPMPS5/MTH3toc+gleaxY04MGaLPM+T0kQJ+R5S+X5mZ9HnHjjl0Kw+YPT16BG6PUrKygG3bfNujtuyRVzrrbw+b03b0qH7pw7a3SU8HHA6ia52oFVqGz3Kr5wghmDdvHr788kv88MMPyMrK6vSasWPHtutCXLFiBUaOHMl9YnvDiJUYAJCURCdm672fkRGTPgFqC6uI9Zz8acSkT6D11glsHyg9MCq/eT5Dz8n6RkyaZhixItAMe4x4f4LFHqPKN8CY94fZc7Ztn8KwnGj64x//iA8//BAfffQRoqOjceLECZw4cQJ1dbK/iIceegg33HBDy/+333478vPzMX/+fOzZswdvv/023nrrLSxYsMAME1Sh90aWnths+hcqRvloYgRbJZaZSVo9Uw/MSJ9gq8SCzR4jKuVgSZ9ge3+MtIdHLCeaXnvtNVRUVGDSpElITU1t+fv0009bzikqKkIBG/MBkJWVhZycHKxevRrDhg3D008/jVdffdWS7gb03siyLXqLjNOngerq1s/SE70LyaYmz+EFfZ7hCWvt6blxr+hpCpxgE+nB1tNkpAgMNnt69Dg7e5osN6eJTeD2xbvvvtvu2MSJE7Fli/eVWVZC7hrVbyNLT/R+CZk9em5k6Ynehb55olYf0USXs7d+lp7oLTKamjznNOnzDE9ET5P/GGmPkT2bRot0t1ufOkLuaTo7RZPleprOdoxshQH6FypG26N3oe/ZdW2EqGU9TR4dq5rC7OnSBdB40ahX9BYZx45RUcsmneuN3iKwpoZ61AeM72lS0H71G0LkvGykqC0pATRcld4KI8s4tjF5Y6N+G5MbKWp5RIgmi2F0hjWqpylYRKDR9sjpo09Pk1kiPT9fn0rZrJ7aoiKgvl77+zOBERsLxMVpf/+2sIUHNTXAqVPa3//kSRpPNhsVAHoTFyc3BvQo46qrgdJS+t2IMlvvjck956CKieACSxBsPU3miQx9K2Wj7GEF17FjdOhJa4wW6ew5lZV0+xatMfr9SUgAmC9cNiyoJUanT1iYPOysh8hg9+zWDbotmW+Lnr2bzJ64OCpsjUDPhq5R+4TyjBBNFsOsnia2n5HWGL0Sg7WUq6qAsjLt72+0aEpJARyOZjQ3S7q4hTA6fSIi5E2o9Sj0jU4fSdK3UjbaHs9n6WmPkUM/eooMM9JHz4auUfuE8owQTRbD6JcwNZV2+TY1yU7atMRoe8LD6aRzIDgKSZsNSEqi7jb0tEeBOzTNCFaREQz5DdB3npYZoklPkWF0z6bns/R8f4wsD3hDiCYL4bnyx6hMa7fL3bBaF5KEBG9L2Uh7EhNrWz1bS0SlrB4jWv7BJmqDzZ5ge3+MtIc3hGiyEMePU+Fk1Mofhl6FSnk5nbsCyMNmRqBXoWL0cnZGUpJ+oikvj34GS8+MmS3/YKnEjKiUjRRNwSbSg00E8oYQTRbCc+WPXb8tzdqhV6HC7peYCERGantvX+hVqBw/bqyPJkZioj7Dc54rf4JhTkZzs7HL2RlG9DQFS0+tmSI9WNJHzxWoQjQJ0WQpzChQPJ+ndaFi1guolwg0ejk7Q6+eJk8fTUat/AH065lhPbUOBzTdDLgz9Hp/amuB4uLWzzACvdLHczm7GfacOKG9Wwgz7MnIYBuTyz68tMKsOognhGiyEMEqMoQIVAcTTcGSPnr1zLD4ycgwp6f2+HHqdFArmD1G+WhisKH0igpt3UJ4+mgycjl7fLzc062lk1izRG1oqDx9Q8sywaw5qLwhRJOFMGvlgl4iw6yNH4NNBLKJ4AUF2rqFMKtVydLn9GnqGkIrzEqf5GTq38jthqZuIcxKn8hI2S2ElmUCsyc93TgfTYB+biFY+RITY6yoBfSxp7iYilpJMnYOKm8I0WQhzG75FxTQgl8rzLanrIy2lrXCLHvi4+vhcBA0NVHP01phlj0xMXRIENBW2Jplj2clEwz2APo0PIQ92qGnPd260XmbZytCNFkIs17C9HTaZd7QoO1+RmbZExVFPTUDwVFIerqF0LJlaaZPFj3mzZhZienR8hf2aIeePU3BYo8YmqMI0WQRzFrODtCucrafUbBVYsFiD9txPHjsaR0GLTBrONjzmcGWPnrYY4ZIF+nTOUI0UYRosghHj8rL2Y300cTQuuXiOYnUjEpMa3uam80TtYA+IkOIWu0Itpa/HvaYuTJLz/QJhvLN815CNAksgecLaORydobWLRd2n4QEOlxmNFrbY5bjUQbbuFcre6qq5F3sg6Gl7HabO1wSbC3/YLMn2ESGHr6ahGiiCNFkEczOsFoXKsFqj9E+mhhseE5rexISgOhobe7pD1qnT1ER4HLR+V9sqNlItLanpkb2wRMMIoMXUaulWwge7NFyY3Kzy2xeEKLJIpidYfXqaTKj69rzuVrZw0v6BIuo1Tp9CgokAHRRg8OhzT39gdlz9CjtkVQLi5e4OOOXswPau4UoKqJixW6naWQ0SUnULQQh8jC7GurqqLNMwJwyLjyc2gRo8w4JH00yQjRZBLMzrOhp8o3Z9rCeJq3cQphtD3vuyZO0AlKL2fakptKh26Ym2puhFrPt0dotBLMnI8McUStJ2gp15iQzKoo6zzQDLcs4Tx9NRjoe5REhmiyC2YWk1mPkZrvjZ/aUltKhDrWYnT7dumnrFsJse+Li5GFBbSpl2tNkVs+mp1sILUWGma1+LUUGD/ZoKTI856BKkvr7BYIe6ZOefnb7aAKEaLIMTGSYsRwXoHN1JKn11gBqOHSIfvbqpf5egeC59YQWhQpLH7MqZadTHtbQ0h6zKjFJkvM6C4saDh+mNZdZ+Q3QtlI2O78Bsj1apI/Z+c3z2Vqkj9nlG6BPfjvbh+YAIZosgcslb79gViEZGipXyqxACBRC+ChUtGyJMXt691Z/r0BhBdrhw+rvxUMhyfKG2vwGyHFiZvrokd/MfH+0FLVm+mhiBFv6aDnPkb0/ZqYPLwjRZAGOHKHzVMLDzVnOzmAVjtpK7ORJOiTmueeTGWglMhoa5MmjZhaSWqUPL6KWPfvgQfX34qGniVU4WohaFidmikD2bC3Sh+U3MytlLXtmWJzwkN+0ELU85DdeEKLJAnhmWLPGxwHtWv7s+owM2oNlFlqJjLw8KjSio+WNTM1Aq0qstJSuiPIcIjMDrdKnocGGY8fMF01apQ9volaLnkAWJ336qL9XoGjZU8tDz7NnflM7D1WIJhkhmiwALxlWq0KfhwIf0M4ez1YlD6JWK3syMugybLPQyp7i4kgAdMUX23PQDLTKbydO0LmFNpu5PbWeolbNis26Onn6AQ8i4+hRdSs23W5ZeJk9p8lup3mFuT8IFF7KbB4QoskC8CKatO5pMvsFDFYRqDZ9eMtveXnqKuWiIiqazO6pZfFZVKRuxSZL3+7dzV3J1KMHdQ9QX6/OjQIbPoqNNVfUdu1KwwCo620qKqKiy243d6J+SIj8fDVlXE2NnL5mlwk8IESTBeClEgtmkdHcHPh9eEkfFp8nT6pzOMiLPRkZdFVgQwNw7Fjg9zlxIgKA+fmtSxfZZ48aYctL+jgc2lTKvEw/kCQ5Tg8cCPw+nqLW6VQfLjVoUWYzAemZf89mhGiyADxMKvR8fmkpUFkZ+H14GO8H5Eq5sVEeHggEXkRgbCxtLQPBUymz4Sc1hf6JE7Snyez0AbSpxHh5fzzDEAz5DZDnVAVb+mhhDw/vDw8I0cQ5zc1y97XZL2F0tOyaX00hyctLaLcDPXvS71q1lM1Gi0KSJ3u0GBIONtHESyMKCL78FmwiI9jShweEaOKcwkLqpykkxJw9mdqidnJuVZW80WgwFCpNTfIS5WCwx/NaHgpJLSaDB5toCraeDJ7yG+tpUjM8J0RtcCNEE+ewDNuzJ+0ZMRu13fHsuq5d6Woms1HbHc9ErafzTzNR2zNz+jT9A+ReODNRm9+am4Hi4ohW9zKTYOtp0qInkKdKOZhFbaBuB3jKbzwgRBPn8FSgAOoLSZ66rgH1Ez89nfLZOHib1Bb6zJ60NCAyUpswqUFtfissBJqabAgNJejWTbtwBYpakX76NFBWRr/zJGoDrZQbG2UP3DyUcSx9CgvpqsBA4KmMy8qiE9wrK+lc1EDgSQTyAAfFvMAXvIqmQAt93lotakUGb+kTbPZ45rdAKuVDh+hyrMxMvkRtYWFgvoBYBZaayoeoZZWy57C7P7DdDiIjgeRkzYPnN6wHnJDA3A7wJmrDwuSNogMpExoagIIC+p2XMsFsOChGBL7grRJjLbH9+wO7fu9e+tm/vzbhUYtaB328isBAHfTxlt969qRip6qKulLwl337qGjq21elS2SNSEiQfQEFsr0Fb/ktLEwelg6kUubF3QBDkjx7A/0P0L599LNbNz5ELaCuIcWbqOUBIZo4h4kTXgrJfv3o5/Hjgbkd4E00qXXQt2cP/eTFnoQEIC6Ofg+kkGTDlLzkt7AweSsXlnf8gVVi/frxIZrU+gLi7f0BgL596SeLa3/gLb8Bng0p/0UTS5/sbA0DpBI1+Y2laZ8+fIhaHhCiiWNcLjmj8/ISxsUBKSn0u7+FJCH8FfoOh7pKmTfRJElyWFjY/IE3ewB19rCepv79+RBNgDqRweKAl/IAkMMSSPrwVh4A6npmeLSH5Tc15RtP+c1shGjimEOH6JL2iAh5XJoHAq3EiouB8vLWXeA8EGihX1cnuxvgqVAJ1B5C5GsGDNA2TGpg+S2wniYqmlgPKQ+w9Nm92/9reRS1akQTiwOe3h8Wtyzv+AOPoom9y2oaUTylj9kI0cQxnhmWh0msDPYC+VuJsfOzsszdCLYtgRYq+/dTodGli+z0kwcCrcQKC+k+Uw4HX8Mlgea3qirg2DG+5jQBgee3piZ5uJ6nSkyNaOJRpMvpExyiiaXPvn00D/mDEE3t4agqVs7atWtxySWXIC0tDZIk4euvv/Z5/urVqyFJUru/vYE0XQ2E1wwbaE8TjwUKIBeS/rb8PVv9PI33B1qJsfP79DF/zyxPAs1vbPgrLq4eXbpoGyY1eOY3f1YEHjlCl+iHhZm7EWxbWPrk5fm3TL+0VF5xx1NPIHufS0okVFQo3xG5sVFe3chTmd29Ox2tcLn8WxHo2fPMkz1mY0nRVFNTg6FDh+J///d//bpu3759KCoqavnrw9MYkRd4zbBqe5qCRTTxOOkTaN2y9GcjYl7zG8svhYVAdbXy61j6dOvmx0UG0Ls37c2rrvZvz0OWPv368dXznJJCVwS63f5NNmb2ZGbys9IMoAKD7XlYWBit+Dq28Xd0NHUJwQs2m/wO+VPGFRXR3lq7nZ/VtDzA0aunnBkzZuAvf/kLZs+e7dd1SUlJSElJafmz8+Bi2we8V2IHD9LWi1J4FU0sPCUl/jmA4zV9MjOph/KGBnnOlRJ4nF8C0BWBiYn0uz+Tp1l+S0+v0j5QKnA65Tl9/vSe8ZrfJCmw3k1e8xsADBxIP/0RTZ7lG089z0BgDUOWlj170vJEQHGYHQAjGT58OOrr6zFgwAA8+uijuOCCCzo8t6GhAQ0NDS3/V55ZX+9yueDyRykogN3P875uN7B3rwOAhN69XX6JE71JTgYiIx2oqZGwZ49LcaG3cye1p0+fJrhcysYlvMWN1oSEAD16OJCfL2HnziaMH68sbLt3s/RRbo/WdBQ/ffs6sHMntad7d6X22AHY0LevefZ0RL9+dpSU2LBjRxOGDFEWth07qD3p6dW65p9A6N/fjj17bNi5sxkXXKDMQdhvv7H0aYbLFYBTMS9o9X7162fHhg027NrVjCuuUGqPDYAd/ftrZ49W9Otnw7ff2lFYGK04bnbsoPb07euGy+VHF68B9OtHw/bbb8rDtmsXvaZfP+/XGFE2a4WWYTwrRFNqaireeOMNjBgxAg0NDfjggw8wefJkrF69Gueff77XaxYtWoSFCxe2O75ixQpEREToEs6VK1e2fC8uDkdNzVTY7W7s378Uhw/zVYmlpZ2PAwe64IMPtmH8+M4dHFVWOnHs2EwAQFHRcuTk+Dcj0TNu9CAhYQzy85Px2We7UFmZ3+n5LpeEvXtnAZBQXPwjcnJqdQ1fZ7SNn7i4EQDS8dVX+yBJna+dJgTYsWMGgBCcOrUeOTkV+gQ0QKKjhwDIwpIleYiPV9Zc3rjxIgCRyMys1D3/+IvD0R9APyxfXojevbcruubnn88H0AV1dVuQkxOAUzEfqI0fSeoFYBBWrTqBESM2K7pm7dqxAJLQ2LgDOTkFqp6vNS5XBoBzUFgYrThuVqwYCaAbnM7dyMlRsRmfDtTUpAAYjQ0bKpGTs0bRNcuW0XcuNPQgcnI67kLk7d3yRm2tduWzREig2/jxgSRJ+Oqrr3D55Zf7dd0ll1wCSZKwZMkSr79762nKyMhAaWkpYjTeadblcmHlypWYMmUKnGdm4C5ZIuGqqxwYPJggN9fPJQ8GcOedNvz733bcf38z/vKXzluJq1dLmDrVgawsgn37lNvjLW704IEHbHj5ZTvuvLMZixd3bs/27cCoUU7ExhIUFzeZ1h3fUfw895wNjz1mx7XXuvHBB523LI8eBXr2dMJuJzh9ugnh4XqG2n/eekvCHXc4cNFFbuTkdG5PRQWQmEjj44MPcjB79iRd84+/fPKJhBtucGD0aDfWrevcnqYmoEsXBxoaJOze7dJsjolW79f330uYOdOB3r0Jdu9W9n5nZDhw8qSEdeuaMHo0X9VQbq6EsWMdiIurx7FjbkVxM2CAAwcPSli6tAmTJ/Nlz4EDwMCBToSF0ffboaC7ZMIEOzZutOHDD5twzTXt7TGqbNaCyspKdO3aFRUVFarr77Oip8kbY8aMwYcfftjh76GhoQj1MpDrdDp1yyCe9961ix475xyJywx5zjn0c+dOO5zOzueG/fYb/Rw6NDB79Ix3QLZn+3b/7QkJMT992sbPyJH0c/t2G5zOzqcusvzWv7+EmBjz7WmLnD42OBy2TkUqm4+RkUEQHe3SPf/4y6hR9HPnThtsNhs6m165fz+doxYVBfTr59R8Irja+GH57dAhCfX1TkR3MhWoqIhui2OzAeec4+BqtSYADB4MSBJBeXkYTp92IT3ddwCrq+WVcyNG8GdP//4071RXSzh82NkyZ6sjmpuBnTvp95EjfdvD27vlDS3DZ8mJ4FqwdetWpPK0xKENW7fSz+HDzQ1HRwwbRj+3bVN2/vYzIxBDh+oRGvWwSnnbNmUrzpjdLB54g4Vr3z7qe6kzeM9vgwbRCrakBDhxovPzWX4bPJivFj+jTx+6Yqy2Vtk+jiy/DR3K18o5RmIi3W+NDvN2fj7Lb/3709VqvBEZKbtB2LKl827knTup7amp8qIFnrDZ5DJhy5bOzz9wgObNiAixcq4tHL5+nVNdXY1t27Zh25mSJC8vD9u2bUPBme2YH3roIdxwww0t5y9evBhff/01Dhw4gN9++w0PPfQQvvjiC8ybN8+M4CuCFSq8Vsq0JSa3GDuDd9HUrx8QHk4FhpJl07yLppQU+keI3GL0BctvTDzyRkSEvB2EEqHO8pvSSeNGY7fL74KSSoz3/Ab415BiNvMq0gHgnHNo3tm6tXPRZIX0Ye82e9d94SnSOV9kbjiWFE2bN2/G8OHDMfzMGzd//nwMHz4cjz/+OACgqKioRUABQGNjIxYsWIAhQ4ZgwoQJWL9+Pb777ju/XRYYxalTAAs+ry9hVJS8bHp7J/NYXS7P4Sx9wxUodrsc150VKoTINvOaPoBcIflTSPJciflTKfMumgC5ElMimnjvCQT8y2/WsIfmHSU9Tbw3CgE5rv3JbzyXb2ahSjS5XC4UFhZi3759OH36tFZh6pRJkyaBENLu79133wUAvPvuu1i9enXL+ffffz8OHjyIuro6nD59GuvWrcPMmTMNC6+/sEqhZ0/qNI5XlFZie/ZQb7nR0bLTOB5RWokVFgJlZdRBIU/bP7RFqQgsK5P9OfFcSLIKqbP85nLJc7R4Fk1KRQYh1ujJ8EfUWkE0BdLTZAXRtHUrdWnjCyvkN7PwWzRVV1fjX//6FyZNmoTY2FhkZmZiwIABSExMRI8ePXDbbbdh06ZNeoT1rMEKBQogi4yNG32ft2ED/Rw1is/5GAylooll74ED+Xb6prRlyQrIrCwgLk7PEKmDTTZm+akjdu6kmynHxfE9H8Mzv/law1xQQHufHQ50OoHXTFh+27mTTlrviLIyuuWK5zU8MnQoTZTCQqlluxdvNDTIZTbLozwyYAD1SVdZKce/NwgBcnPpd57Txyz8qsJefvllZGZm4s0338SFF16IL7/8Etu2bcO+ffvwyy+/4IknnkBTUxOmTJmC6dOn44A/PvUFLfz8M/1kK2x4Zfx4+rl+ve9Cn1VyY8fqHyY1sEps82bfk8FZ+owbp3+Y1HDuufRz+3bfk8F/+YV+8lzgA8Do0XQYtaCA9vZ1BLNn9Gi+RfqAAVR0V1T4nkf300/0c/hwvja6bktWFp0E3djoW6j/+iv97NkTXO0J2JaYGCAtjW7Bw0SEN7ZupTZ37crXRtdtcTrlnjBfDd0DB6hIDw3lu+fMLPwqUn7++Wf8+OOP2Lx5Mx5//HFMnz4dgwcPRu/evXHuuefi5ptvxjvvvIMTJ07g0ksvxZo1ypxoCWQIkQtJJkp4ZeRI+mIVF9MtVTqCiaYxY4wJV6AMGkTnalVWysM73mCVMu+iqXt3uqKpqUmuqLyxfj395D2/RUfLwwXsHfGGVUR6SIjcMGJp4A2riHRJksPoK32skt8AoG/fMgC+7WHlwdix/G2f0pbzzqOfvvIbs3XUKJpHBa3xSzR99tlnGDx4MABg7NixLVuLtCUsLAx33nknbr31VvUhPMs4eJCKkJAQYMQIs0Pjm9DQzgv9U6dknzmjRxsTrkBxOORCf9067+fU18utTitUYqyQ7KjQd7vlSpmdyzNKCn1mD+8iHQAmTKCfHeU3wJrpEyyiaeBAuhnl2rUdn8NEk5Xym5L3xwr5zQwC7rzeuHEj6uvr2x2vrKzEn//8Z1WBOpthheeoUXx3xTM8h+i88eOP9HPAAD79l7Sls0pswwbaFZ+SQocjeIelT0eF/q5ddHgoMtIaXfGd5be8PODw4dYCmGc6y29lZfLKLCvYwyradeu8TzZubJSHhqwgmgYMOAWAhtlLdQe3Wy7jOtiRiytY+uzaRfOWN9gAkRXymxn4LZpmz56NZ599FpIkobi4uN3vNTU1eOmllzQJ3NnI8uX008dewlzBCr6ORmJXraKfF11kTHjUMnEi/fzhB+/zmlj6TJnCf1c8AEyeTD/XraOTo9vC7JkwAYq2VjAbVujv2AF4W7DL8tuYMejUKzUPjBtH52kdOuR9cu6qVbRizs6mQ628M2oUjfdTp7zPa/rpJ5oPk5Jk55E8k5ZWg+RkgoYGuUfJk23bgNJSajPvPekA3Wy9f386DYS9K57k5dE5TQ6HXBYKWuO3aOrRowe+/fZbEEIwdOhQJCUlYcqUKViwYAHef/99vPjii1x72uaZpiZgxQr6fcYMc8OilAkT6ATDQ4eo92lPCAHYXo5WEU1jxlA3D6Wl8io5T5jImDrV2HAFSnY2kJFBW8nehG1ODv3k2ANHK9LSaK8lIcCyZe1/t1p+i42VheB337X/neW3adOMC5ManE5ZqLOwe8Ly24wZfE/SZ0gSMGUKXeXy7bftf2f5bdIkcLd1Skewd91Xfhs7lm93N2bid7Z9+eWXsX79ejidTmzYsAFvvvkmzjvvPBw8eBALFy7EF198geeff16PsAY9GzdKKC+nK0qs0GoB6AoT1iv23/+2/m3HDiqmQkNpoWIFnE5g+nT6vW0hWVgoLy22SqUsSR3bU1EhD3NZRaQDwGWX0c+2e23X1cmVslVEBgBcfDH9bFuJNTdb056O8hsg22gVkQ4As2bRccYlS9qvEv7qK/pplUYUIMf90qXth1BZmrE0FLQnYK1fU1ODUaNG4bLLLsOTTz6Jr7/+GocOHUJeXh5+97vfaRnGs4aPP6bjPbNmWct1PavEvvii9fH//Id+zphhjaESxqxZ9POTT1oXkh9/TD/PP5/OabIKV1xBP//zH+r4kfHZZ7R3Mzubb39Gbbn0UvqZk9PalUJODt04tUcP6zQ6AOCSS+jn99/TRSCM1auB48dpI8oqw/UAtcdmo/P/2Ca2AG1w7NlDF7lYSWRMmUIQEkIX6Xjuq5eXR+c62WzAVVeZFz5/mTCB9iKdPCnPxwLovo6sp4mVGYL2BCyaHFaYAGEhGhtt+M9/aHLMnWtuWPzlyitpD82vv8o9MS4X8OGH9Pu115oXtkC4/HIq8g4dohUXQMXTBx/Q73/4g1khC4wpU6jIKymRey4A4J136KfV8tu551J/OFVVspAFgDMbAuCaa6wx34yRnU1tamqS8xgAvPce/bzmGr6dqLYlLY3mOUC2AZDz2+WX8+1EtS3R0XLD8PXX5ePvv08/L7jAWo2okBCA9Wu8/bZ8/KOPaB4cOZLmSYF3/BJNnvu5KeHYsWN+nX82k5OThfJyCT16WGcoi5GcTIUTALzwAv38v/+jTgiTk+UCxypERQHXX0+/P/ccFUxff01XnERGWqtVCdBJnXPm0O/PPEPtWb2aLi22260nAm024Pbb6ffFi6lA376dDi1IEnDLLaYGLyBYmF99le4uf/CgLAitJmoB4Kab6Of//i9QXk439mai6eabTQtWwNxxB/384ANqS1UV8Mor9JgVPeuwNPjsMzrxu65OLrutmN+MxC/RNGrUKNx222341YenvIqKCrz55psYNGgQvvzyS9UBDHbcbuDXXyV89hndwv3xx60xQbItf/oTrbA++gh48UXgkUfk4+Hh5oYtEBYsoC2y5cupcGJeNO69l28vxh3xpz9RwbdpE7BwIXDXXfT4//t/tGfAatx8MxAfTzeCXrAAuPNOevyaa6yxKqstf/gDdUZaUADcdx+1p6mJzi2xgv+ftlx1Fd3ypawMmDeP2lNdTYdNWS+UlZg0ifbA1NQAt91GbSoro3nt6qvNDp3/jBxJ85bLRRsgf/oTcPQoXTRixUaHoRA/OHXqFPnTn/5EunTpQpKSksjMmTPJrbfeSubNm0d+//vfk+HDh5OQkBAybtw4kpOT48+tuaeiooIAIBUVFZre9957CaFtf0JGjmwmTU2a3t5QPG0BCOnfn5CaGnX3bGxsJF9//TVpbGzUJpB+8Oijre3p3p2QsjLDg+ETf+Ln+edb29O1KyHFxQYEUifef7+1PdHRhBw61PocM/OPv3z5ZWt7wsII2bFD32fqGT8rVxIiSbI9DgchGzdq/hjdaBs3W7dSGzzTyMrV3J49NI952vPpp8qvt9K7pWX97VefRnx8PF544QUcP34cr732Gvr27YvS0tKWPeZ+//vfIzc3Fz/99BNmWGk5jomMGAGEhxOMGXMcX33VbKkJ4G157jngnnuoP5kZM6j7hIgIs0MVOE8+CTz8MG19XXghnahrpbkYbVmwgA7Pde9Ol7mvWmUNh6Md8Yc/0CGSrCzqH2jlSrqfmVW54go6x6R3b7pdzHffAWc2YLAkF11EF1P07097nb76St4P0YoMG0ZXCA8aRHuYPv7YWqtO29K/P11BN3w4nSP45pu0p1bgG4kQX1utdkxVVRWirbQkSiWVlZWIjY1FRUUFYmJiNLtvQwPQ3OzCypU5mDlzJpxWcfZhEC6XCzk5Im46QsSPb0T8+EbET8eIuPGNleJHy/o74NkzEyZMwIkTJ1Q9XEBXxXCe3wQCgUAgEECFaBo5ciRGjx6NvXv3tjq+detWzLSS5zKBQCAQCAQCBQQsmv7973/j5ptvxvjx47F+/Xrs378f11xzDUaOHIlQKzkVEQgEAoFAIFCAKg+VTzzxBEJCQjBlyhQ0Nzdj2rRp2LRpE8455xytwicQCAQCnXG73aivrzc7GFzhcrngcDhQX1+PZm+7d5/l8BQ/TqcTdoNWUQUsmoqKirBo0SL8+9//xoABA7B3715cd911QjAJBAKBhbDb7cjLy0OAa4KCFkIIUlJSUFhYCMlKLuYNgrf4iYuLQ0pKiu5hCVg09ezZE/3798dnn32Giy++GMuXL8c111yDo0eP4oEHHtAyjAKBQCDQAUIIYmNjYbfb0a1bN9is6FlXJ9xuN6qrqxEVFSXixQu8xA8hBLW1tSg+s3Fjamqqrs8LWDS98847uO6661r+nzZtGn788UfMmjUL+fn5+Oc//6lJAAUCgUCgD83NzQgPD0diYiIirOxUTQfcbjcaGxsRFhYmRJMXeIqf8DPbThQXFyMpKUnXobqALfUUTIxzzjkHP//8M1azXU4FAoFAwC3Nzc2QJIl7PzsCQWcw0e9yuXR9jubyMDMzEz/99JPWtxUIBAKBxrB5TDzMSREI1GBUHtalT62LFXc0FQgEAoFAIPCBGKgVCAQCgUAgUIAQTQKBQCCwHIQQ/M///A/i4+MhSRLi4uJw7733mh0sQZCjyrmlQCAQCARmsGzZMrz77rtYvXo1evbsCZvN1rKKKlAmTZqEYcOGYfHixdoEUhB0BCya6urqQAhpmbGen5+Pr776CgMGDMDUqVM1C6BAIBAIBG05dOgQUlNTMW7cOEXnNzY2IiQkROdQCYKdgIfnLrvsMrz//vsAgPLycowePRovvvgiLrvsMrz22muaBVAgEAgEAk/mzp2Lu+66CwUFBZAkCZmZmZg0aVKr4blJkyZh3rx5mD9/Prp27YopU6YAAD7//HMMHjwY4eHhSEhIwEUXXYSamhrMnTsXa9aswSuvvAJJkmC321FQUOD1+ZMmTcJdd92Fe++9F126dEFycjLeeOMN1NTU4KabbkJ0dDR69eqFpUuXtrpu2bJlGD9+POLi4pCQkIBZs2bh0KFDLb93FLbOfvPGxx9/jLCwMBw7dqzl2K233oohQ4agoqLC7zgXUAIWTVu2bMGECRMA0MRMTk5Gfn4+3n//fbz66quaBVAgEAgEBkEIUFNjzp8f27i88soreOqpp5Ceno6ioiJs2rTJ63nvvfceHA4HfvrpJ/zrX/9CUVERrr/+etx8883Ys2cPVq9ejdmzZ4MQgldeeQVjx47FbbfdhqKiIhw7dgzdunXrMAzvvfceunbtil9//RV33XUX7rjjDlx99dUYN24ctmzZgmnTpmHOnDmora1tuaampgbz58/Hpk2bsGrVKthsNlxxxRVwu90+w+brt4647rrr0K9fPyxatAgAsHDhQixfvhxLly5FbGys4rgWtCbg4bna2lpER0cDAFasWIHZs2fDZrNhzJgxyM/P1yyAAoFAIDCI2logKsqcZ1dXA5GRik6NjY1FdHQ07HY7UlJSOjyvd+/eeP7551v+37JlC5qamjB79mz06NEDADB48OCW30NCQhAREYGUlBS43W5UVlZ2eO+hQ4fi0UcfBQA89NBDePbZZ9G1a1fcdtttAIDHH38cr732Gnbs2IExY8YAAK688spW93jrrbeQlJSE3bt3o7GxscOw7d+/32e4vSFJEp555hlcddVVSEtLwyuvvIJ169b5FIKCzgm4p6l37974+uuvUVhYiOXLl7fMYyouLkZMTIxmARQIBAKBIBBGjhzZ6v+hQ4di8uTJGDx4MK6++mq8+eabKCsrC+jeQ4YMaflut9uRkJDQSsgkJycDQMueaACdh/W73/0OPXv2RExMDLKysgAABQUFPsMWaLhnzZqFAQMGYOHChfjqq68wcODAgGwVyAQsmh5//HEsWLAAmZmZOPfcczF27FgAtNdp+PDhmgVQIBAIBAYREUF7fMz402Hvu8g2PVd2ux0rV67E0qVLMWDAAPz9739Hv379kJeX5/e9224903Y7Guah2u12txy75JJLcOrUKbz55pvYuHEjNm7cCIBOUvcVtkDDvXz5cuzduxfNzc0tIk6gjoBF01VXXYWCggJs3rwZK1asaDk+efJksVxTIBAIrIgk0SEyM/4M2gZDkiScd955WLhwIbZu3YqQkBB89dVXAOjwXHNzsy7PPXXqFPbs2YNHH30UkydPRnZ2drveIl9h8/WbN7Zs2YKrr74a//rXvzBt2jQ89thjuth1tqHKT9Nvv/2GVatW4R//+EcrNQ0Ab7/9tqqACQQCgUCgJRs3bsSqVaswdepUJCUlYePGjSgpKUF2djYAunfqxo0bceTIEURERMDh0M6VYZcuXZCQkIA33ngDqampKCgowIMPPqgobJ2Fuy1HjhzBxRdfjAcffBBz5szBgAEDMGrUKOTm5mLEiBGa2XQ2EnCOWLhwIZ566imMHDkSqampYsNHgUAgEHBNTEwM1q5di8WLF6OyshI9evTAiy++iBkzZgAAFixYgBtvvBEDBgxAXV0dtm/fjri4OE2ebbPZ8Mknn+Duu+/GoEGD0K9fP7z66quYNGlSp2Hbs2ePz3B7cvr0acyYMQOXXnopHn74YQDAiBEjcMkll+CRRx7BsmXLNLHnbEUivtYs+iA1NRXPP/885syZo3WYuKSyshKxsbGoqKjQfKK7y+VCTk4OZs6c2W6c/GxHxI1vRPz4RsSPb6qqqrB//35kZ2e3OCoWUNjquZiYGNhsYsextvAWP/X19cjLy0NWVhbCwsJa/aZl/R2wpY2NjYo9sQoEAoFAIBBYnYBF06233oqPPvpIy7AoZu3atbjkkkuQlpYGSZLw9ddfd3rNmjVrMGLECISFhaFnz554/fXX9Q+oQCAQCASCoCHgOU319fV444038P3332PIkCHtur5feukl1YHriJqaGgwdOhQ33XRTO2dh3sjLy8PMmTNx22234cMPP8RPP/2EO++8E4mJiYquFwgEAoFAIAhYNO3YsQPDhg0DAOzatavVb3pPCp8xY4bXCXAd8frrr6N79+4trhCys7OxefNmvPDCC0I0CQQCgUAgUETAounHH3/UMhy68ssvv7R4LGdMmzYNb731Flwul9cJog0NDWhoaGj5n7nTd7lccLlcmoaP3U/r+wYDIm58I+LHNyJ+fNPU1AQAIIS0cxtztsPWSIm48Q5v8eN2u0EIgcvlgt1ub/Wblu+/dk4oOObEiRPtvKEmJyejqakJpaWlSE1NbXfNokWLsHDhwnbHV6xYodsqk5UrV+py32BAxI1vRPz4RsSPdxwOB1JSUlBTUyOEZQdUVVWZHQSu4SV+GhsbUVdXh7Vr17Y0BhiemyarRZVoKi8vx1tvvYU9e/ZAkiRkZ2fjlltu4XIH5bZDhkwldzSU+NBDD2H+/Pkt/1dWViIjIwNTp07VxeXAypUrMWXKFLEsug0ibnwj4sc3In58U11djcOHDyMyMhLh4eFmB4crCCGoqqpCdHS08EPoBd7ip76+HuHh4Tj//PO9uhzQioBF0+bNmzFt2jSEh4fj3HPPBSEEL7/8Mv76179ixYoVOOecczQLpFpSUlJw4sSJVseKi4vhcDiQkJDg9ZrQ0FCEhoa2O+50OnUrfPW8t9URceMbET++EfHjHebxWpIkLnzt8AQbchJx4x3e4sdms7Xs/9f2Xdfy3Q9YNN1333249NJL8eabb7a8eE1NTbj11ltx7733Yu3atZoFUi1jx47FN9980+rYihUrMHLkSFGQCgQCgUAgUETA8nDz5s144IEHWu3N43A4cP/992Pz5s2aBK4jqqursW3bNmzbtg0AdSmwbds2FBQUAKBDazfccEPL+bfffjvy8/Mxf/587NmzB2+//TbeeustLFiwQNdwCgQCgUAgCB4CFk0xMTEtIsWTwsJCREdHqwpUZ2zevBnDhw/H8OHDAQDz58/H8OHD8fjjjwMAioqKWoUtKysLOTk5WL16NYYNG4ann34ar776qnA3IBAIBALDmDRpEu69916zgyFQQcDDc9deey1uueUWvPDCCxg3bhwkScL69evx5z//Gddff72WYWzHpEmT4GvLvHfffbfdsYkTJ2LLli06hkogEAgEAoEWLFq0CF9++SX27t2L8PBwjBs3Ds899xz69etnargCFk0vvPACJEnCDTfc0LK8z+l04o477sCzzz6rWQAFAoFAIBBYn0mTJmHu3LmYO3dup+euWbMGf/zjHzFq1Cg0NTXhkUcewdSpU7F7925ERkbqH9gOCHh4LiQkBK+88grKysqwbds2bN26FadPn8bLL7/sddWZQCAQCARa8fnnn2Pw4MEIDw9HQkICLrroItTU1ACgy+Gff/559OzZE+Hh4Rg6dCg+//zzlmvdbjeee+459O7dG6GhoejevTueeeaZlt8bGhpwzz33oE+fPoiIiMD48eOxadOmlt8nTZqEu+++G/fffz/i4+ORkpKCJ598slX4ampqcMMNNyAqKgqpqal48cUXO7Vp0qRJuOuuu3DvvfeiS5cuSE5OxhtvvIGamhrcdNNNiI6ORq9evbB06dJW1y1btgzjx49HXFwcEhISMGvWLBw6dEhRXCn53ZOPP/4YYWFhOHbsWMuxW2+9FUOGDEFFRUWnNipl2bJlmDt3LgYOHIihQ4finXfeQUFBAXJzczV7RiCoXicYERGBwYMHY8iQIbo5fRQIBAKB/hAC1NSY8+djxkU7ioqKcP311+Pmm2/Gnj17sHr1asyePbtl2sajjz6Kd955B6+99hp+++033HffffjDH/6ANWvWAKCLhZ577jk89thj2L17Nz766KNWDpDvv/9+fPnll/jnP/+JzZs3o3fv3pg2bRpOnz7dcs57772HyMhIbNy4Ec8//zyeeuqpVk5U//znP+PHH3/EV199hRUrVmD16tWKKvz33nsPXbt2xa+//oq77roLd9xxB66++mqMGzcOW7ZswbRp0zBnzpxWDhtramowf/58bNq0CatWrYLNZsMVV1wBt9vdaVx19ntbrrvuOvTr169lROmpp57C8uXLsXTpUl19NDJBFh8fr9szFEH84L777iPV1dUt3339BRsVFRUEAKmoqND83o2NjeTrr78mjY2Nmt/b6oi48Y2IH9+I+PFNZWUl2bx5M6mpqSGEEFJdTQiVL8b/nalaFJGbm0sAkCNHjrT7rbq6moSFhZGff/651fFbbrmFXH/99aSyspKEhoaSN9980+u9q6uridPpJB988AEpKysjzc3NpLGxkaSlpZHnn3+eEELIxIkTyfjx41tdN2rUKPLAAw8QQgipqqoiISEh5JNPPmn5/dSpUyQ8PJzcc889HdrV9r5NTU0kMjKSzJkzp+VYUVERAUB++eWXDu9TXFxMAJCdO3f6jCtCfMdlR3zzzTckNDSUPProo6RLly5k165diq6bOHEieeeddxQ/h+F2u8kll1zSLs49qaurI7t37yZ1dXXtftOy/vZrTtPWrVtbXO1v3bq1w/N48A4qEAgEguBk6NChmDx5MgYPHoxp06Zh6tSpuOqqq9ClSxfs3r0b9fX1mDJlSqtrGhsbMXz4cOzZswcNDQ2YPHmy13sfOnQILpcL5513Xssxp9OJc889F3v27Gk5NmTIkFbXpaamori4uOUejY2NGDt2bMvv8fHxiiYxe97XbrcjISEBgwcPbjnGesTYs9jzHnvsMWzYsAGlpaUtjicLCgowbdq0DuOqs7jsiFmzZmHAgAF4/vnnsWzZMgwcONDreX/961/x17/+teX/uro6bNiwAfPmzWs5tnTpUkyYMMFnnMybNw87duzA+vXrfZ5nBH6JJs9Net977z2kp6e38wRKCEFhYaE2oRMIBAKBYUREANXV5j1bKXa7HStXrsTPP/+MFStW4O9//zseeeQRbNy4sUUwfPfdd+jWrVur60JDQ1FeXu7z3qSDLbYIIa2OtXWMLElSy7PZPQLB2309j7EweG6Se8kllyAjIwNvvvkm0tLS4Ha7MWjQIDQ2NvqMq6ysrE5/98by5cuxd+9eNDc3t9vX1ZPbb78d11xzTcv/v//973HllVdi9uzZLcfaplFb7rrrLixZsgRr165Fenq6z3ONIOA5TVlZWSgtLW13/PTp0x1GtEAgEAj4RZKAyEhz/vwdoJAkCeeddx4WLlyIrVu3IiQkBF999RUGDBiA0NBQFBQUoHfv3q3+MjIy0KdPH4SHh2PVqlVe79u7d2+EhIS06tVwuVzYvHkzsrOzFYWtd+/ecDqd2LBhQ8uxsrIy7N+/3z8jFXDq1Cns2bMHjz76KCZPnozs7GyUlZW1OqejuFL6uydbtmzB1Vdfjddeew0XXnhhi39Eb8THx7eK//DwcCQlJbU75g1CCObNm4cvv/wSP/zwAze6ImCXAx0p6erq6nab5QkEAoFAoBUbN27EqlWrMHXqVCQlJWHjxo0oKSlBdnY2oqOjsWDBAtx3331wu90YP348Kisr8fPPPyMqKgo33ngjHnjgAdx///0ICQnBeeedh5KSEvz222+45ZZbEBkZiTvuuAMPPPAAwsLC0L9/f7zwwguora3FLbfcoih8UVFRuOWWW/DnP/8ZCQkJSE5OxiOPPKLLHm1dunRBQkIC3njjDaSmpqKgoAAPPvigorhS8rsnR44cwcUXX4wHH3wQc+bMQY8ePXDhhRciNzcXI0aM0NSuP/7xj/joo4/w3//+F9HR0S37x8bGxpq6ubTfomn+/PkAqDJ9/PHHW62Ya25uxsaNGzFs2DDNAigQCAQCgScxMTFYu3YtFi9ejMrKSvTo0QMvvvgiZsyYAQB4+umnkZSUhEWLFuHw4cOIi4vDOeecg4cffhgA8Nhjj8HhcODxxx/H8ePHkZqaittvv73l/s8++yyam5tx++23o7q6GiNHjsTy5ct9zvNpy9/+9jdUV1fj0ksvRXR0NP70pz9puiSfYbPZ8Mknn+Duu+/GoEGD0K9fP7z66quYNGkSgM7jqrPfGadPn8aMGTNw6aWX4uGHH4bb7cawYcMwa9YsPPLII1i2bJmmdr322msA0GIH45133lHk50kvJOLn4OsFF1wAgDqeGjt2LEJCQlp+CwkJQWZmJhYsWIA+ffpoG1KTqaysRGxsLCoqKhATE6PpvV0uF3JycjBz5kyxgXAbRNz4RsSPb0T8+Kaqqgr79+9Hdna2cBnTBrfbjcrKSsTExOjSQ2R1eIuf+vp65OXlISsrq91ol5b1t989TWwy+E033YRXXnlFcwEhEAgEAoFAwCMBz2l65513tAyHQCAQCAQCAdcELJqeeuopn7/7mlEvEAgEAoFAYDUCFk1tlyO6XC7k5eXB4XCgV69eQjQJBAKBQCAIKgIWTd48gldWVmLu3Lm44oorVAVKIBAIBPrDHCWqccYoEPCAUXlY0ynvMTExeOqpp/DYY49peVuBQCAQ6IDdbgchpGV7LIHAqrANjPVeJRtwT1NHlJeX6+KLQiAQCATaYrfbUVdXh5KSEoSEhHCxdJwX3G43GhsbUV9fL+LFC7zEDyEEtbW1KC4uRlxcHOx2u67PC1g0vfrqq63+J4SgqKgIH3zwAaZPn646YAKBQCDQF0mSUF5ejsTEROTn55sdHK4ghKCurg7h4eFiE3ov8BY/cXFxSElJ0f05AYuml19+udX/NpsNiYmJuPHGG/HQQw+pDphAIBAI9MftdiMrK0vMa2qDy+XC2rVrcf755wvHqF7gKX6cTqfuPUyMgEVTXl6eluEQCAQCgUnYbDbTKz7esNvtaGpqQlhYmIgbL5yt8SMGagUCgUAgEAgU4FdPE9usVwkvvfSS34E5Kzl9GiguBoKpa7yqCoiMBIJl8mR1NRARETz21NQAYWGAQd3ZulNbC4SEAA7N17WYQ10dTRuPfT0tTUMDIEnBY09jIy2vQ0PNDok2uFxAUxMQHm52SCyBX7XA1q1bFf1t27ZNp+AGIV98AWd2Ni64+25g926zQ6OOsjJg+nQgJgbo0wfIzTU7ROqoqQFmzwaio4EePYC1a80OkToaGoA5c6g9aWnA0qVmh0gdzc3AnXdSe5KSgP/8x+wQqcPtBh54gL4/XbsCb79tdojUQQjwzDNAbCwQFwe88orZIVLPq68CXbrQNHrqKes3dt99F0hIoPb8+c/Wt8cIiEARFRUVBACpqKjQ9sZPP03cTichAHFnZRFSW6vt/Y3k6qsJoa8d/UtKIqSkRNUtGxsbyddff00aGxs1CqQf3Hxza3tiYwkpLDQ+HD7wK37uuae1PWFhhBw8qHsYdePZZ1vbY7cT8uuvrU4xNf/4yz/+0doeSSLkhx90faSu8fP++63tAQj55hvtn6MT7eJm+fL29rz1lrmBVMP69TSPedrz0kuKL7fSu6Vl/a1qvKG8vBwvvvgibr31Vtx22214+eWXhY8mf3n0UTQdOYLarl0h5eUBixebHaLAWL4c+OwzOqywbBkwcCAddnzhBbNDFhi//iq39L/5Bjj3XKCiAnj6aXPDFSgHDgD/+Af9/tlnwAUXAPX1tGfDihQWAk88Qb//85/AlVfSnqeHHzY3XIFy6hTw6KP0+9/+Btx0E63G7r/fmq3/ujqAraJ+7DHg7rvp9/nz6fCW1XC5gDvuoN9vv532MgHAI49QW62G2w3ccw/NW3/4g1zvPPUUHTEQdEygamvTpk0kPj6edOvWjVxxxRXk8ssvJ+np6SQhIYHk5uaqVnO8oVtPE6GKffO991Kln5BASEOD5s/QnenTafjvuYf+v2QJ/T8qipDTpwO+rWmtmWuvpeGfM4f+v3Yt/d/hIOToUWPD4gPF8XPbbTT8M2fS/3fuJMRmo8f27dM/oFrzyCM07OPHE+J2E3LkCE0bgJANG1pOs0xr+PnnadgHDyakqYmQkycJiYykx3JydHusbvHz2ms07N27E1JXR0hlJSHJyfTYp59q+yydaBU3X3xBw56YSG1paCAkI4Me+8c/zA6q/3z/PQ17dDTNa01NhAwaRI89/bSiW1jm3SKc9DTdd999uPTSS3HkyBF8+eWX+Oqrr5CXl4dZs2bh3nvv1UzUnS0cnTABJC2Ntji/+87s4PjHoUO0d0mSgLvuosdmzaK9TdXVwOefmxs+fyktBdiG1PfdRz8nTADOO49OmPzkE/PCFgh1dcCnn9Lvf/4z/Rw0CJg2jX5/7z1zwhUoLhfw5pv0+z330HzXowdw/fX02Lvvmha0gCAE+Pe/6fe776a9tUlJwM0302MffGBe2AKF5al77qGLDqKjgdtuo8esOFfr9dfp5y23UFtCQoA//Ykes1p+A4C33qKff/gDzWt2O7BgAT32/vvW7N00iIBF0+bNm/HAAw/A4bFixeFw4P7778fmzZs1CdxZhd0ONyv0rVaJffEF/Zw8GejVi36XJPpCAnKFbRU+/5wOIZxzDjB8uHyc2fPhh+aEK1CWLAEqK6mwOP98+fhNN9FPqxWSa9bQod/EROCyy+Tjc+bQz88/p+LWKmzaBOzfT1ecXnutfJzZ8/XXNP2swoEDwIYNtCL+3e/k43Pn0s8VK4CiIlOCFhAlJcCqVfQ7E34AcN11dEXtpk3AwYPmhC0QqquBL7+k35kwB+iil4gImn6//mpO2CxAwKIpJiYGBQUF7Y4XFhYiOjpaVaDOVtyswFy5ks43sQr//S/9vOKK1sevuYZ+/vgjLXiswrff0s+rr259/OqraUWwbRtgJeeuS5bQz+uvb+024ZJLaCF59CiwY4c5YQsEZs+llwKeTvUuuIAKqdJSYPVqU4IWECy/zZhBezEYI0fSVah1dbRMsAosfS68EPDc1qJXL2DUKCrQly0zJ2wBIC1dSucADR8O9Owp/5CcTBuKgNxwtAI//EBX0mZlASNGyMejo+k7BchluqAdAYuma6+9Frfccgs+/fRTFBYW4ujRo/jkk09w66234nrWYyLwj6FDgdRU6ndm3TqzQ6OM4mLgl1/od/bCMXr2BIYMoQXODz8YH7ZAqK2VW5UXX9z6t4QEYOxY+n3FCmPDFSjNzXSSPgDMnNn6t7AwWrEBQE6OseEKFEJaiyZPHA46LAxYJ30AeTi+bX6TJDnNWBpagY7ym+cxq+Q3ADYmai+5pP2P7JhV81vbPeOsmN8MJmDR9MILL2D27Nm44YYbkJmZiR49emDu3Lm46qqr8Nxzz2kZxrMHSaJ+jgDr+NBZu5ZWZEOGAOnp7X+/6CL6+f33xoYrUNato718GRl03k9b2DwgqxSSubl0nlxMDDBmTPvfZ8ygn1bJb3l5QH4+7WFirXxPrJbfiouBLVvod5YWnrD8tny5NYZQa2tlf2beNm5nlfKKFdYYQm1uhvTjj/R7W1ELAFOm0M/166ntvOPZy+dN1E6dSj+3bKF5U9COgEVTSEgIXnnlFZSVlWHbtm3YunUrTp8+jZdffhmhweIp1QxYprXK8ML69fRzwgTvv7NKbOVKaxT6rMC/8ML2rTBATp9Vq2gPGu+wAv/CC1sPZTFYob9xozWGhFl+GzGCzgFqCxNSW7daY0iY9SgPHkyHe9oycSKddFxQYI15Mz//TId+MjKAfv3a/z5yJHV2WVlpiSHhmPx8SBUVdOjqnHPan9CvH20sNjZaY3QgP5/mJYej9fxGRnIyMGwY/c7KDkErAhZNdXV1qK2tRUREBAYPHozY2Fi88cYbWGGVFjivjB9PP7dvp9uR8A6rxFi42zJhAp0HlJ9PfevwDiv4OhKB55xDK+uKCmt4cP/pJ/rZUfr07k0LysZGwAoLODrLb8nJdNUmINvOMyy/dWRPRAQVGgAVJLzjmd+8NTpsNroKFbCEyOjK3vHzzvO+TY8kyUPcVshvnTU6ALnss0J+M4GARdNll12G999/HwB1cjl69Gi8+OKLuOyyy/Daa69pFsCzjvR0usrJ7aYrUHimqoq26IGOC/2oKDpXC6C9GTzT0CCvGulINDkcwOjR9DvvhQohchg7Sh9Jkn+zUqHfkT0AMG4c/eT9/QE676kFZHt4z2+AHEYmjLzB0o7ZzjEJv/1Gv3jrlWGweY5sbifP+PP+WKE8MIGARdOWLVsw4cyL/vnnnyM5ORn5+fl4//338eqrr2oWwLMSq1RiGzZQcZeZ6X0+E4PNpeG9Etu6lQqnxES6aqkjWCHJeyW2bx+dzxQW1tp1QlusUomdOgXs2UO/s4LdGyy/8V6J1dbSlZiA70qMCRDe81tzsxznSkQT7+UbgDg2JMreeW+w3zZupHHAMyzOfaUP+23bNuqeQNCKgEVTbW1ti2uBFStWYPbs2bDZbBgzZgzy8/M1C+BZCevJ4H24RMkLCFhHNLEJuSNHeh9aYFilJ2PTJvo5YoTvHebPPZd+8r7BMhMN/ftTYdsRrBLbtInvycY7dtBKNjnZd6OD2fPbb3wP2e/bR8MXGUnnaHXEOefQ96uoCDhxwrjw+UtpKSLYvDhfjY6BA6nNVVV8D9nX1cmNDvbOeyMjg+bH5ma5TBS0ELBo6t27N77++msUFhZi+fLlmHpmgmxxcTFiYmI0C+BZCXtBWSuUV9jQnK8XEJBFYG4u35UYKyC8Tfj0hPk22b8fqKnRN0xqYPmnM3uGDJErsZMndQ9WwLD06Sy/9etHVwvW1fFdibH3Z/hw3yI9ORno1o0Ot/I8eZrlt6FD6TzGjoiMlCeJszjgEOlM2Ejv3nTyekc4HPK8M55Fxs6dVAglJgJpab7PZXXQ9u36h8tiBCyaHn/8cSxYsACZmZkYPXo0xp5pDa1YsQLDfalyQecMHUoL0WPH+F4BxApJttqiI3r3pgVlQwMVGryiVDQlJ1OnfYTQgohXPCtlX0RFAX37tr6GR5TmN5uNCkEAEs8iQ2l+A2SbeW5IKc1vgGwzxyJDOhM2oiR92LxNnkWGZ37zJdIBOQ15Lg9MImDRdNVVV6GgoACbN2/GMg/vrpMnT8bLL7+sSeB88c9//hNZWVkICwvDiBEjsM7HSozVq1dDkqR2f3v37tU9nAERHU2FBsBvpj19mi5dBeQCoyNsNrm7ntdKrKEB2LWLfg+GSowQOe90JjIAaxSSrELqLL95nCPxLGqDTTQpFbWAJfJbS09TsKSPP6LWCvaYRMCiCQBSUlIwfPhw2Dy2Zjj33HPRv39/1QHzxaeffop7770XjzzyCLZu3YoJEyZgxowZXrd18WTfvn0oKipq+evja7Kv2fBeqDDxk5npu+uawXtL7Lff6EawXbrQ1YudwXuhUlAAlJdT30xsCb4veM9vFRXy1jX+iCZeRXpjoyzSg6ES8xTpSuzhPb/BQzQpscezfOPVH10gIv2332heFbSgSjSZxUsvvYRbbrkFt956K7Kzs7F48WJkZGR06uogKSkJKSkpLX92X+PuZsN7oeJPqxLgXzSxeFbSdQ3wX4kxewYO9D0JnMHyG6/DJUz8ZGTQ7Ww6w1M08ViJ7d5NK6PYWLoHWGew/LZzJxX3vHHsGF3daLf7J9IPH6binjfKyiCdEemKRNOAAXRu0+nTNC54w+WSpxIosYc1hhsb5cnjAgCAF29dfNPY2Ijc3Fw8+OCDrY5PnToVP3eyJHf48OGor6/HgAED8Oijj+KCCy7o8NyGhgY0NDS0/F95Zpdxl8sFl8aFFruf532lwYPhAEC2bEETh4WkfcsW2AA0Dx4Mt4LwSQMHUnu2b/fLHm9xowe2rVthB9A8ZIgiezBwIJwAyI4daKqv9z3xVUc6ih/b5s2wA3APGYJmJfYMGgQnABw6BBfbdoUjbLm51J7Bg5XZ068fHDYbpJIShJaV6Z5//EXKzYUDgHvYMDQrWRyRkQFHdDSkqiq4du3yvsVPAGj1fkmbN9P3OzsbTXZ758IuOhqOHj0g5eejKTcXxJcfJBOQduyAA0BtYiKdj9mZPXY7HP36QfrtNzRt3gzizbu7mezaBWdDA0h0NJoyMhQJb/vQobCtXUvtGTCg3e9Glc1aoGUYLSeaSktL0dzcjOQ2mTI5ORknOli+mpqaijfeeAMjRoxAQ0MDPvjgA0yePBmrV6/G+R28rIsWLcLChQvbHV+xYgUiIiLUG+KFlR47mYeWlWE6ABw6hGVffw23kt4CA5m0bh1iAWxuasIJBZtvOurqcDEA6fhxfP/JJ2j0s1JeqfMu7+PWrUMigO1NTShUsploczMuDg2Fo64Oa996C9W+lowbQNv4GbVqFdIA/OZw4LDCzVGndemCsLIy/PLWWyjztgWGiQz77jv0AHAgMhJ7FdpzYVoaoo8eReyRI7rnH38Z8N136APgSGQkdiq0Z3x6OhL27MGO99/H0UmTNA2P2vjp+/nnyAZwNCEBWxTaMzoxESn5+fjts89whDN/QD1WrMAwAFUZGdigMG7O6doVGQAOfP459ivprTaQtPXrMQpAWVoa1nnMQfbFoJgY9AJwZMkS/Na1a4fn8fZueaNWw30BLSeaGFKbTEkIaXeM0a9fP/TzqATGjh2LwsJCvPDCCx2Kpoceegjz589v+b+yshIZGRmYOnWq5i4VXC4XVq5ciSlTpsDJ9gcjBOS++yCVl2N6z54tq4G4oLkZjqIiAMA5N94I9Oyp6DLSqxekQ4cwJSkJhG090Ale40YHHHfcAQAYcu21GNzZkvYz2AYNAnJzMTExEcTb5pcG0FH8OB54AACQfeWV6M/2l+sE+7BhwI8/Ylx8vGn2dIT9r38FAPS6/HL0VBg2+9ixwGefIebIEQx94AFd84+/2N94AwDQY/p0ZCi0x/bdd8CePRgWGoohGqWPVu+X/dNPAQBpF12EFKX2rF0LbN6MQXY7BnCW32yrVgGgoklp3Nj27AHWrEG/xkb05s2eMz7/4saOxUyFYZOOHwe+/RY9GxrQw8s1RpXNWsBGirTAcqKpa9eusNvt7XqViouL2/U++WLMmDH48MMPO/w9NDTU68bDTqdTtwzS7t7Z2cAvv8B58KDsG4gHCgroarOwMDh791Y+NDVwIHDoEBwHD8q7tytEz3hHWRn1UQTAMXiw941tvZGdDeTmwnHggPJrdKJV/LhcwKFDAPy0Z+BA4Mcf4di/33R7WkEIdZwIwDFkiPKwDRoEfPYZoo4d0zf/BMKZlbv2wYNhVxquM0Mk9gMHlF+jENXxcyZ97IMGKQ/bmRW19n37NLdHNWfSpyojQ3ncnLHHtn8/bLzZc8bVi23QIOVhOzMEbNu71+c13L1bXtAyfJabCB4SEoIRI0a06xJcuXIlxvnaWqENW7duRWpqqtbB05bsbPrJ20Q8Fp6+ff2by8NWVfLm6oHZk57u31welj682XPwIHUiGhXl29N0W3jNbydO0NVzNpvsikMJZ/Jb9NGjOgUsQOrq5JWAXuaKdAiv6eN2y+8AC6MS2Lk8OiA9E6aqjAzl17Dybd8+Gic8weI4kPyWn8+3E1+DsVxPEwDMnz8fc+bMwciRIzF27Fi88cYbKCgowO233w6ADq0dO3asZUPhxYsXIzMzEwMHDkRjYyM+/PBDfPHFF/jiiy/MNKNzeC1UAikgAf5Fk7/28FqJsfD0769sJSCDV3tYfsnKovvoKeVMfos6doyvFXT79tHwJCT43g6mLSx9DhygvYm8tO4LC+k+ek4n0KuX8uuYPUVFdAVdXJweofOf8vKWFXBV/jQ6MjPpStX6eio0lKyKNIKmppaeQL/KuK5d6V9pKb1eiauCswDL9TQBwLXXXovFixfjqaeewrBhw7B27Vrk5OSgxxn/OkVFRa18NjU2NmLBggUYMmQIJkyYgPXr1+O7777D7NmzzTJBGaxVwGsl5q8/Ll5FUyCtMKC1PTy1LAMVgcz+w4dpbwgvBGpPnz4gkoSQ6mq+POuz/Jad7Z+ozcigK7mammga8QJLnz596LJ7pcTE0O1hPO/BA2fCQrp1Q1NkpPLr7HbZsz5PZdzhw1RkR0QA3bv7dy2vDSkTsaRoAoA777wTR44cQUNDA3Jzc1tN6H733XexevXqlv/vv/9+HDx4EHV1dTh9+jTWrVuneDKcqbAMu38/X3u2BVqJscn4R4/ytfFooKKpd29aSdTU8OWbJdD0SUqizj0J4Wu7m0BFeng4bf0DkFhLmwdY+vib3yRJjgOeKrFA8xvAZ8PwTHngbZl9p/DYMGTlW//+dIjbH3jMbyZjWdF0VtCjBy34GxvlORBmQ0jr4R9/iI+nFTPAV6UcaKHvdMpzbHgqVDx7MvxBkvisxAIdDgZAPOeZ8EKg6QPwWYkFWh4AfE5BOFM2EdZr5A88iqZARTrA77xNExGiiWdsNrl3hpdMW1JCV5tJktwV7Q+8FSr19fIeemrs4aUS81hppqpS5iV9AFWVMjnz/nDV03TgAP0MxBcWj5WYClHbkqY8NaJY+viz6IDBW3kAyHGrJr/xZI/JCNHEO2x/vIMHzQ0Hg1U+rBfMX3irlPPyqNCIipJ7wfyBt56MoiI6KdduD2wiKstvZ1wWmE51NR3OBYJDNBEiv8tqKmVe7AFkkRFIo4O38g1oCQvxZ1I7g0eRweI2kL1WmdA6eBBobtYuTBZGiCbeYQUrL4UKC0cgBSTAX8+ZZ4ESiBdf3kQGs6dHD2V7zrWFt/zG4jUhgQ7v+suZfCrx0pNRVEQn2dvtLfOt/IKlDy/5rbqauoQAAhOBTJgcOsRHpex2y6IpEHtYuVhays+eempEekYGnYbQ2MjXvE0TEaKJd3irxFg4AmmFAfwV+moKFKB1oc8DLBxq04eX/KbSHsK81efn87HRLYvXzMzAXAYwe0pLqe8qs2HpEx9PFxH4C2+VsqeoPbMa2y88e6x5KBM8RW0g75DDIYt7XsoEkxGiiXdYRuclw6qtlD1FBg++c9SKJnbdkSN8VcpqRSAvLWW19qSmojkkBFJzszx3zUzU2hMdDbCdD3iolFkYArXH4ZCHkXko49hQY6CiFuCrIeXZUxuoHyzeGromI0QT77AMy0tLWW0hyVrKlZXAqVPahEkNGlTKCAujQwvBUClHRQEpKfQ7D4WkWpFus6GGJ5GhNn0AvhpSWtjDU++mmvk/DJ5ERrClDwcI0cQ7qal0wnVzMxVOZqN2eC48HEhLo995KlQCLSRttuCrxHiyR61oAlDDkwjUshILNnt4yG9avj/Bkj48lQccIEQT7/BUKZ8+LQ/ZsB6jQOClUGlspMNqQHAUkoSo7wn0vNbs/OYZBhX21LA9Js1OH0DdcnYGL+UBoImo5Sq/sfRR09PEU/oEm0jnACGarAAvhQp7floadckfKLy8hPn5dLVMRIQ8JBUIvKTPqVPy5GA1+17xkj6NjXRfM0BVpVzL0tbs9FHrboDBS37zDIOwR4aX9wfQPn14mIdqMkI0WQFeChUtWpWe15tdqHi2+gNxN8DgxR6WP9LTA/OhxeAlvx05QkVtZKQ8+TkAuBmeKy6mq5kkSZ2o5SW/1dfLojYYKmWtRC1Ln6NHzd/DUQt7MjNpnq2pAU6e1CRYVkaIJivASyWmxQsI8FPoa2UPL+mjxdCc5/Vm2+M5f06FqG0RTYcPm1spM3u6dwdCQwO/D0ufY8fMrZQ9HcMmJgZ+nx496BL/ujq65N8sPB3DBuJDi9G1K13lCJi7/VVdnewYVk2ZEBoqb/RrdpnNAUI0WQFeKrFg62nSYqUMIKfP4cO0Z8QstBa1RUW0dWkWGuW32sREEJuNVojMZ40ZaJU+8fFAbCz9fviwunupwVOkq+mpDQmRfSKZWcapdQzLkCQ+huhY3oiNpS4H1MBLHcQBQjRZAVZp5OWZ6zVXj0q5tlbdvdSglQjs3p36m6mvN7elrFX6dOkiF7JmFvoa9ZwRp1NuKfNQKavNb56VMg/2qM1vnvdgQ+ZmwBaFqBk6ZfDQMNSop7blHp73PIsRoskKeHrNZd2tZqCVyIiPlx2tmdlSZi4c1HTFA/x4zdUqfTzvwYNo0sAewoM9rFJWs/KUwYM9WolAQI4TFkdmwJ6ttjwA+EgfNjSoRfrwINI5QYgmK2C3yy1ls3w11dSoc8ffFrMLFUKCr5DUsqXM4sTMSkzDSrllOxUz04e9u4Fsz9EWnvKbFiKQ5Vkz5wDpkT5migwt7eFB1HKCEE1WwexChb2AsbGB7THVFrML/VOn5Pk6GRnq78dEhlmitqFBHhrUopBk+c2sQpIQOS61qJR5EE1ainSz8xsg26NFfuNBpOvRiDKzJ12P/CZEkxBNlsHsTKtlqwUwv1Jm9rBtUNRidvqwLVwiI9VP+gTMt6ekhK7+kSTqQkElhOVbs0SGyyVvSBtsojZYKmU9REZBgXkrNrUss1l+O3HCfDcKJiNEk1Uwu1DRskDxvI9ZlZiWrWTA9PSRPAtItZM+AdPtaXlut27qVjIxzM5vR4/SlZWhoap8TrXgmT5mVMqnT1OfU4A8dUANzJ7jx2mvqdE0N8s+p7QoE9LT6W4O9fXUP5cZaFlmd+kiu1HgYTsvExGiySqYXYlp3dPE7mO2PVqLQLN7mrS2h/niMRqN8xthFbtZlTKzp3t3WpmqhdlTUwOUlqq/n78we5KT1TlSZSQmUs/8hJiz8XVREe0NdDjkvTHVEBIi38eMMqGyEigro9+1eIckyfwyjhOEaLIKZmdYvXqazGop62XP0aO08DUYSeueM3afqiq58DUSrdMnMZFW7oTIPQpGorU9oaHmVspa22N2pcxEYHo6FU5awIM98fFyD5FazK6DOEGIJqvAMmxhIdDUZPzz9eppqqyUNwE2Eq3tSUqiFZnbLc9dMRBJ656m8HB5Pz4zC32t0oeXSlkrewBhj5ZoLQI97yXSJ6gQoskqpKbSLt/mZnN8NWldqEREyFsvmDFGrrU9Npu5Q45aDzd63svMSkyPQj8Y8pvnvYJFZJg5uV3P90fkt6BCiCarYGalXF8v+2gKlpZLkLXEpCCzR5dKjAdRG2zpo4c9ZrhV0VOkB1v6CNEksAxmZVqtl7MzzLKnvByoqKDfg6BQkVwuOsHZMwxaYFYl5ul4NAjSp9Uzg6XlL+zpHDNFerClD0cI0WQlzMq0Wi9nZ5hlD3seW7GjFSbZE37qFCS3m/qbSkrS7sZmpU9ZmbbL2Rlm2aP1cnaG6MnQDr3tMXqxi572nDx5VvtqEqLJSpjV8tdjqASQX2ijx/z1ssekQj+ipIR+0VrUmjXHhD1Pq+XsDLNa/seP08UbWi1nZ3imj5GVckWFvHhDy0qZ2VNUZGyl7HbrUyZkZND3sa7OeLcQevQ0efpqOot7m4RoshJm98xoWUACwh6NiGDO8/S0x8hKWW9Re/w43fzaKJg9GRl0H0mtYJVyba2xlTKzp2tXICpKu/vGx8v3M9JXU3Ex9d1ls2nifb4Fs9xC1NZSj/qAtmWC2StQOUGIJithVss/yHpmdLfn6FFD3UKEM9GktT1saKy6mu7VZxR6idrkZDqE6XYbuwJVj1Y/YF6lrFf6mFUpe3qfdzq1vbcZvZusfIuJAeLitL232dv3cIAQTVbCLAeKehWS7H6eE7ONQM9KmbmFMNBXk249TWFh1NUFYE6hr0elbGYlprU9gDkiQ69GB2BOpayXqPW8p1n5TcvhekD0NEGIJmuRnCw7UDSypaxXIRkVJa/GM3Jek172mOQWIkKvniYg+CoxM0RTsFXKejU6AHPmbRohao0s34Itv3GGEE1WwrNSNqpQ0Xp39raYWegHSaESrsf8BYaoxNSjZ8+MGeljxPsTbPaIns2gQYgmq2F0pvXcnV3L5ewMo+2pqqI7tAPBUag0NSGcTQLWs9AXLeXAMaJnJtgq5WARtcHas2mGA1JOEKLJahhdqHgW+Frszt4Wo90O6LGRpSdGV2LHj8PmdoM4nfL8Iy0xutDXazk7w+j0cbvllWDBJgKDTaTrnd+MWoFqhKgtKaGr9M5ChGiyGkZXYnq+gIDxhb6eBSRguD0t26d0766PqDW6EmPPSUjQdjk7w+j35+RJeTl7t27a398zfYyolD1XUurxDrF7njhBt2/SG0/v83qIQLYCtaZG7uHWGz3tiYuTG5tm7KnHAUI0WQ2zepr0eAE972u0CAwWe848h+glAj1FhhGVslEi/dgxY9xCMHvS07Vfzg5QX02Acb6amD1xcUBsrPb3N9pXU2mp7EiTxaWWGL0CtaGBOgcF9HmHPNxCSEb60uIIIZqsRrD1NBltj949Tey+hYWGVMotBZeW24144umrqaxMn2d4oreoTUmR3UIYsQJV7/zm6avJiIaU3uljtFsI9oy0NBqXemCkPaw8iIigzkf14Iw9kuhpElgCox0o6t3TxAqU06fpJG290bvQT0011FcTK7h062kKD6euLgBjKzG97DHaLYTe+Q0wR2TolT6Asb3pRqSPkb3PevpoYpgx74wjhGiyGqmptJvfKAeKevc0xcbSPY2A4Cj0bTa5m9+IQuVMy5Lo1dMEmFOJ6VkpB6vIECLQf4JNBOrdyPW4t+hpshj//Oc/kZWVhbCwMIwYMQLr1q3zef6aNWswYsQIhIWFoWfPnnj99dcNCqnG2GzykInemdZzd3YjCslga1kaYI8UrJVYkKRP0NoTLCIj2N4fIxsdQjRZh08//RT33nsvHnnkEWzduhUTJkzAjBkzUNDBxLS8vDzMnDkTEyZMwNatW/Hwww/j7rvvxhdffGFwyDXCqJal5+7seixnZxhVSNbW0s05geDoyfBYzm5IT1OwFfrCHv8JNpERbCLQyJ4mMRHcOrz00ku45ZZbcOuttyI7OxuLFy9GRkYGXnvtNa/nv/766+jevTsWL16M7Oxs3Hrrrbj55pvxwgsvGBxyjTBK6bMXsHt3bXdnb4tRhSR7yfXYyNITowrJoiJILhfcei1nZxiV32pq5N3Zg6FnRu/l7AwjRa0QGf4TpCJdKiqCrbFRv+dwisPsAPhLY2MjcnNz8eCDD7Y6PnXqVPz8889er/nll18wderUVsemTZuGt956Cy6XC04vS4EbGhrQ0NDQ8n9lZSUAwOVywaXxZrnsfkrva8vIgB2A+/BhNOu4ca906BAcANzdu+v6nBZ78vLaPcffuPGFdPAgHKCTppt0nEQvdetG482LPZo+54w99QkJtILW6VlSejqNt7w8NOm5UfShQ3ACIDExaIqM1MQeb/mHpQ85ckRfe0pK4DyznN2VkqLfJttpaTTe8vPR1Njo1wRgv96vujo4T56k53frpr89x46hqaaGLqzQA0LgyM+HBO/2aFb2nLEHlZVwlZTo2mBzHDkCCUBTejqIXukTGwtHRASk2lqEl5ZqXh/qgZZhtJxoKi0tRXNzM5LZip4zJCcn48SJE16vOXHihNfzm5qaUFpailQvQ0+LFi3CwoUL2x1fsWIFIiIiVFjQMStXrlR0XkZ5Oc4BcCo3Fz/n5OgSFgDou3IlsgEU2u3YpuNzUkpLMRpAxY4dWNvBc5TGjS8yly3DUAAnwsLwq472JJw4gfEAavfswSodn9NtzRqMBFCblISfNIifjoguKMCFAFyHDmGpjvYk5eZiLIDK+His1vg5nvknrKQE0wCQggLkfPONbr2ocQcOYCKAuvh4rFi1SpdnAICtoQGXAJCqqrDyP/+BKwBP90rer6hjxzAZQFNYGHJ++UW/1VmEYFZICOyNjVj94YeoTUnR5THOqirMPLNid9nu3XAfOuT1PC3KnumxsQitqMD6Dz9EZc+equ/nDampCZecWRz0/cGDaGBOSHXggoQExNTWIqK4WJP40ZtaDb2XW040MaQ2LywhpN2xzs73dpzx0EMPYf78+S3/V1ZWIiMjA1OnTkVMTEygwfaKy+XCypUrMWXKFK+9Xm2RoqOBV15B19pazJw5U9OweGJfsgQAkD5uHNJ0fA5SU4Fnn0VcRUU7e/yNG1/YfvoJAJB07rm6xhsGDgQeeQSRp05h5vTp+njqBmDbsQMAFU1axE+HVFcDd9+NkJoazDzvPH2cGgKwnfGbFD1woGbp4zX/NDeD3HEHbE1NmDlsmD5ODQFIZ+ZMhvbtq29+A0CSkyGdPIkpffsCw4crvs6f90s6Uznae/XCzIsvVhXezrBlZgL79+OCrCyQCy7Q5yFbtwKgcTf9iiva/axl2WPv0wfYvBkTuncH0Ssv5OVBcrtBQkMx+frrdSt3AMD++utAYSHCS0r0LXs0go0UaYHlRFPXrl1ht9vb9SoVFxe3601ipKSkeD3f4XAgISHB6zWhoaEI9eLszOl06pZBFN+7Vy8AdCKe027X7+U4s3LO3qsX7Hq+FH36AACk4mI4XS7qmK0NmsQ7sycrS197MjMBux1SYyOcp07Jzge15ozIqE1K0jVfoksXuq3JqVNwHj+un9O8M+ljy8qCTWNbWsWP00mFUl4etUenlj9LHz3saUePHsDJk3AeOwace67flyvKP2fskTIz9a8ks7KA/fvhOHZMH0/qQIvLFqlHD5/2aPJuZWYCmzfDcfSofvYcPw7gjD16OepkZGUBACKKi/UtezRCy/BZbiJ4SEgIRowY0a5LcOXKlRg3bpzXa8aOHdvu/BUrVmDkyJHcJ7ZXunWjQwoul+wyXw+MmPQJGLefkRErfwC62jA9nX7Xc/LnmXvXJSXp9wyGEZONjUofz2cYYY/e7w9gjD1GTJpmGDF52kh7jEwfI/LbmWdEsNXIZxGWE00AMH/+fPz73//G22+/jT179uC+++5DQUEBbr/9dgB0aO2GG25oOf/2229Hfn4+5s+fjz179uDtt9/GW2+9hQULFphlgjocDnlIQa+XUO/d2T3x2M9IV9FkZKFioD21iYn6PYNhxAo6Ewp9Q+wxUmQY0egIlvfHSJFuZPoYKALPRtFkueE5ALj22mtx6tQpPPXUUygqKsKgQYOQk5ODHmcyZlFRUSufTVlZWcjJycF9992Hf/zjH0hLS8Orr76KK6+80iwT1NOjBy2U8/OB887T/v56787elsxMYOdO/USg50aWwdBSJqRF1NYGW09TsPTMBFvPWbD2NAVLfjPBHiGaLMSdd96JO++80+tv7777brtjEydOxJYtW3QOlYFkZgJr1uj3ErL76rU7e1v0bol5bmTZwTw2TdG7pXzyJFBfD2KzoS4Y7Kmvl0XtmfkSumKEqA22nk0zRGCw2BNsPU1n7AkrK6NuLqw4zSVALDk8J4D+L6GRL6Dnc/SqxDzt0WuptCd6V8oeu7MTI0WtXvYwURsZGRyitrxc3oDayOFGPXtqz0w0NlRkFBbqtzG5GcPBem5MbqQ9yckgYWGQ3O6WBQJnC0I0WRW9RYaRXfGA/iLQyALF8zk6i1pilD16iwzP9DFS1Obn0/l7WsPsSUoCwsO1v39bmD3l5UBFhfb3LyykvWfh4fqtnvTEc2NyJta0pKKCxhVgTJkQEwPEx9PverxDRu0TypCklj1Qz7btVIRosipGiYxg6Wkyy578fFrZaI1ZIrC0lG53ojVG92ymp9P5eo2NdKhTa4y2JypK7qHTo0zwfH+MELWeG5PrUSawOEpIoHFnBHr2Bhq1T6gHxIghRw4RosmqGFUpGy0yioroUIDWGDnJGKCrGyUJqKuT91PTkjPpY1hPU2ysvP2D3pWyETid8gIHPSoxo0UtoG/Dw2gR6PksPdPHiPlzDD17a9k99d4n1ANW9khG7KnHEUI0WRXWUq6vB/RYwWB0JZaQIDu11KO71+hCMiREdmqpY6FvmGgC9G0pG53fPJ+lpwg0QzQFg6gF9O1NN9OeYBHpYnhOYCn0rJQJMb5nxtNXU7BUynoW+kanDxC86RMsPRnBVikHW34zQtQamN/E8JzAeuj1EhYX0x4sm032bG0Eer2EDQ0tWyYExfCCx3J2U3qagqXlH2SVWNCJjGDLb3qK2rw8+mnC+yN6mgTWQa+XkN2vWzfao2UUehX6bOVPRARghPdshl6FfkkJnSslSbptNusVvdLH6OXsDD1FrRmVmBE9m8GQPoCpIiNYRC1hE/X1dAvBIUI0WRm9WspmtMI8n6enPUas/GHoVUiy+ElNBfTemNMTvSplT8ejRixnZ+hlT3k5wHZVD4bhrMZGc3pqWdwVFGjvFsLMnqaSEqC2Vtt7m9GzmZoKt8MBSS+3EJwiRJOV0bunyWjRFKz2BJuo1TN9zBK1Wq5A9fTRxBY3GAHLb6dOAdXV2t336FEqWsLCqE1GodfG5OXlxvpoYsTFUX9NgLZlQnOzcfuEemKzoZY1cs6iFXRCNFkZIyoxIwnmnjM9KmWzRODJk3R4UCvMGPoB5KHNujrqf0orzGj1A/q5hTDa8SjD4ZDnVGppD7tX167G+WgCaNzp0ZA6dowOjzmdhvloYtQxEX0WTQYXosnKBGulfOwYbV1qhVn2sDH/qiqgrEy7+5plT3y8XMloOfnTjJVZAB3a1GMFqhnzZRh6NKTMErWez9TSHrPeH89n6mGPgT6aGC2bhYueJoElYC3lmhraJa8VZlViycl0CEDr/YzMqsTCw6lNgD4tZaPTR6+WspmVmLCnc8wqDzyfqYc9RvcEAvrYw8o3E+ypZQtrhGgSWIKwMLk7VquX0NNHk9GFvmelrEdLzMxCUrSUO0bYox3Cns4R9mhGrRieE1gOrStls5azM7S2x6zl7AytW5YePpqCwh6AD3v0GJ4zQ6QHWaUctPktSOypE8NzAsuh9eRps3w0MbS2h829iYyUNzQ1Eq0rsVOn5A1z2ZwpI9HaHrNFrdb5LRhFbbDNaQq2OWdmDs8x0aSHWwhOEaLJ6mjdUjazwAf0tcfIlT8MrSsxdp+UFDo8azRa28Mcj4aHG+t4lKF1fjt9Wl7uHwyitqlJnl9o9pwmrRa78CBqtdyY3ER76uPjQRwO7d1CcIwQTVZHr54ms0ST1vaY2ar0fG6wiFo97TFD1Gq9ApXZk5JChaDRsEq5uFgbtxBHj1I/QCEh1Cajycig+UKrjcnLy4GKCvrdDBHYtau2G5N7iloTygRit+vjFoJjhGiyOsHW06RXpWzG/BJA+54Zs9OH2XP8OPUUrRYzh34A2R6t3EKYOZ8JALp0AaKj6Xct8pznyjmbCdWF58bkWtqTmEiH7I1G68UuTNSGhpojauGx/+VZMq9JiCaro3XPDC+V2NGj2uxnxIvIKCuTt9ZQA6uUzWglA9QjdFgY7ZUpLFR/P7PTJzxc9nKtZaVslj2SpG3Dw0x3Aww97DErfTyfrUV+8ywPzBC1gDwMLUSTwBKwwqyiQt4aQA1mV8qpqdSzbVOTNvsZmV1IRkfLE9BZ3Krh0CH62auX+nsFgtYtZbPzGxB8lbKWvZtm5zdAW3uECNQcosfiA44RosnqRETIE2jVZlq3Gzh8mH7v3VvdvQLFZpMLNC1EhtlzmgC5wmEVkBrYPcxKH0DbljIPlTKzh+V9NfCQ37SslHlKn2Cxhw3dapHfeBBNem3nxSlCNAUDLNOqFRnHjtEVHU6nOT6aGFqJjJoa4MQJ+r1nT3X3UgMTOAcPqrtPc7NcMPFQiWlR6PNQibH00VLUBkvPDA/2aCky2DtoZqODxaXa8gCQ08esOXSAPDwnepoElkErkcFe4sxMw/cwaoVWIoPFR0ICnSBrFlqlT2EhXdobEkL9aJmFViKjspI6UwX4EE1aiFrWcOGhJ1BLkcFD+gSLqNXSHpY+ffqov1eAEM9Ge3OzaeEwCiGaggGtRYaZBb7n89Xaw0Or0vP5WqVPVlZwidqkJCAmRt291KCVqD16lK4oDAmRl2GbgVbpU15O/U4BfIiMvDx1i0OamvgQtSwuT59Wv2KThzIuI4Pm+cZGbfcM5RQhmoIB9sIcOKDuPjy0KoHgE01aVco8tJKB1vlNjW8j3vLbkSPq3Cgwe3gRtadOqauUWX5LTgaiotSHK1DS0uiKzaYmdb6NCgvpPUJDze2pjYyU9wxVUyaUlckbtZv5Dtnt8vQHLYYcOUeIpmCAdc0GS0+Tp8gIhkqZPb+wUJ0XYF5EEysgKyrknohA4CW/paZS1wNut7p5GbyI9Kgo2WePmjKBl/xms2kzD4hd27OnecvzGVrYw9InJcVcUQto13C3AEI0BQMswxYUqKuUeREZWVl0aXtlJVBaGvh9eKnEkpNp69LtVrfChBeREREht9TVFJK85DdJ0rZSNjt9AG0aUrykD6BN7zNP6RNs9mjVcLcAQjQFA4mJ1B8QIYGvoCOEn5ZlWFjL6j1JTfc1L4WKZ6WshT1mpw+gTaHPiwj0DEMw5DfPMKgRtTymj8hvMsGW3/bvB9askReHcIoQTcGAJKnPtCUldCsJSTJ3+SpDbSFZVyd7rOapUAm0kORJ1AKiJ8MbPFViWqQPT/lNi0qZp/wWbD2bWrw/77wDTJoEPPmkFiHSDSGaggW1hSQrINPTaU+P2Zx5CQPuaWI9bjExdJNMs1FbSJaUANXVwSVq2UqbYCj03W4+ezK06GniQWSInqb28CSaWP1z6BB9FwKB5VUT3ScoQYimYEFtocLTCwi0FNQBiybPAlKSNAqUCtQWkp6iNjRUmzCpQW1+8xS1bJsZM1EraouKqBC0283dooOhthHlKWp5Ek2HDwfmC4i3nloWhqIi6oQ3EHgqszMyqFPkhobA3Q7s308/hWgSGILaSoynAgVoXUgGAk9d8YD6OU282aNVfuNN1AbqoM/TMazTqVmwAoblk9LSwPakZKI2OpqPnlpWKQfqC4g3UdulCxAfT78HUiZUVQEnT9LvPJQJDoc6twNuNxeOOpUgRFOwoLY7nl3HQ6sFUD88x1MrDGjd0xSIg759++hn//7ahUkNrKAO1BcQy288FPhA60qZzYXzB97yW3S0OrcDLL/168eHqFXrC4hd06MHH6IWUNfwYOVi165AXJxmQVKFmjro6FEqah0OPqYf+ECIpmCBZdj8/MAc9O3ZQz85q5SlU6fgrKz0/3rW1ctLJZaRQZfqu1yBrXDcu5d+8pI+an0B8WaP3S4LOJZ3/IG3nkBAbrEHUonxlj6AukqZ2dOvn3bhUUvfvvSTCVR/4E2kA+qGhFn69OnDj6jtACGaggXm4MxzQqpS3G7+ejIiI1s2gow+dsz/63kTgTabXGCzsPkDj5UYKyQDKfR5Sx8AyM6mn4GkD4/2aCEyWJzwgBqRwdKHJ3tYXlFTHrA44QGW3wJpdPBYvnWAEE3BgiQF/hIWFgK1tVThsy5wHjhTwEX7O1xSWQkwocVjIckKCKU0NckVH0+FyoAB9FNNoc9T+mghmlic8AAT6YGIDB4rMTX5jUfRpCa/7d5NP3nMb/6WbwCfjY4OEKIpmAi0UGGZvHdvvrpGzxQqUf5O/GT2pKTQCZe8EKioZXuihYe3OP3kApbfWAGulNJS2dM7Ty3lQCuxhgZ5SIKnSpmlz2+/+XcdIXxWYixu/c1vAN/27N3r/3ZRPIr0gQPp58GD/u9MwaNI7wDLiaaysjLMmTMHsbGxiI2NxZw5c1DeyeqQuXPnQpKkVn9jxowxJsBGEmglxmMrDJB7mvwVTZzb43dLzHM+htl7ZnmiNr/16EGHYXkhUNF04AAd4o6JkTdi5QGWPnv3+rcisKiIrs7ynOfFAyx9Cgtp+JRSXS1v9MtTmdC7N534XF3t34rA5mY+e2pTUuikdLfb/yE6Hu3pAI5KYGX87ne/w7Zt27Bs2TIsW7YM27Ztw5w5czq9bvr06SgqKmr5y8nJMSC0BhOsosnf4Tle7fHsafKnZcljKxmQ4/fQIf9alrynT0mJvHu8Etj7lp3Nx0ozRmYmdVTb0ODf4gNWgfXsyYdPMEZ8vLz4wJ+GBxueTEzkwycYw+mU5wH5I9Tz84H6epo2PK00k6TA6qDycuDECfqdp4n6HWAp0bRnzx4sW7YM//73vzF27FiMHTsWb775Jr799lvs62TcPjQ0FCkpKS1/8cxHRjDh2ZPhT8uS167RM/ZElJT45wCOx/F+gE6cttmAigrZx4oSeE2ftDTau9Lc7N9kY17t8Vh84FclxuNQCUB7iliZ4M8QHa/pAwQ2RMdzL0Ygvc/M9n79aBrzRCCiidnOyhPOcZgdAH/45ZdfEBsbi9GjR7ccGzNmDGJjY/Hzzz+jnw+Vunr1aiQlJSEuLg4TJ07EM888g6SkpA7Pb2hoQINH67nyzLJ3l8sFl8ulgTUy7H6q75ueDkdoKKT6ergOHFDcte7YswcSAFefPnRJPC/ExsLRtSuk0lI0/fYbcO65ii5j9jT16QPCkz12OxxZWZAOHULTzp0gClu99l27YAPQ1Lt3O3s0yzsBYs/Ohm3jRjTt2AGisJVo372b2tO3r+7p42/82Pv3h62gAE27doF4lDM+r/ntN9gANPftCzdP+Q1n7Nm6Fc07d8I9c2a7373Fj23XLtjBpz22/v1h//FHNO/apThsLfb06+eXPUa8W7a+fWnYfvvNb3vc/fuj2cT08Zp3+vWjYdu1S3HYpJ074QDg7tdPN3u0TENLiaYTJ054FTpJSUk4wbr3vDBjxgxcffXV6NGjB/Ly8vDYY4/hwgsvRG5uLkI76H5etGgRFi5c2O74ihUrEBEREbgRPli5cqXqe0xKTUXskSPI/fBDnBw1qtPzQ8vKML2kBESSsPzIETT7iEczOC8pCV1LS7H7s89wlE0e9oGtsRGzzngR//7YMTRwNgx7bkICUg8dwp5PP8Xh2trOL2huxsXbt8MGYE15Oao7sEeLvBMIw6Ki0APAwW++wT6F85Ombt6McAC/lJfjtEHpozR+BoWGoheA/Jwc7FI4P2nSr78iFsCm6mqc5Cy/9bHZMADA8e+/x5bBgzs8zzN+xq9ejQQA29xuHOXMnszmZgwFULxmDX5VGLZzf/gBqQB2u904HIA9er5b6Y2NGAGgfN06rFcYtuErV6I7gH12O/ZzkD6e8ZNYXY1xAGp+/RU/KAzboCVL0AtAXlQUdulkT62SslYhXIimJ5980qtA8WTTpk0AAMnLnAFCiNfjjGuvvbbl+6BBgzBy5Ej06NED3333HWbPnu31moceegjz589v+b+yshIZGRmYOnUqYjTuQnS5XFi5ciWmTJkCp8rVa/aPPwaOHMGo8HCvLcu2SCtW0C99+mBaB3FhKkuXArt3YwghGKLAHmzZAsntBomPx+Tf/56vOSYAbJs3A7/+ioEuF/orsWf/fjgaGkDCw3H+Lbe0647XMu8Egm3fPmDVKvRtbEQvJfaUlsJ5Zr7QmP/5H9274/2NH6m0FPjmG2RVVqK7EnsaG+E4fhwAMOLGG+k8Io6QmpqA//s/pFdUIKWDnqZW8eN2w3FmjuiQOXMwZNAgo4PsEykyEnjjDaSUlGCmkvQB4LjnHgBA9vXXo//55yt+liHvVvfuwMsvI/7oUcycPl3RQg/7U08BAPpcdhl6K4wDPfAaP0OGAAsXIurECcy86CIgJKTT+9hfegkA0OOyy5S9cwFQGYiD5A7gQjTNmzcP1113nc9zMjMzsWPHDpz0MhekpKQEycnJip+XmpqKHj164ICPeRihoaFee6GcTqduL5Am9x4+HPj0U9h37oRdyb127QIASMOHm1LpdkbTOecAAOw7d8KmJHw7dwI4Y4+CF9ZwRowAANh27FBmz5m5AdKgQXCGhXV4mp750ifMnu3b/bIHvXrBaeCkXMXx42mPw9G56N61iw5pd+kCJy/76HkydCgAQNqzB06gQ5ciLfFz+DBdmRYaCuegQXy5IAGAkSMBANKRI3BWV3fuUqSsjE6cBuAYMSIge3R9twYNAkJDIVVVwXn0aOdTKlyuljLbMWoUF+nTKn4yM4G4OEjl5XAePNiS/zqEEGDHDgCBp4/SMGoFFxPBu3btiv79+/v8CwsLw9ixY1FRUYFff/215dqNGzeioqIC48aNU/y8U6dOobCwEKk8LQ/WijMiA1u2KDt/2zb6OWyYHqFRDWGF/rZtylacbd1KP4cP1y9QamCFyO7dyra72b699XW8weL50CFlG8Pynj4DBtCCu7y8pbL1CXvPhg3jTzABdAVcTAxdQadkci7LbwMHclEhtyMuTl4xxvKSL5g9WVn87NHmidNJhRMgl8W+YOVGbCxfK+cYkiTXQbm5nZ9fUEDfNYeDz4n6XuBCNCklOzsb06dPx2233YYNGzZgw4YNuO222zBr1qxWk8D79++Pr776CgBQXV2NBQsW4JdffsGRI0ewevVqXHLJJejatSuuuOIKs0zRD1YZHThAPWN3BueiCQMHwm23QyorU7aRKu+VcmYmrcQa/397dx8UxXnHAfx7kAMJIhURAV8QTbRVgfiSRIwvxEaUxkhqp7FpTFFjJjqVGVIzU9t0YqZNq+MkTpzG2jEvRltTM0nEJPUtpCpI0AQiRjSJoaNUa6CMmgCCAbz79Y/HvfXg7lgR2V3u+5lhdtldjuf57XO7v3vu2d0WY1fMWD1pionRv5IyctC3ensLC9Nv0mfkpKxto50orCYk5PpOYlZvb4Ben+vZP1Ztb4B+rDJSHy1JHzvWmkk60Ln2NmqUtW5vEYCtkiYA2Lp1K1JSUpCZmYnMzEykpqbib3/7m9c2J0+eRF1dHQAgNDQUFRUVyM7OxogRI5CTk4MRI0bg0KFDiIqKMqMKN1dsrH7ZdEcnsaYm/SZkVj1IhoejQbsLdkcHFZdLfxNaNWlyOPQDuJEkww4nMS3WRno3rZ40AXp9jOwfqyfpgOcrxx6TNPW09nY9xwM7tTcj+8cO7a0NS4xpuh4xMTH4+9//HnAbueZrnIiICOzdu/dmF8taxo1T3Z5HjgCBBj4eP67u3hoXp980zoLqkpMRXVWlDhjZ2f43rKxUieCtt1rr8Rxt3XEHUFSkDpK/+IX/7S5c0HvXUlO7o2SdM24ckJ/fcVJ7+bLeu2aHk1hPSNKB6zuJaXW28knsenqa7JA09bQkXds/n32mnpt5S4A0ww77pw3b9TSRAUa7R69ekWjprl4AddpDhDs66GsHlNRU69307Vra/vn448DbaetHjlRjGKzK6Di6zz5TiUb//upGdlZltCejslLddDUiwtp3Mm57EvPnf/9T47iuHZdiRdr++fLLwDe9bWrSx3FZOclITVUxP3dOvzO2L263nmRYef/cdhsQFaU+JHV0k1jtGKcl9jbApKkn0t5QWlLkT0mJml7HIHozfHP77Wrm8OHAg8EPHVJTA/enMtXkyWpaWqoOLP5o9bH6cxK19vbll4HH0WntLT3d0kk6xo1TSfe5c/ozy3zRDvhjx1o7Sb/9dmMnMa29jR5t7Tszx8erpFsEKCvzv11ZmUoSExOBQYO6r3zXq3dvfTC4tg98+eIL9Zy6W2+1dpIeEqInqYE+uJ89q95joaGeqyLtgElTT6SdZE+eVM/R8kd7g1o8aaobPhwSHq7qEuhxHcXFanrPPd1TsM4aNkwd+FtbAx/0Dx9W0/T07ilXZ8XHqzq53YEP+jZJ0hEZqX9d8NFH/rfT2puWBFtVSIh+UtL2gS92aW+A/h4PtH+0dZMmWTtJB/T3hJH2NnFi4K+8rEC7m36g+mjHirQ0az24uwNMmnqifv30K4C0N1pbNTXqIZ4Oh+HHk5jF7XRCtO5bf2/ChgZ9fInVkyaHQz/R+ts/V67oPRlW72kC9PocPOh7vYj3SczqjJyU7ZI0AfrYxsJC/9toCVVPaG+AXh+rHw8AvYyBklqtrnZqb0VF/rexS096G0yaeqopU9TU30HlwAE1TU21dlf8VaKdaP3V59Ah1dMxdKi1u+I1HSVNZWUqEYyJ0bvurayj9vbvf6tE3em0x/gF7STm76B//rw+qN0OSeC0aWpaVOT7K+5Ll/Sepuu4a7ZptPdPSYnvh5NfuaK/t+ywf7T2Vlbmf5yWVh/tvWZl99yjPhx+9ZX/cVr79qmpHepzDSZNPZV24PvwQ9/rtSsKMzO7pzw3SO69V8188IHvg75Wn4yMbivTDdEO+h995Htwrrbfpk+39ngZjdbeDh9WJ+C2tP0zebIak2F1996rDvoVFcDVx6R40Z63lZKienatbuJElbCeO6cS2DYcxcXq6+KhQw0/6NtUaWnq4oj6et9jN0tL1U0T+/a1R5KenKxi39qqf6C91ldfqUH6Tqc9emb69tWv+N2/v/36mhp1J3CHA7jvvu4t2w1i0tRTZWaqsQwVFe0Hs4qo5EPbzgZkyhR1ldK5c57HCHjZvVtNs7K6t2CdlZamepHq6nx3yWsnZbscUG6/XY1ramnxnahr7W3mzO4tV2f176+PA9LKfi3twaImPvvrukRE6IntP//ZbrXjX/9SM/fdZ/3xP4D6IKG1pZ0726/XkvT77rPHhw6HA5g1S83v2dN+vdbepk5VA8ftQNs/Ptqb5xgxdqy6t6CNMGnqqfr10wd0tn1ydHm5+vQcEWGP78cBoFcv9ekfaH+QrKpSV5aEhgIzZnR70TrllluA++9X8+++672utlbvirdJUguHA5g9W8233T+NjXpXvF2SJkA/ibWtj8uln9jskjQBwJw5avree97LRRCiLbPT/tFi7ytp0pbZqT7XJoFte9O1+mjHDDt44AE13b27fW/6jh1qapfj2zWYNPVk2kls2zbv5Vu36usDPATWcrQbW27d6n1Q0eozdWrHD/C0Eq0+27er8Viat99Wv995pzWfL+WPdpDcvl0960zz7rsqcRo2zNo3TWzrwQfV9P33vZ+rV1CgxjTFxNjjSjONtn8OHvQaZ9K3shKO06fVFUx2SgKzstQHpfJy70cSnTypxgaFhup1toMZM9Q+OH1aH18GANXV+ldc2jHdDtLT1Yf3b74BtJ5MQH2lqvU+PfSQOWW7AUyaerJHHlFf0RUW6o9LaW0F/vEPfb2dPPSQej7R8eP6jQdFgNdfV/M5OaYVrVNmzVLjMqqq9K/jRIDNm9X8vHmmFa1T7r0XGDgQuHhR/yQJAFu2qOn8+fb46kczdqy6CrW5GXjrLX35pk1q+sgj1nyorT/JyWo8jMsFvPqqZ/FgrRcwO9se4800cXH61/GvvaYv19rbrFlqG7uIjAR+8hM1rx0DAFUfl0sNaNfuWWcHoaHAz3+u5jdu1Je/9ZZ6T40caas7gWuYNPVkgwfrB5Xnn1fTTZvUJ5cBA/SvH+zie98DtIcs/+lPavrOO2pga+/e+gHHLiIjgQUL1Pzzz6uEad8+4JNPVA/g/PmmFu+6hYYCixap+eefV71lpaVqfElICPDoo+aW73o5HPr+WbNGjdc6eVL1pAHAwoWmFa3Tli5V0w0bVO9fdTWGaL0Ajz1mXrk6SyvzK6+oxw5dvAisX6+WafvOTrQyv/66uvljYyPw5z+rZXZsb088oabvvqs+uF+5AqxerZY99pi9PkRphAypq6sTAFJXV9flr93S0iI7duyQlpaWLn9tKSoSAUQcDpGNG0Xi49Xv69Z1/f+6CdrFpqJCJCRE1WH9epGkJDW/cqWZxey8ykqRsDBVhz/+USQlRc3n5hr685vadjqjulokKkrV4ZlnRCZOVPM5OaYU54bjU18vEhen6rB8ucj06Wr+/vu7tqDd5fJlkSFDVB0WLRJXdrYIIK5Jk0TcbrNLd/1aW0VSU1V9Hn5YZP58NZ+aKuJy3dBLm/LecrtFpk5VdZgzR+SJJ9T80KEiTU3dVw4DDMcnK0vVYcoUkV//Ws3Hxoo0NHRPQaVrz99MmgyybdIkok5Yqh9D/YwapQ6eNuAzNsuWedcnKUnk0iXTynjDnnvOuz5xcSI1NYb+1HJJk4hKyK+tT3S0SFWVKUXpkvi89pp3fXr1Evnyy64rZHfbtcurPq6QEGktLja7VJ1XWKg+FGp1cjhECgpu+GVNe2+Vloo4nd5tLj+/e8tggOH4nDolcuut3vXZuLF7CnlVV56/+fVcMNiwQXWF9uunrlbYs8deA8DbeuEFIDdXXRY+bZoaD2Sj2/C3s2KF+omLU2NOCgrU16d2lZsLPPecerzK2LHq67mkJLNL1XkLFwIvvqhumjp6tLqSycrP/upIVpYa05SUBBkxAp+sWAGx+FMBApo6VV3sMny4utjgjTfsc6sOXyZMAPLzVRsbMgR4+WX9ogQ7Sk5W75kxY9SYx7VrgcWLzS5VpzlEAj0BlTT19fWIjo5GXV0d+nTxHbRbW1uxa9cu/OhHP4LTTgNLuwFjExjjExjjExjj4x9jE5id4tOV52/2NBEREREZwKSJiIiIyAAmTUREREQGMGkiIiIiMoBJExEREZEBTJqIiIiIDGDSRERERGQAkyYiIiIiA5g0ERERERnApImIiIjIACZNRERERAYwaSIiIiIygEkTERERkQFMmoiIiIgMuMXsAtiFiAAA6uvru/y1W1tb0dTUhPr6ejidzi5/fTtjbAJjfAJjfAJjfPxjbAKzU3y087Z2Hr8RTJoMamhoAAAMHjzY5JIQERHR9WpoaEB0dPQNvYZDuiL1CgJutxtff/01oqKi4HA4uvS16+vrMXjwYJw9exZ9+vTp0te2O8YmMMYnMMYnMMbHP8YmMDvFR0TQ0NCAxMREhITc2Kgk9jQZFBISgkGDBt3U/9GnTx/LNz6zMDaBMT6BMT6BMT7+MTaB2SU+N9rDpOFAcCIiIiIDmDQRERERGcCkyQLCw8OxcuVKhIeHm10Uy2FsAmN8AmN8AmN8/GNsAgvW+HAgOBEREZEB7GkiIiIiMoBJExEREZEBTJqIiIiIDGDSRERERGQAkyaT/eUvf0FycjJ69eqF8ePH4+DBg2YXyRTPPvssHA6H1098fLxnvYjg2WefRWJiIiIiIpCRkYETJ06YWOKbp6ioCA888AASExPhcDiwY8cOr/VGYtHc3Izc3FzExsYiMjISc+bMwX//+99urMXN01F8FixY0K4tTZw40WubnhqfVatW4c4770RUVBTi4uLw4IMP4uTJk17bBHP7MRKfYG4/GzZsQGpqqueGlenp6di9e7dnfTC3HQ2TJhO9+eabyMvLw9NPP43y8nJMmTIFWVlZOHPmjNlFM8Xo0aNRXV3t+amoqPCsW7NmDdauXYuXXnoJpaWliI+Px4wZMzzPBOxJGhsbkZaWhpdeesnneiOxyMvLQ35+PrZt24bi4mJcunQJs2fPhsvl6q5q3DQdxQcAZs2a5dWWdu3a5bW+p8ansLAQv/zlL3H48GEUFBTgypUryMzMRGNjo2ebYG4/RuIDBG/7GTRoEFavXo2ysjKUlZVh+vTpyM7O9iRGwdx2PIRMc9ddd8mSJUu8ln3/+9+XFStWmFQi86xcuVLS0tJ8rnO73RIfHy+rV6/2LPvuu+8kOjpa/vrXv3ZTCc0BQPLz8z2/G4nFt99+K06nU7Zt2+bZ5ty5cxISEiJ79uzptrJ3h7bxERHJycmR7Oxsv38TTPGpra0VAFJYWCgibD9ttY2PCNtPW3379pVXXnmFbecq9jSZpKWlBZ9++ikyMzO9lmdmZqKkpMSkUpmrsrISiYmJSE5Oxs9+9jOcOnUKAHD69GnU1NR4xSo8PBzTpk0LulgZicWnn36K1tZWr20SExMxZsyYoInXgQMHEBcXhxEjRuDxxx9HbW2tZ10wxaeurg4AEBMTA4Dtp6228dGw/QAulwvbtm1DY2Mj0tPT2XauYtJkkvPnz8PlcmHAgAFeywcMGICamhqTSmWeu+++G1u2bMHevXvx8ssvo6amBpMmTcKFCxc88WCsYCgWNTU1CAsLQ9++ff1u05NlZWVh69at2LdvH1544QWUlpZi+vTpaG5uBhA88RER/OpXv8LkyZMxZswYAGw/1/IVH4Dtp6KiAr1790Z4eDiWLFmC/Px8jBo1im3nqlvMLkCwczgcXr+LSLtlwSArK8szn5KSgvT0dAwfPhybN2/2DMJkrHSdiUWwxGvevHme+TFjxmDChAlISkrCzp07MXfuXL9/19Pis2zZMhw7dgzFxcXt1rH9+I9PsLefkSNH4ujRo/j222/xzjvvICcnB4WFhZ71wd522NNkktjYWISGhrbLvmtra9tl8sEoMjISKSkpqKys9FxFx1jBUCzi4+PR0tKCb775xu82wSQhIQFJSUmorKwEEBzxyc3NxXvvvYf9+/dj0KBBnuVsP4q/+PgSbO0nLCwMt912GyZMmIBVq1YhLS0N69atY9u5ikmTScLCwjB+/HgUFBR4LS8oKMCkSZNMKpV1NDc344svvkBCQgKSk5MRHx/vFauWlhYUFhYGXayMxGL8+PFwOp1e21RXV+P48eNBFy8AuHDhAs6ePYuEhAQAPTs+IoJly5Zh+/bt2LdvH5KTk73WB3v76Sg+vgRT+/FFRNDc3Bz0bcfDhMHndNW2bdvE6XTKq6++Kp9//rnk5eVJZGSkVFVVmV20brd8+XI5cOCAnDp1Sg4fPiyzZ8+WqKgoTyxWr14t0dHRsn37dqmoqJCHH35YEhISpL6+3uSSd72GhgYpLy+X8vJyASBr166V8vJy+c9//iMixmKxZMkSGTRokHz44Ydy5MgRmT59uqSlpcmVK1fMqlaXCRSfhoYGWb58uZSUlMjp06dl//79kp6eLgMHDgyK+CxdulSio6PlwIEDUl1d7flpamrybBPM7aej+AR7+/nNb34jRUVFcvr0aTl27Jj89re/lZCQEPnggw9EJLjbjoZJk8nWr18vSUlJEhYWJuPGjfO69DWYzJs3TxISEsTpdEpiYqLMnTtXTpw44Vnvdrtl5cqVEh8fL+Hh4TJ16lSpqKgwscQ3z/79+wVAu5+cnBwRMRaLy5cvy7JlyyQmJkYiIiJk9uzZcubMGRNq0/UCxaepqUkyMzOlf//+4nQ6ZciQIZKTk9Ou7j01Pr7iAkA2bdrk2SaY209H8Qn29rNo0SLP+ah///7ywx/+0JMwiQR329E4RES6r1+LiIiIyJ44pomIiIjIACZNRERERAYwaSIiIiIygEkTERERkQFMmoiIiIgMYNJEREREZACTJiIiIiIDmDQRERERGcCkiYh6jIyMDOTl5ZldDCLqoXhHcCKypYyMDNxxxx148cUXPcsuXrwIp9OJqKiobi9PXl4eqqqqsGPHjm7/30TUPdjTREQ9RkxMjCkJEwCUlpbirrvuMuV/E1H3YNJERLazYMECFBYWYt26dXA4HHA4HKiqqmr39VxGRgZyc3ORl5eHvn37YsCAAdi4cSMaGxuxcOFCREVFYfjw4di9e7fnb0QEa9aswbBhwxAREYG0tDS8/fbbfsvS2tqKsLAwlJSU4Omnn4bD4cDdd999M6tPRCZh0kREtrNu3Tqkp6fj8ccfR3V1NaqrqzF48GCf227evBmxsbH45JNPkJubi6VLl+KnP/0pJk2ahCNHjmDmzJl49NFH0dTUBAD43e9+h02bNmHDhg04ceIEnnzyScyfPx+FhYU+Xz80NBTFxcUAgKNHj6K6uhp79+69ORUnIlNxTBMR2ZKvMU1tl2VkZMDlcuHgwYMAAJfLhejoaMydOxdbtmwBANTU1CAhIQGHDh1CSkoKYmNjsW/fPqSnp3ted/HixWhqasIbb7zhsyw7duzA4sWLcf78+ZtTWSKyhFvMLgAR0c2UmprqmQ8NDUW/fv2QkpLiWTZgwAAAQG1tLT7//HN89913mDFjhtdrtLS0YOzYsX7/R3l5OdLS0rq45ERkNUyaiKhHczqdXr87HA6vZQ6HAwDgdrvhdrsBADt37sTAgQO9/i48PNzv/zh69CiTJqIgwKSJiGwpLCwMLperS19z1KhRCA8Px5kzZzBt2jTDf1dRUYEf//jHXVoWIrIeJk1EZEtDhw7Fxx9/jKqqKvTu3RsxMTE3/JpRUVF46qmn8OSTT8LtdmPy5Mmor69HSUkJevfujZycHJ9/53a7cezYMXz99deIjIxEdHT0DZeFiKyHV88RkS099dRTCA0NxahRo9C/f3+cOXOmS173D3/4A5555hmsWrUKP/jBDzBz5ky8//77SE5O9vs3zz33HN58800MHDgQv//977ukHERkPbx6joiIiMgA9jQRERERGcCkiYiIiMgAJk1EREREBjBpIiIiIjKASRMRERGRAUyaiIiIiAxg0kRERERkAJMmIiIiIgOYNBEREREZwKSJiIiIyAAmTUREREQGMGkiIiIiMuD/o3NEJBZ3dswAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# initial condition from the real part of the eigenvector:\n", + "x = [(exp(C*t)*X[:,3]) for t in t]\n", + "plot(t, [real(x[1]) for x in x], \"r-\")\n", + "plot(t, [real(x[2])+2 for x in x], \"b-\")\n", + "xlabel(L\"time $t$\")\n", + "ylabel(L\"solutions $x(t)$\")\n", + "title(\"second normal mode \\$\\\\omega_2 = $(imag(λ[1])) = 0.1\\\\sqrt{2}\\$\")\n", + "legend([L\"first mass $x$\", L\"second mass $x+2$\"])\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you look carefully at the plots, you will see a simple pattern:\n", + "\n", + "* The *lower-frequency* solution is when the masses are *moving in the same direction*.\n", + "* The *higher-frequency* solution is when the masses are *moving in opposite directions*.\n", + "\n", + "There are lots of interesting phenomena to think about in coupled mass-spring systems, but let's leave most of the physics to 8.03." + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAAPXCAYAAABjJOP/AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAEH6ADAAQAAAABAAAD1wAAAAAk3tNEAABAAElEQVR4Aey9B4BV1bX/v2ZgGHpvShuKoCKoYMFeifrMexZsMZpYiDEmGqMvL8+X8jP+Nc+SYkzyoolRY4otiRo7KlYUC5ZIB6X3XgeYgfnvz8ZFjpO591wYLsyd+W49nHPP2WXt7z6z917fs/baRVUhmIIQEAJCQAgIASEgBOoRAmnTm6KionpUW1VFCAgBISAEhEDdR6C47osoCYWAEBACQkAICAEhIASEgBAQAkJACAiBQkZA5EMht55kFwJCQAgIASEgBISAEBACQkAICAEhUAAIiHwogEaSiEJACAgBISAEhIAQEAJCQAgIASEgBAoZAZEPhdx6kl0ICAEhIASEgBAQAkJACAgBISAEhEABICDyoQAaSSIKASEgBISAEBACQkAICAEhIASEgBAoZAREPhRy60l2ISAEhIAQEAJCQAgIASEgBISAEBACBYCAyIcCaCSJKASEgBAQAkJACAgBISAEhIAQEAJCoJARaFzIwkt2ISAEhIAQEAJCQAgIgcJDoKqqKqvQRUVFWZ/roRAQAkJACBQeArJ8KLw2k8RCQAgIASEgBISAEBACQkAICAEhIAQKCgGRDwXVXBJWCAgBISAEhIAQEAJCQAgIASEgBIRA4SEg8qHw2kwSCwEhIASEgBAQAkJACAgBISAEhIAQKCgERD4UVHNJWCEgBISAEBACQkAICAEhIASEgBAQAoWHgMiHwmszSSwEhIAQEAJCQAgIASEgBISAEBACQqCgEBD5UFDNJWGFgBAQAkJACAgBISAEhIAQEAJCQAgUHgIiHwqvzSSxEBACQkAICAEhIASEgBAQAkJACAiBgkKgcUFJK2GFgBAQAkJACAgBIZADAkVFRTnEUpTdiUBlZWUsvnHjxkZ7bdiwwZYuXWorVqywQYMG7U7RVLYQKGgEqqqqssqv/jErPHqYRwRk+ZBHcJW1EBACQkAICAEhIASEwL8igPID6VBcXByJB2Lwu2nTptayZct/TaA7QkAICAEhUPAIyPKh4JtQFRACQkAICAEhIASEQOEhAAEB+eAB8qFFixafuefPdBYCQkAICIHCR0DkQ+G3oWogBISAEBACQkAICIGCRGDLli3R8sFJCCwfICEUhIAQEAJCoP4hoN69/rWpaiQEhIAQEAJCQAgIgTqPAOvSIR8IXDdq1CgSESUlJXVedgkoBISAEBAC24/AP23dtj+tUggBISAEhIAQEAJCQAgIge1GoDrxAAnhRMR2Z6YEQkAICAEhUBAIyPKhIJpJQgoBISAEhIAQEAJCoP4gAPmAzwesHbhWEAJCQAgIgfqPgMiH+t/GqqEQEAJCQAgIASEgBOoUAhAPHB6cjPDfOgsBISAEhED9Q6AodPaim+tfu6pGQkAICAEhIASEgBAQAkKgXiKQpr4kia36CEBa/fNd5/qOb77xa8j5y+dDQ2591V0ICAEhIASEgBAQAkJACAgBISAEhMAuQEDkwy4AWUUIASEgBISAEBACQkAICAEhIASEgBBoyAiIfGjIra+6CwEhIASEgBAQAkJACAgBISAEhIAQ2AUIiHzYBSCrCCEgBISAEBACQkAICAEhIASEgBAQAg0ZAZEPDbn1VXchIASEgBAQAkJACAgBISAEhIAQEAK7AAGRD7sAZBUhBISAEBACQkAICAEhIASEgBAQAkKgISMg8qEht77qLgSEgBAQAkJACAgBISAEhIAQEAJCYBcg0HgXlKEihIAQEAJCQAgIASEgBISAEBACBYFAVVXVbpWzqKgoa/mZnrvcFRUV1rhxYysu3vqdmfubN2+OeZJ29erV1q5du/ibuCUlJfG6vLzc1q5da506dcpavh4KgR1FQJYPO4qc0gkBISAEhIAQEAJCQAgIASEgBOoIAhALHE2aNInEA4RDZWWlbdmyJd6HhIBsuPvuu23atGm2fPlyW7lyZZSeeOvWrRPxUEfasr6KIfKhvras6iUEhIAQEAJCQAgIASEgBIRAvUMAEsGtHLJVzsmIRo0aGQcWDk2bNrUVK1bY7bffbhMmTIhkw+LFi23ZsmXWsWNH27BhQ7Ys9UwI1AoBkQ+1gk+JhYAQEAJCQAgIASEgBISAEBACuw4BJx+waKiJhPDnkA+QDtXDySefHJdhTJo0ydavXx+tIpo3bx6jLVy4MObpedR0rp6ffguBXBEoCi/U7l3UlKukiicEhIAQEAJCQAgIASEgBIRAg0cgTX1B6a5NSMu/NnnnkjZNfkiHZKgen+UTWDjg94FAfVhWgQ8IyIj58+db69at7aGHHrJZs2bZyJEjrWfPnrZgwQLbY489aiQ0spWXfKZrIZANAVk+ZENHz4SAEBACQkAICAEhIASEgBAQAnUIAUgEDicdICPw7+A+Hlq0aLGNeEBs4hEfEoK4HC1btrTBgwfbe++9F5dgjBs3Lt4jPvGyHcRREAI7gkCj60PYkYRKIwSEgBAQAkJACAgBISAEhIAQqGsIuFJe1+TKVZ5c5SeekwROQPCbwK4VOJNkWQX3sHjgvGnTpkhScI2Ph40bN9oTTzwR40NGQGCUlpZmFRUiQ0EI7AgCIh92BDWlEQJCQAgIASEgBISAEBACQqBOIpCr8l4nhQ9CbY/8kAhuzeBnllXMmDEj7mixdOnSSDqwBAOigW02sXogLhYSXbt2jffff/99W7Nmje2///7WrFmzrNCIfMgKjx5mQUC0VRZw9EgICAEhIASEgBAQAkJACAiBuoUAynm2I01aFPZsB3njI8HLYEtKrtkVgnTVg8fLdK4en981xXUioab4yXtOMvgZawUsGrBygECAVGBLzeHDh1t5ebnNmzcv7nCBM0l2uoCI+OSTT+zDDz+0Vq1a2ZlnnmkHHXSQPffcczZixIhoJYGlBD4g5syZs+03ad2CIht+SVl1LQSSCMjyIYmGroWAEBACQkAICAEhIASEgBBo0AhADKDYo2gTUOixFsByAMW+OnGQBMvJCeJ4qB4fYsB9NHB2EsHT5mJZ4PknCQvuIfOSJUuiRUOHDh0iKTFgwAD76KOPIvEwaNCgWJ/+/ftH55JsrclOF4cffrj16NEjEiyevkuXLlE2L4tzkyZNvFoZzx4/YwQ9aLAIbHWB2mCrr4oLASEgBISAEBACQkAICAEhIAT+iQCEgBMB3PVdI1zxhizgeaaDNCjgmQ7Ih5pIA4gDJzzII1Nw5d7l4Dcyupz77LNPTDp58mTjmuf9+vUzdsEoKSmxPffcc1vW7dq1i/4epkyZYjNnzoyWEKNGjTIIC+LhF2LVqlWRdICAQXYvZ1smuhACOSKgrTZzBErRhIAQEAJCQAgIASEgBISAECh8BJLEQk21casEFHWsEFiCgcKNlQBbWLKUwYkHt1pwIsDzduKB9H74PeK6xQPxeU7+kBuciZdL8DyISx5J4oJlFeeee64dffTR9uc//9nKysps2bJl0Q/EXXfdZSeccIL16dMnEgtYc1BX6vfss8/a6NGjbciQIXHZRrdu3bYRDshFnDSHlLnKn0sdFad+ISDyoX61p2ojBISAEBACQkAICAEhIASEQBYEnCDIFIXnfOFHiXZrB5RuFHz3BUEcjh0hH8jXCQjyIF+Uf8raHsXdLTRIkyQecCpJ/hAPnCmjZ8+e1rp1a5s1a1aMO3v27Eg+XHbZZXbiiSfGOOTDUounnnrKxo4dG5eafP7zn7e999474kHdKQcCJlvYnjpky0fP6h8CcjhZ/9pUNRICQkAICAEhIASEgBAQAkJgBxFwQiCpRC9atCgq4Dh15Mu/Hyji7A6B34SaDp4Rx+Nzhmjg8Hvba/GAfBzIB3HBkQw8Y5tNHEROmDDBzj77bEP+MWPG2LvvvmudOnWKu1pAQFx44YV28cUXGztkQDxg1XHkkUda27ZtbeLEifaPf/wjWjtAOkA+pO2EkZRD10KgOgLy+VAdEf0WAkJACAgBISAEhIAQEAJCoMEigJLtFg9cEz7++ONtziarK/tJoFD8CUniIvmca+Jky6N6/Oq/sXggPWXUVA5kx5133mlz5861Qw891K6//no77LDDtjmTLAtLMJ5++mmbPn16JBzeeecd+/KXv2wjR460b37zm5FgcGsInE+yy0evXr22YVJdHv0WArkioGUXuSKleEJACAgBISAEhIAQEAJCQAgUPAJOEGSqCI4Zca5I4JrjmWeeiX4S2rRps+2Zp6+JAPBnnGsqr6Y0vkQiuYQimY9fsyQE8qF6PNJzELp27Rp9PEBAYMVAGs4ecCLJPZZh3Hrrrfbwww/bsGHD7I477ohOKqn/m2++aa+99lokMA4++OBo+UCZWHhkCzXVLVt8PWs4CHzWRqfh1Fs1FQJCQAgIASEgBISAEBACQqABIoByzAEp4MQA502bNkWiAcV7wYIFUXnHGSPOG3nOcgWWS3h6P1eH0PP1c/Xn/PZnyTP55WIRgVNK4iXTck16yAGe41zy8ssvj9tpYr3Acgn8VnhgyQc7WQwdOtS+853vxOUXkyZNskMOOcROO+20GG3w4MH2xS9+0XBQifNKfEYQKAfrCw7HgLzdT0aMtBv/qY5L9d+1Fa16ftV/1zb/+pxelg/1uXVVNyEgBISAEBACQkAICAEhIAT+BQFXGF15xmIA5RkColWrVlFRZ/kCvhLwe4CyjgNHrCAgJLIF8q5NQKZsIS3/NWvWGFtovvjii1FmJzSwdsBygwA5AXnQuXPn+BsLiJ/97Gd2//33xzp26NAh+oFgC07IDKwd7rvvPvv6178eSQjSghlkDMGJDTDLd0irf1r5afimpU8rv7b5p5VfyM9l+VDIrSfZhYAQEAJCQAgIASEgBISAENguBJLLE1xRdAUdxRKCwZc0LF++PDpuHDRo0HaVsTsj42hyv/32s2OPPTZacLgsOJN0iwXIBZZhrF27Nj7Gp8NVV11lN910U1x+wU2WbkDI9O3b1yZPnmxYUDgujpsr4tznnvvI8DJ1FgJJBEQ+JNHQtRAQAkJACAgBISAEhIAQEAL1GgHIB1eaq1cUBRoigjhYEKCks2QBS4KlS5emWj1Uz293/GbZCA4kCZAnBOqCRQckAXUj4FQTQmLmzJm2cePGuPXm1772Nbs+OKhk2QlWHyzd4Bl5gsMDDzywjcAAKychsI4g70y4xgJ30j9ebqbzTipG2eQBAZEPeQBVWQoBISAEhIAQEAJCQAgIASFQtxGorihDOnCgZLtvB3aE6NGjR6zIrlhSsDMQgzCBNCCwrAJrBOrqy0UgCbCAYIkJ1g9lYfcLlpUQB0sIHE+eddZZhrUHfiDYMQOHk1hCkIbdL9hyNIkfRID7otgZdVAe9RMBkQ/1s11VKyEgBISAEBACQkAICAEhIARqQMCXWGABgBLugfso0AQUa46///3v0foBpZyv/yjddT2wVAIfDVhqdOnS5TNLIVavXh0JFiwhqIv7bKBOWEEQIF9+8pOfxGUYBxxwQNySE3Lh+OOPtxEjRsRtR8mbchxDJyIgNhSEQCYERD5kQkb3hYAQEAJCQAgIASEgBISAEKh3CEAyoEyjOGMV4JYB3EcZd4Lhvffei5YBWAf4UgUnLuoyKCyTILjM7ocBssBJFawgWIZB4D5kBNYPECxYN3Tv3t0uuugie/LJJ2348OEx3nnnnWfjx4+P/h9YkgFZQVycTVKmlxcj5/Ef91uR6ZzHopV1LREQ+VBLAJVcCAgBISAEhIAQEAJCQAgIgcJCAPIBRRwFFqWZa+45ucAX/DfeeMO+9KUvRSWdbSbxjVAISy8gEPD1wNagBOqE3NST3S44ez2pN4SL+4OATMAXBPexAiGfm2++2f7rv/4rEg9nnHFG3AVj5cqVkXCA2CANh5M4+X4TKCfbke/ylf+OIyDyYcexU0ohIASEgBAQAkJACAgBISAECgwBJxr40p/078B9DpYsoKCPGzfO9txzz6josoNEWfCN4ESFx63p7HEgMzIdQOaKuy9f8LhpcBLfl4t4Gs6UiwUCSysgS7hHXIgUCAbqy2+IBz8oK1kH4mHJwDIT8tljjz2sZ8+edsopp9gll1wS/UbccMMN0f8D2FAGzjgpj/IhJTIFCAp2EqltoB60h58hS7jGPwVnAvVMYkN9OLiXrG9N12nykQarD/KiDcGca+q3M/JPK7+Qn29d1FTINZDsQkAICAEhIASEgBAQAkJACAiBnYQACjLLCrASQMlHwYSQIKC0o3xmC+73IKnYopT6wX2uUfSTAeWd8qrfT8bhGmW7poBspCV/rgmUgzyccw1YSZAPspAPBM3AgQOjFcgRRxxhI0eOtMMOO8xeeOEFmzVrlh100EG29957xx0yevfuHfHyunuZ5IPcmWT3eLmekYmAE0y2AKV98E+RDBAUEALJJSYsqfG0ybjbc01dIBwo09uS9BAecrqZHUmRD9nx0VMhIASEgBAQAkJACAgBISAEGhACKKsQEEcddVRUMlEoXWlG2cw1EBfigjMKq5MAfDX339zjmuBEQa75E8/lIa2nTyrXXqbnCcGRFohDvuTnlhMs4TjmmGPiMXnyZPvFL34RLSFeeeWVbcq8Y+ROOymHfCAAcik3TS5/zm4byEYg37/+9a9RTkgR5OVg6QkWGZQPieLlu4ye146esQ4hz2R+WF14W+5ovvU9nZZd1PcWVv2EgBAQAkJACAgBISAEhIAQyBkBvmqzmwPkA8q7h+1Vop0McAIARRiFlS/mWBdw3832UZgJuSivpHFl2pVwl5EzclIWAcXbr/ldU3zuJwOKNemIy0FZTqIQ75ZbbrHBgwdHPxFXX311tBKZGfxhoOxPnTo1xvX8SI9SjpKOHF5Pf74jZyxS3J/FqFGjIhFyzz332IsvvhhJB7Ya9XpyhgzBoSaEUpIY2ZGySQMey5Ytizjz2/HFWsTL5b7CvyIgy4d/xUR3hIAQEAJCQAgIASEgBISAEGigCKBAT5kyxYYMGRKVSZR5V54hDFzZzAQP8SERUHSdvEBhRfFGqU8u4fAv5+RJHM5pCjJxkiQFeUKYcCbMnz8/KuEQHCjDKMWUSb5cpwX3m0BaL4cyqRd1YDnDW2+9Zd26dYvEA/4g/vd//9fYDQMfEZAX5EF6SAvKdALG80uTIdtzlw8yAdJh4sSJsbwbb7wxynjmmWfGMnnOMgvKxhICOZA/Dd9sZfMMHMAAzMEYYsPbm98KmREQ+ZAZGz0RAkJACAgBISAEhIAQEAJCoIEhgHKLIo+SCjnAMgkCirQrvtkgIS2KNwo7Z0gFFFXy4TxhwoTohwBLAQ4nCVCSnUDIln91AgFHijh6JH/Kmjt3rnXs2DHmjVLMgew4haROyJUtIAdKOko28lNn7nEmPYo8BMeMGTOiL4hVq1bZo48+Gss+//zzP5M1+UAA+Lae5FPbQHkQHNSLLUHZgQMMH3jgAbvmmmsivuxS0qtXr4gz/juQm7qAP9e1CZRFvcDUA+3Gu8IZuRRqRqDR9SHU/Eh3hYAQEAJCQAgIASEgBISAEBACDQsBlOtp06ZFZ4aY+LuTQhROFPc0BRolFwUUIgAFni/wfB1n9wiuUdrJE0WYPIlHfPJNy7t6S5Af22FCPpCnywj50LZt2xgdUgJFGblQvNOUY+ThoK5+eJ1Ii+KPXwmWHnzlK1+xf/zjH/b6669H55MQK/vtt982sgGiBAwcN87kVZtAnshB/XAy+bnPfc5OPPHESEDgj+LVV1+N5fXr1y/GoT2pP2U7ztnKz0W+d999N5bXuXPnWD8IiVzJh1zyzyZfIT8T+VDIrSfZhYAQEAJCQAgIASEgBISAENipCKAsjxkzJuaJAouJPV/uUXpRHNOURwgElFzygRDwbR4hCiAcysKWnVghEFDkIQcgDQikS/syTx4o0uQPqeGWAMiFjPhDYEkExAmyeLnkTxwU5bSADOSFQk0efNGHkPAykJl8sNzgHnUcOnSo3XzzzdajR49oJcESDIIr/o4L8WsTwAh5wIw6giH1xUcHhMjHH39szz//vI0dOzZaP/Tp0yfWAYIGmUmfLaTJB/5PPvlkbAPIB35DxlA/2iMN37T8s8lW6M9EPhR6C0p+ISAEhIAQEAJCQAgIASEgBHJGAOUv7Rg/fnwkBdhCEgUbqwWU71yWXaBsL1iwICrFKKQoxyjye+65Z7SmID/IDL7I+4FPBl/eQJpsAWLA42BFwbICduhA6WfrSRRinqOgE3hGORAJkBZpynF15RysyI+DaywtsDqYGZxMQqKAEcTD/vvvH8v49a9/Hety7LHH2ttvv20o/5RNvuBC3ZENpZ38vDzuQaikkS+0g2NAfcCNvCAjDj/8cDvkkEPi9pvvvPOOYaHAcwiZLl26xDYEE0ghb0vS0j60MdiQZ7ZA2TfccIM999xzdvfdd9vRRx9tZYFQAhcnYyBnaHevN/WifqRNyx9M6mvITvvU11qrXkJACAgBISAEhIAQEAJCQAgIgRoQQLlFWUexdkURBRkFNZcA+YAiypaQKLYQC+TFGeUWhZQzv5Pkgz9LK4M8CZABkAAo1SjXkAzcQ1YnC1B23YKBcjlqGyiHgNWB592+ffvobBIigjIfeugh+973vmfDhg3bVhzWCBAwKOFuDcE1eBOQGQzSgsennpQFiYBMYIxM++yzj/3qV7+yk046yViG8ctf/jKSHkuWLImEEuVQPmVjFcJvAnnlErBueOGFF2LbgTt+JiAzwIAwb968WA/kgUigDH9/ICUachD50JBbX3UXAkJACAgBISAEhIAQEAJC4DMIoCii0LNsAMWUL+quPH4mYoYfKMeY+ENAEPjSD9FAXv5Vm/ychHDSgXu5BL6iE4iPwovFA7JCZCQVaJ7zm3JQ0CmH5QG1DV4HtxwgP66p54ABA2z69Omxrvfee6+ddtppcdtS4mABQQAH4oMJ51zrHROHf2gPP5xEcEKDM22H4v/ggw/aqaeeauPGjbMLL7ww1h0ZIW8glZADzCBQuJcrMUA6tvP8wx/+EC0+8A/y5S9/2bCWIUCAeJ3AijpSBvdI25BDbm94Q0ZIdRcCQkAICAEhIASEgBAQAkKgwSCAoogPAXZSQHFH0XWlEeU2LRCfeOSDsusKPwquP+M5CjDKKQfX3PP7/M50oMT6138UeKwfnHRwpbe6jJTBs0zPq8fP9tuxcCsK6uT59uzZMy5fwBFlWViKMHv27LgbBflBFBCXo6ZA3bEqSAvgigxeJukgZJIEghMJDz/8cGwHLCC+9a1vRaeY5A9mHsCSPMGSpRJpgXhYdlC/W2+91Q488MBIcIwYMSJaPUBo0HbUhfy8bcjXsUsro74+F/lQX1tW9RICQkAICAEhIASEgBAQAkJghxDgyzY7RhBccecaBTot4HwRxZz0kA8ElFECeSUJhngz/ONEA8/SAhYM5IPS7Pkm03heyXs789oVaJRwAuWhvBNYhgApgEK+1157RRzmzJkTn/Xu3Tsq49QRHCEMWK7gRAr5YiWQFlDmkwdYQ/D4QXryId+pU6fazOCbAusQ/DNceumlkQAAP5ZDsGUoRAUyUx8nLdJkYGkHYeHChdH3A742CGzxye4fEA+0PXXEAsbbCr8SDTnI4WRDbn3VXQgIASEgBISAEBACQkAICIF/QQDFFGXWv1o7AYEy6Yr2vyT69AY7LhAf83/3j8AjlGT/Yo+yy0E8z5szz2siFJJlufLvCi3PyMtJB/LxkLz2e2nnXNJgvUA8Dr7uIxMHpAL3wAhHjOD40ksvGRYIKOhsjQmmyOvxISMcU69bNhkpzwkL8vFAufxm9w+WPuCME9KBwPKP1157Le6AQbtCDOGYk3iUSX6el7e551v9jLxYN0yZMsX69u0b68/2oqRjKQYEw0EHHRSXZkCC8D5QDvJBTDlpUz1f/028+hpEPtTXllW9hIAQEAJCQAgIASEgBISAENhuBFDi+SKOMomiiFLKPc4o3a4oZ8qYeJAOmPaj2CYJC/JBuaxJwfT7rlhnyj9JMrhsbpFBeZ5PTWVkyjN5P5d0KPjgQFzKdksDrpGJ+2x1OXLkSHv66aejJcCjjz4at8A89thjozJOmeTh2HpepM8WsE5wDBzPZHzajR1AWAICluSLRQYOKF9++WX7+9//HqNDIPTq1SvKy/IQ2gz80sqnTKwZysKyC8gV3hHKIX+2+XzmmWeiY012ACE/Dl+iAk5p+SNvfQ0iH+pry6peQkAICAEhIASEgBAQAkJACGw3AiiUc+fOjeQDBALKoH8Z56t32pdxvqyjkKJ0ooyTn+/iwDIDFFFXnsmXaw+Ulfzt95NnyAziIIcrsshFWsqsbchF+cW/Aso6cakPZ2Rx6w7qi4NJ4uAMk6UPnJ999tm4HAE58alBGuqC/Bzk64p6pnqgwBOH+pMPZftBGr8HSUH5lAHJgdUBDjpHjRoVfT/giBLfHmWBRKAdfJlEWvuSPzIjAyQMZ5bpINcxxxxjN954Y7R2QCZ2/4DkWLp0aVxiwnVaIF19DUUBuH++7fW1lqqXEBACQkAICAEhIASEgBAQAkIgBwT4as7X+tNPPz3umsAWjSwZwJzeFd8cstnhKCjC2YITDpni1AXlFcywNiC8+OKL8cyuEN/97nfj9U9+8pO4FIJdKRYsWBCtRFDMISBQ7p2MoC78TqtzzDTxDyouB1j64feuu+66uCQGWSAOIDwI+G+ArOAe7Vw9kN6XdFR/lvz93nvv2VFHHRXrBNkyePDgSD6QN8QUhJQTHMjmdUveT+ZXn66z27TUp5qqLkJACAgBISAEhIAQEAJCQAgIgRQEWJ+PTwAURRRfVxR3lVJPOdmOFPF3+2MsDrAiQJmGRMD/AVYP+FhA8QfXb3/725GUwMIECwi3CPDtScEdEgCLBVfOUf7JLy2g0DvRQNwkluT185//PG7Bee6559q+++4biSXitWvXLhIRWJZASLDEBksVLCb4TZ6QJWmhf//+9pe//CXKytKL0aNHx/eJ/CC2vD6UA1bIyzmXnTbSyq7rz0U+1PUWknxCQAgIASEgBISAEBACQkAI7DIEWDKAQuxLJVCACSixrjjmUxjKyHbks+ydkTdKOtix3ATFHTIHBRtl+5xzzrEjjjgiKtrf+MY3os8FFHt8JRCwliBubQLlOwFBPt5uEBocBMiQBx98MMqBRcvhhx8eyQLfoQTCiTbAAoL2hzhAzlzaH+IFy4f//M//jITGJZdcYr///e/jUhzyTwbyJ08nSJLP6uO1yIf62KqqkxAQAkJACAgBISAEhIAQEAI7jABf6T245UNSefVnOv8rAk7a8ATrBwLKNUo5yve9994bFX0IgmHDhhlbcbJrBKQByxogKTicQPAzeTh5EDPN8A/5JENN5ANyvf/++zZp0qRYLkTJ+PHjtyWjTA7KgyCgTpAE1fPelqDaBQ4sse7A6mHFihV20UUX2SOPPBLz8yUl5O/vVhKzalnVq5/y+VCvmlOVEQJCQAgIASEgBISAEBACQqC2CPA13E3s+eKNAuo7XeSqgO6oDCjL2UJa+Wnps+W9s56hYKPguyxg58r2E088EbfcHD58ePSjwZakt9xyi/GbNI47spDG83ELlDQZPb7Hcxn8N7LQnhAEvqwDx5AHHnhgJAvAl2UQ1AFSoHq5afjjXBIHlAQIC7YaPf/88+P7w04YQ4YMiSQEhAey4ZyUPH0bzlwIFq9LoZ1l+VBoLSZ5hYAQEAJCQAgIASEgBISAEMgbApAN+CVA8XWFGYU2F5P7vAlVYBmjWKPg47dhzZo10ZEjlg9YAbDEAqV71qxZtv/++8edIXDu+dWvfvUzxANVBnO3OEhT+h0ilHdPV514IA73kIOtOFl+gdKPXwpIgu9///uReIAQQF4Cfh8gLAi5yABpQfmQEDPDLh/HHXec3XHHHZHEuPbaaw1nnAQcUGLhwfuGTPi9qM/EA3XWVpugoCAEhIAQEAJCQAgIASEgBISAEAgIoGz612gAQSF08gGlMt8BBTfbUZNCnZQp7Xkybr6ukQHcqAfKNcsL+I1FCTuH4FPjrbfesq9//evRL8IHH3xgM2bMiNYGEBLE93qAOSQQIRf8SeeH1y+JJwo/1hU4f8TBZe/evSP58Lvf/c5efvnlKBvEAP4nkBnigXI5SMu9bAFLCeJAJnBN2VhWsOTkj3/8Y9wFA2sPtv30Oibrmy3vQn8m8qHQW1DyCwEhIASEgBAQAkJACAgBIbDTEMDkHnP7pALrpvyuLO60wmrICGU1W0iTIe15trx3xjN2bcDqwS1HUOSRCQzbtm0biQWIh27dukXrg0GDBsX4kydPjk4gWaKA9QB5JBV9cCGf7akfcZPEA9fkCZHAGUIAcgFSYcSIEcayCHaqwEnmwIEDI4FAGiw4yIt0aeVDOGDxwO4ZpMPKArIDwmXs2LHGspN+/frF/JHBrWsoB+yqL/PYGW1SV/KQz4e60hKSQwgIASEgBISAEBACQkAICIHdjgBK4O4M/pU/kwwowPkMacr1ziibJQ4o43vttVfMjqUZf/vb3+yi4JiRZQq33XabsU0lAQsFHIAiF8s5sErJFnKVH5yJ6/HxAYHTSbbg5Bm/sV6gfJZoEHxJRbbySQuhQVzypr0gXljegVUNS0xWrlwZl3nsueeecYkP+U2cODFu/Zkt70J/JsuHQm9ByS8EhIAQEAJCQAgIASEgBIRAvUEgjfxwZTlfFc53/nzdxxqCZQco9lgJoNyjiC9evDhaH3Bmu0oUdpZpoKxzjeVEWkiT34kB5ODA+oADawesMebPn28sA2EpxDHHHBPlpHx+YxWDNUO2ANlAXOJhxeDXnLHmYMnF/fffH3f4OOyww6IMEBX4nyB/WT5kQ1fPhIAQEAJCQAgIASEgBISAEBAC9QSBNOU/39VMKz9Nua6tfPnOHxIBiwICX/txzMiWmyjrEyZMsLPOOmubb4hx48ZF0gG/EewgsTMsH8DX60h+KP5YU0AOECBDfvSjHxk+IG644QbDSSTPICqQO619yM/zIj/iY/nAfQJLevr37x8tIn76059GSw/IDcgHthqFBKmvQcsu6mvLql5CQAgIASEgBISAEBACQkAIbDcCacrldmdYYAlcMd8VYkNEYP0AAYGPBJRyCAjICJZlDB482B566KEoCnEgCdiJJFtIk59lEcmlK5AC7tPDrRbYkQJLDO6PGjUqbgMKQcAOGMm0NclBPCwcOHiXIE4ow/OGfLjvvvvs4osvtsMPP9zGjBkTLTvwO8Hykvoc8rtgqD4jp7oJASEgBISAEBACQkAICAEhIASEwHYhgPKPxQF+HrAkYFeJZcuW2dSpU+Oyg759+8bfOKAcPXq0/exnP4tWByjtaf4echGEsvG9ALFAYMkFRAGWFxAEWB8g08033xyXYTzwwAMxHuXjPDIt+FILX87Bb/ImPQeEy0XBt8Xw4cPtjTfeiEtNWE4CLvU9yOdDfW9h1U8ICAEhIASEgBAQAkJACAiBgkGAL/fZjnxXJM1yoLbl84UfJRxFH4UbJR1SAasCSADOOHu84oor7Pbbb7fnn38+LrnAB0QuIU1+ysDvA8soiJtcIuG/2YLzxBNPjLtU3H333dEPwxFHHJEz+UHdyAvLB878pp5cQ3xQf5ZXsLMGxAN1g4jxbUlzqWchxtGyi0JsNcksBISAEBACQkAICAEhIASEQF4Q2N3LLlBQs4V8y5dWfjbZcnmWXPbgyxEoE2eLOJqEfGBpBSQFPiFYmtC7d++4GwYOIdkeM1vIRX5fDgHxQHzK4gwxwXnBggXRBwOWDhdccIHNmTPHHn/88ShHGv7UiYN6khekA+QDgXtYXEBAQLhgYTFgwIBoAUG+PN8Z1h3Z8Nmdz7TsYneir7KFgBAQAkJACAgBISAEhIAQEAINCAEUcZY2QDa4NQBf/LE2mDt3bkSCZQpYBrAEA58PM2bMiJYIacRDLjC61UNyeQQkhMvCEhCcP7IsBD8UP/jBD+I1S0CQMy2QF3m7tQPX5O0kBFYP1B2ChTO+LDhPmzatXhMP4CbLh7S3R8+FgBAQAkJACOwAAmlfRtKy5GuJghAQAkJACOx6BGrbf6dJnNa/57v82sqXln57nrslAJYHHFgFoKSzswVWByj/xGEJxEsvvRSJgB/+8IdxyQS+E3hOfAgDfuMkMrmMoiZZ0vAnDUsysIKAEEGWn//853bddddFCwhIkXnz5lmvXr1i9qtXr44ysH0o5ATp0gL1JO8ePXrEqFhWsPVomuxp+db15/L5UNdbSPIJASEgBIRAg0Qgl8lRgwRGlRYCQkAIFDgC+e7fyT/bkQZfvuWDTCB4OZyxEuBA+eY5VgFYP2ARQMASAQsBfCTgewE/CVhBkAZFHn8J3MOZZJry7+XGjDP8A6EBAdG6detIbHTp0iU6xIQkOOGEE6LPBggPZERm4nMQkClboH4ckBUQEAcffLCdfvrp2/xD5CJftvzr8jORD3W5dSSbEBACQkAINFgE6vPko8E2qiouBIRAg0AgzXIh3/17bfOvbfq0RoYscIycdEBxR4lniQIBKwhIBAgA/Cfst99+kWC4//77IwmA0j906NAYd+HChZGsIC/ieh7xYQ3/5FI/yvUtPSEIWP6BL4bvf//7dswxx1hZWVksBxmRne01KZe6pZXvIpGuT58+kXzA9wOBOuQin+dRaOfstEyh1UbyCgEhIASEgBAQAkJACAgBISAEdiMCKNa1OXaj6LusaMcHCwAnIlC6Ub5R8llygc8Frv35kCFDbOTIkdE541133WXPPfdclBciYsmSJfE6V8U/raIspSAgR/fu3aNFxRlnnBEJkccee2xbcpZ6EJCbuuBIMi1QT4gHlmj0798/Hlxzrz4TD+Aiy4e0t0PPhYAQEAJCQAjsBgTq+wRkN0CqIoWAEBACuwQBV5YzFZbv/t0V+0zntPLTnmeq1/bcpwyXz5ch8JtrFHmcQmL9ALHA4Ur9oYceGp1SvvLKK5GcOOWUU6KvBNISn7Qo8dlCWv2wniA/rBpYxgEBgo8H/EsQRo0aZQMHDoxWDlg8+LaZvmQEebMFiAbiQlxAllAW5ZCPP8uWvpCfyfKhkFtPsgsBISAEhIAQEAJCQAgIASFQpxBAmazNUdvKuDKf6Vzb/GubHnIAksAJiOpykj9OHn03CBR0CADO+H742te+Fv07YIHw8MMPR3HwzYDfhzR/D7nIjp8J8mOHDfxKQGqQN8TAlVdeaWPGjLE//elP0WfD3nvvHf1SYKVBIF5aYEkHAVm97i63P0vLo1Cfy/KhUFtOcgsBISAEhEC9RiDty0y9rrwqJwSEgBAoYARQKLOFtP497Xm2vHnmPhUyESC1tQxIKz+X58k6cu0WC8mlByjkWAhgBQHxgEUBSj47WuDscdKkSTZ9+vRIYrDzBA4ccwnJsmuKD26Uy3agOLFk6QU+GSAhsE549tln7R//+IeddNJJURYsGGhz5OR5WqB84kKueN2pG6QH9aTs+hpEPtTXllW9hIAQEAJCoKARSJscFXTlJLwQEAJCoB4jkG/yoSrsxMxhySOBZ2VQbJPEQ/gREvzzqK7chiefCf8y/vxLhM9Er9UPV76ddPCyUfhRziElcPiIRQDkAvViq8t99tkn+nmACICE6NevXzzcoiKbUF5GpjhOeEA8QDhACPiBLwh8P9x4442ROMBnA+0NIYJsxE9bdkH+vszC3xXk5l4ulhOZ5C6E+0UBpOqvUyHILRmFgBAQAkJgNyOQNnwwuPP1heATneRv0vvhVcll0uBx0865yJctj7T0TDCoFxMm4vqXJn5z8Jv6cNQUmHD4M9aXksYDX3TY77s2IW1yVZu8d0baNHzTyqjr9UuTX8+FgBCouwjUtn/ympGP55W89ueZzj421PQ8kg7FjSy4aQw7O1TG3R2Kw3jbuFFjaxzuxxDKhZeoCuNMZUUYh8NvlOeiT8eZIBX7XMaoW6q2hMt/jlMrV620tq3bWLzjWiJnvyZVeBjliDns/H/Aij6eg7ESKwHIB5Y9cN2tW7e4JIKlGFdffbU9/fTTccwdN26csQwC4sL9MyxatMjYJpPgxIC3SSbJ08aXDz/80G666SZ74oknbObMmXGniwEDBtj8+fPjuO7l7Wj+mdLVh/siH+pDK6oOQkAICIHdgEBtB28nIqqL7oN+tskXaTxe9fS5/k6TPy2ftPKZIHkZfiYN9eLsZAPEAxMqfvuaT8r2NGlyZHqeJl+mdLvqfn2v367CUeUIASGw8xGobf/kEpGP55W89ueZzj4+1PQcpT9sVBmU/0gvBIIhOGnEQWJQ0i1c0/dXbqqw0mDGX1rSJP6uCGR5+br1tjEo8JsqK6xj1y5W3DgQGJ8q9iFSXC5Q7CREkHsb+ZAkHrim2F1IPoAb8wWIA8ZKrrEswCphwYIF0QcEeOEAEiIAR5SDBw+OYyrxGXMhXhhrISXw4eBtUhO+3Mtl/Jw6dapBOPzwhz+0Aw44wA477LC4NIP0OyN/8qmPQeRDfWxV1UkICAEhsAsQyOfgmpY31ctlcpANhlzKyJaerzBuLsnEh8mNTxiTVg3k4fGShEpN95hccZ+8knGzyZHpWW3xyZTvzrpfW/zrev12Fk7KRwgIgV2PQG37J5eYfDyv5HVa/+XWgp5P8oz+v2b9OmtU0njruBNpgq3lRFuGEKGRW9wRORmcPIgRtz7gVmWwoNgUCHMI8EYQEEFuQpGnT55JG45dZfmAHIyLkA6Q+pAI4McYyTIMllz07ds3yg7pwNj80EMPWe/eveNz0ro/BZ6xZCMN/7TnixcvjnL84Ac/sBdeeCH6f2BpSNeuXW38+PHGlqDZQlr+2dIW+jORD4XegpJfCAgBIZAnBHzCVJvsPQ8faJO//V5N+TNZqK3yXVO+23PPZc2UxuVnIoSs/pv4Lj95eD7JM3EhKkjrhIWXk0zr93bknJRnR9LXNo3Xt7b5ZEq/u+uXSS7dFwJCoPAR2Fn9F/l4XsnrtPGt+rhQHdGKQBZs+ZQgYMkF/0E4eL8IkY2iju8HlkuUJJYIMu60aN2qepZWEZR7FPzoMNHJB4/l5IP/hnzw6zycwYq6eH0ogrHRD/BjiYPviMF2lzw7+uijIxlx3nnnxR0x+I2DShxCYvEAse9bZ2YTO1lupnhgTLllZWX21FNP2XHHHRcxpwxv80xpc8k/U9pCv19/XWkWestIfiEgBIRAPUDAJ1g+ECd/M8kh+ATD43Dm8Lh1HYbkJJFJHfXi7F6sa5pkMEkiMAli73K+cjHhY9KSXHpR1+su+YSAEBACQmDXI1AS/DsQ+JJfEcYTyAXIgMow9kA6NA8WATU5PdwUliGs31BuzUOairA0g3G2cZOSmBd5lARSnODEwrY9OzCGiE+2/oNFBAYQ+Qo1jZvIysH8gHGzZ8+eNm/evGjdgDXDkiVL7N5777WzzjrLHnzwwbgEAieUOIJMEgI14bK99cDpJP4mPvnkk0h4HH/88XHXjTlz5tixxx67vdk1qPiyfGhQza3KCgEhIARyR8AV5EwpapocJOOmPSeuEw1cEz+XNMTNJZB3tpBWVlp61pIyoUmSD8nymJwwUeI5B+WRJ7hyhpzIFJhQ1paESKtfprJ31v3avj9pcuzu+qXJp+dCQAgULgJp/X+uNSMfzyt5nWnc8HwZO7KGMLxtgniAaAhKsDuSxKfDsuXLbHnwbbAsLAPAx0FJIBdw0MhWlG3atI2kQZI4qNq8xTYH0rxxGM/CQMXAvG1JBUsrGEkhIThzIBkUxbYlGeF6Z4dc+vd33nnHDj744Fj03LlzrXv37sZyiJdfftlGjhxpnTt3tquuuioeRILsZ1xq1arVtjbJJHda+YzvrVu3jvhCeuy333528803x10w9thjj9TxOy3/THLVh/siH+pDK6oOQkAICIE8IMDX+2whbXKESaIr0CjqhORvvj5QBgeTMvJDmfdBOa38tMmbW1ZkqoOXk+l5Wv2YxCRl4DdlJr+qUC+vB/kl8+QLSY8ePWLxfMVhYoR3bl/r6xPWTPKl3U+rX1r62j73emfKJ4lFpjjZ7u/u+mWTTc+EgBAobARq2/967cnH80peez/v8aqfPU31+/xG6a/YsDE6j+R3qzBuwCisD0sLxr79lr3/wQf2UlDAFyxaaEuWLrXSpqXWN1gAoCD36NXTWrVoaUcdfoTt1acvyWNYv2btVoeTwfphY3m5lTZrupVwCPlCPPjh5AO2EsX8yFPw/r06Dn6fYtkViiUVzCtQ+J0QYHcLLB9uu+22SDT89Kc/tVNOOcXKQ70IEP/V840PEv8ky0nc/swl5bPsY8qUKXbyySfH8f+ZZ56xsrKyaI3xmcjVfuSSf7Uk9eanyId605SqiBAQAkJg5yJQW+Vx1apV277uJwd9pOS3K+so7K7Is/SAiQEKPF90sgUnMjLFSUtPmdlCkkSoKR6EATKAE19bZgYv20x6yJe0DzzwQPTOjRUDdYSo4AsVe3hTR+TjSxTEDNt2EWf48OH2+c9/PjrPSpuc1iRT8t7untzU9v1J1qWm691dv5pk0j0hIATqBwJpymmutSQfzyt5nda/ZxufIB9Q/MvXrrPNWzYHcqGplW/cYGPefNPu/f199viTT9gJJ55o68rX26bgG4IlGK3btglxtwQyYoktWbTYzjljhJ3xH6fZ0AOHREuG1StXWaswNmFBUR5IjGYhDVYPWz4lH/gU4QQElg9NwtFoF5EPjht9vvf7WHT4dtQQ+YzHe+21lzHv8C02jzjiCHvjjTfs1FNPteuuu874TSBuNstD4ng5XGcKbwa82eGCcNRRR8Wx/wtf+IJdccUVqelzyT9TuYV+X+RDnlvQO5xMxTTkly8TJrovBIRA3UGA9ZTsV81XeScFMDFk0E9+9cfKgYDSjRI9duzYOMCTHqdQr7/+evzNtlRMuvBQjZkkyjtfLlDaMYVkcsAgjkUAX8b5gsBz8ucLA3KQP+s7XflPyuHI0ffSv6L4IxPXTFYoG1PJZEBJpiziQIpAChAHB1U4k2Iyg0UG5ZPv5MmTo2drttmCOEBu8n7vvfe2yffxxx9H51aURx3dogPZqQtnlxvChXh8ReHLDV9w9t13Xxs6dGjEnvMhhxwS4yAbByQG7dCpU6dYFYgPSA0cahH4EgPWuzN4HcHV28PlYWLtlg/Uh7YER28zMOHaA3HA0MPS8DWP9sgWkumzxdMzISAEGh4CafPz2iJSvf+hPD/I2/v/TOVU7zM/Ey9sp8n6h42BfFiwcIGVBaV77ZrV1n+fva15q5Y2d8F8+9LFF9l7H35g3YOlw5FHH2V3/eY3VhS21mwRnq9esdJalTazLRsr7L233o3kw/QwnvXt3ceqKjdvXX5RHPrf8P/mcEA67C7y4TP1TvxgHGVMYIxnPOA38wIOxlMCcweWXzzyyCORkJg+fXqcuzA2EYfxmzNYkw9jqKdjPMoWKM8JEOTA0oItNw866CD7wx/+EOcJe++9d8zCxy/KZY6Rlne2cuvDM5EPeW5FXuhsoXrnlC2ungkBISAEdiUCKN4ozv6FAMWfQZS9tRlECRAIKOELFy6MSjoWABwok2+99VYc2FGQmRygbKIcQ0aQF9fkzSCO4k2e/KYMBvUDDzwwWg+gjCMLJALyMGljAHe5SAeBQH+anNARh3KQl3T0x5SF4guhAIHC5ISvJJAFfDUZNWpUJACQd8aMGdGZ1YQJE6JTKScyKIu8cTDF1lpOjpAP5Mnhhx8e8/SvMuBE2dUP5AYTJiLIjQyQNE5qQNzgzIqJDdYQX/7yl+3QQw+NEyTyok7IhKJOoE7Ex7kWhFG+AzJkCz6+gTeTPNqVQLtRJ7ZHo22Rn7p4fNraySCfpFFPsOY+71OynbPJoGdCQAgIgZoQSOu/akqzPfe8PyON9/1+zTmtD/P+knw8L88nWj4EAqI49KMLwzjRtUd3+85/f8f+9vhjNnPuHDvvgvPtpz+/3ZavXhUJh6pAJIz74H1btmJ5JCc6tG1nZxxxtF1xzX/a3x75i706+iXr3mUPq9y4KVg/tLKlCxZaR8aQQDxg/QABAfngBMSutHwAq5oC+DCOcGbMYDxlvHACgTROwoNf//797d///d/txz/+ccwOLJkPkAeBOQtEBPMMrpP5xAg1/DMzkP74lSAP5hps98l4NnHixBibeQT3fDkIN5PEew1ZNohbIh/y3MxpnZt3KHkWQ9kLASEgBHYYAYgF9q4muLL76KOP2rPPPhtJB5RmBl+sBaZNmxaVcYgDPFGjpDOIc+ZLPEp0nz59ogKJUo8yyaANYbFgwYKY/tVXX42WEyjvo0ePNvbtZjLgVgZMEFwOn0AgGwps9UC59LNMCMiDCV8yHgowJMmYMWNi0g/CWlnkwOoBkgEZIBVIz8QGZZnJBpYbkA5cQ26g8CMnzwnUyyc1THCc9EAW5EcO6sDEibzInwAOkDM84xoiAvnGjRsXrUMGDhxoV155pV144YUxPvHIm/RMmghMbmbNmmW9e/eOv/P1T9r4xoQLWbDScMzBtKZJN8QJ95lAcnbSoSbZeQ/I18mnmuLonhAQAkIgGwJp/Ve2tLk88/m9l8M5ec04kC143JriBC7ANpUHq75A5Eb/DM2bWZv27Wzv/Qba2+++bW99+L5VVm2x9p072arydbYyWEV07banlW8KfWcwmejRrpvd9uMf2d3/d6f1K+ttH737nr356ut26AFDbeHcebbHnt0YSGLRcelFYBsqPyUguEv5gS7eJcsuohA1/ONjCTgxzvObcdDHXcZAljVyZl7CksZBgwbZ97//fTv77LMjIUBaxk3SMKZw8JvxOy0wDvm4huUmhD/j8h//+Ee7/fbb7Zvf/Gb8gME4zByHcd4DcxHGxYYaRD7kueWzdR4U7Z1TnsVQ9kJACAiBHUIAZZCvCgyUKOUw+Qzmt956a1R6Uc7pxzAvxOs0ijMDKwM9e157wJKB/pD4KMsM8D55IA7PyAeln4kCXyxQzPlSgZLJMyZrPPdlEzxnklBdmSVfDvJEFl//ST1QciFDmDR85zvfiQQCJpKY8GN98bnPfS5OSg444IBIAECiYG0AkQIGyIAsTFI4+4QiWRfKQGZXpqkvspIGeZ18IC1xmcQQn8Nx8IkpzyAhIHggSCBj+KoC8fHtb3/b2MscUoffYIxHc8qtPtnxdtjdZ7cSoQ1mz54dSS1w8MkeWDGRxHSWOtAmYMvEzidr/IZ0cex3d51UvhAQAoWHAH3trgqU5Qdlcu19fCYZGF88rsvKPb+/dvWaOGYUh6UUkAq9+vaxDl072ydzZtlHkyfZpqrN1rxNKxs/dbKtWrfWGpc2CdYMnaMTyrDI0I4YdLD97u677Eff/Jbtc9AhtnJBILs/mmBNqoqtSXHcy2KraEGMLU4+hPM/yYfgQDmPEHo9M+Hj4ynYMCZweOAehAK+lIYMGRLH0GuvvTb6f2BMYZcMlnbSBsxxKIv4jLek9bHG86vpjJUhH1IolzGXsZx7lIdjzzvuuCPOgciP8Z/gHwgY4xjvG2oQ+ZDnluelyxbS/riypdUzISAEhEA+EcDsHyURRfC1116z3/72t1EZRMllML300ktt//33jwM1SyhQfLmPssw1RAUTBKwDkgHzeQZ8FE1XxBn4USY5E3jukzMmCxAIKKikRR4Gex/0PW8mDuRJPJ9IUD7xUXqfeOKJuKwC+UjLEgtIE36fccYZcTLA0gYUW8gHiAtM/L2fRibK4Ew93b8CeSEXpAiTCmSoXmeXMduZ8YL05E8dwAO5uaYdCFhm8GXlueeei0QPE53LL7/cRowYEZ+zDAZ5+OJTFwJ4ORHiX4lqkssnaPixoP68P97+Hp98wAcs3FLEn+ksBISAENgeBNLm59uTV6a4Xgbn5DXxq/dv1fMgPuMXh6dlLGI84GCcWhmWnn9yzAAAQABJREFUVbQJlncsr7j5J7fZ//32LmvUrNS+/s2r7LSzR1i7Lp1s5fq11i6Mz6Nff8UGDznAVoUxZcO69daxRWsb2GWA7bVfmV32pYvtju9fb3fdfa9dduFFtnR+WHbRMfgTQoWBAwnH5kA8xOUX4cytkuApYneTD2BDABfGPcYbDu4zBnPNmMF4zVjOPT5gML6/+OKL2wgA4kAGMMZAImB5l836jjIpjzkCFn6MV7QH7fJv//Zv0VoR3w8vvfSS4QwTy1HiMhehLX1OQT4NMYh8yHOre4eRqZiG/gJmwkX3hYAQqBsIoAhi8YCVwJNPPhnXTcLqf+UrX4lLDXr37h0FZXBH4Sc+5ASKOMomv+nnMEskYPnggzAEQvXgkwnuo3gzWDOB4IsBeaHYo5QzQeCZB9JxJCd0fIV4//33oxUFyyteeeWVqLCXlZXFLxb9wtZjWA2wXAKFFkWe/P3rRFI+JwX4IuL3IWcgRZi0eF9On4+cYMFEhskIMpGGOC4nZ8eM8vwZ9SFNMpAfWDC5Qel2S47vfe970bEVz2ifq6++OmLOZIg8nLBI5rUrryFkwCFpCkv5vB/I/Pbbb8f3gq9TM8PaWTDmoH68Y5dddlkktsCcd4mzty/tRN7ZgrdJtjh6JgSEQMNEIG1+XltUyN/LqH5N3t6XZSrHxwEfM4jHPQ44AY7FS5fELTFXBYJhwZLFduZ554TP640j4VDSopmd9O+n2ogvnGtD9zrE3p33gXUIyzAqwu4YG9cHknzVWtuwco0ddcBh1q9z+2CteIp9/NFEe+mp56x7py5QCxS5NQS2AesHdr6AhCCUBOsIfE/kK+TSfzM3AFvGUHBygpprlkLy3Ocg4M3Yw9JIxhMsHrF0ZK7iPhnIy+cWuZQPWY7VJOmRgTGKDzUnhp1GGPfIy/NGNuYKjF2Un0v++cJ2d+cr8iHPLeAdT6ZiGvLLlwkT3RcCQqDuIMBWUr/85S+N87HHHhsH63322SdaPDCYuuk7AzwHgz6TI59Y8ZUBnwjJ4Eo3EwGPiyJJf0ifyZn7fDHANJJ75AdpwZlBHmsFvmLw9YFyue+kAPEo93/+53/shRdeiMtEsFKAbDjyyCPtP/7jP6IzS5YyQIZQBhYD3bt3j8qvm0MmiQifAHq9KJfyUJa5dvm456QI9aQufoCB58PZv95TP2QmPvkwMQEPCBuu+QLjdSMPcGN5C/4fHn/8cfv1r38dFfmyQKqwlpWlKjjPJG0+A/XOFpIyMwGDCBo/fvy2nUJYXgPWyElbMgn0pT0QEODBu0Mb0XYnnXRSnNRRJu9eWv28rbLJqGdCQAg0TATS5ue1RYU+nuDlcE5ep/VP9J8+vnlePl4Wh2fkvjb4c1i3oTwwAY2sacsW9tv77rEPJo63x5992soXL7AhgXy46LKR1mGPLrZv90E2bu4HtiEs0cCxZPPiEtuzfSfr1WlPu+KSS2357Pk24ZUxNntGGHf37B620ghLBZxcCKQDXIRbPnC7pFFYghjO+QqMm2kBQp7gY6lbOoAzmEEMMBcARx+X//znP9tVV10VPzrcdNNNcatMJwjIy0l+rrOF5PyHDx0sDfT5EMQH7Uv+7p/Jx3fmK1xDVDTUIPIhzy3vHU2mYnL548qUVveFgBAQAvlE4JJLLolfDhis8d/AVlIoiSjlMP5uaugDP4M9g78r78jGF26UZwZ/V0ZR2D0OaXjGQE1/yDX5c98Hcr6go4w6wUFaJhT+ZZ/8yJv+FsLi3XffjUruAw88ENdgsgSBpQnnnHNOtHhALvw/UKbngZzkyz3K55ysC3kzYaAcJoAuM+nIo3pfDplQfXLhEyIfF8gPIsVxQS4PlJ1UrvlNmZAS/sWfryqUgULPkhiICHDDmgMiheUZ+QzIlC0woYM4wELEHZRC8nAfAuWCCy6I9aeemMTyHrGNKU42qSM+IUhP+7L0hnqR5oQTToikBO2QLThO2eLomRAQAg0TAe+Hd7T2VWG8Qgn/jIrsynq4T19MoBwvy69x4tiocUlIH8jp+G+MGiwJQgafmhMsDztTVG4Jiurmiug8MuQSEgUfRyVhrAx+HrYUBc8NYZxaFIj4jsGioThct2rc2u5/7I/218ceNXa4wAllr95l9k5wWPzXe/5mo8Y9bx0CEd+6XVubM3+uVQUriJZNmtmAXn1sSIcuVtqhk82cOM06NmttVYx3oci4tAKBCeFEFbGAsCZhzE3K/ikS/7SG2JqG+DHhp2njT+6Eum6N4Xc+e64+pn726dZf1ckH7jJ+k5b+3/0ycJ9xiDkLY8y3vvWtaKHw2GOPRUKbfGgbxmTmFoxHaeOHz23YFat3794UEZeakgdWe2y97R9R+FjCPMjnPcjI2N9Qg8iHPLd8cgLJC0nwF7qmyWl1cbzDqn7ff+fyx+lxdRYCQkAIbA8CbE3F1wJMCPGFgH8EFEEGTv+K4Pk5m++DK7+JywDrfR59IPfptziS+UAwoGgS/IsCX/dR7J2EID/Skyfl8BvFHeWV3SDuu+++uEsGkwy+oPMl/Qtf+IJBomDGT0AG0iBT2uCf1r+m9c+xwDz/4xhQJ5xR/uAHP4jrTSGJfKnLjoqQVj/wAU+IKJ+sQRLQllhe0Fb42fjb3/4WnWRCONCebEd6/PHH26mnnhpJnurtwHtBWsZI1sxSL5xtfvTRRzZs2LDoSRwnoD6ZBAPKZGJJgLTAQaiCEBAC9ReBtP4pnzWHeIBaqAya9aZAwiJLHFMCKeAKdeXmqkhgbw59GcQxhDf9FAppy2DR1aJ9h5BHka0J91HjuwRSoFFIvGVLRdjusqXNWTQ7OIgMfheCycHijUvt3Y8+sNmL5lnz1i2tcyCXN4T1D/MWLLKpQZletWKl7bvXADv68COsS/uOtm7Vapvz8Qz78f/eYovnL7BZ4yfaI48+Zocdcmgoo9hmLVtoxT3b2ZsfvWd9+/S1ig2b7J7f3G2jnn7WPnfMCXbbjT+yjSvX2polK6xft562cVWwNAtSrly81Pr32cs2h4061paE8TysnGzVpIWt37jOWpW2jAs1GHfat20fxuWww1TYkSNUOI7RkBBLgpw4yGyHNR81g2zJU4BQoE0YG30spx2Qj/nBYYeF5SbBos63xWTMwRoPy05Ich9PMomHfgdhDglBu7qfJchzd1DN2HbmmWfavffeG8czZGFeQll84GioQeRDLVs+rfOD+SQOk6nkVzAm17x4yS9bNYmSlr//QdWUVveEgBAQArVFwBV+d76EE0n6HcwZGXz96zN9HX0agyv9lg/MlE//x3O3kOAecVAuIRZ4htJKnuTHBIF8PCADZdJfcuY5eUJAcP7Vr35lv/jFL+KEgnt8IUe5LSsri6QDyxNQehnwCchJObXtX9PSu/z5OoOf1wm8mETdf//90RKCidDvf//7WhWdVj+Uf8xLwRIrDNoc0oMwffr0SISw7AVyAsKBr00446KNIC2S45dfJ8vkCxQHzrpefvnl2MaQEXgYZ6kJk0feR94h8mRcBQ+IMd6L6qRGrcBQYiEgBOoUAsm+YlcLBvmwJijWWC+UhiUPyeDkA/fWrt9gqwMRQH/EOEYfSb/Uom0bq2jcxLp2ahdJjFXLV1vn9q0NdRSLhI9nTLNla5ZZszbNbUNxhc1aPM/mr1piTVo3t65l3cOuFnvYhOmzrEWrtlYalj+sX7XG1ixbYRvXrAukwZpAFqy1j94eZ03Cyrg2pc1t6bwFNqCsj7UsbWazPplhnQb0sjP++6s2f+PqsPPDu2G53jmRwP/1L//PVsycY08++7x956prbMLo16zzHj2sZ4euVrS+wj6ZMNmu+cY37Vv/dY1tDKsGgn1BJBw2VK4LlhJhjA912rC23Dq162izZs4O40EXaxas86AYNlVusfVhiUgRZETAoClETZgH5Cv4mMJYw5zB5w+UB2Fw1FFHxXGKjytYQGCpgN8nt6pMe7/I34l3xkLGPsaj3/zmN5Ekv/jii2O5jI+QHcngZSTvNaRrkQ+1bO1cXk5efL74uLkyHY87NEkrPpf80/LQcyEgBITAjiLAoJ1k6fntyjt5Mqmin0oSqZAJHCiDDLx8fUgO/DyjX6QfdGWV3+RLGr4QkYY1lJTHFwxkQMEmH54RcOzEkpC///3vsY/FcSQWGpjlUy5fNTyQP3JSBmfkTpIhHi959slL8l7yOq1/TsbNxzU4JkkaysCPBbjy1Qb8ahNyqR+kke/6wYSK9sGx5zXXXBMtFSAbsDxhggcpQHsyAUd2CCHOtAX3CdSHMZL24ysUFhRM2iEX2OL1i1/8Ytw7HXLlmWeeiRNF/0KFaStlIANfotySpjYYKK0QEAJ1E4Fc+qd8SR4XDASWwVXnjZu29mubQ3/GuNEoKNblYdyiL14T+kVkZbkE4w99WdPQ963esNG6hK0xoS42BsuDzZWb7MMP3gvLG/9kr4x52cIGzVbSppmt2LDG1i2ea1YaVP19+lnXXt2sKmybOXfiVAvsgzVr286aNym18tVrbX0gIBqHrTLbNW9pKxcusV5d9wxODCqse+euNjVYP+w/cD+bPnWa9T0o+H9YM8f+8NtH7YZ7/r/gw+mA2C+vWrHK/vrbe+xrV19rnVq1s6aBDlm9aJn96raf2ZppM61J2CGjX1iiMfH9d+1LX78sjM2BaAiWFr179LRTTjzJyjr1tKXLFltJUaNggRGWgkBNhCUbWGZwbtNuq5PoioowjwjLNv6J4M5vKR/zOTN/YLz3MZ/xBgfaX/rSl+L84tVXX41baiMF8w3ipb1ftDOE/7777hvbmQ/MzF1++tOfxt2zzj333NjeEPHMayiT8Y147rNq59e6MHJsuDYfO6l90ianfJniJWaCRWCihqdVBSEgBIRAXUcA00MsHjhQBgkMngyi7qAJIiA5SPuAjwKJeWGyj6Q/JJ0PwEwIXLF0QgGFlIMAaUtAmfRlHkwMGMyRDU/VbJlFv8r52Wefjb4AUMD5Ok6g70XZRQ7y4YyMuZAPMYM6/I9/PQFHAvXr27fvtklOvkUHS38vKGvs2LHxC9KECRMiKcA+51g88DWJQHuCPZNvZCX4u+Pn5D3IA9q6LFiw4MsDwuH111+PEzuWYrC7xw033BDzgWxw4oEbSbliBP0jBISAENhJCETrhsCXBrcKkYBoEnZ+aBSWGRQ3Dn4Y0LdDOTMCWdo8OIHs2bvMWocz9zjKKytsY+izuwfrhwkff2IvjX7RFoUv44sXLbBXXn3JFgWrh6Z7dLJBBx9grbu0s1Vbym3KvPa2ofEW69KnuzVq2dQWBn8Q7YcdYMtnzrLyZXOtPBAQjVu3sKKSNsGaICxrDKREn77dbO4nM4NfiM2B5Ghp81+bbV2aDrA9hg20uVXrbMmsCTbdltiMTcutR7NgGdC2hS1et9isX1crLusYyisN+ktLO2HoCdb94IE2+snn7Mm/Bl8SPTvayUdfYo88/0wgGYqsWUlTWx6WY/zynrtt2JCD7YC997PTTjnV5o3/0Pr2KLN2rdtZi6AHVeLAsiIgEECL9hLh0l1JBFh2emCMh+zhYDzgYJxhPsDYydjEVuF8xMBKASJhZth1CUs6xh0sJtMC1poE9DzmMCw/PP300+2QQw6JO4IxzjF2QTg40U58/+jCdUMMsnzIc6v75NCZNDfR8S+CTMKyheSErKZ4yYl9Tc91TwgIASGwMxCgD4N0gFRgEIU0YCcCrl3RY1BHuWTAZSAmDYF0POPMIO1LOFwuH5SJDzHB4O958oyDCQSTCXbdYIssvnrzVRyFlCUWhx9+eDTPp2zi0/f61wvy5NrzpNy0vpU4af1rLnmQT74CeFBfztQX3JCJ8QW8nLDZ0fLT6sfaWZZEUB7LIDA3xVphxIgRduutt0bMGeOQDzNX2sCXafCegG+mMnjGV0Mmd5i0Yl3Bu0fgPbnooovs4Ycftp/85Cc2cuTIOLmjzgTanzjJpY7xgf4RAkKg3iCQqe/YFRVEwWeZQVEgG9zJQ2VwALF6XfCTsH6dlYcdJcp694pkw/pANswJfdjkaVNtSjhmB2V0efhC/uZb79iiWTNxcmSNOnUMvgYGWOu2rWzfwfva5z5/sq3dssE69Oxqa4o22UezptrC9SutWYc2tqGo0uYF64LOYZemKdOn2drQt/bYs5u1b9PWVgfLh7UrV1mTYHkwZPD+9vaYN+24I4+2DuHZlV+93EqbNrN/O/lke+r10bZp0TT7xZ/es8dnPR6I47ci6T/kwKHBEqPYPvrgI+vZtZvND0swOrVub0XBsmOvnn0s8B9heUgHW/DxLNuvey9766VX7Y3Xxti8iVOsa/jdq0sgPKbPtOZFJbZm4VI7+/On29cuGmn77LXPVi+Vq9fZlo2VVtwirNloET5cRG+W+WkxxgHGft4TxiDGFMYI/+jB+MiHCkgI5jMsWTzttNO2CZP2fjHGuA7HeEZ8zozDBMp0q3fKJngcH8vizQb4jywf8tzofMFj0s0XPyaHsGIEXk4mbApCQAgIgbqKAF+TIREYOCEOfCB3ZZ5B3BU+BlXuowx74JoBmvRJE3gGZRRKBn8UTJ5xjXLqwc3mIQwwZYR0ePrpp+NXCr4kkMeNN94Yt86kb6U/hdRgEoGHa75aIB9yU74P+vymTl4XL68Qz461W5l4W1A3v85nvfyrDwTA//t//y8u9cASga0+sTyZMmVKbFd2KmEJCG1E+9AGjIu0Oe2LvMnJGc+ZOJI/Sy0gmEhLfiytob4/+9nPom8LSA4sbCAgyBuSg69Knl8+66+8hYAQaLgIROIhfL2vLA+WDGE8qqwKPt6CB4eoWDZuZHMWLrSJUybbM8+PCsdzNjsQBRaWXrQKekDr0Ped+G8nxXGqU8cOIU2Jdd2jszVtEXzXbArbLjfaEnxKmK0PKxPWhB0v1oZtJ5ZvCQp0WIJR1TQQ8S1LbcrSObaqcViu2KmlbWjZyBZuDuNgcVCIu7a29p0628cbltmU9YutX9FaW7gufAjo0cY2LltuW3q1t03/KLKz/vcX9oeFj9qUWVOsx9C9g37S2V54c6yV9SyzJj3CmBysLD6c97E1bV1s3Tp3s+krltmYJ56yPvsNtpOOOMY+CFYVfY4YYkeeearNnz3XlsxZYPM/mR2cY661zq072LRArtzzlz/bsmClcdHZ59vwo443CxYgxewwGfDaageSv/eHsYVxhHGBOQJjAjoZpDRtBPGApSBzBSzpLr300uiMEotKSHLmCdkCcxSW/DEXIT+IB67R7/xDM/MOysUasCxY8PGMMYp7yTlRtnLq4zNZPtSyVZkkZQtMqv7yl7/El5yX7bzzzouTcdYiJ7/CZcqDFzdbIE8FISAEhMCuRAAylb6PgdT7MQZ4BmD6PALLIhjA6aO8n4KIYMcC1ldyRiFlIEahxPkTX7eZHDBhQOmEcCBPBnL8CGAeScB/wPDhw+2rX/1qjEcc0pI/1yjlOH7iHnlxIAMTA4+D7LXtX9PSR2Hz+A/LTagHJAvtwDUBxd6JidoUn1Y/MP3xj38cSSCIn9tuuy2OcZTpzrt4V5ikkRdkQtIagXcIuf39cFmJS5v5M4gqiHsmd5AQbrLKVqJf+cpX7MADD7T7wk4nHofnvI/+Vcrz1VkICIH6g0Ba/5TPmmL5YBuDv5rgt2FT6JcaBfKgWatmVhWGv/Kwy8Wa8vV2+VXfsNkL5tnEaVOCE8Y1tkf/fnbciSfYIWGnHvoo+uveQSFdF6wlZs+Zbc0C8dCmfVtbs2GdLS9fbRVNi62iWbEtq1xvM1cstAXlK608kBKVJcVWHvxBbCmpsrUb18f+fsP6clsVSHrObQOxsUeXrkHPb2HzZs+xkkaNrV2wUmScqNi4yY477Fh7c9K71mXvXjZ7yYI4Lm71lxMsGTdvsfbtOtiM6Z9YSXHYirpZC2sZll5MevMt6xj8OgzcZ19rEe49/cAjdsphx9iGZaviMg+sGfYJu2D06LSHLZu9wDo3b2OvPTnKZn44yeZ8NMV6te1sF595nl18zhdDHYNT4oBZ8DgZLB/y10qMg4whnCEfCE4+cJ/A2MNOWXfeeafdfffd0U/UBx98EOcRaQQ+H07citPnPf5BhnGPsc7nRYyB/vE5FtzA/xH5UMsXgJc6W2AizHZisGpMBvlaQxpMe5iYp4W0zrX6pC0tPz0XAkJACGwPAijrDKgocgzYKID0awSeYa1AnwZBwMDOUgyUxTfeeCMSrxAAfPlmEGYLRLbPJB2DNYPx+++/H/OlP0QZZcDmiwNxXdkkf/JFyTzppJOirweWXPiXBvpWnyhwj+BfLaoruBAQKLbIXdv+NS19FCSP/3j/jxx+Tf3Bi7aobUirHwQD7cFE66GHHooWDwvD1z5koM2RA6uEZFvg84P3x4mSbDI6gUQcrF94Bwgs94C44j0644wzoq+Pa6+91q6//vpYbwgtJ6FiAv0jBIRAvUMgrX/KZ4UhHyrXb4oOFYubBCPywEXMC/3Sy2+8bn/9+2P26tg3bO2mDda2c3DGOGAvG3bUEXbc8BOtX98BtiIsn5gerCDahL6xcRhT6cdKSoO/gLCtZnlIs2RVIGuDYr42LLcI+2TY8s0bbFnw+7A47EyxeP0qW7Z+ja2tLLctTYKZf9XW8Y7xr3EYU8GkagvOFKqiVeG+YdtIiP62YdkF1miQ+lVh/CuvDH1z57a2ct3qrVZpa8NyiEA8hGSxTp07dg6uGYpt0fyFwaFk5+gwMtDEcWzv0qmLbQzOLbesDNaGwd9Dh7Ct5pqVq61V0xbWtllLqwj39+3R1/p37m6LJs+wp//4iL3/8GPWrGUHu/qSy+3ic79oZYHIKAljfT59PjD+uDUluDAXYN7B+M88gDkNVpLgwhjmYxLPGLPS3i/GXD4AuAUg5TEXgehg/HUCnPHISQri01ZY/TXkIPKhlq3vLy6dByahOC8h+D7jbN9y5ZVXxheeF5I1qkyKjjzyyDhB8wlzJjH8j4c/Gv4QiM/Ejt/+R5Up7a64n8sfZzY50tJnS1sXnvmEvy7IIhmEwK5GwFl+yqVfYsCmz/rd734XPT7TLzII01cxoPOM32Xha0+PsF6V38RhcGbwJw8mB/SR5NU97GWOWSNfiRi82TubPbhRQnPpO2r797m9ZdAvU6Z/VUlrD7fIqElOygYPniWPZN5enj+vXl4u8ldPk/xNvj4R83GHCRsEAs65rrjiiljXYcOG2QUXXGBDhw6N8YmbSxuRf20C62lnzJhhl112Wfx6dfvtt9vll18eJ5d1wephZ+BfG3zS0qbJl9Y+tU2fJp+eN2wE0t6v2qLj/Sd9qr/r3OOgb0Z5ZOxi3s1YhzyMT/RvG8vDV3V2lQgkK9tV/PyOX9ld9/7OPp490zatW2Md+vWxPsGHw+fPPN1OO2dEUNLb2MSF0+yT4OOhRWvGsh62ZNHCSBIUN2JHqEAehAPLiY1VwRFzIBXKi8NOTyVFti6QDCurNgXyYY0tWLPcFq9ZaavC0oai0rBddcX6bboBMjOebglyRsI3nLGdLglWGa478JxnLcPyh4rNG7eWG+oUEtmWyuBbKVhJNG/a3Jo2CUsgQ+KK4CRyY9gtY3PlVitvMAj/h7hBkceP/pbNW+OEsbwqpG/WqIm1bdLS2pU0t0MGDLJWFcX2xL0P2KIJH9snb39gtnyd/eaO/wsExIUBtiJbumTpNosAtqPk4wOKOfqSkwE72s7epshMm3KmrZPtTd7MQ5iDYJk+ZswYe+655+zoo4+Oxfr7wJzE44JzXRhfokAF+o98PqQ0HC9rtsDOFUyA6JCceCA+Ey/W+Fx33XWRVWTNKuuKcIw2fvz4mGVy4p6pjNiBhIf8AfDy89Jzj7T8wewM09pMZeu+EBACQiAbApjAe39EH8VEjD7p5ODQCpIBywafvDn5wG++WkMouBkikzz6M/pb+lLy5GCS54N8nFSF/o/JCfEwedzdXw+SkxtXzpnYUAeecfaAzPTfHFxz0Kd7HsTjHjh6nOr9u+fBmVA9/3gz/OPPk3n7s+05+7jjJqRYHHBNO990001R8ce/wznnnBP3NSdvZEoj1bdHhmxxeaf69+8f9qg/O05UGXfBDLmTVhPZ8tAzISAEGiYC9I9+OAL+mzNjGP064xy/GYvos+ljmgbHjZs2VdrysJzisCOPsFlz59heA/ex0jYt7dJvfcOGHX2kDT/2czZ/w3L7ZN4cW7NxqjVt1cL6Dtw7OKlsFFZsVIblE1v76uKiMCYUh7EhHNAFYUFFsGgImn2IB7GBH4mtXi3DmBKWQpQ0bmJNtwTHysWVVlocMgkcbqNAkDBubA73KoJ+ELIMu24UWyXjSSAF8E/RpKQ0WDNs7Z+bBXJh86pyaxSeM0wVhSGlOJghNAmESrOKImse0rZoEepfFPwYhDwrA9ng2tDmQFRUBtJhdfmakH+wIgi/N4alJpuqAlkSrDUCdRLumd3z1F/s4L4D7dhz/sMq5i+3CfvuY8/87g923Y9vtCHDDrH9e+0dx3Cs2vi44DsB+o5Y3iY740z7VQ9Ya0JwgBsWmpAPL774ov3oRz+KFntsoUl7M6Yx/2DuQtsz7viYWD1P/c4NAZEPueGUMRYvIS+kT/Z4mZkcP/744/anP/3JMEHl5b0vrEfFzwMvOSSET1QzZvzpA59cQjaQDy88HSKdIPcUhIAQEAK7CwEGbgZ1FG76I/pD+inMGJlIoITSh9E/0ufxnN/+RYP+LE6YwgSIQF4+SUCB9K80nof3h8Shn60LgXp5X4x8HP5lhfuOD2d/niY3eIGLjyvET16TV/K350eaZDoInNoE6obM5MkEHLIIkujBBx+Me6Rj+cBe5v6ViK9VxGd8qkm+2shSU1pIEN63888/3wYNGhSdhxEPGXYVAVKTXLonBIRA3UeAfpSjeuAefTgfFlFKGWsgyL1Pg/ieHiyufnnnXdYifKVfVr7WOvbsZsOOO9puO+8cGzJoiL0/c5JNXDwj+H8IuyCUBjP74ICxcbNSWx92wVi0aL4tWbbYepV1j0sgggl6IA0CSUC/HoSBeMB5ZXEgFsLmkIFICNdBmW+yJYydjZpaRWlwahnGVgtbaG6q3LqLE9YNkA5rrUkcZyEeKtjSc3MYc0MuLcJ9+mXqRv/YNMSvWr7GSgLZUBLMLRqFJRZNihpbaVETa1nU3EqrSq1zs/bB8WUoIzi13BxIBrbIDDxDJDQ2BeuMKvIPz2AuICM2BvJhYzhXbdloleHeiqqN1rhLG3vh/TftoLK97fNfOtemTptqH7/zvv33j663/774G3bMQYfFvhqymI8SBLDe2c4Yk+3s7Ui7cuDAGr0Kv1OQC1g+sMQTUju5TTQfTMCOcZW5jMKOI9Do+hB2PHn9T8kLm+3AVIevb0zMeBn5o2HLMZgzOigm4ZAQvLD8YXGeNGlSnHz7GqBsKPofDPlDcuAUhjW0BDrHuh5c/rou547KV9/rt6O4KF3DQIA+iANFDyWQAKGA0sogzn3+Rnyw55rDFWT6NNJx9oN0DO6elufJNJTnxISXmQlt0uUzOOFC/ZAfmZHPy0VOAs+TxAC/OSBXnLzwvPjt9xhTOHjmmJE3R7KcZB2Tz4hT24CctAkWe/jloH2PO+64uAPF73//+0imUwYTderDeIgMjFn5bh/GU8gQLB6wgEBRACvqTXsUegDHQg6FLn8hYy/Z0xHg/eSgjyN4v8w19+lbnCinL6dPoW9+8skn7ZYf32YVwZrgq1dfaY8/+5Rd/Z1v2zXfvNYee/EZa9Otk3XeI2w5uXSRFTcNX86bN7X1gQRYunJF2Mlig7Xv3Mn2Kgu+HzatCqRDIB6wbQhdNVYPWz5V5FHmq4IMlUG2ilA2FgZIWQRJUNLEmoc+uX3LVta6tJm1b9HaOrZsa22DY8jmxYE8aNw0+l5ovDlYMoSDex1btrFOrdpZ++atrE1p8M0QjrBFh7UMPhuI3zosk+Bex6Zhp4zSVvFoF5ZPNK1qbM2qSqxFyAPio3lYVtEsbKPZpDhY9wWyoVkYn5s0DrtHMdaAZyAoisIykuLQN+9/wAH2QfDp1LZla3vh2eesf59+duXIr9sfH/qTfTL2HZs6cXp0Uon/Jvptxgz6brcwoR1qE7z/8TN5Ja/5zZhNubQ1ZDbPISNwcE3bQz4gD8Q6YzDvAHHSxjbyVsiMgMiHzNjk9ISXE5KBM388OFnDxwPhlltuMZxg4XyNNbH8Ub388st20EEHxU6Olz4t8MIz8eNlJz6TOy+LTjCXPNLKyOfz6n/o+Sxrd+Rd3+u3OzBVmYWDAIoohCuDMoQBfRzX/F3wm7NP6LhGWeTw+yjWTOo8DmnpR13pTlo30NeRv6cFpbT+j7j5DMiK/NSVg8Akhn6bM4F+GpwgqlHQsY6DRGYJA/WlTycudSYuB/lygAtxKIOzX/ObAyyJ4wF8koff39Ez+SMz7eBkEltbPv/883FrzRNOOCHK7+Q4JIBjTp3TCACPu6Pykc6tCx1/THjBIO3dqE2ZuyrtzsBnV8laUzmFLn9NddK9+oVAcuyhf032p3wgpD+hD6Qvo19nu2d8Gr3wwvO2OqxtCPs+BV8P91ivvfrasuCT4cihR1rTZq1t8vzp1rfHgLBV5iabv2SxLV+zyhqVBmKgbRtr3LTUNhZvsnVhFwsWKVQGJT5SC3G4ChQE5gUhxHHg076fbh4HkCj6zcLyiZbhaBVIiBaBCGgTiIP2TVtZq0AONLOwQ0Wj0uB3oUVYmhEsJYIlQ9vwvHOLduEIBEW4bh3itW7SzLCraFna3Fo1gXhoae2D3B2atbF2pa2tTePg+DkYNZSED/wllUHZDnmVBiKiJLAkjYPRdXHF5pAubBsayIcWYRlIaRifcXjJzhql4V7TJqW2YN4C69urLDjm3GDdw+4bpWHJR1VYbjIgkA1vjxptcz+aZqtXrLYDAkmBbyfqy1gI7oxvte0/kumT197mjB2Q5ZTH+EYbs/MWMowaNSr68WMrTu5hGUE6ZOQ9qQ/jy+78Sxb5sBPQ56WGBXvrrbfs4osvji8nu1qcddZZ8Q8IXxDsJ8tLy5ILOjMIhOQfQyYxeNl5yTn4g/A1zv41rK6zb7nUMVPdC+F+fa9fIbSBZNx9CPD+M0mgbyPwm77KiQcUUJ674uxnj8tgT3yUXFeak9c4oCIP7+/In+ccrmzGgjP8k++/T88fWZAfOZEZj9aQCtTdyQVIBepPQH7qzThAWvpxP5gEce3KvuNBOtKTpxMVpPWJFM+Rx2Xid20DeSM37cTXHxw6fve7341jG0su3OqPcpicEZCRNNQtLdRWVpQBLAGRD5xREiBAwI+tzZC5kENt8alt3Wn/bCFNvrTn2fLWMyGQbwToq3jHvV/135TLffpoPi7Sn0Cy33///fbDH/4wEshnXXiB/fahP9vw40+xKfNnBJ8OwTllq5b21KujbPLc6TZ0v0PtvZkf2rJAOuC7oV2nsOsTllnBfmFm2Fbzo8kTrE3n9sFPQiCbsXJgmUUgF4pDH84ZM4eKMJ4gR+jV43/FwdqA5RGNw7lJODcKBECjirAEAz8NYYkGZ4gBrBValzSL1goQEu0CsdAhEAtclwbyAFKiabBgYKkGZEbTQFA0D89ahTQtw7l5+F0a4mxZHxweB+cNRZuCL6YtYWwPaYsrESzItKkiEBhhDAuyNA15sC1nCefgNLM0EA/4xGjfuq1NnTDJzj75DAt+M+3jCZOta4dOtnLxUhtywEE2b8oMm/Du1m0t2T6bMc/7HPAG99qGZB/k15TB4aQ/5LqP3xARjCEQ6mPHjo1jbVlZWXR2zXhLGt4TDt4PhR1DQORDCm5M9PxFrenMC8qLy7719wW/DuxDz5chJmZMhjADnTp1qmFWxGSMe7zc/BHwEjOxzBZ42QlMwCkDvxEemHDV9eB/7HVdzh2Vr77Xb0dxUbqGgQADNhME+rHkFwH+LvjNMw4G6eoHaehTs/0NMQlwHzeujLvyTf5pg3+2vHdGC5E/kxAnTlB+sWiAHGBccHIF2en/UZQx7WQ9K9tzoRwTz+MSzzFz3BgDqKeXQZl+cN/HJeQAGz9znTa+pGHABBCZIVNYLnjDDTfEseg3v/lNXOaAbNSRM3IwpkEIIKuPXdnKqG37UEcfB308dcIBHMCwkENt8alt3WnTbCFNvrTn2fLWMyGQbwS8v/Q+k/edaw/0e/QnEJlsJXznnXdGR7Zf+MIX7Nr/+W8rbtfaXpvwrh3Y7wArD1r/hKmT7aRhn7PSzi1tbLiPlUPzQEg0C0fQ3W3N+nW2oWKTtQn3e/buZas3rYnkw5ZAPkA2NP6UWIBgaBT6eXaYaAThEA4cRUbDiCDelkA6BIcO0fqgaGOIA+EQLB6iVUJYZtEskAcQCU2DVUSLYAXBkgp+456hqjxYTGPREPKsCstGcB5ZFAiF4FPSGuP/IaS3DWEcCfG4F48gfKNAPOA7gi1GqyIhURn8SOCHIlg9hvsQIoH+jssvICFKg1VGy7AkpG+PXjZt0kTr161nkKWJTXjvAztwYNgFI8h4cL+BtmT2/LgVKH2F60n05bmOId5WNZ1pz5r6INrY+zYsEhknuMfYxZjJvAML9dGjR9uHH34Yx3OWX0C2k45xGhk5K+wYAiIfUnDzr1W8mDUdTP7Yt/7UU0+NHRQTITopJm1MmknDRJM/AF5WnvNljHMuEyNedDrIt99+2x544AGDHWSC6xPTFPHz+zh0lkWhU6Izisen7GyobOhHwxF7Sq75b2uItxJShal7+EVsui0O8vr/2fsSALmKau1vumemZ9/3fTIJmcmekJ0kRAgQAigP9CEoPPChoij4+J+iiAgiIE9we24Igg9BEBACJKwhBpAAWci+zmQy+77P9Ex3z/Z/X3UKmpjJICEQSFdy596+S926deueOvXVOd85sNY287JH3j6Lu5S3f9F9+CPgPF5g8tJaeZu/b2ejzFkes+iIfKLfPniIbbvLFMpc6y+gPx9//rqHXbj59ra/xNrjT7pPMAVr4JNTA7bjDgQSNOjUd6sBuOSXlAirAEgGBoIGVgGwx23N6Leu03HJUP2252i/5K6W0ZK9ZrTz3u9xK591H22rPsTULYVVHD8CnwU6WHDBym1bLls39rcth+1rVK86pvO0rWdW/SofLbqnXdRPaFH9alHfdaTKkZ5HZVcf9+1vf9soYldffbXp79S/CRRX+VQmlVFrPbu21Qfq9+HSwc99uHMPdUzPrjz0vOpT9bwC+FUugfwf93Sk9XOkz6/6PVwarXyjHT9c3sFjwRoYvQas3mXXB18RqHMdrOf5iROp2ZNTge5zInnktkACLcPkLgiPIkEjrQMeefxvuPa66xgWshnX/uB6XEkZGBIThVBaFDT1d6OuqxGDIZS/IQPoDmEEqMhw9PSR8yaSHBHsvzwKV0mwYIDbUjcHCTZ4B8j3w/CZA7z3kMgcpe9SxjvotiD5SfIEI9sN+MBtHdfnKFJJH4keB8jXEEGwQNYPAg1cdH0IE0ElySMV1SKS/A0hAhO4L4KcDmRlwBDL0d/jMaCFk9YY3jCWjfcfYChNhthgXgQQ6GYxRPDB5/Ex9KeTnBSKoEEwgt2tlkEWRc8xRMLJkKE+yl/acnCf0fMlj/lPIAWnHNDe0ILMpBQ4CVbE0RIinYB7F3kv6hrqMEj94OwlS5kpsOKFZ7F23RsYUzSGobSLDfASyfPfNRYwObPy1Ndy29TXwa97hN8HyyHbZ4rbQcdU3+o7NVZTH6u+U5MDcpFctWqVieo0a9YsQ6Kt/k19sdJ70UFGKNJxv5skq6P0Lsd5Fal61Dg14NeMlZLQUDVMKYiyfDjvvPNQVVVlGmpZWZlRPqWwiRn1vVSvzpHvkZQ5zTLJH1hIa3FxsWn0v/zlL7F8+XJMmjTJEN2oDAIwpHDl5ubq51FLhyu/gAe6u/nH2n5ZYMbyEkQCT/2wgv+vDou11yxWn9FaMpVpgCGLKPuN2RZovvV24oXVVbXIyc+m0B1CPeMiZ2dnmeF9dy/jHDODGNa1yHh6+S4SGD9Z9+rr60UUhYSvX4Mdf7g+3Y5i1j+YobDp6nIjOoLAkHKhLOFrJrrsv7O+CpnBOUmcM0CioEHmoQcNJVIsnzYlCVuKZbMtQaikvOxf/1oPeCBTHfUjMgH7bGVw1yHSwULzEKcEdwVrIFgD77MGDifflKUAFDuA17aSBv2BSfulrGjwKwVGA3YlyXKrpOg7PtS3rP4j0D3Bggcql86395asV3+jpDxtvrqX7msH+SqLAB7lo+tVVvUnGohb9nDlFag0iWVcZdW56ueUl/oizQIpn/vuuw8iltS2XAk16yciZd1LitiRpNHqf7S8D1Wno13zQR4/0vKrn5cuoSTQSu9B65qaGijM29FOtp0F3kf71NbsWu1Abce2LQvqqM3bdhd4vbYPle/B5wR/f/JrQO3g6CUNQa0Cau/yjq5l9C4O2vvcfdQBBwmiRjMcJQeZchtgctIPoMvdTReICpQUT6A2F4KOvi40tbSiILeIv2lxzGgNS04/3cjF2rJynHzGUjMJ6PF4ydkQgqZBLzr63ejzdBJk4EBcJgihIQQzBGwwv07OjtPdgXEu0Uu5LHgjKtbFfQyLyUG7b4gWcgy/2e3pNcdD6a4wzG8vhK4UySSQ7Gpu5TYH/gxjOawBMsEAD3km3EN04WPUjGQnwQY+26DACcpvB/uCYVod6Pcg614uFeJikMtDCL/XIa9HnRrJIjk5EEVixTA33HzS0D4C+lzCPASSiS4o9GcII2kMkfTBR24K8VOICDOEQEYYgQyXkxxAGn/72vixUz9mZfXzD4tNYEIkmYqK4X8XXoIYgguiWTZNNvZ0d6G7oxOhPYNI90TirLmn4M7bbkd9eSW2vPAy9ldWoyAti3kTSJeVRjSjWlH3N/ImmvXDR+3lMR+fP57HlPf7TRpHSa5J3qkflpyzMk1tVy43l19+OZ5++mnTz+q3UuB48P3e+3i/LmCUd7xXxaGfX8pNYLxwzahIWZCCp2N//vOfjTtETk6OIZe0DVizPmqgMt85XLLKh1jENWMjpE2ghRZd/5vf/MZYPSg/fXxSJPWBqAwHK8GHu89RO6bvXjpxwBhbuwIX/70NLnrgiF3pLAko+pKZGTJmYgfnNl8KuFyGMNJPDfwFPLg9fRAqGu6i0n0ACAgjSCDgQdZr1HwQFUFAgkiziwiwzL9UIv3rZ6cRyWPKLykuCZ3dPgobmjrzS6BsN4nVzHfRy+s18JBZsVBkKdm2UOqmxFBM5NfAKdrvf5J31oIh9M8m/3Oy0QTsM0W1JwTXwRoI1sAxVgOBg1sN+C0AoGJKHmsQLyVFx7TWDIr6AF2nY4Hn65rA/PTbAg8a2EsJUh4CHCy4IKBA1yjfQMBA1yoJeAjcb+8rBUp5aG0BauWt/kODSW1rLTNXWWcoqe/RNQIexFEkS7snnnjCWD0oxKZAhy984QvG91Xl1fMfKfhgbnwc/7GKbmlpqXHXmT17tgEgCgsL3wYjjmb1HNwedS+1DS1qu9IxbFsUV5XVe9SO8vPzTRvQcTNTG3Ct/X00yx7M+3ivAeldXDhQNsnqjkbD0jHqXFypDUu9FPCgpDavsJFOnh8bTZcIytB+DuYrNAtOvoJIggF0tsb2it346S9/DkdcJGo3rMWNd/8By845G4+8+jw+ffLZeGnjGsRlZTK8JMNQDrs5MOcgm+CDsWogYOD1sg+IiuNAmeA0J69UImcYw19SSQ3h/cPCue0mGEAAt58WCREcSPdK+SQw0Ef9My6OxJQkqCTFIb9H3oPf4wCBE1Ix+NVk6rw+nu9Q32G+WSm/BA35vAN6Ru6jZkvrilBEsP9w0MJBi5OTarJNkFXBEM9RdAonwZEws8hmQd8/QQdNuoUPwOPwoM9J4IT3ddACIlz1GEoQgCBLu7uL55MXgtYWWhyMiiH3EBfdPYQSyHrC4ZXVuMrIberZmrMMi6b+Hh6CwuwS3LX8IVx903U451OnoXjxPBRyQrV0TylyktJZJ7ReU8Wx/GG07CBXJe+rd8l7OBnOmXnpOd5v0iSx+k/1Z5LFgfJQ+yQHZcFowXl7H10nWWgnB+z+4Pq910AQfBilrtT4bOerU22nKkXxtddew89+9jOjNF5yySX43ve+ZxqxncEIbMgj3UbWFNaSQoqkGrSSlE6x6j733HOoqKgwFhbapw9CH4tAEPkWW8VypPyP+n6NqSXTtT6wBMoCmbT5jaS4l3XpX3jugZN6Orv4PDIjdhmh5T/Ff4VCCu3auRsTp0wg6+w+ghC5RIzD+ewk9iH44CLw4HHLZGyAVil+/osBD1FcClPKXsYuZvOmLO9jXQlAUMcSOsDBAoVhKAV0H8GexNhIg52wRLb47CDkD0fwYoCmzbyGcs+g0Xo3XpIK6RnUobkYs1ntQaCG/2rloqSK0F9/hdhfgiyUDj7b7Az+CdZAsAaOuRqw8l4Fs/2ABmWS/7JaUJLc1jENxrXWb6WDgQf1JUqB/YIFHLRP19ljkvOS91qUp723rrcDw8C+KXCfyqzz1U+oL1Iemq3Wb4HhNpa68hKPQ14efXEJmEj50m+xfKtvEzCuAaaOa1D8xS9+8e3+RuW2M+DKJ5jeXw2oH9GkgyY4tm3bZvr10znTKlBHg30pvR92CmxL0jMEUsnXWeVR+5QLzlpG9TrttNMMcGX6wANtW23etuEPu9zB+x3HNWCAB7++5a8Fv64lXU3tUYNVm2QFIUsChwbdHECnJqTA3d5NvXAA6alpJjTm/tpy/O2Jx/D6hjfQtH0bvvunuxGenohaB7+FaXn474dvx2lnnonSpjoCDtQXwzkoNwAHQVkCDR66JHg4W5/BAbS7lWEceU9NlsmioKenmxEkhhEfF236EE28tba3Iie+AN2cZIyIjEIbLRSkVzqZqVwy+r2cOBskIMCHGKRsdxB44EGERFD/pHwfZrSMYe3jgH6YrhTSMqVFewZkbUHXCSIH4awjJ++vqnDy2TmOJxihS0hASVRAVhKa4BsiQOFT/0OrjH5e73MQ+KCVxiBH+eKi6Od+D11GqEajqqudmTBPA1xwoo95R1AvdzH/cFpJhBBs0YnDAyy5jxoxb+qiXi1wIoK6/KNPLkcco2pkxBVgOCocu0t34YT5MxGbksT78R3y/xAjZThYdzLfGKTFwxDRizA+dz8tS44EeFB7ENCuftv23dqnJDmmRX2ytUDTORs3boQCCAh0kFwMgg/++no/f4Pgwyi1JjMbAQSaCVLIFTVGWSRIWbvjjjuM+4NmjxReU52wlvXr12P+/PlGmRsle3O+zpH5rJQ5dfJS7DTjJOJKKSdXXnklFixYgIKCgretLtTojwngQTJei5IEBRf1AwewBW5oi4vWby/+XbokJorIprFM8GeiAbvZ8v80wMPu3aWoqatFdm6WORZJIEGKcRRDBIUOMcxQTATcHTIzBk3YKP0oUL3dtHqI8TdvQg48xm0WIZxr+cTRLowmXT509yhQkj8pTJCLHYFBQ50UcAesKnSdLBxcRCVcUUR2eY55wAOS70BRD+TCk3m2/++BXWblfy7tV/rn4/79wb/BGgjWwLFTA5LnNmlQZgdmAiJljabfksVScC2QIJmtpHNGswyw59p72LUUHwEIIyk3OqZzAsunfVoCk53Z0T6db60eBDTI5LSkpMQ8x+uvv44NGzaYZc2aNaafO//883H99dcbBVn9ngUb1CfqPsFBZmBNv79tvX8BTRkZGUZf0KBe9Txv3ry33WTeX85HfpXatrW4VG5qywKv1PfKzdRaYeqYbQtqF/Yb0f7A9qnfwRSsgQ+0Bt5WFrVhNTG7TfcHkTLKp5YKl9TPflokCIw15I1UVLvauigYORinfldcdAKBBAd27tuDF1a/iIf+8iCaOpox8bxlmHTSdLyyZT32b+lAQ0873DQW2+mtQ/cQeR00eOfdNbgPpVWB/g04aBkb7kSrpxttJJnkGJ5RIWjRwMm2puYaWvoOISczDTG0IPD2MUpPaxtSsjLMtxPBgbbAEnFOKATnAKf7vRzw+2idMSCAgc/jZN6cZaPuHMZnEm+E3CII/IVzCeWDUjcNkR8zB8yDtEAgJSXzUt/AMQrXtFWgdQQBGJ7iotLOO5rJPAf1Xp8YJgU+8CzvkJd/mXcoTyRQM8jy+Hx96CE44qM1Q21PB8EQHmKe4Q5GRHIyyhHdNaJolRDBHOIiYqgvc5KO4IeLz+TQSyBaw0czE44LzzgNjTX1eHDdE/jjo3/B9Vdeg4LMApz9ufOw+qlnWYwBusYQ8OEzOwiOhNHtRGMMJXFehBPAOJIkQF4yS2vJLS2Sxwaw4n7JZxFNaqJB7UYhVm+++WYjm0fqu4+kPMfTtUHwYZS3bTtVrYV8SWmTQrd9+3a89NJLmDx5Mi6++GIzQyHeBikRhYWFJleBFNafc6TbWKsHHRcAIWVTs0733nsvtm7dimuuuQbLli0zM09SAHUPKQQqj/L+KGZG3vUs7+jmRigY8OHACZIR8l+T1Df/DnzcXB1ALHlGGMW20AolCTwKmyEJTSr9It/RjNAZZ56OwqIxuODznzf1PXvObMOsG8X6aK4hEJSRiIr9+w2iPIedhLvHi927d+PEE6dSKipjChQOBCTQB9UZUdCIzCeWpl+xLppc8QyVQPCAWByGKGR8ZBBWh9VPASeehjBeE279m1k8HfMRkQ2POcjnWQiIycus3vlz4BHf2aEaCaZgDQRr4ONQA1JKBC4o2T5B25LJktlSXqS0BA7+dc17SZLnUmyUdA/1M5qR0aI8BBrYtc1PZdAiMEFrDfIsIKBzVRYtShaA0DnK0wIasoDQ/TTjfueddxorOylaV111FebMmWNim0vB0vU2aZZeg1D1g7pPYF3Yc4Lr914Deid6T7IwkXWJ2oIG9apnta2PKtn2FejeKXdPTbqoPRQUFBjdQ/qL9mnSxAINulZtVs8VVNA/qjd4PNxX+toBxYptziSjS2rbv0jX08TRAC0djMUD26XTDGLFawBUVlTTEkDuaU4kUZ/evPEt/O3p5Xhr9zY00OJ4xtLFuPyaK1HVXgtfLMGK8D5s7diPBUtPxd+3bURmfDrCOQMfSn0xjJYOToIOfvcFuQRHoaGuCp5uWgbQAaKXIEFbSwPqaispQ8nnw8F8WuEJ1GU5PcaJru5uRlqIEgwgXTOCHBDsFzjQHyBvmVwgqBkbvViuCyGyAuDSNkQLBIIDvmFaStDawsEySOV1EFUQv0JEBN02WL4B+Uxwoi7EQaCc3ZLcLaSrh6rsAywLI1m4BAoQfBjm4mUEDJGw9ZPzQmSTMiIW2aRCf/b2eWkp4mWkDi/aQww0QTcSugXSMiM8hBwWdD+JoatG5DBdPhh92cG6idKkH6NbyCKCN0C4BvZ8xor2Jvxj52bkJqZi3uz5+PaPbsB9d/4am199Ga29HA/FkrA5QdZftPBgeE8Vy+lSHhw6mHdr3voR/ZG8Uv+tPtj2tRaUUMbjx4+H3A5laf7UU0/hlltuMRZqQdl2RNXOdigNIpgOWwMyNxTir8ZnTVavuOIK3HPPPUZhePDBB9+epVAHrJkLmbtK0RtNOVMHbTtrKXRiX73sssvw8ssv4z/+4z9w1113GaXSunIEFlRKirghjmY6fPPwCwE1IMl8s2g7oED9/R4KQSKsbGZ24anc1klUvCj4jJzjr1ASLzjJsSDp6P+nc2TNEI2MzEwUFBRQ2XZj0cKF7DSqEBEeid079iCfoXw2b97MDqYfS89catxY9pbtxcIF83Hppf9BGTpIltoMZLCutC2zMintVbX08YsINfknk5FXHBAqm0AI/bMdmHzXxBI8LFM9/lOSoFJnFhl/iFj2utJmBYUAAEAASURBVFTJrrlp+kTzVNr/Tg29Q0CpC/45jdZ+/vmK4J5gDQRr4L3WwOHlGxWuAwN/DQY1UJdSosG3vn/NhsgqLhBwCLyvZPtIxwLPU17K91BJ95cMOBI5YMshSwxZO6iP0sBWYLeABvENaDZ70aJFxspuIeWrVawUJjqTsld9mepA5VQ/pfRBDJBHq/9D1UngviOpl8B83u/2B1F+9UWqXyW9C71z9XVqOyO1i/db3oOvU/kPrkPts+3e3l9tX4st544dOyCeqtraWqPvCJiwljG6h67XYq8/+L7B38dHDRzp93H4WqIexQgT76QDOlsAAEHRaRLVPlqiyS2OA3u6JiixOWPntp2cYKJrAnXCkpLxuO0nt2DlC88gvSAbZY1VWP7K83jurVcROz4HL2x7HQ3opVvADKz8x2pk5uTC2UuwgcVw0DUhhJYJodTtIknIGBPOENGhiehuJm8CiRwddPcVG2NnWxOjPTTR5cKF/Kx0ZCelIT6RxJI0jWju7URqXrYZlEu2DnKQ7+Bk2bCPuid1TVlChHCmf5h68gCBBw/xhE5aRfTJOsHXSyWTlgC0qJAKHUbwwcmyRNBaV7Nrun9YSAR/072Oa4MmUJ8dIrgRThcIBnvmc9CNg/q4l2BH92AXeuhi0sp//ZG0uHBxYpD59fX2o6fDg54WjwEfBlMiWSN0yWA0C7k4hw4KZiFgHUKeNObHXOEiwBHHScbkqBhaRbD+WfcxtF4Oj49BwzDvz4giw9192Ll2Pc5dsAQbnv07/vidG2jdEYs9G7ZiTEa2ofVoa24n8BlNHgjmIBWaqrhfk/b/1Tv9V5PapwVNrYxTHuofJbvUZ2r9jW98A3/7298M6KC+UhME6lc/8snff/WBj6HzD63xHEMFPBaKInRf4IOULpmcyjxV7N9jx441M/GFhYVGGVUjlbWDNW1Vox5N+OoaWTNIoVXH/vjjjxvgQTNPmo0KvLfqQtYQUgZVFqFxH2XSJ0/A9IAAeGdtyyQRLwVErAhCWlkZ3BIIwf08pjF4KAXS20njepqO6Ry3z402huSpb6hHSiYtPJJi0N7dRiS5AW9tFqLcQAEwgEgKrp2V24DYQbpfxGFz+Sa0d7YTDfZiw76NeOLSJ6hcAXm5OcihsqROpo9mcC1NzVBkksSUZCSzHosKx6B4fDGKxozleblITkgiySSJKSm4E+IS+TuZwvCA0GMx6R3HhYkTlqqHwOQHGg7sN/0cn0kPa87k05l9+k3EVTB2MAVrIFgDx2QNSH5LKZHvuxRCyWnN/Got+a4Boh2oWaBBYIKSZLuV/1oHLjqu3xrkK38pNOpj9Nu6dGhQqDwk6y0YoOuk9GiGXNdp0KdkrSdUBp1vFSr9Vp9UwVk8WTjIWk9WYXoeXaO8BKJ87nOfw+23325msHV/O6hUVAuVQUn5Bg5UP8qZeVOgT8AftYHAOpULp7WwtGDP0XxMvX/dX+3FlkNrtRuVzSYBVdJPtE8TIZoN1KSM9qkd6HzT1zMfJeVn26DNI7gO1sAHXQN+ywe/LiV9yixS+KwSduCGA5zhUkh2M7PPfW73oCHYpXDjLDxn5ambhVAX27D+LdRW1mD6zBnocHcihLP2/RwYv/bSGmSW5GLPXh6vqjYklZLzsgIIlxsELQBCaHngpL47SMsBJ3kfQsMGkMCZ+17yHWjg3NHUCi8BBhrbMvQkLZ1bOvD3t7ZjwuSJyJtwAip2ViAsIYaARQMnOdPQxvtH00pDPBHCEBxyOeC1tI2Dmxa5HSSFbOMxNyNuDFBfdhJ8iKTlQxRdihlMg/op9Wi6mUhHdRIIcIXGIloWF8xHqqiTdeJiPYVqUo36qdw0ZCUiDgtZCeubpp+F/36KxsH+xttLF5AeTbyxPMwjmtxroSwHh+K0kqAs4UQdc+BBTSoyWgSjiTgJuvSxbvu83YikXJD1Q2JMLEnh2fe4HKin9cPmV15HflwK+vg8F116GepKK/Dsb/+I/6Pry3VX/7chzBygrBJPhFJXFwk5E96xyDM7j/CP5Jf6Pq0lA9XvaS15LL6jBx54wFibS2bK2kt9djC9/xrwaxXv//rj4kqxgVtFT24AskaQYqBZLzVKHVNSBx1IIGk77MNVksAMuWooiV1cCqD8cH/0ox8ZRVD79TFIWZTCm52dbT4AKQESflIIP6ok+X7AA+HtIkj8K71rfUCHMf0Bt63Pls4ZJBrdQ96FTgpaT38fhSotEuqrsGP3DpRXlWN/xX6ExdBEi/wNAxSkkXERaGptYAxl+tJ1tOHWO2/B1l1bkVtA0rS4GDz74vPoaGCdJmcxZFITxi+aQIKsWtT2NaKmsg4+KtzRHDxExbgQWxhPuolwdPg6sG77Oryx9U12ImQGJkor4CGchD6lu8tw+qmn48ILLsLC+QsQH5vAkJ4UxFxEfJOU6GeKNw9t/+h5+XACUQzmYLa088BijutoMAVrIFgDx3INWDkrpURL4ADcui9INluFRM+iwbwGXpoJtkCE8jl40bkayIlUWKCA7T8EQghUUF8ioEODO8l+KYMqg8AEgdI6X+GYlYcUIYEJOkfn2pkbWesJZNVAUeeJu0jguCz4BF7ffffdpi9TPjKdt8qX+hmb9Awqu+1r1PfpPva3PS+4/tdrQPVt3Vqk5EqXsPX6YYA7arcWJDCDjYBHkOKtdqW2KPDLtneVU4q5yq52YpV0XWrbuM0zILvgZrAGPtAa8GtT0iIDtc0Dvw/s8nFGXsTl4noY4mCbY3mjhrUz1GNVbZ2JCJFEOZuQkIjYxCh0dVN2c2IpKowTXJX1+OF3rke3awiRY9Ixef48uOvWwFlEsshhzun3k2+BVgkOEZlrsM4BOG1kOZina0M/rQiGwjlIjafu3oaWKvKklO2ndUAvUhJJct7pQMugB1vXvmL04bSifJanFom0uGjsJBCdnoIeggridjDUDuxPRI45SD6HPrpgdPb3oI3WEpV0TXCTD2KIlg9hXMfQDCOWVhFRxA1cfFSnFHTiD6G0doiMoOUEuRiGnCwfARIN/uTYJRDBEFbyCYxOymupCJM7gkDiAF1WCKr0kuNB/Gj9vZxIU0jOoQhyWLiQ6GS0EN7XS8sPH90zhlhG1Z90Z7mfeFg/IsrspIWFm+FIQ2mpoTCf3YPxiHf1I+mEcTReiUZWYR6yCD5s3LYF+QvTMG32TDz7uz/i7nv/iM9/5nyUFJFvjxONzNwkjZs+CPBBMs4myS71dVok0yTztEgGnnTSSabfLCz0RyFSH6tzgun918An3u1CDepwKbDxHeo8OwuhfOy5mg2SAnjqqafiL3/5i7lMx7So07Xn2bWUPSkYOqZ81OGr4aqR23OkJM6dO9c09OXLlxurioKCgkMV6UPdd7j6G+LzUq4R8dRsHP3LKKzsp6w4yHJxkOlAZ2eHCVsZHx+HeOO/5SdjGyQiqnjB4fRLW7FyBc457xzMWTgL7T1t9I/rRc3eekRnuUxdjC0ai97uXtRVN2DLum00+czA4tNPxvd/ch1q22qxZ18ZyirLCfc6kFdUgK7eHrz51noUTyhBXX0dOSHK4enrJclPJvLzcg2vQ1tDK6p3V5MUJ47ldqCzvRNd7V0mLrS3l4MNLhkpGdjPTkNl/cLnL8L8uSdhzeo1VNQT8PP/+SXbQQ+f0cnOizGkKRg9Hpqn0bcvllE0ujpFUtNPsCgBHe0drKlhM6CQL11lZaVR3OR/eLhk28dI5xzu/eia0a4fKd/g/mANfBJqwM5i6FlG+hYkjyWLtVbSIEzyWfJaVmkiARRALAVESYMu5aXBvgAGfYMCpTVo1EBNvwUOCLTW9s6dO438Vx8goGLLli0mkpH6BSk2Iu/TvdWnaIAnEED9ge4vgEB56Ljuq/5I5bO+9wITZAmnvAVG6Bzloeex0QmkKAlckDuFgG2BG/LltwCEnkWL7qflg0wq+5Gkkd7ZkeT5QV77QTyf3pWte7VXgTv6/WGAD6PVxWjPp/Iq2TZkt83OD+HPaOU71tvPh1BFH+ktRns/R1I4SZYhzu68I2GkfVoN1J+zlxEsImRqwETRSQBCLrNDtOyqwz7qhNmFBWaGPj0pGWmJMTj/nPORSPmrWaPK+mr0MjxDXF46vJz8yps5EeXdLfjSVd/ExsodaOjqQF1rOwfB8byG5Oe89RD13jCCDslRaUiOzEBofxTuv+sBlG7dYywNBr1dGFOQTo4HH/aueZYWu6E4++orMPWkOXhu7Rokj8lBM0kcNZkWRkAjKZaEjZShWkRk6aFrh5uWFN2cqGunxcEeunGIdywxJgo+Wgp3N9Qii3p2HvueIfZPU0omYstbW2jVQbJGVzSBkmj0UZdNTE1HfkoWIjv6CKQQphhwMiym+NZotREdBl9EP7od3Shr34dheha/uWk9UqkLD1Ld7ajrwtfPuwrf+8aXgPYGIDcTOdNmEKBgKE2Sx2dk5aCN4IBAnylTJtOa5E1kpqbQ+qOB+nULdXA+P+uqqIQTg7RgyM0txKaX12JiZj4y6BaS4YjGxbPOxTiRx1M3l+XDzdf/AE11zeyH/dbera2dnDgMQxzr/UiSZK8FEdRWBdCrj1WfqT42UDYXEniQRaAW9cvq/0eT0UH5M/LbOe6hm9GEoxqflEo7u3Xttdca5UAK3Fe+8hXT6ap6Azvfg6vb+kkqD91PyqFmODRDpsaraxXdQvs++9nPkijxRKOAShnV7Nexnlh8kuvIcI0mYRT2PqKkClEpC4Oq6kq6POTyiDqJYbR1tZHwkcoz3S3C2CmI8+CtLZtx8+23YOGShejoa8PeHfuw8N/mYdL8ifi3889lqLdc9HT2wNPjwa9/8RtEJYchJikSS846BS4KypXLn0YpLSRKpk6Clz6Ay19bwXBJYRg3swS7G/ajnwjrMEGMQXc/GsO76J9WT8sGmm+lOFGycBoSXLSAoNAc8NGWjGZmkeSScAkdZke1bu06FEwuMgL8L8/8Fc+vXUVmYnY4sXEYvIHvfTAc37zyauzfvd8MAMYVEJiiWwd5ehBDPggNQtoJviTSr0/d4iYSGqVRcOXnFxDkcFPwyTju/aegcHv/dRe8MlgDksmBs7q2RrRfg0Ad0yBdIIMFHdQfaHCoY5qB0SBfhIFKAgkEKDz44IPmOgEFAggEJihMl9ZSdsS9oLX85hXKS3JfJvf6nuX3/9e//hXiW9B+9QsCKrSoP1KfIZBDIIVcABWFSYqRyqh+SaCH7qvzNTjUIrBBoLmuUX4WYJGiFUzBGgjWQLAGPnY1oMG+GZQfXHJpWkxUrFzUMeV5QHForB4o+lBdU0tS12aGSo9CUmoyyiifXdQH01NjcN8DD9IyIYLyuQuPPP4Y1ryxlu4Pbl7TgMY2H/Zt2UCS815a5JYSOIjGv33lywxRSau0vkFyIbSjqbYJnU1dCPHspUtDLMblTkTpq7s4SKe1GYHfwfBO9Lb0IiM9FsUnn4Hdu97ExEmT0UodMYRkDa3dnRiiK0InJ9/EHeEi+CHuBnYs8BF06KEFQTetHHppbeCWyQItHRwKr8kJrXD6ZozLH4+pdB0eor78xqZXMNA8gJMXLcaaV18l2SUH/kXxqKrYh/Elk7GzdCemplC3Jujg7SUATyuRMPYt4rBwe3vR7GtHI/XXEI8DE4on4cWVL2LelEWITUokqTvDTO9uRPLCeQYEiOmhRXJ1M/sWL3obuRCYEcLgI0fEIC1OoulmkZgYB09vBusLdJuuxnMvPofCkqnYtXU7MlPSqG8PG/fo0rVvoWdWN5JKitHf3I1nn30WN133A05cJsDd6yMoEI6klHiGAWVBjzCpv1ZfqH5XYzP1ydrWEjghoLFaTU2N6fcFPKj/thbrR1iE4/by4x58GO3NCwAQCiZlU0jY73//exMGS8qp4nFLGVRSYz04qTFLYbXomJRAC0ToXOWpxq7oFr/73e+MAiliEws46KM41pN83kI5cI8QlMnUTXeELgrScAU9JiKcn5uHmvoahuUZQE52LmLJn0DqNlS3NdJIIRRrnl+NX//v/2LjunWIzoyCm9YJl19/KYVkNmafNBvPPf8MXt/yGmbNmGnIcP7f97+F6759HappOfDN/74SN4bdiLmL5yKhPAVlNRWISklAKElwaokIp7u82N5UZtwxnPFkEyYJT21nIxHtJob4jGJ8YRKCtjeatZN+ewM0EQulw1t8dBxiIgmOcLtk4RTks9xjZxZj/RvrKKTpttERzVnKDqzZ8jJ2v7oNz7z8PBZwVvTXt//a+Mc9/+oLOGnOPBRk5KFvoI+KfxZ27dmFyvIKnLn0TNMp1lXVICsvhzV25ALUVHzwT7AGgjXwTzVwKLkceJI1JZeiIfmswbgG51ok2yXDBQpYomEN6JWnZLdkuwbzWuQ2ITkvqwbx9ihpn2S4jkumi0xYQIFAa3H6CLAQOKn+RfxBSrrvxIkTTR+jvkIgg5LuZTkaBHoIaFAS8Z/KZvsMlcs+sywhBJToWq2teb+OWwsK5aHf9hr9PtaT3oldPg595LFen8HyBWvg41oDtEcOKLq2A35zU9pVa2sXZXMkSR7D0MeB9v79lWYyMZ8Wsr2cKJI1bmJyElq76EJBfbzTAyRnx+HcCy7B7FOW4V5aN697/G9wUp7CmYuC6GJ4GXLdS1n7xA13E4Tg7HsUJ7Oo44KuCfSLIFggF4E41KR0k/4gDVHpeXC3DtD61oMJJQUozEnFvrqdLJ0Tk6dOwwPPPA5npAuN7i6kpecYEsfwCCc66Zoh1XqIecslub2nkwBEL10cyC3BUXwoIz/Q2Ncf5YIxL9MTMpDlIDdF3VZse3YjSulO8sVFl6Or8UUUklfipb+/jAVnnILt+7ehm2ObCanZHGSzXOz3VJfO8CgMEcxws89o6+mme7OHvBUJqK9pxpic8ehp6sXiaadg1aOrWLkEuVsY0YJWz25Wmq+Jz89+JoLuz7SBMHXZTOtlKu54feNWFZIzcrRknlSMqVOmIi25CVV1bRhbMA5pkayr7Xuwny4dY3I4ZqiuQBtJ5fOzaBXxxpvswwg6kO+hRaFROdHpIqlFCCtG7zfgjfPXv57UF6rfVFLfKl1Ai/pbjfmkI2giQmM12+9aPUD9UDC9vxo47sGH0ZQuzSKpIUpBFPAgJbGC5F0Kr6lkG62t/oPzCwQfAoEHNXgphFJ4FTtWs1233norZs6caSwi1PB172M5CZANpWlVqJRxFlS/RUDTJ/NfDtLb6XZRU9uDcSecQM6bYWwt3Y50ukvERyehrq0Z3/j6lXCTdGc/I1ZMO3kGmrsaSLATiXFTx+Gxpx/B9uqtJJR0ocPTgTt/+1N87fIr4PSE4Kaf/JAuDz9HXXM9bv3Jrbj6umswccYUAgst2MZBfnJBFrKSo/HcP9YgggQ+IRTQDvrBeRlqqK+fftMEjlrowuEa6kJBXI7xqVOYIsU1DqW5w1BoH/po4hZC87S2li4097fBSee4aafOMOZvpXtKEVFXh4ykLMM6nJaYjhUvr8Dqk19CfXUd5s2aiyVLT8HWfVvpI+djh9dLgq5iTBhfwnt70VTfQBLLhAO4A0WnKi6YgjUQrIGjWgNSFA6Wzxq8SgYLaNDAX0qGZLbks/ZJ7lvgQefpHAtYCIBes2aNsWy47bbb3jUTokhFUlwuvPBCE5FIslzuF+ov5s+fb45J/svywSbNrmgRWKFZFSlC+q0yWsVHz6ByqJzaLiwsNOXRtvoMJd1X9xHYoL5L1+u4Fj2/1jqubdt/afvgurHlOpbWKrueX+tgCtZAsAaO5xrwy6zDSQI3Z/RlHRHCySWd18PJsQHKj2iCtxnpGYx0FoHC7DTjPtzewQE3XW8Zx5K/OYgm+Hv6eRchLjkd02efgeTMbKxdvxG1ZT2o20er1ZhoJGZyUswlcka6xtHdViEvxcsQOsxwxIhGNwfkGYnjSPYYRouDUspjRkuKIAllXwjJKytpYkA9HxnkOatFwpgseH2diElNogVwF4YIcLR1dxn9dIjuu92eLrSTN6GXXBA0czD7DX+ZBsXDJH31kKy42Yuytv3YvXYfsL0VnqJE3HLbHbjiv76GB596GJOKp2B/+T4SW0YQWOhEczfB7wHyU5CE0kGOhn6W3cv8O6mzdhCYSUxONX1QZVkNlsxdgrAuF/ZvrsCm1ZuRM2Yekl1p7IvYJzpi0Ufgop8jyujBJHJnNKGfIMzUmYsIQgxib+k2Wjs7ab3cjubSRrTHpKGhugYnzV+IN9e+iTfKKnDZeRfASzAiMSma44BwNDd1YNbkqUZPDmdfKc64MFmNEywR4btAD2eAq/f7+RJs/68+xfaz6gct2G+tGxTVQpaDddT7xdGksMjBdGQ1cNyDD6NVnxRAmdXedNNNWLVqlTFlzcnJwdSp/CiYrPJm8zlYKZIiaRUmNW4lWVNIsZX5jjgj1JiXLl2Kiy66yBwXqibF9pgHH1jaaLo3eChkeqmsh1LAy/kiLprIJ+tNiERObja6vRTUFBol4yZiW+Uu3PA/t+KZF59HN0l/CtMyMX72RNS21CIlN4nAQxGuveb7hi2n29HBsD99aG1uQWxEDL79rRuJRi9Ba10r0vNS0entJBgQihuv/jEu+X+X4TMXfQ6Dr6xGI4VqPk3PamkaFpueZEzVPCTpiaarRFxmFsvbhw6aRns63NjTSOZiEkyq7CRAIdlkOGMUk7zHyzCgmv2kD9/gfoYworKekZrG541gbOM2ROdFI7Mg0zANp8Wn4Y3tr9OSIRNT507Bc489iQn0D5xYVIxGclRMHDsBy05dikVzFxLJzUMukd1h2gI2VtXxOd4ZfJiXH/wTrIFgDRy1GpCSEZis0iE5LzDAml1KPuuYDWWsgb1cLGRhoPPE2aLoEYp6tGLFCsP/I5cKWUkoDrhkvazYtE956zq5VyjpHgIPpOTIx1T3koWDQANrZSclx15n+43Acmtb19m+RWCJBRpUbvVLuk6L8glM2mf7qYMBB+0/eF/gtR/ltsoWWG67/VGWKXjvYA0Ea+CjqQGBCZr11jJSIkzJaGbxZqAuo4QOynCZ78s9TXpqPwkbFcVs1+69KJl8Ao+lcdYe+J/fPobX39qGsbMXoKtvGE0+ggelTRiOyELxpFMRkzgR1XW1JJck6WQ3CRdpjeBlZIxBEk0OM7RkP8EAao2kQyhGFaNn+Dx0I0jOQ0rqOOrKA2iqauAkF60jOMimhmkiYsRyIO2IjqDbRSjdC8gHJwJ2RrFg3Ajm2U+DCrpb0IrAR4DAwQk1elnAQfcLpy8E8ZF+t9763XXYX1MGb0MfXFmzMNg9gL1/eg6Nn7kQM0pmoWmwyXBdiOcsNNKJ6pY6pEQmM1JcEnkoeF/ySPT1+dDeRyCcIHxqWipdp+uQn1mISvKjfWXpV3HFt85Dbt4spIbncvKQFsW95IwYSkSoL5z9VwTSojPotpwNF/kssiIy4fF2IDu8Gzm0Sq7u2kX+iw2o6ouitUUv9gxvwqxxExAxZiKSWB9V7bTWSx9CC+9ZR5fmxrp6WjlEGj6jGLpuRNNygtWMLgIexnV6pBf/HverL1Z/aftMe5n6UgEQGodpwkF9swCHP/3pT7juuuvw1ltvmb7d6gf2uuD6vddAEHwYpa5kuvr000/jF7/4hVEQpUCKuGvWrFmHvFKK28FKkRRMKXyyfJDSqZkzKaNSHn/yk58Y4sFrrrnGEIepocu0Rya8avjWVPaQNzsGdmrSvo3+c/Uk8HFS4U2kq0UMSXIiaULmlHMXUwtNi7fs2YG1G9dhFa0RNm+nCRaRVjFln/2ZT+PRhx9Ec2sjmukSceHXL8Dana+iheZlUeR12L26ElNOLiRKWoeiuSl4dvUqLJozl7ONZWS/dWFM9glo71iHh/70CFKz8nHBaV/Eiu0vEQzYjFNOPRN762hi196MQSK50UQvk+ivJiLMyOZmdJO7ISTNHyppmMJmkAq84CExFw/QzMvLcEyD5JCIZkifcFp4NPY1E6ke4PthrGT655U1l2GYpDg5DMF0VvhZ2L1tF5p6mnDuJZ+Dt8uLtatfQ+eeZhNH+ZvLV7CDiMfDf34YS89cipZahl3iPY40HdzWDs7vWB1IHFzO4O9gDRztGtC3Yr8Xu5byITkrQFigr/YLABBoLIVDQIOS5LJ4E/RbJJSygnvyySeNnF62bBluvPFGM+BXfrJGUH5KspoQB4SUGcl7fY/qC9Sv6B6aUdExJfUTAgok+wMtInRvKUIWXFAZlIfysuXT2vYVOk95CTDR/fVbixQsu9b9lKee8eBk60b7P2r5ofIeXA5bJrs2JwT/BGsgWAPHXQ0IgNAyUhIROq30aX0KlNPtVb76kq9ODrQ1+dVeW4H0mdORSgJxnoaHl69CRUsnfvqrXwHkbgAnltLmL8GiT1GX3FuNrf9Yj9Vv7KIOScuxwRhyPQgYMFRhiCBZYgTBg0hOlIWHxVJ2RpJonBa2EWnkJ+ikZW0YkumKm5Ubg4bmUjQPNMIXnYta1DOUfCJBCcIVJI5s6e5AG0GRjkE3XSrIPcCoFkNc+jmBxvE43Q1oMU3LhwHqpl1tHSxLOLqpa/vq+lG6cS+8tT6MTxmPk6dOwOuvv47u9Am4/fqf4tHHH8XtT96GTFp8NPeSryElicAALfyopotnYogVJcLJoUE+G92mw8iJUVvH85LSqPcOobu2C5vWbQbqyZOU5mKkDyctAUh+2csIGwRovMMkgEQswgbo+pGYw+dMwfr1r2BfKfX9pkpUUJ/31Vdw9pV8GwlFJKOchhfWrcamP/4JyZOn44vnfhY3XHYtVj73GCcNE3FCzhj00RIlIz0Tr7+2FnNoMRifFMd3R2J3cT+QqP5w736kNnHwfmsFGNifaJ/6VPXZdvvf//3f8eijj2LTpk0mC9vfHpxf8Pd7qwEnlaYb39upn8yzpJBJ2RppkYKmcJoyv5Gi+K1vfcuslyxZYgSZ9QE6VO0oTzXoZg50BTyoMcuM1l4j5fW3v/2tCa95xhlnGIVSypYavO4l5dGa+B4q/496n8gi5ebW3kJSRSrbwxT0kQRWtISScNJBJLexpQnf/+ENuOnWH6O0spxWEERz21uRNnYMvvDFi+AmSc9Lq1/A5JmTEZniwte+9RVkFqZjT8U2lL5Wi+gTQDOsOOST/Xfb1nKkJEWhonw/18l0kQhHV7MbMybPxi66brz+ymvIJnrtionD3soqhJLUso/Mxr0kwRwi229UTDw7gmgq4epmaFZHs+T4pASEk8CGYp1mbW50M4RnD9dtXa3sOJrgo4APp/lbdBwF55DHINFCjHv73SgtL8O8uQvwyCOPkPE4lr57k5n3ILLIPj+dfnxnLzuL13BGkkSWUyZMRnpKOh7762Mo37UPUydNMZYtLnZWh4PuAwXiod632stIbVf7JTiDKVgDx2sNHOr7sd+L6qSpqclEqpCFgmSYLAikVAhoEBAg+S9AQYvy0nlyk/vzn/9sTDBPPvlk3HzzzSTFzTNgqqzVZCkncFmKrmS9vV5yXf2N8lUZBHLofrKokJzXMfURAhYEHijpWv3Wom0pzvYcfdsqswBtyQFr4aD9yk/PoTxVbu3TonN0TIu2D1U/5sb8ozIe7rg972iuVWeB70vlsc/zUZftg3huPYN9R9rWs+qZta33fawnlVdJ5dVit83GMfDHlukYKEqwCB9wDQyzvcn0XvCkGTSzKZKzkN/TgTW3PZ5+Y5lbX9+IiopKI5tFLi7Q1cWBfTb1bBe340kO/gqJDq+5/gasfOppqocRyDjtTCy+5Mvo4qC6jO4A5dvKKBQjEF84gTphMmV3KOLCSVbOaBG0L6PbAsnjuU1xjLZWD5oaqUt2+ZCSmYdQuiN39nQhihNZqVnJdGvoxL6aPUgvSkJGYRp6aHEgHrSotEQ0udv9hJK0pgiXZbEsIKiTMh6TcfGQywVtctFPUshkEmVGMVLFYEc/KjZXomdTNQf/tLLLmoKshDyG3oxDQ1MrhsmPUNVdhXlL5qCqheHr42ijTN02KlxR2mi9QT3ZQ4sMA/VyYtBLvbWv30OOBUZtSkg1FhRRBFvWrnydz8ny7+9CYnQeIhPGYzAsjeTqWegjGNHNCbsuWoLUVDeRU4LWE60kSm4kITO5GzJpneFk3VDzRm9NGzqaWnDFVV/BxAXzMNTTh0fvvo+Tg3TfaO3AssVLaPkxgJ/e9j+0GiGDBC2TT6d1uIuTmpqyGyZQEsb+TJOFH4SGe7Cc0G/1uZLFmiTQ74KCAtx///2mb5ZVo6xnRksH5zva+cfT8eMefJDyp85/pEWNRwCBmMdXrlyJX/7yl7jzzjuN0iglUMvhkq6XMmpdKBSSTcBCeXm5McvV9ffee6/JT+dJWRWrqpRXKYgfXvIrEX4cmWAMTb20PSzTBi7yt/IvVJD4TFqU+P2Tjdc/WycTrZS0FIP+DtM0rD+knyZaX8fmPdto1dAENwfsaWPzsPDsMzCBHA097m6sIwtvOwGK+qpanEhyx4z8VCx/5lF87ovnoc5bZggo5y2YgUmTJmDyxLGMetFpokS0t7YhLSmVVgUR5GVoJ3tvCYXlAFa98BJOX7IUXzr9P/H8qy8iPooElBR3Ua4YkkgyLB5N4kSSSfjY1HVKYryJzDFIIePjQEOPG0alTyZooMBTJ9VLP0HFiA6jsq61SIlkRRFDIp6m5jbDEByXFI/de3cTKEmgO00y6mmSt4yA0o033MAyd6GB4XnkspFNYGLb1q00/2vHWed/2i85TV3669NUKv+whv2YxLt2a++709CBmcF3733nlwRoMAVrIFgD/hqwA1k7aBIppAbvUjAEIGiRUqHjsjiw1mdab968GQ888AD+8Ic/mMH+FVdcgR/+8IfmGg3kBTYoKS8lyXKBzeoDNJDUWvlq2671fepa7dPafq86LqBBoIIFGNVXCEBQklIkcFp9iUAMnW8HsTqu30rKT/e1i/ZrW0l5KD97zOzkH3utfttz7bEPe63+WcmWUWtbBx92WY7G/fQ89r1pW3UfBB8+uJpWnQbTJ7UG6Jvvk0UXZRb1Mi3v6PHapqzlILWbvAnNBJl7uHbSgjWBcjmNIHE6Aea45Fi0EJhY+dIr+MU992Hzpu0kj0zChLM/i4mzTybWkIzqph7yP9B6wZXAJZ76I8kfq+ppaUDicuqAYUMh5HSIJO9kIhJiUqjnJXFAHMVvmeCuI4K6Hq3QOlsRlUjAI3IYW3asQ8WWdVQ0PciclMGOggNdhmrfXlmKhFxyIXQ2I4QTXP385yLJoocRLryctFNyhbk46CZPESfUQjoHsHjcXBJM0rqt2YHyTXUYqvEiLXMSivKn8PldtLTIRk0z+RecQ6h46w1MWTgHJ82ajaeffBwTxxXD5/ZH3WvuaEUrQY8+Du09ToZp9nXRAqOdfVkCKvZUYFbJbJRuKOdMYyj6GvrRW+9BeloxqhuHyR2hkJcMK81xwDCBmuEhJ/o6ZEUozZvgCfnVxuaOgY/R6rzdHiTHJKOxtoUWge2YMWsq5jO6X1tlPdpYpzW79mL9319BSlQscjOy8PBDfzX119HVgyuvuooRPwbZX7Pfo3uHz+ehtQn71SNo3upfJCMC5YS2bb8skmhNHMt6UX3tz3/+c3M3WSaeQC479dmHS4H5Hu684/HYcQ8+WAVML98O9qXUadAphfD666/HG2+8gXPOOccoo1JOFyygHxhnptQYD5VsY7YNT8qhtsVsrpjsyv+//uu/DIeELChkzqN7SQnWuVIypXCOBmwc6t4H7wtUJA8+pt/+D5eCW8NaIqGkzXl7EabcT0R2SCSMPJdzaGaROjhAJELj3t5OH6IoCHo5cG9oaSRjr4P+cHQvCWVEi/ZaPPTMI9iydT2n8AYx89On4tRzl6KPwm1/Y5UBFNY+/yJjE7chlFX545/cgBfXrMCJcyfTpKwHrqhhzJwzAbU15RgiCpuVnooJ/ODPOHUJrQiS8cQjr5ExPolxk/OxkbGEJ5PQMSc5Ay8+vhIR4Q5c/7lrOfBvQ1N5HZKi4hkzORHNjc30vUtBTmG+iZjhInIeMcwBABdnfwgiySyZTP+3JJJixtIvLoSochwBjBASBfV288lJWhnmJIklEW7OYSKEiLZM5EomT0R9Uz3Bl2SsfukFFBXmYt0br2EH/cIT4iJw6imcIf3RDaioLEcNwwy9ueF1ZOdko2jceJoE+hghhERDJDDq54BHvambTMOuCIJPDKHkTwfgIL4wDSv0LpQkJKWMq9O1gxT9VnuyAxlzYvDPIWtg1O/jGFdeP+7lP+RL+Rd2jvb8krX6FuwgW9+I+BSqqqrMWiCvFIni4mIDGug89QOSvQIfBEQoj+effx4/+MEP8PDDDxvuhh/96Ef42te+9q4+QGCD7UPsI1hgQb/td6ltlckm7T842eM6pu9Yi+1PdK72Byo+9nsP7HsCz9c19pi2lQ6+rz0euPaf+dH9DXx+bduyfVglGq19Se7qnJGWwDLbsgeudZ09R8+kY2p79v3r90eZAst6qG2V3ZbfHv8gyzta/Y92r4+6/kYr38f9+BG/H1aAmd/SeoRFE0MOfgdtnHAKo8uBXCY0+RQVHcXvxEELVQ8Bu0HEx3JWnBNQ4iFrbG7gebR8oCXrvtI98HCiKymeSiaJG32cTEqKi+cgPdEQJN6/8jl8+dvfwz6GioyfMAvfvfMPmLXoNIbdfJauw6mYMnk+hgdcXBwMHelDfx3zJkdPahZd6qoraGnAUJWc0GrjDH93B/U3cy71+R6vKXeog3o0+cn66bbbWb8HGeQ2GwobxIzF05A3Iw8tJD7vIJ+DiyTpjT3NjNgWgwiG++wdcKOPfGkkNiOoEYvsZBJj0p13qM2DbJJWJrvjMDd6Nlb87wvY9vgGcliMQ1bRXFoFJKKDequXuunGsr2YMOdEZORloeqN10mCXo6TZ8zBlKwT0LqvjqE+tyEzLw2xaXEobdqHnY170OHsQRfcqGtpoNUuJ936XZiQPhHNe9uxZ10FfJVu5I6ZRquMdFo7RPH7j0IvLRcGyGPmYIQ4FpgTdLIapF5bug8RtPhNJ1lnIXXd5PQstBKEaHHzOUjC8fozz+HSz1+MLy09F4WpGbjs387Hc3/7G/Zu245uAg41jEwXz0nGEyZOxsVfvACdcsPgRJ+TUeSGyEvhctFy+IAuzI1/OVnZdagLJTvktiKAQu6LOleRqO655x7jiv+d73zHjNdkHamkPlpjOCsT9W0E5c+hata/7x0NaORzPtFHNLskX18lKRICI6xAraiowBNPPGFmr0477TSsXbvWsJdLKZXS+l4bl0x1BVpYU1yZw4poUuRkp5xyytv1axUO5SslWctRH0DKnMHoN3ZO3T+09Q9xKUZ4zB4xdcQ/wwIeOCYmJkG004Gdu8swrqSI5IkpKK/dj3iCFtXtdbj465di85r1GHvGdJz+6WVIzcvGP9avw6Yd25HN+liy7FTc8bVvIScvGT2DnfjUxPkord1EX7MhmrlVYtzYbOTmZ5EEku+EMj0pkZEwcouRF12IxKho7Nm2Ay+tYKziaR3ka+jCN756Gdav24LynXtwD6NhdBHUOOmM0/ApumXsp+VFQ0Mnklxx6KE5mJcEPiXjSuAhYBLJh3QRtXUmknyGdR5JgRZKQdNP4RlFAe6jw6CQc/Fa9HIm00cnOYeDKC97zXC6cSSTxLKClg5h0ZF04YjApOmTsXvfLuzbuhup2fHobuzEDbdeh/X/2MDIHFeh/MpvoZmdzFXfvQpNBB0+d/4FRJGJHLNuZf2SRpAlluZyXrINu9hWTKIgpOptQIfA9+E/aE8xLzJwV3A7WAPHdQ2o85dyIDmvbfE1KLKQ9onkUSRSmtUQwCC5LOVB2wIS9Hvfvn146KGHcN999xn3jPPOOw+XXHKJCYVp+4njuoKDDx+sgWANBGvg/dbASMqMzY8yW3qwkgZ1sj5VkiUaWuXaS2sCukjEJThQzXCQAyRgHE5OMBamtXVVxhptEScLn3zyKezdtYch22dj9syZtHIdxuJTzuLA34c9Gzcha95i1O2qxLkXfgkbtu3DC68+huwxk+h+l0edMJQuFB1oqG8h1wD9BkyZGH2Cs/hJHAjH0G2hi6CAW4yWHKh6PXKPi+bAna5wBJmTaQ0bmhWB2IRhuvNWcCKN4TLXr8Ub3dtx6XnfQWM7h/p0w+ijpYMvhC4GtBiI5OA9kdxi6rNad+xGeP4J6KhqQWdNO9Lo8uFU+UsW49FfPoWWHSQvdhTC1xGJSublik1GNPXJkDgSSeYC67aXIiUxDOkLltLyoB6/uOl3yE6Pw2VXXoRZ82bjxc1/R1lFGZLGZpEHIhsVzXVo65QemobCeE7srViPgTH9iNUMYS25jCIzqJefgLWv7kJS6mRhIyZx2MJBlAYMtBwIkZUe31lOEYneXehi1BEPwR0vo110k7giPqsIrgyCHkNtOHvKSdhbXYpTZi/EKy+swAP33Gv4lCKjIlFHa8LGer5XuYYw/7i4WOr6Xng5qWgmZ3XTo6j2nnnmmWb8p7GhxmLi+lM71MSzFgET0iU0aaykMmkMefBkgTkY/POuGjjuwQfVhsAENSQJOQEAamhKf/3rX42iqvCaalQSBNOnTzcNTrNOVqk1J4/wR+dYM1yRjMny4etf/7pxwzj99NOhxq2kBmtnzVQG3UsmuyNZV4xwu39xtzXj19dLSaHvWC4W/KVhrhLFO3/rvAPn8mMfHuAv9gfDFDSRUaGYOHUs6ptbaGgWSb/nXPzh4bvx4zt/TISTUSEmp6N42kTsrdqHirZ6Wkc0oHjCeAqtNDL6EvSha3NIho9hNy9HZfdenH7qQjy4/E+cXRxDK4phtDbWktNhAtIS0hl5guHkKBQr3XuQnBiLq6/+Gv7n9gKU7dnPUoYhIycRyzJOwUuvvITOvfux6qVnkMd8SmbPZAzhJtSQcKjoxIl0xQjDvvoq9NKEjVF7ILB2mG4YoewwhLBHEnCQ64U4LEJouhcdl0hCoFSkZubQQoEmdOz4OgkSdHGprSvHTPI77CWgMnfaDHYAnZgxfSb+vO5ueAd8BBVorVE8AWvefBU5Obl4eOWj+OHPbsbS05dRmA7hxp/chH7yRHzl8stN2FIRFhlrB5ZD7eVt8MG8jZH/qL1oUbLrkc8OHgnWwPFRA1IKJNcFFEgWi19BclWWbSK8VRIobL8ZKROSvwKkBRp/9atfNVYSAi++9KUv4YILLsC0aZz1ofxXvxFMx3cN2HZzfNdC8OmDNXB0aqCSE4DSizXzLJkt11iFLBYYXFFZg9//4f84SKY7LW+fk5NKgLjDzIZrosYVEYXZJ87FimefJafBMM4979+RwUH57++6H7/7ze9RUDIB26W3nfcFvPHESsy+5Ksor6il28MgozxkMd8sghqJGGTmipLh8XkZmjMaHqrKIoLsa29DAnXFcFcUJ4s4+0/LWeLWiIjl7+g4RJEQrZs6cEtzB9xt++jOwRlyRn1Iz44BCrIx5+z5iMiII9cCXYHJWhlKAsVIXwT7KlobkyBdc/pN1fWYN+dTBEh2Y7hjELlh2ZiYNRHFeeNxzx1/QuvL5UjKn44JjBjRRHLLmp37CMxwbJJNHohBF8cPmdjrpvsy9WgGGkW0scIG+7QuPPQAn3nZDOQmjyXhZAxq6P7cRyve5EQSs0fGUZclED/QyigZE9BMV/A3XnkVyUXjWMYk7C+t4CSdXEs4EGAEDlY3k99tjHYPBEO40EolghwNoaEkq+xi1AgCLP1caKyChMQ0JNJ6o3p7FbKnzsD5n/08XnzqESw5bSmBF3CM9A3U0kp55apXyMW2mZOdtB6h4XEMrVq8tGLxkpxTrs9HO0kX0CSEJijE3VdUVGQmkqVDrF69GnPmzDG6hZ2I0PnSITSJIZ0hmEaugePe7ULKgxqS/HrUcAQyqPFI+byKPkYSfAqBqdmys846y4APqs5AtGvk6iULLhVfCU01Ri3a1uxZQUEBZLajkJ3KS+CDRc+ErFmTWpXp6CX/YNXkbwau/O3/79/Fv0aQcKfWQjQZ/oGDcgEQ/Mlni4x2opIWARnZNEsiyeTvH/w9bv3FT9DaTv9neg2UzJmOsZOKUVa9H23uLlTW1TD0USqyGYJzwpgi/PVnf6QLhw9//r/fYeULyxGbFEEm4CrG/53NKBZNSGV4nmi+gw6a2XW3ksgtOh6xLnZCbprasTPodLdh197tGHtCEcmGBrCO7he3XXsbbrn9DniG+rCLJnfjSooJdqSgvYuCj4OGaJqw9ZMEsqeLYX1Yv4oDTdnGDozPaMzGFIqOzzrsIKJNxuHwCJJVxiI2LoGhmOiOwXVEJBH38EhGtSBeTTOy9MRU7NyyHecuOxtv/OM1mt91kAyuDYsWLmLn4qV5mgfb9+6kuV0ITeNyMcxQSUXFJ2DDqjexY89OIvYDGDuuiAh1It0wGLaJvVgC/e3EO+FPejF+EOjADiPvufftgZP2qz2r/WgJpiOvgY/74OLjXv4jfYP2e5DstaSSksGK2Z2bm2vACMlanSfQWfJecnj9+vW444478NRTT2HGjBn4/ve/D3E85OfnG8sI9Rma3bBy+kjLGbz+0DVglTq9H9uW7frQV3y4e225Drc+khIdS896JM/xUV0brL+Pqubf2335WR82JVAfiqEVmn2PsnwQ+buWU+h+29zSxoEoaKFWieysNOrYtFalBWov9acuTt50UsebeeIMkovHU8cKwWtrN+LmW25H2f5qDBMwGGYEst2l1Vh22dcIHoSihW7EoeR8QHgsdqyl1e70WZzMD+EkUwNVQwctA5LNgDqM0SXEw9BVX0cyR05UOeiWS0uHfi4+Tlr1sb/p7GqnHkdLhEjKrggCB3lJDLUZxZn7TnTv2YzQogSkLRyDnR3lDLfJScoURooghdwAySWHWf5hWlZMHzMBrz20EtOLZmJO0WwUp06Eoz0Mv735LnjI81AyaTHvwQhMTW66PpOjLHMM8sZPZRlCsXv9VtTtr0ECgZScvEJGpWtB/559BE8UEjMWtXRp2LJNunMxxtAlokruiJXlpv9LYhjSAQIGw3RpmZI3Ae7qbux58mUUFExHZEg8aitIGp+aBw/HAUPUNZ0ktKS5A0EHqc3UpMO0z8G+km4jch0WeMDJOCURfjpYX4PUiZNiwlC6eSNdappxzdXfhJsWDbF0p4mhu6OLendOfiHiE5ORRI6OM844nVYunAylrhzGe4TRMsKvrx89XVeE1BoTqp/XGFBumJrAWLNmjSGrVjAC6Qx2wlp6t7Y1ngvqBof9tBEEHyhYpJjagb+qS41Hjeuuu+4ycd4FQohs7OqrrzYAhQURDl+1/qMWPJCyKjPf2267DRVEc3ft2mWIy9RYRUIphVjKrO5tFRl77Xu5z/s754A1Ay82fQDrwiRaPwg51j8dMf84GHfIpEqDdEHBXA9RqNSRzCYxnZwILPuLb67Cbb/6KRrdRAhnTkIEfeocNLmKTWMYIZq3ZTNixbBcHCg0UghA9PC5//Hc8+hnBMsb6Y6wr34X1m14DQtPnkvh3Ukhw46EbL5hBAT6SYzjoKCLo9tEGPkZ+ukzNkhG3s6+Nnx24bnYWbeVSHUyFpUsxCN/fxjf/cG3cc9vyUy7qxk1vQ2YOHkKisaOI+Jbg8aGZqQmpCCOUTGcBExCmH8ILR/CnGItJmEOARbKN74L0gaR+CaU+30k+DHoLTuXqMgYEkumIislE7lJmWQVTkM5XU+iaEnh7uhCbWUlyt7cCWd0KBafsggNreTCoLVFA8GUk05bhGfWPI9Jc6eRxCgKAwRwykv3oax8L/IKclFCoGSY9TpAACyCriX+N+N/DyykQfj1joT0K0nsHnhrb7cb237MCcE/R1QDVuk5okw+wos/7uU/0qrT4FUyVcCDXChkrSAAIScnx3wvUhAkz209SRaL40ckwCKXlJXaxRdfjFNPPdXMZMjcV+dqVkN5SzEJpqNXA8c6+DDak9t2Ndp5Ix0/0utHyvd42R+sv4/Bmz6g3hxQN9+l8shNThag/eRqaGhsMLLcRdkbRX25gPpkdk4GB3+M6kMT1nAOVn2c6PFwMm/v3lJyqq3mQJERJ3r7aUlbhFlzTsGqv7+Gu+7+P7z25ka6J6SifH8jSR7H4+xzP4/2nkG6z7bBwagM8anZaKMemFtYZECH2sYmM4mkKG5ehr0Mc0lnJCkx7xdLgCSUVhZech7095MDhlqZZurprwtHhINjiFhaIDhRNCadk2ku8iM0oLVqF4pOmQpMSsCuTvIocKIsklP+g+R4GODzRtDHINrnQM/+FkwrnAFHqwOzCudi/7paPHzLvUiIKiL4EMIJKoIKtIhw0CUiOi6dBO0OTvx5WE+MaBQrbrNi1O8qQ9uWHXSXIEl63hhaX+cjjs/e2txFXddBHrR2uhIPo5CAfEIKedEa6tDNfjAzJgE50Slw09UiLSyF3BmtaCzvQOhANLJSiwj8dGNQxOwEBEIZgcNBAELAgyGpFwDBsY0sVZxc691qTBFBS5EoTtxR7SUfWwcayecWS2tfd30txo0fh08tnIU+uq942M8O0up44pQpSM/KNZN/eXm5hhzexfu4eL9+ukM7+c79WvDRaed6Bo3LND6U7iBdoqSkBL/4xS+MJYSiHwp8UD+lMZ70Ao3bBD4EdYPDv5OjBxkd/r7H1FGLUMm0Ro1LjUYEY1JSpYxq/4lkZFUjVNJvJeN3ZrZG/iMffiVZNyiJdFJklRdeeKFppNqnBm7LYE2E1ZA/zGQGs+YPpQRn/I2Vg7F0IGpJMh9KArM4xCDM82SPQaCTqGQshrjj1//3a1xxzZUoqy/HAOVBa383Zi9ZgKziAuxrqjZ+ZO2ebuQWFRDNzCUBTRoefPBBZOaQGZ75GYCDwr4guxCDjJ3cVt9ueA+6GK5oiK50eWn5yE8vJIuuB608FhVGAch4xYP0lFu9fyUqanehrbsWdz58CxZ/iuCFtx1vbnkRmXPTsXv567iLcZvDfEPIT8qg2ZgD0US5wz0hJBpmbGb9YwilqBA6jjA2s5OcDiE8R+soxm6OCY+jsCcJJVl64yMZhYTnDHvpS949gLTYdJw0/STMmjgL4wuKsfr51QwFWonQ1Ehc+MWL4Bn2omBCIdZsfBUlcyfh+XWr0DTQgi212xCeEYEzP3cmlv7bGahrqyPB0R9xx6/uIB8Fw/u5GJaV7MyUaqZ+DNrAbf1T92b/2TYiJUvtSEtQ4bK1Elwf7zUgeS4OBytP5QKnMJr6TmThpqRtKQw67+6778Z//ud/4rnnnjP+nd/97nexbNkyo3xIEZbslyIihSOoXBzvrYv9FuXu4ZZgDQVrIFgD778GNCknQmBN3MnkXVHjpIdr9rnH3UcOn1bs3r2Tk3eReOaZlcbSOCUxAbNo7ZDBSA8zZ81DVU0jrr3+TuOW0Esixtt/+TsC0bXYsXUvzvnCV/GzX/0ejzyxijP4sYiMJamjTHYdLnzq1NNpsUoeBqpgPs5G+WiR0NxJ3gV3Bwao80YyLGRYcjyGosLR52BId4a/BEGJiOQ4JOekI5muFQncHiKXQwU5wN7auBalu7eSiLIduVNLcO1/XUW3DA78SabeTysKDfh7Glvg8gwhizpnQVQaUgZjEd8XiYXjT8Kvf/g7PHbz3RyLfBqZ0eORnzGD7s+0wo1IRUb6WKQmF8DTMYCB7RXoYqjPvOwTyDu2DyExGUifvQRjxs9GDwGEytf2ICuDBI4XfovuG/PQst+HN17YiuayLpyQOh4zx0xHSkgsuio5sRgSjvRIuqTTwtfd2onocIIsvQOG/yKUXBsM+GnI5EMJsoQxQgcNGqibiq+OR9i/RnPyTqE8vR5FqSBFe1gMrQcK6pqVAABAAElEQVQy+L7EcUYifnKbfeq0T3OAFILrfvBj1hWNTiJi6FJTTWuHNE5C9ptxmN59N63R+7wEVgRWsQ10SD8+ykkuFxq7aaxnw2jLBUjtUW1ww4YNpgTSBfS80jeUpFME0+FrIGj5QOVBwkyNRTHTJeykiF5OH3wxmwrlEoAwhQichKDQL50jsEANcjS/HuUp8jLNrqlxbtq0CStWrDDklULLdC81WGu6Y8EPARRq+Ec36St+dzKKFMWCf8TL2X+yByuJ+8C/prLFTS3DFLgRsZG48r+vxP2PPkgB7IOvlmYMBQmYfdpC7GuupuBzoY8+bLlFYyjIvURLSdpDZuBTP3UKnn74UUS6hziwH8Q3v/ZNvPjKKixeTOIfksyEOcORzc6jMLMIDTUM09nuJQiQQLeLVBRmjUUsQYB95WWYzfeyu2Ebzpi1hGGRhlhnjD7BOq+nmVwkEdZMsuz+/dl/oLO3DQsWLsbYwnFIiE6g60YM+rr7EE/W41CCLdEMlZRI0zztjwqhtQbjHyfHJDKeRRhS45ORmUxTv8Q0JMcmMSIGLSFoedHX5iZhDp+vjUDL9BNxz+9+T6KjDNTXVOGmH/0Qc+fPQgc7qt4BdkuM9lHVUoPO/h4yEXchhmi4LBziQmPIGTEDe0p3o6ysjB3URlx68X8gJioGLeyI4ujuYYg92VYUOkrAg+KRGABC7Yd2bv/8Fs2rCv75AGrg4w7kfNzLf6SvUIqDrB4kq2WqK+JfgQeSvZL7cq+TXJacXr58uQmrrFDHn/3sZ/G9733PhNOSjFaSzJeSYfsLO+g80jIGrx+5Bo51y4ej/X0d7fxHrvlPxpFg/R3b79FolVJgRlgUzUBWBHKNlV44SF1ZOncYLWKjqR/H0HpUxIix1EPL91dgDS2WMzlT/v3rb8If770f23fuxa23/BQ1TZ2MiuFGeBxdfgvGo9MXgtPI9VAydQH+tuJlFE+ZhRXLn8WsxaejxzuEna+8RotZRi6gNasjPAwtHZyY5Gx7LPkQwiIZWpKgQjjDYLa1t3LwHUaXiwFOkpGMkg80FE7wguX1eHo4A+5mFA7xAHSQeDKclrz9aGooY3j5Gpx18Tl4cd+b6BoktxsH6BG0mgjr9iIjLBYF5GrgVBecnXT52NGIJ//8HBLJ9+CKLETNPoIERbP47FmYt2AO3UYaUL2TvA4EVtKyChBN64ZBWjTU7S5FDCNIRNEypI/RKDx0D/Z29tL6YRwmTZiOzeu3EfDoRgrDZHoJspQSxHH3dmAiXZgz6V7QQb6JHIIxsYNR2L1uL6qfX4+iSYtIMBlPdw5GBqF+3s0oHaHRLHtMJK0faLlBndZHKxVFHxnmuwqni4WiXvT10JWE4/KU5FS6a3DSkJYWcrW4/LKLce8Pr8e8T5+DvVs3Yztdl79wwWdILp9Kq2Qnmts6jNVDr4fRMcgvEWM40QYQESorccJEdMHmUP+oNXIrPzRpbEEvuegLeJCFpPQBuWWKm0/WDmqbukY6hdZBEGLkV+PXqkY+/ok/IksDNSolNRy7rVkugQw33HCDieWuWTH5+8gHKC0tDZU0rZdlxGhJBJOaLdNsmwaXjz32GGaSbVdKsXX1sFYPUoSPPuAwWontcXULGvAynjAHuCJiNINc/jEfFasshKPiX//hV4ZEsqW+imwwZIP90jl0uSDBZGMFyppqMHs82YI7+5HKqBXV5VWMNhGFrOQ0FEcX0++tHH3uUPz8hpuwvbycZDKp9CVrw8SxM8mDsAVZUePgHuxCakwBCmkREYNYbC/bhQGa0hXmFmFMXjFahxvoW9eGLTWbkJ8zhkKhFTOnl6CtZQfN29oxbkw+zrxkCTuKJLpH0OfOFUsmYIbKJJtwRmI6SF0Dd78/HJ9AIr1/vRs9q96FhIjek/ZrWwJQMYYT0qLhjUxDWwX5LojGf///fQ8FWfnY8PgK3PfyIzQW6SFdA/kdaBYYHu9EYm4iVr2y2sRbLhg3huE5W0hEpPjLvVhw5lxMmFHC2dluVG6oIQLPMKs0Z4uLF0DB92AWFoiFspt6O+rogilYA8EaGLkGBBwrrKaUhPHjxxsZLyBCYLBmL/TNy5fz0UcfNVYPMvFVSM1vfOMbhohSOUseCBSWHLCyWiC0FIugcjFy3QePBGsgWAPBGhipBoyGaZTKkc5gqEzOdCtFEIRIpp7l4sBe13Vyck7zYaEc3Eo3bybh+Tlnn4mvfPVpgsyZnOB7hmHPs7GLOmYWwYZmAg/TTloC75ATazftQuHYSdjOUJPba/5Oy91o7H1lPaYsWIJVTz5LAvRM5J20CFV79qCabgIODnhFIplM4CI1LYl9B/l+aPrvZl9x4uIFtMKlSb57EC102ZBl7lDfIAf1bfBxUgq+LvRz3BDG0O9xHKBHcYJMvAWD5P5KJ39ZV0UDopIdnNxKRDRdkofIx5AZmojU4SSE9IXg/vsf4sOGIzdrGvPlhGf3MEGHdOyvaKT7ciI2b6rkRKATCdn5xgWhobqWk1O8VyInyTKz2F+F0V2Y1tcDQ+R9yGMozVb01LRh785qlO2qQ397I6bNKUYGdfeuDdtQVluKeIIsCxdMwikzFiOZFsaP3PMY+po4VEzJQm11A0k7p2DCrLmMclfKfS4zsTYs70MxSXKucpjjAo2rhgbImcYodEPsK/kiMUyyzkjp3+TZ6GjrojtNP0PO78CUz1yI7dteR0xyNsGiMjz4l6fwhYs+zTCgpQSKCglggGMxRqKidYh0YPF5xJF4MpYTh0c7yfJdFg8av0kP0NhP29deey1+85vfYOXKlfjyl79syKst8KAy6fmlG9iJi6Ndzo9j/p94ywcNlA+3yBxXVgdCttSopJiqkUkJlbnttm3bzOzYpZdeahRPnS+FVXmqsb2XpAGklF81ZM2uKWyn9SHW9baBqhxWmf1wQAiFoaO8oMBg8UxYTT4W0WWFG2VsZQrD5uZGor3xZmBcT3Idt7uHfmV0CaGcqW2qwzmf+TRqOxowi1Eq4sdkIyyVFgVhQ6hob8D4WVPQ1NPBcJNZaGL9ZmXlGH8uRco4acJ83H/zzxl+KB23/uBWbN++m4N7MPTdfPqJDWPSuGkor6pmfONUWkakspAUcoNOWh5kIT46gyGNXAZ57vDVIz45ijLJQcHcR8EWR+CB1ia0boikFUMCUd2czHwsWrAYJUWTaMlBa4GhMIP2irjSQXeSBJqSxdPyIYL5R5DnIZYmd7HOCEQy5FE6LR3CB0IQyrLFcF8CTcKixQ1BWzyFO8qnb+CuLdtowrf1/7N3HoB1FVf6P0+vqfdqSbZky71gg+k1hJ4GCSS7aSSbvtlUNsluQnogG0I2m5Al2VRKIJVAMAFCNxAINsUVd6tZlqzepVf1/33zfEHwx5ggZGOssa/ue/fdOnfmzDnffOcc2/zA/XYx6TPPO+1MUm1usGbSjqYTUCctNGYDEfzryO08mhwl8GYX7hj4q+HWUgr9bBbBgDaBOosSvg2/9AhtrBx0uLa6lpcBigr1LIDhkwYAMkD9Z2TwvABCXT3ECiEuhFgo+ypqp1Pl5dfAoV5/h/r97+/NeeCxnnP8IrDAUXMBdMVqEPAg8FhFstgpR+wjeXvPPffYpZde6uTzVVdd5eI86FzaT0Xy2fvsNvBHYKQnq71tB2PtMQNe7rUn2j72d/3x72Sin1/uM77YcRN9/v0dv7/6ebF7eym/7e/6L+Uch/I+AhG9vqi6ECioRZ+1faJlf+9vf/U/0eMn+/4nev6JHi/PXgdCcKIXWkspVaBHMT29tY7JzM5CJpOhjHe8mzTnM2tr0WWj6IhJstT90f56251kKCuzzu5Bq6iugzVBqsyN261g9mIrqaqzxrYey8OVN+7PsYbWbhvFGJ53zPF2wcVnWGH5PGsixsNQ/Q4LVlc64KF4WomFs2A0ABqI7TtC3Ifuvh5m+hPY9bgJ9w7gWlHvAiR2tHeQ3QLXbGbmZy+YDTuV9ojv8B5ckitIcRnwcWxni73/o++3e1Y9ZLHhqIUHkrZk2hybAZvBupO2+e+b7JYvfAejPdNOP/uf7IzTzmeyivTQxTMM0q21rN9kZXPm2PoN63DZIGA9rGKla8/OTCe9J7EgAEtaWxrRH2M21A7AQdaJGEZ7MWOgAjg21TfBAM6F1Vtio7ivNDU3Wlp+jlXMnWkdBIVvR/deWDPHltQutJlls+3GK35mBdRLbt503B/QW0mVubuxwXLnVlt6QZZ1yb2csVTvcBgGSAYxMGJMEgaVchSm84zZ86xn49O2h6CX5TBTdm7f6QCFDjJsZKaTEYMj582qsafuvwvmxKi948LzGa8LLCYQg5hsIWwt8X0F/GTAPMkAkaBlcDUMETWIfZT99U/9vr9FY78WTT6qiEkp/eH+++939qJcQpSCU31dOoF+ly7/fJ1hH7d42G7mzR3eRUCCigckqPGIVvOud73LzjjjDGtubnZR0T1Uy9vPW++v9qQAq1GKkiOFWOCFzq3Gq20Huwg/YSIfn6wxOhcBdBBiI3TwEQLfJJIKpkNaIODMkdiQCyxZOXOajYWSdv3vr7PjTjnWZi+qs5raGispL8O4ZrAnXVAMlLegeppllhZZEJraKJtH4Fy1Ar74/EFoVxVGvF/y7QStr2mPFRZVYyBE7dhjXseliMHgL4TlUGZ56dMILlmQWpL55k9AQ4PyFYSOFkrDJSItnyWb8SAT4QVrBV89sEaXYzjIdUIIjHJoXkfimjGzajr+cXFAhKRlEVwyKR+2Pd2WlyTn8N4lX2vlIGady5KTCEJ9y7ISaHAlRD8uAiEvIKFofhouGv5MaHBZlglQMbOqxi79/BdtDmjwW859o63Ct68aF52SQgIRgQykgyTnZqcTbCgPN5AiK8gnuCjshqGRHusYaLNf/PbnVj2nyo4nVgWntJV/W2m7djc7QaY2E5Pri1zJkOy5OXkEUBpwvnYlPFtqyGY1VaZq4DCsAclRLV6RTBXTTK4TYqkJRBZDTQaJipgQ2iYZr21XXHGFYzoIoHj7298O+HmMM1o8hoN33qn1VA1MRg3sT/GdjGu+ls7p1d/4Z3qhbeN/n/r8bA14dbWv9bN7TsKnvTbjC4EOz98mtwtvm8tOxncFPB8aIXUlgcbBKNBjw9aJ4b/i1hXMmM+0nTBtE0wgdeIem1FQbtWnnAnD9ATLKZsBm6EY1wu/9RCHoKhiuoWqZlg3rglM7Ft6bpodsXyJFZ5wvGXmopABOMTl+4peSxIJFzxdrsRw/621t9OaOwkgiXut05MTUdxsQQfQhdMAALateoxU8FvIRBEh9WeGM6h7enqh6i+3lp3NdvqCE205GSzmZ5HC0V9lOx9ttN9865e27kFSuF/4CTvtje8nS0XMvvet/7H2jh574m8P2ZHHEKiSmGI9fS02t64Sxm0B6SmjpMPcao3rHrGOHWuZIBuxxXVltnROpWNbjKFrdjEZNkbctbL8XLK09Vo7AICPB+pqG8DduMjmTF9klfkEsFy3yxo3tFqsO80GWmNWWTCTR8vAVeMoa9rRZKXV021j/XZLm1HpdP0xYl74AGbGwriXaCYMPdvhAbBSomQfMSYFB3vQ95nEg3piPe3dxKTot6F+glES86ELZvTgCO/ThyGSXUi8h912My4wClSZRrY38AFnQyl9ZwDQQYvXFrSezCLbTaCDdAWBmVr0XQyIs88+201sPPbYY+7+ZNt5DEntN14vmcx7PFTPfdi7XahxSfAKdFBjUcNSwznuuOOckroFwaH87nLBUPHWYilof+37YkX76Zyihv3iF78wnW/RokWOXeExHl7s+Mn+TfIfgJYFGjH1EFTgGCLIApfoF3zMgrajZbtjfRTAAnhs3WP2gx/80Nat30iARxT7XFJcInQycFFI9jPbAJIxhPDJKC2wQQaHLLJaKDtGZj5RgruHraas0mbNqLONzPQbtDGLdjgqVhR/tTk1S60Bf7h0og1T08R1wGWBgDfyHeNUzPAjjAAX0gAPAgGABj+GPeBEenyQgWiUe06lohQaHiKNUgZLT1cPbh4zSQkEOg0iGQrmYXhA4RqJw3BQJg3Ov1e4qS2I16WraGMa7AI/2S2S+K/5edc+rudTNF/ep4+gO74ITAbyDZcVFttM0meed+bZtqxysa167D6bTu5lH75vIdrVGMh9Idf0B/Gfyw0TtKjLEi3D1gaI0D/WY41bmmzBfFHCg3Ya2TDuvvZBu/6G621a4TQ75ohjXd2P4jOXzkAoQaz2NNQ74jJ2cMNTZaoGDtsaUJ8VU01yVrJYcralpcWxHjTzIBmrmQnto6K+I4BCoPMNBLxVgEm50Cn9sdJpLliwwCkQGg/EgjswDLTD9vVNPfhUDUyoBqS7jS/qtyrP3z5+n6nPr54a2J/x6ANVSOllmmZ57t76HsCFIT2QjiHehZ5pdvnllzF5lrSy8hpSWxbZIIHFO7oGrKCyzhYuOw62w3TriLZbILcUEIFYDcQeeCsBv0l+ZpsJuHjL7feQcWLYqpYshG3KDDsTRQn0vgiZ19LQJxOAEAMjBD4kTaQPvTcpMGJ0xNI1a5TPRB0TTZqhR6klbhgTm+E5THj1W3lhmvW2jxJcMmm7Hl9jb3vrl2zVQ09YewSG9bnn2YZ1T9vPvnmNdTAZV1F1nFVzvzs2N+91OSiwRUedaCee/Dr7v/VX2patq5nwJz5d5rC1MjkaRB9Og61cLpeAnAKYGAnLCQAuAMSMdhE0nam+Elggmzahc+cF7YLzTrHyvHTbgltDd3s/bgVlll+RYY27NuLuQUyjzGrnHv3YfRtto3+rzZu5EFMgG5WYGHTSu5XKdKDRSo5caj2+QWJgoENnhs2nzBMCZRhzx9CdXd5NnpeZTBvuG3TH8sf6AVEifPflMWlIHLdu3p0/HmQ3H6nsCRBPOtAf/OBqO/fcs7kcRjzNVXXqw405yPWDuN4k3b8EZ0uxEyerRWuSWewqtUHpAtIdxGCfA+vkggsusO985zv20EMPue0e2ODpDHKjFwNiqrxwDRz24IOUUimtHq1GyqrYCvLzWbFihUunoqCT+l2NUH6/UmC9/fcHPqjxqlEKtLj66qvdW1AD1sya1gcTgHAgJWwHdax0BGkaCC/qOR2dXMUY8zGYD3HSWSZxFwjnha2FbBKX/8/ldutv77WK2aS1PPdE29W0G0RTQMwYlKx88vMWYFAPWAYzi61DCEhcNgQeFBcWWd9AAj/rUsvG5+vm3/3WrAOXjEVLHMxRxewkJGgnnHNzM62LSLYhMk2kAThI8AjtVpjbJN/9BPhJ4rsHBcPSfeQDtkEGBQSEQAQ2I+4AHrJhHEAHQ7hG84nrALoagw5WQgyOMMfLL62QbBn9uDFoSBNiKRaXG95QaETxkwKTVBJp3h87OBBCglCRfBWI0wfFL077KSA90ZrHV9upJ55A7Y3YkvkLoJpxP/i5haHo6d6F2qaBfGekw8/gHocIYNQf7ObZI7aIGBlbGjbb5r4xu/iDF9vdNz1oN990hwXjIbsMl5S6uvlcL2G9Xb2kgII2h0DrwZ3FDXICSqbKVA0cpjUgOSyQwAOC1Y89ZUHshhLATxWBE16RbNcx1113nWO2ffSjHzVltaiurvZ2cWuNDZ4i8Zwfpr5M1cBUDbwqasADG7yb8b4fKPDBM4y960+t//EaeC6k8NzjPX3Mq+fxa7QzjFG/dfa0415baP/+2c/jaoALBvEcRP2vqZtjjWRLG0RfyyEdOpERbSsxFjoGSeFeMI04DaPQ+f1MeHWQ0nLYemADFMDWzcib4RgPu7ZstNnTjrD+CPolIEUahjmaH+ndh1zazWyYFhlMCA3G+iyE8Z1kZj8hpZoJKZRp1FVSQqLzjcI6GGbGvxuDezRahJIZtI//6/tt5aNrbc3Nt9rvr/4DAeifYAI00+bXvQ4377i1NqGf5s8DQKm1tWvX2nBLs21YfaXlVRYRfL3BaqdnWkfzEza3doE1NzRbV/1OCyRm2MyZtS6osth+9fVjZGN40uLEx5gxn+CQdcXwgwfs8YfX2opfo393sv2k85hgzHD6e/f2Zu630qpKZjPxlWU7Nm62PQ1N9nTFbsuqmEeA9zabfyw6P4EioSXbCEHUE7AQogJcCDYpUCITnTsK+KNMcTbaQxwKABt01DH05SCp7dPZPwkbIgRgko3b8zCZ7UYBHvLCeTYwPOTidCSG2m3NmnXYTNgDVKf0eenQ6tsB2Cd+IAfCWuJiE8d2c2r7cxvNK/hN15SOIVtNMkWLWJWa5FASAukV9fX1bh/pG/pd+6t4YMQreDuvqVMd9uCDGo8HKkhxFSjgCbgHiJxbQA7fyspK99K9xqT91cCcwbqf5iC6jseWkMKrcwlw0Gc11IMJPsjUTsMI98ldgrVQy5HoAJF7B5ybxShZGsII1WKC7Gxr3mHXXH+93fHQvVa9vNSOO/4EW3nvQ1acVQbVCiFBtNzq6TUWz82xtBFm/LMIlhgdtgHRrkA/c/FDGxmNQ7UataHQiK1dtRbaWpZd/P73Wm900I489ijbMwgzgdn/DDJWNMN/qwQoUP5msR5UlB1CRULHgRGkzgz4cy2cLOK7gtFgjsNMkH9gMI2IyLhHVFcWYuyDXoJelxWXWDG5i3v6hoirMAxjoYx7GnH7j4GwK5KyAAwqJSXRWDnwiOvqevpNawmiNAa9TFgesYwRyyGQUBe+a8uWnkRKpiFbNHcOAw2Bf2KFCN5R9icAD3UbxNUiIDpeRrYN5hVYpJjUTV0jNn12tT2+crWN9Y5ZFemZlp+wyNo2tdlfyIpSlltul/7HV6C6ETwoFsJthwwrCPlsfB5HqN+ckNxipspUDRyeNSDwd7wMlVwWOCe5rWC/kr2e4qAZC2/fRx991LHQFKlaAaMEPEgmS/578lnnmCpTNTBVA6/eGlD/lx7lFX1+/jbvt6n1q6sGBCx4y77uTL+ruP2kg41bBD7ESVM5PDzI5FmG/ehHP7K62fPRD8Vm9pP9otFyS2daRU62TSNA+UjMB/jQgotAoRVVljnWaRZZM9qZCOrsJn5WbrYVEPfNjzuFwIRs9N6Ej5SRmoBD57MobgXQK4ZiBE9EBx1lAiyN2GhJApaj4bHAiiBoODcF2p3uUoFiY1sE4EKpO+UCorksQ2fT87Q0d9r9f7zbZi09zumwgWCBJQAnoui1oXRmzNOyrLFpCB2XdJrEUUsjYOP1P/2qtTS12uq/32+/vfEhO+oNp9hR85W68lQ79ZSTrKZWmRYIG0HIiftiLfbGM95Pto8rcNf4sw0ORAkhwUQZenZRScje+vF/BwDZZNvqt8FMDhGgspqAnjnW0dZjQRgjeRmMiRljsByCuLZUMq1GrLTK6cQ422CkhiMrCKkuYRCOwkjQxB3KsmVT12OkqU/2wXbgPVBDBNeEFYEOnM07Spf+CxCRByiTGYJt0d1ngfQct70f18fCjBzeITE3tj1l/f0JwB36N6dWv35OW2Cb9PwDUSRPPNtPn5WJUBPUyp7lMSPEchD4INtQ21S89YG4x0PxGoc9+KBGLV8dKZ1qQIqArtku+QC3ktrnhBNOcAqs2A4eKKEX/VJZC0LIdG5RfAV0eEHP1Eh1rYNdxI5KYYtyOUGIYiSn0EW5bsWsn/tcv2M9eZBvsrvuuxcGhN+Wn3K0zVs833Y0NFiYHMQ9Awqm027Lj1li20cJpoibwggCxo8ABpomJSfxLbDcx6Al9BDYJ5odt4riCptx/hEErHwD+w4S+bcYP7J1NoMAPwo/o/sKAdKMyh0EbATpw3kYbghxrAwcce4tmYBKDQXLH8/hGGY25RIBUMCvUNEI9EiizADBIQcGQK4RyDn44GmQiBFBOc2BCGS1cM/PuTmvAxck0CTTkHhsEdmC87KT1q4A2CBsQ0T29QFW5BDgJ0mAnGVHLOEaILr0qBHYFCUE9gkFSC3a0yI3NwfOxGCTBEDasxFgFTn5lihLAFLUkwaq2bKg92lG9sl1T9iprzvV/Eem2Q0/+Y395P/+z45astwu/vAHLZP7HxwhbSfPH1BC5ZB3T1PrqRo4fGtA8tUrkrHKw61tXjYhyXIxILRdRbEgxHrQdkWtPuKIIxzwIHkvFw0VjQVTrAdXFVN/JrEGxusUk3iZ1+ypPaaD94DP/+5tn6z1/t6f9MtXc9nf/b9q7n1vNep+n/kHEJCFoZdTWW2f+sxnkfmpQMIhjPv+ISaIwqRQz84jDWKFFRLAuxeGbhQ/iQBAQJIA474QGedg2ZYBROQLaEA73NG4w0Z2NVjm3FnEOCMAPfHPpDPidAt7YcTFNJAeilKInsskm3w9pI8x+28ElnT1iR5Xml1kXWSeyGJiKjOQtIpKYp9h9A8Oo4jy/yvf/IX9+eZbbN7SE61tD0wKMlmcevyZlkjLs60r7iX2gc+WnbCE+bSonXTCqfboylus7oiZuBibnXN8hZ007832tU+9E/02pb33DOOojFcEwxYx0swWQeKb+76TCNhodtWVXyKIO3qp4ioQx2znzhb71TW/tp99+bNms48zH0zkEIHUczNLrbmJIJIEbY+PkiJzOGFFxIAIAR5shQFx4lnn2NbGJrJzFNiwJiyJ9cCMGowSPsMUTrBOY/wNwaTwJ8LWRzaKOME0/QANYgn7fKTfRD+PMRmZjg4s9nBQAdxhVYdxP+5qicIY7rUqXLS7e7pdNolLCOAuHV39Wu9daTyjXJOpX8cmnuz2qcljTUbI3lMRoCC9wOs3mtxQHKnNmze7LIbjwQdP/5jsezxUz+//GuVQvflX4r7FXpASqkYkNEvIlhRX+fHI7eLTn/40WRqmOVcLXc9TdIWEvRRkS51G5/zsZz/rUrrJT+ikk0jPQwP2ZuFeied4OedwWKI6FQJUhnyanxgPokX54/h/1dvaTWvtyfVP2a133Gor7vwrwRCDNqOuFgETsELoaUcsXmproY71Ekymh1n4cy4637Z3t+JhFrNRXDgikksAEOEgC6hvOj52/sGEVedhHIBCn3/OeWR0mIZgSSCgw2SBaLdyOd8BHvigdKULuAB5pvocY0DpjSSIxCKI44MnAEIRGuKQK3ycP4jvn19GOSgC8x8cF7QhgggNEfAmBP0r5Ic5MEheYoCJ7CzYBwBDCYAEYAzAEbETUvi1BqE4LApEpUVBLaLUjxDvGINMhEXrJL/7WDK4x+GBXptdUWN9Qx1cn3vnjEEGHHIMAXQM8Z39uckEgYh8XCOIoAZewbWDvMgE6OwBHCnDHSU/Mx8qXacdDxLesKmBVKDl+P3tcO4WWUQPrqubDesBRB3aX5w6CxOzAgjE/dvX+3+1Kz/7uu9Xy/ZDvf4O9ft/Ke1AMtYzOrSWXPaoj1Ie9F1rb9v3vvc9u/nmmx1z7dprr3WzKnKxkLLgyXQpF56sfyn3cKjuM9ntY7LPP9F6n+j9TfR46RHOoBo3ozv+u9eu9/WcE73+vs57qGw/2M/vGSH7qq/93d/+ft/XeV+p7RNtfxO5D032aJ5Hy0sp4/tFinWMvsok0MqH77NPfvISXHuLmd2HiUrcg15iYi1dfgIMhgII+jBfmZwaIrhiP7riECkgE9KdMJSj8REyse2xpq1bLMbkVQWp0bMAI3IKckghT1YDtvnRd33MKkn3U8zEAO4WSRncTDYpoHiCsaUAvXV0iMknGLc5zN5XEFS9s3WP9bfvQf/sAyTBnbt7j9MLA4U5pH+uZ0xCf8wosaVHnoK7MlnTtrVaw+4Bm7XsZJs2c4mtvfl2G4UlO9DbZZufesS++NkP25Fz/ARAx9Yf7QZkiFhbDxOGBD/nFg2SAJkoeq1zTxPWOu4BTc3EhGhFTycjBQBCGMBgRlWY74W2cP7xtpXME3gjk8WiwoYAWTSpNrSzwZaScc6XSLOG7U3oqTBAsgpsz7pN9qYPfNDuX73KssvJ/FECc1eTf+i/lkG8C5gNaWHQD84XHcQVOTPXstH7B3EVzlV2Nk3eUl8JUBDFTEuHoTgIWzoEG9kfJpsEWeDSSEs63L0LxgUTBLt32ratm+zfPvlx9GROTyMZjQL+wDrR9wD3qlgXcsGQDbCvMtH+pcljTWhIf5Asli2nyQu5tei7shfq93nz5tnSpUufM2mhvrU/+b2v+z4ctu/7rR0OT88zqnFKKdXixXOQkFuzZo21tbURlfZIVxMSdmp4KlJK1bBeSvHADaVfkWIrMMNDxxQYbcLFk97PkeDPbhxDOD67SNALckgtQm8VN4FEvaxJXYPxThezJny67nxkpf3v9T+3q679qT2+db0NsWu4hKwPsyrNX5hpu4Y6raFrl7V2NAPadFgv0X5nzJ5p+cR2KMgttEDUZ5kEkYx0EpuA2AdxjPgQKHA/gXp66dD5GNu1BJ7sIR+yDOjmnl2WQ8wIVH4iOMQBZwpBqXFLwXUijC9cuo94CQj2cEBsBlBQwIAElDcF13HOGNyfAtKkCaDAxQJ8ld8jlp4ZIOdxppUWFxIYJ4DhPkDKpBAUuyzr6O5wwEMMlxOBDW6BAQFIi2Einy0+s3CpFLzsXha1x4DkBCAAS7piQ0jisuQAYCkt5vSsGVDPJDHJuAF1LkxGjjADBK2M1J4MHFwjzHHZjBiL582ymsoSwK+AtXfvJvVT1MpnVtgNt/zW5i5bYGe84Sx7+O9/s/+9+ke2fetWeZZwDgIgAaLEYYVMlakaOJxrYLwcTimkz9aGFAcBvJLXW+k7Kgr4e8011ziFQe4WUiq0nyiTctdQJgwVfd+fYeF2POh/NAs3keWgP8AEb2Aiz65jD25B1aCd7XvZ/7s9uPf/arn6odFXXy21Ne4+1PjQR9wyriF6hr63J3s4kMCt6TYecOD9/nLWXs+VEfL8xfvNWz9zcd2H7nPvWgbwW958vtXMmG5trR127hveag27uggGSQYIGA9BUrV3DcRIfb6L1PCk1ISVG+vtIRD5HlKg+6xn+waLpqG71ZRbUVWxBbLJ3KCgXDAZMJVdQHHNfinO2FiKGkvcAkBqFqi4Ij1Qd9JHMY5hpQ6PQj3wAygygRcfBCDIzXBZ4Hpwl+3pGyajRsLmLDqOoOM+W7j8dMsqJ70kWTkaewdt2ryFZIcrsi3bdlhLJ3EVamfgBpJvTY07XODJOTVMpnUlbJh9czh/SabPZhRnkhmO7HTo4lEyWeQRn62OuBA1sKrnz6y2IxbUWYB7a27Yhg5M8Eluu6EhaiccH7Zf/epTduHbTsZLpMlGHr3FCnJiFi4ji1sOcZQAMXJxodbjjcEuxvfaps/NxI2lDNBAMTRwSUR3d4qy2A/ospoU7McOGCKIZhC9u6SqhLr08R5IE0+dagIvyiSc0mfKBpEdJEbBIMHUI6A6JQTZLCivw8V4oZVNX2x7uvmde9fb9qP4+tD1EwAWCXxXsAwAHsR4VAuZvOJNEGstXUFF7HXZcrp/MSXr6uqcrajfPLBBeon0iqmy7xrwH+7MB4EPakhqNBJqioIuyq0QrbvvvtuoH1d7Aie8hqhjvFkxTxDuq4p13J133mnKH6+G+pnPfMZRgAVsyO3CO+e+jn+x8/u8EUC9U4uKE8yKXSCPKGeW81ez+nReLGZ3CP1Va1hQLHxAeHaDoPrxeWsmSMxnvnWpPfT049Y1NkiQyXYLFWXZgqMXWGltle0e6LbGvnYbI7fv/PnzbG5xmT1y12pL5ETt3z7xdfvxn6+3pcuWW1djixWJbUAnzABx3dNDVgv8wfr6h2w6LIETFhxrWQRUzAdMULrKzKx8kNdMG9ItE1U3ScrL2EgauGsmPmIwIOj3CXzhYgifGAIrzsCQRMhHxnCZAXglEDHbhm0Qt4+RGIBHGgEf02BH4OqQhD0RgXUgxkIICliUexokIGQAnprSISV493EG4DiSDvmGCwYgBsivHzcRP359Pvle8DuYA4OkxKYWkF6YDZYkbV+G311HjIYMnnlEriLceRBqXwSfizENUno1CNCELwZiPOL298OP6+1utzxiOARB8DMBL/JInzmEcN3EALR5y3YQ8yybO2uuPblqtfV399gJRx/j/BKzmaUN4o+izBzPR3fHt5nn/6YmMr6M33f89pf6eX/nf6nnOVj76f5fbDlY9/VSr/ti936ov5uXUgfeYK99n/+8kr07d+50snr69Om2Y8cO++lPf2p33XWXnX/++fbtb3/bMdC0n1c0i+GV55/P234g1y/eP6XARVwwNAVeQ0q5z35mvfQ5Dr3VPYPkFhu0zduecDRY5JyjEO/7iV78+vs+zvtlf3U4sfOr70rpR6GFwhtiFs57xgggcILZuMEB5YXH55gbikZgrbGfXPc0TIpJN9mlq6vLsSpVD1rEsFF702fdR4D31r6nk20ET8b/fNPTW6xCaasZc7pQ7nOI7aMxiSHKPYOYfMNDI6lnmvzbn3D1TOz9pvq0V3cvtN7f+XXMRIqOlxGh9ybZ4N2DgE59lsuu4scova/AS7nnSjfUe5cuKUq2J190Dk1gSWbpWPmOS/ecSNnf88u4867n3buO0f0rEHhjfQPuniVOt2luamK2eRuZumZYf2+fk42rn3giFfNMz4pxHeTZ1BI7u2nXmShe7ptb/cN/9Ga0PAd4YMP47TLiYjBcwzBjlXpRaq50ZgcSwyJtbWm2//n+j4lhMA29j34VJIXmMKnSS+ZaIIcZ/0ICL+LWEMUVo2LmHGuFiYDVaue84822+Ogie5rnzCjKJN1msQVz0i2CrjhEHInuwQH0S8xbdERisqM/cxhM2jRYswl8GRLRhHPtjRJEMjsrD9YDchjZEqY/Z+OK29fbTiaNYUuO9PGAY8Tnov1kkv2CybSuHibFsmFGDBNPAVZAH9cZQEdsJ0gmHdtC+TkWicKYDcSsr6vRlswtt5YdT1rnrgZ7w+lHEy8hbl2t9dbe0uTcexOD/TCLYdui3/pZogAdIwRvDML0JTQFLoUwi7nHYdwuhsl7n5UDsIJMgZhgJ59cSZwG9N88YquNwvQY7bQzSfn+yMP3AzAo0wdvA/20t7XFAjVH2Ib1Gyy3utbaAUwIesDLoGJgPafY04prpt0J0JggYD3uyCNM9nXvbnZATn4BWez2vkNl1AvA/h5iAlHTh2GYGSOqQ9xikmSgyyA4ZXd/H0HqBxjjFEdtlnV3tTFphx3GPlHqLhvGhdN/X6Tlqc1PpKitqQ+pD6tfewxKxYfSb+r7N954o+v3F198sZMT6uPaX/3Om7CeyD28Vo9lynuqjJ8xU0PTIJGbm2uzZ8+ecOVocPrjH//oFJAPf/jDrkFK+MvtYqIDzzM3J4msPuat3Qd9EfwgEIIf6YQpKCK1m46V0PchNww0tKg81x7Fb2ndnk228qlVNrS9waa/YRFUrmLLBX0N5oPg4kMXHMuAocAgnBPCh27Qzr/gLLv68uts/glH2bn/crb97Jc32VU3/MRycYPIHEb5GyGbBONV/3A/yGYVuALHIRiHUaIgUBnjBb5idNQQ94pPRVyGvnwrAESEbI4lAEykfAkQ0E17z4ZAF8BCwAcEJM+YJvbCMPyDIQYLxa7gPEkFj8OYYL+EIv8AvihNp86vVEDACVwPYY0SGENKx0HFxwA4BDq4+kQxTynnuo4YEFyHa4lZwQ1xDhDYgNwsVMP8ZTelA/XxwD6dg3vISi9CWIKaQ7FL4pKRhAEyhsAlvCXnRmFWwCKE9DBKciBQYENQz/pJzTQNhkm0LWY9BP+pyavCX73Efv3ra+1bX/86z0WikN2tLoVnKUH1VMYLWX3en1LiDpr6M1UDr/EaeALl+S9/+Ytdcsklpnzcv/zlL12arPe85z3OODjUH1+57dHPkV2IG8YVKUVi8IWICj4CwKrP3vgmRYj/KEYpSapnlxGekqlaH3ploJ+guwDIKv181rPm5ZHpiMDFCtxWUJDr6keGvl9ubgDDAiCys9G8nxkvJ++5FcdHRS6dehfjmTp+wGrFQMqD8ZfJuKj7X7RoPgYrMYp4qeXQm1UUzFnPpUWyXc+kIsOCR3pNl4M9jqnOZWTo3alotlOAgphRWt7ylrc4VtXixYvdpNL73/9+56ar2VEZyOpz3tgs8EIGiSa3BFIciIC2ut7z61D3o2dS+59Vh46L8BAzVzEIKnAx/tjHPmYf+chH7ORTT7Gjjz7annjqSSsljWMl+tumrZvdJFoRLg7tMGRLi2jfToa8vGaoCZ3xxeuSbpKMH4IYmwryjTbnMkxERdkn0Lf0c6Fyt956G3UMg4E+U1xaBbOBgICjPqsumQGLlIlEFMz0vFImpaKkhh8SbZn7jVtD407bvCtupbAdQszMZ2ZmuyDiMbIvJGPUGefRg8k1Nk1CE23UTULxSW1ijP7p+iNs1pSuxzbuU467zO875oOFUNSY+QfFYH90Tdw+kqAYmuiS4JXu6QfMiAj7FpWWazBF5vQ7TaX5AR/yYRk3texknWO333m7/ez7/4bu12uz5pASGmBDWdRyqA8/7zOIa660+j7AyRHQBemiEZ4bmIQ2KHY375zL6FI0AQdqDvWP2BvPWmIXnHus7W7usOuv/SPEjW52g0WROw13CVJOx2ED1lba+q1Pc7xShgLgoLNLv3VCSHRc9GrFdJCcjQAWxQFPhvHKCMEkGc7G3VrMatgRFmEiEVBYmUD0XoNMTErdBzVCf89gUo7JOxR+P7Ev0tIL7Zbb/mpbNj9uRx81zypogxwIWNsN06Uad5YEfVD1NnlF73h8UX9WP9a7Fhjx5je/2cWm2L17twMmBDh6Mt7r9+OPn/r8bA08q4U8u+2w++TRaSSQ1ajUwOTDc+GFF064LiT8b7rpJieohIypQXqKyIRP/vwTSEKzeIJbP6sjyDAWQqgi4S4UV4vs/BEUtKFe0F4UmXQAho++461QngjMNjcHP7RMyyvMtaLSfMtBQIegTuXlZVlVZblzY2Ae30qqy+xsAts0NzXY6Kon7aEH77SL33yh7dq41bJJNxRH0aNCOT+SCN+uNARgJwPdQFsnpIFhsk70g5CCgGDIE2EB5BNWQAIl0gc0gWGfgLmgjBH6LiaD+RHOWhRbAeBBa6ADxk+QVhDrONeJQ8WL4h8WYUkqUjFLApZCEvqE9iX0LgOKjH8pdAIEuA4DcAyfNMWRUDYNuXMo+4XSarrUmvyuAYcfn1nGQMAl4EXHe3bhu2h4qlx+y8T/T0s2PnCZBPLJCBMcM5Dt3EkUpyIfals+yrOP+ygrwTWE1yRg4vhjl9u8uXXW0d4Gc+Z2O2LJYisiQ8a3vvlN9x5LUBJKhTzvo6idTQm/fVTO1ObDpgYUy+fWW2+1b3zjG3bFFVe4GYlLL73UTjnlFGdEvBYqQsZpKv2zD2UsywEPei6B20Fcw0IKhkaR4TSMRjhK1iEZ5lFNfx3iZbyM8wzECAwHFQEwDOc8M3HaqQfZW2HYBQ544PeeHqK1H6DizYhLH1Dp6OhwmYsEJDz++OMwdJrsqaeecr9pwiJlNLqvGL5BJi9g0jGbloGh4RUZsVNlcmtAfUZGhtqZx4AQsCCjpKGhwRnty5cvd9/FdjjvvPPsoosuMqXvVdGx0ielh+lcKuM/uw2T+EfXVtE1NbHmDGaexSsRwEoBlpKJX/nKV+zBBx90E2Wa0V22bJmdeOKJ9l//9V9uu46ZN2eeKWvQrt27rASW5mSXBIao6p6pH1ePegYt6h+q79/+9nf0CdI70ufLKyqtXwADum46rIwR5OK2+gYYG8i8vn7rZcnm3YWKCt27EPOknz7UAzDY3ddrvaR3F0OBCzoDUxOEYls42xqjWvqegiQ66j/n1tqxMfhN9erAB9Zx6lrqXwBZY7Ag0mBe+Vmk/45hgCeRxwmYrgkMeY5CJyb+hPwhiLfGiYQ2OkXdB/CSACkYhsGWU1TmYin0c3tdKOtxZgw3N7VbB597SG1JcglAl6T1jsLqZaJrCPk+CPsrIpYGs2KK5xDEzUSX4NJch/+owtXo9eL6xWBP1FWX2qf/9SP2yQ+cbqeffLy17tpp3e0t1t7aaFXVsC+ad1huZSnp49OteMY0MoigfwJ++xhjMwCDxPzJRp8NaRt1qDaXyXjkZxwKILsEkATQ//0sAnR8TO6Jsac6TFkmqcfXxGEQt5Zc0qc2b95qjzy6ym78ze9wdUkFepSBryLwdrKL3un4ov6kcVUAhOTxGWec4fp4fX29Y0F5NqRsSgfwjT946vNzamDy395zLvfq/OKBD2pMWtS4jzrqKHv3u9894RuWQiQmhYRlEWl81CClEKt4153wRZ4dS5yQTnUXiWs+PecNCy5QHAOMaoSPVM8xdJkde3aCSpp9/uufx9nZbE//HvvwZz6GSwM+SwR+zMwm6AwCJ4TwSidwTkE+KYkAIZQjeUP9Znvfxz4A2g9gASjx04/+my3MqbLlM+dahFmddARrSIKVwIpRjP0YM/99HQS6aWnVpbgJBK0YBPjd+QAXxtIAGQQ8+KmzoIAGpOpzFvYHEdYicELsgwTBaqIxqHUxmA8EEEot2qa4CKJ/aZt+0zLE/oAbLjVn1Bn6aYwukn+SZWn8kaBOrVFe+SdBqir2CZhCMEJ+gM2AMgu4oNCRkGcd4JDEhUWLAx7AjsWyCJJtI4T7RShI7AeWIPEr0qj0MeJBjBF0MxO6WSaDEnqylRFFOCBGB35xc+rI11xVYRddeAG0vnSrrppmZ7z+dPvZNT+zoY4u27OrBfaIBtpxL1/1OVWmamCqBp6pgWOOOca5umlmQrN73/3ud+2f//mf3e/PVyyeOegQ+yBlPIwMUdlra7jPnrGD+OJ36MDM9suIlQyXYS7Kv35z8k0y7gUWd6JX8Z9s4gh5RQBDPmOTxlqBKyqjKOBeoZqssbHJ++qo8s98maQPMpBUpJireO9ECmyWwtNTFPxU0dI1u6wi/aCAgHcbN27G4H32/vXe9H7R6VF0I4496Q54Df95oTY5ftuBfHRNGkk31Ltrbm52YKbcuqTXXXbZZXbuuee6QOVnnXWWixmm2fmnn37a3aJACC+ejNqCl/XsQN2/6kz9QouKM5RpSJ4RJVc03femTZvstNNOc4aUXIRlVEm+fO5zn7O58+fa6idWW0VZhdt2IO5d/UWGvf4FmczS/QvIk+789NObcAN4GjmGmwUTMwH8CLp6+qysajpgwiAz7zHievXgjkEf4hmUpSIzGwNW/2DDTq9h9pzg3f24WHQTFFLgwzCp18WClQ6ta8mVwgMctB4j3oHSRirulgiwSFBVJjofX/io2XwdL/DBD/jgxxAX8OAW9LgA8srPEmDCKahJJ+yNMDZCJgHQlSXCZY7gWB4Kl48syyYGxMIjj7Yc3EqOOufNAA7EGZhfQ9rLNMuvnGOBvHILkI49FsrDhSFsw0lm5UOkn88tAhDI5x6It0D9iCEhCEegg5jEYwqmwETdTuRhguxsOaASypIRpl40kpx9+kl28TsvtEXzau3II+bbkkV1TJQxdsBQjsC46Ny8xnbDkBYy48f9V+1bto4WB9ZxPfn6yd7RtQWyaFJUA46AB6Wq13buhPebYpHIzlc1ymhJJ9BmES7d2RXVll9QbL/81XVue3dPrxUV5sMegjWMPXIgiidvdC31G7ULbVM79LYJaJGdp+L97r5M/dlnDRz2MR9UM0K01WnUoFTUeDTAVFVVue8T+SM/49/+9rcuEuo73vEOJ+zVIb30nrrWyy8po9gdz62rcztXBHX0vf9cx3FiR6LHiZ/UjL46OoKoj8Ay02dX2WU/ucKu/eEPbNFFp+EfB4MgiG8qAW3iGOxlZYXEp5DypIwPpOKEKhVmNibIvY+SqWEYeu9b3nqh3XfnfTZa30Nwn612+Ve+ZvevvM+iuUGLFTAoABb4QQsTncNWMhq20s6kHVNbR/BH0u7ggxZQ3AT3L4Zg0kCDSQ8gobA/flIYCZhIEschwRLzwY4ApNAyiptCDKZEBKBhNDroAIeEYzigaSJIRelyDAYeNgW6IOhAgpNIYAExonspJoMGkDRQZiGbAShlQRYnOGkTfi1CaQEmAqxDPHeQEwe03aGvAhx0Dm/Re9FntSfAHrEoXIYO2BUwK9wCai6WRiIxyHWVcaXfysml3Lqrg8HNb8VZJZZEwC6dvcgeW/moDZNRpBsf4Dizlu+BQfM4VMiFS5Y4Yei1H6/9et8PxPpgXPNAPNfUNV4bNSAw+fTTT3fyXTN5ohRrxkuKg2cQHrpPmpL/klce6BCJIKOZ7dIiw3cU2m0aGYAk11xMG2S+aMoq2sfvpsEmrwYmVz48O/7pufv6FCxUY7ee1we40A89m+DIu3ajrA47xqGCPAcBfHNyUOyzcyb9+TW+axxR0WexFQQuqF2KsXLdtb922bZk4Mk984orrnR0/EWLFrpxSMeKVTfC7K1o01JR9N5klGVhzDDQvKbLRNvPRI/Xe1KRcSE3C73DBhgPStUrX28xZH/0ox85MEF65LZt28i88ElntO/atcuBFNrHS/Mr40XvVOf1dMDJfIHe82ute9daxrzYDgP9AwRpbCU+wLDdcccdbvuCBQvsu//9PfSfgNU31NtVPFsJoJiO+9sjj9g111xjZcQkOf200615VxMGad6EmuD/13y9DXvXUqFkpI5GYKAwkSVwQHWXSWaFRx99xP78p5vpWEGrrJ5lA7j57tkzYMeefLbtxIUgPZeAh+kwTXNJDYm+llNSRDyuiEV2NZiPuAoz5tTaKBNiAgQUyyLlXiFVMDVBJ/cs9cskM3VJuQqw9mEdcwi6n9yCNdmEnsn++s0ZptST6kqfWTkwQoa2GL9+DHy3MBGXAiVgRoiNBZspTMpJuS6kyGjsT5Y42SRRnluyqqlxp5NpXT2dNnvhXDLDAVLm47LBNRLErhGTQpHGouigaNDo6cQDggERyuC5kP+pZ9KzoEczAcjMF5Ngyj4xZJWlJVaoWGiANW3Iyox0mM7ZBbZkSY1de8MfmDzMtPqWJvRtxg7OVzN7psVwE6uYP8d623a7Z6RmpG47l4o4gG+ccScJGyXsD1kfemuSBwvz/lSPktoCKBLo0hH0fKXPDCpLHX0szvtNx77Ix61bQEeICchweMy2rVllZdUVtpwEAEr92UGmjkwYLzTTFy16FxMt49lDkgOqS7ULAWA6/w9+8AP3rgTWeWk41Ua1j/rcVHnhGpiqGepFHUHFQ1T1+ZVotDqP0rpp4Hnf+97nzuk1RjViTynRfi+rqF/tXRzwIGOaZfw//Yy5a6MwACJiASB4ZIxHEGp9w9DNIt32982r7bL/+ILVveloG0z225JjFllj206bPqvSSioKoFKFLSOTmbMcIZ8+F1V3sK+bgaDf2sl60USkXfRf+8InPwHH1ezvN6ywnm2NduwC8hQjbDrJ2Zuel0MQn36EfNBmVVdb67YdBKVk8BKjAtZFHDZCJN6PzxcxItJIgYnPWWSsF8AB/1eWuA+DgW3RsX5SHvXZcKIXX7Re/AChykX4PsLnCMfjtiG3Cp/SSrAW+yESJWgNvw0TTDO16N4JTDlC9GPqIB7hpgEIpLAG8Hvwy/eBz0kEo88NHIASGjzw/1OQxxCCMsxAoVSXHEF9S7iLWimqWQqIkB8gaiduJ7wAfP4ga7nMF+kBUOm0XAv5WPuyXUBLvOGsEMVGKYiCCGSlGB3BHaUCn9/W3c22bu0OBFkUhWHQIfd3/PVOOwE6pEY3UfzUltzsAO9VgnGqTNXAVA2kakB9Q+XMM890DAh9Xr9+vTMkvJkLbTuUiwc8aLY/BaSjnKMcaqzRdylP0oHEDJB88ETEKzXGHcy6kxuJigAluS1o5lZlcHDU/va3vzkAYvXq1e43Gf3z589347zACs8dxR0wSX80iaE617tQe9MseWNjowMa/vM//9MZqRs3brT//u//dvsoyD10DwAAQABJREFUCLXo73V1c91Ehd6jWCoyFj03EbFYpsqBqwGBeN47VNacL3/5y/a73/3ORbkXAKHUewIa1PbkWiuj8a1vfau96U1vsj/84Q/EakoBTAIvDnSfeyG9QNsEXgkIU7uUbqptYmN88IMftF8DrIgl9vrXv96xNWRICWDRs1dWVtrHPvQh++73vgszc/qkv4QQs/aSX2KNaOJL8lxsDRmwPcyCB5nZT2Boj6GPtbXDMgpn4Q5QQwwxZvxZNPMPR1bUL9gIPmJrEQCS2ARZuBvofHEsZqVZj2n2Xf0UfU8uAtLNtcgdV+wHuViMecwHgIY0gRCoWooDluSe9F61vwAMzfJrYmtME1Ok6JSrBUodLGOUZPozyIn5YKH5AQ/92B5+njFN1+O6IT0bYIQCo/sBIEa5TiNZPDJIu76tBV19/U67/Id/tK9e+XP79Fd+YY0knGhH5e3H8Cc+u0W5BHHciZvAxCKxL1A90WO17L0v4l2MATwogjtRKGxB7UyL45a2ZctW62jZbVVlpVZMOI2yYmb2Ea3f/PqX7D++8HGATlJ8ku2ur7/dWtsarLdhi9Vvl6zlQrSdOLJN8k0Gt+sr1IMLToo+q9/HAGmiqkvVizZp4R/V5s6h+nMxefjBuYqgOwfDxO7JJFAmE24ZxeX245/8FFAkx41ppQAm7to6/AAV9RE9W2o8pfZ4HgGI6tdiranfq3g2nsdyO0C3d8hdhmY5VTzwwVNUVSPqDB6NZiI1JNaDGqF8AXUdNV4JUs9vaSLn1rEyNb1FFKjx//S7uvsIaGI/kWMHoJdFY8Q1AP0cweDuIXPFuu1r7b0ff48FFxBvID9glbOn2e6eXfa6c07FJ420j9VEAWaCJUnayqzMoBUVIBAAIMYAMrRtKDloueV5tuK2P9l7Xk+MDITdTHzBvv25L9rrlh9vmQjWnp4eIucSEZhr5rGeV1dnax551O69bQVBbSSAoSw5EKEb5LcfkcRAY6TsGW0HbOgBhAAkSHaDWncRO6KTIEJdNhDptAEi845EAR5GWQAXIrheKL2m4kCkBRkgWKIwNyK4Wowoh3BE5+wmCGYn6y4Aix6iOnfacH8vgArHwkRQCs84g9IoCLmiHieAuYkV5ISl6tkH4q0sI2l7F8VtGFNAIcV5AHUev0acOgDCj09L2J+FiwU+ceFCy0kvZilxn9OJfpwOcq94DmKRhBDW+WQdGRogqNDMGdbe0cpFCcEBylxNkJ3tTfV20803WQHC9y+33+4GY7Vbb/EEpN79VJmqgcO9BqQQKECcjEAP7C0pkeJi1sqs36FexrsVaLzynhG9yFG/9Yyii6uIwi+Dw4v1oMCTjg02Tn54csRbv9rrR+O0gAY9l8ZUKX7r1j3tslWtWLHC/vrXv9ratWtt1apVrj70u4JA6vkYig9IkcuP7lNF8vnaa6+1n//8584oVVYtZV35yU9+4hTY008/3d2zcsbL9fOxx55wx5WWFj5zDm3wzud+fA3/8drhvtYH4tFlfDtDlDbzpz/9yQFH0uXEcJABohgIMtbf9ra32X333Wf33HOPM8SUWUdglxgtv/jFL9yt6jjpf5o11Xknu0jf1D1KB9U11f5SbT/V+GU0Cdh6au1TJpBOfUhxHhQ4U6zddevWueME5EmWXn/99Va3l+2x4ekNk3377vy6Zxm2crsQ8OCVxx9/AmM/BFOoFP2WIIvEOyjASO0filp+SYUNMvM+wGz+MK4S7MhaQGXCcgnqOnvebGtuaYL5248BCXsXI3KU3zWZI31L/Us91o++J5BBjIcx4n3J9SLJOce06DN1m1AcMIrepx/wQpnlBGhIb/QBPgiAcDEekLcR9GPN9o8AeoxKXxdYwfnjjjnB9cS6FSDBBNQYsmra9BoYyLlWt3CZldfOxwivsfX1XXbHQ+vspj+vtLv+3mB3/32P3f1ot937WI+t2hi1hj2Ar9xSnEv3AkwMgTVQA5B8wy4ORYCYE0pJL6pCfVOTDfQOWBZMkgJYLAlmy7Zu66A+CEJfZOigecZcIQyeHdznKAFJi6jKhBXVTbfi8mJAHZAOnkHtTO9Ii96XDPQQv4UZd6EqsA+VgW4r4IH5OQdCCPAJwNiQ+5/iQaQR40IB5wU2DBO/IgLVIkGgyjj69bSqGpg4zXbXvfe5MSudQJ6BvQw+V/mT9EfP5RV91nNJFqgdemv1KweO8exeUR2MP9bbPrV+tgb2Q1p5dsfX8icPqdIzegOClNVXAnyQ4qtGKoXXE/4aDLRNCpNQs4kUdWZXngEeBEaow6RgCExpZv5HXZokCWp6OYLVj6AdhabWb9f9/jprH9xjVfOqrWeky9JGfKQkKrUt9U9bdWWxZYM8RPGFk8KaRQAY0cN05lE6lwLYBBCUfTAKsmBFrN72sH3ovW+zR+74m62+/yGoXKSOhBoV74qknhPBnp2XSWDFItu2fp3d29VpX03/HJQ4fPhwPxiFApbG/cn9Qm4RMaLsRkGvk6C1QmqjAB4jSUAB1kOADEqdOQaQIveFGIv2CyCwkazEjGDwQMjHCTQp2qrLMsFnHy4cflw44pxHsmu0XxF3oYFlJGEjIOyoOTgQgBYKHASnAYqcEHHVqEBcDSxpEkIMTk64OFeLvXXOgMNPFK4tZZPrBsSOYOBzyDbovA8hTNVxPwhd3EqGYAqD5wPGE/kckCYyAnBCCuUe2CIF+bl2//332CmnLrQ1654CJMG44Pg5C+bj29htu1p3OxZLmgZKFrVj3ZMEn9emDxclVbU+VaZq4IVqQIqCFGfNUmj2e86cOW43pd881IsMCUYt9xjPGhXpLrPHr371KzeGLcE9a+bMmU42SC7InbC2tha3k1wrcO50zypYz68PD5h//vZXy/cMaMBbtogZFrdjjz2KdxyxG264wRmJAl7kWiPFUDEVlO1E8T7e+c530h5Ee8d1QVkvJrlIrmvGWDPkYmj8+c9/dvJamQQ++IEP29y5c528VhsVU2XWrBn2IWaXNbuuQIBXX301mbdqneIrdksqXsfhobrpvb5Ymez2KaPdZVbgJtR+FBtBeuHJJ5/sAkuKDaDvYqwI5FKRTicWgZgQomIry9nPfvYzx4rwgE+dV+/7QBTVoXRPrVVfnhElXfdd73qXC34qhsFtt93m5EKECSr1HcW1KAacOOucs11KQQEvH/iXD7ro/h/4wAcc2LJ10+ZJfYQI0+9i6sroU1F6T+mue3r22MoHH6If+XEDqbKmVgBWfzqTXMXW3NYBs6HImpo6Lb2onICPxHkgQIMm4vCdtbq5dQTrzrUH7ltvxcccacNywRWbYa/epnTuozCq4rg6ZZBBQvUl11mxHFAG+S8Ah8+omkpXKkXS6V/cI99Y2J99JGvFpHA6GYa+9DIO2LsgczlHptMH0U+lO2J4a3IrwHn4xHGwF/oHrZvniZLmNB5FL+0cscqyGgu0MqFXPtO+9Z0f47rBjex1/6gm+9myJYtswZxZVkSqzKULK0S6ENmCNPC6VWJCkEEuGSMYO+5bSv8ZI1WxAnsGxBThXz/ZJBLo/WljOcp673Ti4S6CxA/XwCqptvpN24g3UW29HaAcTJ5xIhRpdHj03SiTcEpTHwRhCHKdomJicQBCxGGaCYAYQydXfIwYz6vA7pnEQRNQI3tIM3yq1lHiUQyPcD/U5Shx0cIZTFwCEmVm5Tq3tD/85gZkOgxldN7MwOTKbw9IUdvTO/baoe5XfUl2otLsqm9Jtmu80fv2+piOmyovXAO02qniGj7VoIbkGWtqZPLf2V/x9veQLn3XwCJgQZ/l7yeFV8VrrLqe0OYJAw+cM4KglM9UjMYvl4ooxniEzA8jBFkcIgZCJDKCDTxmhRj804gp0NPXY7lZ+daJ4X/l96+0Xe1NNq2mjJQ4aUSxDeBXVWxVtdMst4D8xgRy9BF/obAoDxSU4DViAUD/D4OcZoDmyn9sENZBbmEWaHO3DeHCcObpr7Om+jZm9UNWhL/dKAGAqkrKrLWhCdwDnz2ADA60XHzuurraiWS70nZD45JbRBbxITp6WqxnsNW2NayzPPy+Rkn7MxyH8RCDrbCX8TAY1XcFEuoDRQVQ4B4D6Qht0VHdIEOUX8AILUqNqTScSQz9JKBDwkc8C3xD4j4FnhyyhfPqbE9zkz2x6u/W2d5q1UWVtmb9GuoiE4YFjBFyGA8rXgOnFnrtqHQIUSHTIWhxPtqJnkt52kP4j2hA13uXgHV0PQQ8cp2BA9828i374MTlZ5VaaX6VFWSX2fRpsxCsuImQhinozyCYUyXpkSKWjxBTbusR3l8Iql5Dc4MdefRRLl3Rn29fYTkE3Vm87Ahr74SShxKjtqsZNrUttUW1v5dSJCR1v89fZMhIaZcC4glXbx/95qHcL+UaU/tM1cDBrAFPyffk8MG8l3/02upzmln1+p6MU++z+qD8/pWiUUXPKUP35z+/xgWIU8R69e8777zTxR0S/VvG7Je+9CX74he/6ALMKVq3qOMCyXVuyQ3JEPVxUckPdtGz6jm1lnLnPbtcZ9jkFHTJO804X375Fc4wuh1GmNwbrrnmGnvjG9/oggFKORQAoTFdQfSUzjI1ZuscKWXxhdb7e34Znt49aUxXHap422ScbtiwwdWv6vP+++9396E6lq+wZsblRiHj1ZtBW0XWKAVK1TuSwevNmsuYEfCgIl1iz55O9/nV/MfTg7z60FqZPjSjrs96LyoCZuTeoG2qQwVq1HvSO9KibQIR1QZUp/qsRfvrHeg8+qyi/VWkh+2vvNA7H79N46rS9aoo64PGQzEevvrVr7p3qv6md6ExUv1Pn7VNY7EWuXuJ9ap6UCYJPbv6lgANb6Jrf/c4kd+lx6pvK62n2pyeR/cpd+BKQEjVZWNzo0utuXDhQqeX6no1gJWnnnqq01Hvvvtut9+sWbNs3YZ1zo1YYMoOjlXsC9W7FgEWWqv+xbby3sdE7j/MbL3eYzmZveQm0banzfUTgTgDMEVPO/1MO+OsczFW4zB0c+yU08+y4opq27DyYUuQTa1q1mwbQz/LLihU2huscGIbcJ4HH37EqhbNsyHYwKO4HcQi6Ia0IbUjAQrKwCA3CLlUuO+AAY4FwVpCR/tFOUbPqvepmBSDMChGWAt8EOhABbjgk4r3oMX54KL7puFW4SfwpYAQZUKLMtMfZGKwnzgGul4RsmAQl5IcglB2b9/J9fzWswe27yCuEqF8a+vAlQ7mbMxyLG8ajNi6pbbs+LNt4bJTLeYH9NrZYXfct9qu+r8b7UOfuMw+d+kP7eHVDUq8Ybs6hm3Vuk0E6Myx1l50YDKvZeSVsZQSEB7XFOm1OXnW3N7BvsTNYG70qY3tVgWgMYLu39zWZkEyWGShn4pNQoMH/ADd0Jr6SmMRi0HtTosDgAHismE8D0CniAA4pBNoN6hAnFxrAFAhFsOOQNfs7x/gVLipEYetbyAC+0GTh+jT6MWjEfo0k3dbt2137Tc3J4OYJSlG30Ta1/6OVZ/x5MH4z9omfUJjqdqC5Li2qai/aaLjpdiP+7v+a/l3gUtTZYI1oEanjuYVCXgJJAXxaYLWtGjRIjc4abARrU3rV2bgYWYeASZwYQz0MIXIAkSIDcAsfwJmQDbX293eBrLZY3XTs60DY1XMgDnz5tgtv7vRKpZVWrg0aMVl08xX4AcUIIgLciQdFwu5RPjoWG4QwU9OaKyDJjmvEGBdN4eZo8bm7SB++aQEGmKGbTbCRfKZ+wEMKcnJtw2dO0nNMxNtgKBgHZ2Wm5NtuQAafTv6LJ/1KAEjd7e0k7InYB0DnRbILMNNotfqOzZbBtfwC9VlwJA7BE9GpF/YHAIUqHC/T8wCridkmnvkE/9S9C7tkQouCVrNVqeSwFQAc2XQAK1NBO1pGAVPPvZ3W3HX3bb46GNt2rdmWhso7xDgTXZJPoPoIEmNEIjS+cQagf4AiA0+7CI9qBr21j9XpR2IFaFdU2oQa9BguWjE49wTaDBcCPAR/OEYmEJp2QwgpN30ZRHdtxAAp49AT/gqgiYPQiMkJJqVV1bYEyuftBKyiezcBQBx3HLbtL2e42CeMJq0oOCUFZc4QSfhqKK2KMH4UmZXpNhLYfIUPAlSKblqv1L4tJZiJYVKwlTI7qFoxLmKmfozVQOHYA1orFA/9MYYGVv6rH4q+RQGBFVR7AClFdXMv4wkGUia6Rf4oP4tirUMOhnJmpldtmypdRPATIaEZtmPPPJIDPjL3e/q6zI2PIXqYFWbB3LqWTUOyX2iDQVYxnpTUzNjSb5T9Dy6u/Kuv/e973VMQ9Vbar8mF/BZwQDF+pAhqPPlADCn1MWX/3SSnZKzAmplEKmedZ+qf70n0fEV40ETDe95z3tcnWomXICSjNkvfP4/3cUlV4899li375YtW9w2MXQUpFp6hPzvxZRQUapUlVfKddOdbJL+6LnVhgS8CCzQ+9DiZfZQ9pna2lpnjHttWs+/cuVK0o/udIa7jOK6ujq3qI499oCAGU3uqO5U1EdU557Sr3c80aIApXJ/kTGxfft2t1xwwQVOrxNYJIBBxrxcefRcev8CGLTo2JNOOsne/va3u+eRC67ACAEPGlv1vGo/k1nUfzSmq250nwLgqpm9Frh1M0wGgT75ZEU455xzXOaFPtpr+bQKJkuibp+Fixfbno52N/4LMKoFlJBbhnSNctg8v//9721W7UzHBPHeqSenvL4wkecTy0H9WOdSnUn3kN//IPGvhshkUVhYYvPmL0Y/Q6cm3sPu9i6r30OmtNrZFi6YRuDGTEvKgBQYwIRNVkEY91zinQ30MEOPSy4TRoqHII0tzn5pGNLM3Tv9FtVTiqzT4V5QDgqHkARhHx3vdt/7sJ7+J0ZCDAaAO14b2VfZHZwyirtGIsB3unOCdJohWAilZLdQMEsaFm4hcgvkILVjGE+6mjxHkjEF4AQgRimNoZv1E2jTH8jHHZqYIgR2V2rOGMzdgdGQLT1isW3a8Lj9+6Xftrbuj9l7LlqKDFys0Gw2llFAjAjGFm4czjDuF6SnBwgIk2mirLaAibeE3b5yu21s2AVggl0AOBHHNULsjL5hJv1Q9F2wdt2vbm/vQ+tZpYNL5w7hchHCNZnwa5aA/eCL8Rs6tNPFYYwo1b2YwUpnHxfbWFk40JOj6MvDkTErzieWAu+kv7vRjlhcZ/fcfCOAjdgGPaRWLeMKqvWDV6Qbqz8p3a7X7iV/ZANOlRevgSnw4cXrZ7+/agCS8qEG563V+TTwKYiUFD3NLmkQUIPUPhKm+l0CdaIDpDuP64J0Z64bpzMLfJAbgmhNoz1RKyopRqlpxmCNAiqk266WZvvlL3/luFhJQAoFeiklo0WoBNAEpsDgoIIwMmsA6ii/Kub7nWEtBFhLUr5vXIuNlody0bh1m02rLbfOwS6btvQM3CjMEOm2hgBgM0orLNm03gpJOcnEv8UYxLMxupOk6dQcUWFpgfUBJAy2gGJipEdiAwwAxQAY5HHu3W05gCsB3Cl8gBliMCB3LSp2gwQdQi+JAJZxr1gNuh8VCSTdnivatncRIOL243xJBd2JBe34pUuso7HffnX9dXbXn/9k3/n+D2395g2WPa0cdkUcH7dKy4wraBH3HBIIwUDGdX2cU8KVmtAFuYTELcXdgy7Odza4IUmSVmCNbpFj/WMCTOQHyOxHqMJys9stI4ecxq2KWUHb4RydRGqHcGhrMSgivNNjTjqeAE8z7bobf4fy3Wo333mrnX/OBfbwffc6xVftT4vamRQDKcD6LIXjxYr285Q2KeVSVLzjvfYpxVportrvtGnT3O9SJMcbRC92janfpmpgqgZefg2o38mo0tr7LEUngEKdl5fNbwkCKq53bAcZPVKETjnlFPuXf/kX10e9WAhyvaipqXEGj4wlBR2unTndgRVy0RBTQosME41TMqBl9B3M4o2Vkk0yMhsaGnCz2GL/9E//5DILPPb31Q6EkGEoI/X44493xqlkn4wVyTc980UXXWQ//vGPnT++Mp7ImGyG8bZg4bwJPZ7OL5mpa6lIH9AiY1uGpej5a9assR/+8IeuTvXevv/977t6XrNmrZtF1liVzkyg3GM0+//AAw84o1bgzyWXXOIMWMWE0HtR0bOp5DD792ovGiM0jmi8kHGqe9c7VRGjQ7EvVCcauzRWqS7V9mRkaqyRwa5jdQ4p+kcccYR795qVF1jj1YXOp3fqjXfeNbV9IkUgncp3vvMdB9zJReaEE06wq666ymbMmIE+AasU0EGfxS5QUTvVM6kNPP744+696d4U+0ExE1Q8MMB9mcQ/qmsBQLofFQE2kiHqK//60Y+5uj6FNipwi5ty9yU25wj9rZRA6dJk8gsLHOB33wP3Wy+MhuOOO87ksib5cvk3vol7bpVr59IbpCd4deYuOME/6ve51Kfep2RgYSExB/in9x6gjTQ3y/WU4H/Es/GVZtj2+hZr6oxabtV8JrNyrb271yJduLNi/WaX5hNAPZcYY0zSwzYKyvUK1wpNJWHhA1LAYhAWhCuHs455t+qbDjhIqXRSUV2d6KtT8LSD26INFH1HJrjf9V2f2SaXjiR6dqpwEp5H1xwagNGD60A6S5JclzEyx/UP9cLSIOgCOqLlcL+AywIIpGOGmJjSecKkmQ9j2MeCMDWG49bTS90wcRiBWRuj/4R4F8lAgT302GbHpo119tntDzyOu7IPAG0DTJIC++D7z7Mu3H5JCGRkKLZYFsy5VgDbaQS/5BY3rB+wP95xN0HlcffNK0bPDhhntrTMbGwEYpbghh1D1qmu2N3puN6DU3PORojznIS6oL6J/wBogHXi2CBx7kOuKRlsk6u1LxHGOkFBhmIs9kQgALjhH2YiFD2ZQPRZOQWOYaw627GzHhdpbIeCfHfdZ+o6VbkH9K+CBitI6+zZs50c0MVlk6l/C5h8Lbh2TlaFer1hss7/mj+vGpmEi4S7FBB9l7CXUiKKpQS9kHINUBoINAhpLeGpgVaD7ssursenjtb16JfIK0QzvlNpuAakYeh2dHfZLNDUWbNn2cq/rXT5cs87903231deYQuWz7fpC4psOMisTVGBpZG6pxPXhlF8YeVeoeAzAZQi8GB3Tj1nShCzdrKTWR5AjkLiOCQJQtPa1c7MPcESwS2yGAiuh+Z77qfea0XBTPP3gfQjxMpEf0Mw7e5pswzG9cbdzVYyk8wPpEdLhDgfTl/MXxCDQVk1ZH7DFoBqoGgMYh+MAYZIMvp4Tp0nQVAhPbhYGKkiwS/Bp58lFdlXbAUkpILsJAUCsF0xJcYAXkaJfryIGaYw9RXrTEBky7HaulrSM2WiCHZbG1k95GcopkGcYxK4QsQZFHD0AGBRHbur84nLcU2dOyWJU4CNG4a0XTfErSptlJ8gOgJ1koEcGwsWWTZMj2A4h50yaROwY7JzyTAiMW22c32PzV5QbpW1DPYf+JB9iZlJyw3ZZd/7jr3xnPNJMVWZeifs682oSAGTIqBlf8WbeVF7VBuS4NQ2tVEN+N7vXjvXWsqh1xY8ZW9/15n6faoGpmrgH68BD3QQAOgB1eqTGm/igMAPP/SI/eUvt7sZ2fvuv89OOP4El07UG19krMvoU3/WbLto63JJ0Fgl47u+YYfz+5aRLPaDAs3Jt1sp97yZzH/8rl/ZIyRzxCCQUScZJeNGxt711//abltxO0ZfoWMXiimgfRVkUjEWNO7KYC0uznfKoY67BlcMKYxyzRB4M1HwQfUsGViBr7WK3pco59qm96XxXtfTWC+DT2wHsVNkwI1gaOTmZgFWMB4ha6UjaNGEhd6VzjUPt0DFqBA45MZerqF3L4DjUCiqH92v2pyK7lttUe3vf//3f912/ab6UJsTW0Az7AIfBDQISBMgo/cq9wcxSTWpo6CdciESk0BF+3jjlq4po9UDA9wOL/OP7kPjnd6Z1rqeXELEvqmtrXX3LJBE701F7VPHSAcUwKeAomKv1NTUmPqi9EHdn9eXX+Zt/UOHeW5bun+xScSgUf2onnU/Z511FgYujADaqldnemc0OAx7UqGzj1hR6zast22AfHoPAvk+9alPOfDhkUcece1VzyuavZ5dz+d00n/oTv//nXWeILPtcqGVPoPGBQmA2Xnu93WvO90eXPmE1dStplOQiY3AjF0wwXKLq4kbgC3MzH2SFLv4A+MWMGbptaXoVdJPiW2GaqSAu35inCUcooB+hu7pgkiiS0qNSzATn8asvLRHp9vtvb1nAAh0P/eD1uicrvD+3bbUN3RVmK7o4YrLpcwWKtIFUdExrrEDBmIwV0tdnIfuwW7ra2yB2kTfBvhZuGCRbQSgzJSsZ18hEAFlVeP4kI/0nDxzVXWdtcJsjpFzc3gowXslyPpI0oHSGRjs0SRxCQAOgvkDtqmpxwYeeII2sJGsabhXFFZbS2ObzZk1m3GjxrEqGnd3WwS3YMJA2A233mFbWjocA6Ju2mzsAjKuobump8M0gjE3VoTtglux9HM9treoLlQbWpQaNQkjOcR9u5gPbIsyKSr2sPaQDJY8GEPvVSrPALRrTYaqvmLEdusDnIkOEt8CIOnJp9YBfGTZ17/2NfvW177CZB7nUTtNKdw64QEvNTU1psXrz87NhHFK7VP9Yarsuwb2b53s+9ipX6gBKRmeAabBTwqCBLcGQ62lMGn2SB1MRYOot3gN1v3wMv+gtjzT1dNAbJ3BCT0qDTRYjIGCsXyoaCBwpbV03qfsVvL2RhEYdfPnwYZosE984b32xNbHLJegPAYbYQB0U2l+MnADyMWfOIAU9iNtJfQx10FfEcUIUxnPMvgHiR1RV1NtXSQejhBel7wRMCqIlDtjmv3p1lvsA9/4d5tVVGE7dncSgCZq02dOs34jHgF+dvk1pXbTilvs4g9fSOdF2DDDn8Adoqu7HeGDfxuBKBVjQS4VSaSVnlRQA8wthCrSjnsV64EfuCfWzwihFKtEVSpBpsFAQIwPVodP53KL2ClEhCfC81mnXWiDuzD1QX//smoFfoOn2qMbnwYMCVsb9LwsgBi8+xz4EMMnLQYDIgF7IYuBJZ37DngjE/clECIldlPiV+CDak/YiAYxBfTx47vmGBDAF7EEqHeYWUioHFlZJVDmEsTYqLCywunWBeJrADSdxOkI4SPYxHt849veYms3bbHNT66yL1/xVfvGJ79AGHsCJKFYSElQPah9qR38I8CW2qoHNEh58tqyzif0Voq7lGHtN35xjzv1Z6oGpmpgUmrAU+A9w1MX0Wf1cSn9V155pct6c8H5F9iV373SGcHqqzI4pAhpjJGhLmBSrAgZHZqR1TkGBvpty9ZN9O9q544gw0q+4MoSofTQMgrHX3dSHnA/J5Vca8Bok2+6DHQZrwJFZEQpVkVba7t99rOX2Gmnnea2aV+NuTKilHpTRq1YIaqT2tpax+ZQ3cgV4qKLLtzP1ff/s+rHk4dewDHJXr0fGWkKUKj70T1rFlzvU/qCjGwBPjySAyZ0JbmByEVTVH0ZqLpPHXfZZZfZVT+6ytWDdIlsXB0FZhwKRc+qZ9G7U11pNlCzhNKH9I7kLvOJT3zCASwCj/S+9dw6Tu1PQI6Ol3Gvdy42joAjtdMLL7zQsQl0PrnTON2HStF1PJ1sonWkPuMM4L36m9qT7nkx7ghqU2ITydhW0b3r/crw0G/aLvaK7t9zmdF+AsT0u+7T69/aPhlFdalAmOr/cp3UPQrIVBwH6QuEonKxHWiw7jmzmAwbBfzK5N5HRoh3xf6asa6C3SAgaA9uGg8//LDTD15/2uk2k+fTO1VmDBlbXl9QHaivejrFy302z7VI51V9oj07V5Gq8io76+xz7O4VD9oTT661/LIKSAIFPOOYHX/cSXbvqk1upjycRWpGAUNkVAvxbEkUsc7uDjJjwPLkX1a4wOleLoCk9DdRDLiG+mUSMEI6m/7yqijS5ihS8vRBKqf0Tyl3+sK7d4u+6TObZUTrZDpeIITe+Rh1rW1MQRE7gbgN2cjrPe0W6Yb9C3iic9TOqbIlc2bYRphoDikhu0YC3ZDpQFxiiDfBxFwAfT83Nwf9U8a7gkhiiDvqhibjcnjWMLEuMggID8AxYzFGP2npiXtWs+REJt9G7N7Ht/Cu0R3JvpbfVuMep30UVwc9huZEc4stUIgOyqThaIAYaAJnfCEm4JgoS8P5WYHQ0GdVQ17Rc7vJPp7Xh+4uORglWPwYurrcSRR8MuF8MKSTJzEDBi09yXvBVWSIeyFcHaBKKmPIMPHOktERK8ItKAIbpKe33/WnG5nU/NLnL7FeBWXH5fhgFvUnvVPJCOnH7vn1zin/iP59MJ/hYF07ZSsdrKu/Bq6rhucVNUANsirys9UAowFVQliKiYo34EiYSvhPtCgKr/7JNFeTF0gQwP8tFCAtEcF6ioj+q/Q/o/w75tij7UOX/BsDz10YuAUu2M5RS5dZDsBDjJmIJAF08NUgOq5m3zFAgymBoeA7DrlF2OkZA6CwWtIJshgVLQ5XjqiyR5DxYrd1W97yClBVouh2RiyHCLqlINLR9l7LlgACte2NIGSr8iwNxsQDf3swZehy/0P48aVn4J4xMuR88kIZAYzzCOcmTRRSSdkuRgkCOYJAGiEQ5ChrF4VYUl5Czy1q0hosxHJwMp7P+lmz+opWy7Ow5jF4JpR4oikXkE9Yp5i+aIZ98UtftJqSWrv/oZXW3tdl3UP91kkshnZSX+7p77GOwT7r5v76OW5QkZgBZ3QPjkkhNgXvQrBuasjSoMNnbsAFMAJF97PoHTEyMAgJ1c8hq0UVgjyEklrOoDhGhGNop6DWv7jmeiubXugodUfy7uQa8vFPfwJhDuJbUWI/uvoq/AJThoQEn1c04Hs0YG/bvtZqm2qzqh8phDrWA8q0zftNyovaswdKaLvawlSZqoGpGpi8GvD6ojfOaFZcxoyMMlG4lR7vuGOPc9RPxRSQISbDVGOLYhwISJQCqPMsIEuO/NelxMs40GzmRz7yEXvooYccIKH0jl//+tedsfvlL3/ZHTd5T/bSzizmgOJUSMnT8+j5JdvE0pDBI396GeyefJJxrmeU4Sr/dh2rgI/yy5UhJmNG+8otpaoqxVZ4aXfywntJRurdSI56RXUucOOmm25y4JCuqbgNimMgQES6gAxvHTOKERFGIVfWDk7l7lPPI/1A70UAk+dece+99zomha7jtQvvmq/mtTe26LnV7lTkJqN3JLbD+973PjdBI5aAgqLKWJZ7gLKC6P2r/Qp00HsXYKM4EUpPKuVeTBLVkQc8CCzwdCsBbRMtepdymRFwpP6i7BA6v/Q6MTN0XfU3LRoT1Ra8vqrnVjsT2CcAytuu4zWOqi1PdlFb1z02AMqJPaR2J/aI2EG6H00syJVE7rRB6aPcs8AElQzqV8errUUINiC3oGXLljngTHJn89bNLpaKnl0sChWBQHpuvWfJqYkWsR4USD3AhI1SbUoOeH1NzxXELaGboObpxCRIY9Y8ivFeNb2WZyGeC/QGsYtAUrBomeQh2KSyoMWYTMrKVnBQdGTOkc5+QQxjvHlR3QCE9i6iz+qdPvNenZ7JEzlFmz/okZrNp0Gk1k6plGIpHZPzaeG8clOOKzglbrxiViRgNvgAEuBEWHFBCfsErU3xHdjuLyyydJZMdO/Wxlb2ATdxC/oZ95PGcWkwMgLERQhRJ2272ixCYE35IcNZRWfPpl8AthCprKcvhktxB0HJh23G3COtdMZ8gkzifI27b3bZTIuGCV45Mmartzbbtbc8YP/zqz/YT268yX507T2wHp60jY27LbOY4PPl1bAf1K6ZQPVnoo+zJkClo+aiYztWL21J712Le3bqRO8nHRCRasUdHIYEdoiCTWawhGBUa5Hi7Xd6+V7bgncY5t0FsRsIQsJxaQBccwDMhmz6jBrGLoAPytq1a5CZE7ef3Mkm8EcySDJCYKf0YwVGVX9R31ZbnSr7roEp62HfdfOSfvEamBqbOp0angZJ5XiWcNdg5RlsGkilFGofddJXouga3j8PhJDjAsOg+zuKwa7OUd+w0045+mQ7/4K3uOvLb1ZKUWkRvlwItQSKkDBMRnoWJApLBHaCAx7YLp813XNAghpgQ5kdwoAPubAkutv3QCkjAwaAQwOZKo485Xirb2uBSYGskuQhOE0Qv+QyoujuRIEcIYjQMW8+z3pIrdmNEl2O0a360+CYCy0uTG6gkVHcU/DLi0K3i4p5ANVOmTyUEkhAi8x8rfWcVEFKALpRQcog3/cu0ajcW6gZnssbRCTwUlQEjmZ7DOBEEj6f1HNDDLxETyAGA3mPyRAyCMjRx730AEJ04aIhMKIHkGSQZxhlUPRqWncj0AFUIbUIgHC9C6HMWilAgwhjD3wYA2FPKPgOF84PVnD/IXxcazk2ZINw3tJB7K/+8U+IDpywWQuYucS/bfeeVoIjmZVXT7MyKc5DA3bjb258BthSHWpg1nvS876U4u2nNimFQYvXNqU86JwCNlR32i7FSUXfpXRMlakamKqByasB9TMVr59qbNEYorFGDAXNoiougIwhGQReQEntI/bdkiULnpmdVdfVTLpmkSUndGwDRom+a4xQedvb3uZmRmUIen3d/XAQ/whoEagi+SOZpHsW+CBDVL73UgAVq0LGphReGXuqJ83UKginZBubnRyTEZuLS51mpJVqc6JF70X3lTpvrgMddL9yXdEMsejpCuIpQ1vv8p577nEGnL5noYRr/NZ74RT8npKreh5tF7Vf71ClmHFaAIZX9P4PhaL6Ga8jqa2pHm4gKKrAIwESemca+9V29VmLmCEyggUsyFjWO/ViD+m5P/7xj7vAotoukEfggIrqzTN69XmiRWOcspKofO5zn3NrGdhev9F7UF/SfjJANH7qu/fMel71M60FjKior2kfr8+5jZP0R7qnXJDUjsRMUP8XiKc2KjDu3e9+N7oOKRV5jvjeCQwBJV5RHUrfE2uiAnaBgDE9s3RZ6ZCKQyKjS+CD9lXb1bOpqN9NtEjDU1/2iupZAIrK7bff4VTVcFhplAlGCRDBxWGojlkZsbqczCSDAhWtQBy4XOSgW6J/A/blcc8C/cbQDTXhBsKR+uzYDsIVUka0a0OuHY1TKqW6e4s6r/qi1gARzq2Wz6ojyU8xScLUX5BJJ838K5ylgA5N3GnSb5hMRVH0Y1JBcB6YENzfGO7OQ719Vr9tKwCDD0Iy+3M+pYJXjRKaAi3Rb2HAh7iADD4HOTYGwyEWUdrKTNyuYRzhfpEhnbIvak+u32obtzUDwuTh7lyBO3HUWrpHrHr+MsuumG6dBHfsJL0lmrpt291hT9fvsjSy4vWhtwezFQwdIClEPaZTx8KUCssZlHhusSHo46onLZ6OqGdXP85kElPCTW1C70MToaojxTZThr6Q0ztxDaHfyKYQWJGF23Em+m+IYKEyRWIEofRThwEWVXwu7+6221a49+d0ebYerCK5pXFH/cGTO964+Uq0/4P1XAfiuofGCHYgauJlXkMdTEVCUYOJDHptU1oldUbNRkk4S6CrY2pwUtEA7ISj+/by/mhodV4HfEiBDSnAQbEJFHhS9yRq7a5dTQRuIaYBsRTecN6ZNnt+reUXZ9sAuYILfQWWFybfO529kOBlmRmi1WNUQpVKgHb7NTuPYRxMEvuBNbwHhAeCGWMdtzNiO+RZY9su8iEjTEGXe9rabd6s2da/ZQ8CH8ScO+vFWFdanRxQ9C07yIuN+8Mx556GjxpBFUPUl5VYF/mL25oIvEhk4ExYAXEGjSSzQvI5hLRFGqCU39sYSLjSEmVxA5ksQqm9elBduM/81T9luoghyIWcC3mVr5zOJ3Wej04Azpw/27Y17iCX9VEWA2ypJWVOff9WIgeHrAVfOhIB/T/23gPQs7K8839u723unXqn3Du90kGaShNEQRCDimWxJCbruilrEv9rNk3T1CRrNib2qEmM7qrYg4Ao0qXDAIMM08udub33sp/P+5sDl5EpMEwY/jvvzLnn9zu/c97z1ud9nu/7lOhEVa2VEJ178BHcPgkYwTGENsYYTitHiVs8InHl3dLkSZEGoRocVCQTFV6mpoOLUT4EOamiccs4WhejFKKnhzYG7CicLIvF5UsJ9bmAY34sKVkSsR0BH22TV5x/Xvzkvrti9rKmuOmuW+MNb34jTnlY7Opqksfq/p5e2oTwrdg3jrIY2QjGvx7283MmWym1AuXKLbLelmPSc+PZsSsxdUw7ZiWo/i5z4c6pwk029p/zFccvHm+B4y1wxC3gHBQAnL5WuI64zsj4qCl2wQXnM09hcmGm1W4Yh+Y5ry+88IL0fkM5FsL0dXf3MYcL2cE9md1ONPLQ3NKcQYFCYVmBUAFF4Nz3/dEf/dERl/9IM7Acgp+CBdId1zSF1A0bNoSRLXr7+6KzuysJFutOPCHmzW+Mto72+AWM+66W3Wm307Wnk7qffOop1JnVBFp97/33peeOtHyZoKWjPZMq+e7aCxTIlH7qU5+Kq666KrYCmBil4dprr01CqP3X1tZO9D1MEpB9jGChADWGHXMFQtKixfgTWIdGB6Dz7XfdE42Yxjy8/pFEg2mStFN9pGX/j3hePkeAQQFSodc2UQjXH5YCrX45MuHYNcfx53U1RxTYDakqwOA1wQcBNzVAHAtq52jOIKCjFpDvks9SEDApeB86MRieliR/+fMdd9yZfr8SsyadnN5ww42si+MAfffB3+XeYZjtAtZf56WHfgL8nhPAiuj3WYCAJ6brlsff9NZ/dBObMNSrH38HhmPfvGUb/FctgndZ7Gltj7mNCzCpGIlr3/3uVIwJBPAuBF6bot4wlvBfI+zWa2ZhMg+5hjp25Q0x7llHgSesOzHVb8eOndAXnie1t+cAs4zXzbiy5zzb5AdJjptsjuU4N8qAVqj83U3f+2FMEpKxvpownHg5b5zVhOksEWdwHtDU1EyulLi8MBrmzSBaWB0h4cvdTGcTC1MD5p1q/IZ5HIMOjruxxfV921nJv5j+05houYOx9XT5bQgPTX/VTSDTnEEtwJlAALyX3ikKITQ1+Ciogn+qgHeqwHliZQkOQEsKo5rzDMyn2ndtiryRbvhCHLEWUJZ+fL20oOnVC/88iuP34U5AoU5AhQ7O7fB3bRyt6ZgYbY3Z9VNsIBLJpLgvhgZ2Yp6AA07MmvNLKC9OKfNwqgljj7YDETfoTxaC2MN87GQurTrt1NiBNm8Lm2vdrhn4zqlbjBYMzti6htG0qJwVfWhNTOLkMgAmAjAAlABGl82xKrUOkBM0U6GeahpPMPYnAEomNMm27TirPZ1HG07SjxNuYjmOoOFjyBb27Th0bwrAZAr/HFOYk0yh1SFPn8cu2yTaHGOjOJjcuJONwTnQ/RaYaXh+6vCzO27DGmQgdQMFecmSYJ60SD5Z+iMN88jAp5esYC+DFzNCjqcjaQEFMged6mmi3SLKXhNwEFlWWMvS9M+ZQJf99kLPDHNQWmLr4j9AMXcE27DBQVTTOEshZ9fORNMAL9CYREApICKoPO7cEK+8+MwomV0Ub7nmLXExMYJPW3tS3H3HLdj3jcaC5tro7WvBi/HsKMW3QfEoguYIqlLjFSCs7IwXEZWioD+687uim/triHQxDBNYim1YTf9EXHHWeUnrwbjGRYTz6YVOFTbUROfYYDQ0z49Hdj4VhQtZvE5ZFyNV8+OS970/Viw7K655/Tui96k9Udk7FvMBJTq37YZAAUCggjUC4WuHSPURVqh4qixqxhCIu1BZRRVPVTrBF0GGUcw0cqFGXUhAWnEqlBYRmPEE0EArRVMnWDjGIJYPbHo8qhfUR82M6hih7wpAoFdWz08qbh2YWozUFMfuktHYWNgXm3HMuT2vJ3azCPQMdSYTkM3EnW5BOBhkwZE45xMqU1w6HxW1ItquDDW1gklDLWGHBwAhGNNLGM8+fFpM4VOjD0S5NKqjsboxnmCX7uylp8bK+ub40te+EEWLCCnFQnHuGy6NTQMdsXEAFboJtDAIafruX3sXzFVBPPnoY7ECxnyC/u5F/dCY0VLkIZwDlYrs71s7ee0+vMEL3sP44KzH5IxgTj9zd9rJ8Tz9up+zNP1zdu35nvfP+/l+P9T7nm9+z/d+53626ByqLEfj9+db3v3vV5g7WNr//v2/H+zZF+O3/d/3fL8fThnM0z5U0PV4Kftz//JmmnIKZe4Eu2MuM3733XfD9GOTC1NpZKMHH7qfsMv5mNPVInD0xmOPr49GtKMGoE3uMCEnRG0dQC+0G9kIFdb5qEyfyM78mUkF2zjlMlGqvGvX7u7uJz/5ySQsKlAJgMgs+tkxo0Bpux3t5Jppf3j2fXfccUcSNq+88sq4BkeMD1HeV1Bej4X4tqhDYN0DKNPOTm+5mwGqjSOEFiMACP6afnzzz+JONCW+RiSFI62Bwq4CtT4AFJLfjTBnBAcF5fPOOy8J1vab4yqn7VCR6mJb2n9lgLj2RykOlwVNyhFIluFksgfTvgkcJG/etT2Wr10dy9esQruQHeieboRX7keoGEvOlo92DxxZ/jLhOmRUK+D8889PoRkFFGTW5ZX0mSC/JLh0xRVXxGWXXZYcNBqRREeN7qxnAJwAj4fAhQ4n1QwxTKw74T/4wQ+StoTtbp+YBCEOTi+QG5EfR2lHxcjpxxjCkN8/8F9+E7PI+li1cg0LIUsoLNTGJzfFiSecjM05c4DltJDJ5ZGttdO/T7BrW07owkcefjSWL1sZv/vBD0XL7r0xF/VsVcmPNOUgBmGG3JHLz2+puAhqxfG/v3ldLF25GlGxgI2ntXHrnffEg+s3RD3h1cvZZTYNI/iV71Np93sJu/LF8A/zGhvRDEXgx7bePBtmzY66enwEAD4MsbmxtxUH5ficuu/eB2knHFRxU1/fdHOXrCSc1Qw1HHp2JKbE3w+cyilHMlECHDB6WzXl7cEMVi3ft137HuTb6ujbMxKrFp1E1Af4rklCu44B7hDhoqgSbc45zDcUJeY2Vceutqdi8w42ljC5GGBH3/CSE5QJeTYK2XTzULVgLD/FZOB3tFlq2LlHkC5k7hmStBrzjjBCBtoKVfJ6OHkMBPVCwrYXTgA5sAuVB5+Ky++YAfCwa9OmKIP3rMWsargbh79tu6MYTdvh3tZ47Oc/iaEd6+MXP//3qJgASCgfjqaGfEKHzo68UbSe9jxGqEnW50mAiKk90PA2mncXGh5dMXsOJs1VrZhV74qu1p/EiuVjccJJlKeLdaCiA2fyjdF0ejMmzLsBZFjbADDcDIyqghgBlKgCkNnWuSsKZpbFRB0NUE80N8xSutDGHSpAkC7G3Lc/L2YuPRla04BoARMv0DBC35bQLoVoarRtpS3Rnp45n0bjNwC1cXjxYUyk+9B87sGfw+7dOzExIfoIdK6YdWMcWlnAJKqpqkgh4msNMb+3D8ebIzGrekZUMl6HugBSugHN+tCaQnHllWdfGgsXrMWMeziqamdHDxFMPvgHvx9l+EF7xtH8gcfQkfzieneoI8tfmc57pXmu28fTwVsgt8158HuO/3qQFhBwcMA58NwJzhgyF8zDQ94Pkvlh/OT7mB7pTtFXhn7acZ+EUCtsDwI81NRWx5yqWfHxz30sKpeUpkl70hlr2Sm/NG7++vXxpc99Jc5846nxynPOjuEZfXHDjT+MJUuJ8Q6xyJ+EoHIUQFjT6kpdpyDYE/loFIDWyiBNEAKzFjR8lN2l2kZUp9CWyCtH8MV8QMXWCRglAZA8hN0RFp7tbS1R3FgWJ77qnHjwc9+IDRBr1cJefcpiPPuWRxtqlsVVeTFv0YJoGe2PYd4/inA/DrHPB6EfhvDnUzbt5rRVFHF9LibDRpEQTE8udWo9eJhq8Z0wyeLS1tGWHC3198D0UeoKmKVCGPk9U2g6oOc2BWM/lQ/YwftLYfZnAl5UAXxIlCdgJF1H88qmUOvLaQUUc18eKK8mLf7T74NJYom5Xi5UKN9XzFsbG3c9GSsbF+NleChq8iuioaYuvvblf0PVdnZ0ADQUo+Gwo7cjRsvyoxeNi7yRvlh34tq0ABeCopuMk1xdXQNz0BAdbb3RMLOG3QvCS+HVOKXcEOEj5UhlscBezDHkuZuO/92/BZzbB0sKRtPToe6ffu+x8DnTXlGgdA45X6yDn61b9vuxUNajVYasz7Kz75n++Wi993DytQ8UzkzZTqJ9osaCO6s6hnROq9EgDWjFBE6th1mzZiLkYm+b+vSZMex3762qqkQgLE0CoECCmgTm67plKEHD6KlmrrDnLr3vznaUHSOZgGd+RzOpzi2QrzaBJhQK+r7/t3/7t3OmDEh8+t2prq0BeKlJ3tXVfhCgUSPC+qxcuZKQeoOxeesWQu3NwYxvLN71nnfHvff8/EUpun1kX7SyS2wbagLS3NycBGnbzPJO1yDz3jTH0q5h6j4GHIIdABMbf9HShgYg6so11Mk8Vec+AaDojttuT23QvHAhefoID9n8z3Tvi1KfFzMT6YrAi3yS40iQwbqr/aA5guEy3bgx5cayyxPGiPu0FtRssA9tYwEwx52aL2rDOGYFyfRZoH8M36HNtfnr50ONnkOOT9pvMmMGKIPDmcfpR5zeIVcqSNt/y5Ytx3ShJ/0+e/YcxtQqhOLq9D0V/gB/BtGmXLhwEcJIGQ4yr04+QN7ylrfiBBaBjd3iFydlc/CX8yuBP9AXgmrsY9TznvsfQICrixlob2hmIfBlKkZYsp+yNM4Ojbv45mwxdZDtZ5tKjlMtUs1ZtcFX46Grqxv6oClJMYLwMvqMjR/GrW2ZEnyPT+aO3KU0br10iGTf2wc6VNcpuTSgpqKGzbGFSXt1ZIBIMifBr+YRhhLfYmXszjtvqusqo2Nwb/QOUpNhQhJPAvYUssYZeYF5No5J8iRgbG4aaTjLQTlzRcr9VRsCewZCeY4CNqndxP1OUtpmhDaYA4CYAHxo0BRlGwAYGcJB+Ag8ZT5mvGMt29CXJaoNgEddEdHUiGk5v3Eu4wvTlbm1cd8NN8UYWib97QOEm8fpOPO+CmBOjYEZ5fCThf3RtGRhrFuzJpqaFiUzhT1odEn/d+56Ku667wYCfRTG6y49jbCaj8fJl50d40V10dG7M7aSd6wANHP9UAMCLZD8CjQaSqEc4A3y7fn0VwH89YQERd1dxsCUG3MwqZKngf7hqGRzsxQaXA197SLyxNhgJ7w9m5nl+THM5ttoKYCMEwd6VciG2iRaHWoAF7MBp3KIUonm1yg880l67Tt4hLaexMlkVWlVzGyYy2/F0bZ7G07sCevO2lUJL91N343gl2Ld2tNi57kXRHcfYApFfeX5r4xd7buisaGJ546nl2MLHAcfjrDXXPBkDjPwQSLpYilBkpk42snFNUcuhR5AaEHgx1A7G4dAyox2Ea2hef5iCOBQfOGfvsAiUxxr1q2GCZsVr7v8srgDb8Hf+Oa3oyV2x+987ANx86PXE+WiNupr6uOpXzwZy+esgmJALFhFEnnWUy1ir0TEK4YjKsAUQlVDnfu4kLtL5THQNxo7+ndyvwQegsdiZDvtgWDVEFpyJTHW8950WTzw7e/Gn//lR2PwA9fGRWevxokQC13RWOzpxCyDhaQXTYjRfLwVQ2QLYaz1t4ChGQs6Doao44QLhsSPlNpj3+d0gXdLnDIClVqLLy6oHtqRuTu4feeuFMazt3Ug+nBk6fqk+Yoqegl3IfsR+rUb1dhiXj8DtbZSfqjH9m0KFbI+FutyAZIi0Gds12h9CCxl3re6U31pZs5HEWeXr6xUY+w6cDdaCCX0GSGhtLu764moWDc7VpwsyIB5xiA7Oqjg6n16BIeUxdUwC4PdiUH9yc9+Gpe89nW0E6g0L+lCYKifWb2PmWCK8+7j6XsFNUkAAEAASURBVOi3QDYGjxXB9fnUOCu7glGWpGX/r6Rjtc9cX6Slpqxv7CudF8qUq6Vg2f1NgVv7eGmsu80m1ybvV7Dw7L1ey4Q71yl3FvVZoPq7AqHC/nvf+974zd/8zXjooYeScKjQ5zMy/r7LseF7jnZSiLDMOmo0xKHahB7WW+0GVfMzZ1+WxTZRFVYQQGHVMmueonNAfQy40+798xvR1lu37kUpvu3qLr5topNENSB0hOnOvUK2/Wf72W4eGZg0hrZammMsBkOoROtYsrs/Z56gFoplF7RQ0Na/xT/+r0/FLbfcEhe8+rwEjh+rY3Z6o1pX6+i4sbz64RBQEtSyLfTl4bi1rtbZ5FgVqLBd7css2Q5ZGzpeNePwd8EH89b55Be/+MUEQuhI0fvN92CJ4ZKeHWPnVtBO/qVI7SBI3+bN29M48vlLL7009bEAiWUQ5DicVMPOuSYktsFv/MZvJIfWn/nMZ9CU+Qfq+IxW7OHk9ULuGUQrwbZas2Ztetz5ZNs6FybhZ6w/bBnaQQAFYzlGwWv2wQS7+QmO4PdsrNknHv5uv1UheEoHdPJqu/isbadmj/67vPdIkqazJqOVmaRX8temUnhDw012EQ79zLNfEV+//jYE4KrYuHlr4t109h2d7dFdgyCN9mo+odwV6stwaKjW0JSq/ap1kBJfmD6lL7k/PD86AE/FrzDXNAo7/pit1KB9od+GMcJI7tlABBtMb2c21MccxuI4/GQnjYb8HfNmlsS5q8+JuWwIVeGUXefmlRVlMW8OWiX8PtS1Ii5btzj629oTjRpAe9gxqJ+IcsCgIgCwUzGRs+aFdJKAmOdlc5fH+acvJ7z9VNx815rYsGUT5nZL4i//9rOxAM3ZwZFe/HM0Re05Z+LuAT6d/imqwKcC4EMRIewLdBqB5u0Yz9uSCRey63m3phIqqICNABiwedmxF+0DQ5NyHdZ2kk2wGMJx7MwKZIj66G7BdGUQvy340SkEMBhGY6tA3xWYAU70wEeTxySMNtOKz77L7wIQvAMuuJI+LMC8ohA6YfS6Aui2jVNEAxoK1WgemzdviqvfeHn87Scej0svXhsbADk+//nPxV//1V9Q6OPp5doCx8GHI+w5CW5iIPbl42d3O7zujsuhiG9G1F9oMbLnc8tGziFkQUKIcwsI+Ct0syBu/MmNafdnsJWwT+8/I7bt2h7LFiyLy994FSqM/8RuzX3x8VgQd99+X5z3+nOJuEBs7USYIRZSI1TRUkQHzgEAIfgAzU22gFXltTHQOhj1xbOSuttpa3QqJaWJeJzdCVaupPbquQo0uL+7P1oAIAprZsfZF54blcRgvvXvPx9/909fAlS+Kq68/CJUAuviC1/9cjQsxhkOu1aTxXmo1EJEYQzc6SoGRq2uLkuOcESss7R/e6tq67Vc++TumkwEkGf4L3ovqNDPO2bPmR/dlLsQhkVNB0P9AN/mFl7Krtrf4MgwDCJehFGvq0DroQKzllLa2xWc5QxNE8AoAQQOw5TqCMjE4+lwIUmLCWdLtRH0ek3zOjQvdrHYoIKLE6ERwo0a9nNg+9549Qf/K6qCMC8AL1Uza2P7lq3YzY3iifgJ0GwBnYL4n//wd3Hhay+GmuN7AjBo8bKFLMhDCBXsfLrOWICUnmmnVJhpv2R3HD8/uwUUZg6WnOcv55TVb386Zp2kLfvPp5dbXQ9V/ox+Hqv1sn+sw/RDoVrzA4WrCy64IDHkCgIeggc6nxT49r5sV3l6/abXWUFEp4iuWRlgIeChUG+ITk0IfI9hDRXaFSIVKL1fAcRrRzNZDh3bKbyrZu97jVxhOSyXO+llqDeX4qTYJPhiuSy7TvYEUvS/9MYrL8ckTXB8MpqamuKuu+9lN41dwSNMCkOWxbNAwVfxm6EQfckll6SzArLXPXz39La3vypU42ZBUFgrZRfSfCy/5iJbtm5JeQhgaBZj3e1383DJ0WnxsZ6y+ZfRScECBV+1bQS7bAM1GLw+d+7c9N1nVFu2HezjDHyTt1L497vjzrb1WcEzNSA0RdI3hH3u84JUmrocKhVjiz/KBoASpu3v+ObVCfDyWU055sxpYGztTtE5HIdZmQ6Vt787Jy2f9VqOBoUmI0bQmGDzgr2io5ocm7aJ7ezccD4pvDs3Tj3pJACV/piBhsD05JJnWeXh5K1yGgw5LsL2cRx72Dfm39zcnLSkSgnVPgTYoZCc9fv0fF/IZ8tdisCvL4YBBFv5OftXk4j1jz2KdgMhRFHRXwifuB5Ts1VnXRi33fqTOOHii+ORzY/rqTUK0fJK/BmbSUAs8LOsa2wK5bbP2JdHOBZ8SAwh9Za3pQKJO5ocQNBmLqq5MiaYSfj3kjw0Rmib0YH2OHX5XMwedmNO0MI7BpJPhwULauLMM06L886siQcfGcLlQhn+HJjj/fQ3c73GPud1xZN9cf6r5rKJNBdavY5+oRRsWMm0jaOZMoGG1oplmBZwyT7JikjxE8AzAS/ccPVr4rb7m9AAUPGgKh2DnaOxZ/d2QI/ZMckG3iTjOQ80QcF/HHMi+ViQprShp9N065psa3iHfa0Hi2JAiGKuL1iyINr27qZII1E61k/kd7RAwJxnovlcganyFGFCd+5pR4MCjQfes3tvN7wq2htoxPQKPqAB41yaAOhxc3QKwoXkQB+gWeT7ABm6uzoAX6F5FQDJgBb6RBHo6e9rw58F0Vngf3fs6EarZS8g2ptj/cNzk4ZfKcBTrlE4HU8vuxZQDjqejqAFXARF1yXKGcGV6RMNNizR0U4Z8CHxlLAWQlSL0UQw3KbTfUYtiw2E+sYf3xSNC+YDcWO/N2tGtHS0xFPbNsXrr7yC2LvWoZIgmX2YV+CtGVurDpxRnrTW8pMzYMMkxGYCx4tTEK0MfJBku2tfDvrdi8lFDeYCbW3Y2hYSIxoNAd81wuIh4KCHYVVf80GeK/muxsKutj1x1/p74lfec01c+af/RZIff//F6+JrP7gZwKEgZmLnNTzOvWOozI2UxPBIQQxCoAd5dohyDIHejqLqJpOSLYj2wf6HfZD1zf6/lbCo6IQJ8DVKWKQWr1pBuxHuB5u0ElTlRGBdTPOAh3W0KcAAC4vfhpHoxFHPXgjnAICDphs6/+0DDe8GLR+hXAXUWbWzjEV0+RZlFrTJHRB4AAf2IgEeyrANrQaVr2KBwl5MpJ8F62J2XDY89QtsD3G2hspgxxCxunFM9NCmR6LpXOxOh7vjZ3ffFv/729+IcsrfyS4A7iXwJdGX3us704esEH4/ng67BZxfBzsOO6Nj9EZplXMnoyN+luGTQc3mzDFa9BelWAer48F+e1FefhiZKEQpbNofCnB+Vvhxd90+U7Vc4UYBw9+8X6FOgcy+zOrgvRnAlNFK6abJEHoK9AIRCoEKKT6n/4Lvfe978cMf/jDtVGfFVatA4ev5CGDZs8/37A62ZXHn3/CM1lOTCwXE5uYmhKk66CZOyMh4YHAk/S54YhkzrQHbo4v1aTbCrWnRwpzQq/B0pMk2dWfbdtNfhuE9/Sygo28Cy26/ZG2f9UfWB/ycUnZd4EJARbDFPlajoqWlhb6pTAK7bWAfm7L+S1+O0T8KpybbQG0HQQdNJKQ7Wd96XfDFZDtkbeG1rJ08y2PZPoJkhoVVi0JwwbGuZozOK7/xjW+kd/mew9E8ZVokQc53WsasTUcxmbzzzjvTvOtPu9+Y+VNmQS7H0+GCbgrjattYFp26mr+huSvYibZ/j3aaNbMO3yL4/aItVdUXvHEOOdff9773JfOEMXbHTZaNZk7JtjDZLjTR08m1IesTP9vOtv8ll1zA8wjU7Fo7Zu2nbGw//fAL+JBpObhbLgjkvK5F4LU+t9zyUzpvMqoATx5Y/0ByJlmDc0Wk5ZjHHGf3LBauWY3ZwuKoxwytEM1SHU324ISzG3OaoV4dFqIZJqOKiUAe6q6Zo/B8663Uz8ZbieYJ4+gO97RG9+5N0b7zScwktkNwWqNmojvOWjorfvNtr4+//fDV8bHfvTLeeenZMb90JPZuRFifwBkuDiUrCS/vvbWTPVE9jtnIRH/UA1YMt7FRicbwLJRgls7JizWLCmPVwuJYuaA8ls+rjEJCr1dAI3DNELiviLngKPXI3CU6yewbQnsgmAvLEos3hzq2A4RUMbbaAQy6OvakTbo8NrNGBgkPjxlaL6BTb3sn5+4YxmeJ4T1hsNmFEyHw0NQajSxMUvInhqK2FKlisAvgAZ9uw11Rj+P1uYXw3Tt/ER1PPBC1mF5XwodXsxk4Q+eemJXMwTyjHh6/GhMSB1QCedhUS84iAQzyi1jTOOehJdLL3OqHjx5E29goeMMcIxyDAE1D8LBDyAyGT9aUbTZ9Kc3eDuD4pS99iUhwmCC/gDF1/JFjowWm05Vjo0Qvs1JIDGUsJJIujiYXKa9nNofZgvpc5yOtrloOgg45CVN5FdeTRfhdwEljSXEpDGJl7Ni7M55g90hBePEZzQjMbahiFcR2nMKsw+NtBaBBT+9QfI0Yv7927fujCwcw+ajcFUsgzBlthwkE3kkPQIgpzDBEhxWk2YOh7hAtJN4CCIz0uhdHM4mo0QZNzc1RXVPLjjxOyiA0QxCPYmyNjfc7gg+IjuGeeHjrE7Fw3Yp4wwd+LWqWzYsvfPpb8eef/HysPPFVEKqZ7GzNRROrHqJUiIYCwANEsgenja2YlGhyITqfHZpSJPUxVcg4pl/PPj99pvyF2ENqMtLVOxKbQFhn4AOidRLvwsAMZYAPxTAbotWp78hap1/q1A2Tdy/I9OaWndGCal/P8CC+h0bTMch5zMYB7p60DKDIU5aHBd0QTgUetJs910y85Qc2qNpcC+3nGa5ScBqRBW/m7FhQ1hSdvTgxBVnup849LAKjxYBDI11x+nlnJju+8tqK+LOP/wUqkpjA4LhsAOa7cf4sCLX5TUupcfxuI2XHtN+Pf/x/rgVkEqVVWcqAFr9njHj228vx/Fw0d/o1afZz1dNrGT1/Keud9Y0Adybw6LDPfnIH0ENVanfFFVgV6BSOMjV262F9FSayQ+HB9UpGLmPuFej8ruCug0R3p9///venqpt/Jqi7tpkUPP4jknVRg1ABR58P7mZfc801T7eFQmKWBPzdPRd0UFBRQNm6dWu86lWviptuuintPrvza9KvRSYYZ8+/kLNjxHfZN1/+8pfTuxX2BGbUUvB9AiX2gX1mH9gnHvatZ5OAghEvigrzYuH8xtTe/mZ9ny4n77L9YTdSOhbGZ64kB/5r3U22Tzbe7BM1chSEbSv7ONNQ8H7byeRY9Dm/O2Ztj6zO0i21CdRwcXwo4PubgIHPOf7t/0Olfc2f8t/32vSI88LQtZZxFtEqutHWdB48+OAj6T05IfxQubOa01neKziiUG4bzCCqwADOuTNNo0Pn8sLv0OzCsWgbNsOL2b6CPba/AI7AZWonWAXHaAY+ZGPV8WrytzH4E8tvP2T94dk8WlraOQi5zti0bwrgeRy7R5p8r8l3+tlQ7ybL0YmfriGcmNc2VMfXv/FvsfakNbFp21NRvHwxIAN+u+ZhWqWQDnAxxWaOURKwH4CHgz+GRhTXzIBzVEvDMcpvgg/wXrmNIX6Bma2uxsk6kd+wdUXRdDRm1pbEigUNce4pK+PK15wdv/PeN8XbX//qWDkXnxpt8IC7u2NGwXCsmlcbJzZXxhqcmS+fWxPLZtfEqsYZ+PaawfdKfH1Vxuqm2dFQwQZhJeYFpVOBf0y0aIkgRxvWAjY04ByyAd9nFZiLjGGS0YdD2r7ODiwmBqKhuijmodk6Bjgxk+cI3IEWVXFsfvKJKIWGzJ9dj0mM0TWIpYaGRAn9UZj60v7kBYb9MHIEG5W2iZtdzro8gLFJ2myCEPPjmFfswCH7eF97rGisjzNWLIgLTlwerztjXZw6vyGW8f7+3ZuJONIeQ50t3NdJuTBLKS/BrIVIFtDmfNq6yIMNviJkkoIEPGAKxeao2icj8NA1M2qjeUkz4VHnIKNMxQD8rtH6SgFc29rbALYuBpDFPAUgs6VlN8+yCYgTSyOVHE8v3xbIUfmXb/mPiZJLgLNF0QK5+EkoXVw8H+w40grsL0Iq0hqRQvChjOgLg8Qy1xHhU5s3x572vbF4xVJ8KcBMQkjHsf3atmd3XPXWt0JE+uMLn/3nOLHy1KgsqInFjUti+6ZtFI/yAzZMovUwUTACwVDzAfCBNUF1NU0FulDtqqszRJa7DapVbk7ETG9GC+Y1JSdgfQAPhWoCQNlFOBWU8XMTTdiqXX/7zfHzJx+NZWecGle/79cj5tfFT6+7KW782QMQIZ2dzYaZAHxA82EA8GHcBR1Ng+4RQtDRAC5PaYmSuO47jCXskZlYTD8/fT/PqbmhDuvUML4SdnXjFRkzD0CNAYhvfhE6EAAIulqagIGYQk+sAKamAIbI0EV9LE5t/b2AIN3R2t9NeKKBGAA1HgBUsWxt/XhlhugLQCTwgbOLuWBRDnyw9wSHHSMSVJw8sSgMYPdbjZOhYsCjLUPb0Wio5p3YxpWDznP0gJwP0R8ep77yjKjAv8MT61kkaNViUO9B3m0dk5lM7hXpPbk/Xtj/mPbz8Y/PaoGDzd3pv2XMmHRAxtXjP0pAe1aBX8AXGTsFKBd3PysUyaRmjOcLyPKYeWR6Hz3X54yRtv+y5OesP7NrL9U5K5d9YZ8ofOrvQYFCgVyh1THnd4Wx5ubm1H8KFPajQoQpq7v5JRrEdX/3eVWwtZtXYNM/goy9AqICoYf575+P42X6mne02sc6C6h8+9vfTuW1fpbTNbaP3csMPBnEIRwkOanFu+76u/PPHWeBGbUQfE5hdxfRBhzr7v4eaRKoUVPB5DtsT8EONSAsq33iNceZ7W6b2272QwYm+WwFUS6yunTjgE5fG/6uoGi5Uy+y7vn88HAOcDHPYz05Lk0K4dbfNncsCRJZfuuWmVJ4n+PUOpoEk3zGa6as7Ryf9q3tav+uXr06ae8Y5lStIDVQfCYDytLDB/iTARSWxamSjXNv16xDIf2cc85Jc8L33n777Skny9VPaOtDJcuhpofaRG5GOf6sl3OuCP7iaCfHkePNdjY07T333JNAENvN8eY8SQmWwD4yUbXU7n5WDd9kPWxz22D6uDNf2/zf/u3fnr6emUBl+aUMXuAf81cQ9f2OHTgoAIecL4Hlq1YSYpdNLHbod25+Iuaw4dK2YwsmGAtiC+e58+dF67at0YoAOyT/RgfLvykMl+GAsxrHm3B08EoecnnUFT5M7kjNh0L4uxmElCxg06dkyogas+Ois06O159/ZrzuvJPiiotWEwVuIOowzZ0DctCAGew8UIPmOXVRjxbAcFc/AEFJzKzEZBgwoaYkH94aU1y0CwrRNCggKkR1ZQmaW0ZL0YfGMKYGvcx5NNnc0OppwyShHUFeWlUKLcap7owqNuMIYQ8w0MO9OxlXJljO+NV3XRtveN3FmIfAdxImoqt1FxobaIEpyMOHVlL3SvxdaOpVhmlEcREmDviHy4eJBpLhgN9lDBRxbxF8ejEaHxO8Z/mC2fHm110Yb7n0lLjqgpPj2stOiPde/pp4/9VviFesbIpTVjQRRGMiBjtxdgzoMwpQ0rJje/SgaVFRUZmivWgaV0zkkkI2RkGBksmFJsJu5hXhu00Hu1WYjXgU8dlIK0WYQ+VTFoWNEvjfAcCmcjYuZy5oZKP0q8nfSKr88T8vyxY4+tTvZdksh19oCbjEfTpBzq5lC+/h5/b870yEEnI5hQCrxCnpFMNUa6EElLEHSLS+jHi9WxCMUTdzR5+lO1q69mILVxLf+P518Tsf+n0oY3kMPQ5Dh1FB/ggqrXOXxOSIDDloOJoP40a2SKYXuj9kJw0irdfg4sISCGQPaD5RFtq7UDmdw0K7E/07iAzlKcZ9Yitxn/tQ+9IjeZEOJAdRtUKtSt8GPQj5ZfgymELL4O4Nj+PIZla8/bc+iG3IzPjin/8t6lcM0UnDVZYTE5hdo3GIZDFIPoRsnIVRbQ5Xy8Se5FbN9H3fCpqu+9v0QyAifefsh3KJcDUZAQIb0iwfxDgPB0xFoMZp7WWxmKKfjayRJ4cLwRR8GGDpGoE49k+ORhcCfzeEdwBgZoA2bh/qi50dxGPmdooc0PicCYblJaVic97bszdOW3NqWthLiBiC2Md4mkwhvjw/8MBDhMibkUI9VdJ+FSw+XYN4lp4cioeefCTOuehVmF4QjwhN3E2tWwBjiDyCJksL9nGlLGr7Xpfe+ew/B/7l2ff9v/1N5vRgh3P/uY6MBhzrrWfdVBvXmZ8q3e5imWT2nmZMj/VKHEH5FAI9rO/0I7t+BFm/KI8q5FuWLCmMuouqUK7wlR0CETrBU7gxqVptUphSUDIP1yjr6DWfl7FXQFAQUhjx8H1eF4TwfoV0PyvAm9zVND/vyYTE9MNR/OP8+uxnP4u975p47Wtfm5w4WgbrYTlMqn9L0zXByNrA8umYUlBA4c+xrlaE6uff//73cRZMaMAjTOarWrDRFRR2bSedEyoAW1bLoLBpu2fp6c+QYE36UsH50XqOAkBvZqPAXXf7xjkoHyG1LgWMsL6ZUD2d58jyPhbPltdxpPBqW1gHgRWFVrUBbA/r6dhTuM0AAIVN6+jYtR0d6xlg4z1+FsRQu0Sh2vHrWN21a1fceOONT2tTHKxNfJ8pa8vs3Z6lhe7eNzU1pXssu3mXE8lLR5KW51BJnxSONwESx56HZjkLF84j/55DPX7Ev1uvJLQzX1YsW5RMP5wrAmaZP5gMJBBooNr7WKccf8BjT6dsncvokf0mHXFeCcrYD/1ERzB1w3dqEnWkybHiuDFVleOElH/2sf1zyqknx6w59dHeuSeKML0YNgwkWgp5OFJsYVOtlB14JPc0vczHzRw3eQYJldnTg3BOGZ8FPDDLrK7AQwHaEoaELGd65qNpUEq+C9CwWLe4MZrZ7KkEmJgkmlgFOJk7/ZX45NI9ZwUCsyYUs9BmqEBDFhYSPxEcnEvYyDK0eSn3lPK5nPE7Bm8pddfRovxfGfRVrQw1g0tw4FgD76fg7j0TlMuwyUOY9o7Sr2oAzCXyyrY9o9G6qzVOXVwQZ59+Sqy//+fRuWcHoSvxiUZkuSFCfI5jwkBDAkaQ0yg8Pbz9OJEmJtnMI5wcIARgA5twJfhbqGCcV+Igs4p6dfF8Gea+C2dTH+oxhFn1WAdgxnBvzC7Ji1974wnx5stOj5VN8/ARMUo+IzEy0Ju0NMZwomuo1DKOEjUfinJaxnK/E2zkOZ7UQm7HdHnbzu2YDHdR59KoJcqcji/7AGBqodF33Hl7fP3rX4vzLr2E+T4b+t8KwPvKBELRLMfTy7QFjoMPR9hxLqoSNpkyFzIXWm1oZRJdEGWSnGQS+IyIZsTe60eaJMb+Ux3NUESCAk5uIYhiNCAa5y2If/32V5O0u/bUEwlZianDQFc8+tTjsWhlcyxY1kQ4G4i2vhuW1cXP77kvTl51WrRub4vaijoEblRE3VMHfBgvQAiHsEv0CtihL8ojqgNVMCTkjh27WVCb4/STXhF//ud/FXWzsa8F9UQ5ipBn3VGB19pR8trb3oZGAdoEUOMptBc0VyhBqB6G2GxHpewuVGvnLV8Rb/yvvwMHPRCf+tOPQVBfHQ/f+2isWXYCEjxEvrgiNm7ZHg3ziEENEdaBjnaUHtoGZm3iSlIKUloAg+dvY6h4efjZZ3Q2WV2ObRr/JvZSLzaULr7gtdgPPhSLFi+K3r4eVNDwWcEiMYMdkBIWCJ+x1yZBZidAY/PwUD4IQtyKx982UOJegIgxVpwpNBCmYFIGASNGmWVqQIxRNn1guFgPY+en2tgMgIK+8V4WyxaYGdBdFro6zFQuv+zypL3SvGgx59LYsXNXAi9UTdNcpY+FNg9wYSF92A8QgfFdnHXe2Qm/fvSpR4nZzY4Aam+HSs+wxM99p+P3YMdzP3X4V7O8bRMZUZnQ7Jq5ZJ9ldJxr2XfPGeN4qLdNf8bP5iVT5vxT8PbsdQUHmc2MIfa6jL+HDJcMj2e/WxbnsXa7MmAyquaVMciWzft818GOQ5X9SH+3ntbNXTzPaezRxjLRO3bsiI9+9KMprOL/+B//I66++urkMd53eq/1tT+yPARUFGptA3/PBNwjKePB2sbffI/vV8jLyu/Z9vVsmTxnfWjZ7Eev+Zx9ZD2st8nv5qug4z32kUKF1/3u4WcP6fpLnTSlsPwm6+Cu/gMPPJCuffjDH366P9ydta8U0myTTOvO57I6+VtWT6+bXK9UXfdZd+mzeehutO3k2FZ4ampqSvn63fwVNGzzI01ZH9tv2dz3moKp71FQUrh37RR0ufbaa58GSfSoXgIjr9bDnNkNqSgK7/qvUGNDoUvTB4EZ12Tr1tzcnNZl50MnoDnd/XS/Z/0//Xyo+unc0zbM3qcZjM4hfY/vtS4etn32ORPAWahYS3NvGCJ8tG1rCD5BQM1CzMu6pLbmXtvIOeeYMNXVwaRzPcv3uc653F/43+fK8/lck546x3SaKeAjECSvpODrnPas9ojJ/srayTY12SaO2enJ9vM+k+1hfuYvTbNtvKaAKh23zSzv9D595jMsCoLeCM7u6uqqkuBcysYDZCOBSba9dOaKK65IAJ1j0r7Vj0OWcuPHMXSgAxV45tU73vGOVD/NmXSg2t6O/T98z9FOzp/LL788jaU/+chfpXZwPDUxnxsb5yWtE7VuBjEDGR4W+IENwozWdnB+w+rF7j2t+PUCcMEPliFvHZfSRuertEmzFx1o2tblCI80d6qrm11HmtI6ym69Y2APPsL64VWb5qNNy/i4+JLXEPFmb5x1NuFYd2+LrVs3xYI1K6Adu6OyqhxnpI9HNeEpLaehQC1XIWYGpeRXwgbWBD5i3LNLPCS0xhuMhlGF0F8L/1THhtimxx+NSswYzjllXbz9ildHUwNhzx97ME6fxyYYWg810CDzperkW0H7AloNTMFTCygAnEAiHS66VjB8pd8HhgF1EfoHiLjBrI8hTJYHeN7WGuH5cTYOxzhGiYc5CD/fz3ODOBSDuqOtjGNHy87G4jibf9u37kCzITDbKEvvWTyvId5yxWVsaC3nxb1RAD/ZtXsHkdjIh7k4iSb0ME5GK/AxNtnRH5M4iKwuotyY6PZvb0FrYgSeGICZSvX1dsd4d0e8512/EkuwVpsEpFi3rD7KARkmetpj+exi3j8Ui/HpetG5r4gLzz0zdmzeGI2zZyUAtoS23Muc3Ak9U9t33px5bB5O4MuBDUc2J3WoWU77Gc50ZHw0drfi24ZoJQubF8YgvHcdYZHnMUZvuOmGHD/LXLz1tltp55JYtWQlm4aokyQieqSj7PjzL0UL7Fv6XopX///jnS6eiUhDhD270Jpc1GRIZHimM7EyxFnKFtDs+ws/s0KQkimEZ9QB8iFoCYAoKI1Pf+azsexVK9PkLgLNXLxqaWzfuz0q6onRPNqXwvBIHcsQ6u/86V0xswobx709ONqB+YYITUwhtEMmBRJG0VYwxjOODNKWfiEAxxiLd201KsCYeXSAXvb1Ge2jMM677A1Jw0K0VpuyYUJSeqg7oR2eTidHoNp9MJaD5FkiM1VRFlvZtc9H4F/zrndD0Svj937rd+Pd17wr9m7bE+04whyBCJ5w0unx+BNPgZyyq0cZKdFzHr57wpUB4qsZht6SPUSabf9awibt7t4deQ20IV3XM4GtsGUE2R5kodMGroDnAX9TeCUZF1luAYVBtAyG4YF6aZ9ONDhaML3Yhd3bHmI9d6Ea2Mf1dkJkduIDoxeHOoMQWAEY60+xU3k7BzpAlkuJUY/PB5CcPlTpTAIOOj9qnItAAGMws35W8CjoPoAF40pNkmL6cisI9/uJiGEM58GJ4eiZAs1HZa4StJwmfybZQKZ0zo2X3IUj+3soRvRwcjcPhXaZGs8K9h7OlYx5dG7JgGQAnvkezs6TzIuHz5lHNv/My/5vampKDK5goXPX3TTLoQDr3N2yZQtMzdbE4Grzqxrrt771rWT/KxPc3NycAAh3nRVETKpcyzQfC0nGyzY0pJ3Jctnef/mXf5kY4k996lOpHQxFaH3cYf693/u9VAfbwmumrN1lXDNh4D+ijhkQpF24KSuPn61HRlvtW+vqOSuX/ZuBEz4nIy7TmuY9feznbKz52f42D8eL93i81Mm+s9yWy/6wvNIgx7ECdSakK7hlO5nZWD+csltX28b8XbMEZTLtBvvZdrGd/d229L1+N2WgyOG850D3+H6T/WZds8++y7paJ3ePrafJNrB8ajcoUJiy8oyze+dn+9+6OI+1a3eMCNgIEDpPLbftNaPuyIU/BWjphgCNbScdUeB2p9vyH1aCHJcBVCu4mWxj6yB44Xzzs22T0aysnTLg4rDe8RLdlM1Xy26/ebbPrYO/2Ub2vddN2ZjK+vRQxXYN8F4P6a+CsHlk4/ZAz3t/ztwRvoPNAn0wmJdAxNjYePz7v/97mneOM4E4x3/W7vax6XDK6DgQDHHdcAzaBmprHM7adaCyP5/r2ss7B0yCPNIOyyPg+P3v/yAB0CP4GrEvyuEnaJZUV89FCI9jzKmsTwbQGBCwbsEBqn0m0OPZ/rwTXxvOsxHCx+p03OuCg0eaMhpclJ+b09k48d2rV63MmSXAe7E7FP0D3bFsKZsxCK6aLUxgxjAbQbiauW4dRuBxB3CEPorZkr6+SqpqUOcnpCUaCoaBn4T/GsVXwQCmtP047u7taI25mDoswGnnmy49IxR1cfsds2mnzZvb4qRFhM+VkWMiTsGrqVUxAe89wVk3aMjZCXSgSXIABG05zDGE03Qtp1A8AKQgfPsgPszw3UBk+hjwXsggOgQxBv89BPAwRKSIIYCGEd4BHIQGMjoWBWW4bSiLzRs3RceuFkCSx+O2m9bHCMDCtVdfEB/6r5fEmzDBOOvEtTHV2xVTmD3n0X+jvQOYfLABM4SZUUF5zGiYH0VjAO34eKub2YhPC8xxAEWMtlGFufbq00+PVQsoJ3WZQKvBwHdlbB6uXNKEyUdrrGoqg95FLF0Y8faLmtGooP2QAQSrRp7ciObCjKiaUY95diEOL9HYZS3Lg+8HiqWGAZiE/AHQo+mF2tAdaEEoIxQiB9gvnZigVOO8Uoe7btCtW4cT+i5c4+ODo3fo6GsOHen4Pf78gVtgunhy4LuO/3LAFpAYytRI3GSMsiRxlBkRjZfgmzy7gEmYXbgyQpo983zP5vpLB4tG5o9BzwLe8dgd62Me6LuRJurZIRrASU9BZTF+CSDSQ4TGQWMCuBdVsNK44Xs3xNyaudEDIloCsDAJIzTBTvsoaKfHGBLwJAR2SlsCQ0WhAWFITv1LzGyYHY+uf4x697OAjcZ/+k/XxsanNiVnk5or9Mvgy3hQ6Bz4wEIPcR3jwiBqWEUszFMQnA2gp4MI729721vBHtBy+MG/R/u2XbGssRkVOB7GlmFiTIbMAxxERmLaIWucHaMyzN5E22fAgyCE3wsBSGorauLH/35jVGIHV9KA2iBlHEQbI2lGoLKn+l0Rz2PWlwAIIR1DNQ0DlgwKUCDo96lNQpvu7u+KHai4CUC0YnbRjb1dD4dmGdQah8oAH9RPh5uq1JWgIjwwwg4scASAPHXBoz15l6FRUghy0NfRFQ0FDTHOYlBbjemFHoNpK4EeQyZZn5t+dnO87qrLWclg4vsG4xOf/ARmMjntD9XznpVslGkjhv2gZ/38UnxRUJJ5yRgc54iHc0PGw+vOFxkbmfzERHC/KWMGD1ZumTwZKxl48zNf88jeY94mf/e6jNlWwAYZRXcgFUi/9rWvxQ033JC0Av7hH/4hfv3Xfz3++q//Oj7+8Y8nIV3Py6YsL5lVmUzn/kudrJd1sL7WRybact58883JFlkP8X/yJ3+CttKfx9///d/HGWecEd/85jdRc/x6ctInnbLdfH46s22/Tad3R6ueWb9ZBt+pUKpwZz9aHoWXTIvBfs4Ox5RCgs9/5zvfSYdCvP0rOKSpgX1kvtkY8bN5Oq58z+GMr6NV7yxfx6R1yNYK1fGts0CYgvR9992XxpkCa3aP/ZuN7yyfA519zuT9toPvs18V3r1mnoLotkXW5l5/sZLv2z/Zd4J/2fzRwabraXNzcxq/1t++sl1M2bjM6lIEnbVvfcb+9nfntHU4//zz49WvfnW84hWvyOGw+7/8eX63nOZ7//33p/Ko+m/f+O6sXAfLUkY/SxMTgjwKSLk8pXe2ve3t2LfOjm/fx9LzskhZ/wqkCIBqcmC7ZLRSbTH5J+tnSnXj98MdY45Z5780QaBGjR/z8HmBK8/75+X7vSe7z/fa5jRvWosUun/0ox+l9nYc2afSC8tsfdSyMGV1S18O8Md3CJx5PPLII2luZVpFgh9HO11//Y+So1bHUQbcjUAHjR4jfXR+2PawQok1cGpbT4pN/XJAWAbwCjoIBmfJdhTEcN594hOfSGBNWRm+DxoQNpmbgjhHmqa3cbbejEzktArXrFmNQDzMRg0abISpNdJD06L5DCJMZNnEqWc8lBBRwQhwrPpsyMm3QtuZcxPwTxKAfP1wySbDx2GYRl3YpID3HMeMdhwfXu9869Vx6YXnGdU8ena3EdWB7PHxte3R9QbTSBx2YqNsK7JhCifgAZY48bVMZzazPNDISwd8I+CDnxP4ANrQxYeugXEOgGZYmwHuRzmCjSr6gnw9xni/rK9GLeAUHIApvH/tijVRh6bCHDRoGxHyJ6j3U+u3oe0Qcfrq+njDhaeoHoSWBuAaz6n5UEDGXTtbY7IHXYqRvOgARBho78XhZQU8LiABJilq9+gkspSQmRRD1hKfbSXR128bYdqLr41JQARwjWhG6Qy3GAAKEU0L5ie/DHsZK4vOwakv/mscHz0AxTu3b4sBQCEsmjHtwLwD/neUDTl9czTMnkl7jUcrfh3UbikFiGWGMqZ6MDvG3Bgga5jIFycCuNtv5ZioTDBOj6eXbwswDI6nI2kBCXXGBMkYSKCdbC54CjAuONlCKyGVgZC5OhzG5HDLBU1K9E/Q4Wmpm8+aYCStA3i0J0Eh15ywNipQa7rnwXtjLWpkv9j6JEL/AKhmV6w59RQEWib/E+1Rwz/864BQmjOEBfBhjF18tR7GWZWc81MADwT2haQrtBXBEKO+u3BR/PjHP6HuAA0Qm1NWnBpb2RnSVq0QW7cRzAymEOYTykxhdQCk85mCQvw3IFSP8JsKFR29Hdh/ycCh/bBsccwg/OVv//pvxHnLzokljYshkCVxz50PxsoVJwIsUAyf40j6DxQ5O9soXvecr/OGfd+fNtNgIZpRXhff/Nr/Qc1rIFawc1IA4zFKOSepcxllLuT5QupcBKNQRHvapjINo1wf5LomF0OYogxwxgVbdEGF24f7McGAIeLcrQYEiLEuNsdY4DQ1yRxQ2l3FZbRV9BD+qZN2mIJhgumnBoZLFdBp62+N6jK0a1DTq0ALpIYwUxMsHjWVmKqwsm3dtT12trdE7dpFZBbxqf/5N+RZHB19aFQAchw40Rg2yCGS4/RgR8bcHeh8sGf9TSHPeeFnk8ya80imMksKG9nvzp9MCFKoPty0PwOaPecOmSnb9d2KkKJXfcsl0yXjeeutt8anP/3pZIftdZlHmbbrr78+/vAP/zDUHtCpmIyZwn2WZLRf6pQxjpbXdnbHV9VfaZI7hZ/85Cfj3HPPTfVVMDO8okz7LbfcEr/1W7+V1NZlzKVxPm//2AbSOPviaCcFsIx+KtQ5Ljyy8jhWLJ/1c/dZ23vV8w0P6aE5iSrB9tNFF10UH/jABxL9lRlXIMhosmPKPGVwPRxvghXHQrIPLZtCgmPOlAEnjl/7wvJnYzw7H07Zsz5UWLZvVTU3T7UGHMuejSRgGWxr32PynVm/HM57DnSPeZosh0eWr2uk4IN9oLBn/X2349fyeVQCTJsst8l625+qiqczn52Tas3YXtbHupxx+inYDJ+D8HXk/avwpQmHY8nPzqmsHpb1UMmyj0PPDXfoZ8ttPW1vx6F52e8etkFGF5NglyOZh3rFS/p71jeOL7US3PW3Tl6Xjqg5Ivhg32R9bz9m4+xwCm/buCMvfXBNMG/HbTYG9p8Pfs+O7D2ZYFuNUOUQF2yQRlgmx2hGP10nMrpgRAdeBa345VJ6zd/0hWDdBEXM07IJGjp3zPtoJ8ORqpUgzZc3tQ8WMUYtg2uWa5ljCjkyxztyys1z5zjahQiJ/t4/OJwAHse0dbH9NG2x/fx+/wP3p361PgzhdEwHKrz+QtMYUr76ovlsyNin9rftWMxEr6kqx2kjpq8AAsEuuYjAXEJOugO3GJOLLkCp/h7mOahAhc4WcbSoZvAomzUjmL4q4DID0RLVr4jalESIQLOhiuhiml6cs6okzlxZGRse3Eg0B3bb2X1/5K47CYe5AAG/I4EPClG5DT8+OB441FJVE2uc93oISsireqgRMQ4fKc/rxlvSjEDjZhANlAE0EmjqnMaEfULm3JqeT+4aeDZpTaD9O8SHCR4e7MSEh7o11s/AoSVaP+2tAAq7CIEZhOwkj53bYgSgqZgXF4KKlAAwRC8vAc3o3t0Zk3u6AS3QbgYIGehhowKevpLoa+6ItZL3PZvRdoCU1c0EeMNUrQ3enmIkX2RbNm+S7QyUe6OTiwX0ie3RzXqs9u04wKBc5hjaDEaxYNgkXxhsGwIEaTqJY/4FjTFrHuMQbYfkdFMzcO4zxG0ec0xfJIbfVItlCtS1kP5mNaDvq8n5eHq5toDj5Hg6ghaQCRLVzxYkbRp1GOXiJ8GXEXbxMUmwM8bE7y6+R55c+Tj47yT3/PTBR8g10RBqo2Xrtli8bClmEaiTIRjXzqqL/lFsvoom46ltG+MNV14O4gmqzcLrMzXlNQi5EGWzg0BI/MeZ+JpcqGKWN0mYHo4JVLhKiKzRTaSL2WVz2VH9KcgnTCFoM0rMOPXpRqjOmTpobuDOvz4f1HzQ6/AUPhxKi7ExA8AQnMgHFq2tr0T4H45NGx+NX3nDa/EcDHnb3BWbdj4eyxcujQls6jBlgyJDwgBIpms9ZCYYicrR3jaHnz37m5oQ+l1IoAzfq7C1uP+uh2KifyrOOevsqCmtTsuRvi4q8OlQwoJnwNEiVo/8tGrkkN+0EJArrE6MEMpoAg/EE6D+Q9J1NB06sAdsww+EZhdGwehFHU2zi0HqOOyZMTFIJYqIo4xuBIsL6s+AHaOYZ4xhPjGrpiGuuvyNcdvNt0bjrMbobu2KsvzSmF2LSUxbdzTUzARV7o/VJ6yL//3tb8QffvSPWTmpZP9k7N7bkhatorSdwbXUCJyPwSSjI6Pt3JBZcT45R7LvFlkGZ38Awt8zRvxg1ZLJ83CueWRMn8yLAqaCtjtn+m7QPlzmxh00mTN307785S+neSxTqyO5U045JX71V381Lrzwwrjyyivj5JNPToyQgvo///M/p90k6YHlVVh4qZNCnAK8ScHLpNmIu14y19Itd8/1/WBdrb/1fM1rXpPaxx0tbbVto0wAth3/I+tmW8qo21cm+03G9+67704aKf/yL/+SzEX++I//OP77f//v8Rd/8RdJS+Uzn/lMEkpkuN/2trcle221IP7bf/tvySGgfSxtzg5BDMeHKRP+0peX8I+Ct2PVpJAmEGZ/XnLJJWmOCBYIcjkfsuT8sR6226GS92ZJ4cioF1sB4BwHnv1d4SITlGx7k9+zz9nzL/Sc5e27zNN5bR0du44z+0eVcU2gdJRnfRUGTSxHTyedN7qTaXKM+pzmRI5zhSbz8/AR75ped595Iam5uTnNpQy0cZ5YRueVbXiopPab99nHqv8r7Mk7CJYo6Ep3FLZsF/tYWpjdP+EidIwn51GWbO9srlmPbMx63X72e3ZkzxzqbNvYVva349cxb36CCZl5xHPlYRsq1Hju6xtifJTxfG5XPwuD6RyynK5RHtIf+8Y69PQM0CeMP7pg35R41muy33Tk6zP6fXAu+6xaN47vF2v+POvF+31x3AviaaIlvVPraxvz2jkn0Ox8L4Lnct3tc3ubVIkPCJNta8rWZ/vGtravpJUe1m/dunUpHGl9fTV11N8GJg/wS9b7SJO+zOwH5y2jI4WRt0+85jwuYjMHRhXiiO4/n/fs3hlNCxvpFIA8jmHKOELdJtHCKCKvEhykl+JPoZyNnRrMLkpR9y+FvzSCRDl+uioAHaoQbmsYD7UcmkC0kvUc/HMsBNRo2bwlxtnNP231slixCA0PyoB8/KzDuBkF8MxeL4Qe5QRyzvCSzxwabLAZCY+m5jFFTdqsw6hJuKk0DLgwgthA8ekbNHL4jCIuWhlUDSFfk1z1OXDDRjjOmqhmnu16alPkM77OgSepYRPt9hvuiVJJRH8fgAQRPzq7AAOI4gbQmYdWc30loUbRuCgpw1lx3dy04djXg/+aGYR4X7QkxtkYLCIqyI0/uwt4JpfQm0j+Jh54Yit87GRaG7btnUTrOWImsoPgv3zTrFmz47HvfZ8GKAIcqkwbeaXQ53qiWVTg722YiHJDmMeMY+JCMyBX4NwTsKcAfw59gA9GONH8ohwN4SE0Hnbv3hXzASl+/vO7oRG0yTim3WlEOAqOp5djCxx6dXw51uo/sMzZAurCIkF08hnySRVDFxeRfZPEPmMiM0bC+1+sJDOVqPG0uSgaW4I/gQGE1XwmtuYHm7ZujuWrV+D/YXfU4DynAH2yDRsfi4suvjCGiFZRhRdnQzTWQHQ0p3BxljgIQIjATvoH5BR3lkx+wAOE/yLC5+jN1hv3/KKFz6Wx5sST4olNT6Y650Ng1UuAViRzA7MYgZIKPpiXRxEmHzKSUxiVzZk3M+pqy2PblifinDNPifZdhKk6d3X82R/8IejunBjsHoxTTzwzHn90I22snZ2aDznTC6u//5GoFRTL+8btB+7NeRcWVqBv1PKgGOecfTbP7mPy+EGvxyWAKAY6K7RwgA+TGPPJ9EnTJ2kbNRpSRAsI6hiL+DDl19SiE62HDoCHPiJgDILGj3J9goUoD+BFExS1P1ydRidxsEhuZZjBSEzbQa33gK6L7F584UXx4x/dFHPw92A4pBE8SVfgl2O4D0dPIOZTLPCqrP3kpzfFJSe9FtQDhHppQ3zlX76SqvxMS1DYZyXBGGueHc/68VlfHKsHO55183N8Odiz/pbNCR+VYZS5MXldhsgk0ycTJWPvMyaZOJmQQ6VMSPJemSYZUz87rp27zlu1k9yhkpnyXd6n2q3CrBoPzc3N8Za3vCWBDhkjqlCg932vq/mgwKS/BA+FROuRAZKHKuPR/t16yki6OyvQ8IMf/CAxvwpJX/jCFxJA6q6hQKllF3jQsd9ll12Wwjp+8YtfTI7ibEvrn7Wj3492kkZmfWbfCFBpFvKRj3wkPvaxj8Wf/umfxj/+4z8mR2iZJoPCqQCQO94f/OAHE/DwoQ99KL73ve8l9WCFWPvW8I32o+PB/vOcMdzWy7q+1Mk5YXubbAu1O7xm2DwBM8vvuLXczg/njfdbdutzqOQ9Cm0mGXyFaFXhZSDVAPKac893mKavWWltSFdf+B/HkHmbbzYnrZ8AoEKPIJNlcIc2q480wGsmGdFsDfazy5Upoy22xV133ZWuqZVQg2ZZR0c3vnPQbOM9L0bSL4DhNQVIdDLtuHM8SaMOJyk4e9B1KdmX0j4Pr1sH28K2st7WLWuLw8n/pbzHcWgd7OMWdt63IvgKEHjdeW2/ql0m0JL1f1be6XMxu7b/2Taxre3L7Gy+zgs1T/09WzP2f9bvThFpnskxb/K7GgMK7bl5lJ/KKGBgP9ivaruofeJ8s9/2LUvpeT97LVvbrKOfpU+WSw0zgaZsXqeHjtKfSgRq29xxafkdq6dhxy8wY31tM5Pls62mJ9utF2HVeeVGjNor1t9nPVzjHKOCDLaTybloX/js4Y7/6e98rs/2Z0ZrBCDK2Oxy/DsXBBi6BR7YNa9AsN2y8UlABhnWqdgI0FLK3JGvgvlDkxewAgCgFH61oa4+Fi1YSNnhLaAJFQANgg8l8HGwZ3B8bDaRdwNZbdywMdYux3cEdZzJGvTmK66IPCJGjLFhVQCvnKJjUHAgBExjWTfg64p4rnjf2c+GryxMh4BD7vCaoS0FKCzfOPUZw+lndozj36uncyD6ugfQ7BgCgGAsIzKgQJvyL+XZ1ctxbAuvPqt2RjTgo6GQPuyGf9zNxmcewjuKzVG2aGFU0W9T5D2B34fu1g58PqAxQb7FEwVoTeD/Bufyo2g+9O1FmwNfE+Vo2HbT92WY+N5134Nx2wM98ch2fNHgI23+wjpMRCgnrbRwbhkO5zFXZQn56UMdOOzEET2AQx1hTGGcEnIywHzvZo0ZwU9ZKQBRnvwwAAOsML8TTaltb+wENCoBeKgB5FH7QXmhiM04TaTl19sATwSX169/JMZoC01hu9V2OZ5eti3wzLbHy7YKL23BJegmia5EUuLu7ppekd2dceGVSHv2kEhL6L13OiP3otYiJ5/lyiXhBRiuZuFoh0j3oco0v2ZhbIYB10irkEVwEwtp8yXvAyHlewUUAaG2ADRW8MLJ76GwmssW8s9vmlvk5UHQJhAQIa6Lm5dG2zCLAIuui/Kv/MrVMLHbAT7Z+cjLxVy3QC5MExD1QRbh2srCRKwkqoVpB4iFDWc1OpipRRgfgoju2PJkvOVNV8amRzfETT+4LRZ8ZV5CaGsqZsR2+E9NIARGNK9QY0PwwCpPP7yWXdf8ohBU2D6py6+LBx97AKAFJJbIEU0Lm2Jj+25Q6BxDMwqTWoLN25j2gSwOU9RL5HmC+k+CVkyR1xhaDqIyBSC1rN5JfXYMbRAspNOxB6qcVz4WpYAYAhkFENIpni/kGV1XCj6Uks84YMxwKXanUGTt2cg0Hnnw4Vj/0MMJpV8wd37s3d0atXMJ8wRq38rnakwvntq8KWYtWhBbp7YDgbMG45jnuuu+FX/54Y/GWBk+JJJSnA3yy0kQyD4+WDoY4+Zz+zMsB8vruX7zeRkZx4VzQ4ZC51wydzJq+iBw99LkbwqgJoXQjHFKFw7wx3m2P6Pu/JOxdf65c+PZd+lhXl8ICjz/+q//mnI0AoRCuNEEzEcHYjKNCvECFx7XXHNN2lnSb4LxzvUI/pWvfCXRgkO13wGK/aJdtv7SHcsskKJAaf3POuusOO+885JWh22qHby0zEPh3fnhbpk+IQRirrvuutQX7p5ldbLNvO9oJsuq8GuynwRCBEwU9NRCMRKCArPaGtbVsqvhIQjsZwUIx4kqxjLO73nPe5LmgyDR29/+9mSSYVsIJHmfY0ym2Xul6ZlgezTreLC8p7evfZiNe01l1Kxz7igU2DYetlc23p1Th0rOOUEL+1INAZP1t30Fzs3L6+abJdvEeZu9J7v+Qs7mMT1v6+A1y+W4dX4ptDnvfKdlde5mu6pStqwcFpGipfDIPm8fKvCqdm4bZe2hoGsyv6e1w9KV5//HuaBw6ZgzX/vH5Lstq+U4WEr255TDNiUrtPImUpkrGPMy4+ZjXfXA79gcwVO87VWKBqFL3csh2c4ejiuFVeepfWF9pDde83e/ezYpbGafD1bHrO+91zyzfB3PmmL4TvPyvuzYP79s/Dn/R9kVNo+LL744Pvl3n0zPd3R0pn60b81P8MSIFWpUOSdz9PDZa6zXPKyb+fqcfSwIIzjV1dWXImzsX5YX+/sehEnXUMfnyaeeGj/EkeaT6x9NWn5tzCvrceYZp6U6ZwK+mh/llbmxZ7QveSxtmayHQJGghXVx3agkwkM37SN4PYCzghmERqS5U6Qt+7MCUOBIUxHq/3m83w0reVG/e4wjxM4j9OIwQu3q1atiZ89UPAngMFyCk0PWpc6NT8XUpejzAABAAElEQVSsGSexiQZNgduSr1JbgMfS8yVoGRlBYgq+TEeOU0R8yGNuqdo/yU3WXb2dufD0KK9GPwL06mXLo44IO+PYRuyCP61aOD/HW5K/ZXw6OZ/5ogaIlNPPaUx4A7dpfjwFEDICQzkl3Ua1YQJ651OTAAJTU7wZPlWH5z49xWaTAvnEFPM+zQ00PxirI2gBb35yc9KsmQ2d7sP8eW8b45U+OP/ss9Cc3RAziZ5WC/0rRaNlsrQ+Wnv03wZA19qJ1gebWcTZGKlCM1fNFzRX1IBRyXcQs47RSrR54X2v/8lPY1VjQ1x0+omxZCZgxdxGNi5LY8OWrugkUs9t6zfE3U9sjlUrV2MWUZnCiJ599jnx6D2P46SzNNr3IgvhSy0mqzHRGEHrAQffRJgZYlO0D82MPsw9FsxbjKkGTiZ3taABjU8Ixld/3+6YV48maUfO30hG9z//+c/FVW+43NY8nl6mLXAcfDjCjnNBc6Fzp82kCpq7cqrWufDIPJgk1jJWptxilVtg04UX+CcRNIme1Gz/xCXoFWF6mPC1essdy4W1rKzAa+xeFgUiXaDpMK9wHuiqO1/mBsFhp14HN0aikJg6QHS2KAslcyQIkQRWCHY+ziaLxtBagFiuXLU8OvaQD3ydebz6kvPiujt+HJPlLBoQ2CH9RbD7XwZBncQWbgwfBkIYpQj9vSzIamjk4dW3HfOCUrQLKlEJG0Eo//bNN8Tf/N5HQKnnEFCZqiBhqyWx/cltxBZeSfziPSwecp0UWmk61QOUO1dSvrKsoKKms6ECPAZ7XzHvqi6dEbXFDXH79+6K/FIWNxBZHepse3IXKl9YMODEZ7gF5hQUV+2OSZxKjkGEc84rYXBFvHnLGItVYpxonAnKPYrt3jj1mPI5FsiBPdujG6eWw9i3uXjOwuawinYrs0zkWVrLQjY5Eu3de6OMclTNrYRYE/Gj44n43Bf+DgedOPZjkVk+E8Dozl/ArBXg2LkmNv7i/ph18onx5O0Pxq++6z/Hd7EFXwmxb31iJyYkQ7QnduKAQ6lNpg8PxuEkHZiaitbyp1x4Vj5kiYu50eCF3MPPfM9uyp0Nl3SwJKN5sCSj1406oG0po/4UoMNnEJJv+vGPE7N4KgyTavSzYPA14WmAETCN8l7LNL1q6Yf9/tg3zjfnn59lAhUKZCD97LF27dr0+8KFC5OjReetjJOC7plnnpnmsHk4fxX6FIb93V3ohfMXxC0szGUIB29+85sTY6kjygceejB5GReMTInCZmVN56xBs4v7lfvF+prRHHeSNVPQeZ/CtsKcwvlrX/vaRKesn4K87WTbWMfXv/71aUdXUzIdHQrKyHxK72S6s7yPrKwHbwCdW5nG4YZ27twV3/3u94h+8ESyHX/Pe94bp+KrRiFc5lpgRcbYMaXQqsApSCQtlrFWU8A62xbuPqoV8Wd/9mfxvve9L123rxyv9q11O5CwcmT1ff5PZ8y+T2bjsKmpKdVbkwjBgQw48h7Huck6HGr+2S62l3PCtvFZvwucOw4UMGyXTIi2TUzZvDpU/unmQ/xRU64QeunYE7j2XZ77+wd49yzMLbamelQCBDuLMpBkd8vemIPwkQlNlikrn4KSZbMu5qevAXd/97Z2UE+cOJLToMbVMLlHktRu8h0maZVaI2qSeC0r14Hylwbns5tXyprIcprWax3hDfT1J2fCk4x5AQ0FB8srGKMDaLX3sF1M2WZk5EDveKmvCxQp3Nse0hTprWNK+mHbjbC+DQ7iF4k6e802ExvKCfWHLn0xUaFMo5iIjrNwqwmp/6kxBEdex/WcT6FC4hE6dzx8h2PN5LmMXX3TzJn1CND90LhagOizophx09HVGbtadicVcEOG297Sh2T2Qz4KhGaV1tNclukev/vb9p07kmCYBy9Tj276YxseR6gbiraOdiIBsO6kN7/wP8/V/9OvaXs/i/kr/T7//AtQ3addcEy4dvWaeBL+7rFH18eKZYujvmFGKgRdhTDYi48uoqygBVCAlsAwfE0ntv/S4nkInYbQFIgxoll3dxdt0Ukbwr9RGeftMCamzsX6etT6EbJTskH2r2xqtGl1n/77vvttqzLCSMK9se4MJP5LQDY5koTHWbJkWWzf0Rarli6JjTffQ8j0rthWUR7LznhV/ALeq7+NDTF4hRLCQtZWYDJTNBI9mE0M4+h7mPCV4/mOG7VZ6Uf4PNRT0TJlwwKT4vyp0rj1kaF4zQm18dRjPVEMuSiZV4uG4MNx8XknRtXUXHhaOM1UNfhiPos/yMvYFqYR5iycKXXPjT138R2Dfp/Ewdkk2gmTzHnPU4xZfuWfpsk53wnF8ISTAhA+h5btCNrIbo6N0o8TIwDzxXWpPydpi007dqXoEiecviy675yKn919T3zl69+JnXvRxJy7ImbPXRAz56/gvnYibhQAzu2EPdbPwyC+4MpzQAd9PEofQpjYeAPURpWjcenK2LR3Gw4f+xPtLKlYTkS8ymilWN++89746re+G0tOODlq5y8m5Dyav9DVGbA9//KVO+ONr31TjHYNxyOwiR1Te+Cz4fcZkwP42ymEZ5o9ax4ATwGO79GwA4goJDpfwBePQxBLqzGF2oPT9VWL8VNRTRSSvXH2aWviJ9+LuP/nmwinWkWb/PKwsrmPp2O/BdK8OPaLeWyX0IVS8MGFVeHEnbivfvWriVnIhA8Jk4uuyftMh2JO0k0H/ZMTsdME9E92+AzEbxw9szwWiPx5NQjyoJ2lBRCf+dECMZozoxEnMzg9gvAsbVwQ7dEasQg7Wwjg3mHiY+MIcRgQoQAGthRiVAXRq2YdqeAdqpeNAma40IzuZsdstCbOrD8tPvSB340Fi5tgjgAT6sritifujM6C7hirQdOhGDWFcuIZU/cxnOrMqZkXw72DLABdqHKhwjVpCDnMCOYsjILimtjTi81uZR07+mMBiSSUEnWC3/r0j/85zmMRzR+civIx7PXysEHMr4SHRCWyAIEb6o/yNIQUxzmUo66ikCiU3AsxnQBxzR8qiOr8+rj+/9wSy8tPik/90xcBY4vjg3/84bhn/UPRDcPbgI+F9Rs2xcJla6KPBWmAvhvigF6z0ED8ARLyhMIH+lBzA+iA8clDjZclAzAFNWnU+MarCO2HSUv+wpnRWZEXnfCnOwa64rHNG2MO9nCFgBQnzVkRZeOEyIQQNy+YH0+0PRwPtN0Rj43dE8X1w3HNtZdGTUle/Otf/684tb45avryoxzvxFs3bYwlZ6+NnYN7omHdqvguwq/qcD2ooxXgQ6OudlbUoxkiuDOAd2MXR/ChVH5DhLpgCp3oPFTgqm1PGzewOMCYX/fNb8eGx55w+OCQCVX9vW20PqAQkTdkoDzaAAvue/Ch+C6+ALazgMncy0jK7PvZQwbcs8ynAoEMqOPd7zJuXuvkHlUM1Sr5wmc/F5/867+Jt731mlj/8CPx+ktfF0sWL8bp0EC8/Z3viDdd/Stx18/vjpbWvQA1nSxuDdS3N6nkZUzlc50F/9xt8n0yTM5BdypvueUWahjJZlGh+oILLoirrroq7eC46/v5z38+qd5mwoz3Wv5sF15tjFNOOjmWNDXHbT+9BcdWHeymFMZvvP8/x+/+fx9CqL8EZ004GKMlN2x8kvFNAzuGYBrS5GQ3yWfSnDXzF5ikJdIWGWLPHtk1hUeFMM8K2YIq+qmYDw145zvfmeK/K6D7vampKccUUQ4FHgVXmTyd6GneoIaI2g8CD7apv2e7EC+w6OkxhQ/HWhpv7rQwj7LvnsehO3taGJ+AdT+6/kZ8Htwer3rlefGxv/pEXHHFlYyx3K6iwIK+duxrtTMEgQ0xp38Hdyhlht0J1WRDExvN4vQP4a76H/zBHyRtGwtk2zlu7evpfe9vL0USFBDwEVxwDjnGBQlUDXeOOe8UrBNDSwE920emw1lf7EfHtPk7Tqyz7/FsP6s5oKNO28Rk3r7TMaJAmY25A52fa04+c43+RWAsY4wW0N5OkTJ2UsfxBp+PZtk5Z78S7/WL4t577ofxHIJRnRuf++wX4oH7H07zRrvi3t6cyUZHZ0+aA2QTu3bvTeE5Vbu3rO40qyGiNsxsgIdNm7amulTsC22ZvrzAP84f6+78s51MjjPb83BSih5Fmd0oGGWs68H9qSc3Rj0O3xpnzUGtuTFmsGHw05/eGvOpxx/+yR9HF47bvH9QV/rHeHJ82RbOT+elYJlaZCbBpRtvvAkHoGfGdd/6TgrVXYeWh/0vXUzAPzyH8uuBDoW9xB7UzY42Ni7mzV0YFeXVqM8TKWQGDupoqFKE17KyXKQkhWH9gtBl0AQ3g6Yol2FbO1G7B7BCR34QR4TjDMY6QMoOnOtd993v4nCvGrV+dpAbZsa8hU1x30OP4CAP7SjWvEIExT7GJ0VOh44AvXYvwKc79b7M8Nh+Fzxfuqw57gIINoylzxxJGqMOU+TveDBE+DD8W0ZA2XRPPh4qmaszKHsXGgqe69i8yGP9cb3atXsH7bBvAwHaocntTNbWYoCHQXa0e+DRJsnIzao777ybdsJOn/6x6erqZkCD3xB/87cfjxNOXEO7oZUEz2hYRDUgpB1PF8ZCQcPZkXnmgK9ICb4vt6OVtYadSuKrJgCm7m40RSi3wqnjwrpprvDhP/ijePDhB+M9734LWWA+UzkQa5dUxkDrBm5gTWTer1u8Ks45YRVOIzekDaLe/s7oHNhFBAnALzaEhtDYmICvqkSQb6hqxBdCY8ydsTSWLDw5vvxP340f/KQn5i+lzeBZt6IdXLxoRXzxRw9ED8JzL1yffhBKKtnUYqPNzSLEAZyEs1HGQQR0Nu9GEh9XNDkQ5QWYkM0oZlMPE9KxnqgB+Cpjk6qe8dWAyUEFPigaZlTRB9WwRUOxp20HvMNgVOMHrX4O/hJqiQgHYDqpzQL0dxO8Sz4mJANoGE/QtzsR/O/d0hNTDbOjbEFz7MK8onrB4tgD7/v45p1x610PoBlh1Kd+eGZA2dkzCEWKg0n45OGdW6IWfrIb+tK0rDBpNwzQX0UNc6Jx7ckxCD9+/YOPxnfufSA2O8wQZ5ouuzgWXX51DC9YHtuIgPckJt5Nq9ZirhHx3ve9Kb7zw+/G45t+ETsAguYtRTusns0LeOqTznw1bcB8QwaZbO2N+bUNUQud6B2Ez6wvjcrZZYSob43GxbNi1WqiHA11s+lGKGh4v/IaeH3Ia34CYPeNlTRKjv95ObXAkcH+L6eaHqWyZkKWjLqClUzZeeedl3bgZH4yzQcXYZnB7LA4h8McHm6xpd9Pr37OR5FVJMoNrb/gLAFqRCQHYYXZmzV7Lg516qKuCKF9ALVsFq1a1Qo0IWAdKisnmjHARaH2byxsekbQySRcaVrX2H9hscvtKC+oJ982hF4Wkqfu2xazl8yLJSxE6ENE1Zya6CgBVS7hfgAAhVjV3gpBlovZlVdZYTifOPIFcBdoAyR0gSfVrhjHsG2UZ0oIwXNrz8NRde7J0cdu8ic//Q9x/UXXxerFK2PL1g0xq7EqMRKK0zIU+ZQrn7ojWtME5AFaPopZx8wZlTGBN+GlIOREUYorQGS1LNvegqMEFpRXXnxhPLJjU+xFYKxqXhA1EMkWhMMhmJVBBJchmJFR6u+Oe1r50KhQXa8QLQwKn0JjykArnBvRYkJDP2ryZOtO1kDU+lENrB0misXu7mAfEUDhUzj5qY1//Kd/JE7zntjWs5mGZ9egYDhuX/9InLnm7HjP+66JO390Z1xPNI7ffv/vxLLZC2MDZTwNh0J377g3amCaxnoAWxAUntq6nZ0aFsN+NEEMuwlzIOhQjF8Nuw6+nnCfdCFtUkxD5Ug2PiZQ0WsDYBhm0ZJB34tWTC87AwWANVWYvxS6G8U6525hP/lqrqNg/mM0E9rbWlGna0kgm0Ku5VA4USgRiMh2vHhtEopk0v3Nw7kywY5DYoBgTB9krrgzuQy7bHcD3/mOd0QZOxhfxbbP73+D40N3Qd705qvTDnwdNo4KlKkiGc/ii54jZfNMkNCUzUUFBhkkBTxV+PXVoiAmCOEczu3uqALJ2N13ZPPZ3fNxBKPHAEpOxr9J2q3ERtG83/q2a2LTti1x6WWvD0NzXnLxxYxHPTaPYOLYHzPok0l25OoQKo802Zb7J8vt9QwoMWzmjTfeCEMzM7WdYdYUkAQPMuFpeh72U9Zm1luTBO+TnmnGoIaEarYKvd57JKmIHZsslaBKPj07mpJ2D3bQGmIrDnM/8pGPYqZVgj+Kd8XrXvf6+Dk7OyXsDCk0Cyp5uCueCesK6YIR9pn2/pZZh2vW3bI3NTXF7//+76cQo9bL8eph+9m/nq33S5nsQwER+8G1xeS4tX+sg3W3jBlg4O/ZGHUsZp+9/lzJe5yr3pfmEzd5TYBOYd132p7ObVM2z9OXF+HPOLuqiUCRl+/1PUUIbtbbndUWgKdhAEp3Jy+66NXpXASjPYYANISqskKlgp47r0MIjQqjlldapvaL2gKCnYJnajaZ7HdTB7u5DQhJR5KkH7aJWkUCQmqpuPEguOV4tN8OlPylEEEijzL7WUFVkKecuVtIO4xT9kaE9Z6e/vjyl76U6nIlZlBz8Aw/iuBaiqmi2fP4MZscWybnpZ8Fdu1jgVDBiPvve4DxTNQm5ne+Cw2pkN1WVf9zYz6n2ZB+eI4/PT3cB/tQXVUbu1lHzzjjTITkO1iv5tDv3awzmDzC85QA4svDuIssACHdst1Ty3MeHxfI0ZcGfptYZ/qIfiVo9ThmCU9t3oLGTFtSA3f9tLwnsAYjm7OwYtKGMKyWA8VIfeF6NcxutuC4A9JIX7dTJtdT26ETQXrJsqVEK0CDjN3eF5rSyKIS6d02Au/Sl1W6TqbWfRvtOh/tPJmBJzZsiM2bNiXQZyvr+P333QuAvibR0AmcNhZQD8NSqtlQztpbxvgqhU9jbwXz120AtPBhjOk8GDfXjoULFiV+qhah+UMf+n3Gu3PW53MOgp8BRQ82Qi1tVuJfvq9IIZukZkI6gzrAOiQepQzgeenS5jT/BgZ68CPQGc0nNFPW/8veewDodVWHumv6jKbPqNcZFVuy3DvuyGA6mGpfkhCC6YQEXl644T4ekAAJJIGXkHsDoQRTTDXdxhgDMTZ2AHdbtiXbkkajURtpRtM0vdzv27+2rBAsKR6B7Pu0pTPn/89/zj67rL326uv+WHryhWjgCS6O8LGeGBEaAM9rngfth3CZPaOithyLW+NWzIWRxyWDvhq4sQI8MzzcnWjHSuJrzZmzNN7/gY/FnZddHIO9u+LSS86N5z1nSdz1KFmXsKyxVR0dZIzrAx/PIl09mTJAQ7gwkDK3tyfmktq+GKsbA16qeEiWscQE6yNH5SBWAga8nMRNVzqtHBfoIjKnVVSwJwqTWAsvpX/OSzE0JcbCSbhhoMdRpE1TWNiOE4R8DAENl7AeAOaIC1YxgRKOgPEzCAA6iJtGOS4WpVpZMG+6apSoOLSOoUEsEDpoLMog2n0yNM/xZy2NW+9ZF7/4VVc8+thGmH+UlNCy49CDZY2YMxCkfhfxLh4iS8YACq5OaMuu0mr6Nh4nrD4hiqq3RVfPQPzwxp7o29Wf9qYm3CZ2Ai/DTNzgHuhxXI56ids2MqCbDrHlWJNafI3xOyOFQI/ulwPXJRPMEYHWCQjaz3h1c72c9VcCjDIUyQJsH3gk2Dj25+k1AoDOsTKdEXATy0yNxJvI12Btr3nNa0JTYInYxGjxWyZE8oY8XcL9cNqtKTLYNG2kvs93u+nb1kTUIgHXhIttB00+S5r/6LRglAzoB8tEf0qQzEoIehSYEiXkMN/EOdD3rmVJa3z/p9chdY7Y2bEt3vDmN8XP1v08xR8obPJsiiC+Uo4U7Zc6jb1gXW5kChtoBufCPxFv0rLzu5YEEtuagIN1YviO3ThezIwFxEBQlCHBYj35SO/jF+v1kFBNBBqfNe8spb07tnfG6sWr46vXfTUq63kZ9O/sRgJZIgXfi8mg7iEGhtxFjAy1CSk7BqJ+tVTGq/CcD+cgs/JpPhjjrO2wvZVorSrZyIshQDyqm+pjHjEa7l57f/zkZzcn6wNruPvue5KPdY3ECIKXPWQlmdswJ044cRURgPHX/+Q/E1ejBearnPu2pBgbagMr2LRkENra2pJWyTlVAJDGgdVdloQgqWWJcJfAp7uJYPGzDL8wct999yVGRqJZRkRG0wCEmmvKABh4SthWu3zTTTfFIxDzzotFIj9r+qzTIkEuQ2Txmu2R4LR9FjVhMncPQxAZV8G14btbW1vjDW94Q2IgjDngb295y1vi2c95TvyKwHG6DViv0ZBlGA+n5PWWz8J+ZuQk9rVasl6ZBdv1jne8I1Vrm+xzhi0v5j7ZX4lTtesy9TI3flezpyBSjftWCDxdsNS+CiOeM4OXtdOH0/5D3eP4Ztxi/fkdPicDaYBJ5/PlL395Ym7sk3gpP5PGkzpk1PJhnfnQLUUfaGFFePB5n3FOp1tYuvvLgdUJOgqFbIPjppWCeFRLjCuvvDJlPpDB1Mzd/krU60pirB2FDjKgFuFQeBaunB/rMqbIz372s8Qo/vmf/3mCBeN0WL9zned4f8OO8gcFDPZD+MwWCM6dc+h6En5tt4IW5+TA/ehQTc+w4hj5rN/tv2vR9WW9wrdn36VQyzY4Vhl+DvWOg/0uLDnvvtN35/ZwOc2b68T++C6tCv3dZ8Q9Zig4cB3leTNonGPiGjd2jHBi2xUq9sDIO56WIyFYksGyDWYNuOuuu1I/jAGT23KwvvubwpJc7KMaZ+faIvxrmWNftdjx8yknr07PCMfumU/14vq1CDP2wxgDwpB7hnSIeNc9T+sz59l1b3EszDxwqFJfX4hNIN5W8KPVqbjAtSCuct4zTAnD1ut3z8K7Ah5LbqfrwH1KmNG6zXvc83xWnJJcX2iktJ0Cp/yc9w0inHdKSmEUFXipmMpwKJ7yedvmvPq8dU63mC3BvUV4s0+5DOzFtYMx1jXQdti+rCgbY0xcv1q8iU8dd8cpF39jiNK67Ni6MwkrxKlak3nYD/snzdAG3SEsuo/bL9eCe6PCwzw2ud4nczZdpb3K68m6maK0hr3W1gazy7z/4t9vZxLHogmFzp4NjzkifB2JUWg4Yyls7+jFkrI5pdesQIA9q3lWSi0/Tl9HaPMUHdbtVcZWixwtXvoZwx4sPy5/+ZXx43/7edx088/jAx/+WLz+rR/H1WF+/H//+tOAv462LZ2xcfOO2Ll7EqskBCN7SQOKMGNJK1mIgIVKLWqI01XXMC8amxfiGoFFU8uqWNRyPBr86ihjPZRzpDP9qwSvVdeR7hOLhhLWjVaqgyiu9iJ92IsirQ8rhp1YGLS178DSxOCqupBxEP/BY2IcxV91GZZSCCiIY2EMiWIEFFoD1WAhW4eQpYGAkA3gyNNOOT1mtSyNXXfdG/f/6u74xe3rkpXZEFavK088hbHHYhTarxdacwKpADY9sXnbrvjF3Q/Ez27bGF/9+s+xft0WHZvasU4gHTw5Oc2WMcC4dWqxyPIvQfBhhpH+7r7oJgZJYPUbCI/LUDgWYVkxxveBPgQ4DJ40bcIBTLrKKSj7aKwn5kPfAPM0AqxhbYyFM6Q1vyiYOgCBPhkAO/bMURuB6WO/o9b0p8aL3VxycWOy6PupaaHMk0Svm4IEU95sMnF44GaR6/itnBE4uKla3Pj9rAZiy5YOEDRmiCAVEichVuUG9nutCIYwDzCQo3EfimTwWfDepycaKA3qgA0cBnAKBLF0yVIiyX8fd4niOHvNJbFs5fHxgxtvTLEcjJEwlQ/M6+1zOniVm0oSElCjxe9q66WufK/S3l7S8cxi4zsO4g6OP920ASsBXg1Sakqbqs9oepie31cXFaS6FZhUkQN5AARqStA9pNMaxSzSXn75K1+NBa2LY/75LXHXpnuja4C0oEhZ95Lusge/R8hwXgkThsCB3qa2TUkwMJfpzDslZPTDdSO0rwonNNn0UEDBCGFxgjYVC4xOpLfDmjUunB9ltQgkkHp//RvfSExEGX6/Rv3VDNDoy3t6u+LBzQ+QAvWFcc65Z5Pu8HuJkF4wf0F04iZhqijN5tS6CINu9GqoLQYwkthwKA6gRxL8JQKMNg0jXJIIl3jwmv3wu5u7sCrhonBARtq6JCzMDvDxj388CbAuRRggM3/LLbcmYtlnLJlwFs7Su2iAhKAw7/pQcGG2AQkWffV/HwsH14lBDV/72tem+A4yWTKDBn8UTiUqTfm4HBgws4QEnCm4Wltb0zsP9Sevt7z+hD8JXwkktfgKDL6Laa31msLQetWSy5zYR5+zf9bjPDvWnv2+AOLNMbNOiTuJVoMbnnPmOfGXf/M3cTcE6tVXX72/iY6nRQLvSBQJ5QOJPAn8jJMcuw9/+MOJAG1paUnMl32UIJVRlzlzbm177teBwgevedj/V7ziFYngdJ6cDxn5I1GonvYXDpqRitd6e9GOAH9aKRhzQpcPCV8FKBK4119/ffrdvksYS8xrvaKLhcU+2RfnLeNl51mGXVgXvgsMbG2Ce/sl7Dovwq7FeT3apcAIQISJdyjCo/jbMfCacCpj5zzmfvrZectr8mB9sA7HyuK4uM4dhxbgRQbDOfCd1ieDYt0W35U/pwtP8o/CUaaItVQQIBfmzUB9owlH+H03/vHiKa0MZMAVqNlO4cS2sQUxHsNpPdqMXcQyktnzHtvsunSuFT44no6dxejz0y3Cn/Xleh07vztuzs3hFIUImuBbly1yPu237VcArKuI4y8T5X3eb79zPJTDecfRukdYFf/bH/vnOGmFJKyJfwsCrkKfBfG9MHwW798Haods+gzM3RVGKyQT57l/+E5xlO+xLovw6mfHslB/YZ34m+tgFBgpjCtWjrTTeD9+V4DlXiAsKYjwPeJYhU25uNbS+rAuJjHvn1kIKl6y/8KEeEUcmvelXMd0zvYpH6YTF/5sg7hMOLJ/7nm2Q1cR361Cx/3KMbKfuXivY++wLVwwBzfO6jSejz32WHi4d7t3KHjTos6xMcCy1hCu0Yx3cxaRXO+TOTtnNG9/+2zm4CAWvQg7DIj7pWu+JJeKJeZNsRy6s5txhdDD8oA+iyCAg27GfB0KlpaFzA19kmYtgZZVkaPL5wgWAINYa0gL22dTXe4m2LjBOo9fdXJ8//qbCIheH6tPJXZQZX1s2todN99+d5x0xgUBP40rzuJYehwuBfXFsbNrFCvUXbGxbSja0I3c/+Auvg/FQ4/sik3t3dHW0YNVZC/WARPcO4T7KJklEDTojTIAXdqFcHRX92Ds7p3knkE+D8fuPbi6DQDHtLmhqSrmEvhxzrxWXHhacfcxQ9pEdO7kHgJujo9VAn9YrDJOGlCUVjRC/xJsFzONSlzaKoiRIn4pwzpHxeHWLdtj8fwWboYuwR1iNwEnGxuaYw8d24bgifwdvGMYocpQipFhoMrO3sF4bMuOeHhDO3KEorjo4ktjEXEhunhmM50ewdVjgHsG7rg3ehGSdHZ0pswaA10MFnEqKutIfWzsM9o0hjXyEEK7HlyPd+/qwiKCgL0oQ8cwtxkHpzcRn0QY1vpN15/SYulI4BX6L1ljJ4z5ZCDr2DNHewQexzhHuyVP0/eLHEXuLmiRtsyAiNxNVaSuRsSNySMTa27Ilrwp/ja77vsbILrdjLRgqGrGlwrzUDeQkpIaJIikuyK15doND0ABYpp2ygK8EHrZoHBdgCCcgNKZTJs2lAHIjz+2nP8w8JgczsEHchCp5ZZ2+rt9Mv7pk5+Ir95wfexlAwSjpSCNmtYaLIea2CDRvMOAj3MUu8N5pDolDPho4ZqWD27iw2zYHR1bMBcbjbkwFzt67o5rvvDleMtVr8OEbiRKanjOgJNsNMhIkIXyEPOg24nt1ISwErOwPnzc5s1ZCGIcJdjSybELvz8Dlg0MF8V7Pvg3xGJ4JPomkZQXDLrAkViD4BM8Qjsn3bFoTxECAqtFrsG50F7Hh5fTH8ZrXwcUQKQgjtxcKVx4B5LeHgQQOH9E7xiZPjCd3b2xLT76D/8Ql1/xojgeomCinY2ma2ds29ERDWVN0URe6YvXXBjXffvH8ejmjvja174W7/zYu+Os08+K2395axx3zhkx0FkwVZbgymbFvC4RIr44IWpgz1LOgMKScBT8wg38IyF10gknJUZDwqIYt5MhiCyJEwksNVJav2zYuCE++KEPxUYIsQ///d+ndIznnH1W/OM//mN89jOfTvVL8EmUyLRkBtgfJEYkvCTMZSZlFGUGZPhcF77j7W9/exLamfZSrasw+gMicx/HuBjw661vfWu8973vjdcQq2DNmjUpZkFeT+nlB/njO3LxvRbHSuJXgYvrV4Zcjbjt2w4BJWH168X3JSIVWLRoolqK8Ke1tTUFbvzKN74eexCWZaLr9a9/fdJYfvKTn4z/60/emfBCIjiB1XROVNXjbfv19x3Od8fVfohrxD32RZN5iwKVGxUCstYN2ikxKoEq/vHezFw7Ph6ZKPfZAgFaEK5JVJt+U0Ja1xQ1fi960YsSgZ5xmc88meLyTxlrXD+sW5fQEBoO32l7xKNmD1LA4O/vfOc7U8wG+yvxeckzL2Ku5v4HeLMdzpVz7Tg7RhaJ79Mwl3YcHDPhUSJWgVAbzK3FZ/K4/C7wc3rpQf7Yhiywch5tn9dkqCXKMmNtm92DLPbX/icYO0jd/uT8eb/3uk6tz7XrHuYceGTh4YFVOTdHorgEXJ7CgW2wXo/83qSZZY3ZHrXbCgvdywrWGAqIylMQNp+pQcOov73wqWDTNe59rmf7JtPb1FiXmHd4DohefKm1NJtGEZZMWesa10pLCwUDz4pLM9wdqnr3OffYXJzLPBZZEOacCL8WGXSvlyGcB5U/pUuGI88W51MhuX2RoejTNYGiYNFt2/t0qTncsevqIp4PNMyiBYtYJ4W9R4Za/H3mmWcAWwWhlu9w3RRwOPQF4+33vDfkcfY+15HfFWY6DzKvroE28I2w9eIXv2S/pYa/WzL+9LMkgUIQ++C8CcuXXnppsuBzDRsP4ZvfvIdYF6d7+xEphX5hXYqyRTdL2+VYul6MzTATOs0YXa4T2+oebf+1PDnjdIInQj+oJBpnYYgTnAuZzgEEaaZEF986LsKm7hzuM+LmRrT0risD+FqvdVq34z/dvcGBgeRKIJ5xsvjC9Xz77bdH/+oT46677yJ1/CrcRbfHlX/4R/E/P/v5WHLcqTFAIMxZjQuxZIWx3Y0iZesuUmCeR0wwgmTS9k5oP4OQm+qSVkOfGW+IGBG4MphOfgimuJOYDBvXb0juAVWzm3DDJa3o7BbW+eUxa2ZTXHPtd2NhU12saFkcp528DMGgiv5y4jOQWhUYWL+xG0uA6qgvrUKhRWpftP+TMN8Dg1j08d7O3SPEQsDSFjipIU5GOcqoKMaNDGVZGfLvihmzAqV/qothJf4VMTweGEDhc1tcf90PY9Ov1sYp578QMhxXF+ZpmD6Usac1NM8k5gLuZLgE19XNxbqigcChxNLBVcM1N4w1xDDuF8MD/cR9644lWMBUEudsxWknxV5cRCaQhPRqtYBrSj39JjcfcIELCxYMxlbDXJh7ECSWVMXW+x7iniXsS4whysf62mZgojoufMZZcedoRbSv2xx9nbg/9eE6iNCoumQGcS7AwbjEjHNEGc/hdqLbxSDxybDJYRBViBbwoXuf2WbGUB5WmmKVzBwDCDlmziWVOYKayubpuc0dkcV3rJInNQKgmGNlOiMgshWhW9xo3LTcYMwtLrEkY2Jxc7B4rxuDz3n8Lko2N3bDkNkSeSulngmSKsOiYTUBYn4EkxIEiXn+8y+LHXs7ooxcPSUIH8xUobZlAsRlN9m27QQbFYiDY8m8BdH2WFusvf9Rf4xZFQuwIOiPcgiB2Wjps+UD2CoFOUoyAcfBaji0fPBBkbX+lB4yzVo9aLK2YNEC/M9+yYbWG29989vgZCN+eP2PYvmMFQgfQIhshAbJHEOarSbIenhTqleXDANOeaTcxQYzA+kuIXjj9797PSa4bDido/HsNc+LqSrMiomyOzCO2Rd+dyn1p8IXNyYnSeED0uJi5i4JIfhcws6o+0iexeSSgRTeCMcGfhrGj9T4DwoxGmbPjLpZTdE4ZxZxJMbjzAuewQZUhKBhB1LtPjKQbI8KTPU8porpC0i4tJII/ds2x8vY7HoItLN1w2PRuqQ1qpEaNzRDvOkXy7jK7MpMCU8SCZrwCWdmFSnAmR0oFIY8XZOJERYyk+3nTHBdcsklidGUMFHg8b73vS/FeWhpaYm3/emfJkHBySedEFdccUXccMMNKW2XtftuS4btfHZz1cy9QHgRxAsGR62R2mvbLoNsBgY1mudfdFHSWsrsKshQU289WhO8+spXM+ZlYUpL15b1HG6xbRJHarT8LCMtMWWbZGp9t0VT1EyISjTKtPiMbbB4r/V4lribYBxrINzMC2+d9kft+oa2DTA6TSmYoVrYW35+S3rOOgd4Z2Io9+GEVPGT/GNbM26xLzJmFglwrQVk2sVLr371q7FO+l6CE1OH2qb8nH0TXvJ8+XyCH67ZV+u0DhkHNXcKICz5XenLk/zDMDKOrE/XF8CpsMwxsjj/apF191BAJbzNhhjKcybDoibPdlmcV59NxBxES2banQ/n0e/Cu/32EL6drzUIszKhbD/ts8xGHp9U+VH6I4w6Dha1pQpM7GM2X7etzrUlw6199frhtN/7vN/i+PkO4VjmXZzg+vN9zkNmtIQTnzsSxXplNl1ezr8WEBX4PttPD3lWhWm2Q4GZrheOh9dzsZ25D+5xCqVcswoFFGZ6TWGZggeLwi399vN45XqezDnjTwUdtle4cRytWybscAvbyf75ysyvMKlb1/0PPIRWcFdKJ1vGWnHdJTxWIDsO9xVH7T7Hw+LZuXRsXGd5nQ/D6LkGLVVVuCcijclrN108yJ/m5mqsAr+f6lSALP72PY6d8249BXrrcaGceNu1cSAcC1PidIt7qfDWwn6nkKSOz643cZ+WD8KbbVfgX07Mjl8vxotwf3KN+H7hsK6WYN7sFfZdYZOfOU27jEGfqcyx7fZT+kzGTfpOwZtjoWWCbbXoHuh3cYaZgFzvee2I870/r22/z57VmAQOwrICNdeW90hTKkRy3xNXmDnItZwFfsKoa2G6ZRTcIFOvO5KlAlmP8+e7hCH7vWrVSvpXGyeuXkVQcRSB0FWd2zpISV4es5txL2SsaUxs30IF7C9oimJrOxp6lFcDCr/ozzj0WlcnaX237cD8vx/Gdm/s6OxOwcejqDJ6HmmPl17x2njhS38vfvjTX8RPb7snbr9zXdx8+/1x7Xd/Ev/rU9+LT1/987jj3g6QGDDURLVFDdG+bSBU+Hd2EzuMAOlDWCb0DRJfh8kfGkPIUIGgoGZe1IGbaupwVQ1ckOD771/bH7fcthari0fiI3/3PSxg/x/G+sp41Uuuis99/gfEEZkf577gNTSdYPIjxtBCWkFGiCJit+0ljtv27QPE99jJ3BrTDas4eHq6CWwQGFP3X2jSesZs5fEnJBcJXR9mIzRBnRKboechQOP41SfHCGtToQVghtCGTCHQ3GNFCFHKcasprorlFzwTfF1wtVgwf0nUVTfGjT+4NdbevSE2rX005uNiUoJwoYLYE1U8V4X7xxTv6sRyon83tIrxLsg+V6ZgAeWm2WqY1KS0KwefGo9u8ybawx41SBabIWJ2aCZy3IpVxIHA1+SIrCKqOVZ+5yNQwLa/89f+n/NCEXSWytorNzU3GBl8kbSbT9ZW+bvXRJ6WwyEO043T+PPlL385bbJW4eYk0eJGom9kA9Fx1civWLo8vvPtb0UR+OvSZ12Iydh6EABMNIFxlKaOgLCTuScYE6U+y31fQEesGOYRVfdHCAMCOqv+hPnRPrYjatisS4lzMMLvdBJZAswFR4r5AGJxw5CR1/yvICh4nJDV1SMdWBsofKggGrDRp3cQCHHNSc8C8YC0kci3928lL3ALYwujjwDCTdgUZBOJSZS5kPguYS7IY4wZ3Wza2UcgnDKkzxicxec+/fmYhGY/+4qLo5vIwz1jexE+kJKJSLp9IzihGJWSTcyNfZJOay0gXtQiw2NKKwK+G5DRcXXDzsSL9+pyYbrSTkyGt+7cgRkdKanYGLWk2MTGuPKUk2IMgUoFCFbfts3tm5FeY56KFUfzrIaowGdvO8Eq77r3l/Hci54VY7uJG8BmupPNcQihw+knnxl7MGmrJOiSpsgSrMnMl/5LMJmeSuJKdw6mIBVpVQ9hUAbNw01cgkICRFP84084LhH3EhQyq9YpPEs0vva1r433vOc9iRFc++C6uOqqq1KfP/rRj6b6XQcyCDJ7wryHBKGEj3EHJOD8TdeLL33pS6l9ul1obXDZ85+ftF89CBQURMjQGz1eoYDt1b+0n+wialhkRNvQVM+ZVdDwp5c/wZ/MRDsWEqSe7atzJnEkoyVBaX0tLS1pLCXcZErzfT7jusnFuU5rmIHVJ5NKU70y+LbN37Ta0Fw8u3H8y7/8SxpHxzwR3bxfId50i/2wnRLEttGz/ZL4ldB07PVB9z77qCmxBGMmRp0v22MdjnMmQG2n1ywZXzlWatKcR98jXBzJMobZq2237oxXDWyqsME2vPGNrwN39SfcpXWMAiqZBNvh/bbXdtuPA4u/W691OJfCu3XqE24577zzErGuibvryDXhORPhB9Z1ND7bL/tnX7XccF3ddtttab5ltuyL82hJTOm+/h8Iswdrd75P/CVTIlGvZtG179g4Do6JMOTYOoaOj+fplowzrcoj4yotGmSS+iAwfb/rUZi2DcKHcLBjx27mFcaC4vURtGdqnPO6PvHE1QnPCN9aVlnMSpBh4Ui4XaQ6YXLPPvvsFDvHNXfhhRem+dJt7FDFwG8WtoA0r+kzMCxt4Ni45r6Bax4VJusqf3e+HP+8Pr32VC221b649vzsXCr4FBcLx+5fCohaW1uxQno0dUPBkEFHFUodTrn55ptT/eI0hQjib/cU8brXFBAItx4H0lyuKQFOt0kDNfqbbayGdnHc6wkQ6TNq9s2Qo8WedJP1uk68H1IgwZ14JxdhVauA3GdjR9z4o5+k+12/ewg4qUXqkSi2z2KsAgs7UeHMYnKMhXXpA9skXSCuyII8rXZ0RbMfBvuz5DXuZ/fzLR070v6gkE1BmEeux71ZBYB4wn1dmrcgMCzg2QPH2vqeTHE+tLQ4sAhDrg0FHQYQ7di6hcCsCJWh01adtBrBQlsM48I6Dj2FDo0A2zzNernvzvYYxzJqLrTgOLETZLC7d+1OwhpTd5qWdDOxC7o7EcighR/B9Wv7Tghbcs//j0++H1q4JB56dGtc9oLnxz0PtcXi5afgtou1ABr+ux9oIybEXfGt798cn7/mnvjS1zaS6eFWaL5i9WUc9SlDA9k+8XCoT6ko6xoJ6kmWDOxkCWgacc+9g/H96+6IT3/mO/G3f/e5eP9f/nO8/68+Edd+6+fRvac8Fi45J1pOWAN8Y+nRWYLVRwfWEOC9EdOcNmAlMhP6vJa9gLgVxKIYHkJ5NgbOpt1jBIkcQ/EmvDh2FUhxqqoqoxcatJ0+V+GOMbOxIhqIB5EijGLtYnYULYeLEAqY2ncYYU0vFgwjCBLGsXogSUh0kjnjHuI/7MK6oa97b1RhYTHYMxQrliwjc0dd1HNMDeNqAc1dTaaSYgZjGMHOANmJqhE4jBOoUu6gAisNYdiA+BKpBm8vh3YdA0f0EbizCkWOa87AljAG8dIXvyxmoEz8T2niDwSUY5+f0iNQ4IKf0k18ajcub6ieRcQiaTdAEW8m8CV+3AjcjFz8InhLJrx+mz381Cc+EXNOaYmKuVWJmCtCcyLR4mbRv2UPEW+JOFtKBOZ7O6O4NTB5b4nrf3QnjPMg2SHAFKX7gtkhCJhUMODeBgON4xxCBSTL5IO+/os/j9ZzYNw0m+KGDqTps9mkb1t3R5TPN4YAPoZo80WySl5FMkkk4TlZPhQIMJn7dLBhaDrouzq2b2NM50b7/Q9j0sZ7Gbo6zMiu+9b1cdGzz47NDz1CJg1cD8jPXGZEX55RNOLDhXgSJUnosGrpnHhg86OxfElrIH+NzgdAYgsj3vuhv4xfPHJnPNqxMarxrZ0JMf8ggoDdbFyz6lvSfE3QRk3xbE+qP70jiU3SnLq3JZcLiRlKElR45geD+gyZnoqNcYh4DuOMoSkYl2CqZ4wN041KLEnUdE9si81bNmEtMhLNVfjd7ekkMnEtWSoGY9FJRHHeui1u+MENcdozTo2bH/v3aKhpipoZCLf2MWfCny4SarstJcyZQ2GrPEahcCVOJLYswqiEw+zGmcnVwefuJY3dt4jtINO3DWuMaqTjf0Gwv127dyXiQkLRmA1qh6545cuipaUlJP5kRIRvCR2JFglLi0SghJZ+sxJkvkNLBxm/K175qv1xUfaiKWmBsU2FceuAQbwU4cPXMWM+46wzE7xKzEssSXhfffXVcSpEXQMpqg5WbIftcq1lYigzqGrG1JwroLM//q62SOZGBizf73p1ff+mMgrTV07E/RHMAlshTnUlecuK5WmsZNLPOeecRLx+85vfjK9+8ZrUFsR6qSrbVsEGO92iMFHm0DlwbbtJS2TaTwll43TIWMvM2R4JUplW358JOcco9ze3J9eXhasy8RKfasscu6z1zfc/2bNBxcSLtt2x9yhot0vjk//ySaKqL04my2pIFYrZj0suuYB+FLJA+F7nV8JXhiIT5M5ZJrqTwIf77KefXXP2w3Gyf75TKx+ZA9eE2kqfF28fzeK8eriX5PnTakgXIefZebQ/9sP+H8iQOr+Har/jJZzk9eu7nGe1oo6dpufW63wLK97n2ZLgl7U4nTKDKOu5iD7FsSzDVCqNSg+RLPPnnDhPrlPXqDigBtzk9jGjulCHftoKlhwX75ExlEFyrletWgmh3J0+19YUhGZ9aKjrawtWJbkN/9VzthQR/tasWZNchBSU+v1AhvSJ6hXuKsEfwqwCJHGN85nxjfMhHmkGbzoXFudHC4giGKZ9vOYTVX/UrwuPzpnFvgk7Ch+cS+fQQ1hubW1NFlUylApwly5dnMahZt9cPVFHNm7cltyohJHzzntGEj4Jr87Li170QtZ74cmMFxTG55KED3xxrA1sLf4bIYOKa6asrGDRuB5h0vkXX5JiEL2f4MFbEIAJX9JPvsfi864LD4tzKk6WSZchnzWzMT7zmc+k9SJe0eJKa61+NLnTdfuxzSUoWSzjKGDGSHUJqcG7xhLjaDvdk8thJi+44MLUbufAtT2PbFlLW1akOXF916OM8rexMUzcYUwdu0UL5yYQ6+zclYTZO1mHDQ2NaYya2CONx5PpXIUz0iCOg8Ib110ek9TAJ/FH/KD1g7jBbFvD4DSFkNIVvTClfbg53nXXnfHKK1+F28RQPOvSS8he9K+4BkADGSx8uB8mlYC59H/DuvUxb8WSWEAGivZtBAInZlav6S5n15IaszY6B3fiioC1RqJ77T+0Yz+adrT5d90zwHyS0W6iLL527c9i17Y9MTmnNLp3EJgSxVA1rhI10CK7egbjp7eQ5Q4cNsw++81v34Rby2nATXu0tCxJiqz2ji1YjZyQaKIJBO4jw+zDDLaCFBVQ1dVY6wCDxUVzoJMVMjqftkW3GuYbN47ionreR8yfXdAfuFOXV1Zgs6CLIfWh9CvCmqAcZZVuGEUI30b24Zcx+lfU25foQAK7xZz6ZohDKFbeff99j8UWMnpI37dCn/bhHlyGxUnZjFpoxzLcIrBUoO5SmP4S6sboNubNnxuVZbjZNM3CcqQ76ksIoElciJa5GJtg3RC182MMGreUHO+sfh6HD2B8yyDw55GRpn1nO1Yc8AH0SyteJpv3EyUNxZ1tciswPsV8hEtje8mUU1sSS8iy8rznPo91NetJQNSxR54qI8D2fKxMZwQkMiQa3LAyopW4d/NRk2xR0uzG60aRNyw/e0y3yAynA+S8n8vkgv57/oMKSoyUxJjvfhDmUS22G4VmTKecdFr846c+DhYJGJPTiNi7BWksZscjfaQCxASZfpWApIswl8KLGF6WfzS7BA29lnAC0OozFrDp74h/+sQn4zNf/FJMYNa1jU2oic1X6tAMF2UIGsoRQngYTBLXupRVQhbezbOY6x5WbjyIEVwWhkYhqtF2N5KqZ4YWJPqDQSyOI0m94fs3xkLNvJDUqiWvgHjQJF+Bgz7k+vROgMxGsHo44/Sz4/af/yJWLFsZpy08M1706pfGG//i1USF4n8f8S/GSdU3i4BSxHnYQryFIrQuM3Ab6d7Tndw/NAOVynN+s386HeNKUSI03BAlO5IbBoiyxAMixw2kGzgwF3c17delROsMU0aaUtLgnshvMLSrTsSnGUTqyOM8NgHxSY7nojJ83zh2kA7p/POfEbOXLI7vf/JT8fLzXhF9u/ujZUEr7x9MliYGbfzqpz9NhRF/imuEabzMz82rU3Ge3EzL2OSEO2FWgl5NttkMZOzVphqnwDgOEk0GpPrUpz4VLS0tiZiXIZQ4kTGXoBnFIka4smRYzoSmjJLCBhkUiTWJS4k0M8FI9Jn+8Y//+I+TMMH1Us39lnHun4QZWggRarkK6woJNVMket/rXve6xCDq1iQ8S7R7Pa8nCf782d8SoQ5c+NnfJJQkfNX6ZNNeGXSLVh0S+xI3uT/OuZ8lkv2cv6ff+e76H4Zwm8HYDHB+yUtekhg1mUJNT33PHxCnwvt/cMMPIBhq0/t9n+NPhfvrzfUfePa+gxXHUoGOfXKsFS44Lqb4tL9aOjgnEvwKbuy/hKFFxsB+Zdz06++xzR4y7NZlPY6N86rgITNIv/7cf+U73U9jXllZYAp8h/Bi/VmbL7xpISNRL/ydfPJJ6RUF5vc/CgecD/tjESfLANhPcZ59kIFzvmUAHAuDA/s+x8EinOTxORL9S5VO44/wKwNhu+y/bgfOt8Ik14RMgzBgP73HNtsX12fu08Feb5321/Uu02t9au7V9DrWpiJ1PF2D1i0sWA4cs4PVf6jfnP988LpU8ne/MJ2pLQpXXEviG9uiZYTry9/F9Vo9eI+Ze2TwbPu9961N893JWCiIcL2LK7x/GA1a3WEIHvIaeKKzY+cYOk+6BQm/CloNkKvG2zH1cG5yHX4ufC+0SWa7GiZrDi55+R777ryKC2xzVxK+kDKQtvsu9xsLy3P/M/nZA8+Fu5783wPrejKfXXM+J1wJR8KpcOm4OVbuE67FA4VmCh60bPE+BZOWQj/FWZMwzgbz7OLcl/CEcRhuueWWtC+4RzlmugWIyzMs+W5xpPgh49ckmOOGRJNx9jdhJD/juZX9UVzuM9YnQ209vlNY29SGeT8CEq9lJlzGPvdVJtmiMF+LPvc8hfeuz7yW0g1P8k/CzTCEFrM4OGa19MGxdX3osuZacPyXLJkTO8Dduk+IU4Q7z65l2ysDnOqhjmEYRMA0lW7iZdl/8WZBMFOw9hSufY/jkotjmfGn1w4FM/m5JzqzBAiSWIR1zAMICrGChW7RndAMWMuWL4vbmPfFixfFy192eXz+6n+N//Hf3xU19QRPZEzW/fjGmD+rOYYQUtTSp6HtZKTo2B67txMzhrSRxWiH6mqIl4RPwm7WlzGcSN0AA8x4pnVWg0XT+bHq9HPp+1YEUI9gobqDwIp7SWO5AMXS/DjxlHNj/qLjic9AUNhiaNMp4s5gbbB3hECNWB7UNiwg0CTZRkoaUKTh8txJWnriea1d1wHvj+Z/vAEaDUvRId1mcQUtX0TGhxnR3VXKXC4COc4GN+BqW9lCm2ZCzxIvgfvHRhvAd9LSaL6JewAAQABJREFUPIdbyCjWDcO6V5DGvggT5nHOQ9DJA5gn9CNAGQXfCQe6N9pN03rWNtamODlaGc3BnbGENPVF0MDC814sdbuw0O3ZtCF6trQTwBPfEejzUiyJET8jJCHuBxbIBqwsYhzXrV2HFfS8OG01fWFdfuOL/06KzLro37UnyiH2JxB0TCJkqaSOeuCzBoHr9o6tCIZQTsofIEjdC4xq7VxCHJ493RDnqBsH9/aRna6DcZiI+XPnxG0/uznB9+oTTkx8Q1IwghyeCM6eCK6OXT/6IyBPcqxMYwRE9mnzoo7MzIjMXehuVEe9wJCoVbe44c1i87e9ahANQtRKpor1D60nP1DE5Ze/iDgInWRa6Ez+Z2ZcMIuEQQqnkGbCvnKw0EE/6HXQ9iMkGB3EfArGp2M4TjrltGiDiG1eSByIHdtiAkTn81JKRTDChFLgM1idSxNYACQ9PJuaDL0l/YXRVwoKZknnMjRfStvnz5sfPYM9MWcheZ2R/G5YtzFJeq2MGjntexdnP3tdc64mNpleCJkS0vrMwqdt457NCWF+79vXxZXvvDL6hoiIPoXwQB4GJDwBAlb4YeuUOZiCCS6eAyYRys+j0F5+tCPeRB+12DC+hQRjcv/YR2BKCFQx3nshUGdDOAsTftasjIGjDmtRK1+ojh2RYebA7QVnOSTMWA9sbYvnPO/Z0QnhgJiYu0ti8bwlxH6AmEZ7JyErUSclPgkhIAMqsSDhVyC00l7K50IbZdokHDxrySDRrs+mvvwG4PO6qWJNE6nVgoI032HbJWIk0hRelZcVrCxkDn3G90nEyKRIqKihFfZ8znXygQ98IBGZEnO28QKYHAmVvG4cC9eN9Vu00NBFQEZU5tE+Svy4vmREfF9KNcbgZeLVTcjrFj/bz8IYFJh8r9sHGX+ZaAkn22u9MnW2RQLW/spUHKqUMrep0G7fIzMr8Wm/bId1GpvA/n/kIx+B0BhPRKHPLGptLTw7jb++wz7KlEnIOzYSaGpfbcdzn/vcJPz0d10VnJ9MLGa8dbDXS9xav2fhxOfFI/bVcZtukbisqyOIFcV5t84CvJQkwrmaVGS+S5iZObMhwQBDDUM2AuFcEFgdrA3CpXBgsd/CidYuumzoEiMsaKrve1/84hcn+HMcXceHMz4He/eR+k1YlFEQNhVuqdV1PhQWau7vurUPrh3Xor95HM78COsW4UNGRMbZORYv+Jtjl+vxnNeW7/pdFE3vhVvb18p6qcbKQabK0txcz/xBzIMuXKvGlXHuhB/ds4wFYJkP7AxgJSN8NTZgSYZZv2N6pIrzIhxpoaDm1znwXeI+4c+xcj4swrJj6mGMIoNGZjhTa+l1x9g5tp/Wp+CwnrkxBeA4mkPrKkD0kerBb68emVOLZ8dCBl38oSDUOVNIIFx5+N2+WhSwlBPAroBnFKopiFGgWJzmfc6cZs513FfA8c65AgD3HAXq4r6VK5eluqbzxzbbBtdXwcyfLAQqVpgP3+l15wK5Pi4kMnxjyfrG58T5aV/md+u4GQG/+4zwIH7xmG5JpurWVaCC0n5one4DCjmEFcdaoXF7e2csZS2JS313FgR5j+1LA8yzfjcuQF7iwrcWRQr9/M015lyp8JBeEF7zevJ3S6ovfZren2EY1u07upLAGV1HGndhyPXhXJ+AIFpyby6MaRuMslG6Btrb4vgVy6ISrfwUlixjg3tjtJ+9HEXNODEDxoz5AuM8hAuWQSdHcOsd6IMO5Jyke85oskhAQ09MNOMhdMFEb9/ayVnTf/aG8moYd2O8NcAwV3M77o/jKNDKaqOqugnmnusII0a0GBgujv7BKTK3jUNbj0U3x55e6IA+rPTGCUE+hgCE8/godIdnr6XrxCHBnaKEo7SkCVxBvRwlxdRNRgsio7BpVkJ7MuZYP3iegs71UFnITBJItAH8YnrSAp9SBs02gTv16OheYACabUJ3OngXaNGmhhnR3FiDEIb01t07YRi2RAUCihLikCW6XfyPRc0EeKoYhWGZSklcsWsrCZbJu5YvKiW7F9YOW3fE9o3tUYMwrHfnblwsyPLG+BofqwhaugyEXQldPwPrmqQkBRdLZxfUeUDyBPh5fCS1s7a2EuFLeWx48H7cxMEl4Mffx721B8Xg72oPmh4EH3v6iUagQOU/0a/Hrh9yBETiByJeCVy1SC4MN6ijXtgY3DzcICRmJIjcGExlWFtdE4ubW+LBBx4CMUe85NLnx4ZN60ntsyPqmzG1Qgrq9jiVmHkQHIFeZOmLECBAIiFMMLYvQRE3dUBdmN+YgENs/I8h7S+CKeuDCULmkPa0Iph3j8TE87xOGInF3/e7ex8Vg0w5I3goxqzUoxbT2r6+XoQP80gntDsuPP/iqED4MLCpG+cJpbA8AKFn6ssixjwdSQChC4aEs+m91HKR952N4Ztf/3b0do/EjrV98eY3vRUzua4YBBlPIXjQpcNQj2bkUKRRTHvsa9qQIPpM0cSP+/pRmNkiJLlFIFOtGlLAScbZsU4b8tg42ojyNM49+M/NxG+tGt+63t3dmOVBrRB5mRfx3z7wwawaCh9wUYlS3ofwoayiiDRHXbggPDPdS6JnRA+lsQSrh+Z6glcy5hI0EjppoPcMx/zmgh+nMOhc0+T0k59tlzCqNk2mUtiQWJOgMKuAwgYzCvzJn/xJNMPsSeBLGFqX9wpDfpc47OouaKh9t4SO68Dr1qtbRSZ+JAQNGCnRJgH3e7/3e4loc+ORMJqxj0B1RJ0/59NG21aJuLlz5kZLS0si7hUYnHXWWYkxMu2mRYLHey22UwbTNsgAZCLI6353vcqc2xbXqddsv0derxKV+f5U6SH+5HdYt0IVGUWtnWyHWj2FJwogbr3llqRdcqwZrEPUeng/O/cKBSx+VihjXxxzi6kpbYvjbhss3m+bM6GYLh7kj/NtsX4J/KQ9pv0yqdMt1mWRufA9yRpkX6Vm6/CdHpmJ8f0W5+5winNiP2XqhCWJcM/CqgyjcOIc2Q7jG+T2SLz7zNEuwpKwKEObyxvf+MY0x46PcyrTqzYzC5WEOxlaYftQRSbC4tj7rlWrVqUAswaT87tjb32OYx5D7z+cur1vusWYMfbrV3f8KjE8asSvvvrq+MpXvsE8Ph4czzl2Hl3DwrtmumqdnU/XpHgrr1PrO1JzK/xYhE/xo4ItrWvEff4mMy0sZVwm7DmfhaMwP+IDtz/v93fPMui2vcA0tqc+HEhn+M5hGIGnehFOMn7KsObYKJQVVwmn9tG+eq/4XVTuXCl40v3B646f2vjCbwV8oUb3EQIBKph2PFtbW5PQ288y2EeiKICzfaO0T+sscav7h8J3hWK20zgi+XCdeI+40bkXFgZxbXWPtRx/3LK0Zm2za+tIFNvg+lUAIX1mEeaEf/GDfRCmxK2e/c2x13pKmBWnun6Er7zORX1UK7mW+qgwUgGgRXwgfFq3Foj2wzGxOFfW43u8b7rF9lgnshDwwCiWCuXR1taW2iL+o3VYlJxLtott8bo/+kMsYr8Xs5Ysim3tm1BSETB9gL2RNTWjFIYcercWl4FS6NhJYiBMIERgyAimKI1IW+0sTHyiy/g8BZM9iHKnnzSQvdA6fbjPjqHxL5UCw23ADA3d4KM9PVg6c+iiYdaHIgQCRcQ3mERhV40gomqGAmEEBUXuXbr34DbB99IyskaMw4BPkKp7AmumSY4JnhsnoCPuHVOTMv1YXCLYgECF2aftxFqYmmSuiENhEHhpT4Kp0W7OwH2KpeZ536E7kUHRi6GpjX2iuxb5LRkTLcCIbYTwrrh0jDXaSdwG8GX/rhgdhHbAGhjpAUouhHx1VVHFcyXQw1CUKYWptLzKxH7SvteS9r2UtiDHiHt+/G9RSkyNOgQeA6Q8ngAutHigwck1mWbQTDMxEecBAcQEWTTGsDxR4FCM4k+L6indLqZM66x7OBnJ9hKcDVegnp7dcflLXkgMqysSm1AAdRpxrDwtR+DQ1MnTslu/u0bnjVEkmYlxr7W0tCSC/3fXkt/8ppm0w03HzVsiR+ZQQmwjxKq+ZTt7OsmNvCc9jBccVmcbQUqkWiRSTyVaJjX6MvhTIGywMl/c3ryCZQBHFdLPLtIFlVRUpcCUVbyjY1cnlgRowLkvBYAEURWB5BMTDzOvb5uMusIHmXY3uVTc8Tiy5YNCiPrG+qicUQWCGscUDU3uZc8rBAuiOchy07NUn55LIvAkeLC9NJW2mgK0FPOBhrom2l0SX/z8NZiwVcT8Vfgkcq1rDzngJ0bwCeTd1Gnb2AGSLMAeF7GRgiELggeFD/usH5KchHeJ/HPwSS0fxu2bmzj3qrk3nVtjHS4dSN1Lac8I2itN0PDaJWF1wfc/EwxJxoMAYhLJ8ySReRQ+DI3iAz/Yi7CiFCadDWxwMh7d9SibKMGwYNjcOCUKEiONRiAXiQmzlWhmt29Y2cQRqdBGCVwJA4mWFuBDn1tTgW1iw/7bv/3b+OAHP0jQy8aU59n6ZJ4lYCRaMiMikajZt0yRhIfEiQS9h7CmRsjnDMCmttb7fa9+9ZojayFQxDpJggee2V8O/MzFzET7Xt/n2lJDLSz/A2lKLXndOe6+3375Lj9LGHlO4+GGvO9373EsJBRdE/bBZyy+w5IZ3fTlIH8kdi22oxF/WPvvNeuRIfL6xRdfnO7ZCdE2g3kykFIXzN2RKPZDQlemyj5oqaIAxb5K5NsOhTxes/jd32zn4RTHyCKx6WfHXsY9Xz+cOp7oHufBIvPhOAljfh6CyNOs2XkxDoN9lBmx3RbnbMTgU4coeS69TQZReBIWhXn9la1PbX8u9ss22K78rvzb0ThnBkVYlHmz7VrQqPmTgZAxci35m2MlEyLh7/h4HKpk2LW/jruMe7Z60HrH69br2fn2bPldjY3zJ/7QLFdrKi32vGY7hF/dLzrQtNl24VKtqPO8lfg4MocKUC677LLU9swMea5Cm5eDPR5qjA72e2aobZPry9gDjpNm+a5H4dY5zPjnwLom08ZV0JgL1bZL2LMu6xCvG7NikLnVBc5+6Trn75bcn/TlKfrHecrtdA+xCHPuG653x08m2bFyvmSG2boSfLlWQel8N4h3wWJA/LYbekU40LpLF0HHXFiXoRcuFW4450NDh8YPhxq2d7/73anOKuBq/foNqc3utR6uPefEGCLOsWfdZ1w3Wgk4T55lkqXB3Ou6cBmxr8Juhp1DteFQv9vnX1+PvtvxFf51SbE4TtsYa8dKIZlrxbnI8Ok9wqtzxol5E+dOJquHLNz0fq0gxDM1BMV2HlpbWxPN4/6b59s59/N0i+tgzuxGGHucbnmnRaGJe4KuYeMwtZdeugaatieec9mz4htf+yqpIxfAFG8nrgAuOuy344x3LX1uxgqgogSLMBQ4YwgySotlfmkjdFklSqFa40dhaQdRx1ugGSDIdm7bHnv7cAfgvhpo3Ibq2qRAGkPp08lvWzYbAwTXN0BtEoEEZB9jJ7PPmidfZiWxJMqxkihFYeZhvIZyMkVoMVGN5URxkeo7LZmwNMFiwc+mjtWywPho44yjMG88j2TjCyE9jlXAGBbHU7jnFpeyT7lePFCg5SxxBYEDLqHEvRgl1phMPi3TcyIp2QxKUY5iq6QMmqkY14wBLa2gRyahU/k+o3ySTB/10JnFpAgFh5EJrho/6xoEBurpJrAoGSUYpYHNNz68PvZs2RqDshFY5s4mdshMxpIsmtyPGxAWDnXQ8FXE8ClhLU+htJyYMkuLrj18xsXaa677ctpVxoMelZUKaYnz9NjDsfzUE8GF98b//WfviIULyEDTIK07ffiikmPlKI1AYRc7Si//P+W1Im8Rr8hexO6Go6+1yP5oF82uJVhtowyIjImEWhWEwNKly+Lar38Tsy+0gwtg9ALfNLTuTbPw1ULaWAQjDF5OoobHBRCSSSx6kBGyTqSgUzDX9B9ftmWNx8Vd990fM3nPLoioSoQbElgearkfd1sAgbIxeOizxYvSexLHD4PsO8HC6ShFiGEO6i34h3UTUMwsD927e4jRMD8FoNR0VUEGtRcOmjaR3qnMAOEHh6nVrKwKM7Vdj4jYKuNtb3k7/pqbyWM9iMkciF2RrBISDpn0UjZvWlWQ1lJfMfW4ASWJLz2HjWWzcJNho1IAweO2wQ03HwooBjH3a6whzgBmb1NoqvohnBoJEllrwAcjLvPKjEKT9QTS3ykOtv10KHjo7NwefcOY06OtR9oT3/nWd2MG6TY72PjGsOqQSJWAk6CwbNy6MRHrfta/T34tD6nXJDAsap1s6zXXXJNiPnjtWc+5lA2piJRTnUng0Etk4pUrlyciS6JDYkAiXwZHYlICRuZExkACWwJBwsqz2iHbpSDCd77//e9P68R14fP7C79NSlj8GjNsfZqG9g8UUsRKmPpdoYZFIs5AmBJerr3cLwmkTPj42eJvtst1mon7TAz7m0S/9aml8x6PwyqMXznjoCDBuA8WiWAJS8dXjVcVUZ0VuBjv4b3vfS8TDgzCTGZLi8N6zxPcZDsl5NVE+T7HwaCX9jFry+13/uy8OGeW/zAHT1C/Y+O4W4eWARJCzr/zfSRKvf65FNtbU1OAR9soznJefb++9P5uX+2jgokFC+akthxOG+ynxLCwa19cL1mwJHw65xKzlmyx4tl3Hu3ivMlAyLzYdtvluvDsXmMgu5e97GVpzxHHC/fCQIb7Q7XfOnPdCqpk6N72trfFzTffHG9961uTkMP1655hvRm3OTaZqTzUO6bzuwy97dHE++67706CEdNmKszLfbTfwryxHuyP82z7hCPXtTEsZpIPXti1+Jz40N+nW2Q0hVHnyDXo+CgwUBgo/tOtIAv9nDfbZvE+8c2BAhDbbHvdpxUoaeGlgEwELj2RgkzScJ9lS0p7+nTb/9t+3jUsgy7+EG+4hhMuZJ60srEv7h+OnbhS3GnRysDxcIy4Je1hWkE419bnuvBImUC4X3hQ6OBc+K5ZxHDK850qfJJ/XFu6Fmgxapwicbb407bZFoXrkCD46hf2mYcefiRZAyjEtG/HrVia0lFvQ1Dx0pe+NFkEim+ECbNpHIniGJdjYSnFMr4v/oNjrbWbAhxhVFiqg06z2AfxnmvKtW17HLdcVFi4bdpH50sBumPqnuaYW6cWkgN7x9I9a9asSevOOoTxfDg+0y22IRfbYLFftnkvcLMYWruKvXTlqpUE474eRVNR3PmL25M7RhNWsyPQDpMwykU8OwIO6yQ22db2jhTvzGDdZk+w6xVkXfE7WrcCHYIlhIaoBo0s5oYZ4D6P6rLSqGS8p9hTBvYgKIe+89lZWGc2YtlaipBUetdMa9KZe3HvMDDyIIomD2PNjEJvw3OzkKFbSnVfMOYBn7UIkAFHoFAuA477bUmJQgOsSorI+lNqAGGsUEtR9nGUVULLlKHoQFBQzP0abSiEkH7TargE64KBvfRfOp3vxZgqVOAa1DyznvbiNtRIDC+ED2bcKC0fR1CCwKGZ+CUV4JcxU5ZiQdpHRqE9OwmojZsDSroZ1I3IJrmzTBBXbOnCRdGL8EGENLF3MlYvWx7bHttAxouemAl8l7IGyqGn7SNdpWAVjJvzKArOMSwcbNMUMKu1sULGcuunD5UoP2uwvNi5c0v0EJSytXVB9GL5cN75J7OuHDwmTUXhsfK0HYHHV/bTtgtPjYYfuNGJ3GWwJISOdnGDF1HbFjcDNWYS3jJwi5sWx9e/9g0Y2DHMs18aHTs3E9yRNEAQan39ezAXRLpKB0Cl/BVzZHDxiiZ+aI6RdA4PQMTxUz9IsggE3c37atmkRtm4JJIUPBQ+7BNCgJBMX6mlgNpvN5hiuOSCIML3+TsHZ4M5WocEytDgEOIDAk+iPShDSjwC8agP7Bgbi5skj6QNX+SvUGIcJ8G5c+cRTGg314uibwKEShDkPiTVL3nx5Uk7ZjvcZXybVg/2yVgG+qW5K5Wy0SRBg72nfr0i/G4AzRy8MQlN3JDSWEkoIbxg9/ZIz/BDHYF6ECCDxPfGnIZmagBxIkX2pOjEsTCt5wRIeBxhCJEnkmS4Es3eKJLu2kr8Wvonopkgptu3EleDDBUDfZqsF7T6jo+bclVrIZ0WP6TUSJ4dF8ew8Jme8i4ZCWFCYk/ifOfunWgMiMBNOlL9G2XQ6gl+mQl0iRnnSdiRafe7sCUhL7Ehg2e9akLsv/MhrBloy/vNuNDa2poIcjXNPv/YPo2zASa9nwcLjaQei4Id319bU5ueE459VgLedsuISvxJlNiG3FY/55KJKn9zjWaGyf7LvFnsg32TsPKaxKWEY2pTruiJzvvavP89mBAqfLTvXrPPFs3YZUY++9nPokkpuEm4VqZbHJM8HhK09sE0nxK/ZqaQmbHPrn37k5nw/+p7HT+Zg8zIOw8ypEei5HSJ1pXhSEbTtgpLBmpzjmyDhLF9sxzO/Nhv63B9WJwTcbN9EZbVSjrfapYzgy1sWPIz6ctR/COsy3DZf2FexkGNrHP7hS98IfVPwaPrQFjIcO1YHk7J/bVeYbcNs2bXkHjBsdbCwrFwjTjmjqG/u0Z+22XevFnpPdndy3VlUTglg2oqztmzmhKTrkBGnCZucS2YVcc5Fi8eWDJTlNfsgb89mc+5HudInKhLl/Pge4QpGWsZN+fHMfN+D+85kG4QTu2feEJB3+LFC5J2t4l+yUBaFKYX6pDhfRzPPZl2/y6esa157fo+4Ulc6LgIsxlXJy024+OaX7fuMcZKhrDgDgfYMV4Fs3vHrQzuRJi1boUTjvcrXvGKZG3iGnEOhgm219BQEAZPp5/6m3cjWBJHCE+exbHuacKW60KrTPdXmUrXiuvStSKTbopyhSIzEez9/d//fRKQucYWLVqQyIbptM1nJ6RZgBv/WRw/V6XtU1BvO4x/YqDanp7hlDXFMb/66qsTnGkBpgWHcOi9zlUubqPWLa5XMJnXlvjl/PPPTzF5hEsVXBkfWIefnbsjUcQ3W7ftwm22UN+DD29I8ahM1T1zZnPq5zBMsPvCLixuzzzjdCZihCxYNSiKCMbc3JQCHJahKBrD/H+spzellzSzQl1NPe0sWM8aB0ZaMk0kvzGZWJayb2IqUAm8yUBPgE9HWMeTjFUF36u4DnGbcLLjbd+HiBvRj0DCFJWD0KvWaSwX+WRheAr3BGnRKawkRJ/FKLtKSnQ3UCmixaQHgo8i9zrdWxUmmxrcjCwICmYUjpqaKayCsZRA+JACkyOo0AoCY46CoEFhA80bGtZdqJxxwv2CdVRGzJTZZHWbO3cmypJyhBANKPcIxolyq6t7O3DQCyRhOcdwL1lAViHaMzEyQFBtYHkQd00yihRB4xTToTI60Au+mrt8RTznmWviTlxwtqOggnmIGpRtW9lHDFQ5TMyNcVw9JqBrxycYZ+lblJcS07ZNNwzp4UQTc30SoYTKTa0gdu7cCiIoAS/uSG3eOzCW7h8gIKYWyvw5EmB2rI6jMAKA47EynRGQoBBhi6RFlCJxzxIeboRHu+h7r7WDRGvBjLEQnFDCdPfg7uiBkZ0iTaDaxZ07d9APGXGQIQy4JlwFwYMb2+NHgc1GcADixYA75RSuXzI/tvfh684mtZv3zSIAUN9eEDUIaoqdOQsgEuHktfRPxItplWZmSfjAO/if7rEVYOtRzM36QGCLFy/hXojNSRgPpMq6ihRp5sb4O95aO3iM84yHAolEjGNOZ9Ci+XPnx0033hQzm8hD3DtJaqAFjMeewtyxcU3RlyR8YB4rmLsyN2EEGMm6gWvsNXqBcGiOh+CBNpfabp5l0PZZa3ADNypQcQMuRwpeCRLeDUGiEMKNbJINrQotxZ6uXdFUq++//xE8aH7mIWLWLG2fEEKJ9WyioDvO+JlAxO7FvPA5CB6IsI7/4iw2/0zsbMcU1A1QAsniOFoYHmARwk6BDOMiAWf73DAlhCTOK3CfsUj8Ns8kywkSaOUyuS6FEWpPhGu1fBJ9EpDClESYBIkEtqbyEuHOiUywh1o8GQKJIAlFzWstaipzsT1MRvrqs7ntmdH0/cKx75YQkiGT8NNEPDNZmXF1DPLz1pWL1xO88R7flwktzwWitkDQer/P5zry87/xvG+MJUh5IN3imKlRUqMs47Fj145E6NlfhV2pr8L2Pob4N9Z7mBcLlgCFdIxqqCT6HCPHxqCKfs/MlmORP1u983+oksdA/OY4WZ+MYCZWD/X8oX5nGFJdtmsXQi/hSvjRtNZ++D7HS/9Q30kzEgxbb2aaD/YO+2wd9kNYsk6JcuHV8brpppsSo6eGM+Nrx9TnDoSdg73jt/mba9si4e+cWmzfVVddldaAcGZmE+dGqwXLgXOWLhzkz4HaTMdcJkV3Jn3VXWeOlXCSYcW6HRfXkmvmd1F8j9YACoxkrvK6993OrQyeDKc4RphYtHBeimmkINQ1l8fDe/MzntM6TFee/B/HwrUhfnK8LrroojQXzpeuF+JILcZkQDMuy3tWqVpP2qvm3CJ8KwAS/jXfb2tD68f86+7keFt8n3NtHU+H4tjbrzz2tl+YEpcbl0FYdqyMHeDa93fhWLh0bGQqucScF+JhWJ8MnrFAzNCkZYn1WZdj4veFC2elfexIjA9yhVgC3LnfOJfiCJl1LVtsp+tCX3qFQuVYZigAa21tTVYFKnjslzhHuDXlpm21j2MoRrZtn77bneOR16E0lZ+tPx/uieI5x1lBq21SYOBzZrlyHN3DLdItwnIuxlSxSBMI39IJwrDwaT8UpDuvWlBYnOdc7O+RKvbFIs42e4e4SYsX371w4QJolFpSA98Rp9KOVSuPi7kL58eGR9dDH2IVyF48oxJtPs82GHyxvhGdD3E7UAJ17uyMRQsWoUQqj/7efqwU9gnTccsFOUBxEUsDmNTyoYyxkeGegPmewo2hDDq5kvVbAr0n3TiEos6x8ezYyk5L87qvVUAD2tYq3DYKtCVCg7SepRcYJwOeT5kxpHBMTmnp4GdT7yqAt85+lFm4RJQa/HkIQQQpbOugSxU+oNUyK1oRccKK+ex3SE3ewV5Je6twe5gxw4wYBppEsIBATTemEQQTXV1mLcOqDSOVefOa4uRTVsXpp61mLFfFM84+Lc46/eRY1rIA1wms6uj32CBC1GGsMOhzFetzCEHDfPBeFePVcfvt0b2lI8oQ/CCajhGCQk7iUqGQICkrtSxW0cd5SoIYcq+mlpS7SYgK/Q3dO8Y7hocGaJtCPdyTq8qw0CBI7fatCBNrwRtY/9Iv+ybNfqw8fUegsKM9fdt/1FsushYpuglJFLg5iXws+fzbaqRvIdhsOhCoPl6QrBZxuEq/c+23Ywp3Be2xJO6N0ju7kZRLbTviwXvXRiUxFUj3EGccf0Z09e2Jbhj9bkzVTH1oCkt6kZBwMX0ywIzRgcUahKvjvSWxh9y/9TOLordzWxxX1xqbkZKvgKHtB/EonPDfhEjQQ8EGj3u9hA3FpA4y8mZ+0NWhsO+JUHgRFFkxnSudKImhPUOxevnqqCGq7gDtK60j6A6pQEvxWdNvTJMtN93CAeOJz93UOJiNY++eQeLm1MaKpuNxV/geaZAKmyKhMGM71h1TMDVTEDjjtGuMPpqdw5SfRQhDkGXQJjdk6mMsFbUYfHOS+ydBtoqWS0hpVEYbzVvMFQQSMJdIi40YXM6AGainG9/AcQND2nmIjgkk8zt3bovKGjY5xgWUHqME1/Gfggg3s5TjmAb0dSHIwZJme1dH1C2YHSPrNsQrLnhZPPgwjCamngvIlTzA/JrOaO3d98Xe7Z2YuzUlMXsVUn2HsiB9RwLvuxnXgllgwWx0EKn0e977nhgm6GbHto5oXd6S2tSJtQhdZdNE6ryrG83DjLjg/PPSZvvYo49E++a2uIsNX8LKSMpVpE5S4t/eviUROowc2sibIVpm47N9OQKH49g4MMWD8FHooxAlW7po4bDfCoAhSvNIuy0SPV0QR5vbO2LR4pY45dTT2TzJ8gExWgchsXlz+36iR+InM5CuPYnRTExJyEoASAx4uFYlALxPoldiWK2VwoIsWDkcAmoS6nQEptCsF/ZP2HF8O3ftRgCxvXCQ4kufUge0FheccubFeCCO23SLuMfgsUb+NgVZtoRwLNQw+rt9tXh2HCwSSnls0oUn+OMYygjIqEl8K1jJAgLrnm5hmdHGSg6iggOLMhsGC9y9Ww2isSvqee9AIjbUeEp0eL9+3zW1h36/wi6L/XZsPGQQnHu1fjJ3+ofrdiF82LcsfJDIPtpFDb6aR+HUz2r8XRPOi2lrtbL72Mc+ltp9O8Rf7qNryH4cqhSBw1xq1cClOG77jk4s32ahfV6fmArHYMGChYnhsC5xdRIk0x5heNqF9Q6q+I/HAZVu3rwVwd2SFJNGvHHbbbczDo3AxGD84PqbEn665We3xh++5rXJ7LlQUYSaUceppaUF+IUpIOVypUwFpRSh+ijrVniabhFHZFxiXQpiXS8K0++4406Euy0IRRpY6zIANQnuZDxlphlCrrOPsuVxCZw2hJZ3e8JhClRktBz/k05cnfCu97t3lrJXmh7QqPMO3VO5uM48HCOFRllAJHwmix5Ms2fNmU3spW7ojdpoaGokEwAxV+hYBTihj7H00He9rAJGDrfDYpi+zVva45ZbbwEf1cQZZ5IiHNfEZctbEdSsZm243hUo7xuZ/zRIXvhNx38eyWu/8XVM84eIf7SF/Zw9nseqcAU1roCp/773ve/Fg2QL6+mFbsJq8J5770vuQfY1CaSpctbM5kS3mI58CFzWB16rdO+eR4yK//zK/9KVhMMlVFi9rktdPT2PIHTop02XrlkT6x5+GHP6GuJftfN+YhshvJnDvrwVRrEfQfIEMCxTnIgF4EuBRT/MeQ7S6l5i4EKFa+5pvnOQOr7x9a8h+BtLeMlGuz9YxE323+emW5zHxYvmxsPrNrJ+KlJgXXFcW1sbOG8YAftzEF7Vk+miHffMwZiLcGV4dIg12AMeqyYl5G6sZ7uAwWHaSR9mNiE0IIXrtu7YcffD0UpAxXpiMEySknKUDEr4MBDLgjgNBEysgDbdS6DJKdz8qrC0rSaGQ0WpgXyJFwO9NcoaVaCgmGLcDDrQ/iqc3LNmMueN4Gbpu+TSy5qdkv5lfMdhyMeA52EY7HHo17EprAIQPJCnA5oTpVpAewWKwNgKpd3BnLZjxeGxFfqbYPZhWlCClpcOEPAduhIKEtF8OkqLR4BRYkHQ3+ISLN/Ge4g9QQw3jtHhXVgh7MR9uBdtVDcxGrbE/T//YezdvSlOWjY7XvPy58afv/mUuOqKM+Li01fFygWlcdk51XH28ctjCXxCnbgHHFWKK0klgqnayZI4a8XqeORX98f1X/kW4FMWy1qWxRjz8Cj7R+vxx0cFe1AFZhTlHKWsXwNi0ri050wCRyXwTRNcn0CzpxWPwh18YpgPeJbB3liMe0gdcSemiGY5OjKItUYlQgliUhBHTXx4rDx9R4ClcaxMZwQyYZ/rkFjIBL7E7G+zuLca1FEUL4MPtoJzywebvqLFQZhtou+WlNXgc/jfyLNbF+3rtsa73vyu+If/90PcMxZLz18e28e3xbY9u2PO0qXx4MbNUd00M7p6+kBwaDupF90hSA7cjBCjtJTcvKQSIoJSjGIW1rS4oMH/8Z3fjd8nXeceGNMlzTNhvBHGEOhmL1kz+kGyA5hTjWB2pQR5BtKSGhD45CBIP0WxVuOPyaAxF0DSZaD0CiL+LqzFPLGvKB647QEQ5Or4p//18RhHo7zishNj23h7lPH+CjQO4DP6r6AA4oRowhUlaI9KGnGVK4uWWctiBu4aD65Fyt87Gm/76z+L795/c8w8cVkMouHvc7NkAy9igy1GSj7KZwIZsw9VkiqJzQLBQhHS8mIY7CmOUcTEfSDiARBw2QgZAAbLo5I8yzNApjX4y1VXIngoxkx5DPP6QVJTshGfsWJV3PvzXxL/oSb+8Pl/EC+54Lmx+MQlcfwLTo4H9jwUPVN90dG9Leqa6tj82DSJotxEsKJFs+YRHUIhyp7oQ7AQDaWxYWR9nHfJWQgLNsYeLFdmjOBXawTkXX1shrhS1DTHSK/Sc8YEBG3+6u3bdrJxb4RYq4fJ3o1P3QwIBzYQpMn3rb0vZRW57obrEvMi0TAbs7wOGB1dXWprzLu8p+CKorMix3nnnJ3yMs+GiDELSV/vAC4818ZFF14Sjz6yMf7tpz+LLhjE51z2vFjairk+AZ4acTexPTXVhT5qlph2EE1K9gMuYi3WjQSmNBX7e9rEJc7POPPcuPueB4j/sRPfv0tgJmpgxrYngQYVJA2aDJeErUyZRJBMc7aMkAj2N4kkzx4ynzJ1HvlemWqZvEMz1wiqIEQrqoliTReqGdt+hExVEC8ycg2soTE0YjJ2A1jfFKNhqYERGYBo8jkZoMIk2fonV+xjSluKxlrNlOkGLSfgnqMrgUxrPux//qy2MX8+2Fkc5uFYKbTZjnWNDNfzn//8/RqzJ9fyx58qZf0++thjEEvBeT2E7UDcd/89wGR1vOnNb4AoQTjHO+uID2EaW++bSUDUPrQuB2u7v8ngKFSSYL722muTJY5zK3yovVQz7lioXZNxtK8yj/Y1E9OPt/TofMqWQsKqzJtFODcmg8I/229QOeFA4VCGbfvxm4rj4j0yvVVoxPowZS2FCR4hoOcDa9cBkoWUgSy9tCyXtS7dtzwxVWZ/k1EpZjzVJh6qOO5PfPi0bznw4KvoYF/RpH0tbTrhBAKOPfgQ81OFMGQxFk8PMk9qygPhxIokjJpRhctFXSMpNm9MgtZHH30s3vWudyXGtwrz3ik0cLu78GEGJwtzpTCT0y0KNDo6tlCNFiHjyaVn9eoTE2yuX/doPPzQI3HTj34KMzged991f+rq0OA4aeNMlVfoeScC5mFM9r9wzZfZwkphYvsI/NwBY/t9Ysl0xpve8MZYSNrAPWigZ9APZCfsy/qJT7/90+3/4TyfhWDSSsKk+Fj8ZApt17Ua93Xr14Mna2Ljpk2xkPgKQoRZImrQour+1wOTPIMA2KPA6E9++tM4EWuQAZiU3d2d7AVnITRrT1Hxjye9Jvxfulc88TgsJWjed8GRLxwF1Yo67sLBDxS/Fe44+4zT4pQTT8BicThmk9p3EAXNCcctjQ3rH0w++iefcmp87dpvwegSY4L9dN36R+Pc8y6gzY1pr51HLIAdMOwyphXsac7f+c84JwUcBiAPib8Oht983r3dthrY2nPNjGroITTrfJsL7jvz9DPi8he/JH5w3Y9JpdgYz7zkkvj322+HHtiWMogtW9oaD9x/XxIuDDDGKj7Ee7W11eyfY8nVxHgXzk0v+HZJS2tceNEl8YEPfgjaqzq++MUvpX1AmkFhn8Jb9wfx1JGgfxWCWLS0AGWl1NvCkO9TGHnhRWtwv50i9lNvzJpNOnYsGKQR9/bviLatD0IXd+HAupNg2ndDw7TB3O6NMWJVBKkro7c0dq4bjHmVs2NR85Lo2Q4tUD87GSOMQ5dOQjtLS9VMQYFJTpEys2iqCqXbjBguhg6Erp4i6DfifZRk0KGs3XpoNwUL3T3d7PfAFEt0Ul/dfUdRirsgHBBDAmHKFtwKagjsuPLU5UjM+shSeTdWCx1xyUVz421vujBe9dIVccXlK+KVLz4uXvDsxXHmybXRVIOScOe9sf6+n8Zx8+tizoyiaCRmw+w6lBsIGYb3bkPIsA38PBTHnbwgNm38VTyy7pZoWUig9ZmTcfdt34719/4ozlk9Oz73T++Lj737TfFnf/CiOH0BQcXXIxTd1hdzJvtitI1gm4+ORwu4sgoF0M577o/ja5vjeMZoaRXjtw0XjQ4slHYOR+0gFrdVM2PDPQ9HClPBeEjfzMUSadnK42PFqhOiYwc06EP8Dv2swEge4xGCyBdpiQNdLdwVYTmykoCSZywmPey9v4od6+6LRmjql77wWay5+5NLeBnKm7vuuBtrj4Jy7aBrJEHPsT9PxRGYvuj/qdir/5+0ia0Llq2wqSpF3F/20XK6JdTjx99LNAZsCOLzV18D0V4fq5Fkrlp6Aip3JI3EE/j91/y32MUmvhuEWYWU0YCRnSCbWgkkrCJg2ZLVg4vcLVomHxkoSBhkjER3y86eWLB6bnzx6s/E5W9+c8xvbIrb8fVffObKGCF6bsoGISEAkQG7BuEK4UQ1MkOlaH8nQMgT+Lcl3wTkv2LsIph+DAii7aENce7JZ8eGX94f573q3HjNxy+IptMWRfOi+hjTDK2c9oHk1WZZH2JmNgi02mwIxZwbibo7PjQRvSDTPgS+NDvWvOC5sQlCbhdWFCMQKmOMnQ4yBbkNUmzaRitgfjUWo6/8ntONFkZDya1WF4z/iE9xlSCRBs9JaTINxolwokRzFIjKVS0r4+YbfhQvesYzoxLp+kO7H4r6E2fFL753e3zoW38Xbbs2xS6iDdeT2nIIwmwUQrWSja2eNE2b1m6PK175hnjtW98ZNWgvBmDyF1bMic3V2yCkcbNgU1xUqyVLRyyDye96sJ0WE7gHRncSIrd4BvMEwaaVgYzJDgQYK5YfF3f88t/R3izE6uG9MMj44mE9Mh9zxVpyKcssWJTeZ8JRbbNlAVrputqLk/nmFghkuonW+HTMHxclM04Fb5s2tUGQE/0YQuS8885P3/URbYJ4s5TvC85VRQRkBoorHpYEXelTvqoAAhCDiZwXN970E5jPqWjbvCXOPOucuA7iXAZSDY3ETm6rhImMZBYCZqbbimXWExzTR/upxZLm3LpvaMJufAE1K5pxy5AmmEot+s1/xpFSSVTDr0EcGdCJ4FNoiGbNngMBSspOhB+6A0lgZ6sTtaKpMCfTLW7Yvl/LB/umtvTOO+9Mgge1/lqaTKdISDqOmt46rhJ+EoIFAnX6lgHWp0BD7b4m05rQSvRq7dAFo3gOQi7hsDBvYB0IeK2kLKMQeZDb6fPB/jjPwoNuQ5pn2x/TUwoHvtvgac6992gVIQEtQ5/XwcHq/m3/5phLxNsW26SAzKJwxOsKID7xiU+QevIr8dd//ddpnpxz+2e/fr38B0KNdTeOyVe5Li0gwFIErFrElBC5LAVCzMsyV7L/+74PtGn6xbpyxbm+fA7W5hLiWnw11qy5FMFCQ2xua0845+Uve0XSkis/mAHDtRMmXaZWGNoBkbt+/SNYal0QLS0tSRNpOxWalOMD/njtvvfxb97zZMpcNOD2Qbxh0DlheSECEi3BRkfHEH6RUYlgw7ff/oskgF25siV1eZT9DSUqOKIsdtD+3RDiyxD+6154x513xW0wic+89NKkQbeVBbgvjJeCB5mcMvbPp3JR0Cd+EnY9uweJU8W53ViK3XzLrbH+kUejGiHDxrZNSVj40LqHk/C5HEZdaxBhdjZjvIe977rrrktr9YEH1yaBuabZCpW6unahmZ/JO9AZY70mjlL7fmgB8hONnju8qTFXRFNjA9Z/nXHnHb9EuF8W2/qgd7BaKEU5MYji5KYf/yT++1+8O2744Y3snwTzQyD/8Lr1sWTxonho7dq0To+jnjb6t2jhAvaq2uinjpncR9emV6jA/V4hhC6iGZqrYeYUNvyQNhnPwEwOZ+L+qMXD/fcWXBVvu/VWLCKasWD8JVkw2pOwv4b2N7NGbFYD/VYYIe7RHagfa8VnnLc8li5bliwgxEXuk7OaCqmp7Yi41fud6yNRsstFQ8OMWPvQY8kt7Ctf+Wra1xQ+95D+UoXTAEEdBxD8F4RSEEUousYm9saWrY/E7MUnMy8E1oXe2z3QERX1BqlswmagMtbdty7OecbpuBXUxpb+tpjRhGINIcIk9KeKmRLpX4hBLYkTLaBJDv9V9kG1QitCIyAVyTHKmIz0WSuHSRRpY/tcDQp7SUFQlOhn6R7qaZ47OyoQAK975CFiUvQwnosJTr433vmnf4CFzFbg5XQEqQaZNEsGDDpd27Z9EFwBbhkuiWu+cG0UYekxiSR5DCGJ9OPeXuIz2LopwpojsGuoG0eBhKtFWX/MbaqIs066LJ5xDtYNZ8+PanEQshgTRw1BJw7jmjEM3VqHcBuH8nisvS2WLVoef0Sw1KK934pVCxai/OmOLQgORzp74obbsHh4tD0wV8RaBAuHIgLbs1YVUuvScuqpxHUBFCBNoh84VDg3jJBuWzvB0gGQ6hVLoxPCfA4WKT3UN7e5MVpm18a9v7wR3qM/llPHzo718bnPfDLOu/A8rGCxZIRWbV26PFl+aWl6rDw9R4Clcqw8XUfAjebAY38/9l10A+lFk4AoOprQuM5uZnNmg5IQcPMGm8XIzgHiPbwSLfcWzNMGkynYPDbWbha5vLwI1s29cIZxS989F44daOuvvPIykN9Y/Ormn8bqlSsTpqlGKj4FkilnUzQ4o8EX3ZCSSwPnIoloKMfkZgCLnzJFUKtI2i3UZ8qTJJk81LTzTa+/Kr5x01di7ikroxvm8yMf/hAEASb/bHYS4mVokmVMNNsu8HT2HgYFxK12Rb9bPpIAO2Ll7OPRyhPvAvNHU2OOsnmMs4mPcfZIn0Xm/JaEOzA7ugZopmt0Yv38FMPrGmEwSKP2TiB8ULotgejvbr3KIibB6psf2xQXPeOC2LxhU7z6BVfGK1/+ijj7rLNB2BFr8BHu6tlB3aQ2BeH37hmImipiLhRVs/mMoc0+jiYPxQ9uvIl2TsSpL3pm4ByA1qiDN4xjRVAVrUta4pf4F6th6cFCQheCEkzZijFR1eXO+A0ybxJiMlvzZjcnAk1i/Etf/GIi+DQ7lyDMxTrcbGU6ZRAtZjjwu1YCxjOQYZPQkwmScVOLrPb9hhtuSIyqgSJlgCRcMhGo64/FjAWHQ3jpS2tpbiIyNfOokOExtOT6QdsOfak1n7cIBxbvU7ObCaDMcPmbfRL+ZTLV1PiMfZGQ+s53vpN+81ruu88crEgcZRmC79EVxno97LNtcOyFa9vl/bldBYLkYLUf+jeJefuju4nzYDpS+246Uq9Pt9gni7Cpe4emxM6145XHezrvsB7hy8N36Cri2NsH+6Q23+K4ec1iP7NQJF04xB/HSMZQxtRI+8YPUFiT59kAlDIq2fc5E7y242gX22VfLQfCi8Ifx+yv/uqvWEdTKRK/6yIL3IS9/Fzuw4HrIF8zlR4oFBgt4F5h1aMwB/muo3t23pwrMxrcc989CV8JA8JKV1dhfMRX4iJhXhwlznn729+eBA8sPYQpxrxBy552zEJ/jCV0JIowbHFOLApBXOO2yZg6zpOwpZWKAXItg4NqvXW1mIxZCJVlqvWd10pnzZo1KXuH9Vx11VX7rLgK2bQm6IfuLgo18/tShU/RP86dggDnRZh0Tbu+3I+NyeF6VMCmUNB4QWrZHSfhT8GS6SsdX2NgNMBAOpaXXHJJ3Arj7HPuOe4J1u/4udYVRlu890gULciMnWUbv/zlLyftu+0XJn2/AmvboiBby1fxmGtPPGNcCq+/6lWvSjjGteXEZ/fA6bbPsRQvZKY/11eNebp70Jlnnpna45gqCFI4bfYO26jbwnLiL8mwK8BbuGgxGQV6Wf8wh9AS1incus87xrpdGOfCbC79rJ1nPvMS3tG8fz9zDIRZ+24/j0Qfm7EE7YYm2rlzTxKw2l+zjixFSLcSjboKuGIETtJdbZs2xnyUFCtasX5hHvroi0IYU2bqLlyBxt04XQoWdPetQZi5B0HXAO4PpbpkUccI1kvJihhLsHJoq3GEBxPEJ5j0SAKDwn4oic3AI1xgLiH20oESzPPYvvMwz4xw+H0c99UprB3w2YkJAuWOQ++N025dR/cgQNmxZRvwXg5N2gesXBHHtVYmy5R6hHIzEe7MQigyG2PjFmjGU0+cEReeOzsuvaQ5/ufH3xQf/eg74n3vfVu85c2vjFe87Jlx6TNPjbPOaIUWR0AG9fj8y86JD7zvnfGRD70+3v+eP4i3vvFF/DYfVyIUF5LhNEtroYpKUo4SD0JL10bWWiMBW88/F5eLhez/0L2/+syn43tYDz5w952xgXHr7tyB8KopSlpbY+GSxcAU6xvpSCdC1E3Q6Pc8sDau/tK34yvX/jh+esu9saF9C4bYwD/zUAa8laPcNGjwFMEsy5DwjAz1RT2ulK7zHe2bEPrVodA6AVy+OQnIFbRbVN40Nc8Evgr7Yrp47M/TbgSOPnX1tBuyp1aD98kZHm/Ur18AIWBXi8nSI/HcZ1+Gr2GBQfvSNddEKcjVLD4NRXUQPZrvksmAzV4z51IY1v6BXvZJbQAKhwIHGd6C4MGFPx63/vzf4p//7p9i+4NIJHl3NT5xRWwQl158SfRjTkrIqIToiY4AQ43QQeEAiMw4C1IXQ2hvPBQQuGHpr6iAJEUZBiNOojGaRGI6gMnxu9/xpyBitOfEnFxaswiC4Bcwe2wSCAUKwg02GRC61hhuEW5Mmms2ozldC2GzcFEhwN6eqS4CNvbxeoQfEAIehdSf+awAgk2HQ3bHzb0ETZNmuuk9XuOZKTaqKQQOkwT48azLSBor+m8sACQTxLVAs4h7SRcWB5ecf1F85dvXYII5Hjd95/r43Bc+Gzv7t7DxTcUC/Br1xxwdnEBItAgpOOa3XSPxnHNeGn/0+rek1Iy19P1/vO/d8a0bro07774dIryRqM61cS6CjG1YGuzdsH0/MacE3kFQIu+US0R4SJDtIluIWpF+NAdKzCX0rrzyykRMyexINMusSXxITGUG1HNmnGXYZUK9JmGjBYJER2NjbSLQZBQVEGRtJK3ZX4ax7PD3zEzu/+EQHyQ4JGYlLm2z7bO9Zkaw5HbmNnpNYiVf97uErJphiVwZAwkrmWqJNDNzeK+EmSbuh2M1kBiPRIkoj3qcOfa677adjoH1epYgS89wq79Ntwib1qsZs4HQZMAco8svv3y/wGc673As1YZL3BtToqWlJa0HidEjUSTghTEJdQVX9kMGLDNW/mZx3PL4+ozj+b/Zew/Auq4qX3/JkqxuS5bcZVtyi+04cZpNOk6DUEKA0CEhEGDo/TEwlHmZ4Q3Me3SGGvInAUKAhPAo6b0nTnWNu+VeJDf1rv/37euTiEwa2JCYl20fnXvPvfecXdde67fac6mDVgx+37HVukUB3f6Ribb/FX5cF94r89HOgLIDMT7720fWffB8zph617HMviDa/Pnz01hfcsklqS/tO/vSNTy4OFdsk4f3VEusxRjTlD7KSxYfChiOt0KcgMTzXXbtakHIOSnVWRcaiwKUwt+wYYVp7g+uo22TFjmHXvnKlzNPBANMcyew3pksvNwX2hE4fL+/JROwHAvHyqKVlzRKEGQCdF2hVXpigD/nWWurEfCN5v4EzRJAlS4oMDpnFcRt7+mnnw7YhosW8196K431WZZsPaQ3L9A/1td+dr1mtNjXtlWh3PVuXwgkCwiWw384Vs7vJmIZYTSWfteIC18LbjbSN9tt/3if07AM8bfSb+/lfbN1bH/tb3EsBB8EuwQapCOCKe6R1tFxEeQS9DXYqHV3b3RvOfLIOWl/sd1m46hHSMtol3U2LsOBKLm1rLrjifnk60J4OOvqfDHosyCJfS59sL5r1q5BsNsUo8eMjWWP6W4lXcilyjTujmvpZQS3FjDTms73jqd80OhRI0kjOo325zKU2G7v61haHKNsbaQL+/FHuiWY6JrSosuxl+6Zjae8vCzNr/r6Ovp6M3wkQYl51umnnkaaSAKVj68lJhMptHHRqMLUf+K42uQe0UPMFbOVySQtXrYk2qAH1RPGRzvamjbuUYbA36ZiCZ5OAAKOJYEP0g4fYJ0EK1JoMYCEPpQOA6Sx7OfwteBCH4dghK/7ueZn6eB1AiT4PR2eUshXVNWwB06ILfc/FOe9/YhYtoJ4EPiapiGo5jQAAEAASURBVK/AJsgpSKfp/sRigmWQhSNwx0KZhoHbvLlFxPcYGW96w5Hx4fe/IT736Qvii597V1z3pwvjf37qtJh9SH40btkZq7AkbkcemDQqcGMuY67C7zXj1oiSRxCiqJh9gawZWkQby+qB+3CT4JEnHwWxYu50M+d3ocBqh7YVMV8G0Ojl7ICxEoaX5AZRPXJ0VGFhUwjwswPrpk1YdW3jLNXKZ03mm3kDS9pi5I1u3GD0597ZuDkGWnfRWR1kp9tMg/uJ9TGONdKWrIS+9MUvxrx5c1FCjUhgrIRdkOzFcvD2wP5zvwdv2w/6mktkJQwegrKJ6npx3+HpLe84NyGNjz7wUGxatx6BmYBCbKg71foj9BfUofntZkMn0qzBm0x9s3nzhoRod2POlQMaBBw05MoOI03kXi9bvpin9MbYWQj2EOmrrvpVnAnhb2nciVEblgK4UBTi/iD4ANsL0daNgc0Jxrc/o6wQci0M3LAU2gf2Ce55EN8KzEpfc8Ir4n3nnw94UBtLbrs/vvCdz8YD6+5ODLO5kQvYFJO1AfdzT/CQWmv6ZtaOMWPHEPzwFswF66P6kMq0iVUT2KoMs3+Fc5XrkjG3Tc/77DzS2dgDWj2Y5cJnmHrTLSuf31n9Aoj1kCIeBsEGrmCDQLsNQ4IDdQpUNHlsbQoIOYB55tjqUfHD734vptZPjvqZ02LuEUfF8tULo3R4PogzUc8hppVlpJbrxPx590BMrMXXlGgVN/z2wWgGgHn7Be+M0WNHxT0L7oiGDSt5fm90tLbESEx9BWvowvjsZ/4ZxoCdhX2geXczQBIbJ43avHULzMZaXgMYoTXSImElG7kCfENDQ0qXRbMScyQz4+buBivTlTEUmZZdgV3AQaba+yismY/ezy07Gnck5szI+VvZqGQQc4zLAPOqKjEwZZgDKvg8WzHvs3vauoYt6XkylNZJBq++vj4JxUbztsjsyJD6ucXXHrYjMQvpKvsjn8uEyQiq0ZJR1OrDOiokKDT4/cFC376f/rdTEgConyW95iyD5uF7ny+Tah/KoMkIms/aoHNa6exvkSFTqHYctDixv2XKngtw8lyebf2ts0y45uQKtDL5B6oomMiIO5bOI8EGhRDnmH3oc+03x8a6ZCUTwLL3T3cWWLA45xVavbcCnlpABUHTkSpQ+Fz7TKHCemRj93T3/Xtdd57adovz0dcergPXqO14P65udXV1SUBQ6HYeWPz82QrLn/7V0iE3bxWwHGP7RqHphVCsW01NDgQ97iXHxRdhRJ2DVk9QzLUq7XFcBZcU5L3mdOGU+s0177jmozUz44x0zzbub/E+0h3HJFtz73nPexIdkUbt2LE7ZVPx+Wrm/Y79KnCinKYL2tXX3pLWrxppQcOvfOUrSZBTkK4hQ0JK1Qct8b0lo8eCpC/0IpDlkQE9tsHDNS/g6PjZd6516fh24gc5lq5b53IrwevsY9eB2UNc9xdddFHaCwQFjIfifM3iojgWAmjSCu+9v8U9QtpgaluFXvcKrR8cS+m6wLd1NWuE+4ZjK032+cYrsG7SFK2r/K1r2LaW0h77ZX9LRhO8jzTL9utmwctUqjFjd68WyBo/vjopBLRy9LvGzylCOTWNveMuXHysTzltlcp6/PwXl6VYMoL+c2ivLiMVCPs/u/SSFCfif/7rvyZW0/FzjFxfjpPz0n7z+v6WVtxUvadz5nx4QMEn541971nrpUb4DemBmTzcK2T/3vvuC7BsGB4bcAHtxsJDK9o++qWTzG5ktkTeBSDgetHkutj7yEOxfVdj1BLYVi5woK8rho0aEbuIDdONENwNX6v1Qx/8JKwsREWeghMMYL/g7T5wQfDBQ/DBa1o2CDr0+R2OXvd9uqSb33dzP0aJ+hvE2SwouC0Qh0tu3r7X9Y0nAJDgGso9ylj63DK5gPgJWDGKvSDtOhZ7WH91dWjNAZ2swlVoCvGxZuXFnDpoO9sfcUcDo4Y4ejZA9bFTYtIYAna3dGKh0IprDdHQoEUlZTwLEMBsGQPEXuunDwb6uuPE42aG+AChtXhoYbznHe+Ib//nF+K8txA/jk4YAnPW09qGxe0eLKcBSFlzoxiHkWPH4UY8KqbOOjSqx42PItZ0EeNhJowe5kWHGd14VstuYnaNAHDcvSUKSqDZvW2x8jFikMEf5lGPW266Pk4/7ZQ443RARiwlDHBqMV7YC2V/ShV68c9f3AP7Tx3+4ke++IMD1QPQE0hV7vC1RCtRXt94UKZPmRoVZEQ4avbhsXIJAbsQUkW958B0kwsz5oDOG2W+qIgYAVg5aPWwB58xo8qWYOqYE8UhyBALTBp4BosfoVciDdkB4ST/9YJr4t/+/YvY0vfGT374gzhz+mnxyH0LYgp+r2QCigIOM1fkgTrIEEK6k5Bv9ouhIKBGsU6bKNeh83DBmBJiDjwEf/qjD5sTHUTnbV6yNAV8Ov2c0xCUT8G/bxcEm6A3WmbATHJnfpjbFAQdBB88jLRrtOG77rk/Cd4TJ05IQIKbqJoHyCcbidht7iz6b8aLhCxwLsSyQqsHN1KtHfJwfTDzRyGfcZmglIwAu4BWD48DD4An+dR/KFUrwuph08q18dl3fTp+fvFPoxRkeMX198ctf7ox7lhwK5sXkY4J3LBr9w5886qIUTE6mra2RUl+dRw6bV5cdNXlMeowgi019ca5F5wfl2E5kU8Anv4Bgho1bYtKiP0KArF1EaWesM0EfDwJNBnwA8TBTZsGxpZtOxPzJxMkOr0GBr0W7a+CWKYllcGwyER4ZFojmSc3en8rQ+EhoyVj7Wu1TDJn5mnXhG7Hjl2AH0Txpn/UBFmGDStNG0XGgMr4WDKXivTmGf50Mw800ZU5si4+T8Z03rx5ieGRaZchl6mT6bP+Ft87bjIu1sfnumHJoCnUesjAqLkyUKNtkWG17QomtvnZis9tw9e0uytn5eAszPrMOe3n1tu6WPfUB4yJ79McfbYHPIfPva8Mnxoqn6kAc6CK/ek8Mg2jAoMC/Nlnn52YvAPxDMfEvh4sKAtyOE62yf7ztXWwLlmRyXwuxTlq8SxzrPDn+Fvmz5+fxt/nZXNSwcG54tzIrqUvP09/rIOHfeCc8Wyxbwya6XxVO65LlGtZwdv563v77rkU29pIsFqFPoWUAyE0PJfnPpfvjBhRgTDXQVsima47dksfy5nnd3WxG9En0gbP9sctt9wSDYCpr371q1lrgpG5p7guNLlWc5n1iynw9rc4V7yfNMd+E7z02dIVx0NBWcHYeef8lW6a5s7S3IxVDqRKoVUXkjPOOCPNc+my91Wbn1mfZHPf5/iZJQNZ05sX6B/HRFAoAT+MgXV3Pif6R50dF/ce+861pzBvX9inzmOzLAk42GeOs3Pd9ep3FDj9jcK1RXqd0ewMdEwf7Mcf+905p8uP9XGtGF8loyeOxw033JDolwB8XV1dWkeCgrrxGXfHPsjGzLZ7D0s2pvtRvcfv672kDZ5z9EIh0v41JkppSvl5772PJFBXmmGdrJuZY2YRILV+8hSCTrJPszVv29ZIHI7VaSxS7BjiVSxbuiTuufvueMM5r08xCLatb0gBTx0/D/vB+ehea7Eu2Trbn/Z5D8ff+XLkkbPjtttuS/uQY6IFm4DVbhRptvnMM88kkDYZFVjjr3rFmXHGqafGDngVKgKfVBatgETbsaDQ/7ac7w1wz6So2YsVy64mAl2zGLG80TViCO4HvfC7nfB1AhBaQPRxqCRz31bxBKuY3ssVq1Aztlk6eJ0psORth2CZ63UtaXXlzQ7de3c2mUmsEh6hA2uuLQTwmhz/+bU7YlI9NsNYEW/dxpyGT2+jD9pRNLW37gZogJ+Ad+3EUrZufCmuGKUxtgZAGiyyH6uNNlw3mhpbsBxqD9hzlFl7Ee53JdBF299igA90XVE9nOCkkkDa0cH9m+FT2g2QTnuHo4gcjZ/HrkYDrUZMHsvv2Kd/+J3vxnf+z4+jsqQsPv6BD8bRRxwZtVjZVfKZrjtaKm1rbEKptjYWL18RW6BtGzesJyzEBjLa4MJL4FYcrwjsXkjwbcCWLlxjhpJNpLifLHykuOb9HqwgCsj+tn3LekCS3fGlz/8L4MbOxJ9txR2okfuXlunGJVhDZ79YDsoeYNq9WA7WHnDZPQ4+sOj5nxNoJIoSQ45CNoZJII+zp88g2EwN4APpq/CFO2zO4WndStRzGwamqIAQ3qWmpho0H7MqiDFbGpuYpFQAQmuHHBAhCNGf1x01YyrjbjTxJ59yfAzBQrp784a47pE/xNzZc4IAvI+DDwaPFICAWicClRHnPu8teAAh1jevmPpVgABXkslgBFkRqkh59LlPfjIqp9TF5vVr48L/+S8wmNcSoMqo4NvAHahT2nTdFtgcuJf9IJMpwQdpSEdZBf50bDJdXZ1sVH0pxVQPQrouHthNcDYYEL3J+zy0Y+zqaYfRtzanoeZ+/A7pHasHUGbub8qzAdBbHEbAS7rZlEGLMUMswFzZCMjleViVrN0Yr5x/emzdtSFWLF4SzatXxcwzjsIqZCjRuvdEHpkxOvog+piXVQ0nS0WLgSrxX511XOxoaoufXvorkOPaqDx6YqzZui5uvuvmBPi0d+B6wOZ4GAGfbrgaTWdTT7z+9eeQaaOEjacxbdj5JVhUcGiibBBENUK6mrjhqgFcDRMn86Ym0ZIxcZmAo4AnQ6GLgsyWQqLMlSUTBhWmZbL9XlPTnsToyNwoyMhwae7pxuock0FRdpIZ8pwxoOmGz/LH5ytQWSdfyzhpeSFjorbTZ8nAZgydTIsMie+9nn1m23LMGT6G/FYt0Otf//rkB+t37CvrZxHgeLaiEJg9x3rZLn+nQGEdZJIEHzwngVmOkJL18bPd/9k+d0wcHzVCMoECM5rXOq4HojhmFi0q7BddO7y/1w8Ec+l9nBvOIfvee9pPAkEKbPav/WqxDwf32+DX6QtP8cd7KLQoADp3jSFxzTXXpLF/29veloQGA1Had46jc9c5k7X7KW75d71kmz2yvrZuttuzdXb8FSTsL4WaK664IrXTNaH1iL91nXl4D3+bzdd9UzHdS+BKzayfeT+FONfD8106ALSt+5IljyGcn5TmYBV+0ldffXUC+WyP4KNrzL647rrrEsCnplorPgzXUvu8R26vyfWf790rDkSR9jgeFvvb/VMA0Pr85je/SYCEa0f6KnDb3t7FtVwg0W3bcy5k3uPU+cendjmuus1ccMEFaTwKC3MxUBwb96ODAXTI+tXxcWzsb4tr3Xll39SxHu23LC6Brx1X6brzzz3GjBf225133pPmr6+lcbpNuUZ9LyiarYmMdh+oPrLu1ldA+ZPwIa4rgQ2tIBR+BVash+PudUEW15lnra1ck7pcSMP8TkbL7Av74EAU+832W5w7PsM6M13odzTe7MGCYj7fvnPPtm9/gWXDcniAhYuWxLTph+Bqa4pxWB8s8lqhx4JhDz6wABo5IqXZHjWSDGhYGdx2y81k5aoiqLXsUO65Ptv56TOsS5qr1GV/SyUCsmvG/WzFirXJSs19W1ql1ZrgiNnBbr/9tjhl/kuTdWoX6Rq1AnjPu86PsZOZY/Blu7Zvxaq0BEF9dJTCEw7gZlEBfejuAMTGohZNVDRsXB+VNaTiHDki9qLuH0q8iR4Cd2ml0INAniwfMqsH7q+Oq68bOoKyyfhm/Rye02uu9fKZqTflwf2un5vW1OvZ9woIDN6CNYZHB+6oNWTs+O73fxL3P9AM/16AfhBhXZcI1o0BWEtSTIYi9ikVREPgEXfABzdh3YBL7d7G6GmHbg9g0UGq92IO9FFkwSiL6nJTh0oLGRHGyAjDPcxN991WAIf2dt34iJ8DOGD8NmqbAJb21uYgiy1WsxH1tcQEIV3sovsfiIfuvT+uuPw3CQBpQ/khUy/PV1ZeAZ0FkIWbLsHSYeT42ihgPyksxx0bILEQiwbdlE0v2jtAYOdqrXw3xugqAs93kcVjx/qortRmuosMM+3xoQ+8N46dd1hUV1WKkRBjoob15ZxD+UeA5BfLwdsDjueL5SDtAQka6zgd0BXXYwIckltDuhApHsCoqupYuODBqCHAji4NmtaOGT8OlJcAdcSC0M+vG4IoUXfjkrDrP8fdOGTQOEB9c2YJLHyEXl8PcG7p3hsVI0tj+ZplRKSGcBO994vvPD8+8s73R8NjqwJQkwNCQVT1FDUYAEICKPnQ5UFBo6sT9w7qVQDRKiN9ThWRh0djBTAWYVzrgYfuuRezuSCYzmuitmY0wANRsLv2RFVNOZscqAaAgMBAYgDplJRPme8bIGgIbhfDCyvjxJNOZEPOI93STr7eCwCzO4aBnhbgFpI7ACByMAR/c1YQMoQCD27k1JruoA94zhDOimRaPghkmJ+4F3MwN5QhBDMyxgNG/VExpChGkPry5SfOj+99/Rux9Z67QWOGxI9/8sO49sE/RfXYqtjTYWTiLtwuELLyS/DLI+Jv1aQ4esIJmDw+QOCeTUTOfizOfd+74vuX/Ih0oJjw0ZHb2BHMH16LidujbAb6gnzpc58HRYbAs1HlBF2GiTo2IagroNbX1ydGaRZpj3rZBJuxx9P6481vfnNiFhRWLLbXQ0ZOZsKSMTcyWjJUzhWDPcrsuIFphaBZbDmbjL6kFrXkRxwxOwmVWkV4aBKqL6p8idY2z1ZayCltIFEZPRnNjNGXObVOav0V9K1HDkRzTHKa4sFMmb+zTdZfxtTDuS6jKPOq9s335m23qLnSVPbZCphV+p3BSOn29GyZUMER+8k62lc+J+tL72kdD1Sx/vdgNmsbfaZtUyDLGP79fY4MuPeUAZeploG1H23X/hb7wfljf6vRdN46bjIyPsvnOLaWwc8TlLC9z1b8jq411tnxVSN96aWXJjBFoUdw4uUvf3ma646R750nftfz811sp4f9b19Yr0yAs36OjW3U9cK+/PnPf57aZp/6XdvkPPD83w+pcG69C9Ao9LmeBDKaEVZyoOvz2wPGb7BOtn/r1t3x1re+NbVT03fp1ejRw5Iw5RzJhFLnybx5R7D23L9cnzmrBAFmD+/l99N+sZ/Nc77a/wp0rr1srmr9oBm4vuoKrNIBx0RgUjqmpVhZ2ZAkxGpV5Njs3N2WaKaCrbFI5h5zxOP3s67Jaor6FjKulowmpzcv0D/2h/uIc9fi2FhvaaHjapsEWpy79qVWBM7XhoaG1F+2u66uLu010uMf//jHCSA0BsGxL5mb7qXLmWtB0Mw5YBFEPBD0z/t6H9fgO9/5zjSmjre0UCshwVjrddtttyWaJUDunBXsdD64Bp2ziffYB6jYFy38fijz8EAU+yjbT3L00tgNrmvia7OOTz31xKR4cF0LOtgeQViDsNbVT46Vq9cg2JYgyO5KHF85mTEWoyhxjI4//nj4hL2p3VMm1xOkcFPSin/yEx8DINJK7IkW2Ff2jWNuPXzWgSgCo9I811K2v5llY+LEsYn+CQDdjOucrqdmSWrFFWMPmdtedtoJ8e7zz41eFDsbli4EeBgVp544L6rKiBWFpekIrBx2btsaFez98s47G9aR4WJYDKsmHTYCeQXnFPMB8KGXvswCTybLWnpK3Va//BEKp8GHCigPOhgAAKWLfCW0SN4wXeczXYo1M5lAkM9GAjSWVQyP8RPryDaBhcTe9vjxTy+LAZbMHtIgt5FKtAueEjtOeFr4P57diyWyCi8VjCrLzCCn+7F9UIr/RDnzrozzFqwpuloAB7Aebd1Fxjdi6HAjAkgSeyEPYARwxLntuvEwW1cXFmONWGhtXL8Z199RyaKiDaXY4YcejktFLa45VcSbKIltm7dhmdCGJYaupIXJisa04vhuwHdTBwCqLnljM2joxgHfOmQoNDmZQqP4I8PdhLEEiN2xLoaX9sfuHQ1ktljFNe5f0A/gUBb/4xPvoy5NMWvGdFK6b0tzaigWa0x5xlrrx0ET8EBMthfv8Xfrgeefu/q7NfWve5CE/ZmOv+6uB+ZXLjtYZA4IfiJCyMdsOgMIQZ5xYiCAYWfcctlvY9GCh+L4o+di0rQztqMlXb1uLfbwFdG9vT3Gl5ASauljMXXKdLSEaxNDUM+mpImoJVkUQER8JUOaY0pBLyEo7aQzmjyrPjY3boh/vfAL0bkRE8jdpDyL0VFO9N66kfh7ATwQ5pbIXxAiCFshBLkCIlUIgepnI5yAv9sQkNORw0fgagGBJsfyhhVr4ojps+I9bz8v+lZvjR2LGuLfP/XFuOGOPwGc4OvcuB4ips9iLuBk2giooxuqaSPVcgk+7G3ZG+t2rYt3v+fdsWSh0dDL4rJf/CzectabYjOa1p1bdsSQrn42CYQcmmh6zHJMysqwuDAqMk1O7XaTNe6DMR8UhXS/yINhkqnQ968Gq5JR1ZiX5heBNFfHuOE10bylKebPPT6mjZwUD158eRTVTYxR9RNiYjlM6fZ1AA87CcCD/xv9OJT89du2NPJ8TO3WNzGmZfHVr3wtxtXVx0zSIm1o2hw7O0C1yWDRBkKtiVs5ee2bCcpVSsovfkA/jmc2gHQTQMrNv5N+3NNM/u3Ro5LJ35KlS5KGXKb2MEwttYLwewrvlizbhRu8c97ihiSzmL1XIJSJ0UxeYUXmxs1LLYnMtVksRhCDwvsaFbsV8EDgw+uWUpB7bgdjo1VCuvSMfyoAM4zKLTOZCb4y7/rcyvzthaGT+VDgl5HNNLaDBTYfkNU/e5jMjPeTYVLoraurS4KBgqn30UrE9igUDG6/95HR83rG3Pqe/TaVoYBLmk1rFqygKzNmXwgQ2FennHpqtNEnwwnM2Ya249mKz3umw9/bfoUxAQ+ZMs2CryQqteCQdbeeMv0yk1l7svpn7fFsXW2L38va5tm+sA3OBc+Ohf19IJhL+zrTLtbX16fnWmfHLxNUMlDJelisu3XJmF3rnR3+1t9Zb695dhx9jloy662ViAKR31XIUwiyzQoKlux5CqnPd3mqsbfdmZBrP9guBZxTTjklzelf/OIXaS7br8452+pv7IdM8HaNFwLMugZ9hoLfvffem8yY/f4IQBg/e77LjBlT0nhPnz4ZAagqjZdzw/YImOza1RHz589Pc/TjH/94GsdPfepTtMeAjhBtintD8aCxTAAEWjOtv56tPFX/D77mnLEumfCXuQ9JG62PQuoXvvCFFNNB4dj104BgrfC3Y0dLAgkV8NTsymz/7ne/S+vK7Agq+BQiHQe15NKrfQOWztl8fbY2PN+fZ3PVelhn+8pDuuV81JLKwIgZTRJodq4KLnm2D52TgjmubftPa73rb7gp7VkZAOQadr5nJbue0Ya/5my/+2yDhQqMSFOdfwLtzj9p1o033kjmhRlpzbmuXHe203qqyKmrm8S8zKUsFjiS3nhPS0anfJ3Ru6yetvvZinPR7zuvpFu5uZmbJv5WGq17kgCPtML9wWc731Q6HTJjFm6vZNlCQN28dTu8U8TSZY+lewmsOHbu3z/4/vfirFe/Kn5+6U+xQG1Ibg2VAMSC7llxHfzFc5K604DHj1zbH38bm+HPzNxkP7rf6/5ivVwLCxY8QvrkefAZS5MCxXpYp3JchqsBEQZozHvPfwfpG4fFBNJEtGEpm9fTGsOJLXAIfgRtu7bGBAJndhoUAf4zjxhgewEtuhCWh48ZSUD2ohg3eWIUyINo2QpzlQfNNL2mWc4G4DNLsNQtwUKhGK5Qa1dfl8FLVhQURQWKtAEsd4ioHnnEAMsj81khVrFQr/Q9f7tuxfKoIi5HEfxcK7xxzdgJMWLG4fHoY2vjAx/7X8SeIIuE6c9R2Nz38NLYAx/dx+/64KH3YkFVUKSwX4q1CuquQvbEvGKsOXAXaSWiBHxt2VAVbLhqEWwCmIHXuDJ2wXO2AWaScUe+zAwbxqAqyDeQsymdcb/DAqO0tCJWrdyKJW1/PPrI4vjWN98IH740XvmK18TNN96G624d7hDNgH41rFMCRRJgXkaooAjFDnOs0b0Wy4xig8T34GrU3UzqT5Ra5UOiAkuHgX7iR00fF33bVsP3kj3lhCOjd8+WOOYIMqQ1LI/LfnYREgxp1snOpnv1GPhYFYDV8Jfy5RXwIc9WBtPqp3r9bL9/8fO/XQ+8CD787fr2b35nZOu0CF2ILlJRUABSzMM473v6kYfPwYwMJBHCKCGsnzgpdDdYtXZNTGEj4oP47S2/i2OPPQGivjWmTZ2BH9ruFAW5tnbCU7TBJ+VKP0jmLgTox9Yvi0rcLw49YhaABsL5NLSLV18Ub3jV2bFlVQPgA5YAecR1II9wOS4VwyFu3QgDW9B2VoKyd7BZb126PCaOGkuMBPJ0r9sYMydOiVuuvg4wAoI9dni86+PvjFXblkG0SmL91rUxfvIYQBbQZVqaYjG4CaeOQFjjn8CDCHU1ub/vW3BfzBpzKKmT2AcwL/vV5b/kV70J9KgpG57qJ0AyDDQXPCP2Nu5KQYpMTdpJYBsDFmkup8VEHsRPi4citPFFbPYCPIUQ7WI2mt42YmCUsBlw3rSiIU48Yl6MLq8iCOQn2RU18WuNX1z+07ji7stj0iG1+BN24HbBRoR/3d7mNtJCVeJ2Us7GOCt+fMXFMA4VsaVxa0w9dCpSe16UYukxnLG01eNr64hGjL/z8lUxgj4MrOx15ejE5FA0vpxNWGYkD4bgHoSK9QAtM/GRlaFz0Zui9N577kkbu2CChDkTutLvYAhkhmQIZUBkEjMGW0FOZkfhWoZPhruuri4JLzJiMisK2wIBfu4hkwW/+XiRUeH/s5ZOYimUYhWiZtz6yJD5PAXRxMSxAflsmSwZkoz5sa4Kl89WbJu/1X+4vr4+xU1QiJeB9HrG1FnfjCn0no+/pk1pU0tnlR1mFwEOzMutE/tNplmB1yLzlH1Whhni/haZc/tGTaCAjCCQ46epbWa5kTGF1iVrT3Ye/PxsfP2+/WI9/Z51V+sk8ypzL0OuIJV9f/A9/tLXzj37JzucN46xY+u4Ov+ycXwy8+Cz/Nx54Zz0e7bddlp/55z1d/5puuv4etaFJGOs/Z6HbX5y8Xkv9GKbHWf7zIw1ChZavahNdz3Yj7bDPnE+2ye218+MieA0tT8c62zd22b7zM+e77J1a1OyRlm7dgPCenMSnrY3bk9A269//esEkM+ZMz2tuUsuvji1/93vfndq599j+Owz17v9acnmqpZUBn6136UlAiKnnJJzV3r5y0+OP/7xj2ktScuci7ppfPozX0hjIG1T0GKL+YcrzjMP15uH82zyZPYy1rACvvNYcFlh3n7zkLYJVCj0ewju2p9ajyhUZ4K8az2j/3ac83x/i+PpGnKvuw3rBq2kFODdR9/61jcn4F466DgLykqPzz///AQGGwhYly5Ji9Y30k9LRle0PsyKfWJ9s8+8fiDcMkpx7i/C3t7+dK4Jjrzuda9LNMJnuiXXkJ1gCALtnXfdjbC/PVnR6f8v0GLfXn/9dfH2t701fvGzn5EKsSIEUybWjmd+yv3sZ3GRDjps/6C3aZ2oHHCPsz7GK3MPsq+3k0Vh06bNAJC7aRvKHlwEmpv3YvmwFx63jZhYW7FS7UIpVB4blz0cD9xzC64XANJtjWRsWB1bEXDN2lAGYJDP3BmgzVrEqlAyllczvOJQrCOKOAoBNPK4NqCWb9+RFE+AFlo1oKhPFsieiT2OlW/uei7jGfwiYEEpLhYCDlor90N7u+EtJ888JEaOI9MZWTa2oBjsgk+vHIU7Kdzcg8vWxle/jQvGom3RhJHh0S85IioBUh5YuiZa+6DhVSOJoQCoLJhAWo0BeOzS0nKE8mp4VOg7IERhvpy/6kmAhT6CYZKeo89zP5nk+gloW10GCDsUa4de9oNe+g4Fzq5WvmMA3WHRsH4L/b6ZjCgTibXDWFeNjU2bm2L0uHr23vwU66oPnkfezsC4nYAsnQBtZpDT6rgHq5NCUnOUjxweQwlu2d/fCvC1hboRM6yggzG5IQ47dnYseeSuWPTwnfGq15we3/jSZ+LkE46JGVNq4VVR7CQnDh4gf//C35L3c0H8v/Pz/85x/b/T9n+MlromB61LxS2PfZdSgMkytDytpHpc/NAjcfxLjk2MkikoTzvjZVDF4vjhD38SJx93KuZNuyBcuGZgNtGB1rwIbTxklAU/6EjbTW7LUcDvI/hhG/k6H1n+KCZqoLxG+4Wgf/fr34yTDz+W9DlduD2Uxkjuq6CvN1cj5lq7IbS15GQeAAipLq+Iw448OhqWr0TfX4jAXhlvOuq1cdH/+XqKpFuNIP3Nf/ta3Hn37bETv7ZJ0yfE1j2biJyruRl+sNaSKrGX5hhmZ3WqMhsABFB/OZIJxXnnnpUE44HW/vjWf30j5h15VBxSOzkqQIb7dpPrGQ1BOa4Suk0Y8FI3EC0y8jiMKwFFTscAAs/APjeLLgCdIf0QdKw6+jkqhwo+ILCTv/3ko4+NBbfdGQ9oyr+zO772ta/E3tammH7Y5Lj74dvxRxxDn2lXYjpDrB/ySwFE6mLGhJlx8Y9/Ato/gahkO2Mi7Y1S2lIOwk6Qnnb6zA2mDzT7YVIz5e2z0LDZu5tII8omqtOjViB33X1XtOHXOByfOcEA08Bdd93N8RLcJBzF9773vYnpyRgoLj3OtMkYyhRaZOoU8BT2ZLD8vsKMAe4a0PCo6ZdBtGhyqgAv0ybzlh1uUBaZC8fquRSFJZlwA0vJeMqgyXDKaKp9kkGTaZX585pni/UbzMg93bNsk88466yzEsPva7WPtj0TJLLfek8PSyagO89K0YxYbJcaJfsqA0rsK8EYBULvZ5wB69i1zxIk/XA//jgGuijY354dA/tdTaKMu32QMftPfozXs8/8XtZnClQZ4279rbuMtPezZIK6bT1QxT5zfL23pstaXQmmPDF3/vt4WudM+PP3WZ1tU/ba8ZXpdm6oYVXQFjhx3qgZ9brfzdqUtWfwWGfXXohnhTXb69gbcM317VrR6sg5rCDXwPp03dpG22yx3V6z+Ln9qACdrbEcSJE+fl7/OFaVlbnMHs6FKsDn1539utQ22zhjxiQ0oIuT9dJI5ry0YPLk8WlMuwAu/9Yl60PHwDnjeunB3JopBfNeGd/85jeToKorxec+d2Git4sXr040Qtrp+hV4qyCc/W9/+9u0xs4777w0Hn/ruj9f93ceerjuBBsfeOChBNQkmske5Xx0bTveCss5970j0lnLJd1GLQI0ulwoiFocA+dvtnalCftbrJN1sLjGFNwdYwXgBQseTHTENmRgpmPp2rn55ptTvbKgy84J15wltZ315r19nRVfO59s94EsnZ0E8xs1nPrnaKR7kCBsAZand99zb4wdXxvbG5uwkmyJ1WsIVIs7gOb3JWjjnZ+j2FMm19XH9dddG7ffdmt84fP/wmaHNSTKmL91ka+QLtnfWng5ploFSed0YcrPNz3t6HjFK14Zw1BqGRtgFNYMhfChIxHUa8fWxJW/vjTGThoZVcNQxNx+dbz59WfEoYeQkWEY7sYEMhw2pBD3WBQBukp0Ety0GKuFivIEQBQQZ0HgIZ8AibpddPeZlhI3NqweHKsUb0xeQ77AM33n4WvdKpLiCmE8j9e5qGIwPrzuhTZ3QItbATgqsXwYP2kiQEd5tECzunG/LRs5IUZOmhUPLNsQn7nwG3H9Xevj7mWtcNpYuM6YFguWrg9nZQ+AQ2cvbjwdBGwlZBvGFVhBwP5hDZuHFYQxJQSW4B6pM64bgApduHbkvEJw28PoowN+NQZwk4CPqaioYZ6WA1JoiRNkipsc3/rORXH5r/8YN95C/LI3nhdr1u/AHaQvmuCZ+1AW5vHAIRzADfCcWDcLxhAQpIJYE0RmZ78th5cdHXUTR5LiHVePIbjRDWnD1aIvNiy+N15+6kuie8NyYtNVxu03/SnmnjQ3fvWLi7mbfabCz/WQoQ7PkXH8W0/MF++/3z3wBOXb71u9eIO/ew+4HpWFPCjJ8oHzoEugvzuxNgBEwO3ruj9eHS894cQogoBDImMYWscqrA2W3LM4ARaTsDbYuHFrVFXWwBDVxlZM3pL/hhJWOlz4TxyCD6Mmjo6x08bHll1bYtvOrfHBj3yQZ+GLRlDLZUsXxRknzo9qrAGat+3CvaEvRpQOS0hxHgSqdszYRPBLsRyYBBBhoMZdABOve/mrYtm2hRGrd0YfJmFvfeMbIbotIPRV0drVTPAafArZOLbu2ky19L0DJODgf6oe7m/pulXe3bwHt4ORsapxVRwz95j45Cc+HocePSN+9eWfEl9hW0wAPa4pwqwNa4UeEF9dRYwrUQ7x3rWjMUrYoIthGoYqoHB/NxtdRXqgzN0wJd2AKwMQ813bdkd5AdF+W2EyQKOPx+qhECzmJ1/+SkwjMFKg9Hjdia+ORxY/EFt2bojaaWNj6+6t0Q2T1YgvHlSa/kbLVzkqli1fFjvwG+0EvS+dMoa2YjlSgwkfEYEBvBmrfATM3hhdQ6BBxqsZc7c5J85JI1QC01CMT5yTwMBRdso/f/YTicnZBWM3d+6RyS98D9oCi6baFhk2mR/PMn5Z8X1WFGZkrGTwZPTU/qiN2LBxQ9LqGIn8sMMOS1/ftHkT1jTHJmYhE/DS+GQ3e45nhSKLmg/dQmT0FN4VqgQfrJ9gR8awZd+3fpkA+kyPUqC2XaeeempiLuvr6+Mb3/hGYirVstheP5dR9HXWH/ZVSrXFnLU45/Qxt+8EANTo+3ytBmSOjTvQjqA4dWodYJjfxR1CTmE/i4CS9bK9Cp0yaQpgBtJU8Pa6R1Z8rkxT1g6vZ9/JrmXf93uCGgIBCu2CAjJ9WfG5+1syAEMGP/UJ9/RZ3lutodeyetnn9qlH6v997bK+vn9yydolWKXm0vvIwDo+mvLaP85N58zg3zuG2fHke77Q3lt/+0izZNugBl1m3fVh5oDkmgRI5Lzwu9nY2g6/z9RO/W2fuq7UzmZzZNC0ed6abR2ZhqlNrtUFCxbFl7/85bQmFfgaGranoI5mq1Erbftlmp27prF0dT5xMK5P+re/DbNO0gb71X5XOJJeGFRSTeL7iNXzjne8I42FZvvSAYFBv6O7m+Oi28Vll1+VQDJ/r+WGoJIyzMFesvU7eE9xTLN1bHs9HC/77wgstj7zmc/EqaecnEBUhWRBQ7Xft2F54Fq1/7SGOOecc5jfOZcwn2Px3haf5333t7gmPCwGOFQYF4x1n/jEJz6R9iTdRNwHnQPuRc5Pacv73ve+ZFG3E9dIx9NigEbXocW6ZvuV7/2916R9zimPA1Eyt0rvVVdXR/9h7Umb7J9f/fo3UTWiOtaSknICVrELAZnHkCaxAyFc4M96z3/p/LgbJcb9991LQMKueOd556Z4U53E6sqtrv2oJW2m4Y8f9sGgt3Hiicc+vr+5xl3z7tWO7xYyH2wjy1c/AvDk+ikA/5nLDQsHM/+erlZ4oJ7YuWMD8R+Oiy0rHyYo46b45PvfFmNHDo0pE7AQINBkHm6Q+ezFBh/X/UK+rg/lkgEezXCRp6kr7pSCDu0EZOzCSsGjg9e9WMJ6pAwWjG2vrr8cvew1Xs9TcwIflueehYtKPhYwQwE3ipjrxQSB3LFmZaxcuzI279gGzeiI1ubW2IT77eZdBKDMw72xqzB6imrin//9W/H7Wx6IVeD9tz6wNSbNnhR4I5O2kyozndyJmzvRcTHNyE6aAIgiU1rweHWHdBH14ft0TXagX0NRpXKNdcJNMFKAxx0Cj2WQZ7PwRPzHV7/F70vjuBPPiBtvvY8074tjB27V9dNxV0RZ1yFYArjSjdtGJ3OmDTfvDvrUFO9DaHdJGeBNIWsRk+JhKAtHjSAOWgUp3PMRSHp2xtHHHhZf+8qX4i3vOzfuu/7/xmGzJsf1V/8WVxmyjSFP5Frm2qayjPnjZdDLx6+9+OKg6oEcpT6oqvxiZf+sB57grNJllmgCH7LLI9H6nXn6GTGmblTsXrYt6oomgbgiNENc70F4mzv32ARM/Pznl8fLXvYKcgbjC4j2XwuIZggh5IhFDwVLoq2vnzgkaM3k5b3p3ltj4oy6uPyqX8XH3vJRVBLk9MUV4NMf/XjMqJ9KxgqCPzW3x55txDiAjsycPB2rh3GxcW1DCoK5dd362LR6bRw1czZuYW1xeMHMeP/bz4vRx8yM2YcfER/+wAfjyit+HWMIGDSGADgPLn4wZo+fTdyEjQAuEHjZSwjTYLeLFHRSyww2AiMCF5K5QwbhxBknxPHH0WbwmG/9n6+lNJiVIM1TRo3H/A5Cv7c9imlvOT57PRBSsI3cQVuN91AAQfUoZEPSdaEIq46iPPMUd5Chgz7bsYdbF8UpLzkxbr76euqVF6tuIDrw6iVx2U2XRP0hE2JTU0O0DzRjvbGFDaMz1jVsBTknBeqSlbhM9Mf3v/s9TO9q2IQa4riTjo6mli0xdDgoPZYlewiElD+U4FDbmmP8mMnsiURLJsfyRz/04TTy+mqLoOsmIoOnj6mL/L7770+CyJo165Ppv0GxamA6NAeVEc4EvMGC6WDmzc+9nwyiZqdqeBR2M+ZJjaqghL83a4FFYUBmzd/I7PDzx8vgfeTxi0/xQmbEoimymnCfYwA3GSrrIHOkcOnZOvr9rK7W97kUBVO/q5bFgIPOE+vsvbzuYTs9ZA6zOnlvhX8LfEaKJyBjaV3VzglA+F3rrD99VnpxPzKVbcYoZ9f/mrNmsdZP4VNBXqBDSwuFT8GCbFy9t68zYcD31i1j2rPPMyHBs/VWOPK1bRcU+PSnP/34bw6EWXA2f7L+zfpcLaPtsM5ZnbI6Dx4Dmfys+No+yJh27+m80xLE+9gfjq1A1qte9aoEMNl3TzUO1sPjhV4cb7XBFueigpDaWcffzBe6ZLiO7QPb43zJQCPbvXkzAckQcrxmH9nv3idFZd9/bGy/u8/52UQgvALorRpnx3AWMYaMcWG9P/ShD0VdXV2yGHD8DXxLs1LJzvtdiWe4gfTNOWSxP6WB9rF9naOlER/84AfT+pQ2fO9730vft7+lMbbJ3339619PQqlaaYt0aCs++Ad7ce0OXr9Ze7L1NfvQmclFSFDTuWfxsxtvujWBDlqMnHH6KaGLjfuUlg66FKU9iODWFueIYz+YlnmPA1EcW9eYIJOH+4wAu3uPwIhrz/ZJfxXWBZt1C7E+WhW6Nw3eX61jBmZkIITrzsN5kIEC3tP5s7+F26Z+oetSqcbMfsWKDSnDiM9csoQ4AsQ86MSaUsBh1eo1uF5sSbReWmqaRAXxi3+i//1AfPU//iMpYOzfUubv37pYf2mZdMy+tk72dUNDQ1SzRroADSorR2ClQRBJ+FqzNWBWwH9sBPqZE6SZnDa9Nr79zS/Hq895eezZ1UD8sW1xyklz4sS5WGsS5yGIvdSzBzdLtPfGQ2xiDA2sKbjSA+Ag8JCPJn8Aa9LECufDF2BRm6xLtYbgwAiVzBj7Dl57zSOPtJ39WGH0cg8/7+OMdiiGYhVQVjUsamZOxb2D1JibNhgQK8bOPDTKx06k7mRnw7qguHoisb7y44xzzo8FyzbFj3/5YGzcMxC/vmZt5LNc1uLNiR4qhqLc0q0Yw4YAE0iH7tfgnwls6GE+9Zmxg6MXvw8tbmFDGMM83KBzP9y6pR2+0mwXdAlGjouWrCUmyJGxBDePn1+ONWh/URw+96QYXz8zmnhoQSkZlgAfdLXo4ujQlYSJJhghfetjHIyB1dLcRJy5BtyrSTOMRq68iM9wu9i9Yw0WEMStGCDQ7DW/jXH14+LKX12Cawy8d3cLgS7pMAJr0qp9B5NBXv/F8g/RA0zVF8tB2wOuw+wY9HLwEi0vLos3nfOGGFPDRp3WLQSITW0YZsfLHlsO+HBcYHNGQKEfx6iisTF+nIJcG0QeKwDcJB4HHgQdkhjrpp47BtiA9nSSigp3gOtvuyGmzpwW3/jNN+K3V/02uhBUOtjI/njl/2UP6ImXElOiFiuLdStWowFujZFsGG0QfP3g9mxvinlzjiKrxX1x+kkvjZXtyyLWb0+ZLy784pdiE4JyHcEaFy15lGi5mHGNqYrlXctjzMQxaJw19qJmVInq5A4uJOaD9xXDCcIDWNBOaqWx+NYtWHt/Mn1/92ffG5vvWx43/v7q6AJwmV5bF7VVowBJaDsuIcDX5IZGCwiD29vDzo0aSkbEPNIGrawcPgwTsir8CUdDQDFXKx6GVx1IOSZso7Ec6SdF3BUAOlMOmRFDJw2LUUOqARmI5g9RrRxVEUvWLIpdbbti/aYtsWHTdgIdgXQTwwFoI+66486QKTtm7hz8AStjxToCRe7aFI3NjXx/I/mY2/l+JzmY8efW347+PfWl88l3jRDSnyPOiVFiB+mBcfjJJb+Ml5KGyn5IAikMkBqYyuGVfN+owW1/xiBmTJFCiwKc98oYI7o6xROQCVSLp2b8nNefkz5XOFVgte+HYjHis/h5YqozBt3f/yVFBskiw6ewq/Co5slnaGkhk1dXV5dMY2XsvJ6dn8tzvKcChAKp8RgUti0KazI8ttu6Dz685jN6MaXNBHCVJoIi9pVMkv3mverr61P0c60oqBymortzZrzMzXwZkf0sMqtZe9Vyq51TO2SOeZlgBUnH1+9Yb8fWuvna4nVLWi/pVe6PTISMtlYPHvazzPDZZ5+d2mX/ZEz0oJ/9xS8VwCwZ0KVA6X3tb8daJiYnxOXmwZMfMFiwydo3uF7WU5DMa/o9C2goIOiT772fqtgXHlkfPdV3XkjXbJuWI/al80+zfet//fXXpznpunR+ZxpQP3NdORfUKGtNZF94KEA53hZNxZ/vUoS/8BiyKFHVNIYGatywoTE+j+m34J7tde4ojGrF5Zxdtmw5bSqFIRa4YgtLx5NtHp5aKP5L2+uznYPSvSfWEvIFAoZmzD3sI9OnT6O+n090oAGhyWCJ/k6hVqBSCy7HRrpx4YUXJveC4cNK0nj+pfV5IX7f+fbkYp95qDF92cteluI3nHrqqWkOrkGoV7B3fgpI3HzL7WleOr+lQ471qJEjyBaYm5/ZvbL+d90eqLUrPfJeWgS5PsyQ87GPfSzte46dMY5cQ7pXSLOuvfbamD9/fto/XFdVBBb2t9k+YT9k+6v9Ip31vrYhK65NabT70v4Wqp4svfoGmdFoEeVakWbILtx3/wIyGAxLfe6cVHkgiDYw0J++s359AzRUi6N/j7e/4+3468OrtCKdPsW47m99n/x7AxlKu9xL7TfXv0GCXee6hkyffgiWQyekMAwCdoVDiwAF4KIA94uGlRLEu4FbEkkhryv+69tfjcZta6MIfvc73/pyPHQ/QRNRzlWhzBF4GOYZF2UmZfSznruw8vCQ3S0UMCjBtZNzKfxfCcdQgIs83gcAA+axWKbmDl/nrg2Nvd0d6dhDkPDdmBZ4+NrrzZzzCZheWILrX011jK+ri1HjJ0QJ/GPhGAKTHzYXHrkrjjvjtQGrFyU1BMVuGxKXXnld7GgdEhdf/lDcdt8jsXxtc+wFczE7Rh7VF3TQq3NPK5YUWCF0EECzZwCBnxhtAwSk8OhHC6jlMiEuCEAJCMHvhmOJofvFhvV9rLnF8fNfXBm//tmvY84xJ8RLT3tFNMKj3vGH63kGvO/oSdS9IiqrapAlyKKCy0vFsOG495L2mT1kOPyxsbrKvDHP7gYEgjkma10XNr4dxMRg/vTsjR1b1sbkSWOiq21PXHXFZcgpVfC2xIPAai0BSEmVOliiefIMefH9wdoD+8/9Hqwt/0eq9xP71uNYRHbJrA/HENtgy8ZNUVBTEPevvi9teFXkbi6AARqKe8GR846L3nWd8bub/4DJ9hxobT5BZ/ay+QGnDgYc9OvYBzx43WfMIpViS097vPm8t8b1t1wf9VPqEiP1X5dcGvn44t1yw42x8IGHMaMaGXPnHBndbCYNq9bksltAqPpBTEehgR9bMzJWLFkW86YfHVdcdnlMO/mEWItP72nz5seC+++LSYAPO0mT2UrQxklTJsWSFUti3IRxqTrugQp/buaJ0UkXntBcjkJDshkke/Zhs8kHfXtMHD4xTIV27Gvmx8J7F8TKhUujA9eH6jJ8Bkl5ZFoigwEVEogINiaZ48kMDMVsrgjwoRizORmhUjJiVGIh0onrRe3oWtwfmkFtK2PaxKlxy3U3xo5HVsSW9ZtiKZGC/8dXPxVveNM5AA3r4qFFD8QMgqStbFgZTWyq+QXF9NneqJ80Ba2CFhxYlOzdFeed/3ZyOJPHuXlHrGpYgZlfe7TtBv3HiqS6elw88tBiYgd0w5wDgJDqiL0EQKJRqSExTApe42troxaBa86hhyShopb3P/jBD5IGYX1DQxLsZK7sN5kgmWI1dzJ5XrOdGQMmcyVjpA+9puvmMVdQefvb356+IxChSazaHoUYo+7LU8kUemT8lYyWQ/RcShEWKy3GDQEkUKiWSVfYcjw8fK07hm3wvXXOmNDncn+ZLIsMohoVBV2ZvmuuuSbdyz60L558zzTP+F0Bm2RWBGNklGRG7TP7RjNcfbtl9M7BV9U+zH6b/W5/zgozCi0K2DJnWU53+0PmVybeOtkOi8/2s4zZzbRrWZ2ys/WXwVPTJNijwO7c8XOvZb/bn7r726we1smSCdHORf2m7XvrIpOegRDZfHIuOj+z4r2y977WLci4AIIvaioFHrL2+VrB9emK38u++3TfeSFctw+cr/aRc9h16ZwTSHOcTB3rOFpcn/ad68S+VGC2jwTZnDte1wrI/nJvGBzJ/vlq614dmSktLbkYLI6jwvq2bYDTtFtASZru9Ve+8pVJS2p8EqZLGj9pTu7ICbvOi8HHgWiXfTl4Tqr5M/iaxTnk1LZ/tUixz6UHWkJZD2nt3XffnUAI21JBGkDvd+NNtycG/kDU7/m8h+v6yWtpcP+bccW1LrjsXHaOTgXY1kJE2u5+8vvf/z5Z9NgO4z8I0HQAuEtLFaqdtxkd9x5ZsR/3t7gfSl8tAg8CH64XXzv/pI0ePlf6L+13Liog51KoIjRCo7QwtJ1+z/7oZD/w7Hvb4WG/2H73OdfugSjO/dJSg6ISE2BvF/tna2qP+4Rm8vbb/YAP2d4vgO3hfHVOWy9dXMxwdt47z0vAQylCt6kY+xTM97OoBBl85NaRFnryDeigUDy55xuHyb6Rt/CawLTZRkxVaUacvXuZDwAIne3QCzTuMFLcoJvA5BPjwXtu51JrTBhfRdaGewiuuCvuvuZKsp2tJqZYSxQyZfIBCTtRig3Ajw4HiBnK2Kp4MohlVw/tlL/E4sFYBgIQRfSbLhQFBKPM5xiy7/xnrytKcm6yKBkGABgEJPqwgujJB3RD4u8CiNi+ZVMyJi6tKAUk6IrNBNFs2tsS/QVYixJ/oXL64bFoFRa+WNWu3NgEeJEX46ccHjfc+WA8sARXJBR2d8EfL3h4PTzxTtw3WqOF2GMdKMyaO1rIoNFCojni0AyATuD6kFfE/BsKKFsIP4YFhFnHdjb24H7Bx7Aye0jFeeutd8cf/3QD474ojjr59Fi+siGu+v21ELGSGEscswHqtrphM31CVpFRY5LlScUwgbZqXKNHpj1oONlGSsuY96zvcjKcjcDSo7QIHrNjT7Tt3Q4eQSrTEgCf8qHw3w/Ct26J6hGk3cRKorKyAtfmDqwyAC4S+MCJeZwrTzCOj1/KPnrxfFD1QI7jO6iq/GJlH+8BNi+Jon5dFpelHvKQuXT4uqOlFYZmWOzYtCdG1YyJe267N1obYS7bh0Q5AQ43bF0fRx53JK4SET/63kUxaUR9jCkfH0O7Yeo7uQN5O/t5Ti8WBhLNlO8YIi9CmkdayAfvfiQOnTYbQrUgjj95HkTxT7G9pSFmz51CvuItMW5UVTx0002x4MbbY0LFyDh66qE3tHNbAABAAElEQVRRhatCPlqLIu6pP5iarR9997vxhlecRfrBnfHQ7feQmQOzOeIwLN+xOCbPmRi/ueFXcegJh0ZxZQmb/fI4atYxsXsbeaaxgxsQecAyI49jCEF18g0YKVDC/10tu0lpuQezt95YS4Tj2XNnxHUP/Z4MExEX/NPbiBDYHSseWxhrMe8sxg5tGnEUaktqoqiNNmNdUFEEyl1MFgyEYGBbuyPX52gFDIQzBFeIViwSRhPoaC8WHGOH1cTU8XVx5w23CLiT9pJ4F72N8db3vCGuuetPsa2zKarqx8b9y5dGxTgiRpcOj7EEvWzDUa9+0uTYS85nh3PRjYtj2qGk78IkrwBC3oQJYDHPCAAPg3YePXVWNK3eRIDO4pjNBtXV3hc1VaOx8ADyhuEbRrAzfQvXo7U487ST4oYbb429MFFzZk1LAMOkujp8PCcmxk0Ngp1lSsus9BI46InizGIbQE2yk/pZZGoeeeTRFMjy2OOPI00XMT92bI9KcjsLbHksX7mCjZvUh2yEuvn0AKzwP8UmSfM2d9t0v6f7o7vlbpgOg2iuXbU6gSxT6yfDWPTHI2hwymDeZZZkEmXmLDJxg5nQp7u312V21PQIbijgCpoofKk1lrlROBNEUPOigJcVmeoh7Na9WJ7s2dOKgNcRixYvgbHbTcTsvfg3VgBOkZYU65JV9EMpzMqb3vRGtAK4JMGEKKCYpzrhedlN/4pzGdY5UwBfHD/zfZvdpLFpJxs/aVhZ+wYQ24Rp/d7mFroMwYtvetbMtpXnO6ZPFPsv14eOv/OhAFBLQa+Fe82adWj66hCeMwwtx4EoBurqQ8M+lOdYTP9aBWiiQCFTn2kGu2HcDaCaDqJh9ew7FDWcqc2M2V4Ali6+Z4vWb9gYDz70MNZA5qgfhwAgoNYVN910M2PGWkFLVkpAtaxkAlH2/mA5t7Xjn8wYDqfPbPecI45M43rWa85O2szN+EXXwqBPm34IDDN0DIskv9fO2G7duo0xbo/JU+rRXJXSRwSZwwzXWaLmyiEZPDtYYEwPDxalx765sn995XzzXtn9cvMvu2cGJpWwZvTvZ+qhbRuOdd2VgI5T0DzfgEnv1iQULV60EIa1mPkzPB58YAGxjVgTNMA78irtCe4L7hPpSFezJz3dOffr7C5PPgsVF6BtLQe0Vuvq+kvrC8EM0pfo4q233xEbN2+M177utfFmMiRojbdu/bpo2NCAYIU1W8M6Oro/XnHmy2PhQlJe065//7cLMT1+wjInNw6OjYfAv8ef99XTteD5vP5k4CGrS0ajBWnq6yYkcMG1LnCm4K0wrNCvwKkgf9tttyVLkW0AqaeddloS5vMRBgUYpMXSC8+D6b73299i/V0n0mozIlmWLXss/uVfPs9ekQtku3NnEzE9HopbAEsNVKhlgUCYwOdOXZhYn9Ip6a37YT9zsL2DvYQ1NETggbo7vh0ArRsBHlaz72xnz+lnH/P60x4Mv9an8j+5w9fOD6/njj1YcvqaZAu4V+yJRxY+klxQx2AF2ttPNiD2sJ24pe7imHHIdICA3phSXx/rsFrcgJDvOPzhD38kDsc/k9nAfbyPANadMXHyFNrEjfer5FxLpMe5IxfE0THthV/wvJP1MRnFUxsgQA38D9xe3Ejgy1baUkWWsKmAC8jtpEXvZg44D7BCwG0YCZvNhBSZe9rimONPSnzJqlUrYsLYsrj9lqvj5a89PRbfdU2sW7UAS9dV0dq0LprWLY227fACuPJWMi50WHRhndtD/JZeFFJUh/kF7YC7TnwnrwvZV/IBY/IRtIcMOvKwvCBfe5SMHRkV40dH5cRxUVU3PoZPHBtD4XeJsk4E0+I46vSTY9bRh0fFqBHRh1vHiLGjYtacw6OGeGjbieVVjHKronIUwv5WQi/CkxeihIF/rxwzJYorxsaqNQSSX9SA9crSuO+Bx+C5tqDQwgWidyhxIEjf2UXw+B74jf4S+HjqhGsxwSfoRSwm4Z0nTMYtoqcwHlvbFotWdMQd9y+La4ktsWYjsdJqZwBc4II9opaAndO4H6A1re8i2GYRnT50eFm00+fNdFVLHs8cArhWQPypfPjIPgBveN3+tq1RTsC56qHdUdbbEp3E39i1fiXhHoiFxd0evvWm+MT/+BSx5tbH5ImTcGMuinbWSRt9rmVFTqKRI/Zwj8gV5/SL5eDugSdG8+Buxz9s7bPN+6nOaT3Ks8skMpIAmVHCUQbTU8IxlGN4RWXa9KYeOj22LN0Uqxati1EFRC8eOiEKm/vj7kdui5Nfe0IQYZFgjzujoq8qppbPiKMnviT2rm+N3k5ABzi4rmI2nYKuaB3ojk6CPfT3gWp2D4uyjsqoGzYJ0398Bvt2x4ipQ+P+ddfHg+tuiE98/SMxrEw3hGFx7bcviilFo2JyyaiYRrqezkZcG3o7Yu3mpfi+5UcVJqqzJ06OIU0dsePexdGwbGl85j8/EU2xObYVkdnikPzY0Lc+9vSy6VRgcrmxK6p6R7IblEDC7ABTGIFEk0aogKiM+Yk64ategjacvMIdRfjvVXRGZ8leLEA6Y3Pz0siv2BsTTxyBK8SOuP73V0Y5Zrrdq5vivJNeF33rWuKUWcfH0N4cY9CVTyoiCGsXAYw0X0vpmIb0YmpG+0YTuRp/tg0AGGfPfxmpgv4jlqBNKKsriZuv/X3cv+KWuPqhq2J7wdZY37897lizOLYwTo9s2B7tpEQqrqhmEAvi5HknxZf/9UJyVFdG+czhsWLTxtgOs9LJBrQ3vyj2EtiytBjhFUe+vM3bo5Y2tz22LT74zo9G05a9uHVsIWpyPck2ehHGsI4gP/LRR84h8BLWL1h9zCVmwtV/vDYhyivXrI6JCB1dCH7FaJi6AC0GDOLxOKfDhNr3uoeN19emYB2J0GYg0m9/67sxddr0OJZgYKPH1MStMIeziJlwI0CTDFUx2h61Ay0IhIthwppgIgsKYRZBH9rV+nB7Xz/+OHrA11lxb1FwaMHUbzIb91ABL/qiBhO/0SPQCGCV8/D9D8RhBFe0yHhmZTAj+lTrZvA1td9qU2R0tKDQ91rLDoPD+V7XET8XgFBradG9QqbM++TTpiGkWd1I8NK6usmADSPo82Niw5qG6IDxs95LHlmIS00bTPN82twb25u2R4GmmQJZf9Zq3z/3ovBRXVONO9IyAkKdxAa+Kb7zX9+POVg6TZ46jU7JJ97JTj5fmvK4GyBThaw53YsApkrL4NqoX2sLgcPo6160PxKSTQQxvfmmW6O+bko8tgwAibnh8ZX/+E/WPTRlWFU6P/eaPv03BTdaYPI80zkJrDnmqKOjFmCujblz5113xTUwmy1t1hlTYNqgkOexh89bAYSoNYGtynDJgqFiYlFFwMLi6GRur1q9No47/kSApHXx8EOPpvHphLHpZg0JXGUlmxPZ+4Ph7PiXYf47BOHFcXX9KBBMnjI5Zs0+jHS7w5kP30vC8UYAqC2ASAoOAoA9gHcXXfwTgAlSCMIAzjhkapwy/7i4Aje51rbm+NVvfgU9yWnl4LHT/uIeY///2cG9MuDmLz/r3pRz07L/9RvWzNqG8DZpPnsALi00EUG0EaEzCJh7CRrwezEZbsJNcHRs2bQhbrrhuhhDlPs+vl+JcN8IEPqzSy+LtYBv3YBOLWgTC6ARBayJVtalwoSvU6fZcU9zJDrEx579TTfroB/AMV3nj3MvL1+mHAAMurZ5R2N0ssaL0YS2A0Bs2rYllq54DPe7qQD9G+PYk46L0uGkm64ZHnffe2f87qorYumiR+Oc174GWaUoasePjceWLo7XvfZs6HRhElZzD6OK6Xn7BEw6SCFWEPiZ+p1q/U3LMz3bzxzXJ5dEN9kjtKwxdpLF72qt85Of/CRZb62Dxmr9YLpSg4gKAjdg5VW7zzrNNIveWc18Bjj42nsLKFu0Knm2kvrPtfM0RztKgUMBHdrbOmMRFpLOk0LiQS1auCQ+8uGPxPRpU2MRlgE3AFYfeeQRyfroa+who0ePScH3fv/HP6U9gikT6zZuiVLAiTysCtQio3TmM1Ie8s+dsBjgrJ49efqM6SlItg3UXVTr1WwOGIOgpY0gpz0EuuZiN+CtAuF2lAKbWN8bABvdxtfTX+0oeHbsasLvf4BsCN1JEfPo0oVRVlnGHO2Mw+YcijXA6Ohs2YPSBnAXq9LZMw8hq8U1xP5iHgOGLIGneR2BPc981aupLKkiUWQNLUEzDfOZRz9Yc+v/1/0jECG8R0sr+yT02sOAwF24ChSj7PnWN78e9919Z4wZWR0P3ndPtO7ZGR/6p/fEJOq8ffN6spXNjkljK+D1iJEyAiCZwSxAsRV5HAMI9wMVWDCQkr0PMAJe6ZBphySWeQZZxt5+zhnxjvNfEetW3xRtzY/E3m0LiPs1EMdOqY4W4nM1Ll4YFeyNhbjC9rcSaBL3h4EeAK6BEmJCNMfOrc3woYKhWGGiECoEyM6Tj2LCtQCEtDBm7dCsLrT7haOIBYZ5RWM/sdaqiqO7DLpD2vRpLzspthMzbWNLUzSTja23ZEjsQPm2hRShLSid2ojvtW0L/O/qNQn0KEex1dI+EIfMmhvllROirv7oOPaYs3BVmBPXXf1o3HHbqvjMP38nLv/NXfHrq+6LHXtKYtX6nli3eSDWb86L1WsHAM56SGnZBk/SAjjWEZ/80s3xtZ/8Nh3/+cMr4w+3L41Ne1DkVEyO0fXH0JayKKgYgwIPSwmspHG+jHbcJ4K4DdsBF9Y0b4/tYCJ76P6yiZWRV0bK0K2LomTIjphY2RmvmlcXx0+uiDEDu2LLQ7fF4hv/ED0b18YYl/3uXfEZgIc3QOsmT0CGAKST3JeUVAHQIiOwFfCOYx9owni4DqSDkpWnIC3+4MVykPRAYn8Pkrq+WM0n9QA0N1kieFkCTCyZHDfkBxYWaDeaLYXB91zwvvjshV+IzWs3Q8BaouHRNTF78sx4dO190QMqOWr8mNixYENsWLmJ9EN9aMlbo37c1Gjq2ZwQ+N48TOdFN2Dg8kgtmd+HoA8SWYsmN588w3lsgiNGVhDMJmJD7xaC5Gxkg2uJL37hk/HqeW8hPfDo+MH//mZ84MLPxU+vvZJ67Y3K2goCKBKNeNe2OH7e3Chm1/zFDy9mcyuJw2dOj7Nf+8pYt3d1tOaDmJbgBlGMlgmJtBCntqGguYVsKN2g1DLFqbm0m8f/WRmgYwawsMiYpDwsFfphOvshZODW8Ycf/SZOf9srY+f25vjp935A+p/xMbV2Vnzqgg/HD//46xgAFwDvh+gCOnCvIpBj5M2kOSuAEV+88N6oG4tLyMaN8cH3XhDjQakfRBDX53fIUAI47V0edy28Nda2bYgJR0yJ0iHDYOoBXshAcsjhR2Ju1oaLoaajpHuKqlh67zKC+syMRuojQ9FLmqQOhX+0663soTPGTyGnNObSCIUlgCWvfPXZBO7ZG1MmTkMQxXcORqMQIa2YPukkGNMILBEuueSSJFx/6IP/FHdhoiyTplXEb664kg0fEkC/laNBV+OfFZkyCzI5ZnBVfNaFhcpINqzlKeiX+bVXrFiJD+i5aHcwzydnk9YNmvefTHyJH/7g+zAnBZgtEqSLYyguM6PHwgjIIGCu6O01Y0wManrSk/7wBboZpjCnX5mCj/5urAoMkmldx4wchW8gFi1WkGKbspIxo2q+MnPc7LMnnzPmOKdt6U0Mq6DD/fffH+eee25cdtllCWzQxFZTVO+pabqghX6OfawFTTF/j3bokBkzEXLZWDFF1DVn+tRpcQf9vRlt1oc+8AGYYrR0mK+WIpjIsuWjdUr98ORK/QXv2a+TxcUpp56WAod9+zvfTQy86I6a7jKETP14tXRogwEVmClGWyOp8E8x38EyknHrxMzZ1Fx5mIHfk7SOQxHm1fLdcMONcemllxJEU/cW58OwtPELWpRjWvpXFxvPMXxfoDnBEpfyUUcdFVdddVU0olE0fsFGXKbGA0b49T3kcXfMRuCyJRghcJbawmdqHS07yZCzFbDIdtbgzuWYHDb78GSe79xJGkVupkCRpUlNPzwI/9gnaaFw8rVaVs9aOrzhjW+KH/3oRwCDt8e73vWumD9/frzzne+MCy64AFDn7jgBwMp1sw3Lgdra8fHAg48g2P+M3OydKdNIOZq7dP999+b0Z8X1acnOuXd/2d8KwBMfwjLH6gWhjPXRwTy1XprkS5N0xdF1ZCz04+KLL2Ucb0vm78ccc3ScccYZ8ZWvfIU0lVfE5z77zzGO72jVshCrLN0Y7qDtZpsYwZztwhzZYko+yUVT4x7y3GNN9gzFrBVaVQmcFiYXqyfojPXe09KWUsoJ6LShza4eOTL5ny9etjz5/7v2RuIWd8fdd6UgmRdffHG8/0MfiF/+8pfRvLk52hG8pk6ZDKC7Od74hnPiG1//WtTV1SXas33HzmSR5bqVTgqwZnTONZDP/mPf70//P0PT/y4fbdi4OcaNH58CHGrpYBYaY3mcQdpY3cV0sTA+gXRcCzX3MoFfwYhk5YKFDt2Qin3yxD7/HGO2ZBP8aVqbBx3dhUvmyJEjmFcjcOvZmWjKvHkvid/+7qrkfnELc2ze3Lnxne98J60xb6WllsGem9jDb7zlrrRnjiDuVjPWnI7hEDT0+QAvPt69wOJoFuMn737iWLuSizA9t01wX+k7EkizMNhWbCiYA7k9pAQwvo+9dzvxXdwxjeMg+KK13g7oqGkp7b9mgIvZCPNTD5kWZ519VnwfcFL6q2XBRRddlFxHNm/amPY519Ghh86OeaRnr6ufkuprJTDeh8+QZ8nVMcd05qr3l/zNZq/7qmOtu4pBpS2Obys8heOu5WAJbT5s9izWbikAYHuMh5+cPrWe7vjzAdQiCCY13cM/XZjv05X0lwojLW0JCF1dEWe/+vQ4as4RcebLXhWf+fxXons7ygNSPu7aDliJxcEhM4+KRtKfd3RgJYhA3NfNJMOiolAeGH6N8KCAFljaDeH+8sPQqlQTQId89lCJgFkyHMvOXgBfFFaF5UXcAmuX4VghwLfsase1BouBXj7rLWDUGNN+7s8sho7jZoZrxkjiijRuJ/YGoGwv62PvJjJ8bG2ElsGPsZc1Lloc4yoAPgKrkIIaLFHr47GVjSiKFsXtdy1KAG2R7iHwl4KmHdCzDgKp94B8ybsUllQCUmmN47zCggPLg7whWNH1lwJWOc6kroXBFmzKrGrUCuUpbDgXxxLvAQuO3eubYm3D1iBUTUybMjJOOuoQ4mh0xJbVi2PB7dfH0vvvZDTaURqR0eawWfG2t7wpXn/O2QAkW2P6zGnU3y4TPMSaFP6+UFOdPK302BP+W/nzMf9vH7944aDogSdW6UFR3Rcr+eQecNGmY/B69MK+IkEzDaXRwdnFYHK2EKSwL1YuX5GYtF60BMtAmw8jUB1WWvH9H/wQP/FVKZBPL8i5Zqr65Jm7WM1RIcQBozPOpMtBc1HG5tDaspfNqhNB1mwImpQbJGgjoEJjHF57WIyeDGGEGF+PNm1a+WSY/hZMYxFgUDeMZoNjTwDs2I2VRDmxEq5H818V58IwaoKd/MsR2hRYNXPv4zfdvO9TLU4d3KANjPR0h1s7X6PYQbmjH/WtgqCmfYv3LIz/+u534s1vei3+brsw7V8VH3zV60nYUZOiHg+gPc1TaKQP8nmOdhD59KNgTz4c82vPfEUMR9AciSnwSFwdvvz1f4O7LYpOLCV+fPn/R1Ti38YW3DK6sJJYuvqxWLFqORrXYlJqDo8mzDkFbRY++nAchdZkxe7lUTqqEDP+3fEOop53wJiq6W/bzSZVCQqCmVw3AtOkcROh+/mxZvXaOPft5ybGQmalHKFW33yql4qMhwy8vv9uursxIZRR97tu6gqRO3ZkbhT4ISJYmx7O32dCu33n9zOXA8EF/Vob0EIZuNR0ZzKNpotTsNU01aBQFt0hsvgQmk87F4eyGfs9N7suBOJnKzLvFutj0EaFfqNfy6DKhNpe6+aRgQ4ya5bsnN48zR/7xmLdPOrqcoy/mS8UEM4///x0b5khNWoKIr7WPUPNXTGAWDubucyT/vY+0/voxiHzZsYBrSYMUuZ1LR/0ZbY8l/qlLz7DHwEgTZP14a2vx1x29erEwKm1MlibcRoMrii4ohWHY1yEEEVT6D9dKzoeD4JZiIC1EO2egdTUOL75zW/GmmJjnIkgoL+6wf/a2wExmIMW+2J/SyfCZdIEcqO2fX7OptiUWbYN+vtqvrwUSyjL48IXNKgMcMHSgutBxz4Tdc2Zly1bllxm/My+9l7ORe/j2E2bOi21288P9iJp88jWfFrDgo5EUjcWi0CCQpFr2LXq2WLcBN1a9FN3Xp5wwrFpnruejqL/ywAeNpH2+O9VrL/zr9gAbNCqJKBR1dGjq9P6MYuH6/1b3/pWfPSjH011vgAQxbnp+L4EYdDUh6bmM0aAaX69h+tboWvt2g2pKc7hXEwGyHQGej1DIwURBR4GF7PVyLyLe9qf3QhimuX7LLa5uOOue1LAV9ec9EofftfPlVdemdaV/e76ci4Krvg7x81xkLb5Xvpm/YsBhz37mXEDjB7vaw9wmoO+TJwwHnB3DZmRTk/xHKRRxn+w327Cis5+0N8/o5XOAWNmHHP0ETke4s+HJvWH+4B9n1lA7E8nlWB9YtBe6R5dnuZMXV0dfE5hivkgnZe+6pan5YaxCH72s5+l8XZuWF/H3fgPjqNztRjNgGBaN8Jgb7/7LcImBLkbta+/KUbDXIiw2NZBJhT/AYA4P6TVtsvi97XEuwVFxwMPPZLmuHPJa34mWC744BwzRoJtcM+aNm1amnNeP/HEExNAZ3/5Hfd14+x4to1+39gWurloYdRDfS1affoMQZ/clXT5L/7jbz1ch7bLvrLYl8YwsrinGsPF+eC68Lr1M+6GGaWerbhHuQfIc3h/9xSLz5xFWsfXvfal8cmPfyBGjK+JjQ3LiY82K173mjNx8SBtOrESWP7wvvwGi998gAGPoWTWKMai1oCIfViJ9beSEQrwZgiWI4UEdyxmTEv2HVVYcAzA75bDr9ZAU4vY/yvhgUYghHfs3QkfhK0EvGI+aTYYcoR65wMKMq/z3C7iNuA7jQUyiiFAl0Bx2MXz+vdgLYFCp7x8OFgIfPiwkbhZ9uCiMTp2EtujvTs/Nm7bg8IM54YhZdGbB3M/lBSrWGsMq5kUNeOnErB9Jpays2Pq9LlRN/kI+JXJ7BvG65rA2JYmBVg/2sQBU2hw5HEMQUGoVbEYTD58dPcu+KL2JireznocGpNrq6OMmBL33HFj/K8voWj83/+L+2yKuqmTYjR8xbHHzYtPfPJj8d73nxfVY4fHzFkz0rpwTOThHKdsjzoQ/IX3fbG8MHvgH2D7emF27N+1Vk+1A7AxWAoR+lzM+qCTFyeBCMNATPOQ/prYCBXob2TDGY9p+VGnHB+3//J2TOdvjhOnnwwj1JhDIyE4GBgkS4ciTEwVvDWZKRYMgNiaDqfc9Di8bodQ8hWiBJO+CLeK6x78U5z/7vMAIrZDrTC5x8DMQDu148ZASzGlZkMeixZ7zfKVMWvYDNRRHbF1w5Z4LRr9B2GM3aTdmJJfJLtdyqEMCAAckswL+3n9dMCD193esnP2WvBB4EGT3sceW8am3hYfRhs1A23A6JrqOPS0ExB6tmLWdwRAC+aQcB1lCJrlbGSlEMci3ufx+wE2sp1oZQcwqZ86Eb843A9uvu36mH7kTDqoO4ZNrI6lm1dFH24fJSPLY2fb7tiyHUsSTCcHePamhnXa8ib/RX0vGxu3x4jqquQH/KY3vjE2r9+Qoi93N+6K+jG1UYqJ39olKyD6MCgEqWzZvCcJ+m7KBptzyGXcGW5Q7ZzZqQyCm67Mx7BhFYk5UTiTsHcDLuViGZh7nDbCsMiI0Lz0ntuxMSDcsfGPwMKlqWlPYgzVpm5FwzINBkCG6s4770xai4ULFyaGRZ9XiwyTRQZNEMGgVdZH5sVnZwxl+tLT/MkxWQrseYmRUjhqAPiwngJTMk0K3zJmPs/vy5hb3MieS/E3zjHXicyOQttnP/vZOOuss5LG/00EipQBsh0yP5n7xcqVq9LtZZhNFaeQoVWEfWP9DCp3zz33JMG3plqLjfJUz4zJys7PpY5P9x0ZcQEenycAotVLFQGbHF8BG4EENUpu7Pab422xvba7Yp/lwsiRVem64ymQ4Xy67rrr0m8cb9ehxYCrjptzwYjU+1ucr5Ze1pJ1VFg28KdRxjMAR+DKtlnsQ9ul7klrG/WB1sd6W5yrttH54DzwvSCQ8z9nRoy59Ec+kj433ek/StFn2uI8yMZKBv2fPvjBWM/8/MIXvhCf/5d/Tp/dhsCiMG//2Ddqm41dcskll8TD0FyzD7iCarGGc2t5psNn7k/pRuvGNEw0x7NFWuRwao2zdOmKtM4V2AXQXWuuK9em7k+ufy0bnMumZfzBDy5KQpVCq3NAYUvw76677kpgi/e33c6ZxOTa0Gc4UCw/XtxOOgkj77MKAQEwSiMlNe6HaDilS9KIxUsfSzRC2mRGIOeua9DArwqDgoGOiwKU8906OEelHQIrp556atTV1SW649owsKJgYSmgvmCDY1GIZpXtIr1+vHIv0Bf289MfuUon4IWX0inbbB+YctQMEq5Z17O04H3ve1/qT2nTHrJx7cbCqQflgHM+K46tfeqRjfOzPT/77dOdpemO506yYgk6CLZ3MA/U0n/1q19Na0hgXLplXbTauvDCC1OAW2mptNi5afYh54HTzTWqlZn117oiH6aJrmIduggQ7rmPMWp64VWMc9Pd3cNvWuARmqC9O6nD7lQPn2lQTteze5d00MM+klY659xnpJkK684/15KWfQbPtK/d952rurm4dzsOXve31t39xeI+qzWl5vHZ3u513T/+miO7p2fbkYHy9rVrZjYulT7Hfcs2Wc81a9akOWF9n0vxd84Dz65F50JmTdXTDYiIjP+xD59NRrhXxeoVC2PrplVY4R4Wc4+YAfjQTJBE9hYyZWAUCCjEXO4nDhKSdxEWDD1dBHHuAhSAj00HfGQ+LiMFKOI8DwEsKGOwfV3B4i3ndQ+xKvJZ98OZ5/nwkPLOefDFum9KT+SdkfLTdbg4gpg3wkjhYox1w/DacTFy0sSYaIBx4kyoABw7bhKKOeJLldfELkCHYSPGw/OPiCmkyJw0dQ6WFgR1L6gknsRwPE8ANMtGR2n1hKgYWR+Vo6fEhs0tuGaSwn3vABaqunLxnGFjGfNaAkXyfTK4Yb/BmTXF/FQJlwf/mgffmg9/P3YkwEbzFhAjAIbRZXHYtHHo3nBRxh0juhnHqRNiB8HS7bPv/tc349rrfxWvef0ZPHMvyrP18FIdaX1LA137zjmL4+5YvVj+cXvgRfDhIB/bZAAwuA3ubFnZ91oUXea7EpPU5OeKZDqqWqR3PcG7RpC+cRNmytvjhJNOjhgTsfD2x2Jzz7bQ57tgCHYOgA8inkVQxyI2ygI2nwI2x6EQvz6sHIZXFMfE2rFowjsh7LhTVJUT4If0UqSZWr9xHb6Fs3JEFUEHvSmbIvEL9jZh6YD5GdrvPkzBZkyemsgc/g34gv3/7J0HgJ1Vmb/f6TWTOullJr3RQwst9CYiKEVAl7YqawULgg0FRYoKdkVdFBBksYGiSAuEDpESCCEhyZCeTOpkesn8n+fcfJA/C2HX4CKaAzf3zi3fd8p73vJ7ywGZphyN0RYqaLKgPJi3uV6daIB0hdQJww4RBk5A+sZrPxvhINjwWgBEF+h0GwLCirwtIMrf/87VMY9CkM/d+SBHHK2NSaNHRwljLWXM5Wih5QgwgiAjD2HQgZehFUHy6D13x2BCPzsY9+OPP0gB4LyYu2BW7Hj41Lj6uu+TB9c7lreuiQ2bmqJ2wkhO6hhOusCaaMCjW4OQ38S1dt6RUzim3xPjUEqXzF2FoFSwtcXzz8wiF7GeVJNiCiGt4yzqZgpb9o+6uQswEv5KRMlQvluYAIFMQRg4gEgS5scigSqpc+ctiNNOPTmFXS9YsDApKCopGhhf+9rXkmKikm4rpyqxj6wZBWFTeNsU2hWATDfddFNSnj784Q8nBUeh4XdUWjRYVPxHMRYVCA0ElUeFi8qTzcv5/TLdCm/QVNL8rr8xqkIFRIVIupCmMwPe9wQbct/N9TcZF29wfT/2OonOEHYaFoI5noaiJ9Wz2gVrrKiv8iuwoNLpkWrjAKtsGhJGSqhYOk4FpwCFXiQjRbxWPetdTKit1/dhs6/b2ryGCm9mcOvR2cgRW6aO+Jnjcn1VmI1i0Mjxc3/juqHXQhO96VPQ/wUJPBIw+chHPhJHH310mgujBlQM1QXYAgmwcL49RnBbWwHXsTknfaBLwROvbdPg8H3vreewblFd8hxmY3Z9VVCqqF1RzJ6xN47X9bPPCaRgnLW1tWn8Ks/ywhMA9lRyNCbf7k2QUc6X7QMNjkxpU+H+zGc+kxbtu1dfndbdvelcOsfOkeCVBf+kXem4HKPlPwAsNHo18P7ezf0hTbGUrJ3HDjoajHzuL9AgT3Ed7au06/7//ve/n9b58MMPT3zISAi/J71ccMEFyRPtfEgf8p/MqLFq/5OcPGTEkgCH9PBGzf2RPZzrIqMPTFXbvHXXcCqUTXBMvqiBucsuuySPse+5H12T6dOnx97Ux6mpqUl7U2DP5h6TPzjWe++9NxmSghPuTY0l+7yWtDZbG0BNQwMFBNNf8uMc397859vySQBhh8kT4s933JUiB1w3x3zmmWemdRTQ0bg2esX1kq8ZaSDQLYAqOCG/lZ9J9/IG6d7H/5T/b23iGjhZSsBhEIUDXRMBCPeJoJd98h63EtkgWK1MlcdqSFuw2JM5XEMBCGWnhr1jswmIqXzn+m6yAGZeMWH56BmubwFh5xb19e9iaitU4eG2aK482BM+0vt8f+PGxnRP6UdQwXtmEV5GNygTnScjyARAnEP3kM195f2lU/ePRr57RfBdHipQ4XgE1kwNTb+B9tUrnO9ccyP87Q/XK2uun320KWPVaZwv58494UM+4P6SDuT1b9SkJ8dv816uh7w/6QpokOLP2vsnvvuI2H/qzvGHn343bvzFD6grVRLDBvbA+YR+mE8UYYURKeijjauJ3F0DIMRxow3UscIQF2zIA3hIDxxreS0UkqZGUSe6Szd9L2WuyhhbN9FRTYBHrWsFIDqiDL2yW/2Ufsj/+JP1laETZYtea6RxCTRXgJ7Ukz734lEFClKiIowjsZUj15cvX0N6LjVsqIvQQT2K4vLqaGorig0UlF+yCodMXlU0dpbHuqbCWAHAsHRNO6fYN8f8pRvihZfgf0V90aEptt1JJEYrkY0t6gz51H+ib6Zl4PAqwQZQ17c6SSFgSQF6vsBDISdW9C5ujcrudZz2Vhp7Th5BEfumeHzGn+KZx+6BKppj/ZolceV3rkTOTI+jjj6IQrurKAxNmvfgnlFLNEQZNoD0KFjmnrW5rj5eobH09vZ//slmQP63vb3NZ+AV9v3fB9KA0aFsKEVQHXrwIfC13DGSFTCx+hUUhRlRE5UobbOffwHFvyzOveBCJGLExRd/LQ6YeiCCjyOF+M/6DhbPK4Yh5mPM58M0i2GQm4x8gAGn4ligwEY+lCCgsInJV+Tov913wbhbTe4antX1LWSmVaYIgRdmPxsD+oLQEnHx4pwXYseJk+Kup+8gvSAvRuwwJNa1r8U45d7cr1CmBPMzRUTwIU+3D8ZGJ0xagSXDfr1HR4dH9HnE1f8PQGSAxbEHviMemDGdYnSP49VqjMMOPihGThkXpxxxGCddFEcF9yrDmi9CgOQhqOGKPBA2gAaFXPegPfagRsbaGD1sSPzoixcQ1dAYFRzpVLPTqFjJGBaBCluos6N0UzRTcGgTqHYfUjT6E9Jo5Ehu7opRIgjdQ4QU9+MtGLw5mJjS0UzKxcQRo2PVvDrqXOTFMYccGUsWLI62uvVx4QWfQxF6MSkJrrxGpU3DQaXeNnbMyPSsEB4zujYVVJyDgL///vvT3GlY6wVZRhFJG1P8cjNFQmVHpV4vpKDF73//x2To6g069thjk0KlIvbHP/4xCfZly1clxUXFx/soQBQqGuMawGA5qWUKwcs3e50X3ruMok02lVDDklXoXXfDQlWgfPaRgQ/ZpTIjP/v7tZ79jr/bEtRw7jKl8Yc//GEKO1XJdIxnn312UtaOPPJIFLdOvJw5wEEFTYNOJVADz+vppVFhNX1BZdPmd+yzzXtsa9uZdCkNR+d5D2hxDUrmxRdfnP5WyVLZVLkUxHFc9k+l2e9rgDmPHmfoyRYCGIIrhg5rRGnsXXLJJUmh9bz6pYThr1uXA5CqqjgabDNotS1j6HJP0Rfp0z1us5+FMBDnTG+wcys9OZakPFLgqxDlvLKCkNLNiqW/85QPx+l3NPj8zLVQkdabpndSL7mKTs9enAayGQzzt2/X5ho4a66jTS+547O579w/RuX0JsLB6Id999037WONcpVx0xNsGscWexNEG0zFdemjV0+BDK/9+o/04234x72cNfeh6Xk211FQ0PFpfGigu5cEAB2XofnyLQHO6uq+qTaLPMlIDutbSMsZv5C2fK1R6GtPS9JzbUrHGzVFjw+6lh6+Nlpj8eLl8fQzs+Oxxx9L0Q72NQN+7K9za39tGn72W1p0T2qoZt5dPcz21/Ha9+uuuy4Z1oa6yz9cJ43CDYAOKuReNzdDrDWG4j96y8lnZfRrPzJadc9LCwJj8h0NdYEF50SeJQ+79tpr4+abb078Tpp2X7ue7nPp1ZbmxzniYXu9+2bvpy9t5Z8KgE3rPNjk26ZNuKe87/nnn5/W5KOf/GQCljScv/CFL6RoG3nVrFmz4mpAP+WeTRr09y/OX5z467PPzUXnaKO44zrWlygO5IkPAQX5cRHOnht/eVPcDtD9J8Cq3//uVgqU/i5u/f1tcdutf0jPyiTTOv7whz8k8MpjW5UH0r80Jl1ltCgPtSkn3EO/+tWvEn35Hftr9ITvG1Vg3wXG/DsD+aXfrLlum0U5z39b5IO/U267dq6vMkfgxPWXVzsmdQvnTcDJ/SSNGLEhMOEavFHzN9KH+kcmK7yf8rwI/aZhPZEFtCm7jI8LPv3hmHr4fjHj5mvjJz+4IsaPGkDaayHHwJfFmNoBMZQ0geDEhmhdDwCjvKJ+Bw4skBmcaBjLRKp0A6B2I9O6WL/2xqZoBGgoAizoxMG2nhTXTnS0VuTtxjWkTsBHOgAhLOhtCmRaf/62sG2edQ/Qt/O4fBf1tjbw2/rFK2L1EooGEzXAcRZclxRWT44rqQS+IPKYGmhrOb1t3cYujuuk6HhzXlT1HUE0xPCoIJXCdIveAymKzaPXgJroWT2Megs7xTD0ywGDhlGvZhARHsh19l0z0bw5EASwgXEWEf1RnEdKCSdZ+CgraIkKHuuWzI5+pW0xdggRiZvWxZy/3h8rn5iOMK6LatIw5s6eGftO3Q0etijMkhxR258aGkQ3r8LDqFrHNpXvux9dF/m96yRvy/in67O9/fPNwHbw4W28porXJGKRAjlRu8VgNr9hWoUnDvTr3S+O5vgnoxc8LaAZj8PSRYtTZXQLA+qBnPPCPIoL7R1jD5gYt91wF7UVyHGnkn9BntADzBoUvhChLviQB4PwuZJCQA148lvIayskLksQIp8Qq41EAnRjaBtO1hfPaos5a1CbaRc9LKpEHkdrI8f/Uc2HWjvRl3OCb7z+BryURAcMHcY98zj+aQ3I72aPNkMTfBD0LcBz5bgMSUygA4gsrOs1H50AI0Y4bAKosFDO//fgNz+55RoKJO6LQtkSfcp6xhe/cCGVlBfrSozdB+wY1VROryJvr5jf54Nw5wNmlCK4+qCUDEL56QOTXDDrGYQMxiVRFEUU33n/B98fsxc9Hy0U8lzaxJFZPRg4FY5XN65FIDQgQLkmhlPTOhBwgJOGDWtj8NCBVKTeGH0HYFAzPx4bVztseFQVl0UVno9iTvGorR7CBCJI1zdF9YTa2GXn3ZJRplIk45aB66FQKKuI6zFbsHBRAiNUmOpeWpKOLSvFMNY41nugsamiocJiUUmVHp9tDBPlKheer5GuMNAY1Evynve8JwlwhYXv66kwP1RjwAgF+1SBoqDC4ucqXXpRWlC2jMzwehkQkW72Ov8Y3shXUUafS9fR6+Q1VUxVPhVc3isTVAquTCn5n4APKiFeJ1PkBQd8z/l0jgQ7zDl2TCpBjteIDxViwRm9TSpEGvR6ZJx3f6uXxvf8vgae82JL/SWnt6WNQlW6OraxmSrkGqpcWXxvLIqjCvpPf/rTFPbr/eyDRo/91JCvw5jR42UTgDBaw+/tsceuae78bNq0acnoO/row9O4/a705XcFomw9CAXd1mbfuHDqY3YtlWW9ha6xni/z4/Vyaxj3pgaKbS2RSS2Uw7bfpiKv3ZBToJ0H+595TzQIpQMVW40AI1k0dP5ZWqZQOw+ZMaDBYLNGgACCkQw1NTXxPWo/aNw5r9KCtOpcvzB3flL4rZ9w5ZVXpt9quDw/Z55Ls9VH+vI2/GMKlsbdSy8tTfTWijxYykk+GiCJn7GW5513XgJUpNsvfvGLyVCyLojj0Ahiu/JcFldccUUCVow48tQEDRf3nWOUR2hc2aQFIz7kK5Rr2OpDmeUD2yDJHuWPJ69YBFXgVmDB+hnOl2Hi8gxBHA22YcOGJV4gP5F2NepM+bntttsSECIQJL3a9JrX1tamOgcXXXRRAvwEV6RfjUYBQcdR1YNisayJj+ykiHSBf9B/XMOtPeTVRudlhrl7V+DF+RNYld84f9KmfPqGG25IcyRu7/o6J37usw+b/DfJl80ycWv3f6Npcyu5xyw66fUFsDTsrUfxOFEG0pWFTU3rkRZdfw15C7v6bISLgIDrp0xwPMpB5aHpGZ724kk8s2Y9h0yp47OlyJQXSOF5lnmZz70di4aZIFgR97CWUH9kYF/uXZZoWnno3GRyzP3v+J1D5aJzLIij3PYz+aCpS86l8kC5ZUqG3/Fzo/p0Tki/0rQ82j4LECwnErORmj9OtbMtz9mWh/NvX41kkTfJt9VFnBvpX3nsXlf+CirbRx8298YbNdfMMUkj0oE8Q/7vs8Z1Y8NqLsHJRyWbYto+O8T3rv5aTDl4r3hx1iOx6MVnMKALSXMA8CCdYDjeejVYcic48ptUFgL0OtEHO2EOHehJggb45LgskSE8+1gP3VgzYcO6xliNwZ2fTxFf/q5fQfFIirq3oM+1+mji0Zh7tDejy1Hg0qLuPkcT9T3WtUTzaqIt1rZyfCVRx13FUVkEvZWT0lrVh3RkIma49hocfJz9SfFIov8G4wCjoPnKNc1Rz+/XNLTHBq7V0ELKIqdXbGAdn50zO56bA+CzbBG6IycPUX8iABrKy/Ni+LA+9JUCz5s4DSU24HikACjF3yuLmzgllBo3FIGvLmuPkf2p+7ZyXtx20zWcpvdgHHLcoXHDb66Pv9x+C/XbimPKrqNjwvjh7JvGWEEqdxXAfy8K/S7ntWkX7vlsXdxrrrPrvr39c8+AonV7ezvPAJw/iVwlQNbSG/zBs1ENKka+tcPESVFVXhHjR48hl2xddNatiIEDBqWKzKNHm4c6P5bi0Tn80KNwP0Y8/NDjBBiQa8oJD0Y/WI1WtTYPo1/Omg/zHljdj+gH0F6iAPpQRHHgwP4gnCUITU8aKKaq+n2x/077xvpF5LkNq4oFMKlNfHfMyNpYgvJw3z33cLzTRNIJqmMFx8H1JtTwiUcfi16cZ+xReyUwIVNFkgKhBKZ5eofnqfteAhO2Iv66kAY+tox8SILTCYH696QAzpp19SC+hXHvI3el9IueKHi2r1/z5egHUNCb/LpyIi0KGXcRYEEPwIhqijUOG1AdixGUw4kIuOycj0Te8P7RgYLsMdNtMPCOos4Ys8s4ojjIF6Xew7BRw0CZyYEjxWX5EgoU9jVFYhMofs8E1owso+r5k9R3GDsyfnTNj6MHikwVp2KsXLgkhvaqjuF9B8Uff30b4Xat8d6TT0vGgaGaGpblzLmKqXPSg2dzkVU6RtYOTwaales1UEzLsMjfMwh6wyo9RlKFyc80wP29wlnPYAZCqMT07FmRlJbp901Pxr/gg565pJBg/KocKjBUClWsVKq9pl4VjWONdJUK/7YlIz+j0/TOa//T0GBO4MZ0n5oaC32VJaXI66hEqRipsKjA2HydGWSJPl77si+/m33XZ6+pouJ8qlT62jBPjRU9bd/61rcSeGNBOw2ipUuXJ0VUpU/lRm+sldkdf28KVqlwOtclgBQeUbpqNQDV5qYS+ma1DNzRO3T88ccnBfcbl1+Oojw0KWrOmVErPlwXDSbnacumMsoUJAXb3F8NKz2yRsSM5Cx1C/YNGzYIehmcfmbNB/fRtrakQLqfuVgrdGerYj4FUpx7w6779umbjGXndRlHF3rUnPNXjvItGOra6222OReuuwaI9Oeza2tdEulcgCyjC0HAt3vLDC7HaqqCqQEqczZIMjVp1za8tjYZHRr2GnsCaBpOek+nE/lgpIlzLmhp9MOE8WPS7/6e/6xYsTIZGQ+R6iNYpzGkB1mPv/xLsFODT4D0xhtvjDvvvDOtcS8U2FwUR+9Eo4bD77337gnoc0wah9/97nfTd+Vx7mcNHB/OjwbkHVyroxPDYasPIhe49jJ42Eq8j40Cs9CcRwlXcLpKr83eYK9n/+UhtcyzfZbvCXgIRjjXjuEWitjaF/eW4K97U8VbsMSChdK9ofO33nprWiPXSf7rtaVl24YN5Gmv0mh6+zfXWp4kgOOauzbyHulaY9TPvvSlLyUvvO/NZG6klXvuvZ9TQmpfNizlv1nL9nzG27P3/5ZnxcqQIQMSHQnUmoKhYWzqzwHTpiXPvWusLJK/CHYZEWj75je/mQAU+a1gl/TsOrre0khOzrby3mJofnaKYlywYCHe/+dI4XwCOnictV/PWtcD0K2CZjfAy3DoFMjXrF1AGH96NCXakK6kJx/KV8fvfhYE8Z5+Lh3af/e7MkAazYoLC0i6Vyy0LK06/4IS0rb7RkDi9ttvT2tVX786FczcVuChDh1QGS7IL09XJ5EGBJbsizJYuWoRa0EIn90TtozPpT9e5x/n3ObYlQ0+OzfJ2QDJDB9TgzNnJQ400l3RI/v1Ko1PfvwDccbpJ8Zjt1wbJYANPThWsi8FG3qUQAzNRMFsWEGkwzr0XlIr0GU9rrwdAKKTNUnH33olIvNInED+o5tQo6uhAbADXaa4mNpXhaQb40DqWMe6cZpGN48uAIdOgIFOQIgu/g4KRuZ3cgJaBQUcefSt6IfB3ws9FF0NUCJaSY/YSD2MufPQK1ZTnJRIBE/xIbWzvJyTTwA4vH///oORnwPQ3/pwnUrqQ3A6FPKxlejdxsYNMXBQr+hXTQF0Hv0HlKE3Wkx3Nc5ECkl21KPXExnSRe23btJG89cSrbs+KktwIJZupNA6NS7a62NIb3THrgaiMl6IUUN7xwXnnRMnHLsfaSs4CiiauQZaWc2jnJTdAejMngxi1HLvfn2JjiaNBL1TmnX/qA9kMtw9tb39885AwUW0f97hbfvIFHhbe2z7HbbtCur/yQZ4+cXmN5TFvLd23ZoUJVCGQVWI0XzFlVcQ6tcadQi5ruKumHrswTFn3pxoWtsU40ZQCRk01nD/uctmx133/Dmu/vxlsbSxDmR0AZEHME/CYqu4ViVpG80byT8Flfe6nZxj3AKjacSj20roWHE+IeVtxEu04bEfOSp+DspexPdGTRofPfr35vxgjpjkbOkdd94x2mHK+w7fI67CYOoBu1/BUZSf/+ynYgUpC+s7CTEDC+gGme4kBg0zBfSVo4M4/sdTOzzNIY+IBpYptW7AAR8qIAIOKuWFWMQ57wjXgfFqrPiZJw+0AZL061Mdjas3Igg2xeG7HR4XfubSGLnzSIrzFMVhxx8Rjz83MworClMERyG/L+P+a/XOvTg/igFhZj70MJEPMEr6cuKHzogFS16Mhk6K3hU2R2shZ1gTuicg0YTHbFM7Rx8WVXINBkXxikajJRBUFfy9z+S946fX/TTKqzgZAmVq1ym7RQmggUJ/zyl7xj5Tpsat1/06YvH6uPXmu+Puu+4mNWa/GMz59g5fj0ROQZVm8xEk5SkVo6yU8+JB5RXWlbx3+ZXfjN6ELb6DsEpPMtmZI6cU9hrVCuZJk8aleW1jHa3x4G8efXRmXHjhhcmY9ToegXjbH24DXHog3v9v74+amppkNPQhqkZlWe+jcy7gcPrppyeDXONXJahvv2pSaoq45yI8sz3pe4acOYrskVvPUr73xBNPplBXPT0KKYWT47zpVzeiiFRTn+DDyXByXVWgVDBUaFS+soiG3NX++7+Z0urz631XBVlF8aCDDkreYk8IEFjwSMqjjj4m5kEHnkVvv/R0GQUyaNDguOyyy2Li5ElxAgUrPRZOgd+jgiNNW9g30FE5IY42R/x6zXG+mv84TtfAgmQPPvwIawsNA26oTOphVVmcT/8OOuiQFEHgvVwTDTsFvAqwAMvyZStRrIeibOTyrFX8jJpQ4VfZNAS8urpP6lpvUoWyZsRHeXkudSTbd9ln/+vnzdEfzcxvFSG43azZOtKYpKcbfolnDqVUurMA5axnZyXDZI8pe7A/CGVlbpxzlT+VYhUXj191z9tUeOpR2g89ZFpc/JVLYinHGX7lK1+E9so5gmwDyhBj2Nrk/68H83/9Az36pGwRyiuNuKeYkvRsTwQjLGSrcS1tu/aGMgtG65lVsdfQcN40dvWECjg0bGwkpaU8FZfzdAU9r4XwfaacPcWck/Pt63RaDbzW6AX3T0aX7jvXwD5Jd9Ka+949KUgkmGcEk55YDa9hw4anv1U23VumKUmr9wBMy5P0wFoDwEgNDT2juApRsgVEN3Lca+/evRib0V8cRTx+QjJO9NTeO/1eIveKU5i2e8D+SOOCE15zLn3oAWD+FFFmwyjk5mlNHn/o46lnZkUflOMHHnoQuns2RTqsrF/FMcl1eOxWpBou8kwV+XTkKzzH60uPjl2jx3nwvj5+/etfJ/DEk0Q+9KEPJUNqFzz7FcyNgPBKDExDyd3HzpXArvOkQS5QITgxDWNXxNzPB/Tvy9itxl+ceKH8wPV0HeyH93Q9fG9bmtfZlmZ/7Js8RTrwb3mpfNw6OBZT1KDWey/QqBfelAuP2/V436d5/atf/RJa60jRMBPwgP+GE4QeBCzVWPXEJVMzM2+4Y3YNnCP77v2y9fB1NkfySoembrCWuh0COs6t0QUd8BMf1lXQOO9J9KP3/+Y3r2IsnSmV4pBDDkkn8Fx62eWpbpa07BgFmry2NKbR7/0cr/Ron+qgH2WHBvUc0n92331KDKgeQD+MDlwNX1ofKwHkjECcAC3Pm/diet/+LF/GUYY4ZzxyGgmfUjXki/sQQeM9pUev6x4TSDRqwVOo5PfKYQFmx+N8uL8amb+Lv3JxAksEJE4++eRk3AvwCZ4Jgil/lG3K1Ouvvz7RtDJWPeFGapw8j/HrCUNFGLUeK9oJ+rlo8ZK44y938jd1xojQYOclPrTOGjLweyN2WogUMKLnzr/ckRxMAvj2Uz7lPeVHjsfTudyzPkzRsDnWjMe4pltrfv7q7zh+37NqWFdLAydA4GwgSmwlzgEjaieNG41qlh/PLJwfj9x7TzSj03ZCw5XI8D1YrzHosBuJVl258KUYv9PuREVRrLtHFaB5n2jEk683vwBdpRhHX1E5Molxd7OekY+ejN7axallKM3of/Qceoo2QA3x4k7GQupESR6RrvxXxCkWebzX3UqtCY795B0iIbpjfT1RxaTgAJQBdAAAQABJREFUFhQURx+KT5ahn3mcprxeei5ifB7jnQeBGx3Y3Mz90VPl2x2Mxb4TvoGzEBCE1GCjGwryiXqIjblHNxEO1HIoQXftUUFUSGk70cDPA8zAX4iAWLRwVlT3IRo4H/BhU0M89dgM+tkc5330g/HViy6M4YP6EdWxFueaOgPVKJBLHhnL4Bg/ejwP6UC1rwinnv20ybe2bPKIv3d79T3/3vfbfv1XZmA7+PDKXLz9X2V6QraHedbrr3emblEdUQoDOfN5VTxoiCCMsYMTBJZsXB6jUTjr5tTFgF5ELWD8H7z/tLjr7jtifV1jnHHuibFyw2IKPLaBrBqFwJFfCNRi0HfjVY2GUBP1nOJOqva2WwcCBmvIWEEnLJRzgsfVTIw//v4PVNNtjsEjR8TICWPjxaUL4bedVKwHXCBVQEBhz4m7xsz7HknFG88972Nx5wN/iaKeFDMsQ5EqBhHuJseOVSohDcTosC6MpqRbmU7xqiZT8ZGEzGampjKSPfy6IbRNpFtofBnK1t5AKB2RBj1gyn+++14Ala5453vfFc8tfD6KexDmVlUB4ELhxNVrYxXhkU0I25oBA+OR/7or5a/lU6zxhJPeEw/CjHsNIiSuHydSwNi7CjjdghQU760wyUNw5IFsd4GWlxIuvB4FfQMheXsTnn/v/fdwysVylJy2+AghujfdfFMKQx3Uf1BcdvFl5CAOimOOOwUjqzEO3OfAdFJIBQWJPAZLJc/oh0IYOkuSjIcKIiJmPft88mTK8FswWL9GTYDRY8ZQe6J3UjiqEJx6E1QATDFQAVuyZBlhoiPx8PwYg3aH5EnUeNAYsMCbikFNbW3y3o0dN5Y6HtVJQVP5G0F0h54ZQ1Htk1ESGsQaFyppKmijRtUmJbEYRXFr4IO51TvuOAHPQVM6vu7ss05DietMtQjq6hZiDMzHA7pPUvw0KDJlWwX09cCEV5HKVv+UfvRcaUyo/OjZVPnRkJuL4nXffQ/EJz/16aRUzps3N3madtll5zR2j9k8++yz4sgjDk338GQWjSF2SPrbPqpEZtv1tTqSaGYzLWef+54KmoZPMSDgiy/Ofzky4OSTT6B/7Qn8ufbaa+MLn78Ao6YP6zsopTDU1NREbW1tyqmV7lT6ra2i4udaGSKsJ9xjGT1RQKBha23z1traV7b+GfTCJk0KSBGKZ1LyelYlBeobeA6d7y+BjwuG9B+QOzVg9JjRKf1ifcOGVKBSgEKwS8NlEYCW49PodV9PRIEvwlD9DikHzXgJv/SlLwC4dcPLAINaSPkCMHz7NgEYFDrm0NMQbPyZwAYNKY2h1fAqFXVfa5TogXVfaJRo4PpaIMC9qYf5JcAAm1EhWVi/4APMFJrLKf6ePCR/0WiUdqUBadKW8d3sb/eJTcBDg0hjWiPIKBa9xCuWk8NMvxLvwqiRfxhu/Y1vfCOBIhpBmcfTsHUBTMES72OetOCorYW11Fg0imzo0OGJl/Xu1TuBLXrSPbHF+wpg7LTTTon3PPrYozERsK5+zeqYv2BBPDPrWU5lIjRazzLj8cQBjz9cAdggcNgToKIDT+dLi15K77mf5QlroTUNS40yFWZfa+AIlMjvHM90PM3yJtMrzKUfN2YUwAPSFnmj0eA9Bw0ayPj6pzmQ12qkuj81wH7xi18kWWae/gH77xN333NfAora2evyUO/nnLjW7hn7II94M3hgmuC/8R/74nrZP5vj0pCVr85ivm+GRw4ePARQ8Cspes7oli9/+cspPUoD+XAi6pRZzoVRIf52KQa0tHMHQO+999wdd2EsS0POvwCO15aeva/05L2lR+fGzwQt5Od+7ikvfi4wYrFlPuZvDGT4Qu51cfz4xz9JdRykHwvxvu9970tA3a8x2Pv1HxC9oQHnW5r2Ht5TWhdwEISQl2rIa2xnBpVggO0Z+Fo5yfBGNuy1Fymv0LjXEUwx5Wzq1H0Ys6B7ebpuTU0t48wd4yz9deFEsTnPPpwfadz5EEQwSkR+LuhgdIH3tR+CFJdxUodgx1h0AeW/+8R5EcDO9qpy/ne/+12iI1PWTIX5y1/+ktZxMPRdD8BSzjxK23V813XyIU9OUResw0h0vjVEU/XlFKY6+Msvb/xVTOb+A6v7xvUA3HXsPfeIfNuorP/8z/9Me8eILYEP+5bNm+snnbtmGU2lCfgb/oGjBYG9KpLob/nIhAr0Px0C6LfwlT6AmjMefpAjnQESGF87tNsAML4Rh15XO0fLQzNr1jdHI7xHRuh65HGdnv04hhu+ukG9IXFIeKP6MvuUjc4Xlf85ngpyyUuIzmVED/aBqoj+DLiAc6qctOd2oycAktF6Kf6YiwTOQ3lFmwWvULekVhg0qwzwYfpzp05AQIdNFIcsyke/5tYlRcZCoDMTlZu/CTAEx96AvkQhtFn8lHRKnH2FeU0AB4CqHaRSb+RI8Z44scrRXTvWBhl8nEZFgctl82LdmkUxh9SUpXVz45yzT4+LL/pCHLDP7tGjjML0ANaC1ngSGHIOzM0XZGAO8xh/Hs4211HQUOmrDHmrmrS0vb01M7AdfHhr5v3Nuav6Xk7ny13PfbTlXuK13n1R0CoUejfa/gfsF99CqTfkv4MzhRcvfSEm4GF/5hd3xDkUTlpKMaT3vfeU+Pp5X44gTf2Ykw6lgM3K6LbADt9vo6hkHiFTOMIIzWqmhoTeQ4o/wls5EjgH3sJS8jcBPGwi1K29JEZQ4Gb2My/E/LlLowvA48jj3hmPPP04sfecw17dJ4YOHBpzZ86OE486Pq4674roM6AqPvHhj8aG9nVESGC8c3RPF/cH3khRGSSCRAFV0TdhLBUWw+QAHzIe4hj1xPl37pkXtFeiIXK1EdJ79JdSCigMVCPmXOOCDoQO4Mux7zw+rr70x9FAFd8Tzz4lHvgrkQ1dVhQGrUeh8AjMtcvrowilfOzwEfHkrY9F1SgEDgLx8MMPizuJGBk6cmCsaaTeQxH9Zt42kV6BbAJ4oJ5AG4KjXY8QCEohoAHGbCvIdr9e/aKRULxFjyxiHjfFJz9zHt7f6+OsM8+KGdMfiE7y9Ja/sDhuuO6WuPLrV1FJuCEO3f8AEGhDz3PpEnoEVZ6s/aDyqWK7HAXfdBgNSWsu3IWhJhhgSsupp5yYClllnmOBAfPrVTjyERLmKau4nHPOOUkx+PjHP55C11VyLLZ2+hlnJM+fnvBywvpUbAYSWjdmzLgEEKjoeZSfyp8KigCHCuiokbUJrXcdtgY+NDeb111B2sa8pHCWlwmUDKCq/YUoSCvjyKMOR2Ebk5RNDRXXX0NLgEBlLDN+vM/f0jLhlCnMzpsghykOzz43GxBmSfL2fJA6H4Z+a9ztv/8eeFsnI6hb4oc//hFhj7k6BSonFlKUXktROvSIleAxylHo6/fOPmT98FvOZTLueP+yy6+ImhoV0qo0tzNmPJjWTC+iivDYceMpNDoK5feJpGwblZHlnHdvIsQSZbO2piYpmyrsnurx3Ozn4pprrkneJhXwrTW6sE2tFS9RIUpZ8n5Ar3oLKzF8LTL75a98OSncu+y2azI6jQZazecaqsOGD8MgbCPFqwJP6ZOJ7qRVwR1BNQ0LJomTZHZK3v3p905Pxs2JJ74neTnL8MToXSwxcfdt21CfE/9XGc8tVBuAi03lLw9gWENBg1/jyn3t3hOocX+Yo66hoJHg56YqvO99VLrH0+uyruKI3wqqkVsEUrChi5tJh0mxTHdB0YSnqESqTCaFknXLjD3XacaMGclwkC/4WpqXBuUDzz77HF7lXuk9jUaNI3mWEQ933X1XAjYtEGqBvEmTJrKmhpNzP/pjPzbRH8etAemezxnbRanPNTUjk8GoMWN6hvTgWKVv58RoplVEMhz9zmNi8JDB6fcOScNRoMRnjTGjLNxH7hMNOj/z2aZhL/DgOG3e3+a9BB58WHvF8HX5h+H4epdrAWdthmqXlRhnKKgjkE79Eu7lPaVl18fwdw0vjwzdeafJiXY95WKvPaek39kv92BuPnI83/m3b4Kbrslb2eyLfbB/8ixBQY1r+ajgQ03tSFIBFqZ0GQ1egW3BMCM9/L5r5VhMUfHhOksPht/PZg2fZX5a4bOup+lipm+YKqAs8HeZQa7ssS/2Q9q3T36ufDFlMds/5qWvIyrKOVZWCsp6bddAY96IDKNYPM1iAHKohWsZ+SLtei9TBaRt5Z73EjyStl0/wXjrr0jfevLnkIrYSUSD4xWceOCBBwH3b01Aq3OhLNEoF3i1z9KV4zaqrrKyB0eNrifakf0EmOb33Vsa7M6xkQzyUmW3vzVSwX4Zseg8nXzySenvGuapmvz7CiLy5AM1NTUv05IAhdcSCLHvgiGmrTl30qn0WQwospZ+rFixku+uZ04GUsR8RFJLBSktXng/MulXRNSNHD02ASdPMq6Gho0JKJ6JDjGWdXUtvL571BRN/zYqy3tIx1mT3t2b7jUfruvf2gQfPEN+IyB2N2tVSDQCmhqnRTTTzx4JuP7kf5wZe+/Dka/NTfE0kUiPPDAj6l6Yo+oKjdXES0tXpePs5U2t1DVr2rgueflLoamNRDhixaOIskHhW0lpTjPjfek1j3xonMmEAcBDfDA+T3krgLf5WSW0JejRJcjIvJcxL8XuKX4LNBrt3U3MB7yPqOO8TRSkxUFnqkMbtcXam6jVAMhQiv5Z2N1MlAcRDxwfWsrpHaU4Ewup5dCzgkKYa+Yn0KGjeRXp0IC7ZZ0xblR/jp0viUXzn+a3jbFm1ULSpGfH2vpFMYrim2f820nxoQ+cnuq2/fuZZzBXwwAxSH9kD5TjDNNGWA9IUw6gY0OCMHJ5UY4fKbayv5yKt6q5R7e3t2YGtoMPb828v7l3zQCILffR5tcijosWLwq9QF0whJkzn4jZCP219aupetsnVpEe0Mb7+Xi/p+15AN7/ttiNMPzv/ehbpBpEHH/yOyhOsybaNjVSgJKK2+25oyk9BqiFSIZKzhgWzeygyGQnSmGKHAMiEHwo7CJ9oKWQiIohMD5qSDzIsWGtDfEfH/pY3PXo9CgApV22eiXMsjv2nLRbFLaibPzpj9GIUX3qv50YS1ctisZNeCkKqJ8As8xDUJSgoAk+FIEM58ugi1FqeN8mH3nl8YrBphKjoMoAiGzyN4EQ55cTPgaDz6N/vcp6x4gB5ACSvvCL3/ySaIiId59zUtzxwJ2xfMPKaO1oSXUpGtfDYBFUo4fVxAY8FgtfnBcDKBjZHyHdE0N5nceI9q2IuqXzo7IPBYaYGw3OhHCD0HQDcmwi8sEQxbUc3TQIYKCssDzql62Jwf2GxHMPzUJQRRxOsb+9994Lpt4Rv7nlt7HorrkxYe89qItRTarI4Jjz7Jx09JJ1MnoSlWHEgszUMGvHbBh2E1WWhw8bjBKgUZILQdVb9zOMyyIMtVJC0DXYVAZVklQMa2trkzLl0XAqLIb96i1UEfYYLpUsPSjvwDNeWzsMoUK+fithiYQ+62mtonioNScMU21AedFDYsEoFTE9KRZgNA3BfNU3inyoYlxLlqxKio39MhyzvLwyeTT7k25y2x9+T7/7pP5bBTvL51R5UUFS6d+WlhlpKmDOaQJXULD0DjU2NlGs78XkLbY+xsknvwulsobw4eeSgjpph8nx2fM/mW6/HqOlDE+ndJCUJvcMisYbgQ+u5+sJSFNrWlFKJk2anMavAmrI8rRp05JCq9Gjp/SCC85nDYamMG7Xzbk59dRTCHm9Mxn5w1CEfV/DVKXVcN3Pfe78tKZ6ALfW3G/b0gw39sSLQvrkOB2DKUFe9sabbky59XfedWd8/dKvx7z5LybgR4+93x0O8NcEeGEleJV+vY+77rJr8uhLb53Mr7ULPvPp82PpkqVJ6R42jPxswoGrqipTBIQVz9++DR6IFur+g7BQQruToWG0k02w5uab/ysp7yrxe+6xG3ulOnlCnUPX2SKUn/r0p1PUiIbelCm7c8RmA/u+d9rDpmsZSWUTpM0p+7n9bnSWc9zGvLtPNArcI77WSNdw0ZjQE6sxZkqF72mU+51Hqe0zsnZU2g8aNXo8BUY0mmpratNRwHpaBw/uzzhTF/id9zDkOAe4WJumGEtAMMlIiEZkkhhAGfxlEGv/rncdlwx5+63xJu8TPJAPCT4sXFTHROXSQ2rhL0UYaX7m9zTuNKB832Ylfvmk/Tea0DFY88a+20/HL4Anf9TjbF0AI8UEKj3twlSXvqQvtTOPG+Ed9kmAyOkV6PV6C/ACa2ztPmWXEEDxnhpl8ow777w7GYiCn4a4axBXAPoK/jjfWVSBPPB/apS9Hm9JA34T/rEfAgYaxgLB9lM6kB5KAGA1VO+5517GWpPGaKSIBX3nw49GAiJ89CPnpAKM0oRrojwSIBfw+fZV30xAVjdz4ziUL95H4PxnP/tZMto11qXJDCASgPC1NCDYI7jmcZr19WvSWpjKI9j91FPPpLQPQQLX1SNrvc7vfv+7uObH1ySaHj2mBk/+0gS62z8/lw4cg+N2TPfee2/iu/ZdeSqQ4f0F4J4H3GojqmPmEzMTMLgEHiVYtttuU+DfLzJeQYuxaV017uXtRkj4mXS2BNqb+deZcc1Prkk069gERox0UO4JYknz3k8a/STOJSNvBCR8DAF0E/woA4B9jBoTO+4wMe0h0+0Ev/yNdCygI00ZdSQ9CmYavSP/zYd/G/1h9MoyrvnUU0+zf9fCp4fHYYccQARAOevfEgcddDCA8XDAEk6A4GH60kj21ZpVK2L//fZN+941FHBxrqQRAR1BUeW4e0N56RxnNOuecMx/a0tOD+SxcqMAHch6CQ3WEwIYKcWALietYTW6XiUAy9Q9d4iTTzyCqOAjoowUh4Xz5sYs5GsJuk4VEVE1wwcB2pYxtg0AFUTkgZeU4hjzdLN8HEndmwQoARnUVYkQBl0AQKD/XUQ0ECFQwOt89NFi64oAqBo9UEKaRIrK4LcWaHeohfw2P98wCaLOiKgtA2PfBADRTvpIRytpLQAP+en76BaADsWcXV+O466gCz26iWPbqc3Qu5w6Y5Q7qirriH32HMP3NwByUIiSYzF79yiIFYvnRmfr2ljOM/AR3aVgNWrUzjuMiw+c9f74zCc/FocetH8qHH/SCSdF7XDSadGfG4liNkrEVIpuInIqAHCSx43hqqFvYn2NlWO3JgjGdVO7YJRvWcto6S3rwL/wjbeDD2/3xc+Ah2wc7uRsN/uMYtML5jgHtLZfv77x7uOPB4joJceKImoadFYVxDKU+m9/8/vUEbg1hnGiwiCEybqGtfH8jOfj41/+YKwh8mFDy2oYB2gpnvrMA9VJ+DsljmAwGLx68LkXjn3+xMOQwAfy9xpRCsqqOaaoFsPm99Hd3BEf/ugn496nZpBOURhrYNRjRo+J2Y8+E0ftf2j88AtXxU67TIxHHn4gzjrnjFi4YgHFG0mNgImiK7wMPpRQUKcIpWsTjLgb5u6YDUNL/+Jh9nX2t+9l72ff0wvdAejSAoOuBHhZtYhia1UDYseRO8VFF32FNLz2WLuyMY47591x72P3UcOhkTC74hSlUKLAper+6OG11Ht4NDauWBtN1G445KCDCEdbjdAnF7kZ5bAHoYGEoRndYGSdi5G3ibw9qxiTkmL/WrmuOaU9ysnlJJdvr92mxgN3TAcFjxg9eTRHJ9YD2jwUs556Nnadtk986tzPYjQVAQTMTZES9Xhm+uD17kl/VDg8ai+F8WLcio7r2TEvXC+OSmCPHuV4kMbGjRilHoWpF+ODH/hg+kwDVEUlp5gMSbnSKs0q4wr/T33qUwmcUOHWm7jPvnuiRLZAD6WEWXLEZs8qrpc7ItEoCMNmZ6IwqVBbpd7rqFSoeFX1qEwKVA+Q8VdEkQSbPZwv/uLPDqI49OxrSO25x55x002/SorYeeedi+E9nuvWJWVWhUkFJVO8txV48P7OmddRyVER8m/nzP6sX0/Va8CbJ1AebyVdZeDgYRSc3Dsuv/ybaZwqe3viodTDqaFmeK105xwXQUM2IyEc8eu11xOOvi/4MGHCeBSelmQgCRx4SoRpIhoogg/22/zb97/vFIzNSSj4UB0KnOtguK2GYz7XUklWIf/t735LOO5lRJOMT/0soU7L1prrs20NwJL58LQdJjbtLyMfNJxVsB959FGAg8XxOY6J1MvcFxDI8Rl2XY4x89xszrZnLIIPGn2DSC+Zi3EikCaw1Ytr/cc5H07r9tOf/AgFKXfyR3t7ri6B+f1v38bk838noIMKuusq7adoAPRTPaoa/4ccckgymk2pqK2tTessbWio6anUG+93NSisCaGhoeFi7QfBNivsa9RrGGngaoD7eh3rsxoDvh7ASNDSdfHhvvdzf1tTU5OefU+alY/4HQ1RaXX8+AmEtf84GTVG2/j+Jz7xiXQqxMSJYxmP3vvcCgk0uHfcf5mnWkBEgEw6lPc4D96nqEiPe47/acQIgJx66kmEwB8HrdQk76o1HKbPuD8WUwvkgQcfQA5QqA2leRVjmbrPVFLTRqfoGtPKnGfTL/RyG0XYBB/QkNYg1HjRKHP/CZ44547X8WvAnXLKKXHCCe9JSnlbAkioqYFRWArwpQe4DEOnAGZtVIced43dXr37pHnSWDRSSXrX8y6QYfpBAnEGDUC3xxhhvPKojFe45zXM5FWu5dZa9putfWdbPnMs0pm0Kf90TjxGUaBgyJChMYY0A9N3/FzwePr06al+yzsJt7/kkksSKGCUx6hRporNTWPM+Lz92hGA93DmyN/K06Rj19qxGzVgRJ/Pgm32xYgIQRtpSDpuazWdjnx9wEgjHm6//c9Ex8xI8+apGx5Pa7SMhre/v+hLF0FH72UcywGQcL4gB/oTMaDcca5ra2t4LknfFbgwUsKohi998bPQUmeSfRrz3/2OaUU945h3HJNSLYyKUa7q9Xct3SOOQ5kpX5Zesns4FgEYU+SqKHxtqoYyW1BAuSTfFGz02E8Bxku/ejFzdCgRif2RFc0pCnIgwH07wEMq6A2QN3Dg4AQy+rnrJFAibdSwf0844YQUASJtG8Fhn+QTf0GuHHjoIbFoM1+QZ1dDp86Ve2DGgw8DzqNTMDeOyRom999/f9o38peRNSPizj/fDhi8Oskqx/RpgFDXPfEm5jWjT58F5Zxj6TuT8a7jNjWuWwgIVsSR8uwk6ge1J3DeU9aMKmHbY9gjI6nF0IsTy3qRJtujzKPSe7PWIzkxopG+rietoSv6Y9EXoLi1twBaEpVQWQ4oWgxQ2t1O+gM1FYhCKAZ0KKE+WjF6ZxHvV5AKUcZ7+OG4BhGRPIoKiCy2CATfb964hr7xG7MzuHZbOyACOmNeHjKTqNpyCkQW5PMaDbm4kDRevlvGw2iHEtIrutvXRw9Sli2a2aOI6JnCFv7muUhQoiWOe+c0oh/yGE9F9O1ZEiOHDYg+PUqiZmh1DME5OWrYoDjogKlxyknviUMOPCB232WnGFLdNxWDtwbJ0CEDE77A1khgtdG/K+F9rl8Va4wgT3JdkHVLqMF5deV8+Pqtahl9vVX3/1e+798OG/4rz9o/2ti1rV+9g/nbt2UCPRBcA2XkvLH3nnvFdeSPXnDBBXH1z78Xg/fhOJ5liwmvqosdCRWfh1H77mOOxTjmy6RdVOV7lja1GVDsiyk+UwKa29qBl4uPjaRIN/Hm5KeZh5bYSbK0c6wFHSh50vbZdTe+w8c44MlGS0d/NhS2UXBy5+hT3S/+OPPXUfb+iigeWE5uba/4w80z4vr/pMo9QrS1oylaUbIEjRPOwEULqCDsqRednEGM6pKUFxUYlS4fvrYpnGQw/I/AAqzgsy4iDrpIR2mnCE9zO3m77IKNoMYCDs0Uwnx61lMxwCJoL6lgWGG6PfJg6N2MV0XX0zc6EFLLly9LisfS7hejc2U7OY29yTOnovSyubF0xcKYsO/4qO+uZ9jcF/Hg3Jg4wsWIhqA4HO9UEfK4bOWyKO5bHhVUcB8+uiaiH99BeNQtXkQkRHXcjcerA6DnXazLz39+XRx4wNF47BbHJRd8KZoBHxT2KvsqXCqpeukV1AUAER61t35DY3pevYZxcM9SQn0/97nPxdmnn5GUZkGH7GHla0NNVazNu9ZT498WSTNioQ6PxTvfeRS/m4MhYjTFK80Z78d4VIxVpFUkVJw91cTIDJU9+2UExZDBCDk8HG/UVq5ci7evDwoPx4syTpUslR8VMY0Xc6FVHFUqXWvpXc++BkEKC0VZ2ZZmf1U6NbpUAFVyVZ5VlByP9SzuvOueZBTcRAEuFUOLTprre9xxx6Es5GjG39qskeL1bH+r4pSjZ2iaa6xYlTPk9AhqgLuO9tVUl+985zspaiWF9D74CPnDeyWPljTiHD5w/4yYwhz6WmXRPTN61Oh0YoZGnkDV/0Wzv+bP2jQM2KROTpq/r19+eYqEkBbfdfxxic5VsKUdPcKL8BY6HhV0DRqND59doz133wPg66UEaAj82DR++/brRUjoRmjxn0P8aXCrkL+SDkFNWtLDNMYMQZcvaPQJyDg3GkVGmKzCKP8kgKLGnB7HzHDzWhrP5rg7z9KFtO7e12iQ/tzjRi9ZqG0TvFSazniuPNY++fD7GkV+LiAm8Oh7fjfz5uppNVJFQ/3000+P0047Oa3VokXLkjGlMVSM3BEI86G9IYkIqLrX2+Hh8gP3k8Bv1jZsaEp/O26BqSefnJX2hsaZgMthRx4R3/rut2MJfFyPsftXHiPvs3/uWV9LS/IdH86N8+J+cc9tJErEowmlP+fF+XU+BQj0ujtv8ibsu2gmOsx5MPrBtr4BBV3vIA3xlsBioyrkYZkMk4eZLmPEl3R/yy23JCNOwOZ73/8htSNGk46xY9oD7h33kr/XSHPesjVJN3mNf+zz37M5DuffZt+kS3mLtOF8trTlXmt0O//S5WroUtlhmoVRPE8TSSYfdm78rTzWtLL775tOuPc4IhUbU8TBD37wg0S3pghomGeGv9913qQRATZTHw488MDk+QcLhqesSP2SLvyOfVbuKad8llbkpZ6eciLFg+fNm0+k0A76XEhJJXULESPdCJxl0+m+kRZcE2tELFi4NNHFdMAVo+Zu+OUtjG9M3PTLG+PAaQfy28r46le/Rq2LD6R5EVBwvsaNG8V4X0o0KLhlhIX7xuubspSAiLkvJFqTzqRDx/dO0okgYXQV6q1QmFQev+PkiYCxlbF6bU4Ol9M3a4asXbMR8KGamiez0zpJt/IO7+X4dTRYD8aoDtNN3PsCmhZlPf/8z8aoMWNTVE9NTW2SP2vXUm8HnbGclDj3pJF5rol6yeTJO6S1V47e+afb0/dnPfVk2jtZcVnTnazzIg+y3oN77tUt4y+v9dmrv/t6f3djGLdAT56+YD0FFVQB/Ur3DdK1cQORqIMBq4gcUN8FFyA6FqcQBnkbkTvl5aujz5BB8bs/3xXPzZwe9dT/Esgo4Xs9iajtSb2EBooBF1MsvQQnmXW5NhHlEByLKRPLhykUoIvmsfnVSTfxMBJFQNG6ROrWvldYJB1ZtFfwgXBciMz02nyiJKxjVMjlelKPrYC+55Hm0U2EbnubNR08Ft6UYqJW0L/KOOJbfrV29TKKw1N7hT5e+RUiHKkL0dnZgY7YM1bCT00T1Wk2GJowkreKsIdN6FMLVyyPNQAOk6FfQfvRNR7VTmRIRRV6L6EP3LtXJcXoe/Ti1jgMidgtcnOkpj2wvW2fgVdm4L/v6lc+2/7qn2gGTLvQw/x5jM5rfvgjiv30jxoM7BWr18TAYSPim5dfET//3s9j1kNPRRlFbpYvXRHDCMuTLTcjBM3dK+vFUYww0fWEVxUitUu6i1NRLuK/YJLwSgR5esA0BSPgsPBYqz03Y5j3Q/tKb8Wq9RQbo8Jze+tq0OWmuOvee+Kcj3w4/vTQHclTvsOg8VE1KOKib10Uh558cCry2Ey6Rj4Xz5NJ4wnvgpHnY1znwYAV+CpZnmChcucjU95UWhSAIuU++12BB7/bDvJsGkhxaQWnXrQxFyuo13BnHHPsMXH3jAeQ3BJAriCVv2kgN7Cd4kKVxRXR3kjl6nXNsdeEXePJux5M6RszH3si3nfKyfHETDwShBtuIhS/AJTbcDpZrzOiydiFkFDwdSuAkBwN5Od19ydyBMEkIDIOdLmguZsjlOrjiYceicZlzfGFS78Ier6J0L+T40sXXYFiPDCuQiH6PJEJKqgqCipPKmcqLSqevu+8+J4ghPNiW7d+Y8qb3RmvzFN47gzNN61CT49Kqwq386WiqJD/6Ec/Sh2D/ZPRsuOOE5mHZpQIPO6kdGTCPyle6eog4NzXqAvTPTQObL8m6qW2ljoP/K1Sv4YK4/36oISrIW2lJWOUzx2bHpgT3nMCSl2fZKyoUGnQjB49Mj17GRV0++S4Hcu2NunHh3Niv50XFTznxrHooRLI0wO6DA+qhopK089+9tOkdLsuhv7zw5e7khkE2fPLH/wNLwb0Jx2E3/31yVyleD19Gj960Xw2csW8c8EIoxt22nESHqvHkyKpAqihogLruARUzj333GToFcEDNPAg0b9r64CvOL8QZwrhT6/ZpF0YAdKL4M490+9NINNBhxyc9rUdEmSpwxhu78x5M7O1dhw9oQGjbdwDX8Ug0aN95ulnoLzlCs75e7/39za8vM/fu8EOE197ORKALS6P04jykUXASLsa+Bp50qiGneHhnihgQbwzzjgdQPLzKSw7C/PXwNHQMETe6AENbo0B51VwLxfpJEfLHYWcGZWO2XV078qHNYo0PPydQIg0pzf5Rz/6MXJgYDKc9DBrlNk8xtX+2j+vKWhs25IWHaPXtvksn3JNuXN6z3/kd3PnLkjAg0CB15Tmp07dA8Py+TQ2AcL5dQsTz3RMjtW9Y+FD97YeW41nx+999PwKKDgGQZxDDz4kfaempib1X2DFefde5UScjRg2hGr43RwPS20T+FIPwvxtrUTeeK/eGIO2lSvr029MV+vursCgLYhxY0elzzzGWNDGOcvqZsiz5UFDBw9K/Ch9cfM/8iXn3/6+GTxmy2v/b1/bD/vgWF1L1995da0EXKoHNGLgDUlFJpUbyq7zL7ww0a3zpawSVHUtM7lmwU0fP/zhj9N1NNSdbyMKBJmkc+lNnu3f1i5QfmhQew3TMjzVxzSHsWPGQ9ODkvwT3PD7RkoYyWK/jTSRbqVP02Y8btOIhBUrVkOQnHIAANDCaQTSifQuXRazdn379sZjHaxjOYb0Lim1Zh3FCY8/7ugEUkiv3s8IA2lnOqCEfbYpP4xYsAaDrHHcuBGA2SPSd51PnQHOzWoiBqp6V8b4CeMBHklvAYyrIP3ItoYoDscqnY4fOzrRrTQoz3MvCEo0WU+JVMm1yCi6zT0nJrnt7x2j+1Ye7LoJTFr88dxPfDQu/foVKcLH4onykWcAaTyGWn7hGAR93AcZIOe6upfdR45NGvZx3913Jc/6iKE7J5BcwN7mersGgiDZHvd910M6yN7bVv6t3ESlApAm+pWj1gUcNkGUFvAtKiAlx9oFpEWUABKY3rhxrQUUy2L4wOLoWzU5xjd0xlou0E09BUEaIxybAAjkyaWlgABEC2+iVkQvIlxKcCy1tHcQvbeBPUAqQ2Hu2E/CYPm+QC0gHDwB7s1aUnmMgpcWShaU6MVpadJSYTFRETiOCuibNRS6+I1y0jU3isobt7OmHZ0tRD10AXqQBjRpHGosx9xXAk6TplHXSs2ytToa2qJP5SDqkm1MNZLWr2+J/gC3yof8jmGADIsjn32V39Evfnfzf7EvNqQ6caed9r4o2aksrd/jT/w1vvLVC0kzjqh7aQn6aRu1ImpIP0bX7OQYbPbKJuhckE5O7QkiZEun176HWpzokI+2t3/BGUjm1b/guP95hqzUyJqvN/8tY7X1qDSUtJPw2PoU/bBqxSo8KUcQ/jYjzj7j3+PsT3wg9j7+4Hj0+cfjTlDt8YS61q9bETvuNjl+dv1D5IxRSZtw1kqM6X7kt3V3c8Z4A0c9YbxXEiuW10hol/8BDKhM6OX3KCFBC3Ii+BdPL0KxXKVQ8AHda83qddGDc4epSBArGldENaFbawABNizFqz0KBZTv9EP4/fzaG+K9Z52MkcuxlRzp0wVzM3yjjZy2diIePKJSQEGcw+gHH+kon80ghBXLu5GyBQjcbgRIXop8QNigoLcSRtFCnxfXU20dz1mQDjJ/5YuxeOai+MbXvh0/uu761N8qojLK8WB0rSdXERBlE0KoVykF8RAESBuEORfj50NAwx+87eH44uc/g4AqjJ2m7B516+vgsAgKBJT1KlTTCWgA7fY3CCceLVSBriwoi94UfHpx7sJYiRdu9ym7Rc98lKm7H4x5982PH9z0g1i6eAXG4/T4+bc/HGc/dyYazrIoam6PG2+4Lo7Cc6JS3Y/aByo1KhymazQhWPQ6HvvOd8ST5LCquHiEnmGOL8x5Hu/cIXg/VwA+3ITiVJqKVel1aOR3FvFat24t0Q57ogwMQ2lYjmDuQiGYgoHPMY3LV5Fm0D8d86fCn4EE0pzKrzUmVFoMx+6DV0hPltdWEVHpUrk4cNp+SRnqzuWk+FPaZgLe/NSjCmWcd/swtnrG1Ex6S8fqTrwteIQWzEdpOQ1lKhdqqrKlgqKi4zyo/AiKbEvLFB2VS6/n2AQUvL7G/RJAut2n7EqvN8V3v/2teO8pp8S7jj2GVJazU+7ygQdOS+CD6Q3FeIktpAjklPppX/83ze+/WuEyV7m6um9Mmjgh9a8/9KqiqHLaQarHaaeeEsuWLkkA02fP/wzeta/G+HEU/upRiUI6mmKjv4sFL85P678SWtAI3bgxl56jojh48MDX7+LmNXr9L7zxJ+bYFzG3tk7Wrwz6ZJAYbERZ8f4lX70kKaNDRwxPxSYtPqmXfsZDD9J/QrY5Iq8YRW7IoMHJ+DAEW0NRL1AH9KfHcij09vFzP0EEKKG73G9dinogMqjwFUDojXv6j/kN7fJi+I1gn0ULNaCleSu1j2Df+llPvOsHHHBAMravvupbySj5zKc/laIiDj7wwDj7rDPTMXqnvPfkZBgOHzYU3kQIL14roxs8laGAG3R1El3Affzb951X+QzMNfFh94T7RZ7sPrEf7n+BIQ0K975AmPn4gkemHByM8X7cu46HFx38/4ELnl4B8+QaOWPK2W+Fp3htjTtIJO0n8QZpvRTjwaYh4Xd8GFVgSH3WnntuDrSxAqNqaOLRFpqb9dyzMYb9cD4RIPZXYMH9IwCh51sQaweNWWSAn00jMsyIK40rDa8meK1eb8RLau5oX6psa2RUMlddHe0UiiuGTnP01orcKIEXD8dr6nGZybvIfqzMgIkWisMx11V4HdfgpT5gv6mkfNTHY48+EjXsA8GNK6+4PHajvon9Lisl15w9K/+TD1vrp515MNpF8Ol12+Y+v+7nb8IHgg4aNPJOQQFBAgEt+dggQAf5YSvjXYl86U166Lmf+HiKeHLstvXrWlMB43Xk3uuRtcbFsuUrU3SA69sKj5uHHGjG01vCXPeC3jdi8K3dQEFlaPCEk09KQLtrunDRSwlgFQlQFjYg59asXZ3WejZFdqVTATZBbddW774FGp3v2trhqT+LF1NQGQCuB+H3RrKUlGL0A2qWkULq3lAHsvm6mcjA8rJcpM5aeE7f3j2QYevjyMOmcezvKqL/8CwfcRhr18jJJWMTQCJdCSQ8MOO+BJpMmDAWWSGY574r5b7F6HQU1gVXb2sfBT8z+q0+7a0e7Mn17ClbtdE1WxyP3MYc92F+bX7HdDTrdnntmuFDEnBRjhFr963fNG7MSIzYTTGyxiNp58dC5nj6vUsipk2LIw4/LPbbd5/4y513xZOznuNUBIprotO0AywtYF83sk8EfqQ/C2D+ARnjumc6Qhu0MAOw3vUW0Jiyy86p5ox9EyQSdPFhFIxghnvZJvBgE7hy/Wz/WxmafvTyP5wmwd5pZn9qzKufFRMd0AmgXUK9h/59KSgqP0XfI+CK6F8UWHS2Uu5dDFsxvbgYYPF97z4iyt9/JJ93kgI4k0idWegmdRx3/RKpgT3gQwUxoHcV1+Ln0HFH8+oUEdCztDdpE7nok1ZSJDpJt5AGe/ZEH8TBIj+yxgdbmp6hKxKBkce11COMLGls4NjyQX3oG7xPFRY62oh+1F1KxBnXNQrhuKP3o6DkcngQ4F/L+li/yrRc0j3Q3ceOGhovzF8AgNk/lqBTD+rXOx5dQ+FS+JD2Qm9+X4ActvREX+hy8Ut18Z2rr4pbAD5fAMBW1z/jrA/EApwAddBHJfTZ0sjJP+w/gddJkyZAl4Cr7gv+SeAOctnaD77231JSdre3f80ZyEnsf82xv/1HzaZOLXv2j82vs7dETj1ybkB/jYg8KiPvSv70l+KT550XX7z0EoTDtHj4zw+BUFIKBkP6ec/wfRbPYf285ES645k/xXi8PR2z66PumTl4YwZHD+o5rFq+KCbtMoy0BZR/mFUegq8VRmXebXkRoaRNeDw2dsfgvv2jY0UbqR0LAgQiSoZWJsa7ehV5oB5rWdYrlixbRA4aBRMJUytB6AT6ZiEoeuMSjqZqhgGuyIsRlYNjyYZFsbGYNJIRhPZzFnEVMXAbV6ynam9OOFn4shBkuLAUtsYEqADmofAJSjR34znheCQVkwbz9BCATYSbDUchuvkXt8S79zos1i1bGeMnjYr1FIG0dkWPnXrGFy+/LEprGEMxQgIFYjCGbTljbFyxJEihixfnzY5+o/vHagCbQLY/9fyTMahmcDyJ56R3TS6vchMpFiqElfStA6W6lWrKhQgbhX1Z6bCowDtS0obwa2iJ2Qiv9xxxQvzsu9fGzF8+itUdcdzUE+PoE49BIZhEjQ06BsK+714c53jb7dFIyGUrniRDllW29PzX1NQkZXc5nvgWxmpuXtPGhpxi/cKcJMz32mP32HVnjpxDa9aLVvfSAhSjlekzlSu9SAr5wUPGYaTl4Vl/IoEGjU0NySsyYcJ4zqZfHb1YJ8MJvbeKi3TXmyO1IKekYBpKae6pkQEe1WUxsYceeijqEFi77z5F7QFlKhcSb6G7IrQpBbDhhiXM15wX5qfw1UEAVIJm/SnOqdfKUOebb/4VhasWJkNIJdv+quRkTWXnjZQTFRqNFz1yerhsgjdeR0NOxUejyodhtD6rnOp9MhRyEBXPf33Ljcnzc+GFn0nhvob27zB5Qlhj4OfX/jS91wK9lZfi+Vm+IoEjjt91EpQQ2LCpbDkG/7ZPaU7VDrdorx5P/+q+GDCNqZ/9+vRKeeVrMQgdT08EvwbPFz53Ybzw/OxYtmRxHDTtgGQQagCMGD40amuGx29/c0sa679/4CyKYhYTWjs9F5ZMEdUNrElPctzthvOiMuFrlUtryWxTk1jMBcPQVVsv3Wxw+F4p/IRPKFpFbjz0sWpNffzbmafHY088HouWLYlDDj80ZqHkrUbxPuKQwxMNC2qto9iZBVj79+2XDNxOFMu995nKMWpEraDU+yjPJzVqAVW7R+YMim0Zw6vXY1uu9Vq/zcAm75M9/F7ufaO9ItVcUFkvQ0P2sWLFypRbreEnHZx00knJ4/g9wsZ/c8t/xUEHHRRjRo0EkNgPj/oO6bg/acR9mgcgaz64wJrXNFx64fwXMXwfTaH9VZUVMXpk7ki8+lUrYwGfWZfAqBn3i79zT2mQa8AZVeN+Nl/8qquuSikLhm+b9uWpBTvvvEsaSzOV4TUopHsjHaTDV7dSDLktW8lmwOH135PANFpMs+vi5JfR6V4aFP2q+6S5WcsYljBn9rcd2eDzLqT3WMSxDfDK/e5cZw/5Qfbaa/csr/bpvzUlUhXGsK0SD+qWrRzjITUIvCfzKaELUiSC54O+AEfZ5xZva8VqEdw45uijom7SxATq6jm+6cab4qP/8VFA5/5pfpeTxqB3ftz42mhubCdsenisqSfnG9CnjPxzlpa9vz7JiNIyeuj0uMncg1nbkt8wbkEQeZKgknPoGpnbb+tibvTgCnrIq7LP/cwIAo125ZGyxGf5vmlAyirn2ciRGQ88GIJeAsbf+863U7pa8phHBYBFM0ZSaSrK2AeAOWsa0fI1Qde58+eRJvlM4h3SnvQj2LGsPnfU49IXno/eRIdVA6LmFRfGe957UuqXxyCPHjmKtK1FyQAtI71DubwBx4qvpx24f3zi3I+9bDBnMzR02ODUDf+2UKNNr3nWMhDKv3tAr9l09kMmOtcDSEv0eZjRcDxXCE4g1ceMNmWCE8iYswJACefTfbMZr0rf7UFovb9J5MOzBrFLOIT9mrW+gAqv1aq34NXZdyo399/vZxETXk/D0VaM48Zjmwcj4/YHbBBMePrJv6YoFvfBTpMnAWL0iik77pQAuxdwLkgD3ewvoyuGkQ63FPCuA7nRIq3wENxR9uVqobw3Dj7ogBQV4pq7dtKJtOYek0Z8zpp06OPNap6w5PXLRXCYWO9Uhi7ma6Y3tUIiANtYE9dRIMnICOfEv63n0Iu6aRvIOLBWS3/SGN59+J5xyF6T0VvmwvsWxHU4sdYvrI8NdYDhKEWObSigQv/+A4gEKY7777mXPTEGRIWIVGivqqgqqos4NhOHYcUmCrRuXBCjB47F2H8hatkv7quZD8xEBxsSL85+IcYcdjSgweA0jkZkW/W4sSkVqwk97dlZT0Xdi48CRHpKDyfMrAMILs+PMz9wBqk0U2PShHGbRwkghZx3LvbabSfSKiZzhO09iZebrtQMoCA91oxA96c+mq0v9S2UqR86+9QUgbXDDpNTDakNm4HrDYB/OqfaOlpTRMxy9B5ukH5vTSdrfW0ABJP2va8OHSNj1DHUwwR6paEMeHq5o6968Ubyd0v6edVPt//5Fs/AK1zzLe7I9tv/jTPwCm9+zQsozDSSDNE0lE6Pk5WIBxBq+Idb/xgfeP+/k/7QHo8/+TgGyvMxZOSQGDmuNmb95BlCFDA4OCu4sbEMtJdcNk54aCWVoBx0uB/IbBve8S5SF9q6mgEhiqIZxtyCXlKIMkMGWjKEGgiv7wGDGcG9OUoYhaU9eRp69uoTG9tXE2rdFT1QLCqqe8XjTz9MPQhCxU46KprmL6c6b8SvOFby9PedEI88cx/FqcbEvJaFMaL/qFiw4kFC2BqjTxFGBed8ZkwoRTvA4I2G8NGEZ6kd46YVJaqJs48bNoMPTXgCmomkWDOvI4ZwYsNqvPyoWhyPtJHqzVR671mA94RzkBF26zHu2gTdQbpX1K8GtKDQJsqycR0bmtZHzZiaeOK+x6KAExWv/9X1cdBhB8ZT8zkira1XdKE85gGOtDdTrpMQUo/F7AdzLSd0rru9K3qWVkXdvJdi6IDhMbh3dey9y25x1eVXxtyn5ke/nQfG7bf8KX5xy/Vx/DvejVehDsOrLjYs4cxl0PHqQQNj8kTSHwAWzH9VCdRwFTxQiKsI6KW7/LKvp/mZOnVq1NTUJEZ/H6HsKn8KDb2BerkXLeIEFAzs6677RRx11FHxwQ9+MAkDacjvGN2CnED45s6Q1/NUhIKSCWpBCKMdMuVBRWG/ffdOdOdxYSoehr6aD+3zk08+lT739z6sNq0yCxmBrzDhIED9UKz64DUwH3X6vXdjdB6Op3JMTEV4PvnUzNxxePRDwaXXSGNBJUavgYIro4vX3BxbvOlvsn5nYED27DUFFDTYDRn22oaIDkPQChjcduvv4pKLv5zSU6ZPn56Ep8U5BX80iL/0xS+k9zxGzgJfTCEGQ98EPHg9FW/nytoFNucwU+jTG1v5x2vpZdMz7Wu9CSVop02NXckrrfFtusXvKSRpCPFEQKNf/Pza5NUzIuIJjPlB0JEGws6AURoInh7SyX5JkRqbtV+jXgp5nZRLNC8jZWxvNL9vKPzV4lx90UJH4GBy7ySasADg8xgQtXjOG6G1SsCPEbUjYvYcjkFEOaFqbDqv/stf/nJaH0N/VWQEjz7ykY+kQpYTABg98ssUDWnZU1n6o1B7Z1vujrnX/2j/Or9bPlJ/2YS+59x6EoURT66/dCrtGLWgpWkuvPUCLED7iY9/jD28EoOphKLDx8W0A/ZPQ/3tb35NtMsZyav+82v/M9V5UfEzYmEmtOG+0ONsXQFpWSXUa1jnoRsGezwFjKUJ94p7wrQElUf3krn2AnWeovFbCrI6954aYEFJaV6eI405jtxDeoJ3YyRn723reuTmLse3BDXkCemEEO7j8zHvODrxDsfl3DleCxnb2rYAJP3ba6XO+Xrz35kh7ud/j2ZqS+oXfa+lQN/oUSNTH93nDz3wUJx04nvjiiu+gRNhv1TY8OGHH01drKmpIeyask0DemF8MBa8rhat8++sNW3EA4onPTcan16hNeffQTpnRgwVAOz7RpIBm3eMc+kauudy85r7W0PSPssn5ctG3RiWv8suu6R96ZGupvp8+9vfTrxJD/hx7zoW7/+4tCbqFVTPSDRdUV6ZaCHrs8/ytzz2cyme1jGFhIZjhUt/HdB9MXrKeAAafpxosLSCVB8G3wofHMb8TdlzjxSFswO8bsLYcXHTdTfEc4CYf/3rzDSOowF4BOcEzjYiVzM+t+X9t3yd47pbvvPq1xmXefX7ub9L7TsPAXj3RyaDlAfOqeu8tfbG99/ar9/4M+fa6Cn5S8ZX1q7N7RXrI0wlNcI0gDUASkaXCFBoIAuEqXMKVmlQSgvqn4OQcaNra2PatGmcmHAQILORIdAX4/Xxf93++/wqDXxsbvCJ3P5IO57XOR++7zn3a1ZzBDtfkWeUM1Zwq6jqX0FtiIkxefTwOPOUdyedW/3H+RC0N7pj0aJ58fwT90fd7HnRjbPLsTtvzlM9ssv9J/gkTx9M2kW/8q6YWNOXvT8gqis2JV48dnAvjqQ/k6jYXLHRRgpL9usDiMkR9WuW18WalQviwP12Qk4Oi9599oB3a+6RRgy4UeG+ACTKg9lamLmY/aLMnDB2TOy0wyQiJUihAMw7ksgc+y6Q7Zq63+Xpq6hTZiRyP2TDSws5BQ4H4iaceavriWBCh5SOn6KWh+M1usU19neOz3SeEmTS0kUvRSv8wftmzXFL929OZEt21e3P/4gzsB18+EdclTexT5kBpUEqg9ND7GY3F/xn113LiQpjY+peU+PZ55+L6Xinztvr0wjD0lgze00UAsiWwSwaUCbyYFClGHkNhHVVgvaWo/CuglmWEQWg57KFZK42mDDik2KVoNwopMUoLOYl9h8wFvgBzQee3gVT0iCq4HSHdoo1mSc/Za9dKdgzO3na/vzEHXHJ174WH3/vmSTORXz7B9+Ps/791BhAbmtbN6UqMQIXNSzG8CedAuZc0KUxl/NOq/BYrdjqyoZtm4KxoXEjwEFnUj5UQpqIftCj1c57bdRYmD9nWRwLevzgjX+OY6ccGi/c90z0KuhJCJtoQ8SgPtVR10aaCKcatJcQYlm/gry+1hS2XpKH64GQ4wHDBsfQsUNiSR2huo8viCPfdSS5rHgjHC/3KconKgBB3Y5VrSHg0U1l1MloBZF+5q9PxsQxk2MtOaQ7T9olbrr+xnjqztl4fMvj0ku/SpRfVxz7jnfGs399Ls445YyoW7iI0Ub88JqfxDoiDy742LmEPw9NgkIF2jQLw4Wt0XDkkUemtX7HO96RDH69oCoI5mQqCBUQekWNENDrqYDR8LBAlsfEWWDL76h0a2BoEGtQaDArkAYS6j4Zr0cp41GoePydfcgUqEIiJiy4ePbZZ8fN5FC7PnqcVEZPO+20JJj83O8rcDQKs1ZchBSnCTzMnbcg5fyPGDkyFVszH9fwbQ2dF4n8EHzxGt5bwa4ynAmv7Hqv96yx4dhStMXmsWZAhH0y/FrPofvH5vza/P/ls74AAEAASURBVExBbGEza2VYF8MicOatO4/OuUJYRdw5E7zQ82u+fV1dXdTU1CSD3yKeNufU+4r22xev/z9pKqz+zu+7Tj4LwqjwuZY27+X8XHnllXHmmWem8GfBH8OKjUhRybDfGgdf//rXE33Yb+dXI1GPtnxEOsmiQZzrN6Op0rFNck3jLr3x8juJ5oYMHEIxVnKIGdNFF10Up73/fanw5CKUmVHDR75s/DrfFuY784z3c678rwGFbo0j2AN65ssJM00Fv5iHdmrGWMhOkGtLT2XWjX+kZ2lzy5aMQt7Inv08U9pVDl1z10aadc0FtC6++OJEhyqCl156adrfXlNlV0DKk2isCWLBPlOjNAqlJb2T8gm91QILRkJk4J77y3v4EKiora1NRp08QpDDfWiEktfyu9KRPEkwxOvYNEztezLq+dtnH44pe8+9sC0tmz/3RbanfBYgsV/KwuwePmf39Z7uKx9Zv3x2Tn1s+b1t6d8b/dZ7Oef2Vb4mqOycWRh4zvNz48+335UAHYFNlfof/ehHid+YXtVC3aCyck8Y6UhRHr17EzHAdLKdmQu83XrSX6NJW1uO75XdSGoUfSn2x3zH78kXfU/ayujN+fX3maFipIu0qdyRNs4666xUxNE6FtKq8kZ54GvXK6NtaSkL1beb2bz7ue/LgcoqKlO6hd81ysa+1MDvBMq8p7WMfJbWvb7ApHLIvrUSWeHJPmvhvUZL2Df3g/20Gd32926O1/nKaO3V99tyHV792f/F38659KZ8d38oB5QvygcjijwlQmfWXntRUDwOS11qQxF0LgUinHPnXvmX7T+vox7ayzoIEKPRBDbHmq19Nm7n5a1sWX+yPmz5t+CDf3ssp/vT8bW05OjXo3+rODWifjVHWyKX1BHcv4ihWMl7gvxPovu1HdFGaksOUHROnd/cdXL1OW644QbuQd0HImd6owvJt7rRW01j69enHzQ/DwcbRS1JRSshunbpssWAWG2cNFER00hr3XvqnlwTfR0+kDW4LLIvB6K0kxLt+tp/m/LCMcmvM1BAIM7P7Z8PdQv3hrxfXdP95P6T59eh25gq4zVMj7TYtQ9/7zUFq50H9R1ljX+7xtKHLQNgHKfzkNFB+nD7P/9UM/DW7ux/qqn8xxyMm1mB7IZXIGQKpB7xE04+MU4d2Df2PXBfcl+fiXsevDceffiRWLluOaWpUTSIVKgdOSpeWPAUkQ141ZNRw/E/MC6Pb1zfQNVkENQumEQHyGk+CHk+BrnHn7WT6lHQgRIDz+tF8aWX1i2O8kHkpZEfOWbMqHh29dLYuJ5wLpB1Ga7e9OGDhiYQ5D1TjonJVJOe/zghfhxdfMe9d8UBh+0Zdzx6e3T3EUFdHH3G9ANIaOF3gAjthMLh3kmpFBjYKaqB6wlA6PHQIyLY4MMUDL1VBdzXwpp0IhnIVRxV2Uafp07dJ278/Y1RRL87+biasMK6xfXJO9GbCI3lRE6Y3lGKEthNOEQR9RqWrV0Vu+2zZyz562/IOSD1YtbTGOU7xAug210w5u4W0GZC8nqh6BYgzJvWU7gSwZ3fmRdD+w+mOCX5vgMq49EZD8eCOQsSIV156eVx6B4HpSJGBXxvj12ncNJHXkweM5E816Z4/4mnYYC9FP+G5+ueO+9KhqyGh8aoAsDiZCpdMvCsoKQhuRqYGrgqFZ6QoTGiIFOInH766UlhUFhcdtllKTTa/GybgkaBknn/NUIXLV6CR7kHyHrvpIT2pYBkcpBBC6oTWY62ivLXr7givgaopOJy4YUXxtVXX50AjAQYIXhUqrOGgxqB+IpRKnhhf+27ecMD+vdNIMAAoiI0evSU2T+FqP1yDnydKXbZdV/v2T6ozPo7mwqTwlSFSyVWYeu1jBpSSfW70qxgjnOtJ0+F9dRTT03KgXniRplYTMzPDTG3WKbCV0PPIwX1BKu4K8y9jwqKoIX9d54d7/9E8fK7mdGUAREphJwx+bfjcL1VFiyup9LjaRyuufd0/jTYpYN7CLX8+Mc/nlJaNDYFeZxX19y+eh+vKU352v76+dba1pQH1aE8F3rL9oqOlN4dDPCwoakhzv/MZ+OKb1wJwHMNEQ0fjR0m7RCPbHgkjcsxWqhPehZ4mH7fA/GTn/xEayVOh6an7LZzulYRYFhRj/JUp6SYwmHmzRYQiv2P3lzjLR/2N5tX+bv0KL1rWKnwuybOiU0AUSVSAMz1lP+7dtKX3xFcsLK8oJj0IdgmKGV0kuvrfa0n454QpPJeGmjeXzqzGUGlMWehSo/gcz/YL/eB3xWIk/dYRM97SovSvL/3Ot4jG4/X2/K1f29r8/rS7KubCrF7O/ss23vuO3+T7astf7fltd7sfm55n+y1a+Ccq4z7WqBH5V5gUNr+/W//QB2ePVDknwMIfSC9PuaYY5In32MNLdjqmg8Y+EqKVAtRf7Zi6jjl2uZNx5j5PzVD0m0aBSV4tm2+paGo0VnAHBkFsXjxosRL5OvqF0ZQySM0WOSRgiA+PErSlDvlikcuOtem6lx00UUpys7x2dRVMlngdZxjaVX+67PN9Uq8cfOaVhEKbpE+jy/29IY2i/4pROivf9evqqdoXy+id3ZOfMx7968mJBxavOzyy/De75XoVDDMe8rv5I3yyL/3Grsf3LuOx+dsLzhWH5lRmAb+FvzjXLmO9s2+uGddK+nC2giznpnN5zn+I4+w/z5cQ8c0mBSSLRvLyPrB96EzlzP3/dw3nOtsvbPXaZ23vMBb8No+2uyTr322ecStKYn5yBW/gfrIvORStey381VJhI41qfgzfUcouV+/qnjXO4+I43ksWVKPjmF6iTVijCBTbzHFMXek94EH7Z/oUB2lup/120x5pIB77/J0PTOm5uAonDdvboyqGg7YNpkoB3uH/oU9z9KlZv2ODiIV3BQWJy4sJNKE/4xIyPifX5TX2Fxv1ziT+coQ19d94RzI85Uz6mPuG4EH9U2dUtKHc+RrI2jdU+qj8i3pybHIK9RXlQO16CA+C57KR2z+Rn6n7rK1lq3F1r6z/bN/zBlAxmzeSf+Y/dveqzdhBlRYFBoqiBoRGlE+T5g8kcKSO8a0Qw+MJ56eGY89/Xis2rDy/7H3HgBWVdf+/5ree4UZmBmqoCCCoGiM2HuJicZCDNFUny+mV1N+L/G99MS8v2nGkkh8lmdejC2WRCxYEEGk96HMwPTe2//72ZcNl5spwAiM5m44c849Z9e1yyp77bWsZGqJNXY3WFnFDnvxtaft0b8/aM0dWiSLdFSitVK6DdJ+kLpmi851ZYhx7tFxhFYx8+2Sgrf06vhFs3Zgm7S7JLsP4xILdMYt39a/td5+f+9CK9/eZK/uXGd3LXrEtjSWW/p4qUk31Vpxgdw0LV9nx4yaYNUbyuzacy61BZdeYblaPXPkg/g3d/3c3tqyzGqj660vK8KqIxpsd02FxXZLTb+T3UxJX7WwNYuwapPgoV0LHMIGbD50S/iAAAIrxhFijKMkJIkWYohQnZuUrkNWqM+YcKJVLd9id3zuJzLed55NmJxuqVpgR8+aZq9sWWNd8vSRKr/HdfWVWhllPVjpW2TmNz05w3ZvL7OLzzrH/vdXCy0pW9oYUX12y5dusUWvvWCNvW0S1sjYYFKsEHKSXBbJArXOpadJu2Rs3hg7YdocW/3WBvvjbY/abf/9NfvmzT+wX93+Uztu/PGWHpcpWxc6Xy0Vt5K8Cfb6G0vslNmnakRE6Ax8pTvb3icGKjlxn1FFCDtU0HEHx0IO8Q9CYaH3zAk7Uex033fffW4HAuQBUoFBgNGH0INRgOiAYIQIAmG43SLBGCQEYsAn+BlnnS2JOwaS9gggslABF4h0BAPmHGRTKgb8pDmz7Lr5H7UH779fLu4ucAhsgYhnGB4YALxxELBuTvmZsl/AyrRy5SrnHq1CiO05McfUBQaLO+eRzzvnbCvbucO5ASW9F7Dx7JEnzwMF6gfBC4y4g1ghGnjPnQvBDEgQ+CGxB7lCZL+uc/AwXMCC4xfAmHgQr7wDgaNpgrqpY4ZVCfqF3QWOoJA3yBs4oA1CCBB1ARsTwJlrsOAJI99HED0QE54YoDzKZ/4jvIGYwG0q5XuBAufxGTfUh3wgGigXgSXCEdrC7jfCE/oUlAGxwPvhCB9oV4Bscw97mwlpF3xtL9vh5i3CnAqd0f+J3G7iAeDVxa9KhXeCLfrHIoPhKtU4Ky4udrspwBgBF0IU3Lw2yiBfqgQPBO96tktaRXE6JxsgLd2ng/5zuNEn+dPHvp+DK0hfEWD06TuYenagYWgQMiGMIT13jlDhFQABAvOLcew1EMiDeUN/Qiwyful3vhOPscP4ZjxAFPpx4IUOrCUwkuRLGYwxdpwROjLmSMP84r0PjCPie6bTvw9tZzBh7OMczJ0yyMPnCzw83MiHOeoDaxzfgCXxWQ98//I7+CKN/+3TH447felhRH1Y++gHvyv5p4UP2ze+fqtbN2DwCawhzG3urPVom+Tn70/ENzfL8rF2VNF+UNMGDOTh1yBg6eFDAurDekP/Irhk7Pl6MYYQauJpgvWNPLDxwZjxayVjjnWK9nBnTMCg0F+MFfLwzJCHNXcfnMV8CRzaezqlNh5rVbUBWzeUBa6ib4+deqxt3LTRJk+YLI3FwHEQBG2M9WoZ87vi0sssVQJ0H+hvL2zmnWeG/PfQe3B9Qr/x24+f/r7xLjR9cHy+Bf/uL4/Q9P3FGc47xp9npH0+fhwIVFo7EUrsE+zxjmWJbuJ5+/Ydrk+TkmQzS94caA878XzHqGx/tl0oh3hcQ83/oeDj69zf3eEY6tnfxz3v/FpBOTwH3wParGywBY6MoPnJcrJvhEpAEZR3Y4u8q2mcM28QzqDVWSOD0RxrYw5BczDXgS/PjGPGv1CUNHoDZbMuM09Yk3HbXVvVYqPy5OJVBW3f3qD1utIJREbJ3gLaDp06lqgecZtCGBjlmRZ3ycBkh7QeerUMYLeDfJm7rIHMPdrJ2KLNzAfqS734zniA1oFupH945k6dEXLzTN0ROEAjUVdwE+sqaZl/5EVbWTPQgELAjZAa3IJgFVqLOiEAHCwM1f+He34MVrfwt8EhEPVdhcGjhL++2yEAo8ACApLnDoJn4ufkZNtPfvRjm3PybDF9dTLctMImT52s4wrSEIjotp/+94+trr3W3lq9zOrbZNgxMVr2DlrkJULWgeOirVtrWZcogGYxwC1arDq0GLZqsWtt7rLuFu0qdkba3OO1K7NijT3xxFMyAiXBhYzsXHPj9fbm+retK1qLWUSn7arcLQY6xREQ8dFxtmHNOpt/9tVWXr3D1kojY9vmajv/A/IaUDLKnn7pGesVP/b8qy84wULF7iq5+mmUv+1GZ8+hWYKHNgkdOrQrI4UBebuQ8EGLLXYfuLAl0KUFFUGEsysgY5BdLbI+3hFhp04/Wb6cZYDxjqek2dBtV15zjW1T3Ro5qqFFuxffQCAYCS86hUCahZhjJERobRWBmCA7GKOzrEZEenNDp1151WXOmFWymGonaRZHHifMhJOMVKUpyh1l4yVwaapptV9960GHExYsuNoml5TIIF6i5abkWI8IxJbmFps0epKTUqcmpzo7AdvEOKahcaCLHZ/dYsxhMEBUxcXFbucSZowLtbZSMWWo1+OvGwQDs4lgAVdWHBdYIOIQIQPjhHcwn2g/QLyxE0oa3pM/CIEFH6IEg0ORilMrIhEBF4xKs+qLZghxUW1fvXqt01IYNaoggDCFgGCWYN4hTNEsgBBEewLciKVt1IMlkFc55uqGRP1U1f3Wb37Nnnzqbw4hUi92HU5//2kSdkTuZYJBNp7JCWYsBprDENcw0CBO6gxy9EQA37CXACIEQfKN3Vx2FHFRiGABphwGnzggWU+sAV/ygxlDQEHAJaffGSQu8xDf7fQdGhXAEHggwCA95Q0VPHIFmdMvtJ13IH/ygAiH6KfeEAswpRy14Qw2Y4U2wNDQPnYeOFYCw45wAqYS1UgIDtYL0kNAePhSxlBhSOKAjtZ/HyCVgkOt1iXgXVxUbFtUp1WrVss+wRL7+te+Li2t123xS4vdN9Y24IZWDQTeVVdd5YgZBA+9yrSqqlr9ETgaJLJKxF6PM85I0UHFBxc9Yp5DCXBgSn9DxDJGGTvMSwSAjCnaj6FI+hxClZ1nxgECLvoVQpLLE3gYL4RJBYbXXnutG9Ocyec79hnOOOMMxzQy1lkjGFcQkzCH7HBTJmVBKKL+jwAD4QMX44X6M8aY5/439fcEtgc08Ri7/u7Htv9+qHcPP+AGkU/ZBF8Wz3wjHmsGF9+4A2Oe/UUcf/HucAfgRZ19nfjNekzAU8bWraX2RdmXiRZOwmtRpYRzeAFas3aNzThhhsZ9pfu2fsNmCRjlRlt4NjNLxy/iYPDZZYUZCcDCPQT9EUjUbtobaCfP1IOAZiPGaBE6oELPmGAdZbyxjjFOYEpYuwkc52I9Y4whqOLYF3GBJWsLz6T3zzA9tJs1hjJpN+l59nVg4rZrI4C0eC1I0vxOSg4cDyDfIo3HJUtedwZZE5MCatyZqRmCQYJNnzpNZ9uny0VhnDWonoxlyvAXdfZl8jxQGO4Y6C+9H2sDlRn8vr/0wd+H+wwMgHfwmsMzgfHAsVo8q/Rqke2R5wfu1AlGXF3gcHmcbFowVRhr9BV34nX3yGOZ8g/ktW8ukT8XY4B+PKxhX7EHVIxvO5HBI7grBT92a6xSVzyVMEPIFuWbraXbnScRSc8l5JLmgOhBhA7dgkG9xlxqso7gSosYV5vY0UGjOIASEfAnOBiiYREteGJ8Nl7HOXgPTYkdjrTUQPz6Oo4+NNvYogIJGqUFqm9rhBcoC3eeHN1gU0iiEl16Vt9Fq6696rM42XCDbmEO03dewMD84z04hvnMb9dG0Rh+TsJPQOcwb4mD8ADahk0v5i40A7gFusYLMLgj2Ebrrri42Am+oUmhOaFPWJ9JRx7DDYd7fgy3fv/K6Yembv+VofMeaDuLA8QKhB8LBgSfJ15QBf/ebf/PuqUqNm3qcbZ4yatS58q2taWyjL9qh82ZcpL98A//aS3SDohMjrEd2ilo7qrV+etY64jWbrgMOCbq6EJLa4dcYWq5jdEucg/MvCwDd0l9K0r+yoX0OTbRGdkj7Yk++9hN19vqLatUB7kH06K2o7LcGa+EyZl13EwJHjbZxGnH2NNr/mEzTp0tI4urbH33Knv+lRctfVSKVYqJKG+vFMNdZalaoDAGyZLq5LmqQo8WWKriLxZbnGF0aTHG+KOwmutVh0SkihbR12sTiidZ2Vub7MRrTrJ7f/BrK5wWKWNt3TLuNcFe27hOVptlTbhTUmWIZ53jwzlxa2+7RYtY6pJwI0m79LXNTTZHDNyWteukM9dhxTnFFoULSWkA5KRmSQujTYIEudXUAl8kzw2JIO6dFTKo+ZTyM5syLc+OGzPFtq/YLjsTebZm+Wq79NzLLTshx0mzs9NzTEu+YN1q06ZMFTNRIZwi1WlpUrDgcxFA2BBpJSUlDpmAOH6qnWIumFy8TyBlRrUaSTMBgoAAUcjuMoIKiEbygJCEQMA2AcQhiAOiksAuVrmYGsTuwJM0MCUQo+ywcveaF/g9Jy/sIpCOHdEf6ygGZbNLTRklcuvF2AT5ci6fumJTgXJxmfjU3551SAlGi4vdPYLfnQJpemIGRMlzMLHgIof88cjJEbBCoAQYNIQGwAOtAdqE9sOzzz7rjizwHQTJcQp2FYEJCJgdPdpC3ZhnMGX0B2fdQey0nWMN1I3y8NjBbiVjn7PxIGmYHdyTgczJ08/VkGrv95P8qI8XCviPpEVoRBsgGtiF4Fx0qYRREAqo4WMMCuYTbZmrr77aMZFe9R71edYP6gJxTv/69tEumH3PyPkyD+6ueRuYjm5aMjWdwVjNWV7Td0kJySLsemUPJMWuu2a+rVyxylZqfL70wsvyvDPZUhJRB5U7SLWHYy/rRHCdIxsP37r161I71VErpYWAYoxwj5VXHTzPoGGDu7GRHoAzwRPh/Ka/fZ8zFulT5hkEHWMQARfCBuY5QiXGFMIYxhzrBOsD6YEvhCJaJJ75wigY5+8JjFvyZI6wS814Ig+ISuYG84v+546gE6EVF4EyWSeIzzyAyCQgeGSe0l+89+OHMvxcdBHfoT8DzX/gCRyoH8H/3svY7imfOD74+tEH/tnffZzDcWcNJzC/gwV+uEO+4KILnJvNz33+czb/I/PdmvnEE08EhFJyp0y/cr4bmFNvmHBmF2tLQWGOO2pIm2mnbnuDutXFp329wmH0J+mJyx1BM+6XEUCwPrKWsE6wJrDuA3fGDHUHn7COI5Ri3f/Rj37kymNdgi4hkM7DnrS0k74JXdN8BekvVU2ur9tlCDGwiHSzjavHBHmmypAwG22Ik3Wkwq2NMmbcIiPRBI5ldInx7dEcSI5PdOOa9ZlxTNuYG5RPGQONH1+Pd+pOOZTtgx9X/u7fH827hwV1CtQL2wB5gm8A/ggcCPxu33P8gP4DjvQB2qmxEkQAa5hnjWjhyQ7Xj4H+DKQnD8ry5fH7aIVQ+Af/pra4He7W+KPvMMgptO9gw2/aPGmPR6V6ad7VyPg6bU/WpkxGisaoLgYsZkUROgATXPAGgug4wa1TQol2jUfSEdB2YMOHsd6njbKKqgbhtnQdtZBb5KQcra8NwtnShk1JkteKKUqBkEdHMMlHmj+aMRrbWkdi4mQYXp6f5CKWAKyZ4wTWbdZ95ibCQtZqAmuEH6PQNzyDU8ELrDMIv/28JT/W94suukiGxQOGJ+lj5jw0D4Jw1gzyhP7AtgXrBWsFeSGsRhMX/DRYIM9weHdCIKz58O7stwOuNZOTCwaOnSzPPPAOy/unnXaq3fjxj9u5558nDw8p9srrr1iu3EBVNO628bMm2JPPPqUd/WxL1tGHnZVltruu0iLkWqpT1hMqamWUUsYGa7TbXavFtVV+2NtapTLergVO/1Jik21MXqHd/pO7bNZJJ9gm7dL84je/tJeXvW6pORli5mssUUaHUmRMLlrqk1vlF5mFFCnyEhHQqbJsf8klF8ra/QpbvmKpPfXk63bhlWdakww1ZuVnW412RSMhGNQWhA1oOsjCgnWK2GoXIujQJTuY0s4QchDE2JGP1GLH2VAIjZgo1TE+1ZKjEm18fpF8NkfZ+hVrJfDYZePGF9mxYgZXSEUsU266muQyqKy6QmVJMowGhRbfGO209EiA0asrGQ8gUl8r27LNWpe12pdu/qw99sJfJSyp1JEC7eSr/NqKKhevZFShNVXW2gvPvGBlW7vt/LNm282fvNmWv7HcikeVyD1pgSVHy8VgRILlpuUiuJaRSvkM0RndHmmZIKnG5WFddY1zSUhfgjgg1iDgQBYQlyAAEAM7ofyGEMAWAcwGv2HI/G4kyATGgbQwmeQHM4fqHEiCozrsipMncciToyswiwkiOoEnjCpIAyQCAw5iIj5uJ1dLmwXkRF4gFQhkkBc775SNsKJo7BgRq/JK0trmzo5/9atfdfl+//vfd/UEmRMfwQDPHxDjzK6At5ZNmQEiOnD+3SPNwSYL7YdohukC0YF4aTOwYscdQ1FI49lJhhmHmEaKz3EJ6kUa2osAgvJQI/Q7eDBawJH3EOSkAbESB1gAf4QDELvMTWBFXpQPQ0k+pBsqeDh7xgRGgzyBBe2jHPqbMukfhCC8g0l98sknnWAJQQhxIQTofwKwpk6MKdriGTWEWFwQRMCJfhzoYmwOFNiD6Xa7ZSJYRcBhjLZHc9fd9+yOdWm8F4wuUH3TnWtNmIvS7TvsHtl++JG0tvLltYfxg2AI2KGNg1ZHXt4oN0aAA/XHJkSb1ExjRHRRpVbtWKGtBAHJNVID45w+IHDnN23yfcy4Zd75M/ZPP/203X333W5+ct6fuY4aK+MJgpL09CX9xvgiL/LlN2ME4QRxGKOMbcYv8COeH+OMMwhLhIgQk+AUBB28oy6MH4hWxgdzi7WBQB6UwzuIeOYaz4yRYKKe+vgr+L3L5CD/0BafP3kxTvnt6+TwgOrHXPHxgC0Xaamvf0/Rvl5+vAObwxmoM2X4+gJDAnVCkNCu9TJTbu80XWyXhAEZUuGeOWumEzi89PJLcvm3zkrGlVhxSbFNmDjBCuWhh2MIr73+mjTWGuRKuUBtUoYqxwmR9ahma14KdypT5iIGmlu1lsModnf3aG1v1Tqyy62Za9eu0RzMc/gBdWrWLrybgCuw/8GajEDspptucoZPOc7HuGGs8Z4dToJfw5jLfKPNXPQLAbh7mPMcCGi5ySWlmCl2cpuk/ci3OGkDxgrHM6/xlhMrwQPPCOoxps2PRAkdeIeL8RiVAXx9P1PmgY67A40XqO8//2V+UWffz9SBy4eh8h/qu89nuHdgT1nAhn4Jrif1Z1x6LRmPj7EroJ7TOEJ7SDAXo453G69Jw9oewxHYkDzJ2/f/cOs9ZHoGwUGEfWOPlknQpTUuTnaD0O6IigqMVeDEb9weS8HOaRzg0QS3sXFqr4ac5idzWN+UBxtkCAWitDkGPcPvdm3soZkQozyBUZTed0rLx2mUKDZGJYmXIZod2LeJZkpOCmhFYNAdF97qJhcPj0jMiXitZdhYo6xeEZVOxK8NskjRxeB21mv6gnXP43ZFdnOYNZ81ke++73nnaSxoB9ZK/51v4AsucAJalGjTMbehgcgfPIE2HXRJSUmJ23RhPpRqcwR6C0EEOMzP+/7ujJPBwpGaH4PVIfytfwiEhQ/9w+U98zZ48sGIEjyiZfnEUu8f/vgHRzhu37FNgoAUW79xvXU2yGhToozGrHnLzjj3DHt7/UpbX7rBZp0y28rkTuf1V7dYZkGqnqWJoCstK1eLRKQ11DRpN6LPUuQCc86M2fbQ/Q/Z1pfkYii6zhY+cr8tW7/Kmns6rLymQmnLrStC54/FeDU0NrsFuV2GI7HdwCJWLRXSE06Ybgtvu8emzZtmO6t2W0J6tG3avsUKigstRnWvFcHRixRdCzSCgV4hvAiIEamnKROdx5PGg5CjI6a06mOIip0SLbkWLU8Vm1ZutvNPO8cmjC62Lrkee/G5F6xiU6v91y++Z09JFaxT0vyKhjqrl5ePGCHPSPLWQh4ZJ6m1JM9t1ajOpUlgkCs7DklWunaTtUn149SLZlujFtleFnItyu0yIJQl4cTM46ZbpHZjn370CVv1cJt96dvX2bTJMywuQtLwRKmESluE+5Rxx1ph5hhXz4RYfMGrjSovPj7BEQHqOke4OwSvNoIQPKHsBy8LM/3Pgk8Apj7AfBJIQzzGBIs7yBWGgLECUwHjguABxhtiEW0DrODDSOO7OTMr2wkfyI+8KI87O7L/Iw8X7J7i8xqBwfhxRWIQq/YiMRAUjNDfRaz+Spb2y8p2uR01dtWQjsMcISxh9xbEx3vaQp4BLQExThDH2v3ivSfQgQXt4LcXgnjYgGSpI22G4KXe3GG6UCGGaEYdEBVyykNbAF/XCEtg3tAWWrBggbPQ7ueTvwNPkKoPtI9yCdQJIoFyiUMdYNDI9/Of/7xDvJTNjjICDsrGUCjpCAgNQNp+Jxo1d+LRp7ST9vv8ERrQTsoiPu25X7Y2EDqQPzCHUcToJYifvkHbAqKD9tLflM833qE+D/FAPtSDMnnPWOCIDrvu/AaOwAKYM4aIR/19XYjj31F3iLUozd0+zduGJmkwCSaVMg5XKQ2ZtNQ0uTGr1RjEzkqj1EcRxBRb+Y4yZxQXQeJ0qU0/+9yzTvDwl7/8xfUZx4dgmimLunD0B1dxeFUhBPpe6qvqg85OCWgEIxXbbwgmNPuNoJd+zhD3UC7qST9RLwgvPz6Bky+f/gWOEHEI/RhTwJodJZg95ik7xxjzYwxDEEL0oepOOsrgO2X4sUKZBO7E8b95x2+/Zvj3/jffCdTPB/L1gbpRlg/k5YMvi9+kCc2Td6GXT3uod8oMrh+/fZsGypPvwCm0jeTjYeXzCa3vO/2bMTAQDAMK1NqpFO6sl/0lXGJGCv9h80iciY0pGmvnXXC+PfHkE8LpG7S5kGrrNqy3KqnKHzftOAkeRgdwruZiqYRYeC3aUVYu4d52uTZeKWPCyfa0hHordI4bt3z3LVzohBW7JeSL1drGWHxDQowntYaxjtKfCBxYx1h3EDTceOONbvcTnMF8ZFwSgB+/fd8wboA3d9/eUPjz3l8u3Z5xh+CBEZggwQJMFs/+itY64Z/5zjNHLbjjPjQw//nVfxiqP/tPdeBv92tPSLKhyua7XyNCku796eC099ehPwxcT8YnQgnWkX1wpGsCQgg0jBAi/TOTCLONwOKdquMhtW5flftNzvpO8Gt7cF0xXB4QmrP2s6btazPPiBQgTUODmu0EEnwS9tNYlEBUCbzgAaECG4P7fjOeRc9ozpDGP/O7rqZOuFIbU9Kc4H2rcASbdiKMhAcSHe7jCAbfAhfPClRYTYvWBhw5Mnd926BbCPzmYk4SmI8+jl9D/W9wjn/n5y1jBjwPfoKWgD5hznMheACf8bx69WqnMYGgnN8EaA00QqGPMI5PXuA88lm0aJGjWbAv4TV+SePry51+84JzvoXDyINAWPgw8vrkiNYI1U3C7b+83T74oQ/KUvwiu+KqK2zZS29afV+DXX/D9bZs5TLLyMvQlWkNrQ0ynigpaKR2jEXMtGt3pE6MQ2Ki7BG0SQLb2G6ZyZlioNPlTSLB/vLnRy1/Sp7t2llt13/mRvvlXb+26hZ5mJBTztTsDKus1lEOMUotWljwTNEhAhwBRDu/xfA31InYztWRjx2l4r3bbNPm3bbgk9dZRU2V7a6ukvBCiyiITwxGnxbjXq3sfTA0vJOUt6Obnb3AwuQEDiI44rQrApGSIIZ/9uSZOi0SYRPHjrfbf3q7bd8ol4fiy8+7+CKramqQ4EGqw0GaFLjL7GK3FswiYcBxx87QkYwe27Vlh02W278l97+gYxdmc98/U8dZZGhNBM/mDZtknyHVzjvzXCuXq8wffHGhVWzrtm//7DqbWDzFMmXfIV5eM+Ii5MYqIV0aFLnSkEixSAlH0M6I0B2XnsIf+4LDIPqphTaATfZ9Cn7yyCH43UDPwXH9M8KHefPmOYaO3W7sF6ARwI4ru84fXfAxdwSktLTUMU4s+BDuaAfAtHrVfZhZBA/E84gcqbYTUEgFD9sH/OYbRzxQ0QU53XrrrQ4xcUaYnVKIV3ZZQZZI/UGMPSoThEmd/QWigsEECfHOI1TigyRhyLzWA20CucHMeeYMbQeOfTz22GNupw53cFwIPoqLi11+7NJ5xDwQTBGa+EA9KJu6gGQh2LF7QV2R9GN8k+MwCA+8gII6YF+COkLsA0cQLruHnsGnjVwgbOADA8vONcgZJO/VGnlHQGhw8803O6ROG6gPDDuaL8CevNnFRPgBPCAOEDJwHAMmAoEQmhqPPPKIIwZoB/1OHbzggvyoL0QJMKBfaT/5ERBQNEgIEi1tnoZGPUt9O1X5JCUFiA9+v/7a6+qTt23zps2WLeFeVqYYaJFfO+TtZs3qNW6ns1b1eF7ECDCBUMG9F8+URd+oSu7Me4zWhFjtUDkimimjix2fAEEWWB9cxfb88WOUfIYKxDnUC0IN+NA3wBBYeiKOvkMAB6x4x5invxAAocmAgO/MM890cwihErBfJFjgYnehGEWnCSL402bScz+Q9gzV3vD3kQKBANMXrx3VNOHiLBn7RQ1+tObvGGmRoenwxtI3bPlbUnuWOja2DsrKy9zvraVbnVbenXfepfnzgq2URlq25myM8CLzcq3mf5PWXzQjEhM1h8U4LF/+lhNS/E3aNS9pvVoiwQOMTo2EGawH4AQEm9gWwpYQggcExyUlJU7Dgbnv55Vfs/xYPxSI+pnJfTjXoZR9pNIMd74ON/3g7XRE0OBRDuir78kDivzORhqiaMarD8GwDH12409/AgKDAD7hHfIY903P/d2ls9vv+/7i/vM7Caw1LzuFE3ZKYMgmF5sxcVoP0AZqcBoGEiSQMPDH3SGZEfpwbCMyEiGyi0Ckgw7BcOgvMfiNOc6d+R/8G3zGcVbwEusGggroBmxSIbxkswu6B5tarCUIMXjHmoKBbIQSrCPQclw8ExyO34Pz+qtT+N3IgEBY+DAy+uGo1SJGTPro0aPkk/1BJ51OkUGcnDxZN2+rtIry3XbuJefK4ORblj0qS6YMmqxMRy8ycjIDhp5QAxNxW10n9dl4WcqV4cb2+jYryC6w+Mg4CRx265x/je3aXGnHn3mibElsss27dli+jOK8tvwNS5VrxhoxKBDUbQgepJ7XobNsnTqPiZvMHt13le2w6cdN1U5tuq1/ZpPFjzWbNmOaFZUU26tvLLG4FJ3TF1MRrYUXIQTHLDAwyTPvUBd1+INXWnBjtdjGSQ0zXudBk3SsIU22KSKb5To0MtYef+AZi0mPsjPPP9f6tHjvFFFVK9ea2IvgNByGKjulOcEaFylDlbFq445VOle7fZfcbvbZ5z5+k/3l0Yfkd9ysZPQY271jl7255A279sPXWGF+of3sRz+xpx9YbnPPKLAvfW6BzTnhZNu9s0ZaEYJbk/xg90ZbTnqeFeSOkTcNdg8lfIhQu3T/JwTh8QV3/6zH0DAUcvDf/Z30/pk7CznMEbYgWPxRqQUBsHO+XIxeubQfcvQehMDij4AAVVoQDswvz8SFIYaRQs0OxhrjQiAfjh38WDu0U7Sz/pOf/MQdA4AxRxDAUQCQDzv+IC2Y84su1PGg5CSHODkjCXKHeYfRpJ5I1yEYeAdzTj1ATDBwCDNAclz8htnjrCE7dezsw9AhDAHZYQAJ7QcY8+uvv94+9rGPOdV28uQd9fECjlCYB/8GJsHIkHrSftrOM/mQJ+emMeyH+jzx0UQolaAGZhS40zbOTcPwI4ihXQgaYO6BD8/sCpAWBpx0wJajM+SD0MAbEaWNCHCYd8QnLy76iuMv9BFtg6EgL+ADo0v5MLS4ZkTzpbi42H2H8aUN/OaZ8ngmP2DPOCI/hD0w2RAZbndeRymWr1gpTSJpbig9u6nswJbqeBZHozjbipp0lcZb6ZathnHZTJ3lRmOkXmtOtTQkVq5e6YSm2KygLWedeboYJQkw1TZsjHDHJkS85jMBUpJLVQpcmjx67Df4edDvxz0vKZN4h3oBH4gyxgN5MX4ZM16LhbGCwIn5AwyBLwSbP7LAsQfaiGCQoyff+973nEtbdqAxNMpcIF9/+TZ5JtD/HqyN4W8jFAIauJwHF0Zyx5XAma3aTGhtE84SPhW6s3nzTtdRjHRLSdXxRgkKWlqaNYbWab3R8UCNqdGj5cpWmkWst5s2bXbr3msS+q1atdqtTU8++ZQThrLmbNW8JA5rQW2t3GRrTq1dvcrGlRQ72zcwDXjS4e7XMcavZzhYb7kIrDe8H25g7g7nGm75hzv9cOfncNMfWPtYUQ8lBPfcoaR/B9JQhQMIwXD0z672IBJhlICQAQG7Fzj4dwH84uIq5v53xdn7jngH9w9Ehg10NJQyJXiMET2xVRqReG+JEv5kh8yVLnrV3WXjIYD0hLNUcqR+R/BOvw41eFgcaHrmPGsCF3Qe6wG4CNqADSvoHOhLaCw2SO644w5HN6LZiACCNLgKZxOI9Yt4Hgf7OlCng62XTxu+HzkIhIUPRw7WI7IkPAXAJLCz8cj/PSIL2cfbtu2lNvW4qTI02WzPv/S8fe3Wr9n9D//Jcgt0tECWsl95bqldcuWFtvgfSy19bK4krPLXm6DdTwkfItr7rCh/jLU1SC34zRVSqZbadVurTZfxyNffXmbJOSKEdG1eu9I6tPKiMtkrCSxHJjAI2aNjDuiqsYjDXPZICyJXC+uM6dNs8coXZY8i27nbe7+Iqq06JhIh43FoOoia0SU1LxHzrTCh0laI0DsMNAaOWWiXSAutEz5IAME9sVuCCNlOvPi08+2B+x+wnpg+O0EM24yTT7KXl79ptap3J/VSG3pVIafxoAUdy8UxEl4kRCdY4egi3RNtTGa+nTBxqj1++8OO6Lvk7PMkSMiyc885zzau22g//+mvrGZZl1183Wz7+he/aik6ovHME8/JdoQEGxJcRPZFW5q0RfKyRlteqozCyRhTTCTnViHQPIraM4Q8ruDunwcYXQeyCIcu1j4Nd3bTQQogCxZ5NBL4jfYDu8+1EjYsW7bcMbsYsESFH6YP5gmGnl1omGMIVt7BbMEog3DQjICxOl5GyNi1BbFgkAwhwSc/+UlHwEKkOnsQ8sTAzjxn9TukLg+CypStEJrP0RYvEICRIw1IjXcwcjD5vOcZhAWj5nfpILrZ5YdZg7lGoo7XB+p2ww03OEN655xzjms/DB/1hVGkDODBfbDAdw9P4oXCmrog7UdAQ53Z1UboQfnAHoELO9loHcD4Y4MCZvO3v/2tE84wdxE60FaYT2CHZgP2HNBQIC3CFDRQEBx95zvfcYwr8PDnNKkX/UL51Jf+oe/QwrhGHl+oA4IRNDKA00MPPeQ8LFA/znEizEFFEq8L9CtjAFijzQHDjCCEvkXggPABYQbtWa34JRMn6ax6pfp/oxM+FBcXWUnJWKXJFCG11Y2B46cf79r3zN+ett/95rf22F8fs0ZpRhSNLZJGxls2bsJ4V8eisQX2i9v/P3dUiHYwRhHcUC7CEUjkbtlnwXJ4oM2yZ6H5Hdon/ndwv7kE/fw5kDj9JNv7CkEMfUFgPNG3zBPmG+MMIVmphDmMC4xIAnP6qaSkxAmAvvvd7zq4A/+vfOUrzjsFfYAAyQso/Dj1deU7/cOdb+HwLoWAhnFUFNo8Eh7qAk0wniDg6WvWPeYbwrpJkyfZ3FPm2nmy7cQam5WdJQ9D6YrbIwv5xRJOpMplcrxw/3bNx906KrfeOF6xVOshmhDrtT4Xa8xlKK8J0oYbLyHpKdKS+umPf2if+MTH3ZxjrDKWYTD8uGY9Yjwz3njPOhW6Jr5LoX9Equ3n7KEWNtz0Q5fLqsp1qIG1OLAeH2oOw0o3RNEefv5OWf6Zu6u9/jiNhz33vc/66r6Tpt8Lus/l2O/XgVL59+Tu/mkNb6pvsBeeX2Tf/MY3HY4oFg2TnZtn3aKViI+wwdV7r7BBi8XeZ+pwaMHDYqDU4BiPbzyu4c5awFqBkBK6DtzGUVLoBegX6CzoHegXNkCw/8CGDGnQFmUNgWYhH+pAnv4aqk4D1TX8/shCIEIDYzgrx5Gtbbi0g4bA4N0rwzbaKUmQmtbiVxfbbT/4TyvdudVmv2+2VdRXWE9cjy1esdjOvuJsm37aNNuwa4Ntrd5ivfEySNau4whRUvlKirEaqdPnpeVbX32n6eSnTSs51rau3WrLF68SdWR2wxf+ze5eeJ+dJeORL8mgZZfc/uTm5+pohTxvyDZEX4Ssr8vtV6eECF1aVBAjc4ItQUKJOBmxLMnWMQT9njtrhn1j/tcte2aKnXzaXCuYMMbWlG+wuo5GudcUgaP0rd2dMkjZ5tyAxkvNlMUsWvloibJ4VSZBQod4XXFaeNM7EuyMUSfap8/5lI2ecbzlzci2G7/wWXtdu6lrpZaaJOKsrV2Gx2TNEsOSEGpSfHCCjhgRURiySpUQQafdbO6U6ZYp7YnbvvAlG6Xd2Xt+91sZ9KqyF157wf74wEMSxpjd9NVrZLH/Klu/ZrWtk1ZA0ZhxYpxjdXwgT4KKXB2/yJZnjDzLjpf3B4sT4pB1csEnYO8hpOvBZgpqGn/502842IWY8eLHDHcWeZBCcXGxW9xhlmGKYIi++//+Q2eIN0riHufKpiwIW44nIKCAkecdRCnnf8kDbQYEB2g0kDdMKAQpqv4IBFC3Q80fJgy7DuzyItQA4ZA3ecGYwViViFF97ZXF2iWPcsQvyAiGmj6nnjC8MKAcHeEcOu3hKACMOcIOmGzawoUQgnpj4JG6ckcgALKDcYV4hpDmDjPLe4hqCPyDDR7GniCnLdSPeiOkoV4gVTQP0MBACEB7gCcw4wgEjD7wQZsB4Q5IGiENcEMIgVCCfGj/97//facBgRo/9aZdMKtoPyA4oH28h6kFhrTJjxvaCANDGtyOYjeCuvh42BzgWAgaFowTCAD6HvhiXBTm36tQUg71hzHhXdnuCps4dZrURANCCYgNzo8v+sfz1iUGanvpNmtS2XNlsR6CbpfOoycL9jNPmOl2Wo+XoPT0s07XuNlqX/jyl90RHYQyMN60AcEXcKAOifJs0SWr/YSYaDdpVA+ORQUM0w3Uh34uDPTdw2mg7wfynj6AYaS//HiiHyHAGANoOzA2YCLRHmL80S/0569+9SvXLw8//LAhJGN8M8/Ij7yof2gdecfY4844C4eRC4HBxh9GltF70GGuvQ2QboHr15iIgECLDy0y0MwxMuYnayFaavR7s4xE/+yn/y2ttlPdGGEdZq4jLGSNYSxxFI5xiQATwSdx+M34yZDnp/vv+5Oddcbpbk1mfWTsBQfGIXOeKziwfrDekN+ww8Dob/CsA8vA4HGG+XWw/juQrEPnbmiaofIfKn1ofgf3G8BDEA2nAxgXh94RQ7V/sPZQa+inA609ZfmLfF3ZOsPgYczdXQfYHlodqQpEBIg4sjzo0CTaIV5zKEY0DGGl6BiYeX7v2rHT4QxwclSUhJTMQdHW+1dPbTp08O9t+0AVB0asFcz3QD0CmzH85vKwY+1gEwVcd88997gNik996lNOKIGnNmhD6ApoJegP1iOEFNAUXODF4OD6Ri98/sHfws8jAwJhzYeR0Q9HqRYBwywQIjGyj9DW1uoYl/e9/1R7e9UKufPpsuOOP9Ye/93f7Cs//IK0Enps2Yo37aRT5tjfn3vZps6catvlzaFHzHyCjgf0tnZZYcYoMeTJtn71emuqarXZ58yVK8o0W715g7UJUUXKXkR7b6flyKNGm4QPnGdA9QtbDd1aGPGiodPjesmuXISlahGtFxHe1tRoHzj/Ent44YPWE9/l1LNPPHmOhBXd1ij/xk1iSru1yKHU2S5BBM/KQGutFl7lH7Pnisa6rz5F6Ypri7ApSWOtobbaHvn9s9YS0WrX3nyD/XrhvRYvexQdKr9NBBKqrZ2dstistAgc4uVeNFLPERIqb99YapnSWDjn5NOtfMNWa62ss/a6ZstNz7Q/3HWPPXbvYrvs6rPsG9/9oo0vGW8b12+wql0VNmZUgY6TzBADZDYqr8BG61hGhlxyImxQb6gV8q0t9x3O5sP+2MIhD484h8IbB7v4+vj+znGAkpISx6TCCHlbAyz81157rXbBJskOx2bHDINMYJ4x0AjTjDQbYhYjht5dJWfRQTQECFIYZ8r6xCc+YTNnznSMIgIJBBSo9yNogNmCiX7ggQfsrrvucjvqWPVfrJ31R/73YadqSDkIFRYtWuSOJVA+BDeCDJg76lUqgQnCCZg6xjxnBmHC2d1HS+Bb3/qWO6pAmd5uAIwy7YI5R0hBOgQgMH/E83ByDernj0e8ENogROIHpwEhw3QjfKAcECnMMnWmDsAZRAsjAFMAE4rQgV0A2oSgBHhRJ2AGbEHQ1Jv2484UwQDaKGh9gMCpE2WQJwIaTyBQF9pJ/YjjGVjutBWBDMwL44F4MMPkiYDoF7/4hesf6ogmB8wz9iOIB8zYuaBOXgsCocAWqXH/7q577c677rYf68jNM08/4/pIEHIGJ+tq6+z0006XvYdsq5KAE6Lqls/eYp+SVsyx0ybKda08ViQn2vMvvuD6GYEW2irUH0YL2FFOmmyD6JX6LEDseJdwWO5HcOXnEG32fdRPV/b7Krgv+41wAC+BO/0OrBhX3nUhGiLAHq0HAvCnPfQzxkLx6oGAAWETgiSINy60I2DqPLEXWgXqHHyFfg//fndAAKahSccoEDjI6os08/DSgUcKYUFtqWJssbm9WWMh1s1V5vxY2YLIzcyxneU77a9/fVyC3cuk5TTNzePo6ICtntMk2E+X1l5qapoVFxdrbCZJGPG2m7vMGQy1MrY65co2P1duVGXYkvHL2kSgfNZ1AmsmcQmMbb4xzxh/rP/+m4twKH8OlHMcKG8/+Qf6fpTfD3d9GW76oZs/nA4A+IyNo9gJQxQNLuIfIRiW/lnDOMDPu7vTL3CxRR3uScXRh0AL//muONCRLvdD+4O2knaQbbdwBPO9qanZ8gpGO4lKSlKqM7COfYfAEYvAPHQl+W6jAcOogIfDQLXnu5/j3P0z8cG10D7gLJ6hL6EPcNsMrkOgDt0B/QItwdEL1gzwH8dgoXUQwLOeQGMECzI9Hh+qfgPVO/z+8EMgLHw4/DAe0SUwSaurq7QApIuQjbEHHvwfR6Dglqq7T/sqkT2WUpxgf37sETvl9LmWnJZozzz/jH3ow5fbq28uscgU+fbO1Bl/2dXrrG+1Ytkr6G7ptOWvrXHtvvbj19sfH3rAxh13jG1fusSKZk23hNQkK6vY5RbLSDHYLIy92o3sEsHU3ocLIDEBWhBxLxStRbJGC1SJmKY1a1dZ/rgcLbCN1rCj1aJln6FgXKFV1ddYjYgdp5QgQsvJ4iU4wOYDwgLcbsU4bQfZhlDGCB4iZDQyvi3STsw9xn54623WmS5mS5vYo6aU2Lry7dah+nAsBFee3TKq2Ud8CR3S5NkiJTFFwgztGHb12XVXXmf5qbJpUFVrD971RyuXMKJbO0p4tsDewzdv+6JdeNFFMqaXapUVlfI9LgJv1GgJGKLEVFSIKMy3tJRM+X5OVR1lDFE6HxJv6DsGFBGchOzMCi7gDeCzF38MMsIOZfH1abjDFMPYIllmxwsJNEwkv1vl3gmDZBdeeJFdffXVToWONCAQGClsKJCWAGMNswvigFDlqAPPZ555pkM+aB3MmT3TikvGOaTC0QMYbBhbGCyYcZAUO/AgJghdjlv06pzzuJISx6gjXCBPdtWJg/o/v6kPiIq6oeYHAw7TfsUVV7jzyeeee677BqJD0AGCo0yP0Dwjx1yh7dx5RxuHCpRJfEIw8uU9ASKddlGWbyPvgS/5IzSgPtQVzQ8PU9pEX9x2221Oi4T2kQeCCIQ+3/zmN+3ee+91GiP0Af3Id/JEMACsECSRN33j28Xv4DqTL/XnPUIbykXDAkHA5Zdf7tLSR9SdwDMCJs5lUh4EBQIOviOsID+0JTgG8oMf/Ujuchud5gy2CyZIY4ExVqS+/5COc3DNe//pNl/Ex5lnnOms5uO7HHBGa36mpsmX+fTjZZn/bXckhPzx8LBgwQJXDru3tIV5FOEIs4BWDMyUlodAPhJ68gBTxAUsaC995fvINWyAP8QdzoVwgfQQUMwP4IeGC7s71AcY0n+0DdjQJux+IJBC4Ma4YLwznolH3zN3GL8we57YC21LAC6BMThA08KvRzgEwAGx0jqLFk6JFn6L4R6DB5kAU6+RafHR8dbYHHCtyjx0Ak55tcBIZYs8MHVLG4ijSMxt/71aHpwWSYjLLiTjiHURgRhjkGfWDwR7GrRifHqctX1AxZrFukga8uJO8OsL45GxzlrCOuTHpot0tP6M8CkQOm8PFkzDTT90eZ4KGTrmP8cA+CNf+EC9vSjBPe/B3cDWs/MeztyD4xJ/oEBqNB/2EnIDRRzkfVtzwL048zI+OcnRptIzslp5iuIolhM8uDvPezKiy0QDu3KHCX7f7kGq6D45WO0RQvq44DyEk6wPPLO+sLaA86ART5chct5D6yGQuO+++9z6A+3A0VhoOegJ2k580rG+kF9/5flyw/eRAYHwsYuR0Q+HrRZMxoGDDL3ICnafCIhGeXYoFMMWGR1nH/3kNVbXrJ3WPDE41dssMjnClq5baiXTSuyy6y6ztj4ZPpPbzfLWamtKEbOZI3d42yqsclOZnXzMLGsor5XXhzfNss0uueEaW7V1k1W0NEgAMdk2l5U2ElGqAABAAElEQVRaZ5+I/NZmS8/Nt95Gqa6rTFmBtE4tju3yy434IVYLSYKIqa5GxYuNt4KMLHvt7/+wT3/847ZTjNPjt/+fpc1Ot/mfud6WrpaxrB1bLTJRhxUykq1D7jvbtRsUJUOUEDlRAkGMLFFGa0MoWgKDSB1nwN1lWkus/eHff2GTM0630z+mXfCqMmtIiLCZ58yz11YstzwxtTL2YB3NUk9oV/y4FGk05DgvHu0t7dZa12QfvuQKW/XaUlux+DVb9+hLVnBMoV0sNfnrrr5K52e3SgujQ+3MlHqsBDmqV15ujgQNUpHTApkgy5TxcWky1imvDfJ0IVTkjlsk6iAHiKmrQ3HkZlNKIPodCPRmML7iPRb7BwoHihxC0/txQ3oQAoFFPji4uuhFfYM8n2jxj5VfalymwtiyIw5jhcocLpRADLyHCcX4IUz+lR+6wvmaR/qNij7IBAbsySeftG984xsO6dB/MFloPpAfTDJq9SCt6TqK8f3v/YdNnjTRMfCkg4jmCAJaDeQHIwyTTVoIZowwohlAPDQIYPCoOwFEBtFMoB4gQx9AaBDPwTAAMQ6HgCY/8iVPmHTKA94wnsAHoQSBugM/BBXs6JMOuFBH6gDDed555+3V1gBZAx8EF+yU0xfED94ZIF8EM3wPZrTJDxhTD9IEt9nnR3y0LoAbQg00LBBKLBLDwm4F6WgXdaYMrN9zDIPALj79jcGoXXKrWVgy3oqKxzmBxikyakq7e2QwMkuw2Ll9hxirKJt27ERpJ7Vaekagn6orOAaSFhj1kv+Ubt/ptF4+85nPOAvfH/noRx0zjvE7DDAy3tDYoE4wPgif8AzQK6GiE0JozfGCB+pIHOpOO4fq354+CSZJdAiBudunOgAbhEr0G/PO14U6AH/mX3FxsSsBlVTsbtCmBRKyzJ8/38GbPqOupOVOXzNuaAu/D3UdOIRmhZO8gxDw63B/WYIHOqTlx51AP/PPMz8IH3iuqK6wvOw8F6eptcmNEcbD22+vsrraJs21HDdWWFdZF1mj0Z7xx5dmnzhdXjKqrWC0ELqCf9Z0sjhpclO8H6eMN4QO5M9FnQYKtO0dGZfDmYADVe4dej9Y/x1IEUPBZ6j8h0p/IHUYOA6A91zswLEG/sLIGR73O1T7By47wHv7uTNQPD+X/HfmFGX6cj3tBZzd5WaDj00ZgwxOFe6ED/uiH/yT23GTBpSE+CnpATe2ZNKgeZ0m99SdbQF8EMABmqt71grYAnpOJPbe9ePgC9+X30BpgRM0BSEYD/EOXMVa0SMcGKAz4kQf7HKak6wjfAemaPZhbwpaA8PS0EEIOjGaC02JUJ4LfEkajwOhQw7v+B+o1eH3BwKBsPDhQKD0Lo7jF8n+mhBYOOUqs6bClixd4oxRffbLt9jyVW/J3kGSVTVWWZ82L8ZOKtJzpdW3N9isU2bZqLGjbOv2Uitt3Gld+doRba+zU+S5oXpHlaXGpNnlF3zAFly9gMOmduWnPmPLZOOgVuqf0WkJ1tjTJuGAznqmyK+wDL9FahGK1OITJSbfHY2Q1BYrvRiJhFnQzZ3zjtGZtfrKanvfrDnW3dxmj99xr8klhJ3/wYutpbtFhixTrapV1vk3r7QT551kb66R8ED1bG5ucpoPkdLMiOuT6nyv3G/WtVl2SpadNvVky2lPta9/4psqxGzC3BNt8pxZ9sbqVVYp7QodErf8kgk2KldWeKXinSTDkscUT7Q//vpOre4tVji2xJJ01CRTwpHWxibrkzrq2fPOsI9opzZHBr1gKpolZIkSU86xlhhpZWBfI0UMbroWy+SIFCGxCEuMSFL3RLi4WPlPROCgf21iOhLiOMu3B2PoyQeP0jzy8+9D74d78UUrxCHdPVjNIxUQAM8w8zyDXOhPAogFxACyQLDAe4jd4uJiJxhgd5dzyWgvkBbmix194pCWXXKYa4QFYwoL3He/Y8x7NCaQjLMTDCENIwajDGPLdxCeR4RDwWeo74PNr9C+6O/3UPmTBjgCIw9H7lyUTRtpE23zyJa2+efh1o9+I5An/eUD72FuKZfAb8qCMMDQJEIfDFzC9EM0UF+EJRAJCCPmzZtnJePGW776EqEGwhf6GSa6s6NTNhrkSlXCFwxvMvqZD26c8ayxtme4Odq1RRo41AUG/pe//KXd98c/SlCR4RhzBE5ojJCG/IjH/bjjjtXYaHLCV8YT7aNsxooXPLHzi/YMaekDhAN893Col+CW3aYo7To3NOusvLSiCC3tLZYUL48s+ke9t0oIiXAmU0Y0CZU1lU4IM75knD3+l0edUTDqhSCIuqFKioCGNBxhAYbY+OAIDeP8yiuvtFtuucUdUxqqf6l7OLx3IYDoy+OCgVrJGPShq7vLjXPGOnMyQfZWBsvAr5XMD679hpMKRnEoHI4eBJj/wXPc0UzQVOorcOXhD0ONvqFqsG9sDhWzv+9DrX/9pQl+N1Ttg2EbnG7vs+A/vHDo7WdTKmhqu3lMdfxFvcArCYm4Izfh2cBx02wZfHfftLkVK+khx6cYN8z1KGkUEiRTF85DSwnc5165uS8lQhf4Tppo2WrrY8NQzwTGXITGng+4AgWGUUG0A+5AA3FEvdKGQUBYKZo/Ly/b7r//QWf76suy7YTWH7j429/5lo7r3ug0QL0Wp8fhjAtw9pGZA7614fvBQGAfNXkwqcJx3yMQkEtCMecZYpSxMt/e1W6f//znbMbsE+yD13zI6lrrrbCoUMxyqna3G6ypstmWLnpT8TNsTNEYu+CU821r707bXFlq2zfouEGrNCg6W2xb6U5xI1qdIsXsywUndgv6emSsTyqe2HeI0PEK3Fb26nxqsuxBROgcabR4nBgtkLE63sCRCKShTvIg6qZO5/SzsnMsUcc7dlbV6GjHaBuvc6mbH3vV1r613uYvuNaWrV9hXXJZef6Z59ryTSusIH+U/JhXOYO+aWKAExLirKdFrshq2uTWstUKM8dY/qgx9pWrb5Y6hLpT5UybPlPuI9dYpVyMzj39DJt98lx75dUllpWYJReg7ZYWn2qF6fmy8ZBlteVNtnv9Dsvo7LFjT5hlo8dNdfYEejv7bP3aTdY6RsRdV4Qde8wMx1ixKI7KGSXDnIEdqA7rsI2bSm3GhOOto7XDMW8JMl4ZL0EGAWZunyGif16dDx1luezfsT8IP6iLrw+/2U3m4iXHIniOjRGQufYEiFi+ZchjBaFHRDHPxBtXUmyj8vPceXzSJsRLO0RCG7RGQCZIvZ02hjDgIu22w5yxE4xWAwiUix13NAhgXknDO8+QUx7IabiEC/kc7kAdHfJWGyAoaUdw3YEF7zxD7AUVEAPvBOIlD1+H4LZSF8oExnyHKYdx5ggAHjAwTkcfoJWBEAmtDuYA9fLq2Yxx+jEpXqra6lvaQXm0F6EG8WiPD4yZUGIQGx7UhbFzvDzifOqTn7BMHSHDc8lTTz7h6sfxELynnDRnthNQIBRMUJnY1IBoIUDMQKgxRtDOoL4cLyFQR+rKNxg2hF6Umaz64RpY1ZJNWBFpunfKnk1NfZ1F5QbUyqnf9rKdVqB50doRMAaKdgiw+7zsV2AELF2CXvIlT8pBEwaBCGf02Yn+9re/7Y6pcJwC46G0B6EKQhJgHg7/uhAI1orrDwrMNwh9xhYhVkJ8ne5zbqf5Fq95MFTA9hIX82+/EPp7v4/hH0cCAqFrs8cN3Fk7fb8fvrq8uwfBkLUXHA9vOPT8+zQh96u/fjgcuafCVN0ZmdRvvNl1dnXqCDEbQX3CZXsi6xu4CHqbiyNbBOwjga9TUhM1hpyirsaThBEqEQEEFzYmEBxEaG3g2Ne+sK9NHAMTgaBL2FGVQ/Dg1iRtNka6NIF1aV/a/Z+wO0N4v45f5uZmyTjuKaIRou1eHSm983e/ly2Ik6QFmeU0MaEdoDUI4Gx+c4XDyIRA2ObDyOyXI1QrHbvQedCExHjnemvlmlU2acJku++BhU6FK0aW4FtkhLJbjGGvjmZguAoiuVoS1B4JDNIlQU0bLZsAMvi4YdU6HWXQIqcjCt3t3fLmsJqVz6ZMP07q1eVSgpCNhgQtRNFCiHHaQZExh56uNovVjjQLaCQqDlr8+sTMw4h2iTDq1oKVKGNxtdphZIeHRbJSalnTph5rp51yqjxJ/EO2H3bZF7/wZXtpyYvW2tVqEyaPtzdlFDM3P0dMf5XF6Uxsl5j7+spaOAPLSEizKNmZaKppsFppamx5caNNmzPTKjeU26nnnKFdyB47Vda/k2XX4fH/e8zyM+V5okeLmIQKo9Nz7UR5teiTRke+BAkluaOss1bqbrGJUvdusM0bt7hr2dLldvfv77E7fvjflpqh8mQfoqSoRLYd0nT+tkkaDtoZ1Y5TQeZo62jvkFCmd6/aGB0P0wbR4HeVhzMYQpm14eQ1WFrKgeAJDbSDi77zyIC7J5I8ciAOzJ2Py64vAYaQtFzAg11+0hAPhhEmDTsQ/jgE+ZIP6dF+IJ1nzn0dQX4weZ6hDK1z8O/DDb+h8ue7v2izvzwsPcx8nYnrYcud+MMJpPd5+nqQn3+PVgOwpm8oD5hy5zc7+aRh957fpKG+XKwjMOZoQtA/CBrIizt9jDDDlxd8D20L34hPACYw6Gg6IFigPIQLnBHlWA/9Tj0YU3g3QZWTcrx2jve2ggCFgIsv4vsy/Dii/q5Mld0l4QOaD63trVoHWxwRhKFIiB+0boiHfRPywjMJsMFeBozBOjyWTD9e2k3xTqMBWxi0ATen1PGll15yBlY5aoNNh5tuuskZR6VtjGt/XMhVdoA/1D0c/nUhwDwj+PnKeAheOxhH/nd/d+L7tP+6UBy5LWdNI9BPXvAcLLCl78LhvQqBEOFDP82Mjg70P3ZdECYQwHkx0sZFoNjUKO9h8gTF7yjF7RDt3iEPbwl6Fyc39i4gp9ADwgcuSvUaEG060ol2hNd2wEtVxx5hPeOQ9UWDM3AJ9zlB6B76De1mbFIMFqhXdXW9hO2BI18NOuILzYddJLQBC8cUWHFxsaMFwbcI5VnH0AilbFf+YAWEvx01CISFD0cN9COgYG2bxCXGWX0j7noSbPWGNZaWlW6p2kX8x6J/yA94qju2gLQ0TgxCrpiIXGkgQCx3tLZb+e4yi0qSZkJ9rXU2yfK8jiXkpGXZijff0uTX+WX9y5Y17Bq5nIyKE5Mg11w9klBESAAhO5DybCEpqBYoDAf2iUjqleu7Hqlco6rFWWpsP0hOILuOvdYuLQkYkw6pWOepDhPHT7AlbyyxjtJ6e9/F77fdVbuM86xbtm/RLqSMR3a3u130+GidW1ddG7WAYbchQ3YbECZ06RhFRGuflb+500pKSmQvItbOmne21cpwZGdbp7Qj2iw9MU0eO+osUumk1G7HyDXmxcedY7NnHW/Xnfkhu+q8y2z+h6+yj334o26nt1seMUq3lMpWQ5c8WUy3s8492zZt2GRLlyy1Z59+1lYslwcRxcnOzJZwI1lMi86WO4OSWry1QHtCAQblnVo4yfdwBuoaGnhHuVwgAu7B8YK/80y7uXvGFYaNd9gq8PnwDWGDR2gQXaRh55cygBeMIogVgpvvvCcNz1yk9RdpCTCSgwXKP5ohuHzq7Ovv28M7Lh/PPwM/P56GU38Pf5+HL4ffofnDMNNnIH4IHfoBwQNMO8+884w772D6yYN+4iLQLvIhro/vPuhPcNn+XXA6jvAQEGLArGP3A2EEapp4NUEIgZcUtDVYS3AjyNxHgwBtB+rK+7ffftuNJQQXjB8EJNQToSBHItBGwIvK8y8ssh3lZVbXIPdfO3Y6oezuXbvd0SEEL0kybPn03552dUJA5uqnYTd2zFgHB9a9cqUbU1Do6otQgeMWDz74oDs+Qn2BG7YrOHKBRxZg4AmrUPi7gkL+9AezkCjhn+9hCDCf/BgIHS+89+vHQHdAQzyfRzCo/FoT/C78fGQhwPrg+4f+AD/4fuG9Xx+PbK3eO6V52A50P7otFW2yh/xS16vf97+om4aAC4yDSOhN0Ulcgd/gW23WyDaaD7iU51sU56mCSB/ycV6idEw4QHsohQqM1YakP0JBArQSYoTbuaJFe7NJSR1J4zQr0JZwlQoIy4YSPhAVgUNKSpKE+drAVN3RSmTjYunSN9SmCEdHnHbaae4b5UAHgiPZkAqPf9+zI+8etvkw8vrkHa0RiGig0BeBPkGvbd+9zQrl6nG5DDfGxGlyZ2fad/7j27Z02Rs288QTxMiLEdDV3tkmg5QyMKnd/BipU1W0VtqO3nKLSomyCeMmGEYYJ46bZL/84W8sKStBZ5/bbPqJM61VqsjJeenyjBFnO+srrKVHFm2T5XJTdevoZWc12uJlEDJSZ9AiJHnF/kOUFq5ILWDV0l5Ik3eIFjEBJWO0ky0NhEjFKckvsLdeftV2Ln/bph5/rP3bl262ex76g63escbGHlNkdR118qqRILMNnU7joKu501pqZH9BLizieuOsKG+MzZXNh7i6WCvbWK6z28lWWFxsbyx/yx76858tQUdNPv2Zf7NPX/ZpByOxVLLu1WsFcXlWVrnNRufkW5fam50stWchfHY6QfwwVDx7t4+lMohDQCoL4wJzhiHEi+QB43Spkh0jTROkxSympIcBItBv7MSyez+cANI8nMGPL+7Bz75cFn/aBZHEnQARDBIJJYZhOoPfw/jBpJIX6RFAkMbvivOO+KjBUzZMIoH3vPP9QXrScfl6uYj64+vsf4feQ+OHfh8qfWj8g/3t8w++8xz6m3xpX4Co2NdOH+9gy/XxffuD+85/485Y97D18PVp+A7DTZ38O/qL3wgWIBBg9klHoK48B48B+pLg03MPfiaf4O/Uk4t8KAdhB0w88wtbFE899ZSbh6TDNgiGOjkiAkHDbgraBKThKA8uYjn6QBuZt74ujEuOk1TIzfAxsh2RL9dmfKf+CDKY695YH79Jh5FL7GGQjvzZvTlr3hm2e2eZPfn4E847CHYvuFgnsPSN0VXynStDnNSP+cEcgLgikJfX0nAv+vnjYdXPp/Cr9wAEhprfEOOE4HFAGn/5uTcQKHy64HikZY5xZyyHw9GDAGuCX/PpE9Yav/7RZ+/1/mEMHs7gx/9AZRzu8gcqN/BetJ2afzAkXodobI+zoa3isBir0KzNONaKNHmQ8mH37mqnucdmUGzs/hoKe5YV0ekBegt8Cqxg+IPXCt5TDnDimbHKb0K7tH7RTB4sNDa2OJyMkEFJXdi1q8p5fbrlls/KLlqL7DJNdDiej9hEmiZD5NiRgh6EVgyHkQmBsPBhZPbLO1arwRbHXgkfWrtbpTrc5TQbahtqLVuaC2XVZdrl22Uf+eh8nbU6zfkPRw+hQu8qKiusoHC0dgyLrbmv2V7e9KrFZ8bbaaeeJsvZdTZl8hT7r//6mY5xpMi/Q68VTxpnUomwjIIcua/ssfU7N1tDh9zjaJHr0mrSHY1rw3gZghRzKMM3fW1d8k4RIYlqvMVo0dsl4j0tO0vaE/WWlpRiOcnp1iVjj+NHFdq0kon2ux/8xFpeq7entj9lP/rdj62socyiU7UixvdZY1ujO+OWmSY/whJa9LVJOBApa/rNKqe9z0Yl6uhEQrFVbau2iVKFrhThf/HlH9DZuB6L0SKanzda9h7kXsziTIrgkuvKNZAcYdbKYNzorDwxBuzEy1Zlcorrr3YtrjALLMAYzCPs0C4rhhLfeOMNp0aNqhiLPLuq7Hh+5tOfcmrY7NbyHsQAA8RCTl5OvdvldGh/hkKeh5br/qkYY1wQPQTKBAH5snkP0+SZN5hLiCKPpGgzMIOQ4h3fPaIiLQiLKzjwHniRD3cYNu4wZl6VPzh+8PNgcyI4Hs++DaHv/e+DycunCb4PlR6YUQcPUw+z4Dx49rDlu48DjIaqf2g+ob9J7/uWfIPzA96+X4hDHwcHyqdf+wvEp78J9Lf/TRnBaYLzpGx/kc4/w+BTF7QNSE8aBATky5EFCBGYfcYKWgsI9RBCICBE44F6TJ061bldxV4FxzEYR2g6oLHAEQ0EByXSkkAIgLcU4J0hjxloZeXKPgkCB9rLN+rDGETgQZk8Y0AVWJGOfP8sAefKFW9bcnyCbS/d5uo0btw4u/baa+2MM85wQkc0IYLhDYz4zZ35QRtZNwYLwekHixf+9u6EAGPhQAJjk7jBF+mGIs6ZVwQ/10hPXj6/odK7xOE/hw0CrCeseVz0Cb+5+3esge/lcKDj/1BhMNT6ebjLH7zewoeDR9B4CNAGjAOGQrs27sBPjBE2ysBFbHAhhCAu+Av8m5wcwNurV693xyrBrQkJ+wSNLDv+xERXV2BjCFiB76L32I1wRzQczt5XyW7su+39rjz2fer3qa4OF91yU69j0+BkbLe1SpOZdefuu++yz33+s0rX5wySg5s53oidL9pIHNoYDiMTAuFjFyOzX45IrcTjy05Ch45RJGlTXxJ0rU6xUbFSI66zMWPH2G4xdI31so0gn8Gx0kRIFfPfIU8T3TqWgICA3eUY2XHoE7PeI68PHVKLitQCFicpZby8O5QUy9+8zo1Fx4ih1OKGlLKmtlJGZ7rkwSJOhgg5ZyZ2XsIHKUhZhAzhSMVCq6WOHegcdXSMJLPySd7U1CwDcQk6DiHDjLLfkC1hwlhpPpw26yR7+s+PWUd5q6WWpIhREGNQV6O0Eaprko5OyHVirIQA7T3WUtlgiX1xNj6/WK47U2x36S7bsmKjjUkusI9f83G7+LyLLbov2k6dMVdaDXk2MWOcjoB0WJrsOcjKgDt2Ea2FM1FGNFu1EKZICFK9rcyy8/JlLVhCA9UrLibOUpLUHqduZlaxu9Idr5g8cbzNlTHEGdNnuXiVet+htuDZYv36dY6RYIeVxRWGwjMtwUzYoQ6IoZDnoeYbmi4YCXvCJzgO9YD5AglyJw7vSMfuOAIXTzgRh3cgDohf4vmLPHkH8uSdZ2CJi+0B7p4hhkEjL8ogvr/47S/qMVigjMMZqMdgwcPJ3weqD20jL9ru43gYDZb/UN88zMgzGFb0Af0FjOkDLph+4hOP3Q0IEb57RpmxzcVvgt8BoY9IE9yvPCN8Iw5l+/KJx+XfkQ/tJn7w+ILwoHzmFUIDxgX1hdiijhgoxbaCj4NA4vnnn3dxEFSg+YDtBrSUONrDxXxEGAjDz3jtkZXv7RIsojpK+9PT0mUodVTAkGVBoasPxz4Yl3jO+M53vmM///nP3e5MqTSiaiQIKd261T4y/yP2la98xS699FKn8cCREdaC7du37213cL8iaKMNEFtDBeAUDv+6EPDzJPju51DwmBoIQqQLnm+h44k8wuHoQoD+IdA3Hp/4Pg7tr6Nb03df6ayzwHSg6+jCV9thnGoIIiFCl3uGRqeO+hKw/9ChI8EIGMCX4JhXX39NnqF01Fq21XaWlcvg+nLbvEVun6WVECm1hs0S3ncrLriuQ/k06zh1U3OrtbbhmapTZUfINkQA12NcsldaywgHMFgpUbnwbZXKSdbYRPDBpoC0nkXXI7hwdQ2qe3+jA9yK3Yc62VRDU5KjG+np0HgREugfb7fd9n3VoddtPGDrydPQ4HsC+D0cRiYEwpoPI7Nf3rFaeWTUX4a9svkgObn8LgR2IFtlODIKwYEI9w0b10kbIsbu/9NCGUp7XUR3vPNCUF1dZQ2y5s7vlp5WSy9Ot9LdpW4HEfsOaVrEps+YZhu3brBJx022daUbFK/NaT80djbbztpdFi37CpkyINMhAUNjD+59pOqsTdNeHWPobNICo4UrLj7RYuXGrlkWemtEbM84TRoYMoRTub3cHblIlEBgfPZoe/jX91iaBBQ7tu+0Oxbebr+88xdWNGmM9URroWzTWbFULXxaoGt3S/1Z3i6K8sZaZlKm3HtGWUZUps0pOdnOmnu2VUtSmqUjD4nSjFi29i2bOWWWO24h0YmWUKmXqrxeaWVESsBgUgUzGaS0llZr1+IYn564F7ytOt4BI5KWpnL30GVNDRLYiPHJyApoSGzbWma/+c1v7H8e+B9LlIQ5PSPVqVbjQm/OnDmO2GOnFSZtKLXqvQUP8HCkkCPIzI81T/hQJd4NVAf/jd1odpgJwAlmNPgd74lLGRADBM+4eq0J3vGdy3/z9fF36hFaF/+N9P2F0PihcYZKHxo/9LdvT+h7/zuYuCcul4c1ZcMMw/Qz5qgrbQd+BOIOVX9fzkB3r3lAn/p8ievLpLxgBM97LuLzjXrxPbgdvPP1pS0QDHznmXS+zj4t5fl3PAeH4P7nPeOHuMCGZw8jBKWUA+OOJhICBLSRPvCBDzgVzr/+9a/GxbEHBBRoQlAnjjxwLAPtBbxkME7PP/98V4VFMhAZl5hgOXm5TlDiBRRoQVAeKqBoV2BvAqELwhR2kBBscNxkwrjxdt3V10gIqWNnEmx4YQLwIy5CCx8gvAheK8q/H2r8DQQ3nz58f3dD4GD6n7ih4+Fg0gdDirWFtMHzOvh7+PnIQCC0T1lD6RvW0X+Fvhlq/A63F8BBgwVPawwW5/B90wagPLfBoDOvQy/KRaMB7xbAiaMTHK8AB4LLR+m44HJpCjBO0BRAIA7dyfjhN1qBH/7whx2uAl+RBtzEd55pOwJ6NPQQ8vONNOBQ6gK+JW5xsTb8hG/BicTxwnzGaJxcdeKxZ6DQpo1OylFUpdfmph7QyliyZJlw9BTLk2H5zMwMp0l8991325QpU5zQHqE/c+FfYQ4MBLuR/j4sfBjpPTTM+g22OCN8ELvvBBBiVQJucCDYJeVEmqgHueJslnu6Tfa6iOhNGzdoUaqxsh07NbHFyE8ssqr2GotMiHDeJfCasWXrJivbvdNOOnW2ffDaD9obby+VUcoYCRFarDOyx3ZU77beKC2Eivvc4ldtzJQTrF22FBA8pETHW2F2vrQHkmVAsto2bSu1KSfMsC06utChemXI7U69zqFNKCiy982aY1uWr7a5k463L9z875ZXmGu/u/fX9p8/+57lF+Xa2PGFStMmtetNcvPZJ48UKVZSUGLTJk6zySXHWFZstrQZ5KawK95ie/d4UJCkF88U2lsV1LXjo7/aoxcc9CCJ7n4X7xDfImAg4kBByTrbpdAhQQIqYxjaJOwu1+K+a6d99etfshPnzHKWe1EZYzcWX8bz5s1z71hMkVTDZHoVV36zIMPUcdHHLPKhCy0LfTDDGCh5/7+hxOj+X4/+r8HG79GvHdL8gAogRAqw9vAG0dJHMMAgTK/FAnIGKbK7zvtQ+NNexopn2GE66Vcu4vr8iQODClLnPX1NHTzCh9llzFAGeYaWEww7xg75UVfKod6+HPLhN3Eog+9+HJIGDRWYZP8OrR3aB7FC3ODAey7qQ734zm/a6vPmTr4w+z7QLurvxzow59nX0cfr705evizKJS/gBlz5BrFFnckLrxR8X7ZsmSOUsKlAWuCCIGHGjBlWLEKK3+Rxw4032rTjp7s8INwQMnCsqqyszH2nPN5h+PLkk092hBHzGW8X9BN1SE6UFxC1jXKCA/AmfSgMg+OEn8MQCEMgDIF/ZQiwRg4nsM4S/HrL3T8Hr78ef3IPfh4KB/n8B6pj6LofGs+XFfre/26WYfTk5AQd2yvT8YkCdzwB3BkfHy2bRW9Kw2+WcGyvcHgAvwh1OeH6Y489Znfe9XsrHj/OHQ1G8A2uQbgOHUq7uBCUg5PBVdA04GtoDpj7gNAhzwnEoW887Cif79A4HG9kIwk36OBCcCd2lhDQZ6ZnyPh6hry94fIXDVWT4KJewgnZh9uDDgVulb3PrlOiNi4Jvr1Zqm+BhChsKCD0IF8uyge/e7rEwyt8HzkQeG8fCBs5cB6xNdHcFv/MX812aT2g4oTggd1+3vZIVSpX9g2OmTDFUuKTHWHdUi+Xclu22qa1W23OvJNtV80uq9lRL7/32gVMzrXInAhbvWyNvSXjjWMnjLWoxBjbsXuHTZg62WacMM12VVc52xHH5E6w6z70UauqabS1y1bYqjeW2YbNVTa2MLBwjZ6eb+XVNdZSVucWluQJE+Vas9pWbKmyabnjLF9llW/eJfMOEh50SHq7s9ZiOiSdremwrc2bra6x1k6YMd25skzU8Y6C9ELLT8yVxkOaxA4pOuoh/YkIqWfr4ggIQgf/j7ZLHiPBg572Ch/4vee9bgcaYnV8LjbEnzqLfYI8jfz7v/+7bdtR6hACDAqW9i+44AKbP3++LViwwC2gMHcgIRg9Fli0IdgBBSF4hgxEyeWRlf99oHV8t8bz7R2o/sDhcAYQNAQEyJeyQM6eOYZp5zffYWSpKwiZ4PuKO8jSCw7oV9KB8P074oPYQdzcyQ+kGoxYGQeekPHf/W+fnvK5yMM/M4ZoA4KK4ODL9+/Jn4u0CCQIECvseBCoK78ROhCwswDRwThn/AIfvnMBEwL1g/EnDXkTaBN5ARPgSP58o74E7vw+0H6lPNrnA+3hYvcFeKKeSR2AOXlSPgQYZfD+oYcecoIDbLSgEcHxDIgrjFMyV1P03Kv1kjpD7AA30iJcoC8f+d//3UuoUQZlqxdcdfAaFHjytQvfwxAIQyAMgTAEjhQEgvEIz/63v3s8SX1Cn49UHQcrB3xVWrrTiosLhW/rnWAAQcN2aQiDX1etWu3wNfQHXp+WLl3q8BOGzWHQHT5MSrTk1BSHs4qLi52nOfAXeGzFihUuDvgbL3jgubaOdtu8dYvtKNvp3EyjeQFdwDdgBP7EfhFGlvEsBR1QVFxiSbKNBg6sb2i0RYsWWeXuXXbJhReKBg9oVY4ZM0Zp97dhhHFJcDV4PCYmQtqHW9wzWog5Odk2efJklRkw6A5dQZ19gE4JppH8+/B9ZEBgH1U2MuoTrsURhACEL4IHhIz81T6sm8hQxHzjSsjMs3xd48aOk22DDif9ZEHCKFukBBX3LLzXiiYUy0bEWBmm1HcZeRydVWh58gbRJm2Ht5evtFQZjFn1ZrltXVtuLdUdEjBssm2bK5W52bIHFtisK86xE4+dbvXxOTLK+LyVvrzGcrWY5hQWWFlttcVrYZxaOMmuuewae23Ry/bEz+623226w3rkZvOqj8yXtsRYp36VnZhjHzzvgzb5uAkm0xWSHXTb4pdfdNoJSTFJlhWts9sxGZYepTNu+qc9XH3TLq/sONDwKH9OQkhIHEXgkkDGCRw8ULj7dwHABQAlWPUXOJOn0yWBoCw7OwI7mqjDxSYk2aWXXWIr3l7h1NVgBLHUC1OEujY7sFdffbVzsYdlfpg4FliPGD3DxG8W/dDQ37vQOOHfw4MAyA7402cge5BksPYB7+gn+g7BEQGkyHl+DD3BrEIA8J0Aw80OA4wrF2lAoDDJ5EMgDS4Z0YCZNGmSe0/5Pi/GCPlQj2CCCQKBQJ382KD+PJPWjyt/h2mHoOA38fhNXNoYXBeXqf5QBy6+Q9xweUEDbYJ5pz3kwTcEC7SbMqgveULkeAEG7Sd4YQn1JlAP8uW9f+c+9PPHzxfqFByXZ8qDUOLOhfCA3wj3qBtpqQtHMxA6rFq1ysEcAdKLL77ojFliy4GdIAgtPFyg1YB2AztG9BvwCBZ+UAa/eQ9MSBsOYQiEIRCGQBgCRx4C4CKP73jmInhcAd4g+PfBcfw7F2GAPwcSZ4CkB/Q6RvbUwCENMsLOcQqY96eeetYx/wgboBv/9Kc/OXoSoTnH/sDl4E6u8bJpxNFB3oPrOG4I/iNP8NStt966F1+Bv2H60e7bKltF0B+QFK06fsxmAb/B46RbuXKVoz+gT6Bjt2zZ6vAd+JVjizk5uTZbdpca6motQ7aSyJf6QQ8Qn/ogjMjNzRE9AV3UrXpHuzryDS1FhBoIH8okBKEtlEvbqAMBWiIcRi4EPFs0cmsYrtlhhQC2DPZw107YEFwYO3TNLfJMISJasklLS03S4pBluTmjbM7suU4S+m83fd6qG6rt2b8/Y08/+6TFRibYibNOsIycNNtdXW7jiiZZgdTB2i/tsEIJKBLFRL0qF3Zvpa20tZs32cSzptnVF37YTjjmWHspKsua11VYxS65kJOGQnZ8ts15/xzrEj4olVpVVH23Tc0bb1HXXWtf/ewXbFxOMSdDnFHM+qYam1Q0zrJS0iwpLU7eMSrlMSNOcUrcsYsEaT7kpORaenS6xffKk4YEDmKhhFS0+6ijFvsFMtXVJwFEBH6J4XnYQOcCSu4eeHTf/pnvJ6ILnd3yJBIlBk95sFB3y9gmyC7O+Ts2Hb3Y5azzosK2ePFi5xEDRhCkVypV7jvvvNO5Ebr++uudIIKdZM+4EA8kAaIMRXL89ojT1yV8PzwQgKH0TDYwB+n5PqEPQZAIGBAgILgDacLcEo+L8QDi9r+507cIo0C0MOdovXiGGaaWnXguyiaAeD0RRTzqwRggHy9g4D3BjxW+wXT7QPrgdgSnJw6aAHynfI4dIEThN0IO2kc9aRuXV9G89957XVw0IThyQjupD+1HAMG4Bj4cTSCQlrypK+0jf8Y7xAV19WPa312iQf54uPh8aKNvP3fqQnvIG7gj8KAsb7Dq7LPPdmUiKCopKXFtJg5EGmkgpoIDMOWiztwpn4vAbwJ156Jc6hUOYQiEIRCGQBgCRx4CrMMeb3IPvqhNMM4Mxhu+pj6t/x1692lC3x/o78HzDxicxADjihWr99AJLc52EULwRx991H72s5857UOO80Jj0l7wLs89onHPvuA82y7tBPAduLBoTIE1y2Bkso5FE6prdcRXaTKSEy0jPdUmT5pgl1x84X7Vb2nrcRrRCCSwAbF582Z3DAJcXyb6tlv4NAI4C99u1LfuJ590wvpm0RMTS7RxKSEDmzEEBChPPPGEw68IIoA/MASfRkRow1D5QBfxG3qCO0cnwcXQH+BUj2/B5+EwciEQtvkwcvvmHanZ4IsXhPherlpMdcB2QGAB5mefm+hxUg9GmggjjnTSE9ZJSTqGUV5ho0bnOX584QN/sCf/9pio627LHZUtDxcRdvGlF9njWkx6tABddNHFspLbIQaj1grHFNnWndssZ0yeGKxMi5CXi9pdlZYUJYFByTiL12JY2VBvKblZlir7DHXWaOn6h/nHVRtkEHLSNBm+bJShyQrHpHT3tltqRoK1tOOSM1G2LOTpQqoVDT111iMrvX2SYMTqeEVSjHaQIyVw6JVrIb1LSclW3fdJD3jqEz/g7F6ozlFakAcLDnr7kv9TVK2bgwY+w+wgTYaRZPFFnZsFld1WmM7Vq1c7uHMc48wzzzSs4YNA6Ae/SzxQIYP3/z5GdKD0R/v9cOs/VPrhtg/ESP95IoX+A5HTL54BR0oP44nK4x133OF2/yEOQJbskp9yyilO4wVbASBe+p0jOJdcconra/oZpOr7mrxAwD4ggIKJ5T0Il3HEfGWuYjiKdCBn6kl9uYhP/UDUfIPwIAAv8uFOPIiC4uJiF48yg5E74xLm++mnn7aFCxc64Rnles0BhBKMa+4IURCckZ44jGuEGcCNC/eSM2fOtHnz5jkPE3ynDrSNQH25ID64DiXQfi4CbSOQF/0ADBB80B7mHqqexKWuwIhdn/z8fAcz4MlOD3FaBEOEtORHXp5You7+QgjqQx99oPa6oCrQJtL68ePjUTbpD7WtPp/wPQyBMATCEHivQoA1cjjB44GB8gjFF6Hxh1v+QOUe2PuAwckGHWMA70NfwPxzf+WVVxztwPGHBQsWOE28Rx55xGns4fYZwf5bK9+2L3z1y7ajvMylB+8XFRY4e2vgOOiONBl990FO6ByupM3gqyip9LbI+0XAI0WMNiA4urx/qK1vdRqDHPugTn//+98dTcJmRYHw6bz3nWqzZEsJexAI+sGpv//9792REIw9E6BjpkyZKIGGjlirnbTR1bVorF3/0fnSwt7gtEhxX41QhbLA1eEwsiEQFj6M7P4Zdu0GWxyx6yB2Y8+lm3b6+yDyRfjqUcSvOWZBq4w+wmSx6ASI9pbWNu0SJtiu8jotDpJQanOvLwImCcag25avWSpBxON28tyTxER9wLqazL727c87F5V9vZF22aWXGwoHcek6ay1tgC4Zzonq6rWc1AwtYom2TYzYyvXr7LTzzpEr0DRr6NPZdCWQ3VuL6OyxjNhkMQad9vaaTTZpylSLT5BhuD6Zz+yWURzdm5prdMZMFuRjZS9BadQy/ZValokRkKeLXlkA1lorjxqpzqyDKq14gTYjfHDEv85MxMbtET7oI5AihN4Db/v/C/y5HIOxh+EhZpcWdhb3OqmhF0pl2wdUu5977jnH5MDg4OqPxZYz5suXL3eL7w033GA333yzW2A9Q+bTc/fl+efgb6HPocg09PvR/j3Y+D3adaN84IeE3zPJvKNfYcwffPBBx/jfdddd7h075ggi2OXH1SOaLjDqXiMAhI9QCWYXRp8LpIyWAEaaLr/8cqclgGYACJbvEBEw9sDJCynQSIChZucAZM6FcCF4XFBP8iEewgoEATD8/z975wFgVXX8/wPbO72XXYoooNggVsBu1KjBhiWmWVJ/STRN02PU9PxjiprEksRYYy+xxxJRUexYQAFBqvTdZQsL/L+fuTvwWHffIssW5By4e9+75ZS5982Z+Z4pTOqAJ/SLegnkhEsB1wCKsaqBIj516lRLTclnwAX8R9lok3oBUnANufjii6390tLSwObnATUYN+kt//GPf9j19PGcc84J3/ve94xuCCgNC/2DPh/2vWXs/i6lKvoOMPBs+L0h6PgeOnKe8TEm+gPdEXCgB/QuUMDIdGW1aOrgDu3zezXeos+UnDwsryL4kI6G8VykQKRApEBjFHCe3ti5LTnW3DwCv6ZwnW+p9TbXfnP1N3d/+vOdBH5Xaa7MF/h/o7lCP/TQQyazM3+fffbZ5n7BXMz8zjyEvDBixFAbwjwtHPbp31uZ6GVVKBm/RoEfczIzQvXaupArFwcKx5gvkfsTLcAOb/aHmUyZOW0+ZLx+PRcpC6diRKBHEHQ9mFxEQEuAiOfkWly7piL0kcwD4I97IwsxLFiwSMFcjBsycy8LE8/KYnrs2LE2TubrAi0yTjrh+DBnzuxw0UUX2cIcizosuCCPNfa8Nut4/NKuFIjgQ7uSv/UbT8e89PDVAW0b93zle/1OjKRSP/wiKRS1EvrrxIjIaAE/rrBV0HwxKVR2Fe3KKwlGU64wCkoBqKi02coeMXPWW+Hyyy8PBXmF4ac//pncHXK1ur9EQSx7hcXKfJFViIuDzL/XKcWnwIHcTHEpBHq1TWyFytqqUCU0IFfBLleUrwzdCuVW0Sk7VMvqIbegRIEsl4We/eUXZpCrVgstbWhtkNe7OlWnfleHzgoamblBwIXazpBbiCAHoQuAJAIs1HE17c1tHHuiICR+ZEnMSVmFyEpkA5vuZGPkWGKwb6pUKziPM0Hf80zYMDrJUzRK7keBheG6woVi+oc//MGUTl9pJUIxq8xlZWVmrk4EYVbIUdp8hRSFiL7TFsfYpyvNnU93b1ucS/f+0r4LB031xenS1PmWHod+KOAo+NCdiRWlmpgdV155ZSgtLTVXCxR5rBzoDxMkgAIrFEzUCAcovKy6E0+AMRGoiXqYbFHi3UoBsIDJFSWcd4U2uY96ePa8Cw4+MAGjKLNHYWcSZ09fud4BB44Ti4GNejnPO8a9CAncjwJO/VxLH2iXDaDigAMOMCsNABWEAoq936IN7haMGcHHrSYYHxYFbPQdUAMaXnLJJQZGIHCw6vHd737XwAosJrzQP2jOOLwNP9fYHpCAwj2pm19LXxgP43DQAbrwm4OOjJnPXMMYeCY8I9rm+uzMrI3vIH1ijG7ZsE73UuwdVPuNFfKn0y+eR2qBtrTR2u9vapvxc6RApECkwPZEAXhkSwq8N12B/1N87mj4ubn2m6u/ufuZB5ounRRvQVniBD6MGjVmo2Uh8gXujGPGjDG5gcUs5q7DDjtM81yu5rAltojVpXtxKNcCXmV1lTJPKJPc6nJllCsKC5ckQR5pN6cehEilEj2qFUCBPlCoDG58Rydgo2i6DwoHt1mpWJNYLjKe4mLJ4arwnbfnhd/84tIwu95VAxkJqwxkDywXsHIARJkzZ47NzyzCYfkLzVh4qZNL8/e+f4HiT8yyGBRkpOI8MkJjiy2bdSh+aXcKRPCh3R9B63YgHXMz8ME5BtyFwAQU2+uA/q8X8+0sBkS6nqoqBbGT7xelRtYH2eToFecRDzAGlC3cgKmgqlq5h5VOM0eKENVSUJi6dekR1snioFzBcbopMM4aobb5xQS1qwydZdOVmSNggJSW3LVGqfDEqHK6KlDfKllXlHQL5UJJu+QXGZgw/+1Zof8QIbjqMtPD2rr1AkSUcUPMNTMTKweZTNetkXIgeECd6ixrCywfwno23STEoU6WHGs1tvUS/El3xzxE69CMjB+213cqYFwbwQddxPfO+pOneA6bqw3csKnUrZNCqGu8rBOQYspG/V3VUnDyZemxVsycgDrsUQJRRlBAibaPYoTPHgogZmukL0IJQnGapxVkJhZntjBejnM/yhBbutLM3Jvu1jY5l+79pQMuHDTVmebG39R9W3o8Vbh49NFHw/nnn28TIRYrAAYo0uPGjQvHHnusWS1QLwqx38ezAnhiHCjZPGO+M9HyjHm2WLwQhAlrgYVy68A9gONYSaAAs0dJpQ7eAwcIABEANlhBYNLnWs77xM51nMcaAYCBOnl/XGGnTt4j7qO/CANM+lzD+wjoQEAqxkDbXAO9XZGmTf/s9OQ6ninXcT11oeTTx/vkC0qME4JPYfGB8MT30tJSGyN1AAL4u009Tkevv+G+sWvoFxvnoAf9Z6yAIYzR936caxk3IIRbuWw2NvEBgAb65cAD/ajT2DJVvxoSD4GziIek0CorJ8mGwhga0sn7F8EHI1v8EykQKRAp8AEKwMNbUuDxXlLnEv/s5/07e9/8vnR7v6+pa5rrP/NA06VTWL5iVbjnnnvDN7/5TZvLvvGNb+jzeXJ1eN0sF5FBmGORLZhjaa+ggBTcyOlS0nOzTA7OrLdopq3VFZWhOMXdgmPei1RZF8qXV2jOlFt29iYRl8s3luUrJOt33WQdWFGJa6iCVwucWLhwaRgg9+x77v6PxnCPzf/M78hKEydONFcRAjrzDJgfkX2QU1iwQGYYNGhgOP20UyXDvKdxrQ9/+ctfw1lnnWVzO3RHjsE6O5aOSYEIPnTM59J2vWqUuSWCsiMHm9h7/XH1zo+h2FupP5V81V874Sfrv1qFYt6YEtSXDZ1g/lIi+M7lfs4vERMBj/CaDEjg6voD67RP7hZ73NgmrNIqM8aVk4VrByuV5VK0uuqcgIeaWrlpyE5C9+Tm5oW59RFzSwcOMpADv/vRu4zStSGsqpA5ttwzVldqX1AcqurEcDMVFLBOzE2WGnVrk4wAKG+mAGo1lLJWqExW/Wc70MgfABD601RB6fzhD38YTjjhBFtVhTkzgXD8yj9fHkZKCfz1L38VJkyYYAwZhttPMTiYU6VPmd7TVN00K/J26AIQw2o6yioKoCvCTEBuJeK++gxk1qxZNh58HSk+ubsQwGTOZEx9rti5gOHffcJnwsN9AkXbC4op532FHwsHrE8wdzz88MPtMvqGYo4LwYEHHmgTJ3WzNVQyG36nbu8ze/rJM8UlAtNE9ggUvAf0mz19YaN+xsb1Pib6h4LNewn9uAZQAtpxDdGo6QOb989pxWCwtuG9BhRhZQJrCEw3WZFAmAG4SFdS62rsOujJGKiLghUEQCWrNbhskDXCLYA4z9i4h3YZK2OLJVIgUqBxCjgvafws/L+DTwBNdbyDHI/07SAPooluNPd8mrhtiw+3xe+H+dHbYR4HIEcGeGvGTKWu31Py3gBzeSSLxKc//enwq1/9KuCaO27cnpuNQ+KEyYXMm9SzXlZ3JSWFm13T8AvSabNliy5qvJZVq8oFKBTJnXGpLbT985//NLcKFlRw48QFkz0LO8hVyEcE7WZhYp0W9n6gxY93tFBTKcAEWY3A0D17dje5duXKpO7GW9bRyPqaJE1bnIjgQ1tQuQO30drMubWH7opiU+2gUKGcotxwLd8ZMyuYPWT6joPGcy9MM2QYhYqIvShbMDEUXTZHjbM6ZYU5782xulAK80F8lZ5zXW0S6I8+oNDRBiVVKbYDDf7As2Ww4ThKg7PJ15UrV4U77rgj/P3vfw+TJk0y5ZO2Gc/Mt2aE65VGCczlL3/5SzjxxOPtJnIj9+3bU6bsy2Xev8lkvdEGOjgDRtnElP36668P5513niHfjHX8+PE2SaGcYrKPqTxRk3l2PF+em8cXQLGGZmwUf2eY0Kmfe1JBAM77u8JEzXkUd+IfMPGXlpZaPVgm8G5gnfLVr37Vnj2gA/E4UNB3VyAl7muo3NvN9X9S2+UQfffNr6MvibCQ9It+cx97rqVPqfV4/znPZ1/dZ7WA6xw4oX6sHzjmG/d4vZx3EIPPfg17L7SfrlBXcwWAiTHQT/qIpc///vc/s6pgf9lll1mmFwQS6MAzAwyJJVIgUiA9BbbF7zN9Czv22Ujfjv38m3s+Le39lsxvLWmD+ZuSOucyJ7PI8sST/wsjR+8afvf/fh9ukQwyTQtSBKw+99xzAxYD++wzTvM3rnuSFxpMwzJkNiu8HPlHNDi1WXdbk362aKjGXYKYO2+BLT6wYPL4448byMC4SRWKzEKcKWSEBHhYZ4tub8hCskYW2Vhw5uZmSq6vMBkCGg0Y0Efy0WbD+cAXN/b+wIl4oNUpkPFjlVZvJTYQKdCKFHCFqbE9zXIc5QZFC/95FEosGyrk2vGpT58Zfv2b3xjTw7fsscceM+WmrCxJq4dihNLKuX59+ilV0MwwrHRYqK5VOqKcgkBAOamBpqDSFoqRr8YycaC4pitm+JDmggLF2Bg0qNTM8FG+UMxYucZ0fldlvaC8oGCU+LudeeZnNMZqIb9dBVJUmvKdoic23kq6mafxO9r0KLRnImEPOEQwol/+8pcGyPA8KWT/AATAXJ/JErCCe9jzLLg3dfLmHp6TWwJwjo173KKA74BIvDsoxJwj8CJmf7jDUC9tgsoz0YPKA3Yw+eO3yPPh3eH5U4e34e8ofaDw3UvqRO/H6QMb7VEXY2LPdzbvp9fhe+7hHOOhpAISHKd+xuT3s/fN66A/tOF98PsAALA+gC70J13xcTR1Dc+BdnBpoB1+m/xW3bqC543VD36s/hwdEOK+5upvqt14PFIgUmBz/hPpse0pEPnTtqdpR6qxtZ9vqjzJuJn7mMuRQZ5/fposX0eHmwQ89NdiB0EZWZRBPhxSNkhuyFX1VpIK6K74DHVCHOq02kW8hhpZ/q6VbJCXqxhF7UbQTmFVeYXiyin+k/rTq1cPS+V50MET5a46xtJtAjhgVYpcxbhxZ2WhCVfU9RrPe1oQGiJZnWCVy5UWtHfv7pKPcm2RAveS5kqK+NXcpfH8NqZAtHzYxgTd3qpLVXi2t75vSX+xcGCCmCPwAKWVaP2Y0QM+zF+0MOwldHiNFClXqDD5RqlCySQo4MiRI00RQsk65phjDI0lCCAr670FBmQHWVJIiUNx4j4UYszTKSh+KG9NFZDfxG2kqSvkUyfmjK8boMMvfvELa4d+0d+sjMxwsFIU/uZXv7Z+YQ2BlQTjJSieuqTPTddtZ5o738ztrX2aOAco+YwfmpMtAhM83AGefvppU1wx1TvjjDM2M8NnkiYzAYi5K608I9wNGhMYoCfPj2tSLQN8fIBWvAO8FzxX2v/Zz35m3x8TYIWlDIg95wAkqIuNulypd+WdOvndsdGef7cPKX84zz2phQkY0MDBBAc3vD72jI8ttb3UOvwz11IPxe/hM8f8HHRM7T/nU9tqKfiAGwl1ADhQsBbi90N/+O0idJx44okbQQ76xm+MA4m8BQAAQABJREFU9wE6OP3s5vgnUiBSYDMK8FtNV/idxbL1FIj03XratcWdzT2flvahtX8/zL8uQ6J0I1MA1CO//uf+B8Lk004Phx52uFl/sghCf4oVgHLpsiQDF7EVKHABWAE/d//Fs/eNaxorrUm/VMuHtYr5xtyeozhyqeXpZ57bKO/hVsFCE/I74Eu1Mu7NFR3O+tznww9+cIECfF8VTj31VMkGyFwEcVeMuC7p3Uo2EiO10fi5TSgQLR/ahMyxkfaiAMomyg1uC5hvoayRdYCVVBhZtVZee2uVeoR834cLVe0txb5YzL1ASiPX/leKLoBFhrgZwARK6MyZMwOBIsuVX7l/n742IaC8wvhh1q7ssrKeXjlLkp2mo01+XraYaXHo3q1EwX0qzdyO+vG9ZzZhQholgISUhYAUZMk4/fTTTTFjaslqGHa4YWM+EzU83kG+o8yD5OPjiGIKGEQchf3339/ABp7RjTfeaG4ZrJLzrFBKAQOwRED5R7HlOTCRcw768ZxQYrmfSY9n5WARkz3nUYxZeSBjA88XywtQ+NNOOy3ceeedBvDgf3jttddaYETux+KBYJEAQSjG/i7wbjQEEtKRmOvZaN/BAK/D66WfDjD49Zxj8+OMkX45YMGeOtk4Dm38Wq+D775BH9phHF63t8+x5gp1piu0T194j7GmQLDyeqE/FiWAbQ7mOD3pA2NhH0ukQKTA1lGgud/n1tUa73IKRPo6JT6a+9Z+vqnzGzIK8yBzMrLM8uUrwq67jQl//NOfwnwt0lxyyUVhsTJVFJcUKf7B6zaXrpNpLdawLGKxkZ5eThwKEEmetubBh9Z9aknQd9J4ZrApZV2lsndUVK4RWJLIrgMH9Jf7yH4mqyODIQci07AwQTy1BXK3+O53viN5b6AF2URuydTxHAWvR+YDhEhb0osnaW+NJ1tGgQg+tIx+8e52pgDMP90Gs2a1/DtiUCgrKOb4i6Oc7icFNidP2THEiI877rhw1BFHhfWKmjtIsQP2kL8+Sid7EGWQZoAIlB98/VEu35U1Ra0Up1nvzLK6WbFlYkBxhQkycaSbnAyNbgZ6Xbz4fWtz1qw5gdSaBOTDv40xLJi/IHTVSny1fN6OPvpoQ4gNGJES98lPfsImnZyc9G4fzeiG7fx0w0bffugKCMHzxL0Ca4jJkyfbBMOYOcae1JDsAQWuu+46o5lP4CjbFCYlngt1UvjMMYAKX2XgWp4zrhaAGNPk2oLlDMEPiQvC833ttddsIuSdAIkvKyuz9JmAW9Tt7wL1cz17tqaKn/M913Gf38t33i02L3xGEHFgxc/zrrOh3NMPBxDoK98ZLxuTOfcysbNxj9fHHtqlHuMawBAvqX31Y6n75s5DZx+j943vtEE/KbzrgBOcTwVLOMb3WCIFIgW2jgLN/T63rtZ4l1Mg0tcp8dHct8XzZU6nHeZwn6dRwFfJEnTY8J3Cj3/8k7CPUlPvu+/+YeiQwZJX35bbAta9czem0GbhhoDVABgmKwiU6KSABw5CtM/T6RRWCxCpEiBCbIrsbKWqZpMrCHIHcSremvGOyd/IAsjuLBqS7Y1Fpl1H72rWrWMEwEyZ8owtBiHX9+/fV+DEKi3abYFs0LQ41j4k2YFabX7pagciRhzqR48CWD5gpsUqKr74xx9/fLjrrrvMigGffOIm1EjJGlo61AY/ccJEY/SZnTPDaPnTlQ4qldVBd1M0n3/+efnJrQ3Lli4T8PBuWCVmXletVWQp/0wKrHrD2KnX4zKkKooNqWsqZBpllOtRrooK88xdIE8pir7+9a+bgo2yTUEhy1GqThTJb3/72+H8b54fnnjiiXDrrXdqrMeJqdtlTfyRlUbDSERNXNleh3luPENXRKFHavYJ3C2whMCq5aqrrjLLEFbQAZywUuFZEJSytLTUlFieCxOUp6ekXo6h8GLZgmsHK/HchyXJl7/8ZQMYHPBBEed+MlngDkBKSKwxKFyz995727tAHUz2rNojOKQTUly4oI6G19EvLyY0qP3UdyqVNn5d6h4lHnpQXFGnb/6dY67828EGfwB7OM971hiYltqXBrdu0VeEIejP+0thjDwDngugAyAfxS1Y+MwzoDSklR2MfyIFIgUiBSIFIgU+IhRgvmaeZg6msGBAwRITmYO5knmTgNsU5BPEOuZO7mO+RD6lUAcyQ75iiSkOZbuXLrLSSBbhNJ/X9wbrDMaDvMH4iP/EHlmL2GaMnyxdjAWZG9lvjhYCSdF5zDFHmruFyw31okKT45TnciztRIEY86GdCN9Rmm2p8tDe42hOAUEBhUlzHSvS9913n7kmkIlgpxEjlFZTOY2LSxR7YZ0pmwOUtqhufZ350BFgkrJoySIzYSPyPm4NmNzD6EuKisPEA8db0Enq3nXXXS0jApYSrJjvsccepnw2RSNMyzYIfd60jv3BK2WJtrE8O3Va+Ni4veR+UWXxHxbK8qGbFDeZa9iqO9YAxB3445/+aKgw8R98QtpYyWYfFFAwO6WBzc513C++Es8zRbHGMgHLFJ41K+k849tvv90mMBDyoUOH2iTFagHKLpOW34vFC3TjPgAdJjE+o7SjeDPxAYDgb1gmywbAK6xMABkAKMz9RaRiFR6XAf89UQcKNfXQFpsXrknd/Bz7VLDBr2fPmL2uhiCAn7PVgnqwgvq9D5znuwsv1OPtQD8+cy9bwwLNuI9VF+8nggwCEQICtE9X/J5013AOM0raIZYDBQGDNukrwhL95Dt95JxfZxfHP5ECkQKNUoDffbqypb/PdHXsyOcifTv202/u+bS0923x+3EwnvkRa0yf/zKVQn6mrG4njp8QBpaWhtmz5A5cU2fzcn5+nuQXBUUv2LT6LzFR82kyYsQRAAoACP1vsrQm/ZB/y+Vi0akzcbY2Bb5cXa5j6iCLbsi8WDuwYIhbLbLda7Jq/ePll4cvnntWOOTgw8Nrr7y60Sp23rzZyvx2tRaHPmdB133BpfEBKji5MmTE0j4UiOBD+9A9ttqGFEARveGGG0xZBDEFIZ04cSJLpyEzO1GqOjfIuYP7BYw3dUMRYiLA9eG2224z//+hZUPExDuF0tJSs6xA4URZxQWDFXoUUhQr0GhQWgqKG4phZ8GuneWfhtuHGyCQAgl50QMF2Q36Q0Ae+pKd1dk+Gwr88ithkVbnBw8cZNF/Tz75ZHM1IBIwIASTlOYry6FMf7KyOsmVZIX1ibRES5YsC70UHXh7LijWqUozdIX+bmKI6wWAA4AQzw1lGkAB0ID7mNAAjXDTcEUaIAErGdwqErplmc8hwAPRpIlD4KU1J2dvozX3DfvvoIS3CaDj1huADlwPCECBznwHHHDLBZ6HPxPo27B+r9f3bSG8eVtxHymwo1Eg/v5a94lH+rYufVtae3PPp6X1t3T+aq5/APwA78iRtIVsgixD4OuhilE29fkXwllnn2OuprhWZEueZcEKBZ7Ak+mgR0AH0rQ3H3msaSohy9IvNmQH3/yOdOMDfCDgum6z4n32e9k//MhjgfTluL3idoGcgaUkAb+LC4tkhbw0HHXkxy0NPSnPiQX2+9//3lxjWXQi6HhZWWIRgvEH8jBl+fLVqkvWlVvimpHcEv9uYwpE8GEbEzRW17EowOo1FgswIbIioDBdcMEFYcKECcbE6qQsOfTrE0lDhunMVSzWBrd4yWLz7X/pxZcMKUBJxcwf5fXwww9XgJx9TMlFsQWwAISgTlIhscoOGEE2CoIB1dYp3aFACAcbUtFpGgNAwKwORQ7GnpWZ9KF27frw/uIl4fnnngs333iTMeW99trLrgElBpzA8gELD2e4b775tlDkYTaGV19F6d5l49jt4Hb4B+sDX5lHKYZG0BoFGNoDRoB+89wJBImFBJP0PKVoIpPGSy+9ZHEhOI+lCuAUljIHH3ywWb/gnkFdKN7UzbOgIBTwHFOBiO2QfCY0eL+hl2/+G0gFFTiHsOGuGLhCADxQoAc04rfiFgoc93r43Fjx31xj5+KxSIFIgZZRIP7+Wka/5u6O9G2OQu17vrnn09LetXT+aq5/1M81vkeGYcPyb6cRO4cCWd+edPIp4X5lhZovGbd3r+5h3nsLw8ABfZVa84OLWKnjNUmyheAD8hUF2Yg+smfzkm58gA/8ByBh0Q3QpEIBJ5HPkKWpj/qR04jzQJazJx97LDwr92cWh7IlC991572ha0kXW1DEGpXFElJz/+QnP5Al6yxbZGIhioU/ZBdkxby8LH0m8LisPaPhgz+qNt/HgJNtTvLYYFtSAEUJpoPfP8o46RmPPPJIc0dAscqUUp84ncmyQMrVBmn/MGWABiwaahTTQdzfznEcxlpYUBj6KssF+YUBFgAUQKdhfASpZHUdZQxljT2MkngRxBSA+WE9AfiwWOBBSUmx6kyhiBrhO4yYPWAEGS8yzf9C0YHr1guIIDJwp1BSXCgwYUSYOePtjSAHgQ9h3A88+ECY8tSU8JWvfEHuJAStzLY4B9RZXl5l/e3eXS4bDGo7LvYMRVOeCxOdT9QowGw8AxRk4gfggoJ7zLhx4xScaV9Dyc8++2xL0wkYBcJOHmlWGaAhwAa+gwA/PDdWHZgMaZNj1O1gxHZMwo1dd8HBx8uYGS/vNnRl3IwXWvIZ+gI48I5T3C/VnwUWJ83RBwEjlkiBSIH2oUD8/bUu3SN9W5e+7V17az9f6vc2kGORLfnOHJwlt4u3ZswUCTqFRx9+OORKzjnooAn63jnkalV/hYIu5iugelPFZ17fN3VduuPIQMz33k//nO6eTeeSbBd1Mn9ATs/JyQqvv/FmeE4LashgyF/IEKTbxvIB11cCa377W+dZdowF8xeHPloomv7adFtAIuMb8i/WqrNnv2uLST17kiltjRYacYlFfq6zduinWWhmSiCOpV0oEMGHdiF7bLStKICSBGOEaT8sBk0mBAADrBBQqGDiztzpUyoThUHBrFDGKChZ3MN36sX8C0Y3ZMgQM93HtQLmB0LLyjrnUXgnTpxo9xF/AAsMAAoYX4HQ67WCfDspuGVmPROsrWXFXuBDfTSg1FSZHGcCql2rFWb5yZGeaN68BaGLFOVHHnnEQBWCLv7f//2fjZOxDhkyTJYYe2sVf6nlPK6tXW+uBqNH7yzmvtICD9ngttM/PCOehz8j6NpwY4JEgcZSgWfowQsxXeQ+lGiUZFYTACrcxBHggWfFeRTx1LZow4GI7ZR01m3eJ+jjJfW3wDHGCU0YP78F/z1wfMmSJXYvnynQh43CMTZol640bC/dtfFcpECkwLalQPz9bVt6Nqwt0rchRT5a31v7+TI/M6fSDvM0AD9yCXLoihUrwxuyuB0ua82777nH3ErPP/8bBjxUVa+1eRsZsaniZ3zf1HXNHadvDbfm7knOd1KmC1kj1C9idJYczOIgMjQWqMS3wH0YWfr++++3xR/cY5FliwoLtKi22BbUciS7QQ8sVpHvnnzyyTBHsbuQ5wAcdtlluDXHwl1BQRLYWl2WLLN+o9y9Zf2NV21LCkTwYVtSM9bVISkAwICfHBYHpEkEiDjqqKPM958OJ1YOUpzEkYj9YMy+3iSAXMIZKPpSUmHSWEZkZCS2Wj7xcA7ze1bViSfAJAHDxB0DpZf4AoAdtA1jhVFiWrbffvuHqUJ5cf3Izy+0tEeg1ii1ME2sHbB8ABmGUdIeylyWYkQATtAfogUPHjRQ0YAXGiBCpgsURAqxHwBCvvWt8zVhFcoVY4bMz3qor73s/jVrqkJ+QWI2bzdsh39ceYbmPDeUZAcLeC6ARBzzFXv2XMtzwZLBoyJzDQWFmTq5l/eF5+rnOMZnzvMOed3bIdk2dhmaMS4XcHg3oQGTOBvCjn/mJs7zfjF2QBqACa6B5lzHCgb3c745qwfq898Qn2OJFIgUaFsKxN9f69I70rd16dvetbf28/V5mTmVwpzK5zlSrl9WzK/xEyaG5XIrQJ7B9XfX3caYfMc8jcVsuuKgg+/TXdvUOcbP5v38cPRIok1kKY4ZsSoWLFhk1g0sCmGpzBixeGAB6EVZDn/1a18LRx5xqOQVXbtwURg2dHBY+v6ysNPwMgWZ/Fv40pe+ZBbGuFgge+N6jMv1Zz/7GbndVpjcRpaPFSvKJbcgF2qhpCWDb4oo8fgWUSCCD1tEpnjR9koBVrtRkHB5GDRokJlyTZkyxUzuRyjbxXoc41SMaYqJ6oN9T1ww1huj7yzljAJDZzNGq++k3SyvKDdFi/OABlg6YNIP4EC8BhggG/eA5HJ8tNJ7Ak506dJVZnMzdC7DUNqiokJztyD38tq166TIKcWSTNHIgUy7OdkoiYIn1EV9FRBC4JyVinI8x1w7MFcj9eRNN91kMS2YpF5+5WWlCu0ps7Sx6iGWHAn6u3ixgk326rbdM1+AAAr09Y1nCb0AGTDbgw585rgr2ijLvBf4A6JMO3jBec5xLUo1z5R3h8md6znOc+UaLCi29wJtUunG+PgOyMIYKbgTQRfGy3HMH3l/AW6IlcEx3wAd/L4toQ3txRIpECnQPhSIv7/WpXukb+vSt71rb4vn6/IL8ypzM7INMskKybZ77LmXYhvMDMT7evzxx81FgdTjw4aWhoWL3pdcWZCWRMy+LZmB6Q808C1tYx84KTcIZDMttJGZ44UXXjBZo7S01OQ2rBwIEo7Vw3Gf/GT42c9+JgBBGbaKCwyo6NWzu7kev6b4ZQSXRC5BRvv+979v6eYBL96a8Vb49Kc/awsliWzColKFyTImerRk8B8YTzzwYSgQwYcPQ6147XZHAZRTlEiYpDM1rAFYpcX3P1NWDAYoiBN10jWU9WKIvtqLUppRz2CZBGCyKGLcwzXcA1PjOCvp7LG0ANhgQuA7DBQrBCYMVtI5b+4Xsn7o0bOX0iPVmEsAlghZ2VoxVn1MCSi+ubnZagPmjnJt3bNsF7UCPohVUVycryCU2QI1eor5vmFjekxBeWgz8aPLMauPk046RS4iJWayBgDBuAoLpTxv58yXCZmNZ0LhuQAm+IQNrXn2vAfQg43PDjagULvCzHXcx3MFtAJwwHSPOpjUqJvzXMdG8b192Q7/MFbGxXvK5mPkOO8foIKvtmC1Q+CnW265xVJePfDAA4EJnhSlvNv2W9FzgCZ8hlb+XJoiDW3GEikQKdA+FIi/v9ale6Rv69K3vWtv7efr8gxzKnMxhTkVmWSgspzhtrBWbrhkpGIuZmENWWXfffe3RZKiohLN6fWLVR/YayGNeb8FRGzZ+JXtQqa9s2QRzCIGi2fUh/UwLtLIsJ7Z44orrghlpQMli+TaPcTkWi63YWTYOgVfZ2ER1+PTTjstzJo1K5x55pmWnrOyotKCTY4ff4DuJU4XGS+yJNvVmNzYIMldCygRb/2wFIjgw4elWLx+u6KAr16joKJoopiCEBMAklgNw4fhD8ZqLzEUEgW2TtYQKPdshUrn05lgj2KKMH1TpmDY2rgHf7W1qpPjBPyx7xaTobOtDI8dOy4sk2L2moLiAC68884smZK9IEaYY3WPUA7jhTIhwzrCXTLy8wusPvraqVOGocIoc6TkZKaora0zxpmT3VlmZytCoczfa3TsEYEqL4thf1wuJTdLQTzu+OPCowrC88Mf/TCMUdaLtQId8pT/ubikQPEmkjRMGsZ2XVBw2aCPK9G+Cs+e40zcAAxMymzuJsBxlGx3oYAQPsnzvgA8AFbwmefN8+Cz1+/ntmcCukADIAPgslCpWxFiiKhNzBDeS2iE7+WFF14YLrvsMrPg4RjnMW/kHH6WZA5xKwmCsG6JZUjLhJftmfKx75EC7U+B+Ptr3WcQ6du69G3v2lv7+SKP+EZbyCDIHYAPRcVFWtEvtGxpuFyw2EUMsst+97swW1m9zvr8Z0xRb5pGG0JmmpgQTd+36Qx9EqbRZPHw7ckqF8Jm6gYQ0NkAhrVa6JghK4VevXoqdkOvcOu//21p5MvLV4er/va3MGrkSMleSQDsWskqhQUE0hQ9ZCHcrWsX+4xMgtxB4MnDDz9YMv4LJqu8+uqr4VOfOlOyX45k7IW2CIdVcR5uKdu5/Nsk4beDEwmUth10NHYxUqAxCqBwpisopqzc+so3yud+++1nAMTNN98SJhw4UZkn+sviIEs5gxPfOVDkQjH11LKujlgP4lT6v16eGkwC1J2TT8YMrfSmXJwhJkmv2BYsWixfta+Hc7/4JbN2uPzyywPbnLnz5ApRHsoVO2DQoMEWrRfFDR810kEedNBBOj7Q3DBQeFGiCbBD/7t1LbaURAsXLg+9ZTmRnZMhQKJTOPLjHw/XXXedWVL0VTaNF2RtAegwUKhwlVbxSwQ6VFVppVv9WrJkubld8Hl75r+uPGsYjRYm7nQF2rI1LH4MenvxY/4dAYDCO8jzAcQgTgSBRlG8mQwb3uP3cj2bAyaAV6mCDMd5x7C+oJ2mxgFgQOwFA8W8cu3pC9GicQNiT13UweoCqVhxHRmpCZ04JFg44EaBBQO/E95/2qTt0tJSAxgAbxBwSD36xS9+0caFqSPgA6sU1M3KA1YROwtQI93VOeecYysS1EsAKQpuLtAHASqVtnYy/okUiBTYphRI5SnbtOJYmVEg0nf7fhG2h+eXOvcj77AoQkF2e/2Nt8K7kiXnz58fzjn7c5ati0UAZMhDDj0iXHrppRZvjDkeOZh5v0tJYVhdviZkSW7NUQyEivosXrhRsnhGqZPsQlvIKNa+QAYK7si+WJOpbBvEJKvQolphfeywWoEBlOysDItVlimZedHi900eQhYifgNWC2RqW6zjBI7s0a1r+LfABqyFWRh89OGHbEM+ueLPfwo77zQ8FAg4oNTV1qhuLQbpM22CnaxTiDPkCQK+I6dgVUzxxUasKsh2sXr1GslDfdXuMgMp6iTTZ2Yl47Ib4p82pUC0fGhTcsfG2poCKGUocjAnmCmKD0yY1V1M1LqUdJUilR369xsga4A8xVVIIvu/r0A2FnMhN0+KGybk67XHJH+d1ZedLZ94bYAOcllrspQInc4Qk1+xcrUYX7+w99iPyT+NdI7FYY4miClTnjbFELMx4kHA7GGW9G/q1OdCl67dTCFEwWTSSZDvxGSsR/cuAiHWmGvG+0sVw0HRfu9/4P6wi5j21ddcLZeOHuHZqc9qolkdBg0epH1F6NO3t+VUzlUKJiIh0/U03W9yXPFEQgHeK5R0rCmY+Jjw2FMApxBueP/YKC7ssGdS5/3kmTKhs/GZY75RF9fi0uPnATX4zHuCGw+gFQADBfAABZ93hVUAyt13320WCzfeeKOBW/hWYvlDcFLAEuqhPurlN0K/OIZAw/vIGAmYSpaY008/PXz5y182sGx3AVsIDGeddVYgZemYMWNs7FOnTg0PPfSQ/c4OO+wwGzt0QQCiboQQ+snvMJZIgUiBSIFIgUiB9qCAz8ft0faWtNlc/3pKxiPz2dy5c2Vp28VkBeZu5Fzkguuvv97mb+bfgQP6miUEFgQ1NbVS/PNN9ksyqtW7q0r+AHhIoA0tuEkeqKpao5Tz1ZqvpfRLZmTexhoYkQbLBgAHrgOfqKqulcwgdw65M+MSgpxcIIAhR6k/MzMTQAKrX86zcPLmG2/I+nhoeOjBB8MTAh4efPCBsET9PumkE8Oll1xiC3C9tOCB3JCAJDVJXchNsjCuqSZel0AEtY/MxKIJWeWGDdvJXJ2xJkY+O/bY4+vjPmRJVstXfQronqkOR+F3S17DVrkmgg+tQtZYaUehAMzblUAYFMocq8EwaNL64GoBw0IZGjx4YKhaI0UyL8vcEsgEId3L0FHMw2Ce9TqkGG0Sg8FUyjQMjFOgw7hcFBbkm+lX//4DbSUY3zbM25kkQGtRPFEaifaL0gdKTD8JVEn/ACeIYJwopFJcxUBJu0l+ZIAFUG2YLcoiq9vUP2HCBHsUJ554oimYfXr3TO6R/9uqVYr6myvltqM8rO20HyjtDjjw3HhW7FHomfS9OAjBO5kqVDBpcj+WALyjXMe7wMbE6RYUvBtcx+QP2MH1XMP7wsYEzbsMUMXEft9995kP5M0332wWD0zKuFXwe+A3AJhAHVgwfOxjHwsfl+UMAUsBEvCZPPXUU8PnP//5cPzxx4cvfOEL4eijjzarIdomxgP9pn0EHdoGQANsACjht0Wwz7Fjx1r9vJPQBHpwnDFwfyyRApECkQKRApEC7UGB1Hm4Pdpvrs0t6V8XuR1UVCSyBosRWACUlZXZIgSA/xtS8K+99trw6qvTrbnS0iHJYoPciiVCajGAhbRsm5NZGGBbp3mdeZz5mrgQzNUADBTO4SZBvAaOscfSgQIQkpujBQzqFfCAmwN9y8vDepNFlEpbKCGWwzPPPB0mffK48Pvf/z5cdNFFJh+wmPFJBZf88Y9/bJkuWPRAtnC5CrmBPkEXZOrcnCQIeI7aRDbnOmQcZGfkMCw6SQkOXVgswWU5T/J9tUASA12i8GvPrT3+RPChPage22wzCqAcoWyhMMHEUHxgXomylhHu/8/9ptDBrPb52L7GlImHMP+9RQZE0FHSbVpgGjGqDAMhhPoKlCDybgZMNw0DW7hwiZTBAjFGQJANyo5RaQrb0CGDw6jRI2WiPtLaZIKAIQMewOiJR0HqThRPFD1M11FK+8pFBFM2gIcFqrtbN6wfqmx/++13mHKIsonyiXkbExH3wngZ+wApndAjS0CKAw9put9mz2l7bYhnxYTHs+EzNKag1DNRQmvOU7iGzzxTJkaABTaOMZnyfrJRDyCEbwAOfKbwPgNqcA/1UyeuE9TDO81zv/LKK8Nvf/vb8Oyzzxq4hasEINS5554bLr744nCJVhT4TLpZrBiY7HHz2XvvvS3FFW4XDoRQJ4XJm98QfaOw5xr6633gONYWgGS0TZBV+kX9jI8+I9jQf0CSWCIFIgUiBSIFIgXaiwJboty3V99ot7n+4dJQKMuCPn372fyfJ4tW5FvmZqwacX1EgUeuxKXhzjvvNHmSBYORu+xUb9GABaKAgdXlYfWq1ZZOnvvzCwrlYqyA65I9MjKQP7TYJYsJZBzm8RzJA1g91AiIwAKiTtcCWLDYhsC8VNa41MO13EMqTQ9MzbgyJUPce8896tdj1tdjjz3W5Bbu4Xpzf9aCi9MAGYhzXpChiOMgsUL9S+RrZCtkLlxEATJwM2XxjkW8k046yYCJnsqSsWwZ1qHbf8B1p8X2uE8k2u2x57HPkQJbQAGUI5iUF5gT27Bhw2xl97mp00KllKEbZJLeVYoTTJkV3p5SwLIV0HHVqkoFapT5/LpNAQez5CcGL87Y0PzKLavVKPeJsibUVpYL4tFW5s1bEMaN3dMmjT322MPcQPCbJ8rvHLldoAyyIo0FA0wU/3qUy9LS0rDbriNNgQNhhuEXyWUEBoufHMyWcaDkcQzlFQsL2liwYGHo31/uHZogxK9j2UYUQLEGGGCiRUmn8O7xDJg0AQpSAQSuR2kHIPLCpImFAHuupS4HMFDiqYs2qJ/3isLKBpYLRHgGSMDFgrqZsAHUEDw++9nPKuDSp+w+rGxwpwAgYHKn0A/qZfN2qd/bsHdY9dEvhAIsbOhnP8UVQRjgOO8o9/IZCwjaxL3jH//4h7l8ME5+dxSuofCdMcYSKRApECkQKRApECnw4Sjg8ydp2ClV1WvN4gE3TGSHe6TcY814rSwfkBGwiAUAYHHi//3ut+H4Txyjha4yU9RZYCgq3iSPUB/uEcgezNXM78ixuXn5BkhwHuuBoqzEfQO5FpkH2QOZG9kT104WPziG7Eo9yBDEpHhv3tzw5uvTw+vTXwu33XabXCOONdkVeQSZBrkD2ZY6GSd1cI49BdmDuA30LyuLQOJJ1jPkEoAWFk64FnmJoJPsGTsFuSmW9qVABB/al/6x9VamAMwSxoXCw2dfyaVZmNSlP780vPXmDIvWf8011xhDg3Fjas55UGXdZmWdAAiYVlZW4tPvqTmTs43/hWFTXOHiMz5qWC7Qr7VinmVlZWGn4UPC+PHjbeX5Qfm/sWpMID+UuIMPPtgsGGgbkzKYOAH8yHcMyOy+/SC9gAy0mTDkLFMEATFg5KNH7RxWra40k7jyCmVxkPVDvlJ5xrL1FPDVfGiO8u6FSY7YBwgAbEx8gEBMpLwLTMLsOUaEasAA3k9X+L0e9rTBOSZxL7yjAAmATJgtEugR80IKVgWkkcUF4uSTT7b3gToADHorLogX6qBtJmjeRdqgeP/oI6sovEuMjzEQlIrNC9cCclAP1yBUYG1zyimnWF5u+oiwAfjAtRQXHqifdmOJFIgUiBSIFIgUiBT4cBToLstX1rKqBTpQmMOZa1H+kSvZmGdZ0EJxJ9g6bpmAEi+9+EL49W9+G4YKfNhnn31MZmARAaWeuR45oqSkWAr7CluwQDZBJmb+fvfdubK8lXWw2sHtgnuon3a5jrl+jhbQWKhANkCGwLWY88gEyLdz350TjjryiDBh/IG2eEGfACBwCcUKGHmWvlK8bmRgZCjkEtxF6tYm6c+TaxLZhTZZgHv55ZdN9gJUmT59uu7Z5OpJf2NpXwpE8KF96R9bbwMKoODBDGGAMFWKryDvuttucn/YVdkn3jXFCSZ1zd+vDQ8/+ogFrvn1r39tvvFlZYNDlmIrEKiHgL7oadTZWQp8ugLjXy8Fn2vXKh8xzBM0t2+fnrZVVFbb7VmZuaFP7x7mb88EAQBx77332ko2zBTlER99FDyURkAG6gaEKFDGjfkLFtvEk6qE9u/f36wlMLnHB5+AgDBdQAssJXADiaVlFOA9Alyg8Dz8vWLyA33/61//aueYsNmYRFM3rASwwgEswDUGdxtABreI4NlTP+8wlg8o99OmTdvoUvHUU09Z/bTL8548ebIFgAQAAGzgPtql8P4vXbrUjjGpIxTwPtIfX12wC/UHIQZggPeO3wxCg19LP7ie8bo7BsfoM3VRuJd7vvKVr9hxrvV++G+QvsUSKRApECkQKRApECmwdRRw4IG5NzurszbcLgabZSPzPXMxcy2LVMgTzO3IGvvvt2+4U666WETccefd4T/3P2iAA3O6W90y5yPLuBvEasVsQCYglgLHR+06OmTJxYI5HRmEjXme+7B8oH3kDsAG5BZkDmQT5NZ9PjYufOVLXwwLF8w32RZAIQkWOcwW4ajDZSsog+zrshPyNOMgaKTLHKtXV1jbLgu57MK4+UxxMAOApKZG8dJyowpshGmHP5Hy7UD02GTbUcBT+8GoYIQwKhRwGGSOgi0uXPR+6CMg4Hj5pcOE+0mBe/LJJ+VD1zfMFnL7ne9+NxCskQ0UGQYY0OW0ZQh4aE59R9GnwPySiSGJPYHbQ6ViNQAC1AJKaENB47o9dt/VmDEBAC+44AJTNKcKPDjk8MPNOgLm+vrrr4eZM2danyoqN9jYiBuB2wYACsosiuwcjYGJh2tZiSeOBEph6eABpsyWKB5FLFtPgdQJkufninWfPn1sIj/iiCPsuQIEoKBzPc+Y948NVxqsWXCr4V4sGXjPSFcJMEE8B6wiWIUAeCAVK8+XtrBAYGLff//9zbTymGOOMcsGJmaesa9GuEBA/d4/hAn6hKBB4Z6Ghd8MG4XfDe++/W70PlFog4LQ4JO7W0XQ3wMOOCB8+9vftr7Tnls5cD19st+S1RD/RApECkQKRApECkQKfBgKLFuuVNtylcgic4NKtRRqAj4yv6K4syCBZSILVszlyINsZMcAgPjFL39loACWBoAFyBvIJPPeu1Op2l+yWBEsKgAYDK2uscDmyALICyVdum6MYYalJ/I1gARyAXvcLrFyIOg0fcHtFyteXEHNqkKZ4EizSbYL6mNxjcL99AW3UOQc2kN28I1rkKMIOJkvWZ7PFGQMLDuRnyZNmmTXswCE/OvyiVs8kLkD3SAnt6vdG/+0PQU66cE2pz+1fa9ii5ECH4ICqYoMTAtUE0aLe4IrUCg6bM44YVgWy0HBJHOUThPmh+LOcWdiMOyf//zn9h2TdtDgI4880pgpn2H3hQWJJcV78xeFAf37WK9xpYD5Dh7U3+I7KCuRTQooiiXKsUxZsyZJl0l/suv99bCM4LuvKqOs0q8//OEP4eqrrzZl8dBDD7Xzu+66qymzhxxyiE0W+PGT3vBV5Xj+hFxGYL74uUEPTOlYXScAEZ+5hxRIBBPKVgDNZNqybsU/H5ICzj7ZM8HxvHgf2fie6ubTWNWXX365pb0EGGJVggkXdJ6JnCBR+D7yPvL+cYx3GGACFx2EB95DLCXYmJx5x2gbkCF11aCxtlvjGL8fhAf20MLjSrRGW7HOSIFIgUiBSIFIga2lgM/fW3t/c/cB1re0IEfQTzbqQz5kj+KG8Sp70sEz53KcIIzy6t1YXn5lulnbspjBNQANyMjIDvPnLwiP/ve/JtOOHj3aFjeQH5AlsKJF5uAeFkioG5kEGRTF/SkthHTv3s0U/n333dfkGAJNH65FMmKP4WbB9d/5zncMAKAOYpjRf0CJPffYLaxbK0sJjYC6KexTP28cRKMfdK2Ol5cr64XkHe6TeCQ6BYEr800OIbA2Y4CG06e/LBeS1bIAKdbntwR2jLBFxEarjgdbnQLR8qHVSRwbaG0K4MaAggbzAdn01VoQW1fgYagobjBVzoOGZmRKWYT1iYORqme2fNC4DsY5RErfTjuPCMcc+wm73jNR/OJXv7Q6WWX+2Nhx4VAp8piSATagPFI/mSxYAVacSmOy/fr1NjS6Uyf84rCCCKYYglaDVHOMySJDKAVABSUrM9vq4hrSHNInggliwYCFRmlpqfnvkccZ5grIALiw+157hRNOOMGUVhRa+sOkxR5F2FemSTlE3IlYWkaB1ImSSdVBLhRvJrzmCtGov/SlL9llgEd//vOfw2OPPWbvJz6PAGgUfC1xm8FyhQmcDcsWQAmeKe8zpa2tCliZoDB2Cr8tBAH609qCnTUY/0QKRApECkQKRAp8RCngc2vD4SE3VssaITNLcaXM3aLepVhy5zKBA8gOw4aVmSxIHQQ7x8KWuRk5l0WCEsmEEyYeFObIGuIvf/2byYhYJzCP76fg5NSBBSPWBP/85z/NfYJ+7L7HniZrfOqM000exjoTeYVrASJYIEEWefTRR22hhHtw1ejXr68WJZLg3AAmZLxoCD5wrZfmZAhcJ5DBCALvpVKuzFh7AHwwRurYZPFAhrBgcSW4rqAwoZnfG/dtR4Fo+dB2tI4ttQIFAB0w4UotMFaQWVZ+3Q8dRdBBCa6FIZH2Mr+oMLz73oIwaEA/MexVBiAQqIY6dlM8CEzT8VfDfAslDyaGyRqKPsxt5Iid5bbRx0zhATpYtcZdAmUf5kuaQVwrKEQDBlzAMgKwAKbJ9YAOMGQQZgr38pmxAawQjZj7pj73gimmNyozByg244HJAkZgXkfqRBRU6uQ46Ya4H9ABUzf6j1kaJnSskBfkKx1ktHwwmm/tH94TioMQvFe8a2x8djeHpurnPfU6uJYVCRc2qIPPTKAOrvGu815zjuMU3hdAD4q3TX9S33c72Qp/vF+05ZvTohWai1VGCkQKRApECkQKbBMKMEe3ZmmtudAsLCUzZsl9YI2CTSILICsgQwBEeKmpVVBrWdayEAaQwHgTmTPDQIOqGlxF88z1AtcJAk8CTrDIhUyBvIEFLe6ZLHScOnlSmDtvsS24LVy4IPTqkcSRIK4ClsLIM/SB/gFIEJsMC01CoxHfLD9fbsfCCSpl+cs+V/138MFp5XvGkP75KKuGxt5JMSdychL30LUKQMkiIC6quH0QjBtZm8Wa66//l+T2chsfwSeXLVsZuvdIUok7veK+7SgQLR/ajtaxpVagAEy3IfiA4o4iBPDAeWeKMDIUcfzqUdhg3JQ1AhimK+MFSh1gwzMyHUOZBxWG4XZWXRMmTjSfNa7H7x4AgrpmvPmWpe/hOvdR+6/M2GDetPH8888bEwaIAKSAueOOQZ8BKyhkv4BZszGB0E8+s6pMO0wKMHVM2jBX4xr6yTkQaawi8KvD3A3GTf/oD6vlKLZMIii1fMdKg/RIlZXrZF2xaZKyjsQ/H5oCPCNozsZz8ZI6gfqxxvaeqYR6eF+88N0BKp4h9fEM3ZWCttgciHDgimPetj97r7M19ggqtOdt8u46AMJn729rtB3rjBSIFIgUiBSIFPioUoC51OdWxsic6gUZl9hhOQqEnqc0kxS+r1xVYYtLXMuCE3IAwAMbcidyMaVSMRPem78wjJA15Vgp58iF8sYNb896L7wrKwXk5Frdy1YpeXOD5nlanycXXwkfYdjQQZJzZ4cuyoiBVcV6XU+bWOKyMIdMgoxLEElkT+Sbioo1toBHkPTq6sQ1szHwwcfse+twI39Ir0mRuCw6JXEfAD88/TiLb/TnoIMOkjy12txHkJkpvmBjX+KfNqdABB/anOSxwW1JAZgpDBpl3BFXrBSwVkDZB7XF14yYCDBhD0jDuVzdWyGztaM+8QkDInr16R2KZA1w0CEHG+O99tprLZAfDJw2ABsIyLNy9arQo1dPi59w8oknKWXQu2ZlgNkZ4MCMGTMM/MByAiCA1EEwUerADA0lEkAhsWoYYkqkTyqMAYUOywSUT7IZwEgZJ2NgwgFQwQKDfs2RuRxmcrTNWOkf9wJ2AFjQZ65lwmEyKZKlB4hzqqK8LZ/HjlZXQ+W74fj9uTY87t/xi+RZ8YwAHHi2AE9M1AATjT0nznMd19M+74SX1M9+rDX3DSdw3nHGzJ4tlkiBSIFIgUiBSIFIgQ9PAeZ/n0/ZI0f6HA8QULGm2gAHly+RGZErkSNZaELJx8oA2Rd5kQ3ZAdlw2fIVYcUquXWqzvw8xUhbXR1mSMYEKBivDGnPPPOMsqgtCEcffbTN5QRiv/2u+y2+FMcXLVoY3n7rTUvVST8BHLC4RT5how/IKGycJxAmnxO5IMmm1WmDwJX6mA8ONLD3z83JT07R2tq1WuhIXIzz8gAkssxaFPADEAQZmUVIFgXJtLFmTa3J4X5/3Lc9BSL40PY0jy1uQwqgfGFmBdOFuQA8XHfddRbsBuUfhRvGBwAAM0TJgxmRGWK13BqWrlwVZgiZxXUBBR9UFKQW3zWOobwTz+ElBXJEgYehl5aW2gSwUMF6CPS3Wm1zHKZNf2CYgBww7SlTptgxjuPz5iAIfUDB9NVtV9Z89ZvJAUaONQUmZIAVfMetgkwWn/vc56w/E2WRQRtMSLhTMEYfJ3QBZGFc9JPjXqBJLC2nAM/NaekTJrXyDriwkK4Vng+FZ+UWKn49xwCSOM7mdfKseY8BLTjGRE8/aJ++pPbD62qtPUIN7Xnb3j57+hZLpECkQKRApECkQKTA1lGAudUBh4Y1YFlYJ/cLXwRAZsAVErdgZIe3tShHdizcH5ATuA7wgXmbWBEbOmeGBx96xOJHAQwgaxLMHLlkypSnzWpgpWRkjiMLI3OMGjXagpzPnvVOWP7+4rBs6fvWP+53N0zaRt7levpEQQZ1eSUrq9BkhiTmQ8NRbfl3S5cpUAP5hzWYVEtL5GL6RGwsZGPowEIk17JYietFLO1HgQg+tB/tY8vbgAIw1Jtvvjk88cQTxlBQ2mFyZ555pmV8gBnBcFH+UYhAQllthpkuljnWnffeF1555RWLoQBzZYPRY7GA0v7973/fVqDdZA1mSl0ADeUy4/rlL38ZdpbVgfvqs8cNAsACwOBHP/qRMT9ABnzQYH4g05yDQeMXx+TiihrgAxMDfWCS8DRFtAsQQZYDxjFq1EhZWSyxMd57773m3lEqUAQQhPu4ljqoH9AEmkCrmpraxERODLhOoZKzMmQGEctWU4CJjGfHM/TCdz/Ou5KuICTwzrBxD+8FwBTvHr6ZHE8tPEPeD/YUJldX/PnOOe8Px10o4VxrFH9vU8fPZzY/1xrtxjojBSIFIgUiBSIFPsoU8Lk8dYzICcz7ZGvLykniK/ici/yL7IrijZzL4hsyBqAA9yEfsCGXFBQWhVrJgO8vXWaLc1yLXMz9yMFulemuv6TCRFaeNm2aWU4UFuSH0buMMNkTOYXFPhbd6Btt0RfkWVyA58hC1+ONUTfnc3OyQ06W0nensXxIHXdjnxM5KLGoCCGRtVS1uXcQcJ2CywUyN9eyQQtk4mrFi8g1K4nGao7HWpsCEXxobQrH+luVAgsWLgrXXPv38D+ZhB0lS4MvfPFLpqCTAoggjij4WESAwgIIwIRg1KwcwzBPnXxKePGll8MRRxwR/vOf/4RuYkqfFXCBeRbpKa+66qpQq2tXi5Eul+UB1gMohmtUz3uqc42CVgaZjr0+/bVw5x23myUDFg8w2qo1Sd7hDevF9OrWmnnakUccHkoFEtAPXDQWaoLIzs7Z2B8YMwwbJRSgYqIsG5iAABQAMOgzrhWYmaGcnnfeecbIQbZx6WBigdnupawXMFn6S50EIaoS44UeADIwYerMUgCgWLaeAqlIe2otPLMtUb4xg6RwLaCSx4DwukDoAZEAETjPZzYvjYEb1MU73hbFLXVS20KwYKMfjZ1PvTZ+jhSIFIgUiBSIFIgU+CAFWCxDxkidR5EJABSq5DLcSxYKWPsi+2GpyyIZch9yAbIErhAEGyfWGAtmyIce/6FCsuuCRUtk5XugyZXUsaZ8tcmuKOdd5KK7xx57mNwBKAEYsWThAgVZ3yl071ISZs54K4wYWhr+c9+9Yc7sWeF4pXhnkQuZJlMR0nPkBjGkrDTU1lSHxXLRILvawAH9TV6urCgP6+tyw3oBEC6rOIACFfwYcnq6kq14F5QataHE95KLa0SvLMm3dbLaeF/1BC3g7S1ZeoHkJgJTZguYKBdtihUbQ+4ped3s/vin7SkQs120Pc1ji9uIAhh1z5j5Tph86qmmkJP+8re//W3o0b1rqFEqyRxFz7niyr+a6RdMHIUehZ1METDhuXPfVZrDL1pvUJR84wCfKTBBFHvQXtJtUgeKO4pgZ52bM3tOuOCCCywNEffA9MkyAVAAIz7llFNsEuAzyDJAAAACdaxRwJ/5AhjKhgy1/qCw9evbyyITAxIUFuTaZyYbrqcvHGeDKTO5oIfeeec9ZoHB/QATl112mU1OZNrgnu7dlHK0KskBzXeUV1J4km7TkWcbbCN/uD6Wjy4F/D1vaoTx+TdFmXg8UiBSIFIgUmB7pkBL57+W3t8c7QASaAMZEBmSwqIVi1sVOnfPffeFfygFJqv8yJe4F5Pm8sADDzQX3RGKb1AleRHXBxab2AAucOHFMqFvn76hV89eZjGLxSVWCsiugB3IqQMGDDAwAcACOZi+AGIgg76tBbrXX59u4Af1cQ1yKpkxsJI46aSTLP4ZMcuQi5FPCeROvYyBQJAHHDg+FCtg5fPPTwvjxu5lcnuWrCGIS4YE3pz0uUouIV0FhFCWK4YFizQsuN12223hwgsvNCvSx5S6HDdrrIdJVU7/kGsSC9N8uzf+aXsKRMuHtqd5bHEbUmD48KHhuxdcGCaL0b2nGAzdBTzMfvc9Y6IgtQMHDTbGXVG5RlkrMkNRcUkYXFpmTNDMvcTh2FP4a1s98MAxAIahpaVhkJgmgAUgBgwaUzT2ZfIl663gkzBAGBqgxOBBA8Xsu3J7ePSRhw0oKFMsCVIOMTmsWrnCrsvNy7dJpEf3JN2PDDWsMEEwMXTu3F33Jqg3k0G2wBQYKIzfVsMFPCxVuiAY/kUXXWQgCAj36ZMnh59efLEBHUmNwWgA0yftEimPsjJzNcHEn7/TJ+4jBSIFIgUiBSIFIgV2HAqkggcOtPu+I1ABK1sKijKFxaXXXnstHHroofb91FMnh52lUJ955qfCsccea4HH3TJivSxuZ8kiAZmVjXGxaEXQ8eLiorBecuO6tXWhe1dZORQXGrCQJ0uCml49zNqCtrkemZZr1pcOMlACEAQggXsOmjg+7LLzCLMUpl9z5F7BAt1j/31UlsFJRrgpT/3P5FXcMvoqqDsWEVgDM6aZAjTmvTff2pm/UBnatPg2Y+YsAwi6dVWgdxtl438AJrpI7gZYQbZdpeCZyNmAGl/72v8Z+IK8zHi7detqAEuBXEWwjKBskMVyLO1Hgah9tB/tY8vbgALz3lsQTjzh+NBbaCyMeYEY2EMPPWTMzuM94IOGGZkHngHNxaoA5lUn5ovbRGqBSfukBGLLljohASAQwAaAAKYOmkucB6wqAA5w1+AcjBigAEQYhgyDHD58uDFuzhMoCJR5+QqlKhKTdDAgXxGK160rEYIrkzR1DKCB9i1LhSwWsgrzLMIxQAnABSj3FVdcEX7605+GO+64I4yX28Wf//xnmzS+8Y1vyAROKZk0Wbi5PiDK2jqlQVRd9bhL6vDj50iBSIFIgUiBSIFIgUiBjzQFkItSZTsU7Y5WkF9xe0B+Y6EJywNkyt/Iyhdrh8labDrhhBPMorcgvyCslusE4+IcLhDIoMiljBM5M1uBJinIlqtUT54sBTwYOXtk34Z04F4sbZGFKZxH7iWAOi6+uFxQuJesGH/4wx8s4xxuH1gjeJ1cS/+RzZGdsSZGDsa9A+vifsd83OKUFUnGLa+oksyc3u2CNukLAATAAwuOv/nNb0zWxrX5sMMOs7YZF9Yi0AV6spgHTZpym6XeWFqXAhF8aF36xtpbmQIDB/Qz/Zn0OU/KvApzLmIuENwR6wQYDsyPPeZoPXskFglVCjaDxUN2Jop9EpkfBguTZPPPMHsQWhgVBabFBmNnQ5EHHd57770NkMAaggIT5DpM1Ygf8frrr5v/HeZfpaWldh/WGEUlXSzlEUwdlwyiDANiFBdtbg5GPzp3zjAAwhrQn9raJIYDwMpRRx1lkwMmbjDiJ/7733DLLbeECUqZtO8+Y61uxsWU4yCE1xP3kQKRApECkQKRApECkQI7EgUSmUhSkWS/xoqfb+xcWxwj3SXWrCjnKPrItbgNIPPhaoGVAzIfi1o+BiwWABy6SLak5MvCls1L3brEgrda9/aWy4UEXpNHfazUg5LOd2RY5F8UdhR1jiGLsncAgvPInMjeyMIshrEYxzUPP/ywnbvrrrvMFQKX5HPOOcdSX+Im/fSzU0OtFgBph5hsWOXmK909bsK00/hTSUbCOTVhgAqLe9DiX//6V7j++usNECH4OmAHsjsyL/I1VhHI7LRH/bG0HwUyfqzSfs3HliMFWkaBZctXhozMbDNDu1V+XqTTAWgwlwtZKOy///7GqFHoAQtwXaiR0g7jJO+w4vIbg3PGTW/8M3sYl10r5BSm7tYUXAcTA0nmOsAD6negAysH0FaYH5YWTAagvAS+pA6yUXTt2i3kq87Vq8stAKUj1DDKLAWhXKdIxATu6SyTh7o6IhUT90EAhMD59WK6fIfhUspKB4bHn3jSXEFgsq+8+qohy7Q1YeJBFnCSGA/cT/0EoNT8YmBGWgbfxKRsjcY/H3kK+G/hIz/QOMBIgUiBSIFIgR2OAsxxvjH4bTnntbQuZEcsBMhAQbp3ZEwynqGoX/rzn4dRoxVb4eSTQ+ngUpMxUao7azFtbZ0yOUj+LFdwRYCDdXJz8ILSDbiA5l4g+RX3C+RcrgMwcOsA5FHABArjQJZkj9zLdbSFdQHgAxYWyMfInlyDzMyeRTlSd3KOuBDIwDNmzLC2+vbtF4YOGy536fm2QEf9XLdgwcIA6LL77mM2W2zz/vseuZX2cyV7088HH3zQst4hYwOE/PGPf9yYTY6+ANowRmRz72NciHNqtv0+gg9tT/PY4jakQF5ervzG3jGmfNNNN5lyD3OGiQFAjD9wPwEDecY4E+aZmK7BHDOVZpJ/xHWgwJDY/DN77gFQYPPiDJprYV58h6FzLeZwMGIYMyAI7WCVgUUDrhZYQWCKxuTxtvq925gxoVqMH4YImk199L2kpEh1kr9ZTFwNd1I9fKcYIKGDAAm0UyA3jYP4dAcAAEAASURBVMce/58h4ExQP/rh98JDDz8SpssHb5WCC02aNEnWFMrQsaba+pMpaw9cOKiPCMTJiK3qD/xxenzgRDywQ1AgPv8d4jHHQUYKRApECuxwFGB+862xwSPbpSvNzY/NnU9XN+fIeIbMyOKZu//iXnzDDTdY4Mj/9/vfa4HtAKtm6bKlBkAAHiB35mgBiw25lO+MhX1WZpYdxxoC2W9DvZWDLUrpWq7nMxtyL/fx2cfix2mUPnm/aBcQg/sBLliYI9McMipWxxOVuQ1w4jFZKD/yyCPKzjE77LPvvnIXGWxuJbRFMEwW5rAgxk06O01cMvoO8LBEQAOgAqDI3XffbQuQZ511lrmC0Hdkc/oOcMNiHUAFgAn98jExlljalgIRfGhbesfWtjEFFi1+X0p+Hynv+WJ8tcZ4UO7PP/98Q12xHoDBgAJj6SDeq+8Zxnyqq2t0LEFzGzIhvrPBaCkwVRBomBfMjOMwWT7D0N2UC6YLeMB1AAowZEAI4kCQZcN98EBnZ8yYGXLUr1WrVpv/HAAF98MwSb9JezW1a2XZkaVJAJeQBFEGMKAwlkWLl6jOwtBbUYt79uwus7JlSrv0mNVHG3MUdwJ/wH79+golrrS+wajXrlWOaDF2qkpqsyo/8KchXT5wQTzwkaZAfP4f6ccbBxcpECkQKbDDUsDlPN8je7Eht7E1N/+19HxzhEeGfPrpp03eRG7DnQFZ8wc/+EGYK/nuRz/+kQlwmZLliotkfaCYDw46aCRWPTIq96Bws2EVgdCHRa3LfsiwKP8u7/p35FiO8Z16nCaMm+9k4wBgAICgbgrXYpHAMWRhBzBQ+pF/uY6FuBUrVsrNYk2YJPmURTssI3DfIDA799HnIl2vx9HkhvwKGPPiiy+avE2sM8r9999vi3wOjjAGaIkcjy4AyOFWHXZD/NPmFNi0nNvmTccGIwVaTgFyG4/ZfY9wzTV/N6SVYDagql27FJnfWF5uEtmWlqprcDvAfEzWBbIW2LAhCZ7jvWg4kTAJAQaAkBp4IablBcabKPFrrV3OU0BXKQAHoNUE6YHZcj1+eTDVvn37mlnZLKXpvP3228PwnUaEsrIyQ3yx1oBBYjYG4+c4/SI6MUydPnnhE4AFhfbWr8+1/cXKdPHrX//aYlAQc4LJ4f33kxShMnrQhJFMQgXKpBEDThr54p9IgUiBSIFIgUiBSIEdnAIOPrBH5mrPguyH5SyWAwRSJ44ZCjqWASN0bED/AaGqptoCl6NMo7BTXB5F9mSRLDeHxbdN8qsBExqfgQm6nnGmjtWBBpR2ByToC/U7mIBsjIzLd9pg88Jx5GaUfAAHCtfjhsxCHC4Qf/rz5WapcMrkU83Cg2voN3EhAA34jGtxU4WYbXVyJ6Fe+kCgSSyKv/nNb9otLPrR51S60C8K18fSvhSIlg/tS//YegspcPMt/w6DlHkCa4ePf/zj5hf3/LPPhjPO/IzyF3fbrHZcGMRmBQSQ+SHJHgHy6+gvF8OsfIMZw6RSmTLXUDgGU4bBUriH4teCsnrx62DOHAd8AIgYI4T3f089pXRIsy0gJQx5X5mhUebIYoHrAVfGjd3TLBRWKTYEoAn8mDlRwLzt11TVWDAizNxAjwEvcD0BeHj1lVfCXvK7O+CAAxSAqDC8/c4cS2dUWSnLjIJ6fz7vaCN7H1cjp+KhDkCBVDCqNboTn39rUDXWGSkQKRApECnQ3hRA+WYO9Y3vKN6+oQS7PNjYvrn+t3T+ZIGLBSvkQAI5Io9ee+21lj1tiAJNnnb66XYMBdvdKbB8IIsaW/du3eVam1jvpvZVUq65G9M/3I4b9tOO18u4fh/HHIjgmMu+jSnyfsxBEO7leq+DenooZeedCkQ5a9bscNpppxnAQlBNZFgWEbmGxTjGRvYL3I3ZJPWanK0qw58U1+Gtt9604OoEneSeyy67zFyYASIIOklxuZz2KQ6U+Hc7GP+0KQXaF9Zr06HGxj6KFCCYDUgp6S/xJyPND2VI2SDFO6j8wJDhPUw0WEHUyvWgtYtPbt4OkxnWCqNHjzag4cILL7TczFg6/POf/zTgAHSWQEME5wFUmb9gcVi6bOVGholJG+Ef1ivqJHEcACRg8jDUUaNGbQyySWAf3Dpwv3Am65MB+002FN67uI8UiBSIFIgUiBSIFIgU+OhTwOUiZEJkNTYKSqwr0O1JBawckBmxoCVTA7If1rAsYp0u4GHZ8mXmRlFVXaWU7cstzWa1LCG6KZh5/37927Pr1jZ09eJWGYAQ++23nwEOhx9+uLlNnHHGGTbGQw45JLzzzjtm5bHLzsMNROB+gsSTHh65HZrM0eLc888/bxbCWPZiXfGUFvLIKocbxrNagExt2/sQ9x2HAhF86DjPIvZkKykA88HEyt0buglRTZTzZCJJrRbgNEduFzmK/9AWzInJzSc4JjYYMKg6ExvBMo844giLTwEyC0jwk5/8xBgpDJrAO7hTEEQSVBeQgZJMksqEoTgQXhgL5wE2qB8wAwsIAJlXlfnCi/m9iZETI6N+nvVTcR8pECkQKRApECkQKRApsENQIFU2Q25CjuIY4IOvjrcnIZADAR3efffd8IqsWAEekBlR0HHZRenG4iEvN88AB/pNHAayXHjMh/bsv4M59IHPuBJTGNfw4cPCtbLiwG2CRbazzz7bFtGQe5FZZ74926yEWYzjmRCjgrhtyM4AEFhJcA4363//+9/hzjvvDK8pyDpgzcsvvxxKS0utrfinY1Iggg8d87nEXm0hBYgEjMLNSj6oMOZboMSXXvpzi/uAi4IMBAyMAJDwgtre1sg2wANgAv1kj/sHgXcmjN8/fOUrX7Fx3HDddeHWW281sGHPPfc08AAmi++cF/qdgBjkOM41NBiggQLo8MADDxgTZqIiBsUbb7zht5oJH5MTgXraAnzZ2HD8ECkQKRApECkQKRApECnQwSiALIRy7OADMpab6rdnV1ksYlENVwRkXJT2ESNGWMyEW6Vwc3zuvLkGNtBPAk7ialFUWGQgBABEun+tPTaABS+AAhTGw1ZRUSnX6O62uIbLMJa+xx13nAEUWEb84x//MJAF+TeJWyYQZu58k22nTp1q6UexgACUIaj6oYceaqAD8u5JJ53kzcZ9B6VABB866IOJ3doyCuAP5wFl2B988MEWCPLKK680Uy2UdCy/EheFKgtC6TXjT9faBYQWRksBSQepJaUmzDZDZhiODH/xC2eby8ShQrUJGIlJGX5++KxxP4BBVXXSXyYhwAYYO9k8KEyWgCsekIj6aQ/LByYobycrxVrCbox/IgUiBSIFIgUiBSIFIgV2QAqwqt5w60hkIEYYgMPYsWNt4Ypgk9/+9rfDp84801yOWe1HQSeLBS4XtWsTebOtF9caoxnWJC5nQ2NkdORSNj5XVdeaHLtwwTy7/aknngh3KQ4ElhDIziwuIuciB2PlAQgB8EDwzYcffjg8prSdWExcccUVFsSdmGlDFQuDRTesRWLpuBSIASc77rOJPdsCCmQrgu/bb79jKDVBajBHY+Wf1D095X6B9UCmgkuSnjJT5mkg20ngSVlDSFvPUvoHrCBaq8B8MYVjo/gk5+0VFChI5NIVMhXLs+wUY8aMMX81UGCsGIj9wL0Eo6TvRUUl5jZSu7bOkHCCChUX5Qvd7mSABEgwTP2oo44KV199tTFsmPC3vvUty5mMFUinTgTsIX2SJl365J1pZE9/Y9lxKRCf/4777OPIIwUiBSIFPuoU8DnOZTMsHvxzS8fudW9tPbgpYO2Ass5CGwEYUebJGIFCfodcDQhYziIT31lowrI2Vy69yJ7cm64gAbamhMdCGTRgAY1+I8NupK/kz2XLV8i1opdSxi9VlopvhKemPBNeeOEFs+xFhgdEIEX9gP59QmZWhiwbXrG4brhVLF68KJx7ztnh61//mgEVQ4YMsUW23XbbzawosPxtjv7NnU9Hu3iuZRSI4EPL6BfvbmcKdFFgnTlSrmFuMGDQUhgcCjv5kT/xiU9IOU8yT+Bq0EkTC/ukJKDExq9+eBvuYf70hT6xUbBCoL/V1TU2qWRkZlugnN3HjBaz7W6ZMJ555hmbaLDcwFoCJszEgxlel5Jiy49cWCBXE5muAWAArFAvGS6gA64cl/78FxY1GJ9B3Do6Z8g6QoALfnOrV1eE/NwkNVK68UfmvA1fhu2wqvj8t8OHFrscKRApECkQKbDFFEAhdqWYm5Cl2DjWktLS+ZP7UdrpBwAEe+KbYRlAMPHHn3g8vDZ9urnpYg0L+ABIwaIV9zbXvmW6aMkAm7nX+8De5V4AFcbEQliJZNkXX3o1DB9WJtk0BAJOIhsT5wzwgcU07luni1988aVw3333af+i0aFUWe6u+ttfwzylH6VOYkWw4IicjJUE1r/Nlebo09z98fzWUyCCD1tPu3hnB6AAq/cFhcXGqFDyd1f6SlBhTNOwgJg4caKYdJ6YUaG5JdTU1AqAEBigvtfInCsnW+l/2mAcjvrSRyYQTOKysrJDZVW1ggVlh+KSLjKZE4CidJiDS8uM4WJyhvsFMS0AIHDDAHzo27e/5UUuLu4SMjplhNqatRpHdsjPyw4vvvByWC7TtHFj9wp/++tV8qnrGVYoWOXZZ58l6w+5eayrkwVElui1Qn6BCSiTbvyRObfBy9GBm4jPvwM/nNi1SIFIgUiBSIFtQgHmOjYWiRx8QF5rSWnp/Ims6JYPxP3CkoA+kdFh3LhxYdKkE0wWnDZtWnhNQRpnyGKWgoyHvDhYCjryXWMb17U2+AAowBjoMzKvx31gTLk5OWHG27PCqJE7m+UD4EnfPj3DLiNHWYwzArBPF7DCtbhe4F6CxQM0Je3oiSeeYP3Pz1eaUV1DWyzSISPTJvVxPF1p6fNJV3c8l54CEXxIT594djugwKzZ7xqjKS0ttUCOAwcOkILeL1z2u9+FuUKI9957b+UU7iWGLBcLAQ8LFy6Ukl+0EXhoSvl2S4V0JGiOeXkdDjpsXpdyH2dn2qEs9Y38xXV1643RUi8WDGS5AMl9TL5txLEglSgTCsy4T6/uoWJ1lUAFARli7OuFHJeVDg3Tnp8WXp/+RqiUVcS0ac9rgvpkOO7YY8zFZIlcOUqEChcIFU4mnsQaY/N+bfrW3Pg2XRk/tQcF3K2H54TABOiWAFuJJQyWM5zjOlYU+My76Mf8M98b29pjTLHNSIFIgUiBSIFIgfagQKqy3NL2mVNbUpi36Q+FeZ3vKNVYP6zXZ77voQW3IXIxmDN7TpgtwGGKUk6O3GVk2HuvvSzwJDLfBlkOlK8u10KVFHJZyVbINYPglOskHyBLYlXBAhn10Y4r7sQaQ0Yg1gLuvKlKvckLWsYrFygC2ME5hutbreJPcM+C+e9pca04VCnIOn3OVH1ZWvSbNYtsFv0EEGRqARHr3exwyy23WvyKPfbYQ+4UXzfrZWRoLD2wgkD2xQ3j/PPPl7XEMHOnZuGNOGoAD0kfcLHOtDE1JtOkHmvJs4n3towCEXxoGf3i3R2AAjm5SXBFrANwuyC4JMxnvkAGIuHCkAjY061bF30OZkVQuaY6cc/gQL07BENJnSxSPzc1zC25pql7waMr1wgZzlAsCl1EN0gDmitLCGI4oEwSQPOaa66xvo4ePdrACBRMmG1xUVeBKPlh6ZKVSrOUL7ChNtx///1h8uTJ4ZJLLhEQUxnekRvGpxWYaPfddzPmj6VHTo6Q5Ko1BlgkmHiaHrZw8my65nhmW1CAd5u4H0zQCBCg/o72Azaw0sA1gBAIGbyvfp7jsUQKRApECkQKRApECmx7CrRMPkwykqXO08iEzPXUy3GsXLsru1tZaakBEli6LlywwCyBH3300fD444+HJxTEcancMaplGYCijvUE4AMCJ9YCgAvICeyRmymAD7SF6wLt4Mrh/aB9QAnkicQSo7P1aZ2sagEi2COLeF21tTWqu7PiUOQZ+EDdiJW4HXfr3i3MnjMvPPfcNAM4iPcA0ADYwf033nhjKNXYsILA0mPkyJEGMmD5kC1ZFiAjNzfH2nO3FPpPH51OfI+l41EgedM6Xr9ijyIFtpgCuCrAaGCk+LwtEPMlQOMpp5wSZsyYEe6+++6w6667msLeo4fQUTE+rhkxfEioU+BGiwUhbugThe+3uAMtuDBh3kkFGzZsUgZBjEkZissFn0nJCSPeZZddggfWKShQzAYBFkwaFCYDJpsjjjjc3DV69eppdRABmIKS2rdvH31KzApBunH9iGX7pgBCApsXADh/J4j3ASDBe+Ymj6xuYP2DRQ1WQbFECkQKRApECkQKRAp0PAqkKtHIpr4BBrCQ4Eo+1gLIjCjuyANYCrBQhYsGcRIoKPJkzRg4cGBgMQsrApcLWKBAhmbv8gJAAO1hhcue9nzxgnbfV/3FxbIilnxB6SLQgQLQgTxKP7BIyKgHNRgLmTkoI3YeGf77+JNh+cpVZnVB3wmaiVwKCEHMNuRf7ic1PXXts88+Nh5k/traupAp4IFg8g6MWMX6Qztc3/C4n4/79qdAtHxo/2cQe9ACCpCqJ1MZK9auXWdRfon0CwABsyJFEaADrgr4i2EtMHhwqSGldXXrZJKWpLskFgJMypl6C7rzIW+FaQoJUcHygWCQ6oR9r61NTOBgvKQOYkLAh4/J5Nhjj7U0Q2sqqzUGARS9CbRZZ5YOL770oqXbnD79NYv4+5nPfFo5j09UcB8QcwWb1CQBao1CCvLcHPgATWLp2BQAaACgogAwMXkTcAkhgeftwgLPnVUHjnGe7DCxRApECkQKRApECkQKbHsKtFR+cuDB6+E7G/IqG3M58z/HmN+RF5HtWHDaeeedTXlnsYpYaCzIMf8TlJx4aFhG/OpXv7LUlVgWICcARLA4wR4ZmnuQm2mLY7TFQhiWEMjaAAYEO19TuSaw0MFiXoZcm4mzhqUDdbHn+BtvvCFwo9pABdJlzpgxM7ygIJJ7aQGEPhLfDItdMtbR7k477RQmTJhg4wJAIQbaCSecYH0YOnSYuQ1nZYoOjcioAA8U+h1Lx6RAtHzomM8l9moLKQD6iuIOY8TtAgYK42FVl+8nTDrOlPaLL744XHvttWaehclW/369w5qqmlCQl9NkSzD01i6AJ8ShoNAeaUDBI7p2LbaJBasNkGxQahRLGDTXMYY8pecElID3zhHKDQLNJAVjhw4w/nPOOUfMGveOakOvKysrjJkzeTiDbu0xxvpbjwIICAggFN4LhAOEBQq/ASx88JNkRcEtaLB6wESRjd9ILJECkQKRApECkQKRAh2LAg1lUOQ7Bx7YI/+xIcshAyPXobQTE4K5HbcJUk9iMYtFJJbAgAAEqOR+skMgP9x1112WSYLRIxcAXgBi7L///paunuxr1Ev7pG7HYpJ2Fy1abG1lCIAo6dJ1Y4YJXD6RP2e+/Y4tdCBzPPzwwwoSeaLAiPxQp4W2KVOeDjNnzQ7/055FNQCH8ePHK+XmN23hEAuJ/v37h+uuu87G9qb6jWXvl7/8ZS2wzQtDSgeqDVk3SP51cMafXsPvfjzuOw4FouVDx3kWsSdbQwExQxTrnJxsU7xgvgASoLAoYiCwBxxwgEXPff31143xcm7PvfYORQV5iqzQXNSD9J1qODk0vDo9E8SMLUP9VPYLbRkCHjQc6xP1YNGBpQYI9UEHHWTM+cZ//SvMl0IJkr30/aXy3asUqhyMwc+bNzf84pe/sC6Abh911FHh3HM/LwS7WhNNYjJXpVgPfEYRZcICtU5X0vc/3Z3xXFtQwK0amOhZ+UBw4P1n4sZN53Of+5xZwgA+lJaWmnDgQgnXxZWBtnhKsY1IgUiBSIFIgR2NAi2Vn5DRmKOph83lTY4h32LlyDGAAD4DJLAggRyMlQPuEr4whxsE9yEHED/h1FNPNXnh0EMPNSsJ5GTkBACKV5U54+9//7t9xirihhtuMIsJjuPCAbgBgPG3v11lrhpY0dJXFj4AJ2699dbwn//cL/k226wvsOSdOvU5c/cEdHjllVfDLAXI3FmgyLBhw8PRRx9tASbHjBljfUd+wQWEzHUsupH1AvmGxZSvfuWLWlCcE/rJhRi5B4teaOC08XfMaebf475jUSBaPnSs5xF78yEpIH5szLawIDE/gwmDoIKYoohhEbDvPmPDZz7zGYv2D/MkVzCM8sILvqv8EjJhQ+FXRTBm3+hGKrNvqlsNGV7D66hjSwtXrq3bYJMI9zG5wFwZB753oMIjFHAHpk/KobM/f3Z4+MFHw3tz3zOkmsCUTBRDhpSZudqkSZPC4sXLNCHlCJUuNDoxOQHUMEHlK9qxeHYs2zkFeJfZACJ4H/nMhE256aabQmlpqfl28ttAAGFP4VrMNGOJFIgUiBSIFIgUiBTo+BRwWZWeAiwwjyMnYm1A8fkdIAF5FlCCPUAE16LEswDHAhUgBS6YWDlg2cCiFsDEgAEDzM3hqquuMstbLCTefPNNs57wxY1KuVosWrxElgwF4YEHHzZggBgNtE/93PPb3/3eQA7uYXv5ldfMxaL/gEFhL2Xj6Nu/XyhXVjYWw4aUDQpVcpXOy5UVhUAMxgPYQF8ARgBF2PBOdpdR6hQkYzIPY/MNGn0Y2dsIF/+0KQWi5UObkjs21hoUqK6pDfl5gA+dQpUQWIAITLtAZwmsA4MkDgTMiGi5+I/dcccdigcxWnmFhZ6KWaKwwbicsW8p4+KedCV9PZ3CSqU/qlHgnHXrYJxJhgvuISNFpsbTWWk0YbxTpkwJhx92sCIX/88mBawhvnfh9yzN5rPPPGsTxE9/9pNw5BFHBgIPfe1r/2fIMQhyqZRP6uNzjx7drbtz5841f710fedc+v43d3c839oUQOjwOA6AD/68ePdx1cHvEyGAcw6sYYoJCOVxIlq7j7H+SIFIgUiBSIFIgR2NAj4fb+24kUuZtxvWw/fUjfkdIIGCPMAcD+jAAtZqUmFqAYvvzPksOKC0E6+BY3xncQsQwi1iicHAPbhs9urVyywTqBtQAJcMXDiGyiohKzsnjBmzu9wo1plFbiIOd1JqzRJZF+9llg3sZ2sR8ChZN6zXBZMmnaCsbStCf4EK3AeQQF9wPyauQ9eu3QWGFFhfkNUZF3344x//aHLMsGHDw8fG7aWFlFql+EzShkMjSqo8zmc/bifjnw5FgQg+dKjHsf11JvXH3ljvGzLNhtc0d3/D61O/k46S/3kCHijrhQPgRoA/GcyYgkvDypUrzaeMADkgs1hFYBFxk8zSX3rxBYEVBWH48OHG5GD2ABXOwEFfDV1twOxh2tQH8owCSOE6V/BAf7mG+ugLdMDagOMwdb6v45yYdycxTuhAPey5pry8QoF9VimFZrHqDFIW85WWqIetXBNEEyDhnrvvMfDhX9f9y1a612vcJ5yYBOQ56KCJaifLJhQmlRyl7wT5BvUmFRKoOMUnttSJLPWzXRT/dFgK8Pz8XaeT/v7xmXeTZ5laOB9LpECkQKRApECkQKRAx6ZAw/naZTPvdcP5neMADxSABwqAAvUgn1KQMznGeWQEjmMtjNyJ/Mln5F/kV1w0cbPAMoLA5yxm8Jlzxx1/fNhpl5Fh/wPHmyz7aVkXH3bEEeHNt94Kw5Xafn/FJZsgd+F+AhmqVV+R5NAKyZ/DJGvnSeZGHi0pKbb+IqPSb7KxWdwziSm4IufJOpf+IK/+Sy7HpVpIw6ri6GM+EXJzMrVwKNlbfaak0oZxIHv7mO2C+KdDUSCCDx3qcXz0OtMYc9x2o0zAh4311etZzoSM4cp6YOnS5RZ8jyi9ILkEy4HZFYjZLZAS//LLL1mEXawkQFhhrqDFMDAUO+qBkWGyDuOGocG4nanzmfMOHtA+13BvKvMDdEhVFGGZWGtUyHyNoJIAHaC8WG4U5BMtOD8sX7FSIEKuodO33XabAR5MApjVL1+2PMx9d15YtnSZkWDYsKHhkEMOEdCyOBx66HhNEElfGWumEGIK/nH0ia1TJxTRzZVTuyj+iRSIFIgUiBSIFIgUiBSIFOiwFPiw8jUyLRuFe5FdkUldZsYiEhAgkQ+TOGEs3mEJgRzJhqUEMvFuis+w+P2loU+//pJTV4TeWtgjxgPgQ65ireHWi2VDrYCKJUveDz0lW7PgNlqLZ9kCPbDOzMrKNJkXWTrpx0YswfrIfVhDDBtaqthV74XbJQPPlLvIeeedp0XCpaFY4IiGsbH/jIO+Ma5U2dsqi386FAVizIcO9ThiZ1pCAdRogaVWzCpCn2pq15mpGIADyv/y5csNYMC/rW5tbeglN4S5784JDz30kGWJOPnkk8MZZ5xhFhIACpiXuaUCFcPYUguWBK7Mcw7GDggBiszmlhHO5LkXkIFrOmcIxBDjh+EDehg4kZmAAfSbunv26CqTtXmhTJF9AShg2DBjogODTq9akaQ7IioxwALtjBo1yrrIedwssIDwAoP39J5+LO4jBSIFIgUiBSIFIgUiBSIFPtoUcMACWRXZ00EI5FjkR2RWCvIsG1bBgwYNMpmV89zDcSyOyXBRUJAjt4nuqqezybDDh+9kC3NFRcValNugz/mK2zBQFscDdD5HVgwlBk4UFWaHmuoE6MiU3IvkSzwH5O4EROhkC4HI0RTScF72u9+ZjJ2fnxNysnvVAymbAyr0LZaOT4H4lDr+M4o93AoKwMgSNT4xP+/dq7ulDIKxorgTSRdF/NJLLwkjZCIG4wXxJZbC5z//+XD11VcbeADSC7PlPs7DfGGOKPYgwgAGnOO4o67UxT2O5tIO571wD+cABSoUbCdH5mMFYqZZYsDVNXVh2fJVBnpwH8X3c+QqQtCfBx980Jgu5mig0LQ1efJkM5Ezk7SjD5eVRuIrWFjIRAFDT0CRyJj9KcR9pECkQKRApECkQKRApMCOQQFkVN+QBflM+f/snQeAXVW1/vf0lqnppM0kmEYSSqjSQu8KGAtSRFFQAcuzPJ++/7Oh74FYnuBDpCjSOyICCppAaElIqCFAQkjvbZKZzGRa/t9v3dmTyzANMpNcwtpw5px7yi7fzVl3rW+vtTb6KXopumssUW8l4SM6Jp+j/hiX8+7Xr7/qUKiHvIXrIAlU5zgt7bm/klaOVc6pwSIthlVUhL3k7TCsYlgYJO9i7k9XO4RJ5yq5JHovvcAfAz11u2dGsJW6+PzIo49ZmIU6ahNwj+ozhf5zPXoeQ1TEcOdYj93of1IOAQ+7SLmvZPfqUBRuPTMqiSykVgeFuLFVct0qLCqUgZ9reRPwHjCCQKTBMiXamTBhfDj11FNNwJJNF2KCVSOuueYaLQn0siWoxFOBkAgICMbE83gmILAjsUCoRlxlgPNRUEdPCIQhG8KROsj1oD8SnDC+2+SeRuLJRiMzCgvzxexmhRUr14RBe/Q34fu73/2uZalQliSaP2++BHJeWKPxHXTQQUY+DB4yOJSXD5J3RcLjA86D+utZj1MFrwc1nSTgOwGwA2z9kiPgCDgCjoAj4Ag4Ao7AzkfgvejXyca46Z9SBDHa2biGvsoeHZRzfGaPfsuGxy7XISHsPiVI1/rwCunVihpKvYA+y6QauRxKS6S/alItpCsRZl5GKOiVF7SSfNiWpok5na+rp13yOiT0UZBTs9Yex7SNF/PLr7yqPBADTQ/ftLnKJv1IQknOs6OVT6K4qJfua3uVujgm6vOSegik6QtKBAClXt+8Rx8ABDr759OZcOzs+Y4giAkn2/oHHM9hWi9ZukIZdQeaMINtRehBHJQUFYTZs2bLiH/TvB9wL/vnP/8Z/vrXv7aEW8CkklgSjwKEL/eceOKJ4QQl1kEovvrqqzL2y809rKO+cg1vCYQ5whtcIBtytAymFrpoFsTba1i2fJWRHt/5znes/ieffNJWLTjppJNM8H/sYx8Lb77+ZnjowYfDG3PfsOWIrr76qjCsfKiFlgwcWKb7YIYJ82gUuVGvdnGrS5eQT7ixZWbiWQFCXhwBR8ARcAQcAUfAEXAEIgI7op/GOnpyv6P6dfQSwNhnQg3iAT2Xz3j0kucskg/owpxnYg1cGqRHV9U2hDTpkeiZumRbDH3eUtNkE3mFhQUt11R1yFNUBzqvooQtziJDE2JMiuH1gH7MmCzppOqcNfslSxBPvjZynqF3n3zyyXbfrbfcHE464bg2NVj6x0Z/vaQmAtt9bFKzf94rR6DLCEiemRGP0R1/NBCe5FNAINY3bGshACACQigwbwcIBbwaZs+ebYb7F77wBTP0n3rqqTBlyhQjGVghg2cQzI888ki49957jaCYPHmyeTuMGTPGhHUkF2if1S0Q1GQMpkA6UKJAbNSyoA2SwhAilNqtjVrhYkN47bXXwrPPPmteDuXl5VY/OSsgHiZNmhSuv/56Cw/J1DKcrMm8fu36MH36dOt7n759jFjZtq1M7ddpfNn2g5IuABIuddsFfKJV/+sIOAKOgCPgCDgCjoAjsDshgB7aHkHB+XgNnTTqpTzDxufowYveCxlBQadOEBCJsIlN1Vs1kZe4hgcE6iwRGNQNccEy8kxy1ddv03OJyS45PIRGbSy9Sa4INaVNK8A1bg9Ppi08KV566SVbZYPPhICQ/PJ56bs33XRTOPSQg7XcZqb1h7aSC7p4HFPyeT9ODQScfEiN7+FD3IuEMNoRAGINkmOwDmJUE25kCNDcnGxbC5hENqtXrQyDBw20puq21oaNlZvCyNGjZOzPCfVNjaGkd1ko21QZMvUMW6mSNZ6hpSthh0n2iKsXe4RvugQe2y233x6mPfOMuZpBNuACVj6svCU7MGTCSJEbxMiRIwIBzrrGCPO3314YKkbsGdIkNLn2yiuvBAgPvCnwtkCYjh07NrAKB2Eh9IOVOEj+Q66Hvlp6s1Hua09MnaJ1lXuFaU89oTGtl2fG0TbGvDyIBw08bZuIh+1JJ/khSKx0sSOo+7OOgCPgCDgCjoAj4Ag4AqmKAHowJRINcW+UgLwd+JxGDgZuggWQ3olOymdyM1C26fw23UepUlhyjnRsJs0KCpQHTXSDnrJSX1sfMvOURJ3HlMuhl3JFxFIjEiJbBEMseOQSdsHEYHw+rTlMmLvY+kgnn/KvfyqMozgccvBBob5uazj7s2eF52fOCM9pgg79mvBkwqFjjjXGG0OdExNusUXfpxICTj6k0rfxAexLFGR0Hc8ADHAM47feesvWBe5sSFu2KPFjpgiC7HeylsnP1cvApu5eihvbtKnahCU5EZYuXRYGD8Ejoc7CIsrKylpWmEAgVWsJS1aTqK6qNc+GISIe6hXqgFHfr09ZqBUBUFNXGwYOHRzKisvCyjUrQ4Y8BTDw39ByQUW9S8OqVatCvwH9JFBzQklfrYyxeLGREHsqb0R6ekZ4bc5cuZbVhtXrN5hnQUN9bXhmxszwzPQZJgyXLl4Sxmn1CQTpMvU3X0wuaxZDNqxYuTJMPPCAME9YkQQTljYyzuOVoOeAAw4IeFRAePTt29fuGaDljI499tgwderUMFgkRmn/Ei099FrYsHF1WLpsYdhjUL+wVktwrlmz2thihHp2RsItLv4IkXHYiyPgCDgCjoAj4Ag4Ao5A2wgk67dt39Hx2ahztXcXE1m0ge6XvMX7CXVgBp960FvZuJ/zMQwi3ss+3hPPRZ2S5+NYqI/JLwiFOuqGfNAez9xMHWdLR6UkgnMTNaXLg7e22ajP0PVa+tWgPGi6XFoogiHBb4Si/OZJrubPiacTfwtypI0mnS/ISdL5m8+jJ+MVYUXn8jQJeOD+E827Yciokaab77v3hHDCcceGvz/6aLjspz8Jf/jDH4yEYHxxQ7/GHvCSugh4zofU/W66pWedCb8okN5vYyRZRIBCOCC8SLjIChHUi4DDPauj0iBXLNytJAetSL5Z6AQfVIUV3LYgNYqLEXXbC/di1a9du8aYThJFlpeXh2nTppnnwd///vdAYkZWhSAJDiwo3gPcBy7ZWioov7gwLFu5wkIrIDgQ6FxbuHChPcd4xo4ZK2Y2PWzestlcwEh4M3r06NC/34AwR+QDJAj3Mf46hVIsVbJKyIRGER2bNkgICpsMuZaxzGeTYuroD/is0j1rN6wPOeoHSTDJIQF7C4vLUqAQEMOGDTN8Cd2AzcWDgv2vteTQUZOODEMG7RFOPulE9WNOeO655yzxJLjH8I+IVhTKfN7R7zzW6XtHwBFwBBwBR8ARcAQcgXcj0Jn+ja5GifoZZEE87khPi+QDq1AkF9pDP2RDB0SfpA3qimG/8X48G0hDDsmALo1TQrMaHhShbLowudHoE7ozW4LcUB/1DPdCNaTzcA8V+r1o0SJLAE//mXxjTA8//HD48Y9/HFasWGH6Mf0kdJrPTO5hd2AzoEt7SU0E3PMhNb+XD0yvIBp4yaN7E8Y9hjjGPsY2wqKjwvq+FMnJ5s2cv1oeyc6GEU4ww9wDSVFZmfB+2KrQifyCXBn/Sy3/wty5cwOJGF944YUwceJE6xNeA4Q5IMToJ4IUV62qqqowaOiQUJxRZl4VnMOwJyyCfiPEI4usQA65oCWy/iLgIAJi/NsRRxyh5S/fsDohEHKyssMiERd4SDTU1Yeigl5hnZJV5srbgB+MNSIcEI7koVhDEkslfxxWUW4kA+3B2HIf91Bfv75KHCk0EigFPbMh9O1TaskoDz7oQOszgpcC9pAmjBUig/r4EfLiCDgCjoAj4Ag4Ao6AI5A6CKCrscUCYZBcMLjRRdla35t8XzyO91AP+iA6YLJ3RdQJ0QsJtUAfhkBoUhfQMwml4BqEBc9v1UQdz8ia12oVWoFCz8QA3u29jq33zJ6JTZaYp0/oxuj2kyZNCj/96U9Nd2d8kVhhPEyIMsFH6LKTDz3znXRHrU4+dAeKKVxHsmDrqW7GWXkICNqDeEBIdEY8tNUfstxGWQyhumaNjO2+pcZ8IkxI/IhgTRj/28Lpp58uJjTXEtFwjmQ0UxWSADv6+9//Pvzyl780wbRmzZqwfPlyew4DfaVCHvaU10HugvlhjQgKSJTy8nITWtkiEPr17ad8EbmheEixSeU18q5AkFWUV4SiwiIjNgjJaFDKX/Z4U0AoQE5Edy8Ihz0rhoc5yuFQ1KvQ+jR/3jxzHcOjYbX6RG4JyAeegQBBiMJmE2ZB+AcpG6qqqrWkUMLrI/44gQVEBXko2FMfuSKefvrpcPjhh9s43w/+bX0nfs4RcAQcAUfAEXAEHAFHoPsQwLCHWKBEkiHuOYchHYkHdMOYAJJz6IJGIkhhxuiOhTrRf9ko6OTcG+/hmC1NYRPEODRIyeRzvFcNhjR5G7MVFxTac9SZoTDjDC2vySoVqpLbWnR1e7gH/jCxht6Nfsw4mDRkQhF9nT6j95IA/sgjj7R7mLBDt6fERO890C2vshsQcPKhG0D8MFeBAIguThjNeA9QIADITdCVghBjE3fxjsKkfR/N8m/VKhAPPfRQePDBB42NReBCNNTWyuDv38eEI4Y358g1gecDwgkC5NZbbzUBhUDCYCecgT5bGEdpSdiydKuFX9TIK6JBTO9GEQCRLV0i74WDDz7Y+kS4RJ7Gl52RLfKh0PqxRTklaBPBCEsMWYCABw88F8pKlBRSJAIsbGlxiQnDLRKmCHJIil4QFgMHWMgKjTAuMEyEiRS2eDtAbEA+rF23UaEevcPmqhojdhgfCSr5UUIwk5yScA/CRyCAcEGDEPHiCDgCjoAj4Ag4Ao6AI5A6CKAvJpMNHCcXZvsj+YDeyjH6I8foi+h6HLNRmABE/0Qvjd7I8V7uj+1xb7p0xsqNlaZ7oz/GZ6k/M0u5H0Q2FBTkcGtLoRk26tomFiIrJ/pBtNzSrQf0l36xIh06LbnY8HTAm5llN++4445wzTXXWEJ29F08ftHDKVGP79YOeWXdhkArc6/b6vWKPiQIYMTzsmMIGzsqwTVPs/uPKhnMRz/60U4FQBRmkn3vKJs2bTGWE+aXVSDI34BwQeiMGDHClpgsKytVGMIqeUPsYYY958l9EFelQGgheJcoBwNhELCofOY8AqxqS7US7jSG/iIA+AyJgLcAhAFCrF6C/6358+085APEQVXTZiMxIAhgWUtKe4voKDbjvyBfTLN+OyAnaKNAySvho/HGKFT4RZ6yACPw+QEBs0yRBkPKB5m7G4PPzt7D+pebo36rnk2bEx4PMa6PcJY+vUvCggULDAfqYXlQGO6F8uaYMGGCPQ/xwzOQLU4+vOOflX9wBBwBR8ARcAQcAUdglyOA0c+GLseWfMznmOMrXovkQSQU1ip0l4kvSAoIAZ6HeED/Y1KKc0xecT96IsQEdVFPljx807ahoSaIh/QM5XVQbrJseR+T0aGpSZ7M7+RCLBkkq1PIB0LXWyntPYAmejQlTmpCQDBexnnhhReGa6+91pakZ6wUyJhIPtgJ/5OyCDj5kLJfTfd0DOHTUYEw2JESX/ooFHn5v//971sYBHFa++23X4fVSw5akSyxAhmxYUOlEQiESuA6xew+eRiOO+44S/SIYMUjYahyNpT1LrYcEwhWxorBTdhBdM2iXwhoDHZICUIb8A4gBIPEkdXynlguUoP7IS82b9oc1mu1iN5lvZVboa+WAsq08IsGJY+s0cochDhAYvTRMpd9RTws0bNZCq9A4Nco2SSJJelfhiQ0Q6vSShsIQ1zWamrqbTxgzg8AY1u3rlLLGimWTufAMjc3IURJ/lNYWBCqt2yV4E0wuYyFMl+ECEKYMYMxmE+aNMm8KSBrIE4YH94XXhwBR8ARcAQcAUfAEXAEUhMBjOlIPCT3ELIA4oCNgg7IMQY4x+iN8VnOcxzPoWMyKciW/AznuSczo0mrrykho0IpqCtby7FnZ263B3QqbFM2StPNE6pnS9csOSUshEorfqLlnu44QCdGv4WEiONF76Xsu+++tmcClNBnJg7R9Zk8ZDLRxiT8vKQmAk4+pOb30m29QvB0VBBCO1LiS86sPAY4guKee+4Jt99+e6deD7QbSQeOISJqa+uMIIAoYCsvLzdXK1yozj33XFu9Ii7j2atXItMvcWAwowhYYsAwzBE8hF5QIAOGDBli57iXPiKwVkpgvTF/XlitfA7PPPOMhV28/NJL5iXBHu+G73znO9YxkkbCIGPcg+kGkSF1WuIz1s/YaT9LAjyrWVBv3qwElxpTnvoJg1xTo6WJmvvMc3n5+mERydBaePMZLBDwtFeQ39fuiTFsnOMYcgEigu/gT3/6k5EXkC+HHHJIeOCBBywfRmfkE/3w4gg4Ao6AI+AIOAKOgCOw6xCAPGirRFKBa+i2GOMY5ui7FK5znq11HZF4gMh4xzXpmPW1sg9QOFWysmQOJpMMnG++pnzrOEgkio7RT5sUdpGBshvPN1/u7h1jxU5B72XM6PXovJzHW5mJyV/96lfh8ssvN92c9tF70fu9pC4CTj6k7nfTpZ7BYnZUeAmTY59w07/hhhvCRRddFPbaa6+OHu3SNYx+XL4gCggv+NSnPhX2339/C5H4zGc+02kdlZWblPMgQRLEVSzwSIAMGDVqlCWNfPPNN8PNN99sOQ0gHAi9QJBWVlaFInkF8BkcEKz0h2OM83iO/AqxILwiG9xfTOk+++1r3gNHHHqYhWdAbPQpLQtz57xmdXzrG980IYbXBWEWLzw/yzwMhg4arMQ720KuEvKw2gYY087WGi07KvKjsCDP+lNUmGfeDySfJOyivi7BYGdpFQ8KX5+I53cVfoP4ZgcO6GvXuAW2m8IPDKEtby94y7AHf4QxBeYXkoREnJAs4NS6JP+becePUesbPwSfk7Foa7gfdnzawsTPOQKOgCPgCDgCjkDHCOyo/hB1WOppratgkKPLco2trYlEJtnQAZkca6sY4SDlctPGzZo8y7F7ISsymvVTOfK+g5BolP6KHkqdkXhob4zt6Z/J/Wjv2XgPY47jQu9Fv4VswLsBcoFxQUIsVNgxXs1xgg49n3uZQPSSmgg4+ZCa30u39Sq+3I899lg49NBDLSTiueeeM+KBHAE7WuILjgvUf/3Xf7Vk5+1q3RAPGzZstm4gOAiJIEQCwYVwwahG2B166EF23+zZLyuUI9HvDRtqjXx4L2NAkCHE2JungoTosKFDjTz4yJ57hnEiZMgP8dprr9k5iBC2+++7zwQurCvLeZaI5Jg5a3ZYvX5DqFC4BrkVuDZk0EAjgjdVKReGCAmKCXNlFabQNmMinq5O48oXOdFRqdeCyzyfk53IYMy9gwcPtlUtVq9aaThB8iBkwY36o1saTLEL347Q9WuOgCPgCDgCjoAj4AikHgJRf2+vZ3F2n1BgvI8TumYihBcdN15Hh2Yiki0SGuliFvJyE/pnUWmhNdFYv00JzatM96Vt9Mm6mjrTMzkuKlIIsSbSKI1a6a1RcRlpctHl3ng/e/oRz9nN7/MPdgBEAoU6OWYP6RI/o+OWl5e3JG7nXsgR131BInWLkw+p+910S8+iIGDm/pxzzgnPP/+8eQqwNA35CwhR2JHCLDtlypQp4ZZbbjFh9b3vfa/LXhVblNMAr4GcnAzFba0zo5/lNHGnItHkE088YSEctIHgYUWHegnILGXjfb85DcAEwWzCUfXmSwD3ytfqE9r6a4nNPYePCCO0RCZkAiQEOSfmzp0bFsx/y4RwgeLk8HBghQyICwQduCLoTzju+JCtfsLOFvfKl2dCk3kn1FteiESIC/dnyV2tCbeHTkpWZpryPjSI3c0wwb9mbYLdhRBZv26teVtccMEFhsWLL76oPBhDW35w8Ijw4gg4Ao6AI+AIOAKOgCOweyGAZwO6bPS8bT06jHRKDNNofX1zZbX0V+Usy02YghnZaaGkd8ITOd6bh9euVr2ora03L12pz1aqRHgQV4xuim5OPyLBwQ2QFTta6Df1oKuTOw3dmTYoEBNsXIsEBfYI/eAZnvWSugj4t5O630239IyXEaOYXABPPvmkzbrPnDnTDGJe2s5Ka1ev1vczC4+h/cMf/tDcnM466yxLMgkxANsahULr5+JnhCNZdykIDdrbe++9rZ8soVNVXaVldE5USMQKzfjLq0BdhqTg3j59SlpC0mJ9rff0wUgGPRj3tAFrGgsCDG8B+oLQ4phxIewI6SCUgz4xzqlaSQJCBOP/I6NGhePLK8ImMcWME5zJwUAsBZ9ZarNUS2Tyw0DbcA30JztbTK7GQRhGx+lAEz3kGUpBfo55PLDqB0sOjR41Um0Uh/LychPI9BMPDDwe7P6kcBM74X8cAUfAEXAEHAFHwBFwBD7wCKBXoguzp6DXos8y8YQ+Gw1w9Fp0Uj5zHrugRhNoA/cYKNugJlRvrDHdFO9j9FJCoNE7CadGFy4rUzizPBwqq6pNz2WyEG+JRKvvhJH+UGKf3nn1nZ86sy9i/3mKMaBjQz6Quw3ihbALbJuVK1eafs559HbGSj/Qvb2kJgJOPqTm99JtvWL2npeTkAgEEytRkJuAlSQwWne0IGBIbsgSl+RooJ0777yz01UuYrtFMs6XLVtlfYJMGDNmjAkODOiEgT1angfPhQMOOEDCpdJiuyZO3Fs5JdZIwDZqpYmOE2YyZoQWJVkYthyLERCvagkhG+sbJGAlpJU0klUrIrPxkRF7BraS0tJwuHJD3H///WH69Onh6aeeDm++vdCeIRkm3iWvvzY3kJwSgY1ALC0aYbg3pRErlyAf7IcgLSNs2LgpFJe9k2WOuMR9Ezkh1McEAZFj5Ad5O5Yrz8THTjs19C4tCYsWLTJBO3LkSPPWYGlREmzy3XtxBBwBR8ARcAQcAUfAEdi9EMAYR5eNOiLEAp8hEaLey4gx1FnRDb2aY0J/66TvrtLKbstXrDQPaEI38ISuqKiwFd2YQMzKk7EvhoHE6FnyjmCjMGkG8dDU0KjE67XWZvRKoH4Kk3j0b0cK44meDhARjAlyBa9tNhJuMuGHjUPYCfcw9kiy7Ejb/mzPIuDkQ8/iu8trh/1D0Dz++OO2BCPkAzP3hF10pXTGTL788svhPuVDwCvgsssuC4RMfOQjH+lK1S33lMqoj4IS4ciSOTCWy1csN+GFMCSZDCEQCBkSZQ4cyHI6eAR0TD4gEFuIhuYWkz/Xa8UKMEqHJU3yFAAzCgyxrZ6h6xQM/M9//vOBnBazFOYwU6ti/F3YQnKwbZAwHyLigT6vXb0mPPfc86FJTC1eEHgmZEk4IpThNhCsnRX9jqj9Qo0/4c2AxwXhKCOEMcuNQj5AJOGhAW6UOD4w7ez766x9v+4IOAKOgCPgCDgCjoAjsHMR6Ex/S3jSJnRcdF0KRji509AvH3zwQSMcmAhj+XUMdupkAjJX23NKoN4gvXXixIlGTvBMeXm5PUseN85PnzXTJgTRffdUXjTagajYKt14UP9+LV4W6J1cQ79Fp8b7oLP+d3adeijo1tSfvHEezwfaZOOYNtkocW8f/E/KIeDkQ8p9Jd3bIdyvEEa46v/85z+3PUsxdrV0Jhx++9vfmjE8evRoW2GBkI7TTjvNqqdthEJHZcWK1SIS+tkthFPgQYGxP2zYkNC7rLetQEH+B4xuhAkeBa+++qpW1NhHxISEW0eV61o0xNu6jbGxReJjmwScfZbA4zmOGQPEBGW1luZEGJJp98QTTwxHHHVUeEm5ILZKYJMTglVEMtMzwt4iJuhzvz59Ayt1NMjlobiwyMbFShgIyeKSXuYe1la/ks/BLlNgd2mb7xFMzz///HCU2hezETZvqjRiKSb/xOshup8lnva/joAj4Ag4Ao6AI+AIOAIfFATirH97/UUXRE9FxyfhOJOB6NCswIYOyCQa+iaeANyHNyzEA+G5pUrU2HvAwLBJRMKBBx5oOjYTWXgrkD+sUfc/Ly9b9G2M/8MPPzwcdNBBdp3PvUQyTJwwPqwRsYE3AqvBoRujp1MHbXbW/470c8aMbh77Hu9lzIRWUBZqlQsIGMYzcKDGoslLdHaeiXq93eh/Ug4BJx9S7ivp3g7xopIAEhYT4cMLSkFYICR29AW94447zBhmNQ28FUi8SJZZZv5x84rttTeqrGxi0LaZkMzPz1Mfm2TIvyZB1i984hNnhkcffTR84xtfD9de+38SZMG8LJjlX7xYsWhDBokkoOZoor+7lcbG7YwpV8EAwcmmDyFbgll8qj1Ys6XGSIe8gvxQXFQc0jLSW7whSDBZJAIhV32k1NVuVQ6GvHDQxP3CD773HyasWSXjeZEvd91xZ1glV7ZPa9nR3n16KwxjXVi3cUNYt2G9uYTlqv7cgo9IuG/PO2GVtvGnRt4dkCysUMIPDCQMHhSnnnpqGKyVNWBf0tMG25MQHWDPDwzYRwHdRrV+yhFwBBwBR8ARcAQcAUcgRRFAX+2oEDpheqf0bpanxzs4eusSNsHzJCHHawHPWLwS2PA2LiwuCjNELixSmC6kwoH7TzTdksm/e+65x4x6QhiKC3tZ7oe62pow5Z+P20QbxMYeqm+QtmVLl5g9QQhEeXm56Z/ontRDMvT2Clq3fI7bu2zn6+qU5LIZAybfsFfQ6dM1yUeiTEKOGSc2AeQERAvjx+5hnF5SF4GMH6mkbve8Z50hwAvX0cbzn/70p5WkcVW4/PLLTSAwe47wiUxiR23ghgVJEQ32SFjwecaMGZb/AEP3N7/5jbl6YSDjBYEQ6ErOAYsJS8P7IE0kRH0YMLC/BEdWeHvhgjBm7Ojw+htzxeS+iguDvB0mhtKykjDtqSft/Jgxo8O8efNDf7GeW2Wkv71goVaayAm5OWKDZdcj3KjX8NExnzlGgCHI2ILus71kPIkvGR8GvWGD3G/eYFIzlQsifs7IEG+na6o+lBSVhHFjxoZJhx8Rxu81TjFwdcoH8VS4447bwyhh0Uf9G1o+LNQ1NoQ169eJeMgPfQf0DzmKp3vzzfkad1Mo7FVg/du6VXknVG+mluasrq41BrukpCxkzawWAABAAElEQVQ8/PDDllsDQUzYyfHHH28YM9ZEp4Kxv/pgJQpeG3sH/0bi/b5vGwH7d9D2JT/rCDgCjoAj4Ag4Ao5AjyCA5wCG9ELN8DOxhK6KhwOkgE2cSZf9xjf/LVz2s5+HRiUIGyoCoFQewyedfHL40Y9/FAYNHhr2GjculMlAz5AOmyOPhByt7rZB4RdMVm2Q7p4mXX65CIgq6e41IhWq5T0wVOHTbKMV3jtOedg4ztHzY0Ri9Fc/stTu6R//eJj1wqxw+FFHhvSszDDvrfmhWgTFczNnhIce/ltYvXZNWLBooZJUbg7DhldouXjlpxBpUNfUEDZUbpTOWxQyUKC3KWmm9ps3VUvvlqeDdOv16zZo8izfJhyrtWw9+nFVFcnzsw2D559/QeMsDb///e8V8r3OvLqZ6ISIYU94CR4eXlIXAfd8SN3vpks9i6xgezfjMgUjSS4GmEiEFx4KeD5AEHRWzBjXTZAQ0UsCNyc+33333fai0wc23L1gWAk5IOkM5zoTAI0yyDHwMvAykCdBloRYbq7CEsTK4j711a9+xTw3brzxBtWVb6tODB48yNpHKCOY1qzZIPazVLkmRqgukjomvBvIyKsutFsgI6x0cE+8pc29Kti8sVrETGMoLSmyPA4HKTHm5krlZ1DDb0i4X3X11eG0j38sfEpeECNFRNTU14WFSxZrreQsC8WY8/Ir4RDlbqALEA+MGUJmq5JpcgyWf/3rX418AM9DDz3UvkuYZzeM2/xW/KQj4Ag4Ao6AI+AIOAIfaAQwogkpGDFihHkHM7nHLD864vQZM8OJJ58Sxk/YOxx3/AmW5P2cc86xkAOStc+Ugb5y1WojL5g8Q5fvlZMbCuXVm1/QyzwDVmg1C2bq0O0hIbZJr2+Sfp+ue3lmkYgOQjcIPB4sox79HjJif3lSH3/SiSFfCeOLRQJkayJt7/32lbfyJ2wS8g9/+IOFCv/hhuvDiKkjwpQnn7BccFwf2HdgaFCbTzw9LUz66OGKHE5MPhaoT2rSCno7enxWVob0/kSIBZ4OsRQXl4R5mrhDB8bGwJbhmD5TXDeOSKXu3smH1P1uuqVnt912W2D5S9yq8HagQD4gUDBmzfOgg5Z4iSEqYGAhLngG8gFB9uc//9lcukh8iCcErOMRRxxhtUE+dMXtn/qiJwIPIjwQJJAbbKwgQSjHtGnTwvXXX2+rXnxcjGt5ebm1SZwZnhf0p0R5FCg8R1+1095O9difwuIC9QNB2ai+400RLBFk/4EDwlIJ9hWrV4Wbb70lEJby8dNPD0cfe4wJSxJ0LtJKGW9odYyJ++3XHPgRFNqRH5RA2MIriF8DH8b9ktzjjpG3A8IbYQvenRE7PTZor9gRcAQcAUfAEXAEHAFHoMcQiN7D6IF/+9vfLNHjeeedZwb+jTfeaAkg8YQ95ZRTbLU5yAlyf0XCghxp6MJs6MhM4Gmezwoet+P3Gmveu5ygjdb6OOdJ8o4uStJ3JsPYYz+gZ7/wwgthz1EjTdenLbwO0E3x0iB/xMUXX2yr1rFC26xZs6wfZ599tumu2CT0oaZ6i+nu1In+n6sVNeLEqMwPHWeYjs35rVsb7TN6/yOPPGy2w4gRifbpOxOSlEhC2Af/k5IIOPmQkl9L1zvVGcNHQkiWviRHAAKEAikAmdDZs7EXzMAjvLgfwcKLjSDDgOaF/+Y3v2mZdMlFgLs/93NvZ8QG9RvjioRJKrTBRt20c+aZZ9oSnDfffLN5AUB+QEqMGzc+DK+oUJzbmyaMqYvnGB8E6Pr1myQsO1lu8v16PST1V55kob6m3kJbcjX+vn1L5aGxV5igTbxE2CS3M2Lo/vWvf4W1chE77LDDzBslS8I6Xe2D28bKKhPmuTklNhZWtABDcl5AvgyQ5woJf1ilBMFM5mL7EemG/icNxQ8dAUfAEXAEHAFHwBFwBHYxAujQ6LsQACyhHleSY+IPMiJPXgFXX/Ub6+UNN94UJk2aFPbdZ3xYtHiZTWRBNkiNNl0afVIqshUmuMzLVh64UQdnkpF8CZAK6N0xbwIhHujU6Kns8aDGBujXt1+46jdXmY67fNVyIyKemvaUJbocL938FHllVEg/f+ihh+RcsS289dZb4a4777Il6vfThNvXLr7U+oKeT6Ef2ChZWWWm42ZmYm9wnlXnlGOtIMdIj7S0PJEbZRb2zZjIZ0cfsWnoN4U943ASwuBIyT9OPqTk19J9ncIDAZIAoQJjGZe15EWP7GJHrWHMc2/cEITxOQQRTOsJJ5xgM/u4ZHEfDCbCoCsFwROJBgQJxwiReA6ByHmy8SIM8QIg3OPZZ5+VF8Dk8NmzzjHPDIRNZGS5LzOTrYv/vN/JfXSl2y33bFhXqazBxaGgV676NyA0NQtSbsBtbL1i2y695Ku2MsUVv/hF+Mc//mE/BIxxjVziPnbKqfaZOD48Geg7LPHTTz9t7DWeK3vvvXeYPHlyOProo0NZaYJMgVn24gg4Ao6AI+AIOAKOgCOw+yGA/otOiD6NpwAr1UFCXHfddTaB9fs/XBce+tujluNg7NixFpILCng+VClnWNSn0cvRkdnQp9G70eMbFAackZ44x2fa4noskB5s2A08S8FzGlKBu1atXqm2BoQ9+g8MBYfmm/6PLosO+7KWod8g2yNDbU/SpBmrwOEdzUoaM6ZPD/NffzOcd9a5IT83Xx7N+6rebBEGuZropJVM2Sx1HNh5iBLIB8ZDUZWWs4K+QmSgO2N3ME6Kjc3JB8MiVf900TpL1e57vzpD4GQlniE/AMllYE0RHLzAnOuKZwIvPS8ypAMvdnz5STaJAILYYHkdlppk6UeEQQwHIF4NlrSjQn08Q93so4tYfIaQCrwpyFnBPacrdIH2pkt4/e53vwv1yo0wRskex48fb0wuZAj34QIWky7GunpiD7saS1Z2uoR64pO4BSNF+vYptXwOrI9M4s+snETyIBKA1isx5eCBe8jtLc1+XPjxgPlFcD+lhJUIfMZAHN9nP/tZY7KpXSSyMdDVW2pDgWLtvDgCjoAj4Ag4Ao6AI+AI7F4IoBdj+JeXl9vACLdAn/+/a34fhg8fHsYqMfutt90Zbr/9dtPJB/TvYznX0PV7FeSavsiD5HbcXtKMPKiprguNDfWmd3MNUoINPRw9GtKD9tFD0dWjVzN6eVFJsemoVFtdU62k71oRTiut7TN+77D3+AlaxyI9THtmWhiqpd95Hp33gP33txxneDHjubF62arQv29/1ft56ztkS1GRQkNEQDBBxwYpQR8o9In8cHg1r1692vo6Tgk1IU3Q/ZlwpI98xmbxkroIOPmQut9Nl3rGy9lROemkk4wAIFYLYUTBC4LjrrglUT8kBc9QonD64x//aMcQEAgBklrSRiyRVIif29sjVFpvyfdCfFB3JEAQNIQtPPLIIxK2d5jHxbp1642djYl4IEQQdPRtgFaV6KjsaOhC3/69W6pvkKdDg/BiPBmWKCfXiIfKzdVKLlkQTjnphLBF2YBvvfVW62/FsPKAZ8NALVcUc3LMmzfPYuPwWIG4ufDCC83rgVwQFBJRMr6BA/qGLdUSrk4+tODvB46AI+AIOAKOgCPgCOwOCKD3Uqqrq82gfv31122FOXTMo48+Krz+5vww9YknTef8xje+oSXq+wSWZy8r01LxzQAwIdbEjJVWUCPHAnVR8pTYvahI5ELzfck7DHc2SA/ux8uZNtHrsQfQTVmtjSXks0tyQq+8XrbVN9aH6i3VRgBgKxxy8CF2DDGwYT2J4XuHIYOHhCWLl4TC/F5hlciHBfMXmH7PpCJ1M8E4evSeNl70YArnGQfkgvgHW2KTaxkKzUDPh5SI/YzkA/31kroIOPmQut9Nl3qWPPPe1gPLlPSQl3qI2EcKLlGwk11120eAUCKLyAvNS88KDFxjDeGlS5daPgLYTV58WFM8K4gR66xEV654XyQ34meYV9y+EHoIHggOks0cc8wxEjrDw09/8rNAfgTGOXHixLDPPvtYwh3iy8Cms3FmZIti3QEZBfcTscnNU4ZgrdZBqRVJABHRpLoj6bNJK3McoNUw8HAgrOKO224PWzZXweiEhVpKiY28EOz3F0OMJwmJhPr0LgmLlyw3PMELPCAfWmMXMfO9I+AIOAKOgCPgCDgCjsAHGwG8YdF9MdxJ4oj+jW5drUSN6L3ol3gZM3GFrl/YKy9s1rKUPJOXS0gFidflXax9dpYsd4Uo4D2QqUNICUIvmGTkfjwGKBjz6Pps6PMUjjlPgQxAcS7TMvBYCFtqt5i+DUmRLVIhaK6scVuj9ZX7Ccvop77xPPnKhsluGKZlQDes3RAe+/tjlpRyypQp1hYhIySupA3apGRnZ6qPjCPRF/McFjmSnpFl3hfcg9cEWMQJ2fgs17ykHgJOPqTed/KeegQzyssWX8r4MPkPcN3H0CXcAjIAwYDhHgVIZDbjM23teQYjPno1IBCoC6GHRwLZbCEfWIECVywEJIX+tNWv1m20JSCSz+FxgUCkzxAo1AnBQVjFgAEDzYvg29/+TlixYkW49957LakN/SKujHuyRS7MnDnbmmUM1EH23I0bq8Te9gpb65uMPCCejEy6YNJL+RuqqxMJbuBekH8Ivvr6BgnETGNgt2yRoBNzHMeYiSRvVSBMtkniZ0nwU8yLY/AgO2Y8aar7xVmzzV3t8ccfNzaZsY8aNcqSbOLJQbgJiYQInwEHfkwGyFOiclN1KNEyRyb5rUb/834QSP639n6e92ccAUfAEXAEHAFHwBHobgSYzUcnZcKQiTn0V0gG8oBRMOSPPjqxghr6L3o/5AO6JkQDxECz/d6iKmZBQKhwLV36afSusJPNf9DfmUykJE/gRXICvYnnqQXttiA3ca+dar6SmaawjfwC6/c2LUfP5wbp0Nx70P4HSAevDAefc2Colmcw43tJOSIefvjhQFgJNsV3v/vdsHLlSk22FWjcA6XHz7IlR1ev3hJOOvmkcCATeXuNNh0cjOgzY8FmoUQ7J9En/5tqCDj5kGrfyPvoTwxxQDhhDCMgMNohDSADYAOjIIHdjIXrXZk9py426sATgY0CCztBSWTIUYAwoj5YWdqjL60Jkdjue9nHfsdn6C8ECG01NsobIiM7XHDBBdYeZAsCDGIkJsi5++77LBENOBAeQv/Gjx9rYyHjb7byNDRty7TlLask6BFeCNU6CbPGzU2GJQTGJnkowKwW6z+EWoZwTMNpogFmOJHroV7kBZKeOiE4slkiSHVR35baOrmjbQnZIizAKrK0JOAhMc/o0aPN24FcGnyHJM9BAMPwgufLL78cTjj+GFsVo6gIFzh5V2ytD7nKVuzFEXAEHAFHwBFwBBwBR2D3QYD8aejs6INs6L0nnniiTSwWFOTb6mfkf2CiDb0X/RWvBwiIGZp0O+CA/XoMDEgHJtA68hxG1yUJO/YAxzlZSgSvkI1c9bNPWZ+wfNlKWy6URJoklWdylNCSW265xVazwFP4hz/8QZgz5w2FJk+0sQwatHc4+aSTw8OP/C1c8MXP26Qd9WMXRHsh2iJd8b7uMYC84g4RePd0bYe3+8VURIAXLW4wgBivGOmwiWx8jgXDORIQCIPOSowPg/3kxcYFDLaVgicBQg+XL0okPTiGEOmJgpCh7jgOhDP5EhBSkyZNsvgv2qWfP/vZz6xv5Egg5oyNvr/11kIjIhCaImItRg1vrl6FvUK+PCAoefkQLXmKn1OuC91XKIO/T9/e5vkAudAoJhdYM8Uis9QmGwQNIRG1tQ3qI0sZJTCoEUkQSZl81QupwKoXCFj6Tw4LlkIFX57nxwQXNAQxZAShLXPmzLF+0X++Nr452vPiCDgCjoAj4Ag4Ao6AI7D7IYCejn7PHmP6e9/7nnlDMFJCFNCJCddFrycXG0Y4hYnBni7ooRAQ7W3y71WqiYSX7zZNFnJ/ppTlQi0R2rdPb3n2DjD9lxwSkCt49TIRV15ebqTCX/7yFxEsx5gOHMeCbYMePHG/ieYJwXn0/TgxyaQnWMTE9/E536cWAtunwVOrX96b94BAsjGOgOLlY6af8AO8EyAHIBEgIijRIyEKqY6awmjG0wFjn40ZewxkCt4FFGbnKdQfyQoEIltXCA57uJ0/tBfrivVRZ2JLl1dAjraBMu7rwhlnnGZhChjv9PuGG24wIx7PDMgTVpwgJm7q1Kk2pmOOO9Yy9maLhS3VEpa4o9U3JMgNhBkrVeSLHKBo6JY1OOEV0SRSolaCVKyu2AtYZqQqAi9NN0ZyByIoM1ueFM048F3MmfuaJckk58OKZcvDXqPHhJ+LJCHUgjwaX/7yl61/N910k3k8EGJy1VVXmUfH3NfnGf7r1m20PBBtucu1A6OfdgQcAUfAEXAEHAFHwBH4gCCAQY7+iK6HzotueaSWrWRC6sorfxnO0HLzEBBMrKHXr1271kZG0sn3U2iLEvexjqjHx30835U9z2A7YKdAotDPWE+9JuiwGxgXNgu53Li+1157WR8Ip2a78847w1lnnSVCIScsWrzImu3bt4+FWKDrR89sLjDZSh1RD+9KH/2enY+Akw87H/Nub5EXm5eNLQoNzvEy82ISN4URy0vJeQqfY/xWRx3CWEcAcj8CA28HYqpgGcn9QImuTrTPeUp3GcZRgDAutijI2JsAk6xMcuww5hQCBBcuVsZgNQn6i+AjJwVEDGQJmEx98okwdvw4cwvjXoQ43gbkWmAciOFMZdNlT4gGz0bMcsQuk2ByUw3ucPU6nxUKlCsilirlhACfzcr8u6lqc1ioJJJTRHrc98D9lqn34IMPDuedc24YO2q0lh/aNyxbvio88cQTlmTy/PPPt/txP2NN52LldmA8L7zwgnl50HeIo0Ito2Sdi4363hFwBBwBR8ARcAQcAUfgA48A+mb0ZEYPR8dGr8RIx7P3gi9dGHrLk2CvsaPC586/IJx33nnhgQceCOiXGPW5yhHW1RJ17LhPfq5F39ZJ07ubL+LJ0BUdNF3eD+mEJ0sPb0KZtpJmSTNZcQOzBEKluDgx2Yfev2jRIrM3CCf50oVfsnZZdp6Cp/NHP3qITdBh0zBBGj0dyHvBMbjF/A/2kP9JKQQyfqSSUj3yzrxnBBAWvKwIBUgCCi8kwgqjGxcl3JkQZAgvruG90BXPh9gZjHGehbnEG+HKK6+0jLRf/epXLckNXgXM9NMeG3UnC6lYz/vZR8EX+x4/Q9LWyMjfrHwMEAMlJUXy9Fhn3h4kaoR8QaAdfvjhSspztBELZNElASfYLF6yOGQJk2efe86WtySvAoY9woukPitXrtZYFE6Sk2vkAmsm5+Rk2UaanUwlkiTpZF0duS4IgdByP1tqw3wtHfTKq6+GefPnh7Xr12kppCdseaRp06YpT8NWE5znnntuOOsznwmN8pwoKioOZfK8KC3rbd8RSULB+YY//MHuP/nkU40JhnwYP368kSd8z337JJY2tR+AdoDtru+gner9tCPgCDgCjoAj4Ag4Ao5ANyOA/oa+jk7N7D56OHtCE9ArNyhpYy8Z3kOGDJLO+pZNnJFsHWN89Kg9O+wNemPc4o2ReEjex2vso+7dco6ZuQ4KNkGG+q8H7a44HsbElms50AjTZjnRLSIM8PLI0jhzTKf/t3/7Wpg27WkjIeKqdnglE4580UUXSjdPhJczAYp9QEE3TvbWtpP+J+UQcPIh5b6S994hXnCEEgWjFcHBiw3zhyHNDDoeDLycbNxrWXEloDor3BdJC+7FyOfcb37zG8uvcOyxx1pbMI20S3JErvMZAz96LnTWTnvXGRslCi2OEcSMrUEMKmsV54gcyMjINKFVVlaitgvtOiQJnh+wn4Rd0D9yVJAjAlJi+Ijhcls708JHYswZLCvCm5wMM2fONG8JXNkgOGqVNLJRSxMtX77SyIkVK1aF/n0H2P0kusQ97C0tZUriy+emT7dlTee+8XqYpbAPSA0ImrPPOTt8/vOfD/vtt58Ef1oYOnigxgYhpIzBvQqtLoihfffdN+QJQwgRyKPTTjvNfnQQqlznXP/+A5S4J9t+QMClrQJuXhwBR8ARcAQcAUfAEXAEPjgIoL+if2NQo78yqcdnJhOHSIe9SGG6i5S0PCMzy8IS0PvRmV977bUwbvwE6cSJpTPbGnEkHqKGSP1xQ8eOhXNRj2Qfj+16J+QD9RgpkKSH4v0Q69i4cbP0eAiHTNkOubIXskwXhoRA9y3RUp54LGPXoJuzQb5ceuml4dhjjwnr1q/V5F2h2TTYNdgFtIfdARZeUhcBJx9S97vpUs8QDBjZvHhRMPDy8eIhpN544w17iSEfeCG5LxIEXckEG5MgIgRpB+HH8//93/9t/SOpDfVQN/fSJgQFLl8Y7Tvq9sSYGE8UVuyjUNHQQ5U8DXJys40BJc6taZvuxwtE4+/Xv0w5Gwq1LOUmSxy5WeEP9RJi9Q31lmQSAT5e/e8jbPAoIOwC4YVwow3yMExVqATuX3gdPPPMM+H55583Lwk8Ixgfgp7lgfBqWKXVNFasXBFeVXJIhGSjhCzPgMWhhx0aTjnllHDkEUeGEcOHhxzlgqgTnvn6cWiobzRCY+CAvmKrx4QqkQt95LVRrpwdf3ngL2HGs88GPCUGKCRk3dp1cl3bFuar/QJ9DwMG9HfyoUtvit/kCDgCjoAj4Ag4Ao7ABwMBQizQq9FL0X3R39E52caMGWMTcH/+0x/Dm/PelO6dFYZqKc4FC96STlmvScD1ume06YfJREM8JlwCTqAt8gF0sC0oybo3x/GzXezkTzLx0KQxYEOYd7bqZsIwN4+caOShU1JKdWT58hXaZ8huyA3r12+wSbbMzAxN3I2QR/E8mxBkcvMHP/i+dPgq2R5F8nAua7FtmJgDK8K+Ca/eUfujk+H55R1AIE3/wBL/wnagEn901yHQ2dfHLDvJCy+55JLw61//2l5SesvMOS8ooQkdFRhHjPE4485nEk0igAhfuPvuu23NYVaUgHjgZY9s7Y56PXTUL67xD1cJdE148a8YLJI37qGfCCRctRB8XGcM9HFLzZawh8IzOF9RUWErYDAeBD6eEZALjAEyhRUqSBhJXYwTAoaN+DXGjkCNPxLcj0QvVgbfT3/601Y3PxT9RB5AatAH1mBG6DfWb9MPSkL8L1iwOAwfPlRt1ISrr746nHnmmeZe9rnPfS6cfvrp4cc//rH1iWQ8zylUBKE7bq8xxvxSL+OAaaYfsdBWR+W9/JB0VI9fcwQcAUfAEXAEHAFHYHdBINX1p2Uy1tHj77jjjvCtb33LdNNrr73WcoTdddddlnQeHZRl5vFErqgoNwN/jz0GSpdcZytOoDOiE6PXti7otVzjWSYZjUzQTXxmIpKCfcCzXIueB5yHIKHu5Pxv5GOLuRm4DplCuAU4c4ynxuLFS8xT+6233rJ28ECeqklA6qZAPrC6B6vF4f1AnrZYL/WgozPhh76Ox3NHxfXfjtDp2WuecLJn8d3ltR966KHh7bffNmP28ssvN6OVpR2Z9Y8eBB11EuMb4YKggViILysCBQKDGf69997blsWJ19gjdHZGUR4bCS6z9XUgI942YyKseVawyN9WENLErNIn+oZAhWDIqU7kpUAIRsYUMoYQDIQWxjwECyQEOOL1gAcJ8WaQMTCr68Qup6WnhSHDhtq9JOSkfrAFLwgESAryRcTC8p5blKuCpYeKtJxnkz5LbodsuZyxZFFDXX0oUggG+SDOO+es8NCDfw1333N3yBJTfNddt4W5c+eF4sKisF4/HokfgRz7fhgbGwKYvRdHwBFwBBwBR8ARcAQcgd0PgUEiEdBTJyt8mKUrb7zxxvCjH/6XkQ8knazbWhvelicEemwsNUqCjnZYVlpiei/kAoZ/JB/Qh9Er0SPRmdGH0WFpB72S61HH5RlsgWhLxD1tUSf3MfHHhBjXqI+NY+qHIECnpjDBR1h0v359TZ/to/EwsXfFFZeHj3/845aQHW/kUaNGypv7pXDhhV8yr27IB+pET0f/hqSgr9RLG15SEwEPu0jN76XbesXLCoEAU8jsOasmIBA4BykRl8vsqEFebAQOBAQMIy/0448/HmAm999//7DPPvuY4IoGL9dbs6Ad1b/D1yRJo63Nnn6kixBgL85BxxkmIIkpK9CWm5tv40c4IlgpEAUIUYRphbwgWKaU4yjYjjjiCCMsIBMgKkhiCbtK1l22o446Kpxwwgl2fuLEiYGN3BIsw5mdnRnq6pWnQuES6UpSmWF9ywi4oeXo2uZN1epTtgQoJEQifAbCh1U3cnJETujCffffZ3F8//mD/zIhC/ExYsRw3U94TeKHg/FGYZv8I9ARvvE76+gev+YIOAKOgCPgCDgCjoAjsB2BVNCf8LSFHCCPGHooRMMC5R7DMwA9kJBgErCjz+J1gIFOiR4CEANcQ3fEcEfXxz7gXvTQ6EmL3YBej97Mde5lHzGIz0ZygfPcD5FBP2gDHTveTzvo0HymHQgDbIzHHnvMPJOHDx8ebrjhBnlCLLY6nlX4MZ8POeQQy2NHXgv6Rsg0Y2JCET2ecxAZUbff/m29+yj25d1X/ExPI+DkQ08jvIvr52WHPbz//vvDX//61/C1r33NXmZIB64hSDoqCAheZoQIAgRPBwQEbCnCgBAAjGzOIUCoL97LPQinnVFsnr+ZhJAsk0CDdEhk0W2S0Y+Q4TP3Yfynp2da30qKe9lqFkVazrIgP0/Cq8gEdZ/eSlwp7wPGjFAdNmyIxaDtOaJcY8wJBx6wX6gYPsKIlxEjRtgzpaXFIStT4RQiO0xAy5uhXsl0qqtrjLShHsiFjGYCAuKB/mzcsEnt5tv3QV/ztIRnUVGJhcSAMQwuWL425zXFvc0PF1xwQSDB5b777iNSY6s9x3dJXxknPyLsuyJYu3LPzvj+vA1HwBFwBBwBR8ARcAQ+KAjsav0J4gHDG8MePR99m8kwVsNA30TPx2OXicY//vGPtnQ7uiT34mUAAQE5AGEQdfdIMPAdcJ66sQOoDz2TwiQk9aBzcj/HkAcU7uNztC2on35FWwASAx2V89gNMZ8cbRAeQoJ8krPT9x/84AdGpEBATJ48OZSXl5vX9ic/+clw6623hqkKx+Ack6AJ/Tphp1A3/YnEiXWsjT+7+vtro0sfmlNOPuzmXzUvFyEWJEicMmVK+Pa3v22z+V15MYEmsqoICwQNgoKQBJasvO2227TW7kcDYRwIGgQZe+6jIAyiwLETPfAHp6rWjlUY9HHDmyAyuhj2LIfJxegxUKdkjyZ0E13WNRhaJbjUnZlZ2caewqaSHAcsWUkDYYwXRZ6S5WSKbCDTcELg4u6VcElL4IXATZPAzjIhmK0kkxT6RF3iQKydLSInYK6BraGhyeosKIDwSZdb2jojdbif7d777g0XXXiR1YeALSykb4nsvpH0oW1+NOIz1mg7f7jHiyPgCDgCjoAj4Ag4Ao5A1xHY1fpTNPzRszG00esx7gkfxiMZvXSIklBiyLOCG/e/qmXgb7/9dsvhgC5LQcdFD0Z3hJgghAFPAsiBOEauE0Ixa9Yssyeoi3PUwb0QEpGoiMf0J9bFOTx2maTERqBvEA2EXkA8kNQdkgTiBG+GX/ziF5awnb4zwfmxj33MvDHI+UCo95IlS8LTTz9tz3MdO4eVMRgLXhvJfW/vG41ja++6n+85BJx86DlsU6JmhAkCgZwFMJ9f//rXjb3kBY5uSh11lGcRFBALHCMwEHKQEP/zP/+jhC/HWigHwg+2M/mF596eJh8atCSP5vklNJNG0WxPs+N0soDhmJAMM/x1Q02N2NHchPcH3ESiHl3Q/xj/+l/jzZFwbFRMXaky7NZIaBcqWSXxb7CsidCO7KxMJZHUcp8KgWD5yywdY9cbmSBPB44juYBAhghJ1/PUH7bhscC6x8TTkVQncVxdXWs/BLiX0W9c56Y/Nz28+eab4bOf/awJfhL0ILjBHqz5QaDwvVMiEWQf2viTjE0bl/2UI+AIOAKOgCPgCDgCjkArBFJBf2KCMOr56Obo4ExMsbw7oQeEY2DQox9+6UtfMsP873//uxEVJFgnLAPDnwlKPAzQTwk3ZoIRT2fGSJ3oknjeMonJfYRMQEZAdvAZYoE2sC0gBugD1yAfIDQgGSorK83+wJbgmIlM+s+91AWZQTuEdH/jG99oISJ+8pOfWP14dSxcuNDGRk4LiBS8gxn3ySefbMQD7dMPts5KKnx/nfVxd73e+bezu478QzIuXkQYRzLVwob+v//3/8L5559vrGhXIOAFhqTgJUUosDGrDrFAfBkCCwHF6hAIAO5DkCBcECQ9XegL5APtJrakFmXwNyqpI33GQ4GCTc5GOkw90mKscw2igFUo7FgcAHb8lhpWsUjEw3HeyBgjEhIhDiSOZJwQFRTqBhuELhv4bduWK1JCOR6s7YQHCSQB9etWCUxCVurteeqCSNgmQoI97XEvLDYCnNwTeD8gaL/whfPCGgl2iCFwoOCCx3j5MYrn7IL/cQQcAUfAEXAEHAFHwBHYLRBAx4wJGwlZQBcnXxl6ICHRsZADgckrPArIA4eOSAgFhnskCDD40THRHbm3vLzcvCawHSAaIDLQbTlGNyXhPJ8hD1asWGHn0F/xbGB5eurCAwEyI5boYQFZQdtnnHFGCwHBNfRd8tMxFsgPwivwtMC+oG6WtadtxgiZgTfEHC1tf++994bPfOYzFnJCW7TJuPAo9pKaCLjnQ2p+L93aK9hFXlgyxl588cXhu9/9rhnqvJy87J2VmEUW4x6Dlpl26sQgvuaaa8wFCgHIi849kB0IN4RFT5f6hkYJy9atiB1oLjU1tdYnyIfo7dAob4kGPVev1SQQnngr1NQmMvyS+JGyVStOGBkhfDQkFZEv8mDAYwEvhdgmXhPkcKBuu0t78j5QZ36eSAd5JmQ2ExPUkyZcCOGI/amt1XeQlWEeD2CXnc11NsieDCWd7Ke20pTAcm/hmsgd8dKLL1nOh89//gsiR6ol/DeYJwo/JgjwBAmTyP3A99BR4V4vjoAj4Ag4Ao6AI+AIOAJdR2BX60/o2EwOskf3w2BnEpACKYB+i+7PNbyVYxJG9ngzYKRjyOMZMXz4cJugjBNe6I5PPPGE6Zosd4kdQJ4IiABsAAiH6HHBNeoiSTp2BV4XTJpBMkBGMAlHe4RQsKc+PLFZIhQyBK8Jjgm7eOqpp2xCjeXpWSb0AuU4wyuCMUBKQIYwwUlb5FujLcIvaAfPCOwQVqOjP53ZN7v6++v6v7Td7073fPiAf6edvTy8iLzQFRUV9tITF0U2WRhDBEFXCi95LAg2hBkvf3l5uS11M336dGNU6Qt14k6FgEDwdafxi6CjJI85V/kUNis8gWusLDF9xixbaQJ7v0rnObdufaUEYZEEYJoEdY0JRUgUlr/ctHmL1QmJgAcBLWCOEzs2eNAAkRAKHTEvhXR7lvoojRorXhJyrLDQidqtDeZuBgmzVYIZDCwRkO6hjkj04AGRXPLzRXaoUds3X1DVVnJyMvSDUSe3uQla3nO2fX+XXHJJ+N///V+rnzb2GDRQgvcpI4MQuIwB7PmhcdY3GWk/dgTejUCUKe++kjiTLGvau6ej8z1df0dt+zVHwBFwBByB3RsBjPK2CgQDeickAPr62LFjW0gKzkNOQFbwG8e9kA/kh6BAGhDeQHjv97//ffOEwCMBvZIwYMiACRMmmHEfyQjIAnROPBrwnICooG+svsEekgBvCLww2PCgYBLzyiuvNLsBsoBnySNHeDjPMaGGTosHBbYE515++WUbB/2GOGHlOUKR77zzznDttdeaHo4uzDM7+vvdFq5+rnsQcPKhe3BM2VpgAyEeKBjDZ599dvjmN78ZjjzySBNKCID3UniZ2SKpgMCYPXu2GbwwmhQEGMIOkgIBsKOltQLf8ln9ePGlV+R5Md6akDNDOOjAiebFMH/+ojBy5J7hyWnPmFsWSTERVAhNGNu5c+dagprnnnvOhCBCjv4i+BBwMLsQC7S1XqtRFBcXGZHBkpkJzwSt/LF8lQnb0pJC5XnIVH19jbjI1IoWubl97BgyIzOTEAsSSBrPIO+JRDhImi7myNOho4LAHj58qLG4/BjwY3H88cdb3B05N6785RUm2PkeX3nlFcsSTH3g3hXyp6O2/Zoj4Ag4Ao6AI+AIOAKOwAcTAcgHPADQbzmm8BlCgCXh0XHR6fGewAMBHZmQCrwZWEWC0AhyRfzlL38Jp556arj++utN1yT/A2QCE3mQBpAQbHg1MMnZr18/axPdGtKCe2mDyTGID/RZ2kDXJpz4pJNOsvsJDyc8hAJJQr9pA5uDZ9GB6SN9hVBhDKx8se+++4azzjrL+oneTB+8pC4CHnaRut9Nt/QM1hBvhTgTzvFVV11lgoGYMBjC91sQWAgUEtCcfvrpVic5IHCxQsggVBA8HRXq6KhgQFO4L258RmASAjFw4IAA6aBICBEKr4ey3n1MYA3ao7/ObwuPPvpo+NOf/mQEyc033xx+97vfhfvuu88EFIKNhDtk3GXpyieffNJYXcgUMgO/8cYbJkhZonTVqtVqM80EXmlpmeVwKNJKExs3btI4ScKp9YvVL7wtNmysFPlSFyo3gX2BPCcSySa5bpv+JJJeQuIkzjGmtgpJLQkFoT48WHAzQ/Am3OFe1I/DxFBePsy+X67jpRIJpUgQtVVvPNcZ/vE+3zsCH0YEevr96On6P4zfmY/ZEXAEHIGdgUCqy28Md/RxSAf0QfZssd8QBNgA2AXo2uiWMWwaQx8yAW8GvBjIsYD+OW7cOEs0f9xxx5mxz2QYej66JxOc5JmjMAGJdwR7wiWYCMXDgjpZShPiAG8FJgYhOfCcQK+POeaog3rpdyRI+MwkZ6yTY5JlQkDMmDEjvPjii5YPjb5QD+PykpoIpOlLZXLWy26KAF8vQgUmEAECW8lym8RIcS4yoe0Nn2cRVHGL91Fv/KeDwPna174WyEhL9lmEFt4PCLLOyI0oBGO9rfcwnq3b5h7aFvcQtqlvK1auVnbefiIBtNqGPBAIpSB5zk033RQgDmBXr7jiinDIIYeYexeML3FlI0eONGFZVlYq164qM+jBBEGJGxeCFhczhC6eBOCHmxjxcWwItr3GjgqbFcrB0pjkfVizdoONmX5Q8JQgv4O6aR4P7GN+CMIt9DHgAdFe4X74F8YGOULmYrw1Lr/8coWGrA2HHnaIliS6wtZyBm++T3J70GdCQOJ31H799MCLI/DhRKCn34+erv/D+a35qB0BR8AR6HkEPujyO046ghRjQZ+HjECvhgzAAwL9ms8Y9Gzch1GPfhsnL7mPZ9GlCamAoOAe9hACEACRWEAPtZBjPcPzJJ9k9QvaICwbwgM9Ok6SMWmGncB5CpOWTF7G49hf2qcf1LNgwQKbNMTzmjByluXEmxu9l/0tt9xi3ht4SXRUOrM/OnrWr+0YAh52sWP4pfzT0XBHQFAwvC+66CKb+e+MeOD+KHxbv6TxM3u8Hu666y5jMj/1qU8ZU8mzsU2O329pb/aedjHiX39zvoVX4P2Awb902UpbwxjhA5P60EMPWZjF0UcdIU+EahOGhEng9YGwXCjXL9hh2F3OHXPMMRK6uYp5W6IwjSFh6tQnbTxTp041IgLBCMOKyxesLssB4UJGqMbQIXsoYU+pQiTqjQBB6I4fN8aGTt4HBCVCNS7tWadzrXNAtMZJclb5HRDmRYYn7bPG8WmnnaaswP8Mjz/+uHlEILjx5CDbMQUB7cURcAQcAUfAEXAEHAFH4MOHAPo7G/py1NnjhCL6OYY9hXN8Rj813VreBujeXOc8uiVkBIQDBSMfgiESCOikPMv96NNs1AmpgJcDIc8QB5FIiOQCujNkRqwXvZX2ITXwqiYEg3uxVdB9oycH+i7kCcQFuSogPMhjh1c3y4ji9YD3Q7RfrNP+J6UQ8LCLlPo6ur8zvIS82LzUvPwc45qEMU3ywigE2muZ5xBCycKLe6NQw0vgzDPPDDfeeKMZ+ieeeKLNuGOc4wHRWYkCsbP7uB4FSfIzvXuX2aOsTlFZuVnLT34hEF5BzBiCaMTwYWGoBB9EBeERuISxQgZCj3ALyBjY2RjrVlFRbgkkly5dLtJipXk4jBn9kZCXX2DYEVeG0IMBxtXrhz/8YXjggQeMkFi3boOEY6MRGb17l4T+/fpa3/hjK14oNgQsWcmCQhhHugStZbm0M+/+U1W1xQR2dnamwkDmWR9GjBim7zOEP/3pj2HR4oVik0vC5MmTbUkivk88NPhhaI+4SW4lGcvk837sCDgC8kri/ezB0tP192DXvWpHwBFwBD7UCKS6/I7EA7pg1J/jPur1kAQY9owlmSBgsgxyAR2fglcwngvsIRMgJdCdsRGwK+JkJnWw8ZlnaQ/igvtpk3rRoWkXTwsICkgF6oV0wG7gefaQHhxTuJ+2IDDQc5kwjHYNHg6smgEp8swzz4Ty8vKWfBb2cDt/Uv37a6fbu8VpJx92i6+x/UHwwvKi4n7Fi8+LTGgESWEmTZpkyVvafzpxhRc0+SVFmMSNOmNWWdbgJVENBARCAeHQWUmut717aQvhGJlPPtOuOmWPvDrndSM8SLh42WWXWbjEb3/7WxtbncIVWG5z/vwFxqQi4GBLqYucDghPBCTkA4RCYaEScIokgKBBkDEewjvAD4O+oqLCPCbwqiC8gWQ8HPMseSPIxIsL2qJFS7Q0Z6ZyQGwRPoUSmOnCJJhwJY9Dhj5v02cbfwdhF3l5Wfr+Mm2okCsI9MLCYsP8vvvuDavXJPp96aWXWmJNhDceHGCPQDec2gNW57uCfweP+yVHYLdGoKffj56uf7f+cnxwjoAj4AjsQgRSXX5jqFPQx9EF2ZL7HEkA7kG35H6uc8wW9UeIAI6ZrENfxqZAl8YDAV06EgSQCTzHOXRmzkM8xOu0w7N8xjaJ3hY8A9EBEYF+z0puTJzSHv1J3mJfeZZxsXIGE24xdIM8Eujtp5xyiunJ3N9eieNr77qf7zkEnHzoOWxTomZedAxsDFFeTgrxVmSsJXMtyV86K8nCKt6LgIgCDZcnlrvBq+C6666zWXjyJWCQd0ZAtFV3bCPuEVIwoGwcUxAabPXKqdBPuQ2WKEziq1/5SqiXB8TFX704nHH6qeHJJ6aFJi1ZsXbN2jB71iytVtFLBn9TWLVyVdhjoBLSGC71EnqFWnazIFRL2G3dWqu6FocXlHSS45qaLRK2q1RvnVrdFpZJ0K1YsVxCM1tjy7MQjQH9+1viy+HDK8IguXq9rXg0QiJoM0vCnKU68+U5sWlTpQiN1SIgqkKjPCQYS64EaCLxg6qHS2m1kUiTJJaNYkBK5OHQqP5Xqp4hQ/dQaEdVeFq5K8D5i1/8krHIs2e/YEJXNen7aSZpWlea9LmZv+F2L46AI9AKga7Ip1aPvKePPV3/e+qM3+wIOAKOgCPQZQQ+CPKbPrZM2Glk7+izrmVLB8VOSJeeanq9dHu7v5lEyBV5YMkbNaGFDt5b9gPn2CAr0GPZ8wwbx5AJkANsHPMcdgglEhzYJBAT2BFMmsXzsX+QEej4sV7qYeN+65+uQWIwmUhOCbwyyAXBpOIs6d4///nP7XlrtJ0/Tj60A8xOOO3kw04AeVc3geAgdgqSAGHAC4eHADFRLHHTUYmCIPkezlFHFAawjAgBmMYbbrjBVpMg/AH2E68I2ucZhAvHCB3u5xxCpKMS22LPcwgkxoAwg3AoLi4J8+fND+eee26YoUSMsLGHH3Zw+P0111keBrwXGtQPCABIhY0iSIpVxwbFk1VWbjTSIUMxGTUsBaQEjm8veEukxCaFa1SE4RXlRkjABzTUi/yQu5h6HFjlIi83x8iL1fKYqFQIR63cyGjj4IMOVO6HwUZAZAgjiIhblX+CfUV5edhn7wlGOLw251Ubdp++vZWnYoUEeJMRGes3bNQqHayeIXxEPFAy5EHBcp25uWKbV60xYd+nT5k8MMos5EPfRthSXRMmf+KTVk+lVuDIy83X2OR50hG8Gphg9eII7LYIdCZfOhs4cqcnS0/X35N997odAUfAEdidEUA+d7Tt6Nh39Pepq+23+TvD2DLwIE6oiaYq8nPHb542PqPjU0xfl56cIR0+Tfsm6e2QFRT0+lji/fFzbJfzhGYk3wvhQeGeaA/E55Lvi/jHa9gekTSA+CCxOonlDzroIMv/8Mgjj5jnBCTFpEmTzG6gLcI9KBxjS4B96/7GNnzf8whs/1fT8215C7sIAYx1Ci8bL2T0HkAY7GiBzYzLPzIDT7gCRAdJKEmGSIkeFxxDRvDi04dIQnC+vYJbGIKGMVAPpAP9ZoOIyFb4wrf/7VthxbLl4bhjjwvPPv2MjTFLBvsq5WyAUeW53Oyc0FtLZCLUSDQJDnmqc+iwwRJ8WVYvORpwFcPVC+8Q9mvk9UCJAhCR3NQowdWU8MAAU8gK+mVuZgqRYFyQFwhFxjlur7Hh3nvvDRAORx99dDj//PNFWGyw1TY2KpSicVtT2FJbE5o2KDGQBHu2iA0EP0kqY7sQLQjNerW9UEkyK9VmUa9CCdQ64ZOhNY0HykNjjRJOLhfpMlL45Kkf/HhY99v+QyM9a1u13a6fdQQcAUfAEXAEHAFHwBHYpQgY6dBOD+ob6luuoIsmFz6he+7Kgl2ATl9eXm72DX1k2c7Z8lxG5/7P//xPu46eHidM6S96OYSHl12HgJMPuw77ndIyRjFxWBjSvIDRGK+oqLBkijvaCcgBjHuIAGLBMNrJOcCKELfddpuFYESmMpIfsI3JgqCjPiAg8F7AkOc5jmEwCRfp06d3uPx/rgyPPPpIuPSSS8OBBx4Ypk2bZmEILIWJECIHA32ij7SPoIIAoRD+0KdvmYz6hOtY9MrAFYyNPp5wwgn2HM/G/sdj9uvWrTNvC4QefYOMQSBCyJDFd7G8LcgNwdKfXEcgkv2XJTxPUdjL0uUrjQzBKwWvjZhBWFEZCUY4K+H+QH/4DomxY0ULttyK4XYP11gzmTpIpEnynYKCHOHU6MxuR/+4/Joj4Ag4Ao6AI+AIOAKOwLsQwH6IE2Bt7d/1wE4+gQ6Ono7uz4TiihUrbBU69H0mQrEV0MeZEIw2B2OCfHCvh538ZbVqzsmHVoDsbh8RGLx0FF5CPlNYGrKzNXDtxk7+QDqQHIY2MIyffPLJ8O///u/hV7/6la08QSgGyWp4+TGOIRMwlikQAQiPjgoCAkGCECF/BM8MGDDAksw888yz4e6771aow8FGNCBUWIGC5DPEgeEdMXLkSCMfMMYpkjkt3gANDaXyMCBeLRHrRt2MI7qDQdpAXCQXBBxbJCDiyhLEm4EDBAJ95lmwgXzg8yS5f7F0EDkxWJaU2LTDDj8iDNhjkMJfBliIColzkhNFsgxn9ZaE8AS3wl559pn+QZTcf//9Ld8t3yVEEGOGpGCcnWGbPC4/dgQcAUfAEXAEHAFHwBFwBEAgWYeM5AM6stkVzbbErkQKuwK9n8k3wr8XyiuYCTz0YfRxzjHRmkw2oJtHO2hX9v3D3raTD7v5vwAMVcIMKBxjCDMLj7GMsbqjJYZAwDLus88+NuOPwX/11VebEYwxDvmAYR/vRXjhgUFfIEQ6K3gqMNOPkOGYcdDe5z73uXDsMceH8877XDjyyCPD888/b+2PHTvS7uvVq8DajcQD7ZBboakJQiYRy1enBJUSsS1doG8UhBpCKpYohFvvI5mCwc+GhwbnogcEhAzeEXiDIAgPO+wwIyUgDy6//PLwmc+eHfILelk/wQNig7YRjtkiH2JdJSWJZUvnz5/fsvbxNb/7P+sez8UfBpZA4nnah/zw4gg4Ao6AI+AIOAKOgCPgCLwXBNDbKejFLaQD5IP9pwudTB7awz34B1uAcGcKE3foy4R9Y/OwsfIc5EMy2YAdESdAe7BrXnUnCDj50AlAu8NljFGMZtg/XtDHHnvM1untDuM0JrHEA4BCEktyP0yePDnceuut4aGHHrI2hwwZYgIgGvcIAARbZ+QD9+E9QJgChjvLhL7++utWNytsfPGLXwwHH3yIQhz6y0vhRBM21dVbRUIMF7mR8PaQPW+lsTGR8wJBRKwaPAP9icY7+EQhxfnk/sXziZre+RcBCGmQvOQQeCMIo+cEaxDPmzfPsMCTg5i0n/38v0Ph3/4WapW3gTAR2sTDA9KDOtevrwy9y4oNI/ICrV230XDAxQyco6dD+dBh1iHGAQHEs7Sfm4tnyTv76p8cAUfAEXAEHAFHwBFwBByBjhBAl6Sg/9om0iHVSpy0g1CAaGCSk77iafzEE09Y2DO6PPo5e/T8qCN3pNen2jh3t/4kpnl3t1H5eFoQYNadlw12kJeP8jcZvHgnkHtgR0t8yTGyMZrJ+4ARfckll5ixDWnAEpyQCMmeFtyDp0BnhSV0qANvDYQKRvvXv/71MHXq1HDzzTeL5DjDGM4XX3xVRnqGjQlPB4iH5ctXS9gkyFmIB7wdMMi5j+uST0Y80BcTrDoBiUDhHMIM4oYN7NrauDeugYw3B4WxggOFGLRYJ+5g48ePDxAxbEcddZS5iU2ZMiU8++yzdrxo0SLL20B/wGvJ0hWG6/IVq8P06dMNh1VaYQNME+EVjWHMmDFGWpDvARIoki7WAf/jCDgCjoAj4Ag4Ao6AI+AIvAcEMjRJx5aupddEP7yHJ3ferdge0SOZyUwm8NDfsXue0lL02CV8jno4PWNiEL3ey65DwMmHXYf9TmkZA5oNjwcYQsozzzxjeRQ4v6OFWXxefoxh2MT+/fsbGUBbGOHDhw83QoCXHYM6GvLJXgYd9WHmzJlGOhBuAYFCG5Am5eXlMrQHKbfDYhnhuSZMqAdXqxUr1qjtJnkH9LOqG5S9MRIvsS2ub1E+hWSBRJ/ocxRKjIH2Wm+wp1xDoGHwxxJzajDWWC+xZ4RiUCf38xmCAFx+8pOf2PdASMncuXONWCAXBHXSBvfjWVJWqlU9moUl+S4iKUIoB+QSITSwvOS5oJ3q6lobb03N9kzFsY++dwQcAUfAEXAEHAFHwBFwBN4LAkq7bv81aYU2tl1d0HuZlEQfR8fH6xp9OtoihClH3R+dPJIU9Bt938uuQ8DDLnYd9julZUiHmOiRF5XZcmKimHknBwHu+ztaMJIhBzB8EQKQDLCNGNp4A9AHchxgJFMQBpAWFO6NQoFnKQgFyAyMcEgGBAgGPP3FY4P+09bLL78SJsiTYPHi5Uo4M9JIB+oiBAMCYuDAvhZ2kJWVIWOefln19ic7m7AKJeAU/RYFUiQZuCGe2/7EO4/oNxteD/FexhmPSejJcdy4F+whNzgHgaKFNcMZZ5wRamq3WoJO8IHIOfbYY23MeHtwL0QEpAQJdMgh8corr1iYBhgx3v322y8ccMABdg9eH2vWbDD2t29fJdTsJOwicb39m+i3F0fAEXh/CPj78/5w86ccAUfAEdjVCKB/dVR2VL7H59F50WnjJB06Mvov+mBHJT7Ps/QVHTYWdE3qiwVdnPuYvIrnt9ZpAk7P5ebk2m0srZmVmaVQ4Fo7B9UQPR6MdtC9yZikSfePGmI8H/tEhfFc7EPrffK9ra915TPexJRoZzCpBwFxqlaSI+QC24QJSa6DDe0xQYruHO2RrrTj93Q/Ahk/Uun+ar3GVEIgzshj/GLgI4B4Obsj50NkFXmxETS87HG79tprw5w5cwIrXnAOoYexjDGNEIhJGXmO89wThRGCk3O4UJHzIc7uk9PgjTfeMAKDsRQXlcoYf1WhB6NEaBTIA2Cj9kUaW4GM9WqFWGSrX4nQi7jnu4nHkA89WRhPHFMcH3sjabSvljfH5E9+0rw6GC9hJZBE5IiA0QU/iBw2vi/CNvAAAYN77r4nrNXynb/+1a/tGjj2kVX2CgAAQABJREFU6lVkOPfuXaJniHFLEDrtjjH+crRzQ+x7O5f9tCOwWyPg//5366/XB+cIOAKOwPtGoLt+H6iHDd2QQsgt+jGTdOh17W3ojFyL/YjHsS72TPxxH5Nj6JTUi16do+MGZv91T2aG8oPxH3U1J2OnL5Ai9tkoCE0UNns7bA/F0OPqb+yfdV5/Yn/i5/b2Xb2vvefjeewP+ottgb0DccPKeyxvf/HFF9skIeHKFK5ji6BTc7+XXYNAD5teu2ZQ3up2BHjBKAgbXlAE0bnnnttl4bC9praPYBSjwERQRTICYUTbhx56qK1AwYw9n3GJQrDyDIKQEgUXz8cCM4uwhLVkZp9VM/DSQJicf/75Nh6W2UR4wQ5XVSXGiQdGU1OCreaautFSEMCsdpFIPNlyeqccMF42SIe4QQxMmDDBzv/Hf/yHLReKJwVJNW+77TbD8qMf/ajtGTcYUAfEzNNPP205Io477jgtPdrHvB4gJiAu8H7Q0N+RY2OnDNIbcQQcAUfAEXAEHAFHwBHoFAEmAinoquiFsXA+6tLxXFv7qDvzPLohBT2Xwjl06qh32kn9wfjGFqDwPO02NjXac3ym3VgXz8f6IB6SP8fneYZCe2yU2C/70IN/YtvJTTBJh3c0e/rzj3/8w+wFJu3AFZuFkpyDLvl5P945CKQ8+RD/Ebe33zkwfbBbiUY9LxvkQ8JYr7IXckdHBnMYBRVCKwpT2sJg/te//mWeC7z4kAlDhw411pF2CQdJLnzHCDoERiQfuH/fffdVKMUgE5qQKHzGdYo8CS+//HIYN26ctbVs2SqFZ5TauFatWifhQxgEQpEEkokkkrRHO/Fccvs9ccx44ka7rQvfTVZmmhEJn/rUp8JPf/rTQNJJsPnFL35hySRjXg3IGogH8jxwD8KVvBFz5rxhCSu5Ht3Q+P3huhdHwBFwBBwBR8ARcAQcgdRFIBr59DDqv9Ggb28fPY6jpzBEQtTHqYfJKPRu7sMbgM/M+nMuGt94PaBXxzbicU1tTcs56orF9NmkfA/xudb7eH9P7ukrBT2aY2wQ+oHuy8Qlk5733XdfS240PKijBwQTfV52HQIpTz7sOmh2j5YxSGM8FC8lxAOCihc1sp87MlKEWCzUD6saC0KKlx/CA4+HSIJwHUM8Gsp8joIrHkNqIIDZ8/wJJ5xgZAO5DTDMz5f3w/777x+uvPLK8PDDD5tXQBwP7UTWuL6eWLgE+YCHVYbWrEQ4Qz6w9XSJxEPctyYgBvTvG954860wetSe9n2wfOj3v/9982RgdYvf/va3lojy4IMPDkcffbQRGYRigAE5NQ48cL+WBKK405UqOSVl7dr1wq6nR+f1OwKOgCPgCDgCjoAj4Ai8VwSSiQL01qgjo1cze8/1jjbaw6MYYgE9H92ez+iC6M1MVEWSAWIiOcyA61FP5hl0cIgIM+AVTMG57KxsW+mCdljxAh2bOtBnGxob7BmutVWor6dLHA97ttgmxAITl9g/rJaXbF9EmyUZ+57up9f/bgRSnnzAWOtoe/eQ/ExrBKI3QhQ+GK68gN3x8lEH9SM0edFpgwJxANHxrW99S8kgx5qhHGftSQjDMzzLd8sewZHM2iIs+BwFKnWSJBOhB6NJOMIXv/hFIzsuu+wyC1PAWJ8xY7b1Y/DgAZaIEgG7dWsdj1tp7l782ON7xsYWhR/jZQyJf9MhrFOOilEjR4T1GzYZBnsM7GfJJK+44orAahaXX355ePHFF03o88yDDz4Y7rnnHsMXPNau3Wg/Fscff3wz+5tw46NNfSVeHAFHwBFwBBwBR8ARcARSGIE4QRW7iA6d0BPbt4G4F3IBz2J0XRIpMrPPhpcDpMSsWbNsAgsPWjwCli5darnEeI5JwcpNlTZ5Rx119XWmcxOGQYJzElCSfBIvCCMbREqQ7wGCAjuCPrdXOrrW3jPv9Tz4UIwwkc3AHtsC7MrLy80jmn5yjkm7efPmtSSaBBsvuw6BlE842dk/YIwsL+0jwEsHW4khz4sKXgiZ7nQ5wosikgf0BKEFa3r77bebcDv99NOt/ejuxZ5nEAoQFsnGeRxJFCrcB1FCn1khglALVr4g7KCgoJcM9HFh+vQZJoARLghackNkZ+dqxYsVZvQzdj7zTwVZRd6HRF4Ixaj18D8fxha3SECwTxTF6fG9hPTQqyA3bKzcJJyytKIHXhDZFk5C7gfGyxggIcCUsX/lK18JQ7RkZz9dy8/LFw6jVGW64Zqbm2O4MsZ0JQ/qsHR2uaWvHdbiFx2B3RKB7e/qbjk8H5Qj4Ag4Ao7A+0RgR38fMJbR7WKhPvTFWNDfIynR3p5JvfgcHg+EO3MO3XrJkiWmg/OZSTv0cpKVMwFIwsnZL8wWwdBg5ARey7SH3swxeiZ9gcRAV2eCMTMr0/JDYLiT7LyY0N5muyJige5OPWzYBR2V+ExH93R0LXqL0BaEA/YC5zhmjA899JD1g1XlIB64XlFR0ULqcJ+XXYNAx/8ydk2fvNVuRACBxQsWBQFCKC5zieCLoQrvt8koEKPAhH2FWY0C9e233zY2MpEIsslIAo4hFBA8kWRoq32u0VcEKowtgpPnWHqTFTDWr98Qjjr6mPDVSy8297I///nPxvima2nNYcOGhbPPPjtU1WiJnVwlr2wsCOkiYchF2bAtkUQnY1tayJOxb4xEWx3o7Bz91z0sRvSei57lqdycRJ+WLFkWhg4ZZNW8vXCxkUN7Txgf9ho7JlRXbQ4P/+0hw7S2Zks4+qhJ4dvf+rcwc8ZMETD5dm/l5i3CKD/UVyqhTs1WSzopf4tOh/Y+ev6eh+oPOAKOgCPgCDgCjoAj4AhsRyAazZzBUMdwRu9Fr8ZQ7sw4R8+GZGBCj7rwfEBfZmU7CARIAupjQpCV1LgfPZq2uI/k5tgBLGNfolAFQqFXKbF5kfTu1fKeSJeeGsM2CAPJEBnBs5Wqd/Xq1WHYkGEowCrbSRP63tCQCCHJyelZDRPbhvYiycG4wRC7huXuy8vLAzaIkS3Cg/vAiTHhme1l1yGQ8uQD/1CS8wjwosR/bNHg3XXwpX7LkdmLL2f8TM93lHigDl5iyATY1jhDT6zVl7/8ZQsfgHlEIEZPC9pEGMA+chxJCupKLgjdKHghIBDEfPfkkEC4QKLUao3iO++7O0w8YH9bEaPvoH5h5syZ4fXXXw93/+WesG7zeiNe6NdJJ51k7SGchuwxOGzYtDH0LioJ9XIny5IAqxVpghCnEOpRILKjUowvZEeWBLsklo01T31pKWIyGiR4M7Rqxda6BEOdJ6IDWVxbWxficcv9zQd19Yn+wwxkyDOBdoeJeFi6dFkizk81PCKy4ROf+EQ44+MfC9ddd11IU4If7vv6pZcYBrf8+aYwceL+8txQ6IrqZcnOXPWzqLjAWpFzh1jr5t+F1h1o9blnfx5aNeYfHYGdiECUITuxSW/KEXAEPiQIdDR5AgQufz4k/xDe5zCTdXAIAvRaiAR0XD6jy5JgPdo86Nro3OileCPgCUvhmBAKjGzqiDoyui8EAyG6bHgOQzqgU0M4FErPnfHcdCMp/v7Io/bvFXIirk5HH/A4HjBgQDjvvPPCHC1rj9E+fPhwLashGyJTOnx6ZqhTaDP6KU4cEBT1dfI+yMq1CTZxA+pzrcaV8D6urKwyAqS/VmmTCqxifzh4V+nK+xPtQDBi453EXiBsmXEwBvpPXeDJCnHgCE7J9tC7GvcTPYpAypMP8R9U/AeW/LL2KDJeeZcQ4CWmIJAWLFhgQgnhhWcCwo1EkTCmCAQEIi979LzoimCBcICgYIOEisKCZItNspoHVQwLq9etDbNenB32kAH/i09/Omyq2mTkx4uvvGREAl4T8xbMN+8IhCarSiCMeuXnhWoxuH1Ly0KjmFqLwZCAQqByXFxcAh2dwEHnsjIbwhaFRkBOMJ5iscTVIh1yFf6hByR8E8SDPaDnt9Y3mcsaxA99RzizskWWPDOysvJMMFdurAwrli8zAb9VRMgTU6cYPgXq26znZ4p5VhdIkqn9ooVvK9RiUDjyyCPD9ddfL0E6N+w5cpTc50SO6AY5cpgY3yrBT8nO1i+BzrVX7FL7cr+9x/y8I+AIOAKOgCPgCDgCuyUCnZFK3TVo7BnIhGgIx0k66kdvJJcX4cQjR44MN998c/jCF74QyAfGam+shobezcQf/UUnRteNdWF4Y4RT0LWpj/rR2fFwgOQ499xzW4gICAy8ii2huQx2vCZoBw+ImTNmhLlK3EjyRsiIyZMny7u4PIweOVqTgng5NEm/Xm/t0EZ+fiLxPMRDQ0OTyAZCs7OkB2eoD710XXZDN+uejJENWxG7keM4fvBjwyaBjIg6uYHjf3YJAilPPmCwUaIwYM8/LAr/uNqbObcb/E+PI0CYBd8BgowXmoLQev75/8/eewBoVR3v/7O9w9KkLfAuSLOAooioKHaCGnvURKMJscfYFVP8W6K/FBO/dmOLsaCxGyuKioJgoyiC9N6Rur2x//nMu2d9RXhfXDrM0bv3vveee+45z8s7d+Y5M3O+MEF37rnnmnAL9ajzY8gHvmva577wb4BnEL+WrPFnM+fNMSIBIUys2vKVy63egAEDbHnOESNGWB4IQkEQSrie4R2Bd8bpJ50ip51wkgnBnDztuz6HshYrXvMn1Oq+SBNC8u8M0iND2ebULA0ZyVHvB8aq1WqSK+151CGkA5KAQp8hYVq1/L5rV6USErwcIFVqNJnPbs2bSkZ6dM1liJE/a/JMGGbGuljd355++mkp0NwOjIdlNYcOHWpeHoHMYNxp6RmGNcQGBcwgeuhTWtp38YN20f84Ao6AI+AIOAKOgCPgCNQjEGwL9kHXDDptfaXNfMBz8O5mHybWOEY/RMdjoosZ/FGjRtnqbr169TLdEs+H008/3YgACAH078MPP1w6depkXhB8JuyAvA1MBEJM4PlA/gb0YCYE0cnJCcEy9uiLECEQGdQPYc7kUIOQoB/omkza0caDDz6o50rlpcNe0dxke5uXbocObdXzYpV5VjRt2lj3paa3Z2en6/Ma4zxsRYe3RQr6LmMDP47ZM87PlDjBIwSdH92Y8RGWvaW/2y0yyJ2o0e2efDCjrs6YwqDjHxQ/FPZ8ZvOy7RBAWEUiEesAP24E2nPPPWeG9zXXXGMCkYvBg4Hj8J0hKBIVBERsvSCouQ/hHL2WZJ4LLAuE+xeCsqqyShYvWiy33HiLPPfic5ZQJ6zx+/bbb8s7Q9+ROTNmy4olyyVLk1HCPsOMIpQIzcjMy5UkJQUaNWv6HUNbRyyo+4I+r1bmKaHRvrCdKLGrDGt0iSP6Z/F26nVQoQKwqLjMhFwQhow9OztT/w1nCJ4OFAQ5wh4BCdkGO4vAf+WVV+zlceGFF8pZZ50l999/vzz00EOGd7du3YzsoH6Vem2Ae3JyI3V1S9aXmOaRWMvSQ6HD9hj/4wg4Ao6AI+AIOAKOgCOwDgLYFGwYqOF4SxuoJFJHX0Q/RHdEB2S2Ht0WggEvBSac0Kn5TF1ICjwWSOSOrkhoBef22WcfM7bJxRB0ZsgCjvFGoE32fGZcHId8aoyZNpjUw2OCa+jsTHwRzoG3LUvbY7h/9dVX8vLLL2tfJwt51vBi4DwexYwB4qOyssBIEPqfnd3KkMazAlzRWelDcnKaJlxf50vYxI/gGHRtmurfv7/19Z133pHjjz/exksYOEQMfaGul22DwHZPPgALM8WUEHIRWLrwA7OL/mebIFBYWGjPRbBgQPOd4BYGEXH99debsKQC58P3h4CKCp/E5EMgKmgDQYGQ5H7Op6mRvWfXPWRlcdRFrEI9DWr1OoZ4pQrwxeoJAXPQW4UmcWgI9e5qtB+uAunjjz+WF59/UV597Q0pKymz5DkY9GwIXoQT/+7IFUFfEfyQGngztG3bQr0ukjQvRGO6pUTCWhW46SbQ8fpI1RwQFIQs3FgQbxC+Ku90HHVrM6sQzNQxgAss9o033ijHHXec3HPPPfZC4bmDBw+WM8880xhnPCIIt2C5TZYv/XL8lxZ2saao2Ag5WF7c5HJzsyyXBH3YQiQzTXtxBBwBR8ARcAQcAUfAEWggAsEAxtiHAGCSDN0PffODDz6QK6+80nREyANyPPz3v/81TwPu6969u0QiEdM9g36NHo6NROEeVn8LejR6LDo0hfvDNUgICAkMcu5F90WXxdsBMgJ9k1ANztM3dNuCgnaW2+Gf/7xThg0bZuEM6M70p0+fPqb7Q1xQF29nnte0qa6OUVfWrCnRnBPRsO1wbnPtA6Zdu7IKnFhIOBOMwesaWwBPacbvZdsgsEOQD/wogtGJYQlzxTl+pDCBXrYtAnwfCLmQCAeBQ1IXBB2F81wPwi18lwjajSlBWCL0uIe9CVMVZojY/NzGtmWpkCO8AuKhzwEH2L+NL8Z8bkws2XtT9d9LtrKyCOkTlAXt1qW7rFy+RubNXSDjxo2TWk2cM23mbAt3oF/Lly+X4SM+tmcGly2E9MEHHyxHHHGEkh+ZMnf+YhXYa3WlCl3eU70O6CtkBGQHdRs3zjMPBVbmwAUOTxFiznB3mzd3jnQqjGjm4JXy2muvWd9vv/12WxIIBpr4Pjwe+HfOi+mKK66w9u+++24LHanROA+Y5cqqaiNFeGlAjiB4wRqM3PuBb9KLI+AIOAKOgCPgCDgC60cAvYkN/RIjfGsU09/UoEdvQ0eGOAgFL4jzzjvPdD9CI84//3wLkWCCCt2SUAr2wXMC3RM9kf6zoXejAzKmQEZwnnqMj+NAWEAqhNBpSAYKpAMECP3iHo7RKzHY0V95bvdue8qXX35l4czoyyNHjjT9uVAnJdnwxqDvzZvnazvRZO1ACzfSSImHLY0yocsUyAbGR1gKuKFfMx4v2w6BHYJ84AcUfjS4KQVjlx+ul22LAEIMTwQYRY7xgMBQR2Dh/hWS3vBjpyAcEXgIxI0tCE7aDmQF/xZCKdLkkpX6fNjVls1b2sa16rXVltk2Q/MhZGdlS9s2beuFJvkoiKM79NBDZfy4idI4v7nkqhcDRj7PInEmBaKLz5+PGSsTJk4yYYt72cejP5Gh7w6TtTVVKnw7q0BOMWaYMZFZmHYQuLTD2sL0F8IBPMAKbHhpLFm8SEqK1sjKFctlyJAhcsghh9j5999/38gF3MQQ9ghOhD9eDXhB3HffffLmm2/KGWeeZS8XXlgwzgEf2ua+6MskmjPFBuR/HAFHwBFwBBwBR8ARcAS+hwD6m01q6Vn0za1V0DPR7wLxQA4HQhtMR9Rkj0x0oVNj+6DnorvSVwiDsA/2UZh0ou/ortyDnYTeyWd0RJ6FThnGSl3u43ogGdDX0eUDIYHOCiYQCjzrk08+sdDgLp27ydlnny3kdoNAIZ8aYSIzZsywibbhw4eb90RNzZG25zn0JRpCsum6Kf1dXwEXCuNlDEyIstIFY4BcYTyhzvru93NbHoEk/TK23q+sAePhHzRd5B8QhR8TCU8w8Jx8aACgm/kWhBg/ZFhafui33XabzJ492wQnBjIFsojvi8L3iQD9MQUhGwQW94XPqUpipOjGP+AqJQJSU1JljRrzlMZ50ZCIZct1CdBmLWTh4oX2b4h7cbdC+E2ePE0JhkpdKjPD+oVgpdB//m3x7w4PjjvvvNPGR04ImFTuh0RZMH+uejuokFPPBzIAw6SOHj3a4u5w94KogHxB4PLvlpcJJA3EBAQMHg/NmzaRvNwcY7gZI3Vgi9ctEBfcA45HHXWUJSC64sqr5OhjB0hObp49EyaaNhgjx02bNIrLLCOekxQ8Tc2z7uPqP7uArofCDxwBR8ARcAQcgXoEEqnP/v6sh2qHPNga3y+6M8QD+jPesX/9618tYTseBm+88YYttY79gycDE1LokOiJ6NHoeeh7bNSJJRQgE8J5wEc3RBeloIfzPM6xp264N1ZHZ9KMiS0Kejz/niEm6Cf50b6e8I3qpZprTZ9Pv/AqwNB/6aWX5MMPPzQygn7RBnkjBg0aJD167KH6c63q3kWSrzpqvODgRL8f+h9KbN1wjK5O6DQ2Cnv6zB5sw+RouN/3WxeB7Z582Bo//q0L+c71tCC0lihDy8w8gmbgwIFC+ADfHTkUNqXE+/7NZK5jODf0jPKKcmNqEUawpAgrCBMEbJUmjZy/cJla36kmVLkOqcB1No4ZD4KeDcGFoCYWDrb645EfqdyskmZKICCYEbow1GQkxi2NUAqWGiVuDrKDscC6QnIgwCu1b21atdT8ldFlRIMLHGMBVzbOQYZwD4WXwXBlk2+66SYlTdLkJ8cdL6ed/jML2aDPB2i4Cc/iRdWiRXMdczSpDjAFhxHthvZFG9M/qbo8h5MPBq3/cQQcAUfAEXAENhoBJhV431KYfECv4DN6Au/jcG2jG/SKuxQC6GnomEHnhIRAh/zpT39qhjt5vDCW0UUPPPBASwDJdeoHb4R4gAUjPF6deNfi6d9MW63V8Ini4hLTUZls4989SSrpG54T7777rnz00Ufy3nvv2UTcfvvtZxOUGP+5OumWqpN36OTBjuB5EBnhc6LfD/hRh/uClwfjAR+IFjyRmcwj3IKcapSDDjrIJgA5Bnsv2waBHSLsYttA40/dGASCkMDAJsQAwcM5hE8kEtmYJhpch5n7RCUrYx0vCw3DyNXsvNU11bppmEhRmeZkSDYBiNCrVGlaXaV7JQYQ+BALeDawMkVpSbEUrYmGgBRGOmiyyMPV2wLXLs3aq5Y9QpBElRALs2bNMhaYUAo+wyqjmIBLi+ZRLxD6X1ZaZstzBuKDdnhhsA/HwWuEscIgk3OiX79+8tTTQ0zok+yHFxLueghZ6jfWeLpvl6+qd+WjTQgH3XlxBBwBR8ARcAQcgU1EgHc+xhU5o5icOPLII82gwRjCQzeR8bSJj/fbd3AEgvHLvxcmliAfmMhjeUiWyvzTn/5k4bvojUxqBa/hYFyjI27Lgq5Pn/B4YA/5gL5L/yADWG3j0UcfNY8HJu1eefUV+02gvw4a9Gv1PvhWSYkWRhQwoYcOHnJOMC5wiVeCtwYERmwIBvdxjfbADi+H0EeeQ+g1ffCy7RBw8mHbYb9TPBnhx48Z9y/CLGAVmaXfWi/dRLZ0EF7rMsBpGqIBcdBOQyAgIRBSkAMwqez5jEDjZdCkcSPJyco0AYlCAaO6e8dC6dwxIl9PJDYvGhsHm4vhj5cE93bs2NEY1iy9FxnKeQoeF/SnrLTE2q1VwgPBiSBnT/vhpQIBgjCHReYecIboOfXUU+W/zz1v3hZZSqawzBHkD7GCtNOzx57SvFm+lFdEVxaprf0hUutislP8g/RBOAKOgCPgCDgCWwEB3tcYNrzbMXL4jOHFe5vwSi+OQDwE+HeCdys6HzozujSfSZzOanHok1OmTLFlNTHuqY/exr81dNVtHXqOga//K4HQ1CbG0D3RnUk+SWgGq15ASDAWci5Qn4k5wjIOOqiv9Oi5p8HD74bxQcags2+sbhrIB54bdGZ0b/oAjkyGMjFHDooePXrY75R+Qe44+RDvX+aWv+bkw5bHeKd+AkITAYBQJN/Bvvvuay5jCJIfI0QaClIgFzZ0P0KIEuoh1BBS9DkpKVmJhSxVGIiHyzbCIBAA1GfDlRIBX9OmlQl81lVGuditWZ6SFiJH9D9Eiksr7F68DSi4k7H2ckZ6ilRUaiydktPwt7wwaDNZQx0o9IHP9CkIUY7ZwnmUGphghDNCnNUyyCNB/Nzhhx8uL73yqiz7drm0ab2b/PznP7c8E9QrLim3mRf6wb0Uxq1Ne3EEHAFHwBFwBByBTUQAvQejpmfPnhKJROw9Tl4o9B8mCrw4AvEQ4N8PBUOZEIsXXnjB9E10OPS75557zpaFv+iii0zHJIk5xjRGOuTDti7oy0F3zchI0T6qzltHvqF3QqagszJ5Rgj2s88+K3vvvbd5RBBO8sSTj6u3bkf77aCfMvHH/dgVYMIWr6ArU7g31EVnx4uEgv7Lb5G+EBZOaDRtb2vSxjq3i//Ztj47uzj4O8PwERQIwsB2wniy9jBCAberLV0QPZY0kZCC9WysdsGWyV4T46RrngS8HpKVeODeWvVCEPV8SBE17lOSJCs9VXKzMqRxbrY0UTIhPy+6NdfEOI1yM6SwfYG0bbWbaFW9N/riyMzMMAFMmMPSZStU0EY9HyAeWAmDwrOystIlJ1vr6q+OLSc707wUIBqCsGWPIEVYgimEBQU2F2YcrBHkFNzwSII5depUFeJDjG3mZUZoBkmMqEs7bDwjutmtTkJEYfC/joAj4Ag4Ao5AgxDg/cw7mITTGD+8u/GAxLhBN/LiCMRDAJ0Ogxv9jnL//ffXe80w6cQGEUFBN0SnY08JuqF92EZ/0FHLyzWEWbuvKqb2TdRbI89CRvbff38j5saMGaOJMgfI+PHjjTC54YYbZMCAAaajskrGiy++aLorbYW8Dfx+wrjjDQ2dlgImgQQh/xp2CCTEbM2XxhYKOSCYvCMvnZdti4CTD9sW/x3+6QhOCkKUmCpc/2EXIR+2BrtYqwkVvzOsf3hcD7D2J0kVg+BVsFYZ27UqMXVFZyUSSLyo7LMyCmm6T9XPybU1kqR5IXIydFlQXUmjQvM94L6QrtfzlJzgmHvKy3S1DN3n5kRnOpjtaJKfZyQDzyovr5Cy8ioLf6jQEAjCIPhcot4SRcWl1nfqscUWxgRpEAQw4R4UMgrzogq4H6HLMIE7IS8IVuLqELZ8B+SWCMRD2Mc+Y51Hxl7yY0fAEXAEHAFHwBGIg0CYuWYGGKMnzLhiGHLOiyOQCAG8A/Bi4N8SXgL828GThoL3AzP2H3zwgdUhjABdjvoQEdu60AeMfv6tV+pkm3bNSk5Ohno3tFRSINlWZ5s5c655REMIEEryj3/8Q+644w4LKX7kkUcEQoJJNMgWiISNnbgEi9jfGbiAIR7D9IvwCo6Dfs0zKJCF4O5l2yGgZpMXR6DhCGBsw1jy4+7bt6+5UxFTtbUEYzzigWtV2rcaNdZrkYr6ORj1GPBVmlhSlGQwlwl+CWy4NLDhRqHeEMl6rDl9tQ3CN9SLQIkIu0ePa9dWK7uqLw4lE8jjgCCkEI7BZ2Y+8HTIykyTzIzU+o3PWUpg5OREs2IHxtZurvsDnghhXkgIV44DO87sCswuLyLOkQMCQUpdEl4h4PkOpkydYX2KJR7qiOLYR/mxI+AIOAKOgCPgCPxIBCAbeL/yfuadjfETjBomZLw4AokQQG/j3wr/bn7xi1+Y9wx6HR4DTDKRxHzs2LFmVKP7UdD/toei9r16/Hw3eVZZqZNrZVW2VVXhEbHWcjxAAOBxgEcuYUpMlF122SW28gWTlI8//rhAQpAPgt8UW/gdxRsnv72oLq86uOIIAcgz0JkhMlhlA2zBkHr8TkO77pkUD9ktfy3lJi1b/jFb7gmB0dpyT/CW4yGAMGSJHdhMfvCQEbj9RyIRE5Bb/AVsXld4Dax/QzjRx2SkpCoH/Huxz8nkfFBlAY8G9XDAAwLPiGgshjaqSSAhLJJwa9DQiVTu1X2y7lkNIzUjXUr0ZdG0GUxttK2MtBRJ142SqqRFpq6CgfCtqanrA5xGXU+pw3GK5n+gzUCKBKKAPkJKhNALPB4onAdn2PFW6vHAuL76aoK89847Ml2T6px//vn2kkLQw5jjChrGHPa0o4+s7wv92FDhHi+OgCPgCDgCjoAj8H0E0G94R2LYMOHCezp4K2I4Yux4cQTiIYARzL8bJo3Ih3DLLbfYzD+JTFktgsSlGMxdu3Y13Zp/U9QNOmG8tres/hZdQa2qSr2E9TeQprpvmroOR/eqM6vXQ4rqwV27dpbFi5dYN1NUnya3BX3P1ETs6LjNm7fQybK58uqrr2piyJk6iUnS+ojpzakaJv19TRV99LutSn936NfVOuMH2fGt5j+br16/OWqHFHYslCuuvEq9jStUF24lv/71IJmtk3Loza1btzFSwrVbhXMblSiNto0evjGP5R91vG1j2vA6Ww4B2MbCwkJ7wLx584ytDQKPVRoSeSYk6hltwYKyxzDHpQqDnLwHFRWVanwTSgG5kKyCZ4UmWVxlxzCwFRVVkq4kQaxnQakmYqxQT4UkNfpTUtQDITtX0nPyJCldl+RMgjjQfAsqTCU1PXouOVXWalvJGVlSo+2J3pOZ11hW6BJBjZo0NaUDAaYytl4kEo7BD4vzadqvdEgLPSZUI2zhevDG4HIgHNhTwA5WmPEGtzzOcw7ygT3kwiWXXCI/Of54+WbiRMuMfPDBUQ8USApwoz32fOZFB26QInqq3jMCbNe38TwvjoAj4Ag4Ao6AI7B+BILnQ+xVEt15cQTiIYCOx0QROi4erITQooeRuP3ll182fQ79mjAEkk+iY6NzU49JP/Q5dLuwcQ19MXgDJNK/E12P13eUWXTINE2snkq8sh7HqLh2zDmM/27du0jzFk2lUeNcWbR4gaxavUJ12lIlAHLkl+ecJ3ffda/03r+PvP76m/LoI/+WRQuXysoVq9VzWcOZdL9qpeY508a1Oduqq5Rw0FxtEBgrV6+RWrUBMrKy5ZHH/m37Xvv3lo9HfyrfrlgppRr6/LsrrpTJU6dJ567dZPcuXWXFqtX1fY03xk3DJ17Lfi1q5TgOjkADEcD4hYWlRCIR84CAGECAhrwEDWy6/jYMbdpDEOBZwWe8K0j0OHfOfBXC863ubi2bm4Cr1eiH0lKNidOQB3VqUEGMSIyWbM3NkKFhD6Ekq3dCjbKmlWqQs5XpfcVl5VJcpGEMlZqrQY+5vUIFWKUyrEjbatzJ9Fy1XsdrAQKBjfCOdcM8lBtWYbnhLfQj3h7yBEUGBYeXClhwzDKgwdWMl1A7XWd8yJAhinulzcLwwuLeQD7wgooVptqMF0fAEXAEHAFHwBFwBByBrYwAubnQ4SAf2LNdcMEFcvLJJ1veLsIFmHBjIu+nP/2pERTXXnut6YGsehF0OroN6UBBP0YvZ9vyBd063mYqs5EUrPKG58Na9SpmeXpWhUFXHzNmrCVpHzz4Bjn3l+fJHZoPYsCAn+gYa9SLKEXH3lg9JRpZG4ynuLhccSKEIkkWKknRRleiS9Yk8hO+nqgeD3nSvkNE7n/gQTn3vF/JburxcECfA+W003+mREW2NFMvixUrV6ltkCNriqJ2SzyMAqmzoX28e/1afAR2+LCL+MPzq1sDgUWLFplwxO1wos6+80NlWR3Ih0S5H6gbr2AsB4IDoYpLI8Y395UpMdC8eVPNpUDinWQlQcqUJEAABzfIDCnVc1GDHX5AvSeULa3RWX9m/vEASNfVLfCaqKrSJJMqwNK0/WT1buA4VYV3hXo9ZClhob4N5ilBDghCHXDrYh+SWOJVQMHYZwvCyk5uwh/ahWgIJAKfGX94xsiPR+m4S2W2JpmEmBk6dKhcfvnl+n3kqZAuNYIC8oENLLmXYv3TfYp5RdR9VkxDv2P3doP/cQQcAUfAEXAEHAFHwBHYLAigs6HfEb6DnkvOAnQ7ltwk3AI9mjAFJpfIZTBixAh7bv/+/U2vpS4F0gI9l8/hXNCTrcI2+oMeic6K/hnIEMZCX9FHCcdgspIl7PHmOPjgg42U+Oabb2wcu+/eRe9L18m378KX0NkJ7SBpe4ZOyqXp52+Xr5AJEybU67c333yzzNFlSa+46io5+uijZf/99tFnLDZvkYhOkjbWlewI10hP01wt2wibXf2x7vmwq/8L2AzjDwYtgpTwAFZmYKY+CJtNeQTthYIgo3AuhCKUFEePUzXpTV6jbHXrylGGM83Y3+KiMsnNy7ItQ1etQOCl6XIV6boecYYKs5zcTE0WuVYFV7EUqyCrqVVWVtuvVLcGjonCKNUQDXhd9itWFekKFcpSr6mwcyWaWIcSSwggZCnBw8A+bOIf2qIwfjBljwCHfFmyZIkRPB3U6wFyZpUmIuJlBlLkfOBFROwdrDP3sQUSIrycwvn17e3B/scRcAQcAUfAEXAEHAFHYLMhgB6H/hiSIBJKe9BBB1nixXPOOUfwbiD3A7odK2CQRJG8Xk8++aQZ7OjB6G1MyqFzx+qfwRNis3V2Exuin3gsQ6qwEWbSqVMnOfTQQy0h5EwlCwhBufPOO20pzFv/fKvg5fHGG2+oZ0jUS4FJwlDQX1lVY9HiZabzkh8DAuNxTV4JmXHp734nZ599tpxyyimydNkKyzMxf/58WwWOhPD0x8u2Q+A7Omnb9cGfvIMjgECh4OaPMcyegiDdXAXhCumAJwUGOIKnadMm5vE1f/5iXV2ClSdKjDXFE4N+RCIRW6oIw3vhwkV2P8IJAU0fc9WVa/yEiRYUQcLMJGVYa8trjYnFgG+e2kRWrCmSJi3U5UuvsYwFYRrklKxUliJJPSSq1IOisqLc2gyJphD6gYUO5xqKA+QBLyeKkQoqMNmTPXi19o2lNXv03MeY7y+++EKS67DRFUhtdQ32yNjo5sK2od+D3+cIOAKOgCPgCDgCjsDmQgB9Fh0OfRQ9Gt2uTZs2cuWVV8pFF10kw4cPt/wPeEBgUDNxhD44efJkO493MfWZ+AvEQ6y+uLn6uSntoMOGCUraIVyYcTOnRg42iBfICHRlvDsgEU477TSbYHvrrbdMl+f8wIEDpUWLFopXqZExeY2z5Y0339GJwTI59ZQTNT9GrZE272jy9WOOOUYGDRpk9VlpbrHii45fWFhoQ8HbgnDoHF11zsu2QcDJh22D+071VIQJwgVByI8awx/jmIy2Yda+oQOG8aUgmMIsP8czZsww1pQp/qeeekowvKN5IDLtGrF0++23n4wePdoEHYl6YJnJGEyfiKPLy28ixZZ8MtUYV4Q47ms8B4EZlgZq8VUL6dy5s40R8qLlbjmyclWVNM3X8Az1kKBurJcHwh9Wlb5v6vgZO9iy8RzaZeMZjIdj8Edg8xILeSAQ6OCBexqUA3xxuPf7ez1vNXiSF0fAEXAEHAFHwBFwBByBrYEAenIgD4LezGz9Sy+9ZJNnhBPstddeZljj3fDss8+abotHRMirhgdBMPLROSEx+Lw59M9NxYC+MBmHbo3uSYn2LTphuWjRYgs7wVOXiUN06aOOOso8Iu655x557LHH5I9//KNNLl511ZXm7VBaWqn6b4188MEHcuBBfaVYSYxgB6ADX3311dKxY0f1BkmX0rJKIx6mTJliy9NPnTbTrjGJmKgkwi+MJ1E7fv2HCDj58ENM/MyPQADhBxnAHmObY4iAr776yuK3fkRTG6wKoREIDiohyB5X1yqWy5k+Y5YKoOFmaHft3s3WEN6v9/7y+eefmxBbtWa1FOlyml9PmmisanFpiTHErJPcqk2BFGnoRJHmhSDmDrIBgx6iAu8FXNw4D1Fx4IEHmlcFBEWvXr1ktuZYOO4nx0ikbQsjBiADEKgw2PR3c3l9QDog4GC1OWbPs8AaJpfnQDRwDjaZlxd95jNjSE1Vhjkq7w3f0Bbt0F8vjoAj4Ag4Ao6AI+AIOAJbFwEIBAp6HEY6+jO6GfvBgwfL888/b6uZnXrqqXLmmWdaKO2f/vQnq48ejI6Hfgp5AYmBTkc7GM3bg2EcdNZAQAR9lr6xFRSw7GVr9VqYKtOnT7d+o8cyucj+978fbJNq9957rzz99NPSvXt3Of74AXYvdkZBQYFhcvfdd8tnn31mGBBqcXj/fkJ+eHV6trp4RRPWsc8++5iOrgvQbVRBj45XGJeXhiHgyDUMN7+rDgGEH8IS8iEwuBjmuIX17dt3kwUgZEAgH2B9KQjsBx98UIVLrWaxPUMG33CDZQLGCKcuJMIJmhkYAY4wRvCwhjBJbPbcc08zzulv527dZeacRbJQk97AymLM87xcFeKBQMDdbdiwYVKp18d/+aV8o+Mq03tpa49uXaRJboZUlhdbv8CBrMUQALiHgcemFoRfIAoQ3PSPFwuCmbARSAhc0ug/MXQ1+n2kaRbgpk0aaT81X4W6PLCFEl5ItBmOwzXfOwKOgCPgCDgCjoAj4AhseQTQVSnojJSgk6HTMcnFJNoVV1whd911l3kF4BHx29/+1gx19GAICHRCvF7RFZl4QjdEV+Ta5poEs8414E8IlUbfXB8pUqIrV+B7O2nSJBtTjx49bCwQBXvvvbfq7mVy4YUX2lggIG5QXZ+28AQJ3s2M9YEHHpDDDjvMwjXMu1lbZbWMCsUETwomFNGP0cm7dd3dRjJHV8mLtC+IO6pEng9xb/aLcRHw1S7iwuMXEyGA8YuQQ+hBRFDGjRsn7777rsWkRSIRi1XDcwHBGsgKCIFgVMd7BoKDexHGCBnIhI8++sjWPD7hhJ/qur6PSGZOri6hk6/L52TKsPc/0AQ0iyVfiYRRn4zWvAzJMnXaNF21olJatNxNUjS7rS7aKdnKNLMAZlp6liajWWaEBc/CcwESggzDhYWF5vbWu3dv86ign/QbYmLWrFky+uORUtB6N82cm2svCYgKQjamTp1qTDSZiwMuweUMAQwObLxwwI9xscUWXiTgSp8YM2QJx2zcy365JvacNn2GdNXnkpQHjBjLRRddok0lS3aW5qmo83qg+dAm99MP2F8u11WJfbwfOwKOgCPgCDgCjoAj4AhsYQTQAylhJh29kYJHw69//WvzwiUE4ZVXXrH8CIQB4/FAqAL5EsgH8dprr6kHwRRLUomhjXcvxjOTduh86JCQFOiTQY9EH0cvRP8M3hJhYop71t3QSdFlKfHq0RZtcj+Fz2ELeijLZZbrEvaNNUl827btLOkk4wnevG+//bZMU92dkOJjjz3WEtkzEcgk44UXDpLZc+bKv0kuqaEa4MdkJ8kr6RdLc2boMp2EHVdV1RixAR5g1bhxnq2Uka9hyaz2Fg1Ktm7+4A99DlihrzOhyXeEnQAO4Xv7wY1+IiECTj4khMgrxEOAHycGOUIJQYlQRMgRdvEPXa+XtYlhIhEYxHMhCPnRBjezeG1zjbrcG0IgELB/+9vfdB3gAXLjjf+flOtSmJOmTLaldubOm69r/X6t6/cWKdlQIXPmzjXSYf6C+bJ4yWJN0LhGPRjUU0MJiUYqeJo1a67G+nJlUBda+wgWhDN9Qwi2UXcwWGWEPGNqpKwp/aBeYyVEunXtLK+8+JzMnDHNMIAkAQdCMxBUCCgEFcKQexC6tINQRqAFwcXndV8AvCC4F3wR4OAQhGAQ6nNU+EKsQB8gpL9UzwzyPOCex8urtJRQGCUgtGgz33vB0L7C4OSDoeN/HAFHwBFwBBwBR8AR2H4QQP9EH913331tVv9r1W9vu+02m8S77rrrbIl7wg3QN9GJCwsLZeTIkcKqDuQ8wxMX/ZONgldE0DvROdEp0TNNH1SdED0TbwWey3EgJ9BDKeiioX4gFuxC3R/qhY3rtE/boQ/sg26bphOBEAPoqORmqKmpNYIBvRkPBcIxIFEYP23269fPlhpdrJOLU6dOl8/UK4SV9T4e9bHpvFdc/lt9nnoiK6EStS+SzfsXnZ5JQXTwSCSiunGm1qnWZTY1Z5v2Md7kG94V9Bm7JXwX4IJ+HXCMHb8fbzwCTj5sPFZecz0IYEzzw0RgIZRgXhE6CEG8HxB+ZK7lB8sxLGYQWgg/BFG8gtDhRw6zGwxrlpWEDe7Rs4fUJqco8bDcCAJICtoMBWHDOZ6NEIQcoA28GiAXmrfYTQmFxlKhY+iu3gNNm+TLyhXLjViAeGiUlys1SiYsW7pE5s6ZLa3Uc6JJfmMpLyuVPTT2rM8B+0tJ0WqZ+PUEY1YD4QAJM378eBNW9IXnhzFDTiAcGRf94zzCjc+QCmwUznGNzxxzD/VDAe+xY8dJimJeWVllLxteQrC/J554onpvNNLwFE2qqQxwKDyDjXbtZePkQ4DG946AI+AIOAKOgCPgCGw3CATdF32PSS02jOmxY8cKngEHHHCAkQyEKGCIz9UJNwp7ElNivDM5SDvopeh9wXsBnRjjms/ohEEXRc9Ep2ePTh/IBvTQWL0UvZZrlKBbsqeEtviMTh6eyT7ooNSBeCgpqVAvjZWWU23OnDmmN9NXPJBHjBhhE5ncR941+osHAyEns7Vu//79LcT6rLPOUlzWWH9a7tZMJxW/Vd03R+2SaNg2+BHi0q5dO0lSvRePC55tOSGsx+v/k5+fb9gxVp6L/YBHM97PfOa6l4Yh4DkfGoab31WHAMYxAghBBrv44YcfGut43HHHyf/+9z8TgJdddpmtXUweBOpTFxaRjeN4BQGFwMSwHzJkiAmi++67z+LhJivRkZmbZ94NhCBQMlRoIpwhJCA6WimJAAsK8cAe4UlBsGZkZEqnSK4kaZ+6du2ifauV8pIiq4uHAwZ/RtN8Ozd54gRplBNljWsqy/W+9tKuoI30O+RgKVq9wpLdBKGE4KffkCQIPfoeyBP6wbM5x8uChDnUBUP6hqBGOCNsQ18DIUG/ucZ5sCMpz4EHHSyzZs+p9z7hmfQdNhfcuJf2f7jRmhdHwBFwBBwBR8ARcAQcge0NAYxeDNygAx588MES0dl7dOEXXnjBlpQME04Y53vssYcZxqz0cPjhh8unn35q+iDkA4Yz+iWeA+jdeBYQhhBb0C/Re5lU5NmQFxTuQ4cMOinHsYXPsaRCuB57T2z9cFxcXKbhwsslEinQ/rSwZ+DFO2bMGNNf0eHpLxOGj2uIBbkbIB7at29vE37nn3++tO8QHQP37L777jp5mGNEC8vMo1fTL4gMxkqocVV1dALOTIEoVxK6s8E9Ic0Bq0Do0DcvDUfAPR8ajp3fqQgglBBk/MAxegO5wP7OO+80IYbAIvyCeoQGIPQQCgjERAXjHWMd4uKEE06wsI6LL77YhMlETfpYpC5albCp+l9j9UrYTT0aUlTCkNOhixIKEfXA6BDpIG1atZT8xur50ChP8nTLxP1M+5Om1Ge5LtPTsoXGiKUlSV5OI+lUWKDLaOZKemqGNMrNkXytX6JkQa66WqXqWKAvWimLumL5Mlmq4RyHH97f+oPgJxfExIkTjTlGUDJOSAbGASYIdNzKIBe4xnmOIQr4zD4IbHADV+7jHNd5MYT7hup6xocfcaTMUxc7vEwQyv2VCT7qyP5SpEKd+6nLvWyh1Levpzj73ZVQw/eOgCPgCDgCjoAj4Ag4AtsKAUiA2FAJ+oHeTEjFL3/5S7uGF8TQoUNNxyOhOl4DGOxMgqGTM9HFxBgTVuibeCDTLgWdHM8IdFL0THRtdEaeEcgEdE70VvRUCnpl0C3tRN2foGfG6prcR6F+KNgMtIXHbk52lvalUvucrftq6zNhzvST5JPcFybqWEoTYgIPBuyBr3QJUpLNr1q9hidYIsnyCpbg1OTx+XmyYOFiGxf6N+OBLEhRfZ9QD8aYRtyxlnj6LxOqjIHnhTGwvCeYo28Xqn3hpWEIuOdDw3Dzu+oQQGAhTELB/Qt3JIQH4RZk6yVJzl/+8hdjLzGuKVzHtStWUIU2YvcICYQHhjwuWeSPgIH8+OOPzZOhqKzcDH/c0WCIEbyEWtBuy+bNpEIz3mZAd2qp1LV3AlmCEELsIH5ys5UE0WgHtfOlRTNNjKknK1QQsg5wktRo7oemMnDA0dZnhDbtI8gXzpurgqlS9t9/fwt7QIhDrJB4kpiw+++/31b9QEDBStNvhD3CFbctNvoJK0sYCMw0wh8hF3AK5AP3UXgugpR6YEg98OGFQpwcOTco9IV2EfI8gzbZs3lxBBwBR8ARcAQcAUfAEdh+EcBbF+MfnRPdE70yhAJw/oILLjCdj5Ug/vrXv5pefPXVV9tqEJAW6KMYyujO6IJ4xqJLYtCjM7KhE4cJPjwKMLTRE9GlKUH3RBfFEA8TYOieYWJsQ3oldcK1oMvSDzY8jVesWG02AuOjL5FIxAx6VstDH35cvR3IYYHnMInfDznkEDnvvPPkscceM4X9//7v/+T8Cy/QEOlogk6wwfOZwvixP8CtU6dO1lflJqyQjHJjCoQFXg8U7Brw55mffPKJkQ+MyUvDEPiOjmrY/X7XLo4AgiUImPCjh5nE0L799tuF9Yn58T7zzDOGFOv0UjCOYWMTFdpGAD/xxBMmxLiPgjDlGgY4ApE6CEvICgQQblqIBfoHNQIJQV0EbYjzgjioqV4rLVs1N8KhWPM3QDxQvl2mrmm6ZCUbDTVp2kjatG0pHdq3lR577yHNm+VL1y67S0HbNpZIMzDNjPs3v/mNeWngqcEzSf5DLgwSbvJ8+g3TzGeICPBBsIEHGIYXDYItCO7AugbGGsHKNYQyyT15CdAuMYArV0WTXUYFfDSLMWPS6nYP93HsxRFwBBwBR8ARcAQcAUdg+0MAkgBiAA8GJqjQbynohsEYJsT5oYcesgk+9Ek8IkjKjg6MjskkH8Y3xEIgFNAjmfziM0Y++iR6J3oqoRrkLMODF500eC9E9cZo8nMICHRO9FsmxDiOLeienA+TXlzjHPcFHZhxkbdi+vTppgPTH/rMfS+++KKNiRwPPKNnz56W541lR/fcs6tElKToqGN68sknjVyg/cVLvrW2yflQXlGtmDU2Twkm59CNU3USkj4EDEs1H8TGFCbxwIY28DAOk314mXhpOAIedtFw7PzOOgT4USJkEFQISX7cE9QlCgMbtvL55583dyqWwYGYQMhwD0IvGNcbAhOyAbYRAQXbuM8++5hhj7BLS1MXMd2Y8W+p7TZSFy41ryVThUyKGtfFxaVKHqRKurINadq/LBV2GZphF36BraxEXc2qv1sup0j7RbgGpbSkWBqr0CGEo2jNasslUaoCqKZGPSLU8yBTk9W0UxYZAcg4IDxgiBFSCHSEOAwyzDMEwRdffGHJcqhDf3khcFyhrmfp6Rk2FkjUSmOWq8wLg8+MkT0rdFBWq4sZ9yfpeN57731dOjRdXn7lVSlWnFYo/rfddrvMnDnDsAdbnpOq96boZi8PbQzegSy/gYSxhv2PI+AIOAKOgCPgCDgCjsB2gQBerujLGODowRjs6L6QD+QP4xjCAR0Ur4Cf/OQnZuDjbfz3v//dJgGZvT/ooIMsHwKDoj7t0Rb6IRN3bOiHkBIQBFxDj4WIgAAJJALGO4V+ocOvKS6SWr0PfTRZP6uqKjW1azUUWj0kVJclJHiB6r/TZkyXKVOnynTNUzZ33jxZsGih5YgjN0WfA/tIYcdCGTN2jIwbP07+99r/5K233rTzxaqHH9DnAHn4kYdl9867S4vdmupqdiVS0K5Ajj/+OJuUnD59mo57oDTX/GzYIOjMJXpfrXpWfPTRhzqOHOnevZuGYjRS/X2tLcGJDrx8+Qq7xvGGysyZM40QIcQC24U8GrNnzzacyLmBJ4mXhiGQpP+I+ffixRHYZAT4pwRLGjYEIz9eXKQIkyAxzoMPPmjsJEIOwYcAi1eCexiJGbt06WIMLXkjcKfKysqW5StWSecuXTWeK5oYZ9224v3rRuhEt4b/BKpUGEMiQLQQH4ZQh9mFcGDsjJnzMKYk4ITZ/d3vfqfCsLuM/uRT9bpobaQB/YZYgYFG+EciEU7ZcSBpcEtr3qyJJtNcaWTHw488KpMmT5URH4+yl0PXrl3kXw88qGzvVJk2dYocoYIyi5eEsgyQD98jIfSF4cURcAQcAUfAEXAEHAFHYMdDAD0a/TPo0eihJCJnSU68gx944AHzJGBSsH///nL66acLSSshF/AwIEE890A84FmBnk1beOuGUA3qotNPmjTJSA68a/HwjWg48fI1q5QEaSxfjP1CevfqbQDOWzjPwqTRV8PkI/czGUdYNkQHz61VImDQeb82Xf7KK6+0CbrDDjvMJjCZzKOvPIsJPXTgbNWNSSzPmJmAY9y5agNQ1irhsWDBQu1XG+33XCUF2sujjz5mY6MN8keEcbBPVp2YnBPpOhkZr2DT4JkM8XD99ddrm48a4cAyp+6YC4oAAEAASURBVGeccUa8W/1aAgTiI5/gZr/sCMQigADD6wGWlD3kA/FmxKIdc8wx8p///EduvfVWEyQY6ORxiNQZ2bHtxB4T7wWbS8EFK7iNIdTGjh0nBW3aSq2GVKxavsbIDNYL1sfrs8krUaFscYKklmqDN5x6UA8JFdzBk4EsuDDDCFoIBEIoEHTke8ADAiH2jiaJfPXVV41kQBBPmjxFs/VGjI2eOOkbeyHgHtejx14qaHWN5hRWEtHwknL10MjMsr42adpEXxZi95VVrZUPR47SMJFv5b/PPSdzFNNOnXa376BIhTbkA0VzEds9YR8dNQQEmxdHwBFwBBwBR8ARcAQcgR0FAXRuSAQKpAH6JjnH8CjgPHrnN5qYnck/EjZiPBOCwaQYE2BMeJGzDNKBCTO8iyEeuI/8YRAOTBLiPYEhjn5LKAc5GdppIvccvAlUt2QyUGe57Jm0g2cEk4VT1CuhVg39DurZALlRoR4RU7/6UsZ+OV5ylDg4duAAXS1ujT376GOOFlavYMUKyIc2rXVZ0dWrzPs4LV2T2usYKyordLWKKuFzlq5WN+AnA2T0qFHyjK7+wXKbaLMtNNdbuU4CdlFPCfpKovnsrEwgUm/fNCMeOM6gzXizk9RXY4LxU/B0QKcnzwb2DHo+BIiXhiHg5EPDcPO76hCAREAA8iOlsA/kA5/79etnhAFuX7CxrD2MkMBQx0UqUaEewgwjH8YWDwLY3AsvvNDON2+2mwkBnonAwyiHeECmJCQeEj18I67zXMbPhtdC+MwewYQQRWDxMiAREKwtcW4ItOuuH2wvDM5BTCDsqYtg32uvvawun7OyulnYCsIbEoKXDGEt5JkYPny4xcMN+fe/NaZPXxA69infTIvGB+rLgH7A8oILhX56cQQcAUfAEXAEHAFHwBHYcRFA58UIxuOWCS/0SjZ0TzwMzj33XBsceiQ6Ix4HhFIQBjxixAjTMSEWyKmAjr7vvvsaMQHJgMcBHgPop0wkQmywoefSNpNnEyZPknkLFxjBQTs8O5AhHPft3dc8Md566y3rJ/eRq4K+ZOtk2r49euK2IAMHDpQjjzzSPCXQb9H3KzUnG+Pgc6pOwkE6YDNwDb22sYadXH755erlO1XuuOMO+fnPf27Ppo+MjfvwNKa/gWQAIyZGuRZyT8T79sGWZ7HCBZ7MeJDgkUEeCDB38iEeevGvedhFfHz8agIEwo+TH+iGDFvyH3B9wIAB9mP97LPPzFsAAbcxP95x48YZgYHQoQ1coBCeEydO0lUpqlS4ZBuZgaChICwROOnpLFWZYABmiyeqtOE2wpgRZDwXwcYLgYIQRoCz/GZgcyFP/vznP1scX58D+0rPfXtJu/YdTECzVCckxGyNKTvllFPMG4KXBoltOBdc0BjbI488It+o18SIUZ9I8xbRPBqPPfao9Nizs7LXY5W5biWRDm2kskyFp44xNQWCSMMv+BD4B4YdMmxaj/2PI+AIOAKOgCPgCDgCjsCOggD6JwRBMLJDvzkHCRBbMP7xhsDzmOU42dCxmfRCn8cj4qijjrLlPPEwJnyCNrjGnlBoDPG27dtJd/XQnazG/yj1PujTp495SKDXExqNbk+7YWUI9GLsAM6zVOgpJ58suzVrLksWLbbJssJIoXo31NaTF+S6IFQDwiBD86KtKVpTnwQTHRjl/vDD+que28EIDewKdGjsBFaaY2U8Jv1YCQ/SAIzQyekDejpYJbI/yDkHmXHiiSfapOFll10md911l+n6YTyx2PrxxiPgng8bj5XXXA8C6yMdghDkx02iFoQAhc8QEeRAQKDg1ZCoBIGH0MBd7OijjzYWEi+KHsqaTvz6G3MF4zkIHZjVdYVtomdsjuuMmRIr/BFO9AnyAGHJmPFuuPHGG+U5DZH4l+a/OO2MM+WSS39rrnLE2EEyIDAhWHgZ4DkBw0q7mRmpKmQrbIyQFLxEEKwfvDtMJmucX05Otoz/arKx2N9+u0wFra6soYLW+AY4B7wezPNBWQdt7zsWwrrufxwBR8ARcAQcAUfAEXAEdgAE0C8xoNmYzQ8FAgCdFCMbPTEkeWfGnkk6klNS8CQgkSVGNhN6b7zxhowePdr005dfftkm/dCtCXfG87ZXr16mm6J/FiyYLy++8rKUlJdZQvgxej9JMNHBX3vtNfNMxpMCPRZdmHAFVuJo0ayFVFRVaFL3Emme30yTvteYnkt/mGzD2M/JVj2+RaaREYyjWhO9U+grNgH2wHLtQ7A/0IPvuece+de//mX6MuMOOSzoE7ov56hPCftYfd0urOcPk4rvvfee3T948OB6z4v1VPVTPwIBJx9+BFhe9YcIhB9/uMKPmQ2WkT35EDhGMP7+97+XSy+9VP7xj3/IH//4R7sePAfC/evup02bZoKPpX8ov/rVr4xVvemmm3Q5npc0PGFPjVFbaEY7S+CQfbZ16xZWt7KSFTGiwsZObIE/EAMINbbAojJuBCQbwh7hST1eFBAu9JH6K1etlk+VrW3f4XULKSHujvMIb8YNWUFbU5VZpqxYucaYZNzbyFiMoB4z/iv5rSbrsTWS27eUlSuyjJVF8JYUF0ljfWng8YDMNd5hC2DgTToCjoAj4Ag4Ao6AI+AIbD0E0J/REcPkV9ijl6NLUiAbglcwJAN6Mvehk6OfUtBVWcmBXAYQF+icrDCHXon3AstuksgyeEEwSdYov7EsW7lCCtQDgraWKUmBrs8EW5nqui1U1z1aPSjOVcKBHBLkmchKz5LVxatNx83L1VXb9Nkkk2SSjQJJEcbAShe0S9/QrSEl8GBAP2YcVaofU1jSHi8OlufEtoBQ4Xno05AV69oY4MW27nlrbJ0/YAHxQB8okBx4dRCmAgGzMROo6zTpH+sQ8LAL/6ewRRBAgPADR3jg4kV2XBhIki+SxOaWW26RSy65xARKvA4gzDDCEYTsESismPHMM8/IddddLyefdKoKyxrzpsAgRxjssUd3fS7JICvV4yA9XvN1k/8ND7uAgWWMgXjgYQgshBUYIChJegMWCK5QEJ5Lli6Ta3QMn372uQn+c845x5L0wFQHtzUELswx3hNsTzzxhLVJ+MaMmbMkL7+pfDn+M3lqyIsaqnGyejkkySJNzNmpY4EKaE24qcIczwdN/1BHPjDWqOeDdkmjLr5jy0PffO8IOAKOgCPgCDgCjoAjsP0igI4ZjGj04zBhFYx1JrzQIdFR0aXRTTkO3sGEUFAgKzgPYcE+tMk1dFeeg8cyHrx4Anz00Ue2zGYbXfKyuXrpQiBQeH73rt1l5uyZ0jHS0c5Vr622HA8QIJACtK/+uDr5tkLDKXTVjfIKI0GS1xMCXFJaYn3J1tDq0rJSSzqPbs1zFmkuuJ579zCi49prrzWSADsBTw10aEI7GGcgGoK3Q8CMz+GcdXQ9f9DvIWTwBiHx/UsvvWRh1BAsPCOQOuu51U8lQMDJhwQA+eVNQwBBxQ8cAQh7ytrDQ4cONUGG4MM4j1eogwCAVCBbL8KUxDh/+ctf5Omnh8jzz71o4RcIP2LXMOrxLCBsASHVuHFuvOY3mXwIQhqBhpBDwHOMEGcLLwMYXQqfwYKyfMVKGTlqtFx40cX2mXwWLMPZs8ee8vobb9t4wIfkPOSAKCwslNtvv93GSHzb5MlTZNLU6Xq+rTHIRSVVMkcZafI+6CpGRjhoKmIjH0LohREPTj4Y3v7HEXAEHAFHwBFwBByBHRGBWH0y9B/9M9ao5jOkA/poOI9ujC4dSINw77p79GkIB+7D2MbzAJ2Xe5OVREhTvZbprJpa9W5OShGIhtTkVJkxa4Z0Kuwkq3QpzvxGUa8G2ianAx4NeTl5mjy9VJNOahiFJpJEd+YZQY+GoGCjn9ZvJSZWqJcFE5n0iXoWdqGa79m/+IUlxsROgBQhzxr3seoHhbqUMHb7UPeH58YrjDXo+EwI4klB/jaeFXT6ePf7tQ0j4GEXG8bGr2wGBPjB8wNH+GE8X3zxxZazgXMwqZyLVxBAEA8Y9XgO4F6Fu9PJmqwG5uCaa66Ru+++xwRN7977qoDU5Sn1mTwPwz3IFpUhKkSiT+JcZWWNCqhKycnVxDVxShA8carYpSDY6G9sCUQD5xhzrIdEU10ykxg6MvWyBNLzzz9v4RYkk2RlD/JaED5B6AqZhYcNG2ZxeWCAQB2pyyexEkhqWjQDca0udYFgrIqGx+lLQMfMVtchns9Sm1ECAjzClboKvnMEHAFHwBFwBBwBR8AR2OYIoLPFK+iT69ZBrwvnOEY3jdVDaY/7EhEP1IudHIyd5ccIp2c65Wb6Zap5Lah+a560tbJ7IV4PtdKkER4R340BjbNRDhOCtbbaBWQE5EIo6+rP4Tx7bADCPgg3pu/YBWm6CgbnuI/VMkJ/LSFl3c1BN49tKxwn0oEhMaJ2RNRzmWcSQh2Ih4BzaG/dfaL2162/K31W08SLI7DlEMBIhixAwBBr1r59e/NKgEENeRwSPT38wAndIN8ByW+IuSJsg8/kkmApnPnzF1tCyyZN8lQ45RgBoXJXhW/0CSq7jIzA5s7ISNF24hMP3MWz420b03fuB4cwjth72rZpJWedebqFkRx66KEWkvILZXKJMzviiCNM0BErRzbhm2++WT7XdZiPPfZYuUlzXgShilBGSLJH2DE+QlG+E/mxT/RjR8ARcAQcAUfAEXAEHAFHYMMIxNV9mcxSJRNCYVO2DT9dvXfrvB+og96PVzMbhAAkAHo1k5jYF6zSQR2Ih9hJvnjtJ7oWyBv6EUgSjoPuneh+v75hBJx82DA2fmUzIEDMFWwhhXwNxHyRbJIVH4jJSlRgWDGq+cHjBYDQIXMvTC5LT15//fXmhnXrrbfK+++/b0THN99M07ivFXYPxDGkQ1XVWvV2YD3kSssFUV5ebd4PiZ6/qdfpO9v6iIfQdlV11DPk9ddesfCKcZo1+A9/+IMc0LuXjXHs2LEyaNAgyx1x9XXXyRlnnGEEDgQFuODlgSAmxIWSqs4XCE097cURcAQcAUfAEXAEHAFHwBHYrAgY6QAB0YBtY2bHUtSTgok1VrvIyswy7+eQPw4dN4RbEwaC1y8FfRj7AGJicxSeA/EQCA10bi+bjoCTD5uOobcQBwEEAC5Ks2bNslosJ8mauWSohcHcmMKPnwLxgLBBEBDXtXjxYhk4cKAlYVywcIEQrkByxpEjRyrh0VQFULLWK1Pjf60dZ2WlacxWum2ZmeRkSCxEeHa8LR4zHAgH7ocpZQtjiR03niGtW7WQ8opquffee+WQww6zMf7q1+dbfgyy+FLIB0FSShJYfqwhF3h9UCAdyPCLO1ogIFjlI+07bzar538cAUfAEXAEHAFHwBFwBHZ+BBLpp4mux9N916fL/hhEo1p94jt4Dv2sWVtTP8kGucBkZCQSMc8HdGhsA3LEhTCMzeGdEOuxHMZrfUkwoRhGlQjfUG9X3Dv5sCt+61txzEEAMPtPQUhQSAi5MQUWk40C81hYWGghF6ycMXPmTEtA069fXznpxJOMjCAp5WxNukioBd4P8+fPN2N95coiNcxZhQIvA5LQfBeOsTH9aGideKQDbSphbMTDuPETJDMjNerdcPXVRlR8+umn8tBDDxmhYOsjt2hhY4P5RegSwgLZgCcIK33gfkZoS3kFrXpxBBwBR8ARcAQcAUfAEXAENj8CEAgN8Xrgno0tIcyBRJMklWcCk0Sb2BC2pLyex/MBD2sSQQZbY2Pbj1cP8gACImzUDTZJsEvi3e/XNoyAz41uGBu/shkRwCUK4UGoBcwkLCXuVCGOakOP4gceCAzqENNFIcwAYqHz7jnq6fCJDB482HJIsCf/w+DBNVb3tNNOs/q0wz0U2sMbI0ONfQtWs7MN+4NwSlQCYxpbz9jTtZrhV9fAXLWmRPbdZ2+ZOSu6Wse///3vaDIdJVtILomQ7dGjhwlAiIauXbuagGVJoazcRlKpGSajSybVGrb5SsxkZ2dJamZiz47YPvmxI+AIOAKOgCPgCDgCjsCOj8DG6KfxRrk+3fV79ROrv9+r3pAP9AGdHQIAj2cm2rAbMlWH5xy6PXUI6ybMO/R5c6xIwXNpz/T1uglUnhlrk8QbUyL8Q1/jtbGzXnPPh531m91OxoWgQAhg+BMaQOEcZWMYSoRJbIwVjCc/fn7UeD+QuJJVISAzyItw2WWX2bknn3zS1uSdOnWqrQhBH0hEE5JREnahMiVhoY/xNvoRb6OvbLEFYUl/8FqYNXuuNG4UXW50xIgRctxxx5knAyQL5AzeDQhcCBvCVdq1a2ehGJAN+fn51jaCmLGBFcc8j2d4cQQcAUfAEXAEHAFHwBHY9RCIp5tuzLV4uu/G6O+bA3F0WfqKvs9EHLouy36y7CZ6MPpuWHIUUoB6lM1h2ONtjU4dCIgwHmwSzicqiTBOdP/OfD0xejvz6H1sWxyBFhoqQIFwYKlMCoQBhjXGMj/ORIW6gYEMhjXtknDyk08/l0P7HyZTp0+T1m3byM233ijjxk2wcIXhw4fLVddcbctU9u/f3+pjzJPEMspc1uoylhj+G2YhqnTViHglLYEAihIPjFEzAyvbgcCuUk8FxlQFCaEExFNPDbFcFW+++aYsnDdXE+tkWH6HfffdV1hbmNU8br3lZjnl5JOk9/77yexZM6VdQVuZMnWaNGuhq39k50iGLrfJM/Jyci3ZTgqMbUzH6QGf10U7tk5MdT90BBwBR8ARcAQcAUfAEdhFEUg0iZWiuRd+oFT+KKwSa6Doy2oqCDptQUE7DS1eaSHXSzTn22H9DjXygck8vIKbNGlS75Ww7vKiP6pbMZUhGdDbA5mB7QD5sC4hEXOLH24EAik3admIel7FEdgkBEgWGX68MJex3gzxGuZHz48/ShboSg56HO7N0Oy3ZeUVmidhsaxVEqNa66anZ0rTZs0sL8TRxxwj+SqM5ml4BqEYw4YNs0e1VhKkVD0x8C4oV6GVquzmipWroAf0/mgoxtJvl0t6RqZdZ1+tSSszM9MlSYVOSWmZZGlYQ7Jm4k1JSZKqSvqYokRKkua0WK7t5ui1JFmzGo+FNeqVkafJIIvU82OVejEQn1amZMMUufDCC+Xhhx+Sieq58f57w6S6qlL+/Odb5dhjjpb9evWSDkqU7LXnHvLuO0Nl2dIlMnbMGDni8MONsMhVPJcv+1a9H5pKcVGJNGmcL5VKZKxYvkKqdEzFxUXSSM+lpKpwR77rpt373qZfiJ7mohdHwBFwBBwBR8ARcAQcga2FQKLJN3TmoDczkRVbn/N4FGNkc8y1oCeTWw2PWXRcznENIoGZfD4HvTrsOcfGpBjnaJPP6Nu0g87OvRxTmMCzos9F9yZ8uEz1z7T0NFmmz07VbOflFeWySj12c7QPa9RDoUb7n6bt2qRbperdqWn1Y6tTUU0brakhzwIexWIhxTyrXPX8dG2Tfiz7doXmN1tq4ccRTVr/l//3/yzf2XW6Ehx9xAsCPOj/phbwwMP4tddekz322MMmMsERjwv6QuFZsVvsOQgR+o/XNzYQJAm52Whzc/TPOrCD/nHPhx30i/NuRxHoEOkguepmhVBEsK0uWmMCMycvV/KbNpH2er1dh/bCspTjx4+XDz4cLkuWLTW2FC+ICy64wAiEJCUSiktKjYBAUCB0U1PVe6COYEhJSTeCt1oFY4oKTZWNsrZ6raxSITRz+gzz6igoaKUJcJrrC6FK80mwskaOCpk8ZWRL5bbbbjfyA8EFO5uXlycTvvpa+h7URzp2LJQee+9leR5O/OkJ9gJgSVKEGy+cX//qPHnuuefkw+EfyH333iN//etf5YUXXtAQjAKpUOKjSoUtHhTsqY/ATNGXQS2d1LKut0MUuehfrjn9EIuIHzsCjoAj4Ag4Ao6AI7BtEQhkQ9jTG44xdinoqRRCeMmphl4JcRA8jtEHqQuhEIxydFB0RPRLSAr2GMbcRy602AK5QdsYyyHUl0TvISyYutyPQY3hT9s8OxAf1MMAD6EQrMgWJhCTdIKuvLLadGn6yASeqq26VHygIkjuqCSCfkxJ+c5UrahAz63V56WbMc8zMfDpBwY942Cs4EE49qYUcDv44IPtOe+//74cddRRhhXe24RCg3f4LngO3034rjgP2fDhhx9K7969LRk89xE6Td/WDSnflH7uiPd+943uiL33Pu/0CMT+sNcdLNeaNGlsZACCD8FGgkY8IwjxaNGiuXkikEfhMF2+EgN+6NCh8uqrr5qR3q9fP7n00kttyU+SOO65554mtMimiwBBcC5cuNAy6uLNsGrVansGAp2turJKPRKWym7NW+jKGkstx8SkSZOsnZ49e5rQhiiAMaUdlsYMzOxee+0lv/zlOcriLtH1iTuZAEOAQoiwhGgQngjyn/3sZyawCcG488475ZJLLlHCoqN6b1Qo45yi7HCNtRteHAhfMAgeIuvi5p8dAUfAEXAEHAFHwBFwBLZfBNAzKei6sbpwOEbnJQ8ChiwbJeRXwxjnOvtwHd2QLRR0UgxsCs8Ks/GQE+ig6KScw1imLYxtVlvDqKYO+iyFZ1Cf6+GzHeifadOmWaJ5PkNKkBgyjCtDPY2ZAFPHYn0ONaKFebNKJSZCQZelXlXVWns2BAb6OcY8bUGQzNZV7tDbwYN+BDxCGw3Z0wZtQ0A888wz1i46OGPnGt9DIBtC++G74fxJJ0VX4SNE/JprrjEyhLFA9uzqxcMudvV/ATvA+MOPOez5UUePlRLlx69z95xDIMKyBle0wIYiODnP9W7duhkZEOrC4rKRwAZBSjswmggXBBysJfkquD569Gj54osv7BhBDD/7lCa2nDd3nrGZhxxyiAlghNQ777xjAhtCA4+L1994XZfUbC233367nHLKKSaEFyxYIMefcJz1qZmGikAesGcVj8DeMk5YY8gGjvHgINHOtddeazkfMrNy1L2t0oQZL4lAOlRpCAfCmVCRDRVCLqL/baiGn3cEHAFHwBFwBBwBR8AR2BYIoNexof+FLfQDHY+Cfsoy68HDAf0RD1u2qB4YTUaOVy912dAzIR/QebmXa+jKkAhseBRMnz7dJvI+//xz00PRPSORiC13iXcunhPozRjiX331lRnn6Mm0T1/QadmjiwfCIIxh6dJl9UY43g0U7YoREdWaa41+saWlsWpbtEKlTvjRb/TzzrqCXm5Ottxzz93meXHWWWfZc/HSCKQJ98cr9CVRARNwHDt2rJAUHj0fcgO9PIyF54TjsKfdK664wsJDsCPuu+8+8x4BE+pAxMQSQYn6sbNdT1LQ4n87O9uIfTzbFQKJ/vnxIw11wp5zVrimBxr9oAIuyn4iRCEPEHQIBwQRRj4bHg0IW9hSVsiA0YSMePHFF2XUqFEmQBGoeBvA7lIXYx7B06VLF2NwaT8SiVjb3bt2k2eVaCDfAu2RMJI2IRwQfngwQFKw/jCkQp8+feTYY481cgThvt9+PaVIBVCehogEMoRn4yURknPi6sZLgD7g1QEDy/7111+Xbt33lAULl8nSZcvtGcASZbFrNa9EiRQWRqRrt04GVfQPaIUNca4ubfpfYvEb04QfOgKOgCPgCDgCjoAj4AhsEgJBp43XSL2+G1MJPY97MWDRHdF5mU1Hb0VfRO+EEEB/xfOAsIjZ6hkwRvOGQRhwD3omejLGNXomBj3GMLprIAsmTJhgs/fciw7K/fvvv7/dSygB9x966KF2DoIEnRtygGejJzNZd9BBB9Ub2rQfQjKWLvtWkjWEmdxtGRnkrcCzITquNM3vQAhGUXGZ5OVmac41m2fUfldam0wmHnxQX1m6eJH0PbCPkRwTJ040PR/PCjBjDPQjXlkftrH1Q8gI9gGTlOecc45NNGJLxN7LdxH7mTY4ByaEfrDHdkB3xyYJHiKxz9rVjj3sYlf7xnfA8fKjxrUqVlDzY8aMxj0L4sEEX1407gshjEBFQCMIEZotW7Y0hjYIa4x7QhyIv5o8ebIJUwQ47C91gsA++uijTahDHiDIYJHxhMADYWSz5jLk6aeldcsooUHoBkt7EtpBmMdNN91khAcCuXPnzuZulpWVpn2rMLJizZoSTb4TjU1DiIewiTBO+o+Q4sXAOCBN8Jp4/PHH5aKLLpK5KshWrCy2sVOXJJfcu3ZtTb1b2w74dXuXHQFHwBFwBBwBR8AR2KURCLpgMGzRgyEXIAo4JtyBOuimGPaQDhj87777rum03MfEGJNdHHOdSTVIihCOgW6L/okOyeQZe7wZ0EeZdFu0aJEdQ0R06tTJPkNm/Otf/zIvAHTlG2+80dqAACDU4IQTTrAJNEKFIR8gPGiPZ3IO/Zjn1mqf9P/6kpGeYp4Psee4SJ/oPxuECv2jz+jj9Jm20LPx1MDrguvoywG/+gesc0B78Qpt0+5+++0nhErjgQwJ8fDDD8v5559v/eH+qP4d9VAJ7fH9ME76Q442CvYGbWJrgEciciS0tTPunXzYGb/VnXRMQZDECgxkBz98BLJKXzPAYTwRPhASbMGFDK8ChEhOdoaMGfulzJ071wQZpMHee+9tgpHcDbCdMJSffvqpkMMBcgKBGUIxaHP48OHSQsmHXrocZuO8RiZc8XC46667VCAfqAxtjbGwffv2VmG9zIQMQggiJCcnQyKRiPUxKRmyIJoUiHYZB2EjFAQ8LwoICPrF8/GceFJDPSAjKiqimXiXLP3WMCBLcBDOCGX648URcAQcAUfAEXAEHAFHYMdCAH0QnY4N/ZfP6LN4LnDMJBrGMKu5MRuPYTtbvRTwasDQxwCnXmGhJjXv0cN0STxz8Q6ANEAPpQ46JhN2eOsy+cYEHjP0u2toA+1CbBBW0bdvX9NPIRMefPBBqwc5ceCBB9brq9Rjgu4Pf/iD/PznP7cca9TZZ599jCxAvy0tLdVk6eppoV4P7NHho14X6q2hHg/kgCjRnGYQDUwyovuiH4MB+jIY0AZJ18EGfZ9rjJu+0XeIAupuSgEX7AQmKsHxtNNOMyKBlTXOPvts864I3wl9DROIoY8fffSR9Yu+zJo1y74Hrm1qIsxNGdP2cq+TD9vLN+H9aBAC8JasLIEhHthHBAAEA2XhoqXGXObmZJoACwQGJEAQuAjiLl06m9BbsHCJEQVcQ4gjKP/+978bkcBnhDhsJoL8yMOPkN7qgpahWXchChCOkUiBChuy9Far8GuvQnKtCdUmTfJMUEFA5OREE+JkZWk+hqTvcjIgQBGk9I1C4hyYal4OEAkQCiSvxH2rf//+MnLkSIkUdql/GeHxABuclZVpGySMF0fAEXAEHAFHwBFwBByBHQsB9Eh0QgpGK0Y4xAMkA9duvvlmIx/wOOAaOiNGPKQBXgt4ykJO8JkQY3RH7oMM4B68armH2X1m4wlP5jrGNjowM/zs0UG597HHHpPu3bub8QyJAblw7733ynnnnSd/+9vfZNCgQbqy220yYMAA+ec//2kkxB//+EfztGDyr4MujUloMwTHrNlzpFiXnS8qLrGxcR4P4Sa6QhwEBONlLBR0ez6HYzCAfGAJTo4hS/AiQIeG+GCyDu8OnrcpBX0aLCAO8Fq47LLLLPQETHkO18Cdjf5RHxICDDnHdwfu9AvbgfNMbqKb8x0w5l21eM6HXfWb30HGHciC9XWXRJPfrlip8WBrTfhAMFCKS8pNOENCEC9WVR31CKAthFhmRpRzox6GellZuREHYYlNBC0scBB+gWVGECLkIBkQfCVFxdK2zW6SZKEfokKQ7MDp+gzR62XGPKsc0nYgI6LeGUGA0gZhEpkQEMbtWtd/8AchjfBHmPKS4GVx+umnW9jHKaeeLs88O0QTT86TV155RUmRQ63eokUL1Q2tqQrBZDmk38HaZzxBUjREBdc1kbQUMgzXSqX2NysjS1H04gg4Ao6AI+AIOAKOgCOwtRDAQMUwpWCYYrxSOI8Rix6Kroj3AcfMmKMLohdi1A4cONASkJ966qlm0OIZe+aZZ8rzzz9vhi1tM4GG7os3ABNbPIfZfLxnmUgLhjK6McZyCAcIhj/XuRZm9tnzmfPophjieA7zTPI/sKock2R4VnzyySeWcB2PBEKfI5GIESH0++hjjjHNd/hHH9uYMOQhKHhuwIS+MOnG5F7bNi0Nm4cefkz2VY/jdM0LsW/PvWU3vQe9mvASkkKio+OxzMQd4cno87EFPR8cYrGPvR57jO4fbBDIBsI7+B4YB9cIs4bkoJ+0C8ZgCMHA98aY6Bt9oXAv/Qv6fOyzdrVj93zY1b7xHWy8gfXdULebN2tiAoyENKVlavyrMQ8JEYgI7gtChrYQ2vq/CTcEAecQEtyXlrabCZQQH4dgTUtNsrZoOwgh2ox6GGTpS2GBNGvS1IgGiAcKhEN2dpbtq6qiGXujglsvxBQ8JBIVBBVER+g7fcL167PPPrO4vi+/nCw9enaz8IzAWocEN4SLDPjJsfVkiwZ3qCCMLqvEcxNhm6hvft0RcAQcAUfAEXAEHAFH4McjEIxsDFk2PBAo4TMkAfooBjQTTxjXvXr1Mp31yiuvtBADEplfffXVZlCjo86YMcMIAQzgX/ziF0Y+QBQQhoH+SB2Mb4xmNogENoxkdGH6BAHAcSAZYq/FnucYAxtdEuKBMGGWhqe/JKY88cQTrc/oq+ijGOth1YinhzyjOR+SVX/dx0IkGB8eAWAAYYI+S6gGhnsgHsaNn2BeCMcocVFaUmyTfIyHceEdzDO5l9CL//znPxYaQV/AMJAp4EAJ2NuHDfyBVMDLhPHj+YAtAb7o5XhaPPvss3LJJZcY+UC74Ey7YUN35xwFTwcmEPnM/bt6UecWL47AjovA5CnTdKlJZYzVrieMAZKgUtcCXrVak0ZOnyWr10SX2UQ4UocfPceNGuVIm9a7WXgGgmXlqiI7D2kBUUA9iAfaWb5itQkg7ktPS7Z2ICvy1T2sQ4e2KviylIyIYgihQKhF1NMhmvEWYYNAJNEkZASyqLy8Wl8mJQmBR7jDqCJAEXyUM844Q/r16ycr1Q0OlplCn6kHS4xQ5DMECWMLJanOxwGvBwpte3EEHAFHwBFwBBwBR8AR2LoIEMpAwcjF6IZ0wAjH4MVgphAOMW7cONNJWW0BHQ+9j5UnIBFYAQ0vCDbIBPS/4447Tlh6Ej0WoxxSIExKoRtiBBOKgUGO0Uw9DHg27g+6IXXpGxsGdTjPnmtszPZDdPAM+so+nCcnxfHHHy9XXXWVQJZAhtBfnklySMgVlqZnSUoSWEI00Da4gAV5I6ZMmWI4oNfvu8/ewiob5JXgOro1Oi6YgRfkBR4WLIfJ5CJhzpxH/6Z+bImdTIw9H3vMPWyMjwIGYNRfw545/9BDD5ndwDG48b2FeujfkDfhOejn4AIxAt4QE7tycc+HXfnb3wnGjgBNSUmy0IrgIQAxkN44V/J1oyAEIB4ouH/BXCLAcfHq1KnQGFZcx2BwEZYIK65XqRBEoMTeTxussLF6dZGUlZRqfFq+VGrcGUIFcgIhhIBCuHJMckkEPBwAywghLKmbmZlqWyLnB4QmL4/oPZkmsBB+v/rVr2TYex/I//73P7nl1htNuKanp1nd2bNn6fMzLbkm7npNmzbRF0QjSUmNkg2BhKC/XhwBR8ARcAQcAUfAEXAEti4C6Jbom2FWHj2Pgos/oQPonxAMQV9FnyOXAqtZYMSfe+65tgIF94WJJtoiDAIjPhi+7IN3A+2j+3Ed/TIc85k6QS/kHvrHnrZDG9wfPvNc7sOjGPIEwxqSIyR9hIyA6ICgIFllz549hRARwg5WrlotX309UcZ/+ZUZ9yS7vPvuu41sOOCAA+SRhx80vRdChYLnQIf2ba0tPCjatG5luDFewjIgHtDvIT/Y0JshJbiO3s3kHSQK4wseHXyOVxgHZAa2RfCgJucF3seEmUBwMF5wpKDzo5+H7xFswJD7+Q4p4bu2D7vwHycfduEvf2cYeqoSD0Wau4EffbOmjW1IeCsgjBCQZORFQCCIEOQIdNhWPAkgGmBYYTVnazJJkt0EAYqLFSQCAje4qHEOoca9xhCnZ5hQ4+VB+ypjVEBl6X1Ro57za9aUGhHBuYyMFGVGoy8B9TvYKPgRngjvIDjpK0L2qKOOMgFHXJ0+xhLrrFq10phn2NdUZVvoI6xxQQHCWz00GuWq4IvGF/JwBKMXR8ARcAQcAUfAEXAEHIGti0AIMUAPxSjFGEZvQ3ckPKG/zrDj0YDO+fbbb5s3A8bz4MGDbXafZSwp6IXoc7QXPBQwnDF4+RxIAvRIDHHq0k44z+dYfTAQGdRhC9cC6RA+c43Cc9GV0VUp7LmG7sx5nouBjiHOyg9sTLwdcuhhkqZ6NJ4cTzzxhK0yx32MfdBvLrRk7w888IAQZtF7/33lm8nTTP/Fm6K4aI3q9Bn1hj73oeMzJvRmCBFIHAo6cyAIAuEQCAKrsIE/EAv0mXEwduwMnsOqeXwv6N+U0BZjpUBucB/neS7jI/knBSKGQl935eLkw6787e8AYw8/5vV1lYSTy1euklRdbSIQDx+NGCX33XdfvZsa7k0IDdhTBDjtsboFXg4ISMgIktfAtEIuBMaZhDkIbgQ+LC3JbBBoCHkEEMI3PTVNqlWoVmniRupHNAkNhZUwCItAuCCoqJuWFhU0eDyo7Nc26pI/6rrG8UoQ8jDeeHngUUFhX8QLJ5U4sxoThiNHjjBXNjwdEPZ4eFTXRLMjIwy9OAKOgCPgCDgCjoAj4AhsPwgE3ZRJMwzdTp06mQ7JhBgeAeQvwCsA4oAQhosvvthICggG9EzICq5h8AYdkeSInA86JKOFiEAnZcMwDsfsY0u4B905HHMd/TmcCwY359GV0TkhTsJ1zvM8Sugf9wSdvlz15pzsTJs8JEzkFz8/QyZ9M1WuueYaW9qecUE6TJgwwXJYNLnhBunerbNMnjLdwhZyNZE6tj4kAyX2uRAMeCgQnkESTogdSACwoR76cOib3byBPwFL2gMjxoEHBhOX9JPVRrAJQr3g1QAWfBescIGN8eijj5q3BOd5LhOi2Ca7cnHyYVf+9neAscczmiEfmjXNl2oNaSC/w/Dhw41hROB07drVvAOIM8MTAKHADx/BQQnsI14QJPBBwHNu3rx5xmgSM4aQgt1EiCAwETKQE+yN2UxOkXl6f7mubAFxQUzX66+/LkOHDjW3OIQM7lkIZkI8cN/ihZCejitWlHRIFHaBMKcEthYByEuG2LgCfebSZats3PQX7wuWBOLltXr1Kh1vpWU8hmSBwaUNEk7W6KoXyZrox4sj4Ag4Ao6AI+AIOAKOwNZHAPIAgxzjFd0OAxk9DZ0R3Y8Zc3IjDBkyxD6TFwGDHIOb6+h8FOqj5+Lej76K7kqbEAforrTNHr2VfSAUwnnOUcKe8xQm2mgvtMn9tB2uWyX9g25Nm/SL8WCkU4c+0CaGNn0MBR2WMnPWHDXQO9jxrNnzlDDoIm++8T/zcMC7gzESXoJO/emnn8rXE8bbxCJG/f779TI9G30c/RcdnucEkuHII4+UDz74wMZAP4ItwZjoH94a647DOhLzh3GBK+2CLR4UbPQfAoKxffjhh2ZroO8zRs7RPs8kPxtLj37++ed2njq0B05OPsQA7YeOwPaGQJ1M1G59n5mln4jL+fMXyYcffWhLTcIwYmhfdeUVlmW3e7cuUlKqCWBq11pmXFzbli5ZbMxjRXmZhShACpQUF8mYLz43ggLBQJIa6rEUEYIMwgBmukl+Y80jEY1rQ3jUqMdBeqeO0q5tgSX4QaixxOWXX35pBACeEoMHX29CmTb22msvwU0Oly08MbKU9Y2GQfxwbIyPwosIzwbIDUpYwpPlQY8++hh54skh8sILz2s4SEslGlopydFcBSACuETatS9QPFrYlqOrb1DWKhY1NYqcch/qeGfn/I8j4Ag4Ao6AI+AIOAKOwNZDAPKACS+MWYxajG02Zvvvueceeemll2wG//7777eQCwxbDGLuY/ace9AzMaSZYAuu/OixkADB0wDDOxjfkASx5EMwwGmbwudwjvshHvjMMfdRL9xfrvnOCH1gn5eH4R31yk3SyS3OUzjHPfAZ6LIY8Rjh5CXrpMTDt8tXm57bMdJOr1VaqDATaP975UX56KNR5n08e+Ysmfz1RNNYybV24AH7q0fyt5qs8ll6LNdee52RATxvzJixtkpGZiYrzhEy0VT7m6QTcNFwhzT1lK6qqq4fI/dsqKB/ByyYeOzQoYNNJLJyx2uvvWYTjqzkwZKlkA1gFIs1K388/fTTFp4BjhTGH76LDT13VzifpP8oov/idoXR+hi3OwRq1Rj+fsEgrjOK6/5lVmmWW7wFVq4ssUQ2nTt3sFvmzFkov//jYBk9epT96K+77jr5zW8GmbAj1wHCAMEemEZCLRAOJJeEmYRAwEMCjwUYaIgGriPEETgwvLCTMKuQBwgMhDvt4jHB9UwVToRlQCggmBBECCleDtzXX2P2Ro8ebYkhQ4ZeGNOzzz5bfvvbS20cZSpwWamjqCiaHyJVV9mYM2e+eS2ka1hGZaWSHHXhGWt09Q7IBcqX+oLab//eSsLgDVEmf/v7nUZwNGqUZ32A6GAcvAToc5omnATSmppo8iCAytC1kp2CMDj9jyPgCDgCjoAj4Ag4AlsFAXRPvFIx5tEjmTxDP8W7gZn8M88801Z3uOCCC0yXQ29FP2WCDJ10U8030/0abAFuhOaYoIqq1FKqREm2TsQpBKqDV9mYIFgIQYFgwZsAfRlv35NPPlluvfVWI2ueeOI/Mvj663VusVZma842Jv3Q51vrKnbYDNQnMTteI9gAkDpRfbgu75n2LWr9bhgA+kCet2+++UYikYjp0WBOe7///e8txJt2+T5Coe+QK0x20veQsJLPwYMCUgN7I9YbJNy/q+w97GJX+aa363GGH3+MpKo7pbazCpa50qVLRBnMHI0RU8Nbr40aNU7+fNst8vkXo+TSSy+WCy+80Ix1suuSrAbhQLxcTXWVpCjrOWvmDOm8eycjD1auWG7XIB86tG9n3gx4NQQXMwQHBXIB4QCJABOLUIF8gG3OzIgSFLCYdChH48/S1JDPVg+DfG0LDwiOV65cYZ/POONnmnDmZMsdAUHxzDNDzCXs5JNOlSOPPEqFWgsVjtna72olQlYpkVFgfWBpzqKiYntBQZzCKCOkKS1btrIX0ApNNPn20GHqVdHXvDV4LkQLOR/YI3CTNUSktjba59BGikdeRIH0v46AI+AIOAKOgCPgCGxFBDBC0SExaCEeWEEBF31yfJFU/OGHH7bV2NBn0T/xcKAwmcQ96HabVFi6bUuWBM3rXJ+kqE5bWR4N20jS+qxWV67nKtS7t7S4RHrp8ppHHXGkPPLII/J//7xTTj7xJPMG+WbiN+q9vEZuGHyD6t7pqtN3MS8HhoNn8JIlS013zsjINJJhrY4VHR3Cobq6Vica1cMjgQ4MzhQmDDkmrBkyAZsAr2lKly5d6pcI5fvBi4XvBm9pJizxeAiTnRBH2A8UJjp35eLkw6787e8gYw+uZHQXVyvcqljFYuq0KfLyyy+rwGlshvaoUaOM3SR3AxtCAOMbVhlPCDwTECCsmcxSRLCqhD/AIAdXKARCbHwbrCaEBuw05EQQHjCYod6CBQtM0PCZZyFwaJsXBkKKFwzPpm3uo0/04bXXXpdPRn+mXhP723rBkCGwoXvv3V09KxYa4ZGTk2XCqs5j63sCi77h3fDm229ZQiISbdJX3PAiytK+9957JhjpM32jIBQpuKFt4mvL2vE/joAj4Ag4Ao6AI+AIOAI/DgF0VPRCcpGhz5GYEA8I9NKBAwcaucDEFzoceiU6IroceiXEQzCOf9xTt6/ajJ+JPsiVEM6BDsvkGbrznDkLLGkknsMQMyw1ymQjHsW5OblyySWXmHHftm1LG1hxcbnp0YRh4/3AKnO6toS1n1q33Dx6NhOGiXRg9P5o3ai3MfjjCYEtgLdDYWGhJf8MdgMdQMfGowWSAhuAyUxsGL5f7AzaZLw7w3dngDfwj5MPDQTOb9s6CGArt2/fyh729dfT5e233lYG9FH7ET895ElNNHOAuakRI8cPG7YRQc2G0EYAUDDS+fFTWGuYaxAUCHAIAYQcxwgRCgIksJYcIyi4FrwiYDjDPYGIQCARbsF9oR7Cj88wn7hdIVxZcgdWm/wNbVoXaFKh543JfeqppzR3xLH6IlqmK3K00XtgUL/LGEy/uL+ycq22n2zPxy3vjbfeVE+QUcLax6zaMWzYMBO6CL5mzXSM3FhXNOJCBV+ttVurF2KvhTq+dwQcAUfAEXAEHAFHwBHYcgigz6E/ootSxo8fb7on+ioz6yEUg2t44QZjFr12k70eaBQFMDofxafNXxIomFH9llU3UnTCLpoPAkIGMma2hlKgp4MBngeXXnqp3HXXXZY/gYk1lrlEly4oaKXeIUtUr22k+nF0ZQ2Me2wCdG8KunuU3IgOEZ2euhtTIBzQ5/mOWCIUPZ/vbMSIEUYinH766WYfoONTIBogHyg8k/EwDjwemJSkQB6F79xO7IJ/NhL+XRAZH/J2gYD+bpV5jAoQfrgsOTRFPR4QRP36HaBhDJOsn3gysGpFJBIxAgBvhuAWhQCAcAiCADcphDifKVFBlFxPPHAOwR6EexBgCBEED4Vj7qNAdCCceDmwvE/v3r3rl++EoAjPpT4EBEKVY/p7yy23GDHCqhrnnnuujutyE1KMC2EGQcHzWZozSjpE+ULcxtLSkozEgBjB4wG3tBbNm9g48MZguaZ1Zb8Oy0pd16Mf/K8j4Ag4Ao6AI+AIOAKOwFZDIMT8o6uiG2K4YmyjT7JhpIbCeT5jSKObovNtakGDZRKqwRv3x9kS9Q9uQHkC25g8ZIxs6Lxggg6Mrk3OBVa0wOjfc889bcJxla7oRp63oiK8GFiNotzaAUN0cvK9EcpCQQcHz1CoE3ThcG5De/AO+j7PwaOCc5AfrESCjo9twkQjXhIQSoFY4PuFiGAc6PzUpQSiYkPP3BXOO/mwK3zLO/AYkResOkEhXOHrSV9Lm1Zt5He/+52ucPGWCWyEVEFBgQlkfvgcwwwjMHDfCgKcYzYKJALsKHXYB6LBLuqfQCxwPZAPnKMuhXMcIzDZh/p4RLRu3dqEHu5ZeCJAArCRlBKi4I033rDElH369LHwkTvuuEMGDRpkAvT+B+6XE044wQQbQi4vL0sFVopteDuozFMhmmxCjn7wPIgXBOurr75qLwLGzvh23313WaNJLMs0nk6TDEvU6yFKrMD6rktM0J4XR8ARcAQcAUfAEXAEHIEtjwATRRR0SkItKOipGM7vvvtu/WoYeO7Gkg4Yuuidm7LZwzblzyYqkejmUcJhmRnvGPAY8kweMonHpByTdYydMIfLL7/cjH8SxFO6detqhnx+fq6Fo1RV1ejkXXq9Tv7/s3ceAFZVV9ve0/swwNBBhyIgIopgQUUQS+y9RlQsiZ+Jsaf4pen3xxITE2NijyWJvSuJBRuKDTsoKlVA6Z2Zganwv886s/GKMKiUwbC2nnvOPWWX9zLrrP3uVdC5KSw2okfHRbfEFcMuNfqB/o/FAno2ZA8WGbiDQIaAOxYZEAmQERTaoUSSgeDz1MHzjCPOJZgHbOkEhJMP9k/FPzZnBJjEw5C2bNk8lLZI3BpEbJrZE5GBmXjjRxXdKWLcA4QD/nH8oVMQIjHYC4wk7CdkBVskH3gmEgzxfBQssKkxdgLXOE/bbAiVaBVBW9Gygr736dPHfMNIl4kwhRxAmPbq1csIB3zX9ttvP0utdMH5Fxire9JJJ1m9ixaVq646Za9YJBIlMdlCgPLikUwzYYjZF31DaP/tbzeaTxrCjoKAQ/gxLggHNgp1bOxYQ0lL/ukIOAKOgCPgCDgCjoAjkIpAqt6IPnnmmWdahgayLGDWz4p9XE1Hj2WhDd2TkujFSQpN6vk223pZPqgP63q+Tmt1jW2krGSRLRIwjBFdHD0bAoKg8YwTnfntt982PZrYD+i67du1D3fddbfp9OjCubmZqxYXsTZgTrDXXnsZVlE3J3McQdwpVVqUW1ehH/wG6NfscW0mfhuBQSFOfq5sGxANzCVwreA+fgf0bva33367NXHiiSeazk8dFPT/eGwntsAPT7W5Bf7om9OQk1SbiTBI1uKhUrEDS3q5QDmAS0ubKXLtYrGHzcLQk4aGRx57NEyaMCksXDRfqSb7aHKNe8IyEwAIAf7w2aJJGzVBSCCMKDFNEcdMyiPxwPdoxcA5hDzfIRIiaRHvp714jucQNAi4eC7eRz8QSBSEFed5FoaXcU6bimlYGxNqCCOYWiwYLr/8cuvvtddea6wp9SCEd9qpr9paYaZcrdu2DG+Mfic0V2aNIUOGGFnBmJ955plVqUCxikA4Zil9ZyxYQFCHchSF3GxPtRlx8b0j4Ag4Ao6AI+AIOAKbCoGoS86cOdNW0onfRapN9E4m5lxnck4ciBgDARKC63Ex7Nv0FRU7Q9kfvn1p0Cmj+r6GipjsN1buuftuZbqoNstg3CnQo7H6gIhB/8bNgUCSd955l1mAvPHGG6a/o+ezsfg4fvxHWoQjLkRruUFMNQvpd955Jzz55JNh2LBhqntrWU/PttgQlZXVVm9eXpZ08PLQrIQ4cGsfAPMALK+xZkZnf/XVV8MhhxxiKe2xfuA3Y14R9X70dOYB6PksAPIcKVOnT58eWHxkbOj5xKZjbhGJpMYw+m+95pYP/62/7HdkXPxxf3VLOs/qPMTD+PGfmpDFPOvss88OewzYw3LsYkUAK8zkntV9hDSF+viDpyAEoiCIx/zhx+PUezjHswgE9vE7bOzq98dz1og+EJZRAHGO5ylYRcRnYTsRSJAI9J3tgAP2sxcO92PSBWN70UUXWfYLnrvgggvCVVddZUJs5537KtXPVGOA6eOYMeNM8PEC4sUEuYGZV+vWrQwPguPEl5MRDuIbcL9I+qWAlSIevDgCjoAj4Ag4Ao6AI+AIbHoE0F0p6IBMTokbRiBxJuJXXnmlrZ7jZoA1xN2arLPAxL2k40TnZcLL92iFyzF1Qk5wju+p19ErozUsC2BLKytCvSbg0n5DtVLT19TLUlbHtSvkWqx+cVxVWxNmz5sbllSU23fOLS5falYNxItArays0iJgda0dc65aJg/pWbIOlrtDRnZGWLR0Sfho/CfhnfffC+MnTQxzVB/uyLhJo6sS2JEJeVlZmen0WBjEyfnJJw81vfdJBVeHUHjqqafCMyOeMbfrE08caliBIePNzk43HMGGrCHESmvXLglaX1CQI0voJPZDiYgH2qOAD4VFSvDhO7hyjPsLxAMkAy7RxJnAYoPfCHKBxcxYGEPU8wl4yTxh4MCBRjxgrcFchTop3LslFycftuRffzMeO3+fbMhl/vA//PDDMGLECBNSBJ558cUX7Tt/yAhZskxAKiCgEUDEO/gu/HEvWVJhwWl23HFHMzFDYEamlQCUmJthZkZ6IciGkSNHmskZRAwvEIQnQg3BSJAbsAA3iA0EdxTe/NQJpriVkMnD3S4243/+3jVHwBFwBBwBR8AR+C9GgFVySAYKi1es9GPdwCT3pz/9abjzzjttUYrg5AQ3vOeeeyyFOjoxOh4TXZ5hkQl9EPICfRC9j2voh9TPRJqFOvRL7mOxLFrkZmlCrCU3kQpB9WSFzAwtmOm43ibmaSIUlodaPdOqVetQVFhs3yurlqn+YpEP0BZM3vVstib1SuHOdJ4RQUBMU9DHiuUao26qWFYZpk6fFiZ/OiUsEXHBeOkv7hXdupWFHj262sIcE3/OYy3AuB5++HGzDh4+fHjALRldmUW2nfruZPOBhx56SJP7diIiltq4SbUJOQG2UQdu4BbUqy+XjAyyxyVZKmgXsiDqzLTNOQgJ4jWmxg+GAABAAElEQVSwQQLdeuutNr/44Q9/aN/BmULAUH4XChhjwULQyyOPPNLO8TtRGC/zlugabSe3wA93u9gCf/TNa8iILjYK7GPCQEqm2WR56dIKCeB/hCOOOFLEwtywQ58d9Ae/wDJDvPnWG2HxknmyFlhgf8i4FyBcowUCjCSExMYsCKfGSmQ513xPWpg/b6GEetLHKVOmm+UDzDbPRUb1iCOOCPMXzA8HfO8Aexlh7sU4Fy5eFIpkSZGbnyfft7vspYRQhhFv07plmDxlmnzktjYcaR/yIdnHgxUhR8x04yNInvFPR8ARcAQcAUfAEXAEHIENgwCEAAtGEA4co8My+WUSy3lifzEJZxL75z//2RaZsI7FRYF7WZyCYGDBjcWn6Foc3ReYgJvbra7HAvFgFhGaeCvUeli6rDyxGMjKDtU1uj9bfdB/SyqWmC6dlf7Fs9RRXVdtk/KMjMywrLJKJEaS0Y3Jd8zsQPtMwNmjI9NHJvm4HDCpR8ctyFMgx3xNyLUYhp4O4cD51q1xSUgIDXiZzp07G1my9957W4D266+/Plx44bkhTf068IADzc24vr5aJM08Gytt/fKXvzRX5GOOOVrtJ3WlqurJQpy4EsWJhKyJpAN9ptBH6sEamf4zDtwm7r333vD9738/XHfddeEnP/mJ3bv6B3XcdtttZrEMYcHvhwVG/F35nThHAP0tubjd9Zb862+mY4+CgX3z5kn6Sv5gP/jgw0BwxiFDdg+XXHJJ+P5JJ5h7wqmnnmzCE2uAmFon+s81PvlvegAQtrEg3HDJQHjhQoGwRujhu4YVBMIZ1pUMGk888UTY73v7m3Dsv8vOJtgQlmTQiIw2dYuINgY6CvNEAPMy+IKMiO373hFwBBwBR8ARcAQcAUdg4yMAMYDeBklAYVGJyS7n0Xkvu+wy0+1YcPrtb39r95AtDWICEuGVV16xlXQmtxAK6Ltxsk+9rLZHHZNVe2JHsKhlRIFSVR502KFhofaUOMmmXSbj3POBLG2xNGaVfsyYMbbST4YH7p08eUrYbbfdQ/ryKrMyxmIXy+M4FvpCzDEm9zUiHfJk6dBKOinPQlLMmzs15MrKomP7DlY/5xl/ZWWB3YMezKLa5zM+D8cfd7zp/GS7YFyUY4851qxBzjrrLBE3SRwFrJ1pF3cOYjOoylWbPaQP5hWJ/qsg7BlfuH1zPRIkYAa+kEBYKkCaMI6hQ4eGvn37yl36ADsH5rSJng7xA4H0+9//3kgSdPh9993XSAvqAUPGSImu4pAcW2rZcke+pf7im9m4E2H55U5xDgHBNnz4MzKz6msTcvyrdu6/vY6D/aHvs88+4fzzz1f02U4mDBAACD7+wAlG810oCB+yWTBmBBlpglauTFIFIXxhSPfaa/fw6KOPhp7b9jShDZs6aNAgC0ZUKWE9cNBeJoTnKPgNKTsReghKnheEEoxs9fYSi4EnYXx15rsAkffREXAEHAFHwBFwBByB/yoE0FXR+9BbmfBTWGRCf2XySwByVswx4f/1r39tk3HcDpgA/+hHP7LAh1j6QkY899xzlgISnXK33XazhajoUkC9HDM5plB/TnVumDh5klwgym1Cj76InoieDQGBu8F0WVxMkw6Ka8GUTz+1tJgV0i0pkyZNDtv32dH0dO7FrUJJ50NBUaERHoyrRjEkCouLQkmLxLJj/sIFqybr2bKcqNK4IUjatWtldVZX15s79T/+8Y/w8CMPh97b9Q77DNkn3HffXZbx7Ve/+pUtwD377Ium859x5hmBbG/Ecfjgg4/NUoNxgB3xHRp4Cqt7bR/8BpEU4B7w5nkKFiaU+++/33RwiI/TTjvNFjkhJPitwBuyiDJu3DiLTdG9e3dzmwFHCvVTLwQFz7HIyH5LLu52sSX/+pvB2FfIv0J/lw1//AR5hJVUXIIGt4u5c+dJsFZL6GFSlRvyZao1bdp0CZ5BYdbsheHAg/bVH3F1OOaYY8KPf/xjEwoICP7Q+ePe2MxiqtBaE5yQCmsv8m1T+swsmbtRD/1F+CO08/Iwvws6R7rQNMV9GBeefvrp8ItLfhFOHnqysbr1ylYxYeLEcJRMyyAjFonZflKZLhBsMMgIdRhghDGYrKo3IV9NMGeqjYava++mX3EEHAFHwBFwBBwBR8AR2GAIQAZABDCJjTEAWDhCd4OQQH9lZZ1JK6vnBDHEtRYigmssNBGgErKBPc9RF1YO7AcPHhzKyspsMk1mCKwecPGgLYJITpw6xQJLUhd9gcSAfCCGGoQCuiOkCCv1kBe0h26JPpmRnhn6999F52vNSoI2uR+iIloOMDbGgW6LTk7/2JisZ6alh8KcvFAonR6L5ocfftgm+bT7gx/8IBx22GGmy/bp00tjrzCcJk+ebC4MN998c8AKIk8ux9v23FYLcWMVmPOfZhVM/8gSMmwYgSi/sHxgnhELajlbXT06dzJGrqF/R+IBS2r0chYAr7766vDAAw/YHtKH+8CQcaFXx0Lb7777ro2VIPAUxsPYwZBxY1GCmwm4RNIiPr8l7TMuVdmSBuxj3bwQQIilljhXj/s6pWdAkPTp00cT6Y6hvi4hKNq1K1WamzmadO+pWAfPmfkZ/m8E4eEPGiGIII0uCKltbMjjdZEPjbelKMIKxlNQkCcBlq4+rzBhRp+zFR2YkiGzsE8+mSiGu2fo3r2nsmOuDDfdfFNo17ZdOOHEE8xvjLgPN910UyjWCwq/QAQjqZh4oXDMSwVBl1hXZCugUGLxAMmTIb+MFJnceHf9qiPgCDgCjoAj4Ag4Ao7AeiPAZJUJelwcokL0NHQ3SpxsM+ln8o9eiysDVr9MatHrICPeeust2zjGTWCHHXYwy4fx48ebNQD3EbDyU1kv8Bz3TZoyOeRo8p5XkG+TYfRO2oYcoE/0DeKBtiEymEDTr9i/woJCZWrrYH2P+iWkA+QGz3MfejuF65yD1KB+3C6mKXPb66++Fq679i/mUkL7F154obmanHbayVpIbGuky9Sp022iT/uk00wX6YF+a9k+KpeFF0e+GI4+6ljrG7ou8TGID1EkCwx0apbXIB5SyYf4fUXDRCMSDrRBIdYDKeuvuOKK8PLLLxuhsM0224Q777zTyAbwYDwUfjvGAxEB8UIsBzAAYwgK8DOyR/MR5ibcF0kdq2AL/XDLhy30h99chg3ryAQ+TuKRBUyKba8QucuWLW8w4UoLo0aNNqGal5erjBAz9QdcEzoqyu3EieMtwAxZIf7v//7P4iPwB06dUaisbbykDFqfQkyFxgoCeO1FqY2qa0JuTrbdAg8ThSIn5s9fZAKusDBP6UYnGZGCkCOYzksvvRSuuvr34dRhw8K7778fhsjyob1iRuAbSBqgzp0724uLFxGCLr5UMAMrKEiEZl1tvQecXPuP41ccAUfAEXAEHAFHwBHYKAgwiWXCio7GxB69FUsHJq/RAiLqslxncg0hwMIak1+yUGARMXr0aMuEQSwwSANW3bGGZbJLzIaysjKLx8BEmFV3VuvnKYj5EqXZbNmq1KwdeI6YDbhx0AaTZywuIAVol75CLmAZgT5J4PcuZV3M8oFnOUe/W7ZsYVr1MsWC4Bxjo49YXrzzzjvWV3T1WTNmhlbNW4R+ylqBK8nZZ5+tAJqlmvjPVRutDe/q6jqNIVN6crKfMWO29a+kpFh6/2RbXGOsWEpcffWV4eab/2468LXXXiMSQvWLpIBQYB7Q4Enxxe/YoLuDLwQC/WTszBuIpUFgy/vuu88yajDmW265JfTq1cusSiBRwIf6Y+H5WGiTjXPUDYbxN+MeSCB09C25OPmwJf/6m8HYEU5rLolkYDI+btxHEsiVJjTjHzXsKUJiiSbj5PBFEJx88snh1ddeDbfecms448wzFYk3iWLLfQhOBC+CHgsByiIJxGbNS0KtSA6EBPch4BsMA9bcrZSz1kN1X7YYKWe/2SEma4yJtinsk+9JPcCDmRY4QTzwknn77bct/eb7Y8aG1954IzRv0dLcK3hZwdjCbCNsEXq8oHgxIGB5oSA0i0RmUGCFszTYxvof+5X0xj8dAUfAEXAEHAFHwBFwBDY2AmvXj2UhQeMNeuOSpYrPIPcAUtKjHxIckgCQTHghIFh5xzIYN1wsJ7BI6KQV+utvuD4cd/zxoXev3mFpxVIjGdq0amPDmjh5oiwN2lu9kbSIrgZY1Oaq3pEvjDRdE0KD9iFOoksB97IQRhyE97VABrFBX7BOxnJj990GhN0HDFgFIbpm3JKhEXgTa4zEGgQsUjfuwV0Dawkm81iJvPrqq0Z0DB16ktXL4l6cM6TWHetJx/JX7aIfxzkAejM6N3MKUpv26NFD7iX9jYRAh+ZZ6mSu4OXbI+DofXvs/MmNikCc0CcCqE6Ba1asgEVM8iFnKlgBghXioUBsLBvBJxGKWAa899574W9iLufJb6tVa+UnliBkq5OQWSDfNCbnRN+tE/GQJgGUk5NFxh89v1JsshIQNZAAmYn3w1pHmlAGa728zgtZWUkuYW5M2Nck7gMCjoJQREAiRKdNm6oxLw977LG7mZS9ISLiggsuCAP3GmSCcK+99rJnICEw0YOI6N27t9VB3RQTurZP/NsgH7w4Ao6AI+AIOAKOgCPgCHx3EJgzd07I1oSexbjevbe37YQTTlR2iRrTAYk/gNvyqFGjzOrgZe0pWDCwyk9WuPvvu98IAzLFDVaMiAEiBDj/7LPPmmsDE3v0x7KyMtMz0SuxnOjapUt4ddQrRkLwLG4QxJSgbvRwFroImJmvCftxRx9tk3hW+7EiIDsHC2PRWiCVGEg9pq9SxU0fT0gIdNhk49qkSRPV9+bSdWeKLJgrUmOI6b1TFZQdHXjrrbfWXejSiT7NM0lJzqUp7gSF8aTGboBkAB/iO2D9wcacAfcRdHKO6Sd7L98OAScfvh1u/tQmQgAhhrUCf+SwqhAOmDDxh48Q4ByTbdjWgw8+2AJO/uY3vzHGkgA8Pz7nnDBXjCv3IPgyJWRaSihWyBIC4iBNMkhhFazgQkFwx/p6BAtRbzf+IBHqUdgyxijMIvnANZhjxgnbilkbKTkZ7+cyW3vltdcVkfhzs+xAYLYqbW4+atwHe0t9Ea9oTmfj1kd29heBcjb+SL0FR8ARcAQcAUfAEXAEHIENgQB6HsoquuEKBSC3xaWGhSsm03sN3MvIBKyCmYxjAczEnMCVkAoPPfSQuTwwSSdWwm233WZxw1jVp04CWaI7Q25gsUAdbHwnE0SBgkW2kj5NjAnaxrKB2Ai4+6Kn0h51oZvGgmUuJAX3Q0LEgq7bWIl6ctSN2R900EGrLC5OOeUU033RedF1O3ZUjDjNHxorkAmMk7rY6D+FtqgDPTsW6mLjGs+sq7/xOd+vGQEnH9aMi5/dTBCAYMB8C6GA28Hs2bNXCQaEBeZm6WIvISUQCAO1+k9UWqwfrr322vDYY4+Fq666KvST2VS53C4QsJAShSI0EIwF2RI2IiBS5V6qtYOaaLQ0Li4bfdQuIpghINgYTyQfUgVb9BuLghSWGQEP6TDu40/C5CmfGtsMPhRcM7p162YvCOqLwhIMIVdisbF98TWe9r0j4Ag4Ao6AI+AIOAKOwGaMAPodQRPRDdEh4wQ56pNMrtH/0DOblzS3batOW1mqTlwpLr/88pCDDqyytHypuS5g2YA+zXP77ruv6cksABYVFtl98xUrAquFIgWcRH2MKiS6OqQCpEcMco4VBPor3+kTdaLPY0lAgcigcD7uU4/R6VcvqdcZP/Ei6C8uEjNmzLBFRjJVYIkBAbGugt5NH+kLY2Bs4EidqZYZtMXYaJ9nuDeSFetqw69/FQEnH76KiZ/ZjBBACMCyIhD4o0dgwqIyAUcw4W6BoMmtzzVzq6UV5RYU5le/+XUoLmkWrrnmmnDRTy8OF110UTj00ENDr2bbWcAYBEdpqYLRSObVKZ0l36kf9wuzxBLpUFtLesqvCr9UeFZGyZt68hseMw7GiaCLwi6+RAggSepMBDb+bLxMYLshYf75z3+aT13fnfqZmRz1VC6rNt8+SBZYZepBUMY2amrqZfFAPAjGLfMxt374hr+W3+4IOAKOgCPgCDgCjkDTIsCkPkPEApPibKVsX1upV+76cunG6INGHIhIiGQCpAP1QBT03bGvbdRTXVNt8cOwAEB/XLZ8mVXPd3RK6svKUCpQLeJh6YAOjaUAlrYc0ycKezbOob9ixYuuzcaEnsJx3Kce025jhXkA1hnEe2Ax8YwzzrAsFZwnGGQkN9ZWRyQPIGdiif2iz2AViRz6ysZ36mWLz8dnff/1EfBUm18fK7+zCRBAWCIEEAgISAQMQhJhhyCAaX3uuedMoCH0ICcQOgTX2XXXXcP++++v/L+3KwruzUZaEPmX5zAlI/MDhZgKWTJ3yNTWIAMVgEH/15PLWMIP64c1bGYUsZ7kA+NijAg0BCBjZR/P43IBIRGZaITdhAkTLPLu8CeGh5369Q9DZVI3cuRIu4d6iPwLTuRdxlSOuhDi1A1GpNqEdGHMlMaGwLNeHAFHwBFwBBwBR8ARcAQ2HwTqpDuio7HZCr6yx1VVV1mQ8QplsmCTQ4FNkrFwyMnNMX0TYoHJ83LFEGtW3CyQNhPyAktic9eVbpiXm2f358u1gmu4daB/csxGIPNiWUSsaNDR0VPRM9GvWRBEryXoJXvO00eeZ0KPHspGic/w3OrH6LOxrEkXZRGOQJdk9rjrrrtWLVISa4KFO8iQiE/cx/rYQ4jQJoW2OEZPZo8eTp/YuMa9jIUSdek19clu8I91IuDZLtYJkd+wMRFAYDZW+GPnDxwBgLBD2CC8sATg+1uK7PvW22+ZNUDnzp3NzAriAeHRtk1bWQJUWv5jUuaQPgczrOOOO86EVbMimX5JlhRrn5OXEv8AececW9vKxlzGdD1N83eE+7ctkAqUSDpwjKAj0m50M2GcXGdcRA+++uqrLe/wzrvsGv7f5VeE7j16Wp5k8hFz3/Dhww0jSBl88aJAxYIE3CBvsuR+YbSCuu7ZLkDdiyPgCDgCjoAj4Ag4ApsHAo3px2id5SIX0hsmyDZZTl9zAER0VKwO0C3Rp9EJ2UMi1CqYe1zcQrfOlDVDnUgM9E7ui5NvyAqOIQ2YiJNNrp107IVaAMSNgr7GhTNSa3KO9niGwoIfz9kCmCb2kBWpsSDWNJGPlsBcS92swoaPmLYSawfmC7iIQDzQX8bDGOJ4Yxv0lQ0rDPrAdfrGdQgS9pFoYAz0gz0lEg8NzfvuWyLglg/fEjh/bNMggOBCaPIHz4bLAcIFAVYp4Uiu4v4772wZLWbKV62FLCKwaOA4R4IHsgLCYc+BA0MbuS88+eST4Q4F1RmjPMNlZZ3DrJmKIaH/mpe0kBBXEMvqegmkSjEK8pPLMmZh7QOFfGjcKmztzzZcQcgxRjaOEfgIU1ITkbGDsRLfAQaXsTz99NPh8ccftzFe86c/hf2/9z0J/KwwUOPjmVdFQExSPmWCbyJ8sX7ACoJ6wRGBitBN00uKSL8ZMoEwEmItPaVPXhwBR8ARcAQcAUfAEXAENh8EmCijF0MYUHCvYGOibBPsBtIh6tC5OblaeErux5IhQ3ogE2/u5RnIA/uu59AZS5qVmF7K+YL8ApuYUz/6ql1Tm0zaccWIOiz94Bx9i+1yLurwnOfe2C5tp5ZUnZNJ/+rX473cN1XBMzt37mzkAHry/fffb/o+fWeRDZdl7kvd4vPsOU9/6EscO8cU2qV9zjPfYGMM8Vq8z074xzdGwMmHbwyZP7ApEUA4xD942kVARsEKq9mitKWsFnKNaGjdto35v1Vpkk0azRoxusvkqjFWkX136Ltj2F65jbcuKwvtFAvhfeVBxkLg7rvuCWPHjDVLAwgHrANatCwJmYqLQFlWuTxk52aFquUE7tFkPUuCDNkkeTnts+n6ntwXBSmuIWwILvoN28sYEIZM/BFgfI9CGcaZAD+QKlxnQzATLIdzxG6AjOD8z3/+8/DEE0+Y1QauFacOG2YETGFhnvzzao1pfkzXqR/W+YgjjrCczwhhziFkcUvhuEP7NsJRJIQGQuwH6qfPEd/UF4kB4R+OgCPgCDgCjoAj4Ag4ApsFAvUiEKTQSY9LJtjooRAKbKSQR9dbRQ7oHC4ZGbgX6z/0VO7hXuI5oJui92F1S4Fc4HzUv6Nei/sGZEe16kpHr9RzqxME6JoUJu6pJXXCTt9St9T74nEkBLBQiLEnIAToJyUSAlha7LTTTmbZe+edd4b27duHoUOHWiwILIixGqYt7qNOjqmHOUQsnEvtH8fx3tXvSb0vXvP9N0PAyYdvhpffvYkRQCCstUhw5skfLTMnEZppEhZ2v56BS60XURFZzTnyQSM4ZUel/8ECYrvevS3f8DbdusvC4P0w/D//NmsJglRmiBkul/XDkiXloXWblhLu1CVBKkKCfVV1jXIri/ltLncNtR0FFIQCwhAhicDG8oD+0Ac2zjHJh3BgHwVnjD2B28RUMbldlD8ZoQhxgeXDiBEjLMYDfnR7KZsHvm3EcmimvkIfTP9shsZCAM4MO//PO+4IFSI7jjrqKHvx4HdHQdhiBUFMjNJWChAkwiInO9P6zxgQ6AjVSEDQ90bxt1r9wxFwBBwBR8ARcAQcAUdgUyKAOwX6WrR2iAtz0RWY75RoGYGLBTodeh76J4tR3GM6qkgFMsdBJLARF4JYELguoztybKSDzvM9T1YU3JeqofOd+uK2vpN0+hr7k0qCRN0aPRm9GHdi9FcWD2+88UZzpSBTB9/Hjx9vRAtuGdxP36zfqjuSGJvyN/O2EgScfPB/CZs1AqmTXwRGLCaU+GKuA/JDgwTIaphIa49QYUJNTuFcWUa8POplE6JYE3Dfdr23k3VASThp6Mmh9/bbh7yC/DDmg7HhnnvvDf956kmRDxUiHtqECRMnh4KiYmXOKAj1ap7zmcoQIc85kQjV2pab4KZvTOxjJF+6hoDkHH1B4HEczdEQytyLKwWWCTz/4YcfmiDlhYB7yK233mqWD3fffbe9KBjzFVdcYXEcICwWLFgocqJAGEAaZJgFxSEHHxAeeeyJMFZuJVhNEHATEoP26E8kSHAtmS2LizYSyATcjCVV2EOQgKEXR8ARcAQcAUfAEXAEHIHNBwH0OjasFyjob+ibkAgcR1Ii6nHoguiBccWfoJLopjHdJnVASuCeASEBiYHOSIn3sHiGvkq8CArtxH6svrcb1uMDHXTVmDROCpYMWDCwyBevE7eB+3BPji7LfWTpzGLd24oLxzPdu3e3BUCskOPC33p0zR9dTwScfFhPAP3xjYsAAoWyOvFg57mk61ASmJEhYLNEQmRLaCJcifmwUEIHgfS58v9O12Qc4cvG84ViS9vJPKtbty6hfcdOivyrvL7yZ8uVIPtYgR1vvuUWBd6pD5/KGiEzC0EsCwiZudViQaBAP4VFhSFfxEaFUg5RJwIQUgDBRv0IRsgOGFv6D/HAiwGhiQkbwSNxqcCV4oYbbggPPPBAeP7558Ozzz5rApQ6t9566zBgwICw9957W6BJxoVJGRkvOnbqqAjEQVGJs0VizDVyo327tqFtu/ZhjNxKXlA924lYIesHhAYvEbBAEPMCWrRwofz48o255kVDn+mnvbwaBD0vEy+OgCPgCDgCjoAj4Ag4ApsRAtLZYoFwMNLBNLrkLKQEBES0fKiprTEdjwU4i92g6/MVN40FOoJMLly00PQ/quA6i3e4X0A8kAkDvZXsGBAP6L3o3dGSgBbRIdk2VEFnNnKlYQEP/ZQMdzNnzgxYMnDMHn0W/Z/+bS+d97rrrjPy5JhjjrG4Z/SpW7duNjZ0YSyKvTQtAp7tomnx3+JbTyUV1gQG19ckzDiHQVnVilpy9QT+QxCmFljbqpoqm/wz4X7ttdfMygD/L1wROnToKMuFGrkstDczMuIswOoy+YYYGDVqlFkn4A5RWlpqbhr0hyCOmJ0dpqCOVRLAY95914R0b7ly9OjRw57B6gBLh/79+9t3niOFEWmB6DtEAG1ADNAXhCxCk+CYXMMagnSiv/71r8OkSZPMnQIrCQLo0E/6ky6/u3S5iCwtr7Bhc71nz+4SzLPDQw89FC699NLQSW4mZPl48cUXjYCgf0QC3nbbbZUiqS4UFxaEdoqVQVsI+VS8eak4+ZD6L8qPHQFHwBFwBBwBR8AR2PgIoI+trXCFxTLcjSEdYoE0QD9Ff8OyAUKBBbCiwiIjFLgPUgKygQUyFrlaNG9hj5N6k2fKpdfismBWErKCoMR6owXESi3E1cl1F617TTo6z0RXCY6/TUEXhlRgQzdnYQ/9FyvhffbZx3RlFvhiPAoW9ij0HYKBBT10ZgqWDxQIC/RdL02LgJMPTYv/Ft96Y8IVcBCgUbCtvod8UCxcIyHWRDxAPkBKLKtZFvKz88PMuTNNIBXlFYUXR70oYbpSjG+BYje0sMk8BACWCAinzp07h+01QR/xwgvho48+MmuB//znPyaoIQnmzJkTimTpMGPKlLBCzyHMEHIwxVN0jkk7VgsISqwVeAZBTAYLCiws42HPeQQrcRwQkO3atTNywG5s+KBOYkFAXmy11VZWb5u27czdZN6CxaFUQTLvvud+C7rD87w0IEMWiigZo4CbjAtzMywfsJrYbbfdwkq9pIrkbtKpYwcjO2gqlXAAj/V9eaSOwY8dAUfAEXAEHAFHwBFwBNaNQGP6sdES0iFXpyfQeyP5gHsCi1tYtrKwxeQd3TRO5jlG5yOew3vvv2cLb1jWogP36N7DOjhj5gw7T+p6yqTJk+z5zluXJcSDnU2sk1P7y/H6Ll7RNzb0UHRrAqkznldffTUce+yxVj+LgSzGoWujc6ObH3744WH06NHh+OOPD1deeaXFhCAuBPVAVGClDOkCSeGlaRBwh+6mwd1b/QYIIMRWJx7i45AOqfYOCN5YuGLWD5rYI3Tat24fL5mQmjhpsjJZ5IRZc+eEJWJ6mbS3bN0qLFi8KIz5UBP26dPMxWGf/fczYVWtYD1M3i8+7/wwc97cMG3y5PDa8y+E3WTdQJofhOJLL71kBAIEAYTDyJEjTXgOGTLEyAUm/rwImPzDzF5//fWhb9++Rl5glUCBjWbjXtw4eFFAPCA0qRdhi5BlpGwQDxRYX/qAkKXuQYMGheeeey7cfvvtJox5+RB8h2tYZSzROHv17PElggHCIbqN8AJz8sGg9Q9HwBFwBBwBR8ARcAQ2KwRImYneFgkHdOXoOstEHCKBSTv6I5YE6JbolOzRB3Fb4Du6Kvot2dewtuU8E//J0nO5jjUui2TopeiFpVpwW7Josawo0u07emPcuJ+SSkZ8G9AYB32g0HcKxAFjjcQGuqxZAqsfFM5DTLBgB0kBHpAwWB6jp9M3FufinMIe8o9NjoCTD5sccm/wmyAQiYcoxFIFRiQd2EfSgSRCq5fS4hahfFlFyMkX6yk3jBmK/9Ctc1elz1TWCq38N29ZasIbXzAEcgel4kQIExASFw1cFpiwc55tkYgKWNM9dxsQ8hXssZesFRB4U6dCVnQIXbsm1gzz5y8Ihx56mLk5lJQ0t2tY0TGWbPnQVVYuCz/+8Y+tuzG9EV+wbsDyAtcIhD2WE1gtIHTpIyQDL5ua2jqlGc1TDApeJhnhyCMOVWDNV2Vd8a4REA88cK/63y785do/h6OPPkouId1lxTFOdZeZ8F4gX7+qqq1NEEOIWJ0SyowlVejTJy+OgCPgCDgCjoAj4Ag4ApsHAhWKPYaOiD4KuRCtBNAV0elIg1kk0qC5FrGKpcNyz3Lpkis1oUfHmygioaN0WixwZ2kRDDddJvlvympgjtx40YfRqEmpyXeelwJrG26+H479wNpAJ4XgYGPxC4sCiIhIQqwPWlH3h3CgUG8sy5dXKXtba/vaokVLuTKP1yJfj3DwwYeEe++9z2JDkBEPMgV9HvKBFPPgFF00Yl2+37QIuNvFpsXbW/uGCCD81l4UZTdDcQrWfsNXriA36+pWmIDFkmHGvDmhQMISIYnQZQKOYIJNJU4ErguwpghaJv6wvxASCPcVmqiXz18YOrXrYM8Sw4F7SGUJScIzPM8YEMYwyQg86kfw5+RmmhyHOvk2xZ5SO0slVKmfF8QMBeKhv7iAtBSBkiVBvVJC+6RTTgkXXXSRMdQIYphrXkoTxXxvK3cPiA6sLOhbKuGzIV4e32Zs/owj4Ag4Ao6AI+AIOAJbKgJx8YnxY8WA7gkBgP6JvjlWLrW466JvPv300xbgHOtYdDxceLFiYDGLjefZICrQRbGmxYoWCwH0VO6FsOD5N9980+6BjEAnpkAqcI16WRzD2uBOpXUnpTsLVi/IRZl+9OvXz75T79FHH23PUje6ZFzU4tlY6AM6J3ozhWOIAu5FX44WD9QN8YALMXXvvfcQ6dbSV2UYgd6KTqtHrEycOCV8IGy+//3v22Ljgw8+aM+efvqpdn38+EmhR89uyc3+2SQIuOVDk8DujX5dBBA4ay9yrNAMvLE74C6oIm7UlZGpHMcZeSFvZV5oVlJsMSMw7KqqrrGmEKQIv+KCwtBMQXpyMrN0f2YoLy43AVqUX2CCsVYkRof2HTXJb2mWBDUKvsOLAfYXwQkjW1ZWZuQDQrOwMAncIzmZkA7fjnOwPqZ+rFDshpVIYFlhNGtWrBcI5m9ZYfGSxeHkk4eGd955Ry+faSJUltqLJz8/zwQ8lg8IbcgRY7gFEv2OpXHiJ97le0fAEXAEHAFHwBFwBByBDYkAE3ZcBCjopXGPJexUZWEb/cYbZsmw0047mQUDLhFjlemMiTeBGAmWjj6KSzGT+w6K58BkHr16sRbXmolQaCUigD3fsS6o0fU8WduW6LnPGzLEEW+BNtEXo2VsJANw9e3atasteBFAHfde4qTh5vCnP/3JUsNDYkBaUCAbWKSjTkiQVCICnRMdFEvjWGhvdfffqLdmCZ+kZIgkIVNbMhvo2rWLFtOaq80echuZEv7nf34gC+ZRdiv6d5oCdNbWiLDI/iJQZ2zP95sGAbd82DQ4eysbC4F1TOBrJGAQXshtttSyQnIKuwqqWC7iACEPScDEvVpEBAISAY4whP1F+CIcEYSws7W6p3XzliInSFGpOuTGgfCmDl4a3IMwrK8n8A4T+6R1hGQiZBX4J4tOrWMQyWNf+eQpUn+SIhTXjJhWiZcCfedFhJvIEUccYak7H374YbmBHBoeeeQRM7PD4mH062+E9noxYSkBy8xYI+ETXzRfadhPOAKOgCPgCDgCjoAj4AhsVASiHgZpgGXC3LlzTS8le9vOO+8c7pD1wbvKuEYGCK4RMBI9FB3w9NNPN32OZ1kYw0IWogBrCawocEHmGQgDrAlYdIMMwEKic4N1A9YXWAJTX9xzjD5Mu+iy3I+OTCwy6kLv5HkCsbNBOHA/bVEfcc4gQ956662wxx57mBUGddPPSEZEkgT9PdUCl8CSxKoYMGD3kJuTL308UeyrqpLsHbmK4xZ17bT0rNBNbtBg8+9//9vGja5LfcXFBcoUslF/Oq+8EQQibdTILX7JEdh8EWDS31jJkFuG5uJGPMB4QgQgzK2IEMgU80kV+SIc8kQq6JSVLFkPFLYqVW7jJCJuga4r5I4JWCbobCtzxZyKeIDgoOTm4ouW3UA20GaaBH5isoYAlc0Ft1lhgg85sb6FOnghQTzEwEO5So2E4MbtA6KEFxRmb2eeeaaZrGE+t0OfHcLEiRMsO0a+TPjoH8+wpZIn69s/f94RcAQcAUfAEXAEHAFH4JshkOp2gZ5HbDAm3kzYWRjbe++9zf1ixx13DLvssosRAVhBDFGAc4gG9EMsHyhYGqB3QgbEyTwEBKQBeiIuFbTH/bjuco3vUU+Ni1IQGxAZ6IqQG9TL5H7cuHHm3kFGN+KkQSKwQTKwsEd/aYcNfRQCg7YgLyAeICdoK1mYS3Rs+h3bjVjgcoKOSj8qaiu0aFYgHVhuzDlYiaSpz4llB88NO3VYuPMfd4bPZMEB4UI7uE5vvXUHtV8Zipt5tgswbori5ENToO5tbjIEIvFAg8z/JeesJGwqgiqJmpspVwyuw0sQEyK5rjzFokaxzIKTyNYEX0mMQpb22ca2itgQf4AQRGhmZuYY0YHwXCGzCgQighYWln7EkpiGJUTE+tIPtJ2tlxKFPvA96CuWELx8MHXjZQTry0uCFxgs9YhnR4Qdd9jBBD1kTCRUqAehnfoS4JwXR8ARcAQcAUfAEXAEHIFNgwDEALochWMsEyAGiEf2hlwuiN9AlrQDDzww/OAHPzBigXvR38h0RoBFJv3ofUzaY4EMgMjAQgF9FX2XDXcH7sUKNsaWoC5KJAE4ZgIfC5YOvXr1MoIBfReXi0cffdSsGnCroM8QEzzPWNh//PHH1nfIB8iQPn36hN13390IAlvYU5u0S30UdNRIPkRrCvqZmUHq0ESXRsdG587OztC9tTauK664wmJRPPDAA+F///dnYezYj6xe6mS8XpoOAXe7aDrsveUNgIDCHTRaIBNWuYXpzkg+RLOses3VEb4IRAgILCNgdKPgQxBmZiXMAWEVamrqjDVWCIhVhfk+whHzLwQgbbJxHNvhZmQ4W5R5dXVyy5DlhM6uquubHPBUVU216siUEE46VK3vOcqkgRUEAh6zuv332z/88KwfhttvvTWcc9554ZprrrEX11KRESXFzcwPEJ/A+JKLfQAHBLwXR8ARcAQcAUfAEXAEHIFNjwATeCb8LC4xuScb24knnhheeeWVcMMNN4SzzjrLJtMQEzMVdBwyILVAJFAHem4kGOJ19F82rCFSJ+Tof0z+aRPiAx2X59k45hniOkAwQGZwP3okBf0Zywaex0oBsoQ+QyBAmoxWNg3IEfTLmMpz4MCBZqVLHdE1JPaRPXVApFDQayFOUJ2xPKZ92sluiOGAno3+XVFRZf3jGXDBtYT7sIKweQHqt5cmQcDJhyaB3Rv9uggg5NZetEJP4IZGSp3SUMKEIoioqrq61gQjQRkjMVBXvcJYWCwFcMNILZXly8UC5xHLMawQyYBQzWggI+pqV1jMBkgA6iaFT1bDNeqork5SYMZ2sLJgPLRNQRDnF8BqU8M3L9aunq1qIAnSZaVRLzYGF4yq6iQfM4Kdl8Nf//rXMHLkSHuJEAkZf0HcLTJ1b1mDn140xWOMFPoK+eLFEXAEHAFHwBFwBBwBR2DTI4C7QAzCuGDBAiMAysrKbMEIvY7JOpN9XBy4F4IAsgJCAJIAPS4uJHGOjcKCE9fi5B3yIbphcC4+gy6IXsh16uaYc1he4MZLgaTgmfh8zOzGvZAFEAdxDPZAwwdZOohHRhYLXC+4Z9999w2HH364We/i/oFumko+QCQQ2wLVedmymlX9ZyxRb4WIQOcmjeiMmTPCtKnTrL8xrX3//v2kf/viWupvsSmPU9ZvN2Wz3pYj8PUQiBPhtd/dOPmAoKQwn4Z4gP1FSMJ+EtG3srwiTNEEHYEEM0vAHIQf97CZoK4qMJM1BBvBKGNZoTQ/lTCuYm8ReAjeFSuyJbCTCTvPpqfnSbgnfaAv1KH/raxuaRDr/SZ7Ixz0coHZRtiDF9YPvKAYEwKfl8HBBx9s6ZOmS8A3VxTggw86WGTEixYUqG2DcKddXlwUTPQiGWEn/MMRcAQcAUfAEXAEHAFHYJMgkEo6oGNCJKDroauiT/Idtwv0SnQ+yAf0V+6hQB6gl0Y9OJ7DIgEiIRIT0SUj6rzox6nEA21TR6wn9gXigWdw6aXOSETE9mmPvkEgUB/toYPjbkEdPEu8CtyDoyvJiBEjLCg6pMr//u//mi7KeLkfsoM+pNZPX4m3Fi2KKyuTwJMZGbkWEBM9mDhoEBbEoEAf5njgwN3pnpcmQsDJhyYCfnNpdl2T+yhsmqq/CC4KggdLASbECBsKhMKSxeVKqVMkwVVuwrSZAsgQ5DEvLyEJ5s1baKwrAWei2RXH1NtagvqzadMtVRH1MlGPZmYIUQTm8OHDLRMEQRsR0FgRbLfddjbRb6XjFq1KGvqSoT5UmmBt1y7JVwyLW1ycL4GLv14SF4L66bfk56pNR1bHmj7W9fvgXoHFBqy3Xg3mD1jastReQAj5AQMGGCFxyy23WIRhyIeZsxIhzPjAAWxjYYz85ryYOM/eiyPgCDgCjoAj4Ag4Ao7ApkMAfZHCpBs9D52SRaupU6eaPgrhgA5HAEesHyjofejK6HLoj7GOVF0SHY/v6Hep56kLi4l4LuqCq+uB3MdGQXcmDkNqiWRGfC4SGTwD8UCJ1/jO2GiXsaGXkkUDC13IBwJh/vGPf7SMGbTFOMlY8fHHnyjNfSs9W6gtxywgwKNjx3amW48ZM87qgthAP/7b3/4W7rrrTiM8mENMnTo9dO6yVWq3/XgTIuDkwyYE25v65gjA2iKkEIIIjCg0EY64OZDRgWi3cdV/woQp4dVXXzVBBcN5//33m/UCz0EowAoj4BCOMK24J+Q0fK/R/fMlvBDwCMMlElhcWyYWecLEiSbgYXh5Ht+6PLljtJPp15FHHRVOOeX7EoilYplXKKDjAmsLgTx79nwTqoWFSdAgEOCeZGKvMTUI8G+OTPIE44K8gEGmINwZE+4WsMPPPvusERBkurj77rtDTxEn5557biAADyx5nVKMJnXY4/bBd7b4Avriih85Ao6AI+AIOAKOgCPgCGxsBLAUoKDXoQejw6Kboe+yIEYgcQpxEtB3CSbO5D0u0NnFzfgjtZ/o5oyPsUFIYNFBBo8jjzzSglEyLiwX+vfvb5nbWCxs3bql9NRkgPn52SJa2tpiH/o5hE3MtoFLxwsvvGC6N+chaFIX3TZjiP5ru+bkw3/tT/vfMTAEKoIX5hShi8BgUs3EODMzS4FjtgmjRr0uFnNq+Pzzz5U+cqLlEka4MPkfNGiQAQFjiulWly5djEmFDaae98Swdu7c2XITI9xxlYB4wJ+stFXz8K9/3mOmYrCyTOjxXWOiD+lBn1aoHzfddFO47bbbzHRs2223DbvuumvYQZkkcnOzjJDAsGDp0mXWd55JrDI2jEVBQmJk2ItH8YFNeGOqR18ZM2Ps0rmLBSkiyM6//vUvSztE4J1tlP94nvIug2tqWf176jU/dgQcAUfAEXAEHAFHwBHYuAigw1GiJQF6L5NnLB3QQ9FxSXPZu3dv05NZ4WeSjt7Ms5u7LpdKrjBOFvai6zO6+p133hl+8YtfBFwxGDvWEJdffnk45phjtHjWWguFBMXMXmUZQsw19G1cLdDnISjIxvH222+vIhuwmkAv5pqXpkPAyYemw95b/hoIRKGbKkTjijykxIgRz4df//o3ZsUAaYBggRllkt+pUycjGxBwWDlgtQDTyvOQDLCjJS1bhMJmxaFWgRrnyB0BoUW9BRPGm/DuuV0vE/IwqB23TvIgw8zyAkB4TfhkvJmIvfXWW+Hxxx+3yf1uu+0Wjj76aIs4TPog4kTgfoFxAu2WK4gl/YuReYGBPsVxMdbU8TYGE5YhubmJeR0voywRMrx0GAdkAymM5i+Yb30lSjJs+WgFm8S6g8K9CGlKavup3+2ifzgCjoAj4Ag4Ao6AI+AIbBIE4uQ86sF8nz9/vi2y4Vqx1157hSeffDKUlZWZhS2pNSmRfEi1LNgkHf6GjSRx0hK3X3TRxC15pS0AcnzxxRebFQQ6Nzoxi4lHHHGE6bEnnHBiOP64E8PgwXubPg026emZ0t+DkQvo6FhD0AaLh6eccorpuh06tLHr0f3jG3bZb99ACGRcqrKB6vJq/gsR+LqT4I019DgRZ2LNxncEKnuE76GHHKZV/Y/DoYceGo6S+0Pfvn1DmQQxBTIC4YzPGC4GCHCYVQSZ1ZGRHhYsXhTSszJDTV1tWKb6cvLkcyYTttLWul/Pz5k3N8yVsK8Wk7xQ93JPmp7j/sKiwtBGcR8OPeSQMGzYsLDTTjtZv0g/BBkBaztt2jTrZ+fOXSUgCViZqYl/lU3+cRvJyUl8+pj4Y8XAPo7ZBrGOjzrlCsUCBCwgTRDYnHv55ZeNeKFO2HAwAD/M8haKdMFCA9a8UGPMEZ4QENxL26lkRDxeRzf8siPgCDgCjoAj4Ag4Ao7ABkKARaI4IUcXQ8djj57IAhbWvlNl9YtrAgtbnEPPQ8flPvS59Snr+/y62o76Jvu4MUaICMaCXssiIS4ZZ599dthvv/3Cr371K3OnRrdesnip9O5+smpubot5lZUs7GUpHsR4s/7t169v+N3vrrCFR+KezZWlb2lpCy0AQkzkq50NY4G8rnH69a8i4OTDVzHxMykIbGzhk9LUGg9hLekDewQRAgmhSmCZ9957L/zluuvC0KEnhz/84Q8iGnYXo1ltJmnchztFFGiQDQjxKLg5n6V7emzXK7RsXWqkQ1aOIvyKfFgpeb2kfKlIh3mhWfOSsFwxFNIzM0Ll8mUiIWpCvYI8lldWWH3FhUUhW/VSf0lJiUXuHTx4sBEf48ePD+PGjZMg/DhMmDDBzMFatWojK4QiXc/Td4IBZdiLhIl/JB8AIvZ7jaCknExLT8gCXka8dIjqS7aLUaNGmeUHAhrigZzIBOr52c9+Zn5wYLPPPvsoLWe69Z/2Vicf+A5eXhwBR8ARcAQcAUfAEXAENh0C6KwULBlY2Wdijm7LZJyYCL/85S9NLz7ooIPMJRgdFCtfrqMPrq/+hl64MQs6JoV+pm5R/2WxkPFipYBVB+4STzzxhOneeXn54dkRz5nuTUD3bt26KJbDMt2fG8aOHWukxS679A+XXPJLq/vyyy+T+8W7ihNBXIh6kQ9kdHP9dmP+vo3V7W4XjaHj15ocAdjcSBxgRhUnyIllwT/CTn13CieccIK5FSxZUmlCiby+WCFgabBw4VITPDCpCGb2xINAiOcVFoT3P/owVIlQ4DwCrlABb8xkTWQClg9YSyzV/em6nqlzGTDOOpem5wsl4PFBm5auunSO5+gf7h70CasLchiPHj06PPTQQ+GVV14x6wysNCAEVsjVI09mYRTIA7Z4bAdf4wOBTawHWFxiPUA8cMxYGBPuIlhi9OzRMwx/frhd++iDD8KxjzyiVKN5oU59ji8Y2o/HX6Npv8URcAQcAUfAEXAEHAFHYCMggJ5KgYRAF0a/RE9j8kzmNfQ1zhN4EhdbVvYhHihxYm9fNtMP+hhJB8YS9eCoh74mF2Fcl8GBdPHEusClmOwXv/nNb0VIzLO0nB9Ipx04cKCNcubMWYYJKTxnzZpnlr/EfVi8OEnxiZ7OXCAnx6e/TfnPwtFvSvS97a+NABNphBRCF/LgnXfesQn9X677Wzjw4P1lVlUZFi5aGLpu082IAOIpfDr181BW1tHaIP0mz+etzDfLBnzACovywr5tBoUKCW9KvhjWSllXEKxxniwfEFLNiotCptws2HIUu4E6CsSY5spKoqSkWUhTf+bMmq3nlpnQR5jOXTAvTJ/xmQWlvPjnPw0vvvhiuOeee8wV4rrr/xpGv/2mCdL+/XYKO5RsL+pAQlebDCGsyADNvvOF840V2oPEwPqCeA8rVUlGWnpo26ZtKGlWYud4GRFwJzMjMyxcsDCUtGhpwSbJ7NFCQnhtJZIha7vu5x0BR8ARcAQcAUfAEXAENjwC0fIX8gEdOBZ0U8qQIUMs4CSLXPvuu68Fm2TxCSthrAbWrcM1rl/G9jbWPksLeqklISAgThJleICIh/nSWVsqNtvsOXNDW7lE95WbxR13/iPst//3NOb9wy9+fonpt2DEeMlsAW64YJP5jnT0LGAS86ysrMxwJBaEl6ZFwN0umhb/zb71yEA2VUcRJghdCAdW8+nPdXK1ILtEF7kRXHjRxYpjMD/MFRuKf1ytTM0w00KoWVoiWVXpFH4MIUOuE7m52eYSkaNMFA1z/ZCt+nO0YYAFyZCn59mydX+O4kHkI8QVRyFoks++TtYFaRJoS5csFpGxMuQW5IZMsajLa5aH8mXloWJ5ZViZrswTzZuFFq1ahg5bdQxHHXuUbTX1teG+B+8Pjw1/PHw47sPQrKS5LBYqZC3R0cY5ddpnIVtmY1XVNRqHguXU1SuGg9hh9UtD0DiC3D4gJTBVUwomfWhkdm2Z/N2KiwqMrli6pEKZLOaFej0/dszYsPuA3cOIZ54NT/3nKb2g2obzzz83jHl/bOgodwwwZoNYiUy7qv/SMd+9OAKOgCPgCDgCjoAj4AhsfATQydhWLzEA5QEHHGD6LBNrSAf0N9yRsbJl5Z/v6MxsWA6j5zFJT77joqD4aaqcLSrE6JnxnG5Pzq9pzzNWuPjNS7LopurVWGr1SeN0Ik36vIgD6eJpwqBQlsrlcquoFrFAivtCuTyT3a7vjn1tIZKxYSVBHIxPPvnEAr5feOGFZvmLVfCNN/5VVhAVpmfn5eXouDLkaD7gpWkQcPKhaXD/zrSKkGrKAvEwffp0E6yQC/h8nX/++ebuQKCZ//nRj8IkpY1cINeCLl27KM6DMlLU1NrkPS8vESzI7iQ2gkbSIFU1JzeiArJhpYgENsaK1QDZKfLlRlEsi4ECCXSOcyEjJLQTCwNF5VW/IDPmKZNElciIGrluLK9abvEhiAmRnSsCoyA/tGnbxmJHLF66JLTr0D7su9++YcAeu4cKxYx47vnnw/vvjZGp3Lyw+x4Dw1IFwakRo/2uXh7LxVzXiWVoIQIjQ32sqlZATMWzSJf1QmYGLxPFpZAZWZ6E50qNRbeE2pp6s86okpXH+E/GhwqRGlg/sN9j913DhRdcLAa5NPzknJ+EXeULh9QvbpaY6DH2uDXl7+1tOwKOgCPgCDgCjoAj4Ag0jgAr+uhtEA6s8hNjbPDgwWYBQXpK0layGAeBwb3o0+jQTNSNwEjhDSAa2Oqld9Zp0s+2zpgI6zU90MP6P6ULXxlstfRe+pQm12burZZuXydr4zzp5a1KFRRersPZSrU5e/bsMGbMmNBOlhG4GeN6/frrr4ebb75ZevOycNhhh4XjjjtGWGVoEbNAcTHKZR1RHQoK87/Spp/YNAg4+bBpcP7OtoJga8qCjxfRbhGepLbkGBMzsjaUlXUOJ588VFYP880yAleKrOwcs4DAPaOwQbAg3OSdYG4Nqsb4B6wJED64UhAzIXFfWKFJvKIJQ0BIoOUroE2OSATM12KWDNhlsmgguPNFLkA+ZKkOhDp1xCA/9AXLC76TbQICZYpIEoR+9+7dLS9zn+37hJEvjAz4q7300ktmJgbBQrrQN9980/zSJHU19sTlBFM7fg+CVFJqJJh5oWDdwEuCMaar/wtkpgYTHmNkwPpuv/0OlrYIc7y77rrL7uclk6vxxd949b014h+OgCPgCDgCjoAj4Ag4ApsVAqSPR8/s1auXWQYTXwwdFT2TyfhgERHEgSBOAufQY9EZUy1c44BQ9dGPM7S4pSM7nRzHO9awX6/pgR5ex/Pos/RV63zSUyEqkgDrxGwoLiJbRbaREOiukA0Eou/du3fAIgQLaVyo0eXReV977Y2www7bCY+FhllxccE621/DiP3UBkLAyYcNBOR/azVxQtpU4/vwww8tSwMClEk5kXz79+8f3n///fCxTKv22HOv0LK01FJpkv+Y+5j4I5yqqmrMUoBJNhN385PTZB6Bmq7Nsk1IqjHGSD6wRyByjv9IW8kxpmoIbogH6ieOQpHiQUBskLKyudwnYJghL7iP9iFLZin4TXuZiHXq2ClULa8KEydMDNOmTrPYFaT/POSgQyQUXzMzsQcffDCceuqpgeA4Xbp0CZ999pm9NBC+LVq0kBWGGGwdwwZzDquHuloRHor0SwpPBDUsMRiQaYN+QzzQDtF/wXL6Z9PD7/7fpfZzkhkkT9k9bKy6N7Vwzosj4Ag4Ao6AI+AIOAKOwOaHAItgLMyhM+JmwaLV8OHDLeQuUgAAQABJREFUbcHrxBNPDI899pjppSx4oUOyKEeASp5hq5X+uBK/B5VUle8LEmIdY14vNVEPr+N5LHoJ/8BiYewgJIrp5NLd0fHbtW0lnbzYzhF4c9ddd7XMGH/+859NbyfA+xlnnBpGjnxZc4edpB/PVyD2hlhn62h/HaP3y+uBgJMP6wHelvBoU09CsQRAsMLwMsln5R6WFyuC8Upf+akm8qWaXPfs2dMYX34TyAHYXe5ln52dsKcIXkoWhIP2TOCxeuBLFMZcj0REvWI8YLlA4boF/ZHbA4EdYVPZ8pQyE6FOPApeBLhnFKl9zrUQ+YB7Bhs45mFBoevUCREi8R/2V5Cggw462MgB/NSeeuqpcPzxx5v1BmQL7fIsxEaerBSUWVPPKvaEuo3LSL1M42rlA0csC14YEC1Yi0xV7mcIEsY/aNAgRQb+jbXbr1+/sP/+BwgrghGlyZ8u6ZsNcrWPKORXO+1fHQFHwBFwBBwBR8ARcASaEAF0Q+Khoe+hL+JuwDEkBItOFPRA9GgCMWI5zMKYuVzoWp10SfTdek3u0R1Ze0MvhIhgW2f5OvestRIaWetFu8DlZVq0i4RJpnR3+ovrSPnSSrM4zpL1Q9u2pdJ/MwOuJjNmzLC5AIt5WHzccccdqiVd2TD2sPhwnTq1M+sHFuuiFXHjvfCrGwMBJx82Bqr/RXU2NflAqkgEJqZlmFTh0wURUVZWFrpK0P79ttvDHK30Y5FAdNsO7dvIOmKJCSAm+RAMTLSZtGeIOMDaIfqxaf6ekACateNqwViZ7PMMAR7JDoFwtO8NJAA/LZNyIuiyZRIHQsIvC1JCwSmxekDY09+CnPzQvFlzZeFYYEFwqB+SokQb4+jatVuoFnPLGDETe14xICAO/vj731vATHI3cw2iAheKTJEdOTnKamFuF2IaNAD6XaPglJAPFKwisJgg6A4vH6wu6Msll1xiViNYWeAfl5dXYII7YpH6OzM+Cnvw8OIIOAKOgCPgCDgCjoAjsPkggCUwFrbsWZxD58MCAldeMpx17tzZFp1wU8YFAR0avY6tvLxCuiExxeTWILddNqyC9fXrEQ/AADvwrYseXsfzdtmslWVRrIUy9HgsIVhYjGnip346VTEuWikO3BRbpIN0INbFBC1O4vL85z9fo/nATGHTwsgVdOhcxYrgWr4WD700DQJOPjQN7t+ZVlMnpU3VaQLIIFhheJnYI0C7du0aOnbqFObJ1eJ9+bZhNYCg7dKlLCxavMTYXwQULgg5yh5RRBYICS4Y3pg5AlMuzmUibVMK1hC4XFAsBkQD8RAtIqLwtut6doUEOUQE9+Yo5gQbxxTqgWWGle7YrqPFh1i0cJGNoVzCb+6cefYCgJnefvvtw8yZM8MskQOvjBplY4Th5eWA1QX3wErny1UCTqBcASpJGUTsB8gHWOulS8tt7BAMEBww4X/4wx9MEHdQZosLLviJiIzlRpLU1SXPWUfpK2A0FMZIcfKhARDfOQKOgCPgCDgCjoAjsJkgQHwHChauEBC4HpeVlYUePXqY6+6NN95oRMM222wTtt12WyMiCEo5bdo0S0eZn1+gPWnoM8xCOEUFNH0y9fsah/yFyrjGy42f1MPreJ7LECJxkWxp+TKL98YCJOQDVr9zlYKTLBbozlj2jhw50vRbvqN3Dx16si3AzZgxyywkpk2bIcIGNw23fGj899m4V5182Lj4fudrT52QNtVgEKz0A+sGBCwuCBAQEydNCmeceWZ4/Y03zGoAdwsCKzLZh9Vkso6g5bmS5i1M2OB6gaBl8g4RkS1rhdRSrSCUFhtCJyOBABkRJ+P0I1pHGDEBvaBzXLfzMu+CcICMIKAlWTYQoFxjsg8hwv2QKMSJWCwrDY7pF2ZxuFwMHjw4TBJLfYteHNUSsFtttZWRCIwHAqa0tKXVifsFLC5ZLsjQgdkc454qszuYbsiH7bbbLhxx5BFhp512CkcffXQoK+ti5yEtlsucjZRDqSWVWIljSr3ux46AI+AIOAKOgCPgCDgCTYsAOiEb1q3okeiHHLdp08YICFyWR2kh67777jPigVSUEBPouLNnz5E+Wq3FqGUiGshsIQteWddSqqvr7Bp6ZaNlHeRBo8+ixa7j+WXLqm3BjYU1FhUnSefHogF3iiotzOHKTDa6t956y8bfuXNnu47Vx+Qpk6XvloWTTjrJ3DCYB2A1zAIeem+qFXTj/fSrGwMBJx82BqrfoTqZCDe2bQ5DIZNEnPxDPDBRZxKfofOYW/XZoa9ZCdx6662WNWKvvfYy8zPYUYJTPvvssxaAkSi4BG1cuGixUl1KYMsaYpFcOkhliXUBBVcLYjpALNSKLIgr/6tjFHFBdrKRojOhHZLv6cKVWA+ZYlczRDxwDdeMXFlFcLxEfZgpU7B+/frbywELBSwTsODgJXLyySeHacqQQcAgXh6kCkKQtm/XWi+RlYp5MTUUSpjminzISM9SP4MIh3lys2gTbrnl78b8ghsmeHfcfofVS/Tfrl23NpYY4QvjTZ5n899oGFDqOBk73704Ao6AI+AIOAKOgCPgCGw4BKJe+21rRMdDJ46LRizAJTEckvhmxELbY4897B70YyxizzjjDLMIIDVnYWGRAjTuZmQEE3v04ClTPrXJPNa2xcUlSl25yKwgWOhavrzGFu2IvYCLL5N53KJZ8KNdyA9cj+lP1J1xfyZmQ42sFNDd0SlN325QLbGxnThxis6nm1XvUsVyIH4DKeVZHKSeZcuWmxUzlszo/owZ0oGMHsVFxbY4B/Hwzjvv2EIkfWrdqrWRMD/84el6vsrctbGARvdduHCp9Gy5XLh6+23/6a33c19e9l3v6rwCR2DDIoCwShXQCDiEF9YQ+fmJa0Dr1q3D4YcfboL1oYceCqeffroFWTznnHNs4o65GYL0iSeesIn93nvvbSTE/AX4y8nnTcKN4JKwwQg6AklSaKuxgtxal+ziutXTIIzTVD+kBIEnEZ6TJfAZC2wuZmL470XfPV4SnKdfvECWLlko4iSx6NimW2dru6qqLswSidGly1YmlOEKiA9BhF9ePAhnMMQ8D0uI8vLlZgmiU4ZJY+Pza46AI+AIOAKOgCPgCDgCmx6Br7v4Eyf6q/eQCT/WDz/60Y8sCPoLL7xgGdU4X1raKmzbczvTOyEl0DXZIklAfDJcntFfy8rKRFQkKTwhEqIrMO1BgMQS3UCwwCWwJcQDfYvn430QCDW1daGgqND0WGKTFRTk2mUytKETh6z0UF6xXM/mmU5LLDOeg2SAfFiklPLo/c8/+5y5lPDwT3/6U7v3rLPOCjfccIORIpynz18XS+73svERcMuHjY+xt7AeCDDxRtBF6we+R+EoaRLSZE2A+wDpdnpt19uuEemXtJIInAMPPNDOIURx1TBzLQmwQrGlrPqTQYJC4EZcJRCUUZAbO9tI3yEW0sR/2J7jNWwI7pUQJvrP3DRgB/TMCos3kR4WqF9t5JdGv0gfim8eQpJYDwhk0ga98sorxi5PmjzFSAjM6qpltYDVQ21NXShtSQqllXq5lCja7/P2LFYUnRQT4+9//3vghTNkyJBw1FFHWd30CSHOC0HDbrS4wG4UHr/oCDgCjoAj4Ag4Ao7ABkdgXfpX6sLcmu5FhyX4OEQCLhdHHnmkLW6ha5KO/b133ze9mECV6J4sfLFQB2lA/AjcnD/66KMwXVa4S5YsNT2Vc+iPFRXl0l8XyOJ29iqLBiwgsH4gGx0EAnos+jR1xhItIerqlPZTemyWrIGpMzs7V9YO6WGx2uEeIq8VFebJdfpjI0UYA/1DV8ZFuVzxzbDeOPt/zlSAzXFhX2WOoz2shiE+6D8B3E899TSbCzCHKGgIMFkjvZn+rUv/jX32/YZHwMmHDY+p17gBEUB4RjKAPUIPAWMWEWqnQqv8+K0VFBSFZsUFinGwvVkPIHBHjhxpDClMKYKVOAik4UHQYho2duwYuW5Qv1JZioTA5YL4DhARX6dANqzrToQohRdDHEckNWiPmA7t23ewexDA9BPml2OeJbDmsGHDwvXXX78qSNBBB+5vAjozQ9kv5JOnIYicWCpBOzu8+OKLgZzOEAsvv/xyuP322429vuaaawyL9u1bS3gvCK1bt1B/rNlGP9b0Qmv0Ab/oCDgCjoAj4Ag4Ao6AI7BeCKxL/0olH1ZvKD7LYhP6Lgt3WAzg4ktmOCbrr4x61SbyZMdAX2ShivsHDhxoZAWuy0zi0UWJI8GCGPozJENtrYI9zp1j5AYLeyzwobvGuAzcgx4bXTDQ3SOhQV8LCgrl2lwv8mOhLRbSv9y8fHOvICAmfRr95ltGNtAm6es5DxmCNcfRRx0W3hz9Vnj4oUfD5ZdfboTD7373OwVVP099qws33XSTzRNOO+0007/BICtLbs/Sewk2SRBL1gK9NA0CafqHkdiuN0373qoj0CgC/POMQpQbcSkgwA4CMk1xGaqwAJDAgtVkws01TMdgdRGCRPvdf//9LZAjlgBRkPL87NmzZFWRJpOtnqFXr15yxSgIdfV1JqRpk83Mv9bSQyMfsHxo5C8I6wtIByNRRKTEQqTeGgn0OSICMsQK0w79RcAjxHmGPUFyiNj73HPPhXPPPTfUSoDXragNH308IWy3bXdZPijlpwQ4gYEuu+z/zN0ELAg0CctNIB5cNp577hmZ181RXAlSkZaLoCHIpcgT69LaB5CKfey77x0BR8ARcAQcAUfAEXAEvj0C65p+fVP9i/pinezRhyEc0C9ZkGPhjjSUkAmkmyQ22SefTLKYYKRhHz58uA2GzGtYKxCoHAICHRQ3XqwPqA8ds7KyIuQphtqECeNNX41tcz8kBPHG0GFJF08sClwxcO+g0Ieyzl1CljLRzVa2CtrGoheLXawViNnAhk5P27RJIfg6fYAk+eed/wivyiq4Z/cephtj2Uv9EBXo3SzaQWBgHQERQiw19Oq8vC+sMGRc4aWJEPjCWaeJOuDNOgKNIRDdLpi8I9wQogg+K7JQaKbZc70S/8KwIqAQqtyz3377WXYH7iUOBDmOzzvvvLDnnnuamRlCion+Rx99KIHX3p6jTqwRooVC0sj6ffLyiFtqTbRBPzEPmyfWGFYWooGXBYITQYkAx8+trKzMhC79/+tf/xqat2hlbPC8eYtk7VFsL4k5EuDEi2BjzLDDbLwAzj77bGN4IR5mz54vYV4q07gqta9AlSmESGr//NgRcAQcAUfAEXAEHAFHoGkQiETC2lpfnZxI1TV5FgIBMgCrAWKjoXNSCNxIWvZ2bTsYMXDEEYcENmJDTFW2NPRpXBuuvPJKs3YgbhoZJCAvsMbFMmKrrTqFsR+8rwW9eWG33XYzkoB60VtpE/doCAd0XRYNISIgFrBaZvGPVPfZIkCwfuA7dWOdjBUF/YVo4Fna4zqB1x955BFzAaGeGZ99bq7FZPJAl8c1ZPvtt7XxzZgxJ+yyyy7myozFRZLpIst06xUrkgDtdqN/NBkCbvnQZNB7w18HAYQOGwVBxBYL6/UxJOTMWXMtEwTX5s5bqEi3ioOgi6QRItvFgw8+GD7++GMTklgQYAXx2muvanI/TWZoXS39EAxtDDZJPcSAWF24cz6Wr2P5ABmS2m9eCIyHeldqq1fanwoRDpzHTw6hixCFdIEg4YWBnxsvgx122EEviCOMzYVUuPtfd4UO7dsFWY/JZO41M6cj1gXP/etf/wrvvfdewAztlFNOsRdBSUmh2OQKER6Fq6wfEpsHt3yIv6nvHQFHwBFwBBwBR8AR2NgIrItcYKLeWGGCT0HHRKeMumYkIZj00waWBxMnTjQ9Ep2SxS4CkFdqEWrmzFmmk7J4x8IXBEVcxCL7GgtkxHF4/PHHwwMPPGAkAfozGS86bdVBdS40HbNLly6mm1IP9aOzUmibyT/9oB7IAPpHrIdMbcRfg7SgX9yL/gtpgrUCFskPP/ywWWRwD33DsoFYaAP32DO0lL68Y58ddD6ZFyxfXmvPUxdWE1hT4IqMpUXbtm1EjFQ0EBFp6gdW0ylWENZb/9hUCLjlw6ZC2tv5VghEYYoQRmClFvy6loi9bdmyeWhV2lIT9oRBLSosMGuqBfJVa9O6NOw+YDcJ2fIwV4FxHnrwAWWNWBwuvPDCcOD39gv33HufBW2cM3tuqK6qMaGLAKQ9mNiSkmapTX7p2IJNrn3ebvemyzKDMViHdG9CpuBKolMKrsN3YlXUKn0mQrts645GFMA6xxcAZALWDLiTQKTsvPPO4VX55yFYyVU8R2QLwh7yBBO1yy67LLz2+muhi8zaDj74YAnhbGOTEeYQD6QZKikp/tJY/Isj4Ag4Ao6AI+AIOAKOwOaBwLrICSb46MVYBjNhR0+MG+ex+MVNAReGd9991yx8IQKInfDCCy9KNyyQ60WG6Y1lsrAtUvYJsq59+OEHpjPiBlEq3bpr1y7hoIMO1CR+KyMFqHv8hE9kDfGW1Usb6LLPPPOMrA+2D6S7h8gg/hjnIQ1YWGOPZQQ67QKl8GyrVJ7ZmVmhQK7THdq1t4W2+XPnWQwIdOCrr/q9WfmyiAcRQRa3IQqeTuwJsMkSAcLi29Kly0zPLizM1UJiV/vxli2rUUaNGrPCYDEPNZxn6E8IGabfO/nQdP/ON3vyYV1/fKtPSJsOSm95YyIQgzSmtkEO4FIRD5Qc5RtmIr5Ck3q2muqaUFJcFD75+BMz2xp2ytAwZPCgcMcdd5jrwoRPPpZJ2VVh8MAhig8xUbEUVoayTmWyFvjAzMP2339QSJN5lsIrSEjVSCgn5mqVlUkAyYICBaeUDKtSruMowOpFIPDvNTNLUo4isoFcyPjFzZu7wAQrAS4rFi8LzUqKjHnNFvMKf8FzBNGZNXueWT3wnai+BKDEggETMl4KEAzEcrhy3Lhw7LHHhssuvVSxH3rZC4b7//jHPxr7XNKsJNx8883GEtcoLgQsdyJ8g0iNhHhABosbURFgKvFvzf+mDA7/cAQcAUfAEXAEHAFH4FshEHWqtT0cdS0sGCAP+I7rLXsWi3BDQC/EFQELBCwZ2IhlEIM/Mpl/4403bJLNIhSr/r1797YFNCwUsBiARMASgP4kVguZ5pJbWFhkFsEjFZx9m+5dRQwsDeM++sB00FJZD6elSztNWxE++1wBID8cY24U7Tv0sjZatW6pfamREljXEmeN9nG5IOMcOjv1EmcN/RNXYhb2KFPl2pGjeA9du3XXWD40kuLee+6xaz8+55zw+uuvWxtbqf/HHH20Bcfs2ZNMcEH41IQqLQxSf670fg1JdefbsxzHkpeXHbbpto21z6LcPC3SUXJyTOld1Zd4v+83LQKbPfmwaeHw1r5rCCTT5qTXcmTQNJpsFbhMJNYFvbbtaWTCEjGnnTp2CD/8wZlyrcgMTz75ZLj0t78NvbfrKwKjtQn4Abv2DXk5MLD5Ycmiak3ocyRsE7+1upoCTdrzQmF+w5+MhFyVCAtY5i9KEt8hfkcQQjxQimRalkz0+Zb0ul5+IZ9/rgA5bVpz0hhhGF7cLDBNgx3m++DBg81UDGsM2GOCAO2tSMXPywqim/zhzvnRjy2YEC4XBO7p06ePuWgMGjTIXja8yBDacaMt+sZ3L46AI+AIOAKOgCPgCDgCmxYB9DxIBwqWAkzeIQkoWDVAPFDQ4ZhsYznA/cQ44F7iejGph4ggICQkBnHCSM9OZjeCTDL5J37C2LFjrW7cj9EVqRP3BYgC4jHU1dVa/RAUuD706NHDrAzIBoeu2LlzmZEgC5Vec4msh3n+uOOOC3fffbfpq7gCs/iF3ooLMRk1sPrF4oJ+4MJB/1hAI4ZEO1k6zJ0zP7Rs3tJ02jatWhtJcvrpp9vCG2OnH1gA8wxLeivwQtEio5xMbK9vjRYsPli0gxBBfzYrZD0htbrBAqJhobDRWvzixkAgdea0Mer3Oh2BTYZAMslOZtQImcg6I/AgCdjjc4Y1AbETFi1aEj78YHx4/bXRJlQxzSIzBswwk/7p0+fKzKy1SIjSVWNQFSaI4RyoD1cJClYQmHNF4ca5+npZQsgaIkv+aPEFw/n4cikoyAl5hW2V9WKlCUZeKAhIgvRgGof5Gsw3dSLQEdilLUuMRb7kkkvCp5OnhHvvvTd8/4QTlQt5nAn+OUp99Mtf/tIsJXhpqLfWX1XxpcLLxIsj4Ag4Ao6AI+AIOAKOwKZHAL0Q994YJwGdknPogVg4oNMyAWcS3a9fP7OKgHRAt0UnROfEHRfLB6wjIB5wV4jkBLosFrHcTx3oweiXkA3ssVaA1ICEwBWDrGrcSz0nnXRSeOKJJ0zv5FmsESA5zjrrrNC/f38jNbgPawYIAvrBPaTyZAxYO0A64HpBgErGxL20h36NblpZsdwslsm+tvfee9s9LVoUm46cm5uptrexH0WPiuCoMzwgYCiJ+4QdrvUD0gHLD3CF3KEPBFxH/03V1ddagV/YaAg4+bDRoPWKmwIBhHUsHCN4ELgwpwjlp556ygQYrgtE0b3mj38NPbr3NEF81VVXWhBKBPPFF18sU68h4frrb7NgNQjbVq0we1tujHNWVppZRiAUYWMlr02YWfM6xqUBQYeQTUvLMYGesRJCpMG9QXsF+Q3pIr2zMulzhglIBCrCFWEOARGD5UCYdC7rZENDsGNGxr208e9//zu89NJL1v4+Q/YJpByijmq5nmB6lgJJhOYre144bLGk4hjP+d4RcAQcAUfAEXAEHAFHYP0RiBPxuCDF4hgr9dHCAVcLUrDjpsBEmrSRuFkQPJL7cM2gDnRBLF53331324gL1rlzZ9PpICnQ5yACsJwldgITfUgP7hsxYoSREARlPOCAA2zx7dprr7W2iLEAwYCFxoABA0yf/dvf/maLeFhcQERgYYGlA8QDOjZWFsSagCTB/YOxsNF/2oSAiBbDCRmRWCK0a9dK7h4rRaIssfshDMCFPXo048zNzdE+0a/RsddVeA69Fl0avCBiCIyJ/p6mbHlemg4BJx+aDntveQMjECfM7ONEGqETGVKEIWwsghBBtmDBIhNuw04bJoHcJZS2KjVBN/aDseGGG28ITz/zdCLYZdbQWq4R1TXVxkbDmLItWDBfpm7dJUgzjLmOEXchdWk/U+4dOWJvISgyM9JU9wo7T/8WL6mA+A2VEsZtJXQhIObOXWztQ5RAKsBK42JBwQTvx+ecZy8BrDZgwYkDMVFs82233RYWKuLwX679S9hnn31EihToRTNbJnttG0UYrgFigr7GLfWBiGfqOT92BBwBR8ARcAQcAUfAEVh/BJjEx1V49FL0LggHyAJ01jFjxtjkngDjHDO5Z/EJsoAUl7jpQlKgEzKph6jgHLovGwUdGCtaLCwiAcF5yIJTTz2VQysQG0zY//SnP5kuSj0UdFH0TO4n6xokAqk3X1bgc6wjWCwjvT2uFljhQo6wwBctOyBVsMxgfPQdq46CgsJQV4u1cIYRE1tt1d5IAQgVgqRT0JlzcrJXfeccpAPB5dGRWbRrrNA+BRKD9unXnnvuaYHXV6yQ+4b0ci9Ng4CTD02Du7e6kRCIE+a4R/jCnCJ8EZB77LGHCU7MyD7+eLyEdAsjDz77bK5Y3B9q4t4s/OxnP9X2MwnVx+37iy++YMeYsOFXN3jwYPOHa9ZMAS0VuJKXB0F+eJZJPOZdvARwq6AsW5ZYS9CPgoJcm/BnZBSGdP31FSv7RFVNfcjJzlDazDZ2/7vvjTVhTz3UzYsIMzqYY14cvADIejFSwXzK9AKi9N2xr7mS8BKiRHcQ+7KGDwQ45IN5Zuj66uQD+HEu4riGKvyUI+AIOAKOgCPgCDgCjsC3QACdDr2RQmwGFp7Qu2J6eGI6QDKge2L9iustk3ysdtH1IBqwHoAwQFekUAfpKCnokOiCkBsQCejBUa/jmbgwh2sHpAYkAffHuiAJsGxAj7766qutTu7Fovi8884Ljz76qLmC4P4LaYC1BX1Cv+Y+CAoIACyHk8wZuDykWX9ZBCwqzFZ/rNpVH5AKuFjgBl1UlLfqPAdYRtBnSAwCR67+7Jdu1hfGQV8J4skzFJ4nJSduySwQemkaBNL0D3G1n75pOrK2VtfVPZ8crQ05Pw8CUfgiyBBqkAL4urFlZUnwrSDdZQizZs0yQQWj26/f9uH550fZ97vuussEKZYHmK9RHwQEfm3V1VWhRWkLY3Lxa0O4xjZ5IfACoL5ogoYA5MXAiwRWm77oVRCW6R5eJK1btTCLiFGjRlkEYoTk9773PQuOCeFAwCDa5RjzsZ7deyhtqHzaZs8x87nf//73RlpAjuhdI6Z7nvqWvISwcKDw1854YX1XyqIjS6QHe/7O4t8af1OpW/KkfzoCjoAj4Ag4Ao6AI+AIfB0Eok61tnvRQyEf2KOjQhCQ3ezKK6+0GApYNhx++OEWeJIFLsiBsrIyW4iKrgzRBTeu8jPxx2ICYoNzWExQICDQKSEdmIijj0biAx2VhS3cK7AOZk9b6KuxQI6gF0ZrCPpL/QSc/Mtf/mL17atA6BAkLLQxJnRgdGvq5Dn6ArmBLt6jR09ZBGebLko/Yv9pj7rzlAkOy4c4x6Pv4EnfcZugrGv2uu22vU2P/+c//2n6Nnr34MEDFfOChbxmyuZh1fhHEyDgtE8TgO5NbnoEIAEQYghlhCyCDlZU8275tM3S5L2vhHWFCcxx4yYYsUBO44MPPsisDmB+idqLiRnM7tSpn4b5MuPq3ae3vQwyRCTA4iHgISiwsshRW8SPmCTBjtDE7A0hS9AeGG3K6LfeDKeddpqZoZEGFKGM6wTEBAKTqMX0lwjF74lF5hghDvt9zFFHhz/+4Q/hNfkB8hwvFV44RBXGrw0fOogGDXuVkEZYJ9sX+Y7pB/1LfVFGgc81L46AI+AIOAKOgCPgCDgCGw6BSAygt7EoRSEGw+jRo23hCUtdJvToZsmCWZZNvlncgnxAL0VXY7IeLRnQbdFz2Ziwo5NynX3qhisC1yEasKSgoK9SWGyDMKBOdGcIg0hEQCxQH22zCEZgSqwzrrnmmsBiHYtwF110kcWPwGoXEoN2aQtLCsgRjjt27BTy89Kki2cb0UC71dWyApZFQ0VFtZ3LykoWB7mGezO6LAUdtk6B2jMtXlpybk2f6MsQK7hc7LHHbjYm6kBfjnWt6Tk/t/ERcMuHjY+xt7AREUidMH/zZtJWBYtEyMYNwYpwom7M38g6gbAnmi/MKecRup9MGB+yFABnqqIEI3ARsgg54jSwIZAJcsMzHFO4D/M2Uh1lisGF5Y4vEO7h+RdeeMGegTHm5UQdtEmMB1hw2HDIDVIO3SnC4re//o2RFYsXLwp/+MMfV/n/QaiQExn/Ocl6K3oHaJy4giwT+ZJvzC8vAjZeYtE0jZvBIPV7UoN/OgKOgCPgCDgCjoAjsGUjsH76JwtDaTbRpx4myo899ljAghVdb+jQoTbhZ5EMPZAFKXRTdDUIBr6vq/2NvYhEf9BZsb6gXHfddeH888+3BbbLL7/cAk4Si4Kg6BQIkYMOOshSdN54403ho3GfyFWji9yWW9j1OXMWGBmCJTCxy6LeykVBZFtyrC8q0QKisrJaenR0c64xkqNVq+aKT9HP9GfIHMgddGpiS1CqqmpDrqwrvDQNAm750DS4e6ubCQIZ/AVIjiHI9Wm9QuAlgm6lUhDtYudmzZqpSXutfNf6mesDfmSvj34jzJ43N9Qq3QXWDvMUgJKAPe+8924Y8dyz9qLgpQFRwSSeyTzf2Xh+RV19qND9vCBghMvKyuylwjVeRLxgENSw0kQNxmqCa1g20N9WLUutLzDUn8oSY9GixfYy4lmiD/fv39fqYACMp76eTBrKkCzmd2O/lAw0/3AEHAFHwBFwBBwBR8ARWCMC6HLES8Cy4frrrzcrV+IrsIDFOawOuAfrAfRIdLfNRX/DaoLFM1yS6du5555r2+233x4uu+wyIxtICz9o0CDLyIZuyjHWHE8//XT4/LOZGl+uWXFAYmDNsfXWifsyWS+aN0/iYSQ6a2LFm4DYYAKhLyymgVEsZHgjSCXncRWhgB06Notu6MLUB4njpekQcPKh6bD3lpscAVwNEiGGMIpFwXcbSlro0bObXBkUI6JcpmIri8JWW3cMzRQkMl+BIz+b8VnovE230EOpi7CaQNAhPCEi3nnnHTuHyRouEFg/UHhpwBZ37NjRhOGJJ5xg/nFYN+DThyCHzcZvDrKBmA9JKs4QKiqrjNyILyPICQL5xCCTWGmQT5k6iA/x6afTxSpvZe0icGk3O5vgQ4oRrBeFCWG76h+OgCPgCDgCjoAj4Ag4ApsSASbG6IXsySqBDkkKTCbnBx988Je6gt7GfeiI0Vr1Szds4i8xMCXkCS4bkBFYNxx33HG2MEZazksvvdSsh81V+JhjbDENC4QRI54Nu+4ywAKqk84Td2IseidPnmb6KYQLOjAF/TxuqUOEYECvJT4E+uyiRUu1cFes54Oybow3fRk9Gf0cvTwhbpIaqN9L0yHg6Dcd9t7yZoAAQSMpiVD6aqBFhH2zZsVhu+16NfjcZZogW7hwgWI6ZIea+rqwvfIrd2jfVsEiy03wwq7usOOOgSCU+M7hskGMB0gBrB84R+DIxdr327EPGTfD3HkLzSKCflignlK5VaiQkhOBjgBtqQA52/XqYS4cpAwiCnEnkRi8iNIVOYcgRUQXniY3EF4Gzz//fBg2bJieTTJXJK4kiRDnBebFEXAEHAFHwBFwBBwBR2DTI4BOxmISOhx6IhNwJvFMlFPJB66bntdAVHC8OZAPIBZjOvx/9s4DwKrqWv97mD7DDMxQBcQZASl2EbuI2LDEEns0JnmJMT7N828SzUtMYt5LXjQv+oxpJsYSe0exK/aKCKI0kSJNpNdhYJgC/++37my4jjN3RqYAuraeOeeesst3ueus/e1VWDyjoN+iXw4dOtTcR9BJ77jjjnDXXXeF//zP/7Q0nrgf/+Y3vwnPPvO8FsnmGIGAhS+6M9bDWAejPzPOREGHTQRL5zNERNxHCwZBac9CPpDN4k3FQoNgQH8mzgREibkrJx4VybN5lbH2jO/aEgEnH9oSbW9ru0MgRzEbkssWYZc4u1yuFLwQ8vLIPZxrVgo1IhwKCtrLKqJ/mD3/k9ChKJHeMlOmXpVyzWDLyMoM7fNzQ642RNyAQQNDUUel4tTx8uUrQlel+KyRD9q69Uq/KTMxyIKc7MTPEeaY+9at2xA6dmgfgraVq8rC3HkLTDgj2IkPsd8+eypP8qZw5plnmpCGNeelxUsAcgP3DF4E+NORVoiCpRmsMHVEAW4X/I8j4Ag4Ao6AI+AIOAKOQJsgANFARggm0KzOs8iEVQALSDEAJdcgKWJJ6G4JS4l4blvt6T+BK9FZY2GCT1BK3Ci4tvfee4drr73W9Ohf/OIX4eabb7ZFskceGalsbWuVXW6wBXVn/IwTN2ICcI4ZM0a67Wmx2s3kAyREYtu0eWGNm9Br0aMpuFhgTQyxs1Kx0Aj2jrUxbh+UVavWymJYurWXbYaAL39uM+i94e0HAab6WzZST25UHAe2wsICvRSqxMwS4bdSTCr5hbOMiCguKpZFxO72wmAsCE5eHl26JPIs87pYt269YkJsMsuKDZUiJrTBxm4g3oMCVML0bqhMxIzQKWJIGpEAVYAVxLLlq+x6UceCsEvvnmHggH5GLiCcP/54ngn5iy66yIQ8JAl5l3lZIXQhILCOIBiPuAZrNxIOyeZn9N2LI+AIOAKOgCPgCDgCjkDbIADxQEEPZIW+W7duZiFLdjN0PBaTmJSjr0E6RIsH9pzb1gVrjUg80F/0TSwXcB1BH8UVGYsDjsk6ceWVV4b777/fFsyuuuqqMGrUqPDcc8+Zuwm6M+NnT5w0CJjkwnAhGPCWYIvBJiMOXI/kAro4gd1xycAqmM/R7UKHRk4k1+3HbY+AWz60Pebe4naEAEIJ4iFaPNTdI0SZzPNiQPizRYZWyXpChoLlfPrpQhN6CEGex9Khe9cuoUZEQoGsJSAfiuW6EUuurCI4V1go5lXNZ+qBajG2CE8YXdqgIIQ7d+oYqpRSCBICFxAEPewu5EKa7p0/b17ou2sfizHBNdKBwjRDbCD4qQsTNyIBM5bYRuyL7x0BR8ARcAQcAUfAEXAE2h4B9DQm8RR0SCxXiRVGEEd0TXS9GJ8gWkig18Vzbd/jLS2iU2Jdi36MxUKM0cBEH+sHrDcgHTgP0RIDruNyMWXK1PC7/7lWaUXHGiFx2GGHhUMOOcRimPEsqT0rKhLEC7gwZlRjtuQCDqjxkZgoK1tv+BEPDUKE1PYQEej64FpQICvjJEuN5Lr8uO0QqPM1tl3D3pIjsF0gIFY0KMJkmtJetMtQDmXlHM7IzA6ZWTm2VSlDBCRCbl57xXjI062ZcquoCZxH6PEDytPLoUDuGx1ENNRIaHJOPEKolKDjuEz+ZuzXr69IkAu112D+NsqFg3vximBL140Z+sM5URm25572+XmhUK4eWZlKrySLDK5licTYeedecvHQJz3QXlYaRx1zdOipc3vuvZe5fyxfuSKsV1wLrqvrakQEh47jpjNeHAFHwBFwBBwBR8ARcATaGAHcA5gMs3BFSkjICNxqDz30UDuXTDIwCYeAYIsLZW3c3c80x4QeNwuIB/qDBQcTfEiJGIyypKTEiASIBxbH6Hv//v3DiBEjwiuvvRpuvf22MGiP3cNDjzwcbr/jXwGdNa99fvh00cKwas3qsLpsTSgrXxvK18s6BOthLcahk6PDUjK1eseiHUVVm9sKpENpaWmolu4MAULQd8gLSBJKJEnsg//ZJggwJ9quCz+2VNt23XnvXKsjsH5dua3m65/JZ/Y1cpWokLCK5zVjD5xbJyG2SsJtrQQa7GqlmOUNVTWhWkKLqT6bZFsor9gQVijLRTuREpvS0u2cbgls6SInbIOw0Ofuit+AtQNbsQgC9szzISO43rW4yPYFuSI01E/OdRCZwD5HZIIaDXkiL/iMNUOu3Do4lwkTYZ8z7dx69X2thHGN3D/Yz/54VhinrBq6JWSJAFkiU7W33n5bVhLLw3gJ+TwFuOyulwIgcA/bhkqNQH3IUEdw8VgnQgR2HcGMZUVyqfs5+ZofOwKOgCPgCDgCjoAj4AjUj0CquQvXcAvYSwHLmbBz/PDDD4eSkpJw9tln22T+gQcesNgJ1E58BawhKFjF8jwT/tgGE+voohGvcb01N/TGWD/9sthltVYFnKck65GkD+UZSq70Y7LG7a/MHt/+znfC104+2XTXO+68M7wzdmzoI7fhW269NZTJirdIQSSpDd12tdKPrl6z1vRX9Pbly1ca4UCda3QeooHx485BiYEs6VtnBXLHDRm3jWoUfS/bDIHEv4Jt1rw37Ag0DwEm2Eyry9eWhZXKQMG+WpNzgkISo2HZ0iVhtQLOELchQxP9fDGqRSIDCmQlgDlbpiwd0mXxIEOGsK5C5IQ2RBKBKMlyYeJJgowJO8ds6SIFMiENVHTaSAN+SPVuEsDtGtjSdD5BdzS8NwKFutUQ1g+56heWD2UiH5ZqbJUaI31aV7E+dJarx6zZHxtrTMBLPufqmRoRL7DF3Ncuo50di28RK7zRhLROe3EEHAFHwBFwBBwBR8ARaCME4ko8uijZ0EpLSwMpKYmRcM8991gvCNyIGwMFCwkm71gPYHUQM2Nwjck1pASF67FuO7Gd/iFDHFYOp572tXDt//4+nH/BN83SYdQTjwe2b33n26GkdOdw970PhGwt3vXs1T0Ud+oQsqQHL168zFwtunQpknXDTtLxE3HXlixZEsaKvMD6oaB9gQWaxNIBfFHlk8mQ7RSWr0S3EjOor8RQfZBfRgRIVwlRQFRdhAvsMUIZU7XsJL+uTQhjscsIZVhRig4lxPJCpibkmbCxme1kNlYZ1ihXMPch5Enbw6xd83e8M9q8RAabPUKTcTFGjjFtW7WmzPq0SZIXs7Y5c+bYee7D7C3ejzlch8J8c+vYsCGBES4c6RpjLRxtPjZv0BFwBBwBR8ARcAQcga8iAuhnlGgNQEaGc845xybOWD3gfgHhABnBRiGeFzouhAVxEZIL5yEd0A/RiaP1QfI929MxY6uUPkumt9479wj/9m//ZhbJ9913X7jv7rttHP369bOx33777eE7spCAcOnerXPI695Z8STmKr5aN8XMyDELkW7dOsk6ZFkoKSkJRxxxhKX2JOZZTo4WGGsSxEzEOmaA257w+Cr1xcmHr9K3vQOOtTHh2VH+ZsklMys7bJDwJcsEBTaYOpiwQyiYtYMm7YmSJkG2ymI75IpVxesgPy/LttobbAdVoSoUn2HLWbgKm7RDTJhNwZZrLXlE/ykxyCVj4YWFn11uXv5m8oF7cCMhcBH3cg/phiAoYM0j+cB94MBLKl2kjYzmzKqC89QdiRk+e3EEHAFHwBFwBBwBR8ARaHkE0O/Q29DXov61zz77hPPOO88m0+PGjbMYEOhyX/va1yy2QgxOiZ5HifptdMVAh9tR9LicbMVQq6oO8+Z/arpqzx7dwuWXX24B3EnJ+eabb4ZPPvkkvDD62XDHnfeEl156KRBIkkIwyj59djFXZT7HTBdvvPGGBbeEpEDv5XxVlVYPVTZuTLiJcIwO72XbIeDwbzvsveUWQSBNLPEapfj5VJPtdaoxTRYPuXKr6GDb0mXLTbjl5MoyQiZYkBPcU6GYDosWLQ7FRR1DvtjXDetEWJTJZ26DLCMkp9hqKjUZF7mQLvaBjBQYPrTjc+1+U0L261PrFsgCXjAwtmzJn4kgXLFBASllVoaZ2dChQ41s4EWE8IVkiJu6bgVWnOtYfFBffFHRBpsXR8ARcAQcAUfAEXAEHIHWRSC6R6CXYdVAIdjkpZdeahPyMWPGhHvvvTeMHj1amdU+tevogPOU6Yz7VymgOQQGehz6HBYPkBnEkdjeS6X8f/Pzc82ygb6jyxYXFYYLLrgg3HTTTaaPvvLii+EHF19qae2nTJliGeBW1Fonr1ixRpgsCfPnL9TY08zqgTEPHXpoeP31101XJttFxKaystoW57jHVV1Q2HZFbuf+FWw7+L3lxhBAyKYqq1atNneLbII0qkBEIJQRvjFnMO4YTMCZnLPHPQFLh2pFq1m9cnXIysgygZ1ONMjaUiH3CwR7567F8dTn9jUKuatYlCoNT9jjxP5zDzfxRCQOGA8vJwo+gEREJlhkZ5mcdSwqDgMHDrRzMMMQEowV3zdYX8bPuWICX4purKyssZdUVoYYctXHFgkN6o+CmmMvjoAj4Ag4Ao6AI+AIOAKfRaCx6VNT9D8WieKqPXobuh46G4QCaSxvVdDFl19+2fTasrKycPzxx4errrrKAism9wbrXtrjeQq6IxP6bVlSjR+tma1C+ii6bUZCvZVemyBScuUqsba8IpysQJTvv/9++PDDD42MABfwyVa8tkKlzWSBMJbXXnvL3E5KSkrCgQceaKc/+OADpdrsYccEm0TXhfBg5quY8V62EQIO/TYC3pttGgKphXuaJt5FEriaPEuQTJ8+Mzz11FMBsyuEGb5ipPbBLw6BjGBHGJN6Bz+wXFk8fDxjZujZo1fYbbfdzL+OeyEnCgryQ05esciJMnNlMGICHiRJlm+UcCdmQiq3i1TCtykI0F/M6yIO7HnJsMWXC/dEtxLGDDnBFkkXzPSI/4Cw3SBmmfszRDzULbGN5va5br3+2RFwBBwBR8ARcAQcAUdgCwLoXLgCx4Kuhl5HQWdFryMA5Wmnnab4BrPCP/7xj8Bk+g9/+EPo3r17uPjii0PXrl3tftxrsaKAyEDH21EKZACEQkH7hItxbm6WrDYqjYRgDMS9eE3kyyWXXGLWELhifP3rXw85WekiZD4NhbJoLioq0OLbKiMWIB1eeeUVw496Y6wM6qIt9NsdCB66/aUsTj58Kb/Wr8agIDxJs/P440+EUaNGhY8//tiEC350COTFS5ZqGV9BIzt1NisIWOQFCxaEaR9ND2++9XZYKsuA6g1iUeWSQWwEJvkI7dLS0nDIIYeEvffeOwwaNMheBpiyUXghZGRJsKtxBFtuZo6db60/9AcihbZ4UfFiQnjykirskDCtKypOU4qhNXadcfDCWqq0mwMGDDAXDPAgoE+VMl5QDy87s3bQGHApqVsiCVH3vH92BBwBR8ARcAQcAUfAEWg+Auhy6JYxThe6HhsFMoEAlHxGn8V9YP78+WG80qtj1fr888+HOQowfvrpp4ejjz7adMIYD4JJNrESevfu3fxOtmINZWvXqd/o1plh5apE8PSijgUhTwQE+mqmFsn++7//O8yYMSM89sgj4bjjjrPYFxMmTAgD+w8wi4bFC5dJ9y2wBTdiY7DwBjmDrhvdWOBzgBX9GR3Zy7ZHwMmHbf8dNKsHjU0Ut/dV7Mb6jzCB8d13330NJwQyk2csGojf8D/X/m944L77w1nnnhu+pUi5EAennXqSWUIsWrTUJuI8yMo/AnunnXYyAgH2tNdOPcKokSPDiSOONzYZwY1519NPPx0++uijcP/99xvriv8dZASTeYuxIJcMXhbtO+SFD6dNk8vDAOsb7h4INhhpCsIP8gCBFxlXXiTJrHRj44/P8oIieA57IgRjqkdci3TZqv1LgXgqhNOQgw4ycoV+QJrgmsG4ISaMNBFxkvxys07W/qFPyf1KvubHjoAj4Ag4Ao6AI+AIOAJbEGgJ/Zo60M/qlhhsHGtcJtFY7hKMknshIHbdddfw4IMPmoUrRMNJJ51kujHByKkTiwGeQ2dEF+VctLJAf0Tfwzo2ts+kHSsBYkXQdrI7SNRlk/sZCZPYb3RZ9FXuQd9Fd49kSLwneS+nZVk7KCNH7UlIh+QC8bBq9Vrr50UXXWRuF0888YQRLYy3a+cuYa7Il3333sNiPaCvDx482PTdyZMnh4MPPjhAUmANQp82bKgJHTu2t3shKzKV7S0ru9bXI7lhP24TBDzmQ5vA3HqNNDZ5RbBsz6Wp/UcgYrXAZJoJ/p133hn++rebwqmnnxlqNqWFX/3qV2JLM8K48RPt+uLFCiYp8zOeQ/h07NjRyAcCLSJwYZB77tQ9rNQEHQbV3DAkcKOQR9gyaX9EbOtzzz0XJrw/IezUfadw7LHHmvAjxkKHDoVh1z4lEmoVJmypl4IFBkRB//79bbKfPEa+Dz4jnBHU8WXQ0HcU72fPywfigeemTp0aCKJZLAF85113h59deWU46ZRTAimK3nrrLRsjwh8MeHmxRwDzwkGox4Jx3pZP8azvHQFHwBFwBBwBR8ARcAS2FQLokehs6H2xYNmKLox16ytyL2CxjP1BWnzq27dvOFcLcSyWof+x2IbuiF6L3oj+zGcW8dAH0Ycp6LtRL42kB+fjAlbUU2k7EhHo4ejW9I0+co099VKS9V47UecP5AP/R/KhzmX7GK0f+HDk8GPC66++Gr5x/vnh6quvVhD4jLBGOvGuJaWBtKTo5liI0AfivaG/k7rz5ptvUj8T2e7y87PNPaO4uKPGoRSfuYnx19e2n2tdBNJ/rdK6TXjt2xIBBM2OXAiwg+CbOHFigFC4W7l/v/vd75pgGTx4SDjg4EPC8hUrLXPF9Bkf26S7k9wsZs6cJbJhqQlbCAjIh3QJK4RwmlwxqNMyQqxcHuaIPe2nmA8LFy0KNSIFeu/SM3w8Z27oJnLiGAm0Aw8+KJxEmiOZvT31zNPhjrvuDC+98rLS/rwYjj3maAnZjSbMEe4IYgQ8cSM4Bn+EYdzq+5zq+4kkBRYL1M+LgbpgpTMl/IuKO5n1xTN6Ae0lVvzcc87UeObZPbwc2GCf2TKVsiNdfhbJ/yI4Tv6cqi9+zRFwBBwBR8ARcAQcAUeg9RGIhACTfMgErBPQV7EGnjt3rmWFIB4EuiH6LNa9Lyo7xDvvvGOWEeiN6IzRYpb7mJSjV6IDQxjQBhkzOihjGu1wfuHChabT8jyf2VN4nvvRKyEZ2KOPJs8z+Ny0Is2zEeVzyRJZ77bPD8uWrwpnn312GP3CC2GarI1pd/B+g41cGffuOCNiyITBIiIpSWPgTtwvevfuJaKh2vBB/61Shg3iSti5rM9bnDSt735XcxFw5JuLoD/fqgjccccd4YgjjghXXHGF+X0h2Pr06RNuu+02xTwoCrPmfhIKizoFSArcDcpFNCwWI7xSjOgee+xhqYm4liurBITwejG+G2oZ2rnz54UOBe3DqrI14eO5c8IcCXUE67KVfcMHkyeFsnXl9gzmZQcecnDYa999Qpfu3RLt6EXw7th3LHjlRRd93wQjQSsR4AhlhDQCHSIiCu5koBDWnKe9VAWGmsKLBYFL4TleJqQULVRgTNol1SaERNna9XadFwZt8HKh/7xsNm1K1zmrwv84Ao6AI+AIOAKOgCPgCGynCESdL3YPC1Y2XHshI9AzJ02aZLruiBEjwr/+9S/T+7j2wx/+MOy5555m+YrbMi4bTM5jAEZ0QsgG9EP0SXRRrHc5hwVBst7KOa6jh3JvfYXrbPQJ3ZPjxogItN9UGvBO3bsE0mp27tTRmnz77bctDsaNN94Y5mmB8MY//tH0cSw8XnvttVBS0ivMnj3b+o4eHjNe0J8sxWpTlzb3if552XYIuOXDtsO+TVrmR7cjF0zJSDOE0Bs7dmy4Uu4FMJ/4teXltw9z5n8Seu7cO/SQUI1CGbOwDdpK5RPHMUI2TaQFlggVtZN5JudLli4JmUrnky8CYqNgakeuH+UKLl+v2Ao6x/mKyg32uaqmOqxYtTKkZ2WGY48fEQ49/DAjGZYuWRxmKRgOOZhhnfGzi9k1aC8KOPYIefrDHsHelO8G4c3G/dFUDkuOmTNnKg1ReVhXsUGEw1oF3XzcyIlzzjnH6ucZzPLADdIlWmGY8K21fhAsDLcx8nlH/ufjfXcEHAFHwBFwBBwBR2CHQwD3YBbP0PmY1KPXobuyqIW+i84JqQDZgHXvqaeeGoYOHWp635AhQ8Kzzz5rsRKoA9IBdwR0QQI4Ei+CBSvqwEWYY8gH4imgX7NwRZvoz0zk2SjJOi06abwPfZb+xT3HqUvjyme1gk62z8+RVbKsmGUBMXfe/HDmmWeadcebympHjLaTTjzRyBeIlrvuusfcjhctXhQeH/W43FBKRKYk9G2sHtB5q6sJOplh+0y3fEj9FbXiVScfWhHc7aHqpkxwt4d+NtQHYjsgZAn0SJwFGFn2ML+PSbhk5eRr8l1uFg7FckHYf7/dQ1/FYQhpmRLYFRJKe+renVS9gtsUFNam0Sw0kqBArhFTpk2R1UBhWLVmdeikNjJELiyVaVux4iSsE9v7vtw9sJroIGHMPWUS8r1LShQvYqew24D+4RQF+TlIqX3wjSPN55gxY4wkQMjjehGFMd8DBEIU3E0lH8CFZyL5QH0Ie3z+cB95e8w7igpcbW3DSJN6iQLJwT30gxcVBASFutLSRHzovbBJ+UnTxT7oFeDFEXAEHAFHwBFwBBwBR2A7QQBLWvRI3GYhDaLeCCHABjmAbkdWC1b/n3zySdM/DzvsMCMQ0JNZ7MKNAssAgjLiskEWDdKyUzfEBHrhv2Q1gW45btw4m8xDckBS0C5tRFKBe2ibvrC4xQYxweeo70aiJDWMso7QDansD8rL12nRUf3ZfUD4ZMEia5c+Q7jcfdddoVh6+QFDDggEkJ8jy+X/+q//sqDz9OeGG/5PcwBZOosgyc0lLgVuI+i/BPiEGGFRz7Xf1N9R61118qH1sN0uauaHtiOXyy+/3AQnOX7x5UIwEv8B64IRskBIS88KffvtZu4PpCIimOLyleuMwd15551t6F06tQ9rytaZkERwIRhhdjt07KB7l4dcRdyt1rlCfc7KyQ7VGyXQ8xPndt9jD7OWmPnxLOUdXh92lpDPyUrGm8AAAEAASURBVMsNE+VfRpyFubM+DucpwA+MMy+IZ555xjYEPGw0fUgIuwRrHF8e7JtSeHFE5pljXgQIe/z22otUoE95IkcefvhhO3/hhRdasEteAtzLy8esRPJww8DsLCF86RP/ueVDU74Fv8cRcAQcAUfAEXAEHIG2Q4CJcyQZ0FujPoj+ho6HRQTWCgQ5Z8KNBQM6J/cSfBJrh7322iucccYZNmHnPiyIiQtx8803Wxw14qDhyoxOivUAdbKYRrB13DTQYzlHm5FoYHEL0oI2ccmgRJ2Wa2xx0axhtGSJIOYhFfmA2wk6e7t2GSIaCsNjjz1ucS8Y+zoRE2/I+qG7FtjI7kZMuGQS4qCDhhjZQB8zZNVM0En6lJ2NWzSuzJob7djTo4ah3QGueMyHHeBL+ip3EcGDORmRbIn8SwpMYhwgBBctXKwMF9khK10sprb2OQlhxucORQm/tBVKi6n8Dkqr2d3cEnKy5ful6x0VK0FVhNJdeoeFMtFKE5O7ShYPMM3F2pQGJhSp7YFqa4FiSXyo1D1YXewrQd5Rk/5KkR9DlYJz/eo1YbzS+XDtbJEQg2Xqduutt1oO5vdkElYqoc4LgOtYIFB4mbTTlqEAmO0aIYcyM7PsRZJ4jiwZm8ROV5vJWLv06nDaaaeEOXPnS/C3U5CdVRLMy4yYoL0+fUr0EqgO2bWmZRAzm5QZhCbZEMQufUHWiyPgCDgCjoAj4Ag4AtsPAky+mfTHgu5oC0e151iEo2CZgK5MiYQE92ENYQtVWhgbNmxYKCkpMcKAyTsLeddcc41ZDHCMKy+uGpAVWBbwLO1Pnz7dLIv5TAwFrCYgHGbPnqNAkCtMmURHh6hAx0WvpP6sjKyg3lqfUv1JdQcxHkiZ+e6779o4quQGPfadMeZ+PVhxLAaIbBn1xKjw0YyPjITZlKa4FdLtL7r4IsV9K9PcIercQZ9XWv+yRWTUyPUiHQvgVB3za62KgKfabFV4W79ymFCYvVhgHCmwkAiAZMEV79me94kJMfIsIRYQrpiUEfeBFJKMC4bzm9/8pibba5SnVymIdC/3M97E1vAIJbtrJ90wroryqwk77DL+bpimwfhiVgabjCCFRX5V6X0gJRDETOoRsuRZ/vTTT8MhMm/bf7/9FMiy0hhi7ssUETB+wvvhuuuuM5872OTzzjsvXHTh96xjCxcvsWi8A3brJzuwEJYsWhx69Ohm19avr7Tvkz7kyVqBsmLFanu5EKF3yZLldg7yZd4n88KAQQNCuUiZ4447LowToz1DFhf0Dxx4UUHY0G82sANfNvBKBzfV5gLYIPU/joAj4Ag4Ao6AI+AItAgCUZ9tkcq2ohKyPqDXso86Ibol1rCQCM8//7xZS0AmYLWL5QBWE+i+7LHoxT0DHZlFP+YbZNJAz83JzQ+Llq2QDp4bVq5caVa2w0RwoBtP0ILcD394kfTVVeGDDz4wQqN7t6Iw/r3JplN37dJBC4mzQkFejiwY1hphgq5PkHYsiLHOoM3hw4ernz0Vh2KBuRajj++6664Wl4L7L7v8/5kFBmOjT/T729/+djjl5JPD1A8/DAMGDDBdl34zbvTmzNr5Eu7KWTp2/Xcr/mG1wCPudtECIG7LKvhR8cNjMhkFHcdslLjfln1sattxUpzcZwIpMuH/zne+Y4Jx9913t0k+QqZLF7G+SnOJ6wCxC7bst0yqQeGzmybeIh3YZC8RCojnoLry5KKQIRw5x6ScY7YpiiS8SUK4twT1ChETS5SOM18sc5UEI8JMLmQKTtlBbhvKJqFnlyxdFj75dKFcOjqGAYpNUb5ufZghRnn8exPC8y+8qDgRAy04ZvduXSU0FdhSAS+zs3JFOLTT5/Vm2QDJkJmZoRdGub7bjNpzOdpjNbFJlhQdzKJhnIQ85Mk6ZeWYNGmiAgtNNWKGqMcEDXr77bdMcPPvA7OzxL+TBPnCPw/bhAT4eHEEHAFHwBFwBBwBR8AR+PIggD6NC27MUoGendCfu5jrBZa56NV77723kQS4a2BFwXNYHEBI3HPPPTb5f0GpLlmgI3vGrn36hn79B0n/LQx76tl1irG2Sc9UyapgktySB+6+Vxgt9w4yzHWV++/6DdVhunThNWVrw6IlK8JTik9RXalnaqplSbFeqvzGsFauHB3l/rxGZMk6uXvcpbT26K17yv15J1kvQ0TMmDE9/OKqq8I//vEP6dYzTM+GYJkq/RcLjly5RY9/770wRhYSJSUlIV26b3ZWdminRUEIlRq1U602q6W/Z8my2PXfbfNvfcuS+bZp31ttJgIIkkhAsLLNxor3jlIQBhQEXTLpEPtP4Bz805jo45eGeRcBKDElI8ZDtPqo79lYR9xHcobP3M9nNo4RxmDHHmsBzvMZSxJSeBLMBnYX5hQrCfzg2CbJImO1hCk+Zwhw2FpiUiDoEfjkGcbP7rLLLjOWGdM2rDjycrKsnvZKl8lYunQpUttKBbq+yrorTsmiGuOP17EjPm/ByIj43WL9AQPdpVvnsM+++xgrffQxx4QH77sv3HvPvfZvAvM5/m0k/5uAaohj36gxtmvXtNgTEUPfOwKOgCPgCDgCjoAj4Ahs3wigg6L/oc+ia2MBS6wGrAvQZdGvsSBAl6VARBDc/ZBDDrF7sURYpAU3MsyRwhIiAlcI9OEZs2aHjp2V8lMZ184++2wLTkmMMVwzyLRGCtBjpJNiRYzO/Nxzz5kuTJtYUZxwwglh0SdzTI9Hv+c+Cjo+1s70m3ShWBg/+uijRpRAfOBiAilypKwifn7mGeEHP7hYaeezQ410dSw4sOoYPHiwWWLwLOPMlZ6dLl03PSvdiAd04GgBYY36nzZHwN0u2hzylm2QySUT0sTqdoJL4hw/Ln6823tBINLXuCX3F4E5cuTIcNZZZ1lAxdNOO80EIAIRdpaJPoKzKYW66hbOIXQRTghl+kB/OA92YIoww/oCAYxQBFvaR1jmiGAo6tLVrB+4D/M0npk7d67di+CnTtwuunQqCt84/wIzJ4NQuOWWW8LJJ4wIfENzPp4fSksTwTGrqjaZCRrtFBcXimVepTEmchyvWbPO+pWfny1Ttilh5GMjw5FHDQsZspIAi0svvTRME+P8oyuuCN/4xjcC7ZSWlpqwRrDbGEU+bJS1CGOE8c2QQHbmt+6/DP/sCDgCjoAj4Ag4Ao7A1iNQn9659bV98SfRP03X056CvsviGhN4CAiyWaD/chwtI1hw4xw6I2QDz+PuwLmpU6dunlc8/ezzYcRJp4TpCrqOvoxOC0mBVQTkAxbLr8qt48zzzzfXDqwT0KGJJ4EO/fYbr4eduiiTnXRjFuWog/opLPSxKMdCI4t/LOzxPKQFxAj1nysdl8Dwu+++h4LOJ+YDjAH37MmK0Yb+jbsJi5bowe1I8ZZUQCRuSaf9sI0QcMuHNgK6tZph5Z+JaiQamDwTcAZBEc+1VtstUW99fWQMccO/C6LhhhtuUHDF0+w8E3zG2BTBDjGDAK5bOMeG0I3XuZc62eJzCDBYVCb3CDb812CAeQ4rCdwbOnftZiktEaqFypyBoCZID35rpLqkcP/dd9+pVJiXhFGjRoXTlbnjPy7/UfjVz68ykgCXC14ICP6CgjztExYhfL+VlQlLFvqSldVOL5AN9v2Szxnh2lnuJ5ig8WLptcsuhhdCOi83LyxestgIkThG4lxE3OK5utj4Z0fAEXAEHAFHwBFwBByBHRsBFsrQp5kTRIvcqOfuIn0RXZe0mlEfZJEK/Rp9kmCPceEN6wV0UKx8IQW6dO0e5ir95VGyQEDPPf3rXzeCgPZ45rHHHgtdtDg4WDHRIBce1UIi+v54uUZQ18QJ74Vhhx1sAdGxDj788MMD/UEPRucvKSmxelhEO+WUU0yvjkE1sfolZsVOsn6eNftjcwm56KKLwhuKz9apuJNZRDN3wA2DsWDtEckV5g8U3DyyMhR13ss2QcAtH7YJ7C3bKIIkCg4mo7CKsJZNtQpo2d40vzaEVxSYCEBMrv793/893HHHHYEJN8IEc6qjjjqq0Yk0QjdiU3cfe4rw5b5IPnAfAiqSHBAHFPoE8bBkyRK7d4KIiLzCDiGvfYERCEQDRijzPEISEzHM2BCAnOf5Aw44QH5sd4XRo0eH10a/EI4//oRw2CGHBgQnz8D2EtNBXdL9NRargbYrZNrGy4PvGnaZ8Xfq0insP2Q/RfFdpXqOt++dwJMXXHCBvSDopwXA1HO8UBD88aVDH9PFBDvzC7peHAFHwBFwBBwBR8ARaDkE0Le2ZUGnZeGMBUp0QMgDCv1CH+UchTkDC1/ovOiZ6LxxYXC5ssDhyrBgwQLTabFC4LkVK1cHRZzTtYKw4NNlVjd1smDWuVNBmDR5eiKwZc8uik223oJQYvlAEEjIgI+mTQ1HHn4wnQkvvfRSOFTZ42hj/vz5FlQS1wv6OUXWvOirkBL0A52WcaWrHdBdXbbGPrPoxz1HHnlk+Mtf/mJuyejUnCcIO/EdkhffNkrnh3z4/NKkQeJ/WhkBDzjZygC3VfX8OPnhM+HEJAkhwoR3ey8IEfqeXBA4kQhgDAgb/MWwJoB8wCcNEyzYUYRqvJfnqCu5Ps5R4vnka5zHXYI6uA9hi1BFeHIcCQj2sK8IZfpTIkYWgfap+kCWi6BJPPXArPId0DdM2yCCMAGDcKA+CA4E6Zlnnhn2Exu81157h4ceeDDMnTPXyCLqpo40pQAqVw7jPEUCVtO2VVcnrDIYK/52WFzgbtFr517hnHPPsbrfVwDKJ556yoTuvvvsGyqrKu0lQr9pP+LKuBmTkHLyATC8OAKOgCPgCDgCjoAj8CVCAH0RXQ+dNuq+fKagD0I6cA+WD+iebByjx6Lzcg3dkXPo4Syw8RlCAr05V/dnSg9FZ+UejtF9y9dV6HmsDXIVYyHh3lxdnbDAoG5bJF2xPPRQjIga1YO7BfEiqJc5DHWZVa8sJyAs6D+WDpALLNDRT1wzFiz8VM/tFFavWb05XtvTTzwRfv/7/w0jHx1pC3ro1V3lHk1B4yXYJGOILsefnX3Ybf6nDRBw8qENQG7NJhAgbBQYTgIRsuLOJJpJehQ4rdmH5tQN20qJArFuXUycWeXHTAtTK8zACKTIeSb8kcnlufoIBoRnMgbJxzxjQkiCLU7Q43WeQ0hGoU0/aYvzkDu4XPQXg4urxSaRD5iVIawRjPE6LC3fCZYatINQxjyNPQK15049wjGy3rhfQSIhVxC++++/v9rJNsHaoUN7jXu1BG0i0wV9yc6GREizsXcs6igztZ3DH5TSE7M19hAcsNZvvvVmOPigg61dfN0QurC+9N/GXRvrAcHrwtcg8T+OgCPgCDgCjoAj4Ah8aRBAb0T/ZIuLdQwOnTuSDdwTS7JODAmATsy5SFSgK6PT4u4L2VCxoSbk52GVK+uEnAxzG167tjz067OL2lBMMSmYnTpJ31U6+Q6FHUViFJo7RrH04yxlomgvK230ZGIzYK0NWcAxbdMv2kNnjgEp6Qc6bjv1qXPnLrLAWKH6uljwzH/71rfCwQpoiQXwkCFDLFg9pEmXrl2snjIRItTFmDJrrR5c/43ffNvu3e2ibfFu8db4ISJAIBuYIGPOFCegnN9RSjKJgmCIJACTegQRLOj3v//98NBDD1nU2wsvvNCCyuyhFDxYGiCkIFvi5BrBCjPKJL+1CmmFypReKC09wSpD+hATgmA3CFPa5nvhe0AA0h/85fiOMAfLkRnYbrv2CbMVsOfEE080/7bzFZznr3/9qwiITBFJy0wQE+dhxYo1RjLxHKQI0X6HDjvUUhodPvRwIz4qZYXx2KjH7BnwiBYXDY0foZugJRq6w887Ao6AI+AIOAKOgCPgCLQ0AuiryQtvfEZ/R39DB476LO0m68hxwZGJeaoS70t1T6prUQ+v7x6WPJX5vVkFHZRlsYZKY+3z5DJZUGAJvLcsiSe8PyEMkVXx12VdTKYM3Dj69+9vweAJronlxID+A8L8T+aHnWVJkaYKUpEPqdpvqM9+vmkIuOVD03Dabu9iNR5WksIPhc8xs8F22+kUHUNYInzZYGmJmMu4+AwrilUBOYexhCCjAzEYiKsQSQYm+AhsJv0ImlYt6hcERI0kMP3mewB/iAYsHPAzgxyaIzcJCAfOEwSH6L18ztW9ZSJV1qxeE8477zyLFgyBgTVFnz6l8n1bYPWWl69PML0iVHJzM2XZssI+dywqDFf/+tfhrTdeD5dI0EJCQMDwQsIyAwxgjxsqCcGfcL1o6B4/7wg4Ao6AI+AIOAKOgCPwxRBgoQjdkC15IhvPsUhFgYDgXHQBTj7HMc+yoWNyL/uo93O9tUpyn+u2ESftCT0yMYnfmuO69SZ/TtU+962vWG8Lb/369gtYNRAn4uFHHjE3DuYMZIDDGhnraayD0buLiotsgS5Ti4aUOA77UOdPY+3Xud0/fgEE3PLhC4C1vd6KwMIFAaGUbO2AaVSrT8CbCQpEQfyBI3wRGAhsNo6jWwbHTKxff/11Ix0YF6v/mF9RB0KciTbES8SDa9TZWgXiASeGdZWJuBNM9vUVyCRtg/WHPr/33ntmDYFLBn3GFIyAkVzr1LEoFBUUhqIOHcOwYYeFo48eEV586cVw5hlnhgcfvDfMmjXXyAzu7dmzh7CoMvcOxsg2fsJ4WUyMCLnt863ON954w3IsM+7OnTpbpgvIm4YKQtctHxpCx887Ao6AI+AIOAKOgCOwdQigi6KXs9Ut6KbouclEQtRXo07M8xQ+s9VXT916kz/H+pLPfZHj2I+Gnmm+ep1aP0/VPk8uXLxIC33d5fohF+zsnLBcVhDjFfvsBLld7CTLBnRtFgBJGcrCHyQEseIGDRykeUPN5qDrDY0vVfsNPePnm4bA538RTXvO79qOEGByyoagicKGz1FwbUdd/VxXkvvMRYgE+g3pAKGCcCYWAlYDXBuutD5XX321uS2Qfmfu3LkmvLkPwUJ9mKxxL+l+2qLElwvvF35Q+bnZssQoNOsDUl4SxZcUQlhATJo0ycYESYRQhDRBwL333sTwk5/8xOI0PPTwQ2HMmHFm0YEVA6TF0qXLDBNiQ4APgXn++c9/hkK5dhC8kjH369cvlOxSYtGC1ygCcDelAPXiCDgCjoAj4Ag4Ao6AI9C2CKCX1UcYRL0X/S7ZggFdMHnCG+9jH3Vj9L+6On/yfcnHrT9aKIDmbM3rIZbGFHTpuD/2mGNDgfTihXLFuPnmm816Gj27h9Jygh26N/pxXNi0B/1PmyPgbhdtDnnLN4jwYtWdLQouBB6CLX5u+VZbpkYEZbLARcBGwcpxtOhAUCBgWPEnKCNjZSL+wgsvWBBK4kJQCCaDcMEKgudTuR00ewR6UayXNUJaO0XOVeCcjXK/wAdOIxIJkqi9uLij+tzexggZAonCmC3mg/qI5QFuF3yHRx013ATl/Q/cH5YvWx4OOuggSy0Ee4vlBM/gZgIOuJ38+S9/VrThnHD99debm0dJSYlhh8tHXm5eWLps6WcsYeqON2Ei524XdXHxz46AI+AIOAKOgCPgCDQXAfS9uBjI5DfqvOjoUT9HV+U8G8ds3Iuei26YfG/sD/fWR2zE6y2xj/1rqC7iNST0yK1zu0jt9JCw+Giobc5DPixesjh0l/XD9BnTA+4X5evKbcHyKWW9mKe0ncRRY15Apjlix4EZpFBcnKP/DZXGxt/Qc36+cQScfGgco+36Dlwr+DEhoPihILCwAkAwxXPb9QDUufp+4Jyj/zCWs2bN2sxYMumGUNh7773NheGGG26w7B5EyCWYo7Ga8vFC2MQ4EK02fvWxXAEnM/WCyJDJA8QD2NP3jHRt7RITe84zFogTiAEC3xCbIkPneGjG9Bnhwgu/I1JhTdh33z3D6OdfDKNfGB16KBvG0UcPU7rOMUYkkd6T8re//c2CbL495u1wxpmnh8v+32XmgkJMDKw/iPxLgbCgzYaKkw8NIePnHQFHwBFwBBwBR8ARaB4C6INscdJbn14e74n3cS8bn2Ope4160PNTleTnU93X0LXGn6f91H1oqO4tdEWKO5LGX99dVUrfyQJlmnRtLIRxvSgvLw8lJSXhrbffDhMnTAi7Kyj9Ucoq9/LLLwd06PkiJCCDdlaa+gyCxddXce25xsef4mG/lBIBJx9SwrP9X2RyHgUVvY2saRRKCKjtufDjTv6BcxyFNJYbxHmAUGASDQvMpB0CAsaztLTUAsc89thjYfTo0ZYVA38uhA8kALEPWrWor0phHLIyExjHwJPZWQmBRjwIm+DLMiIGgIR8wGUC4ZeuFJhsyxRE8+ijj5Z/2kfKo9xN7hZdwkMPPmRjPf74E42lJUjlAKX2fETBdB5//HEjHwic88jIh82V49VXXw1Dhw41Nnfc+HGW9xgXjFTF+qYephK+qZ73a46AI+AIOAKOgCPgCDgCn0cAPTzquHHPAiETZhYOWYGPC4Y8je4bC/dzH7pitIzgGudj4Xyqknxvqvsautb481tLPNBiQgNtqG27I2ms9d23RgEkOxV3CsuWL7M4ZytXrQxFiqUGprhrP6zsePOV8eKss86yuQLzB65NnDgx7LXXXkrzKavk+iquPdf4+FM87JdSIuDkQ0p4tv+L0SyLHwkbZAMCjW17Jx7qQ7fuGBC+Mb0kk3bICEgHxod1wxHDhmnyPTk8L/JhouIpIAoHD94/dCzqqHgQ8+TmQKrNKOQ+v09MvT9/PtUzW64F5QqWxUltC9VVNeZGkSUzCM6tK69QdF25S+TnmhVEhQJR9hS50KtHL8Vm2EWkhcYg6wSRtpaes4vyJufk5CmGw97hjTfeVEDJCWHgoIFhuNwxHhn5SBi8/5Bw/gUXhE7CYKVcL4h/ccwxR8nFItcyZGBR0atnL+VT7mHWD0uXLjHSJvav7l5dVD8TCHDsxRFwBBwBR8ARcAQcAUeg+QiwEBaJA0gErFHJaEYKyAULPg3ttPK+ek1ZWFu+TkETK0N1jVwupMRWVlUrk8MGZXAoDxvk2ltVrRhutdfM0UGLVszLGzF8+AxRsTWjaXzyjcZdV7Ns6md6xL0Nl0bb1+OZmgsUtC9QjLeFoausfisrN9jn3WUJ/Relrf9YejGW0iOOPS7cdNNNob/isD355JPh3HPPlaVEdsoeNNp+w133K40g4ORDIwD55ZZDILLAsUaEcfKPm+Pkz9wHO4yfFiQEFhBYPCDMiQGBgM7LzwsnnPg1TdCPls/XjHDPvfeGj+TG0LlLV6XUKQ4zZ30sIqJYAn2ThPsGWU9khmpJ94WLFqueTebCweQfEbh+3YYAQZDeLkNs88ZQtmatXa9SNouMJEKBa5m11g4rVqwK2VnqU/VGWTHI9Ctb/nmqq2JdpQWezM9VKlRVXlO1KZDaZ5NMJXJlGlapF8t6kSfla9eEKZMnytqhSOZgc8MSEQZ77LlH6Nlr5/Dc86PDwyMfDbuUliqjRUF48OFHwmuvvBpWqF9X/PQ/wzXX/lYuG9NVb7rY3o6htKTUxhGZ9GxZiiCYGVtDWzveYF4cAUfAEXAEHAFHwBFwBFoMARYA0WnjYhlusaR+ZOEMHXRlWXn4aMbHYdr0mWHW7Llh5eqyUNChKGRm54Z5n3waqqQvci5IJ01Lz9QuKyxfuToUFOaFtdIxc7IzLH0kFhOQGlj7ko4eFwT0bayEo+stREiMhYZlMH2ib+jTPM8xejV7PnOe49SlIc2yaeepP9WWqm1aSF5gLai1dDZ35toH0W/JkPe84sN9Q2QDVsYwNmtlMQFhsZOsI8CEPjDXYDE3+ThakDfUD+71snUIOPmwdbj5U01EILqF8CNFmEE4UPicbGLWUHXxfq4jaHDFiIIR8mCGyIU5snDYUyZU537jXCMNblYWiCfEbK5YsdLiMeTJZaNjUVFIl7CFXV5rQjhHE/aCUFVZEzZUVCm2RCLlUa7IgoyMRN+ysrLVZsIULsqYTFkrROKhWoRCQftckRXBYjxgQwCRUaPsSFUIcdEQG/Xy2LSRKzC0mSIqNAYRGVmZ2TL5ygvjx42V0Cs3/zNIFphxLDe6K95DtkiKpzWOtYorcfc994aZylN8hHzX/vu3vw0Vqr+4qJPFmsjNyTZSJl0vDITlJuFMAScEMW03uMWB2RP+xxFwBBwBR8ARcAQcAUeguQjMnDnTgoij76KblWnSS4a2JUuW2KJYtXTDfWXR2kkr9jNmzgorVq4KnZUePTcvX+TCupCjwOEdtYj229/9Lpx++kmyhp0k99vS8Ppb40NuTm6YOf0j6ZjV1gaLc+jI6JGQD5FcYEJN4TM6IYtTkB/o45AQ6Nj0jT5G/Zr7m6Kfc19zCm02tzSo26piFuBefeWVsECZL4YfeWT4liyHH3v00XDAkCGWDa9Tp06BWGkUcAAj8IGEaUqw+pbovzX+Ffzj5MNX8EtvyyEj4CL7izDjGEHXVMEWf9zx2SgcqQPyYY3cGkqVvxeLiNmz55if1/e+9z3FTtgp3H777eFjTdgnT55s8RNoG0HctUux7s+SlUOVBLisHKoT/cnNhdhIoFMhQqJapm4QDfAllbJ+kDg2MoI7OLdepEB2dqY9IHllwqt23m9CPDOTqLo8gzsMhIbdas8ynsLCfHtpLFauYlhptg0iRxCGHeW3VixftseffjrsJDeKIllvzNJY/nDddeGEEcPldrFWxIPqaJ9n7hvxRUMLYBbxagzniG+iZ/7XEXAEHAFHwBFwBBwBR6C5CDC5naMU6+iduA0/8MADNrEdPHiwrFyXmZVDrhbH3lZwRDK3oY9hvfDRRx+Fd955x47HjRtnZMJ4pWP/+qnHh8lTZ1la9cVyM5B6KQvactM9sXwg8Dp1oA9CcNA+C4BMrDkfJ9XJ5AS6M7oxJeqDPEMdrV1ie63VTs+ePcM111xjVg33yir6yiuvtPlAzDrH2MEMoiESDywAMr/gWmOltfvfWPs78nUnH3bkb28H6HskHup2NQrDuufrfo7Px8k0nzdPqCVMizt1lj9ctU3cMZtCGCBwDjjggHDyySebQCEY44MPPmipdhC6AwYMknBJkynW86HPrn3NOoD+rJZ527p1Fao/Q8I+04iHykrIEwWWlKsFAgkygVKl+A4J4UxQoISpGuk2YU3pX2YmmUcSbHJVFc8myAdIi3Xr1lsdEBtYZJSU7GL9fvfdccp4sdr80+Z/siD8/OdXhUnvvx+GHHiQ2sqUb+AauZN0UWDJQ/W8/Nz00tpYXWnWFuBCfyBnIkZg0ZhwbOy6ddT/OAKOgCPgCDgCjoAj4Ag0GQHcLMiwgMXD+9LlsE4g+Djp0rFuWK3Fs94lJVpIq7Eg4nPnzrHg6e+9957im3UOt956a5g6darpdtf87n/kdpGt7GdvmSvByy+9GHbru2v4dMEnZk0xfvx4c+mgbgpkB/ogpARx0zjG0iG6U5D1gYxw6KvotpFw4Hp0QWjyQLfyxtbWPxkvQdohGyBjfvWrX9kCJenrWaCkfdxSuB4Lz4CJWz5ERFpn7+RD6+DqtSYhQLwGNoRfFDZM9hF4m4mEpPuTD7mfe5I3zlk92kM8LBWDDKlAMEoEKkwx1/fea/dw0MEHiozY2YTs7NmzTRC99tprYfHixQoIuS7svvvuCtiYIBoWL15qAirRfju9MMqNKc7Pz7H2sbSAfIBAqFDMhry8LJ1PEBE5sqDgGJIhXX4YHK9di2nbJqsDgQ6poW5pj/tI4v6KCmJarDJ8YLwJJPnmm2+GZ555Nrzw4ovhwEMPDd/97vfC2LHvGvFwx223heNPPMXGWq4XWk2Vsp2oTggH8IVh55jxg6/hlAxonePGrte53T86Ao6AI+AIOAKOgCPgCDSCAKvn6JrophAQTzzxhFkz7Lfffsq4MCk88+zz4f0PJiq72YMB8qC7sqFhrUCsBoiLHpogS5ELg3X/K3IfYKLcURNlJtSV0h0ffuB+kRNTTO8dNWqUBVIcOXKkre5DYKDfQkawMIUODRGBfggJAvHAYhkF4iGhoyZiP8Q4CI0Mr9mXW1v/ZNzg+ec//1nB2Y8JvXv3Dr169TISJmaeAwPmD2BCf8AHPTrikWqQrd3/VG3v6NecfNjRv8EdoP8QDRR+0JT4A+dH3ljh3rghPOOPPUFGpJvpWhd85CQ8PpFfF2X//fc3k6lnnnlOjGZR2FVuGYdqEr+LMkzg64bPHb54M6bPCHNESKxZvVZ9yzFGmpdEp07FyHvzncN/rqCggywr1hmrnKGAP8SSgEUlMwWWEgj03Nx8Iyawgsgi1aYIAVww8vOJx6DAjyIbKAwZSwrcOBYtWqQXzjjVtdiOYapffvmV8OyzzypYZiel3zwmfOvb3w5HS2iWlu5qATU/UlBN0gWdddaZIh1UT8U6Ix/ABUzANOLaVHLHOuZ/HAFHwBFwBBwBR8ARcARaBAF0MSwdyET2xhtvmC6K/nbnnXfKtWJ6eOGll8O+++5nGRiIE0b2BbIx7LnHHqFvnz7hou9/P0xWFrcrfvKTMPGDD8L9991n8bsG9O+v5/YOxR07hMMPP8zSrBfJira0tNSsHCAp0C+vk5vulClTTG/G+oEJNvo4RAjkBhNwdMe4cMWqPxN2zjH5jvp2i4BRTyVtUf/AgQPNpYVFSVwvcMMg6Ce6PcE5wYL5A+4XUYdmDykRdel6um6nWrv/DbX7ZTjv5MOX4VvczseAMIsCDYaVSTaCrSlmTdxHQRjEwg+ez2la8idVUaUEplk+dC6yAD0IV4gOiAT8txCyWD3Ael78gwvDKaeeZmzwWPnUTfvwwzDhvQn2csA6g/ZIj8kxdSKYENq8MGCQYbI5huhgcs/1efPm2XN0lXawisgmWrHO1yjgJITE8uUrjLDAMgKiAwuNd98dq5fQHaFv3z7hQ/Xjb3/7m6UN/frXvx7+/ZJLNbb0sFwMONYT++yzTxj77rt2DiE6cOCgsNceu8vygcCWm0xQIiyjtUMUism4RfyS9/G+5HN+7Ag4Ao6AI+AIOAKOgCOw9QjE1JroZX379rXFr5deeslcJ4hH9qZcKL528imhf//dRByUhBEjRoSzzzotDBq0h+mbuGxQB+kjBw4cIB12Z8UJ65LQT7WodfTwI8O+0g379etnBMIeIi1K5MbBRBo9G3cC4jywoHXzzTebZcQkkRlMviErqJ+YFBxT0HEhIph08zxkRWuW1tY/wY55xmmnnWbxNiBkfv3rX9uCIXE1aB98umoBs7syXzB3sLmFzkciJtX4W7v/qdre0a85+bCjf4M7QP+ZFPMjhXhgQo7QxQIBdrYxAiI+W/dHHj+TOpMcyAgZMlZAHkAa0BYWDpAFxICA/IAoSJPLA8QEeX8v/3+Xm+BeJreNl19+ObwiszZM1+655x4LAISgOuywwxQAskjCuszqREhRN5YPkS3GrI6XCwJ94sSJxjhjNoePH8EuISSmKyUmQj4SI5AXY8e+IxzKw1NPPak279MLZ2A455xzzcqhW7fuob0Y8/nKB91PTPjChYvCYFl0PD96dOjRo2f405/+FA5UxN5+fUqV3aLGXkYIUfqB8GS87J182AF+IN5FR8ARcAQcAUfAEfhSIYCeyyIYeyb9ryvtIyQAE90PpCtOnvqh6YcrV66w2GNkLMOitn174hAUhtISxS8bMthijB1yyEFhrnTIQumFZWVrwiQ9XyTLhw61Fg1YVxC0HB0YUoF2hw0bFg4++GBrDyICkgE99EllUXtawcwhK8aMGWMkA7ot16JeDhGB1UZrlqjHt1YbzC+YGzAnQL+fNWuWxdY48cQTzf0lxomDsCHQO/MNNvRnFiCjtXZD/Wvt/jfU7pfhfJomKzIw9+IIbB0Cjf3ziZYD1I4AZjJ8zjnn2CSfyfmee+5pDfMjbuoPObYpg4CwoUrEhggF6kXoRuHBPdQHUcCEn41r7Llm1/V8VwnoKZMmb2aJIQ2IOkz0YcyysHLAbw5hBHN91llnmUDGcgFfsuHDhypA0MthiIiAhx9+2PqBi8fChQtNuMO4wkLzUoB0oQ8IdIiRd955W2zsvarzDHtBYM1wgIJLkvHi2edG6+U0KfSVeV2vnXuH//qv/1ashxOVG3qR+h4srsX7ctlYvXyxuV7wYqG/jJcXGwU8GiMf7Eb/4wg4Ao6AI+AIOAKOgCPQYgig8zLx/UAuE5APxHwgptcCLSr985ZbQ9duO0knJKtapultTIKLiztKd0voy4WFCcsDqY21C0sEMk8strFw1T4/V1nb1pmlAjoq+iu6JQtRxHQgq8bw4cMDGeDQBdn6S6f80Y9+ZPorC2YshA0aNMisA5iUQzpgScHEHH0SwgK9lTGgy6Jfoj8zLgr3RQsJzjNpZ9GvJUpT5wQNtUV/0L0ZN32ETMD9GgsT4kD885//NN0fdxWwBxtw43vjfp5PVZrbv1R1f9mvtX4ulS87gj6+lAjgsgDJwA+aHzdCgMk5nxEEdX/cTfkxx3sItJijVJebxYMCPWZlElciEVsCcgKBDOGACRWClA3BzOdNymAB04vwZPJObIi99tpL2TAGhDPOOMMELkGAEF7PPPOM+YsRaZjCRB83DoQVBAvEBHuEfSQ5ENawrVyDTcb9g+cgBSAiFi9ZGO679+6w22597UWQq5zOCPQqESqYvfESoJ+RrYWhLqkVktQ1ZWJmIHjmHoMGGIvLuJKZ2rrYWsf9jyPgCDgCjoAj4Ag4Ao5AqyKAHoe+CtmAtcHzzz8frr32WlucKtakHssF3GrR2zoUFoRsWfJKjbU4XhxXrK+sJRZiEHHptLqBezsUtrfjyrxc03PRddEfaQ+dF52WeGRMtnHVhTjYTVa0fL766qtNH0V/xDIYvZhzBLIkUxyEBYtkuF6wyMY40N85pkByoOcyQecaOjKfKVgbRB2dfqQqzAdas0Qs6AeEAvo0cR6IdYF+feCBB5ouzjjiPcxNog7f2v1rzbFv73U7+bC9f0Nfgv4xSUfwUTAFg5mdMGHCZrY0DjFOlqPgiudT7SEYKpX2EmGBoIBBRp5VV280QZOfl22P12zMFelQZaxsJCFqNMnP0v3tlfIIwU22CRhbUvBAmiCoEMQI9PPOO8+iFiOkMG/DMoLJPuMgoA/3ElAIgU00XfpCHAeEG2QDY4ZEgIQ46qijLN9w9+5dlY3jgLCxJpHaRyYc6muatYcJHC8kWOTSXRV46KKLwgSRGQh90m7SVyImE9m4764/svboDy8cSlNMxuxG/+MIOAKOgCPgCDgCjoAj0KIIMBFHLyOeF5NfJv7HHXecLRqxcJUn3RNdEV0P3ZDFNK2pafKeWFhjgmwTfFn3UjZqJV6hIKXnbgnWzuQf/ZVCHejYFHRRrv3sZz+zdJ3ojOjHWO1izQARwkT7yCOPtMn4f/zHf9jiGETJ9ddfb/ouwRlZgEOfRJflfggJPqPXQzrQJv3nPLoyx4wZPX5bT97Ry+lD7Mvhhx9uZAMW1/QbTPiO0NEZE/2mcH+cj9gJ/9PiCDj50OKQeoXJCGDWxYQYIXryySdvdg2ARf2iBWHAhqCwvYiHTLHD2VnptiXXl5WJFYSESq1ZBMKc+BCRHYasMMuH2bNDTla2CSisEhA+CCXIEgQXLwyEF2OAkMAvrI+iEOOKQeGeV1991cZ36aWXmssGwn/s2LH2ksGqYt9997X7eRkg6BB4sKyrV68M61X/qlUrrP68/PZWH/3kJYUlxgBF6q2QGwaC/l29BHYRsdG79y42/jdfU7vLFokw+bm9ZMAFwU9hHC1l+mYV+h9HwBFwBBwBR8ARcAQcgSYhgE6GLkZ8hSOOOMLcHdAZo1Vr586dTCdFb0M3ZdLLM4kJcxDxkCvCYMs0bdMmdN+NuicxsafueD9EA4W6qIfPWD5gzYsbBcQAxALn0GfJAoG1Lotl6LQl0snRbzmPawjncTOGvKDvPAvBgHUvbTz++ONGRrBAh66Jfhz1T/rEONGlt2WBHImWDOD7E2UNYQMDiBiy3jEusKH/kXBAT9/WxMm2xK0t2t7yr7otWvM2vnIIMPlGMCEAiJ+A2Re+VlgCYMLFRLypBYFKiUIWDlieExISW2qoqk6wDZkZiXsJQslzyRvPs6XpVuuD2Gc+Q0ggPNu3T/ir5eZmSiAlfO54HosJhFNRUaHIiQT5UF6ecOPADeKYY47c7DOG68ZBBx0kYd5xc+dWry43gUw7CMLITCMEo9CmjfT0DGOveWlMk5XFwkWLhVt/Y6vj2DGV45jAlwhNCp8RmGAehejmxv3AEXAEHAFHwBFwBBwBR6BNECCeAhNx9Mz33nvPXHeZwGPNgPn/PnvvlSAdapXYjVqUYgubFJ9B+lx2tlyTITA2VGwmFHC7qKmp1rnqkJ2Ta7pe8kQZXTLqykyio3UCA2ZRDasH2v/ud79rlrvoouidWANAPKCvY91LbAesgG+55ZZwxx132P3HH3+8uYyQKYIJ/LRp06wunqUPUbelDrbGSmvrqejWFKwamGsQ0wKX6rvuuiuQVQ6swAgM6Dv3URgLW2v3zxr7iv5JmrZ9RRHwYbcqAvhWIfx++ctfWuYHmFZYWFb2m0I8YCGA8I5CIJlEgIuo5SNsDIrDYwKEZyAlKLk5mTJlyzDLiExZQ6Snp0nQKK8xW2aa2N3uEsYFRjJAKiAw1ZzqIeBPpYSRhHzlRiMkOnXqIEEFSbFJEXQrJHxXidnNtpgOEAVz5y6wl0x+fl446aQRRjyUla23e6kLgQ8ZAbmRk5Pwz8uS4OssS4kMCclKvQBgixGC+fk55lbBMWQCLDSCHywgOiBxMNtjrPHFgxClIEARqlzz4gg4Ao6AI+AIOAKOgCPQtghgsUqsLrJPoPtiWcCCEcQDmSaY9JIyXmyD/k9YNXBsFg7KYsZxldKpk2qzupqFNOm8uj9D1hBxIYoRoRfGLRIPfGaBi2wP6JVY8TIZRw+NQSmxysXFF2vdb33rWzYhLykpUUa1HqYLf/Ob3ww//elPTV//8Y9/HM4++2xz20CHx30jLiqio1IItI4FcSzo7am2eF9r7aNOjKUJLstgBhbEwAAHrDZwX2bM6MxgxVjiQmNr9cvrVewSB8ERaE0EEERMhu+9915jXB966CEzQ6NNhHD0T6sroLjOOYRzPEaYxmL3y/IhPSNdHnBBBEeCsUywmATcEXmgYD15uQk3BMgIogRTEEB6zAqWC1Vya6BgegUpEEuunkXYQ0Bs2JBw90AwIbQgENjWrCGVUrEEeLGELv5v2TKpW2vMM2NHiCPIIkmQlpYIgMnnTZvY0uU6ItZVApH7eFkwZuw3sLq4+OILwx+uu9HSMR0gS4rZCpDZTv5/paWlm18gWJRAmiA8KQhXzOqojzF5cQQcAUfAEXAEHAFHwBFoWwRwPYBswOIAnZBjLAogJiAczNqhVreFOIiLSei4rIShr6LbcY1zUkmtZOpcVVUiyCO6sV3TPdzPveiY6Ibog0yqqSPq05AQkBGco388i15LgSi57LLL7Ji4ZSx6EafitttuM6tlMmWccMIJFicCMgW3BRbHeI709LiCoH+Sgj7GerPK6vkT+1PPpRY5Rf1ggB7MYid9Y8x8jsQE5AsYRKsH8KJEPFukI17J5xDYMtP63CU/4Qg0HwGEED9msjvwA99///2tUqLsDh061K5xgh963Y3zCAoKghTBwUZ9bDUK6FAtVmFxLZOMoMG8DcGCsIXpJLMG9/IcdSCUqZPJeqYCN0IWrFPbWBhkiQSgVFQkWGKOEVA8V1iI7xqMBSQEqTszzKIjcT7IF26V2iZK7ibz0cPao3fvHlShlwF1bNKelwdjSdzDy2ONXkaZWYV6KchCQ1ZqURiXlZWHPOGFNV5ejoSltj4lvcPMj6aprRXhsIMPsjRLWEswTgRrxIoXES8wxu3kg30F/scRcAQcAUfAEXAEHIE2QwCy4Wtf+1r4xje+YVklmMyjq5100km2OERGC7JdsDCGzkZ8hzSUPhVICdLIp7NJP6SwSFWjAOXojpSoL6I7o/dF4oFrHKNzoxPHwn1YYGCRzHUWqKIFMroui2voriyC0fd99tnHJu+cR19ngk7gdNwyyAD3XbluTJ061fRpyIsYIJP2cMuILsGx/br72P+651vyM24uZJyjzNHiHToxuvK8efNsDx6QMZyP19D5vbQuAmn6x8giqxdHYKsQQMDAfjZUEIh///vfw5133hneeecdy3WMuRkT4+iPBVGAAOReSAKIgXgO6wiYScy5YIsRfAhC0nf+8Y9/DFUS2rhw4J8Gk4s5GcIEiwrYWNpBKCIEEaQwsQhZ6uTeQgnZoUMP1zNrTejyHGNCMHfuvEVoc72goL0E8Sox2Ik4DhtkMcEY6DcbxAbPtTMzuoYQ+ez5hn9+Iip0KzhQ76uvvmZEykfTp4frrrsuXHHFFeFKbVOnTFbgn1Hh4IMPNgaaWBC8IBgD4/fiCDgCjoAj4Ag4Ao6AI9CyCDSsvyXaQSdFnyVb2qRJkyxY45/+9KcwXXocJv9MctEZY2ERDF0SIoKJeWP1oxs2pzRWP1YD6M70EV2UAPLEsSDIOguI6L/omywuop+jPxNYPh7z/LBhw6yLHKN7RwsL8CBWBOQA7hu0ARmCzs58ACySsdmacYIPi3P0M7qgMAfgPOQDbbMn8CQkDQQLOnRT224u/lszpi/LM2758GX5JrfROJKJB4RG/NHyo0SwIbCee+45M8cilQ+BGCmwq7CkmGpFARPNzbiO8IFkgCSAtCB7BMKKekePHm0ZJGAvs7PT5FqRE/IVFRgWuXJDt1DQPt8EJudqarKs7Tdefy088/RTJuwRpsRooA/4uSFM33rrLatz9epVZg7H5L2iImGOBpkRzcci8UAf168nE0binoQQJ1KxWcrZC4Rz0RqB+79YSZjXZco/BDZ2j90HykKvOvTrUxoOOeiA0L1r59CzR/cwftzYcPvttxvRgGCngBvP0L4Lxy+Gut/tCDgCjoAj4Ag4Ao5AcxFg0ot+S8pKspeVKLYAxAMLQ+if6IfJehrHbJASkBA8vy0LlstRP4cMwXWEc5AFZHxDv0fvJ+U8bhYsCuJ6gQ6K1QXuGTfeeKPFijjssMPsedLUkzED4oExoqtCOiQsP5S9rlaPhRhA/29uAU/mJRTGQL9ie8RPw8KDexgne/pEiXMY++B/WhwBJx9aHNKvXoUISjYEZV1hiWDBLAuB9O1vf9t+/NyL8OJHznGy6VXyZHny5Mnh3HPPNTJg0KBBlsaSNDkQHmSSIH4EQXBgWxFSCA+IAgQf/YBhxTwMoThlyhQTlBANkYGFYMCKACGKXxu+eLwgRo4caVYGCFbain3E+oI6YX8hTRCW9Jd9PI7fPkKMrbklCn5eWtEKBFcSxgmJghUJaZHAmb7CtCNcKQhYWHcvjoAj4Ag4Ao6AI+AIOAJthwDkAnokMboI7jhHZv+vvPKKuQGQbQHdEj2YDR0SXTjqwC2hPzZ3pPQrTsrpD/1jTAQ7R1fGagC9GKIAXfTII480PZTFPPT+xx57zIiW119/PVxwwQXh/vvvNwsD6mDSz1jRYylYPdNG3OMa0hIYoLPHeqIlNOPgPEQHcxEKlg985h76gE4d9W+7wf+0KAJOPrQonF+9ymAU+bHyo41CExSiMCXSLz98JsYILCbu8YePNQHClw0WmEkz1ygQBOQRhhDApQLBcMkll1iqHPzmqAvCAKGHEImTf+qIzCmCA3aVbfjw4XYPJliYWEFQfPDBB9bGqFGjLKAj/cFkDPYWMgNygnPUSXuYkjHW6COHcKIwbrYo4OLnZDzsxnr+xGfqufSZU9zHuMCVQEUQJAhIAlpiGUJfsCSJL4dogfKZSvyDI+AIOAKOgCPgCDgCjkCrI8ACEBNtrB3+8pe/mCUArsMshkE+oLei/6JXoi9yb9SBk3XKVu9oAw3gUoEeHYkR9M+os6Jj9unTxzYsItDVWTDk+lFHHRXOP//8AOmAPj1kyJDw0ksvGQFBnaQdxfoYPZxCvYydgo6Obove39wCttQb+0xfmFtAOHCOsbFQiW7NxjG40x/XoZuLfurnPdVmanz8aiMI8ONldR3hROEHDdPLCjw/3l/84hf2A4coYILMxr2QEGw8z30I3/hj5/jll18ODz/8sE36ISF+9rOf2eT/D3/4gwkyJuAIadhRfLli+9QXBQnXmZBjJQDLSuFeiIQjjjjC8v3eeuutlomD+jjHZwQfrC1MLuQGnxGqCE0m+uyxQmCscYvCCmEax24NttAfLEcwdwMzBCfCG0FJuiOIG9hnMKNtSsS2hZr3ahwBR8ARcAQcAUfAEXAEmogAuieTX/TOQw45xCx2WfxiAvzoo4/aRBfdFb2VEnVhJs3olNu60PeoW3NMP9HP2Sj0EZ2XBcBhiu1w6aWXhlNPPdXOoUujN0M8sKHHEyuC4I/EKPvhD39oaUixRkZPj3Wy4NdSFrvUSR8ZA5iz0Eh/o1s3ejWkCfMD9Hr0ecZJ+y3Vh239HW6v7bvlw/b6zewg/Upe3WeSzo83WgYwBGI14DJx1llnmYCBIUWwskESUBAQ/OAR1FxnAv3kk0+GadOmhX/961/2HMFtcK/gGYQC7PFuu+1mz/MHoR2FNX2KrDF94Tx94x4ETBT0WA1gRcFLAfKB6xAeBMekH6QQwr2C5zEvwxqCuBOY0M2R+RwkQIncIegPwi1ujK2lSiQ36BsFQgUCB7xon2OsSriOEOUlQIFx9+IIOAKOgCPgCDgCjoAj0PYIoJvFYOnouddff33Yb7/9zK335ptvDkcfffRmnba+3qH/bcuCvhmJkKiDsujFeQqkAXooujT3oZdzfOyxx4ZTTjnFdHgW7LCAQJeePXu2LUiyaEYsOCwRiAWHxTF6OXo6ui1kTbQaac740c3pN7o5pAP9oPAd0A5tcg+uH8wv0J/BvCV1+Ob0/8v8rJMPX+Zvtw3Gxo80TuYRHDHeAE0jaHB5wIwKphNrASb1MZZC7B7CgVV97uM6QoI4BhRIC64j8CAkWNGnDYiHGAMBYQHZQD8iGRKFdhSSCBeOEThYClBgQrGcoBAAiLqfeuqpcPXVV1ucCOJFYCoGgUG9BMtEQFEXY8VtAzIDlxDqgQigDxEP6m1MiCEUUxWe56UVTdAQjpAz9AXWFvID0oF6IFDoK0IbPL04Ao6AI+AIOAKOgCPgCGwbBIg5hssu+iXxxXABRqfDKgBrVSbrLGihR25vBT2avsYJPDp01LHpKxN3dGB0UXRgMkWgn6ODop9zHQtiLIkhFNDbo9vz73//e0tDikUEz2Idge5PW1g/sNAY9fjm4IK+HHV23F8gSw4//HCbD9AG3w3txZgP9J1+cK0x/bw5/fqqP+vkw1f9X0Azx58sHDjGSoDJ9/jx420iT1AaIuEyKcaygRItHBBqkAFxgs6EnsJ5LA2YQPPjx9qAtEQIOT7jL4fpFtcRFLQXSQaroPYPfaFPCMvYT+6DJKAghKiTAhER68AcDIKECT+mY7wgXlGQIFw+eEnQB9qkbQLrMOmHDIDAQPDSVhxT3Fsj9fxh/KkKgpj+02dIBsgPYlHAImO1gZDEQgQrDQQoheu8BLw4Ao6AI+AIOAKOgCPgCLQ9Aix0keKdgt6IPkegdNyRcZ3F0hZCgsU5JuZRf0TnQ8eMumrb9zzRYtSJo5VA7Ad6M2PhPFuJFsEo0b0ZHRhdlXEw8e/Xr5/tScmJ1QO6KqQMLhpPPPGEuTf/3//9n+nR6Mzo1ujvLDo2pzCngBihHvqGpcYuu+xiG6QELh/0hT5Gq2HmH/Qf/OO8oTl98GfrR8DJh/px+cqcbezHhfBIVeLkGiEFsxkLqXTITIGQwq2BApPID5tJOj9sNq7jzoAgi6v7CAQ+E5uB+hFWCGWEEewx9yNI2NN/Nu6jr3GjPYSV/IWxAABAAElEQVR9vI7w4ZhzsLEcU6Jwx+KCQhuQEhAb3EOQS9IFvSLyARcShBfmYtxDnQhYBGrsJ/3GzQRCghcPAo0+US+CkLZjgSRojO1GsPMMLDJ4wdxCLBCfghSbYENfqT9+V4wFnJsruGM/fe8IOAKOgCPgCDgCjoAj0HQE0IujDorOiI6GzkmwSfS2a6+9Ntx3332mGz/44IPhwgsvtOtz5861CTI6Izog+iXH1MfCWJz0cx6dNm7UH3Vb9uiMzS2RgEiuJ+qxcWzxGpN4zqHrU5jg83z8zOIdz7KQho6KGwr7f8m9GkImjpcUmCwwxsI91Mu4Y0HnZf5A3eDAFvV57mGR891337X20NOje3XMzEFd6N/0D/xiob7Y36hTx2u+bzkEnHxoOSx3yJqa++PiB4xgiAVhg3ChXiblEAT4flEQtkzOEYgIEgr3IjQ4H4UcAgRhgFtDdDOgLkyzaAtLClhihE/ypDsKQs7F42RhZQ1+gT+MAWGIwGQ744wzzKeNDB4QEPiyEbEX1xLSKGHdwTX6etxxx1kUYPpCn6kLgcY4EZich1DhfKoCPvSBgmBHWFIfFg9YgEA0YLaHb2EkG+KLKFW9fs0RcAQcAUfAEXAEHAFHoHUQQNdFx0PfYzUf3ZZzTIRZhBs3blz47W9/a7oiC3ZYsXI+Wq5G/RC9Gv0RHQ+dj/o4h85ZX0H/jc/Wd72tzkVrAtpDZ2UDB8gH4kOg25IVg4VLUsizYIcVL/o294IXJAJ6c1yARP9lfJEkAE/w4B7Ocx1LZo7BCLcKdHcsTLCCeOaZZ8zFG9fugQMHmk4ddWeeoSSTEXbC/7Q4Alvonhav2iv8KiCAgIuTY8bLD58fLj9ihAimVeecc45BgZCI98YfOReiiVUkChAW+IlRsIJAECOIIjlBnQjoOMlmT91xQ5BwvLUChDFFwU0/Y18RpLhXnH766RYX4pZbbjFLiNtuuy1ceeWVRjyQ5/jcc881gUbMC4QpAo8+Q7IwBvpGH5NZWhtsPX+w9AAXyAVwog5SNhGPAjaXeugTBATkDiWOHYHsxRFwBBwBR8ARcAQcAUegbRGIOis6GbpxdEvgPC7JZIEjICWTZfRF4p498MAD9jlmjUNnZnKOHoguymf0wPqIB66ju0bduG1H+/nW0FljgRyAMMDtAXIBd4fRo0ebSwbWwmeeeaZhgs5L/6N+zDOMlfFHXR+9l3EyL6BEfR2dF2IDywmw4DOLlrhO8x2AG1bJLOSxgMnGderjGlvEL/bb962DQPqvVVqnaq/1q4JAtHZgvPx4ERL8gGF0cVO48cYbLQ4Bk3dYTFbzESJRYGAJwDMIBwQrk2gm7QjoOcoqQSRchBhxIHBVoGBpgDCjnlhifXyOQipea2if/Ezde7iG8Ip95TNCCgYWFxGE6IknnmjjwH+PYJX33HNPePHFF81iY9iwYUY8MBZePIwHgUodbJxjzKkK40VQ0jb9wBrkhhtusD5gmgeWRO4dMWKECVvqj/dSL8deHAFHwBFwBBwBR8ARcATaDgH02WQCAn0SHZk917CcPfDAAwPBF3GlZZKMpTCr8+iZxPZCf0Sv4zn06TipRmeOdbHnPCVZJ47n2m7En20JUgVdl0JfmAOgk0I8YMWLZTRjOu2004xwwSWCAJQliiEBbjyDjhsxpB7GF8cIQQM2YEk9EBcszEFAUD+xJnC9uPvuu20h87rrrjPMCG7JMxAPsW7airpz1Jvjnna9tCwCW2ZuLVuv1/YVQiB5Ah0FDcNHsMSCcKTEH3c8D4HAM1EAwPxSsC740Y9+FB555BETIgTkwSIChhSrB4RUZEKpk/oRJmzUuTUlWVBTJxtjQ9DxsoAkgWhhj5CjD7wg6CdZMe6///5w1FFHmQXEVVddZXmMCbzJM4wRgQhhwPMQDwjLxgr1U3gOjLAIwWTvo48+sqCesLic41rEkH5T4t4++B9HwBFwBBwBR8ARcAQcgTZBIOp6NIZ+xgo+k2VW8/mMRQP63B//+EdbYEP//fGPf2yLbOh86I64J7BoR2HyzjM8i66LfsoxW9RV7cbt5A/9pZ8sHsY+Rx2aiT/6PMQL6e2///3vm5578cUXW0YQLIZxS0HPpkDCJOvM6ODUTwE33J1ZnMNamvkA+u/bb78d7rjjDtPhcbugDRY0KVgTx4Luj54fMeQzOrqX1kPALR9aD9sdoubkCXd9HW7KBJaJdWR0ETAIXOp99tln7QfMqjzEAdc4j+ClICAgCmA2OebHj3sCrCjBeTBLu+yyy4z9xbWA5zjPfQgkWGEKfUwWHAiQ5hTqi1sUQgg6WFwEKYQAGy8BXiRs3AfLSiCh/fff34QhMSHoJ/jQJ8zrICAYL+PgucbwhWChTXCBzGGcCM+JEyeaoD7vvPMsE0iMBRGxjbg0Bwd/1hFwBBwBR8ARcAQcAUfgiyOA/oaOh36Mjoj+FgvnmZQzqUZ3xO1g5MiRtqiEDkxwcUgHVvKxbkVfJPA4dTAxjhNv6ov6Knvaibp1cnux3eQ996cq1JWqNPY8ei91sEcPpt9YK/AcejD4YMWMPk3wzWOPPdbcIrAkRudl/Oi94MHzjId5BIU6mT+ACbo191M3LsjMFyB6WAQEP0gLLLHJPAKpAXa4LYMT3w31JmOVPJ9JNX6/tvUIOPmw9dh9KZ7kx4dwaGhL/kE2NGAECUIFQYAwQZgiIPBhw/cKvywCMCIYmBwjNHiG+2mXe+M1+oOQjQLhrrvuCq+99trmYDRM6HkegYI7AvVxL/XRV/ZfpNB+Q89wHiKF/iCsIAxok/4yXggJ+sKGewSCkmBAWGbA7kIawMLCykaXEQQi16mL0hDu8Txt0Q7tgiXjxiQPNhzm9gc/+IFZPtAfcIh48JlnvTgCjoAj4Ag4Ao6AI+AItC0CyZNadFvIBjaOuYa+jE6HqzH62wUXXGCLXFhDoPuiU6LzMqGOVhDom+jL6JLop9QV9V9GRz2cY+PeVKUh3Tc+gx6aqjT2PH1mjBAH1IVOSr/jIhkxMLgG+cJiJTEYuA/9FateCAVIChbX4jMs4KETM06eh6SJcw7uIUsedaInY/lAoZ9YVKCfEyCe7wD8aYt9Mk7US0n+7uyE/2lRBJx8aFE4d7zKEFCpSvKPsr77mGBzD3sKP3rqZMKOgHjrrbfChx9+aJNkBAmTaH7UFH743MszWBUglGBAERQIV6736dMnvPrqq2YBgYBBoGBZgFCD1OAcAhoig+difxFeCBjqbmqJgpR98nHsL31low02hCptM1YEJIxqtIaAeeUFMnPmTLNQmDx5stWJiwRjom8QEsWdOgfEe0Nbu/R2spZYFrp17xbeGfuucK5SkJ4XlGLzE40tK1x5xRXWD/Cnz/QJ4clnjr04Ao6AI+AIOAKOgCPQ8giknpw23l79i0XJtdbVjZgaJl+vv4bGW26LO9Dz0MuizsjkG32SSTL7OXPn2WR5bbkyV8iSVjeH7rIS7tVr53DKqaeGcXLbJbPaVOnQi6Q/FxQUhn1kKfCJgrm/996EkJObJwICMkOWFUFIpKFby9JCAPE5PZ0FKBCqf0voufVf45lNmxq+xvV26m9DdXO+rGyt+tzeMFi/ngk/bsw8E2QVTEaKIAuEztLj18vCgfgLBJJsF/7+938oQ8WZymz3vuYCLGZmasGuSDr24vDmm2/J7Xi6dOhKwxF3C3TdGHCdOcTYsWPD5ZdfbgugzBd+85vfWGwNxstiIIuJEDfo7XwnCRy2EDd85ryX1kMgTRO85N9x67XkNbcKAo19ffFHlapxJtD8CFm950fJBBrBiMsAjGOqwiQ/VWFiTh+4L/7YaYc2EMBN6f/w4cPN9Oqaa66xyT79wgzr/ffft3poAzYU8y1YTYgI2uN8LLRTHxaNtR+fb2gPScJYKMSpIEYFeHKOPkC4UM466yx7AUFegPFDDz0Upkz9MOw/5ICwUKTFHLlSkPana5dOYcnS5SZIs7My7CWyfPkKs3QgxSgMMUEuS0tLw48kXL9/4fd4RVgb9f2pb8z13efnHAFHwBFwBBwBR8ARiAik1o/QO7SlNax/xHrq26cxsd2UmCzH63aKWrnEvs7GfbE1nmR62C6e4OIXLDZ3/oLPfJHbU+GXIAu21AZhAImA/srGIhLWrgQxJwgj+iSuyCxesbrfr+9umnTnSNcstMUm3JCZeLMoh37MPj8/TwuAb5sujJsB1rL0CYtcLHDz8nKMAIizwGQ8OMciH/3o1CmR0nPhwhU6Lla7QXquFh5FFLTPl54qRmjlyrXWfk4OVs3EuGA8ifFVVJDpgtgUTPCJ30AGjywtUG7QgmS25hprrY1p0xLW0rhIXHLJJaZH/+lPf7Kg8wTnZPGSFJnMHQ4//NAwb/5s6dgLbZGPLHOQDlhCPP3009YXgr+TPQR3aPRyLI7RicEmeX6w5Vvwo7ZCwC0f2grpbdROUyafMIFYF5BFIQaJRHhFl4NUXY8mSg3d87e//c1+6MRuQGDQH1hKNljhaKnQ0PNM7on++73vfc8IEeJHEKgGcysEI9YGWDdgAUH2CdhPiAj6T0HQIrQR5pRoxWAf9If+pNrifan21AlWRCrGvQSLD8bK2Kgboc9LgxcGriiY0eGDNkNWEX369gu5eflhltjb1avXhJ177yILkDw9m7AOWbxkWbhLkXpVkQii3PCKvifY5KqqassikpMtn8IUnaN9L46AI+AIOAKOgCPgCLQoAkY8bN3sX5qXugLLUKujaGdHtR/jaWpP3uh/bBEtKaEpcfaLl22rHiUGHMeyZfCcRy9tJ53ylTBC6Th/8YufhZNPOS3MmTM3PKiFKwiF+fMXaDKfHU4/46SQld1e7smvS7+cE56XZeyYd8aGgsIOSne/ULpkRvhw2kfCLGGJMHPmLLO4/XThopDfvjCskT65ZMnSMP+TBWHuvPlaDFsclq9YGVavKZPrQ1ft18v6gICRylKnujIyiOMQwuJFy0QkbAoF+Tl0N+TlZula4suTah82iWTAyEFqcMjMUEwFhqWvCEKiYr0yvbXDfVmuwllYTpPVIkPkQpFIiK5hzuy5YcJ774cTjj8xlOxSGrIys8OzzzwXyteuCwMHDNIcoHt4/Y3XQ1FxB9VRaSlLp02bZm4bv/zlLy1zyKhRoyztPYuCzBkgHFhkRSdm7hDnI1/8X40/0RIIOPnQEihux3U0Nvlk0owf1Nlnnx2mTJlik3WCGDK5T3aRaGiITO5po6GNyTbBYM444wwjNqIAoD4m4FgBpCrUC6FAO0StJRANDCepLvHnKikpsf5jYUBduDIQDwErgmRyg+cpsZ8cQ5zwuTkF06xYDwQIlgkQKxAPXEPAQXwwBhhrSBE+gzVEwpADDgi7aAwQQDCzRv7opbNi5SoxyatDzx7dwgsvvGSBciAxbrrppvCBMChSPaeeekroVFyUeGc1MIjmjq+Bav20I+AIOAKOgCPgCHyVEdhKqwcgM/LBGIYkHUyH9qnuvhbjeCd7SAciGsRztbd8oV0z1b8v1Nbnb5bNqjqPZsoYbNOfhI6aCICIfs5EeeWq1bZqP1xWwCxwoZtDIkyZ8qFW9keaXoiejY6ImwEbi3DomVjhsjDHIhwuClgeoxuzaMcz3Mc5tqiHxgW7hQuXmYXx/Pnz7Tr69QoRE8XFnUO3roq5JssLcRHq4yZtidTxFRUbTSfOzW0n8mOZJvx5Rjhs2LBRbZKZLpjLBFYeHTtmS++tsj6oe+ZWXFycJ705X64Xfw8//elPTZ+HWGDxjpgQY8aMMYyOOGJoKFu7WsTDCLM4vv7668PPf/5zGxcLgX/961/NShiLaEqytQO4Mv66i5F2o/9pEwScfGgTmLddI41NPiMDSDCWnj17hsMOO8xYQ1wbog9Vqt43Rj707dvXLAIQHMRBwJIhso8821hMBoQD7hXnnHOOBZ584oknbJJ+wgknmDDFdIo6MCODfMBMDeIE4cuec9QR/boSgj2RmhMBxHn60dDWGH5cR1BDOIAfcSvoE3Vzjn5hCscLIO4hKfhcXV0TRr/wgljmFRLINZa9A4a2oED3y/qhunqjIvT+zvIUQ6ZwD4TLYkX3RbgO2K2vfTW8tBoqjfW/oef8vCPgCDgCjoAj4Ag4Ag0i0BLkQzRxiIoME3AarN1HgoBzyVu0erB7G+xg6gux7tR3tdbVRGwGao/9YCxYCBAXga1z5y6mm6KPo1MSeLJXz+6h1869LUbEb3/7P+YeDYGQLSvYN954I7z44v9n7zwA7Kqq9b+m955Jz2QmBUIJPbRQIl0EBCxIERRUECn61L8+sRcsD8sTlSdVQOFZKCKhCkRCJ4EEQjohvU4yvd+Z+X+/dWcnk5jMBAIyPPdOzj19n73XnbvOWt9qf3dP4FXKC3Hcccd6+ckjjzzSjX0jR46Qsn6sG7SQVZGXMZ4hkxcWFggMKHKQg/CEoqJCAQ4b/DjPRWZFdgWAQCaf8eIsyfR7WLtABXK2YTwjdwPVJxoa6iUHFwikyJd8ngzB2LixViESG5Vgc7Huf9leffUVPRv5/mX39CU3RFIeT5X3Q5lKcP5IRrd9HTih7OjSpW9sBk3GjRtrLa3NygE3VZ7Ez3m5e4yoU6ZMsS996Ute9p4wlMrKSu8Tgx/yM/OkhTn7Tvx4VygQcz68K2R/+x6K0txX60/55EeI8gw4UFVVZffff79b5lHa+wMGeC4/6L4aHgDU133f+95nv/rVr5x50S/HWfobP0wX8IDxkLyRmK6LLrrIvvWtb/ny+OOPO0PBw4JynjA+GM1pp53m14N6BnQTtJftMC+AF/rtq/U3PhI70g+MnH5BjvFuAFGGgQJA0HgpUOaH6xgfzPTSz11mufkFntfhwAMPdI8OGDxMHK8Q8kLQBy8CwBYSD1EDGqZKmExTY4ONHD5ML+Qd/w309/33Nfd4LlIgUiBSIFIgUiBS4N+TAn3LP5I7UrZN/7jzdPKcD1I+N4ddcGtAEnqtkW586TkW9tkl30O4lNvfbHun5aO+6EcYREJhCyAPEkv/aR7Ms7q6xsoHlfi0GhpbPMwYmZOF8NthQ0fIW3aIy7rIn8jLv/jFL9xDGHmY52PxJ/wZzwY8GPCuffXVV91LgITwKOR46HItsiwGQmTl3go64AJyK9679ItRbd7cubbbuPHKU1bucnQw5PGM4ImMPI5BjXPIwoAYPC94JWOoYwx4MtOWKvcZzzpYHsF4YCOfMx/my7j23HNPl6/vvfdeu+LKy2zKlCM0vybXK0jqPmPGDAcrkL+DwQ49g7Gzhkb0xX5/sr8PKH68YxRQ+o/Y/p0pgDIOgMAPknAGrPMwKX6cQUnviz79MW/6ghFMnz7du6F/WlDSfaePDxLkMDaYGJUiULzvuece+853vuOeBuSAgLHBxGB4eDswHzwDeAbXMw+YHagtjA/my7GAgvbx+H5PwbR5Hv2z5hmAD9AFZgsjZgzUaYbZkaOCccFEP//5z9vNv7vVHn7kUUeScSk79dRT/WWzclUydAN6wbC5h5Kj9WLMV6sEEy+UkSOGJd/K/Y4yXhApECkQKRApECkQKRApMEAp0BtFQPNmvwdckDgl5Tg5bl/1XNv7lgE6qz6HlQQnqCqhyzQZ5sMm+ywozI1NrS5PIquPHVvlnhHV8iLAgDV//jxPsIicjZxIeMX11//Wr3/xxRdt2rRpLgt/6ENnevU1PIJXrlzhcumZZ57hYAPGLWRUQoaRQceOHeNgAIYyPG2Rl/GiwOMhkeiQ7JzuHhIVFaPUz3Llc0iT/NvqnhlMtr6+TtstMmq2a0xJAARPCORfjjc1NTqQgMyObL9q1Up5eJS5YY41CS2POOIgu/POO+wzn/mMvH+/53NErkamRiZGzh+tUpyAIJdf/jmX5bkWgALZm8TzQa9hH1kfPYFj6DY0ZHbk99jeHQpE8OHdofuAeSpeDzAFFHeSOoI8VlZWuvWdc/0BEP2BD/zQQUpJwsiPHebBPWzvbAMJJTMvDSWc7LUo89dcc40r+jBOQh5CqAhMmtrJME88CGDwnMM1DcYVxsR1/Y1/Z8YI/QLwQCweLQAboL40EGXoyfMDygujv/zyy1VGc5jdcccdRkgJoAQ04sXBXEFv6X/q1KkO4AwTHY499lgHMbzj+BEpECkQKRApECkQKRAp8F6jQF9hGz0KuU9J2wFokPjoGjqnd72FXne9p13pwcEHdcCc5IzsMitya0lJ4eZ5K0WC5MxuS+g4si1hzHm5+VLmm+VZPEVyYrpNm/aMK/177TVeCnqt/dd/fV+Gu1qXH5FNkX3xHibEAuCA/fXrlWByY7XNmzfXlXFkWbxvUeSRkU9XyU+U+VGjRipxepWenSdQJNUqtD/1b/fruTm6LsWfh74AgDBkyGBX9pF5MbgBPhDGAbCARwUhFoAaydDnNJfn0Qnmz+9WGc0FGvd/O7hSUlIsWnQpjPpA96AAAGEszH/PPSfYmR/6oIebQHtyvSFbIy8j65P/Ajmc+QA80IJOwzgx4MX27lEggg/vHu0HxJNRvrHWVwhFhNHwg4Xp4f4P0wiK8lsdLPdPmjTJ3bz4scPsUMBpMKH+lH/AAxR4mAbbVVVVfi9lN0kwQyLLc845x775zW/6OZBdlHe8I2BuMB6eC7gCUgzayvNhUDAmkOW+Gtf31aAd/dEPdAt5MnguDSYXGCH7MHQaY4KRV2mhVjOlgfBswPOBe+aprjOgCog2iO9f/vIXWyrm+k15fMCwK0ePtIReROli+rFFCkQKRApECkQKRApECry3KACq8CZhhJ7LASF8862KQJ5rgh7eagdvL6UlPkqGTMrFyMbIkyzI5VSRYL7IwXgLILvm5WbZiJEjLEfbGzZUy8CV4TIlhr66umZPSN7Q0OrK+Sc/ea7uVZUJyY4f+cgZMmyRwLJIiv5CP4Yci2yKh/FchVNg/MJDAnn28ccfUwjwn3yy++67r3tYEA48UZ7IABzkmmAfjwhkYbyVkfPpc9y40ZL953uiS4AHgAuMao0KGQaAwKhG6UyMc5SSR8ZHBwH8qKysdIAFuXi33cbbZz97iffJswAoyAeBnH/wwZN8TISE0A9zpA/yWeANEnQMaIpcHgyD0evh7f37fbO9xZwPb5ZiA+x63I9gEDAlmAdJV2gwIH5kKOJ9tXA/P1Ay43I/yi4/TPoLQMGO+gg/7B2d5zggxuGHH+6MAuYFU0JZZ8yAHH01mAnMNyxcCxMJy/tVhggvB8YNCAFKC+iAAk/f0IGQD3JCAGKQNwIGR91fwji4NxwnzoxzjBfPigC+ME6eB3oaQAb2mTtoLdvQiTVMk22uhQFznrFwH+d5mXAf64Sg7OycbFv0+lLPysu1gDVf+MIXjDJBjBkAghcBnhvUOf7d737nQFFGRqo1NjRZUUHeAHl19vUtxnORApECkQKRApECkQLvJQogp+y4dStfFS7sO74GZS/IiKyR4zbvI7mE/nVuuy2c52Tvx4TL6WK7NyYPSmXv82z3ttU2trk6jHWbw29qF9kNSz0yNV68GL7Y7lS+h2TOh1Qp8XVOm5LipDzc1p40XlGGklZb12jFRflbPVf5yr3SRDjY3NLuijfyJkv47nKylfFRjeuRZZFNHczQsU019W7gQu5kTAAbjHGpPKAJx2Dc5GR49NFHXXYOci/XVK9XSXvJ3ZUqD8+z8Dzg+8Z7F09ltumD0I1XXnnF5Ww8edEruB+QguN4ZCCzI4dzH+Ef9IHsS4l6L5l5ztn22N8f8/uQzXlWqSq9lSkfxrBhQ/1ZwVAI+IDuw1yhQ2wDkwIRfBiY38tOj4ofMgwCJR3GwA8QhRtmAIjQXwMdhAmQmPGyyy4TuvhZ9xLgRwuowcuir9Yfc4YBoXhz3aWXXmoXX3yxK9H0Gc711T8KeQAewrOYG3NlgWGCghKCceONN3rflOg57LDDnKEzB64nNgzGSpZeAAiSYDJvGgDNzJkznVEBHkDD888/348H1yyuYR59NZgd9wN6QD/GzvhoABGMtzcY1KG3wZp16xUyMszWrqv2sBdeVJWVlc60eUmACsOQL7zwQo/n23ffiQJvWvwF0t3Vafm5qlvc16DiuUiBSIFIgUiBSIFIgUiBN0kBZKcdt/7BB2QeGrJbWMI+60RXQuBB8hkux2gzVdeG5mAFOzsahi7d0Slu6xt8SJVsiHy75Xnc07sFmbP3sTe7jeyHLLdta25ptbSMTJ3bWsbuSCSTROar4hmto6NTcmOa5HoZmwrzbPmK1S6bk1sBhT0zQ163uq6tLWkkQ+ZEbKdaGuPnO8zY5hnesT5adQ/etYRGK5LCW6PkS+RlDHpBeUduzc/L8ecsX77SDWIknGxubLLBqsiBLE9IBPIyfeF5QMO4hxGNvG+VlZV2yCGHuL7C3wWAAzI5xjpkZkAZZG9kdu4vEtiyfPkqGdtG2N13/9UuueQSv4awY0rOP/vcMwIqxnleiUBjZHC2AxDhg4gfA5ICEXwYkF/Lmx8UIAQ/aIAIGDbbLNtjetv2zg+WH/bfVfaR0AQACdBI+ur75ZN8qWzbX+99PAlAP6l2gWJNlQaYGswKJhGU89739N7mGn8BiYmGFwFjYgnzA+lkH1CBihq33HKLM0DKcxKGceihh/pcmA8IMwwRZgpteD6MijnDJIPHCHFlADIvvfSSo6i4erEwBjw3eB73grAGN7je42abZ4VzPAPwIszbAZW0dLvut9fb/gccaFS7uPLKKzfPAzAJZgzyC3O++uqr9bwMMeOV/kKAOWfJ+4HX5o5fnduOKO5HCkQKRApECkQKRApECvRPAeScHbedAx+C3LbtWsKUyRfU/4VnBFkmrPWEzfJNiM4I5/we9dFX2znwYWvlv3d/Ycy9j73V7d7GNmTutPQMW712nQ0dNsTniGcC02lubnHZFqABbwaXVXdg96qrb5BcmOkyMt8VYEEAb9qk2HMv8jHH03uMZ/UykDEWFH5kUuTyQZJtezfKv2O8DNTtUt/cwzNYkL21YXmSa8M1jBvZ2IEKydrkhaA1CqAAfEDexpuBZ3IdsjPAB2tkaWgNXXgO8jFjDsY/1ngm0zdJNW+66Sb3UiapJbI619OQt9lmbsEDwk/EjwFHgQg+DLiv5M0NKDCCYJXvbW0PYQN99Uj8FT96QIEvf/nLNk3ZcUneCJiBQo4LVF+tP+bMeGAmxJEdd9xxzjBgEORgcNRWzKSvxr3hGWHNnGmsmTfzhGnhIcA1AAY333yzPfTQQ+6JcMIJJ3g4AyEflBQFYABdBaHF/QtQAubHfSj9PJM+J0+e7Fl2Uf7pm+tpACo8m/tgpoAMYUzcC3ADA4Thch/eEBwHhGG8PH/+/Pm2dNly23uffe2mm28xygTh3oZbWkB+v/KVrzhAc+utt9qJJ57onhrci9sZLngkH8pI6/v16gOOH5ECkQKRApECkQKRApECb4ICQa7Z/i39gw/cH+S23n1wrEtoAsEFABC0oMSyDkunrgjbvu7BQgIQEZRO7+BNf0hh7cYj4a2DD33TJ+ndi9KNPI0cGGRI5OJMyZwS4UQfKeiqaEFfBfnJHGOKyPCqFoAPKOHcjzEK4+DYsWNkKFsq+VPJy4ckPQy2N/WOToUdpPUddgD0U1NbY6XFW3tJ1zfWW2F+obGGxoHOYb7IsempMqZ1JPz7CedR+JkbgAJyMHIv1zJ+ZGsADejBNn8DnAdQYKEBanCMFv5uuBYZHFkdrwfKhCLHE05N+fmjjjrKDYMY+DBW0qAZwEbwbvaD8WNAUeCffYEG1PDiYPqjAIovSjMW8srKSkf7QDJJtLIzySJDaAb3o8DjoQAQAZOkGkNgNv2NY0fnUepRwvFAYKz0ffTRR/uzAsPZ0b3huKOs2gljCUyJdShlybXMm4ZyzoInBIkaSfh49913OyABQ0SBJ38CTAtEFebIfGHsAC/QAkYPbYKXBH0HkAPgBCZHX/SzVPFxzBFmR3/QHaYHw62qqrLnnnvOQ0MAW0iKw3X333+/XNdm2EGHHGozXnjRDlBSztNOO01JdPYzwAaS74wbN86++MUvumfGwoULvV8SgwI8tLR2WJvKFpUWJ6tr+MTjR6RApECkQKRApECkQKTAAKBAUEqD7BaGxH6nYIcOKd6yp/s/Bxd0QV9rTvp51j1AROhzIK4xtKFsI2MGWjBOFOp2Ke55AhA2Ku8C+dY4jxU/Ly9Xcu1Kl2cJD0bGRT5dsmSJy484FIwbW+nT7VDpyzSFVKCwo/jTkKvDPvJ3Xk4ywXsAEvJVIYPWnpBnRDpeE1C029o6khXosjIoH084DGHNyXDj9NStVUX5VVubwkbylCy9U7Iwc6RxPeNI7uMtkdDcUx0oyc7O0nFcOLolXydBFuRlqllQwpP5I9OTuDI06KdDAjRaJVOXyeuhQnL4GhkFF/i48XAA6ABsSN67BWzhWGwDlwLR82Hgfjc7NTKYOBUSsKoTB8WPESUat3wU6P4aKCIMj8b95GX45S9/6SUg8YogRKKvFoCAHV2Dog8SSj8kkUGxxyMB7wEYC3FffTWABxbmGV5gPJMFZsUCuEALcWaAAzyTvmG+gCrUKQZMIJvvnXfe6Z4YjA3GDrOEuQMw4HUASIDXR2VlpSd35DyoKjSGWYb8EeyT+AZEm3EwTp7F8eBSxosAYIL7CNvgHP2B4hLzd8mln/PEQx/96Ef9+YRfAABxDfP5wQ9+4F4SuKmddNJJ/p3yHMCPYUMGbX5R90XDeC5SIFIgUiBSIFIgUiBS4M1QIMhc27+nf88H5KLQx7brjpQua09V0kUpowSQ8i+5TgIM+CMk9I816nFYGItvC3zISFE+MQ7soAFr7LAp30OKYXHnCdtv/cm3yGJ9NUAGPGRpyIYoxNDB8yAo5GLcbrvbEnkxzJ492xV25D9kRGR4ZFU8Z6n2QDJ1cpldddVVLrOOG1ela5YrZGOwlPtkuAJyKONBBwgAQ++xNbc2+25utgCD7k43BuLx0NCkPGV5ClNoT3pf5GTlWF1DnY87TfQlLwfyqntrSJ5lPvQB3Ql7AAQCXGFhjsiuNGRfxoPsTMMYxzHk/hCegUcD17AEj4cg19Mf9MdrGqMda84Rngwd//KXuySnr3EZnXsDnRknhkFk7vBsH0D8GFAU2AIxDahhxcHsLAWwupOJFuUZZRrGg5KL8suPPfwgd9Qfbv6hkQyGH/mvf/1rO/vss916H14Y4Zo3uw7MByZMecxPfvKTntwRwANPiP4azAYGRD9hLAF4YM2cAQwC4+N6wIPejXMwORgRHgkXXHCBM3XGhDdDCL0AxMDDgGMwLzwU8HzgJQBz4xjMFTCB8QBmABDgZUIcGgALoACoL9cBeFRVVfl9fD+8VGCIMMfKykrbe+I+tqm2zgoKi8SUM/y7Ahjm+wMImaYQGDwgyFlBKU6AEr4v+g5Ic+95xu1IgUiBSIFIgUiBSIFIgYFCAeQ0ZLewZlzsU2iiMaEwV8k8nJNvgMlHwNfAAsAKyZwQSXgggAysUXjDfl/zDDLjdq/xMW33zE4f7LN/9YI8isyHvBaMThxjmwSNhF20tXe4bIpciHcDsiaGP2RMgAeqRSBX/va3v3WZlPug14oVy+xnP79GsmO63wP4wPHgvVtUUOTzAEjg+cEDgoOpKakeauEJP0UHWviO2EZmpjU2N/o2sm1v7wdCOjra2gVybF1tDVAgeBwwfuRz9pkTxlDmDgDRn17ifx8aFzTBAxj5Ha9g7n3mmeck8yf1nE2balyPAMygb4yN0Jvrwxx8IvFjwFEggg8D7it5cwO64447/Ec3ZcoUZzqgigF02BkFlWtAYXHnJ1QBr4czzjjDQxb4EYO87kpD4YaBMK4PfehD9uEPf9i9K1CsUdp3pvmLScwQZkaDyYQG2MJ5GswGJodyzjEWtgFigocF5wNjYnt0ZaUNEoDAOIFhDhYAExgkLwheAsE7AgZMn4AVPIs+xwmsYVyB1jBBQA764NkwXo7BTAPD5UUCPTjHtZRCenHGyzbpoP19HrjagfICaOBZ8YEPfMAAmfiODjt0kq7J1wur0zZuqrVBpcV+T/yIFIgUiBSIFIgUiBSIFNgVCvT2FuiWd8LWLamockxOC5bmp5G/tKNruZd7uj0mgmvl+eDHuAJHfj7VdEsitc1WVs+xRIZCB1KVEFGu/elKwp2u7bQULd1pVpJdph6AIrYs3Iwclmbt6qhVe6wZA3IhSvOWhevMK1pwTOd7qlsICtE+C61njpvjOHyEfgafjOR1va/3Uz3nOb7l+tBjuAK5ECMW8h9yebUMXBiX0iQfdktunK4w5EGSI5G1kTPxqkUeB0jAuIUMigL/8kszbXTFKJv18ksup7/wwgsKvy2ySz5zsWTIbO8/eBMQLo0HRVVVlcveeFFg/EKOJEcZRjHoUjGqQqETbZZoJ2+DgB5Vx0BuZTtFyBBLdma2y7Yc45tDpmUuyL95Ct+ob5DBMy+Z5J6x0pC3ae0CVYqLk57Tafpe/bvQceRfxorREBmc/jjnz+b7UkOmTsrJHX4ddEEXgYajRo0UrVb6PUG3YFzoAtCbvhgfS2wDlwIx7GLgfjc7NTIs8zCbT3ziE17lAW8CfoAo2CjJKMz9NZgTii4/cJRcEFZyJMAAWWASNBRiQidoWOZhojvTYHZ4COAx8P73v9/mzZvnTBFmBcPoqwWGtaNr6ANmBxOCAQUFPzA0mBhMjbYteNGpc8S9ZWVmbe6+XW5kMD0az87JprxQ8uVCn/TBmsaa+LhtXzh+sucjXNv7WNj2F6Burm9MIuOAEIAKeGBQqQPmyXf5yCMP24wZMx3VJVxlytFH+HXZKr/Es/t6fnhWXEcKRApECkQKRApECvzfoUBf8kV/s3S5AfcDb5JytAlokPzHQbZQzINyjcSS3GaNp4I1a1+lIC1VS5Y6yOQ88pMMLAIGahs2WV5BvnUorp8kijmpedbU0aKcB3KJL+q2fyy9y+oSa62kqExlJMustTlhmWl5Vl44XF4QeQpJlQKZUOx+p5ISpqkUY2aBZRku/+mWYRu1PVfrTZLFJCul5Po9GGf0JC0owb23CbEgDwBKaVIx7VCegxShKOQ9IPXBlvkyd/aRHSlliZ02WdLST2iPxj3kK3ClV6Nqb28TqNAtuTGpgHMNMuo3vv51O/KII61F3raACcjRtZLVf/aLX1iFZG+8cP/85z97iXg8XfFuILwAg9MTTzzhxqoJEya40o68jkyOR8ADD0x1AxlGLMaA/P+///u/btjDuPfKK6+4wo43BAtACNedfvrp9pGPfMSNXxwnVJlxkWCe8XIdyj7H0CWQr5GL8f4Nc3IFX7I1QEI4jr4AkIIxDy+FXfn75DmAE4yXZ2MIxODHXOkbWZiEk5zHY5vx8FzGgnHPx6djsQ1MCkTPh4H5vez0qHAzIkfA1KlT3WWLnAoo+1jMyQi7Mw3mQ4PZ8OMGVKCPe+65x70VQBv5scMw2YYJwBR3psE8YAbcD8O88cYbjeoT7HOuv9Yf8wooK/3BhHqDDfQPA4IR0biGFvYztM95kueA7NLwRmAJjXM0fxVxCe8ivZUYV7iH87vSGDcACS87xsP2YYcd5rkeQMGnT3/KmT/P5BwvcV4G3V3pir1LzmlXnh/vjRSIFIgUiBSIFIgU+PemQFLh7pF3XCJJykUcCVusk9v6xHCTpru6ZPXuRs5CpuuQ1NSirRYrKsCwI0VQlzamNKuXLsvNSLW6tBpbtHSOMIJqS7StstbUJkvvrhcw0WYZXXKZ72hSPodca1OagvLCkVZmQwVntNimtvVy9+9Sv6U2XEDJxsZZ6k8Gt7RsAQEq+9gNMKESkqnF8qCQAmyD9HwMXD3eDQhw8n7o7gQMQYKTchqMSRpdEl7BPyNpZCI8IcAQgTY+ee0kaZCUxZDL0lLTJGNuMUYhZyIrE+p7wP4HeDnLFQIZSBBPOXhAhD322tPGjqnyKg6fuOB8I/QZj4cHH3zQxlRVukFw2NAh7rmAbI+izz4gwzolXqRE5j4KYcbwRvJz9AGO0Q/XAGQgcxO+MVgGwL0kw5Pc8rfKH3GzylUCemAQPOWUUzysYZHCjmfNmuWyMv1ME/AB+EAoM94TYc6AK8EAGYAHZG+MicGgyPOD4VJfwHZbf/I9sjFgCONEN2H+7KOzYByEvoRzMH/2g4ExyPrbfWg8OCAoEMGHAfE1vPVBAAL8+Mc/9rKQU6ZM8ZKN/DADoNBfz1jZ+YHDBDwEQKgiTI6FSgsAGyjEoJn8oFF6A7MhKWN/oRMgp3hfAGbwHAARwA2OBy+F/sbY33mYESAE42R8rHlWAB/6uh83v/bOdmdeXMdLBCbGQstQLebky4d3FK+fZPPzW3bD4be0zpbHQyLRrZdFo99PGU7oxEsAbxQqY/ByABSBlpTYZCyRwb4lcsebIgUiBSIFIgUiBf6tKYD4EjwZgla5tUEl7CUFHa4NyqekId0txd3dBcjNkCpwQHKJPEc701qtvbtR3g7N1tbZqGoO65XMsMUKi5UIMV/eDFizs1Ntr8oKW9i9RqhEg2UryWGO8l51SYmkp4wMxfALtCgrLLDmzsVW0zJP+EGaPE2zLUuVElo7V9qyrlorydN1KVI8uVrgR2tLncIIqnWs0DJSi2xQQafOtMlvIYAPyRkkulQhIqHKCuk9YAGnw+TkpdHdBYDSZWmbKy8wd4Uc6DKnAjKi/hFa0NuIRuWGFAEWNBRmZLdPfepTRpn3b3zjG3bvvffYxL0n2iSqm33wg/bpiz/jsisKPp7BQaYj9DZUq6uqqtqsxCMD4gGBso1him3k3dtuu81DpZHN8V7mmcjF9957r8vue++9t48BMACvBpR2wqyR+R977DHPLXbmmWduTj6P/Ez+sw9qjFyPUs8aTwp0DrwughwfcjlgmIQWzGVbI54T5C1+INMHXQEPDWT9888/32V95sgcoAEyMfus0Vd2JuH+WxxSvO1toEAEH94GIr7bXcBQyIZ7++23OzAAoEAL1R/6Gh/XwDT4cZNxFyYJYnvRRRcZcWUAEF/72tfcHYt+e/fZ20NgR88IYR+gliChLCC0MAkYZW+Ffnt9BBBge+c4BrODycMsWWihz8DIw9pP6iPsJ1+pAhjSMn0J54MnBC+XpOeDXrsOPCTfTpvHhIuiHw93vrV1R4eeIuZOv6xBxsPLh/nxcjjuuOP8ZTRh93HWIaAC+hUXJksovbWnxrsiBSIFIgUiBSIFIgX+XSmwOepCBHB5SB+b5RsdIwNAaEmgYss+Sni9cgbIYiMlXfdL6e5QFYXmlgZrbFHZ8Y4aKy7LsfKhxYIpim1T83pb9MYiD3NAgWzsrLOykUXWkF5qmanyOFUQRYbyRaRKDvIAh+42q5cHxLo1a61WyjIhsKMrRltZ+hCNC4hCFdNMFR7kEaGMCpIFJQ9qLF14rnY26/n1lqVwjIyURgVgdMgLAq8MoQwpynEgo1NKF2Ume8CHnmmx6qIKRneWnqBLNxOFe8mNQGFQtjmB14SCO+RtkC6vB4xUhB3kKQljRo8sihEJuXyxwqPnzJkj0OFg93rYQx4INTWqJicvBxRlGnJpMMohNyOHB+MeciZh1CGkAQ8HQiRIhg4YcMUVVzhAwXc3TfnUuI5ElcjxyPWEbnAOTwiAAxJbImMStk2IB14MVL7761//6jI6CeExQOLxgIcG3hjI64wJXYHrp0+f7pX2UPxpQZ6HBsitKP/BE8Ev2M5H77+17Zz2Q4RcQBue+eKLL7oB7jOf+YyXr4dOeJagl3Adz2WMABaAEjvT/46eG4+/sxRI+7baO/uI2Ps7SYGnn37a9t9/f4/h4quEGeFGxY8SJRZXqf4ajA3FHZcmmAyoKjFUML7vfve7fu7444/3GCsYDMyFawKw0Ff/9I3XA9fCEGFYMARQV5gJMVp9tf6YR/BUCIAC84D5cB/nUNIDKME2DKr3fouOtSpOTzd4siNeKVzH/bjRkRdCJ/9pAd3GJS+Jf/c1g77O6VWmB1aLDoy1SGBCjmoh//W+v9nBBx/sDBewhhwZAU3eW256xCfW1NQJ7U1XvgrVN+7rEfFcpECkQKRApECkQKRApMA2FPAcDy7ebJEiktKO5BsPS0hKOHy6HJRMDAHSYF06VCv5qDNHijyyknInNHQ12MaGDbZ200pbv3G1zZz9vGXlpVp+Yaatq15ubQIEDhoz0cpVieHF+S9aXkm5bdqoPFst8k1QboeWBhXXRBxT5y1NCt3oSMjIkm8jhg+WfCSPh9Z6q65fZQ3ybujoqhfAsEkAyCara6kXvCCv1xw8QnV/lvwwlNAy0QUwIXkwFd+MkD5SMp1yVCRlvG3K0UseY6YADzh1JGfdM3uBFoSQkOAyRc9y05S8MbKzkhUfEhprs2RolPMgtyJrnnfeeQ48THnfFLtQYMCRRx3pHSNnYsBDxkO+Q1nneo4BLqBAsw0gQX+EMwQ5l33kdcAB5HGeCZCAHImMjuJNGDXKOPexj5cEgAWGQCrk/elPfzJKvGMMJL/Eaaed5oZI+mMcyO3kj7j22mvt73//+2Z5HdACUOEfSpbJHNAZAJOQu7mPsXOesbAw1h0tImifDcMo/QU6fOc733Gw5Mtf/rJ7YmB4RIcgZx3PBghhrjyX/dgGLgViwsmB+93s9MhgACj2MI/nnnvOf5y4bPGD76/hxgQwwI+cHzGuXLhT4U0Bc/vKV77iTAoQ4txzz3UmCWgAA+O5MJ2+Gn3AzGBQMBBAjeuvv97RSjLvcryvtjNz2PZ+5gRDJ/QkMCKuCSgsjIkGsJCi7Q4xaECSgFY3asw8N49YMoEVYQzbrkHo1am/oLzD7XyEe7ZzSq9COfIp9nCjygXx4inIT9ZD/uyll9uJJ57o9IV+xAfidQLTd9qVFVtTc5tcDJutvEwVOLbXeTwWKRApECkQKRApECnwf5YCyC1vtXFnMsFkLyUb5Tu4Q4SuwxpBo9d2uwzetTrU4YfbrdlqZKBaJaVwhdXXrbb2tho79fBj7cnXHlZCw2WS/7ps7bqVkgdrbVNNtb00e6mVDhll6zbU6VyaZKBsa2lt0DOoUKZcXUr4cPzxR0kuzZPXZ5lkzlLLy0fe7LKOdgxJDVZSliaAoVFimIAHgR+ZEu2S0p2u0sBSO3MsS7kfctOHKtnlEHk/lCsEo0gyk7xGu+SR0T1U1xcKaOhRVJlfmKM2fZt502mKclqk4KUgdEQABMkr29tJfphMwtgh5RtjFso/banCH7761a96vgUSPOKhUCYrPaAAHhFVVVVbyW4o78jhyNQsyNfIr4RjsI+szDXI+ijZAAvI6SFhPHI5sjtte7I5IbwBiMB4COCBbM5xlHdk0BkzZnh/jP2RRx6xyy+/3I2YeG0sWLDADZCUe8fbgH3G8atf/coOOuggB0mQsQFC6B95vz8AoL+/30AD5sqz6JNx33fffR4igqcGug5hLAHsgCbh+U6M+DEgKRChoQH5tez8oFBKQQb5wX32s5+1p556ytFQlF5yB4B29tVATmkwN368MCBACDwoABiIU8NF6+qrr7aLL77YrwnoK8yuv9wSMAoW+mOMMM+QvAZG2R/zgen01UJOCcCGgATDrBkzc8J7g/g2WvCyCPtFKgOUppdKuphabV2DM2b28zXeLU14uV5GSRABBDd5JqyT7/7eb6std7LVF/jAeWgO+AMdCKdgvnwHfHd8r4TBnHXWWV4C9ZlnnrHHH3/cSybl5crVj8HGFikQKRApECkQKRApECnwZiggWSapa/OZRBYk4SR7SJ6QhWZLh+EQay5rk/jRpHwLtQp9qG9VHoH1q62+dp11J1RuPCvTSgoH27S5T9vVP/iJlNYmO2IyoQbrJJttVP4Hs0Elg6y7TYp/q8oiKnl2eroqNkiZT8j1ob29S14EZjdc+6TkILNhw7Nlod/LDpq0vxI0jpbCr0SSyvlQq1KPWXnplpmu0owKvWhs2WiJDlnLMwQv6MZuARPd3U3W1dmi3F61lpmiHGcCH1KV1DKlq9Sy0loEtiAH6tkpSnSphaAPCJMMudBcmbA7wMqlgqoem09o3Cm6VgYkCXKexDJXoSE0ymaiGP/xj3+0n/zkJzZFudMeVtWygw89xHM+JDoTVlNXazUbN3nJTGQ+gIZgjAuGMuRH5GfkQxRxFhR6FHyOcZ3LjlL2g6yMLExDtsR7AjkSZZx7eAbyOwt9cYyQBfoMoAYgCXIn+d7oE6Mm3tWEbpDzgX45XlVV5ccweDJGnoPOAIDCc5HzGduuNMZLA3iApuEZgCYsnAeQgE69n8XcuIexxjYwKRDDLgbm97LTo+JHj9IN84IZ/PSnP3V0krAG0MydaTAKmBH9BOSUH3JgUvR13XXXee4H+oMJwCQDwtvXM2B6ITHlH/7wBw8nIBbt1FNPdTexwGx31Af3w2B3tAAywPBAfwE4GBOVPkiWA8JMI5YNbwgYLW5aYT9P+6tWrbVpT053j5G1a9eKian6hd4l7XKhY50qd8ItAEISfAjAA2wNOvW8rv1Z235suXfbM+zLtVBMkoSTMMnWVl4UmbZ06bLNLneANYRgzJw508MveFHgMTJs2BB5asRSm9ujajwWKRApECkQKRApECnQBwUkuATVENABOSaZ46GXRENpLZ1B98YhgnWn1iytaV222jbYqrbVtmzV67Z0xWK55q+VLNOligslNlxVGU4/7XxVZeiwcVVFAgJSbPmytTJYlSqfwDhbvbLayksrTPm+LU9Ke2F+gUI9lD9CXgiycXtVizyFoZYWFSt5ZJ6tWLrepj32nD384HSb8dxrNm/BUnldpFpDixRvQQp4g25UHoWW1mbLzRP4IY+ENgES3QJIulWNo0tLp3JBdHTWy1uiXmXW5eGaLkVaV3WnqqyGwjS6PbSC7BaUidxa3tPU1bDXIvkJdNAYU3Vdl3J2JSSndSY6XWYmJPcZhUPfLI9VykHeqmSQXd1ddoOqThyr3F2lg8qsQUk2i4tKrFSGJ2T3ICeyRnkHDEDRdvlSx5BdOYaijVGNhizLNRjVkJMx7tEwriEnonxzHqAAJT3ch0xJXyw8j2cgf3IewACvBhaMYugQeBbQPw1dAC8H+kNvYMEoduedd7qMjqyKQRRAgvHRB6HOO1qYT1+NsSK7I9f/8Ic/9FALdIYPf/jDniSTRJqElrP0niPjYl799d/Xs+O5d5YCMezinaXvv6R3mA2MBAX9//2//+e1b1HGARMAJ3al8SOGAcCAyPtA9lxacPHiB95XA4WFccEgYYTEiQWGtN9++22+lbHSADxgmgHRhTlyDkYGQ+U4jBKPB657/vnnnVkvlZsY7mMwIEAH+iFBD8+CcdMPTBgGDVgBM1y3foMQ9VE2qHywn3vggQd8rieffLKDK1zPQh+8EKAl+2wPGTJYrn9i4noHZQswYJ4BjOFZtN75JfzANh9QrqVNr8+09M3Mnb5JqgNAQuMl8LGPfcwuvPBCj7uDhoTGgOzmKetzltwVk0/zy+NHpECkQKRApECkQKTAvwEF+pO/+iIBYAIJIlkrYsFzPAg38LUflGRBScpGyV4Fpfm2vrrWSsuLbe1GVTArK7QNyu+wMnWdvbr6FZsneWUYLv+SFydLOX3iwQfs25/6iZ154eG2ZuVS5bJKt7bWRslbg2WMWikFXEkmJaPl56pfGY3OOONMyXQN9tT0ZyRnFdjZ55wnOWeZvfzSbCmcNQrB6JBsl2etbe0KQ1jr1ypXpGUqanfMHsPtwAN3t70nVtiwESjb1bbsjVn2xutzbM8JFVY5aoQNyii1OoV0bFxXL7CAPA0FShJZIg+NKs1XMmLuYBuUN1qJKQcLYJG8KO+IDCXJ7CYppWizlYyF4CYHiK6uhKVmJp3HV0veHl452jZi1LR+AgAAQABJREFUACvWvZLTyM01VjkW7vvbfZI11zsYcfPNtwjYoIMUJeZssoIcAQ/svsUWZM23eHu/tyF3B6CCvzW8IwBUkK05RxgHSS0BG8g1d8wxx9gRRxxhVVVV9uc//9nXH/jAB7aShdEdABAYO32Gv+Fttxkc4AHGRGRwAAdkY55JDgq8gNEh8G4GfEA2pkVvByfDgP+IYRcD/ivqe4AwAH50AWSgxA5IJIAEiviuNvpGiSZGjX5Dw0MCUIIXSF8thDrg6QBzueeee+zrX/+6AwJk2QVEIJdBGD9gRwAY6J/jgBcwF0r9oHiT94C5gcoCPtAHzBDklng0xsR1MCpcyAAfACoADgAIGDtzWr+h2saNn2Bjxo53JllSIjc8zTdHL4SGhkZnrkn3rkYHQGCYnAdvEdYjz4PMzS+lAHAACsCgGd/OoK7ZWZTyTPYFHXNySn1eoMcAGoyTWEheADDVANxwrqQovy/Sx3ORApECkQKRApECkQKRAv1QoLd6LYkEjRjLf5Ys4tLySS6Zmqs8DOqlU0kdm+RzQHLJJRsWyuthsQ1SRYuUrk47cvLh9sUrLrMW5bE678qTbOWS13VDlxXkKvw2K91Gj5TX5tByqxxTKbkGBX6TrVyhMpyFG6xG+SJycqsl96ywp5+6W0kaF8hDYg/JWfnKyZBlmRl5Vt/QIi+IDMusUg4EWek3KgHlK3Netueemmr77jfETjr5YIVnjLTdxh1me4zfy1avWqA8E8oxkaq8WpIPB48othyFd2g28nzokly3UgBDnRRhhW9odh1WJ3msUP4NZQIh5A0hICItRYtgCXwdXFgTQINXbLdCRRLytkhXCKyH6opk5AEDeKAhs1166aWaU657uOarbOiadWt0PlOeGXmWiSyp63pT3m8cQB/Iu8idAeRAHke+Rq5HNkUOveGGGzzc+w/ybCZMm/BvSmFiDPz0pz/t55H9Q4UK7qW/EBYe+g7TDmAE+wAV5ImjTZkyxcM8MC7iLUJYCDoCcj99MB5kfGR9aE+LQISTYUB+RPBhQH4tOz8oflwwiNB22203d3u666677OMf/3g4/JbXKNIwHGoAw1j4cQfEkx97f+ADGXPxNiAMghb6gFkADNBHYBzkakCJR8GGcZG/Aqs/Xhw333yzx6GRaIZENyTGwcWLEpSAFTAcAIo9VcKI582dO9c9JUDVYU5cw1wAMgBm8DBYt77a5s5bZIVyfwPIgJHCGNetW+/gAQgr9M2WSyDhF01NzQI1ljpDpAxRbk6WDR0yyPNGhPARnoWnBs9hu7/W1g4N0z1ssEsujhnpKe7tAM2hHYy4Tag/3zHLMUKW8/OyZS0Q9B5bpECkQKRApECkQKRApMBbooBCCNCAexYCDjbvEF0gs39XeqcUcanIAgtapZ63Z7WrBGazrWlaa3Pmz7Zxe1dafma2FWRk2wUXnI07p7UKfFgu7SJN3gHDyotsrz2rJMu024S9xnlZzsoxFcI2Nll+QZrkLTxUlVwxP2FVY3dXmEadPBO6VBkjw8aNzbGXZs6zRa+vlmw4SFbuKhsxMk8ybo0tXLDOEmklVpCpxOUjh1pLbbPdct1Uy8zuspNP3tfOPusk22vUMHv19WdshcJChg9XOEHpMHk0ZFldotbq6pssLatQubZk5AGAUGWMrNSNltJZrGCKcstNaxBEUSwgokSLQj8ESniOB5ECbxFI0tZK4IfAlTwZgiRjZmGMEwlfm/OqW+hJHL50qbxyV610uXbWq6/YAQceKBIp3DZfiS+c3loN0Ib8iYyO/ExDVkfWRk6nIS8jnx922GGeF+Kaa65x4+DLL7/shj5kbTwiqMpHvoiqqiqnC/0SPhz6pS/67r1mm/7RC5CFCbvAywF6cu2tt95ql1xyiesnyMboJow1gBcReHByDtiPCD4M2K9m5wYWFGuuxjMApRfL/n/913/Z2WfrRbCLDa8CrPgwF0ABFHgUd47tjHLNWLiWxJeXXXaZM67gohXyNcDIQCoJhwhASshtMG3aNKO8DgwHlBNmg0cBIAZAC/NlXAAFwTuAKfM8gIkQB8cxGBMMCoYH0FC9scaee36mkPENPi/c/pYseUOK/QZ/FiEPML8xY5Z5P3h/4B0hvuluf4sXLbQ1g/QCkesi2XYDTUBleQ4tMELf2eaDbBF4egA+tMmdkLlQbjPQgDHSJ0AL23hVfOQjH/Fedob22zwu7kYKRApECkQKRApECkQKiAI9yp7WgA7JPQk3viF3+JQueQcoyaFSOXbL7t+RojBU+TzUddfZ6pr1WlZbc2uT3Xn7HXbC0VNs6YKF1qYkgI3rN9n7Dj3AuhVmMbS8zMZWDlOugAnW1LrJhlcUWku7ZMqCjfJWXWyZHdWSIzcoXwIevE3ygt3bqjcUSm7KlYdEgeSiNHv/yYfofLbk22YBDstkmFoly3eRSnbuY8tWKny2mgSHAiwycm14Wa41Nq2xB+6ZbY/eP9vOPe8oGzK01I48fH8bkl5oy5oX2AtzZ0oxzrV9dptoq9vXWbsSUnZ0t6rIRoeqZTQIfFBpyrR661YyyvTUMsvQ+UwqXCgfRLdAiLQUeauKRoSo5Cr0tamhxvIlgwI+5MprtkMyMl7CyG7IsfMWzPeqaiMrRtka5RUrU6LNVtEVmOe90JBhg9zMeFHqASBYcw5DGXI+cvyXvvQlNwDOmjXLK1JwPYk38VK44447XCfhOvLAkawemX5b0KH3fjAqYlhE7qcs6EMPPeTGQrypOYYBlHuC/M926IPnxzYwKRDBh4H5vbypUeGJwA8aRocy+4UvfMFdnDi2qw3GQsOTgJAF+kfRB5QI1v6+noGSDHMAaCDrL14BJ5xwggMAoJgwF9BRFG/6pcGYHnvsMfd8+P3vf694vgMdPf3BD37gAALzxDMChgQQEgAGGCR9wXg4xkLYBM8PjIk1jWN5+YW25157KPlPwsdBIk0QVvpYvHixgwDErcFIASyIXfvgBz/o42H/ldly22usVVmpGn8OCC2eFyHcArCD+fXVeEHRSDQZGCZjYwGEqKqqsmkCYEKeB2hBcmXua5aFIU/eF7FFCkQKRApECkQKRApECuw0BcAZpEWjBHt5Tawq3lRBQcBDlyo7sJaaqbSNStaoc2ttk61p3mAL1r1u6zep/PceE+30E0+xhfPm2PXfvF7xo2ZHHVplm9bKQ3TNJvvIqefKWp1n43bLttXrGy23QGBGwxrrTFWeK1uhntOUbBK0Q7KSnpEvhbZRJTklwlneqHIbWyyAobHa1qwmzLREz9tThqKEZMQN8phos9mzFtng4lGSlcrlkVsvOVKGsYJ8a1J5zY01KwVAzLfBQ5UrojHPjp081ipyS6ytSqG8SjapoF7rSsu0jjQlJxT4oZyQAiLa5AFRp/E1C4NRZYluVcgw5YlQic1uDzoRAJGiUp3puQ4+pEi+S2xUMkaMTZLZAG42bVjv3rmQEgWdsIHWjnZbvW6tLVn6BoctK11gSm21DS1Olsb0gwPwo7e8DNCw7YLMjZGONcaxiRMnekJKEqTjdYzcSr6yq666ysOrCbXGSEqoNcBD6H97Uw/yMKEX5513nvdPmPXnP/95l9PRF9AnWAc5ure3AzJ67/3tPSMee/coEMGHd4/2b9uT+ZHRYAworSSAIfHk29EAMLC6/+53v3NmwjM4xo+exn5fjdCIM844w+6//35nOgAHMCWU+yOPPNJvRVlH8X/yySc90eK8efM8dASGRg1hEFIAC7Leko0XIIOQDYAHwBGAC65lLHgdBIYWmA/H2Q7MjIdyDFrpVt1LbeJ0eVJU+ML55mb6Ak3N8PHC9J5++hl5YCzzl8nkyZPlFUG24gJbLfdEgA5i2ABU8JboPQb6216DcunKtkzjZRvuAUyi4dGBRwV5MgBEoCUhF23tnc5wY6VNJ1P8iBSIFIgUiBSIFIgUeAsUCAkP8X+gIZeQFLFLwAPHKGLZLkUc+GFp9RtW3VZvqxtWy3qvsunlw+xbV33XXnzqSTv6A4fbivmvWoVyOihzlj3y+xts8ernZfXfJCVwpUIbFluHQks7U9cqD0KxDc2SHJOqKhjtGZaRmasQjULdVWgZqk6Rna3Qh6wSmzZrulVW7mkH7HaQNUtmW/z6SmtRnoWxY8baUUfuYbuPlyy5aK3LZrj/Vyp8ds8JByh/RLXN2PSMKmOW2MsvzLf5r021ua+utgMn7a4w21zLlpzY0K6ACeV/SKQ0WqJbVdW6my1N4IN1KuF5SqsiTjospQPwocE6VAmjM03hB/L+kNQoqmAoU9lKzTSEWkA7GvTMlXEIuXT69Ol20CEHW1Nbi82Tp2yDZNYkfbkwCfz4TQP0gzmgwGNEQ37uLUMjUyO7Y+BDRwjV5chXhufxn/70J/cAueCCC/zcueee67rDokWLfLZ4UQfD4bbT761XAD4Qto3XAzL/0Ucf7QZKZGNADvrBMMo4gy7EGuNf9BDelrIDZz+CDwPnu3hLI+FHGhDA8GOGIfCjpsbwWWed9Zb67X0TiCaAAP2j3NOCRwRKf1+NkAFKWAI+EONFYki8CwAeyJrLQl8o3NQRfvDBBx1gIGkNaCdeEIRjoHwDPMDoyLeA5wXPhsmEJJUwmhCyAOPheBhn7zHCUKFbqtB3FZrwpsv1DLncicGWKrMzqGxmZpYSBl0koCVh0+R9AKN76aWXHCCBGZaVFtv7pky2hvo6Z3zMi7kyBhb6CF4QvZ8ftnkJJVSmKUMVKzo6Ov3ZncrsBI2YF/OF6S9VyAnfAR4tquakl12aEhh1WIZKdMYWKRApECkQKRApECkQKfBmKRCAB9eIw80cFPAg+EFqtpRy/VvbvNYa5SGwYMVC61Liybb0diseUmIzX5htzzz6tJ2iCmGvzXzOhpaWW7mqPXzynLNtbe1CldJMtU11CmPtqLf0TIVL5MuzoWu1vBwaFNpQLi+IVGupyXS3/WxVn+i0UutsUeFMeTJ0NGXa3rtPlpynymWNynuVU2z7jZss54pcBUEkrLG9wyqGl9u+e+5jx0850qY/+aw99fQLNvO5OVZcUmYH7Xu8zX51ppUX7W35Rak295VN9sjDvzOJffa+Y/ezk8483LqLs61dYINyTyp6VvnHKLspIatLUEuK+u9qk+eu/D4S6QIe0rsEnCivQGqHQIoW6+rMt0xVysiRrC1BjbhelQ1td3n1gP32Vz6INrvxphttr/32kadFQsky6z3R5Ip1K23EkGTSxEDygbpGTg4KfQAfAjDAGm9fPJCRs7kOOR45HJ0EGRijIR7DhF5wP3I/svuvf/1rr17RG3zg/t4L/SP/f/e73/V7kIFvuukmN/BhwKQiHAbE4F3M9egEYZzh+ECl7b/7uGKpzff4X0DwBkDZpmE9x4uAfAi4IqG070oLyRNBHXGXgrkEhsN2X8o1z8UlC7QSpkBfMBPGBdOBgYyRS9ozzzxr3/ve97wM5zHHHOPVMA499JDNw07oZZCumpbkRSA8gTVMhz47E3oRiPH3HgfgAo1jvZkZTIl9mBR0StMCAKD3hfrzKlECEbjP3yO+zT6tujoZvgG4MHXqVC9n+ujDD9qnPn2hSl5m2+c+9zkj2y9lhsaNG+fjY94hU2+yl60/ibJ024JKMiX09svMEHKrAc2fv9C9O2DijJfMwSDLLc0NtkFlp8oHldjSZSutavRI9SA5Yetu416kQKRApECkQKRApMD/aQoAECDrIMUgBUhY6UZg6RFa/BjnpFkLTJBJv9fCvhJit6tSAJs0dUEuA7rolIKdSG23tY1rLZHTaXOWz7XmtFZ7ds7zVjy81NpTlRxy2Di78qz/sOLUXBs1TCGum5baxN0H29f/32dszfLZtvceQ2SsalGJzvnKidCukIZ1NkgVLxa3LDDl8FbYwhAbkvpBq16To/srNYB0wQqlSmSpcpV55VbT0GqFBcoDprKXSvutmapCha6S2UgflGOXISYtR7NTNQZd1dLaZUvfWG0vvDDLXn1lnq2VfFlQkGP1TRuVvLLG0rN1d6qqmLVttE7lcbCcRvvqNZdYQ2KtZMkWJQ5HcW2XQUgVNeSRmpOVa+0tSiKpXBG5GYNUrWOw5WidlVIi8CRfI1JVjLpsG1I0RqPKUr4L5e1q1ZlSJUVc8IaqbxyoMJN8e/6lF01pIuzv0x6z3EJVaRsz2nbfc4IlWtutJFtJLD17pbrYYQsSXs+ar7SnpYSvOhx4h9fIozRkaRqyeUZGumT8Jgcb2A5t48ZNbqwk/8XVV1/th/EMJgxj9uzZXgkEbwXkcfp1eR6ZXgv7LEcddZQbPvHmxpj3ox/9yHNJINtfdNGFRhgH+SaCkRHZH30ghluEb2HgrtO+rTZwhxdH1h8FgtKNMg0YAKqIl8Itt9zi7kl4D/TV+OH31VDycWeDefAsYrcAIQgJwB0KEAElG48IfvTkYiAXBGMhyQxgAwwE9JOx4ZpFPof999/fVq1eYw8/8ne79le/tkWLX7crFcv1EyXKHDOmSvWcOxxwYGyBkaQJgKD5WryP42lyXUgLCIGfTR4P98Akk9clGRJjhFbJ80kGqkPe6D6EMtAl/NUXnc1TOaVsvTjzlGBo+LAhttv4sTZlytE26+WXPCwCbwXKfAIYTJOXBKEheIpQRQMPDAAXgCLcw0BwoRmeFW1C11uEkNN/c0u77mm1Rx55xD1CQIl//OMfO2hDjNzJHzjFPT/w2KDKRl2drAfZWS5i9Ew9riIFIgUiBSIFIgUiBf4PUKBP+UzhCSarvMpLaAFYkCznSiEaaVIrTVqBOaewAeUu6LQaXVUjmaHGr0hpLJQGqdM06ZXtijpoUbedEoa6lQ8hRVUsqls22bMznlYlihE2fvxIKynMtFEqrXnBIZ+00eXFVlFUqLwL7bb3nvk2efIQG1mZUKlL5QrL2mgNLessM4exIGvJ3yHRKGVe9SYkt2V2V1hW15GWn3Ww5Lhhlp4yXGMbZDmZozUVgQ6pw+UdMUrjHKS7S7UukxdCec8iEECeElmCK1K6M5TTQcablDwbNqjCqkaNt6Flw+XxUG6LVc0Mb4yi3Hyr36j8XFoydX1GlzI51LXatb953saNGWudrcV24O4naJilyiOxwsYrzGPh4lV24JjJVp/WaKvrl9umjhW2qet129A1R3kpFggqWWttWUusOKXNVjS8ZilpnQq5HSo6Kh9Ec6blKDfEPx5/2ua+NNfOpWrbUuXJ2LDShiuXBUk3h2tc3VK00yXPNTc1SrlukwKfoa9QFSY62lzOTX5/BL/wL0nF3uuk+N63DK/bdtgCiLCjC7b9+wvjSV6flK35s8vMyEzK1AylZ0HmnT79aTv2mPfZ+R8/3z7xyQsVLjPOOlTh7YLzP6FSqq/JkDZY86ViX4Y8fuutRCHL2VnZ9vOf/bddcfmVkpnXy3viRPv6Vd+wDapOl6uSrWWlgxR+XOAgBV7RyPIAFYwN2b6/Oe1orvH4v5YCW2Cqf+1z49PeJgqgTIMUoswCDqDoXnfddY4mUn93VxueE3feeacji4cckvRGwJuBBsjAc1G4aXg24IJFA7R4/fXX/dzll1/u6CQIZTiHYs7931cSyUWLFjvw8J//+RU/36ZQBJjRptoGMfNkEko/sc1HYMLbHH4TuyHD845vaVZ5TRgwtMWNjPKa48eNUSbmwQ6mAELsu+8+9tprrzkiCz2mTJniIANhEzBGQBe+J0Cc0A95M0CJ07WslzdDXb3yRqjSRVd2pse37bfffg5SEDMITSlX9OKLL9pJJx7ng60RbUr7oM2OZxTPRApECkQKRApECkQKvLcpgJYHcsCSVO7DfDhDkyO6PhUyIIAioUoVnVar7SRgIdOH5LRyIQ1y+8QAI4xAIo5vJ7StTFrea40Sah9+6KG24PVXLLsgxfZR1a/zLv6oHXj0YOtY1SJlPmEFOd1WMbJIVn1lQyhRZS5bpzCDGsvKyFN1CDrNUw6FLCVwlLGkUyUuU1tl8R8hxXuUtrUIUkgXlCD1UWNWfgENJjVF624ScktN6ZZSqQWPh96to0uAikJVczLkiZBV4PfllMsnIbvE9hi3h533sXPsvr/9xf7+2FQbVFCuY1WWmtahnBDrLL+lxDKKauz26x+2ouI8q17VZUdOOdgOPuAUq92o8/mj7FF5ehSWamT5mV79oitX4R8p6YJxVtja+rm2f+E+piwUVq38EYNcvpVXRWun7i22M047yR7821+Vy+xRhYI8Y+OrKu2VB2bYtMeesFPOPM1qmuqsS6DJcOXNyJM8mJDVvkuyPDJ80jimb7FHkU9+v5p5+GIDEfja38227Xi2GctBB00SqKLk7Cqz+dqcuZ6MkrlMnfqAPBcukJGyXca7e12+HTy4TIbNWg9tfv75FwQkZMiAOsUNd60y0FVUjLaqqjEONCA/Dx4sI6f0iFR5DkOvCDpsQ/wBvgskGdt7mAIADyi2hF3gejR06FDPncCUQgKYXZkebky333675x/4mNBbGvFcWPYBGGj86GGYoI4c4x4UZUIFQD9PO+00TyDJtSSaJHQB7weSOKKsnyTFmrI5tFdeneseFYQfBFDDT7xLH4yBeUHnEM7BUGB+gAIkgSQXA/WcCbd49tln3aWM6iBUviCPBbkimDPgDDkuyFvBNqU9adAzIMzio85c6QsPFq4nkSVeFbiYhUYfsUUKRApECkQKRApECvw7UgBruJTyzUsSQcCk4uETsqB3dCl8wmEEPkka2WyNnfXWoIoODYlVQhte0fKarEXztF5sXRlvCIRYJoBiua5Xkkirlqdnka2S7DFi8EgzhRXcetsfrHWT+m1ssUMPHWu775VvlWOzbexuRVYxWpUH/HlKrNjdLgAhGRKRJi+A9JTBytdQodKV4+R5MMHSu6rkvTBIVnMZYlLkOatABtnAtc7Sfo5CHzBqSUXxUJIeLbu3sq35YfHOkNU9J1seEJJDJaaRekGycJrks2L30j3rrI/aT3/6U1Vi2MdefmmWKrfN09hSLD+30KpGjLey/CE2rGyUXf/rP9p///RXomamtSrPV06mwio0jg6V+2xWboqG2lSr2aDqbI2q1JFQaclc5TBTNYw6eUB0Z4imAiQabYnVdyy21EGNttvkkXbT738kvGCTfepiZOd2+/53fqA+mu22m+6y+k0CHoZUKCGn5EuFL+D1mvQCEB1Se9Ag/qx9zj1aPtuBBr23uW4ANkqa0sj3hi6AjkLCyTlz5tjdd99n1157rXsIoxfQyAVx4kknur6AXnPNNdfYSSed5AnmCf3GwxpjHroF3zWyOddtCz4gT/O3EdvApUAMuxi4381OjYwfGT884qH4cRMScfPNN3s5yGOOOWaH2WR3qnNdhJJNaRu8Fih1SdgADWWayhWADYRY8EMPjAFvie985zu2VIkSueZTn/qUAwkwCsYKUEICym/rmlS5333ve9+3vffeW9mNs70Pchq0KwEjYQ6Bv+5ozVgCL2b77W6Ml3HTGDcgBGvAFsInYHyAB+TYoAwm4Rdr1qyx5557zkMuAFe4FqCCXBwkpST8gu+qsFCxjEJ36SM3J9M2ye0MepALgwoft912m3uHQMePf/zjTstSuZyl6Z4SeT10dspGILTinZz/203P2F+kQKRApECkQKRApMCuUQD3fI+VQEGnxiUL3gHad/BBam+KJ44EgGiW34NKgrcqb5cqOCRUOtIUTtDZvdLaOhUimrJCOR7W6d5a+Tsov5SulalEIIRACwEYf/vrfXb2cWfZtf/zC3v68X/YyMHDVE5ztX31y+fY8BHdNmxEqrwe8uSNKaVPariyWCmcolByoTwaBDxkpJRJqS+Tt4MWhU6k+zLactJ312hLtCjEw+fA+JlLElQBJEgCED1rl3Z6JB7NP0V5GsgHlqJeyZtFJYy2Nnl6KIkkYERJaZ6tWbtOMmqD7bffRKsaUyH5bJWMOjU2QhXTDpx0mIxDsyxXSSgKVPEskWiTF+ts5Y14xiYdfKDksOGeDLxDgEZWVpGACFU/W9us8JRsKysebNUqOTqkoFD5IArkwbreaiX/lRTla16ScxVyklvQreeU2fMKW/n7E4/aiFFVMgqOteKiYfbHO+62QyYdKO+QDJX5VPU1uZ2kpinsQjInySoZP/KgNpJCLmsaq7D8kyuEX/Ev+ugZTx9Pa1EoMR7QVVWAD3mGTvKHPwi8kuyM3IxegWHtkEMOtFtv/YN97Wtfc3mYUG3yqGHAQ2bGkIqugecwugZ6RY5kZqeR6IUMzTYtAA9BN+pjePHUu0iBCD68i8R/Ox7Njw4rOj9KlFqywT799NOetJFSNJzf1UYySH7YrEOjX56Jco5HAAo6C2V2YBRnn322K+oLFixwJsM5qm8QbkGZTECSF1540b74pS/bOeecq2vyHflNehqk6vwmlWNS7Fwf/C2cCuswtrdzzbxhYqyZA3NmDSMMzBAwgm1Q3cMOO8zBCZLsPP7443bsscf6/vjx4x2YIPSCPBgw3cEKy8iSZ8VaxbUVFOTJFbDO+4Ex46b2+9//3kEIQi4OOuggr/IBsAPIk6lwjerqjYp9E+L/dk449hUpECkQKRApECkQKTCgKbClUCMyXlJhR2lPAg/AElRtSOhfi6AHVRaTMryxcZU1KOFie6rCSTNqlQRygbWmLFb1itXWkaKQAQEPCYEHykqloIxW+SLkSGl+3CZOmGitSsT4H5d8y/ZU3ofZLyywz3/uTFX7qlBYQq2VDlK+gxJCPGqsuX2j5EKzQuVPaO+UXEiuhtRhGuFQhV0M177CLWyk4IJRlpkubwqFZDD+FAEQYR6EXjiIsjmBJgALko4WX/GhGQoY6eomiTiu9+kyWCk3l6qAZWawr9HUNLh7flFRgXJrNdm48VV25mln2AGTyDm2Tka0jTZq5Gh/2ppVK/y+0aOHy52/wW6/bZrCflOUf6xTim6xPCEEnKQU67HF1tqsZO6SUbOy6iwjT1XNUjNVTrNRxqAuhc8qKXpivdUoT0RmTrsdevg+dtDB+9p8ycJ//OO9kh8L7NyzP23T//GstbaQjD2hfjC8KTTF5U2e2abyowIjmMTmJrAJwMkXWfUhgbfNG+HAv2jd/3PbldMMeTk9PVPfi771kcNlqJvgXr2//e1vJfufYyeffIJ99rOXG/uACuSKu/HGG92LG0Mexjt0CmRvGqBFcXG+vnP9hXjIxT+PA5mdtjX9/FD8GCAUiNUuBsgX8VaHgccDngfFStSCok+IA0gjJSFxU+qvhR/pjq6bNm2anXLKKZ5gEtcoGABgAyBB72ezjQIOqEBOCJR1vCYID0DZJsst3gAAIngA/OIXv7D//uW1tkaK9/oN1e4lkJ+n5EZKCBQAjIJ84v123JzlwIvfQfQ3eDfAQHfEyIIXCGESeHAAEFDjGLAlMEw8QfCO4BwhKdAw0dlln7zwk/aGKldUqnKFdvXyMnv6mefde+Xhhx929zLCLvCoANzgPkqNirxC35WoUjko/pn17phm8UykQKRApECkQKRApMDAp0Bf8pnLPVK8k1poUjlX+gPzRUc75ebfKiBBGcHkxbDeNtS9YdVamjs2WlauSrTnN1le5jLlXVCp8IwsBTsUCgJIJnbsEmDQqSWRKLG/3f2kXfLRL9heB+2l0pmFtmrFWtt/v+F2+50/tLU1D1lazhoZURK6l+fVyvugSZ4MOZafrfxfHYMtO3W0lioBDsMstVN5vzoLpGRjNJERJbtUSmRSqdyiTSPRJKUan55/TeFY8rgfEvhgSrqJ8t4tkCI9TSEbAiBouOS3CTTIVVnQTchOytmQlcm97TZv0Wx5j3bbuKrdbOHKpfbE9Cfs8X88YHvvP07hJy322PT7VVZTniHCQhYtN9vngBwl0Ryr6A9VtlBVjr0nTlLJzBJVHnvFysoXCISYYyMHVdqQ/BFWLJppJFa3Vgkly0bakIxKjVJhAZq7ydvjf//4uH3yE19V7q6P2wdP/4jttVeV5Pdal5uLi0pcPiZUAdUZz9b09DBfjrDwfYdtDGN87yxvrfX190WPyPE7bjrHUPpo3M53gQ10/fpNbiCdOHEPhVbXKWTnUNdR8KaeNWuWzZo9yy797KV22WWX+XUTJkzw52Nso2qJbHyu62D4RNdYv36djRipBJ/bacyLZUcy+3ZuiYf+xRRI/lL/xQ+Nj3v7KAAqyI8T936s7Uvlok/+AbLAvh3t1ltvdQZAbgOeAaAQvClQyFGGaYyDfRgJ1RpgWmeeeaafQwEndwEhC6z/53/+R3F3cz2cg6ocWPwBTXC/GlQmhJnYMFV/oKGQ76jBFtP64o07uvFNHGdOzLc3E8PTAdcvmBvzBHgJDJGuSaR5ySWX+IuEUBVABICIs846S9mixzsQs3DhQps7b76PBOBhxco1QneHiRYNHtJCJRH6hkGPGD7EARnoAuorL0OFpSjMRcBDbJECkQKRApECkQKRAv9mFEDx7OqleEoWcnFIH0n1tNvauuS+r9AE1N/0HIn7LZT17lDFgTbrbmtWCcpWuf13Kmlkp7WmK4w0VcmxpTxnqpQkvgibNtTapP0m2V33/9FWv9FsR03a0zJk1f/5j79qnS0rrblxpcIrlMBSY2nrVp9SmHMVntDdma1z3ZafKe/VbuVzSJHcQnhFqhJcdherzGa+xqUynySgZLwaMIs+/UtE9uE4vhvhmJ/YrO1yndR65UZgwZCDfImiKyxCc0yGx+JNUFpa4p4MK1atlTeBWVXleOVsaLE3ViyzYeVD7NwPf9QmyJtj5bpFAlOW2OSDJ1nJkBxbs2mVNTbPsWVLWpQEfI5ly0GjYrRCLpoLJKseIMV3D/cWaWpRtQ2FedS3N1taJkVBUwX2rJFnSbo9t/R526fyENESEKhGMuAUu+e+yfbE3++Xd0O9/ccXr3TDElXi6oobbJSqo+XkCbDAiUTz101qmmsKG4At0CMsCjcgmWeSZFz4ptuugQ/9P460CySUnzBhnHugIBvPmDHLjXQvvPCChyMj46KvXPW1q+QFcbIDDFyHXI3uAPAAkMRYQw4JnjxixFDJ4cjgIgsfvVry72frY71Ox80BQIEYdjEAvoRdGQJKLz9QciiQVAcmRtKWfffd163mu5q0kWSKhEpccMEFStgz0RFHqj6Q9IW+Ucp5PpZ5FGN+9HhK4AFBMhkSYAJIADrg/YCHxn/+5396n7/+9W/s9SVvCEme6Mo1QMQHTn6/GE1HcpHLFv3DYLa3dIuzpctV4J1kMTy/N/DAd8U+dA/ABHNjXpQfpZEMB9owXwCHBx54wBNPvvzyy34O4IJzQ4cOc3Bl8OByxRmSBMk8uSQeLHiHEHoBg05THCAeJIAUObnZooWcE4WIt7aKOXu8oz82fkQKRApECkQKRApECvwbUMCzPaF49lY+JQwRdiHTiJaEtSu3QzIgQ5bgtHZrS2lQjocW6bQdktW6lUix1YGCLgEEiQ4lWmxT3oMOgQICCtJSSy2h8IIxIyfYUYd91K7+7qftFz+932bOuMlGDy6w2XPvt/JhAhvyNRKNoaVRVRqkehdlDVUpTXlNtOeo/KXyO6QoqWTaEIUmDBIQUSL9uUgAR6Ger7wOPdgJMlxSf1S4hDaCTNeNG8c2iuXmCeuh4RSJGnWhZCiFxypPQo6AFnIC0FoUxpqZKehDZeHz5T2aKtmN68tLyvWsbluzerm8StNt4j672x7yRCgqylIoR4vyWAyWZX6svb54ga1epaSJquaRLo+NF5572Vav2GDDhpdZSnqjpQtwKC9VTq/lAisa62yoPBjaCV9JqTdVhLTa5rUCZLJsXd1aeXpk2+Qjj3D5fPpTT9rNknnJhXCwKslNmLCHvrUUyX6rfMyDBxfLyITsKwhGLiBdAoiS2zJ++baCU8gR8W56PjiFd/yBrEpVigULXpfhslDfQ6qSzi+xD3/4w64f7L///gKKEi4njx0r7xIJweQ749j48VXSKQjJEQ1r6zX3LsnVmQ4wNTY2qy/lytD1EWjYMf0H8plesOlAHmYc244ogMcB4AAW9qXyeiBm6ogjjvBjKMf9NX64hG2EHzBoY9imX3IUADZQ6QJwAes7cVgACtzHj5+wCkAGrPV4QgCAoIjDRLiXhscECjrXEspAv+SqwNvhjTfeMBLMHHnkkbZw0RJX0AsLcv26rMw0R0B5DomFmC8LjXG+062/ZzAuclgEJsh4ivSSY58FYIIcHHfddZfTjnCTqVOnOo249q9//as9+NCjTgNoC7AxY8YM92LZXSWt8GpJk3vH7ruPcxlDXWre3GnK8KzyT9oPz9reOnll/IwUiBSIFIgUiBTYmgLbe2e8mWNb9xb33m4KBFlse2vX0AEeWHbQ5Bdg9V0NCrxoVkiEjDqtXQq3KLXKUbvZ4LLdbc0bBVZRforlpR1kq5bkWlPNIJWKHGrVa1Nt+ZJG27heNTKapVwrWuLHP7zBqqokd+TWWX1ihkIP6pSoUZ6hXVnylCiyohwlFUwdqaSMxTLUl6u05e5WlFuhZIzlAjJyNFy8SJPlxVOUk0GVNH3shFaEhWkkZZrkWjiByz9pMjJh8NlqrRALFG8WynIi7wIy9BZ76QtDEOEYKPZyxNenckKko9TKcKZ+x1SMtLGS4XKV4FzDspHDhtoe8lCtkHEoU8LWvnuMsUMOyLP8DD0/0Wq7V4201oZq+/63vm8b1rRbYd54y06rUGnRdFuxus5WN9VaY3urLV3zhrWT1DOzzpY2vGSZhQopbpptBYNq7eQz9rKLLz/NzrvgTOXUeMSu/I8rbObsmTZhz/HW1NpiTap88ee7ptpzL8ywN5avtBdmvCQjn6p/iAZUAclIF0Cif8jC/G2gmCOvY/jCEEgjHDic6/33w3VBzkfJ51ySttA36eULD2A7yOrsc124L9mfCWxpltxf69+ZTuuaLQvJJvkuVq1a52HV9PGb31xvX/7yl914iWx78cUXGwDE5Zdf7nPhO8SYia5QX6+/2Va5saihewRdorPHHZpn8ffAWGJ771Egej68976zrUYMM0Bh/f73xQiV7PGXv/ylZ4gltwC5F3am8YPnBwwDo7EN04EJXHfddc7Uv/rVr7ryzHmeScwVQAOMHaUZRsV97N9www0ORPzsZz/zNdfjCUH/AA7kMMCyX1NTa5/69KfFNFvdwn/cccdZVeUou+HGm5SQsdxGV4ywJmUvJhcELw5q/ZIHIitLSR/FdNYqi3Eh3hYM6h1qu8rYoCF0AqwhaQ4vBsJj8GTYQ5l8P/LRjwpwWeTf3T/+8Q8HY2bPnm3PPvWUXX7llQJkJouuycnxImUJLSTj7Gv+uzr+8Ky4jhSIFIgUiBSIFOhNgfh+6U2Nd2EbkS0IAKy1hIST+D6g32PdxwxFAsrutE6FtOYpTKHT1iyrswvPvNb++PsHbO6cxfbKrEXW1ZGlPFJDbM2KZtt97CSbUHmQnXjcyTZ4ULFkvFr745+ustqGOVZd+5LtP67SNrVUKzRAvhVdCq/oKtRSqmcNUYLJIfISGKywAHJIqKqXPB1SlVgyRbkgUrrlkaCqHOQrCLKNhpdsYS5ht2dO4fT21+GinnXvXb8BoUmLP4yTSS8JoAip01qkgHt8g0KIlUNCBUq1UMJeKTAlvyUkvxUXFttQhQakSgBraVSZ806qy6Xa7DmvSHark6w93Et3CgbR9e3qp9P2VBnP+k7l1xAgkilgI00AyYbaDQIW6q1YHhgiku07cbJk4Ms8ZOQ31/3G/nLXvQpJ2NeWLV8hA9VqeQ0MsSenP6U8YE8rqafycMgLIkN9takqR4c8gzvlGQH4guEPhR1ZnIXfJcAE8jYNxR85HFkUJR65lBZkf85hGAS84BxyPPI6cj7GNHQMDGnoGAABGB7r6uplZCySgUyeMiIreRza25WutEG5RPJyJK+3u6yO4XHGjJl2+umn2y2/u8XHhiyMwXTJkiWelB0D3Yc+9CE31BGavFSG1D32GK9nNGgMlFwFaAAcSX65jJcSqxpWbO9RCvRvGn+PTuzfZdj8sPkhwlzwNrjooot86gFI6I8O3AuDCSUkYUwgo/QHEyLPA0AE18HUYDogljCx8Gyug9FxTUBbOU+jqgONa2Bg7F9xxRXeF9UgCDGgP7wpUMy5DqCC4yRWJHnmPhP3dGW9tCRZ5rOuvsnvf7vyWvgA36EPmDsMGwZOOEplZaUzXbwbAGmycnIdiDn88MPtoYce8vrHMOJjjj/eMwEHgMFfn72AB4araBR/jb5DQ4/dRgpECkQKRApECkQKDFQKoIshFyR1Mt9kqMld1FLP9iBVWsp+l6pBCATAmt9Q32JL5220MimSaW2ZVjV4ki1c8rLdecvDdl/BkwqTKLY9rjnKlsx50V57cYld+h/n2HPPrrBBw/JtSOEIm7fmRVvS+LLCKxRSkZonS7xKgJNssVthFgrXyNSSagWqpiHlWHkJHHTogUCUiUJACOG0KsOpJJFvrvWecJj4lhnvuC/dByoTLnXJiVAG0UghGHhDpCsBZlaqQhqyBNpI0W3rzLNx5bvbyOEV9sQ/ntDypMqKjrJPfeEia2hssl/fcJMtlOfDX+5caPNmL7GTTjjajjvmYFN1T3t1wTR7Yv1sGzumRHNNiC4NVpyZo74FCLQp/EXJJweNLLE/3XqvFedMsLPP/bCdfc7HbMrRJ9jPfv5TAURF9oXPf0kydacNUVnT/fbbT8kp97Haump5vOZbXcNGKy0oFc2T3h/Il3gxADYgR+ONi/ERuTx4DCDHoxcwNxrXAlKwj9w9atQoPx4+kNe5ngU5ln7ok21kf5YXX3hJYESh53QoKyvyWxsbWyXTrjGMaKeccpJdc83PPA8cpeipyAfwcPfdd7ucj9wLqEFy/DPOOMPz1X3961e5DvLKK3ONUAw9zoEqaCEIQuNJemX0TCMMN67fYxSIng/vsS9s2+HCGKhCgZfB8VJY+QGj+AegAGChrwbSybWBEcGE6DOABd/+9rcdiMDzATQUMALkE4AiMDUYHIwP8IHykM8++6xfS9ba0AAzADgYzxCVmOS5zzzzrKULvRw/fjdnPjCmOXPm2EflDQCTg4lSNeLII4/y+9J6NPFly1b4GHLkAUHreaWER72t61217DBvGowcmgKYULsYz4dnVf3jMQEwMG+qgED33/zmN/aacj38TaEZeEuAINNIpERfjAe0F1IEYKKv+e/q+P3h8SNSIFIgUiBSIFJgGwrE98s2BHm3dhECegsCvt0ttRcrPh4QKomuRJMY+PMzClUpS54Pb2yymhUyNLV1y8KfkBEoTQYsVRWQRX3J4mp77dV5tuyNdXbAwQcpbPRO+9NfbrTGtsU2a/FDdsDuw2z5xnkKqxikUIVCy84AhFCuh9RRUuNHSE5JVndIUS6JVCWvTE0hjwSyaLoU/lTPdYVolKYSjFsNPMyjZy1xZzstHNzm4u1cKamp52i4FlN5cqHvhDwIhAxoCPLcFZUIDUlNyZBCnumhDcvXLBeYkmqH732ITTpsP1s0f7Y9OPUvNnxogX3twq/Y9NdeVN4KycLpObZuTbWtX1ttrbL+tzS3Kiwl38vFtyq550bJsrlF+VaQXWhdmZ16XLfVSUkvL97TJu51qD0x7QmFJ6xWwsVT7Nxzz5ch6lF5A8+097//A54X7TUlaH/8cV2j5BOHTDrEGlua3DugXgnKPemmNPHghYycDTAQGrInjePImMiRyOssXMcaoyLyPLI8XsnI+cifyPkYAwEc0BPCNRgFKQ86cuQoyfNlktUb1G+KquzNctmcPgFEbr31dg8tJkcciegJJb7++uv9HKADRjjk4iuuuNR+9KOfuMx/6qmneVg2Oc8mTz7Ex8531dIi0IoQHY0fwCQ9XfPia43tPUmBCD68J7+2LYPm5U+IBeEWeBCguPNjDkwiAARb7th6C2YD0wIV5Vp+1DAoGBagxp///GcHBi699FK/MQAIgAeUfuQ6GA3bPPcb3/iGgxB4YIBqcg5QAuZFYxsAInlfp82Y+ZK7AKKMMw4YDnkrGBcgBvkRTj/9DK9+gccDtZzxniAXRLMYfKYyCr+T/GdXhSuYN2ANtMGtjXmNVkZjSnJWVY2xl16eJXpk+bw5P/Vvf7O9lSz0K1/5ipdLrays8MoW0I3vhe9HESfewrzDOnl0689dHf/WvcW9SIFIgUiBSIFIgSQF4vvlXfxLCC9+1mGb4fTsJ1fY9PknZZpSlFKsi1LLLE9KcIZKXCYkd+03cbTkkpVWWCSoIlEtr4haJV+cYK0tCVuzqlYK5mg75dQTZdk/wh6Z/geb/L7dbFH1M1YxpFwhBnLNT1FlDHk6pHUrLCExXBr9EEtJKOS3S7kfugmLVVlNvB+UYDKAD4RcAD6kpycNSJ6xkqyVAkqSjW2MLT27W02QYz2T3LwO13Hf9to217sXRKrkUYEz3Wl6ksahMbIk61VAqywl4zTRSh6/bbWixVIbMazYTjp+svJgbLAf/+YaO/HUU23s+D0cqHjisQVKxql8aAXpSihe6Qs5JnLzilRVJKEqFgo7EchR01RjiVSFTCSybWjZvsq9McYTUI4cVaFQizUOfHzoQ2fZ/AWL7ec//6UnW9x774lWWlZqaxRqnJOX67I5uQ9Ki0sEEC31sGXkQ2RNfpMseNxiiAQ8QL4HaEB+RNZG/uZarkHu5xz3IKcTvgFwwD6yOue4H6/mAEDQL3L45y69zObNW+jV3DAe/vCHP3QvZoxo5DPDmxeQAT3gsccec/3kjjvucC9t8r7RPwY5Qit4xrRp0+ywww7zY0888YSMcodsNsB1dCjkRHI0c6B5CMbmv4/tfefx2ECmQAQfBvK3s5Njg2HcdtttKge00H7yk5/4D51j/QEPdM+PGUYEqIDyz5oF5nL77bd7lQbKYJ5wwgl+nHvoG0YB2EGD6XEMpvDNb37Tt0msiPcCzIXjrAPjCIxvlFzD9lOymRQ9n4SMX//61xTntadXh8DdCuQV7wcYXoYUdJghiSh1udzelMVZz0xX3+8k/+GZu9ICbegDBsx3Ai2Y2xjNsUmIc61KjVLVgmeVqMQQFTKIhYNOw0eMdFQaEIPvBVqmK/FReJXSb18j3NXx039skQKRApECkQKRAttSIL5ftqXIv3pfyror7TxXkkAQBiRL8I9EjpSdzJAlnwKanQmp2WnZCr/IU26HdKsakWdnfvAom7hvqY2syLa5859VCfBuO+TQSinlGbZo4Solw15ut93wO7vzvhstq0BgRdUom7HkcRs1WKUzhSDkpBVabtow5XgYKYv+aD11hMYyVGOR9b1TMqLKaXp2SapbaAF4cE8DhTukIcxRPpI5bF6zzcL/MKGe+bHqtwUAgnvZZt3TTzjlfaRYR6eOC5BJMY1RuShYe/lP0SpNYy3JLrX5C1+zxvqNdtiE/ayCyg1LZtrSJa8qB4PKhwpYyFANzpysXFu/brno3a4wiRECbjpt/XolfhTYUFFRadm58ihRvoaahpr/z957wPlZVfn/Z+b7nd5LymRSZtImCSQkkAKEEDoIiooFBKStooJ115cr7u5/LT8V1FWx7a4Ci4rSFKRX6b2kkt4mfTKTTO/lO//P+35zwxAyM0CIyRfundczT7/PveeZuc85n/s559jmrZuVklMsk7yR1tGQb1mpQ2znrlobUjzcpuoZS5evkJ5bYOede77V1TZqYmqZJuHut12aZGTWf9z4cVZWVmazZhxpTzz+hO0SgAAwgH7Ngu6OPg57AcYBAAOTV5xjonLNmjXuOCADejxrCqxjAAGYyeiexJFg8g9dFV0eEIH6nhBAwOTiFVdcaWvXrHPPfuSRR9w5YlOUjSlzk2wlJSV25ZVXutTzTEriFs5k5syZM8XSPlFtTHW6fXl5udPzyaZHG6750TV2/XX/qzq6XJ1kyUgXABS3I8g+xyQmzA3AiDgQ4ToQfiWUBOLT0QnV5NDYvhJggMDAJcOFD2QIhYoYCvzzY7gPVPiHplAHxTMQGMD+9re/uQFn9uzZewxgn07SAxsMZuTkhQkBeMGgB20Lvy4KBjcLM/48i4UBj+cAXsyfP8VeenmBPfroo3b99f9nAB3UBZDCs+gXyC0ZNBg0YUWcdNJJrj25QxVP4g0fE/fIQ+oXQAMyoiAnCrIFXKjZucsN7MiSDwN+b1u3bnV944NBBhHAF+SFDKkLZS8+CAutV981DocSJBAkECQQJBAkECTwvpKAMmopsGFcCUITwMAmfoHWTi/SzHVyirWIMYpt7Wat5QLRI5eLZDFGs1LSrClaLSNzrQy67TZnZrEVjfiYnXDKGqutT9NM9bNKFVmiwIYRO/FDp9j5F50k/ewjdtWvLrVPXDjSdnWL/dohnkA0z3qibXJa4KEADYrNpYCSjsRA6C9luFBOSm0oc0Gyng3IoDbiDuL8QNx9tJ3Cuu/ij7Gm+OviewP/9soh6zffx9GoMkegRO3Bb+JNE6hCEEWlOG/bajOnzNOVdVbXtsxqalcq+8V4mzG11JauW293PKWsH0Xj7Ihp8+yyyy6x555ZLPBmra1Yvs5mzj7cVos9XFQ8xHLz5c6htJgxpepMiiqrSHuX7aqvtRlDRzpwoGxohVXVVyuAZKOYBpkKRFmhiSlTfLB/sX+67HP24ksvSL9OsT/f/Ef73OVXWENjreXlZFie3HLnHn20c2dA/2aSCn2zurra6ZLEikCP9Mxk3KvRJ9HTARI4jr4OQwFGAgAD+j7x1rAjrr32WqejImfunThxotNB0U+JYUYq1Llzj7OvKDg6ujqZ6+bPn6c+7XK6K3bIv/3bv9ndd9/t3I3/7d/+VXbFvQo6v9bpwxMmjFN8tzXuubCBYUtkZcfTaz6joOtMesbdjb2NErdX0IM5HkriSiBJLzC8wcR9f3ta/tRTTzkaFCglgWMYKBhYBisYwhi+GPigmwwWGPgMPAAInAONBMhgYAIlZQae+nkWxjIpNQEHoHExWDCLD+oKuOBnRjz4wKBHcZF1G5usYlKF3C56nRsC4MJf/vIXF2Rm2bJl7tm0g0A1ULPmzp3rBleACdJMbttWZSOUFonP2IEqvv391T/Yvw/3A7Sw5n2wvWLFCkebI2hRdc1Oe019BTlmkKb/yOiGG24wZDB+/HgH3PCeUB4AMHgHDvzRv25KFBZE//0frP399SscDxIIEggSCBJ4b0tgsO/XYL0P35fBJHQgzwt8wKB3339Z0M6V4I2Gu9QO6Rwtsv/x2RcwoOJiP+iepN5t0rFes/UbHhWjQXpgVq+yMeywaIbAhFixJkja7Aff/6Nt3dJsbQIspk4fZaecOcnOOW+WPfzY78RSlS7YUmUFGQItso+wvLQjLCNpmkV7yoQxDJdNn6uJEsV0IDgVNiP4iLblsW89rq3aTY5nm3gdHPDtp6XAKNzIMUrfc/Ejb/79Rl3o9b9vHq7S57TbRGw67J7AhpY9kzpJsv6TGqSf7pSe1aiTOyVtyUdxNFgv3CgX4TGT7Jd//qOYDik248gTJOMSsYVfVAyHZ6x01Ajpdhvtss+cJJ08y0pKM62stMAaWrcIINhqtVVdNjJ/viV1ltrxUz5kOxo7bETu4WpLmtXXxZQ9I944YQpWWbnDysuGKZVntS1d+potWrjE7r3nbhumLCQW69axpU4nR+dGD2fibtOmTWqzOSYD++jk6Ous2YfhgP7IdTAjsBvQswEwACaQHf/fuFNwfN68eQ7kYKKQe/793/9DdkKbXKKzna4P+4J70VkBL9B1/SQagEd5ebl7NvZDaelw/X1tdPUifSbUMjJSFANikQu0fo/cjwEysEEmT56k86Y2tTrdOC0tnmLemRL+T8P1NPxKJAkEt4tEelv9tBXWAv+kGKb4ZzFo+Fnyfm7Zc1ace2MAAEAASURBVJh/ekAFPysP2MC9ZKKAScGg9LWvfc3903McEAFKFsYvAxODHfusGdTw+WIAAiggZQ4z9pzHoKadbFPY7+jAdSPLYj3d9sGzzrRi+bRd8YUv2OZNG+2HP/i+gIUSUdGKbeWK5cpP3a5oy8/Za0sX29MCWloFC48fN1bIa9xNhAGNQn9oFwtyoE08i+O+cI620E765FkftI1ztBnQgzXyGKggD67xz+Rav83zqRtEmgKww4AMvayyslLti9l1111nixcttI98+MN26SWX2L9961v6+sVc3zh+6ikn20NCpScLpKnWR4A+5wgZXyMAZph8LgcCHtxDB/lFW0MJEggSCBIIEggSeLsSCN+Ptyuxd/N6fbv3AA7oVXzL+37P49voOLio6mL3cFwd4kEKY9JzdlhOXo6lpis+Q7KyPaTlSEcjCCQBA1PszA8cYw89/JSNEpE11tNk61ZVWm6aMilkH6mMC9Ld8uROoBn4JBm8Pakx61I6zp7oDoukVyu95E55NOySsqfUlBGln9RzexVHoVtuF/L+cLwH0k/G/4aknyn2Qh+UQtvoY3371bdvriv7+OVl4Ndc4u/T2h9m07l5dOiQ2kZrRH8A7nAqkc7xaJ7fqwNdyrDQK7lEyeCh3w3tOi4mQzSjzcaMzbXmpirF73paN7TaSafMtUlTFBdj7RobPabE/vg/r1h17Xr7yNnnWG5qti15bYHwglY7dvpsW7Jjoa4Vy0EtaFdwzsxouSkZhjJ5ysVYc4fEVO/pUVy2DMkwudmK8rI0OTfWKiZMtZNPOk36fpZSdX7GZs2eo4m8yXa24qNF5aK8YtVqm3HUTHd89JgyN8k1U9csXbbcTjv9DLluTJCrxy6pmjEZ+59yweqZUIS9wGQfgesvuugi+/rXv64sG4e5yUHcgQkYCbBwtNgWi6SfYnesX7/OVqxc7tyBKyomahKzSEBBg5gPtW47ElF8iVwFHVWazEwxNbJz9Hej5+bkym1FrJgW6fJ56tfy5asd6IHtcPLJJ7u2kPmNSc7S0hL9bSpGSXdM1zSp3+m6TzHflMY0lMSUQGA+JOZ7e0Or+UdmwdilMJhjSHtD/w0X77WDgY1x7g11wAuo/tdff7396U9/cmAG9CfqB4igboAHrmdhwAJpheYFOorbBKjlhRdeaMR9AGGlHVzb15inLlxGiCvx6U9/2l2HEc/M//nnn+/u+ed//mf5lV3h6iMGxPz5841j5AOmjTAIQFkBORggPdODNtFeProUgAeeD0DBMzwQAcBAXwAQKFzv28nxtyI/6oCRgFxAd7nfAzN9gQlSh7788stucJ08ebJjNhBcs1IgBMAN5wjgQx8Y4CkAQjAiuBdWCH2++OKLXR/oI33xfeZ6nt13zXb8w+4O7/PXYOf3eVM4GCQQJBAkECSQ8BLw34x32pHw/Xinknt37tuf95eUJIPWNmmR6661aj6/yTq6a5VissE6e5oVo6DDUqXbrF+/RQHNb5BrrNklFx9pr7y80p56pNUeW/IDq4o+Y5GcOstJy7CciAzLJC36ybI8S+tV4MKU0YIQmCQp0XOGCf4YKuAhzbpQVbSkycCXdqidfZf9/fsaUD5JsEbatDBxBciBIcsCCEIRAKFzXbFmMTWapTfKdVhJMrslp6YOBebsWGcNPa9aam6bjOgs21bXaC+8stLWrN+l+BlH2MxZp9lnP3OVDPuT7KUXn7VdOzvsA2eUSjc+ww4rLLE7Ft1qmSOKrK0920pzj7eK/DPFFZluka6IZQkcSdVCSIMevY/umNgXKZrE0xW9km9DQ0SuF232xJMPKz7HUW4iDXYsuiV6NUzkSZMmuck32AfojkyCEdMBhjMsh6eefMKu+NxnbNXKlc7VGb0Y/R+dHFbEZZddZg899JAz/tE10U9hQTChR1BIrqE+WNPowZ5NgT6M/u0n8bgX3Rq9GFvD2wOoq5o7lN6KS1B8kg8AgvZffvnl9l//9V8GoxtXD1KHMmlH+/ibyMxMVVt22rDhCmwaSkJKIDAfEvK19d9o/jFZ+Ad/KwM3BjODAywAFoxZXCL4p4eihdF/zjnnuAdiTHsWAXUDIDCgUAeDC/UQJRffMfzOvvSlL+2Z9ffgiDf8vWH/6quvuty+7ONmAOJJylAybQB+0A7SUJ5xxhlK2/N7lwXCG964ezDo8SwGW44z8IGU+oHOD3bUTxt4vpcLHyba7BffJq7jPn9d/9KOB+zkOgZa5EFBFhyjDtp066232osvvuh86QBqCOJzyy23OAQZ0OR//ud/FBl5hANxVupDcNZZZyk38k9cXVDd8IW79957HcCDbHhPyJn3QT994Zn0yX9wWfs++Wv2Xr+VPu59T9gPEggSCBIIEggSCN+PxP0bcDP/pHOQSUtwyViP3CF6FHy8W8wEBWKMaTslNUPU+Vr72sX/bDnD6+w/rnreZsxOtfM+Pde+9Z3r7SMXTrJYpNV6SeOpJar6omJu9soQ7tYUfopSqbsAk2INJCnMpWnpVdpNQivoMqWx1ATJACI8oH9fLvYEAATgB60AgNi9wCiRPsW5mCzkJLEiItrHyZWfXqXn7FWKzUh6gwMm0iKZlptRaO2a4KquqdcV6TLyR8glIVegQ4OtW7dRBn+BMphVK57ZQjvl1DOsSfLKV5DJRQvXWDRWZOOHTlMaUmWqi2RbuprR2KBgnuk8rVN6q2SVhAzR9+Kx1XCjSROgAAMWnZcF3RP9FZ0WsIF9wAFcdZkgLC8vd0ADGddWrVop6z9mJYoJgas12eXQLWE/fOADH3B6NfYAui3nqAcAgJgQ6J/o3TwTnZb7WdC/0TvRs9mmHax9Wzj+Bp1UciaWhR4hXb7d6fNMvsEShhVMLAliVlAPAERWFvHR4uAQf1tR/oBCSUgJBPAhIV/b6432hiZHGKj7Lv7Y61e/eQsD1g9YGMv8k8MQAC3F8IfNANOAekFWGTi4jud6JgHXMkvPYETQxO985zvOKP73f/9390CuZUCkcL9vI/UQEIfzHAdJxYAHlQVsgP7161//2l0P64HztHfRokUOvaW+KVOmuHs8Issgx8BI3VxLG9n2z6QdfvDz56jHl77963utP9/fmmt5hn8W11E/gygBNHFhueOOO1xKVAAG2Bqf/exnld/4y+46EF0GaeRIPfjULViwwNUHDQ1ACJBnzpw5LrowA75va982+b8H1l6ufc/vvc2zQgkSCBIIEggSCBJ4uxII34+3K7FD53rM2pgwg94Y+hxGa4rWpJxUBjQZusnJaZarbA81dWJGpPXYydNPsIu+OFPuBc/Z8y+ssmv/WyzMvE5xAwQ+dModV5WlR3oVgBJDWaCGYhFEpdfhGpIE+CDQIck0K65MEjECUMrmj2LjDyCSA/r39QbwYTfoAOuBbBwOhMCpFWCC2AfiQ8gFg7Zqak+/5LoSUYp5xaxIjih4JG4GcqkdNqxULrJHyL22yx544DG5B8fskksuF0N3stUo+0WT3DM2bTarl7vL+AmHWU7BUF0DA6RA+p/Sn0o2WVFlRBPI0NPbJH1cE2YCPqJyT9FUl95VfIkqdobCNcgdI0vxPJLFCMiUYZ4uHT3O7oWFgKGfK5eYLGWLGDlyhHTydLVtvN5rVBkpStWniACOeumWW53Oie6Kvk9BF8UdGx0TfZxzxH0rLy93+jaAhNd1eUfYECzovOip6PHonxzzgIPXu6k/rqdKkmpDZeVmsSrydG1U6wL76U9/7iZBYfzCvkAn5vr4pGKKdOoa1RC3Q+h7KIkpgeB2kZjvbU+r4//EGgv3MiL7O77nxt0bDBIMDiwUKE/Qq2AhYPwfccQRbtae+rgWIxsD3xvb3AP4ADDwyiuvuDQ6DFIgqETRxUjmWgYlBh+Wvdv6wgsvuOcw4GGsM3gxyFEANGjPkUce6SLv0qZf/epXdvzxx7v6YQ5Q/KDnAQffJ4AIBlQGMAp9oA1+4OR62sfCPfTNFz/A+v19rfvW58+DMMPEQJYwR4jg++1vf9u5V8BkwJfOu4v4IJ48GxYI8mabekGrWYg4XFZWpgjBK13QH9YwHqC+ITNf/Dtn7bf7Dvj+ur7rvd9F33NhO0ggSCBIIEjgvSsB/514pz0M3493Krl35779eX8uw0OPJoXYSBIKQVwGgARFIIhZs1tq27bJwNWEjbXbjqZNOqfZ6fZGpX2stuHjhtj2js3W0lWrGAXNMpe7LV/IQ550qDSBGJEepfRMVrr1JM1cR8oUd2Ks6inTM4ar7gJZoEr+KWuedJ39lf39+xpQPm9wu0D/xeVC4IuLPRE3amMCUAjqmZTcJRAAlgguutKDte6xbdbc+4oVCMSQI4ZtqN9sSemZ6n+praraYY8+tkAAQp7cKlKVmvJKWy3X2e9+7/9zsh42XMzV7kb78jc+73Tn2qpma97ZZRNHTbPSvDIF7Uy3wgguBUkOkBAHRViOGLZkD1E7ieGRrCbH1Mzm1g4xLOIM2C5SqYLo7C6NTa1uQtHrqciTYJIjSoaK2bzdRimWwgLpnTBv0dspuAN7RgO6LEwEYpWhS1MqKyv36KbsMylJvejUFHRxnscxtll73d/roxyjb8Qf4fWzS7DJmTOZjIzvJyWn2CMPP+LaRjBLdHjYD9RNW5yrxutddc8OvxJHAoH5kDjvap8tZXDlHzn+z/zGS/y5Nx598x4DBAYvhcEGg5c4BN/73vfcwMIMPcYuAwfXUi8Lgw0gAygrpa8LwAMPPGAzZsxwsRgw4v31XMc+hfow/nkexv+6devcoMJASCGmA/265pprXPyIn/3sZy4l0I033ugGJAZE3C4AK6iHhYGJfdwdWHgu6CtGOn2kzay9vNiH7cHCIEr//CDqGjHIL+qhH74+/OHIDkKgHECVq6++Wimr/r4nGCesENgatAnZAaxwP24VJ5xwgns+AAxMDnIk434BcwL/PdoNOAL9jb5CgaN/exfa4pe9z+2979u99/GwHyQQJBAkECQQJDCQBML3YyDpHNrnpCVYl2zp3ljc8Ca1pEHth/UgKCFZ8+8ZKUrNqZ+m9gbpMPVyC0Bfk2trXqoYEdusS6BFr1wtIr0Kzp3MIiNdxnmyIkgky1hHl2KGXZGwtOBuEXe7kHOqzksXUxsGsh8P6N/XHuYD7wmwATnsXrtAnjLunSGMfhdf/HkydnBlb6zVBe90LiViLHS0K5B5lxgRmQU2qWKa9LlUe+TRpzQZVS3jeZh97OPnKlZDq931q+ctqzRNQReLbFx5hdxW5K5RtVX3SZ+MtCu9aaMVpCl4vJ4hs14NUfyyHlgPxC9TW/TDOQCIbt2brA1khc7b2QkYkOwCM6ZJz8zMSHXX5GRnOF0zP09xE3RvrgI+1lTXaCJsnJskJP07DFz0b3RydGFcm9FTyTwBIIGezIQi+it6PDopOjfbnKMNLN5OYO0Luqo/H1/H9ebOzh61tVkTdWO0bpXL9TrFqGhQAMrlVl5e7twumOAENKE9w4YV6VkR2QySDS8hlISUQAAfEvK1vd5o/qExXvcu/HP7f/a9z/Xdx1DHoMWIZ/BgsAB4wBC/UUY+A88Xv/hFdw3P8QwBXzeDEIX78A/jPmb7f/GLX7jtT37yk25goj3eqGew4npv8FMH91I/wXAoABEEmmHAo21E14UlAODwuc99zg2QuCAQSAeDH4YEAy/PoT8s1Es7WTDW6Svt5zkMltzn+899tMdfzz7X+v3+1vSJNsF0YIBeuHChc7HAZYJ92A+33367/fKXv3S+clxHiSO3GS6QJAAEbhi0BQCHPtN21lz/5JNPuvbD4MD/DdlBhWObftA2X+gbbfeLP97fmutCCRIIEggSCBIIEni7Egjfj7crsUPnegzYzk5m9mVEY8zK4O7VrH9M0+k9MUItwlSNaGa9RfpIig3JKVagyDbr7FKARc2uV1Vvt0wZsmlpUcvSkiZDOJIE8CA2rYAIJTnQfczIy3hWkMlYj5ZeMTV701Wv4hYIgIiDD/3rIAf078uBD7gDOzNea8AHv2hTpVdySHbAg447nZCraa/YwgJVUtWPjnalnm/DPSLL0pTNIkkZPaLRTMtOK7SMrHwxHiql3+Zba1u71cuAniNdNjqk2558fIlkqQmzjm6l1ZQOnC1DvmuX3kmdYj2QUS4qGQHaSC+V7Ij3kCKhRpU1ArVNjs9Gunan/0kHJHMEKehJRRnVdRkZ6Q6AyMyEUVylNmQ7PbJL4EiPGC/0K2d3AEf0dvRYdFFivaFLA0Sgq6OToq9iFwAAoGsDTnAP+ifXoCvzrmgLeizH0UW5F4CCbb9mO76gYxM3LVns6V1qm9xXpC9PnjxBdUXsG9/4htNz0fN5Fq7I6MV5eQSxj7p25ufnuvcUfiWeBAL4kHjv7A0t5p+9vwF6oHO+Egx6DH8GFP6xQTUpDD4ESYTuRFwCBhH/HAYR6mZhG/cKDHfvQoDhT6YLjjOAYCxzL9eyBghgsMJw55mAANzD4Ma1DEwU2Arss+ZZ+H8RKIfBkXgUxH4AoMDlg/Q/DJYMXrAGuB7jnYGQ+mEL0EfAFPoGu4CglrATKBj2foBk3w+QPH+gQp9AjInpQJtgPCxevHhPjIa7777bxcHgWQzsDNrU7WXAc2kXfUcmHEcmyBOZ4G5y8803OyCDeBoAO1xDf2FEeLcL5OqXgdq79znuCSVIIEggSCBIIEjg7UogfD/ersQOoev16Y/K8MP4i6TIyBagkKxYAskyYjGgk8RM6FJqw9z0XGWo6FFcAs3Uy7iub2lQLIcUO3z4NDlnKMi3Yglka9Y/LVUTH4r7kKxrU1RPaopiFyTjFirQIYZulykPj2yBEjlaMmWsw7DQsxyHYN9yOaB/X3G/k90PBnSQ3tnH5YITUiMlBy1uWy4CAiNiCsaJcQwjIdYmfkj6EMtMk3uJAIeoMn5kRpWRQrKr1yx+rpgNc2bPFfDQoRSby5R+NGqTD6uwIcrSsL16o722ZLVt37bdxo4vtYkVoxSscr1SbTZKHy2ydsXRyE4pEltEjJSYjHjJ3wEPaqYer8ZJNxawANiQkqK2SFfFjQEsBZ03rgPHWQ7ojFHpqsSGoKQLpOB8c1Oj0zPRY5nkQ2f2k3DYAtSDbsoxCqACeiwFXRrbAdsAXRV9nnqol2MeeOCYX3if6L/+vZI6k0CTQ4bgFq2cKCVDXN2pqelON6fdZMODjYHOTj08P0exLIhh4YNPupvCr4SSQAAfEup1vbmx/p/4zWcYNAc3LDHEGUAoGLIY7xjsPsjLww8/7CLfks8XQ5wBhgGBAYaFfZBPjGrq4Rh1EiARg5zIufiMYWBXylcMY9vf4w1nBi5fGJgo/hwDHAMeAxnGOe4Hp512mtsnBehNN93kQAfqpY0AEBjv+K/RTlJUQtWiXsARngWKChjBQEaqIJ5B/RwH2KAOBtu+/aROziEX7mNQhpEAo4F+Pfjgg67fyI9B/KqrrnKMEcAS5OYHbPpG/1moh3fk+8oxnkPxcmDgX716tfsokHaTXMu0jW3cN0Cr2acO/749Cu0qGuSXv2eQy8LpIIEggSCBIIH3mAQY//dneY+JI+G6sz/vjmwXvUlKD47rhAzxXv0txBkQmIH8XcgdNcLMuwAKBYyEI6BpJMvOyLf0lFxFPdD9EAKQmvwTougy0XhaxSSxKDo7YOVqUkWgg8UUBFxBFaMRUeYjuXHwQaAEsQwOJPgwoHxcb0mnyY8MYngYjuXAPvrz6wtd5BhsgYjAmWTJJklsjuRkxUHoyZfBL3cVLTAiiJAh6EUshBylzMwzYRViNMgdReBOaoaCPLbusk1b1wqQaLGiwhG26L41tqVphRUPzbZXFjxj5eNGqmW9tnLVGsvIFuMgPV/uBenSgxWqUyBPTGlC2lobXaBJZ8i7tmkiUIDP7jcoIEjvThEp/X52VqbAIIAeGBK0T+9G7cKA98VPPKKHep20r27OdR6EYNvrqmz3Lei1Xn/te/zN22qFgJK0NAU4ldpP/wAT6uqa3MQarGZS0MN8oE0U9Pljjpkj9/BdYkDkuHf05nrDkUSQQPyNJkJLQxsPiAS8UYxhjtHt6VQAEMzkwyIg6iwz7h7dZGBxgx6jswqULGJFYMCzTR0nnXSSMet/8cUXO+PZp+KBSYG7ANdi9PtBrr/OeWAEA542scY14+STT3apfXDPoH3Eg2DQO+WUU+zMM890wTIBRWgP91D4EAGCcB1GOyABQRvZhtJFm+gjxjvnqBvmASAEAAixHAA5uJ6BEdYEIAashpdeesn1+VOf+pSVl5e79gHCMGj2/QDSDtrjwZu+gznn9i6cB7wBJAHwAOQAgECeMEuQD++CPtF+nuXrZjuUIIEggSCBIIEggSCBIIG+ElAOMpmgBJkEVmBmW2sYD5imzPhrIfNFksVny5NdFoj4fqy3VXpHo6XFFFhQl/XIwu5Vak5ZwA5Q6JVrRUTgRqxbTIekXOklMB5gBjCDL+OdqvV0N02v3wen0HJaQjtYx1uljYELl1NYO9VS9SQVqI8y+B2AoT6aXFMUqFIaq2WL6VExdqJYD6m2auMq27plvTW11Yuxm2cfOutUa2yptQ2Va+22O+6U7pxkxSWllpaSKU+VRluyZpGlH15kwzIUe0MuLW0CHmCgJKUoDKZkj2NGvN006J2Wg6cnwrRpbyclKwAE8pcopbcyyYfNQawHdHF0efR/2L49PXFWc1Bv3+n7PjTuC+DDofEeDlorMFopGKwU9jG+MbAxZnFpwMDlmC9c65FIjHACTsIa6IuSkieYQIs33HCD/d///Z+dddZZzlUAoxmjnLoHM7x5HoMOCCvt4rkAFiC0ZLkgYwT7lLPPPtseeughB5g8+uijjiFBez7xiU+4e2FC0BcMeMAR7mUwA8gAOAF8YJ9nwdog1gL7pAulbzwf94ry8vI9siAgDuXSSy+1r371q3bssce6c9DDKB44cTu7f3lgAHmyDCYDrpk5c6YDcHg+LhjnnHOOixGBHLmftZeRR6P9+/IDet82hO0ggSCBIIEggSCBIIH3swSYX8d6jgcAj5ugggTkDrEHgHBqH/vwH5gxx7DOloXYJaiiTnvKEymDuLNHtH8FRUyOEdQwHnAylqz6dTxJjIeIMjekRIuU3UKsBwWdjLtbqJqDKn6e7vwXtN4LeOCUBxkGayPXuWvl4pCMkwSQQJvWyFXBGHWyOCI27ehU64q1yR2jSkwIGdD5OUrRuc0mTZMeG6uxhlYF9RQWdPeDTyldaaodM3OubVi11Wo7qixHbJOklHQlKlXcNdWXKraAY4ygt+/W3Qdr5pvOy3p/O9180/3vwgHwBnTrFLn94OZDQYdNV9YU70aNjosujc2AXhtRzAuOadMF3HwXmhGqOAgSCODDQRD6ofRIDGv+kT0DAuPcI48XXHCBo/bDJmAg4B+fxTMJMKRhBFBwbaB4Ax5A4vLLL7c//OEPdt1119kHP/hBFz8C1gMsC3+9u2mAX1wLCgrYAZjgWQi0mcEI8IM6ARkAIGAjEHcBhBRA4bbbbnOxIQAxSNMD6ODdFQApQFeph0A61Akw4QPuHH744e44gyOgCXEWSPWJXxxtAqSAgUF6TF+QDewICi4YXNeXgcC2BwT6Hvf3772mfzz39NNPd88jiwjBLAF3aCfypm+AMLwj6mThvfCu/LP2rjfsBwkECQQJBAkECQQJvF8lgOmpOAbOAGebguOFmJkyBJ1hChmCw44BIfBBaznFap9wlNLJkurFkNBFiknQ06uYDor5AOOB89owxbNU7QqgLfAhNUmLKeaVyT1XW8AZu2vnCQeh0DMPPvj++7VO9dnst3Fvugb5pOtWpBNTTxV/QQBNS3erdNg0GzdqglKXRmzD1lVWVV9jm7etsfyhmTZ+8kTpbF2K7bXW/nzbq3KbMPvoxy6yXXXNVtOyRWk5W60oY7jlZEnOkpwckfUU1Q495Z2CDwAm0hUPdvFxG7ztgL6NWfH00087PRbdG90WUIJlN0FCOr4yghSGgJMH+/290+cH8OGdSu49ch//8BjdGPYYzhis7FNmz56tyLOT3T8++95Y9gYtdCgGBgx93Bso1MF5QAJ8tWAc4B5QXl7ugibCqAB48Maxn6l3N+/jF8CAfy4ABAOTBz0ATjiP8Q1IAeAxf/58t1AVxjmGOoACzyR1J0DIfffd51gQtIm6iKsAmwJQgTXPoNB/gAqeC8ABwwDGBfv0Edl5tgfuHPSdZ/nUo8iHOrmWxffD77uHDPKLtlFmzZplTzzxhAOJHnvsMfv4xz/uGBm0CVkib67119MH/7xBHhFOBwkECQQJBAkECQQJvK8kIF1KQALuF9LutMBs8MaowAMM0zcZt5gM0o8weJO6BT4U6TLdL5eKHlwwNPNP7AHuJXuGqBCK8ZClmBH5MsbzHBARN86VwcEZ/v55B0vwPH9fbcAypyAbX/x18XWv+imVT7qd665q6dLlWui/wBVtqIfJ4olkCTBotLqmGsvMLrDJw6YrpWaGda151cZNVzw0ZROpa26QS3Cr5RSUW3pDpTXWN9ku0SBGVZRZzdZNtmHTMhs/QoEqswoEOigYZUeqFUv3VShHPce31bczcdatrR2yNwAUktwEGjp0Xl6W3C3q7C9/+YvTYdGpYRPjBo1O3dLSISYE8TYAr0JJVAkE8CFR39y71G6Md88mwGDFWKZgWPOP7mMyMAMPwMA/vDfOMf4p+GV5ZgT1UQAZABZ++MMf2iWXXGLXXnutwaQAECBoJK4ORLAdrFAvAxIAA8UDEGzTFm/owzDACAcIgb0BywHgg+CUABNce8IJJ9ipp57q2sX9HKc+7gOE8HXRdxYGPYx7ztEOrqdPtIdCm1auXOnYFDyfAgOB6wBwYJNwL8s7LcifNkA7ow2wIABUeA4y5N0haw+g0Af6BPDAe9qfZ7/TNof7ggSCBIIEggSCBIIEDmUJYLyl9zFd0VNYCMKI0a1tgAW3lkENmOBUGe7TtlgQStaoGASacIpKT1P2hWTpHEnStWA1yDXfosqAEVGch2hShszkeOYLHdX9BENEP9HmwSx9nw9m4AoHdy++/+64vyC+JkBnT0RMYMkqWfEYAB8i2oP0Ec+aocgPHTFLV4rL3GiGdUQUjL15p6XkSDfMKbXRpUoPn1ZvRTK2S8tGWlNrlcWUxmLUmOm2tOEFu+Gm2+zKz3/MYqkd1tJTbfUdWWJR7FDlAm6i8ewQOM74VrkmJtgv9HImPB0/RraHZ0Ggv1YqkDs6LAs67yuvvOImB9HNuS9PaV5DSVwJBOgocd/du9Jy/okxUFn3nSn37hecYxsDnWsobFP8rD9GOgYw92P4UjC8cWUAcOD6b37zm24Q8S4JHqRwFw/wi4GHwQmgg3ow/L07AUAAYAPGPgMVzyeGQ1lZmWsrRjvXEOsBcABAgH3qom0Y7Bj0HPeMAZpCPzH6qZt20gYK9yEP+uqN+unTp7s6AGpwswAUoC5kw9qDJX1l6yp7G79oC20CgKAtGzZscG3xQANyoa882wNCyMmDJG/jUeHSIIEggSCBIIEggSCB97gEnHnt7WzXV8zY3cCCAx+6pVNpgkmGtSm3hVt6md3Xfo/Wyk7ADH+y3CrSZAxnpgyz9GQFE7cROlpiKUkllhUdLXZEieAGMSR0HWBHnBWAnuifpc1DriAY+geS0Hfpe0xZ36KNFovWWSzSKLyhReCBsocQ68HdLoZsj1wwYgTYTFPK0uGS0RDpZUpL2ZtrJUNHK93mJttSvV6pN4fYtOmzrKi4zPILyhSoM90evOdZe3nxAutOarOC4enW2l1tm2vXyImjTnogsR8Sv6Snpzh9mp6kpZElI94ndFl03faOdqeDw3xAx504caImCfPcxGji9/793YPAfHh/v39nrGJ8YyR7gxqRYOh61gP7HmjA8Gdg4BzHMOIx+JmB93VgiHtD2TMWMPoxwDGYGUhgJRDUkfSYgxWeAwiwLwPeu3sAgFBoHxkoADlwocAA9wAGRjrtoL+0kW1/jwdDYHhwPQwQf8xdpF88n8W3xbNEvNtJXwCD+ikesHE7fX7RLuTtwZo+p96wSV+QL/2ij7QPkIP7cAFZunSp6wt9o23UybaXe993+IaKw06QQJBAkECQQJBAkMD7UgJADS6jBevdEpAKsXvPnY1vK72kFIvdZADWOuf2sRRxC8VNl22/xFkN8B8UGnD38Xh9zNRT4u4d/hnu0CH6izb64rf9Os7fiEtvt8sKAhQjRJqdZKQMZBlp1lSvoJNiUGTly2FCAES7XDCaupIsJ6XDZpbPtfsXPWTdnWk2ccLh1tEmhm1Diy1eOtTqNzfZgw8/bh88Y6aVFOZY9Y5ttqb5NcsYl2cpBRnW2NNtGSlj9RxkLIBEbjCOdhGnXugY7dRCPlRxMsxlK9E74v1xnNXBLmrD9u3bpJPLKUdMhubmNqe/w5COxRyFRPp2RLp6iiYRh8r9eKYDKNrb2yTjvEOiCwdbhIn6fEaLUN7HEsA49QZwX+N+b6PVX4Mx7V0MEJs3wL2hTh0ADxRYBb5ODGcWwAqAB2bv3wrw4CrSL1+P3+9vTfs8u4JrABIoe7MbPGiBsU47WbPQRkALv8+aOlh7NwrAEH+eun1dbPvSF4jwx/quqdPLtO/xvbd5DmAPYMbcuXNt6tSp7hLyH8Ny4D0hR/oAIwNQg3oBVt5K/Xs/L+wHCQQJBAkECQQJBAkkvgS8nrKvNTiAYkLGF3UVTUkJKrQADQAgYETjRgtbQS4TyVoiWqLaV+YFS5Ge1wv1nYkfWA05WqRLOUBCqTadmwWGMXOcu41fDGEtvTKEWQ60Bbyvfvc95qxXjPA3GOLs0DbaCoigPriF7TioQB+SxO+IKJ5DxMWyyNe6QHcp5WayUotGFXxTk1wxoTtZuanSk5XhQxNIyDZDMhqSMsqG2nhJarQdc9iZVlowxlYrlXs0uVmTTcl28ilzbPKcCluyaKvdeN09NnrEkcp4McLWys03I73ZFi++3YpSGq2rXYyUGO3V5GFPp3V110n+9dpvEDOC7WZhDWJjCPzolUvH7resfuge7nNAhA6/w8Kk2EDLwNXKDaWl1aZOm2J5+dn2qlwrMrPSrax8lFVuXK+MIO2KOVdhaxXroWLSBDvvU5+0hx950L0rrosDZQM/IZw9dCUQwIdD9928J1qG0Q8Y4Qd89imDGefvic6/C50goCfADjIEUCC+BsAFIA4FUIbjgBBc55kWrD2z411oRqgiSCBIIEggSCBIIEjgPSMBmAlEZ4iv2Y4v0isABhxQACNWC8atWwQcuDu4i+00nWcyhoVtsUnfZKhTF6bG3gtG86FaaNve7d1rHwBC/U1Sv5PUf3MLMogH0yQmRNzoj7ttOFnHFAOjR0xjuV6kCITIk4vKcLEXxgwZayUFQ5QRROzcSJdNn1ZhF336fMvMSBHbNWZ33fmIMpqm2oc/+hHbtGWN5Rb02v3P32TN7ZsU47JJTVWWuqhSnEZ5h7RTGc/0dl5/V7RFTdSZOPfEXfL6tnbfSUH/HGgZrE4ABCbNYE4feeQM6a9qpybcHn74IRs1aqT0XIEoYkCUlAyXHGqtomKiPfTQQ44pwT2hJK4E+CsNJUjggEkAFwCMYtwFcLfwcQgC+PDWRI78cLNAbgAKpPcsLy93/m8wNGBEMPgDTrB4pgfHQgkSCBIIEggSCBIIEggSCBL4x0tgIMOcXBhZgh+GCYCYmD/JxpWOU3yMVGvaVWdpiulw2ISJli6XA9nc9ptfP6psGY22bPUaG1txmGUVFtuRxxxhDd1LrDVpoYCFSuENjWKxMLkn5q5ibMQ6i7RdoAUmMqwHRYnAJUP0FocrOYxiDxSh82+/oJMOtAxWI3aAd99GVui7xHYAYACEIN09MdtgV8DkJesb5/vquoM9I5w/NCUQwIdD8728Z1pFMEjcFQhauWTJEodw4i7gGRDvmY4eoI74bBYMygy+xJcgBsTatWvdgLxjxw4HQCDPvi40XB9KkECQQJBAkECQQJBAkECQwD9eAgOBD3K8dTE7pbkJIiiyioIKKx8+xjKTU62lrt7q66rtpz+5xoaXmJ14eqn91y/usq01O239tu22va7JVmxcbl0pG6w7Zbl12gYtO6wzRqwxuYbEMi3SKzcYsSUsttttRGyIeFyINq1btLCGlXHwCqACuituw7B5sROYrETvheV74YUXuv1ly5a5OGaAFaeffrrLRucn2g5e68OT90cCAXzYH+mFeweVAKjm/Pnz3XUER2TAwDAGLWXgCWVgCYDwEmMDOcJ0YJBGfi+99JIL2MkAzYBNwc3Cx3kA4AnyHVi24WyQQJBAkECQQJBAkECQwD9aAskCCVI65K7SHVVUDel5+plefrhNnzjFinNyra2x3lqbGuzoo6fZqjVbLSvP7M57H7EZI46zaHahRRVLoidjq3VGV1mbrbHm7kpr7VT69e7dwc7VIbAFsoW6BbqDy9yhLB3KmdFrXHdwwQdYDLB6mThjIo2Ya6x9EHtsh9cUC6O2ttateUfoxARiDxNsSCNxSwAfEvfdJUTLMZbPO+88ZzyvWLHCGdAgnSDC3gUjITpyEBtJUE8GWuQ2adIkhwCTKQQAB2oasvTUN5rJMYCHIN+D+NLCo4MEggSCBIIEggSCBN63EhiY+RCx4oyhVhAZopgREcWASJETRo6NLh5h+elZ1lrfYEMLC+yfLr3ErrzyIssSkaFZYQ6OvvAc21Hfaq8ue80a22ussWuLMl9stKbODUrHWWldvdsEKWhCStYdzrcADy4vp5vrI04HG+27l4MLPjChRswHCgxpyh//+EfH8EXfZeJt9erVivVQsQdwgCHBucB8cOJK2F8BfEjYV5c4DT/++OPdQLFw4UK3xlDGMA4z84O/Q1gNyAukl/gODMK4sjAAA0rgDwda3De4pAcjPAti8KeEK4IEggSCBIIEggSCBIIEggT+ERIgzWlEtn9GLGoZPVkKHKkQnrGIFabnW1Gm0mkqG8WTj/zd2lvapCv32uc+/1mrbTCrqjR79uXFVjF1lm3e0WBViglW17LNWgVAdEZWyw1jpfUka91bFUcf1BnPfiAoKPEflJBdS+duIOKd9xYdfqDlrdQMq5cC+wF34t/85jeuTlLJM5FWUFDgmBCzZ892dgN6MIHYA/PhrUj30L1GzkGhBAkcOAl4Ixl6FcyHzk5F5JUxHeI+vDWZ4/9GId0mgA1pPWE9gPwyCA8fPtyBDwAOFD4EyBfggWMM3qEECQQJBAkECQQJBAkECQQJHCISkGrWVN1tOblRS0uXvpacrXgPyZadHLVoSbeyV3QpkGS33X/Xg3bqB06z7Nx8++xnz7U//PFWu+V2Zb/oaLaZ4zIs0gXFoc2yM2ssLbVDvIZuLUqvGVFGNFKjdslfow/7oTeSKtCBEnPMiP2RxmD6pddL+3sG9oFPE8+k2n333ef02zlz5rjU8tgL48aNs02bNtkpp5xi1dXVDniA9cCEHJNvoSSmBALzITHfW8K0mtn55557Tn5rR9vIkSNdIBl8uqBbYUAPVhjc9mcZrP6BUFvOMXgOtAxW//6e9+mEABlGjRplZ5xxhtIOlTg5AjLg/0b7CMSDrH0BfGDgPtBlsHdzoJ8f6g8SCBIIEggSCBIIEnizBAbSXRLh3Jt79MYjg+kfg/XxjbW9/b3B6h+ofQACOXma/2XeSPHBU0lTqh1xgi1TaTgnDplsY0dMtPGjJtmSV1fatk01Vj56oh0/9wTLy82yu+963m758wLpgqMsJa3QklLbrTuy1ra1PmBN9oT1RBaqvk2KP9nlOqaMlbtDPKTrCVEX7UHardMf99Z12SdDHf3zffB97bvPtmcgMKEIKMB1ZGhjm0lHrvF6tq8D3ZTjTKqhxzLJhvvFjTfe6ACFH/3oRw50oB7qoGzdutWxIAAsKAF4cGJI2F+B+ZCwry4xGo7x/Je//MVeeOEFGzp0qAMdAB4oDCp9DeZ30iMGs4EKA9xAZTC/scHuH6huzg3WvsHuBxWmIMff//73julA8B0oavjDgf6SwhTq2vjx491AzkDPBwFXjP1t/2DtC+eDBIIEggSCBIIEggSCBIIE3oYEXEAGXe9V1F6lreyNKl1mmqI/ZAoc6LXi7FIbP7LLKrdtsl3bmyxHLrazZxytTBbptuTlJVa1vcsWLayzkWNKbXhaiq1peMVaGmps7OghqqFadaxWQMsMBZ4cL12QeGBaYnJ7Tsb1osc6BBikRmIOKIBZC4AAGIDuiH6JLsk+eiRMWwoTXb54hi16dF9dmmu41wdI9y7A6Kpchy1AnbgMA0TAiv7JT37igkqeddZZrnrSbDJRia7LJBt10EbuY0En9i4bvj1hnTgSCOBD4ryrhGwpyCWI5rx589yMPaglg1l7e7tDOw92pxjEDuVCak0GcgZpUpVOnTrVIb4AN8iVgbmqqsoNysiV0hd8OJT7FtoWJBAkECQQJBAkECQQJPC+lAAqGyooawWBIANGRLkvgAaUu8yGZ6ZZ79B0xWzIsIaWRhngSkuZn2czpky3oRml9uqTq+y225+y9Vt67MtfO9ZG5I2w1Dy5WthOe3Dx72z+EYodEcm35NQCuXUUyY1D5AenJma5J7R1KIV7ehxgABRAHwYMQIfE2AeMQMdkEs0DDarcFSa40DnR6WEuoKeilwIQAArAagA0wJ0Cd2GYzsRq8EAEzArqIMYDuuyLL75os2bNsv/8z/901zPJBtuBIOuAGASk9G30DArflrBOPAkE8CHx3llCtXjEiBF2ySWX2IQJE1y6HAYygigyAMGAONDG/2DMA08Z60+ofqDs7/xgxwfr32Dt83mPGbhhibDgfrFy5UpHi0OGuGHQTh90kjo9EDFY+8L5IIEggSCBIIEggSCBIIH3mgT2V/86oPIg4mSyFti7DnzQ05Ki2swQ7BAVOJCmn3xrTem1ilF5lpoesa01m235qmWWHU23M045za679nbLzY6JwZChCb10a81JtdWbN9nw/CYbNWaYtcc2ybGiyKIpBbu7ku0iPeCI0dsrnTI7R8+Lgw7ojeiRXufty4QAXPD6JRUhVw9Q9GVCsA14wbUsmzdvNmwAz4oAcPATagARxHF4+umnrby83Om1V155pdu+8847HdgAsEGduFj4dnl3bXR3HxNtd+fCKoEk4DCwBGpvaGoCSmDs2LGOZoXRjFFM9FpPtzrY3aE9Ay0Hu30eKYZBAtDwzDPPOLoZIA6DO8h0aWmpjR492jWVgZ+BHuR5MGDlYPctPD9IIEggSCBIIEggSCBI4P0mgd7kHuuJKpB4tFVshE7rdjkxFXgS5kNvjkV78wQM5FhB2ggblT7BhlqpYzYMzS7SsSzLiPbalGkj7biTZlp7Z5IteHWrMmaMsZ7WUdawM9MOy59jrW07rK17jfJavCYni+XWYRusrbNax7usXV4U3T0x504BKIALL8CAjzOGHslkFzolk2C+4H4Bcxn9EwDCx2vgPNdSD+AEdaHnc82iRYts/fr1jvmAy8V3v/tdO/LIIx07gmt//OMf2xNPPOGYEgSXvPTSSx2Lgnu9fk79tI1nU3wsCLcTfiWcBCLfVkm4VocGJ4wEGIgwkEEvoVExcEGh4hjuAoPFfBiMGTCYIAa7n/MDLYPVP9j5/UXe+QAw+CJHBmIGaPzmxowZYyeffLKTI5Q2wAhobgz+3g+OZ7+V/g/Wh/05P9jz96fucG+QQJBAkECQQJBAkECQwL4ksL/6177q7Htsf/Sb3qQeAQ5Ko2nKaiHIgRSYpmgP4q2KWpCstWIcdEcsK5KtI8nW1ttsqdEkG63g41EBD+vWr7CzP3m6pWZ12//+5glbu2qbffSs06xi5DRrbuiwjqQOS9Yz0jKSxKBIcrX3wqiICNyIFFpKVMBCW7vlyDUC/REdHd0RPRP9nL6hewIusO3ZC8jU65jomzASyEIBU4JrNm5Uyk8dBxxA5ydYOpNoq1atcsHnf/jDH9q9997rJiQBNf72t79ZWVmZ1dTU2MSJE939uBhzD/YB2S76MhxoH+wHnkG7Q0lMCQS3i8R8bwnTagaN4uJi117oVwwYABD4gjFbz4A1UBlscN/f+wd69qFwDlnxUcC1AqT4uuuuc8069dRTXUqiioqKPUg1Hwo+BB504EMw2Mf3UOhjaEOQQJBAkECQQJBAkECQwLspgUNZ/5HjAiEfBTyQ8hLIAdaDPC+0JOsXXhkxBYcEkujulS7XnmTZGdm6KtV6ioZY9a50S06rtoqphXbiKcW2YdlO+91vHrMJo4rs8IoCGzNsqDU2rbJo6jZLSe0RrEEKTp6hTHPJqUAclpmd5XRymA/o5ujrTA7CakD35jhMZYx9mLTIk3Po3YAFHCOLHZNjAAmACMR4gJ3ApBhs55deesn+/ve/20MPPeTchbEHzj33XKfPAlDMnTvXZcdgUo24DkcdddSeyTbYvtgKvnjXC/ZpZyiJK4HAfEjcd5cQLWewwCgGDYWChUEMdcojmYN9HAYGH5I0OBOtxw/Zb173iFbGNf0t7Z0d1tndZV0aRPe1aAS2nl59JPaxxHSsVygsSGx/C30fqAx2nnZHo/FIwjt37lJwnv92DIcvfenLDsSZOvVwN9DzEWCg9lQ4j0IP9GzODSzfwe4e/PyBrn/wFoQrggSCBIIEggSCBIIE3m8SGEy/HEz/Gkxe+6PfxGA+yCECDVb5MKXFwnpg2a3R6gTAQ3OTAIpYpxVkChRgv6NB/g0xGzOixJ5cfJ+NHj/cRg4bY827au2Jh1ba5rWVNvOIaTZl8mRbs3alXCuU1yI5xXqURaOrU1koOrIsJZZr6cnZVl1VY7/939/ZlVd80a7+4Y/s1VcWumwY6Wm6TvOCTz7xlA0dMlwTYBnWWN/omBIZGZm2ddNGe+zRR+3ll19x4MStt91ma9eudWDEk08+aes3bHCBKK+99lq7+uqrnf5fLCYDIMbxxx/vYj1UVe2wUk1IvvryqzZ+3HgX66FyfaVlC2wYOnSYsn4kC4xQrAoJpF2s3mgKc+VkuWh32+jkEWXtCCUxJZCkf874335itj+0+j0iAYx3ZvkBJ/amUoGOgn4SfIYFpHVP0V9vdXWDBqs8d2j58nWOUZGdnaLouYsckgr6SiofKF0PPvigAz5uuOEGW7VmpTW2KVJvhuIKCyTBbQFgBJoYLAOi7ILaVlZW2mmnneZiK4D2sn3EEUdYc2OT3XfX3faRsz/s/Nv4EOEOQSFGAyiuL9DY6Aegi+9fd3ePAxZ2f338pW9Y19TUin5WaM8++4JDj2+55RZHZdugwf2663+n6MAzlRKpwLUNGfHvjIwY5GFMHOiybt06x8rwzwL9pq+g0rQhlCCBIIEggSCBIIEggfefBAYzLwYz3ge7f38lejCfD/jQJfBBU1eyr3GzYIm4BTcLQAjT5FMEGoQ4EsqZKUCAeAc9lqwJKUVXsPu3/MnSi2NWvb7KJpSU2y++/xNL7uy25Yvr7WMfO9wKi3NtqlJWWk+KzZtxpnW3JdnSF9fbA3990jZtbrS/PfqidSWlW8mIUulsObZta5WYCw3OrQLZtDQ32ZDiQq0bBQA06/kdNnniBJt/wjyrV0yHFxYssBVrVkvXzLIZM2ZYXWOD03NpH0yGOUcf7fTBqPR6XDXmzT3OgSKZ6Rl2wgknWoNYEqTgGDIszo5urK134AI6bSRNUAv0DxRkt9amtncf0TZ8EeTlJMXJUBJIAgF8SKCXlYhNHezjsWXLFseI8BQqQAjuAYggYA1AAJQujHbyDlMw4hkYk5IiVr2jzjrau9x1GL0EqwFsKC7OklvCLlu+fLkt0ABJGp81a9a4oDcf/OAHHf1r9NjRlj8kV6mGog6wgDWAMc2gybNJ8wMFDODixBNPdHXwXIAK9rs7Ou3E4463ns4u55dGu2bPnu2ux02CmBZQ1qCZAapQADfY9vQxgbcDFolD15sG8F4HiOBDd+yxx9o111xjN974fxrcZwmMKXWosY+fgRyof7AP64APfpsn6TvP9IwWKHy8i/Hjx7/NmsLlQQJBAkECQQJBAkECiS6BwfS/wXSUwe7fX/kczOf3yqBWyMnd5rSb4HdmNKY0C5zZtpZWB0OkaiInSWk2XREg0SSdeGv7WqvJX2Wp+R22TZNRkfZuqxd4sH7FGnvumYU2beoUTazl2LHHzLeNa7ba5PIpduLc0+2fPnSuPfrAOps2cbi1RUusvi1Z4EG2JsWyNAEnloWs+x6xJap37BDroVhMhAy5gcRsSFG+mBOaCNRk3VTV3dLeZo8+95ziVoiZIL22sLjIyhWfIV0siZy8XKvQ5N0XrrzC/nzzzXbmB86Q/r3W6sTOOPro2dLZO23FshU248gjHK7SJcAkRXq4QxbivYwDDijILhCnDgJAaJGFsPsyIBoYIwOzi311YX1oSSCAD4fW+3jPtWawj4cf/AEd8BPDMPcGLMLYtm2bS9XDNjP6uBcAQrD95JNP2xHTZtrSJcscO4GgN0TVXbhwobuO9DxcB6Ph05/+tAMoABOOP36Wvfrqcssvzrc1lats646tRkYOskZQB75quIisXr3agQpLly614447zn7+85+7lKE33XSTa+fiBQvtuDnHWI3oY9DLeBZxLW7WYHvJJZc4AIV6fR9pu49RAQjR2tpmw0QvG6gQEgMZIh+iBFPXH/7wBwc2VFfvsIbGOquomOjaj9y41gMdPM+DHAM9Y3/O4d8H2EH7AG9gQLCmcMy3ZX+eEe4NEggSCBIIEggSCBJILAm8Vf2vv14Ndn9/973V41436+/6A/t8jGlinincJNP5fYvfl75nuA5rMseBEmIPeAO9N1JnO2yFbexcbjUbt9iTDz1iF3/yU3bLn/5sa9dtsOqaXdYsokR3p9mRU4+wS8+91OYedZLNHDXNMrtVbbuCWHYU2PQj59u0adM1WbTZHnjgYWuKtdjE0grn+pAqV4eGulqrr9tpI4YPce4fWVlpmnw73nLkEnHcGafbnfffZ08+/ZQ9+/zztr1uhx01Y5Z96atfsWnTj7A77vqbfff/fc81+XOf/7x96oLzHTsYvXCoGBXdHbguC0wQyEBXo3JTjkQEJmgf94q0TPWXu3cLCMCG/Tj8EAcf4jBNX+GF7USQQAg4mQhvKYHbONjg7rvGdbgjsMZAb2pqcguAAL5kuDMws08AHKLjsowYMdK+eOVXrbCg2AEMDGjTp0+3z3zmn5xrBm4WZWVlbgaeiLkrV66UC0OxENjNbqBrbW1x0XfXb1wvv7pmRRbucWAHRn6X2AxrVq+xWTNnWWqKcievWm1tAgvOOvMs0dimOgrZNrE2Hrr3frv1zzfbZZdd5tgSF1xwgXO5gK2BIQ4YApABAwLaGf2jnfTFMRX8R8YLYq81gEx2drr993/f4NxAXnvtNec+AtPghBNOsGeefcpFBUZ2sA0AHLwLBNcApBzIQv193zFuF7wj+uwjIh/I54e6gwSCBIIEggSCBIIEggQSSQKACZrG3wMm7KvtvZqkStKkUjKgA0U6HpNpTOx0pzdbfU+jTco9zDIKU+2yT33Ofn/9DdJde+WWkWnHnXikWL0Z0hFftKr6OluzsdJKc8XiPWWOfenTl1vj9nZrqkm1orzRFo2k2CuRBdYyabv0N8WU6Em2qkXLXTDI8aMKLHn0WCsW82Hr1o2K37DOnvzrfbZh2xZ74J4H7aSzzrSS7EIbmVds82cfaxu3bLYvXPxPduTsWTb/pBPtqq//q01RbLJVa9fY97//A5uqeBRnf/jDYgSLySygwc1VicXc3NSmAJpp0o+RjCYhowSa9MBDHHSIu1iQG4R9J0GtQ0lECYSAk4n41t5DbWYQhTGAmwOgAwYrQYBYY5zWOY+LAABAAElEQVSzTewAEGgMe9gHGNj333+/7dhRbWd/6CP2zauusnnHz7O09DQXyOayyy51bhTQ/h97/DEF3OkWQ6DBDdi4dzz99NNWWFQoF4x1GggPtwyhqxMmTNDgWuQi+GbKkB8mAKJDhv/kCZMUKVjor2b4aSdgSLdm+l999VXbtnmL/cvXvmZHz5njXCHoC64dxJX461//6rJR4MIB2ECcCvrDNvXAFkhNJQHSwCU5WemWRIG7+OKLHYDBfWeccYZjf2zUx6RYVDdcU6iXc8jGM0fY9iyEgZ/yzs8CPMBOQdY8nzgXBL6kPQAnIe7DO5dtuDNIIEggSCBIIEjgvSqBvhMXB6OPB/P5bhLfgw8xNEEtin8QN6rj6yTiZokZ0CH3i1hXt0Wk46ZIP0Wv6ukVpaFXLhdVG62ttt06mxQToovJu2Q77oSTbHNVtT327LM2dcZRtljs4K42uQePLLPslHS5YayzzSsrrXmT9O5dbZbU0m5JrZ02LDPXjhdz4eRZx9j08RWWmxS1w8vGWVnxUBuCa4baOzQrz0Zqwq9BzIrGxmZ77ulnrXrTVmupbbDVK5dboc7POWqWdWiy7v5777NHHn/Y8nLy7CjFJ6tUoMrb/nK7bdq6RS7Dx6rHTDqmClPptVoxLDIUtyxZ6USBFmLS+ZMU7wJJvLH4I6xxufD7b7wq7B3aEghuF4f2+3lftA6jFXABQxmDmZlz6Py4JgA2PPPMM86tgIwZBHo85phjXDyGH/zgakXjfUbG9wgXhBFEuKyszMWEeE6+aMSTOFoBb3CFIEAjjADiL7zyyiuOHVHfWG+ZeZm2Zt1qF9ASoIPrAArGl8djFSxdvtQBGYAhtDFdAzeUr3vuu8fSxIjIy8q2JYsWO2MbNw8YGnwYfvSjHzkGBPeQrxh3j9NPP92xF3ipsBSqq2tspMCMwcp99z1kH/zQB+W7d6yr/ytf+YrNmXOU/eIXv7aPffyjjs2B7KgTAMcHtBys3nfjPPEwyN/MOwPAoZ/++bwPv/1uPCvUESQQJBAkECQQJBAkkBgSQP8ZqAxm/A92/0B1v5VzB/P5Mr7EMNDSV0bejvZrgk3KBYHJL9JipogZQNm8ZbMYwUvtr7f91p556iGZ38p+UT7KZh87y5avX2mTZ061n//2z3bJFz5mRUOH2N1/vcvyxYYYFs2xz3/iIsvuSrbWDU227eUqG5VbpngOw2zblu226NXF1tXRY4X5RWIC91qGmBMFBfkKLlkrN+Fm61bWjXHjym3aEVNt9aZKu/Xh+23M5Im2aMliW7VprU2efLh1qb3rt2224WNG2cjx5XbPIw9aXbtYuEOLbbLuG1E22hYtXSK9cbV95pLL7EtXflF6bYkDHOhbZ1dM+j/s2Tzp2HFyPnBEHJLg7wmZaeVkRCw1LyxthpIwEgjgQ8K8qsRsqI9x0F/rcQ1w7ge7L3jhhRfs9ttvd+wEAjYCHMyfP9/N+kPpnzdvnot3QBwGskVkKqDO6tVrncH/gQ98QAbwGFu8eIUDHgh2OHZsuc6ZWBJ1DmAAGCCWw9SpFfJ367b2rjblUO6x/Nx81wKAhQ6l34TFQGaLMaPG7Gl6R1eHAxRGCOzYvmO7lQ4rsb/crhRDq9fIZ26au4cglSeffLILcolBDkMDVgAfUdr+yU9+0rEkPCNBpIwBi4gFYnOc5lxGLr/8clfP5+U7B7vgiScet1mzjxKokuGAFdgGPIeFj+pgH9YBH/w2TsJaAUDyjAeChVJgmexvKqu30YxwaZBAkECQQJBAkECQwCEigcHAg8F0lMHu399uHsznO/BBrAZnSPuOYEd7W1rrxqZGBzpEIlEXaHHFqpX2gJi1d/ztTlv0wrM2objAPvqBU+0hgQD/+b3/sBcWvmB5IwptR9suG33YOHv0xSdte80OG1060sYOL7Vn73rYrvr8VyxH4EPVwk12eNZkq165w9pbOywnI9ey0nIsKz3bmuqaxWJYo8Yki7WQq7AT3ZaVnWlNzdL1FEQiLz/Xlq5eZWec+zG3TlJ2i1bFaHhl8UJlz1Dcsax0WyQWRCQnw0rGlVnO0CJbtGaFdQorKBg+1NZv3ihmrPTszh77zre/rRgSJ1hqeqqVjY1nsusUKJMi9wvHfkCflZCStU7W2snNCU0CckE4vcC8EMM6ESQQwIdEeEsJ3EbYCwMVXAS4plLpLJ8VReyBBx7YHZthiE2ZMsW+8Y1vOCr/j3/8Yxc8kUwPABYVFRUyuLP2MAdaW7ucsZ2R8XoYE4I1yh6Xj5zoatpITX19kHLHUiIWSQEzfh1w4GOUnqbYDHu+AMo00dOlgTDFWtriWTYy0zOtvbPd0uU2QaKfB9Vm2gXTgswauIfAoPjTn/7kgJNly5a52BJk3oANcLhSH51//vn2kY981DoFgLz+tXmzpKIa1KMCTI45+hgHyhDY8iq5meDacYaC/cSUfokAPaTZ9C4OuDt4lwsPcry55nfvCM+i+OCWvB9Ah8B6ePdkHGoKEggSCBIIEggSSCQJDAYeHEzjHzkezOfHYycyhd+neBVVa850ditzmRi2O2uVVlN65p9vuVmTa4stRy68UzQxVtwes0wFpNxQuca2Vm+xxWJDfOWbX7YJc6ZYlQCIWE7U2uWagY64Zd16q1m90U6ffZzVVW6zz5x5oW17ZoMl7YpZQU6h5aTnWC3Z45o7LUMsCdJYaF5OrIsGMYt3Wb4YEA1iC9fW7bLhI4ZbrdJwJmniq0MTdaWjRlrxsKFW19JkzR1t1iKAYnu9ss0pPkSn3Ci605SZrlUp4POyrVpB0ldtWGeHK/bDwlcWOMbstqptVqAYED+45mr7+CfOVg4Q6e3KiEG7PfAA6BDZDUQgOzxUoi4WhhdaHzmGzUNeAiHmwyH/ihK/gRiifpAHbMBIZcG1AlCAY1dccYX98Ic/dOwAtr/85S87kAHQYebMme4aKP1z5851MQ5wcSCoocYiV1IEJESj+H+9XmANsKSkEEH3jQMUx5J3H2N4SxGynCoUlYV9rvZLNBmIwZybBefZ5nquYpvsGz5WBcY+/WX2HxYHbhi4cXz0ox+1r3/96451ceONN9rDDz9s5eXluk/xJZTjmEG2snKTIgwXCrjY6Nbd3THX9xQ981vf+pZzLSGmBMY+MiHYY2paimST6uTpZYxsaQey/UcU+sviC8/2QIg/FtZBAkECQQJBAkECQQLvHQm8FXCB9ODoeF4PRE+BLcnkxFu5n+v7WwaTZH/3+eOD3T/YeXSxvfvAPsxZH8+MfhLni0kZXH/RDWHDFio+Vi9uFVq6dX1nrCcef1L97dLMWZtSudc3NNqvfvNr+/WvfmN/u/NvLuj59OkzxPjNtLbqestuSrLsjoh11rdZxehxNmrIcKtcu94miPXbJNYEdSdrwVhPlx6ZrhhiO5WdrXTYcMtJzbSK0vHW3tzmwA3gDurtUdrLnq4ey8vO0Vr9E8M4PTVdS6rl6hiMVje5FVGwytxCy0pJs66WNgWvrLUk3ZsVTROQkWlDcsXK+NDZzN5Z9fYqZcwUeCCNOSLUoGTIUMtKzbCRw0ZYnWJHzDpqpi17bZndccedNmPGTAVVH2sdejYZ4XKyMhUQkzuTlHWjXtk7uixT4AtZQJKkh+twKAkogQA+JOBLS6Qme8MUQ5gF14ldu3Y54xh3Cwzliy66yMV1AHxgGybEz372MxfDAJeLU0891d2LkQ+1nw8X9XZocE6V4T1QAXzor/hzXPJOF9APXA4YkPmg0XbayQeoUmyOScp1DEjCYM01AAaTJ092H5+bbvqTUoVOV3+arKxslD7GsBciYnoUuCYvWrTEfvCDH7iP2O9+9zsHXJBFY/To0Y5lMWPGVBfjgef6D3t/fQ3HgwSCBIIEggSCBIIEggT+URLwRj4TEjAyMcj9pAi632CF+/cuexv7e5/vu7+v+/ue399t3z+v57Lvt+knwMOOHTtcv3kWqdzJpoaOuF76YYMAiZh02Yjkgzzcvapj48ZN9vwzz9mlF19izzz+lKWLeZuqjBDdco/Q9J0z8McXjbT0nTLE28TebeqwZLFoixQUcvmixTZlUoWwBGXE6Oq0mJi7TA0BHmSIRQEQ0Sk9tWlXg40qGmE9HV0ubqPTIaUJJwsciOpZSQoumaQJMECDaJICvwu4iAkU6ZLenaRr0gU6dLd3WVuDMsWpXVmKh1aQlWvpClLZq7b0tHXYU48+ZuPHlNvRR802pvXWrVpjdYp1liHgIj8zxyaNmyiQI9dWL19hJXJjHj1qtF133fX22rIVdu4nPyo3D8UNy8qwJx5/0saPK3cM3442sY4FktRIllk52Y4h0t97PNDvv7/nhuODSyCAD4PLKFyxHxLAzYC4D/5Dg6GOiwD7GNL/+q//atdff70DJe655x43KMMK4BrOwXAApGAmHeOd+6gDI75TsRnIGDEQcuC+Xf0hC+pXf6fe6nH6xqBNu/jA8nEFbKC9oN0wFUC8iQXBx5frYHDQJ67//e//4LJ2lJaOspKSEsWZ2OXcSZqaWuy8885zQAPXE2gTVw4yW+DiQbaNoUMlm7wcB3q4D8c+PtT78erCrUECQQJBAkECQQJBAkEC70gCBMGGFUoh8xc6EfoR+goTMqwHKt54BHDwjAJ0LvQs1h7I6K8Of39/59+N475tHhTp+0x0XMAG9FlYD/SdY2RcW6K06X+9+y6L4uYrOdynzBBXffMqZVD7F/vva39l995xlxXKQE+RV+uUsnFWNnSEyzSRH0m3qjWVtmXxakupabcMgQ8TS0dbxUi5YWgCa5MCOY4pGWbbxa4okStEjwCILr2HVLnwpouBQjvrNYFXU1VjQ3OLHNs3okkv9FNSzKcK6ACAaGtqFUshWRk05JgsECImpkGn4jS0S6cnA0eqAISc9CzrwT1C2ToKBSJki/XQ0dhiu7btsIYdO+3IqUfYsoVLbKPYGFMrptjxx8y1/Ixs61LdOC2vW7XWpk6eYiefcJI99sijmpistZLhJfbIE3+Xnh+zD33odHv55QUKtn4MJA676867bPqRM9xri0hm0VQFdENZ76f0fRf9XBIOHyQJhJgPB0nw75fHYnQDIGB0Y4QzCFPIkgC74eabb3ZG9k9+8hM3m3/rrbfad7/7XXvxxReV0WGOAxow5GFMgCLzweKjw0DOMV9ff/I80IOP/4D6j2hTU5NjZ9CedevWOdSbY6SjRA4E0YS9wQegrKzcrrn6x/b88y842RAbYuTI4WJCtDjWxLnnnmurFNRnh2hyIOa33HKL6//VV/8/190mDeAZmUrXqcGXfvqlP1mE40ECQQJBAkECQQJBAkEC74YEvMHdX13oaOg7FHQ69CUykKEvAUwwATNQQafhGSwADn7xx9AJByrcvz9lsP7RH98WnsPzAET6giIALsQDg+2A+wmTbcQDS5MO2y6DvlVGf7PcK3rlsjCkoNBKi4eJPRCxDk1ANe2sdcb6UYdPs83rNtjihQtsRPFwm3/cPDv7hDPsmdsftrbtuyw7Va4XbUrh3tloVXVb7MIrP23NaQIKCpJtY1u1bVH8h9aoUIx01dsjdw65L3TubLaJmSU2ccgYy0vJttadLRZpNitK0eRZmwJIVrdYfkqumA2tcs1od0EoACDaCciu9xGVG0dhYZE1NzY5ZgWBKXFZrhWzuVbB1jtJca8sF+MPn2Ip+dm2vbHW0gvzrHxKhdW1NdsLSxbZ0g1rbPi4Mluxfq2Vjhtj1U119tjLz9qQkSW2ZWeVtej+7t52WyAA46gZ0wSKmG3ZuMW5b8B6Lho+ZEDwYX/efbj3wEogMB8OrHzf97WDegMe+I8HIAT+br/85S/tRsU+OOecc+zb3/62c8XA+CaWAYN0WVmZYwsUFMRdEBAk9cCkoPDRwn0jW+mHBiqDf3v0cdodN2KgevZ5brfR74EH+ggwQjspsBuI+cCHCHcMMnfg7+eXkpIRdsH5FwqUGG5PPvmkYzNEo6mSwXTJ5g9262232mWXXqZsF6c4pJzsGyeeeKIAlxwN/Klaw/oAdHhj6/b3g/vG2sJekECQQJBAkECQQJBAkMDblwD6EWxVmJvoR6VKL44eyPJWizfwWVP8vte1+qvnH6EL8Qz62HfxzwVgiWdXm+qYu9dcc4399re/dTpia0urjVNK94jcGzKSU8RCKLC8aIZFFCA9OxaxkQoCOe+wI61hw1bbpUCRrZt22JjMIps9dopF6lpt3UtLrEfrVKXEnDy6zAWgLM3NUUrNqOUpFljlmlVWWECmii7rSeqxbkWUUDJ2ixHEUYyBDAEh9VXVliKRwiJIUoaJaI/inynQZFKHMkt0KJhlstxl6lusvbFV8Ryk2wpeSNZ1MblbdMtdo1bgSEwxIVLlkpEkpkJHY9wFI1P9KZSemqS0nVvWbrBOxYSoEHsjTS4ZS19ZaB1y1Zg7+2il7Zxgj/397xaRW0e1JuYkRKcnL1u7wg477HBLzUiz8y/4tEvL2SGGxfBhQ8T2zRWglWuZOdL90X330n/7+1sIxw8tCbz1//5Dq92hNQkiAY9sE1wSIIGPz89//nM3i3/66ac7EAK2AwwGWBKkoqQ888wzdtxxx7lt6GD+I0N9HlV+nfWwH+iBe8I7/KXH+o8MH0M+sHxQQef5ELFN23Gn4Dz79IN2g5jjC5iTnaesFWe42YGvfe1r9tJLL7kAlTBBhiooz09/+lP5wF3n4lwAWpx22knKBrLWsSpmzZqpmBcElZTPn57pP8j+Y/gOexVuCxIIEggSCBIIEggSCBLYLwkw0w/zE73PBciW/tZXRxqscnSavsXrW+hXh0Lxuui+2kLbmXQiaxvl+eeft7vvvtulcC8vL7fiwmJbtWKNtcpgx6gvGDrcRhYNseS2LqvfUmVrq9dZa+5GS2nttGMmyRBXCoiO+iYblpTlXChy8/OU/rJAGSpqrFXuumtX77JIV6uCQkYttzVmRwwbY2tXbbTIiEwrGiJDXYBDb1KHtUQEIqQSXyLFWpN2WNWuKgEKZuWFIy0zKc3aqgQgNCdbUVqBAAgBC3LBkEYrtoF+BE5YpybZuuLpLxubW60gN88FmGypbxRLosnSFKCdeBBJykCXIxBl+Jjxtqu1yV5++AkbOWGsnTJrjm3bWW23/uYGyx430m745f/Yf3z/O/bYsudsbO5h1trSbqfPO9mWrFtpzW1NNlzuxT1iP9Qp/ecXrviy/fLn19pD9z9gZ5195r7EHo4liASC20WCvKhEbSYfHmI14O/HzD/+bszew3IgbgHuE7gjvPzyy86gJgUljAYG51WrVjnmAB8u6HUM5n6wZ5sPUa+C6gxEXfAfq33Lbzds+sbv274v7eeoCIGuHZ5+B7gAEAAQwYe3bwEF/7tQXvoHDS8rK1t+bEKMhfpCTYQp8fvf/97J6483/dEeefgR56ZBn/lgk2LpwgsvVCTg8QDE8bIb9fV0RA56BH73FWEVJBAkECQQJBAkECQQJPCuSmBvcGDvytG/1q9f75iq6DDoOOh83j11sPvRa3zZ+1r2qXOgMrD+N9Cd8XN7P3PvO9D70M/6giHoq+h6rNF90fkIps66SBkupk6d6u5pkrGeIWP/7NPPssnjJ9jC51+yx+9/yHrkdjutbIJNHjHGPvepi+zRO++xbSvXWfX6TZYtwGDy2AkWU9DHZsVf6BKzmGcUKutDmlJcFqSImWAdVlW/1XrykmxXZqdFxxdZz+gCq0nvtupIu7WkKTC6UsxH5ObRvKLSmjdst5LcoTZv6tGW15VpG19da9H6XptSMtHa5XoRUUyJSDfMCLNWgQ2NcrPA7SJFgSAFU9j4iomWraxtW9ZVWpv6NCQ337E5du6othyxFFrlppGUrmCXYmE0y+VjR0Ot9SjTXPqwIqtO7rIjT5pnVXK3ePylZ62+t9M2N9TY2pqtcscYbb3pUdu8Y5s1C7yYpCCaH/voOfaZyy7T31DcXcdNurmcpXu/mfi+txf2fTYcPZgS8CbMwWxDePZ7WAIgv3wAmO0nSwUfHRaM9BkzZjgq3gPKX0wgngsuuMB9nDzLgRSVuG1wL4M7gzmDDes6+ZS9XnaDCI5/9Xa2X6/hHW3pUf7j2PdDSFthPPhz9JeYD7A2yNyBa4l3J2ltaxEYc4KAF/m8lY5QP/lYr7OJEyYoHsafBTacZ/PnH2833HC9XX75ZyUfsn0ohZLKDkUN3lcZ7IO5r3vCsSCBIIEggSCBIIEggSCBd0sC6GpMthDvC+YDwAOFOAhvpaDLeH0GPZLFT64cbMMSm5cUkz2aqe8lY4TiIXRr0qlVrsFNrS1Wp1SXX/zqV+yTnzrPquUye/HFF9v0qdOsOK9AcR2G2soFS+1rl19pJ80+zlq219rLjzxtbVt22bzJR9r8KUdZQXeK/eG/fmNL//68pTV128jMQsuNKVtFozJbtHRbjlwicpW9olCpKLtl4FfpGTubmq1V7ITm9l7Lyy2xlFiGpbaLLVyvwOg7xSCu67Cc9pgVKWNGoVx3M3U/+mR97U6BFt3KatFljbXblZFis/rUbI07aywmICVDTAbxdq1F2Sdqm+pdnAoAhNaoGL85adaTk26x7DTLHFpoI8aXi+0wytJzs61KscoAR3K17Ni6zbYpnTwuGSMKh1hmb8SGpuZY00YxgDuS7YPHnGStm2usZt1G+9BxJ1vL1l22Xe4mhwmImT3tKGX66LR77rzbfvHzXyh1507bVVMnBrHcSXYvpAd946IYF0ws6m9o98Y+1m/lrzBccyAkEGI+HAipJlCdfmDvr8n7ixzzsYEFwNqjw9DPCDj5bcV6ICgjLAcAB/JBE6AIn0A+LBjrfLz8B8jfT1sBJTieLIqX/yjta+3Gnf469y4c9/Lp2zaqhfXAORgOACss9AWkHuABZHzJkiWunyNKS6y+vs4qN26wZctfswkTxutDnWu33Hqz3XHnnfa5z18uoGa6vm3dVlY2xjKz0u3VBQvcdf798Sz/UfZteivdezvXvpX6wjVBAkEC7x8J+PGnvx6H8aU/yYTjQQKJLwH+v1ncDLTTxzRDvnsfHYdJFzJ+4XoA64FJGfQUrtmbGbovaXhWAfXjdsra61Zc75/f33pfdb6dY0yeoZtSP/0h5tie5ysDREqKYjTggiAj3mQEt2OoK/3jK0sX27yTTrRnnnjcZs+bZ+doxr5QjIDtGzfbkhdftVq5VcyYeJjtqqyyhq01ds9Nt1leLMVmjzvMSlNzbVzOUHvlgSesOCnD8izV0nvklpGheA45eZKB9F4xHVLT0wQMtFlOZoZFtZ01pNjSiodYZX2DVSsmgyntZYuAhvpauXXI/aFQmSky9I4KU6JWjNuF0mOmCMzIUh/qtm23yy843xY+9bh1CHBIlyGv3HKWpDiTeRn5tnjJCtu6q8amTZ9lqdk5trRmpe0S82KrmBQLtq6z55cttOe3LlA2jRwXLHL52tW2uWqbFSogZIf01rbuTkvWM9MFlPQKtWltb7P21nbbXrnNMtTv3BQBKE1tNjy/2EbkD9XxLdYplsXcmXPsNQWbVGstXy7Kw5WOs2r7DotK3hEFvMwSqJGdnWl1tQ36+8q2dgFBPV3/P3vvASDnVZ1/n5nZKTvbe9GqyyqWJTe5YdwAYzCmBlMSIIQP+PKFJJSEkHz/PwFCQmihfhAglPCPCSVAKIaAiSnulhuWbVm9raTtvczOzszO9/zu7pXXirQSqrZ8r331vvOW+957Zufec573nOfkXTrQtM49ATrwrQuEIH/oNCLBARX/snL6U/j31EkggA+nTtZPyycx6R5vIeQCsAAwARACsAEvCDI/XHnllfbQQw857waQcZRZJnkWql27djnySW9UH2p7JOX3ePt+vPczJhZQxkv/KYAxS5YsceEnhI3ERADEovzBD35QAEVeskrK4+EPlGZzvsJV9ttnPvMZ+9u//VvXzqZNyocsDgm8JCDupP3jKSfi+z2e54d7gwSCBM5cCYT55cz9bsPIggSQAC9VqBR+7+hk6DhUuL4ADObPn38g9IJrABKOlKmC9mgXg5/KfQAB6FPsU0928V66PIvxsOUFkhtjJmsj+7osJbJFWd02qTG1d3VaTCSJGzY+Zt//4Q/sD/7wjVYUWPBfP7zZfvS979mkyBuvXHepLWxoURhFu21/+HFLjE3Z0J5Oayuvk3dDjZXJ4G9JKkRhb7fVx8ssLvLHuLwZEsqAoQAPDZmMGoAPcUuVxi2bV8p5ecRmlUpzZ588GMQF0bBwkQ0rNKO8qtqySp+Zy2Uto8wRw6P9+jym/RGXQW3xslXSPbPinRiweQ11tnvzRvE9jFpVIi1SyYJCLRLydpiUua4UnQoR6Rjot5FC1pqaW61h+UJrL4zawFTWAQzj2QmrEUlmQ0ODXpQVnO6eGZ8miMf3QMJTG9Omv/uocdSW1wrcqLCqdLm1KcXmimVnWZuI2IsCEAZ6+q199x47a+my6b8BtXWZ0sz/8le/ci8t/+ztb7e36MXcpZdeJjmU2uOPbbJ5Cu1O6eVcUvZGv8I+Sg8Q0gM8zFQefqBMy/PAx7BzyiQQwIdTJuqn54NOxATPpM1k7RFkPBtwxfvLv/xLl8kBoIFMDvA+wAdBXBxldpqmp6f0zIWHMH4WUeIDCSFBDpRNmzbZqlWrHDDx3ve+V1wOy91bAkgmIdxkkb3oootcWib4HgBqeIPA8UceecRdf7xyORHf7/H2IdwfJBAkcGZKIMwvZ+b3GkYVJIAE0OuovFhBL2HLZ/QdQAf0vMbGRqfT+eu4D/CBl1H+hQzHDlXQnQixJWwDsAL9yT/zVMwtPIvnUAEdvO7mjsuSTsuLtSgvgYhAgDGN6f/7wj/b//WWt9hN//7vNqXjZIQY01v5EmWkaKmss+XzFlm1DPuOnXtsx96NttAabGl1k1UUS2x54zyrLsZtsnvQqiIJywuoqCpJuSwTEXlVyA/hgP2ckA6ZFMiRrCm3gayAnPpay4nvYZfAj4qGWquRx8G2PTutrqXB5GNgxTJ9L+Vig0iLJ6NOhJUNSveeTgkoKbet4uQYgodhcsJymXGLaVxNSucJwePQ8IRlchGbv2SZpZWFbku7MpYkorZ63bnWsKTNbvrv71nXaJ81Vdbbgvp5AjCUJlQeCUPdIr8EcVAoCjY/xX1vgjGQJd97VKDNpZdcLk+SlHvJxkvIxx571L18PFt68XXPfz54hd16x622o3+H5UbFrxGP2aMCdrYpNPkmhSX/+vZf2Dv/8t326le/QpxyTQJW8tMEp9K14yLYjItrQmKbrnTiSXgVHwL4gFhORwngw+mQ+tPomcc7wbMAsWB4QkYABfZZeDCwP/nJT9oNN9xgL3nJS9zb/23btrlJqr6+3nk/sIj5xeZQ29kouF8kZm9Pt6hZrJABcW8+BAVPEMYCpwWhF+973/scmMB5eC8gn4RsE1CGnNjLli2zX/ziF/aFL3zB3vOe9zjSTsI4WAyPtHgfafzH+/0eqf1wPkggSOCZK4Ewvzxzv/sw8jNfAvy+pw3J6VAKRux/82zhdli6dKkDJgAQfKiF1wH9tYeTFLoT4APXE67qQ3HRC9H9jregh81V0N8Ynx8n/eHZHIspfGGfQITKWpE59vTaP37so/apz37GOfWvPWetC7Po299lyWLUVgh0WLVgiY129tpv77vXIiOTdt05z7Z1bcttaVWTlcvAb0yUWclo1ia6+q0iEhcnQtTdazN8EqSjjM7IGznERLoYKRdIkZIcFHoREZhQFCAxJBBh5752293Zbt2DPTaYFcdatc5Vlli/PBXGSvLaT1khKc4IgQUPPPygxkdIcNFamxttSuOrEyfDsMIgUmW11tE7INBhr2Xkpbt07dm2ePVy293Tbj+89WfWp7APQU928XkX2gVrz5XnQ6VNjoxbb2eXAx6qFKJBvwvwMghImhIYgezoP6DDLbf9UqESWYVTNNtipaWvkSdvTl7AnXv32S6BIi9URryFrQuUOrTKedGUKbQipzCOlMab0TgHxHHxD//4IWWE+5otXbbccvmcgC55UEtO0+ExfLve44Hv+qDvW307CJHghlBOgQSQfChBAidNAqSTpPhYOYxmJoWLL77YvvOd77hwjL/4i7+w2267zZ773Oe6N//ECFJ27959YGHzC9zBW3fhU/gfFiqABxYtZEEMIaAD/Bb/LnScNJs333yzSCWvste85jVKpfl85wUC4o+XA14gL33pSx0avGDBAkdahPw471H4p/DwQ9eCBIIEggSCBIIEggTOQAkcynhH50HfwWDnBQo6GwWdxRdeSB0NeMA1GKqE7XrggjYO9Vzf9onc0mfGQiU0Fv0NIITPvEUfktfBz2/7lf3jJz5u3/ref9ikrnepIRXK0L5lu120eq01pipsXASJ/dtF4jgwZq2xKlvdusjOa1tqNQqxiO4bsHj3iEU6B0UIqVSZU1GLK9ShUgSPCfFJlOhRcRnJCUIt5FUQ9y+dRE6ekSFe1dJoE1GF71am7ZxLLrCesSH70QM/tx6lqXxk1zbrVbhFrLpS3hEKh9ALrhG1lU2Ik0yG/prLLrZEbaWVNSutZnWppefV2kRahJWl4tZoEzdZdcwufck1dvaVF1h6QZ3VLGuxrtyQ3bPlYbUzaReuu8iWLV5mi5cusQWLFzkOhrhCUBpbmm3hksVWLW8JeBm8rlqU3ATlWFLjSOs7fcHV14mMssIee3iDrb/tTuvatstKxVPRGlcYRrzCGucttXt++HPrfHSrA2buvvdXJpYNu/pyZchQFoxP6eUlmUR2KwS5Wl4gNRrLnr0dysEhD4uSqEmUTwr1OJF/G6Gt45PA3Hlqjq/tcHeQgDO8EQNudj6cAiCCBYmQg+8pDu5FL3qRM7y/9KUv2QUXXOAWGmLt8ADwC9fTVZR4ejDxUvHmgPvhl7/8pZDaLyubxTfthS98oeNweL/IN/FuOPfcc+3b3/62yCTPcm8NajV5f+UrX3Hy+Y//+A/nxvjb3/7WxdWxsM9ekJ+uMgr9DhIIEggSCBIIEggSeHpJAH4udDSABkAHDHPvGcBxdBQKRjy6ijfcARSOptA+wAMghAcrvBfC0dx/pGuOBGIwFt9XrmWfcRFO0q638+993/vtp//1M4VYiMdr2Vn23Oc8x7r3d1pRmRlefu0Lbbir15pLKy07OmjD+5RuvrLWrrjkCitTxoeezbusslc8EmMFKysULVXMW1KhCOXieSiKDHLCRF6pUBPn4ZoUv4P4C6Laym9BaETMpiQT8VBaWnwPvcp2Aelk8/w2HVeKTRu081susKFtAzaqc0Nj4/oS5CmhkI/K2mqrbZpnyeq0Tep7G5oYt1xMmS7Es9CVUSaLRMFGSnJW3VZnI7kRm3/+WRatHbT71m+wh/dsth27d9me4W5bLV11r16odXf3ikNiwn2/eCTEGxvkgVFuFTF5Z2QLlhVoIrTIfRV8/248AiAIx+D7dbpxTa3CNCRfyTY6LPsgS4hyyn7w3n+wd//hW22qodxueehu641N2ke/+zl7dM9j9rpXvMZu+sF37NfSp2/6xjds/fqHXBTFRevOt9/cdrtddeUVNgUIcVBFfL5o+KGcJgmEsIvTJPiny2OZ6I+neON49sQNCRFgBAsSE9GKFSsc0HDTTTc5oxs+A4gUCTdg8ufeY63H2//jGTv3gvAzVvrBWD/96U/bG97wBsdnAcjwV3/1V/Z7v/d79q1vfcvJAGABrxAm5XPOOcc2btzo5IDL4T333GP33nuvvetd73JtAWz4lJ3H2s/TLZ9j7Xe4L0ggSOCpL4Ewvzz1v6PQwyCBY5UA+hkFTwB0FjwD2MdAR9/BWAc04BxhpRif6EMACuxz3VyFkAvamO0pwZzigYi57j2ac86DYY4LGZ9/a88+Y2KLp+6Xv/o1+/Udd9lllz/bzj5njWUzEzYqfofatDwJ5LUw2N5llUWlwoyKt0HcCSO9XVY6WrSlDfMEQtRZWVZZ0fpF0igix8bKGmWe0LgAIZQCMyd5FYoFK5XMABxKqyqsrK7GUtoWkyU2lRD4kCqxEqW4LFG4RU46ckpZNgAgunu7rSxfZpdddollJOuBwT7bvXe37enYa32jQ+J5UAiGQka6BaD0Kcva7XfdJpCjRDKFKDTjuBIykFBO5K2ypsEefORx+z/f/o79Zvc9ls9ErH5esxUTEdvX1WGVShs6rjCLNWevFmFkq0s9WqpMFAllocurjZQApxL+FvQ3gOxK9NyoPC/Q53MKxegblseHfCGq0srEIZAiOzhiYwrzwLuhsarW0rq/WzwWbQJVFsmTorymUu0qlDtZZvesv9cuvvxS8T78xj79qU/Zv3zp8/Z3H/wHW7N2rc3T9ZBQygdHWMP0fy7kQs91ZWYTUT9D2MUcP4CTeCp4PpxE4YampyVArB/hFhRiAJubm6dP6N/HHnvM3iKCHiYmJvn/VGpJzl9//fUuwwPG+VzFLwyHu8aj1oc7f7KP79u3zwEEeDu8X94NAAjXXnutAx2e97znOd4Lsn4QYkIGjDe/+c2OyRd2aEAaQi3a29sdQIOHCNe+/vWvtwceeMB1nUk8lCCBIIEggSCBIIEggSCBUykB9DbAAAzy2UAj4AC6mT/njXzABh9+ASBxpIwXeMACVNAWbcwGA07FOAm14Nn0FdAEb9ze3l777//+b/s/X/tXq2+db6PDYzZWkNE8MGLpCEkh85YWPWR1uta6tu4yBchanTwOLpm3RqSTtVaRL7GBHfttqm/E6gsxSwtsKE+WWu/wqE3kJ5RSstriAghKxMlQEMigWAuLKqSC8IioCBSj2Yw8LbJWFFhQVlomr4qMlepawjO65Y3RKh6HxdfNt4ULF9hakZj/9Jaf2B333W6dw/0K6agXCeWkUn0O2L7BThF5ivhTHgqNDc0y/vPiXxgU70K5Qhf22lDHVlvSDGhSsJZlC6ywO2VburZbdXO9Pe/66xQ6kbSzl6+x+++6z85ZvtIgwRwZG7VaAQNl8sbISRJFpfyMqW9pAQ4OfJAMx0eVbUPezxPyyEhJHv39g/K+mLT6MqXpFJihFBWWx1tD6Uhj5UnbumGTwJKojZULxKpL26uff4MVKpP2/378H6xvz3676uJn2b3r19uqs1bbXevvsaraChtR+2jGTjueeX+qpCMCPqYPuneqQXU+FT+hwz4jIuMlfAWHFc8z5wQTu/9TYME4EiJ9oiTjFyWMdAAKMj4sXrzYGdcQUoKWd3d3u4kf7gS4ESgsCnhV0GdCGfAAAHXnM4ADXgG4/MGtwOLBvSwgLGZ4VXDMFwAR2tql1J48n/Zov6mpyU2S9IHCMWTjvTkAAlgMyd5BYZ9FF9AA3gqeTVjJ3Xff7QAEiJfIagG5JiAEHh6g//QbRuh169Y5cibG4FNLsf3sZz/ruCHginjxi1/sAJvPf/7zLmRjvSZdyo033ujGx1j47gjX8DJyFxzmn9kKw2EuCYeDBIIEggQOKQG/ZhzypA6G+eVwkgnHgwTODAmg91DQfdhHn2Hf60lzjRKdzL8gQl9BL/M6FPog6cTR49DZmEvQFwEv2MeYPZKeeqT5ief7fnodmOdTOIceiS6FTkcBCCHtORnJVq5abRUynidlYBdFCsnb+qpY0kqVFjMyIl1R4QN18bTF5UGwqLbJzl220urTAi8UltGxZ69FRC65qLze4vlp3RFdEGMM0CFVJrChrNSySr2erJBXgN74l+jzlIzwrDwiciJ/LOIZIV6DouIXckqzmacqHCOKd4H2o7K0t2/ZbFdcdbnVtzXaLcoa8fUfftN29e+3tnOW2pJzz7It+7dYLqKXgxUxeRNMCTLJyOOgSiEg8jjYM2D15QtsUcsqG+7J20PrHxNPQ4U9/3kigVQa+F6RZ0YmxU+hTB2kAU1S5b2RULYMtmT4yMkrwpSBYkrpPk2eDkURTk4pvAPZZpUNpFOATT6n5+qapLw+SvWnFNdWirHlNPaSchFjpuVFIpLM4VJ5Ei9psYaViy1bqswewz32j1/5rJ0tnov+oUG7S0SeNU31duttv7Kf//IXdunll7nQ7v7hPgEeo1YumVbrbymufk7jEaSFxfPm8N7dYf3ir/7klAA+nBy5Pu1a9RMvHecHd6RJ/UQOkIkIg58tgMPq1avtz/7sz2yv0Ffe/L/jHe+wq6++2m699VYHIrS0tBzwCICUEYMbtzyABe9hwT7HZo+DyZ1KYaGjgmRj4MPHwALj76dNznENix2oN/cCYvhrvAxYcOn3z3/+c3v88ced5wKeDIyHVJncA2gAmSS8FwAGVMIq6B/xg7wBWLNmjZssOcaiyXfygx/8wH71q1+5UIzf//3fd+ALKUnxfvjwhz9sd955p91///3293//92789Il+b9++/QCQ4ft5qG2YXA8llXAsSCBI4GgkcCTlPswvRyPFcE2QwNNTAug4AAb+d44u5MEIjs1+yXOoEXKtN/bRsQAC+Ezq9YaGBkfSjR6HDkXhevQwdKQjtc31Rzs/0S663uw+o/fx4omXROhmfCZE9je/+Y373LGv06JTGrtUyriM5jJ5PZAyM5VV2InAh2hhwj72rg/Yvs3brWdnu0UAKTLyoBgctohew9cIiACsKMEABlgBeojJQwDwQfwOcbJXCEwgrCKlLA+RUnlCiM9hUldCqBiTfhgbyxDzYpM6ni9R1f2KcbAY4IOM6rqqSgEmSRvPjVv3aL9NJAWgNFbZZCpiPZMDFquJ2sTUsPRPfQ8R6bi5QatXaEdFssIGu8esuXqxxfICTPaN245N7TY+lLUahYgQTpEdnbDmmmb5dSjtp7gqCLWQX4aTBeEj0byABnk0AMwQglEU+IDZX6LrMPcLAik6+4YVYiLh6XxM8kloPwZYIQALeU8JBxopTlomKZtE6UFL2xqsYkGTVS9otmRrrd2+bYO958PvtzZlyshKKq2LF1jPyIBd/OzLrLy2yt7zv94jceg7krwGRzVePbe6vEr/Ttm+vftt/ryF2g/gg4RwyksIuzjlIg8PnC0BJhgmfRYa0mziFYAh/id/8if2jW98wy1Cb33rW13GB4xvFgHyAWPEAzwAGBCWAHnlbGCBdjmHYQ9YQegH572XAgsXIALX+YWT+EIMdxZUCsfpC9UTJ3GcxYi+0u/Pfe5zDrnHFY/Fk9AJwinoD14UbFkAefajjz7qQAeAEbwiGAepNek/AAhgA88GXadwHwSchFjgSQGwgXcE4AOpOEHlATDoN4V7Paknbx9CCRIIEggSCBIIEggSCBI4GRJAR0FPQo9C10LPwUsBo92DEHM9F6DBAxDc63UfdCt0IoAH75lAO/55s18qzdX+0ZxDb+LZ6IR4U/AMCmOgD+ic6GikRP/xj3/sdEh0x2EZzqOdw9Za06iQgUqbGlZIgbJaQD7ZlqpTyMJZytKwzYYUGpDrHbK0SCbLEimlsSy1MrVdU1llu3futil5L8QT8viQx0JM2xKly4yLuDGmrQuzUKgFKTQBIiCYLMpoJ34A392UQi2i8ibI6vikPCDynFeIQxT+CJ3v3tGuZ8ljAnbHQlbeFEpxqWwWUcI9ciWWl2Ef0fF8QvIW8DA62ml5hXjkquvE31C0/vEuhV0oRCSTsgX1LRatiVtWqTHJvFEzf56NDY7Jk0DgC0CTgIcSPRvDfvpl5pR4IzKWz07apPgwTP0ky0WpUmwm5Z0cFyhQGxdfhcgl86PykBgX+JMRSKEtfBd6/WZx8V2UTCpVvbbp0grLisizd/NOgTgT1qLv68brXmx333Wn3Xzbz+xZl1+ttKC9StG5RY8SSKWwlP/nbX9sNXW16pN0ecm8qOPT327EqmqqXSYMRBPKqZdAAB9OvczDE2dJgMndG8p4H7CQ8RkDHo4D3ux/Uul04Ez49a9/7YxvvCFYnFg0ACvIDOHiybRwUDgOUs4iwiTIPq593nWO86S9hFdhepKcnn04zmcWIe6l4kHAwgpoAQCxadMm+5TIbb773e86jwsAkAsvvNBuuOEGBwRAkslC1tHR4e7bsEEMwQ8/7O5dKHSW8ApAg8suu8yFStBfAA88P2if8fNcFmT6gkxYzFnsCPP42Mc+5voAEAEYA2klW8APv9jzfPqFHL1LI88JJUggSCBIIEggSCBIIEjgREjA6xd4iu7cudPpPryAQefyHg1Heo7XW9B7KOg96He8zEHvOVQ76EknovAc9Dt0Pj8WjtEHgBDft49+9KP2ta99zQEReObyIqk8Uaq06SJFFIdDyXhBXAwiYyyrs2aFJiytbbYFVfU2sH2vAyUqpuQVoesFMUgvm7B+hQwMdPeJt0EhGqrxFKCDuC3kpQBpJN4OMUAHeTDA+QDogEENSSPmc0THpySDmHTeWEShKDLUlVhSyIOqdEcsbLVshTFxSFRLh5Sh3TM8aHv6u6W3jltc/BHp6oRVyDMiI8QinhLBpbwZBgoiBhUAUq8MHWKHtJE+eS6MytNE6EY8pUYFFOT6RtUPhUqMKOwjqbAS9Z9Qi7iq7H337Cl0WMmQfhVk3eOxERNgIUFbRGMlU0dR3ivplIAOeToQNlJgrAJgCgJjClF5TmQZY9Eq0goDqSxz8hmcHLfhkWF5cYzboF7gpWrL7cN//V7rbd9v+zZtU3rRYXvhNc+zW++9w/q0Xy3dubO7U94kGlNVnUXUbp88IwBPKgUYhXL6JBCyXZw+2T+lnuwnfjrFxH6iJvcjDRJU20/wfsEC1WbhwehmIcBQv/zyy13mBwx5vAbggfjnf/5nZ9j/6Ec/cl4E//Zv/+aIG2kTQx5AguvhgwBYoIBmcz8cEyw2eBVguPNsgBA8MFiM9u/f74x9MnHg5QDY8NWvftVVAAnAho985CP28Y9/3BFIcj/tcN8ucUfwFoBxsCCTPrO1tdUefPBBByyQXhMQgrASeCUAH4gr9H1G9tzLostYAEkAS0jPiWcDCzKyIdSDay+99FI3Rr5D+sC4GRtgC+Odq5yq73muPoRzQQJBAmemBML8cmZ+r2FUQQJeAvzG0Z3QeTDa0bfQaY72t49uxrW8NEFvQf9Cv8PjlHZ8Qb+hci360dG27+8/3Ja20Jko9MW/DEP/og9ve9vbHPCAFysvl9DvAFuqk+XWmqyxsT091tPRbuUTUVu7YJmdO3+ZVQtsGNvXY3UlpRbN5BwIMDEiosWRUcsoVGJKXgARdDwBDHg6JOWdkIBkks8CHyBpxAsCkIHrKIzd6crayoZWuIZCNdTfyXzOMoWcjYmEMpODS0GeHPI2yEPiqBAJuREoI8WYTYmDoaq61mrrGgVaJC0nD4MxhbeMSLeMyEPBlHIzo8wYU+NKdSlvg0ll6KhK1FiNakW00mIZ9VcODBWRlKr6mCsKqFCfFUaBx4OoR/Wf66gbHzkm4vo+qaTgTCuUpEwZORhrTICK6T65ewikAKgQpMLNhI2oFgVARHXN+KRCowWQJCWbrGyBiP6+qpUZI6VQlX79ve3p2ucyW6w8a7ndftttAnKiIrsst86eLhF49tv7/+4Drr2EZImnBWVkfETgiUKoRWxJj2d67c4d/M+J+hs7uN3wWV/L+1WCIIIEmNh84Qd3Kn90GNgYzUz0TOpsWcw4xmcWs2c961kuAwZhBgAHLBgQOLI44RIHEo2hv2XLFiNdJRwIH/jAB5zxzkJGaAJjBM0m7AFQg33uAYzgHORGLJ54FRDmQKgGmTh+8YtfOOOfBYrnQfyIZ8HixYtdu4AI9IFFi/NcxyIBmn7eeee5Z+AJQfjHFVdc4bY8b9GiRQdAEY/ucx/Vfwd33XWXQ9sBJljcATfwdGD8pN0k5RPye/azn+22eEfwHGQHQMF1c5VT+T3P1Y9wLkggSODMk0CYX8687zSMKEjASwBjHX0HXQc9BJ2DyjHABK/X+OsPtfVtoHvRDroZug46D2EXFPQlKgWdxutH7sBx/EObtIfOBegB+IH+yVgovGDC05Vx8AIM/WrHjh3OI7VZ6TI7f7vVqgpxW1zVbIvrmq1GrAeRIYUQDMq7YKJgIx09VpAuS2gEXg+l0jkZV21tjdJYVrs0mgkZ46SFxOshpvFjmBOCEZUMCa/g2TEZ6lH0cokgJis9jrHv5CBPEal4OdnxeEdMuXQOukbneV5RXgXjysYxOjQqvkd5RWDsy3AfFzCRUdaJxjKBASJ2rClTuk9luShLKO2l+lJTXmml0VIb6RkTkaZCX/LinxibsspomS1uaLNGhWA0KKUo3x3PQssUgSBuKwe+J/oeVd8BExzQ4saEx4OAJoENk5K5WCumwQfCLNQIRJkRSDMlAyrAQ41kxfc0Jr0dHonqtPqsoQwND9n+oV7bvnunnS89+/Irnu2yXeze324Do8NOvpeI+6GmvtbK0+J2EwdHZjJjtRXyVlGWkEGlHS2VN0oAH9yf+in/ZxruO+WPDQ8MEpiWAJOXn/CZ/DHgmWi8JwAhFr5g5JOGE88B7mGxwlMB7wUIigAoMM49Cr927Vpn+JPOk7YBG7gPrwquYVL3pEZ4IAAg8NxdQra5jnAKFgq8H3C141qO+8WWfnEc0IJFibGw4NJ/FkcWNbwkrrvuOtcuYAbPpdAGxU3e6gfXz76PsbEgArZQCL8AYPjiF7/oOB/whsAV8N3vfreLQyT05BWveIXrL9dzr38Gn0MJEggSCBIIEggSCBIIEjhREvB6C6ABuhl6h6+cO1JBz0HvQRejDQq6Gse9jsf52bqRfybP4b7jKehrPNc/w7cHYTiepWQnQ/8DBCGElvOE4NKHrDwEyuVBsKJ5oS0XcWFKngDDuzvEkdBvSWW5qJOROynH07KEPBviAiVkhJOlIifDO6MUlxmFD7QtX+zCKkrwcmAszlCXJ4EDG6LyaoAgXQCEslxA04iZX5RsTN4CEbVFeIb8BgRISN9TVToJR2ZZQtYJZd3A64LwgtJ4qRKARmxIKSzHlIEiVpay1vpWi08OW3bYBUfo2QKR1GaRnJ0RkWMKuGiparCUlVshJ08MniNAZbxrUGk9RVQpD4uyKmXk0PGCgI0p3QtpJuOU8uv0X+RK+IXXi5FfCeNU//UUiwuIAIyAJNMhGDoWldeI4iLUhbhVpJTiQtkxYvLuqKoQr4aIKbODI5KdgAjtVzek9KJt0B5Z/4A95xUvtuddcZV955abrammzmXE+PhHPmqvfdMb7DkvvNaFcBQYn5OoHiFdPpTTJ4Hg+XD6ZP+UejKThC9MrEezcPjrj2fLZMRCwxa0mfAFjHT2OUZhkWHyIoQAIxtPCPpHCAL7hCTQ/1e+8pXOuCcsAWMdxPqaa65xhr+b9GTw8yzaIeyBZ3l0HSJHYhUx9jmPZ8PLXvYyxz3xghe8wIVOgOhzD21TADwgfgS0YMGEYPLKK690JJMAFSzGhETQN/rvx8e9eGLQFhMgi59H8/24+cx9oPAbN250Cx6eFvBFkL4TIAVwBLAGHopvfvObrr+eG4IFErnwjLnKqfqe5+pDOBckECRwZkogzC9n5vcaRhUkgAS8/oau4nUWdCF+90dj3KEXed2I9riPl0NwYKFD0SY6mz/HZwrP83qjO3CYf4A/8BZwW/ZnV32YwkiWnlnUczH0S6SPdctr9Gtf/7q9Vyk1G+oblBGhzZLyGCBsIh1LWHWqzDL94h14fKe99bpXWm0hYdnuAYsqtSZ8D20CHVKTRRvt6bMqXUs4Ql7eBRnpamSqSJanrVJv46sa6yytEIG4Qi0gnIzKaCc9JtsSeQlQM5KFuub6rUELW4ALTNVtJRc8TDS+SRnzOdW8qsx/DUw6vOq094OOK4sEcQ0lcfFJaIwJkT6mBDZU681/TvwJJUo/WZZUdjillxAlpKWiSm2aFx/DaMxGB+SlMKbvM5qWl4PCNfRAs/hKlAAAQABJREFUPUYhI/IOScrLV48rqG859QkrgucjUyp6Kp4FLsyEewSqAMQkBcik1AdhAQxr+i7xQkQUboHHhJAOgRJFGxjst8GhASeDWun6Ccmkr7fHhvBk1rXJygqrrq0ToDJmP/zBj+yd7/+AfVPh15foReQDCrnerJDpatkJK1asstaGVseRMZYZV38Fbgk4Ytz073AlrF+Hk8zxHw+pNo9fhk/rFjy5DpM5CwmG8Gyj3+8/VQZJP1ncqIASeA6wIJGBYuXKlY6gkrAIwibgWcAAJzyDceDKR0gC3gp4N/zkJz85QMyINwUFHgkKoAGgAoADAAULJGADz6cNQA/2Mf5ZZAEJvLseHgd+0jqS94G/zj30EP8wPr4Tnk9b9AmSSUJPrrrqKje+e+65x40fzxDGiycIHhyLFy92CzTPmP0c+u2rX8wP8Wh3aPZ9h7smHA8SCBIIEggSCBIIEggS+F0kAICADoqOQ2UfHQa9hJc86FRzFYgND9iOM7vOlHQG7cydh9uXkTso8keIHrPSs0rog3Slf//Od+wtb3gDFrUtW7LM3vDq19pt//ULpTS/y64851Lbv2O39Yx32Pte+xdWumfEkgPKFoE3wUTeyuQRkFaNO0RAb+wJfxB/Ax4K8vFXVgm9bJPBbhBMCnAo1Us2bG3CEvAY8Fs8ILC4HbGkzHmGACeC2zJmV3S9oAIAFNJsFuQdQbYLLiLVZVxOE4mcjGzhDiUgBCoFtck1ORn6XJiQEV6q/uRFNJmZHFOfIgp1qHDeCCPyzsipnZRCFmIlKQEhSn8pD4ekvBEADmIy/vd17LXzLjjP2uUpgvfvGr28GxoYtO0y+pcuXmITamNKngv5SXlSSF9HHgnJGfAhLhAipu3wyKiAH/Rc9WNKII3AAXVToRICP/T3UNS9phrV/RERbuZ1bGxwyEbFnVHd1Gr7+vss1VBje0Ti+fzff4Ul5tXZxW98rl37nJfZz+75ja24cK19+Rtft8q6ao1FXi4aOXAWrzYRlwsX0fZYStCPj0Vq0/cEz4djl90ZcScGvC9M+Bjp/geFgXok49Tfeyq33nCmnxj+eCpgnJNNAs8BvBdAzUmRBEiwaNEix8XA9T5nNB4EgBGMj3sx1tln8YNUiHsBHVj8WATxIGBx5BghGlzPOU8AyXH6wTWzZXgk+XlZH05+vAWgPdrlWvYBJABC4KYAHHnVq15lH/rQh9z48eDw2UBY2Okj9x3uOYc77vtzpPP+urANEggSCBIIEggSCBIIEvhdJOA9GNCVPBjBPrrakV7eYJAfKNrn44FDWJnSfVz1Z/h8YF9GuXgF+uTGj3PF0OCw7dvfYS97ycts1crVVldVqzSaDfbwnfdZz/Z2axD3QbF/zOrFhfCqK26w115zvbXfs8ESIzkrURaIpACHdFFv+0VeABmke6cuEAEuh0RZ2krKS1XTllDmhmSFapm8DjDKMYfVLbrrAQb/mWwWEaETVM6DVLgxaxwEYiRiAgEiAiBk1Bd0Ii+woCBehKIII+UOofSeAj4AQ1Tli+C8QKLuIdLtdUk8Ig+LIv4R8gKQx0OJxhiZks5YEFGmPgubUZFnh8Y2KhLLCYEVefUhK3eSEfEnEHKRFlfEuEIw4JuokNdxVCACIEpVVbXzYp7utp4vr4eYvC2oUfXXjVcnGT/AA2k1QQMgn4zre0lLPnmFW0wplKQgHR1vDxesoWfjIZIQeNGxWxxn4p/Y+Ohj9sIX3WCPi/NtpXTgX//01zYiEKNbOn65UpquXHW2rTx7qTxqxPsgvosIIIjAE+8VQx+PpQT9+FikNn1PAB+OXXZnxJ3ekGcwTPhUflD+OJ9PZ2Exoi+++H36SN98mAIAAgABHhGepIhzgAIsYB4U4BwgAdV7NQBQcBzDnmPwKQBq8Jn7OQ+RJIY8nwEjOE/7vt3ZkxB9ASCgL1w3V5l93+GuY8x+EaY9gBXAE9KQEiry0pe+1G655RYHnECuiUcEJJr0z8uC5xzqWYc6NrsfRzo/+9qwHyQQJBAkECQQJBAkECRwNBJAv/DgA/voOuhN6DvoW+hgc5UnNMPpqzy0cOAetTlXkQ0rYztmeaWkJHXmm/7g9da9a69duuZ8e/baC23vo1usQq4CbWllfSgmrDVVac9fd7mtaJpvv731Tov16eWQeBV4I094RQJdU9UZ4OIxiMqgjsuITgpwSAh4iMsDAo8HvCwYIxkcQB4I+5h2gXhiy7GEdDgpurqEjgJCzOzrHgcnyKOB0AUIHPMyznmZWFRfIGaMyetBEnReGCUCJaKqrrDhMdqWJwEcBJZIzvBMoLcOieR9XIY7lzU0NlipdGPnvSHdk4wVVQIYkgqnEOphI7mMTUzlxCch0ENtTsiDYVJ9gcdhVBk0BsdGbFLgAecBJ0gtCjEmkAvVEWQKoCG7B89w/A8aJ+BDSmMfVV9ymQmbFL9GXttCJuu8ICICQ6ICVArZopWXiUxSWTEaWlusR2Ea4xNjtmLt2faDW2+2tgWLbMeeXfbI44/Zy17+So0lbeUVyD4q4tDdVivST3X7mEvQj49ZdCHbxbGL7sy40xvzjAZjnsne/6A4d7rBBzeZzgIf6Cf9o/q+scVjAUCB9JLEmREzSGGCpw2/oGG8c4xxAirguYAnA5+5Ds4EroEYkjYBHbw8ABo4559L+4RdeICEra/Ijvu4Z67i2z7cNfSVBcG3Rx8ZJ/0iowXjos8XX3yx3XzzzXINvN9xTjA2UkMBhPhn+O3sZx3q2O9yfva1YT9IIEggSCBIIEggSCBI4HeRgAcZ0EfQodB7Dta1DtUeBvLsgiH5JGMS3fGwVVfKcE8qXKFcoRc7H9lqH/rbD9jnP/IJS4qz4byFZynF+r/asmSzlY1PWVMsbX94w+/ZVedcaPsf3Wo77t/gAImSrAx9PSaOAc+bffgbeIuvWiJixzgeDwIdOIax7UGCad1ML/t0n+dIINvDgX0djwM+SCYH6szokBOcDsWMPAIEMpA6Et3QtSngIToTbhHJKCxZ4SCxHCELGqzXpdWknuz6LFcDp//iZcH9Gbk7kGmjXJkmBkaGbHh8TJkhhuVJMObIMvE/GBOw0K9sEdXzGm28KD42XQu40qcMFFMCExhvl8IhispcUdCYqXhMFAAfZPhP6XhRYyW7B+1RNRyX7cJ5e+h7nBKIMikdPKL+RTS2CGNQCIfSZExXPE1E7BmLCsQR6DGufo9lATyG7cJLL7bNW7fZxl2bbLwAuXzc/vyv/9z27+0U0KPvSd9Ffe008KDHHnM5kv58zA0/A24Mng/PgC/5aIeIUU31PygWgdmG9tG2cyKvow++eKCE/vl+YpizUHGOxYpFDMScN/6AEFzHObYAAewDKjBRc62/n88ACd5TAKPe3+/lwb3sU9n3fA+0Q+UZVPZ51pGAB8bl2/ZjPNTWZ+agPfrOljHi6fHjH//YSON52WWX2TbF2a1fv961+ZrXvMYBFIyD4vt98PMO/nzw8490/uDrw+cggSCBIIEggSCBIIEggaOVgNcz/NbrVP7z4do5IvggfUzKz2GqXh4NjNtI95Bt27DJPvH3/2hVsaRddf7F1rdtjz2ucIuGcXEy9I9aXb7EXnjBs2xt8yLbevcDtuvBR21ZbYvSamYsqTCLOCEFepZLEynDNiISyajSV0bE88B+rFQggoxt1xcNRr2S6S89VjrrNPgwE44gXTbqQxOkR5aUCMSg/zOgA3qn/pepriNyNUjIayMmW9wBDwrhyEsfzuMdQGjBuF5ajcp4FwBhWXlnyHgvypB3mSbQqyGplH5INgq0bEgYJ0WMKRcIKxXvQ1lNlfXLc2FK4MyUjsmtwwEMKZFk4qmQE8/E6ssutIjAlZZFC6ymudHxSVQ3NVj9vBaFaBRsaGLcJtT6mDglhgQM+Dqs/REBGM0trfLamHKeC9mC+siYBd4U1A8ygpSXppUtJCWQQQSVAhni6ijASkQ1SnYREX/W19aL422LLRUZ/eatm+2cc9daR3eXrVytl28a75aObdYtPohX3nCjLVq10ErF+8AXsGPnHqutFrGmxn6s5Uh/n8fa7jPhvpBq85nwLc8xRm+c8yPydY7LT/kp37/pSZeJdxpI8H31xwkx8Ig5nfT3MSlzjQcHuM8DGmwBEDzIAIjhQQn2qb4d2vDtsvXtcv5kFw9m8Bz6hHcHz4VIk/AKCDa/I5KkF73oRXbrrbfavffe67w5huWyBlDhx8vYKQdv3cHwT5BAkECQQJBAkECQQJDAKZIAehT6CPqV10vQWbxed1K7IZUuKaN2Kpa3P37jm2310uV2ydnn2Ybb7rWubbtsy6bf2vNXXm59E+32wkuvtAvOWmW3/eQW29+x0+anm5Xhos8qIwpsEM9DUQCERiJ7XpklpBJGS+X9oLf/BXkBRGRMx/SmPwGooGuS4htIah9De0jhAkXpcuhzhFSQ6cJtte/4HdRHQAo9wHlpOJRAoAFpLaOKXyjVG/2CPARyMtwzEwIS1B7kjlPyDijKM0C5PdU/tSlru6Dn4YlQFIiQh5xS4AHeCiUCXMayAmEGlApe7eC1kIgX5Vkr/jOFLwCcRHQP2SUS8hCJVCiDmr6zfEFknW1N1lCbtqT4HTQIhaWINUKAgd7iSUYJW6sUl3KnEBgiD2F5E09q6/rHyz8cGPpGLDactIn+KRsfHVNKz6x7Dn8LsNHFBL44qWksuYiyhch7Iy8wJT8uuWlsKbKQDI/aysXLHOnnqgVLbGR/t+0a6rKW1cssrXdvqyoXWbyp2vbv3G3N8+fZyJRI4ivStmTxgmkU56T+kYXGDyeBk285He7J4fhTRgJu4psxTJ8ynZrpCH2jUvyCNHuLYc5EhVGOVwBILluIGiGU9GEHfmGjLcAGKvcQvkBhwcOTgLYptEsbvmDA+zY4Rjvc7wv3cY2vvo/+/LFuGQveGDyPseDdAdBCIdziuuuuc14P+/fvd/0nJzWZMMhTTf/pj++LH5vfHmufwn1BAkECQQJBAkECQQJBAscjAa+fzNab0HWoHDvugj532KrWS5VKUsbrlvbN9trfe5WtWbbSxKxosbGcrSidb71b99hZta2O84FQi/GOXltdvcQuWLrKmkoq5SmRsgqlbOStPBwKhA/kxGJYUFaLIp4PVTLEywVCJGXwy9gntMDpq/KUSEqXo2uMkormObur/kSRvJa6oAhng2qR8An2BTrAgTClyrYobwdCLEpmQi5SelhERJhFGesFcVpkh8eUJWLYhvr6rb+n17pFWt49MmgDMsb78xlrH+m3ASUDTTTXWtmCZpuqLbNCTdqijVUWb6m1ksZqK9aUQRRhViXQpVa6s1TgiPgsTGCL3D+spK7KrEbHBTwkG2tteGxQ4hSoEdOLPh0rVIhkU/ePJaM2LMbL0qY6q5nfalUtzRYR6DE8mbVheURMSbcuE/8aAASeGZMCVMaVEnRM39UY2THE/1CUJ0eFgI7B3j5b0NRi4/2DtqR5nu3ZuMUak+W28e777dqLL7cqkW4qJsO+8eWvWVr9b9L4kH13T79aD+V0SeAJ6+l09SA89ykhASbE2cb1U6JTM52Y3beDDWlAAl8wyuf6zGI2uy1CLjDmOe4XPLYU2vH7PJNrZrdNO7PPz27X94ft8Rr6tEvh+YAp8FMQckGlvPGNb3SeEAPKe7xp0ybHYcEz77vvPrvxxhsd2/Dx9sE9KPwTJBAkECQQJBAkECQQJHCCJOB1MppDT0Gn8rrUidBbJvW23WlQstXZ+n2eF5HHwkP3bbCvfv7LVhevsy2Pb7a2ilp74M57raogT4WpSXv9C19ri6oa7LG77rOOPTvs7JZlMnKH7J5H7rTzms+xcRnzAApFIQ8TEYEB0tNw6QdoiAmAgGiSgqGcExBQEGcBXhKkwiwIVABY0OshBn+gxmb2SUoxo/65zBSKYnAABCAH90XlUDCmvkTkAZAT6WNEoQqCABQ1EbeUnk3WjfFRARICKwi3ILyBPmZk0mciUzYq74aRwojVSZXEs2GsVJ4Li1pt9dWXWWzRfBnso9bd32OxamW+kIcEpJaMryQOIWRMIAscDtKVlXYTb4+8nl9QClHGX1SYRVZgRL/AgrRSc1amFcaBR4T06lLp3XG9GCsqLCSWmbJ4RdQqxQXRPSygQpwRxVzEvUgrk+wKul/B0ZKxgjc0bmQWFXCTUH9TAn26OrstoReJ991zr6171qX2yEMb7KyW+Vbd2GJbd2yz5ETByhWa0trcZvfe/5DGpH7K5SJeFrPGhlp11H094Z/TIIHA+XAahH4qH3mkCdxP9N6Qpm/+Hn9urv76aw93jTeeD3f+SMd9+7SD8e9BAd+32f2evU+7B3/29/hnejDhcH3EG4Linz37OvZ9+7OP+7b9lnNzVX/d4bbeu4I28Mw4uJDdAm+PH/7wh/a6173OHn30UZdv+ZFHHrEbbrjBZe/AAwLvCcbLtXBIALzg/XGkMtfYjnRvOB8kECQQJBAkECQQJBAkcDgJ4NGJbuJ1HcjCx8bGnH7ldbDD3TuNJjxx9gDAMHMoppdLGWUGK62odESOXfIQrVS2sqj0KdJc/vhHP7Xvf/c/7VXKhBCTkf4vn/uc1SXKbUlDqzXIs2FJ4zzrUAhGdmjUKpRiEz4FPA/KouUufCAnz9QapV0nNGFSRndEXg5ZGeR5GeeVjXUu8wNGP/0io0RKYQTUuEIvCKco6lhExrTDH7CuMa51PKbzVEAGQjXIRFEiokRhBpYXf0OW7A8j4nMQuDClcIu89DragHsiDmoxKSJKeTwkhIwkdGx4YNBq6mttb0+X7c/02Nlrz7M+eTuULm6xn91/pw3kJ+w1b/0jW/nql0g3HLfO/i6rXNBiudISV7MCHAoKqbC0vB7EYzElTw5qTISajkRS4yN8hErWC4g1o3A3aD+pDBPxtEg3CdlQ2MeUroGUkpSbQhNcusuUvHhb5rc5nbSrp9uFEwPI5BWmsX2z+BwWLlLqU4VO7G63KY0fMsoxeUIklKFEATsiYS91fzNkoyN0ZUBklyk978GHH7J/+OQ/2ee+8DlrWTjfzl93vtUuUsiMQKCu3h5L6xqeg56LPj9bV+dPCP0avRuQjHBn/lZ5CYgOzfVH/PukkVAOKYEAPhxSLM+cgxj33sD3o579Q/THjnV7so3Xk93+sY77VN1HatAPf/jDzuNh9erVdvbZSjH0gx84EOKaa65xaUG5hsUdfggmTCZTvERGRkac58dcfX2my3cu2YRzQQJBAkECQQJBAkECxyYB/wLHAw/oooSawgXBOR9ietjWsepnFT7OPjSgjGBVymj2wD33WJ0M3OrGRhvWsd8+9JDdcP2Llf2gy9auWiNOgpz1KRNCe/tWO7txqb3tdW+ynRset4QyWWQHxEsg7wLSUqYShLxOZ6zgTT+pNeFCGM4pHaQwhAqFEaRqFXogAz2WSrqUmowD4CEu8CAxUwEJIgIXonGyp02TVU4DDk8ADyUAFB6MAFDAeyGrFO4KOciKjJFQisiYSCXxqJC8KIr4cPcUBT4UZaQr2kFhCiOWlJFNP3MJtakxdAz3277MkD0+2GmX3XCtvfrNb7S6pQtsaKDXgRKpxhorqSm3USXJzCcFGAA2CFBRHlHHGREReabjj9DY8PzAewPspIA9oX6QJtR5bjBu5CCCyoiez7U5GfIAMi6cRB4gyXKFacAjoWsq1E/SeMJXtnP7DiuT10RFWmHHard7f6dVl1dadWWV9XT3SLZqV2OhLyXqFzpuUVwYBQEEvGTj+4mL7HNCPBiLVyyzm277lm3f2m7nrrvQ6loaXBaPMoEW/L2g5/rq7SG2hGVv2LDBADXQo2m3XuAV1/K9BvCBv7pjK8LqQnkmSwBEz1d+bP4H+EyWydNt7Hx/a9ascagsnA/t7e1uCGTBgBeChZ03CSzqhJlQ+K79guUOhH+CBIIEggSCBIIEggSCBE6hBDzwwCO9Dophx/7xlpqGBteEe+EiQ3KTDEkMxve85z0yYLsd/0FpTPH/ezts66OPW3O03q686DKbN3+x1ZdX29jAsE2OystAhjwu/wUZnZBIFmTsTimrBcY8wMNAZtR5AFTX11lra6tVy1AlPCIpLwcqZJNx6WEYyRjLZL4grWZChImJiI4rRCLiCCKljws4KMhrISeeAkgZxYep0Al5QKiS6cHE6zClkIX8WFbXCKghs4WACYAGvCR4LkgAemFMzxgeG7WqhjrXT4CRpmWLbGPPTssp68O5V15ml1z3HKs9/2wBAAqfqEha/TJlhGipt/bhPiuUiaeBqnCKIlUghPJzOuBB1rce5JAHAQl6pHvmNAjBV4dHAiEREY0baGRSfZzQ2LKAA+pbTlcgS2QhVwa5dGgcyrAxb/lSq1LmjEFlytjb12MJZd6Y0P39GWW/aKhXKEuljeYmrby+xoEiUXmdkH0DYGNSBPITI2Mu20dC8lq9aJl1bd9tL3/RS21xtM0evvd+++XPfyHvCLO21ia1euji//bQofES/vznP+941Pg7IsU9oFgAHg4tu6M9GsCHo5XUGXodExQ/NP9jO0OHecYOC1DhDW94g3MDYx/gYcmSJQYIQSiGX9hxFUunxWyshQB+CFzIACZCCRIIEggSCBIIEggSCBI43RJAD8WoO5HG3aCIFRcvXuyGhiH51a9+1e65/x47T6EH115xjT18933Ws2uf5YbG7LI1F9i6lWvsvp/cYvXpSqstrbC0uAUgeMyMKT2kMjKMy/AtCkTAKB4p5m1MPAqEWpBSs7S8zHmWpsWDQHiFoAZXY3IDELzg+oCRDDElBjnhA4RxFARukMUhK6BjwhFDjjjgA4ChIBCCEIqpjEIrBDxElMkCT4wSNQCfQ1RGP+3jTQHIQYiGS/spoCSm0AcFKViqusIGJvQCSthBWbPCQUSQuebyi+3GP/1jq5ERPtDZYaPiuKhoqreYQIgJxXcQUjEloAFwgHAJwAb3clLAAh4ZT1QNRPJhHAfIMAVGRHB9AJTQ8Rygg0CSrDw38hBl6n7AiVRlheOLGBXJ5HBWJJKgGPJGmL9siV181RXuWLvCMPJ6fk1rs/gqpqxzaEBpPpV5Q/LPyoKFX8NV3cv3i3cIaUVJgdq9e691KqXmw3fcbe9625+Je6LMPv1Pn7Bbf3qrA2mQEx4TVMZG8V4NAGAtLS322c9+1vAqxvuBsGY8H9Cj8RwO5dglEMCHY5dduDNI4LRLgPhIvB4efPBB592wZcsW+9CHPuQWwJ/85Ccu7SYAE5OlR2pnZ/E47QMIHQgSCBIIEggSCBIIEnjGSQBj8eAXXwAPvCg5Gk6qIwlsTPoRhefoH1t70UX29a9/3dadt85lSZhX3WD53hHL9w3bqqaFtnreEuvd3m6P3/uQJSamrCZRZtWpcoVcpBVioewUMphzeoPPW/usYhx0p03JWE831DgDX1a/exZeCOWJlEACgQNU3VPE6FZ4BMSNWb3pn1RYgJo54PFAqERB4R+TCqfA2yI3IoNcGRmGu6frSO+AyC6H3fGigAgM7CkILNUumS/YTql99wxtc3pOTgY5oMiwQg8GcxnrGBmwHmWfWLB2lV35ouvMasutVJwMqZk6Ii+JXbv32KheZLW1VTtuDDwpogIXHNAh4CNKVahHVP0tEZKCdwaeGRHGqa0e7Agy4ac4UHU/+/L3cNwVSckyoZCJeLV41UQeSXrPCnmNRBSiQbhEbds8O++G623hyuW2cec2AQ79Vt3SaONi3cxI7qnaausaGRL4k7NR1QkdB2Qh1SkQgnKPmAJaXPrNuPr0wJ1323Ouea61NTaLRLPTPv6Rj7q/C0AHQIbDFV7S8fdCyAUk7+ecc46RWY7C32koxy6Bw0v92NsMdz6NJMAPL4RaPI2+sIO6iosfizfgAgvs/fffby9/+cudaxjxah/72Mdcyk3QWsIuKDU1Na7iARFKkECQQJBAkECQQJBAkMCplsDs0E9eklDQZdBL5zIKj7aftFWt0AsItyEJ/PF3v+sMSI4vnDff7v/1HXb+khXWEC9z25jSbN7981/agpoGy4nrISojPykDu0J8D1XiJihXO7zEgbMgkxcAIILJtFJK1rW1WLkMYjwaeA6gQFoGNlktSjC89fYfzoYnAQMCCPAOwGshpmfIgcIZ7hjvQiZc+MWgwIeBrl7r7ei2vv0KE9FnQkFyAiggmsTTIC/izKx0uwk9d1xcEDx/nCpPgiGBCaWV5bafrBUVaRsSseT27n12vsItYueusEJnjyPiLFU4waQ8BqiMsVSG9UCfslEAGAhPYAxxxqK+lahvJVkBEMokUaLzUfXbh4zQ94iu4xhjIpwkLsghLk8LXwk1YR/CSeEhkqOADDghKuRdIY+SEfUbgMaqEnbJFZcrM0XaegEaclkHpDQuaLPaeS3WNz4iMEKeJ8r0Ma6QDYAWQlkIb3GhJwJjli5YZK0NTdZS32iTA0O2RJ+vuehKu/euu3E/cRwZc/0t4R38kPhBLr/8cgeGPfbYYy6shnu8p8Rc94dzh5dAAB8OL5tnxBk/yXsQAkP2YCT6GSGIp/Eg+e5AZmHiZQEHhGhra7N169bZ+vXrHUkOCyYLH98taC9l9sL/NB5+6HqQQJBAkECQQJBAkMDTTAJe76Tb6CYegDhRw3AeD2o3Ih0JssAPfOADziuUsAuyJ+x6bIuVKV/k6vlLlW6zzPr3dFhRHgcNyQpLTOo+hTmIpMCBAUUZ3Rj7MYU1pJU2slw6V6XCFKpaG8VR0GDp6kpZ3OKDkB6GFwKGO5knSqh6H48RDyGkfCDkL6GxshVwkCdbBZwSM5Xwi5xCFHLaFuRdwD7hGBlxGWQUkgEXBKk7ASsItSBzB6k0yd7BeBlnQcZ7Qcb4WDaj7B611qNQhYUiXUzXKWPEYJ+tvfQi3azuShcko8S4smFMKoNGjbKCtLXUOXLNoZ4+5z1A+IKrSl2REqCQlDjiCvuAUyGifcI+4JzwFS8JAAjG67wydA7ghcrnnJ43IZBkXNkqBgZHLKM+A5SMD2e1n7W4SCcLWKZdg5YQ0HD1859n8xYttA5lp8hJda2WrMtra5S9YoFNKfxCASmWledDXsKNCngAWMIDhGeQ5WN8WOERevb99663Z118iQg4RaMpb4m/+8AHnc7s9eaD/+b4eySM+fzzz3dZL/AyJvyCLcWnuz/4vvD56CQQwIejk9MZe5UHH2ajeH4RONELwVNNiESdyVHrMP9NLw4sENQn/+e85WaO+SsO3j75Dv9p+s6jlYRmbz1ldvXt0CuWsb6eTp0u2J6d27VQTdg1ipPLjI3YugvPt7vvusNqa8TroEVodHQ6swXfs/d4wBsilCCBIIEggSCBIIEggSCBUy0BDMXZBd3Tl9n7/tj/2Mqwx3sgSsV7QFvHPIjzvXSdMgEEylnpXPsrlRLzj//kbXbH7XfYc551tW15+DGbV1Zje7ZttFXNC21qUF4DvUN2tjwhOvd1WEreDlHezuuFzrDSlfcODdqA4vxz6mOZ4v/rm5usoq7G0rWV4i4oUypJOfqLm0C2uoAU6ZUCAKKknNTjY+qLNnTJbTnGCWd0y/DOqOKZmlUmi0lViCTzqnhPpPAa0LjwosDA560+mTB4yx9VSIWJ+DIijwF0ec8x4bJqqO8F9b1ShjreAfNWLLVqpc+U34RFVyxxGT6srNQZ/DkBJpApwhkx2pexogCPpa0tViqvhZQGRE0SMqF+zIyEATjV1HM7zKikB0It+D4AVVwVwAKYkpXHRmZk3MaUunRYngiMBUJOgBOysU0WclbeWmNJpSnN4BYhj4YVL3i+nXPBeTYwOuzkxV9ITH83a9euFR0FntvCFqQDT6mxovgfpgRQ5BTWkpE8ezq7nNdJRl4spZG4XfcHr7eNmzbYmmWrFXrxMQFFAi00dl+dZ8qsz/Pnz3cv6RpmvGf0aPeiz3sR8zmUY5PAk3/5x9ZGuOs0SuBIE/RsUOFQ3TzU/Ue6Z3Y7oKw+bgqwgvbYHgrUmH3fido/VP+Ptu0pBaFpypJ5jyFPYUXgX7bT//qlcPYZfx3GvzBnXfvkq2jjiWumP03/O92mPwcK7iZuf4l7yHRb/l/W0un2/RF/sVBePbeupkIxgP120bmrLa1czLt3bLF5QuN3bt1kF567xnbs3G011VqAtTDxXJDxWi3CtJbRIleqGLu5yvHIl3Z/l7+lufoRzp2ZEjjev6/jlcqR/j59/+a6jjmQypsQrkOBYQ5EsZ7rvuPte7g/SCBI4OktAT+/HOsonu7zi/fCZPzsz/7M2OaWD6CDbjy4ojNJ3ZlSLejN+F3iw7roggtcSMS2nbusvrbB+vf3WLF9wPqlr97QcpUtrqi3jdseFtfCmBXrNHcrg8KQQhf6ZTw7HVfGfUrhCFEZu6SshEchpmvqair1Fl1eBsp4gQcC3gYx0mwKEBjXMbJNQLjIm3jGE9cY2TpdWfyRhbhIEbt6rK+r2/EqlCt9ZFLpOAEruBYeCFMIR4m8CxIy0gEc1IB4J/I2rpdNUT1rQKDIlD7XVVRbZWmZwjW0/uh5JeJSiKa1Bqkvi85Zabc9fL9lalJ24//9RxKQODCk++Xk2ZEUQBPRuNARi/JmSEUFaEimheG89tUHrWWeUJKMFmTScN4W0ifJtAE4M4Vng/6PChSJqf8ljEFfQmW63AEgyBADX9+YS5GZFh+G+365T14IST07KfADsGZ8cFQgiron2RLGMbJrm1WIFHM0M2Y98Ewo00dVPGV7tm61+cp+0ausJeNk/VBazil5+E5IFvnolEuzmRaXRIn2c7rnu1+9ySoWtton/9dH7W+/8Al9r5NK66nwEnmFEKLMes2LOcKSe0RSChiDx7D/m5wNlJ0IPhIN8RldsEhCCRI4ZgmQutGjhfxI+YEy0bAFgHjqlyc8Ftzs6YAITYja4mVAcfb/QVt/7H+ufNP3cNxfw/ZJVZc44IGjWkgOVHcVMhNIoePkgZ6+jiPT5Unt0D9N1qDo27dv0yLWaUsWL7ZVK1fYju3bHRsv6Puo0Hq3gKgJvhuq1txAmDMj07B55koA5XauOv079L++Q8uJa5j72FLYR2nxnw99VzgaJBAkECQQJHBCJIDaNbvOfNzd0WnnC3h4bMd26xN54Mc+8U8CItZZ795Ou+ic86zJKq3UhRBMWUNFlTXXKpWjMkRg6PaLZ6CgFzrRtMgRK9NWqhc9ZXVVcvmvUohFhYzlUk320tGk51LdCx4+Y8jPVNclLQucZ12guhdzMxrdpHgjHFEiS4cUOa53b+MJoVDaSPgLUuJfgNwwovNZGczjygwBWWUxEXOZNoQ4WKleMAGG0Ab3lCrFpcsYIuMacktSZEaVvWK0MGnnPfdqcUEMSwFUyIIUzALPnek/4ACgAZwNjkSSLdwIUol5UYbeWNQ6JycMpymzP62dPrF113CdqrKIyvgX4ADHgwAJ14ZuBpBxoSm6CGDFgUhqCcAorzopjGWSuI1S3VemcanvZ61a6eRXoYwiZRpfqdbYhuoaARxpiZsXawofUZjJpHTeoj67NVlt4zlSFkvaS59/ve3dutOee/lVlhkYtcqScoE+vQ5sAAyieLALjpAQVuFEctL+0dccSpDA8UmAFI8o26Ojo64hEE7esMMU+1QuuOoJS5Y7WcxV2HGpHIvLzQxXNx+zx2cXu6djjiBoZqtpWssI//r/3NQ9PYHrWEz3RTWjTlcBCjOugRFmWe0/acHUXDv9mePTNVLUhC0/MmrUVx2LqirgzfrEhBwrr7JkmXIfy7VtSHF0E0K+H9+y0+rF7NugmtEiNqnFjMWA78W9mdXixYQdSpBAkMDvLgEPWHAn+wFo+N1lGO4IEggSCBI4HgmgMh2uoEK1tTTb1l07rbW5xb70xS/aV77wL/abX/7KFrbNt1655K+Zd7aVybDPSHeVRmXleK9JCcvLyI8qXAPvgbKKMqsRb0JtY71CLRqsTrVCAARpNaMOTJA+BveCrzKy/b4zwAmR0LkSUm+qQrTIiyW8BPAgINQhrbf28EgAGODdIHoFR6BIVg14DfBeIO0lYMEk4QUCE0oUMgGJZEVLg1WKdyIqMKTAcR1LKg1lvDxtDSJmHMmM27wF841MFsvOOktCSbsXUJPyFnDrmMY9DaDTz2mdEGOckA0UUr/W4dVBNonpe5447uU/ew1098v7wpUZNZP7OH6gKuSBl2u+8H0xbsAHuB0AIFwYhcYkVdrWKPSCMBVsjbhkRkrRhto6qxJPBfuT4pLISb/lcS7lqL4b0oEO9vVbueRbJS+MHZu2iICz2hY0tjgS0e/9x3fd47PSkSl4O2C/BODBieOk/hPAh5Mq3tPfuJ84Drc9Ug8Pd58/zkSCmxIFEIKCCxMeEU/1AgobkQH/PysI7UwFLAAkeFLVyBwSrJ+PwAU3MzI7sk+bbA+AC7qXWdVX344HGg4nJH/ebbnft+/bdjOz1TXN08oRt0EREnUqFdP+7l43ubKA4WJ4xVVXaUFLWVbgA5Mq3xeTN9tQggSe6RJAYZqr+nnOb73iNPsz9/M2i2MUtv66Z7p8w/iDBIIEggROmgSkGjlr8+DtrAcuWbRYIQsl9qV//oL9i+qYuAbWrT3PtvVsskvlBVEto3S4b8BGRE6YkxEKCWSJdKRGcTqQhrJCvFnVDXVWKX4H9stELJmQ4a9X+c6jAWABQGF2deCDQIjpJYE1RgDCDAgRnQEnWDdSSjdZni5zPALVaruiSvwReiZhH/A5ZOVykBXYkFd4Bp4LSYUipAR8lIhjYkoeGWWtDVbaXCcigrRNykuAYym8M5SBo1TXNomwcUKeD63z26xf4RnPfcF1VtjU7bJ/QJw4vWIhQ/o4I0ttnD+wBwp0FUAE6xoABPtufdNnv+bNEveB9c95RCtdaVYvxQ4QYc6EJPr73CPVCfqBauy9HrJSb7PCHEbFVTEhGUzKU6NEY+kb1PckoIjsHpBsOi8PPEP0fcW0BvMqEGCCKg3e0tJ94c+oKa+09bffaUWF0XRv3Gxvft0fKnuH2Ze/+CXXdfpHwW7xfA5+606Ef064BGTJhBIkcOwSmB1awYSE94NngyVNzVO++BmPWQ+K3QNVMyEwrAMRMPjZn1U9mOBAAYAAqqY+91nXHTivfVbH2Z+ZaQ/M+nNIyF938BbcYAY7yMplUI4OtvrcC2zh0uW2edsue3jDY1ZZU69JOmMve8UrtaBVHwi3oDegusQIHl0n5uhfOBUkcIZLwIMIXllyLrMoOTMVBZIQMyr7vjhFzb/58QfDNkggSCBIIEjghEngSGpUrwCFQcXxjwwN2+5tO/Q6PW8jAhp+/KPvW5s1WnN1rbxd5bKvF2cF3n5rzsbzIanUj5U1Cq9QmspyGfFleBKkk1YUCKDX7DKSlVJTZIhCHxyocAABQc9TCx5s8LofIITsdlc9CBGDSFKeEIRVkN6St+4AD4RPUCN6Hl4M0Qp5Yyi0IlFfZWUt9ZZqqrWIwIaJUnlYNFTaeDpmw3Gl/kxFbapK3hC1evknAKKsodamFJpRUV9jnf0KLxA/gp0137bv3OFeQPnQaK/Dy0kAOocZjwf1VUPB08GtgQcBEBx3IATnGRxrn6r23GfO5SXLUcl1TGSdpP7MysDnGNf4UBU8H/yq6bw9pEbj8QDwMKE6Lr6GyUTUegkTkQdKVmEqg8NDLp0oYMMomSzUaTxHylSTAg9S8YQDJQAf8FZeOK/NYgrzGBS3Rk1SGU32dtiNf/gmS+jcIxs3uL9FLwM+ADqwfhOeHMrJk4C+3lDOZAl4pflwY5ytMB/qmiPdzw8UhBPEsKWlxTUBiggIwWT6lC7MrsyE1EMVZkV/zs+QB10HBuAu0T9c4t3IDuzPvs+3dXAb/pqZ8wfu5bqDzh10q+L/FDMIq3K81JqaGq2po8s2bt7iAIeOjg677PJnu1vycnHju3Tft7Z4QYQSJBAkMLcEiBudq6CYHXwNvzEXbzoLjJirjXAuSCBIIEggSODYJIDa5KZat/PkNhrI9qWS1xua/o5ue+zxh+2itrPtnPlLrLi9x3r37besDNiEDNmYwh4gEkyJJ2ESYEGeDXg+lMrLABLJHG/g4VqAz0E6VEEGbTwmbh/pkdN6tFfWOK3O6H+ABvi2WCdEdKCe+LUBDgiBBcqXSeaGYlKpKeVBAVGk3DR0D5xBCtNIlzovDDwhIvJmzQnBiKgP0UJSaTa19jRWW2Fc4c4CRdICSxLFEnkKKJQ4FROgUW7dIlNsaGu1h3ZutbbFC80GxqxWIASZIKoFTkxKLwRAwdNBaMJ0v7WvTw5gx9OBsXoAgrEwSiAExsY57egIzQh8EBDA2H3FNmCf+9li5HMdxJ2QappkSEEV592eC7vQkusdhyPKXhGXl8noVI/GWGJ1jQ0OeJiMpuTsUWFD8oQAfMB7hEwgEHTSG4AHutbf02uLli+zLXvabUnrfBtXpo3i6ITYLNMWF7lmaWSacJ1wFwr9pM98n4FU0onkpP2jv55QzmQJ+EngcNsjjf1w9/njgA68ScfQ3b9/vz300EMOiHjKAw8MnFmKuW+uyjX8Stj6Ouuzpm7lbFbVOb/lmKse1nVbPcSx9viHcYVYeDVxTuqQq5oslVpaOYunK/vO+UJtewcMh5cw56tyrrwyaSPKz/zd//yBMlvssZe89OWKGdR3osk4ru8Gtt9J5YQGcQbp1p1uHDD9hhIk8EyXAIrGXHW2fFBMAO0AXIkR5Q3J8PDwtGI5cyHX+DKtkPpPYRskECQQJBAkcKIkIE3GGcnoRK7M3s7sj4gDa3QsYx/6uw9aq/gP5pU1WnUybb+4+2ZrEFfW/u27LCOvCLI6JKUfxWUU4/WQlLEfF89CCVkt4FuQQTwhssaMal56HFwEgBMYuAeqpv6D9zHQyRCRlw6WU9YKuLcKMpKxtjHECe+I63klAjzwdogCMpSnLCqCy1h1uY2VyHCvTluiSaHNteU2Lu+GbHncyhc024Lzz7aWNcutde0KW3bJ+bbq8ousZkmbDUxlrTszYvmUyN9FmIkHRVlttfUp7KIw0G/1K5c54krkxvPxQsB7gQwarG94LUBcCZ8Fev5srgeN3F3rjus6p4/672Fm670iaAdgxVfa8x4PABaz10f3Xao/BwAI6bfo1ISMxKXDTknWvNlbtGSxkn/kp0Mj1DdSk+IBUSbSSbxIWMtz2UnhPHohp0anJO8BeTxMDI9avXjRxvsGrXP7biuu/601lVcLdIq5DBfe84F1HXuGvhGeHMrJkwBmVChBAscsAU/UctNNN9n1119v1157re3cudO1R9qap3oB+IW511XNuawL1Lwmzrw8Cg4AD/xSfJ0BE4pahEjXOaXPxQOVCVn3UYEgIg6SmP58YF/uXBGqUHTHdQzfMVWcDLpHLeo/TfpqAdDhSZEgsz4zUe/vHJTHQ52tXLnS6uuFaMu97VOf+pT19vba+9/3Pif+EWW7wCjibSyLBiV4PjgxhH+e4RLgdzBXRTz8dgAcABvG5ULK7wnQgfAy5jj2Oc9vz7tsch+KUChBAkECQQJBAidJAtKBnlT4rDqt5WgO1vxepTfnTcpisXvDZqtOlVmmf8iWRtvs5dddL/6HQfEAiKQQfU/ZErIiNMTITZWmrEwhFxGFWAA0FGTJZgsCncVBMKV9jkf1Jh5D24dToFodXGXCuw4BOOB9ytalq1QnI9LH4npOCekgxecApwPAg9gRLVKtN/kCGzonR20kLi2xUrxdZfHp8AqFW5TPbxL4sNqazl1liy44xxY8a51VCYCoaGuygcKEdY4N2Zj0ydK6ahtRys9zRNb44KMbLKpMHlarLglkGdT6RTYKgAZkBljgOB0YEOAAnhkz+uJs0OHAvu7hPJ8dCIHcZ6q7RscTAlUcuKLnxiQvlyoUDwmu06Nnb/XRFZ068J6PjB+AC+5iya+xsdGtq6yzrLmszbxU4yUoAALHJvVijbWXdhrrG2x/z15rqKoRyDRiCkqxPZu22t7Ht9nS1vkClMadveL1YdrixSnthvV7+vs4Wf/G3q9yshoP7Z58CZBRwiN1O3bssNpaxYPNoIr79u0zeBd2797tSCE53t7ebrfffrt1dXVZW5tioTQBzlUwVvlhcq+PEfM/TH6cuCZ95jOfsfe+9722d+9eW7BggVVWVtqll17qmHu576laSBPE+388DQoSQ0zzvlJdyLVNY9aUygLT2dOlrcag/8cyo8ocMS4kV65zxP0JHoCxODM5brt27tCkpZgzucbl81rAtEh1de6VLMps3+4d1r1/jw31dVt/114b7u20/bu22b1332G1TfWa5HJWIfc6zfWa9DByxmXU9Fm1yIe6e3uE6pa5uXdUKG9GbmUJsf/i9dCvfMj1ivn75je+beNiMl637gJN0lP26U99gpXEPvPpT9ve9r06VLDKiumcxQm5l03ISIJ1me8xrvi4g78jD1DwvR18jmO/Szne+3+XZ4VrT7wEZv8tHKr1Y/l+MeBpl7mHuYV9jrl0YvpNcoxzhG8x53AOkNOfR8GA3Ja/X8K70nrrQQEE4FreWPj7acMpImqXYzwLkID72VJoj3u2bt1qe/bsccc3btzoPjO3rV+/3s2hzLWAeg8//LDdfPPN9q1vfct5e9EmpLvMw46tHGVJhT4/1d+e0PfTWY7l7+d09jc8O0jgdEiA38mh6pH6cry/76f273PaiEU3m55xJQ3tUzz1VqmM376efnuuiLf/6JWvtQq5MOR6h0zvvO3ctiWW2dlltalyK9HaEMfLQQZyrigvUcIspAPC8wDwUBAgEVU4RExVprkz0vWNyKNBmqLeXAEqTAMLOjszpaIb5vTmnVICCaLWGKdDO8JJehyxDoUFkMkiIT4DAIi+8RGrXzDPpkrjtk3643nPvtRG9SJrT1+XdY/Lyy4Vt9q2Flu25myLXHCW9ETdL7AiIV1RC5cIKWtsWLo9Rnpvf78IyRusa7DfSkVS2SNA4oLnXaMFTx4X8rAgjCESjbvuur8trVsudEL9Z21lHU5Kfhj1zjNAsvV/D1ynD3rxRtrNaW8IB0SwnugYFS8HvB1mf/aeD05EurYo+ZFRhIweeJTgZZJWlg6J28YHlepUvGULWpps/2NbrV6uwFWVtbbjgYfkvVJmzQ0NkqCeLTtkQsAR6zh/70WFckTlbaLROU6IeY2t+s60RivcJKs9iEOrlL1k33CvdebHBNQM2Cte8Qr3PXl9hC0y4PsK5eRIIEj25Mj1lLXKjw0UEBCgqqrKTRiEPwACAC709PTYokWLnFINzvSv//qvbiKZP3++bdu27Yj9RKH32SwAM+B18D9Itijx73jHO+zqq692yjdhF+9+97vt7W9/u3srWFcnJt7TWPxkeaguMAFGlJTD/whItqN1R8a9gBb9l9WE1qxUTZpi3SSXiIthWEAB6YhyAhwg0kkKNKhKpCy9qM257fUKZb3tV7+0vXt2267t221/+x7r7erEQ098OWUK5xMBkLbM3Z1aeL79rZts1bnn2mbxNCxZutR5XYyOjdvb3/kuy2UGrLW+WnGGE1q8RICkhVA9tgF9J6DU9Ypn3KtYthtf9iLbtGmz3XfX7fbXf/0eZ5C94fWvtwVtzUqr1OyMON7WUqeNIxl2Qvj57hJiA55dDlZW5pLf7PvC/jNTAgf/vRwsBf5+MPK5zoOk/A2ysFO8cU6GHK5DgeAtBsf92w3uA0RgXmPOwcOHuQ6gAbAVRQEvBD/XcB/38xwKn/v6+txnwFhyeFM5fsstt7i+8BnwlmPMd4Cz9OVv/uZvrLu725j7+qXM0TcUu7OUsow5l2cwz/oxMQauYdz0K5QggSCBIIHjlcDsefZ3WZOPdO3sdo+3j6frfvQ4vEAdAOGUumn7n92NSq24duVyxfnnbdfW7TbWv9cqZIi+/dV/bT3b9znXfN0ttQo+ApmyMoKjSmkJqWREPAoOxFDDbD3Coal92llAO4RVAEIgZ1+Rg5O7OoB8SadJjelajHjOcRyP2XnLFlu3QiHqmutty87tylRRacOxgs1bs8K2jfZaoSatF4ht1lK50hqUfSNZXaW+SWPFg0GcBXlluIgqvKJf4ERtbZPidgds1YXn2W/vuMca9WILYxvDfkJ6a6vSbTIu3nJl9IIrKc8OPA/U/WkB0i9VPB7IJBEhrITBSC4QqQPe48sXoe9avzHodZn+pYHpsTKu2X9ThHI4Wbgr9I8u5V53HTqAzif11i+ttTQqkCWrl2fFcYVNKD1oZCxrTWVV1ru53ZoFOkTbFljnD39mEwL1569YaFs3C5DQes53P7vCR0E/82rLe0MUAZT0cPlHOP4P+B4WNrdabuOkCxVnraegN7Buo2d4O8edCP+ccAl4u+uENxwaPDUSQPkGYEARRimn8APibR+TBYr08uXL5ZrfZLzNwyMBJX7NmjXuxzV7ojhUj7kfhZofZIOQRq7njR6GLAr/hRde6BT5iy++2P70T//UKejnypim8BxvEByq7dN9DPNnXKh1iSZZ9gFaSrQ41MrtirUmJSNiZKRfLnkKhRABUUSTGXmgYwIc4prEq+Xp0Nuxz9r7++yB9feJVbnfujs7BAjsctdNjo/ZxSuWWL/c5yJMfpokxyW3GOEXmnhz0YItEoPx+J6ddvePf2KdS+crp3SlS5G5c8OD9uBvN9ifC4RYe/4FtuJs5aOuILd0hTWwaGgiHRFy+9Ddv7FWAUJVmoS//W9fsaaacvv9G19un/70Z6yvq8PqGhpdX8tEnDQmUGN4ZNT9rdTU4HvH3D9tID1pgXBnwj9BAidGAizizBv+b4x5CaUAJQRvAwBNAAbAMOYxKgWAwRfOc5x5yL2F0QmOUWiHORCPK56FBxYAAfMUQADt+DbxbAAg3bx5s7sH0APPiWXLlrl+zJs3z5i/6CP9pU9cw3naojK3Anx48IP5lgJwQf+4hn548MOdDP8ECQQJBAn8jhLwc+ZsPY35zhc/F/rPz7StM441aLZuHztY1RnV2l2mFzpdHb3yeniNdfS321uvvtE6HnrcBvd1Wf+2nTbP8CrVnbonKp0uqjfvMXlAwPWApwNcD8IMHPjAljfyPAL9kBdIRcAEGeb+e5KZfmBfl2jd4188ZWXMil/AXwdx4yTrVn+3dY8M2eMP7rULL73ENm7fYs957R+ZKeziuuUCC9D1shlnXMcqK0xWuhY8Naq1rZAbdyk38WDobh9wHhEomYnVq2zLTf9u8y6f57x4iwJTRtTGyjWrpzutjo9NTii6owrbX+3NjA9whDGpfddPbZGjG5MACcZM4W+xKF2Y8JESPRtd1P99Tp97AoBgreRvlEqb/jqOE9aM7g2JZlHrJpBBLDcNelRPlVhVssImugetLiH+iwpxXiiV/Ha9pOvXiwSABdKe8ksAeHDcaOjx2s8DJEm2UX0oLy9z6/WU9O+CvFBIuzkgPowBkY/WKSQFr4kHHnjArd2s26zlvo9usOGfkyaBAD6cNNGeuob50fCD4ccNguezTjz44IP205/+1P347rzzTvvSl75kb3nLW+yOO+6wN73pTUfdQUI1Fi5c6JRq3I5R1nkT+L//9/92AMQ111xj73znOx3AgXL//e9/3xkEABxP9TKZ///Zew/Avq7qjv9ob8m2vKdkO7FjJ85uQjZhhRnCLpuWvVo2Bf5AW+BfRgv5U6BAW0oLpKQJYW9C9o7jJE7s2In3lGXJ2lv6fz5XvqlwY8skcRJA13567/fGXe/dc8/53jP6QHixuaOi9QgvEtjhEZzU7G2ObkL6LFrYyAlw1IH9Q0VCuacpaRzs2rENkKEsVt+1Kn542WXR2dEeU1B/m8SEMaeuikgUw3HC7OnRS1ikOtTq6gAAJLJqPuqjfZ0AAEAASURBVGgG0dXbF9fedDvhlWrj5V/5fLSiZrYGYWwzUSs2A9y84Nyz4p//9jMxdVZtVABKDPF+5zU0xlOe/ow4BzXCuQhKxzTMBoRoi/e/4wOx7f41TBaF8f984N0IW8W0oTPuXLkZ7Y05MWP2HM5VOM2mrQ8HSNrTVWJzKL6dJ8W8972NnSz8PZEmeuDAHhj7vRx4Lf/Ownn+LfOcGeiFCxcmQV/mRIFdwECgQBMHhXnPX3PNNXH33Xcn2qZwLzAgiKqPGe+T3qmJYPK6tMoyPTY/QQK1FgRf9Ufj8yeeeGKo/SUwK80UKBBM9RnLlM55n+DugcnzAhJqS6gVIT3MAIvHub3mM5EmemCiByZ64JH2wOHQ2Udaxh/c8wiapsTTcJzk/NFTDx4bQeJFL3xhtDywNf7q1W+Pa759RSyqnBJVmBuUT50eRXtYYUdoVTVVjYdkegFPV4R5QwHmrZ5X6yEBD9wmRbfYIqR0NRk0Ixg9O1pwAifg06yAOzUjCqmDYTWdI3yPzn1DCO6u0B9z5mlx309/FCeccWrsHeiJ055xfmxac2c0PO2M2N3TFjOWoXnbVRkDnR3R3d+Fq7DuZMpgtIhB6lY+CQGdOa4CnhObXFbM0PajEpvgTQ0Fapl40UxgwzHLjhnVfOB6LyErUaZlvhutd2oUh8ksgusCEDYtAQ/eYmPcKWekC/zmehlztdoSWWB3P/bYhcukOSF4wXPpOuy0gI0ARgl9bQSR7vbexIdqJlNN1JGAfw2a0rZ5TxQ1TouNP/5ZbMdPw6SKqmhY0BC7mpti/oyZ0Yb2sNocI4NslDFEnwhEaDJDMBB+Y2bJ/J+AJHxG6GCyEKeheNeMZUcdA4Az6vNJnsP6+W7yWHMx0gWNiXRkemC/RHVkMp/I9cj3gMy3A8QBI7PugHHVz+gTV1xxRXziE59ITiBl4FUPNv3kJz+Jj3/84/EAZgEy/4dKu3btSgy697gK6GqjZZmHds9qW1x55ZVJCHD18YwzzkjZiSYee+yxT+jVP8lpLWYHLV0dEKH+mKxfBGzzhgVwpmIuMgW0Fep8z3XXxje+9tX49c9+ip+FfrzmRixEwJlD2J977rgNDQg97RbHheedG0958rkxf87sKAKE6Ny8MdR+6CLWchGEdoCwQE27dkQH72kHE09be1ecedxJaDpsjn2sxtahZfLn9F8VJjNtu5tQlyuO+RDna268Odqw7Vu2fDk2bK1x8cc+EpegyXLBs54ZV/zgct7rnJheNynaptbEf4J4z10wG+o+hFA2PWYhYDG7RhfAyL4OJi9CQ9WwEpx8PtB+36X9kPYcT6SJHng0eyCbISiwK+QLBpjyKoPfnbRKYV6TCJNAwWc+85m44YYbkhaDgKZMi1pUMgj6eZC2XXLJJYk2PfOZz4yzzz47PWs5Ju+3bPNdt25d3HjjjcmswjJOOOGE9JyOpXQYab3U6rIuAgqW4e+xSQDD+7wmoyLA4LH5ZabS5z2Xk21NzF8+MbGf6IGJHpjogUfYA9KZibQfdKAj8oKKe3smgxDuBZHvvXt1PPuM8+KnP/hRLEB79N1veWdcf9lPYgrhLEuh4wUIpAUI6DpjNLKCDiADDQhNMEYAGTRDkK4n2o5QbhmFqASkmYbzeC/iDIkCfTWpDsw/pgQ8wFO6dzON3oOgDI921fVXx44ufAnddmO8/iMfit0b74+GC+ChEZxnPHlJbL9zW1TV1UQtGrIoY6SkafAQZgOu5hONk9X8QXi++dGyZSc+xAh3j5lCFVoSagcIktiGHkyIYyZAOua2Ag8pbCdl8D8lQROTO7+v/ImlZtgg2p1u2d8fxRRcIEBBH7GjzQIQZjDaP86/PpaiaZCZfZe+W847Q9oTmrkUoF3Sr5kFfHYNvHg1IeOTh/VW/KZ190VdAb/vXBurrrwu9u3aExc8+Xwie8zBhxoaxk27oqYUhEIwg3wEWQQgjIyhHkUhZXXAK/TgtLO6qBZABX8PaA4XFFXGFBbzZq04Pi3AUZUk2ziXu/ggb2JSnpoAH1JXHJE/AFm8oYn0B9sDMuIy0dpE50FjYwQddAKp2YRaCgIHAgUeCxLIGJ922mmJST9U42XOXf0T1BAVdID+13/9V7z73e9Ox6pNu7nyeNNNN6W8n/vc56ZVxLFq04cq41DXjuTnmVS0IJGdfV2AAzoZxrkQBGcfq5nD2MRVo1L2/nf+FXGg26IQFFlzjDrAlyH6uotV0n5Ai7NPPTGObpgfFYRLmg0gUAJB7Wzfhx1bQezevi32gdD2cZ9aD1Xmz7NVAArVCDndENdNm3fE8SeeSvzptdj0zQKx3hGrEZZe/MpX4oSoNnbR/7vRiJg2d14cxWrtbkCJS/7n0rj19pWgxqVRXlsRT3vm0+MnP/0ZMZuHyWN2nP+0C2ItKoUrTjo1lixfEQ2Ll0CYywlRNBw7m5pTKM6pgCu4n0jOeZJPizTh/K7w5Ht5pP0/wSgd6ut+4l8b7/2P934V2tUGMJmX6pZjBXJBSgX5FStWxD333BNf+tKX4gc/+EEy2TrzzDNDjS2BhQsuuCAaGhpSHjrQFfAUUBUIeNKTnhRf/vKXY9GiRcm3w5o1a5J217Jly9J5NSGWLFmSaJSAaGNj4+90vHUStJDx8FgtCEFd6602hIDrgaGDBTbcsmZEftaMzct+sb1j2/o7hT5Bfoz3fo90Ncf7fo50+RP5T/TA49kDhzv+Hu44Odz8D9YHD7fcg+X3+54/VP2Ts0MyVIBRoFXYVYjWVCAL1Qq55QjKTfdsiHdhznDvXdfEF17x0ahs64+dq9dFeT9mCoR8EHSoQMh3KyE6xhBCter7+keQhstb67fBU4ZwNAJDYWEpAj5ax4jSD9ZTcUpp3Lqw6TvBe9WSSFEbPMc9hoI0ikXnrOq4v60pzjn/yVFeVx0Vy2fH2hvuivo5M6MLnlOhegqOEmvqRteJWSMbbTANxEIhhaLsau9Ai29ybLp+XTSceHS0/ubuuP3q62MBGq/WfU9ba3TiyPz8t7wm+VLYN9If/aWFmPACtKMmIJBiygBE7kf3tlktCAV322Ld03naBGqTQsV7Jrff/dhjQYexv8detyFDyRyiPyrRRKkth08AVIndzdG+dUf0EhazDLPo++++JyoAcKoAJ5rhzWfh+2Ja/dRYu3p11AMmjDBn63Ay+TWDV+7d15H8RZQSv74czY4+FgBrAZ0ElPqJGNJZBAhBVJCT3/byWP6ap8TGgva4/PLL4xnPeMZ+4GW0P7JslTpn4s+j3gMTmg+Pepc+thm6UueAduC5Mqi98y9+8Yu49NJLE2OsozUHkcTTa2o/eJ9MuyBE9hNxsFrLXLviJ7ghkHHzzTenVUkFhs9//vOpXJl+k34fJDbeK/Cg1sTMmTg9fByTwsTBkjRXxzuTqmqcPqIX1ba1d90dd95yc1z9y1/ErddeE4sxbZiCj4dl2HyfecopsXThQoAFHPZ0dsVILx73O1pjKrZjbTioa9+wkfMQPtTIFsybEw1EqYjGhRDRPaiA4XgH841OQzn1dEUffiLa97bFMTPmRzEEs2Pd+pgJgT2qujYGJ02JoR27YuWGG2KAc5NQK+8FNFrJCnEl4M8rn/3seBmrvTuwF/zat/89rv/tr9DCmBKbtmyLWdMmx2Xf/Tb0ex8rw/8dsxcsigue+/x4zvNfGPMaF6dY12ia4bSyE22KVvxRTmNiZPpgkvHdZYTa/USa6IHxeuBQ48tns18Gj/3GsjCusK7Jgj5jLr744mTC9aMf/Sh9f6eeemqiSwIGn/rUp+Kkk076P8K/3qmN2qNjWzW4BEbdC0xIrzQVUwvrhajc+vwxx6ByShIMEUgVWBAksP7STmmbgGxmtqWpjoGsAWF93UzSPtvl5vN5Sxf3/5nw9zC2NyaOJ3pgogceTg+4+jp2bs5z9OHmNR59zppih5vfE/2+/XL0g9VczyLMccuOi68ATt99153x6nP+PI5buiy++emLY3Z5LYtAkwAF0Exg1byIzcgLHhviXIGbtSRWygEd2LtSX4gwrGgqqOF7EVQAXkg8+KiQjfAMPzV67FyB82Hv5TRTSkooJJAXmhBIX1def2085eUviB5sBCbDi/Xt7oyl567Al1h7zMP8VjeIyOX4bMAEgVCRg/0DUQHvXkq0MuejvuS0gZu6wDyob3SPmh46d7ay0CQf7nlgA+7BTwTISQ88aN3UGdEGr1pdgsA/ptOsZ6ovbfM4OeGk4n5HAiZ5Di9V04D/A10PzV/n9vu9Wr51NY88r3pejZIh5mojjJTaSEKedm0jEty966ODfUkvGho9zMkdvbGMOZwJO5q2bY/tW7cleWZ+Y0OKiGHkDd4YZiRoY7iiRr6+OJtVrGPOIeZq5vsWIomANNkTaCDvjj425aHdrZviu9/9blrkcJHBRQXreeCCA49NpEexBybAh0exMx+PrGSkJTAywg7yf/7nf06ggPbM2knLWKt6bJLh9n5ViVRHyw4kD1VvGXmFBB2xqQXxile8IjH5Ag+uOOa8czlOlpnwHA7wICFwk+CNTQf+Hr320GdTHlzKeXmvx/5NIZL4oQqWiLWbRHX0BjQ59Ijf2xlXfv/78YXPfTY24ojuZFdHCe8z6fjl8dbXvS762vZFIZDzpHKElZ1bogWi3Q+BKmMW2YuzyGE8ELfhNKiW9zBL5Fzih2pbx5atUUNfF+/ZF8VODBDGWvxAFCG8CNUTyCcGduyJbfdtihPnQ0jb2vFO3B5LQHb3bdoQxy+Yl8KA7mYVtmnr5uhnQihEg2LH+kocI5XGMOj1pz/0vrj1zjsAUfrjBU95aty9Zl101dZFWd9wTCmtisaGhrjqhz+Kr33xyzFt9tx42atfEy95+StwTFlLs/dh+jYwqqImAdejsX3k2+C3qQgzjdHEb8ofVZrL/Zvfmx06kf4UeyAL5Adru0K4TEcW7DMYoSmFPhj0vSB9Wbp0adJIUBvrTW96U5r4TwHsM0nXBA0ENWWWBVKlbxdeeGG8//3vT/TG67/+9a8ToPrSl740OdQ955xzkolFVp20rjJPuQ7+FgzJQEHW0LBM7/Ga91imxxk48XpO1s3zY7XOPOcmgzWRJnpgogcmeuDh9oA0L4MP0qG8JeENWjZeyrzYePf9sV3PPXP+uU+ORTPmxC9/8vM4at7CuPmaG+LCY05HqB2KhoXz0UpF0JRO07cjbAXQcs0wEpNI6MdRqMHc2PYL6aO/Rs0IhuGTFL+5dfQRfmigIDihBoSOyX0HiO4pJGXSptDzOM/1IQjr22DZChxBLpocO1feH9NZtBJIMGR7C84Wi+HzkomEcxeb2rnV8PEDfBeaFBRyXxmaG+172qPE+jV3oaU7HPWs9G9dsx5z3Mnpd4mVxsy3iJX/YXxDVFP2XpwvRnUZtR3l5/zOMicnD+gjo+0GdHAeBHwoBmwpETXZ/1DVkHOcd+YnR4EXq2LoTU0z+lntGqG+TKZJiyKFNYUHLh4pinI0L4p5tAQtj14cSm6/977YBvhQTB2n4wutpqKa0JiYkW/eEp2Ek9ePXBsmxPc/sCFOOvGE5MDdji8ALVKzpIR3N0gdfW+2QX8YYEepH4sGS6IaJ5VT8MfWCddbNnUa5tMNcU/Xzrj6t1dhkYITTsCHdrWakXvG8gO5dfbI2DTaR2PPTBwfbg9MmF0cbk89we9Tw0GNBlfwVBn+PsL0s1khfyiGeWxTMsqXB1r2IeE9Cg0+r6CgU7fnP//5yW5aRlu15/G0JsaW81DHDmjXEt1nsufeAZ02LkgQU5Ka8TvdO3o4ep6/rW0QVRwElWEU50SwDzBB9NO8arAhW7fmnphFdIeZtZMQCBCmEbKHtu2AKA3HJV+7OO67e2Wsuv226GjtjsXzp8fZp/9ZPOmkE2Lh7FlJ6C+nvEEIXyfaCiN4CS6DyPX3onbd2oav5FEBY4RJxFjNZaiylTCJFYLaFoE0lw3ycCv16QPDpt80UGtDY6IbFKScEJ2Ta+pjiHzacDY0Ulma1OF60JLQ63IFWi1q8PVB9Hsg3EMi8jiIHGYCGmAC6zc0EQ4zWwVHCgwBiFPJirro7EZThUmhtHpSbMSr8/qt26MK1b1u+uOBndviyRc8I97wtrdEAWpuBDYEvFgZs/BfMX/WbDCTrthOmNB6gJRK1NxK0ArROU/yTpSACAn7qG8jmqmZ3YPvjtO/d3rw/f7eT048cDg9MB7z6fW8OiHQaHLM53MHMrlZsPa9uQlmaooluJCFeJ06qlklzZCGqAElfZE26d9BEwlNt9RSUMgXgDgXB6pqPCzHr4lmEuY1Ns/cVstXq2Ht2rXp+U9+8pMpHKZaXYKhghebNm1KoINlZ8DC/GTcTbkNB7YtlzF2/8f+fQra2C/53dl25wS/ATU8NDvx2Ovuxyb7N/epII3fkr/tM/s4X/ec79ItzzNeHwvYjM33iXQ83vj5Y/8+xmv/eO9qvP4ZL//H+/nx2jfe9Uej/vJkLuooGOXV2EzDDhyTD1Uf6bp0Wlrr+PNZtWEFZR2T0kjPO07vvPPOZL6Wy3mo/B7Lc4f6PjS76IBWVdIuubBBVPZ1IFhRgb8GfqthcNFzXhjt25qiaG9XLC6bHDM6C+I5x50eO2+/JxZMnxXtRIGonlIX1fjoGo1yUZZMMHQG2Y2GQKkOuSknm04ofOdtkP7qhBccUiCnrGI36pD2HMP5pXqUwxeu3fhALFh6VOLx7t2wPoW5XL3lgXjWa14aNYTZLDNSHYDEIAtb+mew3LIanEjKE6Kl2sc7KuOcc5bvzHdYgr+DEpyId2FmUNQzEFWG5mhuj7041+xpaokitDQ6WXyswP+DvOW809AewO9Dd/veKCBSWwc85z5MhCfVE8YS7QPDxtdMw98F7F5351CUw9xt34hT9eKymFSqrzd4Z80i+rkBgMPje37xa0yOK2IqWhq1c/E1hv8zZljQe/KZUhF9m3ZQb/w2kAaot1x5Edogw3zPnfC9tXPmUhhOKZv3xh741D1oNvQBklTCa1bBH0cCPEZ5Dds8wDwz7IvlndAVFDWYFgKxOaZeaIK04ttsR1P00yfpXVge78l32e+qI/3QhQlK7fSpMe3sY+Pza34R37/7unjta18bn/vHz1EV/ETB+5qG0VQu4FmT35Mp7z32/ebN3xPp9+uB3+Umfr9nJ+5+AvRARsYlSN/4xjeSpsN73vOeOOuss/4Ps/hQ1ZWwStBMMot5VTAz7fqKUBh43vOelxy3CUQ4GVreI00O5LHb/w7kA4f4/vv2n047bya5K4aYlSCsQ5KSalUBDh4ri9EOIHcBiONQuS6FkOwgLvDsWfMiOnvikq98JVbdcE2cuGhmLMPW7vinnp8cTk6fMimmQqyrRlCz3rY5CghXOSSBQ7OhH/BBjQbDCxW673Q1FkybCg2ghVDUVQH4gN0eQnsZiG4ZNmcjPcPRs6eVSaUX1S/CdGJPqKqeETQGAA6at68HtaXmINBFxGwu4nikv4d30Uu+MPQQ+ZqSsqiXgANeCCB0dHdGhxoLENGZk7FTJD9x6nps8koAOYpBtHugxcVMRqewQnwm9vQ3rb4zrsU55gAek6/4z3+JDffdFn/59r+KqY1L45TjT6AuPQBL98WcmdNj4aKFqX6tu/fEZMEHvg+jdEDGE43v7gUcoS7Mfb9Ljfk5kZ5YPTAe85uvSwPGCqC5FY5/hcQsKGaBXfqgwCnI4F66oImWAKgObz0nCGBqaGhI9OLDH/5wfO5zn0vMrpoL0qh3vvOdSatqPk5W1eDKDh99zjwUjqU3akfoiFJhWA0sTcY8fslLXpLMvSxDOiUgKh2zXbZnbJsyw24bMtN+KObWOvyxpwwGjG2n71YAwr6z/wUh7Cd/536zj+3PPHfk8zkfGb4MOnif18e+C+8zz/z95ecm9n9cPfCnPr4ejbcp7RV8yHyXNNKx5Pgar3+loY5faatj2t9ujl95OMe3oLDJ3/rJ8X7HrNeeKCDEQ/fjCP6zRiN49bNAMgjvo4+CwQHoCoI8bFvMIKJFVT8LMcXwN3esjosueGWsu31NzCquiP5Oo0TgLBwBvhAeEkkT7gpein0xGgUVrqLTD4ICIzoIU6N1/3X9HbipeWC0hwLNMaSH5gBD6G8Zw+6ebsCE3jhqyVHxwK7t0YP8Xo9D8PvQmO1lyX/q3FkI6pyEl5OBLUZTohJfEkaCGAIgKuorTn7IiqlDKfwd2ad3M0RZJeQ/gBPxvdt2RjVatFUsPsVIZzRhftuHtu3CufMRpOujDX6xCbPgehagKtGkqFRzASChH19nR89dEFGDP7AuzBHRvG0GrNiHjzPBqir6ZQ5aByWADAUK95h6BCBHz2p8Kv3qyrj7lpVRTkjMlj17Y99ABwtR5TF9/pxYsuLYOPWsM2LaicdjogwYkUw70ALpgGfY2xJ72JpYkNi7c1c0b90GaDCQTFzKyL8aU+XaKsKLlhmRY4g8qSvztfPMkH3C5rcp+OB5gYiknyLwnRhx5n6+hQL4ZrVR0vhwLsL8ogbeu2balCgGeJmzsCFqzjolhu/6Cd/LQOzE15qgSNAPJoES37taGnR5Su7z8f5T8MQT6eH2wAT48HB77gnynANRAUAm8rOf/Wwyg3jLW96ShAAnLK8dKmUm3YnJY+/PjKXHTkTaVmvC4QqmRMnzrj7mSetQ+R/qmgNXcCCnAwdyCuHjdbUe+G/Io5w85SVxyWImhS58MHRD5IsIj1RXrJnJcNy3AXR71sx44P4H4vjlx8VsCM9X/u6jcecNNwUYciyYXBcjrS1RUoCHW5jjQfw/7Gluijb6oYI8y9jPwKQCShQjoLEFaDLoz6G4TDEcwoQWhWjqgO6HIaDD7SPY5AEqlILwSuAhfuiAodXQHV099NtIb1SVgKkDXgyiZtbPZFkuiKGWBnkNgUR3E36zE58QafIB+e3r6I66SnxS4AvCSbKY8ioguIXoktWiOlfaTqgoHFcWYS9RB4JciEbEMCYYRU4YFN/R2YZzzKp40vKFcdaZK+L2davjJ1f+Km6/6idx370r47gznhobWBl44UUviIte9OLoICLHAJNqCeGOBkTS0aigq0YRYAk+TRV8AV9J+VPERPoD7gHBBSd2GVnHujTACVu64j4zn5lhtalZkBwrTLqKJt3I5lfeZ76aZQmGfvOb30ymFfph0NzC8LyaiGWzLe8fmyzfOkljrJO0zPwFR3MoYevndf05yDhbR9MMHL/KqMtwK0jn9nnNY/N2NTDn5/k/1WQf2g9ufgtqkOg7Q006z+k82P4au/k+3OxL+zd/Nw/Vh14zX+cM36fvMT8viOS7mkgTPTDRAwfvAWmeQICmstI16Z/jyeT4PVRyHGtem8e4Y9ZnD3xejTSv5fHob01tn8hJ/satR0ERYb+6Si2F0RrbK8jxsWrVqjjvxNNi2w6cFhaUJy27q+66H1Nb2DPo2yTmp3IWjNQ0UNtBnlO+0mzsj9FFFzLSXldQAb4r0y+1IQzdKM6giCovalSzbOJrHeoB5Ndv2RTTTzs5Slv3RBeLSgL0HffcFSuOP57JiqhK/URSYmXe+0sAB4rQNHAuU/Vff1yFaPRKR0GcqAPzIgtXRbz3IoT1HkwQquETawEs6Aj41E7MGKDNrAzpn6Ibjd0etjY0C5q2bI+ZODsfqioFtJmHE/S62IdmQyWaGWpbjJCvGiBVaM/qD6NyEqAUJh2aa7Sv2xCrrrsp7rz+5mgB7JhUVhnzJ02LSsCH+aV1KbxlAQuAPSyKbbh5Vdz666tTqM+zzj0H5YWh9N26YDCIX4fJRGabyQKFfb+gfkaq4wDn1WCZhMmwEUi6AQFa0dCYhc84MQXTg3MQbU+vib3nTIJOqQO5OTnH5PwI/VAGo6pviS76pgdgpVdTmg4i2qHVMWfLtAcB8U37F0oSiM6z9r/vYiIduR6YAB+OXN8+JjlnMECmUXVnHaw5aTgoM9N3qIpIYE0Otry6KWOeBQsnO0PZuapopAwnLVccjW6h2rTnH0my9P205cFsRsXm/BOisn9GSYBDPu2eS+37uhAyqqhXVUzCCCLZ1jGz3HbrTfHd73wr3vHGN8Txxx4Tt/70R/HuN7wpykBF/wwgooVQPW3dLfGuv35rDO/eETtoWzPo8CDmFDUQQUNXTmZS2rtrZ4wwuRUCClRonxaEZwJQSOADxxqsFWG7Vkp/D4NMF3T2UwdWDqleN4RwCuYeI2g0DA+htQBIoeZB0dCoLbkIbTWEfwhAo3sAbQWIfLdToCGU6JRBCGalxB/Qo6sDkw/OjYC0OxlV4fuhGBWyDia0Igh+CRMQkADoLQ6JQP6LQO/h9pOn34aGmbHqrltjuLIkLnruM0CzS+PS718esxYvwLHR5rj+p7+OKczUzzn/yVEzuT760AwRdyAqMr4kqAvASAlGg76GYuhxMVoe+7s/7Sf+/OH2gKtoByaZKwVFk8yttEGa4LHn3UtfvE+NB2lAZloFKD0vaKFpxGtf+9rExElnVOl9+tOfHjqW1DmtSdAzl2U55p3BDWmNTLN0SYZbHzIyYYlB2F83r1kXQQyZc/PwuloSMu2Wmxi3VNroH895T2Zcxlz6kzv0XdkXbtJ8tVek7YIKnrP/fT/2s7+9/8CU5xDP+5zPeM7nfOZAgMn34fX8zRyY38TvP54eeKjvZWzrHO8T6eA9kMdfNpfI4ys/MV7/Zr9b0sWsVSZQKy9nymCuY9QxKZ13fGb+L5fzRN4LApRRZ0mTfJNfFNYXLNQQpfHuVfGBN74jfvWfl8VpsxbH/evXx/y582LvXWjBzhsNp1wEgKC2KrMPZqhpuTzNI/30WSJ3fqP7P9NM/bKwS+CEVKYCfzLHYLW8CGE3r5cXz5gZ3WvvNX50msMKWYTS2aHlnf7Up1BTgHC2btQ0FKPRLaMt+HnAoWPx8OjcpqZsorHMc0MI6UPwjal8zG7VSJg2ay6rTD2x9+610Y0PsVn10zCXHUyhKXtZkKoCWJk1qT5K0MTdtHptNPd0xOLjlsVUtFwnMU8T2iNKenqTRUVJBbwdC2LtAMPdO1rRDulGw+H2WHntjdG+c09MYyFs2cz5MdTVGx2b5aF74BIx20O7oW7qFPhdgIsZddE1BWEfP2m7V92XNC6OAgBbNhnH6dzfzUJhX1N7tOxsifJ5swF4ALDp6Cr4zDpMgf0mK9H2rbAf6PcUkpPr9kEhcwroQjq2nwvgvUfQjigSaeJlpH6hH70XTjnaAWdKBG1IjqGqKfjAAICZhplInQAIv/3elXNMSQbiWectw4Tuf+3p2sSfR7cHJsCHR7c/H/PcZKAFIFxFdOC89a1vTcyfk40rf+OlPHm5d8CZnIBk/BUMXvaylyXk/HhQWhlTbQWdxBysjxR4kJCr+eA+Aw7/ux+l94i8ByUAisACD9hFgBIjvKMxoClDK1EgrvrRD+LbX/43HDx2xi/xf3H0nNlxfOOc2HX//TGpeCBe/fpXErmiMbruuAUVtaboJoTlEKBKgf4VWiNpdmy1D1UBQ6uhkH4ug8iVqJqHilw/9/VjFtGL1oSxjss4X6JqBhOD/dcLIED04mhDE2MQTQlVz/qZ9HWAU8rzFWhGlIG+9oF4a8fWOcL9JRBTwmdWYF+nBsUgoMMckOER4iBrtjGkelqfWhZMQHgZHsC4sBT1tGI8JRcDYBQG3nyLIeQcFYKKF0Ckp6ER8Yvv/Gcc+6STYjnqcNvvvDmedPTCOPGv3xyf+PwXo27m0fGhN70mLr3iR3HeKSfFV//jO3HsWU+OjraemDl7TvLJQVPRKqGzScaaBvxPKo2uYlZVH1qzZvSpib9P5B6QhmSh3WOZUwVHaYCaDNIFjxMDtL8h3iMtkAb4jCtlMrqZ2f3Zz34Wr3/965Owah4KtK8FiNAZpCtxMtGe119ETpZ5oDCSV8ot3+vSKevqefPQxMMVdM0tfNZz1ldaOJaBdkxaXxmNrM1hew4sL9flT2Vv3yng2GcyfXk+kFGzr+yffO7APvFanjP8BszHcxl0sH/9Tjzn+zNN9PmBvTjxe6IHDt4D0jrHk+NR7TJ5MselKQMTB3969B6BWBeisibD/fBAarNKf83roosuepCXEyCW15Oe5hDqh8r/cb2GZMh0kIAHRNIkqEKG0BLRZBW+EQ0CoOrkw6IDR95qjxit7YRJc9LqeAk0b/eeZiTO4qjEV1cZvrSUYXUi2a92AXxVcpoIDyqP6mZKAAcLS4l37eP9cMStyr5J6yBpHlgxN/jkKWgQbFq3PqZgbuHK/4bN22IZwn/MAfzA9KGfyg/DWMkH9iGIF+GUvAx6WcrKu1HVzL8AHncYTVn3pfKa8HdUMqowdXBxqm/Ljth+/8YoaCf8c/1M/B2QJxqx9YAF5Zr70ldFLErtgtd9AJ8TrTt2RyULWE950QthtMkXDdsSNFpx8EB+ABEbd8feltb4+lf+JeYSGWMB4EXgD6J91x78SeyK6URkW7HwmCjrGUnauS2YanTt2hcdTfDQaEAM0ElDgBgnLzkad2dEsdiwM5pa96HRgBkndZ/BvF0PMLNj226AFsAf5p7Bgu7oGGmJAepbzPytzzH7X8BB7QUcFCZZAO42nVNj2FCdhWgAF6OZMoK2by/3JrNmAKVS+HV5ZvkAHX+WVFcmvqAPvlhnneVoBeX5K2txO4+lb8l3R3npHY6+9om/j3IPTIAPj3KHPtbZyeyrzvSv//qvCRRQrdmJRmZ7LPM9Xr3yRCZT77FJp5IrV65M+f7t3/7tgyrVq1evjmOJCCHjmgftePk/9HUIiwOc5N+k8paORwEHz6kKB9nZf5ZdwoedCLgKEdmxZXtSL2vv2BfXXHNVXHH5pbEH27p5s6bFS55xZtx51ZXxzCedGoOYE+ze8EC8/dUvi/POODOu/PGP48ZL/yOevvwYCDYOezC5mMzqfkJJUVfrA6Ht09yiGwIn+MC/UjQNSkChB/TeC8jgLDTMrOMkVl2M6QuTghPWUDFxh1Hv6oHib29vjeJJ1VHAswMw49ZcTLaqqAzTD3wo4NW3mImnDOIpAo5SMkS7ACYDbQgAgJKibvLF+WRZTTK58930QdS1cRxgq4NoW6aqCj1dgBTEcB6B8BagdldAPefh5Ohls58dm5q2xq//+7+jrK4iSrtw9DOlNl5HXOMrrr09jqqvjVMWNcS3f74yPva+98efv+HtsfyUM+MoYyMzx2lB4rwEtoMwEdgCMsnyuwJgxfcw+gZ9NxPpidYDCn6HSk620guTQnmejPM+R4oQbJSmyKwqSCrcC0aq6SCdEQCVWb3hhhsSg6e6r8/I8H70ox+NN77xjakM75NeCTqofmqyjmMFXBlu66WgKtOdk/e5WTfPy7CYvNck2CqjbrJuY5P19rp55qQGV25fPventj+Qftu/0hjfte8kfwdj+8X+zpvfgce+M+8/cM7xvGC184p553fm9+E7+VPv/7H9OnE80QMH9oBjJidpmmCe9DePv0zv8j0H7jP4Jyirpqo0WWDYcOweCzIYJUhQ+FWvelU0Njamsez499ofQpI7HBgANEdTNPFiLIjYa6Or5oVx6823xPRSBH0Ag6MXHxXtD+yMaWik7sbnQOtQT5RPqol6Vli07y9EoB1BUC10dZ1jTR+ka66oJz6U95HU+i2U/JK6AEDHKCDhXATPymkvWYc9aM42LlmMw8n1aNY2xV4ijAlALDkR54+ADArmI9X6zyJaHcc9+IgYwGy2DP6xkkxHWOkpFEhBsFYYrkD1tATtgJQ5/hewM46OtffD226JGvlEtFs79yDAAzRMr5kUA2g0tLftiZ27drDSPzWqaMfkkZLo24GDx7YH4su/vhYhHT6UdtahBbDwqMWs5aEhsXEjJrhtcfaiY2P3lm2xYf3KAMaIRbPnARxMwUdET7Ru2Bbl/Zj/onU8v7Y+Oa3UceUwde6gHfvQOlh/1+2YQU9KIS2PX9aY+tF5VxBioLktGgAhiqoABwBa9K/Rg9btPgCXYoAgTWGq8L82quWx/x04Huh7AQk1H5jQgZeYp3wvakDAn/tqfGeODecY92pE60yyfagvmnCyWbxzO2bLXdG0F+eUjA3lpmH2zlMllJvmP/IvlNGdSEekByZ69oh062ObqQykDGMGDWT2RLv9PR5z5yD1PgUQmfPs+0FUPDuwVKtCtefMWGpjrQ8Iw9484iSFhpJSjURQRyAeo2dG6Wuye4OYFUNkElFJ4IOrbISgYsKA9Y3Pf+4z8b3L/if5Q2hcMDdWNLAai2rZztV3xxxCX24nFOXLL3puHP/Si2IHqP91P7osSgEUzjv1+OgkskMRiLhhdgZ0WAShL4XAV2DGUM2zKF+lcJcixyWYPJQUsfTPBKOqXhmILRh5lEM4awq1x7PuIKeYYlSVFUZVZVHsbsYPA8R1hGgcRYAbout1+FGoHGDCSmE3MZ/AqaNaEh0AFc2g9oW8v+qpc2LKDDz+A0TUELWiqrw6+iH4e5v3RHtnR4qGUcmktb2zOQEBw2paoII3JDIO8FBRCViCk6T1d6+BQA/HUcceHY0LF8b2DWsJ/dkOkjAQ21GLv+iMJ0VLT2d89B1vi+c8fVO89YN/Hx9+93vjxa97M3pqk+L1b3tnTJ6mWQs/kfWG1YBQ1uNlGBd7Ij2xeyDThIPVUuHyQBohY6uWgIKiQKMquhs2bEg0xclcptRNsELh85e//GV89atfTUU0NDSkZ81DcOHv//7vYwUOT8cCHLm8HTh58h4FVOshfZHZlhkQJJDJ9jlp1NgkM+H9mfHOe+sis23ZJvfmZb6WIW0TtMgCdRaEx+b9p3Zsf9lH9rF9Y78fql+yMOT9GcjxnH2d+9U+dJVRoMnvxc3vyHuyuY335u/gT63P/5TaOx79yd/Qn1Kf/D5tdZw4buwnTSMco3m8Zd7tUPn5rNph8nM///nP46abbkqOwwUezEvHv5dddlkaq+ZvRLM1a9Yk7bQ/BPBBmp7oFdK+oEA5fJaCuVPGA+u3xrHLlsevf/Wr1H+T4G+PJZrSzas3Rt2kWUmormAxphx+ST8DcGQxIh+N1oMh2jWjFZAweS3NQ5QD9MoxPCu8otoHWD+ke0e4f9BFKfb2u44QDds4m0UgAYfBjk7MZzu417CTzFE4i+wv6I8BeEV5y0Jp5QjAEotLQzSgj7qU8/51nFjAnyJMcBP/iakB8Sajb1dz9O/tAHjYGgOY7NYDNlRQp3ZMOwbh74qqS2LPzqY0H7egmVgKfFKC08XaITQM4d0qCiv4zbxLG+Uph9rwQ7ZxV/Tq/2F3S1TThmbMU2YSrnPF4hMxCSmM3jb8R2zcniJp1MALT8U8uYy9z+xrbok+tHrLAFJK9vO5c+YSGpN5oAuTjQfY9LPRj3ZHCdEsymurYlvrXsCf6gR8CDbocLOU+bocx5NlaGYM2I/wscmBqAADW0rueReG8tQdRxH95ZKp30Dqe/be29q7D3NptKPRbikpg69Ge6ioBi0iTESmLlsWD/zH5Un+efGLX5wADfmEYbbEN1CfiXTkemACfDhyffuY5OzKo9oPTiIiioIOIuROWodiInPlJKhOTDKLJgefTLx5/fSnP035Llmy5EFV5dtvvz1OPvnkpPmgYCDQ8ciSxIQNoumEkRDk/bKGu0TMuVaIiUEi+JIYTAwKIGCu7D/7/HOTetk5J5+IU8ljYvP6dXHXbTdFPcvzZ1LvZ553Ng5ytuBltzluXL8WFbIp0UCs3+2bNyF/d2JSgfoVPgz0GdEP4ix6XoAql0BBJYR6mMkFywiQUIgm5aqHIUIrM1CCXZoqcMUAESP4gyjAVIKYSKONwAHQAGBEPRP/ICCBqnWDMPq4jow6rpW0YzPH5NPR5UpuQbTSBTvaB6KJcmbMnBZLTz09GhYdFX2EES0DfLDZAw9siO29d8Qu3pWMwiy0O+5ZtR3k2knT/EHpmahqRspichnaFUMl0YIfiyVHNcZdt6xmIh0ipvSy6G3H4zC2+ueceHrcs31HFKPhUIpaw2xUD49f2Bi3rtsWP//eFbGVEKENjUfFsYRCPG7FIkAWyqAH1AopYsbVKWap0TB8cRPpCdkDD07Wh6idjKhCqLRAepIBB5+94oorEvMiGOGknlcSpBNO0AqQjY2NyZmkY2I335tAxV/8xV/EP/zDPzykZpSrC9KY2bNnp1qZZ2Ls+JX3uboCEIIL+bx1sGw3VycsUwHH+gmGKPBKzzLg4LGr7Dq51CeOQK0hOfXqLu2y7D/lZD+5jU32rd+D6UD67nvI7yI/4++x35kCgcCS35Lzhe/QucR3/nd/93fJBMd56nDMAnMZE/s/zB7wWzpU8puYSAfvAWlfBgftK/k6+1SaJ+2SBh4qff7zn4/TTz89OZL9bzQfNbmQ/r3rXe+Kc845J2655ZaUj2ZzOio3VLF8o8CDNOBA2nCosh6Pa9Iel3yKWAga6v9fcea6a26OKy67It6A6d9PL7k8dvUStWxobmzfti1p7A5WTY3p06YHy/bJKaRAjAEt5AH78b8gnzMIf1O5n7+Vw5E3TZwO8+IwQm8RfKnhLAvQShgWYGBBS9MIoyf4fnxe4fj+NfhZaNkT9fOZ71gg2tu0O3bfdU/MqD8TXhITB3hD/ROoAVuFVkMpz6nxa1kuiCWpGhOKEaKMpR+DXbFvy/bYsX5T7Fz7QEyHP5wE/2qEiyF4UCOtDWEOsr1pUzIFqSkpj2lVtYR9B7MAAGglnGU9/h5mlFbHUDdRLeBHi4dxDAxfOTIMYMwcO5MoFZPr5TvRRsCJZcsDWwFGCtC0rYqZOKrUpMF2b9+7NerLRhciaqtrkulIEdoPcvXD9EMvIMkQ2hcCHNVoMfj9Kmv4TY/Qd9MBNsoAA2pwqF6GWYSOIIfgZ1W1dU4RCLIjsIQZzZO6+ZtZKP0W8OG2JD8IRgyzIJk27vP5KVXIQpqv+E4ZN4PdXdEJ+DPE91KMqcgOotm5iHb6WWeRCe+BeuakdoVZT6Qj0wOY0aRXd2Ryn8j1EffAeK8nr+ZJhGUUZb5lyBUoVG0e73lD2On4S7RbjQbvl3A+9alPjauvvjq++93vJg0HAQjzVXAwORH6e7x0qPL1SQCJigGIkaGOitA26Ib4A0FCEIopy6gRqF6DZnd1tKKS1ZZUvpxtvvX1f4m3v+kD8ernPQ1AYXrMwYHMTdR35Y0r4/WvvChecMHT4parryQUEEIKzxYN9kYNtmg1IKDMEokwEl8C4Z6Yx2gNSGU0rRBZLodYq/lQClEuKyEkE6YR/RD/AmYnr4t491G3HvqigHqWA0JsW/dALD/q6JRPOxoMtUsXxl2rb48FJy6LwXJMIlAZ6EYQKodgT8YWsbSbkEVt2K4P1MSuzoH42WoAk4Yl8ar3visqTjgBmwZU6yD6t9+2KhYQMqkNZn0q8ZgHaE87E8ZCwhhpqzeEs0w9H2MUl+aloZZ98cC9a+LOm2+NTWg2LJo9C38R7TED3xizp04ifjLlQ+wrAWc6AF6GptdFK9DxjMYl0VtSHVfefm/cdv+2WLujJW65d30wnWEOUhCf+MSn4iUvfSHOi4qZtCcTXmlnmmhmzGsAhO9MqygyQwqB+Vv02zjU+x/v2/G6eU2kh98DMqcK3/ajvhYcT5pLOckKHCgkZhDgH//xH5Omgveq6ZQF0LECv9dkThUcpTc+LyNhHkZGePnLXx4L0bBxojdqgnTjUElaIw2zDPPLk7/Appsgm2V63aQgaxtslwCpWhnaKCvo/vVf/3VycilzowlIY2NjqqeAiEy0+QhAmBoaGuIExlmu96mnnvpg3tbd7zaXnR44yJ/xvm/LPFQa7/lDPXs418Yr/3DyONQ9zgcylG45+W78dvwuBMKlCYJA9qvzhu/Z9+G7Ppw5JOf7cPbj9W+ezw6Wt9/bodKR7t9Dle218do33vPj1d935vv0vjyGHLP+Ppx357POC9Ig37fv3z4faxbl2FUDyvv8bmyT4106M179/MbM0+Qz1m3sd/Vo9I95SKPM92DCuG2S7kgXvS+n8cofr305H/c5r4d6xrJtvwDsrbfemkITn8iigfT5n/7pnxII6LtsgO5pAnfhhRcmeved73wnaTt8+9vfTud9LzfeeGMq6+ij4WfGSQ9Vl3Ee+b0u5zYf7KF+hH7Zn1ZW3acoyGreismq0cbmz1sQ37vk0vjIO98b/Vv2xJ/hcPK5y06LPhZXFpVNjtZdTVE3d3pMnjUjrbwPIOi2swijvwfNHQQANEHwO9ecw7CP6rqmBTLPIxdrOtGPj4RueKB+hOwRhF8pvvVW82FIqRn+Ve3SYcxUcWQQmzALnoLw/8xXvTTKn/5n0dlE2GjKramfHDsAKSoQ0hcsnRH33rExFsyZixuvYbRU74/pZdVRbWjM1q7Yfs318ZPvXo6j8IqYOwXniYAPg2jNDrGV43sMy1/8gzH20CQe4r33MU56MesYpG2CLKjuYlGLlq/gBn2okE83Jinf6BSOW0GUKvjQpF0g2MIUbH6lyV8Zmrza49InQ7TV+/VZ4TeY3hn0QW2FIvrN/hvh2LHpPegvJC2DArQc+unEUnjRSrSMSwEfCnQqBp8+Ql+NwKtriuyzbhADnlMDmj3HjjKURvA50RmTAEU6mvbG6ptvT4uRU1gUa5Xv4d/UmTNSFI7W3q6YuWhBdOAXbi888fLnnxcv/9ePx5birrjnnnsSP1QKCDVIP1nnHEY19Qtluc/HHJKzMsPo3t8T6ffrgf/lGH6/5ybufoL0wFgGwMk7TwYHmyQPrHa2+RV4kJl3wv/CF76QgId3vvOd8exnPzsxiz4nUZGAZEZTQjO2/APzPpzfIpElDHgoVbpdotILQayAqFVDqB3g992zJubPmRGTUcX6+eXfi8/9v38f9961IT71gTfF3dffEktR6/7ZD38YW9atjw+/5bUQ893xTx/6SLz2pS+KtStvi2mod82ZNiOqmQR68A3RDSGugGGpnzot1nY0I7eDglJeqR52cfZYidpYBaBDMUDDAH4UVNnS0Y92d0kNjOM+tCD4iRMfqg6B7URjYRdEsGVfSxRRThXAyszGRdHSij8J4jiLDVRga1dNvOEqHOkUFkGouWf3joGomT43KqrnxPNf8/oo4jimg5CT92Dt1DhhwdFRhMOi8h3beQ+VlAtT39YSw/NmMeG1RTVMG7GMRtFxkXjqcfTiZbH49POiH4dBF3/yE7GI/Eqxa9zW3IQ+dGesOHoxYEF1tAA8OWns7G6LPXgfnrfkuHjBU58SL3p1A+FDS+K+HU3x1vd9gMl5ZvzdR/46Lv70x+PL//LPce45Z8YUJmw+Bho/GtkgM1wyP+bptyFjeLjf4eF8KxP3/P49ID0QdJA5dnwr+OUxb3QIhe9f/epXCTRQ2FeQV6CXUXX1693vfnc0NDQkTQGFcZOMuNoNCvUyt42NjWk1W8bb5wRAvVfgwW9BumE9xgoFY1ui8JC/F+/1PuvpZjIPz2XhRGDVZ6yfmzbLF198cVIr1seEq1ieX46K7W233Za0Mp6BfxPruW7dunROTYjv44hWoUcbaPvGbe7cuSEQYShQVwb1bTORDt4DWfBzXvDd5S0DEp53jnBeMfkO8zyVrx089yN/xe/uiZzsz0OlPN8f6p5Hcs33mOuQy7LPPD6cud93Le0RVJDWGB1n/vz5CQR0PGYNGO/zezBlwEfAwvF5qJTnHe+xPtY11/NQzx3uNWmdc5g0JSfbL5hmm6yrgr/XM6DivCct9VweH/nZI7FXa8E6SftcRLIvLXfTpk3xwQ9+MNXV+rz3ve+Nd7zjHYlG208uPOnrwQWmZz3rWUnz4be//W2ccsopiYbrm0c6+kROflt1COuzEDA7MQlwJdy2+y3t2duUvq9m2lHKfR3MSz28qw3rcP44ZzGanJj5cb+mAAraSTDnWI3OUX6UuUghlE0hVl40bdI5hHGdOwg6DLAw1UtoyAG+B1fd1RawfDUfytEm9SGBgWFUHIoRogvRSjBc5cqrro8zjlsOn4smASBGKRqotVPqYvMDm2P3muZYPGt+cubYjfbrFd+8JC4896mxeOqCuOGr34w7rr0xdm3dFBX182kXZQISGB1tGO2LfkABNXLlCyehUeDeyGqFbtQrMZeMX9si8OCm7zWdOvqvrJCxCDAwpJkH+ciaK/sXAciUsDDopjmKfO8Qm2CF7s5xuwFPC+hi/9E9hZpLABH4e4i+EngYSNrDCftI4AGdncAce7iQggQrDEWPTXPiu3vwxWbITK6m+vrdJv8b0h+OBXzUwuih//c2j4aH1kTb/tcpp/RBelAM3612Rxt+KLpxFN9NVLtVd92ZvpXyUrRF+BbG0hK7JtE5np9IR6YHJsCHI9Ovj1muYydaGQWZfyefw2EMrKSroAobJ510UppwFCC+973vpfqLmOcB6YQqofd3Figzs/BIGmue1RIaSRF2b/pPgA5gJ4baL8SllxjFU2vxeSARxZniJV//11i/akN8+K9eHWtA6M88bkV8/hP/GPOnVsQbX/JC7OCITw1Icdrznh+rr74ujjtqEc5oBqIWQlhVUUMoSWIXd3dEPw4oO/ehETB3TnLVIKI9GpwHYgnt7IF4FSLo20YJnh6QB9E6UK1tCNW55HQSur0Z+7eFi46K6mmzoo4V3+0buQefD1evuYdnB5hY8B0B2FBFuyohgGWgvIWAEwIahVWs6Jb1xGBpGeGP+mL6c54Xg2hNEAcIwR0kmfPleB/GRA+fELNAhg3/A3jeOy36BFIAZ0oBSIqwHxyB8heBhmh/GFMg0POYXJl03ku0jEu++i/xw+uviwZMTo6GAWwepOy+ojQBlxF2EwXL2Lp7D/16J8LknqibMz8mo9Fw7KLF8cE3vDx+df31ceFZp8fq9evirX/5qvjwxz4ab0MobcN7cWVdPaj0KBnJ36Lfn32Wv51H8n1MPPvIesBxa/KdyAz7Pcssu5dx/uIXvxhf/vKX0/uS0Vbgv/TSSx9knBcvXvygoJHHgsydgr2bq9o+k9+9QIFlZiBTWuG3kJgGmIKxycnde7Ng6jXpgeV4TRqmw9ulS5em+mRtLjW1BBykT4IJCim2TRpmhA1NPnxeASELBLlcmXDztQzp3iWXXJLuu++++5Jg5PXf/OY3CcjQVlrtjYl08B6wL323zjtuHjsP+Y14zfcrHfD9uM80wf53e7xTrs/jXY8ncvl5bOc6+o4dX/bdgdfyPXnvO/Y7kP6YHFMKtdKc173udSEAkce/eeb7vNfvaLyUvz3rkb+vXD+fHa9+4+Xvdevl5rfsNy5Nk0/KaazvEumH92SA17oc6WT/5ihDgjvnnntuApx1Eq4Jnf347//+72khKfdTdhZuXZ/2tKclcwzpqe8i+2V5LOr+SPtG4EFBtwktBtX4ZwBCyEo60yych7kp0Tv0uzC3rDbNBQIOA/CDA7zLubPmRmchTBxAgr4C/FbVahgVrDWEUJAWzIIzpI+9BoFDkwCekHtdjBLMGOpFA5V+1EeE1/1WEn3jXCmCegFbNQtbQwj3lfgdKIAn29PaEttXr4sff/Kf4jnv+SvuK4/+uzdHKaYZC6rqoxNb395dhItODiZruXd9bJ88PxbPXhq7714fC6unxjOfenLcfdOtUUp49wJ8iBUJIlC3Isx4S+Avi/CroCaGm4BIgX4mPAYMsClqLBRIg91IJbTRtudxl755NHzpgARM2A8j3DPMRnHoJJAPZfVxXeBhgH43T78bI1NwGQAA0wXuVbPCCBhuSYuByG6F+p1goa8cHtnoHppHGEpeXtsaCloI4CSTbHb5HRh6Uz8PwhG9mDnX1dZh1rIrdjKfC/4IOmgCY8jSIZ533BZXs6DIHNQOj1PMYuQ17xxmAABAAElEQVTUmulxF2NFUKKsjOgifBcHzgW2/8BzqaMm/jwqPTA+dX9UipnI5Ej1gINDht/kAPI4E7/DKVNGXobfpKq1aLjhlpzMRPbNL09CMpQykSbPeT3/Ticfxp9SBj9UJTlT7MEMoG5KfUI49aOgmtukmvJYdf1NqJcVxj9+8m/jyl9fH5/9m7fHksb5cc+VV8aPvv2tOPvYhjgPO8bJ5RWxccvWaN6+M6YQJvJk/BUMd+DJnzCcg5pzYEqBxA9RVC0NVS4mj+qpkwNZHGKWqGmyldPbsPZqw4S11HFPUq+DcA+DWA+yDYMgD/O7AFTgGLQMiiuqYwP2Y3ds2xrr2ppjAaEsW5v7CO/ZGHvWPRAlhMUsKwD5ZmIfwDtwH2UP45OhHyeVtfh32NTSHs1DOIGsIXJF0pdjQpyECQ1Ax+4OVMDoBwm9BF7r7CGBB/fEK96F74hyPB777osJOYRuHRNMH6GWKJOtn/585Uc/Fi333hOX/fu/xY9vuzXOPuWkqASEaGmCWDd3xvLjlsSyxVOjDcZpAOK/Y8sDgCj3xeydG+L8FcewKnJuvPGtb8Mh0V7U20rjW//xb3gHPj1OPOvc6KV/yrFT9DtxxVuB1m9CJieDEA/js5h45FHqAQVwtRBkKHwn7t18V2ovvO9970sr/Wsx0Xn1q18d3/zmN5MJg2PbMJpO3KbMeGdhwu9NeqCmi/cKDHhOUy/PmSzDc5brNjZJP9ykX5m+yAjn+nmvZQkoSM9MMvmXX355fPrTn05MtVoK3mPS5MK2mNTGUAgwvKf1cjOZt4y6NM9yVSt++9vf/mAdvaZgpGM2tUEEUB5pym17pPk8kZ/P79I62od5y3W2rw8857UDv4l8/2O5z6vsByvz8X5/j7SP8tg5WPt8L4dKjq/MX+RxnPM8nL6Rn5CvkC7ob0Aw82Mf+1hyUGveCrym7KvKY8eggOZYAd/zD5WkPdIm6+a8I03yONfxkfaf9Cv3kfQjlyeAa7+4t645fLC/PTZJdw6nDQ/VrgPPjR1jXhvbLumZSQ0IeTm/aUHhr3/96wkEueuuuxKoIE2UNt9xxx3Jl1cGetT8Mv8biFSUHYn/z//8T9KGSBk/gf80s9qt88IpLCoVo66vVH31L3/LKvtwbNy6MX7645+kc0ZBmDdnLlEWumPB7PnwdaMhTAtYUKLxSQNCcEFaVQwP5EKYFv+aYtjXzl72kQ69dUg4pMYAZXjO62negmfV8aH5eN35zEhpRpOoQchWsK4uq4xJaJ3WomHbghbqllVrI+7dBCpXH8W8H2CUCHwtVJfXxr5t26IN4X/qZLT4ZjXE+ptXRd9dm+L+u++IhtIZsWtvX8zFKXiZK/yYWggKDGMbId9cBmhhndLYpY4CLNZLUEAzihSxw/NoM6hZYNIcQ2CggHqmNnNdk2iPNZYoROLXxLfA+ZhzcMCJlx5IIAE8MdeNNm9vZU0FeXtvS4V7kT5SjUJz5UJ4/0n1U3AEiTYc/tU0teglD81ejOY2SIVSnXieavpqU0rvifLJKTkKreB7N3pG696WqMGkWQ2K/v6eqEYbRE0TaUEyn6FdbSw41uPgcjogVfOtdwOGYFJWPgpcpndJnqnt5O93MZGOXA9MgA9Hrm8fk5wzgXEv2u7ewSYRlfi5Hy+5GiGj7USpDaCTucy8tpg6snTyHZuP+ecVyvHyPuR1qEhpDWAAg7yUCbx/qCta9iLEENmhGi+8UDfU05qjbU9LnHrR86NxxuR49yteFL/+3vdjNaEiZ0JcSjBFeBH+Hbr3tsa9N66KpXPnE+Jne1z9/Z/F8oXzYy/mCgvmzY5FCxGkcLbTfO+aaO9qj6nTp8XUxfNj+77mGMbhpLGHS1jBZ+qhrRAjUFmgbHxC9DCRsAqrVgFbifQoIcAQ0CEEOsAE7flGmFB2oulQuHBelOHvofnm5mgkPIQqdZVtONzBx0MxqnfwK4DPEPVJeDXGHKN8CkSX508+/WRgYpgo1Ex3tWyPuslHJdpXBhos7a4FxbXoIUIoFaE21ttP/GcmGNH+YQh8AcCDr7pAMAdwQkBftcCKWfXRsea+qDt2abzx85+Ne377m/jNT34Y9153VUxHC2MeiHDVRtU28UAMILKAPquaVhe79u2Niu7m2LrquuhZXRxfu/Qb8bVPfy7+6/s/Rt1+R5x17gWxp2VnbMXj8pJjjk1AQxZIKflBJsjjifT49YAMfgYIZU59Rwrx1113XVp9dKVLEEJnZDobE6wQeBSAlKkdTziTFphnZoAzGCC9sBx/Z9ohPZJ5d5L3GZlfr8kgyRh7PjPr0iNX8ayLTgu/9a1vJeeXMveLFi2Ks88+O+WhD4fnPe95afVOjS3juAtYSLfUZjBvV/kaGhrSip7Mt/WwnYIjCkUKLNZDOifg8prXvCbleaDWxOP3Fp+4Jef37bzjZpJ5812a7Fd/m7zX826ey99Fujjx54j0QBacH27mWcg2n7yZVz7O7/lg+efyfd/yGatWrUoApzTpa1/7Wrz5zW9OIKDPS0u8X/4jm3gdLN983nsdy9bDZx3LOeWy8++Hs7dOJsuRdpn/wermNempGmQej0c7D7c+ecwc2Nf2aRJwGVeawEnb3EvLf/CDHyT6qmab4MPTn/70NCcLMusLwrb4bqXBZ+FsT9qpOYzgkJpm+u6Rdh5Y5uHW+bG6bzLRFqQjLhR1ELpRYEW6/twXXhh33Lwy/uy0k2LJFOz8WeBRQL3j3rVxXsPyaLt3YxJWhyr1LYZGL3xT8i0AqVL4VjjXDCP5GKCfFXhTJAVBBb6FAUAFw637fdhHBXx7JfCM8pHF8IdZm2LHfpMYoz+YR28rDh7R1phWicZGL9pfhdXxnY9/NkrhZ5eccgLRy1pjJ9sxJx2f6nHVb66M7uZ9MbuiFiflfdGK1u4FR59JJIoi8mqDF6R86qKmABWh2xHejZ3GuRK+weS3wPO2C0Fcwdx7PAElJlKnIS5HfTWomaGzx0ExAu5N98BLplxHSTin+GUW/BazGGRhT+ebmq4ISvhY0p4QiHEs4z/B5wUR1CLxGOI/+ptzRQAPRfh5KEBTQx8PZEK+ADwJyKCOZmj/U+9klkGezCj7N1hdtJwtW7ML34XAC088uChR7oIfvdNDPYYwIenkG6jkfVezIGMkvR4cfg5XjWplOT8V79fQ0hTbCPYT6cj1wAT4cOT69jHL2UEn+q59pJNeZvjzxHmoiih4jAUfRMudkN7znveMDub9gzHnYd4SaxnNLNTkaw97D2HQDKE6qTJCOqBQO7bujWt/89v4t698BWChKZY2LoyCrn2YS7TH/Pqpcc0Nq+JVzzoj/hyVwVuuuTaqQb8XI6hsX3sfESUK44TFC2Pl+g1x0gz6BIG9DSG5HRWxfV1t0YkdGfNK9EHYCqbVMKngDIeQltr6qZo2gnaDznoKMK8owe7N0Eh6D9bbb7kgBUTayBIDPLd189boBtWedd6JsX7XuiiajfNOTCd+sXJ9dOF9+Nlzj4lq/ExUABaUDUHc4Y16QN17qikLsGAEjYiaaZVx4QVnQtTRQMFzcSehMIt723G0ifBGpxK9COdAEHX6ZRibuRLa0ckEqG+K6hq0DjhPFbFlg06zOTcALCeVuE7R4HkzASNwkNnSHMuf89RY/vLnx32//Hl85ZOfioI+zFDQliglmoi+fga7iYHMHl+b7Adi7uyZ8Ysbr4/Zc6bFG9/8F3Hu058WV/zmmvj6ty9FxXFWvPov3hB/+YY3p3CKfhN5NUVmzeNHgwF82N/VxIOJLmQQUmZT+14jWKiOKwMqaOBql2NZ8wUZa0EKfT/k5JgXHHAzL2mMwIKMtoy/+0x3LCO/e8/l78G8/D5kmP0m3JsyAyzjbDky7ppDXHnllXHVVVclfwwyk2o5aJds3q4oXnTRRUlwMQ8ZbtuhJoP3Sfdk/LWBtr6uuPo752+7BT+0QZfBto6Wa97WWfpmm7znkabxmPfcD4+0nMfrefva9zkWSLDN9rXX8vvP5zxv8ltwe7zTeO/n8a7feOWPV/9H+n35vvI7y2XlMWzd8rmD1dNx6SKG34H8yUc+8pE05t7//vcnfwRqPuhjSqDPMeg4VXPAcZgXRA6Wt+f97hzDbvJA1ie32f149TtU3l6TPlkn8/J7tV4mv221OjwnvZCmSE+kY9IR626bHmn5+Xn3+djyx7ZtGyvk11xzTTJj0eeDx5qr2a8Csfrz8rf1E1jIGmnSfGmnDoL1B+E9akxIN/9QzM2sv+0yVLpgdRf1d2bZsHZDPOUpT8ERY100AChvbLkz+RkZZGGqoODYUYFVmq9UjICtg3NX4tV4UIgeQMNBB42Jx6Xvky8DgIchvjPfbz8aCWrAqt6vBoRgwzCasIn/gkdU00JAoo4IEPoX0FmjU14X4AOsFmbE1VGFBu7RR6+I1fCsrWiwdm3ahXDcGo2N8+L04/C7gWnwaR/8WFz6hS/GUnyBVfWNROeG7SwY1cd2nYH3NsX82jnJR5pmDQINMn9GZVMg93spws+BwITfK6xh+m78dvSbYDjPAoR/I6V5vxUUfChUzQAe1/srJo8uIOirYUBaINgB3zw6h+OAHn8X6UbyNxw9rR6dD2i72sv72nCAryBP/yatCF8O5ZisUQ8hOjUrLkHrgUITCGH0N805htF2ti3eL6RQDP+thrJl2M/mUsEC3x4itnXCh1Si+ex4lDe3fbZZmiK40YVvuarKKYRYncRWF42LFsayY5fHL2/fQPajJoLSEIidVZtIj0EPPP6z/2PQyD/2IjLyL8NskrgcbnLiMTlpOoHqiE3C4iBWFdIJXWLrucyMe5yZysMt5+D3jaBm2YSbgzmJwN9ww62sVHbEurXr41+//C+gu/vi7JNPiJLezujBvuuGK38bp7GK/7VP/k1sWLM61oB0HzV/XtRhU9e2fRdARUvsRHg/FieJbyVmdW8rYSUJp9MK+FCCj4RqvOpWoKXQ1d8bG+7fFMvnnJbCYDp5jCCoDIGgDxHdYoRNBz2VhTjMQoVrsAsiBlpQROQKVbkGmHx6iVZxzOKlsZ5wQjWs6vzg8u9E7KoMFDKjA5p8zMmnxOA2JsMeVnrBFaoAWPpArMEemPQoDwcNfQMdOEzGTq1yJHavuiFmnHtezJw1OfbgCHM6GiCqyHXgOLIMx0/DEPISkQUmy2r6IspwzImAVNg3HF043jEEaAHIr/BzL8eDAwhZIPvbcYI5ayoxoGctSv4uOndui7lPOj6+cPkl8eFnvCiKqmoJU7ooGudPg/wTeaSQKCPFA7GvfU9sJJTScQtnRVF/R1zx9S/FRW/+q3j7kmXxre/9MF7zgpfEN//rv+Jkw4I2NDz4ffiuJfwyhmMZpoN/AxNXjlQPOE4dv45lmdJvfOMbaSXMcf+KV7wihT50tcgVL4UDGWmZ5q1btyYgQsbbTbDBLSeFeumFmgq+a5+zrLGrgk7mWSj1HunG2N+CGZm5l+kVJDBKhXsZYVfsrNOrXvWquOCCCxK44Oqc9TFtwqGamgu5XtJB25WdpJmP36V19J4sOEjHrIt1sg6el3Zm+ulebYlsF53b/HD2433/vw+tfjjlH+lnHmoesM1jN/vadjqneN5+N3n8h97+I92/WfA/WDn24aFSHm8Hu2e8/ndseE8euzm//Nx45VuuQrrjWN5CfyqG6n7lK1+ZTKh0+vrRj340CZDeK13JAGcSBjx5iOS4VtCXxuW65P0hHjvsS36rmW7YZrWppEtXAYyqZSVw+8xnPjMJ7Mcdd1zyNyP9yIBEfvawC3yIGx+qPZ6zPgIJ2WmngLJaYmo36GBXh+HeI00VhDBt3rw5vYs8bqWVRsfQya7Oda23wMPh9P1DVPUxPSWXK/Cg8H8fbW5pbkn0v7GxMUp5B/vQIHjScadGBUJpTSlRxZp2xoqyUaBCvta+8VvLY8xvu5A5rBA65SLPg6YJlKNw7n32i5HO+pn7NMN1dUgTCzewgRgswXElWqo6ZWTxnghl9QkUURPBVXhDbQ7ASyJtR0F3f9wLv7tw4WL4rF2x4TbMY1jkWbFgMbxddfTs2RC11ZNjSmllNG/eToSyyTGV831729hXxZL64wEtWnTngEAuT45/JQT2XjRw9ZtQgs+wzh4cNu4XB/xm/J5Tu9gPomGglsN+JVnGOON8v9avfWD/FAMaDDO2BuExe4bQ+BCpIMMinVFC1wUpCtCw5WZ6iT38qrCC94BTANCgfQ0QY3+o5WC9fEYwwmgXyazFRT+e8ZLXR8wTLZJCrhezmQRv7E9NoBP4wO9kQsKT8gH7mK/rWDgpxFS5n3dayntM83t7F2FIp0Y3IEQtZU6aTPhQ6loEXdMczHFQAD9QwL5o/7yUCuSPz2d6l89N7B+9HpgAHx69vnxccnLidXPSyJOURFJmQcKaJ5lDVc7nZdCzfWZm5rPasfk6CGUeTR4rePhb77Sm/fQtHac/0iCSCOVDXPVkIgISgooabMTJ584bbyNM5itiByufJx97Ugyi8XARmg0D+BpoQ8V/BoL/+S+6MKoLBuOOX/8sjltydAyVTIthfDRswqfB9nUQa4jiqUsWxsyayWg77IqmnYQC7EPyV92MrRdCKrpbirrWDKJJtCGwYD0RZSP4mACarRimTargpWYVsLJLBAuq2k5fQtpjGuYNlfhs6MWPQysmGQPFndFKG5YtOhplN+YU/Dh0dXTHdJxEn45Qvv7e7+MQqDPKQWMriS1cSP1GUGUYwmPP8ABoOxobTYAjXTdfF830wbNmT4/qk06JfZu24SQHj/8g90UjIBloaxR24hcC9T2Jd+DZGQQDRAMVNdD7UupQTaii4kq0K6gHc0V0duPgqBqnlVOqqfkQ5ij78J7cFtPnzknd0bd+S/zd//fVuPqS/4kbVt0Yt6y6PWZPKYvTTzkmps2bCmrcEbNBiWsJY/rApo30+0jsXLc26hqXxF+8/GXxxa9/I4oUVjEfmUIoT23/sK5LaHY/E6CTUXI85Oznd7Afrh5h74KDp9JEkmdHfk+kR7cHZMoV0F0RM5SmArk+E/SPIHPhyoBquDk5pt00W3Dy9Z6xSZoiPcj3eU1aI5Mt3cnXPedmkjblVU0Zc58X3HBzVc6oG5qB6OjS6BSCC40wkGeeeWa87W1vS4yzbTAJFlgv87aO0iLzNyngSJfM3/IEVDzOYIT3SOtczfJ57820zrrLxGfTtewwzmcm0uH1gH3tu3Fvso/zu8q/nY/8Rkzed+D3lS48hn/GKz+35TGs0u8Ulfvqd06O+ZHH2JhTv3PoODhUSiu7h7ghA3XeknkJ3+nhJoW1TCvUehCcdGVdbUsjaX3mM59JIJ+8hjTE/nYlXy0mx/PhJOtoO+0L36d5PFrvTbojzdAfghpjCuqWJd2xbbZjBdG2rr322uTHQtBU2io/5bt7NMAH++DANuXvVjDBepxxxhkJ+BAMsS+/9KUvpb6QXur7JifN2PIikvTOewUeBG6lh7b1xS9+cVx22WUJXMnOJ/PzT6R9Yimcnnjvc5kLjlp8dGpbmiPgLKbUTU0mDntZkCrlG2nrb4mly54cHbs7YzLfmqv5mteWIJSWwPOVwVsV40cL1VYE7j4ceCN4K0grUEvXpFtsBQjUBfBzBQi6ZUQF83Sf2rL6g4AnGyzBBIFFIFffS4hg0YW2bq/881ToISAET0dfcXd0t2P6N9CaIq/p+HE672IZwJzC/s6bbkoR1X6FpuLcadOjuW1zKruYPNdvXhsEFY1y2t2PyUSvfisQ2kupt7wr60aJvyplHh9kkUpzCxP6AgjwjA3RCvbopiUgQieRg/BkauKi6guPicm2mgjwmbC60cP5dsroIkT9ACa/fFjwuYByqDqUwG9q3juk9gdmycUcl9Fd5eRZAT9dRB4V1KMKIKSEdzBMHQdZQRtyFY1NzQu1nvWHkcObau4yiKnzCM/riNJvn6YCPLCHa9TUOLGM7HWE1rwNjRHC0k+bz+LJYFf0ApCUYE4yxHuT9lQBPo0M0u/yIQPdsXXfnqi/b3Ws27Ih+Qkp2r+YofaLbUsMNF0hnbNL7L30rbEfmzw/kR5+DyQR6+E/PvHkke4BJxknBJMTmmksQyfy/dWvfjUx2No+mzznRCwDfTiTsKuP5m0YJhFh7asVVhQMTHmlMf3gj3XynAMyEWfPsYlM/i/Mun9oOphJWzdsjnmNC9JxutkjqF07K+pltfhL2LolzkHYeMpJp8bS6rpYs/qWeM1zLoqbfvvTaJxdHzMxSViCRF/VsSOq8Va8aFZN7Fl7R8yZf1Qi0tMgbj0QsckgwoazbAbl7scnRBmTSTGaAkAOINOg19S4GGJUgQZEYS1AwQhmD8RILu2G0BBWs3SoJNoBDwYhlFMXLSTyxHCsJwbz7CWnRj9+G666fmWU7uuN2QWVMWN6Y9zW1BJTVyyPXb2DsYcm1e3AoQ3ee+dQn+GWrhRRY3oVno4pu3UEu3aE8naQ704mhMmT5mN3NhgnL1seW9DQqGOi6LpndYqOMbeGVWZMINBZjWqUzgJzEQwEOYdTIhDuqIUxo30jvOsSBLpiQIx+tDna+plImOgKK8qjBOChZT/BLoYQF9HOcmwqOlAnLGTGrJw8JwrPPznOr5odPZfUxJZ7EfymV8am3R1EG2mPxccuJszpHQBDFTF76ozo6G2JDXesjBWUfRLxknHVGQ1z6uOo+uq46meXx3nPeW60DfXEfRs3xPFLTojV964mYsYSPhLqzbThf3XzCtA7ZKpONB5re5XtuDCRHk4PjDe+FRgEIFzVkoE2yXzKsLopfIzNQ6Y6/3acu0lvvNdj83N/YJLeyPRJPzzWhCML8D4r6CDN0JGZq58KFqrMvuENb0jggxoZrth5r0z7C1/4wkSPzNP8PC8jkevrb+vlZp2scxZyrJvlec3ztsnkscKP+Zlsh8eed59BCn8fbvJe6bNlZ60Pf5ufv2XoLT8z/II/tsEVO9uW+1MtCwUZk0CIz5iPxxkEVkDwvM+4z+1Qa0TNNc1RFIwUMGxbzudw2/Jw7rOPc8r9+VDfh/cIElnvLJCNfTbn8Vjvf593fSTqNl75zs2Oo/yOrYPv1T52nGg2qTDv+zcvvxG/C3kAvzG/Fc/lb9PVcftf4f5w+t+88reb6+o7NPnbY+vhsZvHft+WKQ+RtZiejxbiL37xizTG9CulcKu/h49//OMpnK/RGLK6v3Uz7dy580GNiHTiIf7YTtsoEGmf+Nu+cDzaZ7bR+vjb41xns5KG2D7b4MKL488x6Zh1zN1INC3NuwQo1QbwPgX1F73oRclPgsK7PJf1NMKEQIrtsF36pbEulv1IkuPZPDRd8X06hqSj0gbb7Vh3BVd/Pbfcckt8+MMfjk984hOpbJ+VHo9N+V16LtMVvyfzFFjxuhodOv1UQ+XAsZz70OftS/v1SCbLMI2tx9jjzZu3xAK04WpY0S5S2wBeoqquNt73gQ8mEEF7/86+npg6qTYGOnqifub0aNrajDZBNYADfrdwjlUOr2TEhSEY2C60XIuLibyAlmxNOcI7/JlhNAUE9L4FpJBW+gsRekvgx4rRlC1y9aqoCtl7MPkR4MNiUQl+kr5p2YkvjuToHMChExMe+K9dTbvinqbVsXTKMuTuitjeviv6SxDq8bnVBz86CE+8u7k1aQBUVBTHjt1bKLUvWlCn7ekajFrlALQmtnfsiaJawq+Tp9E7Wlmkc/zxZqgpcxvbwobGFAK0D83Y0UgQ9BFCf/KTAB89xCrQMPWUtexFE6IPp2YjgCf7+jpjTycmypjrzpgzO44//dQkDzhmVqJdc/ONN8XWTVuIKNIQe1v3xuIlR9NXA7Ftw6ZorJ8ZU1nMu3/jA9EQk6ISe2CjsBnuExQCsIFlPByXF1SW0l7GJOREjQsBBc1beGW8bzZ41z763vedtSd0vq42hDxjGfbG/YSIXzxtfmwe2YHD9O4EZAzix6wDZ+uTGDeVmMCs3nxHnLjwZHjsJtrYi8/5ktjR3Rpb2ppiW8vuOPPck6BT62Px0UelyCjSD7JPTiqp7e8kTv9OOvD371yc+HHIHjiylOOQRU9cPJwecDJ0QnByMClIuMlcu5eJ1zO7Ht5l2CU+TpIi9k5+mek4WFne7yRm2rRpU3rGiTwNwIM99H/OO0E89DDc10SEhGn1DwIPTTs0sZieUFbD5OzGD8FkwIflxyyNV1z4vNhx19qYiVZCw7ITYtvK22IWSOzSaZNRnUKFrRIq1bGXCAsdhM2cg6nDFEpVAEHVqqsDz7yYRwBo9OBFuBfAADh2dPIFfS1CFa4MoqtTmyIcLZaiJVAAIRxBi0JnCuajJ1/9OpSinTBMCMtBhPw1OzbFb9auieq9mEHUTYvq6TOiYfHMmAf4UFFeG41LMFTA78I6mIOjpszEW6+RJnD4A7FvAZEdoo19EPUitB2K0RnTdEOnOiVoYahJMZn3ZJziKYAH3dj4bb3tdiYWwKDZc6NsEu1D6E/ws6ACxLYAs40iqTV15EVHAZMplqhMtHg3hpEylvKgIAttNw5zMURdUu03UTyCqF8owwXhL6Ld1KFpzf0xnZXvp5W8lpCcrXHjqutjIU4wF9Sjen7jShjCaeAe9GvPTtoA6ET7tuM0rB/Vv2eceELs2r0nXnvRC+JWomPccev1sezUM2P5kuVx17q74qRl+A3QxkQBJfEQfCMaBvJD0EqxBfb1/3xNEycevR5Q0HB8y8RlRs5zTuh5G6+0sQLI2HvHCi/eI2Mi4y5tkmZ5TkDB+2TeXdHUn4OaFjpAk/a4UvepT30q3Ss9c9Xwb/7mb5J6s4y2eeVk/a2z+bodKuW2WSe/fZP5m4ftd2/5Y5nxQ+V3sGuCLNm7vcy+jHwGia2/9bAMr8moq42hQJnbJmCgEOBm3wgQqdp9wgknpHsVLAQmrK/vcawwY9nSf9tjv0vzs/aafZ7bfbC6Pxrnx3sPuQzrn7d8zjoe7vP5mcPdW9bvm3xXB6bx8hnv+kPleWAZh/ot8KAg6DemMO037LeiKn1DQ0NSM9cMQJV/vyu1mhSA5RtOP/309G3od8ExpxNBQUiTgrPf5djv6VD1ONg1x5DfnvnYVr9zv2P5EcEHhXXr+Zd/+ZdJIHehRCeIOrT229c0QDDy4osvTsK7/IrtcKwklfqDFbz/vMCA5as95d6+yd+UgrfjcayA7DdnPd1neuW4MR/HpA5s3d/EyrOOZzVNsz+lQzpllG7Jbzkm7XNBFEETx+mHPvShFPpXIMByHZvjfR/jNC/V03sy8GD/ygtKC6StOsjVT5ft91uxztbf9hxO2T5nn/st2EZ5RvvAb21sv+V65u/ZvPNxvnYk92PLG9uu+Qvmx+6m5mTnP2fOrNi+lVDr82bFf6MxUOHiDIs8iLcsdEgP4IRYEVc7YBg+LzmUZCXed+W4cgVerQcaljQH1AjQj4Kr6HJRpcjOajYMIBTLJ5bByw1I1/mnc0UZmmFW/5N/BMLC91N2Hyvu1qEXjQf9F8xEkD965rExvWMUmBpGy6C/CPNeIjDs2Lk1Ju1tYjHqjOjAseTW7duI9gZoAg85RDkD8IDFlE+NaYMgdGnsaGvFdALhnPLL8G1QV1GHs3Y0ZuGhy5gXVqLNKrclLFNRRMh3rpUT+r2QuvNUtPYBaBOtbBAhfR98dSdO0adMnxOLMVc5vWFuzLvgqaB09I30lPzKhobjnNNWxDlveFXiOWPHrti0aWNs3jk65qfUlsS2LbuSU/eTj10RA+vwsYE/NTU7RujjAUCZQdjVQXj5AvhY/WIMw6MKfqihkTbIcKLEFOksrwNLHUkmPxXkYwj7ZDqChkcRgNIwQMwQwMYQz+scbYD8dDCh1sYQY2FOyaxoQ/uljPdbSbSRlqHOqKgnfCkaEL0sSx4PH1uF9rU0QSedvdARx9jY+TPV50h+4H+CeU+AD0/wl+4EIHOZU14BcWA4WUg4ZURMMhkyA54zOQmNBz5IyCVIDrw88ZqPSYI8tux0cswfB+TooIRoQCgU4R8cpOlEQUwihNAQdm5FEnbvZ18AgQAvABlmtXHK5HjX298a8yhzalV1zFyyNMoJ37gFM4q9e7bG6cceFwunzwQQ6IsqBObBvi4EZ4RpCK92Z8YbdmLpwrbNuMF6Eq4kn0r6Rq/DMiRO1GU4phF0KIBAF4FqF6ERMVzBKi9qWtBG8pEpwWgA9DvZnUHIXLC/Da//G3f0ROPU4ZgGSEK8ithbBuKNJoFOcn9w7TWxFa2Epn7CTGLe0E2f19Gu+bPnIeyz4omgXwGQUYm5RgkgRwn1GAbUKKkpisk1k7DB3AKxnwWCPDcxMNsJ2blnw8bYuW177NaXxNTp5DmIzRooNbYUBSLVTED9+KRoQ7B605f/GUCmJdqbjWVcE5Nmzcb/RXEyATFUZxmTlMm/0ubiQmwaJc7kMwKwM/3UxXH7z66J+rKCeM2////svQecnkd1qH+296KVVr3sqtqWm8AVYiKEwbExnWAgN1yDDeES6oVcuECABFMS/AdCciEFiCmGBAKhGAzYBgMu2NgY27hJsiVbvWzT9n6fZz6N+aLIu8Jyyf3/dqR33/d7y8yZMzNnzjlzzpm/x0F3W1x76Ydi469+QQDP2QTDXExwJSw18HNsYZKawC1l++13A8NYnH/SuvgErhenw9Ce9ZRT4rs3XkcnGMEMcDiOX72WdkG40NIh9wr7xMFE6WliAZKZ9DhiIDPiMorF1xaZf09VfDHTl9+TVniYHF/SCWmIAkhWkuo+oQAknfrpT3+aVhW1pPIdGXgFdN0qFFBk3l3Bvfbaa9MKooy/gpMBxIzxYJKuWab1MM9Hgr2YMfW7YgbCb4rxIMxHmw6ljxkv5mtZGR+uVCoQZKFBSw/ptPXeitJXhYPPFGIUivxWAU6TbvH1lre8JQXTVGj0uTRa4SbT+6ykURgxuRqrEFdscp0ePEl/cttZr5yKcZXvHc3ZtjdPz7kfHE6AKi7D94SpGK7i5/8VrjNsjp08t7e1taX+Inxe25+++93vpv5+3HHHJQWAFgS6MzkOXdU2uKMm9a6OK6QryB5tsl/bD0133XVXUn7Z5+yf9mmVafbvrKQzkK3KlK9+9asp/oCxH4xF4w4NH/zgBx+2/lEIPnRsPRKs4kfFpsqMHChX3udQASK3tXTAQ1yqePB7LTRUDHrWikE3CmmHgW9f97rXxSmnnJLw7HPzcQxqxXX++eennYG8dybbfRvQVxeI66+/PilbtEw4muQikPUSTvu2OJHeCrtj3FgOWlx474ILLkjjXVxLS6QN0ylXzV8a7rv2B60/8sKTLh2ZnlgH65iTOCv+ne8/1uficg5Xns/FzaRm/yTr3dvTn3C29IQCLRRXowrA8hwoE5DUidllXK6hqJxE4YJbxCi4LcP6QR4RVgg2BpcGFAcK6i4YGRCxDH5qYALFMW1v4En70Ag8DWxm4kEnuDaGwTBtoQJCvlQB2IWuYZURlLsPy9DBDnbewK2jASsHGo5JdCDmLVmU3AOGe+Vvq5L1wPDersAml8Us+Vjgw/IWM19cPlA+8M/AjEsXLopRGDtxM0Y9DZK5hxhfg1j+CsN8dnnLgSJh+aKHowu+LCneWBAbquY76lRZUx/LTjgxjj/z1Kg9hUWj2VhXsANaEDdDzh5GEuYRhldtAPxvSlhOBO62bWecFm26Y6D8ovLx43/857j2K/8ed27ZFGuIUzFONYexFCmhzmAG/pevYZ7LxjiwLlEB4ZEYVPuVOPVcKCWNQ+m47iL2U5UxWlmPobHoRQno9qkG/jRIpUy739o2JsfFokWL46Fd26NiDnGfsHJxcVAl1M59WBVXNyRLJudd83YeVSFnMp+Z9PhhYEb58Pjh9jHJ2cnDidQkYXVw5ElZAuKkK1OrZtzB4yD1PRlX7x2OYBcD5rseJgeqR06aTmbGIt879PxbefKgiOl4zVTDhwzgHmIVqJUvQeiViBtJ2AmvFneEicHh+Pd/+Vp8+H++M/7pQ5fGUxe0x5Laxijt7o1XsJ0j1llYBVRiDtXJxGDAGPYFhuC5peTeZFWxOJmnSczLUSxUEyfBrSerIS4SKX3K9OOraoCMa+2AC8Y4ygF9zBSO04SBpUAJhHoS4l0JEXXroREI1CAwvuRlfxjX/dWn4prbt8dxBK95xlOfHg2LV8TNP70pfnrbN+MZZ54Te3Zsi8nOkZi1AIuOrtLo3Lknmtsb465f3REtUHxNxpi6ohKCWMHEUoNyQDjqEeaPX3s8kyU+gTAYe3u64/7tKCMWL4oVCPTNKlBq6qK/HIEeRmgS64+0+waTYD8xH/YNoMFBe2uqZ/IpdbJAY15CAMkq3m+gPGhymjBsltQ0fDLhjIhmGHEuBmnjpz7/GdG3c1dc8ZUvRCvKgvUf/etYv+me+NArXhZzF7VFO8E7a8loRNM9iqhk66cSAoE2Evzo5Wc/J25gVbu0bzD+/tJPxGvf864AgqidWx+bH7of95hlzFX0AxkXtR92DmFNHUfDwJn0eGJAxsuJWMZV+mDKwrvPioXzw8GRaUqeiP1tXn7nIQ2SHnlIp1SOauWgAsExLv35yEc+koQhg6HJjL/rXe9KK4Z+4+4UMvZ+I/PrFp8qHrKZcS7PfA6lZcKU4bIu+Xm+b73zd579nZkS6+p7+ZvD1f1I7qlEEW7zUTi0Ttkk2t/SUwN6KoyIE1crtfYwGUjTVWtpo0qGtWvXpmsVDCaFNJUvX/ziF+PSSy9NQoEr4K94xSuSObh5q9ARR84LCpnG0RCnKnSe7CROcvsIi3NTcX8rbovHAlbL8yhWQEynfDjacovrd7R5He57hXDdgbQmsE3tb44Nx5F95+qrr473v//90d7enoRm79lvDDj46le/On2rcGY+xgGwHylgKlA7PrPS6nBle098TpWyAs8+6Bg0T60C5FssVyWHsRLs05btmNA6R+XkRRddlHiXZzzjGXH55Zcnqw2tB2wzFQfF7iKPBIPlOeZMwpCFbcekeXjP/KyH8BX3h/yuyg+VoLpZiA8tsQyEad1+8IMfpG/dItTn5mO+tonjTOWh7mPuIqHbg9YlJpUS0rTHIokH213cma644oq01bB1cbyrEHG7TPFpkp+z/rl+6eYj/LEu4kU6bn7yjN6z7pabU3E/eLz7fC4zn4vpdIYjn3u6UX6xgDUEvwYbF3Pnz4mvXv6v8ZRTnsoK/I5YejLCeT07IQzDa9SMpC0Wa9ievYT3x1jAqaA9DSDpLhdVHOUIp8YU0E12AoUGHHFaxKrEMtUVNgX5AfrcOIfxEaobUWDD442PYT3BAtEI36mA0GrCGAalLrbBxGL/GhWzcBUeH47bd91L29THsfNXxSwUHhPsGNFDTK9lK5anRbRNv7g5KZEWN89Ju69VVNTgpouikPInzVtXEFb/xyjjvp5NLPbXRzOBKRtmNUU1u1Ng4BsV8LDGgngAVwxjnLlzhHyxFgbD8LojJcCKIuCcc8+JNU87LeKpa8EBGMdNZKBnDwaqfQQ5J87SfFy3mdftT2MH9sPFYvGBEqJ8Fq4JKiR2IKizVX3SstRzbqqOM//gWcR8KI3bvn0VCheDrLMIBd50uxhltbBkBFsRXTA4yupYSADvJcDG5Pwwr8rE4QSdxtskC31cFIJ+UncjbLolZi2LeLvgQ93pJAfRhPinOV4rZvuI8407dFTRrn0om7CDjAXLlsSOfXuiG051iCih2b3c+dNx5vxhnyumFbkvzpwfOwzMKB8eO1w+bjnJ1KuNdiA5OfrbSdXzd77znaTl/Yu/+IvEYDjZ+66rXkeanHzM2+8ceHniOhLmsERHrZwOXuZbsi0DuD8Yc0FC7G/94rpQJDi49+3fERdf9Mo4/aS1cdOPr4mTYaC6N2+JttZl8ZTFy2IJJlJDg91YQhAoEk11DcqKeoiIFNTdIrr62Umitk/viuhB6K4tR+FAIJxeCG4dfnYK9TLvFXxTUY+pGYER0z7GWDiMMVmg70cBIdPE7hUQc3eWcNLxenAQYaavN/ajtl2wmJ0iIHbYVsTlV/8gZtU0R0NJVTS2r47rH9wYXZjQ1bFPcyfxGBaiQa3u64/zNjwnen99d3Ru2UtQShQ7mq4ZWniIiYgyRmgeJz+jGEscFzPx1B+zJua0trAdJz54BIbcyYpR24pVbLs5EtVYGlSUYjbGROQkVK/7RPlYdNzwk5i9anWUrlhJcA6e4cbSx4pIeWNLVGM1UQahnsAXkjkjJU/J1QFCP44byF5837Y8uDuWsHr13Ne+Okb37kHq6Yz9uzpj7fpz4+d33gMDuSjmoQQZwhKlnNWAxcxS453dseOGX8Sp5z4/DjDptlLvW665NuaA7+df+CowNRkL0eaP0J9MxBMuwJAAAALaP0UrPghXemnmz385DMjIOol7SBtMTsqZNhQLL66U7aLvKXy764TByrLlgmbVMs2upMnsS3Pe8IY3xIc+9KHEpMuo6yftymW+tizpmGVJnzxnRtTvhSkzCN73yHD5rcnfWRj1eb72mXk+FklabL4y8OJLnAibydXgT3ziE8mKQ8WMq5iuSPtcfLnloMoX8eRqsfdUwMgEKTwoXGoqr6LBchQ0XDXW9Fs8ed+dQJ73vOclfLujgAKE+SggZeHwsajnI+WR6+q5+PB98WFbiR/byjbIKbdd/j1z/s8YyO0n/kyeVUTYzpcjsGvRYNwB+4b9wTGl2b/3tzJ/rF/P7kkoKlRcqNTTwsCxqCLsG9/4xn8u8He8o6DqmLfPq0CzD6tk9J6KgVe96lWJHuieoKWTSoiXv/zlqR/rbiFMbonoOPnABz4QF198cVKO2E+ms9oUVPu/40S64iKMijxTVkhkepD7aHH/81th/NGPfpSEPS1IL7nkkhSHxve1Nsr92fylaeLte9/7XhJYxLMxNMRBO7yLFl7SPnFtG6l8eSyS7SeclmM7q8x8NoG4VfJo9WAypobKS+mlMMvLOe6mS9IjaY14kV74rf3IcSsdsb8V4yzn573D3c/PH49zbot8towacCJj2YVZfS1uFsJt/1MBtwslXfNs+KkDg9GM8iGQ37WMrWGBqpLf7mxWDc/kzgvV8IuN9Y1Ri5uDC1ayasYfkBc2lkSZZv9I9bqy8gNZG5cK+LZWlB1j8KZD8HzuLobDLQtbuECwYFZKPr3ETKhFQbGnaydS/2Q0ti2Mtat+P9pOOCZaahtiZQPBvG++LX70gx/G0884k50wxuOaq69CKYFFCpavxouowJUD+wsmXmhpJcoSBHDDVhrHbMnsFfCXcFss7PSwMjTcP5QCLg7AZw/BC7ewU9kBeGPjNwzxfuMcYnStPTmOP+nEWIIQnvZkRxEzykJRBZa9sWoe8GL5THGT3bQ9t0pQKNROgGfXLgpkKOE8/cZdZBw+u3sU95M9xDNDybnkhNXxNKyVv/HFr8TC+cxjKBzKsDwxoLsLkFokE1ZC7+PCHIzioeSgAgK0kreOMpldRG6gD46wkDg5hgIDHl03ZWNniGO3VrWfp3keHjP9I/8yF7d4V7q0D0uGJvjqXVj1jqH4OGbl8vj6L65J4Kv0UOlgnxL2PO8W8zWAMpMeBwwwkmbSf3UMOLlmRk0G14Hm5OKhP6IE0sjRMiqa3HnfCUvNtddTJQedg0+tuoQ7M4vez4zPVN//h2eMdxUPEo6CAgKTLgTtBtwBYEvjAARwFoGBVEPs2LUjLvnL98d11/wyXvey58RdV/881q86IcZ6hmNF86w4Zj5BEHfugqADW818NNK10chEIwHqZ4KdQJEwySRw/1Z2uGgkINfQeMxb2kRAodboghC3tsxOW2vWQBz12StFAUK4BAR/fFQhVq76e0gBS9BwS9QURaCNlAFhh8BPoFV/aEcPwTK7Y6gFAboVwjy3NSrqmtniaDD2EGeiBa17TX15imOx6Td3RhWmbHuIvPvAvRtjx823xOpS4kugNS+HgLqVUYm+duC2VELMseBE6rx7Z+wDH/0P4W/KBNFMGbM4TlrVhmYW/1fhxGWjGgJdC9XWf28c35WG+rJ46I5bwOVDsZDIvXNWrI7AUqF+DsCiUBlj8q0wZkSm5EyoIF+jB5gK/ezK6ScLUMKgzSe45Vb8B8cJitTEC62n/V688AyCaL34JbG9a5AJUO0+kzfPGtQOY0XSSXCh6674Xrz6z94Z7/7kx+KM49bGdy7/avTx4hv/13swX2Q1nCnSiVEgtK9JlwBh5GLhAh0z6XHEgAK2TKLnTEOy0O3ZcT5VykymTKh051CG04lfQVfBWsa3ra0t0Q0ZY1cGDS7niqcuFNkM3JWGf/zHf3zYRFqlg0y1K4jC5G+Tq42uKAp3hj3DKiyZ6cj3Hunsu8XJuvitdT+0PsXvHcm1tDcLSdJR81PwkU4rAKp40BRboUxzbum0AtmhKSt8xZGCjnkoGPiNAeA2btyY6LSrxuYto6SwpYmoz/T1FvfSf1dDpd2/M/0+FKgj+C0ODz3Eb3G/UsgTL84tj2eyDA/bu7j8qcr0fdOh7+ff+flUeTyezxwPtrlxmBTQZY4VEv/8z/88jTtxq7uk1kXGV7j22muTcs/3dX+w72i96PhTKFZYta8Yv0DlRBt95miS48gFD9vW/i8N0IRZIVwhUJgU7g3cmJN8yXnnnRdaPKgI0XVAhYTKCAVek/14OqtL37P+JnGSLQP8nenFI9E6x5swuoAjrqRXCvAqdayPuProRz+a+lOmFb4n7TLgpHj+3Oc+l9xYrI8WTVnxYbwWaYJ0sb29XXAedcp4EL9as9q3hc/xr2uICijdbKQp0gVpgsoD+4kWMtZjqiSdsa/bz8WFQpc4tS6HjuM8FvJ5qnwfr2fCWnzU4sY6hOXAgkW4tyDQXnrp/5fckDdt3hRnnvH06KNPDlovdq7Q/7+PBaJe5qpJdqtwNX4Iq4cKhdR66LZ8GgzJKCvy8izuflBwu0BYxs1XN4daeNmaBgOZooyHya1uaYphrHcNbElmBUtb5isVReXsnjGEkqNmdjO7hLFCf2Aofv/Yp8cZ5z87qs5YHUO/3hKxrD1aWYna/t1/i9/s3BoNFVhCUK4LWgP0z0mUELoUa4mr5D9RidJjnN04OLO9RTQsmM3uYkNsK0qQcBb65B8nsC4muAHf1sTgrOpYffraeNFpT4nGE4/DnYJs1El1s8CGi28N78TiumQtEYRJ20GfPUCAzkbcpWe1zomtBIpvQolmv6rSrYFvR4mx0I2yp6+ji2CPC2OE+43syFHRyvamG4FT/V9JY9w6dG8cP8nW2NCwGmAyUKT9txx5RmXOJEoChX+tkHWF8ToxheCVksgDWu4d5hPQnfjzUhRByeWCdusdpbbwDeZZjUXxOG7XLrTxE37eBQGUEuTd3duHFXBLsgRxt47KJqxydzxEzhXx3/77K1Oft09nmm/bzaTHHwMzyofHH8dHXULWwjnhOCFkjbqaes0s9QmWOPjMgaiWXIXFkSgf/MbkBCvj4ATm4HPSViCYMim3FLQMjPbfCjHeUtngvzriL0A64oGtm9kdArcErn9y7TWJaf7Wv/1rvOIFZ+GftjuWsqXjLkwfT5/flujjSUyavWiOd+3dHvWs3nehWS0ZJXYDLhTjKCIm0Or2MUl2Q6SbUDTUNVXE0uVtTPYr0pZJixYtjlmdBOOROEGAjOMwAjFyayL3KnZyURlQhUbCLYF0ZyDYcNpys9LJGOI2dgCm4te3oTiIOHbZ8hgnAORtG++PvQd2MinVR+vieXH3po3Ec3CvYAISQWAbmLyXLWuLeShQVqLJ7iOAZh0TSgWEVcs9zcWcxBT8dcfo3rwxqvEzrGuqxWJtVlSife5nEtn+4GYUNwTA4X0D7aB3T8R6TK0uCE5bJmkJwe4e+9Bad21/KObCYK488SlRsXwNSwJNwE2FmGSTRkXC7mhPbZNIPK0TsbNzFyZ5tNQIAbLYZWRu6yKCGk1GH8EyazEFPHnDufHApnuja/feOFY/QCwuxocIZIoVyhJ2HxnCQuQ7X7o8/vxNb433feZvo5Z+cPW3vhvN8+bHOS95KVuaEoWdMqlCmkAIppxiTqr1dhJRE/7bnjNlb5t5+Cgw4Ph2LDux5rHutZOtv/OE+0hZy8T7jvShWHiUTkhfdPuSyVXQVeHZ1taWVj01V5ZxNsCcNEnaJZOs0KOA4ffSKQ+vNQVXQDfJBCssycQ7fjNjUMz0ei1s1sH8i5PwykCbr+8Ju/TQw+T7+Zvp6l+c73TXwp1XHnWz+Pa3v52sFLRKUEhQIFFAMykwWl9hVGhSeSMs4kO8agmhAKDgqXDmKqvCkqbfWxEaFerchlTFg4c+//rYO1f4jQoMYSkWyKaD/9E8F78ewu5he/jb5G9x4mEfVNDJ/cn3smD4aMo93DeWm/O07CNJxbAX1yF/L8xTJfvWVCnDM9U70z1TUDZp4q9yygUFXXfsT/YRd6lSSWVSqDcpqDrmVODZXxScFdANkvixj30sKca0OLDvTJXyOHmkdyzDd+y/Kg8928b2YWHUncGAiPZdcaXgrFCu4uGzn/1sEpSFzTgJKh2zS4nj/nBj+1A4HNPmazvaVn5n+R72u2JBQjhzezvOHIvyUAroWi04Vp75zGem8aNFhjDLa+V3rZvfZJcyLU4cx/JeKi8s2/GcY3A9Fm1fTHPFTRv0VVqgosZ4FNI5dwzSHcu2MOVvxN90yTqLP7+1fv72e/tY7tuOBfFmyufp8n2snuf2Mr88Pj3nug0MsBsINE8m4qc//VlS9NYxLtauPR4r0tZCn2QnsTJsB8bhFTtopy6E7lKUAjhfRA9m+zUqamlDWNMUuFIXXt0UjBPmwpVlKfxCXIgZgNszOBrABdWYEGkRDJ6nZARlwxBwwKvqXlBOX9TyoZSt17VAGOf3mjOfGmufeWaUL22NaODVxSwS4UnT+JQ18azXvDxu+dn1MZd+e/LZZ8XOrh6UGgeivI6dG1Bt9BIrwvaQJyxs5ckcVlMaN9z3K6x666JlXmssOH5tLF6J2/LK5VG3dCH+yvBrxDngQ1wn+rEOwRqpYwJXEdw05jZFTduc6LhnL4SlNwV9rMIdZdGJy2KR0yRTakfHWBy3bpmoJy4GNGVvB669kzEb3nbRGpQ9JRx4hNcwpe3t2h+ziZ8xQF13bd+HMqg1XvWS10f3zfdEYwkKFcZpRVqIY2zKL4OPEeftxJcWLDfkyUVzikfGlV1OqxNx6gzv1qEV8IuDWJl07SfwvO6/fFCJYojQGFiAYMHM637HrJ9iRIwwJivhv3di0WuctzFcs/ey5Xw/Sgi3PP3f73n3w7yA9NS+5bi1zR3P09F/wZ1Jjw4DM8qHR4e3J+wrJ7u8giXxydp1A0lpYulk8elPfzoRJpkUJyEnXScTmXwH01TJgWYeDja/8X0nbpPMa2bYp8ojPUsSpuoGk+fCv46ufTDE1QTMJQIzEXi3EoTmTy56TazDvHo2RHPP/ZujCrOtJuIXvOt/vDHmDk7GAzfcIp2Pu266MU5/OntQj/ZF157dEA9o6SLcEyobowPXjX1MJLMwq5s3fx6TfyfxCdhiDoI7uXN7kmwHx3FXoGxBm5BocyA6pzgP1rsCpUQJTEjtJESNd4yjo3mbSuUyJxbweNEfXhD7v/TluO/WB6Kv5oEYZWKev3gpPnd4J7DquHjpInaBgJCxRVMDSpuuXZj6VdTGjayMrK2dhRUB5aqFReEh4dZtYZhAPSNkoNa9BIVFVXMdcTF6OPrZppPdM9jmaIzJZi7CyQgTYYWwQlFLIMJQxKR4SKZrKiaIljx/4XyCZlbE1p3b4orb74iGeUvi6WefHzVnbbARqQzA4h9HhM9k/WGATcM+jDFR1HGvha0zgTD6wPBNNAAAQABJREFU2WJUVnqEF/qh5vUwiic989lxGRYcI9vujzmnn4xGeTR6sNSoxiKlYc6saGMWvXfvPvpQXZx9+hnxN//2tVh0yrr48HvfFyuxhDj2KexbzSSTVgZUnEDwk9KBjpL0VXYYYJlJjw8GZE4d0x5em2ToPGSUj2RylfmW9jhmsjAis62Q6772CsoKyD5T2NHaQYssvzF/d69Q0Glvb0/CcRYKZHKFScWDjK/0xmsFBoWsDKu0SVg9C7dwSKMsz/tee88kwyAdNC/zlmE3uRKociQz1eaT6Vx64Sj+WIblCY809IYbbkg4cGVSX2yD/MnYaAqsoGLyXemu8IsH6ay/PbKyWTyJD5OCkPd1sVCwFO+uaissqdRREHJV1vLf+MY3xmWXXZZWoNPHT8Cf3KdyUbnP2Xesh7jOgqFnn+c2y988lmfhMVnOdMl3M7z2WftZ/j3d+LAuU6WjraPWLyqStHBRoLc8V+dN9jndLoXXJOy+Zx9S0eD8b//QvWLNmjWpn6m80rXJPqKr5nTwT1d/+7MxHey/Ktkcx3/3d3+XlG0qS4ydoIuASUWl+NCNyDGjm4AKCpWU4luLHS2i3ve+9yWeR9imK9/xnOmCfayYHvi9vy2zuB/Y3o4/k+PIOqi0yePYsaoyz/uOJ8/iz+8cgypOpC0q+3I/053EuvzJn/xJqpc4UdFytMmyVWZIO62neUovPvWpTyXFjW38ghe8INEELU4ca9Jj665SZ7qU62c5KlrkN+1nWq2pHDWfPD7MK9d3unwfz+e5LT0PogRQ+XDDdTemfiPs7StXxDuIK3TBBa+Mk4/HspRFJ4OHJwtMBFxN/CtRCtSXVEXHrr3wIQWrh2p5JBahSgkOme9NGP8Ba1tifBMo3UUjaAXfG+h8AAvPEc7jFSi1UDSUE78B5knmMfE8ljkAD7pv/96obZ0VL37VK6Pi2SfEXbfcEXNmVUTrsiasXXui7rS22HD6G+LOCx9g/PbEhlOOx4L0X3H7HYrZK5ZG70hZ7GeRp5/A30MIzboWl9EHKgjW+OZPfZiVfOYUrBSSskHFgSQJC49xLBhGu/dHZQPbX8/DJamcnTPYMa0XS4od+ztjfA8BKXEbqQT+UXjTA3yzaw9buGKxUYL1hc4PW7Z0pTnTOA9N9JES3nM89XeOYpnRG40I9i7u7UM7MbdhTixdvSy23HV/LChvjde84fXx4V/8KTgiJ94xSHwl22z6/iRWCioefhvcnXYBt7q6YJRLKtDvNE4h4e4Op6tFGe0xgFVy1779sX/LdsrBshketoQ6uKo1CXNJDg/3Wa1emlnYvL3j3mhuWhqjWIRs70DhwuLZEG4lrUsX/wcrK8ex48Byp6M9QjmTHj0GZpQPjx53T8iXMm9Z+VDMLHstoyGj7eEkLFFwgnKSN3Kz6UgmCyccmXMnGycjmRgJu/cyoT9cZZPwKJFI/B1DXsLB4DeGAeSeTyaYuBsg5PiaoVWF1MQ5MEPnn3NO3PyLG2Mxqzb1xFQY7+2PS99/SZTv7orrrvwepmknxvD2rbG6bVHs3fkQewLjnuCWkmiiy9FEly+eHwvR3q5DkNf8yxgS7e3LMKlDR4z7QS0BKbvYgaKcrTQVqsfByagKAqDCqi75nCEFpwCT9ZhrVWEcUFMKMZdwYUJXA3GcC9zdxH6YgDF63YtfFP0NWGbgnnHTpgfiprvupdal0bZ4IcR6G4SRyYAJTAuJBTAuC6saYm6lcYpL0pZJrbNbsYrAX5NJTUJc2AoTF0Qmh/I51dHBvs6ThFgug4HrGsTUjlHZSLCfYXAzNoHgR77OJ+UwP1pQFNoUgl5C1N8x9kEe6GECqYn51LeitYUy8Ce/8/ao39sZi896JhVlOyco+k7athVGthSFzK6O/dG2Yh7magTMYyUA6GNOdSP+i8DVj0BXw0QFUZ93yqnxTlaobvval+Kar38pjmutj3PP/wNe6ol7fnELhhDl8YLnnhff/vzn4pRznhNX/uiaWHva02LJ2uXxonPOi7t3bEvRjSvLCRJKHYbxgURnnwJd1oHT/9fTVOPDuh3J+JsKB9PlL31QWHfMKqBKF2QkTd6TSS6mH97LTH2+rxLBfLQ2sDxXAmVwPRsh/21ve1uqh77OCj76PluGwrRKBemQkfZViF555ZXJn1slqAoJzaqdzDWhzpO558zU+kwBwcleepMFiYw3aZqH8OQkjDLZ1s1vXF11NVXBQFoos65yxPop+KgQcYVSPEknzUt4ZLDdy966ixefZxgz/hSMfD8rfS3bFV6FLe9ZjgKAAfxc4TXIn4KL9dEqTVx5bRnCar2sr4KC97JyN7eZ5QpH8dlrvzX5re8aWd/rr33ta+m+9dy6dWuqkwJmbvvi+qQXH+c/1tUjJ/FtfRRK7WfWI9fFtsqKlvz+Y322XIXJQ5OCu22rQso2tS1sZ8eP48ik4scYG1mI87nf+b55Kuh4tj9kqx3Ls01tZ/Py3amS79mXbUuVBvZ1r/3OtnN8OL4cLwY0NK6CArq4E4/t7e0pe8eNeBfmPHZ8sGHDhhRDxLFiHuZt33j96xEMCKzoKrrjwzEjz5DfERavTVnxlfuq93xmewqfY8B8zUdFibtWqIgwHoKKDr83P8ebyXdtdy0dtMSwHcSjlk7yH47Vtra2/1CP9OFh/oinXN9MKzLOxZ/PVOAIp3Dkvie9kkZZJ+mUsLpNqXAYrNMxJs7yuMztZJs67sW/fUfrAxUCjmdpgLyXAowp4zrD57l4bPhOhtXrwyXL0X0m775hX9OtQjps/VT02PbSIJPtYr/MdRcnUyW/zQoI+5b93bYS9nzfPK23+BAen8szitOjTdPV37rYBradYzSPM/ucsJdj/Xndz66Lyz5/WWpnd3yQDg8ioLrw5AJOWdOc6Nm8nX4/lmJA1KxZHff8+AZW6WsI6t2Q3Ca6iWE1C4VdPXyasbWGqbO7tMEJp2CFbsFo+9VwXkjfrYau7dm/L+57YHMSfuuJP9CA0F7XWhUjuK4ewGW3izxb4GGvvPmKWLXudCwWsLAFYWufeWJs29sb1915NzuKLY4f4bq6bvVx8Za/vzRGt+6KioUL4izcVR+8Z2NccRNxtZ56Shz/9JOwuKhh97GWQuB0lB11uPxWsviWAj/azpMEBGdrc2Eur0dQZ44b6sdaR+6RhS19Xt1VIlkQQMuQ5xPPPgSu5N0dCy7CwcqCK3haYG0hDoZJaw5sOZLbrNcse8WsxqY4gHVxS/ucWF7vTjH74Clbk2XD5D4UOEsWJBpx7NJjo76WQJj8ayJgvO4sPSzWVdSgNMB9d4wFOBVCwu0CoQuF4lrLYPvHBG1RClA6RrvziAtv6F8KMSCsNsqhUeKXySeP82CS78vsG/RZwoLiloJbTiOB6XG3mGhuiK9fdWXULiceWg+rmSTHb+6HWWGYf+exm16c+fOYYmBG+fCYovOxz8zBIHMiw+DEmCcCTRYdGPoQOwk6WZicbLJQcaTQZKZCYm6eTpB50OVBePi8oFIPJ6+LGS2vEeYR4HcyIddB2Awks/PBPfH2//GGOOcb34xTj1kZPRvvjBPYn7m1oT5+9q0ronv3jhiDgfnNr26G6K6Lfb0dRAvGh66F/YnnNkNUiS5MHUuZkNral8c2CJFEshyYgRpVAztpQKzclkdfMSdhlSHuasELhdV2eWPAheQV3C44a+2AEyA30YpDDKtRmNRjHrDzgU3RwbkLn4l9PO7d3RFV+9EGE2diHhkugWEr5d0SzP/K2PFhAcoMd+toQMM8xI4dzGPRN8FWlZrylYxFXQmmXZiHaQkxhDWIQXNG1NgmTY5n4ABvBQM0fjtB8Bu6mjTC4ygvSiTK6S0mDbYeVTtfVokgw/TQDGE/MDwSnQ9ujW0P7ozFTz0dnz58yPsHo42Jasv2bdF+8pooZ88lLRAMBlSBAmEC5Us59ZPdHOMafQWmh1jV8d0BTNbWvfxlse4l58Yt//zp+Lt/+3qsIAryiWtWsyXqtrjmxz+K4xDifvDNf8dShPewQGliUt3CHtBDmA/OXsh2T9RAq5M6VhdG0LwnAcsJcyYdFQayoOq4l1ZIHxSA7PceMsoyrDLgrojJ9CtE5bgAml3L/DveZTxVQCjsyIybl6vpee/4/Fv6Iq1wBV6G2/dlDKUVlt3e3p58kN/61rcmuiVs0ifLkCGQvviuNM1n3vPs83w/0x1hlf5lGiiy/M7fMsLuBCFdVOhRuLHOXlue38q4y1SbrKfCo0y0QoJ1NOq+q5oe1kEm13rK5Io7lRTCZvK+sEpvTb4rA65lh8KbFgjCc+655yaLB4Ub6yGuTLneXuf6eT1VEibLz/ixThmP5nvRRRelFVhN6V0xVvGhsCwuioXiqcp4PJ8JrynjUNwLt7iwrR7vZH+33SzTc25DBSgPkwKOwpRtLm5916Certobt0O3RhVxWp0439q37H/2O/u71+Zhfn5v3XJ9p6ufZdkXxEX+Rpzl/iFcWjGo1Hvzm99cELCoh+8YwHG6tBWFlONBgdhxKx1Q8FbpJqyOIfuYtMHkdaYpuZ2EyzHnkeEyP2mIFk7yD1mxoKBovioiDabq+BAfjpuchF1YbBvpjePJ8hXgpSkqUCxHS4I8dvO3v+tZBanw2O72PQ/bS9zpaqECRNwLr+XqUuEYMgl3xoG/zScnr62Hu3MIs/EtspLD7UNVFKl4dUyafL/4+5zPdGe/yf3LfmAfVWEk7oVNxYl0JifxmsuxztOlrECw/yrQq8y0nVXS2JYGtxQ/zgOePUz2/ScyCY/1NQmffdL+UwU/8TPcLf6F8bpq1epkefJNrE7++2v+OPWnH/zoh/AqS2LtvGVYOXQTIHJefP/bP8JttDaWL1yOFWdHDMO3uYjVuY/dHOinsFfJzdVV/sTDck5XNH8Ziz/8xeKUhR6UG2w9kRa3hgn2WA5DVYoFagWuEs24FlRNsssMlqKLW5bFq9/xPyNOWRUdd22NPmKE7RrujVNOOw732v1xyvrfY6t5lMvkf/9t7JyyYkGc9LznxOa9O6Ll+JWx5lm4JB3L/ERZVc0oA+YRVMHhxPta0E7ST02O3RGCaI6OoMznqGDhqgIlRXHf04U3/5bX5H+qW7rHlTyhu0vwWkqV8MMHWed0z9uWlp7zrm0w0oVbCKtWNdABvFWiFffkklr6yQ4WNYmR0UQQz4Y6trmkOxrwfdRCCABfy+4fvSgLtBDR6sExr9WDR6FGlgNvjtWFio8KXTBYAHSbd62IK/mdYBFSYSZvYU27Y9hm5Oc/t9esRGnRwW4X607fEH9/3RXx4N174qznbiggwO9n0hOOgd/OCE940TMFHikGZJizRk7Gx4ncIGauKr3mNa9JzIlaageqRDlPDJlIT1WOeWcmTOIlgfe7YmZhqu8T5Sp6gbGfksKzRw3RelctXxHdRL9uKK2LH7J6/mYY5jbiNMyCIBjk54Nvf3tsuv6GmOjrjZOPWxX3b7471p1yAsIvzGIFFIv61tRK1HHfMKIweWl2Vg3hS6ZgaLQn0H4Kt0cS1aFCCu5aPJhUSkhpJb4yFQa3KYf6VqBYQBziAZCr9uVr1RmVmN/VQuhmjeP/WFkTy9k9YriyHq333mjABG4r5mx7foUpLF+wW5CueygrsHxgcpvdPDtmE+ByGDO5aES5UMXKGjtboNdFS477RSVEE/hUQIyhTBhRjZtSAXtCYUqElJlQAusbZE8b+8uzBLoEjXI1wTFhYMGLWvk6NMnVbH00up+Vva6O6EK4msW2nLH2eKUniHZBSdXClkyDPQNRUwJZZ7/lUqwc0A6kyQNDk2RWCBpiGLzMPf7Y6Lr/roj+rjgFP/Plp54UX/vCZ+Mu/NrPWLI6WkpmRz0T7onHHBNd3/5uXPzSC+LDn/sswSnH49orroyXve7i6KRtK5mcJmk396KurTaMcq5pqtLMn0eJARlsGVSZeBliD4WWTCtkqhWk/e2q4rXXXvuw37Jmx74rfVEQkbmUyZWpkDGVmXV3CgVtBXGtDH74wx+m5yodpB2Wr6CrkGMgPN3BTAr3mlhnYU36Io3KtEVakxlKGQXHrsl3HKM5KQx5yOS74qc5t/TOb1QuKEC0t7endyxLOC1DWmh9XRUUTumieDDvvOrqPXeXcFcJ8/O+gpCM+FYEN1duTdbfMmX0hUUhRRr8t3/7t8m6wXfdylBcKNj4nbgTHstLNId6WTdTYowo79Ek62Z+4s5rBRCDEdpmF154YcpSXOZV20dTxmP1jW1gUkAVFwpE9jNxk589VmUdLh/xY3mOD8vMc51KAwXRrLBz7PjblWQtC2xH8akix50LjN9h4ET7hUKyY2TdunWpDvZ7yxDnlmc9rZtzq3lMlcSH7zpmc8rjwPu2se9oZXD22Wcn+BQ8fV9FV343f3voua2N+EMIrFojCLOxQrJlgXlYTy1l1q9fn+pvWdZBfPncfiafIW58ZjsKk3gQDseC7hMqLhVgtX7wHXGmJYH93PfFiWdTHg/mL6247LLLEk0SFoV4gyfqLnK0igfLkhZYXr72LC618tCSSxeK9773vQ+PaeEVDvuFMGccpAz4k8evbWPds3tGthozb+mHOHCHD5UP+RvzMP/i3znfRzqbj7iWbmklYtLKy6TrTLZ4MN/c74TNtrL/TUcDiq0b/M68pYm2lW2oK4pjxvesr33DQ0Wuv6fLPwF6FH+cj5w3xIPwCYdtYrkTjLcrv//9+DZKwre99W3xKxQl4uP0p50ZW7bujFPo67txgzXopIEmB+DH2nnWivKhqnMgtqr4qmuJAbaVHOCdno5u+npDVKKYKMctwNX2MaxryyvliVUS4nYB/VY4nmSRx4CS1fAy+MjCf7lLGvwc94WvkvgCZQjDB/q6YlPn/QQv747SHqwQcR2YfezCGLtvOy4RbAEJD6wFwX13PxiVZOw28OycCd9YE3/z5c/HxwmgueLZz4zAyGRw8+7YN0I79BIkHkG6gxgWc6BFMG+Jr5VhnGQVrQzXhjL4uXIOeUT5SN1dPTsS8r0JBXTuOypTv+S5Cgm6Esymf/jOxS7Ofus5pcIjXjQOA8oN2qUKc92ezo4YxQWkGX45DozFz3EdmcWOde5C5+5mIyhPdE/WCncCGJvqicFA0MjkbpEKUQHBhXOkByUaUFLrFgOBqgwaZpFvoBe3ZFyWZdlVOiTYqZhbpBa0J4V7VmQJY3GcF7fu3BJ37tkeJ5afH51jtDc8+T984fMHF/sK1Zr5+8RiYEb58MTi+3cuzUkgE3g16xJ+JxaZJycJmQaT97JWOp+PZJKTqXBy8ewhgZfxkOGQsckTdypkmj+TiWBIESRpkA4uPd+M7/ObLn4tQSVr4uMf/FCMHMCUDuLTCKFpqK6JUTTO3//612IW2oJ5K1fH9l3bYPpaUzCs1U85PgWxGWZZvryE7TH7e6OTGBH6T8xGONLkaoIJQiIlriREwmxQG822nIAL9AziCyw+y3iRIEuKFXnSO/DJqi6wmyhoX8cwQUfpsK+jN/Y+uCUGxsoC/W1sWL4yZs1fH80LMelrxm2DnTcG8KHbvnETu3X0Rh0+ht1sebl9y/1x/DGro6q+BnM4BHoI7xjK8hIsIAx2Wc13WgQANRAIRAFfXoo7f5Xqg5iu/FVQ6UhjhVyYq9Bsj+PKMMxkpL9GZUUdfnhYF9TX8bwyrr3y+1Fy403xwo98OPq3PRhLsTLZfMedsXId5q7b9+JigibdzZ+dUU3ggPiTKW8nJTX6u/d0x/z2NqwYatDUY9p99jnxehQNH8Uc/7rf3B4nLlwad939mzhr/dlx4w0wsi97eXz+S1+Jk04+Mb7wqU/H817yEpRFrJ45Ses3yYRBR04me40weTPp6DDgqpBjWKbHJKOWmWaFAhltaYLmqF/60peSoOq48L22trY07mVcpS0KYQrOMt/t7e0proDCi0K+yggFFZlSLQUUwqQ773nPe9Jqv8oImUPpiOW5U4VJWBybeXx6NmUm2WtpjWPX74TDJNNpfjK6CjoywsIpg2mAOsvPdfZ98/B7x3emW9n9zOc+EzYVCdbdOspsWxe3uzQJm6u6KmTEq/F0VCYoaPpbWNyuUEFURYy4EU63DJUWq5Qw+J/w5lXFDE+GyXKs65GkXJ/id62nh7Baju1kBP48T1gn62mbPdlJOK2/gop1tv3sMx65nR9PGG0by1YJYPkZb54dAz5TuPPaWB1f+MIXUt9x1fplL3tZsnxwVV+Fm8KqVi4qwc4///xkdaJAqMIqKxnEu4f5HklyDBTPSeLHQ5zZt4XZ+AEqHixXJYd1st3lB+QBpkrZ+sUxY79X8aACT8sHXYTs3wrJ9l3hdlyYHHcqLe1jwie+bDOf+54CuoK2FiFaEZmfyg1jtTh2FJalE8XCcR731i2nt7PwIA4t/8/+7M/Srhjmn/t2dnnJ7/+uZ+EWfmEVJvkm3RbEhb8zfsWr49mU6ywOfMfke8XtZLvZ5tZPPEk3tQ7Q4sF2k39S2WVdi+ub8zr0XirkMH8sU3qkm5V8me0pjh3jH/jABxJc9hf7hEl6YbIOR1KGfci5Q1olzG3MB8JvG9iulmVdfS4OcpLWHGkfz988mrP9zf4kHqyj7ZTpnDuMaKnhvCA9/mOUVip+/H3mWWfEJ/7mk3EDCyQluCLsh26PTIqjyVh74gmx89a7YuPWTbGwoZUVe/gz2xeGyp0rFOaJxIUrAHOWK+3wKx7ZJUC+a1Rc8J6WF6XwpQTkSotZslEDKCTGsEAYZOHLLdhXzlsdpU1oD5qYm3BHiPtRIAwQt2DzQ9G2qi22btwapQjT7aetwZRhaTx4471xOXHGnvuiF8Qa+DSYzhTYEZE7Shqw9sB1oLIc97XSBbEb3rlE5QP4kZ8tl56gdFD5UAqPrC+Coy2BC8+Z+EpA9146HIv8t2U9Ur+hrrmtR4HL90wFnvTg9cHfo/STOgKVN4HD7Vv64sDOTvhyeDoCeV75L9+Ip8xaHHWlbF06xMag0nxcg0eqSmOkWss3lDsgEx1NUkCknEVuBohLaU6l1iZYB7vdZh+8fy8uLSMDKC2EU6WQdUjAe+I3fd/71uXXW34dzdWzo2n2rDhl7uIowWKlcdbsuKvrAWJhOCel0gqVmvn7hGJgRvnwhKL7dy/MSTITWycfJ3iZBRk3hYQ8OTpBHMrMSZCmS5l5zysd2bwtM0DTfZ8oEwM40YyilyVU7sjg6H7x+c9j1XyEAD/4V+FTVzW7Ooa7D8Spq4+NZceviu9hMve8Z22IbffcC/EYiXNf+ty487ZfxtrTWT1cgCk5kXqHK1jNp7dOuIMDdR0bmYgBfOsqiaPAj0TYjO2gFrUEgV0xvTRRNc4HCWyyeuD6IHlLxHQM+NwyyUA1sFeYhaHIICDkJPlqnTA50U+gTCbf6jlo2ivRZI/Hjt2YnG5Ek0rMhqiviLkoIepRpgwp1IDyerbJnLtwbrTOZuWTfCrnssqHBUUvQXmGVJSgKPD9Gggh+g2sEQowiT7xluBDEePZFvRpug/seJBwgye8B3mNDhgTJ8hJfCQ8BiaIKu4O0CMoYLDq6Ny1M7pgWmPLA1hdkA8Kj74DnZgZ7iEbMhnWMgSGk0syQlJklRa3EONzjGJR0nOgI1atWYGiANN6YFp8ypkxST0e6B6Jd33uS3HFu98RvZsJRknAyat++INYdzJ7n//4Z3HO6b8XDwz0xT3Ex6gi20ZcPvYQVNPIG7YfsyVuJ8NEQqbcmfSoMZBNfWU6nWxlmB33/paBUHBSUFDpYJAyhWdXyvWvlnF2izuZOq9l1GX2ZCq957VCrcKKgrq0R2WG+be1tSWm0G9kDqUfWVCQQZRhlm7JxEqXzMuUBU/plbQnC4CZafYd81RYUNiyPgqH5mNdpHmZHvquScuFXbt2pefCIB6kX5Yp/RReGWu/s1yZ7Vyeq9aWJ7zWWVh97oqpzLuri5/5zGfSWbwoaCgAeJi//uGf/OQn4yc/+UnC7R//8R8nywxhMHk+nBCQmTvhmSrlfMwjf1N8T2bbZLnWWYHIthLP/xWSMIlT8e3ZfuI9D+t+ONw8lnDb97NLgP1UBZlt6zznYXK1XQFfv3rbWCFYYe/rX/96CuRp33B133xURNkvFazdPvId73hHbNiwId3P/dJ6mnIfSz8e4U9x+4sT+6LjwjzEjXkaO0RFni5Otq110BVKgdD3p0pZKeLuDVrHmBQo/fb9739/XIbVgX3Xceg48X37l+1kEmeOB8e09+2D4sP+L7wq7rZu3ZrcjqQpF110UYLbHThUTJisY3E9082Dfy6//PJk/eB2vFpJ6VJg/paV6Unx+7/rtXVS4SANcexKBxy3WnzpHuV2mtI+6Ufui36jFYeKxawI8Zn38zue7SvGvFHhqMWHuLIslRgK7io+/caUx26G398eOb98/3Bn6ZLweOgGIQ22H9hWtr9l2EYZx+LOa+s6XZJ+2NZ5bKqwFFfW3faTfgqjdTNf37PcI+nb05V9JM8z3qRnlq9CxyR+tfwxuPFb3vSWeOmLX8oiyZ4E2ymnPyW27+mMY45di7FmdyxhO8jZBP+uKquO737xC7G8glhm5HFi+4kx1DmYFAjuaqGlQN8BVsUJYqnrRCVWpDVNDQQmxzqUFf5xLDl1jzVIYgnvV4yycs/7FZD6Mix4y2gHYRxgrPT0Fba+bMdVeClzzP2/vCVWwBNWlaAc6h+LRce0RWztwpwhiB3GNVan/TdujbpFC2NZ64LYv31nvPUdb4+G9nlJ8dDNvG0bN87BIsdd23A9aJ6DJekItB5BO+FHWsDK1ATKjwHihbmle0Mdu41RWXlf3RE8J76SOsizZ97Ye6k/8q64yXjPZ24V7ntxMNmzFfKH9mPVCr4WzpqDpQN9btv+GH8QC+Gx0lg1dxGLirg+49oiXattwQ0LnjlZA9dqJSYrmAAp5CpQB3lcIbVNEl6pm9YOg/3syMfZShloMikaeE+xwE9VPqQK89z6ntx+cuzv68baYSS6+g7EX37kQ7F9YA+eyO1p0RF0pN3Xcp1mzk8cBmaUD08crh9VSSoXnByc/LNp6Je//OVEhHW5kOg4AUmYnBgkfk4WiZA4sqZJTqAmJ00JuxOOE5ffSyyKic8jZnWwGImWidL5C6Hjbx+M0oLZc6JzYGcsRAA98+SnxJVf/2asXbEq5kIY99zzq7jr1w/GsewTPAd/tp1bCRhZg8nqBNvWleKzVslqGTkOQvhH2Q+5ohzNr3UlPoNmd+VqRbFwUL87DsxJEE+Ep0CQxYWHE7SWECZlbs21xBVhcvFB0w+N/JP6gUkOywTs6AiPA2HFxGuA4EBd27vYp5kYEmV1MbtlQRyLf3cDTOxPb/1FNCLk1yGYjxD5dxTfN7d0GiPAYjVBf4bQ1qqgcMugslIY7z7aSzcJXC0qMLHTd83D6MqiMSkZ0jW/OavJFp2qAzwLulQ2nRHknSirMPWrxgSwopzJEG3GAFt1DqAk6RvGLL2NlYCh0fjVtT+Odc/eEB1bNseypQvRRWxk0luFCwSBmcrtAxBwlA3GvSjFSqGsDHcQXDlUPNx6yy9jFsGNlq9YweSMcmOiItpPPD0Gtm2O89/33tjx5S/Ezvu2xe23/DzOXHdmdDy0PY5vXxF3/fQnsYRAmCWsJoh58d+DMFnDaoHwN7iakmrNj5n0qDAgIy1zKo2QUc5mxt5T2PC5rgGakrtK6srtBRdckBQJjm/Huu8eyqhKUzx87oqeY8iktYF5ynxKk6RP/pYOZeFJWiKDKj1SeSBtyky4+Tju8m/zzNfmoRDgIYO9FaHG3SI0v1ZJILzC5Kqv78gYa83hirUMswLjBgRBhSsP4RYvMtIm4bKu4sikgsPnMuAy8+bryrc+8V4LV3t7e7LAkk4a08FyFS4ULNzFQvjErUKoiiDhM8ikyRVWy870x/y8lqZmuip+p0q2qd8U5+E3GWd+qzCsAOVZnOfVcIU46/VkJuspToRLmO0Xuf72g+nqf7Sw57Y3H2Foa2tLWaqEU6h3pdrVf83mX4KFlsqm9evXp3cUcHStse1d2VfxYF+0n9q2xgv5PmbfrrSq0FNRYH+yjrab48G+fyRJHIkXx5JtnZMCluWrKPG+4+Daa69N7k25D+V3D3d2XNtn7ZsKyfZNlSjW2/nefB0HxXO9igjrYHKc20aec/91TCuMilvHigKreLGubqXrfa1/HJ+Wn78rhk/YbX/bQAFe6xHx5Q4uujZdeOGFCYdHK+TmsZIXaaynbWMdxYtbVtqWKj9UpKiAOuussxKotqV9Rljz+CuuQ6afKnLEq+8ZF0SrGenkRShicvL73F7F5+K2zu8Wn8WhShldQy655JJEv8WbOM+KW/MozkcaZ8q8XXF+h7vOY9B2EgfCJ60UZyrZxIH90+TZ8qW39ndx8Hgm2yr3P/uk5QuTO7hcccUVaVz+CKuk1170WnZ++W48gz544EBBkaZC8a1vfkt07diDgK5ivTK+wzd/cdGbYiNxp5bOXRLbdm2Cf0Jxg2n/GAL9MPyUMQjKcdGoZJFoGXxPBYqH0goEaBZnVD5oxanyoRqFw9jeLiweDnIxnF0Ac0v3Yd71uG/zpuhk8exrX/lqPIfFmLbjVkcjW5RXLIUuo98b/gluSo1NseehB+Ojl34s1p9zdrzgVf+N8lEuVBcULYHgruDdBP8MKNG5vTP27t8XA52ttNFseE50F8QY02VBt9y0fTnuErZTQTinhbx/UMhPfRG+S3bY2F7yfrosyJORRRLacx9NdOEgOcrP/cJr3R5qUNDse2BbVA7AC6Dccxu4q77x7Sjf1RMr5iyIJpQt5dwbkQfEArgUd5QJ+Pu+Enhh42SwIJa22BQ2+GDzpRJCB89YUPCVsriWFA+M2VH7NgqPShQPJdBKzJH9IsGPJqXA17tCR909NrG7ng7PK89cF+0EmbzqCvheeNMVf/D0uPXuu+K049am72f+PPEYmFE+PPE4f1Ql5snFVQpXapxg1Nw7YThpy7SYvJ8ZB4mPz6dKEnOJuwyUk0wOXmSeRzvxq3l1V4shGJXFENw3MUFc+S9fj90wQp9+zUXx1U9/Ko5pLI8Np60mcOJwrFyOf+qsOnaB6I/Tn3UWW2wOQLjZwaIS31cI0oFhlA/41tWUaWLOZDDSXyCoUCwDTk4ya4wrvfM/EV7Kz8yHgq84TKZaBqCEgI1jcVBeifYVmjWM0D3M82G+mWDy0BmDHcTJFx/y1qZYQsTk0gFwjb/dwIHR2L/xvtgCQV2O1cPwIH7dHFVaZ1DOEBPbcDVlNzZjaYC7QTXlgmNjK9RV4E/Je0x34JdJDQ21dhoCnRQQUH+Jbr6uwIoDkHhskEneA0Z/miTVTU2YhU5ijietRXkwiQsFJQE3Zru8vpiV4IGdu+KHV14RO8Fly6r2eNrzz4tNu7aAZyZpNhetkpAzCYESsqfPlKt8AKfcuPc3d8RTT9UkvYSVhb1MflX4R47H7v17Y81shLrRnbHo2FW4peyJRURpvuPWX8XTzzo7WH+Pk1euiQdQVvzmltvilGWLiUkBRpnQS1AYwWqnmB2pIjN/HjUG8lh3HGchX4ZNwcjDrfi0XJBRfOUrXxl/9Ed/lAQYhREZTFcDM42QoTQfBQaFC+mBQpkCrEKK+XoofPmN91yNy8Ku197PNCQzx1bO8WiSqXFM+lsak8v2mcH9jC+xFaWDeUnLrsds1vx9T2FQpYT5qiRtb29PAo5wSKs0RTbugvWQ8VYIUsBSEWEeMvIqHnSx8KxwrhDmd5YpTOJD+BUohEEzdeuvIsPVY5l+lcCuROd6e+1KsPn7nUofV8qlycKdj0R/GL8m8ZAZvHTjEf4UM/f5+2KcKQjm1UDb2N+2j9cZ54+Q9RNy23axnT2si3Ww/U35/HgCYpm2s31JgdBke6u0cmwoNNreKhYMFKgS56qrrkpjw/5jsEnHgP3DseY9z9bDuASOMV2R7JMm45HY3xRcc7ukB4/wxz5gXrkveG2y7bTaMC8FedvUe8YYcJyrQMjvPkLW6bbvWG8P6+1hcFSFffuofdxxLp7sO7aXdXEcWIfMA/hOvlZZYV/3e62hzEO3JF1DrLPwqQSUvtjuwpAPgcp937NjR2FS6yXbwHrp3uIYzuNrqvodybOshFOhaMqWJO985ztD0/31KJt0sREeFQ/iWYWEY714DFkH35FGmuy/4kjFi8onFZfSCmmY9EBFUXHK33vPfI4kiUPpm/RaXKocsQx3K5GGmWfGsW0kbPYV7wv7dGPMPmb/tx7STNvPfOUHhdF+Yh7Sk+Lke8W0qfjZY3md8WR9TMJrMFj7SG1NLTGv6uL1F/8JGz7gDkufM6Ck7bzm+DWxm3r89cf+Ol710ldEx1BntMJ/DU4OxsJj1kT/wDdj/yQ7GWHVIMdlkEbdKuRLSuHLxuEzBwm27UFF0yIXIzAFTCwvhXdjwae8lKCSc+fFJO8YV8KtMA0KqcWoedSwULULi9GVa4+J5fCZXbv3xr0orjt6uuOY762NNcuWxwO/ujPuv+e+aGqdHSfNXRpbb74j3vezN8Tdm++KxuPbYnLj3rSVZwMLSy4uwSwyNrGsbYDvmwNvuJs5FO1DWYF5SwEmS4FNNxK3GLVODwv30t1y8KhIwKXKB/QjdEZ/0184q3zgi4ISgjzkI5NCwtd8xuHrXuttYmptwSqYPhddvdGHoudmLF/nDJbE2sb5MY4iyDLku+1HY/DnfeO4Ppaw4AHvWU+5PE15qjwooQDdKB7+x/UItHsAejNI8HIXA3X1MMZbmcoKjgSvsMNiaMFcqEhhfm1f0h5bCNw5LE90w/XRBT86hkLpjW97SyyDF7YuM+nJwcCM8uHJwfsRl+ok5iQsoXeCkPA6MctM5dVKJ52c8sTobwWF6bTfMhp+L0PhpOX7TmZOXNMyTwr6JiiRioZyRz/3EhFLD0rivOdfEAvqS6MRgWZV+5L45/s3x+ff+6744WWfjae1L43Szl1xYH9HNK9ZHXcSoG5p25JYcsapsfnWm6Jx3myIVTn1bA7k9+jEVWMc2MoqNLmCuIwQgAZC5m4TEiCoW6KrcPuJ4c8TFjMxcAGjdA7iJMEaR2DX3UKCqFBvDuPETBif1D8d5QNVKeOdvl7MDiXiw7yHNQFzFwS5MpqaIZyNBLxsYeWoYz+4tj2I9I3A0TcOI4rCpAEXB/OqguC7AVIVWt+6BszgYM4q0ObidxET+K4B0UFiW5gXRKs0VAWELhkF4qx1B4n7oLpA/PmqkTL7ewgs2d3FlkLAzDafJVWNMU404RLM2kZQgmzZ+1Dccvstcd3dt8eb3v2/Ce+O1h8zxHEmiwq2uywhCKbuFipkMPdgO1P6E0qISSwcjjn+hOjFz06zwtmY1Y0Ad00tO3aA6d5u+mYvdnNz22Pds/CHv3cPrjMbY+CYEwjI2QUD9hA4Ho7rrv9pLHnqibzWnibsUfrWXqJLtyCoJQ029ZlJjw4D0gcFXhl+aYIrQtIImWpphubABnC76KKLUrA5BSfHt2e/k7mTrviu413BVnqQj3bazCQ9cDxlxYJWD9IaaZM0xOdZWDB/D2HK31qGyXIsQ1ojfcpKU1ftVawaT0HGVwFfQVBBSaHIupm/5fu99Vapomm2AqJbTZqXilkZdJUUviONlHH37PfSOQUd4RHGLOQIq3Xwt/cVHFQ4vOtd70o+6cJjPYU/18uVU4U08aJQmnGjYkTcKEhlvD1MixIWjvxPMW33K9urmMZLrxUKVcxYnvW0TJOwPtlJ+pr7g9e2nbjw+olIKtFs/9w3FSp1PzKApAK0W0Ias0TrFwVz31WYVOATz5p1K1gqZGc85/5pnA+tiNyVQfxbN4Os2idtN/tjFp4eqa65X/he8bv23a0oPOyn9mUVIObn78997nPpXcfPVHhMZBVcOzdat5Ex4qUswQebcb6S+dbnjq1sFZAVEbaXybM4kFYoBHu2juZl33d8OBZUPKjEU+hT0HcMmswvK3zsk7l+1tl8TAqTKgNVCPi+ZfpcmGwLadTRJttNOIXN8WE9jNlh2wuH1mAK1/YVnzvOs2WB3wl3bidhyWPaa/uQY9/kSvwrXvGK5BZjf1FxdGgqbueMj0PfKf4tfREv7hyiq411sR7SdGmo/cx87AvWxf4gzF4Xw1ycZ/G1eZjsb35n29o/bF9xIT00f8eDfc+6+/xIeMvich7ttTRM2m/ZwqcyWGsb57eXYqn0gue9IG68/sbYhIXBs1B+9dKGjeyicPfGB+IEXHo9uno7WRjCBZAeP4HXAytAaQeycWT5mkZwNYiFK/zbCLiogierwYq0BGUBIi6usj3JpN+FKLwIWDiChmGx6i4QWt02QHPH4WX6GVsDfVgEoYAwhBYNE1W41R63gK18eZ+GYcGGrSjnL4yFLeyq8uPrYkfzPcQ764rmOuY13BUaXPhhR8yzzv69NFfv+z5WQMeuZjv2WVEObEOUM9HNAhllOXZnTbKrRAvBLQc9cGiF13SbyREWeAzq7Xt1bBlfUDbAR6p4gLVDZ5IUDw5BWGi+ITOsd3Un0XrChb50k/uJJ+SxibvqLFLZ/nZr+b7d9JPVC1CAMN5vuhfLWna2YzVvcfMcLEsWxvD2fShiKqFdKGoIcl4GflHZRS1ANFfDH2ClS7HcK5SZYKFcy/GYQCk0hHu1cR762NZzHEXPBPEjJoahEyiIqvhYdBfiPsCjOPcpD4DLCRYUewi21j05FLOICn/fPQQYXbkkftmzPRYtWVjgp/l2Jj05GPit1PrklD9T6jQYkPA6ubklnpOb2nVXCz7ykY+kSUmmqpjJdMLIScZ0ugnOyd2JR99HJxwnNScttetOrIdqvHPehbMDfRiTKFbv3b1ATegIAx/iVw6h+YPnbIilK+ZHz97dcfXPr4oXn3F6XP63H4zh+zZH5f1ssbnwrOiDeMw+4aTo4pu1J54c27s648BvCJL3+8+NTbf/OpqqWXHtZkUfN4jmMs22mEDQmo6gdBhnJwzrl/zWkv2Y5FEihiCdFCIQWiksBNm9gyFlPCUAGpqFkkosA/imBOJWqbUA+VTxe5wZaYLfJcR3KIWQVVdjBYBJWinKDveinKwjLwTwcc3UUAx0j/REOTtxlNagoQUujIujsQEtNZF8S/AzW9RYB36gzAj0E0QB7kNo64LhG6HcyQNdsXTVUoJosloJMXXnD5UeJeRdSwCfJhQVw3wrQVZB4X8ZSbXC/i6lTtvvvod5riRqm2dFwzz2MkedvR9N+IhKcu7txXXltt2b4m58E9/zxtfHgQd3xf95+/vjTy/5KCZyI7Fry8YYxA9v9gnHYgFRE524jIzj2iLeuvqZlAc0jaumVkxKEnwgGEPr7JafBvWcqF+ERQfl3vADXFO6Y8O602JwH+bfzCutSxpizfyV8a/f/pd468coj/gS1bi5aKUyQjsOMHlUUGdr8//XNN34m67ejsFDGXBNxmXEZKJlTn1Hxv+yyy5LK6OOX1evZNh0udCUVpcB3zfJoCpUqECQRkgzhDPTEa99pxh288yMrnn4nUkmVFhyyvnkvDKsvpOZZd/1vrD7vcoAzbXdLlJ6p0WXQovPFf4tV6bbQ7iERSbYw/eExfwt87zzzkv4kEFXYLIctylUqLkWc3VxlU28jXRvfio5xJF0VQHevKyH8OZ6CHOmhRkvKiSERWbclGgN5+L2yvfSC4/BH8sT5pzytXDnlMtUYDjalOv6SPkIz1TJ77OCyff8bTvm6+m+Ty9O8cc+YDKfw+Vlu2c3GPu8ror2Dec3YyiIP9vZPmS/MDl2TCqq7E9+Z9721SwEWSf7nvlpsfPxj388mduruPCZ35jytxm+w8FoHXI/UxlgPzNvzcbd2tPkPd2LzFsLJhUg8gUJ+0Xk00txnM481Nxcv+l5+JJvR1BonTc3xmH4R2DQhfDd731P/NM//GPiKxRuhVflmXElFKAVxO1PKtZUsMgrGF/EAH8eKg4M/qprgDDpiuQ3WoBkvAt/7pNeFyfHmuPH8S9uxY/j0iS9Otr+Z5uJX/uB7ezY/FN2bDI+hf1QiwfLcaz4jjTR376b+21xm3md20oYbQOVFn4rvqQvlmmdfNf8Mt0SDn97Nu88DsSXv+2L0j9xZRleW39pu7RLpY58oLFIvGcfLqaNwmPKNKHwa+q/9jNhln74nS5lwp/Hgspf6Wimi/KItpn90fvF/ObhSjqS9rPPZZjFj3gTHxlXluG2qCbHmXjT6kjX10lWzs9/0fNj4bz5LL6Aa/isAeICtGFpqQuE4+Dzl/1TvOnCi2PJnMboHjoQ9276VTz3VS+Ke3/8y6hwMQmL2SqsMrWoFZ9uyz6Eq4QC/Og4Sm+u5xLcsWVea4oFMQrfNYBCaBAebhDOSAuMqrmzowW3goW1hb6joq+BPuUZVjTBMQ9LUbd9H6VvPW/9ORKHmMSdor+PRSCE8q7dO9POF3feehsuAXcSTHJvvPYD7yUYxBC7QqDUYIGoji3OYUmxnmBui+FoHmahABywjQaxEMailzaxzFLnzFr6VDXuJJQzCr9MxSAIcMADbEdP37J+DVgBuFjoYpcKgAqVJvB1xIPkJgefpC3d5GGhIzQOeRRoLh01KrB2jd8QXP222+Pe2+6IfVsIFg/P3oy7rWVUoAgax1LEmBoTxjjjXmMNykD428leLHRY8NMN1zTM+DeAfBVWzRWaZXBdpiUEPOIY74zhc9I/oSVFgbaWoNSpbaqnn+COgfJIxYuWGk6PJfSRSeo+oIsHi2hDC2vj5wN3RP+mmvjQFz4NfuBxaBWrN5OeHAzMKB+eHLwfcalZYJAhcKXFSUnT4g0bNiQtdV7ROeIMD3nRSVZi76QiwVdbLwEunnwP+aTopxYEBBRjkCsWB8IpkWcQSqujc8dO9p/fiNaYoIXsR/mLm2+IU4jc24QvwNadD8YFL3l+7PjZ9TA6S/i2EI+hEwF5Am1oReOs6Olie8iaZgI2qgTAkoHsgQrFgTYEmBNi8zVJbIYSYC04rml9oaJBMTmfM6gFEpOEXOrqhKSFhmZjakrL0Pqm/Clngh0toGEc5MEzLQCggHwAs0ZdJyh/AsJl9GOrXFGG2R5xFrRWABsCiSWBJcCw8lxXg76hgYK5F1SxlhWd9mOIq0HgzVHy29uxK8qZvKS/vl/L+w3goBQFxDBWEVJHlSsWZ4BIoKJYCytcL8a1gZkwdmHK99CejdHNu9X0lQUr2mP2shXxyU9/Lu68d3ucQZktMEQP3rOV44G4458vjxNf/epYMG9O9I1hXrjjwaiZPzeq3c7UilFSOXBMGBHTRHlizqOUmcrgS+7ZPFhuVG98MTGhG8W3Dy4sRmWwasqjZX5T7LtrW/QM9qT7Mak/M+jkKGci0eXlYO6FMmb+/icMyHjJ2MqgyhQqBCgc5VVCn8m0X4biQQZN+iBzaMA3V/ZcQfSeY9z3PGRusyD9nwqc4kZmJPPZVzNzL/NoGaZ87XvCKrMt/K6iScdMMuwy0jK1b3vb2xL9Meq9ATD9LeMiPfI785MmZQbV783bfD18lsuWMbVMcSBs+uqbr0y2TK7f+b4rya52K2D6Wxx5FjeWnfP2/kx6ZAwU94VHfuvxe3Jo+bkf5BJtc4Uk+8VljBFN4hWKVRq4mqy1jX3QcZb7cv7We7a/fcFkXubjirx9xFV7V7rf+ta3pkCA9p0ssPudc6h9aqqUyxRu+7vjOc/J1k1h2XvGa3A1XqHe5P1UVyeGnLwsDMGHz13MC028q9BThWCkQKTvNyOBeak//hDh+0tf+GLawlPFQVYqKow79iwj0xrxpGWH1lWukOsOctpppyUrEhUP1t3dB7QEccyp+MuKnAzioec8xnW9MH+VL+vXr0919tmh7Xvo99P9tr1UEpqs20UXXZR2+fBamiCNFK8m29l2k87YBkeShM82NL8c7Fa6pvJBfIg7k/3APIvb2/7i/eI+Kwzm6T2Fb9tBRYCBf3Nf0v1L3HgcbRKeXGf7t8ol+7d0U4sb28/xkxV2lifcJr872mRdrad8rngXBs/W37azP+jG5hi4/PLL0zP7l7ukrEZhvAClmmOhmXmuphrlOvhLSgeZDODc390Rr/ijl8frL3wVwSNrmHe64rb77ogNJ56arB9cgBpnUcTx4ZxRAy9jvdyac5z4XCoZxhDmx3GnGOc8e8G8qGVRqIKyhhDGsVXAGoLzCHG3sDJQYa7bg7EJKqhTL4od65LamHFnss6FdnYxDCtQXFgr7OsoTnTXmM3o7IVnlAdkv3QG+1J4RLYcJXBidwduA2ylLu/V2FjP7g9YLiOom+coMBp4sQQfWuN2GfuhDOsMx3uZ/CznBAfw1NFfpWrlLJol6gbrRggGDhacDOzIwlQJC4nNtfAfWBuUA0uJTCqxMVKQCa1kUSrc+m/fgNffRWBzAjCjKFjRMj/m1GHhwLcjWCyUYPEwabvC65VaP3BTBt4qEq/ubhdgUACAP8U+AyMuR5WjseFRysPyx4GHCiYFieXK4wv54Agx1mDk3dYUgFIdJ1iMm3C7+aoSXI1x31o+P6658yaUGux4cc5ZcfZ5z0nB3+uloaVHP4YoeCY9CgxMPTM+igxnPnlsMeDkozbaVUEZdlcF9bU0JUJylMVl7bWadAUSlQ8S+sxoTZW9Gt0SfOYkziUQ2zICLqYEcbv88q+kbYsGhg/EBS8+Oz7zN38X//Ced8eN3/hmnGSsgD78SdGOjkJUxscPRA+a2R2YrLUee0xUUOe7H9zK5N1K8B6FbCZpGSuIUQUEDluEYA2Uu4UVnoLkLzC/hdZLSC1/C8xZ4dp3Ck/SmWsnHVXT5iQBT1pqXlFJ7Ksl5VDzVFHpGnnBk+hDl8y7IOhlaHTNQls71kqRvJhYIHwTaGUlunv27ouqpoaox2VhyPwJ7mgoy97+YRQS3YW80PSO4hg32NsXQ+X47xGkRwLfg5lZ6+zWVL28c8jDVVIRwcQ5jDlaVW01LgzkX8ZOBbxQynab/bs6Yvf2jvj1T+6JasB64TOfFRNMhAdY/WqqrojrfnJVnHjuc4ggOCdq2H969+49bIlUEs3LlkQ3SqR+AmXORqs8hKsJtyXrCZ/iUYxq5iZaBrDuqMPvcpLJZUhzNyY7/frKcTFZsXpV7P7Jj+NAL0GC6CPMrIX2IAMjFYPZmTQNBmQ4c4T+zMgqMBvUzDGrybAmxDKRKiYUBmTMNBU/lDmUQS4W4Kcp+j89lt5k5tiHjheZ7HxPpjQzpj73fWFXASJjZ9kKJDKUMrYy5+3t7YneqJhQIFQ4sJ4y6jLX5pfpnOWZpE0elmsdPftOLtuzcHmYl3TTJI58T5yalwKkzGJxyrQvv1f8bOb6vzYGcv/I/UVoFZ6y4s5dSbRMcKVeAc7VdncrsZ/YN+1v9qWcHC/2JfPNedovVeDZpxS4HXMKh+5CoDLCa4Up+6XnR1ocyLBm4dP+bFIIy/1YocpxoRJEi0fz9HBM5dV5/c+nSr5XjsDgkYQrfvcjWAnrblZu12Lt47gwdoXPFTwt/1CLSpV18goqHbQS8p3rrrsuuTxdeOGFCQ9u3WleKh7Eh5ZE0yXrr0LFOolX2+rFL37xwzic7vvpnruqL9wqPe0LxrzREkr3G8vUssT2z4qB4vY6Ulppne074iW7sJhfbmPP9qvct3Jfyvd813Y1KXDncm078/a3PKCuYO4GorWF3+Z+Mh0OpnpuexbvKiJtliYbQLd4m+JMi4uV1rl+U+U/3bNMZ3OdrX/GhfUTHg/HmrFVhM3+9cIXvjBaod3yYuKpmsWMxJjwjS7AhZmCWN8qEHn26gsviu9/+WsxV78LeLod8EEK+jJXLuaIT/tiY31D1NYVdkMyj7JBVhfirIYAAEAASURBVM7hS3c9tB0+pjcGuJ6/eBHBstnemgUkI0A6cq2H+EhtS17ueCFPPI4rRAkwWRe4xdSWuf0tuxo+qWewL6pRDLYgNLuTxWyUCr0I1Vt374gbfvqzeFr1syJW4i6F5ewA26rrVmDQSwx/E388pgsxZSYaAhzikqxxUR5jy3cCYvK71EPcHJz/jDcmyvZsx3IX2qD7q4frbCXJvwSlmAwe2oyKalw3gC2lHR1x3823xG1Y4ex+aBu7iLCjWx+uE1hDNLBoWM/CYy1KivHRIQJuEhgSpUkqGyVEKbwyTD/MH2In/HFiLKmvZ12hc5sBZILfe537O5KbxTBljMGTlqD0UNkCm5mCuLM6hpUE7tLkJw+NnVNyjxmDDx9Gq+HWpDt7OuOhfbtjx+je+M5HP5L6RDU8sDuSlGChPJOeHAzMKB+eHLwfcakSYwm+gaYMhOWE7j0JjSt3R5skRjIdMkoyUiaJf2bu86RwuHIgtRCM8hiE0OhaMIvdKsZ6CLyD2ds/wyzNbiEgUudoPOus9fHDL2+NW6+/KdYsWBI3fPf7cSrbCbUuWhod27fHMJSkD+LRi+nUKlcpIOyb77wjGtFqj0NsykaZHiCCxl7QRA4ylgRvBfKRCf3fJFsc/E7p4ZMCiUQTYsa/JEJrXqAozU81wgbmAQXp7G2zUPFQkLgL7htJyuYD1SBquv3vS1pHjELkUkAfqSFEEBoPgeWPGl8miI59PbF0wcK0/WbHgd7Y292L2WsH2trSZLbXylaibm05icsG3g1MIrjBEbm4gUjH8xfVo5VH4+tMohLGeBUAqJrDdjM4z/ade2IpPsZVCnLNBI4i3w4sJm669c742U33RBMy/++vWx5r8TX8+c9ujNlon0865dTYcj8WED//cSzDbLaMYKB1TDxDxHYY6S1sqTXJxGVVPNQxi9/CpGnlEwKwAsHnFQ19a0NzlGFyWOJEo6kfH9WwOtBCYKQDAyhU1KgnuPmUChoUU628uXrMpKkx4FjM49T2V0C4+uqr0yqk19IEGWrNsS+55JIkGDmGZdr8VnohgybzkRk7mRWZfcf+o0nCkZktaYTlmH9O/jZZtlZVMuUy+TKxCjLGdsgKT+/reiETrFCgAKdwpyCShTPzsjyTuMiMlAqEfC/fF57EgPGewoRCpMk6e/hbeIRFIUyceC2sXlum8Oc6pI9n/hwWAwWacNhH6WZus0d+4+ieTDU/mbPCmwolFQ4KcLpR6LJo29rmCifC6Hu2u/n5vsnf+dr79jn7qn3IZ86ZPndVWgH6BtwiXGX3nkKvY65YmE2ZHvyT8XboWZjMX5jsowpdughocq8AvWHDhgSrcCSYXe2dItXVoBjmOT0/vZ/xkc6scFonV7szHnP9hSHfs57CYp2FwXqqxDn11FMTHfI98flXf/VXaWw7jhWQrf+RJMe8iyyORb/JVhNH8u1075iv7aFrjJYOBpR05wgVD26VKh5NKiiKk/WxvtMl28/6q0BQWeQ3efcc+4D9SxwXH+bpe9Ia29nvfW6y3Ix3FU/mb9u74KQFgFav0lPLsF2OFMcp88P8sT2lh8IqTFq1SJedV4zjoQWE9z1MGV/S3XzvMNn+TrfynORHXucxYd83sKTzm22m4sUgsSohxHcNArtSqMJzThO0tW4GsBgg2R3FKmL33j3xl5d8ML562edwi1gY23buiPUnnxq/ufqmaKmkzVghz/3d9pDdqmNclTbjvojr6r5OFnL274uuPfsKY4hxoxuTLgulKiiZN2w/2842GcGdwV29yqlL4iPtIyg8ihUAwpt2zjAuGLxvClBZyphGIBbHq1aujB54p59f/WPiis2KtfSRqKvC6qIW61jiUbDN+9BeYqK0NssaUjYjnPKF37p403P9fPp3gX1L23qO9KLggwftg96VolxwnEIayIADZUayXtaC2QNLA5i6GH1ga2y++97Y8eBD0QkOBuBj5QmXEoS9mrrVzm1KO3+ogOjDUmOIOBZ1KiFQzqT2pO4qHFzIKyzKwe/C/0mXJmk/+W0VQOo6tPIV3HHaVxeNDhbv8CNJ8BjrIVk/8GEpfK6WIVXwrQZLH8Lqw7gb/ShiximLneajjwpVzmmJe26/J7Yd2BeL5rRF66qV0dWzLxqrWXTDyngmPXkY+O2offJgmCl5CgwoQKh8cKXGreQk+E4Mrn46sT5a4SEXmb+XeBabSDoByvxPNblBplnFR86uacTn6kAitA76SQb/vRs3oYxoiOef+9yoZ7V/FtrT239xa8xZ1kbsgEIsgahvSQK8rhMK8LWzWmLW4kVYQAzERuJEzOrqiKX48pUxG0xiGeFKfyUEVaG7XPcKiJDBCyXiZAAkUCEvueIL/kLIpEzpF7/Te+l2folPJHX+5Jw+KeRrPAd9yCakjIkqSiTJlZUm76X7kGBX+0u4l0zb8E1To6upWTqo11wjXuPf1oFSZt8BfG2JedBEwKGm2XMwYyuN+x64h4mLFWQmsKqGFhQTw9HN1kpqnOfPweRxpIt6MztQdoa0AK3AYriwmC0IqzAx7x7AVBCfWawojB9Z3oHJG03y9LbZKB9Oi5FtO6KKiW3JsuWxCD+8ssVzY9umu6MLXJ8MQ96MhUVXT1f0wgBGXX2aOMScBEIlj5NNKpfJAaQmfDlnYRCHhEkAJtq6FJeNftqpnHgawyh5Hty5nQzADZmUJOUM3/KR2z+hpE4aebKYSdNgIDNj0gKFAK2TLr744vSV92RKtSjwmUK8zx27MjGZkZUxkmH0tzTE8Z7H/jTFP/w4MWa2/8GU4ZIR9DBP7ynYmBTmFb68JywqO4RPRerlmNBKWzT1/sxnPpO2iZTZVvGgIOcqn3UwT49ctnn5O9cr38/v+dx7HjJfmgt71j/aZ9bdZ+JD3OX8vJ/zzHkkJu5gXWdO/29iwD5ov9N3XSHLFV3dk1QSKMyYHBf2X/uAbe9h23vO93Lt7SMKmfZn+6fvuVKvZeK3vvWtFPjUewq7CrqWnfPMfdRzTlmAzOPVb1W8eXZ82E/zODKvt7zlLUmINs+UlDymSCNjzJvA3IEApXBfz3isZAVSq6MqBDPjQZhOOumkJIDKU+Tk+FB48DuFXbfBzIpBXVeso4E7pT3GZnFc5QUR46go9BcLljnf4rP127p1a6JZtpE0zGT9pCPTfV+c1+Guhd1FlWuvvTYpSxRic0DMz3/+8wnPwm2bqPgxiXv7Q/59uHyL70nj/F6+TDce+TW33FTxYNvlZJ1y2xfTmkyHxUVWutofpIO6hLiVr/iUzmupIb5Mwni0yf5n+SpjbFvhVdm1fv361M8U/m0H+7zKmwy/bXuk+JkORsef+WbanPucQSWNM2IAZdvQ/uECnONAGPfTp7VA0LpA3s14AcYDUJAlw9QfO4ghNm/uvLRTwnEr10bP5m1x5TVXxf/664/Hgf/zRQTV5hTjwPhe1qmTvjzE4lktY6+Kvj/CPQNCamHU3d9LnAR2Otu5m53WCKiM1WkDCyxNrXPS+xP0H3FSCq/jmGsEZ52UrwJC6wc6NUcBG2l+AtJ+xmdVA/M0QS7rSnHlgDGqJI/lxFJwh4a99N/9D+6Iu1zxZ4FnycrlUbtwPnywljVj0Y8CQoE+0QP68STv8SCxuvJsXXfvimqE7BoXGRjvqNdpYxQSuhuwyBW7sQrERYI94SGEhORk0SmtzyHcy/f+4NOXpW0uFfRr4C3nllTHAK7HA339xGxgG+2mxiB8V7D0lJQX47jpwl0QCJJYDpSb2hT4JuEDDbw5Ab/tolXalQ5UeO1imqkwPpi/qcMo8Azhht3b1V2IuYZiQ+WG8dfkhOEgE19qsbL4oyyAGvNjiGAVpdR1lBgYfaXG7BiI/RND0cmucv/095+NAYLDz2ptSTRtditWj4WiU/kzf55YDBRmnie2zJnSfgcMOJFJqAzuJIGWuKmtPJKJ/UiKkdAbQdhyZEA0U86rNZY7VZII9EEk6gg2WUbcggPskVyFxriZSbeOoxPlwZ//r3fFXdf/PJa2zIsVEPQ7br4tzjlhXdQSMGfX5i3I/pAeqEcfE0rNfFfuS+LXmzbGHVseigE0vH/04pdSfxhBtMlqQyeIz5CYBYiQJMitIdP2OglUKJGKAp4oLpuMzeC/RGVUPnidzlxRP5mAJFr7Or+N9msesAmcFfqd2JLETGbcV+kBcVQg97txlR7Ar2+dgra+dqWamEGoobxRD5PaARHtRqlQgS/cwnkLcUmoQ8EwEPvwRyxFKdNIxOVm3isH1kEmNDffHGQS2L1nf9JyJ3gAWzzwN8GjAG8961pa2YFjJA6gOOijnEq2Y/q/7L0JnJ5XVfh/Zn1nz8xksm8zSbd0obSopVikhL1QNlH8IWCpIGURARU+KiAVRUAQ/4r84Kcii6xWEFGWSrGlJVRaSmm6pc2eZp1JMvu+/L/f+85tX4dkJm1oWuzc5JnneZ/lLufee+45556lHMS/rLohzm+tiVOXr4klcP93br4He7xWQpk2xd4td6KZwIJKX917x6Y487zzo5oFrQnC4wDlS5TWE0VDJ0S2E/FBkkgL8SToSYuoMIY4Z0FUJa+gYyE0PvbT54tqmpM5xn/fuDEaWJwKh/qLiy/5uQDb53QkX8+nuSDgGM1EnotzIjL4SIZHYaHMvGYW2SSjdA6XEqcSthLVJvFIJiLnmuPpgxl/SuuRH4lHct08Z6bB/MUnlv9P//RPSfCgTbTmIb//+7+fbK4lKrPdtcyCjI3J72xXLs86e11a/3ydn1meh+V5ZAbAee47JvOQyZLoFe+VJr/N9bcN/p5PP7sQ0FeCzIrCAhktd+vd6de/gCnPCfs6jw8J5qMlx1Mef74jo+bclDGSUTcsrONVUx4FaQrQZCbzN+bpdWkq/Z3HsnWyLBlx6y7DlZgaxq/hKPM3MoXV4OrZUjVmkY5g87NuMsgNaKVZlnNDEwzzVlAiTSHTKzNq3s4Nz2l3lDwUrujjQu0Ro+jo/C9rL6lNIlytrwIIr803CxOOVUfnoLCSmfzOd76TmBXfFbbir4xHjvX9XPethzjF9qlhocaVbXrrW9+a4Gj5CnlK8YBzPo+LufJPfUBd7RP9VhgdxTI157EN5lV6mJ/vmr9nD/tG/OQh7IWb3zpmhZ9+SnzW3t6equPZ708UNmamUNZk/iaZfetkX4h/bYuCOgV3jg+fOfYdJ9471lxJmR3nH/O0fM/2ueW4uaZpnuvbDoQtjlfH20UXXZTKdpypWTsqE84/6TxnliYGbnRo/mn0BuE5AoPvrvslz780PvqX74vVTYvijv/8Vqx//ONi4JY9UTHOfAeek+ywD4yjFcCcamIDph6atodoFw3Mg8XNbIwhTDgCw61GQvfBLujb7minjxpbilpURliwDkaIsC3Sf/alwgfnoKSlGqD2nWNCvysDCDTqMbMYZte+vhqfE9RXPNUEjbQKjdmnPukiGPUgiti9MTCGL4bDaNKuW0uZC6JApLVCQboTzT6cOaZC1FZQACFe4H91P5tBhrRQrQHNVKQC3LSvqRfzgJ0iQmSirUCUinvuJnz8vVti7+77orvzUIwODsVLXvAi6NT90YVPh15o/SqEMA3ApQO6cyEaGb0IVxQUTBBtoxETjFZo+FraPMI9/WY0N9Qn/xRuSE4ogLBfFEIIKFLy+QCsAFHqY/0/TNKGIYQbfZiMGO2CoBVJIKIARJo09RX9LRydf2oOj0zBH/CwGgfvlYtbYqhApBJo7vuIyHbfYHe85PJXxIWXXgJsCNuJlpOCFCZe2jhMFZn/c9IhcPRV9qRXY77AY0HACeaiKXGuGlpG+qoJitiUSJ9oUrrtAmycbhcTyxTZu7jMnlQnw4stL8ksN8BUD7L7fsstt6BlVRkdS1bE8paFcSshHV/89GfHv6Iy+MLzfyH2wAiff+ZZsfP2u2IphFs5GgO92GWtaGqOPoQMP773ntiHn6ZewiX9GjZxIomKYZAXTP6EZhZIV40IIbatAJlOirGS5gOIlXMSJiSDARYzEbFvTgsepmUT6Vsd3Bh5oZx8tS8rpqLgocjou8NaLEcBhBoIhs7UppDVI5Ujo6/wROFDOkCwZSBaFx69A/dC3Awgja9Get6C6QPuOeO2TXfF7cR23o+joWdd+gzs5tAcYdnai7djfTacuu5UHPxMxN7t29I6Ylm5TIBB2S5eyvfLcYiEYyQWF8N/NiLImMT8ZYSx0Yjd3lnAvxU/EJMKMajHQna7YAOjd3IEb8b0LT46qifGY982d5pXJdOJKtT5ylgIy2ln36FeFhKcX7o4ABwX87SoslC41LsoViO1nwTpq/UwjibHwb7uWH4aZibsSNxxwzXRgIZHNfZ1KQk3iQMWixRphJvTcqDi8/m/PwEBGYa8G5nPWaggkaawQSJNRsd33cHq6OhIc1jGwHktnpAI8zon88jzPN872lkiyT7Ph3hhZsqEo/fNVwbH8iSeZVIkYN0RdKfRNrj7bHhMQ/TtQ4VY3KZAQo0NGTlDaNoey86C0Jll5t8S7ibPpUR+rncpDpOo8z0Je2GRCWffzd/bvkyI5zLmz8eGQIb/sd442ng51rsP5b59Z5rZ9/meGoMKBRyT+kFRQ+HKK69Mu8qORY/SMVI6J8xTJifPGwldnzt+TLbd9djnMkVqBjh2VROXYXPO5DEmHDwS/kxfF//k5/ns3TzXXNst753vfGcSYlj/0nmrwGMR+PV4kjjA8m2DtIP1VrV843XXJ2GJ99WGkOlznjgHbKeHmg2ejZhjmTLD733ve1PbrKuhbU0KKZzPbmYoQBTmc6WMyzyLu1T/ty6Wl/t2rjxme24Ujo2YiVj3l7/85fe35Q//8A9T/qX9YX/abuF0vIy9/SPezYIa/WBkvJzrZTt8z7N55+Q9x5dJXGlKzCpn8ad5CgffU0BjSFivc/LZiSbHgWNPvGvfi3dtu2ZKJueGvh8UdOe62gYP21k6bh9KXczDdgh34W8d1FbTRMq1Q9MP1zOjWzivTL4jbPoG+qMJBliYCNVULzc2qBvkWErSL7v37Ip1K1bHJS+4NG78z/+KRkJBvuu974n/946/iP+6aUdUwuyWQf8lepCv1J4YwLTAnXfTZBWRFDAhMApEI+YE+h7oh04aGR+O7i42kICXbRAWhlI3xKUaE9bHayZ0UQDBKQsfdIo5Bt3az458Q5u+XQ5HFXm43u1FiOUGUAXfr2GzSiZ+GK/ttWwilfcOx767tkQ3TP2iNSujsX05eUNfkXcyT2B+TrEJqAYskoyoRMM1jrBGHkIDY3dX0nAYYLwe6uyCvuuOG6++DuEL6x9tlsZ0Y6iFspcvXolCa2VsunZjVEPfLsL8ZMW6tbEAnxjjtG2EMqa6B2JpQzNCfK5pjxoWddDyldLp9KdmJ0a5MDSpkToUekxynoL+U+OBCZEib0zRzoTzOEtuT2JCMYL2iVoPll0N3amCsocbf1PQpva5mi5pg4zGC7taeIUKoo5MLWohQMih2Nl5OLb2HIgRQs5f8ftviaFB6Fmcghp9bxmmYcMIOGoQwCaewI6eTycVAvPCh5MK7gdfmAuWxLmLvgSNi5ALlYcS/RNNLvQumCJK7fskpFwQTC4IcxEANQgfenDC0wOydvf+AN61P/PZzxCt4lBcdvnl8bEPfTguxl5x5803RRMM8gAIb8nCRbHllh/H2eeeB5JHbQw/AdFzCPu1NrQGcMBDfgS6wGGNiL9oK2a4HuMPKyMAJEk1iyWdekssiHmtqxJdDsL3gJETc662hBzulEIJXkukqhfkBcpDVgEWVKNBzGbyBd7nTvpRAaJMjD7MPi+C7KZhQiWUc1fhBMg8rIOLRaoL50nq5f0xVMX0elzT2IKUN2ITi+p3rt8YBzq7o2nhgvi7f/h8nH1OB6ptQ3HP7ftjfUdTXP6yX4+lLKpK1pctRA3VhTFVy4YX62G/WFVlK5O0rZyFaRLBzMARYk0D4xqicLS3GcpwLCqQYK+AyB4mKkbZSG087oy1yVfDLqTbi/DTcQgbyNUIPsrOOB2zQrwqi+BZNPtZpOoxGUmCDxfQBBNPaeVQzoPwh5BgLAa1OhJC8KLtXVMLPiCWLY1BFqXqWmwip8dRyse+4n8VZ+s/n2aHgHPQVEp0yjxIpEgkKpDMjsHEDTL5n/70p5NjWrULJOic2y7uXmfmRULJ7zPxf6xaWK7f5jxmvuc4dPcwE/EShtZJPKLttzulEo0SuTIjhubT1ELmxKQqr0nbY5N1VP1XIlzcZLIM6+GzUjj4rJRx9LmptK7Cyh1eUz6nH/zxffMWxkcjon02n2aHwFzj56fBIM1Wg1y+fTXz8DvLVzBgZAbfVfDgOMzjL48Z33W8eTimHBOug6XjzfvmkRlTx/zevXvTTv/rX//6NO513PjLv/zLiTm67bbbUghK8zblOVL8Vfzr3HHsydhlJsxry7E91lP/Ls53tR58391w8yod+6V5ll5rSlfHumw7LSfPe+eX3yv0s51f+9rX4qMf/WhiQs1bXOJclumU1tiGgFqG0O9t3xvf+MbYsWNH/OZv/ub9GyDmJfNq3n5fqk1QWqeZ17ZboYPt9mz5Ge/NfPfB/rbd4hOTvmYUkKiZIWwV7mSG2ucKEWT6rU8WAnh/tiQMHQN+47XjRSGOfaQwxevStpTiJuvgM8/W0z63f4W3cFB4LDwVDPj7sssuS7BR2Jw1xWar2/E8s6wkiOKsCY1zw3rkMaBwLmtH+F4ec8LOsXCiSbpWvCwchL8bbY41I1po1iM83/72tycHk5YnPm9vb0/FDhBiUdh5qPmgH4BMonCTbZZJfE4NxCoED8NoP5x/0ZPiyj//s3jB854eiwP/Ciyt4+6aJ7qOaBf0YR2ao7iKiHFMX/VdtnrlqpT/YDdMPTSLviSqoB/r1BjA5Pa+7TsRDgAX1jthUs/4aYTpH6kcS8y4MPO7ZHYxTfMUKbci5AxXXoODyzE2gcqhn+oZN1M4cpTxVvNCQaBmGApP6hA4qDGwZfs2NFT2Jc2EO9CIrkcLooFyB/r6Y//efWgjQP8hQFATYZzdfx2X9+PPy/CVzU0LktDROT9GCM8WYqJXSbdiKiv9qvChir7wDOUd605Zn8xQZPQnMB3uxVG8jiyFr34s5BTqYPo133Iu7WMulPF988LWWIrpiL4rKSCZXExxruAwIgegSF1l/7oxKL2dHElCFU5BM1vvEbSDa4FzFf1h9AsFRPbqOGeogSTIcTymcKJ0x0QTNUazdwgnkofov+3dB2Mbmg/rf+G8WLCCkLhDmD3DbyxbvYr+dSw/sBlT7I35vycTAieOPU5mbR+DZeWFKy/kpWqMLkpzJReRnETSptJ7LpAunj6TSVBNNL/jApzLTzdn/BGveDQ5iTEV7WFCr1qxND7+sY/G+aefGrf/8KbY8NL/E+Mgv3EYYpQ9YxKEVwbCFUHdR7ktRFTYBfO7/pyzE7O6uAHkza45r8WS5Y3RikBiH9LlZhCdSHwcRrce6WUM4m9imLjrSKFrUfk/dJj8kcKCphDUDLLLvwTvxDit4x0dEFWhltaGfd7CthYY9vHYu4+Y5fftZcuhDAZ8YWp3P5L0tjaJrTriJfdhAjdM+8WSCiBkloUliFQ4chjxYSxt3ReFA6JGIazYw7f954JSw4LmwtE7NBbbtm+PH+8jygXvLZFBayok5nHHlnupfyRiI+0AHdhfDN2FT4YKpL8Wk0w+kpClyJBZamo/0S3AxQgXhlFZG08qgw1Iviupo0ygviXqEfCUNdRgGlEWvYcOJEeZLU1406a777pjU5z/2suJf9gbRw7hmOfCJ8XOzffGmjPPihFgWYEE3HGgEKGKLQUXiymk9vrAGFIKTf1izerkmOkMiJi774WgHToYv/6Kl8fHv/WfaaUpQwgxOQBc9EvBtSqBD4xMgPEzmkrn0kNpQmawzedoh0SthIIMj3NThkAix/sSNhK3Mvve18P8F7/4xUS0uTtpDHv7zV0jCXAJX8euxKWLvnlmRsq6Wxfz9Lnv+sxyTL6fDwllD/OSOLVeEpASzppQyOz5ne1Rw0HGpr29Pb7yla8kMwvHtwR0FpqYv0SwyfpmnJPLNp/S++nFo/zJ35U+milwKH0m4ZLmMjfzufT58Vw/1O9y3rbtkUxz1T/v6sqUZMbMnXD7Wjt0x4trktpuahUIU73+K0x6xStekZpmeEZ3oFWhVlPH5O54R0fHnHCfCz6OUeeHY0VGJq+TMjGaVjjOHFtqJXzyk59MZUskO5Ydw6Xj3zzymPPFmb+tS+n7MkPOP2HoXHvTm94UO2DIZbydo9nPSCq05E8pzPO4N2/r4xh2/n3kIx9JDhz97OKLL07zyqg2CiFsr0yYuH2u1LIAp5WdBzDh25+0EtaCB55zyXNSGTVovjlfhZtCGZNaSrYx+3+yLPvU/lL4YZvFDbZT+BjSNzPqai4J29wPtqW0rUerq/3lLrvjRaGp+MSxJm3j2CqlQYSLeeYx4Rgs7a+j5e/72UzVutg3apD4nfmZf66jZZvy73w+Wr75nvNDAZGCF81jxG1GIjKZX85DmOWU7/lbeFpHmUznl21zfgkX87K+agLY745ZN5wUPPj+8fR/LvNYZ/O0Ph7f/OY301wWPlmLZf369amOrg1ZCJHrfaw8S+/nviq9V3qdx5nl60hSOOrXRJg4N3SirANS83FsCS/f9bdaBO7OQ5JwX/qInD1SYs2ALmnC1BUXlJgnVccR4PiEZzwtPv+pq+KNv3F53HLX7TGFKcK+XXvjlFVrYmlLW2xDG7caWup0fGNN6XSRjRg1P2XM3fZxI8jdeaNCyJzrg6APJ4sT9WjrUN4hzBMMxSmt2ovASFoVCLMJJdOMdgGVVVDRiDlqZWNdMguwf4XDGLTsEdby5fo5M28P6T7Kd+fM0JXSsouJKtGCJu3I8HicQmjLFL4SVYLGynr8iS2LsbrWxMgrgDi4bz/0+YIYwrRE2rAwhuk2gDKiWjlCg2okAZo5KFAQjjXQyXVsqBWYHwoDkpPHUYRRwAH5QmpjGRoMChsKvDswOphMLMaJ0mbbDOVbhf+K2mlBSSXXY2yKuRE1io+JSb41TGgylgEm69aujW13bsa/5USc0rEOInYsNt2+OXbfs5X2FJKZB1gk9YMaKWpYpP6nLMUjdWyeHejujClCgpahfTsIXbrt4N740da7oxsTi8NjQ/Huv/hzTJ5rEcIcjLWrVjvBE45pW17c8CiOl/m/JxsC88KHkw3xR1l5Ek8SEgogMtPhQinCK10wj1ZtyWbYzrhvDwgTocMhkOiWLXuifeWyWL6oNW67YWOsfO3rYmrPvqjGBqyNXfQ6FhVVysrwVDyGJNLd8+ZWdiBwGNPKbn8/TP85Z58VX/72LYQ9aogFIO997PZ3dx+ONupUyU57/wjOFLF/06njKOe+rsNIlqviMNLpltbFqPXjZAw1gxEWkdXrTosj3T1xmB2g+w4ciiNIsw1vNFVVF4uWr44yJKSZqDFkpMSWsIDVYld2afRgRmByTUvhJUFcaRGiLmo+sCa4OhSfFdeI6Xvpi0RATeL4Zgp1tGp8Y5x/3rlIhYkuQYSIdWdARIz1x513bYof3bwjVi4pj5e8+EVRgIjrQZX1vq1bYsUiIoZQejosx2z5xWW6roZQ9HocTYVRooXoabkarYcqBDy1aDFUQATrBBO3wEkCPUHMUm0TWXHwV4HgqFFv4Eh6+nvozPJYcdqpCCH60sIyiARdsxIJlDQmUtnFxTCNj1QPQx+BRhgzEs8SXOvWrY0DdZNxN8RTJhSsdbkUgqL76bpzeswniaycEpHBj3wWdjJRWSiogKGjoyO9LsEiMagTMol2mSuJdYnVvFNmaEEJWDWaVDl2x1KCVWYip1IiVoLcfs5MkHXLdcnvzzxbPwUbqlurxbBhw4ZkGy4zplmFxKRM6a/92q8lAYWMhTjHw2uZtPn06IVAZuZlBGQqHT+ZYdCcQYZTD/R/93d/l/pTAYNMlGPXb1/wghfcv/uvsOl+XALSknGbTTh0PFARd2fBiOPa384BmRQZSzWBZA7dSdWsUPyuBqFprvXteMq3rZZnO5xrzkthpeDDQzgcT8pzz3etl8ymzJZO9xQquvOtkM/22QeWkZh+mKHZUjc7fQqH2hDi+731y/AZg/i2L8Up+kQwWQ/zt58sMzPkws/2yIQKW5P9a/+X4hOvPY633faH/gUcJ2p4mJ/lm8RDwiAz5eIi22/5Xh9P/ymYlZE2KYgSp+m427oLi9LNnPTSg/xj/U2f+cxnkgapuNowkCbrPtf4zrDM8BLu3ssCIM0O7Gf7xWf2l/PG/s9zKRX2EP8oxDIvx5nwF6bW27PzSnh5HA3W1nmu9WGualmWfln0+fGxj30swUvBm2NIfPG0pz0tjU/rYHnCJsPKsTBXGpnEaSkat51o1i52rYH0uehpT40m5sP7/9+H48Mv/yNCMFbFAQQIfWgHSPepyu8caYahHREW0jnQRinsOucKjuRMESbaWEuGgx8bQPt34lByzqi2p+/CKsfZj0fY6rcchtEclkaDFj44uD/GD7LWL3CuSF8ifJSilDTjUOhgPRR6pMS1whYFEvpdSAIRBAeLEC4qkEiRLjClncLXlxlMITBQcFLTPBGjBRj/Omg8fvutNKNtEhblEOAjaBkMTuMWhSpkCF3uIY1Z1MpRg7hqvBgJyj6fQlNjEnNfyTn9nFXRX0UTC4RBaCvr94ydKvwugLNsArCqBCaTtIfPKd0NrEi+JJox5YDyiH40cXv2YfaFiYm/db5eXkNbJVSn8dwE9eFXKtfv99Kv684+I66/+8fsYKjldGZ8Z+PVcdOu26JywcJ49gsvjWb8UDhSrJN9grILPuChgZy70Mnz6ZGBgMNiPj2GIeCi5gItUncnIS82eVGcDTTMYXbXmb8gO/dHG5GE/t+/+atYf+raaGWnHf2EWASjP4K0XuHDclS+akE+Tv5aNBxEHuNgW8MHjaJlUEMYyD5s38476yw12qIO6XEliNC8B/t7wYk4DiKyQt/YYKBAFZMw1AWItIERwlwtXAwjz8Jdi35FAZU69OMm8Oi7e/+hZPJw2tmPj+XtmK8MT8TmHXtiDyEwJ1mUGpCMT4CEhmHcqoFBLbZ9LupKgoVBQtKUr56YSE9hg5EtstChaLyhFLb4j2WKK17nLFvZRDsLMP+aPAwN9MQi1MJ+/rxz4vxzz4xl2KYtQmvjogueEG954y/Hq1/56ywaQ3H3l6+K23/8o1iFE8jyaXG+CNslSrSt2YOLlYtANQhd2cLEBPJ9/WHof6EGZ2hoNVQ0s5tsHOMGIFgLwQgiR/cOQUhaddBkYE3g9wRONX/49a/RmVyj/TBuGCeOwWG9rouuXZGKKS0cVmH6n56JU9WEGSYeeolWcq9toGqAo4ypopoe31sgC1MCDD9tzWM95fmWCbyZRJ7E7MaNGxOB2NHRkXaPJZplCt785jcnxk5iVCJaJkWGX5VoGSzVjH/pl34paUJ4T/t3BQWGbXvd616XGEbHUCby3XGT4fCeY9/7Cic8JBI9xBEyIBLdHjIkJssXj8ik5HpZH1VmNbNwZzPvBDq/TBK98+nRDQEZEIVejgEZH/s+J3dhL7vssnSo3bBhw4ZQ4PWqV70qCcIUOMmUmSTm7W+ZHVMeC+nHCfxxDGYBiWtZZkgUbikY++d//uc0ln3H+itAcVybFNb9NJJMvZoB5rt58+Y0T5yjx5t/Fig455xjCh6c68JaJjTXV0eWWfMiM71z1V/G3XdhIRMjYR65vtZRptN5r4Am5ynzLw7wyPcMrWkf5vLtP4Ut+V3fy/W0TtbdsTNXMr/29va0uy2jbpkK/+0n4WA+Od/7GSHg7PVMXHm0shxzWWCRv9f/gzhTWJ9oEr7W0Yg9Msz6ZfCesPF8PMl6ZZzoOmCdPQsXBXsKaIVLXiucQ7Y9j/XjKeNY72QhjBoOCpAVaOuMUxMbGX/7J69NpXlY31zn0vsP9lrYKQzy7PqhFszf//3fJx8dapCotee8dgwIJ1MeD9brJ1Ii0h64az97qxkmvR/T1u7DXVG2sDkuf91r4zDBGPf3gpegw4ahQ48M9RP+fRmRyFrZrOqOIcZHWv/AE0NsWg1jvuo4l/FXIKRZQxubN834lSjAhRumvHt/Z3Tu3hsH0artZNPtrltvi533bo0eN8gwJ2isqUu00QI0F3TcmEgxmGsZbJ8n8wbKkG5yfEpbeQhr/URIjSnIqHBzifFWy6ZWAXRWyU6bGhtN+KRohQZuZKOvgCbGqiXLon3FqjilvSNO7Vgb6zi3r1wdq1cgHGVNdqOihU0/o+DoNyGZllCGgpJRBAwVbGDpIFIBgiYqk9DoHmNcG+msDDpfp+NVOHosLGjkaEgaHYZdn0T4MAIhr5NJzUscS9LFttVD8xX9arTh620Bde4EZlvxhea9ejYQU3QLhA6aWwgD+1Fhh6Yv+h+zDr1lCJ/RbRnG91tlKxuVfUdi2/49CBvK4iB+5C7/rdfEQjSepTg0P1P7xKSpywgbdfPpkYNAUYT9yJU/X/JJgoCIOyNvi3QxM2lXKNGjerSLnsjWZy5uIvmZCD7n4dk4wRNEWliF+q2YYQiE/U/EUn7Jc54Vo4Qj+rVLnhmDqHt2796FA0R2nCAAx/twKAVjW4BBnkS86y78GNLp6rpqwhx1xjiqU0upRwsIZgSNhZ0QR00g2VGklgofRpQgg3DqG6piGEZbjQLUIaIBlbmJvV1IoZGgIoxIjiARLujMcud+HO3gfGbx0sVx3gVPRgWLkJDUY4D4z1PUT4mwC4t8fgv+ClbgZfgImhY9EE/Cwn/F/8KsKIQQdukJggDFDUaF8PusLleWfDNAZNOWalYFo1v0d1OPqlra2oCLiwEcCyFEGe4BKaOKx0LaXN+CiQaxpYl+0VpYHU2nnxL9d95BHYrIN1UilT9dH6Q3lSBh/W1Wg+gLIPwqJMw1LIqVCB8oGMa/H1U11e0hPqnrOM8V+tivlWiLaPfYzGJ81Vf/JZ7w6svizptvinM2PC3GuzqjlRjJg9j4FSN70Dj+p3ZTfLHVxfYauSKQUgvHMc599NtUw1QsaiVUaG8fRDhInrHECkoTpgkGQTmfjgoBx1yerxL8MgzOSwl9d/HUJnBHV3OG3/iN30gRJPSv8I1vfCPt7kr0q64qsyUD9JrXvCap1JqnQgDvyzhK3Bkiz2gZHt6XyJHwtw4SC+KGuZIEnoyCddWng4Sk+cu0StxYH/GMRLQ4RgGH4y8zjXPlP//8kYPATM0Ux4TaDdpj633eMela8ZKXvCSNHaOwKKBSRV+nfu973/uSoMHfrieZcZChcCzk9eShttCxJiOc1yvrl1X2NSWQuZZhuOKKK9JccIzL5Cicy4z1Qy07fyeTqfBFdfidO3fez3w6J4XPXMm57fwxOV9lABUSOged79bZawUEeT76jTA8nmgXnTDC9TiDVqugo6MjdqDp6Jxse/4LkrlM3nxQGCEDbcpwzQyujKh1U4vqH/7hHxLjq+BRfGFdZJSsm7DwbH3tk7mS3yn8+OAHP5gEU9bPelquJiB5jDhuvGe+GQbHM3aEq/hGXKOA1Dy8Jw7VvOBEk/2b22DdDbEpHB0HCsDmqqP18TB5dvzmZL9rPucYUJCW+yaf58rbfOZ6x7qLt50zwlV/GPoKMmqH2gjCfWZfmmc+cl2PdZ6rfL9TGPZZQi87Bpyn+nxQW05BehbguCbZbuGT10LHhqzkbKSE34/zlsK3Lmi6U5atin40YH/jta+Ov/vzv45bN98ZzzwHsx9gv+vOe9zSSptFI2zmaC5h+/UnIelTBp3jRk8ZUdgqgIG0nozzEDhokDmgaYEOJnVyPolpr+apt99ya3KKuXTVCsyIl0UrfapZRoHNmXqY+C58EiTtAca1+UEkJbdelu2/LHQwKoSCh6L/CN5kblWwmWP/GR5Tc4Qy6DtNE4z6kOaJAgoEHAk+tEGaLSWuyZgNPvLnqASuhvqsIy/Ly8m39TchjVgGTi8gHNRBo0ncOU4bC4RYr4I2L+f7ScaPTsiFlREo3LArwORrFqL2h4z/uBoZnCtobzX1bwZ+ZWgp9xzsSsKaAaJ5aG5RA91eiemwtK3JPNPGH/kAeiHBxiV1x+zixi13RPvjz4qJhXXxpWu+FUOEIP25cy+IjffcFhdffHGMukNKqq9vAK+xwUp1NA0ZQlslgyS9MP/npEJgbsrypFZnvrCHAwJ5oZi5EIigVNlWiiuDYpJwzERDPuc6lebjtYihAmmtOk0Tw73x7/9yVbQgBS1HSFANAvilXzg/tt+xCSZ/fyyuISQRmPvIOOGC2N2fREVM4UMFu/E9aAW0rT4ltu3bE81nnBajCDGecEZb7NzVFTdf99249BlE4UAa3YMt1yCrTUUBxqilLi3y48Mw/kh7+7EVKydU0eG+wegZGMH2rAGkiMMeBBGtS1EXZXH59ndvjP/47veRlMJwczxx7aJ44qrlsZ7D0Ep97CjonGeBYYzw3KuDmhoYeiXdLhBJCMFf2y7s9ANR1Hfwr4sRchAObdRE3BpmDKOxUY6ZSR0aBilMKIiwGo9GKKDF6NRIPPE8d2F64sjBzug/fCBqgV0lAO3iuvMbeA1fvYayyIyyNPuQ7U/9KBMvEmZxVA3QejaiReHiUYNK2aQSa5B/D4uo3xWXNolCVk8WruRok+/UkqhraYjaBexCc91AHvQmtoMsCq60Citseyqb8lwMuJ3ucVnPQjGJ4EZPy/XATC/Fu7bviPJ1S2L9aafjYfiLwYYDEY5A+sk8QwhRH/IwK1s0n44NAXcDZUYkTCVA9SxvdBpj1cv0f+pTn0pqq4YQdLfKJMMocS3xavqzP/uzJKCQyDRmvJoU7p75+4ILLohrr702vvWtbyWG7PnPf354mDTpyExQusGfzARYH68l5L/+9a8nsw/VdmVIMoMqUSmTY308/EaiRWbRZB3mUktOL87/ecQgoJDBXVEZQRm4zKS4wy+TJSPquHOH0jGk3bt9qpaNWhCa+hii0TEl3pJhyOPC6xNNmVh23ZIZz2uWDIzOHx2LzpM3vOENaW2TGckClTwOT6QOlu/8VMtHOMkkCScZJZndhKvnKCC3wddkrEwytbZJ7SXh7Nyx7nnO+Nz2ZnXk9NFR/mh2kd7jmXNZ+FhHYS9D5hw25fyst4IHGXaFnr4vLlEFXo0paQWFTvahoXNdF8w/Cxzy2Xsec7VfZ9cy6faXZegvxLHlWaZb2JiHsBB3ZMbbOvts5uaI90uTcPMd6ymuchzbVsNiFtfwImNS+s2DubZOHgqG1HaQGRRGjoXjScLaPrCOXgtv62xeJoW2wsJn1ts25/F7PPnP9Y5wUNjz0pe+NMHfTSjDbXpvNvhmemCu/Od6bluNauF4VJCukMvyN2zYkMa77bbPfS8LnYSx81pNVdOxelDaopbNnq7B7lhQh+AbPws6Ldf+v5yNKZnULXt2xXN/8Rmo7q9PJgD3Qau24A+hjj5MGgb0yxS79/bRJJq1adcdukjaqopxaWjzOjZxCvWVydHk8Bh+yDhGZbQhlsqaNBWpTv4a1IRwY8YdeAUQlfVEoCESg87Oq9Bg1cljBW3Sn9ZEhUIPaETGlkIHRSH6SUiEE+2SJnXmVlA3/TQUcBzpPFHLdIxzFRoJhaoGBIZErmFMGXFCeKip6oafB1kkTdV6GPEahAiaddivCj6Et+Na2E7Wkz/X4h8P61VGv1i2oS3VBB4nr2FglPAJeehvrAq4VEIT3h/hg7qpxQCWLvqMwKS3Fg2Qg/h32Hrn3dFDVDaf6UdjEiFONVKCJJCxTggabAHGHhKj1Iu2IuCYEH7VjbHqcWfENT+6MX60H0HEaedEy6qVsWFlW1K07ScyR0GnmOQ2RN0VEjUhjK2ERj7W2KHZ8+lhhsC88OFhBvAjnX1e/D3na+uUF95PfvKTCWFoD2vyHYkGEUwm5NKD6T85n5QXSIKXdBPNDveh+AccTV767GckYUP78sWEBzoSR3Zsi2YY4AKIeAyHjuVKhDmSSj8IsBwzitE+YorD/I7jCLEWJDyEAOCSi5+KKuM/x9ZNt0fjcy+JSRBsb0KaSn9Bj3XYk3W5214dS5esij0HOomy0IaTSSTBIL2mlkXpPFY2FP/xrWtiIw7RRNbr1+FYCF8OnWhZbN+yLZpg/E9HI0KJtJoO9+3aDWGFMy8WKE0IZJETkwxckhACrhvcV0Tk/FX7Q6RYyc0kDfc9DtaT9I5xnKvJp4AUt4LFRk2NMgQRBTQVqlkwvvdf/xmL0DBQ+GFM427atKwNVbhzz0aoMxEjtAu8m5BtypF88zlpREg8skBWoj1Ri0NJhSSqyqnhkMI8LaAN3HOxNCkWEXGbp6p1newGHMbfwwt/5cURqKt1nHsOtrGbk4nKvdvwOQFslbCnxpCFubDmAFsWCP7V8Ez1OLJMnokNVzWIuUXd2MJoW9CcYGNZqXTgwsAiB0QvXOY8/XY+PQCBPE/zHPWJqqjuRsmcyFQ5N/VO/9rXvvb+D2WCsnM/icfs1E+iW2ZBZuttb3tbIo5lYrKttYSzDJOEqCrPO9gZdfdLQsNkWZmAlyiRwPCQMNThnMSjQgfLkInwHd9X88GzeWdc4u98nc/3N2D+4lEHAYVaJvvK8WD/arKjjxFNei6++OLEzDpmdIioUEzm9loEWjISOpr02rGYBVMyto6dn0ZyTOe8XLcclzpRVIVcsw+FI95XC8E1TaZOZtexrhbQiaa8Tip4sx464TTcpgID59jxCFicEybnvfmZnOcy3O6gO69kPGW4nJ8Kd/LcTC/P8kdGuJ73b/7RzalfzFPtJHHLVV+5KpUhM+t9YWn51sPnJvtKXGJbFOIYEcF5LU7RsazvWa+c8vfHO7cdI5rmiENkOtXEykym99x9tz4ewtf8hVcWcuRyj3W2XcLLcSHT6m9habuEZY62c6zv57pv3/wtIcTN28g+jvG8M69wdy5BgW2xbcLQvPzt2fmi8MokE2jKMCgVwKQHs/zxm9mSAh/Tl770pSRAcb47P4T1sfowj418ni3/ucp3zXIdUsimwMZ1ToGLcFTTJpeRx/9sZR3tGSsVvhuaY3/PwVi2YHEcPNIVi+sXYF46Er/7B2+Pv3zPu+L6m26M51789HjChRfEth9uihpMc1tgg48cPBxNOGWVPtHkYQoaVmHAuHst0D6VwGgcJ+K1mjiw4VNQgFAFk4sQIQkfIHzSxgHnEUwYhvuIFoHwQaGGO+8VbBgt7liBmXBlioxRw1wth+G2zQoiFEoMsVOv0EGhh4daq9Jd0tCWU0md3NRJ4Sxdk6WRuWd0OLj/6MXpoj659O1gX0xA8zkXTPp/mGAzMNGwCCeq1DQQF/E9AwBNBjbTGJcFzJvxU56EQI7PcccGZrwV0JRTOpC0POCjqGKMvKWHdb4pkSnMDM05Dm0LyYhmrhq3iBS41qHn6OCh2Hb3PbH9ni3RCOwWEHYeewicb6IFhOCiEjo5jSHK1wTZiCaJ7hUWCGgO4fDywuc+PbrwnP7dW34Q9RVsK9IPaoa86uWXFX1ojAFBtDO8V4kWxhg4QCFGBW1zehQx3dFGz/y9hxMCdOF8+t8OgaMtAPmeTphc0CVSXCxlFER+Ehszk9/kw2+KSIqFEeTSjUft7ffcCwM+ibS5Ik5tX809TBrw5bAY1ahKkK/vqBVQiyBhlNBHItERnB2CuiAKsHWF4dd0Y5IQShuw/SuIoCDCqihrmAUZ3IHaFyYT45gwsAKIaCuo95LlK+KOu+6ByUelm9i9owhFppCqdhJh40tf/mps3rKDvJti7ZqOaFuygrA/BdTDCDuG+twCGGTjNvdBjOhtWGykQyCvk2NMYCFyUvDgOV8LG5EsrBRt9ijqFng2LJASW9tah+rbFE4xJ3CSiVIa90C4QxDfxBwunxyJp1x0AQw+3omniGhAe+pA9JVg6XFgtfWHMJnkobggLcIUDkiSpDmd0yLlldIAEKwLD9okEwg3RqEHh9CwmKzHXIWFYgwhzwiL2Sh5KxkfA6bjHHsO7IsB+uBxT39qHDjciZ5dRRzoOpi0HroRzCTnQdPI3MYrNFAN0QVMFb8RNB5U+3PBEI6GXm0FpqoB3gdBoVAFzTsW2AJ/HkA3CODp92J7OD1mk3DMh3MqzasSaKgSrXrwu971rjQGZJpUbVfI4E6RjI5zVULNnUqZPdWYJeQ7Oop242pASMg6xzNhL2HpTqbMmF7OX/nKVyZGyfCAX/jCF5Ltsrth2kebpyqwMi0KJTzLFBi5INu4X03IL8PCiR8kUGQAJfpzRAQZFoUSmUH0+ngZqBJwzF+eZAg4Nh0jOxAuaMLwiU98Igm/nvOc58Tf/M3fJM0WGTl3/u1j33ccyEzZ/5deemliLDTxsc89HHuOVa9PNJmXZWYmXzxp2TIrv/Vbv5Xmgr/VwHFcykCbnGd+d6LJ8szHeSgDpYaHc9O2eT6eZL2cN9ZJpj4n56ywtf62z7LcuTfl9/O7xzrLGAmj6667Ls19cUPuGzVVxB36lckCHOEjnpAOMGV8ZB7WxefW0fIVgnrOdfHdfC3DnPM8Vt28L+OpcEphkQy8+EE6xCSOEY65T71WqKNJV979Ti/O8iePC02FbIPjIgtZ8liY5fM5HykI0FxAPP2e97wnva+AwzljvedK9oX979n3hb11NNn/ziH7XAGxON7ynGem3DfpxzH+5P451tnP1KgTNgoWrYNtsczZ8ve942nfscrN99/73vemtUoNGMfX+9///iR4cL66PggbUz57fUxBhKRQTtPXfYOYnXJPuHrWBEmNBEOEv/xtb4lV1e1x3aYb4s57N+OcHPqQjSi1EhbgB+HICFHJMs013ZfCZIxx6PhTyHS4syt62SwbxEnimNHGoIP042CkiTo0cjVF9bdhLmX2pQv1jTWMhqhaEEZc68RE+Yj54ODbjZvhacHjCEy+dVZYoelCubQktPUEgoIx6DiCXsYINF8fAoRDaA/3oFE8CB04xOacQofOISK2QQsOSQtyDKB124cjyX7owkGUpkagCYehFw01qhaI+fRCC/Zz9rofLVx9YUyiEVuBRrORQXwfF5LJ5HmC+728p++HMWUW0NP6eoiaquQnQhOMSWjO5KsCHOlsoBVpU00fGHt37o5NmKV07SfCDvAxrHtBbQfgpaDCQ0GFfe+hYCTBQVhwWI7ta12zPK6+4bropf2t+HfYs29vMg/b8NSnJqeY9oMaF5ZfXYHzVsaC/iyEbbrpeT6ddAg8wA2c9KLnCzyZEMjIPp9z2QUcLFaCKE2HQaIZyffDxD9AnDlNHziUZvob9hNEitMuVLaOdB+J5YsXxg+uvS4W4VRnBc4lm8m3CYS5GDMGmeNeNCEqQaT1SIlVrQIPxlAfUSsmQGKH+3DO2BTdh3DMA2IoX70ytD5dCKKoZjEfo24EUEjOfSaQNg8P8l2Z9Ub9rtAQd9y5BbOJwdgHIkv25iygd92+KX689z6cVo7GBTBQT3rcudGOH4KlmGP8wilnxMsuuTR+7oyzUCEbiz2YCoyB9BcnRg3pKVJdNQfUJNDODkUzuX5QJ/+4WcGhxFioFKXSIFkW8AnemUDqmw8l4aMw50MIVCZB5siNk9ChYgov3khue/bsinGcbC4i+scqTEsqWHB6uzoTnNZ2tCfkaPkugjS4WBfr5MEt70HxJXu6ERxOjgDnEXxijJZzBsCDkyySCDmMcz3Kc+0ReT3VHZFJDKCW1+wOC8yA0vie/fvwAbGQyBwFfF8sA7oIU4C7+h0WyNrD90q66TwW4uFDfUQMgYnA90cvC6phVA2PqkOhezfdGQsRCDX50eC7AABAAElEQVRDMLFyKPZOcLXaDiEPJeCP5eQc85Co8SidnxJ3MvESyY5pd6UUDvzLv/xLss2V+FE4IMHuIQEp4auwwZ0jd6AzASnh7vt5fkvYqYbtWVt1o2HoLM2dRz3PS/gq6JBQd/dGZtFdQoUJHl6rFu331t9oBzpH8xuTz81DglkC2u8lnH3XdlmP42FOHstj4+S0PSEWijr6WVzRgH3ynj17453vfFd8+MN/xfh4ITbZH0x4RBMg+1efDjLgEuUyfI4tmXE9/8vI6vjR/nc8ygj4ju/+NJJjyTHl2HP8K/xwx1m/DplJdfw7txy7XqsJkXeUT6QO5mmZJuegjl2dMzpolKGcK+U5b52cv3mnXJg6t2QEzd9541nG03mcf6d1wCVg+rC8UpS6b/9e1h0UtyG+z0eAuA1G82tf/bfYR38uaGwi2lFjwivW2WTeJvtIQYW74G5QqCUgA2z7slaHWhkm6+5hsi8UcGZmOt2c5Y/CTMeCwgfxhd+Ljyxb2OT6CFt/y6D67MGMHWGYzYHsF02HxGmaMxxr3B/vfcd0NmMx33/8x39M/WQ/lgqSjgUC+9zDlAXDMtfCXRzqtbhf7RNxqSkLoBwDJ5rsW+eq9RVHd3R0pJDI+vbIfWoZpevSiZZZ+r2OOjXvU9Pj8ssvT5p54hHrY397mBz7eZ4JE8eJNIhY634mxh85TV/L0EJ1xIIaTBBG+nGGfkZiPnU+6abZ6971Nsxwp2LjvZti25H9cc/enbGLDRmjVUgfTbpLkiaUNJg0Hhs43BjiGED7oJtNpW7CoffpoJsNNNc0N150rajTxCnoVE2TNc1YAF3cxFGDhoFCCcNY9u7vioF9h2LowJEY7cLZdzcR4HpxNDmAc3WOOiJa1E9VRj1qCE1T0NMcjRMV0UDIzFr2yhZgalzF5tckmgIQgWyYaTJCm6FBx6Brpe0rODT9BWjQj5qMsG2m0AsarwkhSx2OIqugyfVlMYVgQweRZTD3miVoQqKwJtOgI8BsiHZ6X3OKETbq9OMgtGqgdesJ01nH5l6BzT10faOhsgY6lwg6iB08Cvgfm+wfIapFZ+xhU3Dr7XeDdMZiGZrKbUSAq+Y7BRDCKM0H4E1jqBcHwpJJhA2TnlHFMGx8xcL6uKdzd3z79htiyamrY7BsLO49sj2e86Ln4Q/CMPMI9BBSmEahvx0rBQQQhnpLQ6QUWaa35v+cLAggPppP/5shIFHmouUC746CC7wLiffvvPMuiI/muOSS5yYEWwuCFtF2dh2CSFuWwCKjWRQ2+EhuEVMJsHlajEAMvdXYvDKXa4niMAojexgniue+eE20gTQ7k4AAvwOHD0UrURda6lexS45znl5svdFMmARpjhyZiNPOPDv2E1mhHx8IzUtReIN42XPN1fG8DWfEhWc+Lvp37Ih1DYaERCJ7oC+WFRbiY6IqljS2xlD/VNx959boQKuhjPxu/eGtLOZlcTvqvz39E/HC09cmD8NN1LuAp2PE1mmnXpW1cqI8lFUg3Z0cwXwAXppdf51elg9i74cEt5z6GK/Ytqr5UNRugLgCbWlmMcHRg7PMSRC9QolKzkpqFbDoUEe1tM6u/UTUqEU+A3KnDmPjOOaiPGFYg5BlDMayQS0MJOcTZTBq1GtK4QVaBGWYaIxTtvgxCUE4JyFEQpsuhuBQrqErMbOAAAf5G8lCYcMY9ongeZ5JoCA6YMGpoE+SXSEPKjjGgReKGPFLT76YBWAE3xjLoovFBbzMe5UxeKQPjYVWCqXfi2JoRfgsZIwJpOjlYzhcKq+LavxadN+znUHAQojzyh1InleddUqM79gW6xcvjzs2wxR0dUaBmNT6lVDBxBBWTU2Kl04s2TezJcf5oznZLzJBEtkSxBLW7kbKQD3lKU9JvyXE3MV91rOedT9BK9ErgW/7S5kcifQMk0z8+ltiTaItP8sw8VuJTPHCi170ovRcotZDwu/LX/5yInZlNCT8fc+46zINquyKV8wzHxLgEokSDjIIM8vMhLbl5/rnuhzt/HD331z5Z58V1s1+sm0yhibhY3/Z5pxss/D0HQnRHeAuGQeTv4WhjJ799GhITo8BnMrW44TXdBiHX62tRUb0yBFCF4PXe7r74sp3vyeNoSWLl8Wzn3VJtDQvjD9/33th8JekvhZOjg3HnH3s+JFRlpG0/TKvtt1x6PgWPjK4Xstkez8zG5kJE475+liwymtaaZ7Zf4maO2rtuOttH5m/Yy7POX/PlWbOl5nvm4dzUQbXueC1jJvz2fNc32eTitJ2+o1CEgWPjjcFO4Y1td6XXHJJytOddYUrYOK0Psysl7/FjDKU27Zti1WYmIxg+9xPOEFhsWzxkrj6mzhnY81+05velPrBPjBP85b5zQIJmVPxgG1z3jtnPHSuaJpZ93Rz+r555fmhMEqG2j6QYVco5RiQ+XTe/PVf/3UqUx8i2WdCxhG575w3c83ZXL5nx4VliFuFQ9qYYFxq0nHKKacixF2TFtWcZ7FtxRycGx5pLaWfC6jHb9u2EyHMGvoXHww4yX7/+z+Q+l3fOSbLUSibx2Mxp+LfPBZyWd4txS+OH+fMDnCGeDMn79mPWRjgmDbZHznP/O7Ms2Mml+ecVHDk3Mv5i8N9bl76aFEIZD+pyaRZzcz8Z/7Oec8st/S34yqbA+Y5bRl/8Ad/kOojzrjsssviuc+FDiVZF3GF9702uQbmZH4maS3HuCu8R/ojd2my7zjVQUM5QxQG1BEFDaopTYyGZnAcRNXTrvg/8blrvh5X/de3o+3u5bG2Y1ksGiqPOzdtJgJDE/slaa8+GtlMG4IO6mKzrYBD8FGY9F1770PQvyAGoNnGoBUrcaxthIlaBACNRrKAkFoA863Ph3KY6WQSgbboMGhHDQhpxkWFBUR4w/l5J0KH+j60EyoTc692hVqn56r9g5ClGkFALRoZKTSkeAsaE3uPOIDWxDKiok1VY+4Kzqlmy26EsTlCCHnNQGrIrxzhhSIaxJvAzI004AFcChzOT1uYxgljxbOHkTTs2x7mqYIStVv1F1bNUYB29x0jfLCnFZVjUKHgqXI206QvK3mW2gcek84ePkS0ELQ6RgD9JPl04d9sL5qZ3Z2HYmkrjk4hZKuhJSeh75MpCfAqY5fLsXbPfVvQsDw/ehDyHDx8MFpXLIkhtC30zVG+tCme+pLnxeuvfHs888XPj29///qobm2K5dVro3n1Yvy/dePDDCEWrdeXhkPDMSEpW0+/pAfccAzNp5MPgXnhw8mH+UkvUeLAhUciz5SFEddeey0EwAKIm4vS/bq6aQdgIAPmPcjGQ0JD5X+mcLrns+J0lXfV2y376XEIc4lRiJtF3Hv6E38x+u69J+4D4VRxbxwkOAbyrQIpOflFgGXqZIGiJllAQGn4QMAMoEZtg3GIYcJsEaJylSpwSD3LQKrDqLRNoIkAbgfnEqUBya8S2UJZIZYvXRG/+AtPjJWEeGzlO9XW+vpQ/20u4N14MaFAi7v35RD/ZUhp9VGgmlcB9TQwNdXATg2pr455pqir0l8ZdxWzrKbtF4Gp6eC/okoYcKAdCjpULdOeTInClAeMu9JlG9vYLGMyFv0IYiYRChBLk3JgBoUFi0pjHQvKmIiW1/zAxZI8xli4xsDsZVzrJElBgx0wDXl/cE8BSBGmE6gQ6JRHIYXn/KZCE5MaCy7ZRbMQFgc6D1EEphOTsfScxytxijGk36OMk9aW1ti9Y2cynzD8U1FFAck67WKl4jflAHsXdNye8bsyrr/u+mjAoVM/UvGOVYuSWuEgi2od3ozxD5q+0ccEoEoVSWYs1Ck3m7uPySTzKrEqMaitqwS5ggejWch8ONe0JVb4oHq0yfkrEV4qaHiowEtEx/QYsaxShsxnmnaYfJbnvb+LeIFxP/2t90z5nXwu3v3Z/StDIO6UmZRoz4yWcPJ+FvDYQu/JTCqk8Dv7R8ZbgltmS+GDeXjf5Lu+94gmJuAoO2RZ+KCWQz/CiAbM2xrZGTetWLEyMfGaXejT4SMf+QgMZHW0r+mIs885k/G7OI1b+9y22UZh4Ni2jRdffHFybHzNNdckhlU4yAi6k+4Yy8yE8BNW3iu9Pxt8FHiYhKNjUeZKxtm5Yh4ym3rwtx7mb/8512RqjyfNHN8zv7G9tlVNCsv12vPxJutSOqYcZwpU3AlW4CeDrxmUbbHO4gTxhUICmQ1tzRMOpUDXptLkr0oYhS98/gv3R6FRAKG5nBGdKmHirL84R6Y5myHIrJsc39bNNikcUMtq48aNCY6+L0M8V1LwYL72sf1gno4L87Wvbatt835m4H3P8hwnea74vfRL3hHPY2au8h2LlvOMZzwj9Yvles/vbZcwyGkGKsu30/pfCU1gqoAZNenkj72DpO1l+8xfAVSGnUIj+3auevrceZPHmePZtuffCu0UYgknBTeezVemXAFHFhClSh3ljzC0DGHs+LftGd6+bp0163Oe+Nx5Kc5XyHTjjTfe3ydHyTrdmgvPK0hReOVhsp8VMmmyl7Uu1OizDnlO2s8e1j0LH9LHM/44vv/niP+fN3wmrXa0JD1FADDCblbGx77yuViJafDN2+6MDb98WXzhQ38Tr7n4xXFg072MPzZUIAYL1AcqLKoGMFlIAgQEo/SBZhBqxY7CoI9DK02gXSqDrean54SfqIMmqWqmjrP5pvmFWgWaZvShAaAvCOE4gQqt0SEayhBW0MeaB9z7I0y4kvCB0J7QV/a9tKZhMasbqRN5lvWzo48wopqNpAKbQxXQY2McUL1sEKmdgIkyg1XHlWr0ChI1Ygfoi1ZChWqSYN8nZ5Xc89rDOokbnD/uSGlSMs641lcDg4pNqKloqW1Mm3EKG9RiTX1C9ArzFPY9B3Yn0xRNTJIQA9j1IQAd60NQAlzLR9nM5Ksp6EnpWWnd1Kf2D8eyRctjfxcmm7RrDHp9866tKTTq8tPWRFf5SNy1e2s0LW+Lq77x1Vh2SnvcsWNLbNp2LyE/dagr5V2khFOe/PacxoRAyCk/zL/nzycFAvPCh5MC5keuEBGIC7gLmojL5LVI/aqrrkoIXqdPpozo88KXbk7/ESXIhIMSQApFRkTkUA1xMzI4kJw1SkyWIaU/hDR1H2YMrc0tcegg4S9RExuXgWfhT2EbqZNzX4RTJvJGVUruuLYOqS1KbX29hMbCxmzlSpzxiDxhaIcw65iQWOAdNQqkGSaRgNZgzzUMwamAYgii5gJ2ZVUlvf7a62I5RPFSdhnHEVyMYZIxCeLUhKAA8q8Cyam9IEMsQ12B0EGbuuSbgIUhxTOG4MiwSOdphFV6T0m3ggy1LpLjHhEqsPIwFZCwjtIGfVwY8rIcFTSKZSFisRFJowKGX+RUj7SowOArcBgFSSuIKSBoKUIrZTedq9d8m34pGHJBSRClHiB9Eb8rAW0tp11ldJSOepLWAwuX4p70Dzh2oeUCVRb7bv1h1KLtoqBo2Yo1sfF7N8VTnvrMGNtHbHcrrKRdLQqkG2RfLNkiJcrojO9+55o4Z3krfTJO3zVGZx+hSgmzWVi0NKn9+Y2Oh7RBtu+Ej9kpTDKbx2qSkXAXSCJSBsb0oQ99KH7v934vMRnvfOc7k2O/LHjIBJkEpNeZYHuo8DOfnBzXpYcESOlYz+959plESSauZ76Xf89FnJbm+Wi8zvBNBBgVzILbrMFg+zI+FZY5wohMggIHmUS/lSlRUJHz87uMjx/pdpcKQKyrdRwhbryMidoDjtH29vb41V/91di0aVNiVGXcdDzZ06s2HY5lS8aR7TEfx6dw0O/Dxz/+8cREy6T5zAgKrhd5/PiNMMlEr7/zGPJ6tpQd1PmOc8l1TCZTxs06GHHDPsqM6Gx5Pdhnlvfv//7vSXAow6bQYB+7xwoghJ9aQrMl62m7Zco8/G1/iA88svmG8M1jzTEoU2CbNI9zQSmuBT9Z0iDmfo5D35VJltHr6OhIUXLMU1jZlybzFebWwZT7VEbaurlLrsmXMC3tt/TyLH+Eg5ocOTkPpEmsl1opwlDmV+baZPs1LbD9uQ7elyH1d4aT59LnvjMzOdYUdjh+nbO2RSGasHB3/4xkelH8im5IKZ/94TUgSWuWv7NwwXuOYR2vWm995igMcEybrOvxwMj8bIcw9dq5Z99mIab3b8FZtg4hvScza3/ZFsuYK9l+62G7hZU4x3vmJZwtWyGAfa/zYv0/CHvvG7HGMXciKQsdHH9ZEPj9738/4RH7/tWvfnVs2LAhmcA4Jqyn9RIO1jHTpCdSh9m+pRujrqEsnvHkZ8b3r786Fq35w/jdP/yj+OFX/zMOHSbyxdozESSww4/afzl0Wd0EoVXxr8DPWII2bqJFnX2JJta0C2oO2A1B77khVMHmlhoMSLmSKUctwoxaaClpTaM5EHMhBtF4UOgorAfohzEEBUJdGEifjiCwCFzVdPcRAptvc59qKtG0pA3fZUVnigopGlmXpfmkSRWUlUFgTWAeMoHwoJL7BeZ7GeNhjI08fZslk1roQyjGtCnIx6keud/VSphAqGKZkGuJBp9iA09zBjfxajAnKdOEhDaPI2xRgKHQZQr6VWGDPjEUPAxACybzL+laBKBqXTRiFuHmF6+liZYEFgmWRa1h29qKyfbdCBzq8IvWxDqzb39v1GFGUb9kIZFKtsT/91d/ju+Kyjjz8Y9DMLE9aTi4hjh+nbT2rymfi7/m/z4aIDAvfHg09MLDWAeRRkJiMn7TwgcXIRckw6ipcrt2LbGPscPKuwwSHy6ux0qJ1OEF1be83g+x9W94wV6O2n4L9ua337YpKlHDXb+wLY5M3Vuc+CBW7ecMDSkSmgRR6iW3HEQyhPPIMUwSaguo2SGW7B3pBXmM85tYvH1HkqmGggp34CdZjMsNr8m+u6pj44T4HBpjV5EIFV0IQTpQA17b3hE7sRvsWLUyObqcwGPwFNLfMmBRzTc1bL8rF3ahMEYxWaWFQWQn4nZhKIOo0wZO7QqTRFkRJgDGCxl77hcUqiiF8blnIWJVvYa572MB1RNxJW1TlQxMTbsxbcD+bIzFaWAQB0XkVIa0W+GOEnMFNC4aZVXkXSyUfIX1AyldU4aLhmWCaYsInG8VR2SRhBoOPk2CEe76K/3jpm1qcHcTyXsDGhiVmG0UGBtVnBUSmO8E+bE3w/fCwfIshr8ypt6yeL4ZghhqPX111FeNRjcMxyT9aHv0KFwBPJGoJH8TNE+w8AnjB4lERVKFII/HaJLA0x5eQluzB9Wr3WHcsGFD6KQvq9hKqEugZMJdcEns5p3fhwq+TGQcjdHznkSuOMTDd8UREr0SheIRiUpTcX4wspwHM46HWreT8V1u/7HK8rntFIeahIfEscn7wkMGWwLevpMhcVdYB50KdSXqS5koiSJxb4ZRyugR/DNMiOKaaZvYvXsPpjWihXC727fvTqEUZdCMaqFjuCuvvDJFiLjyynfibPDWxATltgknx6OEX2bQhI2waG9vT23WX4nJ8SM8VTlXIJCZXWEiTD2bzDNfpxvH8cdvLNd66wPCvPVn4jwx75wSMU1f5H7N9x/s2V1622U7fvd3fzft4Cp8UCvAw/rMlYRZnkfmk5lQ4eQzGTiFPo4vBRwyaKpLG6HJNXi2ZJ+ofaAAQKbW+jxtw9PiLW95S/TDgKtZkZnY4roPo8VcN/luZgaFn7BSQOpZ5t2xPRdzKPMsc57nTNYgMn/NKzQpcE45J6yrNIrXHuad4efZseBzr51H1tO+ni3ZJoVnJvtDuCms0pRFPyaAl/yKOTxwLt6wnCrWYIpKB1W6H1YDREtQ6GSddDKqkFHm2vlgyrRWMeciLHNbvJfHdR77uU2OUeHq3PAdhZkKT4Sb41lNKuFv+0vHcy5n5tl3LSMxY9MPzddDGButSLj/yq/8ShLK6BtD3KWA43jyz+2YWW7+bT7OD7U3HIPf+MY34lo0bu2HN7/5zWmdc40TftbHPnX8C49SeOX8ftrn/fu7YxHamZ/+/Gfj9JXL4k8+/Bfx8Y9+Mga++e246IXPiQN374iKYdY/TIWrYMzVOHDDSXqoGeHDELCrAr46Lw/kgBPUP8N6HBpnf/ehxPDXNzXieFtzF9ZNBxLP3B9avg6/NGgCqLFln/f298Uw81sBhu8shp4tZ40VjpKUzifnpLCphK4dmkDTgkEsHjASR2vbwqhBe0KtXMtUeKE2bBW0rWbB+ofQH0St9WVjzNDo1iNryBb70/FRxJVlEGwKLqRRHUeTwGCU730P/YwYQLtVk4wx6qUwQ8GCWh461VSq4HmEsUuDikIKBBdeJ8FLTW0MUj6zA3qS+e3BLwU6VdK2zE21qS1XIWvrqhVRvRpNqgpCpHbujdt3bmVur4yDo72xfOWKqFvUEi982UuJ7sP6DIx34e9mMTzJT6Ti8lK8XXr9Ey/O33g4ITAvfHg4ofsoyDsj8Hy2SqWEANM+JZFaHbGBTS7oxUUZT71zMIfOXZGtNqHnrlwVT4ZpasR8Y82pLdF5511RIK+0c05BCSkn5FxE0DLW9XVVeO1FBYzya8taEiFcNcRiiWR2UMSFUEHFUpG2pgxKbCdYnLFYA6mXh96MW7E/XoGvgX0H9qMhgTfs+3T2UxZrMLnoR+oKvsSZIgsEWhbaqynNFWGqjVBpNAjUuZQ1TyHwqCD/6klNRFicQXqqyd2/wFJffoD4OcDNIm0nUPotIHkmP57MJPheocQo2g5V5RBIEAGGCB3HR4ShQCtRVxPOnfu6WAi03ycnsK1hgAAUDneoK0y7QhhhrEaDiZJTuekevxUzsHRwTj+mn7FYuHgjHah05SEpGLG+6Uh3/LYs1rKbNXQPYY7Ox/SCtupQaIAoIe1r2qP7wMGk2WKYznLHAf/NzhxdKCpcIKVT6bsz165lUYZYgvjauZ0Qnad1ED51AfaNSuLReKF9VIH1iBor/FHQY0aP8fSDH/zg/hjrEhUS6jtQVZU4lllQ6CBxIYPgb1NmVGTsSuf1QwGlczKPb8/mV3pICIovMpH8UMr4Wf4m22RnhiybWXhfolpiXYGDfeKutzC0XwzxKPH+2c9+Nu0Yy0TIQNiXGf9K9MtsPpIpMxig5TTGmpuNDT+a8LnO4GR8//iP/zgxie7iy5h84hOfxjncK9nhPxgL21pgGIrMoO0wP2EgI+GYzcyh48i2O968J9MuMyVjKEx97rcyS7lOEtz5+2PByHd0rmqZ9oE+Juyrf/3Xf015OX+M6pLzdGy71vn+T2NMm587ufal5bqbK2NuH9t+4TBX8h0P4ZPHmQItGXMFB9ZVZlamWTt8YWK53udi1uwXL1qcmD4Zb+ujUGacNUVcshM8o8AkCzCz1o7CAMe371uOsPMdhSoK1Byz4qq5BA9WzP7xffvd9liG+VsPNVN8LsOuENY8hYN9lvO2jcLF90x5fFgv78+VZHgdX0b/MTkHv/KVryR/Azfc8D1g+EAOD1znmzJhghiHzjBM7iTnellHhcYyzcJEDQiZaGFlOxzPvpMFPubhUZpy2xyHvm9ybLrjbx6+73qg9othY+0T54z4xcPfWdhRmm/pdZ4/5i8MzdNyvW9ZOglWoPWnf/qnSZiiAEXht+2UIc5jozTPB3NtGc5J89KMSIfGzlfr8frXvz6Z0Vgf4eaR6+scytcPprwH+650iEEpxtmE+tP3fCD+8p3vjhu/d02c95yLo3v7/uguIEwl0yOdR1h4x2P5wiX4y2I8wGhX4+RxiM27CuZmDU4WjaAxQYg2TRxk+t246sGXVwWmEQMcDdCbjeMKIeqKodcdK+ANNR3c9HKTpo65ovmqQg7v9QIHYZWeM058x2sHpvDpZ8Ot/3B3Gtd90Mp9h44k4YPvNeLXYpBNN/2W1XEkjQfKUlChBkQtzub1LZbMEGij5Zjy2Wv7vxL/YfZRgXLdPJoYLTq/JcZWKk9NCH14KXjwbKQ4tR8UPijUSGYofKfmreWNoIU8Ttv9zlCebkSpqVFF5mz5IdRg/eDQDGOQPDURG8B2txwfF6effWbcvP2u+P6PbojdfV2x7glnxBKcq1+/8Xvx7RuuiwJ8AJMpOsE1K5biXLhIGSea1faYbGWe4enG/J9HBAIPbAU8IsXPF/pwQyAjEhftvICLtLzWfpLlNVVBQgN8kFImhFwAj5ZYRmGsQWEgq0E8/Z5+2unxpCdeGAf2wfwTJUNks6h1YfIbUEusXh1IWooaDzrSSVJdEIsq+9WNIO06CC8QyDj+EMrAhDUgcZlsI26Mg+hV+S+n/mUgqSm+nwLxl+NUpxLbs7ZGnHyBi8dHiJFNpId6hAxVaBicsm4NLPl4NGP7tbBtQSxZujDaFrfAELNrWwcSZyOzAq+5xlgutzwkwSl8D2VpG2d4IIk0ke79B+V7LROdOGd/c2ldAUaRePQ7jhEQ6RBEeRURPMaQMPeBi7uhn/rQcBitaYzJhhaOhbgrXhTj9c0xVsN7RO2YrMGBH9E4JrAHVOyQBBl2ggVNn6Yv0y8FCDqo1IAR9IxwgUVMx5IIPTz0rZEOpQYcri+IDJLMYJxbQ/TVd679LsBACNTDziULai+O5havWAUTMlQUGrjYIQyxv2y/mVTQRh0N4bGMRvXEWWvX4r0Z0x7qPcCCaWpifA1wb8qFxZ1yCEvHjskFxzjWj/X0jne8IxEOxroXtqrvqqIu0yqDZnKelTJKzss8l08UfhLwmYjPuMI885j32ucyD/ldGSQZPXfoxCX5EMd4WFdxiMTkoz3Z5tkOiXwJaNtie2VkdsC0ueupNoBhSrWNlhGQyXKHT8dpEtje+53f+Z1kbiAxLQMpU2r/CcNHWvBg31TjZFcfDzI8Ch5MMmef/vSnE7Oo4EFGxHCCT3rSk1K/K3i4HS/l3hcmwsc+FzZZkGD/5+Qup+NFOGcmxGvty73v944tx1weMz7P4zLnc7SzjGzCSTw0L2HqeDR0n/CW2RTe1tMk3B3LeZymm7P8mW1s+MzyM2NvH2tCIEMq05nbMkv2qW7WJ48N4ejclnF1x1sYqFVjfWWkHVMm81dAkdsuXi395/rs8cNbfpjGnAyg3+q0Vt8bXmsikM25hFNO9qt1F47CK893NRU0nxCe9q/wniuZh8nyHBv+VlCjIMK8DLVp/2uak8eMdXGelNYp4548Jqxffn+2OtgX5iWto2aZ81m4Gekim4K4pImqjnbkvC1XU6Tcp/b9TTfflASL5qUgUrjZFueSKY+d0uuZ94StyX7PeNO+dhwrqFFAY32tq4IGYejYMJU6YUw35vhj/sLeNth316KBYN0VKAoX662/B8ei88V7J5qEvX1vfobn1a+HQjSdjDruFa7lvhU29qn1c4xZj4c7LVzYFF2d/bEZPwG/8sqXxUHsG/76c5+IXeymr77gnNg7NRgTrfifgGY8NI55hKHh2aByU2ykm42BASLPcIxxKJBw7ip0mIRWYgcpMcwjaNge6kVwRCQx+/NQJxEuMENwV18TF/GGYTWNHqFjSaOPqfGg4Em6vBZNhnQGHvZhijIxjdOqof0Q20YZtJh1GEAQcXjfgdhPGMu9W3dE70G0ZnAiPILz8H6uD+zYHbs3b43ddxPBZsv2uO+erem9zl17ovdAF22CdoO2roJ2rWGHrWv33ji48750+O3+7btiN99sIZLZXbf8OAa6jkQ/Ag83rNSCGOZ7TZwncGCubwjrpXmG5h1qSlhfuYFJNhZtv+SgOEzfK25UGt5erQgdttNQhDAIZIjGYTjQTsLTHxodiC1d+2LrkQNR1lwfW/fuJlz8/ti8f0sUmCNGGukCxuJlkxRmpjLzOT2Y//OIQ8CN2/n0vxgCGbGLyF3E8oKiFFoCptKwM6RCoYLFHlOH2geGRCZsfJ4IG5BqugJJpkWUX0o6G1Gfev0Vr4vf++9XJfuuISSq+3aj8sq0T1ElQAhKQV1oNbfQOY4STyMfVDcVorKlHv4VhE4kiClcAbvLXwkCkslXajuBz4Z+hByTMMOGSqhmcapEalpWBrPb3EJ83/44TNtqCFcpoq6tr45Tl58ROzffE204T0zoTpMPkKGxmLHFSGGBqnFWOYaGhBoRCiAqcCKFpKQYoxjmWAFEciRJOxMslDEkDAby5J5SXcM9KQDgTZh62giCHaP+o8BqDKa7Aqa+H/W4YX4X8GPRgCf5cso7PDQQfUjTYd3wSYE2BG2vRcWzuZ4QazL5+LMYJwKIYpiURNLFq//xF5k4vxV/cGaxwFAj/dYHRbGu9hh4nMM+NBWJVENGQYxTRyXWrJjR3ztIeCLCHampwccSO3pp1geFanwKf2ylkv8q2lPNogJVEVCS0Uib+gZYUAcJE4Zt3gj9pOZIPwuSApRyNFcqEIQkoRW11OlosUHFOqWKPQb/uPP4hje8IRHIEpzOVxk0k4Sic9QksZgWaWCa35PQkRg5kSShZ775bF6ZQPYssyCRaFmefc9dNAntoyW/MeVzKQ452vuP9L1cz9nqIfGsDb/9IoGuRoAaKxLQ9sXll18e7373u1MWEpfe0z5eglvfHV/72tcSIW3YSfFvxskn2nez1fl4n4maTTI8pk2b7orPfe5zaZdbXwnuGD/5yU9ODLbCB4m6LVt2sMtbdH7aDzyO1se20fuOmwxjfzuG1BSRmXI9cCxZtuPKb3w3M5Xemys5Pi3Db3I9XOcM12e+WevBvLzvOpjhbnlzlWF9Z0uaLtrPtsO6eCiM8J55e3+2lOte+o51lCkTPjKajieZWp3QquJvGbbN9vqvuDZPr8nAL8PRPDdu3Jh2zmVehJECB8ek6/8H3v/+xORpfiFMzM95XVpn7zmmTTK+4qEsdNi8eXNceOGF6dmx/giDvIttO0zmKWNlMlSr+cqUZlxn+b6TGXPfy+3NY8PnHnMly7ZtwkzNBOewkS6cu2oRDBPuUBVz61k8ikKInK/zQ+3PsrKiPwLHp/lljQCZd+e0wsY8BjPTnM95/Oc8PXvP+s8ci/72O9trX1hfD0MZi3uEkfBXoHe8jk3VZsgaNI4jk4Ksj33sY0mw9YEPfCCZXCgIuuKKK1LdHEMKBzs6OtL7x/oz1/z4/Oc/n7R19GMkHvnUpz4V73rXu5LGUzaHEW62WYGD9bP/vWd/PJzJ0eP+RwGG/yx20Hv29mCJ0Bj/te2mGP/yVHzpa1fHHR/8QCxbvTLqcKLdwzowivaqpgtu4RR9HrBpBe00Bg01BJ03gTBXoUMlISer2KmvMIKD9Nxo0Q+DbZJmPsK4A9CJDpZuVaCQ+ob6qPVQRZ0c/wrP9PmQ5jSlqsngu9IGfg9CTSYKjahvTNUVhXuaMxv2c4oyaogcUYGmgiE/p6BVKxGgVbDBNIk2wzCaHH06hYfWdn443iboh0nOU9N9sB9BkUJAy7dfHLeOQw/9OtQvgabjrD+vSQ79PyR/atCMajrUVENjIzqY4n6196gPXnKhjd1oBOfTRjWK5Ak0B0l0IflN8P4oQhtaF3u7DsbwAuCB1vCmm78fN269PSaaCOG5rI0NxKnYsmNrrF93dnRt3xptp66LtgUN0UY39KIVUgPeM9nXOUmhJNTBRZFayU/mzycTAidGuZ7Mms6X9ZAgINJwgXAxK91JkKj0Xm1tOdJXPYQXvV3X1rIjzzdKH0GDCdkkfwvo64t40jVP0jXnJImHqGtTcg4TvQIbq7Xs2HZDYLYQSaOcnXUlmMnZDPXwuwqQkN5+yzC5qOCoQoJZmBgkFA/qWwhAjPag34EqEGqBYwAkOgByn8Q+TFRSB6OrZBY3TSzMB6NhyaJYWr8Ej8S1sWPXztixd2ech9p6eS0ClamRondhhAy2a4yoGqpz1SAIqEJIomCgEsZYIUcV3xvpYhQkPcSiYSxjfR7cnxLGktij/VwnDQJhAmbzPbU0QMEgTRh7EO8Y72hG0eeCjwS3oaUtWlayc4QK3rbNd8W9W3fGmsWrk9rcGMKIRew8NuODob5JgQthl4ZYYKbTTyBP6yDh6YP0B4SazjCSnNMzBRAiWOoxSX2KB6pziij4Pcxx+uPOjerFKwNdP4QNqNjh/XgC2I8hwa7FRlGhStbyMDPLqPRs45FqsxpiCH8Em0hs/yC4hyCWVZPbr7CIV4ZoeyLfWWgqMHlRRds6/Y/VgJ+P1eTOkARlJqQlNDNh62K/D1VnCXUJgzR+WeAzcSbjcqIpE8yl+ZQS9hJEEsSWX5qcx+IViakiXsj44YGz71vXn+Xk7rNO2GQwZAQl2mXOJZb12C7hLrx8phaE/anmg7uJMuof/ehHk+8ONVzcFX/rW9+a+lvCUthK9D2S6dChwzAmxR1OhQqazxnRQtv+yy67LOF3d3XtR4YBu7FFR4i7d+/jnWUwxkX/F44F2+RYMLm2OLZMMj7u4sp8yjBJuLoWKYAQXnmM5LVKeDqu8vcpk2P8ce6Yn/koLFVQJNztD/voec973v07xL5XOo4VEGSG+BjZ39+eYz03hKCMvH2pPb5ttdwdaMdkzaVjfev90vIzUy/sbIvnLPyxT9RYkBlxzChcOQd1/CIqfUAAYT8IxzwnZY6FtXhFdXq1qr70xS+mEH6veMUrEuy1WRfWfitOsdzcl8JV4YOMomY3GYa+a+SN4xE+2JfmY1Jg4W/brcmS/aRZQXbMKVOVx4NleDgeMpOeMnkQf/zOMqx/9p9jGxQ+CG+vdSSYx5tw8PC35Vq+GzP85H3NLxzjCgigndh0sT9832gNJmFfOsZyVXN/5N/mbcrtEu6WmedNhr9CIzUc9JUg8y4cxUXeV7BSOn5y3qVn6y8Ok07La4jP1TxRw8mkiZ+aXObtPFVY4fl4cJP1nC0JD00t1JpRYPKCF7wgHHcmNSDEARlewkgBhP2fx8Bsef80nklvNjZVE2Id893lC2JH1574v3/1t/GOd7yN+bI61tS0xQU1T4zGJajz75IxR0hHpDXDZxZwfl5gc0ZGeRBtiGFo3XEiVlSziVQDvVdLH+kkUnxQu6A56qE3EbPGKJoB3Tj67sEkWB8NaYzDfCuUMNl2/Sc4RuyTNCYxW7U/1Bz2nrhL09ctt98VZY3kDc1W3VSRnmnGoblGWSWbRmjgTiJ4kO7SpxkeVdhfq4FWhRZHCNGgA3SQyCTaDoMDOKWdKGpb5fFqWWOUZR0raosmc3U4RS/UEjXF+cE3ahsoRCgHDqZkygL/YChUQ3MaBUSfEAomFJZq5uGmpDSqTioVUlieAgiXDxR2oewRjkA5DkFjbj6I74ZFp0d5fQEtwxti08HtsfTMU2h3bVx//XfiF5/8pHjVa14dbaesiwPQ/82L25ImcwPm324NmkrpZ39YzvQUTM/n/5x8CDy8osWT3575EmdAwEXKBc0kEeIiJ7H0nve8J+1AKekW2YE/EsGjIyUXZCemO0UmF8UULWF6kfZeJhRdfESK513wxDTNlYZuuuXWaIGJNjSPPhbHQKQiaVMibJDM7u88GM0IPAYnR3CycwRhhGYhMDowqCuWreR6Inbt2Rc337aJuMrNsQiBhgz9CIisugpv5jDWozC+NfW1MYDWAOg1jgz0Rj2aBUvbV8Ik7I5Ca2NMYJMxSvMHyxFVVEOkYeYRSE1H8BfRb9hL4tsbQaOMxULLBBG3hwBIdne2nUMpbdKCcMceJOkxxdE7Ohy7kMxOIeXG5iPGkHwvWL4kmpcticVrVkdFI7s99MHi9vZYierr3cD+yvf/RfzpB/82vvvfN8e//vs344bv/SD+4+tXxxe/cBXI9Qexn9jNRgw5zCEi1wGPogYFP/pMUNChPwmFCkXUCuJO1YJIA0Y6RlJ7oTotLBUQHs0xTEijJSvXxO7Ow7HytPWEJNodO7hed87jYt2ZZ9nZCIEWshiwkALXMRYFikIQBMwlAGlXDwupqoXlmIVUGaeqD4ERtru3fuM/4hBI/+fPOTuGIfS2oya8fv0ZKWIHgT4wlYSIpD+H0YbQ7tC6TgpnJNM/6ykv0sc6z9U+ic9MiPquzJnEhsm5kncI/e04zESZ887vJNYkDPydr71vfSROvfaQOcrfmJfPTT6bLVmHnF9pG/0mE+niFAl5382MkQRlLjvnL+OeiCbKlCHwud/l98xfHJXrebRyS+uQ25DzP9p55vtH+50IK2DueQdMo8yr8HKHVKZPO37PMgEyADKEqq+/G20HGU5V12VCZdIk6tWK8Htx74YNGxITKkGvHwKZZQVKvnc8xP3R2vTTvJeZl5079yTTCncqhb9RLlwnHFP2q0dODMNpIUKRWPa+Y8GxPPNdGQzhpenAm970pvRcRtNdfGEhYW6yX8xDmOR+d7zPlewzCWST9baP9MFgHyrsed/73pfyFt5ZqCcz5ji0f+ZKtsn3c7tk4r3O49jfjmWd5ylscIw7H2xDWjc45/F9tLPv2gaTc8Yjw9J22Z729vbEZGbhinWSYXd9VvPOZN4mvxVH1NXWJUb/qziCNnSvzJ/5GDkBgMQXEUD4rnC3nvls3l4LG/OxbWrxaLZhkjaw7T6TobXcfC+3z35w3OTftikn22Pfq5HybuaPMNPkzP7xcDz6rcmxYR2PNQ58ltstPeJh3S3fOjoGHE8y0s7PLCixP43c4thQCOHY9JtGmJm6uiKdIqOcBVnWRT8olmUI2h2snbfeenuqlzCwzo5ly7bPzN+U57ffWVdh61Fab9+zbN91XDkebG+el76vQEtnowqc1LAQLgpELXuupB8a8ZN9YB7mJZyc3+btuN0BzhMPG3lCvCW8rIPwM+V+nHn2WZ4PjgfHgXPdfBUiafokTNQwsc76rXjVq16V2i8+zNoief5aR8e4Kd9LPx6mPzLdlbQTuUE0NBEemKk0Bpq78JlPjZf++mWxL3rj9uHt8R//fW0864rL2FVfHTUIIX68/+5oP+u0uK3zrqiC/nTDSSa3CR8Lwtd26PdgiDHYwDxsRfCwBG2oZYSCX4awasWKFcmXzlkIA40M5sbcsI4XoZMUKHhthAhNmIfR9k0O2qHH1FDVoaWmzAv4rrG2Ps48Fc0bNoya6xtjccvCJOBoZtNo5eKl+KdYlMLMozqBQ3AcxGJ+MYpp7Xg/eSI08ChAR9egcVCHhm4DAgwPr6vdZFJwgfmEZh210JTmM2pYUDYDfVaJQEPtj2RWAew0rdBRpD7VdJyusEFjYOurOYWOKEcZZ9KoCgaamTMda9qT8EM804spSz/09BjkTzVOj6sRdPeWjcezf/XFsX8IJ/QN8CloNeNvPjmX3LJnF7xBQzS2NsdFT30KA5Xy2dQsMAedY0OYBEO1p0Ohh//SS56Zk9LPM8f0zN8P09CbzxYIzL26z4PpZxoCLiAuAC4uEiEucJ6d7DI6EtHNaB646PheXjBttBJ2J2NOsL/pnbzQezY/kTgrKEiKb9B20HnMFJhcBCqiEQEpJTUn8BKoWq0FDj6sZLHv6j0c1TDvjXx75DBMMEzzEgQQnYd74/r/3hTX/uAmIlkMRxu7ceizxf6DnYT3HMGxJY6sqIPmDh5GWJiYPsY5e0xWIV0FbxoneJSzxxjX6UAYUYWWQXVDHY4na5N9npEuDI2UHPyAwP5Hou42tdgG2sHvFe1ronFha0wgJNiDQKUX5knHmAchSido85lnnxNPe/ozMAvpjte85rfirW9/LzmUQTyuj4MHDuOgcSEaD20sHG1ct0QDKml1CGpaIWiWL15ExVkZYdR1RmmSKChHqoy+Hoy8pincT2oISpVZCOhDmp0OTS+aESgMoWqHdCeGEClPFOrjzl17YryuMc668BejAGFSRkhSsDb5ILiwfBY1o20Mscj0QlCAycmjSBRVUi7ifCRZY3H7NdfFv332s3EYIr8gAc0Yq6VOjRCuLpI6QBqEkNTsooI26VMjOQxNEMB0wzBxCaK27LGZnHOzHULF5xKlztHMrEjgeUjoeHYeprk4PV8dJxLEEoF+L3Hoc6+d0z43vxNNCgvEGZ4l4hV4uNtq8p7Mp8y2uEJ19ExUJsaJMSNRapsk9K1TFpaKn7SHfbiTsEuED+XZDh0sZrxnfX2mwME2vOxlL0vwdvdYHwgSkbbHPlBTQOZGQl8Y5JB1EtOXXXZZ/Mmf/EmCj98qUHLHLwt3H842zja2GAqJ8ekj5roaAl/4whfSTq6aHWpuyDTIhNlOQzSafJeupN+KphLmMVsZwsXQhjKvMpyOQZkbYbJ+/foTbnpenzLDa4b2leNdAjQLCZwLji/ran85zjLTP1slzN/xkOef41Umy37dsWNHEjTJBBp21DpYpmPG948nWSePnKyf89L12kPmToeG1sF2OSdy3rZDLUJ9E2WG3Xyca3v37U1wt/2Os99+42+nfGUOAUJiRNVymSsJN9tlntbFOWH9hK/COe9bZ9/x8Nr6CVt/K1AQJn6bNSikOxRyKdSQOTaZr3D0m9yW3Lez1TGX77uWIyy9Zx1tuwIo57jtsE5qQMggPuUpT0mM8s/93M+ldtx8883AtxMzlR+k+btsWVGDZSFrO01KfW4+Jut/9dVXJ2GW+QmL/Mzn1uPBpjwWrb9zJLdDMxnxqGVYlsItx5d46niSMDY5btRwELZGTrG+zkl9bQgr74u3xYHCzHv2yWx94DPngXV1TjhGxX22X0Gf0Zr0HeO6oC8c54h+H8Qnlj9b3sfTtp/GO/qeQkGAPmannc2vSbr4lHPWx6t++4r44F99BDzRFht3/Tje9ke/Fy/6zIdi4+bb4pkvfFHcfXB3PPtZL44hdtfGq6Cr0KwdwNThSA+aV9B6KYoENHANTHs+ZMDdhEv4h3WjHhrP8PEy6mpEqG1cxXwuU1MAQcNgXz/R3jiItKFAYgRBhGbDRpBIDh0RVizCrHghpseaF7dxXshG3QIEEU0w9/VoDS9BINHGvYUNTbEQIcXi5tZY1toWSxbwHb+N3OFhHfO151oEEPnwmf4aKqgnO0r49mIjww0qfEzoQDKF3pwWNCTHkdCRme5341GTDIUqybwDGDjG9O9QzfW++/bE2awLK1knegb70bzFSTFChwMj/XEIrWWPRT//uOgcG4yPfe5TcXCAyBb/P3vvAehnWR3+n7tnkruy170JISwJqIAMIYJYqxVHa0XUoqKt1Z9WtBar1lJrHfVft9ZVxSI/FRXFQe3PxZC9E2bI3vuO5O71/3yebx74mpJ7AyECNU/y3vf9vuMZ5znPec45zznnOaw1lq1ZhaX0cMxonRNHLToWFxcUnPDjldDEYfsRGiBt5FY6inGFVvyBc53F0HjyrgvU9Mkr/1DJBxkCMlkSeScXJwoZABlfJ9t6tKfHHXdMqoEMg0SBeS8RR02l9FXLw/TRFA8O8G6I4wBHNYSIT2NCHdHSIaL6d6nJlQgp1GpalXSP1MXBrwICMobLQ010EvBnOmVPZILtXbEewsE3DQjemIctR/m+89aVUVs3MZ457zBMsYiQTWyClgp8WFmlNwr1MLEEXE43LoHJ/E0qCZJ20/sQP2TxFORwlGuJoUwFs0GMIhSjAk950KRCwCAu9K0r5JiyK+RrVvxMWXK9BeZ8kHen6JtHvZsnT0cux1/wO5cT42FS3P3Q+nAdpIUFlQVHLkRj3R7L7sZn+ti58eG/f29sXb4pNGPbtrEp+nfh/kJ/lUE8S2EoqyhkUKE/aXesO8wzE4NuKQZx9ED7Qu4qHqjrnvoWdsZQs2uQPFagUCxMbG6MZevY9x5fxF6OtmeeEHOfg78uE2Cw3aeTZbkRm5mQyrknYbBdu4njUM7EPIoSpEImGS12z8q1UcvEdu1Proree+6NBUcfRf/CzKuo4D0tR7aiINq2fQe7XVDFVEPRwN1D2IqJdypt057+4vGhtA8IOMY8ZOo9y+gVM20KKP6WYc1Mr2Pdd2XwfJ5X0czD3zI/xXnso+j9uq1QITMpQy9TnvM1zsEN+JvLLLtiJ/OctxB1xcv6+Z11tu4yu9Ig6ZOroQr1CgzW+WAny5Fptg7SQAUBTcqzX7UClKbD3nO3AQV132ltbU1V8ztpq8KB166yCmeFqeuuuy4x5a4q6nqhpZlBRRVis8BxsNs3Vv71KF53YcGkwKFSRGWB+KMwYfsU4FRWO4+YVGbbX+JWxrex8ldQ+uxnP5us7ISz5uP2v3n7bH9Wb8fKP+ObuOMhvijQWkfrnO+J8ybb5TOTfZSv041H+WN/2k7zdezZBvFC/FRZoxuB5YjL4ke2EFBgVJAWTmOlYhg6JvzGMj281sLB/lCAM+k6YJ3tr9mME0eH7bB+jjG/s54q/bRcccxZlyVLl8Qvf/nLWI3CpImxev5fnA9s9k/5aJ87PoTrmWeemcauZWqqr1LNcq27ybP1s1+KBUwFU1e7TW1tbQknrLMCb7ZIcTx4mJ/J9jsex0qWZ1nFcMzf2vcZVrkf/+Ef/iE+//nPx7XXXpvwfVdXdypPeKlgO+WUE1Nx27d3pPvqEbQGlYZa1gjBnLWQ0AXGpHLAOtqWnDI8Ms7k+2Odbbf95mF+lmX77T+troS/uHDNNdeknUHMy34RH8dK4rtKK5UV9pkwkRZ51gXCsS1OSI8c+yafPRptym3MY853VRoLe12zrJ/4/3FiiVg3abl9q/LW+DH2u3nbFnEy97v5PFmpFKWBSV63E+G+G3fbhoYJWPI+I47FQusDF/19HHvYEXHF0v+KF3z23+NN77swfvDVb8Yzn3FU/Oy266K5jFV2eEmXcUdHUMBhoWC/mesQAnzCmSosxHBrGKrtTWNC2CYYo0TQGkAe2X6XR5bn9Hk64Lu6COZooG4DLxpDK+10Qd6pL+D9Gpp0pNijwGQcaCVBoUk54QKQlsjDKAsGoCH2Eyxesj4dodxB8QElRwEChTytby7f64oannLmZjpKvC7C9SHabN0NGFmOFkdXC62kzVMWr5f808IjdROvrYNHxvXO7o4UF8KFvB7ckYdRaq/vZuvqHRujlQW6s166mGDt3dFeQnwrgoNOW9AafVgtr3tgSTzn5FOwnqiJ085czOIZdJY86rA0bscFuJ5tRvOCJ1X5H+mR0Zo++x/PD904+BBgyBxK/5shkCfvPKFL9CSOmj+6x7fmhKYCw1CARD3xEHyvD61lccqTj+dEVCFEifBAcHQTqIFpUNOpuZiHhE/do0Q1EyAHfbIckKZxDGn9wAr4AERb38sGLAF2dRFYkgjsz0BArgJDt0L3NmI2tpO8OyGkCsDllbWU2U7UXAiswSdRlpRBF3XzyCv/KhxyuU6Y1jW7T+gP59GNmZemXukgmI+Beow87J7JwmnvlOufFBu0bfo0/J6xwOgi8vGKBxBYNhMcB4amc+surAEizj7h+DhhSlM0MhFVoAg4/Zjj4qI3vyZedfYLo25gOOY2NccC8jh6TmscPgMhDka2jElhBKuBcoV0JiDUI0xQzm8qFArC/AB9oDvEKGZpQDEdRqFwrw7UEtLhBOj1uHCUs4NGXdPkWLJsVdRMnhbHnHJ6HPtHL8ZMBQUPk9AuyunBfFcXCRVFOeneMakR0zcYmAkT2IUjTWyYvGEd0btqXWxZtiLasM6Y09KM+R7aelbZS+jzoQH2e2aym4QmXuVPiv5MjbROSRMgcKdjfmcSy2X+oZ3Fy7EOmTTx1nGsAOXZ347B/EyY5bHpte/ITDqmVQjk5Jg1yYSK25km5OeP56zAbVIJoaJBplMhwxX+q6++Oik5ZWZkcl2B/TBbumlt9fd///fJBFwLAZPCifWVLgkPhQVp0MFOwkJ4Wa5tEKYyzQpuMu1tbW3pvvXznde+9rXprMApzBMTSftyHymkCBOVEbbH92y3773yla9MZcl8m4TLwU5j4RZgpg6jabvFLlyqDHx66aXfSAoBYWFgSBUSWjno226yzRnXEj0lj7HKEAYKQOKhgqYCqUKeyqrxBKfHAhvrUqhPSRKICV5EtgAAQABJREFU/NZ6OQ7E9YxLuc98nu95va8kPviNY0dFjMm2qHT4/ve/n1b2xRGfi7M5qVQRt/Y3ZbgWw1ZamXFSPLIPHGMm22aZul2IR74LJUnvW67fideuXq9cuTLVzfHoewqzDy1/KMFrvPqZt3A1v9x+lUfSdwXObFllv2Y4FWh8QeliHR1LJutz+eWXp99+q5Lu7/7u7x4W7KUdeSz6/qPNv94vTrnPM9x8ZvnSNmFmXaWb9od4qMWD49t77uRiGWeeeWYa9//0T/+ES8h1tKOwk4S4M8ikaJ0cA37veFEx4dhYv2F9Ethto/2R+9Dvcv8U13Vf1/lbYe21dRee/lagdwxJQ8xXuFueKffHvvL1vkoyrR/M18M8tXyQHv/VX/1VUih5X6WBZ5NKCMuyzJwss/jI98VJ66tyw7I8dFP7wQ9+kO7pAqViTqWt/WJbpKXeE6ee3AQtg+80UTXceY11wk4zxGTowU1Vy9lrbrkhblu+FMvUuXHRZz4Uk1/7wjj2Bc+Nq+66IQ4/44TYSeDE3TCefaD7CBYQuurWwR/pzlACbz3YweIcFry7cXHdCW+4eeOmtCX8xq1bYguWsloxqBzQmsAdIBIvi8VEKbyr/GwPfGU3FsQqITq372Shbkd0cHjtvY1YDmwCn91pbivHNrZH99i6eUts4+jCCqODuD7tLAR5+NujEwtj406444Tuy/0sHubD34O4WwxRp2747l5cLXw2zEIYwSLgsd0akzGG5YLcojtTlEEjPJLagboPA1fjPBgPQrZSxUkKpAl8vAbZWJscxgpjWixHabsJeDQQuw2nkFi+E9e1xpqYumhh9EyoiE9e+rVY283CXNvs0NViW8fOxJ+Ln88+6cQ49lnHY7WCrAIPWkIfiqfShTxOxOoCZnNRlKzXofTkQeARSePJq8Ohkg8iBJygXGFysvXaSceJTe20e9E7gJ1s6/SlKlI2OJE60RWnPIF5dnB7TCK2QzMTkKZm06ZMRQjvTP5uulxoQqYiIA1+zg8rAvguxU+A4muq1gyDpIa0hxWGWTPmMCntgkHZEEeccRb7IyddAz5eU4mnUB2IYsQfwEWCa+MTjBKxtwy3gnKYhArmkQqsIDzKufZI1/wuQ9NhnAgPt/tBj4xAj1ku5auA8DBacT+Tj3s0K+SnOhYDgGsJlkdh+o+47cZbomMzAZ2w0jjhmEUx/8RTo3X+wpg/Gf87yr/21jvj1IVHx/vf/Ndx9rHPjJrO7qjt7IlqJqRNdy2JjhWrohsFQQVM7iTgWgfhLOO6DEVIJXVJygf6Iu9KqZJ9EI23cRSs76guF0YORjNckhQRCjTWzlpK9OlXJox2YNsFjA5/5klR8+znwGHMg8yzMg6xNi5FPabQVZydXIaZMLvwD2ynD5lfYvvOgg9rP/ViY2k4s5a4/+Y7oh64zsCkbwhhqoOJrgyLh0aYvAkIYJpWzyMAUAWMiXEqetm9Y4D2JO29U1YyHbGuhXqmyh768z8gILPmOMspT6gykY5PGTiZdv2Ms1m2wm2xYCXT7DsyfzKVnveHsc9ljnU2L+ugwKOgqtCtmb0m2d5TEeE7bW1toYmz/v62R3/gT3ziE8kX3RVV88htszxpjBYHBzsVC4gKwwqQroJK/6yv9FL/8Jtvvjle8YpXJIZd82F95qWdfi9MZcBzXgo65iMMfEfaK8N98cUXJ8XFRz/60QT/rLg52G0cK39x6Hvf+x57z9clk+gdOzrT7hzikK4XOUhfbpvChQn0S300Vt4+M8aAwq+KGwVO4aLwJ4zF1ycqKSAKZ/tN2iP+e53nrDwe8gq25frNeEl8zoKgfZn9+Q3WpwDq8xe84AXJ6sFVapPCtt9ki6OxyrCOHibr6nfikjglrJ2jFfBdOXZ8vPWtb00m9AqIrjp7z/FljAcVEY49Yat1hoKh+aj00pXmKqyRxHGF8gWHLUjC9Fh185l5i7vWJVt1/Nmf/VnK17y19pC2WHfbIZzzOJZGqfzwt7yHOCQuuDWtcLRN5mUyD9ud+8RvrOd4SVpi2b6fyxWGttN6Wx/r4Fi7k/hEnlWy2Zavfe1rafXdcSrOnH322Yle3XnnkpSXcHd8WG+VEOJXBS6bX/nKVx7GA1fvpa8m2y9dFWbWqZhuj9WO/G4xLuQ8tBrISmYVN7oq6ULhOCpWLO8rf3HEd2277RDe4qXziuPQMrWENV/rK7xspykrN3zHZD09TPmevKU7vghj83MnIPHPpHWtlk4qmu1Xx4VxJ6yPaX/hk14+SH+03B1iUciYVNXUsRE6NaGObeexMh3GrP/wY+bFx9mpowpXgO1wn+ccj3XMRW+NF7OA9GDX1mhaSDyWOdOiFNflIXdFAYa6PEzG6rUJF9dZLKZNqZ0Yk4hTpuuClqriyIBWEgjLuk+4C9uQwj5Cv9e6YVRhJWoQSd0adLUwSGUv23O6e9huttP0UImwacPGBHdhr2JS3HDOdT7tgF4l6wfGhgtxWvtaXioT/lHLBHl04154qETwXAH+VoEfwsMFJ4NJei4sPpkXQr44QX66TuhOocWD+TkGxSF36OiDP9VSoxyrhHIsNzz8rTpCXnCAd+bOmp0UJ/KDE7DOXde5PSqmNsais0+PmNYQn738P+OODSuipHlCbO4hjs+WTSmug21RgXLMomORB4jBAx/fQ4wHhQ3pkrvlaQVSwNZ0++FrsfkRDvkgIdahbMeFwCNc7bivHnrh6QgBB2KelPOKm+1w27eJmCbJPO2ZT9Jk04VLg8lv/DZPiJBV6ENB4eDk7uTlkZOBmwyqow/b/Na2FGRnwfzDIFiQGo88gUHcdB+QCHn0QwzrYBQGEXoNdFhDFN1+ovC2G1eAVfoNFFCGYqSueXJUERPB4JNDEDoDT06a2MgyLqs+HOX9WAigmK0awrxrjwJCxUMZTEMZgXHYXbOgjFAJwf1yztQgTRYjED6tMJLbBtdO/AVN7SPty+1MFEyKxuHpOSedEgvnzo9NWAI8eNc9senX10bHPQ/GWSecHK848wXx3W9/L85c9KzYvPSBqMWa47AJjTG8Hg31kvuiGguJXvZk7kUDPgAhHWUiHOxAw71xA/sqr4mt69biY4eCAa3uqBOAShHgOJQO3SJUkrhagpYjWT9IbJkY9gj0Wh3MnDM3OtFar1y/MRqmzYwm6sJWH9GD1rwfC5JO+muA98ro6xKid9N4vmYiYlKpratPOamhlmDrAhJMelLuu2+4CSsNlBa834efY8nQQDTA1FTjxuKkJW6Ib+UGGqXPC0EytcgQaiTxgTYdSmNDQFw0yeCuxjxWQV3BQkbSMSrjp5AuI6eAIDOs8Os7CvgyJDImCk6Z6ZMRNN88JseuwdhPzcO+lo6YZDB//OMfp3JlgnQ7cEeIl7/85cndQB9gt9dzRwiFUU3yved31lmBxfraNlfHDnay3sJI+CjsCCNN3GX4Xc0zIr/M+HHHHRfnn39+WjU0Wrs+zK5+y2groAgHvzGZp/A1ZoLCoH0lLHQnURiwvTJoT4Vk3ylkKKhZt6uuuiopHBTS7ItZs6ZR/+wKUBAIxTW30t2fZJ8KD11NhKtxH+xbV6QVWA40ZWHIs22xL9x5wP6w3xQsTVmo9T2FXJ/vj3CbBTDnQuvsN+LLt771rdTHb37zm+N5z3teEu5yXSzXMh5r8nvxxnb4vfkoRDvm7Q/vOXaysKsQaV/ktol/jimticQ3lQ/i3Hve8540vmagsLjkkkuiGWu7e++7d7+EP/vKJH44HoWvAqzlWjfnffHGelsPD/kDk/dsk3XX5UNljUqoq/dYYLjVo21UGBO+WZh23lCozfmkzMb4Yxn2Z65rftXyrZuKDRVdtkGLm3/5l39J41bFot+qYBMXpQHSHl0bbsBlrIHdpwwwKU0Q5l47ZRmvQlr7oj9+Uap/MV+VaWyuw3hn6yws7XNTboP3PFSAWn/78ZOf/GTCAftWOOdvxipDeEtrVCR61l3EfhQnHJdtbW0JrzN+CTP7w7GvMtlr6ySccp289l7uNy2ZFHbNT+WYcLXOX//619N7Wrg4jrxv3ImMr77/ZKdEA1ACGMxRIbsS3lQrU1hTGDzclSHTb3rbm2LJ8vujoXFq3L19eZz97OPjftwCeiaw5er82dHcNivqpzTHCEG5dTl1wW0C1g9TUEBMn9gUU+uJw0CQbmMnKOAn4Zcy5DndplL35HSgANGCl2gYSVGh67KKCA+tiLWK0Dri4QPeWeWClrrOMcJYGiAOKnjrXtzvgiJn3SLkvIy/oAuGz+F+0+9B8vS9AWi6h791HxmmzAqVCxzGT7Di3vOZ77s7h2NUnDFlnJBf9Dq5LYPDaREPvtoFPRUP7rQh7+rOHT2MK/FqArSkix3SNne1x5xjFsaMYw6Pa++7M65fwU5L07GGJmC88dlOPv209J3WHK//i/NjDjhlw8pQQLjFqNfuMmLfpTpTL9udk7D3OJSefAgcUj48+X1wUGvgROFEaXKCl3lwglVI2b27MKEyb6ckIZEZMEnEKhnQTurFSQWEWkUnPieRbnYsGIUI3cxqhlYQEtMjCbqWVr8JgpN90MgoZVMCEdKHTeHeQwFZl4tKtiFyhXwH5mRVEO46CPfgMlbM+Mq4AQ+sWh1bWIlvhJGpYJWnE01wLcJv6QCEtR8N7CAE24OtjqqGODhXoIgoY/Ioh0+u4Fk5v4sP6BntQBBDM2udEnGknhKxRDwhoHsnW5EPBenOTVsxsWPlie23jm5dELX4hG54YDmWDIOxDKuHD776lfHLy6+IWn5XYvUwtBFtORYbs4lZUYc1wgTKq4DglwDHkd34naN86N6xHbeNLbFLIXNXF4GGupkQCDQkUbd0iDUVTm4jknOmBGitSoeC8qFwrwBv4z6UYv3QiWKnDLjxIf+JMWHEY5QNPbS1hwmzGyWHzITZl9O3tWj/6+vp396RmIxFy1bMBl0dTYGOsNRYu2xF1OFKUkVdanh/WkszW49Voo3HFcaJjXJXrFjJnApzBb5Uofkv4+xqQkqWZTv+wJN9OtbhSobKBcesft4Ku95z5VCGz2cyvzJ7viPT7phXMHGsr0ZhYb/KkCgIZxNsx+8TIQDLOJiXK1oXXHBBWj389Kc/nYLkvfrVr07lSVNk/BVEFcgV6i+66KK47LLLkjDv6q57zMtU+57v2JYs+B1sFMkMtiudKkFkplTgCLuvfvWribGzXqeffnpatRXuCrW2RxgLR+lFTsJDxt2dMGT6FWoUaIS9SgyZdWmxQuzBTmPhllvE6bNuEFjjFzz72cc9TNfFn7z9ofjURERx8zIJH++ZzGOsMoz9kYUfhXfx1VVmvy+GWcrscf7J9TI/x4Im3vaBfebqtnOZc5v9ZnLe8pvchrGKFSdM5iGu228GG3Usid8qH+zrrBBwvlSQszzH4njJOhTXY+/51tV4ccwx5Aq15Zu/CgbbUfytY9xxY51tnwLriSeemMbRlVdcEX/5l38Zpz/39Ljm2msSbk6oH3+3BPvOOjkeFHAsQ+WO8HDc6MJRbMFiH+T+8Fv7w+9ceVf5pKWEVkTilsoG383ty7ASdsJ6f5P1Ew5ZCCr+TmWDfSMtEdetn3W3zxzfCuIqHs4++3lp7Putygj798Mf/hjtLWydmfkig3RKpxzbKmHKkVIznbLOtsUkbDIc0o19/BFGJuvv98XfCAf7WKWTQrJ0UQsW+9/rbGGwj6zTbevju6a3v/3t6dza2poC41rv4r6zn6yHMBJ3rY/183cxnuV3fOY7KjR0tdCtSthpSaWyURcXj2wRZF2kmc5d0oHiPFPFnoQ/peyOUA6MxTYPhfwRhP0hrGnlY7ZRV4OZbcHUf7iqPBY966S4b8fq+MaVlwfLN7F07fLYOcDuL8SJmNDYkBbU3CZzGEsGfAGiwsUu+D2vtW5QySGctVrVtVe3hFIea41bYzBKBX1+y2fp+mA8CI8UyBGerxLerZr33EGiFp5Z/NCyQG5P3LFP8nwmOHfRj3msOnZ3s8CllXIPvL+KC+/ZL+nMIld/slAtuDxm3CymSbnPPOdr8cMyE87vUQA4FsVfv5VnTYHhfY86qpTwsM7SZGUFXaBh22P24fOjAYX3vetWxk/ZRnOI/tnCThertmyMCZObkpJBpX8TLr1/zvibxO527pIxEUVWNbRRZaOLmqYqZZkCG5x+H/rz1ILA/lP4p1a9D9VmPyEgQZIASIBcqXAik4mROctEZetWfL+YZOvr2fmhEpSAr8zM1CPFyGw+cjBVImCyrzACbQlEZsP6dVFVQ9R7CHH1hOrYvHNLrNu6PgZLIXCsyg8iHI9ol+Uky3flBFmsLGGVHMo+QIyH+mp2nIC4bobI1NZWxeSWxrjnrtvjpOMWprgEt99wd6x6aDlxBJqiGguInWhn2ekYYZZq8cdNH0rRHnikf57VJvCc5ifFhmf0G0lcT23heSLuvusDGOkUoAeCPARBNiCPempjKBTiKHCGuOJNVjgktBBdwdLT1YFLx3B0bWObzA1rY4aTEVYJrz7xlHjm/Nao6YfYb9sSVSgTGvhmAnmXo2io2I3J6u6dWD0QWKivm62RWF1kAjJicSMRiXsJVNTHxDXoZIhW3DZZ50qUOEZHdieJYeCG8S21VDutqwvKHcI2lw2Xx9YN26JxooqBCURi7ont6zcBKF0tiP6NUqKlqYUtm/Rfp8/7+3DNIK4Gio52TNh27uYaoXZmS0NsWwvxZ8vOUhQOgfKhH19Ag0b2EzCorHQg6ifUJDO6zdu2gw8Imy3TmdRgRJl43fpTbb6mhENq2SljSHgziRZw6hEs+0O7ypP2vs6ueipQKMAqVDguZehl4ryvIkLTdoXkv/3bv01+zAq6TuoyzI57BQeTvr5uA2lepjz+04/H+ceVT+tleUaAV7iQsdf8VrcKBRUPBUGZfYV2GQQF0La2trQiKhOjaa7Mse2VMbXu+7My/Tir/fBnm3AX0sKnDkFs1eo1+HFvjGccuygWHXd8rFi5Kn76s6uIxD0nLvnmf6KA2x5Tic9y191L4vCFR7B6fH8S8BTUra/MVk6uOMp0Cw/7QCWEbbbP7B8ZPlemD3baF17l+zXs8iORfM6pJ8YPf/zTtOVcB7Sst783tm5HsYXVVGUVNAXSYmT4IRQVdFcSuvwu57Ovs8Ka7VdIURDWFFsBWnzZH+F8f+CTmWTr4PjQhFym3D7QVD0rEBQaHTvim/OiDPd4KVtniLuOGwW2f8MMW+X9h4lfkp/rmy8TrkLJs8n59rEkx6OH3+dry7Q9z3/+89N4EJYuJtgW0wh01MNUwrxgAOYqhJI6cHoGMYRe85rXAvPb41knnhQfeP8H6DGF62ek1cztClbjJIUI5wD7TNjJN3htHYXfnXfexZhdTV/q6oXFIoLNDlYld2LJtx2fcmlPI4sQRx99DMLpEQjCG8mjEteH/wOstqS8HDu2176zL83fNhYL4vuqZoaT+JWFId/1W2FlnRXWVXhajuNRumIQXPFvwqSJ8e9f/lIsX7km/vjFLyKAXyMC5/Z49oknxAVvflM8sOxBIuhXwduUx7Llq+KLX/r3FMxu1pzZ0TZ/XqpWxj/Lz9fCRnwcLxW/4/e57/1O2FtH6YY4LD3RUsyz48h4CoX58xG+bO/flQipKkq+/vVvoGD8LjvynAJt/lLqG0CeaLZj0STdlS45doSnqbg+6caePxlPxQfhqeJZHNXKQSX5+9///lRH25eVJ54dN7Ynj5viPJ+U6wQ6Fq8QcqvZcr2yAssj3CdqoHn1WNwakHcHbsDl9SVxz7p7Y+bhrfBNZfHA5lXRUdofP7vpV3HvZizl6lkEm4EFb0NF7Czri/V97QROJIYQVqlES4gB8HEYywUtdctZTavuQ+EA+RmVgYWu6pJQCXxc+BEPtFDogwcruEJg1UV/VIEPLvTU0acTWDiaBN9W433GfzlwLkHpwRZlMUrgTM8l9OXIALSXvMoZryVYGwwMEdthlF0zht3djm3r6et0kG+li0llKLvgC6upSy3jZQCecAj3CK1C5JFVgqggqd2j/FCpoBWDSoVkIetiE7yeMSFUkmj1nKwlpLdaO8AzDjCXDCJnDFRjwYz1yMjk2uioHIz61qlxwgvPiNFJ1XHdkttiZfv6aJk7HWvnuph7+DzcMhri5ttvi4koef7qr98SVY0Ft6wsqwg7x7vJtj1asrvF7DxiHu2dQ/d+PxAoUJjfT1mHSnkSIOAk4gSRJ/g8WXtW2SAzMmVqM3Ig73H420lp7tw5iSEoheuUqSkMV89qFfPBbwkqWtzlDz3APsd1EGlW/ts3RPtwZ/RXY4LWSORm7g3g99AzTDBKCOQAVgBDvayi9bCiMszE3kcU/vYuiF4Jq+wNBPzZGuvX3BcN1cPxoQvfGidi1lZLna677vZY8dDKqGmaHDMRDu5cvyG6ITI9lO82PR0cuyGW/RJDJpBkBmcVJXbkPcAxjGncCBrsIc4llVhwIMxX6JZBOyoQ7qsgSzW0uZIJoIy8S4bdJkjCS1s4CGfDN3sONB5VwKyPXSqsd38/AbPw/ZgzYxJC/4NRV85E0L01Rjo3Rc1AZ0xDETu1cjRqeojBsQsBDKVM4wjKmt6dMZEthfAaZA/m3UwYWg7gEtE1wBadfdHYNJNjOhMAyhXq6mQDF0ygot7oQ9EwWFEf3cMQ8mGsOKqwFRlkZW+30c+bovX402L1vatj8+otccZpZ0XLzNbkVziCGWA7lhgVWI2UomRQ6VI1CSFsZkNUz2D/dgj7CC4UM6ah6NnYEYtgHgeXr0XZQvdjqVEP/Fqa6rFe6QEF8C1EAdFLtOKpuKAsW7s5SmYvgNFbH/fdfX8cfyTMLpg1gkDTD4NZ5baeWEIYaRzkIsN9p2J8fbTrfX+5f08eLc/Hcm+8UjIzmt/LTLv3LUcGU6bMo/haps13szDuCp0rmTLSmjB/5CMfSVs/aj1w6aWXJnN5mUAFW1cjNXFV2WA5rhQo9Jq/q+7m4YqXZY6X8qpeZoxze/wtg68ZvQyrke8VvBQc9DG3rn6rAGa53j/ppJOSIOVvmU+ZUJPWBsJChYo7Sbjauz+Cx3h197n1zHUVppZjSv2wx+KqGoue9QQCK4ehmjp9BiO8JB5E0fmOd15IwFWi9CNM1bMN8CYCeT2ENc+zTjgxvv3dy+MNb7wApRvWXvSTKSt5FDyErcKvbbV8f6uUcfU/48Dvw/JBxlJlj+Xbd549XH288N0XxnqUvS61adMwzBJcV++umDxjSpy2+LR4xnHPiFqCDwsxwVYJ3axHWYFlMsKrAcZsV2Fl1jnGfGX+nHO8VgBReBZHtPhQOSUMXIldvXp16v/cP/s6C9fxUu5T8ae1tTXh0Re+8IUkwLrC7s4GJuMkWC9xS0WRK5D7k6yviiL7UoWafWi7FAzta/tTfLfdtk888/5jSbbf7/OR4aHZveNdBYRMtrEK/J0ZbmMllakQJnWiED788CMIhHkFOwycgQKgA0udW4DDBHZa+WDaOllUbUYR2I0lXGH8jU1/hZPtNtlGYeF4NWZUD0LO0qX3xKvPfU1s2bwNH/OuaGpk22isDZoQMqdNxWWHuf4fP/hPzJM18ZI/eWnccP1N8fyzXhBtrfOB6dSEV7bZJP3Kq6UZDunBGH8y3DwXJ+sszcn1V0lrcnXefhf/P/mpTyWB7z0obefNnxsqY1w99fgBSrOvf+MbCJ47k1DVz+LMLbi43YTVhkLO37zznczN7bGLFeRM68xX4bp4nBXX6dGubbP462GbxU9Tvue1gU3NV8He8fy5z31uT+DMTYy33bEKxckArqq9xC5oJ1YT7A/m7FhKwisIlaW4eH7g/R+MGdNnxRtef0Hs3NERGzcQZwrh8P+wBWum8bYjK4d1idClTyWQdZHG2z5xXUWI8LSufmsMDMe/rkhatDm/6FIjztoP0sHcHtuYrz0/mQnWj0QdUCaUwgt6nerELdfJdJ+YNLEGGl+dTP1le//u4ovirRe9PVrmT4sv/OArMTy5PL5227ejfRKBI+fVx8qqrhg+cnKsmzQUGxtG446ujbGyjxgNzCq1uLvOmYAirGpKTNuFkoHxMgTfOQINLWWryEHoqVu2V9bVplhZCvNW0fgKaQt1BPkSaPgI/TCoog5aW04/VxPYsoZxVsf7dSyA1XPUQoOqWehhg2EUEyjCeqkBvHGNC1u1bMUJr1dTx65X9IduFSosa1kArMHquIZ4ai4YlREfrbFuUkzASreahcIaFq1qUE7UlRGTht8sYaW50vhj3fL1tKVEl2esf1lzZPezgWjCzdjJpb2zC/68Jwaxji1DiTA0qS521IzGvcPb4o7BDbFzCsqKY6bHkp2r4p+/9P/F5Tf8MObMb2M+6oo582YTP4LdUYgJsb1zR7zqdefFhRf/bezqgH+kj6ZOxn1PXOKQNqc+hB7QmwDPPi6cvJTSeEjRPO95zNWh9PuGwCNLNb/vkg+V9xSBAAN03LSPIcqn7mpROQIBZUVMbWoDE09JpUQUAR2z/WGYoyGuByGIAxBEV+adHAcgmAPEQHBVYQBheoiAiSMoOUYQ7EdGWBl3Mu0cJUrwhHjzeefG5z75WRQClfFzYiosxHLjZTAy0zCjHO7Zzio65UOUK9Ra888VOk29RijIOA5pkuGsoAttlCQlquOtFBBzj/CgtjQRLP+miZE3Odv6wuEkoF7Xe3uEmlEILv8S+46Wu5S2llcYIdvy+Zy6Varg4CjncBLJwXtUZLjTh3tLQ+uTFcMQ7yRBgLMVL2MyYGakBgVymYxHyLiUtukzWIoFyRAXuAsyiZCJVgwoIrqxQClHObHuxhtiuLY+Dj9sQcxm5YlZBwUNfn+8r9lrBUyFbi5q80dgbPRaT3oh3jESdPUo/svKVmjrS9mOM3Zuiu/++xejbcb0mDmlKQZgRplxaEmh7wgpGSNMUlQcOOBKAxOuVYpwrLJ+MFsm3VyqqVcBuvuDg+mzJ/zP3kzr3gUcKIMk81ucZL5kyDJDLxOnYkFhQlNfmdG8cqsSwWu/UQlhrACtHPSdlolWqHPfdL/V71x/Wi0MNMl2OzVNzl0hNR/PfnvOOeek6mTBv7hu+7qW4cz1tT0ZZgpZCmAy8vfff38S7nz2+te/PjH9xW23DeKbSlCFP9vpu7ZBodR88kqxDHYuY1912t/7WQg0P+tQnK+/jcD9bVYEZayNCu8qoAJkD3RLNzAtIo55xrHJNeyaa69L98XZ5SghGhAICura362NZeS2G1RPYURffNtl31gnFRVZWfG7Xz+xv8Rfy80Ct+1TKLON1yCUu9r32jf8RWzasSVFDK+uqYoH6MvTnnvaHuGUsSnx28cQVfixHVk4sV8VRGyz5tf2ufE+xEuTiilX0l29tW7F/ZFeeIx/xE3bIy4qKDkWFH5OOeWUtDOJ/fqxj30srcraJ9bTOnpfAWu88W39XEF3jJouvvjiNPaMG6BAaH+ar7hr2bntvit+ZTzw9+NJjltXkl3p1sLGs64e0oM777obC51FWJIRgJj58hvfuCStcn/wg/+YxqJuIetR0BtgcdGi45JbnO9tB/6Of4WFKky2x0rCS7iqwFKIVOC0/xYtWpRgfOstt2PCf2SK7aK1g5YNtlu6pauF4/uMMxYnhZDvqZy66qqf4KZ1M+Otbayin5BnWZj3LE6KL9bP9uue8/a3v4MtsI+Mt739neFuF6tRiulC9pKXnpPcCTTh1vJn9Zr18brXvibmY0Xw8U/8a+IpDHBnXgXWosAPiC/e83yguC0AxCsP3RoMVCv+ue2vlhzS8okEif7hFVem7SznzZuDa9cqykVobJwALetKyqKLLnovyuhWcGE9u2csIm7IVckSawu7Lxx//CLGy5TkwuEYes5znpPg7rsqqsU9lRLSDxVuwlDaIV6/4Q1vSFZtxiFpbW1NcSS0YFMZoRVEVlw8IR15kDKRzdo7yd/lZGwD4SINlQ62Hd4Wf3beK2PDto3xnVUr2OmCXb2wLP2Xr/5bzJsyO158+vPhZysJ0j0YM2ZPxrKVRZ0h4hF09rMbBbs0IDDXs8TVAO/TMumw2MqCVRkCuXTIgO+eh1FGWIdylALWRP7S+4k3hUfNKeEy92EyuQVvynvamGpBbP/IY3WhdEg5gKQjKIyJEAlrhgIASwuVlvLZMpLmpYXCiJYK9HWKRUHeE5n/MAVJ9UlQQTmSYqOB31oyi+u6Ycu/FqwisKTwN1+ozN4GjpViyazF4IRpLVGG0qEdC9+OTQSP7NoeDQumxJFHzYtVG9ejdPhUbO3DtRre8vhZJyTriE2b2uP+B++PT3/+c3Ha80+Pf/3oJ+Jv/vZt7MSBsp/FTtOjdGG6v/ef/X1v7+8O/T44EBh75jk4ZR7K9X8RBGpgiAhIkBgjid5sNI8lrIDry1aJoFEDA18KES0EeISMSsEgasmnjRX0qlICHRbNAOZRCUOk+WgPsQ6WLrk7TmHXixe+8I8IuDMaX/j+T+N4mM0HH7gfawgiM5Od2/oYORiqS1wDVpCFL2Vo5lbO7wJ1gvRQdiJA/Mn1GE0Xvs73PuQ7CX0hC6/TpQ84CpPAnlwQuCmbdlr/NDXIhUCoS5lMKvwQIqxrQblV43D7JAMKjVag0YbIpzIhzKMSd4g4qhIIP5OBdaItoxD6CjTi+sOpaEiKFMowJoWHk5LrJCp++lFyDLDPqFYmXcBwA9qIQawS7undEqc976RoJQAmKmQodm3sYpVqFzEzZkxtScErXb0sx8oBIwgY7QEsSbBMYQIy0NEWTDGbnVmoV9k0tubEVeTW314b577wj3E1IZL/HiYr+fEBCxVIKcAQk1sFipXSXiZC8lcJUY6SowzNuZA0wGilk+EfWHKSL2ZKs1Ajo2YQQwUYhVMFHhkemXz3pjcmgky/wrvvaNmgUOHquVtX6v8r3r773e9OgcmMTyDD6vcqKlRAWIarw64OmJf+0OMllQ6JIQIfTDIbJhkUV71kcrSwUAEhk6blQo4VYFs9igUwBSjfK85Dgdg2u5uE7VRg0Z3DOuuycSBJWCsQ7p1sly2ZgFmtViG6BDz/rMWxje17rZ9CnkKqcFU5okBiHa2bcF28ePGetmnZ8Lu5m7d9Z7nZL9uzkesViq+88sr0gQy+fXGwk8K5q5UqCRQiPQuX+1hJrZpYnxRVtkm8ckciFUn22/6kTCtts/0szISfQpxwFV/dLURz95NPPjnhkoKfZSnY+vyJSApG4rMWPeK5AlJbW1uqj8o6y1ThYHmu3itIi8MZn/dVB9uQlVKuBJu0JHrHO96R/O+NI6BFhQqPLOgmQWVfGT7G+7bpLW95S4oXYpkqKO1Dk2WvXbeB8lWMlCac1M3F3TeMS2EfaHJ/3nnnxZzZM9I3/hEXphIgrwfBYzzlg3ggjKQXwszx63iVVqncuPrqaxEUZqWtFS+44IKENxMnFhTMKp4Meus4+NCHPpRWy7/4xS+CH4Gi9CQUN6uxOGh9uF4H40IaJT7YJ/a3bbef/C1+XEbwyNe8+ryEF8JWJZntEGdf8pKXJIH7llvvSJY7k7F+EX90sZE+mUeiI4x/x1M+hJfXpjw+Hm/bhL+4bT7m6RiS1rpF6cc+9vG45ebbUr9kNwbxxX5fs6aEOh+TxqDtvunmm9iScRPWJi1pHKhYqK2tRJkwhLvFloTD1tExKZ3LdMn8smLY/jSpxHbLYdtp36og+8xnPpPgq6LE2CLiqLCX9jydk7hinwuXrIBTcfp6FOzVLETd/t+/iXVd6+KEecfH2YvPjut/c30M7uyOF5x0Rvz8t7+O+c0zOGbFtOamqIWfY8DBCxHgUksL/o/2wAuy0KPQ72KP/WyICI2NjaczivuCvKf3C3ESHrn2fjmKsVGVB6yq6eKQ3Iihw1V7cBOOMinKRrEE1mQtKSCMEcExTP/1WVgqgbk6WcBx9p88KPxqdTV8KcEYtMgwDZOPl2kLTXCzGhdbF9VGK+C9+aSSitMsXijUd3JLczRMn8JudbpK98Ty1StjUyduPtXECZszK1oWzIqrb7kxbl16Z1Rg8dF62ILY1MXWoDu2xbyjj4gToFvt3bviuSge7r7t7rRYuWnd9pg+m3gxGJfJYh9KT08IHOq6p2e//d5qPdbkmbbboSYDMCYGrzFybQuRtAc2rMV8q5qYBUQz7uiEyCKIIrvoK1au8Ak9HWRfTFfq1ZCmXTScwBGsJZoTIIwjaIF7EYL7EMJuue4aNPInxbJ7H4w2CN9zTzslfvi9H8TxhxOcplbiaHAn2C+/Q2lRCOxQINJlCsPkrcBLUQUGIf3wRuGdJOzzUrJ8gGgmpYBPuU5v7Tk7+XtZYCwg+PxISo+UMQ8k8EwqhARKTElJ1XCKWlyGEK8gr8JBEwVdHIwvoVvHAKYXKh9SkBzyK8cMwolHxYNuIVUQZBUaaVsmsk9WHSofIPzlKCXKabj1GaBs42vsxJ9vB76I22qZuLA8qaqdEy0nHIW96RwqznCnPHfLKMEkcwQXQVcyVDwwD8UAUe3dm9m4FrVOYLw+QNmVKInwkQhsz6Nj2QPRQtTvFsyxt2x4iH4uTF7JYmUPPJMuiQwN5OlhJGOjQCelEADtQQgoYdIrBUfKmbQOZsp9uK8yxnte6Ot9fT3+ffMvPvyiOE+FMJk7GUQVA66kKiTJ7MhEKsz7XMZPAcdtHhcvXhytra2pcIUCV3BdhdUHWH90GT63s5OJdhXKVTLzU/DVZNqVLJlwGcvxkgy29d1bGJVBte4KXj/60Y/SOwp1Wlz4TKZcISUrG2RUE6PO2WvxTiFVQdhAdFoIaNmhWXkW2BVwxuuf8er/aIqHh4VO2nXf/Q8m5t72dWO27Mqswrdmw0tYuaVhMXfOzLRlnHC1DcLuzDPPTOcWAjFKFHIfWx/hlcsV9u6YYZtWrlyZYOY7xQy+vw9WEtYy0Ll+ClfWTeHJQS/e6FLgKrUrWOJaFqp6iD5eVz228KCwIb6qeLAvTeLkD37wg9SXwkqY+o7PFebzewqFB5psXxaYzMvftsGzK9l/8zd/k8p3yz/7zGfZhULhSGXJWClbbHjW4kAFkkK4uCB+57JsU1ayifPigOND+B5IUuAxP8tUAebKtNt8vvSlL43L/u+3U185S63E9N46KBgJV3dGEM8N/nrCCez+wTu7dhXa6/g3ZRxNP/bxx3aKO9IYk7hhmzxLmxob3pcUpe+88J3JOkQLLLdrVSD1cDyr/BDfrc+f//kr0oq8/dPW1kqOBzdlWpT72d+WbfL63Fe9Mv76rW+LpcSiOffcc2Pd2lWxG1N2d+gxMKZJRZaxcqRHP2eVX/cH++NFL8Q9jLncNQeTfZ6Pwp0D/2tdhbVJpZdCv0qnn//850kBUVFehSD8hmRpInzFAcekCjf7zl3NVOC+6YI3pTaoZHQesJ4bcL3o7tFVZ0HK35gPliddVsFhu81D+rGauchrlQzSe8eBc8wN7Aqiu4V5GkvM94S1yhDH19M9CSeTMBCfpTXOwyqBZjZPjtMuuTSqy5hvV94et3Oc1nZizFkwO+5ehQIX0nLTmrujY3dXzGuZFdVYpOIDwSLUSKzHfaCXVf7JMYFg5AVFtXOLPKRKh0EWzvpxJ66uJb4Kozct7nB2O13HY7qHgkB+eRjlgy42MNPwWFg/cMYZLCkFSlCu2wKbMSLag6x476Y80FYQMhP+Ld3nBK+HagEFBngswSANwZ8NwYtqGStf7bclPBTXjCFRxZHsM8hXK2LzdC71cpj3ZsydGX082LRza2za3R5biW02wEpcJTFURmvL47Irvx9DdSixcAMZxZW3EsuImZMnxKaOHUlRUdvANqUtTfG6c1+LCyS7h8yZggvJaLRv7cI1BTdAXEUOpacnBES7Q+kQBB43BHpg5gze1L6DiPswStX4Tff19Mbk5pYUkTYRJIipArcBa9w+yIi9nhF503Y9RhV2G8kRBFTEe5gixHcEYv2K21rn4J+4Dn/GXbEV/+TDFsxhEmB1C4uBSazaqXiAkhYEAMsxLw7vqXhwMi3Lh4oIXoV+JkLpmRd5le/SURAi0l3z9CnnwpGy5Pp3z7pxGKVXjXA2a0uWD1gYuDWQRzlH6QQsPPCx8+xRxupQOYR2BA0wTnZRosUGAn0l71bTLoluHUclPtZuBarbiuekveakFYTKmxIUNFofVDJJ9GMJso0JbcMA/nXIDMPEnjjyBadGySx8fAd3x2b2UO4iLoaM5LSWyQkGo8BGrTYQSxpyXSOaYHabKXci8J82uRljiSoyIyr3Qw/G97/59WglRkh/x3bMBtltJMHvEVgVtPNkRh2dgvqxyqhnS1e3g+pHVe2bTly5X/j5pCbrMdZxoJXLecvEeK2AkpiMPRnLqMnkudLk6rCr4f72nauvvjoxiQqw//iP/5hWEV//+tcn4S5vX2ZfyvAp5MkQKeTKRKvEkEGUWTQOhAylioIsIMkcem+8ZJ2tu/XJjJjfyLjLiJlc3VTQkinTR11h0/cV2GRYZZ7ztxkOMnO2XUHVd/1GYciVa606ZLQt40BTHr/inPlpUWK7szLlqCMXpqj11kcB3PoqvAnPhQhyL0cpspwVWldBZeqtl6uitqNZxcOelBiuPbQi38tn6aNt+/KXv5z89RUe7L9ch/zewTjbfpPtEsb2hXBQOFWhJa64surqnof9YR/adyqI9ifJlAtfkwK5ZV5yySUJzq7aK/grACnQKKCIowpJ+5v/eHUQD7OQb99ZF+MiGDtERYM4/8Y3vjEJECrfxDdhkAXSsfIXJtZXGFl/hbrLLrssCV3GMLE94qu4r3WFh7gknHOdxsp/vGfCyX47gh2khPM3v/nN1B6FPuukEAypTYK/Vg+auwtv22dd7F+7BnkgrdwynJk3StLuRQbX25+kUGo59qv5qrTU4moG5tHGCBCXj8Cl72rolWPEQzzybN19Ll4Yp8a62F+6jViXg51U3BSPM3+LI7ZFPDDt3LE1naV1L33Zn6b3jzpqYRrrjvfZs6bHP//zPyfXqecuXpzGkkoVU6bvmU5mOpcePgF/xDlxwLN9oBLE/lD55Nm+MLaKylsDDhsfYj7xK7Q+0yJOpYC0R0s45wotHpwnVA76rXONfem4sAxxTLxpbW1NtNImqNQWtyxTeBi/5RvEw3A+ufjii5MSSusw+9XvnFtUMtrnT/fkGMvJOdoxnWnq7LlzYi081W9uui4+/KGPwgtVxn3rVxDnrDa2DOJG2DY1Zh19eMS0uliOBertW5bF8v6t0d0C39Y6KcqZP8pRDrhoJh8J55oWhgxOOQh+lmA1OwjPPMDC1SBk3APOibBbhWMAfrZ9iLhgIwOxC9/WHsZ1PwL8AMcgY3sAnnBQ3k6lgtat0LJK5lytlWvqCJJcWxf11KG+mbgOBBWv55iAhYJHvWfcakeqWdDjGMbCYqiGfLGE6MOtuBcrCRyqic/WBb9P/DHmCnnoEvjgEsovw6qmAj53M/HQ7mab0lvuvxvedFfMOGJetC06krqOxG+X3h5LOh+KQQJ7Tpw1NTqG++Pe1ctjNXy+gSnlfyegcPjhf10ZX/7aV5LiARY34VVjy0T4ykOKh4ybT8fz74H8Px3BcqjOGQIS2n0dPIhamNQuGI36eiLw4h9WB3HrhnF3+xyVECnaLeZkwwjJHkkJgZJAt4shVtR7EVoUBjTjcv/hXlwtjK6LKA+Dj4YV4jptGj6Ja1cTxGpiPOuZizCD/iXa+vkwNh18CzWCKFewaqfJsHsQu0+x95LpGQxFMWPgOyogTIVzVjyoUc7Xv9vmgrqiYPXgNc0uHOSlEkClwEiR8qEEt4tSlAnlKBMMcJm0x04EBKcc5OyWTcM1KB0Q6lU45KMChYXKB02hVUB46A/IrqEpUrDCfAmTCYBJZ5nqUdpaxgSV2CiUNwNoywfZTUINehX+3MecfmrUTKhLk4LMtu2fiGJhahPMf98AZmyUT51MFTBjk1CQ1KF0KOneHe1rVkXXsvuJFkRkdQk9k8OONStiLjuRdGxeFxNpxyjwz4JXyoRJ1H2c6QiCBKlwGI7GluY0sXbvWQmR6atXEbN/vG/K9vH+2Rfu5vuPN9/H+l1mUou/U0hymzLjPmjy6ziQuXF1SiuA6667LvnmyrTrX6uA76Hpv1uamadCsmcZVFeX/V5XDpl7g0C6NZuMo6bCMp+2W198cScrIorrNNa139rXmZn3exlMzwr17yQImykL75m5z23fG+Yy6tZJP+Grrroq1f9Vr3pVWpXXVSR/P1adxntmGZYrrL1WCFc4zHlv3bYjMee6eGhWbx8IYxlxV7VltFVKyPQrhGrFoIWH+bV3dO2hBQWCYjmm4naal32TzZRdmZbxP1B3kvHanZ/bnizkKziaVEyJF9bz/PPPTwofBRTb6zsKLlDNhFc5n7HO0pW8Ouv35qOQrnCktYCwEg4Z5llwUzB9IpL4Zh0Uojw7BixbRZ5+8rZHPM1bPK5cuTK1c3/KVqBSyHLrQMeX/Wh/WpawFbfFfQ/HouX4njBXAH8iUu43XYMUnh0zlqM7VoahOGk9FfTf9a53pXqpeJTOalHltKFQOYS7m8l7+5tsl8n2WBcVMsJWdBcOWmPZZq2sPKyTFhuOm89//vOp36VJKkJ27dqd+kb6tXXr+Ltt7G8d9/WeeJlX4O0T8TAnlSOb8EnfvGV73I4SZcPatYn2qODp6upOCgfH69f+45LkhnXmmWfG+973viSouxuXVlN7Kxvy2M/nXNbjPdtn0ibPJumQVg/f/e53kxI0u261IvT77MJ3XYi1z7tTEGLf16pM9zzpmf1oLA7dLV70ohfFb37zG3C5Ps1B0nCf+b7zhopwd1BSOaHlikEuVeRpMSX9cI7SfcyxJQyyxVumNca4ya4b1uPpmhxrwk2ctk/FJ9srvrtrF74S0TXUE+e/5Y1xwf/56yidxNzSVBMthxOUll0v2ivYXpTA45tKdsUGjm1sc9GD8mFkNqEg5zRG9Sy2HW5kW2wE++5yYpwRP6ubQ76xEv5Pq4PRchgleCa3LC8rZ1EOpYRbl1cSGLIHfrcfnmsEN9dy6TD0oQrFgtvRl/N80AU5LCNKcN/wm7rqOli5idHIzmWNExsIKD4VF6wpKKJYLGSnl4YGFBHgRB08ozshVcHHVsKnVkJHKuRp5W2xyB2Flx1B2WFssT6UH8PUnWiWUYK1belELH+bWHibMjFWdbJlPNaxpVMmxO7q0bhv65q48aElcQ+7hWwZ2hXzF0Cbh3vZSWRFdI7gFtcyCX65JHZ2d8UuYkNc+f9+gmsIO3Zg/LOZndsM8DplJi50BLMc6Ns/5fjTFff+t9f7kNvF//YePsD2SXD3mXwG4TMugEyRq2XurSsjVoNGtR2GaBLEegDGtgRhFJG2IPAjLKuEKCgZIIoQzlGIq4KzzJ5R1I1AXI4A3UP09SoIcX9/T0ybMjVF2vVxDYRuxbLV0TBjWiKGMs8l5CFDaETgypLaJGSoUWausJpp8ihuS1I2aHbmGn1RM3ObH2Eg9jxMsR1yhigcuLTeuP5xYTa0y5Kod6FEVSg8sMK+w/0StMZag8i0jlKxihImKzTfBgeyosZyUKGhG0YpDIHuDGrE3c7I8nxHBUSKUsx3QygchoHZCHE2KpkMJhGFeIDvu7GPq+tG2fPQ2liHVcrMeUdHbctUtshEAGFyK0GTrdWIe0ubMKxAiUGMDH1i+tkq6v6lcS8rHqUIEjMQ1o6bNQdn4e44ppWdN5h4ervwDd3dQT+yes6EmNqf6k9dETaMA9I9QHRlJrDZrXOZzOpjK9uxmRLDBgyGBog6T98KuoOVcl/uK//xnu/ruwO9L547ThR4vVYodhXVFaNv44fsiqI+1QqJCm8m4ZZXYmXmvVYI0YzaPDKj7Xt+LwPpmHTlyj3pXXGXaTKugoy0Qvh4yfd9zzyth/BSiLQsmXcZYRlXx98FuHn4vs+sTx4/futhcnyaskLC+wpO1lchwdVqGesPfOADSbgyrwNNlmU51jEn69eFIKTSh2GbhFYZaZl8+8AkbF0x93sZbeNn2GdaohyDP6ot2tvsOrc545WCuG1TYFWhZN4KiSYZWpnbg5mEt/0jbF3ptH+0LvGeglhra2s8uPyh9Nz2+luhQb/frCwYr37imPBV8LCd+vXbLi0oXK1dvHhxKlOFkgoc26/wq6LgQJOKMPHSuioY21cmV3dtu2WaHF8Kyfqru7qbXQ/y2EovPcof8c/VTy0pFJiNpaBgJQ6oYFEhoID2aHj6RPSt7RJe4o1wtI9c4Xa3CS0cvv6Nr8eadRuThZPBPLVyEue01DnrrLNSIMrcj1oL9sKwt9Pv0hrxvgCtR2l40S371ySspDn5LP5qgaGLgivn4pXWPcLGeqoIUbHatasrfvzjHyd8d1V80aKjUU7sZoW8+aDS/twEx7pJ/BT/xVHvyato/VOuhR/xj77B+Pzwhz+c4ubYt7ZLSxLjZjh2hKnfKXybxK3COP+fM1ge/xkf0weP84/uHtZH4V98MzmeVS796pe/gb7flODs2LVt9oV4bn/Ydzlejf01d+5MAsC+kq03v55w4Prrb0jKbOcK8Vpcd/5R8S3eOU84TqWT0sAXvvCFySVNfM9j2XnA+kk7M431vWyZ8Tib/ZT4zP4T54WdyjevbaP0swS8cdXnyBOf5eCI5/3JC+J9H/9odOPO8r53XwR+1cXdN90W82e3xaSZuKeV9sWyrs2xZXU3rg3wPdt74zktR0QVJg0VCPRuW6/jwwA70SSlAdYFoyzwUFLaecJnxnQwWlGit0hvUHcsE9jZpZIdKNgi08DmpSgYjR/hAl85DDBVxO2Z+U9WjRU3g5WXEHdi1N3asIiQD5UL5kniP1Pgd37J15bR94PQUReUdPWVPy0oQ1mIqMLtA2WBLtZV0Ff52GSlK79b5SIbbWmujiHq2TnQHat2bIgVWzdGx0hvUpBUteBe0dsRdVOwABmpj/auzpjRPDEWtrFjUfvOWIMy8Bc//0V0d7G98KSamDar4Ca6ffPO1BfzF7Y9JXDkUCUeHwQOKR8eH9wOfQUEnHK70ajfdsftsWXbjuTXr7AssapnEtwBQTZa/JB+wzicDVf2J1cBBV2tDnTDqGYSq4To6rLQzwP93FDVwkTilsE9mZW77rib4IjTcbvYEM31Dfi9HhO78R0rR0M6bGalTAYoMLQ+SIEYIZTGHfBeIYAjZe2prx2XgkxSvu+oLihoRLhKGgjf5H7RdeEG9yHShZxk2QrXpSoavNzDySXlAxNECtzAA03xjDaZ4jxAvJPiwft7lA3pVa6d5KxLckHxzG+VFWqtVT4kpYQVoQ5OPL5fhia8n3IHmWRGB9luiYmxtoSJgB042ncTDIjJ7b8++x+Yuw3Hn5x7fjSfMjNG2H6tv4ZnMH51aLKdNKkd36McQkGED0aMbN8W65cuibt//auYTtDItaxuLaeiszHTa0JZ0Iv/3mSUCSWUWQL8R41T4QxHEqbmh1SWXC4mTWFbVMwTjaxcgDfPKdPUxfZLTawgJfilO7//PwqTYyWFlgNJTtTikn2mEJCFJFdTFP5ckTKgnfddiXJlXYWEK24KccWp0Odl0dramm7LSMtcKmzIdMqQZkHB1V+ZJXfDUIHhCvDxxx+frBL0G5eJsuy8olZcTvG18LFcma1s9eBvmU/P3/nOd2I1bh8y5x4yab6r4CWzb7tsu4fJ3wovxfesq9/IzGr54Mq4FiGuMj4RSYHBflAYtd7CSYXHps3s8DCA0g7myT449ZSTkjm6K42+J9MtfH7yk5+kdmlyLDw0gb/v/mVx9JGHp74F2x9un/XNcLLfFUxtq8KjfeS3nn0nw+SJaONYeQhb+8X2WOLGRWIAAEAASURBVK5wUKC5/qYbEyz8VhhZHxUG0lxTjXR7nGQf+53njBeaqKvosi8VQLKlg/ho3sLfcfVEKB+EsQKTbg/in8nxoCLJZ44zFW8Kaq7qKmTpLqFlkN+Ij2MlhWjzUujT7FxFkjiQV9BVrtjunISjMDZfhZQD7WMtCOw/2yZ9MJjk6173uuR+ofJM3BO3Ffhtt3XTEsSVatuvC6MrmjvTNpgTUzXtf1fuexBy6ghoPF5yfNpntkdB0/LEa/O54IILkiWPW5saaPCnP/tpsnZwPDnGrP+Zzzvz4fFkPoODzsvD4GQPfMKBK6DGq7+0ziS+5f6wfJP1a2A7XfHkda99dXyK7Tdto24EWu1Ih9YjzL/kZS9Ligr7Wrerh5avIhbMbBT+BfwR1jkVX+d7j/csLknnVQiKBybppLT7yCOPQhlwNvR3TbIes9zFixen+cPYG9ZV+mUcIOmZNNmdKbR2sq+0Gh0YZHUeQU9loDDJdFx3Da1atIJwFyUtf9w9SfyyfC3pxAGTY1wFjUkFhs/Mz7H+RMIiFfB7/uOYEh8cA7bFvhBOwtag3Dvbt6egxT0szJx89vOoXVnUzZgcn/neZUTv7o+PvO8f4piFLPygGLjtxlvi5htuis0dKH9xPSaUePSsXRItpRNi1vQZ0UZA77oKdmXZ0Q5f3Rml8MLN9ZNYFIJvYFGIGZej4K6s8mIAdCjHpVXlQxULQAZ+ZEs5FoV6oOfsPsf4rmZxychq5W67ygLVEMpHeXTr7j9GYmHxzAUv2uTCVsFNuWDVW6X1RBnWc3uUDyoheCvRuH7yacAKoQIXabefNS6Z2973DA8QfwzXkTKUfZNrcLt4IO5c+2D0wBk2zpoR01vY1nZXZyzbsSka50yO3951a0yBFr/q/PNQjvbFt3BrO2zBYfHFr34pjj/hOBbXUHoQbH7X7l3R0DQxWqY1pSMtXrGIdig9PSFwSPnw9Oy331uti5mzPJF4zte9EJua+rroZC7vYIWjdOoUAsM0JCavCmKmr38pBG0XgpbMSt8QUfwJktTCpOik1dQ4leCSENU6fNEQdA2+qKnZAETOGBCdHTt5l32BmSRTAEvuzZg+OXp3sb82DFRFN1pUaG6yQoCAVqABdocILQf6YYg1E0vCu8w+h5P5MHyCbh66dZRTnvdGEOJTm8hLBkX9sltWDfMyNJWk+baCBfphdQu8ozQ9gpbZyMD8KhBlCbvKAv6paEhKFn4XlBRqllEscH8QK4OCoI5gBlFmeklw0qStjLx9ZnL/ZSdA6ygTpeA+0IeCht8yArUTMaXnd20ZGvlhlABbiekAoa5Cy92HsmZhWWUsv/7W+Ona3XH+x1qjZv5hMbgVk9tdWIYAG4NZoimgD3pjxX33xoJnHseWmrvj+1/693j2YfOjibrUtjRHLUx1NW4yNZrhwdCWEQMCyGH5gck9DOUEzOzKYHA2rV3PdmQL445bb0lKh5s2rMd3/kjeJF4lQpcpM35Ock9EygxlzqvQn9QNWMswuwIko6Rg4ATryqcrf6YsAGm+KiPqapbfmHxPmPuNKefr73wvPRjjj0yfDIvCiooBmVzzkSl0PBjBXgGnra0tMZC2xdU2zZUVbEx5DCq0FifrZh4KG6Z89tq2Z6bJ72ybvxUEFaZs9/5YPpi/bXDLNWGYGXkVDlpfaIZrPfU7tp2Wa//aDuHob4/ilGGX35WZdTtGBTvrJWy8p0Cb+6f4+8dyrdCtoCvjLhw9zFPGePacufGr31xNQNRJ6V4XwpAr3FqGyKifccYZCb72nd8IBwUqmpZWznOrzFs4KVgJY1OGgX0rY+7WjPpbK/Sbj+3LFhCPpT2P5137wr62TrZDIVYXBGOCCA/r7apqD1vp2pe+VwWN7iY+zAQUjmMl+9ixIzwVSvUFNxnrwTKvvfbaJLgrHAtT4WSZ1kl8yfg0VhljPXNMq0QQlyzfsZX7wLK0+lGJJX46DhwjruKKY8LCOth/9rH9Iq44Rs3Xd1xFNj/x374zD+GjAkOlRy4r47h5PJaUv9vXN8LMZJm6W1lf4aogeOqppyEQT4kHlz2Uxpowd2xp1aGwpLJMuuK9VG+IcDUxhmqqC0Ew63DLS9qLfRXOfeFiHwsX+0z4moSdw3rN6nVpm19hrdm+fWBZKvBsm+PlMoSJGTOmIJB2AFNiVDB+2tsNNosyjHcMomwy70wb/C18Mw309+NJ1lnrhpxsh0k8cPxObmmKBx9aGYcvmEds7N1xx+23RGPT5ITPBtQUfu5y4e4SupEYW8GdQrQgqWKuHmBOtPrSKmGgBWhWEkhzhcVYyfoVt1kY2NeOEe8LQ++Zr0l6Il5Kix96aHls2rglKZXtJ3FCpYQ4qaJNSy0tElQoyivYF1o0SLPNT+XD/MPawPW+BGfLE+8NuCseC7cPYwni+BKn/J1puvXOybGfk4oHU4Z58Xv5ncdyHm98jJfXgZafx7flmFfGH39rMdOcFJ4GUGQ8wMmVyCzqUuvgwBX5fZ/6ONcyjGXx/L84N7o3bWYx7a64/rfXx/Ily+KO626MYycfRZyG7rjjnmujobIunnPsM+OI44+Msh7mlK3tsXPNZguPDnZiqoTPbsZlgpW+mIoVS/kMxhPldexgC2UWeKa2zoieLdti4+q10TR5Wmxatz76ugo8RzV0w35N44z8KllIuv+eu2L+3PkJPzp374pZKtTgn3ewq5mxKHrAjW5wx2vdZ2vh9cvhz7VWHqlqjMa2afGj//5ZWuh73vPPim0b1sX6rdvYLnNqXH/HrbGEOBctk2dF5VzGP7tYbGhfC5+6I46Gzzz/1D8lgOVQtD14ZMLJq379iziaRZdPfPrfUoySuW2zE30qw4rCpOKhOLnTB0y3UC++fej6aQKBQ8qHp0lHPRWrqYA8iVWVZ554QhIu71v2YAztJIovK+J1PDNSbz8MrQoINaZaRGjiVZL8FFAyQHgUXEd6EeaYyJOZF4TNqLuSFIX6EbSo5bgTqL3FfADCV8ZEOYEot1hMoBjQxN/ovCn2ApOBygv3MC5RQEYjm5QY1AURqOC2AKeg/1tyXVDoHkWQ55kMENmkOcN5g1vpWmaqYLgmk+B2cgqeuoQwwWCZMDIKw6uGwY/4n5UN9pe3EqPNWY2DVg7pJieKSilZbvCR1hhkpzifnqU68EYFldJKQucE4zWYj4e7egzSAckID6uSSo8UHAKBG3eLMnziStAYN0+eHmfNPTJ+xL7qsRMf5KZ2AgGx2kQQoQGtR7pHmdRQArW1xgKOYAvTlViyTAceDSiWpiDgVnNdxaHJHr2Ehh1lCRUE6nhXFJh/jCuiHeVT8+SWaMSP8JfkoencYQsPRzNO4CRVMsKXNjn5mR4ro54+2uvPozEXMlGZoXP1Jq/QuPpsf2gqLFOo370MrqvRrizl4HQyXzLSMqjWVQbIcjx7yGSavCczNl7KK76+J9On8GOQRv1uXTFUKHWlSqWAz/Q5zjAaL2/bY8p181z825gFrvLKtBpkUN/cLNSrXMmwSR89yh+ZSMeAzKeMrTBRYNRv3nsytDJkMrjetz7CRCbWlPvhUbJOt2TUVQRZb/MSLgZoVOGWBa99fbs/9xWSMowyTGXuraOHzPIvf/XrxLDL1Le2tsY555yTVj7dblPFlQoM2yODL55AoqADGsMW4G49Mi7kfhBm5q/C6T/+4z8Srusn7Qq8ScVDFjLSjYP8x34zOR60rrFurn4KE/vP8SCsPAxka9qf8SkuCQvfdSypTHPVVJchlRKOlWIBMr9vn+R+SYU9zj9ZgSb8HVsZ32yXq6+OLbd51OLBAHxa/WiG7gqv9EDcUxFkPwkH+9l6iQviu0oxYabLjMK/7VGRshrlm2VlS6PHWf1xPxNHhK9H7kP7Tjw9HeXY0nvvS3EW2trakpuFCjx9/MshCwqNwsVUoAvSsAINLtxMU1i63NcfYZJh6jvm5+8CnmNyjvXPxo1bEwxdIZcOGJ/G4wtf/ELchEuANKi3l1V2xsTWrYXAiY2NBlHsiFp8ya2i/ZXHZVZI5dXmfdXtibg/gBCn4mEDQnwWolXOGedAN5vcx+KJVgBZGHUsn3zSs1EEEQOAioj/4o60wvp7FOP9eHUVr/K8YpnCQpjY7+Kj+WbrE8eoSXiedtpplF0W733vB+Lj//rxOOXkU9KWxe7youWRfSId9VvnFl1GvNYdxq3Mb7n1JsooC/En958Kauc/26wSyXaIB6ZcR+v1h56caQtckIydibEBMjhG5ANT4lqr0hIWa9yGom7u9Dh5alMsPPG42N2+Oy56+98h8B8W9ZU1MfjQqtiwan385K5r479vuprdyHriqMZ5UTtQEkfOnIcFBPHUdhCXp2t72jmtqm9iNJVNwnq0IRpYiBtAyTDY3514rVIE8x3sqDETBUVXR2domSEeiacV8Mc10nrijfUSiHzbtq3JarkRGigyr9+ExRK83ATiP7QtOCwpIHax81FH965YsWltsoJw4WEqFq2r+3bGxKPnpi0wN5T1xo3rH4ib7r89Jq5qjtVdG2PR8SfGHQ/ci2J7OGpUPJZPiKY5M6OjbCC++t3/RNGrNdzkeMZxz4hTwd0ToB8zsQJxTG1cvylmzJy+B5B7Tj7YkwRx0c98+9D5aQKBQxTkadJRT8VqOvgrUTCc9NxTYVhZBdm4IQVIrMLPv3dHd0yC2A1gqaDlgb5gJUxyKh6SlcIeIWmXq/rMa273WMKuD5qJusUk7EiKCdCJ8qIcYR9pm0CWnSgsWLnEukGt5zBmZVUQ0LTPMJJ72kJI5QOKCY8SiOwQcQdSeYlKUYc95MrJQfOxoQG0uvi+aeVQgnScmDPOI1o88ENGT62ICguVDqVsV6niQZcHI/tWGtCH752G8j+ZBn5wmAettywnIW4Vp0K9qBjSTPK741IlyMPv8aErQ8lCALO7tHMIGaQz5bp9paa3ZZjUVfZD3LF4qGfrjSoAUdlHvZjv1q1dGjNZeZ2B+dzXYEhe9o63xV3bNsfz33xB/OLKK7AaKYleVmheglCqicct+OZuwAJiNkxVI5NmNUxRFUxOmcIkxzAuHsMwbIOpjQUTbjXqWwnatWbbjmhccHg0M5nc/H+/FTsJGPSSxecR+LIm4QHmKKn5+g7aSH0Fn6iUhb408dOmnGScFIqceDVF1qzWJHOl0GGMAQ+FL4PJubLoM1eK/EYmy7wzE+89k8xhZsTSjX388R2ZaL+X+VPR4WFwMBlA3SK8lpG0bH22FWhkXl2hUuAZK+V6WUfxrhgOfifTqoLBFWCVEMYwyIzkeIoHvzc/V4Ktk0yx9VKZolLC8mS4FQAV8oRJTj7zt9+MlRQQzUszfZlqBUIFP+EmPCzvQFLuL8+5vsLMslTqqfAQ9vooa9Wj4CHcFTwVolWCZBiLRyqITLldPrOdnoWD9TY/n4s7rn7aJu+rbGptbU3f+0chQLw7mMk6ZdNhyxEOOYCdgvUDKx5K9fd+rnNubwWmvOMl6aMKBfvxxS9+cXpdoVcljWPtPe95T8J/HwgDYSVcLCP3zXhljPXcPIvzyfjv2NJqQdxVGBeXVB5ZT/tDXHCXCpN5ZMFehZx1N+mupOLB2AnigsoorfWkEyrehJflHcwkLpmEmTjrb9urYPjWt741PvKxjyeLIZ9r8n4PQrEuD3fcuSSNWfFLWGd8zdXVgs+ZpkxN2hgpf+crtlW4ec448hBWAz0ElrZu55zzYlxCXp+UHsL4mKOPSS4KCvKa+h9xBIJMz0BalT/66IXJCsLpOOdrnuKHfaWQVFz2GFU8oEfu+HHXkntj0bFHs0gi/SpLyqVkhcXYKQGuKqmNQfPud787Ke6MJ/IcFA+9BGwewXpgAqvBJseah8l2OC7y73TzUf7YZt/zffs18RtF76n8dA6zHz3ET2NpSI+lmdLiN7/5L+PKH18ZZ515VrJm0i3nYx/7WFKwab3RCs2ZPLkl9ZPzgeVIV+U1br3tZuCN9Sj1lu4Kd+Evnkuf/Da3K/eP1TOPjANF1f0Du3QEQQNkZkjylnCSonSSij1r9TtA/xrPTB4wzTsE724hsHhLa0l897c/jSEsHG665vr40Xe+j4vPfTFInLPDWmZyHBmVZfWx9r6VsWvd/dFcUYeVwuxorK6P5fc9GGtX3BFv/JOT6QzKhx/sQcHXhaWwMdJKGipj9aZV0Vs6AA1kq2PGqDSicphxNYgSYqgq6oZqYtaRKlJXRTfKhk3sTLG6fUuyhq1AKbi1f1fcevWP2fFsJltm4jpLjIZSXCmMGVE5jR0x2qbH3bf+Kjb3d1KfFVF6T0WK89XHVuy10wiM2zQnlm5bE+e+401YZMyOThQYpfD427CqaGAXtZe//GUsuGn1a5HGvKhhTQw5QPgJUuLG7QGtdx7WNORFLF9M7xaeHvr7NINAQRp4mlX6UHWfGhCQCBhUsIndKKon4D3GRFwCkWpm5XvNmlVRx0RWL4Fggq/ApWIEaVv/NVfrvS5FA9DL9+X9KBEgzmrwFe5LVFTAHBkF0bgPNUyMI/hmy0hK7OtQTugyMcC3k2rYxpJ/BUEek2/NB1ByjED0jQGBj8ceYKkIkHkyXykbDBRENPlUJOUB9VRQIqP02DcQxmsxOzbuwqiNpZyCIkKmk/eRoatQSnj9sOKBbx6ekJhsNMt0ktYyw3M+UqX4bVBJlQ8yWioZ0oSeqmemWhbAfHJmOikoHbhdgaLESc7I5dU1CC8EDxoh6nB3P/ELUA6U6oKBr5/RIqoIMtaJuVvrnOlEXB6NretXxZe/+Hk02Kvps/q45uf/L46ACf+T4xbFAFYrq265OUaZwKajuGkGPmUwIhVMnqUc5q2biS4rI8BDiDQhWO8ikKSBL/voQ3e0qJ+EXzC/7ZPTn7c4mfH18LsUpY1Nezhh0XKgSabNfs1Hhm9mjmSyPBQyZdpMCsoK/a5kKYy8973vTS4Ertq6paWrQ8ZIyEJ6ZridvHMy//1hjq1fZkAV1LNA3dramlbVNYvVJ1eBV4Yx+85apgLGY02233p5eO3KmIKTlgq2Na+4a5JtWQnfxihEJYyMrvXOpr/u8/6KV7wiKU0U2mSeZVpljIWZDLT5es9+GSupeFBQUVg0oJtWJwrLWiQoFB5oEuYm+8D+sx1e238D4LMwWL5iZYKPq+G2xTrL8PutbfFaJYLMuIqp4haZT/8e5t1rvxf2GXcuvvjiBHPNoMUpFVAKEcI0v3OgbRzre+ti3R0D9odtFA5ZyHFc2E5hLWwSrpNhKXRXSi1lGyspzIhT9r2uCeKs7TQ4nbuYuOpqHUyW4bVwMo2HG+mlcf5kIU98Mz/zzvdsi4oQlRDCW6sH26iyURzzEBeyssH+zXXS+kbXJ5VNF154YcpXPLA9zkOugGvZ4QrgWCnnN9Y7Yz3ze/sn95n1z33n9onnnvvq5D6kYkxFpYqSkwiA96lPfy5ZtriqDWgKBwXZmw7JNO692I8kPD2si/3ntwV4B25c85iHC0Ho/u3fPp1gIk6o2NHaRJpz6aWXJqWeARxPP/0UxtDCVOratRtiDiuz5m2++fCh7RRfM67sRzUf9ZWx4K/6xf/ZmkGh7Z57H0g0QVwxST+Nd/BmlLYK5yqd2traEi43MM8JB/HIJC55mGyLiqLiOSM92OuPY8I8bKvf5GS9/V4F8SYUEI5TLfNyTAbHmm4g57zkZczvXXHY/MPCgKPi6BS2SFTp4LU4KiwHoXWZBlTAj+Wi7KcR5nmFYtvnO8XJvsl94HhK9IG6ec73i9//w7oGeZLonMeRvx9JaayBYKXMIZXwbCa30BxhPDum+7AQ3gqv1dTSHCe/+Iw45QWnxT233BnX/OwXcfd1t8QD69ZHU3l9TJxJTIjWhexANhgrcV2qZHvLMu4ddfhx0VE1GCvWLGcXCwIyEjNiUnNNcr8oxQ1jeOe62MCOEkNVKMNxzbCP+6EHfZQ9MEBMiR5ixGxekQhChUoBrZaHB+JZx56YlAM33HZLNC2Yn+I0VE+dHB0oMVZu7UgBivsevDFGr6mKTeU90dg6PVlAVBJvbBpWDdXdLEYRYHJnX1f84prfRGdvdxy56EhsXyPW4nbigmXTHncyoeLBUkUM9LITCLyk8dF0PS4DZhPhL4tTUjwAZljvlORCfxfqxW8fun4qQ+ARbvqpXMtDdXtKQkDi2oc5WTfmYTWTiCC9fSd38LltbozdCMKDCP69Q5gfy/IoYGsewap8iqMAcWHWTQyNcQzcecGjdFTNJ8IkE+IQjLwRujVt1KNgCAJq0J0aCCXqB3bQYNWLPXiSxUJiq5gceU/3DRUb2r6Vo/TQ8sKAjakcBWi0xAbdKcWagk0vKdPVHMkZSoU9ioaCjqLgA2mGo2b6sAWETBir4jShAg2Eum8tFGQY0neptwptw4CiQBzJ3rgPWljIZMhwqBzRxWTUM/eT8sFvU9X5Q2b6XUuEVT6okOFL8tH5gYBCwKedlY+KUlZo1A3Qtt20rZO2DBIHomsXAQ1hlP/orD+NnWvXEP+oL/71E/8Sx+Mmc9mXvhpz8Q/csW5jvPCYo2M77harli6JRhRILTDqZZrdMTlWwGS4ixKF4tKC0kOKoSWK7aD9jbjArFi1MhqmTIu5VVi84C/Yz3cNzQis6zfEMYvwAaW9Km+oOdhBnyD8pNnjCZg1hKOHsPfw2uS1SYWDZtJuAadJvwywK0aubH/wgx9Mq7OaCre2tiZmTnNa/dYVtDVL937qK+CQBcvMJBaXlwp7lD+2VeZUgVMfXAVBVyhlDD0+8YlPpBVVfcgtT2sMhTmZRhnd8VJut+/JDOb25+9UpijIm68CsIyowpNM7N7v5m+KzzIspix8eFYwU8gxKJuMu4KnzKgpC0a+t79JgVW3EC0z3AZUhlxFjAqJrPDY37z2fk/42G8KBfab9bRuHqvXICzPmp0ESmMgqKRRSJUxVDGg0JoFCOvktwU3lEcsOlw99FkWOnwnKxXEMd0sFCBcjVRQ1edaXMiKoL3rezB+W59iIUiFkX1vv9lfWubkfvY96bDtrsFaarxk3uJTNlnX71wYKtALR2FuHwgXy7S8PH68d6ACTLGwZP4e5i9+m7dtNY5HW1vbw7sXKBw79jVNz+9YRxVtjj3Hiu5QCni+J/3wuYoM81VQFKeE0cFO4pVjVhyzb4SfbRbmPnsp1is9MO3uUKBS1b788U+uitW4hTh37p2kjoBIF/TCRLn3C4/y237yEK7WQRjndN+9DxIcdyExET4QV199dRJgrcOnPvUJcP3GFO9BPDNwo7jh+LFPPM9BUBlC0BDu5i8O2r6MI8Xl5PIOxtl+Xbd+U8yeNT2NCS2UNkJ/34YyWsWDli7zUVJ+nrF8NLTUYMBHH41PvnCkQirjbYP4Lk6IH/aNtNF2jZV8r7id9rOH+JbvSz/MOyfp0qc//Wl2FvlKLDhsYSxZuhRFz/3Ecbk94eiSJfeFCmKt3LTaqMYKlK5LadiA0lSpD6sNLR7mz5+3536BpkkXLcvy7WvHR66L/e/vjA/5nVyvP8SzPM0jo+F3IeB9ebJy+DWDMhYn77lH5oLD5iWeCIrLbhElceypx+OCQGyXnbujcrA03vK6C+KmO++L29bcHxOxfFgwZ16KfXY/1joda6+Jl1Weg8L+3mgjftHpM05lK054xo5tWP6iVHvW/FhBXJAB9+KE76oyEBiBIHeXsDVwSV8ymKidXEVoipqYiGVMQ3dzDKIM2Vg3HA8Rm+FXW+6JyUPTY6QT3nEJWwfDi+4GZ0ZRTFfB55XUoWzHXaR+zpTo3bYuVm5ZG8ONNfEM4jmc97rXxmnPX0x5ETMpflt7Z3LlMEirnNkK6NOkRmItYW1o0HlsickTa0SO9IIvpaPAx2Ugq3xwRHnYqvw3XR7687SCgKLEoXQIAo8LAhICg9Ns3LE55i88PG5afVM8cPONMRVCW4nrRXV9HT5qO6NaAqxw7+EJiXyErX8GS9H6Ey3SyWwQywa3yCzFLKyEiS9RHoVoBNkRFBxuG1TGbF8J0da4TWFdM+mS0SQNJ2UCL/IEJheBQGWFSoxK6qKiAWmDXzLBPPMn1yoNynnX+AlaRHioZEDnysRfWDGSUUU7QH28T+QJXAd0uSjjzFzBMxUmiNRcyywkUsn1HpKZXEJ4kOqb3DaYvJ3EPdzhow8fiuSSUsTQUQlABfPhmcqWo7RxiyXvq1MRhjZiCAaidxeTCCZ81XXs6wzhrkBBUKWVSe/uGED4mTKpNVYNd8Ta/h3smXxjrOTbE+oqY/okmDw00iceviAW45Nb0b07+jZvigVo4ZvK9RdsjyoUGCUwIiWUlbrEOqJ4SOoWOS+SgrWrbs0zEeJwo6iZ1JCYIa0gOpnrJsLY9WDBkmJkAMFB4CXD9UQl4fhoSSZKvHLl8oorrkhRvl05cqVb5k4G2Gfvete7kqmqSgmFEU3FFYavuuqq+MhHPpKyzv2VyzFf+3pfZef3PPuewoIMnWeZ09x+66VFgitO+qFbLxl3rSEUeFYzQbe2thZn9z+u/SbXLzOr+SWZQ783f1d7VT7I2LvCq2JD4dhnYyXzVDGgQOlYkMlWiWK5CkAKYQrT5qlglpNl709SMPE7FUI//OEP42oEGIUtgz2qCDrQJMytY05Z8WA7hPPdS+9J0e5dAfTQIkSFlUK1QoZWGSqMxHNxRvjZtgo0j9IRhnDCs4wLud3CQxcahSzHx2c/+9mktMkBJ83395Vyv9hnCtb2m+1T2BPXtVLKgobRZUppm/DZn+R3KtMUSvQZV9hxGz/HlbAS34W5eJTLMF/htDe+7k95e79jPvnIZfiO/a5QaZvFJceVu8eoVLjgggvSVpWOAeN72K/iYR4Ll1xySXzrW99KbjKOG/FEqwLHj++pzHNs6j6V+3vveuXf4z0fDwbCLOOceXrtN/ZjCbT4zDPPjG9/57tJwaWiRBwW/m1tbSmA4sSJ7EoEqS5Q61yrPb+9uR/D1DqYPO9dXxUPD+GrfvnllydcV/B+GTtD3HDDLamu7nxivIwrfnhFXPqtS1O9dFsQL05ECT6N4NHSD5NjxrEqbmahNz04gD9jwd+m33b7ncSpeGYMUIdrrr0+xQdRSbgR+H6GwHfbiUvhjj5LEfB1vXAsv/Od70x49ZrzXh2ve815BMCe9nAbrKpjR5y3DZkujNcE37eufpPh7TdaPaiAFa4qYy8jeKcwtYxnP/uE2Mi2jt+l/3ewO4J0UwsJXSY++MEPMJd9Jm0v28uuCybzrcJdtXCtgsTggwYILrhDZVhZh3zYT7le9n1uj3OgdS6ua8r4D+iPwyfxY3uPoaLxNjwos1lwbxKmeSCW414wsaI+dvTtQKDflaxo67HinYBLRSlbmZc3Elycaeurv/4RmiIKgN/adMey+OV//zLtmLGymu3sqybGNevuifvWLI3frrknfr3s9vj/2XsTAD2r6v7/zL5P1sm+zJCQQFjDpsgWFkEWlxawKkVRXNq6tFr+/VmsrXXX1rbWLqjVYt2qdcEVpFURZJFVQEJIQjLZt8k2+z7/z+e+uWSIySQSIgJzk3ee932W+9x77rn3nvO955y7GX7ZHi1x4pTj48LzL4g1FV2xo2tHmrtdIHPxx10pdDmsAXSYPb42HmleEf2blkft2HriOrRHy92PJgviooax8VjvdoDKsqgYWxOTjjoiTj326Fh40okx+7AmAs1XxbgGttqcjHUCfARqjfkP8Z7ox+oFAg8tyBibGTNnNzViJTszyYYuuhzR2JiGHsvjINSD+3M3LtZDvciHyNe1yLJFyS13GHGha+HugggM1Jx+2w6j6dlHgVHw4dnXZr9TJcahgvgL5XHhyy6J2350V9x484/iLS9/aUxiQmYb4NjOgFTGYKeS7w4UyeqAEVuT/IRiOokBLPSyKl/ExFjaj8sAQ4qBJUu9n39Oqkb3rWYC9nwXSjPhDaKcFX8n5SEUc00Hi8iUbwmZTQEoBSHIy4/v86MFRgIY+C6QYLxJJ1eFHldhXKEvKaZORHsvQbhTURQo0VpjAJeDfiw5hpwVGPgsZ7+KNR8lPN02ksuICvEuic/dLYp8J+dcIdGMoIg6DAo6WC789Sh5ivnAlTSZZdBBS4cyypC2S6KOfbhwDCmkoPX0872rrSuOXbCQwJo10drdHhu2b47WEvZiryP6Pv5yxCOK4888Pd72p+8h4CfBDqeWxlUnnxp333VPnHHSwjjvzLPxJ1waY6DTDsxjx1LOGsrYR2DKSughVt+PkCMQoqIFVBT9lKefyWGQo9YlrYAcNSgxKqbrmTwWzJsfN7HS2I5/ddNUfPbIU9qWsorK2gp07CW4EhMT+YFEaDrCl6eezNtJPQtF5qTA5EfFQz9tlQ1/a9av0qCyoVKhMGX7ep/KrybVWiIoxOt6YaR+wQonS5WZnOSXPYXwfG3Po0KaPOo7VF5cxVJ5d0X8Yx/7WPLZVZjMwp4+vCoQCnYqTPtLlmXP8gyvv99dddQEWkVF5UmlzJSVrZHeYd+zrlkpUOh1dbixsTEp5V4XxMn0169e+qrYquT6faSkYmzMCwV+ARoVRUEIgQfp9HQkaZ+TtFKB813SugheVumxnN6nkqkVyh0EJfWcAr+8LR2tt/U0Lo3Julcx9kmfzA+2m8m2NmaAiqr8YzKPbGFg2+7Zbummp/mP5UlCL/laRpVWz9me8vs2tjwrxpzJdk1A6673Sws4ix4/cvI5A9tJN4Om3nTTTcndQiBPqxvfkeuZy+Fv09OhuFgX62W7mK/tap8zb9vZo31XAMF2tbzufiHIaL8TkFQZzv1bqx6VZcEmd48wf2lhe2nNYR3yvSNTpnA113Vf92a+2df1fN5yWBd5yKOWUSUoMFpzqaDKw3//93+fdmXwXrfk9N5ehPlMH8F7SLU70QzDf+6+8ORve6uD7+jC4mLF4824s5yaFGT7uwCPbS5/CahKXy3L/vPz/5kC3r7/A+/HWm5c6kvXXvuX8cJTT2G8m5Ve6DhpHo7J0tk8bMODSXsre85PLjwZ4GEnu9xoieR4bDwUlf0d9HktSOwvzhWCiMaDectb3pLOOTZ89rOfjfbWndFI+a2j46DPyi+2h/XJ/T2/c89j5lmP3mtb+bzWDbZxpqNBYgUV5F9pc9VVV8V1130a//5yXLmWJxdCA3vef//9ibZ3sKWjwYWrq8uf9EpFEN01fZ+8MMi7tN7K47dH+Ssnv3uv7W3ZMr9mnsr3PV+PKf5WYTjbTYJhv5FMkqxjsPXeISyldtHdNiwuG4rxldUx1vhk/OtGthxEtiwtY2cZ+H4Aoau9sw3lnUWCcQTyPn5OXHnavLhy6E/YxWJHWvTqad8R61Y3x5rmVcllYSfWxztatsbCY4+Ll/3Bq+KVF16Edez25JqTtqF3nKS9DQJeV8TOLBUE1q0rYje67pg2fmJMPPKIqMSdedKMaXHqWWdE0xGHRzWgREUd1nIACxU1gJ90SatIzdxFPv1Yv2Z12uWuppKtQbF47nHxCetZZQ13tutlrmxjIXLh0cRM4uF2tnyvHTcW61wsd6l/NTJhjXKhGe/Kk8FLtPXXBilv8TOant0U2D3KPLvrMVr6Z4ACKsm6HozDvPAchJ2iqr+Kex9fHm9msKmcNoOtHlsAAjD5BRio5N5iLBj6y/oC8TAGyrReQDfF4qGsGyuDMkyhK/ig/A+U4CrBqD4EelHHPsYD20BfGbyrq2sBMogzgdLgNpoGpqxg1wayZsDiDyCBAxfjqzovijvnGcDcmcFPmRo0IIKuFbpQcAfgAdsV8r0XU4le3qHqUFKEGViRPuIV+NCNAxwBAOliYujsYe9kTCv7WM0DqCjpwyqAclYAPiS7CBVyXu5HIELAob8fqw0qOgSQ4raUKcYDE7qWG0Mo3sXVABGUR9jEc5ZfAGSAcymuQkUtATnxq2fi7xzspHwGp8IEjvJuBZCZTZTjjWwRdu9ji+O2e+4kaBCBJ1lIKsUkrqt3IP7hv24ErChMErOn1kcbQUFfetqpcfS8+fHgrT+JOTNmxealD0cXKzpjAEI6tm6OdhSuCaLOTJDlWFFI27xNqbE2hCEGMd/zq5Nv48zDYjXC+goihp+KGfuq7TuiqH5snHrmGdxbEJirDILEvwF4ISWaoG8Qn3rofDBJYUwByY90V0hSKfS8wvff/u3fJiVZYVw/WBVwU1rx5bqrbCrAKi2aySr4qmTqT6sgqRKsYiwg4G+FQe/1Xd47XFDbVz0URBUsFVj9KNC684TCpLsC6Bvv6rpKavY/1ipBgfdAUhYIvVfB1fL5Tut/2WWXpd0WtLDQD1/6WG6VLOMXDH92b+8yH60eDMCmcOvzWge4TaOKj4KpAI2CtskAfVptSB/Lsr/UjXXN8ccv5PkyhP+PJwXxXe/6cwT5Y6E1wOUuRX9/+Yx0XV6Q/tbbZJvZlh4LwOVgAp8ss/QXiFLREDiQltbRe+UDlSHHFpN8Vk6/Hk5DFV/v12Rf0Ec+U4nVTPptb3tbsnSRv1zt9d7hzxZyfXr/+g4F3Wy9Yu7SQt4QDG3d0ZpWwlS2W7a0EESvoNw4vhUSHZVkr/ebgPHwpGJmOxsh3wCWKmDmZZwE+WbPlBUZy/R0pMx3OS/b0DbLdLX+KnHyqACcIIKxEj796U8nYOknP70ljlxwFG3exO/N8Y1vfgvg6PEUR+GMM89KdDrp5FPSivfkKVMT//cwZ83H6qEdsFXgdeS0B8F+7eaRr3fwDlOBr9z6sjCWbGNOLIUXf0Dcmte/4Q1pLPn2t74Z//Kpf45zzzmbclXFz275aQqkKk2k9xA+iX7PtIFRWQGVmUcug6C8bewqufzvGCBI4OfscxbRN0oYWy9OwK0A1rJlAj0nsVvEUYA8/5DGsfe+91p44+jk/mZ7/PDGH8Ybrn49QNBfEn/nJcliplBHykQZTfLKoU4uKix5dHGygGlhPJ4DHye3OwLunXH6afGjH/0oHvzlAwk0bmFXgE/98ydT3xa8WsWK8fd/+APG2o5UR4FTt0m2LzivRAcAr0LOPpPgN5ZZyiTUNVkUUuVHHn0sAbCOH47bWhO1oKwtW/Z4nI2729vf/vbEz8aq2cFc+8ivHknt+yj1mDt3Trq/hvKb2gBW7CMVFbtFfRdqHM9KkT+GsOoUhNgzWR7nOp/N32132yZ/9nxm9PevU0A6IxbSxXbT/4m7cNndtqMl6sawTTnXsTehj3EVkNCDcqNxuRqYGyvhE89t7VD2oM3GESB0LDtkdBMP4sjZceSOnbjJ4aKMfDHY3hmt8EVMro2v33erE1UBZFKWc9zNMhgWDbEdC7e6wk4maRiw6zFtd7KIUD2hBoua1hg3uT7Jxc4I25GDlZ+1nChiYbEamboGK4fxxISo3DUWbiOg5CRAB3e7czc7ZeMK+kO5MqUyOKkWC1nlyrH1gNPpDACXMrUysB/TLpkilWsYj/p11x3pttE/z04KoD/+Fkb4ZydtnhOlPpTN6xDZ34eSoxLJwFZeWx8Tx5XGltVr474vfy1mdA3G/V/6ehxdMzamMIL0sPVPFwp0UW1p7MTnTPRzVjEBvLbj2jCxPnoYhKsOmxH9uBGs3r41pjY2xuaNmwE3MO3CSqEVRHdHyxYUXnZ1wK2jhj3LJ0+oAwAhzgEoq5Oig56TpMqbwvWUCQSRY4WmH9PDEib5MhV7rAY6d7ZhjtYXm3qGYuYRC9jDeGKsXLeGGAmt0Tjv8LRzxl34gS9duixOOuGkeOShh9ly0pgTbMNWNyYuOOe8eOTuO6O+rw1rASZpBDuDTxqTokyLCmb0IQS7TQzEmGvgg1fB/urVbBFaxWoFgz0TBQ9ET/VglGHS1ratDZBDNxDoCHpQSbl3Uu4SUOef3nUngYD6WSVihY5Aknfc9vNoWb8hpiIw37Xy8fjJ3UsQJiIaG1WOKoiYvDZ2stXmQq7v3LQxZk0cH5e+5MUxZ/KE6Ni8LtY/vjS2b1wX8+YSLAwAxSjMpQAwpe6owc4ZRZoKAlwMAW44UQ2BXgwSHwPIKIEOQyAOVJV4EKDgO4pjxtyj4/alS+LYiy+MFsr7McxU7yWw0HfZZm3q/Pm415DNrt4kz/gBJuDoPyaxBAQ9te6mhYLR3VXk9TtXqVI5VpF/1atelVawr7rqqicENt+SQQPvVbhSGNfUXoDB1XABB/189dM34Jim8irUKrEqnCowPutzChcjJe9xZV8B0u/ypcqtJt+WQ1NeFflcdoV385eXsxXBSPl7TX5XOTA/6WFZcxJk+PKXv5zcTlyJFPzw3vyefN9IR/NXedHkWHDBOrv664q3liXGfzB4p+XN4IkWA656KMBKs2xa7Xtyfn539unt6U/Kvvm10o+3o1ip5FhOzcb3mZBCIOmISUU4l8mxMANBtsXPbr0tHlu2PM578fmJbqecckoCZbQIMaCmbWa7CDrIE+973/tS29Qi2G/f0UYw7rrYidA3ji3JTK46+ozWJVoCqICohMuLtrlKiUCXtFTRsgy286FMtrO0z4CctLc+8q9muL+4974UcFN6u/orDZoYd8fRj/tYIZV+E7CiUklTqa+prkSZ35CAhR/ddGNSdm9ByXXnBV0aTIJrrnib56FO+5vfpHEGXjRJt+7WQ9Dvlw8+FDW1dfH9H/wgBX3VbcTdOeRt40QICDom1NVWxzZ8ln1uKsGVTR3stCQt+hgnE/CM/03mRUicvuem7WdMle4CafmceXjebaSHJ/uDCoj3Dc9Pmtpm8+bNiQ9+8CPhmNa8amV84IMfSG2h64vjk6DZLPyqP/KRjybe8hktiARdHevsU/KlfdXxopwydTMPVrCq6fu2YfXmMwJHBoBubbVPO2YUFGT5VZqrGL/kwgso+lCKpWH+gnXytgqzY5h934/BdG0Hx1ZdVexfWsVcf/31vGdcXHHFFQmANW8/vtt+mvuJfcVxy3Pmp2WFwIcAotdyH3IOsE5et+1sRz+W1/fnvm8enhMEaaJfTp5c4FXHefu4/dV+/+///u/JosFxzL4hoOj2m8cddyyuRg/HRz/+sVi2Ynl0dHWmvLVqc4yUzwSObQ/f5bsdM+Ulx3+v+10Ly1XM1eVlKG/U2bo4vlo228qdwC4FPP4m8+lFL395suAzEKb11G2rrXVHbN+yKY0/gpzytu/NFhTmIw1HSrb573KyDiOl3KbS2GQ/83vmif09P1LeXsv5jnjfSEXc67VdJ1m9yTul5fzhVN+66+fu74Xz+a7C0cUf4/MgadoNdz81/LsDyZ6JbLkFuYsvKvr+MA1/7bDfaa2O3xl4Hn67G22k93s/KV8r/Cr8zdnu7aJ5+ky+Jx2HZ5IZdNcN+VI+ejo/O/ydo99/9ykwsuT8u1/+0RI+kxRgYtB3rR2f8A07t0TFuPLYhunYalaQxsxCMf7G99hCpxqAApMyBLc+TLsGy4i8y3DTV8xvguz0sgWQ4WYqqscSLHEgdoC0VqPcl4xha6hifOTL62JzB1AsK3JlBKNsaDwCob8+DdqanG3vYtsetvYpxTogKVUIhT0o7T0IVCr699x+N8BAUdTj3zZtPEH2xk0gCGVN1LcbTbotpo2bGg/c9Wi0Y2pWP2lCVI8fg5DREhu3tRDVd22sXb8dgezW2NnSExNxZ2hu649GaH7i/ONjw6r1UTMBywlcCUp0zeA9gLfUzuEYFRvwoQTho7BDhMImMYa6iV1RiumsAIWLxZOroAmgBc+XlRO3oYbVwtJKlAVQ8S5WKOpLo75pXozD7G3MEUdjiTExTh0/JVYsfjS2EADota+5PA5/5Ffx8kuIet3SGpUlgDLFVfFPH/541POOhhMQwNxOtHMoHvr53VHcsS2m1LPNEjEiStp24F/HMA7CrvtMsasgRuy0/ExKBsLsVxL2N6d1E8FGm/mKc0VM8kxsZQApd9zxi5iJ+eyXvvPdOPzii+Kh1YA4tHIxYJTGKKYni0A60xTAB+COwg1P8a/Awy233JKCBSo0K5S6+qrQoNLlaqxWD/MBQRRghyu+CmYqFAqoCpUKMn7XhFalTVPX97///UkYdRcG81R4Nikcmtf+kkKiCp1JofMLX/hCLFq0iOBgv0gmvr4/rxArMKkYZMHpQPJX2FXQty4Kxxl40Ozf8r7yla9MZtkK1gIRWi+oFPrMgYAbCsQK0OavUJtppqDrdz8KeL7L7zn52+S7shJq+2Rl2HtbW9sIOFWLwlDKiigmzO0dRG9/OfSmz29m/3CsEEZMSiD7kTxsJ5N1yGWRR+QF6e6KuOVX2VBJVdm2rR9BmRNEMHaB4IoKiQq8+fSxTZl5bdrcElMmTUz0VfEQeFBJNGimpvyacMt/mvxbdxUjlZAMYpnnoU6Zl2xH6enRcjhWmrZsxg1n0uRkFXD6aacn4O6E449FuS7ssCDwYOrCQkXz/sPnNsWPUXD1638jAVLnAnBqXXTppZemOvo+FSGPmeYpg2foj/yW+5eAiEqkvG+8lSnsJ9+GJcH1X/ivOOHEk+LP3vmuNGaoFD+2dFk0NTWletcCPtQBgOuKJsv1oYinLY4ZX6uwvEvGYMPqZzdQZ3LohAwJYLDdJXmfgC5J/tfc3eT5zFv+zn3H72PH4gIAwNXIVnWmNWuMAVBHDIJfxfve9zfELLibdlmfApkK3p296KzEv1f+4RVpPBAENCZBO6CePO5uUm24CjjOCDw89OAjuJPMZNwrAEUlWOdNmVIA03buZLtsFgTa27uTG4DbY5o+8Yl/TjFxpk+bkdwmLr/8stQ/NhIzyL5kebpQyKV3G66BFRUo0rTDEO6XbjlYxUrpm970Rtx0FqWYBFoFfe9734sLLrggxVMQ2HAMl/6WU0BVQEH+lW62oUCG4IO7xwgOeM175G2TR/uoyr5jgGPXHXfckfq7Y7y0sKxVu8Z+77+BuBQf/OAH45prrkngyhx4+75770kg9oIjj0hWEDdhsbFs6WMJ0PnIRz4c3/jOt2PFquY0V6xehysM5dPfPbl90rxuL24/913VrGLrorptJ3ILbeCsO7tpDmWrTWPCYkAaCBQvOvvsWMQcYV7ywtnnvTje+IYr4NX+BIoJUGg9VcP8Wkvcq3r4c+LECfCuY6k7hBTmVC1V9q4OJhLt+rOfAXT4rb+j350n7V/S2M9vPY1AQko0QnF4MMUT233LvrIaruDvvttvu95gVvnCsEwcf/aZGLiKNV0dIeV5Ym+3pCel+94uDjv3xPVh5Rp2+UlTeLp32H27xIgnbs+X8vGJC6NfnnUUGAUfnnVN9rtUYIYAVsfGqtAP1calL//9+Mrn/jv+/V/+Nf7yD18fSwAmKjC9KsJFYAAla5CRxPnQAI8KIroXGN22yAkTM/3tWzfEVsyAF7ISoX8tM2kcO2kqNlooIQjDrShPv3rwl7FiyVLMuCpiPKBDMRNyeTn5sgrf04uihEtCJ8JSH+AD6lJMn3F4lLJqN8Tz6wESuhavYoLvTxF+y7HI6N3RGat+xfZ3uFecfu6Lo5oIvG4PdAereY/jcvbOP3h5bFi9Nirmsbc61gg3f+8HMQ6FqbFuQmwGMCnuL0TqTrJ8WuFCEeN9KuoJMUb4GEJZH8JyoQcri0GVF6w+3C6zHyG1e5B9t9sIFEl44qJafJQJBKn7xypW2toQmn55111xwtlnxQlnnYl/CzEAWttj8lE1Mfn4k6ELJr/jq2PScSfEmKkzY1v7Q0i1gA8z58QLz1oUS+99IHa2Y+GxAyigA3Pxjq6YUoMZHyBLO5NScRGRtQERkHCYuRzOC7YI6TuTuCt6/dTFKyYtJEQh0l2UH7E6Jh97TDyy8bYYO31qzOjvIfDk1FiLGeqZF18SU2ZMpa6FSbGQe8omTVaFNw0/W7j2m/5VEFVQMyloKpAqsGlZoICpBYNR4FU2TSqBCnV+/O5HQVYB1nMKsAqtCqMCB8Z/cH93FXVBCZMuCI2NjU8IlenkPv6oiJmPArAKu2CGArVlU7kVFDApNKkYKhjnpEC1v2T5Tfnod0EU32GQQ8EJ+5LfXX23birDKt0jCRbmY5KWll3lyLKpVKqkC9Zk5dJ88n3Ww+/SMqcsEHqfdcqAgPlJV0EIrUMMDOtq4wMPPBwLF+IbSjpYWdJ2lDaW37r7fmlisoxe95plkgdcVXRldio0k2760csTAjsqMNJNHlOxksb65XreJB8JeOkL7nWVQflORSHTJ93IH8uRheZ87lAcfb/095PbRP6Q13qwAJMnx44bn5SfI1GwrKdJmuXdEra0EFCW8VHgoRsrldde+ZoUnM/87r3nnnjD669KyqXWLwsXLkxKozS2faX5M5lsq9ymHgWJMvhj21555WuTYi3gJEjx+te/Pq0eyxNNKPxrCejXiyWY7ZeBHGlp21cCPPRhrdaPG8bwPuBWhgIPnlNxlp8mT55Im9vuu/uFdOkGjJYPzL8eF8Nh3SaR7RF2k1Dpf/zxVYlvVbYFUu0vjnt333NXAsy0nvI9jisGSHzJS16S4o7Im1qC3XnnnQkwcly0XeR3+92xxx71RPMIFMgXOeXv0i1vj/mWt7w1PvPZz8RJgDW+49zzzo5GxkLHYYEOFe3cr7U+MA/pat/wnd5nfXNsFUEH7xOYNWil4N8Xv/jFpOh7r9YoGVBduXJlys/fvsNx1aCwJsENxxJ5Uv422Z+liZYY9kvfb/0NBCvg4ZawghbmoRucLhYGk3SLVWM7fO1rX0t933xNgiN+5B8toW674/aYOHVyXIjLidYbAsnyiHRwzPDdguPW7xvf+EY6Ly0E7pyTTjn5hXHtX7ob0fHJIkpwz/YS7LSs7iYkUCYfbdvR9UQ8CoOkTpmCK9x9D2H5CShWXprGGXnS8Swneeq5nhxf7I+5Dz3X67tn/Z4PbbxnnUd/PzcosH/p9rlRz9FaHCoKiCYgUFVj4fD6K18XX/mP/46vffVr8ZG/eG+ciQJ852NfSPEOKmpriP2A5QPKdw+C7VCJQSiZOHBFABcgYGJPrMYNY3DqRNwJ5kXJ8cchvaEYAxSwITKaL9GBX3havOjFmHq2bInFP/tJ3PnTn8Qph88JnBMwfexgAiqPsdVjAEIw0ezZHts7i2Lpw5jgY+kwecz4mES03YYJBMNp64idW7bGFsCIo048PIoAKppXr4r/u+H7lKMz7l+7JlQBLyWS97yG6TEeYIMQFclyovvoE6ODcm5fuS5KuwuIOzYPlI8HsCLwn3EgjIfh3F+KOa5bagq8qK8Poez3a26HCq/7W8fWjijl/TUE/ekcxLqjtie2IuBvYkVuCkLWG1//2hjEZQNDjRjCf7NufANbSLAauWV7bF3dHCtXtcVJ554TG5rZmnH+UWzXBD1XrY+FL3hR3HrzT6KG+BSlCEU1CL9T2f97PLE1yojXUMVqy4RJ41CA1yfza00Uhoyj6XssmICNwIPfU2k5UB+3ClWkSUAEkYd+Rhuc8ydvi2986xtx2Yc+EAsRjE45gUjLL7sk1uHy0YASltNuUchv+ZOvPrWjQofJbdwUDF/3utcl5UHlya0TXelXIDd5zo+Ca04KywrnCn0ZuFDxUGF0hVylXSVb4V1BUMHXj8KsQrlm9CMlzaE1R9bE1+e1wlA4VUFVCBZ8UFj2HZYrKzgK7cPLua935NVzV9yHC+kK99ddd100NjYmgVxFWoFWeikkmxSQDyRZJmlheSxrc3Nzis0geKISbX4KgAqC5q8C4HmTvxXWpa8f78vJ+8aMqQXUKWwRuI54JNOmTUr5PMiK7HHH7VaM8jO/6VHhLJclP5sVFBXtqppCgDjrp2KqEqTVgkqCyoC8YxuppGcLFvmkEmsNYJnExSpB0kZ6ainhyqS8d+GFF8aNN96Ygmiq9MhXAmTmbbmky55ly2V8Oo8qLznZHr7To+2+eQkwAABAAElEQVR6/HHHxMbNW1Mdt2xpSQBbOxZqbqGbk31m1yJ9ivp/8kkLk5Lm+c/Axxfhs29S2Wtqakrf5Wf7yDOdpLNAiO2YBXUVeGlyBTsVfOGLX0ptZV9xi0VdY1T67CvyiUqiK8l9ff2pj7pVoXTLYGZZGVxQqnWNOwcUastl7ikATNlaQLZXuZcu5l0LcG4yL9+TrSB6AdDtT34sY+7Tc+bMZjW+GXeRV7GbxX+muATGGrBe0l1ay1daVNnHdBvStUR3MnlbBTj3d/nT8UClug4ripUrC8DalCmFGDOdnQWAdgzbZ2v9cNhhs1hxvyUFZBR4bWpsSjz9xjdeTTC8jXHLLbekcVWgVdDNfiRw4Jjk+CStrLPlsw/Y7+xPjnECJZbNPmb7uMuIzxk/4aqrrkrAgWOv46xWZ9LKcdOyG+DUZD66dvhO62ofVvHXtcF+qBWYz+lKY0BUgQav2yd1s/njP/7juAcQTXDWtne8FrCwT7vVpkmaOh7YZz3vsy9vwDoTt8VqFlD+9+b/TQCL8USkj2DIBlwj773n3lRurYuOWnBUAjoEpDZjHWrMnFe84uUAWewKRn2qWaiZipXKhHEEcO7oYxzZkOJkGKvkV796OFmUOIY++uhiyrCQMsyMCYyfiBi7eIgvu5I0scyZ5/P559pRvsp1tS9ZX8e250PdbctD3b6/jfnpucaTo/U5MAqMgg8HRqfRu/ZFAcw0u1gJ3dixI4476rg48ZRjYjkrl4EAW3/EkbERgbahhlUAUPkyg+YQAKAP5bqksgihBOEGBX5rZ1+0YyuwA1OBxlmHRclMBFgCVbL3Tjz6ECs9h8+PYkwgExixbSsjbmksuOhlseD3Lov7P399bN7ZGhs2t2M9gC86KwHul9zaQnRdQIIjTjorNiJcLVm9KTZX9cT82YfFhInEgRisjW2dqxEcq2IG1hW9G5tjHatLW4e6w80HTwfoOPOsM+PWW36W3DfWEkxxZ826mIE7yPZuAso9sjTqiDsxNMBqEeVR7nQHi6SU891dN9wNgmkwCe4pUCOxKYoAIoyZYDAhg+tUE2yzFIG2tqgiWgkm1ArAsB1rki7qMu/0M4IgFlE8ZXLU8nuwuzdWLlsRfY+vjcaJCCknvygmVBMoExVok892bsHWA/cJggJNPwH/1Q99BFIpkKCg93TEjm9/Pe7/2c2AJsTYYHeMKYAP0xunYbxCoM8ePlhn9PMZ0jLFuA+AD1q2UOJkDGFwsqJUN1YBi0pSYNCTzzsvfvKjG2PxxrUR8+fGmPqquPtXD8aVuK9MRhAtQAO7oAb1TjIwD3P1eLBJoU2hU8VQ4VqTXQVgfWMVKv0+fDXI7/l3PirgKyxmwUWgwPxclTNIowCCyrwCvqv+WalSENxfMqijwpArwioTlldTfBVW81SYVSFROFaQMqnUmfLv9GMff6yDZc9lUbFobGxMZvQ+4jtVAFw19H0qNZo0mw5EQPN+y2E5TeansqBCp2AizayT570v1yULLdbLa/m6gqKroJZbly1CYydlxOs3fPsG3tOHkjIuKSwqQVVVBZqklz/FPwqlAiOWzTrbfoIAgk5Nc+aysl3YelUFJitoF198cQKIVJaso89IW5U7lVSVnMmTCFSKebltrIuOwRflGZUY20Nfe99h3UyWw5QFRstyqJO85ye/0+8qiZYpv19+V2FUuTrxhONi/YbNxNSpJM5BK/Soj+nTiN2BVZfbi9qfXsG4Kz8dwQq8z9nnVDB1O8kpA3759zN1tL5aCpgsu4qfbaelwGc++x+pn7jzjDthCGCquKqQ6jsvWFhB3APxV9su87e0lI87AMXdbaB8V9wGTiVwTt7347tNuZ+ptNYwZ3ifrgzylnwluEE3oU0K/ctna9nGjtckwMJtf+3j1uPd7/7LxFvWYfr0afHJf/7HBGa6Q4fWG66Kq2SrvBvjxTqoaMvv9lOf0/1KxVxFl6E/tWFVVcFCxT5n357CnCO7WuZ3vesvktIubVS6BWTPPvsMLAX+L6rhE3le8GDRokWJz+xr8oNjpXwmHewPjYxL1s2dHATw7I+OrQKatotgnbxoHBnBAPujVgJaGzlmyZ/STBBCAEMQQtcm+5l0tM62kfV2jLK8Wrf85Cc/SeOe22U2NTWlPm7wV8dhaWaeltUxznwcnwRnLK98LvBhee03JunjPTQs4Pst8Yeve228BqBH+son1klg1rLMAsQeg3XFY1xbS/7jaY8UiwrAaPr0mfHwQ49GBwECpc9M3indtuA+KQCzkzq0O7YjOxnYdArPSMvV0G827TBz2lRAUGJ1pFIV+ExeG/7JY86uW56TB+trf3SuyeOcfCcfjqZRCoxS4HeTAqPgw+9muzxLSoVaSoyFCrbIqe6rjgm14+NUtnJ86LaH44uAAq950VmAC0zsKOfbmSFrkXRUOtVkMYAGjKiJnX343VeWRDunJ8xuihec82KW0KbHDiZYrSGOfOnvY0+/LbYtXp6245yEmWMxAEXaZgGB4YTX/xHXt0c3k3UlCk0AeBheeO7jKyI2t0TMOzIWPLo0ltx6ezz0i3vjsVvvjjFYWzQy8U+fsyAeWdkckxEQDjtqAbtE1KaVjGJ8YUUM7rrrHiawCpS3CbFjE2XAFWLujKaoZiukrQTCnN3UGMvXLEY1N4IBgiN1KAVw0LDWUAolWjgMcQXrkMLKIb+pf9pmkxvYdZNdQIit0IXZevUAvrgd0cHuFpv7B2IzIEU0UU92s1i3cVNsbGsHNJkUs49byK4hvoxsiW3R3Lot1m3bEicddWw6X4prRwkvW/Xze9nDeXxs+hWmmUfOozClCGPriW7fFmedfBz7M+PCgfVJxyZAAybutJ0m/siDKGKDWJsMsQLnewqWDxwRRIugq0GKgB74YFrMriSr8F9tIP/3/PHV8e4rXxPLWrvi76/7p3j5ZZfG0jXNMXtmoy3Oc3w4QgC+mEf65ZmDSip6JlezNJluampKAq/RyBVuM8DgPQopw4UxrytIZkXDexREVZxUJF2FU6j2ORV3hRuBgSzU+F1hcaTkvd4nQKIgfcMNNyRl7T3veU9SBDQrNg+F8pwUpLIQlc+NdFTQ1lJDoEAh1vw+/OEPJ/PdW1iV1IQ4Aw4K2d6joO1zKo8jJQVoaZaVcgVw3+V5ARpN7VWMrKPnslIrrYYnz3tdWtomKjVa0fzzJz+V6GpwT5V6lXWVDhUD7z3Y5HulreVRcLcuvt92sf0TLWhzFRwVGdvdlcY3vvGNKUin5REocgVcU2sVp6lTtHYhfgx/iwiIqfKkomJyxVT6m5er6eZnW6r8CQK5+ivtbWPp8dtI0tr2UfH03bal9TA2xUWXvDSBKvKFyrkpW/NIuzbGHZ/X0sPWcLU2m5Vruv6iF54S26ibSq60VUG0buYhX6j4PpNJhVDTepN9XfoLNlp3zepVpvtBF+yPnwN80Dze8r/3ve+lb0yKRxY/lp5N7imsMltHt6x0PO8lLo99aDxbR9p9fU7eqqjIvO/uO+lxnikc/duG5Z3Ks2CWZbGM8oe0c5ywjeRXedS+YBlViuUf+dE+aHn+9m/fl4CEOzD//9znPpdcFszLfmT7al3lyr8WWrfddlsKiCq/m6RDPXEsxjG3jSHyPEVHAWeXInh1+nTAJtxJbrrp5jQGuvOPZXnrW9+agh46Rn7yk/9KG0/EhW9eckEREJCfrYf9TR7znHwl7znG6hZgW3jd/OyPjiWCBPa5D33oQ6mNdHPzXgEI+5OK/uWXX56s2gRNmrG8sp5aPtgvpbkxPKyjIMZduCo6rknDbOXie3QTMQixbhaO8QIE8raghH3ctnD+cBy1P/vbcvguQRFpJ93kdZ8zqv/VV1+dthA30KftLxBy0q45w/4m7cdCi7nkZTkboIPjhnVv2bwlXnTqCwEYOtM7BByW0b6bKLvWF+/CBcRth213pl+29a1I+dsvJxJoW6uUIeJgDQ3ReCTHy+GfdPI5/sf6Ov6a5CmT56Rv/p1OPkf/7E9OkBYHk+S1kdJwuWWk+0avjVJgTwrslnj3vDL6e5QCB0CBDuII1LICOBnhSM3yxYvOi29f/yVWR/4larZ3pB0rStlpog0BhO0cUIwRqjBTHQKI6O8diPL6CQRlHCKeZEeMmzItxh1/IkpxRTyyvDnGYZHwo698PY7DJ3LKCQTtS7M2W02274yOvq4UHLFO4Y7YC0WTVf7ZsYEglWmpqgqT8inV0b1qQ1ROnBZHvOKVcdhxL4zF9/0yVi17nF0u+qKDlb0+AlnWsXozWFYczewAsb2NvYlZEVKQWrFpQ0xne7XNrG6WTxifdudYsRWBhS2KWtGmlxNpegAgQyTAPZQNpNnLrhAl1M39j91itA5rj2IACF0xBB36UfgxdCDgJooQlh6E8MMIgXgYlb3R1doZZeP6orWnO9bg/sEsivFHR0zAEqQm5R6xiZXhvp24XwDfVBLzYRIKw2q2VZIMW1p24sLRG9PY9sgoyEhQMRm3C5ZWItavjk6EXgNdbmEL1C0Ip0MDWHngO9rfj88y9BggbzabRqqmvHxN5g4I5k5wgiZUgCJReMAk3WD6WbVeR/mOOe30+Mf/uh4gAhCIx179ljfFA4sfjjlHHJ0UFgUnm04AIieyJB08CKHA50qXgqtCuUqPq1lZkVII8R6PTqQqDx4959GPwktWyBWUFS6TwMe9Cq0CGQq6CtQKpioNKgMKovub3L2uAGqeCsX+VphWSHdbNgUky5ST5fGcNLfMeyrx+b58NL8sfCkkq/gqSGserQm5yp9WIDmpcKswKVTvD3jwmVy2rMBp4t0IX5mMgaFliEK2dDOZv+XOQkm2nLA/WTfLaxlVsO677/6koLu943/8x3UoS/+Zyus9rq5ec82fcX/K9in/sZ1Nlsk6+zuDDgIO1kfLB2kiz9hWruTb3ipOtpuuExdfdEGqk4pgD/3D8peyYm2wN/OU1gIoL33pS5MCqam3+cmTtovtKS09+n6Pvw3h2LLJQ7aH/vQqTY20n/yhb/vFL31Zajvr7erups1bE5+Xcb99oJxx0XOVkyZEc/OaFIxPvrENBf7c8jHzsO3mdxVN0zMNPFgGyylYYjvbniqUJgOxXgzw0snYedais1ObXAsAkUCJr3wl9U151h1M7OvyvzuvmIfndUvRTL6eberyuGablpfv7svr129ObS+ooHLtKrp8Jp3kRZVR+cQ2km7S21gqvsu87C/GDTH5TkEFrR9UdK+99lrAzJfCuwKo25K7j23rtr2OhfKw1hC2qW0vWGEbCwiZl0rtdurubh1z5x6eVvotg/wtL2s9IQBjWzpWfZBAjMbPMdaEFgeOYQYttsy6u6ksm+Rx83FM8N3yiqCPvGCfEbiwbirzHr3mMwICjq/+ljf/7u/+LgGo5il9HOMNGGnZ5Wfj1pifZdOKRTBHQMG8zMM2s610g9CqxdgL8kDu+5ZPegkq2wYCJbaHY4J1s+w5yUN+TNIvjyXTCFjazjxdhsxx/rnnp+suL6xsXpmer6muAXTAGpB6lZWyUxZl99mK8opUzpaWrXEzcSa0gJDmtbqmlhYA7pUrsXCkbaXxKaecnHjC/luPZeHq1esT+GDAUHkpTaW8XXrm5Hk/z/Vk+9uW8px9Ks878oyf4TR5LtJif/V7PvDAc7Fdnw91GgUfng+tfMjq6A4NWBuwer8VAauY1bGXvfQV8Ysrr4rPfvLf4vs/ujne/vLfi6K166N/w3oABlaKi8tRyt1DuiO6ULpL68vRdftjMxNrKQHQAiuKwMJgzbpNMWnm3Jh/5LFs41kXnfw2gOMgJq6l+MuWMVHrFtBBwMgagIGKCaIPKM5M8NGJifgE/Pxr2LISy4VA2Q6CppXjvnE8lgsNBKz86c3/Fz+769aYNZ19kgkeWYPQuKx1e6zB73weAqXCyLS6mmRCSRTLmN80h9gV4+PhDZuiYQymk1hrLFuzKo5dMI/6Cz7gqgDwMNSPvyzKfDlKfzlzf2U1W4ECuri1ZD8BHntL8Lnn0y86AehSK3jR2s6um7iMIKDU1BCxGvp0IVCiFcRO8iyiHgPshNGJklTFJDuRaOSVPC652joHYtL4Sanq0xtwOdGdf2tbNLjat2Il8SHq49H/+VqsuO8XRMTbyr0TsWpAqYWYc49dGKtXPIZAxI4cuMIM8SnyGmQUGNG+YZCyGLkbmwE+WD4AXgwU4WdJeXsBiUrZZrCdfaiXt2yJWx9bFV//1hfTitCEyfjuA1AoDvkBd4FOu35oPYGglMQmzx1EUthUoXBFUFBA4eOWW25JObqylVdxnYS95v1ZQPGokDk8AGNWos3PMiqcap3w1a9+NQEU+gBnYEPhVwF2pGR+KqAKtIIVCpAKsCqq5qk1hGVSKFVJVbDOgq7C5/7AB8vofb7H/BW8P/WpTyVhVhcBg6jJy77fe5uamp54z0jlztfMV6FZ+mWh3vKq0FlOyy3A4NGUhb5cbgXDrIRad6+rsLiaajmbWcVcCZ/ef/9DqcyLFp1OfI17kqLljhcNDez+chDJcqvwqMiZLLtlsuwqPMuwkJo6bXpSbN78pjfE7ezcorKgAqgZt5Yd1/3bv7Gl5D8lU3WfsR7mNw0LiO7ungT+mK8KnWCV9TJQ6b/xXOYt+SzTUEF5uHJzENXb76O2uwqkbW87qpSpjOlHb9nGoFDbxn6MD2C57EfHEYhQ4MHkMyYtP6TlL7HquIVVZvlu0kTAY8eHXXTOwIP0kc629TOZ5EPb0rI4Tlg3wTqVTPubffvlbGNom1511VVptV06/emf/mkCV9z5wDwcKwTaBRD87fO6+VURj6cb6z/ztU9IB/uCYINKdAb5fLduKfYFeU+wswKTedgmjd3Sspxx1LRmzdqk5Nsels+jIJ95/4BtQXUjOOaYIwFZl8aRzD8q1fZN+5b5aMVhbAPby51ItCTwozJumWxr28e5ZieWcFogCUwIOPiM7Z0VuTe96U1JOXfMMliu7S+QoaJvfaSV4Kb0EWTJgKbggrxkv5DfcxtYTuvuKr/vcSvj7373u6mOjpPyqdYKur5osWVQSF2apK/ggOVy3LU9BUost/nbJgKFjtdaSQiUODZbZ8usJYjjo+3nvKDSaj3Mx7Kp/NvvPe9zGbCSVuZtPUy5L/jdHbyqmb97BwoWdJOwTBRO132iEAeEXWJ62GmKOtXS5tLKenRTfuvhVpoLcNkaR8DXsbg3OY7OO3xuwUqEYKabieukCxp4RLThplOHzIPRDS4YAF68X5obK8R/w5P8Jx3ll+d6cnyzDaWnvC9Nng/1/m21q/QcTaMUOBQUGOWsQ0HVZ1GeTlIjpf0N5BWYnBoUcgIxCIx8NMRWWhddeElsW7E6fvK978ex02bEbISDaeX4h/ci+G/dEb0owf1sE9mJQltRUhfTUILXsh3kFtwr2NOMfMpizao10TjHlceJTOQECcQdoZx91bvZOaINJbkP4akY4c/tpjoAIUr4XlyGiTj1KapDqGPhogjF2bJ1IzwMIghVY7Hgqv1ErBGORuCqPmxadHWujwnTxicldeZZL8Jogj3FuVdBRYFh2tKTogW3hx2sUlRhsXH6+eeyvdzcFIsB5EVb3nj029+Mu++9m1WtrTGHCOlzZsyMNoSrIkCZbtwXynoBHwZ6MOgowloBhxO2NSsqxfLBJbMeUASsC0oRYqYBvPQDlmzftCLWr1wVHRvZBo+AcD0AD8ApuLCg6LS3RvnY8dADRYpzRVgszJ3MnuxkNdAKgICAbIvWIUghQcX2O38em1mJ6WGVqwlFYQrASmfLZnYcYUWeGBdd+Ju6dFcMDd1BEyommMG8tU7ZSTyNo1jVegRhupRVmNqK+ugELBpXPz7uuOfuuOj/uyb++jOfZnvNZgL1HR8/ZXVqAqtzRyw4Ptp72tjitI78KFGWg9xVwwJCmz1kJk7+ehrOnwpnCpIKiSYFRZOmtpq/uhL7jne8IymVrlgqHGf+VXhU+DPlczlvhU/zVbBUwFWIMblaphm0+XpUKFXA9/kMJuS80gN7+eM7fLcfFRzfpU+zq3iucirYmofXs2Cb8zyQid9ymY/CskK137XU0PzXVXjfZ5JmuV4qPyof1iXTYC9FT6csgwK4ZVK49xkVKBUi20NFznsEefQlV4hXOfC9CsHeq+JiymVRYVDx1aTagKAqJAqPCpFLlixPSoG/pcnBJtvTlEEiy+Q5y64CBdunbRQbGxvjlp/9PNVFAMEy6z+vkt6OgPvtG76XVsMFjQQVctuY1xZ4553vfOcTK7Dy3kc/+tHkoqAFhfWQ9h5VxqWl9Peo4nQwKfPKvvIQDPBdfiyrx8suuyyZuv8LuxKdf8GFAFQ3xoc+/LHkpmPAPWkl+PDY0seTgldZidUK2NIb3vAG3LZ2xOe/8IWkQMsDM/A7z2Xwufxdvpbn8u99le9gz8u/tpXt4fut33Cayq8m7/O7gIPtqjJazjxgnAH5UoX+T/74zWz5+pnUvloNyB8q77rOqMS+9rVXpHlBxXpMfU2859q/ZseCk+NwVrfte/K/44jvERBwLLJM5m+fswzyn3xQCojOz5TswwW+YDqALy2jfUTgQ0BAMEH3AuMQaNlQsGLYlgCQQg6F/m3+2YLr7W9/ewLDdJPRPcZ4FvY3lfNFixYlcETgzAWBpqbDUv/TusCySRv7vK5DuqHYlgILtqU8pPWGfXbVquaYOWt6vO1tb03F8FpO1lmelxbSwPzSnMrcKo0sh9czAOTRutv3zCeDAIImBs8UBBR4sX21GNOdxPHIcc94OoKCuY0dZ5sFNQEaHF90xxDYcMzRxcPx3N+OU4IlgiS2jykDpfl3njNyvYYfLSezQZQje0yeqCtWYZKrQH7J36vhMenm0fpOQF4aQ5BP+WDShAbmcbcvJkYIbVcJuDCWBQ9IRlysgainTAn/I9t6rDNT4vtkXDF9VUUZqMReku3l57mQbG95IQP+gnC2p3E1BKXslwLsXnf+yICYIJtugT5rn3A+MdkW5mlyzJBn8vzmd3lQfnUMkU/9PlL6bYxvI71/f9eeK3ywv3qOXn/2UWAUfHj2tdnvUImzIkkALVbvKwEHStGKT3nBqfHgHXfGLxCclq5dE6ddfGFUIaysvm8VVgZM9ED5A0zcx88/Mn68dGXsfOxRBBrMLRF6/pjBHxQiZjRMjv6OzpjUND6ZObcQY6Ef2L+4vjoFlaxhpaCcKNM9bZp7Ay4gNCk4MX+k5MGYBT1IzYOUqwSgYBDFvhgFv4LVhONYmT/sBcdEfQMKKdGlkXhYpkAR13/QTFRUmcCPQpljFnKZg2VdZnwBB4SF5NoBsBE1s6Lp1DOi+vB5seSxR6JG32jMIVvXE/hv2szoXI2vKABDBY+WoEsVs6tEEcEaDd5WgiLu9oJOekMd7bh8dGJZwM4aWFqMwaVhALeQrctXxCC+tZUEnpyJYFLCx047QDGHcJOYMobJEV15kHt7AXYqKFOK07CDgFgItYtRctsQuKoAEsqZdPtop5629ujHzaUI64y0QwdlSHITmhgxMcUi+PiniF0xoDHPbQG8OAbFcgvl7IQOS3+1OC565aujGYuS+5Ysi07krSvwqT3l/PPYz7wOTIVAhUzu2ksUrB52NYytY305+OHHiBiEAoXCg22rsJcFXIU3P/pEq3worAsIaEmgIqxQoPCQ70+v2ssf71NwUYn2Y54KHK5QKZT4W8HFlUsFEsthss0OJOX7fI9lUQBVOFbgVRg/2GSeKgIK+yo8mkoriFtOA24qbKsEKkzvKSjlso1UBuvvc96rIuFvv5ufim1WLMxD5SjTyHv9qKgo0GegKAMRKkOCMN/+1neisbExtZ1HaS19pNP+BL+Ryr2va5Zd2lgn7HgSb8knCqKZX+Q362kbWZ8zUNYsq0qfimCu1+QGXZb6k4Ku4qaCJh/qXqNlhyvCvs9PTnu2QT5/qI6+T9rbVgqi0lZQzdX+G77z3fgxAvx6Akxqni6f2BdsgzuJd6NbTQljbkvLtuTvr4KsoiefLTz+mGhuLoCAh6rsB5qvoF3mUeso79h+tpO/vWZ/tg//0R/9USyiPW0nt3Zsx0pu3ry56f777n8wWT585MMfSKvnWjmtxCR/LavTKrHt7V0JUFKp+Zv3fSCNM/Y9P9LOfOV1FRiVVnducfeK4a4YmtWbKB7jVntSpC666EKnGlwlfpYASMEN20jlyrgh7uAj/wmGqHSPH1+fLIUmTRpP/gWLiTwumbftpyuCfdTdJIz3olImX6vkm5eK9+HMWWPqx8WXv/yV1He1JDjnnHPSuCFQYcwFAzNmQMRnHCMdkwsrzm3xjW9+HTpMTG4Xw8c0aZ6VO8uUk33a+2wj+45l8j4/jrcmaed9HvM4Y+wdrVFsT5+3rwr4SCdpbrlURC2r/NDU1JTqJC0clwQbpJHvsR8LXPg+3+PH8znJN5bf+4f33Xw9H+3VzpUjTWBpdqP/l7AwUw4o4Xyf83fadave4mIta7SucF5BRuCje+ogAsPukSO/9cnH/V1/8t3Pvl+Ov443JoFgYxkJiglyOz7p7uM4Kyin+4xuQcZ+so/Kr/KGbSm/yDvm58dk+3tefsr9R56zfUzyhc+OplEKjFLg6afA7hH36c97NMfnAwUcm7FqGOwuih0othMrx0dZ3Zg4AyFmzdLH4n/+++sxoaYiLj7xhJg2//DoWIkyzcp5Fcr10kcfY2KZEttwWZiI+e/2ncQmcGJgUjjzhBPxSmBSZocHJ2kn4/J6zEER+IvHYOrIjhYKGiUIDQY/LEozNkr4Lpo7Z2DcQDwIAQcAAZTyjn4EQZViVgyKiHVQP31MbF67NKrbOI8Qp2BQUsmuHAhESD4pp50oFGUKQqxWaFXhnu69vLcH4akMCbKS7dNKZx0Ws1lNm71hdVLmB5Y8GjffeHPsWLc5TmmYQulYHaFgpbx/kBUN4z30GksB7KK2FPNbY07gXtGDYl+BMDylqjYOY2vQoU1b2dHiFLR03DSM14BQZRyGXkAKdsyMMgSrWMeKFKBJMe4QVbhAJJDk/gfijhtviuVM0tMBe8YjIdVBu2om1UEm5JI+Vge5vwzrg159NyifQpRBMiWgAk1BaSqJRlaJ7nrgl7GQCX4Diks/ym4NgvYDCKYvvezy+CQrU1t55pSTXxAXofjPQRhYv4PI4WwDN6Z2TAIfhiENhcx9I7T0dfsTnhQYsmCgUOB32924Bh5dbTRgmIqFQoTfs4CpMLo/8EEBRQFYIcSPwIXCtYqkypbKmqmxsfGJcvh7uLDq730lhRcVH4/mp/LtO33P0wE+KGgrhGch6YP4ZqsIqSRaj2ZWABXAFLiHC9Le7+/83L7KL829T7p7r0qdwpvKrIKav1UkTNLRZJsJOljfLOh5r+2hQKfPuObdCogve9lLWZFcnuitKbtt6n2CKRUVhT6YMn2Kf3L5c91zXczO8SGVa/vm9D7f63UVHttfhUYT7o9AU+u4aNGiBOwY3O+v33ttrKXvlaM0GDROekgj440oFLtirn++beH5/P7h1djbueHXn47vvsOy2yYmV9mlrWUUpFq7dl0S2s8840XJuuOK1/xBsnjQJcjn3HbUdr311lvTb1fR/a1VxNw5hz0dRTyoPGwjy5NpKa39mOS1nBwfvvnNbyZlX6X33HPPTUrN/HFjY9Wa9akvFgKJguViFWafUXH/4he/GP/6r/+a3AQEK4z/8fnPfz4p+Pa7UxkXJ2A2bx/XlcD2bmyckV67du3G1Af6+wtuVSo7ls22EASwjwhqCCD43THNj/EoVPodJ1SuVKiMReF4IWh3zTV/BphwLNdxiQLszinNh+Tt2KTCplJmXVXabrnlljSWWS/5W4BMwMyVd8eJq6++Ot785jcnOlovx1HrIx94v+OVCrwAhXW0XxvosGXr5rTybN911xfd1ez3vt84DB6tr5/hbeS4bN/znN8ts2OJKd/vd8dkaSsgk9va99u2Put3n5euAg3mY3m9bt/3HVpTZPDBewTY8nXHtOFjub99zuTRsoyU0vzlRLaPNAjon5PlVYYQbMi04HV8z3cUjuk35wruTE++9nz7JUjouCzfORbJj1o1OIdolSNfatFiP9VN7tJLL03ghLwt0GhyHMvAljwmv0h/eVieknds6zy32Y/sn/JKntOeb3Qfre8oBQ41BXbPXIf6TaP5P+cooAU9OjSTN0o0yq3Rsndsa42xWCfMO+roeCuK6a/uvye+dc8DccrRR2AGfnHc9u//Hn2s2h+/4Oj4wU03pkmluAozNwb/abgl4ISarBCmH3sclgisjuD3WF2G5QICRXLJUKBkxu5gpwcBgJoyUGvVWM0KKJBlUhZwMlGQEJNgWon+IcAFfDO7ddEowBU8QvC7Bvw0ebQLQMTAd+5OUYKlggEkFf5c+U+IBtYISXDE8qEUi4tKJi5EHVb1q6IfKwd8NdgqNGJsAz7QxJYom8w2WMR0KK2sJz5DV5QDzrAvX3T1dxHioSd24EpiPIXi4rFRXYQPJ2UjSmSyTmjAQkMXjK2PLIkxCMmYUyRrhyAOxCAWGOVYThjPgv0xoQnmvATG3LL40ejB2qEXC4XNj6+IbSubYwyuLNPKx8YYAJhSaNWFdUlvRxvxJSAx7yhi0jVmBAQsAA9MyP5TdFdIEiAwzkYlbTuOKOO/ZEJfgL/4/QiYl7z6iuhZ8lh85+5fxFFHLogrX4/bw1yUR4TdcmiUJm2sTnSNSfRLAhqZ8d/kz3yq8CWd/rU/CgAmBQIFUYXNLEzYxvr2KuyaNJ1WyXCFUOFBJWt/yXJmXtEEVyFFBcC2V4hVaffd3pcFU/kgK9X7y9/rClA+q/KQeAiBVuE3AxsHkse+7pEWJuurkO4KoYLVl7/85fQuV4m85vuHC9K5zvvKN583r6wM+Iy/Fd4yeKJwb1KIkyapz9BmWdizDVRiVAAsnzTQj1ulyAj1XfTjO7DO8bcKgvVRCFQhUO6n2AeVcpmlu2XP9Unfydv3WFbLZTt7n+fkAcuhiXdS3n7846SkWRjrbhDGGdOnssXeaxJtBYE0EVeR0w1Is3L5Utrl9/qs7WDy3G8rCcqZpK18Z5Kf3U70sWXL4xyE9gdxodAF4dbb7kgxIVR+3UFGNx4FevuGfJz74YknLgRgJNgw/ufPZJJvcrJs8qbJdjTJl5rf2x5XXHFFCo6oMm/QxsWPLsEtro/tEKele/0jiKSiK08KxHzsox9KO9RccskliY91ATAOgve95PwLYiljoXyvUi/vC6ppbaTSLe/nsSMrPLZ75kXbw3vlGfuI12wDLZbkp2aAQ/O4445b4cVgm9e70+r/bbfdGU1Nruzj6jiMjczPMdI2lu8cv0wCTbphWU6vSRMVuA4sC5vZhvp1r7sqWW984hOfSACCbW59tLJwhdn5fc+kRUcPgZENgnnBBeen/uM9Am4CrNZJhdExLvepPI7kvPKY5NG6e93k93zO8uZ+JB9LF9s891V50jHIecE2sc/6vH3acc96+Jwfz3vdOSW/O5dl+DG3j/cfbPJ9JvMa/tl9Ll0e4c/+BsCDL+MIL3/GLzmXa6Vim9hmjtOOW/ZDXduMr6PVg24YgoNauQgYC+ppfeazjl3yRk7ypPxjciw3ya+2lffLH/JU5oN0wz7+WKbRNEqBUQr85hTYy7Tym2cy+sTzkwIOu0UYKrCgn4SgOrbs6kC5bQGEmDC2NmYcf2z85QffH3/0B1fGD2+7JY6eNT22IfiUsspjbIUFRxwZK9etibGNs2Lnps0xazwrw//7o6jDkiDGY2pXijmkAS1VYFmtH8J8uG3nluivYcVkbE3UVyFckV8JK/gpKCJIgz6YT3yYGLoRQtxXW8ChkgmlqqIqfe9Die9h1b8OcEChQOW8aBBgAUmrEoF6kGc7ACPG4F+pgtTOe8y3BLeSUvLxfeyQGTUlZbEd4GEsqxnbEehrsZwonTY9Fp59XswkSFTfA2zFOUj5Wf0yvkM/gEF3UUd0lvawR8ZQrCCGw6S6hqgirkNRAj4QoPF9qOtkdf+e+6L/H/4p5p27CLTmGGgMWNGPsokABoqgVov5A3kveSQ2EFxwk7660LaYAGjTACdmzz0sWlH4SgBmhqjrYOvO9HwlYE8xjdZBnRTREf0KgINHZJkUNwOaWMeljy+PkwBAlmLFUtswMboQAtYzUV/49rfHX1z52mD9KV74otPjhBNPRjgAzNjZhuUIliIwRi87kkQRyqmMkpiFY3rT7lNGBx9JfFLQtE1UIj2asjDpytoPf/jDpFhoWqxCpcBr0h/d1f8DEQ4UPBRSTSrrrrQoCKtEanqt4qBgYlkUaBWA5Bl/Z4E5PbyXPwr8CsKWQ4HGOviMK52aibql5MEk81ew0gz6L/7iL9K7LJerlypQvtN78nvzuyyPH+sxUlIAy3X0u/n4jAJaFs4UEH2f2+Ap2HnN+1SGfHd2tXDFURcAhULzmD59WmwhqKTlFeSxDXxe+o4bB48fwmTZ5Ul5yfLaxn7kM6/JS/5WadUKogYl8CvsgqDvvQqQz331v7+eBF4tH65m5fjVr351AlTMwy39pJt0yDyYj4ewWr+WtXyhYqZSKg8L8JikuTEcvvGtb8e69RvCGAH/+783JyFchVh3JoE821D+lR6NjY1JGVV5X7JkKaDjvEJH/rW3/vZODAcYrZ8AgDwvra2j5dbHX/N82+QLxKtwdd64BtKiHve9pctXJr40L+8XfJBHfcYYGI8xvv7Ve9+XYijI44IPKvTzcVsQVHuAXVt8l0q7vKF1iTwgX2lBkIEIqWJ/sHzylt91bZCnpLVlNsiiR3er0OLizW9+A5YFP0bBPzeVzbY544xTqafxFJhSenUZKliHqajLbzn53XpaZq+ZdBFxVVil3a02bV/HOesrnxjfQqsIXT4MTCpgaDl93jKbp12nrEwAthqwYV56Pit3gigqdN6fAVz7ev7ksuWj78/XPJqsv/Tz6CcDKiqG+boAis/6Xsslj9oGJsvrOelsPv62T/vdcyafz+CMv32PKZcl/TiAP6nEhUf3erdA/Mhp2MO7ypDu30ULZuGRHx9x9tzPo8+Cy87xtrH90uS4Kz/YvvYvFx90szBGy8c//vHU94wBIf9qWScvC4hpBSQgIThhH83jhnxjst3NM6c85+Xfo8dRCoxS4OmlQMn7SE9vlqO5PZsokCf8p1ZmV8fxXe1gFwcsA6qrS5gQMIFEIe9nJb8Md4dpk1hJan4s7vj5A8RBWBkLZs6Kwbb22Iap64Ijj4iWnewvP31KrFm7Jk0I6xGEW9hRYj2RvLc83oxSj48e1gpkHEWAAhXGVMA/YMDgBKysl3TgesHqVRGCyJBKXj9++gS9HGBVZpCj1gTFmD6WMblUoqiXoVC7K0UvW2T1Aips3cj2kFgi9HT6HLEZ2MGhnBWjYqJNC0L0dQzgyWCAS95HsMoi68bXNhT8bWyNuXknz7rST+yI2obxUcozxSjhU8qrYhzgSfPtd0cVIEQFYAdoR/QN9uJOQgA43EaKEBo72gvmfah4vLssqnluEFoOALb0US+V86mzZ7IkR3yAVqxCOgneB10DkCdWLI8fEIF844O/jHJcL6YCKkzBVL2OOpdyvXdrS/Sz/WUCaKBPNe8bQ92qAHQGyV/hsCgJk74dAAYa+Ungg3RCYNMipKSc4EuAK50oUw+xinjxq/4gmlFOPvudb8eLX3ZZzEfJb0B5rMXto3pMXbKo6CeehG4cpdQpMUkSkmAW8hd/0KJCsUqvVr7uMylgKmwoaChEKmAqGOiTrCmyw5e7Odxwww0JGFDZUrhQgfX+/SVXQLKSKAihabbKsgqKgQM/+clPJkBD4dT7vEeh1XKZ9iek2L8EGgxSqHCvoNTMiqYKrauPmliPlPbXP1V0FKAsx7vf/e6kHPzN3/xNUoQ0Q1UZaGpqSu9W+E5KNy9UUfOZ/eVv2bxn+H35t8e/+qu/SkK9Co5KVBbwbS9ppLJiO/hd4U53BBWuRYsWsXp1KdvOVULTjiQY6sNuPJSJAH6ySR+WQ0ZzHyl53/6SdR5e/ifu51nzt29bPuloO3u/bdXY2JiUFbf9FDiR1iqsKpwqQqch0M6YMZ3o89Up1oZKq8qeK20qripurtr67qzc5GMu017L9UQBD/5L7jvyuXVUKfS7gfoa2CL5Fb/3+wTy+2FyXzrnnHOToK5yKugi/1tv20xQLwd4M88TFuJehcVXPW5dB9AEB1+RfeQwnH55fFDBlL6Z3wXl3EHBMUFLFrevNJCjLntLli5jbKlO7a3llODja179yjj//POwHvpqsmbpxWXPdjOApBYTgpqafa9ds7ZgaQQF5G2BSWks2CH/Sz+BTPu/45Xm4Sq9gmxjAecbsJK7++57E62/9KUvpQCTKkXSV5NyeWfatBkJmPjZz27D7Nz+xdjJp7q6HKCunblW6hd41r42PNnHs8Lu+81XYED+1Z1j9uzG2Mhce9ZZpxMX4ij6aUVS7o7GSvG8885P45wgYG0tln4EHS0lbsEAc7GgvTRxLF68+BHcd45MdXfM1P3Ccmht4rv2xee5H1he78ljke3pb5PfbVPb077pxzp5VBlVKfU535eP3j88L8soH9gevtN7zd92yICM583X9w3np1SI/f3ZLzawq3fwDt/jQojlGeR9A8ovzMmFmdAXFTLL9+nWMnJ5yJsyP5eT47DtJVhm/7LdbTf7lNZpjkvytW5UWgzJd8oFjsO6wNn/7NMGK9VlyjlXAE66mq9jtG0vL8k7jo2+J3/3+Eymkdv/mSzZ6LtHKXBwFHjybHVweY0+/TyjgFMlclCUAggYVFAgwvmzshplFbOAThS1ahSJl11+Wax+8P5Yt4XVFoJRHsFuDTseXQZQ0B+zp03BTaM2JiLgVLA95uqWLUwIWzB6GJO2dNxK3IQpM2fHHFa2q1xpQ+ivJmZCV+dOlMStMbUC/1OCOLpKn2QWrAOM3eDEraVAEcJJCaBDCUp0Nyv/bQguxm1IynaUx6wZc3ZZVqDsUN5+gRSsCoqwFujFEqECMKGKfbwrsJgYQNAjDAX347aAAk9oiygCLN8OeL6yjbgKNUWxmV0qJqHYNx6L28jG7VhMAE50I7yyKFMyyMoxSnwF243WlLNyXolFAv7FJVUo1QAclaVkRvmKewAcsKZoR1C69+d3sqq8Kfq/XhOr2SWki4zqJwBEULf2detjXCuR3lHgSpmQ+weHsERgdQCFv8KG0JVD+QRAxm3havDvLYNICsglCEJjWEVog04CAUA66RzVBhDgWSZn23MKq9OLEZonH3FktAIaVfPuCZz7k6uvjtmzmuL4E0+KKRzLKYOKYylBtXy+ExqqWNIQBZmKw3BByZ8HkhQ0XC13xUOhTSHElUSFBBUAzYkVPlQKzj///JSlq3j6HwtE5BWOfb3LyT1P8AILCq4K6irtWlO4WmJSIPTacGFkT2F/X+9QiTBZDwUdy+Qnn9/XcwdyXqHJPA0ip1Cu8KXApvm3ioAKgAKbtJNmCuHW17oofFmvkZJ5+6z3Zjr523cp2Av8qMiqLL3xjW9MCouglu/Jq4zWUyHP576MO4jKuYEbLUMXIF4uD5cTfSkeZS0oA4mBRyrgfq5Z7r0l6013YSs8tv8FTFLglG7yktYXKt3STT6Qn6Zi3XEBJuYKtJr1arEyHx57wcknxT/+wyeSVYSglVsECq6YtObIyTruSetMz3zPoTjab0zyrW1pGWw3lWVBn7GAhQYpfSWuFa4iLl+2JK3qq6jLO5o3DzJeyEsK7Y4dBi/sJN6AFi+/C8kxIZfFPi/vmQQcvva1r8X111+fQBXbQwBBnnBcsf86lmzE6s62dxcQLXjWrtuIS82U5OJQXl4CaNCcaCKfuKoqLbRy0DqhnTa/8oo/TO4SWjIZG8M8XG21fS2XfcWxxaPn/LQDSLuqaz/1o8Jkf1kEKPcP//DxJ8i6BbfDhoZxKYAkzZZSDW54Dz/8aNpuUwtCskt52r9sW9vIZP9SQRNssM9lulh/r7Uyd1x++e9j6bExPbdwIdZ1JIcE+cTxyj4gnfK4Z/6W33OlKM6CbI4rAr6Ol9bTeghGZqsb87Rs5pk/nsv5+H3PlPut/dLv8mM+l+voNcthPtZneJLXpYPXM8jgfTkPy5PT8DLlcx69J98//Pxv8r1/V1sMf4ffn0h+p/1SsiFJ/vXdT8f7U4bP4j/ylmOV43FOtr/tYn92fJa/bWvp9aEPfSiuuuqqxJOCgM6LbnurFaDjsv1M4FH5oKmpKblwZPDCdzjGycvyk3nmOSy/e8/jwfLHnvmN/h6lwPOFAqPgw/OlpQ9BPZ0ku7v0oVSVd6XSDSO6mCxKo4KVksFipCUlfBTSemIrLFm6Mb7z05/FH57z4ph81DFx/y/vZVIZEx3btkQF1gjjAQncEnPVhq3RMJao9539sWHJY7Fzy9YkyMzESqLhyLlR1qAvNbsHkHUJVgIiAkW8x0WgIZRylhee+HT1ssKhNQLCdw9KUVIwmbgMElY/blLsRDirKmf1DvCiC8VDd4uqYpR0FXqCYqYglASFcKWiG0uJDiwqtFioc5V/HCvhVLFtR29sb99OcMfJUTphYgyuWs02l1vim5/9fExHs0fNo2x0NUCBIdwQkhcGu10MIdgW1/SGDhh9xpsoJc4EMSF6AR/GVE6NeoXRk4iyzr3bBrvZ3YPoy6w+2Wl7KIsi5mRAikkAIUOsonQiCJdR/dq6+iiFBh3tbWzLNYmdSNrSRNqFj2/rQFvan7wCAb0Oga6rs7UA3AAjCRoIOOgOYqTtPhClfj7zTzohvvj9H8bx554Xr3jVa+Lvr/t0dLFKNmX6DLZLjZja1BizmOj7aJNBVsYEbmqqiUVBjmkvQ1evzdj05EPh3H7+qswqWCh0KIwoUCrcq8D/AncTV5w1HXZlWsFBoUKh4UlC3j7eoWCj0qg5syuSKhUKLAo173rXu5KQoxBtfr43CyNZ4N3fOyyzArz3y3sefY/nVXKfIMg+yncgpxWUsnmp+avwCJqoeKh8ZsVT5SfX40CFpqywer/vMX/P2Q62yzve8afh9mfSX1qaNm/WBWMW9xWE9zZAKwU7V0y7sQDq6toRbkG53fgkAJIbNqxn5cmo5Gxzi4JnMlBbVZVtmH7u/c8uXtr7xf2fte1UXCdMbEj1Utm2rbVKsY6umrnCv279pmjELN46SlddcWw/hVt9ju+4/efpfvlRs/6rAeYUaDM9hpfEd0rD31ay3VTS5EHbzzaTxn4UtFev2haX/t7LKI59V9eBYxPYIv//iJg8jbRjOePy5z57Xdz8vz9OvtXX/Pk7cdnqJg4uABF9/eB4eKQGPjAq2a9c4bd/CgC4KqrCqRWToKRbzkoDlWPbTQsEQTv7/UTmpUVnnhbbd7SmfrLgiMNxZUDB5tVVzGN+nz9vTrIy6MOSrh6g/Paf35asQdawunr//ffFL+68MwE3/+///T9WX99EP+9KYFsHAYS7uwvxXaZMmZzyt+83N69M7jlaOwjcGfhz0aKz4v1YsR13nNvmtqR+KlgwbtxYeIsplEG/jUDD7nTR2mpdjiTuyBZ+j6NdC8CgvGX9PGbQKQNg0sS2V4nPfCkPtAFApdgRu0jdCViuVYDWR1OmTGTe0G3BNi6kDEKkXxCptrbQX/0tX3vdscEyCOjklMeb35T/bUf51qQyaL90DMtASs7fsc1kGfz4jM96/5PKvOsByzE87dknnW/MMwMXw+990ncZ5clZPelyKfTYZ0rPCoL4ZVhK44Ngjef2uDbstufDV/u0Kc85eRxznrfNBB5sJ3nD8dfkgoQ87vxq35f3fF7LJoPIKjM4tstHWrUZL0KLKGNJmOdpp52WQDVBC+WBkVKWB0a6Z/TaKAVGKfDrFGBHvT1G4V+/Z/TM7zAFHFRNeVJ38MwT/dNR7JHZgxgLvD7Nlc6RfJxKh1idHxpkX/uB3mhm54e5jY3xzX/51/iPj/1dHD11Riw67oSoRyWfWsmOFWseIdZDXSxbvhIBqzomNMyIjVt2EiISP3t8SnewAvo4QtYEVlhWte2Id1//H9G+vSUeXbMyDp93ZIwtxzccS4J+3A4EBUrw4R1gp4U2PrVMRqUIb2uWLY3NuCCoAE2bMT0JaAp927exMl7rDgTtgA1sjcaKfjUCWTdCZglCQyWCnYEsh/hdVFsRO9lWsp8KTzD2AcpFVW0lCj4lrSyJrTtRJPG/dfqrYpeHWIxLxJ+8M47oK45ZmhawitTVszOGJrA1YmV/tFT0RdXE6mhrwXQQZbF14/YYAmyZSf3Xr9mES0dHnHjqi+IBVu+mHdYUVaxQrl6FGwpgQzVWDCsxcZ3GinI15SmBB8RblFZsr9SjBX1oEONT9AFMGDvDsncADtWI7AMIbdiE5UQDu3iAWJShYBRT134yUowbpP6DxNTYigK5nHrPe+Hpcd/KNdFXNzbuXrIs1hLX48q3vjUmzm2KI048PpoITCbWIFiTJ3tXBcfgV5xSFqQgRdrpwqMlpLB83WdSEJanFTpsM1cqTSoc+m86+WtKqTDiRwBCAd9nvN/vWYBRoLS/+NvrCiwqIH5XMFeR1HXBqNqucBs3QsVgpOSzOV/z9reCb36nz5q3K4QqtpbPjxYKy5c/jrXGBTEOS6BqgoJSPO7tRjEs+Gdvgz/HjRtDnk8uge2bznF+J3xXT0DQpiasUFCMr7zyypS/QrM0uuCCC5ISoNKRhXgVFNvIz8j92/cUaKOwbz181nOWn6tpu77x4yakdvje974XjY2NCITTUADbsOwoxG3o7u5LZTJWgKvLtolWKyubV1DvgjuNyqDtqTLTh+WQSZ5MvJx+7etPYqx9XRzxfOI8aLiNsqqcKrAqlGr54m8VWld/paP+7wqyuiOotCuYfuqfPxknLjw+7r3n7sRrWoEo+CoEq/BkJW/kQthxn3qShx27TD2MSfKgY1hOrrwmBQhCKqQnYZn2M3XRtwYYJ1RAVdqvvfbatBqvC5PgnoK9/G/ASXnl7W9/G6v0D1HHYwFoNsa0qaxGWvxCdriJAYCSp++ogp8PJC2FjvPmMXaQfFYlWf6Qdv6231sn+c6jH89rXWBbWVatM1R45Ut5yHpqoWDcCs2vU3wG6qOy7XXbyeS1Ixcclb777N4+gkim4dekRT73EvqXlgsqOloXuKKqIqMVViN9wb65cmVzAqMEPbSWSHEkGL+N8yCAdckll6R4IQ3MK6aWlq1p/Bjr7kXD0iBt5VjjpzDOa42FhR71lS7ynX3U69b1QNL++9fIuUC20TRKgX1S4EDml30+/DRdcL7N40p2Q3Ku/9jHPpbGNUF652vHGPus8SEE8O2bumg5luexRys+fzsuZADM/uazHh0bzCuPEVbB834cqx2nzMv5eXgf9Zz3SK+9jTX7IoX3PpfTwfLPwT7/XKbtM123Aqz4TJdi9P1PmQJZodhXBoey82lkoLtFGv74UxCj+Ws8Bi+SFIiG2C7zqOOICzC7KW771RJcGcbE0XMw1yRewxxWG1u2bUKBr4rJEyZHOytQFQhTU/CtXrN5Wxw+ZRorj2ujgSCG9zy8Egkbv2xW8I+dO5+BvB/la2tU4K7Q04drAUJvNfEXijhf7moRAMdjt98VDZMnxVFNKH8IiI/c+wDKeH9SVBso22BfT4wFPNC8dhBXju2tWFm0EQ2ZMuiuIaBhvk0IyGPsLWyD6daXlT2dAB4dBKIDoGBCqdrGFnYIzKElBsDDtlsI6oWAOYvAmTtwRxjobtO+gbgTmLEST6KC7T51vzC/Ura9NAhkTz/+hpSnCDeMqhLcLrDamD1nFkAKwMZQb4yrKIsGPlWQd5DJawqf7naUrdI/AgAAQABJREFUZyYsae8OHeloWyAfa2zQg+tFFX7Z9UymrlT2ojRo0VBCGeoAfQaHenDHIAAl1hVdfd3Rj5VHEWXpYxJt6WqN3iriJzTNjhboe8IiTIKv/1LctmJpNONm8s3/uj4mNc6OGgKFanbi5NkP0CEtSwBISmkLgYaUdh0KP5hgM98UTuzzr5O6gr1KiN81nzQCu0KAvK0iqDKSA+kpFOQJ2WNegVYYUEj3XAYGPKqUKxAYcC9HmleJMG9Nh/eXslCShQfvz0KEfdO8/a0y69HfKrSuuAt8bDc46/gGrtGXaDOFkg76RSWBTaVhJt/wcjxxDhqOAWwTZFGw0bVBAMZ6ucqjP6xKnMJSpsnwfA7ku/QzbwWtLGz5nGCKvzdtbElA3NSp07C02IB5+ItStpa9lZgoPivdZ8yYGn/2Z19NgNNXvvJVlNr5SRHctHlDUqAcJwQiTFpASCvNug916u7pA/ypg451tEdHUmiloYKhgqoKqoHLvvvd7ybFrgmQ58bvfz+u++xnE18Kwtim8ozm+PKh9fXcniBUHot/vS1oyKeYBrBWKBtiYEp8rVuQg5RWDAMJNKlPq8+FziZd+3aNk4IStu248RNSeSsrymPJo4sTSPSZT1+XVvzqAIK0hnjLm9+U+sZZZ57BzhAz03g/mXgRWrFgD5MAM+taW1cVYwCDeQQgghXzcrfyze4z8rcr9ByHNavAg+WwD9sX7ecmz6lI+1ugR+smv3ufFiiOBdJaoPD0009PzzhOyOvuauH93vtWAFLBENvStpNvtQqQLwUi3M7QZJsM/xTOiT3vHrgK/Q5aQkcTQwRgwv+lvqbbkcDC7bf/HLBhBdZANySFRwsSadPY2JgskXIckHe84+3JRNyyyC+OY44JjmtaAeUkH2W+yecsZ4GWBQDRPp7HNOuaAQgVLmk6cnrqvFfIdzd9Rn7P6NVRCvz2KeC8K7DtxzHFPpHHCHdqMelWJ1ApKCjwbMwb+5xWQ1pPCTjrUuh4Yz91HBKQdv5zHDJf73feyEl5QIDUe3yfz9hHh8+h+V6PjhF+9kx79v09r4/+HqXAs5UCJe8jPVsLP1puBaACUvpUafHrgvCB54S4VsAYlD/4qOyy7s4PhDMFNMpWjzC1GUGwkRW0epTRxQz0Q6ym19bWxcypbEeGorp+7ToCMRLOYUJDrF+3IfoAGKawwr1hvabw41mZ3BqVtSg6LVviGEEABKpSJoKelm1s0UkQKV7ei6DZj0tEKZNBF0JoL5YPVQzmE1lFS9tlsuI/wD1TcLeYwYrTeJU8lLbxWACMR/muQTAu02WE5ycSgKyBiWQC5Z2IUpFibPOePu4vAfhAM4wirCVc/9qxchnPYV67em1UobzEspXx8P98Kx6/7fYox+y2YUxNlBPboacI54oyFPM6triEPoPkU4mLQgVWEWUDiPADrPLiRyF2UVGDIsZqcheC72QU/5Ub10UxJujVdSjguKf0DfRiRdGJt4kxKMiN1S8MLKKfuasXYMGj8SnIMroBSrqxQhnEJaITcKEVEGSojHeSX587bwBslOHKobuJ22QWEVyySsUe5beDNtlAnYqwdrjg6jfH2951Tdy7cX08fP/iKAc0at25I+YfsyDGTihshaVAX1AaVYAKaW8Tar52IEcncVc4XQ3VckATfwVsP5pMukKh8qHJfAYYFOhV7BXkFcwtg9cyQOD3DAQoGGh2qULjSq8KhADHZz7zmaSc7EtYyGXPwkE+ZsWgoBwU/Pwtg5G4BRaMCaBAZJ0URnoA5hYsmIcCokWGygQ8BQDnew0qt78koKYvq8qPViHGI7BOt912W1qpt06+V3qZLKefXL795e91783KjYKWSUWvHGuaCvrO//zPN5IwprJ3+eWXsiq+5QmT6/r6aoQyzLvbuuJq3BGKAbcMvtlPkMc777wjJk1uII/C1qyW02Q7WcZMy3TykPwBnGKsKYfndSOop38VAwTKU/Ka/OyqmLxhGwo0eH4t51xNvxwrjv/8/OdwzViYVrtVcFX8rIcf23k43a1Cpn8+Gtz1YFKyatiVR2pTGYjkNroKxuXwQtL4oadJ3vB3MX3CQItrGXsVmhsbG2PRokVJ+DZA20033ZTuX7x4cXz+859P/CjPGtPA9zQ1NWFx9CB9Zga7I7emetfXF+JL6HqlQl1OYFxX5g3qWWjLAsDmXJHT7fQ187DPSrsCX5Un2gk6GBtEKyT5z49gkAq85tBaoggQ+lsTf603DAapZYPnrf/rXve6BEL4PkFLxwmTbWsb5bEh85rH4Z/cV6yzyWuey8l8zNf3Wj7jOFgH3y2vWBZp4XvPOeec+Ou//uu0RaBb4npeXrfufgS8LI98Iy3MIystns/lsizDy22f9LdlEdj0uuOHPOszhzId6vwPZdlH837mKXCo+Sf3E2tqv3X8s2/4EZjz/QKSWgi+5CUvSZZePiMgoaWSfUpZwd00HN/ta7o4+v0DH/hA2mrWPH3GPuscaHLct087xjgueC33a/O07wsses0yZDr4Lq97zXfl+SNlupc/+bm9XHpenDrY+h/s888LIh+iSu7WEg7RC0azPbQUUHixA+VPflsWkLLQlM8fkuMuWSyLOagNQBB+Cqa9d//ygbiIFdozX3xePIhg++2v4HeHIP+qU06I33vBwqiYNju2IgSvc5tGFJWB9k4CeQE4lAxEy7rHY8a4GlwE1sYJ85riB1/7arz2XX+O9tMe9Qzcg5h0Fw9gatq+Mw3opexi0e9qINdiYExsWrokKa6lCHb1nG9btzbaV69Kk4Vx2vtAp1WIFBS3bt/G1mtjYuoR89nqk4mJCWDrT28hfMNml8AIuNiW0O9ZJ52YAIjAL3asiMHUWTGul+OKtdFx1z2x+Ps3RgluIEfOOSy6CLxYgoLWSxsN9hn/AaeGrh4AC8z2XDXEMqGTAJpl3DM4gL8sNKs0pgXWCpu3bon1lH91y6Y4biqBBZnQtmzdhKsJO4rUVwEmEKQSxQkJ1v9u/pFCLKTm0IIBob+irCo2A9ps3QTIwPPyQw2mwCXsTDLUOxQT2Y3EeBNajhQDODDbAVCwEgkoU1xTGwuPOzHuXbE63oM/8wy2llu7ZHnUTJmKjXR3HL7gqBhj8MuCXJ4m6eH8Nvz7U+U7J+9kPYPgkCdx4zMo5Mv7moQrpLvK0IgC5QqHSYVEpWB48nlTPjrRm1QWnPBd9TAvFQNjEqiELUIhGykpdPgxT/Oz39kXrbtHf/tRiLC8CiC6/1het7q75+778DV9SbrXNiSrXfntfqvFJIuUvG7yt+e1fDAGgQrzddddl3xaXdH9xCc+kQLuqbwkhbPwWCrLnmPFrkt7PQx/1vIrEEkr6a+lwzHECLjmmmvSFoF34vtusr6SuhQe2ohlhL7j7vLR198Xf07fld6CSc3NzVjHFAMSFczLpZHvy7R7Ovhnr5UadrK2pgo3q4FUplrcXeQ162l7SlMBLF1FNMFVkRTUEkByFxTdDiyjPOMnC5qZBvJFTtLclHki80pJMgPII2e++zc5Fp7V0sE8E2/velcNAG9OBb60o3r/7vfJK4IrKu4K4LruCGKp8NvObmWrK4muDQZrE+izb9nWWh04yNuWrgR2s/2j7edzT9SdV1mc9EbulW93GQ6kop122v/P3nkA2FVVe39Nr5lMpqUnMwkJhtB7J4QmTwTLBwIffCBFBEXsPt/jURRRFBR9ig9RQXpReChICxgDCoQQIaGkZ1Imycwkk+m9fP/fvrOSw7yZe0MCJjzuTs6cc8/Zde29V9trr314GC/8QCBgq9PDDz8c2oGwjg8NAuOO9jGePbijSZh8rB1QGjIWOd0Ch6BsoYLpJyCIeyAvmHsX9v29372v+E07fA7zm+fonToTWCWlXMpnTKCoAUb4nGDLDvUhX0zA6SNg7GmpIyuqvAd/Rc2xQ+b64+OF3+TvcwNYc5GGujGHGLMeLzwk/yQh8CGFAPMXfA5+Ys64dQJzDmUy26TA6QTmEDiQrRbQUsKpp54atlXx7Te/+U1Q7oEzsSwkPRdWVvAklIW1IRfxKRd6QrmOD3l2hWIoYMAfvjOHuQiObwZES/7sh0ASPh/coZBUPnxw+y7UHGTFNViAYXnfA7wYnKXf+wsMVhBitnKEfA+XM620spGWVtJrl379a9Ys5u/BBx62pRLANmh/wD6HHm11s/9i6+o22QGTJbBXb7AmKQLGjhxu67RNoLRstHX2arVWK/bzXnnZlr70ok05/iSzwhHWV70ktt2gvk7bILRtoF2ODilXDCnbI0aOkkd2MXbijC1NVgyFYpTFPbNZPibpySeEOFsr2SSlgCwVinO0+iohSfbwpiVce+uJP1sdjKHMmTfI8mGBOGeYRohOY5dW6tK67UQJqgVNXZbfKIVCXYsVqx4TJ4yXT4pJ9uz8v+mYSq0EZsmqIFXCgSwQZDdheXKSOSIl17rammUVIcuF3jRZLKRbl4SxFjm6bFYeS6V8ePHtFTauONMOlIDWKguLjS2N8qMw2vKHK22LnFN2aq9hUDzgz0AKDh3zie+GcGlcZOXlartGiaw/csLWjkCERSRTZY2h9TYrEmwbJQQ2SCjOFczaBLuqTXXWrm0wBeOL7K/z5tt5v7zNbtnnQFupPv7sBZdKYdJn9dqSMbpcsA1SRWy1mnEYhJ/3cNBBXBBuYM4RIBACuWMGD4FnZd89V1N+VPBh/MNkROsUFUIg8PghIM23v/3t4HCKclhdhWlAAbGtxI0xR/kenzsXKxwoHFiZZSUXYYTtHTEBqFNDbL0EV3Q+2uaysT7Ec6GkXaekZGt7jLIOigZlvyXwjvw3bZIfEmWAOSlmoTBGMELUByUHbeR5YCDtYO8HxuM3dUWoJL4L55RBu954402ZpJ5vF3/u4lAP4o8Zg4f/XjFcW+Hxh4f/YJMnTQ4CIWUzDlH4VWrsjRs3NuRLP1BOVODb1jpS7vaGLFlfuXk6/Y/wxso5fcbeYMYMfYcndVaWEcwZW/hI+NENPwhtAEY4KqMPGHO0BVgRjzZE2+G/+YaSdkdCr6zICCnCIcFni36TLzB0hjcWQX2hf23aKkHd6APGKyt11Bm/KdT7xz/+cYAFPguABU7YiMtKIIo+jtsE9+GU9cADDxJa7RRDnytUPEzjpNuawSNB4aXTfDSuGXpcyiKEXuFx6hfaLlzapS1G7cLNWB9RBxQ+V1xxRRi7wBR/CuXl5aEvqDdjhv5gXNNn9AG4gD5DcMChHGOTlUlOu0DYpy8R9olDG2nPYAIA7wl+Dz/0J9p3/o478SiDfgaGBHAHZSCAALsZUl6ibOMdF8oF+oXxz5YMtuvQTr7RF4wv6gnOo420ZSu8tio26TsuBBzSkoZ6kobA3PTywovknyQEPoQQcFyIgpI5Bz4Af8A74M+Gd+AVAnOI+NBs5jV3cMsLL7wQTpuB1+A7lg+f+9znwslN+HdBsYgVFvliKQZu5NhpfEdgPYFikvL4TmDOMteZ99CY6PxmTsOvcE+GJAT+N0MgqXz4gPfuUEjKGdz3v3lbtQ7BzUPgpWNWDyggWL0vkiOtdvlRSO3qtnTtrT7utI9btYT7OU/PtkmL5UH+4MMtd0KFTPylgZblQ0qDHPp0aU9dVr6NlkPEjp4WmzSyyBauWm1jC/Jszp8etSkHHqKlMnlw1/YDltIy21usU+nbZQHRLmasSYL8+CYpGLQPu+aNhVar/bTTxSyL4gRLgVYJPY012iuv+qWKyMBoN0GcxLSWvv2G1YvJZSWcs+DzlP8YEZDxckg5TFYDMJAbZCqsjRy2sbfdppZPss5VGyytU+auBWlWMGa0tjR02ZN/nWVj99vdunLTraVJDiXF+MsBg4iLnKd1Nus4SgkJ6cPCMZjNYmQ7VFaKmPj1MgVfsn61rdSljRxWpPwKikfYBp32Qb6d8gvRJOeWHIGXJn8X0j3oEiMafG2IKdVeeS72zDd2NFvJyGIbNk1O1mQlkSpYoKnP7hYBzlBaOfFEGdQtYoeTyR6txKbkF1iOtqcUTii3cz55hh2194G23+GH2ajuFPvkOedaighpXf16K1P/9sh8Xhs8AuM7kGgOxbS/mzEJA81qBcQa5oAL+CO0Q9DZn3nBBRcEYg0RZ1UWJoGLtDDjMPt8Q0iH0XDmH4GdOmMSzXYF8sUigRVVmA8UHQjD8YILKty5KMefuQMDyj3qqKOCAMuqLuadrIw2NUnZJSGDepSUxBxZEZftFuJPtghBykL5xK5oXTBnf+yxx8LYRdgCTqTnTpuAUbQPvD7+jrr6czTfgc/EI5Ae2IFzvF1sS9h77+lWWqLyNqy3++57yM488/SwsjxMPgBGjYqZuWNdRPri4kK1tylsbyHt6DEjQz/CHMKcRfEZbYn+Hliv9+J3l8Yv2104oadWjlUnjI8JkQiMKB44hpKV67POOisIxCh3EJJRID0pxSTKpMMOPSQIt1gPIFBWVFQEIZr60QZgxhUNwC/WNnXsDgTy9VNFyIY8BeYAf04XAabeb4x1LhQVBOYG8woGm9U+lFWcuIA58X333Wfl5eXB2oMtBVxsv0BJQPtwlkjbu7RP7OCDDtF4GxEUZZSfISUxgblGeWnaAubN51laX32TxYhwGZY7b7/9VhirWFJgAg1swMeMaawuYNIZKwj4MOvgLywyUIigCKJ9zFMUJjfffHOwlkAgABegdCBPFAQEhA3iRuc16QmD3QfOD//td6xhmMuVoicoToCNB2+Db++gLyiftChwGBsoP7E2AZ4ElBeMIZQstJc6IawAA/qK9CgW+A18UV6QF3Odi7KOPvroIDi5EtPrk7wnIfBhgwC0C5wEnoQuMneYfzHcy2ktsa1izCXmFzwFeHHvvfcOoGJuY0HpuAF6yzZHrCKZs1hQPfjggzZ79uygbEAZcfjhhwc+AN4EZSJlghvAheQND4Pyk4vgtAF8wFxH6UEduaJ4KkRO/nkHBLxf3vEy8gMYJsOuCYGk8mHX7JdtrhXICkQanWRMSEdkiZCXI75tLnBgxAFz23+yoodYmiZkmyYhtzNTx1aB6KWAOELevUeLSXt+7sfsMZmdn3DqJ61o2h6y5G+xKikQ0rraLZ+VtKCAkNOyRp313ZVlZcNkFq2j0eb8402rnitHknJy11S/0XK1Z7wPoiKv7V0oEmpqw1GUneur7HU5TxMlsOE6frJdpuJNd9xuVWvWaheFTqGQI8o8bZvIUqWZCPh2yJGw3lMryU/1yJfDx/EjxweilCsrBwTThhoRBCkBuvU9R4QKg/H6xZVSYtRboRQBDVIMdGi1OlOWCk1tG62nsMBqdQzn8g3VpjVoKyosk1KF4x27rLahTfWSrwIpURpkSdAri4pCKThqqipt/mpZI3T02gHTJtiY8RN0XKZWiuXjIk9WEX3atrFJDi5HiIj1pUlhoDpol7x8bmgcwOjLSiNTMEGoatU2lFZtARnWLKeVsurolNKina0pcm7ZpbzW17Hnu1C+KESYVb9WKR8KJLhnjtTWClmW3HLf/TZ+t4lWttsUu//Oe+y3Egayhmfa1BETbcFblTZ9arlSxQg845Cx50ItYysRcVDV4wYf175SCZMPM4BgArOAkA1TATNOXIg7ASacOQDBJzizQX2Ii8CPo0aEKcwuIfgIB6ykkif58C7R/PH6hUL6y2FOUg4X5VP3c845Jwhv7JlHKCAOjAvCEULUCSccu8UMm7w49SJfp6kQ1IwgaABPLCQIylr10zaGr30tCIYIHAsXLgxOD2kreSIwUo6HKJ7gPf3k8PE4g909Dmk8P/IKDJQcplIXtn7c9OOb7Morrwz7YB3eVVUbAiw5BQVGbPNm+WMRXIEBZvUFw/ODkIUSxsuhDsDV8xisTu/lu+qaTTayrHgLE/j6gjeDb5Ff/OIXQcnAuOCYRla0sIa59NJLg+Dd1NhgnPCx2+RJYasOjCrjCoGQQP+6sotxFG1frP4xJW3sefv/1mu7GmMYAXvECAnZwmeZqjN+NTqlHGAcZmleS1cVAgqXMEf17umnn9HJFlPDKh6r9b/+9a+DkzUiokxBAcORs+T/ox/9KDhew7HmrFmztLo/0R7/85PqQzHT+ftrPGjbTBYWFrHxmSLLF/CR/O2Gd6Fw/Wlt7QxCNBYPf3z0ETHrh4WVQ5h04MRYILhAwFhBEOc3p6SgLKFuxOWOwgSFBKuM+OK45JJLgnICh3KMOVc8uCDC2OKZK4qjfM76nTpEx6DP9eg7lATgH7ecQeEJ3kGo4UKRQB3AR4wPvhGXMcWJImzxot3EoZ1YaXARaC/vSMNYQvFAOqfZ1BNhifdYSKAwRYHKe9J5u0NmyT9JCHwIIQDO9bnOM3OVwDxl3kDrwSNczBvmM/PW7z6vUX4Sl5NpUC7wHv4B5TR0FyUocVAEorhg7jFnmdvkBz8BDmBBY//99w/WENQDXoR6Ma+5c0UDdUqGoSGQCD6Os4fOIfllZ0HgnSN9Z9UiWe52QwAkCjPCBVPEZIRZgXFBUEg0+ZyR2b4KBDZTSV3lEM2FdzoiUavoHXKSuElIPXfMODFZdXKsKA/z48bYivqWIPSvaGyykw7az1LkAHHVi7MlxKfapIrx1rxmlbVqZZ6VuqrVK+2Ao2Za5aZmK8vPtXmzn7XR48YHS4cSbZ2AeKSLmc4UHLI6cC4pXwvNWTZVDu365AwBJ5epOp0iW9YAnNDQIxil9EjgRPkgrhw4ALu+dszwWuWPIcUmFA+39roape0WcZBVg+oHIUtvawpXptLlp2QFB5eUnSZGcAVbRlT+HntOsollw3Qs5du2smqNLW2UoCmIjC7VfsDRpbZ5eLM1tsqKQe9yVfeNbVq9kxPIEfLB0FS7xqqkeACCpfKv0C2/Fqt0vGVLVbVNLpFFgpQcCBZjikqsWgoXRBjvgXTBiroEWIiQlYoZra5eb22vvS7BpFDe5zu0bSO2r71F58Y3qS/Gjx1nuWL4l1fX2CbBpUBHhXZl5ti6mo32jxWVljai2Hp07GaTlAy/l7C198GH2YRJE2REUh76L0VbSHycMeYYf/THexF8dQBlA/myJxzLAYR2mHm2S0Cw2bcOM897mAoIPu9hIsLY0DN9zDt+kx9zhNVRmAcXGtjTjok9Cg6UG9saaL/DgHnoDA8MCGUec8wxYcUDIYF6cBEPeGHWCUMCg8IYzMzMDSu/+fmyoOmKKUsQ2EnT2xtzYMVvhDeEFoRHmCDfJoC5J8IHIaosGNgW6pgokN7z8PYBP1bJcTZZJ6XbIo1N9rsjFC5dtlQMXp5g1642NAWGLSsrtuoP8wYsME2FCRsrRdvaqtWhL3hPoI9pJ2XxLhFzkaj+ib7jbBUrB5QPMIcc+Yt/A1atGXuY17JSRd8Aa1a8EA4R+s4++2zbIKe4HPeIYvJCOdTEMzor0It10g2rXdSfdtAe+pvLA05e9cF/bvd99Zq1QQiHsfYTN1BS4U+DK3SzitGOB82ZhiCookzIkJLyWCmANm2sDXuYmQ+YCMNg43D1jDPOCEe30k7e4/xxtlb4br/99jCHqsRs9yhztqOtkfCP8oL2MW9oM8qzNvmB8LFO3zI3mbeYPzc3N9lUzVkUC8xHLvoCBQ59QR6MNYc9K4yPP/54+A5zz/d77703jHVgzZhnfgH7E044IcAeRQbjl3lIH7jwztjnd8D54P1BLu8Q4hG4Ry/eUSZ1JNDvWE0xD2kjihGUgsAEpQD4yfMCRrTRFQyMJ+rEvPa6kc5hQDmMQyxvCMQjLXkAV8Yk8KdsBCPazHvSJ0MSAh9mCDCPmA/MGeYfcx08wJwCD/KO38wvD8xH8D94g3kEjiI9gfkFHoPXAE+iiL3nnnuCjxdOzajUAgk4j/mJIoI7+A68RpngLvADPMtXvvKVgPeY18xfFNfUg/pQb/JJhiQE/jdCIEmZPuC9CmPGBdPjSBEmDoSKSShClO/TBQFjKsY3NK4guESBuHGDL6eFSAjBEuRZgVe6PgnBDVIe5OfnWXaeTiCQomQ4AogQ6iptafjS16+whQsW2eeu/De79rLP28WnnWyTRhfZ6pfm2H3332efPOZQ+XlIt1aZaU+dPk2MbKttrq22KRPGWHpOlq1fJgZflgUd+GvQyRS9yrddioZ0tbNAfha6ZB2QidJBTHca7RD3jRIC52zAQvsWRAzEnHdjwhpbBQtOGbV/BILRpZXlTCkrMrV619ZUZzoBU+0SUZGVQi4r0IozIqtQJ0Y02Tq9K5hUIRPt/WyTFBhLKlfYI089oaM1M618XLmVFWkrReVK+5OO/txXntona/UwV4qFjk3ttkEWDb0lwy2jrMgeVdufe/kVWUeYHXOQPKK3aquG6p4l3w6F2XIUqVMDZBJio3JlUbFqjbZI5GvrhY7YE6whVDCbWHWk9MhcV8cI9sohRNEwCe5SADVKGOyRIoU+ykrLkmPLApt+0BT5nEizN1evsWqdwFGs8bFR8Hrhhb/ZgjVVdtynTrfh48vt3j8+LkVJqp182mnWl64x1z90FFW5bTVZpg5OMCHyOxoQRmDUuSNYcbH6yYkJCERsr6AcGHsPKB48QOgZi/QnxNwZCIRLGAAumAUYCUzP8R/BKgYrFjAKicJQbaQsv1BswMTAfCCEcHwXTgxnzXpWbkbatGpbFRidHA0w8TnhGj9efk60LYd5mi9lG1sYCA0NsSM7WWW+9NLPh/n8dznaQ8gCLjBTtBU4UTdww2DB+2mo+nsa4gFDBCLaQ+AZRQLh2mu+K9P4fYMjQt7jQHH58pXCOxUSAquCkuLGG39uubLuYS8/dQPewP355+fY8SfMDP1DXtSFPAg+hsKPOH/Ij/51WA/EV/Q3MHCFFPEZTwhphKr1wie7VciZbGuoEw7G3CHoueeea8cdd1zIHyUW9SYtQiYMKQwq2wJ+8+vbgvIKnw+MG3As9Xeze5hY5iV14XKBMmBL4U9mic+UMJf0G/TUDS7T3O6StViOrKkIepQz3fAoq4a+IOCukKl+lZRoo/T6D1KEYJ3BfCBNo/AFeJ56U3+Y3D322kN9s8w4XpMxjqUA9INVO/oA5RAKLPoCODGmGIcI2SjmULDMlhJiydJlNmPmsbJ4+YkV6+jNem2tYz80Y3tUYYm23Gm8a5vNipWrQ7ltnR02528vBMeQwO8bX/+ajdOJR69rGwt9xBhmrAFrAuWyvQLB+vrrrw+WJ5TNHKU/cWKK5QCwRnk32JihPYyN6FzmHeOEy7/zTHu5eI7mxZhhDhPIBzhAP3jPnbawCoowwTvKYwxRJ/oawcUD5RHIh2dXXPCOdAPnK3E8DXE8kM7rgYUT9aY86k4dqH+0DZ5u4J34yZCEwPsFAWge/Chz2mkx8xpFKTjJFxe2t/zB5sZgeTEPBwbSOq8wMB/qxTtwp/PJ0bnp6cgTBSM4ioURfNSAP7HEgmdhaxpt9bQ+31EywAuw+HH33XeHOI5HoI0/+MEPgmPjgfUa2Iad/fv9rh/4CbiAZ70fvM3gPB9LPIP3CNAqcB+0y+k/+NtpAIogaLf/9vyS938uBP7njPznlp8sbQchAFJj4oHIQWZMKoKvwoD8McdEEUEAWTAhYYzdPDh82NE/weFDvyAaxNtYhjlaMU9P0RYAbb1ISUuX3NyjIzDTtXI+xU4So59bPNKWrlhm//2XWbZpfaVd/+UvWJV8I3zuqivtmbt+Z3tNnCDFgU55ELPZWdcciNXoklGyGui0Das369QG+THolYMeISeOl0tT+9KkZEAAT9fVp+fAXsnsu09wEgDE6IvJVH21YK/fcr4mR5CcGZqi2YBTSHFw+iBrCevWtVU0QExAcOdVn47I1NqsdTW32j7T97GSnmZ7u2a93fLsn3QcZbWN0ZGaZWLIK9est+HVm2182SibOmqiLBXqbVNHu6wXzHaX0FP3+jIbP+Yj1pjRZ/Mrl9i8JW+ZDr2wUu2FzxACzWiT4KGSCnrSZGWhIwmlKBgm6QM/CzCr0uVLubL1SudZ/0I99XeEHH22igjW1W+WLwxJLpIf0wT/XvlvaBOyzuzus5VS6MzV6vWhWi08SMqFH978M3ty7uv2te9eY4ccf5IVjB5n/37zf4ZtNAWF2rqhbDZvksWN8iotTCygx0bC9v2FgLASwBhmdRmhGkYGgo5w6Aw2BIrgTAZzAoIFjAgu9DkTAJPAcYIIizDvrFDglwHmwFdRIWwwTDsSqB9MCAIIyhLqxbGbOO9DcYLlAO9hWA44YJ9QFHFaWmL75TmqskVO+ZjHtGW0rGYIjY2tYcVdKib7whe+EBQmWFfAAMEMUeaO1j0UpD/gjKiQwrO/wz/AH//4J1kyTAg46OCDD9ZqthQfUuxVVFSEFR+UnyhfaDMCLubxMKR77bVnuDvOojzypp3cgUO0XK9P9O79yTvqRJ+Tjmcu+pf8nVlknMB8MK5apGwbI+F33YbaEBczfZRQCNDtcgS7SAI6e/IZazA+jC1wJhfl4FT2+JnH2ob168I58Zj/Y4GCszHiPvLII6GPEUypE/BAMcEYCwopKTcLi+Q0l7r3N4q7osqigHcIwYKJjv/kPe9wGJmenxVip6WnSBCfIsuDGrvwoo9KmZBqCxYuCjgSR6WPPzErKCHYewyjhcKotW2Z9SzSkb+iG9MO3s9+cuNNQahnrODBnX4qLy8PigqU2dSTO0fQAk+UF9AZjrq843d3hufjdIpRl5SaeTqhZ/KU3WzlqkrLloPbEVI8PDt7TjBTnjf/1ZDXy6/MtRtuuF4njMi3iY7iXL58RfB5wHgl4E8DRp4VfcyYKRemEisCFEFs78HfBgw6c+uJJ54I45x+Q+D3VcOQ2Tb8iY4vxh1tpDyUG4wVxg7vo3OJMcV2ChQ29CnfGM/4liAAL+ANzvlnBtoSbc8/s+xkWUkIDAYB5gUBfONj02m0C/iDpXuv3nmZQ+XHfN+RAJ4AP4AXofH4fCBP2ugXv+FZsMqChyENv7kuv/zygDfgz8GB8CHQcC4Ur+C6D3OAzoKHwaXgXfoTeIP7eead42lXZHFniyS0AX86OAMFHwNf0pKnj8EPM2x3dtuTyoed3QPvQfkwSzC0TCwCigie2ZuGc5zbbrstHL0HswQihFHjzpUIOcetHjJ6v9IhGi+8ghHSy3QJywjDudkyg9eqaIu2PrTIJDs/N98OPfIo2+fgQ+wvs5+xedIQTxxdbI9q9fa0iy+1effeZSP32t9eXyTrBllNZAqZp8oCIUNL7nWbanQ0ZLdN363cWjdLKNOqfp8uNipQJoqHjHSZ6womvZg9qJ29WkWUyiHUt08VhHHHR4LWIqV8iK2O9Sl/HToRLCO0pmXdOHAkz9DOWFNRRvAzKCVkVSAUaKvFiD704nO2uLfeegtybJgWm1PlwC5Nq5pnHnOslWXm63jMbNskBcAry96yBVoxnF+1zMaUjrR/2fMQe2LOM7Z8c41llo2wzDxp2rtlgSCB56Dpe9vav79ihRI+ilSJfJmIZ6fJuWa2zO9T2Fqjuuo9qoZU7v0Xkgpv0TTU1YhJF+wKCkstdzje7nFc1ibmX04rpaiY+/e5tvuhh9nlv7jclkoAPvETZ1matpv88Ne/sgNnHmc5UppYVo6tWrc+WJc0NbVbgXxvpMhnRKG2cQCL9zO4oIgQAgGBGP/85z8PGm+ERQ8ucDpx4rcTLeIgbPqWB1YbELQQihHIcCjId5QNLuQzf3jHHNnRQBko+1jNQGFCGVhX1NZuDCeV0C5MN1nRhUnjlIhWbcnJ01ior2+WQJUvgRnT6rGhKpwqgLUDAnV5xQQ7TQojFCkI9rxDMEIIiyogfL6TATDa1nkfbf/ANIAGp6ysWL/22htBcIT5Itx000/lj+KKIIDjfwKLAgg+2xYQ5Fmdr6gol8/YrXvYYTAow/EY+bybQFqYEi4PlOUrIrQFWMMoEsCHBfJrAszwdYBQzTsUD/fe92DIB4Ey1iexfCmDlRXGZYe2vew+ZbfQpzg6ZHzdcMMNW7yoI0DTJ8RFQCWtM6GsjOF7YcbxJ6pDYltwvO5UX6BS/Bg+B86aqqAxBeEo3TE4q62t13aRQimtDgyKhznPv6zjLw8R4zVfbdaxwk3N2lL0htqRLuG4SML8+jCe8YsQ+mL+AvvWt/7VDjrwgGCVwvgDXowbPMFTb2DDsaoI/gSsa/B5wXjmWMlf3vbrMIcYbx+Zult4vuOOO8IKIHk88MAD4RnFGFZ4M2ccbWvXbQgKvuraTUFop1/ID8UHzCLHmAJjTJrpL2CHhQnbQSiHQL1QsIMPoH30kQfmfVDuKD/GZrxAnxCoQ3T88BsmlT6kXmy5YRw5M8x3lFIEYAnDS13JI1qXEOGf8IdyvS1+/ycUmywiCYG4EGAeMh7B7cwP7tBmAvM0iqvjZrSLfgQPRQP4AdxAu6LzEIUkF22GvgED8MoXv/jFgFPAZfA18AUo8Dk6mPgf9oByAXwaVf5GYYJyGIsz6AV0na15LAKw/QWczMISdA06Di4nL+DPOKQvGJPJsHMgkHaNws4pOlnqewEBJhBIjkkEE4RgA1JjNbWioiJoT1nlveiii4KWEOSIUMX9PZl4gSHub4n4uBgr53cRnY6YmXGaBGixR4GB3lxXLwFWfgXk7ZxtDueec7ZOl6i1u+991NpbNgeFwr989iL76Q032vCiUuuWiUKbVgmHFRTacDlyXLd2jTXK6eOeu0+xFuWlQwAtRci8T7DoBR56RvBPZ2keiwddvTp2M9z7FRApcO9i8tvx46BoKSIWqbogi3iP71I+3ANxFLKi7sCZfzS5VxJAH8dlFuloPZX3wqrXpBjIsNPPPt2OOeJQmzxylI1XfScVFukkjg7rbJCSpK/bRmh7RXHJMJXZZU06WnTOG4ttN61+lkmwfHnJCqtsbLODp022jx09w0Zl6DjNVettVGqmlcg5ZJ7qkc52D61qdqbL2kX5qVJaGeXSe9okBU+fnrl69cyWjtTsXMuWU8le1a9Jgmu7rDYy8wstb8xYK9pjuu2vI+r+8rcX7UvX3mDppYV2/S232mGnn2G96pt6bd3IkMn8d793vWCvfdk67ePQAw/SsaY6hSIfmwwF73Se3+PgjAt+GVgVwBwclMUKAuduQ0QIjH0u4jtzQ98xPxCoGO/ccRAIc3DXXXcFInTZZZeFLQMQLpQEzAnSQagQNrZXEHYwUD7CEUIoAhwKCAQi/Fawf33y5N0UNSU4iET4HT9+XBAcSYPD0Axt21F1Va/cUBf27H/rW98KRwouX75MAtqtwYKA1XrmPavurABDrKk7F+0FJlw8c21rIC4wJYTx3//Mb7IZKZ8qqZrbrOizGs1qP1svIP6HHXZE6CsEeoR7cBPMKHU65RSt1GerbSGf2Gozfck3+nFbA/3q7fI0Xl9+kyeMCX1JPIRc7vTzIvkGmKR6//nPTwSnistlkfG4Vks6JbgzHli1Q+gkPReKA/qOFS7KzdZ4evS/H1HbJwWBHIUWMLhDwjer9yhcSENfcgFLYIDyi/FbXy/nZsIRTbLAaFffBZyjuqVKWcCJEUC9ubVbp0Jo+4x8Nwg0YX7zYbP85SzRFoj11To6TmP1bVlp3C9Bf8LEclsmZqxG+Y8Q84ovhuES2Der3DfUJxNUr4nl5SHud6+91uqFg1avXhUcasJIs2JUUVER4EWdUWQznlCWMH9ow+c///nQnqeeedrukc+F/aTMOPXUj8uCpDooGzYKZulKi2IKuBdrXLMKhZ+PVjlSLZ8wTkdyttqSxYvsQW2vmyHFxMsvvxzm5sUXXxz6CJoFjGHOeccWC8Y2daBe9CHzBWaS+Uq9mGtc9D/zN2pRw1gYLBCXNPQvefjY4z3lM6cYM4xhV0CQLzBhjFAOTC7xaSt5MYa5CLyPFxJ9j5eWb8CBQD6Uyd2f/X2IkPyThMBOgABzlcAcITBXXTnH/OK3j9ntuYdM4/whzx0JidIz3wmOf1yoZV7yDkWu4wXayxwFx3AHDi+88IKVCx+juEaIvummm8JiAnEQmBOVn+j7jrR9V0gLfgUWwBNYA0t4COgSFiTwVViNwO9cffXV9stf/jL4bEIp/dRTTwWFNycfobR2/MgdfE+e0JNk2DkQ2HYub+fUL1lqAggwMUF4IHEP/owZOQza/Pnzw8TDoY0zWR53R+9YEcRCjFnm2V+B9jNTxSh2IiDIsaMcGaRI8O3W73ad2NDY2mjNXfVi8tqtTkdRTpwy0urFS33/1t/a//1/F9n1s16whXLk0wODvPB1W7W5wQqLi2yiLB7WywHlmlXLdNKFVk6lPQCxd4GgdMeRW4+2KXR3S/DSP35Tzz7xgzFWDYsBvuibEBEWFQKQvkmxoDxwosbqoiR6/ZdSQgQsqB9iklJAWqgg2JSxeO0S2+eQw+2M1OOsUadjDJOwv/ofr8mnQppNE6Nfs3KppUmJ0SsmNl3WELvLkeZh46daVcNG7bteYVPHTrXHZB49b80q229csR0yU44JdTJH09r1tmjDJhsv+BVK8ZALEZUlRm+ajuTUtTm1x1qEjLWpRf9UMaw01AaAH1ZJ1RZtRLGSibIOkYlzpY4R7NBKq6QCyx5eqksKKCkS9j/tFPvejT+y3z092w7cd0/7jlYdd9Pe9T4JlI1SPKTJ38AqnR6yr7Tx7XIM+qtf3mJf/uJl2gqivCRIBOcUdPr7FGBeIBAI7jD7mGUj1LA6QEAggLA4cwMxhqgwL3iGKCHYsB/6+eefD2aRnGKAEMn+dayDmC9YPbANwok5ebAawbsdCTAgBAQvhE7mIAIq1kesLFdI0MP8H8YDR3mHHXZoIK4jdNpLk/br4+th3rzXpMHfVxYNVcH64f777w/zGgUGgXYBB1aXaQcwg5mBSFOu1yFE7v/j77y90W/RZ48HwfbgMA5NE4xje1pTg/UGDkBxTAhzcIeEcEzn6asDDthfJ4ssDO2HiVi6dKXaXq7hGMNbnme0HOLRj/FC9LszKNy5qDu4kfEBLFA4wKzA0JA3/Y4gfdfd91iXmBH8JuB48h+vLQzOw2gXK/HEJaC0ZTxwHCfl9mqrAXnPnDkz4Ndbb701nGpCH7B6P2OGFIgSUlFisPWisrIy9A3KC/Lp0BY0BPWM7JxQN8Y5DGmu6ooiIFdbF1oER+qrtbRQBxQRbLPqFBPWqnhdYm6rJRgDt0OkmHtFygPqyYXQ/Gn5X2CcsdXlJI2XY446xJ6eNUeWHfdZqZw0lhYND4I1baReWEUQ6D/aH8oWHNmKhCKFO+ETn/iEFMNF9vP/utW+9dWv2GN/ftzweYFgzjYM2gHtmT17dmCmjz/xBG0zm2w3/uTmYP0C7CeL6V5buTL4kGB1ii0uWDhwxzKG8cNchwl3xRX9ikKA8e1+TcD9XHwjX5/7oaIJ/kAPYWgZK8CQZ94xn9wag7bQLpSTDhMfr8DHA3lQD8YcIdHc8nQ7eqccv/6Z5e5ovZPpPxwQYE4wt7iYu46bo3PngwoJpyPgHOiuK1u8Pb7txH9zd1zFnMXBNbiGZ/z0YPkAHkZ5Da0qF478MAen4cCZ8QON9HEDHMHJ3/jGN8IiK4oelORYS+DIk626KCiAJfnwHbrId/JIKh527shKWj7sXPi/J6U7AwXjxYSCyQbBw3TCND399NPBEgLGkglMfJAkzyC9HQlB+YBcHDIRExSTtWJZikmmTjDLrRKwWKFrkwNF/DBwJFyPLB9SM7q0/aDUjjr2KMvNG2ZPPfOsjorMsYcf/bN8PDTZyNFjZTY1Xac2lNrGGp0kUb/Jiobn2TA552sS0h6RI0eNctYQY76kgVbJPHPcJJYM3bJ6UEPZi6GypGWXAzft/5DyAQWEPuk3q3TpEspRMfRKUUASVm8zterMPU1m0RkSxtO1IqlcFE8JVRAiSXVLg2VpG0Kj6pbS3GSptXXWvHyF5TbpPHkJITlSuoySIDlieLaUMDoKVJYdqTotI0OIMLWhyZa+vsj+z6f/j51+6kfF+HbYMgmg2BOM1IkHfRtlVt2nc6GlNclQpXp7dURdqsypMyW0pMtyoq9Dx4SqPvrWoyr1yPKhW23tUvs7dXWp3pmyVsB6obFT+7yHj7CisRMsU6uta6QkeUXbPx56dpa9KqHoixIgrv3FL83y8m2dtrLk6ISLPm1xAYar12+w1+f/I5xSsuDVV+yq/7gqjJ9u2quxJoDH+vt9+MsKMQoEiAWrjxzlCIFGyMUsEaLCWHaCRBUY+9GxjaCC0M+xmggPECvSIGDhhwClAHkiWCH0MX4gbMRB8NiRALNFHtST+XjNNdcEgTW27WCSBK89Jax0BaaM79Om7RHKxyogKytDczVmudEu65kxY8p00sBdQZmC0Pvb3/5GK+Zt/Ud1nhDmOAwMyg0UNVGzTcr3QPui8PH3g92BZWxuvbOPyY9rwYI3peCAUVojBdExqv/uWnF4JihBMNcH/2BdghCOAAxDgJKEUFqq/cD92VIG8PaygD+w4128QHwPPLvwSTouHxeUCwMDs0K/o+h5+eW59jMdJXnIIYfaD7RdAgXVQw/9ISimMN/Er8Fhhx0WlAcwLQSUVjnZWRozNcqnxU6UoL1ePh/4Tn3xSYCVDltN2HJQXl4erEJQYjAO6GMEXOIXC6fh+4CtZKnCM11d3UER1dzcorxZ3YmZLMfakS5dX4yBwhqGvDpkVVao+V1eXhG2VDB+yRvFxgZZIXBH+YMSgKuubrO2uD1v3/ve92yVnFT+UG2+5qor7emnngw+R1BqARvqDixQiNF/KFOgGcAOJQrbeqAzKLcvuPAC+/WddwWBn7i0Heuin/3sZ2G+4R+D8vBz8rP//HmYV5XCN9SnXWWt1nO36kx+bH9CoXCHlA4oG2DoSc/cRXkEHGDmoW+MD+Yy45g+5xswccUDfUGdeZcoEIc8yYNA2cCNtrrCgbnkZVMmY4kyqAe/uUhPO7wOvEsUouM3UdzBvlM+eXgdePY8mZ/+PFja5LskBN5vCEA/nD9F+IOWM09Q0DFXdvWQaP4w18E/xAMnINgi8IJHaTfz0vGE4wXiBr5Y3xzHQFeAC0c6g9fgdaDhiUKi+iVKv6t/B3bQcHA08KG98Gv4yIKfO+uss4IDb2B+3XXXiX4/FPg7LGSBPYsvBPhIz4d+At8nw86FQIoI1FaudOfWJVn6dkIAhOeIzZktED2Xr7IxETGp9RUshBcnBttZbBD0JRIrOX4QxAAxkqRoCMHvsV/WLm/y2TK9QwnRJwSSJ98Ire1N1plaZ3lCLlW1OqIsv9gKc8Tcp2fbjEOOtJpllXbSoYfYiQcdYEdP282aVy21RX9/ztIlwI8qyLY0jnFrlca5T9YVGsbd8sGA6TJF4+cgPVPCW5dMuUUceObeJwGdON1atYRxyxFSC6dzqJ7dEgK7RBQ5ESND6TOlkOBoSpGW4K8CCwi8voG8OAmjNUWMp07naBLiq1642Cryi2xKmfblKw42FjVrV1hdj5Qu2maRofZy4kRHi5QSskDAB0RWbpHVdMoTvxQN3SPyrU/OBWtam6yudqONkNJhN8Ejc8NmK5X1g9yKWqu1WUNejzUXplptjvLqbLPRHamWJy0IJ4tgrdCjq1fxe3R16+rLyNa2i3zL1vGZadl51tbdY+uqa23l6jW2XBYlb0l5cteTT9gICcG1VTrLelKFtau9C1ZW2uSKcnnEkNf5hkb7qvZ5t0nZ8/zTT1mnmHNhdrxISZEjuwue36cAAYdQoEBAq41PARgaVgUY6whbjO2o0OnMAFUiDZpv9lN+7GMfC86H6D/i4H/hwgsvDDVHMEbgYi5B5JhPlLujxN3rjwBHnlholEsgnTFjhvwD/NCydKTpG2+8GfbVozRg5Zf6QigRzuvqGqVEKND3dWJGxohhi+2BJ5+//e0Fm/+PefLrMtdOPPHEsEqMefpjjz0W9sfTTsoExQMzR/W0CZhx93dDdR95OHyjcZg7vVIiMk8IHKtZIEsarBsQItlrCROFsI3yAWETRgJm64ILLghwLi4usrrNGuvyHeKMKPkSuMOgItDGC9QvXgDuCJII25R9zjnnBNNMlE0vSfmwWAq4OinbYGSAPcdmYt4PM8NYAD7U3fEmzznZGbZJ2184LWJYXo5tFGODVQAr9ATGJlsF2HoCU8kpKhzfiWILwZ28wb9FJVIW4PVWSk3ay3twMnCi34AJ5aO4QQjnPe0JChApX9fImW3IR05ff3fXg+GZeAjKOJnE0RZMGgwt/c+WH45DZYvM6aefbp899wzrlAVaa3OjVUoJALOLd3aUCr/73e+Cs0dOrqBezAXfQgIjR9xiKTue1IktR8jBKRZEpOHoS4R0xhZteFPKiOPkyJZ2AzvgjFPOhx9+2N6WU7UH773HntB4pa4I+lwoP5iDzBG3EvI+xhqJ9jOvgCe/wQPMB+YM85oAPLnIJ17w+e3jjXxdcGD8VVRUbJknPleYD7SNslCK8DxUOZ5mqDp4+UN9T5Q+iv+ieZGOi7omQxICuwIEnB5RF3yRgWeZdzsSEo3vRPk7vhiqDtE5NVSc6Hufr/HSMWfBx07zoEtYQoJLwLUoHlDCgodQ1sQL8cqJl+69+ubtfa/yG5gP7aMM+AiccLJNBTkGegK84NtQbH/ta18LSaFR0AzkHuALPQWnkw+0hcCYoN+hpfAoybBzIBDfpnXn1ClZ6ruAgAtLMGBMUhhUJh2MmSMuVtlgtkFwBCYkTKubqr+L4oaI2q9wGORrhxBoVp4YQ5nvS6a1DDHsjrDatLKXlqMTI6S0yM0plCmxFAD6jUPG71/9Xe1dXmGz5s0VE/+6dZ11up14/NE2PaPXXvvrLFvb1mqlEqzTsT+geDFZKBbCFgohmmD5IKawr0dO7GTpkCbP6plSQKCYSNVJD9aBMKZ923J4B3sGMdD5lEFvkCIriUzFRzHRJQEf64dUaVZga6l7mp57tc0hVVddbbXqnm1TdCrHmLQca5aw2ynBpGjsaMuVxULByNFW094gHwntMlOWA0OtWjZqG0NnS5tJ12DZsv7o1NGcm1dWW4MsG/LLSmw/Ic5UKVYa1qy1QjWvWUoQVclarMOa6WNUEVIypKZmhe0h3TLhkMFxuLplBaK1VDnLlOJEz6kSbsvGjbcsWT0sX7vOXnx1vq3Rqm2JxkKFFDs//K9btHVCpsMCfoHesVUDdmCChAva26ytFqOHa7UCJlYrvoRn5Rxxb62wl4pAvt8Bxh7izNYJxizEGUYfooFAhIAAwWFME5exjsAKgWEu8Ex6iBREC2YFovOfWvFmBR5hE8EJYuXKBggT8bh8rG5vO8mT/esIthBQhDmO2nzxxReDcIsfk83yB8LFCQHzX5OFiYYnDMhJ8sXRI6uWBinuGM//cbWsJvAPIqGPFXa+0WZ8C7CyTxkEd8QJbPgO4fXL28HvWPC7f3nnXcNNYbA4MAX4RumxypWrQv7ZGh/nn39eUEJ0dLTb2WefFeD8k5/8OJjef+5znwuCKcoSTE1zcrOtROO9rXNUaBP9Sr+FuqlIjtnFOileSFOaru7YPlAX3rnDuMHkgQcRVk+W4umBBx+QEjLT7n/owdDXwzSun9Kq/+/uuD2MhbpNG8NcbpWCsFP1r1y5IpZeMB8+LFdzUNYZ6agisYySAlX9hQKGsQhjA9NDeRUVFXbnnXeGMcl2gmtk7YI1wBlnnBG2K7iSAse7mxqaBd60MI47xUzhr6ZX9Wb7WKqAz7YDfNkUaVwDF97F4sjEX/07THWY9cxflabT9pz2kVAH3h2p7TvV66rs6MMPsD899nSwfrtVCjjC96/7rn3qkx/TCtJGuY9J3SL0sw2JlSTKOUEKg69+9auBcaNdwJI73xibCPqpGltX/vu/6ahSKYaFy6/SdpsfXf89+aGoCQ5RsdsGuecAAEAASURBVJw4RXAgnTPTMIzMiX1kVcJpISlqJw5Tmbf4dKHffPyCk6FZjBXmMWWSHlrHxXzCt1E0MF+pI3OYK9H8ZbwxXqgjOIT44BmUK9BRcAj5MI88UC/KINAW0iBY8T7QEb2nrsmQhMCHHQLgCugVgWfoLI6eOToX5QOnJe1IAA/EC4nmf7y079U3cBb4IooTwCkeXMEO7nAFLN/AibtC/b2eO+MO74YFJY6O8SeFo20CCxxs84MvBE8ztsDBjC+HG9vmUIQj5zj+dgU678D9ybDzILCVou68OiRLjgOBRMjHERdZgOCYiISoRhgTbxgszGpZ3YU5JqARjKYPLwf8cSZrwOvwE/aLbQiEwIrxJzzo3m9Pk6WVwRBi0bS/eeuQKyouCxYLjRIGuzt1kgPCpNIN00ro+ZdeaMcef6T96qc3yzlint35zOO2tm69nfeJU22SlA7PPPrftlZ74kd39dr0sWVWpdXNmppqydHs5YqdGNDY2CCzdpmxqzIIRlg1tElpgVKmpEQWC3JamS+Lg64eeWCWENWnoy4y21OtTWbPbe3SmHaw6lkUBHDM3jOkhAiWDwh1EozK5Juhvmq9FAsSFNKzrEnIL61A3o8lEDXLCiNT7evQvSCvzDqVVAd9yFJApuBjJgeiUq18OruabaRMp/ELUSEnnO3d8n/x1usiQmWWnSFHlQJX2d4fsaq1a2yktkw0Vq2ypUuW2v5HHW5L3lxiTZ3ZNqxodMi3AcZcDjlHl8vPg4Sj5YLHsVrhrBUSfumNhTZr/jxbJoGkfOrudvy559hR2rctaUudqMpJ6cMaYa8QMj00XOmxAJmo1Wy67sxPfsK+esUV9oXLL7dTJETViCigfR4vszYEBsYbjDiB34zbgWML4uoIn/iMrXjji7zIB4KBU6H7tE8dqwCIDGVRDncINoI2Yxwhif5l5RfBhN8I+qTBCoI0eNGHePGOVWKE3nLBjOCCBuUijCTSjCeqP3lCAFESsvILcQQu1Bcng1laRWfv/SoR2H1lLTB79mx7WXveMS08XgJgcUmh0nYEh6K/uOWWsBce5cmZEhLXakywlYl5jODGqjchOvcdf0TfhUjRP/1zNfrKnzk1Rt0U5nOTlCD5UiLymxNl0tCIKbS1t6j8veRp+iFbt36tfeKTpwXLBxw9fe/67wbTxz88/JAcxuYFCw2sHT5+6ik6slUnekhwX7Jiqd12x2+DoMkYwZcF/US/A69hucOkoGgLgucIKdE0aqxTc5a+4t86KQBhcEdqPq7ZsM5+c/tvAsxRyowcK4ewmhewGZsa6+3o44+1yqo1Qbg87eOnapV9vhXrJAi8w7Q2N9nE8eOsYXNdONoRmO23z+FhjOE4FysHD/maN63qU6wfYGwY1870MOZQeNDvbENgCwcON9kyxMo/R6OigNiorU/NLdoakJUtPDXFHnjx72GMYB2FtQMWBpMkoG+q3mDNagfjplC4MEPwX7NyhVWUT7S3Fr6md9lWL0uIVCkvDz94XwnMgmtWWqj3Fz5/WXC8xXj65KdOtfPOOy8oqVoam23syJKArhkjXJioAn+eoRME6AntGioEazJ9HCYFZpjfanuJcNApHz0p5MO73VRP+or3wIb++Ij8P4CPcZSLJQaMOfON8kgD7H3MAksPbkbLb+YTcxjYexrmcnRO0hbmHsHnMnXgPYILSkmsYpw5BQ9wMaeI4/Q0ZND/x+vl7yjP0/s7v0fr4u/ezT1R+qGEL9IlSvtu6pGMm4TA9kAA/MeqNL6awOUoN1HGsxiGwAhuxAIR66wZM2YEPI6VI/iPeYaC0RW70Hou6ILjJOa28xnQDOY/FwE6CV7xuUB+g80JFIzgD/L2wPznQhH5bsLA/MEhrnTgmeC4wn9Tf54RiP3dtpb5buMPzHdgfQd+B1cSwN8D8R5lkx78Cx7mu8Oed6Sl7Sh2aTN8Gf0FnwYu9vbym7TkAT7DRx0LNPQHVouzxRNVyjKP8XOdtlZwEgi8Hem8f+HjovWjXtBfgsObZx83PL/bviVNMrx3ENgqCb53eSZz2oUgAKOHie3vf//7IIThKAxEAnJgcidCPomaIj548ND/IYZuh5JuxCBpmTczLd96g5CDMJMipDDC9j1oP5u+51RbvmKRtW6stcfuf8Cee3mBLdV2gBOPPMoqDjnaSiUwrHjuWVvX2S4/CNpmoVXUPDG45NKloyQzMtNszuvzbbwY91IxsKxapg3LtTZZLjQ11cviotvWSZjPzNJKulYshws55pQW2XCtZmrpUZJ4n9WurbK+wMjrm/Zmd0kJsUkEcePmTdYjob5s9HitvGoVMvhVkKd15Z0hawqZeMjqQHetDvNP7LF1y7Flt1YaO+UYo0nCVJeIZWG6YNAmj8g6daOjQfuUhYBB2jV11aqfzGalNFnTusnunP2KHXHYVBsvRr6wo1Ue66dY1apNErjGygIj2xq08rhZecgVhGXKlDtPx3hOGD3Grr7hh7ZwVaVtlG+AA4452q67+krbTyvq6ng5wYxtSeHIUQhJICaCXRrl6iL0aEW1TcR5xpFHqilywiiGoV33lSIKCLykgRkgOPGGkHuAIWCMQRiil4870scLxIPwoCxgnz5Exok5AjwCC4yKm2KzPxzzPAgbJ0BgafDb3/42ED5MPa+99trg5ImTJhByiQ+RohzqHWCgZ357OfHqty3fyN8ZpLPPPjvshw/CmISnBgmBnFKy8M03JIjnyylrdmDA5s1/1RYtWRyYsvUSPrFqgOC+NPfloP1ftWZ1GFusChdrZZ66RgU36kV/RPuCNvm1pd7xwS9Bkb25mVKWdCktMysW2tjyJOVDZxeKj72C+ftnPnNGYCr22mtPKRlOEKPRHIR7jmZ8+eWX5ENgmd144+uByVi06G37l4+fYjJA1QkwxXb8SScGZhEm9d4HYg412bqxau2a0D/MCZiTNFkv0c52WSbAVMCArJeS7e/Kn5UO+vOqa68JWx/uvPtu+/73v29f/9Y3Axww52dLQa7gjB+CDs2ZdavWCP/Iaa/yI38uLJlGjYz5/yiSIpRyMqRsjOK6LOqhy+HrcGX8RN/hNwIhGaUZWxLuVp1QorF96PjjT7DPnn+RVvbr7NvfvNK++c1vhrF75umfELP+pu1WUREYdCFrnQLUEi4sK9LEEGP1sFEKwL2mTxMz/5qd9ZnTw/zCvw9bcHKyhgdHjjBY06ftbhd+9rxgITN9+vQtzCK4KZySo5ZRfwL1j87JKEMX6/l3/g1xlUb7N2M4g2dFCVvUyFPznrHuzCsWVFzZEhBCf/YztY4byJ33XoehhGuvBX0TZS55D20jkCcChCsdokwwAgdbUpYtWxbwbXl5eZij9BVhoBIjvEz+SUIgCYF3BQG2oKE8gEajDGYvPtvRcEoMPmSOghOh8cxTrP04oherCGgad/ABeAB6Br0HB0IPUBqixHXh1+k1PAcBmss8JwzEb07rScMzecArM+/BJ7z3/EIGQ/xxPDXE5w/8a1cm0BDHy07ruMODEejHaFxg6soH+s3xOHTALbBJh1Kcfqev2FLBKWT0K4p3YAt/A+8H34alAzyQ9wt8FWUkwwcTAkmfD7t4vyVCbo5Uh2oGzrOIw6roFVq5/tKXvhSeQSQw7u+39i9+/cX09ldcBgwSvLXSrxXNVAnkCPpsJGht3mx9slb4w+/usgdvvz1sachGtm3vtAnDh9llnzrNalYsC0Rm8uRJli0iNVemWLXyIbH3XtOtSMx3tpQLa1avso72Npu2+0eE7PJD23Pk1K9Up0/IC6Z8UjTp+M4G7YHWCQ5a8ce4mitXq5K86+2S4KPfKVJIYCUBss3SEZbV9Y3SU0j5oPqkdMnaQcqULJlRp6mOCOsceSeDXC0hZlhucaHlS7mRJnPzdik+uiXwtEmx0qXycyQst0th0ifknCPi2iymOVPvuiQgrJagP2nq7rZcSHnxsqW2uKZXWzDM/us/vmR/e/Yly80epq0t+cE/Q7XasFzWDcur19sG9e9BM462qfvvq/sMmyyhMFOCaq/GA6d8pGgLSJr8a0hseIfQQZ95v0FQMJNkdRIzak6KYMWCFVyYCNcuQ1QQCl0QgChw8Q5YDRynEHsIlMcfavwSB2ENfw0IbBArxvCXv/zlkDfpUErgaPEenYyCaTsCB1YO1BNCBpPj+9TZl44GHnN2BFXmB3OAdsJ80G5XFFD2wHoPrGei78wzbyNMEUoR0lBehwg3sj/XXXfft2Xln/Ix24dBK584LnzPkP+OaRJkL7zwwiA0/ehHP7K777rTRktIHj9ubOgfFDMEYEuZwD1KnCnXL+IFZUIC5QNyHPkRMqXMUxZiQmJWU2y7WLZ8STiJg+0FCPYwIzgbZF8/xyRiJokZPW257bbbwpnb9OHNN9+s0yXW26fPPCM4gcW0EqURjAYwokzwE/UFHjCdjq8YU7QLhmbPj+xpc+fLd4PGAIIjfUt/0rfDcobZA394IFga4IOBcYwyCiejxLlFDhBPPflj1iyfJvymf8gTKwra4dYLjAMuAvUBri5Mh5cD/jCGiO/ziLikY/4wlmGwKsVso2QdNXJsUOyccsophqXIEUccrFWfP9rR8qNAH7Lyx0WbgQnbAUaPLtEzW8WkxGyul0JuxDtWAzlWGZ8KbHXA1wTMPFuLfHw4cw6cdzQwvgcLjj+4Ay+/PK7DhvcE4EX7/D3vgFmUoeXdwMDqJn3GRVrqQz7AnLSeP20GLzgM2GLy5JNPBgsPYItlldcR5haFKmOJOiRDEgJJCGwfBJif0CoU0JwsBJ5j7oHrodUch8i8xRqCuQYextQeRSG0mXkMzmQBjTnM3EZYhV6A41E4EwcawX1bQhRPuCBLOsfzjge2Na9tiberxnk3+A24AaPB4Mw3aCb5Oe9Bm+l/6IyngcdCGYEFBDwkDp3pS3wRQbPw4cMWUnAyi0Yol1A4cBEYA1x8RwkFvqdMvxzfh8jJP7s0BJLKh126e2IrUfGquC3IA/N4EDVOvUAGmDTBhMHAJ2Lu4pW9Ld9ASkMF2LouWQwEPxD6IXbdWrpkXq2VfaE5OXlMsXyt/GenyrGXGPB1S1fYgpfm2sP33G9vzn/NxunEjD3GjbQ0nRKB4FFSUmwlcmKHOa+wpASZg3RCRrXejbC3tcpVLWFndzHk8JMIMpj+LnlzofZTF0hJodVpIckMrYL2SbnA1osW+TvIkkUGK6StTc3yzt6m7SGxLRrpInSp6dp3LKEoQ1YOWWnaTiE/DLm6p8ihZHN9g23WiuZoWV00NDdZi5Qq6TLbTh8m55Lit5tlrcGqcaqcUDaJ0UXQ6ZCVQaYQc4E0utXS+Gbl5FquEOzrItRT95huTz/7rBWVltg4ebF//Im5dtWVl9vIknG2tmqDrZKzSNJsENHeLASfJ1iUyQ/F+ZddasO16iotAbbyYSWyQ0oOjiVNV70zpXzA+oR+8r6KPsMUcEoKKwgIkqwU4sUfoj1nzhzjeEE3+Ye5h9DAQBAwn3SiEV5E/rhwlohYML4pDwEKwREzaYgVwiiruATq++ijj4Y+Za/6HXfcEQQvznyuqKgIdaZeHH9IuQgq1B8mh+8QS5ga2giRDKvLuvObuPFCovkHTFyYoQzmHWkoY4WseDpRZGnMVUoYhdlCacKFxp9zq4EP5oaYGt4u0/1W1Yn5jOJnH1kcsEVgZFlpUCiSL+2jTNoBgXbh0OvJPfos/UHcoOhiKoBZTEjkmTyBmSsfhmv+INzCMKIAYnWL4xIpn/Zi6shqByvNWJsgFNNGxuP3b/xh8McwXA5Rb7n1lsCMAAfSYnKJmT3MCu9gWFhFY3xRPjBkTCKcg98YDzw/99xzNlummsAIppR+ZIyiFGGssA0HYXOBrCz22WPP4OCVPoIxoq7k5X3FHZhy5yLQJ8DX77xzmPJMfC7KAr8yVnkmb2DHnGLuLF68RH4PJmk/6xx76umn7ChZdDF+2d/KSRUwZ6+++pLKBV/FtqHQ9oKCmHkw23Hy8mN9TBpMnLF8oP0ocWDYYfqd8WNcAAvqxLim/lwDA3UlcB/sezS+M5y887Hld95FlV8ehzyJ43k7vLj7e68zaeIF4Ek+ntfAuPQZ/Up7fS7D3DI2GCv4TqFcxgl3xhjxuLuiYmCeyd9JCCQhsG0QgN/E4nDmzJnBIS2KaARNFgbAyeBiFK0sYqCUAC9ioQaeZ+sXW4XB//hmwnoCGoPywU34oevgDAJzlgvaQaBs5j/4DvzOxdwGt3gavg+Ga3jv/EzIbIg/ns8QnwMOHerbB+G9C/rQ28ECizrAF5hzOR4G74ObwbHAHboFrYCm04fgYCwdiA+dA0fzDrrHAhfWex7Iy3kz8gLm9A197bwm7/zydMn7rg2BpPJh1+6fhMgrEfKjeaziXHXVVcGTOUw8q4QgdBALyPv9DM7IDlYGvhiaVbd0HYGZKWsAYQ9tT0DtEFNEdPd1BvPidpmmp0lIKy2St1pZFdQseNPe/MfrctrYaJd95Wt2+J4V2loxTo4QnxcyMzt2xqE6JjPdCsXsH6uV/32OOjImeG+sFRJrt/nzXg2rkHtM2c1yxGenw3RKubBZSLFHFg75EvozhVBdCZGn3wV5+eEdVhFtOrEDmDYLfvinyM7OkfJBK82ygMDqgXu9FA+1IrATJPjXyJFdnU6x6FM7e7R63CJlSWuwcpA/BwmObdoSwd59TuhgD3y2yquXwIIzvwUL37Ava8/kbdICz3r27zZseKa2XFTYZz97gUym0+2JZ56zFavXBCdvaSKshVJOTJJgdcwJJ9khM2aYOGiWqW2TlC29quMw/U6Tfwqx+eEfawXaKRLGmfcVd3+GsLA/EyXCbAl0MAkI+hAVTCoZPwhyMArcEdxQpEDQITYenDBAbKLE3svxeAPvpMNZH5YNWD4geJPmz3/+c/iNIMf2ivLy8iCAM65hYlCwOaPCSvu//du/BcEWAQ1BGYYIrTpElTIQPMgX5gQCxzMEj+d4IdH8AwbkiQAKw1QpJQMrPqyCf+/679sFF11s13//B0FIow60E9gSFzjin8LrwmkFEF3aTr9c/sUvyOpFRJ8tACL81AVCDePEs8Pa6+j3aHu2RfkQhNy8GENXW7s59Hmefndru9HSZYu1heG6YFVA/WFGEPJhKIEfygHMJcE1KBIYH6x+AY/lK1doa1KGffGKL2k8fzY4j8IJ6PPPPx8EP+AGvkIw5M5FO2kjz5R3wXkX2HxtraJfYTZfffXVkA9whzHBUgCrGZQeMLqslGHai2Js2tTdtygJUQwAN9JgJQZjQ7lDBfqE4LDmGfjynnpx8cxFX8GI0Xe0iTlDugZZXPxjvvBYZ5edeeaZQSlDO9huQt+h6KO+KG4Yh8w9YMg8o12dwiGvzHtZjlRfCcoqxj7txsoDfI91D/EJ9AXlkw8wJAAvGHlvi9eXb/6OesQLtIvg4427X7x3WPh9YFx+Uxbf/RtzMlG5IXL/H9IyJijXmWTaywWcXeGHwpkxAFzBZ+As4Oh9DQNMXegfn7fRcpLPSQgkIbB9EGDOYT1JwNkk29BQUIPrwHnQdbaoQQeYrygdsExi28W//uu/BsUtcxXFBLQTPApuA6cxVwngNccd4ILBAviA+Fw8gw9JAw7ht+dBWvDBjtJ/x6OD1eWD8G4gHIERl7fLaQm/ofHgXJ6d94CPQdFLX+PLgW2V0B1oIvAF19KXLCSgcMDJMTSFU5dQxMO7EQdaDN/odIT8uZxuAEuvq98/CPD9MNcxqXzYxXvfJ/lQ1Uw00VhhBGnDnMGcYhqNp38QPUwXEzteSJR/vLR8i1d/iXziTiUssd1CjhlT0uVVXKvxCMa+ICtUZyIpEpBlTcDxdtr8kCnHjJLMrblqrf3+kfutpbkhIKe/zv6LLV602Nq1jWF9TbMdc/je9pe/L7Cxxek2SqbUe+05XYLnYcFZHs4pi6RQOGyvfaxPCLNaSG6thHi2VIyR8DGypDQcI9ihLRc4muySf4RmIU2UFBy/2drcYk3a0547LOaFvY/6aAtGmkyhc3WMZo/g3Sjrh5y8XKvVkZb1rRL+01OttafLNjVpe0ePzqSQwmXZqhXBA39NbauNGVsYNP7dUnCMkBO8anmN5xjAGcfOlID9su0u0/bdPzJNyoBFQXEwW04VTzj1FEuXsmK8iPm06XvaWDmoyysYLiWD9i7nSniCqZf1hshBUHg0qz3SjciqIsfys+QFmC9xlA8QCl8BxAyO8YQpN9sZ2KuJoIwFAeOJLQGsZrBqD1GqqKgYcngwLrgSjS+Iy7Oy+ECYRSgsl5KB1V1WehEgYA4QxlgZQYC7RU4ZscZAiETJhuB5pPxVsBIMITvuuOMC4wGBY+wzB6gDhA0mJKoYIU7092CN2Zb6RwUpCPATTzwRGLC999nX7rnvfrtX18EHHxwEYswOsexAYKcNWG88If8UF8iUHvhCqCHcbCW5+KILgz+TXo0lGIJoO3gGvi6MDVZ33m2L8gH/DjlyaEhA+cARoITKyjV2+hmflqIkdqQmjsVoB+WywoHwi9UMigbMK6k7iiIYTnwuPKGTJha89aYsgDrtaCkdpkyZErZnwKCw9YHLrQBgTmBAsAIBniiW6B/GAsowymM8gOcQMmFM8ZMBMzuqdJTN+ducAB8Ezp/85CeBsZkwbrwxb5nLlEWgHMYueVBf+h9YRvuQeMDbGR8fAw5zZ5CAAyt8MNoEGGXmEwyZM23hg+bfs8/ODitBOAdGMcIcuvxLl9uemtNYdblfFRg26sbYaGpmK0pTsPhiDrLNBe/xlMM4Yv5RHnifcQC8qJu3hTbQRupJ4O5XeKE/Htd/D7yTH+0eeA2MR77E9bL8O/D1MqPfHaaM9USBdnGRhvheZ/IDVsxzhBuc0AJXrKgYByj3gBU4gGcYZ8cBpHPBJFH5ye9JCCQhMDgEwFvQPPAagYUBFL3gK5xMMs+gCVzQa1a+4VfB5+AtFA8nn3xyoP0oI1gwYC5j1QUdxXKJMpjT8CXQCBTg0BxoxUC6GI8eIjwTojwxOCRecFwzVJyB+G6oeDvrfaL6efuIBywG8kPwfyiwoWfgTxaqsF7BqoG+Bt4sFNCX9A30CBpNfBRA0Gx4HY7jhvbyzvlNxkjUPwRjxfk14tJPiervdGRnwTdZ7tAQSCofhobNLvFlRycXCIGJDmKFCYZpZ28xpk1MbJi2eCEeso6Xzr/Fq3/sUEc5jNERl91CSN0gOLSZXMpAcryEWzlVlPPEnFT5XhCjWFdda2UjSmQpwaqkIqT22D+0+odg2i0hZoO2VszX6udb2qrwxS9cZn/646N6XiilxNtiTk0m6mViTlOsXubq7VIkFMrvwd4fmRYElUli1idXTLKC8RPguk2SvywsXtNpF1ql1fGfmI1zyoP8RRrbLrol9DXLoiE4pZOCorWxScJ8ihVrC0emBH4EhWESNBqlpOhWojT5mGjQkRdV1RusQ2nz5LMCS4Thsp548sm/irCOFSIvsPXrNkhA218rAm+IEE9QmbUSMErVVz0iyusDgj74wIPti1//ihVXSLGkqqarHXlSpmTJCiNFdZP+QvBjJTBTJwVoFbBTJ0Tkylmd6umhQyuuuVp5FhLYIgDwjT7zfgPhs+KKhQFmj4wZnCYi/CIMQwBYTUSIQfhHSQCRgnGHUWB8IRAMFCIgQK4Q8/oMdqd8iFi5lA7khxB7ww03bNlKgZAFgWT1BCKIpQAEDWUISgkEWo7yQ1lCf/AOJgcLA4R82kT6oca5w2GwuvEuEXEjvcOA+AjkKEEguCOKim2jrGLuuPOeAF8IOwIzChwEanwDYDaP08Sa6nV2269v30KYae/55/2/4PPBNQi0gzy4nGmIMk/UdWB9t0X50N7erf5kdUgnRmyKKR82b26SYuQWWeM8LdzSYgcccEAYD5SLM08sHLAwYNwAc8YDZSNIw1gypiSK2ndkNTFbzApMBcwGviOwqEFpwfYMFBUwGjAwCPIwJ8QDjowNBHUEcQL5Y+Hwla98JTzfoe03jBdwA+OUuhxx2BEhbovm4dtakcH6AQUj45rx6OOUvMGbDj/aFYWdzxFnxvjGxXvScPFMHgSYLvIkPsy3v583b77aGjtZor29MzDOMF952qLVIy0h3uBRVtBm7uTBWEZZAk7/9Kc/ZeVyQouFBHDy+sN0w4ADZw/UCTgDQ/oDZjAavE3cPfg48t8D79G4Dh+/D4zLb4/vZTn8/BvvXbFDfcEr8UI0PfFoG3k4fBFqyI+xg5CCUooxAZyAH3AALwAL7zdwAUqKwWAUry7Jb0kIJCEwOASgeeAsF1ZR+jHvogoC8D64gznMSjk4mwu6D878uY4KBu+zko7igmMWwXngCGgF8xp6Tlnk5QoIcAG8AQpG8DxxoEPMefhh+AUPjvfBD47D/dv23BPhz+3J871MQxvjBfArcZw2enuQK6BpLEaxXcK3OsKr0YfQXOCMIsiVuvQTyiUsPzn1hP6AbjmN8jLg6eAR4Cn4TiBtlF6B48Hn0H6eBwu89/oO9j35budCIKl82LnwT1j6UBPLE8Zj9DwOCICJjhDECjBMFavYMPpM+HjBmdl4ceJ9i1d/nf2gEx/q5fNBArGEdYkPEkhSZeuA8oFNGdIW6Ll28yZLS0m30sJi/dKqY5cEeX3rFlPZ1aej2+Q/YcRwHUkogSJDjGO2BPHly5faFJn5NTc12soVy61y5XIpJebZ0089bWulOR8pR32jRQzzFH+YLAdAkDCc5IuCIkdCfLuI4+tSPmSLeEn0CA4kQZSTyisCEcvUNop77rtLTgHHW5mUA1gQ4CizrFjKESFLmFsIZLasHyqm7mbT99nbSkbLR4UEfnw3jJWA9qpWeQtEWH8ogXpk2Sg5xewIwvwxR82Q6dls++hJJ2v1cy8JSm8H5JspZUJZ2cggZL0w7yU794pL5WiyNzgv7FH/Zqr8LPlxgKS0Ky9gmputfZH6R0CQ5DhNjh4VXQn6G/7QT95X0Wf634V10gMn3s2aNSusQGAGibYbgo9Aj2IL6xqIPYQcwgTjANHngpnwwHgcKDz4N78zdhEeMLVE6QFBu0NCJQIYTANWEQhrjGfKweye7RkoKEgHc0F9EYAJ0bYg0CLQMYd8HtF25gS/Secw8foMvHu6ge/9N+kph/FAnWG2GBfUfZROI7nxxz8xLCBQbFFXhGlWibB4ID6ME0pD9soCK7aL0L4TT5gZerRdgjPbLqJwpEyvl89vfvu7rc8aE4PTba++2s+2raYw9uhPmAH6gFXkz3/+Eim4urXa/p3gk4LjJBFuEd7YPgHhB8dw97JpH22H+WSrEeP0xbkvhfF0uxzKMr7ATwiJMDbAjQvhEfg4s0nfEg8FB2VQHswtjAvMK/0KHGB2GXf0+yn/coqt01GcjJdsWSetEF6YMmlymOeszEQDfRQdq9Fx4G0hfhTWnp53LsgyhmCSgAFzwgPt5B3fe6VlRSFK6JIlRkZGuhjnmGkq/c83lLAlJbEjJ2trOX4udioDeTPuCcAUmNAH1N3rCZPPM98IzDvGBXCNjpvwsf+Pt9fziH6LPnu86LvoM31BO30MkB9p/CKuf4+mo38dhtH3A59pG31Hmxgv+IRhnNB++pntVzC80D2YWWAFnAgOD/oCOJMHF++5D6WQHFiH5O8kBJIQGBwC8AXQC+YYF3jZAzjABVvmHDiXuQyOAN+Dz8Ef0H7i4dMHKwp4KuLgiBJ6gnKC3+B6aAEWEPBp0FSU4OQLDQYvgC/Bj+A/8oS2YhmJshtczDdwIviAAG6KF8AT8QI4dlcOwCBeAA/TRuBLW/gNjcVhKP3CwgjwAlcCPxQEKHbgc5A5sDSl3yoqKkJfohDiOwHeDt8eHugj6LvjXcfL/p07uJs60z8DaZfTIr8TP1H/EScZdg4EksqHnQP3bS41ygSjDYSB5UKzy4ROFEAWTGKQuJtxf+Mb3wjmapjogiAQIFlhjGohiQ+yiU7kwcoCKW1/EOLuFSMoyweEZGE4CSMoHmLKB+6oGVBA8J2Sopd+BtkpKj/5d76RaoMsBbKztKdMCoAeWRssW7JUAuo8W7W6MjiP/JvMw5qEEEGwWAWwtaJeAlauFBIgUCwdPnnaJ6RgmKgTM1bb6FGj7czPfMbKRNRWLX7bJk7fXd7g5FAOBK3tDoQeCQdtIngg4ywxwezNRuEgcwmdXLHWXlu4QD4aqqVvSbfn//q8HXrwobZIAvwZp39Gyof28DtXVgqtcjL34osvSdkxyRa/tUir+FMtLycvENm9Zd5eU7POSqdOlPIhpqaJwSgGJ55RmHBtETABlAOLO8CKgVYPgwfGDu2IInE03hBxGH+YCRwGsUrPaQKMB6wO2K+HkAyRh6AQl3HGe5gAxhpWEjAPbpaO9pzxCsGCaUHQRqiE2D300EPBYRWWDHjPJs+bbrop1IO8MM/H0eG+++4btO6UTXkI7YxjmJooIwABo8+j7waHQPy3ieaHC0fEg/BCMGkPfhF+8Ytb7KMfO8Uee+yP9h9XXRvMTR955JFgFcF2AmAL88S8RalDXdk7C1OGcD5+7KjQhYwZ4AwDR18RaBtzGCEMvMFYJtBvvoLAaRdrVldJOB8lYp4h2McUL7m5MYapqaktpKHOvPvxj39ml1xySRDw6KPTTjvV1m+okqXBl8MqCKtRKKAoA+aA+sSDD0Nw1ZrVoZ2MG5gPYER/srqFpQIrKbQfWID3ECRhMDHNpQxWWGgP7WZcAluYGuBBvYnDWIEZJR/mNaFH27yAUbaUdUyDnRd8Qm5vDXZu7RPVOl7/k5Z+Jw7znisan2/MH/qNcUFfcvGMYg58wziBmYWJZbwRiIPigQsrIua+CzXMe8ohb8YH93ghWp/B4iVKP1ia5LskBJIQ2DYIgKOjc4z5yBz2C4XD+eefL7838wKthPdAeAX/szUDegHvglIBYdmV0byDlvKd99AI6A9KdZTj+B8Ap4A3WLgoLy/fQlNIC40Bv0Cr4JFIA1/juIbWUXfq4rTY2wKtclzlUKA9UR6L986DexzuHo87iwHQRIcPsOHit78jDQI7v8GLBGBDWeA/6k+gnnx3fggc6fWmDMpjceCaa64J7aX9rvSBF8HyBB4DXg4eALjCezjvSHnePvLyy8sLlUj++VBBIKl82MW7GwQEQgExwFyDCAgDtYbxmgFDDpMOcuSZUwNAPCghzjvvvC1JQdAw8lgAOGLl/v4FzotjFUp3IcdwSRqOWT6geIgpIpCQnUWPsorRZ+rov7mzNYJ75crVWvnPsdKSYgn7MS02ioLubk7Z0L4z3ZtlNg4yBFG2NLdYg4gQxAEhjzsWEL3ax4DFAL4hMP0LsJLPhoWvvSqFRUNA2uNEgIrlqwEkS3+xyrZWx17OkQO9DbU1NvOE4+3/nnuOtj/k2TodhblAwlXl4mXad94jS4aT7a+ydDj/wovs0T88bCfL4uGVufPkf2KMlU8ot5XLV0rgnCwqISd8UlwUytqiu6XJ0op05rUaG9ocYNCvpKH92nYRggOPe/QZcKDb6Y8W4g74EyVU0U8QJghUZWVlGJ8IAxBxzMNZZYawkxYnUxByFA0IwSgFSIs5NGMR4QDnQsRFoESwhOgDXwg6YxGCzt5PFBB85z0rI6yCQDzZ94m1ANs+yIe6wISQB2VBWCFy9K8H5hT159uOBPKJF5xBcLN5xgYCE4qRX9zySzkWbbKf6chH3+tP/VHQsCcdeGGiyJ1xiCAGccdhI6tJWDxkZ7LRJxYYw7SJO/Pb2+bzn1jkwdgENrkah2mqD6Gmpk7jvUhpNdv0qq6uMeCCLFklzZ07P+yppX/pj+OOPy4o4c7Tto/zzj/XHnnkYfv2t78d8mHLBW2B8aAfUJ7ECxw3Sn0GC1WaO2PHbDWJ7dJcBd6Zsmzy0NDYENpK39Jm2g4MuYAF4wPYwVwGJUWwsOpXPsjKAKumnReiE3J7a+Ezf3vTv7/pEs0PlIYw74xHLp7pN2egYWRRQjFfmPf0MeOZPd58Q9lIv4IjKIvxTXrGFO8QKHhmDDD3GB9cBPKKMumDQSJR/ROlHyzP5LskBJIQ2DYIQL+jc4z56HOYZxbnWEAjcLwzR2lD95j33KE/HMt96qmnBmEeHAMtgJeGRwF/kA7+Al8FFRUVgfdFsQmNRamBspN6QEvKy8vDQh3WdGzzgB+vFA/Eew8sqIBzUJhT9yjf4XHAc/Dw8DwE8qddjpN4Bo8RyIu2okRw3jJ80B+PR34uK9Bu0nCxiAMfCj0mkAf5kg8X8PNtD3x3/un3v/99cPqJVSvwQsFL3UgLPwcskClYFIFPJg++UzbxPZAfMPDyeB/tv8Fg42mT9//dEEgqH3bx/gXpMNFBZM5UUeWoRUS8JjD5ERhApCgfQBLXSHv5ne98J5jucyY8594T0AqDyGHu0GIS//1XPrA1QMygEFSQgrUaG1M6sO0ipnzwdf2omMczKdjqEFL23/Uq9psHhT7h755uHacEss0gJvoObVTod3DZKUELnwggRwRUkDPEBqRI2yFWnHzBiRceukQo6JdsWS7gt6JZhA6mF0HGCSL1y5W1RZ/ahYIjQ3ln5+boZAudPCG49mizfWFevrVvbrDyseNlfSHFUmmZvS0me9q++9tb816VgDdGeWZbTnGptdfoyCJMrZVxb32TpRbKS32rzKmHi+mOyY9B4RLqSOEEv0efo+8AhxuWEGeQAFGjTR6AEwSGO4ExA7Gh/YxTfrN6APF2nwrkAfFjHydKCPbls5oAseJCc864w48B4xzrBhQYnOqANQQMBPEY8+RNfgjorLBfeeWV4T3m1ggkMAXUjzvMBWmd8HmdvS20K8rY+Pt3c4/CZrB0MDm0iRV82kl5WHQgMP3pscd1Cse/2wlSPHFCwYwZM+zyyy8PThRpC8rBSjE2BJgcxicmouPHjbaFb7wta5m37PiZxwarHoQriDrjlzrBeAAH+gV4kZ5vCGTAwc1hV6+qEuxLtqQBV7DSDDNEHvQp6ejLI488VHhhQvBAjjLlpZdesEt0djvbLjiv3f1VsNUGpZPDPTRgiD/UjXqCpyiHcUK5HjCldwaFOORJGxgP4EPwGUyX15f3BN4Be9KSP7Dj7oG0XLzfeYF55df21CJgPiWM4bXtyeH9TpNofiAkMEaZy+BdnhnHPnY4LYX5Ql9eccUVwYEsONnHMX3ofT5YW3wM0M/kSX3In+BM8WDp/F2i+u8o/vBykvckBJIQ+J8QAK/7HOPOfPQ5zB1aAc1ifjPXuaC1WGKyBZOFopkzZwalAspLFOPQVuK7EoIyEK7BC/AgDz/8cOBH4FGwMIYGgmOgKdAb6BQKUXAQfAaLJZ+RNSy4i99Ov6L8M3UEx8EL+LYDby04jDoQoFFRfMZ73tFW6B93p1n8ZnGD304TPU/u8XAjdYW2wmuhBKGuLHLMnj07nDLiMgN8BWVCR1n4oH3AEBjDj8G3wMt4ADbEJwBPYOF41vuR73zjHqXJnkfy/uGAQFL5sIv3MxMUhAoScAToSAWEkyiAVBAm8BAM8gBZgQQRABEg0N6yXx7hD4SDlhTE4AguUf479l1MoE670B9d/Yy0KyGC4kHEJigjtrLoLgZzJwXKB1dA6OcWiweeQ1Ckvk4Qd6cUEDK11RaMLby6vvVKhu6UIiBN5XjoUFwY1Yy0rcIK3yizqbkpEAqUCG2C5TQJWT2KD2EiDX4oQMo400PhkKqtFulC3NlZsb7SunRQQOTqpAn5ebdUHbPZJsVDrhxNtsnqYsOGaquYtoetW7bCxlRMsh5tvUjTty6depGhfiR0bZZyZESBdSpdppQQW9rDRwcQzwPDwG8AMIHlA1kwHiCCTjBoJ2OROxeBseRKG8YRwiowYfxh2YAih5VwiBgEirwgemjPGY9u7UAeECSIFqsS5IWAAsEmHnli8l9RURHKQFhHgGW1AcbACTTKNgjstsyR0IDt/OOEdqjktJU6oNCDcDN3K6VQgAmprqm1o2cca41NzfbTn/40OMacIQUEx4sBP05lwLEncYEbsGG1F1iiWMHR6UdPPMFGFOp0k36LKCfs3mfR9qNwAI7A15UPjJf6ejlEVf/yjv6AAaO+7JllxZlVEPZ4HnTwQTZxwsRgrYKlw69+dat95szTVaepAX8AA+pKHbBMgSmJMiaDwcgZEuACbmI8wRTyPlH/0UYff4wBnoETAViBN1GiehnR8qkjl6ePfvvnPTMhwX0DJ+a21iBgQEXmvmsGYBwvRPuGMcDFO8cvKDOjzDr9zDhFkGAcgxMI9CO/6X/SUi7jA3zAb8+PuNE6Jer/aFzSDgzR+g/8lvydhEASAjsGARfKo/PU5zZ3BGj424GLZNBHrKpQQhCPxQzoATwCOAbrQfwq8Q28gYKTk5oc38Avs3UApTo4h3nufAi8MScykQ/8MrwHdAa6yWIH/iPYxgzOgf6ChxwvAQ1+o9BAiUp8AvXwwDNxuOLx4ZRPGQMD9YWWwnvQXmBHPN7DT4ET4Z94x6INTrpRuJAfsCQ+vApbKUgPT0A7UdqwOIDCwsumHfBqtI9601/cgReXK2IG4klvb7RfB7Yj+ft/NwSSyoddvH+dAffJzqSFsQYpRQWLoZoBwgShYD6FybojVczTWEkCaXLyBdpMRxrk9W62dQxVduL3QriyQFDB/fyzM9Hct16gZXYQvOPuMfQS5QMhpOh/jr2J/e3VSQ+chBGUD1LihIgqs6+7U0dfSh2ghBAglAR6q6P/Yk44Qagg8VoxwHwHCYOwEaiz5LCxME/WKFIepMhhHO9TFZ+8cfyI8iFV79hXT5XqGjaHvMkHywn6tUcKjMk6GnOxCNnue+9rr2pV/4AjjrQmOZcbpu0bhvKDxOTRLgKoY0gJfZ0yZVP5sXaEV/1/Bmk8QHlH6I/j70UgVMl3xNiWH4wVLggaBAQhgDEKkaJtCJ/8ZvsDyi2I1Gxp1REcSINQisKCsQk8WTVHAYGCglUFlAwoyHAoiDCOX4kLL7wwrGJwLBOEnmM0mQsQcBgFDxBA4DxYiI7xwb6/23fkFy9AdF3Qp00QfuYuDMtYHfWI8uGlv79oF8uCAEEfeMA40UYX4JnnKB+ZyygJgTFMwKkfP0UqOo09KdWAteftBJ34jF/gChMQhQvmpIU6lWU3Kc/eegurkamyVvlLEPSuu+664JyPsi655EK75prrgnOvJUuXWElxSehHjtLiG2MQBtDNR2HK6A+YQepP2fFCnxis1NT/yUCRhm1OtGVLnwmWxKedtJcALJ3RSVHcdwT6xsd2/3jle2CEeP/uh/07st/xH4wd2hF/DA1dDg3YBu3h0Bm8718SzQ8Utd5/9DWX/47ewQvgDUx8mSMEGGnG6GDB55ozv8SJ5g1jT93A2/FCovqHsRQvg+S3JASSENhuCIDrmWM+d8mIOekX89fnIPgh8FWiDdBIeAAEcE4Mwj8U+AKBGkUEq/wI01xXX311OKIbH2jwE9BaeL2B+IXtktDd8vLywLtQJxQcHDmOQI5lI3SPd9BdeBIsi3lGKU86QtRyCzxEPtFAm2kLNI42cKe9xAt8pu685+I9OJQ8yQt8h/Ie3tUD7eA3dYDXuu2224JSBjjA/0OjKZN8gAc8F3GxGuGoami7L6JA04EB5VGXqGLYy6MehGi7qGc0eJ9F3yWfP1wQSCofdvH+RmhD+4gpM0gIz7FMZJAFk58rXgARIHRwMeFBMCAiEBT778n33HPPDYoIGDvyIx4aURD1QKQxsKwdRiIS3Lfy3lEEJcYajYP+h8BPPQQlRP8z7/HtwAeiRaLGIocI/FEQHDrbdI4ziFGWDhwP2KCTMMbJuqBX7QVRoizw4DXxO+8b5NsBuGPRQOju6LQynbKhhOF3qIDyxyoCBQZ15c52CwgagfSUxakV2qGuukjRIcVIo/q5QNsu2kT8cpRnvY7XLNQqdVBAkHEPzLIykCKCozRDoADwfKik/jgA+Bie+99Fn7cCuz8ShC+akMRbA+MmwEZ1jgbGBWOL8cRYol2MBcYWjD/EnfGKBh0ixthiywTfIdIIjRzRyXjDwgFiy0oEcLrmmmu2EDU8WuM0EmYCB1JsxTj//PNDHmy9wGcExJV5gkIDosmd+lEu5v/RwPsdHrORDLdlfrhzWGcQsFKA8E+VFcPKVWt0XOVzhsAPXIA3beDkCM4xx+IAhgJGBngCPwLtnTypwmbOOMZadZQrKzbAEGaivLz8/7d3JsB2FeWi7hASIAxhDkOAEwEBmRERZJDhiaIyKl5QHK4zU1AmLd5FKcXCK5bP0tIbLPCBikV4iMjw8DIo8B4gFuAlQhAVCPIAkYBAIGgG8vrrkz8sDmfvdcjJ3tnnrK9TO3ufNXT3+lb333///Xd3uYa4UFDggxcDBgN4Y4Sk07Zj3mXjZ5f9PE/J2rAs7IkSxiJSKFksLEl8yAaMGLwvlCy8WD6bDSUoVCtlL6I/PDAzT6XZO+Eej9EBRQWZgssq6dfJp9nZ+4O4ee/FkJDLGQYGyhAfyh7ljHPsjjEwsNhm3FfO5fdb3vHi8ooBgxDviXdPnLkQlONtin7/+Y7+T8VttvEh3jHldLB6GUbzeA10LqhPlDPqOfdQPqrvt9rmUZeoNxzjvUd55HqOk267EPG2umawPLe61uMSkMDrIxB6xUAdhHrJh+N0qDGA03bRMebv8IRgUATdAX0EWcI5DOS0hZxDf2EKAQtb4/1w8MEHl0GOSy65pLSbGCRo14iDjjcDAbTfyC3aHQI6Ce0X7SX5YS0q5BR5YJCBtDmH0ZTriAPPCKZQRqceOUXeo30fSIlnRYaFrIu0kWGEkGtxH+nRRnMeHYrdybgGmYmugE7A3xh1WVcKXYq8wwNdrS/rEDwn8o3+Rwww8Fwx6Bl54R0RIu/VvyNf8b64jjiVm5BodtD40OPvH1cxBM0ZZ5xRvBFYGAfrJIo9AhCBVReIA0HCCCydDgQMwnT69OllXjnCFc+HE044oXT6EBgxWks67UKd8tbu3tIP7jeS9l9WOtEt7oj+cf4uBoh8GZfzm1CMEHwv/vQfy25gWTCumBfmK1dno0N/KHfmn3nEODNkTYn+I/lXRUFdkL0yWJ9hg7wbAOHxJx4vBopJeatLwvPP5oUms+yfkNdlyPMqshEiMpNPks9yFfaBRaUhKMJ/8doRdIqefeaptPqEcTnveapGNoysgSEjC+annpqdO1qrpH/mvK+Xt9+cN79/C835ee0K1pAYN3Zcmv9ynpO/Qn6uBZWESvI5Vb7jd+5nxbPl5nrxv/6M5SYgG0CysSmPn7cKlBUaimrjz980JgSeiXOEaoNMR5uySWNFR5lpEDT4NGR0HLgf7wXcpymbhP+TF+akQWNLPBpHph5gcKAzjNGNNSPYMo91I9jzm230pk6dWtIgfvJCfqt1IvLZqcYu4i8PMMh/pBsKEHmDFQoIXh8TVs2LIK62avrb7Lx4U27wv5WnXrBFKB4fGHTgwlQpFAl+Y0xBWcF4ANdnnp6ddtv1zXmHlJeKgQB2KGAYZLifdFE6eC99fX2lDHIMYwbKxLO5/L5tj70ys/51Idhhg4W5kA3kL7Yr5Z3B+ZBD3p2uuuraMipE+nvvvUfx4nk+L/oYI9Bh8GDaBs8Zo9SDoOk/lI2Pr/FYyGfCaFA1CEYc8zIPlCrkIu+cOhOBc+QhymwoRHGeb84tSfOVW6uXdOk3dajZxod29ZK6xXnKP0oysgLluSpnKIeUAd5zq7iIJ8pEtb2KstruZQ+lfre733MSkMDSE2hlfIgYWdcBfYFA+4ehnPYKWYDBncEH2jvkBDpJjNQzuMaUCrwyMSocffTRZXohsoX2ry+3l7TVXMc3+gWdbtpXdnUiXgbv0G1Ic8qUKcW4QbrIDDr+GDWQMegj5AE5xrXcw3nSIq4waHAdv5FxtPf8po3jubg/2jKYoAeQL+QZ52kPiZ9nYWADAwv6AmnRNtMW4808K0/55DfGln333bc8D7oA8TBggMGE+EOvC1mL4YbBSPQH8sF5vETgwjWEMIiUPwb5j3wSyLdBAhoferwMILxQ5BFSVHzmZ33wgx8sAoBKTyejLiB4EWQIrFDUYlrF/vvvX4QyAoHdBOgYYqxA2CFMworZKo0QiK3O1x5fMnJfubK/X1s5kH9GJ2HxNhb9Heos6PNxfpfT+ceSy8rR3DfPXgXjivEhLyyZBf6ibFCAxZhsKJjHqOmExfwWC3D4ZD/2V6X9Qh5ZJqyWO4uk9Y/s2cB7WX3V3Gku+V+c6oLsupZZL8pxjx2XF2XMcWHAWCUbEiLQqeJeFsDMy0FkSUwEC0veVlmtvxP+WG4MNp68aT4+Jt+f3czz9SuN748DQwlh7ry8a8HY8Skvo5cBLE6/fFUhZGMDjeGSf7DiX38I40PZjnPxsVZfNKg0HnzTwMaHY4VZvpHyRcPG8/HhNyHmUWJQoHHDsEUjiTLA/EgaYo7TeBIf99FI03ElHRpQftN5p7GjoeU3cTCNiDyxFgJllrJb3m++j3xFPinfAxu9eJaSyaX8LyfdNuRslLAwe65Ql6hTK+Ty8XLudP81d/CfyGt8nPvNbxYDC8+IIRAuuELiYcCcVRQmFAOUChgfeuih5dluv/22rCitkX+vUNiRUHg+8GzIDWQE33hOwJGRGBiSl2eefiatu/a66ZFZfykeKqxiDffzzjuvrHSNvGFu7GWXTc+rfv+ujOgwKjJlypTsNbFdWasC7wc+8Y6Jl/vIcynn1Kc2gfrAgrC8J94P+SYwBSrC/PwMHB+f3y8Bg2J5nxF3vISAHTfyHecqxyINqtISI0TlfPd+8qyDCcCh5oDChaxaXMiGelsXr1vCukWavHfqPHWaD4F3izLMd8iUUIKr0SA3uIY2KIwKxEF8HI/6zz3cT1rV9oryGfdV463+Hkr+q9f7WwISWHYEaE+ibaBOtwp0tPEcJMRgW9zLsajnMShCnMgKZARee3zTwb4pTw0lEB9ehxg2mAbJ/egX5AE9hnacRSbZtYtraZ9Jl4FB7sFbs6+vrwygxJRQDKjILIwM6N+kR7tJXpAz5DdkEgYIrrvyyiuL8YB4mcKKhwT3MDiAXo8BgPYWjw50IuJAjyId/mZ6JQM33I/BhMGbvffeu+hb3IOhJWQmzxicyAeyl+clH+gQTEUhbgIsqiHyzTHygAweeA3HCO3eY7nA/xpBQOPDCHjNdLDolJx88snpW9/6VhFUdETocC2LgJUVYfXLX/6yzPdC2GLhRaghnAYLIWDqrJ0I1rYB/fs1HbjXHHglihxd9Wx0xuOC/tReuaI//Vf+juteiaV9/mqVzxL1gDgG5PGVNF/9C7PAqzsfr8TTn+PFf5f4Xjm3JJZ8Ue5SL/lzyY8ll/bH0v9//9lXTA/8jfmBf50LNPY07PGBJw1VfGhM2wXeH2WNhpByiifE1VdfXUYtKP9XXXVVaZA5x/QNDA80ppRLGue6NQfqymf797+YXBXwgIeZn7dRhQGN+uqrT8jPvai4YZLP9fLWlguyUYKRCTwO+vr6ytSGWXl0AmMMnh0YCjBAUP/JK8oGU1ngufvb9kh3/u6u9I+8WwsKAh1+DAOM1hAnniPUY5QllAfOYXyAD0aGzTbZND2St3DddZc3F0UBzwemVuBpgrGTPP3bv/33rFS9UFxL2f5zyy23yFxZRHPlvLUq01r6Fb4Bj+2fQybQpvAMKY7h1d725TtLiFzmRnKoe766ZwtDRnAgPo7xzadqzKiLy/MSkEBvEYgOMXU5Otx02tEd0DvYXpoP7S46BV4CGCtoT9E5aGdpb4mHtpZ2mWvQm9FHuIbj4VGINwbGCNpijBZ06FnjCg+OY445prTL6PjcS3uLroPRAEMIa0LF+gwCB7wXAAAvmklEQVSkT9qki9GDvNLZJ32eBX2APLDmBDoEXmPkn7YfAwL6CH/zzCHb+B5oGCCudiHubXeN50YugU6+f40PI6BcIPgQQh/60IfKqDCdGUZ9MRggmNqFOuGA6zsdDTo0xIlgYu49i1Hiss28NAJCibhC8ULpCkE3nPTrCne7uIdyru756+LodP7q0q87P9znq4t/uOfhN1geKUc0hGFpb5UORgeuZSSAhhJjwxFHHJFOPfXUdMopp6SLL764eAJgMONz7LHHlnJJY81IQd37Gyxv1by0vz93zNq3zfnZcQel/jD6ytoF/cYiFnm8664707HHfSYrCJ8ou12wbShb4LJ3Ni6bKCrUQQwPKDiMsmC0YISHevrnhx9K2++yU3rgz38qjMkrTBkVedvb3la8QtgKa40J/Qae9/3L+4oihMHnsMMOS9f/8j/Twe96d/rO//h22dKU+1FomNaCFwS/mfaBIQSeyBrqPQYMjqPw2PmqlpaR97t9+db4gOxB7lCvaANR2ENB51z8Hnlv3hxLQAJ03KnDoc+iD1Cv+VDnaW9pa/mb3+jITGlgQJD78B7Ak5OA5yJt7x133FGO0c4iX0mDgQF0GQYWmBaJXo3+zrpX7DhHW493FrKGeNFdWIMCwwW6D3o6Rg0MCdxHHwBvBrwpmGbCVEziYeFu9AWMGhgjWB+HfJA39HXSCL2LZ+Y3geeOTzmw+L/R3j5Un9XfryXQyfev8eG1vHvqCCvnMj+LQKeLxWywpiKMMErwu12o61xxbwgyrK3M6zr33HOLlZVFcSh8EQeCkQ8BQcYnzpWDg/xXd76ucA8S5es6VJd+XWSdzl9d+nXnh/t8dfEvq/PBke/4EDdlqF1ghJ7GlUaSa2nId9999zKFgMUPMTiwwCEdY0b4qQ+4FTIdiXKNUa1dqOMX+R48jnrjw7x5LBLJuhgpeyI8vthDYc08leGKdMUVP08bbbxBmjbtP0rnn5ENjA5f+MIX0vHHH188H3gORjswPDCaceGFFxZlhHxvt+MO6U+zHkpPzn5qiTcEDPCKQjHBYID7J8+AUoTCdNBBB6Vtttwm/f7+36evfPms9LfHnkj/eLF/tWwMEqwpg9LCqExfX19RVlCcYhoM7wGPCkZuDCOfQPvyrfEh5APtHqwwlsaxkEkjvxT4BBJoJgE643T2B+qyYYCIul7VUzBGYADgGoyRfIfXAR4J7MxFpx/vCfR02lLS4DraYHQUjAi01VyHMYLjxEUbz7RT9BnuZacv2mGMCXhCME2V6ZMYQTBMYKAgbQYKmBLJvTwTeURe8Xc8G+mHsYFjyDL+jmcc+E2JGO3tQzNL/dCfupPvv/1Sz0PPo1d2iACGBxQfLKOsxItVlU4Fx0KoDDdprKcsLndW3mWAjgWjrSymg6WVOeQhlEJgRXoIOASmQQJ1BBBiNH58R3mK73b3xsg6ZZHRdsrgiSeeWDwcrr/++nTUUUeVXSGoJ6xPQOcct8j3ve99pfFvF3c3zpHfOXNezC6Qqy4xhMydO6+4WTLn87bb/29ZzBGFgmtRUjA0sMo2c0dZhBMFBeXinHPOKd4ev/rVr8qzcQ8KxJu2eVPhysjKzjvtnBdrzPuKrzgubbbpZmle3pGFa448/Mh03vnnpWv/97Vp51PelLbOIyQTsxKEUjPm5UXp05/+dFnokjjwaEAhwv001pRBoSGQx5jKwnmUJYMERjsB6hCyq6q8UxcMEpDAyCUQOgi6SfU39Zz6jo5L3SdwDH2XDj0dfgLtJX9HwFDAtAru48N1GP4ZQMH7ACM+u1/gMcE3BgUGSfgbwwKGiVnZO4I2lrRCJyCuav5Ij7gYiBkY0JnQIwjVvPM8xEc8/Kadj7+rcXAu0qoe97cEliUBPR+WJc0OxIWCj4BAiDHqi/cDI6SMYDIXfLgBwUjHBiGFwPnoRz9aRk5PO+20tOeee5Z5Y5xD8Ma8sugQciyEXKt81AkxBF0nQ136dWl3On916dedH+7z1cXf6fN1fDlPGcPSj2WfEQc6wiycRMBDAJdDRgHoCNOQs0gTa0OgBNTFX8ev/f1jaqddzJ//cvFmwHCy6qrscjE7XXPNNWVrzVmPPJy9Hy7P00YOKdfg5cTCVRj8GBXheTA24o0QxzDCsBAli13tlbe4vCNP3dh2h+3LTiJMzcDowsgLoy64X+KhgLGC9VuO/cQn0luzVwgLVrFbyIbrT8o7vS5IO+2wY+EGY65HzrAgVizgRb3H0IGcQBbBH25cx5QMw8gl0L586/mAgk89pP2lvaNe0VHhWCj2I/ftm3MJNJsA9Rv9grrMh/aNz2CBuo+8pO5HoJ3EYEB7iG7CN9McQjZgNMCwwJQNjA/IDtIknkiTaRWDGfJpd/mQHvcR/0C5Q1tO/kmXb+RU1RhCOsgtvjkfz8bgJXGTLwLnBwaOEW+7UHe+3b2e630Cg5WLaq6H8/41PlRJ9uBvrKB92Zoa2w0izNiTlxFRhBGCaziBTgnCMiyxzEE788wzS2ePgsfUDs4TEL4hDBGc/A4h2yoPdYWzrnC3ineox+vSr4un0/mrS7/u/HCfry7+Tp+v48vzUTbp5GIoi2kUX/7yl8v6CIwoXHbZZWWBphtvvLF8s+82i1GyZeVQ4m/3jO3vrzc+0HY//3z/KtQ8Bws6Tps2rSS51157pvN+8B95u68LilKBYkB6rO3CYlEoJHglYVxhBwqmXLF6Nd/IhPF5e9cpW+bFrA47tKwJgSLEGg9wwECJUsRiWTCMuZ+4c7IuBnNK11tn3bTGKqum57IyhGJEYDQGQwcBIwZGHfLFKAzxIH+QOxgg8YpAoTGMXALty7fGh6p8ZZST9hLFnXaX+hXK/MgtAeZcAs0lgPxrJwNp72j7aOfoxGMEICADkAcYA6KzzzE+8TdGeu4lDo5jGCAe9GZ+E2jjMQCQB+LjPPdwPUYK5E94GpI2xzlP3Ky9xGBBBPJHHFxHmujrDBgQRxg6Qp4RT9X4QBzBofpd175HfJEHv0cXgSgLrZ5qOO/faRetqPbIcQQNAUERgU4BxxE2fNqFOuUI4UdHB0HHwpN0Koib1XlxA2O1XBavww07rKQIvhDC7dL2nAQotwgoGjG+EWaUnWjIo6FuRyoaQMpdhA984ANlnuQll1ySpk+fnvbPW8bSIWANiC233LI02NGwxz3L45tFJtdYY0Je0fq+9Nvf/rYYBsjXWXmK01FH/UthgqEELw1GMZgLSn3E0ELnHmYYBD/zmc+U7LMjDR+mR/3pwT+n6/Je5U/l+0LhuPgnF5cFsfBKID6UIwwL//qxfy0unqzrQGCXlIUL56e/PfW3NGm99YvSggxgGgbvCCWGOo8SQx74EEgHmcLf8V7KCf+TwCgkgCcVdQnPH35T5jE60HlAttW1r6MQiY8kgVFDoNq28VB0ykOvph2kvqN3UN+rA23oyLSttJlcw9/RJoZ+TFyEOEfbSRxcjxGzGgd6EPEROEe7i6dnBGQN8ofjDMRwL4YH9AT0HvJHfmMwEhlFwACBjIo2m2Pkg7wSRzVwjDgI8V09728JLEsCej4sS5odigtX68mTJxeBwOgpHayY60UnoV0IC2u7axgdZUSUhXHC1Zq584zS0vFhpPSEE05IfXm0FaGEIAzBVSekEGjtQt397e4dyrm69Ovi6HT+6tKvOz/c56uLf7jnaehobAeGaOBjCs/A8/F3PB/x0GmnEQ0jGI00ZZJz/Ka8UjYZuWfhJ9ZIqZsWEPFHegO/27//XLZf6634qiguv/wXpUPP9lkYDFAemA7xjW98IysAKf2/x/6SOzbPlPxzI9MzqNsoD6TN9Sgm1FGUDVjSEcLj4+HsFTVn7ovpzw89WKZtsBYMbJAVxx13XFEwiHPi6hPTjHtnFMXkggsuKPUZufHGzbcsG7UuzEpSVbHiHOmEooQyRX0nP8GLfA1FtpC+oXcJtC/fej4whQsFH68iZBXt47bbblvqaXQWevftmjMJSKAdAfSFqgyk3YtP3Id+ETpvtMnIAtpH9Biuj3aR8xzjb3QVDBBcx/0cj8EWrou4uJ+2tOqNwLXcT9pMwaS9jzYaz0OOc31Vv0E/4j4MEMRJmuQj7uN5uId0ORZ5jufkm3g5T+CbPLQLg8XR7nrPjSwCURZa5Xo471/jQyuqPXScTgVu0gSmQVAgWHyORSJZaA+3c1akJ4ShAoFVFUzl5CD/IYwQpHwjuKJDwQ4CrKT7wx/+MLEwHovgYYkNhQt3cEZUGaWtBiytdF7oPIXQI7/x4VoKbHyq9/pbAgMJ1Ak/Fp1kf2zKJvXkZz/7WVmzhBF8PAQwSMTuDDTIETBOcE2rQLo0xNXGlzpC2aaeULbHj18pvTT3n9mzoX/q0xNPPFWUi7XWWj2PiPSvTcEUkIsuuqgYDw444ICyJsO+++6bFYSV87SGe9O9983IisWaJS/khzoVCgp5a/f8qAgvZOMDgXxR5xmJoT5jgNlg0gbp2eeeLcrIFVdcUaak3HTTTcWbieffaMO8mGy+l4+hmQTala9lQWQ4ysmySJ+6Wu0cECf1GMWcb4z5GPwIHMPQhnGPHWNYgZ52DmMeU5/Co6pcnP+D3fJ+vsiL3xKQwOgjgEEhdO54OuQOeja6elU/ifPV7zr5HjIMORbXDpRpeH5h0MDzAt0C/YT0GZCoS7+aF3+PPAJRJlrlfGBZaXXdYMc1PgxGpceOxYgvwiaEBR0rpkSgLNGRwFjAiAyBTgjX4rb9egoPAiUsunS82L+Y7X7YRYCt++i4UNhQ0piHhmJXFUIDlTxGo8M4MTAfwym0PfZ6zE4HCQwsNwOTYo0CDHMYA2699dZSfin3/5mnI+BBQPmknNJxoB5R7pgHSUPKdXUh7if+gUaBv//92bR2HpHIukDuqPSvlUB+yAd1kAUk6cT09fUVj4T3v//9ZaFY0mY0debM+9KLc+dkT4hNyhoVGAxIh05RuG6GG2XLfObnISx8eWFxDw/jJMY/1mrBQ2HVCaum239ze1m/gT3K3/Hf3pFmPz07rZvXfNDw0JJsI07U1a/hQljecn4w4wPHwvjAWkq0UyjReDdgaKftpB3k9ze/+c2iZHOM9o12kfvhxrNVZcJwWXm/BCQggcEIIK9oy5FLyKIIw5XfIZ/D44G/iRMZhx6CXCQ90idtAtuBo08ZRj+BuvIV5WdpSLjmw9JQ6+I9jGhi+cQQgHcDnRPCHnvsUVb8v/zyy0tHKzwjOIfrNfcgrGJ6BMcHC3SEooODwKHTg8EARYvOEB9GYzE2kOa1115b3L/JD8eqHTgspAiqSDPySrrDKaSD5dtjEoDAxhtvXNYmueuuuxKeBUxPoEzj9cP0JBpKFk1kXQXKK40sZZFr+MQClq1oVqd4RPmmblG21157rbRgPlMj5hXPCwwKm266UV4cds309a9/vaybQrw04tOnX5zr8OzE9IspefoEHZ6tt94qrfqPVUoeyFvUF64nn9TBuhDGgxVXGJvWmrhmWi0bGrif8PKC7Mk0Ls9Fzb/fuMWWpR6/aettyt+rrLRy+meWLXaeCir/G6UEWrU7HEex/vnPf14M6+z0gjvzXnvtlfr6+kq9YB2WaqBOooSjkKGIhzJevcbfEpCABJYlAbyz0AXQRZBBoRtwnOkYww3Eh0yrejHEb77Rk+hLoJ8woBHnqoOLw82D9zePgJ4PPf7OqfgIHdypo9ODEEBY/OhHP0pTp04tRglWt0cwzJw5syhTPBar4WI8aBdYlC7mk9FpQcggXFDOULRwO6Ujxyr6bBHIDgJM8yAPjCRXhVHcH4KyXbqek8BQCNRZXvFMoPGkw4C3AVvQnnzyyaX80jhjTMMLgPN4PFBeqUfEG519fkcDTJ4ov9Hxp0NC/YsGl/SIk/NMu1i4gHjGlV0i+vom5wUlb05nnHFG6ehTt0499dRSH/GIwDDCgpLkA4Pedtttm55+5qls/JuwZHFJDIDkJTo2dc8f3hw8Sxj9eAbioD5SjyMujhMfx0iHZ6kaDzlvaBaBuvI1XBqUteUZorxX80DdoPxzjjpAvcQIST3BU4lpGKzLQtuHYZ7j4WLM81D3Qx5U4/W3BCQggWVNABkVgyDVuKveCNXj1d918j3kYzs5jQcY085iSjfxM9DCgEnoSdU0/T16CNSVn3blpo7C2LNyqLvI88uPAEoPc1AxAERniRfeP3K6dfGIuOGGG4rHAa5QKEt0KDBa0PkIr4ZWT4CnQsTb36EaX/5GsOF1gbcFna0999wz/fSnPy0GDbbyY8oHo6Z0zhgRJk/h9UCBDRexEG6Dpd/u3GDXe0wCAwlQzvHUYcTyjjvuKN4Ov/jFL9JHPvKRdOCBBxZXauoB5ZQOP4Y2yl21Q07ZpezzzYfANfGppsl9lPv+esOCUP3rrGD8+/znTynbYHINXhff//7385Sld2Wvh/+VDj/88JIHDBJHHHFIrs/r5g7N2LTa6quVuOgMUedIv5q3atqD/WaxyEUL82hIvj9nOI3NHhCs4sBTLHo5u09igMj/eL75uR6PHZsNlznTK+TrFi3qX317sHg9JoFlQSDq07KIa2niaJU+x/ngGbXjjjsWQzpt6i677FLkCZ4QeFUhO6jr1HnayTA6IBsIreJfmrx6jwQkIIHBCIS8QddmwKGqtw92/VCPhd4T12PoQHfHQMs5/kY3QcdCPyEf9EnoEzCIY2g2geG0f3o+jICyw6hpeDCEtTN2pmCRve9+97vpBz/4QXHp/vznP1+8JBAgjOaE0Gr1mFF4ULIQOChXfPhNWgg5Olas8o1rO6O6f/zjH4uBgwUpw20dgVgVRsSH8EJw8R1KW+SD46Txejpaca/fzSFQV34pR3gFYVSgvO62227F4EADiYcOC1HSgLLoJF4PGOModywiR7ls57bIdVxDoLGlrFJf+P3www/nOB9N9898IBs9flu20WRdFPKz0047pbPPPivflcoWm6zFQmcGQwl5oK4wkjFpUl5zIUfPMxInaUV9oP5g/KszHvabGfKaD/l64iF/fPhN/omXjtPY3HFimgVp8OFvjBBjxtZP7SgP4n+jkkBd/RruQ0f7Mtx4Onl/te3COIjxnjoTu8pE2tSnUMAxRITRPs77LQEJSGBZEkBnQO5gGEW/ZhASGcTfsch8u/Tq5DtxhV7TLp7rrruuDECij+ARhndYK4+MdvF4bmQRqCs/w2nfNT70eFmg80ABoPNOhwSFB8MCI7l0rHj5dGwwAuCdwJxy1n/AaMA9Qyk8dJiIk2tLxyTfF9902hA0GEAQUnTqGEHm2NZbb112w8CVnOsRRggzOliE6PyQDz5cE8dJkw9KnkECrQgMpfyyDgnTLQi4TeOVc9ttt5XpDSw8yRoLLJzKoqxMzWBXiXe/+92lPFMuqVOUa35HIF3KJ9fT4NIh4Rgr4BM33kb33DMjd+jn5/r3VEkf7wtGUYkfV24MDBgNr7766vTmN7+51FfS2WCD/p1p5uadMlZaeVyOt38dCupHGA6o99SloRofSr4X55l8Eg/xYcBYpTJC8UIeOVktT0PJiTJsi5OEocEE6urXcNEMRzkZbtpDuZ8FWmmvaE9pA5kSBRNGGKMdIx6O0f4iE3gm6nGvP9tQnt9rJCCB3ibAQrjs6oUucOihh5bMxoAk8qhdCJ271TXoGOjpyDL6DBE4jgxEzmGEPeWUU0rfgt+//vWvy65d6P1VnSnu9Xv0EKjTD4bTBjrtosfLCR16LJ4oRwgCDAAICwwACAc6KVhD8Ua4Ke9GgZfCscceWzoerP/AvKy6EMpUNX4KHYILdyvSwcrKCDNuqqz/wPHzzz+/bMGJeypTPsgb+Q2DAvcRN5/oWJEX4kZo8hzcY5DA0hKgYcbjgEaQUQI6/pQrDHAYHq666qpyHqNAX19f6VBQdyjrN998S1pn3fXTvPnZ64e+eJ6KMCaXeX4vyFMZ5ucFGyeuOTH/XpS3xJyZ/ueFF6V//8a56bKfXZ63sHw+zwvfrH/6UW608XbAAPLXvz6RjRFPpp133ql0/OnQbLvtm4ohYrPNJmcjxoQ0e/bfc53O60hko8fYsf11g/pBvaA+UzfIX1UZaMWHqRQrZPeJ0gjkepYjKZfCg2fBu4F0ImCMWCkb/EhjBb0eAovfHSJQymWH4n690VK/BuaHOkYdpY3lQ+A62jDqCko4dYn6yfdAj4eB8b3ePHm9BCQggVYEkEW33HJLWTvq0ksvXeLNjPcBOnj0B9B5Bvsgs9oF5BlpoLfzzfV4VbALEJ7N06dPL2u9kQfWwfniF7+YLrzwwtLPOProo/X+age3AeeG0/7p+TDCC8iMGTPKSv4oUXS46IB97nOfSyeddNIS9+52j1hXeFDAUMQQTLNmzSqKGmkxsvub3/wmTZs2rQisn/zkJ2nvvfcu1zGaFAvk0IlCuUN5C6+NME6E+/lw8tfuXs+NfgJ0oqOBpeMeBrC77767eCice+65xWj21re+tRjwWAeCxZNYyX6vvd+e5uU1G+Yv6F/7gPJ4++23J3aQufPOO0v9YdFKDHjUAwwdeEBgaKDh/dAHj0pPPvZouvqqK0vHhcaZhZg233zzMv0DF27iZMSCUVTqDfUIJYHQXyfaKwej/w36hL1MgPI6nFDXvgwnbu+VgAQkMJoJMICHTnHYYYcVvQH9hTXXOI63M3oM3loMADLwwjF+o4ugtzBgiE6EHo6+ge4RMh3ZzPRRDA94dTHAyTRudCA8K7gHr2r0GfJA2meeeWaZqspAzkUXXZS233770YzfZ+sgAY0PHYTb7agRBHT08U5AeCCMQtC0ykudcsiWmgg0rsOwgZDCsICBARf0s88+u8ynp7N2xRVXpHe+851FwDGKFHNmy2hr7ngRB/kpo65ZEJLXMEQsbf5a3efxZhDA4EAjSaARpYNPI0s5pQ7grsguLfxm1WbWLiHQCM958aX0t2eeT+tvuFExEGAoILAOBOWSuPfbb79S7hkBxYDxgQ8ckcZle8F/zXgg/dddd6Yt8g4Xf3rg/uIZRINMujT+fGiwMbgRF/UBIwnpcg2B+qDnT0Hhfz1KoK79qMt2XftSd7/nJSABCTSZAHryMcccU3QY9BemkDLlGgMDunjoO3gsMEDCNzoGx/HyRMdAL0IX4RgfjqGPsDA2+jjxMLCCUYNd8kiTv4mHARiMEB//+MeL/nTiiSeW80Pxqm7ye/PZ2xPQ+NCeT8+fZbrFG9/4xmIAYA4Wi9vtu+++xS0Kt6m6UKccIsywrCKwCHTwEFYEFFO2McTTgvn0N998c3F132effcpIMcKN+BFkYX3lPowRdMI4hkBsF+ry1+5ez41+AhgFKEeEsOBTJiPQeNIY46KIqyJGMtZrwDjwyKOPpYnrTEozH/hjKadMzaBBJR5GFHbffffSONPQU/4xRhBojIlztVWya/YLz6bxK65QPBuYmsS1fCj75ZrcgEc94F7KfdQfynZd+ecegwSWFwGND8uLvOlKQAJNJxC6CwOKGBLQF9jVC70H3ZyF5jEsMACDrEa35hy6BXoHU7JDd0fv4IMOwjk+DMxwL4YM9B+8HLgndJkDDjigGCbQo0h7VvZ+7suDLKQTBoymvyOff+kIaHxYOm49dxd78OI2hSXz4IMPLgYJ1mFgznu7UNe5D1f2uI6OGQIRgYZllONYTadOnVrmh3H+1ltvLe5YGB0QbHzz4br4m3jpJNYpt5Fuu2fwXHMJ4K0Qc7VpVGkUKTN8aDApo1jt8cKhzOEBQQPK1pe/v+/+9EJeMHLjvHYD97FYJQ0sC6kSFwY16hQNcyz8SINLPDTcG66/XnrwgZlpk403XGL42GqrrYoBAwWAOsJ11UC8lPnIo+W7SsffvUagTj7X5dfyXUfI8xKQgAQGJxDew9Wz6Njo0gyCYJAgoOvgjYxBgumeeDCEvsN5jA78jV4Sxgd0HRaSJHAc3QZ5j4czaRC4h8EUzqEjcW/oW+j0GD4MElgaAhofloZaD91Dxwq37liZm2kSdKL233//IjTobLULQ1EOEUB0pBBWBP7mPgQS3hV4XiC8mJfGOhC77rpr+Q6rLffQSeQaRqARhAg48lyn3A4lf8RvaCYBjAOU/yibVQqUN8odZS4Ci1BSZk8//fQ0LhvG8OG5/0+PlNNbbblZ+Z5x7x9LA44XBAYIRgIwmlFe8Zgg0NCPzws2zvn77PSGKZuVRh9FAeMDBg/yxTeBMk6ZJ1CeqUuW64LD/3qcQJ18rsu+5byOkOclIAEJtCeAHoMOwRoO6CHoNBgCMECgm2CMQB8fGLieAZDQOZDHXBf6Erp8dTo1hgWuJW4CvyPQFoQ8Jy/oO0PZ7jPu91sCVQIaH6o0RuDvsD7iUo4nASO0WD7pJOEFgRtVuxDCpN01WFX5YOWM6xFOCCME2z333FNctlgDgi0F6axxnF03WAMCDwwCHbYwkoRhok65jfTa5c9zzSZAWQyDGA1xlJloLPEKotxRPzjHYqmUz1/9+ua0wy67pi223Kocf+ihh0pjyzaylFUWreQ322WSBqMKjChgWKCebbH5lDRm4fw0af11y0gBowWUfQLlm2tovGmouZ+0afSrDXqz35xP3+sE6uRzXf6jLtZd53kJSEACEng1AXQNZGh4XlbPYngIfSOOI68ZdEFfR+/gXnQdPgTOo38MNFRwPSGuC50fwwTHWAeLgF7EACceF3hEGCSwtAQ0PiwtuR65j07XE088UTpJWCLpfCGoEB4ImrBwtsruUJXDEGoILj6kS2cLoYSwi7Uh2AP4yCOPLK7qbPV52mmnpRNOOKH8Tcct5uNjkUWAEW+7MNT8tYvDc6OfAOWRskR54ZvOPoERgaeffrqsW8ICkNQP6gllb8211k6LxuQ1HJ7rH1Wg3tBgY7yLaUL8xnBBmef8+uutWbbinD372TRm0cK0/jprpRWzBwT3RcNNutXpIJyL89Vr4hjXGyTQiwTq5HNdnpXfdYQ8LwEJSGBwAujx6M3oH8hiBgDx9ES/QZcIPT/kdOg/oQNxbchgjqEnoa/zm+PoRwR0EY6Ffs9vjpEe0y3IQ3WBybh/8Fx7VAL1BDQ+1DPq+SsQElgj8XZgGkZYJGO0td0DhGBqdc3AThTXI6AIxF+ddxZuWAimM844oyzs95e//CVdcMEF6aCDDiojxuH5gDDDdYxr24W6/LW713OjnwAjA1jxW809pKGlXFInsOLHCALGr4nZAPHSvIXZINE/KrAw2yuwWYxbvAbq3JfmF8MeC67SyFMXKPvRKG84KS/EmhEvyGnQqOOySHnFcIFiUDX8UVei3sRb4R6MIQYJ9CqBOvlcl2/ldx0hz0tAAhJoTQB9ozpowZUMilSnPCCnQ1Yjc/mNzsH3QC+H6nXoIOGNyfGB8hrDAwaMOBcey+hDVf2mde49I4HBCWh8GJyLR18HgVgAhy166OghrBBq7L7Bzhf33XdfOumkk8pv/kZohlDDjQvrK0KPeBC0dBBDYIagbJWdgcKy1XUel8BAApi92pu+GBEYeNer/14x2y2y84RBAhKQgAQkIAEJSEACEqgh8MpqIjUXeloCdQSYUoHBISyyuLsfddRRxeX9pptuSp/61KeKcQEDA8aF+++/vxgqMCAwKsz9uMNzjhFr1rEwSKBTBDAaDO+TRwo6lTnjlYAEJCABCUhAAhKQwCgjoPFhlL3Q5fE4uKPjao4RgRX+cT/nb+bYH3/88emrX/1q8Wrg2Pbbb5+YioEbGdMuMDTgvoVBAld4Prh0cZzF/gwS6CSBOuPDCmPyPMiWn07mzLglIAEJSEACEpCABCQwughofBhd77PrT8O0COaWxQcDBIYDplJghDjnnHPKrhc33HBD+trXvlYMDky9mDp1atlFgGkaGCW4B2MEnzBGMJ/fIIHlSSAX52xUa/1ZnnkzbQlIQAISkIAEJCABCYwkAq75MJLeVo/mNdZ8wAMCjwYW/2NhmliZd9asWenb3/52Ovfcc9Mb3vCGMi2DHTrOPvvs9MlPfrI8FdMs8H5gvQgCf7OYZSyeWQ4O8p9rPgwCxUOvg0DNqg/ZuNY2jNF+25aPJyUgAQlIQAISkIAEJLCYgMYHi8KwCcTikewmgAcEazfgzYDxgcUmY3vNu+++O733ve9Nxx13XPrxj39cFpb8zne+k3bYYYe03XbblXxwH9MuYlcCF5wc9usxgrYEMC7UGBha3h+TNlpe4AkJSEACEpCABCQgAQlIYDGBsWflIA0JLC0BjA14PmBowFsBTwS2D4xjeC7EGhA33nhj2bLniCOOKAtL3nPPPenyyy9P7HjBHsIbbbRRmX7B4pPcjyGibitCPR+W9s153/AJaHwYPkNjkIAEJCABCUhAAhJoCgF9hpvypjv0nBgKYg9ivBXCYwGjAB4RrNvAtpsbbrhhMSQwreIPf/hDOf6lL30p7bHHHgkjxGc/+9n0sY99LF199dUlp9XtNjuUdaOVwGICYUR4vd8ClIAEJCABCUhAAhKQgASGSsBpF0Ml5XVLTYC1G9hC89FHHy2eESwoOX369GJ0OP3009P555+f7r333nT99denTTbZJM2cObN4UbBoZRg2WJASIwbeEDGNY86cOUt+L3XmvFECEpCABCQgAQlIQAISkIAEOk5Az4eOI252Ang/4AWBh8Q666xTplfwPXny5NTX15duvvnmsrvFddddl77yla8UA8Wee+6Zvve975XFJ1nzAcMDAUMEf7MwJYFtPQ0SkIAEJCABCUhAAhKQgAQk0PsE9Hzo/Xc0onOItwLGArwYWEgSrwfC/fffnx577LE0bdq0sgDlI488ko488shiUMBYceCBBya24bztttuKt0MsZMm9TOXgs8EGG/CnQQISkIAEJCABCUhAAhKQgAR6nIDGhx5/QaMpexgM8F4IQwRTKPh76tSpafPNN09sv8mWnLNnz05vectbykKUbMf5jne8I22xxRZLUHAfC1IylcMgAQlIQAISkIAEJCABCUhAAr1PQOND77+jUZFDPCD4MP2CHSzCA4KHu+OOO9KDDz5YPCQwPOD1sM0226RDDjkkXXPNNWVHjMMPP7ycx1ti0003LUyYguFuF6OiePgQEpCABCQgAQlIQAISkMAoJ+BWm6P8BS/vx8NLAUMDhofYwYLfHJs7d25ZdHK33XZLEydOTPvss0+65ZZbyuKTO++8c/GQwPjw0EMPFYMF3hHrrrtueSSMDtxftxXn8n5+05eABCQgAQlIQAISkIAEJCCBlFxw0lLQUQKs1UCYP3/+knRiwUgWo9xuu+3K8eeee64sJvn2t7+9LETJbhj77bdfmZLxu9/9Ll166aVligaeE08//XSZmsEaEgYJSEACEpCABCQgAQlIQAIS6H0CGh96/x2N6ByyvgMBD4gIYXxYeeWV00orrVQWosQIgTGCHSw+/OEPF6PEPffcU6ZfvOtd70rvec97yu4Xjz/+eLkOD4iIO+L1WwISkIAEJCABCUhAAhKQgAR6k4BrPvTme2lMrjBEsOgkAe8IPCX4sNPFk08+me6+++6yswVGib68NecBBxxQrn322WddcLKQ8D8JSEACEpCABCQgAQlIQAK9T6B/38Pez6c5HKUEMDSE8YF1HFgLgm+MDawNwQKUM2bMSGussUY5zsKUeDw8+uijacqUKWn99dcfpWR8LAlIQAISkIAEJCABCUhgpBJgcXw+BPo3fJoe9HxoeglYzs+Pt0MYHDBEsKYDgYrKgpLPPPNMuvLKK9Paa69dFqTceOONy/mqx0Q54H8SkIAEJCABCUhAAhKQgAR6gAB9Gfo2VeMD/ZymGyD0fOiBwtnkLFABqZRRMYMFx9kdg3Uh2Fpz0qRJxePhhRdeSBMmTEgvvfRSMVTw2yABCUhAAhKQgAQkIAEJSKAXCITRYWAfh+P0cWKwtRfy2u086PnQbeKm9yoC1UoZlsDwgIi/Wf9hrbXWKvfNmTMnrb766uU3u13gNWGQgAQkIAEJSEACEpCABCTQCwQGMz7Qr4lPk40P7nbRCyW0wXkIA0NURlCw1gMfwosvvrjEwMAikxgiCOyewTmDBCQgAQlIQAISkIAEJCCBXiGAcSGmWEQfh+843iv5XB75cNh4eVA3zVcRwPshLIBhjIhpGOPHj0/jxo0r17Mt5+TJk8tvLIoTJ058VTz+IQEJSEACEpCABCQgAQlIYHkTCGND9GnCCLG887W809fzYXm/gYanH25JVQxVq2AYHmJ6RhgpWIjSIAEJSEACEpCABCQgAQlIoBcJhAGC/ksMsPZiPruZJ9d86CZt05KABCQgAQlIQAISkIAEJCABCTSQgJ4PDXzpPrIEJCABCUhAAhKQgAQkIAEJSKCbBDQ+dJO2aUlAAhKQgAQkIAEJSEACEpCABBpIQONDA1+6jywBCUhAAhKQgAQkIAEJSEACEugmAY0P3aRtWhKQgAQkIAEJSEACEpCABCQggQYS0PjQwJfuI0tAAhKQgAQkIAEJSEACEpCABLpJQONDN2mblgQkIAEJSEACEpCABCQgAQlIoIEEND408KX7yBKQgAQkIAEJSEACEpCABCQggW4S0PjQTdqmJQEJSEACEpCABCQgAQlIQAISaCABjQ8NfOk+sgQkIAEJSEACEpCABCQgAQlIoJsEND50k7ZpSUACEpCABCQgAQlIQAISkIAEGkhA40MDX7qPLAEJSEACEpCABCQgAQlIQAIS6CYBjQ/dpG1aEpCABCQgAQlIQAISkIAEJCCBBhLQ+NDAl+4jS0ACEpCABCQgAQlIQAISkIAEuklA40M3aZuWBCQgAQlIQAISkIAEJCABCUiggQQ0PjTwpfvIEpCABCQgAQlIQAISkIAEJCCBbhLQ+NBN2qYlAQlIQAISkIAEJCABCUhAAhJoIAGNDw186T6yBCQgAQlIQAISkIAEJCABCUigmwQ0PnSTtmlJQAISkIAEJCABCUhAAhKQgAQaSEDjQwNfuo8sAQlIQAISkIAEJCABCUhAAhLoJgGND92kbVoSkIAEJCABCUhAAhKQgAQkIIEGEtD40MCX7iNLQAISkIAEJCABCUhAAhKQgAS6SUDjQzdpm5YEJCABCUhAAhKQgAQkIAEJSKCBBDQ+NPCl+8gSkIAEJCABCUhAAhKQgAQkIIFuEtD40E3apiUBCUhAAhKQgAQkIAEJSEACEmggAY0PDXzpPrIEJCABCUhAAhKQgAQkIAEJSKCbBDQ+dJO2aUlAAhKQgAQkIAEJSEACEpCABBpIQONDA1+6jywBCUhAAhKQgAQkIAEJSEACEugmAY0P3aRtWhKQgAQkIAEJSEACEpCABCQggQYS0PjQwJfuI0tAAhKQgAQkIAEJSEACEpCABLpJQONDN2mblgQkIAEJSEACEpCABCQgAQlIoIEEND408KX7yBKQgAQkIAEJSEACEpCABCQggW4S0PjQTdqmJQEJSEACEpCABCQgAQlIQAISaCABjQ8NfOk+sgQkIAEJSEACEpCABCQgAQlIoJsEND50k7ZpSUACEpCABCQgAQlIQAISkIAEGkhA40MDX7qPLAEJSEACEpCABCQgAQlIQAIS6CYBjQ/dpG1aEpCABCQgAQlIQAISkIAEJCCBBhLQ+NDAl+4jS0ACEpCABCQgAQlIQAISkIAEuklA40M3aZuWBCQgAQlIQAISkIAEJCABCUiggQQ0PjTwpfvIEpCABCQgAQlIQAISkIAEJCCBbhJYsZuJjcS0Fi1a1DbbY8aMaXvekxKQgAQkIAEJSEACEpCABCQggaYT0POh6SXA55eABCQgAQlIQAISkIAEJCABCXSYgMaHDgM2eglIQAISkIAEJCABCUhAAhKQQNMJaHxoegnw+SUgAQlIQAISkIAEJCABCUhAAh0moPGhw4CNXgISkIAEJCABCUhAAhKQgAQk0HQCGh+aXgJ8fglIQAISkIAEJCABCUhAAhKQQIcJaHzoMGCjl4AEJCABCUhAAhKQgAQkIAEJNJ2AxoemlwCfXwISkIAEJCABCUhAAhKQgAQk0GECGh86DNjoJSABCUhAAhKQgAQkIAEJSEACTSeg8aHpJcDnl4AEJCABCUhAAhKQgAQkIAEJdJiAxocOAzZ6CUhAAhKQgAQkIAEJSEACEpBA0wlofGh6CfD5JSABCUhAAhKQgAQkIAEJSEACHSag8aHDgI1eAhKQgAQkIAEJSEACEpCABCTQdAIaH5peAnx+CUhAAhKQgAQkIAEJSEACEpBAhwlofOgwYKOXgAQkIAEJSEACEpCABCQgAQk0ncD/B2+Mhee7O9TwAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hints of things to come: Eigenvalues and matrix structure\n", + "\n", + "From basic physical intuition, these coupled mass/spring systems *must* have purely imaginary eigenvalues if there is no damping/drag/friction! In a physics class, we would say that \"energy is conserved\": the oscillations cannot increase ($\\operatorname{Re}\\lambda>0$) or decrease ($\\operatorname{Re}\\lambda<0$) because there is no place else for the energy to go.\n", + "\n", + "And if there is drag, then the eigenvalues *must* have negative real parts: the oscillations must be *losing* energy, not gaining it.\n", + "\n", + "But these physical laws must arise *algebraically* somehow! There must be something in the *structure* of the matrices (the *pattern* of their entries) that guarantees it for any positive values of $k$, $m$, or $d$. This turns out to be an extremely important topic in linear algebra: deriving *general* facts about the eigenvalues of matrices from their structure (even though the specific values of the eigenvalues must be found by a computer).\n", + "\n", + "We've already seen this for Markov matrices: the fact that their columns summed to one guaranted a $\\lambda=1$ eigenvalue and other $|\\lambda|\\le 1$ ($<1$ for positive entries).\n", + "In the case of masses and springs, the physical properties of the normal modes turn out to be closely related to [real-symmetric matrices](https://en.wikipedia.org/wiki/Symmetric_matrix) $A=A^T$, which we will soon see have very special eigen-properties.\n", + "\n", + "Understanding this structure will allow us to analyze arbitrarily complicated networks of balls and springs as well as [many other wave/oscillation equations](https://math.mit.edu/~stevenj/18.369/wave-equations.pdf).\n", + "\n", + "Here is an illustration of a network of balls and springs by Prof. Johnson's daughter Ariella (age 11, 6 April 2022), who asked to contribute some artwork to his class:\n", + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A Note On Numerical Solution of ODEs\n", + "\n", + "Matrices and eigenvalues are a great way to understand linear ODEs. They can even be used to study *nonlinear* ODEs via, for example, [linear stability analysis](https://en.wikipedia.org/wiki/Linear_stability).\n", + "\n", + "However, if you want to get a *numerical* answer from an ODE, there is a completely different set of [techniques for numerically integrating ODEs](https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations) that I should mention. Such techniques have the advantage of being *extremely general*: they can handle time-varying and nonlinear problems with no difficulty, for example. (Interestingly enough, linear algebra also plays an important role in analyzing these methods.) An extremely powerful Julia package of numerical ODE methods is [DifferentialEquations.jl](https://github.com/JuliaDiffEq/DifferentialEquations.jl), but there are also nice packages in other languages." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "3e0a2497b908493f880708f85c6429d1", + "lastKernelId": "e6bd3247-5db8-4ea5-b626-96ff539aa9c2" + }, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.3" + }, + "widgets": { + "state": { + "b184d86c-9a1f-48ba-b955-0188b6a60745": { + "views": [ + { + "cell_index": 49 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/Orthogonal-Polynomials.ipynb b/notes/Orthogonal-Polynomials.ipynb new file mode 100644 index 00000000..f6c41e85 --- /dev/null +++ b/notes/Orthogonal-Polynomials.ipynb @@ -0,0 +1,998 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using Polynomials, PyPlot, QuadGK, LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Dot products of functions\n", + "\n", + "We can apply the Gram–Schmidt process to *any* vector space as long as we **define a dot product** (also called an **inner product**). (Technically, a continuous (\"complete\") vector space equipped with an inner product is called a **Hilbert space**.)\n", + "\n", + "For column vectors, the usual dot product is to multiply the components and add them up.\n", + "\n", + "But (real-valued) *functions* $f(x)$ also define a vector space (you can add, subtract, and multiply by constants). In particular, consider functions defined on the interval $x \\in [-1,1]$. The \"components\" of $f$ can be viewed as its *values* $f(x)$ at each point in the domain, and the obvious analogue of \"summing the components\" is the **integral**. Hence, the most obvious \"dot product\" of two functions in this space is:\n", + "\n", + "$$\n", + "f \\cdot g = \\int_{-1}^1 f(x) g(x) \\, dx\n", + "$$\n", + "\n", + "Such a generalized inner product is commonly denoted $\\langle f, g \\rangle$ (or $\\langle f | g \\rangle$ in physics).\n", + "\n", + "This satisfies the [key properties](https://en.wikipedia.org/wiki/Inner_product_space#Elementary_properties) of dot products that make linear algebra \"work\":\n", + "\n", + "* **symmetry**: $f \\cdot g = g \\cdot f$\n", + "* **linearity**: $f \\cdot (\\alpha g + \\beta h) = \\alpha (f\\cdot g) + \\beta (f \\cdot h)$\n", + "* **positivity**: $f \\cdot f = \\Vert f \\Vert^2 \\ge 0$, and $=0$ only if $f = 0$ ([almost everywhere](https://en.wikipedia.org/wiki/Almost_everywhere)).\n", + "\n", + "As long as the dot product has these properties, much of what we do in 18.06 will \"just work\" for functions too. **Gram–Schmidt will just work**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Orthogonal polynomials\n", + "\n", + "In particular, let us consider a subspace of functions defined on $[-1,1]$: **polynomials** $p(x)$ (of any degree).\n", + "\n", + "One possible basis of polynomials is simply:\n", + "\n", + "$$\n", + "{1, x, x^2, x^3, \\ldots}\n", + "$$\n", + "\n", + "(There are infinitely many polynomials in this basis because this vector space is **infinite-dimensional**.)\n", + "\n", + "Instead, let us apply Gram–Schmidt to this basis in order to get an **orthogonal basis of polynomials** known as the [Legendre polynomials](https://en.wikipedia.org/wiki/Legendre_polynomials)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Julia code\n", + "\n", + "I'll use the [Polynomials package](https://github.com/Keno/Polynomials.jl) to do polynomial arithmetic for me.\n", + "\n", + "However, I'll need to define a few extra methods to perform my dot products from above, and I also want to display (\"pretty print\") the polynomials a bit more nicely than the default." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "polydot (generic function with 1 method)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# compute the dot product ⟨p,q⟩ = ∫p(x)q(x) on [-1,1]\n", + "polydot(p::Polynomial, q::Polynomial) = integrate(p*q, -1,1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# force IJulia to display as LaTeX rather than HTML\n", + "Base.showable(::MIME\"text/html\", ::Polynomial) = false" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$3 + 4\\cdot x + 5\\cdot x^{2} + 6\\cdot x^{3}$" + ], + "text/plain": [ + "Polynomial(3 + 4*x + 5*x^2 + 6*x^3)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Polynomial([3,4,5,6])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$9 + 24\\cdot x + 46\\cdot x^{2} + 76\\cdot x^{3} + 73\\cdot x^{4} + 60\\cdot x^{5} + 36\\cdot x^{6}$" + ], + "text/plain": [ + "Polynomial(9 + 24*x + 46*x^2 + 76*x^3 + 73*x^4 + 60*x^5 + 36*x^6)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Polynomial([3,4,5,6])^2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gram–Schmidt on polynomials\n", + "\n", + "Now, let's apply Gram–Schmidt on the polynomials $a_i = x^i$ for $i = 0, 1, \\ldots$.\n", + "\n", + "Ordinarily, in Gram–Schmidt, I would normalize each result $p(x)$ by dividing by $\\Vert p \\Vert = \\sqrt{p \\cdot p}$, but that will result in a lot of annoying square roots. Instead, I will divide by $p(1)$ to result in the more conventional Legendre polynomials. **This is not an \"orthonormal\" basis because we have chosen a different normalization, but it is still an *orthogonal* basis.**\n", + "\n", + "That means that to get $p_i(x)$, I will do:\n", + "\n", + "$$\n", + "v_i(x) = a_i(x) - \\sum_{j=0}^{i-1} p_j(x) \\frac{p_j \\cdot a_i}{p_j \\cdot p_j}\n", + "$$\n", + "\n", + "We would get an ordinary orthnormal basis of polynomials with\n", + "\n", + "$$\n", + "q_i(x) = v_i(x) / \\Vert v_i \\Vert\n", + "$$\n", + "\n", + "but instead we will use the Legendre normalization\n", + "\n", + "$$\n", + "p_i(x) = v_i(x) / v_i(1)\n", + "$$\n", + "\n", + "\n", + "where I explicitly divide by $p_i \\cdot p_i$ in the projections to compensate for the lack of normalization.\n", + "\n", + "In Julia, I will use the special syntax `2 // 3` to construct the exact rational $\\frac{2}{3}$, etc. This will allow me to see the exact Legendre polynomials without any roundoff errors or annoying decimals." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$1$" + ], + "text/plain": [ + "Polynomial(1//1)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p0 = a0 = Polynomial([1//1])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$x$" + ], + "text/plain": [ + "Polynomial(x)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a1 = Polynomial([0, 1//1])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$x$" + ], + "text/plain": [ + "Polynomial(x)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p1 = a1 - p0 * polydot(p0, a1) // polydot(p0, p0)\n", + "p1 = p1 / p1(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0//1" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "polydot(p0, a1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Orthogonalization didn't change $x$, because $x$ and $1$ are already orthogonal under this dot product. In fact, any even power of $x$ is orthogonal to any odd power (because the dot product is the integral of an even function times an odd function).\n", + "\n", + "On the other hand, $x^2$ and $1$ are *not* orthogonal, so orthogonalizing them leads to a *different* polynomial of degree 2:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$x^{2}$" + ], + "text/plain": [ + "Polynomial(x^2)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a2 = Polynomial([0, 0, 1//1])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$-\\frac{1}{2} + \\frac{3}{2}\\cdot x^{2}$" + ], + "text/plain": [ + "Polynomial(-1//2 + 3//2*x^2)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p2 = a2 - p0 * polydot(p0, a2) // polydot(p0, p0) -\n", + " p1 * polydot(p1, a2) // polydot(p1, p1)\n", + "p2 = p2 / p2(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It quickly gets tiresome to type in these expressions one by one, so let's just write a function to compute the Legendre polynomials $p_0, \\ldots, p_n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "legendre_gramschmidt (generic function with 1 method)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function legendre_gramschmidt(n)\n", + " legendre = [Polynomial([1//1])]\n", + " for i = 1:n\n", + " p = Polynomial([k == i ? 1//1 : 0//1 for k=0:i])\n", + " for q in legendre\n", + " p = p - q * (polydot(q, p) // polydot(q,q))\n", + " end\n", + " push!(legendre, p / p(1))\n", + " end\n", + " return legendre\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6-element Vector{Polynomial{Rational{Int64}, :x}}:\n", + " Polynomial(1//1)\n", + " Polynomial(x)\n", + " Polynomial(-1//2 + 3//2*x^2)\n", + " Polynomial(-3//2*x + 5//2*x^3)\n", + " Polynomial(3//8 - 15//4*x^2 + 35//8*x^4)\n", + " Polynomial(15//8*x - 35//4*x^3 + 63//8*x^5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "L = legendre_gramschmidt(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's display them more nicely with LaTeX:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$1$" + ], + "text/plain": [ + "Polynomial(1//1)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/latex": [ + "$x$" + ], + "text/plain": [ + "Polynomial(x)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/latex": [ + "$-\\frac{1}{2} + \\frac{3}{2}\\cdot x^{2}$" + ], + "text/plain": [ + "Polynomial(-1//2 + 3//2*x^2)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/latex": [ + "$-\\frac{3}{2}\\cdot x + \\frac{5}{2}\\cdot x^{3}$" + ], + "text/plain": [ + "Polynomial(-3//2*x + 5//2*x^3)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/latex": [ + "$\\frac{3}{8} - \\frac{15}{4}\\cdot x^{2} + \\frac{35}{8}\\cdot x^{4}$" + ], + "text/plain": [ + "Polynomial(3//8 - 15//4*x^2 + 35//8*x^4)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/latex": [ + "$\\frac{15}{8}\\cdot x - \\frac{35}{4}\\cdot x^{3} + \\frac{63}{8}\\cdot x^{5}$" + ], + "text/plain": [ + "Polynomial(15//8*x - 35//4*x^3 + 63//8*x^5)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display.(L);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Key things to notice:\n", + "\n", + "* The polynomials contain *only even* or *only odd* powers of $x$, but not both. The reason is that the even and odd powers of $x$ are *already* orthogonal under this dot product, as noted above.\n", + "\n", + "* A key property of Gram–Schmidt is that the **first k vectors span the same space** as the **original first k vectors**, for any k. In this case, it means that $p_0, \\ldots, p_k$ span the same space as $1, x, \\ldots, x^k$. That is, the $p_0, \\ldots, p_k$ polynomials are an **orthogonal basis for all polynomials of degree k or less**.\n", + "\n", + "These polynomials are **very special** in many ways. To get a hint of that, let's plot them:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZhUZRfAf3diY7a7WJbu7kalSwEJRWkExEL0U7HFQFARW5ASFAQFFOmQlJDuru3unLrfH7M7sGywu8zs7ML7e555cO6c971n1pl7z5yUZFmWEQgEAoFAILiPUNhaAYFAIBAIBAJLIwwcgUAgEAgE9x3CwBEIBAKBQHDfIQwcgUAgEAgE9x3CwBEIBAKBQHDfIQwcgUAgEAgE9x3CwBEIBAKBQHDfIQwcgUAgEAgE9x3CwBEIBAKBQHDfIQwcgaCcWLJkCZIkceTIEVurYjUkSeL999+3tRplYsyYMVSrVs3WaliEGzduIEkSS5YsKde1AkFFQmVrBQQCgUBgWQICAjhw4AA1a9a0tSoCgc0QBo5AIChXMjMz0Wg0tlbjvsbe3p527drZWg2BwKaIEJVAUMG4fPkyI0aMwNfXF3t7e+rXr893331XQO7s2bP07NkTjUaDj48Pzz33HBs2bECSJHbt2pVPdvv27XTr1g1XV1c0Gg0dO3Zkx44d+WTef/99JEni7NmzPPnkk7i5ueHn58e4ceNISUnJJ5uamsozzzyDl5cXzs7O9O7dm0uXLhXQMW/PY8eOMWTIEDw8PMxeBVmW+f7772nWrBmOjo54eHgwZMgQrl27dte/Ud6+x48fZ/Dgwbi6uuLm5sbTTz9NXFxcPlmj0cjs2bOpV68e9vb2+Pr6MmrUKMLDw4s9R7du3ahXrx53ziOWZZlatWrRr18/4FZI5/PPP2fOnDlUr14dZ2dn2rdvz8GDBwvsu27dOtq3b49Go8HFxYUePXpw4MCBQt/fqVOnGDp0KG5ubnh6ejJt2jT0ej0XL16kd+/euLi4UK1aNWbPnp1vfWFhpitXrjB27Fhq166NRqMhKCiIAQMGcPr06bv+vePi4pg4cSLBwcHY29vj4+NDx44d2b59+13XCgS2Qhg4AkEF4ty5c7Ru3ZozZ87wxRdfsH79evr168eLL77IBx98YJaLioqia9euXLx4kR9++IGlS5eSlpbG888/X2DPX375hZ49e+Lq6srPP//MqlWr8PT0pFevXgWMHIDHH3+cOnXqsHr1at544w2WL1/Oyy+/bH5dlmUGDhzIsmXLeOWVV1i7di3t2rWjT58+Rb6vwYMHU6tWLX7//Xd+/PFHACZNmsTUqVPp3r07f/75J99//z1nz56lQ4cOxMTElOjvNWjQIGrVqsUff/zB+++/z59//kmvXr3Q6XRmmWeffZbXX3+dHj16sG7dOj788EM2b95Mhw4diI+PL3Lvl156iYsXLxb4G23atImrV6/y3HPP5Tv+3XffsW3bNubOncuvv/5KRkYGffv2zWccLl++nMceewxXV1dWrFjBwoULSUpK4qGHHmLfvn0FdBg2bBhNmzZl9erVPPPMM3z55Ze8/PLLDBw4kH79+rF27VoeeeQRXn/9ddasWVPs3yoyMhIvLy8+/fRTNm/ezHfffYdKpaJt27ZcvHix2LUjR47kzz//5N1332Xr1q0sWLCA7t27k5CQUOw6gcCmyAKBoFxYvHixDMiHDx8uUqZXr15ylSpV5JSUlHzHn3/+ednBwUFOTEyUZVmW//e//8mSJMlnz54tsB6Qd+7cKcuyLGdkZMienp7ygAED8skZDAa5adOmcps2bczH3nvvPRmQZ8+enU92ypQpsoODg2w0GmVZluVNmzbJgPzVV1/lk/v4449lQH7vvfcK7Pnuu+/mkz1w4IAMyF988UW+42FhYbKjo6P82muvFfk3un3fl19+Od/xX3/9VQbkX375RZZlWT5//rwMyFOmTMknd+jQIRmQ33zzTfOx0aNHyyEhIebnBoNBrlGjhvzYY4/lW9unTx+5Zs2a5r/H9evXZUBu3LixrNfrzXL//fefDMgrVqww7xcYGCg3btxYNhgMZrm0tDTZ19dX7tChQ4H3d+ffp1mzZjIgr1mzxnxMp9PJPj4+8uDBg83H8nRavHhxkX9DvV4va7VauXbt2vn+joWtdXZ2lqdOnVrkXgJBRUR4cASCCkJ2djY7duxg0KBBaDQa9Hq9+dG3b1+ys7PNIY/du3fTqFEjGjRokG+PJ598Mt/z/fv3k5iYyOjRo/PtZzQa6d27N4cPHyYjIyPfmkcffTTf8yZNmpCdnU1sbCwAO3fuBOCpp57KJzdixIgi39vjjz+e7/n69euRJImnn346n17+/v40bdq0QIitKO7UYdiwYahUKrOOef+OGTMmn1ybNm2oX79+oR6sPBQKBc8//zzr168nNDQUgKtXr7J582amTJmCJEn55Pv164dSqTQ/b9KkCQA3b94E4OLFi0RGRjJy5EgUiluXXmdnZx5//HEOHjxIZmZmvj379++f73n9+vWRJCmft0ylUlGrVi3zeYpCr9fzySef0KBBA+zs7FCpVNjZ2XH58mXOnz9f7No2bdqwZMkSPvroIw4ePJjPQyYQVFSEgSMQVBASEhLQ6/V88803qNXqfI++ffsCmEMqCQkJ+Pn5FdjjzmN5oZ4hQ4YU2HPWrFnIskxiYmK+NV5eXvme29vbA5CVlWU+t0qlKiDn7+9f5HsLCAgooJcsy/j5+RXQ6+DBg8WGjoo7Z55eeaGTvH/vPD9AYGDgXUMs48aNw9HR0RxW++6773B0dGTcuHEFZEvydytOF6PRSFJSUr7jnp6e+Z7b2dmh0WhwcHAocDw7O7vY9zJt2jTeeecdBg4cyN9//82hQ4c4fPgwTZs2NetYFCtXrmT06NEsWLCA9u3b4+npyahRo4iOji52nUBgS0QVlUBQQfDw8ECpVDJy5MgC+R15VK9eHTDdTAvLU7nzhuPt7Q3AN998U2RVTWGGUnF4eXmh1+tJSEjId1Mv7mZ3p7fD29sbSZLYu3ev2RC4ncKOFUZ0dDRBQUHm53fqlfdvVFQUVapUybc2MjLS/PcpCjc3N/ON/dVXX2Xx4sWMGDECd3f3Eul3O7frcieRkZEoFAo8PDxKvW9J+eWXXxg1ahSffPJJvuPx8fF3fT/e3t7MnTuXuXPnEhoayrp163jjjTeIjY1l8+bNVtNZILgXhAdHIKggaDQaHn74YY4fP06TJk1o1apVgUfeTbJr166cOXOGc+fO5dvjt99+y/e8Y8eOuLu7c+7cuUL3a9WqFXZ2dqXS8+GHHwbg119/zXd8+fLlJd6jf//+yLJMREREoTo1bty4RPvcqcOqVavQ6/U89NBDADzyyCOA6eZ+O4cPH+b8+fN069btrud48cUXiY+PZ8iQISQnJxeayF0S6tatS1BQEMuXL89XmZWRkcHq1avNlVXWQpKkAobjhg0biIiIKNU+VatW5fnnn6dHjx4cO3bMkioKBBZFeHAEgnLmn3/+4caNGwWO9+3bl6+++opOnTrRuXNnnn32WapVq0ZaWhpXrlzh77//5p9//gFg6tSpLFq0iD59+jBjxgz8/PxYvnw5Fy5cADDneDg7O/PNN98wevRoEhMTGTJkCL6+vsTFxXHy5Eni4uL44YcfSqV/z5496dKlC6+99hoZGRm0atWKf//9l2XLlpV4j44dOzJx4kTGjh3LkSNH6NKlC05OTkRFRbFv3z4aN27Ms88+e9d91qxZg0qlokePHpw9e5Z33nmHpk2bMmzYMMBkVEycOJFvvvkGhUJBnz59uHHjBu+88w7BwcH5qsOKok6dOvTu3ZtNmzbRqVMnmjZtWuL3eTsKhYLZs2fz1FNP0b9/fyZNmkROTg6fffYZycnJfPrpp2Xat6T079+fJUuWUK9ePZo0acLRo0f57LPPCni27iQlJYWHH36YESNGUK9ePVxcXDh8+DCbN29m8ODBVtVZILgXhIEjEJQzr7/+eqHHr1+/ToMGDTh27Bgffvghb7/9NrGxsbi7u1O7dm1zHg6YcjZ2797N1KlTmTx5MhqNhkGDBjFjxgxGjx6dL+Tw9NNPU7VqVWbPns2kSZNIS0vD19eXZs2aFUi+LQkKhYJ169Yxbdo0Zs+ejVarpWPHjmzcuJF69eqVeJ958+bRrl075s2bx/fff4/RaCQwMJCOHTvSpk2bEu2xZs0a3n//fX744QckSWLAgAHMnTs3n1fqhx9+oGbNmixcuJDvvvsONzc3evfuzcyZMwvkzRTF8OHD2bRpU5m9N3mMGDECJycnZs6cyfDhw1EqlbRr146dO3fSoUOHe9r7bnz11Veo1WpmzpxJeno6LVq0YM2aNbz99tvFrnNwcKBt27YsW7aMGzduoNPpqFq1Kq+//jqvvfaaVXUWCO4FSZbv6GIlEAgqLRMnTmTFihUkJCSUOvRUmXj//ff54IMPiIuLu2sejSXIq3K6ceMGarXa6ucTCAT3jvDgCASVlBkzZhAYGEiNGjVIT09n/fr1LFiwgLfffvu+Nm7Ki5ycHI4dO8Z///3H2rVrmTNnjjBuBIJKhDBwBIJKilqt5rPPPiM8PBy9Xk/t2rWZM2cOL730kq1Vuy+IioqiQ4cOuLq6MmnSJF544QVbqyQQCEqBCFEJBAKBQCC47xBl4gKBQCAQCO47hIEjEAgEAoHgvkMYOAKBQCAQCO47HsgkY6PRSGRkJC4uLgVayAsEAoFAIKiYyLJMWloagYGB+YbWFsYDaeBERkYSHBxsazUEAoFAIBCUgbCwsLt24X4gDRwXFxfA9AdydXW1sTYCgUAgEAhKQmpqKsHBweb7eHE8kAZOXljK1dVVGDgCgUAgEFQySpJeIpKMBQKBQCAQ3HcIA0cgEAgEAsF9hzBwBAKBQCAQ3HcIA0cgEAgEAsF9hzBwBAKBQCAQ3HcIA0cgEAgEAsF9hzBwBAKBQCAQ3HcIA0cgEAgEAsF9hzBwBAKBQCAQ3HcIA0cgEAgEAsF9h1UNnD179jBgwAACAwORJIk///zzrmt2795Ny5YtcXBwoEaNGvz4448FZFavXk2DBg2wt7enQYMGrF271graCwQCgUAgqKxY1cDJyMigadOmfPvttyWSv379On379qVz584cP36cN998kxdffJHVq1ebZQ4cOMDw4cMZOXIkJ0+eZOTIkQwbNoxDhw5Z620IBAKBQCCoZEiyLMvlciJJYu3atQwcOLBImddff51169Zx/vx587HJkydz8uRJDhw4AMDw4cNJTU1l06ZNZpnevXvj4eHBihUrSqRLamoqbm5upKSkWHTYptFo5EZ0NBHx0bSs18Ri+woEAoFAUFnIzshk/6/f0fKRnvjXb1GiwZglpTT37wo1TfzAgQP07Nkz37FevXqxcOFCdDodarWaAwcO8PLLLxeQmTt3bpH75uTkkJOTY36emppqUb3z2HxoH9d/1pOmTmGkUwQixUkgEAgEDxYyz6SuwyEhkkv7TjBq3nd4u3nbRJMKdQeOjo7Gz88v3zE/Pz/0ej3x8fHFykRHRxe578yZM3FzczM/goODLa880LhGfQCcdS7YOV20yjkEAoFAIKiIuJDJt+qv8cpOAECBGo3CdmZGhfLgAAVcWXkRtNuPFyZTnAts+vTpTJs2zfw8NTXVKkZOkI8XstqApFPyUJ1Q5g6aavFzCAQCgUBQ0VBEHcdu7QQSU0NZkT0QiENtr8HR2cNmOlUoA8ff37+AJyY2NhaVSoWXl1exMnd6dW7H3t4ee3t7yyt8BwqFAg9fJ5IjsomMjOVqynka+zS2+nkFAoFAILAJsgyH5sHWt8GoY6V/VexO26NVgIu7l0Xzb0pLhQpRtW/fnm3btuU7tnXrVlq1aoVarS5WpkOHDuWmZ3F4+bkA4JrjzZKzS2yrjEAgEAgE1iIrCVY+DZtfB6OOrLp92aB0wahQAuAWGGhT9axq4KSnp3PixAlOnDgBmMrAT5w4QWhoKGAKHY0aNcosP3nyZG7evMm0adM4f/48ixYtYuHChbz66qtmmZdeeomtW7cya9YsLly4wKxZs9i+fTtTp0615lspMW4+GtO/Wd5sD91OWFqYjTUSCAQCgcDChB+BH7vAhfWgtIM+s/mr2aP430hBm2tZuAf521RFqxo4R44coXnz5jRv3hyAadOm0bx5c959910AoqKizMYOQPXq1dm4cSO7du2iWbNmfPjhh3z99dc8/vjjZpkOHTrw22+/sXjxYpo0acKSJUtYuXIlbdu2teZbKTFuPo4AhFAbo2xk2bllNtZIIBAIBAILIcuw/xtY1AtSQsGjGozfiqH1BH4+t5Q64QoMkhYAzyBfm6pq1Rychx56iOLa7CxZsqTAsa5du3Ls2LFi9x0yZAhDhgy5V/WsQp6B460zueb+vPInU5pOwd3B3YZaCQQCgUBwj2Qmwp/PwqXNpucNB8GAr8DBje03thCeHk7tOB9uumUC4BFgm/LwPCpUDs79gGuugaNLhvru9cnSZ7Hy4krbKiUQCAQCwb0QehB+7GQybpT20G8ODFkMDm7IssySM0tQ6WW80jyRjRkAOLt72lRlYeBYGGd3e5QqBUajzIjgMQAsv7CcHENO8QsFAoFAIKhoGI2wdw4s7gupEeBZEyZsh9bjIbdC6kjMEc4knKFunJpse09AD4DG3d12eiMMHIsjKSRcvR0AaGrfCn8nfxKzE/n76t821kwgEAgEglKQEQ/Lh8KOD0A2QOOhMGk3BOQfRZRXMTwwqz7pDm4AKFT22Dk4lrfG+RAGjhXIy8PJSNAxsv5IAH4++zNG2WhLtQQCgUAgKBk39plCUle2g8oRHv0GBv8E9i75xK4kXWFP+B4kJFrEash0MFUSOzhZbs5jWREGjhXIKxVPic3k8TqP46J24UbqDXaH7baxZgKBQCAQFIPRALtnw88DIC0KvOvCM/9Ai1HmkNTt5HlvugU/AmcukmVvimBo3GzXwTgPYeBYgbxE45S4LJzUTgytOxRANP4TCAQCQcUlLQaWDYKdH4NshGZPwcSd4NegUPGYjBg2XN8AwBivvujjEshRmYqzXbxsm2AMwsCxCm6+JgMnNT4LgKfqP4VKoeJY7DFOxZ2ypWoCgUAgEBTk2i5TSOr6blBrYOCPMPB7sHMqcsmvF35Fb9TTwrcFIdczybb3wIjpvufmY9sScRAGjlVw877lwZFlGV+NL/2q9wOEF0cgEAgEFQijAf75GJYOhIxY8G0AE3dBsyeLXZauTef3i78DMLbRWLKOHiPL0QdyS8SdPESI6r7ExcsBSQK91khmqqmj4+iGowHYEbqDsFQxvkEgEAgENiY1Cn5+FPbMBmRoMdqUb+NT965L/7j0B+m6dKq7VadLlS5kHj1KlsYH2Whq8ufkLgyc+xKlSoGLlynRKiXW5K6r7VGbTkGdMMpGfj73sy3VEwgEAsGDzpXt8GNHuLkP7Jxh8AJ49GtQ3720W2fQsey8aQzRmIZjMCYlo712jUxHH2Q514MjDJz7F9fbwlR5jGs0DoC1l9cSnxVvE70EAoFA8ABj0MP29+GXxyEzAfwaw8Td0GRoibfYdGMTsZmxeDt6079Gf7JyxyvleFczdzEWBs59jJtvbql4XKb5WCu/VjTxaYLWqOWXc7/YSjWBQCAQPIikhMOSfrDvS9Pz1hNMXYm9a5V4C1mWWXxmMWAqoLFT2pF55CgAmU7+IJvuebbuYgzCwLEaeYnGqbd5cCRJYkKjCQCsvLiSNG2aTXQTCAQCwQPGpS2mKqmwg2DvCkOXQL8vQO1Qqm32RuzlSvIVNCoNw+oOAyDz6FFkJDKMEmAasK1xdbes/mVAGDhWIq9U/PYQFUDX4K7UdKtJui5dDOEUCAQCgXUx6GDLW7B8GGQlQUAz07iFhoPKtN3C0wsBGFJnCK52rhgzMsg+d44ce3cMBpP3xtHFFWVuPxxbIgwcK+HmU7iBo5AUjG88HoBl55aRrc8ud90EAoFA8ACQdBMW9YYD35qet30Wxm8Fzxpl2u5ozFGOxR5DrVCbK4OzTp0Cg4GcKvUqVAUVCAPHauR1M87J1JOdrsv3Wu/qvQl0CiQxO5G/rvxlC/UEAoFAcD9zfj3M6wwRR8DBDYb/Cn0+BZV9mbdccHoBAI/VegxfjS+AOf9GX6uZuQeORhg49zdqOyXOHqYPUnJsZv7XbrN+F59djN6oL3f9BAKBQHAfos+BTa/DyqcgOwWCWsGkvVC//z1teyHxAvsi9qGQFIxrOM58PPOoycDJ8alRoUrEQRg4ViWvkio5JrPAa4NqD8LTwZOI9Ai23NhS3qoJBAKB4H4j8Ros7AmHfjQ9b/88jN0EHiH3vHWe96ZXSC+CXYMBkHU6sk6eBCDL3kuEqB4k3P1yDZzYggaOo8qRp+o/BcDCMwuRZblcdRMIBALBfcTZtTCvK0SdAEcPeHIl9PoYVHb3vPWNlBtsvbEVwJxDCpB9/jxyVhYKNzdSM6VbHhw393s+pyUQBo4Vcc+tpEqOySr09SfqPYGT2onLSZfZE76nPFUTCAQCwf2ALhvWT4Pfx0BOKgS3g8n7oG5vi51i8dnFyMh0qdKFup63xjjk5d84Nm9Balz2rTlUwoNz/+NeSLO/23G1c2VYHVMfgYVnFpabXgKBQCC4D0i4Cgu7w5Hc+0enaTBmPbhVsdgpojOiWXd1HQDPNH4m32t5+Tc0aYNBb0Q2N/kTBs59jzlEFZNZZAhqZIORqBVqjsce52jM0fJUTyAQCASVldN/wLwuEH0aNN7w9Gro/h4o1RY9zc9nf0Zv1NPSryXNfJuZj8tGI1m5Bo4upGHuQZGD88Dg4u2ApJDQa41kJGsLlfHR+PBYrceAWw2UBAKBQCAoFF0WrHsBVo8HbTqEdDKFpGp1t/ipkrKTWH15NVDQe6O9fh1DcjKSgwNZGl9kWY9sNKVjCAPnAUCpVOBqnipeeJgKYFzDcSgkBXsj9nIx8WJ5qScQCASCykTcRfjpETi2FJCg6+sw6i9wDbDK6ZZfWE6WPov6nvXpENgh32vm/JsmTUhJ0IJsMm4UShUOTs5W0ae0CAPHyhRXSZVHsGswvUJ6ASIXRyAQCASFcGI5zH8IYs+Bky+M+hMefhOU1hmJkKHL4NfzvwKmyilJkvK9nnn0CACaVi1JicsyTxHXuLsjKSqGaVExtLiPcTNXUhVt4ACMa2xqnLTlxhZupt60ul4CgUAgqARoM2Dts/Dns6DLhOpdTSGpGg9Z9bS/X/ydNG0a1Vyr0b1q/vCXLMtkHjEZOI4tW5ryTPMqqNwqRngKhIFjdfIqqZJjCy8Vz6OeZz26VOmCUTaaGyoJBAKB4AEm5hzMfxhOLgdJAQ+/BSPXgoufVU+bY8jh53M/AzCu0TiUCmW+13UREegjo0ClwqFJM5MHR04HwNnTy6q6lQZh4FiZvBBVcTk4eUxqMgmA9VfXE5EeYVW9BAKBQFBBkWVTns1PD0P8RXAJgNF/Q9fX4A5jwxr8deUv4rPi8dP40b9GwREPmYf+A8CxcWPSsySMBhkJkwdHGDgPEHkhqpS4LIwGY7GyTXya0D6gPXpZLyqqBAKB4EEkJw3WTDRVSumzoWY3U0iqWqdyOb3OqGPRmUUAjGk4BnUhZeeZ/5kMHE2bNub0C7WdKUrh7OFZLnqWBGHgWBkXDweUKgVGg0xaYs5d5Sc1NXlx/rzyJ9EZ0dZWTyAQCAQVhejTpkTi06tAUkK39+CpP8DJu9xU2HBtAxHpEXg6eDK49uACr8uyTMbhPAOntdnAUShM/woD5wFCUki3Eo1LEKZq6deSVn6t0Bl1LD6z2NrqCQQCgcDWyDIcXgg/dYOEK+AaBGM3QudpUI4VSXqjnp9O/QTA6Iaj0ag1BWTM+TdqNZrmzUnKNXCMhgc0B+f777+nevXqODg40LJlS/bu3Vuk7JgxY5AkqcCjYcOGZpklS5YUKpOdnV0eb6fUmEc2lMDAgVtenNWXVxOfFW81vQQCgUBgY7JT4I+xsGEaGHKgTm9TSKpqu3JXZfONzYSmheJu784TdZ8oVCbz0CHAlH+j0GhIyTVwdDmpwAPmwVm5ciVTp07lrbfe4vjx43Tu3Jk+ffoQGhpaqPxXX31FVFSU+REWFoanpydDhw7NJ+fq6ppPLioqCgcHB2u/nTLh7lf80M07aevflqY+Tckx5LDkzBIraiYQCAQCmxF53DQB/OxaUKig58fw5G+gKX8jwWA0MP/UfABGNRhVqPcGbs+/aQ1AUkwmsqxDl52XZFx+4bS7YXUDZ86cOYwfP54JEyZQv3595s6dS3BwMD/88EOh8m5ubvj7+5sfR44cISkpibFjx+aTkyQpn5y/v7+130qZcfO9e7O/25EkyVxRterSKhKzE62mm0AgEAjKGVmGQ/NgYU9Iug5uVWHcFujwPNzRUK+82HZzG9dTruNi58KT9Z4sVEaWZTL+OwyAU5s2aLP0ZKZozT1wVGo77J2cyk3nu2FVA0er1XL06FF69uyZ73jPnj3Zv39/ifZYuHAh3bt3JyQkJN/x9PR0QkJCqFKlCv379+f48eNF7pGTk0Nqamq+R3lS2hAVQKegTjT0akiWPotl55ZZSzWBQCAQlCdZSbDyadj0Ghi0UK8/TN4DVVrZTCWjbGTeqXmAaQC0s13hoxZ04eHoo0z5N47Nmpl/tNs5mNJDnD29CnQ8tiVWNXDi4+MxGAz4+eVvSuTn50d09N0rhKKioti0aRMTJkzId7xevXosWbKEdevWsWLFChwcHOjYsSOXL18udJ+ZM2fi5uZmfgQHB5f9TZWBvF44qQnZ6HWGEq2RJImJTSYCsOLCClJyUqymn0AgEAjKgfAjpgngF9aDQg29Z8HwX8DRtt1/d4Tu4EryFZzVzjxV/6ki5fLCU3n5N0nRJgPH0VkHgFMFyr+BckoyvtOik2W5RFbekiVLcHd3Z+DAgfmOt2vXjqeffpqmTZvSuXNnVq1aRZ06dfjmm28K3Wf69OmkpKSYH2FhYWV+L2XB0UWNvUYFMqTcpaPx7TwU/BC1PWrnmwkiEAgEgkqGLMP+b2FRL0gOBY9qMH4rtJtss5BUHkbZyI8nfwTgqfpP4WrnWqTsnfk3eSXidg65PXAqUAUVWNnA8fb2RqlUFvDWxMbGFvDq3IksyyxatIiRI0diZ2dXrKxCoaB169ZFenDs7e1xdXXN9yhPJEnCw9/kxcmzeEuCQlKYvTi/nP+FdG26VfQTCAQCgZXITIQVT8DWt8CohwYDYdIeCGpha80A2BW2i0tJl9CoNIxsMLJIuTvzb4DbeuBUvCZ/YGUDx87OjpYtW7Jt27Z8x7dt20aHDh2KWGVi9+7dXLlyhfHjx9/1PLIsc+LECQICrDMy3hK4+5sSr5KiM0q1rkfVHlR3q06aNo0VF1ZYQzWBQCAQWIPQQ/BjZ7i0GZT20O8LGLoEHNxsrRlgunfm5d6MqD8CN/ui9boz/wYw98CRjRWvBw6UQ4hq2rRpLFiwgEWLFnH+/HlefvllQkNDmTx5MmAKH40aNarAuoULF9K2bVsaNWpU4LUPPviALVu2cO3aNU6cOMH48eM5ceKEec+KiIdf6T04AEqFkmcaPwPA0nNLydSVbr1AIBAIyhmjEfZ9CYv7QGo4eNaECduh9QSbh6RuZ2/EXs4lnMNR5Vis9wYK5t/IRtncA0dfAXvgAKisfYLhw4eTkJDAjBkziIqKolGjRmzcuNFcFRUVFVWgJ05KSgqrV6/mq6++KnTP5ORkJk6cSHR0NG5ubjRv3pw9e/bQJtdtVhG5FaIqnQcHoE/1Pvxw8gfC0sJYdXEVYxqNsbB2AoFAILAIGfGwdhJc2W563ngo9P8S7F1sq9cdyLLMvJMm783wusPxdCjeOMnIbfCXl3+TnpyDXmdEoZDISk8CKp4Hx+oGDsCUKVOYMmVKoa8tWbKkwDE3NzcyM4v2VHz55Zd8+eWXllKvXPDIDVElx2QiG2UkRcmteJVCxTONn+Hd/e+y+OxihtUdVmQTJoFAIBDYiBv/wurxkBYFKgfo+xk0H1mhvDZ5HIg8wKn4U9gr7RndcHSxsrIsk1lE/o2LtwMJ13MNHI+KZeCIWVTlhKu3AwqlhF5rJD357kM372RAzQEEuwSTmJ0ocnEEAoGgImE0wO7P4Of+JuPGuw48sxNajKqQxo0sy/xw0tRsd2idoXg7Ft99WBcWhj46Ol/+TZ6B4+qlQK813dOcPCtWiEoYOOWEQqkwdzQuS5hKpVAxuakpx2jJ2SVk6Eq/h0AgEAgsTHos/DIYdn4EshGajoCJu8Cvga01K5L/ov/jRNwJ7BR2jG009q7yGQcPArfyb+BWgrHGRQuAg5Mzajt7K2lcNoSBU46Y83CiypYo3Ld6X6q5ViM5J5nl55dbUjWBQCAQlJZru+CHjqZ/1RoY+AMM+gHsKs64gjuRZZlvj38LwON1HsdX43vXNZm5Bo5T+/bmY3keHPVtXYwrGsLAKUfMlVQxZTNw7vTipGnTLKabQCAQCEqI0QA7P4GlAyEjFnwbmEJSzUbYWrO7sj9yPyfiTmCvtGdC4wl3lZeNRjIO5Bk4tyacJ0WZoghKlakHTkXrYgzCwClX8jw4yWUIUeXRu1pvarjVIFWbKrobCwQCQXmTGgVLH4PdswDZlGczYQf41rO1Znfldu/NsLrDSuS9ybl0CUNSEpJGg2OTJgBos/WkJ+Xmksp5U8SFB+eBxiMgr9lf2XvZKBVKnm36LABLzy4lVVu+g0MFAoHggeXKdvixE9zYC3bOMHgBPPoN2FWOqtbd4bs5k3AGR5Uj4xvdvYkuQMb+AwBoWrdCyp0qYJ5B5WpHdnoyUPEqqEAYOOVK3tDNzFQtOZm6Mu/Ts1pParnXIk2XJiaNCwQCgbUx6GH7B/DL45AZD36NYeJuaDLU1pqVGFmW+e7EdwA8We9JvBxLZpBkHDAZOE7tbuXf5BXKePpryEhKAIQH54HHzkGFk7spy7yseThgmlGV58VZdm6ZmDQuEAgE1iIlwlT+vW+O6Xmr8aauxN61bKtXKdkRuoMLiRfQqDSMaTimRGtkrZbMI0cAcOpwm4GTWyjjEeBEemKugSNycAT3WkmVR/eQ7tTxqEOGLoOfz/5sCdUEAoFAcDuXtphCUqEHwN4VhiyG/nNA7WBrzUqFUTaavTdPN3gaDwePEq3LOnkSOSsLpZcX9rVrm48n5iYYe/g7kZ6UCAgPjoBblVTJMffWx0YhKZjSzNQd+tfzv5KUnXTPugkEAoEAMOhg69uwfBhkJUJAM5i0GxoNtrVmZWLLjS1cSb6Ci9qFUQ0Kzn4sCnN4qm1bJMUtcyEvROXm50BGcl4XY+HBeeC5NVX83odmPhL8CPU965Opz2TJ2SX3vJ9AIBA88CSHmoZk7v/G9LztZBi/FTxr2FavMmIwGvj+xPcAjGo4qtiJ4XdiLg+/LTyl1xlIjTOVhjs66ZGNRiRJgcbd3XJKWwhh4JQzHgFlmypeGJIkmb04Ky6sICEr4Z73FAgEggeWCxtMIanww+DgBsN/gT6zQFWxOvSWho3XN3Ij9QZu9m48Xf/pEq8zpKeTdeoUkL/BX0psFrIMdo4qDDpTFa+TuzsKhdKyilsAYeCUMx5+Jg9OSlwWBr3xnvfrWqUrDb0akqXPEl4cgUAgKAt6LWx6A34bAdkpENQSJu2F+gNsrdk9oTPqzDOnxjQcg7Odc4nXZv53GAwG1FWrog4KMh/Py7/xDNCQUYHzb0AYOOWOk7sddg5KZKNsbnV9L9zuxfntwm/EZcbd854CgUDwwJB4HRb1hEMmQ4D2z8PYzeARYlu9LMD6q+sJSwvD08GTEfVK12U542Bu/s1t3hu41cHYw9+J1HjT/cbFy8cC2loeYeCUM5Ik4Rlo8uLkWcL3SuegzjT1aUq2IZt5p+ZZZE+BQCC47zn7J8zrApHHwdEDnvwNen0MKjtba3bP6Aw6fjz5IwDjGo1Doy5dM8LMA4UbOIm3lYinJeQaON7CwBHk4pnb0Tgx0jIGjiRJvNTiJQBWX1pNWFqYRfYVCASC+xJdNmx4BX4fDTmpENwWJu+Dun1srZnFWHtlLZEZkXg7ejOs7rBSrdXFxpJz+QpIEpq2bfK9lldB5eGvIS0hHgAXL2/LKG1hhIFjAzwDTXFQS3lwAFr7t6Z9QHv0sp4fTvxgsX0FAoHgviLhKizsDocXmJ53ehnGbAC3KrbVy4Jk62958yc0noCjyrFU6zMPHQLAoX59VB63euYYDUZzaoVngBNpIkQluBNLe3DyyPPirL+2nstJly26t0AgEFR6Tv9hCklFnwaNFzy1Grq/D0q1rTWzKCsvriQ2MxZ/J3+G1BlS6vV586duLw8HSI3PxmiQUdkpcPF0EB4cQUHyhm6mxGVh0N17JVUeDb0b0iOkBzIy3xz/xmL7CgQCQaVGlwXrXoTV40GbDiEdTSGp2t1trZnFSdOm8dPpnwCY0nQK9srSlbjLskzG/v0AaNrdmX9zK8FYlo2k586hchU5OII8nNztsHNUIRvle5pJVRjPN3sehaRgZ9hOTsadtOjeAoFAUOmIuwQ/dYNjPwMSdHkNRq0D10Bba2YVlpxdQkpOCjXcajCgZunL3HMuX0YfE4Nkb4+mVct8r92ef5OelIhsNKJQKitkkz8QBo5NkCTpVpgqKt2ie9dwr8GjNR8F4JtjwosjEAgeYE6sgPldIfYsOPnCyLXwyFugVNlaM6sQnxXPsnPLAHix+YuoFKV/nxn7/gVA06YNCof8M7fMHpwAJ3N4ytnTq0I2+QNh4NgMc6m4hfNwAJ5t+ixqhZpD0Yc4EHnA4vsLBAJBhUabAX9OgT8ngy4TqncxhaRqPmxrzazK/FPzydJn0di7MY9UfaRMe2Ts2wuAc6eOBV7LGxLt6X9biXgFTTAGYeDYDGslGgMEOgeaywK/PvY1sixb/BwCgUBQIYk9Dz89Aid+BUkBD78FI/8EFz9ba2ZVwtPC+f3S7wBMbTEVSZJKvYcxM5PMw0cAcOrcOf9rRvlWF+PA2yuoKmaCMQgDx2ZYutnfnTzT+BkcVY6cSTjDjtAdVjmHQCAQVBhkGY4thfkPQ9wFcPY35dp0fQ0qaAjFknx/4nv0Rj0dAjvQJqDN3RcUQubhw8g6HarAAOyqV8/3WmpuUYxKrcDVx/FWBVUFTTAGYeDYjDwDJzUuC73OYPH9vRy9GNlgJADfHP8Gg9Hy5xAIBIIKQU4arJkI614AfRbUfMQUkqre+e5r7wMuJV1i/bX1ALzY4sUy75O+dx8Azp06F/AA5UUbPAKcUCgkc4jKVYSoBHeicbXDXqNClrHITKrCGNNwDK52rlxLuWb+8AsEAsF9RfRpmP8QnF4FkhK6vWfqb+NccW+8luabY98gI9MzpCcNvRqWeZ+MfSYDx6mQ/JuESFNBjFfej/O8EJW3CFEJ7iBfJZUV8nAAXOxcGN94PGByX2oNWqucRyAQCModWYYji0wl4AlXwDXI1JG48zRQPDi3tuOxx9kVvgulpOT55s+XeR9teDjaGzdAqSwwfwogISIv/8bUif9Wk7+Ka0g+OJ+CCoiHFSup8niy3pP4OPoQmRFpTkATCASCSk12KvwxFta/DIYcqN0LJu2FkII35vsZWZaZe3QuAANrDaS6W/XiFxRDnvfGsXkzlC4uBV5PzPPgBDmh12rJSk0BRJKxoAhu9cKxnoHjqHJkctPJAMw7OY90rWX77ggEAkG5EnnCNG7h7FpQqKDnR6Yp4E5ettas3NkbsZdjscewV9qbr/Nl5Vb+TacCr+l1BpJjswCTByct0eS9Udnb4+Bc0BiqKAgDx4ZYsxfO7QyqPYhqrtVIykli0ZlFVj2XQCAQWAVZhkPzYWEPSLoOblVh7Gbo8MIDFZLKwygb+frY1wCMqDcCfyf/Mu8la7VkHjwIgFOngonZyTGZyEYZe40KJ3e7fEM2y1KOXl48eJ+KCkSeByclPgud1npVTmqFmqktpwKw7NwyYjJirHYugUAgsDhZybBqJGz6Hxi0UK8/TN4Dwa1trZnN2HR9ExeTLuKsdmZco3H3tFfmiRMYMzJQenri0KB+gddv5d84IUlShR+ymUe5GDjff/891atXx8HBgZYtW7J3794iZXft2oUkSQUeFy5cyCe3evVqGjRogL29PQ0aNGDt2rXWfhsWR+Nqh6OLGmRIsmKYCuCR4Edo4duCbEM23534zqrnEggEAosRfhTmdYbzf4NCDb1nwfBfwNHD1prZjBxDjtl7M7bRWNwd3O9pv4zc8JRTx45IhXjDzPk3eQnGuR6cijpkMw+rGzgrV65k6tSpvPXWWxw/fpzOnTvTp08fQkNDi1138eJFoqKizI/atWubXztw4ADDhw9n5MiRnDx5kpEjRzJs2DAOHTpk7bdjUSRJwivI9IGJD7dubowkSUxrNQ2Av67+xaWkS1Y9n0AgENwTsgwHvoNFvSA5FDyqwfit0G4yVOCwSHmw/PxyIjMi8dX4mvud3Qvp/+bl3xQsD4dbHhyvoNwS8YSK38UYysHAmTNnDuPHj2fChAnUr1+fuXPnEhwczA8//FDsOl9fX/z9/c0PpfJWJ8q5c+fSo0cPpk+fTr169Zg+fTrdunVj7ty5Vn43lifPwEmIsH7yb1OfpvQI6YFRNvLl0S+tfj6BQCAoE5mJsOJJ2PImGHXQ4DGYtAeCWthaM5uTnJ3MT6d+AuCF5i/gqHK8p/308fHknDsPmDw4hZHXA6cylYiDlQ0crVbL0aNH6dmzZ77jPXv2ZP/+/cWubd68OQEBAXTr1o2dO3fme+3AgQMF9uzVq1eRe+bk5JCamprvUVEoTwMHTDNKVJKKfRH7OBh1sFzOKRAIBCUm9BD82BkubQKlPfT7Aob+DA5uttasQjDv1DzSdGnU9ajLgBoD7nm/9NzycPsG9VEV0rRPm6UnPTEHuFUYUxnmUIGVDZz4+HgMBgN+fvmHnPn5+REdHV3omoCAAObPn8/q1atZs2YNdevWpVu3buzZs8csEx0dXao9Z86ciZubm/kRHBx8j+/McnhXyTVwwjPKZShmVdeq5kGcc47MwSgbrX5OgUAguCtGI+ybC4v7QGo4eNaECduh9YQHPiSVR2hqKL9d/A2Aaa2mobTAjK30XbsBcO7atdDXE3KrfJ3c7XFwUgPcmiRewXNwVOVxkjvLyGRZLrK0rG7dutStW9f8vH379oSFhfH555/TpUuXMu05ffp0pk2bZn6emppaYYwcjwANkgTZGToyU7Q4udtb/ZyTmk5i3dV1nE88z8brG+lfo7/VzykQCARFkhEPayfDlW2m542GwIC5YF9xe6zYgrnH5qI36ukY1JEOgR3ueT9ZqzU3+HN56KFCZRLvGNGQk5mBNsvUE6ciz6ECK3twvL29USqVBTwrsbGxBTwwxdGuXTsuX75sfu7v71+qPe3t7XF1dc33qCio1Erc/TQAxJdTmMrTwdM8wuGbY9+QY8gpl/MKBAJBAW78Cz92Mhk3KgcY8BU8vkAYN3dwIvYE225uQyEpmNZy2t0XlIDMY8cwpqebysMbNy5UxlwiHpS/gsrByRm1g4NF9LAWVjVw7OzsaNmyJdu2bct3fNu2bXToUHLr8/jx4wQEBJift2/fvsCeW7duLdWeFQkvc5iq/LoMP1X/KXw1vkRmRPLbhd/K7bwCgUAAmEJSez6Dn/tDWhR414Fn/oGWY0RI6g5kWebzI58DppEMdTzqWGTf9J27AFN4qrDycCjowaksFVRQDiGqadOmMXLkSFq1akX79u2ZP38+oaGhTJ5sais9ffp0IiIiWLp0KWCqkKpWrRoNGzZEq9Xyyy+/sHr1alavXm3e86WXXqJLly7MmjWLxx57jL/++ovt27ezL9fVVtnwCnLmypHYcks0BtMIh+ebPc+7+99l3ql5DKw1EDd7kcQnEAjKgfRYWDMRruUWkDR9Evp+DvbOttWrgrI9dDsn407iqHLkuWbPWWzf9N25+TdFhKdkWTa3MMkriEmNjQXA1bfsnZPLC6sbOMOHDychIYEZM2YQFRVFo0aN2LhxIyEhIQBERUXl64mj1Wp59dVXiYiIwNHRkYYNG7Jhwwb69u1rlunQoQO//fYbb7/9Nu+88w41a9Zk5cqVtG3b1tpvxyrcqqSybrO/O3m05qMsO7+My0mX+enUT7za+tVyPb9AIHgAubYb1jwD6TGg1pgMm+ZP2VqrCovOoDMP1BzdcDS+Gl+L7Jtz/bpperhajVPHwqMf6Uk55GTqUSikW53340yd8N18LKOHNSmXJOMpU6YwZcqUQl9bsmRJvuevvfYar7322l33HDJkCEOGDLGEejYnr3lSUnQGBr0Rpap8JmgoFUqmtZzGs9ufZfmF5QyvN5xgl4qRfC0QCO4zjAbYPRt2zwJk8KkPQ5eAbz1ba1ahWXVpFaFpoXg5eDG24ViL7ZvnvXFq3Qqlc+GeszzvjUeABqXadF9KiTXlv7r5ljyP1laUi4EjKB4XTwfsHJRosw0kx2SaPTrlQcfAjrQLaMfBqIN8efRL5jw0p9zOXRmRZRljRiaGhHgMaemg1yHrdKBQoNBoTA9XV5Tu7hV6CJ1AUK6kRpm8Njdyx/Q0Hwl9ZoOdxrZ6VXBStan8ePJHAJ5r/hwateX+Xuby8CLCUwAJ4WkAeFe5lfCdGpcbovIRBo6gBEiShFcVZ6KupBAfnl6uBo4kSfyv9f8Y+vdQtt3cxuHow7T2f3AH2N2OLiaGrGPHyL5wEe21q+RcvYYuMhI5O/uuayV7e1T+ftgFBWFfu7bpUbceDvXqIqnV5aC9QFBBuLLDlG+TGQ9qJ1P5d5NhttaqUrDg9AKSc5Kp4VaDQbUGWWxfQ1oamUeOAEX3vwGID8vNv6ly656UEpsbohIeHEFJ8QoyGTjlmWicRx2POgypPYRVl1bx2eHPWNFvhUUaSFU2jJmZZOzfT9o/O8k8dAhdRESRspJGg9LFBUmtRlKpkGUjcmYWxowMjJmZyDk56G6GorsZSsb+A7fWOTri2KQJmtatce7SGYdGjYqsXhAIKjUGPez6BPbOAWTwa2wKSXnXsrVmlYLwtHB+PfcrAK+0egWVwnK364x//wW9Hrvq1bHLzYctjLwQlXewycDJycwkO93k1REeHEGJKe+RDXfyXPPn2HR9E+cTz7Pu6joG1bbcr4WKjKzXk75nD8lr1pCxdx9yzm09gRQKHOrVw6FxY+xr1sSuZg3sgoNReXuj0BTtKjZqtehjY9FHRaENDSXn0mVyLl8i6+w5jCkpZB46ROahQ8R/+y1KT0+cH3oI1z59cGrfDkklvpKC+4CUCFg9HkJzjftW46DXJ6C+t7lJDxJzjs5Ba9TSNqAtnYM6W3Rvc3l4MeEpbbaelDhTQ7+8jvupuQnGDs4u2BdzDawoiKtpBcHbBr1wbsfTwZNJTSfx+ZHP+erYV/QI6YGz3f1bsqmLjSXpl19JXrsGQ1y8+bi6ShVcuj2CU+cuODZrhtLZqdR7K+zssKtSBbsqVdC0vhXuk41GtFevknn0KBn7D5Dx778YEhNJWbOGlDVrUHp64tqnD+7DhuJwWzdvgaBScWkrrJ0EWYlg5wKPfg2NBttaq0rF4ejD5qZ+r7V+zaL5fLLBQHru6KNi828ibo1ocHS2AypXeAqEgVNh8Ax0AgkyUrRkpWlxdLErdx1G1BvB75d+52bqTX468B29Ve1ICLtJZkoyCqUKjZs7fjVqUqV+40phvRdGzvXrJC5aRMqff5mSgwGlpydujz2G28DHsK9Tx2rJwZJCYc7H8XjiCWStlsxjx0nbuoXUzVswJCaS9OuvJP36K45Nm+L+xBO49uuLwq78PwsCQakx6GDHDNj/tel5QFMYshi8atpWr0qGwWhg1n+zABhaZ6jFmvrlkXXqFIakJBQuLmhaNC9SLj4sL8H41g/dVHOJuDBwBKXAzkGFm48jKbFZxIWlUbWBV7nroFaqmeT5BNv/WYRh4x42srdQOaVaTY3mrWnZfxBBdeuXs5ZlQxcTS/y335K8erWpgyrg2Lw5nmPG4PLIwzZJ/JXs7HBq1xandm3xe/NNMg4cIHn1GtK2byfr5EmyTp4k7ssv8RwzBvdhw8rkTRIIyoXkUPhjHIQfNj1vMwl6fggq68/Wu99Ye2UtF5Mu4mLnYtGmfnmYq6c6dyr2umfOvykkwdhVeHAEpcWnqgspsVnEh6WXu4GTlZbKP4vncenf3VTF5J3RetvTunk3nDw8MBqMpMXHEnnpPElRkVz+bz+X/9tPtaYteHjMRDwDq5SrviXFmJ1Nwvz5JCxabK5+cu7aFa+Jz6Bp2dLG2t1CUqlw7twZ586d0cfHk7xmLUm//II+NpbY2bOJ//FHPEY8iefo0ag8PGytrkBwiwsb4M8pkJ0M9m7w2LfQ4FFba1UpSdOm8c3xbwB4tumzeDhY/ruevmsXUHx4Cm5PML5VIp4iPDiCsuIT7MKVI7HEhaaV63ljrl1h3ZyZJvejJFG1Y1u+Vq4l2UlL915v5Csbl2WZ+NAbHN+ynrO7dnDj5DF+fvV5Oj05ilb9BlaoiqD0f/8l+v0P0IWFAeDYrBm+/3u1Qhk2haHy9sZ74jN4jhlN6t9/k7BgIdrr10n4cR5Jy37B65kJeI4aVWyis0BgdfRa2P4eHPze9DyoJQxZBB7VbKpWZWb+qfkkZidSzbUaT9R7wuL7a8PDybl4EZRKnDoXnbhsNMokRhT04KRWshycinM3EphL8eLCys/ACT93hpUfTCc1LgZ3vwCe+ngOQ194m57NBwLw2eHPMBgNZnlJkvAJqU7PiS8wZs73VG/eCqNBz55fFrFm1gdkZ9gmSfp2DCkpRLz2GmHjJ6ALC0Pl50fQ3LmErFhe4Y2b21HY2eH++OPU2LCeoG++xr5BfYwZGcTN/YqrvXqTtHIVsl5vazUFDyJJN2BRr1vGTfvnYexmYdzcAzdTb/LL+V8A+F/r/6FWWD5snrZtOwCaVq2K9QSnxGai1xlR2Stx9TFVvsmybPbgVIYScRAGToXCJ9cVmBKbhTbL+jeuiAvnWP3pe+iys6jaqAlPzfwS/5q1AVPZuIvahfOJ5/nr6l+FrvfwD2TQ6+/RY+ILqOzsuXHiKMvfesUcp7UFGYf+49rAQaSu+xsUCjxGjaTGhg249u5VaTsLSwoFrj16UP2PPwj8/HPUVaqgj4sj+r33uPboY2QcOHD3TQQCS3HuL/ixC0QeAwd3ePI36PUxqEQy/L3w+ZHP0Rv1dAzqSJcqXaxyjrTtJgPHpXv3YuXMDf4CnVAoTNfN7PQ0tFmmsnFX34o/hwqEgVOhcHSxw9nDlJQXb+Vy8eToKP76/CP0OTlUa9qCga+/h4PTLVdkXtk4wNfHviZdW7g+kiTRpFsvnpgxGxcvH5KiIlj5wRskR0dZVf87kfV6Yud8SeiYMeijolCHVKXaiuX4v/nmfZOcKykUuPXvR42NG/B7802UHh5or10jdOw4Il55FV3ulF+BwCrosmHDq7BqFOSkQHBbmLwP6vaxtWaVngORB9gVtgulpOS1VnefxVgW9AkJZB07BoBLt0eKlS0s/yZvRIOTuwdqu8qRPC4MnApG3gfKmmEqXU42f372IVlpqfjVqM2jr7xZ6Ad2RL0RhLiGkJCdwE+nfyp2T7/qNXnyo8/wCKxCWnwcKz94g8TIcGu9hXzok5IInfAMCfPngyzjNuRxaqxZg2PTpuVy/vJGYWeH56iR1Ny6BY+nnwaFgtQNG7jWpy+JS5c9sGEr2SijzdKTnpRDRkoOWWlacrL0yLJsa9UqPwlXYWEPOJx7Heg4FcZsAHcxnPde0Rv1zD48G4An6j1BDfcaVjlP2j//gCzj0LAh6sDAYmXjwwuWiOcN2XStBFPE8xBJxhUMn2BnbpyKN/cgsAa7fl5AQngoTh6eDHztHdT2DoXKqZVqXm31Ki/88wJLzy1lUK1BVHOrVuS+Lp7eDH9vJr9/+BYJ4aGsfP8NnpgxGw//4r9M90LW2bNEvPAiushIJI2GwI8/wrXPg/GLUunigv/bb+E2aCDRH8wg+9QpYj75hJR16wj8dCb2te6/lviyUSY5NpPYm2nEh6WREpdFanw2aYnZRYZ1FUoJjasdGlc73Hw1eAY64RnghF91V5zcKscvUZty+g/4eypo00DjBYPmQe0ettbqvmHlxZVcSb6Cm70bzzZ91mrnuRWe6lasnCzLxIUVXSLu5utvJQ0tjzBwKhhmD06odUJUV44c4tSOzSBJ9HluGs4ensXKd63SlU5BndgXsY9P//uUH7r/UGwui5O7B8Pem8kfH71N3M3rrP30fZ788HMcXVwt/VZI27GDiFdeRc7ORh1SleBvv8W+dm2Ln6ei49iwIdVWLCf59z+InTOH7DNnuD74cXxeegnPMaORlJV7rlhqfBah5xIJPZtAxKXku+anSQoJZJk8x43RIJOelEN6Ug6xN/P/cHD30xBQy42Qhl4EN/DEzkFcEs3osmDzG3B0iel51Q4wZCG4Wu8Hy4NGfFY83x7/FoCXWryEm72bVc5jSM8gM3cm3t3ybzKStWSlapEUUn4DJzdEVVkqqEAYOBUOn6omAycpKgODzohSbbkoojYrkx2LfgCgVf9BhDRudtc1kiTxRps3GPTXIP6N/JedYTt5pGrx8VuNqxuPvzmD5W+/QlJUJH99/hFD3voIlQU78iatWEH0hx+B0YhT584EffE5SlfLG1GVBUmpxOOJ4Tg//BBR77xDxp69xH72GWk7dhD4ycfYVatmaxVLRUZyDpePxHD5cEwBo0SpVuAT7IxPiCsefhpcvBxw9XLEwVmNnYMSpVqBJEnIRhmD3khWuo7MVC0ZyTkkRWeQGJVBQngGCZHpJMdkkhyTyfl/o1CqFQTX96ROaz+qN/NGpa7chuE9EXcJfh8DsWcBCbq8Cl3fAKW4ZViSr459RbounQZeDRhcy3rjLDL27kHW6bALCcHuLp7d2JupAHgGaFDZ3foOpIoQleBecfawx8FJTXaGjoTIdHxDLHfT/nfVr6QnxOPm50+HoSNKvC7ENYQxDcfw0+mfmH14Nh0CO+CgKjyslYeTuweDXn+P3959jYgL59j8w1z6vfDqPffJkWWZuC/nmvJtAPehQ/F/710xpDIXtZ8fwfPmkbJ6NTEzPyXr2DGuDRxkCmU9/niFriSTZZnw80mc2hXOjdPxkOuBkRQS/jVcqdrAk+AGXvgEO6NQ3v1zJCkkVHZKXDyVuHjmfV59zK/nZOqIuppC+MUkrp+IIzU+mxun4rlxKh57jYo6bf1p1CUIz4D7I0m9xJz8DdZPA10GOPnA4J+g5sO21uq+42TcSf688icAb7Z9E6XCegZ1Xnm4c/dud70G5PVhy/uxnYc5ROUjQlSCMiJJEt7BzoRfSCIuNM1iBk5CRBjHN/8NQPdxzxaZd1MUExpPYN3VdUSkR7DozCKmNJty1zXewSE8+sqbrP7kXS7u34NPSHXaDhxaJv3BNKwy5qOPSVq+3LT/iy/g/eyzFfqmbQskScJ9yBCc2rcn8q23yTx4kKi33yHjwEH8P3gfpXPFGqJqMBi5eDCaE9tCSYrONB/3r+FGnTZ+1Grpa5XZbPYaNdUae1OtsTcdH69FYmQGV47GcuFAFOlJOZzeGc7pneFUa+JNi55VCajlbnEdLIVBryMtPp7U+Di02VnIshGMMmoHB5w9vXDx8sbOUVP8d0WbARtfgxOmXixU72Iyblwqzw2tsmAwGvj44McADKw1kKY+1iuIMGq1pO82jWe4W3gKbhk4t997ZFk2V1FVlhJxEAZOhcQn2IXwC0nmXgSWYN+Kn5GNRmq2aku1ZqVvdqdRa/hf6//x6u5XWXh6IQNqDiDY5e4VFFUbNaXb+GfZNv9b/v1tGYF16hHcoHGpzy8bjUS/9z7Jv/8OkoT/jA/wGFp2Y+lBQB0URNVFC0lYsJC4r74idcMGsk6fJuiLL3Bs3MjW6pkMmwPRHN18g9R40xgNtYOSeu0DaNw1CA//8vOcSJKEV5AzXkHOtO5fnbDziZzdE8H1XI/OjVPxBNZ2p/2gmvjXsE6eREmRZZnEiDDCzp4m8tJ5Ii+dN+VH3KVaTOPmTkDtugTUrkfVhk3wr3XbYNnY86aQVNwFkBSmcFSXV8GKXoUHmdWXV3M+8Twuahemtphq1XNlHjqEMSMDpY/3XStLZVkmthAPTmZKMnqdFiQJV2+fopZXOISBUwHJ+2BZqlQ84sI5rhw+iCQp6PzkmDLv0zOkJ23923Io+hCfHf6Mrx/5ukTrGj/Si4gL5zi35x82fDWbkbO+xsm95DNWZKORqLfeJmXtWlAoCJz5CW6PPVbWt/FAISkUeE98Bk2rVkS8+gq60FBujBiB3//+h8fIp23i/ZJlmZunE/h39RWSY0weG0cXNc17hNCwcyB2jra9LCkUEiENvQhp6EVSdAYntodx4WAUkZeTWT37KNWbetNuYM1yD10lRIRxcf8eLh7YR2JEWIHXVXb2uHj74ODkhCQpQJLQZmaQlhhPTkYGmSnJXD1yiKtHDgHg4u1DnbYdqe+Thd/Rj0GfBc7+8PgCqF50G3/BvZGcnczXx03XzueaP4eXo3XnDuaFp1we6XbXFIEiE4xzw1Munt4oVeU/mLisCAOnApI3siEhPB2jwViifIPiOLB6BQCNHu6OV5Wy962QJInpbaczZN0QdobtZG/4XjpXufuFUJIkuo+fQsy1KySEh7Lh688Y8vaHKErw61CWZaJnzDAZN0olgbNm4da/X5nfw4OKpkVzaqxZQ+Tbb5O+fQcxn3xC1unTBMz4AIWjY7npkRiZwd5Vlwi/kASYDJsWvUJo2CUItV3F8xZ4+Dvx8NP1aNW3Goc3XOfC/iiun4zn5ukEmnQLpnW/alatvJKNRq6fPMqxjeu4eeq4+bhSpSKofiOC6tYnsG4DfEOq4+jqVqTBqsvOJi70OpGXLhB56Tw3Th4nLT6Ooxv+5CgQrKlFq4ZeVJ84H8m18lTJVEa+Of4NKTkp1PaozfC6w616LtloNPW/oWThqaISjCtjDxwQBk6FxN1Xg9pBiS7bQFJ0Jl5BZc+ZiLp8kZunjqNQKmk76N6/TDXda/JU/af4+dzPzDo8i7YBbbFT3j0/Qu3gwIBp0/n1zWmEnT3F4b9W03bQsLuui5vzJcm/rQRJInD2LNz6CeOmrCjd3anyzTckLV1KzOzPSP37b3KuXKHKN19jV8W60+D1OgNHN9/k2OabGA0yCpVEs27BtOhdDXsbe2xKgounA4+MrE/zHlXZv+YqN07Fc2JbKJf/i6bTsDrUamnZC78sy1z57wD7Vi4ze2skSUH15i2p274zNVu1xV5Tcg+S2sGBwDr1CaxTHxiELvQ4NxY+x4UIA1fSvAjLdCfssAHvmA/pOnI81Zo0t+j7EZg4l3CO3y/9DsCbbd5EpbDuZz/rxEkM8fEonJ1xatvmrvJFJRgnRUUC4BFQuVoEVPwrywOIpJDwrepCxKVkYm6k3pOBc3DtSgDqd37YYv0LJjedzIbrG7iZepOl55YyofGEEq3zCgqm+/hn2fTdHPb//ivVmrXEr3rNIuXj5/9Ewk+mzqn+H7wvjBsLIEkSnqNHY1+vPhEvv0zO+fPceHwIgXO+wLljR6ucM+pqCv8sPW8OR1Vr7EWnYXVw8yk/z5Gl8PB3ot+UJtw4Hc/elZdIjc9my09nuHLUl65P1rFIMnT4uTPs+XUxUVcuAmDnqKFxt14079X/3r/DsgxHF6Pe9Aa1pRxq1w8ktfsMjp+O4NT2zcSH3mD1x+9Qo0Vruo4cj2egdQ3fBwmjbOSTQ58gI9O3el9a+bey+jnTtmwBwLlrV6QStOm4ZeDkL25JjjGN3nG3YtNWayBGNVRQ8jLY7+wBUhoSIsK4dvQ/kCTaPGa5hFxnO2emtZwGwLyT84hIjyjx2vqdH6Z22w4YDQY2ffsFeq22ULnkP/8kbs4cAHz/9z88ht3d2yMoOU5t21B99R84NG6MISWFsGcmkvjzzxYda2AwGDn411XWfn6U5JhMHF3t6PVMI/pOaVIpjZvbqdbYmyffa0urvtWQFBJXj8WyYsYhrh2PK/OemakpbPpuDis/eIOoKxdR2dvT7vEnmPj9Eh4aOf7ejZvsVPhjHKx/GQw5ULsnTN6Ha9NedH16HM98u4gWfR9DoVRy7dhhlv7vef776w+MRsO9nVcAwNrLazkZdxKNSsMrrV6x+vlko5HUrVsBcO3T++7ytyUY+4bk9+Ak53lw/AMsrKV1EQZOBcW3Wq6BcyO1zHsc37wegJot2+IZGGQRvfLoX6M/rf1bk23INv0qKeGNUZIkuk94Do2bOwnhoexbuayATMah/4h6510AvJ6ZgNf4cRbVXWBCHRBAyC/LcHt8MBiNxMz8lOgPPkDW6e557+SYTNbMPsrRTTeRZajb1p8R77WlVkvf+6asX6VW0vbRGgx9oxVeQU5kpenYNO80u5dfRK8tuVEgyzLn9u5kybRnObfnH5AkmnTvzYSvF9Bx2NPYazT3rmzkCZjfFc6uAYUKenwIT64Ep1sJrg7Ozjw8+hlGf/4d1Zq1xKDXs3f5Ela+P73ch+febyRmJzLnqOkH2/PNn8dXY/1clqyTJ9FHRaHQaHDqfPdcSXOCsQReVfJHDZKEB0dgSfIs6ISIdAw6Y6nXZ6enc3a3KXu+RZ8BFtUNTIbK223fRqVQsSd8D/+E/lPitRpXN3pNfgmAoxv+JPz8GfNrOdeuEf7CC6DT4dKnNz4vv2xx3QW3UNjbE/DRR/i+/jpIEsm/rSRs0mQMqWU3rK8cjWXVzMPE3kzDXqOi1zON6D62AQ5Olaf6ojT4VHVh6PTWNO9ZFYAzeyL4Y9YREqMy7ro2OyOd9V/NZtO3X5CVlop3cAhPzviMHs88X6pKwyKRZTg03zQoM/EauAXD2E3Q8UUooqLGM7AKg994n56TX0Tt4EjkxXMsff1FLv+3/971eUD54sgXpGpTqedZjyfrPVku50zbvBkA527dUNjffeZaXoKxR4BTvoT/7PR0stNMr7kLD47AErh4OeDgrMZokM2j60vD2d3b0efk4B0cQnDDJlbQEGq412Bsw7EAzPxvJpm6zLusuG1ti9Y0ergnyDJb53+LXqtFn5RE2KTJGFNTcWzWjMCZM++587Hg7kiShNfYMVT57lskjYaM/fu58cSTaENDS7WPQW9k76pLbPnpDLpsA4G13XninbYWT8CtiChVCjoMrsWAF5vi6KImISKDPz49wtXjsUWuibh4nmWvv8ilA3tRKJV0HPY0T3/6FYF16llGqaxkWDUKNv0PDFqo2w8m7YHguyebSpJE44d7Mvqzbwmq1xBddhbrvviEf1cuEyGrUnI4+jDrrq5DQuKddu9YPbEYcsNTm035NyUJT8FtDf7uSDBOjjaFp5w8PLFzqFyhZXH3qKBIkmTOw4kpZZhKlmVO/2OKvTbt2c+qIYGJTSYS5BxETGYM35/4vlRru44ch5O7B0mR4RxcvYLIV15BFxaGukoVqnz/HQqH0nVbFtwbLo88QrVff0Hl74/22jVuPPEkWadPl2htVrqWdV+d4NQ/4QC06FWVx6Y2w9njwZrWXbWBF8PfbkNQXXd0OQY2zzvDgT+vYjTeCuHKssyxTX+z8v3XSY2Lxc3Xjyc+mE27x59AaamRIxFHYV4XOL8OFGro/Sk88Stoih+ueyduvn4MfedjWvQ19Z06uGYlf332EdrsLMvoeZ+jM+j46OBHAAytM5QmPtb5sXknWSdOoI+JMVVPlbB4wJxgfEf+TVKugePuV7m8NyAMnAqNbzXTBy3PdVhSoi5fICE8FJWdPfU7dbWGamYcVA682fZNAH45/wsXEy+WfK2TM93GPQvAf3/9QdSxo0iOjlT5/jtUnqW7EAssg0P9+lRbtRKHBg0wJCZyc/QY0vfuK3ZNYpTJWxF5ORm1g5K+zzam/aBa99y/qbLi5GbPoy82o2l3U8+pY5tvsvH7U2iz9eh1OrbO+5qdS+YhG43U7dCFkbO+IaB2XcucXJbhwPewsBck3wT3EBi/Bdo9C2X8oaNUqXh49DP0eW4aKrUd144d5vcP3yIzNcUyOt/H/HzuZ66lXMPTwZMXW7xYbudN3WQKT7l0e6RE4SlZls33mQIVVLn5V5WtRByEgVOh8QspW6JxnvembvtOpeqVUVa6VOlCj5AeGGQDMw7OwCiXPGeodtsOhFStgSzLnKnig/9HH+JQp44VtRXcDbWvL1WXLsWpQwfkzEzCnn2WlL/+KlQ27Fwiq2cfJTU+GxcvBx5/rSXVm1aeVu7WQqFU0GlIbXqMa4BSreDmmQRWz9rHb+++wZmd25AkBV1Hjqffi/+zTBIxQGYi/DYCtkwHow7qP2oKSQWVfjRLYTTo8gjD3puJg7ML0Vcu8dt7r5vnEwkKEpYWxo8nfwTg1Vav4mZfPiM+ZKPRnH/j0rtk4am0hGyy0nQoFBI+wXckGOd5cCpZgjEIA6dCk1dJlRSTiTZbX6I1uuxsLu7fC0Cjh3tYTbc7eb3162hUGk7FnWL15dUlXpdz7Rq1dh1AZTCQ7OTADdGZqUKgdHYi+McfcB0wAPR6Il9/g4SFC/NVy53ZHc7f355Em6UnoKabqZoosGIN8rQ1ddr4M3Bac+wc0om6sICYaxexc3Ri8PT3adV/kOXCx2H/mUJSFzeC0g76fg7DloKju2X2zyWgdl2e+GA2Ll4+JEWGs+Ld/5lvgIJbyLLMzEMzyTHk0Ma/Df1r9C+3c2cdO4Y+Lg6Fi0uJw1Mx100/or2DnfN1MIZbOTiVrUQcysnA+f7776levToODg60bNmSvXv3Fim7Zs0aevTogY+PD66urrRv354tuc2K8liyZAmSJBV4ZGdnW/utlCsaVztTDoMMcSXsh3PlyEF0Odm4+wUQVK+hlTW8hZ+TH883fx6AuUfnkpCVcNc1xuxsIqa+jH1aOo3sTcbcvpVLheu7giDZ2RE461M8x5oSyWM/+5zYT2dhNBg49Pc1dq+4hGyUqdvWn8emNrfKxO/7AmMs2rTfkI3JSApX1C5PonKobqG9jbBvLizqDSlh4FkDJmyHNs+UOSR1N7yqBPPkh5/hGRRMemICv894y9zKX2BiR+gO9kbsRa1Q83a7t8u1NcKt8FQ3FCVo7ge3DBy/aq4FXkuKrpwl4lAOBs7KlSuZOnUqb731FsePH6dz58706dOH0CIqNPbs2UOPHj3YuHEjR48e5eGHH2bAgAEcP348n5yrqytRUVH5Hg73YVJqnhcnpoR5OBf+3Q1AvU5dy73fyJP1nqSeZz1Stal8fuTzu8rHzJpFzqVLKL286Dzna3yq1SAnI4N9K34uB20FJUFSKPB7/TV8X3sNgISfl7LlpZ85suEGAK37V6fbmPoo1cIZXBihZ06x6oPpZKen4l21BlUaT8Sgc+Xvr09w5eg9hncyEmD5MNj+HsgGaPQ4TNwNAcVPjLYELl7eDHv3EzwDq5CWEMeqGW+KcFUu6dp0Zv43E4BxjcZR3c1CxmwJkA0GUreWrnoKIOaG6UelX/X8Bk5lLhGHcjBw5syZw/jx45kwYQL169dn7ty5BAcH88MPPxQqP3fuXF577TVat25N7dq1+eSTT6hduzZ///13PjlJkvD398/3uB/xMzf8u7sHJzM1hRsnjwFQr6N1k4sLQ6VQ8U67d5CQWH9tPfsjiu6bkbplK8krfgMg8NNPsfPzo9vYyQCc3rnN3KZeUDHwGjcW/1mfcb7BaK7pqwHQ6fEatOlf/b5p3Gdpbpw4ytpP30eXk03Vxs14csanDP5fZ2q28MVokNm64AwXD5XR83FzP/zYCa5sA5UDDPgKHl8IDgV/gVsLJ3cPhr77CR4BgaTGxbLqwzfJSE4qt/NXVL469hWxmbEEuwSXeIyNpcg6dgxDXDwKV1ec2rcv0RqD3khcqKkViV/1/HlClblEHKxs4Gi1Wo4ePUrPnj3zHe/Zsyf795esaZTRaCQtLQ3PO6pq0tPTCQkJoUqVKvTv37+Ah+d2cnJySE1NzfeoLOQ1/CtJJdWlg/9iNBjwrV4Tr6CyTw2/F5r4NGFE/REAzDg4o9DeOLrISKLefhswdSp27twJgKB6DWjQ5RGQZXYs/BHZWPoGhwLroNcZ2B9RlWjf1kiygQbnluCx4kOMWaJcuDCuHj3En599iF6npUbLNgx67V3sHDWo1Ep6TmhIvQ4ByDJsX3KOs3tLPuoEoxH2fAZL+kFaJHjVhgk7oOUYq4WkisPZw5Oh736Cm58/KTHRrJn5PtqskvfDut84HnuclRdN8//ea/8eDqryjSqYw1Pdu5do9hTkNpPVG7HXqHDzzW/EmDsYV8IScbCygRMfH4/BYMDPL/8MFT8/P6KjS/bL5YsvviAjI4Nht80iqlevHkuWLGHdunWsWLECBwcHOnbsyOXLlwvdY+bMmbi5uZkfwcG2ufmXBZ8QV5BMWe6ZqYXPbcrj8qF/AajXoUt5qFYkLzR/gQCnACLSI/juxHf5XpONRiKnv4kxLQ3Hpk3xeTF/6WSXp8Zi56gh5tplTu/cWp5qC4pArzOw8YfT3DgVj1Kl4JHujgSknyVj/35Cn3kGQ3rpG1Hez1w9+h/rvvgEg15P7bYdeHTadFS33WwUColHnq5H465BIMOuXy9y8p+wu2+cHgu/DIZ/PgLZCE2egIm7wL+R9d5MCXDx9GbImx/i6OpG7I2rrJszE4O+ZEUR9xNag5b397+PjMygWoNoG9C2XM8v6/W3Zk/17lXidbfn39zpjU2upFPE8yiXwPmdfzRZlkvk1l6xYgXvv/8+K1euxNf3VjfUdu3a8fTTT9O0aVM6d+7MqlWrqFOnDt98802h+0yfPp2UlBTzIyysBBeTCoK9owoPf1Opd8z1opNvs9JSCTtnaspWu611pkKXFCe1E++0ewcw9cY5E39rFEPSL7+SeegQkqMjgbNnIanzt+93cvegw9CnANi7YilZ6WUfNiq4dww6I5t+PE3YuURU9koGvNCUekM7UXXBAhQuLmQdOUromLEYkpNtrWqFIPTMSf7+ciZGg4G6HbrQ/6XXUaoKjqiQFBKdn6hDsx6m8Q77Vl3m2JabRW98fY8pJHVtJ6gc4bHvYfA8sK8YVWvu/gEMfv09VPb23Dx1nK3zvrbo4NbKwILTC8w9b8pjmOadZBw4iCE+HqW7e4nDUwDRufcV3+oFw5vJlbjJH1jZwPH29kapVBbw1sTGxhbw6tzJypUrGT9+PKtWraJ79+7FyioUClq3bl2kB8fe3h5XV9d8j8pEQA2TvtHXig5TXTlyENloxKdaDdz9bJ+P1LlKZ/pW74tRNvL+/vfRGXXkXLtG7BdfAOD7v1exCwkpdG2zXv3wqlKV7LRU/v2t4DBOQflg0BnZNP80oWcTUdkpGPB8E4LqmuYjaVo0p+qSxSjd3ck+c4abo0ajj4+3sca2JfLSBf6c/SEGnY5ardvR9/lXUCiVRcpLkkSHwTVp3a8aAAfWXuXkjjt+fBkNsOtTWPoYpMeAT32T16b5U9Z7I2XEv1YdBrz8BpJCwbk9//DfX3/YWqVy42ryVX46/RMA09tOL7eeN7eT8vc6AFz79i3ww7E4iq+gEh6cIrGzs6Nly5Zs27Yt3/Ft27bRoUOHItetWLGCMWPGsHz5cvr163fX88iyzIkTJwgIqJxW5t3wq2H6skRfK9qDc+W/AwDUblNyy93avN7mddzt3bmYdJGfTy0m8vU3kHNycOrQAY8nix44p1Sp6DbOlHB8avtm4kNvlJPGgjwMeiNbFpzh5ukEVGoF/Z5rSmDt/MMfHRs2JGTZUpQ+3uRcusTNkaPQxT6YlTSxN66x5tP30OVkE9KkOf1eer1Y4yYPSZJoM6AGrfubKm32/X75Vk5OWrTJsNk10xSSav40PPMP+FpoVpUVqNG8tfm7u++3pVw7dtjGGlkfo2zkvf3voTfqeajKQ/QKKXl4yGI6ZGaStn0HAG6Plny4cnaGjpRYUx6df/WCRllyJS4Rh3IIUU2bNo0FCxawaNEizp8/z8svv0xoaCiTJ5u+BNOnT2fUqFFm+RUrVjBq1Ci++OIL2rVrR3R0NNHR0aSk3Lq5f/DBB2zZsoVr165x4sQJxo8fz4kTJ8x73m/45xo4sTdSMRgKJt5qszK5ecqUZF27TdGGY3nj6eDJa61N5cWh878l+/RpFC4uBHzy8V1DlMENm1C7bQdk2cjuXxaVh7qCXIwGI1sXnuX6yXiUagV9pzShSt3CJ1vb165NtV9+QRUQgPb6dUJHj3ngjJzEyHD++PgdcjIyCKzbgMdeeQtVKX5BA7TuV43mueGqXcsvcnHdP6aQ1I29oHaCQfPhse/AzkJdj61I0x59adK9N8gyG77+jITwypMSUBZWXlzJybiTOKmdeKvdWzapKkzb8Q9yZibqqlVxaFryNgF5cw7dfBxxcM7/mc3OSCerEpeIQzkYOMOHD2fu3LnMmDGDZs2asWfPHjZu3EhIbngiKioqX0+cefPmodfree655wgICDA/XnrpJbNMcnIyEydOpH79+vTs2ZOIiAj27NlDmzZ3n5JbGfHw02CvUaHXGUkoZLL4zdMnMOj1uPsF4FWlqg00LJr+NfrTR92cx/foAPCd/jrqEpb0dxkxFoVSxY2Tx7h+4qg11RTkIssyO5dd4NrxOBQqib6TGxNcv/i5YHYhIYQs/fmWkTNm7ANj5KQnJfLHx++QlZqCb/WaDH7jPdRl6MclSRLtB9ekcZdAkGHHRgNXEmqDXyOYtBuaDreC9tbjkbGTCKrXEG1WJn99/iE5mRm2VskqRGdEM/foXACmtpiKv5Nt0gPywlNu/fuXysAyh6cKzb8xeW+c3D0qZYk4lFOS8ZQpU7hx4wY5OTkcPXqULl1uVfksWbKEXbt2mZ/v2rULWZYLPJYsWWKW+fLLL7l58yY5OTnExsayZcsW2pciqaqyISkkc3+CwsJU144dAaB6i1YVsifJhI067PRwqprEjoYlL/129w+geR+Tu3X3soUYDQZrqSjI5cCaq1w4GI2kkOj9TCOqNvQq0Tq74OBbRs61a4SOGYs+Ls7K2toWbXYWa2d9QFp8HB4BgTz+5ox7mv0mpUbSOetl6jnuQEbJtpRXuNn+d/CubUGtywelSs2j06bj4u1DUlQkW3786r5LOpZlmY8OfkSmPpNmPs0YVnfY3RdZAX1CAhn/mtquuA4o3UiI4gycpChTqLSyhqdAzKKqNPgXkWgsG41cP26Kc9doUfE8WClr1mA4cgKDnYr5vRV8cXQO0Rklb27WbvBwHFxcSQgP5fQ/W+6+QFBmjm29yfFtJm/qw0/XK/XQzDuNnJujx9y3Ro7RYGDDV7OJvX4VRxdXBr/xARrXe0gsvbQVfuyEFLafh72XUru2FqOsYPOiS+YwQmVD4+bOgJffQKFUcfnQfo5vXm9rlSzKhusb2B2+G5VCxfsd3kch2eZ2mrpxExgMODRpgn31kndNlo3yrQ7G1Qp+dhMjTKFFz6AqllHUBggDp5LgX0Siccz1q2QkJ6F2cKRKfdv2w7gTfXw8MbNmA+D30lT8azclXZfOBwc+KPGvOQcnZzoMMSUk/7vq1/vW1W1rzu+P4sCaqwC0H1yT+h3KFnO3Cw4m5Oclt4yc+9CTI8sy/yyex7Vjh1Gp7Rj42rtlz1Ew6GDrO7B8KGQlQkBTFJN30e2lngTX90CvNbLhu5Mkx1bO5nkBterS9WnTLLPdyxYSfeWSjTWyDPFZ8cw8ZBrHMLnJZGq617SZLim5Xf7d+pfOe5MUnUlOhh6VWoF31YLtBhJyDRyvoIqV9lAahIFTSTA1YTI1/MtIyTEfv37cFJ4Kadys1ImN1ib2s88wpqbi0KAB3qNH82HHD7FT2LEvYh9/Xf2rxPs06d4Hj8AqZKWmcOjP362o8YPJ9VPx7PzlAgDNe1SlRc/Cy/dLil3VqreMnKtXTUZOYqIlVK0QHPl7DSe3bQRJou8LrxJYp4xVTclhsLgv7P/a9LzNJBi/DbxqolQp6D2pMd7BzmSl6fj7m5N3bfRZUWne51Fqt+mA0aDn77mzyM6o3I0hZVlmxoEZpGpTqe9Zn3GNx9lMl5zr18k+dQqUSlz79inV2qiryYApPKVUFjQFEiPCAfASHhyBtbFzVOEZaLKyb/fi3MitnqrevKVN9CqKzCNHSPlrHUgS/h+8j6RSUcO9Bs81fw6A2f/NJiYjpkR7KVUquj5tuogc2/CnmFxsQWJvprJ1wRlko0y99v60H2yZX6JmI8ffH+3Vq4SOn4Ahpeg2B5WFy//tZ8+viwF4aOR4arctY9XihY2mKqnw/8DeDYYtg76zQWVvFrFzUNH/+aa4ejuQGpfFhu9Oos2ufB2CJUmi17Mv4ebnT2pcDDsWFj6HsLKw8fpGdobtRKVQ8WHHD1ErbPfDMvVvU9jPqWMHVN7epVobddX0fQyo5V7gNYNeb87B8axSeTr/34kwcCoRd+bh5GRmEHXZ9Ms7pHFzm+l1J7JeT/SMDwFwHzoUx8aNza+NajCKxt6NSdOllSpUVaNFa6o2aopBr2efaP5nEdISs9nw3Sn0WiPBDTx56Ol6Fk1St6talaqLF6H09ibn/HlCJ07EkF55Q4xxoTfY9O0cwNSMskXfx0q/iV4Lm9+E356E7GQIbAGT90CDRwsVd3KzZ8ALzXBwVhN7M40tP53BWEiriIqOvcaJvs+/iqRQcOHf3Zzft8vWKpWJ+Kx486TwSU0mUdezrs10kWWZlPUmA8dtQOGfn+KIupIMQEDNQvrfxERhNBhQ2zvg4lW6XLyKhDBwKhH+uR/EmFwPTujZU8hGIx4Bgbj5Ft8ZujxJWr6cnEuXULq54fPy1HyvqRQqPur4EXYKO/ZG7GXd1XUl2lOSJLo8ZYrlX/h3NzHXrlha7QcKbZaeDd+Zwh5eQU70fqZRoW7qe8W+enWqLlqI0s2N7JOnCH/22Uo5oDMrLZW/PvvQNBm8URMeHj2x9MZg0g1Y1AsO5s5na/ccjNsCHtWKXebup6H/c01R2SkIPZvIvt8r52c/sE492g1+AoDtC74nNa5ytRKQZZkPD3xISk4K9T3rM77xeJvqk33yJLrQUCSNBpduj5RqbUZKDqnx2SDdaiR7O7cnGFfEytySIgycSkRep8nYm2kYdEZunjoBQEiTiuO90cfFEfe1aSaYz7RpqDwKNoir4V6DKc2mADDrv1klDlX51ahFvY5dAdi74mcLafzgYTQY2fLTGRIiMtC42tHvuabYOaqsdj6HOnUIXrgQhbMzmYcPE/7Cixi1lSefxKDXs37up6TExuDm50//qW+UqEtxPs6tgx+7QOQxcHCHJ1ZA709AVbKJz37VXekxtiEAp3eFc2pneCnfRcWg3eDhBNSphzYrk43ffoHRWHlaP2y6vol/wv5BJdk+NAWQ/OefALh074ZCU7oGkFFXTD+SvYKcsS/ku5+Xf+MZVHnDUyAMnEqFm68jji5qDHojsaFp3Dx1DKhY4am4r7/GmJ6OQ6NGuA95vEi50Q1Hm0NVMw7OKHGoqtMTI1EoVdw8ddycfyQoObIss+e3S4SeM82X6vdcE1w8S9+YrrQ4NmpI8Px5SI6OZOzbR8S0acg6ndXPawl2/7KQ0DOnUNs7MPDVt3F0KcUsO30ObPwfrBoJOSlQpQ1M3gf1+pZajxrNfWg/yJQjtW/VJW6eTSj1HrZGoVTS97lXUDs4EnHhLMc3VY7S8fiseD757xMAJjadaNPQFIAxK4vU9RsAcB88uNTr8xKMAwsJT8HtFVTCwBGUE5IkEZibEHbt+DWSo6OQJAXBDRsXv7CcyL5wgeQ/VgPg9+Z0pGJ+5d6eoLcnfE+JQ1Vuvv4062m6Oez9dQmysfLlI9iS07vCObs3EiToMa4hviHlN3hW06IFwd9/h2RnR/r2HUS+MR25gjdvPL1zK8c3mcpw+zw/De+q1Uq+OOEqLOwB/803Pe/4EozdCO5lv2k071mVeu39kWXY+tMZEiIrX0WSu38AD400hXf2/bbUPNCxopLX0C8lJ4V6nvWY0HiCrVUibds2jOnpqKtUQVOGDv7RuQnG/rUKN3DMIapKnGAMwsCpdATUdgfgxslTAPhWr3lP3VMthSzLxHw6C2QZlz690bRocdc1Nd1r5gtVlbQBYNvBw7Fz1BB74yoX9u+5J70fJMIvJpnzNzoMqkWNZuWfPOjUvj1BX38FajWpGzYQ9d57FdZIjbl2xVzx02HoU6Wb83ZmNczrClEnwdETRvwOPWaA8t7CGpIk8dBT9Qis7Y4228CG706RlVZ5wn15NO7Wi6qNmqDX5rB13tcV9jMAsP7aenaE7kAlmfIHbR2aAkhevQYAt8GDkBSlu41rs/XEhZkM44Ca7gVel43G20rEhYEjKEcCcw2chHBTw6wq9RvaUJtbpO/cRebBg0hqNb6vvFLidWMajqGJTxPSdGm8ve9tjPLdL3QaVzfaPDYEgH2/LUNfSUIdtiQ1Post803l4HXa+tGsh+0uXC4PPUTQZ5+BQkHKH6uJ+fTTCtfGPzs9nXVzZmLQ6ajRsg3tBpdwFpQuC/6eCn+MA20aVO1gCknV6Wkx3Uw9chrh6uNIWkI2m+efKXQIb0VGkiR6THwRlb094efOcHL7ZlurVChR6VF8csgUmprU1LZVU3loQ0PJPHQIJAn3gQNLvT7mRiqyUcbZ077Q8HRaYjy6nGwUShXufpVzyGYewsCpZHgFOWPnqEKfbXIhBlUAA0fWaomdbepY7DlmNHZVSt4YSqVQ8UmnT3BUOXIo+hDLzy8v0boWfR7FycOT1LgYTm7dWCa9HxR0OQY2/nia7AwdPlVdePgpy5aDlwXX3r0InGm6cSQtXUbCvHk21ed2ZKORTd99QWpcDG6+fvSZMq1kv5LjL8OC7nB0MSBB51dh9N/gFmRxHR2d7eg3pQlqeyWRl5M5sPqqxc9hbdz9/On85GgA9vy6uMJVVRllI2//+zbpunSa+DSpEKEpgOS1awFw6tgRdWDp50TlhacK894AJOZOf/cICCx9Mn0FQxg4lQyFQsKnqgrZaOoMG1S3gY01gqQ//kB74wZKT0+8Jk0q9foQ1xBeaWny+nx59EuuJt/9Yq12cKDD0BEAHFy7UoxwKAJZlvln6XkSwtNxdFHTZ3JjVHYV46Ll9thj+L35JgBxc78iacUKG2tk4r+//uDascMo1WoGTHsTB+eCbewLcHKlKSQVcwacfGDkGuj2DiitV53mGeBE9zGm7//Jf8K4eKjyNcBs3qs/gXUboMvOYuv8byqUJ+/X87/yX/R/OKoc+aTTJ6gU1vt/WVJkg4GUtX8C4P546ZOLofj+N3Arwbgyz6DKQxg4lRBHjWm2j73G994G/FkAY2Ym8d+b8hS8n5uCsiQ3g0IYVncYHYM6ojVqmb53OjrD3cNOjR7qgWdgFbLTUjm8bnWZznu/c2zLTa4cjUWhlOg9qXG5VEyVBs9RI/Ge8iwA0TM+JHWjbb1xoWdO8e/KXwB4ZOxk/KrfpbOzNhP+eg7WTgRdBlTrbApJ1SxdX5KyUqO5D636VgNg5y8XiAtNK5fzWgpJoaDX5JdQqe24eeo4Z3Zts7VKAFxJusLco3MBeLXVq4S43tv4EkuRsf8A+uholG5uOHfrVur1BoORqNxGsYV1MIb7p4IKhIFTKdHnmD6AshSEbLTtL57EpcswxMejDg7GY+jQMu8jSRIfdvgQN3s3ziee54eTd2/nrlAq6TTC5OI+uuEv0hLjy3z++5Ebp+M5+Nc1ADoPr2OuwKtoeL/wAh4jngRZJuL1N0jfu88meqQlxrPh69nIspGGXbvT+JG75M3EXoCfHobjvwASPDQdRv0FLv7lom8erftXJ6SRFwadkU0/niYrvXIlHXsGBtFh2FMA7Fm2iMxU24700Bl0vLnvTbRGLZ2COjG0Ttmva5YmebXph5zro4+isCtZD6XbibuZhj7HgIOTGq/AwotTbjX5EwaOwAYkRlwGQCaAxGjbhWb0SUkkLFgAgM+LLyKV4Qt3Oz4aH95t9y4AC88s5ETsibuuqdWqHYF16qPX5nDgj4oR4qgIJMdksm3hWZChYedAGnWxfB6IpZAkCb+338a1b1/Q6Qh/8UUyj5dvjyNTM7/ZZKYk41O1Gt3GTy46T0mWTUbN/Icg7gI4+8HodfDQG6Ao//CfQiHRY1wD3HwcSUvMZstPZyvdOIeW/QbiE1Kd7Ix09vyy2Ka6/HDyB84nnsfd3p0ZHWbYPF8tD31SEmk7dgBlD09FXEoCILCOO5Ki8PeVcJ80+QNh4FQ6cjIziLt5HQCFKoioy8k20yVhwQKM6enY16uHa7/SNy4rjJ7VetK/Rn+MspE3971Jpi6zWHlJkuiSO4jzzD/bSMhNkHuQ0WkNbJ5/Gm22gYCabnQeXsfWKt0VSaEg8NOZOHXqhJyVRdjkZ8m+dKnczr93xc9EXjyHnaOGAa+8idq+iFBeTjqsnWwKS+mzoMbDMPlfqN6l3HQtDHtNbn6VvZKIi0kcWFu5ko4VSiXdJ5haRpzdvZ3w82dsoseJ2BMsPLMQgHfbv4uPpuLMYUr9ez3odDg0aIBDvbJNsI+4aDJwguq4F/p6ZmoK2WmpIEl4BlbcH0UlRRg4lYzIi+eRZSMOLt5IChcibWTg6GJiSPrlVwB8p71c6l4MxTG97XT8NH6EpYXx2ZHP7iofVLc+tVq3Q5aND/wIB1mW2bP8IgkRGTi62tFrYiOUqsrxNZfs7Kjy9Vc4Nm2KMSWFsPET0IZbfyTB9eNHOLreVJnSe8pUPPyLqEyJPmMKSZ36DSQFPPIOPL0GnCvGTdAryJluo+oDcGJ7GJePlGwESkUhsE59GnfrBcCOhT9g0Jfv5PRMXSZv7nsTo2xkQI0B9AjpUa7nLw5Zls3hKbdiOsQXh0FvNE8QD6pTcIQO3KqgcvPxLdrIr0RUjiufwEzeL5uAWqYLWeTlZJtUHiTMm4+ck4Njq5Y4de5s0b1d7Vz5uNPHAPxx6Q923Nxx1zWdnhiNJCm4euQgERfOWVSfysT5/VFcOBiNJEHP8Q1xcrO3tUqlQqHREDzvR+xr10IfF0fo+PHo462XW5WRnMSm778EoHnvAYU385NlOLIYFnSD+EvgEghjNkCXV8GChr0lqNXSlxa9TAmxO5ddIMmGIeyy0HnEGBxdXIkPu8mxjX+V67k/OfQJYWlh+Dv5M73t9HI9993IOnGCnIsXkeztcevXr0x7xN5IRa814uCsxrOI/Jv4sJsAeFWpWmZdKxIV69spuCvh588CULNVMxQqiYwULSmx5TudWRcTQ/LvvwPg88KLVolRtw1oy9iGpunh7+5/965djr2qBNPoEdMvrj2/Lq5Q5ablRVxoGntWmMI6bR+rQZW6hf9Kq+go3d0JXrAQdVAQupuhhE54BkNqqsXPY+p3M4es1BR8qlYzT6vPR3YqrB4P66eCPhtq9TBVSYWUoqtxOdP20eoE1nZHl2Ngy09n0Gkr9jiM23F0djGHnPf/sZzU+PLpjbPx2kb+uvoXCknBp50/xcXOpVzOW1LyWii49uuH0q1slbN5+TdBddyLvGbnpT+UaiRJBUYYOJUIvVZL9FVTgnHVRo0JyB1zH34hsVz1SPhpAbJOh2OrlmjatLbaeV5o/gINvRqSqk1l+t7pGO4yebjDkBGo7OyJvHSeK0cOWk2vikhOpo7N809j0Bup1tiLFj0rRllrWVH7+VJ10UKUXl7kXLhA+HPPY8zJseg5jmz4k5unjqOys6ffS6+jujNJPuokzO9qGrsgKU2jFkasAicvi+phaRRKBT0nNMTR1Y6EiAz2/lZ+uUyWoGHXbgTVa4g+J4edS+Zb/XzhaeF8ePBDACY2mUhLv5ZWP2dp0CclkbbJ1OnZ48knyrxP+MVkoOjwFEBcqMnA8QmpXubzVCSEgVOJiL1xDaNBj6OrG+5+AVSpZ/qghl9IKjcddDGxJK9aBYDPc89ZtcJArVQzq8ssHFWOHIk5woLTC4qVd/b0omW/gQDsW/4zxgo+yNFSyLLMjp/PkxqfjYuXA93GNCiyQqIyYRcSQtUFP6FwciLz8GEiX3vdYsM5Y65dYd+KpQA8PPoZvG4fKijL8N9Ppq7EidfALRjGbTYNy6xgIamicHKzp+f4hkiSKWx5fn+UrVUqMZIk0X38syiUSq4cPsj140esdi6dUcfre18nXZdOc9/mTGpS+kal1iZl9WpknQ6HRo1wbFy2wcoGnZHoa8Xn38hGI/GhphCVMHAE5U6e98a/Zm0kSaJKPU/ANETRWE79cBIWLkDWanFs0QJNu3ZWP1+Iawhvt3sbMJVv3q10vPWjg3FwcSUxMpwzOytG0zBrc2JbGNdPxqNQSfSe2AgHJ9sPA7QUDvXrU+W7b0GtJm3LFmI+/uSew4/arEzWfzULo0FP7bYdzImtAGQlw++jYeOrYNBC3b4waQ8El35is62pUteDNgNMN6o9Ky6SEFF5Jo97V61G8z6PArBz6QIMeuvMm/vhxA+cijuFi9qFTzt/WiG6Fd+ObDSS9NtKADyefLLM+8TcSMGgM+LoaodHgKZQmeSYKHQ52ajUdkUn2lcyhIFTiYi+anI1+9c0lf36hrhg56AkJ1NPfJj1O5jq4+JIXmny3nhPmVJu/SEG1BhA3+p9McgG3tj7Bmnaot+rvcaJ9rmDEff/sRxddna56Ggroq4kc+BPU0lw52F18A1xtbFGlsepXTuCZn0KQNLy5STM/+me9vtn8TySo6Nw8fKh58TbcsgijsK8LnDuL1CooddMeGI5aDzv9S3YjJa9q1G1gSd6nZHN88+gzS7fyqR7of3jT6BxcycpMpwTWzZYfP/D0YfNXuF3O7xLoHPFu6ln7NuHLjwchasrrn37lHmfW+GpYvJvQm8A4BUcUulnUOUhDJxKhNmDU6s2YIq1B9YpvzBVwsJFpsqppk1x6lh+SZaSJPFOu3cIcg4iIj2CDw98WOyv+CY9+uLm60dGUiJHy7kSozzJydSxbdE5ZKNM7dZ+NOxc8S7QlsK1b1/83jRVtsR9+SXJa9aWaZ/z/+7m7O4dSJKCvi+8YpozJctw4HtY2AuSb4J7CIzfAu2nQAVp8lZWJIVE97ENcHK3Jzkmk12/Xqw0Cfj2Gic6PTEKgAN/rCAzJdlieydnJ/PG3jeQkRlUaxC9q/W22N6WJGm5KbnYfdAgFI6OZd4n0pxgXEz+zc37K/8GhIFTacjJzCAp0tQTJM+DA9yWh2PdRGN9fDxJv/0GgPfz1s29KQxnO2dmdZmFUlKy6cYm/rpatOGiUqvpmHthPLzuD5u3frcGsiyza/lF0hKzcfV24KERdStMx1Vr4TlqFF4TxgMQ9c47pO/eXar1yTHRbP/pOwDaPT6cKvUbQWYi/PYUbJkORh3Uf9QUkgqqWImm94Kjix29JjREUkhcPhzD2b2RtlapxDR8qBu+1WuSk5lhnhF2r8iyzHv73yM2M5ZqrtV4o80bFtnX0mjDI8yfcfcnhpd5H12OgShz/o17kXK3DJxqZT5XRUMYOJWEPO+Nq49fvgGbwbl5OJFXUtDrrJdUm7BoMXJ2Ng6NG+PUqZPVzlMcTX2a8lyz5wBTz4ripo7Xa98Z3+o10WZlcXDNb+WlYrlx4UA0V47EolBI9BzfCDvHipU7YC18pk3D7bFHwWAgfOrLZJ08WaJ1Br2ejV9/hjYrk8C6DWg3+AkIO2wKSV3cAEo76Ps5DFsKju7WfRM2IKCWO+0HmgaH7vv9cqXJx1EolDw8ZiIAp/7ZQsz1e+/QvPzCcv4J+weVQsWsLrPQqAvPSbE1yatWgSzj1KE99tXL7lWJvJyMUS/j4umAu1/R7zXu5g1AeHAENuBWeCp/232PAA0aN7vcLHnL9woBMKSk3PLePFd+uTeFMa7RONoGtCVLn8Uru14pcpSDpFDQZYSpr8nJrZtIjim+j05lIjkmkz0rTflYbR6tjl/1+y/vpigkhYKAjz66NdJh0mRyrl+/67oDfywn6spF7DVO9HtuGoqD38Li3pASBh7VYfw2aPNMpQ9JFUez7sFUbeiJQWdk68Kz6CtJf5wq9RpSr2NXkGV2Lpl/TyG2M/Fn+PzI5wC80vIVGng1sJSaFsWo1ZL8xx8AuN9DcjFA6LkEAIIbeBZ57c7JzCA1ztT52qeqMHAE5Uz0lbwE49r5jpuqqXLDVOetE6ZK+m0lcmYm9nXq4Ny1q1XOUVKUCiWfdv4UH0cfrqZc5eNDHxd5wQtp0oyQJs0xGvT8u3JZOWtqHQz63JtTjoGgOu40r+T9bsqCpFZT5au5ODRqhCE5mbAJz6CLLbohXOiZkxz609SYssfoMbhufwG2vQtGPTQcbApJBTYrJ+1th6SQ6Da6AY6udiRGZrDvjyu2VqnEdB4xBpWdPREXznLpYNmmzafkpPDKrlfQG/V0r9qdp+o/ZWEtLUfalq0YEhNR+fnh8vDD97RX2DnTfSG4ftHJ8nnhKRcvH1Ne2n2CMHAqCdHXTB6cgJoFBydWqXurXNzSGLVaEn8xGQee48ZWiDwPb0dvZnWZhUJSsO7qOv688meRsl2eGguSxIV/dxNzrfJc0Ivi0LprxIWmYe+kovvYBijug343ZUHh5ETwvB9Rh1RFFxFB2MRJGNIKVtdlpqaw6dsvQJZp3KYZdY9Og8tbQWkP/efCkEXg8OB4wDSudvQYY/JanN0TwdXj5dMp+F5x9fahzWNDANj9yyL0Wm2p1suyzNv/vk1kRiRVnKswo2PFmRJ+J7Isk/izaaae+7ChSKqyh5/TErNJis5Ekm7laxbG/Zh/A8LAqRSkJyWSnhCPJCnwrVGzwOt5H9zYG6nkZFq2X0TqunUY4uJR+fnh1tcyE8MtQWv/1rzQ/AUAPj70MRcTLxYq51utBvU7PQRU/hEOYecTOb41FIBHnq6Ps0flH4Z3L6i8vKi6YMGtbscvvIjxthufLMtsnfc16UmJeHpoeDj1R0iLBK/a8Mw/0GrsfR2SKorgBp4072maNbRz2QXSEitHK4VWAwbh7OlFWnwcxzf/Xaq1S88tZVfYLtQKNV889EWFG8VwO1nHjpF95gySnd099b4B0zUDwLeaa7H9sfJKxH1CatzT+Soa5WLgfP/991SvXh0HBwdatmzJ3r17i5XfvXs3LVu2xMHBgRo1avDjjz8WkFm9ejUNGjTA3t6eBg0asHZt2cpGKwN5+TdeVYKxcyhYKuji6YCHvwZZhrDzlvPiyEYjCYsWA6YKFunOVvY2ZlyjcXQK6kSOIYdXd79Khq7wwYIdhz2NUqUi9MxJbp46Xs5aWoasNC3bl5iGiDbsHEiN5hVjgrWtsQsOJnj+PBQaDZkHDxL1xhvIRiMAJ7Zu4OqRQygV0M99H2pJB02Gw8Rd4N/ItorbmLaP1cC3mis5mXq2LTyL0WC0tUp3RW3vYC4bP7R2VYmrI0/EnmDu0bkAvN769Qqbd5NH4pIlALg99hgqz3vrwZQXnqraoPh9hAenjKxcuZKpU6fy1ltvcfz4cTp37kyfPn0IDQ0tVP769ev07duXzp07c/z4cd58801efPFFVueOigc4cOAAw4cPZ+TIkZw8eZKRI0cybNgwDh06ZO23YxNichv8+d2Rf3M7VRuZ5uPcPJtgsfOm79qN9to1FM7OuA8fZrF9LYVCUvBJp0/w0/hxI/UGHxz4oFAPjZuvH816mSbw7lm+xHwDrCzIssw/yy6QmaLFw19Dx6FFfw4eRBwbNiTom69BrSZ14yZiPv2U2JvX2b3U1BCwi89VfJ2N8Nh3MGge2N8/OQZlRalU0HN8Q9QOSqKupnB44w1bq1Qi6nd+CJ9qNcjJzChRdWRSdhKv7n4VvaynT7U+DKtb8a5jt6MNDSVt+w4APEePuqe9jEbZ7MEJblD0/DSj0XDfjWjIw+q1pXPmzGH8+PFMmDABgLlz57JlyxZ++OEHZs6cWUD+xx9/pGrVqsydOxeA+vXrc+TIET7//HMef/xx8x49evRg+nRT46/p06eze/du5s6dy4rcqau2JCOjcE8CgFKpxMHBoUSyCoUCR0dHonITjN2DqhYp71dLA9sh9EwCslEmKzuryHCMJEloNLfKBTMzMwuVDZs/j2yjkaDhw1DmJp5lZWVhLMZAcHJyMv93aWSzs7MxFDNnqChZO+z4sNWHTNo+iQ0XNtDIpREjm400x9dzcnLQ6/U06tmfo1s3E37lEke3b6Z+R1OytEajKSBbFI6OjihyZxFptVp0uqLDgaWRdXBwQJnbObQw2TN7Irh4NAyFSqLb2Bao7UyyOp0ObTG5CPb29qhy4/elkdXr9eQUM9jSzs4OtVpdalmDwUB2MZ2l1Wo1drlewtLIGo1GpGbNcHv3XaLeeou0n5dy5NQ+MnVGqjsl0rCGM4xYA771MRqNZGUWXnkHoFKpsLe3B0yGZaaFZEvzvS/LNaIssmonmTaDg/nn5/Ps/+s8nsF2BNY2hbtLeo0oTNba14jWg55k7Wcf8N/GddTp/Ih5rMCdsjq9jv/t/B9RSVFUdanKq01fNf8/Ks33vjyvETELFpJpMODUsQP6gAD0uf8/73aNuJ082bibaWSmZaOwl3H2URT62bC3tyc1Nga9NgdJpUbt4lrkZ6is1wibIluRnJwcWalUymvWrMl3/MUXX5S7dOlS6JrOnTvLL774Yr5ja9askVUqlazVamVZluXg4GB5zpw5+WTmzJkjV61atdA9s7Oz5ZSUFPMjLCxMBuSUlJSyvrViAYp89O3bN5+sRqMpUrZr166y0WiUvx33hPz5sH6yp6dHkbKtWraS5724S/520g459maqHBISUqRsgwYN8unQoEGDImUD1WpZGx1tlm3VqlWRst7e3vn27dq1a5GyGo0mn2zfvn2L/bvdzpAhQ4qVPXj9oFl29OjRxcrGxsaaZadMmVKs7PXr182yr776arGyZ86cMcu+9957xcr+999/ZtnZs2cXK7tz506z7Lffflus7Pr1682yixcvLlZ21apVZtlVq1YVK7t48WKz7Pr164uV/fbbb82yO3fuLFZ29uzZZtn//vuvWNn33nvPLHvmzJliZV99+SWz7PXr14uVnTJlilk2Nja2WNnRo0ebZdPT04uVHTJkSL7PcHGypb1G3I63t3eRsq1atcona6lrREhISD7ZynCNSE9PN8ver9eIwxuuyUM7vlCs7Pr16+UL+/fInw/rJ0/s16NY2bJeIyxNSkqKDCW7f1s1RBUfH4/BYMDPzy/fcT8/P6KjC+9LEh0dXai8Xq8nPj6+WJmi9pw5cyZubm7mR3BwcKFyFZHUuFiy09NQKFUoFMXMB7ktS/7mGcuFqRSOjqjv+FtXdN7Y+wYJWZb7GwgqOcoK8EtSUK7EZcXZWgWbE3quZG1Dbm8ie78hybL1ykoiIyMJCgpi//79tG/f3nz8448/ZtmyZVy4cKHAmjp16jB27Fhz+Ang33//pVOnTkRFReHv74+d3f/ZO8/oqKq1AT/TMpm0SSeVJLRQQ+9Ikd4VQbAAKqCoiIqggoKiH+aq18LFhoqiSFFExEIH6T2hlySUAAkJhPQ2/Xw/hgQipM8kIexnrVmLc2bvfd6dYc68560O/PDDDzxyS4T50qVLmTBhwh3N2nq9vog5LSsri+DgYDIzM3Fzs32KqC3Nz4knj7Hmw3fxCQnjobf+U+LY84fS2LY0Br96WgZOaVJhF5Xh0iXOP/AgSBJhK3/Bs2XLwvdqmovqVnIMOTy54Uku6S7R3q89X/f7GovRUsSkfHr3djYu/B8qtYbxHy7AJyCwxrqodq2M4+TORDSuDox8rR1Obg5FxgoX1Q0XldFA/oZ3ydr+FcvjI9BZVIRrXAg9cByZRkP9779H26a1dazFQn5+frHr3ksuqlu/9ykJ2fz+cTQWk0TXkQ1p0SOoxrqoCtjy3Zec2LYZv3qNePit93C54Ua/lHWJh397mGxDNg81fIjXOrx227o1zUWlz83lzICBmK5exe/tt3EfPqzI2PK6qIw6C9/N2IXJaGTUm21w875zHyu1Ws2qeW+ScOoE9098nkZduhe7bk1xUWVlZaHVasv0+23XGBxvb28UCsVtlpVr167dZoEpwM/P747jlUolXl5eJY4pbk21Wl14I6oKbv1SVnZsysXzgDX4q7SxdZtZ/z5XL2Qil1QlpgXeyq03J4Ds1atxkslw7t69iHIDFLlBlkZ5xt56Q6/oWGdnZz4b+BmP/v0oh64e4pOoT3i1/atFPvu2fQYQs30zyWdjOfLXb/R7Zmrhe+X5f+Lg4FD4A2uPsfHHrnN2XxpqlYZBk1ri4397DQuVSlXmm0h5xiqVysIbmS3HKhSKMn83yjw26wryVRPRxO/mr+stkOQa6tavz/A573Flygvk7tnL1SlT0CxbikNoKHK5vMwyyGQyu4wF294jKjr21u+9c7gzvR5uwa6VcRxee4UGEQHcelv49z2iJKrqHnH/408Rf3Af6ZfOk3j8MOGd7yPPmMeL/7xIriyXNkFtmN19NqpSLHjl+d7b6x6h+2cbDikpaHx98R/5EPIS5pVl3XMnU5AsEj7BWvxDvIsdZ7GYuXre2v4iOLxJmf//lOd7X53Y1UXl4OBA27Zt2bRpU5HzmzZtokuXO3ej7ty5823jN27cSLt27Qpv0MWNKW7Nu5nC9L26oaWOdfV0xDPA2ZouXkbz5L+x5OaSeaNTs+e4sRVaozqpp63HvK7zAFhyagl/n/+7yPsyuZye4yYBcPyfTVyLP1/lMpZGbqaeLT+eBqBl72BCmhWfAXFPE7cJvuoGF3dzIKMBCXnuqBw1DH7pNZROzgT+bwGOTZtiTkvj0sRJmFKE26IkIu4Pom4zr7umlYOLhyftho4AYOeyxRgNBt7a8xZnM87irfHmo54flarc1AQkSSpMDfd87NESlZuycuGYNZwjNKJ45QYgLTEBoy4fldoRz6C7J3SjrNg9TXzatGl8++23fPfdd5w+fZqXX36ZS5cuMXnyZMCaATVu3M10uMmTJ3Px4kWmTZvG6dOn+e6771i0aBHTp08vHPPiiy+yceNG3n//fc6cOcP777/P5s2beemll+y9nSrnZn2CshVgCqlkunjmH39gycnBISQE565dK7RGddM7pDeTWliVmLf3vH1bEcDA8CaEd74PJIntS76tUcX/JIvE5u9Pocsx4h3sUtggUXALZqO11cLSkZCXSqKmNXuuBQLQZ8KzhVk1Chdngr9eiKpuXYwJCVx6+hnMOXdHk8nqQCaT0Xt8k8JWDntW1fzK3+2HjsDZw5PMa1dZ9ONc1sevRylT8lGPj/B18q1u8cpE3v791sJ+ajXuY8ZUej2z2cKlk9YH3LBSFJyC+Js69RqUHON5l2J3BWf06NF8+umnvPPOO7Rq1YodO3awdu1aQkJCAEhKSipSEycsLIy1a9eybds2WrVqxbvvvsv//ve/whRxgC5durBixQq+//57IiIiWLx4MT///DMdO3a093aqFIMuv7BJpE9o2eoTFDztXzppTRcvD5IkkbZ0KQAejz2KTH73Frp+vtXzdA3ois6s48V/XiRTX7QoWPfHnkShUnHpxDHORR2oJilv58jmyyScSUepstYpUaju3s/ALmRchsWDYfd8AHQtn2LtpTAki4Um3XrStPv9RYYrvb2p++031mrHp0+T8PyUItWOBUVxcnOgz/gmABzfnlhoCaipqBwd6frw4wCkbYvGwSjn1Q6v0qZOm2qWrOxcX7gQAPdRo1B6FN9OoawkxWVgyDehcVXhG1pyjEpBj8OSaqzdzVTJ3fO5554jPj4evV5PVFQU3bvfDGRavHgx27ZtKzK+R48eREdHo9fruXDhQqG151ZGjhzJmTNnMBgMnD59mhEjRth7G1XO9UsXQZJwdvfAyU1bpjl+DbQ4OCrIzzZyNb583cXz9h/AcPYcMicntA8+WBGRawwKuYL3u79PoEsgiTmJvLbjNcyWmyZ3Nx9f2g5+AIAdPy3CbLJti4uKcO1iFvvWWP3h3R5uiIdf2eMp7gli1lldUpf3g1qLNOoHNl/0I+t6Cto6fvSe8NwdpznUrXuz2vH+/Vx59TWkEgLa73XqNvOiZR+ru2LrD6fJzSg+mLQm4NG2CVmuZtRGBQ+mtmFMeOWtIFVF/tGj5O3dB0olXk89aZM1449Zrfchzb1K7VVXYMHxb3B7j8PagHg8rMHcdE+VvbqkQiEnpIXVLHn+SPliDtKX/gSAdvgwFK41t1dLWdGqtczvNR9HhSO7r+zm46iPi7zf8YFROGndSU+6wpENa6tJSisGnYmNi05iMUvUb+1D024B1SpPjcJkgA1vwPIxoMuAgDbwzHaOJ2uI2bsTuULB4BdmoC4hEFbTrBlBny0AlYrs9eu5+l5kjXJN1jQ6D6+Pd7ALulwjmxefKrc1uKrIM+bx4vaXOBBu/VF3OZ5BdurdE2t1/WtrtW3t0KGoAir/nZckiQvHyxZ/YzIaC39j/IQFR1DVVETBAQhreVPBKetN3HjlCtlbtgLg+eij5bpeTSbcM5z/6/Z/gLXh3m9xvxW+56BxoutoayD13lXLyM8un8XLluz6JY7Ma/m4eKjp+XjjGtvpuMpJj4fvB8Dez6zHnZ6DpzaQmqfgn8VfA9B19Fj8G4aXupRzly4Evv8fkMlIX7qU1IVf21HwuxvFDRep0kFOwpl0Dm+6c2ud6sQiWZi5cyax6bHkBztRp3E4ZqOR3T//VN2ilQldbCw5W7aATIbXpIk2WTM9OY+slHzkShnBTUrrP3Uei9mExtWtVtbAAaHg1Ghudngtn4IT0twLhVJO5rV80pOKr81xK+krfgaLBaeOHVE3rF3afP/Q/jzX0uq+eHffuxxKPlT4XvNeffAJCUOfm8uelcuqRb64Q1c5vScJZNDnyaZlTu+v9Zz6A77qDolR4OgOY5bDgEiMFom/Pn0fk0FPSERr2g8tu3vabdAg6tyosZXy6adk/PqrnYS/+/Hwc+a+0VbXxf4158vt8rY3Cw4vYOvlrTjIHZjfez59xj4DwKmd/9TI7Mh/k/rttwC49u2Lup5tunjH34iZCmrkgYNjyWncBe4pv/oNa+0DlVBwaiiSxcL1S2VPEb8VB0clQU2swWplcVNZ9HoyVq4EwOPxx8on6F3C5JaT6R/aH5PFxLRt00jITgBALlfQc5z16enoprWFSmVVkZWaz7al1iyvdgNDCWxU+SDDux6THtbOgF/Ggj4TgtrD5J3QeBAA23/8luuXL+KkdWfg89PKHQzvOW4sXpOsWXZJc94ie+s/Nt9CbaFJF3/qt/HBYpHYtOgkBl3xRe6qkr/O/8W3x60Kwttd3qalT0v8GjQqzI7csfT7apawZAwXL5L1t9Ut7vX00zZbN76M6eFwM8DYr5bG34BQcGosmSnXMOTno1Aq8QgIKvf8ei19gLIpOFlr12FOT0fp749rr17lvtbdgEwm492u79LUqynp+nRe2PoCuUZr1de6zVvSsEMXJIuFrd99VWWxGRazhc3fncKQb6JOmBvtBodWyXVrNKnnYFFfOHDDfdT1RXhyHbjXBSB2/26ObloHwMApr+DsXjGF0Gfay9ZAeouFxJdfJi/6sE3Er23IZDJ6PtYYFw81mSn57FwRW90icSzlGG/tfguACc0nMLT+0ML3uo0Zh1yh5OKxw8Qfq7mf6fUvvwKzGefu96Fp3swma+Zm6kk6b80WLZOCU2jBEQqOoIpJuWG98QoKQVGBipGhEd7IZJByKZvstOJL3gOkF6SGjxmD7C6oTllRNEoN/+v1P3w0PpzNOFsks6rn+IkoHdQknD7BmV3bqkSeQ+suknQuE5Wjgr5PNUOhuMe/jid+g4U9IOkoaDzh0ZXQ953CXlKZ166y8av/AdB++EhCI1pX+FIymQz/d+bi0qMHkl7P5WefRX+25td9qQ4cnVX0faoZMhmc2ZdM7ME79/yrCpJzk5m6dSoGi4Fewb2Y2mZqkffd/fxp1c9q6dux9HukEtpAVBeG+Hgy//gDAJ8pU2y27vnDKSCBb6gbrp4lV4bX5+WRdsVqxa6tAcYgFJwaS0p8QYBxaIXmO7k54Fffmlp+4WjxVhzdqVPoTpwAlQr3USMrdK27iTrOdZjfaz5qhZrtCduZH22tp+Lm7UunEaMB2P7Td+hL6CtkC5LOZnDob+tn3OORcLQ+ZS9ZX+sw5sOfL8GvT4IhG+p2hsm7oFG/wiFmk4m/F3yIPi8X/wbhhbVPKoNMpSLw00/QtGyJJTOTSxMnYUxKqvS6tZGAhu60HRQKwPalMWRdL76fl73IM+YxdetUUnWpNPRoSOR9kchlt/+EdRwxGgeNEynx5zm9e3uVy1ka17/8CiwWXHr0QBMRYbN1zx2+BkD9Nj6ljr16/ixIEm4+vjhp3W0mQ01DKDg1lIpmUN1KvValu6kKgixd+/RG6Vly1H1toYVPC97p8g4A35/8nl9ifgGg7ZAH8fAPIDcjnb2/LrXb9fV5RjZ9dwpJgvCOfoR39LPbtWo81+Pg2z4Q9T0gg/tegfF/gTawyLC9vy4jKfYMDhonBr84o0JWzTsh12gI+upLHOrVw5SczKVJkzBnZNhk7dpG+0Gh+NXTYtCZ2fTdSSzmqrOOmCwmXt3xKqfTTuPp6Mln93+Gs+rOdaKc3LR0GG59WNu14kdMNaiwo/7CBTL//BMA7ynP22zdvCwDV2IzAGjQpvQKzklx1kbXtdk9BULBqbEUuKhsoeBcicskP+f2L7klP5/MP/8CwGPUqApf525kUL1BhZlV8/bPY0fCDpQqFfc/Yc3EiF73p10CjiVJYtuyGLLTdLh5O9J9TO2+wZTIsV+sLqmrJ8DJGx5fBb3ngKKo8nLx2BH2/24Ngu/3zFS0vrZVCJUeHtT99huUvr4Yzp7j8nPPYymh4/i9ilwhp+9TTXFwVJB8PouDf8dXyXUlSeI/B/7D9oTtqBVq5veaT4BLyTVj2gwahounF9nXUziy4a8qkbMspH51w3rTsyeaFi1stq61JAj4hrgW2zn8VhLPnAQgsHFTm8lQExEKTg3EoMsn80aLBu9yZlDdipu3Bu9gFySLxLno2604WRs2YMnORhUUhFOnThW+zt3K5JaTGV5/OBbJwvTt0zmVeorQVm1p2NEacLxl0Zc2Dzg+szeZs4euIZfL6DuhGQ6a2hvzVCyGPFgzBX6bBMZcCL0Pnt0NDXrfNjQvM4N1n38EkkRE7wGEd+5mF5FUAQEEf/sNcjc38qOjSZz2CpKpZmQM1STcvDX0fKwxAFHr4rkSl273a/5w8gd+jvkZGTIi74uklW+rUueo1DdbOOxb/TP5Odl2lrJ09GfPFj5Qej9vO+sNwLnoAvdU6dYbyWLhSqzVghMYLhQcQRWTlnAZACete5lbNBRHw/bWAk5xB6/e9l7GSqt7yn3kQ3d136mKIpPJeKvLW3T270y+KZ/ntzzPlZwr9Bw3EaVaTeKZk5zeabsU4oyreez42ZqF0mFYGH5hlfts70qunYFv7ofDSwAZ9Hgdxq0B19utMhaLmb//9yG5Gel4BdWl53jbFEMrDsdGjQj+4nNkDg7k/PMPSW/OrpFBqtVNw/Z1aNzZD0mCTd+dQpdrvzYn6+PX81HURwDMaD+DviF9yzy3aY/78Q4OQZ+by4EbFsDqJGX+fKv1pk9vNC2a22zd/GwDiTFWRbMs8TfXEy6hz8tFpXaslIfgbuDe+1W7C0hNtCo4noHlTw//Nw3bWRWcK2czyEm/2VNGf+4c+VFRIJejfbD29fEqKyq5io97fkxDj4Zcz7/Os5ufRXJV0+lBa8DxPz9+S15WZimrlI7ZZGHjopOY9GYCG7nTul9Ipde86zi8FL7pBSmnwaWOVbHpNROK6WK8d+UyLp04ilKtZshLr6FSl5wZYguc2rUj8NNPQKEg8/ffufqf/4iWDnfgvtGN0PpqyEnXs23pGbv8jaKuRjFr5ywAHmvyGGObji3XfLlcwX2PPQHA4XV/kJVyzdYilpn8o0fJ3rQZ5HJ8X3rJpmsXuKe8g13Q+hTfrqSAxDOnAPBv1Bi5ovZ1EL8VoeDUQNJuKDhegcGVXsvV0xH/BlqQ4GzUTStOxq+rAHDp0QNVndLNmrUZFwcXvuj9Bb5OvpzPPM/L214mYtAQvOuGosvOYtuP31b6Gvv/OE/KpWzUzkr6PNm01CZ4tQp9DqyeDGueA2Me1OtlzZKq16PYKecPH2Tfbz8D0G/SFLyDq04hdL3/fvznWdt7pP+4hOuff1Fl175bcHBU0m9CM+QKGeeiUzi927bZZxcyLzB161SMFiP3B9/PjHYzKrROWKt2BDeLwGwysfvnJTaVsaxIksS1j6x98LQPPIC6QQObrl/gnmrQtmz38SsxVgWntrunQCg4NZLURGt9As/AujZZr8CKU+CmshgMZP7+OwDu91hwcXH4OfvxRe8vcFY5czD5IG/vn0vfp6cgk8k5vfMf4o9EVXjty6fTOLzR2svn/seb4OJhf0tEjeHqSavV5uhykMnh/jfh8d/ApfibcVbKNdYtsLolWvYdRJP7qr74pPsDD1DnjTcAuP7ZZ6T9+GOVy1DT8Q1xo+Nwa4uBnb/Ekp6ca5N1CyypWYYsIrwj+E/3/6AoxspXGjKZjO6PWbt0n9q1jasXztlExvKQu3sPeQcOIFOp8LFh5hRYi/slxGQAUL912RSchIIAY6HgCKoDW1pwwKrZy+Qyrl3MJuNqHjlbt1orF/v64tL9PptcozYQ7hnOxz0+RilTsvbCWpakr6H1QGuV1E3ffo5BV/7MmvwcA5sXW5+Ymt0XQL3WpfvIawWSBFGLrfE212PB1d+a/t19BpQQ72UyGvnj40h0uTn41W9Iz/GTqk7mf+E59nG8X7AWYrv6XiQZq3+vNllqKq371CWosQcmg9UFazZWLmYpy5DF5E2TScxJJNg1mAW9F6BRVq5GlF/9hjTu2gMkiZ3LFldqrfIiWSykfGy13ng8+qhNOobfStzBq0gWiTphbrjXKd09lXktmezrKcgVCgIaNbapLDURoeDUMMwmIxlXreZez6DKx+AAaFwdCG5sLWkfd+gqGb9YA+60Ix6s1ZWLK0KXwC6809VaI+en0z8R28yIm08dslKuseeX8nUpliSJrT+cJi/TgIefE11H1d6KoUXQZ8OqifDni2DSQYO+VpdUaNdSp2774Ruuno/D0cWVoS/PRKmq3saj3s89h+f4cQAkvfkm2Zs3V6s8NQ2ZXGZtEOui4vrlHPb+XnELic6k44UtLxCTHoOnoydf9fkKT0fb1ObqNmbszRYOR6NtsmZZyPrzT3SnTiF3dsbrGdv1nCogZr8127astbQunzwOWOvfqBxrvyVZKDg1jPSkK0gWCw4aDS4eXjZbtyCbKnZvIjl79gDgPrL2Vy6uCEPrD+W19q8B8NnJL3EYYM14iF77J0lnY8q8zrGtCcQfT0WhlNNvYjNUDrU7oA+wtllY2B1O/AoyBfSZC4/+As6l98Y5vfMfjm5aCzIZg6a8gptP9ceGyWQyfF97zdq3ymwm8eVp5O7dW91i1SictWruH9cEgKNbLnPxZGq51zBajMzYPoPoa9G4qFxY2Hchdd1s46IH0Pr60ar/YKDqWjhY8vO59vEnAHg984zNC6mmJuZw/XIOcoWsMAyhNC6fsio4wc1sV4OnJiMUnBpGakJBBlWwTVvY12vlg0IpJ+O6gWyXYJy7dMbBRhai2sjjTR/nmQhr0b+PUr9H2yYcSbKwceECTMbS02JTLmWzZ7W1t1HXkQ3wDnK1q7zVjiTBgW+sVYnTzoNbkLVJZreXSnRJFXD9Ujwbv/kMgE4jRhPWup2dBS47Mrkc/3ffwbVvXySjkcvPTyH/6NHqFqtGERbhTYue1vvJlsWnyMsqe/Vgi2Thrd1vsS1hG2qFms96f0ZjT9u7TzqNGI3ayZmUixc4XQX95lK/+w7T1auoAgIKrYC2pMB6E9LcC0eX0i2dkiQVWnCCm9quRURNRig4NQxbx98U4KBREtbK+hSd5N/5nk4NLyvPt3qe0eGjkZD41nsbShcnrl+KZ8/Kkts4GHQmNnx7AotJIqylN817BJY4/q5Hlwkrx8Pa6WA2QKOBMHkn1O1Ypun5Odms+e88THo9IRGt6TzyETsLXH5kSiUBH/0X5y6dkfLyuPz0M+hiq7+zdk2iy0P18QxwJj/byJYfTiFZSk8dlySJDw9+yJ/n/0QhU/BRj49oW6etXeTTuLrR4QFrUsWuFUvs2sLBePUaqd8uAsB3+ivI1Wqbrm+xSMTeUHAad/Iv05zMa1fJTk1BrlDeE/E3IBScGsfNGji2VXAA6vnkAHC1Tns03XvafP3ahkwmY2aHmQwIHUCu0sC2JlcAOPjHKhJOnyh23o4VsWRey8fFw2q6t6UlrsaRGA1f3Qen1oBcBf3fg0eWg1PZzPEWs5m/Pn2fjKtJuPnUYdAL05FXMGPG3sgdHAhasABNy5aYMzO5PGEihosXq1usGoNSpaDfxGYoVHIunUzj2D8Jpc755vg3/HTaGtv2btd36RFcfOkAW9B64FBcvLzJTk3h8Po/7XadlE8/RcrPR9OqFa4DB9p8/cSYdHIzDaidlIQ0L1sow6UTVqujX4N7I/4GQESY1jDS7KjgOB9ci1oXgd7Rk/iYHBp1cLH5NWobCrmC97q9R5Yhiz3sIaiuhtBLatZ9/gnjPliA2qlo5kLM/mRi9iUjk0Hfp5rh6Fy9QbJ2Q5Jg/1ewcTZYjOBeF0YuhqDyPX3vWPodl44fQalW88CMNytdudveyJ2dCV74FRfHjUcfG8vFJ54kZMkSHIJquZWujHgFuNBtZAO2L49lz+qzBDRyxyf4zu7ZZaeXseDwAgBea/8aQ+sPtbt8Kgc1XR9+nA1ffsr+33+h+f390LjYzn1sNpvJPnmS9P37wd8f99dfQ6/Xlz6xnMQdvoKjVk7D9j4YzQaM5tLnJJ6NxcnTm9A27dHpdDaXyZaoVCoUNihCKJPuwTKdWVlZaLVaMjMzcXNzq25xCrFYzCwYNwqT0cBT87/Gw892KYUWnY64+7pz1us+4kMHE9TYg+EvtbbZ+rWdPGMeT296mlNXjvHA7iCc8+Q069mHAc++VDgm42oev7x3EKPeTPshYXQYUkvLoOenW3tJnbnRxLDJUBj2GWjcy7XMye1bWP+FNQhz6LSZNOpYepZVTcF0/ToXx47DcOECqqAgQpb8iMq/bK6C2o4kSaz76jgXjl7Hw8+JUTPbo1IX/bH6JeYX3t33LgDPRDzDlNZTqkw+i8XMktde5PqleNoOeZCeYyfYZN2cnBwSLl/GeO0aksmEXKNB4eFhk7VvRZIka1V6CZy0DiiUpTtiJEkiJ+06kkXCyd2j2rMTS0MmkxEUFISLy+0P4eX5/RYWnBpEVkoKJqMBhUqF1rdsUfFlJeeff7BkZxPscZ54GSScSSfren6ZOs8KwEnlxJd9vmTSxklsjzjLwH11OLltM/XbdKBhxy6FrRiMejMBDd1pNyi0ukW2D5cPwq9PQeYlUDhAv3nQYRKU0w2XFBfDpq+tT++dHnrkrlJuAJTe3tRd/D0Xx47DeOkSl554kro//njPVwUH649Tr7GNuRZ/gPTkPHb9Gkevx27GfKyOW12o3DzZ7Emeb2Xb4nelIZcr6P7Yk/wW+RZH1v9J6/5DKn2/NZvNJCQkoFEoqOPhgVwuxyEkBJkdFIn8XAN5agNylQx3H6cyucCNej0ZSjkyuRwvGyew2BpJkkhJSSEhIYGGDRtWypIjFJwaRIF7ysM/0OZxCJm/rwHAb2APgmQeJJxJ5/SeJDoOq2fT69RmXB1cWdh3IROliZy4lkyL81rWfz2fgPAmHN58vbAVQ9+namErBosF9n4GW+aCxQQeYTBqMQS0KvdSWdevseajeZhNJhq070SXGhhUXBZUdeoQckPJMVy8yKUnnyTkxx9QepeeEl/b0bg40OfJpqyZf4RTO69Qt6kn9Vv78ue5P3lrz1sAPN7kcV5u+3K1/NiGtmxD3eYRXDpxjN2//MSgKa9Uaj2j0YjFbEZrNqOWy1H5+aN0tX3mpCRJ5KaZUCkdcHF3RKNxKNM8U34eKoUCtbMzGk3Nf6j18fEhPj4eo9FYKQVHBBnXIFITrOX8bR1/Y0pNJWfXLgC0w4fRtKvV9XVmbxKWMmQ6CG6iVWv5uu/XZHfwJs3VgCEnl5/fe5cjm6zBpr3H1cJWDHlpsHwMbJptVW6ajYBndlRIudHn5bL6P3PJTU/DOziEgc9Pu6s72asCAqj7w2KU/v4Yzp/n0pNPYUpPr26xagRBjT1pc6Op7D9LzvDX0fW8uftNJCRGh4/m1favVpslwdrC4SnAWn/JFi0cLFlZYDYjd3RE4WXbmjcFGPVmzEYLMpmsTKnhBRjy8wBQa0qvdlwTsNX/i7v3zlILSS1MEbdtfZqsv/8GsxnHiAjU9eoR1sobtZOSnHQ9F0+UvyjXvY6HowdfD/iW8/c5YpJLpF+Mxaw7QIteQYS1rGWtGC7uha+6QdwGUKhhyCcw8jtwLH/smtlk5I+P3uP65Ys4e3jy4Otv43CX3HBLwiEoiJDF36P08UEfF8elpyZgzqx8B/raQIdhYfiGuKLPM7Fv6WUki8RDDR9iVsdZ1e4mqVOvgbWFA7Djp+8q1RE9/+QpLHlWJULp72+3velyrDW41M7KMluJLWYzxhtBxQ5Od//3rTwIBacGYa8MqgL3lHb4MMCazllgxTm29bJNr3Wv4KXx4tMR32Lx7ASAUbcXp7qXqlkqG2KxwM6PYPFgyEoErwYwaQu0e6rc8TZgNa1v+vozLp04ispRw4OvvYWbd+1RBh1CQqj7w2IUXl7oT5/m0sRJmLOzq1usakehkOMyKAuDXId/Vn0eyX+BOZ3nIJfVjJ+ebmPGolAquXTiKBcr2MLBYjCQ8r//ASB306JwdraliDevY7agyzMBVhdgWTHk5yFJEkqVA0pV2efVBmrG/zIBkiSRdqOLuC2L/OliY9GdOgUqFW6DBhWeb94jENmNYOO0K7bpAnyvEbc+EzdzV2SOjZEhsfHLT4i9fLy6xao8OSmw9CHY8g5IZogYDU9vB7+Kl3ff++tyTm7fgkwuZ+hLr1EnrL4NBa4ZqOvVo+7336Fwd0d3/DiXJk6855WcdRfWMfPoK+ysd6P/3fH6JJ+tOdatIi0cli3GYilDvvW/SF34NcZLl0AuR+Vtu/Y6/0aXawRJQumguC0rrST0NyxL/y5pcS8gFJwaQl5mBvq8XJDJ8PC3XU2NrD/+AMClR3eUt6QsunlrCt0px7aVXpBLUJSzUdc4usVq/eo+6UlytKDWy/gh8lXOXr+LK9xe2Gl1SZ3bCkqNNf37wYWgrnjNpOP/bGTvr8sA6DPhuRrVhsHWODZqRN3vv0Ou1aI7eoxLTz51z7qrfj/7O6/vfB2zZKZJxwAadvBFssCGb06Sm2n72jAVpeODt7Rw2LmtXHP1cXFc//prABRard2aF0uSRH621T2lKUfsjSRJ1t8VwMEOlqXU1FR8fX2Jj48v85yRI0fy8Y0O6/ZGKDg1hPRka5VcN28flA62MSNKFguZf1prlWiHD7/t/Yhe1lifmH1J1qcDQZnIuJrH1iWnAWjdty7tujXj8dcjManAM1XB/A+ncCb1TDVLWU4sZtj2Pvw4DHKSwacxPP0PtBlbIZdUATF7d7FpobXHVIfhI4noM8BWEtdYHJs0IeSHxSg8PNCdOMHFJ5685wKPf4n5hdm7Z2ORLIxsNJJ3u71Lr8ea4BngTF6WgQ3fnMBstn/Dy7JwawuH3T//hNFQNuVLMptJmj0HjEacOnZEbsfsJEO+CbPJgkwuQ12O4qFGvR6L2YxMLsfBsXj5unfvjkwmQyaToVKpCA8PZ9myZaWuHxkZydChQwkNDS2zTHPmzGHevHlkZWWVeU5FEQpODSEjyarguNuwuF9+VBSmq1eRu7nh0uP2EugBjdzxCnTBZLBwek+Sza5bmzEazKz/+jhGnRn/Blo6PmBNs69frwUDX3gFCQiNd2Dewuc4ef1k9QpbVrKvwpIHYNt7IFmg1eMwaSv4NqnUsucPH2Ttgg+RJAst7u9Ht0fG20beuwDHxo2LxuSMfwJT6r0R0L/k1JLCOjePNXmMOZ2sMTcqtYKBz7TAwVFB0tlM9q6ufOaSrWg9cCiuXj7WFg7rytbCIW3xD+QfOYLc2Rnv5561q3wFzUs1LqpylaDQ51rb86idiq+XI0kSR44cITIykqSkJGJjY+nWrRvjx4/nwoULxa6dn5/PokWLmDhxYjl2AhEREYSGhrJ0ack9/WyBXRWc9PR0xo4di1arRavVMnbsWDIyMoodbzQaee2112jRogXOzs4EBAQwbtw4rly5UmRcz549C7XNgteYMWPsuRW7k3HVqmDYsnpx5tq1ALj27YP8DlYhmUxGxP1WK87xbQkiZbwUJElix7IYUhNz0bg50H9icxSKm1+hiI696DDa+v8w4piGmcsmc+TakWqStoyc+8fqkrqwA1TOVnfUA5+DQ+XM2ZdPHuPPjyKxmM007tqDPpOer/asmarGsVEjQn78AYWPt7Wtw/jxmFJSqlssu/LNsW/44OAHAExoPoHX2r9W5HN3r+NE7/FNATi6+TJno65Vi5z/RuWgpuvoxwHYv/oXcjNKtrjpYmNJ+fRTAOrMfB2Vr/0KPBr1Jox6M8hA41p2674kSTcVHOfiXcxxcXFkZ2fTrVs3/Pz8CAsLY9asWZhMJo4dO1bsvHXr1qFUKuncuXOR88uXL8fR0ZHExMTCcxMnTiQiIoLMG+7aYcOGsXz58jLvpaLYVcF59NFHOXLkCOvXr2f9+vUcOXKEsWPHFjs+Ly+P6OhoZs+eTXR0NL/99huxsbEMGzbstrGTJk0iKSmp8LVw4UJ7bsXupBdacGxT7l0ymchevwEAt4GDih3XqH0dHJ1VZKfqOBddM242NZXTe5I4c6PPVL8JzXB2v71D8H0PPkaDzl2RSzI67Xdh+qpn2Z24uxqkLQWzCbb+Hyx5EHKvgW8zeHobtKz8g0LS2RhWf/AuJqOBem07MOC5l2tsA017o65fn5Aff0RZpw6Gs+e4OG48xqu173smSRKfRH3C/w5bs4mea/UcL7Z58Y5Kbb3WPrTuVxeArT+eJi2pZiQ5NLmvJ3XqNcSQn8fOZYuLHScZDFx5/XUkoxGXHj3QPvTQ7WMkiTyDySav69fzyTeasSjl6C2WUscXpLubDAZMRiMymazE+jdRUVHWh92IiMJzCQnWuMw6dYqv8Lxjxw7atbs9nm7MmDGEh4cTGRkJwNy5c9mwYQPr1q1Dq7X2muvQoQMHDhywS5+uW7FbJePTp0+zfv169u3bR8eOHQH45ptv6Ny5MzExMYSHh982R6vVsmnTpiLnFixYQIcOHbh06RJ169YtPO/k5ISfn5+9xK9yMpJvWHD8bWPByd23H3N6OgoPD5w7dSx2nNJBQcT9QRz48wKH1sbToI0vstpWhdcGXI3PYsdya/Bwx+H1CAq/c48ZmUzGoOem8UvqdZJjY+i+T8sMxVRm9ZnLkHpDqlLk4sm6AqsmwsUbilfbJ2DAf0BV+RiC5HNx/PbeWxh1+dRtHsHQl15HYafAy7sFdVgYIUt+5OL4JzBcuMDFxx+n7neLcAi2fUPd6sBoMfL2nrf545w1oWFa22k82fzJEud0Gl6PaxezSIzJYP3C44x8vR0OjtX7/0QuV9D7qckse/MVTm7fQoveAwgMv91Nm/Lll+hPnUah1eL37jt3VOLyjWaaztlQFWLfxql3+uPkoCy03jhonJCXUA04OjqasLCwwr5OMTExTJ8+nVatWtGhQwf++usvXnnlFSwWC6+99lqhSyo+Pp6AgNt/r2QyGfPmzWPkyJEEBAQwf/58du7cSWDgzeSZwMBA9Ho9ycnJhISE2HL7RbCbBWfv3r1otdpC5QagU6dOaLVa9uzZU+Z1MjMzkclkuLu7Fzm/dOlSvL29adasGdOnTye7hHRMvV5PVlZWkVdNQpKkwiBj9zq2UXCyCtxTA/qXGtnfomcQKkcFaVdyuXDsuk2uX5vIzdSz7qvjmE0WQiO8C6uzFofKQc2IV9/Cwz8QZ52SXge8mLN1Fj+c/KGKJC6BuM1Wl9TF3eDgAg8tgqHzbaLcXIk9zcp330CXm0NAoyYMnzHbZgHzdzsOdesSsmQJqqAgjJcvc/HRx9DF3sXZdjfIM+bx4tYX+ePcHyhkCt7p8k6pyg2AXCGn34TmOGsdSE/O458lZypVaM9W+DcMp3mvfgBs+e7L29LG86KjSf36GwD85r5tV9dUZdHlWi1jjiW4p8BqwYmPj8fFxQVHR0datWpFs2bNWL9+PRaLhWnTprF161aio6N5//33SUtLA6wxOI6Od67aPmTIEJo2bcrcuXNZvXo1zZo1K/J+QbuIvBsp7PbCbipzcnIyvnf48H19fUlOTi7TGjqdjtdff51HH320SNfQxx57jLCwMPz8/Dhx4gQzZ87k6NGjt1l/CoiMjGTu3LkV20gVkJeZgVGXDzIZ2jqVt0pZDAayN28GQDuoePdUAY7OKlr0DCJ6/UWi1sUT1tL7nouXKA6z0cL6hSfIzdDj4edE3yeblsnCpXF146FZ77Bs9nTISKfPIV8+lX3E9fzrvNz25aovdGY2wj/zYJe1ezd+LWDUD+Blm3o0l08dZ/V/5mLU6whq0pwHX5tTYtbGvYhDUCAhS5dyeeJE9HFxXBw7jroLv0LTqlV1i1Yh0nXpTNkyhWPXj+GocOS/Pf5Lj+DbkxmKw8nNgf5Pt+D3j6I5G3UNn7qutOlvv6f5snLfo+OJO7CblPjzHNu0vrBOjjkjg8RXpoPZjNuwobgNKD4jUKNScOqd/pWSw2yykJaUB5KE1ldTZguXRqXAaNBjMuit7qlS0sMPHz7MjBkzmDhxIk5OTvjfUol5z549NGvWrND6MmjQIDZs2MAjjzyCt7c36cVkB27YsIEzZ85gNpvv6OYqUJJ8fOxb7LPcd9m33377tgDff78OHToE3LmfhCRJZet+ajQyZswYLBYLX3zxRZH3Jk2aRJ8+fWjevDljxozh119/ZfPmzURH37kS5cyZM8nMzCx8Xb5cs6r3FkkRt0H32dxdu7FkZaH09UXTtm2Z5rTqHYxSJefaxWwun06rtAy1AUmS2LEihuTzmTholAx6NgIHTdmfCbS+dXho5lzUzs7USXekzyFffjr6A2/segOjpQrT8jMTrBWJC5Sb9pNgwmabKTfnovbzW+TbGPU66rZoxYiZtaMFgz1Q1fElZMmPaFq2xJKZycWnJpCzuwbGaJXClZwrjFs3jmPXj+Hm4MY3/b4pl3JTgH99Ld0ebgjA3t/P1QgLspOblq6jrbGiu37+kbysTCRJ4sobb2JKSsIhJAS/OW+VuIZMJsPJQVmpF/kWNEo5bi4OaF3VZZ4nk8nQ5Vg9Gg5OJbunzp8/T0ZGBn379qVBgwYEBAQU+X2+cuVKEddSUFBQYfBw69atOXXq1G1rRkdHM2rUKBYuXEj//v2ZPXv2bWNOnDhBUFAQ3nZuTFtuBWfKlCmcPn26xFfz5s3x8/Pj6tWrt81PSUkpMXAJrMrNww8/zIULF9i0aVMR682daNOmDSqViri4uDu+r1arcXNzK/KqSRTE39gqRbzAPeU2cECZGxlqXB1o1t36H/nQ2nibyHG3c2J7Iqd2J1mDiic2w71O+X+0fUPr8dCsd3DQOOGX5kjvKF/Wxf3NC1tfINdYBcGVMeusLqnL+0HtZrXaDP4vqGzTEPTY5vWs+XAeJoOeem3a8+Crc1Cpa1mzURujcHen7vff4dy1K1JeHpcnP0vW+uqJ16gIMWkxjF07lviseOo41eHHgT/SyrdVhddr0TOI5t0DQYJNi06SmphjO2ErSMs+A/EJCUOfm8uu5T+Q/tNScrZsQaZSEfDxRyhc7NOOoQCz0UJ+jjU13NldXS6LuiRJ6HKsf0NHl5I7mhcEGLct5kH4Tm7DAln69+/PyZMni1hx4uPjGTx4MK+//jpjx47lnXfeYdWqVURFRRVZY+fOnfTr16/Me6oo5VZwvL29ady4cYkvR0dHOnfuTGZmJgcOHCicu3//fjIzM+nSpUux6xcoN3FxcWzevBkvr9JLX588eRKj0Yi/v20ykKqajBsWHA8bZFBZ8vPJ3roVoEhrhrLQum9d5EoZSWczuXzq3rbiJMaks+sXq8Lc6YH6hDSreAl2/wbhPDRrLipHDf6pjvQ/5MeB+D2MXTeWpBw71R8yGWDDG9Yu4PnpENDa2gG82QM2WV6SJHb/spRN33yGJFlo3qsvw6e/KWJuyojcyYmgL7/AdcAAMBpJnDaN9F9+qW6xSmX75e2MWzeOa/nXqK+tz0+DfqK+e+Utgd1GNyQw3B2j3szfXxwr/HGvLuQKBb2fsta2Ob51EzELPgXAd8YMNP+KJ7EHBZWeHRyV5Q6+Nup1mI1GZHI5aqeSFbHo6GgaNGhwW4xrAYGBgUXSvRMSEgp/Z1u0aEG7du345cb/27S0NAYOHMiwYcOYNWsWAG3btmXo0KG88cYbhWvodDpWr17NpEmTyrWvimC3QIAmTZowYMAAJk2axL59+9i3bx+TJk1iyJAhRTKoGjduzOrVqwEwmUyMHDmSQ4cOsXTpUsxmM8nJySQnJ2MwWP/Dnzt3jnfeeYdDhw4RHx/P2rVrGTVqFK1bt6Zr16722o5dSbehBSdn+3akvDxUgYE43pL2Vxac3dW06G6ti7P7t7P3bF2c9ORc1i08jsUi0bB9ncKU1soQ0KjJDdeNBt9UB4YcCCQh+RyP/P0Ix1KKrzVRIdIvwvcDYK+1gjCdnoOnNoJnmE2WN+p0/PXp++xbZa1j0emhR+j3zNQSTeGC25E7OBD40X9xHzUKLBaS57zFtU8/rRHBtv9GkiSWnFrC1H+mkmfKo6NfR34Y+AN+zrbJZFUo5AyY1AI3b0eyU3WsX3gCs6l6Kx0HNm5Kk45dAYnjfh449b4fj7GP2/26JqO5sLK8s3v5Hxjys61JNI7OzshLseBHRkYSW0Kwe4cOHThx4gSJiYlkZ2ezdu1a+ve/GVs0e/Zs5s+fj8ViwdPTk9OnT99WsmXNmjWsX7++8HjRokV07NiRTp06lXtv5cWukY5Lly6lRYsW9OvXj379+hEREcGSJUuKjImJiSks/pOQkMAff/xBQkICrVq1wt/fv/BVkHnl4ODAli1b6N+/P+Hh4UydOpV+/fqxefNmFHfpDdaWVYyz1q4DrNabigQKtxsUioNGSWpCDrH7yxYMXpvIyzLw12dH0eeZ8Kvnxv1jG9ss4DqocTMefus/OGnd0WYqGL4/GENqJk9teIr18etLX6AsnP4TFt4HiVHgqIUxy2BAJChtY1nJvJbM8tnTid23C7lCSb9nptL14cdEUHoFkSkU+L0zF69nJwOQ+tVCrsx4FYuhei0Yt2K0GHl337t8cPADLJKFhxo+xJd9v0Sr1tr0Oo4uKgY/1xKVo4IrcRlsXx5TrcqeZDTSIOoEKpOZbI2aK907V8n/89wM62fvoFGiUpfPemOxWArdUxrXyn8+SqWSjz76iF69etG6dWtmzJhRxKsyaNAgnnnmmSJWntJQqVQsWLCg0rKVBZlUEx8X7ExWVhZarZbMzMxqj8eRJInPnnwYQ34+T3z0JV5BFa+NYc7JIa5rNyS9nrDfV+PYuHGF1oneeJG9v53DxUPNY3M7oXS4OxXH8mIymPn9k8NcvZCFm7cjI19rV67KoWUlIzmJX9+bTebVZMwOcra2TCLRR8fzrZ7nmYhnKnYTNelh42w4cOPpKag9jPwO3CtvfSrgXNR+1n85H112Fk5ad4ZNm0Vg46Y2W/9eJ2PVKpLeehtMJpzatyfoswUotLZVIspLliGLV7a9wr6kfciQ8Uq7VxjXdJxdf+jjj19n7RfHkCToMDSM9oNtY3ksL8nvvUf6j0u4UseLI37uKFQqxn3wGZ4BtzdD1ul0XLhwgbCwsGJTp8uCUW8mPdkam+fh51yuruEAeVmZZKVcQ6lS4RUcctc+eJT09yzP77foRVXN5GVmYMi/kSLuW3LwdWnkbN2KpNfjEBaG+g6FFMtKRK8gXDzV5KTrObq1ZmWc2QvJIrH5+1NcvZCF2knJkCkt7aLcgLVa9SPvfIh/w3AUBgt9DtahxTk3Pj/8OTN3zURn0pVvwbTzsKjfTeWmy1R4cp3NlBuTwcDW7xfy+wfvosvOok69hjz23idCubEx7g89RPDCr5A7O5N38CDxjzyK4UZF2ergYtZFHl/7OPuS9qFRapjfaz7jm423+49maAtvuj9ivX8d+PMCp3ZfKWWG7Un/5RfSf7R6G9q/+RahLdtgNhrZ9M0CJIt9XGeSJJGdZv3uOzqryq3cwE33lMbN7a5VbmyJUHCqmYIMKlt0Ec/asNG61sABlfrPrVQp6DTcGjgYtf5iYaO32sye1ec4dzgFuVLGoGdb4OFn3ywJZ3cPHn7rP7To3R8Z0DbGgz5Rvmw9vY5x68aRkF3GH7aTq2FhD0g6AhpPePQX6PcuKCpfbgAg+WwsS9+YxuH11gaEbQc/wJh3PsDN2771K+5VXLp2JWTZMpR+fhjOnyd+9BjyS+gHZC+2Xd7GmL/GcCHzQmGmVK+6vars+s27B9J2gLUmzralMcQfr7r08Zzdu0me+w4A3s8/j1vfvvSZ+DxKtZqEUyc4tsVG7uR/ocs1YjKYkclkd2wDUxpGnQ6jTodMJsPRpWZlClcXQsGpZgqabFY2/saSm0vurl0AuPavXIEpsPao8g1xxagzs2vlndPvawvRGy5yZNMlAHqPa0JAwzu3YbA1SpWKfk+/QN9JU1AolQRd0/DgjkDyT15k9F+jS+5hZdTBX9Ng5ROgz4K6nWHyLmhU+c8ewKDL558fvmHZm9O5fikeJ607I2bOpee4iTap1SQoHsfwRoT+vAJ1kyaYU1O5OHYcmX+WrcN1ZTFbzCw4vIAXtr5AjjGHVj6tWD54OY09K+burgwdh9cjvJMfkkViwzcnuHbR/hXodbGxJL74UmExP+8pzwPWmlb3jRkHwLYliwprl9kKi9lCbro1c8rZ3QGFsvw/zXlZGQA4urjc8+1RChAKTjVT0GSzsiniOTt3Ien1qOrWRd2oUaXlksll9Hg0HJkM4g5e5eKJ1EqvWRM5sSORvavPAdB5RH0adaj6/mYRfQbweOSn+IbWx8Eop+dhH9ruVfPqmhdYeHQhFulfJvHrZ+HbPnBokfW42zQY/xdob48NKC8Wi5mT27fw/bRniV67Bkmy0KRbT8Z/+BlhrcpWNFJQeVR16hCyZAkuPXsi6fVcmfEqVz/4EMlsLn1yBcnQZfD8luf5+tjXADza+FG+6/8dPk7VY62TyWT0erwxwU08MBks/PXZUTKu2q+0v/HqVS5PnowlJwendu3w/7//K2IJbz1gKMHNIjDp9az7/OPb2jhUhtxMAxaLhEIlr5Br3GwyFQYXO7m520yuux2h4FQzBTVwKmvByd5odU+59u1jM9+rb4gbEb2tQc/bl8Vg0Jlssm5NIfZAMtuXxwDQdkBIqT2m7Il33VAenfdfOo0YjUwuJ+SqE8N3+LNv+U+8vG4KWYYbT6/HfoGF3eHqcXDyhsdXQZ+3QFG5JzbJYuFc1H6WvDqV9V98Qk7qddx8rJWYB70wHSete+U3KSgXChdngj7/DK9nngEg7bvvuPzMZMw3sk5tyanUU4z5ewy7r+zGUeHIe93eY2bHmahs5OqsKAqlnAHPtMA72IX8bCO/f3KYzBTbKzmm9HQuPTUB05UkHEJDCfpsAfJ/hQzI5HIGPPcSDhonkmLPcHDNKptc26g3k59tDQNw9XCs0P07LysDSZJQOTqiqkSQc21DKDjVTLoNFByLXk/Otm0AuNm4OmTHofVw9XQkO03Hgb8u2HTt6uTCsetsXnwaJGsl1Y7D61W3SCiUKrqOHsu4DxYQ2rINCklG8wta/H+KZ847Yzj04+Pw2yQw5kLofVaXVIM+lbqmUa/j6KZ1LH7lOX7/4F2uX76I2tmZ7o89yRMff0GosNpUKzKFAt+XXyLwk4+RaTTk7trFhYcftlmjTkmS+DX2V8atG0diTiJBLkH8NOgnhtYfapP1bYGDo5KhL7TCw9+Z3Aw9v39ymKzUfJutb87J4fLESRjOnUPp50fdRd+iKKbwnZu3L/c/aVU496xcxtXzZyt1bckikXXduhe1k6pcrWAKsJjN5N1Qep3dq8a9frcgFJxqRJKkwiBjj0ooOLl79mDJy0NZpw6OLVrYSjwAVGoFPR61ZjQc23KZpLMZNl2/Orh8Jo0NX59AskiEd/Tjvocb1qiMA+/gEB6a9Q4jXn8b10B/VGY5wXFy/vk7nf8lRXDC70n0I5eBW8XcmmaTkfOHD7L+i09ZOHk8m7/9nLQrCThoNLQf9hAT/7eI9sMeQuVQ/kBHgX1wGziQ0GVLUQUEYLx4ifiHR5Ox6rdKrZmpz+SV7a8wd+9c9GY99wXex4ohKwj3rHgGpr1wcnNg+Eut0PpqyEnTs+aTw+SklzPb8A5Y8vJIePY5dCdPovDwoO53i1AFluzqbdr9fhq074zFbOKvT99Hn1fxlis5GXrMJgtyhQxXz4p93/KyMpAsFpQODqVWLr7XEJFI1Uh+dhaG/LxKp4hnb7J2Dnft06fMvafKQ0hzL8I7+hGzP5mNi04y+s0OODrfnYGmF0+msu6r45hNFsJaenP/uMZl6g5eHYS1bsckYjj1yzusTvdHk+6CMUPLhn/OsmnnOAIaNsa/YTj+jRrj6R+Ii6cXDhqnIsqaUacj63oKmSnJJJ+N40rsaZLizlhLE9xAW8ePNgOG0qxnX9ROoklmTcWxSRNCV/3KlRmvkrtrF0lvvEHeoUP4zZmNXFO+zu3RV6N5bedrJOcmo5QpmdpmKuObja/6LvflwFmr5oGXW7P6o2iyrutY8+kRHpjWGmdtxRQDc04uCZMnk3foEHIXF4K//QZ1vdItuTKZjH6Tp3It/hwZV5PY8OV8+j73crmvb9CZbrqmvDTIFeX/21utNxkAOHt41qgHtZqAUHCqkcxr1krBLp5eFU4Rl0wmcrZsAcDVjs3Luj/SiOTzmWSm5LPlh9MMerbFXfdlunDsOuu/Po7FJBEa4U3/ic0rdFOpEgy58PcryI4up5kamnYOZ1nw/WzctprgRDUeOZBw+gQJp08UmaZSO6JQqZAkCxazBaPuzqZ8Z3cPGnbsSninbgQ0boJcfm8Uc7zbUXp4EPz1QlK//pqU/y0gc/VqdCdOEDj/0zL9OJssJr459g1fHfsKi2Qh2DWYD7p/QHPv5lUgfeVx8XBk+A0lJ+NqHr9/fJhhL7bC1bN8cSfmnBwuT3qa/MOHrcrNN1+Xq8eUxsWVIS+9xoo5rxF3YA+BzVviVLfsbm6L2ULW9Rs1b1xUqCvgmgLIzUjHYrZabxydXSq0Rm2mht7d7w0yr1m7rWt9fCu8Rt7Bg5gzM1F4eODUto2tRLsNB0cl/Sc1R66UEX/sOsf+qb4CZBUh7tBV1n9lVW7qt/ZhwNPNUahq6H//qyfh655wdDnI5HD/m8jGruax+1/izZe/5eQwZ37rnsiuFteRIvzxDglF7Ww1TRv1OnQ52ehzcwuVGweNE951Q2nctQe9n3qWse//j6e/XEzvpyYT1LS5UG7uMmRyOd6TJ1P3u+9Q+Hijj4vjwoiHSF++vMTWBldyrjBhwwS+OPoFFsnC0HpDWTl05V2j3BTg5qXhgZdb4+KhJuNqHr/9N6pc2VUFAcX5hw8jd3Oj7vff4dS6dbnl8G8QTs9xEwA4+OcqTEZjmeZJkkTmdR0WswWFUo6LR8WCgs1GY6H1xtXL+6574KwKhAWnGrmp4FTGPbUJANc+vZHZufaBT11XuoxowK5f4tjz21l86roS0MDdrte0BUe3XGbXr3EgQcP2dejzRJOaabmRJIj+Eda9CiYduPrDQ4sg9GYT2YYeDVk+eDn/PfRffo75mbPso0HzBvxf1/+jkUt9cjLSsJjNyGRyZHIZTm5a4ZevpTh36ki9337jymuvkbtnL8lz3yH7n3/w/7//Q+V786FJkiR+i/uNDw99SK4xFyelE292erNGBRKXF62PEyNmtOWP+UcKlZyhU1vhE+xa4jxDQoI1oDg+HoVWS93vv8OxacUrcrfqP4SEM6dIiDlNflYmJqMBSsliyknXY9SZkMlkaH00yCvoIs9OvY4kSThoNDhoqse1nJqaSpMmTThw4AChoaFlmjNy5Ei6dOnCtGnT7CscwoJTrWSlWBUctwrG30gWy834m759bSZXSUT0CqJeax8sJom1Xxwr7JtSE5EsErtXnbUWKpSgRY9A+jzZtGYqN/psa4bUn1Otyk2DPtYsqVuUmwIclY682elN5veaj6ejJ2czzvLY2sf46vQ3uPj44BUYjGdAIB5+AUK5qeUofXwI/vZb6syaiczBgdwdO7kwbDhZN8pGJOcm8+zmZ3l779vkGnNp6dOSlUNX3tXKTQGuno48+EqbwhTy1f+NLrHicf6Jk8SPeQRDfDzKAH9Clv5UKeUGrPE4Aya/iFdwCJLFQlZKCmZz8eU0dDmGm3E33o4V7vOny81Bl5uDTCbD1cun0tab7t27I5PJkMlkqFQqwsPDWbZsWanzIiMjGTp0aJmVG4A5c+Ywb948srLsX7ixBt7p7x0qa8HJP3IUU0oKchcXnKqg9TxYv9B9nmxKnTA39Hkm/lxwlNxMfZVcuzwYdCY2fHuisEJxpwfqcd+YRhV+WrIrSces7RaOrwSZAvq8DY+uBGfvEqfdX/d+fh/+O/1D+2OWzHx97GvG/D2G06mnq0ZuQY1AJpfjOW4cYat+tVY/zsggceqL7H96NE8sfYDdV3bjIHfglbav8MOAH6jrZrsGrNWNk5sDD0xrQ2C4B0a9mbVfHOPo1su3ueqyNm7k4rhxmK9fR924MaHLV6Bu0MAmMqgcHekz8TlkCgVmk5GM5OQ79qvS55vISrPeK520ahydKpaoYTGbyb6ecmMdd1TqymU7SpLEkSNHiIyMJCkpidjYWLp168b48eO5cKH40iD5+fksWrSIiRMnlut6ERERhIaGsnTp0krJXRaEglONFFhwKppBVeCecunV67aiVPZE5aBg8HMRaH00ZKfq+PvzY+jza04RwMyUPFZ9EMW56BTkChm9n2hC2wGhNc9HLUlw8FtrVeK0c+AWZG2S2e1lKGM2nIejB//t8V8+7PEh7mp3YtNjeeTvR/jo0EfkGe1X9VVQ81A3bEjYzytQjn8Yiwzcdhzj3S8yGXsugF+G/MITzZ9AUQvjrdQaJUOntqRJV38kCXb9Ese2ZTGYjGYks5lrH39C4tQXkfLycO7ShZCflqCqU/G4xzvh5KbFyU2LXC7HqMsn42oSlluUHIPORGZKPkgSaiclztoKJpVIElkp1zCbTChVKpw9PCste1xcHNnZ2XTr1g0/Pz/CwsKYNWsWJpOJYyX0QVu3bh1KpZLOnTsXOb98+XIcHR1JTEwsPDdx4kQiIiLIvFGvZ9iwYSxfvrzSspeGUHCqCas58xoAbhWw4EiSdDP+pm/lir1VBI2rA0NeaImji4qUS9n8/nF0jWjKGX/8OisjD5F2Jbfw6a5xp8q1wbALukxrH6m/XwGzHhoNhMk7oW7HCi03IHQAq4evpl9IP8ySmcUnF/PgmgfZmbDTtnILaixGs5FvzixmTNBfzByvIN5PjosOhv5yCeXUuejP155Cnf9GoZDT6/HGdB5RH2RwaucVVkUe4MzkGaR+bW094fnkkwR/vRCFi32yjRRKJa7eVneRPi+PjGSrkmPQmci8ZlVuHDRK3Lw1FX7YysvKLHRNaev4IbdBWZCoqChkMhkRERGF5xJudLGvU6f436YdO3bQrl27286PGTOG8PBwIiMjAZg7dy4bNmxg3bp1aLVaADp06MCBAwfQ6+1r/RcKTjWRk5GG2WRCJpfj6lWyK+JO6GPjMCYkIFOrcenWzQ4Slo67rxPDXmyFxlXF9cs5rP4omuy0yhffqggmg5kdy2Os1qQ8E3XC3Bg1sz3+9bXVIk+JJEZb2y2c+h3kSug3Dx5ZDk6Vexrz1njzUc+P+Lz35wQ4B3Al9wrPbXmOGdtncDX3qm1kF9RIDiUfYtSfo1hweAEGiwG/Nl1o9tvf+L76KjKNhryDBzk/fDhXI/9jl1YPNQGZTEabfiEMmdIStRquX8lnu9SbawEdCfjvf6nz2qt2T8RwcNTg4R+ITCbDmJVKWnwcmYnXkQy5OCgMaN0syIx51jIQ5Xzp01PISbqEzJiPi6sGlcx857ElZNLdiejoaMLCwnBzs3Ygj4mJYfr06bRq1YoOHTrw4IMP4uHhwciRI4vMi4+PJyDg9gK1MpmMefPm8e233/Lee+8xf/581q9fT+AtBRQDAwPR6/UkJydX4K9cdkQWVTWRdc1qvXH18kGuKL/ZOOefrQA4d+6MvBqLs/kEuzJi+i3ZDB9GMXByC3xD3KpMhqvxWWxZfIr0ZKtLJuL+IDo/WB+lqoaZ4yUJ9i+EjW+CxQjudWHkYgiybTuE7kHdaTe8HV8c+YIlp5ewPn492xO2M7HFRMY3G49aISoU1xaScpL4KOojNsRvAMDT0ZMZ7WcwOGyw1Urw1JO49utL8rvvkrt9B2k//EDmmjV4T5mCx+iHkdWyzvCWvDzUvy+k7bY/Odn0KTK19TnRaBz5iT7cl6mvcFHA8uCg0eDh7Y7Dx7b9XquBMtn6Z10Bh7InF0RFRREfH4+LiwsmkzW7a/To0bz//vvI5XKmTp3KU089xQ8//FBkXn5+Po7FZIwNGTKEpk2bMnfuXDZu3Eizf9UY0twoTJmXZ183urDgVBOZlY2/+ecfAFzu72UzmSqKex0nRsxog4efEznpen77MJoTOxJLrMlhC3Q5RrYtPcOv7x8iPTkPJ60DQ6e25L6HG9U85SY/HX5+HNa/ZlVuGg+BZ3baXLkpwEnlxPT201kxeAWtfFqRb8pnweEFDP99OFsubrH7ZyOwLzqTji+PfMmw34exIX4Dcpmchxs9zB8P/MGQekOKuEAcgoKou3Ahwd98g0OD+pgzMrj6f//H+eEPkLV+/R0DYu9GcrZv5/yQoaQvWYKjPoP7m12nbb8g5HIZ5w6nsHzufk7tvoLFYt//+xaLhK7mJpfexuHDh5kxYwZHjhzh/Pnz5OXlsXjx4kL3VK9evXB1vT393tvbm/T09DuuuWHDBs6cOYPZbL6jmystLQ0AHx/7dqoXFpxqoqCKcUUUHFNKCrqj1uAvl549bSlWhXHxcOShV9uyefFp4o9dZ/uyGC4cvU6PRxrh5l2+MvKlYTKYObnrCof+jkeXay2uFd7Rj66jGqBxqbpg6zKTcAhWPgmZl0DhYHVJdZgEVRD03MSrCT8O/JG1F9by8aGPScxJ5KVtL9HBrwMvt335rivydq9jtpj5+8LffHb4M5JyrX3s2tZpy+sdXqexZ+MS57rc1w3nzr+TsXIlKf9bgOH8eRJfehmHBvXxfvZZ3AYMQFYBa3J1Y0hI5Np//0v2+vUAqAIC8Jv7Ni733UcAUL+9P1t/PM31yzn8s+QMx7ZepvOIBtRtavvWBgadiZxUExajCt3jMTi5KdHnpWLSWWNN1M7O1sr1ZbCcWSwWctLTyL/hUnRwdsLdp07p7XhUZbfonz9/noyMDPr27UuDcmaVtW7dmp9++um289HR0YwaNYqFCxeyYsUKZs+ezcqVK4uMOXHiBEFBQXh7lz88ozwIBaeauBlgXP5o/pzt2wFwbNGiSEGv6kbtpGLQ5BYc3XqZfb+f59LJVJbN3U/L3sG07lMXR5fKmcMN+SZO7rzC4c2XyL8R0OwZ4EyPRxoR0LAGdtGVJNj7GWx+Gywm8AiDUd9DQPmrplYGmUzG4HqD6RXci2+Pf8vik4s5kHyAR/5+hH4h/ZjaZiohbiFVKpOgfEiSxM7EnXwa/Slx6XEA1HGqw/R20+kf2r/MP9QypRKPRx7BbfBg0hb/QNqSJRjOnuPKK9O5/tnneD39NG6DBiKvZOpxVWBKTyf1q4WkL1uGZDSCQoHn+PH4THm+iNveJ9iVka+349jWBKLWxZOamMtfC47iX19LxP3B1GvlXenaWOnJueRnG8h20KFSOiBXKXDz88bBUYmz5EVOehq5GWnoDBb0V6/j6OKKxtUNlaPjbZ+dxWwmPyebvIx0zCYTqDQ4u3vg4ullc4WsIMC4bdvyW5L79+/PzJkzSU9Px8PDev+Nj49n8ODBvP7664wdO5amTZvSvn17oqKiilxj586d9LNja6ECZNI9aKvOyspCq9WSmZlZGFhV1fzyziwunzzGwCmv0PS+8rmZLj/3PDlbt+I99QV8nnvOThJWjrSkXHasiCUxxmrCVKoVNO7oR5Ou/vjUdS3zF9VsspAYk86ZfcmcP5KC2Wg1p7t6OtJmQAhNuvqjqImF+/LS4PdnIdb6VEmzB2HofHCs/qDnKzlX+PzI5/x57k8kJJQyJSMajmBSxCT8nP2qWzzBvzh87TD/i/4fh64eAsBV5cqEFhN4tMmjaJSVs46as7JI++kn0n74EcsNS4HC3R33kQ/hPmYMDkFBlZbf1hivXSN9yRLSl6/AkpMDgFPnTtR59VUcmzQpca4u10jUuniObUvAYrL+9Ll4qGnc2Z+wlt7lujeZjGYunUzj5M5EriVk0GKolkD/YNw8XHB2V99Wc8uo15Odet3aYPkGcoUCpYP6RhymhNloxHhLZpFCpcLNy6ewFYutmTlzJqtWrSI2NrbEcdu2beOzzz7j119/LXK+c+fOPPHEEzzzzDOkpaXRtWtXunfvzsKFCwvHDB8+HL1ez/obFjadTkedOnXYsGEDnYqp36bT6bhw4QJhYWG3xfmU5/dbKDjVpOB8M2UCWSlXGT33fYIal73Jm0WnI7ZTZySdjrDfV+PYuGSzdHUiSRIXjl7nwF8XSE3IKTzv4qkmqJEHvqFuuPs64aR1QOkgx2ySyMsykJuhJ+NaHklnM7h6PguT8WaMgIefE6371aVRR7+aqdgAXNoHvz4FWYmgUMOASGj3VJW4pMpDTFoM86PnszPRmkqukqsY0XAEE5pPwN+lBqbW32McTD7IwqML2Z+8HwAHuQOPNXmMCS0moFXbVlE25+SQvnw56cuWY0qyur6QyXDp3h3tgw/i0rMH8lJaENgTSZLQnThB+s8/k7XmD6vFBlA3bozv9Om4dLu94ndJ5GboObEjkZM7E8nPvtlDytldTUBDdzwDnPEKcMbF0xGV2uq2M+SbyEnXk56cS/K5TBLjMjDqzAA4ustpPcKDRo0b4OJWsjJi0OWTn5WJLje32PgnpYMaJzctjq6uNkkFryzFKThr165l+vTpnDhxosxyfv7556xZs4aNN6pt3wmh4FSC6lZwLGYznz7+IJLFwtNfLsbVs+x+yOxt20iY/CxKf38abN1S84rX3QFJkkiMSefkrivEH7uOyVC+oEaNq4oGbesQ3skP35CyP2FVORYL7P4Utv4fSGbwagCjFoNfi+qWrEQOJh/ks8OfEX0tGgClXMkDDR5gQvMJBLnWvCf42owkSexP3s/CowsLLTZKuZLh9YczueVku1vYJJOJnO3bSV+2nNzduwvPy52dce3TG5f7e+PctYvdasn8G0NCItmbN5H522r0t1gZNG3a4DVxIi49e5Qek1ICJqOZc9EpXDiSwsVTaZj05nLNd/FQ06BdHRp19uJ6ZvIdf5CLQ7JYMBkMmAwGLBYzyGQoFApUjo4olDUnu61///5ER0eTm5uLp6cnq1evpn379oXvz58/nxEjRhAcHFym9b7++mt69OhBeHh4sWOEglMJqlvBybx2lW9fmIBCqeTFJb+V6wuaNOctMn75BY9HH8Fvzhw7SmkfjAYzSXEZXDmbQWpiLpkp+eRnGzAbLcjkMpy1Djhp1bh6qKlTT0tAA3c8/JyQ1cQWC7eSkwKrn4FzW6zHLR6GIR+DuuTmfzWJg8kH+eroVxxIPgCAXCand93ejG82npY+LatZutqN0WJkQ/wGfjz5I6fTrK02CixqTzV/igCX2+uN2BtDfDwZq1aR9fdajFeu3HxDqcSpbVucOnbAqU1bNBEtbFaqwpyTi+7YUXIPHiRn6z/oY2IK35Op1bj264fHI2NwatPGJte7FZPRzJW4DFIuZZN2JZe0pFzyMg0Y9GZkMnBwVOLk5oB7HSd86roS2Mgdn2BXZHJZiT/IgvJjKwVHBBlXAwU9qNx8fMul3EgWCznbtgHg0ut+e4hmd1QOCuo286JuM6/qFsV2xO+CXydATjIoNTDoA2g9tsa5pEqjvV972vu1J/pqNF8f+5rdV3az6eImNl3cRCufVoxrNo5ewb1QysVtw1Zk6jNZFbeKpaeXci3PmnjgqHDkwYYP8lTzp6o1JsohNBTfV17BZ9o08g8fIXvDenK278AQH0/e/v3k7be6zlAocAgLRd2wIeoGDVAFBqLy80PpWweFmytyjQaZRgOShGQ0IhkMmNPTMaWmYrqWgiH+Avpz59GfPWtVaG5128jlOLVpg9vgQbgNHozCjg+kSpWCuk29qNu0Ft2b7nHEnaoaKOwiXs4WDbqTpzBdu4bcyQmnjh3sIZqgPFjMsPMj2BYJkgW8w60uqTqV61Bc3bSp04av+n5FbHosP578kb8v/M2RlCMc2XYEXydfHmr4ECMajhAByRVEkiSOphxlZexKNsRvQG+2BpV6OXrxaJNHebjRw7g7ulevkLcgk8lwatMapzatqTNzJoaLF8nZtYv8qGjyoqMxJSdjOHsOw9lzZNvgeqrAQDRt2uDctQsuPXqg9KiBGZKCuwKh4FQDhUX+yqng5Nwo7ufcrVuVNtcU3IHsq/DbJLhgTdmn1WMw6MNyVRCt6TTyaMT/dfs/XmzzIsvPLOfX2F+5lneNL49+ycJjC+ke2J2HGj1E14CuqBQ1J2agppKhy2Bd/Dp+jf2V2PSb8SSNPBrxeJPHGVxvMA6Kmv+9dggJwTMkBB57DABjcjL6uDj0sXHoz53DlJyEMfkqpqtXseTeueKdTKNB6e2N0ssLh5C6ONSrj7p+PWvpixL6HwkE5UEoONVAoYuqnEX+CqsX96r+6sX3NOe3wapJkHvNWlRr8MfQ6pHqlspu+Dj5MLXNVCa3nMyWS1tYGbuSg8kH2ZawjW0J23BXu9M/tD9D6g2hpU/LmhsEXg3oTDq2JWzj73N/sytxFybJBIBaoWZA6ABGhY8iwjvirv6bqfz8UPn54XLffbe9J1ksSDodFp0OZDJkKgdkKuVdUWdHcPcjFJxqIKsCbRqMSUnoT58GuRyXHt3tJZqgJCxm2PYf2PEhIIFvUxj1A/g0qm7JqgQHhQMDwwYyMGwg5zPPsyp2FX+f/5tUXSo/x/zMzzE/E+QSRN+Qvtxf934ifCKQy6o/xbWqyTPmsfvKbrZe2so/l/8h13jTitHEswnDGwxnSL0hNk/1ronI5HJkTk7V2i9PcO8iFJxqoMCCUx4XVUFwsaZVK5Seles6LagAWUmwaiJc3GU9bjMeBr4PKtu2obhbqKetx4z2M3i57cscSDrAX+f/YvOlzSTkJPD9ye/5/uT3eDl60atuL3oG9aSdXzucVbXHffdvknOT2XNlD/9c+oe9SXsL42oA/J39GVJvCIPrDaa+e/1qlFIguLcQCk4VYzIayUm3NhorjwUnZ5s11qOm9J66pzi7GX57GvJSwcHFWpG4xcjqlqpGoJQr6RLYhS6BXXjT+CY7Enew9dJWdibsJFWXyq+xv/Jr7K8oZUoifCLoFNCJzv6daebV7K6O28kyZBGVHMXepL3svbKX+Kz4Iu8HugTSu25vetftTSvfVvekJUsgqG7squCkp6czdepU/vjjDwCGDRvGggULcHd3L3bOE088cVtb9o4dO7Jv377CY71ez/Tp01m+fDn5+fn07t2bL774gqAaWFb832SnpoAkoXRQo3Erm4naoteTeyMlU7inqhCzCf75P9j1ifXYrwWMXAze5WtKd6/gpHJiQOgABoQOwGg2cjD5IFsubWH3ld0k5iQSfS2a6GvRfHHkC9QKNc28mtHStyUtfVrSwrsFPhqfGhmLYrKYuJR1iaMpRzmacpQj145wLvNckTFymZzmXs3pFtiN++veTyOPRjVyLwLBvYRdFZxHH32UhISEwh4UTz/9NGPHjuXPP/8scd6AAQP4/vvvC48d/pUx9NJLL/Hnn3+yYsUKvLy8eOWVVxgyZAhRUVEoang33Ozr1wFw9fIu8w0w7+AhJJ0OZZ06qBvdG/Ee1U5mgrW2zeUbinX7idYu4CpRxKssqBSqQssOwOXsy+y9spd9Sfs4kHyATH1mocJTgLvanUYejWjk0YiGHg2p61qXINcgfJ18q8QCYjAbuJJzhcvZl7mQeYG4jDhi02M5l3GuiMupgLqudenk34nOAZ1p79f+noipEQjuJuym4Jw+fZr169ezb98+OnbsCMA333xD586diYmJKbFMs1qtxs/vzjU2MjMzWbRoEUuWLKFPnz4A/PTTTwQHB7N582b69+9v+83YkOzUFMCq4JSV3J07AHC+r5t4KqwKYjdYqxLnp4PaDYb9z9osU1Bhgl2DCQ4P5uHwh5Ekifis+EJryNGUo5zPPE+GPoMDyQcKKykXoFaoCXQJxN/ZHy+NF16OXnhpvPB09MRZ5YxGqcFJ5YRGqcFB7lDkO2KRLOjNevKMeeSb8sk35ZNlyCI1P5VUXSqp+alcz79OYk4iybnJSNy5sLtGqaGJZxNa+baipY/V6uSlEQXhBIKajN0UnL1796LVaguVG4BOnTqh1WrZs2dPiQrOtm3b8PX1xd3dnR49ejBv3jx8fX0Ba3t3o9FYpNV6QEAAzZs3Z8+ePXdUcPR6PfpbOrRmZWXZYosVIvv6DQXH26fMc3J2WJshutwn3FN2xWSALXNh72fWY/9WMOp78KxXrWLVNmQyGWHaMMK0YTzQ4AHAmk59PvM8semxxKbHcjb9LJezL5OUm4TerOd85nnOZ563u2wapYYg1yBCXENo6NGw0KIU5Bok4mgEgn+RmppKkyZNOHDgAKGhoWWaM3LkSLp06cK0adPsKxx2VHCSk5MLlZJb8fX1JTk5udh5AwcOZNSoUYSEhHDhwgVmz57N/fffT1RUFGq1muTkZBwcHPD4V3XLOnXqFLtuZGQkc+fOrdyGbER2aoGLqmwKjiEhAcOFC6BU4tylsz1Fu7dJv2jtAJ5obXBIx2eh71xQinodVYGj0pGmXk1p6lW0CrTJYiIpN4nL2Ze5lnetiOUlTZdGnimviHXGaDbece1brTwuKpciliAvRy8CXAIIcg3Cy9FLWEkF9xzdu3dn507rg7RSqaRevXq89dZbPProoyXOi4yMZOjQoWVWbgDmzJlDr169mDhxot17QZZbwXn77bdLVRYOHjwIcMcbhSRJJd5ARo8eXfjv5s2b065dO0JCQvj7778ZMWJEsfNKWnfmzJlFtMWsrKwydz61NeV1UeXssLqnnFq1QuF69zRuvKs4/ReseQ50meCoheFfQJMh1S2VAGuWVrBrMMGu1fN9FQhqO5IkceTIESIjI3niiSfIz8/n//7v/xg/fjydO3cmLCzsjvPy8/NZtGgRa9euLdf1IiIiCA0NZenSpTz77LO22EKxlNvmOmXKFE6fPl3iq3nz5vj5+XH16tXb5qekpFCnHKW4/f39CQkJIS4uDgA/Pz8MBgPp6elFxl27dq3YddVqNW5ubkVe1UXWDReVWxldVLk33FPO3YV7yuaY9LDuNfj5MatyE9gOJu8Syo1AILhniIuLIzs7m27duuHn50dYWBizZs3CZDJx7NixYuetW7cOpVJJ585FPQvLly/H0dGRxMTEwnMTJ04kIiKCzMxMwJpRvXz5cvts6BbKreB4e3vTuHHjEl+Ojo507tyZzMxMDhy4GTC4f/9+MjMz6dKlS5mvl5qayuXLl/H39wegbdu2qFQqNm3aVDgmKSmJEydOlGvd6qI8Lqoi6eHdby+DLqgEaedhUT/Y/5X1uMsL8NR6cK9bvXIJBAJBFRIVFYVMJiMiIqLwXEJCAkCJxogdO3bQrl27286PGTOG8PBwIiMjAZg7dy4bNmxg3bp1aLXWTMMOHTpw4MCBIrGx9sBuMThNmjRhwIABTJo0iYULFwLWNPEhQ4YUCTBu3LgxkZGRPPjgg+Tk5PD222/z0EMP4e/vT3x8PLNmzcLb25sHH7RmsWi1WiZMmMArr7yCl5cXnp6eTJ8+nRYtWhRmVdVU9Hm5GPLzAHD1Lt1FlXfoEFJ+PkpfX9QlBGULysnJ1fDHVNBngcYDHlwIjWp29p1AILh7kCSJfFN+tVxbo9SUK44sOjqasLCwQs9GTEwM06dPp1WrVvj7+9OzZ0+uXbuGUqlk9uzZjBo1CoD4+HgCAgJuW08mkzFv3jxGjhxJQEAA8+fPZ+fOnQQGBhaOCQwMRK/Xk5ycTEhISCV3XDx2rYOzdOlSpk6dWpjxNGzYMD777LMiY2JiYgrNVgqFguPHj/Pjjz+SkZGBv78/vXr14ueff8b1lviTTz75BKVSycMPP1xY6G/x4sV3QQ0cq3vK0dkFB8fSS/wXuqdEerhtMOpgwyw4tMh6HNwJRi4Cbc0vECkQCO4e8k35dFzWsfSBdmD/o/txUpW991dUVBTx8fG4uLhgMpmQyWSMHj2a999/H4vFwqeffkqrVq24du0abdq0YdCgQTg7O5Ofn4+j453rgg0ZMoSmTZsyd+5cNm7cSLNmzYq8r9FYf//y8vIqvtEyYFcFx9PTk59++qnEMZJ0s+6ERqNhw4YNpa7r6OjIggULWLBgQaVlrEpuuqfKGGC8U6SH24zUc7ByPCQftx53mwa93gCF6FYiEAjuXQ4fPsyMGTOYOHEiTk5O+Pv7F3mgLggP8fX1xdPTk7S0NJydnfH29r4tFraADRs2cObMGcxm8x3dXGlp1nZFPj5lL5dSEcTdvQopVHDKEGBsSEjEcP48KBQiPbyyHP8V/nwRDDng5A0jFkKDmu3OFAgEdy8apYb9j+6vtmuXlfPnz5ORkUHfvn1p0KDkFjSHDh3CYrEUZiC3bt36jgaM6OhoRo0axcKFC1mxYgWzZ89m5cqVRcacOHGCoKAgvMsQqlEZhIJThdxMES9dwSmoXqxp3QpFNWZ93dUY8mD9axD9o/U4pBs89C24+VevXAKBoFYjk8nK5SaqLgoCjNu2bVviuNTUVMaNG8e3335beK5///7MnDmT9PT0wrp08fHxDB48mNdff52xY8fStGlT2rdvT1RUVJFr7Ny5s0ixXnshSnNWIQUp4mVxUYnqxZUkJQa+7X1DuZFBj9dg3Bqh3AgEAsENoqOjadCgQYkNsPV6PQ8++CAzZ84skqncokUL2rVrxy+//AJY3U4DBw5k2LBhzJo1C7BmPQ8dOpQ33nijcJ5Op2P16tVMmjTJPpu6BWHBqULK6qKyGAwiPbwyHFkGf78Cxjxw9oWHvoF6PatbKoFAIKhRREZGFqZz3wlJknjiiSe4//77GTt27G3vz549m+nTpzNp0iQ8PT05ffr0bWPWrFlT5HjRokV07NiRTp06VX4DpSAUnCqkwEXlVoqLKv/wEaS8PBTe3qgbN64K0WoHhlz4ezocXWY9DusBI74B17IXlhQIBAKBld27d/Pzzz8TERHB77//DsCSJUto0aIFAIMGDSIuLo7ExMQydwdQqVRVliAkFJwqQpKkWyw4JbuocvfsAcC5c2eRHl5Wrp6ClU/A9RiQyaHnLLhvGshrdukAgUAgqKl069YNi8VS4pgXX3yxXGs+/fTTlRGpXAgFp4rIz8rEbDSCTIaLp1eJYwsVnLugMnO1I0lweAmsnQEmHbj6WwOJQ7tVt2QCgUAgqEaEglNFFFhvnN09UChVxY4zZ2SgO3HCOlakh5eMPhv+mgbHrUFuNOhjrUrsbN/UQ4FAIBDUfISCU0VklbGLeO6+/SBJODSoj6ocTUnvOZKPW11SqWdBpoDes6HLiyAXiYECgUAgEApOlZFdxhRx4Z4qBUmCQ9/B+plg1oNbIIz8DuraPyJfIBAIBHcPQsGpIgpcVG6lpIgLBacEdJnWisQnV1uPGw2AB74EJ8/qlUsgEAgENQ6h4FQRNy04xSs4hkuXMCYkgEqFc/v2VSXa3cGVw7DySUi/AHIl9JkLnZ8HkWUmEAgEgjsgFJwqoiwxOAXWG6eWLZE7O1eJXDUeSYIDX8PGN8FsAG1dGPU9BLWrbskEAoFAUIMRCk4VUZYqxrm7b7inugr3FAD56bBmCpz5y3rceAgM/ww0HtUrl0AgEAhqPELBqQIsZjO5N9rDF+eikszmwvYMzp1FejgJh+DXJyHjEigcoN//QYenhUtKIBAIBGVCKDhVQE56GpJkQa5Q4Kx1v+MY3YkTWLKykLu64ti8edUKWJOQJNj7OWx+Cywm8AiFUYshoHV1SyYQCASCuwih4FQBOWmpADh7eCIrpk5LYfZUp47IlPfox5KXBr8/C7HrrcdNH4Bh/wNHbbWKJRAIBIK7D1EVrQrITbe6p0pq0VAYf3Ovpodf2g9f3WdVbhRqGPyx1XIjlBuBQCCokaSmpuLr60t8fHyZ54wcOZKPP/7YfkLdglBwqoDsGxYcF48712ux5OaSd/QocA8qOBYL7PoEvh8IWQngWR8mbob2E0S8jUAgEFQB3bt3RyaTIZPJUKlUhIeHs2zZslLnRUZGMnToUEJDQ8t8rTlz5jBv3jyysrIqIXHZEApOFZCbfkPBKcaCk3vwIBiNqAIDUdWtW5WiVS+512HZKNj8NkhmaDEKntkO/hHVLZlAIBDcE0iSxJEjR4iMjCQpKYnY2Fi6devG+PHjuXDhQrHz8vPzWbRoERMnTizX9SIiIggNDWXp0qWVFb1UhIJTBeQUWnDurODk7d0LWK03snvFahG/G77qBmc3g9IRhi2AEd+A2rW6JRMIBIJ7hri4OLKzs+nWrRt+fn6EhYUxa9YsTCYTx44dK3beunXrUCqVdP5X1u/y5ctxdHQkMTGx8NzEiROJiIggMzMTgGHDhrF8+XL7bOgWhIJTBeSUEoOTu/8AAM6d74F+ShYzbP8QfhgC2Ung3Qgm/QNtxgmXlEAgqBVIkoQlL69aXpIklUvWqKgoZDIZERE3LecJCQkA1Cmh4fOOHTto1+72gqtjxowhPDycyMhIAObOncuGDRtYt24dWq01prJDhw4cOHAAvV5fLlnLyz2arlO15JQQg2NKT0d/5gwATh06VKlcVU7ONVg1ES5stx63fBQG/xccRNVmgUBQe5Dy84lp07Zarh0eHYXMyanM46OjowkLC8PNzQ2AmJgYpk+fTqtWrWjSpAnt27fHaDRiNpuZOnUqkyZNAiA+Pp6AgIDb1pPJZMybN4+RI0cSEBDA/Pnz2blzJ4GBgYVjAgMD0ev1JCcnExISUskdF49QcKqAkiw4eQcOAuDQoD5K75I7jd/VnN8GqyZB7jVQOcHgj6DVo9UtlUAgENzTREVFER8fj4uLCyaTCZlMxujRo3n//fdxcXFh+/btODk5kZeXR/PmzRkxYgReXl7k5+fj6Oh4xzWHDBlC06ZNmTt3Lhs3bqRZs2ZF3tdoNADk5eXZdW9CwbEzBl0+hnzrh3gnC05eQfXijrXUPWUxw/b3YfsHgAS+Ta3p3z7h1S2ZQCAQ2AWZRkN4dFS1Xbs8HD58mBkzZjBx4kScnJzw9/cvEgvqdMMapNPpMJvNhS4wb29v0tPT77jmhg0bOHPmDGaz+Y5urrQblf19fIpvXWQLhIJjZ3JufJAOGg0OmtvNhrkHrAqOU8da6J7KSoLfJkH8Tutxm3Ew4H1wKLv5VCAQCO42ZDJZudxE1cX58+fJyMigb9++NGjQ4I5jMjIy6NGjB3FxcXz44Yd43/A0tG7dmp9++um28dHR0YwaNYqFCxeyYsUKZs+ezcqVK4uMOXHiBEFBQYVr2QsRZGxnblYxvt09ZUpJwXD2HMhkOLVvX9Wi2Zezm61ZUvE7wcEFRnxrzZQSyo1AIBDUCAoCjNu2LT5eyN3dnaNHj3LhwgWWLVvG1atXAejfvz8nT54sYsWJj49n8ODBvP7664wdO5Z33nmHVatWERVV1Jq1c+dO+vXrZ59N3YJQcOxMQQ0cV8/b3VO5B6zZU+rwcJQetaRDttkEm+fCTw9B3nWo0wKe3g4Ro6pbMoFAIBDcQnR0NA0aNMDd3b3UsXXq1CEiIoIdO3YA0KJFC9q1a8cvv/wCWN1OAwcOZNiwYcyaNQuAtm3bMnToUN54443CdXQ6HatXry4MVrYnQsGxM9klWHDyCtLDO3asUpnsRmaiNf17140y3O0mWKsSe9/Z9CkQCASC6iMyMpLY2Nhi37969WphxeGsrCx27NhBePjN+MnZs2czf/58LBYLnp6enD59moULFxZZY82aNaxfv77weNGiRXTs2JFOnewfdypicOxMSX2oCgKMnWqDghO7AVZPhvw0ULvB0PnQfER1SyUQCASCCpKQkMCECROQJAlJkpgyZUqRejmDBg0iLi6OxMREgoODy7SmSqViwYIF9hK5CELBsTPF1cAxJidjuHgR5HKc2t9eLOmuwWyELXNhz43/sP6tYNT34FmvWsUSCAQCQeVo27YtR44cKXHMiy++WK41n3766UpIVD7s6qJKT09n7NixaLVatFotY8eOJSMjo8Q5BQ2//v368MMPC8f07NnztvfHjBljz61UmMIaOP9ScAqsN45Nm6JwvUvbE2RcsjbJLFBuOk6GCRuFciMQCASCaseuFpxHH32UhISEQv/b008/zdixY/nzzz+LnZOUlFTkeN26dUyYMIGHHnqoyPlJkybxzjvvFB5rypn7X1XkFNNos6A9w12bHn76L1jzHOgywVELw7+AJkOqWyqBQCAQCAA7KjinT59m/fr17Nu3j443Yky++eYbOnfuTExMTJFApVvx8/MrcrxmzRp69epFvXpFrQJOTk63ja1pSJJUWAfn3402Cwv8VUGglU0xGWDTHNj/pfU4sB2M/A487FduWyAQCASC8mI3F9XevXvRarWFyg1Ap06d0Gq17Nmzp0xrXL16lb///psJEybc9t7SpUvx9vamWbNmTJ8+nezs7GLX0ev1ZGVlFXlVBfnZWVjMJgCcb0kDNyQkYExMBKUSpzZtqkQWm5B2Ab7rd1O56TwFnlwnlBuBQCAQ1DjsZsFJTk7G19f3tvO+vr4kJyeXaY0ffvgBV1dXRowomo3z2GOPERYWhp+fHydOnGDmzJkcPXqUTZs23XGdyMhI5s6dW/5NVJKCAGONmxaFUlV4vsB6o2neHLnzXdJo8uTv8McLoM8CjQc88BWED6huqQQCgUAguCPltuC8/fbbxQYCF7wOHToEUKSfRQGSJN3x/J347rvveOyxx25r6DVp0iT69OlD8+bNGTNmDL/++iubN28mOjr6juvMnDmTzMzMwtfly5fLueuKUXz8zV2UHm7Uwd+vwMrxVuUmuBNM3iWUG4FAIBDUaMptwZkyZUqpGUuhoaEcO3assKTzraSkpNyx+da/2blzJzExMfz888+ljm3Tpg0qlYq4uDja3MHlo1arUavVpa5ja27G39zMoJIk6WaBv041XMFJPWdVbJKPW4+7vQy93gCFquR5AoFAIBBUM+VWcLy9vcvUIKtz585kZmZy4MABOnSwZgrt37+fzMxMunTpUur8RYsW0bZtW1q2bFnq2JMnT2I0GvH39y99A1VIYQ2cWyw4xkuXMF29ikylQtOqVTVJVgaO/wp/vgiGHHDygge/hoZ9qlsqgUAgEAjKhN2CjJs0acKAAQOYNGkS+/btY9++fUyaNIkhQ4YUyaBq3Lgxq1evLjI3KyuLlStXMnHixNvWPXfuHO+88w6HDh0iPj6etWvXMmrUKFq3bk3Xrl3ttZ0KkXuHGjh5N9x3jhERyGtiarsxH/6YCqsmWJWbkK5Wl5RQbgQCgUBwF2HXQn9Lly6lRYsW9OvXj379+hEREcGSJUuKjImJiSEzM7PIuRUrViBJEo888shtazo4OLBlyxb69+9PeHg4U6dOpV+/fmzevBmFQmHP7ZSbO8Xg5B20KjhO7Wpg9eKUWPimN0T/AMig+6sw7g9wC6huyQQCgUAgKBd2LfTn6enJTz/9VOIYSZJuO/f0008XW845ODiY7du320Q+e3OnGjh5N9rGO7Urvj19tXBkOfw9DYx54OwLI76G+r2qWyqBQCAQ1FBSU1Np0qQJBw4cIDQ0tExzRo4cSZcuXZg2bZp9hUN0E7cr/7bgGJOTMV6+DHI5mtatq1O0mxhy4ffn4PfJVuUmrLvVJSWUG4FAILgn6N69e2EWtEqlIjw8nGXLlpU6LzIykqFDh5ZZuQGYM2cO8+bNq5J6dELBsRNmk4m8zAzgZgxO3iGr9caxSRMULi7VJdpNrp2Gb+6HI0tBJrdmSI39HVxLz3ITCAQCwd2PJEkcOXKEyMhIkpKSiI2NpVu3bowfP54LFy4UOy8/P59FixbdMVa2JCIiIggNDWXp0qWVFb1UhIJjJ3Iz0gGQK5RoXN0AyDt0EKgB8TeSBNE/wte9IOUMuPjB+D+hx6sgr1lxTAKBQCCwH3FxcWRnZ9OtWzf8/PwICwtj1qxZmEwmjh07Vuy8devWoVQq6dy5c5Hzy5cvx9HRkcTExMJzEydOJCIiojDedtiwYSxfvtw+G7oFoeDYidwMa/yNs7sHMrn1z1yQQeXUvhoVHH02/Pa0tSqxKR/q97a6pEK7VZ9MAoFAIKgWoqKikMlkREREFJ5LSEgAKLFm3Y4dO2h3h4f1MWPGEB4eTmRkJABz585lw4YNrFu3Dq1WC0CHDh04cOAAer3ellu5DbsGGd/L5GZkAODs7g6AKS0Nw9lzAGjaVlOAcfJxWPkEpJ4FmQLufxO6vgRyoecKBAKBrZAkCZPBUi3XVjrIy9wtACA6OpqwsDDc3KyehpiYGKZPn06rVq0Ka9jl5eXRpEkTRo0axX//+18A4uPjCQi4PcNWJpMxb948Ro4cSUBAAPPnz2fnzp0EBgYWjgkMDESv15OcnExIiP16GQoFx07k3XBROblbm2wWZE+pGzZAeUvjzSpBkiDqe1j3Opj14BYIDy2CkM6lzxUIBAJBuTAZLHz9YvVk+z49vwcqddlDDaKiooiPj8fFxQWTyYRMJmP06NG8//77yG88/M6bN69I42ywxuD8u41SAUOGDKFp06bMnTuXjRs30qxZsyLva27UgMvLyyvP1sqNUHDsREEMjvMNBSf/RoCxpqrjb3RZ8OdUOHmjmGLD/vDgV+DkWfI8gUAgENR6Dh8+zIwZM5g4cSJOTk74+/sXsQDFxcVx5swZhg4dyokTJwrPe3t7k56efsc1N2zYwJkzZzCbzXd0c6XdKKHi4+Nj490URSg4duLfCk5h/E3bKlRwrhyxuqTSL4BcCX3ehk7PC5eUQCAQ2BGlg5yn5/eotmuXlfPnz5ORkUHfvn1p0KDBHcdMnz6dDz/8kD179hQ537p16zvWuYuOjmbUqFEsXLiQFStWMHv2bFauXFlkzIkTJwgKCipT26fKIBQcO1Go4Gg9MOfkoDt9GqiiAn+SBAe+gY1vgNkA2row8jsIbm//awsEAsE9jkwmK5ebqLooCDBuW0xc6Jo1a2jUqBGNGjW6TcHp378/M2fOJD09HY8bYRfx8fEMHjyY119/nbFjx9K0aVPat29PVFRUkWvs3LmTfv362W9jNxAKjp3Izbxpwck/fBgsFlTBwaj8/Ox74fwM+GMKnP7Tetx4CAz/DDRVHPcjEAgEghpNdHQ0DRo0wP1GMsy/2bdvHytWrGDlypXk5ORgNBpxc3Njzpw5tGjRgnbt2vHLL7/wzDPPkJaWxsCBAxk2bBizZs0CoG3btgwdOpQ33niD9evXA6DT6Vi9ejUbNmyw+/5k0p16JdRysrKy0Gq1ZGZmFkaO25pvX5hA5rWrjHnnQ1R/ryf166/RPvggAZHv2eV6ACREwa9PQMYlkKug3/9Bx2egHBH1AoFAICgfOp2OCxcuEBYWVmzg7d3O4sWLOXHiRGEWFcDatWuZPn06J06cKAxILo3PP/+cNWvWsHHjxmLHlPT3LM/vt7Dg2AFJkm5JE/cg45CdG2xKEuz9HDa/BRYTeITCyO8hsI19ricQCASCe55BgwYRFxdHYmIiwcHBZZqjUqlYsGCBnSWzIhQcO2DIz8dksBYw0jg6knz8OGCnAn95adZeUrHrrMdNh8OwBeCotf21BAKBQHBP8sQTT9zx/IsvvliudYprpG0PhIJjBwoCjB00GkwxsUhGI0pfX1Rl1HDLzKX98OtTkJUACjUMeA/aTRAuKYFAIBDc8wgFxw7k3ZIiXpge3q5tuapLlojFAnv+B1veAckMnvVh1GLwjyh1qkAgEAgE9wJCwbEDBRlUTlqPmwX+bNWeIfc6rJ4MZzdZj5uPhKGfgtrVNusLBAKBQFALEAqOHbhZA8ed/L+2AOBkCwUnfjesmgDZSaB0hIEfQJtxwiUlEAgEAsG/EAqOHShQcNTIsOTmInd2Rt2wYcUXtFhg10fwz3sgWcC7kdUlVadZqVMFAoFAILgXEQqOHShQcFRZ2QBoWrZEpqhgVcuca/Db03D+H+txy0dg0H9B7WILUQUCgUAgqJUIBccOFAQZK69eA0DTpoL1aM5vh98mQc5VUDnB4I+g1aO2ElMgEAgEglqLUHDsQEGRP/mFiwBoWrcq3wIWM2x/H7Z/AEjg08TqkvJtbEsxBQKBQCCotQgFxw4UZFEprl4FuRxNy1Zln5yVZLXaxO+0HrcZBwPeBwcn2wsqEAgEAkEtRSg4NsZiMZOXmQGA2mhGHR6OwsW5bJPPbrHG2+RdBwcXGPIpRIyym6wCgUAgENRWytYdS1BmdNnZSBYLAA4mM05lcU+ZTdaifT89ZFVu6rSAp7cL5UYgEAgENZbU1FR8fX2Jj48v85yRI0fy8ccf20+oWxAKjo0pTBGXrH9cTetSAowzE+GHIbDzI0CCdk/BxM3g3cDusgoEAoFA0L17d2QyGTKZDJVKRXh4OMuWLSt1XmRkJEOHDiU0NLTM15ozZw7z5s0jKyurEhKXDaHg2JjCPlR6AwBObVoXPzh2I3zVDS7tBQdXawfwIZ+AyrH4OQKBQCAQ2AhJkjhy5AiRkZEkJSURGxtLt27dGD9+PBcuXCh2Xn5+PosWLWLixInlul5ERAShoaEsXbq0sqKXilBwbEyhBcdoQunrizIg4PZBZiNsnA3LRkF+Gvi3hMk7oPmIKpZWIBAIBPcyDVB6bAAAFqZJREFUcXFxZGdn061bN/z8/AgLC2PWrFmYTCaOHTtW7Lx169ahVCrp3LlzkfPLly/H0dGRxMTEwnMTJ04kIiKCzMxMAIYNG8by5cvts6FbEAqOjbmp4JjRtGlze4PNjEvw/UBrs0yADs/AhE3gWa+KJRUIBALBvU5UVBQymYyIiJvNmhMSEgCoU6dOsfN27NhBu3btbjs/ZswYwsPDiYyMBGDu3Lls2LCBdevWodVqAejQoQMHDhxAr9fbciu3IbKobEzejRRxtcl0u3vqzN/w+3OgywC1FoZ/Bk2HVb2QAoFAILAbkiRhsvOPd3Eo1erbH6xLIDo6mrCwMNzc3ACIiYlh+vTptGrVig4dOqBUKmnevDkA7dq149tvvwUgPj6egDt4KGQyGfPmzWPkyJEEBAQwf/58du7cSWBgYOGYwMBA9Ho9ycnJhISEVGa7JSIUHBuTk34jBsdovhlgbDLApjmw/0vrcWBbGPkdeIRWj5ACgUAgsBsmvZ7/jR9ZLdee+sOvqBzLHscZFRVFfHw8Li4umEwmZDIZo0eP5v3330cul+Pu7s6RI0dum5efn49jMdcZMmQITZs2Ze7cuWzcuJFmzYr2TdRoNADk5eWVfWMVQCg4NiYnOQkAR7kCx8bhkHYBfn0Srhy2Dug8BXq/BUqHapRSIBAIBAI4fPgwM2bMYOLEiTg5OeHv718mC5C3tzfpNx7o/82GDRs4c+YMZrP5jm6utLQ0AHx8fConfCnYVcGZN28ef//9N0eOHMHBwYGMGy0MSkKSJObOncvXX39Neno6HTt25PPPPy+iAer1eqZPn87y5cvJz8+nd+/efPHFFwQFBdlxN2UjN8Xaf8qtbgiyuLWwZgros0DjAQ98CeEDq1lCgUAgENgTpVrN1B9+rbZrl5Xz58+TkZFB3759adDgzqVJsrKyaNu2LRqNhnnz5tGjRw8AWrduzU8//XTb+OjoaEaNGsXChQtZsWIFs2fPZuXKlUXGnDhxgqCgILy9vcuxs/Jj1yBjg8HAqFGjePbZZ8s854MPPuDjjz/ms88+4+DBg/j5+dG3b1+ys7MLx7z00kusXr2aFStWsGvXLnJychgyZAhms9ke2ygXebk5AGhdsuCXcVblJrgjPLNTKDcCgUBwDyCTyVA5OlbLqzzxNwUBxm3bti12THx8PFFRUXz11VeMGzeusH5N//79OXnyZBErTnx8PIMHD+b1119n7NixvPPOO6xatYqoqKgia+7cuZN+/fqV869aAaQq4Pvvv5e0Wm2p4ywWi+Tn5yf95z//KTyn0+kkrVYrffXVV5IkSVJGRoakUqmkFStWFI5JTEyU5HK5tH79+jLJk5mZKQFSZmZm+TZSCkaDQfrvw4Ol/z48WEqZ4CdJb7lJ0sY5kmQy2PQ6AoFAIKg55OfnS6dOnZLy8/OrW5Ry8frrr0sNGzYs8/gBAwZIBw8eLDzu1KlT4W9zamqq1LhxY+npp58uMmfYsGFS//79C4/z8/MlNzc3ae/evcVep6S/Z3l+v2tUmviFCxdITk4uotmp1Wp69OjBnj17AKvGaTQai4wJCAigefPmhWP+jV6vJysrq8jLHmTttpokZRYJ97oaeGwV9J0LCpVdricQCAQCQUWJjIwkNja22PfT09MLU7kTEhI4deoU9erdLGkye/Zs5s+fj8ViwdPTk9OnT7Nw4cIia6xZs4b169cXHi9atIiOHTvSqVMnG+/mdmpUkHFycjJwe+59nTp1uHjxYuEYBwcHPDw8bhtTMP/fREZGMnfuXDtIXJTcbCUqsxmlJKF8aRe43aHIn0AgEAgEdwGnT5/mmWeeQS6XI5PJmD9/Pp6enoXvDxo0iLi4OBITEwkODi7TmiqVigULFthL5CKUW8F5++23S1UWDh48eMcCQGXl3z5ESZJK9SuWNGbmzJlMmzat8DgrK6vMH0Z5CB46ihe6tMFodgG34gskCQQCgUBQ0+nSpQvHjx8vccyLL75YrjWffvrpyohULsqt4EyZMoUxY8aUOKY8jbduxc/PD7Baafz9/QvPX7t2rdCq4+fnh8FgID09vYgV59q1a3Tp0uWO66rVatTliCyvDDKv+ogEcIFAIBAIqpdyKzje3t52S+0KCwvDz8+PTZs20bq1tQqwwWBg+/btvP/++wC0bdsWlUrFpk2bePjhhwFISkrixIkTfPDBB3aRSyAQCAQCwd2FXWNwLl26RFpaGpcuXcJsNhdWQ2zQoAEuLi4ANG7cmMjISB588EFkMhkvvfQS7733Hg0bNqRhw4a89957ODk58eijjwKg1WqZMGECr7zyCl5eXnh6ejJ9+nRatGhBnz597LkdgUAgEAgEdwl2VXDmzJnDDz/8UHhcYJX5559/6NmzJ2Dte1HQYRTg1VdfJT8/n+eee66w0N/GjRtxdXUtHPPJJ5+gVCp5+OGHCwv9LV68GIVCYc/tCAQCgUAguEuQSZIkVbcQVU1WVhZarZbMzMzCBmMCgUAgEFQEnU7HhQsXCAsLK7Y/k6DslPT3LM/vd42qgyMQCAQCwd3KPWgvsAu2+jsKBUcgEAgEgkpQEB5hMBiqWZLaQcHfsbJhJzWq0J9AIBAIBHcbSqUSJycnUlJSUKlUyOXCdlBRLBYLKSkpODk5oVRWTkURCo5AIBAIBJVAJpPh7+/PhQsXCqvuCyqOXC6nbt265WoceieEgiMQCAQCQSVxcHCgYcOGwk1lAxwcHGxiBRMKjkAgEAgENkAul4ssqhqEcBQKBAKBQCCodQgFRyAQCAQCQa1DKDgCgUAgEAhqHfdkDE5BEaGsrKxqlkQgEAgEAkFZKfjdLksxwHtSwcnOzgYgODi4miURCAQCgUBQXrKzs9FqtSWOuSd7UVksFq5cuYKrq2ul8+z/TVZWFsHBwVy+fLlW9rmq7fuD2r9Hsb+7n9q+R7G/ux977VGSJLKzswkICCg1lfyetODI5XKCgoLseg03N7da+x8Xav/+oPbvUezv7qe271Hs7+7HHnsszXJTgAgyFggEAoFAUOsQCo5AIBAIBIJah1BwbIxareatt95CrVZXtyh2obbvD2r/HsX+7n5q+x7F/u5+asIe78kgY4FAIBAIBLUbYcERCAQCgUBQ6xAKjkAgEAgEglqHUHAEAoFAIBDUOoSCIxAIBAKBoNYhFJxyMm/ePLp06YKTkxPu7u5lmiNJEm+//TYBAQFoNBp69uzJyZMni4zR6/W88MILeHt74+zszLBhw0hISLDDDkomPT2dsWPHotVq0Wq1jB07loyMjBLnyGSyO74+/PDDwjE9e/a87f0xY8bYeTd3piJ7fOKJJ26Tv1OnTkXG3K2fodFo5LXXXqNFixY4OzsTEBDAuHHjuHLlSpFx1fkZfvHFF4SFheHo6Ejbtm3ZuXNnieO3b99O27ZtcXR0pF69enz11Ve3jVm1ahVNmzZFrVbTtGlTVq9ebS/xS6U8+/vtt9/o27cvPj4+uLm50blzZzZs2FBkzOLFi+/4ndTpdPbeyh0pz/62bdt2R9nPnDlTZFxN+vygfHu80/1EJpPRrFmzwjE16TPcsWMHQ4cOJSAgAJlMxu+//17qnBrxHZQE5WLOnDnSxx9/LE2bNk3SarVlmvOf//xHcnV1lVatWiUdP35cGj16tOTv7y9lZWUVjpk8ebIUGBgobdq0SYqOjpZ69eoltWzZUjKZTHbayZ0ZMGCA1Lx5c2nPnj3Snv9v7/5joq7/OIA/T7jjhxFJCocyz+YMVHTxQ8EorpAhLhauH2QRuzlj2ebCVmu41oQ/crD1Y1ZUaoCuQhgp6w+KfixoLo40uAxD1OxEZyJhQvRDIHl9//h++Xz9cAfdnXh3fno+NjY+73vxuffL1+cNL4/3h2ttlfj4eMnJyZnya86fP6/6qKqqEp1OJ6dOnVJizGazFBYWquIGBgaudzpOeZKjxWKR7Oxs1fwvXryoirlRazgwMCCZmZlSV1cn3d3dYrVaJSUlRZKSklRxvqphbW2t6PV62b17t3R1dUlRUZHMnDlTenp6nMb/9NNPEhoaKkVFRdLV1SW7d+8WvV4vH374oRLT2toqAQEBsn37djl27Jhs375dAgMDpa2t7brnM5G7+RUVFUl5ebkcOnRITpw4IVu3bhW9Xi8dHR1KTHV1tdx8880Oa9MX3M2vublZAMjx48dVc796HflT/UTcz3FgYECV29mzZyUiIkK2bdumxPhTDT/++GN54YUXZP/+/QJAGhoapoz3lzXIBsdD1dXVLjU4Y2NjYjQapaysTBm7fPmyhIeHyzvvvCMi/73Y9Xq91NbWKjHnzp2TGTNmSFNT07TPfTJdXV0CQHWBWa1WASDd3d0unyc3N1cyMjJUY2azWYqKiqZrqh7zNEeLxSK5ubmTPq61Gh46dEgAqL5B+6qGK1eulE2bNqnG4uLipLi42Gn8888/L3FxcaqxJ598UlJTU5XjvLw8yc7OVsWsWbNG1q9fP02zdp27+TmzZMkSKS0tVY5d/f7kDe7mN97gXLp0adJz+lP9RK69hg0NDaLT6eT06dPKmD/V8GquNDj+sgb5K6rrzG63o7e3F1lZWcpYUFAQzGYzWltbAQDt7e0YHR1VxcydOxfx8fFKjDdYrVaEh4cjJSVFGUtNTUV4eLjL87hw4QIaGxuxceNGh8c++OADzJ49G0uXLsVzzz2nvKu7N11Lji0tLYiMjMTtt9+OwsJC9PX1KY9pqYYAMDg4CJ1O5/BrWG/XcGRkBO3t7ap/VwDIysqaNB+r1eoQv2bNGnz77bcYHR2dMsabtQI8y2+isbExDA0NISIiQjX++++/w2QyISYmBjk5ObDZbNM2b1ddS34JCQmIjo7G6tWr0dzcrHrMX+oHTE8NKysrkZmZCZPJpBr3hxp6wl/W4L/yzTa9qbe3FwAQFRWlGo+KikJPT48SYzAYMGvWLIeY8a/3ht7eXkRGRjqMR0ZGujyPvXv3IiwsDA888IBqPD8/H7fddhuMRiOOHj2KrVu34siRI/j888+nZe6u8jTHtWvX4uGHH4bJZILdbseLL76IjIwMtLe3IygoSFM1vHz5MoqLi/HYY4+p3iTPFzXs7+/HlStXnK6fyfLp7e11Gv/333+jv78f0dHRk8Z4s1aAZ/lN9Morr+CPP/5AXl6eMhYXF4c9e/Zg2bJl+O2337Bjxw6kpaXhyJEjWLRo0bTmMBVP8ouOjsauXbuQlJSE4eFhvPfee1i9ejVaWlqQnp4OYPIae7t+wLXX8Pz58/jkk09QU1OjGveXGnrCX9YgGxwAJSUlKC0tnTLm8OHDSE5O9vg5dDqd6lhEHMYmciXGFa7mBzjO0915VFVVIT8/H8HBwarxwsJC5fP4+HgsWrQIycnJ6OjoQGJiokvnnsr1zvGRRx5RPo+Pj0dycjJMJhMaGxsdmjl3zusqb9VwdHQU69evx9jYGN566y3VY9e7hlNxd/04i5847smavF48ncu+fftQUlKCjz76SNXYpqamqjbBp6WlITExEW+88QZef/316Zu4i9zJLzY2FrGxscrxqlWrcPbsWbz88stKg+PuOb3B0/ns2bMHt9xyC9atW6ca97caussf1iAbHACbN2/+x7tBFixY4NG5jUYjgP92tNHR0cp4X1+f0r0ajUaMjIzg0qVLqlcA+vr6cOedd3r0vFdzNb/vv/8eFy5ccHjsl19+cei0nTl48CCOHz+Ourq6f4xNTEyEXq/HyZMnp+WHo7dyHBcdHQ2TyYSTJ08C0EYNR0dHkZeXB7vdji+//FL16o0z011DZ2bPno2AgACH/9VdvX4mMhqNTuMDAwNx6623ThnjzjUwHTzJb1xdXR02btyI+vp6ZGZmThk7Y8YMrFixQrleveVa8rtaamoq3n//feXYX+oHXFuOIoKqqioUFBTAYDBMGeurGnrCb9bgtO3m+Zdxd5NxeXm5MjY8POx0k3FdXZ0S8/PPP/tsg+o333yjjLW1tbm8QdVisTjceTOZzs5OASBfffWVx/P1xLXmOK6/v1+CgoJk7969InLj13BkZETWrVsnS5culb6+Ppeey1s1XLlypTz11FOqscWLF0+5yXjx4sWqsU2bNjlscFy7dq0qJjs722ebjN3JT0SkpqZGgoOD/3Gz57ixsTFJTk6WDRs2XMtUPeJJfhM9+OCDcu+99yrH/lQ/Ec9zHN9Q3dnZ+Y/P4csaXg0ubjL2hzXIBsdNPT09YrPZpLS0VG666Sax2Wxis9lkaGhIiYmNjZUDBw4ox2VlZRIeHi4HDhyQzs5OefTRR53eJh4TEyNffPGFdHR0SEZGhs9uMV6+fLlYrVaxWq2ybNkyh1uMJ+YnIjI4OCihoaHy9ttvO5zzxx9/lNLSUjl8+LDY7XZpbGyUuLg4SUhI8Hp+Iu7nODQ0JM8++6y0traK3W6X5uZmWbVqlcybN08TNRwdHZX7779fYmJi5LvvvlPdkjo8PCwivq3h+C24lZWV0tXVJVu2bJGZM2cqd5wUFxdLQUGBEj9+i+ozzzwjXV1dUllZ6XCL6tdffy0BAQFSVlYmx44dk7KyMp/fJu5qfjU1NRIYGCgVFRWT3rJfUlIiTU1NcurUKbHZbLJhwwYJDAxUNb7+mt9rr70mDQ0NcuLECTl69KgUFxcLANm/f78S40/1E3E/x3GPP/64pKSkOD2nP9VwaGhI+VkHQF599VWx2WzKXZb+ugbZ4LjJYrEIAIeP5uZmJQaAVFdXK8djY2Oybds2MRqNEhQUJOnp6Q4d+19//SWbN2+WiIgICQkJkZycHDlz5oyXsvq/ixcvSn5+voSFhUlYWJjk5+c73K45MT8RkZ07d0pISIjTv4ty5swZSU9Pl4iICDEYDLJw4UJ5+umnHf6OjLe4m+Off/4pWVlZMmfOHNHr9TJ//nyxWCwO9blRa2i3251e01df176uYUVFhZhMJjEYDJKYmKh61chisYjZbFbFt7S0SEJCghgMBlmwYIHTxru+vl5iY2NFr9dLXFyc6geot7mTn9lsdlori8WixGzZskXmz58vBoNB5syZI1lZWdLa2urFjNTcya+8vFwWLlwowcHBMmvWLLnrrruksbHR4Zz+VD8R96/RgYEBCQkJkV27djk9nz/VcPyVpsmuOX9dgzqR/+38ISIiItII/h0cIiIi0hw2OERERKQ5bHCIiIhIc9jgEBERkeawwSEiIiLNYYNDREREmsMGh4iIiDSHDQ4RERFpDhscIiIi0hw2OERERKQ5bHCISBP27duH4OBgnDt3Thl74oknsHz5cgwODvpwZkTkC3wvKiLSBBHBHXfcgbvvvhtvvvkmSktL8e6776KtrQ3z5s3z9fSIyMsCfT0BIqLpoNPp8NJLL+Ghhx7C3LlzsWPHDhw8eJDNDdG/FF/BISJNSUxMxA8//IDPPvsMZrPZ19MhIh/hHhwi0oxPP/0U3d3duHLlCqKionw9HSLyIb6CQ0Sa0NHRgXvuuQcVFRWora1FaGgo6uvrfT0tIvIR7sEhohve6dOncd9996G4uBgFBQVYsmQJVqxYgfb2diQlJfl6ekTkA3wFh4huaL/++ivS0tKQnp6OnTt3KuO5ubkYHh5GU1OTD2dHRL7CBoeIiIg0h5uMiYiISHPY4BAREZHmsMEhIiIizWGDQ0RERJrDBoeIiIg0hw0OERERaQ4bHCIiItIcNjhERESkOWxwiIiISHPY4BAREZHmsMEhIiIizWGDQ0RERJrzH4JJ5hQ46D8PAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n", + "│ caller = npyinitialize() at numpy.jl:67\n", + "└ @ PyCall /Users/stevenj/.julia/packages/PyCall/L0fLP/src/numpy.jl:67\n" + ] + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'Legendre polynomials')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "leg = []\n", + "x = range(-1, 1, length=300)\n", + "for i in eachindex(L)\n", + " plot(x, L[i].(x), \"-\")\n", + " push!(leg, L\"P_{%$(i-1)}(x)\")\n", + "end\n", + "plot(x, x * 0, \"k--\")\n", + "legend(leg)\n", + "xlabel(L\"x\")\n", + "title(\"Legendre polynomials\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that $p_n(x)$ has exactly $n$ roots in the interval $[-1,1]$!\n", + "\n", + "This is essentially required by the fact that they are orthogonal: $p_n$ has to oscillate in sign faster and faster in $[-1,1]$ as $n$ increases in order to integrate to zero against the previous polynomials." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Expanding a polynomial in the Legendre basis.\n", + "\n", + "Now that we have an orthogonal (but not orthonormal) basis, it is easy to take an arbitrary polynomial $p(x)$ and write it in this basis:\n", + "\n", + "$$\n", + " p(x) = \\alpha_0 p_0(x) + \\alpha_1 p_1(x) + \\cdots = \\sum_{i=0}^\\infty \\alpha_i p_i(x)\n", + "$$\n", + "\n", + "because we can get the coefficients $\\alpha_i$ merely by projecting:\n", + "\n", + "$$\n", + "\\alpha_i = \\frac{p_i \\cdot p}{p_i \\cdot p_i}\n", + "$$\n", + "\n", + "Note, however, that this isn't actually an infinite series: if the polynomial $p(x)$ has degree $d$, then $\\alpha_i = 0$ for $i > d$. The polynomials $p_0, \\ldots, p_d$ are a basis for the subspace of polynomials of degree $d$ (= span of $1, x, \\ldots, x^d$)!\n", + "\n", + "Let's see how this works for a \"randomly\" chosen $p(x)$ of degree 5:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$1 + 3\\cdot x + 4\\cdot x^{2} + 7\\cdot x^{3} + 2\\cdot x^{4} + 5\\cdot x^{5}$" + ], + "text/plain": [ + "Polynomial(1 + 3*x + 4*x^2 + 7*x^3 + 2*x^4 + 5*x^5)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p = Polynomial([1,3,4,7,2,5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here are the coefficients α:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6-element Vector{Rational{Int64}}:\n", + " 41//15\n", + " 327//35\n", + " 80//21\n", + " 226//45\n", + " 16//35\n", + " 40//63" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "α = [polydot(q,p)/polydot(q,q) for q in L]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's check that the sum of $\\alpha_i p_i(x)$ gives $p(x)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$1 + 3\\cdot x + 4\\cdot x^{2} + 7\\cdot x^{3} + 2\\cdot x^{4} + 5\\cdot x^{5}$" + ], + "text/plain": [ + "Polynomial(1//1 + 3//1*x + 4//1*x^2 + 7//1*x^3 + 2//1*x^4 + 5//1*x^5)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(α .* L) # α[1]*L[1] + α[2]*L[2] + ... + α[6]*L[6]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$0//1$" + ], + "text/plain": [ + "Polynomial(0//1)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(α .* L) - p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Polynomial fits\n", + "\n", + "### Review: Projections and Least-Square\n", + "\n", + "Given a matrix $Q$ with $n$ orthonormal columns $q_i$, we know that the **orthogonal projection** \n", + "\n", + "$$\n", + "p = QQ^T b = \\sum_{i=1}^n q_i q_i^T b\n", + "$$\n", + "\n", + "is the **closest vector** in $C(Q)$ to $b$. That is, it **minimizes** the distance:\n", + "\n", + "$$\n", + "\\min_{p \\in C(Q)} \\Vert p - b \\Vert \\; .\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Closest polynomials\n", + "\n", + "Now, suppose that we have some function $f(x)$ on $x\\in[-1,1]$ that is *not* a polynomial, and we want to find the **closest polynomial** of degree $n$ to $f(x)$ in the least-square sense. That is, we want to find the polynomials $p(x)$ of degree $n$ that **minimizes**\n", + "\n", + "$$\n", + "\\min_{p\\in \\mathcal{P}_n} \\int_{-1}^1 |f(x)-p(x)|^2 dx = \n", + "\\min_{p\\in \\mathcal{P}_n} \\Vert f(x) - p(x) \\Vert^2\n", + "$$\n", + "\n", + "where\n", + "\n", + "$$\n", + "\\mathcal{P}_n = \\operatorname{span} \\{ 1, x, x^2, \\ldots, x^n \\}\n", + "= \\operatorname{span} \\{ p_0(x), p_1(x), \\ldots, p_n(x) \\}\n", + "$$\n", + "\n", + "is the space of polynomials of degree $\\le n$, spanned by our Legendre polynomials up to degree $n$.\n", + "\n", + "Presented in this context, we can see that this is *the same problem* as our least-square problem above, and the solution should be the same: $p(x)$ is the **orthogonal projection** of $f(x)$ onto $\\mathcal{P}_n$, given by:\n", + "\n", + "$$\n", + "p(x) = p_0(x) \\frac{p_0 \\cdot f}{p_0 \\cdot p_0} + \\cdots \n", + " p_n(x) \\frac{p_n \\cdot f}{p_n \\cdot p_n} \\; .\n", + "$$\n", + "\n", + "Let's try this out for $f(x) = e^x$. Because we're lazy, we'll have Julia compute the integrals numerically using its `quadgk` function, and fit it to polynomials of degree 5 using our Legendre polynomials from above." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "polydot (generic function with 2 methods)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "polydot(p::Polynomial, f::Function) = quadgk(x -> p(x)*f(x), -1,1, atol=1e-13, rtol=1e-11)[1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's use dot products to compute the coefficients in the $p_i(x)$ expansion above for $f(x) = e^x$ (the `exp` function in Julia):" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6-element Vector{Float64}:\n", + " 1.1752011936438014\n", + " 1.1036383235143268\n", + " 0.35781435064737244\n", + " 0.07045563366848885\n", + " 0.00996512814886882\n", + " 0.0010995861272082227" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coeffs = [polydot(p,exp)/polydot(p,p) for p in L]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One thing to notice is an important fact: expanding functions, especially [smooth functions](https://en.wikipedia.org/wiki/Smoothness), in orthogonal bases like Legendre polynomials or Fourier series tends to converge very rapidly.\n", + "\n", + "Let's write out the resulting polynomial $p(x)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$1.000030941375941 + 1.000016597000109\\cdot x + 0.49935229541280063\\cdot x^{2} + 0.16651770555815018\\cdot x^{3} + 0.043597435651301086\\cdot x^{4} + 0.008659240751764753\\cdot x^{5}$" + ], + "text/plain": [ + "Polynomial(1.000030941375941 + 1.000016597000109*x + 0.49935229541280063*x^2 + 0.16651770555815018*x^3 + 0.043597435651301086*x^4 + 0.008659240751764753*x^5)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p = sum(coeffs .* L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot it:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHICAYAAACcQeptAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYQUlEQVR4nO3dd1QUVxsG8GfpRYooKAgKGisWEFSwAEbFXmIsUaNoNInGFkuMJmosiSWWWGKJiTV2gy2xJwKiYAXsPYioICJSRPre7w/Dfq4UWdosy/M7Z89xZ+7Mvndn132YuTMjE0IIEBEREUlES+oCiIiIqHxjGCEiIiJJMYwQERGRpBhGiIiISFIMI0RERCQphhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSTGMEBERkaQYRoiK0ejRozF8+HAAgFwuR8+ePTFu3DiJqyIiUm8MI1Ssdu3aBUdHRxgaGkImk2HZsmWQyWR48OCBok1QUBBmzZqF+Pj4HMvnNW/Tpk051qOOpk2bht27d+Phw4eYOnUqsrKy8NNPP+W7TH7vh7qZNWsWZDKZ1GWUCn9/f8hkslwfZ8+elaSmsvI9KIii9EWT3gd6TUfqAkhzPHv2DIMHD0anTp2wevVq6Ovrw9raGm5ubrC2tla0CwoKwuzZszF06FCYm5srrSOveV27dkVwcLDSetSRra0thgwZgh49egAATp8+DW1t7XyXye/9IOnNmzcPbdu2VZrWsGFDiarRHGXlO02lg2GEis2dO3eQkZGBjz/+GJ6enorpNWrUKPK6LS0tYWlpWeT1lAYnJyesXr0aQUFBqFChgtTlaIxXr17ByMio1F+3du3acHNzK/XX1XRl6TtNJY+HaahYDB06FK1btwYA9O/fHzKZDF5eXjl2p86aNQtfffUVAMDBwUGx29vf3z/febntls0+ZHD9+nUMGDAAZmZmqFKlCj755BMkJCQo1XfgwAE0btwY+vr6qFmzJpYvX67yIYfTp0/D29sbZmZmqFixIrp27Yq7d+8qtTl//jxmz56Nvn37YvPmze9cZ359zn7Ndu3awcTEBEZGRmjZsiUOHTpUoHrv3buHYcOGoXbt2jAyMkK1atXQvXt3XL16tUDLHzp0CE5OTtDX14eDgwMWL16cZ9u7d+9i4MCBsLKygr6+PurXr49Vq1blaFfQ7ZA9LSQkBH369EHFihVRq1YtlV+voO1KQnYfQkND0bt3b5iamsLMzAwff/wxnj17lqO9qts6MDAQMpkMO3bsyDFvy5YtkMlkuHDhglItBfmuFLSW7HVeuXIFffv2hZmZGSwsLDBx4kRkZmbi9u3b6NSpE0xMTGBvb48ff/xRafncvtNF/cxSGSaIisG9e/fEqlWrBAAxb948ERwcLK5fvy42btwoAIjw8HAhhBCRkZFi7NixAoDYu3evCA4OFsHBwSIhISHfeW+vRwghvvvuOwFA1K1bV8ycOVOcOHFCLF26VOjr64thw4Yp2h05ckRoaWkJLy8vsW/fPrFnzx7RokULYW9vLwr6Ffjuu++ElpaW+OSTT8ShQ4fEH3/8IRo1aiTs7OxEUlKSEEKIiIgIYWdnJ/z8/MSTJ0+EiYmJePDgQb7rza/P/v7+QldXV7i4uIhdu3aJ/fv3C29vbyGTycTOnTvfWXNAQICYNGmS+OOPP0RAQIDYt2+f6NWrlzA0NBS3bt3Kd9m///5baGtri9atW4u9e/eKPXv2iGbNmonq1avneM+uX78uzMzMRKNGjcSWLVvE8ePHxaRJk4SWlpaYNWuWop0q2yF729aoUUN8/fXX4sSJE2L//v0qvV5B2+XFz89PABBWVlZCW1tbmJiYCG9vbxEYGPjOZd/uw1dffSWOHTsmli5dKoyNjYWzs7NIT09XtC3otn77e+Ds7CxatWqV47WbNWsmmjVrlqOWd31XVKnlzXXOnTtXnDhxQkyZMkUAEGPGjBH16tUTK1asECdOnBDDhg0TAISvr2+efRGi4J/Z3Jalso1hhIpN9n/ee/bsUUzL7T+NRYsW5fkfSV7z8gsjP/74o1LbL774QhgYGAi5XC6EeP0fs52dnUhLS1O0SUpKEpUqVSpQGPnzzz9zfZ07d+4IAGLr1q0iMTFRNGrUSPz222+K+aNGjRIjRox45/rz6rObm5uwsrJShB0hhMjMzBQNGzYUtra2iv4VVGZmpkhPTxe1a9cWEyZMyLdtixYthI2NjUhJSVFMS0xMFBYWFjnes44dOwpbW1uRkJCgNH3MmDHCwMBAxMXFCSFU2w7Z23bmzJk5aivo6xW0XV5CQkLE+PHjxb59+8SpU6fEhg0bRP369YW2trY4evRovsu+2Ye33+tt27YpPjfZCrqt3/4eZD8PDQ1VLHf+/HkBQGzevDlHLe/6rqhSS/Y6lyxZorROJycnRbjOlpGRISwtLUXv3r0V0woSKPL6zDKMaB4epqEyL3uwaLbGjRsjNTUVMTExSE5OxsWLF9GrVy/o6ekp2lSoUAHdu3cv0PpnzpyJWrVqYfz48cjMzFQ8HBwcYGhoiH///RcmJia4cuWK4rReAFi9ejV+/fXXQvUpOTkZ586dQ58+fZTGnWhra2Pw4MF49OgRbt++ne86MjMzMW/ePDRo0AB6enrQ0dGBnp4e7t69i5s3b+b72hcuXEDv3r1hYGCgmG5iYpLjPUtNTcU///yDDz74AEZGRkrvT5cuXZCamoqzZ88Wejt8+OGHhXq9grbLfp/efAghAADOzs5YtmwZevXqhTZt2mDYsGEICgqCtbU1pkyZku97/6ZBgwYpPe/Xrx90dHTg5+eneL8Lu60HDBgAKysrpUNPK1euhKWlJfr375+jfX7flcLW0q1bN6Xn9evXh0wmQ+fOnRXTdHR08N577yEiIiLXfmQr7GeWyj6GESrzKlWqpPRcX18fAJCSkoIXL15ACIEqVarkWC63aW+Ljo5GaGgo7t+/D319fejq6io9UlJSSuQMmOy6czvTwMbGBgDw/PnzfNcxceJEzJgxA7169cKff/6Jc+fO4cKFC2jSpAlSUlLyfW25XI6qVavmmPf2tOfPnyMzMxMrV67M8d506dIFABAbG1vo7fB2/wv6egVt9+DBgxzzAwIC8qzH3Nwc3bp1w5UrV/J9D/N7z3R0dFCpUiXF9ivKttbX18fnn3+O7du3Iz4+Hs+ePcPu3bsxYsQIxffgTfl9Vwpbi4WFhdJzPT09GBkZKQXZ7Ompqam59iNbYT+zVPbxbBrSaBUrVoRMJsPTp09zzIuOjn7n8pGRkQCAn376STFA921vDqwsLhUrVoSWlhaioqJyzHvy5AkAoHLlyvmuY+vWrRgyZAjmzZunND02NjbfAJX9nuX2/rw9rWLFioq/mkePHp3r+hwcHGBgYFCo7fD2wNaCvp6hoWGB2pmYmCgGeWarW7dunvUAUOw5Kejg5+joaFSrVk3xPDMzE8+fP1cEg6Ju61GjRmHBggXYsGEDUlNTkZmZiZEjRxaotrcVx+euKAr7maWyj2GESt3bf40VdF5hGBsbw9XVFfv378fixYsVhwhevnyJv/76653LZ//VJ5PJ4OrqWiw1vS23PhsbG6NFixbYu3cvFi9eDENDQwCvr+q6detW2Nraok6dOvmuVyaT5fjr+NChQ3j8+DHee++9PJczNjZG8+bNsXfvXixatEjxF25SUhL+/PNPpbZGRkZo27YtQkND0bhxY6VDMG8rynYozOupUldBvXjxAn/99RecnJxy/OWfl23btsHFxUXxfPfu3cjMzISXlxeAom9ra2tr9O3bF6tXr0Z6ejq6d++O6tWrF7hPbyqOz11RFPYzS2UfwwiVukaNGgEAli9fDh8fH+jq6qJu3bowMTHJc15RzJkzB127dkXHjh0xfvx4ZGVlYdGiRahQoQLi4uLyXbZWrVpo27Ytpk+fjpcvX6JFixYQQiAqKgp+fn7w8fFR/KgUVl59nj9/Pjp06IC2bdti8uTJ0NPTw+rVq3Ht2jXs2LHjnX+Zd+vWDZs2bUK9evXQuHFjXLp0CYsWLYKtre07a5o7dy46deqEDh06YNKkScjKysLChQthbGyc4z1bvnw5WrdujTZt2mDUqFGwt7dHUlIS7t27hz///BMnT54EULTtUJjXK2i7vAwcOBDVq1eHq6srKleujLt372LJkiV4+vQpNm3aVOB69+7dCx0dHXTo0AHXr1/HjBkz0KRJE/Tr10/Rpqjbevz48WjRogUAYOPGjQWuLTdFraUoivKZpTJOurGzpGkKejaNEEJMmzZN2NjYCC0tLQFA+Pn55Tsvv7Npnj17prTu3Nru27dPNGrUSOjp6Ynq1auLBQsWiHHjxomKFSu+s18JCQli2rRpok6dOsLAwEBUrFhRNGnSRIwdO1a8ePFClbcoT3m9H4GBgeL9998XxsbGwtDQULi5uYk///yzQOt88eKFGD58uLCyshJGRkaidevWIjAwUHh6egpPT893Ln/w4EHRuHFjpfcs+z1/W3h4uPjkk09EtWrVhK6urrC0tBQtW7YU33//vVK7gm6HvLatqq9X0Ha5mT9/vnBychJmZmZCW1tbWFpaig8++ECcP3/+ncu+2YdLly6J7t27iwoVKggTExMxYMAA8fTp0xztC7Kt8zuLxN7eXtSvXz/fWgryXSloLXmt08fHRxgbG+eowdPTUzg6Oub72gX9zPJsGs0jE+K/A6BE5UhGRgacnJxQrVo1HD9+XOpyyi1N3g6zZs3C7Nmz8ezZsxIdZwEAV65cQZMmTbBq1Sp88cUXJfpaRCWBh2moXBg+fDg6dOgAa2trREdHY+3atbh58yaWL18udWnlCrdD8bp//z4iIiLwzTffwNraGkOHDpW6JKJCYRihciEpKQmTJ0/Gs2fPoKuri6ZNm+Lw4cNo37691KWVK9wOxWvu3Ln4/fffUb9+fezZs0eSe/cQFQcepiEiIiJJ8aJnREREJCmGESIiIpIUwwgRERFJqkwMYJXL5Xjy5AlMTExK9II7REREVHyEEEhKSoKNjQ20tPLe/1EmwsiTJ09gZ2cndRlERERUCJGRkfleSbdMhBETExMArztjamoqcTVERERUEImJibCzs1P8juelTISR7EMzpqamDCNERERlzLuGWHAAKxEREUmKYYSIiIgkxTBCREREkioTY0YKKisrCxkZGVKXUa7o6upCW1tb6jKIiKgM04gwIoRAdHQ04uPjpS6lXDI3N0fVqlV5DRgiIioUjQgj2UHEysoKRkZG/FEsJUIIvHr1CjExMQAAa2triSsiIqKyqMyHkaysLEUQqVSpktTllDuGhoYAgJiYGFhZWfGQDRERqazMD2DNHiNiZGQkcSXlV/Z7z/E6RERUGGU+jGTjoRnp8L0nIqKi0JgwQkRERGUTwwgRERFJimGEiIiIJMUwouZatGiBixcvAgB8fHywZs0aiSsiIiKNEhkJXL4saQkMI2puxowZmDdvHpYsWYIKFSpg1KhRUpdEREQaZHvfvUhy9gBWrpSshjJ/nRFN161bN0yfPh0vX77E4cOHpS6HiIg0yKnloRh0bjxs0Rs3XeNRQaI6uGdEYpGRkRg0aBAqVqyIihUrYuDAgXjx4oVi/vnz5xEfHw9zc3Po6DA7EhFR8chKy8S4qa8vXNm1wQNUcG8kWS2aF0aEAJKTpXkIoVKp9+7dg4uLC2rVqoXg4GD8/fffuH//Pr766isAwOPHjzFixAj4+fnh7t27uHnzZkm8Y0REVA79OvQMLqfWg7ksHt/vc5S0Fs37U/vVK6CCRDuaXr4EjI0L3HzkyJEYNWoUZs+erZg2ZcoUfPXVV0hJSUGfPn3w888/w8HBAVOmTMH333+Pbdu2lUTlRERUjsTdi8P0XQ0BAHM+vILKdTwkrUcmhIp/zksgMTERZmZmSEhIgKmpqdK81NRUhIeHw8HBAQYGBq/3UJSBMBIREQF7e3sYGhpCS+v/O6iysrJgZ2eHO3fulFSVxS7HNiAiIrU2trE/fr7qBUf9ewiLt4eOQcnsm8jv9/tNmrdnxMjodSiQ6rUL6PLly7CwsMC5c+dyzMu++RwREVGxCw1Fi2sbsAf1sPyHlyUWRFQhfQXFTSZT6VCJVHR1dZGUlARra2sYl4F6iYhIA8jlwOjR+FgEo/eHgNGkLVJXBEATB7CWES1atICpqSkGDx6MsLAw3Lt3D0ePHsX48eOlLo2IiDSU2LwFCA4GjI1htGye1OUoMIxIxMLCAocPH8aLFy/g6emJpk2b4ptvvoG9vb3UpRERkQaKj0hA089csB0DIGbMBGxtpS5JQfMO05QhzZs3h5+fn9RlEBFROfBdz1CEZXphjt736DPaFnpSF/QG7hkhIiLScFf23MbPl9sAAFbOiYdeBXWKIgwjREREGk3IBUaPSIUc2uhjG4wOXzeVuqQcGEaIiIg02LYvzuB0YhMYIRlL/6ghdTm5YhghIiLSUImRCfjq19oAgOkdL8CuhY3EFeWOYYSIiEhDHfz0T0TLq6CObjgm7mkpdTl5YhghIiLSRFev4uO/h8Ifnvht/jPom6jXoNU38dReIiIiTSMEMHo0kJUFz96VgUnNpa4oX9wzQkREpGH8p/+NiMAIwNAQ+Oknqct5J4YRIiIiDfIiPB795zuhAW7gnM9qoHp1qUt6J4YRIiIiDTKt62XECEvU0IuG86KBUpdTIAwjREREGiJ43RX8ctMTALB28Uu1u9JqXhhGJCSEwGeffQYLCwvIZDKYm5vjyy+/LLHXe/78OaysrPDgwYMCL9OnTx8sXbq0xGoiIqLikfEqA5+PNwAADKsdCI+xTSSuqOB4No2Ejh49ik2bNsHf3x81a9aElpYWDA0NFfO9vLzg5OSEZcuWFcvrzZ8/H927d1fpzsAzZ85E27ZtMWLECJiamhZLHUREVPxW9D+Dq6lesJDF4cc/G0hdjkq4Z0RC9+/fh7W1NVq2bImqVavCysoKJiYmJfJaKSkpWL9+PUaMGKHSco0bN4a9vT22bdtWInUREVHRPQx+jO/+cgUALPK5jsp1K0lckWoYRiQydOhQjB07Fg8fPoRMJoO9vT28vLwUh2mGDh2KgIAALF++HDKZDDKZLM/DK0+fPoVMJsPy5cvh7OwMAwMDODo64vTp04o2R44cgY6ODtzd3RXTduzYAQMDAzx+/FgxbcSIEWjcuDESEhIU03r06IEdO3YU7xtARETFxnLeBHyJZWhnfhFDf20ldTkq09gwkpyc9yM1teBtU1IK1lZVy5cvx5w5c2Bra4uoqChcuHAhx3x3d3d8+umniIqKQlRUFOzs7HJdV2hoKABg9erV+Omnn3D58mXY29tj0KBBkMvlAIBTp07B1dVVabmPPvoIdevWxfz58wEAs2fPxrFjx3DkyBGYmZkp2jVv3hznz59HWlqa6h0lIqKSdeAADP/ag+91ZuP4KUNo6ZS9n3aNHTNSoULe87p0AQ4d+v9zKyvg1avc23p6Av7+/39ubw/ExuZsJ4Rq9ZmZmcHExATa2tqoWrVqrvP19PRgZGSU6/w3Xb58Gbq6ujh69CgcHBwAAHPmzIGrqyseP34MOzs7PHjwADY2yjdIkslk+OGHH9CnTx/Y2Nhg+fLlCAwMRLVq1ZTaVatWDWlpaYiOjkaNGup5x0ciovIoNfYldMeMhzYATJ4MrUaOUpdUKCrFp/nz56NZs2YwMTGBlZUVevXqhdu3b+e7jL+/v+Iww5uPW7duFalw+r+wsDD07t1bEUQAQF9fX6lNSkoKDAwMcizbrVs3NGjQALNnz8a+ffvg6Jjzg5w9qPZVXomNiIgkMaPLJbg92oMw687AjBlSl1NoKu0ZCQgIwOjRo9GsWTNkZmbi22+/hbe3N27cuAFjY+N8l719+7bS2RiWlpaFq7iAXr7Me562tvLzmJi822q9FddUOCu21ISFhcHHx0dpWkhICCpXrqzYy1G5cmW8ePEix7LHjh3DrVu3kJWVhSpVquS6/ri4OAAlv82IiKjgrvxxBz9daIUs6ODJ57PhZGQkdUmFplIYOXr0qNLzjRs3wsrKCpcuXYKHh0e+y1pZWcHc3FzlAgvrHdmoVNoWlZ6eHrKysvJtk5KSgrt37yq1k8vlWL58OXx8fKD1X5pydnbG1q1blZYNCQlB37598csvv2Dnzp2YMWMG9uzZk+M1rl27BltbW1SuXLkYekVEREWVlZ6Fz4elIQs66FMtGF2+c3/3QmqsSKNcss+4sLCweGdbZ2dnWFtbo127dvDz88u3bVpaGhITE5Ue5ZG9vT3OnTuHBw8eIDY2VjEY9U1Xr16FTCbD1q1bERwcjJs3b6J///6Ij4/H9OnTFe06duyI69evK/aOPHjwAF27dsXUqVMxePBgzJkzB76+vrh06VKO1wgMDIS3t3fJdZSIiFSyZtBpnH3ZCCZIxLJ9ZX8sX6HDiBACEydOROvWrdGwYcM821lbW2PdunXw9fXF3r17UbduXbRr1w6nTp3Kc5n58+fDzMxM8cjrLBJNN3nyZGhra6NBgwawtLTEw4cPc7QJCwtDvXr1MH36dPTp0weurq7Q0tJCcHCw0p6oRo0awdXVFbt370ZcXBw6d+6MHj164JtvvgEAuLi4oHv37vj222+V1p+amop9+/bh008/LdG+EhFRwUSee4JpfzQFACzsH4pqzWzesYT6kwmh6nkgr40ePRqHDh3C6dOnYWtrq9Ky3bt3h0wmw8GDB3Odn5aWpnQaaWJiIuzs7JCQkJDjKqCpqakIDw+Hg4NDrgM0Nd3o0aPx4sULbN++/Z1tDx8+jMmTJ+PatWuKwzfvsmrVKhw4cADHjx/Ps0153wZERKVFyAV6WF/AXzHN0crkMk7FNVLrU3kTExNhZmaW6+/3mwrVg7Fjx+LgwYPw8/NTOYgAgJubG+7evZvnfH19fZiamio9KHdhYWFo3Lhxgdp26dIFn3/+udJFzt5FV1cXK1euLGx5RERUjJK27ENsTBb0kIZ1W43VOoioQqVeCCEwZswY7N27FydPnlQ6lVQVoaGhsLa2LtSy9H9CCFy9erXAYQQAxo8fr9Jhr88++wx169YtTHlERFSc4uJg+vUonEZrBI7YggY93pO6omKj0tk0o0ePxvbt23HgwAGYmJggOjoawOsLdGVfi2LatGl4/PgxtmzZAgBYtmwZ7O3t4ejoiPT0dGzduhW+vr7w9fUt5q6UPzKZrNwO7iUiKncmTwZiYqDdoAGa/zxE6mqKlUphZM2aNQBe3032TRs3bsTQoUMBAFFRUUoDLdPT0zF58mQ8fvwYhoaGcHR0xKFDh9ClS5eiVU5ERFRO/LMoBMc21sMsGMHo11+Bty5sWdYVegBracpvAAwHT0qP24CIqOS8in2FRtax+DezOma4HsGcC52lLqnASnQAKxEREZWOWV3P49/M6rDVfoKv9pe9O/IWhMaEkTKwg0dj8b0nIioZIdtvYen51gCANdMiYVJNM88uLfNhRFdXFwBv4ial7Pc+e1sQEVHRZaZmYsQIIAs66G8XhG5zW0hdUolRaQCrOtLW1oa5uTli/rvbnZGREWQymcRVlQ9CCLx69QoxMTEwNzeH9tt3ICQiokJb0vs0QlO8UFH2AssPac5pvLkp82EEAKpWrQoAikBCpcvc3FyxDYiIqOhehd7G0iP1AQBLh11DlUZtJK6oZGlEGJHJZLC2toaVlRUyMjKkLqdc0dXV5R4RIqLilJUFo9HDcBGR2FjrB/j8OljqikqcRoSRbNra2vxhJCKism35ciA4GHYmJpjp1xbQ0vyhB2V+ACsREZGmuHviAY5MDXj9ZMkSoJzctZ5hhIiISA1kZcgxrE8iumQcwPI6q4ARI6QuqdQwjBAREamBnz86jTOJjVEBSfhgQ3egHJ0ZyjBCREQksft+DzFtrysAYNFHIajeqnwcnsnGMEJERCQheaYcwz+IQwqM0NY8BJ/9rtmn8eaGYYSIiEhCaz4+jYAEJxjjJdbvrwwtnfL301z+ekxERKQmYi5F4utdTQEAC/pcgoNndYkrkoZGXWeEiIiozBACVlM/wRaYYEflsfhih6fUFUmGe0aIiIiksGYN8Pff6G14FHuCbMvl4Zls5bfnREREEnng/wDRkxe/frJwIVC7trQFSYxhhIiIqBRlpmVhQPeXaJhyHv7OE4DRo6UuSXIMI0RERKVoUc/TOPuyITKgi1qrJwFa/CnmO0BERFRKLv9xF98dcwcArBh+BXZu1SSuSD0wjBAREZWCtKR0DBksRwb00LPqWQxZ11rqktQGwwgREVEpmN0pGFdS66KyLBbrTtSETKv83HvmXRhGiIiIStj5DdewMOj1npBfJt2BVUMriStSL7zoGRERUUl69QoN5g/Gp/gcyfYN0XsRD8+8jWGEiIioJE2bhgr3wrDWZi6yLlyTuhq1xMM0REREJeTBtjOQr1j5+sn69dCuXFHagtQUwwgREVEJiLv/Aq2H1IQ3jiNmyGSgUyepS1JbPExDRERUzIRc4HOvW3gsd0cF3RRUWDxL6pLUGveMEBERFbPNn53BH4/coYMMbFufCiNLY6lLUmsMI0RERMXovt9DjF3fBAAwx/s0XAY3kLgi9ccwQkREVEwyUzMxuEcCXsIEHqZhmPKnh9QllQkMI0RERMVkXpfTCH7ZCGaIx5ZDlaCtpy11SWUCwwgREVFxOHsW3QK+Ql3cwupR11CjtZ3UFZUZPJuGiIioqJKSgI8/RlP5fVzu+wP0V22RuqIyhXtGiIiIiujhiDnA/fuAnR30160EZLwJnioYRoiIiIrA96uzeG/3D1iMycDvvwPm5lKXVOYwjBARERXSowtR+GxJHWRAD3FuXQBPT6lLKpMYRoiIiAohKz0Lgzo8RZywgKvRdcw60UrqksoshhEiIqJC+L5jIE4lOKECkrDjYAXoVdCTuqQyi2GEiIhIRadWXsYc/zYAgLUjL+O9djUkrqhsYxghIiJSQfy/cRg0wRJyaMOnViAGrWktdUllHsMIERFRQQkB0wnDMSFrMRrq3cbPp52lrkgjMIwQEREV1OrV0Dq4HxN1f0bIqWRUqFpB6oo0AsMIERFRAdz/6yZeTpz5+smiRdBt0VTagjQIwwgREdE7JMcko+uH+nBNP4NbXiOBceOkLkmjMIwQERG9w7g2IbidXhNJWmaovPZ7Xu69mDGMEBER5WPH2CBsuNMGMsixbXE0KtetJHVJGodhhIiIKA+3j/yLz35uBACY3joAXhN49kxJYBghIiLKxavnKejbOxMvYQIvs1B893cbqUvSWAwjREREuZjhFYirqXVQRSsG2/1toK2vI3VJGothhIiI6G1btuCra0PQAcexbcEjWDtVkboijcaYR0RE9KYbN4BRo1AVr3Bs1lnIvpopdUUaj3tGiIiI/pMck4wDHVcDr14B7dtDNv1bqUsqFxhGiIiIAAi5wCj3UPR69DNmVlgKbNsGaGtLXVa5wDBCREQEYMMnp/H7v62hhSy0n/c+YGUldUnlBsMIERGVe1f+uIMxm10BAD90PAWPsU0krqh8YRghIqJyLfFRIvoO1EUqDNHF8jym/OUpdUnlDsMIERGVW0IuMLT5DdzJcICt9hNsDqwFLR3+NJY2vuNERFRuBX6xA/ui3KCHNPj++oL3nZEIrzNCRETl08mT8Ph1MPZjF14M+RLNh7WVuqJyi2GEiIjKn8hI4KOPALkcPYdaABu8pK6oXFPpMM38+fPRrFkzmJiYwMrKCr169cLt27ffuVxAQABcXFxgYGCAmjVrYu3atYUumIiIqCjSEtMw0vUCHj4zAJycgNWrAZlM6rLKNZXCSEBAAEaPHo2zZ8/ixIkTyMzMhLe3N5KTk/NcJjw8HF26dEGbNm0QGhqKb775BuPGjYOvr2+RiyciIlLVhJbn8EtMb3TQ+gdZu30BQ0OpSyr3ZEIIUdiFnz17BisrKwQEBMDDwyPXNl9//TUOHjyImzdvKqaNHDkSly9fRnBwcIFeJzExEWZmZkhISICpqWlhyyUionJu82enMfTX1pBBjkOzL6HzzGZSl6TRCvr7XaSzaRISEgAAFhYWebYJDg6Gt7e30rSOHTvi4sWLyMjIyHWZtLQ0JCYmKj2IiIiKImzXbYz81QUA8J3XKQYRNVLoMCKEwMSJE9G6dWs0bNgwz3bR0dGoUkX51stVqlRBZmYmYmNjc11m/vz5MDMzUzzs7OwKWyYRERFehMej98eG/13Y7AJmnMh9bz5Jo9BhZMyYMbhy5Qp27NjxzraytwYGZR8Zent6tmnTpiEhIUHxiIyMLGyZRERUzmWlZ2Fg83sIz6wOB52H+D34PV7YTM0U6tTesWPH4uDBgzh16hRsbW3zbVu1alVER0crTYuJiYGOjg4qVcr94jL6+vrQ19cvTGlERERKXnw1D9Gx3WCIV9i7NQUWtapLXRK9RaVoKITAmDFjsHfvXpw8eRIODg7vXMbd3R0nTpxQmnb8+HG4urpCV1dXtWqJiIhUsWsXKq+YiTNohePfBcGpf12pK6JcqBRGRo8eja1bt2L79u0wMTFBdHQ0oqOjkZKSomgzbdo0DBkyRPF85MiRiIiIwMSJE3Hz5k1s2LAB69evx+TJk4uvF0RERG9JDr4CDBsGADCaMhatZ7WXuCLKi0phZM2aNUhISICXlxesra0Vj127dinaREVF4eHDh4rnDg4OOHz4MPz9/eHk5IS5c+dixYoV+PDDD4uvF0RERG94djMWjTzMMSdlMuQdOwPz5kldEuWjSNcZKS28zggRERVUxqsMeFe7Bv94Z7yn+wCX7prBtEZFqcsql0rlOiNERETqZpJ7EPzjnVEBSTjwRyaDSBnAMEJERBpj4yeBWHnFEwCwddoNNOjxnsQVUUEwjBARkUY4t/4aRm5sDgCY5eWPnvNaSFwRFRTDCBERlXlJt5+g92eVkA599LI+yyusljEMI0REVLa9egWTQT0wV/4tnA1uYMtFR15htYzh1iIiorJLLgd8fIBLl/BJpYM4f9kAJjYmUldFKmIYISKiMmtz7/149oc/oKsL7N0LnTo1pS6JCqFQ96YhIiKS2q7xZzD0QG84wAmhS8/AzIPjRMoq7hkhIqIy58Km6xi6oikA4EPXhzAbM1jiiqgoGEaIiKhMeXQhCj2HV0IqDNHN6jwWnGkjdUlURAwjRERUZiTHJKOnZzyi5FXRUP8utoXUh7aettRlURExjBARUZkgz5TDx/kKQlLqw1L2DH/+bQjTajxzRhMwjBARUZnwbNICXHlSCXpIw96fo2Df2lbqkqiYMIwQEZH627ABVVZ8i7Nww4GJp9D6i8ZSV0TFiGGEiIjUWsIBP+DzzwEAFtNHo9OSDhJXRMWNYYSIiNTW9f13UfODJlibORwYOBCYM0fqkqgEMIwQEZFair78FF36GCJOWGC76ShkrtsAyGRSl0UlgGGEiIjUTnJMMrq3jMXDLFvU1g3Hvot20DHWl7osKiEMI0REpFay0rMwqMlVXHzliMqyWBw+ooVKtS2kLotKEMMIERGplcktAnEg2g36SMWBNVF4r10NqUuiEsYwQkREauPkmL1YFuYFANjyZQhaft5I2oKoVPCuvUREpB7270fb1X2xEJMgOnVBv5+8pK6ISgnDCBERSe/MGWDAAMiEHFM+SwDWekpdEZUiHqYhIiJJ3Tp0Hx+1fYqkVB2ge3dg1SqewlvOcM8IERFJ5klINDr21MfDrN4wtdLCup3egA5/msob7hkhIiJJJDxMQOdWCXiYZYs6uuGYd6oNYGQkdVkkAYYRIiIqdWmJafigyb+4kloXVbRicPRvHVSuW0nqskgiDCNERFSq5JlyDG10EX7xzqiAJBzZGgcHDzupyyIJMYwQEVGpmtHqJHY+bAUdZGDvgrtwHlBP6pJIYgwjRERUepYuRd/zk2GNJ9g48jw6fN1U6opIDXDIMhERlY7Nm4FJk+AE4M7c3agw/UuJCyJ1wT0jRERU4v6afhanP9nw+smkSajw7XhpCyK1wj0jRERUogKWh6HPD07QwhGc6b4Qzotm8aJmpIR7RoiIqMSEbr+J7l/WRBoM4F31KhrtnsEgQjkwjBARUYm4cywcHT+ujCSYwtMsDDtvNoGOAXfIU04MI0REVOweXYiCd1cdPBOWaGp4Ewev1YSBuYHUZZGaYhghIqJiFXcvDh3bJCMiyw61dcNx5EJlmNqaSl0WqTGGESIiKj4vX8J4QA/UTwtDNe0onPDXg5WjpdRVkZrjwTsiIioeKSlA9+7Qv3gGuyzu4MmeM7BrWVvqqqgM4J4RIiIqsrTENKx1/Q1y/wDAxATaRw/B7n0GESoY7hkhIqIiyUzNxIB6odgXNRbXdHTx8+GGQLNmUpdFZQjDCBERFVpWehZ86p3DvqhW0Ecqev3QHGjN+82QaniYhoiICkWeKcfIRmewPeL1HXj/mHkV7acwiJDqGEaIiEhlQi7wpUsgfrvjAS1kYfvEi+g2m4dmqHAYRoiISDVCYHprP6y84gkA2PjZWfRd4i5xUVSWccwIERGp5vvv4Rx8GbpojRUDz2LILx5SV0RlHMMIEREV3NKlwMyZ6APAdcZW2M/5ROqKSAPwMA0RERXI5sF/I2LS8tdPvv+eQYSKDfeMEBHRO63qF4Axe9rDHv64NGEbLL79VuqSSINwzwgREeVrdf8AjNnzerBqvxYRqLiYQYSKF8MIERHlac1HARi9+3UQ+ap5ABYEeUKmJZO4KtI0DCNERJSrNR8F4Itd2UHEHwuDPRhEqEQwjBARUQ47PjmhCCKTmwVgYTD3iFDJ4QBWIiJStmYN2m38Do44ic6usfjxLIMIlSyGESIi+r+1a4EvvoAVgOBxO1Hhp7kMIlTiGEaIiAgAsG5QAHS2n8cnADBpEkwWzQVkDCJU8hhGiIhIMVhVhjZwHNAELRaNYxChUsMBrERE5dzSHv6KwapfNg1E860MIlS6GEaIiMqx79v7Y9KfXgCAqe7+WHKBp+9S6eNhGiKickjIBaa3CcC8IC8AwJz3/TH9by/uECFJqLxn5NSpU+jevTtsbGwgk8mwf//+fNv7+/tDJpPleNy6dauwNRMRUVEIgeMf/qIIIou6BWDGPwwiJB2V94wkJyejSZMmGDZsGD788MMCL3f79m2YmpoqnltaWqr60kREVFRyOfDFF/De/wu+Rjzs+rXE6P/GixBJReUw0rlzZ3Tu3FnlF7KysoK5ubnKyxERUfHISs9C+icjYbjtN8hkMixYXwUY5iF1WUSlN4DV2dkZ1tbWaNeuHfz8/PJtm5aWhsTERKUHEREVXsarDAx67xx6bOuHVC0jYNs2YNgwqcsiAlAKYcTa2hrr1q2Dr68v9u7di7p166Jdu3Y4depUnsvMnz8fZmZmioednV1Jl0lEpLHSEtPQr9Yl7IpsiQB44vzsI8CAAVKXRaQgE0KIQi8sk2Hfvn3o1auXSst1794dMpkMBw8ezHV+Wloa0tLSFM8TExNhZ2eHhIQEpXEnRESUv5fRL9Hb8TZOxLlAH6nw/e4qus5qJnVZVE4kJibCzMzsnb/fkpza6+bmhq1bt+Y5X19fH/r6+qVYERGR5nl+Nw5dnZ/gXLILjPES+xfeQfspDCKkfiQJI6GhobC2tpbipYmIyoXHF6Pg3ToZN9IawkIWh8O/RaHFJ02lLosoVyqHkZcvX+LevXuK5+Hh4QgLC4OFhQWqV6+OadOm4fHjx9iyZQsAYNmyZbC3t4ejoyPS09OxdetW+Pr6wtfXt/h6QURE/3fnDuJ6jMWTtJ2w0YrG8X3JcOzhKHVVRHlSOYxcvHgRbdu2VTyfOHEiAMDHxwebNm1CVFQUHj58qJifnp6OyZMn4/HjxzA0NISjoyMOHTqELl26FEP5RESkJDQU6NgRjZ49w1G7z1Bl+0+wb11L6qqI8lWkAaylpaADYIiIyrNTKy9DNvVrtHl1DHB2Bo4eBayspC6LyrGC/n7zRnlERBrgr5nn0HFcHXR7tQs3XAYDfn4MIlRm8EZ5RERl3NaRpzH0FzdkQQcdqlyFw/FfADNDqcsiKjDuGSEiKsOW9fLH4F9aIws6GFzzDHzDm8LQgkGEyhaGESKiMkieKcckF39MOOAFABjvFIBNt92ha8gd3lT2MIwQEZU1aWlY22IjloZ4AQAWdgnAT5c8oKXD/9KpbGKEJiIqS+LjgV69MCIkCH/KqmHQSFN8vNpT6qqIioRhhIiojIgJe4LKH3eC1vWr0DMxweG9upC1byl1WURFxn16RERlwLV9d+HiCky8/glEVWsgMBCy9u2kLouoWDCMEBGpuYDlYWjd2wqPsmxwTK87Eo+fBZo0kbosomLDMEJEpMZ2TwiC95f1kQAztDK9gjM3LGDWqLrUZREVK44ZISJSQ0IusLRnACb/5QUA+MDmHLZdawLDigbSFkZUAhhGiIjUTUYGJrqcwrKrr8eEjG50CssvtoK2nrbEhRGVDB6mISJSJwkJQNeu8Lj6M3SQgZ96BWBlWBsGEdJo3DNCRKQmRPgDyLp1BW7cwAfGxrjzUwAcPm0vdVlEJY57RoiI1MC59dfgXOclHt5IAmxsgMBABhEqNxhGiIgktmdCELxG1MLlzIb4puIa4Px5wNlZ6rKISg0P0xARSUTIBRZ09sc3x9sCALpXOYe1YZ5A1QoSV0ZUuhhGiIgkkP4yHSOdz2HjvddBZLxTAJaca82BqlQuMYwQEZWy57dj0bv5I5xKbAMtZGFFvzMYvYs3u6Pyi2NGiIhK0+XLMOzQGkmJcpggEX/ODsXoXR5SV0UkKYYRIqLS4usLtGwJo8jbOFBjPM4efIYuM12lropIcjxMQ0RUwuSZcsztcApa/mGYgVdA+/aw27ULsLCQujQitcAwQkRUgpJjkuHT9Ap8H3sB8ELPQSZovGkioMP/fomy8dtARFRCIs48Qs/2ybic6g5dpGPN0HNovHGK1GURqR2OGSEiKgGBP19Gszb6uJxaF1ayZ/BbfQvDN7aRuiwitcQ9I0RExUkIrPc5hVG/uyMDenA2vIn9/5iiuntjqSsjUlsMI0RExSU1FRg9Gtq/ZyEDnuhnF4SNIU4wqmwkdWVEao1hhIioGIiIh5D1+RC4eBFDtbRQdUhndFzfDzItmdSlEak9jhkhIiqifxaFoNl7cYi9GA5UqgQcPYpOG/sziBAVEPeMEBEVkpALLOp+CtMOt4Yc2phj+TNWnHcD7O2lLo2oTGEYISIqhKQnSRjW/Dp8H7++p8zQ9wKx8FxPwMJQ4sqIyh4epiEiUtHtI/+ihUMMfB+7vb5+yIBT2HC7NQwZRIgKhWGEiEgFQQtOoVmXyriZXgs2WlE4te42Rm734PgQoiJgGCEiKoiMDGDSJDhO6w4rxMDDNAwhYdpw+7SR1JURlXkMI0RE7xAT8giijQewdCnMkIh/RuzE31GOqNLISurSiDQCwwgRUT4OzbqA+q5GWH2uKWBuDuzfjxq/Toeuka7UpRFpDIYRIqJcZKZmYpq7P7rNboY4YYEdFT6F/GII0LOn1KURaRye2ktE9JYnIdH4qO1TBCZ6AQDGNg7AokA3aJnqS1sYkYbinhEiojecWHAJTq7aCExsAhMkYveEYKy47Al9BhGiEsM9I0REAJCZiUeTl6Hr8nHIgB6aGNzGnoP6qN3BXerKiDQewwgRUUQEMGgQbM+cwVw8w7/1umLZmWa8iBlRKWEYIaJyzferYNT9ZRIaJgUDJiaYstYJsoEeUpdFVK4wjBBRufQq9hUmtLmIdbc84Ih1OO/yBYx2b4KsZk2pSyMqdxhGiKjcueJ7FwMGyXAjzQMyyNHdLRa6//wD8NohRJLg2TREVG4IucCq/qfQvI8dbqS9h6paT3F8YRjmB3vxImZEEuKeESIqF5Ii4jDY7S4ORL8eD9LF8gI2BTjAsn5TiSsjIu4ZISLNd+IEjNyb4EV0KnSRjp96BeCvaFdY1q8sdWVEBIYRItJgKXEpSBk9GfD2hnbUI2xzmIGzW+/jy32ekGnJpC6PiP7DMEJEGilk+y24WD/BlNU1Xk/44gvYXjuKpoPqS1sYEeXAMSNEpFGy0rPwY/dAzDzeCpnQRbxWX8zdWQ/mfTtIXRoR5YFhhIg0RvipSAzu/gJn/rvBXW+bs/jlZG2Y12UQIVJnPExDRGWekAtsHH4ajT3NcSaxMUyQiE3DA/FHZAtUrltJ6vKI6B0YRoiobHv6FM+7D8XEDY54CRO0Nr2MywEJ8PmtDQepEpURPExDRGXX7t3AF1+g8vPnWKeVhvsdRuKrg22gractdWVEpAKGESIqc57djMUX3ncx6NF29MJzoEkT9N00FXBykro0IioEHqYhojLF96tgODoK/PHIHWOxEunfzgbOn2cQISrDuGeEiMqE2DtxGNPhNnY9dAcANNK/g03rs6A3aKbElRFRUXHPCBGpvf3TzsGxfhZ2PXSHNjLxbUs/XIipwQuYEWkI7hkhIvUVG4vQIT/hgyM/AAAa6N3D5nVpcPVpK3FhRFScGEaISP0IAezYAYwfD+fYWAxHTVi61cR3R9xhYG4gdXVEVMwYRohIrTw8+wRf9b6HJVFTYItYoGFD/PpbI8haNJe6NCIqISqPGTl16hS6d+8OGxsbyGQy7N+//53LBAQEwMXFBQYGBqhZsybWrl1bmFqJSIPJM+VY1S8Aju4m2B3lgfGylcCcOcClSwwiRBpO5TCSnJyMJk2a4Oeffy5Q+/DwcHTp0gVt2rRBaGgovvnmG4wbNw6+vr4qF0tEmunW4X/hYXENY/Z44iVM0MrkMr4/0AiYMQPQ05O6PCIqYSofpuncuTM6d+5c4PZr165F9erVsWzZMgBA/fr1cfHiRSxevBgffvihqi9PRBokPTkDP/Y8g7n/uCMd+qiAJCzoG4JR29tAS4cn+xGVFyX+bQ8ODoa3t7fStI4dO+LixYvIyMjIdZm0tDQkJiYqPYhIwwQFYeV7yzHjHy+kQx9dLM/jelAiRu/2ZBAhKmdK/BsfHR2NKlWqKE2rUqUKMjMzERsbm+sy8+fPh5mZmeJhZ2dX0mUSUWmJiwM+/xxo1QqjomeimXYItn1xBn9FN0N192pSV0dEEiiVPz9kMuU7Zwohcp2ebdq0aUhISFA8IiMjS7xGIipZQi7w+8gz6G59AVnrfgMAGH0yAOeiqmPgqla8wy5ROVbip/ZWrVoV0dHRStNiYmKgo6ODSpUq5bqMvr4+9PX1S7o0Iiolt4/8i1EDE+AX3woAsM36KwzZ2QXw8AAjCBGVeBhxd3fHn3/+qTTt+PHjcHV1ha6ubkm/PBFJKDU+FfN6nMXCQHekoyYM8QozO57DR3/MASrwLBkiek3lwzQvX75EWFgYwsLCALw+dTcsLAwPHz4E8PoQy5AhQxTtR44ciYiICEycOBE3b97Ehg0bsH79ekyePLl4ekBEaunEwhA0sorG3MDXA1Q7V76A6/6xmHq0LfQYRIjoDSqHkYsXL8LZ2RnOzs4AgIkTJ8LZ2RkzZ76+c2ZUVJQimACAg4MDDh8+DH9/fzg5OWHu3LlYsWIFT+sl0lQPH0L06YuZU9NwL8MeNlpR2DMxCIeeusLBs7rU1RGRGpKJ7NGkaiwxMRFmZmZISEiAqamp1OUQUS5S41MhX7oMRovnACkpuChrht8b/4i5fzrD1M5M6vKISAIF/f3myfxEVGR/zTwPR8unmDtXACkpgIcHXMN+w/IwLwYRInon3iiPiArt7t8R+HJgDA4/e33vmF3aAzFrQ03oD+4H5HHqPhHR27hnhIhUlhyTjG9b+aNhh6o4/KwZdJGOr1v44UqkBfSH9GcQISKVcM8IERWcEAj6wQ/9Z9XDoywvAEDHShex/HcL1O3cVtraiKjMYhghooIJCQEmToRdwH3E4RbstSOx7KvH6PFDC149lYiKhGGEiPL1JCQa+744gdHnfQAhYGdggGMf7YTL4gEwrMT7RhFR0TGMEFGuXsW+wuJ+57HQrxleYTAa4jd4DqgGLFiA1tV5vRAiKj4MI0SkRJ4px/axwZj2q4NiXIh7hasw/Xkl4NNY2uKISCMxjBCRQtAvVzFhkgznk1/f0K6GdiQWjn6Ifj+15LgQIioxPLWXiIAHD5DRbxA+GmmG88kNUQFJmOfth5sxldF/eSsGESIqUdwzQlSOPb8bB7PV86GzegV009OxEAIn64zE3D31ULUxT9UlotLBPSNE5dCr2FeY38kfNetoY/OyOCA9HWjbFgNCp+DX2x6o2thK6hKJqBxhGCEqRzJTM/GbTyBqV0nEN8e8kAgz7DXxAY4cAf75B3BykrpEIiqHeJiGqBwQcoED357HtKWVcSu9DYDXg1O/HxGBgT+3BnT4dwkRSYdhhEjTnTmDL/s+wYqovgAAC1kcpve4gi82u0HfjBctIyLp8c8hIg0lrl0HevUCWrfGgKglMEIyvmnph38faGPCfi/omxlIXSIREQDuGSHSOHdPPMCszx6j2oMg/IgDgJYW3IY3xqPxCajoyDNkiEj9MIwQaYgHpx9h7vBwbL7jjizYwxDO+KbbFZj/+A1Qvz4qSl0gEVEeGEaIyrgnIdH4wecOfr3mhgzYAgC6WZ3HnJ9MYD7wd4mrIyJ6N4YRorLq2TPsG3EIAw/2Ryo8AADtLS5h7gI9uH3aXOLiiIgKjmGEqKx58QJYsgRYtgwtkk0B9Ecrkyv4fnYWvCa4SF0dEZHKGEaIyoi4+y+wbNhl/Hv2KbZm/AAAsHGph8sjL6D2J214/xgiKrMYRojUXOzt51g67CpWBrvgJbwAABNq7YXL4gFAz56oI2MIIaKyjWGESE09vfYMSz65jtUXXJH8XwhpYnAbM8bEwXn+Dl41lYg0BsMIkbp58gTBE3aj3e7PkPJfCHExuoGZXyah+9zmPBxDRBqHYYRITWQ+eASdJQuBX39F0zSBSvgQ1Yz/xcyvUtB5hitDCBFpLIYRIond+ycCi8c+wJlblRAq1kAHWdBv1QrnRv8L6/4eDCFEpPEYRogkErrjFhZ+HYc9kS0gRw0AwPGGk9BlRSfAyws2HJhKROUEwwhRKRJygVMrwrDgh0wcjW2mmN7V6jy+nqGPNmMWSlgdEZE0GEaISoNcDhw8iJAZ++B1bTMAQAtZ+Mj+LL5eZInGfXjFVCIqvxhGiEpQRnI6whYeQ7M9U4Bbt+ACoL3WENRpoINJKx1Q06uV1CUSEUmOYYSoBCQ8TMBvo0Ox/EhtxGW1RQRiUMnMDBg9GsfHNoSsahWpSyQiUhsMI0TFKOJ0JJaPv4/fQpoi6b9rhFTVeopbI1ei1fxugKkpOCyViEgZwwhRMQjfH4ap417BN7I5smAHAGigfw8TB0Rh0E/NYGA+UOIKiYjUF8MIUWFlZQEHDwJLl0L/9H3swwNkQQftLUIw8Us5On3rApnWe1JXSUSk9hhGiFSUHJOMTWMu4uqxx1ibOAgAYKOri1Wu29B8Qis06dtU4gqJiMoWhhGiAvrXLwKrJodjQ4gT4uEJABhjugoNx3gBY8bgU2traQskIiqjGEaI8iGy5Pj7xxCsXJaFv2KaQfx3pdT3dB/gy14RcPj5OGBlLHGVRERlG8MIUW4SE4HNm/HH/HvoF7VcMblj5YsYN0ag07cu0NKxl64+IiINwjBC9Ib7J/7F4zUH4fH3TCApCd2hj5qyL9GlUSTGLLRD3U6uUpdIRKRxGEao3MvKkOPYDxexepXA4dhmqIWuuI2J0KpXDwZjxuDOoMrQNneQukwiIo3FMELlVvTVZ9gw+QbWnayFiMz/3xumtlUCXqw+iUq9PQGZDNoS1khEVB4wjFD5IgTg54cVkyIwKexjZP53VkxF2Qv4OF/FqB8dUKcdD8UQEZUmhhEqF+LuPkfGtt2osv0n4O5dOKENMjEM7hWuYORHCei7wAWGlTykLpOIqFxiGCGNJeQCZ3+5jLWLErErvDk+RzqW4y5gYoI2gxriWvtbcPywsdRlEhGVewwjpHGe34/H9ilh+O1QVVxJc1JMv1qhJcSSdZANHABZhQpwlK5EIiJ6A8MIaQa5HDh5EuNGZ+KXO22R/t8dcw2QggF1LmHkN5XQbEgzyGTNpK2TiIhyYBihMi3idCRsj2+A9paNQEQEDLAQ6eiEJga3MLz7M3y8qDEq1mgtdZlERJQPhhEqc1JfpGD/zBCs326Af+KccQRB6IgIwMwMY3sk4CPvG2g6qD4gqyd1qUREVAAMI1Q2CIGw7TewfsEzbLveBC9EK8Ws8zUHoOP3Q4FevWBnaAg76aokIqJCYBgh9RYdjbjf9uL9H97H5dT/Dzm11X6CYa3uYtj3teDQZqh09RERUZExjJDaeRX7CldWBcLt7DLgxAlUzMpCJq5CF+noVT0Ew0fpo/2kJtDWtZG6VCIiKgYMI6QW5BlZ8F8Whi2/pMD3fhMALfEUH8AIWZC5uWFr2xuoPsIWFjXdpC6ViIiKGcMISerG/jv4fcEjbL1YD4+yXBTTHXQe4v7wRWg0yRuoXRtO0pVIREQljGGESt+TJ8COHfhl2SuMfDQDQB0AgLksHv3qXcWQceZo+VlDyLRGS1snERGVCoYRKhXPbj2H79wbqHNjP96//BMgBLxhD118jc5VwzBksEDXb51gYNZG6lKJiKiUMYxQiUmMTMD+uVexY58BTsQ6IQtt0ANxeB9LgZYt4TB4MJ51SoaZfXOpSyUiIgkxjFDxevUKvjNCsX2nFg49cUYa/n/106aGN9GugzGw4gFQowYAwEyiMomISH0wjFCRZSanQeefY8DOncDBg1icfAJn4Q4AqKd3HwNaReKjKdVRp1N9APWlLZaIiNQOwwgVSkpcCo4uuoo/dmbiaEQ93BHDUAlxAIDRlrvhWSsdH02wRpM+tSHTqiVxtUREpM60CrPQ6tWr4eDgAAMDA7i4uCAwMDDPtv7+/pDJZDket27dKnTRJI3kpy+xZ2Iw+lcPgmWlLPRe0BzbH7REnLDAEfOBwIQJwLlz+PjpUiwI9oRTvzqQacmkLpuIiNScyntGdu3ahS+//BKrV69Gq1at8Msvv6Bz5864ceMGqlevnudyt2/fhqmpqeK5paVl4Sqm0pWQAPz1F46u/he9gyYh5b/DLwBQQzsSfZrcQ5/PLNB8+HJAp1DZloiIyjmZEEKoskCLFi3QtGlTrFmzRjGtfv366NWrF+bPn5+jvb+/P9q2bYsXL17A3Ny8UEUmJibCzMwMCQkJSoGGSkbs3Rf4a+F1VLlyAp0vLwDS0/EUVrBGFGrqRKKPy7/oM8oKLoMbcM8HERHlqaC/3yrtGUlPT8elS5cwdepUpene3t4ICgrKd1lnZ2ekpqaiQYMGmD59Otq2bZtn27S0NKSlpSmeJyYmqlImFcJ9/0gcWBaOA/5mOJ3QEHK0RlukozPmAPXqocqHH+J2s1t4r3t9yLRqSF0uERFpEJXCSGxsLLKyslClShWl6VWqVEF0dHSuy1hbW2PdunVwcXFBWloafv/9d7Rr1w7+/v7w8PDIdZn58+dj9uzZqpRGqhICuHQJ30+Ox66zNXAtrTYAO8VsJ4ObeL+lDGLFdcgcGwAAaktUKhERabZCnU0jkynvmhdC5JiWrW7duqhbt67iubu7OyIjI7F48eI8w8i0adMwceJExfPExETY2dnl2pYKLj0pDefXhaH1/c3AwYPA48cIwiFcQ21oIxOe5pfR0ysRPSfURA0PnoZLRESlQ6UwUrlyZWhra+fYCxITE5Njb0l+3NzcsHXr1jzn6+vrQ19fX5XSKA9x/8bj2JJrOPCnDIcjGyEJLRCBvqiOx4CxMSY6X8DABibo8pUjLN5zefcKiYiIiplKYURPTw8uLi44ceIEPvjgA8X0EydOoGfPngVeT2hoKKytrVV5aSooIRB+4h52LovC4SBzBCU4Qv7GVVCraMXgfpfxqD6qPvD++2hvYCBhsURERIU4TDNx4kQMHjwYrq6ucHd3x7p16/Dw4UOMHDkSwOtDLI8fP8aWLVsAAMuWLYO9vT0cHR2Rnp6OrVu3wtfXF76+vsXbk3Is+dkrZPxzCuanDgKHD+NCRHN8g92K+Y76d9G96RP0HF4ZzX3qQ0tnkoTVEhERKVM5jPTv3x/Pnz/HnDlzEBUVhYYNG+Lw4cOo8d+9RqKiovDw4UNF+/T0dEyePBmPHz+GoaEhHB0dcejQIXTp0qX4elEO3T8ZgUOrH+BwgDH8YxtiOk5jOl6fbu2tl4JuZufQxesVOo+uCXvP2uDwUyIiUlcqX2dECrzOCJD1Kg1+P1/HkV2JOHS1Om5n1FSa39voCHyH/gV06QK0bQsYGUlUKRER0Wslcp0RKj1CLvDs7H1YXToCHD8OcfIUPnz1EIn/3edWBxlobX4NXVsloOvntqjXtROg1VniqomIiFTHMKJGYu/E4e9Vt3H8SBaO/1sL+lky3Mc4AK831EDD/Ui1rYWuPXTQYVx9mFV3lrZgIiKiYsAwIqX0dFzYeA0Hfk/EsVArXHpVD+KNe78YIAVRbfrBupsL0KED1jRpAmjx/i9ERKRZGEZKkZALXD/0AHXuH4HeyaOAnx82vVyA1RitaNNI/w68Gz6Bd+8KaPN5AxhW2iVhxURERCWPYaQECQHcD3iEkxsjcDJAC36R7yFG7oAA7IQHAgEAPc0C8MLcGR07yNFh1HuwaVoHQB1pCyciIipFDCPF7ckTXNsSgiUbzHHyXwc8zLIFYKuYbYhXCK/fFR5DuwHe3vBu3BjePPRCRETlGMNIET279Rz+v95B9YjTaHF9A3DrFlLhgk24CADQRTrcTa/jfacXeL+3OZoPbQB9s68lrpqIiEh9MIyoKOb6MwRuuodTJ9IRcLsqLqfWBeCOT3ADLXALkMng7KyFb/X+gUc3U7QaUR/GVXjWCxERUV4YRt4lIgIIDETKyWC4bJuAm+nvAbBUatJI/w5qNa0CfL0f8PCAdsWK+F6SYomIiMoehpE3CLnAveP/4tT2Rzh1Rgt4+hSbk/sCAAwB4L+zXhoZ3IFH7Wh4tNOB1/D3YNWQg06JiIgKq3yHkaws3Nh/B347onHqnB5OPXkP0fJaAGoBeD3Y9FdtQ+i5NgY8PLDT7hlsu8bDoibDBxERUXEp32GkY0dM/mcijuD/N+3TRypamN2GR+N4eHQzhdbnzwAzYwBAY6nqJCIi0mDlO4w0bYpOp/2RZVIFHk1fwqOnBZoNqgMDsyZSV0ZERFRulO+79iYlvb67rbZ28a2TiIiIAPCuvQVjYiJ1BUREROUeL/1JREREkmIYISIiIkkxjBAREZGkGEaIiIhIUgwjREREJCmGESIiIpIUwwgRERFJimGEiIiIJMUwQkRERJJiGCEiIiJJMYwQERGRpBhGiIiISFIMI0RERCSpMnHXXiEEgNe3IiYiIqKyIft3O/t3PC9lIowkJSUBAOzs7CSuhIiIiFSVlJQEMzOzPOfLxLviihqQy+V48uQJTExMIJPJim29iYmJsLOzQ2RkJExNTYttvepE0/vI/pV9mt5HTe8foPl9ZP8KTwiBpKQk2NjYQEsr75EhZWLPiJaWFmxtbUts/aamphr5AXuTpveR/Sv7NL2Pmt4/QPP7yP4VTn57RLJxACsRERFJimGEiIiIJFWuw4i+vj6+++476OvrS11KidH0PrJ/ZZ+m91HT+wdofh/Zv5JXJgawEhERkeYq13tGiIiISHoMI0RERCQphhEiIiKSFMMIERERSUrjw8gPP/yAli1bwsjICObm5gVaRgiBWbNmwcbGBoaGhvDy8sL169eV2qSlpWHs2LGoXLkyjI2N0aNHDzx69KgEepC/Fy9eYPDgwTAzM4OZmRkGDx6M+Pj4fJeRyWS5PhYtWqRo4+XllWP+Rx99VMK9yakw/Rs6dGiO2t3c3JTaqMv2A1TvY0ZGBr7++ms0atQIxsbGsLGxwZAhQ/DkyROldlJtw9WrV8PBwQEGBgZwcXFBYGBgvu0DAgLg4uICAwMD1KxZE2vXrs3RxtfXFw0aNIC+vj4aNGiAffv2lVT5BaJKH/fu3YsOHTrA0tISpqamcHd3x7Fjx5TabNq0KdfvZGpqakl3JVeq9M/f3z/X2m/duqXUTp22oSr9y+3/E5lMBkdHR0Ubddp+p06dQvfu3WFjYwOZTIb9+/e/cxm1+A4KDTdz5kyxdOlSMXHiRGFmZlagZRYsWCBMTEyEr6+vuHr1qujfv7+wtrYWiYmJijYjR44U1apVEydOnBAhISGibdu2okmTJiIzM7OEepK7Tp06iYYNG4qgoCARFBQkGjZsKLp165bvMlFRUUqPDRs2CJlMJu7fv69o4+npKT799FOldvHx8SXdnRwK0z8fHx/RqVMnpdqfP3+u1EZdtp8QqvcxPj5etG/fXuzatUvcunVLBAcHixYtWggXFxeldlJsw507dwpdXV3x66+/ihs3bojx48cLY2NjERERkWv7f//9VxgZGYnx48eLGzduiF9//VXo6uqKP/74Q9EmKChIaGtri3nz5ombN2+KefPmCR0dHXH27NkS7UteVO3j+PHjxcKFC8X58+fFnTt3xLRp04Surq4ICQlRtNm4caMwNTXN8d2Ugqr98/PzEwDE7du3lWp/87ukTttQ1f7Fx8cr9SsyMlJYWFiI7777TtFGnbbf4cOHxbfffit8fX0FALFv375826vLd1Djw0i2jRs3FiiMyOVyUbVqVbFgwQLFtNTUVGFmZibWrl0rhHj94dTV1RU7d+5UtHn8+LHQ0tISR48eLfba83Ljxg0BQOkDERwcLACIW7duFXg9PXv2FO+//77SNE9PTzF+/PjiKrVQCts/Hx8f0bNnzzznq8v2E6L4tuH58+cFAKX/UKXYhs2bNxcjR45UmlavXj0xderUXNtPmTJF1KtXT2na559/Ltzc3BTP+/XrJzp16qTUpmPHjuKjjz4qpqpVo2ofc9OgQQMxe/ZsxfOC/v9UGlTtX3YYefHiRZ7rVKdtWNTtt2/fPiGTycSDBw8U09Rp+72pIGFEXb6DGn+YRlXh4eGIjo6Gt7e3Ypq+vj48PT0RFBQEALh06RIyMjKU2tjY2KBhw4aKNqUhODgYZmZmaNGihWKam5sbzMzMClzH06dPcejQIQwfPjzHvG3btqFy5cpwdHTE5MmTFXdPLi1F6Z+/vz+srKxQp04dfPrpp4iJiVHMU5ftBxTPNgSAhIQEyGSyHIciS3Mbpqen49KlS0rvKwB4e3vn2Zfg4OAc7Tt27IiLFy8iIyMj3zalva2AwvXxbXK5HElJSbCwsFCa/vLlS9SoUQO2trbo1q0bQkNDi63ugipK/5ydnWFtbY127drBz89PaZ66bMPi2H7r169H+/btUaNGDaXp6rD9CkNdvoNl4kZ5pSk6OhoAUKVKFaXpVapUQUREhKKNnp4eKlasmKNN9vKlITo6GlZWVjmmW1lZFbiOzZs3w8TEBL1791aaPmjQIDg4OKBq1aq4du0apk2bhsuXL+PEiRPFUntBFLZ/nTt3Rt++fVGjRg2Eh4djxowZeP/993Hp0iXo6+urzfYDimcbpqamYurUqRg4cKDSTa5KexvGxsYiKysr1+9OXn2Jjo7OtX1mZiZiY2NhbW2dZ5vS3lZA4fr4tiVLliA5ORn9+vVTTKtXrx42bdqERo0aITExEcuXL0erVq1w+fJl1K5du1j7kJ/C9M/a2hrr1q2Di4sL0tLS8Pvvv6Ndu3bw9/eHh4cHgLy3c2lvw6Juv6ioKBw5cgTbt29Xmq4u268w1OU7WCbDyKxZszB79ux821y4cAGurq6Ffg2ZTKb0XAiRY9rbCtKmIAraPyBnnarWsWHDBgwaNAgGBgZK0z/99FPFvxs2bIjatWvD1dUVISEhaNq0aYHWnZeS7l///v0V/27YsCFcXV1Ro0YNHDp0KEfoUmW9qiitbZiRkYGPPvoIcrkcq1evVppXktswP6p+d3Jr//b0wnwfS1Jh69mxYwdmzZqFAwcOKIVQNzc3pUHWrVq1QtOmTbFy5UqsWLGi+AovIFX6V7duXdStW1fx3N3dHZGRkVi8eLEijKi6zpJW2Fo2bdoEc3Nz9OrVS2m6um0/VanDd7BMhpExY8a886wAe3v7Qq27atWqAF6nRWtra8X0mJgYRTKsWrUq0tPT8eLFC6W/rmNiYtCyZctCve6bCtq/K1eu4OnTpznmPXv2LEeKzU1gYCBu376NXbt2vbNt06ZNoauri7t37xb5h6y0+pfN2toaNWrUwN27dwGU/PYDSqePGRkZ6NevH8LDw3Hy5Ml33vq7OLdhbipXrgxtbe0cfy29+d15W9WqVXNtr6Ojg0qVKuXbRpXPQHEpTB+z7dq1C8OHD8eePXvQvn37fNtqaWmhWbNmis9saSlK/97k5uaGrVu3Kp6ryzYsSv+EENiwYQMGDx4MPT29fNtKtf0KQ22+g8U2+kTNqTqAdeHChYppaWlpuQ5g3bVrl6LNkydPJBvAeu7cOcW0s2fPFnjwo4+PT44zMPJy9epVAUAEBAQUul5VFbV/2WJjY4W+vr7YvHmzEEJ9tp8Qhe9jenq66NWrl3B0dBQxMTEFeq3S2IbNmzcXo0aNUppWv379fAew1q9fX2nayJEjcwye69y5s1KbTp06STqAVZU+CiHE9u3bhYGBwTsHE2aTy+XC1dVVDBs2rCilFkph+ve2Dz/8ULRt21bxXJ22YWH7lz1Q9+rVq+98DSm335tQwAGs6vAd1PgwEhERIUJDQ8Xs2bNFhQoVRGhoqAgNDRVJSUmKNnXr1hV79+5VPF+wYIEwMzMTe/fuFVevXhUDBgzI9dReW1tb8ffff4uQkBDx/vvvS3Zqb+PGjUVwcLAIDg4WjRo1ynFa6Nv9E0KIhIQEYWRkJNasWZNjnffu3ROzZ88WFy5cEOHh4eLQoUOiXr16wtnZWe37l5SUJCZNmiSCgoJEeHi48PPzE+7u7qJatWpquf2EUL2PGRkZokePHsLW1laEhYUpnUqYlpYmhJBuG2afNrl+/Xpx48YN8eWXXwpjY2PFmQdTp04VgwcPVrTPPq1wwoQJ4saNG2L9+vU5Tis8c+aM0NbWFgsWLBA3b94UCxYsUItTewvax+3btwsdHR2xatWqPE+znjVrljh69Ki4f/++CA0NFcOGDRM6OjpKIVVd+/fTTz+Jffv2iTt37ohr166JqVOnCgDC19dX0UadtqGq/cv28ccfixYtWuS6TnXafklJSYrfOQBi6dKlIjQ0VHGmnbp+BzU+jPj4+AgAOR5+fn6KNgDExo0bFc/lcrn47rvvRNWqVYW+vr7w8PDIkYZTUlLEmDFjhIWFhTA0NBTdunUTDx8+LKVe/d/z58/FoEGDhImJiTAxMRGDBg3KcYrd2/0TQohffvlFGBoa5nrdiYcPHwoPDw9hYWEh9PT0RK1atcS4ceNyXKujNKjav1evXglvb29haWkpdHV1RfXq1YWPj0+ObaMu208I1fsYHh6e62f6zc+1lNtw1apVokaNGkJPT080bdpUaU+Mj4+P8PT0VGrv7+8vnJ2dhZ6enrC3t881IO/Zs0fUrVtX6Orqinr16in90ElBlT56enrmuq18fHwUbb788ktRvXp1oaenJywtLYW3t7cICgoqxR4pU6V/CxcuFLVq1RIGBgaiYsWKonXr1uLQoUM51qlO21DVz2h8fLwwNDQU69aty3V96rT9svfg5PV5U9fvoEyI/0aqEBEREUmA1xkhIiIiSTGMEBERkaQYRoiIiEhSDCNEREQkKYYRIiIikhTDCBEREUmKYYSIiIgkxTBCREREkmIYISIiIkkxjBAREZGkGEaIiIhIUgwjRCSJHTt2wMDAAI8fP1ZMGzFiBBo3boyEhAQJKyOi0sYb5RGRJIQQcHJyQps2bfDzzz9j9uzZ+O2333D27FlUq1ZN6vKIqBTpSF0AEZVPMpkMP/zwA/r06QMbGxssX74cgYGBDCJE5RD3jBCRpJo2bYrr16/j+PHj8PT0lLocIpIAx4wQkWSOHTuGW7duISsrC1WqVJG6HCKSCPeMEJEkQkJC4OXlhVWrVmHnzp0wMjLCnj17pC6LiCTAMSNEVOoePHiArl27YurUqRg8eDAaNGiAZs2a4dKlS3BxcZG6PCIqZdwzQkSlKi4uDq1atYKHhwd++eUXxfSePXsiLS0NR48elbA6IpICwwgRERFJigNYiYiISFIMI0RERCQphhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSTGMEBERkaQYRoiIiEhSDCNEREQkKYYRIiIiktT/AFfq6C3EdgmHAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'fitting $e^x$ to a degree-5 polynomial')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(x, exp.(x), \"r-\")\n", + "plot(x, p.(x), \"b--\")\n", + "legend([L\"e^x\", L\"fit $p(x)$\"])\n", + "xlabel(L\"x\")\n", + "title(L\"fitting $e^x$ to a degree-5 polynomial\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "They are so close that you can hardly tell the difference!\n", + "\n", + "Let's plot the fits for degree 0, 1, …, 3 so that we can watch it converge:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHICAYAAACcQeptAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKxElEQVR4nOzdd1yV5f/H8dc5h70FmYoiKu49UFPce6SW2TDL+bXMHKk5cubIPSq1TC21LMu0VNyIExfuXIkbQRzIhrPu3x8n+UUuUOAwPs/Hg8f3e93zcx/M8/a+r/u6VIqiKAghhBBCmIna3AUIIYQQonCTMCKEEEIIs5IwIoQQQgizkjAihBBCCLOSMCKEEEIIs5IwIoQQQgizkjAihBBCCLOSMCKEEEIIs5IwIoQQQgizkjAihBBCCLOSMCKEEEIIs5IwIkQhNnDgQPr06QOA0Wjk1Vdf5eOPPzZzVUKIwkbCiCjUfvnlFypVqoStrS0qlYr58+ejUqm4du1a+jYHDx5k4sSJPHz48LH9n7bu+++/f+w4edHo0aNZu3YtN27cYNSoURgMBubNm/fMfZ71eeQ1+eX3kBkvcy0F6XMQBZOEEVFo3b17l3fffZfSpUuzdetWwsLC6NKlC2FhYXh7e6dvd/DgQSZNmvTUMPKkde3bt3/sOHlR8eLF6dmzJ506dWL79u38/PPPaDSaZ+7zrM9D5Jz88mdKiBdhYe4ChDCXS5cuodPp6NGjB40bN05fXrJkyZc+tru7O+7u7i99nNxQvXp1Fi1axMGDB3FwcDB3OeIp8tOfKSGySu6MiELp/fffp2HDhgB0794dlUpFkyZNHrudPXHiREaMGAFAqVKlUKlUqFQqQkNDn7nuSbfFJ06ciEql4q+//uKtt97C2dkZT09PevfuTVxcXIb6/vjjD6pWrYq1tTX+/v4sWLAgff/M2r9/P61atcLZ2ZkiRYrQvn17/v777wzbHDlyhEmTJtGtWzd++OGH5x7zWdf86JzNmzfH0dEROzs7GjRowObNmzNV76PrO3HiBF27dsXJyQlnZ2d69OjB3bt3H7u2rJ5n3759qFQq1qxZ89i6lStXolKpOHr0aIZaMvO7ymw9j455+vRpunXrhrOzM66urgwbNgy9Xs/Fixdp06YNjo6O+Pn5MXPmzAz7P+nP1OXLl+nVqxdly5bFzs6OYsWK0bFjR86cOfPMzwJMdwb79++Pr68v1tbWuLu788orr7Bz587n7itEdpMwIgqlcePG8fXXXwMwbdo0wsLCWLRo0WPb9e3bl0GDBgHw+++/ExYWRlhYGDVr1nzmumd57bXXCAgIYN26dYwaNYqffvqJoUOHpq/funUrXbt2xc3NjV9++YWZM2eyZs2aTIWFRyZOnEjjxo3x9fVlzZo1fPfdd9y8eZPmzZuTmJgIwI0bN3j99ddZvXo1CxYs4KeffuL69evPPO6zrnnPnj00a9aMuLg4li1bxpo1a3B0dKRjx4788ssvma69S5culClTht9++42JEyeyYcMGWrdujU6nA3jh8zRq1IgaNWqk/97/7auvvqJOnTrUqVMnw/Ln/a5epJ433niDatWqsW7dOvr168e8efMYOnQonTt3pn379qxfv55mzZrx6aef8vvvvz/zs7p9+zZubm588cUXbN26la+//hoLCwsCAwO5ePHiM/d999132bBhA+PHj2f79u189913tGjRgvv37z9zPyFyhCJEIbV7924FUH799df0ZStWrFAA5erVq+nLZs2a9diy56170nEmTJigAMrMmTMzbPvhhx8qNjY2itFoVBRFUerUqaP4+voqaWlp6dskJCQobm5uSmb+k924ceMTz3Pp0iUFUFavXq3Ex8crVapUUb777rv09R988IHSt2/f5x7/addcr149xcPDQ0lISEhfptfrlcqVKyvFixdPv76nefT5DB06NMPyH3/8Mb3urJ7nv7+HR+0TJ06kb3PkyBEFUH744YfHanne7yor9Tw65pw5czIcs3r16gqg/P777+nLdDqd4u7urnTt2vWp1/Iker1e0Wq1StmyZTN8jk/a18HBQRkyZMhTjyVEbpI7I0Lksk6dOmVoV61aldTUVGJiYkhKSuLYsWN07twZKyur9G0cHBzo2LFjpo4/fvx4SpcuzeDBg9Hr9ek/pUqVwtbWlitXruDo6Mjp06fTX+sFWLRoEUuXLn2ha0pKSuLw4cO8/vrrGfqdaDQa3n33XW7duvXcf6k/8s4772Rov/HGG1hYWLB79+6XPs9bb72Fh4dHhrsjX375Je7u7nTv3v2x7Z/1u3rR6+7QoUOGdoUKFVCpVLRt2zZ9mYWFBWXKlHnunSq9Xs+0adOoWLEiVlZWWFhYYGVlxd9//8358+efuW/dunX5/vvvmTJlCocOHUq/8ySEOUgYESKXubm5ZWhbW1sDkJKSQmxsLIqi4Onp+dh+T1r2X9HR0Zw4cYKIiAisra2xtLTM8JOSkoKLi0u2XMe/Par7SW96+Pj4AGT69r+Xl1eGtoWFBW5ubty/f/+lz2Ntbc3//vc/fvrpJx4+fMjdu3dZu3Ytffv2Tf89/NuzflfwYtft6uqaoW1lZYWdnR02NjaPLU9NTX3qtQAMGzaMcePG0blzZzZu3Mjhw4c5evQo1apVS6/xaX755Rfee+89vvvuO+rXr4+rqys9e/YkOjr6mfsJkRPkbRoh8pAiRYqgUqm4c+fOY+sy8yVx8+ZNAObNm5feQfe/Spcu/XJFPkGRIkVQq9VERUU9tu727dsAFC1aNFPHio6OplixYultvV7P/fv3cXNzy5bzfPDBB3zxxRcsX76c1NRU9Ho9AwYMyFRt/5Wd1/0iVq9eTc+ePZk2bVqG5ffu3Xtu6CxatCjz589n/vz53Lhxgz///JNRo0YRExPD1q1bc6xmIZ5E7owI8Rz//ddwZte9CHt7e2rXrs2GDRvQarXpyxMTE9m0adNz93/0r26VSkXt2rWf+FOkSJGXqvFJ12xvb09gYCC///57huVGo5HVq1dTvHhxAgICMnX8H3/8MUN77dq16PV6mjRpki3n8fb2plu3bixatIglS5bQsWNHSpQokana/is7r/tFqFSqx+7obN68mcjIyCwdp0SJEnz00Ue0bNmS48ePZ2eJQmSK3BkR4jmqVKkCwIIFC3jvvfewtLSkXLlyODo6PnXdy5g8eTLt27endevWDB48GIPBwKxZs3BwcODBgwfP3Ld06dI0bdqUzz77jMTERAIDA1EUhaioKHbv3s17771HkyZNXqq+p13z9OnTadmyJU2bNmX48OFYWVmxaNEizp49y5o1azL9WvLvv/+OhYUFLVu25K+//mLcuHFUq1aNN954AyBbzjN48GACAwMBWLFixQt+EmRbPS+qQ4cOfP/995QvX56qVasSHh7OrFmzKF68+DP3i4uLo2nTprz99tuUL18eR0dHjh49mv4mlxC5zqzdZ4Uwo8y+TaMoijJ69GjFx8dHUavVCqDs3r37meue9TbN3bt3Mxz7SduuX79eqVKlimJlZaWUKFFC+eKLL5SPP/5YKVKkyHOvKy4uThk9erQSEBCg2NjYKEWKFFGqVaumDBo0SImNjc3KR/RUT/s89u3bpzRr1kyxt7dXbG1tlXr16ikbN27M1DEffT7h4eFKx44dFQcHB8XR0VF56623lDt37mTYNrPnedYbKH5+fkqFChWeWUtmfleZredpx3zvvfcUe3v7x2po3LixUqlSpWeeOzY2VunTp4/i4eGh2NnZKQ0bNlT27dunNG7cWGncuPFT901NTVUGDBigVK1aVXFyclJsbW2VcuXKKRMmTFCSkpKe+JkIkZNUiqIoZshAQogs0Ol0VK9enWLFirF9+3Zzl5MjJk6cyKRJk7h7926O9rMAOH36NNWqVePrr7/mww8/zNFzCSGeTx7TCJEH9enTh5YtW+Lt7U10dDRLlizh/PnzLFiwwNyl5WsRERFcv36dMWPG4O3tzfvvv2/ukoQQSBgRIk9KSEhg+PDh3L17F0tLS2rWrElwcDAtWrQwd2n52ueff86qVauoUKECv/76K3Z2duYuSQgByGMaIYQQQpiVvNorhBBCCLOSMCKEEEIIs5IwIoQQQgizyhcdWI1GI7dv38bR0TFHBxASQgghRPZRFIWEhAR8fHxQq59+/yNfhJHbt2/j6+tr7jKEEEII8QJu3rz5zJGB80UYcXR0BEwX4+TkZOZqhBBCCJEZ8fHx+Pr6pn+PP02+CCOPHs04OTlJGBFCCCHymed1sZAOrEIIIYQwKwkjQgghhDArCSNCCCGEMKt80WckswwGAzqdztxliEyytLREo9GYuwwhhBBmViDCiKIoREdH8/DhQ3OXIrLIxcUFLy8vGT9GCCEKsQIRRh4FEQ8PD+zs7OSLLR9QFIXk5GRiYmIA8Pb2NnNFQgghzCXfhxGDwZAeRNzc3MxdjsgCW1tbAGJiYvDw8JBHNkIIUUjl+w6sj/qI2NnZmbkS8SIe/d6kr48QQhRe+T6MPCKPZvIn+b0JIYQoMGFECCGEEPmThBEhhBBCmJWEESGEEEKYlYSRPC4wMJBjx44B8N5777F48WIzVySEEEJkLwkjedy4ceOYNm0ac+bMwcHBgQ8++MDcJQkhhChAlixezMMHD8xag4SRPK5Dhw5cuXKFbdu2sWDBAnOXI4QQogD59ddf2Tl6NCH16hN/4aLZ6pAwYmY3b97knXfeoUiRIhQpUoS3336b2NjY9PVHjhzh4cOHuLi4YGGR78eoE0IIkUfcvXuXKYMGMcrDgwpqNboDB8xWS4ENI0lJSU/9SU1NzfS2KSkpmdr2RVy+fJlatWpRunRpwsLC2LlzJxEREYwYMQKAyMhI+vbty+7du/n77785f/78i30YQgghxH8M+fhjRlhZY6/WYFOzJq7vv2e2WgpsGHFwcHjqz2uvvZZhWw8Pj6du27Zt2wzb+vn5PXG7FzFgwAA++OADJk+eTPny5alVqxYjR44kJCSElJQUXn/9db766itKlSrFyJEjmTJlygt/HkIIIcQjV69exTEkhFp2dig2NhSbOQOVGafkkPv+ZnL9+nV27drFwYMHmTNnTvpyg8GAr68vtra2hIWFpS9/6623eOutt8xRqhBCiALGW6tlsLsH6PX4jPsMq+LFzVpPgQ0jiYmJT1333wnZHs0c+yRqdcabR9euXXupuh45deoUrq6uHD58+LF1jyaQE0IIIbKbUavl9shPQa/HoVkznLt2NXdJBTeM2Nvbm33bZ7G0tCQhIQFvb+9sO6YQQgjxLDt37qTIps3YXbyIxtUV78mT8sQcYQW2z0heFxgYiJOTE++++y4nT57k8uXLbN26lcGDB5u7NCGEEAXQ/fv3mfH++9hs2QKA9+RJWBQtauaqTCSMmImrqyvBwcHExsbSuHFjatasyZgxY/Dz8zN3aUIIIQqgYR98wAgra9QqFQ6dOuHYokX6ulR96jP2zHkF9jFNflC3bl12795t7jKEEEIUcL/++iul9+7D18UFY9Gi+Iwfl75u7cW1rDq3ii+bfYmfs59Z6pM7I0IIIUQBdufOHX4aPJhuLi4ogN+cOWj+GZLiaPRRph+ezrX4a+y+ab5/HEsYEUIIIQooRVEY0acPI+xML0oU6d0L+8C6ANxMuMmw0GHoFT1tS7Xl/Urvm61OCSNCCCFEAbVrxw6CTp2miIUFxlKl8BoyBIAkXRIfh3zMw7SHVHKrxOQGk836Vo30GRFCCCEKqBqRtylmb4/BQkPZr79CZWWFUTEyat8oLj+8jLutOwuaLsDGwsasdcqdESGEEKIASr1wgbtz5wJQ7LNxWPv7A/DliS8JvRmKldqKBU0X4GnvacYqTeTOiBBCCFHA7N62jeLzF6DodDg0a4ZL9zcA2HxlM9+d+Q6ASa9Moop7FXOWmU7ujAghhBAFyLVr19jTpw/6q1ehSBG8p3yOSqXi7L2zTDg4AYDelXvTwb+DmSv9fxJGhBBCiALCYDAw66236O7gCECx6dOxcHUlJjmGj0M+Js2QRuPijfm4xsdmrjQjCSNCCCFEAfHV1Km8efceAOpXO+HUpDGp+lQGhwzmbspdyriU4YtGX6BRa55zpNwlYSQPadKkCUP+ee1KCCGEyIpTJ09is/Q7ilpYkFS0KGUnT0ZRFCYcnMDZ+2dxtnZmYbOFOFg5mLvUx0gYEdlq3bp1VKxYEWtraypWrMj69evNXZIQQhR4qamp/PD22wTZ26NTqai07DvU1tYsO7uM4KvBWKgsmNt4Lr6OvuYu9YkkjBQyOp0ux44dFhZG9+7deffddzl16hTvvvsub7zxBocPH86xcwohhICvRo3iXb0BAJdBH2Fbrhw7r+9kwfEFAIyqO4q63nXNWeIzSRgxk6SkJHr27ImDgwPe3t7MmTPnsW20Wi0jR46kWLFi2NvbExgYSGhoaIZtli5diq+vL3Z2dnTp0oW5c+fi4uKSvn7ixIlUr16d5cuX4+/vj7W1NYqiEBcXR//+/fHw8MDJyYlmzZpx6tSpDMfeuHEjtWrVwsbGBn9/fyZNmoRer3/qNc2fP5+WLVsyevRoypcvz+jRo2nevDnz589/mY9KCCHEMxjT0ng1IgIbtZrkcgH4DhjAufvnGLN/DABvlX+L7uW7m7nKZytw44woikKKzmCWc9taajI9nO6IESPYvXs369evx8vLizFjxhAeHk716tXTt+nVqxfXrl3j559/xsfHh/Xr19OmTRvOnDlD2bJlOXDgAAMGDGDGjBl06tSJnTt3Mm7cuMfOdfnyZdauXcu6devQaEydltq3b4+rqyvBwcE4OzvzzTff0Lx5cy5duoSrqyvbtm2jR48eLFy4kEaNGhEREUH//v0BmDBhwhOvKSwsjKFDh2ZY1rp1awkjQgiRg2JmzkL/92U0rq5UXbqUmJS7DNo1iBR9Cq/4vMLIOiPNXeJzZSmMTJ8+nd9//50LFy5ga2tLgwYNmDFjBuXKlXvqPqGhoTRt2vSx5efPn6d8+fJZr/g5UnQGKo7flu3HzYxzk1tjZ/X8jzQxMZFly5axcuVKWrZsCcAPP/xA8eLF07eJiIhgzZo13Lp1Cx8fHwCGDx/O1q1bWbFiBdOmTePLL7+kbdu2DB8+HICAgAAOHjzIpk2bMpxPq9WyatUq3N3dAQgJCeHMmTPExMRgbW0NwOzZs9mwYQO//fYb/fv3Z+rUqYwaNYr33nsPAH9/fz7//HNGjhz51DASHR2Np2fGkfw8PT2Jjo5+7mcihBAiaxRFIWz+fIr8+CMAPl9MR1fEgUFb3ycmJYbSzqWZ1XgWFuq8f98hSxXu2bOHgQMHUqdOHfR6PWPHjqVVq1acO3cOe3v7Z+578eJFnJyc0tuPvhgLo4iICLRaLfXr109f5urqmiHUHT9+HEVRCAgIyLBvWloabm5ugOkz7dKlS4b1devWfSyMlCxZMsPnHR4eTmJiYvpxHklJSSEiIiJ9m6NHjzJ16tT09QaDgdTUVJKTk7Gzs3vitf33zpCiKGadfEkIIQqqtYsWUXLRYtBocO3dC7tGDfkk9BPOPzhPEesifNX8KxytHM1dZqZkKYxs3bo1Q3vFihV4eHgQHh5OUFDQM/f18PDI0Jchp9haajg3uXWOn+dp584MRVGeu43RaESj0RAeHp7+aOURBweH9OM86cv/v/4bFI1GI97e3o/1PwHSf0dGo5FJkybRtWvXx7axsXnyhEpeXl6P3QWJiYl57G6JEEKIl3PtyhWUOXNwtrLmgZsb5YcMYeGJL9l5YyeWaksWNFtAccfizz9QHvFS927i4uIA07/qn6dGjRqkpqZSsWJFPvvssyc+unkkLS2NtLS09HZ8fHyma1KpVJl6VGJOZcqUwdLSkkOHDlGiRAkAYmNjuXTpEo0bNwZMn5fBYCAmJoZGjRo98Tjly5fnyJEjGZYdO3bsueevWbMm0dHRWFhY4Ofn99RtLl68SJkyZTJ9XfXr12fHjh0Z+o1s376dBg0aZPoYQgghns1gMPBbt260t7ImWaWi5upV/Hljy//POdNgEjU8api5yqx54W9tRVEYNmwYDRs2pHLlyk/dztvbm2+//ZZatWqRlpbGqlWraN68OaGhoU+9mzJ9+nQmTZr0oqXleQ4ODvTp04cRI0bg5uaGp6cnY8eORa3+/5ebAgICeOedd+jZsydz5syhRo0a3Lt3j5CQEKpUqUK7du0YNGgQQUFBzJ07l44dOxISEsKWLVue+1ikRYsW1K9fn86dO6f3+bl9+zbBwcF07tyZ2rVrM378eDp06ICvry/dunVDrVZz+vRpzpw5w5QpU5543MGDBxMUFMSMGTN49dVX+eOPP9i5cyf79+/P1s9PCCEKs2VDh9I2MQlUKpxGjuSc3QMmbp8IQP+q/elYuqN5C3wRygv68MMPlZIlSyo3b97M8r4dOnRQOnbs+NT1qampSlxcXPrPzZs3FUCJi4t7bNuUlBTl3LlzSkpKSpbrMKeEhASlR48eip2dneLp6anMnDlTady4sTJ48OD0bbRarTJ+/HjFz89PsbS0VLy8vJQuXboop0+fTt/m22+/VYoVK6bY2toqnTt3VqZMmaJ4eXmlr58wYYJSrVq1x84fHx+vDBo0SPHx8VEsLS0VX19f5Z133lFu3LiRvs3WrVuVBg0aKLa2toqTk5NSt25d5dtvv33mdf36669KuXLlFEtLS6V8+fLKunXrnrl9fv39CSGEORzatk0JLV1GOVeuvBL6xhvKjbgbSsM1DZXK31dWhu0ephiMBnOXmEFcXNxTv7//TaUomejA8B+DBg1iw4YN7N27l1KlSmU5AE2dOpXVq1dz/vz5TG0fHx+Ps7MzcXFxGTrBgmnUuatXr1KqVKmn9mUoTPr168eFCxfYt2+fuUvJFPn9CSFE5ui0Wn6uUoXaKjV3bWyoErqV90L7cTXuKpXdKrO8zXJsLWzNXWYGz/r+/rcsPaZRFIVBgwaxfv16QkNDXyiIAJw4cQJvb+8X2ldkNHv2bFq2bIm9vT1btmzhhx9+YNGiReYuSwghRDaL//EnaqvUaIFyS7/h0yPjuBp3FU87TxY2W5jngkhWZCmMDBw4kJ9++ok//vgDR0fH9DcnnJ2dsbU1fQijR48mMjKSlStXAqZROf38/KhUqRJarZbVq1ezbt061q1bl82XUjgdOXKEmTNnkpCQgL+/PwsXLqRv377mLksIIUQ2Sjlzhpi5cwHwnTiBr/XbCIsKw9bClq+af4W7Xf4eLiNLYWTx4sWAaXbZf1uxYgXvv/8+AFFRUdy4cSN9nVarZfjw4URGRmJra0ulSpXYvHkz7dq1e7nKBQBr1641dwlCCCFy0N+nT6P/+GPQ6XBs3ZotVfWsPboWFSq+aPQF5V2zfwDR3PZCfUZym/QZKbjk9yeEEE+XmprKT7VqU99gQF+kCA9XjOejI59iVIx8UusT3q/8vrlLfKbM9hmRifKEEEKIPGp1j3dNQURRSPy0P8PDJ2BUjHQt25X3Kr1n7vKyTd4eHUwIIYQopEKWLqXO6dOgVnO7fXNm6laRrE8m0CuQzwI/K1BTbcidESGEECKPibp8GWXmLKzUaiLc3fi2cRQxyabJ7+Y2nYulxtLcJWYrCSNCCCFEHmIwGNjX7Q18NBruANuGBXDp4d+42bjxdYuvcbJ6et+L/ErCiBBCCJGH7PhoEFVSUtAqCvuH1CM0/ii2FrZ83fxrijkUM3d5OULCSB7SpEkThgwZYu4yhBBCmEny8eOU3LsXgAOtA/jF9lj6K7yVilYyc3U5R8KIyDZ//fUXr732Gn5+fqhUKubPn2/ukoQQIt/QP3hA5NBhYDCQ1KQmi2teAeDTup/SrEQzM1eXsySMFDI6nS7Hjp2cnIy/vz9ffPEFXl5eOXYeIYQoaAx6PYffegv9nTsYS/gwuPZ5UKnoUaEH71R4x9zl5TgJI2aSlJREz549cXBwwNvbmzlz5jy2jVarZeTIkRQrVgx7e3sCAwMJDQ3NsM3SpUvx9fXFzs6OLl26MHfuXFxcXNLXT5w4kerVq7N8+XL8/f2xtrZGURTi4uLo378/Hh4eODk50axZM06dOpXh2Bs3bqRWrVrY2Njg7+/PpEmT0Ov1T72mOnXqMGvWLN58802sra1f6vMRQojC5M93e+J6/QZaFUxun0y8pY6mvk0ZXnu4uUvLFQVvnBFFAV2yec5taQeZfO97xIgR7N69m/Xr1+Pl5cWYMWMIDw+nevXq6dv06tWLa9eu8fPPP+Pj48P69etp06YNZ86coWzZshw4cIABAwYwY8YMOnXqxM6dOxk3btxj57p8+TJr165l3bp1aDQaANq3b4+rqyvBwcE4OzvzzTff0Lx5cy5duoSrqyvbtm2jR48eLFy4kEaNGhEREUH//v0BmDBhwst/VkIIIQA4tHQpAcePg0rFj+0cOOeSSCW3SnzR6As0ao25y8sVBS+M6JJhmo95zj3mNljZP3ezxMREli1bxsqVK2nZsiUAP/zwA8WLF0/fJiIigjVr1nDr1i18fEzXM3z4cLZu3cqKFSuYNm0aX375JW3btmX4cFNyDggI4ODBg2zatCnD+bRaLatWrcLd3TSRUkhICGfOnCEmJib9Dsbs2bPZsGEDv/32G/3792fq1KmMGjWK994zjfDn7+/P559/zsiRIyWMCCFENrlz4QLGWbNRq9XsLW/Jlqqp+Nj78FXzr7CztDN3ebmm4IWRfCAiIgKtVkv9+vXTl7m6ulKuXLn09vHjx1EUhYCAgAz7pqWl4ebmBsDFixfp0qVLhvV169Z9LIyULFkyPYgAhIeHk5iYmH6cR1JSUoiIiEjf5ujRo0ydOjV9vcFgIDU1leTkZOzsCs9/JEIIkRMMaWkcffMtSqvVXHOCbzoYcbR0YlGLRRS1LWru8nJVwQsjlnamOxTmOncmZGZuQqPRiEajITw8PP3RyiMODg7px/nvcMBPOra9fca7NUajEW9v78f6nwDp/U2MRiOTJk2ia9euj20jE9oJIcTL2/L225ROTSVJrTDvTQsUK0vmNZ1HaZfS5i4t1xW8MKJSZepRiTmVKVMGS0tLDh06RIkSJQCIjY3l0qVLNG7cGIAaNWpgMBiIiYmhUaNGTzxO+fLlOXLkSIZlx44de+75a9asSXR0NBYWFvj5+T11m4sXL1KmTJksXJkQQojMiP71V0r/dQ6ARZ01RLmpmNJgIoHegWauzDwKXhjJBxwcHOjTpw8jRozAzc0NT09Pxo4di1r9/y83BQQE8M4779CzZ0/mzJlDjRo1uHfvHiEhIVSpUoV27doxaNAggoKCmDt3Lh07diQkJIQtW7Y8d/KkFi1aUL9+fTp37syMGTMoV64ct2/fJjg4mM6dO1O7dm3Gjx9Phw4d8PX1pVu3bqjVak6fPs2ZM2eYMmXKE4+r1Wo5d+5c+v+PjIzk5MmTODg4SKgRQoh/pF68xMNp0wFYX1/F0XJqBtUYxKtlXjVzZeYjr/aayaxZswgKCqJTp060aNGChg0bUqtWrQzbrFixgp49e/LJJ59Qrlw5OnXqxOHDh/H19QXglVdeYcmSJcydO5dq1aqxdetWhg4d+tzHKCqViuDgYIKCgujduzcBAQG8+eabXLt2DU9PTwBat27Npk2b2LFjB3Xq1KFevXrMnTuXkiVLPvW4t2/fpkaNGtSoUYOoqChmz55NjRo16Nu370t+WkIIUTAY4uO5NWgQSkoKZ0qp+TlITbeAbvSr0s/cpZmVSslMBwYzi4+Px9nZmbi4OJycMk4QlJqaytWrVylVqpT0ZQD69evHhQsX2Ldvn7lLyRT5/QkhCgvFaGR3y1Z4R0Zy31nNyPdV1Apoyrym87BQF8wHFc/6/v63gnn1hcjs2bNp2bIl9vb2bNmyhR9++IFFixaZuywhhBD/se/jj/GOjESrUZjZRUWpEtWY2XhmgQ0iWSGfQD535MgRZs6cSUJCAv7+/ixcuFAeiwghRB5zcc0a3HbsBJWK79poMASU5MvmX2JrYWvu0vIECSP53Nq1a81dghBCiGeIu3iR+EmTcVCp2FFDxem6RVndYgmuNq7mLs0kMQaOLYegkaA2T1dSCSNCCCFEDjEkJ3PizbfwBC75wE+tbPmu+df4OvmauzQwGuH497BjIqTFgYMn1O5lllIkjAghhBA5QFEU9r79Nl4pKcTZwfwulsxsOY/KRSubuzSIPgubhsKtf8aq8q4OPtXNVo6EESGEECIHxP74E14XLmJQwbzOaga1mUhQ8SDzFqVNgtAvIOxrUAxg5QjNPoO6/cCMk/JJGBFCCCGyWdKRI0RPn4YK+LGpmsadBtK17OPTa+Sqi1sheATE3TC1K3SCtjPAyUyTy/6LhBEhhBAiGyVfu8b1QR+hMhg5UEGF9Tuv80G1D8xXUFwkbP0Uzm80tZ1LQPvZENDafDX9h4QRIYQQIpsYk5M58sZreMYnc8ULzvQPYk79cc+dpiNnijHAkaUQ8jloE0GlgQYfQeNP89wcbhJG8pAmTZpQvXp15s+fb+5ShBBCZJGiKOx5+w284pN5aAdrupdgaUszja56+wRsHAJRJ03t4nWgw3zwygOdZ59A5qYR2Wbp0qU0atSIIkWKUKRIEVq0aPHYrMJCCFFQHRk7Eq8LEejVsKSjI1/3Xpv7g5qlxsOWT2FpM1MQsXGGDvOg9/Y8G0RAwkiho9PpcuzYoaGhvPXWW+zevZuwsDBKlChBq1atiIyMzLFzCiFEXhDx6884/b4JgBVNLfhi+B84WzvnXgGKAuf+gK/rwuEloBihSjf46BjU7m22wcwyK29XV4AlJSXRs2dPHBwc8Pb2Zs6cOY9to9VqGTlyJMWKFcPe3p7AwEBCQ0MzbLN06VJ8fX2xs7OjS5cuzJ07FxcXl/T1EydOpHr16ixfvhx/f3+sra1RFIW4uDj69++Ph4cHTk5ONGvWjFOnTmU49saNG6lVqxY2Njb4+/szadIk9Hr9U6/pxx9/5MMPP6R69eqUL1+epUuXYjQa2bVr10t9VkIIkZfFnj1N3KRJAGytqqLXmJ/wdvTOxQKuw0/dYW1PSIgCV394dz289h04eOReHS+hwPUZURSFFH2KWc5ta2Gb6U5KI0aMYPfu3axfvx4vLy/GjBlDeHg41atXT9+mV69eXLt2jZ9//hkfHx/Wr19PmzZtOHPmDGXLluXAgQMMGDCAGTNm0KlTJ3bu3Mm4ceMeO9fly5dZu3Yt69atQ6MxvUfevn17XF1dCQ4OxtnZmW+++YbmzZtz6dIlXF1d2bZtGz169GDhwoU0atSIiIgI+vfvD8CECRMydY3JycnodDpcXfPIkMdCCJHNdLEPONP7bdz18FdxKDNsGlWKVcmdkxt0pvFC9swAXTKoLaHhUGg0DCzz15w3KkVRFHMX8TzPmoL4v1PQJ+uSCfwp0Cx1Hn77MHaWds/dLjExETc3N1auXEn37t0BePDgAcWLF6d///7Mnz+fiIgIypYty61bt/Dx+f93wFu0aEHdunWZNm0ab775JomJiWzatCl9fY8ePdi0aRMPHz4ETHdGpk2bRmRkJO7u7gCEhITQpUsXYmJisLa2Tt+3TJkyjBw5kv79+xMUFETbtm0ZPXp0+vrVq1czcuRIbt++nanPY+DAgWzbto2zZ89iY2PzxG3++/sTQoj8wqjTse+t1nicjSLGCc581IOPeo7NnZPfPGLqoBrzl6ldsiF0mAvu5XLn/Jn0rO/vfytwd0byg4iICLRaLfXr109f5urqSrly//+H6Pjx4yiKQkBAQIZ909LScHNzA+DixYt06dIlw/q6detmCCcAJUuWTA8iAOHh4emB6N9SUlKIiIhI3+bo0aNMnTo1fb3BYCA1NZXk5GTs7J4dumbOnMmaNWsIDQ2VkCGEKJBCRvei2NkoUi0hefLHfNQmF8YSSYmFnRMh/HtT29YVWk2B6m+DOV4fziYFLozYWthy+O3DZjt3ZmTmZpTRaESj0RAeHp7+aOURBweH9OP897HQk45tb5/xfXKj0Yi3t/dj/U+A9P4mRqORSZMm0bXr4yMGPi9czJ49m2nTprFz506qVq36zG2FECI/+mPOUAI2hQMQObgLHXI6iCgKnPkNto2GpLumZdV7QMvJYO/27H3zgQIXRlQqVaYelZhTmTJlsLS05NChQ5QoUQKA2NhYLl26ROPGjQGoUaMGBoOBmJgYGjVq9MTjlC9f/rFXZ48dO/bc89esWZPo6GgsLCzw8/N76jYXL16kTJkyWbgymDVrFlOmTGHbtm3Url07S/sKIUR+EPLnIkot3wrAkSA/3us7LWdPeD8CNg+DK6GmdtFyptd1/V7J2fPmogIXRvIDBwcH+vTpw4gRI3Bzc8PT05OxY8ei/terVwEBAbzzzjv07NmTOXPmUKNGDe7du0dISAhVqlShXbt2DBo0iKCgIObOnUvHjh0JCQlhy5Ytz+1E26JFC+rXr0/nzp2ZMWMG5cqV4/bt2wQHB9O5c2dq167N+PHj6dChA76+vnTr1g21Ws3p06c5c+YMU6ZMeeJxZ86cybhx4/jpp5/w8/MjOjo6/Xof3c0RQoj87NiJYOwmfomlAcKKGmk88sucO5k+DQ4sgL2zwZAGFjYQNBwaDAYLq5w7rxnIq71mMmvWLIKCgujUqRMtWrSgYcOG1KpVK8M2K1asoGfPnnzyySeUK1eOTp06cfjwYXx9fQF45ZVXWLJkCXPnzqVatWps3bqVoUOHPvcxikqlIjg4mKCgIHr37k1AQABvvvkm165dw9PTE4DWrVuzadMmduzYQZ06dahXrx5z586lZMmSTz3uokWL0Gq1vP7663h7e6f/zJ49+yU/LSGEML+/rh8h9qPhOCfDZScj/uMXUDqLd48z7eo+WPwK7J5qCiKlm8GHYRA0osAFESiAb9MUdv369ePChQvs27fP3KVkivz+hBD5QcT9vzn2bheqXjFwz0bh8vv96DXkk+w/UdJ92P4ZnPrJ1Lb3gDbTofJr+bKDqrxNU0jMnj2bli1bYm9vz5YtW/jhhx9YtGiRucsSQogC43bibbYO7U6zKwZSNQq7awcyPruDiKLAidWwY5zpjRlUppFTm48HW5fsPVceJGEknzty5AgzZ84kISEBf39/Fi5cSN++fc1dlhBCFAj3Uu6xYtIbdD1iGkxztUdRZixZlr0nibkAm4bCjYOmtmdl06R2vnWy9zx5mISRfG7t2rXmLkEIIQqkuLQ4Zn31Du9uug/AX/VqMG7+IiwssumrU5cCe2fBgYVg1IGlHTQZDfU+AI1l9pwjn5AwIoQQQvxHsi6ZCT/25t3VN9AoYNG+Ja/NXpDpKT+e6/JO2PwJxF4ztQPaQruZ4FIie46fz0gYEUIIIf5Fa9AyZuNAOn97Drs0MFYtT+nps7MniCTcMQ1cdnadqe3oYwoh5Tvkyw6q2UXCiBBCCPEPg9HAmJARNF50CM+HcEvRkdShC5WsXvJ1WqMRwpfDzsmQFgcqNQQOgKZjwNoxW2rPzySMCCGEEJim05gcNoky3+yg/C1IwMihJs0Z17Pnyx04+oxpUrvIf0bI9qlh6qDqU/0lKy44JIwIIYQo9BRFYfax2WhW/Ebjswp6FH71LckXLzNUQloihE6HQ4tBMYCVIzQfB3X6glrz/P0LEQkjQgghCr1vT3/LjZ+/58P9pnFAV1pbM3HD+scmKs20i1sgeATE3TS1K74Kbb4AJ59sqrhgkTCShzRp0oTq1aszf/58c5cihBCFxqpzq9j7+0JGbTECsEanZdjukMdmPM+UuEjYMhIubDK1XUpAuzkQ0CobKy54ZG4akW1+//13ateujYuLC/b29lSvXp1Vq1aZuywhhHiqXy/9yi+bZjBsvRELI+w2GHj999/x9vbO2oEMeghbBF/XNQURtQW8MgQ+PCxBJBPkzkgho9PpsLTMmcF0XF1dGTt2LOXLl8fKyopNmzbRq1cvPDw8aN26dY6cUwghXtTGiI18vW0yU341YKcF2zp16LtkMVZZvSMSGW7qoBp92tT2DYQO88CzUrbXXFDJnREzSUpKomfPnjg4OODt7c2cOXMe20ar1TJy5EiKFSuGvb09gYGBhIaGZthm6dKl+Pr6YmdnR5cuXZg7dy4uLi7p6ydOnEj16tVZvnw5/v7+WFtboygKcXFx9O/fHw8PD5ycnGjWrBmnTp3KcOyNGzdSq1YtbGxs8Pf3Z9KkSej1+qdeU5MmTejSpQsVKlSgdOnSDB48mKpVq7J///6X+qyEECK7bbu2jam7xjJqrR63BLAq7Y/vV19mLYikxpn6hSxtbgoiNs7QcQH02ipBJIsK3J0RRVFQUlLMcm6VrW2mB8UZMWIEu3fvZv369Xh5eTFmzBjCw8OpXr16+ja9evXi2rVr/Pzzz/j4+LB+/XratGnDmTNnKFu2LAcOHGDAgAHMmDGDTp06sXPnTsaNG/fYuS5fvszatWtZt25demes9u3b4+rqSnBwMM7OznzzzTc0b96cS5cu4erqyrZt2+jRowcLFy6kUaNGRERE0L9/fwAmTJjw3OtTFIWQkBAuXrzIjBkzMvWZCCFEbthzcw9jd3/KiN/1lLwL9wwG3EaMQOPsnLkDKAqc2wBbRkFitGlZ1e7Qaio4uOdY3QWZSlEUJbMbT58+nd9//50LFy5ga2tLgwYNmDFjBuXKlXvmfnv27GHYsGH89ddf+Pj4MHLkSAYMGJDpIp81BfF/p6A3JidzsWatTB87O5U7Ho7azu652yUmJuLm5sbKlSvp3r07AA8ePKB48eL079+f+fPnExERQdmyZbl16xY+Pv/f+7pFixbUrVuXadOm8eabb5KYmMimTZvS1/fo0YNNmzbx8OFDwHRnZNq0aURGRuLubvqPJCQkhC5duhATE4O1tXX6vmXKlGHkyJH079+foKAg2rZty+jRo9PXr169mpEjR3L79u2nXltcXBzFihUjLS0NjUbDokWL6N2791O3/+/vTwghclLY7TA+2jmQPhtTaXpGIdlo5IeAssz/80/U6kw8LIi9BpuHw+UdprZraWg/B0o3zdG686tnfX//W5bujOzZs4eBAwdSp04d9Ho9Y8eOpVWrVpw7d+6pvY6vXr1Ku3bt6NevH6tXr+bAgQN8+OGHuLu789prr2XtqgqIiIgItFot9evXT1/m6uqaIdQdP34cRVEICAjIsG9aWhpubm4AXLx4kS5dumRYX7du3QzhBKBkyZLpQQQgPDw8PRD9W0pKChEREenbHD16lKlTp6avNxgMpKamkpycjN1TQpejoyMnT54kMTGRXbt2MWzYMPz9/WnSpMnzPhYhhMhR4XfCGbx7MJ32ptH0jIJBUfjOxYV5v/32/CBi0MHBL2HPTNCngMYKGg6FhsPAUv4h9bKyFEa2bt2aob1ixQo8PDwIDw8nKCjoifssWbKEEiVKpL+uWqFCBY4dO8bs2bNzJIyobG0pdzw824+b2XNnRmZuRhmNRjQaDeHh4Y+95+7g4JB+nP8+FnrSsf8bFI1GI97e3o/1PwHS+5sYjUYmTZpE165dH9vmWXcw1Go1ZcqUAaB69eqcP3+e6dOnSxgRQpjVmbtnGLhrIHWPJ/HGftMrvEvVKqZu3fL8u7I3Dpk6qN49b2r7NTJ1UC1aNmeLLkReqs9IXFwcYPpX/dOEhYXRqlXG15pat27NsmXLnvpmR1paGmlpaent+Pj4TNekUqlQZeJRiTmVKVMGS0tLDh06RIkSphkaY2NjuXTpEo0bNwagRo0aGAwGYmJiaNSo0ROPU758eY4cOZJh2bFjx557/po1axIdHY2FhQV+fn5P3ebixYvpweJFKYqS4XcphBC57eKDi/xv5/8ocyGB/wWbgshPaakMCw195vcXyQ9g50Q4/oOpbedm6hdS7c1CPaldTnjhMKIoCsOGDaNhw4ZUrlz5qdtFR0fj6emZYZmnpyd6vZ579+498V3u6dOnM2nSpBctLc9zcHCgT58+jBgxAjc3Nzw9PRk7dmyG24QBAQG888479OzZkzlz5lCjRg3u3btHSEgIVapUoV27dgwaNIigoCDmzp1Lx44dCQkJYcuWLc/tRNuiRQvq169P586d0/v83L59m+DgYDp37kzt2rUZP348HTp0wNfXl27duqFWqzl9+jRnzpxhypQpTzzu9OnTqV27NqVLl0ar1RIcHMzKlStZvHhxtn5+QgiRWVceXqH/jv54Xo1nxHqwUGBrcjKvbVhPyZIln7yTosDptbBtDCTfMy2r8S60nAx2zwgv4oW98Ku9H330EadPn2bNmjXP3fZpjxKe9qU5evRo4uLi0n9u3rz5omXmWbNmzSIoKIhOnTrRokULGjZsSK1aGTverlixgp49e/LJJ59Qrlw5OnXqxOHDh/H19QXglVdeYcmSJcydO5dq1aqxdetWhg4d+txbjiqViuDgYIKCgujduzcBAQG8+eabXLt2LT04tm7dmk2bNrFjxw7q1KlDvXr1mDt37tP/48X0uvKHH35IpUqVaNCgAb/99hurV6+mb9++L/lpCSFE1t2Mv0nf7X2xjrzPZ7+Blc6IbYP6NFv/O9Vr1nzyTvcuw8pXYX1/UxBxLw+9tsCrX0kQyUFZepvmkUGDBrFhwwb27t1LqVKlnrltUFAQNWrUYMGCBenL1q9fzxtvvEFycnKmBuDKyts0hV2/fv24cOEC+/btM3cpmSK/PyFETriVcIte23qRFh3F9FXgGmfApkoVSn6/AvWTXrjQp8H+ebBvDhi0YGEDjUdC/UFgYZX7F1BA5MjbNIqiMGjQINavX09oaOhzgwhA/fr12bhxY4Zl27dvp3bt2jk2EmhhMnv2bFq2bIm9vT1btmzhhx9+YNHLzDIphBD5XGRiJH229SH+fhRTf1HhGqcn1s6O2osXPTmIXN0Lm4bC/cumdpkW0G42uD7/O05kjyyFkYEDB/LTTz/xxx9/4OjoSHS0abAXZ2dnbP95k2T06NFERkaycuVKAAYMGMBXX33FsGHD6NevH2FhYSxbtixTj3fE8x05coSZM2eSkJCAv78/CxculMciQohCKyoxij7b+nD3YSST1mkodldLjF5HcLWq1P/PcAYk3YNtY+H0z6a2g6dpZt1KXaSDai7LUhh51BHxv69prlixgvfffx+AqKgobty4kb6uVKlSBAcHM3ToUL7++mt8fHxYuHBhoR1jJLutXbvW3CUIIUSeEJ0UTe9tvYmKv8XojZaUuZFKvMHAuooVmffdd//fT9FohBOrYMd4SH0IqKBOX2g+zjSku8h1WX5M8zzff//9Y8saN27M8ePHs3IqIYQQItPuJN2hz7Y+3Eq4yZAd1lS7mEya0cgKLy8W/Prr/4/XFHPe9EjmRpip7VnFNJ9McfOM3C1MCszcNC/QD1fkAfJ7E0K8rLvJd+m7vS83Em7Q+6AdDY4nYFAUltjbMSt4s2naC20y7J0FBxeCUQ+W9tB0DAQOAE2B+SrMt/L9b+BRJ9jk5OT0fisi/0hOTgaQzsxCiBdyL+Uefbb34Vr8Nd4440CbvQ8B+EYFn2/fjqOjI/y9EzYPg4fXTTuVaw9tZ4CLr/kKFxnk+zCi0WhwcXEhJiYGADs7u0zPnCvMR1EUkpOTiYmJwcXF5bEh74UQ4nnup9yn77a+XI27SvvLTry+ORaAey1bMmLEcNxtDPDr+/DXetMOTsWg7Uyo0MF8RYsnyvdhBMDLywsgPZCI/MPFxSX99yeEEJn1IPUBfbf3JSIugubXnei57iEoCkXeeYfyY0ahCl8BP06GtHhQqSHwA2g6GqwdzV26eIICEUZUKhXe3t54eHig0+nMXY7IJEtLS7kjIoTIsoepD+m3vR+XH17mlSgneq+JRaUoWLRogWfvDqiWt4LIfyZM9akJHeeDdzWz1iyerUCEkUc0Go18uQkhRAH2MPUh/Xf051LsJWrfc+KDVQ+xVBT2JCfSutJ9VN81A8UA1k7QfDzU7g1q+V7I6wpUGBFCCFFwxabG0m97Py7GXqTKQyc+/j4eK4ORv0nm3b4W2N/ZbNqwUhdoPR2cHp+IVeRNEkaEEELkefdT7tNvRz/+jv2b8knOfLIiARudnhS7VDq0i0NtVMClJLSfC2VbmLtckUUSRoQQQuRp91Lu0XebqbNqWa0rI5clYJeqxdJZS0DzWNRWGmjwMQSNACs7c5crXoCEESGEEHnW3eS79Nneh6txV/E3ujH1JwMkpWDlqKdk0wdoytSDDvPAo4K5SxUvQcKIEEKIPOlO0h36bu/LtfhrlFIVZeaqRIxRiVjY6fFsmojFGwugeg9Qq81dqnhJEkaEEELkOdFJ0fTZ1ocbCTfww4lZ30VhjFGhsTFQckB9rN6eAw7u5i5TZBMJI0IIIfKUqMQoem/rza3EW/jpLJizKhpDjBUqK4UScyZg1fwdc5cospnc2xJCCJFnRCZG0mvr+6Ygkqpn7uo4DHes0KmMfO9fFutmb5u7RJED5M6IEEKIPOFmwk36bO5BVNoDSqXomLNWiz7amhTFyArfEsz99XeZe6yAkjAihBDC7G7GnKH31l5EK2mUTtEx6zcD+tvWpBiNLPX2Yt7GjTK7dwEmYUQIIYT5KApXDn9F33NLuKtRUyZFx9TNTuhvJZBqNLLcy5O5W7diY2Nj7kpFDpIwIoQQwjzu/c2FTQP5n/EWDzQaAnQw63hN0v4+gdZoZJl7UWZu3Yqtra25KxU5TDqwCiGEyF26VNg9jdPLGtPbGMkDjYZKFq7MOd+MtL0nwNKCi51fZeaOHdjZyYiqhYHcGRFCCJF7roTCpmEcS77FQE93ktVqariUZ8RWN1J2bwcLC4rPm0eFFjK/TGEiYUQIIUTOS7wL28fC6V84YGvDEC8PUlUqAj3r8tFGKyx2h2IEvKZPw1GCSKEjj2mEEELkHKMRwr+Hr2rD6V8IsbNlkJcnqSoVQT6NGLTRGutdoRgVhe8c7LFq0sTcFQszkDsjQgghcsadc7BpKNw8BEBwsfKMsU7FoBhp6duCXr+mmu6IKAorHOyZFBKCo6OjmYsW5iBhRAghRPbSJsOeGRD2FRj1YGnP+lqvMeHOHhRFoZNfB7r/eB+LvfswKArf2dkyKSQEJycnc1cuzETCiBBCiOxzaTsEfwIPb5ja5TvwU7lXmH56MQBvlHmdTstvYHngIAZFYam9HZNCQnB2djZj0cLcJIwIIYR4efFRsPVTOPeHqe1UHNrNYpkuivnH5wPwXrkevPXbXeIPHESvKCxzcuLzXTvljoiQDqxCCCFegtEAh7+Fr+qYgohKA/U/QvnwEAuS/04PIgMq9ePNtTHEb9oMFhYYhgxmauhuCSICkDsjQgghXtTtk7BpCNw+YWoXqw0d52PwqMjUw1P59dKvAAytOohqM3aTcPIkWFpSfN5ceX1XZCBhRAghRNakJcDuaXB4CShGsHaGFuOhVi90ipEx+0ax9dpWVKgYX3s0JSf8jt3Zs+gUBZtRoySIiMdIGBFCCJE5igIXNsGWTyE+0rSs8mvQejo4epKiT2Fo6FAORB7AQm3B9MDPcf10OQ7nz6M1GvmllB8Tu71u3msQeZKEESGEEM/38AYEj4RLW0ztIn7Qfg6UMd3liEuL46NdH3Hy7klsLWyZV+8LLD6ei2NEBGlGI+vKlmXyHxuwsJCvHfE4+VMhhBDi6Qw6OLQYQqeDLhnUlvDKYAgaDpam2XTvpdzjfzv+x6XYSzhaObKo3mzS+k/E6eZNko1GNlasyMR1v6HRaMx8MSKvkjAihBDiyW4eNXVQvXPW1C7RADrMA4/y6ZvcSrhF/x39uZlwEzcbN5YEzial72icbt0iwWAguGYNxq9Zg1otL2+Kp5MwIoQQIqOUh7BrEhxbAShgWwRafg7V34F/hYrLsZfpv6M/d1PuUsyhGN/UmIFh0DiUW7dIVKnY3vAVxi9bJkFEPJeEESGEECaKAmfXwdbRkBRjWlbtbWj1OdgXzbDp6bun+XDXh8SlxVHGpQxfV5pI8gefort+HQt3d8otXkztShVRqVRmuBCR30gYEUIIAQ+uwOZPICLE1HYra3okU6rRY5uG3Q5j8O7BpOhTqFq0KnP9R3C1a0+ctVosfXwo8f0KrEqUyOULEPmZhBEhhCjM9Fo4uAD2zgZ9KmisTZ1TXxkMFtaPbb7l6hbG7B+D3qinnnc9prr/j6uv98DZYOCqVovfxAkSRESWSRgRQojC6toB2DQU7l00tUs1Nt0NcSv9xM1XnVvFzKMzAWhZsiUjrV/jxts9cVIULmnT0EyeTMWgoNyqXhQgEkaEEKKwSboPO8bDydWmtr07tJ4GVbrBE/p4KIrCvOPzWHF2BQBvlX+L9+Jrc3tAX+yBs1ot7gsX0qRDh1y8CFGQSBgRQojCQlHg1BrYNhZSHpiW1XofWkw0vTHzBDqjjokHJ/JnxJ8ADK45mBbnHLk3YTC2wAmtlrLfr6CO3BERL0HCiBBCFAZ3L8HmYXBtn6ntURE6zIcSgU/dJVmXzLA9wzgQeQCNSsPEBhNpfEJH1MQJWAH7dToa/PYrlWrWzJVLEAWXhBEhhCjIdKmwbw7snwdGHVjYQpNRUH8gaCyfutuD1AcM3DmQs/fPYqOxYU7j2VQMvkj0vHmogDtVqtB8+jT8y5TJvWsRBZaEESGEKKgidpvuhjy4YmqXbQ3tZkGRks/c7VbCLQbsHMD1+Ou4WLvwddMvSR2/hLt79gDg1r8/5YcOkTFERLaRMCKEEAVNYgxsGwNnfjW1Hb2h7Qyo0OmJHVT/7cKDC3yw8wPupdzDx96HxU2+JLL/KIqeOw+A89AhePzvfzl9BaKQkTAihBAFhdEIx7+HnRMhNQ5UaqjbH5qOBRun5+5+OOowg3cPJkmXRNkiZVnUYC7n3+iD1+3b6BSFLWVKM6x37xy/DFH4SBgRQoiC4M5fsHEI3DpiantXM3VQLZa5zqVbrm5h7P6x6Iw6anvWZna1CZxu1x2v+HhSjEYONnyFkcuWyaMZkSMkjAghRH6mTYLQLyDsa1AMYOUAzT6DOv1A8/y/4hVFYdnZZSw4vgAwDWY2tnh/zrZ5Fa80LXEGA5feeIOPpk7J6SsRhZiEESGEyK8uboXgERB3w9Su0BHazADnYpnaXW/UM/XwVH679BsA71Z8l4F27TnX9Q08tDru6PUkDB1Cz4EDc+oKhAAkjAghRP4Tfxu2fArnTQOR4ewL7WZDuTaZPkSSLonhe4azP3I/KlR8WvdTXr3vx63/9cRBq+MGYDtzBh27ds2ZaxDiXySMCCFEfmE0wJGlEDIFtAmg0pjGC2kyCqzsM32YmOQYPtr1EecfnMdGY8MXQV8QEHKLm7MHgF6PXWAgTefPw6rIk0dlFSK7SRgRQoj84PYJUwfVqJOmdvE6pg6qXpWzdJi/Y//mw10fEp0UjauNK181/ZKHk74hcVcIAE4dO+I9dQpqK6tsLV+IZ5EwIoQQeVlqPOyeCke+BcUINs6muWRqvg9qdZYOdTjqMEN2DyFRl4ifkx9fN17IhfeH4HvpEgB73YvSf+YMeWNG5DoJI0IIkRcpiqlPyJZPISHKtKxKN9Psug4eWT7cnxF/MuHgBPRGPTU9ajK75ueEt3+TkrGxGBSFfRXK0++33ySICLPIWqwG9u7dS8eOHfHx8UGlUrFhw4Znbh8aGopKpXrs58KFCy9asxBCFGyx1+Gn7rC2pymIFCkFPX6H177LchBRFIXFpxYzdv9Y9EY9bf3aMrPMaE617EjJ2FiSjUZOtm3LgPXrsbCQf58K88jyn7ykpCSqVatGr169eO211zK938WLF3Fy+v8RAN3d3bN6aiGEKNgMOtN4IXtmgC4Z1JbQcAg0+gQsbbN8OJ1Bx+RDk9lweQMAvSv35j1NE/7q2IViwH2DgYTBH9Pjo4+y9TKEyKosh5G2bdvStm3bLJ/Iw8MDFxeXLO8nhBCFws0jpg6qMX+Z2iVfgQ7zwL3cCx3uYepDhoYO5didY6hVasYGjqVdtCeRQ/tSFLhhMOA2fz4N27fLtksQ4kXl2j25GjVqkJqaSsWKFfnss89o2rTpU7dNS0sjLS0tvR0fH58bJQohRO5LiTXNJRP+valt6wqtpkD1t587qd3TXI27ysBdA7mZcBN7S3tmNZpJhV1XuTnzQzAasa1Th8qfjaVYuRcLOkJktxwPI97e3nz77bfUqlWLtLQ0Vq1aRfPmzQkNDSUoKOiJ+0yfPp1JkybldGlCCGE+igJnfoNtoyHprmlZ9R7QcjLYu73wYQ9FHWJY6DAStAkUcyjGgkZz+bvPp9z9+zIAzq+/hvf48ajk1V2Rh6gURVFeeGeVivXr19O5c+cs7dexY0dUKhV//vnnE9c/6c6Ir68vcXFxGfqdCCFEvnQ/AjYPgyuhpnbRANMjGb+GL3XYXy/9yrRD09Areqq7V2dapbGcev1dSickYlQU7rRpTdP58+WNGZFr4uPjcXZ2fu73t1m6TterV4/Vq1c/db21tTXW1ta5WJEQQuQCfRocWAB7Z4MhDTTWEDQCXvkYLF787zyD0cCc8DmsOrcKgPb+7eln2YmLbbpSWlFIMRq52qUzr82YkV1XIkS2MksYOXHiBN7e3uY4tRBCmMe1/bBpKNwzDTCGf1NoPwfcSr/UYZN0SXy691P23NoDwEfVP6LWKVvuTulFMbWaOwYDluPH8dq7777sFQiRY7IcRhITE7l8+XJ6++rVq5w8eRJXV1dKlCjB6NGjiYyMZOXKlQDMnz8fPz8/KlWqhFarZfXq1axbt45169Zl31UIIURelXQfdoyDkz+a2vYe0GY6VH7thTuoPhKVGMXAkIH8Hfs31hprpjScgvXyg1j9shZ7tZrLKqj08xr8a9XKhgsRIudkOYwcO3Ysw5sww4YNA+C9997j+++/Jyoqihs3bqSv12q1DB8+nMjISGxtbalUqRKbN2+mXTt5nUwIUYApiimAbB8HKQ8AFdTuBc0ngK3LSx/+9N3TfBzyMfdT7+Nm48aXjRfgsWo7D9b+CioVpx0caLMlGGcZ00nkAy/VgTW3ZLYDjBBC5Al3L5oeyVw/YGp7VjZNaudbJ1sOH3wlmHEHxqE1agkoEsD8mlNQJs0jad8+0wavv0bZCROwsLTMlvMJ8aLydAdWIYQokHQpps6pBxaAUQeWdtBkNNT7ADQvHwwMRgMLTyxk+dnlADQu3pi++jZcatEVH0BlY4PPtKk4yZ1nkc9IGBFCiOxweRds/gRir5raAW2h3UxwKZEth0/QJvDp3k/ZF2m6+9Gnch8qbktC//0n+KjV3FVBnR9XY1upUracT4jcJGFECCFeRsId08BlZ//plO/oYwoh5Tu8dAfVR67FXWNQyCCuxV/DWmPNxMAJJI7+gWJnzqJWq7lkaUngut+wDQjIlvMJkdskjAghxIswGiF8OeycDGlxoFJD3f9Bs7Fg7Zhtp9kfuZ+Re0aSoEvA086TKZU+49qbn1AtKRlUKs6W8OXVDRuwsrPLtnMKkdskjAghRFZFnzFNahd5zNT2qWHqoOpTPdtOoSgKP/z1A/OOz8OoGKnuXp3P3PsT0aUf1VQqdIrC7fbt6TZ3TradUwhzkTAihBCZlZYIodPh0GJQDGDlCM3HQZ2+oNZk22lS9alMCpvEpiubAOhatitDlRbEDBpJKZWKB4qC/aSJtHnzzWw7pxDmJGFECCEy4+IWCB4BcTdN7YqvQpsvwMknW09zJ+kOQ3YP4ez9s2hUGobX+ISmu2OJWjIAjEasKlakzJTP8axYMVvPK4Q5SRgRQohniYuELSPhgukuBc4loP1sCGid7ac6dfcUQ3YP4V7KPZytnfms1FBi35lMvFZrOvVrXfEaNw61jU22n1sIc5IwIoQQT2LQw5FvYfdU0CaC2gLqD4TGn4KVfbaeSlEUfvv7N6Yfno7OqKOMSxnej22Gpsdoqms0pCkK1gM/xOfjj7P1vELkFRJGhBDivyLDTR1Uo0+b2sXrQsf54Jn9Y3ikGdKYemgq6y+vB6CZbzOq/xSH796vsNVouAt4zp1Dufbts/3cQuQVEkaEEOKR1DgImQJHlgIK2DhDi0lQ8z1Qq7P9dFGJUQwNHcpf9/9CrVLTt/T72AxdQ734BFCrueriTKPff8fRJ3v7pQiR10gYEUIIRYFzG2DLKEiMNi2r8ga0ngoOHjlyykNRhxi5ZySxabG4WLsws8KnPOgxBn+dDoBbDRrQdum3qDTZ95aOEHmVhBEhROEWew02D4fLO0xtV39oPxdKN33mbi9KURRW/LWCBccXYFSMVHCtwGz7nqR+MB0XnY5EwPrTkbTs1StHzi9EXiRhRAhROBl0EPYVhM4AfQporKDhUGg4DCxz5m2VJF0S4w6MY8d1U/BpX7wtnTamkrRtJCgK1hUqUGr+PGxKlsyR8wuRV0kYEUIUPjcOw6YhEHPO1PZrZLob4p5zc7tcibvC0N1DuRJ3BQu1Be9ZdcL7g58p8k9fFJdu3fAcO0Ze2xWFkoQRIUThkfwAdk6E4z+Y2nZu0GoqVHsz2ya1e5Jd13cx9sBYknRJuNu60+lwSWr/8RNuFhYkKwrqgR/iLa/tikJMwogQouBTFDi9FraNgeR7pmU1ekDLz8HONcdOqzfq+fLElyw/uxyAak5VqD37Mi3vhaG2sCDKxoaqK3+gaNWqOVaDEPmBhBEhRMF27zJsHgZX95jaRcuZxgwp2SBHT3sn6Q4j947keMxxANoaAqk5IpRqFpagUhFVtSqNf/geja1tjtYhRH4gYUQIUTDp02D/fNg3BwxpYGEDQSOgwcdgYZWjpw67HcaofaN4kPoAe0t7Zlq9hdOUFVhbWJICWA8dQrP//S9HaxAiP5EwIoQoeK7uhU3D4P7fpnbp5qb5ZFz9c/S0BqOBb09/y+JTi1FQqOhYlikXq6D/YQkA8W5ulF/2Hc7ly+doHULkNxJGhBAFR9I92P4ZnFpjajt4QpvpUKlrjnZQBbifcp/R+0YTFhUGQNOH5Wk7+wJ63XkAXN56k3KjRqG2ts7ROoTIjySMCCHyP6MRTq6GHeMhJRZQQZ0+0Gwc2Lrk+OnD74Qzcs9IYlJisFFb026TLZ1OnMZOrUZrZUWp2bNwatUqx+sQIr+SMCKEyN9izsOmoXDDdEcCzyqmDqrFa+f4qY2Kke//+p6FxxdiUAyU0nvQft5NgvRJoFZzx8ODwJ9+xLZ48RyvRYj8TMKIECJ/0ibD3llwcCEY9WBpD03HQOAA0OT8X21xaXF8tv8zQm+FAtDovBuv/3YdbwtL9IqCrtvrNJ40SeaWESITJIwIIfKfv3eaXtd9eN3ULtcO2s4EF99cOf3JmJN8uvdTbifdxlax5P2N9gSdjUZjYUmsjQ3llizBrV5grtQiREEgYUQIkX8kRMPWUfDXelPbqZgphFTokCunNypGlp9dzlcnvsKgGKim82LsFjv46xKoVDysWZPAb79F42CfK/UIUVBIGBFC5H1GAxxbDrsmQ1o8qNQQ+AE0HQ3WjrlSwt3ku4zeP5rDUYdBUXjrhDtd995HSbmF2tERj/HjqdAxd0KREAWNhBEhRN4Wddo0qV1kuKntU9PUQdW7Wq6VsO/WPj478BkPUh/gnmhBz+8SCUyJRgHsatfGZ8YXWBYrlmv1CFHQSBgRQuRNaYkQOh0OLQbFAFaO0GIC1O4N6tzpFKoz6Jh/fD4rz60EoFG4hne3JuGitkAHaN7rSYlPP0X1z8y7QogXI2FECJH3XNgMwSMh/papXbEztPkCnLxzrYTr8dcZuXck5+6fwz5F4b0ftTS5qwG1htgiRai6fBkOFSrkWj1CFGQSRoQQeUfcLVMIubjZ1HYpAe3nQtmWuVrGxoiNTDk0hWR9MjX+VtHntzQ80GAAlK5dqD9xIiqrnJ3fRojCRMKIEML8DHo4vAR2TwNdEqgtoMEgCBoJVna5VkaSLomph6ay8cpGrLUKow67UXN/DKAh3sGe8ouX4Fwn5wdTE6KwKbRhRFEUUnQGc5chRKGnvh2O1ZZPUN85A4CheCDaNnNQPP55BKLV50odZ+6dZmLYZ9xKvEnFGwojdzpgdycGAGO79lSaMAG1rS3JuVSPELnN1lKDKofncHoalaIoilnOnAXx8fE4OzsTFxeHk5NTthwzWaun4vht2XIsIUTWOZLMcItfeFezE7VK4aFiz3T926w1NEYhNzuEGrAqGoJV0d3Y6Ay8s8uCNifTALhr68y8Gt054RGQi/UIYR7nJrfGzip771Fk9vu70N4ZEUKYi0J79WHGW67EU/UQgHWGhkzTvcN9nHO1EpXlPWyL/YLG9iZVrhr532YLPBJMQSTYrx7LKnUg2dImV2sSojAqtHdG5DGNELlPFXsNq20j0VzZBYDRtTTaNrMx+gXlah2KovDnlfXMOz4bEpPpscNAy7OmdQl2dvjOnIVzUO7WJIS55cRjGrkz8hwqlSrbb0cJIZ5Cr4WwL2HPTNCngsYKGn2C+pUh2OTynYcHqQ+YcHACoTdDqRZhpP9GA+4ppr+AdS1bUPuLL1Dby3DuQuQm+TYWQuSs62GwaSjcPW9qlwqC9vOgaJlcL2Xvrb2MPzCe1Nh7DAyBxqeNgIpERwfKLViIU4P6uV6TEELCiBAipyQ/gB3j4cQqU9uuKLSeClW7Qy732E/RpzDn2Bx+ufAz9S8o9N2pwjHRACoVSvv21Jo8CbVd7r1CLITISMKIECJ7KQqc+hm2j4Xk+6ZlNXtCi0lg55rr5Zy5e4bR+0aTeOsan24zUivC1E3OqlQpvKdOwa5mzVyvSQiRkYQRIUT2ufc3bB4GV/ea2u4VoMM8KJn7jz+0Bi2LTy1m+anvaHPMSPc9Bmz1KvRAkX598Rk0CLWMoipEniBhRAjx8nSpsH8e7J8LBi1Y2ELjkVD/I7DI/S/8c/fPMWrPKJS/rzBli4Ey0QAqkkqUoPKir7Epk/v9VYQQTydhRAjxcq7sMXVQfRBhapdpAe3nQBG/XC9FZ9Cx9MxSfjj6DV326+hwREGjQJqFBR7DP6F8z54yw64QeZCEESHEi0m8a+oXcvoXU9vB0zSzbqUuud5BFeDig4t8duAzrI+eY8Z2I54PTcu1dWpTac4cLD08cr0mIUTmSBgRQmSN0QgnVsKOCZD6EFBBnb7QfBzY5O4IqgB6o55vTnzDugPf0HOXnsCLpg6qKnd3vCaMx6VFi1yvSQiRNRJGhBCZd+ec6ZHMzUOmtlcV6LAAitcySzkRsRF8/MeH1Dh0izkHjNjoAI0G1x49cP94kAxeJkQ+IWFECPF82mTYMwPCvgKjHiztodlYqPs/0OT+XyN6o565e+ZyPPQHhuw0UvyfN4hT/PyouGA+NuXK5XpNQogXJ2FECPFsl7ZD8Cfw8IapXb4DtJ0BzsXNUs6JyBN89vNAXj3wkAnnTI9kUqytKD5mDO5vvGG2KdCFEC9OwogQ4snio2Drp3DuD1PbqTi0mwXl25mlnDRDGt8eX8zN75cyeb8RuzQwApp2bak2YQIa59zvryKEyB4SRoQQGRkNcHQZ7JoM2gRQaaDeB9BkNFg7mKWk8DvhrFw9kjZ/3KZFjGlZUnFvKs5bgF2VKmapSQiRfSSMCCH+3+2TsGkI3D5haherBR3mg3dVs5QTdT+KEV+/R7PjtxhwwfRIxuhoh/ewERR5oxsqjcYsdQkhspeEESEEpCXA7mlweAkoRrB2gubjoXZvUOf+F77BYGDSN6OxOLCREafASg9GFTi+8Ro+Qz7BokiRXK9JCJFzsjwU4d69e+nYsSM+Pj6oVCo2bNjw3H327NlDrVq1sLGxwd/fnyVLlrxIrUKInHB+E3wdCIcWmYJIpa7w0VGo288sQeTPHX8w8L2qtFyxkW7hpiDywN+H0hs2UGLSFAkiQhRAWb4zkpSURLVq1ejVqxevvfbac7e/evUq7dq1o1+/fqxevZoDBw7w4Ycf4u7unqn9hRA55OFN2DISLgab2kX8TMO4lzHPIGGRkZGMGfsmr16/x+Cof0p0ssJ/3CTKd3hV3pIRogDLchhp27Ytbdu2zfT2S5YsoUSJEsyfPx+AChUqcOzYMWbPni1hRAhzMOjh8GLYPR10SaC2hFc+hqARYGlrlpIiLh/jyOQhjDxyHzWQZgGGtzoT+MkE1DY2ZqlJCJF7crzPSFhYGK1atcqwrHXr1ixbtgydToelpeVj+6SlpZGWlpbejo+Pz+kyhSgcbh2DjUPgzhlTu0QD6DAPPMrneikGg4ENv63B+tRWim0Mp7rOtPxm7VI0mvkNtj6+uV6TEMI8cjyMREdH4+npmWGZp6cner2ee/fu4e3t/dg+06dPZ9KkSTldmhCFR8pD06u6x5YDCtgWgZafQ/V3wAyz2G7fupXN0z/hjXgDrimmxy/RpZwp/dnntHqlZa7XI4Qwr1x5m+a/z3oVRXni8kdGjx7NsGHD0tvx8fH4+sq/koTIMkWBs+tg2xhIvGNaVu1taPU52BfN9XJOHD/OshEf0e7hfQYkqQEVMS5qLD56n8Zvf4LaDMFICGF+OR5GvLy8iI6OzrAsJiYGCwsL3NzcnriPtbU11tbWOV2aEAXbgyuw+ROICDG13cqaHsmUapTrpVy7do2Fnwyl+uXTDEyzAtQk2sDlV2vSaeTX2Nu75HpNQoi8I8fDSP369dm4cWOGZdu3b6d27dpP7C8ihHhJei0cXAB7Z4M+FTTWEDQcXhkMFrkf8rVRUWx9vQN9EvWosUKngSMN3Gg4dgFv+Zlntl8hRN6S5TCSmJjI5cuX09tXr17l5MmTuLq6UqJECUaPHk1kZCQrV64EYMCAAXz11VcMGzaMfv36ERYWxrJly1izZk32XYUQwuTaAdg0FO5dNLVLNTbdDXErnatlpKSkoCQmcnfZN8T/9DONtQZAxaGKFhQZMojejfqiVskjGSGESZbDyLFjx2jatGl6+1Hfjvfee4/vv/+eqKgobty4kb6+VKlSBAcHM3ToUL7++mt8fHxYuHChvNYrRHZKfgDbx8HJ1aa2vTu0ngZVukEujs9hMBj4aflyznzxBW/Z22KjNWABnC8OV98N4v03puFm++THs0KIwkulPOpNmofFx8fj7OxMXFwcTk5O5i5HiLxDUeDUGtj+GSTfNy2r9T60mGh6YybXylDY+Pvv7Bs/nlcNOtwwjdx63R32dyjJ6+9Pp7pnjVyrRwiRN2T2+1vmphEiv7p7CTYPg2v7TG2PiqZHMiXq5VoJiqKwY9s2towaTfukBHprLAEN0S6wqakD9XoOZ1K519GYYVh5IUT+IWFEiPxGlwr75sD+eWDUgYUtNPkU6n8EmtzrFK4oCt/164dXSAj9raxBY8kDB1j/igbXbm8wvs5gnK2dc60eIUT+JWFEiPwkYrfpbsiDK6Z22VbQbpZpXplcotfrSTtyhJj582l4+gxYWZNoAxvqq7nTtiYjGn5GOddyuVaPECL/kzAiRH6QGGMauOzMr6a2oze0+QIqvpprHVTP/fUX33/yCS0fxFL8nykaUi1hcx0Vh5p4MrDRSNr4tZEJ7YQQWSZhRIi8zGiE49/DzomQGgeooG5/aPYZ2OROZ+7Lly+zcvgIyp44Ti9bOwC0GthVXcWfDa3pEvg+a6v0w87SLlfqEUIUPBJGhMir7vxlmtTu1hFT27sadJgPxWrmyukvXbrE6pGfEnDiBG/Z2oKtXXoI2VBfTd0qbVhdcwjFHYvnSj1CiIJLwogQeY02CUK/gLCvQTGAlYPpTkidfqDJ+f9kFUVh2+w5xHz5JW/Z2YGtbYYQUrxUVRbWGUl1j+o5XosQonCQMCJEXnJpG2weDnH/DBxYoSO0mQHOxXL81GlpaehPnOTeV19R8tgxStrZoVPDzhqmEGLj5cOomkNoU6qNjJ4qhMhWEkaEyAvib8OWT+H8n6a2sy+0mw3l2uT4qc/99RdrRoykzo0blNXrATBYqNhezfSGTFoRe/pV7UePCj2wsbDJ8XqEEIWPhBEhzMlogCNLIWQKaBNApYH6H0KT0WBln6OnPnvqFL+PHEmVi5d428YUMgwaFTurq1hfT8VDZw1dy3ZlYPWBFLUtmqO1CCEKNwkjQpjL7ROmDqpRJ03t4nVMI6h6VcnR0x7av58dYz+j9s2bdLOyAhsbUjUqdtXW8EddhYcOKpr6NmVwzcGUdsndCfaEEIWThBEhcltaAoRMhSPfgGIEa2doMQFq9QJ1zvXFMCYnc2TadJLXrOF1S0uwsiLJUsWO+tb8UVNHki1Ud6/BsNrDqOEh88gIIXKPhBEhcouiwPmNpr4hCbdNyyq/bppd19EzR05pNBq5fOoUrocP8+CHlTjHxuJsaUm8jYbtQXb8USWZNCs9/s6lGVJzCE18m8igZUKIXCdhRIjc8PAGBI+AS1tN7SKloP0cKNM8R06n1Wr5dfFibi5eTAsFDP8EDL23G3/W07CuzH10Fil42HnyUfWP6Fi6IxZq+etACGEe8rePEDnJoINDi0zjhuiSQW0JDYdAo0/A0jbbT5eUlMQv06eT8vPPBGksqKlSgQqSfNwIbmLLOt8ojGoVjlZOfFSlL2+Xf1vekBFCmJ2EESFyys0jpg6qMX+Z2iVfMXVQdc/+SeRi7tzhtzFjcNodSn0rK7Awzd4bWcyV3a2d+NPjJqjisLd04N2K7/JuxXdxssqd4eSFEOJ5JIwIkd1SYmHnJAj/HlDA1hVafQ7V38n2Se2MWi3xGzdyb/ESmt66BVZWGBSFmxVKEtLOga3Wl4B4bDS2vF3hbXpV6oWLjUu21iCEEC9LwogQ2UVR4MxvsG00JN01Lav+DrT8HOzdsvE0CqEbNxL/229UuHIVw717qACthQW3Ayuxo6UlO9JOAmCptqR7ue70qdJHxgoRQuRZEkaEyA73I2DzJ3Blt6ldNMD0SMavYbadQqfT8eeXX3Fn2TLq63R4qdUYAAtPT5K6NOXbUlfZ9zAc0sBCZUHXsl3pV7UfXvZe2VaDEELkBAkjQrwMfRocWAB7Z4MhDTTWEDQCXvkYLKyz5RSx9++zacIELLZto7rGgooAajV3HRxQendiZcnLHLn3Gzw0hZCOpTvSv2p/mU1XCJFvSBgR4kVd2w+bhsK9S6a2f1PT67pu2TNqqSEujiPTvyDpt9+obWEBGgsMikKUX0nU/Tvyvc0hTt5bC/fAQm1BlzJd6FOlD8Uccn5SPSGEyE4SRoTIqqT7sGMcnPzR1LZ3hzZfQOXXXrqDqtFoJOrIEdRbtxL3x5+4pKTgYmFBAhAXWBf1gLYsv/8HZ+9/A4lgpbbi9YDX6VW5lzyOEULkWxJGhMgsRTEFkO3jIOWBaVmtXqah3G2LvNSh4x48IHjyZNiyheqq/x8S3joggLSWzbnb3Jfll1dz6dJUAGw0NrxR7g3er/Q+7nbuL3VuIYQwNwkjQmTG3YumRzLXD5jaHpWg43zwrftSh70UFsbhKVMocelvqms0oFJjUBSsGzXCrXdPtrrcYOX5VUQejQTAzsKON8u/Sc+KPXGzzb43dIQQwpwkjAjxLLoUU+fUAwvAqANLO2gyCup9CBrLFzqkYjRy9LvvuLbkGyokJVFbpQKNhjggrnZtKo0awkbDEdacH0vs37EAuNq48k6Fd+herjvO1s7ZeIFCCGF+EkaEeJrLu0yv68ZeNbUD2kC7WeBS4oUOp4+NJe7334n9ZS2ON25QBUClIsLWBpfu3fHv/xarLv/MuFMfkKJPAaCYQzHer/Q+nct0lmHbhRAFloQRIf4r4Q5sGwNnfzO1HX2g7Qyo0DHLHVSNRiMHly/n1nfLqBwfj8ZoBEDt6MgFLy8qDRuKf1VPVp1bxdZNndEregDKu5and+XetCzZUiawE0IUePK3nBCPGI0QvsI0lHtaHKjUUPd/0GwsWDtm6VD3r11jz+TPsTt4gJKoeNS7w7pSJVzfehP7Nq259eAIU879QPim8PT9Ar0C6V25N/V96qPK5qHjhRAir5IwIgRA9FnYNARuHTW1vaubOqj61Mj0IRSDgZMrV3Htu+/wv3ePCioVoCLVaCSiWDHKfTyIEh1aseHyBn7c3p2bCTcB00Blrfxa0bNiTyoVrZTdVyaEEHmehBFRuGmTIHQ6hC0CxQBWjtB8HNTpC2pN5g5xK5K433/n4Yb12NyOojyASsUVlQpDk8Y0HjcOTyf46fxP/P5rSxJ0CQA4WTnRLaAbb5V/C097z5y7RiGEyOMkjIjC6+IWCB4BcaY7FFR81TR4mZPPc3c1pKZy5Msvif31V/wSElEpCgCKnR3hDg4EfPgBbd94g2N3jjHp4mxCboRgUAwA+Dn50aNCDzqW7oidpV2OXZ4QQuQXEkZE4RMXCVtGwoVNprZzCWg/GwJaP3fXm/v2cWrOXDzOn8dFpcLln+V29evh8trrOLZsQQmVjo1XNjL9z65ExEWk7xvoHUjPij1pWKwh6n8NbCaEEIWdhBFReBj0cORb2D0VtImg0kCDj6Dxp2Bl/9Td0qKjOTxrNrqdO/BJ01IaQKXijkHP1VL+VB0ymArt2nE59jJfnpjFxoiNJOuTAbC1sKWjf0e6l+9OQJGA3LlOIYTIZySMiMIh8ripg2rUKVO7eF1TB1XPJ3cYNaakkLArhLg//iDpwAHc/3klV6conLK2xqHzq7QcPpxXHGwJuRFCr629OHbnWPr+pZxL0b1cdzqV7oSjVdbexBFCiMJGwogo2FLjIWQKHF0KihFsnKHFJKj5HqgzPipRjEbuhIRwbtFiipw/j80//UAAYj09OO/hQYMRI3i3bl1uxt/ku7+X80fEH9xLuQeARqWhqW9T3iz/JnW96sqruUIIkUkSRkTBpChw7g/YOgoSokzLqnSD1tPAwSPDpokXL3FqwQLU+/bhotPh/c9yXZEieL/1Js6dOmHl50ctQxq7ru9i9rY+HIk+kr6/m40brwW8RreAbjJzrhBCvAAJI6Lgib0OwcPh7+2mtqs/tJ8DpZulb6KLieHaTz8RueZnPOPicP1neYLBwFErS+zataPdJ5/g7uXF5djLrDsyg41XNhKXFgeAChUNijXg9bKv09i3MZbqF5unRgghhIQRUZAYdBD2FYTOAH0KqC2h4VBo9AlY2mCIiyNu2zYSgreQfOQIGI14AnpF4aheR0pgIA2HDmVgnTokaBPYfm07vx//ndN3T6efwsveiy5lutClTBe8HbyfXosQQohMkzAiCoYbh00dVGPOmdolG0KHeRjti3Nn/Z9c+WElThERGf7A21arxm69Hp/ub9Cza1dQw6GoQ4zcM5KQmyGkGdIA0wipTXyb0LVsVxr4NECTycHQhBBCZI6EEZG/JT+AnRPh+A+mtq0rxmaTeHC3KH9/OBa7s39hpSjpj2H+1mqpM2wYbp1fxap4cXoBl2IvMf/EfDZf3ZzeGRXA39mfV8u8SqfSnShqWzS3r0wIIQoNCSMif1IUOL3WNLtu8j0UIyQ5tiX+ni93e8/GSqdLH5DshlbLUWtrnDq0p8MHH+Dt78+9lHtsObeKPyP+5MKDC+mHLWJdhLal2tKpTCcqulaUN2KEECIXSBgR+c+9y7B5GMrlPSTdseZBVDFSomwxJp4CTmEFxOh1HECFdYvmtPrwQz6rWpW4tDh23djF9O3TORJ9BKNiGjvEQm1Bk+JN6FS6Ew2LNcRSI51RhRAiN0kYEfmHPg3j7jkk/fY1CdctSIj0wqhTAwqQjMbVFccWLdDVC8TK2ZnRDRqQok8h5GYI3+z6lgO3D6A36tMPV7VoVTqW7kgbvza42LiY66qEEKLQkzAi8jxjWhoJvy4hbs0SUm4YMeqc0tfd0+sJTUuj1Ntv8860qag0GlL1qVyK3M/wPcPZe2svqYbU9O0DigTQtlRbWvu1xtfR1xyXI4QQ4j8kjIg8yZiSQuK+fSRs3kji7t0YtYZ/1qiJR8+WxBRSatSg3vvvM6J9ewwaA9tu7GDnjZ3su7UvfW4YgJJOJWlbqi1t/NpQ2qW0eS5ICCHEU0kYEXmGPjaWhNBQrq/9FfXpU1gajOnrLGwN3HVVsdWxDDV79uHTtm1JU6Wx++Zuhh8YTtjtMLRGbfr2XvZetPVrS5tSbajgWkE6ogohRB4mYUSYlfZWJHE7thO5fgOWf/+NWlGw/medpZ0eR99UnKr7YNPnS8r41qF0cgwhN0MYtHcQx+4cw6AY0o9V0qkkLUq0oEXJFlRyqyQBRAgh8gkJIyJXKYpC2sWLJOzcRcKuXaSdPw+QHkAeWqRRKkCLi28KGlcNStPRXCjXhD2397Pv1GzOPzif4XjlXcvTvERzWpRoQWmX0hJAhBAiH5IwInKcoteTHH6cmI0bebhjOzZx8f+/TqXiaFISD1yMvNnMSAWXRBJVKvaVacAe73Lsi9rAg6vL07dXoaKqe1ValGhB85LNpROqEEIUABJGRI4wJiWRePAgURv+IHX/fqzSTEOr2wAGjQbnJk1wbN4cXWkv2h6cSvyDQ+ywtWGvoy/h1hbo9Tfh5k0AHCwdaODTgMa+jWlYrCGuNq7POLMQQoj8RsKIyDbamzdJDN3Dgx3bST0WjsZo6oBqBTw0GNidmMh1Tw+af/IJzbq2Zv/BGYQd3MQhKzUxxf816ZxiwM/Jj6DiQQQVD6KmR00ZiEwIIQowCSPihSl6PSknTnB/+w4SQ0PT72QAaDANw74nOYkHZcpS4Y0uVG5cBhvdZdbe+JnPf5tp2tDOCgAbtRW1vOqk3wEp6VQy9y9ICCGEWUgYEVliePiQxH37idq4kbTDh9MfvwCg0WBXsyYOTZrw3dmT6Gt44FbWlqi4s6y8+yPak9oMx6qg1VPfqy71a/6PGl61sNZYI4QQovB5oTCyaNEiZs2aRVRUFJUqVWL+/Pk0atToiduGhobStGnTx5afP3+e8uXLv8jpRS5SFAXt5cskhIYS+cefWFy+jPqfdY8ev+xNTORvV2fe+2UWJ3WXORa9hzNWZ9AZdXDp/4/lYVCon5xEg5RUAks0xa3LHHDyftJphRBCFCJZDiO//PILQ4YMYdGiRbzyyit88803tG3blnPnzlGiRImn7nfx4kWcnP5/GG93d/cXq1jkOENiEsmHDxGzdRvG8HD0t28DpvABcDEtlQPGNO7WLYG2mR9aTz0RiREcDh+Z4Tgedh7Udq1Inai/qX3tKCX1elQuJeDVbyCgVS5flRBCiLxKpSiKkpUdAgMDqVmzJosXL05fVqFCBTp37sz06dMf2/7RnZHY2FhcXFxeqMj4+HicnZ2Ji4vLEGhE9lAUhbRLl3i4K4So4GAsIyLQ/OuPhcrKCkPNSoS56tjsEMXdMhCnxD12HC97L+p41qG2V21qu1fH91wwqt3TQJcEagtoMAiCRoKVXW5enhBCCDPJ7Pd3lu6MaLVawsPDGTVqVIblrVq14uDBg8/ct0aNGqSmplKxYkU+++yzJz66eSQtLY20f/VFiI+Pf+q24sUYHj4kKSyMO1u3kbhvHzbJprlcbP5Zf1Ot51hRA/ea+HKoZAIJFmf+f2cF1Co1AUUCqOZejWru1ajuUZ3iDsVNg47dCoefe0L0P/v4BkKH+eBZMVevUQghRP6QpTBy7949DAYDnp6eGZZ7enoSHR39xH28vb359ttvqVWrFmlpaaxatYrmzZsTGhpKUFDQE/eZPn06kyZNykpp4jkUo5HUv/7i7rZtpIUdQn/+PPzz6q0NkKJWOOOpcLqChlNl1dxxffRH4wEAztbO6cGjmns1qhStgp3lf+5wpMbBrs/h6HeAAjYu0HIS1OgJajVCCCHEk7xQB9b/DrmtKMpTh+EuV64c5cqVS2/Xr1+fmzdvMnv27KeGkdGjRzNs2LD0dnx8PL6+MtJmVunv3eNh6B5u/PEHnD6FbVrGt1luuas4UQpO+qu44KtCZ2H6HdpZ2FHTtTwV3SpS0a0iVYpWoaRTyacPta4o8Nd62DoaEv8JpVW7Q6up4CB9g4QQQjxblsJI0aJF0Wg0j90FiYmJeexuybPUq1eP1atXP3W9tbU11tbymmdWGZKTuX1gJ3d37yQx9ADuD0yPXmz/WZ9sDaf9VJz0V3HKX8V9JxX2lvaUdy3Pm/8Ej4puFfFz8kOtyuSdjAdXIXg4XN5paruWhg5zwb9Jtl+fEEKIgilLYcTKyopatWqxY8cOunTpkr58x44dvPrqq5k+zokTJ/D2llc6X1SiNpHr8de5FnuFe6eOojtwFI/zUfjdTMPSYAofjwLIFU84WVrFyVJq7vm4UsGnMlV9qtLJpSxli5SluGPxzAePf9NrIexL2DMT9KmgsYKGw6DhULC0ef7+QgghxD+y/Jhm2LBhvPvuu9SuXZv69evz7bffcuPGDQYMGACYHrFERkaycuVKAObPn4+fnx+VKlVCq9WyevVq1q1bx7p167L3SgqQZF0ytxNvczvpNrcSbqX//8jESNJu3sDvUjxVrypUvqbgn5px37tOcCXAkYueNtzz9aJmzaZ0rdSE4S7+2Teo2PUw2DQU7v4zg65fI+gwD4qWzZ7jCyGEKFSyHEa6d+/O/fv3mTx5MlFRUVSuXJng4GBKljQN3x0VFcWNGzfSt9dqtQwfPpzIyEhsbW2pVKkSmzdvpl27dtl3FfmEwWjgQeoDYlJiuJt8l5jkGGKSY7ibYvr/j5bFpsWm72OXqlD5ukLVqwodryp4Pcx4zCSNwgkbPdfdXeg24XPq1WlOkIUVOSL5AewYDydW/VOcG7SeZuof8rT+JEIIIcRzZHmcEXPIa+OMaA1aEnWJJOmSSNIlkahNJFGXyMO0hzxMfUhsWixxaXHEpsbyMM3Ufpj6kDhtHEbF+MxjawwKAZFQ46qayhEG/GOMqP/1G9IpCme0qVx3LoJdvXpUe/016jdsiI1NDj4aURQ49TNsHwvJ903LavaEFpPATmbQFUII8WQ5Ms5IQbPpyibO3z+P1qBFZ9SRZkhDa9Cafoxa0gxp6Aw6Ug2p6cEjSZdkGub8BalVaoraFMXdzh0POw/crYvieCkWu7AIXP+6hf/9ZGxRAYb0faz8/bFv0IDYEr7ccXahU7OmODo6ZsMnkAn3LsPmoXB1r6ntXsH0SKZk/dw5vxBCiAKvUIeRvTf3suXalhfe387CDntLe+wt7XGwdMDZxpki1kVwsXahiI3pf//9/4vYFMFeZY/u2nUMJ0+StPMw90PXY5X6744fKh4YDETY26NUrUKDDz+kdL16AHgBFV7ukjNPlwr758H+uWDQgoUNNB4J9QdBTj0GEkIIUSgV6jDS2LcxXg5eWKmtsNZYY6WxMv2ordL//6PljwLHo/BhZ2GHRq157jkePHjAkeBgTm3Zguavc5RKTMTT4v8/disg2Wjkmp0dhooV8e3YgVqdO/OKre3TD5rTruyBzcPg/mVTu0wLaDcbXEuZryYhhBAFlvQZyQG3/vqLNWPGYHXxEuW0WkpaZbyToFepcKpTB/v69bCtWxfLChWwsssD87Uk3jX1Czn9i6nt4AltvoBKXaSDqhBCiCyTPiO5IDU1lfDwcA6HhFBWq6WOjS3Jhw6R9vffdHi0kZUVBhTuODhirFyJ4m3bUqFjRyzyQvh4xGg0vSGzYzykPgRUUKcvNB8HNs7mrk4IIUQBJ2EkkxRF4fLlyxw+fJjjB8N4eOgQRW/fpra1Na1sbNCoVMT+a/s4N1eMFStRsmMHvJo1o7KDg9lqf6aY87BxCNw8ZGp7VYEOC6B4LbOWJYQQovCQMPIU9+/f5/r169SsWROjVkvKyVMsff11qgDv29piqVKBi0v69kkuLhRv1xa7wHrY1a2DRZEiZqs9U7TJsHcmHPwSjHqwtIemYyBwAGjkj4UQQojcI986QFpaGidPnuTw4cMcPnyYo4cPYxMZSUsvb4o2bUry8eMoqan0+tejFa2zMzZ16+LZojn29ephmYW5eczu7x2w+RN4eN3ULtce2s4AF5mMUAghRO4r9GGkT58+rF61Cj+1mkA7OxrY2THY1g7Hkn4AJB08CICmaFHsAwOxqxdoCh/Fiz99Ftu8Kj4Kto6CcxtMbafi0G4mlG9v1rKEEEIUboU6jMRt3EjnyxH0LlESV4uMH4XK0RGHeoHYBdbDvl4gVqVL57/w8YjRAEeXQcjnkBYPKg3U+wCajAbrPNqXRQghRKFRqMNIws5dlLlzBywsUNnZYlerNvb1ArGrVw+b8uVRaZ4/jkieF3XK1EH19nFTu1gt6DAfvKuasyohhBAiXaEOI86vdsK6XAD29ephW7kyKqsCNLJoWgLsngaHl4BiBGsnaD4eaveGTAzWJoQQQuSWQh1GHJs1w7FZM3OXkf3Ob4ItIyE+0tSu1BXaTAdHL/PWJYQQQjxBoQ4jBc7Dm6YQcjHY1HYpCe3nQtkW5q1LCCGEeAYJIwWBQQ+HF8Pu6aBLArUFNPgYgkaAVR4a6VUIIYR4Agkj+d2tY6YOqnfOmNol6kOHeeCRa/P7CiGEEC9Fwkh+lfIQdk2GY8sBBWyLQMvJUL0HqNXmrk4IIYTINAkj+Y2iwNl1sG0MJN4xLav2FrSaAvZFzVubEEII8QIkjOQnD66YhnGPCDG13cqYHsmUCjJvXUIIIcRLkDCSH+i1cHAh7J0F+lTQWEOjT6DhELCwNnd1QgghxEuRMJLXXT8Im4bC3QumdqnGprshbqXNW5cQQgiRTSSM5FXJD2DHODix2tS2d4fW06BKN8ivc+QIIYQQTyBhJK9RFDi1BrZ/Bsn3TctqvgctJoKdq1lLE0IIIXKChJG85O4l2DwMru0ztT0qmh7JlKhn3rqEEEKIHCRhJC/QpcK+OXBgPhi0YGELTT6F+h+BxtLc1QkhhBA5SsKIuUXsNt0NeXDF1C7bCtrNgiJ+Zi1LCCGEyC0SRswlMQa2jYUza01tBy9oOwMqviodVIUQQhQqEkZym9EIx3+AnRMgNQ5QQd1+0OwzsHE2d3VCCCFErpMwkpvu/GUaM+TmYVPbqyp0nA/Fapm1LCGEEMKcJIzkBm0S7JkBYV+DUQ9WDtB0LNTtDxr5FQghhCjc5Jswp13aBpuHQ9wNU7t8B2g7E5yLmbcuIYQQIo+QMJJT4m/Dlk/h/J+mtrOv6S2Zcm3NW5cQQgiRx0gYyW5GAxxZCiFTQJsAKg3U/xAajwJrB3NXJ4QQQuQ5Ekay0+0TsHEIRJ00tYvVNnVQ9apixqKEEEKIvE3CSHZIS4CQqXDkG1CMYO0MLSZArV6gVpu7OiGEECJPkzDyMhQFzm809Q1JuG1aVvl10+y6jp7mrU0IIYTIJySMvKiHNyB4BFzaamoX8YP2c6FMc7OWJYQQQuQ3EkayyqCDQ4sg9AvQJYPaEl4ZDEHDwdLW3NUJIYQQ+Y6Ekay4ecTUQTXmL1O75CvQYR64lzNrWUIIIUR+JmEkM1Iewq5JcGwFoICtK7T6HKq/I5PaCSGEEC9JwsizKAqcXQdbR0NSjGlZ9Xeg5edg72be2oQQQogCQsLI09yPgM2fwJXdprZbWdMjmVKNzFuXEEIIUcBIGPkvfRocWAh7Z4EhDTTWps6prwwGC2tzVyeEEEIUOBJG/u3aftg0FO5dMrX9m5he13UrbdayhBBCiIJMwghA0n3YMQ5O/mhq27tD6+lQ5XXpoCqEEELksMIdRhTFFEC2j4OUB6ZltXqZhnK3LWLe2oQQQohCovCGEUWBH1+HyztNbY9KpkntfOuatSwhhBCisCm8YUSlghL14fpBaDIK6n0IGktzVyWEEEIUOoU3jAA0+BiqvgEuJcxdiRBCCFFoFe757S2sJIgIIYQQZla4w4gQQgghzE7CiBBCCCHM6oXCyKJFiyhVqhQ2NjbUqlWLffv2PXP7PXv2UKtWLWxsbPD392fJkiUvVKwQQgghCp4sh5FffvmFIUOGMHbsWE6cOEGjRo1o27YtN27ceOL2V69epV27djRq1IgTJ04wZswYPv74Y9atW/fSxQshhBAi/1MpiqJkZYfAwEBq1qzJ4sWL05dVqFCBzp07M3369Me2//TTT/nzzz85f/58+rIBAwZw6tQpwsLCMnXO+Ph4nJ2diYuLw8nJKSvlCiGEEMJMMvv9naU7I1qtlvDwcFq1apVheatWrTh48OAT9wkLC3ts+9atW3Ps2DF0Ot0T90lLSyM+Pj7DjxBCCCEKpiyFkXv37mEwGPD09Myw3NPTk+jo6CfuEx0d/cTt9Xo99+7de+I+06dPx9nZOf3H19c3K2UKIYQQIh95oQ6sqv9MHqcoymPLnrf9k5Y/Mnr0aOLi4tJ/bt68+SJlCiGEECIfyNIIrEWLFkWj0Tx2FyQmJuaxux+PeHl5PXF7CwsL3NzcnriPtbU11tbWWSlNCCGEEPlUlu6MWFlZUatWLXbs2JFh+Y4dO2jQoMET96lfv/5j22/fvp3atWtjaSlzwQghhBCFXZYf0wwbNozvvvuO5cuXc/78eYYOHcqNGzcYMGAAYHrE0rNnz/TtBwwYwPXr1xk2bBjnz59n+fLlLFu2jOHDh2ffVQghhBAi38ryRHndu3fn/v37TJ48maioKCpXrkxwcDAlS5YEICoqKsOYI6VKlSI4OJihQ4fy9ddf4+Pjw8KFC3nttdey7yqEEEIIkW9leZwRc5BxRoQQQoj8J7Pf31m+M2IO/9fevQdFVbdxAP8uslzDVfICSKI5BiJaAgpqgbcQJ1OnC1JEm2NONmNhlymcpoQ/dGAqGyvNS96mUhlD6g9KswnMCUwDMhRRM7ykImlctouI8rx/vC/n9bgL7i6w57B+PzPMuL999uzv8Tk/9uHsObtt/RI/b4SIiKjnaHvdvtVxjx7RjFgsFgDg540QERH1QBaLBSaTqd37e8TbNK2trTh//jwCAgI6/DwTRzU1NeGuu+7C2bNn3fbtH3fPkfn1fO6eo7vnB7h/jszPeSICi8WCkJAQeHi0f81Mjzgy4uHhgdDQ0G7bfu/evd1yB7uRu+fI/Ho+d8/R3fMD3D9H5uecjo6ItHHqE1iJiIiIugqbESIiItLUbd2MeHt7Y+nSpW790fPuniPz6/ncPUd3zw9w/xyZX/frESewEhERkfu6rY+MEBERkfbYjBAREZGm2IwQERGRptiMEBERkabcvhlZtmwZJkyYAD8/P/Tp08eux4gIsrKyEBISAl9fX0yaNAlHjhxRxTQ3N+OFF15Av3794O/vj1mzZuH333/vhgw6Vl9fj/T0dJhMJphMJqSnp6OhoaHDxxgMBps/b7/9thIzadIkq/tTU1O7ORtrzuT3zDPPWM09Pj5eFaOX+gGO59jS0oLXX38do0aNgr+/P0JCQvD000/j/Pnzqjitarh69WoMHToUPj4+iImJwb59+zqM37t3L2JiYuDj44O7774ba9assYrJz89HZGQkvL29ERkZiYKCgu6avl0cyXHnzp148MEH0b9/f/Tu3Rvjx4/H7t27VTGbN2+2uSavXLnS3anY5Eh+xcXFNudeXV2titNTDR3Jz9bvE4PBgJEjRyoxeqrf999/j4cffhghISEwGAz44osvbvkYXaxBcXNvvfWWrFixQl5++WUxmUx2PSYnJ0cCAgIkPz9fKisrZe7cuRIcHCxNTU1KzMKFC2XQoEGyZ88eKS8vl8mTJ8u9994r165d66ZMbEtOTpaoqCgpKSmRkpISiYqKkpkzZ3b4mAsXLqh+Nm7cKAaDQU6ePKnEJCYmyoIFC1RxDQ0N3Z2OFWfyM5vNkpycrJr75cuXVTF6qZ+I4zk2NDTItGnTJC8vT6qrq6W0tFTi4uIkJiZGFadFDbdv3y5Go1HWr18vVVVVkpGRIf7+/nL69Gmb8b/99pv4+flJRkaGVFVVyfr168VoNMrnn3+uxJSUlEivXr1k+fLlcvToUVm+fLl4enrK/v37uzWX9jiaY0ZGhuTm5sqBAwfk+PHjsmTJEjEajVJeXq7EbNq0SXr37m21NrXgaH5FRUUCQI4dO6aa+41rSU81dDS/hoYGVV5nz56VwMBAWbp0qRKjp/p99dVX8sYbb0h+fr4AkIKCgg7j9bIG3b4ZabNp0ya7mpHW1lYJCgqSnJwcZezKlStiMplkzZo1IvLfndNoNMr27duVmHPnzomHh4fs2rWry+fenqqqKgGg2iFKS0sFgFRXV9u9ndmzZ8uUKVNUY4mJiZKRkdFVU3WKs/mZzWaZPXt2u/frpX4iXVfDAwcOCADVL1Qtajhu3DhZuHChaiwiIkIyMzNtxr/22msSERGhGnvuueckPj5euZ2SkiLJycmqmOnTp0tqamoXzdoxjuZoS2RkpGRnZyu37f395AqO5tfWjNTX17e7TT3VsLP1KygoEIPBIKdOnVLG9FS/G9nTjOhlDbr92zSOqqmpQW1tLZKSkpQxb29vJCYmoqSkBABQVlaGlpYWVUxISAiioqKUGFcoLS2FyWRCXFycMhYfHw+TyWT3PC5evIjCwkLMnz/f6r7PPvsM/fr1w8iRI/Hqq68q357sKp3Jr7i4GAMGDMA999yDBQsWoK6uTrlPL/UDuqaGANDY2AiDwWD1VqQra3j16lWUlZWp/l8BICkpqd1cSktLreKnT5+On376CS0tLR3GuLpWgHM53qy1tRUWiwWBgYGq8b/++gthYWEIDQ3FzJkzUVFR0WXztldn8hszZgyCg4MxdepUFBUVqe7TSw27on4bNmzAtGnTEBYWphrXQ/2coZc12CO+KM+VamtrAQADBw5UjQ8cOBCnT59WYry8vNC3b1+rmLbHu0JtbS0GDBhgNT5gwAC757FlyxYEBATgkUceUY2npaVh6NChCAoKwuHDh7FkyRIcOnQIe/bs6ZK528PZ/GbMmIHHH38cYWFhqKmpwZtvvokpU6agrKwM3t7euqkf0DU1vHLlCjIzM/Hkk0+qvuTK1TW8dOkSrl+/bnPttJdLbW2tzfhr167h0qVLCA4ObjfG1bUCnMvxZu+++y7+/vtvpKSkKGMRERHYvHkzRo0ahaamJqxcuRITJ07EoUOHMHz48C7NoSPO5BccHIx169YhJiYGzc3N+OSTTzB16lQUFxcjISEBQPt1dnUNO1u/Cxcu4Ouvv8bWrVtV43qpnzP0sgZ7ZDOSlZWF7OzsDmMOHjyI2NhYp5/DYDCobouI1djN7Imxh735AdbzdHQeGzduRFpaGnx8fFTjCxYsUP4dFRWF4cOHIzY2FuXl5YiOjrZr2+3p7vzmzp2r/DsqKgqxsbEICwtDYWGhVdPlyHYd4aoatrS0IDU1Fa2trVi9erXqvu6sYUccXTu24m8ed2Y9didn57Nt2zZkZWXhyy+/VDWh8fHxqpOsJ06ciOjoaHzwwQd4//33u27idnIkv/DwcISHhyu3x48fj7Nnz+Kdd95RmhFHt9ndnJ3L5s2b0adPH8yZM0c1rrf6OUoPa7BHNiOLFi265VUBQ4YMcWrbQUFBAP7bLQYHByvjdXV1SmcYFBSEq1evor6+XvXXdV1dHSZMmODU897I3vx++eUXXLx40eq+P/74w6qLtWXfvn04duwY8vLybhkbHR0No9GIEydOdPqFzFX5tQkODkZYWBhOnDgBoPvrB7gmx5aWFqSkpKCmpgbffffdLb/6uytraEu/fv3Qq1cvq7+Wblw7NwsKCrIZ7+npiTvvvLPDGEf2ga7iTI5t8vLyMH/+fOzYsQPTpk3rMNbDwwNjx45V9llX6Ux+N4qPj8enn36q3NZLDTuTn4hg48aNSE9Ph5eXV4exWtXPGbpZg1129onOOXoCa25urjLW3Nxs8wTWvLw8Jeb8+fOancD6448/KmP79++3++RHs9lsdQVGeyorKwWA7N271+n5Oqqz+bW5dOmSeHt7y5YtW0REP/UTcT7Hq1evypw5c2TkyJFSV1dn13O5oobjxo2T559/XjU2YsSIDk9gHTFihGps4cKFVifPzZgxQxWTnJys6QmsjuQoIrJ161bx8fG55cmEbVpbWyU2NlbmzZvXmak6xZn8bvboo4/K5MmTldt6qqGz+bWdqFtZWXnL59CyfjeCnSew6mENun0zcvr0aamoqJDs7Gy54447pKKiQioqKsRisSgx4eHhsnPnTuV2Tk6OmEwm2blzp1RWVsoTTzxh89Le0NBQ+fbbb6W8vFymTJmi2aW9o0ePltLSUiktLZVRo0ZZXRZ6c34iIo2NjeLn5ycfffSR1TZ//fVXyc7OloMHD0pNTY0UFhZKRESEjBkzRvf5WSwWeeWVV6SkpERqamqkqKhIxo8fL4MGDdJl/UQcz7GlpUVmzZoloaGh8vPPP6suJWxubhYR7WrYdtnkhg0bpKqqShYvXiz+/v7KlQeZmZmSnp6uxLddVvjSSy9JVVWVbNiwweqywh9++EF69eolOTk5cvToUcnJydHFpb325rh161bx9PSUVatWtXuZdVZWluzatUtOnjwpFRUVMm/ePPH09FQ1qXrN77333pOCggI5fvy4HD58WDIzMwWA5OfnKzF6qqGj+bV56qmnJC4uzuY29VQ/i8WivM4BkBUrVkhFRYVypZ1e16DbNyNms1kAWP0UFRUpMQBk06ZNyu3W1lZZunSpBAUFibe3tyQkJFh1w//++68sWrRIAgMDxdfXV2bOnClnzpxxUVb/d/nyZUlLS5OAgAAJCAiQtLQ0q0vsbs5PRGTt2rXi6+tr83Mnzpw5IwkJCRIYGCheXl4ybNgwefHFF60+q8MVHM3vn3/+kaSkJOnfv78YjUYZPHiwmM1mq9ropX4ijudYU1Njc5++cb/WsoarVq2SsLAw8fLykujoaNWRGLPZLImJiar44uJiGTNmjHh5ecmQIUNsNsg7duyQ8PBwMRqNEhERoXqh04IjOSYmJtqsldlsVmIWL14sgwcPFi8vL+nfv78kJSVJSUmJCzNScyS/3NxcGTZsmPj4+Ejfvn3l/vvvl8LCQqtt6qmGju6jDQ0N4uvrK+vWrbO5PT3Vr+0ITnv7m17XoEHkf2eqEBEREWmAnzNCREREmmIzQkRERJpiM0JERESaYjNCREREmmIzQkRERJpiM0JERESaYjNCREREmmIzQkRERJpiM0JERESaYjNCREREmmIzQkRERJpiM0JEmti2bRt8fHxw7tw5ZezZZ5/F6NGj0djYqOHMiMjV+EV5RKQJEcF9992HBx54AB9++CGys7Px8ccfY//+/Rg0aJDW0yMiF/LUegJEdHsyGAxYtmwZHnvsMYSEhGDlypXYt28fGxGi2xCPjBCRpqKjo3HkyBF88803SExM1Ho6RKQBnjNCRJrZvXs3qqurcf36dQwcOFDr6RCRRnhkhIg0UV5ejkmTJmHVqlXYvn07/Pz8sGPHDq2nRUQa4DkjRORyp06dwkMPPYTMzEykp6cjMjISY8eORVlZGWJiYrSeHhG5GI+MEJFL/fnnn5g4cSISEhKwdu1aZXz27Nlobm7Grl27NJwdEWmBzQgRERFpiiewEhERkabYjBAREZGm2IwQERGRptiMEBERkabYjBAREZGm2IwQERGRptiMEBERkabYjBAREZGm2IwQERGRptiMEBERkabYjBAREZGm/gOptcj3BIj5uQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'fitting $e^x$ to polynomials')" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(x, exp.(x), \"k--\")\n", + "for n = 1:4\n", + " plot(x, sum([polydot(p,exp)/polydot(p,p) for p in L[1:n]] .* L[1:n]).(x), \"-\")\n", + "end\n", + "legend([L\"e^x\", [\"degree $i\" for i=0:3]...])\n", + "xlabel(L\"x\")\n", + "title(L\"fitting $e^x$ to polynomials\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By degree 3, it is hard to tell the difference from $e^x$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fitting a non-smooth function\n", + "\n", + "It may not be so surprising that we can fit $e^x$ to polynomials; after all, $e^x$ has a convergent Taylor series, which is also a polynomial. But what we try to fit a *non-smooth* function, such as a **triangle-shape function** $t(x)$? That is,\n", + "\n", + "\n", + "$$\n", + "t(x) = 1 - |x|\n", + "$$\n", + "\n", + "(a triangle peaked at $x=0$ and zero at $x=\\pm 1$). Let's see:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHFCAYAAAAg3/mzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuiElEQVR4nOzdd3hURdvA4d/Znt57SOid0HvvHekoAhYs2BX1E0SliSg2Xgui0nwFaSIovPTee+81JCG9963z/bESjQkQkGQpc1/XXixn58yZ2c3uPnvOzDOKEEIgSZIkSZLkICpHN0CSJEmSpIebDEYkSZIkSXIoGYxIkiRJkuRQMhiRJEmSJMmhZDAiSZIkSZJDyWBEkiRJkiSHksGIJEmSJEkOJYMRSZIkSZIcSgYjkiRJkiQ5lAxGHGzx4sXUqlULJycnFEXh6NGjTJgwAUVRCpWbMWMG8+bNK7J/bGwsEyZM4OjRo0UeK66e+0Fubi4TJkxg69att7XfvdZfR7WnXbt21K5du8yPezeYTCZGjRpFUFAQarWaevXqObQ9N3rfRUZGoihKsY+VttWrVzNhwoQyP+6daNeuHe3atXN0M+6KrVu3oijKbX8u/dt9HxYyGHGgpKQkhg8fTqVKlVi7di179uyhatWqPPPMM+zZs6dQ2ZsFIxMnTiw2GCmunvtBbm4uEydOvO037v3aX+kv3333Hd9//z3jxo1j586d/Pzzzw5tz43ed0FBQezZs4eePXuWeZtWr17NxIkTy/y4D7sGDRqwZ88eGjRo4OimPJA0jm7Aw+z8+fOYzWaGDRtG27ZtC7Y7OzsTGhr6r+sPDQ29K/Xc63Jzcwues4ehvw+ykydP4uTkxMsvv+zoptyUXq+nWbNmjm6GVIbc3d3la16ahOQQTzzxhAAK3dq2bSuEEGL8+PHi7y9NeHh4kbLh4eFiy5YtRbYDYvz48cXWc72unj17ijVr1oj69esLg8EgqlWrJmbPnl2kjTt27BDNmjUTer1eBAcHi/fee0/8+OOPAhBXrly5af8OHDgghgwZIsLDw4XBYBDh4eHi0UcfFZGRkTfd78qVK8X26YknnijUp0OHDokBAwYIT09PERgYeMP+Llq0SHTu3FkEBgYKg8EgqlevLt555x2RnZ1d5PVwcXERFy5cEN27dxcuLi4iNDRUjB49WuTn5xcqGx0dLQYMGCBcXV2Fh4eHGDp0qNi/f78AxNy5cwvKFdee621q1qyZcHZ2Fi4uLqJLly7i8OHDN31erktMTBTPPvusCA0NFTqdTvj6+ooWLVqIDRs2FJRp27atqFWrlti/f79o1aqVcHJyEhUqVBBTp04VVqu1oFxeXp4YPXq0qFu3rnB3dxdeXl6iWbNmYsWKFUWOC4iXXnpJzJw5U1SpUkXodDpRo0YNsXDhwiJl4+LixHPPPSdCQkKEVqsV5cuXFxMmTBBms/mmfSvudZ87d27B38Tfn9u/73P9712Iv57zkydPikcffVS4u7sLf39/8dRTT4n09PRC+1qtVvHVV1+JunXrCoPBIDw8PETTpk3F77//LoS48ftOCHHDNu3YsUN06NBBuLq6CicnJ9G8eXOxatWqQmXmzp0rALF582YxatQo4ePjI7y9vUW/fv3EtWvXbvocFfe58ff3Y15enhgzZowoX7680Gq1Ijg4WLz44osiLS3tpvVer9vFxUWcPHlSdOjQQTg7OwtfX1/x0ksviZycnEJlS3qctm3bFnyu2Ww2UblyZdGlS5cix87KyhLu7u7ixRdfFEKIgs+2X375Rbz77rsiKChIuLm5iY4dO4qzZ88W2X/27NkiIiJC6PV64eXlJfr27StOnz5dbP/OnDkjunTpIpydnUVgYKCYOnWqEEKIPXv2iJYtWwpnZ2dRpUoVMW/evEL7X2/Tli1bCraV9HOuuH0vXbokhgwZIoKCgoROpxP+/v6iQ4cO4siRI0X69zCQZ0Yc5P3336dJkya89NJLfPTRR7Rv3x53d/diyy5fvpyBAwfi4eHBjBkzAPsvs0qVKjF37lyeeuop3nvvvYJTxrc6O3Ds2DHefPNNxowZQ0BAALNmzWLkyJFUrlyZNm3aAHD8+HE6d+5M1apV+emnn3B2dmbmzJnMnz+/RP2LjIykWrVqPProo3h7exMXF8d3331H48aNOX36NL6+vsXuFxQUxNq1a+nWrRsjR47kmWeeAcDPz69Quf79+/Poo48yatQocnJybtiOCxcu0KNHD15//XVcXFw4e/Ysn3zyCfv372fz5s2FyprNZvr06cPIkSN588032b59O5MnT8bDw4MPPvgAgJycHNq3b09qaiqffPIJlStXZu3atQwZMqREz8tHH33Ee++9V/CamUwmPv30U1q3bs3+/fupWbPmTfcfPnw4hw8fZsqUKVStWpX09HQOHz5MSkpKoXLx8fE8/vjjvPnmm4wfP57ly5czduxYgoODGTFiBABGo5HU1FTeeustQkJCMJlMbNy4kf79+zN37tyCctf98ccfbNmyhUmTJuHi4sKMGTN47LHH0Gg0DBw4sOC4TZo0QaVS8cEHH1CpUiX27NnDhx9+SGRkJHPnzr1h3/bs2cPkyZPZsmVLwWtTqVKlm76+NzJgwACGDBnCyJEjOXHiBGPHjgVgzpw5BWWefPJJ5s+fz8iRI5k0aRI6nY7Dhw8TGRkJ3Ph9dyPbtm2jc+fOREREMHv2bPR6PTNmzKB3794sXLiwyN/IM888Q8+ePfnll1+Ijo7m7bffZtiwYUX+Lv/u/fffJycnh19//bXQJcmgoCCEEPTt25dNmzYxduxYWrduzfHjxxk/fjx79uxhz549N20/2N8DPXr04Pnnn2fMmDHs3r2bDz/8kKtXr7Jy5UqAOz6Ooii88sorvP7661y4cIEqVaoUPPbf//6XzMxMXnrppUL7vPvuu7Rs2ZJZs2aRmZnJO++8Q+/evTlz5gxqtRqAqVOn8u677/LYY48xdepUUlJSmDBhAs2bN+fAgQOFjmM2m+nfvz+jRo3i7bff5pdffmHs2LFkZmaybNky3nnnHUJDQ/n666958sknqV27Ng0bNrzh83Wnn3MAPXr0wGq1Mm3aNMLCwkhOTmb37t2kp6ff9DV6YDk6GnqYXY+Wly5dWmh7cb+oa9WqVfAL4+8OHDhww1+NNzozYjAYxNWrVwu25eXlCW9vb/H8888XbBs0aJBwcXERSUlJBdusVquoWbNmic6M/JPFYhHZ2dnCxcVF/Oc//7lp2aSkpCK/eP/Zpw8++OCGj92IzWYTZrNZbNu2TQDi2LFjBY9d/8W5ZMmSQvv06NFDVKtWreD/3377rQDEmjVrCpV7/vnnb3lmJCoqSmg0GvHKK68U2jcrK0sEBgaKwYMH37Dt17m6uorXX3/9pmXatm0rALFv375C22vWrCm6du16w/0sFoswm81i5MiRon79+oUeA4STk5OIj48vVL569eqicuXKBduef/554erqWujvSwghPvvsMwGIU6dO3bTt13+9/t2dnBmZNm1aoXIvvviiMBgMwmazCSGE2L59uwDEuHHjbtqeG73vimtTs2bNhL+/v8jKyirYZrFYRO3atUVoaGjBsa+fGbl+FuC6adOmCUDExcXdtE0vvfRSsX/na9euLbbvixcvFoD44Ycfblrv9ffAP9+fU6ZMEYDYuXPnbR/n72dGhBAiMzNTuLm5iddee63QvjVr1hTt27cv+P/1z8YePXoUKrdkyRIBiD179gghhEhLSxNOTk5FykVFRQm9Xi+GDh1apH/Lli0r2GY2m4Wfn58ACp2dTElJEWq1WowePbpIm/5+duOfbvQ59899k5OTBSCmT59+w7oeNnIA60OoXr16hIWFFfzfYDBQtWpVrl69WrBt27ZtdOjQoVBkr1KpGDx4cImOkZ2dzTvvvEPlypXRaDRoNBpcXV3JycnhzJkz/7oPAwYMKFG5y5cvM3ToUAIDA1Gr1Wi12oLxOf9sh6Io9O7du9C2iIiIIs+Lm5sb3bp1K1Tuscceu2Vb1q1bh8ViYcSIEVgsloKbwWCgbdu2BQN2hRCFHrdYLAV1NGnShHnz5vHhhx+yd+9ezGZzsccKDAykSZMmN+0LwNKlS2nZsiWurq5oNBq0Wi2zZ88u9jXq2LEjAQEBBf9Xq9UMGTKEixcvEhMTA8CqVato3749wcHBhdrfvXv3guevLPTp06fQ/yMiIsjPzycxMRGANWvWABT5JX6ncnJy2LdvHwMHDsTV1bVgu1qtZvjw4cTExHDu3LlbthEo8hqV1PUzKk8++WSh7YMGDcLFxYVNmzaVqJ7HH3+80P+HDh0KwJYtW/71cdzc3HjqqaeYN29ewRmvzZs3c/r06WLHCd3qOdqzZw95eXlF2lKuXDk6dOhQpC2KotCjR4+C/2s0GipXrkxQUBD169cv2O7t7Y2/v/8tX4s7/Zzz9vamUqVKfPrpp3zxxRccOXIEm81202M96GQw8hDy8fEpsk2v15OXl1fw/5SUlEJfPNcVt604Q4cO5ZtvvuGZZ55h3bp17N+/nwMHDuDn51foOHcqKCjolmWys7Np3bo1+/bt48MPP2Tr1q0cOHCA3377DaBIO5ydnTEYDIW26fV68vPzC/7/b56XhIQEABo3boxWqy10W7x4McnJyYD9C/ufj1+/dLB48WKeeOIJZs2aRfPmzfH29mbEiBHEx8cXOlZJXuPffvuNwYMHExISwvz589mzZw8HDhzg6aefLtTn6wIDA2+47fplooSEBFauXFmk/bVq1QIo6GNp+2f/r182uN7/pKQk1Gp1sX26E2lpaQghiv27DA4OBihyKe1WbbxdKSkpaDSaIpc0FUUhMDCwyPGLo9FoirTrn6/xvz3OK6+8QlZWFgsWLADgm2++ITQ0lEceeaRI2Vs9R9ePdaPn/Z9tKe49rtPp8Pb2LrK/Tqcr9n3wd3f6OacoCps2baJr165MmzaNBg0a4Ofnx6uvvkpWVtZNj/mgkmNGpGL5+PgUfHn+3T+/9IqTkZHBqlWrGD9+PGPGjCnYfn2Mwt1QkvwdmzdvJjY2lq1btxaarfRvrsn6+Piwf//+IttL8rxcP8v066+/Eh4efsNyDRs25MCBA4W2Xf9C8/X1Zfr06UyfPp2oqCj++OMPxowZQ2JiImvXrr2drjB//nwqVKjA4sWLCz2fRqOx2PLF9fH6tutfGr6+vkRERDBlypRi67jej9tx/cvjn+0qyZfrjfj5+WG1WomPjy9RYHsrXl5eqFQq4uLiijwWGxsLcNPxA3eDj48PFouFpKSkQoGCEIL4+HgaN258yzosFgspKSmFgoB/vsb/9jiVK1eme/fufPvtt3Tv3p0//viDiRMnFowBuR3X23Sj5700n/N/+zkXHh7O7NmzAfvMyiVLljBhwgRMJhMzZ84stXbfq+SZkfvEP3/V/n073PmvqRtp27YtmzdvLvRL1mazsXTp0lvuqygKQogig9hmzZqF1Wq95f53q0/Xv2D/2Y7vv//+juts27YtWVlZBaf5r1u0aNEt9+3atSsajYZLly7RqFGjYm9gP5X9z+06na5IfWFhYbz88st07tyZw4cP33ZfFEVBp9MVCkTi4+P5/fffiy2/adOmQgGq1Wpl8eLFVKpUqWDQdK9evTh58iSVKlUqtn93EowEBARgMBg4fvx4oe03amdJXL9s9N1339203I3ed//k4uJC06ZN+e233wqVt9lszJ8/n9DQUKpWrXrH7f1nm6Do+6Njx44ARQaZL1u2jJycnILHb+X6GYvrfvnlF4CC5GV34zivvfYax48f54knnkCtVvPss8+WqG3/1Lx5c5ycnIq0JSYmhs2bN5e4z3fi337O/V3VqlV57733qFOnzh29lx8E8szIfaJOnTosWrSIxYsXU7FiRQwGA3Xq1KFSpUo4OTmxYMECatSogaurK8HBwXf0of9348aNY+XKlXTs2JFx48bh5OTEzJkzC67zqlQ3jmPd3d1p06YNn376Kb6+vpQvX55t27Yxe/ZsPD09b3lsNzc3wsPD+f333+nYsSPe3t4F9dyOFi1a4OXlxahRoxg/fjxarZYFCxZw7Nix26rn75544gm+/PJLhg0bxocffkjlypVZs2YN69atA27+vJQvX55JkyYxbtw4Ll++TLdu3fDy8iIhIYH9+/fj4uJy02RWGRkZtG/fnqFDh1K9enXc3Nw4cOAAa9eupX///rfdl169evHbb7/x4osvMnDgQKKjo5k8eTJBQUFcuHChSHlfX186dOjA+++/XzCb5uzZs4UCsUmTJrFhwwZatGjBq6++SrVq1cjPzycyMpLVq1czc+bM284FoygKw4YNY86cOVSqVIm6deuyf//+gi/JO9G6dWuGDx/Ohx9+SEJCAr169UKv13PkyBGcnZ155ZVXgBu/74ozdepUOnfuTPv27XnrrbfQ6XTMmDGDkydPsnDhwruWjff68T/55BO6d++OWq0mIiKCzp0707VrV9555x0yMzNp2bJlwSyX+vXrM3z48FvWrdPp+Pzzz8nOzqZx48YFs2m6d+9Oq1atAO7KcTp37kzNmjXZsmULw4YNw9/f/46eC09PT95//33effddRowYwWOPPUZKSgoTJ07EYDAwfvz4O6q3JP7N59zx48d5+eWXGTRoEFWqVEGn07F582aOHz9e6CzLQ8WRo2cfdrczmyYyMlJ06dJFuLm5Fcp3IIQQCxcuFNWrVxdarbbEeUb+6Z+j3oWw50xo2rSp0Ov1IjAwULz99tvik08+EUCRnA3/FBMTIwYMGCC8vLyEm5ub6Natmzh58qQIDw8vyBlyMxs3bhT169cXer2+2Dwjf5/lc11x/d29e7do3ry5cHZ2Fn5+fuKZZ54Rhw8fLjITorhZHDeqMyoqSvTv31+4uroKNzc3MWDAALF69WoBFOSouNG+QgixYsUK0b59e+Hu7i70er0IDw8XAwcOFBs3brzpc5Kfny9GjRolIiIihLu7u3BychLVqlUT48ePL5QH4nqekX964oknCv3dCCHExx9/LMqXLy/0er2oUaOG+PHHH4ttN3/mGZkxY4aoVKmS0Gq1onr16mLBggVFjpOUlCReffVVUaFCBaHVaoW3t7do2LChGDduXJH8LsW1sbjXISMjQzzzzDMiICBAuLi4iN69e4vIyMgbzqb559/H9Rksf58FZrVaxZdffilq164tdDqd8PDwEM2bNxcrV64sKHOj992t8oy4uLgIJycn0axZs0L1/b0tBw4cKLS9JLM1hBDCaDSKZ555Rvj5+QlFUYrkGXnnnXdEeHi40Gq1IigoSLzwwgu3lWfk+PHjol27dsLJyUl4e3uLF154ocjrVtLjFPe5ct2ECRMEIPbu3VvksRt9Nt7oeZ81a5aIiIgoeB0feeSRIjO3bvS3daP3yz8/K4t7fUr6OffPfRMSEsSTTz4pqlevLlxcXISrq6uIiIgQX375pbBYLMU+Xw86RQghyibskR4EXbp0ITIykvPnzzu6KfeU6/lDoqKiHsgssIqi8NJLL/HNN984uilSKXnyySf59ddfyc7OLpPjNWrUCEVRioyPkh5O8jKNdEOjR4+mfv36lCtXjtTUVBYsWMCGDRsKBl09rK5/IVevXh2z2czmzZv56quvGDZs2AMZiEjS3ZKZmcnJkydZtWoVhw4dYvny5Y5uknSPkMGIdENWq5UPPviA+Ph4FEWhZs2a/PzzzwwbNszRTXMoZ2dnvvzySyIjIzEajYSFhfHOO+/w3nvvObppknRPO3z4MO3bt8fHx4fx48fTt29fRzdJukfIyzSSJEmSJDmUnNorSZIkSZJDyWBEkiRJkiSHksGIJEmSJEkOdV8MYLXZbMTGxuLm5nbXEgdJkiRJklS6hBBkZWURHBx806SQ90UwEhsbS7ly5RzdDEmSJEmS7kB0dPRNUx/cF8GIm5sbYO+Mu7u7g1sjSZIkSVJJZGZmUq5cuYLv8Ru5L4KR65dm3N3dZTAiSZIkSfeZWw2xkANYJUmSJElyKBmMSJIkSZLkUDIYkSRJkiTJoWQwIkmSJEmSQ8lgRJIkSZIkh5LBiCRJkiRJDiWDEUmSJEmSHEoGI5IkSZIkOZQMRiRJkiRJcqjbDka2b99O7969CQ4ORlEUVqxYcct9tm3bRsOGDTEYDFSsWJGZM2feSVslSZIkSXoA3XYwkpOTQ926dfnmm29KVP7KlSv06NGD1q1bc+TIEd59911effVVli1bdtuNlSRJkiTpwXPba9N0796d7t27l7j8zJkzCQsLY/r06QDUqFGDgwcP8tlnnzFgwIDbPbwkSZIkSQ+YUh8zsmfPHrp06VJoW9euXTl48CBms7nYfYxGI5mZmYVukiRJkiQ9mEo9GImPjycgIKDQtoCAACwWC8nJycXuM3XqVDw8PApu5cqVK+1mSpLkQDabjY0bNzq6GZIkOUiZzKb559LBQohit183duxYMjIyCm7R0dGl3kZJksqOEIKDBw8C9kCkX79+dO7cmcWLFzu4ZZIkOUKpByOBgYHEx8cX2paYmIhGo8HHx6fYffR6Pe7u7oVukiQ9OH744QcaN27M2LFjUalU1K5dG4Bnn32WCxcuOLh1kiSVtVIPRpo3b86GDRsKbVu/fj2NGjVCq9WW9uElSbrHHDlyhNdeew2g4AfJxIkTadu2LVlZWQwaNIi8vDxHNlGSpDJ228FIdnY2R48e5ejRo4B96u7Ro0eJiooC7JdYRowYUVB+1KhRXL16ldGjR3PmzBnmzJnD7Nmzeeutt+5ODyRJum9kZmYyePBgjEYjvXr1YvTo0QBoNBp++eUX/Pz8OHbsGK+//rpjGypJUpm67WDk4MGD1K9fn/r16wMwevRo6tevzwcffABAXFxcQWACUKFCBVavXs3WrVupV68ekydP5quvvpLTeiXpISOE4Nlnn+XixYuEhYXx008/oVL99REUHBzMggULUBSFH374gV9++cWBrZUkqSwp4vpo0ntYZmYmHh4eZGRkyPEjknSf+u6773jxxRfRaDTs2LGDZs2aFVvugw8+YPLkyXh7exMZGYmbm1sZt1SSpLulpN/ft530TJIk6XZFR0fzxhtvAPDJJ5/cMBABGD9+PFFRUbz44osyEJGkh4Q8MyJJUplYtGgRq1at4ueff77htH5Jkh4sJf3+lsGIJEn3tGPHjnHlyhX69u3r6KZIknSbSvr9XSZJzyRJejj9/vvvRfIM3Y5Dhw7RtGlTHn/8cc6cOXMXWyZJ0r1EjhmRJKlUHDx4kEGDBuHt7c3+/fsJCwvDZDIRFRVFbGwsSUlJZGdnYzKZUBQFg8GAu7s7/v7+hIWFERgYSL169WjVqhWbNm1i0KBB7N+/H2dnZ0d3TZKku0wGI5Ik3XXp6ekMHjwYs9lMixYtyMrKYuHChVy8eBGr1VqiOpydnalZsybTp0+nc+fOnDp1ipdffpk5c+aUcuslSSprcsyIJEl3lRCCAQMGsGLFCjp37kznzp3Jzs4ueNxN70KwzhdPkxPOJh1aq4JAwaS1kKUzkarKIjY/GZP1r1W9PTw8mD59OlFRUcybN48nnnjCEV2TJOk2yQGskiQ5xPTp05kxYwZdunTB19cXACe1nmqWYCqa/PESLijcfDaNDRuxqjQuGhK4LBKwCRsAZ86cYefOnaxfv55atWqVel8kSfp3ZDAiSVKZ27lzJ19//TU1atQAwICWeuYK1LCGoEaF2l2HKsQJs5OJfF0eOeZMzFYjGo0WjaLFgAsuijvqJDBFZYFVkIORI5rLnNPEIgCr1Upubi6ffvppoQyukiTde2QwIklSmbp8+TI//vgjer0eRSjUsYZR1xKOwclAvp+R6NxzXIw6SEbCrWfXKIoK35BwqldsQZA1HCXOShrZ7NNcJEadAtiXmujXr5/8TJCke5gMRiRJKhNCCHbs2MHmzZsB8LA5095cCx+9OzGqSxw8/z9M5r+twqsoePgH4OrljYunN1q9AavFjMVkIic9ldRrMRhzcwodw8s1kCZVeuOR6cU5JZa9mvNYFBtOTk4MGTKE8uXLl2GPJUkqKRmMSJJU6iwWCytXruTYsWMAVLME09RWhWjTaY7EbMAqLAD4hIZRpWlLQqrVIKhKNfTOLjesUwhBTnoa186e5srRg0QePUROehoArhovmpV/BI3NjS3akySrslApCn0eeYR69eqVen8lSbo9MhiRJKlU5eXlsWjhIq5GXUURCi0sVfE3qdkbu5JsSxp6ZxfqdOxKzTYd8AwoR8KVDBIiM8lIzCMzJY+slHwsJhtWiw2bTaB30mBw1eLkqsUzwAXfUFd8Ql3xCXEm+tQxjm1YzeVDBxDCRpBTRer5deOAIZIr6kQA2rRpQ/v27WWqeUm6h8hgRJKkUpObm8tPc+aRkJyIVqhpb6xFSspxzmcexNnDk4Y9+1KhfnuiTmdx5VgySVezsNnu7KNGZ1BTrqY3YbV88A0VHFmzjFNbN6JV9DTw6Uyip5ZjmqsANG3clG49usmARJLuETIYkSSpVOTm5vLTj3NJSEvCILS0y63K2YQNpFkSqN/9EbxD23FubwqJV7MK7efqpSeokgdeQS64+zrh5mNAZ1Cj1qhQVAqmPAt52WZyM0ykxmaTHJNNUnQWxhxLQR1qjYqK9XwJqSa4sHcFlw7uo7JbfZz8a7Bbdx6AJvUb0b1PTxmQSNI9QAYjkiTddbm5ucz7fg6JGckYhJYWWSEci/sfziFBVKz3GFeOWcjLsicrUxQIqeZF5Yb+lKvpjbuP020fz2YTJF3N4urJZC4fSyYl5q/kad7BLoRUSWX/qh8I0AThF9ycvfpLADSOaEiPfr1kQCJJDiaDEUmS7iqTycTcb2cRl5GIk9DRIMOLo9dWow9qiEHVHnO+Pc27q7eeiHblqNYsEGd33V1tQ1JUFqd3xnJuf3zB8dx9Fc6d+4FQnZpy5TpwQB8FCrRq2JxOvbve1eNLknR7ZDAiSdJdY7VaWTDzJy4nRaEXGmqnGDgQtQUPv0EYtGEA+IS40qhHeSrW80WlLpqMTFitmGNiMMcnYElMxJKcjDAaERYLwmpB5eyM2s0Ntbs72uBgtOHhqD09iz27Ycw1c3xLDMc2RWPMtV/GiU9Zj6/qEhXKd+Gw0zUAurXsRLPOrUrxmZEk6WZkMCJJ0l0hhOC3WYs4ce0caqGiZqqOk9dO4+M3FEXR4eZtoOkjFanaOABF9VfgYElOJmfPXnIPHCD/7FmM588j8vNv69gqDw8MNWvgXL8+TvXq4dywISqXv6YFm/IsHNkQxZH1UVgtNoQtCZ3YjLtPHc4aklEE9O/alzot6t2tp0OSpNsggxFJku6KjQtWsfPCQRQB1dINJGVZUbTNUKkVGvWoQIOuYWi0agCMl6+QuXo1WRs2YDx3rkhdil6PNigIjb8/Gl9fFGcnFI0GRaXGlpeHNSsTa3o65phrWOKLZmpVdDpcmjfHtUMH3Lp0RuPlBUBGUh47l14g8ngywpaPyroOJ//yXNVnoBYqRgx6nPDalUr3iZIkqQgZjEiS9K8dWbuH3/euA6BSpp60NHfU+hoEVfKg3bDqeAe5YMvJIeOPP0hbuhTj6TOF9tfXqIFLs2Y4RdRBX606uvAwFLW6RMe25eVhiowk79hx8o4cIffgQczXrv1VQKvFrUMHPAf0x6VlSxS1mstHktj6y1lyM/Ow5W5GF+ZHvDYLZ6Hj2eeewyvE9649N5Ik3ZoMRiRJ+lciD5xlwaqlmBUrIXlO5CX7oNFXpNkjlajfOQxLQjyp834i/bffsGX9OY1Xo8GlRXPcu/fAtW0bNN7ed609QghMFy+StXkLWevWkX/6dMFj2vAwfJ56Go9+fcnINDLxuR+o7F8fxbwXY4iKTLURP9x5dvQL6Nxvf1aPJEl3RgYjkiTdsdQLccz9+SeyVPl4mw0oCcGk5qrZHb2UlUu+I/XHH0lf+ivCbJ/Gqw0Pw/vxx3Hv3bvg0klpyz97lvRlv5Hx++/YMjMBUPv64jNyJOcrVmTMy1/Qv9kLaDlGWrARs2KlkuLP0LHPodZpyqSNkvSwk8GIJEl3JD81i/9+OZtYdTpONi0u8WGcio5m1Z7prH3+KdSr1xQEIc5NmuDzzEhcWrVCURWdQVMWbDk5pP/6KynzfsISFweANjiYg9WqMva3rYzsMgEf92gSfbMRCjTWV6THmOEyB4kklQEZjEiSdNss+UZ+//AnTmhiUQkF76RybD6yD3FmKRMqVUSXY19N17lxY3xffhmXpk0c3OK/CLOZjN9/J+mrr7Ek2teriTboGXMllq7dJhEakkOSexZqoaKTfwTNX+rr2AZL0kNABiOSJN0Wm9XKlsnz2SkiEYrAJzOQXbu20CNuL42dnQHQhYfjP3YMbu3aObaxN2HLyyP15/mk/PADtuxsrEIwPyMLQ7dxuAdlkqnPx93mRNdaDak1pJOjmytJD7SSfn875ryqJEn3nL1fLuGQiEUoAo98d3KP7+SdtKM0dnZGcXLC/+23qbjyj7saiAghsAnbXasPQOXkhO9zz1Jx9f9w79EdtaLwhKc7XY/+SERwI/RWDZmqPPafOMvlbfvv6rElSboz8syIJEkcnLeCo5eiiFGn4mTV0T4yHrcDGwAQERFU/uILdKEht1WnyWriSsaVgltMdgxJuUkk5SWRbkwn15xLvjW/IBjRKBr0Gj0eOg889B74OvkS4hpCqFsoYW5hVPeuTqBL4G2P9cjesZPo98ZBQiIoCpf7v8pBTTxCgYb5oTR5qh0B1SrfVp2SJJWMvEwjSVKJnF6/gyubL3LAcBWVUGi7/yT+V06iODtjevxx6ox+o0QBQIYxg31x+ziSeITjScc5k3oGs818V9vqofegpndNGgY0pFFgI+r41kGnvvX6N9bsbBKmTiVj2W8AHOw4mEt+ChqhonlmEI3f7Yu7n99dbaskSTIYkSSpBKJPnefSrJ3scI/BqtiodeoytU8cwFCrFiFffI4uPPym+1/OuMyGyA1sv7adk8kni1xycdO5UdGjIhU9KlLOrRz+zv74OfvhbfDGWeOMk8YJjUqDVVix2qzkWfJIN6aTacokMTeRa9nXiMmK4XLGZS6nX8YiLIXqd9I40SK4Be3KtaNNaBu8DTfPaxK9bBnx73+Ai83Ghl4DSXNV42dzJzzNSpdPXkbnLHOQSNLdJIMRSZJuKj0hhT0TfuKSnyBZlYVfSjbtN/yPI+VC6f/bbzi5uRW7X0JOAn9c+oM1kWu4kHah0GMVPSrSNKgpdf3qEuEbQahb6F2bQmuymriYfpHjScc5EH+AgwkHSc1PLXhcrahpHtyc3hV70z6sPU6aooHFoUOH6Ne6NZ/4+VPVx5u1PftgVkM9czjm/EQGfPo2KgdNUZakB5EMRiRJuqG87HyWv/kxTr7hHNNeRWux0WntGt4/d45dNitHjhyhatWqBeVtwsb2mO38ev5XdlzbUWicR9PgpnQK60SrkFYEugSWWR+EEJxNPcvW6K1sid7CmdS/UtG7aF3oU6kPj1Z7lIqeFQvt98033zD6lVd4OzCQNrXrsKdlCxQB7XOrkOyZS/9xz5ZZHyTpQSeDEUmSimU12/j5rU+orC/PJqdzCAWaHj/Ba6v/xwWjkf/+978MHz4cgDxLHn9c/IOfz/zM1cyrBXU08G9A38p96RDWAQ+9h6O6UkhkRiSrLq9i1eVVXMv+aw2bpkFNebr20zQPao6iKAghGDx4ML/++itPVahI6/YduVouGDebEw1SXRCNq9LhiS4O7IkkPThkMCJJUhHCJlg0aR4hyUb2e6eTrcqnQkYWkxcu4FJCAiNHjmTWrFnkmnNZfG4x807NK7gU4qZzo3/l/vSv2p+KHhVvcSTHsQkbe+P2sujsIrbFbCs4i1PLpxbP1nmWDmEdyMzMpGHDhly6dIlXu3UnpF59cvVaqlqC0MVFU/mxx6jXqZaDeyJJ9z8ZjEiSVMTGOdvI3LUeS1AFTmticLXBxl07WLd5M3Xq1GHH7h2suLqCOSfnFAQhIa4hDK85nH6V++GsdXZwD25PbHYsP5/+mV/P/0q+NR+Amj41eb3B6+jj9TRv3hyTycT0CRNIswlQoFN+LU7H7qLzm2OoULfsLjtJ0oNIBiOSJBVybPNF9s39krohnVijPwaKPevq5A8/xMXFhRnrZ7AofhHRWdEAlHMrx/MRz9OzYk80qvt7YbnU/FTmn57PgjMLyLXkAvbLN+GXwpk/fT5Lly4l+tJlDhw7iovQ0z4jnN1pxxg29QO8g10c3HpJun/JYESSpAJXTyWxYurHtPFrzDa3KNJVudStWxe1Ws3IMSNpOqYpV4V9TIivky+v1H+F3pV6o1VpHdzyuyslL4VZJ2ax+NxizDYzakXN4MqDebXRq+jQMeObb0nPzKC6JQSPpESiFHdGfPY8Tq63zmUiSVJRMh28JEkApERnsvKz/1LNxZcoFyPpqlxcnJ1p07ENZwLPEPxOMFfFVXQqHc/WeZZV/VbRv0r/By4QAfBx8uGdJu+wst9KOoV1wiqsLLywkN4rerM+Zj1169cD4KzmGl7eNdHmnGT5xN+xWu5uynpJkgqTZ0Yk6QGWm5bL/P9bgiZ/Fw1DHuF3/SFsiqBS00r8kvsLMdkxAHQO78zohqMJdQt1cIvL1s5rO5m6bypRWVEA5JzOYYT7CDCDq81A5+zKbIlfS7Wa/ek2rvtdy5kiSQ8LeZlGkh5yVrOFJa8uISF9LR2D+rDdNYokVSZp2jQ2h2wGBQJdAhnffDytQlo5urkOY7KamHdqHt8d/g6LYkHJVhiYMQCbSVDTEopPSiYnclJp1qgVzV7t5ujmStJ9RV6mkaSHmBCCTe8sICH7GDU9anHNyUiSKhOLYmF34G5QoKG6Icv7LH+oAxEAnVrHcxHP8Vu/33BKd0K4CrZ5bQfgtCYGD8/K+Cip7D96lbM/rXNwayXpwSSDEUl6wAghODR+NmfT8/AghRDPuhzUXALguPdxMlIyqHO6DvOGzcNV5+rg1t47KnhUYP1T67FsthCvjeeK6xUAtmvP0MC3KyJvC1u2phK/bqeDWypJDx4ZjEjSA+bSF7PZd80Da95mGvv1YLf2PBbFRpIhicPHD+OyzIU5E+c4upn3JE93Txa/uZiYqTHsz91PvjqfTFUeZ5xSiPBsRr5pO+v/e4Hsw0cd3VRJeqDIYESSHiDxc35m21EXTPlbqO3RmESDhWvqVKxYWb1pNZmLM1m6YCkGg8HRTb1nRURE8PnYzzk3+RxbY7YCcEodhYdnZbzVgjRtCpumrMZ48aJjGypJDxAZjEjSAyJjzTq2rU4hWx2Dl9pCmEc99mnPA7B973YiN0Yye/ZsKleu7OCW3vtGjhzJk8OfZHC1wfhU8EEosEN7hoZ+XRH5e4jyrsLeN/6D+dq1W1cmSdItydk0kvQAyD18hJ1j53CuXCus2YvpEjyCAy6xXFEn4ufvx/Fjx9FqtXzzzTeObup9QwiBoijk5OTw1ddfYcw30tBcEUNKIicyT2NwHkCLhEXU+flr1J6ejm6uJN2T5GwaSXpIGK9c4dSbU7gQ1gNz7lpqejYjzWDjijoRRVHo17cf33//PV999ZWjm3pfuZ5TxMXFhU4dOwFwRHMFf8+aeKnVmMyHOeLVg8hX30SYTI5sqiTd92QwIkn3MUtKCpdHvcrxsEGYTYfwUENFj4bs0p4DoFmzZgQHBwOgUsm3+51IS0tj+PDhnD9/Hpsi2KU7R2O/btjyD5Gts3IsoyJx4ydwH5xklqR71v29+pUkPcRs+flEvfgiJ13akKsVWLP20zh4GAe1l8lVjKSkpPDll1/SoUMHtNoySu0uBGTFQeplyIyz389OsP+bmwqmbDBmgynHfp9/fIGrNKBzAZ0b6F1B5wqu/uAWCK6B9n89QsCnMhg8yqRLnp6eNG3alBUrVlChfAUSdRlcczJS07MZpzPXEhs4nHO7fkb3/Q/4jnq+TNokSQ+aOwpGZsyYwaeffkpcXBy1atVi+vTptG7d+oblFyxYwLRp07hw4QIeHh5069aNzz77DB8fnztuuCQ9zIQQxL33PpcT3UioWg9z1gKqujfAaDBwVnMagJUrV9KnT5/SC0SyEiDuKMQehaSzkHIBUi6DOeff1ZuTVLJyLn72oMSnMgTUhuB6EFjHHszcRYqiMGPGDA4cOMD6Devp2bMnBzSX6O/VmGu558jK2825qo/hMXMqurByuPfocVePL0kPg9sewLp48WKGDx/OjBkzaNmyJd9//z2zZs3i9OnThIWFFSm/c+dO2rZty5dffknv3r25du0ao0aNokqVKixfvrxEx5QDWCWpsOQfZ3Hlu1842PD/MJoOoLecoXPoU/yhP0ymKo9Dhw6RkJDAjh070Ov1//6AVgvEH4fInRC1F2KPQFZs8WUVNXiFg3sIuAWBW4D9X2cf+5kOvav9zIfO2V620HFMf541ybL/m58JOYmQFf/XLT0KsuNvcGwV+FaFkIYQ3hLKt7K35S44deoUTZo0YfDgwYSHhxNq9aZxdiAbY+ejcxuMZ66R+qe+ptJ/f8Kpbt27ckxJut+V2to0TZs2pUGDBnz33XcF22rUqEHfvn2ZOnVqkfKfffYZ3333HZcuXSrY9vXXXzNt2jSio6NLdEwZjEjSXzK3biXqxZc5VP9tMp10mLJ+oU3AQGLcbRzTXCUrK4v58+ezd+9eKlSocOcHSrkE59fC5W0QtQeMmf8ooIBvFQiubz8z4VvFfpbCqzyoS/mykDELUi7a25h0zh4oxR4tPkjxCLMHJZU6QJVO4OR1x4f96aefePPNNxk1ahQajYa2pprkJJ/lXPYF9G7DKR+1iQqZ26m24g80fn533j9JekCU9Pv7ti7TmEwmDh06xJgxYwpt79KlC7t37y52nxYtWjBu3DhWr15N9+7dSUxM5Ndff6Vnz543PI7RaMRoNBbqjCRJkHfxAlfeeJXo8J5kuQZjzp5PuEsNtC5+HFcfAOB///sfM2fOvP1AxGa1n/U4vwbOrbVfdvk7vQeEt7DfQhvZL4no3e5Sz26T3s0eBAXXL7w9M85+6Sh6v/0sTuxhyIiCY7/Yb4oawppD1a5QrQf43l7OlSeeeIJt27axbds2OnbsyF7tefp5NeVaznny8vdwNawzXsfOcuL5EdRb9DuKTnf3+ixJD7DbCkaSk5OxWq0EBAQU2h4QEEB8fPGnTVu0aMGCBQsYMmQI+fn5WCwW+vTpw9dff33D40ydOpWJEyfeTtMk6YFnTE/l2MihCF0YV8M6Y8nfg9aWS13fjqzVnkQoglOnTtG9e3f69etXskqFgGuH4MSvcOo3+2DT61Qa+6WOKp2hfGt78KFS37iue4F7kP1Wrbv9/8ZsiN4HV7bDhfWQeBqu7rTfNrwPgRFQZxDU7g8eoSU6xDfffMMbb7yBj48PKSkp7NddopFvN7YmLEGtrcLpGsNptn8Ke8c8T/Mv5pZiZyXpwXFbl2liY2MJCQlh9+7dNG/evGD7lClT+Pnnnzl79myRfU6fPk2nTp1444036Nq1K3Fxcbz99ts0btyY2bNnF3uc4s6MlCtXTl6mkR5aJouRLY91Jvh0FnuajMWotmLKXkhTn+5keLpxQHsRrVbLuXPnmDVrFrpb/SJPj4Ij8+H4YkiL/Gu7wROqdoNq3eyXNcpoxkqZSYuE8+vg3BqI3AE2y1+PhbeEuo9Crf72cS23EBsby48//ogQgs6mCBISDhJlikPj/BiBCQepdfZn4l7pT4eXppRefyTpHlcqY0ZMJhPOzs4sXbq00C+v1157jaNHj7Jt27Yi+wwfPpz8/HyWLl1asG3nzp20bt2a2NhYgoKC7lpnJOlBZLKa+GVMf5quvMTJGsNI8G+CJXchvmpn6gf15jfdPqyKjUceeYT69evfuCKrBS6sg4Nz4eJGCqbVap2hek+oPdAegGgekksLOSlw5nf7WaGru/7arnODiMHQ8EkIirhpFevXr2f37t04Cz198uqzKWYuZm1ttE4tqXPyezzTjhPzySh69HqtdPsiSfeoUsnAqtPpaNiwIRs2bCi0fcOGDbRo0aLYfXJzc4skW1Kr7ad6ZZIgSbo5s83M9O+fpvGqSyT51iUxoDlW4yEwp9HIrxs7NWewKjYqVqxIvXr1iq8kNxW2fQrTa8OioXBxAyCgQhvoPwvevggDZtnPhjwsgQiAiw80ehqeWg1vnIJOE8Crgn0mz8HZ8H1r+LGDPVixmoutIjExkdSUVHIVI0d10TTw6YzNeACbJZHTNYchVK64T5zJbwfmlWnXJOl+c9spGUePHs2sWbOYM2cOZ86c4Y033iAqKopRo0YBMHbsWEaMGFFQvnfv3vz222989913XL58mV27dvHqq6/SpEmTgsyQkiQVZbVZmfLHaNrMOoRZ686Z2iOwWdOwmfZR26sVMbps4tTpmE1mAgMDC9KXF0i5BKtGwxc1YcuH9sRjzr7Q8jV45TA8sRIiBt31vBz3JY9QaPWG/XkZ8TvU6gcqrX08zbKR8J96sPtr+1TjvxkwYAAnT50E4KzmGhpXf4KdKiHMG7AoBk5GjMA7C4wfTGPZ2aXFHFiSJLiDYGTIkCFMnz6dSZMmUa9ePbZv387q1asJD7fP5Y+LiyMqKqqg/JNPPskXX3zBN998Q+3atRk0aBDVqlXjt99+u3u9kKQHjE3YGL/9Pep+vRH3XDhdfyRmoUexbsFD7U2oRwT7NfYl7C9fuUz79u3/2jnuGCx6HL5uaP+Fb8mDoLrQ/0cYfRo6TwKfSg7q2T1OpYKK7WDQPBh9Btq9aw/gMmNg/Xv2wG7DB5CTDICTkxPfffcdx48fB+wr+9bz7QymdGymw6S71SI2pDn1rgiOfTmBtVfWOq5vknQPk6v2StI9RgjBh3s/xGnGQnoeEFwLb8u5CoOxWU5jzlpP55ARHHRJ4Ko6iYSEBN555x3Kly9vD0K2fgLn/vdXZVW7QfOX7Xk2/nnmRCoZc759oO+ebyHZvuYPWmdo8iy0eBVcfJk/fz5HjhzBzc2NupZwvFOzOZy+GY3LcPQ6dxrtHI/elMqHQ3W88NTXtAlt49g+SVIZkav2StJ9SAjB5wc/58qqRfQ8IMjXe3K5yiCELRebaQfVPBqRboCr6iSsVisdOnSgvCEbFg6F79vYAxFFBXUGw0v7YehiqNBaBiL/htYADZ+AF/fCY4vsuU3MubDrPzC9Dmz4gGH9e2A228eVHFdH4eFRER9tICqxFZNF4UKr11GEwsu/m5iw6g0OxB9wcKck6d4igxFJuofMOzWPVXvn8cL/bAjgcof/w2xRUKt2YrBqqeLVjN3a8wBobfkM0myGma0KByEv7oMBP4JfNcd25kGjUtnzlzy7BYYuKRyUfFWPz/uHE3ctBqEIdmjP0si3G+bsKLCdJdnqQ3zd/nhnw/Mr8nhlw0ucSDrh6B5J0j1DBiOSdI/449IffHngc15eacU1H1IaDiA+zwNhjSQ37SSNfLtxQHeFPMWE1pTBWMN8e1ZRhH3AZUEQUtXRXXmwKYo9g+uzW+CxxfZU+PkZaLdO4uMqB9AqghRVFlcMmdT0bIHNtB1hy+WCX0fyPYOJiBR03ZHDC5te4ErGFUf3RpLuCTIYkaR7wPaY7Xyw6wP67RHUigKTRyBnfTshhAmsWyjvWhuTiwsX1HEgBCN0a9BacyGsBTyz2T7gUgYhZUtR7NOhn98Oj8wAt2C8ciPpKdYDcFhzhSDPOrjYXNBqdmOxCC51eAcBDN5pw+9yOi9sfIHkvGTH9kOS7gEyGJEkBzuedJy3tr1F5WgLg3cKBHCly1hMRhs67QHIM1LLpy07tfYMx82Uw5TzcYVHF9pzZIQ2dGwHHnYqNdR/HF45BB0/oK42mkpEYlVs7NKdo5FvN3JSToDtKgmpGtK6PI/KBqNXKaSkxPDixhfJMec4uheS5FAyGJEkB4rMiOSlTS+hZOfy9ioNKpsgo9vzXEvSIEQC2cn7aeDTiaO6GHIUI15k0qFjF3hxD1TvIQem3kt0ztD6TZRXD9GrujNaYSZelU6is5WqHo3BuhUhzJxW1ccaVg3fVAsvbNZyJvUMb259E7Ot+MRqkvQwkMGIJDlIen46L216ifT8NN7e5IZ7mhFb+eqcUuojhBWNdS1Bhopo3AM4q7kGQJ9Bj6Nr/QqotQ5uvXRDbgF4PTqDhtXLAbBfc5GKXo3R5FvRa/Zhyrdyqe1ohEpF86P5tD2nYVfsLibsniCzUksPLRmMSJIDmKwmXtvyGlFZUfQ760Gt4+kIjYbL7d/EmGfFwA6M2VnU8+3IDs0ZAGrUqEGFWvKSzP2iy5DncDIYMCtW9uou0dC3K1nJ+8AWR0y0hdxH/w+AF9YpBGSq+OPSH8w8NtPBrZYkx5DBiCSVMSEEE3ZP4HDiYSpnOPHYWvt4gfzhY4m6YgJrMtkZB4nwbsNJQxJZqnx0Oh2PPPKIg1su3Q6VSsVTTz+NEIIodTI5Lk6Ud62LJncpQtg4mhqGUq8Zqpw8Pt4ShGITzDg2Q2ZplR5KMhiRpDL2/fHvWXl5JVqhYtJmX8g3omncjKMx7gghMBgX4aUrh5tHBU6powEYNGgQBoPBwS2Xbpe/vz+tW7cGYI/2HNW9W2Kx6TGYN2DMF1yu2g2Viwsup68y6WJdAN7b9R4nk086stmSVOZkMCJJZWjNlTV8e/RbAD6PboXm7BVULgaifMuTZ3bGYN1JptFKfd8u7NCeAwUiIiKoUqWKg1su3al27drh4eFBvmLmsMG+sm923mmwpnAl0Q9jqwYAVFtxjMHmehitRl7d/CrxOfEObrkklR0ZjEhSGTmVcor3d70PwCvOPQlcvA0AJcKDs3mtEbZc8swnqeHZnPPOGWSocnFycqJ79+6ObLb0L2k0GgYOHAjARXU8uPkSaKiMQb0RIQSHzF0wVNSA1cqjSxOp4VyRpLwkXt38KrnmXAe3XpLKhgxGJKkMJOcl89rm1zBajbQPaEnH2YfBYsU51MwB56cBcHbZi5PVBS/vapxU21e+7tu3L05OTo5sunQXlCtXjmbNmgGwS3uWCN+O5GQkY9CfJ9fmTWSVHmicrFiuRjH1RDW8Dd6cST3DuJ3jsAmbg1svSaVPBiOSVMrMVjNvbn2ThNwEyruX5+31OZgio1EbrMTVf4R0aygabTTpsceo59eFHTr75Zn69etTrZpcX+ZB0aFDBzw9PMlW8jmuj6OuVzvyMrchbLmcNnZF1SQIANOSlXyl6oVWpWVj1EZmnZjl2IZLUhmQwYgklbKP93/M4cTDuGpdmH5RQ/Zq+4qtTt0bcCS3F0KYsORtorJ7fc67ZJGt5OPp7km3bt0c3HLpbtLpdPR5pA8AZzXX0HqG4iG8cHHdD8A+3wm4VdcA4PLxj4z3tA98/ebIN2yP2e6YRktSGZHBiCSVoiXnlrDk/BIUFKYlmRCLTgIK7i2rcsDnbWxWgbPLYVS5Zjx8anFeEwdAvwH90Ov1jm28dNdVrFix4HLNDu0Z6vh1JCP2OBptDGkpgmuP/YzWU4s5R02TmcsZovFHIBizfQxXM686uPWSVHpkMCJJpeRo4lGm7p8KwKsZuVRel4w5R4M2wIfUx74k7mIGiiqRtGt7qOPXmT36iwC0aN6C8PBwRzZdKkUdO3bEz9ePPMXEUacEang2x5y7ASHMHN6RhtMEe+Kz9EsuvLz9BPWsarLMWby2+TW5ho30wJLBiCSVgpS8FN7c9iYWm4Uu2TkMOZlJ+mUXUBQ8Jn7G3v/FIIQVYd5AedfaXHDPI18x4+ftS/sO7R3dfKkUabVaBgwcgEpRcVWdhNo7HCeTFieXw9gsgn0n9XgOGw5A0gFvPrschZ/VxqWMS7y/632ZMl56IMlgRJLuMqvNyphtb5GYm0gFk5kJsWnEHw8BwHvEcA5fcMWUZ0FvOIGSk4ubf22uqpNQKSr6DxqAVivXnXnQBQYG0qFjBwD2aS9Q068j6dd2o6iSiLuYQUrzoejCw7HkKlhPhfNFQiIaIdhwdQNzT85xcOsl6e6TwYgk3WUz901lb8JBnGw2vkjJIDutB5b0fLRhYeR0foKLhxIRIp30+C3U8u/IAd1lwJ4cKygoyMGtl8pKixYtCAsph1mxctQ1kaoejdCwFSFs7FkVhcf7U0ClIuNMPpVs7RmbkgbAV4enczh2n4NbL0l3lwxGJOku2nlkFt+fWwTABzkQVPMT0jcfBsB3/CR2LLuCEAK9djsVXGtx2j0Ls2IlJCCYlq1aOrLpUhlTqVT0G9gfnUZLgioD4ReOyMjCyfkkpjwLB0/r8Blpz0ETtyaO/vXfoUd2Llbg7fXPkZp6ybEdkKS7SAYjknSXxB38kbFHvkQoCkMsenoMWkXcf/4LgNfQoZy85k12mhGt7jzm1HhUgVVIUGWgU2sZMGQgarXawT2QypqXlxfde/YA4IjmKpUD2pGVuA0h0rl0OImsto+hq1ABa3IyiZsSGN/5GyqYrSQqNsb+1hdb4lkH90CS7g4ZjEjSvyUE5s0f8tahT0lXq6ilOPF/QzeQ+P18zNeuoQ0OhsHPcXxLNMKWgzFzCxUD23JCY18Er1ef3nh7ezu4E5Kj1KtXj+qVqiIUwTHXFEKcapCb8wdCCHYuu4LP+MmgKGQs+w1bkjufd/gPBgG7tfDjkt5weaujuyBJ/5oMRiTp37CaYcWLfHZyFscNetwVLZ/3XYbl5EXSfvkFgIBJk9i27CpCQHbOSgJ0FTjhlo5QIKJaLSLqRji4E5IjKYpCnwF9cdO7kKnKIzcwBBebEcEpstOMHL/qhtfQoQDEfzCeSgEtGNf4HQBmuOrZv/QxOL7EkV2QpH9NBiOSdKdMObDwMdZfWM4vHm4ATO0wnSCtL7Hj3gPAc9AgLuaWIzk6G6vlAq4ik5yAEHIUI55O7vTs38eRPZDuEc7Ozgx8bDAKClc0SQSHtCIzeS3ClsuJrTHYBjyDJjgI87VrJE7/D31rDeORir2wKQrv+HqR/PvzsPtrR3dDku6YDEYk6U7kJMO8XsRGbmaCnw8AI2uPpE1oG5L+8xXmqCg0gYEYnnmV/SsvI4SRzNSVBIa0IEqTigqFQY8PkVlWpQLh5cNp27QVAKecU6js15DUtN9AwPZlVwmYMAmAtPnzyT18hHHNP6CyZ2WSNWre8fPFuv49WDcObHJhPen+I4MRSbpdaZEwuwuW2MOMCQggS6Uiwi+Cl+q/RN7Ro6T+9BMAgRPGs/P3GCxmG+np/6NiQF3OOKcD0L55W0JCQxzXB+me1KZre8K8Q7AoNuL93fHXWzCZL5ByLYcLuaF49OsHQhD33nvorSo+b/c5Thon9jsZ+MHTHfZ8A789CxaTo7siSbdFBiOSdDuSzsGcbpB6ie8Dwzii0+CqdeWT1p+gsULcB+NBCDwe6UOcc3WiTqdiMUfjrc0gzs8Nq2Kjgk85WnZu4+ieSPcglUrFwCeG4KTSk6bKwalcA7JSViKEmQP/i8TwzGuofX0xXb5M8nffUdGjIu83ex+AmV5eHHFyhpO/wqLHwJzn4N5IUsnJYESSSiruOMztAVlxHAioyg9O9rfP+83eJ9QtlNSffsJ4/jxqT0/cX3mLnUsvIISV9JTf0ITVI0uVj6vaiYFPPYpKJd96UvHcPdzp26cvAFf06VQIb4pefwCr2caOlbEEvG8PPlJmzSb/zBl6V+pN74q9sSEYE16FTK0zXNwICwaBMduBPZGkkpOfiJJUEjEH4adekJtMRlAEY33csGGjb+W+9KjYA1NMDEnffAuA/zvvsG9zMnlZZlTKQcIqNCJWl4VKKAwaOAgXVxcHd0a611WrV4NmVRsCcNVTYM2JARKJOZtGvEcd3Lp0AYuFuHHvISwW3m36LqGuocQa0/iwQXeEzg0id8DP/SAv3aF9kaSSkMGIJN1K5C747yOQn4Eo14TxlSJIyEuivHt5xjYZixCC+ImTEPn5ODdpQnaNNpzdHYfNmoLado1od/uAwnZ1WhBeo6KDOyPdLzoP6UE5pwAsio3s4HA0qh0IYWXn0ot4jB6DysOD/NOnSZk7F1edKx+3+Ri1omZN4gFWdv4/MHhCzH74bx/ISXF0dyTppmQwIkk3c3ETzB8Apmyo0IalzYaz6dp2NCoNn7T5BGetM1lr15KzYweKVovvex+w9ZdzCGFDq9lJRmAQNkVQyTWUVv07Oro30n1ErVYz6KlHccFAttqIyT2I1NT15OeY2bc1jYAxYwBI/vobTJGR1PWrywt1XwBgyvkFRA+eA86+EHcM5vWErARHdkeSbkoGI5J0I+fWwMJHwZIHVbpwscdUph35CoA3GrxBTZ+aWDMzif/oIwB8nn+ek2cVMhLzyM7aidHTj1yVGXecGDByiBwnIt02d38v+nfsjUoopBgseAYKLJZEzu2NJ6t6a1xatkSYTMRNmIgQgmfqPEMD/wbkWnJ558xszE+sBLcgSDoDc7tDRoyjuyRJxZKfjpJUnHNrYfFwsJqgRm/MA+cxdu9EjFYjLUNaMqzmMAASv/wSa1IyuvLloddQDq2NxGZNQ++fS5reglqoGNCjH85ebo7tj3TfqtS6Fm1CGgGQ5u1KjmkDQtjYsuAsvuPeRzEYyN27l4zff0etUvNx649x07lxIvkE313bCE+tBo8wSL0E83pBZqyDeyRJRclgRJL+6eJGWDIcbGao1Q8GzmPGqVmcTT2Lp96TD1t+iEpRkXvkCOmLFgMQMGECWxaex2YVZIstZHg6A9C5QgvCm1R1ZG+kB0DrJ7pSWR2MUIDy4WTlbCUr2cix4xZ8X3oRgMSPP8GSlkaQaxAfNP8AgFknZnHAlAJPrwHPcEi7Aj/1kZdspHuODEYk6e8ub4VFjxecEaH/jxxNOcmck3MAGN98PL5OvgizmfjxE+w5Rfr140p+CElXc8i17MUS4gdAhLYCTYa2d1xfpAeGWq+h35OD8LK5YFLZ0JRTY7UmcXhdJHQZhL5qVazp6SR+Mg2AbuW70a9yPwSC93a+R7aTJzyxEjzKQcqFPwe1Jju0T5L0dzIYkaTrInfBL4+CJR+qdocBc8i1mRm7Yyw2YaNPpT50Cu8EUCiniMuo19m+5AwWWzLWIDNWRRBs86Ln0/1R6dQO7pT0oHAp50Xf1j3QCjU5eoU8l8MIm2Dj/LMETJhgX9l3xQpy9u4F4J0m7xDiGkJsTizTDkwDr3B44g9wC4aks/YZYrmpju2UJP1JBiOSBBC1z54kypIHlTvB4J9Ao2PagWnEZMcQ5BLEmCb22Qv/zCmy/tdL2KwKuR7HMWrAVRjo27k3+iA5TkS6u8I61aSTbyMQkOfpRL5+HynRuVzO9MPrsUcBiB8/AZvRiIvWhQ9bfoiCwvKLy9kavRW8K9rPkLgGQMJJe0CSl+bQPkkSyGBEkiDmECwYCOYcqNgOhswHjZ5t0dtYdmEZCgpTWk3BTedWJKdISvkWJF7II8/5IEYXDWqholtQU/xaVXB0r6QHkKIoNHq6Ew2x56vJ8TJjVEexZ8UlnJ56CY2fH6arV0meOROARoGNGFFzBAATdk8gLT8NfCvbAxJnX4g/Dj/3h/wMh/VJkkAGI9LDLvEMzO8PxkwIbwWPLgStE6n5qYzfPR6A4TWH0ziwMUChnCLeYz9gx6Lz5GmvkuuRD0BLpRo1n2yNoigO65L0YFO7aOk0vBcVrQEIBXJ8IskzZbFs1iEC3nsPsKeKN168CMArDV6hkkclUvJTmLx3MkII8Ktmv2Tj5A2xh+2XJ+VaNpIDyWBEenilXbWny85Ph9DGMHQx6JwRQjBpzyRS8lOo7FmZVxu8ClAkp8iK3y+TlpNMjvdVAGpZQmn5dDdUBo2jeiQ9JJwqe9OpQUt8bG5YVZDleZjcRIUjRh9c27cHs5m4D8YjbDb0aj1TWk9Bo2jYcHUDq6+stlcSUAtGrAC9O0Tthl+fBqvFof2SHl4yGJEeTtlJ9kAkKw78asDQJaB3BWDV5VVsitqERqXho1YfoVfrgcI5RU6E1iUtykK213GEAqFWH1o3b4Y+zMORvZIeIkF96tDBqRZOQodFZyPT/QR7lkdiePkNFGdn8g4fJn3prwDU8qnFc3WfA2DKvikk5Pw5tTeoLjy2CDQGOLcaVr4GQjiqS9JDTAYj0sPHmGUfI5J6yT7Vcfhv4OwNQFJuElP3TwXghbovUMOnBkChnCKG0W+xfdklMj2PYVXb8LK50MqtOgE9ajmmP9JDSVErVHuhHe3M1VEJBZNTJirvDL7+cgP+r9nP5iV+9hmWpCQAnqnzDLV8apFlymL87vH2yzUA5VvCwLmgqOHofNg43lFdkh5iMhiRHi7mfFg0FOKOgrMPDF8B7sEA9sszeyeRZcqipk9Nnq79tH272Uz8B+PtOUX69+Pz/+5FF5KBRZePQWhpb65O5RfaynEiUpnTeBqoOrAhLczVAMh1i8LdxZvl6RoMtWphy8oiYao9uNaqtHzU6iN0Kh27Ynex9PzSvyqq3gP62Jc6YNd/YNdXZd0V6SEngxHp4WGzwm/PwpXtoHOFx3+1zyz40+orq9kavRWNSsPklpPRqOxjP1LmzcN44QJqLy+WG/zxC/DDZEhFJRQ6mmoT9ng9NG46B3VKeth5NQinQpUgalnKAZDjcY4rh7LIGj4CVCoyV68he9s2ACp6VuS1Bq8B8PnBz4nN/ltq+PrDoPMk+/0N78ORBWXaD+nhJoMR6eEgBPzvTTjzB6h18OgCCGlQ8HByXnLB5ZnnI56nqpc9hbspOprkb2cAkDVgIFFXTBjd7B/grc018KrthWftcmXcGUkqrOITbaiu9iXU6o1QCXThqcxfdQbvEfZpvfETJ2HLzQVgWM1h1PevT64llwm7J/x1uQag5WvQ4hX7/T9esS8WKUllQAYj0sNh55dwaC6gQP8f7flE/iSEYMreKWQYM6juXZ2RdUYWbC/IKdK0KT8cuoZTmH36Yz1LeXz0GioNbe2AzkhSYYpKoeLLbWhmLI+HzRmb2oRHgAZl4JNogoMwx8aS9K09UZ9KUTGxxUT0aj174vaw/OLywpV1ngz1Hgdhtc+wiT3igB5JDxsZjEgPvpPLYNNE+/3un0CtvoUeXnd1HRujNqJRNHzY8kO0Ki0AWWvWkLNzJ4pWixj1KiFVvEARVLD6U8XoQeVXO8pxItI9w8XPC9fuwXQy1UYvNJi1Wfyy+A/8x40DIHXeT+SfPQtABY8KvFTvJQA+PfDpX7NrABQFen8FlTqCORd+GQLpUWXeH+nhckfByIwZM6hQoQIGg4GGDRuyY8eOm5Y3Go2MGzeO8PBw9Ho9lSpVYs6cOXfUYEm6LVF7YfkL9vtNX4Cmzxd6ODU/lY/22nOHPBvxLNW87QMB7TlF7JdtXJ97lsWbtmBTWfC1udHcWAmXPqE4e8lpvNK9pXz7Rpj8s+lojkARCunma/xn0yFsTZuC1UrceHvuEYARNUdQx7cO2eZsJu2dVPhyjVoDg+aBfy3IToAFg2WWVqlU3XYwsnjxYl5//XXGjRvHkSNHaN26Nd27dycq6saR8+DBg9m0aROzZ8/m3LlzLFy4kOrVq/+rhkvSLaVcgoWPgdUI1XpC1ylFiny07yPSjGlU9arKs3WeLdie+MUXWJOTMQcFMj89jzxLFs5CT2dTXVKDEynfunFZ9kSSSqzOi73BnEZLiz2wtulyGR+fjOLiQv6x46Qvtk9RV6vUTG45Ga1Ky/aY7ay6vKpwRQZ3eHwJuAVB0hlYMgKs5rLujvSQUIS4vQw3TZs2pUGDBnz33XcF22rUqEHfvn2Z+ucUsr9bu3Ytjz76KJcvX8bb2/uOGpmZmYmHhwcZGRm4u7vfUR3SQyY3FWZ1sucSCa4PT/4PdC6Fimy4uoHRW0ejVtT80vMXavrUtO965AhXHxsKwNf16uNfvSoaoaKXqSFZlhiaffgEWr2hzLskSSUVd+48STOPcc4lk1OaaGxWgfuJY/Q8ew6VqysVV/8Prb8/AD8e/5GvjnyFu86dFY+swM/Z7x+VHYM53e1rN9UfBn2+sV/KkaQSKOn3922dGTGZTBw6dIguXboU2t6lSxd2795d7D5//PEHjRo1Ytq0aYSEhFC1alXeeust8vLkOghSKbEYYdHjfyU1e2xxkUAkLT+ND/d+CMDIOiMLApGCnCLAxtq18K9un1XTzlwLS14q1V7sLAMR6Z4XVK0qxsZQ1xhMqNUblVohsXI1ksqVw5adXZB7BODJ2k9Sw7sGmaZMPtz7IUV+nwbVhUFzQVHBkfmw4/My7o30MLitYCQ5ORmr1UpAQECh7QEBAcTHxxe7z+XLl9m5cycnT55k+fLlTJ8+nV9//ZWXXnrphscxGo1kZmYWuklSiQgBv79kX2tD7w6PLwW3gCLFpu6fSmp+KpU9K/N8xF/jSK7nFIkuF0pSTXuA0thcCa98FeqOHvhXqFhmXZGkf6Pho/255HScdqaaeNiccXZ1YlmlSpg1GrLWrCV7+3bAngxtcsvJaBQNm6M3sy5yXdHKqnaF7tPs9zdPhhO/lmFPpIfBHQ1g/ecMAiHEDWcV2Gw2FEVhwYIFNGnShB49evDFF18wb968G54dmTp1Kh4eHgW3cuVkHgephHZ+ASeWgkoDg/8L/jWKFNkes501V9agUlRMbjkZndqesOx6TpFMNzd2NGqESqWiijWQqiY/rvqep16v3mXdG0m6YyqVmlavjeRc1l66mOuiFxq8AgNY0aghgj9zj/z5GVzNuxrPRtjHTE3dP5UMYzGDVZs8C83+/BH5+0tw7XAZ9UR6GNxWMOLr64tarS5yFiQxMbHI2ZLrgoKCCAkJwcPjr5kHNWrUQAhBTExMsfuMHTuWjIyMglt0dPTtNFN6WJ1bA5sm2+93nwaV2hcpkmvOLbg8M6LmCGr71gb+yimSb7OxsU1r1Ho9ATYPmpuqcjhnE+1eHiWn8Ur3HTcfX6o91YnkjPMFM2xs5ctzqmEDzNeukTxjRkHZZ+s8SyWPSqTmp/LZwc+Kr7DLZKjSFSz59kuhWQnFl5Ok23RbwYhOp6Nhw4Zs2LCh0PYNGzbQokWLYvdp2bIlsbGxZGdnF2w7f/48KpWK0NDQYvfR6/W4u7sXuknSTSWehWXPAgIaPQ2NRxZb7OsjXxOXE0eIawgv1H2hYHvWmjVk7t7NrlatMLu54WYz0NkUwZHk9TR9/jGc3eU0Xun+VLlxM6yNdOhycwpm2JyqUoXo0FBS5s4j/9x5ALRqLRNaTEBBYcXFFeyL21e0MpUaBvwIvlUhKxYWD7OP0ZKkf+m2L9OMHj2aWbNmMWfOHM6cOcMbb7xBVFQUo0aNAuxnNUb8mYIYYOjQofj4+PDUU09x+vRptm/fzttvv83TTz+Nk5PT3euJ9PDKS4NFj4EpC8JbQrdPii12IukEC87Y19v4oNkHOGudAXtOkbiPpnKoYUOS/P3QCjVdzHW5kn4Y3/ZVKV+3QbH1SdL9os2wpzijOUSY0b1gDZv9LVuQ5upK/N9yj9Tzr8fgaoMBmLhnIvmW/KKVGTzg0YWg94CY/fC/0faxWpL0L9x2MDJkyBCmT5/OpEmTqFevHtu3b2f16tWEh4cDEBcXVyjniKurKxs2bCA9PZ1GjRrx+OOP07t3b776Sq4KKd0FVgssfQpSL4NHmH2ciKboonVmm5nxe8YjEPSq2IsWIX+dyUv84gvOeHtzpVJFFAEdzHXIyY4lzj2aVo8OL8veSFKp0Oh0dB39OrtT/qChKZxQqzcWRWF7m9aknj1L+pK/VvB9rcFr+Dv5E50VzffHvy++Qt/KMGjOXzNs9t2gnCSV0G3nGXEEmWdEuqG178Leb0HrDCPXQ2CdYovNOjGL/xz+D556T37v+zveBnvOm9wjR9gz+k12tmmNUBSamasQkqtjW8oyHv/kc7yCQsqyN5JUqk5u2cDJ/66hSUBvftcdIEOVi3dKCh33H6DaqpVo/Ow5RjZFbeL1La+jUTQs6rWoIDNxEbu/hvXvgaKG4b8VWvNJkqCU8oxI0j3l6C/2QASg73c3DESiMqOYeWwmAP/X+P8KAhFhNnPmo6nsadEcoShUswRT0ejJjoTf6PLSKzIQkR44tdp1wrlOAGdTdxXMsEn18WFfzRrEf/zX5c2OYR3pFNYJi7AwYfcErDZr8RU2fxkiHrUvqrfkCfsZSkm6AzIYke5P1w7Dytfs99v8X5HF764TQjBpzySMViPNg5rTq2KvgsdiZs9mc3gYFq2WIKsnTUyV2JWwnCrt21C1acsy6IQklS1FUeg66hWi1ZGkZl6io7kOilCICg9n35XLZO/YWVB2bNOxuGndOJlykoVnF96oQuj9HwhpCPnpsGgYmHLLpjPSA0UGI9L9JzfV/ivMaoKq3aHd2BsWXXFxBfvi92FQG3i/+fsF03NzIyP5/eRJclxdcbc50dEcwcGk1QgfZzo89UxZ9USSypze2Zn+Y9/jUOpmtLm5BTNsTkREsPfrrwpyj/g7+/N6w9cB+OrIV8RmxxZfodYAQxaAiz8knoJVb8gBrdJtk8GIdH+x2eC35yAjCrwqQL+ZoCr+zzg5L7kgX8KL9V6knFu5P6uwsezrr0n29UUr1HQ21+VC2l7iTFEMGDcOtUZbZt2RJEfwCytPu6eeY1fCb4Tmu1DLYk+zsKdqVc58801BuYFVB9LAvwF5ljym7JtSNFX8de5Bf6aMV8PxRXBQrsou3R4ZjEj3l+2fwsUNoDHAkJ/ByfOGRaftn0amKZMa3jUYXvOvWTFb5szhkpsbioCO5jpkZkVyOn03XUa9gYdf8cn7JOlBU69LF4LqNGVHwjLq/znDxqrRsCopiZTjxwFQKSrGNx9fsLJvsaniryvfCjpNsN9fOwZiDpV+J6QHhgxGpPvHxY2w9c8Fvnp9ecMBqwA7YnawJtKe8n18i/FoVBoAzh49yo4/M/o2tVTFkGtkf/IaqjTtQc3WxSfuk6QH1SNvvYrZSc++xD9ob6qFh82ZPGdnFi74BZPRnsysomdFnq1zi1Tx17V4BWr0tl9CXfoE5KSURTekB4AMRqT7Q3oULHsGENDwSag39IZF8y35fLTvIwCG1RhGLZ9agH2hx2XLV4CiUN0STHmjBzsTluHkEUav156/YX2S9KDS6HQMfO8DEoxxnErdVjDDJtnJwNKvvym4LDOyzkgqelQkNT+V/xz+z40rVBR45FvwrgQZ0fDbM3CjmTiS9DcyGJHufRajfcBqXhoE1bthhtXr5p6cS0x2DP7O/rxUz76wV35+Pr/Mm4dZgQCbB43NFdkZvxSTomLQ+PdRqdVl0BFJuvf4h4fQYvALXMg8TGLG2YIZNheys9i6di0AOrWO95u9D8DS80s5lnTsxhUaPOyXUDVOcGkzbLv5+1WSQAYj0v1g7ViIPQxOXvYMq1rDDYtGZ0Yz68QswJ5TxFnrjM1mY/myZaRmZ+Ms9HQw1mZfwkoyzGm0G/EGPsH+ZdUTSbonNevXkcCqnTiSshElJ7Nghs22ffs4ffo0AI0CG/FIpUcAmLxnMhab5cYVBtSCPn9m2d72CZxfX6rtl+5/MhiR7m0nl8HB2YAC/WeBV/gNiwohmLp/KiabiWZBzegS3gWAHTt2cO7CBVRCoZOpDudTdxOXd4mwuv1p0K1pGXVEku5tA8a+gNa5InsSlhOUZyiYYbNs6VJiY+3Tekc3Go27zp1zaef45cwvN68wYjA0/nOa/PLnIONaaTZfus/JYES6d6VegT/+TGzW+k2o0ummxbdGb2XHtR1oVBrebfouiqJw/vx5tmzZAkBLS3WyM6M4n3kAJ4/6PDL68VLugCTdPwzOenqP/j8sijM7EpZSNz/UPsNGCBYsWEBWVhbeBm9GNxwNwLdHvyU+J/7mlXb9yH5pNS/NPubLepOzKdJDTQYj0r3JYoJfn7KvxFuu2U0TmwHkWfL4eP/HADxZ60kqeFQgOTmZpUvtC4DVsITglWXhUPJaFE0wvd94DZ1BU+rdkKT7Sfk6IUR0GUWOJZfdictpa6yOh82ZnJwcFi9ejMVioV+VftTzq0euJZdpB6bdvEKNHgbOAZ0rRO2G7bcoLz20ZDAi3Zs2TYTYI2DwhAGzQH3zwGHWiVnE5sQS5BLEs3WeJT8/n0ULF2I2mwmweRCR48OupOXYFCfqd3+ecjV8y6YfknSfaT+sBV7l+pFivMbR5A10MddFJzTExMSwYcMGVIqK95q9h1pRs+HqBrbHbL95hT6VoNd0+/1t0+DKLcpLDyUZjEj3nvPrYM+fWSD7zgDPcjctfjXzKnNPzgXgncbv4KRx4o8//iA5JQVnoadtXmW2Jy7HZDPhW34QrYfUK+UOSNL9S61V0fu1fmidmxOVc4bo1CO0NdcEYN++fZw8eZJq3tUKEgl+tO8j8ix5N680YhDUHwYIWPYs5CSXci+k+40MRqR7S2YsrHjBfr/J81C9502LCyH4aN9HmG1mWoa0pENYB/b9OQNAJRQ6GmtyKHEt2ZY0dK6d6PVKNzRaOY1Xkm7Gr5wbrR57HJW2EqfSd6LKSKKuxT54/I/ffycpKYkX6r5AoEsg17Kv8ePxH29dafdp4FsNsuNh+Sj70g6S9CcZjEj3DpvVvu5MbgoERkCXybfcZWPURnbH7kar0vJuk3eJiYlh/Tr7NMImlipEJ+0nMf8qan1D2g7rh0+Ia2n3QpIeCPU7hVOhwWMoKh/2pqymUqaeIKsXJrOZxQsXobapGdNkDABzT83lcvrlm1eoc7GvX6PW25d02PttGfRCul/IYES6d2z/DCJ3gNYFBs61D367iVxzLp/stydUerr20/hqfFmyaAk2YaOC1R99ciyXso+h0laiUuO+1GkXWha9kKQHgqJS6Px0fVz9B2BDw/akFbTICcVZ6ElOTWHlHytpH9qedqHtsNgsTN47+cYL6V0XUAu6/bmkw8YJcE2uXyPZyWBEujdE7YVt9tkw9PoSfCvfcpcfjv9AQm4CIa4hPF37aZYt+ZWsnCzcbU5UT9dxJH0bitof94A+dHyiFoqilHInJOnB4uKpp/PTzdG69MFoy2df4kra5VVFEQonT53kwIEDjGk6BoPawMGEg6y8vPLWlTZ6Gmo+AjYL/Po0GLNKvyPSPU8GI5Lj5WfaL88IG0QMgbpDbrnL5YzL/HT6JwDGNBnD/h37uRR5GbVQ0Tw7hL1JqxGKCzrXR+j0VD2c3XWl3QtJeiBVqOtHRMdmaJw7kmFO5kLiVpqYKwGwbu06bGk2RtUdBcBnBz67+UJ6YF+/pvdX4B4KaZH2DMvSQ08GI5LjrR0L6VfBIwx6fHrL4tcHrVpsFtqGtiXMHMa27VsBaJJfnmMJa7AIGzrXvtTtWIPw2j6l3AFJerC1HFgZv/CmqPUNic+7ginhHBWs/tiEjaW/LGZQhUFU8qhEmjGN6Yen37pCJ0/oNxNQ4MjPcGZVKfdAutfJYERyrNN/wNH52NO9f29fZOsW1kWuY1/cPvRqPa/UfIVfFy5BAFUsgSTE7ybHkoHWpRd+4RVo3r9SqXdBkh50Wp2aziNroXNrg0pbiYvZRwhNysPd5kRmXjarlv7BuKbjAPj1/K8cTTx660ortIaWr9rvr3wVshJKrwPSPU8GI5LjZMbZP4QAWr0B4S1uuUuOOYdPD9jPnjxd+2l2/badXHM+3jZXDPFRJOXHoHFqh865Mp2friWn8UrSXeJXzo0W/aqgdemOovLlWNpWIjI8UAmF81cvYj1vLlhI76N9H2G1WW9daftxEFDHPoPu95fgVgNgpQfWQ5sPWwhBnrkEbxapdAgb+uUvoM5LwxZYl/yWb4Pp1utWfHXkWxLzEgl1LUfFqxXYm7QPjVBTMUVwLus4al1d1Pr6NB1QCSc/A7klqFOSpJKp0iqIq2dSiT7RD1PGfE4lrCfCqRtHDbGs37KRQUMeZVPUJs6knmHBmcUMrDL4FjWqUfrMxDCnA8rFDZj2/oCl4cgy6YtUlJNW7bCB/oq45Vwsx8vMzMTDw4OMjAzc3d3vSp25Jgs1P1h3V+qSbt8T6nVM1P5EvtDS0/QRl0TILfdR6eNxrvAVimIjIPJJWtuyEYogIsefyKg1qFXBqN0HcUZn43/OZpCTZyTprjPY4IksPa7mBMyZizFoXdFUaEasJhWtzYkFTlmog39HWA3kXHoLYb11bp+n1GsYr/35tj4PpLvv9KSuOOvu7jmKkn5/y8s0UpmrrMQwVmNffnyK5fESfvAI9AG/oyg2tOkRdLCZEIqgnNmb6JhNqIULave+pKlhvQxEJKnU5KtgpYsZNIFoXLuTZ8lEHXMKZ6HHrMpjcG4Q1vxgFHU+Ov+1JapznrUr2611MChmpmu/RYs8o/mweWjPjMjLNA5iNWGY1xVVwnGsFTtiHLLYPtXvFtZGrmb8nnHoFQMvJz5LZHYsbjYDLlfOYMxPR+31FGqdB73frI/3A5Jl1Wq1YrFY5HX0B4iiKGi1WhTV/f878MSmaA7+fgVr7i7Mxn34edfhir8eoUDDmhG8mzcegFmd51HHt+4t61Oy4jDMao2Sl4a5xRuY271X2l2Q/qE0LtOU9Pv7oQ1GJAfZ8hFs+wScvOHFPeAWeMtdskxZ9FnRh+S8ZN7Jf4WLcbEoQiE0Lp3MtPNo3R9F0YbQ7vFq1Gp9/5/eFUIQHx9Penq6o5silQKVSkWFChXQ6e7v3DfCJvjfd8eJPJ6MyFyByXYFr9AWRLmZ0Ag1+npq/pu5kBreNVjYcyFqVQkGk59aAUufAEUFIzdCaMNS74dUukr6/f3QDmCVHCD2qD3lO0CvL0oUiADMODqD5LxkuhnbExkbDwoEZwrSMy7gbOiATRtClcYB1GwVXHptL0PXAxF/f3+cnZ1l5tgHiM1mIzY2lri4OMLCwu7r11ZRKXR6oiaLJu8jm97oU+eRFrMX70otSNXl43nchcCK/pxJPcPS80t5tPqjt660Vl84OwhOLIUVo+D5HaA1lHpfJMeTwYhUNixG+2q8wgo1+0KtfiXa7VzqOX45+wsBJl9CY8NIU7LxMmnJiN2Dh60KJpf6ePjqafd4tfv6g/06q9VaEIj4+MhkbQ8iPz8/YmNjsVgsaLVaRzfnXzG4aun6XB2Wf3YIm9fj6FJ+wBZ1DF3FmiSrMnnq2qN8Evg1Xx35is7hnfFxKsHfdPdpcGU7JJ+HLVNKtGCmdP+7/y9cSveHbdMg8TQ4+0LPz0u0i03YmLJvCmqriuFxg0gjG51NjfXqETxN7hi9e6FSCbqNikBneDDiarPZDICzs7ODWyKVluuXZ6zWB2PMWlAlD5r1q4SickLxHIowZuGWGA/A+bxrvJA2nCxTVskyswI4e0OvP8vu+Qai95dKu6V7iwxGpNJ37RDs/NJ+v9cX4OJbot1WXlrJkYQjPBs3hCu2RACc46JwMdrI93sCRVFoN6wGvqFupdVyh3kQzvJIxXsQX9v6ncMoX8sTReuHwdAdU+pVPLPts9qy0620SW/EiosrSpaZFaB6D4h41L5e1YoXwJxXqu2XHE8GI1LpMufDihftl2dqD7Cv1lkCmaZMvjj0Bd1TW5FttI+xds/Mg4wEhPvjKCotNZv4UKPFgzFORJLuZ4qi0PmZCNxdBVaXGngo9bBcO4HBopCt5NM0pTHljIFM2TelZJlZAbp/DK6BkHIRNn9Yuh2QHE4GI1Lp2vYxJJ0FF3/o8VmJd/v68Nf4p7lTO60OOYoRvQXM187gruuOVeeFr6eVNsPrlGLDJUm6HTonDT1HN0ONBaNXB/wohyr6DIqAy6pEnrk2hMjkKyw5v6RkFTp5QZ+v7Pf3fAtRe0uv8ZLDyWBEKj0xB2HXf+z3e31pvxZcAqdTTrP+9BqeuDaAy+pEFAHauAuE6ZuT51oNncinxzutUWvln68k3Uu8g13o8GhFALLc+xNk8MGQkgTAWeJ5IfZRvj78NSl5KSWrsGpXqPc4IOyXa0y5pdRyydHkp7lUOsz5f86esUGdwVCjV4l2swkbU/d8xOvRwzmhigFAn5JANZ96pDo3RRFWujxVDTcvOd3vfpKSkoK/vz+RkZEl3mfgwIF88cUXpdcoqVRUbVeZmhVNKIpCtrUbLvnZ6PNNmBQLJqOGtvH1Sz6YFaDrR+AWDKmXYdOkUmu35FgyGJFKx/Zp9ql5rgHQ/ZMS77bi4goiToeTbDFiVCxo8/MJ8w4iOr0eAPWr5BHerFIpNVq6G15//XX69u1baNvUqVPp3bs35cuXL3E9H3zwAVOmTCEzM/PuNlAqdW1Gd8ZXxGPTuOAkumC8chqVDeJV6bRIacKZE0dLPpjVyRP6fG2/v2+mnF3zgJLBiHT3xZ/46/JMz89LfHkmPT+dTVtWUTejFtfUqSg2Qdql8+TEN0Co1ARbrtB0dMnOsEiOc+DAAZo0aVLw/7y8PGbPns0zzzxzW/VERERQvnx5FixYcLebKJUytUZN97dbozemka8NorL/I3DtEgBHNJG8GDOU6Ts/L/lg1iqdoO5QQMAfr4DFVHqNlxxCBiPS3WWz2j8sbBao0dt+K6FZu2cyPLIn+zQXAci5eoGI4CcxqZxxzYmly5iOqB6ANT3uVE5Ozg1v+fn5JS6bl5dXorK3y2w2o9Pp2L17N+PGjUNRFJo2bcqaNWvQaDQ0b968oOzChQsxGAxcu3atYNszzzxDREQEGRkZBdv69OnDwoULb7stkuO5Vy5Hu+agspnJMIcT6NEQTWY6NkVwTBVNn5MtWHK2hINZAbpOsecpSjr7V6oA6YHx8H6yS6Vj73cQewT0HtD90xLvdjLxBDW3+3NIcxWrYsOWkUaN4H5kGV3RmrJo30aNS+Xypdfu+4Crq+sNbwMGDChU1t/f/4Zlu3fvXqhs+fLliy13u9RqNTt37gTg6NGjxMXFsW7dOrZv306jRo0KlX300UepVq0aU6dOBWDixImsW7eONWvW4OHhUVCuSZMm7N+/H6PReNvtkRyv0jP9qGvbB4A5NwJzOqgsFjJUuVhMWuLWnSn5YFZn778u+W7/FBLPlk6jJYeQwYh096Re+SsfQJfJ4B5Uot2sNiuHlmzEbFGTpMpEsVgxWEPJTfNBsVlpJHZRbuSQUmy4dDeoVCpiY2Px8fGhbt26BAYG4unpSWRkJMHBhfPBKIrClClTmDVrFh999BH/+c9/WLt2LSEhhRc6DAkJwWg0Eh8fX5Zdke4SRaWi8aRnCI/bAkCgvhepFy8DcFoTQ/Ok+ixaP6/kFdYeAFW7gc385xlYWym0WnKEByOHtuR4QsCqN8CSB+VbQ4MRJd5105ZV1LlWhZW6QwCkRCVTzbk9ANWv/kbt2e89EEuu/1vZ2dk3fEytLrwiamJi4g3L/vNS1+3McLmVI0eOULdu4eXi8/LyMBiKzn7q1asXNWvWZOLEiaxfv55atWoVKePk5ARAbq6c0nm/0gYH02J4PXIWHSfZN4KaAU+Tkr8eo8GZHdqztN9fnWP1DlM3vMGtK1MU+zi0yJ0Qsx8OzoYmz5Z+J6RSJz/hpbvj2EK4vAXUeuj9H/uHRgkkJyQQvFHDVu0phCJQGc3UdB8EQGjMVuqPbI8uNOQWtTwcXFxcbnj755f9zcpe/4K/Vdk7cfTo0SLBiK+vL2lpaUXKrlu3jrNnz2K1WgkICCi2vtTUVMC+uJx0//Ia0J8mPhdxyYnFbFQR7tILrc1GrmLktCqO+AXHsVgtJavMIxQ6TbDf3zgB0qNLq9lSGZLBiPTvZSfC2rH2++3GgE/Jpt4KqyDyx92cUseSqcpDp1IRSmesFvBKPUPdoAQ8Bw0qxYZLd9uJEyeIiIgotK1+/fqcPn260LbDhw8zaNAgvv/+e7p27cr7779fbH0nT54kNDQUX9+SrWck3ZsURSF08gfUjVyA1pxN2jULlX1aghBcUSeiz3Zh5/L/lbzCRiOhXFMwZcP/RtvPzEr3NRmMSP/e2jGQnw6BdaDFKyXe7fSS7ZhzFc5o7DMqQnSNyUuz4ZSbSETUEkImT3wgFxV7kNlsNo4fP05sbGzBrJiuXbty6tSpgrMjkZGR9OzZkzFjxjB8+HAmTZrEsmXLOHToUJH6duzYQZcuXcq0D1Lp0Pr7U/H/XqL2qVkoNivJZ7QYU+xTe3drz+F3UE/ipRKe5VCpoPdXoNbBhfVwclkptlwqCzIYkf6dCxvsHwSKyp6YSK0t0W6ZZ+PQHjWzQ2v/xazOdSU7Uo/akkfEyZmUGzsabWBgabZcKgUffvghixcvJiQkhEmT7Nky69SpQ6NGjViyZAmpqal0796dPn368O677wLQsGFDevfuzbhx4wrVlZ+fz/Lly3n2WTkm4EHh3qsnYU0qUPWifUpviKU9OenZmBQLu7TnSJxzFJuxhJdr/KtD67fs99e8A3lFLwVK9w9FiHv//FZmZiYeHh5kZGTg7u7u6OZI15lyYUYzSL8KzV+25wEoAUuOkUuTN7FXG8kVdSKmXAvBmW1RCah7fAZhDUII/ebrh/KsSH5+PleuXKFChQrFDvq8X61evZq33nqLkydPljhXzLfffsvvv//O+vXrS7l1ZetBfY1LypKayuVevTnj3Z6Y0A5YtDmkeO5HpVbTzFyFEB8v6ozuUcLKTDCzFSSfg4ZPQe/ppdp26faV9PtbnhmR7tyOz+2BiHsItBtbol2EEJydvo44VQ5X1IkIIfDPbYyCmupnF+An4gmaOOGhDEQeZD169OD5558vlOTsVrRaLV9//XUptkpyBI23N4ETxlPl4m/4Jp9AY3bBNds+zuyA5hIkKUSvKnrJrvjKdNDrz/WLDs2zL84p3ZdkMCLdmaRzf6V87/4J6EuWJOv8gs1ospzYrT0HgEt2ebQWNypEriIoYR+BkyehkYMVH0ivvfYa5cqVK3H55557jmrVqpViiyRHce/SBc++j1DzzFzc8+NwziuHkuuCVbGxVXsK4/ZUUs9Flayy8q3+ShW/6nUo6awc6Z4igxHp9gkB/3vTnnioSleoXrL1YqL3HkV7XLBdexqTYkFtcsU5J4yQ9KOUj1yDx8ABuHfuXMqNlyTpXhDw3jicgvyoc/hrnJV8vLJrI6wKKapsTuhiuDbrAHmZWSWrrMtkMHja18Xa/0OptlsqHXcUjMyYMaPgemfDhg3ZsWNHifbbtWsXGo2GevXq3clhpXvF8cUQuQM0TtBjWolyimQkJJC+9CLntQnEqtPApsI9owYB6mSqHJuNLiyMwLElu9QjSdL9T+3qSvC0T9Bbsqiz/wsMKh0emTUAOK6+ilGj4+jny7CVZDE9F1/oPNF+f8sUyIwtxZZLpeG2g5HFixfz+uuvM27cOI4cOULr1q3p3r07UVE3P6WWkZHBiBEj6Nix4x03VroH5KXBuj9nPbR9G7zK33IXs8nIyS//AJ0L+/9cBM81qyJ+Ljqqb/0YlUohZNonqO4w0ZYkSfcn5wYN8B31PK45sdQ+MxeDyRd9XgBCgW3aU/jnh3JgTgkX06s/AkKb2HOPrB1Tug2X7rrbDka++OILRo4cyTPPPEONGjWYPn065cqV47vvvrvpfs8//zxDhw4ttHKndB/aOBFyk8G3GjS/dU4RIQS7vp5HiKjCVu0pbIpAZ/TCR1uO2jumorHm4/vCCzjJs2WS9FDyfeEFDBEReF07RG3jHlwzK6Gy6slS5bNPexm3006cK8nZd5XKPphVUcPp3+1pB6T7xm0FIyaTiUOHDhVJQtSlSxd27959w/3mzp3LpUuXGD9+/J21Uro3RB+wj1gH6PWlfST7LRz54w8CY4M5or1CiiobxabBO78GjeJ/RZsWh1PduviOer502y1J0j1L0WoJmfYJipMTfrvnUzMgB7f0aiDgvCaWNION+CXHSLp65daVBdaBZi/Y769+C8x5pdt46a65rWAkOTm52HUkAgICbriq5oULFxgzZgwLFixAoynZunxGo5HMzMxCN8nBrBb7QngI+8j18i1vuUvUyWNkrY8mWyc4pr4KgHtmVVqHJqLZvxGVszPBn05DKeHfhSRJDyZd+fIEjLVfWglaNoGqYYE45YQCsEN7hiCX6uz+ch552SUY0NpurD3dQFqkPf2AdF+4owGs/8wBIYQoNi+E1Wpl6NChTJw4kapVq5a4/qlTp+Lh4VFwu53pgFIpOTgbEk7YR6x3mXzL4hmJCez7diHl3GqxVXcaFDDkBtCpVQVUcz8BIGDcOHRhYaXccEmS7geegwbh2rEjitlElW3TKO9dE7XZhXzFzE7tWWpqm7Huy+m3HtCqd7WnGwB7+oGUS6XfeOlfu61gxNfXF7VaXeQsSGJiYrGrbmZlZXHw4EFefvllNBoNGo2GSZMmcezYMTQaDZs3by72OGPHjiUjI6PgFh0tV2V0qOwk+wh1gI4f2Eeu34TZmM//Pv+Uei5t2KM9T7aSj8pioGnDJjjNfBcsFty6dsWjf78yaLzkSO3ateP11193dDOk+4CiKARNnoTGzw/rxXM0yVqPj6gOQiFKncxVXQZBiSHs/OW/t66sei+o3AmsJjmY9T5xW8GITqejYcOGbNhQeGDQhg0baNGiRZHy7u7unDhxgqNHjxbcRo0aRbVq1Th69ChNmzYt9jh6vR53d/dCN8mBNk2E/AwIjICGT960qBCCDT9+S/mcqsTrcrmgjgMBfj4VqLxnPuaYGLQhIQRNniSzrEr3hWXLllGzZk30ej01a9Zk+fLljm7SA0vj7U3wp5+CopC/fDG9IxSc8uxnxvdqzuPmGkLK1ouc27Pz5hUpCnT7BFRa+0J659aWQeulf+O2L9OMHj2aWbNmMWfOHM6cOcMbb7xBVFQUo0aNAuxnNUaMGGGvXKWidu3ahW7+/v4YDAZq166Ni5zKee+7dgiOzLff7/EZqNQ3LX5841qyD8fh41qRndqzACjCg0EBguy1a0GjIeSLz1HLAFO6S8xmc6nVvWfPHoYMGcLw4cM5duwYw4cPZ/Dgwezbt6/Ujvmwc2nWFN8X7INQc6eNp2fX2mhM7lgUG1u1p6nr3Z5ds+aRGnuLpQV8K0Pzl+z3144Bc34pt1z6N247GBkyZAjTp09n0qRJ1KtXj+3bt7N69WrCw8MBiIuLu2XOEek+YbPB6rcBARGPQljxZ7KuS7h8kT3/nU8Dn85s157GqFjAqqNv5+okf/IxAP5vvIFT3bpl0HiprOXk5DBixAhcXV0JCgri88+LDh40mUz83//9HyEhIbi4uNC0aVO2bt1aqMyPP/5IuXLlcHZ2pl+/fnzxxRd4enoWPD5hwgTq1avHnDlzqFixInq9HiEEGRkZPPfcc/j7++Pu7k6HDh04duxYobpXrlxJw4YNMRgMVKxYkYkTJ2Kx3Dh9+PTp0+ncuTNjx46levXqjB07lo4dOzJ9+vR/81RJt+D70os4N26MLTcX528/JrBeAIpNTaIqg9PaOBq4dWLVlx9jNt4iwGjzNrgFQdoV2CPXObqX3dEA1hdffJHIyEiMRiOHDh2iTZs2BY/NmzevyIfL302YMIGjR4/eyWGlsnZ0gf3MiM7tr+yGN5Cfnc3KL6fSwKszl3QpXFOnglBwaiBwnfoNwmjEpU1rvJ96smza/gARQpBrsjjkdjuLer/99tts2bKF5cuXs379erZu3cqhQ4UXPHvqqafYtWsXixYt4vjx4wwaNIhu3bpx4cIFwJ6ledSoUbz22mscPXqUzp07M2VK0dWgL168yJIlS1i2bFnB50nPnj2Jj49n9erVHDp0iAYNGtCxY0dSU1MBWLduHcOGDePVV1/l9OnTfP/998ybN6/Y+q/bs2dPkVQGXbt2vWkqA+nfU9Rqgj/7FLWXF8bTZ+h57jI5rva/xUOay+Dkhm9GAJtmz7x5RXpX6PKh/f72zyFdjj+8V8k5lVLx8tJh4wT7/XbvgFvgDYsKIVj73Zf45AXi5BfAOs0BAKK8rzF+nwe5ly+j8fcn+OOPUUq4fLz0lzyzlZofrHPIsU9P6oqz7tYfE9nZ2cyePZv//ve/dP5zfaGffvqJ0NDQgjKXLl1i4cKFxMTEEBwcDMBbb73F2rVrmTt3Lh999BFff/013bt356233gKgatWq7N69m1WrVhU6nslk4ueff8bPzw+AzZs3c+LECRITE9Hr/7+9O4+LquofOP6ZjX0TZFUEEQF3ATdcwBS3LFN7LEvDzCVb1Mw0K3MrTVN5TJ9KM9cWl9x+abiloiYqiIo7AoIbIK7sMMPM/f0xOYWAgguDeN6v17wc7j1z7vfMdZgv957FFIA5c+awadMm1q1bx/Dhw5k+fToTJkxg0KBBAHh5efHFF18wfvz4MudASk9Pr9BUBsLjo3J2xm3mV1x+ewR3fvmV178Yw+rTVzGTQaTqNC/WCCLy4C+cbLCDJs91Lbuixi/DkaVw8QDsmAivrKi8RgjlJr4ZhNJFzvx7plUfaHX/ScmObN5A+vFzNLHvSKTqDFqZjtuqLAZauJG3aQvI5bjNno3S3r6SghcqW1JSEmq1utgMy/b29sVW3T169CiSJOHj44OVlZXhsXfvXpKS9MMv4+PjadWqVbG67/0ZwMPDw5CIAMTGxpKTk4ODg0OxupOTkw11x8bGMm3atGL7hw0bRlpaGnl5eWW2rbxTGQiPn1VICPaDBwNgPmcpNk1y0Uky7sjzOKpKobXjC0QuWUxGyoWyK5HJ9EN9ZXI4swku7K2c4IUKEVdGhJKunfln5cses+470+qVs6f4a9VKQpxfJc7kMjfl2RShReGcTq3v9qJDP92zZeuSXyhC+ZirFJyZ1s1oxy6P8tzO0el0KBQKYmNjUSiK12tlZWWop7Qv/3vd2/ldp9Ph6upa6i3iu/1NdDodU6dOpW/fviXKmJmZlRqzi4tLuacyEJ4MpzEfkBcbS8GJE/Rbc5GPn9PQ9FpzTisvU8esJn5Wrdn8368Y+NU8TC3KGBTh0gRaDtX/Xtv6MYzYDwpV5TZEuC+RjAjFSRJsHQ+SFhq8CPU6lVk0985ttnzzNfWtAim0sOCk8jwAcQ4xfL1Oq+981qoVNd99p7Kir5ZkMlm5bpUYk7e3NyqVikOHDlHn74nsbt++zfnz5wkJCQHA398frVZLRkYGHTp0KLUePz8/oqOji207cuTIA48fEBBAeno6SqUST0/PMsvEx8fj7e1d7nYFBQWxc+dOxowZY9i2Y8eOUqcyEJ4MmYkJtcLnktynL0UnTjHavRXLXS7hkVuHvaoz9LVtRVp6ItsXfsOLYz4p+6rVc5/CqfVw/SxEL4agdyu3IcJ9ids0QnFn/g9S9oPSDLrNKLOYpNOx9dtwFDly6tm3Zq/qNABJ1omMPiKHlCsoHR2pNXcOMkX5/roWnl5WVlYMGTKEcePGsWvXLk6dOsWbb76J/F99hHx8fBgwYABhYWFs2LCB5ORkYmJimDVrFhEREQCMHDmSiIgIwsPDSUhIYNGiRWzduvWBt0VCQ0MJCgqid+/ebN++nZSUFKKiopg4caIhmZk0aRIrV65kypQpnD59mrNnz7JmzRomTpxYZr2jR49mx44dzJo1i3PnzjFr1iz+/PNPMZFbJTOpXRu3WfpZVZ3+iMYz7yq5ijzyZIX8ZXKOljWfJzn6CMe2bSm7EvMa0PnvvkGRX+kncxSqDJGMCP/QFMDOz/XP230AdmVP1R6zeQOXT8TR2rEn+03iKZBpuKPKpP6VJGodTtbPJ/LNPJT/uq8vVG+zZ88mODiYXr16ERoaSvv27QkMDCxWZtmyZYSFhTF27Fh8fX3p1asXhw8fNiz50K5dOxYuXEh4eDjNmjVj27ZtjBkzpszbKHfJZDIiIiIIDg7mrbfewsfHh/79+5OSkmK4pdKtWze2bNnCzp07admyJW3atCE8PNwwLUFp2rZty+rVq1m2bBlNmzZl+fLlrFmzpswJG4Unx7rTczi8re+/1m/jNZJNDqJDR4riOpfNcmnu0Il9Py+5f/8R/zfAtRkUZkFk2X9sCZVPJlVk7J6RZGVlYWtrS2ZmppiN9Un667/6ETTWbjDyCJiUfv81PfE8qyaNo6F1EEU1axOjSkQr03JB8SefrcpCptXh/Omn2Ie9UbnxVwMFBQUkJydTt27dB34BPyuGDRvGuXPn2F+eZeSfAuIcPzxJq+XysGHkRh0ky9mKuS/VpmFWMxSSnF7qFpxJ205BjUIGfjUPVVnvbcoBWP68vkPriAPg3LByG/GMKe/3t7gyIuhlX9OPwwcInVJmIlKYl8eWb77GTuGEQ42GHFH+PQrC8hgf/J6HTKvDpmdParwxsJICF6qbOXPmEBcXR2JiIgsWLGDFihWG4bjCs00//8gclK6u2FzL4cV9SaSZp6KV6ditOkVzx27kpt9kz8rFZVfi2Q4avgSSDrZ/qu8nJxidSEYEvT1fgjob3AKgSb8yi/255Dtyrt/A3+l59pqcQZJJXLG4zCs7krHKUmPiXQ/XaVPF0EfhoUVHR9OlSxeaNGnCwoULmT9/PkOHDjV2WEIVobS3p/a8/4JKRYtzGhwuxVCoKCBTnsdRs0sE1uzGyV3b779+TehUUJjAhT36tWsEoxPJiABpJ+DoT/rn3WdCGROTndm3m3N/RdKkRjAnLNLJlhdQqCrE++wRGl3SIbe0pPb8BcjFmkPCI1i7di0ZGRnk5+dz+vRpw7pXgnCXebNmuHz6CQCv7ykgTToEQIIinQJrGzysGrFj0XyyrmeUXoF9XWjz92ia7Z+C9smtbySUj0hGnnWSpP8wIkGjvmWuP3M77So7fvgWJ7M6SPZuXFBcAyAr5y9eOqgGwHXGDEy96lZW5IIgPMPs+vfH9qVeKHTw9qZrJJvrR/QdUMVTr2Z7FGoFm/87C51WW3oFHcaCpSPcTISYHysxcqE0Ihl51p37Qz+UV2Fa5voz2iING2Z+hbxIwtu5E1HKeABSVacYtvkGAA5Dh2DT7T5TMguCIDxGMpkMlylTMG3QALs8eCXiNHmWORTJtOw3jaeF4/OkJ8VzYO0vpVdgZgOd/h7WHTkT8m5VXvBCCSIZeZYVFerXagBoO7LMobw7Fy/lTnoKjWqGEmWWiE4mobbMZeCm05gWgWVwBxz/NSmUIAhCZZCbm+P+7f+Q1bDD65qE9+HdyJVybslzuGCdT32bQKI3/calUydKr8D/DXBuDAV39AmJYDQiGXmWRf+gX1rbyhnal55MJMQc53TkZlwtvLlYQ0e2vABTUxX+f27HMRvkHu7UmjtXTGwmCIJRqNzcqPO//yEpFXQ4lQ8Z+iHg55SpmNf0w1pVg/+bO5uC3NySL5Yr/pncMeZHuB5fiZEL/yaSkWdV7g3Y+7X+eedJ+qW27y1yJ4c/5odjKrfAwrUZlxQ3kCPD9txOGl/UUGRhiufCRSisrSs5eEEQhH9YBAbiMmkSAP12XMHUVH/7+JBJAn7OXdHkZbJh5n9Lf7FXCPj21C+Bsf2zygpZuIdIRp5Ve2fpZyF0aQrNXi+xW6fVsXrKN2jVt6jr0ok41UUAHLnGc4evoZOB+7x5mNYVHVYFQTA++1deQfafngB0XbULBzsLtDIdMZZX8KnRhrTzh9i3amvpL+76BchVkLgTkvZUYtTCXSIZeRbdTIIjS/XPu35ZYiivJEn88e1W7qQdpLZNE07Z3EKSgYetDR3W6D+oRe+8jl1wx0oOXHjadOzYUazjIlQa38lfcbORGxZqaLRhFTZmlmTLC7jmaE0NExdi/m8pF45fLPlCh3rQcoj++c5JoNNVbuCCSEaeSbumgq4I6nfVX6K8x5GIBBIO/oK50oZbrk7ky9Q4mNnQ8JcVKCRIaluHpiPLXlxMEKqLxYsX06FDB2rUqEGNGjUIDQ0tsaqwUHXIVCqaL/qZG/ZKXDMK8Ivbh0Im57LiJja1W6FAw+b/hnM7vZT+I8HjwdQG0k/Ayd8qP/hnnEhGnjWXo/Ur88rk+lkI75Ecd50Da5aDLhurOm24Js9EJVPSfO9WbHLUJNVW0CZ8mZhhVagyNJonN2FVZGQkr732Gnv27OHgwYPUqVOHrl27cvXq1Sd2TOHRWNV0Rf71Z+SZQN1jiQTk5gBwyiSV2s5tKSpI4rfpy8nPVhd/oaXDPx35d3+hXzhUqDQiGXmWSBLs+HtV3uavl1gg6ubVHLZ+/wfawhPUcGnBBVP9uPugK2nUTL5Chi2op4+lpp1bZUcuPAVyc3MJCwvDysoKV1dX5s6dW6KMWq1m/Pjx1KpVC0tLS1q3bk1kZGSxMosXL8bd3R0LCwv69OlDeHg4dnZ2hv1TpkyhefPmLF26FC8vL0xNTZEkiczMTIYPH46TkxM2NjZ06tSJuLi4YnVv3ryZwMBAzMzM8PLyYurUqRQVFZXZpl9++YV3332X5s2b4+fnx+LFi9HpdOzateuR3ivhyWrXvj97326BVgZev2/GT2kFMkiw01DDqi7ZGTvZFL4HjfqeCdHavAM2tSDzsn60oVBpRDLyLDn3B1w+BEpzeK54r/GCHA1b/hdN/p1tmFnX4rKdfntgoRmu+3eTYwab3mlM71ZiwbJKJ0mgzjXOowKLiI0bN449e/awceNGduzYQWRkJLGxscXKDB48mAMHDrB69WpOnDhBv3796N69OwkJCQAcOHCAESNGMHr0aI4fP06XLl2YPn16iWMlJiaydu1a1q9fz/HjxwHo2bMn6enpREREEBsbS0BAAJ07d+bWLX1SvX37dgYOHMioUaM4c+YMixYtYvny5aXWX5a8vDw0Gg329vblfo1gHK+/OZufeuhX7m386zJqyi0olGnIcquNUqEkLX4du5afotjC9SrzfyZC2z9HTIRWiWSSVPWXLCzvEsTCfWg18F0b/dTHHT6Czp//s0urY/P846QcXYNWl0RhvWao5Vrq6uxouXYRWjnMfE3FtJEbqWdXz4iNqP5KXV5enQszjHQ16tPUMldw/recnBwcHBxYuXIlr776KgC3bt2idu3aDB8+nHnz5pGUlET9+vW5cuUKbm7/tCc0NJRWrVoxY8YM+vfvT05ODlu2bDHsHzhwIFu2bOHOnTuA/srIjBkzuHr1Ko6OjgDs3r2bPn36kJGRgampqeG13t7ejB8/nuHDhxMcHEyPHj345JNPDPt//vlnxo8fT2pqarnejvfee4/t27dz6tSpf85PBZV6joUn4uczP3Nl1gxeOiyRa+fAn916UCDT4FhgSn7yAVRm7ejw+usEdPP450U6LSwKhmunIOh96Fb+ZFUoqbzf3+LKyLPi6Ap9ImLhAO1GF9t1YG0Cl04epUhzFq1nE9RyLQ46KwK3rEYGLOohp80Lw0QiIpQpKSkJtVpNUFCQYZu9vT2+vr6Gn48ePYokSfj4+GBlZWV47N27l6SkJADi4+Np1apVsbrv/RnAw8PDkIgAxMbGGhKif9ednJxsqDs2NpZp06YV2z9s2DDS0tLIy8t7YBu//vprVq1axYYNG0QS8ZTo79efY30bcdBPhuWdm3Q4lYBcknHdrBAzl8YUFRzkwLrDXDx1858XyRX/LI0R/QPcTjFK7M8apbEDECpBYfY/Ux2HTNCvyfC3U/uucmJPIuq8nejcG5CnkjCXTOgQcxJFXia/tZOR0r4uc5sON1LwAioL/RUKYx27HMpzgVWn06FQKIiNjUVxz4y9VlZWhnru7RxdWt2W96wMrdPpcHV1LdH/BDD0N9HpdEydOpW+ffuWKPOg5GLOnDnMmDGDP//8k6ZNm963rFB1KOVKPm83mUHXX8Mhqwif04dp7erNwZpF3Khhhk2eI5rc7Wz/0ZFXPmmNnfPf/9/rdQavjnAhEnZ9Af9ZYsxmPBNEMvIsiFoAudfBvh60GGzYnJpwm/2rz6PJ30NRTXsKLM2RSzI6pioxTY5mXyMZv3WQ82ObzzFVmN7nAMITJZOV61aJMXl7e6NSqTh06BB16ujXOLp9+zbnz58nJEQ/fNzf3x+tVktGRgYdOnQotR4/P78SQ2ePHDnywOMHBASQnp6OUqnE09OzzDLx8fF4e3tXoGUwe/ZsvvzyS7Zv306LFi0q9FrB+BrXbEzfxv35+j+rmPWTjDq7VnOn93DOmt4i160OphdOkn/7IBHfm/Ofj1tgYq7Uf+a6TINFIXBqHQS9B7UCjN2Uak3cpqnustP1yQhA6GRQqADIupnP1kWn0BScp9D0GgU1nQFom++OzcHVXPAyZ+Hzcnp5v0Rr19bGil54SlhZWTFkyBDGjRvHrl27OHXqFG+++Sbyf02o5+Pjw4ABAwgLC2PDhg0kJycTExPDrFmziIiIAGDkyJFEREQQHh5OQkICixYtYuvWrQ8cSh4aGkpQUBC9e/dm+/btpKSkEBUVxcSJEw3JzKRJk1i5ciVTpkzh9OnTnD17ljVr1jBxYtlz5nz99ddMnDiRpUuX4unpSXp6Ounp6eTk5DyGd02oLKMCRmFS05Ev+kloLJQ03fU7rlo7tDKJIo9GaDQx3LxykZ3LziDp/r4S59oMmur7P7FzUoU6cwsVJ5KR6m7v16DJg9otoUEvALQaHdt/OEV+ViZq6S8K3bwAaFRUG/f968l1s2TaS2qsLGvwUYuPjBm98BSZPXs2wcHB9OrVi9DQUNq3b09gYGCxMsuWLSMsLIyxY8fi6+tLr169OHz4MO7u7gC0a9eOhQsXEh4eTrNmzdi2bRtjxox54G0UmUxGREQEwcHBvPXWW/j4+NC/f39SUlJwdtYn2t26dWPLli3s3LmTli1b0qZNG8LDw/Hw8Ciz3u+++w61Ws1//vMfXF1dDY85c+Y84rslVCZrE2smtJpAqoOM6S9LUHCddieTsdKZoVbKUNeujzpvO8lx14jekvzPCztNBIUppOyHJDGc+0kSo2mqs1sX4H8t9bOtvhkBnu0AiPzlHKf2XUWt/oMcN3N0KhW1tfaExF1Em3WE91/N5pqFhuntp9OrXi8jN+LZIkZalDRs2DDOnTvH/v37jR3KYyHOsXFIksSoPaOIvBzJy+l1eHXFRQqC3+MP5xsUybSY3LqGZWZtlOZBdH+7MfX8nfQv3P4ZHPyffh2v4XtLLJ8h3J8YTSPAnhn6RMQ71JCInDuYxun9qWg18eQ6ytGpVNjqLOiQboaUcZBlQ9y5ZqGhtWtrXvR60cgNEJ5Fc+bMIS4ujsTERBYsWMCKFSsYNEjMbyM8GplMxsTWE7FSWbHe5RIpb3fDPPoXQgrqA6C2dybPNAFd0XV2rTjLnWt/j7Bq/yGYWOuniT+zyXgNqOZEMlJdpZ+Ek+v0zzvrl9a+cSWbyF/j0elyyLI5i9bCChNJSWhefTi1mouTBhKhi8NEbsLnbT4XU74LRhEdHU2XLl1o0qQJCxcuZP78+QwdOtTYYQnVgLOlM2MC9VO+T665H9WgF3E5tpMAjX718UJXD/LZjTpfzbYfTupnaLV0gLbv6yvY/aV+zibhsRPJSHW16wtAgkZ9wbUZhXkati46RZFaS47pXrR2Dsgk6KRpjNmxddh8MZYvslYD8Hazt/GwKfs+uiA8SWvXriUjI4P8/HxOnz7NiBEjjB2SUI38x+c/tHBuQX5RPrP8ErFs50njlGvU1TqBTEa+iyNF0mFuXs1l36/x+qHlQe/p52i6lQTHfzF2E6olkYxURxcPQsJ2kCmg00QkncSfy8+SdT0fjWkchfb6OR1aFdXHKekUjiP78V/VXm4X3qZ+jfoMbjT4AQcQBEF4Osllcqa0nYKpwpSD6YeI6d8YE8frtL9dEwedFZJSSZZ9FjpdOucOpXPmr1QwtdbPXA0QOQs0+cZtRDUkkpHqRpJg19+zBwa8AQ71OLrjIiknblCkuEGm7S2Qyahf5EqD2wpsQmtxNMCGrSlbUcgUfNHuC1R/D/8VBEGojjxsPHin2TsAfH10DqZTx6AsOExoQUPMJBU6MwuybI+hk4rYvyaB65eyocVbYFMbslMherGRW1D9iGSkuknYCZcOgtIMQj7mavxtDv/fBbRoyLSLA4USJ50t7QrrYeaVhSqsL18e+hKAQY0G0cihkZEbIAiC8OQNajSIBvYNyFJnMet4OO7fTMPi1lG6qJsil2RoLC0pcjiCtkjHth9OUqhRQMcJ+hf/FQ4FmcZtQDUjkpHqRKeDXdP0z1sNI19Wk51LT6OTJNSux9CpVFjqTAlVN8HE8hLOY4cx58gcrudfx9PG0/CXgiAIQnWnlCuZ2nYqCpmC7Snb2Xszmlqz38MxM4P2RX4AZJqokWxTyLpRwJ6f45Ga9oeaPpB/G6L+Z+QWVC8iGalOTm+AayfB1Aap3Rh2rTxLbqYajWMiOVIBCklOF01TLGQ3cZn0JgdTD7IpcRMyZExrNw0zpZjzQBCEZ0cDhwYMaqQfNv7loS/Jt1Ti8klPvPMsaFykX9bghmkKGtUdko5mcOZghn4iNICD30JOhrFCr3ZEMlJdaDX6YWcAbUdx4lAeF0/epMDiGpmKNABCNA1x0ILrpD7ka/OZcnAKAK/5vYa/k7+RAhcEQTCed5q9g4eNBxn5GYTHhmPi7kLNgQ1pqa5Lba0DyOXcsTmGTq5m/9oEbtp2Bjd/0OTC/rnGDr/aEMlIdXHsZ7idDJaOZNQKI2pDIhpVFtlW5wBoXuRJXa09zqPbozA3YV7sPNJy06hlVYvRAaONHLxQXXXs2JEPPvjA2GEIQpnMlGZMDpoMwLrz6ziYehCLwHrYtHXgOU0jbHXmoFKQWeMoRZoidiw5jSZYP3cTMUvgzmUjRl99iGSkOigqhH36tTLUrcexfcUFNFIBmXYnQC7DQ1uTwCIvarzsi0ktW46kH2F1vH5OkclBk7Eo5zLxgvAsW716NTKZjN69exs7FOExa+nSkld99YviTYqaRLY6G7uXmmBdx5KumuaoJAVFKjW59vHcTM3hr1g38OwAOg3sm23k6KsHkYxUB7ErIOsKWLuxN6EtmddzybY/jaTQYaezIETTCIvmNbFqVYs8TR6To/R/BfSt35cgtyAjBy8Ij0ajefIzYl68eJGPPvqIDh06PPFjCcbxYeCH1LaqTXpuOrNjZiOTyag5JBA7Sws6a5ogkyDf5Dr5llc5sz+VRJe/R9Yc/wVuJd+/cuGBRDLytNPkG+5bJtSaRHxMBjm2CWiUOagkBV01zTBzMsf+P/re4eGx4VzKvoSzhTNjW4w1ZuRCNZObm0tYWBhWVla4uroyd27J++lqtZrx48dTq1YtLC0tad26NZGRkcXKLF68GHd3dywsLOjTpw/h4eHY2dkZ9k+ZMoXmzZuzdOlSvLy8MDU1RZIkMjMzGT58OE5OTtjY2NCpUyfi4uKK1b1582YCAwMxMzPDy8uLqVOnUlRUdN92abVaBgwYwNSpU/Hy8nro90eo2ixUFnzZ/ktkyNiYuJF9V/YhN1XiNDwQN8mO1kU+AORaJVFocovIHTpyar+oX/9LXB15ZCIZedodWQo56WRbNGHvYTcKzNMoML8GEnTWNMFSYYrzUH9kSjlRqVGsiV8DwLR207AxESsgPw0kSSJPk2eUR0UW9R43bhx79uxh48aN7Nixg8jISGJjY4uVGTx4MAcOHGD16tWcOHGCfv360b17dxISEgA4cOAAI0aMYPTo0Rw/fpwuXbowffr0EsdKTExk7dq1rF+/nuPHjwPQs2dP0tPTiYiIIDY2loCAADp37sytW7cA2L59OwMHDmTUqFGcOXOGRYsWsXz58lLr/7dp06bh6OjIkCFDyv1eCE+nQOdABjYcCMCUqClkFmaicrKg5uuNaKStjW+RG8hk5NidIbcwi103hyNJMohbBTcSjRz9001p7ACER6DOhb/+iyTJ2FXwKdlFN8mx138gWhV546a1w2m4PwobU7LUWXx+4HMA+vv2p61bW2NGLlRAflE+rX9tbZRjH379cLn6FOXk5LBkyRJWrlxJly5dAFixYgW1a9c2lElKSmLVqlVcuXIFNzc3AD766CO2bdvGsmXLmDFjBgsWLKBHjx589JF+6m0fHx+ioqLYsmVLseOp1Wp++uknHB0dAdi9ezcnT54kIyMDU1NTQL/676ZNm1i3bh3Dhw9n+vTpTJgwwbACsJeXF1988QXjx49n8uTJpbbrwIEDLFmyxJDwCNXfKP9R7L+yn5SsFL6K/oqZHWZi0cSRvKBbtD0ocVuWQ4Yii6wap7iU4s8Jr7E0y50De2fCyz8aO/ynlrgy8jSL/gFyrxMnhXEpHbLtzoAMvIqcaaKtg0XXWph52gIw8/BMMvIyqGNdx7BqpSA8LklJSajVaoKC/umDZG9vj6+vr+Hno0ePIkkSPj4+WFlZGR579+4lKSkJgPj4eFq1alWs7nt/BvDw8DAkIgCxsbHk5OTg4OBQrO7k5GRD3bGxsUybNq3Y/mHDhpGWlkZeXl6JY2RnZzNw4EAWL15MzZo1H+0NEp4aZkozprefjlwm548Lf7Dr4i4AHF7wQeakoIumGZY6E7TKArLszhKV0pabGnf9KukZZ40c/dNLXBl5WhVkwYFvuKmpw8HbL5BV4wQ6RRE1tJYEFzVAXVuLe+f6APx58U82X9iMXCZnevvpYvTMU8Zcac7h1w8b7djlUZ7bOTqdDoVCQWxsLAqFotg+KysrQz0ymeyBdVtaWpao29XVtUT/E8DQ30Sn0zF16lT69u1booyZWckJ/5KSkkhJSeHFF18sdhwApVJJfHw89erVK6WlwtOuqWNTBjcazJJTS5h2aBr+zv7Ym9lTe0RrkmdE0lXTnN9NYtCY3iHLPIWdBZPppxyBInImvLLC2OE/lUQy8rQ6vAhtXjbbs7/gjnUiRaocTHX6DqsFihx83u4BwI38G0w7qJ8i/q3Gb9HcqbkRgxYehkwmq/IJpLe3NyqVikOHDlGnjn7mytu3b3P+/HlCQkIA8Pf3R6vVkpGRUeaoFD8/P6Kjo4ttO3LkyAOPHxAQQHp6OkqlEk9PzzLLxMfH4+3tXa42+fn5cfLkyWLbJk6cSHZ2Nt988w3u7u7lqkd4Or3b/F32XtlL4p1Evjz0JXND5iK3UOE8pDny708QomnEbpNT5FtdJvV2Qw7nvE7bMysh/SS4NDF2+E8dcZvmaZR/Bw4uIDr7VVIVMgrNM5BJ0LmoKUqtFrcRLZGrFEiSxLSD07hdeBufGj5i7RnhibGysmLIkCGMGzeOXbt2cerUKd58803k8n9+xfj4+DBgwADCwsLYsGEDycnJxMTEMGvWLCIiIgAYOXIkERERhIeHk5CQwKJFi9i6dWuJqyX3Cg0NJSgoiN69e7N9+3ZSUlKIiopi4sSJhmRm0qRJrFy5kilTpnD69GnOnj3LmjVrmDhxYql1mpmZ0bhx42IPOzs7rK2tady4MSYmJo/p3ROqIhOFCdPbT0cpU7Lz4k5+T/odAKu6jhBiSV2tE42L9Alptm08Rwq6kab2hT1fGTPsp5ZIRp5GB78lPcuRw4VdybHR3w9vUeSNU5E1umBzbNydAfg96Xf2XN6DUq5kRvsZmCjEL0/hyZk9ezbBwcH06tWL0NBQ2rdvT2BgYLEyy5YtIywsjLFjx+Lr60uvXr04fPiw4SpDu3btWLhwIeHh4TRr1oxt27YxZsyYUm+j/JtMJiMiIoLg4GDeeustfHx86N+/PykpKTg76z8P3bp1Y8uWLezcuZOWLVvSpk0bwsPD8fDweDJviPDUa+jQkHebvwvAjMMzuJyln221bs82pNe4Sqsib5y0tkhyLZl2Z9lx832Kzu2Eq0eNGfZTSSZVZOyekWRlZWFra0tmZiY2Ns/4cNS8WxSFB/BTyhQuu6SjUxZQR1uTLpqmpNidp/3HQ5DJZFzOvky/zf3I1eQyOmA0Q5sMNXbkQjkUFBSQnJxM3bp1H/gF/KwYNmwY586dY//+/cYO5bEQ5/jpotVpGbJjCLHXYmlasynLeyxHJVeRn5PN8UlrsTfxYKPJYQrkGkzznWiTmcBzHa7AgN+MHXqVUN7v74e6MvLdd98ZPkiBgYH3/SWxYcMGunTpgqOjIzY2NgQFBbF9+/aHOawAcPB/RMb3Jq1mNjplAVY6M0I0DTmXH0OL915BJpOh0WmYsG8CuZpcApwCeLPRm8aOWhDKbc6cOcTFxZGYmMiCBQtYsWKFYTiuIFQ2hVzBV+2/wlplzYkbJ1gYtxAAcytrXAc0I7/ghmGG1kLzDGLNA0iJugpXHtzXSfhHhZORNWvW8MEHH/DZZ59x7NgxOnToQI8ePbh06VKp5fft20eXLl0MExE999xzvPjiixw7duyRg3/m5N0iYflujjs2R212E7kkI1TThNTsc3gPCsbcWp91LoxbyIkbJ7BWWfNVh69QykU/ZeHpER0dTZcuXWjSpAkLFy5k/vz5DB0qruwJxuNq5cqkIP3ieD+e/JHYa/rJ/DwDW3Cz/i1sNApaFuk7RufYJLO9YBg5a+4/mZ5QXIVv07Ru3ZqAgAC+//57w7YGDRrQu3dvvvqqfB13GjVqxKuvvsqkSZPKVV7cptG7MW0I6y61Ib3WVZBBW40vNXMlbjW8Tejw9wCISY9hyPYhSEjMDplNd8/uRo5aqAhxCb/6E+f46fXZX5/xe9LvuFq6sq7XOmxMbCjMy2PDx5/T2rw7e0zPcVlxE0WRBU1P3aLHp8GYtHre2GEb1RO5TaNWq4mNjaVr167Ftnft2pWoqKhy1aHT6cjOzsbe3r4ih37mZf3fev6KtifD9QbIoJ7WmdoFFpzSRREc9hYAmYWZfLL/EyQkenv3FomIIAjCY/Rp60+pbVWbtNw0vjz4JZIkYWphQft33uTQ9T9or/bDQjJBq8zjrI8HcR8vRJOWZuywnwoVSkZu3LiBVqs19E6/y9nZmfT09HLVMXfuXHJzc3nllVfKLFNYWEhWVlaxx7MsZ98+zsxYzNlGHugUhVjrzGlZ4MmBaxvo/O67mJiZI0kSUw9O5VreNTxsPPik1SfGDlsQBKFasVRZMit4FgqZgq0pW9lyQb9MgXvDJrh3ac75WwfoqGkEEhRYXOOw3/MkDxpE0Y0bRo686nuoDqylzZD4oHkAAFatWsWUKVNYs2YNTk5OZZb76quvsLW1NTye5cmF8o4c4dLoMcQEvEih+Q1kkowQdQNiMjbj9/xz1PJrCMC6hHXsvLgTpUzJrA6zqvwkWYIgCE+jpo5NDXM2fXnoS1IyUwBo+8oA7jjcJu9OCv5aTwBuOl7nhGUgl4YMRXvnjnECfkpUKBmpWbMmCoWixFWQjIyMEldL7rVmzRqGDBnC2rVrCQ0NvW/ZTz75hMzMTMPj8uXLFQmz2ig4f57L77zLuTrPcdvpJgCBRV5cun4IyUlOUL8BAJy9eZaZh2cCMCpgFI1qNjJazIIgCNXd0CZDCXQOJK8oj7F7x1JQVIBCqeL5kR9xInsfLlkynHX6+UfON3DgWloBl999D11BgbFDr7IqlIyYmJgQGBjIzp07i23fuXMnbduWvQrsqlWrePPNN/n111/p2bPnA49jamqKjY1NscezRpOWxuVhw8nUWXK+sTM6mQ5XrR0mN9O4XHiO50d+hFKlIludzdi9Y1Hr1ITUDmFQIzEEUhAE4UlSyBV8Hfw19mb2nL99npnR+j8GHWq5ExI2hMMZ/0dgriumkhK1SQ7RQT3IPXac1HHjkLRaI0dfNVX4Ns2HH37Ijz/+yNKlSzl79ixjxozh0qVLjBgxAtBf1QgLCzOUX7VqFWFhYcydO5c2bdqQnp5Oeno6mZmZj68V1Yw2K4vLw4ejuZZBTHAvClS5mEpK6meacfL2PjoOGkrNOp5IksTkqMlczr6Mq6WrYaVJQRAE4clysnBiZoeZyJCxPmE9m5M2A9A0tAfuAc05mr6ZVgV1Abhtd5uzjbqRvfNPrk2fXq6FJZ81Ff7mevXVV5k3bx7Tpk2jefPm7Nu3j4iICMOUymlpacXmHFm0aBFFRUW89957uLq6Gh6jR49+fK2oRnSFhVx5730KExJJaNGL6zb6pK1ZnjMnMrbh3bINTUP1i+D9eu5XfT8RuZI5IXOwNbU1ZuiCUELHjh354IMPjB2GIDwRQW5Bhv4jXxz6gqQ7SchkMrq9PQrJUsbltL3UK3IGGSQ2cCLLyoXbv67i5uIfjRx51fNQf0a/++67pKSkUFhYSGxsLMHBwYZ9y5cvL7aMd2RkJJIklXgsX778UWOvdiSdjtSPJ5AXE0OeowfxXnb6Ybyamly4shNzezu6jhiNTCbj5PWTzDkyB4CxgWNp6tjUuMELQjV1584dwx9TZmZmNGjQwLCwnyAMbzqcNq5tyC/KZ2zkWPI0eVjY2tHtndHcLExFlXYBK8mMAkUBx7v9Bwm4Hh7OnU2bjB16lSKu6VchGXPnkr1tG6hUnHyuL3nyAix1puRdiqVQyuf598dibmXNrYJbjN07liJdEaF1QhnQYICxQxcEo9FoNE+sbrVaTZcuXUhJSWHdunXEx8ezePFiatWq9cSOKTxdFHIFX3X4CkdzR5Iyk5hycAqSJOHl35KAHr24mnMWz9takCBNdZ2L/cYAkDbxc3IPHTZy9FWHSEaqiDvrN3BryVIAMl6fSIo8FQD7jGvkqK/Tpu+ruDdsgkanYdzecaTlplHHug7T2k0r17BqQXjScnNzCQsLw8rKCldXV+bOnVuijFqtZvz48dSqVQtLS0tat25d7EoqwOLFi3F3d8fCwoI+ffoQHh6OnZ2dYf+UKVNo3rw5S5cuxcvLC1NTUyRJIjMzk+HDh+Pk5ISNjQ2dOnUiLi6uWN2bN28mMDAQMzMzvLy8mDp1KkVFRWW2aenSpdy6dYtNmzbRrl07PDw8aN++Pc2aNXuk90qoXmqa1+Tr4K9RypRsTd7KyjMrAQgeOBgXbx8uXjtI3QJLAOLk19H1fA2KirgyejTqlBQjRl51iGSkCsiLiSFtyhQATMImcLggEQDnHIk7txOp5deIoJdfAyD8SDjR6dFYKC345rlvsDaxNlbYQiWRJAldXp5RHhXpaDdu3Dj27NnDxo0b2bFjB5GRkcTGxhYrM3jwYA4cOMDq1as5ceIE/fr1o3v37iQkJABw4MABRowYwejRozl+/DhdunRh+vSSa3wkJiaydu1a1q9fz/HjxwHo2bMn6enphnWwAgIC6Ny5M7du3QJg+/btDBw4kFGjRnHmzBkWLVrE8uXLS63/rt9//52goCDee+89nJ2dady4MTNmzEArRkQI92jh0oJxLccBEB4bTlRqFAqlihdGf4yppSU3Lx3ARmtGgUzDQQt7TP1bocvM5PI776IVAzoqvjaNMVTntWnUly+T0u8VtHfuYN3jdXZb1eSC4hrmRUoUiYextLHljVnzsaphz+9Jv/PZX58BMK/jPDp7dDZy9MLjVtq6Jbq8POIDAo0Sj+/RWOQWD55ALycnBwcHB1auXMmrr74KwK1bt6hduzbDhw9n3rx5JCUlUb9+fa5cuYKbm5vhtaGhobRq1YoZM2bQv39/cnJy2LJli2H/wIED2bJlC3f+njRqypQpzJgxg6tXr+Lo6AjA7t276dOnDxkZGZiamhpe6+3tzfjx4xk+fDjBwcH06NGDTz75Z3bin3/+mfHjx5Oamlpqu/z8/EhJSWHAgAG8++67JCQk8N577zF69Ohyr611L7E2TfUlSRKToiaxKXETtqa2rOq5CndrdxKPHOb/Zn+BwtyOLI/66GQS7ZSN8Nz9A0WpV7BsG4T7okXIVCpjN+GxeyJr0wiPlzY7m8sj3kF75w5mzdqQZN2QC4pryCSQXT6JHHjhg4+xqmHP6RunmRo1FYARzUaIRESoUpKSklCr1QQFBRm22dvb4+vra/j56NGjSJKEj48PVlZWhsfevXtJSkoCID4+nlatWhWr+96fATw8PAyJCEBsbKwhIfp33cnJyYa6Y2NjmTZtWrH9w4YNIy0tjby8vFLbpdPpcHJy4ocffiAwMJD+/fvz2WefFVsoVBDukslkTGwzkSY1m5BZmMnoPaPJ0+Th3aI1gS/0QZt/B+u/r9RFa84h6/sZMgsLcqMOcq2cC81WV2JteSORtFqujh2LOikJpYsbuhaDicrZD4DpzWsoCnLp0H8g7g2bcCP/BqP3jEatU9OxdkfDUDLh2SAzN8f3aOyDCz6hY5dHeS6w6nQ6FAoFsbGxKBSKYvusrKwM9ZS23MS9LC0tS9Tt6upaov8JYOhvotPpmDp1Kn379i1RpqwrFK6urqhUqmLxNmjQgPT0dNRqNSYmJqW+Tnh2mSpM+W/H//LqlldJuJ3ApKhJzA6eTYfXBpF64hCpl5IwswqgwBR2XztB77dnc3Pe+9z+dRUm3t7Yv/66sZtgFCIZMZIb335H7r79yMzMsOk/nT+uHqFQoUFZqEZ5/QreXo606P0q+UX5jNo9imt51/C08eSrDl+Jic2eMTKZDFk5bpUYk7e3NyqVikOHDlGnTh0Abt++zfnz5wkJCQHA398frVZLRkYGHTp0KLUePz8/oqOji207cuTIA48fEBBAeno6SqUST0/PMsvEx8fj7e1d7na1a9eOX3/9FZ1Oh1yu/9ydP38eV1dXkYgIZXK2dOa/z/2Xt7a/xfaU7XjaePK+//u8MH46v4x5k5wrp5F5NSFVcYvjl67RbPgkbi2ayrWvZmLesCHmzZsbuwmVTnyrGUHO3r3c+O47ABxGzOT0pUtcUtwACUyuJlDDpIDu475CQuLT/Z9y8sZJbE1tWdBpAVYmVkaOXhBKsrKyYsiQIYwbN45du3Zx6tQp3nzzTcMXOICPjw8DBgwgLCyMDRs2kJycTExMDLNmzTLM2zFy5EgiIiIIDw8nISGBRYsWsXXr1geOGAsNDSUoKIjevXuzfft2UlJSiIqKYuLEiYZkZtKkSaxcuZIpU6Zw+vRpzp49y5o1a5g4cWKZ9b7zzjvcvHmT0aNHc/78ef744w9mzJjBe++99xjeNaE683fyZ1Ibfb+iRScWsSlxEzaOTrw4sDdKdT4m1/STg0YrE7h5wx7r7q+CRsOV0R9Q9PetnGeJSEYqmfrKFa6O/xgA21ff5dZFOYdU5wEwuX4FM002vV4MwNTehfAj4fx56U9UchXzn5uPp62nESMXhPubPXs2wcHB9OrVi9DQUNq3b09gYPGOt8uWLSMsLIyxY8fi6+tLr169OHz4sGFl7nbt2rFw4ULCw8Np1qwZ27ZtY8yYMQ/s6CmTyYiIiCA4OJi33noLHx8f+vfvT0pKimERz27durFlyxZ27txJy5YtadOmDeHh4YbZo0vj7u7Ojh07iImJoWnTpowaNYrRo0czYcKER3y3hGdBn/p9GNZkGABTo6ZyKO0QtbsOpZN3DqrbGShysymS6dirOI3MuTsm3g0ounaNq2PHPnNr2IjRNJVIV1jIxddep+DMGcz826LyHcI2bSxXFDeR5+dgkXKW3h6JeE/6izVXdvPl4S8BmNVhFs97PW/k6IXKIEZalDRs2DDOnTvH/v37jR3KYyHO8bNFkiQ+3v8xW5O3Yq2y5qfnf6LexRh2fjeb47ke5Ho1BrmcVhpvWrj5cGvJu0h5uTi8/TZOYz4wdviPTIymqYKufTmdgjNnUNSwx6L128RrLnNFcRN0OsxSUwh2TME75EX23TnLjOgZAIz0HykSEeGZMmfOHOLi4khMTGTBggWsWLGCQYPEatTC00kmk/Fluy8JcAogW5PNu3++y416IXTyUVNbeR3Tv2/XxCovcO3KTeyH6UfV3Fy0iOzde4wZeqUSyUglubNpE3d++w1kMmoMnsnt9EwOKfW3Z0yvX6WR2WVa1kzjuF8oH+39CJ2ko4/3P5f4BOFZER0dTZcuXWjSpAkLFy5k/vz5DB061NhhCcJDM1GY8M1z3+Bh40Fqbirv7BlFbtu36VX7LLa5GShyMtHKdOxVnaHgkgm2/d8HIPXjj1FfuWLk6CuHSEYqgfriRdKnfQFAjSGfUHBBYp/qLBqZFnleDi5FmXRzjed8o+d5N3oa+UX5tHVry+dtPhdTvQvPnLVr15KRkUF+fj6nT59mxIgRxg5JEB6ZnZkd33X+DgczB87dOsf7tw8hs63Bf2ofx/LaFdAWcUOezXF5CpI8APOAtuiys0kdNx7pPksWVBciGXnCJLWaq2M/QsrLw6LNc2hz6nFOcZVUxS3QabG+eZ1XnPdyxUTB8KIUstXZ+Dv589+O/0WlqH6z8QmCIDyr6tjUYVGXRVibWHPsehxjPOphZ5bLS/XSMUvX3645pkzmev4tzFu/jdzKmvxjx7jx/UIjR/7kiWTkCbu+4H8UnDqF3M4es+ZvklWY86/bMxm81s6CLFMtw9w9uKXOpIF9A77t/C0Wqqo9r4QgCIJQcb72vnzX+TvMleZE5V9lgosrHpwgqEljlFm3kGSwR3magrR8arylXzfpxvffk3f0qJEjf7JEMvIE5R46zM0ffwSgRtgXqNMLiFScQiuTUOTl0LlTX5Sp6xju4kQ6GjxtPPk+9Hux+J0gCEI11typOd889w0quYqd5iqm1LSng+lm3M3qICvSkKnII1Z5AfVlM2xeGgQ6HakfjUObnW3s0J8YkYw8IdqcXNI+/RQkCduXh1J4ScUZxRWuKbNAp6WudQs8zSJ4y9mBFBMVbpZuLO66GAdzB2OHLgiCIDxhQW5BzA6ZjUIm5/+srZikucLLrzbB8pYOgBOKi1zjDnK751B5eKNJTeXarFlGjvrJEcnIE5Ixezaa1FRU7p7IrNuTJcvj8N+3Z6yyHAh6tRFvXdtBsokKF1M7fuz6Iy6WLkaOWhAEQagsnet05qsOM1Eg4/+srfjy2CR6DBiBKqsAZLBHdYqCzHxsXvoEZDIy160nZ98+Y4f9RIhk5AnIOXCAO2vWAGDz8kQ0dwrYrTyBTgbKAiUtOnfi/ehhXFQpqaWTs+z5X3G3cTdy1IIgCEJl61G3B7NafoJSkvhDlsfyrGn41uqJTKMlR15IjDIB9SUtdq+NBiDt80los7KMHPXjJ5KRx0ybk0PaxM8BsH31fdQpOo4qk7mpyEWmA1fzVnyZ+wFXtLnU1mhY1vxDaotERKimOnbsyAcffGDsMAShSuvW8DXmmPuhlCS2ZUSz12sTtrmNADijvEqq/BYabUNMvPwounaNa1/NNHLEj59IRh6zjLlzKUpLQ+VRH7W2IWmy2xxXpABgldWAjS4/cK3wOt5qNcsLLHFt9oZxAxYE4b7mzZuHr68v5ubmuLu7M2bMGAoKCowdllDNdA6ZwoJr1zHX6YjM2sEVz2TMcmsCEKk8RVFhEebdPtDfrtm4kZz9fxk34MdMJCOPUX5cHHdW62/PyEPeQVsksUd1EmRgmudMUo1zXDSLJ0AjsTztGs5tR4NcnAJBeBQajeaJ1f3LL78wYcIEJk+ezNmzZ1myZAlr1qzhk08+eWLHFJ5RLo1pX6s9P6ZnYCdTsdN2NTrJAXmRCXlyDYeU59GlybF6RT87a/q0aeiqUVIsvgkfE6moiLTJU0CSoMcgVFmW/KU8R55cg7zIDAocOOS+mY429Vl09Qq2Fk7Q9FVjhy0Ij01ubi5hYWFYWVnh6urK3LlzS5RRq9WMHz+eWrVqYWlpSevWrYmMjCxWZvHixbi7u2NhYUGfPn0IDw/Hzs7OsH/KlCk0b96cpUuX4uXlhampKZIkkZmZyfDhw3FycsLGxoZOnToRFxdXrO7NmzcTGBiImZkZXl5eTJ06laL7zG558OBB2rVrx+uvv46npyddu3bltdde48iRI4/0XglCqdqOommhmhWp13C2cmSX589YZ/qCBOeVaSTLM1DneyOrVRfN5cvcWFh9JkMTychjcmvlTxSeO0eesysKRTMSFGkkKzNAkmFzpwH76v3Ga01eZV56OmaSBK3fBqWpscMWngKSJKEp1BrlUZFFvceNG8eePXvYuHEjO3bsIDIyktjY2GJlBg8ezIEDB1i9ejUnTpygX79+dO/enYSEBAAOHDjAiBEjGD16NMePH6dLly5Mnz69xLESExNZu3Yt69ev5/jx4wD07NmT9PR0IiIiiI2NJSAggM6dO3Pr1i0Atm/fzsCBAxk1ahRnzpxh0aJFLF++vNT672rfvj2xsbFER0cDcOHCBSIiIujZs2e53xdBKLe6weDaDK+CHH6p0Q6XunbEO5zAPFffr3Cv6jSFCsj1748OuLlkKYWJicaN+TGRSRX5bWMk5V2C2Fg0V6+S9MKL5Go15AWPwM7ai00mMWhlOiyzPblsmcZzb/jRR24LP/UBlSWMOQUW9sYOXahiSlteXlOo5YfRe40Sz/BvQlCZKh5YLicnBwcHB1auXMmrr+qv+N26dYvatWszfPhw5s2bR1JSEvXr1+fKlSu4ubkZXhsaGkqrVq2YMWMG/fv3Jycnhy1bthj2Dxw4kC1btnDnzh1Af2VkxowZXL16FUdHRwB2795Nnz59yMjIwNT0nyTf29ub8ePHM3z4cIKDg+nRo0exWyw///wz48ePJzU1tcy2LViwgLFjxyJJEkVFRbzzzjt899135XsDS1HaORYEg1PrYd1bYOFA4chYph6ci82m5hRZXaLIJAsHnTW91C04f+MPav21GYsWgXisXImsit7yL+/3d9WM/ilzbdbXFGjUJDZvRy2rhvypOolWpkNVaIdUZMOAIV3oU78PHJivf0HAGyIREaqVpKQk1Go1QUFBhm329vb4+voafj569CiSJOHj44OVlZXhsXfvXpKSkgCIj4+nVatWxeq+92cADw8PQyICEBsba0iI/l13cnKyoe7Y2FimTZtWbP+wYcNIS0sjLy+v1HZFRkYyffp0vvvuO44ePcqGDRvYsmULX3zxxcO/WYJwPw1eArs6kHcT01Prmf7cF9TspsHmjh8ynZKb8mwOKxOoYxfC2bp1yDsSS9a/kvenldLYATztcqOjufXnnxyp705QzW7sVZ0hU56HXGuKzR0/Og7zoYmHF6SfhAt7QCaHNu8aO2zhKaI0kTP8mxCjHbs8ynOBVafToVAoiI2NRaEofrXFysrKUM+9K1WXVrelpWWJul1dXUv0PwEM/U10Oh1Tp06lb9++JcqUdYXi888/54033mDo0KEANGnShNzcXIYPH85nn32GvIr+NSo8xRRKCHofto6HqP8hCxzM0J6v8VvqXxSd9CPL/hRnlFdwNLHBzrMb5/PXo5objnVoKHKLp3dNM5GMPAJJqyV1xgxi67pQ2yWEFPMcLiquG/qJNGhThyYBXvrCUQv0/zbsDTU8jBaz8PSRyWTlulViTN7e3qhUKg4dOkSdOnUAuH37NufPnyckRJ9I+fv7o9VqycjIoEOHDqXW4+fnZ+ifcVd5OosGBASQnp6OUqnE09OzzDLx8fF4e3uXu115eXklEg6FQoEkSRXqTyMIFeI/ECK/gtvJcHYzNOrNS2+04ddphyjKySTP6jJ/qc7xvK0/F939OJ9yGrsff8Rx1ChjR/7QRFr/CG6vX09M/h2KatTG0r4+MUr95WCrLG/sLGrS/j/19QUzr+jvAwK0HWmkaAXhybGysmLIkCGMGzeOXbt2cerUKd58881iX+Q+Pj4MGDCAsLAwNmzYQHJyMjExMcyaNYuIiAgARo4cSUREBOHh4SQkJLBo0SK2bt1a4mrJvUJDQwkKCqJ3795s376dlJQUoqKimDhxoiGZmTRpEitXrmTKlCmcPn2as2fPsmbNGiZOnFhmvS+++CLff/89q1evJjk5mZ07d/L555/Tq1evEld3BOGxMbGElsP0z6PmgyRhYqaky5uNsMjxxKTAHq1Mxy7TUzRy7ES8myPH1q1Gc/WqceN+BCIZeUjXr1/iz6XfkWZnhbdzCHtNzoAMzPJcMMt3oeNAP8wsVfrChxeCrgg8O0CtAOMGLghPyOzZswkODqZXr16EhobSvn17AgMDi5VZtmwZYWFhjB07Fl9fX3r16sXhw4dxd9ePFmjXrh0LFy4kPDycZs2asW3bNsaMGfPAjp4ymYyIiAiCg4N566238PHxoX///qSkpODs7AxAt27d2LJlCzt37qRly5a0adOG8PBwPDzKvlI5ceJExo4dy8SJE2nYsCFDhgyhW7duLFq06BHfLUF4gFbDQWkGV2PhYhQAtXxq0LxTHawz/VBpLciTFXLE6hpeNgGccqnBn5+NRKN9cvPuPEliNE0Fpeems+zUMpT/24xcbU9tu2ZcdLEkT6bGQmuPxfWGNA1xJ/i1vzvuFWRCeCNQZ8Pra8Gnm1HjF6o2MdKipGHDhnHu3Dn2799v7FAeC3GOhXLb/AHELgOf7vC6fkLNIrWWNdNjuHnjJlk1j1EkK6JOkQP5F6IoUt8hwb+Atn2H0bd+X8yUxv//JUbTPEZanZb9V/bzYeSH9NjQg+id61EU1kCltCLNyVafiEgWmN/ww8HNmrYv/+uedOwKfSLi6AfeXYzXCEF4SsyZM4e4uDgSExNZsGABK1asYNCgQcYOSxAqX9uRgAzOb4OMcwAoTRR0frMBSskCy1sNkUsyLilvYlbbH41CQf1jJoTvn0m39d2YHTObhNsJxm1DOYkOrGXIUedwOP0wUVejiLwcSUZ+BgCW+QqCTzmhlSvQejQmU5GHqaTC/EZjVAoTurzVCKXJ3/eSi9Rw6Hv986D3xdTvglAO0dHRfP3112RnZ+Pl5cX8+fMNo1kE4ZniUA8avKDvxBq1AHp/C4BLXVvavOTFwY1JOOU0IN3qDJct8nB2akhexhn6HHJjTfBVVp5ZycozK2lg34Dg2sG0q9WOJjWboJRXva/+qhdRJTp/+zxpOWlka7LJVedyq+AWSZlJJN5OJCUrBa2kNZS1M7Wjp3t3HNZeIJMMcG9EpkkRJpISlztNydOaEdSvHjVrW/1zgNMbIDsVrJyh6StGaKEgPH3Wrl1r7BAEoepoO1qfjJxYA50mgo0rAP5d6nD1/B0unQZfMx/iVee55mCBZaEzZpnXmFDUn8NeGey7so+zt85y9tZZFp1YhIXSAm87b7xreONh44GNiQ1WJlZYqazwreGLo4XjAwJ6Mp7pZGRh3EJ2XtxZ5n4PGw/aurWlnVs7gtyC2LdsMcfTMyisVQ+NpSkqSUHzwuYkF1rg3cKJpp1q//NiSfpnOK+Y+l0QBEF4GO4toU4QXDoIMT9C588BkMllhA5uwJovosm86UKjmoWcVl4k180dM4pI23mQsZ/PYFLQJPZd2ceB1AMcTD1IljqLEzdOcOLGiRKHmtF+Bi/We7GyWwg848mIp40njRwaYWVihbXKGhtTG+ra1MW7hjfedt64WLoYyiYfO8LxnVspqOVFkY0dCklOR3VTTt2xwN7NkucG+hUffpi0G66d0k/93uItI7ROEARBqBbavKtPRo4sheCPQGUOgLmVCV2HNub//nsM3R0PGtlpOa28QoGrJ+h0RMyfTdjsBfSp34c+9fug1WlJzkwmMTORpDtJXMm+Qo46R393QJNrtKsi8IwnI6MCRjEq4MGTxOTnZLNt0XwKXD0psrFHLsnoomnK1Rwb5GZyerzdBBOze97Ku1dFAsLAvMYTiF4QBEF4Jvj1BDsPuHMR4lZDi8GGXW717ejQ34e9v8bTPM+bIgsd8cpUCmrVJfNKEtu+n0efjycjk8lQyBX6P7ZrlH/iv8oielSWw64l33PLxJIiu5rIJOikaYyisAbpRRKhgxti53zPFLzXTv9r6vd3jBO0IAiCUD3IFdB6hP75oe/13QD+pXFwLZo+V5vT+TpaaHypp3UGmZz8WvVIiI/nzL7dRgi6YkQy8gDxB//iRHwCGntnkCRCNI2orXXkRJ6WkNd8qduslMtad0fQNOglpn4XBEEQHp3/QDCxhhvxkLirxO52//HGtYE9p/J0hGgaUqfIAeRy8t292bHqJ3Ju3zJC0OUnkpH7UOfn8cfaX1E71QKgjdobb50LZwt0NH7ek8bBtUq+KPcGnPh7NIBYEE8QBEF4HMxs9Lf9AQ59W2K3XCGn67DGqJ0tyNBA56KmuBaag1xBpmNttq34sZIDrhiRjNzHlpXLyLKpCUDD3Jo0ljy5UaTDrIUzrV6oW/qLjiwFbSG4BYB7yaXPBeFZ0rFjRz744ANjhyEI1UPrt/W3/5N2Q8bZErtNzZW8OMqfZEsTdJKMblJr7HN1oFBy+vptzh998KKTxiKSkTJcOHuaE1fTQSbHOceEIEVTiiSJ7AYOhAzwK33hrqJC/dAr0F8VecDiXoIgVG2nT5/m5ZdfxtPTE5lMxrx580ot99133xmmdw8MDKw2U9cLVUwND/B7Qf/80HelFrGwMeH5sQFcNFGiREF3eQiqAjWSypT1GzdSpKmaa9eIZKQUGo2G335bB3IFJnlFdFO0RYaMTC872r/VCLm8jCTj9EbIuQbWrtDwpcoNWhCeUZon+Ms1Ly8PLy8vZs6ciYuLS6ll1qxZwwcffMBnn33GsWPH6NChAz169ODSpUtPLC7hGRb0nv7fuDX6bgGlsLQ1pfX4FtxRyLCQmdBZ2x60RRQqVPz288pKDLb8RDJSio1r1pCvk5AVaegudcBEpkBtDU2HNyl7KXNJgoN/38drORSUJpUXsFCtSZKEpqDAKI+KrKOZm5tLWFgYVlZWuLq6Mnfu3BJl1Go148ePp1atWlhaWtK6dWsiIyOLlVm8eDHu7u5YWFjQp08fwsPDsbOzM+yfMmUKzZs3Z+nSpXh5eWFqaookSWRmZjJ8+HCcnJywsbGhU6dOxMXFFat78+bNBAYGYmZmhpeXF1OnTqWoqKjMNrVs2ZLZs2fTv39/TE1Ln7gwPDycIUOGMHToUBo0aMC8efNwd3fn+++/L/d7Jwjl5t5a3w1AW6jvFlAGc2sTfD4MpEjSUlthTZNcTwDiL14m/lx8JQVbfs/0PCOx21K4eOomLl62WNuboVFruZCQwpmMBJDJCMz3xkllgVaTS51Rz5WdiIB+Qpr0E/oln8UkZ8JjVFRYyPxB/zHKsUetWIeqnCvLjhs3jj179rBx40ZcXFz49NNPiY2NpXnz5oYygwcPJiUlhdWrV+Pm5sbGjRvp3r07J0+epH79+hw4cIARI0Ywa9YsevXqxZ9//snnn39e4liJiYmsXbuW9evXo1Do14Lq2bMn9vb2REREYGtry6JFi+jcuTPnz5/H3t6e7du3M3DgQObPn0+HDh1ISkpi+PDhAEyePPmh3h+1Wk1sbCwTJkwotr1r165ERUU9VJ2CcF8ymf7qyPohEL0Y2o0uc4ZvEwdzHF505c7ma7Q28SU15wo3rWDtL2to5/cyNd30q+jevJpL+oVMQt9siGMd68psjcEznYxcjb9NWmImaYmZAEjouO0QDSoZLvmmNFd5I2k1WPlrUFo/YDr3u/fvmvUHC/snHLkgVC05OTksWbKElStX0qWLfnXqFStWULv2P0skJCUlsWrVKq5cuYKbmxsAH330Edu2bWPZsmXMmDGDBQsW0KNHDz766CMAfHx8iIqKYsuWLcWOp1ar+emnn3B01A+t3717NydPniQjI8NwBWPOnDls2rSJdevWMXz4cKZPn86ECRMMKwB7eXnxxRdfMH78+IdORm7cuIFWq8XZ2bnYdmdnZ9LT0x+qTkF4oIYvwc5JkHUVTq2H5q+XWdS6vS+ZG3aDSWOeV3RgVdFeipQQcywKq/31ipVNv5ApkhFjCO7vS1rSHdIvZFGYqyGjIIUbt9UodTJCZa2RJB2ahHXYT593/4pup8C5P/TPW4tJzoTHS2lqyqgV64x27PJISkpCrVYTFBRk2GZvb4+vr6/h56NHjyJJEj4+PsVeW1hYiIODAwDx8fH06dOn2P5WrVqVSEY8PDwMiQhAbGwsOTk5hnruys/PJykpyVAmJiaG6dOnG/ZrtVoKCgrIy8vDwuKeyQsr4N6rppIk3f9KqiA8CoUKWg2DP6fAwe+g2Wv3HTBR4/WWZITvwrROW0K0TdilPE2+5VX8vJpiqrTAxsEcl3q2uHnbVVoT7vVMJyPm+RrcAZ8+9ZBMZcz8ciMAgVpvTCUlhcd/wq5PIDKTB/T/OPwDSDqo1wmc/J584MIzRSaTlftWibGUp2+JTqdDoVAQGxtruLVyl5WVlaGe0r7Y72VpaVmibldX1xL9TwBDfxOdTsfUqVPp27dviTJmD/n+1qxZE4VCUeIqSEZGRomrJYLwWAW+CXu/hmsnIWU/1A0us6hFYCBoZqNJNcPTzR8X3VXS5XfIMo/njcFhaNJzyTt+HZOGxruq/0wnIzkHUsk/eYM7Wy5wSnmJIrkOC8kUb40j+dHfobsTj92rX9+/koIsOPp372QxyZnwjPL29kalUnHo0CHq1KkDwO3btzl//jwhISEA+Pv7o9VqycjIoEOHDqXW4+fnR3R0dLFtR448eG6EgIAA0tPTUSqVeHp6llkmPj4eb+/Hty6HiYkJgYGB7Ny5s9gVnZ07d/LSS2JEnfAEmdfQ356J+VF/deQ+yYhMJsN+UBipH43DpOVAWtRuwhbTWC6kJHN22i6s8/R/cKucLbDwd6qsFhTzUKNpKjqmfu/evcV6sC9cuPChgn3cTOvZoaplhaTTcYbLALjnmpCTvRVtehy2L72EssYDFrk7/iuos8GhPtTrXAlRC0LVY2VlxZAhQxg3bhy7du3i1KlTvPnmm8jl//yK8fHxYcCAAYSFhbFhwwaSk5OJiYlh1qxZREREADBy5EgiIiIIDw8nISGBRYsWsXXr1gfe8ggNDSUoKIjevXuzfft2UlJSiIqKYuLEiYZkZtKkSaxcuZIpU6Zw+vRpzp49y5o1a5g4cWKZ9arVao4fP87x48dRq9VcvXqV48ePk5iYaCjz4Ycf8uOPP7J06VLOnj3LmDFjuHTpEiNGjHiUt1QQHuxut4Dz2+Bm0n2L2nTritLFGXXMT2RpT+KksUSSSZxWXwSFDLOGDihqlO+27JNQ4WSkomPqk5OTef755+nQoQPHjh3j008/ZdSoUaxfv/6Rg39UVm1ccXq/OV9fX02WPB+0WrILzmK6bycANQaU3SkIAJ0WDv+dWLV5B+RipLTw7Jo9ezbBwcH06tWL0NBQ2rdvT2BgYLEyy5YtIywsjLFjx+Lr60uvXr04fPgw7u7uALRr146FCxcSHh5Os2bN2LZtG2PGjHngbRSZTEZERATBwcG89dZb+Pj40L9/f1JSUgy3S7p168aWLVvYuXMnLVu2pE2bNoSHh+PhUfb6Uampqfj7++Pv709aWhpz5szB39+foUOHGsq8+uqrzJs3j2nTptG8eXP27dtHRETEfesVhMeipjf4dAekf9ZEK4NMpaJG/1cBcLwYR3bacQCOaROJrHuBmmENMfW0fcIB3yc+qSITCQCtW7cmICCg2Bj6Bg0a0Lt3b7766qsS5T/++GN+//13zp79Z+raESNGEBcXx8GDB8t1zKysLGxtbcnMzMTGxqYi4T7QggULOHDgAH5+fqhuXSPExgaHdb9jHhiI5y8/3//F5yJg9WtgZgcfngETy/uXF4QHKCgoIDk52XDlUYBhw4Zx7ty5ajOrqTjHwmN1IRJWvgQqSxh7FszKTig0GRkkduoMRUWcfPl5zkomSCambN26lXXr1hn+KHicyvv9XaE/5e+Oqe/atWux7fcbU3/w4MES5bt168aRI0fKnDmxsLCQrKysYo8nIS4ujsmTJxt695tl38E+KgaAGq++8uAK7g7nDXxTJCKC8JjMmTOHuLg4EhMTWbBgAStWrDAMxxUE4R51Q8CxAWhy9d0G7kPl5IR1p04AeBRoUd2+DkCvXr2KDcM3hgolIw8zpj49Pb3U8kVFRdy4UfpUtl999RW2traGx5PI1kB/RWfYsGHI5XLkeTl416qNLDUNha0t1t263f/FaSf0PZhlCv0QK0EQHovo6Gi6dOlCkyZNWLhwIfPnzy92W0QQhH+Ryf75Dor+AXS6+xa/e6vGOvIvrDX5IEloNBoyMzOfdKT39VCdHCo6pr6soXplveaTTz4hMzPT8Lh8+fLDhPlAJiYmhqsiqqxb1ErTJ0e2ffsif9D8CocX6f9t+BLYGjejFITqZO3atWRkZJCfn8/p06dFR1BBeJCmr4KpLdy6AEm77lvUok0bVB51kOXm4u3siiIvG4AzZ85URqRlqlAy8jBj6l1cXEotr1QqS0xQdJepqSk2NjbFHk9Cdna2IdGxlUlYHNQPKbR7pd/9X5h3C07+pn/eWvyiFARBEIzI1Ar8B+if3/1DuQwyuZwar+i7ITifu4Ay+zYAp0+deqIhPkiFkpF/j6n/t507d9K2bdtSXxMUFFSi/I4dO2jRogUqlaqC4T5e586dA0Cen0NdM0tkOh0WbdpgWrfu/V94dKV+kSLXZuDeqhIiFQRBEIT7aDkUkEHizgcO87Xt0weZSoXZ6bPYK+QgSVxNTTXqrZoK36Z50Jj6Tz75hLCwMEP5ESNGcPHiRT788EPOnj3L0qVLWbJkiWHtCWO6mwmqsm7jcFqfmNj1e8CCZDotxCzRP281/L5T8AqCIAhCpXCoB/X160IRvfi+RZX29lh36YIM8JApUeTnABQb9VrZKpyMPGhMfVpaWrE5R+rWrUtERASRkZE0b96cL774gvnz5/Pyyy8/vlY8JF9XZ0xupGErabG6dBW5tTXWoaH3f9H57ZB5ST/7XWPjt0EQBEEQAGj1tv7f479AYc59i9r26Q1AzbjTqG5dw/z6VbwfdFfgCXqo6eDfffdd3n239KnPly9fXmJbSEgIR48efZhDPVE3zsRhev0qnraOyACbHj0e3HE1+gf9vwFhoDJ/4jEKgiAIQrnU6wT29eBWEsStuu9IT8u2bVE6OmJx/TqODety50YaGefPUNNIayo901OGejYPpJZvA2qe1Pcitu39gLUkrp+HC3sAGbQY8uQDFISnXMeOHfnggw+MHYYgPBvkcn33AdDfqrnPnKYyhQKbXi8iA+powLdtMHbOLpUTZyme6WSkSaeu9GjRAevbWajq1MHc3//+L4j5+z6cbw+oIaZ6FoTq7vTp07z88st4enoik8mYN29eiTJfffUVLVu2xNraGicnJ3r37k18fHzlBysIoF88z8QKbsTrZ2e9D9u/F3OsHRNH97BhuPk0qIQAS/dMJyMAmZs2AWD7Uq/7L8ZVkPXP7HZ3M09BEIyurJmcH4e8vDy8vLyYOXMmLi6l/9W4d+9e3nvvPQ4dOsTOnTspKiqia9eu5ObmPrG4BKFMZjbQ7DX987vdCsoq6uODWcOGoNGQ9UdEJQRXtmc6GdGkpZF78BAAti/1vn/hE2tAnaNfnder4xOPTRCeNrm5uYSFhWFlZYWrqytz584tUUatVjN+/Hhq1aqFpaUlrVu3JjIysliZxYsX4+7ujoWFBX369CE8PBw7OzvD/ilTptC8eXOWLl2Kl5cXpqamSJJEZmYmw4cPx8nJCRsbGzp16kRcXFyxujdv3lxsBfGpU6dSVFRUZptatmzJ7Nmz6d+/P6Zl9Cfbtm0bb775Jo0aNaJZs2YsW7aMS5cuERsbW/43TxAep7t/MMdvhdsp9y1q27s38M8f5sbyTCcjmZu3gCRh0bIlJrVrlV1Qkv7JMMVwXqGSSZKETq01yqMi62iOGzeOPXv2sHHjRnbs2EFkZGSJL+TBgwdz4MABVq9ezYkTJ+jXrx/du3cnISEBgAMHDjBixAhGjx7N8ePH6dKlC9OnTy9xrMTERNauXcv69es5fvw4AD179iQ9PZ2IiAhiY2MJCAigc+fO3Lp1C4Dt27czcOBARo0axZkzZ1i0aBHLly8vtf5HcXeuBnt7+8daryCUm6MPeD0HSBDz432L2rzQE5RKCk6dojAxsXLiK8VDjaapLnJ27wbK0XE1eS/cOK+/D9esfyVEJgj/kDQ6UieVvhDlk+Y2rS0yE8UDy+Xk5LBkyRJWrlxJly76uQ5WrFhRbPGtpKQkVq1axZUrV3BzcwPgo48+Ytu2bSxbtowZM2awYMECevToYZiHyMfHh6ioKLZs2VLseGq1mp9++glHR0cAdu/ezcmTJ8nIyDBcwZgzZw6bNm1i3bp1DB8+nOnTpzNhwgTDonteXl588cUXjB8/nsmTJz/iO6UnSRIffvgh7du3p3Hjxo+lTkF4KK3f1g+4OPoTdPwUTCxKLaa0t8cqOJic3bvJ3r0HU2/vSg707ziMctQqos6K5eTsicSyfbv7F7w7gUyz1/T34wRBKCYpKQm1Wk1QUJBhm729Pb6+voafjx49iiRJhvWg7iosLDQsDREfH0+fPn2K7W/VqlWJZMTDw8OQiADExsaSk5NTYomJ/Px8kpKSDGViYmKKXQnRarUUFBSQl5eHhUXpv6wr4v333+fEiRP89ddfj1yXIDyS+l3BzgPuXISTa/Wry5eh5nvvUvPt4Zg1bVp58d3jmU5G5Kam2HR/wOq8dy5B/N8de0THVcEIZCo5btNKX26hMo5dHuW5naPT6VAoFMTGxqJQFL/aYmVlZainrIU1/83S0rJE3a6uriX6nwCG/iY6nY6pU6fSt2/fEmXMzMweGP+DjBw5kt9//519+/YZfTl2QUD+94ryOybC4R8gYFCZXQzMGzWq5OBKeqaTkXKJWQKSTt9p1dHngcUF4XGTyWTlulViTN7e3qhUKg4dOkSdOnUAuH37NufPnyckJAQAf39/tFotGRkZdOjQodR6/Pz8iI6OLrbtyJEjDzx+QEAA6enpKJVKPD09yywTHx+P92O+DC1JEiNHjmTjxo1ERkZS14izWApCMf4DYc8MyDgNF6PA8wF3AYxIJCP3o8nXL4oH4qqIINyHlZUVQ4YMYdy4cTg4OODs7Mxnn32GXP7PlRUfHx8GDBhAWFgYc+fOxd/fnxs3brB7926aNGnC888/z8iRIwkODiY8PJwXX3yR3bt3s3Xr1vsPuwdCQ0MJCgqid+/ezJo1C19fX1JTU4mIiKB37960aNGCSZMm8cILL+Du7k6/fv2Qy+WcOHGCkydP8uWXX5Zar1qtNiytrlaruXr1KsePH8fKysqQ1Lz33nv8+uuv/N///R/W1taGVcptbW0xNxezNAtGZF4DmvSDoyvgyJIqnYwgPQUyMzMlQMrMzKzcAx/9WZIm20hSeCNJ0hZV7rGFZ1J+fr505swZKT8/39ihVFh2drY0cOBAycLCQnJ2dpa+/vprKSQkRBo9erShjFqtliZNmiR5enpKKpVKcnFxkfr06SOdOHHCUOaHH36QatWqJZmbm0u9e/eWvvzyS8nFxcWwf/LkyVKzZs1KHD8rK0saOXKk5ObmJqlUKsnd3V0aMGCAdOnSJUOZbdu2SW3btpXMzc0lGxsbqVWrVtIPP/xQZpuSk5MloMQjJCTEUKa0/YC0bNmyUut8ms+x8BRKPa7/HpvqIEnZ1yr98OX9/pZJUgXG7hlJVlYWtra2ZGZmYmNTSR1IJQl+CIG0OAidAu3HVM5xhWdaQUEBycnJ1K1b97H0Y6gOhg0bxrlz59i/f7+xQ3ksxDkWKt3iznD1CHT6HII/qtRDl/f7+5meZ+S+rsbqExGFKfiHGTsaQXhmzJkzh7i4OBITE1mwYAErVqwwDMcVBOEhtByq/zd2Oei0Rg2lLCIZKcuRpfp/G/cFS4f7lxUE4bGJjo6mS5cuNGnShIULFzJ//nyGDh1q7LAE4enVqI++/0jmZUjYaexoSiU6sJYm7xacWq9/3uIt48YiCM+YtWvXGjsEQaheVGbQfAAc/J++I6tvd2NHVIK4MlKauNVQVADOTaB2S2NHIwiCIAiP5u4f1gk7H7hejTGIZORekvTPLZoWg8U6NIIgCMLTz6HeP+vVHFlm7GhKEMnIvVL2w80E/To0TV8xdjSCIAiC8Hjc7ch67CcoKjRuLPcQyci9Ypbo/236CphaGzcWQRAEQXhcfLqDTS3Iuwlnfjd2NMWIZOTfsq/Bub8X5BIdVwVBEITqRKHUr1ED+o6sVYhIRv7t2ErQFUHtVuDSxNjRCIIgCMLjFRAGMgVcOgjXThs7GgORjNyl00LsCv3zlkOMG4sgVBMdO3bkgw8+MHYYgiDcZeMKfj31z2OqztURkYzclbBTPyGMeQ1o2NvY0QiCUAWcPn2al19+GU9PT2QyGfPmzbtv+a+++gqZTCYSMKFqu9uR9cQaKMw2bix/E8nIXXeH8zYfoJ8gRhCEp4JGo3lidefl5eHl5cXMmTNxcXG5b9mYmBh++OEHmjZt+sTiEYTHom4wONQHdQ6cqBqTDIpkBOD2RUjYoX8uOq4KwkPJzc0lLCwMKysrXF1dmTt3bokyarWa8ePHU6tWLSwtLWndujWRkZHFyixevBh3d3csLCzo06cP4eHh2NnZGfZPmTKF5s2bs3TpUry8vDA1NUWSJDIzMxk+fDhOTk7Y2NjQqVMn4uLiitW9efNmAgMDMTMzw8vLi6lTp1JUVFRmm1q2bMns2bPp378/pqamZZbLyclhwIABLF68mBo1apTvDRMEY5HJ/vmui1min1/LyEQyAnB0BSCBV0f9xDCCUIVIkoRarTbKoyKLeo8bN449e/awceNGduzYQWRkJLGxscXKDB48mAMHDrB69WpOnDhBv3796N69OwkJCQAcOHCAESNGMHr0aI4fP06XLl2YPn16iWMlJiaydu1a1q9fz/HjxwHo2bMn6enpREREEBsbS0BAAJ07d+bWrVsAbN++nYEDBzJq1CjOnDnDokWLWL58ean1V9R7771Hz549CQ0NfeS6BKFSNH8NlOaQcRouHzZ2NGJtGorUcHSl/rm4KiJUQRqNhhkzZhjl2J9++ikmJiYPLJeTk8OSJUtYuXIlXbp0AWDFihXUrl3bUCYpKYlVq1Zx5coV3NzcAPjoo4/Ytm0by5YtY8aMGSxYsIAePXrw0Uf6Zc59fHyIiopiy5YtxY6nVqv56aefcHR0BGD37t2cPHmSjIwMwxWMOXPmsGnTJtatW8fw4cOZPn06EyZMMKwA7OXlxRdffMH48eOZPHnyQ79Hq1ev5ujRo8TExDx0HYJQ6cxrQJOX4djP+qsjddoYNRyRjJzbArnXwcoFfJ83djSC8FRKSkpCrVYTFBRk2GZvb4+vr6/h56NHjyJJEj4+PsVeW1hYiIODfmXs+Ph4+vTpU2x/q1atSiQjHh4ehkQEIDY2lpycHEM9d+Xn55OUlGQoExMTU+xKiFarpaCggLy8PCwsLCrc7suXLzN69Gh27NiBmZnoayY8ZVoM0ScjZzZB95lGXaFeJCN3O64GhIFCZdxYBKEUKpWKTz/91GjHLo/y3M7R6XQoFApiY2NRKBTF9llZWRnqkd2zHlRpdVtaWpao29XVtUT/E8DQ30Sn0zF16lT69u1boszDJhKxsbFkZGQQGBho2KbVatm3bx//+9//KCwsLNFWQagyagWAazNIi4O4X6HtSKOF8mwnI9fj9WvRyOQQOMjY0QhCqWQyWblulRiTt7c3KpWKQ4cOUadOHQBu377N+fPnCQkJAcDf3x+tVktGRgYdOnQotR4/Pz+io6OLbTty5MgDjx8QEEB6ejpKpRJPT88yy8THx+Pt7V2Blt1f586dOXnyZLFtgwcPxs/Pj48//lgkIkLVFzgYtnwAscsh6H2jLQ77bCcjd1cu9OkOtrXvX1YQhDJZWVkxZMgQxo0bh4ODA87Oznz22WfI5f/0kffx8WHAgAGEhYUxd+5c/P39uXHjBrt376ZJkyY8//zzjBw5kuDgYMLDw3nxxRfZvXs3W7duLXG15F6hoaEEBQXRu3dvZs2aha+vL6mpqURERNC7d29atGjBpEmTeOGFF3B3d6dfv37I5XJOnDjByZMn+fLLL0utV61Wc+bMGcPzq1evcvz4caysrPD29sba2prGjRsXe42lpSUODg4ltgtCldTkP7Djc7iZqP/jvG6wUcJ4tkfTFGbrr4q0EDOuCsKjmj17NsHBwfTq1YvQ0FDat29f7PYFwLJlywgLC2Ps2LH4+vrSq1cvDh8+jLu7OwDt2rVj4cKFhIeH06xZM7Zt28aYMWMeeBtFJpMRERFBcHAwb731Fj4+PvTv35+UlBScnZ0B6NatG1u2bGHnzp20bNmSNm3aEB4ejoeHR5n1pqam4u/vj7+/P2lpacyZMwd/f3+GDh36iO+WIFQRptbQtB+Y2UJWqtHCkEkVGbtnJFlZWdja2pKZmYmNjc3jrTzzKli7gvzZzsuEqqGgoIDk5GTq1q0rOkT+bdiwYZw7d479+/cbO5THQpxjocrJvQkmFqAyf+xVl/f7+9m+TQNgW8vYEQiC8C9z5syhS5cuWFpasnXrVlasWMF3331n7LAEofoy4iiau0QyIghClRIdHc3XX39NdnY2Xl5ezJ8/X9wWEYRqTiQjgiBUKWvXVo21MgRBqDyio4QgCIIgCEYlkhFBEARBEIxKJCOCUAU9BYPchIckzq0glCSSEUGoQu5Ov56Xl2fkSIQnRa1WA4jZWQXhX0QHVkGoQhQKBXZ2dmRkZABgYWHxwNlHhaeHTqfj+vXrWFhYoFSKX7+CcJf4NAhCFePi4gJgSEiE6kUul1OnTh2RZArCv4hkRBCqGJlMhqurK05OTmg0GmOHIzxmJiYmxdbsEQRBJCOCUGUpFArRr0AQhGeCSM8FQRAEQTAqkYwIgiAIgmBUIhkRBEEQBMGonoo+I3cnCcrKyjJyJIIgCIIglNfd7+0HTfb3VCQj2dnZALi7uxs5EkEQBEEQKio7OxtbW9sy98ukp2BuYp1OR2pqKtbW1o91bH5WVhbu7u5cvnwZGxubx1ZvVVLd2yja9/Sr7m2s7u2D6t9G0b6HJ0kS2dnZuLm53XdI+1NxZUQul1O7du0nVr+NjU21/A/2b9W9jaJ9T7/q3sbq3j6o/m0U7Xs497sicpfowCoIgiAIglGJZEQQBEEQBKN6ppMRU1NTJk+ejKmpqbFDeWKqextF+55+1b2N1b19UP3bKNr35D0VHVgFQRAEQai+nukrI4IgCIIgGJ9IRgRBEARBMCqRjAiCIAiCYFQiGREEQRAEwaiqfTIyffp02rZti4WFBXZ2duV6jSRJTJkyBTc3N8zNzenYsSOnT58uVqawsJCRI0dSs2ZNLC0t6dWrF1euXHkCLbi/27dv88Ybb2Bra4utrS1vvPEGd+7cue9rZDJZqY/Zs2cbynTs2LHE/v79+z/h1pT0MO178803S8Tepk2bYmWqyvmDirdRo9Hw8ccf06RJEywtLXFzcyMsLIzU1NRi5Yx1Dr/77jvq1q2LmZkZgYGB7N+//77l9+7dS2BgIGZmZnh5ebFw4cISZdavX0/Dhg0xNTWlYcOGbNy48UmFXy4VaeOGDRvo0qULjo6O2NjYEBQUxPbt24uVWb58eamfyYKCgifdlFJVpH2RkZGlxn7u3Lli5arSOaxI+0r7fSKTyWjUqJGhTFU6f/v27ePFF1/Ezc0NmUzGpk2bHviaKvEZlKq5SZMmSeHh4dKHH34o2dralus1M2fOlKytraX169dLJ0+elF599VXJ1dVVysrKMpQZMWKEVKtWLWnnzp3S0aNHpeeee05q1qyZVFRU9IRaUrru3btLjRs3lqKioqSoqCipcePG0gsvvHDf16SlpRV7LF26VJLJZFJSUpKhTEhIiDRs2LBi5e7cufOkm1PCw7Rv0KBBUvfu3YvFfvPmzWJlqsr5k6SKt/HOnTtSaGiotGbNGuncuXPSwYMHpdatW0uBgYHFyhnjHK5evVpSqVTS4sWLpTNnzkijR4+WLC0tpYsXL5Za/sKFC5KFhYU0evRo6cyZM9LixYsllUolrVu3zlAmKipKUigU0owZM6SzZ89KM2bMkJRKpXTo0KEn2payVLSNo0ePlmbNmiVFR0dL58+flz755BNJpVJJR48eNZRZtmyZZGNjU+KzaQwVbd+ePXskQIqPjy8W+78/S1XpHFa0fXfu3CnWrsuXL0v29vbS5MmTDWWq0vmLiIiQPvvsM2n9+vUSIG3cuPG+5avKZ7DaJyN3LVu2rFzJiE6nk1xcXKSZM2cathUUFEi2trbSwoULJUnS/+dUqVTS6tWrDWWuXr0qyeVyadu2bY899rKcOXNGAor9hzh48KAESOfOnSt3PS+99JLUqVOnYttCQkKk0aNHP65QH8rDtm/QoEHSSy+9VOb+qnL+JOnxncPo6GgJKPYL1RjnsFWrVtKIESOKbfPz85MmTJhQavnx48dLfn5+xba9/fbbUps2bQw/v/LKK1L37t2LlenWrZvUv3//xxR1xVS0jaVp2LChNHXqVMPP5f39VBkq2r67ycjt27fLrLMqncNHPX8bN26UZDKZlJKSYthWlc7fv5UnGakqn8Fqf5umopKTk0lPT6dr166GbaampoSEhBAVFQVAbGwsGo2mWBk3NzcaN25sKFMZDh48iK2tLa1btzZsa9OmDba2tuWO49q1a/zxxx8MGTKkxL5ffvmFmjVr0qhRIz766CPD6smV5VHaFxkZiZOTEz4+PgwbNoyMjAzDvqpy/uDxnEOAzMxMZDJZiVuRlXkO1Wo1sbGxxd5XgK5du5bZloMHD5Yo361bN44cOYJGo7lvmco+V/BwbbyXTqcjOzsbe3v7YttzcnLw8PCgdu3avPDCCxw7duyxxV1ej9I+f39/XF1d6dy5M3v27Cm2r6qcw8dx/pYsWUJoaCgeHh7FtleF8/cwqspn8KlYKK8ypaenA+Ds7Fxsu7OzMxcvXjSUMTExoUaNGiXK3H19ZUhPT8fJyanEdicnp3LHsWLFCqytrenbt2+x7QMGDKBu3bq4uLhw6tQpPvnkE+Li4ti5c+djib08HrZ9PXr0oF+/fnh4eJCcnMznn39Op06diI2NxdTUtMqcP3g857CgoIAJEybw+uuvF1vkqrLP4Y0bN9BqtaV+dspqS3p6eqnli4qKuHHjBq6urmWWqexzBQ/XxnvNnTuX3NxcXnnlFcM2Pz8/li9fTpMmTcjKyuKbb76hXbt2xMXFUb9+/cfahvt5mPa5urryww8/EBgYSGFhIT/99BOdO3cmMjKS4OBgoOzzXNnn8FHPX1paGlu3buXXX38ttr2qnL+HUVU+g09lMjJlyhSmTp163zIxMTG0aNHioY8hk8mK/SxJUolt9ypPmfIob/ugZJwVjWPp0qUMGDAAMzOzYtuHDRtmeN64cWPq169PixYtOHr0KAEBAeWquyxPun2vvvqq4Xnjxo1p0aIFHh4e/PHHHyWSrorUWxGVdQ41Gg39+/dHp9Px3XffFdv3JM/h/VT0s1Na+Xu3P8zn8Ul62HhWrVrFlClT+L//+79iSWibNm2KdbJu164dAQEBLFiwgPnz5z++wMupIu3z9fXF19fX8HNQUBCXL19mzpw5hmSkonU+aQ8by/Lly7Gzs6N3797Ftle181dRVeEz+FQmI++///4DRwV4eno+VN0uLi6APlt0dXU1bM/IyDBkhi4uLqjVam7fvl3sr+uMjAzatm37UMf9t/K278SJE1y7dq3EvuvXr5fIYkuzf/9+4uPjWbNmzQPLBgQEoFKpSEhIeOQvsspq312urq54eHiQkJAAPPnzB5XTRo1GwyuvvEJycjK7d+9+4NLfj/MclqZmzZooFIoSfy39+7NzLxcXl1LLK5VKHBwc7lumIv8HHpeHaeNda9asYciQIfz222+Ehobet6xcLqdly5aG/7OV5VHa929t2rTh559/NvxcVc7ho7RPkiSWLl3KG2+8gYmJyX3LGuv8PYwq8xl8bL1PqriKdmCdNWuWYVthYWGpHVjXrFljKJOammq0DqyHDx82bDt06FC5Oz8OGjSoxAiMspw8eVICpL179z50vBX1qO2768aNG5Kpqam0YsUKSZKqzvmTpIdvo1qtlnr37i01atRIysjIKNexKuMctmrVSnrnnXeKbWvQoMF9O7A2aNCg2LYRI0aU6DzXo0ePYmW6d+9u1A6sFWmjJEnSr7/+KpmZmT2wM+FdOp1OatGihTR48OBHCfWhPEz77vXyyy9Lzz33nOHnqnQOH7Z9dzvqnjx58oHHMOb5+zfK2YG1KnwGq30ycvHiRenYsWPS1KlTJSsrK+nYsWPSsWPHpOzsbEMZX19facOGDYafZ86cKdna2kobNmyQTp48Kb322mulDu2tXbu29Oeff0pHjx6VOnXqZLShvU2bNpUOHjwoHTx4UGrSpEmJYaH3tk+SJCkzM1OysLCQvv/++xJ1JiYmSlOnTpViYmKk5ORk6Y8//pD8/Pwkf3//Kt++7OxsaezYsVJUVJSUnJws7dmzRwoKCpJq1apVJc+fJFW8jRqNRurVq5dUu3Zt6fjx48WGEhYWFkqSZLxzeHfY5JIlS6QzZ85IH3zwgWRpaWkYeTBhwgTpjTfeMJS/O6xwzJgx0pkzZ6QlS5aUGFZ44MABSaFQSDNnzpTOnj0rzZw5s0oM7S1vG3/99VdJqVRK3377bZnDrKdMmSJt27ZNSkpKko4dOyYNHjxYUiqVxZLUqtq+//73v9LGjRul8+fPS6dOnZImTJggAdL69esNZarSOaxo++4aOHCg1Lp161LrrErnLzs72/A9B0jh4eHSsWPHDCPtqupnsNonI4MGDZKAEo89e/YYygDSsmXLDD/rdDpp8uTJkouLi2RqaioFBweXyIbz8/Ol999/X7K3t5fMzc2lF154Qbp06VIlteofN2/elAYMGCBZW1tL1tbW0oABA0oMsbu3fZIkSYsWLZLMzc1LnXfi0qVLUnBwsGRvby+ZmJhI9erVk0aNGlViro7KUNH25eXlSV27dpUcHR0llUol1alTRxo0aFCJc1NVzp8kVbyNycnJpf6f/vf/a2Oew2+//Vby8PCQTExMpICAgGJXYgYNGiSFhIQUKx8ZGSn5+/tLJiYmkqenZ6kJ8m+//Sb5+vpKKpVK8vPzK/ZFZwwVaWNISEip52rQoEGGMh988IFUp04dycTERHJ0dJS6du0qRUVFVWKLiqtI+2bNmiXVq1dPMjMzk2rUqCG1b99e+uOPP0rUWZXOYUX/j965c0cyNzeXfvjhh1Lrq0rn7+4VnLL+v1XVz6BMkv7uqSIIgiAIgmAEYp4RQRAEQRCMSiQjgiAIgiAYlUhGBEEQBEEwKpGMCIIgCIJgVCIZEQRBEATBqEQyIgiCIAiCUYlkRBAEQRAEoxLJiCAIgiAIRiWSEUEQBEEQjEokI4IgCIIgGJVIRgRBMIpVq1ZhZmbG1atXDduGDh1K06ZNyczMNGJkgiBUNrE2jSAIRiFJEs2bN6dDhw7873//Y+rUqfz4448cOnSIWrVqGTs8QRAqkdLYAQiC8GySyWRMnz6d//znP7i5ufHNN9+wf/9+kYgIwjNIXBkRBMGoAgICOH36NDt27CAkJMTY4QiCYASiz4ggCEazfft2zp07h1arxdnZ2djhCIJgJOLKiCAIRnH06FE6duzIt99+y+rVq7GwsOC3334zdliCIBiB6DMiCEKlS0lJoWfPnkyYMIE33niDhg0b0rJlS2JjYwkMDDR2eIIgVDJxZUQQhEp169Yt2rVrR3BwMIsWLTJsf+mllygsLGTbtm1GjE4QBGMQyYggCIIgCEYlOrAKgiAIgmBUIhkRBEEQBMGoRDIiCIIgCIJRiWREEARBEASjEsmIIAiCIAhGJZIRQRAEQRCMSiQjgiAIgiAYlUhGBEEQBEEwKpGMCIIgCIJgVCIZEQRBEATBqEQyIgiCIAiCUYlkRBAEQRAEo/p/SQp9ljs58E0AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'fitting a triangle-shape function to polynomials')" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t(x) = 1 - abs(x)\n", + "\n", + "L16 = legendre_gramschmidt(16) # compute a few more terms\n", + "\n", + "plot(x, t.(x), \"k--\")\n", + "N = [1:2:16;]\n", + "for n in N\n", + " plot(x, sum([polydot(p,t)/polydot(p,p) for p in L16[1:n]] .* L16[1:n]).(x), \"-\")\n", + "end\n", + "legend([L\"t(x)\", [\"degree $i\" for i in N .- 1]...])\n", + "xlabel(L\"x\")\n", + "title(\"fitting a triangle-shape function to polynomials\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is still converging, just much more slowly!" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Perron-Frobenius.ipynb b/notes/Perron-Frobenius.ipynb similarity index 100% rename from lectures/Perron-Frobenius.ipynb rename to notes/Perron-Frobenius.ipynb diff --git a/notes/Power-Method.ipynb b/notes/Power-Method.ipynb new file mode 100644 index 00000000..98f81e9a --- /dev/null +++ b/notes/Power-Method.ipynb @@ -0,0 +1,7199 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "using LinearAlgebra, PyPlot, Interact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The power method\n", + "\n", + "We know that multiplying by a matrix $A$ repeatedly will exponentially amplify the largest-|λ| eigenvalue. This is the basis for many algorithms to compute eigenvectors and eigenvalues, the most basic of which is known as the [power method](https://en.wikipedia.org/wiki/Power_iteration).\n", + "\n", + "The simplest version of this is to just start with a random vector $x$ and multiply it by $A$ repeatedly. (This is the procedure by which a Markov process approaches its steady state!) This works, but has the practical problem that the vector quickly becomes very large or very small, and eventually becomes too big/small for the computer to represent (this is known as \"overflow/underflow\"). The fix is easy: *normalize the vector after each multiplication by A*. That is:\n", + "\n", + "* Starting with a random $x$, repeatedly compute $x \\leftarrow Ax / \\Vert Ax \\Vert $.\n", + "\n", + "For example, let's try it on a random matrix with eigenvalues 1 to 5:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Matrix{Float64}:\n", + " 4.27661 1.1409 0.216216 2.8477 -2.26094\n", + " -0.77939 1.01093 0.542869 -3.46742 2.19621\n", + " -0.325662 0.57507 2.23157 0.54375 1.83044\n", + " 0.825317 0.693926 0.482976 4.41696 -0.892176\n", + " 0.302161 0.00126964 0.898394 -0.428578 3.06394" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = randn(5,5)\n", + "A = A * Diagonal(1:5) / A" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 0.9999999999999998\n", + " 2.0\n", + " 3.000000000000002\n", + " 4.0000000000000036\n", + " 4.999999999999995" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigvals(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 4.999999999999995\n", + " 4.0000000000000036\n", + " 3.000000000000002\n", + " 2.0\n", + " 0.9999999999999998" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "λ, X = eigen(A, sortby=λ->-abs(λ)) # sort eigenvals by -|λ|\n", + "λ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the result of $n$ steps of the power method side-by-side with the eigenvector $x_1$ (which is normalized to unit length by Julia) for $\\lambda = 5$:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 1" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.8256072799048821\n -0.08146902471050843\n  0.2827545769388959\n  0.44794212550415574\n  0.17644579564190693
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 1\")\n", + " [0.8256072799048821, -0.08146902471050843, 0.2827545769388959, 0.44794212550415574, 0.17644579564190693])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 2" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7943912825124728\n -0.31553441134669485\n  0.16009043175172383\n  0.46885440544802165\n  0.15468395417047048
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 2\")\n", + " [0.7943912825124728, -0.31553441134669485, 0.16009043175172383, 0.46885440544802165, 0.15468395417047048])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 3" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7715323748801386\n -0.4064057371538176\n  0.08655461208728565\n  0.46529334420609486\n  0.1248301817839077
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 3\")\n", + " [0.7715323748801386, -0.4064057371538176, 0.08655461208728565, 0.46529334420609486, 0.1248301817839077])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 4" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7605949964424256\n -0.4497171569732749\n  0.03701715709084387\n  0.4567347548613731\n  0.09629550297523977
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 4\")\n", + " [0.7605949964424256, -0.4497171569732749, 0.03701715709084387, 0.4567347548613731, 0.09629550297523977])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 5" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7557264753154274\n -0.4733963237531922\n  0.00017832405522310188\n  0.44685393436966053\n  0.07137888135275113
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 5\")\n", + " [0.7557264753154274, -0.4733963237531922, 0.00017832405522310188, 0.44685393436966053, 0.07137888135275113])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 6" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7536302758648975\n -0.4875193814022369\n -0.028598863108686323\n  0.4370272836234865\n  0.05055213600379533
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 6\")\n", + " [0.7536302758648975, -0.4875193814022369, -0.028598863108686323, 0.4370272836234865, 0.05055213600379533])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 7" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7527477253330508\n -0.496444442317198\n -0.051517333677548384\n  0.4279411682872238\n  0.03355739134685802
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 7\")\n", + " [0.7527477253330508, -0.496444442317198, -0.051517333677548384, 0.4279411682872238, 0.03355739134685802])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 8" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7523774930751926\n -0.5023218113100897\n -0.06987633584596087\n  0.4199087501783914\n  0.019870707294981325
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 8\")\n", + " [0.7523774930751926, -0.5023218113100897, -0.06987633584596087, 0.4199087501783914, 0.019870707294981325])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 9" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7522140929020339\n -0.5063162419421631\n -0.08459353982978109\n  0.4130158959308184\n  0.008923245635202061
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 9\")\n", + " [0.7522140929020339, -0.5063162419421631, -0.08459353982978109, 0.4130158959308184, 0.008923245635202061])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 10" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7521291338313594\n -0.50910158691695\n -0.09638199018399124\n  0.4072196141740886\n  0.00019504053876687904
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 10\")\n", + " [0.7521291338313594, -0.50910158691695, -0.09638199018399124, 0.4072196141740886, 0.00019504053876687904])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 11" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.752071417351545\n -0.5110865784339829\n -0.10581527211634305\n  0.4024134552974101\n -0.006755126203545295
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 11\")\n", + " [0.752071417351545, -0.5110865784339829, -0.10581527211634305, 0.4024134552974101, -0.006755126203545295])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 12" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7520223363700542\n -0.5125280942056814\n -0.11335817069064183\n  0.3984674144193489\n -0.012288329180469347
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 12\")\n", + " [0.7520223363700542, -0.5125280942056814, -0.11335817069064183, 0.3984674144193489, -0.012288329180469347])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 13" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7519763629519373\n -0.5135922148810071\n -0.11938659900114366\n  0.39525018751501867\n -0.01669477832978176
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 13\")\n", + " [0.7519763629519373, -0.5135922148810071, -0.11938659900114366, 0.39525018751501867, -0.01669477832978176])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 14" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7519327333918133\n -0.5143889421667326\n -0.12420342496131533\n  0.3926403172250944\n -0.0202057206692113
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 14\")\n", + " [0.7519327333918133, -0.5143889421667326, -0.12420342496131533, 0.3926403172250944, -0.0202057206692113])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 15" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7518920576853981\n -0.5149927335308243\n -0.1280518264340346\n  0.3905308305651388\n -0.023004741360820972
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 15\")\n", + " [0.7518920576853981, -0.5149927335308243, -0.1280518264340346, 0.3905308305651388, -0.023004741360820972])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 16" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7518550514609499\n -0.5154550141540767\n -0.13112656679221216\n  0.38883030463339663\n -0.025237425701930712
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 16\")\n", + " [0.7518550514609499, -0.5154550141540767, -0.13112656679221216, 0.38883030463339663, -0.025237425701930712])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 17" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7518221506842239\n -0.5158119817762924\n -0.13358338052866245\n  0.3874621194383501\n -0.027019245796988122
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 17\")\n", + " [0.7518221506842239, -0.5158119817762924, -0.13358338052866245, 0.3874621194383501, -0.027019245796988122])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 18" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7517934683783734\n -0.5160895728629241\n -0.1355466757996753\n  0.38636290318113226\n -0.02844186018678891
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 18\")\n", + " [0.7517934683783734, -0.5160895728629241, -0.1355466757996753, 0.38636290318113226, -0.02844186018678891])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 19" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7517688637969465\n -0.516306679821705\n -0.1371157877795076\n  0.38548071899534136\n -0.029578096987045565
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 19\")\n", + " [0.7517688637969465, -0.516306679821705, -0.1371157877795076, 0.38548071899534136, -0.029578096987045565])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 20" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7517480318458141\n -0.5164772713917627\n -0.13837001785125266\n  0.38477327605017153\n -0.030485881144019924
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 20\")\n", + " [0.7517480318458141, -0.5164772713917627, -0.13837001785125266, 0.38477327605017153, -0.030485881144019924])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 21" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7517305800122787\n -0.5166118142286112\n -0.1393726748651477\n  0.3842062974479904\n -0.031211327688293718
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 21\")\n", + " [0.7517305800122787, -0.5166118142286112, -0.1393726748651477, 0.3842062974479904, -0.031211327688293718])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 22" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7517160847525116\n -0.5167182425238506\n -0.14017430654282412\n  0.38375209498670426\n -0.03179118031737525
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 22\")\n", + " [0.7517160847525116, -0.5167182425238506, -0.14017430654282412, 0.38375209498670426, -0.03179118031737525])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 23" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7517041286563255\n -0.5168026308718542\n -0.14081527897531487\n  0.3833883577275971\n -0.0322547368770004
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 23\")\n", + " [0.7517041286563255, -0.5168026308718542, -0.14081527897531487, 0.3833883577275971, -0.0322547368770004])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 24" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.751694322521539\n -0.5168696692512652\n -0.14132783397865784\n  0.3830971403137061\n -0.03262537238613207
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 24\")\n", + " [0.751694322521539, -0.5168696692512652, -0.14132783397865784, 0.3830971403137061, -0.03262537238613207])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 25" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516863166576098\n -0.5169230039144592\n -0.14173772946840457\n  0.382864028177026\n -0.032921745806843615
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 25\")\n", + " [0.7516863166576098, -0.5169230039144592, -0.14173772946840457, 0.382864028177026, -0.032921745806843615])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 26" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516798050238978\n -0.5169654859001924\n -0.14206554736392793\n  0.3826774544503785\n -0.033158757738779465
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 26\")\n", + " [0.7516798050238978, -0.5169654859001924, -0.14206554736392793, 0.3826774544503785, -0.033158757738779465])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 27" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516745249137794\n -0.516999354836007\n -0.14232773659899456\n  0.38252814433641824\n -0.033348311500589124
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 27\")\n", + " [0.7516745249137794, -0.516999354836007, -0.14232773659899456, 0.38252814433641824, -0.033348311500589124])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 28" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516702540942762\n -0.5170263766569079\n -0.14253744512134275\n  0.38240866509213434\n -0.033499918680609087
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 28\")\n", + " [0.7516702540942762, -0.5170263766569079, -0.14253744512134275, 0.38240866509213434, -0.033499918680609087])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 29" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516668066790847\n -0.5170479479797078\n -0.14270518378331745\n  0.3823130626960266\n -0.033621181421755554
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 29\")\n", + " [0.7516668066790847, -0.5170479479797078, -0.14270518378331745, 0.3823130626960266, -0.033621181421755554])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 30" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.751664028549221\n -0.517065175988641\n -0.14283935626318672\n  0.38223656917816207\n -0.03371817685193268
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 30\")\n", + " [0.751664028549221, -0.517065175988641, -0.14283935626318672, 0.38223656917816207, -0.03371817685193268])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 31" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516617928114376\n -0.5170789400895118\n -0.14294668218290482\n  0.3821753672734254\n -0.033795763724534515
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 31\")\n", + " [0.7516617928114376, -0.5170789400895118, -0.14294668218290482, 0.3821753672734254, -0.033795763724534515])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 32" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516599955668624\n -0.5170899398250739\n -0.1430325350445901\n  0.3821264014114993\n -0.03385782714737693
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 32\")\n", + " [0.7516599955668624, -0.5170899398250739, -0.1430325350445901, 0.3821264014114993, -0.03385782714737693])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 33" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516585521214868\n -0.5170987323270193\n -0.1431012122031146\n  0.3820872260650122\n -0.03390747398971578
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 33\")\n", + " [0.7516585521214868, -0.5170987323270193, -0.1431012122031146, 0.3820872260650122, -0.03390747398971578])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 34" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516573936827312\n -0.5171057617265665\n -0.14315615059156545\n  0.3820558841588563\n -0.033947188965664926
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 34\")\n", + " [0.7516573936827312, -0.5171057617265665, -0.14315615059156545, 0.3820558841588563, -0.033947188965664926])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 35" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.751656464534931\n -0.5171113823376916\n -0.14320009913308707\n  0.3820308096341801\n -0.033978959345113566
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 35\")\n", + " [0.751656464534931, -0.5171113823376916, -0.14320009913308707, 0.3820308096341801, -0.033978959345113566])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 36" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516557196587027\n -0.5171158769871873\n -0.1432352565584326\n  0.3820107494002191\n -0.03400437462228629
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 36\")\n", + " [0.7516557196587027, -0.5171158769871873, -0.1432352565584326, 0.3820107494002191, -0.03400437462228629])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 37" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516551227461725\n -0.5171194715427813\n -0.14326338158596175\n  0.3819947008352959\n -0.03402470618622762
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 37\")\n", + " [0.7516551227461725, -0.5171194715427813, -0.14326338158596175, 0.3819947008352959, -0.03402470618622762])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 38" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516546445600893\n -0.5171223464502187\n -0.14328588101681414\n  0.38198186175078896\n -0.03404097101585432
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 38\")\n", + " [0.7516546445600893, -0.5171223464502187, -0.14328588101681414, 0.38198186175078896, -0.03404097101585432])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 39" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516542615861407\n -0.5171246459092165\n -0.14330388017894555\n  0.3819715903398496\n -0.03405398260946184
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 39\")\n", + " [0.7516542615861407, -0.5171246459092165, -0.14330388017894555, 0.3819715903398496, -0.03405398260946184])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "power iteration 40" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516539549318045\n -0.5171264851804152\n -0.1433182792613011\n  0.38196337312266704\n -0.0340643917113
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "align-self": "stretch", + "borderLeft": "solid 1.0px #DEDEDE" + } + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "eigenvector" + }, + "type": "node" + }, + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "
    5-element Vector{Float64}:\n  0.7516527258032667\n -0.5171338396934146\n -0.14337587333973284\n  0.38193050353655744\n -0.03410602657662457
    " + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "column" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "style": { + "display": "flex", + "flex-direction": "row" + } + }, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "(div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"row\") }\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"power iteration 40\")\n", + " [0.7516539549318045, -0.5171264851804152, -0.1433182792613011, 0.38196337312266704, -0.0340643917113])\n", + " (div { style=Dict{Any, Any}(\"align-self\" => \"stretch\", \"borderLeft\" => \"solid 1.0px #DEDEDE\") })\n", + " (div { style=Dict(\"display\" => \"flex\", \"flex-direction\" => \"column\") }\n", + " HTML{String}(\"eigenvector\")\n", + " [0.7516527258032667, -0.5171338396934146, -0.14337587333973284, 0.38193050353655744, -0.03410602657662457]))" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "x = [5,4,3,2,1] # arbitrary initial vector\n", + "# @manipulate\n", + "for n = 1:40\n", + " y = x\n", + " for i = 1:n\n", + " y = A*y\n", + " y = y / norm(y)\n", + " end\n", + " display(\n", + " hbox(vbox(HTML(\"power iteration $n\"),y),\n", + " vline(), \n", + " vbox(HTML(\"eigenvector\"),X[:,1]))\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the *sign* of the resulting eigenvector depends on the initial $x$.\n", + "\n", + "We could also plot the difference $\\Vert \\pm y - x_1 \\Vert$ versus the number $n$ of steps:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZGUlEQVR4nO3deVxUZfs/8M9hgGETXFAUWdVccQU3XHALNLPUUtvU1Cczc4vHXLLSSsOfZdrikmbylJVkLm1aYoIrqaGkqaEmCiiKSyxuiMP9+2O+M86GzMAMs33er9e8bM45c849Zybn8r7u674lIYQAERERkRNysXYDiIiIiKyFgRARERE5LQZCRERE5LQYCBEREZHTYiBERERETouBEBERETktBkJERETktBgIERERkdNiIEREREROi4EQEREROS0GQkREROS0GAgROYikpCS0atUKnp6ekCQJGRkZ1m6Sw9u/fz/mzZuHgoICvX3z5s2DJEm4evWqRduguo4xrPEduXPnDlxdXVGjRg1MnjzZ4tcDgOLiYsyYMQOxsbGoW7cuJEnCvHnzKnWunTt3YuzYsWjevDm8vb3RsGFDPP7440hPTzf5XBkZGRg4cCBCQkLg6emJ2rVro2vXrli3bl2l2qbps88+gyRJ8PHxMfm1qampkCTJ4OP333+vcttsHQMhIgdw5coVjBw5Eo0bN8Yvv/yCtLQ0NG3a1NrNcnj79+/HW2+9ZTAQsjXW+o5IkoSdO3eiU6dO+OSTT3Dq1CmLX/PatWtYtWoVSkpKMHjw4Cqda8WKFTh37hymTp2KrVu34sMPP0R+fj66dOmCnTt3mnSugoICBAcH491338XWrVvxxRdfICwsDCNHjsT8+fMr3cYLFy5g+vTpCAwMrPQ5AODdd99FWlqa1iMiIqJK57QHrtZuAFFl3Lp1C15eXtZuhs04deoUSktL8dxzzyEmJsbazakW/A6YxhLfEWM+A7lcjp49e2LGjBnYuXMn0tPTLR6AhYaG4t9//1X3yH322WeVPteyZctQr149rW39+/dHkyZN8O6776JPnz5Gn6tXr17o1auX1rZHH30UWVlZWLVqFV5//fVKtXHChAno2bMnateuje+++65S5wCAhx56CF26dKn06+0Ve4Qc3N9//42nn34aAQEBkMvlCAkJwahRo1BSUqI+Zu/evejbty9q1KgBLy8vREdH4+eff9Y6j6r7/fjx43j66afh5+eHgIAAjB07FoWFhQCALVu2QJIk/Pbbb3rtWLFiBSRJwtGjR9XbTp8+jWeeeQb16tWDXC5HixYtsGzZMr3Xqq59+PBhPPnkk6hVqxYaN24MAPj+++/Rpk0byOVyNGrUCB9++GG5qQJjrmfM+zT1/hr7PstT0efz/PPPo3v37gCAESNGQJIkvb9sDb3HI0eOYOjQofD19YWfnx+ee+45XLlyxaRrA8Dx48chSRI2bNig3paeng5JktCqVSutYx977DFERkaafG8e9B140Hs8evQohg0bBj8/P9SuXRvx8fG4d+8eMjMz0b9/f9SoUQNhYWFYtGiR3jkqatu8efPw6quvAgDCw8PVqYTU1FSt81y+fLnC75Ix9xkAfv75Z7Rr1w5yuRzh4eF4//33y70Hmir6jpjyd4Cxn4Gu5s2bA0C1pONUn4U56AZBAODj44OWLVsiJyfHLNfw9/eHq2vl+iXWrVuHXbt2Yfny5WZpi1MS5LAyMjKEj4+PCAsLEytXrhS//fabWLdunRg+fLgoKioSQgiRmpoq3NzcRGRkpEhKShJbtmwRsbGxQpIksX79evW55s6dKwCIZs2aiTfffFMkJyeLDz74QMjlcjFmzBghhBClpaWiXr164tlnn9VrS6dOnUSHDh3Uz48fPy78/PxE69atxRdffCG2b98u/vvf/woXFxcxb948rdeqrh0aGipmzpwpkpOTxZYtW8S2bduEi4uL6NWrl9i8ebPYsGGD6Ny5swgLCxO6X21jr2fM+zTl/pryPg0x5vM5c+aMWLZsmQAg3n33XZGWliaOHz9e7jk17+err74qfv31V/HBBx8Ib29v0b59e3H37l2jr63SoEEDMX78ePXzhQsXCk9PTwFAXLhwQQih/H74+vqKGTNmmO07UNF7bNasmXjnnXdEcnKymDFjhgAgJk2aJJo3by4++ugjkZycLMaMGSMAiI0bN6pfb0zbcnJyxOTJkwUAsWnTJpGWlibS0tJEYWGhXhse9F0y9j7v2LFDyGQy0b17d7Fp0yaxYcMG0bFjRxESEqL3fdf1oO+IqX8HGPsZ6HrppZcEABEbG/vA48rKykRpaalRD2NcuXJFABBz5841uq0VKSgoEH5+fmLIkCGVer1CoRClpaUiPz9fLFu2TLi6uoqVK1eafJ7Lly+LOnXqiGXLlgkhhBg9erTw9vY2+TwpKSkCgKhXr56QyWSiRo0aIjY2VuzZs8fkc9kjBkIOrE+fPqJmzZoiPz+/3GO6dOki6tWrJ4qLi9Xb7t27JyIiIkRQUJAoKysTQtz/S3DRokVar584caLw8PBQHxcfHy88PT1FQUGB+pgTJ04IAOLjjz9Wb4uLixNBQUHqHw2VSZMmCQ8PD3H9+nX1NtW133zzTa1jO3bsKIKDg0VJSYl6W3FxsahTp47eD4Ox1zP2fQph3P015X0aYuzno/qLbMOGDQ88n+Z7fOWVV7S2f/XVVwKAWLdunUnXFkKI5557TjRq1Ej9vF+/fuKFF14QtWrVEv/73/+EEELs27dPABDbt283+d6U9x2o6D0uXrxYa3u7du3UgYtKaWmpqFu3rhg6dKh6m7Fte++99wQAkZWVVW4bKvouGXufO3fuLAIDA8Xt27fVxxUVFYnatWtXGAgJUf53xNS/A4z9DDT9+uuvAoCoVauWqFu3rlHtNOZh6L7rskQg9OyzzwpXV1fxxx9/VOr1L774ovo9uLu7i+XLl1fqPE888YSIjo5Wf0aVDYQOHz4spk6dKjZv3ix2794tPv/8c9GiRQshk8nEL7/8Uqm22ROmxhzUrVu3sGvXLgwfPhx169Y1eMzNmzdx4MABPPnkk1qVBjKZDCNHjkRubi4yMzO1XvPYY49pPW/Tpg3u3LmD/Px8AMDYsWNx+/ZtJCUlqY9Zu3Yt5HI5nnnmGQDKKpLffvsNQ4YMgZeXF+7du6d+PPLII7hz547BSoUnnnhCq+1//PEHBg8eDHd3d/V2Hx8fDBo0SOt1lbleRe/TmPtb2fep+R5N/XxM8eyzz2o9Hz58OFxdXZGSkmLytfv27YuzZ88iKysLd+7cwd69e9G/f3/07t0bycnJAIAdO3ZALpeje/fuZvkOGOPRRx/Vet6iRQtIkoQBAwaot7m6uqJJkyY4f/48gKp/broe9F0y9j7fvHkThw4dwtChQ+Hh4aE+rkaNGnrfd1NU5jtm6mdQUFCAsWPH4vHHH8fEiRNx5coVXLx4sdzjIyMjcejQIaMeVR0cXBlvvPEGvvrqKyxZskQrzWuK1157DYcOHcLPP/+MsWPHYtKkSUanOVU2btyIH3/8EatXr65yGrB9+/ZYunQpBg8ejB49emDMmDHYv38/GjRogBkzZlTp3PaAg6Ud1L///guFQoGgoKAHHiOEQIMGDfT2qf6CuXbtmtb2OnXqaD2Xy+UAgNu3bwMAWrVqhY4dO2Lt2rUYP348FAoF1q1bh8cffxy1a9dWn/PevXv4+OOP8fHHHxtsm6GSY812qtoeEBCgd5zutspcr6L3acz9rez7VKnM52OK+vXraz13dXVFnTp1cO3aNZOv3a9fPwDKYCc8PBylpaXo06cPLl++jHfeeUe9r1u3bvD09MSFCxeq/B0whuo7p+Lu7g4vLy+tYEK1vaioSP2+qvK56XrQd6m0tNSo++zj44OysjK9zwzQ/xxNUZnvmKmfwcsvv4zS0lKsXr0au3fvBqAcJ1ReEOPj44N27doZde7KjquprLfeegvz58/HggULMGnSpEqfJyQkBCEhIQCARx55BAAwe/ZsjB49utx/WGm6ceMGXn75ZUyePBmBgYHqqsW7d+8CUAafbm5u8Pb2rnQba9asiUcffRQrV67E7du34enpWelz2ToGQg6qdu3akMlkyM3NLfeYWrVqwcXFBXl5eXr7VP9i8/f3N/naY8aMwcSJE3Hy5EmcPXsWeXl5GDNmjNZ1Vf/ifPnllw2eIzw8XG+b5r96atWqBUmScPnyZb3jLl26pPW8std7EGPvb1Wua6nPR+XSpUto2LCh+vm9e/dw7do11KlTx+RrBwUFoWnTptixYwfCwsIQFRWFmjVrom/fvpg4cSIOHDiA33//HW+99Zb6vVX1O2Aplvi+POhaxtxn1fdd97sN6H/fLXF9TaZ8Bt999x2+/vpr/Pjjj6hbty46dOgAQBkIqQIAXbt27ULv3r2NOn9WVhbCwsKMbk9VvPXWW5g3bx7mzZuH1157zazn7tSpE1auXImzZ88aFQhdvXoVly9fxuLFi7F48WK9/bVq1cLjjz+OLVu2VKldQggA1fP/nTUxEHJQnp6eiImJwYYNG7BgwQKDP5je3t7o3LkzNm3ahPfff18d8ZeVlWHdunXqHzdTPf3004iPj0diYiLOnj2Lhg0bIjY2Vr3fy8sLvXv3xpEjR9CmTRut1JaxvL29ERUVhS1btuD9999Xn+PGjRv46aeftI41x/V0GXN/q3pdS30+Kl999ZVW1/63336Le/fuoVevXpW6dr9+/fDtt98iODgYAwcOBAA0bdoUISEhePPNN1FaWqruObLEZ2IuprRNt6fQVMbeZ0mS0KlTJ2zatAnvvfeeukeruLgYP/74Y6Wubcr1K+PSpUuYMGECxo8fr05RhoeHo2bNmjhy5Ei5r1OlxoxRXamxd955B/PmzcPrr7+OuXPnmv38KSkpcHFxQaNGjYw6vn79+khJSdHbvnDhQuzatQvbtm2r0j+SAGVv4U8//YR27drp9aA6GgZCDuyDDz5A9+7d0blzZ8yaNQtNmjTB5cuX8cMPP+DTTz9FjRo1kJCQgIcffhi9e/fG9OnT4e7ujuXLl+Ovv/7CN998U6l/CdSsWRNDhgxBYmIiCgoKMH36dLi4aA9H+/DDD9G9e3f06NEDL730EsLCwlBcXIwzZ87gxx9/NGqisrfffhsDBw5EXFwcpk6dCoVCgffeew8+Pj64fv262a+ny5j7W9XrWuLzUdm0aRNcXV3x8MMP4/jx43jjjTfQtm1bDB8+vFLX7tu3L5YvX46rV69i6dKlWtvXrl2LWrVqaQVelvhMzMXYtrVu3Vp9/OjRo+Hm5oZmzZqhRo0aRl/L2Pv8zjvvoH///nj44Yfx3//+FwqFAv/v//0/eHt7633fTWGp79gLL7yAWrVq4YMPPtDa3r59+weW0NeoUQNRUVGVuqambdu24ebNmyguLgYAnDhxQj3HziOPPKKe/0iSJMTExOhNe6CyePFivPnmm+jfvz8GDhyoNz5Md96dB51v/Pjx8PX1RadOnRAQEICrV69iw4YNSEpKwquvvqrXG1TeuTw8PAxOkZGYmAiZTGZw34Pa9cwzzyAkJARRUVHw9/fH6dOnsXjxYly+fBmJiYmGbotjseJAbaoGJ06cEMOGDRN16tQR7u7uIiQkRDz//PPizp076mP27Nkj+vTpI7y9vYWnp6fo0qWL+PHHH7XOo6oYuXLlitb2tWvXGqze2L59u7oq4tSpUwbblpWVJcaOHSsaNmwo3NzcRN26dUV0dLSYP3++UdcWQojNmzeL1q1bq9/bwoULxZQpU0StWrUqdT1T36cx99fY91keYz6fylSNpaeni0GDBgkfHx9Ro0YN8fTTT4vLly+bfG2Vf//9V7i4uAhvb291Cb4Q96vRNKuyVMzxHXjQe9Q9vryqmpiYGNGqVatKtW327NkiMDBQuLi4CAAiJSXlgW0w9F0y9j7/8MMPok2bNlrfd9V1KvKg70hV/g4wZPXq1UImk4m0tDS9ffHx8UKSJPUUE5YSGhpaYbVZcXGxACCeeuqpcs8TExPzwMo1TRWd7/PPPxc9evQQ/v7+wtXVVdSsWVPExMSIL7/8Uu9YY9qmq7zvd0XnSkhIEO3atRN+fn5CJpOJunXriiFDhoiDBw8afW17Jgnxf0lAIgdQWlqKdu3aoWHDhti+fbu1m2OT5s2bh7feegtXrlypcvc5kT3bunUrHn30Ufz555/q3j1bOZ+tnssRMTVGdm3cuHF4+OGH0aBBA1y6dAkrV67EyZMn8eGHH1q7aURk41JSUvDUU0+ZLTgw5/ls9VyOiD1CZNeGDx+O/fv348qVK3Bzc0OHDh3w2muvoX///tZums1ijxAR0X0MhIiIiMhpcWZpIiIicloMhIiIiMhpMRAiIiIip8WqsQqUlZXh4sWLqFGjhsNPM05EROQohBAoLi5GYGCg3qS+mhgIVeDixYsIDg62djOIiIioEnJych64QDYDoQqopsrPycmBr6+vlVtDRERExigqKkJwcHCFS94wEKqAKh3m6+vLQIiIiMjOVDSshYOliYiIyGkxECIiIiKnxUCIiIiInBYDISIiInJaDISIiIjIaTEQIiIiIqfFQIiIiIicFgMhIiIicloMhIiIiMhpMRAiIiIip8VAiIiIiJwWAyEryc0FUlKUfxIREZF1MBCygjVrgNBQoE8f5Z9r1li7RURERM6JgVA1y80Fxo8HysqUz8vKgBdfZM8QERGRNTAQqmanT98PglQUCuDMGeu0h4iIyJkxEKpmDz0EuOjcdUkCmjSxTnuIiIicGQOhahYUBKxaBchk97cJAezZY702EREROSsGQlYwbhxw7pyyauyVV5TbJk4EDh1iJRkREVF1crV2A5xVUJDy0a0bsHevMgjq1Em5z8VF2Ws0bpx120hEROTo2CNkZW5uwHvvaW9jJRkREVH1YCBkA3SryABWkhEREVUHBkI2wFAlmYsLK8mIiIgsjYGQDTBUSVZWBnz1FQdPExERWRIDIRuhqiTbuRMYO1a5bdYsLsNBRERkSZIQQli7EbasqKgIfn5+KCwshK+vb7VcMydHGfxofjIymTJQCgqqliYQERHZNWN/v9kjZIPOnNEOggDl4OmjR63THiIiIkfFeYRskGrwtG412SuvAL6+QGmp8hj2DhEREVUNe4RskO7gaRcXwM8POHUK6NGD44aIiIjMhWOEKmCNMUIqubnKNFmTJsClS0DHjtr7OW6IiIjIMGN/v5kas2GqZTgA4PRp/f0KBXDw4P39TJcRERGZhoGQnShv3NDo0cCtW8rtXKOMiIjINBwjZCcMjRsKCABu3LgfHHGNMiIiItMwELIjqkkXU1KA8+eBtWv1j1EogLQ0zkhNRERkDKbG7IzmuCHAcLpsxAjlPERMlRERET0Ye4TsmKE1yoD7kzEyVUZERPRgDITsnGa6bN06/f0KhbIEn4iIiPQ5RSA0ZMgQ1KpVC08++aS1m2IRQUFAr15ATIwyHaYrPV25fhnHDREREWlzikBoypQp+OKLL6zdDIsrL1U2fToQEsIZqYmIiHQ5RSDUu3dv1KhRw9rNqBaaqbJz54CZM7X3c9wQERHRfVYPhHbv3o1BgwYhMDAQkiRhy5YtescsX74c4eHh8PDwQGRkJPbs2VP9DbUjqlRZaCgQF6e/X6EA9u1jqoyIiMjqgdDNmzfRtm1bfPLJJwb3JyUlYdq0aZgzZw6OHDmCHj16YMCAAcjOzlYfExkZiYiICL3HxYsXq+tt2CzVjNS6nnqKqTIiIiKbWnRVkiRs3rwZgwcPVm/r3LkzOnTogBUrVqi3tWjRAoMHD0ZCQoLR505NTcUnn3yC77777oHHlZSUoKSkRP28qKgIwcHBVll01VzWrFGmwxQKQJLul9ercPFWIiJyNMYuumr1HqEHuXv3LtLT0xEbG6u1PTY2Fvv377fINRMSEuDn56d+BAcHW+Q61Ulz3ND69fr7FQrg77+VaTKmy4iIyJnYdCB09epVKBQKBAQEaG0PCAjApUuXjD5PXFwchg0bhq1btyIoKAiHDh0q99jZs2ejsLBQ/cjJyal0+22JatxQdLThVNm4cco0GdNlRETkTOxiiQ1JkrSeCyH0tj3Ir7/+avSxcrkccrnc6OPtjarEXpUqc3EB3N0BjSFX6sqyuDimy4iIyLHZdI+Qv78/ZDKZXu9Pfn6+Xi8RGU938dbPP9c/hjNSExGRM7DpQMjd3R2RkZFITk7W2p6cnIzo6GgrtcoxqFJlQUFAjx6G02WXL3PMEBEROTarp8Zu3LiBMxpdD1lZWcjIyEDt2rUREhKC+Ph4jBw5ElFRUejatStWrVqF7OxsTJgwwYqtdiy66TKVp55S/slV7ImIyFFZvXw+NTUVvXv31ts+evRoJCYmAlBOqLho0SLk5eUhIiICS5YsQc+ePaulfcaW3zmC3FxlOuz2beCRR7T3scSeiIjsibG/31YPhGydMwVCKikpyuoxXStXAgMHAqdPKydqZFBERES2ytjfb6unxsj2qGajLivT3j5xonIyRiGYLiMiIsdg04OlyTp0V7GXyYCICGVgpOo/5OKtRETkCBgIkUG6q9h/+KH+MQoFkJbGyjIiIrJfTI1RuYKCtMcBGUqXjRjBVBkREdkv9giRUXTTZSpMlRERkT1jIERG00yXJSXp7+ds1EREZG+YGiOTqNJlubmGU2VffQWEhCiX7mCJPRER2Tr2CFGl6KbKVGvgfvYZ0LgxV7EnIiL7wECIKk0zVZadrR/0cNwQERHZOqbGqEo0K8vCw/X3KxTKQCkoiKkyIiKyPewRIrNRzUita9QopsqIiMg2MRAisylv3JAKU2VERGRrGAiRWWmOG1q/Xn+/QgFkZFR3q4iIiAzjGCEyu4pK7FWLt/r4cNwQERFZF3uEyGJ0U2UuLkCdOkBODvDYYxw3RERE1icJoVokgQwpKiqCn58fCgsL4evra+3m2KXcXOWM002aAIWFypXsNclkynQae4aIiMhcjP39Zo8QWVxQENCrl/LP/Hz9/QoFsGGDMmDiSvZERFSdGAhRtSqvxD4+Xrk0B9NlRERUnRgIUbXSHTckkwEdOyr/myvZExFRdWPVGFW7ceOAuLj744ZOn1b2BGlSKIC0NMDfn5VlRERkOQyEyCo0l+YADJfZjxih7CVycVH2Io0bV71tJCIix8fUGFmdbrpMhakyIiKyNAZCZBM0Z6ROStLfr1AoU2lERETmxNQY2YyKZqResQIIDAQuXOC4ISIiMg/2CJHNMbR4qyQB334LNGvGEnsiIjIfBkJkkzRTZdnZ+ukyjhsiIiJzYGqMbJZmZZm/v/5+hQJITgbCwpgqIyKiymGPENmF8makHjuWqTIiIqo8BkJkFwyNG9LEVBkREVUGAyGyG5rjhtav19+vUAAHD3LxViIiMh7HCJFdqajEfvRo4NYt5XbOSE1ERBVhjxDZJd1UmYsLEBAA3LhxPzhiuoyIiCrCQIjslmaq7Px5IDFR/xjOSE1ERA/C1BjZNWMWbz1wQLluGUvsiYhIF3uEyGGUt3jrrFkssSciIsMkIVRrfJMhRUVF8PPzQ2FhIXx9fa3dHDJCbq4yHebuDnTvfn8Ve0DZY3T+PHuGiIgcnbG/3+wRIocTFAT06gWUlGgHQYAybfbxx0BODkvsiYiIgRA5sPJmo160CAgJYbqMiIgYCJED0x0zJJMB/ftrH8MSeyIi58aqMXJo48YBcXHKMUNNmgCnTwO//KJ9jEIB7N8P1K3LyjIiImfDQIgcnjEl9iNG3N/H2aiJiJwHU2PkVLh4KxERaWIgRE7HmMVbMzOrvVlERGQFTI2RU6po8dbXXwd8fZVrl3HcEBGR42KPEDk1Q4u3yuXA778DnTqxxJ6IyNExECKnp7t4a3Ky9n6OGyIiclwMhIhwfzbqoCDg3j39/QoFsGuXMhjijNRERI6DY4SIdKhmpNYdNzR2LFBaqly2g2X2RESOgT1CRDoMzUgdFgbcvXt/7TKmy4iIHAMDISIDNMcNnTsHrF6tf4xCAaSlMVVGRGTPmBojKoexM1IzVUZEZL/YI0RkBN10mQpTZURE9o2BEJGRjJmR+syZam8WERFVAVNjRCaoaEbqX34BGjUC/vmHM1ITEdkD9ggRVUJ5i7f+v/+nnImaM1ITEdkHhw+EiouL0bFjR7Rr1w6tW7fGakPlP0SVoDsj9fvva+/nuCEiItvn8KkxLy8v7Nq1C15eXrh16xYiIiIwdOhQ1KlTx9pNIwegWVnWoYP+foUC2LMHqF+fqTIiIlvk8D1CMpkMXl5eAIA7d+5AoVBAqEp9iMxINSO1rmeeYaqMiMhWWT0Q2r17NwYNGoTAwEBIkoQtW7boHbN8+XKEh4fDw8MDkZGR2LNnj0nXKCgoQNu2bREUFIQZM2bA39/fTK0nuq+8cUMqTJUREdkeqwdCN2/eRNu2bfHJJ58Y3J+UlIRp06Zhzpw5OHLkCHr06IEBAwYgOztbfUxkZCQiIiL0HhcvXgQA1KxZE3/++SeysrLw9ddf4/Lly9Xy3sj5GFNif/w4F28lIrIVkrChPJEkSdi8eTMGDx6s3ta5c2d06NABK1asUG9r0aIFBg8ejISEBJOv8dJLL6FPnz4YNmyYwf0lJSUoKSlRPy8qKkJwcDAKCwvh6+tr8vXIeeXmKtNhuiX2AQHAlSvK7ZyRmojIMoqKiuDn51fh77fVe4Qe5O7du0hPT0dsbKzW9tjYWOzfv9+oc1y+fBlFRUUAlDdl9+7daNasWbnHJyQkwM/PT/0IDg6u/Bsgp6abKnNxAXx8gMuX7wdHTJcREVmXTQdCV69ehUKhQEBAgNb2gIAAXLp0yahz5ObmomfPnmjbti26d++OSZMmoU2bNuUeP3v2bBQWFqofOTk5VXoP5Nx0S+wTE/WP4YzURETWYxfl85LOqFMhhN628kRGRiIjI8Poa8nlcsjlclOaR/RAxizempWlXLeMJfZERNXLpB6h0tJS9O7dG6dOnbJUe7T4+/tDJpPp9f7k5+fr9RIR2YPyFm8dO5Yl9kRE1mBSIOTm5oa//vrL6N6YqnJ3d0dkZCSSk5O1ticnJyM6Orpa2kBkbprpsh07tPdxzBARUfUyeYzQqFGjsMaM/2S9ceMGMjIy1OmrrKwsZGRkqMvj4+Pj8dlnn+Hzzz/HyZMn8corryA7OxsTJkwwWxuIqltQENCrl+EJGBUKICmJJfZERNXB5PL5yZMn44svvkCTJk0QFRUFb29vrf0ffPCBSQ1ITU1F79699baPHj0aif83snT58uVYtGgR8vLyEBERgSVLlqBnz54mXaeyjC2/I6qM8krsAeWEjEKwxJ6IqDKM/f02ORAyFLSoTyZJ2Llzpymns3kMhMjS1qxRpsMUCuXYochI4OBB7WNkMmU6jQOpiYiMY7FAyNkwEKLqkJurLKFv0gQ4fVo5cFrXt98C/v6sLCMiMoaxv99VKp/Pzc2FJElo2LBhVU5D5PSMKbEfMYKpMiIiczN5sHRZWRnefvtt+Pn5ITQ0FCEhIahZsybeeecdlBka6EBEJimvxF7Vd8vKMiIi8zG5R2jOnDlYs2YNFi5ciG7dukEIgX379mHevHm4c+cOFixYYIl2EjmVceOAuDhluiw/X9kbpEmhUKbQmCIjIqoak8cIBQYGYuXKlXjssce0tn///feYOHEiLly4YNYGWhvHCJG1lVdZNmQI8O67QF4exw0REemy2KKr169fR/PmzfW2N2/eHNevXzf1dERUAd1UmSQpH5s3Ay1acEZqIqKqMDkQatu2LT755BO97Z988gnatm1rlkYRkTbN2aizs4HvvtPez3FDRESVY/IYoUWLFmHgwIHYsWMHunbtCkmSsH//fuTk5GDr1q2WaCMRQbuy7PRp/f0KBZCefn8/02VERBUzuUcoJiYGp06dwpAhQ1BQUIDr169j6NChyMzMRI8ePSzRRiLS8dBDhpfnGDVKmSZjuoyIyDgmD5bOzs5GcHCwwYVXs7OzERISYrbG2QIOliZbpTkjtYsLULs2cPWq9jGckZqInJXFBkuHh4fjypUretuvXbuG8PBwU09HRJWkOW7o/Hngf//TP0ahANLSuHgrEVF5TB4jJIQw2Bt048YNeHh4mKVRRGQczkhNRFQ1RgdC8fHxAJQLq77xxhvw8vJS71MoFDhw4ADatWtn9gYSkXFUZfaqdJmK7ozUcXFMlRERqRgdCB05cgSAskfo2LFjcHd3V+9zd3dH27ZtMX36dPO3kIiMpjkjdW4uMHKk9n6FQrmPgRARkZLRgVBKSgoAYMyYMfjwww85cJjIRqnSZbm5hlNlR4/eX+WeJfZE5OxMHiy9dOlS3Lt3T2/79evXUVRUZJZGEVHVlbd469SpQEgIS+yJiIBKBEJPPfUU1q9fr7f922+/xVNPPWWWRhGReWhWlp07B7zyinI7V7InIlIyORA6cOAAevfurbe9V69eOHDggFkaRUTmExQE9Oql7P0ZNEh/v0IB7N/PEnsick4mB0IlJSUGU2OlpaW4ffu2WRpFRJZR3ozUI0YwVUZEzsnkQKhjx45YtWqV3vaVK1ciMjLSLI0iIssob9yQClNlRORsTJ5QccGCBejXrx/+/PNP9O3bFwDw22+/4dChQ9i+fbvZG0hE5qVZYp+fr+wN0qRQAJmZrCYjIudgciDUrVs3pKWlYdGiRfj222/h6emJNm3aYM2aNXjooYcs0UYiMrOKSuzffBOoWRMoKmKJPRE5NpMXXXU2XHSVHJ3u4q2ursDdu/f3c2kOIrJHFlt0FQD++ecfvP7663jmmWeQn58PAPjll19w/PjxyrWWiKxGd/HWX3/V3s9xQ0TkyEwOhHbt2oXWrVvjwIED2LhxI27cuAEAOHr0KObOnWv2BhKR5alK7IOC7s8xpEmhADZvZok9ETkekwOhWbNmYf78+UhOTtZab6x3795IS0sza+OIqPqVV2I/ZQpL7InI8ZgcCB07dgxDhgzR2163bl1cu3bNLI0iIuvRLbHXDYqYKiMiR2JyIFSzZk3k5eXpbT9y5AgaNmxolkYRkXVpjhv65hv9/QoFkJysDIaYLiMie2ZyIPTMM89g5syZuHTpEiRJQllZGfbt24fp06dj1KhRlmgjEVmBatxQdLThVNn48Vy8lYjsn8mB0IIFCxASEoKGDRvixo0baNmyJXr27Ino6Gi8/vrrlmgjEVmRbqpMJgOaNQPu3ePirURk/yo9j9A///yDI0eOoKysDO3bt3fYyRQ5jxCRUm6ucjbqJk2UM0/366d/TEqKsheJiMjajP39Nnlm6V27diEmJgaNGzdG48aNq9RIIrIfqtmoVQzNSP3dd8rxQ82acTZqIrIPJqfGHn74YYSEhGDWrFn466+/LNEmIrJxuukySVL+uWyZsqeIY4aIyF6YHAhdvHgRM2bMwJ49e9CmTRu0adMGixYtQi4HBxA5Fc3Kst9/vx8MAcqeovHjOWaIiGyfyYGQv78/Jk2ahH379uGff/7BiBEj8MUXXyAsLAx9+vSxRBuJyEapKstu3tSfkbqsDJg1C8jKYok9EdmuKi+6qlAosG3bNrzxxhs4evQoFAqFudpmEzhYmqhiubnKdJjumCFNXLyViKqTRRddBYB9+/Zh4sSJaNCgAZ555hm0atUKP/30U2VPR0R2zFCJ/XPPaR/DEnsiskUmV4299tpr+Oabb3Dx4kX069cPS5cuxeDBg+Hl5WWJ9hGRnRg3DoiLu19if/o0sG6d9jEKBXD8uPK/T59WrmvG6jIisiaTA6HU1FRMnz4dI0aMgL+/vyXaRER2ypgS++efB/LzlduZLiMia6vyGCFHxzFCRJW3Zo0yHaZQKIMeT0/lwGpNMpmy+ow9Q0RkThabUBEATp06hdTUVOTn56NM5597b775ZmVOSUQOSDddduAA8OST2scoFMr9DISIyBpMDoRWr16Nl156Cf7+/qhfvz4kjclDJEliIEREWoxJl50/ryyx55ghIqpuJqfGQkNDMXHiRMycOdNSbbIpTI0RmZdmukwXxwwRkbkY+/ttciDk6+uLjIwMNGrUqMqNtAcMhIjMT7WA6717wMMPa+/jmCEiMgeLzSM0bNgwbN++vUqNIyLnppqRWjXvkCaFQrl4a24uZ6QmIsszeYxQkyZN8MYbb+D3339H69at4ebmprV/ypQpZmscETm2hx4yPGbolVeA+Hjlsh1MlxGRJZmcGgsPDy//ZJKEs2fPVrlRtoSpMSLL0hwzJJMBHToAhw5pH8N0GRGZymLl81lZWVVqGBGRJkMzUuuu36xQAGlpgL8/K8uIyLwqNY8QANy9exdZWVlo3LgxXF0rfRoiIqNK7EeMYKqMiMzP5MHSt27dwrhx4+Dl5YVWrVohOzsbgHJs0MKFC83eQCJyLroLuKqokvhcvJWIzMnkQGj27Nn4888/kZqaCg8PD/X2fv36ISkpyayNIyLnNG6cckxQSgpg6K8V1WzURERVZXJOa8uWLUhKSkKXLl20ZpVu2bIl/vnnH7M2joiclypdlptrOFW2bBnQoAFw8SLHDRFR5ZncI3TlyhXUq1dPb/vNmze1AiMiInPQTZVJkvLx3XdA8+bKgdWhocrqMyIiU5kcCHXs2BE///yz+rkq+Fm9ejW6du1qvpYREf0fzVRZdjbw7bfa+zluiIgqy+TUWEJCAvr3748TJ07g3r17+PDDD3H8+HGkpaVh165dlmgjEZFWZVmdOvr7FQpg+3YgPJypMiIynsk9QtHR0di3bx9u3bqFxo0bY/v27QgICEBaWhoiIyMt0cYqc3V1Rbt27dCuXTv85z//sXZziKiKVDNS6xo3jqkyIjKNyTNL2yN/f39cvXq1Uq/lzNJEtklzRmpJul9er8LZqImcm8Vmli4qKjK4XZIkyOVyuLu7m3pKIiKTac5InZ+vnHBRk0IB/P470KWLcrZqpsuIyBCTU2M1a9ZErVq19B41a9aEp6cnQkNDMXfuXJTp1rqWY/fu3Rg0aBACAwMhSRK2bNmid8zy5csRHh4ODw8PREZGYs+ePSa1uaioCJGRkejevTvHMRE5ENUq9tHRhlNlo0cDISFMlxFR+UzuEUpMTMScOXPw/PPPo1OnThBC4NChQ/jf//6H119/HVeuXMH7778PuVyO1157rcLz3bx5E23btsWYMWPwxBNP6O1PSkrCtGnTsHz5cnTr1g2ffvopBgwYgBMnTiAkJAQAEBkZiZKSEr3Xbt++HYGBgTh37hwCAwPx119/YeDAgTh27BjTXEQORFVir0qVubgAAQFAXt79Y1SVZXFx7BkiIg3CRH369BFJSUl625OSkkSfPn2EEEJ88cUXolmzZqaeWgAQmzdv1trWqVMnMWHCBK1tzZs3F7NmzTL5/EII0b9/f3Ho0KFy99+5c0cUFhaqHzk5OQKAKCwsrNT1iKj65OQIkZKi/POXX4RQjhzSfqSkWLuVRFQdCgsLjfr9Njk1lpaWhvbt2+ttb9++PdLS0gAA3bt3V69BVhV3795Feno6YmNjtbbHxsZi//79Rp3j33//VfcW5ebm4sSJE2jUqFG5xyckJMDPz0/9CA4OrvwbIKJqpUqVBQUBrVoZTpft3aucj4hzDhERUIkxQkFBQVhjING+Zs0addBw7do11KpVq8qNu3r1KhQKBQICArS2BwQE4NKlS0ad4+TJk4iKikLbtm3x6KOP4sMPP0Tt2rXLPX727NkoLCxUP3Jycqr0HojIOspbvPWNNzhmiIjuM3mM0Pvvv49hw4Zh27Zt6NixIyRJwqFDh/D333/ju+++AwAcOnQII3RLOKpAd+kOIYTRy3lER0fj2LFjRl9LLpdDLpeb1D4isk2alWVyOdCtm/Yq9uPHc8wQkbMzORB67LHHkJmZiZUrV+LUqVMQQmDAgAHYsmULwsLCAAAvvfSSWRrn7+8PmUym1/uTn5+v10tERGSIakbqlBT9uYbKyoAPPgBeeUUZLLHEnsj5mBwIAUBYWBgWLlxo7rbocXd3R2RkJJKTkzFkyBD19uTkZDz++OMWvz4ROQ7VbNS6M3ssWaJ8AMr9q1Ype5KIyDkYFQgdPXoUERERcHFxwdGjRx94bJs2bUxqwI0bN3DmzBn186ysLGRkZKB27doICQlBfHw8Ro4ciaioKHTt2hWrVq1CdnY2JkyYYNJ1iMi56ZbYy2TAgAHATz/dP4Yl9kTOx6glNlxcXHDp0iXUq1cPLi4ukCQJhl4mSRIUCoVJDUhNTUXv3r31to8ePRqJiYkAlBMqLlq0CHl5eYiIiMCSJUvQs2dPk65TWVxig8ix5OYq02BNmihnnO7TR/+Y334DmjbljNRE9szY32+jAqHz588jJCQEkiTh/PnzDzw2NDTU9NbaMAZCRI4rN1dZPaabLnvoIeCff5TbmS4jsk9mDYScGQMhIsemuXiri4vyce+e9jFcwJXI/hj7+23yPEIA8OWXX6Jbt24IDAxU9xAtXboU33//feVaS0RkJePGKYOclBTg/Hlg9Wr9YxQKZTqNiByPyYHQihUrEB8fj0ceeQQFBQXqMUE1a9bE0qVLzd0+IiKL05yRul8/wzNSFxZyRmoiR2RyIPTxxx9j9erVmDNnDmQaU7ZGRUWZNHEhEZEtKm9G6sGDOSM1kSMyORDKysoyuNaYXC7HzZs3zdIoIiJr0kyX6Wb8VSX27BkicgwmB0Lh4eHIyMjQ275t2za0bNnSHG0iIrI6VbqsRg39fQoFsGOHMhhiuozIvpk8s/Srr76Kl19+GXfu3IEQAgcPHsQ333yDhIQEfPbZZ5ZoIxGR1ZQ3I/ULLygDIiFYYk9kzypVPr969WrMnz9fvTJ7w4YNMW/ePIxzwL8FWD5PRJol9jIZ0KiRcrJFTSyxJ7It1TKP0NWrV1FWVoZ69epV9hQ2j4EQEQHaM1JnZiqry3R9+y3g78/ZqIlsgbG/35VadFXF39+/Ki8nIrIbqlXsVQyly0aMYKqMyN5UakJFIiJnVl6Jvap/nZVlRPaDgRARUSVoltivX6+/n7NRE9mHKqXGiIicmSpdlptrOFW2eTMQFgZkZXHcEJGtYo8QEVEV6abKJEn550cfAeHhnJGayJZVqmrst99+w2+//Yb8/HyU6fwT6PPPPzdb42wBq8aIyFialWU//AC8/LL2fpbYE1Ufi1WNvfXWW3j77bcRFRWFBg0aQFL904eIyMlpVpa1aKG/X6EAdu0CAgOZKiOyFSYHQitXrkRiYiJGjhxpifYQETmE8makfu455Z8ssSeyDSaPEbp79y6io6Mt0RYiIodR3rghFZbYE9kGkwOh//znP/j6668t0RYiIodiTIn90aNcvJXImkxOjd25cwerVq3Cjh070KZNG7i5uWnt/+CDD8zWOCIie1dRif2oUcC//yq3M11GVP1Mrhrr3bt3+SeTJOzcubPKjbIlrBojInPRXLzVxQWoUQMoLNQ+hpVlROZRLYuuOgMGQkRkTpol9unpwODB+sekpAC9elV3y4gcS7UsukpERKYxZvHWzEzlumUssSeyPKMCoaFDhyIxMRG+vr4YOnToA4/dtGmTWRpGROToVJVlqnSZyoQJyj85ZojI8owKhPz8/NQTJ/r5+Vm0QUREzmTcOCAuTpkukySgd2/9Vezj4tgzRGQpHCNUAY4RIqLqkpKiXJdM17vvAiNHAqdPM11GZCxjf7+56CoRkY1QzUat67XXgJAQLt5KZAkMhIiIbITubNQyGdC9u/K/ddNlnHyRyDxYNUZEZEM0xww1aaJMh+mmyxQK5X6A6TKiqmIgRERkY4wpsX/1VeDwYc5ITVRVJqXGSktL0bt3b5w6dcpS7SEiIg3lLd76xx/3gyOmy4gqz6RAyM3NDX/99Ze6lJ6IiCxPc/HW7GxgyRL9YzTTZURkPJMHS48aNQprWLJARFStgoKUy24EBQFPPqlfXSZJQGkpV7EnMpXJY4Tu3r2Lzz77DMnJyYiKioK3t7fWfq4+T0RkWYZmpBYCiI1V/jfHDBEZj6vPV4ATKhKRrVIt4JqdDYwerb2Pq9iTs7PYoqspKSlVahgREZmHqrrM0F/LCgVw4IDyv1liT1S+KpXP5+bmQpIkNGzY0FztISIiE6lmpNYtsR89Grh1S5k2Y7qMyDCTB0uXlZXh7bffhp+fH0JDQxESEoKaNWvinXfeQZnu/4VERGRxuiX2Li5A/frAzZuckZqoIib3CM2ZMwdr1qzBwoUL0a1bNwghsG/fPsybNw937tzBggULLNFOIiJ6AN0ZqY8fB/r31z5GoQDS0gB/f6bKiFRMHiwdGBiIlStX4rHHHtPa/v3332PixIm4cOGCWRtobRwsTUT2KDdXuUCrbke9JDFVRs7BYqvPX79+Hc2bN9fb3rx5c1y/ft3U0xERkQXopstUmCoj0mZyINS2bVt88sknets/+eQTtG3b1iyNIiKiqtOckfrrr/X3czZqokqMEVq0aBEGDhyIHTt2oGvXrpAkCfv370dOTg62bt1qiTYSEVElqUrsc3MNV5YdOAA0bqwMiDhuiJyRyT1CMTExOHXqFIYMGYKCggJcv34dQ4cORWZmJnr06GGJNhIRURWVlyqbNQsICQH69FGOKeIKSuRsTBosXVpaitjYWHz66ado2rSpJdtlMzhYmogciWo26kaNgNWrgfnztfdzRmpyFBYZLM3V54mI7Jtq8VZVL5AuhQLYt4+Lt5Lz4OrzREROSjUjta6nnmKqjJwHV58nInJSuqvYq+YYUlGV2MfFMVVGjsvkQOivv/5Chw4dAACnTp3S2seUGRGRfdGckTo/HxgxQnu/QgH8/TcDIXJcJg2WVigU2Lt3L1q3bo3atWtbsl02g4OlichZlDcbdYcOwLJlwO3bLLEn+2GRwdIymQxxcXEoLCyscgOJiMi2GFq81dMTOHwY6NqV44bIMZk8WLp169Y4e/asJdpCRERWpjkb9fnzwI4d2vu5NAc5GpMDoQULFmD69On46aefkJeXh6KiIq0HERHZN1WJfVAQUFKiv1+hADZsYIk9OQaTV5930ai11BwcLYSAJElQKBTma50N4BghInJm5Y0bUuEq9mSrjP39NrlqLCUlpUoNIyIi+6FbYq+7XhlL7MnemdwjZG8yMzMxQqMeNDMzE9988w0GDx5s1OvZI0REdH9pDkMl9gCwciUwcCBw+jQry8g2GPv7XalAaM+ePfj0009x9uxZbNiwAQ0bNsSXX36J8PBwdO/evUoNt6QbN24gLCwM58+f15sIsjwMhIiI7isvVebiopyMUQimy8g2WKR8HgA2btyIuLg4eHp64vDhwyj5v5F0xcXFePfddyvf4mrwww8/oG/fvkYHQUREpE23xF4mAyIilIGR6p/VrCwje2JyIDR//nysXLkSq1evhpubm3p7dHQ0Dh8+bHIDdu/ejUGDBiEwMBCSJGHLli16xyxfvhzh4eHw8PBAZGQk9uzZY/J1AODbb7/VSpMREZHpNEvsz50DPvxQ/xiFQplKI7J1Jg+WzszMRM+ePfW2+/r6oqCgwOQG3Lx5E23btsWYMWPwxBNP6O1PSkrCtGnTsHz5cnTr1g2ffvopBgwYgBMnTiAkJAQAEBkZqe6Z0rR9+3YEBgYCUHaR7du3D+vXrze5jUREpC0oSHsckO4gagD4/nsgLAzIyuK4IbJdJgdCDRo0wJkzZxAWFqa1fe/evWjUqJHJDRgwYAAGDBhQ7v4PPvgA48aNw3/+8x8AwNKlS/Hrr79ixYoVSEhIAACkp6dXeJ3vv/8ecXFx8PDweOBxJSUlWkEV50YiInqw8hZvXbpU+QA4bohsl8mpsRdffBFTp07FgQMHIEkSLl68iK+++grTp0/HxIkTzdq4u3fvIj09HbGxsVrbY2NjsX//fpPOZWxaLCEhAX5+fupHcHCwSdchInJGmumy7Gzgo4+093PcENkqk3uEZsyYgcLCQvTu3Rt37txBz549IZfLMX36dEyaNMmsjbt69SoUCgUCAgK0tgcEBODSpUtGn6ewsBAHDx7Exo0bKzx29uzZiI+PVz8vKipiMEREZATNdFlEhP5+hQLYtQsIDGSqjGyHyYEQoFxmY86cOThx4gTKysrQsmVL+Pj4mLttapozWAP3Z7E2lp+fHy5fvmzUsXK5HHK53KT2ERGRtoceMjxu6LnnlH8yVUa2wuTUmIqXlxeioqLQqVMniwVB/v7+kMlker0/+fn5er1ERERkO3TL7HX/7cpUGdmKSgdC1cHd3R2RkZFITk7W2p6cnIzo6GgrtYqIiIyhOW7IUMGuQgEcO6YMhriAK1lLpVJj5nTjxg2c0ZhsIisrCxkZGahduzZCQkIQHx+PkSNHIioqCl27dsWqVauQnZ2NCRMmWLHVRERkDNW4odxcw6myUaOA69eV25kuI2uw+lpjqamp6N27t9720aNHIzExEYByQsVFixYhLy8PERERWLJkicG5jCyBS2wQEZnHmjXai7fWqAEUFmofI5Mpe5E4kJqqyqJrjTkTBkJEROajWry1SRPgjz+AIUP0j0lJAXr1qvamkYMx9vfb6qkxIiJyHsbMSH3qlHJCRpbYU3Ww6cHSRETkuHQry1RefBHo00e5yv2aNdZpGzkPpsYqwNQYEZFlqdJlAKA7ZJRjhqiyjP39Zo8QERFZVVCQckyQoX+WKxTAunUssSfLYSBEREQ2QTUbta7Zs4GQEKbLyDIYCBERkU3QHTMkkwGquXNVvUWckZrMjVVjRERkM8aNA+Li7pfYnz6t7AnSpFAAaWmAvz8ry6jqGAgREZFNMabEfvjw+/s4GzVVBVNjRERks8orsVdhqoyqioEQERHZNM3FW5OS9PcrFMoUGlFlMDVGREQ2r6LFW997D6hbF7hyheOGyDTsESIiIruhmyqTJOV/b9sGtG7NEnsyHQMhIiKyK5qpsuxsYMsW7f0cN0SmYGqMiIjsjmZlmaHxQQqFspeoSROmyujB2CNERER2rbwZqcePZ6qMKsZAiIiI7JqhcUOamCqjB2EgREREdk9z3ND69fr7FQpgzx4u3kr6OEaIiIgcQkUl9mPGAHfvKtct44zUpMIeISIiciiGFm8NCQFKSrh4K+ljIERERA5HM1V27hzw2Wf6xygUysVdybkxNUZERA7JmMVbDx4EGjdWBkQss3dO7BEiIiKHV97irTNnKtNmLLN3XgyEiIjIKWimy86fB2bP1t7PcUPOiYEQERE5jaAgoFcvZS/Qww/r71cogH37WGLvTBgIERGRUypvRuqnnmKqzJkwECIiIqfEGakJYCBEREROzJgZqTMzOSO1I2P5PBERObWKZqQeNw7IyVFu54zUjoc9QkRERNBPlbm4AHK5ssJMFRwxXeZ4GAgRERH9H90Se0ODpTkjtWNhaoyIiEiD5ozUMTGG02VXriiDJc5Gbf/YI0RERFSO8makHj6cJfaOQhJCtRYvGVJUVAQ/Pz8UFhbC19fX2s0hIiIryM1VpsNu3gQefVR7n0ymTKexZ8i2GPv7zR4hIiKiCqhmpPby0t+nUABbt7LE3l5xjBAREZGRVLNR644ZeuklQAjlgyX29oU9QkREREbSHTMkkwEtWyoDI9VAE5bY2xcGQkRERCbQLLE/dw74+GP9YxQKIC2NqTJ7wNQYERGRiTRL7AHD6bIRI5gqswfsESIiIqqC8krsmSqzDwyEiIiIqkgzXZaUpL+fs1HbLqbGiIiIzKCixVvXrQOCg4HsbM5IbUvYI0RERGRGuqkySVL+uWYN0KQJZ6S2NQyEiIiIzEwzVZadDXz+ufZ+jhuyHUyNERERWYBmZVlYmP5+hUIZKAUFMVVmTewRIiIisjDVjNS6Ro1iqszaGAgRERFZWHnjhlSYKrMeBkJERETVQHPc0Pr1+vsVCuDwYS7eWt04RoiIiKiaVFRiP2oUUFys3M4ZqasHe4SIiIiqmW6qzMUFqFMHKCy8HxwxXVY9GAgRERFZgWaq7Px54H//0z+GM1JbHlNjREREVmLM4q05OcpeodOnWWZvCewRIiIisgHlLd46ahQQEsIye0thIERERGQjNNNlp08Do0crt3Mle8thIERERGRDgoKAXr2U65KpAiFNCgWQlsYSe3NhIERERGSjypuRevhwpsrMxSkCoffffx+tWrVCREQE1q1bZ+3mEBERGaW8cUMqTJVVncNXjR07dgxff/010tPTAQB9+/bFo48+ipo1a1q3YUREREYYNw6Ii1OW0efnAyNGaO9XKJTjiQBWllWGw/cInTx5EtHR0fDw8ICHhwfatWuHX375xdrNIiIiMppq3FB0tOFU2dSpyjQZ02Wms3ogtHv3bgwaNAiBgYGQJAlbtmzRO2b58uUIDw+Hh4cHIiMjsWfPHqPPHxERgZSUFBQUFKCgoAA7d+7EhQsXzPgOiIiIqoehxVslCTh2jDNSV5bVU2M3b95E27ZtMWbMGDzxxBN6+5OSkjBt2jQsX74c3bp1w6effooBAwbgxIkTCAkJAQBERkaipKRE77Xbt29Hy5YtMWXKFPTp0wd+fn7o2LEjXF2t/raJiIgqRTNV1qQJ8MMPwMsvax+jmpGaKbKKSUKoZiewPkmSsHnzZgwePFi9rXPnzujQoQNWrFih3taiRQsMHjwYCQkJJl/jP//5D4YMGYKBAwca3F9SUqIVVBUVFSE4OBiFhYXw9fU1+XpERESWlJurTIfpzki9bRsglzvvmKGioiL4+flV+Ptt9dTYg9y9exfp6emIjY3V2h4bG4v9+/cbfZ78/HwAQGZmJg4ePIi4uLhyj01ISICfn5/6ERwcXLnGExERVYPyKssGDOCYIWPYdCB09epVKBQKBAQEaG0PCAjApUuXjD7P4MGD0bJlSzz33HNYu3btA1Njs2fPRmFhofqRk5NT6fYTERFVB80Zqb/5Rnsfxww9mF0MlpEkSeu5EEJv24OY0nskl8shl8uNPp6IiMgWqBZwTUnR36dQAHv3At27s8Rel00HQv7+/pDJZHq9P/n5+Xq9RERERHR/NmrdMUNjxgAlJcp1y1xclOm0ceOs00ZbYtOpMXd3d0RGRiI5OVlre3JyMqKjo63UKiIiItulO2ZIJgOCg4E7d7h4qyFW7xG6ceMGzpw5o36elZWFjIwM1K5dGyEhIYiPj8fIkSMRFRWFrl27YtWqVcjOzsaECROs2GoiIiLbpVtif/IkoFN3xBL7/2P1QOiPP/5A79691c/j4+MBAKNHj0ZiYiJGjBiBa9eu4e2330ZeXh4iIiKwdetWhIaGWqvJRERENk81ZkjFULpsxw7ltqZNnTcgsql5hGyRsfMQEBER2bI1a5TpMIVCf58jjhky9vebgVAFGAgREZGjyM1VpsM8PYGuXe+PGQKUwdD5847TM+QQEyoSERGR+agWb711SzsIApQpsnffBbKzlSX4zjKQmoEQERGRk1GV2OtascL5VrFnIERERORkDJXYDxmifYyzlNgzECIiInJCmstynDsHTJ6sf4xqRmpHTpVZvXyeiIiIrMOYEvunn76/z9EqywD2CBERERH002W6S3o6aqqMgRAREREB0E6XrV+vv1+hAE6cqPZmWRRTY0RERKSmSpfl5hpOlcXHA8uXK4MiR1jFnj1CREREpEc3VebiAvj4AMePAzExjlNiz5mlK8CZpYmIyJmpZqNu0gS4dAno2FF7v0ymTKfZWs8QZ5YmIiKiKlPNRh0UBBQX6+9XKIBt25QBkz2W2XOMEBERERlFNSO17rihl15SbhPC/srs2SNERERERjE0I3WLFspeIdVAG3srs2cgREREREbTnZH6k0/0j1EogLQ0+0iVMTVGREREJjFmRuoRI+wjVcYeISIiIqo03XSZir2kyhgIERERUZVopsuSkvT3KxTKEnxbxNQYERERVVlFM1J//TUQEgKcP29bM1KzR4iIiIjMprzFW1evBho3tr0ZqRkIERERkVlppsqys/WDHlsaN8TUGBEREZmdZmVZeLj+foVCGSgFBVk3VcYeISIiIrIo1YzUukaNsn6qjIEQERERWVR544ZUrJkqYyBEREREFqc5bmj9ev391iqx5xghIiIiqhYPKrGXyYAmTaq/TewRIiIiomplaPHWTz+1zoBp9ggRERFRtRs3DoiLU6bDmjSxXtUYAyEiIiKyCt3FW62BqTEiIiJyWgyEiIiIyGkxECIiIiKnxUCIiIiInBYDISIiInJaDISIiIjIaTEQIiIiIqfFQIiIiIicFgMhIiIicloMhIiIiMhpMRAiIiIip8W1xioghAAAFBUVWbklREREZCzV77bqd7w8DIQqUFxcDAAIDg62ckuIiIjIVMXFxfDz8yt3vyQqCpWcXFlZGS5evIgaNWpAkqRKn6eoqAjBwcHIycmBr6+vGVtIunivqw/vdfXhva4+vNfVx5L3WgiB4uJiBAYGwsWl/JFA7BGqgIuLC4KCgsx2Pl9fX/6PVU14r6sP73X14b2uPrzX1cdS9/pBPUEqHCxNRERETouBEBERETktBkLVRC6XY+7cuZDL5dZuisPjva4+vNfVh/e6+vBeVx9buNccLE1EREROiz1CRERE5LQYCBEREZHTYiBERERETouBEBERETktBkLVYPny5QgPD4eHhwciIyOxZ88eazfJ7iUkJKBjx46oUaMG6tWrh8GDByMzM1PrGCEE5s2bh8DAQHh6eqJXr144fvy4lVrsOBISEiBJEqZNm6bexnttPhcuXMBzzz2HOnXqwMvLC+3atUN6erp6P++1edy7dw+vv/46wsPD4enpiUaNGuHtt99GWVmZ+hje68rZvXs3Bg0ahMDAQEiShC1btmjtN+a+lpSUYPLkyfD394e3tzcee+wx5ObmWqbBgixq/fr1ws3NTaxevVqcOHFCTJ06VXh7e4vz589bu2l2LS4uTqxdu1b89ddfIiMjQwwcOFCEhISIGzduqI9ZuHChqFGjhti4caM4duyYGDFihGjQoIEoKiqyYsvt28GDB0VYWJho06aNmDp1qno777V5XL9+XYSGhornn39eHDhwQGRlZYkdO3aIM2fOqI/hvTaP+fPnizp16oiffvpJZGVliQ0bNggfHx+xdOlS9TG815WzdetWMWfOHLFx40YBQGzevFlrvzH3dcKECaJhw4YiOTlZHD58WPTu3Vu0bdtW3Lt3z+ztZSBkYZ06dRITJkzQ2ta8eXMxa9YsK7XIMeXn5wsAYteuXUIIIcrKykT9+vXFwoUL1cfcuXNH+Pn5iZUrV1qrmXatuLhYPPTQQyI5OVnExMSoAyHea/OZOXOm6N69e7n7ea/NZ+DAgWLs2LFa24YOHSqee+45IQTvtbnoBkLG3NeCggLh5uYm1q9frz7mwoULwsXFRfzyyy9mbyNTYxZ09+5dpKenIzY2Vmt7bGws9u/fb6VWOabCwkIAQO3atQEAWVlZuHTpkta9l8vliImJ4b2vpJdffhkDBw5Ev379tLbzXpvPDz/8gKioKAwbNgz16tVD+/btsXr1avV+3mvz6d69O3777TecOnUKAPDnn39i7969eOSRRwDwXluKMfc1PT0dpaWlWscEBgYiIiLCIveei65a0NWrV6FQKBAQEKC1PSAgAJcuXbJSqxyPEALx8fHo3r07IiIiAEB9fw3d+/Pnz1d7G+3d+vXrcfjwYRw6dEhvH++1+Zw9exYrVqxAfHw8XnvtNRw8eBBTpkyBXC7HqFGjeK/NaObMmSgsLETz5s0hk8mgUCiwYMECPP300wD4vbYUY+7rpUuX4O7ujlq1aukdY4nfTgZC1UCSJK3nQgi9bVR5kyZNwtGjR7F37169fbz3VZeTk4OpU6di+/bt8PDwKPc43uuqKysrQ1RUFN59910AQPv27XH8+HGsWLECo0aNUh/He111SUlJWLduHb7++mu0atUKGRkZmDZtGgIDAzF69Gj1cbzXllGZ+2qpe8/UmAX5+/tDJpPpRbD5+fl60TBVzuTJk/HDDz8gJSUFQUFB6u3169cHAN57M0hPT0d+fj4iIyPh6uoKV1dX7Nq1Cx999BFcXV3V95P3uuoaNGiAli1bam1r0aIFsrOzAfB7bU6vvvoqZs2ahaeeegqtW7fGyJEj8corryAhIQEA77WlGHNf69evj7t37+Lff/8t9xhzYiBkQe7u7oiMjERycrLW9uTkZERHR1upVY5BCIFJkyZh06ZN2LlzJ8LDw7X2h4eHo379+lr3/u7du9i1axfvvYn69u2LY8eOISMjQ/2IiorCs88+i4yMDDRq1Ij32ky6deumNw3EqVOnEBoaCoDfa3O6desWXFy0fwJlMpm6fJ732jKMua+RkZFwc3PTOiYvLw9//fWXZe692YdfkxZV+fyaNWvEiRMnxLRp04S3t7c4d+6ctZtm11566SXh5+cnUlNTRV5envpx69Yt9TELFy4Ufn5+YtOmTeLYsWPi6aefZumrmWhWjQnBe20uBw8eFK6urmLBggXi9OnT4quvvhJeXl5i3bp16mN4r81j9OjRomHDhury+U2bNgl/f38xY8YM9TG815VTXFwsjhw5Io4cOSIAiA8++EAcOXJEPW2MMfd1woQJIigoSOzYsUMcPnxY9OnTh+Xz9mzZsmUiNDRUuLu7iw4dOqhLvKnyABh8rF27Vn1MWVmZmDt3rqhfv76Qy+WiZ8+e4tixY9ZrtAPRDYR4r83nxx9/FBEREUIul4vmzZuLVatWae3nvTaPoqIiMXXqVBESEiI8PDxEo0aNxJw5c0RJSYn6GN7ryklJSTH49/Po0aOFEMbd19u3b4tJkyaJ2rVrC09PT/Hoo4+K7Oxsi7RXEkII8/czEREREdk+jhEiIiIip8VAiIiIiJwWAyEiIiJyWgyEiIiIyGkxECIiIiKnxUCIiIiInBYDISIiInJaDISIqNJ69eqFadOmWbsZakIIjB8/HrVr14YkScjIyLB2k4jIxjEQIiKH8csvvyAxMRE//fQT8vLyEBERYe0mVauwsDAsXbrU2s0gsiuu1m4AEZEmhUIBSZL0FsQ0xj///IMGDRo4xKKYpaWlcHNzs3YziBwee4SI7FyvXr0wZcoUzJgxA7Vr10b9+vUxb9489f5z587ppYkKCgogSRJSU1MBAKmpqZAkCb/++ivat28PT09P9OnTB/n5+di2bRtatGgBX19fPP3007h165bW9e/du4dJkyahZs2aqFOnDl5//XVortxz9+5dzJgxAw0bNoS3tzc6d+6svi4AJCYmombNmvjpp5/QsmVLyOVynD9/3uB73bVrFzp16gS5XI4GDRpg1qxZuHfvHgDg+eefx+TJk5GdnQ1JkhAWFmbwHKrrbdmyBU2bNoWHhwcefvhh5OTkaB23YsUKNG7cGO7u7mjWrBm+/PJL9b7//ve/GDRokPr50qVLIUkSfv75Z/W2Zs2a4dNPP1U/X7t2LVq0aAEPDw80b94cy5cv1/uMvv32W/Tq1QseHh5Yt26dwfbPmzcPISEhkMvlCAwMxJQpUwAovwfnz5/HK6+8AkmSIEmS+jX79+9Hz5494enpieDgYEyZMgU3b95U7w8LC8M777yDZ555Bj4+PggMDMTHH39s1HWJ7J5FVjAjomoTExMjfH19xbx588SpU6fE//73PyFJkti+fbsQQoisrCwBQBw5ckT9mn///VcAECkpKUKI+4skdunSRezdu1ccPnxYNGnSRMTExIjY2Fhx+PBhsXv3blGnTh2xcOFCrWv7+PiIqVOnir///lusW7dOeHl5aS0U+swzz4jo6Gixe/ducebMGfHee+8JuVwuTp06JYQQYu3atcLNzU1ER0eLffv2ib///lvcuHFD733m5uYKLy8vMXHiRHHy5EmxefNm4e/vL+bOnSuEEKKgoEC8/fbbIigoSOTl5Yn8/HyD90t1vaioKLF//37xxx9/iE6dOono6Gj1MZs2bRJubm5i2bJlIjMzUyxevFjIZDKxc+dOIYQQP/zwg/Dz8xMKhUIIIcTgwYOFv7+/ePXVV4UQQuTl5QkA4uTJk0IIIVatWiUaNGggNm7cKM6ePSs2btwoateuLRITE7U+o7CwMPUxFy5c0Gv7hg0bhK+vr9i6das4f/68OHDggPpeX7t2TQQFBYm3335b5OXliby8PCGEEEePHhU+Pj5iyZIl4tSpU2Lfvn2iffv24vnnn1efNzQ0VNSoUUMkJCSIzMxM8dFHHwmZTKb+Dj3oukT2joEQkZ2LiYkR3bt319rWsWNHMXPmTCGEaYHQjh071MckJCQIAOKff/5Rb3vxxRdFXFyc1rVbtGghysrK1NtmzpwpWrRoIYQQ4syZM0KSJL0f9b59+4rZs2cLIZSBCQCRkZHxwPf52muviWbNmmlda9myZcLHx0cdkCxZskSEhoY+8Dyq6/3+++/qbSdPnhQAxIEDB4QQQkRHR4sXXnhB63XDhg0TjzzyiBBCGXS5uLiIP/74Q5SVlYk6deqIhIQE0bFjRyGEEF9//bUICAhQvzY4OFh8/fXXWud75513RNeuXYUQ9z+jpUuXPrDtixcvFk2bNhV37941uD80NFQsWbJEa9vIkSPF+PHjtbbt2bNHuLi4iNu3b6tf179/f61jRowYIQYMGGDUdYnsGVNjRA6gTZs2Ws8bNGiA/Pz8Kp0nICAAXl5eaNSokdY23fN26dJFKw3TtWtXnD59GgqFAocPH4YQAk2bNoWPj4/6sWvXLvzzzz/q17i7u+u9B10nT55E165dta7VrVs33LhxA7m5uSa9T1dXV0RFRamfN2/eHDVr1sTJkyfV1+rWrZvWa7p166be7+fnh3bt2iE1NRXHjh2Di4sLXnzxRfz5558oLi5GamoqYmJiAABXrlxBTk4Oxo0bp3UP5s+fr3UPAGi1yZBhw4bh9u3baNSoEV544QVs3rxZnRosT3p6OhITE7WuHRcXh7KyMmRlZamP69q1q9brunbtqn6/lbkukb3gYGkiB6A7qFaSJJSVlQGAetCx0Bi3U1paWuF5JEl64HmNUVZWBplMhvT0dMhkMq19Pj4+6v/29PTUCnAMEULoHaN6TxW91hBDr9HcZuhamtt69eqF1NRUuLu7IyYmBrVq1UKrVq2wb98+pKamqqcVUN2v1atXo3Pnzlrn1L0n3t7eD2xzcHAwMjMzkZycjB07dmDixIl47733sGvXrnIHVpeVleHFF180OKYnJCTkgddTvd/KXJfIXjAQInJwdevWBQDk5eWhffv2AGDW+XV+//13vecPPfQQZDIZ2rdvD4VCgfz8fPTo0aNK12nZsiU2btyoFZDs378fNWrUQMOGDU0617179/DHH3+gU6dOAIDMzEwUFBSgefPmAIAWLVpg7969GDVqlPo1+/fvR4sWLdTPe/XqhTVr1sDV1RX9+vUDAMTExGD9+vU4deqUukcoICAADRs2xNmzZ/Hss89W/gb8H09PTzz22GN47LHH8PLLL6N58+Y4duwYOnToAHd3dygUCq3jO3TogOPHj6NJkyYPPK+hz1F1Pyq6LpE9YyBE5OA8PT3RpUsXLFy4EGFhYbh69Spef/11s50/JycH8fHxePHFF3H48GF8/PHHWLx4MQCgadOmePbZZzFq1CgsXrwY7du3x9WrV7Fz5060bt0ajzzyiNHXmThxIpYuXYrJkydj0qRJyMzMxNy5cxEfH29yqb2bmxsmT56Mjz76CG5ubpg0aRK6dOmiDoxeffVVDB8+HB06dEDfvn3x448/YtOmTdixY4f6HD179kRxcTF+/PFHzJ8/H4AyOHriiSdQt25dtGzZUn3svHnzMGXKFPj6+mLAgAEoKSnBH3/8gX///Rfx8fFGtzsxMREKhQKdO3eGl5cXvvzyS3h6eiI0NBSAsvpr9+7deOqppyCXy+Hv74+ZM2eiS5cuePnll/HCCy/A29sbJ0+eRHJyslZl2L59+7Bo0SIMHjwYycnJ2LBhg7oKrqLrEtk1aw5QIqKqi4mJEVOnTtXa9vjjj4vRo0ern584cUJ06dJFeHp6inbt2ont27cbHCz977//ql+zdu1a4efnp3XeuXPnirZt22pde+LEiWLChAnC19dX1KpVS8yaNUtrQPPdu3fFm2++KcLCwoSbm5uoX7++GDJkiDh69Gi51ylPamqq6Nixo3B3dxf169cXM2fOFKWlper9xg6W9vPzExs3bhSNGjUS7u7uok+fPuLcuXNaxy1fvlw0atRIuLm5iaZNm4ovvvhC71yRkZGibt266vd77do1IUmSePLJJ/WO/eqrr0S7du2Eu7u7qFWrlujZs6fYtGmTEMLwgHZDNm/eLDp37ix8fX2Ft7e36NKli9YA97S0NNGmTRshl8uF5l/vBw8eFA8//LDw8fER3t7eok2bNmLBggXq/aGhoeKtt94Sw4cPF15eXiIgIEBr4HZF1yWyZ5IQGgMHiIgcXGJiIqZNm4aCggJrN8VmhIWFYdq0aTa1XApRdWHVGBERETktBkJERETktJgaIyIiIqfFHiEiIiJyWgyEiIiIyGkxECIiIiKnxUCIiIiInBYDISIiInJaDISIiIjIaTEQIiIiIqfFQIiIiIicFgMhIiIiclr/HwGy6PHWyrpxAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'convergence of power method for $\\\\lambda=1,2,3,4,5$')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = Float64[]\n", + "y = x\n", + "for i = 1:100\n", + " y = A*y\n", + " y = y / norm(y)\n", + " push!(d, min(norm(y - X[:,1]), norm(-y - X[:,1]))) # pick the better of the two signs\n", + "end\n", + "semilogy(1:length(d), d, \"b.-\")\n", + "xlabel(\"number of power steps\")\n", + "ylabel(\"error in eigenvector\")\n", + "title(L\"convergence of power method for $\\lambda=1,2,3,4,5$\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convergence rate\n", + "\n", + "How fast does the power method converge?\n", + "\n", + "Suppose that $A$ is diagonalizable with eigenvalues sorted in order of decreasing magnitude $$|\\lambda_1| > |\\lambda_2| > \\cdots$$. And suppose that we expand our initial $x$ in the basis of the eigenvectors:\n", + "$$x = c_1 x_1 + c_2 x_2 + \\cdots$$\n", + "Then, after $n$ steps, the power method produces:\n", + "\n", + "$$\n", + "\\mbox{scalar multiple of } A^n x = \\mbox{multiple of } \\left( \\lambda_1^n c_1 x_1 + \\lambda_2^n c_2 x_2 + \\lambda_3^n c_3 x_3 + \\cdots \\right)\n", + "= \\mbox{multiple of } \\lambda_1^n \\left[ c_1 x_1 + (\\lambda_2/\\lambda_1)^n c_2 x_2 + (\\lambda_3/\\lambda_1)^n c_3 x_3 + \\cdots \\right]\n", + "$$\n", + "\n", + "The overall exponentially growing (or decaying) term $\\lambda_1^n$ gets removed by the normalization. The key thing is that the $x_2$, $x_3$ and other \"error\" terms not proportional to $x_1$ decay like the *ratios* of their eigenvalues/λ₁to the n-th power. \n", + "\n", + "For large $n$ the error is dominated by the $x_2$ term (the *next*-biggest |λ|), since that term decays most slowly, and the magnitude of this term decays proportional to $|\\lambda_2/\\lambda_1|^n$: the *ratio* of the magnitudes. \n", + "\n", + "For example, in our case above, we'd expect the error to decay proportional to $(4/5)^n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+fUlEQVR4nO3dd1hT1xsH8G8IewgiiiLiqFsUFFw4cOKeddatddRd21pntdqKVWutu446al2to1pHxYGoOEHcW1Rw4QLEBYTz+yO/xCwkQZIwvp/nyVNz7829by4peTnnvOdIhBACRERERHmQhbkDICIiIjIXJkJERESUZzERIiIiojyLiRARERHlWUyEiIiIKM9iIkRERER5FhMhIiIiyrOYCBEREVGexUSIiIiI8iwmQkRERJRnMREiIiKiPIuJEFEusWnTJlSqVAl2dnaQSCSIiooyd0i5Xnh4OKZOnYr4+HitfVOnToVEIsHTp0+NGoPiOvowx2fk7du3sLS0hJOTE0aMGGH06wHAy5cvMXbsWAQFBaFgwYKQSCSYOnVqps518OBB9O/fH+XLl4eDgwOKFi2Kdu3aISIiwuBzRUVFoVWrVvDy8oKdnR1cXV1Ru3ZtrFu3LlOxqVqxYgUkEgkcHR0Nfm1oaCgkEonOx4kTJz46tuyOiRBRLvDkyRP06tULn3zyCfbu3Yvjx4+jbNmy5g4r1wsPD8f333+vMxHKbsz1GZFIJDh48CBq1KiBhQsX4vr160a/5rNnz7Bs2TK8e/cO7du3/6hzLVmyBHfu3MGoUaOwe/du/Prrr4iLi0OtWrVw8OBBg84VHx+PYsWKYcaMGdi9ezfWrl2LEiVKoFevXvjhhx8yHeP9+/fx9ddfw8PDI9PnAIAZM2bg+PHjag9vb++POmdOYGnuAIgy4/Xr17C3tzd3GNnG9evXkZKSgp49eyIwMNDc4ZgEPwOGMcZnRJ+fgY2NDerXr4+xY8fi4MGDiIiIMHoCVrx4cbx48ULZIrdixYpMn2vRokUoVKiQ2rbmzZujdOnSmDFjBho1aqT3uRo0aIAGDRqobWvdujWio6OxbNkyTJo0KVMxDhkyBPXr14erqyv+/vvvTJ0DAMqUKYNatWpl+vU5FVuEcrmrV6+ie/fucHd3h42NDby8vNC7d2+8e/dOeczRo0fRuHFjODk5wd7eHgEBAdi1a5faeRTN75cuXUL37t3h7OwMd3d39O/fHwkJCQCA7du3QyKR4MCBA1pxLFmyBBKJBOfPn1duu3HjBj777DMUKlQINjY2qFChAhYtWqT1WsW1IyMj0alTJ+TPnx+ffPIJAOCff/5BlSpVYGNjg1KlSuHXX39Nt6tAn+vp8z4Nvb/6vs/0ZPTz6du3L+rWrQsA6Nq1KyQSidYvW13v8ezZs+jYsSPy5csHZ2dn9OzZE0+ePDHo2gBw6dIlSCQS/PXXX8ptERERkEgkqFSpktqxbdu2hZ+fn8H35kOfgQ+9x/Pnz6Nz585wdnaGq6srxowZg9TUVFy7dg3NmzeHk5MTSpQogVmzZmmdI6PYpk6dim+++QYAULJkSWVXQmhoqNp5Hj9+nOFnSZ/7DAC7du2Cr68vbGxsULJkScyZMyfde6Aqo8+IIb8D9P0ZaCpfvjwAmKQ7TvGzyAqaSRAAODo6omLFioiJicmSa7i5ucHSMnPtEuvWrcPhw4exePHiLIklTxKUa0VFRQlHR0dRokQJsXTpUnHgwAGxbt060aVLF5GYmCiEECI0NFRYWVkJPz8/sWnTJrF9+3YRFBQkJBKJ2Lhxo/JcU6ZMEQBEuXLlxHfffSdCQkLE3LlzhY2NjejXr58QQoiUlBRRqFAh0aNHD61YatSoIapVq6Z8funSJeHs7CwqV64s1q5dK/bt2ye++uorYWFhIaZOnar2WsW1ixcvLr799lsREhIitm/fLvbs2SMsLCxEgwYNxLZt28Rff/0latasKUqUKCE0P9r6Xk+f92nI/TXkfeqiz8/n5s2bYtGiRQKAmDFjhjh+/Li4dOlSuudUvZ/ffPON+O+//8TcuXOFg4ODqFq1qkhOTtb72gpFihQRgwYNUj6fOXOmsLOzEwDE/fv3hRDyz0e+fPnE2LFjs+wzkNF7LFeunJg+fboICQkRY8eOFQDE8OHDRfny5cX8+fNFSEiI6NevnwAgtmzZony9PrHFxMSIESNGCABi69at4vjx4+L48eMiISFBK4YPfZb0vc/79+8XUqlU1K1bV2zdulX89ddfonr16sLLy0vr867pQ58RQ38H6Psz0PTFF18IACIoKOiDx6WlpYmUlBS9Hvp48uSJACCmTJmid6wZiY+PF87OzqJDhw6Zer1MJhMpKSkiLi5OLFq0SFhaWoqlS5cafJ7Hjx+LAgUKiEWLFgkhhOjTp49wcHAw+DyHDh0SAEShQoWEVCoVTk5OIigoSBw5csTgc+VETIRysUaNGgkXFxcRFxeX7jG1atUShQoVEi9fvlRuS01NFd7e3sLT01OkpaUJId7/Epw1a5ba64cOHSpsbW2Vx40ZM0bY2dmJ+Ph45TGXL18WAMSCBQuU25o1ayY8PT2VXxoKw4cPF7a2tuL58+fKbYprf/fdd2rHVq9eXRQrVky8e/dOue3ly5eiQIECWl8M+l5P3/cphH7315D3qYu+Px/FL7K//vrrg+dTfY9ffvml2vY///xTABDr1q0z6NpCCNGzZ09RqlQp5fMmTZqIgQMHivz584s1a9YIIYQ4duyYACD27dtn8L1J7zOQ0Xv8+eef1bb7+voqExeFlJQUUbBgQdGxY0flNn1jmz17tgAgoqOj040ho8+Svve5Zs2awsPDQ7x580Z5XGJionB1dc0wERIi/c+Iob8D9P0ZqPrvv/8EAJE/f35RsGBBveLU56HrvmsyRiLUo0cPYWlpKc6cOZOp1w8ePFj5HqytrcXixYszdZ5PP/1UBAQEKH9GmU2EIiMjxahRo8S2bdtEWFiY+P3330WFChWEVCoVe/fuzVRsOQm7xnKp169f4/Dhw+jSpQsKFiyo85hXr17h5MmT6NSpk1qlgVQqRa9evRAbG4tr166pvaZt27Zqz6tUqYK3b98iLi4OANC/f3+8efMGmzZtUh6zatUq2NjY4LPPPgMgryI5cOAAOnToAHt7e6SmpiofLVu2xNu3b3VWKnz66adqsZ85cwbt27eHtbW1crujoyPatGmj9rrMXC+j96nP/c3s+1R9j4b+fAzRo0cPteddunSBpaUlDh06ZPC1GzdujNu3byM6Ohpv377F0aNH0bx5czRs2BAhISEAgP3798PGxgZ169bNks+APlq3bq32vEKFCpBIJGjRooVym6WlJUqXLo27d+8C+Pifm6YPfZb0vc+vXr3C6dOn0bFjR9ja2iqPc3Jy0vq8GyIznzFDfwbx8fHo378/2rVrh6FDh+LJkyd48OBBusf7+fnh9OnTej0+dnBwZkyePBl//vknfvnlF7VuXkNMmDABp0+fxq5du9C/f38MHz5c725OhS1btmDnzp1Yvnz5R3cDVq1aFfPmzUP79u1Rr1499OvXD+Hh4ShSpAjGjh37UefOCThYOpd68eIFZDIZPD09P3iMEAJFihTR2qf4BfPs2TO17QUKFFB7bmNjAwB48+YNAKBSpUqoXr06Vq1ahUGDBkEmk2HdunVo164dXF1dledMTU3FggULsGDBAp2x6So5Vo1TEbu7u7vWcZrbMnO9jN6nPvc3s+9TITM/H0MULlxY7bmlpSUKFCiAZ8+eGXztJk2aAJAnOyVLlkRKSgoaNWqEx48fY/r06cp9derUgZ2dHe7fv//RnwF9KD5zCtbW1rC3t1dLJhTbExMTle/rY35umj70WUpJSdHrPjs6OiItLU3rZwZo/xwNkZnPmKE/g2HDhiElJQXLly9HWFgYAPk4ofSSGEdHR/j6+up17syOq8ms77//Hj/88AN+/PFHDB8+PNPn8fLygpeXFwCgZcuWAIDx48ejT58+6f5hpSopKQnDhg3DiBEj4OHhoaxaTE5OBiBPPq2srODg4JDpGF1cXNC6dWssXboUb968gZ2dXabPld0xEcqlXF1dIZVKERsbm+4x+fPnh4WFBR4+fKi1T/EXm5ubm8HX7tevH4YOHYorV67g9u3bePjwIfr166d2XcVfnMOGDdN5jpIlS2ptU/2rJ3/+/JBIJHj8+LHWcY8ePVJ7ntnrfYi+9/djrmusn4/Co0ePULRoUeXz1NRUPHv2DAUKFDD42p6enihbtiz279+PEiVKwN/fHy4uLmjcuDGGDh2KkydP4sSJE/j++++V7+1jPwPGYozPy4eupc99VnzeNT/bgPbn3RjXV2XIz+Dvv//G+vXrsXPnThQsWBDVqlUDIE+EFAmApsOHD6Nhw4Z6nT86OholSpTQO56P8f3332Pq1KmYOnUqJkyYkKXnrlGjBpYuXYrbt2/rlQg9ffoUjx8/xs8//4yff/5Za3/+/PnRrl07bN++/aPiEkIAMM3/d+bERCiXsrOzQ2BgIP766y/8+OOPOr8wHRwcULNmTWzduhVz5sxRZvxpaWlYt26d8svNUN27d8eYMWOwevVq3L59G0WLFkVQUJByv729PRo2bIizZ8+iSpUqal1b+nJwcIC/vz+2b9+OOXPmKM+RlJSEf//9V+3YrLieJn3u78de11g/H4U///xTrWl/8+bNSE1NRYMGDTJ17SZNmmDz5s0oVqwYWrVqBQAoW7YsvLy88N133yElJUXZcmSMn0lWMSQ2zZZCQ+l7nyUSCWrUqIGtW7di9uzZyhatly9fYufOnZm6tiHXz4xHjx5hyJAhGDRokLKLsmTJknBxccHZs2fTfZ2ia0wfpuoamz59OqZOnYpJkyZhypQpWX7+Q4cOwcLCAqVKldLr+MKFC+PQoUNa22fOnInDhw9jz549H/VHEiBvLfz333/h6+ur1YKa2zARysXmzp2LunXrombNmhg3bhxKly6Nx48fY8eOHfjtt9/g5OSE4OBgNG3aFA0bNsTXX38Na2trLF68GBcvXsSGDRsy9ZeAi4sLOnTogNWrVyM+Ph5ff/01LCzUh6P9+uuvqFu3LurVq4cvvvgCJUqUwMuXL3Hz5k3s3LlTr4nKpk2bhlatWqFZs2YYNWoUZDIZZs+eDUdHRzx//jzLr6dJn/v7sdc1xs9HYevWrbC0tETTpk1x6dIlTJ48GT4+PujSpUumrt24cWMsXrwYT58+xbx589S2r1q1Cvnz51dLvIzxM8kq+sZWuXJl5fF9+vSBlZUVypUrBycnJ72vpe99nj59Opo3b46mTZviq6++gkwmw08//QQHBwetz7shjPUZGzhwIPLnz4+5c+eqba9ateoHS+idnJzg7++fqWuq2rNnD169eoWXL18CAC5fvqycY6dly5bK+Y8kEgkCAwO1pj1Q+Pnnn/Hdd9+hefPmaNWqldb4MM15dz50vkGDBiFfvnyoUaMG3N3d8fTpU/z111/YtGkTvvnmG63WoPTOZWtrq3OKjNWrV0Mqlerc96G4PvvsM3h5ecHf3x9ubm64ceMGfv75Zzx+/BirV6/WdVtyFzMO1CYTuHz5sujcubMoUKCAsLa2Fl5eXqJv377i7du3ymOOHDkiGjVqJBwcHISdnZ2oVauW2Llzp9p5FBUjT548Udu+atUqndUb+/btU1ZFXL9+XWds0dHRon///qJo0aLCyspKFCxYUAQEBIgffvhBr2sLIcS2bdtE5cqVle9t5syZYuTIkSJ//vyZup6h71Of+6vv+0yPPj+fzFSNRUREiDZt2ghHR0fh5OQkunfvLh4/fmzwtRVevHghLCwshIODg7IEX4j31WiqVVkKWfEZ+NB71Dw+vaqawMBAUalSpUzFNn78eOHh4SEsLCwEAHHo0KEPxqDrs6Tvfd6xY4eoUqWK2uddcZ2MfOgz8jG/A3RZvny5kEql4vjx41r7xowZIyQSiXKKCWMpXrx4htVmL1++FABEt27d0j1PYGDgByvXVGV0vt9//13Uq1dPuLm5CUtLS+Hi4iICAwPFH3/8oXWsPrFpSu/zndG5goODha+vr3B2dhZSqVQULFhQdOjQQZw6dUrva+dkEiH+3wlIlAukpKTA19cXRYsWxb59+8wdTrY0depUfP/993jy5MlHN58T5WS7d+9G69atce7cOWXrXnY5X3Y9V27ErjHK0QYMGICmTZuiSJEiePToEZYuXYorV67g119/NXdoRJTNHTp0CN26dcuy5CArz5ddz5UbsUWIcrQuXbogPDwcT548gZWVFapVq4YJEyagefPm5g4t22KLEBHRe0yEiIiIKM/izNJERESUZzERIiIiojyLiRARERHlWaway0BaWhoePHgAJyenXD/NOBERUW4hhMDLly/h4eGhNamvKiZCGXjw4AGKFStm7jCIiIgoE2JiYj64QDYToQwopsqPiYlBvnz5zBwNERER6SMxMRHFihXLcMkbJkIZUHSH5cuXj4kQERFRDpPRsBYOliYiIqI8i4kQERER5VlMhIiIiCjP4hghIiIiI5HJZEhJSTF3GLmSlZUVpFLpR5+HiRAREVEWE0Lg0aNHiI+PN3couZqLiwsKFy78UfP8MREiIiLKYookqFChQrC3t+eEvFlMCIHXr18jLi4OAFCkSJFMn4uJEBERURaSyWTKJKhAgQLmDifXsrOzAwDExcWhUKFCme4m42BpIiKiLKQYE2Rvb2/mSHI/xT3+mHFYTISIiIiMgN1hxpcV95iJEBEREeVZTISIiIgoz2IiRERERHkWEyEiIiIymBACqampWtuTk5Mzdb7Mvu5jMREyo6VLl+LHH3+ETCYzdyhERJQNxcYChw7J/2sKQgjMmjULpUqVgp2dHXx8fPD3338DAEJDQyGRSPDff//B398fNjY2OHLkCBo0aIDhw4djzJgxcHNzQ9OmTQEAhw8fRo0aNWBjY4MiRYpg3LhxaolTeq8zNc4jZCYnT97DyJGjkZLyDgcOHMAff/yBokWLmjssIiIyAiGA168Ne82aNcCIEUBaGmBhASxYAPTpY9g57O0BQwqrJk2ahK1bt2LJkiUoU6YMwsLC0LNnTxQsWFB5zNixYzFnzhyUKlUKLi4u/491Db744gscO3YMQgjcv38fLVu2RN++fbF27VpcvXoVAwcOhK2tLaZOnaryHtVfZxaCPighIUEAEAkJCVl2zhUrhJBI0gSwWgAOAoAoUKCA2LFjR5Zdg4iIzOPNmzfi8uXL4s2bN8ptSUlCyNMh0z6SkvSPOykpSdja2orw8HC17QMGDBDdu3cXhw4dEgDE9u3b1fYHBgYKX19ftW0TJkwQ5cqVE2lpacptixYtEo6OjkImk6X7OkPputcK+n5/s2vMxGJjgUGDACEkAPoAiARQFc+ePUPbtm0xcuRIvH371sxREhFRXnP58mW8ffsWTZs2haOjo/Kxdu1a3Lp1S3mcv7+/1ms1t125cgW1a9dWm+enTp06SEpKQqxKP5+uc5kau8ZM7MYNeTPne2UBHEfnzhPw119zsWDBAoSHh+P48eOwsrIyU5RERJSV7O2BpCT9j79/H6hQQf37QioFLl8GDBlFYcjk1mn/v9iuXbu0hmrY2NgokyEHBwet12puE0JoTXYo/t/1pbpd17lMjYmQiZUpI+/rVf1wSyQ2mDv3Z/Tt2xh9+/ZF+/btmQQREeUiEglgyHd+2bLAsmXA4MGATCZPgn77Tb7dWCpWrAgbGxvcu3cPgYGBWvtVW4X0OdeWLVvUEqLw8HA4OTllu/GwTIRMzNNT/cMNyHtyjx4FunVriYsXL6ot0hcdHQ1XV1c4OzubKWIiIjKHAQOAZs2AmzeB0qXl3x/G5OTkhK+//hpffvkl0tLSULduXSQmJiI8PByOjo4oXry43ucaOnQo5s2bhxEjRmD48OG4du0apkyZgjFjxsDCInuNymEiZAaqH+4dO4BffgG++AIoVQp49aoQypSRf+DfvHmDdu3a4eXLl9iwYQNq1apl7tCJiMiEPD2NnwCpmj59OgoVKoTg4GDcvn0bLi4uqFatGiZMmKDsOtNH0aJFsXv3bnzzzTfw8fGBq6srBgwYgEmTJhkx+syRCEWnHemUmJgIZ2dnJCQkIF++fFl+/pQUoF494OTJ99ssLOStRoGBNxEUFITo6GhIpVJMnz4dY8eOhVQqzfI4iIgoa7x9+xbR0dEoWbIkbG1tzR1Orvahe63v93f2ap/Kg6ysgNmz1belpcm7zmxtS+Ps2bPo1q0bZDIZJkyYgKCgIDx48MA8wRIREeUyTISyAR0zlEMmk3edOTs7Y/369Vi1ahXs7e1x8OBBVKlSBf/++6/pAyUiIsplmAhlA4pKMlUWFvLBcYC81LBv376IjIyEr68vnj17hlmzZplvFk4iIqJcgolQNqCoJFMd+pOWBixfrr7GTLly5XDixAl8++23WLdundYcDURERGQYJkLZxIABwJ07wMGDwPDh8m3TpgGNGgHFiwMrV8q32djYYObMmfDy8lK+dsKECfj999/ZQkRERGQgJkLZiKcn0LAhMHas+iJ5isHTulYfPnr0KIKDgzFgwAB89tlnSEhIMF3AREREORwToWzo5k35JIuqZDLgzBntYwMCAhAcHAypVIqNGzeiatWqOKlai09ERETpYiKUDekaPA0Aw4YBe/aojxuysLDAuHHjcPToUZQoUQLR0dGoW7cuZs6cadDkV0RERHkRE6FsSHPwtIUFUKgQ8OAB0LKl9rghAKhVqxaioqLQtWtXpKamYvz48ejatat53gAREVEOwUQom1IMnj50CLh7Vz6IWpWucUPOzs7YsGEDVq5cCXt7e3Tp0sWkMRMREeU0TISyMU9PoEED+X/j4rT3y2TA/v3yZEjRXSaRSNC/f3/cunULnTt3Vh576dIlvHv3znTBExER5QBMhHKI9MYNDRwIeHlpd5cVLlxYecyjR4/QqFEjBAQE4Pr16yaKmIiIcqJnz56hUKFCuHPnjlGv06lTJ8ydO1dre4sWLTBlyhTUqlULxYsXx+XLl40aBxOhHEJz3JBUKp95OjX1fYVZemX2t27dgkwmQ2RkJKpVq4Y1a9ZwziEiItIpODgYbdq0QYkSJXTuk0gkGD16tM7X9u3bF+PGjcPUqVMhkUjUHqp/oAPAd999hx9//BGJiYlq2y9evIiSJUvixIkTGDhwIHbu3JlVb00nJkI5iOq4oTt3gKVLtY+RyYDjx9Ury+rUqYNz586hQYMGePXqFfr27YuePXtqffiIiChve/PmDVauXInPP/9ca9/p06exbNkyVKlSRedr09LSsGvXLrRr1w4AUKlSJTx8+FD5uHDhgtrxVapUQYkSJfDnn38qtyUkJMDKygp9+/YFAFhbW8PFxSVr3lw6mAjlMKrjhsqV091d1rWrdldZ0aJFsX//fvzwww+QSqVYv349qlatilOnTpk0fiIiyr727NkDS0tL1K5dW217UlISevTogeXLlyN//vw6X3vs2DFYWFigZs2aAABLS0sULlxY+ShYsKDWa9q2bYsNGzYon1+8eBE1atRQe16pUqWseGvpYiKUg+laowxIv6tMKpVi4sSJCAsLQ/HixXH79m389ttvpg2aiCgPe/XqVbqPt2/f6n3smzdvMjw2M8LCwuDv76+1fdiwYWjVqhWaNGmS7mt37NiBNm3awOL/f6HfuHEDHh4eKFmyJLp164bbt29rvaZGjRo4deqUspjn4sWLqFy5snL/hQsX4O3tnan3oi8mQjmcanfZxo3a+2Uy+UzVqgICAhAVFYUvv/wSv/76q0niJCIiwNHRMd3Hp59+qnZsoUKF0j22RYsWaseWKFFC65jMuHPnDjw8PNS2bdy4EZGRkQgODv7ga3fs2KHsFqtZsybWrl2L//77D8uXL8ejR48QEBCAZ8+eqb2maNGiePfuHR49egRAXuGsSIRSU1ORlJTErrGs0KFDB+TPnx+dOnUydyhGoeguq1NHd1fZH38At26pjxtycXHB3Llzlf+zCCHQt29f7Nmzx3SBExFRtvLmzRvY2toqn8fExGDUqFFYt26d2nZNV65cQWxsrLLFqEWLFvj0009RuXJlNGnSBLt27QIArFmzRu11dnZ2AIDXr18DAObPn4+2bdsCkHet3bhxI+veXDryRCI0cuRIrF271txhGJ1mV5li4dbff5dXmOmakVphzZo1WLNmDVq2bImvvvoKycnJpguciCiPSEpKSvexZcsWtWPj4uLSPVbzj9Y7d+5oHZMZbm5uePHihfJ5REQE4uLi4OfnB0tLS1haWuLw4cOYP38+LC0tIZPJAMhbg5o2bapMbDQ5ODigcuXKWonN8+fPAUDn+CFTyROJUMOGDeHk5GTuMExCtavs3j1g1Sr1/emV2Hfr1g3Dhw8HAMydOxcBAQEmycSJiPISBweHdB+aLS4fOlYz4dB1TGZUrVpVbd6exo0b48KFC4iKilI+/P390aNHD0RFRUH6/7+8//nnH2VLji7v3r3DlStXUKRIEbXtFy9ehKenJ9zc3DIVb1YweyIUFhaGNm3awMPDAxKJBNu3b9c6ZvHixShZsiRsbW3h5+eHI0eOmD7QHES1sqx4ce39ihmpVbvKbG1tsWDBAvzzzz9wdXVFREQEqlatmida0oiISK5Zs2a4dOmSslXIyckJ3t7eag8HBwcUKFBAOYg5Li4Op0+fRuvWrZXn+frrr3H48GFER0fj5MmT6NSpExITE9GnTx+16x05cgRBQUGme4M6mD0RevXqFXx8fLBw4UKd+zdt2oTRo0dj4sSJOHv2LOrVq4cWLVrg3r17ymP8/Py0flDe3t548OCBqd5GtpXejNT9+unuKmvbti3OnTuHwMBAvHr1Cn369MH48eNNFzAREZlN5cqV4e/vj82bN+v9mp07d6JmzZooVKiQcltsbCy6d++OcuXKoWPHjrC2tsaJEydQXOWv87dv32Lbtm0YOHBglr4Hg4lsBIDYtm2b2rYaNWqIIUOGqG0rX768GDdunEHnPnTokPj0008zPO7t27ciISFB+YiJiREAREJCgkHXy05WrBBCKhUCEEIikf9X9SGVChETo/6a1NRUMW3aNGFraytOnjxpnsCJiHKgN2/eiMuXL4s3b96YO5RM2bVrl6hQoYKQyWR6Hd+mTRvx008/GXydhQsXiqZNmxr8OlUfutcJCQl6fX+bvUXoQ5KTkxEREaHVbBYUFITw8HCjXDM4OBjOzs7KR7FixYxyHVPSp8T++HH1xVulUikmT56MO3fuqE1udfbsWaSlpZkueCIiMqmWLVti8ODBuH//vl7H161bF927dzf4OlZWVliwYIHBr8tq2ToRevr0KWQyGdzd3dW2u7u7K+cc0EezZs3QuXNn7N69G56enjh9+nS6x44fPx4JCQnKR0xMTKbjz04U44YCAnR3lfXpo3vxVtV7f+7cOdSuXRstWrQw6P4TEVHOMmrUKL0bAsaOHZupRoNBgwahXLlyBr8uq2XrREhBoqgD/z8hhNa2D/nvv//w5MkTvH79GrGxsahevXq6x9rY2CBfvnxqj9xEs8TewgIoWhR48ybjxVuvX78OCwsL7Nu3Dz4+Pvjvv/9MGzwREVEWy9aJkJubG6RSqVbrQ1xcnFYrEelPtavs7l35PEOadC3e2rlzZ5w5cwaVK1dGXFwcmjdvjm+++YZzDhERUY6VrRMha2tr+Pn5ISQkRG17SEgIAgICzBRV7qBaYl+xov6Lt1asWBGnTp3CsGHDAABz5sxBnTp1cFNzHQ8iIqIcwOyJUFJSknKSJgCIjo5GVFSUsjx+zJgxWLFiBX7//XdcuXIFX375Je7du4chQ4aYMercxdDFW21tbbFw4UJs374drq6uOHPmjNaMqEREeZ1Q/BIlo8mKe2yZBXF8lDNnzqBhw4bK52PGjAEA9OnTB6tXr0bXrl3x7NkzTJs2DQ8fPoS3tzd2796tNhcBfbwBA4BmzeQLtD56BGgWACgWb/X0fL+tXbt2OHfuHBYsWICvv/7atAETEWVTVlZWAOTrZ6W35ARlDcUaZYp7nhkSwZT1gxITE+Hs7IyEhIRcN3A6PbGx8u4wzSr5b74Bhg0Dbt+WT9SomhQpvHnzBt27d8fkyZPh5+dnmoCJiLKZhw8fIj4+HoUKFYK9vb1BBT6UMSEEXr9+jbi4OLi4uGgt3QHo//3NRCgDeTERAuRjggYPlrcESSTvu8kULCzk3WkDBqhvnzhxImbMmAErKysEBwfjyy+/hIWuAUhERLmYEAKPHj1CfHy8uUPJ1VxcXFC4cGGdiSYToSySVxMhQN4ydPMm8MknwN9/A//vtVSSSuXVZ6otQy9evMDnn3+OrVu3AgCaN2+O1atXs8qPiPIkmUyGlJQUc4eRK1lZWSkXfdWFiVAWycuJkKpDh+QVZJrWrQM8PNS7yoQQWLZsGUaPHo23b9/C3d0da9euNfvCekRElHfo+/3NPgvSS3qLt/bsqV1iL5FIMHjwYJw+fRqVKlXC48eP0axZMyxfvty0QRMREWWAiRDpRbPEXrM7Vtds1N7e3jh9+jSGDBkCV1dXNG/e3HQBExER6YFdYxlg15g6xbihuDj5hIua/v0X8PEBbtxQ7y57/Pix2jihiIgIVpUREZHRsGuMjCKjxVt795Z3k31o8dadO3fC398fffv2RVJSkmkCJyIi0oGJEGWKrsVbXVyA58/fzz+U3uKtN27cgIWFBdasWYNq1aohMjLSpLETEREpMBGiTNNcvHXNGu1jFDNSqxozZgxCQ0Ph6emJGzduoFatWvjll184HT0REZkcEyH6KKqLt1arpru77MIF9VXsAaBevXo4d+4cOnTogJSUFIwZMwatWrVCXFycyWInIiJiIkRZJr3FW0eO1B4zBACurq7YsmULFi9eDBsbG+zZswfHjh0zbdBERJSnsWosA6waM5yiskwqBQID1ZfnsLCQd6NprlN24cIF7Ny5ExMmTDBtsERElCuxaozMRtFdlpqqvUZZWpq81Sg2Vr27rHLlympJ0MOHD9GmTRvcvn3bdIETEVGew0SIjCa92ainTwe8vHR3lymMHDkS//77L6pWrYqNGzcaP1giIsqTmAiR0WiOGZJKgcaN5f9WtBSlV2L/888/o06dOkhMTET37t3Rv39/vHr1ynTBExFRnsBEiIxKtcT+zh1g4kTtY2Qy+UzUqt1lXl5eCA0NxXfffQcLCwusWrUKfn5+OHv2rKnfAhER5WIcLJ0BDpbOWrGx8u4wxaSLChUrAlevyrdbWMhbkgYMkO87fPgwevTogfv378Pa2ho7d+7kSvZERPRBHCxN2ZKuxVstLIDLl9OfkTowMBDnzp1Du3btUKJECQQEBJgneCIiynWYCJHJqXaX3bsHLF2qfYzmjNQFChTAtm3bcOTIETg6OgIA0tLSEBERYZqgiYgoV2IiRGahOiN1ixa6q8tevlQvsZdIJChUqJBy/7x581C9enVMmDABKSkppgmciIhyFSZCZHbpzUjdtu2HS+yjo6MhhEBwcDDq16+P6Oho0wRMRES5BgdLZ4CDpU1HMSP1ixdAx47q+6RSeXea5ozUf//9Nz7//HPlz2fZsmXo2rWryWImIqLsiYOlKcdRdJe5uGjvk8mAkBDtGak7deqEc+fOISAgAImJiejWrRsGDBjAOYeIiEgvTIQo20lvRupBg3TPSF28eHEcPnwYkyZNgkQiwR9//IFr166ZNmgiIsqR2DWWAXaNmcfKlfISeplM3i32ySfA9evqx+jqLgsNDcWNGzcwcOBAk8ZLRETZC7vGKEfTnJF68WLtY2Qy4Phx9a6yBg0aqCVBUVFR6NSpE54+fWqSuImIKGdhi1AG2CKUPaQ3I7VEIl+3THM2agAQQqBq1ao4d+4cPDw8sG7dOjRs2NC0gRMRkVmwRYhylfRK7D+0eKtEIsGaNWtQvnx5PHjwAI0bN8akSZM45xARESkxEaIcQ7W7bNMm7f2as1EDgI+PD86cOYPPP/8cQgj8+OOPCAwMxJ07d0wRMhERZXNMhChHUZTYBwTorixbu1aeDKmOG3JwcMDy5cuxadMmODs74/jx4/D19cWVK1dMGjsREWU/TIQoR9K1eCsArFolL7/XNSN1ly5dEBUVhVq1aqF69eooV66c6QMnIqJshYOlM8DB0tmbYjbq0qWBgweBPn3U9+sqsU9JSUFSUhLy588PAHj9+jVu374Nb29v0wVORERGxcHSlCeoLt5arJj2fpkM2L9fvavMyspKmQQBwJgxY+Dv749FixaBfxcQEeUtTIQo10hvRup+/dJfvDUlJQX379/Hu3fvMHz4cLRv3x7Pnj0zTcBERGR2TIQo10hv3JCCrhJ7Kysr7NixA7/++iusra2xY8cO+Pj4IDQ01GRxExGR+TARolxFtcR+40bt/TIZcPKk+uKtEokEI0eOxMmTJ1GuXDncv38fjRo1wuTJk5Gammry90BERKbDwdIZ4GDpnCu92agdHIDXr3XPSP3q1SuMHDkSv//+O1xdXXHhwgV4eHiYPngiIvoo+n5/MxHKABOhnE118VYLC6BQIeDRI/VjdFWWbdy4EY6OjmjdurVJ4yUioqzBqjEiqHeV3b0LrF6tfYyuGam7deumlgT9888/GDRoEF6/fm3UeImIyLQszR0AkbF5eqq39lhYaHeXhYbKu8rKlFE/FgCSkpLw+eef4+nTpzh69Cg2btyIKlWqGD1uIiIyPrYIUZ6S3uKt33+ffom9o6MjNm7ciCJFiuDKlSuoUaMG5xwiIsolOEYoAxwjlDspZqS2tZWvW6b6f4GFhbwbTbNl6MmTJ+jXrx927doFAGjXrh1WrlyJAgUKmDByIiLSB8cIEX2AYkbqN2/UkyBA3m32ww/AvXvqM1IXLFgQO3fuxLx582BtbY1//vkHvr6+eP78ucnjJyKirMFEiPK09Gaj/u03eTeZZneZRCLBqFGjcPz4cZQpUwatW7eGq6uraYMmIqIsw66xDLBrLPdTLbGXSoH27YEtW9SP0VVin5SUBKlUCjs7OwDAw4cPkZycjOLFi5ssdiIi0o1dY0R6Ui2xv3MHGDZM+xiZDLhyRX1GakdHR2USJJPJ0LNnT/j6+mKLZhZFRETZFhMhIqivYp9ed1n//rq7ywAgPj4eSUlJiI+PR6dOnTBkyBDOOURElAMwESLSoFlib2Ehry6LjX0//5DmAq4FChTAkSNH8O233wIAfvvtN9SoUQMXL140wzsgIiJ9MREi0iEzM1JbW1tj5syZ2LdvH9zd3XHp0iVUr14dS5cu5ZxDRETZFBMhonSodpfVqaO7uywmRr3EHgCaNm2K8+fPo3nz5nj79i1+/fVXvH371mRxExGR/pgIEekhvRmpe/fWPWaoUKFC2LVrF+bOnYuNGzcqB1UTEVH2wvL5DLB8nlQpZqROSQGCgtT36Sqx1/TLL78gMTEREydOhKUll/ojIjIWls8TGYGiu0xXDiOTAZs2qZfYq4qOjsbYsWMxdepUNGrUCDExMSaJmYiI0sdEiCgT0iux//prwMtLd3dZyZIlsXr1ajg5OeHIkSPw8fHBtm3bTBc0ERFpyfWJ0MuXL1G9enX4+vqicuXKWL58ublDolxAc8yQVArUqiX/t6KzWbPEHgB69OiBs2fPonr16njx4gU6duyIoUOH4s2bN6Z9A0REBCAPjBGSyWR49+4d7O3t8fr1a3h7e+P06dN6rxjOMUL0IYoxQ6VLAzduyFuCNG3eDLi5yVuRFOOHkpOTMXnyZMyaNQsAUK1aNZw8eZLjhoiIsgjHCP2fVCqFvb09AODt27eQyWSc04WyjD4zUnfpot1VZm1tjZ9++gn//fcf3N3d0bNnTyZBRERmYPZEKCwsDG3atIGHhwckEgm2b9+udczixYtRsmRJ2Nraws/PD0eOHDHoGvHx8fDx8YGnpyfGjh0LNze3LIqe6L30SuwVdHWVBQUF4dKlSxg1apRy27Vr1/D8+XMjR0tEREA2SIRevXoFHx8fLFy4UOf+TZs2YfTo0Zg4cSLOnj2LevXqoUWLFrh3757yGD8/P3h7e2s9Hjx4AABwcXHBuXPnEB0djfXr1+Px48cmeW+U96jOSL1pk/Z+mUzehaaqQIECsPh/U1JSUhLatm0LX19fHD161PgBExHlcdlqjJBEIsG2bdvQvn175baaNWuiWrVqWLJkiXJbhQoV0L59ewQHBxt8jS+++AKNGjVC586dde5/9+4d3r17p3yemJiIYsWKcYwQGSw2Vt4dplifTKFRI2DuXOD5c/VxQwBw48YNtGzZEjdv3oSFhQWmTJmCiRMnQppeMxMREemUK8YIJScnIyIiAkEaM9cFBQUhPDxcr3M8fvwYiYmJAOQ3JSwsDOXKlUv3+ODgYDg7OysfxYoVy/wboDxN1+KtlpbAwYOAr6/uEvsyZcogMjISvXr1QlpaGqZMmYJGjRohVnNSIiIiyhIGJUIpKSlo2LAhrl+/bqx41Dx9+hQymQzu7u5q293d3fHo0SO9zhEbG4v69evDx8cHdevWxfDhw1GlSpV0jx8/fjwSEhKUD056Rx9Dc/HW3bvV9+saN+Tk5IS1a9fijz/+gKOjI8LCwuDj44N//vnHpLETEeUFBpWpWFlZ4eLFi5BIJMaKRyfN6wkh9I7Bz88PUVFRel/LxsYGNjY2hoRH9EGenu+7vzTHBwHycUPbtwOVKql3lfXs2RO1atVCt27dEBERgUWLFqFt27Ym//+PiCg3M7hrrHfv3lip2pZvRG5ubpBKpVqtP3FxcVqtREQ5QXol9iNG6O4qK126NMLDwzF58mSsXbuWSRARURYzeOKS5ORkrFixAiEhIfD394eDg4Pa/rlz52ZZcNbW1vDz80NISAg6dOig3B4SEoJ27dpl2XWITEUxbmjwYHlLkIWF+mBqRVdZs2bvW4asra0xbdo0tfOMHj0alSpVwueff87kiIjoIxicCF28eBHVqlUDAK2xQpn5hZyUlISbN28qn0dHRyMqKgqurq7w8vLCmDFj0KtXL/j7+6N27dpYtmwZ7t27hyFDhhh8LaLsYMAAeaJz8yYQFwd07aq+XyYD9u4FmjeXd6VpVpYdOnQIv/76KwD5HwXLli2Di4uL6d4AEVEuYvby+dDQUDRs2FBre58+fbB69WoA8gkVZ82ahYcPH8Lb2xu//PIL6tevb5L4uMQGGVN6JfZSqXybEPJWo2XL5AkUAKSlpeHnn3/GhAkTkJqaiuLFi2P9+vUICAgw/RsgIsqm9P3+/qhEKDY2FhKJBEWLFs3sKbI9JkJkbCtXvu8qk0qBsmWBK1fUj5FK5dVnqi1Dp0+fRvfu3XHr1i1IpVJMnToV48eP55xDREQw4jxCaWlpmDZtGpydnVG8eHF4eXnBxcUF06dPR5rmn7VElCHVEvs7dwBdk6zLZMDx4/JjFKX21atXR2RkJHr06AGZTIbJkyejq2Y/GxERfZDBY4QmTpyIlStXYubMmahTpw6EEDh27BimTp2Kt2/f4scffzRGnES5mmqJPaA9iBqQjyXS7CrLly8f1q1bh2bNmmHo0KHo06ePaQMnIsrhDO4a8/DwwNKlS9G2bVu17f/88w+GDh2K+/fvZ2mA5sauMTIH1e4yXXR1lT179gwFChRQPj979iwqVKgAW1tb4wZLRJQNGa1r7Pnz5yhfvrzW9vLly3PFbKIsos/irSrFlgCglgTFxMSgcePGqFmzJq5oDjgiIiIlgxOh9FaKX7hwIXx8fLIkKCKSt/Y0aAAEBOiehHHZMnl5veq4IYV79+7B0tIS58+fh5+fH1asWIFstL4yEVG2YXDX2OHDh9GqVSt4eXmhdu3akEgkCA8PR0xMDHbv3o169eoZK1azYNcYZQeqXWUSiXyskCrNEnsAePjwIXr37o39+/cDALp06YLffvuNcw4RUZ5g1PL5Bw8eYNGiRbh69SqEEKhYsSKGDh0KDw+Pjwo6O2IiRNlFbKy8O6x0aeDoUaB7d/X9usYNpaWlYc6cOZg4cSJSU1NRokQJrF+/HrVr1zZp7EREpqbv97fBVWP37t1DsWLFdFaH3bt3D15eXoaekoj0oFpZpmupPZkMiIiQ//v9jNQWGDt2LAIDA9G9e3dER0fjzz//ZCJERPR/BrcISaVSPHz4EIUKFVLb/uzZMxQqVAiy9Mpccii2CFF2lN6M1PnyAUlJ8u2a3WUJCQmYOXMmvvvuO9jZ2Zk+aCIiEzJa1ZgQQueaYklJSSzTJTIRxeKtikmkLSwANzcgMfF9cqRYwFUxkNrZ2RnBwcHKJEgmk6Fr1674999/zfAOiIiyB727xsaMGQNAvrDq5MmTYW9vr9wnk8lw8uRJ+Pr6ZnmARKSb6uKtpUsD588DrVqpH6OYkdrNTXvx1pUrV2Lz5s3YvHkzRo4ciVmzZsHGxsa0b4KIyMz0ToTOnj0LQN4idOHCBVhbWyv3WVtbw8fHB19//XXWR0hE6crsjNSAfGHjK1euYN68eZg/fz7CwsKwYcMGnfOEERHlVgaPEerXrx9+/fXXPDNehmOEKCfJzIzUu3btQt++ffH06VPY29tjwYIF6Nevn84ucCKinMJoY4TmzZuH1NRUre3Pnz9HYmKioacjoiykOiP1n39q79c1I3WrVq1w/vx5NG7cGK9fv8aAAQMwceJEk8RLRGRuBidC3bp1w8aNG7W2b968Gd26dcuSoIgo8xQzUtevr3tG6vBwICZGfUbqIkWKYN++fQgODoajoyO6a05SRESUSxncNebq6opjx46hQoUKatuvXr2KOnXq4NmzZ1kaoLmxa4xysoy6ynTNSK25eOuJEydQvXp1SBUlakREOYDRusbevXuns2ssJSUFb968MfR0RGREql1ld+8CU6ao79cssQfUF289efIk6tWrh2bNmuHBgwemCZqIyIQMToSqV6+OZcuWaW1funQp/Pz8siQoIso6iq4yLy8gMFB7v0wmX7JD1+KtMTExsLa2xoEDB+Dj44Pdu3ebJGYiIlMxuGvs2LFjaNKkCapXr47GjRsDAA4cOIDTp09j3759XHSVKBtLb0ZqBV1dZdeuXUO3bt0QFRUFABg9ejRmzpzJOYeIKFszWtdYnTp1cPz4cXh6emLz5s3YuXMnSpcujfPnz+e6JIgot9GckVqzQl5XV1m5cuVw4sQJjBo1CoC8crR27dq4fv26iaImIjKeTK0+n5ewRYhyI8VK9nFx8gkXNe3dC1SqpLp4q3z7v//+i759++LZs2eYN2+eMjkiIspu9P3+zlQidOvWLaxatQq3b9/GvHnzUKhQIezduxfFihVDpUqVPirw7IaJEOVm6XWVubsDT57oXrz1wYMHWLp0Kb7//ntOukhE2ZbRusYOHz6MypUr4+TJk9iyZQuSkpIAAOfPn8cUzZIUIsrWdC3e6ugIPH6c/uKtHh4emDZtmjIJevnyJVq0aIGTJ0+a4R0QEX0cgxOhcePG4YcffkBISIjaemMNGzbE8ePHszQ4IjI+zRL71au1j9E1I7XC999/j71796Ju3br46aefkJbeSGwiomzI4ETowoUL6NChg9b2ggUL5rrJFInyCkWJvacnULOm7hmpr1/XXWI/adIkdOnSBampqRg3bhyaNWuGhw8fmiRuIqKPZXAi5OLiovOX3NmzZ1G0aNEsCYqIzEezu0xh8GCgUSP5mKKVK99vd3FxwcaNG7FixQrY29tj//798PHxwZ49e0wbOBFRJhicCH322Wf49ttv8ejRI0gkEqSlpeHYsWP4+uuv0bt3b2PESEQmptpdduiQepm9rhJ7iUSCAQMGICIiAj4+Pnjy5AlatmyJlaoZExFRNmRwIvTjjz/Cy8sLRYsWRVJSEipWrIj69esjICAAkyZNMkaMRGQGiu4yIeQPVTKZfCxRbKx6d1n58uVx4sQJjBgxAu7u7mjdurWpwyYiMkim5xG6desWzp49i7S0NFStWhVlypTJ6tiyBZbPU173odmoJRJ5kqRrRurnz5/D1dVV+fzYsWMICAhgyT0RmYRRy+cB4JNPPkGnTp3QpUuXXJsEEZH2mCGp9P2aZYo/o3R1l6kmQZs2bULdunXRq1cvJCYmmihyIqKMGZwINW3aFF5eXhg3bhwuXrxojJiIKJtRHTN05472KvaAvLssPFx3ZdmDBw8glUrx559/omrVqjh16pQpwiYiypDBidCDBw8wduxYHDlyBFWqVEGVKlUwa9YsxGr+5iOiXEW1xL5MGd0l9l276q4s+/LLLxEWFobixYvj9u3bqFOnDmbNmsU5h4jI7D5qrbHo6GisX78eGzZswNWrV1G/fn0cPHgwK+MzO44RItJt5Up5d5hMpnu/VCpvPVKsUwYA8fHxGDhwIP7++28A8hbmtWvXonDhwsYPmIjyFKONEVJVsmRJjBs3DjNnzkTlypWV44eIKPdT7S7btEl7v0wGXLumvs3FxQWbN2/GsmXLYGdnh5CQEJw9e9Yk8RIR6WKZ2RceO3YMf/75J/7++2+8ffsWbdu2xYwZM7IyNiLK5jw95Y/YWHlXmWZP16RJQL58QFLS+1XsJRIJBg4ciDp16uC///5DixYtzBM8EREy0SI0YcIElCxZEo0aNcLdu3cxb948PHr0COvWreMvNKI8StfirdbWwIkTQI0auscNVaxYEV9++aXy+b179xAUFIQbN26YOHoiyssMHiMUEBCAHj16oGvXrnBzczNWXNkGxwgR6S82Vr44a+nSQHQ0UL+++n5d44YU2rVrhx07dsDR0RGLFy9Gr169TBIzEeVO+n5/G9w1Fh4e/lGBEVHupegqAwBdDTsyGXDgANC4sXy/orsMABYtWoSEhAQcPnwYvXv3xr59+7B48WI4OTmZ7g0QUZ6Tqaqx69evIzQ0FHFxcVrlr999912WBZcdsEWIKHPSm5Ha0lKeEOmakVomk2HGjBmYOnUq0tLSULp0aWzYsAH+/v6mfwNElKPp+/1tcCK0fPlyfPHFF3Bzc0PhwoXVpsuXSCSIjIzMfNTZEBMhosxTLbGXSoFSpbRbinR1lx07dgyfffYZ7t27BysrK+zZsweNGzc2aexElLMZLREqXrw4hg4dim+//fajg8wJmAgRfRzVcUPXrgFNmmgfs3kz4Oam3lX24sULDBw4ENevX8epU6dga2tr2sCJKEczWiKUL18+REVFoVSpUh8dZE7ARIgo66TXXZbe4q1CCLx48UK5bplMJsOpU6dQu3ZtE0dORDmN0SZU7Ny5M/bt2/dRwRFR3qRZZq+Q3uKtEolEbfHW4OBgBAQEYOzYsUhOTjZR1ESUmxlcNVa6dGlMnjwZJ06cQOXKlWFlZaW2f+TIkVkWHBHlPgMGAM2aybvLHj8GunVT3y+TyfdpltgLIfDkyRMAwOzZs3Ho0CFs2LABpUuXNlHkRJQbGdw1VrJkyfRPJpHg9u3bHx1UdsKuMSLjSa+rrF8/YMIEICZGfdwQAGzfvh39+/fHixcv4OjoiCVLlqBnz56mDZyIsj2jjRHKa5gIERmXamWZYqyQKs1xQwAQExODnj17IiwsDADQu3dvLFy4kHMOEZGS0RddTU5OxrVr15CamprZUxARqS3eeu8esGaN+n7NcUMAUKxYMRw8eBBTp06FhYUFNm/ejHv37pk0biLKHQxOhF6/fo0BAwbA3t4elSpVUv7yGTlyJGbOnJnlARJR7ufpCTRoIP9vsWLa+2UyYP9+ebKkSIikUimmTJmC0NBQLF++HJUqVTJpzESUOxicCI0fPx7nzp1DaGio2rweTZo0waZNm7I0OCLKe8qUkXeHaerXT/firfXq1VMbI3Ty5Em0a9cOcXFxJoiWiHI6gxOh7du3Y+HChahbt67arNIVK1bErVu3sjQ4Isp7NEvsVX7NANDdVfZ+Xxr69++PHTt2wMfHB/v37zd+wESUoxmcCD158gSFChXS2v7q1Su1xIiIKLNUxw1t3Ki9XyYDTpyQJ0Oq3WUWFhbYtGkTKlWqhEePHiEoKAjjxo1DSkqKSeMnopzD4ESoevXq2LVrl/K5IvlZvnw5Z3sloiyjGDcUEKC7q6xPH8DLS7u7zNvbG6dOncKQIUMghMBPP/2EunXr5rqpPYgoaxhcPh8eHo7mzZujR48eWL16NQYPHoxLly7h+PHjOHz4MPz8/IwVq1mwfJ7I/FRL7C0sAHd34OFD9WN0Ld66detWDBgwAPHx8XBycsLp06dRrlw5k8ZOROZhtPL5gIAAHDt2DK9fv8Ynn3yCffv2wd3dHcePH891SRARZQ+qXWV37wKrVmkfo5iRWlXHjh1x7tw51K1bF4GBgShbtqxJ4iWinIMTKmaALUJE2U96M1JPnizvTitbVr1lKDU1Fa9fv1b+P/zy5UvcunULvr6+JouZiEzLaC1CiYmJOh8vX77MtosgWlpawtfXF76+vvj888/NHQ4RfaT0Fm+dPh1o3Fi7xN7S0lLtF+GwYcNQs2ZNzJs3D/xbkChvM7hFyMLC4oPVYZ6enujbty+mTJkCC10jHM3Azc0NT58+zdRr2SJElH3Fxsq7w2xt5YOqVX+bWVjIu9E0F29NTk5G165dsX37dgBAy5YtsXr1ahQsWNB0gROR0RmtRWj16tXw8PDAhAkTsH37dmzbtg0TJkxA0aJFsWTJEgwaNAjz58/nLNNEZHSKyrI3b7TXKEtLA6ZNky/boVpib21tja1bt2Lx4sWwsbHB7t27UaVKFRw4cMDk8RNRNiAM1KhRI7Fp0yat7Zs2bRKNGjUSQgixdu1aUa5cOb3Od/jwYdG6dWtRpEgRAUBs27ZN65hFixaJEiVKCBsbG1GtWjURFhZmUMxWVlaiWrVqok6dOiI0NNSg1yYkJAgAIiEhwaDXEZHpxMQIYWEhhDwd0v2wsBBixQr1150/f15UrFhRABASiUSMGzdOJCcnm+dNEFGW0vf72+AWoePHj6Nq1apa26tWrYrjx48DAOrWrav3AoivXr2Cj48PFi5cqHP/pk2bMHr0aEycOBFnz55FvXr10KJFC7Xz+/n5wdvbW+vx4MEDAMCdO3cQERGBpUuXonfv3khMTDT0bRNRNqY5ZkgqBTp1Uj9G14zUlStXxunTpzFo0CAIIbBq1SrEx8ebLG4iMj+DxwiVLVsWHTt21Or6GjduHLZt24Zr167hzJkzaNeuHe7fv29YMBIJtm3bhvbt2yu31axZE9WqVcOSJUuU2ypUqID27dsjODjYoPMDQIsWLTB9+nT4+/vr3P/u3Tu8e/dO+TwxMRHFihXjGCGiHEAxZqh0aeDGDflki5rWrQM8PORrmqmOH/r777/h4uKCJk2amC5gIjIafccIWRp64jlz5qBz587Ys2cPqlevDolEgtOnT+Pq1av4+++/AQCnT59G165dMx/9/yUnJyMiIgLjxo1T2x4UFITw8HC9zvHixQvY29vDxsYGsbGxuHz5MkqVKpXu8cHBwfj+++8/Km4iMg9PT/XkxsJCu8ResT6rhYW8FWnAAPnzThpNSBs2bMD+/fsxf/58ODg4GDFqIjIng7vG2rZti2vXrqFFixZ4/vw5nj59ihYtWuDq1ato3bo1AOCLL77A3LlzPzq4p0+fQiaTwd3dXW27u7s7Hj16pNc5rly5An9/f/j4+KB169b49ddf4erqmu7x48ePR0JCgvIRExPzUe+BiMzjYxZvTUxMxNChQ/H777/Dz88PUVFRRo+XiMzD4BYhAChRooRJq8I0y/WFEHov8BoQEIALFy7ofS0bGxvY2NgYFB8RZU8DBgDNmsm7y+LiAM2GapkMOHdO/u8bN953l+XLlw/btm1Djx49cO3aNdSsWROzZ8/GiBEjuLg0US6jVyJ0/vx5eHt7w8LCAufPn//gsVWqVMmSwAD5/D9SqVSr9ScuLk6rlYiISBdFd1lsrO6ust69gfh4+XbV7rIGDRrg3LlzGDBgAHbs2IFRo0YhJCQEv//+O+ccIspF9Ooa8/X1VU5I6Ovri6pVqypnalZ96Kom+xjW1tbw8/NDSEiI2vaQkBAEBARk6bWIKHfT7CqzsABcXIDnz98nR5rdZW5ubti+fTsWLlwIGxsb/Pvvv6hatSoSEhLM8h6IKOvp1SIUHR2t/AsoOjo6SwNISkrCTZWVEqOjoxEVFQVXV1d4eXlhzJgx6NWrF/z9/VG7dm0sW7YM9+7dw5AhQ7I0DiLK/VS7ykqXBs6eBdq2VT9GsXirYtC1RCLBsGHDULduXXTr1g0tW7aEs7Oz6YMnIqPQKxEqXry4zn9nhTNnzqBhw4bK52PGjAEA9OnTB6tXr0bXrl3x7NkzTJs2DQ8fPoS3tzd2796d5XEQUd6gT2VZbKz8oTpuyMfHB2fOnIGl5ftfm/fu3UNaWhpKlChhmuCJKMtlavX5P/74A0uXLkV0dDSOHz+O4sWLY968eShZsiTatWtnjDjNhmuNEeVuK1fKu8NkMvXtEol8TmrNMnuF1NRUBAYG4tKlS1i2bBm6dOliuqCJKENGW2tsyZIlGDNmDFq2bIn4+HjI/v/bw8XFBfPmzct0wERE5jBgAHDnjnw9shs3gL595dsVfyKmV2YfHx8PIQQSEhLQtWtXDBw4EK9evTJl6ESUBQxOhBYsWIDly5dj4sSJkCpGHQLw9/c3qEydiCi7UCzeWrq0vIpMk0wGHD+uvnirm5sbwsLCMGnSJEgkEqxYsQL+/v44p6jHJ6IcweBEKDo6Wmd1mI2NDf8aIqIcr0wZeXeYpi5d5Et2FC8u704DAEtLS0yfPh0HDhyAh4cHrl69ipo1a2LBggXIxKgDIjIDgxOhkiVL6pxldc+ePahYsWJWxEREZDaaZfaadHWVNWzYEOfOnUObNm3w7t07rFy5EsnJyaYJmIg+isEzS3/zzTcYNmwY3r59CyEETp06hQ0bNiA4OBgrVqwwRoxERCalz4zU16/L//2+sswN//zzDxYtWoQmTZpwhnqiHCJTVWPLly/HDz/8oFyHq2jRopg6dSoGaJZV5AKsGiPK22Jj5d1hmiX25crJkyDNGak1/fDDD3j79i2mTp2qVnpPRMal7/d3phIhhadPnyItLQ2FChXK7CmyPSZCRKRaYm9hIX+kpqofI5XKq89U5yi6ceMGypcvj7S0NNSuXRvr16/nnENEJmK08nlVbm5uuToJIiIC1Evs796Vt/5oUsxIrapMmTJYv3498uXLh+PHj8PX1xd//fWXSWImIv18VCJERJRXKErsPT2Bpk11V5Y9e6ZeYg8AXbt2RVRUFGrVqoWEhAR06dIFgwYNwuvXr00WOxGlj4kQEZGB0qss69RJu8QekFfbhoWFYcKECZBIJFi+fDnq16+vnJCWiMyHiRARUSaodpft2KG+T1eJvZWVFX788Ufs378fRYoUwcCBA9UmpSUi82AJAxFRJikWcD10SHufTAbs2gW0aqW+eGujRo1w+fJltRXsL168iCJFiqBAgQImjJ6IgEwmQgcOHMCBAwcQFxeHNI2a0t9//z1LAiMiyikUs1FrltgPHSpfs0xz8VYXFxflMfHx8WjdujVSU1Px559/IjAw0LTBE+VxBneNff/99wgKCsKBAwfw9OlTvHjxQu1BRJTXaI4ZkkoBb295YpTR4q1xcXGwtbXF/fv30ahRI0yZMgWpmrX5RGQ0Bs8jVKRIEcyaNQu9evUyVkzZCucRIiJ9xcbKS+hLl5bPPN24sfYxmzcDbm7vu8oAICkpCaNGjVK2qNetWxd//vknvLy8TBg9Ue5itHmEkpOTERAQ8FHBERHlRqol9mXL6i6x79pVu7LM0dERK1euxPr16+Hk5ISjR4/Cx8cHW7duNWn8RHmRwYnQ559/jvXr1xsjFiKiXCO9EvsPdZV1794dUVFRqFGjBuLj47FmzRquYk9kZAYPln779i2WLVuG/fv3o0qVKrCyslLbP3fu3CwLjogoJ9Nn8dabN9WX5ShVqhSOHj2KWbNmYciQIZBIJKYNmiiPMTgROn/+PHx9fQHISz5V8X9YIiJ1ihL72FjdlWVLlgBFigAPHrwfN2RlZYWJEycqjxFCYODAgahWrRq++OIL/q4lykIftehqXsDB0kSUVVQXb1XkMqq/gdNbxX7fvn1o1qwZAKBDhw5YsWIFXF1dTRQ1Uc5kkkVXiYhIf6qzUd+7J68gU5VeiX2TJk3wyy+/wNraGtu2bYOPjw/CwsJMFjdRbqZXi1DHjh2xevVq5MuXDx07dvzgsbmtyoEtQkRkLIcOySvINC1fDnzyiXqJPQBERkaiW7duuHHjBiwsLDB58mRMmjQJlpZcJIBIU5a2CDk7Oyv7pJ2dnT/4ICIi/ShmpNY0cKDuxVurVauGyMhI9O3bF2lpafj+++/Ro0cP0wVMlAtxjFAG2CJERMakOW5I8zeyVCrvTlNtGQKA9evXY+jQodiyZQsa65q5kSiP0/f7m4lQBpgIEZGxKWak1lViDwDr1wP16qkv3grI1ylTXbfs5MmTqFKlCuzs7EwTOFE2xsHSREQ5hGJG6oAA3V1l/foBXl7a3WWqSdCtW7fQtGlT1KhRA5cuXTJJ3ES5ARMhIqJsQtfirSVKAO/eZbx466NHj2Bvb4+LFy/C398fv/32G2elJtIDEyEiomxEtcT+zh15BZkmxYzUqurUqYNz586hWbNmePv2LYYMGYJOnTrh+fPnpgibKMcyKBFKSUlBw4YNcf36dWPFQ0SU56ku3lq+vO7usrAwICZGnjApWofc3d2xe/duzJkzB1ZWVti6dSt8fX1x9OhRk8ZPlJMYlAhZWVnh4sWLnN6diMhENLvLFL9+p0zRPW7IwsICX331FcLDw1G6dGnExMTgn3/+MU/wRDmAwVVjX331FaysrDBz5kxjxZStsGqMiLIDRWXZJ58Aa9YAkyer79dVZv/y5UvMnTsX48ePh7W1tUnjJTI3fb+/DZ6ONDk5GStWrEBISAj8/f3h4OCgtp+rzxMRZT3F4q0AUKeO9n6ZDDhyBChc+H2JvZOTE6ZMmaI8JiUlBR06dMDnn3+O9u3bmyZwomzO4ETo4sWLqFatGgBojRVilxkRkfEpZqTWXMn+s8/k/01v8dalS5di165d2LVrF4YNG4bZs2dzziHK8zihYgbYNUZE2VFmZqROTk7GxIkTMWfOHABA5cqVsXHjRlSsWNF0gROZiEkmVIyNjcX9+/c/5hRERJQJqmX2Gzdq75fJgAsX5GOLFJVl1tbWmD17Nvbu3YtChQrhwoUL8Pf3x7JlyzjnEOVZBidCaWlpmDZtGpydnVG8eHF4eXnBxcUF06dPR5pmOy0RERlNRjNS9+kjryjTrCxr1qwZzp07h6CgILx58waDBw/GpEmTTBo7UXZhcCI0ceJELFy4EDNnzsTZs2cRGRmJGTNmYMGCBZisWcZARERGp1lib2EBODkBT568H0ekOSN14cKFsWfPHsyePRsuLi7o3bu3eYInMjODxwh5eHhg6dKlaNu2rdr2f/75B0OHDs11XWUcI0REOYWixL50aeDMGaBDB+1jDh2StyKpSkhIgLOzs/J5WFgY6tSpA6kisyLKgYxWPv/8+XOUL19ea3v58uU5lTsRkRmpltgDuivLrl6VD6xWXcVeMwlq2LAh6tWrh3Xr1sFT9YREuZDBXWM+Pj5YuHCh1vaFCxfCx8cnS4IiIqKPo9ldpvDFF9pjhlQ9efIEdnZ2OHz4MHx8fDgrNeV6BneNHT58GK1atYKXlxdq164NiUSC8PBwxMTEYPfu3ahXr56xYjULdo0RUU6m6C6zsJB3ian+xtdVYg8AN27cQLdu3RAZGQkAGD58OGbPng1bW1uTxU30sYxWPh8YGIjr16+jQ4cOiI+Px/Pnz9GxY0dcu3Yt1yVBREQ5naKyTCbTnmtIJgNWrFAvsQeAMmXKIDw8HGPGjAEgb/GvUaMGrly5YtrgiUzAoBahlJQUBAUF4bfffkPZsmWNGVe2wRYhIsoNYmPl3WG6ZjlRTMioa0bqPXv2oE+fPnjy5AmWLVuGgQMHmi5ooo9glBYhrj5PRJQzaY4ZkkqBhg3l/1b8OaxZYg8ALVq0wPnz5xEcHIzPP//ctEETmYDBXWO9e/fGSl0j7IiIKFtTnY36zh3tFewBeXdZeLh6V1nhwoUxbtw45R/BL168QIMGDRAeHm6y2ImMhavPExHlIfqU2Hft+n6frsVbp0yZgsOHD6N+/fr4/vvvMW7cOM45RDmWwVVjDRVtqbpOJpHg4MGDHx1UdsIxQkSUm6ku3qqLrsqyxMREfPHFF1i/fj0A+ffCH3/8gaJFixo/YCI96fv9bVAiJJPJcPToUVSuXBmurq5ZEmh2x0SIiHI7RYl9XNz71iBV+/cDjRurbxNCYO3atRg2bBhevXqFAgUKYPXq1WjdurVpgibKgFEGS0ulUjRr1gwJCQkfHSAREWUPGS3eOm4ccOKE+rghiUSCPn36IDIyElWrVsWzZ8/Qpk0brFq1yqSxE30sgwdLV65cGbdv3zZGLEREZEa6Fm+1sZGvW1a7tu4ZqcuWLYvjx49jzJgxKFasGNq1a2ee4IkyyeAxQvv27cO3336L6dOnw8/PT2uwdG7rPmLXGBHlNaqLt969C9Stq74/vRmpExMTlb8nhRA4dOgQGjZsyClXyCyMMkYIACxU2k1VP9xCCEgkEsjSG3GXQzERIqK87NAheUuQpjlzgGrV1BdvVbVq1Sr0798fXbt2xW+//aa2sCuRKRht9flDhw59VGBERJRzlCmju8T+66/l/02vxD4hIQGWlpbYtGkTTp48iQ0bNqBWrVqmCZrIAAa3COU1bBEiorxOtcReV1KUXlfZyZMn0b17d0RHR0MqlWL69OkYO3Ys5xwikzDaoqsAcOTIEfTs2RMBAQG4f/8+AOCPP/7A0aNHMxetEV27dg2+vr7Kh52dHbZv327usIiIcgzVGak3bNDeL5MBW7ZoL95as2ZNnD17Ft26dYNMJsOECRMQFBSEBw8emDR+og8xOBHasmULmjVrBjs7O0RGRuLdu3cAgJcvX2LGjBlZHuDHKleuHKKiohAVFYWjR4/CwcEBTZs2NXdYREQ5SkYl9qNHA15e2pVlzs7OWL9+PVatWgV7e3scOnQIV69eNWXoRB9kcCL0ww8/YOnSpVi+fDmsrKyU2wMCAhAZGZmlwWW1HTt2oHHjxlqVbkREpB9di7f6+cn/nd7irRKJBH379kVkZCQWL16MRrpGXxOZicGJ0LVr11C/fn2t7fny5UN8fLzBAYSFhaFNmzbw8PCARCLR2W21ePFilCxZEra2tvDz88ORI0cMvg4AbN68GV11TZtKRER601y8dfZs7WNkMnkJvmp3Wbly5TBkyBDlMTdv3kT9+vVx7do1k8VOpMngRKhIkSK4efOm1vajR4+iVKlSBgfw6tUr+Pj4YOHChTr3b9q0CaNHj8bEiRNx9uxZ1KtXDy1atMC9e/eUx/j5+cHb21vrodoPnZiYiGPHjqFly5YGx0hEROoUXWWenu8ryzSNHy/vJtM1EaMQAiNGjMCRI0dQrVo1rFq1CqzdIbMQBvrpp59ExYoVxYkTJ4STk5M4cuSIWLdunShYsKBYsGCBoadTA0Bs27ZNbVuNGjXEkCFD1LaVL19ejBs3zqBzr127VvTo0SPD496+fSsSEhKUj5iYGAFAJCQkGHQ9IqK8ZMUKIaRSIQAhJBL5fzUfUqkQMTHvX3P//n3RsGFDAUAAEN27dxfx8fHmexOUqyQkJOj1/W1wi9DYsWPRvn17NGzYEElJSahfvz4+//xzDB48GMOHD8/SJC05ORkREREICgpS2x4UFITw8HCDzqVvt1hwcDCcnZ2Vj2LFihl0HSKivEi1u+zePeCnn7SPUXSXKXh4eCAkJAQzZsyAVCrFhg0bULVqVZw8edJkcRNleh6h169f4/Lly0hLS0PFihXh6Oj48cFIJNi2bRvat28PAHjw4AGKFi2KY8eOISAgQHncjBkzsGbNGr37lRMSElC2bFnExMTA2tr6g8e+e/dOWQkHyLvUihUrxnmEiIgMEBsr7w5TnXNIIgH++w+wtNSekfr48ePo3r077t69C0tLS+zbtw8NGzY0feCUaxhtZmkFe3t7+Pv7Z/blBtFcp0b8fzkPfTk7O+Px48d6HWtjYwMbGxuD4iMiInWK6jLFRIyAvINM0cCvOSN17dq1ERUVhcGDByM6Ohp16tQxT+CU52RqQkVTcXNzg1QqxaNHj9S2x8XFwd3d3UxRERGRPlS7y1avVt+nWWIPAC4uLti4cSP279+vbL1PSUlBWFiYyWKmvCdbJ0LW1tbw8/NDSEiI2vaQkBC1rjIiIsqeFNVlXl7a+2QyIDxcvcReIpGodWN89913CAwMxJgxY9SGLRBllUx3jWWVpKQktXL86OhoREVFwdXVFV5eXhgzZgx69eoFf39/1K5dG8uWLcO9e/fU5qIgIqLsLb3FW/v2Bd6+lXebaXaXCSHw5s0bAMAvv/yCw4cPY8OGDShbtqxpg6dczeyLroaGhuocENenTx+s/n9b6uLFizFr1iw8fPgQ3t7e+OWXX3RO6mgMXHSViChraC7eWqQI8P/lKpV0LeC6c+dO9OvXD8+ePYODgwMWLlyIPn36GDRWlPIefb+/zZ4IZXdMhIiIsk5srLyEvnRp4PJloFkz7WM2bwbc3NQry+7fv4+ePXsiNDQUAPDZZ59hyZIl/L1M6TLq6vNERESZoTojdcWKumek7tpVezbqokWLYv/+/fjhhx8glUrxzz//aBXSEGUGW4QywBYhIiLjUe0u00VXV9nx48dx//59dOrUySQxUs7EFiEiIsr2VEvsN2zQ3q85GzUgn3NINQkKDQ1FixYt2EJEmcJEiIiIzErRXVa3ru6usl27gLt335fYq5LJZBg8eDD27t2LKlWqYO/evSaJmXIPJkJERJQtKGajlkrlzxVFYXPmACVK6F7FXiqVYvv27ahSpQqePHmCFi1a4Ouvv0ZycrLJ46eciYkQERFlG5qLt86bp75f14zUFSpUwMmTJ5ULf//8888ICAjAjRs3TBY35VxMhIiIKFtRrSyrUkV7v0wGHD6s3lVma2uLBQsW4J9//oGrqysiIiJQtWpVtQl7iXQx+8zSRERE6UlvRuqePeX/1ZyNum3btjh37hx69uwJd3d3fPLJJ6YNmHIcls9ngOXzRETmpVpiL5HIl+NQpavEXiaT4e3bt3BwcAAAvHjxArdu3YK/v7/pAiezYvk8ERHlCqrjhjZu1N4vkwFRUeqLt0qlUmUSJITAwIEDUbt2bcyZMwdpms1LlKcxESIiomxPMW4oIEB3iX2vXvKKMl2VZYpV61NTU/HNN9+gZcuWePz4sWkCp2yPiRAREeUYmiX2FhZA/vxAfPz7cUSalWW2trb466+/8Ntvv8HW1hb//fcfqlSpgn379pnlPVD2wkSIiIhyFNWusrt3gbVrtY/RnJFaIpFg0KBBOHPmDLy9vREXF4dmzZph7NixnHMoj2MiREREOY5qib2vr+7usshI7dmoK1WqhFOnTmHo0KEAgI0bN+LVq1cmiZmyJ1aNZYBVY0RE2d+HFm/VLLFX2L59O9zc3FC3bl0A8kHVEsV01pTj6fv9zUQoA0yEiIhyhthYeXeYpSVQv756mb2FhbwbTbXEXtPKlSsRFhaGhQsXwsnJyfgBk1GxfJ6IiPIURXdZSor2XENpacCvvwIxMboXb42Pj8eXX36JtWvXolq1aoiIiDBZ3GReTISIiChXUcxGrWnOHMDLS3eJvYuLC3bv3o1ixYrh5s2bqF27NubOncs5h/IAJkJERJSraJbYS6VA8+bqx+havLVu3bo4d+4cOnbsiJSUFHz11Vdo1aoV5xzK5ZgIERFRrqNaYn/nDjB2rPYxMhlw7Zr6jNT58+fH33//jaVLl8LW1hZ79+5FtWrV8PLlS1O/BTIRLrpKRES5kqen+uBoXYu3Dh4MREfLt7+vLpNg8ODBqFu3Lrp164b27dtz8HQuxqqxDLBqjIgod1AtsbewkHeZpaSoH6O5gOubN29gZWUFS0t5u8GtW7cAgKva5wCsGiMiIlKhOSP18uXax2jOSG1nZ6dMgpKTk9GlSxdUrVoVf/75p2mCJqNjIkRERHmG6ozUjRvrri578kR3iX1CQgLs7e3x8uVL9OzZE3379kVSUpJJ4ibjYSJERER5kmZ1mUKXLrpL7AsWLIhDhw5hypQpsLCwwJo1a1CtWjVERkaaNnDKUhwjlAGOESIiyt0UM1K/egW0bq2+T3PMkEJYWBh69OiB2NhYWFlZ4aeffsLo0aO5REc2wjFCREREelB0l9nba++TyYAdO9RL7AGgfv36iIqKQvv27ZGSkoKNGzciNTXVpHFT1mCLUAbYIkRElDfExsq7wzRL7BWNPEJoL+AqhMBvv/2GoKAglCpVSrmNLUPmxxYhIiIiA+iakbpKFXkCpGgy0JyRWiKRYMiQIcokCAAmTpyI8ePHI0WzNp+yJbYIZYAtQkREeYtizFDp0sD16/LqMk2bNwNubvJ1zVTHD125cgWVKlWCEAI1a9bEhg0bULJkSdMFT0psESIiIsoE1RL7smV1l9h37aq7sqxChQrYvHkzXFxccPLkSfj6+mLjxo0mi50Mx0SIiIgoHemV2KfXVQYAnTp1QlRUFOrUqYPExER0794d/fv3x6tXr0wXOOmNiRAREdEHqM5IvWmT9n6ZDLhxQ31b8eLFERoaismTJ0MikWDVqlVo0KAB0jRHYpPZMREiIiLKgKK7LCBAd1fZ/PnAlSvqJfaWlpaYNm0aDh48iKJFi2LUqFGw0PViMisOls4AB0sTEZEq1cVbVUvrFTRL7AHg5cuXaivYR0REwMvLCwULFjRR1HkPB0sTEREZgWpX2b17wNat6vt1jRtSTYKePn2KNm3awMfHBwcPHjRN0JQuJkJEREQGUq0sc3bW3i+TAXv26F689fnz53BxccHDhw/RpEkTTJgwgXMOmRETISIioo9QpozucUODBukusS9btixOnz6NgQMHQgiB4OBg1K9fH9HR0aYLmpSYCBEREX0EzRJ7zdU1dHWVOTg4YNmyZdi8eTOcnZ1x4sQJ+Pr6YpOusjQyKiZCREREH0l13JCu+RNlMiA0VHvx1s6dO+PcuXMICAhAYmIitm3bZsqwCawayxCrxoiIyBDpLd5qZQWkpupevDU1NRW//PILBg0aBOf/Dzri4q0fh1VjREREZqBr8daSJYGUlPRnpLa0tMQ333yjlgR99tlnmD9/PtheYVxMhIiIiLKYalfZnTvyxEiTTCZf3FWXXbt2YePGjRg1ahTatWuHp0+fGjPcPI2JEBERkRGoltiXL6+7smzrVuDAAe0S+1atWmH+/PmwtrbGzp074ePjg0OHDpkk7ryGiRAREZGRpVdZtmAB0KSJdom9RCLBiBEjcOrUKZQvXx4PHjxA48aNMWnSJM45lMU4WDoDHCxNRERZJTZW3h1mbw/UqqW9NMfdu/KkSdWrV68wevRorFixAgDQtWtXbNRVmkZqOFiaiIgom1F0l716pZ4EAfIB1F99Bdy+rV5i7+DggOXLl2PTpk0oUKAARowYYfK4czO2CGWALUJERJTV0iuxV6Vr8dakpCQ4Ojoqn4eFhcHPzw8ODg5GjDZnYosQERFRNqWrxL5PH/VjdM1IrZoEXb58Gc2bN4e/vz/Onz9vgqhzJyZCREREZqBZYq+ZCAHyEvvz57VnpAaA+Ph4uLi44OrVq6hRowYWLVrEOYcygV1jGWDXGBERmUJ63WUFCgAvXsi3a3aXPX36FP369cO///4LAGjbti1+//13FChQwMTRZz/sGiMiIspBNLvLLCwAZ2fg2bP3yZFmd5mbmxt27NiBX3/9FdbW1tixYwd8fHxw+PBh87yJHIiJEBERUTah2l129y6wdq32MTIZcPz4+64yiUSCkSNH4uTJkyhXrhzu37+PAwcOmDz2nIpdYxlg1xgREZlLet1lEonuxVtfvXqFBQsW4Ouvv4alpSWAvLt4K7vGVMyZMweVKlWCt7c31q1bZ+5wiIiI9KLZXaaQ3uKtDg4OGDdunDIJevfuHZo0aYItW7aYMOqcJdcnQhcuXMD69esRERGBM2fOYMmSJYiPjzd3WERERHpR7S5Lr6ssvcVbFy9ejIMHD6JTp04YPHgwXr9+bdRYc6JcnwhduXIFAQEBsLW1ha2tLXx9fbF3715zh0VERKQ3xYzUDRvqXrz1wgXdJfbDhw/H+PHjIZFIsGzZMlSvXh0XLlwwWdw5gdkTobCwMLRp0wYeHh6QSCTYvn271jGLFy9GyZIlYWtrCz8/Pxw5ckTv83t7e+PQoUOIj49HfHw8Dh48iPv372fhOyAiIjKN9LrKRo4EvLyARo3UF3C1srLCjBkzEBISgiJFiuDy5cuoXr06Fi9ezDmH/s/sidCrV6/g4+ODhQsX6ty/adMmjB49GhMnTsTZs2dRr149tGjRAvfu3VMe4+fnB29vb63HgwcPULFiRYwcORKNGjVChw4dUL16dWXfKRERUU6j2lUWHQ18+aV8e3rjhgCgcePGOHfuHFq2bIl3795h2LBh+O6770wee3aUrarGJBIJtm3bhvbt2yu31axZE9WqVcOSJUuU2ypUqID27dsjODjY4Gt8/vnn6NChA1q1aqVz/7t37/Du3Tvl88TERBQrVoxVY0RElC0dOiRvCdK0aRNQsCBQpsz7Fe2FEJg/fz5mzJiBEydOoGTJkqYN1oRyRdVYcnIyIiIiEBQUpLY9KCgI4eHhep8nLi4OAHDt2jWcOnUKzZo1S/fY4OBgODs7Kx/FihXLXPBEREQmUKaM7nFDXbtqd5VJJBKMGjUKt27dUkuC9u3bh9TUVBNFnL1k60To6dOnkMlkcHd3V9vu7u6OR48e6X2e9u3bo2LFiujZsydWrVr1wa6x8ePHIyEhQfmIiYnJdPxERETGpjluSHPKoIwWb/3vv//QrFkzNGzYUG3YSV6RIwbLaE4EZejkUIa0HtnY2MDGxkbv44mIiMxtwACgWTN5GX1cnLw1SJVMBly9Kv/3jRvq3WWvXr2Ck5MTjh49Cl9fX6xYsQIdO3Y07Rswo2zdIuTm5gapVKrV+hMXF6fVSkRERJSXKUrsAwJ0d5X17y/vJtPsLuvYsSOioqJQo0YNvHjxAp9++im++OILvHnzxqTxm0u2ToSsra3h5+eHkJAQte0hISEICAgwU1RERETZl67FW21tgZiY9BdvLVWqFI4ePYpvv/0WALB06VJUr14dFy9eNMM7MC2zJ0JJSUmIiopCVFQUACA6OhpRUVHKfsoxY8ZgxYoV+P3333HlyhV8+eWXuHfvHoYMGWLGqImIiLIvzcVbV63SPkZzRmorKyvMnDkT+/btg7u7Oy5duoRz586ZLGZzMXv5fGhoKBo2bKi1vU+fPli9ejUA+YSKs2bNwsOHD+Ht7Y1ffvkF9evXN0l8XHSViIhyuvQWb127Vt6CpDpmCJAPQdmwYQNGjRql3JbTFm/V9/vb7IlQdsdEiIiIcoOVK+XdYTKZ9j7NVew1PXnyBG3atMHs2bNRr1494waaRXLFPEJERESUNVS7y/btU9+nq8Re1XfffYeTJ0+iQYMGmDZtGmS6sqkciokQERFRHqGoLNM1nZ5MJp+NWtfirbNmzUKfPn2QlpaGKVOmoFGjRrlmnj0mQkRERHlMerNRf/217sVbnZycsHr1aqxbtw6Ojo4ICwuDj48Ptm3bZtrAjYCJEBERUR6jWWIvlQI1asj//aHFW3v06IGoqChUr14dL168QMeOHbFmzRrTBp/FOFg6AxwsTUREuVVsrLyEvnRp+YzTuhZv3bwZcHNTryxLTk7GpEmTsHXrVkRGRmbL70dWjWURJkJERJQXpFdir6CrsuzVq1dwcHAAIC+v37NnD1q0aJEtyuxZNUZERER60+wu06Srq0yRBAHyOf9atWqFzp0748WLF0aONuswESIiIiIA6iX2mzZp75fJ5F1ouqSlpcHKygpbtmyBj48Pjh49atRYswoTISIiIlLKaPHWH38Ezp/XLrEfMWIEwsPDUbp0acTExCAwMDBHzDnERIiIiIi0aHaVSSTy+YcOHAB8fLRL7AHA398fkZGR6Nmzp9qcQ7HpzdSYDTARIiIiIp1Uu8ru3QN27VLfr2vckJOTE/744w+sXbsWjo6OOHbsmHIh9exIx9ySRERERHKenu/L5nWND5LJgKNHgbp15fsVZfa9evVCrVq1EB4ejoCAAOXx2W3xVrYIERERkV7Sm5G6b1/dM1KXKVMGffr0UR536dIl1K5dG5cvXzZNwHpgIkRERER60TUjtZcX8O7dh2ekVhg1ahROnjwJf39/LF++HNlhKkMmQkRERKQ31XFDd+4AK1ZoHyOTAcePa1eWrVu3Dk2bNsWbN28waNAgdO3aFfHx8SaKXDcmQkRERGQQRYm9pydQoYLu7rKuXbW7ygoXLoy9e/di1qxZsLS0xF9//YWpU6eaMnQtTISIiIgo09KbkTq9rjILCwt88803CA8PR9OmTTFt2jTTBqyBa41lgGuNERERZUyxgOvjx0C3btr7Dx2StyKZir7f3yyfJyIioo+mKLOPjZV3lWku3rptG1CiBBAdrb6Svbmxa4yIiIiyjK4ZqQFg/nygZEndM1KbExMhIiIiylKaM1IvXKi+/0Ml9qbGrjEiIiLKcqozUlesqL1fJpMnSp6e5u0qY4sQERERGVV6M1L37m3+rjImQkRERGRU6Y0bUjBnVxkTISIiIjI61XFDGzdq75fJ5OX3psYxQkRERGQSHyqxl0qB0qVNHxNbhIiIiMikdC3e+ttv5hkwzRYhIiIiMrkBA4BmzeTdYaVLm69qjIkQERERmYVqib25sGuMiIiI8iwmQkRERJRnMREiIiKiPIuJEBEREeVZTISIiIgoz2IiRERERHkWEyEiIiLKs5gIERERUZ7FRIiIiIjyLCZCRERElGcxESIiIqI8i2uNZUAIAQBITEw0cyRERESkL8X3tuJ7PD1MhDLw8uVLAECxYsXMHAkREREZ6uXLl3B2dk53v0RklCrlcWlpaXjw4AGcnJwgkUgyfZ7ExEQUK1YMMTExyJcvXxZGSJp4r02H99p0eK9Nh/fadIx5r4UQePnyJTw8PGBhkf5IILYIZcDCwgKenp5Zdr58+fLxfywT4b02Hd5r0+G9Nh3ea9Mx1r3+UEuQAgdLExERUZ7FRIiIiIjyLCZCJmJjY4MpU6bAxsbG3KHkerzXpsN7bTq816bDe2062eFec7A0ERER5VlsESIiIqI8i4kQERER5VlMhIiIiCjPYiJEREREeRYTIRNYvHgxSpYsCVtbW/j5+eHIkSPmDinHCw4ORvXq1eHk5IRChQqhffv2uHbtmtoxQghMnToVHh4esLOzQ4MGDXDp0iUzRZx7BAcHQyKRYPTo0cptvNdZ5/79++jZsycKFCgAe3t7+Pr6IiIiQrmf9zprpKamYtKkSShZsiTs7OxQqlQpTJs2DWlpacpjeK8zJywsDG3atIGHhwckEgm2b9+utl+f+/ru3TuMGDECbm5ucHBwQNu2bREbG2ucgAUZ1caNG4WVlZVYvny5uHz5shg1apRwcHAQd+/eNXdoOVqzZs3EqlWrxMWLF0VUVJRo1aqV8PLyEklJScpjZs6cKZycnMSWLVvEhQsXRNeuXUWRIkVEYmKiGSPP2U6dOiVKlCghqlSpIkaNGqXcznudNZ4/fy6KFy8u+vbtK06ePCmio6PF/v37xc2bN5XH8F5njR9++EEUKFBA/PvvvyI6Olr89ddfwtHRUcybN095DO915uzevVtMnDhRbNmyRQAQ27ZtU9uvz30dMmSIKFq0qAgJCRGRkZGiYcOGwsfHR6SmpmZ5vEyEjKxGjRpiyJAhatvKly8vxo0bZ6aIcqe4uDgBQBw+fFgIIURaWpooXLiwmDlzpvKYt2/fCmdnZ7F06VJzhZmjvXz5UpQpU0aEhISIwMBAZSLEe511vv32W1G3bt109/NeZ51WrVqJ/v37q23r2LGj6NmzpxCC9zqraCZC+tzX+Ph4YWVlJTZu3Kg85v79+8LCwkLs3bs3y2Nk15gRJScnIyIiAkFBQWrbg4KCEB4ebqaocqeEhAQAgKurKwAgOjoajx49Urv3NjY2CAwM5L3PpGHDhqFVq1Zo0qSJ2nbe66yzY8cO+Pv7o3PnzihUqBCqVq2K5cuXK/fzXmedunXr4sCBA7h+/ToA4Ny5czh69ChatmwJgPfaWPS5rxEREUhJSVE7xsPDA97e3ka591x01YiePn0KmUwGd3d3te3u7u549OiRmaLKfYQQGDNmDOrWrQtvb28AUN5fXff+7t27Jo8xp9u4cSMiIyNx+vRprX2811nn9u3bWLJkCcaMGYMJEybg1KlTGDlyJGxsbNC7d2/e6yz07bffIiEhAeXLl4dUKoVMJsOPP/6I7t27A+Dn2lj0ua+PHj2CtbU18ufPr3WMMb47mQiZgEQiUXsuhNDaRpk3fPhwnD9/HkePHtXax3v/8WJiYjBq1Cjs27cPtra26R7He/3x0tLS4O/vjxkzZgAAqlatikuXLmHJkiXo3bu38jje64+3adMmrFu3DuvXr0elSpUQFRWF0aNHw8PDA3369FEex3ttHJm5r8a69+waMyI3NzdIpVKtDDYuLk4rG6bMGTFiBHbs2IFDhw7B09NTub1w4cIAwHufBSIiIhAXFwc/Pz9YWlrC0tIShw8fxvz582Fpaam8n7zXH69IkSKoWLGi2rYKFSrg3r17APi5zkrffPMNxo0bh27duqFy5cro1asXvvzySwQHBwPgvTYWfe5r4cKFkZycjBcvXqR7TFZiImRE1tbW8PPzQ0hIiNr2kJAQBAQEmCmq3EEIgeHDh2Pr1q04ePAgSpYsqba/ZMmSKFy4sNq9T05OxuHDh3nvDdS4cWNcuHABUVFRyoe/vz969OiBqKgolCpVivc6i9SpU0drGojr16+jePHiAPi5zkqvX7+GhYX6V6BUKlWWz/NeG4c+99XPzw9WVlZqxzx8+BAXL140zr3P8uHXpEZRPr9y5Upx+fJlMXr0aOHg4CDu3Llj7tBytC+++EI4OzuL0NBQ8fDhQ+Xj9evXymNmzpwpnJ2dxdatW8WFCxdE9+7dWfqaRVSrxoTgvc4qp06dEpaWluLHH38UN27cEH/++aewt7cX69atUx7De501+vTpI4oWLaosn9+6datwc3MTY8eOVR7De505L1++FGfPnhVnz54VAMTcuXPF2bNnldPG6HNfhwwZIjw9PcX+/ftFZGSkaNSoEcvnc7JFixaJ4sWLC2tra1GtWjVliTdlHgCdj1WrVimPSUtLE1OmTBGFCxcWNjY2on79+uLChQvmCzoX0UyEeK+zzs6dO4W3t7ewsbER5cuXF8uWLVPbz3udNRITE8WoUaOEl5eXsLW1FaVKlRITJ04U7969Ux7De505hw4d0vn7uU+fPkII/e7rmzdvxPDhw4Wrq6uws7MTrVu3Fvfu3TNKvBIhhMj6diYiIiKi7I9jhIiIiCjPYiJEREREeRYTISIiIsqzmAgRERFRnsVEiIiIiPIsJkJERESUZzERIiIiojyLiRARZVqDBg0wevRoc4ehJITAoEGD4OrqColEgqioKHOHRETZHBMhIso19u7di9WrV+Pff//Fw4cP4e3tbe6QTKpEiRKYN2+eucMgylEszR0AEZEqmUwGiUSitSCmPm7duoUiRYrkikUxU1JSYGVlZe4wiHI9tggR5XANGjTAyJEjMXbsWLi6uqJw4cKYOnWqcv+dO3e0uoni4+MhkUgQGhoKAAgNDYVEIsF///2HqlWrws7ODo0aNUJcXBz27NmDChUqIF++fOjevTtev36tdv3U1FQMHz4cLi4uKFCgACZNmgTVlXuSk5MxduxYFC1aFA4ODqhZs6byugCwevVquLi44N9//0XFihVhY2ODu3fv6nyvhw8fRo0aNWBjY4MiRYpg3LhxSE1NBQD07dsXI0aMwL179yCRSFCiRAmd51Bcb/v27ShbtixsbW3RtGlTxMTEqB23ZMkSfPLJJ7C2tka5cuXwxx9/KPd99dVXaNOmjfL5vHnzIJFIsGvXLuW2cuXK4bffflM+X7VqFSpUqABbW1uUL18eixcv1voZbd68GQ0aNICtrS3WrVunM/6pU6fCy8sLNjY28PDwwMiRIwHIPwd3797Fl19+CYlEAolEonxNeHg46tevDzs7OxQrVgwjR47Eq1evlPtLlCiB6dOn47PPPoOjoyM8PDywYMECva5LlOMZZQUzIjKZwMBAkS9fPjF16lRx/fp1sWbNGiGRSMS+ffuEEEJER0cLAOLs2bPK17x48UIAEIcOHRJCvF8ksVatWuLo0aMiMjJSlC5dWgQGBoqgoCARGRkpwsLCRIECBcTMmTPVru3o6ChGjRolrl69KtatWyfs7e3VFgr97LPPREBAgAgLCxM3b94Us2fPFjY2NuL69etCCCFWrVolrKysREBAgDh27Ji4evWqSEpK0nqfsbGxwt7eXgwdOlRcuXJFbNu2Tbi5uYkpU6YIIYSIj48X06ZNE56enuLhw4ciLi5O5/1SXM/f31+Eh4eLM2fOiBo1aoiAgADlMVu3bhVWVlZi0aJF4tq1a+Lnn38WUqlUHDx4UAghxI4dO4Szs7OQyWRCCCHat28v3NzcxDfffCOEEOLhw4cCgLhy5YoQQohly5aJIkWKiC1btojbt2+LLVu2CFdXV7F69Wq1n1GJEiWUx9y/f18r9r/++kvky5dP7N69W9y9e1ecPHlSea+fPXsmPD09xbRp08TDhw/Fw4cPhRBCnD9/Xjg6OopffvlFXL9+XRw7dkxUrVpV9O3bV3ne4sWLCycnJxEcHCyuXbsm5s+fL6RSqfIz9KHrEuV0TISIcrjAwEBRt25dtW3Vq1cX3377rRDCsERo//79ymOCg4MFAHHr1i3ltsGDB4tmzZqpXbtChQoiLS1Nue3bb78VFSpUEEIIcfPmTSGRSLS+1Bs3bizGjx8vhJAnJgBEVFTUB9/nhAkTRLly5dSutWjRIuHo6KhMSH755RdRvHjxD55Hcb0TJ04ot125ckUAECdPnhRCCBEQECAGDhyo9rrOnTuLli1bCiHkSZeFhYU4c+aMSEtLEwUKFBDBwcGievXqQggh1q9fL9zd3ZWvLVasmFi/fr3a+aZPny5q164thHj/M5o3b94HY//5559F2bJlRXJyss79xYsXF7/88ovatl69eolBgwapbTty5IiwsLAQb968Ub6uefPmasd07dpVtGjRQq/rEuVk7BojygWqVKmi9rxIkSKIi4v7qPO4u7vD3t4epUqVUtumed5atWqpdcPUrl0bN27cgEwmQ2RkJIQQKFu2LBwdHZWPw4cP49atW8rXWFtba70HTVeuXEHt2rXVrlWnTh0kJSUhNjbWoPdpaWkJf39/5fPy5cvDxcUFV65cUV6rTp06aq+pU6eOcr+zszN8fX0RGhqKCxcuwMLCAoMHD8a5c+fw8uVLhIaGIjAwEADw5MkTxMTEYMCAAWr34IcfflC7BwDUYtKlc+fOePPmDUqVKoWBAwdi27Ztyq7B9ERERGD16tVq127WrBnS0tIQHR2tPK527dpqr6tdu7by/WbmukQ5BQdLE+UCmoNqJRIJ0tLSAEA56FiojNtJSUnJ8DwSieSD59VHWloapFIpIiIiIJVK1fY5Ojoq/21nZ6eW4OgihNA6RvGeMnqtLrpeo7pN17VUtzVo0AChoaGwtrZGYGAg8ufPj0qVKuHYsWMIDQ1VTiuguF/Lly9HzZo11c6peU8cHBw+GHOxYsVw7do1hISEYP/+/Rg6dChmz56Nw4cPpzuwOi0tDYMHD9Y5psfLy+uD11O838xclyinYCJElMsVLFgQAPDw4UNUrVoVALJ0fp0TJ05oPS9TpgykUimqVq0KmUyGuLg41KtX76OuU7FiRWzZskUtIQkPD4eTkxOKFi1q0LlSU1Nx5swZ1KhRAwBw7do1xMfHo3z58gCAChUq4OjRo+jdu7fyNeHh4ahQoYLyeYMGDbBy5UpYWlqiSZMmAIDAwEBs3LgR169fV7YIubu7o2jRorh9+zZ69OiR+Rvwf3Z2dmjbti3atm2LYcOGoXz58rhw4QKqVasGa2tryGQyteOrVauGS5cuoXTp0h88r66fo+J+ZHRdopyMiRBRLmdnZ4datWph5syZKFGiBJ4+fYpJkyZl2fljYmIwZswYDB48GJGRkViwYAF+/vlnAEDZsmXRo0cP9O7dGz///DOqVq2Kp0+f4uDBg6hcuTJatmyp93WGDh2KefPmYcSIERg+fDiuXbuGKVOmYMyYMQaX2ltZWWHEiBGYP38+rKysMHz4cNSqVUuZGH3zzTfo0qULqlWrhsaNG2Pnzp3YunUr9u/frzxH/fr18fLlS+zcuRM//PADAHly9Omnn6JgwYKoWLGi8tipU6di5MiRyJcvH1q0aIF3797hzJkzePHiBcaMGaN33KtXr4ZMJkPNmjVhb2+PP/74A3Z2dihevDgAefVXWFgYunXrBhsbG7i5ueHbb79FrVq1MGzYMAwcOBAODg64cuUKQkJC1CrDjh07hlmzZqF9+/YICQnBX3/9payCy+i6RDmaOQcoEdHHCwwMFKNGjVLb1q5dO9GnTx/l88uXL4tatWoJOzs74evrK/bt26dzsPSLFy+Ur1m1apVwdnZWO++UKVOEj4+P2rWHDh0qhgwZIvLlyyfy588vxo0bpzagOTk5WXz33XeiRIkSwsrKShQuXFh06NBBnD9/Pt3rpCc0NFRUr15dWFtbi8KFC4tvv/1WpKSkKPfrO1ja2dlZbNmyRZQqVUpYW1uLRo0aiTt37qgdt3jxYlGqVClhZWUlypYtK9auXat1Lj8/P1GwYEHl+3327JmQSCSiU6dOWsf++eefwtfXV1hbW4v8+fOL+vXri61btwohdA9o12Xbtm2iZs2aIl++fMLBwUHUqlVLbYD78ePHRZUqVYSNjY1Q/fV+6tQp0bRpU+Ho6CgcHBxElSpVxI8//qjcX7x4cfH999+LLl26CHt7e+Hu7q42cDuj6xLlZBIhVAYOEBHlcqtXr8bo0aMRHx9v7lCyjRIlSmD06NHZarkUIlNh1RgRERHlWUyEiIiIKM9i1xgRERHlWWwRIiIiojyLiRARERHlWUyEiIiIKM9iIkRERER5FhMhIiIiyrOYCBEREVGexUSIiIiI8iwmQkRERJRnMREiIiKiPOt/8G0EyD+fm+kAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(1:length(d), d, \"b.-\")\n", + "semilogy(1:length(d), (4/5).^(1:length(d)), \"k--\")\n", + "xlabel(\"number of power steps\")\n", + "ylabel(\"error in eigenvector\")\n", + "title(L\"convergence of power method for $\\lambda=1,2,3,4,5$\")\n", + "legend([\"error\", L\"(4/5)^n\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pros/cons of the power method\n", + "\n", + "* Our analysis shows that the power method can converge very slowly if $|\\lambda_2/\\lambda_1|$ is close to 1. And if two eigenvalues have *equal* magnitude, the method may not converge *at all*.\n", + "\n", + "* Also, it only gives us $x_1$. What if we want $x_2$, or in general a *few* of the biggest-|λ| eigenvectors?\n", + "\n", + "Still, the power method is the **starting point for many more sophisticated methods,** including the [Arnoldi method](https://en.wikipedia.org/wiki/Arnoldi_iteration) (which gives a few of the biggest eigenvectors) or the [QR algorithm](https://en.wikipedia.org/wiki/QR_algorithm) which gives *all* of the eigenvectors.\n", + "\n", + "And the power method *by itself* can still be a pretty good method if we know that one eigenvalue is bigger than all of the others, e.g. for Markov matrices. And because it is so simple, the power method is easy to apply in lots of different cases, especially since:\n", + "\n", + "* The power method only requires you to supply a \"black box\" that **multiplies matrix × vector** This is a *huge* advantage for problems where the matrix is *mostly zeros* (or has some other special structure), in which you can multiply **matrix × vector much more quickly than for a generic matrix**.\n", + "\n", + "An interesting application of the power method comes from how Markov matrices relate to the [Google PageRank](https://en.wikipedia.org/wiki/PageRank). Google actually runs this algorithm on a *huge* Markov matrix where rows/cols are *web pages*: the matrix is [*over a billion by billion entries*](https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/chapters/pagerank.pdf). But since most web pages only link to a few other pages, the matrix is mostly zeros, and you can multiply it by a random vector in a few billion operation, rather than a billion² operations. (They don't even store the whole matrix: you only store the nonzero entries of such a [sparse matrix](https://en.wikipedia.org/wiki/Sparse_matrix).)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting an eigenvalue from the eigenvector\n", + "\n", + "In the textbook method of solving eigenproblems, we first find the eigenvalues from the roots of the characteristic polynomial, and then we find the eigenvectors from $N(A - \\lambda I)$ for each eigenvalue.\n", + "\n", + "The power method, however, gives you an eigenvector first! How do you find the eigenvalue? And how do you find an *approximate* eigenvalue given the *approximate* eigenvector that you get from a *finite* number of iterations.\n", + "\n", + "For example, suppose that we do 30 iterations on the example above:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 0.751664028549221\n", + " -0.517065175988641\n", + " -0.14283935626318672\n", + " 0.38223656917816207\n", + " -0.03371817685193268" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = x\n", + "for i = 1:30\n", + " y = A*y\n", + " y = y / norm(y)\n", + "end\n", + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 3.7585009856494422\n", + " -2.585526794858033\n", + " -0.7147699284677411\n", + " 1.9109744679392595\n", + " -0.16898745218157352" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A*y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If $y$ was the *exact* eigenvector, we could just multiply $Ay$ and see how much each component increased: they would all increase (or decrease) by the same factor λ.\n", + "\n", + "But, for an approximate eigenvector, each component of $Ay$ will increase by a slightly different amount:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5-element Vector{Float64}:\n", + " 5.000240590072783\n", + " 5.000388567871437\n", + " 5.0040125296473015\n", + " 4.999454845589477\n", + " 5.011761250427376" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(A*y) ./ y # divide each element of Ay elementwise (./ in Julia) by the corresponding element of y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These are all pretty close to the true eigenvalue λ=5, but don't quite agree. Clearly, we need some kind of average?\n", + "\n", + "A problem with dividing things elementwise is that some of the eigenvector elements might be zero (or nearly zero), and then our estimate will go crazy. Instead, we need to take the average in some other way.\n", + "\n", + "Instead, the most common approach is to use the [Rayleigh quotient](https://en.wikipedia.org/wiki/Rayleigh_quotient):\n", + "\n", + "$$\n", + "\\lambda \\approx \\frac{y^T A y}{y^T y}\n", + "$$\n", + "\n", + "where $y$ is our estimated eigenvector. If we have an exact eigenvector, so that $Ay = \\lambda y$, then the Rayleigh quotient will gives us exactly $\\lambda$. Otherwise, it is a kind of weighted-average (weighted by the components $y_k^2$), and is a reasonable approximation:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5.000255409055291" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(y'A*y) / (y'y) # a Rayleigh quotient in Julia" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Clearly, this is a pretty good estimate for the true eigenvalue 5. Let's see how it converges by plotting the error as a function of the number of power iterations:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9gElEQVR4nO3dd1xT1/sH8E8IewgqLkSGdQso4kTrHlXraK217lW31krrqNVqXfjVOuqelaptHXXUrVRxbxTFrXViFVyIOBjh/P7ILykhIAnk3jA+79crL8u9J/ccLqk83uc85yiEEAJERERE+ZCFuQdAREREZC4MhIiIiCjfYiBERERE+RYDISIiIsq3GAgRERFRvsVAiIiIiPItBkJERESUbzEQIiIionyLgRARERHlWwyEiIiIKN9iIERERET5FgMholxk/fr1qFy5Muzs7KBQKBAREWHuIeV5x48fx8SJExEbG6t3buLEiVAoFHj69KmkY9D0Y4h3797B0tISTk5OGDZsmFH9mOPzlZ3xZtWrV68watQoNG/eHEWKFIFCocDEiROzdK0DBw6gT58+qFChAhwcHFCyZEm0a9cO4eHhRl8rIiICrVu3hoeHB+zs7FCoUCHUqVMHa9euzdLYUluxYgUUCgUcHR2z9P6DBw9CoVCk+zp58mS2x2dODISIcoknT56ge/fu+OCDD7Bnzx6cOHEC5cqVM/ew8rzjx4/jxx9/TDcQyokUCgUOHDiAmjVrYsGCBbhx44ZB7zPX5yur482OZ8+eYdmyZUhISED79u2zda3Fixfj7t27GD58OHbt2oWff/4ZMTExqF27Ng4cOGDUtWJjY1GqVClMmzYNu3btwurVq+Hl5YXu3btjypQpWR7jw4cP8e2338LNzS3L19CYNm0aTpw4ofPy8fHJ9nXNydLcAyDKyJs3b2Bvb2/uYeQYN27cQFJSErp164YGDRqYeziy4GfAeDY2Nqhfvz5GjRqFAwcOIDw83KCARqrPV2Y/w6yONzs8PT3x4sUL7dO8FStWZPlaCxcuRNGiRXWOffTRRyhTpgymTZuGxo0bG3ythg0bomHDhjrHPv74Y9y5cwfLli3DuHHjsjTGgQMHon79+ihUqBD+/PPPLF1Do2zZsqhdu3a2rpHT8IlQHnDt2jV07twZxYoVg42NDTw8PNCjRw8kJCRo2xw9ehRNmjSBk5MT7O3tERgYiJ07d+pcR/P4/fLly+jcuTOcnZ1RrFgx9OnTBy9fvgQAbN26FQqFAvv379cbx+LFi6FQKHDx4kXtsZs3b6JLly4oWrQobGxsULFiRSxcuFDvvZq+z507h88++wwFCxbEBx98AAD466+/4OfnBxsbG5QuXRo///xzhqkCQ/oz5Ps09v4a+n1mJLOfT69evVCvXj0AQKdOnaBQKPT+wkzvezx//jw+/fRTFChQAM7OzujWrRuePHliVN8AcPnyZSgUCmzcuFF7LDw8HAqFApUrV9Zp27ZtWwQEBBh9b973GXjf93jx4kV07NgRzs7OKFSoEIKCgpCcnIzr16/jo48+gpOTE7y8vDBjxgy9a2Q2tokTJ2LkyJEAAG9vb20q4ODBgzrXiY6OzvSzZMh9BoCdO3eiatWqsLGxgbe3N3766acM78H7VKhQAQAMSm9l9vkydOzG/gyzOt7s0vwcTSFtEAQAjo6OqFSpEh48eGCSPlxdXWFpmbXnFmvXrsWhQ4ewaNEik4wlTxKUq0VERAhHR0fh5eUllixZIvbv3y/Wrl0rPv/8cxEXFyeEEOLgwYPCyspKBAQEiPXr14utW7eK5s2bC4VCIdatW6e91oQJEwQAUb58efHDDz+I0NBQMXv2bGFjYyN69+4thBAiKSlJFC1aVHTt2lVvLDVr1hTVqlXTfn358mXh7OwsfH19xerVq8W+ffvEN998IywsLMTEiRN13qvp29PTU4wePVqEhoaKrVu3it27dwsLCwvRsGFDsWXLFrFx40ZRq1Yt4eXlJdJ+fA3tz5Dv05j7a8z3mR5Dfj63bt0SCxcuFADEtGnTxIkTJ8Tly5czvGbq+zly5Eixd+9eMXv2bOHg4CD8/f1FYmKiwX1rlChRQvTv31/79fTp04WdnZ0AIB4+fCiEUH8+ChQoIEaNGmWyz0Bm32P58uXF5MmTRWhoqBg1apQAIIYOHSoqVKgg5s2bJ0JDQ0Xv3r0FALFp0ybt+w0Z24MHD8SwYcMEALF582Zx4sQJceLECfHy5Uu9Mbzvs2Toff7777+FUqkU9erVE5s3bxYbN24UNWrUEB4eHnqf98wMGjRIABDNmzfPtO37Pl/GfEaM/RlmZbwpKSkiKSnJoJchnjx5IgCICRMmGNTeELGxscLZ2Vl88sknWXq/SqUSSUlJIiYmRixcuFBYWlqKJUuWGH2d6OhoUbhwYbFw4UIhhBA9e/YUDg4OWRpTWFiYACCKFi0qlEqlcHJyEs2bNxdHjhzJ0vVyEgZCuVzjxo2Fi4uLiImJybBN7dq1RdGiRcWrV6+0x5KTk4WPj49wd3cXKSkpQoj//hKbMWOGzvsHDx4sbG1tte2CgoKEnZ2diI2N1ba5cuWKACDmz5+vPdaiRQvh7u6u/aWhMXToUGFrayueP3+uPabp+4cfftBpW6NGDVGqVCmRkJCgPfbq1StRuHBhvV8MhvZn6PcphGH315jvMz2G/nw0fxFt3LjxvddL/T2OGDFC5/hvv/0mAIi1a9ca1bcQQnTr1k2ULl1a+3XTpk1Fv379RMGCBcWvv/4qhBDi2LFjAoDYt2+f0fcmo89AZt/jrFmzdI5XrVpVG7hoJCUliSJFiohPP/1Ue8zQsc2cOVMAEHfu3MlwDJl9lgy9z7Vq1RJubm7i7du32nZxcXGiUKFCRgVCe/fuFQBEwYIFRZEiRQx6T0afL2M+I8b+DLMyXs04DXml9zNLS4pAqGvXrsLS0lKcPXs2S+8fMGCA9nuwtrYWixYtytJ1OnToIAIDA7U/o+wEQufOnRPDhw8XW7ZsEYcPHxa//PKLqFixolAqlWLPnj1ZumZOwdRYLvbmzRscOnQIn3/+OYoUKZJum9evX+PUqVP47LPPdKoFlEolunfvjqioKFy/fl3nPW3bttX52s/PD+/evUNMTAwAoE+fPnj79i3Wr1+vbbNq1SrY2NigS5cuANSVIPv378cnn3wCe3t7JCcna1+tWrXCu3fv0q006NChg87Yz549i/bt28Pa2lp73NHREW3atNF5X1b6y+z7NOT+ZvX7TP09GvvzMUbXrl11vv78889haWmJsLAwo/tu0qQJbt++jTt37uDdu3c4evQoPvroIzRq1AihoaEAgL///hs2NjaoV6+eST4Dhvj44491vq5YsSIUCgVatmypPWZpaYkyZcrg3r17ALL/c0vrfZ8lQ+/z69evcebMGXz66aewtbXVtnNyctL7vL9PbGws+vTpg3bt2mHw4MF48uQJ/v33X4Pfn1pWP5/G/AyNHW9AQADOnDlj0MsUk4ONNX78ePz222+YM2eOTorYGGPHjsWZM2ewc+dO9OnTB0OHDjU6Rbpp0yZs374dy5cvN0ka0N/fH3PnzkX79u3x4Ycfonfv3jh+/DhKlCiBUaNGZfv65sTJ0rnYixcvoFKp4O7u/t42QgiUKFFC75zmL4lnz57pHC9cuLDO1zY2NgCAt2/fAgAqV66MGjVqYNWqVejfvz9UKhXWrl2Ldu3aoVChQtprJicnY/78+Zg/f366Y0uv5Dj1ODVjL1asmF67tMey0l9m36ch9zer36dGVn4+xihevLjO15aWlihcuDCePXtmdN9NmzYFoA52vL29kZSUhMaNGyM6OhqTJ0/Wnqtbty7s7Ozw8OHDbH8GDKH5zGlYW1vD3t5eJ5jQHI+Li9N+X9n5uaX1vs9SUlKSQffZ0dERKSkpej8zQP/n+D5DhgxBUlISli9fjsOHDwNQz7vJSlCQ1c+nMT9DY8fr6OiIqlWrGnTtrM6ryaoff/wRU6ZMwdSpUzF06NAsX8fDwwMeHh4AgFatWgEAvvvuO/Ts2TPDf5SlFh8fjyFDhmDYsGFwc3PTVjwmJiYCUAefVlZWcHBwyPIYAcDFxQUff/wxlixZgrdv38LOzi5b1zMXBkK5WKFChaBUKhEVFZVhm4IFC8LCwgKPHj3SO6f5V5erq6vRfffu3RuDBw/G1atXcfv2bTx69Ai9e/fW6Vfzr8YhQ4akew1vb2+9Y6n/5VKwYEEoFApER0frtXv8+LHO11nt730Mvb/Z6Veqn4/G48ePUbJkSe3XycnJePbsGQoXLmx03+7u7ihXrhz+/vtveHl5oXr16nBxcUGTJk0wePBgnDp1CidPnsSPP/6o/d6y+xmQihSfl/f1Zch91nze0362Af3Pe0b+/PNP/P7779i+fTuKFCmCatWqAVAHFppfqFKMPS1Df4ZZGe+hQ4fQqFEjg65/584deHl5GdQ2u3788UdMnDgREydOxNixY0167Zo1a2LJkiW4ffu2QYHQ06dPER0djVmzZmHWrFl65wsWLIh27dph69at2R6bEAKAPP/fSoWBUC5mZ2eHBg0aYOPGjZg6dWq6fyE5ODigVq1a2Lx5M3766SdtxJ6SkoK1a9dqf7kZq3PnzggKCkJISAhu376NkiVLonnz5trz9vb2aNSoEc6fPw8/Pz+d1JahHBwcUL16dWzduhU//fST9hrx8fHYsWOHTltT9JeWIfc3u/1K9fPR+O2333Qez2/YsAHJyclo2LBhlvpu2rQpNmzYgFKlSqF169YAgHLlysHDwwM//PADkpKStE+OpPiZmIoxY0v7pNBYht5nhUKBmjVrYvPmzZg5c6b2idarV6+wffv2TPt5/PgxBg4ciP79+2vThd7e3nBxccH58+clHXtWZHW8mtSYIeRKjU2ePBkTJ07EuHHjMGHCBJNfPywsDBYWFihdurRB7YsXL46wsDC949OnT8ehQ4ewe/fubP0DS+PFixfYsWMHqlatqvcENjdhIJTLzZ49G/Xq1UOtWrUwZswYlClTBtHR0di2bRuWLl0KJycnBAcHo1mzZmjUqBG+/fZbWFtbY9GiRbh06RL++OOPLEXyLi4u+OSTTxASEoLY2Fh8++23sLDQnXL2888/o169evjwww8xaNAgeHl54dWrV7h16xa2b99u0GJjkyZNQuvWrdGiRQsMHz4cKpUKM2fOhKOjI54/f27y/tIy5P5mt18pfj4amzdvhqWlJZo1a4bLly9j/PjxqFKlCj7//PMs9d2kSRMsWrQIT58+xdy5c3WOr1q1CgULFtQJvKT4mZiKoWPz9fXVtu/ZsyesrKxQvnx5ODk5GdyXofd58uTJ+Oijj9CsWTN88803UKlU+N///gcHBwe9z3ta/fr1Q8GCBTF79myd4/7+/tkqSZfq85nV8To5OaF69epZ6jO13bt34/Xr13j16hUA4MqVK9o1dlq1aqWz9pFCoUCDBg30lk0AgFmzZuGHH37ARx99hNatW+vNLUu75s77rtW/f38UKFAANWvWRLFixfD06VNs3LgR69evx8iRI/WeBmV0LVtb23SX1wgJCYFSqUz33PvGBQBdunSBh4cHqlevDldXV9y8eROzZs1CdHQ0QkJC0n1PrmHGidpkIleuXBEdO3YUhQsXFtbW1sLDw0P06tVLvHv3TtvmyJEjonHjxsLBwUHY2dmJ2rVri+3bt+tcR1Px8eTJE53jq1atSrcCY9++fdrKhhs3bqQ7tjt37og+ffqIkiVLCisrK1GkSBERGBgopkyZYlDfQgixZcsW4evrq/3epk+fLr766itRsGDBLPVn7PdpyP019PvMiCE/n6xUjYWHh4s2bdoIR0dH4eTkJDp37iyio6ON7lvjxYsXwsLCQjg4OGhL8IX4rxotdVWWhik+A+/7HtO2z6gypkGDBqJy5cpZGtt3330n3NzchIWFhQAgwsLC3juG9D5Lht7nbdu2CT8/P53Pu6afjCxfvlwolUpx4sQJvXNBQUFCoVBol3vIyPs+X4aO3dCfoSnGm12enp4GVZu9evVKABBffPFFutdp0KDBeyvXUsvsWr/88ov48MMPhaurq7C0tBQuLi6iQYMGYs2aNXptM7tWejL6f8OQawUHB4uqVasKZ2dnoVQqRZEiRcQnn3wiTp8+bXD/OZVCiP9P8BHlEklJSahatSpKliyJffv2mXs4OdLEiRPx448/4smTJyZ5BE6UX+3atQsff/wxLly4oH06yGvlLUyNUY7Xt29fNGvWDCVKlMDjx4+xZMkSXL16FT///LO5h0ZEeVxYWBi++OILkwQI+eFauRGfCFGO9/nnn+P48eN48uQJrKysUK1aNYwdOxYfffSRuYeWY/GJEBGRYRgIERERUb7FlaWJiIgo32IgRERERPkWAyEiIiLKt1g1lomUlBT8+++/cHJyytVLiBMREeUnQgi8evUKbm5uegv+psZAKBP//vsvSpUqZe5hEBERURY8ePDgvZtnMxDKhGYZ/QcPHqBAgQJmHg0REREZIi4uDqVKlcp0OxwGQpnQpMMKFCjAQIiIiCiXyWxaCydLExERUb7FQIiIiIjyLQZCRERElG9xjhAREZFEVCoVkpKSzD2MPMnKygpKpTLb12EgREREZGJCCDx+/BixsbHmHkqe5uLiguLFi2drnT8GQkRERCamCYKKFi0Ke3t7LshrYkIIvHnzBjExMQCAEiVKZPlaDIRMSAjBDzsRUT6nUqm0QVDhwoXNPZw8y87ODgAQExODokWLZjlNxsnSJiaEMPcQiIjIjDRzguzt7c08krxPc4+zMw+LgZAJaZ4GMRgiIiJmCKRninvM1JiJ8YNPRESUe/CJEBEREeVbDISIiIgo32IgREREREYTQiA5OVnveGJiYpaul9X3ZRcDITNatGgRJk6cyFVHiYgoXVFRQFiY+k85CCEwY8YMlC5dGnZ2dqhSpQr+/PNPAMDBgwehUCiwd+9eVK9eHTY2Njhy5AgaNmyIoUOHIigoCK6urmjWrBkA4NChQ6hZsyZsbGxQokQJjBkzRidwyuh9cuNkaTMQQuDhw4f45ptv8O7dO+zatQtr1qxB+fLlzT00IiKSgBDAmzfGvefXX4Fhw4CUFMDCApg/H+jZ07hr2NsDxtTwjBs3Dps3b8bixYtRtmxZHD58GN26dUORIkW0bUaNGoWffvoJpUuXhouLy/+P9VcMGjQIx44d0/6Oa9WqFXr16oXVq1fj2rVr6NevH2xtbTFx4sRU36Pu+8xC0Hu9fPlSABAvX740+bV///134eLiIgAIOzs7sXDhQpGSkmLyfoiISD5v374VV65cEW/fvtUei48XQh0OyfuKjzd83PHx8cLW1lYcP35c53jfvn1F586dRVhYmAAgtm7dqnO+QYMGomrVqjrHxo4dK8qXL6/zO23hwoXC0dFRqFSqDN9nrPTutYahv7+ZGjOjzp07IzIyEk2aNMHbt28xZMgQtGrVCo8ePTL30IiIKJ+5cuUK3r17h2bNmsHR0VH7Wr16Nf755x9tu+rVq+u9N+2xq1evok6dOjpLytStWxfx8fGISpXnS+9acmNqzMzc3d2xb98+LFiwAKNHj8aePXtQrVo13Lx5E46OjuYeHhERmYC9PRAfb3j7hw+BihXVaTENpRK4cgUoWdK4fg2V8v+d7dy5EyXTdGJjY6MNhhwcHPTem/aYSGfLKfH/qa/Ux9O7ltwYCOUAFhYW+Oqrr9C0aVN069YNn376KYMgIqI8RKEAjPmdX64csGwZMGAAoFKpg6ClS9XHpVKpUiXY2Njg/v37aNCggd751E+FDLnWpk2bdAKi48ePw8nJSS/IMjcGQjlIpUqVcPLkSVhY/JexjIyMxLNnz9CwYUPzDYyIiGTXty/QogVw6xZQpgzg7i5tf05OTvj2228xYsQIpKSkoF69eoiLi8Px48fh6OgIT09Pg681ePBgzJ07F8OGDcPQoUNx/fp1TJgwAUFBQTq/43ICBkI5jLW1tfa/3717h65du+LSpUv45ptvMHnyZNja2ppxdEREJCd3d+kDoNQmT56MokWLIjg4GLdv34aLiwuqVauGsWPHalNnhihZsiR27dqFkSNHokqVKihUqBD69u2LcePGSTj6rFEITdKO0hUXFwdnZ2e8fPkSBQoUkLXv169fY8SIEVi+fDkAwMfHB2vXrkWVKlVkHQcRERnu3bt3uHPnDry9vfmPV4m9714b+vs7Zz2fIh0ODg5YtmwZtm3bhqJFi+LSpUuoUaMGZs6cCZVKZe7hERER5XoMhHKBNm3aIDIyEm3btkVSUhJGjRqFRo0a4fnz5+YeGhERUa7GQMhMjF02vWjRoti6dStWrlyprShzdnaWcIRERER5HydLm8HKlUD//v8tm75smbo6IDMKhQJ9+vRBw4YNoVQqoVQqAQBv377F69ev4erqKvHIiYiI8hY+EZJZVNR/QRCg/nPAAOM21CtdurROGePo0aPh4+ODXbt2mXi0REREeRsDIZndvKm7UiigXizr1q2sXe/Nmzc4cOAAoqOj0bp1awwaNAivX7/O/kCJiIjyAQZCMitbVp0OS6tUqaxdz97eHmfOnMHXX38NAFiyZAn8/f1x6tSprA+SiIgon2AgJDN3d/WcoP+f3qP13XfAvXvGTaDWsLOzw5w5c/D333/D3d0dN2/eRN26dTFhwgQkJSWZbvBERER5DAMhM+jbF7h7Vx30/PYbYGUFbNwIeHsDjRsDnp7qCdXGatKkCS5evIguXbpApVJh3rx5iImJMfn4iYiI8gpWjZlJ6mXT4+KAQYMAzRrfmgnULVoYv7R6wYIF8dtvv6FNmzawsrLS2dwuvd2AiYiI8jM+EcoBypfXP5adCdQA8MUXX6BDhw7ar3fs2IGWLVvi33//zfpFiYiI8hgGQjlAehOolUr1bsOmkJycjGHDhmHv3r3w9fXFxo0bTXNhIiLKc549e4aiRYvi7t27kvbz2WefYfbs2XrHW7ZsiQkTJqB27drw9PTElStXJB0HA6EcQDOBOnUwNHu26XYctrS0xK5du1CtWjU8f/4cn3/+Obp3747Y2FjTdEBERHlGcHAw2rRpAy8vr3TPKRQKbaVyWr169cKYMWMwceJEKBQKnVfx4sV12v7www+YOnUq4uLidI5funQJ3t7eOHnyJPr164ft27eb6ltLFwOhHEIzgdrbW/31q1emvX7FihVx4sQJfP/997CwsMDatWvh5+eHsLAw03ZERES51tu3b7Fy5Up8+eWXeufOnDmDZcuWwc/PL933pqSkYOfOnWjXrh0AoHLlynj06JH2FRkZqdPez88PXl5e+O2337THXr58CSsrK/Tq1QsAYG1tDRcXF9N8cxlgIJSDlCoFTJmi/u+ffwbevDHt9a2trTFlyhQcPXoUH3zwAR48eIAmTZrg0qVLpu2IiIhypd27d8PS0hJ16tTROR4fH4+uXbti+fLlKFiwYLrvPXbsGCwsLFCrVi0A6mxE8eLFta8iRYrovadt27b4448/tF9funQJNWvW1Pm6cuXKpvjWMpQvAqFPPvkEBQsWxGeffWbuoWTq888BLy/gyRNg1Spp+qhTpw4iIiLQv39/9OzZEz4+PtJ0REREOl6/fp3h6927dwa3ffv2baZts+Lw4cOoXr263vEhQ4agdevWaNq0aYbv3bZtG9q0aQOL/5/ncfPmTbi5ucHb2xtffPEFbt++rfeemjVr4vTp00hISACgDnx8fX215yMjIyX/HZUvAqGvvvoKq1evNvcwDGJpCYwcqf7vmTMBqdZDdHR0xNKlS7FixQrtsUePHmHOnDlQqVTSdEpElM85Ojpm+Epd6QsARYsWzbBty5Ytddp6eXnptcmKu3fvws3NTefYunXrcO7cOQQHB7/3vdu2bdOmxWrVqoXVq1dj7969WL58OR4/fozAwEA8e/ZM5z0lS5ZEQkICHj9+DAC4fPmyNhBKTk5GfHw8U2Om0KhRIzg5OZl7GAbr3RsoUkS90vTEicavNG0MzQ72Qgj07dsXQUFBaNSokeTVAkRElPO8ffsWtra22q8fPHiA4cOHY+3atTrH07p69SqioqK0T4xatmyJDh06wNfXF02bNsXOnTsBAL/++qvO++zs7ACo980EgHnz5qFt27YA1Km1mzdvmu6by4DZA6HDhw+jTZs2cHNzg0KhwNatW/XaLFq0CN7e3rC1tUVAQACOHDki/0BlZGcH1Kun/u9p07K+0rSxPvvsMzg6OuLIkSPw8/NDSEgIhGaVRyIiyrb4+PgMX5s2bdJpGxMTk2Hb3bt367S9e/euXpuscHV1xYsXL7Rfh4eHIyYmBgEBAbC0tISlpSUOHTqEefPmwdLSUptB2LZtG5o1a6YNbNJycHCAr6+vXmDz/PlzAEh3/pBczB4IvX79GlWqVMGCBQvSPb9+/Xp8/fXX+P7773H+/Hl8+OGHaNmyJe7fv69tExAQAB8fH71Xbl08MCoK+Ouv/77WrDQt5ZMhhUKBPn364MKFC6hbty5evXqF3r17o0OHDnjy5Il0HRMR5SMODg4ZvtI+cXlf27QBR3ptssLf319n3Z4mTZogMjISERER2lf16tXRtWtXREREaLMKf/31l/ZJTnoSEhJw9epVlChRQuf4pUuX4O7uDldX1yyN1yREDgJAbNmyRedYzZo1xcCBA3WOVahQQYwZM8aoa4eFhYkOHTpk2u7du3fi5cuX2teDBw8EAPHy5Uuj+suOAweEUG+4ofsKC5On/+TkZBEcHCysrKwEAFGsWDFx/vx5eTonIsrl3r59K65cuSLevn1r7qEY7eLFi8LS0lI8f/48wzYNGjQQw4cP134dHR0tLC0tRXR0tPbYN998Iw4ePChu374tTp48KT7++GPh5OQk7t69q3Otnj17ij59+mR5vO+71y9fvjTo97fZnwi9T2JiIsLDw9G8eXOd482bN8fx48cl6TM4OBjOzs7aV6lSpSTp533SW2nawsJ0K01nRqlUYsyYMTh16hQqVaoEJycnlJGrcyIiMhtfX19Ur14dGzZsMPg927dvR61atVC0aFHtsaioKHTu3Bnly5fHp59+Cmtra5w8eRKenp7aNu/evcOWLVvQr18/k34PxsrRm64+ffoUKpUKxYoV0zlerFgx7QxzQ7Ro0QLnzp3D69ev4e7uji1btqBGjRrptv3uu+8QFBSk/TouLk72YEiz0vSAAeo9xwDAwQFwdpZ1GPD390d4eDiioqK0FQgpKSk6s/qJiChvGT9+PL799lv069dPWwqf2sGDB3W+Ti8ttm7dukz7WblyJWrVqoXatWtna7zZlaOfCGmk3TFdGLmL+t69e/HkyRO8efMGUVFRGQZBAGBjY4MCBQrovMxBs9L0vn3qdYVevQJmzJB/HLa2tjpPg+bPnw9/f39MmDABSVLV9hMRkdm0atUKAwYMwMOHDw1qX69ePXTu3NnofqysrDB//nyj32dqOToQcnV1hVKp1Hv6ExMTo/eUKC9ydweaNVPvOwYAs2ZJO2HaEJGRkVCpVJg0aRICAwNx/fp18w6IiIhMbvjw4QZnQ0aNGpWlzEn//v1Rvnx5o99najk6ELK2tkZAQABCQ0N1joeGhiIwMNBMo5Jf+/bqcvq3b4ERI4CwMPMFRCtWrMC6devg4uKCs2fPwt/fHwsXLmSZPRER5UpmD4Ti4+O1JXkAcOfOHURERGjL44OCgrBixQr88ssvuHr1KkaMGIH79+9j4MCBZhy1vBQK9dMgAPjzT6BxY/nWFkpPp06dcOnSJTRr1gxv377F0KFD0bJly1y7XAEREeVfZg+ENE8V/P39AagDH39/f/zwww8A1L90586di0mTJqFq1ao4fPgwdu3apTPzPD9Is+K5LGsLvU/JkiWxZ88ezJs3D7a2tti/f79RE9iJiIhyArNXjTVs2DDTtMrgwYMxePBgmUaUM6W3yrhKBdy6pZ5LZA4WFhYYNmwYmjVrhlOnTqFatWrac8nJybC0NPvHi4jIbDhlQHqmuMdmfyJEhjH32kLvU6FCBfTs2VP7dUREBCpWrIiwsDAzjoqIyDysrKwA/Ld/FklHc4819zwr+E/2XCK9tYUUCuD2bfM9EcrIxIkTcevWLTRp0gRBQUGYMmXKezfrIyLKS5RKJVxcXBATEwMAsLe3N2rJF8qcEAJv3rxBTEwMXFxctFt9ZIVC8Nnde8XFxcHZ2RkvX74025pCqUVFATduqEvqd+4EChdW70uWmKh+apQTgqL4+Hh88803WLZsGQDAx8cHa9euRZUqVcw8MiIieQgh8PjxY8TGxpp7KHmai4sLihcvnm6gaejvbwZCmchpgZDGmzdAgwbA2bP/HbOwUD816tvXfONKbceOHejbty9iYmJgZWWFyZMn49tvv81W5E5ElJuoVCouPisRKyur9/4+YSBkIjk1EALUQVDaRbKVSvWK1DnhyRAAPHnyBP3798fWrVsBAGvWrEG3bt3MOygiIsrzDP39zTlCudirV/rHVCrg2DGgaNGckSorUqQINm/ejJCQEGzZsgVdunQx74CIiIhSYdVYLpZeJRkAfPGF+RddTE2hUKB3797466+/tBv4vXnzBl999RWePHli5tEREVF+xkAoF9NUkmlSpGnniqVedDEqyrxbcwC6m+eOGTMG8+fPh6+vL3bu3Gm+QRERUb7GQCiX0+xSHxYGrFunf16lArp3Vz8dyklPifr06YPKlSsjOjoaH3/8MQYOHIj4+HhzD4uIiPIZTpbORE6eLJ1WVJQ60ElJeX87pRI4cQKIjzfvPKJ3797h+++/x+zZswEAZcqUwZo1a1C7dm3zDIiIiPIMQ39/84lQHpI2VaZUAs2b67dTqYBatcz/hMjW1hazZs3C/v374e7ujlu3bqFu3bpYu3ateQZERET5Dp8IZSI3PRHSiIpS70Gm2X4js6dEOaHkPjY2FkOHDsWuXbsQGRmJkiVLmm8wRESU6/GJUD7m7g40bKj+M7MJ1YD6CVFoqHknVLu4uGDt2rV6QdD+/fuRklmuj4iIKIsYCOUDqSdUnzqVfsl9nz5AqVLmT5elDoK2bduGpk2bomXLlnj48KF5BkRERHkaA6F8QvOUqEYN3SdEFhaAr69u25QUoH9/4MwZ85bcP3v2DLa2tti3bx98fX2xYcMG8wyEiIjyLM4RykRunCNkiNTziG7eVD8Jyog59zC7du0aunXrhvDwcABA165dsWDBAri4uMg/GCIiyjW415iJ5NVAKDVDyu41E6oBdeAkZ9l9UlISJk+ejKlTpyIlJQWlSpXC6tWr0bBhQ3kGQEREuQ4nS5PB0k6oTm8OkUoFdOxonoUZraysMGnSJBw7dgxlypTBgwcPEBsbK0/nRESUp/GJUCbywxMhDU26zMEBqF3bsIUZ5S67j4+Px5YtW9C9e3ftsdevX8PBwUG+QRARUY7HJ0JktIwmVCuVQNu2+u1VKvUK1XJOqHZ0dNQJgv7991+UKVMG06dPh0qlkmcQRESUZzAQonSlLrm/exdYuDD9lNnnn5u35P7XX3/F48eP8d1336FBgwa4c+eO/IMgIqJci4EQZeh9CzOmlXqnezmNGTMGq1atgpOTE44dOwY/Pz+sWrUKzPgSEZEhGAiRwVI/JVq/Xv+8SgX89pu8K1QrFAr06tULFy5cQL169RAfH48+ffrg008/xZMnT6QfABER5WoMhMgomqdEgYHpp8rGjDHPCtXe3t44ePAg/ve//8HKygpbt27FzJkz5emciIhyLQZClCXp7XRfv75uG7nTZUqlEqNGjcLp06fxySefYMKECfJ0TEREuRYDIcqytBOqJ07Ub6NSAatXy1tZVrVqVWzevFlbUp+SkoK+ffvixIkT8gyAiIhyDQZClC2pJ1SXLZt+uuz7781bWbZ06VL88ssvqFevHsaPH4+kpCT5B0FERDkSAyEymcxWqNZs5ip3ZVnnzp3RrVs3pKSkYMqUKahTpw6uXbsm7yCIiChHYiBEJpU6XfbHH/rnU1KA7t2B8+flS5e5uLhgzZo1WL9+PQoWLIjw8HD4+/tj/vz5SMls+WwiIsrTuMVGJvLTFhumZshmrnLvbP/w4UP06dMH+/btAwAMGTIECxYskKdzIiKSDbfYILNLr7Ls669128hdWVayZEns2bMH8+fPh7OzM/rKFYEREVGOxECIJJW2siyjPctmzgTu35cnXaZQKDB06FDcu3cP/v7+2uPbt2/HixcvpO2ciIhyFKbGMsHUmGnlxHQZAJw/fx61atVCsWLFEBISgiZNmsjXORERmRxTY5QjpZcu++QT3Tbm2LcsJSUFnp6eiIqKQtOmTREUFIR3797JNwAiIjILBkIku7TpsmHD9NuoVMDGjfJVlgUEBCAiIgIDBw4EAMyZMwcBAQE4f/689J0TEZHZMDWWCabGpJdZukzuVNnOnTvRt29fREdHw8rKCsHBwfjmm2/k6ZyIiEyCqTHKNXLaQoytW7dGZGQkPvnkEyQlJcEiveWyiYgoT+AToUzwiZB8oqKAW7eAmBigUyf98/36AWPHAnfuqLfzcHeXdjxCCOzatQstW7bUBkMxMTEoUqQIFAqFtJ0TEVG2GPr7m4FQJhgIyS+nVpa9fv0a/v7+qFixIpYvX46iRYvK1zkRERmFqTHKtdKrLOvYUbeNOSrLjh8/jrt372Lbtm3w9fXF9u3b5euciIgkwUCIcqS0lWWDBum3UamAzZvlqyxr1qwZzpw5Ax8fH8TExKBt27bo378/4uPjpe+ciIgkwdRYJpgayxlyUmXZu3fvMG7cOMyePRtCCHzwwQdYs2YN6tSpI33nRERkEKbGKE8xpLJMrlSZra0tfvrpJ+zfvx+lSpXCP//8g6lTp0rfMRERmRwDIco1UqfL/vhD/7xKBcybBzx4IE+6rFGjRrh48SIGDhyIZcuWSdsZERFJgqmxTDA1ljPl1MoyABg6dCjKlSuHoUOHcg0iIiIzYWqM8rT0Kstat9ZtY47KsiNHjmDhwoUYPnw4PvroIzx8+FC+zomIyGgMhCjXSltZlt4uGCoVsHevfJVl9erVw8KFC2FnZ4fQ0FD4+vpi/fr10ndMRERZwtRYJpgayz1yUmXZ9evX0b17d5w5cwYA0KVLFyxYsAAFCxaUvnMiImJqjPKftOmytLtgyJkqK1++PI4dO4YJEyZAqVTi999/R9OmTcF/dxAR5SwMhChPSZ0uW7dO/7xKBfz5pzoYkjpdZmVlhYkTJ+LYsWMoW7YsJkyYwD3KiIhyGKbGMsHUWO71vlSZQgEIIV+6LDExEdbW1tqvd+/ejeLFi8Pf31/ajomI8immxijfS6+yrGZN9X9rwn+50mWpg6CHDx+ia9euqFWrFoKDg6FSqaTtnIiIMpTnA6FXr16hRo0aqFq1Knx9fbF8+XJzD4lklLaybPp0/TYqFXDkiHyVZba2tmjUqBGSkpIwduxYNGjQALdv35a+YyIi0pPnU2MqlQoJCQmwt7fHmzdv4OPjgzNnzqBw4cIGvZ+psbwlp1SWCSGwevVqDBs2DK9evYKjoyPmzp2LPn36cB4REZEJMDX2/5RKJezt7QGoN8tUqVSs3MnHckplmUKhQM+ePXHx4kXUr18f8fHx+PLLL/HJJ58gOTlZ2s6JiEjL7IHQ4cOH0aZNG7i5uUGhUGDr1q16bRYtWgRvb2/Y2toiICAAR44cMaqP2NhYVKlSBe7u7hg1ahRcXV1NNHrKjQypLDt+XJ7KMi8vLxw4cAAzZsyAtbU13N3dYWlpKV2HRESkw+x/475+/RpVqlRB79690aFDB73z69evx9dff41Fixahbt26WLp0KVq2bIkrV67Aw8MDABAQEICEhAS99+7btw9ubm5wcXHBhQsXEB0djU8//RSfffYZihUrJvn3RjmXu7v6FRWlToelTZX16AEkJspTWaZUKjFy5Eh89NFH+OCDD7THHz9+DEdHRzg6OkrTMRER5aw5QgqFAlu2bEH79u21x2rVqoVq1aph8eLF2mMVK1ZE+/btERwcbHQfgwYNQuPGjdGxY8d0zyckJOgEVXFxcShVqhTnCOVhK1eq02EqlTroKVlSvYN9akql+imSu7s8Y1KpVGjSpAkePHiANWvWIDAwUJ6OiYjyiDwxRygxMRHh4eFo3ry5zvHmzZvj+PHjBl0jOjoacXFxANQ35fDhwyhfvnyG7YODg+Hs7Kx9lSpVKuvfAOUKqVNl9+4Bv/yi30alAm7dkiddBgBRUVG4c+cObt++jQ8//BDjxo1DYmKitJ0SEeVDOToQevr0KVQqlV4aq1ixYnj8+LFB14iKikL9+vVRpUoV1KtXD0OHDoWfn1+G7b/77ju8fPlS+3qQ9tEA5Unu7kDDhuo/K1RQPxlKa/RodcVZ48bqP1eulG48np6euHjxInr27ImUlBRMnToVderUwdWrV6XrlIgoH8rRgZBG2nJiIYTBJcYBAQGIiIjAhQsXcPHiRQwaNOi97W1sbFCgQAGdF+UvGVWWnT7931wiOarLnJ2dERISgj///BOFCxfGuXPnUK1aNcybNw8pGdX/ExGRUXJ0IOTq6gqlUqn39CcmJoaTnUlSqdNl9+8Ds2frt9Gky6TWoUMHREZGomXLlnj37h2WL1/ONBkRkYnk6EDI2toaAQEBCA0N1TkeGhrKyaMkudTpso4d00+X/fuvPHOGSpQogZ07d2LhwoVYu3YtbG1tAYBrYhERZZPZy+fj4+NxK9U/q+/cuYOIiAgUKlQIHh4eCAoKQvfu3VG9enXUqVMHy5Ytw/379zFw4EAzjpryG026TFNdptG1q/pPOVakVigUGDx4sM6xadOm4fLly1i4cCEKFiwoXedERHmU2cvnDx48iEaNGukd79mzJ0JCQgCoF1ScMWMGHj16BB8fH8yZMwf169eXZXzcYoNSi4pSp8PevgVatdI9J3eJfUxMDDw9PfHu3TuULFkSISEhaNq0qTydExHlcIb+/jZ7IJTTMRCi9ISFqavH0ho1Chg6VB0slS0rfVB06tQpdO/eHTdv3gQADB8+HMHBwbCzs5O2YyKiHC5PrCNElFOVLZv+nKEZMwAPD3lK7AH1gqPnz5/XVkP+/PPPCAgIwLlz56TtmIgoj8hSILRmzRrUrVsXbm5uuHfvHgBg7ty5+Ouvv0w6OKKcKm2JvVIJtGyp20auDVwdHBywaNEi7Nq1C8WLF8fVq1fRsGFDxMbGStsxEVEeYHQgtHjxYgQFBaFVq1aIjY2F6v9njrq4uGDu3LmmHh9RjpW6xP7uXWDkSP02KhVw4IA8lWUtW7ZEZGQkOnTogMmTJ8PFxUXaDomI8gCj5whVqlQJ06ZNQ/v27eHk5IQLFy6gdOnSuHTpEho2bIinT59KNVaz4BwhMlRUlDodltFah3JUlgH/ldRrFh09efIkLl26hL59+xq8ECkRUW4n2RyhO3fuwN/fX++4jY0NXr9+bezliPKMjFak1pArVaZQKLQBz+vXr9G9e3f069cP7dq1Q3R0tLSdExHlMkYHQt7e3oiIiNA7vnv3blSqVMkUYyLKtVKny9at0z+vUgGhofJt3mpra4sBAwbA2toa27dvh6+vL7Zt2yZtp0REuYjRgdDIkSMxZMgQrF+/HkIInD59GlOnTsXYsWMxMr1JEkT5jGZF6sDA9CvL+vWTr7JMqVTi22+/xZkzZ+Dr64snT56gXbt2+PLLL/Hq1SvpOiYiyiWytI7Q8uXLMWXKFO3O7CVLlsTEiRPRV+rJD2bAOUKUHStX/rcatVKpLru/dk23jVwLMSYkJGD8+PH46aefIISAt7c3jh07hhIlSkjbMRGRGciyoOLTp0+RkpKCokWLZvUSOR4DIcouzWrUZcoAN24ATZrot1m/HihSRJ5FGA8dOoQePXqgcuXK2LlzJydQE1GexJWlTYSBEJlSTqkse/nyJRITE1GkSBEA6s95VFQU5/kRUZ4hWdWYt7c3SpcuneGLiDKWtrIsLbkqy5ydnbVBEKDemqNatWqYO3cuUjKK0oiI8iCjd5//+uuvdb5OSkrC+fPnsWfPHk6WJjJA375AixbqdFlMDNCpk+55lQqIjFT/982b0qfLEhISEB0djYSEBIwYMQI7duxASEgI3OXaPZaIyIxMlhpbuHAhzp49i1WrVpnicjkGU2MkpYxSZYULAy9eqI/LkS4TQmDJkiX45ptv8PbtW7i4uGDRokXo3LmzdJ0SEUlI9k1XW7ZsiU2bNpnqckT5QtpUmYUF4OwMPHv2X3AkR7pMoVBg0KBBiIiIQI0aNRAbG4suXbrgiy++wIsXL6TrmIjIzEwWCP35558oVKiQqS5HlG+kXoTx3j1gzRr9NiqVOpUmtXLlyuHYsWOYOHEilEolwsLCkJycLH3HRERmYvQcIX9/f51yWyEEHj9+jCdPnmDRokUmHRxRfuHurjsPyMJCP122Y4c6ICpfXto5Q1ZWVpgwYQJatmyJV69e6UyqTkxMhLW1tXSdExHJzOg5Qj/++KPO1xYWFihSpAgaNmyIChUqmHRwOQHnCJE5pF6IMS25SuzT+uOPPzB58mSsWbMGAQEB8nZORGQkriNkIgyEyFw0CzHa2wO1awOp/0+1sFCn0eQq7EpJSYGvry+uXLkCS0tLTJw4EaNHj4alpdEPlYmIZGHSydJxcXEGv4jINDR7lr1+rRsEAeq0Wa9ewKVL8mzeamFhgUOHDqFDhw5ITk7GuHHjUL9+ffzzzz/SdkxEJDGDnghZWFhkugy/EAIKhQKq9J7l52J8IkTmltlq1IB86TIhBNauXYuhQ4ciLi4ODg4OmDNnDr788ktu1UFEOYpJU2OHDh0yuOMGDRoY3DY3YCBEOUHazVsHDQIWLNBtI9fmrQBw79499OjRA4cPHwYAnD17lvOGiChH4RwhE2EgRDlF6s1bb94EGjfWb7N0KdCqlTwrUqekpGD27NmIjo7GzJkzpeuIiCgLJA+E3rx5g/v37yMxMVHnuJ+fX1Yul2MxEKKcKKN0mSY7JYR5qsvu3r2LmTNnYvr06XBycpKvYyKiNCQLhJ48eYLevXtj9+7d6Z7nHCEieaRNl1WsqJ48nZqc6TIhBBo3boyDBw/C29sba9asQd26daXvmIgoHZJtsfH111/jxYsXOHnyJOzs7LBnzx78+uuvKFu2LLZt25atQROR4VKvSH33LvDzz/ptVCrg+HF5KssUCgUmTpwIDw8P3LlzB/Xr18fYsWP1nhoTEeUkRj8RKlGiBP766y/UrFkTBQoUwNmzZ1GuXDls27YNM2bMwNGjR6Uaq1nwiRDlFplVl8mVKnv58iWGDx+OX3/9FQBQtWpVrF27FpUrV5a2YyKiVCR7IvT69WsULVoUAFCoUCE8efIEAODr64tz585lcbhElF1pN3BNS47NWwHA2dkZISEh+PPPP1G4cGFEREQgICBAW2FGRJSTGB0IlS9fHtevXweg/pfe0qVL8fDhQyxZsgQlSpQw+QCJyHCp02Xr1+ufV6mAixfVwZDU6bIOHTogMjISLVu2RLly5VCrVi3pOiMiyiKjU2O//fYbkpKS0KtXL5w/fx4tWrTAs2fPYG1tjZCQEHTq1EmqsZoFU2OUW2WUKitYEHj5Un1cjnSZEALPnj2Dq6srACA5ORn79u1Dq1atpOuUiPI92dYRevPmDa5duwYPDw/tX3R5CQMhys1SV5ZZWAAFCgCxsbpt5KwsA4ApU6Zg/Pjx6NSpExYtWoRChQrJ0zER5SuSzRFKu8q0vb09qlWrlieDIKLcLnWq7N49YM0a/TYqFXDihDyVZYB6yx6lUon169fDz88PoaGh0ndKRJQBo58IWVtbo3jx4ujSpQu6desGHx8fqcaWI/CJEOUl71uIUc5FGM+cOYNu3brhxo0bAIBhw4Zh+vTpsLe3l7ZjIso3JHsi9O+//2LUqFE4cuQI/Pz84OfnhxkzZiBKjn9KElG2ZFRZpvnnkFyVZTVq1MD58+cxZMgQAMD8+fMREBCAixcvStsxEVEaRgdCrq6uGDp0KI4dO4Z//vkHnTp1wurVq+Hl5YXG6W1+REQ5Sup02bp1+udVKvVeZVKzt7fHggULsHv3bpQoUQJ3796FlZWV9B0TEaWS7cnSKpUKu3fvxvjx43Hx4kVusUGUi2SUKmvTBpg6FXj6VPrNWwHg2bNnOH36NFq2bKk99vLlSzg7O0vbMRHlWZKlxjSOHTuGwYMHo0SJEujSpQsqV66MHTt2ZPVyRGQGaVNlCoX6tX074Oen3uHe01NdfSalwoUL6wRBx48fh4eHB5YtW4Zs/luNiOi9jA6Exo4dC29vbzRu3Bj37t3D3Llz8fjxY6xdu1bnLzIiyh1Sp8ru3wfSbhko17yh1JYvX464uDgMGDAAbdu2RXR0tHydE1G+YnQgdPDgQXz77bd4+PAhdu7ciS5durDSgyiXc3cHGjZU/+ngoH9epQLWrpWvxH7lypWYOXMmrK2tsWPHDvj4+OCvv/6SvmMiyneyPUcor+McIcpvcsrmrQAQGRmJbt26aavJ+vTpg7lz58LJyUn6zokoV5N0ZekbN27g4MGDiImJQUqavy1/+OEH40ebgzEQovwo7YrUaYMiCwv1Ao1yrEadkJCAH374ATNnzoQQAiEhIejZs6f0HRNRriZZILR8+XIMGjQIrq6uKF68OBQKxX8XUyjy3A70DIQov4qKAm7dAmJigPS2EBwxQv26dUueyrLDhw/jjz/+wKJFi3T+3iEiSo9kgZCnpycGDx6M0aNHZ3uQuQEDIcrvMkuVAfKmyzRevnyJHj16YNq0aahcubJ8HRNRriBZ+fyLFy/QsWPHbA2OiHKPtCX2SiXw8ce6bcxRWTZ27Fhs27YNAQEBmDNnjl6anojIEEYHQh07dsS+ffukGAsR5VCpS+zv3gWCgvTbqFTA/v3yVZaNHz8erVq1QkJCAoKCgtCsWTM8ePBA+o6JKE8xOjUWHByM2bNno3Xr1vD19dVbEv+rr74y6QDNjakxIn05pbJMCIGlS5fim2++wZs3b+Ds7IyFCxeiS5cunEdElM9JNkfI29s744spFLh9+7Yxl8vxGAgRpS91ZZlm9/rUlEr10yM5Kstu3ryJ7t2749SpUwCAuXPnYvjw4dJ3TEQ5lqTl8/kJAyGijGVWWfbLL0CzZupNXKWuLEtOTsa0adOwfPlynD9/Hq6urtJ1RkQ5nuSBUGJiIu7cuYMPPvgAlpaWWR5oTsdAiChzGaXKlEr1MSHkS5e9efNGu9q9EAK//vorPv/8c66AT5TPSFY19ubNG/Tt2xf29vaoXLky7t+/D0A9N2j69OlZHzER5VrpVZZVqKBOm2n+qSVXZVnqgOePP/5A7969ERAQgPDwcGk7JqJcyehA6LvvvsOFCxdw8OBB2Nraao83bdoU69evN+ngiCj3SFtZtnChfhuVSp0mi4qSp7qsSJEiKFGiBK5du4batWtjypQpSE5OlrZTIspVjA6Etm7digULFqBevXo6VRmVKlXCP//8Y9LBEVHuknrz1nLl1OmwtIYPV6fRGjdW/7lypXTjadasGSIjI/HZZ58hOTkZ48ePR/369XHr1i3pOiWiXMXoQOjJkycoWrSo3vHXr1/n2HJVS0tLVK1aFVWrVsWXX35p7uEQ5Qtp02UKhfoVGfnfXCI50mWFCxfGhg0bsGbNGhQoUAAnTpxA1apV8fvvv0vXKRHlGkYHQjVq1MDOnTu1X2uCn+XLl6NOnTqmG5kJubi4ICIiAhEREVixYoW5h0OUb6ROl92/DyxapN9GpVJXnklJoVCgW7duiIyMRMOGDfH69WsUK1ZM2k6JKFcwutwrODgYH330Ea5cuYLk5GT8/PPPuHz5Mk6cOIFDhw5JMUYiysXc3f8rm//4Y2DIEP3qMk2wJHWJvYeHB/bv349Dhw6hUaNG2uMPHz5EyZIlpeuYiHIso58IBQYG4tixY3jz5g0++OAD7Nu3D8WKFcOJEycQEBBg9AAOHz6MNm3awM3NDQqFAlu3btVrs2jRInh7e8PW1hYBAQE4cuSIUX3ExcUhICAA9erVY7BGZEZp02UavXvLM2cIACwsLHSCoDt37qBChQro06cP4uLipO2ciHIcsy+ouHv3bhw7dgzVqlVDhw4dsGXLFrRv3157fv369ejevTsWLVqEunXrYunSpVixYgWuXLkCDw8PAEBAQAASEhL0rr1v3z64ubnh33//hZubGy5duoTWrVsjMjLS4DWBuI4QkelpFmJMSgKaN9c9Z2EB3Lsnz4rUALBixQr0798fQgh4eXlh9erV+PDDD+XpnIgkI9mCihn9i0mhUMDGxgbW1tbGjTTNNdIGQrVq1UK1atWwePFi7bGKFSuiffv2CA4ONrqPli1bYvLkyahevXq65xMSEnSCqri4OJQqVYqBEJEEwsLUT4LSGjFC/bp1S/p0GaB+Mt2jRw/cu3cPCoUCo0ePxo8//pitv8+IyLwkW1DRxcUFBQsW1Hu5uLjAzs4Onp6emDBhAlIy2o3RCImJiQgPD0fzNP9kbN68OY4fP27QNV68eKENbKKionDlyhWULl06w/bBwcFwdnbWvkqVKpX1b4CI3qts2fRL7OfMATw85EuX1a9fHxcvXkSvXr0ghMD06dNRs2ZNXLp0SdqOicjsjA6EQkJC4ObmhrFjx2Lr1q3YsmULxo4di5IlS2Lx4sXo378/5s2bZ5JVpp8+fQqVSqVX3VGsWDE8fvzYoGtcvXoV1atXR5UqVfDxxx/j559/RqFChTJs/9133+Hly5fa14MHD7L1PRBRxtJbkbpNG902cq1IXaBAAaxatQqbNm1C4cKFceHCBfz222/SdkpEZmd01divv/6KWbNm4fPPP9cea9u2LXx9fbF06VLs378fHh4emDp1KsaOHWuSQaZdn0gIYfCaRYGBgYiMjDS4LxsbG9jY2Bg1PiLKur59gRYt1GmwMmXUK09v367bRqUC/v5b/XRI6lTZp59+isDAQEyfPh0TJ07UHjfm7x0iyj2MfiJ04sQJ+Pv76x339/fHiRMnAAD16tXT7kGWHa6urlAqlXpPf2JiYrgGCFEeknpF6ozSZXJWlhUvXhxz587V/qMoOTkZLVu2xG+//QYz15cQkYkZHQi5u7tjZTp/C61cuVI7n+bZs2coWLBgtgdnbW2NgIAAhIaG6hwPDQ1FYGBgtq9PRDlPeitSpyZXqiy1X375BXv37kW3bt3wxRdf4Pnz5/J1TkSSMjo19tNPP6Fjx47YvXs3atSoAYVCgTNnzuDatWv4888/AQBnzpxBp06dDLpefHy8zr4/d+7cQUREBAoVKgQPDw8EBQWhe/fuqF69OurUqYNly5bh/v37GDhwoLFDJ6JcInW6LCYGSPvXiUoF7N2rbnPzpvTpsj59+uDx48eYNGkSNmzYgKNHj2LVqlV6hRxElPtkaR2hu3fvYsmSJbhx4waEEKhQoQIGDBgALy8vowdw8OBBncXNNHr27ImQkBAA6gUVZ8yYgUePHsHHxwdz5sxB/fr1je4rK7iOEJF5RUWp02FpC1GVSvUxIdSptGXL1AGUlM6cOYPu3bvj+vXrAIChQ4fif//7H+zt7aXtmIiMJtk6QvkNAyEi81u5Up0OU6nUAVDZssC1a7ptlEr1Vh1Srzn05s0bjBo1CgsXLgQAdO7cmRu4EuVAJg2ELl68CB8fH1hYWODixYvvbevn52f8aHMwBkJEOYNmNeoyZYAbN4AmTfTbrF8PFCkizyKMe/fuxZAhQ7Bz506UL19e2s6IyGgmDYQsLCzw+PFjFC1aFBYWFlAoFOlWTigUCqhUquyNPIdhIESU82SULtOQK1WmUqmgTLVx2ooVK9CgQQOULVtW2o6JKFMmDYTu3bsHDw8PKBQK3Lt3771tPT09jR9tDsZAiChnSp0uS49cqTKNY8eOoX79+rC1tcXs2bPRv39/rjtEZEacI2QiDISIci5Nuiy9yjIA2LUL8PWVp7Ls/v376NWrF8LCwgAArVq1wsqVK1G8eHHpOiWiDEm21xgArFmzBnXr1oWbm5v2CdHcuXPx119/ZW20RERZoFmIMTAw/UUYe/RQp9DkWIjRw8MDf//9N2bNmgVra2vs2rULPj4+2LJli3SdElG2GR0ILV68GEFBQWjVqhViY2O1c4JcXFwwd+5cU4+PiChTaRdhtLAAnJyAp0//m0ckx0KMFhYWCAoKQnh4OKpUqYJnz57h008/xbBhw6TrlIiyxehAaP78+Vi+fDm+//57nUmC1atXN2pPLyIiU+rbVz0nKCwMuHcPWLNGv41KpU6lSc3HxwenTp3C6NGjoVAoUKVKFek7JaIsMXpl6Tt37qS715iNjQ1ev35tkkEREWWFu7vuPCALC/3Kst271cfKlZN2zpCNjQ2mT5+Orl27wsfHR3v8xo0b8PT05ObORDmE0U+EvL29ERERoXd89+7dqFSpkinGRESUbWnTZRozZqjXIJJj81YA8PX11VaPvXz5Ek2bNkWtWrVw6dIl6TsnokwZHQiNHDkSQ4YMwfr16yGEwOnTpzF16lSMHTsWI0eOlGKMRERZkjpddvKk7gauKSlA//7ybt56/fp1vH37FhcuXEBAQABmz56NlIwWQyIiWWSpfH758uWYMmUKHjx4AAAoWbIkJk6ciL5Sr15mBiyfJ8obwsLU1WNpNW8OzJkDREfLsyL148eP8eWXX2Lnzp0AgEaNGiEkJAQeHh7SdkyUz8iyjtDTp0+RkpKCokWLZvUSOR4DIaK8IbPVqAH5VqQWQmDZsmUICgrCmzdvUKBAASxcuBBdu3blIoxEJiLpOkIarq6ueToIIqK8I+2cIaUSGDxYt40cJfaAejuiAQMGICIiArVr10ZcXBzXYSMyk2wFQkREuUnqOUN37wKffabfRqUC9u5VB0NhYdIGRWXLlsWRI0cwc+ZMLFmyRPs0KK/t2UiUk3GLjUwwNUaUd2WULlMq1ceEkC9dpiGEQOfOneHq6ooZM2bA3t5eno6J8hhZUmNERLlZeumyihXVT4U0/0SUK12mcfbsWaxfvx4LFy5EtWrVcPbsWXk6JsqnGAgRUb6WNl22YIF+G5UKOH5c+lQZANSoUQN79+6Fm5sbrl+/jjp16mDSpElITk6WtmOifCpLqbH9+/dj//79iImJ0VsD45dffjHZ4HICpsaI8pfMqsvkSpU9f/4cAwcOxMaNGwEAtWrVwpo1a1C2bFlpOybKIyRLjf34449o3rw59u/fj6dPn+LFixc6LyKi3CyjFak15EqVFSpUCOvXr8fatWvh7OyMU6dOoW3btlyAkcjEjH4iVKJECcyYMQPdu3eXakw5Cp8IEeVPUVHqDVpjYoBOnfTP79oF+PoCN29KvxDj/fv30adPH4wdOxaN01sVkoj0SLagYuHChXH69Gl88MEH2R5kbsBAiCh/yyhVVrgw8OKF+rgc6TIhhM5ii7///jtsbW3x6aefStcpUS4mWWrsyy+/xO+//56twRER5RZpU2UWFkCBAsCzZ/8FR3Kky1IHQXfv3sWAAQPQoUMH9O7dG3FxcdJ1TJTHGf1EaPjw4Vi9ejX8/Pzg5+cHKysrnfOzZ8826QDNjU+EiAj4L1VWpgxw7hzQrp1+mw0bAFdX6VNlCQkJmDBhAmbMmAEhBDw9PbF69WrUr19fuk6JchnJUmONGjXK+GIKBQ4cOGDM5XI8BkJElFZG6TKFQt5FGI8cOYIePXrg7t27UCgUGDlyJCZNmgQbGxtpOybKBWTZdDU/YCBEROlZuVKdDstoNwylUr0ukdS72cfFxWHEiBHapUuqVauGEydOwNraWtqOiXI4rixNRCSh1Asx/vGH/nmVSp1Kk1qBAgWwcuVKbN68Ga6urmjevDmDICIjWBrS6NNPP0VISAgKFCiQaYXC5s2bTTIwIqKczt1d/YqKUqfD0qbKFiwAihYFoqOlnzf0ySefIDAwEAULFtQe++eff2BpaQlPT0/pOibK5Qx6IuTs7KytWHB2dn7vi4gov0lbWaZQqF+bNgGVKwONG6vnFK1cKe04ihUrpn0alJSUhM6dO8PPzw9r1qwBZ0EQpY9zhDLBOUJEZKjUlWVnzgBpH6DLNW8IAGJiYtCuXTucPHkSANCxY0csXrwYhQsXlr5zohyAc4SIiGTm7g40bKj+08VF/7xKpZ5PJMfmrUWLFsWRI0cwefJkWFpaYuPGjfD19cXevXul7Zgol2EgREQkgbJl1fOG0ho1Sr5UmaWlJcaNG4eTJ0+iQoUKePToET766CMMGTIE7969k7ZzolyCgRARkQTSW5E6Nbk2bwWAgIAAhIeHY9iwYQCAM2fOQJnRrrJE+QznCGWCc4SIKDsy27x19GhgyBB1G6krywBg37598PLyQrly5QAAiYmJsLCwgKWlQUXERLmGJHOEkpKS0KhRI9y4cSPbAyQiyg8084YCA9NPlf3vf4CHh3zpsubNm2uDIACYMGEC6tWrx7/XKd8yKhCysrLCpUuXdDb/IyKizKVNlSmVwEcf6baRM10GAC9evMCyZctw6tQp+Pv7Y8mSJSyzp3zH6DlCPXr0wEqp/8lCRJQHpV6N+u5d9cTptFQq9Xk5KssKFiyIiIgING7cGG/evMGgQYPQunVrPHr0SNqOiXIQo+cIDRs2DKtXr0aZMmVQvXp1ODg46Jzn7vNERIbJaPNWDbk2b01JScG8efMwZswYJCQkoHDhwli2bFmmOwkQ5WTcfd5EGAgRkZRSb96q2b0+NTkXYbx8+TK6deuGiIgIODo64vbt2yhSpIj0HRNJgLvPmwgDISKSWmaVZb/+qp5MffOm9JVliYmJmDBhAsqVK4fevXtL1xGRxGQJhKKioqBQKFCyZMmsXiLHYyBERHLJKFVmaal+YiSEfOmy1A4cOIA9e/Zg8uTJsLGxka9jomyQbIuNlJQUTJo0Cc7OzvD09ISHhwdcXFwwefJkpGSU6CYiokylV1lWpgyQnPxfykzuyrK3b9+iZ8+emDlzJmrWrInIyEh5OiaSidGB0Pfff48FCxZg+vTpOH/+PM6dO4dp06Zh/vz5GD9+vBRjJCLKN9JWli1Zot9GpVKn0qKipK8us7Ozw4IFC+Dq6oqLFy+ievXqmDVrFv/hS3mG0akxNzc3LFmyBG3bttU5/tdff2Hw4MF4+PChSQdobkyNEZE5ZZQuq1YNiIhQH5cjXRYdHY0vv/wSO3bsAAA0bNgQISEh8PT0lK5TomyQLDX2/PlzVKhQQe94hQoV8Pz5c2MvR0RE75E2XaZZz/bcuf+CIznSZcWKFcO2bduwbNkyODg44ODBg/Dz88Pdu3el65RIBkYHQlWqVMGCBQv0ji9YsABVqlQxyaCIiOg/qdNl9+8D8+bpt9Gky6SkUCjQr18/REREoHbt2vjoo4/4RIhyPaNTY4cOHULr1q3h4eGBOnXqQKFQ4Pjx43jw4AF27dqFDz/8UKqxmgVTY0SU02SULvvtN6BECXk2b01OTsa7d+/g6OgIAHj69CnOnTuH5s2bS9sxkYEkS401aNAAN27cwCeffILY2Fg8f/4cn376Ka5fv57ngiAiopwobbpMo2tX+TZvtbS01AZBQggMGDAALVq0wJAhQ/DmzRtpOycyIaOeCCUlJaF58+ZYunSpzu7FeRmfCBFRTqVZiDEhQX8DVzlXpE5OTsY333yDef+fsytXrhzWrFmDmjVrSt85UQYkeSLE3eeJiHIOd3egYUPA2lr/nEoFLFgAPHggfYm9paUlfv75Z+zbtw9ubm64ceMGAgMDMWnSJCQnJ0vXMZEJcPd5IqJcrmxZdQl9Wv/7H+DhIV+6rFmzZoiMjESnTp2gUqkwYcIE1K1bF/fv35e2Y6JssDT2DYmJiVixYgVCQ0Pzxe7zREQ5nWbOkGbzVqUSaNYM2LPnvzaaEvsWLaRNlxUqVAjr1q1Du3btMGjQIDx+/BjOzs7SdUiUTdx9PhOcI0REuYVmzlCZMuoNWhs31m+zerU6EJKjsuzBgweIjo5G9erVAagnVT9//hyFCxeWtmMiSLTpqkqlwtGjR+Hr64tChQqZZKBSu379Ojql2s75+vXr+OOPP9C+fXuD3s9AiIhyo4xK7DXMsXnr8uXL8d1332Hp0qXo0KGDfB1TviTZ7vO2tra4evUqvL29sz1IucXHx8PLywv37t3TS+llhIEQEeVWK1f+ly5TKP7buFVDzsoyIQTq16+Po0ePAlDPN503bx7TZiQZydYR8vX1xe3bt7M1OHPZtm0bmjRpYnAQRESUm6VekXrdOv3zKhVw4IA8m7cqFArs378f3333HSwsLLB69WpUqVIFhw4dkq5TIgMYHQhNnToV3377LXbs2IFHjx4hLi5O52Wsw4cPo02bNnBzc4NCocDWrVv12ixatAje3t6wtbVFQEAAjhw5YnQ/ALBhwwadNBkRUV6nKbEPDEy/sqxvX/kqy6ytrTFt2jQcOnQI3t7euHfvHho1aoRRo0YhISFBuo6J3sPo1JhFqv+TUq8nJISAQqGASqUyagC7d+/GsWPHUK1aNXTo0AFbtmzRmb+zfv16dO/eHYsWLULdunWxdOlSrFixAleuXIGHhwcAICAgIN3/iTRrWgDqR2QffPABHjx4AFtbW4PHx9QYEeUVqVNlSiXg7a2/P5lc6bJXr15hxIgRWLlyJSwsLHDixAkuwEgmJdkcocweYzZo0MCYy+kORqHQC4Rq1aqFatWqYfHixdpjFStWRPv27REcHGzwtdesWYO9e/di7dq1722XkJCgE1TFxcWhVKlSDISIKE9IXVl2/TrQtKl+mw0bAFdXeSrL/vrrL9y4cQMjR46UtiPKdwwNhIxeRyg7gY6xEhMTER4ejjFjxugcb968OY4fP27UtTZs2ID+/ftn2i44OBg//vijUdcmIsot3N11gxsLC/3Kss8//++c1JVl7dq10/n62rVrGDFiBJYsWcKd7UkWRs8RAoAjR46gW7duCAwMxMOHDwGon7hoqgFM5enTp1CpVChWrJjO8WLFiuHx48cGX+fly5c4ffo0WrRokWnb7777Di9fvtS+Hjx4YPS4iYhyg4w2b9XQLMIo5STqtAYNGoQ9e/bAz88Pq1evhpFJCyKjGR0Ibdq0CS1atICdnR3OnTunTSO9evUK06ZNM/kAAejtbaaZj2QoZ2dnREdHwzq9DXnSsLGxQYECBXReRER5VerKsvXr9c+rVMCVK/JUlgHAihUrUKdOHcTFxaFnz57o2LEjnj59Km2nlK8ZHQhNmTIFS5YswfLly2FlZaU9HhgYiHPnzpl0cK6urlAqlXpPf2JiYvSeEhERUdZkVlnWo4e6okyOyrIPPvgAhw8fxpQpU2BpaYlNmzbB19cXe1LvF0JkQkYHQtevX0f9+vX1jhcoUACxsbGmGJOWtbU1AgICEBoaqnM8NDQUgYGBJu2LiCi/S5sqs7AAHByA6Oj/5hHJkS6ztLTE999/j5MnT6JixYp4/PgxWrZsiZ07d0rXKeVbRgdCJUqUwK209ZYAjh49itKlSxs9gPj4eERERCAiIgIAcOfOHURERGh3Kw4KCsKKFSvwyy+/4OrVqxgxYgTu37+PgQMHGt0XERG9X+pU2b17wJo1+m1UKv2yeykEBAQgPDwcw4cPR506dQya50lkLKOrxgYMGIDhw4fjl19+gUKhwL///osTJ07g22+/xQ8//GD0AM6ePauzkWtQUBAAoGfPnggJCUGnTp3w7NkzTJo0CY8ePYKPjw927drFagIiIokYUlm2f7/6WLly0pbY29nZYe7cuUhISIClpfpXVkJCApYvX44BAwboTNEgygqj1xECgO+//x5z5szBu3fvAKgnGH/77beYPHmyyQdoblxQkYjyu9QLMaZljs1bR48ejRkzZqBmzZpYvXo1ypcvL1/nlGtItqCixps3b3DlyhWkpKSgUqVKcHR0zPJgczIGQkRE/y3EaGurnlSd+jeHhYU6jSbH5q0AsG7dOgwaNAixsbGws7PDTz/9hEGDBhlVTUx5n2SbrmrY29ujevXqqFmzZp4NgoiISE1TWfb2rf4u9ikpwODB6pWq5Six/+KLL3Dx4kU0adIEb9++xZAhQ9CqVSs8evRI2o4pT8pyIERERPlP2bLpl9hv3w5UqCBPiT0AlCpVCvv27cPcuXNha2uLPXv2wMfHBwcOHJC2Y8pzGAgREZHB0pbYK5VA2t2L5FqR2sLCAsOHD0d4eDj8/f2RlJSUpeplyt8YCBERkVFSl9jfvQt88YV+G5UKOHBAnhWpK1WqhJMnTyIsLAxeXl7a47dv35auU8ozGAgREZHRNHOG3N0zTpf17Qt4eMiTLtMswKvx999/o2zZshg5cqR2Kyii9DAQIiKibEkvXVa2LJCc/N/Eark3cA0LC0NKSgp++ukn1KhRAxcvXpSnY8p1GAgREVG2pU2XLV6s30alAk6ckKeybOrUqfjrr79QpEgRREZGokaNGpg5cyZU6S2GRPlaltcRyi+4jhARkfGiotTpsLQrUmvItRBjTEwM+vXrh23btgEA6tevj19//VVnLhHlTZKvI0RERJSRtOmytORKlRUtWhRbt27FihUr4ODggMOHD+PEiRPSdkq5Cp8IZYJPhIiIsk6zInVMDNCpk/75vXuBSpWAmzfV84qkXJ36n3/+wR9//IFx48ZpjwkhuCJ1HiX5Fhv5BQMhIqLsyyhVVqwY8OSJ+rjc+5Y9efIEzZs3x7Rp09CyZUt5OiXZMDVGREQ5RtpUmYUF4OAAREf/FxzJXVk2bdo0REREoFWrVhg8eDBev34tT8eUozAQIiIiWaSuLLt3D1izRr+NnJVl06ZNw/DhwwEAixcvhr+/P06dOiVtp5TjMDWWCabGiIikkVG6TKFQrz8kV6ps//796NWrF6KioqBUKjFu3Dh8//33sLKykrZjkhRTY0RElKNlVFkm9yKMTZo0wcWLF9GlSxeoVCr8+OOPCA4OlrZTyjEYCBERkdmkTpf9/rv+eZVKXXUmtYIFC+K3337DH3/8gapVq2pTZpT3MRAiIiKz0uxb9uGH6e9Ztnw5cP26PPOGvvjiC4SHh8PZ2RmAurx+0qRJ+Pfff6XtmMyGgRAREeUIaVNlmuV9fv8dqFBBns1bAcAiVTS2bNkyTJgwAb6+vti0aZO0HZNZMBAiIqIcI3Wq7P59YN063fNyl9h/+OGHqFatGp4/f47PPvsMPXv2xMuXL+XpnGTBQIiIiHIUTarM3R0oWlT/vEoF/PmnPKmySpUq4cSJE/j+++9hYWGB1atXw8/PD4cOHZK2Y5INAyEiIsqxypZNf97QiBHypcqsra0xZcoUHDlyBKVLl8b9+/fRqFEjzJo1S9qOSRYMhIiIKMdKb0Xq1ORMlQUGBuLChQv48ssvYWFhgcDAQOk7JckxECIiohwt9byhP/7QP69SqSvLoqKkT5c5Ojpi+fLluHLlCurUqaM9Hh4eDpVKJV3HJBmuLJ0JrixNRJRzZLQadWpyb9565coVBAQEoGbNmvj111/h5eUlT8f0XlxZmoiI8py0qTKlEmjSRLeN3JVlN2/ehKWlJQ4fPgw/Pz+sXr0afMaQezAQIiKiXCV1quzuXeD77/XbqFTAoUPyVJa1a9cOFy5cQN26dfHq1Sv07NkTHTt2xNOnT6XtmEyCgRAREeU6qUvsM6os69ZNvsqy0qVL49ChQwgODoaVlRU2bdoEX19f7N69W9qOKdsYCBERUa6W0YrUGnKlypRKJcaMGYNTp06hUqVKePz4McLDw6XtlLKNk6UzwcnSRES5Q1SUeoPWmBigUyf987//rt7P7OZN9VMkd3fpxvL27VssWbIEw4YNg6WlJQAgKSkJVlZW0nVKOgz9/c1AKBMMhIiIcpeMKsusrYGkJEAI+SvL3r17h8DAQLRp0wbjxo1jQCQDVo0REVG+lF5lmZcXkJioDoIA+SvLNm3ahPPnz2PSpEkIDAzE9evX5emYMsVAiIiI8py0lWXLl+u3UanUqTQ5FmLs2rUr1q1bh4IFC+Ls2bPw9/fHwoULWWafAzA1lgmmxoiIcr+M0mW1agFnzqiPy5Eue/jwIXr37o3Q0FAAQIsWLfDLL7/Azc1Nuk7zKabGiIiI/l9GlWWnTv0XHMmRLitZsiT27NmDefPmwdbWFnv37sWQIUOk65AyxUCIiIjyhdTpsvv3gfQ2j9eky6RkYWGBYcOG4dy5c2jUqBHmzp0rbYf0XkyNZYKpMSKivCmjdNmGDYCrq/Ql9umZMmUK6tWrh4YNG8rbcR7E1BgREdF7pE2XaXz+uXwrUqe2f/9+jB8/Ho0bN8Y333yDd+/eydd5PsZAiIiI8q3U6bIdO3TPyV1iX6tWLfTv3x9CCMyePRs1atTAhQsX5Ok8H2MgRERE+Zpm3zJ7e/1zKpW69F6OEntHR0csXboU27dvR9GiRXHp0iXUqFEDM2bMgEqlkq7jfI5zhDLBOUJERPlDRnOGUpNrReonT56gX79++OuvvwAA7du3x5YtW6TtNI/hHCEiIiIjpLciddOmum3kSpcVKVIEW7ZswcqVK+Ho6IgvvvhC2g7zMT4RygSfCBER5S+azVvLlFFv0Nq4sX6btWsBNzd5Ksuio6NRrFgx7denTp1C6dKlUaRIEWk7zuUM/f1tKeOYiIiIcjx3d93gxsJCP13Wrdt/56ROlaUOgmJiYtC2bVsoFAqsXLkSrVu3lq7jfIKpMSIiogxktCK1htyVZS9evICrqyuio6Px8ccfY9CgQXj9+rU8nedRDISIiIjeI3WJ/bp1+udVKuDIEXkqy8qXL4/w8HCMGDECALBkyRJUrVoVp06dkq7TPI5zhDLBOUJERKSRUWWZtTWQlAQIIV9l2YEDB9CzZ09ERUVBqVRi7Nix+PHHH6FI+9gqn2LVGBERkYmlV1nm5QUkJqqDIEC+dFnjxo0RGRmJrl27QqVSISoqikFQFvCJUCb4RIiIiNJKXVl27RrQrJl+Gzn3LNu8eTOaNm2q/T316tUrODo65uvAyNDf3wyEMsFAiIiI3iezhRjlSpVpCCHQunVrqFQqrFq1Cm5ubvJ0nMMwNUZERCSDjDZv1ZC7suzy5csICwvDvn374OPjgw0bNsjTcS6VLwKhn376CZUrV4aPjw/Wrl1r7uEQEVEek7qybP16/fMqlTqFJkdlmY+PD86fP4+AgAC8ePECnTp1Qvfu3REbGytdp7lYng+EIiMj8fvvvyM8PBxnz57F4sWL+WEgIiKT02zeGhioToel1auXOoXWuLH6z5UrpRtLhQoVcOLECYwfPx4WFhZYu3Yt/Pz8EBYWJl2nuVSeD4SuXr2KwMBA2NrawtbWFlWrVsWePXvMPSwiIsqj0qbKLCwAOzvg4cP/5hHJkS6zsrLCpEmTcPToUXzwwQd48OABBg4ciOTkZOk6zYXMHggdPnwYbdq0gZubGxQKBbZu3arXZtGiRfD29oatrS0CAgJw5MgRg6/v4+ODsLAwxMbGIjY2FgcOHMDDhw9N+B0QERHpSp0qu3cPWL1av41Kpa48k1qdOnUQERGBAQMGYPXq1bC05O5aqZn9brx+/RpVqlRB79690aFDB73z69evx9dff41Fixahbt26WLp0KVq2bIkrV67Aw8MDABAQEICEhAS99+7btw+VKlXCV199hcaNG8PZ2Rk1atTgh4CIiCSXes+y2rXT37Ps2DH1+kNSl9g7OjpiyZIlOscWLFiA169f49tvv4Uyo5ne+UCOKp9XKBTYsmUL2rdvrz1Wq1YtVKtWDYsXL9Yeq1ixItq3b4/g4GCj+/jyyy/xySefZLhRXUJCgk5QFRcXh1KlSrF8noiIsmXlSnU6TKXSPyd3if29e/dQvnx5JCQkoF69eli9ejW8vb3l6VwmeaJ8PjExEeHh4WjevLnO8ebNm+P48eMGXycmJgYAcP36dZw+fRotWrTIsG1wcDCcnZ21r1KlSmVt8ERERKmkTpcdO6a7gWtKCtC/v3wl9h4eHli8eDGcnJxw9OhR+Pn5YdWqVchBz0Zkk6MDoadPn0KlUqFYsWI6x4sVK4bHjx8bfJ327dujUqVK6NatG1atWvXe1Nh3332Hly9fal8PHjzI8viJiIhS01SWJST8tyWHRkoK8PXXwM2b0pfYKxQK9O7dGxcuXEC9evUQHx+PPn36oEOHDnjy5Il0HedAuWKyTNolwoUQRi0bbszTIxsbG9jY2BjcnoiIyFhly6Y/Z2jTJvULkCdd5u3tjYMHD+Knn37C+PHjsWXLFpw9exbXr1+HnZ2ddB3nIDn6iZCrqyuUSqXe05+YmBi9p0RERES5RXqbt/bpo9tGrhWplUolRo8ejdOnT6Ny5coYOHBgvgmCgBweCFlbWyMgIAChoaE6x0NDQxEYGGimUREREWVf6jlDd+8C3brpt1GpgMOH5VmRumrVqjh79ixGjRqlPXbx4kWcOHFCuk5zALOnxuLj43Er1UIKd+7cQUREBAoVKgQPDw8EBQWhe/fuqF69OurUqYNly5bh/v37GDhwoBlHTURElH2pS+yB9NNlvXsDSUnqOUVSp8tsbW21//3u3Tt06dIFV69exdixY/HDDz/AyspKmo7NyOxPhM6ePQt/f3/4+/sDAIKCguDv748ffvgBANCpUyfMnTsXkyZNQtWqVXH48GHs2rULnp6e5hw2ERGRSaWXLvPyAhIT/5tYLecGrklJSfD390dKSgqmTJmCOnXq4Nq1a9J3LLMctY5QTmToOgRERESmEBWlXnG6TBn1Rq3Nmum32bABcHWVfiFGdV8bMHDgQLx48QK2traYOXMmBg8eDIv0NlTLQQz9/c1AKBMMhIiIyFyiotQbtKZNl2nItRDjw4cP0adPH+zbtw+Aej2/DRs2wNnZWdqOsyFPLKhIRESUn6VNl6UlV6qsZMmS2LNnD+bPnw9bW1skJibCyclJ2k5lwidCmeATISIiMjdNuiwmBujUSf/8vn1AxYrqxRilTpddu3YN9vb22v0+37x5g8TERLi4uEjXaRbwiRAREVEeoVmROjBQnQ5Lq1cvdQqtcWP1nytXSjeWChUqaIMgABg5ciR8fX1x4MAB6TqVEAMhIiKiXCJtqszCArCzA/799795RHJWlsXHxyM0NBRRUVFo0qQJgoKC8O7dO+k7NiEGQkRERLlI6oUY790DVq/Wb6NSASdOSL8Io6OjI86dO4cBAwYAAObMmYPq1asjIiJCuk5NjHOEMsE5QkRElJNlVFmmUMizCKPGzp070bdvX0RHR8PKygqTJ0/Gt99+C2VGM70lxjlCRERE+UBGlWVyL8LYunVrREZGon379khKSsL//ve/XLGTvdm32CAiIqLs6dsXaNFCXVn2779A166651Uq9TmpF18sUqQINm/ejF9//RUFChRA8eLFpe3QBBgIERER5QGafcuiotLfs2zNGqBkSfV5KUvsFQoFevXqpXNs27Zt+OWXX7B8+XIUKVJEmo6ziKkxIiKiPCRtqkyhUP/5yy9AuXLylNinlpiYiMGDB+Ovv/6Cj48PduzYIU/HBmIgRERElMekriy7f1+/skzOEntra2vs2LEDPj4+iImJQZs2bTBgwADEx8dL37kBGAgRERHlQZpFGDUps7RUKmDzZulL7AGgatWqOHPmDL755hsoFAosW7YMVatWxYkTJ6Tt2AAsn88Ey+eJiCi3yymbtwJAWFgYevbsiQcPHkCpVOLy5csoX768yfth+TwREREBSH9F6tTkTJU1atQIFy9eRLdu3dCrVy9JgiBj8IlQJvhEiIiI8orMNm+dMgXo2VOezVsBIDk5GZaW0hSwG/r7m4FQJhgIERFRXvO+VJncK1JLhakxIiIiSlfaVJlSCTRooP5vuVekNjcuqEhERJQPpV6NukwZdTqscWPdNioVcPgwUKKEPKkyc2AgRERElE+lLa1Pb0VqzXYduT1VlhGmxoiIiCjDFak18mqqjIEQERERAdBdkXrdOv3zKhVw4oQ6GJJjIUY5MDVGREREWplt3tqjB5CQkDcqywA+ESIiIqJ0pLcIY6lSwLt3eauyjIEQERERpSt1quzePfUO9mmpVOrKs9yaLmNqjIiIiDJkSGXZuHHquUMpKbkvXcYnQkRERGSQjCrLjh37LzjKbekyBkJERERksNTpsvv3genT9dto0mW5AQMhIiIiMoq7O9CwofrPrl31d7MHgOfPc8ecIQZCRERElGVp02UaHTqot+zw9ARWrjTP2AzB3eczwd3niYiIMhcVpU6HxcUB7drpnlMq1ek0Ofcq4+7zREREJBtNuszJSf+cSgWEhOTMEnsGQkRERGQyZcumP2do/HjAwyPnpcsYCBEREZHJpJ0zpFSqnxQBOXNFai6oSERERCbVty/QooV6zlCZMsDNm8DBg7ptVCrg8GGgRAn1UyQ55w+lxkCIiIiITM6QFam7dv3vnLlWo2ZqjIiIiCSV0YrUGuZMlTEQIiIiIsmlXpF63Tr98+ZajZqpMSIiIpKFJl0WFaWfKlMq1fOJ5MYnQkRERCSr9CrLli41z4RpPhEiIiIi2aWtLGPVGBEREeUraSvLzIGpMSIiIsq3GAgRERFRvsVAiIiIiPItBkJERESUbzEQIiIionyLgRARERHlWwyEiIiIKN9iIERERET5FgMhIiIiyrcYCBEREVG+xUCIiIiI8i3uNZYJIQQAIC4uzswjISIiIkNpfm9rfo9nhIFQJl69egUAKFWqlJlHQkRERMZ69eoVnJ2dMzyvEJmFSvlcSkoK/v33Xzg5OUGhUGT5OnFxcShVqhQePHiAAgUKmHCElBbvtXx4r+XDey0f3mv5SHmvhRB49eoV3NzcYGGR8UwgPhHKhIWFBdzd3U12vQIFCvB/LJnwXsuH91o+vNfy4b2Wj1T3+n1PgjQ4WZqIiIjyLQZCRERElG8xEJKJjY0NJkyYABsbG3MPJc/jvZYP77V8eK/lw3stn5xwrzlZmoiIiPItPhEiIiKifIuBEBEREeVbDISIiIgo32IgRERERPkWAyEZLFq0CN7e3rC1tUVAQACOHDli7iHlesHBwahRowacnJxQtGhRtG/fHtevX9dpI4TAxIkT4ebmBjs7OzRs2BCXL18204jzjuDgYCgUCnz99dfaY7zXpvPw4UN069YNhQsXhr29PapWrYrw8HDted5r00hOTsa4cePg7e0NOzs7lC5dGpMmTUJKSoq2De911hw+fBht2rSBm5sbFAoFtm7dqnPekPuakJCAYcOGwdXVFQ4ODmjbti2ioqKkGbAgSa1bt05YWVmJ5cuXiytXrojhw4cLBwcHce/ePXMPLVdr0aKFWLVqlbh06ZKIiIgQrVu3Fh4eHiI+Pl7bZvr06cLJyUls2rRJREZGik6dOokSJUqIuLg4M448dzt9+rTw8vISfn5+Yvjw4drjvNem8fz5c+Hp6Sl69eolTp06Je7cuSP+/vtvcevWLW0b3mvTmDJliihcuLDYsWOHuHPnjti4caNwdHQUc+fO1bbhvc6aXbt2ie+//15s2rRJABBbtmzROW/IfR04cKAoWbKkCA0NFefOnRONGjUSVapUEcnJySYfLwMhidWsWVMMHDhQ51iFChXEmDFjzDSivCkmJkYAEIcOHRJCCJGSkiKKFy8upk+frm3z7t074ezsLJYsWWKuYeZqr169EmXLlhWhoaGiQYMG2kCI99p0Ro8eLerVq5fhed5r02ndurXo06ePzrFPP/1UdOvWTQjBe20qaQMhQ+5rbGyssLKyEuvWrdO2efjwobCwsBB79uwx+RiZGpNQYmIiwsPD0bx5c53jzZs3x/Hjx800qrzp5cuXAIBChQoBAO7cuYPHjx/r3HsbGxs0aNCA9z6LhgwZgtatW6Np06Y6x3mvTWfbtm2oXr06OnbsiKJFi8Lf3x/Lly/Xnue9Np169eph//79uHHjBgDgwoULOHr0KFq1agWA91oqhtzX8PBwJCUl6bRxc3ODj4+PJPeem65K6OnTp1CpVChWrJjO8WLFiuHx48dmGlXeI4RAUFAQ6tWrBx8fHwDQ3t/07v29e/dkH2Nut27dOpw7dw5nzpzRO8d7bTq3b9/G4sWLERQUhLFjx+L06dP46quvYGNjgx49evBem9Do0aPx8uVLVKhQAUqlEiqVClOnTkXnzp0B8HMtFUPu6+PHj2FtbY2CBQvqtZHidycDIRkoFAqdr4UQesco64YOHYqLFy/i6NGjeud477PvwYMHGD58OPbt2wdbW9sM2/FeZ19KSgqqV6+OadOmAQD8/f1x+fJlLF68GD169NC2473OvvXr12Pt2rX4/fffUblyZURERODrr7+Gm5sbevbsqW3Hey2NrNxXqe49U2MScnV1hVKp1ItgY2Ji9KJhypphw4Zh27ZtCAsLg7u7u/Z48eLFAYD33gTCw8MRExODgIAAWFpawtLSEocOHcK8efNgaWmpvZ+819lXokQJVKpUSedYxYoVcf/+fQD8XJvSyJEjMWbMGHzxxRfw9fVF9+7dMWLECAQHBwPgvZaKIfe1ePHiSExMxIsXLzJsY0oMhCRkbW2NgIAAhIaG6hwPDQ1FYGCgmUaVNwghMHToUGzevBkHDhyAt7e3znlvb28UL15c594nJibi0KFDvPdGatKkCSIjIxEREaF9Va9eHV27dkVERARKly7Ne20idevW1VsG4saNG/D09ATAz7UpvXnzBhYWur8ClUqltnye91oahtzXgIAAWFlZ6bR59OgRLl26JM29N/n0a9KhKZ9fuXKluHLlivj666+Fg4ODuHv3rrmHlqsNGjRIODs7i4MHD4pHjx5pX2/evNG2mT59unB2dhabN28WkZGRonPnzix9NZHUVWNC8F6byunTp4WlpaWYOnWquHnzpvjtt9+Evb29WLt2rbYN77Vp9OzZU5QsWVJbPr9582bh6uoqRo0apW3De501r169EufPnxfnz58XAMTs2bPF+fPntcvGGHJfBw4cKNzd3cXff/8tzp07Jxo3bszy+dxs4cKFwtPTU1hbW4tq1appS7wp6wCk+1q1apW2TUpKipgwYYIoXry4sLGxEfXr1xeRkZHmG3QekjYQ4r02ne3btwsfHx9hY2MjKlSoIJYtW6ZznvfaNOLi4sTw4cOFh4eHsLW1FaVLlxbff/+9SEhI0Lbhvc6asLCwdP9+7tmzpxDCsPv69u1bMXToUFGoUCFhZ2cnPv74Y3H//n1JxqsQQgjTP2ciIiIiyvk4R4iIiIjyLQZCRERElG8xECIiIqJ8i4EQERER5VsMhIiIiCjfYiBERERE+RYDISIiIsq3GAgRUZY1bNgQX3/9tbmHoSWEQP/+/VGoUCEoFApERESYe0hElMMxECKiPGPPnj0ICQnBjh078OjRI/j4+Jh7SLLy8vLC3LlzzT0MolzF0twDICJKTaVSQaFQ6G2IaYh//vkHJUqUyBObYiYlJcHKysrcwyDK8/hEiCiXa9iwIb766iuMGjUKhQoVQvHixTFx4kTt+bt37+qliWJjY6FQKHDw4EEAwMGDB6FQKLB37174+/vDzs4OjRs3RkxMDHbv3o2KFSuiQIEC6Ny5M968eaPTf3JyMoYOHQoXFxcULlwY48aNQ+qdexITEzFq1CiULFkSDg4OqFWrlrZfAAgJCYGLiwt27NiBSpUqwcbGBvfu3Uv3ez106BBq1qwJGxsblChRAmPGjEFycjIAoFevXhg2bBju378PhUIBLy+vdK+h6W/r1q0oV64cbG1t0axZMzx48ECn3eLFi/HBBx/A2toa5cuXx5o1a7TnvvnmG7Rp00b79dy5c6FQKLBz507tsfLly2Pp0qXar1etWoWKFSvC1tYWFSpUwKJFi/R+Rhs2bEDDhg1ha2uLtWvXpjv+iRMnwsPDAzY2NnBzc8NXX30FQP05uHfvHkaMGAGFQgGFQqF9z/Hjx1G/fn3Y2dmhVKlS+Oqrr/D69WvteS8vL0yePBldunSBo6Mj3NzcMH/+fIP6Jcr1JNnBjIhk06BBA1GgQAExceJEcePGDfHrr78KhUIh9u3bJ4QQ4s6dOwKAOH/+vPY9L168EABEWFiYEOK/TRJr164tjh49Ks6dOyfKlCkjGjRoIJo3by7OnTsnDh8+LAoXLiymT5+u07ejo6MYPny4uHbtmli7dq2wt7fX2Si0S5cuIjAwUBw+fFjcunVLzJw5U9jY2IgbN24IIYRYtWqVsLKyEoGBgeLYsWPi2rVrIj4+Xu/7jIqKEvb29mLw4MHi6tWrYsuWLcLV1VVMmDBBCCFEbGysmDRpknB3dxePHj0SMTEx6d4vTX/Vq1cXx48fF2fPnhU1a9YUgYGB2jabN28WVlZWYuHCheL69eti1qxZQqlUigMHDgghhNi2bZtwdnYWKpVKCCFE+/bthaurqxg5cqQQQohHjx4JAOLq1atCCCGWLVsmSpQoITZt2iRu374tNm3aJAoVKiRCQkJ0fkZeXl7aNg8fPtQb+8aNG0WBAgXErl27xL1798SpU6e09/rZs2fC3d1dTJo0STx69Eg8evRICCHExYsXhaOjo5gzZ464ceOGOHbsmPD39xe9evXSXtfT01M4OTmJ4OBgcf36dTFv3jyhVCq1n6H39UuU2zEQIsrlGjRoIOrVq6dzrEaNGmL06NFCCOMCob///lvbJjg4WAAQ//zzj/bYgAEDRIsWLXT6rlixokhJSdEeGz16tKhYsaIQQohbt24JhUKh90u9SZMm4rvvvhNCqAMTACIiIuK93+fYsWNF+fLldfpauHChcHR01AYkc+bMEZ6enu+9jqa/kydPao9dvXpVABCnTp0SQggRGBgo+vXrp/O+jh07ilatWgkh1EGXhYWFOHv2rEhJSRGFCxcWwcHBokaNGkIIIX7//XdRrFgx7XtLlSolfv/9d53rTZ48WdSpU0cI8d/PaO7cue8d+6xZs0S5cuVEYmJiuuc9PT3FnDlzdI51795d9O/fX+fYkSNHhIWFhXj79q32fR999JFOm06dOomWLVsa1C9RbsbUGFEe4Ofnp/N1iRIlEBMTk63rFCtWDPb29ihdurTOsbTXrV27tk4apk6dOrh58yZUKhXOnTsHIQTKlSsHR0dH7evQoUP4559/tO+xtrbW+x7Sunr1KurUqaPTV926dREfH4+oqCijvk9LS0tUr15d+3WFChXg4uKCq1evavuqW7euznvq1q2rPe/s7IyqVavi4MGDiIyMhIWFBQYMGIALFy7g1atXOHjwIBo0aAAAePLkCR48eIC+ffvq3IMpU6bo3AMAOmNKT8eOHfH27VuULl0a/fr1w5YtW7SpwYyEh4cjJCREp+8WLVogJSUFd+7c0barU6eOzvvq1Kmj/X6z0i9RbsHJ0kR5QNpJtQqFAikpKQCgnXQsUs3bSUpKyvQ6CoXivdc1REpKCpRKJcLDw6FUKnXOOTo6av/bzs5OJ8BJjxBCr43me8rsvelJ7z2pj6XXV+pjDRs2xMGDB2FtbY0GDRqgYMGCqFy5Mo4dO4aDBw9qlxXQ3K/ly5ejVq1aOtdMe08cHBzeO+ZSpUrh+vXrCA0Nxd9//43Bgwdj5syZOHToUIYTq1NSUjBgwIB05/R4eHi8tz/N95uVfolyCwZCRHlckSJFAACPHj2Cv78/AJh0fZ2TJ0/qfV22bFkolUr4+/tDpVIhJiYGH374Ybb6qVSpEjZt2qQTkBw/fhxOTk4oWbKkUddKTk7G2bNnUbNmTQDA9evXERsbiwoVKgAAKlasiKNHj6JHjx7a9xw/fhwVK1bUft2wYUOsXLkSlpaWaNq0KQCgQYMGWLduHW7cuKF9IlSsWDGULFkSt2/fRteuXbN+A/6fnZ0d2rZti7Zt22LIkCGoUKECIiMjUa1aNVhbW0OlUum0r1atGi5fvowyZcq897rp/Rw19yOzfolyMwZCRHmcnZ0dateujenTp8PLywtPnz7FuHHjTHb9Bw8eICgoCAMGDMC5c+cwf/58zJo1CwBQrlw5dO3aFT169MCsWbPg7++Pp0+f4sCBA/D19UWrVq0M7mfw4MGYO3cuhg0bhqFDh+L69euYMGECgoKCjC61t7KywrBhwzBv3jxYWVlh6NChqF27tjYwGjlyJD7//HNUq1YNTZo0wfbt27F582b8/fff2mvUr18fr169wvbt2zFlyhQA6uCoQ4cOKFKkCCpVqqRtO3HiRHz11VcoUKAAWrZsiYSEBJw9exYvXrxAUFCQweMOCQmBSqVCrVq1YG9vjzVr1sDOzg6enp4A1NVfhw8fxhdffAEbGxu4urpi9OjRqF27NoYMGYJ+/frBwcEBV69eRWhoqE5l2LFjxzBjxgy0b98eoaGh2Lhxo7YKLrN+iXI1c05QIqLsa9CggRg+fLjOsXbt2omePXtqv75y5YqoXbu2sLOzE1WrVhX79u1Ld7L0ixcvtO9ZtWqVcHZ21rnuhAkTRJUqVXT6Hjx4sBg4cKAoUKCAKFiwoBgzZozOhObExETxww8/CC8vL2FlZSWKFy8uPvnkE3Hx4sUM+8nIwYMHRY0aNYS1tbUoXry4GD16tEhKStKeN3SytLOzs9i0aZMoXbq0sLa2Fo0bNxZ3797Vabdo0SJRunRpYWVlJcqVKydWr16td62AgABRpEgR7ff77NkzoVAoxGeffabX9rfffhNVq1YV1tbWomDBgqJ+/fpi8+bNQoj0J7SnZ8uWLaJWrVqiQIECwsHBQdSuXVtngvuJEyeEn5+fsLGxEan/ej99+rRo1qyZcHR0FA4ODsLPz09MnTpVe97T01P8+OOP4vPPPxf29vaiWLFiOhO3M+uXKDdTCJFq4gARUR4XEhKCr7/+GrGxseYeSo7h5eWFr7/+Okdtl0IkF1aNERERUb7FQIiIiIjyLabGiIiIKN/iEyEiIiLKtxgIERERUb7FQIiIiIjyLQZCRERElG8xECIiIqJ8i4EQERER5VsMhIiIiCjfYiBERERE+RYDISIiIsq3/g/hVK2BESHbmwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Δλ = Float64[]\n", + "y = x\n", + "for i = 1:100\n", + " y = A*y\n", + " y = y / norm(y)\n", + " λ̃ = (y'A*y) / (y'y)\n", + " push!(Δλ, abs(λ̃ - 5))\n", + "end\n", + "semilogy(1:length(Δλ), Δλ, \"b.-\")\n", + "semilogy(1:length(Δλ), (4/5).^(1:length(Δλ)), \"k--\")\n", + "xlabel(\"number of power steps\")\n", + "ylabel(\"error in eigenvalue\")\n", + "title(L\"convergence of power method $\\lambda$ for $\\lambda=1,2,3,4,5$\")\n", + "legend([\"error\", L\"(4/5)^n\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is converging at the same rate.\n", + "\n", + "(For symmetric matrices, it turns out that the eigenvalue converges even faster than the eigenvalue, but that is not a topic for 18.06.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Shift-and-invert\n", + "\n", + "The power method finds the eigenvector (and eigenvalue) for the biggest |λ|. If, instead, we want to find the *smallest* |λ|, we can apply the power method to $A^{-1}$. More generally, if we want to find the eigenvalue *closest to some μ*, we can apply the power method to $(A - \\mu I)^{-1}$. This is called a **shift and invert method**:\n", + "\n", + "\n", + "* Starting with a random $x$, repeatedly solve $(A-\\mu I)y = x$ and then replace $x \\leftarrow y / \\Vert y \\Vert $.\n", + "\n", + "Notice that we don't usually compute $(A - \\mu I)^{-1}$ explicitly; instead, we solve $(A-\\mu I)y = x$ by whatever the best available method is. (If $A$ is a huge sparse matrix, this is a tricky problem in itself, which requires its own iterative or sparse methods.)\n", + "\n", + "If $\\lambda$ is the closest eigenvalue to $\\mu$, and $\\lambda^\\prime$ is the second-closest, the same analysis as above tells us that the errors on the n-th iteration should go like\n", + "$$\n", + "\\mathrm{error} \\sim \\left| \\frac{\\lambda - \\mu}{\\lambda^\\prime - \\mu} \\right|^n ,\n", + "$$\n", + "since $(\\lambda - \\mu)^{-1}$ and $(\\lambda^\\prime - \\mu)^{-1}$ are the largest- and second-largest-magnitude eigenvalues of $(A - \\mu I)^{-1}$, respectively.\n", + "\n", + "Let's try this on our example matrix above to find the eigenvalue closest to 2.1. This should give us 2, and the error should go as $|2-2.1|^n / |3-2.1|^n = 1/9^n$:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHHCAYAAAACpgSVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKV0lEQVR4nO3dd1QT2d8G8Cf0DiqKIoLYGwhixQJYcLHr7rr2hm3tsnZdu+Lq2hV77z/X3kXF3guKa18bVqxgp933j3mJRooEApPA8zknBzKZzDxJgPlyZ+69CiGEABERERFpLT25AxARERFRyliwEREREWk5FmxEREREWo4FGxEREZGWY8FGREREpOVYsBERERFpORZsRERERFqOBRsRERGRlmPBRkRERKTlWLARERERaTkWbERERERajgUbab0NGzagdOnSMDU1hUKhQGhoaJq3NXr0aCgUCrx8+TLF9ZYvXw6FQoH79+//MMvJkycxevRovH37Ns25MkrC602N5F6zttHW9zulXKn9uUsvdT7vz58/w8DAAJaWlujdu7da+9Hk72RqpSdvWr179w6DBg2Cr68vcufODYVCgdGjR6dpW4cOHUKnTp1QokQJmJubI3/+/GjcuDEuXLig9rZCQ0NRv359ODo6wtTUFDlz5kSVKlWwevXqNGX71uLFi6FQKGBhYaH2cw8fPgyFQpHk7fTp0+nOJof0fm6a/BliwUZa7cWLF2jbti0KFy6MvXv34tSpUyhWrFiG77d+/fo4deoU8uXL98MsJ0+exJgxY7SugFBXUq9ZG2nr+62tuZKjUChw6NAhVKxYEXPmzMGtW7dS9Ty5fifTmjc9Xr16hYULF+LLly9o0qRJurY1b9483L9/H3379sXu3bsxc+ZMREREoHLlyjh06JBa23r79i0KFCiAiRMnYvfu3Vi5ciUKFiyItm3bYvz48WnO+PjxYwwYMAD29vZp3gYATJw4EadOnVK5lSlTJl3blEt6PzdN/gwZpOvZpHEfP36EmZmZ3DG0xq1btxATE4M2bdrAy8sr0/abO3du5M6dWyuyZJakXrM24e+GZhkbG6NGjRoYNGgQDh06hAsXLqSq8MqI34PUfLZpzZseTk5OePPmjbJ1dPHixWne1ty5c5EnTx6VZT/99BOKFCmCiRMnombNmqnelre3N7y9vVWWNWjQAPfu3cPChQsxYsSINGXs3r07atSogZw5c+Kff/5J0zYAoGjRoqhcuXKan69N0vu5afJnSGdb2G7cuIGWLVvCzs4OxsbGcHR0RLt27fDlyxflOsePH0etWrVgaWkJMzMzeHp6YteuXSrbSTiF8O+//6Jly5awtraGnZ0dOnXqhMjISADA1q1boVAocPDgwUQ55s2bB4VCgStXriiX3b59G61atUKePHlgbGyMkiVLYu7cuYmem7Dvixcv4pdffkGOHDlQuHBhAMC2bdvg6uoKY2NjFCpUCDNnzkz2dEdq9pea16nu+5va15mcH30+HTp0QLVq1QAAv/32GxQKRaI/Ut968eIFunbtigIFCsDY2Bi5c+dG1apVceDAgUTrPn/+PMX34fvTg8llGT16NAYOHAgAcHZ2Vjb/Hz58ONmcd+7cQceOHVG0aFGYmZkhf/78aNiwIcLCwlTWU/cz27VrF9zc3GBsbAxnZ2f8/fffyWZIyvevObX7z4jfj+R+N9Lyfids68qVK/j1119hbW2NnDlzIiAgALGxsbh58yZ++uknWFpaomDBgpg8eXKibfwoc2pz/ejnDkjd3y0g/Z93ghIlSgBAqk5r/uh3Up2/uUn93dN03vRK+Bw14fuDPgBYWFigVKlSCA8P18g+bG1tYWCQtnaY1atX48iRIwgKCtJIFk1zdnZG+/btEy2vWbNmhv4Dnd7PTZM/QxA6KDQ0VFhYWIiCBQuK+fPni4MHD4rVq1eL5s2bi6ioKCGEEIcPHxaGhobCw8NDbNiwQWzdulX4+voKhUIh1q9fr9zWqFGjBABRvHhxMXLkSBEcHCymTZsmjI2NRceOHYUQQsTExIg8efKI1q1bJ8pSsWJFUa5cOeX9f//9V1hbWwsXFxexcuVKsX//fvHHH38IPT09MXr0aJXnJuzbyclJDB48WAQHB4utW7eKPXv2CD09PeHt7S22bNkiNm7cKCpVqiQKFiwovv/IUru/1LxOdd5fdV5nUlLz+dy5c0fMnTtXABATJ04Up06dEv/++2+y26xbt67InTu3WLhwoTh8+LDYunWrGDlypNqftxBCLFu2TAAQ9+7dSzFLeHi46N27twAgNm/eLE6dOiVOnTolIiMjk8155MgR8ccff4h//vlHHDlyRGzZskU0adJEmJqaihs3bqTpMztw4IDQ19cX1apVE5s3bxYbN24UFSpUEI6Ojol+ZpLz/WtO7f4z4vcjud+NtLzf376OcePGieDgYDFo0CABQPTq1UuUKFFCzJo1SwQHB4uOHTsKAGLTpk1qZf5RrtS+l6n9u6WJzzvB77//LgAIX1/fH66b0u+kun9zv/9sNZ03Pj5exMTEpOqWGi9evBAAxKhRo1Kd9Ufevn0rrK2tRdOmTdP0/Li4OBETEyMiIiLE3LlzhYGBgZg/f77a23n+/LnIlSuXmDt3rhBCiPbt2wtzc3O1txMSEiIAiDx58gh9fX1haWkpfH19xbFjx9Te1rdevnwpAIhZs2apLI+PjxfW1taif//+ST5P0z8DCdL6uaX3Z0gnC7aaNWsKGxsbERERkew6lStXFnny5BHv3r1TLouNjRVlypQRDg4OIj4+Xgjx9Y/H5MmTVZ7fo0cPYWJiolwvICBAmJqairdv3yrXuXbtmgAgZs+erVxWt25d4eDgkOgA0qtXL2FiYiJev36tXJaw75EjR6qsW6FCBVGgQAHx5csX5bJ3796JXLlyJfpjnNr9pfZ1CpG691ed15mU1H4+CX8ANm7cmOL2hBDCwsJC9OvXL8V1Uvs+fF+8pJRlypQpidZVR2xsrIiOjhZFixZV+cOjzmdWqVIlYW9vLz59+qRcFhUVJXLmzJnugi01+9f070dyvxtCqP9+J2xr6tSpKsvd3NyUBVaCmJgYkTt3btGsWTO1M6eUK7XvZWp/LzTxeQshxL59+wQAkSNHDpE7d+5UPSe53wN1/+Ym9dlqMm9CztTcUvOzlBEFW+vWrYWBgYE4f/58mp7frVs35WswMjISQUFBadrOzz//LDw9PZWfUVoLtosXL4q+ffuKLVu2iKNHj4qlS5eKkiVLCn19fbF37940ZRNCiL179woA4uTJkyrLb968KQCI1atXJ/k8Tf8MJEjr55benyGdOyX68eNHHDlyBM2bN0/2epsPHz7gzJkz+OWXX1R6uujr66Nt27Z49OgRbt68qfKcRo0aqdx3dXXF58+fERERAQDo1KkTPn36hA0bNijXWbZsGYyNjdGqVSsAUi+mgwcPomnTpjAzM0NsbKzyVq9ePXz+/DnJnjI///yzSvbz58+jSZMmMDIyUi63sLBAw4YNVZ6Xlv396HWm5v1N6+v89jWq+/mkRsWKFbF8+XKMHz8ep0+fRkxMTLLr/uh90IRv35fY2FgIIZTLJ06ciFKlSsHIyAgGBgYwMjLC7du3cf36dbWzfvjwAefOnUOzZs1gYmKiXM/S0jLRz0xKuZKTmvcqo34/vv3dSK8GDRqo3C9ZsiQUCgX8/PyUywwMDFCkSBE8ePAgzZlTktJ7mdrfC3U/7+S8ffsWnTp1QuPGjdGjRw+8ePECT548SfXzv5WW32l1P1t183p4eODcuXOpuqX3Ivu0+PPPP7FmzRpMnz4dHh4eadrGsGHDcO7cOezatQudOnVCr1691D41vmnTJuzYsQOLFi1K96k7d3d3zJgxA02aNEH16tXRsWNHnDx5Evny5cOgQYPSvN1z587BwMAAbm5uKssTemom9/5lxM+AJj63tNK5Tgdv3rxBXFwcHBwcUlxHCJFkb7eED+XVq1cqy3PlyqVy39jYGADw6dMnAEDp0qVRoUIFLFu2DF27dkVcXBxWr16Nxo0bI2fOnMptxsbGYvbs2Zg9e3aS2ZLq1v9tzoTsdnZ2idb7flla9vej15ma9zetrzNBWj6f1NiwYQPGjx+PxYsX488//4SFhQWaNm2KyZMnI2/evCrr/uh9SK/79+/D2dlZZVlISAi8vb0REBCAuXPnYvDgwfDy8kKOHDmgp6eHzp07J7n/1Hxm8fHxiV4jgETLUsqVnNS8Vxn1+6HJHqsJORIYGRnBzMxMpehJWB4VFZXmzClJ6b2MiYlJ1e+FhYVFqj/vlPTs2RMxMTFYtGgRjh49CkC6LiwtxUtafqfV/WzVzWthYZHoAJ+ctF73lVZjxozB+PHjMWHCBPTq1SvN23F0dISjoyMAoF69egCAoUOHon379qnqQPT+/Xv07NkTvXv3hr29vbKHc3R0NACpSDY0NIS5uXmaM9rY2KBBgwaYP38+Pn36BFNTU7W3cf78eZQqVSrRc8+fPw8LC4tkO59o+mdAU59bWulcwZYzZ07o6+vj0aNHya6TcAB8+vRposcS/iOztbVVe98dO3ZEjx49cP36ddy9exdPnz5Fx44dVfab8B9lz549k9zG9wdLACr/1eTIkQMKhQLPnz9PtN6zZ89U7qd1fylJ7fubnv1m1Odja2uLGTNmYMaMGXj48CG2b9+OIUOGICIiAnv37lV7e+lhb2+Pc+fOqSwrXrw4AOni3nbt2mHixIkqj798+RI2NjZq7yvhZ+b7nw8g8c9MSrnSKyN+PzR2sW4aZcTvWEr7Ss3vhTqfd3L++ecfrF27Fjt27EDu3LlRrlw5AFIBlHDgz4js31Lns01L3iNHjsDHxydV27937x4KFiyY6jzpMWbMGIwePRqjR4/GsGHDNLrtihUrYv78+bh7926qCraXL1/i+fPnmDp1KqZOnZro8Rw5cqBx48bYunVrunIltOKn9ff5/PnzqFOnTqLlhw8fhru7O/T0kj5ZqMmfgYz83FJL5wo2U1NTeHl5YePGjZgwYUKSB3Zzc3NUqlQJmzdvxt9//62syuPj47F69Wo4ODikqTt4y5YtERAQgOXLl+Pu3bvInz8/fH19lY+bmZnBx8cHly5dgqurq8opzdQyNzdH+fLlsXXrVvz999/Kbbx//x47d+5UWVcT+/teat7f9O43oz6fbzk6OqJXr144ePAgTpw4ka5t/UhSLU5GRkYoX758kusrFArlcxLs2rULjx8/RpEiRdTev7m5OSpWrIjNmzdjypQpyhajd+/eYceOHSrrppQrvTLj9wPQfGtoStTJnN5cqf29UCgUqf68k/Ls2TN0794dXbt2VZ4mdnZ2ho2NDS5dupSh2dMirXkTToelRmadEh03bhxGjx6NESNGYNSoURrffkhICPT09FCoUKFUrZ83b16EhIQkWj5p0iQcOXIEe/bsSdM/z9968+YNdu7cCTc3t0St2anx7NkzPH78OFEL2JEjR3Dx4kX069cv2edq6mcgoz+31NK5gg0Apk2bhmrVqqFSpUoYMmQIihQpgufPn2P79u1YsGABLC0tERgYiDp16sDHxwcDBgyAkZERgoKCcPXqVaxbty5Nlb6NjQ2aNm2K5cuX4+3btxgwYECiyn7mzJmoVq0aqlevjt9//x0FCxbEu3fvcOfOHezYsSNVA+2NHTsW9evXR926ddG3b1/ExcVhypQpsLCwwOvXrzW+v++l5v1N7341/flERkbCx8cHrVq1QokSJWBpaYlz585h7969aNasmdrvgTpcXFwASJ9F+/btYWhoiOLFi8PS0jLJ9Rs0aIDly5ejRIkScHV1xYULFzBlypQUT0P/yLhx4/DTTz+hTp06+OOPPxAXF4e//voL5ubmiX5mMkpm/X6o+36nV2ozayJXan8v0vN5d+nSBTly5MC0adNUlru7u6drqIyM+JubnryWlpYa+edkz549+PDhA969ewcAuHbtmnKMsnr16inHj1MoFPDy8kp2iJmpU6di5MiR+Omnn1C/fv1E1z5+P25ZStvr2rUrrKysULFiRdjZ2eHly5fYuHEjNmzYgIEDByZqXUtuWyYmJkleDrF8+XLo6+sn+VhKuVq1agVHR0eUL18etra2uH37NqZOnYrnz59j+fLlam0rQULBtXHjRpQqVQpFihRBaGioclidiIgIXL16NcmBeTXxM5Daz+3IkSOoVasWRo4ciZEjR6qsk9qfoR9KU1cFLXDt2jXx66+/ily5cgkjIyPh6OgoOnToID5//qxc59ixY6JmzZrC3NxcmJqaisqVK4sdO3aobCehx9KLFy9UlifVS1AIIfbv36/sVXLr1q0ks927d0906tRJ5M+fXxgaGorcuXMLT09PMX78+FTtWwghtmzZIlxcXJSvbdKkSaJPnz4iR44cadqfuq8zNe9val9nclLz+aS2l+jnz59F9+7dhaurq7CyshKmpqaiePHiYtSoUeLDhw9qvw/q9BIVQoihQ4cKe3t7oaenJwCIkJCQZLO+efNG+Pv7izx58ggzMzNRrVo1cezYMeHl5SW8vLzUzppg+/btwtXVVeVnJmEbqZFcL9HU7l8Izf1+pPS7IYR673dy20quJ5yXl5coXbq02plTyqXOe5ma3wsh0vZ5L1q0SOjr64tTp04leiwgIEAoFArl0D3JSen3ID1/czMqb3o5OTn9sGfhu3fvBADRokWLZLfj5eWVYi/Fb/1oe0uXLhXVq1cXtra2wsDAQNjY2AgvLy+xatWqROumJtv3kvvd+NG2AgMDhZubm7C2thb6+void+7comnTpuLs2bNpzjVy5EhhYGAgNm7cKAoWLChMTEyEt7e3OHPmjChSpIjIly9fot6jmpTazy3h9yKpHqCp+RlKDYUQP+giRlohJiYGbm5uyJ8/P/bv3y93HCIi+n+7d+9GgwYNcPnyZWVLq7ZsT9e3Va9ePTx79gwXL15M1/6yAp08JZod+Pv7o06dOsiXLx+ePXuG+fPn4/r165g5c6bc0YiI6BshISFo0aKFRoo1TW9P17d14cIFNG3aNN37ywrYwqalmjdvjpMnT+LFixcwNDREuXLlMGzYMPz0009yRyMiIspwDx8+hJOTE5YsWYJOnTrJHUd2LNiIiIiItJzOzXRARERElN2wYCMiIiLScizYiIiIiLQce4mmUXx8PJ48eQJLS0vZp88hIiKi1BFC4N27d7C3t092WittxIItjZ48eYICBQrIHYOIiIjSIDw8PF0zzGQ2FmxplDDdTHh4OKysrGROQ0RERKkRFRWFAgUKZNh0dhmFBVsaJZwGtbKyYsFGRESkY3TtcibdOXlLRERElE2xYCMiIiLScizYiIiIiLQcr2EjIiLSInFxcYiJiZE7hs4yNDSEvr6+3DE0jgUbERGRFhBC4NmzZ3j79q3cUXSejY0N8ubNq3MdC1LCgo2IiEgLJBRrefLkgZmZWZYqNjKLEAIfP35EREQEACBfvnwyJ9IcFmxEREQyi4uLUxZruXLlkjuOTjM1NQUAREREIE+ePFnm9Cg7HRAREcks4Zo1MzMzmZNkDQnvY1a6FpAFGxERkZbgaVDNyIrvIws2IiIiIi3Hgo2IiIhIy7FgIyIiItJyLNiIiIgoUwghEBsbm2h5dHR0mraX1ufpIhZsWujChQto2bIlXr16JXcUIiLSQY8eASEh0teMJoTA5MmTUahQIZiamqJs2bL4559/AACHDx+GQqHAvn37UL58eRgbG+PYsWPw9vZGr169EBAQAFtbW9SpUwcAcOTIEVSsWBHGxsbIly8fhgwZolLgJfe87IDjsGmZ+Ph4tGnTETduhCEk5ChWr16B2rVryx2LiIgymRDAx4/qP2/FCqB3byA+HtDTA2bPBtq3V28bZmZAajtajhgxAps3b8a8efNQtGhRHD16FG3atEHu3LmV6wwaNAh///03ChUqBBsbm//PuQK///47Tpw4ASEEHj9+jHr16qFDhw5YuXIlbty4gS5dusDExASjR4/+5vWpPi+7UIjs9Go1KCoqCtbW1oiMjISVlZXGtrtgAdC9+wUArQHcBAAEBARg4sSJMDY21th+iIhIe3z+/Bn37t2Ds7MzTExMAAAfPgAWFvLkef8eMDf/8XofPnyAra0tDh06hCpVqiiXd+7cGR8/fkTXrl3h4+ODrVu3onHjxsrHvb29ERkZiUuXLimXDR8+HJs2bcL169eVw3IEBQVh8ODBiIyMhJ6eXpLPS0pS72eCjDp+ZzSeEtUijx4B3bsDgAeACwC6AwCmTZuGihUr4t9//5UxHRERkapr167h8+fPqFOnDiwsLJS3lStX4r///lOuV758+UTP/X7Z9evXUaVKFZUx1KpWrYr379/j0TfndpPaVnbAU6Ja5Pbtb++ZA5gHoD5sbDrhypUr8PDwwOnTp+Hm5iZLPiIiyjxmZlJLlzoePwZKlpROhybQ1weuXQPy51dv36kR//872rVrF/J/twNjY2Nl0WaeRHPd98uEEIkGvE04Cfjt8qS2lR2wYNMiRYtK1xt8+4umUDTAoUNhGDGiE6Kjo+Hq6ipfQCIiyjQKRepOS36rWDFg4UKgWzcgLk4q1hYskJZnhFKlSsHY2BgPHz6El5dXose/bWVLzbY2bdqkUridPHkSlpaWiYrB7IgFmxZxcFD9RQOki07v37fDzp078f79e+jpSWexP3z4gMOHD6N+/foyJiYiIm3j7w/UrQvcuQMUKSIdWzKKpaUlBgwYgP79+yM+Ph7VqlVDVFQUTp48CQsLCzg5OaV6Wz169MCMGTPQu3dv9OrVCzdv3sSoUaMQEBCgPPZlZ3wHtIy/P3D/PnDoENC2rbSsdWvg3DkFLC0tlev1798fDRo0QOfOnfFe3TZzIiLK0hwcAG/vjC3WEowbNw4jR45EYGAgSpYsibp162LHjh1wdnZWazv58+fH7t27cfbsWZQtWxbdu3eHv78/RowYkUHJdQt7iaZRZvQyiY0FGjcGdu8G8uQBTp8GnJ2lc/pDhw7F5MmTIYRAkSJFsHr1alSqVClDchARUcZKqVcjqY+9RClTGRgA69cDbm5ARARQvz7w5o108eWkSZNw6NAhFChQAHfu3EHVqlUxbty4JEeQJiIiIt3Ggk3LWVoCO3dKvXuuXwd+/hlImInD29sbly9fRosWLRAXF4eRI0fCy8sLDx8+lDc0ERERaRQLNh2QP790WtTSUppqpEsXqTMCAOTIkQNr167F6tWrYWVlhVu3bsHIyEjewERERKRRLNh0hKsrsHGj1EV75Upg3LivjykUCrRu3RqXL1/GP//8g7x58yof+5iWeU2IiIhIq7Bg0yF16wJBQdL3o0YBq1apPl6wYEGVcXA2bdqEYsWK4dChQ5mYkoiIiDSNBZuO6doVGDxY+t7fHzh8OOn1hBCYNm0aHj9+jFq1amHAgAH48uVLpuUkIiIizWHBpoMmTgSaNwdiYoCmTaXOCN9TKBTYv38/unXrBgCYOnUqKlWqxPlIiYiIdBALNh2kpwcsXw54egJv30rDfUREJF7P3Nwc8+fPx7Zt22Bra4vLly+jfPnymD17Njj8HhERke5gwaajTE2BbduAwoWBe/eARo2A5PoXNGrUCGFhYfDz88Pnz5/Rp08fnDp1KnMDExERUZqxYNNhtrbScB85cwJnzkhTWX07cfy38ubNi127dmHOnDno378/PD09MzcsERERpRkLNh1XrJjU0mZkBGzeDAwalPy6CoUCPXv2xLRp05TLwsPD0a9fP3z48CET0hIREVFaZNuCLTw8HN7e3ihVqhRcXV2xceNGuSOlWbVq0jVtADB16tehP35ECIGOHTti5syZcHd3x9mzZzMsIxERkbr8/PwwatQoVK5cGU5OTrh27ZrckWSTbQs2AwMDzJgxA9euXcOBAwfQv39/nW5latkSmDBB+r53b2DXrh8/R6FQYPjw4XBwcMDt27fh6emJ8ePHIy4uLmPDEhFRlnL06FE0bNgQ9vb2UCgU2Lp1a5LrdejQAUOGDAEAvHv3Dv369YOTkxNMTU3h6emJc+fOqax/9epVODs74/Tp0+jSpQt27NiR0S9Fa2Xbgi1fvnxwc3MDAOTJkwc5c+bE69ev5Q2VTkOHSmOzxccDv/0GXLr04+f4+PjgypUr+O233xAXF4c///wTXl5euHfvXsYHJiKiLOHDhw8oW7Ys5syZk+w68fHx2LVrFxo3bgwA6Ny5M4KDg7Fq1SqEhYXB19cXtWvXxuPHjwEAkZGRMDQ0RIcOHQAARkZGsLGxyeiXorW0tmBLTbUeFBQEZ2dnmJiYwMPDA8eOHUvTvs6fP4/4+HgUKFAgnanlpVAA8+YBtWsDHz5Iw32Eh//4eTly5MC6deuwatUqWFlZ4cSJEyhbtixOnz6d8aGJiEjn+fn5Yfz48WjWrFmy65w4cQJ6enqoVKkSPn36hE2bNmHy5MmoUaMGihQpgtGjR8PZ2Rnz5s0DILWuVaxYUfn8q1evonTp0hn+WrSVgdwBkpNQrXfs2BE///xzosc3bNiAfv36ISgoCFWrVsWCBQvg5+eHa9euwdHREQDg4eGR5Oj++/fvh729PQDg1atXaNeuHRYvXpyxLyiTGBoC//wjXdd29apUtB0/DlhZpfw8hUKBNm3aoFq1amjbti1evXqFsmXLZk5oIiJKVkqX6+jr68PExCRV6+rp6cHU1PSH65qbm6ch5Y9t374dDRs2hJ6eHmJjYxEXF6eSHQBMTU1x/PhxAFKB5uLionwsLCwMZcqUyZBsOkHoAABiy5YtKssqVqwounfvrrKsRIkSYsiQIane7ufPn0X16tXFypUrU7VuZGSk8hYeHi4AiMjIyFTvLzM9eCBE3rxCAEL4+goRHZ3658bGxopHjx6p3D9z5kwGpCQiIiGE+PTpk7h27Zr49OlToscAJHurV6+eyrpmZmbJruvl5aWyrq2tbZLrpVdSx2whhChWrJjYvn278n6VKlWEl5eXePz4sYiNjRWrVq0SCoVCFCtWTAghRO/evcW2bduEEELExMSIIkWKpDpDSu9nZGSkVh+/k6O1p0RTEh0djQsXLsDX11dlua+vL06ePJmqbQgh0KFDB9SsWRNt27b94fqBgYGwtrZW3rT99KmjI7BzJ2BmBuzfD/TsCaR2cgN9fX3kz59fef/vv/9G5cqVMXDgQM5HSkREart+/ToePXqE2rVrK5etWrUKQgjkz58fxsbGmDVrFlq1agV9fX0AwKxZs9CoUSMAUkfB27dvy5JdW2jtKdGUvHz5EnFxcbCzs1NZbmdnh2fPnqVqGydOnMCGDRvg6uqqvD5u1apVKs2v3xo6dCgCAgKU96OiorS+aPPwANavB5o0ARYtkmZFSJg4Xh2PHj2CEAJ///03Dhw4gDVr1qBUqVIaz0tERIm9f/8+2ccSipsEEUnNU/j/9PRU22ju37+frlzq2L59O+rUqaNySrZw4cI4cuQIPnz4gKioKOTLlw+//fYbnJ2dMy2XLtHJgi2BQqFQuS+ESLQsOdWqVUN8ctMCJMHY2BjGxsZq5dMGDRsCM2dKQ30MGQIULCj1IFXH7NmzUbt2bXTu3BmhoaHw8PDAlClT0LNnz1S/30RElDbqXFOWUeum17Zt29C5c+dkc5ibm+PNmzfYt28fJk+enGm5dIlOnhK1tbWFvr5+ota0iIiIRK1uBPTqBfTrJ33fvj1w4oT622jcuDHCwsLw008/4fPnz+jduzfq1auX6hZNIiLKut6/f4/Q0FCEhoYCAO7du4fQ0FA8fPgQEREROHfuHBo0aKDynH379mHv3r24d+8egoOD4ePjg+LFi6Njx44yvALtp5MFm5GRETw8PBAcHKyyPDg4mHNkJuPvv6VTo1++AI0bA3fuqL+NvHnzYvfu3Zg9ezZMTExw6NChFJvfiYgoezh//jzc3d3h7u4OAAgICIC7uztGjhyJHTt2oFKlSsiTJ4/KcyIjI9GzZ0+UKFEC7dq1Q7Vq1bB//34YGhrK8RK0ntaeEn3//j3ufFNVJFTrOXPmhKOjIwICAtC2bVuUL18eVapUwcKFC/Hw4UN0795dxtTaS18fWLMG8PYGzp0D6tUDTp0CcuVSbzsKhQK9evWCj48PLl++DFdXV+Vj8fHxia6RICKirM/b2xsimZ5tjRo1UnYe+Fbz5s3RvHnzjI6WZWjt0TWlah0AfvvtN8yYMQNjx46Fm5sbjh49it27d8PJyUnO2FrNzAzYsQNwcgJu35Za3D5/Ttu2SpcujVatWinvnzt3Dq6urjh//rxmwhIRUZZQrVo1tGzZUu4YOk8hkiuJKUVRUVGwtrZGZGQkrH40Kq2WuXYN8PQEIiOBFi2klrf0NozVqlULhw4dgoGBAUaPHo0hQ4Yk6r1ERERJ+/z5M+7du6ecvYfSJ6X3U1eP31rbwkYZp1QpYPNmwMBAGvbjzz/Tv82NGzeiefPmiI2NxYgRI+Dt7Z2pXcaJiIiyMhZs2VTNmkDCbFwTJ379Pq1y5syJ9evXY8WKFbC0tMTx48dRtmxZrF69OtnrGoiIiCh1WLBlY+3bA/9/SSC6dwe+63SrNoVCgXbt2uHy5cvw9PREVFQU2rZtiz179qQ/LBERUTbGgi2bGz0aaNMGiIsDfvkFCAtL/zadnZ1x5MgRjBs3Dg0aNICfn1/6N0pElA3wjIRmZMX3kQVbNqdQSKdDvbyAqCigfn3g/HkgJAR49Cjt2zUwMMCIESOwbds25WwI7969Q2BgIKKjozWUnogoa0gYe+zjx48yJ8kaEt7HrDSmm9aOw0aZx9gY2LIFqFIFuHkTqFBBWq6nByxcCPj7p33b347L1q9fPyxduhT/+9//sHbtWpQsWTKdyYmIsgZ9fX3Y2NgoByM3MzPj1H9pIITAx48fERERARsbmyw1WgGH9UgjXe0WnJITJ4Bq1VSX6esD9+8DDg7p3/7WrVvRuXNnvHr1CiYmJvj777/Ro0cP/lEiIoJUbDx79gxv376VO4rOs7GxQd68eZM8vujq8ZsFWxrp6geekpAQqfdoUsu9vTWzj6dPn6Jjx47Yt28fAKBevXpYunQp54AlIvp/cXFxiImJkTuGzjI0NEyxZU1Xj98s2NJIVz/wlDx6JM2CEB//dZmeHvDggWZa2BLEx8dj7ty5GDhwIL58+YLcuXNj69atnAeWiIgynK4ev9npgJQcHKRr1r79x0ShkAo2TdLT00Pv3r1x4cIF5VykhQsX1uxOiIiIshAWbKTC31+6Zu3gQcDPTxruo2lTaZmmlS5dGmfPnsXBgwdVTolyhgQiIiJVLNgoEQcH6Vq2jRsBd3fgxQugUSPg3TvN78vY2BguLi7K+xs3bkTRokUxceJExMXFaX6HREREOogFGyXL3BzYvh3Im1caUDdhgN2MFBwcjNjYWAwfPhw+Pj5sbSMiIgILNvoBBwdg61ZprLbt24FhwzJ2fwsWLMDy5cthYWGBY8eOoWzZslizZk3G7pSIiEjLsWCjH6pUCVi2TPp+8mRgxYqM25dCoUD79u1x+fJlVKlSBVFRUWjTpg1atWrFsYmIiCjbYsFGqdKyJTBihPR9167AyZMZu79ChQrh6NGjGDt2LPT19bFu3TqcOXMmY3dKRESkpTgOWxrp6jgu6REfDzRvDmzaBOTODZw7J43bltHOnDmDgwcPYlhGn48lIqIsT1eP32xho1TT05NOhyb0HG3YMGN6jn6vUqVKKsXaw4cPUbNmTVy/fj3jd05ERKQFWLCRWszNgW3bADu7rz1Hv50ZITP069cPISEh8PDwQFBQENhITEREWR0LNlJbgQJS0ZZZPUe/N2fOHPj6+uLTp0/o2bMnGjZsiOfPn2duCCIiokzEgo3SpFIlYOlS6fu//gJWrsy8fdvb22PPnj2YOXMmjI2NsWvXLri4uGDnzp2ZF4KIiCgTsWCjNGvVChg+XPq+S5eM7zn6LT09PfTp0wfnz5+Hq6srXrx4gYYNG+Kff/7JvBBERESZhAUbpcvYsdJco9HR0ldNTxT/I2XKlMHZs2cREBAAFxcXNGjQIHMDEBERZQIWbJQuenrAqlWAmxsQESHNOfr+feZmMDY2xtSpU3HmzBmYmJgAAOLi4rBixQrOR0pERFkCCzZKt4Q5R+3sgCtX5Ok5CgCmpqbK7//66y906NABNWvWxIPMbvYjIiLSMBZspBHf9hzdtu3rtW1ycXBwgIWFBY4ePYqyZcti7dq18gYiIiJKBxZspDHf9hydNEk6VSqXdu3aITQ0FJUrV0ZkZCRat26N1q1bcz5SIiLSSSzYSKNatfo6Llvnzpnbc/R7hQsXxrFjxzB69Gjo6+tj7dq1KFu2LE6fPi1fKCIiojRgwUYaN26cvD1Hv2VgYIBRo0bh+PHjKFy4MJ4/fw5LS0v5AhEREaUBCzbSOD09aSBdOXuOfq9y5cq4dOkSdu7cidKlSyuX8xQpERHpAhZslCEsLFR7jrZtK0/P0W9ZWlqidu3ayvunT5+Go6Mj5s2bx/lIiYhIq7FgowxToACwdavUc3TrVmDECLkTqVq2bBnevXuHHj16oFGjRoiIiJA7EhERUZJYsFGGqlwZWLJE+j4wUN6eo9+bN28epk+fDmNjY+zcuRMuLi7YtWuX3LGIiIgSYcFGGa51a2DoUOn7zp2BU6fkzZNAT08P/fr1w7lz5+Di4oKIiAg0aNAAPXv2xMePH+WOR0REpJTtC7aPHz/CyckJAwYMkDtKljZ+PNCkidRztEkT4OFDuRN95eLigrNnz6J///4AgKCgIGzcuFHmVERERF9l+4JtwoQJqFSpktwxsryEOUfLltWenqPfMjExwbRp0xAcHAx/f3+0a9dO7khERERK2bpgu337Nm7cuIF69erJHSVb+Lbn6OXL2tFz9Hu1a9fG4sWLoVAoAABRUVFo164dHmpTkyAREWU7WluwHT16FA0bNoS9vT0UCgW2bt2aaJ2goCA4OzvDxMQEHh4eOHbsmFr7GDBgAAIDAzWUmFLD0RHYsgUwMtLOnqPfGzRoEFatWgVXV1esW7dO7jhERJRNaW3B9uHDB5QtWxZz5sxJ8vENGzagX79+GD58OC5duoTq1avDz89PpSXEw8MDZcqUSXR78uQJtm3bhmLFiqFYsWKZ9ZLo/1WpotpzdPVqefOkZODAgcr5SFu1aoU2bdogMjJS7lhERJTNKIQOjBiqUCiwZcsWNGnSRLmsUqVKKFeuHObNm6dcVrJkSTRp0iRVrWZDhw7F6tWroa+vj/fv3yMmJgZ//PEHRo4cmeT6X758wZcvX5T3o6KiUKBAAURGRsLKyirtLy4bGzZMKtiMjYHDh6UhQLRRbGwsxo8fj3HjxiE+Ph6Ojo5YtWoVatSoIXc0IiJSU1RUFKytrXXu+K21LWwpiY6OxoULF+Dr66uy3NfXFydTOdt4YGAgwsPDcf/+ffz999/o0qVLssVawvrW1tbKW4ECBdL1Guhrz9EvX7Sv5+i3DAwMMHr0aBw/fhyFChXCw4cP4e3tjTVr1sgdjYiIsgmdLNhevnyJuLg42NnZqSy3s7PDs2fPMmSfQ4cORWRkpPIWHh6eIfvJTr7tOfr8ufb1HP1elSpVEBoaio4dOyJPnjyJ/mEgIiLKKAZyB0iPhJ58CYQQiZalRocOHX64jrGxMYyNjdXeNqUsoedohQpfe45u2iQVc9rI0tISS5cuRUREBHLnzq1cfuDAAdSqVStNP39EREQ/oqWHxZTZ2tpCX18/UWtaREREolY30n6OjlKP0YSeo337AiEhwKNHcidLXp48eZTfr1u3DnXq1EHjxo05HykREWUInSzYjIyM4OHhgeDgYJXlwcHB8PT0lCkVpUeVKsDixdL3c+YANWsCTk5fe5Nqs6ioKBgZGWHHjh1wcXHB7t275Y5ERERZjNYWbO/fv0doaChCQ0MBAPfu3UNoaKhy2I6AgAAsXrwYS5cuxfXr19G/f388fPgQ3bt3lzE1pYePD/DtGcX4eKBbN+1uaQOAbt264dy5cyhTpgwiIiJQv3599OrVi/OREhGRxmhtwXb+/Hm4u7vD3d0dgFSgubu7K3ty/vbbb5gxYwbGjh0LNzc3HD16FLt374aTk5OcsSkdbt8Gvh9kJi4OuHNHnjzqcHV1xblz59CvXz8AwNy5c1G+fHnlPxxERETpoRPjsGkjXR3HRZs9eiSdBv12uiqFQhruw8FBvlzq2r9/Pzp06ICnT59i7969qFu3rtyRiIjo/+nq8VtrW9go+3FwABYuBPT1vy7T19fuoT6S4uvriytXrmDZsmUqxVpMTIyMqYiISJexYCOt4u8P3L8PHDoEeHkBsbFAhw7SqVFdYmtrqzJczP3791G0aFGsX79evlBERKSzWLCR1nFwkDogrF4NWFkBZ84AU6fKnSp9pk6digcPHqBly5Zo27Yt5yMlIiK1sGAjreXgAMyYIX3/55/AtWuyxkmXadOmYeTIkdDT08Pq1atRtmxZHDt2TO5YRESkI1iwkVbr0AGoVw+Ijgbat5dOkeoiQ0NDjBkzBseOHYOzszMePHgAb29vDB8+nNe2ERHRD7FgI62mUEgdEWxsgPPngcmT5U6UPp6enggNDUWHDh0QHx+PiRMnYvbs2XLHIiIiLceCjbRe/vzArFnS96NHA2FhssZJNysrKyxbtgwbN26Et7c3evbsKXckIiLScizYSCe0aQM0bAjExEinSbPCWcRffvkFhw4dgrGxMQAgNjYWw4cPx4sXL2RORkRE2oYFG+kEhQJYsADIkQO4eBGYNEnuRJqh+GYurkmTJmHixIlwcXHBnj17ZExFRETahgUb6Yx8+aSJ4QFg7Fjg8mV582haw4YNUbp0aTx//hz16tVD79698enTJ7ljERGRFmDBRjqlZUugadOvA+pGR8udSHPKli2Lc+fOoU+fPgCAOXPmcD5SIiICwIKNdIxCAcybB+TKBYSGAhMnyp1Is0xNTTFz5kzs3bsXefPmxbVr11CxYkWsXr1a7mhERCQjFmykc+zsgLlzpe8nTJCuactq6tati7CwMDRp0gT6+vrw8PCQOxIREcmIBRvppObNgV9+yZqnRhPY2tpi8+bNuHjxIkqWLKlcfk2Xp3wgIqI0YcFGOkmhAIKCgNy5pXHZxo2TO1HGUCgUKsXaqVOn4OLignbt2iEqKkrGZERElJlYsJHOyp1bup4NAAIDpZkQsroLFy4AAFatWoWyZcvixIkTMiciIqLMwIKNdNrPPwO//QbExUlzjX75IneijNWrVy8cPXoUBQsWxP3791GjRg38+eefnI+UiCiLY8FGOm/OHCBPHuDaNWnqqqyuatWquHz5Mtq1a4f4+HiMHz8eVatWxa1bt+SORkREGYQFG+k8W1tg/nzp+8mTgTNn5M2TGaysrLBixQps2LABOXLkwLlz5xASEiJ3LCIiyiAs2ChLaNoUaN0aiI+Xeo1+/ix3oszRvHlzXLlyBaNGjULXrl2Vy4UQMqYiIiJNY8FGWcasWUDevMCNG8DIkXKnyTwODg4YPXq0cl7SyMhIVK1aFfv27ZM5GRERaQoLNsoycuaUJogHgL//Bk6elDePXP766y+cOnUKP/30E/r27cv5SImIsgAWbJSlNGoEtGsHCAF07Ahkx1rlzz//RO/evQEAs2bNQoUKFXD58mWZUxERUXqkqWBbtWoVqlatCnt7ezx48AAAMGPGDGzbtk2j4YjSYsYMwN4euHULGDFC7jSZz9TUFLNmzcKePXuQN29e/Pvvv6hYsSKmTp2K+Ph4ueMREVEaqF2wzZs3DwEBAahXrx7evn2LuLg4AICNjQ1mzJih6XxEasuRA1i0SPp++nTg+HF588jlp59+wpUrV9C4cWNER0djwIABGJdVp4QgIsri1C7YZs+ejUWLFmH48OHQ19dXLi9fvjzCwsI0Go4orerVk06JJpwa/fBB7kTyyJ07N7Zs2YJFixahSJEi6Nmzp9yRiIgoDdQu2O7duwd3d/dEy42NjfEhux4VSStNmwY4OAB37gDDhsmdRj4KhQKdO3fGtWvXYGtrq1y+YMECzkdKRKQj1C7YnJ2dERoammj5nj17UKpUKU1kItIIGxtg8WLp+1mzgCNHZI0jO0NDQ+X3a9euRffu3eHm5sb5SImIdIDaBdvAgQPRs2dPbNiwAUIInD17FhMmTMCwYcMwcODAjMhIlGZ16wJdukjfd+oEvH8vbx5t4eTkhIIFC+LevXuoUaMGRo4cyflIiYi0mEKkYUj0RYsWYfz48QgPDwcA5M+fH6NHj4a/v7/GA2qrqKgoWFtbIzIyElZWVnLHoRRERQEuLsDDh0DPntLcoyQNsNu7d2+sWrUKAFCxYkWsXr0aRYsWlTkZEVHG0dXjd5oKtgQvX75EfHw88uTJo8lMOkFXP/Ds6sABoE4d6fuDB4GaNeXNo002bNiA7t274+3btzA3N8eiRYvQsmVLuWMREWUIXT1+p2vgXFtb22xZrJHuqV0b6N5d+r5TJ+DdO3nzaJPffvsNV65cgY+PDz58+IDcuXPLHYmIiL6jdgubs7Ozcs7CpNy9ezfdoXSBrlbo2dm7d4CrK3D/vlS8zZsndyLtEh8fjyNHjsDHx0e5LCIigv+UEVGWoqvHbwN1n9CvXz+V+zExMbh06RL27t2rc50O7t27h06dOuH58+fQ19fH6dOnYW5uLncsyiCWlsDSpdLp0PnzgWbNvp4mJUBPT0+lWLt37x7c3NzQsWNHTJo0CSYmJjKmIyLK3tJ1Ddu35s6di/Pnz2PZsmWa2Fym8PLywvjx41G9enW8fv0aVlZWMDBIXQ2rqxU6Ab16AXPnAgUKAFevAvz4kjZnzhzlnKSlS5fG2rVr4erqKnMqIqL00dXjt8Ymf/fz88OmTZs0tbkM9++//8LQ0BDVq1cHAOTMmTPVxRrptkmTgEKFgPBw4I8/5E6jvXr16oXdu3fDzs4O//77LypUqIBp06ZxPlIiIhlorGD7559/kDNnTk1tDkePHkXDhg1hb28PhUKBrVu3JlonKCgIzs7OMDExgYeHB44dO5bq7d++fRsWFhZo1KgRypUrh4kTJ2osO2k3CwsgoSF48WJg3z5582gzPz8/hIWFoVGjRoiOjsYff/wBX19fPH78WO5oRETZitpNSu7u7iqdDoQQePbsGV68eIGgoCCNBfvw4QPKli2Ljh074ueff070+IYNG9CvXz8EBQWhatWqWLBgAfz8/HDt2jU4OjoCADw8PPDly5dEz92/fz9iYmJw7NgxhIaGIk+ePPjpp59QoUIF1OFFTdlCjRpA377AzJmAv790atTGRu5U2il37tzYunUrFi5ciP79++PgwYOYP38+J5InIspEal/DNmbMGJX7enp6yJ07N7y9vVGiRAmNhkugUCiwZcsWNGnSRLmsUqVKKFeuHOZ909WvZMmSaNKkCQIDA3+4zVOnTmHMmDHYu3cvAGDKlCkAkGzHiS9fvqgUf1FRUShQoIDOnQOnrz5+BMqWleYa7dhR6pBAKbt58yYCAwOxYMECGBsbyx2HiEhtunoNm9otbKNGjcqIHGqJjo7GhQsXMGTIEJXlvr6+OHnyZKq2UaFCBTx//hxv3ryBtbU1jh49im7duiW7fmBgYKJilXSbmZl0arRGDenrzz8D9evLnUq7FS9eHMuXL1fej42NRdu2bdG7d294enrKF4yIKItL1TVsUVFRqb5lhpcvXyIuLg52dnYqy+3s7PDs2bNUbcPAwAATJ05EjRo14OrqiqJFi6JBgwbJrj906FBERkYqbwnTcpFuq1YN6N9f+r5rV+DNG3nz6JqZM2di/fr1qF69OkaNGsX5SImIMkiqWthsbGxSHCwXkK5lUygUiIuL00iw1Pg+U0KG1PLz84Ofn1+q1jU2NuYpoCxq/Hhg507g1i2gXz9gxQq5E+mOzp07IzQ0FKtXr8bYsWOxb98+rF69GkWKFJE7GhFRlpKqgi0kJCSjc6jF1tYW+vr6iVrTIiIiErW6Ef2IqalUpFWtCqxcKZ0abdRI7lS6wdraGqtWrUL9+vXRvXt3nDlzBm5ubpg5cyY6deqk1j9QRESUvFQVbF5eXhmdQy1GRkbw8PBAcHAwmjZtqlweHByMxo0by5iMdFXlytKYbFOmAJ07AwsXAuXLAw4OcifTDS1atICnpyfat2+Pw4cPo3Pnzrh79y4mTJggdzQioiwhzSPFfvz4EQ8fPkR0dLTKck2NhP7+/XvcuXNHef/evXsIDQ1Fzpw54ejoiICAALRt2xbly5dHlSpVsHDhQjx8+BDdE2b4JlLT2LHAqlXAs2dA06aAnp5UuPn7y51MNzg6OuLAgQOYOnUqJk6ciLZt28odiYgoy1B7WI8XL16gY8eO2LNnT5KPa+oatsOHD6vMa5igffv2yl5qQUFBmDx5Mp4+fYoyZcpg+vTpqFGjhkb2/yO62i2YkvfoEeDkBHw7kL++vjRZPFva1BMZGQlra2vl/T179sDHx4fzkRKR7HT1+K32TAf9+vXDmzdvcPr0aZiammLv3r1YsWIFihYtiu3bt2ssmLe3N4QQiW7fDinQo0cP3L9/H1++fMGFCxcyrVijrOn2bdViDQDi4gAdmnFNa3xbrB0/fhwNGjRAxYoVERYWJmMqIiLdpXbBdujQIUyfPh0VKlSAnp4enJyc0KZNG0yePDlVA9YSaauiRaXToN/r3x8YNQqIjc38TFnBly9fYGtri7CwMJQvXx7Tp0/nfKRERGpSu2D78OED8uTJA0CaMP3FixcAABcXF1y8eFGz6YgykYODdM2avr50X18f8PQEhJCub/P2Bh48kDWiTqpVqxbCwsLQsGFDREdHIyAgAHXr1sWTJ0/kjkZEpDPULtiKFy+OmzdvAgDc3NywYMECPH78GPPnz0e+fPk0HpAoM/n7S9eshYRIX0+cANauBayspO/LlgU2bpQ7pe7JkycPtm3bhvnz58PU1BQHDhyAi4sLtm7dKnc0IiKdkKZr2J4+fQpAmqZq7969cHR0xKxZszBx4kSNByTKbA4OUmtaQkeDli2B0FBp6I/ISKB5c2nojw8f5EypexQKBbp164ZLly7Bw8MDr1+/VrbQExFRytTuJfq9jx8/4saNG3B0dIStra2mcmk9Xe1lQmkXEwOMGQNMnCidJi1eHFi3DnB3lzuZ7omOjsb69evRtm1b5eC6nz59gqmpqczJiCir09Xjt9otbEeOHFG5b2ZmhnLlymWrYo2yJ0NDaRqrgwcBe3vg5k2p1W3GDKmAo9QzMjJCu3btlMXa27dvUaZMGYwePRqx7N1BRJSI2gVbnTp14OjoiCFDhuDq1asZkYlIq/n4AJcvS9NXRUdLvUgbNAAiIuROprvWr1+Pu3fvYsyYMahevTr+++8/uSMREWkVtQu2J0+eYNCgQTh27BhcXV3h6uqKyZMn49GjRxmRj0gr2doCW7cCc+cCxsbA7t2Aqyuwf7/cyXRT9+7dsXbtWlhbW+P06dNwc3PD0qVLkc4rNoiIsox0XcN27949rF27FuvWrcONGzdQo0YNHDp0SJP5tJaungMnzQsLkzom/PuvdH/gQOnUqZGRvLl00cOHD9GuXTvlpRfNmjXDwoULkStXLpmTEVFWoavHb7Vb2L7l7OyMIUOGYNKkSXBxcUl0fRtRduDiApw7B/z+u3R/yhSgalVp5gRSj6OjIw4ePIhJkybB0NAQmzdvxrBhw+SORUQkuzQXbCdOnECPHj2QL18+tGrVCqVLl8bOnTs1mY1IZ5iaAkFBwJYtQM6cwPnzUu/RFSvYIUFd+vr6GDx4ME6fPo2aNWtyuCAiIqThlOiwYcOwbt06PHnyBLVr10br1q3RpEkTmJmZZVRGraSrTaqU8R49Atq0ARIanFu1AubNkwbfpbQTQmDEiBFo0aIFXFxc5I5DRDpKV4/farewHT58GAMGDMDjx4+xa9cutGrVKtsVa0QpcXCQhv4YN06a3mrtWsDNDTh9Wu5kum3dunWYOHEiKlSogJkzZ3I+UiLKVtI9cG52pasVOmWuU6ekFrb796XibexYYPDgr/OVUupFRESgU6dO2LVrFwBpiKHly5fD3t5e5mREpEt09fidpoLt1q1bOHz4MCIiIhL9lzty5EiNhdNmuvqBU+aLjAS6dQM2bJDu+/gAq1YB+fPLm0sXCSEwf/58/PHHH/j06RNy5syJRYsWoVmzZnJHIyIdoavHb7ULtkWLFuH333+Hra0t8ubNqxypHJDmCrx48aLGQ2ojXf3ASR5CAMuXA717S3OQ5soFLF0qDb5L6rtx4wZat26t/HszdOhQdk4golTR1eO32gWbk5MTevTogcGDB2dUJp2gqx84yevWLaBFC+DSJel+z57SMCCcQlN90dHRGDVqFKZMmYL9+/ejZs2ackciIh2gq8dvtQs2KysrhIaGolChQhmVSSfo6gdO8vvyBRg2DJg2Tbpfpgywfj1QurS8uXTV/fv3UbBgQeX9S5cuwcXFBQYGBvKFIiKtpavHb7V7if7666/Yz/l3iNLM2BiYOhXYswfIkwe4ehUoXx6YP59jtqXFt8Xaf//9hxo1aqBGjRqcj5SIshS1/wUtUqQI/vzzT5w+fRouLi4wNDRUebxPnz4aC0eUlf30E3DlCtC+PbBvnzRTwr59Uk/Sly+BokWlIUIo9e7cuQM9PT2cOnUKbm5umD17Ntq3b69yrS0RkS5S+5Sos7Nz8htTKHD37t10h9IFutqkStonPh6YMQMYMgSIifm6XE8PWLgQ8PeXLZpOevDgAdq2bYtjx44BAH755RfMnz+f85ESEQDdPX5zHLY00tUPnLTXnj1AvXqqy/T1pTHc2NKmnri4OEyZMgV//vknYmNjYW9vjxUrVqB27dpyRyMimenq8TvNc4lGR0fj5s2biI2N1WQeomzLxCTxsri4r1NcUerp6+tjyJAhOH36NIoXL44nT57gwIEDcsciIkoztQu2jx8/wt/fH2ZmZihdujQePnwIQLp2bdKkSRoPSJRdFC0qnQb9XpcuwLJl7JCQFh4eHrh48SImTJiAsWPHKpdzWisi0jVqF2xDhw7F5cuXcfjwYZh80yRQu3ZtbEgYyp2I1ObgIF2zljBtlb6+VMR9+gR06gT89hvw5o28GXWRmZkZhg0bBiMjIwBATEwMfHx8OB8pEekUtQu2rVu3Ys6cOahWrZpKz6tSpUqxGz1ROvn7S9eshYRIX69fBwIDAQMDYONGwNUVOHxY5pA6bt26dTh69Cj69euHevXq4enTp3JHIiL6IbULthcvXiBPnjyJln/48IFd54k0wMEB8PaWvurrS71HT56UWtsePQJq1pSWRUfLnVQ3tW3bFkFBQTA1NcW+ffvg4uKCrVu3yh2LiChFahdsFSpUwK5du5T3E4q0RYsWoUqVKppLRkRKFSoAFy9KLXBCAH/9BXh6SlNdkXoUCgV+//13XLhwAe7u7nj16hWaNm2KLl264P3793LHIyJKktoFW2BgIIYPH47ff/8dsbGxmDlzJurUqYPly5djwoQJGZGRiABYWACLFwP//APkyAFcuAC4u0vL2CFBfSVLlsTp06cxePBgKBQKLF68GP4c9I6ItJTaBZunpydOnDiBjx8/onDhwti/fz/s7Oxw6tQpeHh4ZERGIvrGzz9LMyT4+AAfP0q9SH/5BXj1Su5kusfIyAiTJk3CoUOHUKJECYwbN07uSERESeLAuWmkqwPvUdYRHy/NSTp8uDRDgr09sHIlUKuW3Ml0U3x8PPS+GVdl8eLFqFmzJgoVKiRjKiLSNF09fqvdwhYVFZXk7d27d4jmVdBEmUZPDxg4EDh1CihWDHjyBKhTBxg0iB0S0uLbYu3o0aPo2rUr3NzcsGLFCvD/WiKSm9oFm42NDXLkyJHoZmNjA1NTUzg5OWHUqFEc34gok3h4SB0SunaVrmWbMgWoXBm4cUPuZLrL0dER1apVw7t379ChQwc0b94cr1+/ljsWEWVjahdsy5cvh729PYYNG4atW7diy5YtGDZsGPLnz4958+aha9eumDVrFmc9IMpE5ubAggXA5s1AzpzApUtAuXLSMjYOqa9gwYIICQnBhAkTYGBggH/++Qeurq44ePCg3NGIKLsSaqpZs6bYsGFDouUbNmwQNWvWFEIIsXLlSlG8eHF1N53ppk2bJkqVKiVKliwpevfuLeLj41P93MjISAFAREZGZmBCIvU9fixE7dpCSKWaEI0bC/HihdypdNe5c+dEsWLFBAABQIwcOVLuSESUDrp6/Fa7he3UqVNwd3dPtNzd3R2nTp0CAFSrVk05x6i2evHiBebMmYMLFy4gLCwMFy5cwOnTp+WORZRu9vbAvn3A338DhobAtm2AiwsQHCx3Mt1Uvnx5XLx4Ed27dwcAODk5yZyIiLIjtQs2BwcHLFmyJNHyJUuWoECBAgCAV69eIUeOHOlPl8FiY2Px+fNnxMTEICYmJskZHIh0kZ4e8McfwNmzQIkSwLNngK+vtOzLF7nT6R5zc3PMmzcPp0+fRseOHZXLw8PD2SGBiDKF2gXb33//jenTp6Ns2bLo3LkzunTpAjc3N8yYMQNTp04FAJw7dw6//fZbuoIdPXoUDRs2hL29PRQKRZJTxwQFBcHZ2RkmJibw8PDAsWPHUr393LlzY8CAAXB0dIS9vT1q166NwoULpyszkbZxc5MG2P39d+n+tGlApUrAtWuyxtJZlSpVUs7u8ubNG3h6enI+UiLKFGoXbI0aNcLNmzfh5+eH169f4+XLl/Dz88ONGzfQoEEDAMDvv/+OadOmpSvYhw8fULZsWcyZMyfJxzds2IB+/fph+PDhuHTpEqpXrw4/Pz+VU7EeHh4oU6ZMotuTJ0/w5s0b7Ny5E/fv38fjx49x8uRJHD16NF2ZibSRmRkQFCSdGrW1BS5flnqWBgWxQ0J6nDt3Di9fvsTevXvh6uqKbdu2yR2JiLIwnRg4V6FQYMuWLWjSpIlyWaVKlVCuXDnMmzdPuaxkyZJo0qQJAgMDf7jNjRs34vDhw5g7dy4AYMqUKRBCYNCgQUmu/+XLF3z55lxSVFQUChQooHMD71H29vQp0KEDsH+/dL9BA2DJEoBXA6TNtWvX0Lp1a4SGhgIAunTpgunTp8Pc3FzeYESUrCw9cO6VK1eU46pduXIlxVtmiI6OxoULF+Dr66uy3NfXFydPnkzVNgoUKICTJ0/i8+fPiIuLw+HDh1G8ePFk1w8MDIS1tbXylnC9HpEuyZcP2LMHmD4dMDICdu4EXF2BvXvlTqabSpUqhTNnzmDQoEFQKBRYtGgR3N3dcfbsWbmjEVEWk6qCzc3NDS9fvlR+7+7uDjc3t0S3pHqPZoSXL18iLi4OdnZ2Ksvt7Ozw7NmzVG2jcuXKqFevHtzd3eHq6orChQujUaNGya4/dOhQREZGKm/h4eHpeg1EctHTA/r1A86dA0qVAp4/B/z8pGWfP8udTvcYGRnhr7/+wsGDB+Hg4IDbt29jxowZcscioizGIDUr3bt3D7lz51Z+ry0SLv5NIIRItCwlEyZMwIQJE1K1rrGxMYyNjdXKR6TNXF2B8+elqazmzAFmzgQOHQLWrgVsbIDbt4GiRQEHB7mT6gYfHx9cuXIFI0aM4CTyRKRxqSrYvh13SBvGILK1tYW+vn6i1rSIiIhErW5ElDxTU2D2bOCnn4COHYGwMMDdHYiLkzok6OkBCxcC/v5yJ9UNOXLkUF4XC0j/RPr7+8Pb2xtt27ZV6x9KIqJvqd1LFABWrVqFqlWrwt7eHg8ePAAAzJgxI9N6SRkZGcHDwwPB340EGhwcDE9Pz0zJQJSV1K8vFWve3kBs7Nfeo/HxQLduwKNHssbTWTt27MCyZcvQvn17tGjRAm/evJE7EhHpKLULtnnz5iEgIAD16tXD27dvERcXB0CaFF6T1228f/8eoaGhyt5X9+7dQ2hoqHLYjoCAACxevBhLly7F9evX0b9/fzx8+FA5GjkRqcfODvjzz8TL4+KAO3cyP09WUL9+feV8pP/73//g6uqKkJAQuWMRkS5Sdy6rkiVLii1btgghhLCwsBD//fefEEKIsLAwkStXLg3NmCVESEiIcu6+b2/t27dXrjN37lzh5OQkjIyMRLly5cSRI0c0tv8f0dW5yIhSEh4uhJ7e13lIE26bN8udTLedPXtWFC1aVAAQCoVCDBw4UHz+/FnuWETZkq4ev9Ueh83U1BQ3btyAk5MTLC0tcfnyZRQqVAi3b9+Gq6srPn36pOmaUivp6jguRD+yZIl0GvT/G88BSHOSLlggXedGafPhwwcEBARg4cKFAKRByDnYLlHm09Xjt9qnRJ2dnZWnKb+1Z88elCpVShOZiEhG/v7A/ftASAhw4wbQrBkQEwN06iTNRfptIUepZ25ujgULFmDbtm2ws7NDQECA3JGISIekqpfotwYOHIiePXvi8+fPEELg7NmzWLduHQIDA7F48eKMyEhEmczB4etwHhs3AmPGAGPHSnORXrsGrF8PWFvLm1FXNWrUCLVr14aZmZly2d69e+Hm5oa8efPKmIyItFmapqZatGgRxo8frxw8Nn/+/Bg9ejT8s1Hff11tUiVKq40bgfbtgU+fgOLFgR07pHHaKH1u374NNzc3mJmZYcmSJSkO4E1E6aerx+90zSX68uVLxMfHI082nIhQVz9wovS4eBFo3Fga5sPGBvjf/4A6deROpdtu3ryJFi1aKC816dq1K6ZNm8b5SIkyiK4ev9M0DlsCW1vbbFmsEWVX5cpJU1pVrgy8fStNaTV79tdx20h9xYsXx+nTpzFgwAAoFAosXLgQ7u7uOHfunNzRiEiLpKtgI6LsJ29eqUNC27ZSB4Q+faRepdHRcifTXcbGxpgyZQoOHDignI/U09MTgYGBSMdJECLKQliwEZHaTEyAFSuAyZMBhQJYtEg6NfrypdzJdFvNmjVx5coVNG/eHLGxsfjw4YPckYhIS6TrGrbsTFfPgRNp2q5dQMuWwLt3QMGCwPbtgIuL3Kl0mxAC27ZtQ/369WFoaAhA+ptjaWnJ+UiJ0klXj99sYSOidKlfHzh9GihcWBq/zdMT4Hiw6aNQKNCkSRNlsRYdHQ0fHx+0bNmS85ESZVNpamE7ePAgDh48iIiICMTHx6s8tnTpUo2F02a6WqETZZRXr4Bff5Wub1MogAkTgCFDpO8pfUJCQlCnTh3ExcWhQIECWLlyJby9veWORaSTdPX4rXYL25gxY+Dr64uDBw/i5cuXePPmjcqNiLKnXLmAffuAHj2kXqPDhgFt2kjjtlH6+Pj44OTJkyhatCjCw8NRs2ZNDB48GNHs6UGUbajdwpYvXz5MnjwZbdu2zahMOkFXK3SizDBvntR7NDYWqFAB2LoVsLeXO5Xue//+PQICArBo0SIAgLu7O9asWYOSJUvKnIxId+jq8VvtFrbo6Gh4enpmRBYiyiJ+/x3Yvx/ImVMat61CBekrpY+FhQUWLlyILVu2IFeuXLh06RJ69OghdywiygRqF2ydO3fG2rVrMyILEWUhPj7A2bNAqVLAkydA9eoA/3RoRpMmTRAWFoZmzZopW9uIKGtTe/L3z58/Y+HChThw4ABcXV2VvZgSTJs2TWPhiEi3FS4MnDoFtG4N7Nwpfb16FRg/HtBjH/V0yZcvHzZt2qSyLDAwEGXKlEHDhg1lSkVEGUXta9h8fHyS35hCgUOHDqU7lC7Q1XPgRHKIi5M6IUyeLN1v3BhYtQqwtJQ3V1Zy8uRJVKtWDUIIdOvWDVOnTuV8pERJ0NXjNwfOTSNd/cCJ5LRqFdClC/DlC1CmjDTIrrOz3Kmyhi9fvmDEiBH4+++/AQDFihXDmjVrUL58eZmTEWkXXT1+86QEEWWatm2BI0ek+UivXgUqVgSOHpU7VdaQMB/pwYMHkT9/fty6dQtVqlTBxIkTERcXJ3c8IkqnVLWwNWvWDMuXL4eVlRWaNWuW4rqbN2/WWDhtpqsVOpE2ePRIOi168SJgYAAEBUktb6QZr1+/Rvfu3bFx40YAQL169bBz505Oa0UE3T1+p6qFzdraWvmLbm1tneKNiOhHHByAY8eA5s2lsdq6dv06bhulX86cObFhwwYsX74cFhYWaN68OYs1Ih3Ha9jSSFcrdCJtIoQ0hdWff0r3a9cG/vc/4MMH4PZtoGhRqbijtHv27Bns7OyUBVtoaCgKFiwIGxsbeYMRyURXj9+8ho2IZKNQACNGAJs2AWZmwIEDQIkSgJMTULOm9HXJErlT6ra8efMqi7XXr1+jfv36cHV1xZEjR2RORkTqYMFGRLJr1gw4eVKavioiAoiPl5bHxwPduknXvFH6PXv2DGZmZggPD4ePjw+GDBnC+UiJdAQLNiLSCmXLArNnJ14eFwfcuZP5ebKiUqVK4dKlS/D394cQAn/99RcqV66M69evyx2NiH6ABRsRaY2KFRPPgKBQcKw2TbKwsMDixYuxefNm5XykHh4eCAoKAi9pJtJeahVsMTEx8PHxwa1btzIqDxFlYw4OwMKFgL7+12VCAL16Ae/fy5crK2ratCmuXLkCX19ffPr0CceOHZM7EhGlQK2CzdDQEFevXmX3cCLKMP7+wP37QEiIND6bsbE0D2n16ryWTdPs7e2xZ88eLFiwAEFBQcq/7bEcX4VI66g9rMcff/wBQ0NDTJo0KaMy6QRd7RZMpGtOnwYaNQJevJA6JezYAZQrJ3eqrEsIgZ9//hl2dnaYOnUqzMzM5I5EpFG6evw2UPcJ0dHRWLx4MYKDg1G+fPlEkwtPmzZNY+GIiCpXBs6cARo0AK5dk1ra1q6VZkogzTt79iy2bNkCAAgJCcGaNWvg4eEhcyoiUrvTwdWrV1GuXDlYWVnh1q1buHTpkvIWGhqaARGJKLtzdpaG/ahTB/j4EWjaFJg+Xbq+jTSrUqVKCA4Ohr29PW7evInKlSsjMDCQ85ESyYwzHaSRrjapEumymBigd29gwQLpfvfu0lAgBmqfK6AfefXqFbp164ZNmzYBAGrUqIGVK1fCyclJ5mRE6aOrx+90Devx6NEjPH78WFNZiIhSZGgIzJsHTJ0qDfcxfz5Qvz4QGSl3sqwnV65c2LhxI5YtWwYLCwscPXoUjRs35tAfRDJRu2CLj4/H2LFjYW1tDScnJzg6OsLGxgbjxo1DfMLw5EREGUShAAICgM2bpems9u8HqlaVepaSZikUCnTo0AGhoaGoWrUqZs+ezVECiGSi9omE4cOHY8mSJZg0aRKqVq0KIQROnDiB0aNH4/Pnz5gwYUJG5CQiUtGkCXD0KNCwIfDvv0ClSsD27dJX0qzChQvj2LFjKsXaunXrYG9vDy8vLxmTEWUfarewrVixAosXL8bvv/8OV1dXlC1bFj169MCiRYuwfPnyDIiYfk2bNkWOHDnwyy+/JHps586dKF68OIoWLYrFixfLkI6I0srDAzh7VprWKiIC8PYGNm6UO1XW9G2xduvWLfj7+8PHxwdDhw7lfKREmUDtgu3169coUaJEouUlSpTA69evNRJK0/r06YOVK1cmWh4bG4uAgAAcOnQIFy9exF9//aW1r4GIkubgABw7Jl3L9vkz0Lw5EBjIHqQZKV++fGjVqhWEEJg0aRKqVKmCGzduyB2LKEtTu2ArW7Ys5syZk2j5nDlzULZsWY2E0jQfHx9YWlomWn727FmULl0a+fPnh6WlJerVq4d9+/bJkJCI0sPSEti2DejTR7o/bJg0YwIbfjKGpaUlFi9ejE2bNiFnzpy4ePEiypUrh/nz57NTAlEGUbtgmzx5MpYuXYpSpUrB398fnTt3RqlSpbB8+XJMmTJF7QBHjx5Fw4YNYW9vD4VCga1btyZaJygoCM7OzjAxMYGHh4fG5rx78uQJ8ufPr7zv4ODAXq9EOkpfH5g5UxrmQ08PWLYMqFsXYKN5xmnWrBnCwsJQp04dfPr0Cb///juaNm3KDmhEGUDtgs3Lywu3bt1C06ZN8fbtW7x+/RrNmjXDzZs3Ub16dbUDfPjwIdlWOwDYsGED+vXrh+HDh+PSpUuoXr06/Pz88PDhQ+U6Hh4eKFOmTKLbkydPUtx3Uv8JsgcUkW7r1Uuae9TCAjh8GKhSBbhzR+5UWZe9vT327t2LGTNmwNjYGK6urtDTS9eIUUSUBLV6icbExMDX1xcLFizQWG9QPz8/+Pn5Jfv4tGnTlC15ADBjxgzs27cP8+bNQ2BgIADgwoULadp3/vz5VVrUHj16hErJdDH78uULvnz5orwfFRWVpn0SUcbz8wNOnJCms7p1S5reautWoFo1uZNlTXp6eujbty/q1q2LwoULK5eHh4cjV65cnI+USAPU+jfI0NAQV69ezbRWqOjoaFy4cAG+vr4qy319fXHy5Ml0b79ixYq4evUqHj9+jHfv3mH37t2oW7dukusGBgbC2tpaeStQoEC6909EGcfVVZqDtHx54NUroFYtYM0auVNlbSVKlIChoSEA6e9348aN4eHhgYsXL8qcjEj3qd1u3a5dOyxZsiQjsiTy8uVLxMXFwc7OTmW5nZ0dnj17lurt1K1bF7/++it2794NBwcHnDt3DgBgYGCAqVOnwsfHB+7u7hg4cCBy5cqV5DaGDh2KyMhI5S08PDztL4yIMkW+fMCRI0CzZlIHhDZtgNGj2YM0M9y9exfPnj3DjRs3ULlyZfz111+cj5QoHdQeODc6OhqLFy9GcHAwypcvD3Nzc5XHp02bprFwCb5v0RNCqNXKl1LPz0aNGqFRo0Y/3IaxsTGMjY1TvU8i0g5mZtLYbEOHApMnA2PGALdvA0uWACYmcqfLukqUKIGwsDB07doVmzdvxpAhQ7Bnzx6sXLkSjo6Ocscj0jlqt7BdvXoV5cqVg5WVFW7duoVLly4pb6GhoRoNZ2trC319/UStaREREYla3YiIkqOnB/z1F7BwoTRR/Nq1QO3awIsXcifL2nLlyoV//vkHS5Ysgbm5OY4cOQJXV1esW7dO7mhEOketFra4uDiMHj0aLi4uyJkzZ0ZlUjIyMoKHhweCg4PRtGlT5fLg4GA0btw4w/dPRFlLly6AszPwyy9Sp4TKlYFdu4AkxgInDVEoFOjUqRO8vLzQpk0bnD59GrNnz0bz5s2hr68vdzwinaFWC5u+vj7q1q2LyMhIjQV4//49QkNDla1z9+7dQ2hoqHLYjoCAACxevBhLly7F9evX0b9/fzx8+BDdu3fXWAYiyj5q1wZOnZIKt7t3pWE/Dh2SO1XWlzAf6dixY7Fq1SplscaBdolSRyHU/G2pUKECJk2ahFq1amkkwOHDh+Hj45Noefv27ZVzkwYFBWHy5Ml4+vQpypQpg+nTp6NGjRoa2X9aRUVFwdraGpGRkbCyspI1CxGpLyJCmkD+1CnpNOmCBUCnTnKnyn4GDRoEAwMDjB49GkZGRnLHoWxAV4/fahds+/fvx+DBgzFu3Dh4eHgk6nSgSy8+PXT1Ayeirz5/Bjp2BNavl+4PHgxMnChd80YZ7/r16yhdujSEEPDw8MCaNWtQvHhxuWNRFqerx2+1C7ZvR7D+tqdmQs/N7NJtW1c/cCJSJYQ01MfYsdL9n3+WJo9/9AgoWlSaXJ4yzqZNm9C1a1e8fv0apqammDZtGrp168ZZZyjD6OrxW+2C7ciRIyk+7uXlla5AukJXP3AiStqqVdKE8TExX5fp6Uk9S/395cuVHTx+/BgdOnTAgQMHAAANGzbE4sWLkSdPHpmTUVakq8dvtQs2kujqB05EyfvnH+DXX1WX6esD9++zpS2jxcfHY+bMmRgyZAiio6NRtGhRXLt2DQYGag8XSpQiXT1+p+lKjWPHjqFNmzbw9PRUzsW5atUqHD9+XKPhiIgyU1ITncTFcfL4zKCnp4f+/fvj/PnzKFOmDP78808Wa0TfULtg27RpE+rWrQtTU1NcvHhROSH6u3fvMHHiRI0HJCLKLEWLJt3hYO9eTmeVWVxcXHDhwgW0adNGuezo0aO4dOmSjKmI5Kd2wTZ+/HjMnz8fixYtUk7yCwCenp6c4JeIdJqDg3TNWsJ4rgnXvf/1F9CundSrlDKekZGRstPBy5cv0aJFC1SqVAmTJ0/ONh3biL6ndsF28+bNJMdAs7Kywtu3bzWRiYhINv7+0jVrISHAw4fA3LlSAbd6NeDjA3w3Ux5lMD09PVSuXBkxMTEYPHgwateurRxYnSg7Ubtgy5cvH+4kcUHH8ePHUahQIY2EIiKSk4MD4O0tfe3RA9i3D8iRAzh9GqhYEdDwtMmUgpw5c2LTpk1YvHgxzM3NcfjwYbi6umJ9wuB5RNmE2gVbt27d0LdvX5w5cwYKhQJPnjzBmjVrMGDAAPTo0SMjMhIRyapWLeDMGaBYMSA8HKhaFdi8We5U2YdCoYC/vz9CQ0NRqVIlREZGomXLlmjbti1ivh2HhSgLU7tgGzRoEJo0aQIfHx+8f/8eNWrUQOfOndGtWzf06tUrIzISEcmuaFGpha1OHeDjR2mA3QkT2BkhMxUpUgTHjh3DyJEjoaenByGEyrXURFlZmsdh+/jxI65du4b4+HiUKlUKFhYWms6m1XR1HBciSp/YWCAgAJg9W7rfqhWweDFgaipvruzm9OnTKFGiBGxsbAAAkZGRMDMzYwFHP6Srx28OnJtGuvqBE5FmzJ8P9OoljdNWsSKwdSuQL5/cqbInIQSaNGmivESnWLFickciLaarx29OcUxElAbduwP790udEc6elYo2DhUmj/v37+PYsWM4f/483N3dsXDhQrAtgrIaFmxERGlUs6ZUrJUoIU0WX60asGmT3KmyH2dnZ4SFhaFWrVr4+PEjunXrhiZNmuDFixdyRyPSGBZsRETpUKQIcOoUULeu1Bnhl1+AcePYGSGz5c+fH/v378fUqVNhZGSE7du3w8XFBXv27JE7GpFGsGAjIkonGxtg506gTx/p/siRUmeET59kjZXt6OnpISAgAGfPnkXp0qXx/Plz9OrVC9HR0XJHI0o3FmxERBpgYADMnAksWCB9v3494OUFPHkid7Lsp2zZsjh//jz69euHlStXwsjISO5IROnGXqJppKu9TIgo4x0+LI3T9vo1kD8/sG0b4OEhdypatGgR3r59iz/++AN6emyvyK509fjNn1giIg3z9pZmRihZEnj8GKheHdi4Ue5U2dvDhw/Rt29fDBo0CLVr10Z4eLjckYjUwoKNiCgDJHRG8POTrmVr3hwYO5adEeRSoEABzJo1C2ZmZggJCYGrqys2bNggdyyiVGPBRkSUQaytgR07gP79pfujRgEtW7IzghwUCgU6d+6M0NBQVKxYEW/fvkWLFi3Qrl07REVFyR2P6IdYsBERZSB9fWDaNGDRIqkzwoYNQI0a7Iwgl6JFi+L48eP4888/oaenh1WrVsHDwwOfP3+WOxpRiliwERFlgs6dgQMHgFy5gPPngQoVpK+U+QwNDTF27FgcPXoUzs7OaNOmDUxMTOSORZQi9hJNI13tZUJE8rp7F2jYELh2DTAxAVaskK5vI3lERUXBzMwMBgYGAIAbN25AT0+P85FmYbp6/GYLGxFRJipUSOqMUK8e8Pkz8NtvwOjRQHy83MmyJysrK2Wx9uXLF/z2229wd3fHokWLOB8paRUWbEREmczKCti+HfjjD+n+mDFAixbS1FYkn3fv3sHW1hYfP35E165d0bRpU85HSlqDBRsRkQz09YG//waWLAEMDaVx2mrUkMZtI3nY2toiODgYU6ZMgaGhIbZt2wZXV1fs3btX7mhELNiIiOTUqZPUGcHWFrhwQeqMsHMnEBICPHokd7rsR09PDwMGDMDZs2dRqlQpPHv2DH5+fujTpw++fPkidzzKxliwERHJrEYN4OxZoHRp4OlTqVNCzZqAk5PUAkeZz83NDefPn0fv3r0BABcvXlRe60YkB/YSTSNd7WVCRNrr+nWgVCnVZfr6wP37gIODLJEIwN69e1G8eHE4OzsDAKKjo2FgYMD5SHWUrh6/+dNGRKQlnj1LvCwuDrh8OfOz0Fc//fSTslgDgMGDB6NOnTp4xHPWlIlYsBERaYmiRYGkGm369QNu3870OJSE58+fY9GiRTh06BBcXV2xceNGuSNRNsGCjYhISzg4AAsXSqdBAal4s7YG7twBKlYE9u+XNx8BdnZ2uHjxIipUqIA3b96gefPmaN++PecjpQyXLQq2pk2bIkeOHPjll19UloeHh8Pb2xulSpXif0pEpBX8/aVr1kJCgAcPpOvaKlcG3r4F/PykeUl55bG8ihUrhhMnTmD48OHQ09PDypUr4ebmhhMnTsgdjbKwbNHpICQkBO/fv8eKFSvwzz//KJc/ffoUz58/h5ubGyIiIlCuXDncvHkT5ubmP9ymrl60SES658sX4PffgWXLpPvt2gELFkhTW5G8jh8/jrZt2+L+/fvImTMnHjx4AAsLC7ljUQp09fidLVrYfHx8YGlpmWh5vnz54ObmBgDIkycPcubMidevX2dyOiKilBkbS8N7zJwpnS5duZKD7GqLatWqITQ0FO3atcPs2bNZrFGGkb1gO3r0KBo2bAh7e3soFAps3bo10TpBQUFwdnaGiYkJPDw8cOzYMY3nOH/+POLj41GgQAGNb5uIKL0UCqBPH2DfPiBHDuDcOWmQ3dOn5U5G1tbWWLFiBVq1aqVctm/fPs5HShole8H24cMHlC1bFnPmzEny8Q0bNqBfv34YPnw4Ll26hOrVq8PPzw8PHz5UruPh4YEyZcokuj158iRVGV69eoV27dph4cKFGnlNREQZpVYtqVhLGGTXywtYvlzuVPStV69eoX379ujatSuaNWuGly9fyh2JsgKhRQCILVu2qCyrWLGi6N69u8qyEiVKiCFDhqi17ZCQEPHzzz8nWv7582dRvXp1sXLlyhSf//nzZxEZGam8hYeHCwAiMjJSrRxERJoQFSVEkyZCSF0QhOjbV4iYGLlTkRBCxMXFiSlTpghDQ0MBQOTNm1fs3btX7lj0/yIjI3Xy+C17C1tKoqOjceHCBfj6+qos9/X1xcmTJ9O9fSEEOnTogJo1a6Jt27YprhsYGAhra2vljadOiUhOlpbApk3AyJHS/ZkzpV6kvAxXft/OR1qyZEk8e/YMP/30E/r27YtPnz7JHY90lFYXbC9fvkRcXBzs7OxUltvZ2eFZUkOCJ6Nu3br49ddfsXv3bjg4OODcuXMAgBMnTmDDhg3YunUr3Nzc4ObmhrCwsCS3MXToUERGRipv4eHhaX9hREQaoKcHjBkD/PMPYGYmTSJfsSLw779yJyNAmo/0woULyvlIZ82ahQoVKnDMNkoTnZjJVqFQqNwXQiRalpJ9+/YlubxatWqIj49P1TaMjY1hbGyc6n0SEWWWn3+WZklo3Bj47z9p3LbVq6X7JC9TU1PMmjULfn5+6NixIzw8PHRqKAnSHlrdwmZrawt9ff1ErWkRERGJWt2IiLIzV1epM4K3N/D+PdCkCTBuHAfZ1RZ+fn4ICwvD7NmzlcsiIiLwmGOzUCppdcFmZGQEDw8PBAcHqywPDg6Gp6enTKmIiLSTra00fVWvXtL9kSOB5s2BDx/kzUWS3LlzK1vXhBDo1KkTXFxcVAZ0J0qO7AXb+/fvERoaitDQUADAvXv3EBoaqhy2IyAgAIsXL8bSpUtx/fp19O/fHw8fPkT37t1lTE1EpJ0MDYHZs6U5SQ0NpevbPD2l6a5Ie7x9+xbPnz/Hmzdv8Ouvv6Jjx468to1SJPvUVIcPH4aPj0+i5e3bt8fy/x9cKCgoCJMnT8bTp09RpkwZTJ8+HTVq1MjkpKp0dWoLIso+jh+Xrm+LiJBa3/75Rxq3jbRDTEwMxowZg8DAQMTHx8PZ2RmrV6/mGaQMpqvHb9kLNl2lqx84EWUv4eHS9WwXLwIGBtLwH7//Ls2cQNrh2LFjaNu2LR48eAA9PT2MGDECI0aMgKGhodzRsiRdPX7LfkqUiIgyToECwLFjQMuWQGws0LMn0L07EB0tdzJKUL16dVy+fBlt2rRBfHw81qxZg8+fP8sdi7QMW9jSSFcrdCLKnoQAJk8Ghg6Vvq9WTTpFyg732mX9+vUoWLAgKleuDADKuUjVGcqKUqarx2+2sBERZQMKBTB4MLBjB2BlJV3fVqGCdKqUtEeLFi2UxRoAzJ07F7/88gtevXolYyrSBizYiIiykfr1gTNngGLFpOvbqlUD1q+XOxUlJTIyEsOHD8fmzZvh4uKSaIgryl5YsBERZTMlSkhF208/AZ8+Sde3DR0KxMXJnYy+ZW1tjcOHD6NkyZJ4+vQpfH190b9/f17flk2xYCMiyoZsbICdO4GBA6X7kyZJU1lFRsoai77j7u6O8+fPo2fPngCAGTNmoEKFCsnOe01ZFzsdpJGuXrRIRPS9NWuAzp2Bz5+l1rcFC6TWtqJFAQcHudNRgt27d6NTp054/vw5zM3N8eDBA+TKlUvuWDpHV4/fOjH5OxERZZzWrYHixaXx2m7c+Dq4rp6eNGOCv7+s8ej/1atXD1euXEHnzp1RsWJFFmvZDFvY0khXK3QiouRcvAh4eKgu09eXprViS5v2EEJACAE9PemqprCwMNy6dQs///yzzMl0g64ev3kNGxERAUj6+rW4OODcuczPQslTKBTKYu3z589o3bo1fvnlF3Tq1Anv3r2TOR1lFBZsREQEQLpmTS+Jo0L37sCRI5mfh35MT08PDRo0gEKhwLJly+Dm5oZTp07JHYsyAAs2IiICIJ32XLhQOg0KSMVb3rzS5PE1awITJgDx8fJmJFVGRkaYOHEijhw5AicnJ9y9exfVq1fH6NGjERsbK3c80iAWbEREpOTvL12zFhICPHgA3L4NtG0rFWojRgB+flIBR9olYT7S1q1bIy4uDmPGjEG1atXw8uVLuaORhrBgIyIiFQ4OgLe39NXCAlixAli6FDA1BfbvB9zdgaNH5U5J37O2tsbq1auxdu1aWFtbw9jYGDly5JA7FmkIe4mmka72MiEiSqurV4Fff5WG/tDTA8aOlWZISOq6N5LXw4cPoVAoUKBAAQDAp0+f8PHjRw4FAt09fvPXjIiIUqVMGanHKE+Raj9HR0dlsQYAgwcPhqurKw4cOCBjKkoPFmxERJRqPEWqez58+IADBw7gyZMnqFOnDgICAjgfqQ5iwUZERGpRKICOHYGzZ6WprJ48AXx8gIkT2YtUG5mbm+P8+fPo0aMHAGD69OmoWLEi5yPVMSzYiIgoTRJOkbZpIxVqw4dLp0hfvJA7GX3PzMwMc+fOxc6dO5EnTx6EhYWhQoUKmDFjBuJZZesEFmxERJRmFhbAypXAkiVfT5G6ufEUqbaqX78+wsLC0KBBA3z58gVjxoxBBC9C1Aks2IiIKF0UCqBTJ54i1RV58uTB9u3bMX/+fCxatAh58+aVOxKlAgs2IiLSCJ4i1R0KhQLdunXDL7/8oly2a9cu+Pv74/379zImo+SwYCMiIo359hSpiQlPkeqKT58+oUuXLli6dCnc3Nxw+vRpuSPRd1iwERGRRiV3ijQwkKdItZWpqSnWrVsHR0dH/Pfff6hWrRrGjBnD+Ui1CAs2IiLKEC4uqqdIhw0D6tXjKVJt5eXlhcuXL6NVq1aIi4vD6NGjUaNGDfz3339yRyOwYCMiogz0/SnSffukU6THjsmdjJJiY2ODNWvWYM2aNbCyssKpU6fg5uaG8PBwuaNleyzYiIgoQ/EUqe5p1aoVrly5gho1auDXX39VmeaK5MHJ39NIVyePJSKS0/v3wO+/A6tXS/d/+klqgcudW95clLS4uDhER0fD1NQUAPDs2TP8+++/qFWrlszJ0k5Xj99sYSMiokyTcIp08WLpFOnevTxFqs309fWVxZoQAh07dkTt2rXxxx9/4MuXLzKny15YsBERUaZSKAB/f+kUafHiPEWqK2JiYuDs7AwAmDZtGipWrIirV6/KnCr7YMFGRESycHEBzp+XepHGxUm9SOvXl3qRPnoEhIRIX0k7GBkZISgoCDt27EDu3Llx5coVlC9fHjNnzuR8pJmABRsREckmqVOkxYoBTk5AzZrS1yVL5E5J32rQoAHCwsJQr149fPnyBf369YOfnx9ecLyWDMWCjYiIZPXtKdJChYC3b7+eGo2PB7p1Y0ubtrGzs8POnTsxd+5cmJiY4O7du8pr3ShjsGAjIiKt4OICzJ6deHlcHHDnTubnoZQpFAr06NEDFy9exP/+9z9YWFgAAOLj4/HhwweZ02U92aJga9q0KXLkyKEyye23Pn78CCcnJwwYMCCTkxER0bdcXaUWt2/p6wNFisiTh36sZMmScHd3V96fPXs2ypYtizNnzsiYKuvJFgVbnz59sHLlymQfnzBhAipVqpSJiYiIKCkODsBvv329r68PLFggLSftFxMTg7lz5+K///5D1apVMXbsWM5HqiHZomDz8fGBpaVlko/dvn0bN27cQL169TI5FRERJaVyZemrjw9w/750fRvpBkNDQ5w5cwYtWrRAXFwcRo0aBS8vL9y9e1fuaDpP9oLt6NGjaNiwIezt7aFQKLB169ZE6wQFBcHZ2RkmJibw8PDAMQ2OsDhgwAAEBgZqbHtERJQ+CadE7ezYsqaLcuTIgXXr1mH16tWwsrLCyZMn4ebmhhUrVoCTK6Wd7AXbhw8fULZsWcyZMyfJxzds2IB+/fph+PDhuHTpEqpXrw4/Pz88fPhQuY6HhwfKlCmT6PbkyZMU971t2zYUK1YMxYoV0+hrIiKi9OOxXbe1bt0aly9fRvXq1fHu3Tt07twZ//33n9yxdJaB3AH8/Pzg5+eX7OPTpk2Dv78/OnfuDACYMWMG9u3bh3nz5ilbxi5cuJCmfZ8+fRrr16/Hxo0b8f79e8TExMDKygojR45MtO6XL19UpuGIiopK0z6JiIiyi4IFCyIkJASTJ0+GgYEBirD3SJrJ3sKWkujoaFy4cAG+vr4qy319fXHy5Ml0bz8wMBDh4eG4f/8+/v77b3Tp0iXJYi1hXWtra+WtQIEC6d4/EREl9n0vUdJt+vr6GDp0KAYOHKhcdvnyZQwaNIjzkapBqwu2ly9fIi4uDnZ2dirL7ezs8OzZs1Rvp27duvj111+xe/duODg44Ny5c2pnGTp0KCIjI5W38PBwtbdBRESpx1OiWVNsbCxat26NKVOmoFKlSvj333/ljqQTZD8lmhqK7/7dEkIkWpaSffv2/XCdDh06pPi4sbExjI2NU71PIiIiSszAwACBgYHw9/fH5cuXUb58eUyePBm9evVS69ie3Wh1C5utrS309fUTtaZFREQkanUjIqKsgcfsrK9hw4a4cuUK6tWrh8+fP6NPnz7w8/PD06dP5Y6mtbS6YDMyMoKHhweCg4NVlgcHB8PT01OmVERElBl4SjRry5s3L3bu3Ik5c+bAxMQE+/btg4uLC27duiV3NK0k+ynR9+/f4843k8Tdu3cPoaGhyJkzJxwdHREQEIC2bduifPnyqFKlChYuXIiHDx+ie/fuMqYmIiKi9FIoFOjZsyd8fHzQunVr2NjYoHDhwnLH0kqyF2znz5+Hj4+P8n5AQAAAoH379li+fDl+++03vHr1CmPHjsXTp09RpkwZ7N69G05OTnJFJiKiDMRTotlPqVKlcPr0aURFRUFfX1/uOFpJ9oLN29v7hyMf9+jRAz169MikREREpA14SjR7MTY2Ru7cueWOobW0+ho2IiLKftjCRpQYCzYiIiIiLceCjYiItBJPiRJ9xYKNiIi0Ck+JEiXGgo2IiIhIy7FgIyIircRTokRfsWAjIiKtwlOiRImxYCMiItIyjx4BISHSVyKABRsREWmp7HpKdMkSwMkJqFlT+rpkidyJMh8L1sRYsBERkVbJzqdEHz0CunYF4uOl+/HxQOfO0rJ//gEeP5Y3X2ZgwZo02aemIiIiIsnt21+LtW8tWiTdAKBAAaBKFcDTU/rq5gYYGWVqTI179w64ehU4cgQYNuxr62p8PNCtG1C3LuDgIG9GubFgIyIirZQdT4kWLQro6akWbXp6QKtWQFiYdAsPl27/+5/0uIkJ4OEhFW8Jt3z55Mn/I/HxwN27wJUrwOXL0tcrV6RlyYmLA+7cYcHGgo2IiLRKdj4l6uAAzJ0L/P67dF9fH1iwAPD3l+6/ewecOwecOvX19vo1cOKEdEvg5KRawLm5AYaGmfta3ryRCsyEouzKFen+x49Jr29vDxQrJrWyfVus6+sDRYpkTmZtxoKNiIi0UnZsYQOAjh2/FmxXrgClSn19zNJSurarZk3pvhDSadRvC7irV4EHD6Tb+vXSeiYmQPnyqkVc3ryayRsbC9y6pVqYXbkitQImxcQEKFMGcHX9enNxAWxtpceXLJFOg8bFfS1Ys3vrGsCCjYiISGv9qFBRKKRWqWLFgPbtpWXv3gFnz34t4E6fllrhjh+XbgkKFlQt4MqW/doK9+iRVAgWLaqaISIicWF27Rrw5UvS+QoWVC3MXF2l1jJ9/eRfk7+/dM3anTvSuizWJCzYiIhIq2TnU6JA+lsWLS2BWrWkW8L2bt1K3Ap3/750W7dOWs/UVGqFMzcH9u2TnqdQAHXqSN9fuQI8f570Pi0spFayhKKsbFmpFc3aOm2vwcGBhdr3WLAREZFWyq6nRDVNoQCKF5duHTpIy6KiErfCvXkDHDum+lwhgP37VbdVpEjiVrOCBaXOEZRxWLAREZFWye4tbN/KqPfCygqoXVu6AVLvzVu3gKVLgSlTEq8/YADw669A6dJSCxxlPtbDREREWkSOlkU9PaBECaBPn8QtZfr6QN++QMWKLNbkxIKNiIi0Ek+JZj4HB2Dhwq+dAthLU3vwlCgREWkVnhL9So73gr00tRMLNiIiIi2iDS2L7KWpfXhKlIiItJI2FC5E2oIFGxERaRWeEv2K7wUlYMFGRESkRdiySElhwUZERFqJhQvRVyzYiIhIq/A04Fd8LygBCzYiIiItwpZFSgoLNiIi0kosXIi+YsFGRERahacBv+J7QQlYsBEREWkRtixSUliwERGRVmLhQvQVCzYiItIqPA34Fd8LSsC5RNNI/P+/flFRUTInISLKWj59kr7GxADZ8U/su3dfv4+KAqKj5cuSFSUct4WONeEqhK4l1hKPHj1CgQIF5I5BREREaRAeHg4HHZrhngVbGsXHx+PJkyewtLSEIou1WUdFRaFAgQIIDw+HlZWV3HEyXXZ//QDfA77+7P36Ab4HWfn1CyHw7t072NvbQ09Pd64M4ynRNNLT09OpyjwtrKysstwvqjqy++sH+B7w9Wfv1w/wPciqr9/a2lruCGrTndKSiIiIKJtiwUZERESk5ViwUSLGxsYYNWoUjI2N5Y4ii+z++gG+B3z92fv1A3wPsvvr10bsdEBERESk5djCRkRERKTlWLARERERaTkWbERERERajgUbERERkZZjwUYAgMDAQFSoUAGWlpbIkycPmjRpgps3b8odSzaBgYFQKBTo16+f3FEy1ePHj9GmTRvkypULZmZmcHNzw4ULF+SOlWliY2MxYsQIODs7w9TUFIUKFcLYsWMRHx8vd7QMcfToUTRs2BD29vZQKBTYunWryuNCCIwePRr29vYwNTWFt7c3/v33X3nCZpCU3oOYmBgMHjwYLi4uMDc3h729Pdq1a4cnT57IF1jDfvQz8K1u3bpBoVBgxowZmZaPvmLBRgCAI0eOoGfPnjh9+jSCg4MRGxsLX19ffPjwQe5ome7cuXNYuHAhXF1d5Y6Sqd68eYOqVavC0NAQe/bswbVr1zB16lTY2NjIHS3T/PXXX5g/fz7mzJmD69evY/LkyZgyZQpmz54td7QM8eHDB5QtWxZz5sxJ8vHJkydj2rRpmDNnDs6dO4e8efOiTp06ePft7OQ6LqX34OPHj7h48SL+/PNPXLx4EZs3b8atW7fQqFEjGZJmjB/9DCTYunUrzpw5A3t7+0xKRokIoiREREQIAOLIkSNyR8lU7969E0WLFhXBwcHCy8tL9O3bV+5ImWbw4MGiWrVqcseQVf369UWnTp1UljVr1ky0adNGpkSZB4DYsmWL8n58fLzImzevmDRpknLZ58+fhbW1tZg/f74MCTPe9+9BUs6ePSsAiAcPHmROqEyU3Ot/9OiRyJ8/v7h69apwcnIS06dPz/RsJARb2ChJkZGRAICcOXPKnCRz9ezZE/Xr10ft2rXljpLptm/fjvLly+PXX39Fnjx54O7ujkWLFskdK1NVq1YNBw8exK1btwAAly9fxvHjx1GvXj2Zk2W+e/fu4dmzZ/D19VUuMzY2hpeXF06ePCljMnlFRkZCoVBkm5bn+Ph4tG3bFgMHDkTp0qXljpOtcfJ3SkQIgYCAAFSrVg1lypSRO06mWb9+PS5evIhz587JHUUWd+/exbx58xAQEIBhw4bh7Nmz6NOnD4yNjdGuXTu542WKwYMHIzIyEiVKlIC+vj7i4uIwYcIEtGzZUu5ome7Zs2cAADs7O5XldnZ2ePDggRyRZPf582cMGTIErVq1ypIToiflr7/+goGBAfr06SN3lGyPBRsl0qtXL1y5cgXHjx+XO0qmCQ8PR9++fbF//36YmJjIHUcW8fHxKF++PCZOnAgAcHd3x7///ot58+Zlm4Jtw4YNWL16NdauXYvSpUsjNDQU/fr1g729Pdq3by93PFkoFAqV+0KIRMuyg5iYGLRo0QLx8fEICgqSO06muHDhAmbOnImLFy9my89c2/CUKKno3bs3tm/fjpCQEDg4OMgdJ9NcuHABERER8PDwgIGBAQwMDHDkyBHMmjULBgYGiIuLkztihsuXLx9KlSqlsqxkyZJ4+PChTIky38CBAzFkyBC0aNECLi4uaNu2Lfr374/AwEC5o2W6vHnzAvja0pYgIiIiUatbVhcTE4PmzZvj3r17CA4Ozjata8eOHUNERAQcHR2VfxcfPHiAP/74AwULFpQ7XrbDFjYCIP3X3Lt3b2zZsgWHDx+Gs7Oz3JEyVa1atRAWFqayrGPHjihRogQGDx4MfX19mZJlnqpVqyYayuXWrVtwcnKSKVHm+/jxI/T0VP+P1dfXz7LDeqTE2dkZefPmRXBwMNzd3QEA0dHROHLkCP766y+Z02WehGLt9u3bCAkJQa5cueSOlGnatm2b6HreunXrom3btujYsaNMqbIvFmwEQLrYfu3atdi2bRssLS2V/1VbW1vD1NRU5nQZz9LSMtH1eubm5siVK1e2uY6vf//+8PT0xMSJE9G8eXOcPXsWCxcuxMKFC+WOlmkaNmyICRMmwNHREaVLl8alS5cwbdo0dOrUSe5oGeL9+/e4c+eO8v69e/cQGhqKnDlzwtHREf369cPEiRNRtGhRFC1aFBMnToSZmRlatWolY2rNSuk9sLe3xy+//IKLFy9i586diIuLU/5tzJkzJ4yMjOSKrTE/+hn4vkA1NDRE3rx5Ubx48cyOSjL3UiUtASDJ27Jly+SOJpvsNqyHEELs2LFDlClTRhgbG4sSJUqIhQsXyh0pU0VFRYm+ffsKR0dHYWJiIgoVKiSGDx8uvnz5Ine0DBESEpLk73379u2FENLQHqNGjRJ58+YVxsbGokaNGiIsLEze0BqW0ntw7969ZP82hoSEyB1dI370M/A9DushH4UQQmRSbUhEREREacBOB0RERERajgUbERERkZZjwUZERESk5ViwEREREWk5FmxEREREWo4FGxEREZGWY8FGREREpOVYsBFRhvD29ka/fv3kjqEkhEDXrl2RM2dOKBQKhIaGyh2JiCjVWLARUbawd+9eLF++HDt37sTTp0+zzZRjCQoWLIgZM2bIHYOI0ohziRKRzoiLi4NCoUg0QXtq/Pfff8iXLx88PT0zIFnmiomJgaGhodwxiCgTsYWNKAvz9vZGnz59MGjQIOTMmRN58+bF6NGjlY/fv38/0enBt2/fQqFQ4PDhwwCAw4cPQ6FQYN++fXB3d4epqSlq1qyJiIgI7NmzByVLloSVlRVatmyJjx8/quw/NjYWvXr1go2NDXLlyoURI0bg29nwoqOjMWjQIOTPnx/m5uaoVKmScr8AsHz5ctjY2GDnzp0oVaoUjI2N8eDBgyRf65EjR1CxYkUYGxsjX758GDJkCGJjYwEAHTp0QO/evfHw4UMoFAoULFgwyW0k7G/r1q0oVqwYTExMUKdOHYSHh6usN2/ePBQuXBhGRkYoXrw4Vq1apXzsjz/+QMOGDZX3Z8yYAYVCgV27dimXFS9eHAsWLFDeX7ZsGUqWLAkTExOUKFECQUFBiT6j//3vf/D29oaJiQlWr16dZP7Ro0fD0dERxsbGsLe3R58+fQBIPwcPHjxA//79oVAooFAolM85efIkatSoAVNTUxQoUAB9+vTBhw8flI8XLFgQ48aNQ6tWrWBhYQF7e3vMnj07VfslIg2SdypTIspIXl5ewsrKSowePVrcunVLrFixQigUCrF//34hhFBObn3p0iXlc968eaMyuXXC5NCVK1cWx48fFxcvXhRFihQRXl5ewtfXV1y8eFEcPXpU5MqVS0yaNEll3xYWFqJv377ixo0bYvXq1cLMzExlQvlWrVoJT09PcfToUXHnzh0xZcoUYWxsLG7duiWEEGLZsmXC0NBQeHp6ihMnTogbN26I9+/fJ3qdjx49EmZmZqJHjx7i+vXrYsuWLcLW1laMGjVKCCHE27dvxdixY4WDg4N4+vSpiIiISPL9Sthf+fLlxcmTJ8X58+dFxYoVhaenp3KdzZs3C0NDQzF37lxx8+ZNMXXqVKGvry8OHTokhBBi+/btwtraWsTFxQkhhGjSpImwtbUVAwcOFEII8fTpUwFAXL9+XQghxMKFC0W+fPnEpk2bxN27d8WmTZtEzpw5xfLly1U+o4IFCyrXefz4caLsGzduFFZWVmL37t3iwYMH4syZM8r3+tWrV8LBwUGMHTtWPH36VDx9+lQIIcSVK1eEhYWFmD59urh165Y4ceKEcHd3Fx06dFBu18nJSVhaWorAwEBx8+ZNMWvWLKGvr6/8GUppv0SkOSzYiLIwLy8vUa1aNZVlFSpUEIMHDxZCqFewHThwQLlOYGCgACD+++8/5bJu3bqJunXrquy7ZMmSIj4+Xrls8ODBomTJkkIIIe7cuSMUCkWi4qNWrVpi6NChQgipgAIgQkNDU3ydw4YNE8WLF1fZ19y5c4WFhYWycJo+fbpwcnJKcTsJ+zt9+rRy2fXr1wUAcebMGSGEEJ6enqJLly4qz/v1119FvXr1hBBScainpyfOnz8v4uPjRa5cuURgYKCoUKGCEEKItWvXCjs7O+VzCxQoINauXauyvXHjxokqVaoIIb5+RjNmzEgx+9SpU0WxYsVEdHR0ko87OTmJ6dOnqyxr27at6Nq1q8qyY8eOCT09PfHp0yfl83766SeVdX777Tfh5+eXqv0SkWbwlChRFufq6qpyP1++fIiIiEjXduzs7GBmZoZChQqpLPt+u5UrV1Y5/ValShXcvn0bcXFxuHjxIoQQKFasGCwsLJS3I0eO4L///lM+x8jIKNFr+N7169dRpUoVlX1VrVoV79+/x6NHj9R6nQYGBihfvrzyfokSJWBjY4Pr168r91W1alWV51StWlX5uLW1Ndzc3HD48GGEhYVBT08P3bp1w+XLl/Hu3TscPnwYXl5eAIAXL14gPDwc/v7+Ku/B+PHjVd4DACqZkvLrr7/i06dPKFSoELp06YItW7YoTwkn58KFC1i+fLnKvuvWrYv4+Hjcu3dPuV6VKlVUnlelShXl603LfolIfex0QJTFfX9xukKhQHx8PAAoL94X31xXFhMT88PtKBSKFLebGvHx8dDX18eFCxegr6+v8piFhYXye1NTU5VCLClCiETrJLymHz03KUk959tlSe3r22Xe3t44fPgwjIyM4OXlhRw5cqB06dI4ceIEDh8+rBzuJOH9WrRoESpVqqSyze/fE3Nz8xQzFyhQADdv3kRwcDAOHDiAHj16YMqUKThy5EiyHRTi4+PRrVu3JK85c3R0THF/Ca83LfslIvWxYCPKxnLnzg0AePr0Kdzd3QFAo+OTnT59OtH9okWLQl9fH+7u7oiLi0NERASqV6+erv2UKlUKmzZtUimcTp48CUtLS+TPn1+tbcXGxuL8+fOoWLEiAODmzZt4+/YtSpQoAQAoWbIkjh8/jnbt2imfc/LkSZQsWVJ539vbG0uWLIGBgQFq164NAPDy8sL69etx69YtZQubnZ0d8ufPj7t376J169ZpfwP+n6mpKRo1aoRGjRqhZ8+eKFGiBMLCwlCuXDkYGRkhLi5OZf1y5crh33//RZEiRVLcblKfY8L78aP9EpFmsGAjysZMTU1RuXJlTJo0CQULFsTLly8xYsQIjW0/PDwcAQEB6NatGy5evIjZs2dj6tSpAIBixYqhdevWaNeuHaZOnQp3d3e8fPkShw4dgouLC+rVq5fq/fTo0QMzZsxA79690atXL9y8eROjRo1CQECA2kOAGBoaonfv3pg1axYMDQ3Rq1cvVK5cWVnADRw4EM2bN0e5cuVQq1Yt7NixA5s3b8aBAweU26hRowbevXuHHTt2YPz48QCkIu7nn39G7ty5UapUKeW6o0ePRp8+fWBlZQU/Pz98+fIF58+fx5s3bxAQEJDq3MuXL0dcXBwqVaoEMzMzrFq1CqampnBycgIg9fY8evQoWrRoAWNjY9ja2mLw4MGoXLkyevbsiS5dusDc3BzXr19HcHCwSk/QEydOYPLkyWjSpAmCg4OxceNGZa/XH+2XiDREzgvoiChjeXl5ib59+6osa9y4sWjfvr3y/rVr10TlypWFqampcHNzE/v370+y08GbN2+Uz1m2bJmwtrZW2e6oUaNE2bJlVfbdo0cP0b17d2FlZSVy5MghhgwZotIxIDo6WowcOVIULFhQGBoairx584qmTZuKK1euJLuf5Bw+fFhUqFBBGBkZibx584rBgweLmJgY5eOp7XRgbW0tNm3aJAoVKiSMjIxEzZo1xf3791XWCwoKEoUKFRKGhoaiWLFiYuXKlYm25eHhIXLnzq18va9evRIKhUL88ssvidZds2aNcHNzE0ZGRiJHjhyiRo0aYvPmzUKIpDuGJGXLli2iUqVKwsrKSpibm4vKlSurdBQ5deqUcHV1FcbGxuLbP/1nz54VderUERYWFsLc3Fy4urqKCRMmKB93cnISY8aMEc2bNxdmZmbCzs5OpQPEj/ZLRJqhEOKbi1eIiLKx5cuXo1+/fnj79q3cUbRGwYIF0a9fP62aZowoO2IvUSIiIiItx4KNiIiISMvxlCgRERGRlmMLGxEREZGWY8FGREREpOVYsBERERFpORZsRERERFqOBRsRERGRlmPBRkRERKTlWLARERERaTkWbERERERajgUbERERkZb7P5XkNNwCZYGqAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Δλ = Float64[]\n", + "y = x\n", + "for i = 1:15\n", + " y = (A - 2.1I) \\ y\n", + " y = y / norm(y)\n", + " λ̃ = (y'A*y) / (y'y)\n", + " push!(Δλ, abs(λ̃ - 2))\n", + "end\n", + "semilogy(1:length(Δλ), Δλ, \"b.-\")\n", + "semilogy(1:length(Δλ), (1/9).^(1:length(Δλ)), \"k--\")\n", + "xlabel(\"number of power steps\")\n", + "ylabel(\"error in eigenvalue\")\n", + "title(L\"convergence of shift-and-invert method $\\lambda$ for $\\lambda=1,2,3,4,5$, $\\mu = 2.1$\")\n", + "legend([\"error\", L\"1/9^n\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yup, it converges at the expected rate!\n", + "\n", + "If you have a reasonable guess for the eigenvalue that you want, shift-and-invert can converge amazingly fast!" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "7dd865d46d0840b190e2e9939f83d754", + "lastKernelId": "3c7d7052-bde9-4a18-a0c5-24a636d36fd8" + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + }, + "widgets": { + "state": { + "261a280b-0628-4842-8d64-15aa1b5543bc": { + "views": [ + { + "cell_index": 5 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/lectures/Projections.ipynb b/notes/Projections.ipynb similarity index 100% rename from lectures/Projections.ipynb rename to notes/Projections.ipynb diff --git a/notes/QR Factorization Examples in Julia.ipynb b/notes/QR Factorization Examples in Julia.ipynb new file mode 100644 index 00000000..b0536233 --- /dev/null +++ b/notes/QR Factorization Examples in Julia.ipynb @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Square Case first" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 0.330869 0.843845 0.0623888 0.398208\n", + " 0.8661 0.204488 0.138221 0.218923\n", + " 0.741009 0.775278 0.576722 0.9775 \n", + " 0.87276 0.139498 0.072938 0.983904" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(4,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LinearAlgebra.QRCompactWY{Float64,Array{Float64,2}}\n", + "Q factor:\n", + "4×4 LinearAlgebra.QRCompactWYQ{Float64,Array{Float64,2}}:\n", + " -0.224588 0.76522 0.603058 -0.017861 \n", + " -0.587892 -0.292547 0.130273 -0.742852 \n", + " -0.502982 0.437253 -0.739298 0.0962124\n", + " -0.592413 -0.371031 0.269792 0.662266 \n", + "R factor:\n", + "4×4 Array{Float64,2}:\n", + " -1.47323 -0.782326 -0.428561 -1.29268 \n", + " 0.0 0.873139 0.232416 0.303028\n", + " 0.0 0.0 -0.351061 -0.188552\n", + " 0.0 0.0 0.0 0.575913" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q,R = qr(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 1.0 0.0 0.0 -0.0\n", + " 0.0 1.0 -0.0 -0.0\n", + " 0.0 -0.0 1.0 0.0\n", + " -0.0 -0.0 0.0 1.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round.(Q'Q, digits=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 1.0 0.0 -0.0 -0.0\n", + " 0.0 1.0 0.0 -0.0\n", + " -0.0 0.0 1.0 0.0\n", + " -0.0 -0.0 0.0 1.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round.(Q*Q', digits=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## I'm happy, I see Q is orthogonal" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "true" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A ≈ Q * R" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 0.330869 0.843845 0.0623888 0.398208\n", + " 0.8661 0.204488 0.138221 0.218923\n", + " 0.741009 0.775278 0.576722 0.9775 \n", + " 0.87276 0.139498 0.072938 0.983904" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q * R" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 0.330869 0.843845 0.0623888 0.398208\n", + " 0.8661 0.204488 0.138221 0.218923\n", + " 0.741009 0.775278 0.576722 0.9775 \n", + " 0.87276 0.139498 0.072938 0.983904" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Now a tall skinny example" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×3 Array{Float64,2}:\n", + " 0.657045 0.214426 0.0462177\n", + " 0.268263 0.208357 0.269215 \n", + " 0.410459 0.948475 0.756601 \n", + " 0.391947 0.683485 0.28925 \n", + " 0.949405 0.999374 0.570501 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(5,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×3 Array{Float64,2}:\n", + " -0.499955 -0.62267 0.00434913\n", + " -0.204125 -0.0946497 -0.628421 \n", + " -0.312324 0.686918 -0.424575 \n", + " -0.298239 0.362414 0.645285 \n", + " -0.722416 0.0110753 0.0917176 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q,R = qr(A)\n", + "Q = Q[:,1:3] # make sure we have the first three columns" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×3 Array{Float64,2}:\n", + " -0.499955 -0.62267 0.00434913\n", + " -0.204125 -0.0946497 -0.628421 \n", + " -0.312324 0.686918 -0.424575 \n", + " -0.298239 0.362414 0.645285 \n", + " -0.722416 0.0110753 0.0917176 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " -1.31421 -1.37177 -0.81277 \n", + " 0.0 0.75706 0.57661 \n", + " 0.0 0.0 -0.251239" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "R" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×3 Array{Float64,2}:\n", + " 0.657045 0.214426 0.0462177\n", + " 0.268263 0.208357 0.269215 \n", + " 0.410459 0.948475 0.756601 \n", + " 0.391947 0.683485 0.28925 \n", + " 0.949405 0.999374 0.570501 " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q * R" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×3 Array{Float64,2}:\n", + " 0.657045 0.214426 0.0462177\n", + " 0.268263 0.208357 0.269215 \n", + " 0.410459 0.948475 0.756601 \n", + " 0.391947 0.683485 0.28925 \n", + " 0.949405 0.999374 0.570501 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "true" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A ≈ Q * R" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " 1.0 -0.0 -0.0\n", + " -0.0 1.0 -0.0\n", + " -0.0 -0.0 1.0" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round.(Q'Q, digits=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5×5 Array{Float64,2}:\n", + " 0.637693 0.158256 -0.273422 -0.0737523 0.354678 \n", + " 0.158256 0.445538 0.265548 -0.378935 0.0887777\n", + " -0.273422 0.265548 0.749666 0.0681243 0.194295 \n", + " -0.0737523 -0.378935 0.0681243 0.636683 0.27865 \n", + " 0.354678 0.0887777 0.194295 0.27865 0.53042 " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q * Q'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Julia 1.3.1", + "language": "julia", + "name": "julia-1.3" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.3.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/QR in Julia.ipynb b/notes/QR in Julia.ipynb new file mode 100644 index 00000000..1467ac66 --- /dev/null +++ b/notes/QR in Julia.ipynb @@ -0,0 +1,1378 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Is Q mxn or nxn? It is both! This is useful! " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 LinearAlgebra.QRCompactWYQ{Float64,Array{Float64,2}}:\n", + " -0.36166 0.916348 -0.135025 -0.106193 \n", + " -0.875369 -0.396235 -0.176529 -0.21346 \n", + " -0.216 0.0556349 0.974526 -0.0234073\n", + " -0.237226 0.0144527 -0.0300856 0.970881 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using LinearAlgebra\n", + "A = rand(4,2)\n", + "Q,R = qr(A)\n", + "Q" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It looks 4x4 !!" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4, 4)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "size(Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## but wait! I can multiply by a vector of size 2" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Array{Float64,1}:\n", + " 1.4710364530489386 \n", + " -1.6678387032016588 \n", + " -0.10473038358204545\n", + " -0.2083203318415276 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q * [1,2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## what about size 3? !! (answer: no)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "ename": "DimensionMismatch", + "evalue": "DimensionMismatch(\"vector must have length either 4 or 2\")", + "output_type": "error", + "traceback": [ + "DimensionMismatch(\"vector must have length either 4 or 2\")", + "", + "Stacktrace:", + " [1] *(::LinearAlgebra.QRCompactWYQ{Float64,Array{Float64,2}}, ::Array{Int64,1}) at /Users/sabae/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.3/LinearAlgebra/src/qr.jl:563", + " [2] top-level scope at In[16]:1" + ] + } + ], + "source": [ + "Q * [1,2,3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## what about size 4? (answer: yes)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4-element Array{Float64,1}:\n", + " 0.6411891565050274\n", + " -3.051264992118778 \n", + " 2.7252182423170517\n", + " 3.5849468538868363" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q * [1,2,3,4]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What's going on??" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Q is not stored as elements, it is stored in a more compact form known as a [WY representation](https://www.researchgate.net/publication/23844885_A_Storage-Efficient_WY_Representation_for_Products_of_Householder_Transformations) which we do not cover in 18.06.\n", + "This form not only saves memory, but allows us to complete the tall-skinny mxn Q into a full square orthogonal Q." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The \"extra\" vectors are an orthonormal set of vectors that are orthogonal to the column space of A. This is associated with the left nullspace of A." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×4 Array{Float64,2}:\n", + " 0.0486726 0.422254 0.0384858 0.324084\n", + " 0.700173 0.479445 0.570882 0.340941\n", + " 0.868803 0.791772 0.5067 0.294249\n", + " 0.550927 0.680756 0.133569 0.127481" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(4,4)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×3 Array{Float64,2}:\n", + " 0.422254 0.0384858 0.324084\n", + " 0.479445 0.570882 0.340941\n", + " 0.791772 0.5067 0.294249\n", + " 0.680756 0.133569 0.127481" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[:,2:end]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×3 Array{Float64,2}:\n", + " 0.422254 0.0384858 0.324084\n", + " 0.479445 0.570882 0.340941\n", + " 0.791772 0.5067 0.294249\n", + " 0.680756 0.133569 0.127481" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[:,2:4]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4×3 Array{Float64,2}:\n", + " 0.422254 0.0384858 0.324084\n", + " 0.479445 0.570882 0.340941\n", + " 0.791772 0.5067 0.294249\n", + " 0.680756 0.133569 0.127481" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A[:,[2,3,4]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Six Cases (kind of)\n", + "1. Square (rank=n rank\n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "\n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "543c08df-86e5-47aa-a527-e8f39e04dd04" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "arc (generic function with 1 method)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot, Interact, LinearAlgebra\n", + "arc(args...; kws...) = gca().add_patch.(matplotlib.patches.Arc(args...; kws...))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## *Which* orthonormal basis?\n", + "\n", + "Orthonormal bases are \"nice\", and make it especially easy to do things like projections or changes of basis. However, for any matrix $A$ with rank > 1, there are **infinitely many possible orthonormal bases** for $C(A)$ and $C(A^T)$. Are they all equally good?\n", + "\n", + "Let's look at a simple $2\\times2$ matrix $$A = \\begin{pmatrix} 1 & 1 \\\\ -1 & \\frac{1}{4} \\end{pmatrix} .$$ This matrix is **rank 2**, so $C(A) = C(A^T) = \\mathbb{R}^2$. The obvious orthonormal basis would be the unit vectors (1,0) and (0,1). But is there a better choice? A choice that comes from $A$ itself?\n", + "\n", + "Let's see what $A$ does to two orthonormal vectors $v_1$ and $v_2$ as we **rotate the \"input\"** basis." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGiCAYAAACcbHM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnJUlEQVR4nO3deXhMdxcH8O9kmyQksYQkiH2JrQRFtEpp7WovpRptaamlqq1autAWpahulrYpbdF61VKKFiWhRItG7UsJURJLMEmQdc77x+lkMslknzvbPZ/nmSfJnTszJyPumd92fhoiIgghhBBOzsXWAQghhBDWIAlPCCGEKkjCE0IIoQqS8IQQQqiCJDwhhBCqIAlPCCGEKkjCE0IIoQqS8IQQQqiCJDwhhBCqIAlPCCGEKiia8ObMmYMHH3wQPj4+qFy5Mvr27YszZ84U+rioqCi0bNkSnp6eqF27NpYuXapkmEIIIVRA0YQXFRWFsWPH4sCBA9ixYwcyMzPRpUsX3L17N9/HxMbGokePHmjfvj1iYmIwbdo0TJgwAevWrVMyVCGEEE5OY83i0Tdu3EDlypURFRWFRx55xOw5b7zxBjZt2oRTp05lHxs9ejT+/vtvREdHWytUIYQQTsbNmi+m0+kAABUqVMj3nOjoaHTp0sXkWNeuXREREYGMjAy4u7ub3JeWloa0tLTsn/V6PW7duoWKFStCo9FYMHohhBDWQERITk5GlSpV4OJiuY5IqyU8IsKkSZPw8MMPo0mTJvmel5CQgICAAJNjAQEByMzMxM2bNxEUFGRy35w5czBz5kxFYhZCCGE7ly9fRrVq1Sz2fFZLeOPGjcPRo0fx+++/F3pu7paZodfVXItt6tSpmDRpUvbPOp0O1atXx+XLl+Hr61vKqIUQQlhbUlISgoOD4ePjY9HntUrCGz9+PDZt2oQ9e/YUmq0DAwORkJBgcuz69etwc3NDxYoV85yv1Wqh1WrzHPf19ZWEJ4QQDszSw1KKztIkIowbNw7r16/Hrl27UKtWrUIfExYWhh07dpgc2759O1q1apVn/E4IIYQoKkUT3tixY7Fy5UqsXr0aPj4+SEhIQEJCAu7fv599ztSpU/HMM89k/zx69GhcunQJkyZNwqlTp/D1118jIiICr732mpKhCiGEcHKKJrwlS5ZAp9OhY8eOCAoKyr6tWbMm+5z4+HjExcVl/1yrVi1s3boVkZGRaN68Od577z188sknGDBggJKhCiGEcHJWXYdnDUlJSfDz84NOp5MxPCGEcEBKXcellqYQQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVFE96ePXvQu3dvVKlSBRqNBhs3bizw/MjISGg0mjy306dPKxmmEEIIFXBT8snv3r2LZs2a4dlnn8WAAQOK/LgzZ87A19c3++dKlSopEZ4QQggVUTThde/eHd27dy/24ypXroxy5cpZPiAhhBCqZZdjeKGhoQgKCkLnzp2xe/fuAs9NS0tDUlKSyU0IIYTIza4SXlBQEL744gusW7cO69evR4MGDdC5c2fs2bMn38fMmTMHfn5+2bfg4GArRiyEEMJRaIiIrPJCGg02bNiAvn37FutxvXv3hkajwaZNm8zen5aWhrS0tOyfk5KSEBwcDJ1OZzIOKIQQwjEkJSXBz8/P4tdxu2rhmdO2bVucO3cu3/u1Wi18fX1NbkIIIURudp/wYmJiEBQUZOswhBBCODhFZ2mmpKTgn3/+yf45NjYWR44cQYUKFVC9enVMnToVV65cwbfffgsAWLRoEWrWrInGjRsjPT0dK1euxLp167Bu3TolwxRCCKECiia8Q4cO4dFHH83+edKkSQCA8PBwrFixAvHx8YiLi8u+Pz09Ha+99hquXLkCLy8vNG7cGFu2bEGPHj2UDFMIIYQKWG3SirUoNdgphBDCOlQ7aUUIIYSwBEl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJYSvLlgFVqwJ6venxJ54AwsNtE5MQTkwSnhC2MmgQcPMmsHu38djt28CvvwLDhtkuLiGclCQ8IWylQgWgWzdg9WrjsbVr+XjnzraLSwgnJQlPCFsaNgxYtw5IS+OfV60ChgwB7t0D+vYF+vUDWrYEvvvOpmEK4Qw0RES2DsKSkpKS4OfnB51OB19fX1uHI0TB7t8HAgKAFSuABx8EatQADh4EWrTg+zUaIDoamDCBjwuhAkpdx90s9kxCiOLz8gL69+eW3T//APXrc4vOIDERmDoVWLDAdjEK4SQk4Qlha8OGAb17AydOAE8/bTx+7Bgwfjwwbx7QurXt4hPCScgYnhC21qkTT1Q5cwYYOpSPJSYCbdsCqanAu+/KrE0hLEBaeELYmqsrcPWq6bGKFYG7d20TjxBOSlp4QgghVEESnhBCCFVQtEtzz549+PDDD3H48GHEx8djw4YN6Nu3b4GPiYqKwqRJk3DixAlUqVIFkydPxujRo5UMU1hZWhpw5Qpw7RqQkGC8JSbyLP0RI4D27fnc6Ghg4kQgMxNwd897GzUK6NOHz712jSc7VqhgeqtSBfDz4xn+Qgj1UjTh3b17F82aNcOzzz6LAQMGFHp+bGwsevTogVGjRmHlypXYt28fXnrpJVSqVKlIjxf2IzMTOH8eOH0aOHUK6NULaNKE79u8matq5ad1a2PCu3cP+PPP/M99/HHj9+fOAa++av48Hx9gxgxg0iT++fZtYOtWXvbWsCEPmQkhnJuiCa979+7o3r17kc9funQpqlevjkWLFgEAGjZsiEOHDmH+/PmS8OzcnTvAzp3Avn18O3IEyMgw3l+2rDHhBQYCnp5AUBB/HxjIa6/9/QFvb9MZ+M2aAZs2AW5u/Hy5b23aGM/18+NJjrduGW+JiZzckpN5yZtB7hUAlSoBjRpx8mvUiBNpSIgS75QQwlbsapZmdHQ0unTpYnKsa9euiIiIQEZGBtzd3fM8Ji0tDWmGskzgFfpCeTducMKpUoV/Pno0b6vN25uTRsOGQN26xuMPPcQtt6J0Mfr78xK1omjalLs0c7t3D4iLM23FuboCjz7KrdC4OP59oqL4BgCff25MeBcuABERXAilVSve4MCi3aM3bgCXLvFMTVdXoGdP4339+wMXL/IvYbjdv8+fABo0MG3+PvUUF6OuXJk/QVSuzLcqVXhBe61a0q8rVM2uEl5CQgICAgJMjgUEBCAzMxM3b95EUFBQnsfMmTMHM2fOtFaIqnbxItc2XreOr7Mvvwx89BHf9+CDXCCkTRtOaGFh3F3oYmZalLWvuYbEm1NYGLBrF3+fkmLsej15kr/mLHYSFQXMnm38OTDQmPzatuXft0yZYgT05ZfcBD5xgm83bxrva9bMNOEdP859teYkJ5v+fOwYP585/v6cWA2WLwc8PPgXqF1bEqFQBbtKeACgyfUfz1DqM/dxg6lTp2KSYWAG3MILDg5WLkCVuXMH+OEHLvX4xx+m98XFGb/38gIOHbJmZJZTtiwnr1atzN9fty7w3HP8+504wRNsNm/mGwBs3GicOJOYyJNpfH3Bb9C+fZxoJkwwPuFHH3FWzalKFW46NmpkenzxYh4Q9fbmW5ky3B+clZU3SS1Zwi3F69d5Bs/163yLi+MWX07vv89NV4CTYZs2fGvbFmjXrpgZXAjHYFcJLzAwEAkJCSbHrl+/Djc3N1TMZ1aBVquFVqu1Rniqo9dzg8OQ2FxcgI4dueuyd2++PqtB+/amk2iOHOE6zgcP8ixSw324dw+LXrqM2WvroYXbMXTM2I6OiERH74Mo89JL3A0JAM88A1y+zMkM4EHK/PptH3usZIHmlrNGPBG3Ig8eBP76i1uYW7bwDeC+4aNHi/66QjgIu0p4YWFh2Gz42Pyf7du3o1WrVmbH74RlEQF79/I1U6PhBNe/P7BjB7dwhg3L21BQG29vbgC1a5frjilTgI8/xrnU5dCjAQ5lNMMhNMN8vA5tWgY6dgN6PMHLKLymTOE3dfFifqNnzOBprEp2K+Z8bo0G+OQT/j4tDfj7b+DAAW7C79vHpc4M0tJ454ZHHgEGD+av5vqphXAEpKDk5GSKiYmhmJgYAkALFy6kmJgYunTpEhERTZkyhYYPH559/oULF8jb25teeeUVOnnyJEVERJC7uzv9+OOPRX5NnU5HAEin01n893FWej3R5s1ELVoQAUQ7dhjvu3+f7xc53L1LtGoVUUqK8dicOfzm1ahBl0e8SStfP0IjR6RTjRp8GCAqV44oI+O/8xctopOaRnQPnnznTz/Z4jfJS68nSk01/rxzp/EXAIiqViV67TWiv/6SPwyhGKWu44omvN27dxOAPLfw8HAiIgoPD6cOHTqYPCYyMpJCQ0PJw8ODatasSUuWLCnWa0rCK56DB4k6dDBez8qUIVq2zNZR2SG9nigqiui554h8fPjN+u474/3x8URHj+ZJAno90cmTRPPnE73/fo7jI0dRDcSSN1JoAH6k76u+Skl3sqz0yxTDvXtEW7cSjRzJGTtn8mvYkOjXX20doXBCSl3HZQNYlbp1C5g2DfjiC756abU86/L113kOg/hPaiqvdfjoI9MZkLVq8S4GORfzFcO1Ft3RMuZLXEG17GOe7pno1tMNAwdyD6efX2mDt7C0NGDbNn4/Nm/mn48e5TE/AEhP55mfQpSSUtdxSXgqRAQ0b26cl/D008CsWUD16jYNy/7cusWLCK9f55/LlgWefBIIDwcefrjkY1lEgK8vKCUFf6EF1mEA1mIQ/kG97FNGj+ZJl3YrKQmIjASeeMJ4LDwciI3lT079+slYnygxpa7j8hepQhoNrytr1IjXmH33nSS7bPfuGb+vUAF44AEgOBiYPx/4919egV7aiRvx8UBKCjQAWuIvzMZ0nEV9/I0H8FbvGISEAAMHGk8/fBgYMoRLoWVmlvxlLcrX1zTZpaTwAs29ezn4Bx7gRZt6ve1iFCIXaeGpxLFjfJ3NWcgmK4sLewjwWrk5c4BvvuGuy8BAPh4fz328lpwlvHOnaRFQA42G661duADy0GZPrBw/HvjsM/4+IIDLpz3zDC8Zsav14leucLP0s88AnY6PNW0KvPOOtPhEsUgLT5TYjz/ymuInn+RSWgaS7MAX5rff5mojH33E3Zjff2+8PyjIsskO4IRq7uJPxAn2q69MEtnIkdxLWKkSryf/6CMgNJQT3vz5PMxoF6pW5QXtFy9ykvP15U9aAwcal0EIYUOS8JwYETB3Li8Uv3+fk57dTYSwFb0e+OoroE4d4L33uEuuZUvgl194PyIlnTyZf2uHiNfl5ehabdYMWLSIG1CbN3P+8PDgXPLRR5bPx6VWrhz/Dhcv8oeJatW4SWrgXJ1KwoFIwnNSRDzjcsoU/nnCBB4DkhmY4L7cjh15FXhiIhfaXLeOK4907ap8P+Hffxc8GJeYyNWrc3F359mba9dyebOlSzmfGFrqmZlA587AwoXcULW58uWBmTN5IkuFCnyMiH+Jt94C7t61bXxCfSy6yMEOyDo8Xvs1dqxxudRHH9k6Ijs0aRJR2bJECxYQpadb73X1euM6voJufn5Exfwb3rTJ+HCtluiZZ4j277ez9eG7dhmDrFaNKx4IkYtS13Fp4TmhiAhuIGg0XJhf6R46h7BtG/DPP8afZ8zgLRImTbJun2BCQt5dDsxJTjZuRVFEHTsCy5bxkpO0NODbb7kEWosW/H16eokitqyOHYH164GaNXnWa+/evMX9nTu2jUuogszSdEKpqbw1Wo8e3Gunanfvct/ukiW8E8DevcYizraQ3wxNc7y9827kVwREvH3T0qW804VhUsv+/bwtkl24f5/7Yxcs4ICrVuUx1W7dbB2ZsAMyS1MUmacnf4hWfbL74w+ezmhYwd2mDY/f2VJBE1Zyu3cP+OmnYr+ERsO/6vLlPNHlgw+4CHjOZLd2bf7b7FmFlxfw4Yf8AaRePQ705Zd5V2EhFGJXuyWIkouN5dn0U6bw9dSu1mdZm17PpWNmzuQEV7Uqb+hXnK12lJLfBq05BQfz+rXGjYEBA0r1chUqAG+8YXrs9m3uRbx/n9eOv/oqF46xyd/MQw/xfkvTp/O6GbubciqciSQ8J5CRwYuRDxzgsRtVbwCflMT7GP38M//81FM8oFm+vG3jMvD25oSs1fLOsidP5p2mHxXFtToVcucO7wD088/cgPzpJ054b77JhQmsnvi8vfOOVy5fzpvQPvmklYMRzky6NJ3A7Nmc7Pz8gGeftXU0Nubuzt1jWi1fNFevtp9kB/BK8dhY7q48fpzXqOV2+rSiIdSqxev5Tp0CXniB36rff+fhszZtuMFlUydOcDHRwYO5m9MuZtsIZyAJz8GdPMm9dwBPUqhZ06bh2J6XFw9g7tvH/Xb2xtWV/5EM43iNG5ve7+LCmcgKQkJ4VueFCzyT18uLk10x58hYXoMGPHsW4AotnTrxruxClJIkPAdGBIwZw12avXvzB2LVIeJKKe++azxWsyZXTXEEjRubjltZMeEZVKnCPYoXL/KszuBg432TJvFuQFad6+PmxnVNN23ibot9+3h9Rc66eEKUgCQ8B/bTT8CePTwr87PPVDhRJSsLGDuWp7fPmMHNXUcTEmI6MzEzk7s6baByZZ7NaXDkCCfCp5/mzQ82brRyVbDevXktRfXqPKU0LIxn3gpRQpLwHJRebywb9uqrKtzeJzWVm7RLlnCm/+QT3u/I0TRsmPeYlVt4+alVi2tBly/PnyX69eOcs2uXFYNo1IgHqFu04B0tfvnFii8unI0sPHdg0dHAxx/zruVO/quaunMH6NuXZzN6eAArV3KFbEeUmGi+wOmNG3ZT+PTOHV4yt2iRsab1Y4/xnCBzc24UkZLCJYQmTFBhV4b6yI7nRaSmhKdKt2/z1favvwAfH+7XffRRW0dVOhUq8O+V0549QPv2toknHwkJPEFq2TLOxf/8wysKbCItjXdc79rVRgEIJUmlFSEATnB//cWbw+3Z4/jJDjDfranw0oSSCAwEPv0UOHMG+O47Y7LT63mOyY0bVgokPZ0X5Hfvzq0+IYpIEp4Devllvl28aOtIbGDECL7q/vYbV0l2Bk2amNb3dHe3m3E8c2rV4m2IDFatAqZN4wphCxdaYdmcuztv2EvEu+N++aXCLyichSQ8B3PvHn+o/eQT3hxbFe7eNd1hYNw4Lr3lLBo25GaSQUaGQ804rV2bP3vodDyBqnFjXlGg2GCJRsOD1y+/zD+/8AJvByFEISThOZht2/j6X7MmF/93ehkZPD2wa1e+ojqjkBDThAfYbGlCSTz0EHDoEG92EBDAY3t9+nCZsmPHFHpRjYbXTBiS3vPPA9u3K/RiwllIwnMwGzfy14EDVTBZzbCyfscO4OhR5114bG4M7+pV45RIB+Dqyjnn7FleLuPhwTshjRqlcEtv4UKunZqZyeN6f/2l0IsJZyAJz4Ho9XztB4CePW0bi1V88AH337q4AGvW8FosZxQczNUDciLi7OFgfH15Asvp0/yhbP584wezzEwFkp+LC/D111x+zMWFi4cLkQ9JeA7kxAng2jUuIt+una2jUdiaNTwTAuABS2fO8C4uvHNCbnY8caUwtWrxnnsPP2w8NmsWb3hu8eFJDw9j/dSOHS385MKZSMJzIAcO8Ne2bfn/uNPavx8ID+fvJ07k8mHOrmlT7hc0cHOzy6UJJXX3Ln9u2bMHaNYMmDrVwj22fn4829Xg6tW846JC9SThOZg6dXgLF6eVlQU89xwvLO7Th/vE1KBhQ9NBWb3eoWZqFqZMGR5e69OHuzY/+ICrhhm2LbSoHTv4A8R77ynw5MKRScJzIKNG8Qw4p/5/7OrKc9qffJJLhuVs9TizkBDOBAZ6vUPN1CyKGjV40tVPP3Ht10uXuD50//5cxcVirl4Fbt3inZC3bbPgEwtHJwnPAbk4+79a/fo8hle2rK0jsR5zMzXPn7fyvjzW8cQT3HidPJl7brdts/Bck/Bw3kCWiGdwxsZa8MmFI3P2S6dwFJGRwO7dto7CdurVy/tJJiPDacvplCkDzJ0LHD7Mkyzr1zfel5JigRdYtAho3ZprlA4aZLoFk1AtSXgO4tgxrmX42GO2jkQB16/zVj+PPabQoI4D0GpNd141cOCZmkXxwAPAU08Zf963j7s+ly8v5RIGrRb48UcuzH34MO9zJFRPEp6DuHKFlyRYrUCvNY0dy0mvUSPTIo1q06SJ6cQVG+x+bmuLF/Pw23PPAT16AJcvl+LJgoP5CQFeE3HokEViFI5LEp6DMOweU7GibeOwuLVr+ZO4mxvXQ/TysnVEttOokWkRaRcXp1qaUBTffMNdnVot7/XauDEfK3Frb/BgYMgQLgPToIFFYxWORxKeg7h7l7861TyOGzeMa+ymTAFCQ20bj601bGg61pSZqWAxSvvk5saTWY4c4fWmycm8QcaQIXm3DCyylSt5Ez8fHwtGKhyRJDwHYVika7MNN5UwYQInvSZNgDfftHU0thcSkvfY6dMKFqO0XyEhwO+/c0+kmxvwv/8Z68gWW86lLUTcZ1oE+/fzQ7t1K+HrCrtjlYS3ePFi1KpVC56enmjZsiX27t2b77mRkZHQaDR5bqdV1rWTH6cpGL17N/DDD3xFWb6c+7DUzlzCS07m8U0VcnXl6nL79/NnoxEjSvmEFy8Cjz/O2zgUYbnH118D48dz4o2LK+VrC7ugeMJbs2YNJk6ciOnTpyMmJgbt27dH9+7dEVfIX9CZM2cQHx+ffatXr57Sodo1Q6JzmmpJHTrw4Mzs2UCrVraOxj6UL8+zCnNT+Ye9Bx/k7e8M/wd0Ot4Yodi1tb28eOLK4cO8l1EB7t7lVuWYMUCvXsCKFXw8LIx733O6cYP3pFXzqhpHoXjCW7hwIZ5//nmMHDkSDRs2xKJFixAcHIwlS5YU+LjKlSsjMDAw++aaT8WNtLQ0JCUlmdycUYUK3ACoXt3WkViIiwvwzDM8YCOMGjc2/VmjUd1MzcK88QbXig4N5VZYkQUEAO++y99PmwYkJuZ76po1PMelQQPg6aeNyySGDQO+/960l3nNGn7qDh1K9vsI61E04aWnp+Pw4cPo0qWLyfEuXbpg//79BT42NDQUQUFB6Ny5M3YX8NFpzpw58PPzy74Fm1vL5ASGDePr3ocf2jqSUrp920Iri51UkybcXDBwsiLSlvDmm7wb0L17PPny2WeLUYj6pZe4zuatW8D06fmeFhHBiQ7gMbyUFOC333jS59Wr3M1psHo1MHSoCiogOQFF/4lu3ryJrKwsBAQEmBwPCAhAQj7F84KCgvDFF19g3bp1WL9+PRo0aIDOnTtjz549Zs+fOnUqdDpd9u1yqRbuCMW98QZ/bN661daR2KeQENPxpYwM3hdKZKtWjetDz5rFSWbFCp7RWaQuTjc34LPP+PsvvjA7C/bMGeDPP3lmqOEhgwdza7JSJR4GXLWK74uNBaKj+QMpwBNrBgzgJNmxI9cLFXaEFHTlyhUCQPv37zc5/v7771ODBg2K/Dy9evWi3r17F+lcnU5HAEin0xUrVmEFf/9NpNEQAUS//27raOzT9u38/uS8BQbaOiq7tWsXUUAAv00+PvxzkQwcyA/q1y/PXa+/zne5uhpvLi5EWi3RrVtEK1cSVaxIlJ5O9P77RI0bGx+blWX8/oUXiD77rHS/n1opdR1XtIXn7+8PV1fXPK2569ev52n1FaRt27Y4d+6cpcNzKHfu8IbfVaqYFtV3KO++y5fwQYOAhx6ydTT2ydxMzYQE6QbOx6OPAjExwCOP8G7rObfEK9DMmTw+evw4z4T9T2Ym1z9YsIDXAhpuf//NJc9WrQL69gVSU3lh/OrVxq5PwNit+euv3FJ89lnL/J7CMhRNeB4eHmjZsiV27NhhcnzHjh1oV4wtu2NiYhAUFGTp8ByKjw//34yP5zEEh3P8OLBuHV9k3nnH1tHYr2rVAE/PvMfPnLF+LA4iKIjH16KiuMvRoMCF6o0aAbt28bYNORak//wzP+755zl55rwNHMhje2XK8L5+b73F4+pDh5o+9SefcPfnzz872bpZJ6D4MOukSZPw1Vdf4euvv8apU6fwyiuvIC4uDqNHjwbAY3DPPPNM9vmLFi3Cxo0bce7cOZw4cQJTp07FunXrMG7cOKVDtWuurkDt2vy9QzZ2DcV7Bw7MOxNRGGk0plsHGMjElQK5ufHmyAbffcdDxTknl+TRsaNpKTdwQnvsMd5APbcBA7i199dfPGb3999A+/amM6eXLOFlC3fv8hhgsWaRCsW5FX5K6QwePBiJiYl49913ER8fjyZNmmDr1q2oUaMGACA+Pt5kTV56ejpee+01XLlyBV5eXmjcuDG2bNmCHj16KB2q3atfnz/onznjYDWWT53iRU2AVFQpigce4Ikqhskrbm6yNKEYiHg+yo0bPJtz8WJg5MgCHpCezs3Dxx/H5s35n9aihelyBHMFcMaM4ZuwUxYdEbQDzjxpZfJkHkwfM8bWkRTT/Pn5ThAQZrz/Ps+UMExacXEh6t/f1lE5lLt3iZ580vgWjh9PlJGRz4nVqvFJx49bPU5hnkNOWhGWZait/Ndfto2j2F59lStczJ5t60gcQ8OGpksT9HrVFZEuLW9vXiw+YQL//Omn3FWZp4ymtzdvFAvw4Jtwahoi56pMm5SUBD8/P+h0Ovj6+to6HIs6e5bHJTw9gaQk0/XJwomcOsWTKnJycwPu388z5qRmej3vExkbC1y4YPx67hxw/jxw82bex9Sty7M6TXYd2buXp3l6egL//uuEe3A5HqWu4/K/x4HUrcsJr3FjXqaQc0aaXcrIcJBA7UydOjy/PWfh1MxMvpqbm9Di5K5c4cXdhoR2/jx/+LtyxXSJjpsbd2Caqwvdti3PcB4yxMwWWw8/zN0nMTHAl1/mLZYpnIYkPAficPuBbtgADB8OjBvHC5tE0Xh48KKv2FjT46dOqTLhDRwIHDjAM5VdXEy3DMzJ3PpUFxeuerJuHTeQc86+TE/ntxoaDTBxIhAezlVYXn1Vuk+clIzhCeV8/jlfVcqUsXUkjqdpU9O9oFxdHezTjuU0b86/flZW/snOHI0G6N2bP3d5evJmFIaF4ffu8aqEGTP+m205eDBQuTI3G3/91fK/hLALkvAcEBFf+4rzn9/qzpwB9uzhK9ULL9g6GsfTqJHpeJ2Kd00oSQ+jRsPr5tau/a8Vl8tPP3E36cyZvMg8w0VrXEFe4OI94cgk4TmgNm14Il8hG07Y1g8/8NcuXbh6iCiekBDTTzSZmVytRoU0GqBevaLP19FoeKzu++/z75l86ilg6VJu8S1fzi3B5FGTuPLKBx9YLnhhVyThOaAGDfjrzz/bNo58ERkT3lNP2TYWR9WwYd5jp0+bX+3spM6f5wXjderwzMui1pB95hmutFJYgnzxRW7peXtzL2aHp4MRX87M+y6chiQ8B9SnD39dv95Or39Hj/LFWas1BiuKx/CpJqe7d7mQtJM7dYoLMtevz1v/ZGaan3lpzsiRXM4rn/2i8+jVi3cqr1SJJ2k+9NB/c4WKvMGecCSS8BxQt248CH/hAucWu2No3fXsySXsRfH5+ZlfzuHE43h//20stbpmDa/KKGqiA3hv12XLir8Ra+vWPJ5Xpw6QnExIHfsqv/dXrhTviYTdk4TngMqW5aQHGDeitCvjxgELFwJjx9o6EseWu8i2RuOUMzX//JNbWs2bcxcjkfnuS0OrzVxX5csv84qCku46XqcOrz/fuVODhrf3cwtvy5aSPZmwW5LwHJRhg4lvv7XD2ZpVqwKvvMKVe0XJNW5sOuvCyYpI793L5b7atDGuBMgv0bm5cXflhg15z5k8GfjoI9NVHCURFAQ0awbumQCwa0Uc/vijdM8p7IskPAfVqxcvG7p2Dci13aBwFg0bml7dMzJ4FwUHRgTs3MnFTR55BIiM5OP5JTqtljsKLl7kWZV9+wLduxuT25tv8qTK0iY7Ez174i+Eonf0VDz2GCEqyoLPLWxKEp6DcnfnXsPt24GuXW0dTQ7vv8/lmfJU6RXFFhKSd1aSgyY8Ip5V/OCDwOOPc+UUwPwYnYsL4OXFBU8uXQI+/pg7DQxmzuSVLu++C7z3noWTHQA0b44GATqEIRopKRp068a7mwvHJ8WjheXcv8/lLNLSeD2Tuan1ouiuXjW90hvodA4zGUiv527IGTN4GaGhYoo5Li5clOeVV3hMrkIFq4ZqauRIpEasxKCah/DzxSbw8AA2bbKzD5dOTKnruLTwnIRdfGzZu5eTXbVq3DoRpRMUxIvEcjtzxvqxFFNmJk+oCgnhmZcnT/Jxc8lOowHKlePOgcuXuQVn02QHAD16wBNpWO85FP37c4W8vn15CUO+li3jDyg5i34DwBNPcJ1OYXOS8BxcUhKXXgoNtYPJK4bBxC5dFOhnUiGNxvx6PDueuJKezuvg6tXjtXT//MPHc+cAgH89f39g/nzelWfqVNPizjbVvj3QpQvcnxqI71cTevcGUlN57Pzvv/N5zKBBvCdRzqx4+zbPyBk2zCphi4LJbgkOzt2dSyNdv851Aw3lAG3CMDDzyCM2DMLJNG3Kiy0NTSN3d7tcmpCayolu1izuiTV83snd86DR8LGgIJ5w8txzvKbU7lSqlD111AP8f6tPH25w59tTX6ECrxdavRro3JmPrV3Lxw0/C5uSFp6D8/Iy7uo8b54NuzYzM4HDh/n7Bx+0URBOKPfVNTPT2D9oB+7e5clTwcG8/PLqVT5uLtEBQPXqQEQEz7p86SU7TXZmaLU8Frlmjfli1NmGDeO9iNLS+OdVq7iwp6srMH06b9HQsaMVIhbmSMJzAmPG8GD/33/bcInCyZM8acXHx3w3nCiZkBDTgS8iuyginZQEzJnDw7WvvcY9eeY+bBkWgtetC6xcyV2czz1XSNKwJ9euZe+e4OVlXBap1wPTppmpdNS7N9+5ZQsPSO7dy327ADd/Z8ywWugiL0l4TqBCBWDUKP5+3jwbBXH6NH+Mb9my6IUMReHM9Z9dvGizAdtbt4B33uFE9+abvKG9uURn+BNo1Aj48Uf+8xg2rOg7HlhERgavSP/+e/40mJpavMefPAkEBvLCv1yzbRYs4ITfrRv/c2Tz8gL69+eW3fffc0HQli1L/asICyEno9PpCADpdDpbh2JVly4RuboSAUR//mmjIHQ6ovPnbfTiTio9ncjNjf9hc95OnbJqGNeuEU2eTOTlReTikjccw83wN9iyJdHmzUR6vVXDNLVihWlwLi5EtWoR9elDNH060apVREeOEN2/b/7xmZlEnp782HPnTO66dYuocWO+q0EDops3c9y5fTuRVst3vPee6XPu3k3UoYMFf0nnpNR1XBKeE3nmGf4P2LOnrSMRFlW3bt7Msn69VV7633+JJkzg67chmRWU6B56iGjHDhsnOoPdu80Hq9GYfohwcSGqWZMT4bRpnAhjYjgRNmvG52zalOfpL18mqlaN727Xjujevf/uyMwkCgriO3J+APz4Y36DKlbk14qPV/wtcFSS8IpIzQkvNpZo5Ej+jyicSL9+fJHOmV1mzVL0JWNjiV58kfNCQYnOkDc6dyaKilI0pOKLj88/8PwSobu7aSL09ubv580z+xLHjxOVK8en9OlDlJFh3V/RWSl1HZcxPCdSsyZX9bL6BuOJiVwvauxYO1kB72QaNsw7+KXQ0oSzZ4ERI3j3gK++yn8vOkM43boBf/zB9TFtvhrlzh3e52f5cq4o/fzzxXs8kenYqF5v3Bcvn7WPjRtzBRatlnd6MMyYFvZJ1uE5MZ3OSgt5z57lK97p08Dnn1vhBVWmYUPTC3FWFnDsmEVf4vhxnkS4Zg3PrDS3UBzgRJeVxWvS3nyTt/SxKiJepX7qFP+9nTrF9UVPnDCt3+ruXvQt0nMzLBasXZtXmn/ySYGL/du35zkqTz8NdOhQspcU1iEJzwnFx/Map2PHeKKZ4lPADeU06tVT+IVUylyZtjNn+KJcyoo2hw9zAeaffuJkRpR/i06v5yVl06ZZoUxqejr/XeVMbMeO8Ycrw2xLFxeeDmpuxmpJZ7FqNLwq/r33eA+uU6c44RXSoh4wAGjXjh8q7JckPCfk48M9O9eu8ZYqineznDvHX+vWVfiFVMpcwrt/n3fkLmH/9f79XLNy+3Zj92R+W/RoNFwKcupU7uq0KJ2Ok4khqRkS26VLxmamYY1D7kys1+ffFC0ujQaoWJHXyY0cyX2UALfy3nqLlyfo9QXuMJsz2SUkcIOzUSPLhCcsQxKeEypbli9mo0fz/9VBgxT+5HnpEn+tXVvBF1GxsmWBgAD+BJPT6dPFSnhEvP/czJlAVJQxj+SX6FxcgBde4OGw6tVLHj6IuARLzqRm6Ia8edN4nqEbMvc4cH7bKxTE0CQ1JKn8EqOLC39CnD6dx6BzF+suU4b3ISqGkyd5VwUXF+DgQd63UtgHSXhOauRInnRw6BDvK7Z6tYIvZrhoyf9s5TRpYprwNBpOHI89VuhDiXg/txkzgD//zL/BZHharZa7xF97rZgflDIygPPnjYnt9GkuRXL2rHHyh0bDychS3ZC5k6SPD/e3NmnCX8uVM1ZlyMnFheuaTZ7M+xFZcAuaoCBef37uHO8UsXOnA1WWcXKS8JyUqyt3Z7ZuzQUfnnuuSNfGkjEkPH9/hV5AoHFjYM8eY1Jwcyt0XEmv5xmEM2ZwoZGCEp2hp65BA36ZAv8pk5PNd0NevGh88vxeLPdMyKIwN1YXFMTvSePGnNhCQvhrpUqm45qZmVx7z9CMdXXl927CBOCNN7gbszCXL/PvVqtWkVrU5cvzmGjbtlxZbPx4/r8oG4jYniQ8J9ayJX9S/+wz7q05etQ4NGFRhk/vkvCUExJi2veYkZFvTc2sLC7SP3Mm5yRDMsuvRefry70AaWm8u3jZsuDElJBg2lozdEPmbGm6u/MT5+4yLGk3ZM5ZM25u3E3epAkPhhmSWv36/wVZxOesXZtbmW5u3M8/fTqPyRXVK69wQehPP+UK2UXQsCF/0OzVC/jiC6BZM/6/KGxLEp6Te/99rmWYlgbExiq0L+uxYzxzzqqFElWmYcO8Y1snTpj8mJHBXdfvvgtcuGBMdPntRVe+PDBlchZGd4mFz+WTOBV1HbNSRmJnk4nodS0CSEkxnqxkN2SZMvyH2bSpMak1bMgtKkv8TX30EffpvvoqUKNG8R9vSI4JCcV6WI8eXG9zyhRg4kTeREQ2ErEtuUI5OT8/YNs2/lBsbvNsi3GUfV4clblPKomJwJ07SPMqhxUr+MPNv/8au85yJzqNhkAEBJRJwfS6azDy7ifwevMUMIVbjg1dXVENXbH/fGX0QorxgSXphjSXJAMCuKXWpIkxsYWEcEJRsr+vRw++lZSPD3819GQUw+TJPG66fj0v57DZbiYCgCQ8VbD64mBheQEB3I2XYkxE9+CFr969g9mry+HaNU5ogCbvXnTQg+CCqvQv3sJ7CE9dBe2xVLPdkI1xAifQuOhx5R6rc3Xlkj9Nmxpbag0b8uCgIXE4GsOHueLutgDO4xERQNWqvLRP2JZVSostXrwYtWrVgqenJ1q2bIm9e/cWeH5UVBRatmwJT09P1K5dG0uXLrVGmE5Pr+fxvAULLPikt28D/foBTz5pwScVeWg02a28ZJTFPLyOYFzGxI9q4No1znBEpq0kF3ASqoVYfINncAG18QK+hDbrXr7T9PNNeO7upq0wb2/+JDVsGF/JN2zgsb7793nB+IYNwOzZwPDhQKtWjpvsgFIlPIAnin7yiZWqHokCKd7CW7NmDSZOnIjFixfjoYcewrJly9C9e3ecPHkS1c0s7omNjUWPHj0watQorFy5Evv27cNLL72ESpUqYcCAAUqH69R27OAZY25uQKdOQGioBZ703j1g40YZv7OGpk2RHnMCdbP+wQ1UAuXzedUFWdDDFfVxFjMwAwPxI1xRhAXaGg3qaC7ior6m8Zi/v+lsSEM3ZJUq6pl2aEh49++X+qmIgMWLgYcekp4Xm7BoKWozWrduTaNHjzY5FhISQlOmTDF7/uTJkykkJMTk2Isvvkht27Y1e35qairpdLrs2+XLl1W7W0Jh9Hqi/v25snuTJvlvA1YssbH8hJ6eFngyUaC5cynZxZd8oDO/RQ8yCCBqhhjaiCcoC5q8Jxl2W8i5BYJhn7gnnqCI7msJIMrcd4Dozh1b/8b2YelSfp/69i31U82bx09Vvz5RUpIFYnNSDrlbQnp6Og4fPowuXbqYHO/SpQv2799v9jHR0dF5zu/atSsOHTqEDDMD53PmzIGfn1/2LTg42HK/gJPRaHg9UOXKPKP97bct8KSGqfLu7hZ4MlGgxo1RRp+EGrgIIOdAHX/fCoewDd0Qg1D0wSa4uLuZlsLy9AQeeIALYs6cyVPtT5zglsuFC8BPP8Fj6EAAQEaLNtIHZ2B4Dy2wE8hzz/FSvrNneUKLsC5FE97NmzeRlZWFgIAAk+MBAQFIyGeKb0JCgtnzMzMzcTNnGaL/TJ06FTqdLvt2+fJly/0CTqhSJd5CCADmzwd27y7lE+Zc0CuU1aMH1kyMxnE8ACBvd2I3bEVX/ApNhQpcwv/553lK/q+/AnFxwN27vAJ95Upei9a/P8+azFEGpKByY0Vx5QrvGlCxonGY7/Bh03NOnQKeeILzqY8PL9COiyv4edet41C1Wv66YYPp/SkpnMeDgvjr3bsli9+s/Ka9lkDFisC33/L3S5dyFRZhPVaZtKLJ1ddPRHmOFXa+ueMAoNVq4evra3ITBXviCb4WEgFPPcW7K5SYoWVX0ur0oug0GtQa0haeWoIGORd28/+LmXgXTz6RhnuXE7lcypIlXFGkSxcgOLjAwscGiYmc/8qUKX54t2/z2JS7Oy+FOXmSJ0iVK2c85/x54OGHeRgwMpLz71tvFbyqJToaGDyY57/8/Td/ffJJ3ofPYNEinsS6fTsn2kWLih9/vnIuhLeARx81LkJ//nkgKckiTyuKQNGE5+/vD1dX1zytuevXr+dpxRkEBgaaPd/NzQ0Vi1IGSBTJJ5/wcqjEROD330vxRIaKF3fvWq5yvchXmzZA9AENAoNczTaq1//sgXbtuKVVEnFxPIW+JPNR5s7lvLp8OZe0q1kT6NzZdIeF6dN5Sdy8eTxpqnZtoGfPgsuwLlrE+wtPncqJcupUft6cSe3OHV5rali7rtMVP/58paXxVwt228+dy+vq4+KA11+32NOKQiia8Dw8PNCyZUvsyLXacseOHWjXrp3Zx4SFheU5f/v27WjVqhXcZZzIYry9uQJLVBTvplBiOUs8lWBhrii+5s2BmBigRYu8jTa9noflQkN5wXNxnT1b8l2eNm3iFQiDBnECCw01dp8bYtuyhRNT1658Tps2PMm3INHR3EjNqWtX3uLIYNw4YNkyzknLlwMvv1yy38EsQ/bM2VQtpbJlga+/5u+/+sq4paRQmEWnwJjxww8/kLu7O0VERNDJkydp4sSJVKZMGbp48SIREU2ZMoWGDx+eff6FCxfI29ubXnnlFTp58iRFRESQu7s7/fjjj0V6PaVm96iBXl/CB+l0RJmZFo9HFCw1lejpp/OfiOnuTrRqVdGfLyuLyN+faOrUksWj1fJt6lSiv/7iyY2enkTffMP3x8dzbN7eRAsXEsXEEM2ZQ6TREEVG5v+85n6PVauIPDzyxh8fX8K/44K88goHPnmyhZ+YaO5cov37Lf60Dk+p67jiCY+I6PPPP6caNWqQh4cHtWjRgqKiorLvCw8Ppw4dOpicHxkZSaGhoeTh4UE1a9akJUuWFPm1JOGVzLFjRO3a8SoD4Tj0ep7qrtHwzVzymzaNk0Fh/vqLz9+1q2SxuLsThYWZHhs/nsiwoujKFX7+p54yPad3b6IhQwp+3tWrTY+tXMnJ1SoWLOBfYtkyK72gcOiEZ02S8EqmY0e+GLVqRXTvnq2jEcW1eTORl5fp8rqctyeeIEpOLvg55s7l1ldqasliqF6d6PnnTY8tXkxUpQp/n5ZG5OZG9N57pudMnswftvITHMwtwpwWLuTXcyb//EN05oyto7APDrkOTziOFSuAChV4w9hnny3mkqMFC4ABA0wHVYRV9erFY3ZVqphfIbJlC4+XGTanz40I+OYboFu3km8h9dBDwJkzpsfOnjVuUODhwbsFFHSOOWFheYsub98O5DMNwCGtWcPLLV54wSLL/UR+LJo+7YC08Epu927+BA4QzZxZjAf27s0Pki4fm7txg+ihh8x3b7q6EpUvT/T773kft3Mnn7N7d8lf+88/+e9n1iyic+d4nM3bm7sfDdav5y7KL77gcz79lOPau9d4zvDhRDkLMe3bx+d88AHRqVP81c2N6MCBksdaLEXpDy6lixd5vBMg+v57xV/O7kmXZhFJwiudr74yXiDXrCnig8aM4Qe8+aaisYmiSUvjrkVzXZsuLpwsli83fUyvXkRNm5Z+wsfmzVy2TqslCgnhxJZbRARR3bp8gW/WjGjjRtP7O3QgCg83PbZ2LVGDBpwsQ0KI1q0rXZxFptcTlStHVLs20b//KvpS777L/0ZVqhTe/ezsJOEVkSS80ps0yVge89ChIjxg1ix+wIgRiscmikavJ/r444Ins7z6Kk+u/e03/vnbb20dtR26do3fHI2m5IObRXT/PudVhSaEOhQZwxNWM28eLw4OC+PFsYUy1C+Vsm52Q6PhIivbtnHVFHPjegsX8r/z6NFc/WTYMOvHafcuXuSvVaqUfHCziDw9jYvpFy0qvNyaKD5JeCIPV1ceRP/1V57IUihDwjNcHITd6NoVOHiQ/4lyJz0ingxy7hzvxl2EymPqExvLX4v0ya/0evUCOnYE0tN5B3thWfInLswqW9a0ktIPPxSw/+V/G5PiwgWptmKHQkK4gHP79nlLhhHxsaee4tqWIhdDwqtZ0yovp9EAs2bx/7+qVa3ykqoiCU8U6p13+IL49NPGOromAgJ4o9CyZfOf9y5sqkIFnso/Zkze+4iA5GTgsceAL76wfmx27cQJ/lq/vtVesl074N9/+f+dsCxJeKJQHTrwGqp164CxY82sE9JoeIM9nY53xBZ2yd0d+Pxz3nHbxcW0C1Ov5w8zL74IjB9f8u2BnE5MDH8NDbXqy8pWhMqQhCcK1akTsGoV57Vly4AZM8ycFBBQshL7wurGjOGxu7JlzU9m+fxzHvu7fdv6sdkVIm5uNW9u9YRnsHu3hTZqFgAADZFzretPSkqCn58fdDqd7I1nYUuWGPfx+vRTrlAvHNc///AszQsX8nZVu7py9ZNt26zamydyuHiRt08i4r0F1dR5otR1XFp4osjGjAFmzuTvJ0ww7twMAEhI4H1h2raVffEcRN26PIOzc+e8jfOsLB6ObdUqb1kvYR01awJ9+vD3Ft3QVsUk4YlieestbtkRAffv57ijQgVg61behvrUKZvFJ4rHz4//2SZOzHtfVhaQksL1NT/7TIU1Hs+f5/UBNvTKK/z122+BmzdtGopTkIQnikWjAT7+GNizhyc4ZPPw4JXqAN8pHIarKy9Cj4gA3NxMJ7MQcYN9/HheoJ6RYbs4ra57d6B8ed6B1kbat+eNflNTefxclI4kPFFsLi78H9Hg5k2uxo9HHuEDkvAc0nPP8SQJX1/zk1m+/JK7PxMTrR+b1V2+zCvyU1N5GwMb0WiMrbzPP7d5g9PhScITpXLnDs/i7NMHWKsfwAf37lVh/5dzePhhnolfv775yiz793OL4+RJ28RnNbt389dWrWy+RuDJJ7myWXw8V0ASJScJT5SKry9fALOygKfeb4R1rk8CV67w1D/hkGrW5KHY7t3z3peVxf+8Dz7IY39Oa9cu/tqpk23jAI8WjB0LNGnC34uSk4QnSsXFhcd+hg8HsrI0GJy1Gqsw9L8+TuGofHyAn34C3ngj731ZWTxhqVcv3vvX6RrzRMBvv/H3dpDwAGDyZODoUWDwYFtH4tgk4YlSc3UFli//L+nBFcPxHRYfbmPrsEQpubgAH3wAfPcdV2nJPZmFCHjtNeDZZ4G0NNvFaXEnTnBtLw8P3sbdDri5SV0HS5CEJyzC1RVYsQIYN5ZAcMHYb9tg6VJbRyUs4emneR5S+fLmJ7N89x1X+L9+3eqhKePHH/lr166At7dtY8klJYVL/Dldq9pK3GwdgHAeLi7AJ59qUL4Ct/h69LB1RMJS2rblySw9e3IDKGdtAb2eF7CHhnJllgcesF2cFjF8OO9916yZrSMxkZHBlVdu3AD+/JPHUUXxSAtPWJRGA7z7LnB0fwqqx/9h63CEBQUH85K0vn3z3peVBVy7BrRpA2zcaO3ILKxOHWDqVLv7xObuzstCAGDlStvG4qgk4QnL++cflK/nzwP+KSlYvx4YOtTJxnlUqkwZYO1a8wWNs7L437hfP2D2bOl2U8LQofx1wwZ5f0tCEp6wvDp1gOrVgXv3kLh8E8LDge+/lwr8zsLFhWuqrlnDPX85x/UMF+Hp0/nibFJ+zhG8+ir/sdpp4I89Bnh58br4o0dtHY3jkYQnLE+jAUaMAABUXLsUGzbwer2oKK4+Jkv0nMOTTwL79vHev25mZgP873+8kD0+3vqxlcjhw1xjbcQI4O5dW0djlpcX8Pjj/P3PP9s2FkckCU8o45lnuCmwdy8eq/kPfv+dx4DOnOEJEH/I8J5TaNmSJ7M88IDpsgWAJ7P8/TdPZjl82DbxFcuXX/LXAQM4i9spQ0GAnTttG4cjkoQnlFGtGtClC3+/YgWaNgUOHOCqLDdu8DT2DRtsGqGwkKAg4PffucWXW1YW11p96CEe+7NbKSm8yzEAvPCCbWMphGEt/P79wL17to3F0UjCE8p59ln+umIFkJmJKlW4W7NnT67Ju3+/TaMTFuTlBaxezZNVANNF0llZXPT4ySeBd96x0+0Sf/iBk169ekCHDraOpkD16vGynxMn+H0XRSc7ngvlpKVxP+atW5zp/qtakZkJfPMN58Pc3WDC8W3cCDz1FK8by72TOgD078+L1e1qTXebNry4bd484PXXbR2N6smO58LxaLV8ZfvnH5MSTW5uwPPPG5Ndairvt+Y0lTpUrm9f7r4OCDBfmWXjRp689O+/1o4sH/v2cbJzdwfCw20djVCQJDyhrK5dufx+AV57jXfUbtXKQSY3iEI1a8aTWR580PxklhMneDKLXUxecnHhFt6IEUDlyraOpkh0OmD+fP6gKIpOujSF9Vy5AlStmufw6dPcKjhzBvD0BL76Chg2zPrhCctLSwNefJG7sHNzceEW4Ndfc71OmyLiYD09bRxI0SQn81IfgCeB2fGk0hKRLk3huLKyeOCmenX+aJ9LSAh/0jdMZnn6aV7/m5lpg1iFRWm1PMFi/nyeyJJzMotez+N8w4cDU6bYeDKLRuMwyQ7g7Ztq1eLvzfyXEvmQhCeU5+rKFxS9nkt0mOHnB2zaxBU6AF7/2707kJhoxTiFIjQa/gDz8888q9DcuN7cudzKT062YmDnzwOzZgF37ljxRS2nYUP+euaMbeNwJJLwhHXMmMFXvrVrgUOHzJ7i4gK8/z6fUqYM8NdfdlvwQpRAjx68q0LVquaT3tatPJR28aKVAnrvPeDNN3kGlQMytPCs9n45AUUT3u3btzF8+HD4+fnBz88Pw4cPx51CPk2NGDECGo3G5Na2bVslwxTW0LSpcaBm6tQCTx04kKvyr1nDvaAGzjXarE6NGvHEpLCwvBuaZmUBZ89ycYLff1c4kCNHgG+/5e/NbevuAAxzwWJjbRqGQ1E04Q0dOhRHjhzBL7/8gl9++QVHjhzB8OHDC31ct27dEB8fn33bunWrkmEKa3n3XZ76vXNnoXWRmjblQrkGmzcDTzwhXZzOwN8f+O03YOTIvPdlZfEMxEcf5bE/RRi2aicChgwBWrdW6IWUZZj/de2abeNwKKSQkydPEgA6cOBA9rHo6GgCQKdPn873ceHh4dSnT58Sv65OpyMApNPpSvwcQkETJhABRK1aEen1RXpIaipRlSr8sGrViPbtUzhGYRV6PdGnnxK5uBBpNPzvm/v2yitEmZkWfuGtW/nJPTyILlyw8JNbz/bt/Gs0aWLrSCxPqeu4Yi286Oho+Pn5oU2bNtnH2rZtCz8/P+wvpKZUZGQkKleujPr162PUqFG4XsCK5LS0NCQlJZnchB2bPh0oWxZISOA9TopAq+XxnXr1eLHyI48AH35opyWqRJFpNMC4ccAvv/CYrblxvUWLeOxPp7PQi2ZmGiupjB9vHAhzQGFhwKlTXMRIFI1iCS8hIQGVzSzirFy5MhISEvJ9XPfu3bFq1Srs2rULCxYswMGDB9GpUyek5bN76Jw5c7LHCP38/BAcHGyx30EooHJlno558qTpAF0hmjXjsZ+nnuJur8mTeRbn1asKxiqs4vHHeR5TjRp5kx4Rd38++CAX7Cm1L7/kefzlyxunBDuosmV5SU+FCraOxHEUO+HNmDEjz6SS3LdD/83C0+QelQZARGaPGwwePBg9e/ZEkyZN0Lt3b2zbtg1nz57Fli1bzJ4/depU6HS67NvlIrYahA09+igvJComHx8uaL9sGS+Z2r6dt6WRkmSOr0EDTnodOpifzHLhAlfi2b27lC/Urx9XsX7vPU56QlXMbNtYsHHjxmHIkCEFnlOzZk0cPXoU18yMpt64cQMBAQFFfr2goCDUqFED586dM3u/VquFVqst8vMJO6LX88yEhg2Bdu2K9BCNhndvad+eJ322auUw1aBEIcqXB379FZg0Cfj0U9P7srJ4jd7jj3MZutGjS/gigYE8/dcJpvzeucN529OTlxOKIrDoiGAOhkkrf/zxR/axAwcOFDppJbebN2+SVqulb775pkjny6QVBzJnjnHUPT292A9PSyO6e9f487//EkVFWTA+YTPLlhG5uvKEFnOTWcaOJcrIKMYTJiQoFqutxMbye+HlZetILM/hJq00bNgQ3bp1w6hRo3DgwAEcOHAAo0aNQq9evdCgQYPs80JCQrDhv51AU1JS8NprryE6OhoXL15EZGQkevfuDX9/f/Tr10+pUIWtjBoFVKwIHD+ebwWWgnh4GLeY0et5u6GOHXlZVT5DvsJBvPACr1zx8TE/mWXxYt5f+PbtIjzZ7ds8CPzkk0V8gGNIT+ev7u62jcORKLoOb9WqVWjatCm6dOmCLl264IEHHsB3331ncs6ZM2eg+28KlqurK44dO4Y+ffqgfv36CA8PR/369REdHQ2fEoz5CDtXsSKwZAl/P2dOqVYbp6fz1ntEvKVZ69ay84Kj69iR/w3r1DE/mWXPHqBlSy4+ni8i4KWXeLHasWN2tglf6Rhmrvr52TYOh2LR9qIdkC5NBxQezn0zNWoQ3blTqqdav57I35+fzsWFaPJkonv3LBKlsBGdjqhbN/Nr9VxdicqWJfr113weHBFhPDE62qpxK+2XX/hXa9bM1pFYnsN1aQpRZJ98wuuhLl0Cxo4t1VP168crHoYM4W7OefO4NyufOU/CAfj6cuHpSZPy3peVBdy7B3Trxn9GJnNRTp0ybhj3/vuAk5UoNKzuqlTJtnE4Ekl4wvZ8fYGVK7l69A8/lHq/k0qVgO+/B376CahShbvDZHmmY3N15S2Gli8H3NxMN5XV6znRvfwyj/2lp4P3mRoyhLPhY4/xwk0nYygaXcj+yiIHSXjCPrRrxx/R9+0DGje2yFM+8QS39jZsMG51lpkJREZa5OmFDYwYwf9+fn6c+HKLiAA6dQLuT3gDOHqU16x8913ebdedgCS84pMdz4WqfPghf9gfPBhYsMDsBuzCAVy6xCXHzpzhbs2cXF2BXhWjsVbfH+4rVwBdu9okRqVlZPDuEr6+zteDITueC3U5epQ/zmdkWPRp79zhD/tr1nBZpgULLP4Swgpq1AD++APo2TPvfVlZwM+JYaiachY/ZzhnsgN4OULjxs6X7JQkCU/Yn/v3+VP5N9/wNi4WNGuWcT+2lBR++tBQKcDriMqW5e7qadP459o4j2Y4AoCT3s00HzzxBLfqnasfS5SUJDxhf7y8jOvzPvkkb52pUmrenJf8RUTw3mwnTvCarw8/tOjLCCtwceEPMf/7Uoef0Rv78BA64TcAxsULkydzZ4EzFSP4+msurffrr7aOxLFIwhP2qW9fnkoOABMm8LRLC3JxAZ57jseARo/mqi3museEA0hNxaAfBqAhTiHJpRzOuTbMc8rKlbytlLNslrp2LRdSP3bM1pE4Fkl4wn5Nm8YbpgHAM88o8nG2QgVuTF68CDRqZDw+axav/ZKuMDuXkcEzkH77DShTBi6bfkKFJlXyTMrU67krOzQUOHLEJpFaTHIysGsXfy8f0opHEp6wXxoN8PHHvAleZibQvz/w11+KvFRQkPH748eBt98GevfmJVyOfoF0WllZ3Fe5aRPvErx5MwJ6tsL+/fynYu7069d5/Pa/8r0OacsWXmtYty5PvBJFJwlP2DcXF2DFCp7E8tBDQP36ir9k9eo87qPV8ifpFi24MPWVK4q/tCgqImDMGGD1al6Q9+OPvM8iuFzm//4HzJjBp+bcXy8ri8fy+vfnVrwjtuAN5YiffDLv3oGiYJLwhP3z8ADWrQM2b+apeQrz9eVa1qdPc+OSiHNu/fp8Eb17V/EQRGEyMri55uLCA3S9epncrdEA77zDY10eHqbFpw1J7s03+d/3/n0rxl1KV68ae/bDw20biyOShCccQ5ky3OQC+Io1Y4biawlq1uQGxIEDXAjm3j2eNOpMs/0clocHZ7OdO3kMLx8DBwL793O5OXOVWdau5Y6Dq1cVjNWCPv+cW6nt21uls8PpSMITjmflSt4/r3t3YPt2xV+uTRtexrB2LQ8pVqjAx4l4LCgzU/EQBMD1MT/7jGegALzy+r9uzIK0aMFDv82b560wptfzTMfQUODQIcuHbGmNG/PkqokTbR2JY5KEJxzPoEE8Pe3+fZ5ZsmaN4i+p0XBrYfhw47Gff+axoMaNuea14TosFJCczLXExo8Hpkwp9sODgoC9e7medG6ZmUBiIrf0rPCnVCpDh/Kkqr59bR2JY5KEJxyPpyewfj1noPR0voq9957VZyAkJ/MetmfP8lhQ8+a8Q4MjToSwa//+yy253bt5C/QePUr0NJ6e3DkwZw5/gMk9mcXwp/TWW/b94UWjccpa2FYhb5twTB4e3KwybJL29tvc/EpNtVoIQ4cCsbHAu+/yRJdjx/iTd5s2kvgs5sAB4MEHeRGdvz9Pm+3YscRPp9FwA3HDBh4Szr2TOsD1DgYMsK/JSW++yQWHpPu8dGS3BOH4vvgCeOklzjC7dgEdOlg9hFu3eL+2jz/myS3Nm/O4kUwbL4VvvjFucNekCa+3q1XLYk9/9Cg3Fq9dy5tIXFx4rGzrVtsXZ46JAVq14lbn3r3Aww/bNh5rUOo6LglPOIedO4F//uE6YTZ0/TqwaBFvrv3EE3wsOZkbo888Y5xoKgpx5QqvrE5N5Wbzt99yd6aF3bgB9OnDOy/k7sZ0dQXKlePVMGFhpvedOgVUq6ZISCbS0riBe+wYr7uz9zFGS1HsOk5ORqfTEQDS6XS2DkXY0qlTRB9+SJSVZetI6MMPuYxxlSpECxYQJSfbOiIHsWoV0ZtvKv5vmJZG9OyzhlLTpjdXVyI3N6JvvzWev2wZ39e9O5Fer2ho9Prr/FqVKhFdu6bsa9kTpa7jkvCE80lNJWralK8U3boRXb9u03CWLyeqWtV4Ea1QgWjqVKJ//7VpWPbnf/8jioqyyUvr9UQLFxJpNHwzl/wmTybatYuToOHYjz8qF9PGjcbXWb9eudexR5LwikgSniC9nujLL4k8PY1Nq19/tWlIqalEX31FVLeu8SLm5kY0fLjyrQS7l5xM9Nxz/KZUq0Z065bNQtm6lahMGdOkZrhpNEQuLnwz/Fy5MpESl5oTJ4j8/Ph1Jk60/PPbO6Wu4zJLUzgfjQYYORL480+urnv1KtfifPZZ4PZtm4Sk1QLPP8/lyjZs4Hk1mZlcISvnxBZ7ng6viKgoXhn+9df8RoSHW6V8XH66dwcOHuTxudwzOIn438fwb0QE3LwJTJ9u+ThOneLJTw8/DMybZ/nnVyuZtCKc2927vM3Qp5/yFSowkKe61a1r68gQE8N73Roq3p8+zXn5pZc4Ofr72zY+RSUmAq+/Dixfzj9Xq8aL5Gwww9acxEQuKrB3b+HLSzQa/mzVqpVlY9izh2eKOvXfQT5klmYRScITZu3fz1mkYkW+ktjhyt1XXwUWLuTvPTz4gvvCC7zszKmWNyQkAA88wFMkAZ5ZO2cOT4m0IxkZXNhl2bKCz3N15Wo7hw+br9dZVImJQEoKUKNGyZ/DWSh1Hbe///VCKKFdO25S/e9/xmSn0wGzZ9vNCuPZs3lXhpYteenZDz8AnTpxkeB58+wmzNILDOSWXOPGwL59vAOvnSU7gEt15l6OYE5WFq/p++yzkr9WXBx3Xz7yCHDhQsmfRxRMEp5QD09PoEoV489z5vAATL16nGlsPICm1fIQ1qFD3FoYPZrXef3zD/Dhh6VrPdjUxYs8fnr5svHYl1/yyvx27WwWVmH27+eh4KKaNo2roBWX4W04fZr/BGU3DuVIwhPq1bYtULs2EB/PF+RWrbgitB308rdowQ2fq1eBiAguX2ZYtK7Xc2tgyhQuJGy3EhO5n7ZBA/5A8dZbxvvKleN+Wzs2blzxSnmlp/NjimP1ai5afeUK0LAhJ9mGDYv3HKIYLDrn0w7IsgRRLKmpRPPnG+eAA0TNm9v1wqfdu02nyzdrRjRvHtHly7aO7D9XrxJNmULk62sMslMnokOHbB1ZsaxcSVSzpnEJibm1eeZuP/1U+HPfvUs0apTxMT16EN2+rfiv5DBkHV4RScITJXL9Ope1KFuWr0AvvmjriPJ1/z7R2rVEffsSububrhPr1Ilo3z4bBjd5MpGHhzGoBx4g2rbNYRcb6vW8Fv7pp4m02oIXphv+DYKCCq+mM3my8fzp04kyM63z+zgKWYcnhJIqVeKZIRcv8s4Lb7xhvO/AAd5w9soVm4WXk6cn74y0YQNPeFy2jHfANtTOzjmjMy6OiyMrxrA4zcDDg/v2wsKAjRt5olC3bg47zVSj4Ykk333H7/Xnn/MEU8D8mCoRv99vv13w806fzl2ZO3bw7gzmdm0QCrBo+rQD0sITFvfUU8bCin37Ev3yi13U6MwtNpbo449NG1OjRnEron17Lp0VG2uhF7tyhWj2bKI6dbgGlsH160R791roRexXTAzR2LFEPj78p2GovmK4ubjwOUT8p/L110QDB5r+2+T8ft8+fkzXrtb8LeyXdGkWkSQ8YXH/+x/RI4+YXtFq1iR64w2iw4dtHV2BevTI2+0WGko0cybRn38W88lSUrh4ZO/eprW3BgxQJHZHcO8e17ju0MH4mcjQVRkaSrRunbGsa0E1MZ9/nujll7ms2aVL1vwN7JMkvCKShCcUc+IE0YQJphNcmja1dVSFunSJW34dO5q2RBo1Mj0v30kT6elE/foReXmZZs6HHuLK2CkpCv8GjuH8eR6Pq1Qp74cMPz+eG5WWlvdxKSncUjx9mmjwYP4wQkTUti1/psrp+nWeQLNrl+K/jk3JGJ4QttaoEe/wevUqsHYtMGgQL5wzSE7mDUpHjOAyWfHxNgs1p+rVgQkTgN27eRwqIoKruAwcaDwnNRWoWhV4oClh8vB47Jy8Hffu/XenuzsvMLt/H6hZk0uCnToF/P47/65lytjgt7I/tWtzZZacpUC9vXl93oULvELD3EqMNWt45UaDBsDTT3O1NSJg2DDg++9NV8msWQMEBNhNBTbHY9H0mcv7779PYWFh5OXlRX5+fkV6jF6vp3feeYeCgoLI09OTOnToQMePHy/ya0oLT9jM5s15P9o3bsytwu++s8/9gFJSiPbvp+iXviUNskxCd3PTU+vWRK++SnRgaQwPSjnobEulpKcbx+qI+O1p2pTI359oxgyiGzcKf4527YgWLeLvMzL4sTt2GFtze/YYzw0L48nEzs4huzTffvttWrhwIU2aNKnICe+DDz4gHx8fWrduHR07dowGDx5MQUFBlJSUVKTHS8ITNnPvHtHOndwP1bJl3vnrERHGcy9c4J8jI3kBndKTYO7fJzp7lq/QBlOmmMR4AxXpewymER4rqZrnDZPQFywwPiw+njdEPXlSndPp798n2rKFJwRVrMjjbjl7dU+e5HV2RXH6NCe1hATjsbFjeZ4UEW8ya1ghc+EC/1scOcI/x8cT9e/Pw8nLl5f617IrSl3HFS1WNHPmTADAihUrinQ+EWHRokWYPn06+vfvDwD45ptvEBAQgNWrV+PFF19UKlQhSs/LC+jcmW8AVxrZtYtL7h8+DLRubTx361bTshxaLXeH1qkDBAVx/5dhG4W4OOD8ee4Pc3ExvRHxeYZ+tEOHeK57YiJw6RI/9tIl49qEI0eAZs34+6Ag4w4SrVvD/9FHMaRjRwxp2hRwdcWlSxz6778Djz9uDHX7dmNPrrc30Lw5V4Yx3Bo14l5QZ0EEnDwJ/PYbv7W7d5vWNQ0I4LJgLVvyz8WplBIRwdVcqlY1fT13d97Jatgw4OWXebOP1au5/Kjhny8wEFi3jnuVRdHYVXW+2NhYJCQkoEuXLtnHtFotOnTogP3795tNeGlpaUjLUXwuKSnJKrEKUaiKFXmcb9CgvPeVL89Z5Px5TkhpaXzVPH2a73/uOeO569cDr7yS/+vs3cu1xgCuTTVtmvnzvL2B2FjjFXP4cGDwYL5im1GjBt+efjrv04SFAX//zXu27d/PN4MtW4AePfj7o0f5V6pfn2/e3vn/GvaAiIcrjx3j2A2/W2Ki6XlVqwJ9+/KtY8eS1TnNzAS+/RZYsADIcckDAAwYAKxaxRXvXnwR+OUXTnjDh5fwFxMA7CzhJSQkAAACcv0HDAgIwKVLl8w+Zs6cOdktSSEcxtChfAP4yhcXxzMbzp/nbXNq1zaeW6YMNxsyM407kOr1XKYfMH4FeFX0c89xQq1e3XirUQOoUMF0AXj58iUKfeBAvmVlAWfPcvHjnLcWLYznrl3LC6sNgoN5ckadOpw0XnwRqFzZ+Da4uiq/Rp0IuHWLE9u//3KyMbRIn36aE0tuPj7cQO/ShT+nNG9e+jh//plbcc8/D/j5md43cCC3/saNA/r04TKkp04Z/2REyRQ74c2YMaPQBHPw4EG0KsVuiJpcf0lElOeYwdSpUzFp0qTsn5OSkhAcHFzi1xbC6tzcOMHVrg089lje+0eN4ltRdOzINytwdeU83LAhd70BnIdzbjVYpQq3Bs+c4SRz+TLfdu7k+3O2Ht96C/jkE06EFSsCvr6cCAy3N97ggjgA8Mcf3M3o4sKJx/A1K4v3lBs+nJMUwDMdN2zgzxGGJJeaanzd2FiefArwvsBubpyUmzQBHnyQK6K0aGH5WtcREfzPnTvZAdzCmz2bP0AMGwb07MkVX6pXNz2vb18+5+hR/vAxe7ZlY3Q2xU5448aNw5AhQwo8p6bhr6eYAgMDAXBLLygoKPv49evX87T6DLRaLbSGMvJCCJvKva/umDF8A7hb8MwZvsXGcqW2nLs1XbnCXaTnzvEtt5dfNn7/ww/AokX5x/H448aEd/w4tzRzq1SJN1rPXn4B4LXXuEfYGpeUzZvzv69FC9PlCPlt4LFxo0VDcnrFTnj+/v7wV2jP+Vq1aiEwMBA7duxAaGgoACA9PR1RUVGYO3euIq8phLCOihV537f8tsBbupRbeVevclefTgckJfFXnY57ZA0aNeJWj6F311DS09WVE13O1livXjzBo0IF7lKtVo0Tradn3hgMSVI4J0XH8OLi4nDr1i3ExcUhKysLR44cAQDUrVsXZf+bVRYSEoI5c+agX79+0Gg0mDhxImbPno169eqhXr16mD17Nry9vTFUOq+FcGre3rwXb716hZ9bnF7esLCi7VwunJ+iCe/tt9/GN998k/2zodW2e/dudPxvnOHMmTPQ6XTZ50yePBn379/HSy+9hNu3b6NNmzbYvn07fOSjlxBCiFLQENnB9s4WlJSUBD8/P+h0Ovj6+to6HCGEEMWk1HVcamkKIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFWQhCeEEEIVJOEJIYRQBUl4QgghVEESnhBCCFVQNOHNmjUL7dq1g7e3N8qVK1ekx4wYMQIajcbk1rZtWyXDFEIIoQKKJrz09HQMGjQIY8aMKdbjunXrhvj4+Ozb1q1bFYpQCCGEWrgp+eQzZ84EAKxYsaJYj9NqtQgMDFQgIiGEEGpll2N4kZGRqFy5MurXr49Ro0bh+vXr+Z6blpaGpKQkk5sQQgiRm90lvO7du2PVqlXYtWsXFixYgIMHD6JTp05IS0sze/6cOXPg5+eXfQsODrZyxEIIIRxBsRPejBkz8kwqyX07dOhQiQMaPHgwevbsiSZNmqB3797Ytm0bzp49iy1btpg9f+rUqdDpdNm3y5cvl/i1hRBCOK9ij+GNGzcOQ4YMKfCcmjVrljSePIKCglCjRg2cO3fO7P1arRZardZiryeEEMI5FTvh+fv7w9/fX4lYzEpMTMTly5cRFBRktdcUQgjhfBQdw4uLi8ORI0cQFxeHrKwsHDlyBEeOHEFKSkr2OSEhIdiwYQMAICUlBa+99hqio6Nx8eJFREZGonfv3vD390e/fv2UDFUIIYSTU3RZwttvv41vvvkm++fQ0FAAwO7du9GxY0cAwJkzZ6DT6QAArq6uOHbsGL799lvcuXMHQUFBePTRR7FmzRr4+PgoGaoQQggnpyEisnUQlpSUlAQ/Pz/odDr4+vraOhwhhBDFpNR13O6WJQghhBBKkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAVJeEIIIVRBsYR38eJFPP/886hVqxa8vLxQp04dvPPOO0hPTy/wcUSEGTNmoEqVKvDy8kLHjh1x4sQJpcIUQgihEoolvNOnT0Ov12PZsmU4ceIEPvroIyxduhTTpk0r8HHz5s3DwoUL8dlnn+HgwYMIDAzE448/juTkZKVCFUIIoQIaIiJrvdiHH36IJUuW4MKFC2bvJyJUqVIFEydOxBtvvAEASEtLQ0BAAObOnYsXX3wxz2PS0tKQlpaW/bNOp0P16tVx+fJl+Pr6KvOLCCGEUExSUhKCg4Nx584d+Pn5Wex53Sz2TEWg0+lQoUKFfO+PjY1FQkICunTpkn1Mq9WiQ4cO2L9/v9mEN2fOHMycOTPP8eDgYMsELYQQwiYSExMdM+GdP38en376KRYsWJDvOQkJCQCAgIAAk+MBAQG4dOmS2cdMnToVkyZNyv75zp07qFGjBuLi4iz6RlmD4VONo7VOJW7rkritz1Fjd9S4DT11BTWQSqLYCW/GjBlmW1Q5HTx4EK1atcr++erVq+jWrRsGDRqEkSNHFvoaGo3G5GciynPMQKvVQqvV5jnu5+fnUP/AOfn6+jpk7BK3dUnc1ueosTtq3C4ulp1mUuyEN27cOAwZMqTAc2rWrJn9/dWrV/Hoo48iLCwMX3zxRYGPCwwMBMAtvaCgoOzj169fz9PqE0IIIYqj2AnP398f/v7+RTr3ypUrePTRR9GyZUssX7680Gxdq1YtBAYGYseOHQgNDQUApKenIyoqCnPnzi1uqEIIIUQ2xZYlXL16FR07dkRwcDDmz5+PGzduICEhIXucziAkJAQbNmwAwF2ZEydOxOzZs7FhwwYcP34cI0aMgLe3N4YOHVqk19VqtXjnnXfMdnPaO0eNXeK2Lonb+hw1donblGLLElasWIFnn33W7H05X1Kj0WD58uUYMWJE9n0zZ87EsmXLcPv2bbRp0waff/45mjRpokSYQgghVMKq6/CEEEIIW5FamkIIIVRBEp4QQghVkIQnhBBCFSThCSGEUAWHT3iOvA3RrFmz0K5dO3h7e6NcuXJFesyIESOg0WhMbm3btlU20FxKErc9vN8AcPv2bQwfPhx+fn7w8/PD8OHDcefOnQIfY4v3fPHixahVqxY8PT3RsmVL7N27t8Dzo6Ki0LJlS3h6eqJ27dpYunSpovHlpzhxR0ZG5nlfNRoNTp8+bcWIgT179qB3796oUqUKNBoNNm7cWOhj7OH9Lm7c9vJ+z5kzBw8++CB8fHxQuXJl9O3bF2fOnCn0cZZ4zx0+4TnyNkTp6ekYNGgQxowZU6zHdevWDfHx8dm3rVu3KhSheSWJ2x7ebwAYOnQojhw5gl9++QW//PILjhw5guHDhxf6OGu+52vWrMHEiRMxffp0xMTEoH379ujevTvi4uLMnh8bG4sePXqgffv2iImJwbRp0zBhwgSsW7dOsRgtEbfBmTNnTN7bevXqWSlidvfuXTRr1gyfffZZkc63l/e7uHEb2Pr9joqKwtixY3HgwAHs2LEDmZmZ6NKlC+7evZvvYyz2npMTmjdvHtWqVSvf+/V6PQUGBtIHH3yQfSw1NZX8/Pxo6dKl1gjRxPLly8nPz69I54aHh1OfPn0Ujaeoihq3vbzfJ0+eJAB04MCB7GPR0dEEgE6fPp3v46z9nrdu3ZpGjx5tciwkJISmTJli9vzJkydTSEiIybEXX3yR2rZtq1iM5hQ37t27dxMAun37thWiKxoAtGHDhgLPsZf3O6eixG2P7zcR0fXr1wkARUVF5XuOpd5zh2/hmVPabYjsXWRkJCpXroz69etj1KhRuH79uq1DKpC9vN/R0dHw8/NDmzZtso+1bdsWfn5+hcZhrfc8PT0dhw8fNnmvAKBLly75xhgdHZ3n/K5du+LQoUPIyMhQJM7cShK3QWhoKIKCgtC5c2fs3r1byTAtwh7e79Kwt/dbp9MBQIHXbEu9506X8AzbEI0ePTrfcwrahih36TN70717d6xatQq7du3CggULcPDgQXTq1MlkE1x7Yy/vd0JCAipXrpzneOXKlQuMw5rv+c2bN5GVlVWs9yohIcHs+ZmZmbh586bFYzSnJHEHBQXhiy++wLp167B+/Xo0aNAAnTt3xp49e6wRconZw/tdEvb4fhMRJk2ahIcffrjAalqWes/tNuHNmDHD7ABrztuhQ4dMHqPkNkRKxl0cgwcPRs+ePdGkSRP07t0b27Ztw9mzZ7Flyxa7jhtQ5v0Gihe7udcrLA6l3vOCFPe9Mne+ueNKK07cDRo0wKhRo9CiRQuEhYVh8eLF6NmzJ+bPn2+NUEvFXt7v4rDH93vcuHE4evQovv/++0LPtcR7btUdz4vDUbchKm7cpRUUFIQaNWrg3LlzpXoeJeNWetunosZ+9OhRXLt2Lc99N27cKFYclnrPzfH394erq2ueVlFB71VgYKDZ893c3FCxYkWLx2hOSeI2p23btli5cqWlw7Moe3i/LcWW7/f48eOxadMm7NmzB9WqVSvwXEu953ab8Bx1G6LixG0JiYmJuHz5skkiKQkl41Z626eixh4WFgadToc///wTrVu3BgD88ccf0Ol0aNeuXZFfz1LvuTkeHh5o2bIlduzYgX79+mUf37FjB/r06WP2MWFhYdi8ebPJse3bt6NVq1Zwd3e3eIzmlCRuc2JiYhR5Xy3JHt5vS7HF+01EGD9+PDZs2IDIyEjUqlWr0MdY7D0v1hQXO3TlyhWqW7cuderUif7991+Kj4/PvuXUoEEDWr9+ffbPH3zwAfn5+dH69evp2LFj9NRTT1FQUBAlJSVZLfZLly5RTEwMzZw5k8qWLUsxMTEUExNDycnJZuNOTk6mV199lfbv30+xsbG0e/duCgsLo6pVq9p13ET28X4TEXXr1o0eeOABio6OpujoaGratCn16tXL5Bxbv+c//PADubu7U0REBJ08eZImTpxIZcqUoYsXLxIR0ZQpU2j48OHZ51+4cIG8vb3plVdeoZMnT1JERAS5u7vTjz/+qEh8lor7o48+og0bNtDZs2fp+PHjNGXKFAJA69ats2rcycnJ2X/DAGjhwoUUExNDly5dMhu3vbzfxY3bXt7vMWPGkJ+fH0VGRppcr+/du5d9jlLvucMnvOXLlxMAs7ecANDy5cuzf9br9fTOO+9QYGAgabVaeuSRR+jYsWNWjT08PNxs3Lt37zYb971796hLly5UqVIlcnd3p+rVq1N4eDjFxcXZddxE9vF+ExElJibSsGHDyMfHh3x8fGjYsGF5pmnbw3v++eefU40aNcjDw4NatGhhMmU7PDycOnToYHJ+ZGQkhYaGkoeHB9WsWZOWLFmiaHz5KU7cc+fOpTp16pCnpyeVL1+eHn74YdqyZYvVYzZM1899Cw8PNxs3kX2838WN217e7/yu1zmvF0q957I9kBBCCFWw21maQgghhCVJwhNCCKEKkvCEEEKogiQ8IYQQqiAJTwghhCpIwhNCCKEKkvCEEEKogiQ8IYQQqiAJTwghhCpIwhNCCKEKkvCEEEKowv8B+LBKSwZ2mAYAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject

    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGiCAYAAACcbHM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABniElEQVR4nO3dd3hT5RcH8G+aLgptEEoHs+wtMoQWZSt7D9mCIorKkg3+FFBZKogiUxFQUBAZgiCCAgWhIGARpFAQCkVo2bRQ6D6/P45pmibduVn3fJ7nPm1ubpI3odyT973nPa+GiAhCCCGEk3OxdQOEEEIIa5CAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUUDXhz5szB008/DW9vb/j5+aF79+6IjIzM9XGhoaFo2LAhPD09UalSJSxbtkzJZgohhFABRQNeaGgo3nzzTRw5cgR79uxBamoq2rZti4SEhGwfExUVhY4dO6JZs2YIDw/HtGnTMHr0aGzatEnJpgohhHByGmsWj7516xb8/PwQGhqK5s2bmz1m8uTJ2LZtG86ePZuxb8SIEfjrr78QFhZmraYKIYRwMq7WfLG4uDgAQIkSJbI9JiwsDG3btjXa165dO6xcuRIpKSlwc3Mzui8pKQlJSUkZt9PT03H37l2ULFkSGo3Ggq0XQghhDUSEBw8eoHTp0nBxsdxApNUCHhFh3LhxePbZZ1GnTp1sj4uNjYW/v7/RPn9/f6SmpuL27dsIDAw0um/OnDmYOXOmIm0WQghhO1evXkXZsmUt9nxWC3gjR47EqVOn8Pvvv+d6bNaemX7U1VyPberUqRg3blzG7bi4OJQvXx5Xr16Fj49PIVsthBDC2uLj41GuXDl4e3tb9HmtEvBGjRqFbdu24cCBA7lG64CAAMTGxhrtu3nzJlxdXVGyZEmT4z08PODh4WGy38fHRwKeEEI4MEtfllI0S5OIMHLkSGzevBl79+5FxYoVc31MSEgI9uzZY7Rv9+7daNSokcn1OyGEECKvFA14b775JtauXYtvv/0W3t7eiI2NRWxsLB4/fpxxzNSpU/Hiiy9m3B4xYgSuXLmCcePG4ezZs/jqq6+wcuVKTJgwQcmmCiGEcHKKBrylS5ciLi4OLVu2RGBgYMa2YcOGjGNiYmIQHR2dcbtixYrYuXMn9u/fj6eeegrvv/8+PvvsM/Tq1UvJpgohhHByVp2HZw3x8fHQ6XSIi4uTa3hCCOGAlDqPSy1NIYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKiga8AwcOoEuXLihdujQ0Gg22bt2a4/H79++HRqMx2c6dO6dkM4UQQqiAq5JPnpCQgHr16uGll15Cr1698vy4yMhI+Pj4ZNwuVaqUEs0TQgihIooGvA4dOqBDhw75fpyfnx+KFy9u+QYJIYRQLbu8hle/fn0EBgaiTZs22LdvX47HJiUlIT4+3mgTQgghsrKrgBcYGIgVK1Zg06ZN2Lx5M6pXr442bdrgwIED2T5mzpw50Ol0GVu5cuWs2GIhhBCOQkNEZJUX0miwZcsWdO/ePV+P69KlCzQaDbZt22b2/qSkJCQlJWXcjo+PR7ly5RAXF2d0HVAIIYRjiI+Ph06ns/h53K56eOYEBwfjwoUL2d7v4eEBHx8fo00IIYTIyu4DXnh4OAIDA23dDCGEEA5O0SzNhw8f4p9//sm4HRUVhZMnT6JEiRIoX748pk6dimvXruHrr78GACxcuBBBQUGoXbs2kpOTsXbtWmzatAmbNm1SsplCCCFUQNGAd/z4cbRq1Srj9rhx4wAAQ4YMwerVqxETE4Po6OiM+5OTkzFhwgRcu3YNRYoUQe3atbFjxw507NhRyWYKIYRQAaslrViLUhc7hRBCWIdqk1aEEEIIS5CAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEAWxfDlQpgyQnm68v2tXYMgQ27RJCJEjCXhCFESfPsDt28C+fYZ99+4Bv/wCDBxou3YJIbIlAU+IgihRAmjfHvj2W8O+jRt5f5s2tmuXECJbEvCEKKiBA4FNm4CkJL69bh3Qrx/w6BHQvTvQowfQsCHwzTc2baYQgmmIiGzdCEuKj4+HTqdDXFwcfHx8bN0c4cwePwb8/YHVq4GnnwYqVACOHQMaNOD7NRogLAwYPZr3CyHyRKnzuKvFnkkItSlSBOjZk3t2//wDVKvGPTq9O3eAqVOB+fNt10YhRAYJeEIUxsCBQJcuwJkzwKBBhv2nTwOjRgEffgg0bmy79gkhMig6pHngwAF89NFHOHHiBGJiYrBlyxZ07949x8eEhoZi3LhxOHPmDEqXLo1JkyZhxIgReX5NGdK0f0lJwLVrwI0bQGysYbtzh0cJhw4FmjXjY8PCgLFjgdRUwM3NdBs+HOjWjY+9cYM7WyVKGG+lSwM6HY8wWlxaGlCuHBATA1y8CFSqxG+kfHmgbl3A15dffN06BV5cCOfkkEOaCQkJqFevHl566SX06tUr1+OjoqLQsWNHDB8+HGvXrsWhQ4fwxhtvoFSpUnl6vLAfqal8/j93Djh7FujcGahTh+/bvp2z+rPTuLEh4D16BPzxR/bHPv+84fcLF4Dx480f5+0NzJgBjBvHt+/dA3bu5MtuNWsCJUvm+a0Z02qB69eN95UsCSQkFPAJhRBKUTTgdejQAR06dMjz8cuWLUP58uWxcOFCAEDNmjVx/PhxfPzxxxLw7Nz9+8CvvwKHDvF28iSQkmK4v1gxQ8ALCAA8PYHAQP49IIBzP3x9AS8v4xHAevWAbdsAV1d+vqxbkyaGY3U6YMAA4O5dw3bnDge3Bw/4kpte1hHIUqWAWrU4+NWqxYG0Rg0lPikhhK3Y1TW8sLAwtG3b1mhfu3btsHLlSqSkpMDNzc3kMUlJSUjSp4WDu8JCebduccApXZpvnzpl2mvz8uKgUbMmUKWKYf8zz3DPLS9DjL6+fIksL+rWNT9y+OgREB1t3IvTaoFWrbgXGh3N7yc0lDcAWLzYEPAuXQJWruREzEaNuMCKRYdHb90CrlzhnqJWC3TqZLivZ0/g8mV+E/rt8WP+BlC9unH3t39/ngzv58ffIPz8eCtdmhNqKlZUaFxXCMdgVwEvNjYW/v7+Rvv8/f2RmpqK27dvIzAw0OQxc+bMwcyZM63VRFW7fJnnVm/axOfZMWOATz7h+55+mhMUmzThgBYSwsOFLmZmelr7nKsPvJmFhAB79/LvDx8ahl4jIvhn5mTL0FBg9mzD7YAAQ/ALDub3W7RoPhr0xRfcBT5zhrfbtw331atnHPD+/pvHas158MD49unT/Hzm+PpyYNVbtQpwd+c3UKmSBEKhCnYV8ABAk+U/nj6nJut+valTp2Kc/sIMuIdXrlw55RqoMvfvA+vX81Szo0eN74uONvxepAhw/Lg1W2Y5xYpx8GrUyPz9VaoAL7/M7+/MGU6w2b6dNwDYutWQOHPnDifT+PiAP6BDhzjQjB5teMJPPuGomlnp0tx1rFXLeP+SJXxB1MuLt6JFeTw4Lc00SC1dyj3Fmzc5g+fmTd6io7nHl9kHH3DXFeBg2KQJb8HBQNOm+YzgQjgGuwp4AQEBiI2NNdp38+ZNuLq6omQ2WQUeHh7w8PCwRvNUJz2dOxz6wObiArRsyUOXXbrw+VkNmjUzTqI5eZLnkR87xlmk+vvw6BEWvnEVszdWRQPX02iZshstsR8tvY6h6Btv8DAkALz4Il9YrF2btxo1sg8wzz1XsIZmlTkZm4h7kceOAX/+yT3MHTt4A3hs+NSpvL+uEA7CrgJeSEgItuu/Nv9n9+7daNSokdnrd8KyiICDB/mcqdFwgOvZE9izh3s4AweadhTUxsuLO0BNm2a5Y8oU4NNPcSFxFdJRHcdT6uE46uFjTIRHUgpatgc6duVpFEWmTLF+wzP3BjUa4LPP+PekJOCvv4AjR7gLf+gQ0Lq14dikJK4c07w50Lcv/zQ3Ti2EIyAFPXjwgMLDwyk8PJwA0IIFCyg8PJyuXLlCRERTpkyhwYMHZxx/6dIl8vLyorfeeosiIiJo5cqV5ObmRj/88EOeXzMuLo4AUFxcnMXfj7NKTyfavp2oQQMigGjPHsN9jx/z/SKThASideuI4uOJTp3ifXPm8IdXoQJdHfo/WjvxJL0yNJkqVODdAFHx4kQpKYaniYggevTIJu8ge+npRImJhtu//mp4AwBRmTJEEyYQ/fmn/GEIxSh1Hlc04O3bt48AmGxDhgwhIqIhQ4ZQixYtjB6zf/9+ql+/Prm7u1NQUBAtXbo0X68pAS9/jh0jatHCcD4rWpRo+XJbt8oOpacThYYSvfwykbc3f1i9evHPr78mionh4JclCKSnc2D7+GOiDz4w3l+hApGXFz/Nd99x/LQ7jx4R7dxJ9MorHLEzB7+aNYl++cXWLRROSKnzuBSPVqm7d4Fp04AVK/js5eHBWZcTJ3IOg/hPYiLPdfjkE+MMyIoVgfr1gc2bOYnk2DHDRMM8uHGDM0GvXTPs8/TkFYd69+aJ+jqdBd+HJSQlAT//zJ/H9u18+9QpvuYHAMnJnPkpRCEpdR6XwXgVIuI5aMuX8++DBgHnzwPz5kmwM3L3Ls+teOUVDnbFivHFzNBQLhZdvz7Pm0tJ4eWAsk4TyIG/P3D1Kmd+Tp3KmaCJiZzxOWgQXxK0Ox4e/D43buTszx9/NAQ7gC9QNm/O81ayrgQvhB2QgKdCGg3PK6tVi8/d33zDpR8FOA1Tr0QJ4MknuVbmxx8D//7LM9D1iRtaLX+YaWk8SfHll42zIXOh0XAvb/Zs/sLx11/AO+9w0mbv3objTpzgZfZ27uQZCnbBxwfo2tVw++FDDnQHD3Ljn3ySA6MEPmFPLDpAagfkGp55p06ZXm5JTbVNW+zSzZtEb71FVKIEX4/Tu36dKDnZ/GPmziVydTW+rrVokUWak/lS4MiRhqf39+dmhofbYc7Iv/8Svf02kU5naHDdukQ//ECUlmbr1gkHotR5XHp4KvDDDzyn+IUXuJSWnlZruzbZjbg44N13udrIJ5/wMOZ33xnuDwzkmeTmaLWmPbq33jKdoV8AmWcRvPIKX18tVYqv/X3yCY+m1qvHHc/ExEK/nGWUKcMT2i9fBqZP517g6dPc49NPgxDChiTgOTEivi7Xpw+XX2zSxA4TIWwlPR348kugcmXg/fd5SK5hQ2DXLl6PKC/MzUcjAnr04JIrFlKvHrBwISe4bN/O8cPdnWPJJ59kH49tpnhxXpri8mX+MlG2LE+213OuPDnhQCTgOSkizrjUJz+MHs3XgCQpBXzNrWVLTrK4c4cvmm3axJmW7drlva6kuR5eWhondPTvb/HrV25unL25cSOXN1u2jOOJvqeemgq0aQMsWMAdVZt74glg5kwgKoqvhwL8eXXuzBcrZQklYWUS8JwQES+2PX8+3/7kE+DTT2UIM4NWy9WfixXjD+nUKS4pk98CytlVHElL4/I0mStOW9gTTwCvvcab3s8/c0Hs8eO5NOeQIVz6zOYdKtdMBZ327+dvXh98wF80fvrJZs0S6iMBzwmtXMnL22g0XJg/ryN0Tu3nn3kqgd6MGbxEwrhxBR8TNNfDy+zdd3mRQCtp2ZKnmjz1FE+R+/prLoHWoAH/npxstaZkr2VLnrsYFMRZr1268BL39+/btl1CFSTgOaFBg3i61PLlnPCgagkJwBtvAB07AoMHG/L6vb0LX/06t5qSGg1nCmWeXa4gb2/g1Ve5HvSRIxxHPD252PWQITy9weY0Gr7GGREBTJjAt9es4Un7u3bZunXCyUnAc0KenvwlevhwW7fExo4e5XTGpUv5dpMmPNxoKbn18NLTgfh4zjLJvPy7wjQafqurVnGsnTuXR2xDQgzHbNyY/TJ7VlGkCPDRRzxvr2pVbuiYMVb9nIT6SMBzElFRfMlInyeh6vU809M58/KZZ/isXqYMX1NbuJCrhVhKXlYNSEvjwGuj0iklSgCTJ3NOjt69e9z7q16dRwIOHrThdb5nnuEu6NixvOii3aWcCmciAc8JpKQAAwYAb7/NSXGqFh/Pq7G++y4Hm/79OX8/P+vK5VVes4CIOHXy4EHLt6EA7t/nFYCIuDpY8+a8/fKLjQKflxdnVmXugq5aBXz/vQ0aI5yZBDwnMHs2X7PR6YCXXrJ1a2zMzY2Hxzw8+KT57bec0qiEvPTw9BmKgYFcoswOVKzI8/nOnuVrfh4ewO+/c+HqJk24w2VTZ84AI0bw+ntjxthJto1wBhLwHFxEBDBrFv++bBknv6lakSJ8AfPQIR63U1Jeeng9enA0+fdfu/vHqVGDE5suXeIRxSJFONiVLGnjhlWvztmzAFdoad2aV2UXopAk4DkwIuD113lIs0sX/kKsOkR8ve699wz7goK4aorSMvfwMs8109NqOSHjmWfsepXw0qV5RPHyZWD9euOO6LhxvBqQJXN9cuXqCsyZA2zbxsMWhw7x/IrMdfGEKABZD8+Bbd3KHQhPTyAyUoUrHqSl8Qz7pUs5S+fvv3kJCGvZu5evDXp68j9ESgr3LjNHh/LlOZI4YBbRyZOc5ArwxzprFl8etepbiYgAOnQAoqO5mOj27TzuKpyarIcnjKSnGxL/xo9XYbBLTOQurT7YffaZdYMdwENtZ87wcNu6dYZEmcyio3nROwdUsSIXRHniCY47PXpwXsnevVZsRK1afIG6QQPg1i2ZqycKRQKeg3Jx4ZyMvn2BSZNs3Roru3+fMyw2beIqyhs2ACNH2qYtNWtyliHAk6dr1DC+39WVxwkdkE7Hmb+XLgHTpvHbPHqU63U+/zxflrSKwEBeuHHhQv5SIUQBScBzYCEhfC518pFbY/fu8Rk3NJRLi+zaxctB2ItBg4yv16Wmcu/PgRdCLV6chzMvXuTvFW5u3LHV14O2imLFOGNTP56alMTzKP5z+DBfMm3f3optEg5HAp5wLD/+yLWzSpUCDhwAWrWydYuM9e1rGtxu3OBMTQcXEAAsWsTXi7/5xtCxTU/nHJNbt6zUkORkoFcvvra3ciUA4Kuv+HLu77/zKLIQ5kjAc0BjxvB2+bKtW2IDQ4fyWfe337hKsr2pUsW0Xa6uxovKOriKFbmTrbduHQ95Vq3K8+sVnzbn5sYL9hIBr7yChM9X4fvvOWO5c2cu2ALwCEjWAje3bvHD9+1TuI3CLknAczCPHvGX2s8+A2JibN0aK0lIAB48MNweORKoW9d27cmNuWHN9esNhaudTKVKHOPj4jiBqnZtnlGgWP63RsPrXY0ZAwDYMOogqvveRvXq/NGvWsWvPXAgf8/I3I4NGwB/f6BFC4XaJuyaBDwH8/PPfP4PCgKCg23dGitISeH0wHbt+IzqCF54wXRY8/59K6c3Ws8zz3Ai6pdfcjD55x+evtC2LVd1U4RGw5MHx4zBSgzDoCuzgd270b49L17/2288unz9uvFo8rffchk+O54WKRQk/+wOZutW/tm7t0NO7cof/cz6PXt4kVZHmXhcrhyPp2X+B3KyYc2stFpg2DDg/HkeRnR356UAhw9XtqcX+doC/KFpgn7p64BeveB66k/07cvX9EqV4mzSdev48KgoXhB34EC+vXUrXwps356X6btyRaF2CrshAc+BpKfzuR8AOnWybVusYu5cHr91ceGxqAYNbN2ivBs0yPh2airwww+cXejEfHw4geXcOf5S9vHHhrifmmr54LdylQtSyRVlNNfh+vAeXJ+uj6VLef7/vXsc3H74gQcKvv2Wh1vr1ePHdu3KM1t27eJqZrL4uvOTgOdAzpzhhL+iRbnSklPbsIEzIQC+YOloEb53b9N9Dx+qZuJ0xYq85t6zzxr2zZrFPamICMu8Rmoqr+Q+fz5w8tAjnNwchZN/afDXX0CFCtyz696daxTs2sUBL/P3EP2w5i+/cOap6guvqwE5mbi4OAJAcXFxtm6Kxa1YQQQQtWlj65Yo7NAhIg8PfrNjx9q6NQXXujWRiwu/D4DI1ZWob19bt8omHj4kKlHC8DFMmUKUkFC459yyhcjdnej+fdP7po2Kp6eeSiciogEDiOrVI9JoiK5cMT7u00+JXniB6MGDwrVFWJZS53Hp4TmYypWdvJRgWhrw8ss89NetG4+JOaqBA42TV1JTeR5hQoLt2mQjRYvy9Mlu3fhjmDuXq4YVZhhx5UouZarTZbljzx70WtMVJ09q8Oef/M/w119As2bGJfiWLuXrjQkJQL9+fN1PODcpHu2A0tOdPMvs/HngnXf4jFasmK1bU3D37gF+fqbTEdavV+nSFmzbNp4krp8g3qMHsGQJT2y3iDVreL6mRgPs2MET1IVDkeLRIoNTBzsAqFaNr+E5crADuOpyu3bG6+ZptXwxScW6duXreJMmcfLqzz/zQvUWM2QILyCrn4wXFWXBJxeOzNlPncJR7N/vnOUvBgwwXkEhLQ3YudNx5hQqpGhRYN484MQJHkqsVs1w38OHFniBhQuBxo25l92nD6dpCtWTgOcgTp/mIZ/nnrN1SxRw8yYP8T33nPPlhnftCnh4GO9LTTVMqFS5J58E+vc33D50iDMs9dVSCszDg+cjlCjBUfWDDwrdVuH4JOA5iGvXeEqC1Qr0WtObb3LQq1XLuEijMyhWjINe5hXRXVyAtWtt1yY7tmQJcPcu5y116ABcvVqIJytXjp8Q4DkRDrouobAcCXgO4t49/lmypG3bYXEbN/I3cVdXnlRVpIitW2R5/fsbJ66kp3OZMaf89lI4q1bxJTiNhufH1a7NOSgF7u317cspmMOG8exyoWoS8ByEPpPd0fM4jNy6xb07gPPD69e3bXuU0qGDYS0dPSIu8yEA8HW7RYs4JukDXJEiXDN86FCOWfovffm2di2wfDmvnyhUTQKeg3j0iH9mPW86tNGjOejVqQP873+2bo1yPD25aGPmYU2NxlDkUcWio4EJE3hR8zFjjOtZ/vgjj0S6ugLff1+Iy56Zs2SJeMxUqJJVAt6SJUtQsWJFeHp6omHDhjh48GC2x+7fvx8ajcZkO3funDWaavecpmD0vn08H02r5XGsrIkdzsbcsOahQ3xxVoXCwrj6WsWKnFD58KG+HA0HuM6dufDztGm8mvno0dzTK5TLl/lJ27Y1zpwVqqF4wNuwYQPGjh2Lt99+G+Hh4WjWrBk6dOiA6FyWJY6MjERMTEzGVrVqVaWbatf0gS7rqjMOq0ULHruaPRto1MjWrVGeuZIgGg1fw1SJlBT+jtOoEdeC/fFH/nvOGnuIjAvsPP00L3+n/z8QF8cd5vPn89mAIkU4ceXECV7LSKiPRQuVmdG4cWMaMWKE0b4aNWrQlClTzB6/b98+AkD37t3L0/MnJiZSXFxcxnb16lWnrKW5di1RjRpEEybYuiWiwF59lQtJ6jszGg1Rgwa2bpXi7t4lmjuXKCCA33bm8qJZN62WaNSonJ/vtdf4WC8vopUr89mYTz/lB5coQXT7doHfk1CWUrU0FQ14SUlJpNVqafPmzUb7R48eTc2bNzf7GH3ACwoKooCAAGrdujXt3bs329eYPn06ATDZnC3gOY27d9VbqXffPvNn+YsXbd0yRURGEr3+OpGnZ85BLvPm7Z17HLp6lety6x8zdGg+ClGnpBDVrcsPfO21Qr9HoQyHLB59+/ZtpKWlwd/f32i/v78/YmNjzT4mMDAQK1aswKZNm7B582ZUr14dbdq0wYEDB8weP3XqVMTFxWVsVws1cUcobvJkTsXbudPWLbG+Zs14VdLM9Gv9OaEWLTg5MjExb0PxGg0wc2buU2/KluV1IWfN4o9v9WogODiPQ5yursDnn/PvK1YouCS7sEdWSVrRZMm0ICKTfXrVq1fH8OHD0aBBA4SEhGDJkiXo1KkTPs6mar6Hhwd8fHyMNmGnTp3iayfXr5spca8CWi2XGsucrZme7pST0Ik4PySv8+dcXLjCin6WSl6OnzaNV1X39+e41ahRHqvTNW/OGTNEwPTpeXtB4RQUDXi+vr7QarUmvbmbN2+a9PpyEhwcjAsXLli6eQ7l/n1e8Lt0adPi+w7jvff4JNOnD/DMM7ZujW3062f6DxgRYblVUe2ERsOLXbRvn7di5+npwIIFgLt7/l6nVSsgPJxjmI8Pz3DJk5kzuZF//82T/YQqKBrw3N3d0bBhQ+zZs8do/549e9A0H0t2h4eHIzAw0NLNcyje3vx/MyaGO0gO5++/eaK1RqPub9VNmvCYXGZarVMOa7q5Aa+/nvtwplbL33+6dy/Y6wQGAr/9BoSGGo8Y5zhRvVYtrnYTESET0lVE8SHNcePG4csvv8RXX32Fs2fP4q233kJ0dDRGjBgBgK/BvfjiixnHL1y4EFu3bsWFCxdw5swZTJ06FZs2bcLIkSOVbqpd02qBSpX4d4fs7OqL9/buzfWi1EqjAQYNMp4MnZbGw5rOtTQlvv8e6Nkz97mjaWnG0w4KwtWVF0fW++YbvlT8++85PKhlS+PhZeH0FA94ffv2xcKFC/Hee+/hqaeewoEDB7Bz505UqFABABATE2M0Jy85ORkTJkzAk08+iWbNmuH333/Hjh070LNnT6Wbavf0S6hERtq2Hfl29iyf/QDnrqiSV/36mU4+u3SJx+acxKJFhtHbnOK4VgsMHgw0bGi51ybifJRbt4DWrfMw5S45mbNg8mv5cqBMGdMubNeuXBBU2B+L5nzaAaXSWe3BpEmcTf3667ZuST59/DE3vEcPW7fEPqSnE1WpYpyP7+pKNHGirVtWaOnpRNOmZT/HLus8PA8Pon//tXw7EhKIXnjB8DqjRvGMBLMHli3LB/39d/5e5M4dInd3ol9/Ney7e5f3/fJLodqvdg45LUFYlr628p9/2rYd+TZ+PFe4mD3b1i2xD+aGNVNTubamA5fSSU0FXnnF/D+zVstlxNav51FEjYaTWaZM4U6SpXl58Wu9/z7fXrSIE2hMymh6efFCsQDw2Wf5e5ESJfhJM69gv3Ej73e2Za6chUXDpx1w5h5eZCR/EfX0JEpOtnVrRKGcPWu+G3TokK1bViCPHhF17szFY7K+JRcXokaNDBPKt23jfaVKET18qHzbNm8mKlqU21Klipm6BwcOGP5j5bf6yoYNRDodUWIi327enGjsWP592jSiFi14E/kiPTyBKlX4QnzHjjxNwe6lpMiab9mpUcM0h97VFfjuO9u0pxDu3eMOzc6dptfrNBqej7d/v2FCeZcu3OH/4w+gaFHl29ejBxerDgri64omS2w9+ywPnyQmAl98kb8n79KFe+U7dvBqtQcPcu8d4JnxM2ZY4B0IS5GA50BcXIBz5zi7P2vBDru0ZQun4I8fb+uW2KdBg4wnqaWmcsBzoEr+165xIeg//jA/GjtoELB9u2lgq1+fA5C11K3LlwJmzjTsS07+7xeNBhg7ln///HP+opZXRYpwKuq6dfxvV62aZTNwhEVJwBPKWbyYzyrW+BrviPr2NY0Sd+5wd8gBnDvHl78uXDAfoydO5AUx3Nys3zZznnjC8P3i0SOelTBjxn+90r59AT8/juC//JK/Jx44kHt4X31l6N0JuyQBzwER8ckmP19ErS4yEjhwgLMVXn3V1q2xT0FBvPZN5gloDjKsefQoEBIC3LhhPtjNnw98+KH9rt/44488zDlzJjBsGJDi4sFl34BcJu+Z0bo1J6pERhqeA+AkmP/9j4sudO8OZFM/WFiRRa8I2gFnTlrRe/ppvsa+f7+tW5KDGTO4kR062Lol9u3TT00zPXx8iJKSbN2ybO3cyfkd+mkGmVc70mqJvvnG1i3Mm2XLDFMk2rUjij8TTRQRYetmCVLuPC5lBhxQ9erAsWPATz9xRXq7Q8Q54QCv9C2y16eP4fqRXnw8T4Tu1MkmTcrJN98AL73EI7GZE1RcXLgO5pYtnKlvM5cv87XQtDTe9CvMmvn5Ws00lHm/OPq+Xxu//KJFi64+2DE9EoEPH3LPWzgfi4ZPO6CGHt7GjfyttFIlnuhrd06eNMwqduJ/B4tp3tx4NrarK9HAgbZulYmPPsp+Qnnx4kRHj9q4gT/8kLdF97JsR/E0lcINAogq4iJdKtFQvWs22gmZliAytG8PeHpyNapTp2zdGjP0vbtOnbiEvcjZwIHGySupqcDmzcDjx7ZrUybp6ZxoO3Gi6X1aLRAQABw5Ypi/bTMFrIvZGMcQhhBUxj94AG8klq3Caw5du2bhBgpbk4DngIoVMwwbrVtn27aYNXIkr/WS18XN1K5XL+OqKwAHOztYJDclhWtdLlhgep9Wy1n4f/zBw+w21769mUl2eVNZewUHyw3Erxvvo6bXFU7j3LHDwg0UtiYBz0HpF5j4+ms7zNYsUwZ46y3OXhO5K1kSeO4546Cn1dr820xCAnfSzSWNurjwSkeHD/MajXbh4UPgyScL1tPr1g2Bf+9Bvd5VM66d7l0djaNHLdxGYVMS8BxU5848bejGjYIVehd2ZuBA4/z+tDTuYcTH26Q5t2/zoqp795qvntK5M682Xry4TZpnEB/PmTQdOvAwZFhY3pdZ0mp5W7gQ+OEHw/B7p074E/XRJWwqnnuOEBqqWOuFlUnAc1BubjzMtHs30K6drVuTyQcfcHkmkyq9IkfdupnO0E5OBrZts3pTrlwBgoOBv/4yP8du2DCu9lOkiNWbxh4/5gDVsyeXHHrxRf7Wl5bGwS4vlWq0Wn7swYPAmDHGEwafegrV/eMQgjA8fKhB+/bArl3KvR1hRRZNgbEDasjStFuPHnFmJiDzmQqie3fjyW1ardXnMZ4+TeTnx4mi5pIa//c/G2UGJyURbd9ONGAAUZEixusNFWRr04bo1q3sX2/YMHoMD+ocdJoAXvFn1y7rvV21kyxNkSO7WCz74EEgKYnrZ9aoYevWOJ4BA0yHNXfvtlpv+eBBrot55w4nimam0XCZyffft2L1lLQ04LffeM0hX18u1Pz994bs1ex6cq6upklAADdcowGmT+fyYb6+2b92x47wRBI2ew5Az57c2e7eHdi3r9DvStiQBDwHFx/Pa4rVr28HySv6i4lt29pvTSl71qkTzzfJLD2dpygo7McfOW8mIcE4jri4cPzYsMFKSbfp6cChQ5zp6+/PjVqzBnjwgO/PGon19AGuSBHghRe4cGZmrq6ATsdjkzNmmA+ImTVrBrRtC7f+vfHdt4QuXXgxhc6deahXOCiL9hftgNqGNB894iEogGjdOhs35tlnuSGrV9u4IQ6sf3/j8UQXF6KWLRV9yS++4LJgWSucabVEXl5Ev/2m6MvzGOmJE7zie+nShsn3uQ1L6oc03dyIevTgigwJCfycb71leA6NhuvxRUcXuImJiVx+rEcPu6765jSUOo9LwHMCH3zA/6/r1bNh5ZWUFMO1lTNnbNQIJ7B9u+mJXaMhiomx+Eulpxv+dszFkpIlif780+Iva3DmDNE77xBVrJj3IOfiYija2b49F+4093/96FHDY8aMsUiUevRIFl62FqXO4xoiu7j6YzHx8fHQ6XSIi4uDj0qqfNy9C5Qvz8NRv/zCI4pWd+oUUK8e4O3NK4LmNmQkzEtO5mtL+iE8gIeHP/0UGDXKYi+Tng6MHs0rOGWl1fJl2N9+AypXtthLskuXuBLP2rXA2bP8YrllVWYeHm/enKdw9OxpWFHWHCJg2TIeFu3Zs+DtvXGD1z969lmj3enpvBBCv3489U9YlmLncYuGTzugxh4eEdHYsYbkM5vYsIG/eSs8/KYKL79s3NvRaIgaN7bY0ycmEvXubTqEqe/Z1a1LFBtrsZcj+vdfogULiBo0MPTS8pJJqT+ucWOizz4jun7dgo3KgzNn+PWLFSNKTTW668MP+a7AQKKoKOs2Sw2kh5dHauzhAUB0NFCpEn9Z/uMPGxV7j4/nGcuVKtngxZ3Ir78Czz9vuv/yZaBChUI9dXw80LUrZ2RmXXvWxYU7UD/+aIESqLdu8Vy5deu4HItGYwhlOdH3+OrW5cVUX3jBukujZ5aWxqXKEhO5l1elSsZd9+5xXsuZM1xW7dChnDucIn+UOo9LlqaTKF+eR3oAXtTSJnx8JNhZQsuWvKBoZi4unJJfCDdu8Mjc77+bBjuNhkf+du0qRLC7fx9YvZqDdUAAp3UePsxBLut6Qpnph7+rVAHefZdXNz51Cpg0yXbBTt8ufZHQs2eN7nriCf6sypbldV+7drWbWt8iBxLwnMjMmTxladkyW7dEFIqrK18cylwTMj2dr3sV0MWLXPsyIsL8JbM33uCpBx4e+XzihAS+Jte1K1cueeklnqymD3DZBTn9eytblpdhOHkSOH+eA55dVKL+T82a/PPcOZO7ypbloFe8OMf1/v2znzUh7IMEPCcSFMRVvcqWtfIL37nD3+rffNNOZsA7AXNnz1OnOCjkU3g4B7tr18wHu5YtgUWLuBOZJ0lJPO7Zrx8n2PTvzys76Nub04RwgAPjyJG8plB0NDBnDic82ePcTX3Ay9LD06tdm6u/eXjwRzJ6tBXbJvJNAp4Ti4uz0gudP8/XnbZts8+TliNq2hQIDDTep9Ua1hrMo717eRjz/n3j+KkvOtKlCw9x/v13Lk+UksIpwEOHcpDr3p0LaiYm8v25BTmdDnj5Ze79xcQAn3zCUdje/170FYOyCXgAX8tbt45rBrRoYaV2iQKRgOeEYmKAHj2Ahg05y11x//zDP6tWtcKLqYSLC1+UzTysmZbGKwPksRe9cSMXFk9MNK2e4uYGbNnCx1SrBgwfbiZmpacDBw4AI0bw0hzt2/OZ/eFDvj+3qidFi3K5tJ9/5iSW5cu5O+lIU1ZyGNLMrFcvnnHRt68V2iQKTAKeE/L25lVSLl600vW8Cxf4Z6YsNmEB/fqZBpV//gFOn871oYsX88k3NdU4QUWr5Tj066+8QIOHB/Dll5zZu3o1OJj+8Qcwbhz3MFu0AFau5C4ikHuQ8/Dgs/+WLZyxu2YNB8qsK0E4ikqVgHfeAWbNMs30ySJzhzw2lq+XCjtj0UkOdkCt8/CyWraMMwZ8fKwwfenFF/nF5sxR+IVUJj2dKCjIdKLc1Kk5PuTtt7OvnuLnR3TqlOmDure6T3VKxVB62XL5q3qiP7ZzZ6JvvyV68EDZz8QBnDlDVLYsUfnyRDdu2Lo1jklWSxD58sorQKNGPO9q/HiFX+z2bf7p56fwC6mMRsNz0TIPAaalcbammWHN1FTg1Ve5M5KVVstJTX/8wVPcAPC11/ffB6pXx6h9PfD3rQDs/7ey4cnMcXHhdrm4AK1aAV99Bdy8CWzfzskrxYoV6i07g8BArmEdHQ307m2lywoiTyTgOSmtloczXVyA777jISzF6ANeTsutiILp18/04trVq8CxY0a7Hj/mkcSVK02fQqvlJMgjR4AKmmjgo494R/XqPJflwgW0wj7Uxt9YhGzKl+lTOJs04XWCYmL4j+qll0xXJnA2V6/yTP1//83T4U88YZi8f/AgV4ST5GX7IAHPiTVsyPOrAJ4xkJSk0As9esQ/JeBZXu3apmsLurryt5j/3L/Pq+j89JPpiVWjAVo/m4QDA5bBt1MTrtQyZQpPcQAygqkGwCv4Ej+hMx7jvyWK9EGufn0OktHRPOHsjTfU1Zt/6y0uQbN1a54fUrMm/xNpNMCKFcDSpco1T+SdBDwn98EHXPQiKQmIilLoRU6f5i5G48YKvYDKDR5sPEkuNZWzJdPScP06z2A4etRcTgWhf6k92BHqjaIT3zD0CrNJvmiNvUiBO46iCQfZ997jJJk//+QklnLlFHl7di8ggH/GxubrYR078hRDABg71qRTLmxAAp6T0+k4KzwiQuFFyD09jVPoheX07WsapG7dQuS3J9C4MSfJmpsGNw4L8M2tDnBDSp6qntQp/wDFPR/jwBsbeN7Z228rsFyCA/L25p/6kYx8mDSJS7alpADTplm4XSLfJOCpwFNPAV5etm6FKLDKlXlYMdMk7T+0IQh+pQ5iYylLfgkHtY8wAfMxAS6Uy4TwgABgzBjg2DG4XL6EZs8XwYFIf2Xeh6PSr0Kvn2SfDxoNX1cdNYpraQvbskrAW7JkCSpWrAhPT080bNgQBw8ezPH40NBQNGzYEJ6enqhUqRKWSXFIi0hP53yD+fMt+KT37vEs9xdesOCTChODBmX8+gvaokXab4hPdkdamiEIapAGLdLwNQZjAsz8I+uDXIkSnM558CDXG/v4Y07p1WhQt65hWmVBBAUZqrhk3t5803DM2bNcelOn485TcDBfHszJpk1ArVo8za9WLZ7ml9nDh5zfExjIPxMSCv4eTBQi4AFca/Ozz/j9Chuz6CQHM9avX09ubm70xRdfUEREBI0ZM4aKFi1KV65cMXv8pUuXyMvLi8aMGUMRERH0xRdfkJubG/3www95ej2Zh5e9XbsM06YstpL1v/8anlQo5+pVIoB24znSIoU0SDOeY4cU8sQj2on2xnPl9PPpvL15nb09e3h1+mwsWkTk7s7z+Qri5k1enF2/7dnDL79vH9//zz9EJUoQTZzIf4MXLxL99FPO89UOH+Y5hLNnE509yz9dXYmOHDEc8/77RMOG8RzDl17ildwtZuFCfhP9+hX6qdLTiT7/nCg8vPDNcmZKnccVD3iNGzemESNGGO2rUaMGTZkyxezxkyZNoho1ahjte+211yg4ONjs8YmJiRQXF5exXb16VQJeNtLTiXr25P+7deoQPX5sgSeNiuIn9PS0wJOJHIWE0HK8ajr/G6mkw106gsaGGeb6f5P+/Ym2beNVX/Ng7Vp+6KNHlmnymDFElSsbAmjfvkSDBuXvOV54gah9e+N97doZx5/x44nmzePf583jgGox+ioO3bsX+qn0C8dWq0YUH2+Btjkph5x4npycjBMnTqBt27ZG+9u2bYvDhw+bfUxYWJjJ8e3atcPx48eRkpJicvycOXOg0+kytnJqzSTLA42G5+b5+XGx4HfftcCT6i8gOWrpKEcyaBBewReogvPQX6sDgHRoURNnUQbX+N+hSxdeO+/OHeDbb/l2Htf9KVKEf1piSDA5mefIv/wy/+2lpwM7dnDtznbt+O+wSZPcs/3DwoAspwS0a8czJPRGjuRSnW5uwKpVfFnSYvQZshaYTPfyy7yayfnznNAirEvRgHf79m2kpaXB39/4Iri/vz9is0nxjY2NNXt8amoqbusnOGcydepUxMXFZWxXr1613BtwQqVK8RJCAF+62bevkE+oD3iOVBDYUQ0YgD97zsI/qAaeOWdwTNMYNT2i8M3ncaDNW4A+fQqUqRQfzz8tUTBl61aeIzh0KN++eZOvtc2dy+U1d+/my789ewKhodk/T2wskOWUAH9/41kCQUF87fHqVc5ILlOm8O3PoE8WyqWWZl6ULAl8/TX/vmyZwgUhhAmrJK1osiwBQkQm+3I73tx+APDw8ICPj4/RJnLWtSswbBh/Ye3fn4tmFJi+Z2em9y0srHhxlPhoKnx8ABcYZ1+mkSseJrnhxdeKoHt3Xt28IGJiuFKIPk+jMFauBDp0AEqX5tv6eNGtG8/lfuopngPfuXPuRc6z/tcnMt3n4sJJpxZfcUg/58NC025atTIUhBg2zPAlQyhP0YDn6+sLrVZr0pu7efOmSS9OLyAgwOzxrq6uKFmypGJtVZvPPgPq1OFRr99/L8QT6bsCCQkW+QYsclapEmc5Ptc2+x71jh0857IgafAxMabL8BXElSvce3nlFcM+X1+OGbVqGR9bs2bOWZoBAaZzvm/eNO31KUZfosiCw/bz5gEVK/L7njjRYk8rcqFowHN3d0fDhg2xZ88eo/179uxB06ZNzT4mJCTE5Pjdu3ejUaNGcJPrRBbj5cUnxNBQHv0qsMxjXwWYmCvyr3RpYNcuXtanSBHT0eS0NF78t08f7sHfvZv3546ONvTICmPVKr5G16mTYZ+7O/D000BkpPGx589zxbPshIQAWU4J2L2bK8xYhX4l5eLFLfaUxYpx3W2A/x31S0oKhVk0BcYM/bSElStXUkREBI0dO5aKFi1Kly9fJiKiKVOm0ODBgzOO109LeOuttygiIoJWrlwp0xKspECp6OnpRHFxRKmpFm+PyF1UFFHz5tmv4KPVEpUqRbRjR+7PlZpK9MQTRO+8U7g2paXx0jiTJ5vet3kzkZsb0YoVRBcu8DQIrZbo4EHDMYMHE2VO4j50iI+ZO5enJcydazotQVFvvcUf5qRJFn/qefN42oUw5rDTEoiIFi9eTBUqVCB3d3dq0KABhYaGZtw3ZMgQatGihdHx+/fvp/r165O7uzsFBQXR0qVL8/xaEvAK5vRpoqZN+QQqHEtaGtFnnxF5eBhmJGTeNBr+OWwYfzfJzh9/8HEHDhSuPb/8ws8TGWn+/pUriapU4VkT9eoRbd1qfH+LFkRDhhjv27iRqHp1DpY1ahBt2lS4NubL/PlEwcFEy5db8UXVTanzuIbIuRauiI+Ph06nQ1xcnCSw5EOrVsD+/Vxw48ABQ3q6cBznz3NBluyKFGu1fD3sm2/43zur2bO52PHduzLLxBYuXuTh6GrVbN0S21PqPC61NAUAYPVqrjh1/DgvcZavr0Hz5/NibNnMrRTWUa0az1mbO5eTQ8xd24uJAVq3BkaPNr7kSgSsX8/LDEmws74NGziZ59VXZe08JUnAEwA4aWDTJj5RbtjAC2HnWWgosHkzz2YXNqXVApMn84o+NWuapujrE2kXL+Ys3bAwvr17N6/yNHq0ddvrEKyQfRwczNMqQkP5/59QhgQ8kaFlS8N8qOnTuVhHnpQtyz9l0r/dqFsXOHGCV/hxcTHt7aWnc0bmM8/wXLi5c3k4u2VLmzTXfhHxbPHKlbnQtkIqVDAsHzR+PE/QF5YnAU8YGTaM1/oEgCFD+KSZK33A+/dfxdol8s/dnXvqR47w/D2XLP/b09L4fD5vHl+/7d1bgUnbju7WLS4XExXFEwkVNHEi/ztdv57PERaRZxLwhIkPP+TVmkNCeHJsrvT1S6WHZ5eefho4dYqrm2g0poFPb9o0PtEar6+ncpcv88/SpfNcj7SgPD2BhQv594ULc18ySeSfBDxhQqvl6wi//MKJLLnSBzz9yUHYHU9Prp0aGsodcnNBLz2dh7IbN+ZqLgLcswPy+M2v8Dp35mHl5GTggw+s8pKqIgFPmFWsmHG23vr1Oax/WaMG/7x0Saqt2LlmzYAzZzgbEDANfETcG6xXj5Nv07JZMF019AEvKMgqL6fRALNm8f8/ixbAFgAk4Ik8mD6dS1QNGpTNCdDfn69vFCvGRRSFXStWDFi6lHvwfn7mpy+kpAATJgDNm/P8MNU6c4Z/WnFyXNOmfDl8+nSrvaRqSMATuWrRghMgNm0C3nzTzDwhjYanJMTFcS68cAht2/LQ5cCBfNtcwsoff/D0hWXLVDo/LDycf9avb9WX1ems+nKqIQFP5Kp1a2DdOj4hLl8OzJhh5iB/f0nxc0DFiwNr1vDadU88YdrbS03loezXX+dJ6arKSyLi7tZTT1k94Ont22ehhZoFAEBKi4k8W7rUsI7XokW8yrRwHrdvA6+9xjUENBrTHp2rKye/LF4MDB4s32+UdvkyT1Mg4kVt1TR4IqXFhM29/jowcyb/Pnq0YeVmALxgWZ8+XDJC1sVzSL6+vGTUd98B3t7me3sPH/L8zG7dCr7IrMiboCD+nAHDdAVROBLwRL688w737IiAx48z3VGiBLBzJ3D0qOS0OzCNBujXDzh3jq/xZWfnzoIvMuswLl7k+QE29NZb/PPrr7kHLgpHAp7IF40G+PRTXlHhtdcy3eHuzjPVAb5TOLTAQF45feVKXiw4p0Vm+/XL3yKzDqNDB76wqS84agPNmgENGvB11OXLbdYMpyEBT+Sbiwv/R9S7fZtPjmjenHdIwHMKGg3w8st8/eiZZ0zv11/j++EH7u3t2GHd9inq6lXgwgWONLVq2awZGo2hl7d4sc07nA5PAp4olPv3OYuzWzdgY3ov3nnwoEpz2J1ThQqcLbhoEVfXMtfbu3OHq4QMGwbEx9umnRa1bx//bNTI5nMEXniBK5vFxMhKCoUlAU8Uio8PD7mkpQH9P6iFTdoXuKr8pUu2bpqwIBcXvnZ7+jT/e2elz1Nas4azCffutW77LE7/Blq3tm07wFcL3nyT50O6u9u6NY5NAp4oFBcXvs4zeDCQlqZB37RvsQ4DnGx8S+hVrcqXtObNy36R2dhYoE0bYNQoB600RwT89hv/bgcBDwAmTeKSb3372roljk0Cnig0rRZYteq/oActBuMbLDnRxNbNEgrRavkEHB7Ol7eyW2R2yRLjRWYdxpkzXNvL3d38xUsbcHWVeY+WIAFPWIRWC6xeDYx8k0BwwZtfN8lYTFY4pzp1eL3Ed9/NfZHZyZOBpCTbtDPf9HMt2rXjFFU78vAhl/iTS+QFI5VWhEURcdHbVauAQ4eA8uVt3SJhDcePc03Of/4xX3dAowGqVwe+/dZmVbry7uJF4PvvecmIjh1t3ZoMKSm8gsKtW1zj9Omnbd0i5UilFeEQNBrgvfeAU4cfonzMUVs3R1hJo0bAX39lv8gsEWf5P/00/32kpNimnXlSuTIwdapdBTuAl+tq04Z/X7vWtm1xVBLwhOX98w+eqOrLF/wfPsTmzcCAAQ40pCUKRL/I7IEDvCZw1qCXlsbbjBm8yGxEhE2a6dAGDOCfW7bIsGZBSMATlle5Mo9lPnqEO6u2YcgQrs/Yrh1w756tGyeU9uyznPehr8Rjrrd3+jQvQmB3i8yOH89/rEZ18+zHc88BRYrwvPhTp2zdGscjAU9YnkYDDB0KACi5cRm2bOH5eqGhXH1Mpug5v6JFOUtz9+7cF5lt1sxOFpk9cQJYsID/dhMSbN0as4oUAZ5/nn//6SfbtsURScATynjxRf5qf/Agngv6B7//zsNckZG8oMJRubynCs8/z4WoBw3i2zktMrt0qY2H6b74gn/26sVLR9ipDh3456+/2rYdjkgCnlBG2bKGcvurV6NuXeDIEa7ScesW0LIlX4cQzk+n4ykrP/7Ii2qY6+0lJvJaizZbZPbhQ17lGABefdUGDcg7/Vz4w4cddGK/DUnAE8p56SX+uXo1kJqK0qV5WLNTJz7BHT5s09YJK+valXt7PXrwbXO9vQMHuDTZmjVW7u2tX89Br2pVoEULK75w/lWtytN+zpzhIU6RdxLwhHK6dQNKleJaU/+NYRYrBmzdCnz5JZenEuri6wts3MjxxcfH/CKzCQl8Ga1rV/7TsQr9cObw4XZf0kR/ibxKFbtvqt2RgCeU4+EBfPMNz0bOVKLJ1ZWr6uuz9xITue7izZs2aqewur59eZ3gdu2yP+bnn3nZoY0bFW7MoUN8IdHNjZdzF05LAp5QVrt2QFBQjodMmAB8/jlPXj5xwjrNErYXGMiZhl99lf0is/HxvDxO3768BJEiXFyAJk242+Tnp9CLWFZcHM95HDXK1i1xLFJaTFjPtWtcGymLc+eA7t05g9PTk4c7Bw60fvOE7Vy5wp2r0FDz92u1vPj46tV8DdjiiLgygqenAk9ueQ8e8JAwwElgdpxUWiBSWkw4rrQ0oGdPnox+5ozJ3TVq8CU+fTLLoEE8/zc11QZtFTZRoQIvQff55zwS7upqfH9aGnD3Li8y+/LLCiwyq9E4TLADAG9voGJF/t3MfymRDQl4QnlaLZ9Q0tOBmTPNHqLTAdu2AW+/zbcXLOD5RooNYwm74+LCC52ePg00bGh6v8UXmb14EZg1C7h/v5BPZBs1a/LPyEjbtsORSMAT1jFjBge9jRu5tL4ZLi7ABx/wIUWLAn/+abcFL4SCqlblPJIPPzS/yGx6umGR2ZEjC/E38v77wP/+xxlUDkjfw7t82abNcCiKBrx79+5h8ODB0Ol00Ol0GDx4MO7n8m1q6NCh0Gg0RltwcLCSzRTWULeuodzG1Kk5Htq7Ny8aumGD8fJCznW1WeREqwUmTgROngRq185+kdmlS7lKS77ndJ48CXz9Nf8+eXIhW2sb+lywqCibNsOhKBrwBgwYgJMnT2LXrl3YtWsXTp48icGDB+f6uPbt2yMmJiZj27lzp5LNFNby3nuc+v3rr7nWRapbl6tu6G3fzvOyZIhTXWrX5gGB6dM5CJrr7V29ygWr87zILBGnBhMB/frx0g0OSJ//deOGbdvhUEghERERBICOHDmSsS8sLIwA0Llz57J93JAhQ6hbt24Fft24uDgCQHFxcQV+DqGg0aOJAKJGjYjS0/P0kMREotKl+WFlyxIdOqRwG4VdOn6cqFo1IhcX/lvIumk0RNWrE504kcsT7dzJD3B3J7p0ySptV8Lu3fw26tSxdUssT6nzuGI9vLCwMOh0OjRp0iRjX3BwMHQ6HQ7nMv6wf/9++Pn5oVq1ahg+fDhu5jAjOSkpCfHx8UabsGNvv83lVmJj81w00cMD2LmTr+38+y/QvDnw0UfmV9YWzqthQ15kdvz47BeZ/ecf7rDNnJnNIrOpqTxWCvAkNv2FMAcUEsKT97ObyiFMKRbwYmNj4WdmEqefnx9ic6gX1KFDB6xbtw579+7F/PnzcezYMbRu3RpJ2YxVzJkzJ+MaoU6nQ7ly5Sz2HoQC/Pw4HTMiwvgCXS7q1eNJ6f37c4r6pEmcxXn9uoJtFXbH05OTWQ4ezHmR2ZkzeXV1k5T9L77gnU88YUgJdlDFivGUnhIlbN0Sx5HvgDdjxgyTpJKs2/H/svA0Zgq9EZHZ/Xp9+/ZFp06dUKdOHXTp0gU///wzzp8/jx07dpg9furUqYiLi8vYrtqk1LrIl1ateCJRPnl7c0H75cv5xLd7N/Dkk1KSTI2eeYbj1ogRfNtcb+/vv4H69bkiScYisz16cOmW99/noCdUxTX3Q4yNHDkS/fr1y/GYoKAgnDp1CjfMXE29desW/P398/x6gYGBqFChAi5cuGD2fg8PD3h4eOT5+YQdSU/nsu81awJNm+bpIRoNr97SrBknfTZq5DDVoISFFS0KLF7MNQ0GD+YvPplXT9f39iZOBDZt4rKuVaoEcPqvE6T83r/PcdvTk6cTijyw6BXBTPRJK0ePHs3Yd+TIkVyTVrK6ffs2eXh40Jo1a/J0vCStOJA5cwxX3ZOT8/3wpCSihATD7X//JQoNtWD7hMO4f59o6FBD8krWhJbS2ljy9CRavJgoLc3WrbWMqCh+b0WK2LolludwSSs1a9ZE+/btMXz4cBw5cgRHjhzB8OHD0blzZ1SvXj3juBo1amDLfyuBPnz4EBMmTEBYWBguX76M/fv3o0uXLvD19UUP/SJawnkMHw6ULMljT9lUYMmJuzsXHQa4s/jSS7ywbJ7T04XT0Ol4sGD7dv6Tyjx9oTju4URaPaxJfAFvv3kPzz0HREfbrq2WkpzMP93cbNsOR6LoPLx169ahbt26aNu2Ldq2bYsnn3wS33zzjdExkZGRiIuLAwBotVqcPn0a3bp1Q7Vq1TBkyBBUq1YNYWFh8C7ANR9h50qW5JnDADBnDvD77wV+quRkTmIg4qSGxo1l5QU16tyZi5H37Mm3NSAswRsIwA3UxWk8ghcOHgRq1eJC1I48svnfaRM6nW3b4VAs2l+0AzKk6YCGDOGxmQoVeGyqEDZvJvL15adzcSGaNIno0SOLtFI4mPXrid4sspIIoBRoqQnCTIY6O3UiiomxdUsLZtcufg/16tm6JZbncEOaQuTZZ5/xfKgrV7h6cCH06MEzHvr142HODz/kKQ3Z5DwJJ9b3ybP4DLxg3P/wAY7CtEThrl2c2v/999ZuXeHpZ3eVKmXbdjgSCXjC9nx8gLVrObd8/fpCr3dSqhTw3XfAjz8CpUvz9RyZnqkyiYlAv35wefwI9NxzqLFyEooWNb/sUHw8LzD7wguOVbpOXzQ6l/WVRSYS8IR9aNqUe3qHDnEBRQvo2pV7e1u2GJY6S00F9u+3yNMLezZ5MnDqFODnB80332Doyy6IiODpLFnpr+Nt3sy9ve3brdvUgpKAl38S8IT9ePNNIFMpOkvQ6fgkpvfJJzzvvV8/XoBdOKl+/YCAAF4RISAAABf2+fVXnrvn6WlaiDotjXt4Xbtyxq8+KcRerVjBCc4vvmjrljgOCXjCPp06BQwdmk1BxIK7f59HTjds4EA4f77FX0LYg5AQ4Px5oF07o90uLsAbb/Ais08/bfowfW/vm2+4HsJvv1mhrQXk5saDITJcn3cS8IT9efyYT1Rr1vAyLhY0axZPVwgJAR4+5KevX18K8DqFixd5nTu9HKYyVanCs2A++sj8IrNpabzsznPP8cCDLETsHCTgCftTpIhhft5nnwGLFln06Z96ik92K1cCvr6cI9OyJZ/8hIOKiwO6dOEim3nslmm1/IXn5EleRDa7RWaXLSvgIrMK+uorLq33yy+2boljkYAn7FP37sAHH/Dvo0dz2qUFubgAL78MREZyAWJ3d6BTJ4u+hLCWxESgVy9eK6d4cR6LzIfatYFjx4AZM3JfZHbSJH45W9u4kQupnz5t65Y4Fg2RI9caMBUfHw+dToe4uDj4+PjYujmiMIg42H3+OY87/fSTyTUZS4mJAQIDDbdnzeL5e506mX7zF3YkJQXo3ZuXnCpalFNwGzUq8NP9+ScwYABf/jN3ZnRx4XUZ163j9fls4cEDHplITuYs5HzGd4eg1HlcenjCfmk0wKef8iJ4qalcL+rPPxV5qczB7u+/gXff5RGy554zviwk7EhaGic2bdvGqwRv316oYAcADRrwIrMTJ/Kfn7ne3j//cDJxtovMKmzHDg52VaoYZyCL3EnAE/bNxYWLHrZrx9dnqlVT/CXLl+ehKw8PYO9ePgm+9JJMY7ArRMDrrwPffsu9/x9+4PkmFuDhAcybx9d5c1tktlGjQtdJyDd9OeIXXpDRh/ySgCfsn7s7L2i2fTsv86wwHx+uZX3uHHcuiTjmVqvG13kkY88OpKTwAnguLlylp3Nni79E06bc23/jDb5tbpHZM2c4Ceqjj4zX4tNLT7dsL/D6dUOiypAhlntetZCAJxxD0aL81RvgM82MGYrPJQgK4g7EkSN88nv0iJNGZekhO+Duzpkbv/7KdcEUUrQoJwn/9hvPXzfX20tN5RGBZ57h4U695GSgbl0udXflimXas3gxv2azZlYZ7HA6EvCE41m7lseTOnQAdu9W/OWaNOHhrY0b+ZJiiRK8n4jLlqWmKt4EAXB65OefG+YLuLlZbBgzN61bcxLo0KF8O2vgA4DjxznALV7MTZw5kx/z8CFfftavX1cYtWvz0kZjxxb+uVTJomsv2AFZHkgFHj/mdV0AInd3XgfGBrZt4yZUq0b03XfOs5K2XYqPJ2rVij/wiRNt2pTt23kJKq3WdGV1/RYcbLzyuosL0ciRlnn99HTn/1uT5YGE0PP05Eq/vXvz1+Z+/YD337f6ap4PHvAatufP87W+p57iFRqca6KPHfj3X+7J7dvH1VM6drRpc/SLzPbqxbfNJY4cP26c4Zmezp1TSyxDpNGY72GK3MnHJhyTuzsvJTRuHN9+911g8GCrzgoeMACIigLee48TXU6f5vnyTZpI4LOYI0e46OWJEzz5bO9eLotjYyVLcj3W77/nf/us0xdSU02HujUaHhKNjMz/6/3vf3wtUYbPC0cmngvHt2IFp9IR8QmxRQurN+HuXeDjj/ka36NH3Nv7809JGy+UNWuAV1/lXnydOjzfrmJFW7fKxI0bwCuvcF2E3Gi1PHH9xAnAyytvzx8eztMf0tOBgwe54ouzU+o8LgFPOIdff+UUuREjbNqMmzeBhQuB4GBeZgbgoc/163kZF32iqcjFtWs8szoxkbvNX3+dYzFoWyMCliwBRo7M/VgXF66DuXp17l+IkpK4g3v6NM+727DBIs21e1JpRYicPPeccbA7d467XPqMPivx8wNmzzYEOwBYvpw7KpUqAQsWcNaeyEWZMlzd+3//4zmYdhzsAA5cf/2Vt2tr6ekcv7/6Kvdj33mHg12pUhavoa5KEvCE80lK4q/DEydyMcxbt2zaHF9fPn9fvw6MHw9UqABMmyaVW0xs3AgcOGC4PWAAJyM5QIbGL78AX3yRv+9Xb7yRc9m6H380rOCxfDl/mRKFY/9/SULkl7s7F5329AR27eILalaYr5edoUN5qbYvv+RRurt3uZJLUBAPczrXRYUCePgQGDaMv6QMHAjcu2frFuXbDz/wz/xcs01L49FacyurR0QYKqmMHQv06FHYFgpAAp5wRhoNZxH88QdX171+nWtxvvSSzU6mHh58Tj93jiert2jBGXcpKcYnSSuPwNpeaCgXK/3qK/4ghgyxSvk4S5sxA5g7lxNK9Bmbrq45PyYtjWdcDB1q+qXn7FlOfnr2WeDDD00fe/gwv0779pZovXpI0opwbgkJPH64aBGfVQICONWtShVbtwzh4bzWrb7i/blzHJffeIODo6+vbdunqDt3eMh51Sq+XbYsV9CxQYatpcXHc7Lwzz9z+deYGB6V1U9DN+eTT0yrpxw4wFVVzP0dvPIKfy/48kvuDZYvb/G3YVOKncctOo3dDkilFWHWoUNENWoQPfOM3ZapGDfOUJnD3Z2oXz+ivXu5soZTiYkhKlXK8GZHjCC6d8/WrVJEejrR2bNECxYQtWlD5ObGb9nV1bgyi1ZLtHMn0eXLuT/nw4dE3t5E584R9e1LNHMm7w8OJpo82fjYmzf5tfbutfx7U5JS53EJeEI9Hj8munbNcPv+faJZs/gMYgcSE4lWryZq2ND4ZFilCtG8eXbTTMvo3Zuodm3+IqIiCQlEO3YQjRpFFBRkGvTKliW6eDHn51i5kqhRI/59+3Z+nvR0okWLiMqXN/6CtGgRUZkydvsdL1sS8PJIAp7Is8mT+UwTGEi0apVdnRVOnOCOj7c3N9HXlwOiQ4qKIho6lCg62rDv3j2ipCRbtchu/PMP/xl6evK/c5kyRBEROT+maVOihQv595QU/tvYs8fQmztwwHBsSIjNS48WiNTSFMLSgoN5clxMDCe0NGrE5TLs4LJ2gwbA0qWcb7NyJZcv009aT0/nZIYpU3i9Nrt15w7Pw6henWdZv/OO4b7ixTmbVuWOHuXqPImJQM2aQFgY/8xOZCTnYvXrx7ddXXl1pK++4rl6zz8PrFvH90VF8fMNHMi3Y2O5/mfFivzPoUoWDZ92QHp4Il8SE4k+/phIpzOMLT31FNHmzbZuWbb27TMeCqtXj+jDD4muXrV1y/5z/TrRlClEPj6GRrZuTXT8uK1bZjcSEoiGDzd8PB075u0y5sSJhuFP/ebiQuThQXT3LtHatUQlSxIlJxN98AGPGmc1ZAgPaNgz6eEJoQQPD+6FXLjAWYPFivFsYP2y0nYoOJjnaHfvzkvC/fUXL0BavjzQpg2nrNvM5Mk8wXDuXE5XfPJJTlf89VegYUMbNsy+zJzJE9U1GuDtt7lMaPHiOT8mNZUrtMyfz3+i+u2vv7iYwbp1/DeRmMjTT7/9lkuYCQMJeEIAPB704YfA5cu88sLkyYb7jhzhM5SdlEbx9OSVkbZs4WGq5ct5BWx97ezM8/qio7m4sWKIjCcPurtzseeQEGDrVp570b69VNHO4u23eYX0PXuADz4wXW3BnJ9+4mmkw4ZxLe3MW+/ePPRdtCjQrRuPHp89y8VqRCYW7S/aARnSFBbXv79hHKl7d6Jdu+wqwUUvKoro00+Ns/SGD+eFSJs149T4qCgLvdi1a0SzZxNVrky0dath/82bRAcPWuhFnENaGtFXX3FiauZ/m/xON+ncmYc+zTlxgv9ET5zgLFCAqHlz0+O6dSMqV46ofn2iqVPz9/rWpNR5XCaeC5GbjRt59c7MdR6Dgjhb4IUXOMPETnXqBOzcabyvfn0e+urQgSvx51lCAo+VrVnDT5qWxvt79TLU1hIZiLge5rvvcgFogNctljJhuZPlgfJIAp5QTEQEjx+uWWMogFi3LnDqlG3blYvoaB5d3LKFY7Z+BLJWLeDMGcNx9+9ncx0pJYWD+65dwOPHhv3PPMMlP/r04bE0AYCvtW3axCPkf/7J+3Q6HmYcNUqSU/NCAl4eScATinv0iHs433/Py5uPH8/7HzzgJI0WLXi5ojZtgMBA27Y1i1u3uNzVjh187WfmTN6fmMireFeuRGj/VCzaBp5G0xltDYuUNm4MHDvGPds+fYCXXzbURBMZbtzgy5dRUXy7aFFgzBj+EylRwrZtcyQOGfBmzZqFHTt24OTJk3B3d8f9+/dzfQwRYebMmVixYgXu3buHJk2aYPHixahdu3aeXlMCnrCZn34CunQx3le7Nge+p58GWrXidYLsSUICcOoUjqz9B02XDARlymNzdSU0aKBBs2ZAn6on0aQJgHr1JAElk5QU7iU/9RTfJuKPKCaGF4N9800nr4mqEIdcADY5ORl9+vTB66+/nufHfPjhh1iwYAE+//xzHDt2DAEBAXj++efx4MEDBVsqhAW0acPp95Mncwq+RsNnw88+AwYPNp7qEBXFs4VDQ7lkvtLLJCQm8tSLlBTDvqlTeWHVpk0RvORF3IQfvkM/DHVfh7Ket5GaqsEff3Aa/KGEp/isrtEgNhb45hvOAtRfxlOTxETu4L/6Knfgn32WvzcA/E++YQNw5QowfboEO3uTywIWhTPzv/GS1Xmc1k9EWLhwId5++2307NkTALBmzRr4+/vj22+/xWuvvaZUU4UovCJFOOi1acO379zheQIHDwInTvCwoN7OndwF0PPw4BIYlSvzWXT8eMOQYXQ0L6jn7s5l9zNvRHycfkmd48c51/3OHT7rRkfzT/3chJMnuQsC8OvoV5Bo3Bi+rVqhX8uW6Fe3LqDV4soVbvrvv3MFD73duw1rtXl5cRxs0MCw1arF8wOdBRFfvv3tN/5o9+0zBDgA8PfnlS700wxzqpQibEvRgJdfUVFRiI2NRdu2bTP2eXh4oEWLFjh8+LDZgJeUlISkpKSM2/Hx8VZpqxC5KlmSr3f16WN63xNPcBS5eJEDUlISnzXPneP7X37ZcOzmzcBbb2X/OgcPcjcD4Fnn06aZP87Li3uW+oA3eDAno/j7mz28QgXesk5e9vLi61R//cWXMw8fNp7svmMH0LEj/37qFL+latV4y7gmaKeIuMN9+jS3Xf/e7twxPq5MGc507d4daNky97XvhH2wq3+m2NhYAIB/lv+A/v7+uHLlitnHzJkzJ6MnKYTDGDDAMCs4NZV7YpcucQC8dYtrfOoVLcrdhtRUHvrUb/rxxMzjik8+ycHyiSe49Ip+q1CBsyYyX3974okCNb13b97S0oDz5zkTMfOWeZbGxo08sVqvXDkurVm5MgeN114D/PwMH4NWq/wlQiJedf7ff3lr29bQIx00iCuUZOXtzR30tm35e8p/o7vCweQ74M2YMSPXAHPs2DE0atSowI3SZPlLIiKTfXpTp07FuHHjMm7Hx8ejXLlyBX5tIazO1ZUDXKVKnN2Z1fDhvOVFy5a8WYFWy3G4Zk1DgeL0dB5p1StdmnuDkZEcZK5e5e3XX/n+zL3Hd97hy51lynDn2MeH0/n12+TJXBAH4KLLERH8WhqN4WdaGvDwIXdevb352O++4ykZt24ZglxiouF1o6I4+RTgdYFdXTko16nDuUbPPMNBXKYTOL58B7yRI0ein75UdzaC9H89+RQQEACAe3qBmdK5b968adLr0/Pw8ICHvoy8EMKmXLKkwb3+Om8ADwtGRvIWFcWV2kqXNhx77RoPkV64wFtWY8YYfl+/Hli4MPt2PP+8IeD9/Tf3NLMqVYoXWn/0yLBvwgQeEZZTinPKd8Dz9fWFr0KpRxUrVkRAQAD27NmD+vXrA+BMz9DQUMybN0+R1xRCWEfJkkDTpryZs2wZ9/KuX+eakXFxXH86Lo63zPPYatXiKjL60V19SU+tlgNd5t5Y586cl1OiBA+pli3LgdbT07QN+iApnJOi1/Cio6Nx9+5dREdHIy0tDSdPngQAVKlSBcX+yyqrUaMG5syZgx49ekCj0WDs2LGYPXs2qlatiqpVq2L27Nnw8vLCAKmCKoRT8/ICqlblLTf5GeUNCeFNCEUD3rvvvos1a9Zk3Nb32vbt24eW/11niIyMRJy+TBOASZMm4fHjx3jjjTcyJp7v3r0b3vLVSwghRCFIaTEhhBB2xSErrQghhBD2QgKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUUDXizZs1C06ZN4eXlheLFi+fpMUOHDoVGozHagoODlWymEEIIFVA04CUnJ6NPnz54/fXX8/W49u3bIyYmJmPbuXOnQi0UQgihFq5KPvnMmTMBAKtXr87X4zw8PBAQEKBAi4QQQqiVXV7D279/P/z8/FCtWjUMHz4cN2/ezPbYpKQkxMfHG21CCCFEVnYX8Dp06IB169Zh7969mD9/Po4dO4bWrVsjKSnJ7PFz5syBTqfL2MqVK2flFgshhHAE+Q54M2bMMEkqybodP368wA3q27cvOnXqhDp16qBLly74+eefcf78eezYscPs8VOnTkVcXFzGdvXq1QK/thBCCOeV72t4I0eORL9+/XI8JigoqKDtMREYGIgKFSrgwoULZu/38PCAh4eHxV5PCCGEc8p3wPP19YWvr68SbTHrzp07uHr1KgIDA632mkIIIZyPotfwoqOjcfLkSURHRyMtLQ0nT57EyZMn8fDhw4xjatSogS1btgAAHj58iAkTJiAsLAyXL1/G/v370aVLF/j6+qJHjx5KNlUIIYSTU3Rawrvvvos1a9Zk3K5fvz4AYN++fWjZsiUAIDIyEnFxcQAArVaL06dP4+uvv8b9+/cRGBiIVq1aYcOGDfD29layqUIIIZychojI1o2wpPj4eOh0OsTFxcHHx8fWzRFCCJFPSp3H7W5aghBCCKEECXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUk4AkhhFAFCXhCCCFUQQKeEEIIVZCAJ4QQQhUUC3iXL1/GsGHDULFiRRQpUgSVK1fG9OnTkZycnOPjiAgzZsxA6dKlUaRIEbRs2RJnzpxRqplCCCFUQrGAd+7cOaSnp2P58uU4c+YMPvnkEyxbtgzTpk3L8XEffvghFixYgM8//xzHjh1DQEAAnn/+eTx48ECppgohhFABDRGRtV7so48+wtKlS3Hp0iWz9xMRSpcujbFjx2Ly5MkAgKSkJPj7+2PevHl47bXXTB6TlJSEpKSkjNtxcXEoX748rl69Ch8fH2XeiBBCCMXEx8ejXLlyuH//PnQ6ncWe19Viz5QHcXFxKFGiRLb3R0VFITY2Fm3bts3Y5+HhgRYtWuDw4cNmA96cOXMwc+ZMk/3lypWzTKOFEELYxJ07dxwz4F28eBGLFi3C/Pnzsz0mNjYWAODv72+039/fH1euXDH7mKlTp2LcuHEZt+/fv48KFSogOjraoh+UNei/1Tha71TabV3Sbutz1LY7arv1I3U5dZAKIt8Bb8aMGWZ7VJkdO3YMjRo1yrh9/fp1tG/fHn369MErr7yS62toNBqj20Rksk/Pw8MDHh4eJvt1Op1D/QNn5uPj45Btl3Zbl7Tb+hy17Y7abhcXy6aZ5DvgjRw5Ev369cvxmKCgoIzfr1+/jlatWiEkJAQrVqzI8XEBAQEAuKcXGBiYsf/mzZsmvT4hhBAiP/Id8Hx9feHr65unY69du4ZWrVqhYcOGWLVqVa7RumLFiggICMCePXtQv359AEBycjJCQ0Mxb968/DZVCCGEyKDYtITr16+jZcuWKFeuHD7++GPcunULsbGxGdfp9GrUqIEtW7YA4KHMsWPHYvbs2diyZQv+/vtvDB06FF5eXhgwYECeXtfDwwPTp083O8xp7xy17dJu65J2W5+jtl3abUyxaQmrV6/GSy+9ZPa+zC+p0WiwatUqDB06NOO+mTNnYvny5bh37x6aNGmCxYsXo06dOko0UwghhEpYdR6eEEIIYStSS1MIIYQqSMATQgihChLwhBBCqIIEPCGEEKrg8AHPkZchmjVrFpo2bQovLy8UL148T48ZOnQoNBqN0RYcHKxsQ7MoSLvt4fMGgHv37mHw4MHQ6XTQ6XQYPHgw7t+/n+NjbPGZL1myBBUrVoSnpycaNmyIgwcP5nh8aGgoGjZsCE9PT1SqVAnLli1TtH3ZyU+79+/fb/K5ajQanDt3zootBg4cOIAuXbqgdOnS0Gg02Lp1a66PsYfPO7/ttpfPe86cOXj66afh7e0NPz8/dO/eHZGRkbk+zhKfucMHPEdehig5ORl9+vTB66+/nq/HtW/fHjExMRnbzp07FWqheQVptz183gAwYMAAnDx5Ert27cKuXbtw8uRJDB48ONfHWfMz37BhA8aOHYu3334b4eHhaNasGTp06IDo6Gizx0dFRaFjx45o1qwZwsPDMW3aNIwePRqbNm1SrI2WaLdeZGSk0WdbtWpVK7WYJSQkoF69evj888/zdLy9fN75bbeerT/v0NBQvPnmmzhy5Aj27NmD1NRUtG3bFgkJCdk+xmKfOTmhDz/8kCpWrJjt/enp6RQQEEBz587N2JeYmEg6nY6WLVtmjSYaWbVqFel0ujwdO2TIEOrWrZui7cmrvLbbXj7viIgIAkBHjhzJ2BcWFkYA6Ny5c9k+ztqfeePGjWnEiBFG+2rUqEFTpkwxe/ykSZOoRo0aRvtee+01Cg4OVqyN5uS33fv27SMAdO/ePSu0Lm8A0JYtW3I8xl4+78zy0m57/LyJiG7evEkAKDQ0NNtjLPWZO3wPz5zCLkNk7/bv3w8/Pz9Uq1YNw4cPx82bN23dpBzZy+cdFhYGnU6HJk2aZOwLDg6GTqfLtR3W+syTk5Nx4sQJo88KANq2bZttG8PCwkyOb9euHY4fP46UlBRF2plVQdqtV79+fQQGBqJNmzbYt2+fks20CHv4vAvD3j7vuLg4AMjxnG2pz9zpAp5+GaIRI0Zke0xOyxBlLX1mbzp06IB169Zh7969mD9/Po4dO4bWrVsbLYJrb+zl846NjYWfn5/Jfj8/vxzbYc3P/Pbt20hLS8vXZxUbG2v2+NTUVNy+fdvibTSnIO0ODAzEihUrsGnTJmzevBnVq1dHmzZtcODAAWs0ucDs4fMuCHv8vIkI48aNw7PPPptjNS1LfeZ2G/BmzJhh9gJr5u348eNGj1FyGSIl250fffv2RadOnVCnTh106dIFP//8M86fP48dO3bYdbsBZT5vIH9tN/d6ubVDqc88J/n9rMwdb26/0vLT7urVq2P48OFo0KABQkJCsGTJEnTq1Akff/yxNZpaKPbyeeeHPX7eI0eOxKlTp/Ddd9/leqwlPnOrrnieH466DFF+211YgYGBqFChAi5cuFCo51Gy3Uov+5TXtp86dQo3btwwue/WrVv5aoelPnNzfH19odVqTXpFOX1WAQEBZo93dXVFyZIlLd5GcwrSbnOCg4Oxdu1aSzfPouzh87YUW37eo0aNwrZt23DgwAGULVs2x2Mt9ZnbbcBz1GWI8tNuS7hz5w6uXr1qFEgKQsl2K73sU17bHhISgri4OPzxxx9o3LgxAODo0aOIi4tD06ZN8/x6lvrMzXF3d0fDhg2xZ88e9OjRI2P/nj170K1bN7OPCQkJwfbt24327d69G40aNYKbm5vF22hOQdptTnh4uCKfqyXZw+dtKbb4vIkIo0aNwpYtW7B//35UrFgx18dY7DPPV4qLHbp27RpVqVKFWrduTf/++y/FxMRkbJlVr16dNm/enHF77ty5pNPpaPPmzXT69Gnq378/BQYGUnx8vNXafuXKFQoPD6eZM2dSsWLFKDw8nMLDw+nBgwdm2/3gwQMaP348HT58mKKiomjfvn0UEhJCZcqUset2E9nH501E1L59e3ryyScpLCyMwsLCqG7dutS5c2ejY2z9ma9fv57c3Nxo5cqVFBERQWPHjqWiRYvS5cuXiYhoypQpNHjw4IzjL126RF5eXvTWW29RREQErVy5ktzc3OiHH35QpH2Wavcnn3xCW7ZsofPnz9Pff/9NU6ZMIQC0adMmq7b7wYMHGX/DAGjBggUUHh5OV65cMdtue/m889tue/m8X3/9ddLpdLR//36j8/WjR48yjlHqM3f4gLdq1SoCYHbLDACtWrUq43Z6ejpNnz6dAgICyMPDg5o3b06nT5+2atuHDBlitt379u0z2+5Hjx5R27ZtqVSpUuTm5kbly5enIUOGUHR0tF23m8g+Pm8iojt37tDAgQPJ29ubvL29aeDAgSZp2vbwmS9evJgqVKhA7u7u1KBBA6OU7SFDhlCLFi2Mjt+/fz/Vr1+f3N3dKSgoiJYuXapo+7KTn3bPmzePKleuTJ6envTEE0/Qs88+Szt27LB6m/Xp+lm3IUOGmG03kX183vltt7183tmdrzOfL5T6zGV5ICGEEKpgt1maQgghhCVJwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKowv8B+oiMq45AbpkAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGiCAYAAACcbHM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrjklEQVR4nO3deVxU5fcH8M+wDaKACwqYG5q75q5g7pZrpmYuuYRWpqaZuS+/XCpzye3rklqZWlqaqWmZJqWgKZYWuIumKLjg7oAo+/n9cRqGYQYYYFbueb9e8wJm7sx95gL3zPPc85xHRUQEIYQQoohzsnUDhBBCCGuQgCeEEEIRJOAJIYRQBAl4QgghFEECnhBCCEWQgCeEEEIRJOAJIYRQBAl4QgghFEECnhBCCEWQgCeEEEIRLBrw5s2bh2bNmsHT0xPlypVDr169EBUVlefzwsLC0KRJE7i7u6Nq1apYs2aNJZsphBBCASwa8MLCwjB69GgcO3YMISEhSEtLQ6dOnZCYmJjjc6Kjo9GtWze0bt0aERERmD59OsaOHYvt27dbsqlCCCGKOJU1i0ffvXsX5cqVQ1hYGNq0aWN0mylTpmD37t04f/585n0jR47EyZMnER4ebq2mCiGEKGJcrLkzjUYDAChdunSO24SHh6NTp05693Xu3Bnr1q1DamoqXF1d9R5LTk5GcnJy5s8ZGRl48OABypQpA5VKZcbWCyGEsAYiQkJCAsqXLw8nJ/MNRFot4BERxo8fj1atWqFevXo5bhcXFwdfX1+9+3x9fZGWloZ79+7B399f77F58+Zhzpw5FmmzEEII24mNjUWFChXM9npWC3hjxozBqVOn8Mcff+S5bfaemXbU1ViPbdq0aRg/fnzmzxqNBpUqVUJsbCy8vLwK2WohhBDWFh8fj4oVK8LT09Osr2uVgPfuu+9i9+7dOHToUJ7R2s/PD3FxcXr33blzBy4uLihTpozB9mq1Gmq12uB+Ly8vCXhCCOHAzH1ZyqJZmkSEMWPGYMeOHThw4AACAgLyfE5QUBBCQkL07tu/fz+aNm1qcP1OCCGEMJVFA97o0aOxadMmfPvtt/D09ERcXBzi4uLw9OnTzG2mTZuG119/PfPnkSNH4tq1axg/fjzOnz+Pr776CuvWrcPEiRMt2VQhhBBFnEUD3urVq6HRaNCuXTv4+/tn3rZu3Zq5za1btxATE5P5c0BAAH755ReEhoaiYcOG+Oijj7B8+XL06dPHkk0VQghRxFl1Hp41xMfHw9vbGxqNRq7hCSGEA7LUeVxqaQohhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRbBowDt06BB69OiB8uXLQ6VS4ccff8x1+9DQUKhUKoPbhQsXLNlMIYQQCuBiyRdPTExEgwYNMGzYMPTp08fk50VFRcHLyyvz57Jly1qieUIIIRTEogGva9eu6Nq1a76fV65cOZQsWdL8DRJCCKFYdnkNr1GjRvD390fHjh1x8ODBXLdNTk5GfHy83k0IIYTIzq4Cnr+/Pz7//HNs374dO3bsQM2aNdGxY0ccOnQox+fMmzcP3t7embeKFStascVCCCEchYqIyCo7Uqmwc+dO9OrVK1/P69GjB1QqFXbv3m308eTkZCQnJ2f+HB8fj4oVK0Kj0ehdBxRCCOEY4uPj4e3tbfbzuF318IwJDAzEpUuXcnxcrVbDy8tL7yaEEEJkZ/cBLyIiAv7+/rZuhhBCCAdn0SzNx48f499//838OTo6GpGRkShdujQqVaqEadOm4caNG/j6668BAMuWLUOVKlVQt25dpKSkYNOmTdi+fTu2b99uyWYKIYRQAIsGvBMnTqB9+/aZP48fPx4AEBwcjA0bNuDWrVuIiYnJfDwlJQUTJ07EjRs3UKxYMdStWxd79uxBt27dLNlMIYQQCmC1pBVrsdTFTiGEENah2KQVIYQQwhwk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUwcWSL37o0CF8+umn+Pvvv3Hr1i3s3LkTvXr1yvU5YWFhGD9+PM6ePYvy5ctj8uTJGDlypCWbKawsORm4cQO4fRuIi9Pd7t8Hnj4Fhg4FWrfmbcPDgXHjgLQ0wNXV8DZ8ONCzJ297+zaweTNQurT+rXx5wNsbUKn+a8DatcCHHwKxsYBTls98L78MlCoFbNxoxaMhhLAWiwa8xMRENGjQAMOGDUOfPn3y3D46OhrdunXD8OHDsWnTJhw5cgTvvPMOypYta9Lzhf1ISwMuXwYuXADOnwdeegmoV48f++knoG/fnJ/bvLku4D15Avz1V87bvvii7vtLl4AJE4xv5+kJzJ4NjB8PoG9f0Nix+H3GQbh374jatYEyTg+BX3/lxgkhiiSLBryuXbuia9euJm+/Zs0aVKpUCcuWLQMA1K5dGydOnMCiRYsk4Nm5R4+A334DjhzhW2QkkJqqe7xECV3A8/MD3N0Bf3/+3s8P8PUFfHwADw8OeFoNGgC7dwMuLvx62W8tWui29fYGBg4EHjzQ3e7fBx4+BBISgGLF/tuwdGk8aN4F1+Z/i7fmdwQAjC+xDdNRGh9s74jaURxIa9Wy5BETQlibRQNefoWHh6NTp05693Xu3Bnr1q1DamoqXF1dDZ6TnJyM5OTkzJ/j4+Mt3k4B3L3LAad8ef751CnDXpuHBweN2rWBZ5/V3f/889xzyxxizIWPD9Cjh2ltql+fhzSze/IEiIkBypTR3Xe/8yD0P/Y25vt/hn9j1Xj58WZ8jQH45vMn+AZD4NZABTjHAOPG4crzQ7BuHdCsGdC0KfDMM6a13WR37wLXrgE3bwLOzkD37rrHXnkFuHqV34T29vQpfwKoWVO/+/vaa8C9e0C5cvwJolw5vpUvD9SoAQQEmLnhQjgWuwp4cXFx8PX11bvP19cXaWlpuHfvHvz9/Q2eM2/ePMyZM8daTVS0q1eBbduA7dv5PPvee8DSpfxYs2ZAkybc43r+eSAoCKhcWf8SmZa1z7nawJtVjQk9gIUZuLRsDxLrNINHncN4PHsJxjwpgQ3nd2LadBWqZoQDY8ciLG0IPvlE91w/P13wCwzk91u8eD4a9MUX3AU+e5Zv9+7pHmvQQD/gnTnDY7XGJCTo/3z6NL+eMT4+HFi11q8H3Nz4DVStKoFQKIJdBTwAUGX7xyMio/drTZs2DePHj8/8OT4+HhUrVrRcAxXm0SNgyxZgwwbgzz/1H4uJ0X1frBhw4oQ1W1ZIxYpx72nzZhRv8S9Qowa6z2yCzFBz/z7QZxqweDGeVQFvvMHv7+xZTrD56Sfd5b4ff9Qlzty/z8k0Xl7gA3TkCAeasWN1+166lC9sZlW+PHcd69TRv/+zz/iCqIcH34oX5/Hg9HTDILV6NfcU79zhDJ47d/gWE8M9vqw+/hi4coW/9/HhTyotWnAAbNkynxFcCMdgVwHPz88PcXFxevfduXMHLi4uKJN1PCoLtVoNtVptjeYpTkYGdzi0gc3JCWjXjocue/Tg87NDGzSI38jZs8Dgwbr7T58G3n0XWLgQaN4craGfRBMZCRw/zrfwcN1jePIEy96JxSfbqqOxy2m0S92PdghFO4/jKP7OOzwMCQCvv84XFuvW5VutWjkHmBdeMP39tG6dpTHZ/PfBMfP77t35DfzzD/cw9+zhG8Bjw6dOmb5fIRyEXQW8oKAg/JQtS27//v1o2rSp0et3wryIgMOH+ZypUnGAe+UVICSEeziDBhl2FBxahw48byEqirNdAO6iBQbySf/DDzkTJsuFQQ8P7gC1bJnttaZOBf73P1xKWo8M1MSJ1AY4gQZYhElQJ6eiXReg28s8jaLY1KnWe49aWXuDKhWwfDl/n5wMnDwJHDvGXfgjR/i4aCUnA40bA23aAP3781dj49RCOAKyoISEBIqIiKCIiAgCQEuWLKGIiAi6du0aERFNnTqVhgwZkrn9lStXyMPDg95//306d+4crVu3jlxdXemHH34weZ8ajYYAkEajMfv7KaoyMoh++omocWMigCgkRPfY06f8uMgiMZFo82aix491982bxwevcmWKHfp/tGlSJL01NIUqV+a7AaKSJYlSU3VPOXeO6MkTq7c+dxkZRElJup9/+033BgCiZ54hmjiR6J9/5A9DWIylzuMWDXgHDx4kAAa34OBgIiIKDg6mtm3b6j0nNDSUGjVqRG5ublSlShVavXp1vvYpAS9/jh8nattWdz4rXpxo7Vpbt8oOZWQQhYURvfEGkacnH6xvvtE9fusW0alTBkEgI4MD26JFRB9/rH9/5cpEHh5EffoQffcdUXy8dd5Kvjx5QvTLL0RvvcURO2vwq12b6Ndfbd1CUQRZ6jyuIso6uO/44uPj4e3tDY1GAy8vL1s3x249eABMnw58/jmfvdRqzrqcNIlzGMR/kpJ4SHPpUv0MyIAAHvLMeu0vH27f5qzWGzd097m7A126AK++yhP1vb0L2XZzS04G9u7l4/HTT/zzqVM8/AsAKSmc+SlEIVnqPC4BT4GIgIYNdXkJgwcDc+cClSrZtFn258EDnkR45w7/XKIE0K8fEBwMtGpV6GtZRJwzsn07T/f491/dYyNHctKl3YqPB0JDuRybVnAwEB3Nn5x695ZrfaLAJOCZSAKeafbsASZP5pNqmza2bo0defKEM1O0XnyRk1reew946y2LdbuIODn0hx84+K1cCXTkIjD4+2/g0085ubNTJ12yp115/JgnKCYm8s916wKzZgF9+kjgE/kmAc9EEvCMO30auHWLT5ha6elc2EOA58rNm8eFo8+e5ZM3wAfNx4cn11kRkS6x8t13OQACnCU7cCAHvwYN7Gy++I0b/Alq5UpAo+H76tfnwCc9PpEPljqPy1+gAvzwA88p7tePCzprSbADn5hnzuRqI0uX8jDmd9/pHvf3t3qwA/QD2VtvcQezbFm+9rd0KdCoEQe8RYv4MqNdeOYZntB+9SoHOS8v/qT16qs4+v42ODvzNUohbEV6eEUYEc+d1k776tSJ8w0kKQU8q/6rr4ApUzjIAZxFMncuHyi76jqx1FRe0GHjRi6onZLCBVpiYuz0w8vDh8CyZcBXX+GtdpdQoow7vvwSOHeWUKmy/R1fYT9kSNNEEvAYEWdcLl7MP48dCyxZYqcnRmtLTwfat+dZ9lktX87jhw7g4UPg++/5+xEj+GtaGtC5MxdRGTqU59Tbg0RNGvwruuD4cWDWLEKdfzZjZv8oBO2fjbbtnTF/vm7bu3c5iO/fz78ioUwWO4+bdZKDHZB5eDzHa/Ro3XSppUtt3SI7NH48UYkSRIsXE5UtqztYH3zgsBOqd+/WvQ21muj114mOHrX921m3jqhpU/7+p7knqQquUAZAK0rOoEplE/Xat2IFz21PT7dNW4V9cMiJ57YgAY/oiy/4pKdS8feCePL0pUu6n+Pjia5f5++7duWDpY0Wo0YRpaXZpp2FEB/PRQMaNtSfH96wIdHGjUTJybZpV8uWRMuW8fepKRnk45VEIb6D6A58yAUpdKjLXKKHD4mIKCiIaNIk27RT2A9LncclaaUIGjwY6NULWLuWEx4ULTEReOcdoFs3YMgQHvcDeAl0bfXrxo31c/3XrOG15VJSrN/eQvD0BN5+m+f2HTvGw5ru7lzsOjiYpzdYW1QULyU1YAD/7OKqQv8hanzVdgPKThyKFxGCzftKA/XqIXpDGMLDuWYrwKtQ9OnDiS7t2vFCEEIUilnDpx2QHh6z9TCWXTh2jKh6dV1X57339OtEan3/vX6XCCByciLq0IEoIcHqzTan+/eJ5s8neuUV/fu//57o4kXL73/SJD6czs66m5MTD7k+eEC0aWYUlXF6QClwoY/LLKG6dXR/uFmHNd9+m2jlSsu3V9gH6eGJXEVHA598wsmHgF0mGVpPRgbw0Ue8MuulS9yTCwnhjEFjS0k1bGj8NcLCgLZteQUFB1W6NCeibt+uu+/hQ+791azJIwGHD+uvHmQuaWnA119z4lRkpO528iQvDrx5M9Brcg0kFSuJfS+vxrdeIzB4iO4PVztt79dfuac4bJj52ygUxqzh0w4osYeXkkIUGMifpGfOtHVrbEyjIXrpJV1P7bXXuCuRm/R0Ind3w16etmtSvTpRTIx12m8FV67oHyKAqFUron37zDsysHMnkZsb0aNHho9Nn87XFomIBg4katCAL6P+t5AK0VdfEW3dSv/7H1G/fg7f0Rb5JD08kaNPPuFrNt7e8ikYrq5c8UOtBtavB779FihVKvfnODkBzz1n/LH0dF4ZvEUL4MIF87fXBgICuPbz+fN8zU+tBv74g6+VtWjBvTBzWLeO1681Vo2tTx/ezz//8DW7kyd5HcZKlcCVbkaOxOr+BzF1QgoSEzIwYABPmxSiMGQenoM7d45H5FJTuUCINjlA0a5e5WHIJk1Mf8477wBffskH0hhnZ84K2b8faNbMLM20Fzdvcq3OtWt5GPLyZaBiRRs2KC0N+OADZE7Qe/55zmCRigmKIaXFhAEiYNQoPkf36MELUisOEV+v+/BD3X1VquQv2AH8qUGbwWlMejqQkMCVtn/7rSAttVvly3O5sqtXgS1b9IPd+PF8rS093YoNcnHhuqa7d3P38MgRXmI+a108IQpAengO7McfuSavuztf1Ffc8j7p6VwZZfVqztI5cwaoU6dgr/XXXzyelxeVint7333HC9cVYZGRXLMT4MM6dy7Qs6eVE6LOnQO6duX6aWXL8lisKb8n4dCkhyf0ZGToamROmKDAYJeUxF1abbBbvrzgwQ4A6tUzrZo/EfcE58wp+L4cREAA14IuVYrjTu/eQFAQcOCAFRtRpw5foG7cmOuO7dtnxZ2LokYCnoNycuKcjP79eV07RXn0iDMstm/nFba3bgXGjCnca3p48Bk+N9quzXPPAatWFW5/DsDbG5gxg3N2pk/nQ/Tnn7xO34svAtevW6kh/v48RWTZMl7ZQogCkoDnwIKC+JpLER+51ffwIZ9xw8I4iWTfPqBvX/O8dtOmuVfXJuL1eCIiFLVqbsmSPJx5+TJ/rnB15URKqxanLlGC10jSfuhITuYJekLkgwQ84Vh27eJc9rJlgUOHzFtSX3vBKifOzjw1QaELmfr5AStW8PXib77RLQyfns45JnfvWqkhKSk8r6FrV577IISJlPmf6+Dee49vV6/auiU2MHQon3V//914hZTCaNhQl46ora2ZtceXns4n2DNnzLtfBxMQwJ1sAHj8mBeinT4dqF6dl6CyeAlSV1desJeIi8V+8YWFdyiKCgl4DubJEz7nLl8O3Lpl69ZYSWIiTwnQGjMGqF/f/Ptp0ED3fdeuPFyaPSXR2ZmzhATu3+eizmfPcqawRsOHpm5dnlFgsfxvlQr43//4Ux/As+e//tpCOxNFiQQ8B7N3L5//q1QBAgNt3RorSE3l9MDOnfmMakl+ftxzDA3lM3bnzrxybtYhzLQ0nnweEmLZtti569f5GnJkJMeffv143r6vL/Dvvzx9oVMn4PRpCzVApeLJg9qg9+ab/HsRIhcS8BzMjz/y11dfVUCBaO3M+pAQ4NQp60w87tCBC0Zr/d//ccJEVk5OwLhxVp6NbT+iongq3JUrfAhUKp418OabwMWLPF3GzY3n5w8fbuGe3pIlXJssLY2v6/3zj4V2JooCCXgOJCND17Ho3t22bbGK+fN5/NbJiaceNG5s/TaUKsVz7rJ+usjI4Ilp33xj/fbY2IkTPLJw+7Yu3mdk6C6nenlxAsuFC/yhbNEi3aFLS7NA8HNy4iKbHTrw9/HxZt6BKEqk0ooDOX2ap4AVLw48eMCfoousrVt1hUFXrgRGj7ZdW1JSgBo1gNhY/fWXypbldZm06YpF3O+/cwm7lBTDzu3Dhzx9ITdz5vCk9dWrC1cjwCiNhn8/9eqZ+YWFLUilFYFjx/hrYGARD3ZHj/IS3QAPHdoy2AF8sBct0gU7gLsq9+7xkJoCbN/Oc/2Tkw2DXfnyeQe7xEROtDp0iHODpk3jBCyz8fbWD3Y3b+r/voSABDyHU61aES8lmJ4OvPEGn1l79uRAYw/69OFVErJOU8jI4LWZbt+2Xbus4IsveG5/erphDFGpeL5+XooX58trPXvy0Ob8+dzL+/lnCzQ4JISzeD/6yAIvLhyZBDwHMnw4Z8AV6f9jZ2fOkOzXD9i0KffKJ9akUnFpq+zdm5QUYNYsmzTJ0og4nr/9tm6p2OycnfOer69VuTInXe3axbVfr13jIdJXXgHi4szY8Js3ecx/zhxOaxbiPxLwHFCRL/RRowZfw8ueHWlrLVvy2Vk7KR3gAPjFF5zEUoRkZPDSQDNm5L5dWlr+5/+//DIfrsmT+VDu3WvmXJPgYGDkSI7QgwbxddaCWrsWeOYZw67tyy/rht2Fwyjqp07hKEJDgYMHbd2KvC1YYHifkxMwcaL122IhqanA669zh9YUWefrm6p4cT6Uf//NSZY1augee/w4/69nYNkyoHlzzqbp2zfnhX3z0rcvX6vN+rf58CHX8Rw0yAwNFdYkAc9BnD7N86JfeMHWLbGAO3d42YcXXrDQRR0zevZZTqLJPhl9714rr5tjGampfJ3t229N2754cS6CUFDPPQe89pru5yNHeOhz/fpCTmFQq4EffuAK13//zescFUTp0pytk/WAbNvG92vrqwmHIQHPQdy4wbkRVivQa02jR3PQq1PHMU4iH3zAZ/qsnJ05o9TBMwOJuPNialGDhg3NWwDhs8/48tsbbwDduvFMgwKrWJFfEODlHk6cKNjrDBrEaarJyfzz5s08ZcbZmcd827Xjm7B7EvAcxMOH/LVMGdu2w+y2beNP4i4uXA+xWDFbtyhvZcpwokrWM316OnfDN2+2XbvMwM2Np78EBfHPuV0vdnU1fy2AjRt5qFOt5lKmdevyfQXu7fXvz8HpzTeBmjUL9ho9evAHmT17OAIfPgwMHsyPzZ0LzJ5dwMYJa5OA5yASE/mrveVxFMrdu7o5dlOnmp7uZw/GjOFkhqxBT6XiTIynT23XLjNo1ozP6aNH595hTU01/4IVLi58CCMjeb5pQgIvkDFggO5DX75t2sTJJ56eBXt+sWKcrLR5M/Ddd3zBsUmTAjZG2JIEPAehnaRbpIp6jB3LQa9ePa5Z6UjUap4jmLXrQcTjzqZme9ixxETg++/z3s7cAU+rVi3gjz+4A+Xiwm3R1pHNt6xTW4h4zDS/Bg3iHt5XX+l6d8LhWCXgffbZZwgICIC7uzuaNGmCw4cP57htaGgoVCqVwe3ChQvWaKrdKzIFow8e5OXanZ05Q0GttnWL8q9fP/6kn/2E+vHHfE3SgS1ezMv/ZOfsrHu7Tk4WKBGWbV/Tp3PhnbFjuadXKFevAi++yMs45Lfwd4cOnKgSFQUMHKi7f/ly/rB25gzQq5eZJxQKc7N4wNu6dSvGjRuHGTNmICIiAq1bt0bXrl0RExOT6/OioqJw69atzFv16tUt3VS7pg10Dp4TodO2LV+c+eQT00p12KOcJqMnJzv0dZ1bt7gSSta/NWdnvq535Youq7JuXV4Hz9KaNePl77T/AxoNF765eDGfL1SsGCeu/P03r2WUH87OPKGdiBef1Ro7lrui9+5xF9TPL5+NElZFFta8eXMaOXKk3n21atWiqVOnGt3+4MGDBIAePnxo0usnJSWRRqPJvMXGxhIA0mg0hW26Xdm0iahWLaKJE23dEmGgZ08iFxdtMRK+OTkRnT9v65YVyJtvEjk7678dgOjYMd02584RPX5sm/aNGMHt8fAgWrcun0/+3//4yaVLE927Z5H2icLTaDQWOY9bNOAlJyeTs7Mz7dixQ+/+sWPHUps2bYw+RxvwqlSpQn5+ftShQwc6cOBAjvuYNWsWATC4FbWAV2Q8eECUkGDrVphXVJRhhHB2JnrpJVu3LN9OnSJSqQzfSt++tm6ZTmwsUYcOuvYNHUqUmGjik1NTierX5yeOGGHRdoqCs1TAs+iQ5r1795Ceng5fX1+9+319fRGXw1i3v78/Pv/8c2zfvh07duxAzZo10bFjRxw6dMjo9tOmTYNGo8m8xRZq4o6wuClTOD38l19s3RLzqVGDF6rNei0vPZ0n0YeF2a5dBTBhgmH5UpXKeIEZW6lQgetDz53L1xE3bOCMzhyHOFNT+Rrb5s28TIO2NNznn1twSXZhj1zy3qTwVNkyLYjI4D6tmjVromaW+TJBQUGIjY3FokWL0KZNG4Pt1Wo11I6Y8KBEp07xtRMiXs6lKJk1i5NvtPNHAN1k9L//dogCqCEhugWGtZyc+DJVQIBt2pQTJydOaAkK4muKp0/zpeBdmx+jfckIntdw8iRw/Dhw/ryutJiLC1fGAfjvcNYsYMcOm70PYV0W/S/08fGBs7OzQW/uzp07Br2+3AQGBuLSpUvmbp5DefSIJ/mWL6/7f3U4H37IJ5m+fYHnn7d1a8zLxweYOdNwMnpkJGej2rn0dI7N2Xt3JUrY6YwRIiAmBu0TdiNiyBK0KXMWXk9uod7LAUCbNsB773FS1KlT+nU0tf888+bx7+rMGZ7sJxTBogHPzc0NTZo0QUi2j40hISFo2bKlya8TEREBf39/czfPoXh68v/mrVucLOZwzpzh8kwqVZFdTgdjxwL+/oaT0SdNApKSbNcuE3zzDa9gkDXhVKXiFXZKlbJdu4z66ivAy4uLbvbsCf9lU/D7g0YIS2+FsrjH2xDhYVoOVRqWLOFCBwcO8Jsu6IR04XjMekXQiC1btpCrqyutW7eOzp07R+PGjaPixYvT1atXiYho6tSpNGTIkMztly5dSjt37qSLFy/SmTNnaOrUqQSAtm/fbtL+LHWx0x7UrMnX2n/7zdYtKYD+/bnx9pT9YAmbNxumN6pURAsW2LplOUpMJCpXTj9ZRaUiqlyZKDnZ1q0zYtQow2Oc7fY1BlNZ3KbDeF7/sRyyw4V9ccgsTa1Vq1ZR5cqVyc3NjRo3bkxhYWGZjwUHB1Pbtm0zf16wYAFVq1aN3N3dqVSpUtSqVSvas2ePyfsqygGvRw/+n121ytYtyadz53Rn05Mnbd0ay0pPJ2rY0DBrs3hxort3bd06oz76iGdRZI8b27bZumU5uHGDyN09x2CXAVArHCKAyBXJ9AXe5L+/t94iysgwfL3kZKL9+63/PkSOHDrgWVNRDniTJ/P/9KhRtm5JPi1axA3v3dvWLbGO0FDDE7GzM9GYMbZumYFbtwxjh7MzUbNmxmOD3Zg2zXiU/u+WiGLUD1sy73q36k+UmpRm+DqJiUQVKvBGZ85Y/30IoxxyWoIwL21t5X/+sW078m3CBK5w8ckntm6JdbRtyxX2s09TWL26AOVBLGvWLMO1UdPTuYCMXZaxe/KE/46yll4xwgNPsQUD8JFqJgBgxZWX0KW7s2EZTQ8PXigW4DJhokhTERVqmUW7Ex8fD29vb2g0Gnh5edm6OWZ18SJPYXN3B+LjeXkWYaeiorjQZNb6XC4uQPfuhaiCbF7nznHd7qxnABcX4OWXOb/IrmRkcGbNlClcp9SU05azM1CvHnZODseQt4shMZHX742IyLbqyOHDnNnp7g5cv14E1+ByPJY6j0sPz4E8+ywHvG7deJqC3UtNLaIr1pqgZk1gxAj9Xl5aGrBrF59g7cCkSYbTEAD7mmQOAPj9d6BBA64enZ9gV7kyEBKC3gOLITycV2YfMMDIElutWvHwSVIS8MUXFngDwl5IwHMgTk7AhQv86btsWVu3xgQ7d3JZjAkTbN0S25g923AVCO1kdBsPrBw4wMVuss7pdHbmNfCefdZ27dJz9izQpQvwwgs8eRwwPG4uRmpnODvzvMgDBzL/UerX50sBc+boNktJ+e8blYp/JwCwcqXhGK8oMiTgCctZtYrPKsWL27oltlGuHM/azj4Z/Z9/TFtszkIyMoxPMvfwAD74wCZN0hcXBwwfzlHq99/5vuwrUmgb36MHl1vRBj4nJ/57+/137uFlUaqUruDNkydAu3b8mYQIvDJ6uXLAjRvAr79a6p0JG5OA54CIuKdn1x9Eo6KAQ4f4xPT227Zuje2MGwf4+hpORp84kZcRsoHNm7kUV/ZJ5rNm2fjyVWIiV+MJCOAybUSGZYW0x7FxY+DIES4L9tlnujfj5sYBq27dXHe1axcQHs49vjffBFKd1Lp17v74w8xvTNgNs+Z82oGiPC1Bq1kzzqIODbV1S3IxezY3smtXW7fE9r7+2vhk9EWLrN6UJ0+I/PwMJ5lXqECUlGT15rC0NF7np2zZXKcakEpFVLEi0fffG86ZePNNXqJp3z6Td7tmjW53nTsTxZ+N4TmjwuZkWoLIpK2t/fPPtm1Hjoh09SO1q4Uq2aBBPDyXfWX0OXOMLytuQcuWAbdv618KIwI+/dRGi87v38/H5s03eRFVYyscOztzKbHFi4FLl7gWa/YpCV9+yeOUnTubvOsRI7in5+HBncK2gyviVsnahXxDwp5JwHNAPXvy1x07bJ77YNypUzzmqlbrGqtkTk7GV0Z/8gT46COrNePOHeDjj/X/ZpydeXSwf3+rNYOdPg28+CIHqKgovs9YQoqLC9cojY4G3n8/96hcgHk6L70EHDzIuS0REVzTPDoa/LsRRY4EPAfUpQtPGbpyhWOL3dH27rp350/mAujQgeeTZJ+MvmoV8O+/VmnCnDmGlw2tPsn85k3uzTVowJEGMOzVaY9Rr14cDJcsAUqXtliTmjfn63nVqgEJCYSk0RM4At64YbF9CtuQgOeASpTgoAdwAoLdGTOGT1KjR9u6Jfbl00+ND9lNmWLxXUdFAWvW6HcyXVy4A966tcV3Dzx+zFkx1arxsj1Ehj1ebQpl06YcgbZtA6pWtULjuFmHDwO//aZC7YdHuYe3Z49V9i2sRwKeg3r9df769dd2mK35zDM8/NShg61bYl/q1OF0++yT0XfsAI4eteiuJ00y7MURAQsXWnS3/P6++IIzLz/+mCd3Zw90ADeuYkXghx842AUGWrhhhvz9ueOJ7t0BAAc2xODPP63eDGFBEvAc1Esv8bSh27cNV6kWdmzOHE6dz8rCk9HDwoCfftKPM87OwMiRQI0aFtklv5e9e7l22dtv55yQ4uQEeHvzuOrFi0CfPrYv4tm9O/5BI/QIn4YXXiCEhdm2OcJ8JOA5KFdXHjXcvz9fiWmW9/HH/IneoEqvAAD4+QHTpxtORj9+nHs3ZpbTJHN3dwuuwxsZCXTsyNcsL10yvo02IWX8eODqVU5Myf5BwFYaNkRNXw2CEI7Hj1Xo0gXYt8/WjRJmYdZJDnZACfPw7NaTJ0RqNU9skvlMOTO24qqTE1GlSmafDJfTerTz55t1Nyw2lig4mHeQfT3ArGsPAUQDBhBFR1ugEWby5pv0FGp6qcppAojc3PI1xU8UkszDE7myi+kJhw9zGmCFCkCtWrZujf3y8OAKzVl/aRkZQGwsVw0xk6Qkw2t3KhVfqxo71my7ARISuCbZs88CmzblnpDSogXw55/Ad99xNWd71a0b3JGMHe4D8corXCGvVy9dYqlwTBLwHFx8PDB1Khd7t3nyivZiYqdOtr8OY++GDOHyV05Z/gWJuLjjw4dm2cWKFcCtW4aTzBcuBIoVM8MO0tI49bNKFV6jLjnZeEIKwHUtd+7ksl3a9efsWevWQKdOcH3tVXz3LaFHD/4A8dJLwMmTtm6cKCgJeA7O1ZXLDp48yVncNnXsGH9t08a27XAEzs6cqJE9kSMxka+DFtK9e1yWMvsk8wYNzFD8hojL/NSpA4waxddrc0pIKVmSI29UFHeRHOWDUNmyXH5l5ky4qVXYto2vlXfuDNSWYiwOSwKegytWTDc8tXChDYc209KAv//m75s1s1EjHMwLL3BvOPtk9OXLuapAIXz4IfD0qf592knmToX5r//nH15moEcP4PJl49s4O/MnsUmTOCFlzBiHX61YreYO6tat9pNbI/JPAl4RMGoUr4hy8qQNpyicO8dnWE9PXbFPkbfFiw17R0Q8Tl1Aly7pLyAA6DpWu3blPOqYq5gYYPBgoEkTXqUAyLlCSv/+3Ij583nKgSO7fTtz9YRixXRxOyODk23tstKRyJEEvCKgdGmezwxYYSJxTi5c4LNqkybGl9EWxtWrB7zxhmEvb9s23RBxPk2ebDhyqFLx0nzLl/PIYkKCiS8WHw9MmwZUr64rGZdTQkpQEHDiBJf/ybYWnUM6d46nkXTtavCeFy8G5s3jikdXr9qmeaIAzJrzaQeUOi3h2jVdxvdff9moERoN0eXLNtq5A7t5k8jd3TB9PzDQcBmcPBw+bHwmwMiR/PjevUSenkTPPUcUE5PLC6WkEK1aRVSqVO5L9gBE1aoR7d6d77bavbQ03e/l0iW9hx48IKpblx+qWZPo3j0btbGIkmkJIleVKvEqNAAX87AJLy+r1T4sUvz9eQgz68W19HTu4e3cafLLEAHvvWfYwVardX8TXbpwFbNHj/jy4aNHRl5k1y6eVjJ6NGeM5pSQUqoUj52eP8/X9BwlIcVUzs664fnz5/UeKlWKJ6NXqMD5OC+/bHjNVNgfF1s3QJiPtmqVxSpoCMuZOJFXTrh3T5d55OQETJjAufAmZEp8/z3nlGSlUgEzZnAZOq169fhab2Ag8OqrfOJ2cQFXe3n/fb5Gl1Nmi7Mz3yZO5KLXhVgNIyWFlyyKi+NLZffu8dSatDTdbry8eMF4X18eXfT0tHJcrV2bL45fuMBBPYsKFfjYtWrFHyJee42L5bjIWdV+mbW/aAeUOqRpU/fuEb3wAtE77xS9YS1r+vJL42VR/ve/PJ+alMSLgWdfydzPjwu7GHPwIA93/t+Yh1z5JGslFGPjoioV0euv5zEWalxsLC9UPmkSUadOROXL5zxCmlMTAKLixYmaNSMaNoxHXI8f55FHi5kzh3c8bFiOmxw6pCswNGqUBduiIJY6j8tnkSJMo7FSktzFi8Bvv/Gn4FWrrLDDImroUGDRIj6e2mFEImDmTF4eo2TJHJ+6ahVw/brhJPMFC7iwizHtGj7Chy3D8X8rO+MFp9toCxhPSMnI4G7M0qVc4cAERFxSc9cuYPduXlwV4KH3Ro2AYcN4SR4/P13vzceHsyC1Pbj0dM6Z0fYA4+L4PZ49y52uTZu4R+jjw53gnj15TdnixU1qomm0FYOyDWlm1bo15+kMHgy0bWvGfQvzM2v4tAPSw+MciF69OJcgOdkKO/z6a/542769FXZWxO3bZ9itcXIimjgxx6fcv8+JKNl7SfXqEaWnG3lCcjL3Gr29KV3lTM1xjJrjGGUY61LVqEG0Z4/JPffERKKVKzmRAyDy9iZ67TWiLVuI4uIKdkhy8vQp0R9/EE2dSlSnDu/Pw4MTdC5cMNNOTp3iFy5ZMs9Nb9400z6Fxc7jEvCKoIQEIl9f/j81YTSs8D74gHc2fLgVdqYAHTsajuu5uuZYbHncOOPDgL/9lm3DjAyi7duJqlTRG/sMQUcCiH5Cd12ALVOGaO1aotRUk5qclka0ZAlR2bLclr59iUJCONnTWi5eJJo9m//2VSoepS3A6Ku+x4/573vVqhw+PRh36xbR2bOF3LeCScAzkQQ8tmYNn7u8vKzwyfP113ln8+ZZeEcKcfKk/sU4gMjFhc/g2fz7Lz+UfdPOnbNteOwYT3PQBrQsT8gAqC0OUkP8Q+lu7nyCj483ubmXLhG1bMkv+/bbtl8EISmJ//6feYZ7mF9/bd1Ly2fPElWowItf3L5tvf0WJRLwTCQBj6WlETVtyue0116z8M66deMdrVtn4R0pyLBhxrtt2SZZ9uljGPBUKqIzZ/7b4MoV7m7lkZByGK0IINr+ef4mlO3cycOIVavy8KI9efiQaPBgfouDBlmvt/ngAVH16rzf1q2tdFmhiJGAZyIJeDonTug+zIeEWHBHzZvzTnbtsuBOFOb6dV3qX9YLc88/n9ldOXrUeIbj8OHEZ93x4zka5hTotH8cHToQRUZSYCBRz56mN3H/fh5p7dOHh9G14uOJ3nuPezju7kRBQfpxOiODaNYsIn9/frxt2ywBOhc//EBUuzavTVe7NtGOHfqPJyQQ9e/Pman9+/NoJBHRt99yOwcPLmBPLyaGUzFjY01+yrlzPLoCcK9XkpfzRwKeiSTg6RszRpd7YOa1RXXq1eOdHDlioR0o1AcfGK9y8uOPlJFB1KKFYSxzd8+gW7PX8Nk2rwoptWrprWr66accgLIGr5zExXEeR9euhj2nfv04iSQsjIc7Z83i5ly/zo/Pn89JNtu3E50+zcHJ3z/3UdSjR/m9fvIJ0fnz/NXFhUdqtT76iOjNNznPZNgwoo8/1j22ZQu/5VWr8n5vBvr04SevWJGvp+3ZoxuZLtB+FUwCnokk4Ol79Ig/8VauzCcKi3n61OQEB2Gi+HhOHsneK6talX7YkmrYYVNl0Ifeiwyv/2V/vo8Pz/nLNoEtKoo32bMn76bNns1DmdlLaj15woHp55/172/QgGjGDO7p+Pnpr7ielMTX2tasyXl//foRdemif1/nzvqXNSdMIFqwgL9fsIDn/GU1eDD/H+T7z3T0aD4wM2bk84n8PrU5RzYr+eeApLSYKBBvb2DvXq6Da9FFyN3dpcSEuXl68sKqWWVkIOVKLCa880SvGIoKGShDdzE+fjb0JuNpOTvz72jmTCA6GnjzTYMaZNWrA888k/eq3hkZwOrVQHAwUKaM/mNpaTx/zt1d//5ixXjRgehonk/XqZPuMbWa568dPZrzPsPD9Z8D8Np0WZ8zZgywdq1ujcj33tPfftw44No14Jdfcn9/Bjw9+euTJ/l8IhfyfuUVni84fXq+ny7MTAKeAjRsmPPkY2Hn3ngDqFFDr9TXaoxCzIMSeiUuCU6Yj6koTo/1n+/szDO5hw7lNfZmzQJKlDC6K5WKFzzQLmuYk0ePeCJ4x46Gj3l68mt89BFw8yYHv02bgD//5NXX4+J4O19f/ef5+uoeMyYuLu/nVKnCqxLFxvIHvGee0d++SRMOvNHRub8/A9ronZSUzyfyMV23Dnj3XS47JmzLKgHvs88+Q0BAANzd3dGkSRMcPnw41+3DwsLQpEkTuLu7o2rVqlizZo01mlnkZWQAK1fy0iZm8/Ah0Ls30K+fGV9UZHJx4Qon/0W3hyiJWZgDyvKv64w01MY5BGOj7nnaANmxIy/a9uWXXKQ6D/7+wN27uW+j7Rimphp//JtvuJP5zDPce1u+HBg4UL9Dmb0eJlHeNTJNeY6TE1dtMfZaRNyGtLTc92OgEAEP4AI5y5c7/tKARYHFA97WrVsxbtw4zJgxAxEREWjdujW6du2KmJgYo9tHR0ejW7duaN26NSIiIjB9+nSMHTsW27dvt3RTi7yQEP6kOXWqrtRToT15Avz4Y76q+ot86tqVVxl3dsZcTEcCPPUeTocLlmEcnJGhO9PXqgXs3w/8+itXizZR2bJc0Dk3Xl7c6czpV16tGhAWBjx+zL2tv/7i4BgQwMEIMOzN3blj2IPLys8v/8/JLiSE29SsmenPAaALeGZYDoGIy8BFRhb6pURBmPWKoBHNmzenkdrFuP5Tq1Ytmjp1qtHtJ0+eTLVq1dK7b8SIERQYGGh0+6SkJNJoNJm32NhYSVrJQUYG0Suv8EX0evU4z6TQoqO16YFmeDGRo4gIIpWKKuEqqZCul4fii5t0FZU4WaVcOaKvvipwReU1azjpJK+iIitW8Hb//pv3az54wEkpa9fqkla0ySVEPE/NlKSVrl317+vSxehcfKMyMri+eYMGBZgioK3i0KtXPp9oaOFCXdZ0Pub2K45DZmkmJyeTs7Mz7cg2YWbs2LHUpk0bo89p3bo1jR07Vu++HTt2kIuLC6UYmTk6a9YsAmBwk4Bn3J07fE4EDLPYCuTSJX4xT08zvJjI1euvU4hTJyqF+/qJl0ghVyTT5FZ/0KMbjwu1i+3b+TXzWtA0IYEnm9evzxO8s9q3jxeavXKF5+o1aMBTNbX/vvPnc4DbsYOnJbz2muG0hCFDuEam1pEjHGDnz+ds4/nzDacl5ObDDzNndOTf55/zk/MzSTEH9+5xFRZAtyivMOSQWZr37t1Deno6fLONO/j6+iIuhyvUcXFxRrdPS0vDvXv3DLafNm0aNBpN5i02NtZ8b6AIKlsW+OIL/n7Rorwz8vKkvSCSfdVRYX5z56JuxXiDIc0MuCIVblh09HlUqVscK1bkfH0tL8nJ/FWtzn27EiV4FYQbN4AXXuB8GC2NhteOrVWLF3lo1YpHV11d+fHJkzlj8p13gKZN+TX279clQwJATAwnuWi1bAls2cLZl889B2zYAGzdCrRokXs7U1N5PcCZMzmRpmdPU49EFtphYmML4eZTmTLA11/z92vW8CIjwnqskrSiynYFmYgM7stre2P3A4BarYaXl5feTeTu5Zc5K52IF63MemLJN+1ZrKBnWGG6ChXgeSYc3mVc4aQynHqQkcEZlGPH8kLdO3can6GQm3v3+JKVKUvs1K3LJ+z794EGDTgvhojzly5f5uB56xYnSmVN2FCpgNmz+bGkJL7el/0yY2goB7WsXn2VV6BKSeHVel55Jff2nT/PGaMLFgDz53PgKxDtkklmmnbTvj0He4D/D+PjzfKywgQWDXg+Pj5wdnY26M3duXPHoBen5efnZ3R7FxcXlMk+6UcU2PLlfJK5f5/nRxWYNsU9MdEsn4BF7kqU4LT66TNUUKtz7lhfu8YB4fnneUqAqWJjgfLlTV9VvFEjTgIdMAAYPpz3t3dv/gOtOV27xnPyGjbkP8tjx3hx9gKvlK7t9mo/3JnBggWcxBMTA0yaZLaXFXmwaMBzc3NDkyZNEBISond/SEgIWrZsafQ5QUFBBtvv378fTZs2hasZ/+CUzsOD5wWFhQF9+xbihbLO6SrAxFyRf56ePDz377+86KhKZdj50H72+OsvIDAQ6N/ftPlnFy9yBmZ+2/PFFzwsSQR068a9vyVL9Ic6LenxY2DHDu4FVq0KfPcdD2P+8w8PmxaKRsNfc1mAN79KlAC++oq///JL/l0KKzDrFUEjtmzZQq6urrRu3To6d+4cjRs3jooXL05Xr14lIqKpU6fSkCFDMre/cuUKeXh40Pvvv0/nzp2jdevWkaurK/3www8m7U9KixVcgQrcZmQQaTQFzgoUhRcRQdSundGVfzJvLi58mzCBsyaNSU/nJXUmTCh4WzIyuIbmq6/qal/XrUs0fToXMM+e4FJQqalEkZFEq1fzYh3afdWvT/TZZ6bVAzXZ++/zi0+ebMYXZQsWcJ1Qoc9S53EVkeUHHz777DMsXLgQt27dQr169bB06VK0adMGADB06FBcvXoVoaGhmduHhYXh/fffx9mzZ1G+fHlMmTIFI0eONGlf8fHx8Pb2hkajket5+XDmDDBiBLB5M1esEI6FCNi3D3j/fSAqKuftnJy4RzZnDjBqFODmpnvsr784CSQ0lEt9Fdbjx9zr27UL+Pln4MEDvj8gAKhfn+fr+fryHDtfX06ocnPjYdqMDM6H0mi4qktcHH+9fh04e5ZvSUn8flq35mSUl1/m1zS7JUuAbduAYcOAt9+2wA5EdpY6j1sl4FmTBLyCad+eT3RNmwKHDnEJJuF40tI42WPaNA4wOV1WVamASpU4U7dPH/556lQugxUXZ/6k24wMHi796y/g9Gm+XbvG+3r0KO/nq9UcGP39gTp1+Ppz06Z8DTGHSmkO5/Jlzo/J75ByUSQBz0QS8Arm2jWgcWM+Sfbvz9dATL7Iv3gxV/GdMIHzx4XNPX7MwWzBAk6g1SYaZuXkxIGoeXOuXhYczD27L7+0bluTk7n3du8etzUtjQOuszP3Rv39ubpLgZNOHMDWrTyFIyiIpwoV5fdqCkudx6V4tAAAVK4MbN/OyQ9bt3JShMnCwjhj4MwZi7VP5E+JEpz6f/kyB7LcElv+/puzK//9l0+41qZWc2+zcWMeUn3+eU60adaM5/J5e9s4AFgh+zgwkD+AhIXx/5+wDAl4IlO7djwZFuCi+t9/b+ITK1TgrzLp3+6UL8/DlJGR/PsF9BZeAKDf+xsxgq8Daq+3KR4RzxavVo1nyFtI5cq65YMmTOAeujA/CXhCz5tvAuPH8/fBwXkvFQNAF/CuX7dYu0ThPPccF0/+9VfduojGek3p6cCKFZy4tHixbgqaYt29yxcZo6MBHx+L7mrSJJ5ScfNmPkdYhMkk4AkDCxfyXKqgIM6oy1PFivxVenh2r1Mnnij+1VecFZm9twdw0EtI4BNw9eo8xFa0rvTnw9Wr/LV8+bzrrRWSuzuwbBl/v2wZT0oX5iUBTxhwduaT3K+/AqVLm/AEbcDTnhyEXXN25gz7K1f4Op+7u/GsTCLutA8YwNfTClWRx1FpZ+ub9Mmv8F56iYeeU1KAjz+2yi4VRQKeMKpECf1KSlu25LL+pXaM7MoVqbbiQIoXBz74gM/pb7xhPLFF27OLjOT5br1786riiqENeFaanKpSAXPn8v9f9hXbReFJwBN5mjWLi0wPHmw8vR2+vnx9o0QJnt8gHIqfH/D55zw37oUX+L7sPT7t7/3nn4HatXkhYSOLlxQ9Z8/yVytOjmvZknvWs2ZZbZeKIQFP5KltW66AsX07L/ticD1HpeIpCRoNnw2FQ6pblws///ab7teYPbElLY2D3+rVPMr36ae59PyLgogI/tqokVV3m3V1CWE+EvBEnjp04JJjKhWwdi1f9zHg6yuzZYuIjh2BkyeBjRtz/rWmp3Pq/JQpwLPPAt9+WwQXyyDi7lbDhlYPeFoHD3IRbGEeUmlFmGz1at06XitW8BIsomh7+pQzBj/+mKcoGBvSVqk4NjRsyNuaow6n4BywqlX52J47p6zBE6m0Imxu1CguOgzwIqPalZsBcFHEvn25ZESR+6ivXMWKcV3O6Ghe787JKefEltOnOcPw5ZdzL2AtTFOlim6Fdu10BVE4EvBEvnzwAffsiPjTf6bSpYFffuHVRs+ft1n7hGWUK8c9/LNngS5d+L6cElv27uUCz++8A9y5Y912mtXlyzw/wIbef5+/fv21QpKELEwCnsgXlQr43/94RYURI7I84OamK8R46JBN2iYsr1Yt4Kef+NpSvXp8n7HElowMzvwMCADmzcv24chRdO0KlCoFhIfbrAmtW3ON0aQkvn4uCkcCnsg37RpkWvfuAXv2APhvjUMJeEVfu3a8mvimTbyaQU6JLU+eADNmcCnKb75xoNHu2FiecJiUxN1VG1GpdL28Vats3uF0eBLwRKE8esRZnD17Atsy+vCdhw8ruBaVcjg5AYMG8SoL8+bxRPacKrbExfHyNw0bAgcOWL2p+XfwIH9t2tTmcwT69ePKZrduyUoKhSUBTxSKlxcPuaSnA699XAfbnftxVfkrV2zdNGElxYrx9IToaE5scnbOObHl3Dme9tCtG39vt7RRuUMH27YDfLVg9GgeQs66Qr3IPwl4olCcnHj5mSFDgPR0Ffqnf4vNGPjfGKdQkrJlebrKuXNA9+58X06JLfv38wl8xAhe/NWuEAG//87f20HAA4DJk7nod//+tm6JY5OAJwrN2RlYv/6/oAdnDME3+OzvFrZulrCRGjWAH3/kS7kNGvB92a/xpadzXFm3jhNbPv7Yjsqwnj3Ltb3c3Hg1Wjvg4iJ1HcxBAp4wC2dnYMMGYMxoAsEJo79ukbmYrFCm1q2B48eB777jQsg5JbY8fcrVRKpW5b8ho/VaremHH/hr586Ah4dt25LN48dc4k8ukReMBDxhNk5OwPIVKnzwAa8J262brVskbM3JiZcX+vdfrrvp6ZlzYsudO7xsUYMGXM/TZoYMAT75BBg50oaNMJSayh8KXn0VOHHC1q1xTBLwhFmpVMCHHwKnjj5GpVt/2ro5wk6o1cCECZzYMmYMD9HllNhy4QLw4ovcwTpzxvptRbVqXF7Gzj6xubpywg/A00FE/knAE+b3778oVd2HL/g/fowdO4CBA7kWo1C2MmW4TNb581yCDMg5seXAAeC554C33uKUfMH/RwCwc6cMaxaEBDxhftWqAZUqAU+e4P763QgO5us4nTsDDx/aunHCHjz7LF+LOnKEp7UAPPyZVVoan9Q3bOChvDlzgMRECzdswgT+Y7XT0jAvvMDTQGJjOWtT5I8EPGF+KhUwdCgAoMy2Ndi5k+frhYVx9TGZoie0Wrbk8qvbtvF135wSW5KSeKg8IIAzOy2S2PL338CSJfy3a/HIWjDFivFwL8CL8Yr8kYAnLOP11/kj++HDeKHKv/jjD6BiRa6iHxjIJzkhAA5yr74KXLzI8cbLy7C3B3BZsrt3eYizXj3g11/N3JAvvuCvffoAPj5mfnHz6dqVv9o0scdBScATllGhAtCpE3+/YQPq1weOHePhq7t3uRbjzp02baGwM2o1MG4crwM3bhwntRjL6AQ4OHbpolusttAeP+ZVjgHg7bfN8IKWo50Lf/SoHc1ddBAS8ITlDBvGXzdsANLSUL48D2t2785DVEeP2rR1wk6VKgUsXsyjAa+8wvdlD3zaItRhYbwY+bBhXNGuwLZs4aBXvbrdr2BbvToXejh7loc4hekk4AnL6dmT603FxWWOYZYowVU4vvwSWLDAts0T9q1qVeD773l1nmbN+L7sQ53aii3ffMO5UjNnAgkJBdiZdjhz+HC7L2mivUT+7LN231S7IwFPWI5azWeif//VK9Hk4gK8+abu5JWUBLz7roMvFiosJjCQRwO2b+fk35wSW5KTgblzObHl8885y9MkR44Af/3FE92Cg83admFfJOAJy+rcGahSJddNJk4EVq7klVj+/ts6zRKORaXi4c2oKF6A2Ns758SW+/e5KHXdusAvv5gwX83JCWjRgrtN5cpZovlmp9EAixbxB0VhOhVR0Zq+GB8fD29vb2g0Gnh5edm6OSKrGze4qGI2Fy4AvXrxyczdnYc7Bw2yfvOE43j0iKt/LVvGQc7YNAUnJ36sXTvO/mzUKJcXJOIuoru7ZRpsZgkJnM0KcBKYHSeVFoilzuPSwxOWl57OH88rVeIr7dnUqsWX+LTJLIMH8/xfk4ekhOKULAksXMjZmn378n05JbYcPgw0acIzZWJjc3hBlcphgh3ANUkDAvh7I/9SIgcS8ITlOTvzCSUjg8tlGOHtDezeDcyYwT8vWcLzje7ft2I7hcOpUoULoxw/ztf6gJwTW779lhM9pk8H4uMBXL7MF/0ePbJyq82jdm3+GhVl23Y4Egl4wjpmz+agt21bjqXenZx4XbRt24DixYF//rHbghfCzjRtyj25Xbt0PZ/s0tOBlBTODq5SBbgw+CPg//6PM6gckPZ9Xr1q02Y4FIsGvIcPH2LIkCHw9vaGt7c3hgwZgkd5fJoaOnQoVCqV3i1Q+9FNOK769XmsEuBK9Ll49VVORd+6lUdBtYrW1WZhbioVF6Q+fx5YtYrn8+WU2FLpYSRqHPsaAHAoaIpD/m1pc8Gio23aDIdi0YA3cOBAREZGYt++fdi3bx8iIyMxZMiQPJ/XpUsX3Lp1K/P2yy+/WLKZwlo+/JBTv3/7Lc+6SPXrc6FcrZ9+4pOZDHGKvLi6Au+8w4Fg8mReuFz/+h5hESbCCYQtGIC2k5qjTRvHW2NOm/91+7Zt2+FQyELOnTtHAOjYsWOZ94WHhxMAunDhQo7PCw4Opp49exZ4vxqNhgCQRqMp8GsICxo7lgggatqUKCPDpKckJRGVL89Pq1CB6MgRC7dRFCkxMUSDB/Pfj7MzURf8QgRQEtyoCq5k3g8QvfYa0dWrtm6xafbv5zbXq2frlpifpc7jFuvhhYeHw9vbGy1atMi8LzAwEN7e3jiaR02p0NBQlCtXDjVq1MDw4cNxJ5cZycnJyYiPj9e7CTs2YwaXW4mLyyVlTp9azfOpqlcHrl8H2rTh1bO1WXhC5KZiRa5/8PffQJuWafgUkwAAK/AuroIvhGmnNXz/Pf+dTZnCc93sWVAQD9+Ghdm6JY7DYgEvLi4O5YxM4ixXrhzi4uJyfF7Xrl2xefNmHDhwAIsXL8bx48fRoUMHJOeweui8efMyrxF6e3ujYsWKZnsPwgLKleN0zHPn9C/Q5aFBAz5hvfYan5wmT+Yszps3LdhWUaQ0bgz8PuAL1MNZPHIqhbmYYbBNejqQmsqTuqtU4YIIqanWb6spSpTgKT2lS9u6JY4j3wFv9uzZBkkl2W8n/hsMVxmpAURERu/X6t+/P7p374569eqhR48e2Lt3Ly5evIg9e/YY3X7atGnQaDSZt1gTew3Chtq354lE+eTpyQXt167lKVP79/OK2FKSTJhK9UpvoF8/eC79CPPXlELp0jkntjx6xJVMatbk+q+OmNgi9Lnk9wljxozBgAEDct2mSpUqOHXqFG4buZp69+5d+Pr6mrw/f39/VK5cGZcuXTL6uFqthlqtNvn1hB3JyOCy77Vr80qgJlCpePWW1q056bNpU4epBiXsgZ8fsHUrnIkwQgUMHMgT2D/9lAsdGKvYcu0a0Ls3DyEuWwY0b271Vhv16BHw0Uf84W/uXFu3xkGY9YpgFtqklT///DPzvmPHjuWZtJLdvXv3SK1W08aNG03aXpJWHMi8ebqr7ikp+X56cjJRYqLu5+vXicLCzNg+UXTExeX6cGwsUXAwkUqlS2DJftPe368f0ZUr1ml2bqKjuT3Fitm6JebncEkrtWvXRpcuXTB8+HAcO3YMx44dw/Dhw/HSSy+hZs2amdvVqlULO/9bCfTx48eYOHEiwsPDcfXqVYSGhqJHjx7w8fFB7969LdVUYSvDhwNlygBnzuRYgSU3bm6Ahwd/n5HBa6K1a8cJBzlc8hVK9PAhXwTu14+/N6JCBV62MSKCk6IA4xVbAF61oUYNLnqew8tZRUoKf3V1tV0bHI1F5+Ft3rwZ9evXR6dOndCpUyc899xz+Oabb/S2iYqKgua/dChnZ2ecPn0aPXv2RI0aNRAcHIwaNWogPDwcngW45iPsXJkywOrV/P28ecAffxT4pVJSOBuPiIeomjeXlRcE+A/inXd4strp07pPSDlo0AD4/Xdg717O1jQmPZ2HP5cu5Won//ufLvhYkzaL1Nvb+vt2WGbtL9oBGdJ0QMHBPDZTuTLRo0eFeqkdO4h8fPjlnJyIJk8mevLELK0UjmjdOt14ZHh4vp6amkr0xRf89+TkZHyYE+Bh0MqVibZtM3lqqVns28f7b9DAevu0Focb0hTCZMuX80fla9eA0aML9VK9e/OMhwEDeJhz4UL+1J5DzpMoys6f1y0Y9/HHuurSJnJxAd56iyu2fPABJ4dkX5EB4LAXG8urNrRowWXxrEE7u6tsWevsryiQgCdsz8sL2LSJL5ps2VLo9U7KluUK+rt2AeXL80lKpmcqTFISf+p58oRr1E2eXOCXKlGCa59fvsxrxKpUHAyz0hZB+OcfTjh+9VXe3pK0RaPzWF9ZZCEBT9iHli25p3fkCC9VbQYvv8y9vZ07dUudpaUBoaFmeXlhz6ZMAU6d4jkr33xjfLJdPpUvz4sTnzzJU0mBnBNbdu3iSeHvvw88eGD89a5d4yYWlAS8/JOAJ+zH6NE8JmRG3t584tFaupRPVgMG8ALsoogaMIDn3H39NX81o/r1uejBr7/q/ray19JIS+PbihUckJYs0c8cfvyYF6Vt3BjYt69g7fj8c05wfv31gj1fiSTgCft06hSPH5m5rtOjR/ypfOtWPlktXmy/paNEIQQF8XLonTtbbBedOvGf6Vdf8TC6sQJS6elAQgJPYahenWt1EvFE94cPeSi0V6+CXfdzdeXBEBmuN52KqGgVzImPj4e3tzc0Gg28vLxs3RxREE+fAlWr8lX5sWM579uMIiM5U117kqlbl9dPa9vWrLsR1nb5MkeXhg2tvuvERB49mDuXP0AZq9iiUnGwa9KEe2baHp+TE18nPHrUbKP5Ds9S53Hp4Qn7U6yYbn7e8uU8LmRGDRvylL916wAfH86RadeOP3ULB6XRAD16AM8/zxPprKx4cV48PTqaF1A3ltii7VpERuqv9JGRwQGzQwfTVy//6isurffrr+ZovXJIwBP2qVcvTiUHuJf33XdmfXknJ+CNN4CoKGDkSK7a0r27WXchrCUpCejTh6chlCzJtVltxM+Pi5ufOaNbwDj7VAbtigzZ77t/n4OeKcXQt23jQuqnT5un3UohAU/Yr+nTgTFj+PvXX7fIx9nSpbkzefUqUKeO7v65c4Gff5YK+XYvNRXo3597dcWL6+ai2FidOlyt5bffdPE3l0ViAHDQi4kBXnwRyG1Zz4QE4MAB/l4+pOWPBDxhv1Qqvn732muc8vbKKzzRyQL8/XXfnzkDzJzJI2QvvMBDUMIOpadzYtPu3bxK8E8/8fIZdqRjR57GsHEjJ7ZkH+bMLj2dh9h79OCOqzF79nAps2ef1c9AFnmTgCfsm5MTV/Xt3Jmvz9SoYfFdVqrE85TVav4k3bgxF6aWaQx2hAgYNQr49luOIj/8oJscZ2ecnIBBg7h0bNZrdzlJT+drzNrFjrPTliPu1y/vXqPQJwFP2D83Ny5R/9NPnM5mYV5eXMv6wgU+6RBxzK1RgytuJCZavAkiL6mpfLHLyYmr9Lz0kq1blKuNG/kSoykBD+Dtdu0CRozQH1a/eVM3sh8cnPtrHD3K1w+7dClYm4siCXjCMRQvzl0ugM8As2cDYWEW3WWVKtyBOHaMC8E8ecJJo7L0kB1wc+PMjd9+42t4dm7Bgvw/h4gziadP1923ahX3+lq3znuw46uvuJToH3/wtUEhAU84ok2beP28rl255IWFtWjBJ41t2/iSYunSfD8Rly1LS7N4EwTAF7VWrtR1k1xd7XYYM7v/+z9eZy/rKmcuLqZVPJs/n+f4ATxPr04dYNy43J+TmMiT3EeN4s7vhg18f1AQMHWq/rZ37/KhPHjQ1HfjwMy69oIdkOWBFODpU6Lu3XltFDc3oi1bbNKM3bu5CTVqEH33HVF6uk2aoQzx8UTt2/MBnzTJ1q0psIwMomvXiHbtIvrwQ6LevYkqVtRfasjFxfgyRBs36l4jr7+1deuImjbl73/6iahKFX7eihVElSrpL2O0YgXRM8/Y19+vLA8khJa7O7BjB5ekT0nhuokffWT1OQQJCZyIcPEiX+tr2JCvu8hUBjO7fp17cgcPchepWzdbt6jAVCpOinr5ZV5yaMcOHm7UaIDDh3nIPDgYeO45w5XMhw3jJGWVKu+e4bp1PDEd4Gt4jx/zzI3+/fk6YNa1lr/9Fhg40Cz1te2fWcOnHZAenoKkpRGNH6/7CDxoEPf+rCg+nj+pe3npmtGsGdGPP1p3MdAiKzycyM+PD6yPD9Hx47ZukdWkphKdOUO0aRNRYCDRc88RJSTk/bwLF7iXGBenu2/0aKLXXuPvu3YlGjGCv79yhQ9tZCT/fOsW0SuvcI9w/Xqzvp18sdR5XAKecHxr1/KK1k5ORKGhNmnC/ftE06YReXjwCaRhQwl4hbZhAw9ZA0T16vHZWYH++Ue34vrhw3lvP2mSbpF37c3JiUitJnrwgANomTJEKSlEH39MVLeu4WsEBxfNgKeETqwo6t5+m9dYsWEF6NKlgU8+4VqK06ZxTo12jlRCAvDFF5LdmS83bnDNt5QULjN39CgQEGDrVlldcjIPcWZk8Ly7Vq1y3z4tjVdEWryYCyZobydPApUrczmyXr04/2ffPh7O1A59KoJZw6cdkB6eICKi8+eJPv3ULq7Ef/opf+IuX55o8WLThqUEEW3eTPR//2cXv0Nb0fbWypYlun077+137uRO8aNHho9Nn84jD0REAwcSNWjASTLXrhluKz08IRxFcjJ/HJ40iYsN3r1r0+b4+ADPPMPJAhMm8Cft6dOlcouBbduAQ4d0Pw8cyMlIisimMLRrl24Fj7VrefH2vKxbx+XwvL0NH+vTh3t7//zDlV9OnuT5fJUq6W/XqxdXGFq+XH8OYFEg6+GJokc7Y/fdd3nspnx5YP16XrHTRpKTefrg/PnAv//yfS4unN25caPCS0Q9fgy89x7PlK5QgVdVLVXK1q2yqXPnuNiBRsNz7rTz8JRC1sMTwlQqFfDWW8Bff3F13Zs3uRbnsGG8zLQNqNW8TtqFCzxZvW1bvt6Smqof7EwtPVVkhIVxsdKvvuIDERxslfJx9u78ea7s06oVsHChrVtTdEgPTxRtiYk8LrNiBff8/Px4wtOzz9q6ZYiI4LVutRXvL1zguPzOOxwcfXxs2z6Lun+fh5zXr+efK1TgLrAsO5/p0CGuqlKk/w5yYKnzuAQ8oQxHj3IUKVOGzyR2eF1owgRgyRL+3s2NV0N6+21ejb1IDXnGxfHMau211ZEjuVp3yZI2bZat3b/Po7uVK9u6JbYnQ5pCFEbLltyl+v57XbDTaHgugZ0sf/DJJ1zzsEkTzsbfsoVXwK5Rg4e17KSZhefnxz25unWBI0d4BV6FB7uYGB6+bNMGuHLF1q0puiTgCeVwd9dfDXvePGDGDKB6dY40Nr6AplbzJawTJ4C//+aOj6cnJ7l8+mnei4faratX+fppbKzuvi++4HTBli1t1ix7oT0MFy7wn6DM17QcCXhCuQIDgapVgVu3+ITctCnw8892UQyzcWPu+Ny8yQmnH36oWx0pI4N7A1On8ursduv+fR6nrVmTP1B88IHusZIledxW4b79ltc1vnEDqF2bR95r17Z1q4ows87qswMy8VzkS1IS0aJFRN7eumKYDRsS7dhh65bl6OBB/Sr6DRoQLVxIFBtr65b95+ZNoqlT9QuMduhAdOKErVtmNxITiYYP1x2ebt2IHj60davsh0w8F8IS1GruhVy6xFmDJUrw7FztstJ2KDCQ52j36sUV9U+eBCZP5gnEHTtyL8FmpkzhlXPnzwfi4zk5Ze9eXqi1SRMbNsy+zJnDo7oqFY+q796t+MuYViEBTwgAKFuWM0OuXgVmzuQTt9axY3yGspPSKO7uvDLSzp2c8Lh2LVfMIOIKGVkzOmNigNu3LdgYIv1rn25unHETFAT8+CMnCnXpUsTSTAtvxgweygwJAT7+GHB2tnWLlEGmJQiRl4EDge++47NSjx6cTfLii3Y3teHqVe4pvPuuLr68/Tbw5Zd8za93b75VqWKGnd28ySVi1q3jSsU9e/L9d+8CUVF5VzlWkIwMPlS//MJJwtrfDZF8DsiJzMMzkQQ8YXbbtgErV+rXeaxShVfT7NePM0zsVPfufKLNqlEjHg7t2hVo1iwfL5aYyCX2tWfv9HS+v08f4IcfzNXkIoOI62HOnAmcPs337djBHzpE7iTgmUgCnrCYc+d4/HDjRp7DBwD163PtRzsWE8Ojizt3cszWjkDWqQOcPavb7tGjHK4jpaZycN+3D3j6VHf/889zCbe+fYHixS33BhxMWhqwfTuPkP/zD9/n7c1Jqu++K8mpppCAZyIJeMLinjzRjU+1aMFJLwAvfPfcczyp+oUXOIPE39+2bc3m7l3gp5+APXuAevX40iTANbbLlAGqVSV0aRiHTv6n0XJ2J3h4/PfE5s2B48e5Z9u3L/DGG7qaaCLT7dt8+TI6mn8uXpzrYk+YwGsmCtM4ZMCbO3cu9uzZg8jISLi5ueHRo0d5PoeIMGfOHHz++ed4+PAhWrRogVWrVqFu3bom7VMCnrCZn3/ma3xZ1a3Lga9ZM6B9e14nyJ4kJgKnTuHYpn/R8rNBoCx5bC4uhMaNVWjdGuhbPRItWgBo0EAuPGWRmsq95IYN+WciPkS3bgFjxgCjRyuzFmZhOWRpsZSUFPTt2xejRo0y+TkLFy7EkiVLsHLlShw/fhx+fn548cUXkZCQYMGWCmEGHTty+v2UKZyCr1Lx2XD5cmDIEP2pDtHRvEJAWBhw/brlq7wkJfHUi9RU3X3TpnEpl5YtEfjZ67iDcvgOAzDUbTMquN9DWpoKf/3FOSlHEhvyWV2lQlwc8M03XNFfexlPSZKSuIP/9tvcgW/VSlf2TaUCtm4Frl0DZs2SYGdvLFqsaM5/4yUbNmwwaXsiwrJlyzBjxgy88sorAICNGzfC19cX3377LUaMGGGppgpReMWKcdDr2JF/vn+f5wkcPsy1wpo31237yy/cBdBSq4GAAKBaNT6LTpigGzKMiQEuX+aLP05O+jci3k67pM6JE5zrfv8+n3VjYvirdm5CZCR3QQDej3YFiebN4dO+PQa0a4cB9esDzs64do2b/scfnJSqtX8/l0ADAA8PjoONG+tuderw/MCigogv3/7+Ox/agwf165r6+nJZMO00Q6mUYr/sqjpfdHQ04uLi0CnLQp1qtRpt27bF0aNHjQa85ORkJGcpPhcfH2+VtgqRpzJl+HpX376Gj5UqxVHk8mUOSMnJfNa8cIEff+MN3bY7dgDvv5/zfg4f1k0DOHo052WqPTy4Z6kNeEOGcDKKr6/RzStX5tvgwYYvExTEE96fPOFdZp3svmcP0K0bf3/qFL+lGjX4lnlN0E4RcYf79Gluu/a93b+vv90zz3Cma69evJqFw9Y5VRi7+jXFxcUBAHyz/QP6+vri2rVrRp8zb968zJ6kEA5j4EC+AZzWFxPDZfIvX+bMkqpVddsWL87dhrQ0HvrU3rTjiVnHFZ97joNlqVJcekV7q1yZsyayXn8r4Krir77Kt/R04OJFzkTMess6S2PbNp5YrVWxIpfWrFaNg8aIEUC5crrD4Oxs+UuERMCDBxzYrl8HOnXS9UgHD+b6ltl5enIHvVMn/pzy3+iucDD5DnizZ8/OM8AcP34cTZs2LXCjVNn+kojI4D6tadOmYfz48Zk/x8fHo2LFigXetxBW5+LCAa5qVc7uzG74cL6Zol07vlmBszPH4dq1gUGD+L6MDP35+OXLc28wKoqDTGws3377jR/P2nv84AO+3PnMM9w59vLidH7tbcoULogDAH/+ycOMTk4ceLRf09N5TbkhQzhIAVwzYOdO/hyhDXJJSbr9RkfrJuM/+yz/OmrW5CzWZs149kXjxjKdoCjId8AbM2YMBgwYkOs2VQpYysHPzw8A9/T8s6Rz37lzx6DXp6VWq6HWlpEXQthU9uIzo0bxDeBhwagovkVHc6W2rKs13bjBQ6SXLvEtu/fe032/ZQuwbFnO7XjxRV3AO3OGe5rZlS3LC60/eaK7b+JEHhGWU0rRlO+A5+PjAx8LpR4FBATAz88PISEhaNSoEQDO9AwLC8OCBQsssk8hhHWUKcPrvuW0BN6aNdzLu3kTePiQ5/bHx/NXjUZ/HludOlxFRju6qy3p6ezMgS5rb+yllzgvp3RpHlKtUIEDrbu7YRu0QVIUTRa9hhcTE4MHDx4gJiYG6enpiIyMBAA8++yzKPFfVlmtWrUwb9489O7dGyqVCuPGjcMnn3yC6tWro3r16vjkk0/g4eGBgdrrHUKIIsnDg9firV49723zM8obFMQ3ISwa8GbOnImNGzdm/qzttR08eBDt/rvOEBUVBY22TBOAyZMn4+nTp3jnnXcyJ57v378fnvLRSwghRCFIaTEhhBB2xSErrQghhBD2QgKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEsGvDmzp2Lli1bwsPDAyVLljTpOUOHDoVKpdK7BQYGWrKZQgghFMCiAS8lJQV9+/bFqFGj8vW8Ll264NatW5m3X375xUItFEIIoRQulnzxOXPmAAA2bNiQr+ep1Wr4+flZoEVCCCGUyi6v4YWGhqJcuXKoUaMGhg8fjjt37uS4bXJyMuLj4/VuQgghRHZ2F/C6du2KzZs348CBA1i8eDGOHz+ODh06IDk52ej28+bNg7e3d+atYsWKVm6xEEIIR5DvgDd79myDpJLstxMnThS4Qf3790f37t1Rr1499OjRA3v37sXFixexZ88eo9tPmzYNGo0m8xYbG1vgfQshhCi68n0Nb8yYMRgwYECu21SpUqWg7THg7++PypUr49KlS0YfV6vVUKvVZtufEEKIoinfAc/Hxwc+Pj6WaItR9+/fR2xsLPz9/a22TyGEEEWPRa/hxcTEIDIyEjExMUhPT0dkZCQiIyPx+PHjzG1q1aqFnTt3AgAeP36MiRMnIjw8HFevXkVoaCh69OgBHx8f9O7d25JNFUIIUcRZdFrCzJkzsXHjxsyfGzVqBAA4ePAg2rVrBwCIioqCRqMBADg7O+P06dP4+uuv8ejRI/j7+6N9+/bYunUrPD09LdlUIYQQRZyKiMjWjTCn+Ph4eHt7Q6PRwMvLy9bNEUIIkU+WOo/b3bQEIYQQwhIk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRbBYwLt69SrefPNNBAQEoFixYqhWrRpmzZqFlJSUXJ9HRJg9ezbKly+PYsWKoV27djh79qylmimEEEIhLBbwLly4gIyMDKxduxZnz57F0qVLsWbNGkyfPj3X5y1cuBBLlizBypUrcfz4cfj5+eHFF19EQkKCpZoqhBBCAVRERNba2aefforVq1fjypUrRh8nIpQvXx7jxo3DlClTAADJycnw9fXFggULMGLECIPnJCcnIzk5OfNnjUaDSpUqITY2Fl5eXpZ5I0IIISwmPj4eFStWxKNHj+Dt7W2213Ux2yuZQKPRoHTp0jk+Hh0djbi4OHTq1CnzPrVajbZt2+Lo0aNGA968efMwZ84cg/srVqxonkYLIYSwifv37ztmwLt8+TJWrFiBxYsX57hNXFwcAMDX11fvfl9fX1y7ds3oc6ZNm4bx48dn/vzo0SNUrlwZMTExZj1Q1qD9VONovVNpt3VJu63PUdvuqO3WjtTl1kEqiHwHvNmzZxvtUWV1/PhxNG3aNPPnmzdvokuXLujbty/eeuutPPehUqn0fiYig/u01Go11Gq1wf3e3t4O9QvOysvLyyHbLu22Lmm39Tlq2x213U5O5k0zyXfAGzNmDAYMGJDrNlWqVMn8/ubNm2jfvj2CgoLw+eef5/o8Pz8/ANzT8/f3z7z/zp07Br0+IYQQIj/yHfB8fHzg4+Nj0rY3btxA+/bt0aRJE6xfvz7PaB0QEAA/Pz+EhISgUaNGAICUlBSEhYVhwYIF+W2qEEIIkcli0xJu3ryJdu3aoWLFili0aBHu3r2LuLi4zOt0WrVq1cLOnTsB8FDmuHHj8Mknn2Dnzp04c+YMhg4dCg8PDwwcONCk/arVasyaNcvoMKe9c9S2S7utS9ptfY7admm3PotNS9iwYQOGDRtm9LGsu1SpVFi/fj2GDh2a+dicOXOwdu1aPHz4EC1atMCqVatQr149SzRTCCGEQlh1Hp4QQghhK1JLUwghhCJIwBNCCKEIEvCEEEIoggQ8IYQQiuDwAc+RlyGaO3cuWrZsCQ8PD5QsWdKk5wwdOhQqlUrvFhgYaNmGZlOQdtvD8QaAhw8fYsiQIfD29oa3tzeGDBmCR48e5focWxzzzz77DAEBAXB3d0eTJk1w+PDhXLcPCwtDkyZN4O7ujqpVq2LNmjUWbV9O8tPu0NBQg+OqUqlw4cIFK7YYOHToEHr06IHy5ctDpVLhxx9/zPM59nC889tuezne8+bNQ7NmzeDp6Yly5cqhV69eiIqKyvN55jjmDh/wHHkZopSUFPTt2xejRo3K1/O6dOmCW7duZd5++eUXC7XQuIK02x6ONwAMHDgQkZGR2LdvH/bt24fIyEgMGTIkz+dZ85hv3boV48aNw4wZMxAREYHWrVuja9euiImJMbp9dHQ0unXrhtatWyMiIgLTp0/H2LFjsX37dou10Rzt1oqKitI7ttWrV7dSi1liYiIaNGiAlStXmrS9vRzv/LZby9bHOywsDKNHj8axY8cQEhKCtLQ0dOrUCYmJiTk+x2zHnIqghQsXUkBAQI6PZ2RkkJ+fH82fPz/zvqSkJPL29qY1a9ZYo4l61q9fT97e3iZtGxwcTD179rRoe0xlarvt5XifO3eOANCxY8cy7wsPDycAdOHChRyfZ+1j3rx5cxo5cqTefbVq1aKpU6ca3X7y5MlUq1YtvftGjBhBgYGBFmujMflt98GDBwkAPXz40AqtMw0A2rlzZ67b2MvxzsqUdtvj8SYiunPnDgGgsLCwHLcx1zF3+B6eMYVdhsjehYaGoly5cqhRowaGDx+OO3fu2LpJubKX4x0eHg5vb2+0aNEi877AwEB4e3vn2Q5rHfOUlBT8/fffescKADp16pRjG8PDww2279y5M06cOIHU1FSLtDO7grRbq1GjRvD390fHjh1x8OBBSzbTLOzheBeGvR1vjUYDALmes811zItcwNMuQzRy5Mgct8ltGaLspc/sTdeuXbF582YcOHAAixcvxvHjx9GhQwe9RXDtjb0c77i4OJQrV87g/nLlyuXaDmse83v37iE9PT1fxyouLs7o9mlpabh3757Z22hMQdrt7++Pzz//HNu3b8eOHTtQs2ZNdOzYEYcOHbJGkwvMHo53Qdjj8SYijB8/Hq1atcq1mpa5jrndBrzZs2cbvcCa9XbixAm951hyGSJLtjs/+vfvj+7du6NevXro0aMH9u7di4sXL2LPnj123W7AMscbyF/bje0vr3ZY6pjnJr/Hytj2xu63tPy0u2bNmhg+fDgaN26MoKAgfPbZZ+jevTsWLVpkjaYWir0c7/ywx+M9ZswYnDp1Ct99912e25rjmFt1xfP8cNRliPLb7sLy9/dH5cqVcenSpUK9jiXbbelln0xt+6lTp3D79m2Dx+7evZuvdpjrmBvj4+MDZ2dng15RbsfKz8/P6PYuLi4oU6aM2dtoTEHabUxgYCA2bdpk7uaZlT0cb3Ox5fF+9913sXv3bhw6dAgVKlTIdVtzHXO7DXiOugxRftptDvfv30dsbKxeICkIS7bb0ss+mdr2oKAgaDQa/PXXX2jevDkA4M8//4RGo0HLli1N3p+5jrkxbm5uaNKkCUJCQtC7d+/M+0NCQtCzZ0+jzwkKCsJPP/2kd9/+/fvRtGlTuLq6mr2NxhSk3cZERERY5Liakz0cb3OxxfEmIrz77rvYuXMnQkNDERAQkOdzzHbM85XiYodu3LhBzz77LHXo0IGuX79Ot27dyrxlVbNmTdqxY0fmz/Pnzydvb2/asWMHnT59ml577TXy9/en+Ph4q7X92rVrFBERQXPmzKESJUpQREQERUREUEJCgtF2JyQk0IQJE+jo0aMUHR1NBw8epKCgIHrmmWfsut1E9nG8iYi6dOlCzz33HIWHh1N4eDjVr1+fXnrpJb1tbH3Mt2zZQq6urrRu3To6d+4cjRs3jooXL05Xr14lIqKpU6fSkCFDMre/cuUKeXh40Pvvv0/nzp2jdevWkaurK/3www8WaZ+52r106VLauXMnXbx4kc6cOUNTp04lALR9+3artjshISHzbxgALVmyhCIiIujatWtG220vxzu/7baX4z1q1Cjy9vam0NBQvfP1kydPMrex1DF3+IC3fv16AmD0lhUAWr9+febPGRkZNGvWLPLz8yO1Wk1t2rSh06dPW7XtwcHBRtt98OBBo+1+8uQJderUicqWLUuurq5UqVIlCg4OppiYGLtuN5F9HG8iovv379OgQYPI09OTPD09adCgQQZp2vZwzFetWkWVK1cmNzc3aty4sV7KdnBwMLVt21Zv+9DQUGrUqBG5ublRlSpVaPXq1RZtX07y0+4FCxZQtWrVyN3dnUqVKkWtWrWiPXv2WL3N2nT97Lfg4GCj7Sayj+Od33bby/HO6Xyd9XxhqWMuywMJIYRQBLvN0hRCCCHMSQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhEk4AkhhFAECXhCCCEUQQKeEEIIRZCAJ4QQQhH+H1YPugUV9tedAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGiCAYAAACcbHM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABne0lEQVR4nO3dd3hTZfsH8G+6aaFllC6BsvfeoMjSyhQQEQSxOFCQIaIiiDJeZYuTqSJDRBABXxTkB75AWQUBWxkVUCi0QmuZaSl05v79cZumadI2bXOyzv25rnO1OTnJeXIo586z7kdDRAQhhBDCxbnZuwBCCCGELUjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQqKBrx58+ahXbt2qFChAoKCgjBw4ECcP3++2NdFRUWhTZs28PHxQe3atbFixQoliymEEEIFFA14UVFRGDduHI4ePYo9e/YgJycHERERSE9PL/Q18fHx6NOnD7p06YKYmBi8/fbbmDhxIrZs2aJkUYUQQrg4jS2TR1+/fh1BQUGIiorCww8/bPaYt956C9u3b8cff/yRt2/MmDH4/fffER0dbauiCiGEcDEetjyZVqsFAFSuXLnQY6KjoxEREWG077HHHsOqVauQnZ0NT09Po+cyMzORmZmZ91in0+HWrVuoUqUKNBqNFUsvhBDCFogIaWlpCAsLg5ub9RoibRbwiAiTJ0/GQw89hKZNmxZ6XHJyMoKDg432BQcHIycnBzdu3EBoaKjRc/PmzcPs2bMVKbMQQgj7SUxMRLVq1az2fjYLeOPHj8epU6dw6NChYo8tWDPTt7qaq7FNmzYNkydPznus1WpRo0YNJCYmwt/fv4ylFkIIYWupqamoXr06KlSoYNX3tUnAmzBhArZv344DBw4UG61DQkKQnJxstC8lJQUeHh6oUqWKyfHe3t7w9vY22e/v7y8BTwghnJi1u6UUHaVJRBg/fjy2bt2KvXv3olatWsW+plOnTtizZ4/Rvt27d6Nt27Ym/XdCCCGEpRQNeOPGjcP69euxYcMGVKhQAcnJyUhOTsb9+/fzjpk2bRqeffbZvMdjxozBlStXMHnyZPzxxx/46quvsGrVKrzxxhtKFlUIIYSLUzTgLV++HFqtFt26dUNoaGjetmnTprxjkpKSkJCQkPe4Vq1a2LlzJ/bv34+WLVvivffew6efforBgwcrWVQhhBAuzqbz8GwhNTUVAQEB0Gq10ocnhBBOSKn7uOTSFEIIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqoGjAO3DgAPr374+wsDBoNBr88MMPRR6/f/9+aDQak+3cuXNKFlMIIYQKeCj55unp6WjRogWee+45DB482OLXnT9/Hv7+/nmPq1atqkTxhBBCqIiiAa93797o3bt3iV8XFBSEihUrWr9AQgghVMsh+/BatWqF0NBQ9OzZE/v27Svy2MzMTKSmphptQgghREEOFfBCQ0Px+eefY8uWLdi6dSsaNGiAnj174sCBA4W+Zt68eQgICMjbqlevbsMSCyGEcBYaIiKbnEijwbZt2zBw4MASva5///7QaDTYvn272eczMzORmZmZ9zg1NRXVq1eHVqs16gcUQgjhHFJTUxEQEGD1+7hD1fDM6dixI/78889Cn/f29oa/v7/RJoQQQhTk8AEvJiYGoaGh9i6GEEIIJ6foKM27d+/ir7/+ynscHx+P2NhYVK5cGTVq1MC0adNw9epVrFu3DgDw8ccfo2bNmmjSpAmysrKwfv16bNmyBVu2bFGymEIIIVRA0YB34sQJdO/ePe/x5MmTAQCRkZFYs2YNkpKSkJCQkPd8VlYW3njjDVy9ehXlypVDkyZNsGPHDvTp00fJYgohhFABmw1asRWlOjuFEELYhmoHrQghhBDWIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoeSr75gQMHsGjRIpw8eRJJSUnYtm0bBg4cWORroqKiMHnyZJw9exZhYWGYMmUKxowZo2QxhY1lZgJXrwL//AMkJxu2mzeB+/eBUaOALl342OhoYNIkICcH8PQ03UaPBgYM4GP/+Qf45hugcmXjLSwMCAgANBp7fWIhhCNQNOClp6ejRYsWeO655zB48OBij4+Pj0efPn0wevRorF+/HocPH8Yrr7yCqlWrWvR64ThycoCLF4Fz54A//gD69QOaNuXnfvwRGDKk8Ne2b28IePfuAb/+Wvixjz5q+P3PP4HXXzd/XIUKwKxZwOTJ/Pj2bWDnTiA8HGjUCKhSxeKPJoRwUooGvN69e6N3794WH79ixQrUqFEDH3/8MQCgUaNGOHHiBD744AMJeA7uzh3gl1+Aw4d5i40FsrMNz5cvbwh4ISGAjw8QGsq/h4QAwcFAYCDg68sBT69FC2D7dsDDg9+v4Nahg+HYgABg+HDg1i3DdvMmB7e0NKBcOcOxZ88CzzxjeFy1KtC4MQe/xo05kDZsqMSVcjxHjvAXjEcfBXbtsndphFCOogGvpKKjoxEREWG077HHHsOqVauQnZ0NT09Pk9dkZmYiMzMz73Fqaqri5RTA9esccMLC+PGpU6a1Nl9fDhqNGgF16xr2P/gg19wsaWIMDAT697esTM2acZNmQffuAQkJxrU4d3ege3euhSYk8OeJiuINAJYuNQS8S5eAVauAdu2Atm2BBx6wcvPo9evAlSvAtWtcsL59Dc898QRw+TJ/CP12/z5/A2jQwLj6+/TTwI0bQFAQf4MICuItLAyoXx+oVctswb/6CpgwAfjyS74WNWpY8bMJ4UAcKuAlJycjODjYaF9wcDBycnJw48YNhIaGmrxm3rx5mD17tq2KqGqXLwObNwNbtvB99tVXgY8+4ufatQPatOEa14MPAp06cXOhm5lhUbbuS9MH3vw6dQL27uXf7941NL3GxfHPNm0Mx0ZFAXPnGh6HhBiCX8eO/Hn9/EpQoC++4Crw2bO83bhheK5FC+OAd+YMt9Wak5Zm/Pj0aX4/cwIDObDqrV4NeHkhvXknfPddLRw/rkFyMrBmDTBjBl+frl2B+fMNL7l+nWPn7t38ZUEIZ+NQAQ8ANAXuhkRkdr/etGnTMFnfMQOu4VWvXl25AqrMnTvAxo18Izx2zPi5hATD7+XKASdO2LJk1lO+PAevtm3NP1+3LvD88/z5zp7lATY//sgbAPzwg2HgzM2bPJjG3x98gQ4f5kgxcaLhDT/6iKNqfmFhXHVs3Nh4/7Jl3CHq68ubnx+3B+fmmn5zWL6ca4opKTyCJyWFt4QErvHl9/77wKVL2ITn0MBjAhq8/i6eqfgMJiwbgHcn6zBihB8WLQLmzTOcZtMmfpuuXS29skI4FocKeCEhIUhOTjbal5KSAg8PD1QpZFSBt7c3vL29bVE81dHpuMKhD2xubkC3btx02b8/35/VoEsX40E0sbHA8eO8RUcbnsO9e/j4lUTM3VwPrT1Oo1v2bnTDfnTzPQ6/V17hZkgAePZZ7lhs0oS3hg0LryI+8kjpClrQv18c837v2xc4fhyrjr2IZ3LWADt2oBd24S6S8L/mb2PosS/w2mvAoUOGt9ywgftIzdXahXAGDhXwOnXqhB/1X5v/tXv3brRt29Zs/52wLiLg4EG+wWk0fGN74glgzx6u4YwYYVpRUBtfX6BzZ96MTJ0KfPIJ/sxYDR0a4ER2C5xAC3yAN+GdmY1uvYA+j/M0inJTp9q+4PlrgxoN8OmnOH8e+LUpYet2H+DPOvA4dgxDf9yJrzzHYENVHsTyzbpcdBnTHPEtByE6+n0sX6oD4IYffgC+/hpITwcyMoC1a7kJWwiHRgpKS0ujmJgYiomJIQD04YcfUkxMDF25coWIiKZOnUojR47MO/7SpUvk6+tLr732GsXFxdGqVavI09OTvv/+e4vPqdVqCQBptVqrfx5XpdMR/fgjUevWRADRnj2G5+7f5+dFPunpRN98Q3T3rmHfvHl88cLDKXHUO7T+zVh6cVQWhYfzboCoYkWi7GzDS+LiiO7ds3np87z5JpfL3d2wubnpyNtbR7duEa1fT1TFP5Oy4EHv421qgtNEDzxA9MYblHvit7w/jJdeIlqyxH6fQ7gepe7jiga8ffv2EQCTLTIykoiIIiMjqWvXrkav2b9/P7Vq1Yq8vLyoZs2atHz58hKdUwJeyRw/TtS1q+Gm7OdHtHKlvUvlgHQ6oqgoouefJ6pQgS/W118bnk9KIjp1yuTbgU7Hge2DD4jef994f3g4ka8v0eDBRN9+S5SaapuPQsSBNziYaPFiotOnjbf69Yk++4zjuZ+fjrbPPEGNK16leT6zDH8oAFGjRrRrzgnq2pW/AwhhLU4Z8OxBAp5lbt4kevllIo2G713e3kRTphBdv27vkpXAihVEYWFEubnG+/v3J3r2Weuc4/59oi+/JGrSxPhmX6uWccAroeRkrizlf0sfH6KBA7lmdeeOdYpfmG3biLy8zJ/n7beJWrbk34cPJ2rRgv9OrlzI4Bc++SSRtzd9ggn01GO3KS3t3xdmZipbaKEaEvAsJAGveDodUfPmhhvtM88Q/dvK7Fxu3uS79i+/GPbdusX7/u//rPP+QUGGC1W+PNfwoqJMg2wp6HREJ04QTZtGVLeucfAbM6bsxS9Kv35EffqYf+7kSS7DyZNEO3bw7w8/bHzMssX3qJxXNvXtS9S3L9GqVcRfMrp0Ifr+e6tcH6FeEvAsJAHPMj/9RNS4Md+7ndrjj3MQ0lu5kigkhCgnp3TvV7Bt7pFHiKpX5zZJBatdOh3R778TvfsuUcOGxjH8xAmioUM5+OTvA3QoaWncHq6P2E2aEH33nQQ+USpK3cc1RPnHKzu/1NRUBAQEQKvVwt/f397FcRinTwNJSUD+RDa5uZzYw6l99x3w0ks878zbmyeJtW4N/Oc/wMiRPCIxIYEzUI8cWfj7XL/Ok87WruXJdiEhvD8piSdt23iUMJFhYOWECcCSJfx7cDBPDXj2WZ4y4lAJsa9e5bmAS5YAWi3va9YMmDkTGDRI5jMIiyl2H7dq+HQAUsMztXkzUblyRAEBRH/9Ze/SWNm9ezyIZMsWooQE7mw6cYKrTPoBJEeOELVta/71d+5wtap8eUPt5MMPbVd+C8TGEr36KlHVqsbNns2aES1axN2MDuX2baKZM4n8/Q2F/egjOxdKOBNp0rSQBDwDnY5o/nzDPSciwskGpVgqMpLoiSeIFiwgatDA+LkbN3gYasG229xcoi++IKpSxXCB2rQh2rXLYedhZGXx9JEnn+RuSoDH7JS29VZxt24RzZhBVK0a94fqOej1FY5DAp6FJOAxnY7o9dcN9/KJEx34xlhWu3fzMNMGDYjee8+w/9QpDnbHjhkfn5PDgyv0F6dhQ64hOtGN+NYtHqS6YoVhX3Y2UY8ePNUgf3yxu/wdjzodj5Z55x3jeYxC5CMBz0IS8PieMm6cilqTcnKIQkP5w168yPtu3OBJbh068DDC4cONXzN5MjdjLl7MVScXsH274d/c25sHTR454mBxfO9eQyGrVeMqqxAFyKAVC8mgFV7mZfRoHtDw+efAiy/au0QO4OefgXr1DOsUpaUBqakulRA0LQ349lseNxIba9jfsiXw2mvAsGGAl5e9SvcvIs62PXkyL78BAJGRwMcfAxUr2q9cwqEodR+XgOeCMjJ4abQ+fTjwqVp6OvDmmxwFOnbkZKEeDpVC1uqIePmmFSt4pYuMDN5/5Agv++MQ7t/ndYgWL+YCP/AAf1Pr1cveJRMOQAKehSTgsfzD2lXr2DGeiqBfT+7VV4EFC3j6gkrcusXL70VH84pEgwfz2n6bN3PNr149Oxfw8GHguef436h+fV7/TxLFq55S93GZGOMi4uP5RqbT8WNVBzudDnjvPV6Z9c8/ufawZw83m6ko2AFA5crAW28B7dsDFy4AO3fyykSjRvGC6QMHcqXXbl97H3yQ218nTeJFFyXYCQVJwHMB2dk8GXn6dED1i7+npvJqrDNm8Mz6p5/mWfclWVfOxVy/DsyZw7//9RcHvB49OMj997/Aww/z9n//Z6fA5+vLi+Lmb29dvZqTCghhRRLwXMDcucDRo0BAALcOqZqnJ2f88Pbmm+aGDUClSvYulV299x6Qmcm/p6fzCu8//shNnC+9xJfq0CHuPuvQwXjAi12cPQuMGQMMHcrN0FlZdi6QcBUS8JxcXJzh2/uKFUDNmnYtjn398QfftV99lfuGRo2yd4ns7q+/gGXLuLKrp+/SbNgQWLkSuHSJWxTLleNgV6WKPUqaT4MGPIoTAD79lKujN27Yt0zCJUjAc2JEwNix3KTZvz9/IVYdIq7C/Oc/3El14AAHug8/lJskgGnTTPtz9QFPLyyMWxQvX+ZRndWrG56bPBn45hvjgKk4Dw/Oa7p9OzdbHD7MS8xfvGi9c6xcyX27+k5vvccf52kSwjVZdVafA1DTxPNt2wzrqDnl8j5llZNDNHYsXwSNhpNOVqpkWMa7YkVes86hZl7bzrFjxrk3ASJPT17vzhIxMYbXNW7Mf282v5RnzxLVqMGFqFqV6OhR67yv0ktLiTJR6j4uNTwnpdMBU6fy76+/DtSoYd/y2FxGBldply/nKsynn/LyAc8+yzWE3FzO2D9yJC8RER9v7xLbFBH/XRRcDSM3lyvClqhVC3j/fe4CjYvjBQ86dQL27rV+eQvVuDF3ULduzaNvdu2yzvtWrszN3xs2GPZt3sz7e/a0zjmE47Fq+HQAaqrhHTnC66Sp4KMau32bc2QC/I38u+8Mz8XGmlZr3N25Grx4sQMvKGddP/5oehny19ZK4vZtrhX6+hre45FHiBITFSm6eWlpRB9/bN0q5qZNvIRIRgY/fvhhokmT+Pe33+a/sa5drXc+YTHJpWkhNQU8Vbp1i6h1a77rVqjAuRkLatqUmzjN3e1btuSg6MKys4nq1ydyczN/CXx8Shc3kpKIxo/nZtHQUNO1cm0qI4NXtiiLwpaW0tu3TwKenUiTphAATxz77TegalUeoNK9u+kxRSUPPX2am8emTuX0Vi5o7Vputiw4HkMvI4PXtS2pkBDgs8+A8+eBr7/m6XMAn2fePG5xtImsLE4Z07s3sGpV6d+nXDngiSd4VM6333KmlzZtrFdO4XAk4DmhV1/lTZ97V1VGjeK77v/+x7mxzBk+vPDVtXNz+Q69aBH3D9m0Q0p59+4Bb79dfKadgiM1S6JWLeNurm++4XPWq8eDYxWfNufpCdSuzRXWF1/k3GmlNWIEsGMH8NVXwDPPWK+MwjFZtb7oAFy9STM9ncjPj5umjhyxd2ls5O5dotTUkr3m8ce5766wjizA0Ob33HMOtoBc6c2ZU3hrbv7tiy+sd85Dh7ilWP/edesS/fe/Co/o1Ol4GXj9SdeuLd37mFtaiojok0+IHnyQFwgeMIDbc4XNSB+ehVw94H3/Pf/frFlTJaPts7KIHn2UqFMnojt3LH/dDz8Uf9fPP6ilcmUeAu/EUlKMB5YUtnl6Er35pnXPnZND9OWXRMHBxgNbTp2y7nmM5A96Hh4yncCFSB+eAMBLiQHAk0+qIEG0fmb9nj3AqVMlm3jcp4/lKcVyc3lZgZSU0pXTQeRPIVaUnBzLpyZYyt0deOEFft+pU3ndvV9+4eWpFMvPqdFwG+qIEfyhBg/m/l0hCiEBz4nodHzvB4C+fe1bFpuYP58HJbi5AZs28WATS3l6csaM4ta+c3cHfHyA778HunUrU3HtKTeXU4cWNlAlPyLOwqYEf38ewHLuHH8p++ADwxeznBwFgp+bG/e/9ejBv6emWvkEwpXIenhO5PRpoHlzwM+PKyR2X71aSZs28RLdALBkCTBuXMnf49QpnoxenN27gUcfLfn7O5iNGzkp9MmTPCjFzY2DjDleXjxItbCxPUqYPZvHCC1fzuOFrEqrBRITgaZNrfzGwh5kPTyBo0f5Z8eOLh7sjhwx5DOcNKl0wQ7gbwfNmhXd9uvuzksJuUBG/mHDeMTkuXM8WyN/sHNzM14KkIhjhK2kp3MynAMH+DvItGk8otRqAgI42BHxN8O//7asuitURQKek6lTh5dwcVm5ucDzz3Nn1IAB3CZWFubm5OVv5szNBX79FZgwoWzncTAFl/jR6Xjx15QUntFx6JBtV03y8+PutQEDOBDPn8+1vJ9+stIJ/vmH+/OaNOEvOg0acKemEPlIk6YT0uls2xRlcxcuAO++y/135cuX7b1u3ABCQ/ku6+7OF87NzfzojuXLeR02J/fPPzxJvKCUFJ6vb2/bt/P3i4QEfjxoEC9hZK7MRcrK4oj51VfAzz/zPp2Oa/RE/HPHDp6gLpyKNGmKPC4d7ADOeLFpU9mDHQAEBhpG+FSpwlWbdevMHzt+PHDwYNnPaWenT5vuCwx0jGAH8Ao8cXHAlClc2f755xKMNSHiquKECUBQEI/M3LWLA53+m+C0afzFhYhHcKoscbgoXDFD2ISwkf37+QZlLlVYWc2bBzRqBEycyLW99u2BmBhuV8uPCBg4kNsD8y8K52ROneL7fv4urFat7Fcec/z8gAULOB6dPcvfcfTu3jXzXeeff7iD8ssveYiph4ehk1K/WJ+7OxAezq0DGg0Hxl9/BYYMAaKjeeSuUDVXryu4jNOnucnnkUfsXRIFpKTwUj+PPGLFTp18GjXioBcaatj3/vu8PEz+9XN0Oq5q9Otn5REVtnXqlPE4HU/PwrOw2Vvz5sDTTxseHz7MMWv1aoAys4CtW/nfIywMePNNHpEDmB9+mpvLzZs+PjxC5/vvebmfkyf531uongQ8J3H1Kn/JtVmCXlsaN46DXuPGtluLzN2dx/HXrGkc9HJygDNneBa1k3ZvnzxpvEJ5djYHFmewbBlPuXn+eaBP+SgkDn7VuMmysH8Td3ceoNS1q2Ff9er8hgAwZw5w4oTyH0A4NAl4TuL2bf5ZpYp9y2F1mzfzN3EPD+5bK1fOducOCOBBDT4+xlUinY6D4eLFtiuLleTk8GoGBTlLwFu7FlhQYwm8kYFdOY+iCc5ibe4IFPnVQ6PhIaeLFpk+N3Qoz9d44QUeuSlUTQKek0hP55/WGMfhMK5fN8yxmzrVPh1NDRrwABlzpkwB/u//bFueMrpwgWt0+bm7Aw0b2qc8JeXhAUx5yw2xaImOiEYa/DEKazEMG3EbFc2/iAhYsQKoWMjz69cDK1cCFSooVWzhJCTgOQl9l5J+DTKXMHEiB72mTYF33rFfOfr25SavgjQaHvDw11+2L1MpnTpluq9ePSdLVDB2LBq+2AWHNA9jDt6GB7LxHYbiBww0PdbdnYd9PvFE4e+Xv8maiNtMhSrZJOAtW7YMtWrVgo+PD9q0aYODRQz93r9/PzQajcl2Tt9ZrXIukzB63z5uNnR35xEK+dOA2MPUqZz8Mf+cD52Ov2n07QukpdmvbCVw6pTxYER3dydc01SjAbp1gzvl4G3MwxF0xkR8glFYY3qsjw/301nyH+PyZU4hFxFh3MkpVEPxgLdp0yZMmjQJ06dPR0xMDLp06YLevXsjQT/rtBDnz59HUlJS3lavXj2li+rQ9P+fXSZbUteu3GEzdy7Qtq29S8MXeM0aHtGZv0aQm8urNIwY4RQXPzbWdABjs2Z2KUrp6HS8muwzz+T90bfDCXyCSdCHNC38MRjf4wLqcSaeBx6w7L3LleOBKydP8vQGoT5WXWzIjPbt29OYMWOM9jVs2JCmTp1q9vh9+/YRALp9+7ZF75+RkUFarTZvS0xMdMn18NavJ2rYkOiNN+xdEhcXH09UsaJhcdj827vv2rt0xQoJMS32zp32LpWF7twh6tOn2AX9XsZyAoh83e7Rqi9yS3aOTz7h96lcmejGDWU+hygzp1wANjMzk9zd3Wnr1q1G+ydOnEgPP/yw2dfoA17NmjUpJCSEevToQXv37i30HDNnziQAJpurBTyXcesWUVqavUtRtH37zAc8gGjLFnuXrlC3bpkv8t9/27tkFjh3jqhOHfOr1BfYl4gHqIfmf3m7Ro0iSk+38DzZ2UTNmvELX35Z0Y8kSs8pF4C9ceMGcnNzERwcbLQ/ODgYycnJZl8TGhqKzz//HFu2bMHWrVvRoEED9OzZEwcOHDB7/LRp06DVavO2xMREq38OYUVvvcUjI3futHdJCtetG/Dxx6b7NRpu2jxzxtYlsoi5lGL+/jxn26Ht3MkdjZcvm/atubkB7drxSrL/NnFW01zDnhmHMGcOP71mDa8gYtGith4evNwUAHz+ufmLJlyXVcNnAVevXiUAdOTIEaP977//PjVo0MDi9+nXrx/179/fomOV+mYgrOD334k0Gv52feiQvUtTNJ2O6LnnTGt67u5ENWoQ3bxp7xKa+Owzw+XVb1262LtURdDpiObO5UIXLLh+e+klosxMrpn16MH7GjTgfUS0dy9RcDDvrlCBH1vkySf5RYMGKff5RKk5ZQ0vMDAQ7u7uJrW5lJQUk1pfUTp27Ig///zT2sVzKnfu8ILfYWGFL+rp8P7zH76NDRkCPPigvUtTNI2GV09o08Z0EMvVqzyi08H+IU6dMl75yNPT8XJo5klP50nhb79tCG96bm58zZcv5/lzXl78wTZv5uM3bcqbZ9G9O6dFffhhrs1avP7r7Nn8b3zmjNOMwBVlp2jA8/LyQps2bbBnzx6j/Xv27EHnzp0tfp+YmBiE5s+DqEIVKvD/zaQk4No1e5emFM6cAbZs4ZvMzJn2Lo1lvL2BH37gfIz5pyvk5nKy6ylT7FUys2JijCedO2xKscuXeVHHLVtMn/Pw4Ank+/aZLtVUuTLPlyywin1oKK/xFxVlvCKEPjuRWY0b8/LrcXEyIV1NrFpfNGPjxo3k6elJq1atori4OJo0aRL5+fnR5cuXiYho6tSpNHLkyLzjP/roI9q2bRtduHCBzpw5Q1OnTiUAtMXCwQKu3KTZoAF/Ff7lF3uXpBSGDuXCDxli75KU3NGjRB4e5pvc1q2zd+mIiCg3l8jHx7R4v/5q75IVsG8fj4I1NzjFzY2oeXOihIQyn2bdOqKqVYkOHix7kYXtOeUoTb2lS5dSeHg4eXl5UevWrSkqKirvucjISOratWve4wULFlCdOnXIx8eHKlWqRA899BDt2LHD4nO5csDr35/vC0uX2rskJRQXZ+ij+f13e5emdL76ynzA8/R0iKjy11+mRdNoSjB6UWk6HXcyurkVPgL26aeJ7t2zyqkeesjwz/PFF8W8IDOTaPfuMp9XWI9TBzxbcuWAN2UK/yceO9beJSmhDz5wjQECEyaYDq5wd+dRE0lJdi3a1q2m8aNWLbsWySAjgwcAmQtybm58TRct4khlJenpRE89ZTjNhAk87sXsgdWq8UFnzljt/KJsnHLQirAu/QCE336zbzlK7PXXOcPF3Ln2LknZLF4MdOliOojl5k1eODYz025FKzhgxc2NBznZXVISX7O1a02fc3fnlWB//hl44w2r5s3z9eXMde+9x48/+4yXPzRJo+nrywsCA8Cnn1rt/MIxScBzIvob2O+/m2bEd3ht2jhPyv7CeHryQIvQUNM19I4fB8aPNx5taEO//26c+czNzWRsh+0dO8Yrz/72m2laNnd3oE4dfu6xxxQ5vUbDOcm3buW4+r//8ViZu3cLHDhpEv9ct46/vAiXJQHPidSty3O2+/ThaQoOLzvb9VasDQzkNfQ8PU3X0PvyS16mxg4KxpScHDuP0FyzBnjoIeDGDfOJmvv04Vp/3bqKF2XQICA6mtf6HTbMzBJbDz3EzScZGcAXXyheHmE/EvCciJsbcO4cVzLyD792WNu2AdWqcZOmK2nenGsD5mpzEyYAhWQFUsrdu4C5XOx2CXg5OcCrrwLPPce/54/C+i8IM2bwdA8bTgdo1oy/FMyebdiXlZWvXPpa3pIlTth8IiwlAU8oZ+lSvqv4+dm7JNY3ZAhPgi6IiPvzilkNxJrOnjWNvb6+QHi4zYrAbtwAHnmEO8wKcnfneY1bt3LUcbP9radSJcNp793jDHKzZv177YYOBYKCOKmAky36KywnAc8JEXFNz6G/iJ4/zzUdd3fgpZfsXRplvPceN83l78/T6ThzR79+hlV7FWZu0demTW0cU06d4mbBQ4dMo6+7Oy/hc/w4ty86gP/+l5s5Z88GXngByHbzBoYP5ycPHbJv4YRiJOA5oQ4deNm2I0fsXZIibNzIPyMiuFnTFbm5ARs2cOdQwUEsZ8/yndQGg1gKLvrq6WnjEZqbN/MfZVKSaX+dRsNrH8bElCDvl/Kefpq7W93ceP3h/v2BtNGTOfPK/Pn2Lp5QiAQ8J9SgAf/86Sf7lqNQRIaA9/TT9i2L0gICeBBLuXKmg1g2buQFShVWMKWYzQas6HTA9OnAU0/xlAxzg1MmTeImwsqVbVCgknn5Za7p+fpyEbs+Ux1JFRvZu1hCQRLwnNCAAfxz61a7jYIv2qlT3Obq7W0orCtr0IATGpvz1lvArl2KnZrItEmTyAYBT6vlapF+bmX+P0R3d65mrlsHfPih8QRBB9OvH6ftrFqVvzg8+CAQHw+bNUcL25KA54R69QJ8fIBLl8z339idvnbXty+nsFeDPn0Kn1g/ZAig0Goff/9tPtm/oq2HFy4AbduaH9zh4cFTNw4fBkaOVLAQ1tO+Pffn1akDpKURMsa9zhHw6lV7F01YmQQ8J1S+PAc9APjmG/uWxazx4/mb/bhx9i6Jbb31Fge3/KNFiHh+V9++QGqq1U9p7gtPWBi3tCri5585iUB8vPnFWtu0AWJjedFWJ1KnDnDwIPDLLxo0un2Ea3g7dti7WMLKJOA5qWef5Z/r1jngaM0HHgBeew3o0cPeJbEtjYZHQDRubNyMl5PD1fHhw00zjpTRqVPG42U0GoXWwCPiwRx9+/Jadub6655/ntfoCQlRoADKCw39NztN374AgL1rEnDsmH3LJKxLAp6T6tePpw398w9QYLlBYU9+fjyaqHx50zX0duyw+lqABWt4Hh6czcuq7t3jeWrTphW9WOsXX3C/rbPr2xe/oRX6R0/DI48QoqLsXSBhLRLwnJSnJ7ca7t6tWCrC0nn/fb7xmWTpVZHwcM4yY87775tf+LSUTp40rmxZfdHXK1eKXqw1IIAXUi24WKsza9kSDYK16IRo3L2rQa9eio47EjYkAc+JjRgBPPqocZOWXd2/zzf0l17iqqeadetmPvu+RgM88wxw+nSZT5GZCVy8aLrfagEvKoqri3/8YdoU6+bGTbexscDDD1vphA5Co4Ffv+74Cf3Qr+YZZGTwYGNJwOL8JOC5CIeYnnDwIN+Fq1Vz/pURrOGVV7hfq+Agluxs7icqY2b+wuJQmROLE3FauJ49eaCNuf66p57ioY01apTxZA6qTx/4IBNbfYbjiSc4Q97AgTyFQTgvCXhOLjUVmDqVByrYffCKvjMxIsKqa5s5LY0GWLaMh/AXXEPv2jXgySd5QEspmRuhqdEAnTrxtmFDvgTJlsrMBF58kUfa5uaaJn/WaICFC/nNfX1LXXaH16ULEBEBz6efxLcbCP3782Dbfv14KSbhnCTgOTlPTx4Y+PvvnOHJro4e5Z+u1sRVFt7evDJAlSqmQS8qCnjzzVK/dcGUYh4e3Mz93//y2JkRI7g7cfZsC2t9SUn8b7dmjelz+sVad+7kMrv6F5qqVbkNc8YMeHlrsHkz95U/9hin9RPOSQKekytXDpg4kX9fuNCOTZs5OTyCAnC6OViKCw0FfvzRNJszEfDxxzy3pBRiY41r9Tod1/Qffxz45RfgzBluhlu4EGjShKfQFerXX7m/7uRJ84u11q7N6+voJ4CqjLc3j0PatAnw8rJ3aURpScBzAWPH8pfv33+34xSFuDgetFKhgiHZpzBo377wxUVffJEDTgnFxho/1umMB6w0acKzBc6d48wrffpwLgCTZs61a3kR1Js3zffX9e7Ni7XWq1fiMjq9f/7JWz2hXDlDjVqn49WhHDLTkSiUBDwXULkyMHo0/75woZ0Kce4cN3O1aeNAw0YdTGQkV8cLNgfqdJyXMinJ4rf65x/zY16aNTPdV706D6tfupRjbteu/2bNysnh5M6jRnFVMX+w05fx3Xe5jVQtKeLyi4vjSfS9e5t8EVi8GJg3jyu8ly/bp3ii5DREDjG+z2pSU1MREBAArVYLfxX9J01I4Fan3FyuLNilVTE1lRcBrV3bDid3Ejk5vEjqoUPGN1F3d/6ycOCARZO3f/mFp6TkFxgIXL9e9OuOHQMGDwb8fHIRHTIIlY/8ZH79Ok9Pzlv3xBMWfjAXlJvLCQQyMjgXat26eU/dvs3jWs6e5QaNw4e5m1ZYh1L3canhuYgaNXiQAsCDFOzC31+CXXE8PHgSd1iY6SCWEye4zdGC76CnTpl2CVqSUqxDB2D/yvO4Ga/FwMNvIpM8jQ9wd+ey/fqruoMdwNdC3zz/xx9GT1WqxLXmatV4rePHH+cWfeHYJOC5kNmzuTtoxQp7l0QUqUoVTj/m6Wm6ht6qVdzxVoyCAc/T08KUYlu2oO6TLbEdA/Ar2uE5rIYO/5ZBo+FqS0yM+bZRNdIPyTx3zuSpatU46FWsyIsxP/10mWaZCBuQgOdCatbkPhqbLzB+8ya3r1lYOxHg0SXr15u/XhMnorgEjidPGt9ci00pptMB77zDc/8yM9FZdwhfYyS+xXC8i/f4mFdf5VFPZWibO3CAuyPDwjh+/vCD8fNEwKxZ/Hy5cpyQ5uxZ42MyM4EJE7iJ1s+Pa09//138uZctA2rV4qWz2rThPAj5JSdzd1xYGOcEsCiPtz7gFajh6TVpAmzfzq3Q//2vYcS0cEwS8FyYVmujE124wJ1K27e7/vwsaxo8mFcML4gIGDSI81iakZPDzWgFFRrwUlM5asyZY3h/AEPwPeZrpmEupuPQ9J+Bjz4q82Kt6em84sCSJeafX7iQc8AuWQIcP85jQh591HhNv0mTeArAxo3c1Xn3Lk/4NjeAVG/TJn7d9OlcQe3ShYNbQoLhmHfe4b7tn3/mgSbffmvBB9JnDCok4AF8rm++4UDbtasF7ynsh1yMVqslAKTVau1dFLu5do1o4ECiOnWIMjNtcMJ16ziHfvfuNjiZi8nNJerbl8jdXb8OAW/u7kRNmxKlp5u85OxZ40P1h5v9tz5/nqhePdP3B4g8PCg3KITaNU6jVq2IcnKs+9EAom3bDI91OqKQEKL58w37MjKIAgKIVqzgx3fuEHl6Em3caDjm6lUiNzeiXbsKP1f79kRjxhjva9iQaOpUw+PBg/l9c3OJXnmFaOlSCz7EqVP8QSpWLPbQa9cseD9hEaXu41LDc0EVKnCaw4sXbdSfp1/NO98oNmEhNzdO01W7tukglrg4njJQoNnT3NyvunXNTIjetYvb9i5dKnSxVrffY/DpqvKIieEWViXFx3OzYkSEYZ+3N9eKjhzhxydPcvNs/mPCwngeof6YgrKy+HX5XwPw4/yvmTqVmxy9vbkWqF9Tski1a/PUjDlzim0DDQ01/J6czP98wrFIwHNB5csbRmq++26JpneVjr7pTUZolo6/Pw9iKVfOdBDL5s0mkysLphTTz2jIQ8Sv6dOn8MVan3sub7HWjh15NYC5c4tuNiyr5GT+GRxsvD842PBccjIH7kqVCj+moBs3uNxFvS/AKU2vXgUSEzkQli9vQaH9/ID//Ic7/QoOiy1EXBw3nfbuDaSkWPQSYSMS8FzUiy/yf/DUVOD11xU+2Y0b/DMoSOETubD69QtPhjptmlFesNhY09GAef139+7xcMG33ip8sVb9DPR88/2mT+eu2O+/t87HKUrBbl6i4rt+LTnGkvf18FB+QfbQUP7ukpDAY4RKnMBbKEYCnotyd+fmTDc37pz/5RcFT6YPeIGBCp5EBXr1AubPN//cU09xRAI3x+WPY7m5/wa8K1eAjh3NB079Yq3/+x/XVgpEgnbtCl/n1Vr0gaZgTS0lxVA7CwnhAHH7duHHFBQYyH/vRb1vmSQm8pBPS4aKgmun+uQ0Bw/yiFMZvOwYJOC5sDZt+N4G8IyBzEyFTnTvHv+UgFd2b74JDB1quobe/ftA3764fSXVbNNe8/RonnkeF2d+kbyGDTlSFjGMMCKC46FSzZq1anFAy5/vNSuLW1Y7d+bHbdpwc23+Y5KSOBG2/piCvLz4dQXzyO7ZU/hrSuS113gViYJzLIrQqBF/0dRogM8/t2hqpbAFqw6BcQAyStPYnTs8Mi48nOiPPxQ80f37RNnZCp5ARdLTiZo1I/LwMBmKGdVxislgS3+fDNK5ufNQxoJPAkRDhpgd7VnQgQN8+PHjpS96WhpRTAxvANGHH/LvV67w8/Pn86jMrVuJTp8mevppotBQotRUw3uMGUNUrRrRL78Q/fYbUY8eRC1aGI8i7dGD6LPPDI83buTRnatWEcXFEU2aROTnR3T5cuk/S55x4/jDTJ9e4pfOn88v9fQk+vVXK5RFJZS6j0vAU4GYGIvud8KRXL5MVKmSSRD7DONIA51RPOuCKNMgp9HwNn8+zwewQFYWUfnyRHPnlr7Y+/aZj7mRkfy8Tkc0cyZ/CfP2Jnr4YQ58+d2/TzR+PFHlykTlyhH160eUkGB8THg4v09+S5fyfi8votatiaKiSv85jEydyh/itddK/FKdjuiJJ/jljzxipfKogFL3cUkeLYSjiooCevY0amN8GSvwFZ5DDngOgieyMBbL8QkmGV7n7s6jJr77jocKlkD//jywc+9ea3wAFzF7NqeHGTuW07mU0J07wIwZwHvvcTeqKJ5TJ49etmwZatWqBR8fH7Rp0wYHC+b8KSAqKgpt2rSBj48PateujRWSHNIqdDrOcLF4sRXf9PZtzgry1FNWfFMBgPvbPv3UaNdvaJ0X7AAgG55ojnwT89zdubPs5MkSBzsAaN3afBYXVfPx4Z8ZGaV6ecWK/M8owc7+FA94mzZtwqRJkzB9+nTExMSgS5cu6N27NxLy5/zJJz4+Hn369EGXLl0QExODt99+GxMnTsQWJYePqcSePTxibOpUHr9gFffucWf+tm1WekNhZOxY4IUXADc36KDBGTQtcIAGTXDG8LBXLw529euX6nRVqnBqVNdq9ykjfcCzwnIIRDwrpODivcJGrNpAakb79u1pTIGcPw0bNqSp+XP+5DNlyhRq2LCh0b6XX36ZOnbsaPb4jIwM0mq1eVtiYqL04RUif39C06bcV1Jm8fH8hj4+VngzYVZGBlGHDvSXWz2z/WMPIIE+wqukfeM/nDerDL7+mt9T+nzzWbGCL8rAgWV+q4UL+a3q1zceqCOMOWVqsaysLJw8eRIRBXL+RERE4EgheYKio6NNjn/sscdw4sQJZGdnmxw/b948BAQE5G3Vq1e33gdwMRoNz80LCuJh3jNmWOFN9TOgPT2LPk6Unrc38MMPCK6Sg2YwzSt2FdUwWfMRQpe9i0mT3RAfX/pT6f8ZLVpJQC30U0SsUO19/nlezeTCBWDKlDK/nSghRQPejRs3kJubi+ACsz+Dg4ORXEieoOTkZLPH5+Tk4IZ+gnM+06ZNg1arzdsSExOt9wFcUNWqnGQDAD74ANi3r4xvqA94+fNACusLCUH5HZtw3KMzKuFWgSc1INLg3j3uo61Th7tVDx2Spkmr0E/St8K3gCpVgHXr+PcVKxROCCFM2GTQiqZAVgciMtlX3PHm9gOAt7c3/P39jTZRtMcf524hIs5CVaZcm/oqgZnat7Cydu3gmXgJgbV59IObxvQGnJvL/64//sjL1rRuzUvXWJre6vZt/u5ikohazfSjZMu4dJJe9+6GhBAvvMDp/4RtKBrwAgMD4e7ublKbS0lJManF6YWEhJg93sPDA1XKsDClMPbpp5yB/uZNrgmUmj4Db3q6tIPZgFtIEM784Y6vvwaaNuP/vubuw/p79KlTwDPPANWrA/Pm8b93UWJigMaNJeAZ0acosmKz/YIFPJg2IYGT6wjbUDTgeXl5oU2bNthTIOfPnj170LmQnD+dOnUyOX737t1o27YtPKWfyGp8fTlRcFQUMGRIGd4of8p5fYoxoSgvLw5isbG8wnjfvtzqZq5VWf8dJCWFF0B94AHg5ZeBc+fMv3dMDGcoE/noV1KuWNFqb1m+PPDVV/z7l18Cf/1ltbcWRbHqEBgzNm7cSJ6enrRq1SqKi4ujSZMmkZ+fH13+N+fP1KlTaeTIkXnHX7p0iXx9fem1116juLg4WrVqFXl6etL3339v0fkk00rpWZiQw/RFWq31Vw8VJXLxItHEiZyZRKMxn+0k/2KxAFFEBNHu3YZ/9+xsHmz70Ud2/SiO57XX+IJNmWL1t16wgOjIEau/rdNz6tRiS5cupfDwcPLy8qLWrVtTVL6cP5GRkdS1a1ej4/fv30+tWrUiLy8vqlmzJi1fvtzic0nAK53Tp4k6d+ZZBsJ53bnD+SurVeN7dGHpNfMHvoYNib78kujkSX68f7+9P4WDWbyYqGNHopUr7V0S1ZDUYhaS1GKl0707sH8/r6F34ABnphLOKyeHl6j54APg6FHu5yu4hp6eRsMhsFw57q76449Sz1sXZXDxIve9yrV38tRiwvGtWQNUrgycOMGLYZfoa9DixcDgwbyMtHAIHh78TxIdDfz6Ky9E6u5uvp9P/299/z73+TVpAkRGAr//btsyq9mmTTxY6KWXZCqJkiTgCQBAeDgv/unhwf/53nuvBC+OigK2buXZ7MLhtGvHa7NdvswjAv39uVZX2MygnBxgwwagZUtO57l9u8oH4Nrgw3fsyPPbo6L4/59QhgQ8kadbN54MCwAzZ3KyfYtUq8Y/ZdK/Q6tWjacmXLvG+Rxr1eL95mp9+ubPw4eBAQN4MvuSJcDdu7Yrr0Mg4tnideoAV68qdprwcODtt/n3119X4XW2EQl4wsgLLwCTJ/PvkZGch7hY+oD399+KlUtYj58f56T+809gxw5ezBsoej7flSvAxIlAWBinxCok97vruX6d1/eJjwcCAxU91ZtvArVr8xeSErWwCItJwBMmFi4E+vQBOnUy1AKKpM9fKjU8p+Lmxv/Oe/fyBPWRI3lutZuZu4J+bGdaGvDhh/x3MWQID4hxaZcv88+wMM5pqiAfH+Djj/n3jz9W0ZcKG5KAJ0y4u3M/wv/9Hw9kKZY+4OlvDsLpNGvGE6H//pubs/X/7ub6+XJzuVvrhx/4S1G7dtz8XdgoUKemz8Rt0Te/suvXj7sWsrKA99+3ySlVRQKeMKt8eeNMShs3FrH+ZcOG/PPSJcm24uSCgngVjWvXgNWrgUaNeH9R/Xy//QYMHQrUqAEsWsQtgC5DH/Bq1rTJ6TQaYM4c/v/3wAM2OaWqSMATxZo5k5NMP/OMoU/HSHAw92+UL8+dPcLpeXsDo0bxwNv//Q947DHeX1T6sqQkXlw4NBQYP95F0mWdPcs/bTg5rnNnQ01bWJcEPFGsrl05f+OWLcC4cWbmCWk0fGfUag1VAuESNBqgRw8e3HL+POfh9PEx388HcPDLyABWruQY0a8fL0HltHPLYmL4p40TjAYE2PR0qiEBTxSrRw9eYkaj4RvZrFlmDgoOLnxil3AJ9evzdIZr13h6Q0gI7zcX/HJyOMjt2sV/P82bA2vXGhYecApEXN1q2dJuGbX37bPSQs0CACCpxYTFli83rOP12WfcbCXUKzuba/2LFnE/XlHpy9zcuPZXpQpPbxg7lhcjFoW7fJmnKRABcXHqajyR1GLC7saOBWbP5t8nTjSs3AwASE7mceodO6o8LYd6eHoCw4bxXM0jR3iCenHLFN28yX9DDzzAcz4lOU/hatbkawoYpiuIspGAJ0rk3Xe5ZkfEuRfzVK4M7NwJHDvG2YeFqnTqxOsrxscDr77Kk9sLa+HW6bh2uG4dT4fo2RP4+WcH/J508aLlS8Ur5LXX+Oe6dcCNG3YtikuQgCdKRKMBPvmEV1R4+eV8T3h58V0P4CeFKoWHcy7xpCT+OwkP5/1FTWuIiuIJ8A0acGo7h5nZ0rs3UKkSZ+C2ky5dgNatDQOBRNlIwBMl5ubG/xH1btzgUXx5Oaok4KlehQrAhAlcSdJPUAeKTl928SL3EYeGcl5JBVNXFi8xkXOvZWTwMgZ2otEYanlLl9q9wun0JOCJMrlzh0fhDRgAbNYN5p0HDzrxOHRhTe7u/Ldx8CAPbHn6aQ56hS1TRASkpnJ6u/BwYMQIXrLK5vbt459t29p9jsBTT3Fms6QkWUmhrCTgiTLx9+cml9xc4On3G2OL+1P81fzSJXsXTTiYVq24LyohAZg2zRBHCktflpvLKcvatePZAVu3FpL4QAl79/LPHj1sdMLCeXnx/NemTfl3UXoyLUGUWW4uLxr79deAO3KxFs9ixCcdeCinEIW4fx9Yv55XZb9wgWt9hQU0/XPVq/NqHs8/z1+2FEHEedL+/hvYvRt49FGFTmS5nBy+BmqZ6irTEoTDcnfnvIsjRwK5cMdIfI1lJzvYu1jCwZUrB4weDZw7x4nK9ZWpovr5EhM54IWGApMmGVJdWtXZsxzsvLyABx9U4AQl5+GhnmCnJAl4wirc3YE1a4Dx4wgEN4xb1yFvMVkhiqLRABERXJk6e5ZbC7y8Ck9fRsQjOZcs4XVZBw0CDh2yYrfx99/zz8ceA3x9rfSm1nH3Lk/2d612OduRJk1hVUSc9Hb1al4tu0YNe5dIOKMbN4DPP+cJ19evGzK1mKPP8NKyJfDGG5z/oEx9XRcvcudhixY8X8JBZGfzhP3r14Fff+W+TVel1H1cAp5QxO3Eu6h07SzQQZo2RellZXHsWbSIF6m1JH1ZUBA3d770EqcycyVPP81LdU2cyPMcXZX04Qnn8ddfqFQvkDtl7t7F1q3A8OFOljhYOAQvL16WKjaWJ6j37Vt8+rKUFOCdd7g29PLL3EfoKoYP55/btkmzZmlIwBPWV6cOt2Xeu4ebq7cjMhL49lvuErl9296FE85Io+G8Bj/8wOvsjRvHg16KSl+WmcmruDdqxH97e/ZYECRef53/WI3y5jmORx7hz52YyDVeUTIS8IT1aTS8eiiAKptXYNs2HkIeFcUZN2SKniiL2rW5OS8piac06FcGL2yZIoAXsY2I4OD35ZeFxLOTJ4EPP+S/3fR0pYpfJuXKGWZJ/PSTfcvijCTgCWU8+yzfgQ4exCM1/8KhQzyH6vx5XlDh2DF7F1A4u4AAnqJw+TIPrGzfnvcXNa3hwgWeChEWxuvMJSfnO+iLL/jn4MFAYKCSRS+T3r355y+/2LcczkgCnlBGtWr8lRoA1qxBs2bA0aOcleX6daBbN+6HEKKsPDw4RkVH8xepJ5/kPr7C0pcBnBJvzhz+EhYZCZyOvsurHAM82sWB6ecrHjniQIm2nYQEPKGc557jn2vWADk5CAszDDzIyOD/sEJYU/v23AV3+TJPUfD3L7qfLycH2LAB+KTzRuDuXdwNqwddl642LXNJ1avH037OnuUmTmE5CXhCOQMG8LLWycl5bZjly/PAgy+/BBYssG/xhOuqVg2YPx+4do1XGahdm/cXtkzRaHBz5uxro1GnrgZLlvAkb0ek7yKvW1eyr5SUBDyhHG9vTrD5119GKZo8PHi1a/0gg4wMXkomJcVO5RQuy88PGDuWV/r56SfDslb5+/k64zA64FdkwRNrEYkrV3ieW1gYMGUKJ7sWrkECnlDWY48BNWsWecgbb3CaqLZteaCcENbm5sZN6fv28XD+kSMBT89/J6vDDUfRAWswCtcRlLdMUVoaD9qsVYuX6Dl61N6fwkCr5RGqEybYuyTORTKtCNu5etUwhjyfc+eAgQN5BKePDzd3jhhh++IJdUlJAZYvBz79FLh1i+CDTGTAx+yx+gwv7drxF7QnnjA/GtRW0tIMq0Vcv+7Qg0pLRTKtCOeVm8t3iBo1uKe9gIYNuYtPP5jlmWd4/m9hKaSEsIagIM77evUqsHq1BrUbc7ArrJ8P4BaIoUP5T3nRIh7taQ8VKnDNEzD7X0oUQgKeUJ5+IS+dDpg92+whAQHA9u3A9On8+MMPeb7RzZs2LKdQl4sXgTlz4JNxB6NGAWfO8AT1xx7jp83V4PTpy5KSgKlTeZmi8eO5m9rWGjXin+fP2/7czkoCnrCNWbM46G3eDJw4YfYQNzfg/ff5ED8/4LffHDbhhXAF773HSTdfeAEA/3n26AHs2MFBZPRobmIvbJkinY5bJFauBOrXB/r14z5CW3US6Wt4ly/b5nyuQNGAd/v2bYwcORIBAQEICAjAyJEjcaeYNoBRo0ZBo9EYbR07dlSymMIWmjXjtkoAmDatyEOffJInEW/aZLy8kGv1Ngu7io0F1q3j3996y+Tp+vWBZcu4uXPePCAkhPcXlr6MyLCIbfPmwNq1yidL148FU2QRXBelaMAbPnw4YmNjsWvXLuzatQuxsbEYOXJksa/r1asXkpKS8radO3cqWUxhK//5Dw+N++WXYvMiNWvGiXL1fvwRePxxaeIUVkDEI0+IgGHDDDnJzKhc2TA14dtvec09oOh+vrg4nif3wAP8J3/9utU/AQDD+K9//lHm/V0SKSQuLo4A0NGjR/P2RUdHEwA6d+5coa+LjIykAQMGlPq8Wq2WAJBWqy31ewgFTZzIo77btiXS6Sx6SUYGUVgYv6xaNaLDhxUuo3BtO3fyH5OXF9GlSyV6qU7Hf3+DBxNpNETu7vpJDOY3NzciT0+i558nOn268Pc9e5ZowQKitDTLy7J7N5+jadMSfQSnoNR9XLEaXnR0NAICAtAh3wKgHTt2REBAAI4Uk1Nq//79CAoKQv369TF69GikFDEjOTMzE6mpqUabcGDTp3O6leRkXuPEAt7ewM6dnFLp7795mZhFiwpfAVuIQuXkAG++yb9PmGDoCLOQRgN07szJquPjgVdf5f7motKXZWdz62mzZkDPnvy3XPBv96WXuGW1a1fLa4SdOgF//MHp+oRlFAt4ycnJCAoKMtkfFBSEZKMU5cZ69+6Nb775Bnv37sXixYtx/Phx9OjRA5mFNIjPmzcvr48wICAA1atXt9pnEAoICuLhmHFxxh10xWjRgoeEP/00z3KYMoVHcV67pmBZhev54gsex1+pkmFIcCmFhwOLF/OIzY8/Nvw5F9Xcqc8l26ABsGIFJ3/+7Tfg8GF+/vffeTWRK1eKP3/58jylp3LlMn0MdSlplXDmzJkEoMjt+PHjNGfOHKpfv77J6+vWrUvz5s2z+HzXrl0jT09P2rJli9nnMzIySKvV5m2JiYnSpOnCdDqilSuJfHy4OadKFaJ//rF3qYTTSEoieuopoiVLrP7WOTlEP/xA9NBD/Lfp4VF4U6dGw1tAADdJ5j/W3Z0oKIjo1CmrF9FpKNWkWeJcAePHj8ewYcOKPKZmzZo4deoU/jHTm3r9+nUEBwdbfL7Q0FCEh4fjzz//NPu8t7c3vL29LX4/4UB0Ok773qgRtxNZQKPh5p8uXXjQZ9u2XGkUwiIhITz8V4Ehv+7unC99wACutX30EbBxI59Kvx6fnv70Wi1PvcmfZCE3lwdnde7MzZ/6/J8F3bnDMyt8fHipI2EBq4bPfPSDVo4dO5a37+jRo8UOWinoxo0b5O3tTWvXrrXoeBm04kTmzTP0umdllfjlmZlE6emGx3//TRQVZcXyCdeRnGyX0167RvTOO1yT09fsihrkUnDAi5cX1xrNiY/n48qVs+Unsg2nG7TSqFEj9OrVC6NHj8bRo0dx9OhRjB49Gv369UODBg3yjmvYsCG2/bsS6N27d/HGG28gOjoaly9fxv79+9G/f38EBgZi0KBBShVV2Mvo0UCVKpziopAMLEXx8gJ8ffl3nY6X3+vWjTv/lZ4DJZzI7dvcCfzUU/y7DYWGci0sKQn4/HMeeAWY7+crSD/gZdAgzi9bUFYW//T0tF55XZ2i8/C++eYbNGvWDBEREYiIiEDz5s3x9ddfGx1z/vx5aLVaAIC7uztOnz6NAQMGoH79+oiMjET9+vURHR2NChUqKFlUYQ9VqnD2XoBn9x46VOq3ysri1auJgIULeWqVrLwgQAS88gpPVjt92vANycbKlePvd+fOAbt2Ad278/7iElDr63ujR3OzZf6W2H9vmwgIsLwcR45wsO3Vq2TldxlWrS86AGnSdEKRkfz/Ojyc6M6dMr3V1q1EgYGGJqEpU4ju3bNKKYUzWrXKMBIkOtrepcmj0xHVqVOyJk6AaNw4otxcfo9du3hfixaWn/eFF4hefZXIz4/oyhUlPpl1OF2TphAW+/RTng915QowblyZ3mrQIJ7xMGwYNwktXMitWYWMeRKu7I8/DAvGvf8+j/d3EHv2cO7qko6dWbaMV2vIzOSprABQtaplr01PB777jhfE7dcPWLOG93fqxImw87t+nZtK9+0rWfkcnQQ8YX/+/sD69ZyocOPGMq93UrUqp4H673951Wp3d27uFCqSkcHfeu7d4xx1U6bYu0RGPv64dK8jArZu5SZJ/SoJxayvnGfTJp7/16ABj3BevZrfb8QI/v+SP/hu2gQEB/NEeFciAU84hs6duaZ3+DDQpIlV3vLxx7m2t20bD90GePj3/v1WeXvhyN56i5c2DwoCvv668CUP7OSRR/jLmLkBJ25uvL+wgS06Hf8Nr1jBjy0NeKtWGfK39+oF3L3LyyENHcoJHPJ3oW/YAAwf7nCXrcxkxXOhKosW8Zf9oUM5S4aZBdiFK4iO5kWH16wxLHDngIh48ElysvGWlMQ/r13jFRuSk3neXcG7dWQkjwItrgXj/HmgaVNOzaefBj1+PHDrFge3Pn04U8yKFZwyrXZtXlCiRQs+97hxPLdw5kxOjK00pe7jdlykXoginDrFq8B+8YVVx13fucPfWjdt4nXPZs0CJk6Uod0up1Mn4MIFXhrcgWk0QMWKvDVsWPSxOTnct5Y/MPbsaVlz/apV/Pr8X/CI+O/+9m1u1nz1VeCzzzgANmnCwQ7gufpbttgm0CnNxSqswiXcv8/fyteu5WVcrGjOHJ6u0KkTN+m88QbQqpUk4HUJFy9ytUTPwYNdSXl48Ly+Vq04j+xzz1mWjjYnh5NXL17Ml0e//f475wP95htg4EDu9ty1iwOevunT1UjAE46nXDnD/LxPP+WvnVbUsiX3V6xaBQQG8hiZbt24uVM4Ka0W6N8fePBB7phycV99xUHp//6v+GN/+olrcS+8wM2a+bcnn+T/B35+nBLt3Xd5cOvw4cp/BnuQgCcc08CBPJQc4DbHb7+16tu7uQHPP899G2PGcNaWvn2tegphKxkZwODBfKeuWJFzs7q4zZu5Znb6dPHHrlrFg2TMTVAfPJhre7/9xs2av//OuTsL1hwHDgT27uXvn2+/bY1PYB8yaEU4LiIOdkuWcHvOTz8pNgAhKYmbi/TmzOE+jL59C1/rTDiA7GyupmzfztWU/fs5o7gLS0vjlomsLB6F7IrxXan7uNTwhOPSaIBPPuFF8HJyeNTdb78pcqr8we7MGWDGDG4he+QR424h4UByc3kkxfbtvErwjz+6fLADeLBVVhZQt27xA12EMQl4wrG5uRmGlj/4IFC/vuKnrFGDpy54e3MzTuvWPEDg6lXFTy0sRcQpQzZs4Nr/998bElS6OH064qeektaHkpKAJxyflxePi/7xR17mWWH+/pzL+tw5rlwSccytX5+nMaSnK14EUZzsbCAlhb8QrV/PubJU4No1w0CVyEj7lsUZScATzsHPj6tcAEegWbMUn0tQsyZXII4e5UQw9+5xp70sPeQAvLx45MYvv3AWAZVYupRbcrt0sUljh8uRgCecz/r1vH5e797A7t2Kn65DB57GsHkzdylWrsz7iThtWf7VqoWCMjJ4AJNOx489PVXTjKnXpAnQuDEwaZK9S+KcJOAJ5zNkCA+fvH+fR5Zs2qT4KTUaHgw4cqRh308/8TiaJk0457X+PiwUkJbG+a8mTDBN7a8iw4fzoKqBA+1dEuckAU84Hx8fThn/5JM8XG3YME4oaOMZNmlpvIbthQvc19eyJa/Q4FoTfRzA339zTW7fPs6e0qePvUtkVxqN6yV1thW5bMI5eXlxtWryZH48YwZXvzIybFaE4cM50e5//sMDXU6f5m/eHTpI4LOao0eBdu04H1xgIA+b7dbN3qWyuXfe4YRD0nxeNjLxXDi/zz8HXnmFI8zevXZZxOvWLeCDD7iP7949ru399psMGy+TtWuBl17iWnzTpjzfrlYte5fK5mJieHqhTgccPAg89JC9S6Q8pe7jEvCEa/jlF+CvvzhPmB2lpPDinh078np8ADd9btwIPPusYaCpKMbVqzyzOiODq83r1rlcMmhLZGZyBff0aZ53Z4PuaocgAc9CEvAEAJ5E99NP3ORp5w6PDz4A3nyTF/x8/XWutNhgOqHz27CB82POnm33f0N7mTKFk5pXrcqDVYKC7F0i25DUYkJYKjOTvw6/+SaP5rx+3a7FCQzkdciuXeOAFx7OCXglc0sBmzcDBw4YHg8fzoORVBrs/vtfwwoeK1eqJ9gpSZ1/ScK1eXlx0mkfH17gq2VLm8zXK8yoUbxU25dfcivdrVucyaVmTW7mdK02llK4e5fXrnnqKU7Zf/u2vUtkd3FxhkwqkyYBgwbZtTguQwKecD0aDfDii8Cvv3J23WvXOBfnc8/Z7Wbq7c339HPneLJ616484i4723hgi+rm8kVFcbLSr77iCxEZKe294Jbce/d4gMrChfYujeuQPjzh2tLTuf3ws8+4KhUSwkPd6ta1d8kQE8Nr3eoz3p87x3H5lVc4OAYG2rd8irp5k5ucV6/mx9WqcQYdO4ywdVQHDnBWFZf+OyiEDFqxkAQ8YdaRIxxFqlThO4kD9gu9/jrw4Yf8u5cXZ3F56SWeduZS0xuSk4HmzQ19q2PGcBtvxYp2LZa93bzJrbvh4fYuif3JoBUhyqJzZ65SffedIdhptcDcuQ6z/MHcubwqQ5s2PPVs40agRw9OErxwocMUs+xCQrgm16QJcPgwsHy56oNdQgI3Xz78MHDpkr1L47ok4An18PHhuQF68+YB06cD9epxpLFzB5q3N3dhnTjBiUXGjOGpZ3/9xaP1PDzsWrzSu3yZ+08TEw37vviCZ+Z37my3YjkK/WU4d47/BGU1DuVIwBPq1bEjULs2kJTEN+S2bXnungO08rduzRWfa9eAVas4fZl+0rpOx7WBqVN5bpbDunmT22kbNOAvFO++a3iuYkVut1W5DRt4XeOrV4FGjbjlvVEje5fKhZGL0Wq1BIC0Wq29iyKcQUYG0QcfEAUEEHGoI2rZkmjrVnuXrFD79hmKChC1aEG0cCFRYqK9S/ava9eIpk4l8vc3FLJHD6ITJ+xdMoeRnk40erTh8vTpQ3T7tr1L5TiUuo9LDU+om7c310L+/JNHDZYvD8TGGpaVdkAdO/Ic7YEDeUm433/njBw1agA9e3ItwW7eeosnGM6fD6Sm8uCUn3/m1G9t2tixYI5l9mxu1dVouFV9+3bVd2PahAQ8IQDO3bRwIfc3zZjBN269o0f5DuUgqVF8fHhlpG3beMDjypW8ArY+d3b+EZ0JCcA//yhYGCLjvk8vLx5x06kT8MMPPFCoVy8XG2ZadtOnc1Pmnj3A++8D7u72LpE6yLQEIYozfDjw7bd8V+rfn0eTPPqow01tuHyZawoTJhjiy0svcYaXhx7ibB2DBnEFrMyuXePVDFatAhYvBgYM4P3XrwPnz6sjpb+FdDq+VDt38iBh/b8NkXwPKIzMw7OQBDxhdZs3A0uWGOd5rFkTGDqU02G1bm23ohWnb1++0ebXqhU3h/buzZn4LZaezqna9Hfv3FzeP3gw8P331iqyyyDifJgzZvBqBwCvWyxpwoonAc9CEvCEYuLiuP1w7VqewwcAzZoBp07Zt1zFSEjg1sVt2zhm61sgGzcGzp41HHfnTiH9SNnZHNx37QLu3zfsf/BBTuE2ZAjg56fcB3AyOTnAli3cQv7bb7wvIIAHqU6YIINTLSEBz0IS8ITi7t0ztE916MCDXgBe+K55c55U/cgjPIIkNNS+ZS3g+nXgxx+BHTt4TdXZs3l/RgYnoalTm9CrZTIiQk+j86wI+Pr++8L27YHjx7lmO2QI8PzzhpxoIs8//3D3ZXw8P/bzA159lf9EKle2b9mciVMGvDlz5mDHjh2IjY2Fl5cX7ty5U+xriAizZ8/G559/jtu3b6NDhw5YunQpmjRpYtE5JeAJu/npJ+7jy69JEw587doB3bvzOkGOJD0dOHUKR9f/hc7LRoDyjWPz8CC0bq1Bly7AkHqx6NABQIsW0vGUT3Y215JbtuTHRHyJkpKA8eOBcePUmQuzrJwytVhWVhaGDBmCsWPHWvyahQsX4sMPP8SSJUtw/PhxhISE4NFHH0VaWpqCJRXCCnr25OH3b73FQ/A1Gr4bfvopMHKk8VSH+HheISAqCvj7b+WzvGRk8NSL7GzDvmnTOJVL587ouOxZpCAI32IYRnl9g2o+N5CTo8Gvv/KYlMPpLfmurtEgORn4+mvO6K/vxlOTjAyu4L/0ElfgH3rIkPZNo+FVya9cAWbOlGDnaBRNVjT73/aSNWvWWHQ8EeHjjz/G9OnT8cQTTwAA1q5di+DgYGzYsAEvv/yyUkUVouzKleOg17MnP755k+cJHDzIucLatzccu3MnVwH0vL2BWrWAOnX4Lvr664Ymw4QEXlDPy4tHhubfiPg4/ZI6J07wWPebN/mum5DAP/VzE2JjuQoC8Hn0K0i0b4/A7t0xrFs3DGvWDHB3x5UrXPRDh3hQqt7u3Ya12nx9OQ62bm3YGjfm+YGugoi7b//3P760+/YZ5zUNDua0YPpphpIpxXE5VHa++Ph4JCcnIyIiIm+ft7c3unbtiiNHjpgNeJmZmcjMl3wuNTXVJmUVolhVqnB/15Ahps9VqsRR5OJFDkiZmXzXPHeOn3/+ecOxW7cCr71W+HkOHjRMAzhyhJdDMsfXl2uW+oA3ciQPRgkONnt4eDhvzzxj+jadOvGE93v3+JT5J7vv2AH06cO/nzrFH6l+fd7y+gQdFBFXuE+f5rLrP9vNm8bHPfAAj3QdOJBXs3DaPKcq41D/TMnJyQCA4AL/AYODg3HlyhWzr5k3b15eTVIIpzF8OG8AD+tLSOA0+Rcv8siS2rUNx/r5cbUhJ4ebPvWbvj0xf7ti8+YcLCtV4tQr+i08nEdN5O9/q1SpVEV/8knecnOBCxd4JGL+Lf8sjc2beWK1XvXqnFqzTh0OGi+/DAQFGS6Du7vyXYREvOr833/zFhFhqJE+8wzntyyoQgWuoEdE8PeUf1t3hZMpccCbNWtWsQHm+PHjaNu2bakLpSnwl0REJvv0pk2bhsmTJ+c9Tk1NRfXq1Ut9biFszsODA1zt2jy6s6DRo3mzRLduvNmAuzvH4UaNgBEjeJ9OZzwfPyyMa4Pnz3OQSUzk7Zdf+Pn8tcd33+Xuzgce4Mqxvz8P59dvb73FCXEA4NgxbmZ0c+PAo/+Zm8tryo0cyUEK4JwB27bx9wh9kMvIMJw3Pt4wGb9uXf7naNCAR7G2a8ezL1q3lukErqDEAW/8+PEYNmxYkcfULGUqh5CQEABc0wvNN5w7JSXFpNan5+3tDW99GnkhhF0VTD4zdixvADcLnj/PW3w8Z2rLv1rT1avcRPrnn7wV9Oqrht83bgQ+/rjwcjz6qCHgnTnDNc2Cqlblhdbv3TPse+MNbhGWW4prKnHACwwMRKBCQ49q1aqFkJAQ7NmzB61atQLAIz2joqKwYMECRc4phLCNKlV43bfClsBbsYJredeuAbdv89z+1FT+qdUaz2Nr3JizyOhbd/UpPd3dOdDlr43168fjcipX5ibVatU40Pr4mJZBHySFa1K0Dy8hIQG3bt1CQkICcnNzERsbCwCoW7cuyv87qqxhw4aYN28eBg0aBI1Gg0mTJmHu3LmoV68e6tWrh7lz58LX1xfD9f0dQgiX5OvLa/HWq1f8sSVp5e3UiTchFA14M2bMwNq1a/Me62tt+/btQ7d/+xnOnz8PrT5NE4ApU6bg/v37eOWVV/Imnu/evRsV5KuXEEKIMpDUYkIIIRyKU2ZaEUIIIRyFBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKkjAE0IIoQoS8IQQQqiCBDwhhBCqIAFPCCGEKiga8ObMmYPOnTvD19cXFStWtOg1o0aNgkajMdo6duyoZDGFEEKogKIBLysrC0OGDMHYsWNL9LpevXohKSkpb9u5c6dCJRRCCKEWHkq++ezZswEAa9asKdHrvL29ERISokCJhBBCqJVD9uHt378fQUFBqF+/PkaPHo2UlJRCj83MzERqaqrRJoQQQhTkcAGvd+/e+Oabb7B3714sXrwYx48fR48ePZCZmWn2+Hnz5iEgICBvq169uo1LLIQQwhmUOODNmjXLZFBJwe3EiROlLtDQoUPRt29fNG3aFP3798fPP/+MCxcuYMeOHWaPnzZtGrRabd6WmJhY6nMLIYRwXSXuwxs/fjyGDRtW5DE1a9YsbXlMhIaGIjw8HH/++afZ5729veHt7W218wkhhHBNJQ54gYGBCAwMVKIsZt28eROJiYkIDQ212TmFEEK4HkX78BISEhAbG4uEhATk5uYiNjYWsbGxuHv3bt4xDRs2xLZt2wAAd+/exRtvvIHo6GhcvnwZ+/fvR//+/REYGIhBgwYpWVQhhBAuTtFpCTNmzMDatWvzHrdq1QoAsG/fPnTr1g0AcP78eWi1WgCAu7s7Tp8+jXXr1uHOnTsIDQ1F9+7dsWnTJlSoUEHJogohhHBxGiIiexfCmlJTUxEQEACtVgt/f397F0cIIUQJKXUfd7hpCUIIIYQSJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFWQgCeEEEIVJOAJIYRQBQl4QgghVEECnhBCCFVQLOBdvnwZL7zwAmrVqoVy5cqhTp06mDlzJrKysop8HRFh1qxZCAsLQ7ly5dCtWzecPXtWqWIKIYRQCcUC3rlz56DT6bBy5UqcPXsWH330EVasWIG33367yNctXLgQH374IZYsWYLjx48jJCQEjz76KNLS0pQqqhBCCBXQEBHZ6mSLFi3C8uXLcenSJbPPExHCwsIwadIkvPXWWwCAzMxMBAcHY8GCBXj55ZdNXpOZmYnMzMy8x1qtFjVq1EBiYiL8/f2V+SBCCCEUk5qaiurVq+POnTsICAiw2vt6WO2dLKDValG5cuVCn4+Pj0dycjIiIiLy9nl7e6Nr1644cuSI2YA3b948zJ4922R/9erVrVNoIYQQdnHz5k3nDHgXL17EZ599hsWLFxd6THJyMgAgODjYaH9wcDCuXLli9jXTpk3D5MmT8x7fuXMH4eHhSEhIsOqFsgX9txpnq51KuW1Lym17zlp2Zy23vqWuqApSaZQ44M2aNctsjSq/48ePo23btnmPr127hl69emHIkCF48cUXiz2HRqMxekxEJvv0vL294e3tbbI/ICDAqf6B8/P393fKsku5bUvKbXvOWnZnLbebm3WHmZQ44I0fPx7Dhg0r8piaNWvm/X7t2jV0794dnTp1wueff17k60JCQgBwTS80NDRvf0pKikmtTwghhCiJEge8wMBABAYGWnTs1atX0b17d7Rp0warV68uNlrXqlULISEh2LNnD1q1agUAyMrKQlRUFBYsWFDSogohhBB5FJuWcO3aNXTr1g3Vq1fHBx98gOvXryM5OTmvn06vYcOG2LZtGwBuypw0aRLmzp2Lbdu24cyZMxg1ahR8fX0xfPhwi87r7e2NmTNnmm3mdHTOWnYpt21JuW3PWcsu5Tam2LSENWvW4LnnnjP7XP5TajQarF69GqNGjcp7bvbs2Vi5ciVu376NDh06YOnSpWjatKkSxRRCCKESNp2HJ4QQQtiL5NIUQgihChLwhBBCqIIEPCGEEKogAU8IIYQqOH3Ac+ZliObMmYPOnTvD19cXFStWtOg1o0aNgkajMdo6duyobEELKE25HeF6A8Dt27cxcuRIBAQEICAgACNHjsSdO3eKfI09rvmyZctQq1Yt+Pj4oE2bNjh48GCRx0dFRaFNmzbw8fFB7dq1sWLFCkXLV5iSlHv//v0m11Wj0eDcuXM2LDFw4MAB9O/fH2FhYdBoNPjhhx+KfY0jXO+SlttRrve8efPQrl07VKhQAUFBQRg4cCDOnz9f7Ouscc2dPuA58zJEWVlZGDJkCMaOHVui1/Xq1QtJSUl5286dOxUqoXmlKbcjXG8AGD58OGJjY7Fr1y7s2rULsbGxGDlyZLGvs+U137RpEyZNmoTp06cjJiYGXbp0Qe/evZGQkGD2+Pj4ePTp0wddunRBTEwM3n77bUycOBFbtmxRrIzWKLfe+fPnja5tvXr1bFRilp6ejhYtWmDJkiUWHe8o17uk5daz9/WOiorCuHHjcPToUezZswc5OTmIiIhAenp6oa+x2jUnF7Rw4UKqVatWoc/rdDoKCQmh+fPn5+3LyMiggIAAWrFihS2KaGT16tUUEBBg0bGRkZE0YMAARctjKUvL7SjXOy4ujgDQ0aNH8/ZFR0cTADp37lyhr7P1NW/fvj2NGTPGaF/Dhg1p6tSpZo+fMmUKNWzY0Gjfyy+/TB07dlSsjOaUtNz79u0jAHT79m0blM4yAGjbtm1FHuMo1zs/S8rtiNebiCglJYUAUFRUVKHHWOuaO30Nz5yyLkPk6Pbv34+goCDUr18fo0ePRkpKir2LVCRHud7R0dEICAhAhw4d8vZ17NgRAQEBxZbDVtc8KysLJ0+eNLpWABAREVFoGaOjo02Of+yxx3DixAlkZ2crUs6CSlNuvVatWiE0NBQ9e/bEvn37lCymVTjC9S4LR7veWq0WAIq8Z1vrmrtcwNMvQzRmzJhCjylqGaKCqc8cTe/evfHNN99g7969WLx4MY4fP44ePXoYLYLraBzleicnJyMoKMhkf1BQUJHlsOU1v3HjBnJzc0t0rZKTk80en5OTgxs3bli9jOaUptyhoaH4/PPPsWXLFmzduhUNGjRAz549ceDAAVsUudQc4XqXhiNebyLC5MmT8dBDDxWZTcta19xhA96sWbPMdrDm306cOGH0GiWXIVKy3CUxdOhQ9O3bF02bNkX//v3x888/48KFC9ixY4dDlxtQ5noDJSu7ufMVVw6lrnlRSnqtzB1vbr/SSlLuBg0aYPTo0WjdujU6deqEZcuWoW/fvvjggw9sUdQycZTrXRKOeL3Hjx+PU6dO4dtvvy32WGtcc5uueF4SzroMUUnLXVahoaEIDw/Hn3/+Wab3UbLcSi/7ZGnZT506hX/++cfkuevXr5eoHNa65uYEBgbC3d3dpFZU1LUKCQkxe7yHhweqVKli9TKaU5pym9OxY0esX7/e2sWzKke43tZiz+s9YcIEbN++HQcOHEC1atWKPNZa19xhA56zLkNUknJbw82bN5GYmGgUSEpDyXIrveyTpWXv1KkTtFotfv31V7Rv3x4AcOzYMWi1WnTu3Nni81nrmpvj5eWFNm3aYM+ePRg0aFDe/j179mDAgAFmX9OpUyf8+OOPRvt2796Ntm3bwtPT0+plNKc05TYnJiZGketqTY5wva3FHtebiDBhwgRs27YN+/fvR61atYp9jdWueYmGuDigq1evUt26dalHjx70999/U1JSUt6WX4MGDWjr1q15j+fPn08BAQG0detWOn36ND399NMUGhpKqampNiv7lStXKCYmhmbPnk3ly5enmJgYiomJobS0NLPlTktLo9dff52OHDlC8fHxtG/fPurUqRM98MADDl1uIse43kREvXr1oubNm1N0dDRFR0dTs2bNqF+/fkbH2Puab9y4kTw9PWnVqlUUFxdHkyZNIj8/P7p8+TIREU2dOpVGjhyZd/ylS5fI19eXXnvtNYqLi6NVq1aRp6cnff/994qUz1rl/uijj2jbtm104cIFOnPmDE2dOpUA0JYtW2xa7rS0tLy/YQD04YcfUkxMDF25csVsuR3lepe03I5yvceOHUsBAQG0f/9+o/v1vXv38o5R6po7fcBbvXo1ATC75QeAVq9enfdYp9PRzJkzKSQkhLy9venhhx+m06dP27TskZGRZsu9b98+s+W+d+8eRUREUNWqVcnT05Nq1KhBkZGRlJCQ4NDlJnKM601EdPPmTRoxYgRVqFCBKlSoQCNGjDAZpu0I13zp0qUUHh5OXl5e1Lp1a6Mh25GRkdS1a1ej4/fv30+tWrUiLy8vqlmzJi1fvlzR8hWmJOVesGAB1alTh3x8fKhSpUr00EMP0Y4dO2xeZv1w/YJbZGSk2XITOcb1Lmm5HeV6F3a/zn+/UOqay/JAQgghVMFhR2kKIYQQ1iQBTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEKEvCEEEKoggQ8IYQQqiABTwghhCpIwBNCCKEK/w+UP1JIgFnOEwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGiCAYAAACcbHM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnE0lEQVR4nO3deVhU5RcH8O+wiwsuyKIioLlr7oqWu5FrbpmmGbaYmvuSuVRqpaZpmWWa/VxL00wx97QE3LDUMBcUNxRccEEZBGSd9/fHcRiGGWAG5s52z+d55oG5c+/clwvcM+92XoUQQoAxxhizcw6WLgBjjDFmDhzwGGOMyQIHPMYYY7LAAY8xxpgscMBjjDEmCxzwGGOMyQIHPMYYY7LAAY8xxpgscMBjjDEmCxzwGGOMyYKkAW/BggVo2bIlypYtCy8vL/Tt2xcxMTFFHhcREYHmzZvDzc0NNWrUwMqVK6UsJmOMMRmQNOBFRERgzJgxOHHiBA4ePIjs7GwEBwcjNTW1wGNiY2PRo0cPtGvXDlFRUZg5cybGjx+Pbdu2SVlUxhhjdk5hzuTRDx48gJeXFyIiItC+fXu9+3z44YfYuXMnLl68mLtt1KhR+O+//xAZGWmuojLGGLMzTuY8mVKpBABUrFixwH0iIyMRHByste3ll1/G6tWrkZWVBWdnZ63XMjIykJGRkftcpVLh0aNHqFSpEhQKhQlLzxhjzByEEHjy5AmqVKkCBwfTNUSaLeAJITB58mS8+OKLaNiwYYH7JSQkwNvbW2ubt7c3srOz8fDhQ/j6+mq9tmDBAsydO1eSMjPGGLOc+Ph4VKtWzWTvZ7aAN3bsWJw9exZHjx4tct/8NTN1q6u+GtuMGTMwefLk3OdKpRLVq1dHfHw8ypUrV8JSM8YYM7fk5GT4+fmhbNmyJn1fswS8cePGYefOnTh8+HCR0drHxwcJCQla2+7fvw8nJydUqlRJZ39XV1e4urrqbC9XrhwHPMYYs2Gm7paSdJSmEAJjx47F9u3bcejQIQQGBhZ5TJs2bXDw4EGtbQcOHECLFi10+u8YY4wxQ0ka8MaMGYOff/4ZmzZtQtmyZZGQkICEhAQ8ffo0d58ZM2bgzTffzH0+atQo3Lx5E5MnT8bFixexZs0arF69GlOnTpWyqIwxxuycpAFvxYoVUCqV6NixI3x9fXMfW7Zsyd3n7t27iIuLy30eGBiIvXv3Ijw8HE2aNMFnn32GZcuWYcCAAVIWlTHGmJ0z6zw8c0hOToaHhweUSiX34THGmA2S6j7OuTQZY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxwwGOMMSYLHPAYY4zJAgc8xhhjssABjzHGmCxIGvAOHz6M3r17o0qVKlAoFNixY0eh+4eHh0OhUOg8Ll26JGUxGWOMyYCTlG+empqKxo0b46233sKAAQMMPi4mJgblypXLfV65cmUpiscYY0xGJA143bt3R/fu3Y0+zsvLC+XLlzd9gRhjjMmWVfbhNW3aFL6+vujSpQvCwsIK3TcjIwPJyclaD8YYYyw/qwp4vr6+WLVqFbZt24bt27ejTp066NKlCw4fPlzgMQsWLICHh0fuw8/Pz4wlZowxZisUQghhlhMpFAgNDUXfvn2NOq53795QKBTYuXOn3tczMjKQkZGR+zw5ORl+fn5QKpVa/YCMMcZsQ3JyMjw8PEx+H7eqGp4+QUFBuHLlSoGvu7q6oly5cloPxhhjLD+rD3hRUVHw9fW1dDEYY4zZOElHaaakpODq1au5z2NjY3HmzBlUrFgR1atXx4wZM3D79m1s2LABALB06VIEBASgQYMGyMzMxM8//4xt27Zh27ZtUhaTMcaYDEga8E6dOoVOnTrlPp88eTIAICQkBOvWrcPdu3cRFxeX+3pmZiamTp2K27dvo1SpUmjQoAH27NmDHj16SFlMxhhjMmC2QSvmIlVnJ2OMMfOQ7aAVxhhjzBQ44DHGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBY44DHGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBY44DHGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBY44DHGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBY44DHGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBY44DHGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBY44DHGGJMFDniMMcZkgQMeY4wxWeCAx5iVOn4ccHQEunWzdEkYsw8c8BizUmvWAOPGAUePAnFxli4NY7aPAx5jVig1Ffj1V2D0aKBXL2DdOtrepg0wfbr2vg8eAM7OQFiY2YvJmE3hgMeYFdqyBahThx5vvAGsXQsIAQwdCvzyC32fd19vb6BDB8uVlzFbwAGPMSu0ejUFOoD68FJSgL/+AgYNAu7coWZOtU2bgCFDAAf+b2asUPwvwpiViYkB/vkHGDyYnjs5UaBbswaoXBl46SVg40Z6LTYWiIykmh8A7NgBDBhAQbJjR+DmTUv8BIxZJw54jFmZ1auB7GygalUKdk5OwIoVwPbtwOPHFNx++w3IyqLaXYMGQOPGdOwrrwDbtgH791Nz6O7dlv1ZGLMmTlK++eHDh/Hll1/i9OnTuHv3LkJDQ9G3b99Cj4mIiMDkyZNx4cIFVKlSBdOmTcOoUaOkLCYzs4wM4PZt4N49ICFB80hMBJ4+BYYPB9q1o30jI4GJEykAODvrPkaMAPr0oX3v3aOaT8WK2o8qVQAPD0ChsNRPbLjsbGDDBmDJEiA4WPu1AQPo53vrLWDkSApqmzYBw4Zp9lE3a/7xB9UUv/7afGVnzNpJGvBSU1PRuHFjvPXWWxgwYECR+8fGxqJHjx4YMWIEfv75Zxw7dgzvv/8+KleubNDxzHpkZwPXrgGXLgEXL9JIw4YN6bVdu4CBAws+tlUrTcBLS6PmvYK89JLm+ytXgClT9O9XtiwwZw4weTI9f/wY2LsX8PcH6tUDKlUy+EeT1O7dVLZ33qEgnderr1Ltb+xYCvIff0zXdsgQ7f2WLQOOHaP3cnc3X9kZs3aSBrzu3buje/fuBu+/cuVKVK9eHUuXLgUA1KtXD6dOncLixYs54Fm5pCTgzz/pRnvsGHDmDDW5qZUpowl4Pj6Amxvg60vf+/jQKENPT7pBt2qlOa5xY2DnTmrWy8rSfbRurdnXw4Nu/o8eaR6JiRRAnjwBSpXS7HvhgmZQCEB9Y/XrU/CrX58Cad26Ulypwq1eDXTtqhvsAKrhzZ8P/PsvNWv27Am0bw9Ur67ZZ8UKmrbQuTP1AfbvD7z9tvnKz5g1kzTgGSsyMhLB+dpxXn75ZaxevRpZWVlwdnbWOSYjIwMZGRm5z5OTkyUvJ6O5X1lZ1FwIAGfP6tba3N0paNSrBzz3nGb7Cy9Qzc2QJkZPT6B3b8PK1KiRZjBHXmlpNHE7by3O0RHo1IlqoXFx9PNERNADAJYv1wS869cpELVsCbRoQX1rJm0effCARpfcuYNdoxwpkqn17w/cuAGkpaFZWhpEpTSg3VPAyQmiZR0gIk/19/XXMfrhQ4zu50WfILy8AHgB+6sAtWsDgYG20a7LmESsKuAlJCTA29tba5u3tzeys7Px8OFD+Pr66hyzYMECzJ0711xFlLUbN4CtW2lQxD//ABMmaPqIWrYEmjenGtcLL9AEaX9//UPlzX3PVQfevNq0AQ4dou9TUjRNr9HR9LV5c82+ERFUs1Lz8dEEv6Ag+nlLlzaiQD/+SFXgCxfo8fCh5rXGjbUD3vnz1Farz5Mn2s/PnaP308fTkwKr2tq1gIsL/QA1anAgZLJgVQEPABT5/vHEsxm2+berzZgxA5PVHTOgGp6fn590BZSZpCRg82bK9PH339qv5U13VaoUcOqUOUtmOmXKUPBq0UL/6889R82Cp05RPElIoH7IXbvo9R07NANnEhNpME25cqALdOwYBZrx4zVv+PXXFFXzqlKFqo7162tv//576hB1d6dH6dLUHpyToxukVqygmuL9+zSC5/59esTFUY0vr88/p6orQMGwdWt6BAUBbdsaGcEZsw1WFfB8fHyQkJCgte3+/ftwcnJCpQJGFbi6usLV1dUcxZMdlYoqHOrA5uBAc7sGDqRmxqpVLVo8s2nXTnsQzZkzwMmT9IiM1LyGtDQsfT8e87fWQjOnc+iYdQAdEY6O7idR+v33qSMSAN58kzoWGzSgR926BQeYrl2LV9D88qZmEYJqkSdPUofgw4fAnj30AKht+OxZw8/LmI2wqoDXpk0b7FJ/bH7mwIEDaNGihd7+O2ZaQgBHjtA9U6GgANe/P3DwINVwhg7VrSjIjbs7VYDats33wvTpwDff4Er6WqhQB6eyGuMUGmMxPoBrRhY6dgN6vELTKErlT4ZpDnlrgwoFDeUEaI7If/8BJ05QFf7YMRrxopaRATRrRqNjBg2ir5zShdkqIaEnT56IqKgoERUVJQCIr776SkRFRYmbN28KIYSYPn26GDZsWO7+169fF+7u7mLSpEkiOjparF69Wjg7O4vffvvN4HMqlUoBQCiVSpP/PPZKpRJi1y4hmjUTAhDi4EHNa0+f0ussj9RUITZuFCIlRbNtwQK6eP7+In74R+LnD86Id4dnCn9/2gwIUb68EFlZmkOio4VISzN76QunUgmRnq55/uefmh8AEKJqVSGmThXi33/5D4NJRqr7uKQBLywsTADQeYSEhAghhAgJCREdOnTQOiY8PFw0bdpUuLi4iICAALFixQqjzskBzzgnTwrRoYPmfla6tBA//GDpUlkhlUqIiAgh3n5biLJl6WL99JPm9bt3hTh7VicIqFQU2BYvFuLzz7W3+/sL4e4uxIABQvzyixDJyeb5UYySlibE3r1CvPsuRey8wa9ePSH++MPSJWR2SKr7uEKIvI37ti85ORkeHh5QKpUoV66cpYtjtR49AmbOBFatoruXqyuNuvzgAxrDwJ5JT6e5Dl9/rT0CMjAQ+PRT7cl8Rrh3j0aC3r6t2ebmRjkwX32VJurrm4tnURkZwL59dD127aLnZ89Snx8AZGbSyE/GSkiq+zgHPBkSAmjSRDMu4Y03gHnztCcwM9Cngnr1aKQjQMM5X3sNCAkBXnyxxH1ZQtCYkW3baLrH1aua1957D/jhhxK9vbSSk4HwcEreqRYSQtmsJ0wA+vXjvj5WbFLdx/kvUoYUCppXVr8+zTH76ScOdrnS0jTfV6wIPP884OcHLF4M3LpFM9BNNHBDoaBa3vz5wOXLNHakWjV6zctLs9/p05Q1Ze9emqFgFcqV0w52KSkUuY8coSrq889TFFepLFdGxvLhgCcT584BBw5onvfsSTW89u0tVyar8uABJdr086OJdmobNlA6lilTJG1jVCjoA4h6bviuXZqZBOvW0SKvPXtSQJw8maZGWFXbTJkylK161iy6ThcuUG24SRMKhFIGvh9+oDky+c/xyitU62RMzaQ9glaAB63o2rpViFKlhPDwEOLqVUuXxsokJQnx8cdClCmjGYzx1VcWKcq//2qPCQkLo+1nzggxYYIQlStrv96okRBffkkjaa3K48dCzJ4tRLlymsJ+/bV050tMFMLFhUaUqj16RNt4UI1Nkuo+zjU8OyYEsHAhTRR/+pQSaVjdQAhLUamA//0PqFkT+OwzapJr3pzW3Jk40SJFOnFCM13O0RFYsIC+b9wYWLqUBrjs2kUthi4uVGv/+mvK7GJVypenpSlu3AA++YSqpW++qXnd1FXTihVptM+mTZptW7fS9i5dTHsuZttMGj6tANfwiEolxJQpmg/Y48cLkZ1t6VJZiexsIdq101ycunWF2LbN4vPK3nxTCCcn7VrcuXP69330SIiVK+mhlpUlROfOQixZQpUeq5F38qFKJUSPHkJ89JH2PMaS2rKFmjDUcwjbtxdi4kT6fuZMmnuTbwoUs142OQ/PEjjg0T1lzBjztCbZrMmTqRlzyRIhMjMtXRohhBCBgdrBzsmJgqChdu7UHOvqSsceP27xOK7t0CFNIatVo4wHppCWRvMjt20TIi5OCIVCiFOnNK+HhXHAsyHcpMkMtno1LW+jUFBifgu10FmXffu0x/3PmUNLJEyebBVtgo8e0Yj+vLKzqZUu71y9wnTsSOM3mjShKXIbNlAKtGbN6PvMTFOXuhg6dgS2bwcCAmjUa+/etMR9UlLJ3rdUKcqDt3Ej8MsvtBxS3iUvGAOP0rRLb7wB9O1LN79337V0aSwsNRV4/32gRw9g2DDNuP6yZa0q+3VBq7oLAXzzjWHvUbYszd/791/qDxw+nCaznzlDgxVPnzZVaUtAoaA5etHRwNSp9Hz9elodeP/+kr330KGUAHvNmmInBGB2zqT1RSvATZrEqpqxLOXECSFq1dI0oU2YoJ0n0orMnq3bf5c33Vtx/5wTE4X44gsh+vfX3v7rr0JcvlziYpfc0aOa31Ht2iVrXs7OFsLXl97r2jXN9m++EeKFF4SoVEmIPn0oDRyzapxazEByzbQSG0stOdOnc4ILqFSUOmbuXFo3rmpVmsxmzFI7ZvbSS8Bff+kfwKhQAIsWUYXIFB4/poGTT5/SVLUpUyhxjMXWgE1Lo/l7r71GK/My2eNMK6xAWVnAkCF0z5D94u/JybQa6yefULB7/XUav2/FwU6lopV5CvroKQQlejFVH1xSEq0AJATw+++UfKB9e+CPPyw0md3dneZX5A12a9cCv/5qgcIwe8YBzw7Mn099Nh4ewFtvWbo0xWSqbBnOzjTKw9WVbpqbNgEVKpi2rCZ2+TLw5Enh+9y7RyvPm0JgIM3nu3iR+vxcXYGjR2kqW+vW1OdnURcuAKNG0fp7EyZYyWgbZg844Nm46GhqvQOAlStp8JtNGjiQVt4OC9Nse/yYqh1Dhxr+PqVK0SjAY8do1IYN+PvvovdxcAC++MK0NbC6delzxvXrNJK3VCkKdpUqme4cxVKnDo2eBWih2s6d6W+DsRLigGfDhABGj6Ymzd696QOxzSputgwhKFPKp59qtgUE2NSQ9BMnip4ZoVJRjeyPP0x//ipVqEXxxg2qRfr5aV6bPJlG+ufkmP68BXJyojQzO3dSs8WxYzS/4to1MxaC2SWTDoGxAnIapRkaSgPS3NyEeLaIvG0rKFtGcjKNruvbl5Zl37CBXs/OFmL0aLoICoUQFy5YquQl0qCB/tGZ+R+OjuadOx0VpTl3/fr092b20b8XLgjh7U2FqFSJRt4yu8cTz5kWlYpGZAI0ys4ulvfp3Zt+sD17gPh4WmrmjTcoE39oKD2++46audLTqUq7YgUNL1y2jJYbsDGpqVRzK4iDA9X+HByolnXxovmWCAoMBD7/nLpAo6Np+lybNsChQ+Y5P27dogQB9+7R88TEks/VY/Jm0vBpBeRUwzt+XIhBg4o/R8sqhYTQpLGFC4WoU0f7tYcPqYqzezd9BSgj/q+/WqCgpnHpElVO86cUU3/v7CxEy5aUHs5Sc+ceP6Z0lO7umnJ17SpEfLxEJ0xPF2LePGq6cHSkE3p6Uho4nmAqC5xL00ByCnh26cABSgRZp44Qn32m2X72LAW5gwepWROg3ImHDlmsqKZy8CCllPz3XyE+/FA74Dk6CvHGG5YuIbl7V4ixYykI+/oKkZoqwUl27xbC31/7U4CjI83Mzys9XYj9+yUoALMG3KTJ5KFzZxqoEhNDkwsBasoKCqJmzKlTKXdW5crA4cNAp06WLa8JdO0K9OoFNG0K1Kun3WSZkwPcvGm5suXl4wN8+y39an76iabPAdQKvWCBZvHaYrl6ldK/9epFzdl5h6MKQfMn1DIzgQEDgO7dKXEsYwbigGeDJkygx40bli6JBBwdgTt36CZXowZtq1SJOrtOnKBx899+S2lJmjSxZEklUa2a7ra4OPOXozCBgdoDZzduBGbOBGrVAr76yshpc6mpwIwZFOkPHKBteediOjlRYtgqVTTbnJ3pb0MIShb7448l+XGYjHDAszFpafShdtky4O5dS5fGTFJTtWdmjx0LNGpkufJISF8+64QEC2VAMVCNGvTZQ6mkAVQNGtCMgkLLLATNgahZk/KmZWfrn/uQnQ2MG6e9TaGgjNoTJtDz996j5SAYKwIHPBuzbx/d/wMCqJXP7mVl0fDAl1+mO6qd0xfwMjJKvnqOlF54ATh1ihaQ9/am1sk+fYDgYMrqpuPsWcpl9vrrwP37utl18qpdG+jQQXe7QkGTB9VB7513NDVExgrAAc/G7NhBX1991YLJfs1FPbP+4EG6Scpg4nHZskDp0rrbb90yf1mM4ehIMefyZZou4+IC/PknMGJEnpre48dUW2vSBIiMpG2FVQMVCmD8+IL/0BUKakMdOpRqggMGUP8uYwXggGdDVCq69wNAz56WLYtZfPEFtd8qFMD339NKpjLg66u7zdBFYC2tXDkawHLpEn0oW7xYE6+yp3wI8d13FOQMSd3i6kprGBbGwYHWv+vcmb5PTi75D8HsFgc8G3LhAs3BLV2aMi3ZtS1baCQEQDfIt96iT/Dh4dbdoWUC/v6622wl4KkFBlJmuBdf1Gyb93QSOioiEK1oUPQbODlR0nBDloZxcdHkT+3YsdhlZvaPA54NOXGCvgYF0f+43Tp+XLNCQu/e9FWlopEQnTpR1uPly+3203z16nS/V3Nysv4mzaKkpgLLDtTDYdEejUUUZii+QBpKFXxAdjYwZozhJ/DwoFXT1e7cKbxvkMkSBzwbU7MmLeFit3JygLffppEaffrQJ/eXXqK7vnqC2pUr1Bfk40N9fOfPW7bMJla1qm63la3V8PIrXZq61/q8IpANZ3whPkR9RGM39LTNOzhQE0ZxR+IePEjHfvZZyQrN7A4HPBsyYgSNgLPr/2NHR6rJvfYa8PPPFOi++057H3UOjqdPaWhgo0Y0VHDLFrtYO61aNe3J59nZNBfb1vlXF9hRfTx+Rx9Ux03cRAB6Yzf6YxsS4K3ZUaWiwSrFdecO8OgRrYa8b1/JC87sBgc8G+Rg77+12rUpeJUpo3k+ebL+H1wdGf7+Gxg8mKpHn3xi022AVavqdlNaS7aVEvnmG+C77/AKdiIa9TENC+GELOxDdyQjT19dpUo0FaW4QkJoAVkhaARnbGzJy87sgr3fOpmtCA/XXvw1v48/Bjw9Cx6irh719/AhLQHv7083zb/+srlBLvrm4tl6kya2b9cs6gqgNNKwENNxGs2xpv4S1MYVesHRESnvTCh5J/XSpUCrVjQVYuBAms/JZI8Dno04d466rLp2tXRJJHD/Pi3107UrsHu3/n3KlKGJxoYEr5wcahbbtYve09pycxVBX3qx5GRqwbVJf/9Nk8zzUyjw/LiOeP3CRzTtRKHAMVUb+K+aibVrS/g5xdUV+O03yst6+jStc8RkjwOejbh9m6YklChBr7UaM4aCXv36ha9u/vrrNJjB0dHw927UiJrIbIinp/4V0G2ylnftGiV5zsnRjmAODpQo+uuv6fno0UBYGL7v8hseJTni7bcpl3SJ+i79/CiQAsC8eZQOhskaBzwb8fgxfbWxe3fRtm6lT+JOTpQPsVQhQ9XVE9ANGW7u6Ah4edGCoeq+QBuhUFDR87O5gPfoEeUXS07Wnmju6EjZVjZv1v7w0qED1u/zxsKFVEHbv5/ycq5fX4La3qBB1Lf7zjtAnTol+WmYHeCAZyNSU+mrjd27C/fggWau1fTptD5OURo3ptpAUbW8nByqQehLW2ID/Px0t9nUOJz0dJpDefOmbrCrUgXYu1ezvlAeTk7AtGm0KEZQEOUMHz6cYpb6Q5/Rfv4Z+OEHytvGZI0Dno1IS6Oveu4Rtmv8eAp6DRsCH31k+HGffWbYzevHHyk1lQ1OVQgI0B6U6uhoQzU8lYpGSp44oR3sHBzoD/jAAcoyXYi6dYGjR6kl0skJ+PVXTR5Zo+X9cCQE1TyZLJkl4H3//fcIDAyEm5sbmjdvjiNHjhS4b3h4OBQKhc7j0qVL5iiq1bObhNFhYZomrbVrqQ3LUBUrAgsXGrbvL7/QwJViVw8so2pV7fu0g4MN1fBmzaIIlb/p2cGBBhLVrWvQ2zg6Una548fps9Hw4SUs140blMQgONiwXJ7M7kge8LZs2YKJEydi1qxZiIqKQrt27dC9e3fEFTFyLiYmBnfv3s191KpVS+qiWjV1oLObbEkdOlDnzPz5QIsWxh//zjvA88/rNm3mn6unUtEds3Vrm1oxt1o17XtydraNBLxVqyjptz7r1+tf6qcILVvSFD71/4BSSWlVL1828o1KlaKBK6dPU8ICJj9CYq1atRKjRo3S2la3bl0xffp0vfuHhYUJAOLx48cGvX96erpQKpW5j/j4eAFAKJXKkhbdqvz8sxB16woxdaqlS2JFjh9X51wRwsFBiCFDhBg2TLMt78PJSYhKlYQ4edLSpTbIr7/q/ghNm1q6VEXYt49+D/qu/+efm+w0I0fSW7q7C7F6tZEHf/MNHVyxohAPH5qsTMy0lEqlJPdxSQNeRkaGcHR0FNu3b9faPn78eNG+fXu9x6gDXkBAgPDx8RGdO3cWhw4dKvAcs2fPFgB0HvYW8OzGo0dCPHliuvd78026gbVvL0RGhhAqlRCzZ+u/6To6CuHmJsTOnaY7v0TyxnL1w8vL0qUqRFSUEKVKCaFQaBdaoRDi7bfp92Ii8fFCdO6sOcXw4UKkphp4cFaWEI0a0YEjR5qsTMy0bDLg3b59WwAQx44d09o+b948Ubt2bb3HXLp0SaxatUqcPn1aHD9+XIwePVooFAoRERGhd3+51PDsxogRQlSpIsSePaZ5v4cPhVi/ngJpXuvWUYDLX+NQKOjx7bemOb9Ebt7UDXgODnS/tjrx8RSNHR11P2B06SJEZqbJT5mTI8S8eZpfb6NGQsTEGHhwRITmb+HsWZOXjZWcTQe848ePa23//PPPRZ06dQx+n169eonevXsbtK9UF4qZwH//aWoAR49Kf74//xSiTBndG7H6MWkS3TmtUGambmUJEOLWLUuXLB+lUoj69fUHu3r16HUJHTokhLc3nbJsWXpukFdfpYP69ZO0fKx4pLqPSzpoxdPTE46OjkhISNDafv/+fXgXMSw5r6CgIFy5csXUxbMpSUm04HeVKtqZ9G3Kp5/S7XDgQFrdQGpdutDQeG9v7QXm1JYupdEPVpizy9mZBqPmZ1UDV7KygP79gZgY3bl2lSrR9ANDFnAtgU6dgKgooH17OlXeJfEKNXcujYI5f54m+zFZkDTgubi4oHnz5jh48KDW9oMHD6KtEUt2R0VFwddGJxCbStmy9L959y6tfmJzzp8Htm2jm8zs2eY7b4MGNDKvfn3dEZ1C0FJEHTpQajMroy+nptXMxROCViQ4dEg72CkUlPj5jz/0/wAS8PWlHOEREUDlyprthc5EqV+fyh4dzRPSZUTyaQmTJ0/G//73P6xZswYXL17EpEmTEBcXh1GjRgEAZsyYgTfffDN3/6VLl2LHjh24cuUKLly4gBkzZmDbtm0YO3as1EW1ao6OQI0a9L1NVnbVyXtffZWCkDn5+gLHjtH8q/wTGVUqWpm0ZctijHOXlr+/9nOrmos3fz6wZo1uzi+FglZGaNLErMVxcqLFkdV++okyiR09WshBHTvqr/kzuyV5wBs0aBCWLl2KTz/9FE2aNMHhw4exd+9e+D/7b757967WnLzMzExMnToVzz//PNq1a4ejR49iz5496N+/v9RFtXq1a9PXmBjLlsNoFy/SRGTAuIwqplSmDNXmRo7UfS0nh6pOrVoBhSRFMDc/P+0k0laTbWXjxoJ/jytXAt26mbc8+QhB0wEfPAA6dzZgyl1mJq2SzuyfSXsErYA9D1qZNo362UePtnRJjLR4sfUMEFCphPjyS80ovfzDIJ2chNi82dKlFEIIMX8+FSfvOJAhQyxcqPBw7ULlfRQwt9YSUlOFeO01TdHGjStghGtqqhDVqtFO58+bvZxMP5sctMJMS51b+d9/LVsOo02ZQv1o8+dbuiTU5DZ1KtU4nZy0M7OoVDQiaPBgSl1m4YVjq1XTHqCUk2Phpf0uXqSE0PpShr32GiW+tBLu7pS57rPP6Pm331LFUyeNprs71ewBYNkys5aRmR8HPBvSrBl9/e8/G1zAuXlzg3MomsXAgbTKerly+vtxpk+n5k8LDonVt/L5zZvmLwcAWowxOJiymOcNeI6OtKzBhg26ad0sTKGgltft24HSpWlgS+vWQEpKvh0nTqSvGzYAiYnmLiYzI+v6C2WFeu456ojv0YOmKVi9rCzrXrG2bVvg5EmqSulbbuh//6OLbaFh6/oGOd67Z4GKZ1oaXYe7d3WnH/j7U9+oMcm/zaxfPyAyklagGDxYzxJbL75IzSfp6bTCBrNbHPBsiIMDcOkSje7PO/zaaoWG0l17yhRLl6Rgzz1HQa9FC90aihA0dL1tW4uMFtFXw8vMNPPqNjk5FCXOnNENduXK0WAPG1iVuFEj6gqYO1ezLXfVKIVCU8v77jsbbD5hhuKAx6SzfDndVUqXtnRJCufpSc2b/frpvpaTQ31XLVoAZ8+atVilS+tf8NessXfyZGD3bu1mTIWCAt7evZq5MjagQgXNZ5q0NJqVMGfOsxrzoEG0zPzt2zSHkNklDng2SAiq6Vn1B9GYGODwYboxvveepUtTNDc3Gsgydaruazk51DTbpg1lDzEjffkWzDYX75tvaCCHvjbUzZup785G/f47NXPOnUsrTWU5uAJDhtCLhU7eY7aMA54Nat0aqFePlnmzWps309fgYLNl3CgxBwfgyy+B77+nWkzeSeo5OdTH06MHTbg2k4AA3W1mqeGFhgKTJul/7auv9NeGbcjrr9OUQQcHWn+4d2/gyYjJlHmloPX8mM3jgGeD6tShr7t3W7YcBRJCE/Bef92yZSmO0aPp4rq6ag9mUako8L3zDq3qbYbRI35+2oNInZzMUMP7+2/9vzeFAhg7FpgwQeICmMfIkVTTc3enVswOb/jhbvl6li4WkxAHPBvUpw993b7d4lPF9Dt7ltpcXV01hbU1PXpQOrKKFfVPW5g/Hxg6FMjIkLQY1arpZkOTtIZ3/TrQvTu1l+f943JwAHr2pITb+Qtkw3r1AsLCaBBYVBTlNI+NBXXyMbvDAc8GdetGXU7Xr5t9HIVh1LW7nj0lz5YvqWbNaMJ8zZr6py1s2QJ07VpEluKSqVpVu682O1vCyeePHlET9JMnunPtnn+efq/6roONa9WK+vNq1gSePBFIHzOFIqBV5HFjpsQBzwaVKaNJV7hxo2XLotfYsdTPM2aMpUtSctWrUxNfu3b6E09HRtIdMzZWktPr6/6UJOBlZACvvALcuKE92d7RkUbO7N9v/aNtS6BmTUqj+uefCtR7fJxqeHv2WLpYzMQ44Nko9QITGzZY4WjNqlVpwEPnzpYuiWl4eFAnT55VPXLl5FCQaNGC5vOZmL65eCaveKhUwPDhFLzzzrVzcKAOrgMHaE1BO+frCzRuDGqZAHBoXRz+/tuyZWKmxQHPRvXqRdOG7t3jRO9m4eJCw/k+/VT3texsQKmkWuDvv5v0tPpqeCkpQGqqCU/y0UfUXKkvR+bOnTQkWE569sS/aIrekTPQtatARISlC8RMhQOejXJ2plbDAweAl1+2dGny+PxzSs9k1nQgZqJQAB9/TNXq/Imnc3Jokn2/fiZNQlyxovYSQWomq+X973/AggX6X1u7lmZny02TJqjjrUQbRCIlRYFu3ahFl9k+Dng2bOhQ4KWXrGgcwdOnFPDee4+qnvZq2DBq4nR317746tVoJkygVFV5mweLSaEAfHx0t69fD/z5JyWTLvZp/vhD//qAAC0z8MYbxXxjG6dQoHSvTtiNXugVcB7p6TTYmBOw2D4OeHbCKqYnHDlCgx+qVbOulRGk0LkzDWbx8dH/iWPZMmDAAJMMb/fz0902fz592AkIoLEk9evTTXnmTMoZWeTfw3//Af3761+x/K23aJ6hnPXoATdkYLvbEPTvT5X3vn1pCgOzXRzwbFxyMq1k07SpFQxeUXcmBgfb1VytAtWvT9MWGjbUDXpCALt2Ub/e/fslOk1AgHbrqYMDpcS6ehXYt4+Sw3TtSr//1atpJaZGjajJOzlZzxveukXt4BkZ2gHP0RHo1An44Qd5/P4K064dEBwM59dfxS+bBHr3pkQ7vXrRZwVmo0y6nKwVsOcVz/VJSxPCy4va0jZutHBhXnyRCrJunYULYmYpKUL07Km7grp6mXI/PyEuXSr223/wgRDOzpq3dHYWYswY/ftmZQmxd68QgwbRfh4eQsyYIcSjR892UCqFqF9fd9VyJych6tUTIimp2OWMiBCiVy8hfH3pLUNDtV/ftk2I4GAhKlWi16OidN8jPV2IsWNpH3d3IXr3FiI+vuhzL18uRECAEK6uQjRrJsThw9qv370rRLduVLbRo4XIyTHuZ0tPF+Lll4Xo10+IjAzjjmXG4xXPmV6lSgHjx9P3ixZZsGkzOxs4fZq+b9nSQoWwkNKlaXTm6NG6r+XkAHfu0Fy9w4eL9fbVqmn302VnF5xezMmJEqVs3kyJCd59l1b7btoU+PtYNjWzxsTozrWrWJE6qTw8ilVGgEaONm5MK+wU9PoLLxSeqnLiRErjuXkz5XBOSaFaVWH9lFu20HGzZlG2lHbt6Brkna/40Uf0Z7lvH80i+eUX4342V1cq15YtNGCX2SiThk8rILcanhBCJCYKUbo0fWr+4w8LFeK//6gAZcsKkZ1toUJYmEolxJIlVNPLX9tzcKBa1KZNRr/tb7/pVhwbNzb8+Bs3hAgKUgknRZZYgslClfeNFAohSpXSX90qAX01PLXYWP01vKQkqpVu3qzZdvs2Xbr9+ws+V6tWQowapb2tbl0hpk/XPB8wgN43J0eI99+nGqFBEhKEOHJEZ3NODtWc//vPwPdhRuEaHitQxYrAiBH0/aJFFirEpUvU79O8uRUNGzUzhYLWj9u6leYS5O14U6moVjVkCE0DMKIqrm8unjHTEvz9gcM9F2Gi+BpTsAR98DseoYKmzNu2AU2aGP6GEjl9mvohg4M126pUoS7SglYGycyk4/IeA9DzvMdMn04tIa6uVAvUl0NAR3Q0DUrq3l2nirlkCf0au3WjGiOzDRzw7MSkSRRn/vpLkoQfRXvtNSApiUZNyN2AAbSgrIeH/sTTM2fSJxQDRxnpy7aSmGjEIKVNm+D88XR8iWnYhV44hhfQDP8iHtWAFSvohm4FEhKoubBCBe3t3t70mj4PH1Isyp8IJv8xLVrQh4T4eAqE+hbW1VGnDiWtTUnRSR337rtAgwbA3bsU9BITDXg/ZnEc8OxE9eo0Lw+gEXwWUa6cTa2ALak2beiTh5+f/hrvmjW0IoPeYZTafHy0K4sAVRALCgJaDh8GQkJyn/bCHkShKQCgh+c/UA6y/sV5hSh60Gj+1/Ud4+Skf05jgRwdNWtxXbyo9VKFCjQZvVo16hJ95RWahsqsGwc8OzJ3Ln3yXLnS0iVhACgj8cmTNFpCX8QKC6PAWMQCd05OQKVKutuLbNa8dIlWNs2XMqy6w23sffkb3Mr2wYAB2uNXLMnHh5oo8y8+cf9+wak8PT0pLuUP/oUdYxR1WrVLl3ReqlaNgl758lRrfP1167mWTD8OeHYkIICyepl9gfHERJoFPWaMlcyAtyKVKlFgGzBA97WcHKoetGhR5OQufb/TQuPk/fvUkZWaqrvUT+vWqL9jAbZvVyAsjJKqWIPmzanrM29u2Lt3gfPngbZt9R/j4kLH5c8ne/BgwccYRR3w8tXw1Bo0oHSjrq40UFc9YppZJw54dkypNNOJLl+mPFc7d/KEZX3c3Gic/bRpuq/l5FBHVNu2heau8vfXvrQODoXU8NLSqF/uzh3twRaOjvRGu3YBbm7o1IlaBT77DDh0qHg/Wl4pKcCZM/QAqNvrzBnN9IBHj+h5dDQ9j4mh5+ramYcHLSY/ZQr1RUdFUXazRo1oYr1aly7aUx8mT6aUoGvWUFyaNInOOWpUyX+m3IxBBQQ8gKZBbNxIv+YOHUxwTiYdk475tAJynJaQ3507QvTtK0TNmmaaJLthA40z79TJDCezcStX0jj7/NMWFAra/uOPeg8bN0538vnUqXp2zM4W4pVX6L3yT4soX16Iq1d1dm/fXoiGDWlWRUmEhelOnwCECAmh19eu1f/67Nma93j6lCaeV6xIsyV69RIiLk77PP7+2scIQdMM/P2FcHGhiecRESX7WXKdPUuFLF++yF3v3DHROZlk93EOeHboyRMhvL3p//Sbb8xwwo8/ppONGGGGk9mBvXuFcHOjLCz6IsCMGTrR54svtHd3cBDi9df1vPeECfqDqYuLEJGReosTHk677d1r+h/V5qWk0N/38uVGpWe5e1eICxckLJed43l4zGBlymhGan78MfWDSOrmTfrKIzQN0707jXKoVEn/CM4FC2i+XkZG7qaqVbVbJ1UqPfO/li0DvvlGfz/qpk1AUJDe4rRvT+NqvvzS+B/F7pUuTWsgvv++7sCjAkRH0/Xs3r3EaVSZiXHAs1PvvktjIZKTqU9EUg8f0lcvL4lPZEeaNqXE07Vq6Q96v/5KnVXP1hUsctDK779Tfi19Fi/WP2jmGYUC+OADGlujzg7His/Xl1L+xcUBr75KI0+ZdeCAZ6ccHWl6goMD5Q38808JT6YOeJ6eEp7EDvn5ASdO0EiH/IN9VCp6rVUr4Pp1vZPPExKeVeb++QcYNEh3B4WCRs5OmlRkUfr3pwo61/L0iI+npa+KmD6iVqECff4oV44OGzeOBy9bCw54dqx5c2qJAei+l6eFzLTUa75xwDOehwdN5sozOTxXTg61W7Zogap3T+m8nJUFJP57k9rOsrO176oODjSx/ZtvDBo56+hIcXHrVs4aomPSJGr33bHD4EPq1aMPmgoFsGoVJbRhlscBz859/jlN6M3I0MmOZDrnzlGaiVatJDqBnXN2pjH1+ibE5eQASiXcg19E2VK6ucRu9RtH7db5px80akSp/Y3Ia9qjh6ZiyfJQp2cxKLWNRo8e1B0LUGuzRVL+MS0c8OychwctiRIdLfEi5G5u+vNGMsMoFLSGzU8/0XXMn3g6MxNVnl7TOez2begu9ePjQ7XG0qWNKkJgIGUnKShRs2yVLUtfi7F6/bRp1FyclUUpVJllccCTgSZNAHd3S5eCGeSNNyhNSOnS2rUzIeCPG/l2Fril8tU8dXCg0RIHDhiZNJIoFEDr1jxwRYebG31NTzf6UIWC8qmPGwf89puJy8WMZpaA9/333yMwMBBubm5o3rw5jhw5Uuj+ERERaN68Odzc3FCjRg2s5OSQJqFSUYaKJUtM+KaPHwP9+tFqCcw0OnYE/v6bhvvlCXrVEQ8naJo1nZGF28gzmsXBgbLd1K9f7FPXqgVcvVrsw+1TCQIeQLk2ly0r0dq6zEQkD3hbtmzBxIkTMWvWLERFRaFdu3bo3r074vIuR5xHbGwsevTogXbt2iEqKgozZ87E+PHjsW3bNqmLavcOHqRPmtOnU9omk0hLo8780FATvSEDQKMeTp6kvrhnzZtVcRuAZmBKFpyxFz1wDc/mP65ZA3TqVKLTPvccjZMxeOkhOVAHPBMshyAEsHy5Jv0aMzOTTmPXo1WrVmJUvuWI69atK6bnXY44j2nTpom6detqbRs5cqQICgrSu396erpQKpW5j/j4eNlnWimISiVE//6UVaNhQ0rjVGLq5avd3EzwZkxHSgrl11IoxI94RwCqfIlZ6HkjrwQxf74QV66U7HRbt9L7PnxomuLbhZUr6aL07Vvit1q0iN6qdm0hkpNNUDY7ZZOZVjIzM3H69GkE51uOODg4GMcL6BmPjIzU2f/ll1/GqVOnkKXnY+eCBQvg4eGR+/Dz8zPdD2BnFAqam+flRRnoP/nEBG+qHjDh7GyCN2M6SpemGvSYMXgOVwHkn2JAz8/d98JHH1GTZMOGwLx5lNPbWElJ9LV8+eIX2e6oBxCZYDLd229TEoHLl/XnEmfSkjTgPXz4EDk5OfDOtzCVt7c3EgoY4puQkKB3/+zsbDxUT3DOY8aMGVAqlbmP+Ph40/0AdqhyZVpCCKAEHGFhJXxDdcAzYvg7M5KjI/Dtt+j4dV8cQmcE4hryNm0SRe4qQBcu0IeZOnVo+ZrPP6eVCQzx6BEFO/515qGex5hvXcHiqFQJ2LCBvl+5UuKEEEyHWQatKPJNfBVC6Gwran992wHA1dUV5cqV03qwwr3yCi3DIgQtWlmiXJvqmh13+khv4kR0Cp+NGs0qAFDAybHgGof63hwdDcyeTVNS6tWjtJCFrHSDR4+AihVNW2ybp57jaKJpN506aRJCvPOOQYveMxORNOB5enrC0dFRpzZ3//59nVqcmo+Pj979nZycUEnfss+sWJYto6avxETg6NESvFGZMvQ1/0KjTBodOuDAyYo4ehQYM1aRu6p3Yfdi9a/l0iUKePXrUwCcO5dqg3lxwNNDnaLIhM32CxfSvMe4OMpjysxD0oDn4uKC5s2b42C+5YgPHjyItgUsR9ymTRud/Q8cOIAWLVrAmfuJTMbdneYFRUQAAweW4I3UAQ8o1sRcZjwHB+CFF4ClS2mN12PHgLFjNVPvCgt+6spKTAwldmnYEKhdm2qB589zwNNLvZKyCTs2y5ShQbUALV7LU0HMxKRDYPTYvHmzcHZ2FqtXrxbR0dFi4sSJonTp0uLGjRtCCCGmT58uhg0blrv/9evXhbu7u5g0aZKIjo4Wq1evFs7OzuK3334z6Hy8Hl7xFWsBUJVKCKWSVhJlFpWTQ0veTZ4sRJUqNBrQyUn/knv5H+q19pychGjVSoj//iv5grB2Y9IkujjTppn8rRcuFOL4cZO/rc2z6QVgly9fLvz9/YWLi4to1qyZiMizHHFISIjo0KGD1v7h4eGiadOmwsXFRQQEBIgVK1YYfC4OeMVz7pwQbdvSLANm+1QqIU6coFXRq1Y1LvipF0uvUUOIWbOEOHNG5sFvyRIhgoKE+OEHS5dENqS6jyuEsK+FK5KTk+Hh4QGlUskDWIzQqRMQHk5r6B0+TBmqmH0Qgpbe27qVMvjfukXNnnlTcBbE0ZGaQQMCaIDTwIGUqs6ABRiYka5do2tdu7alS2J5Ut3HOZcmAwCsW0d9N6dOAW+9ZeSUoyVLaIFRzjpslRQKWoF70SIaJHHyJC0KXL06vW5In9+NG3R8s2Y02GLGDODff3mdN1PZsoUGE733Hl9TKXHAYwAAf39g2za6+W3Zon+lmgJFRADbt9OoB2bVFAqqxX/xBQWx06eBqVPp9w8UPv9OHfxu3qSFYps3p5rfhx/SByW7vVGbYfRxUBANRoqIoP8/Jg0OeCxXx440GRagUXu//mrggdWq0Vee9G9TFAqqsS1YQGslRkVR8AoMpNcNCX5xcVTBb9mSgua0abQAu90EPyFotnjNms/WYpKGv79m+aApU4CUFMlOJWsc8JiWd94BJk+m70NCDFwqRh3wbt2SrFxMWgoF9c3Nm0d9SWfOUJLxGs/yUhsS/OLjga++oiWG/Pyo5vj33zYe/B48oHxrsbGAp6ekp/rgA7red+4Y2cLCDMYBj+lYtIhWa27TRvNpv1Dq/KVcw7MLCgXQuDGlJLt6FTh7lmofzz1HrxsS/G7fBr75hprqqlWjWktkpA3mJrhxg75WqQK4ukp6Kjc3mlsJ0NcCFpRhJcABj+lwdKR+hD/+MHASsjrgqW8OzG4oFLRC0aefUsLjc+doYXb1SMLCgp96FOidO5TZp21boGpVYNIkGt9kE8EvNpa+GvTJr+R69aKuhcxM+sDBTIsDHtOrTBntTEqbNxey/mXduvT1+nXOtmLHFArKzDJnDmVquXAB+PhjSlINGBb8EhJoEeIXXqBK04QJlNrOaoOfOuAFBJjldAoFNSuXKUMfDphpccBjRZo9m+ZgvfGGpslKi7c39W+UKUND+Jgs1K9PfxuXLmmSVNerR68ZEvzu3QO+/x5o144Wdx8/HjhyxMqCnzrZqBknx7VtS93hs2eb7ZSywQGPFalDB8DFhaYtjBmjZxCCQkFTEpRKzR2PyUq9elTbi46mADhnDgVEQLOcnD7q4Hf/PrBiBdC+PeUEHTOGhujr/YBlTlFR9LVpU7Oe1sPDrKeTDQ54rEidOwMbN1Jc++EHupnp8Pbm9BsMADVxfvQRVY7yJqkGDAt+Dx4Aq1ZRX5aPDy2lEx5ugeAnBFW3mjQxe8BTCwsz0ULNDADAqcWYwVas0Kzj9e23lKGfMUNduUIrdPzyCw1+cXAwrPlSnQatYkVKbfbaa1QTNNHydFbrxg2apiAE1Zzl1HjCqcWYxY0eTWuoAdTfol65GQCNRhg4kMahW1UnDLMWtWpRSrKzZ2m6w/z5NP0BMKzm9+gRsHo10KUL4OUFjBwJ/PWXYTlBbVFAANCnD32vnq7ASoYDHjPKxx9TzU4I4OnTPC9UrAjs3UszjQtbUpsxUOKSDz+kCe7XrlG2lyZN6DUHh4Jbx9XB7fFjWk+ua1egcmVgxAjg4EETB79r12h+gAVNmkRfN2wAHj60aFHsAgc8ZhSFgiYUHz5Mn7BzubjQTHWAXmTMQDVqUEqyqCiaBbBwoabLzJDgl5REyc+Dg2mw8Lvv0hzSrKwSFqx7d6BCBZoxbyHt2lH6t/R06j9nJcMBjxnNwYH+EdUePgT27AF1rAAc8FixBQRQSrLTp6kPS52kGjAs+CmVwPr1QLduFPzefhvYv78YwS8+njod09M1w00tQKHQ1PKWL7d4hdPmccBjJZKURKM4+/QBtqoG0MYjR2w8gSKzBv7+lNf15Ema3rl4Ma30ABgW/JKTgZ9+oopapUq07NXevQYGjbAw+tqihcXnCLz2Gk3Sv3uXV1IoKQ54rETKlaMml5wc4PXP62Ob42uUSPH6dUsXjdmR6tWppvPPP5ok1a1a0WsKRdHB78kT4OefgZ49qeYXEkKtEhkZBZzw0CH62rmzSX+O4nBxoXmJDRvS96z4eFoCK7GcHPr0/NNPgCNysB5vYug3rWkoJ2MSun2bEiJs3gycOEHbFIqiBwqrpzqUKQP07Uu1qODgZ/mhhaAIe+sWcOAA8NJLUv8YRcrOpuw1cpnqKtV9nAMeM4m8QU8BFb578yTeX9/a0sViMnLnDq1DvHkzJadWK+oOpw5+pUtT8Hun9Xl0Gt+IqlOPHwPu7pKWm+nieXjMqjk60ki5sWMEBBwwZkPr3MVkGTOHKlVoyszRo1Tz+/ZbSlKtbvIsaK6futkzNZX6yCLG/wYAOF35Zew44K49/cbCUlKoRmtf1RTz4RoeMykhKOnt2rXAsWPUMsSYJSUkAKGhVPM7coS2FdbsWQPX8Bp+xXmHxtit6oFSpWhQ1sCBNACmVCnzlT2vrCxaQeHBA+rLbNnSMuUwB27SNBAHPOvwOD4FFe5coOWvGbMS9+5R8NuyhZJTC2FYijN1s6ebG/DKK9Tn1727+Vs7X3+dAvf48TQf1l5xkyazHVevokItTxrhlpKC7duBIUMKGRHHmJl4ewOjRtGsg3v3aDJ3hw6aaQ5FNXump1M/4auv0lSH114Dtm6l5lBzGDKEvoaGcrNmcXANj5meEJQy/8oVJC7biICZQ5CSQjeW0FBKXsGYNXn4kP42y38+BTviW2C76ItMh1JG1fx69qQA2KMHjf6UwtOnFGifPqW0bOpcpPaGa3jMdigUwPDhAIBKW1ciNJTm60VEUPYxnqLHrI2nJzCi2WkMjPsKPzsPx49fp6JzZ81CtobU/HbsAAYNovfq14+aHlNSij63SkX93XfuFL1vqVKaWRK7dxe9P9PGAY9J48036S5x5Ai6BlzF0aOAnx+tjxYURDmmGbMqP/4IAFAMGIA3Jnri4EFamFadpFod/ApazV29Xl9GBrBrF/W3VapEUx1++YUmv+sTFga8+CJNLD9woOhidu9OX//80/AfjREOeEwa1arRTF4AWLcOjRrRxOBmzWiUWceO1ITEmFVISaFVjgHgvfdyN1esSPNL//iD/m7XrqUalnotvqKCX2Ym1cSGDKHg98ordJrkZM2+v/5K76dUUg7QmTMLX/VBnfzl+HEgLa2YP69MccBj0nnrLfq6bh2QnY0qVahZs2dPagLKOzmYMYtStz/WqkWdzXpUqEAt9fv2UfBbvx54+WXDg19WFuXyfOMNavbs3ZsSNWzdSgFOpaLu7y++oCLcvq3//WrVosB74YLlpkjYKh60wqSTkUHtmI8eUaR74QUA9M+9fj3Fw8IW/mTMbFq3psltixYBH3xg1KFKJbBzJ011+OMPTRowdaArSGH7ODoCZctSU2i3bkYVxy7woBVme1xd6SPs1au5wQ6gT8TvvKMJdunpwLhx1F/CmNkdO0bBztmZskobycMDGDaMmi4fPqQk1T160NsBRdf8CnotOZn666ZPN+3CtsePU5nkGEg54DFpvfwyLXJWiKlTge++o5VYTp82T7EYy+XgQDW84cMBL68SvZWHBzB0KNX4Hj6k/rpevTSrHBQU/PRRT4lYtIjWn4yP17ymVNJySePGGV/GNWvouKNHgbg444+3Zdykyczn9m3KjZTPpUs0ki0mhuYz/e9/dNNgzGyEoCZ4NzdJ3v7JE1qOaMsWzZp8hjR7qjk5UXLrjRupD/zJE5rqA1B/oqenYe+Tmgr4+tIag7Nn09q2n3xC04U6dKD+Q7UHDyg/6YEDQKdOxv28JcVNmsx25eQA/ftTYs0LF3RerluXpimoB7O88QYwZYppm3EYK5RCIVmwA6g/bvBgGpmcmEiBLyBAM+ClKNnZ1MTZqxd1Mbq5AYGB9Jqef6kCbdlCOSHq1KH/s7VrKdYPHUr9hXmrP1u2UGaaAsbw2CQOeEx66oW8VCpg7ly9u3h4UDPQrFn0/KuvqP8iMdGM5WTycu0aMG8ekJRk1tOWKQMMGECnNeZDnToYLVlCXeLqnoKYGMPfY/VqCnQA9eGlpAB//UUT5u/coWZOtU2baDqFPQ0ss6MfhVm1OXMo6G3dCpw6pXcXBwfg889pl9KlgX//NV+OQiZDn30GfPQRjaAys2PHiv9hTgj631AHpxs3DDsuJobG5gweTM+dnCjQrVkDVK5M8wvVUxFjY4HISE3XQkICBenAQJplZKskDXiPHz/GsGHD4OHhAQ8PDwwbNgxJRXyaGj58OBQKhdYjKChIymIyc2jUSPPRcsaMQnd99VX6Z9uyRXt5IfvqbWYWdeYMsGEDff/hhxY5fUnk5NC8PoCCkyFWr6YaZdWqFOycnIAVKygZ9uPHFNx++43ed9MmoEEDTa5OHx9ah8/WmzcNbEEuniFDhuDWrVvYv38/AOC9997DsGHDsGvXrkKP69atG9auXZv73EU9xInZtk8/pQm+f/5Jj65dC9y1USN6qO3aBaxaRZ8uK1WSvqjMjglBQ4OFoOpOq1ZmL8LIkdS0qf4Qp1AU/lXfthMngO+/p1UfipKdTfF9yRJNAiS1AQOoZvfWW1Su/fsp4A0bVryfzaoJiURHRwsA4sSJE7nbIiMjBQBx6dKlAo8LCQkRffr0KfZ5lUqlACCUSmWx34NJaPx4IQAhWrQQQqUy6JD0dCGqVKHDqlUT4tgxicvI7NvevfTH5OIixPXrli5NsR04QD9Gw4ZF7xsaSj9uUpLuazNnCtGkCX0/ZIgQjRsLoVAIcfOm7r4hIUKsXVv8MhtKqvu4ZE2akZGR8PDwQOs8C4AGBQXBw8MDx4vIKRUeHg4vLy/Url0bI0aMwP1CZiRnZGQgOTlZ68Gs2KxZ9NE2IUF7YlEhXF1pKHetWsCtW0D79sCXXxa9aCdjOrKzNZlUxo3TDHW0QW3aABcvUhKjoqxeTQ0qHh66rw0YQE2s//5LzZr//Ufz/vJ2JwA0dejQIWDZMsr3aYska9JMSEiAl55JnF5eXkhISCjwuO7du2PgwIHw9/dHbGwsPv74Y3Tu3BmnT5+Gq6urzv4LFizA3AJG/jEr5OVFwzFbtKCx2gZq3JgmpY8cScOnp02jVtG1a2muEGMG+fFHGsdfoYJmSLCNKlOGpvQYorBepGbNtPvHC+or37HD4KJZLaNreHPmzNEZVJL/cerZKDxF3gboZ4QQererDRo0CD179kTDhg3Ru3dv7Nu3D5cvX8aePXv07j9jxgwolcrcR7yBtQZmQZ06GRXs1MqWpb6GH36geUgHDgDPP88pyZgR+vWjVVo/+4xXIpYho2t4Y8eOxWD1uNYCBAQE4OzZs7inpzf1wYMH8Pb2Nvh8vr6+8Pf3x5UrV/S+7urqqrfmx2yASkVVtHr1gLZtDTpEoaDVW9q1o0GfLVqUOBsUkxMfHxr+awdDfpOSKG67udF0QlY0owOep6cnPA3IY9OmTRsolUr8888/aPVsFNTff/8NpVKJtgbe3AAgMTER8fHx8PX1NbaozNotWkRTFBo2pA4EdbZdA9SrR1MX8k7cvX2b5hK3by9BWZltu3eP0oaoFdLKZCuSkihBQ6lSHPAMJdmglXr16qFbt24YMWIETpw4gRMnTmDEiBHo1asX6tSpk7tf3bp1EfpsJdCUlBRMnToVkZGRuHHjBsLDw9G7d294enqiX79+UhWVWcqIETTH4Pz5AjOwFMbFBXB3p+9VKhpW3bEjTavKyDBtUZkNe/yYOoFfe42+txOZmfTViM+JsifpxPONGzeiUaNGCA4ORnBwMJ5//nn89NNPWvvExMRAqVQCABwdHXHu3Dn06dMHtWvXRkhICGrXro3IyEiULUafD7NylSrRzFcAWLBAO6+RkTIzaek9Iaji2KoVr7zAQH8Q779PNbxz5zSfkOzAs9um3pGXTD9eLYFZ3vDhtCKsvz+NiS7Bf3BoKPXxPXxIqcqmTqWsZrwytEytWUOpwxwd6QOVHWVt+uMPyofZuHHJM7dYG14tgdmvZctoPtTNm8CYMSV6q379gOhoSqChUlFtr3FjoIAxT8yeXbyoWTDu88/tKtgBNJUVoDyYzDAc8JjllStHy0Q7OFDqMWPWO9GjcmWaq/f77zRHz9GRmjuZjKSn06eetDSacT1tmqVLZHLqpNFFrK/M8uCAx6xD27ZU0zt2jLLWmsArr1BtLzRUs9RZdjYQHm6St2fW7MMPgbNnac7KTz/Z1xo3z3DAM579/RUw2zVmDJAnFZ0peHhoZ6P4+mua9z54ME1jYHZq8GCac7dhA321Q6tW0QDnN9+0dElsBwc8Zp3OnqXBLOo1UEwkKYk+7G/ZQoFwyRKTn4JZgzZtgMuXgZdftnRJJOPsTI0h3FxvOA54zPo8fUo3qvXraZilCc2bR9MV2rSh1Z6nTgWaNjUsAS+zcteuaQ9X5KlMLB8OeMz6lCqlmZ+3bBnw7bcmffsmTWiE+urVgKcnjZHp2JFWYGA2SqkEevcGXngB+OsvS5dGcmvWUGq9P/6wdElsCwc8Zp369qWh5AAwfjwNuzQhBwfg7beBmBhg1CjK2tKzp0lPwcwlPZ3WuLl4EShfnvLO2bmtWymR+rlzli6JbeGAx6zXzJnA2LH0/ZtvSvJxtmJFqkzeuAHUr6/ZPm8esHu3XeQYtm9ZWcCgQVSrK11aMxfFjj15QuvSAfwhzVgc8Jj1UiiAb74BXn+d5hP0709JpiWQNzf5+fPAJ59QC1nXrvaXxcJu5OTQwKadO2mV4F27aPkMO7dnD6XSe+45w9fDY4QDHrNuDg7AunU0iOWFF4DatSU/ZfXqNE/Z1ZU+STdrRompeRqDFRECGD0a2LQJcHICfvuN5pvIgDod8Wuv2cWiD2bFAY9ZPxcXYNs2+gRfpozkpytXjnJZX7pElUshKObWrk15OVNTJS8CK0pWFq386+BAWXp69bJ0iczizh1Ny35IiGXLYos44DHbULo0VbkAikBz5kg+lyAggCoQJ05QIpi0NBo0yksPWQEXFxq58eef1IcnE8uXU0tuu3ZmaeywOxzwmO35+WdaP697d+DAAclP17o1TWPYupW6FCtWpO1CUNqyvIvQMgmlpwPffUdZwQGaeS2TZky1Bg1ocNXEiZYuiW3igMdsz8CBNDzt6VMaWbJli+SnVCiAV18Fhg3TbNu9m8bRNGhAOa/V92EmgSdPgB49aPWD6dMtXRqLGTKEBlX17WvpktgmDnjM9ri5Adu3UwTKzKS8iZ99ZvY5BE+e0Bq2ly9TX1+TJjQqnqcymNitW1STCwuj7Ck9eli6RBalUNhlLmyz4MvGbJOLC1WrJk+m5598QtWv9HSzFWHIECA2Fvj0Uxrocu4cffJu3ZoDn8mcOAG0bEn54Dw9adhsx46WLpXZffQRJRzi5vOS4RXPme1btQp4/32KMIcOAR06mL0Ijx4BixdTH19aGtX2/v2Xh42XyPr1tHx9ZibQsCHNtwsMtHSpzC4qiqYXqlTAkSPAiy9aukTSk+o+zgGP2Yc//wSuXqU8YRZ0/z6wdCktrv3KK7TtyROqjL75pmagKSvC7ds0szo9narNGzbIMhl0RgZVcM+do3l3Zuiutgoc8AzEAY8BoEl0u3dTk6eFOzwWLwY++IAyXk2ZQpUWM0wntH2bNlF+zLlzLf47tJRp0yipeeXKNFjFy8vSJTIPqe7j8vwrYvYtI4M+Dn/wAY3mfPDAosXx9ASqVqVJw1OmAP7+lCaUM7fks3UrcPiw5vmQITQYSabB7vffNSt4/PCDfIKdlOT5l8Tsm4sLrbDg5gbs308damaYr1eQ4cNpqbb//Y9a6R49okwuAQHUzGlfbSzFkJICvPMOfUgZOhR4/NjSJbK46GhNJpWJE4F+/SxaHLvBAY/ZH4UCePdd4J9/KLvunTuUi/Ottyx2M3V1pXv6pUs0Wb1DBxpxl5WlPbBFdnP5IiIoWemaNXQhQkK4vRfUkpuWRgNUFi2ydGnsB/fhMfuWmkrth99+S1UpHx8a6vbcc5YuGaKiaK1bdcb7S5coLr//PgVHT0/Llk9SiYnU5Lx2LT2vVo0y6FhghK21OnyYsqrY9d9BAXjQioE44DG9jh+nKFKpEt1JrLBfaMoU4Kuv6HsXF8ri8t57NO3MrqY3JCQAzz+v6VsdNYraeMuXt2ixLC0xkVp3/f0tXRLL40ErjJVE27ZUpfr1V02wUyqB+fOtZvmD+fNpVYbmzWnq2ebNQOfOlCR40SKrKWbJ+fhQTa5BA+DYMVqBV+bBLi6Omi/btweuX7d0aewXBzwmH25u2qthL1gAzJoF1KpFkcbCHWiurtSFdeoUJRYZNYqmnl29SqP1nJwsWrziu3GD+k/j4zXbfvyRZua3bWuxYlkL9WW4dIn+BHk1DulwwGPyFRQE1KgB3L1LN+QWLWjunhW08jdrRhWfO3eA1aspfZl60rpKRbWB6dNpbpbVSkykdto6degDxccfa14rX57abWVu0yZa1/j2baBePWp5r1fP0qWyY8LOKJVKAUAolUpLF4XZgvR0IRYvFsLDQwgKdUI0aSLE9u2WLlmBwsI0RQWEaNxYiEWLhIiPt3TJnrlzR4jp04UoV05TyM6dhTh1ytIlsxqpqUKMGKG5PD16CPH4saVLZT2kuo9zDY/Jm6sr1UKuXKFRg2XKAGfOaJaVtkJBQTRHu29fWhLuv/8oI0f16kCXLlRLsJgPP6QJhl98ASQn0+CUffso9Vvz5hYsmHWZO5dadRUKalXfuVP23ZhmwQGPMYByNy1aRP1Nn3xCN261EyfoDmUlqVHc3GhlpNBQGvD4ww+0ArY6d3beEZ1xccC9exIWRgjtvk8XFxpx06YNsGMHDRTq1s3OhpmW3KxZ1JR58CDw+eeAo6OlSyQPPC2BsaIMGQL88gvdlXr3ptEkL71kdVMbbtygmsK4cZr48t57lOHlxRcpW0e/flQBK7E7d2g1g9WrgSVLgD59aPuDB0BMjDxS+htIpaJLtXcvDRJW/26E4M8BBeF5eAbigMdMbutW4LvvtPM8BgQAgwZROqxmzSxWtKL07Ek32ryaNqXm0O7dKRO/wVJTKVWb+u6dk0PbBwwAfvvNVEW2G0JQPsxPPqHVDgBat5jThBWNA56BOOAxyURHU/vh+vU0hw8AGjUCzp61bLmKEBdHrYuhoRSz1S2Q9esDFy5o9ktKKqAfKSuLgvv+/cDTp5rtL7xAKdwGDgRKl5buB7Ax2dnAtm3UQv7vv7TNw4MGqY4bx4NTDcEBz0Ac8Jjk0tI07VOtW9OgF4AWvnv+eZpU3bUrjSDx9bVsWfN58ADYtQvYs4fWVJ07l7anp1MSmpo1BLo1SUCw7zm0nRMMd/dnB7ZqBZw8STXbgQOBt9/W5ERjue7do+7L2Fh6Xro0MGEC/YlUrGjZstkSmwx48+bNw549e3DmzBm4uLggKSmpyGOEEJg7dy5WrVqFx48fo3Xr1li+fDkaNGhg0Dk54DGL2b2b+vjyatCAAl/LlkCnTrROkDVJTQXOnsWJn6+i7fdDIfKMY3NyEmjWTIF27YCBtc6gdWsAjRtzx1MeWVlUS27ShJ4LQZfo7l1g7FhgzBh55sIsKZtMLZaZmYmBAwdi9OjRBh+zaNEifPXVV/juu+9w8uRJ+Pj44KWXXsKTJ08kLCljJtClCw2///BDGoKvUNDdcNkyYNgw7akOsbG0QkBEBHDrlvRZXtLTaepFVpZm24wZlMqlbVsEff8m7sMLv2AwhrtsRDW3h8jOVuCff2hMyrHUJnRXVyiQkAD89BNl9Fd348lJejpV8N97jyrwL76oSfumUNCq5DdvArNnc7CzNpImK5r7rL1k3bp1Bu0vhMDSpUsxa9Ys9O/fHwCwfv16eHt7Y9OmTRg5cqRURWWs5EqVoqDXpQs9T0ykeQJHjlCusFatNPvu3UtVADVXVyAwEKhZk+6iU6Zomgzj4mhBPRcXGhma9yEE7adeUufUKRrrnphId924OPqqnptw5gxVQQA6j3oFiVat4NmpEwZ37IjBjRoBjo64eZOKfvQoDUpVO3BAs1abuzvFwWbNNI/69Wl+oL0Qgrpv//qLLm1YmHZeU29vSgumnmbImVKsl1Vl54uNjUVCQgKCg4Nzt7m6uqJDhw44fvy43oCXkZGBjDzJ55KTk81SVsaKVKkS9XcNHKj7WoUKFEWuXaOAlJFBd81Ll+j1t9/W7Lt9OzBpUsHnOXJEMw3g+HFaDkkfd3eqWaoD3rBhNBjF21vv7v7+9HjjDd23adOGJrynpdEp805237MH6NGDvj97ln6k2rXpkdsnaKWEoAr3uXNUdvXPlpiovV/VqjTStW9fWs3CZvOcyoxV/ZoSEhIAAN75/gG9vb1x8+ZNvccsWLAgtybJmM0YMoQeAA3ri4ujNPnXrtHIkho1NPuWLk3VhuxsavpUP9TtiXnbFZ9/noJlhQqUekX98PenURN5+98qVChW0V99lR45OcDlyzQSMe8j7yyNrVtpYrWanx+l1qxZk4LGyJGAl5fmMjg6St9FKAStOn/rFj2CgzU10jfeoPyW+ZUtSxX04GD6nPKsdZfZGKMD3pw5c4oMMCdPnkSLFi2KXShFvr8kIYTONrUZM2Zg8uTJuc+Tk5Ph5+dX7HMzZnZOThTgatSg0Z35jRhBD0N07EgPM3B0pDhcrx4wdChtU6m05+NXqUK1wZgYCjLx8fT48096PW/t8eOPqbuzalWqHJcrR8P51Y8PP6SEOADw99/UzOjgQIFH/TUnh9aUGzaMghRAOQNCQ+lzhDrIpadrzhsbq5mM/9xz9OuoU4dGsbZsSbMvmjXj6QT2wOiAN3bsWAwePLjQfQKKmcrBx8cHANX0fPMM575//75OrU/N1dUVruo08owxi8qffGb0aHoA1CwYE0OP2FjK1JZ3tabbt6mJ9MoVeuQ3YYLm+82bgaVLCy7HSy9pAt7581TTzK9yZVpoPS1Ns23qVGoR5luKfTI64Hl6esJToqFHgYGB8PHxwcGDB9G0aVMANNIzIiICCxculOScjDHzqFSJ1n0raAm8lSuplnfnDvD4Mc3tT06mr0ql9jy2+vUpi4y6dVed0tPRkQJd3tpYr140LqdiRWpSrVaNAq2bm24Z1EGS2SdJ+/Di4uLw6NEjxMXFIScnB2fOnAEAPPfccyjzbFRZ3bp1sWDBAvTr1w8KhQITJ07E/PnzUatWLdSqVQvz58+Hu7s7hqj7OxhjdsndndbirVWr6H2NaeVt04YejEka8D755BOsX78+97m61hYWFoaOz/oZYmJioFSnaQIwbdo0PH36FO+//37uxPMDBw6gLH/0YowxVgKcWowxxphVsclMK4wxxpi14IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwVJA968efPQtm1buLu7o3z58gYdM3z4cCgUCq1HUFCQlMVkjDEmA5IGvMzMTAwcOBCjR4826rhu3brh7t27uY+9e/dKVELGGGNy4STlm8+dOxcAsG7dOqOOc3V1hY+PjwQlYowxJldW2YcXHh4OLy8v1K5dGyNGjMD9+/cL3DcjIwPJyclaD8YYYyw/qwt43bt3x8aNG3Ho0CEsWbIEJ0+eROfOnZGRkaF3/wULFsDDwyP34efnZ+YSM8YYswVGB7w5c+boDCrJ/zh16lSxCzRo0CD07NkTDRs2RO/evbFv3z5cvnwZe/bs0bv/jBkzoFQqcx/x8fHFPjdjjDH7ZXQf3tixYzF48OBC9wkICChueXT4+vrC398fV65c0fu6q6srXF1dTXY+xhhj9snogOfp6QlPT08pyqJXYmIi4uPj4evra7ZzMsYYsz+S9uHFxcXhzJkziIuLQ05ODs6cOYMzZ84gJSUld5+6desiNDQUAJCSkoKpU6ciMjISN27cQHh4OHr37g1PT0/069dPyqIyxhizc5JOS/jkk0+wfv363OdNmzYFAISFhaFjx44AgJiYGCiVSgCAo6Mjzp07hw0bNiApKQm+vr7o1KkTtmzZgrJly0pZVMYYY3ZOIYQQli6EKSUnJ8PDwwNKpRLlypWzdHEYY4wZSar7uNVNS2CMMcakwAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMkCBzzGGGOywAGPMcaYLHDAY4wxJgsc8BhjjMmCZAHvxo0beOeddxAYGIhSpUqhZs2amD17NjIzMws9TgiBOXPmoEqVKihVqhQ6duyICxcuSFVMxhhjMiFZwLt06RJUKhV++OEHXLhwAV9//TVWrlyJmTNnFnrcokWL8NVXX+G7777DyZMn4ePjg5deeglPnjyRqqiMMcZkQCGEEOY62ZdffokVK1bg+vXrel8XQqBKlSqYOHEiPvzwQwBARkYGvL29sXDhQowcOVLnmIyMDGRkZOQ+VyqVqF69OuLj41GuXDlpfhDGGGOSSU5Ohp+fH5KSkuDh4WGy93Uy2TsZQKlUomLFigW+Hhsbi4SEBAQHB+duc3V1RYcOHXD8+HG9AW/BggWYO3euznY/Pz/TFJoxxphFJCYm2mbAu3btGr799lssWbKkwH0SEhIAAN7e3lrbvb29cfPmTb3HzJgxA5MnT859npSUBH9/f8TFxZn0QpmD+lONrdVOudzmxeU2P1stu62WW91SV1gFqTiMDnhz5szRW6PK6+TJk2jRokXu8zt37qBbt24YOHAg3n333SLPoVAotJ4LIXS2qbm6usLV1VVnu4eHh039gvMqV66cTZady21eXG7zs9Wy22q5HRxMO8zE6IA3duxYDB48uNB9AgICcr+/c+cOOnXqhDZt2mDVqlWFHufj4wOAanq+vr652+/fv69T62OMMcaMYXTA8/T0hKenp0H73r59G506dULz5s2xdu3aIqN1YGAgfHx8cPDgQTRt2hQAkJmZiYiICCxcuNDYojLGGGO5JJuWcOfOHXTs2BF+fn5YvHgxHjx4gISEhNx+OrW6desiNDQUADVlTpw4EfPnz0doaCjOnz+P4cOHw93dHUOGDDHovK6urpg9e7beZk5rZ6tl53KbF5fb/Gy17FxubZJNS1i3bh3eeustva/lPaVCocDatWsxfPjw3Nfmzp2LH374AY8fP0br1q2xfPlyNGzYUIpiMsYYkwmzzsNjjDHGLIVzaTLGGJMFDniMMcZkgQMeY4wxWeCAxxhjTBZsPuDZ8jJE8+bNQ9u2beHu7o7y5csbdMzw4cOhUCi0HkFBQdIWNJ/ilNsarjcAPH78GMOGDYOHhwc8PDwwbNgwJCUlFXqMJa75999/j8DAQLi5uaF58+Y4cuRIoftHRESgefPmcHNzQ40aNbBy5UpJy1cQY8odHh6uc10VCgUuXbpkxhIDhw8fRu/evVGlShUoFArs2LGjyGOs4XobW25rud4LFixAy5YtUbZsWXh5eaFv376IiYkp8jhTXHObD3i2vAxRZmYmBg4ciNGjRxt1XLdu3XD37t3cx969eyUqoX7FKbc1XG8AGDJkCM6cOYP9+/dj//79OHPmDIYNG1bkcea85lu2bMHEiRMxa9YsREVFoV27dujevTvi4uL07h8bG4sePXqgXbt2iIqKwsyZMzF+/Hhs27ZNsjKaotxqMTExWte2Vq1aZioxSU1NRePGjfHdd98ZtL+1XG9jy61m6esdERGBMWPG4MSJEzh48CCys7MRHByM1NTUAo8x2TUXdmjRokUiMDCwwNdVKpXw8fERX3zxRe629PR04eHhIVauXGmOImpZu3at8PDwMGjfkJAQ0adPH0nLYyhDy20t1zs6OloAECdOnMjdFhkZKQCIS5cuFXicua95q1atxKhRo7S21a1bV0yfPl3v/tOmTRN169bV2jZy5EgRFBQkWRn1MbbcYWFhAoB4/PixGUpnGAAiNDS00H2s5XrnZUi5rfF6CyHE/fv3BQARERFR4D6muuY2X8PTp6TLEFm78PBweHl5oXbt2hgxYgTu379v6SIVylqud2RkJDw8PNC6devcbUFBQfDw8CiyHOa65pmZmTh9+rTWtQKA4ODgAssYGRmps//LL7+MU6dOISsrS5Jy5leccqs1bdoUvr6+6NKlC8LCwqQspklYw/UuCWu73kqlEgAKvWeb6prbXcBTL0M0atSoAvcpbBmi/KnPrE337t2xceNGHDp0CEuWLMHJkyfRuXNnrUVwrY21XO+EhAR4eXnpbPfy8iq0HOa85g8fPkROTo5R1yohIUHv/tnZ2Xj48KHJy6hPccrt6+uLVatWYdu2bdi+fTvq1KmDLl264PDhw+YocrFZw/UuDmu83kIITJ48GS+++GKh2bRMdc2tNuDNmTNHbwdr3sepU6e0jpFyGSIpy22MQYMGoWfPnmjYsCF69+6Nffv24fLly9izZ49VlxuQ5noDxpVd3/mKKodU17wwxl4rffvr2y41Y8pdp04djBgxAs2aNUObNm3w/fffo2fPnli8eLE5iloi1nK9jWGN13vs2LE4e/YsfvnllyL3NcU1N+uK58aw1WWIjC13Sfn6+sLf3x9Xrlwp0ftIWW6pl30ytOxnz57FvXv3dF578OCBUeUw1TXXx9PTE46Ojjq1osKulY+Pj979nZycUKlSJZOXUZ/ilFufoKAg/Pzzz6YunklZw/U2FUte73HjxmHnzp04fPgwqlWrVui+prrmVhvwbHUZImPKbQqJiYmIj4/XCiTFIWW5pV72ydCyt2nTBkqlEv/88w9atWoFAPj777+hVCrRtm1bg89nqmuuj4uLC5o3b46DBw+iX79+udsPHjyIPn366D2mTZs22LVrl9a2AwcOoEWLFnB2djZ5GfUpTrn1iYqKkuS6mpI1XG9TscT1FkJg3LhxCA0NRXh4OAIDA4s8xmTX3KghLlbo9u3b4rnnnhOdO3cWt27dEnfv3s195FWnTh2xffv23OdffPGF8PDwENu3bxfnzp0Tr7/+uvD19RXJyclmK/vNmzdFVFSUmDt3rihTpoyIiooSUVFR4smTJ3rL/eTJEzFlyhRx/PhxERsbK8LCwkSbNm1E1apVrbrcQljH9RZCiG7duonnn39eREZGisjISNGoUSPRq1cvrX0sfc03b94snJ2dxerVq0V0dLSYOHGiKF26tLhx44YQQojp06eLYcOG5e5//fp14e7uLiZNmiSio6PF6tWrhbOzs/jtt98kKZ+pyv3111+L0NBQcfnyZXH+/Hkxffp0AUBs27bNrOV+8uRJ7t8wAPHVV1+JqKgocfPmTb3ltpbrbWy5reV6jx49Wnh4eIjw8HCt+3VaWlruPlJdc5sPeGvXrhUA9D7yAiDWrl2b+1ylUonZs2cLHx8f4erqKtq3by/OnTtn1rKHhIToLXdYWJjecqelpYng4GBRuXJl4ezsLKpXry5CQkJEXFycVZdbCOu43kIIkZiYKIYOHSrKli0rypYtK4YOHaozTNsarvny5cuFv7+/cHFxEc2aNdMash0SEiI6dOigtX94eLho2rSpcHFxEQEBAWLFihWSlq8gxpR74cKFombNmsLNzU1UqFBBvPjii2LPnj1mL7N6uH7+R0hIiN5yC2Ed19vYclvL9S7ofp33fiHVNeflgRhjjMmC1Y7SZIwxxkyJAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFjjgMcYYkwUOeIwxxmSBAx5jjDFZ4IDHGGNMFv4P3pjiO9qO7L4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n", + "│ caller = npyinitialize() at numpy.jl:67\n", + "└ @ PyCall /Users/stevenj/.julia/packages/PyCall/L0fLP/src/numpy.jl:67\n" + ] + } + ], + "source": [ + "A = [1 1\n", + " -1 1/4]\n", + "fig = figure()\n", + "\n", + "Θ = range(0,2π, length=200)\n", + "V = [[cos(θ),sin(θ)] for θ in Θ]\n", + "U = [A*v for v in V]\n", + "Vx, Vy = first.(V), last.(V)\n", + "Ux, Uy = first.(U), last.(U)\n", + "\n", + "# @manipulate for θ in slider(0:1:90, value=29)\n", + "for θ in 9:10:49\n", + " display(\n", + " withfig(fig) do\n", + " ϕ = deg2rad(θ) # convert to radians\n", + " v₁, v₂ = [cos(ϕ), sin(ϕ)], [-sin(ϕ), cos(ϕ)] # orthonormal inputs\n", + " u₁, u₂ = A*v₁, A*v₂ # outputs\n", + " \n", + " # arrows and labels for v₁, v₂, u₁, u₂\n", + " for (v,s,c) in ((v₁,\"v₁\",\"red\"), (v₂,\"v₂\",\"red\"), (u₁,\"Av₁\",\"blue\"), (u₂,\"Av₂\",\"blue\"))\n", + " arrow(0,0,v..., color=c, width=0.04, length_includes_head=true)\n", + " text(((norm(v)+0.1)*normalize(v))..., s, color=c)\n", + " end\n", + " \n", + " # show the angle between u₁ and u₂\n", + " uangle = rad2deg(acos((u₁⋅u₂)/(norm(u₁)*norm(u₂))))\n", + " arc([0,0], 0.5,0.5, angle=rad2deg(atan(u₁[2],u₁[1])), theta1=0, theta2=uangle, color=\"blue\")\n", + " p = 0.4*normalize(u₁+u₂)\n", + " text(p..., \"$(round(uangle,sigdigits=2))°\", color=\"blue\")\n", + " if round(uangle,sigdigits=2) == 90\n", + " arc(p + [0.2,0.05], 0.5, 0.23, color=\"blue\")\n", + " end\n", + " \n", + " # plot dashed lines for all possible v₁, v₂, u₁, u₂\n", + " \n", + " plot(Vx,Vy, \"r--\")\n", + " plot(Ux,Uy, \"b--\")\n", + " \n", + " axis(\"square\")\n", + " xlim(-2,2)\n", + " ylim(-2,2)\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Some key observations:\n", + "\n", + "* $A$ takes points $v_1, v_2$ on the unit circle and maps them to an *ellipse*. In general ($n$ dimensions), linear tranformations map the unit sphere to an [ellipsoid](https://en.wikipedia.org/wiki/Ellipsoid).\n", + "\n", + "* In general, even if $v_1 \\perp v_2$, $Av_1$ and $Av_2$ are **not** orthogonal.\n", + "\n", + "* However, for a **particular** choice of **orthonormal input basis**, we get **orthonormal outputs**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The “right” bases for A\n", + "\n", + "In fact, it turns out that we can **always** do this for **any** $m \\times n$ matrix $A$ of rank $r$:\n", + "\n", + "* We can choose an orthonormal basis $v_1, v_2, \\ldots , v_r \\in \\mathbb{R}^n$ of $C(A^T) = N(A)^\\perp$ such that $Av_1, Av_2, \\ldots, Av_r$ are an **orthogonal basis** for $C(A)$!!!\n", + "\n", + "* To make an orthonormal basis for $C(A)$, we simply divide $Av_k$ etcetera by their lengths $\\sigma_k = \\Vert Av_k\\Vert$ to get orthonormal vectors $u_k = Av_k /\\sigma_k$.\n", + "\n", + "* Geometrically, $A$ transforms spheres to ellipsoids with axes oriented along $u_k$ (the \"principal axes\"), and the \"semi-axes\" (half-diameters) of the ellipsoid are the $\\sigma_k$.\n", + "\n", + "(This is *not obvious*. We won't have the tools to prove this, or to *find* these vectors, until later in 18.06.)\n", + "\n", + "Equivalently:\n", + "$$\n", + "Av_k = \\sigma_k u_k\n", + "$$\n", + "The matrix $A$ transforms orthormal vectors $v_k$ into orthonormal vectors $u_k$ \"stretched\" by the factors $\\sigma_k$.\n", + "\n", + "The $u_k$ and $v_k$ are called the **left and right singular vectors** and the $\\sigma_k$ are called the **singular values**. Together, they form the **singular value decomposition** (the **SVD**).\n", + "\n", + "In particular, if we put the above relation in matrix form, we have:\n", + "$$\n", + "A \\underbrace{ \\begin{pmatrix} v_1 & \\cdots & v_r \\end{pmatrix} }_V =\n", + "\\underbrace{ \\begin{pmatrix} u_1 & \\cdots & u_r \\end{pmatrix} }_U\n", + "\\underbrace{ \\begin{pmatrix} \\sigma_1 & & & \\\\\n", + " & \\sigma_2 & & \\\\\n", + " & & \\ddots & \\\\\n", + " & & & \\sigma_r \\end{pmatrix} }_\\Sigma\n", + "$$\n", + "\n", + "In fact, since $C(V)=C(A^T)=N(A)^\\perp$, so that $N(V^T) = N(A)$, we can write:\n", + "$$\n", + "\\boxed{A = U\\Sigma V^T} = AVV^T = A[VV^T + \\underbrace{(I-VV^T)}_{\\mbox{proj. to }N(A)}]\n", + "$$\n", + "which is in the form of a matrix factorization, the SVD.\n", + "\n", + "In Julia, you can get these vectors and values with the `svd` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.5542476415070756\n", + " 0.8042476415070755" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U, σ, V = svd(A)\n", + "σ # the ellipsoid semi-axes" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 adjoint(::Matrix{Float64}) with eltype Float64:\n", + " -0.874642 -0.484769\n", + " -0.484769 0.874642" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "V # columns of V are the orthogonal \"input\" basis v₁, v₂" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAGzCAYAAABU5qIKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF4UlEQVR4nO3deVxU5f4H8M8wwAAqo4IsrqiZO26kYBouN82FcsncMsxuZWWmZOW+3dyXa2amlblki7dQr6a53BLzl2hakPuWKGYggrJoCjI8vz+eQIEzzACzMefzfr3mde+cOcN8j4fmw3POs2iEEAJEREROzsXeBRAREdkCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAI7McPHgQM2fORHp6eqHtM2fOhEajQWpqqn0Ke8C6deug0Whw6dIle5cCwPHqsTRjvxMVyaZNm9C8eXN4enpCo9EgPj7erPedPHkSbm5u0Gg0uHbtmnWLJIth4JFZDh48iFmzZjn0l1ufPn0QGxuLwMBAe5eiChXhd6Ik169fx4gRI9CwYUPs2rULsbGxePjhh81679ixY5GbmwsAZock2R8Dj5xGjRo1EBoaCp1OZ+9SrOKvv/6ydwk2YavjPHfuHO7du4dnn30W4eHhCA0NhZeXl8n3ffPNN/jhhx/Qp08fAAy8ioSBRybNnDkTb731FgCgfv360Gg00Gg0iImJKdjn2rVrGDp0KPR6Pfz9/TFq1ChkZGQU+1nnz5/HsGHD4OfnB51Oh6ZNm+KDDz4wWcP169fx0ksvoU6dOtDpdKhRowYeffRR/O9//yvYp+glxPzLrSdPnjSrtv/+978IDg6GTqdDgwYN8N577xX8jAeNHDkSQUFBiv9ORfct6sKFC3j++efRqFEjeHl5oVatWoiIiMDx48cVf9avv/6Kp59+GtWqVUPDhg0Vf+bWrVuh0Wjw/fffF3vtww8/hEajwbFjxwq2mXsOzpw5g6FDh8Lf3x86nQ5169bFc889h+zsbLN+J/7v//4P3bt3R5UqVeDl5YWOHTtix44dZh+nOefcGFOfPXLkSHTq1AkAMHjwYGg0GnTp0sXkz71z5w4mTJiAOnXqYP369dBqtQy8CsTV3gWQ4/vnP/+JGzdu4P3338fmzZsLLhk2a9as4Atu4MCBGDx4MF544QUcP34ckyZNAgB8+umnBT/n1KlT6NixI+rWrYslS5YgICAAu3fvxtixY5GamooZM2YYrWHEiBH49ddfMWfOHDz88MNIT0/Hr7/+irS0NJP1m1Pbrl27MGDAADz22GPYtGkTcnNzsXjxYovfn/nzzz/h4+OD+fPno0aNGrhx4wbWr1+PDh06IC4uDo0bNy60/4ABAzBkyBCMHj0at2/fVvyZffv2hZ+fH9auXYvu3bsXem3dunVo27YtgoODAZh/Dn777Td06tQJvr6+mD17Nho1aoSkpCRs27YNOTk5Jf5OAMD+/fvx+OOPIzg4GGvWrIFOp8PKlSsRERGBL7/8EoMHDzZ5nGU95+Z89rRp09C+fXu89tprmDt3Lrp27Qpvb2+T52/BggW4fPkyvvrqK/j4+KBRo0YMvIpEEJlh0aJFAoBISEgotH3GjBkCgFi4cGGh7a+++qrw8PAQeXl5Bdt69uwpateuLTIyMgrtO2bMGOHh4SFu3Lhh9PMrV64sxo0bV2KNa9euLVRjaWp75JFHRJ06dUR2dnbBtqysLOHj4yOK/mcSGRkp6tWrV+zz8z/PWD1KcnNzRU5OjmjUqJEYP358sZ81ffr0Eo85X1RUlPD09BTp6ekF206dOiUAiPfff79gm7nnoFu3bqJq1aoiJSXF6Gca+50QQojQ0FDh5+cnsrKyCh1rixYtRO3atQv+7Us6TnPOuRJzP3vfvn0CgPj666/N+rmXL18Wnp6eIjw8vGDbM888I1xcXMTt27dLXSfZHi9pkkU8+eSThZ4HBwfj7t27SElJAQDcvXsX33//Pfr37w8vLy/k5uYWPHr37o27d+/i0KFDRn9++/btsW7dOrz77rs4dOgQ7t27Z7Habt++jaNHj6Jfv35wd3cv2K9y5cqIiIgw+3PMkZubi7lz56JZs2Zwd3eHq6sr3N3dcf78eZw+fbrY/gMHDjTr544aNQp37tzBpk2bCratXbsWOp0Ow4YNA2D+Ofjrr7+wf/9+PPPMM6hRo0apj/H27ds4fPgwnn76aVSuXLlgu1arxYgRI/DHH3/g7NmzJo+zLOe8LJ9trqioKOTk5GD58uUF24KDg5GXl1fskjQ5JgYeWYSPj0+h5/kdR+7cuQMASEtLQ25uLt5//324ubkVevTu3RsAShzasGnTJkRGRuKTTz5BWFgYqlevjueeew7Jycnlru3mzZsQQsDf37/Ye5W2lUdUVBSmTZuGfv36Yfv27Th8+DCOHDmCVq1aFdTzIHN7nDZv3hyPPPII1q5dCwAwGAzYuHEjnnrqKVSvXh2A+efg5s2bMBgMqF27dpmOMf/fU6n2mjVrFtRi6jjLcs7L8tnm2LdvH6Kjo/Hss8+ibt26SE9PR3p6Oho0aACAHVcqCt7DI5uoVq1awV/Zr732muI+9evXN/p+X19fLFu2DMuWLUNiYiK2bduGiRMnIiUlBbt27Sp3bcbGUyl9uXp4eCA7O7vYdnPGIm7cuBHPPfcc5s6dW+y9VatWLba/qU4wD3r++efx6quv4vTp07h48SKSkpLw/PPPF7xu7jnw8vKCVqvFH3/8YfZnP6hatWpwcXFBUlJSsdf+/PNPAPJ8PkjpOMtyzsvy2aYYDAaMHTsWALB+/XqsX7++2D4MvIqBgUdmKdoqKi0vLy907doVcXFxCA4OLnTpsLTq1q2LMWPG4Pvvv8dPP/1U5p+Tr1KlSggJCcHWrVuxePHigtpu3bqFb7/9ttj+QUFBSElJwbVr1wpagDk5Odi9e7fJz9JoNMWGTezYsQNXr17FQw89VK7jGDp0KKKiorBu3TpcvHgRtWrVQo8ePQpeL805CA8Px9dff405c+YYDQhjvxOVKlVChw4dsHnzZixevBienp4AgLy8PGzcuBG1a9c2e7xbPnPPuTU++4MPPsCJEycwa9YsPPbYY8VeHzhwIAOvgmDgkVlatmwJAHjvvfcQGRkJNze3Yj0KTXnvvffQqVMndO7cGa+88gqCgoKQlZWFCxcuYPv27fjhhx8U35eRkYGuXbti2LBhaNKkCapUqYIjR44U9Ky0hNmzZ6NPnz7o2bMn3njjDRgMBixatAiVK1fGjRs3Cu07ePBgTJ8+HUOGDMFbb72Fu3fvYvny5TAYDCY/p2/fvli3bh2aNGmC4OBg/PLLL1i0aFGZLx8+qGrVqujfvz/WrVuH9PR0TJgwAS4uhe9amHsOli5dik6dOqFDhw6YOHEiHnroIVy7dg3btm3D6tWrUaVKFaO/E1WqVMG8efPw+OOPo2vXrpgwYQLc3d2xcuVKnDhxAl9++aXJlmt5znl5P/tBqampmDlzJjp27Ihp06YpvrdVq1b4+eefkZeXV+zfmxyMnTvNUAUyadIkUbNmTeHi4iIAiH379hX0srt+/XqhfY31UExISBCjRo0StWrVEm5ubqJGjRqiY8eO4t133zX6uXfv3hWjR48WwcHBwtvbW3h6eorGjRuLGTNmFOodZ6yXprm1bdmyRbRs2VK4u7uLunXrivnz54uxY8eKatWqFatp586donXr1sLT01M0aNBArFixwqxemjdv3hQvvPCC8PPzE15eXqJTp07iwIEDIjw8vFDvP2O1m7Jnzx4BQAAQ586dU9zH3HNw6tQpMWjQIOHj41PwbzJy5Ehx9+7dgn2UfifyHThwQHTr1k1UqlRJeHp6itDQULF9+/ZCn2HsOM0958aY89nm9NJ86aWXhKurqzh+/LjRfcaNGycAiDNnzpisi+xLI4QQdshZIod37949tG7dGrVq1cKePXvsXQ4RlRMvaRL97YUXXsDjjz+OwMBAJCcnY9WqVTh9+jTee+89e5dGRBbAwCP6W1ZWFiZMmIDr16/Dzc0Nbdu2xc6dO/GPf/zD3qURkQXwkiYREamCVbsU/fjjj4iIiEDNmjWh0WiwdevWEvePiYkpmIT2wceZM2esWSYREamAVS9p3r59G61atcLzzz9v9hRJAHD27NlCE7mWZXojIiKiB1k18Hr16oVevXqV+n1+fn6Ks04QERGVlUN2WmnTpg3u3r2LZs2aYerUqejatavRfbOzswtN85SXl4cbN27Ax8enVANMiYjIMQghkJWVhZo1a1p0ML9DBV5gYCA++ugjtGvXDtnZ2fjss8/QvXt3xMTEKE7pA8hZFWbNmmXjSomIyNquXLlikVmI8tmsl6ZGo8GWLVvQr1+/Ur0vIiICGo0G27ZtU3y9aAsvIyMDdevWxZUrV8xa0JGIiBxLZmYm6tSpg/T0dOj1eov9XIdq4SkJDQ3Fxo0bjb6u0+mKTcYLAN7e3gw8IqIKzNK3pRx+ptO4uDiz1wQjIiIyxqotvFu3buHChQsFzxMSEhAfH4/q1aujbt26mDRpEq5evYoNGzYAAJYtW4agoCA0b94cOTk52LhxI6KjoxEdHW3NMomISAWsGnhHjx4t1MMyKioKABAZGYl169YhKSkJiYmJBa/n5ORgwoQJuHr1Kjw9PdG8eXPs2LGjYDVmIiKisnK6qcUyMzOh1+uRkZHBe3hERBWQtb7HHf4eHhERkSUw8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUcVw+rVQK1aQF5e4e1PPglERtqnJnI4QUHAsmWFt7VuDcycaftayPEw8KhiGDQISE0F9u27v+3mTWD3bmD4cPvVRUQVBgOPKobq1YEnngC++OL+tq+/ltu7d7dfXURUYTDwqOIYPhyIjgays+Xzzz8HhgwB/voL6NcP6N8faNcO+Owzu5ZJjmn1auDpp+XfR336yAsEpC5WDbwff/wRERERqFmzJjQaDbZu3WryPfv370e7du3g4eGBBg0aYNWqVdYskSqSiAh5D2/HDuDKFeDAAeDZZ4HKlYEtW+RjxQpg+XJ7V0p24uICCFF427178n9ffBH45hvg+++B3Fzg4EHb10f2ZdXAu337Nlq1aoUVK1aYtX9CQgJ69+6Nzp07Iy4uDpMnT8bYsWMRHR1tzTKpovD0BAYMkC27L78EHn5Ytug0GvlISwMmTQKWLLF3pWQnNWoASUn3n2dmAgkJ8v+7/P1tt24d4OUF9Opl8/LIzlyt+cN79eqFXqX4rVq1ahXq1q2LZX93s2ratCmOHj2KxYsXY+DAgVaqkiqU4cNlS+/kSdm6y3f8OPD668DChUD79varj+yqWzcZaBERQLVqwLRpgFYrXzMYgKlTgaws4D//uR+ApB4OdcpjY2PRo0ePQtt69uyJo0eP4l7+dYkisrOzkZmZWehBTqxbN9lR5exZYNgwuS0tDQgNBe7eBWbPZq9NFZs0CXjsMaBvX6B3b3lrt2FD+drkyfI+3qVL8nbvjh32rJTswaotvNJKTk6Gv79/oW3+/v7Izc1FamoqAgMDi71n3rx5mDVrlq1KJHvTaoE//yy8zccHuH3bPvWQQ/H2BjZtKrztwWGaCxbYth5yLA7VwgMAjUZT6Ln4+w500e35Jk2ahIyMjILHlStXrF4jERFVPA7VwgsICEBycnKhbSkpKXB1dYWPj4/ie3Q6HXQ6nS3KIyKiCsyhWnhhYWHYu3dvoW179uxBSEgI3Nzc7FQVERE5A6sG3q1btxAfH4/4+HgActhBfHw8EhMTAcjLkc8991zB/qNHj8bly5cRFRWF06dP49NPP8WaNWswYcIEa5ZJREQqYNVLmkePHkXXrl0LnkdFRQEAIiMjsW7dOiQlJRWEHwDUr18fO3fuxPjx4/HBBx+gZs2aWL58OYckEBFRuWmEKDovQcWWmZkJvV6PjIwMeHt727scIiIqJWt9jzvUPTwiIiJrYeAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwKOKLydHLnb2+ef2roQsLDMTGDUK+Okne1dCzsChVksgKpO8PLnQWV6eXAx27Fh7V0QWkJIC9OgB/PYbULUq8Oij9q6IKjq28Kji8/AAHnpI/v833gCmTgWca8Y81bl8GQgLA44fl89btbJvPeQcGHjkHB55RK6GDgBz5gCjRwMGg31rojI5eRJo3x5ITJSNdgBo3dquJZGTYOCRc2jdunCr7uOPgWeeAbKz7VYSlV5sLNCxo7wynZsrt7m6Ak2b2rcucg4MPHIOrVrdbw4AMvy2bgV69QKysuxWFplv1y6gWzfg1q3CjfOHHwbc3e1XFzkPBh45B6WbPHl5wI8/AuHhQGqq7Wsis335JdC3r2yQP/h3i6urvFpNZAkMPHIOfn5AjRrFtxsMwLFjQGiovClEDmfFCmD4cHmqivY1ysvj/TuyHAYeOY927QCNpvh2gwG4dAno0AE4fdrmZZEyIYDp04HXXzfeqZaBR5bEwCPn0abN/Z6aRRkMwPXrsq/7zz/bti4qxmAAXn0V+Ne/TO/LIQlkKQw8ch6tW9/v2qfEYJAdWMLDgb17bVYWFZaTAwwdCqxebXrfwECgWjXr10TqwMAj52HOta+8PPmN27s38J//WL0kKuzWLdlxNjra9NwAGo28Sk1kKQw8ch4NG8pZV0zJy5MtwSFDgA8/tH5dBEB2lA0PB/bvL9wT0xitFmjb1vp1kXow8Mh5aLVAixbm7y+EvJE0axanIrOyK1fk7dPffjN/ApzcXN6/I8ti4JFzCQmRg7dKY+ZMOeG0Oc0OKrUzZ2QH2YSE0s/2xh6aZEkMPHIurVuXbQ7N/MFgOTkWL0nNjhyRLbuUlNKflkqVgKAgq5RFKsXAI+dSdE7N0vjqK9kcIYtZuhRITy/b3yDBwYALv6HIgvjrRM6lRQvlwecl0WoBLy9g7lzOUmxh06bJ+TGB0oWXmxt7aJLlMfDIuVSqBNSvb96+rq7yW/ill+QNpkmT5DctWUyzZsD//gd89x3QqJH577t3j/fvyPIYeOR8QkLMa04IAURGAitXyrk4ySo0GuCJJ4B9+0rXn4iBR5bGwCPn07q1eZc1DQZgwwbg/Hmrl0RyGjFzb6+6uADNm1u3HlIfBh45H6WemhqNcqtPowHeftsmZanZmTNyKjFjnVeKtvweesi8OQSISoOBR87nwWthWq28rzd7NlC5cvF9c3PlQrE//WSr6lTp7beVG90uLsCIEUDXrvefu7hwDTyyDgYeOZ+AAPnQaoFXXpFLA02dKmdUUfrW1WqBN97gbCtWsn8/sH27cuuuShVg+XJgzx5g926gSRM5/r99e9vXSc5PI4Rz/VeemZkJvV6PjIwMeHt727scspeMDCAtDWjQ4P62nBzg4YflPFdKs6ps2gQ884ztalSBvDw5vOD4ceXAW75croeXz2AATp4EWrYs/egSch7W+h5nC4+ck15fOOwAwN0dWLRIOew0GmDCBCA72zb1qcRXXwHx8cXDzsVFzqLy8suFt2u1csA5w46sgYFH6vL00/IGUdGFYoUA/vgD+OAD+9TlhO7eBd56Szm88vKAJUvk3yBEtsLAI3XRaIBly5SvrwkhJ5K+ccPWVTml5cuBpKTit0a1WiA0FOjf3z51kXox8Eh9OnYEBgxQHgX9119ywBiVS2qq7Bir1EPAYJB/c/CyJdkaA4/UacEC5e0Gg1w54fffbVuPk5k1S17SLEqrBQYNkssFEdkaA4/U6aGHgNdeK34vL98779i2Hidy7pxcSF7pqrFGY/xvDSJrY+CRek2bJldJKCo3F4iOBmJjbV+TEzD2t4KLi1xn19y5vYksjYHnRIKC5L2RB7VuLfthkAIfH2DGDOOD0ceP52D0Uvq//5MT1yi17ipXluP/ieyFgUfqNmYMUKtW8dAzGIDDh4HNm+1TVwUkhJywRukqsUYj7+tVq2b7uojyMfBI3XQ6ORhdqSXn4gK8+aacoYVM+s9/gF9/VR5kXrcu8Oqr9qmLKB8DTyWOHQMGDpTLvsXE2LsaBzN4MNC2bfGmSV4ekJgoe2BQibKz5UQ1xgaZL1rEQeZkfww8J+LiUryhcu+e/N/gYNkPo1kz29fl8EwNRp8xA7h50+ZlVSQrVgBXryoPMn/kETnBDZG9MfCcSI0acmaLfJmZQEKC/eqpUDp3Bp56SnkwelYWMGeO7WuqINLS5P05DjInR8fAcyLdugGffQYcOACcOAFERhofZkYKFi5U/tbOywPee49/PRjxr3/JCWqKcnWVE9p07Gj7moiUMPCcyKRJwGOPAX37Ar17A/36AQ0bytdSUuTzEydk1/CiwxcIcumgV15R/itBCGDiRNvX5OAuXJDzbRtbyZyDzMmRcD08ogelpsoBjbdvK79++DBXJ33AwIHAf/+r3DPz9df5hxWVDdfDI7IFX19g+nQORjdDbKwcpqjUuqtUSU5kQ+RIGHhERY0dCwQGKg9GP3hQNmlUztQg8xkz5EQ2RI7EJoG3cuVK1K9fHx4eHmjXrh0OHDhgdN+YmBhoNJpijzNnztiiVCLAw8N4BxYXFyAq6v54D5WKjgaOHCneutNo5MQ1Y8bYpy6iklg98DZt2oRx48ZhypQpiIuLQ+fOndGrVy8kJiaW+L6zZ88iKSmp4NGoUSNrl0p039ChQKtWyoPRL10CVq+2S1mOICdHTkDjovDtIYQcZK7T2b4uIlOsHnhLly7FCy+8gH/+859o2rQpli1bhjp16uBDE7NX+Pn5ISAgoOChZf96siUXl5IHo0+bBmRk2LwsR7ByJXDlisz+B2m1csKawYPtUxeRKVYNvJycHPzyyy/o0aNHoe09evTAwYMHS3xvmzZtEBgYiO7du2Pfvn1G98vOzkZmZmahB5FFdOkix3goDUbPzATmzrV5SfZ286a8P8dB5lQRWTXwUlNTYTAY4O/vX2i7v78/kpOTFd8TGBiIjz76CNHR0di8eTMaN26M7t2748cff1Tcf968edDr9QWPOnXqWPw4SMUWLSrelAHktn//G7h82fY12dG77wK3bhXf7uoqJ6rp3Nn2NRGZy6rj8P7880/UqlULBw8eRFhYWMH2OXPm4LPPPjO7I0pERAQ0Gg22bdtW7LXs7GxkZ2cXPM/MzESdOnU4Dq+URo+WM92HhMg19Fq1Alq2VF4fVXVefRX46KPilze1WuCZZ4AvvrBPXTZ28SLQuLFcH7corRY4dUqO3ScqL2uNw1O4VmM5vr6+0Gq1xVpzKSkpxVp9JQkNDcXGjRsVX9PpdNDxDnm5Xboke90dPXr/cpWLi1yd+pFH7odg69ZAQIAdC7WHmTOB9euLz59lMABffil7bYaE2KU0W5o4UflSplYrJ6hh2JGjs+olTXd3d7Rr1w579+4ttH3v3r3oWIoJ9uLi4hAYGGjp8ugB33wjv7Mf7HmXlwf8/jvw9dfAlClAr15yeJqvL9CjB/DOO/L7/vRp41NLOQU/P/kPYGwwelSU0w9GP3xY/h4onWcPD3lfj8jRWbWFBwBRUVEYMWIEQkJCEBYWho8++giJiYkYPXo0AGDSpEm4evUqNmzYAABYtmwZgoKC0Lx5c+Tk5GDjxo2Ijo5GdHS0tUtVtcqVgV27gLAweenqwS+2ol9yaWnA3r1yXb384Wju7kDz5oUviQYHA1Wq2OoIrGzcOOD994Fr1wqHm8EgZ+v+9lsgIsJu5VmTEHKCGa1Wedzd9OnyjyAiR2f1wBs8eDDS0tIwe/ZsJCUloUWLFti5cyfq1asHAEhKSio0Ji8nJwcTJkzA1atX4enpiebNm2PHjh3o3bu3tUtVPR8f4IcfgA4d5Pe6qVbbg2Ovc3KAuDjg+HH5vvxMqFdP3uZauNB6dduEl5ecCTkysvhrLi4yEZ54AnBzs31tVrZ1q5xGrCiNRrb4x461eUlEZcLJo6mYs2eB0FC5DJwlLlVWqgTcuOEEK17n5cmmq7FruCtXyptZTiQnR3ZUSUxU7qy6cSMwfLjt6yLnxsmjyWYaN5aXLN3dyz+mSqMBJk92grADZEvuvfeM/xUwZYocn+dEVq+WHZqUBpm3aiUnpCGqKBh4pCgkBNi+vXwLyGo0gL+/vP3lNLp1k5culQajZ2Q41QJw6enGVzzIH2SuNL0YkaPirysZ1b277IVZ1laeEMD8+U44lm/JEuVWXl4esHixnHfLCcydKy9rF6XVyglounSxeUlE5cLAoxI9/TSwalXZ379lC3D+vOXqcQjNmgEvvqjc/DUY5KXNCu7SJdmCU7pvlz9BNFFFw8Ajk156SU4pVRbffgs0bSp78qWmWrYuu5o1S7lHpsEge3LExdm+JguaNEk57LRa4OWXgSZNbF8TUXkx8MgskyeXrfu5wSAfK1fKWVsWLQLu3rV8fTYXECD/UZRuYuUPU6igHaCPHgW++kr5qq1OJyeeIaqIGHhkFo1GzpU8bFjZ7ukZDHLS4XfeAR56SN4bVGpBVChRUXLEtdLK6Pv3A999Z5+6yuHBQeZFaTTA1Kly4hmiioiBR2ZzcQHWrQN69jTeO8/NreRAFAL4808ZnCEhgJFFMCqGSpVkrxxjK6OPH68807ID274d+L//U55Rxel63JLqMPCoVNzcgOhoOaG0UitAqwVq1zYdegBw7BgQHg48+aQc7F4hPfec7MSitDL6uXPAp5/ap64yuHdPNlqNrWS+YAHg6Wn7uogshYFHpeblJa/WNWpUeDiai4vs7HD+vOy57+1d8jit/FbEd9/JzHjtNeD6devWbnFarfGV0QF5n0+pb78D+vhjOVm40iDzFi2AZ5+1T11ElsLAozKpVg34/nvZdyO/cePjA7z5puzYMH48kJAAvPGGDMWSBrDn5sov2dWrgaAgeZXwzh2bHIZlPP64fCgNRr95s0L04c/IkPfnlBgMcoIZDjKnio6/wlRmNWsC+/YBer18Pn++vK2Vr3p1YOlSebmyf3+5raTgMxjkknOTJwMNG8re/RWmY8vSpcYHoy9cCFy9avuaSmH+fBl6Rbm6ymWhunWzfU1ElsbAo3J56CHZIXHjRuWFBACgQQO5ltrBg/fXSTV1jy85GRgxAmjTRoaqw2vRAhg1SjnRc3ONN58cQGKizGulPy4MBjl5DJEzYOBRubVoIWfMNzXvZliYXGbmm2+AunXN69hy8qRsXfTtKxcpcGj/+pfxwejr1wO//Wb7mswwebJy41SrlRPKNGtm+5qIrIGBRzal0QADB8oOjMuWycuh5nRs2b1bBuvo0XKtPocUGCgHGhobjP7mm7avyYRffwW++EI58Nzd5YQyRM6CgUd24e4uZ265dEl2hTe3Y8snn8gZW+bMkff7HM6ECfLmZVEGg+zls3u37WsyIn+QuVI+5y/rFBBg+7qIrIWBR3ZVtarsxHj+PDBokNxmqmPLnTty2ZoGDeSVQkssUmsxlSsD8+Ypv+biIkduO0jBO3fKgf9Kg8xr1JB/iBA5EwYeOYSgIDnd2OHDQIcOcltJlzqFAFJSgJEjgdatgf/9zwZFmuv55+XsykUPIC8POHNGTldjZ7m5xlt3+YPMnW5ZJ1I9Bh45lPbt5dRWW7fKECxJfseWU6fkMLiePYETJ6xdoRm0WjnxqFK3R41Gjs6/dcv2dT1gzRrZqlYaZN6smewhS+RsGHjkcDQa4KmnZGNoxQp52bOk1l7+l/YPPwDBwbJnYVKSTUo1rmdP2b206GB0IYC0NDkVjZ1kZcn7c0ryVzIvz0r3RI6KgUcOy81NTjd26RLw1lvyuamOLUIAa9fK+3uzZwO3b9us3MI0mpIHo8+fb7dUXrgQSE8vvt3V9f6kMUTOiIFHDk+vl/lw/jwweLDcZqpjy927skt9/fpy/ma79BNp1UpOLq1U7L17sueNjf3xh+wkZGyQ+dKlNi+JyGYYeFRh1KsHfP65XKC0Y0e5zdSlztRU4IUXgJYtgT17bFNnIe++qzzHpsEgk/j4cZuWM3Wq8opFWq2cKKZFC5uWQ2RTDDyqcNq1k9OZbdsmL12WJL9jy9mz8rbaP/4hlyWymdq15fVYpWTWam06GP2334ANG5Rbu25ucqIYImfGwKMKSaMBIiLkdGMffihXbzCnY0tMjBzGMGqUXIjWJt5+W/a8KSo3F9i7Vz6srKRB5i4uwMSJcqIYImfGwKMKzdVVTjd26ZLs7e/ubvr+nhCypdOwITBjhg1GCFSpAsydq/yaVmuTwei7d8tJuJU+xsdHThBD5OwYeOQUvL3l7bLff5cTWWs05nVsefddOd7v44+V721ZzAsvyBVzizaxDAY5kPCzz6z20bm5MlONtYDnzSu8rBORs2LgkVOpXVtON/brr0DnznKbqUudaWnASy8BzZvL6bby7/tZlKtryYPR33nHapODrlsn72EW/WgXFzkhzMiRVvlYIofDwCOn1Lq1HIi+c6dcs88cFy4AffrI8eLx8VYoqndvIDy8eNNTCOD6dauMCbh1S17qVZKXJzOYg8xJLRh45LQ0Grla98mTwEcfyXtV5nRsOXAAaNtWLmj7xx8WLshYK08IuQREcrIFP1Au3nrjRvHtWq0M9p49LfpxRA6NgUdOz9VVTjd26ZIch6bTmdex5fPPZceWqVPldFwW0aaN8dVy792TvWgs5M8/5STQSvmalycblCUtwkvkbBh4pBqVK8vZV37/XU6AYk7Hlpwc2akjKAhYtcpCHVvmzFH+YINB9p45dcoCHyIncrl3r/h2rVa2Xlu1ssjHEFUYDDxSnVq15CQn8fFAly5ym6lLnTduAK+8AjRtCnz7bTk7ttStKxebMzYY3QJjBI4fl3OKKg1DcHWVvVOJ1IaBR6oVHCzX0du1C2jcWG4zdYnv4kU54D08HPjll3J8+KRJcpLQonJzge++kz1uyuHNN5UbkS4uchx8rVrl+vFEFRIDj1SvZ0/ZIlqzBvD1Na9jS2wsEBIib8clJpbhQ/MHDirJH4yudPPNDHv2yMlblC6/VqsmZzojUiMGHhHuT56ckCD7jXh4mF6KCAD+8x857GHiRCAjo5Qf+uKLsleM0mD048dlr5lSMhjkFGLGap87V078QqRGDDyiB1SqBEyfLi9dPv+8vMSptNhBvtxc2TFk0SLZsWXFCuWOIorc3GRXSWOD0d9+G7hzp1T1b9gg+7wUvXfn4iInehk1qlQ/jsipMPCIFAQGyg6Tx48D3bvLbaYudaanA6+/Lmcv2brVzI4tERFAp07Kg9GvXZPLj5vp9m3Z0lS6D5k/yLyk8CZydgw8ohI0by47tezdK3tomuPSJaB/f5ljP/9sYuf8wehK3SmFkPf5UlLM+tylS+WELUWDVquVnWx69zbrxxA5LQYekRn+8Q+5nty6dYC/f8m9OfOvUB4+DHToAAwdKkPQqJAQYMgQ5Rtv2dnAzJkm60tOlvfnlFqV+a07DjIntWPgEZkpf8D2xYtysVRPT9MD1wHg66/l/bO33pKXPRXNm6d8zdRgAFavBs6cKbG26dONDzJ/9lk5wQuR2jHwiErJywuYMkX26PznP2VOlXRvzGCQnVuWLpUdW5YvlzO4FBIUZHwNHxeXEscSnDwJfPKJ8lVRrVZO7EJEDDyiMvP3l9ONHT8O9Oght5XU4svLk0MXxo2TA92jo4tcgpw8WY7PKyo3V07vsn+/4s996y3jg8zffBOoU8fsQyJyagw8onJq1gzYsUNOjtK8udxW0v0yIeRg9aefBsLCgEOH/n6halVg9mzlNxkZjP7993JiFqVB5nq97LVJRBIDj8hCunYF4uLk4uUBAeZ1bDl6VIbeoEHy3iBefhmoX195MHp8PPDVV4V+xrhxxluVc+YoNxiJ1IqBR2RBLi6yk8jvv8tek15e5nVs2bJFXuaMmuiOGzOXGx+M/tZbwN27AICNG4ETJ5QHmTdsKO8vEtF9DDwiK/D0lJcTL12SjTYXF9PBl5srO7TUf70PltZbhmwXz8I7CQEkJQHLl+Ovv4B33jE+yHzpUjmRCxHdx8AjsqIaNYAPPpDTffXpI7eZCr7MTA0mXB6LRnln8B8MQqGhdUIAs2dj2ZzbuHZNeZB5p05yAhciKoyBR2QDjRsD//2v7GjZsqXcVmLHFmhwFbUxGP9BBxzGT+hY8Nq1O954d6Gb4iBzg4GDzImMYeAR2dBjj8l19L74AqhZ00THlr//8/wVbdEJP2EAonEBDTEzbypycov/p6vVylldQkKsVT1RxaYRolxrNzuczMxM6PV6ZGRkwJtd1MiB3b0LvP++HIlw547ywPEHueIeBIA8aCEU/lZ1cwPOnwfq1bNOvUS2Yq3vcZu08FauXIn69evDw8MD7dq1w4EDB0rcf//+/WjXrh08PDzQoEEDrFq1yhZlEtmUh4fsdJmQALz6qmyhlbgUEdxggBsEijcLXVzkOngMOyLjrB54mzZtwrhx4zBlyhTExcWhc+fO6NWrFxKNLBOdkJCA3r17o3PnzoiLi8PkyZMxduxYREdHW7tUIrvw9ZW9M0+fvt/ZpKSOLSgWeALe3nKiFiIyzuqXNDt06IC2bdviww8/LNjWtGlT9OvXD/PmzSu2/zvvvINt27bh9OnTBdtGjx6N3377DbGxscX2z87ORnZ2dsHzzMxM1KlTh5c0qcL66Sc5oPzoUUCjERDCVA8Ugfff12DMGFtUR2R9FfKSZk5ODn755Rf0yJ9o8G89evTAwYMHFd8TGxtbbP+ePXvi6NGjuKcwHfy8efOg1+sLHnU4cSBVcI8+Cvwca8Cm0ftQW3MVGigMQgcACGg0AvXra/DyyzYtkahCsmrgpaamwmAwwN/fv9B2f39/JCcnK74nOTlZcf/c3FykpqYW23/SpEnIyMgoeFy5csVyB0BkD3v2QBPcEs+s6obzeQ9hMSagCjKhhZwwUwMD+mI7fHS3IIQGS5ZwkDmROWzSaUVTpO+1EKLYNlP7K20HAJ1OB29v70IPogrp2DG50mzPnsC5cwAAHbIRhX/jEoIwFu/BFffgizR8iaFIyAvCqWO56NfPvmUTVRRWDTxfX19otdpirbmUlJRirbh8AQEBivu7urrCx8fHarUS2c2ffwKjRgGtWwMxMXJbkTEK1XETSzEBlxCE3zWNULmaO6qsWoSmLV05yJzITFYNPHd3d7Rr1w579+4ttH3v3r3o2LGj4nvCwsKK7b9nzx6EhITAjddtyJncugXMmCFnet6wQc4TVtJgPK0WtdxTUWXy63KSzlGjbFYqkTOw+iXNqKgofPLJJ/j0009x+vRpjB8/HomJiRg9ejQAeQ/uueeeK9h/9OjRuHz5MqKionD69Gl8+umnWLNmDSZMmGDtUolsIzcX+PhjuQzQu+/KEegmgg4aDTB8OHDhgnwPL90TlVoJw1wtY/DgwUhLS8Ps2bORlJSEFi1aYOfOnaj39wjZpKSkQmPy6tevj507d2L8+PH44IMPULNmTSxfvhwDBw60dqlE1iUEsGuXHCF+9qzp/V1c5NIHnTrJCTLbtLF+jUROjFOLEdlCfDwQFQXs23c/yEx5+GEZdL16cTZoUpUKOQ6PSPX++AOIjATatgV+/FFuKynsXFwAHx9g9Wrg5Emgd2+GHZGFWP2SJpEqZWUBCxYAixfLe3ZmdEiBq6tc1XXCBKBKFdvVSqQSDDwiS8rNBT75BJgyBUhPN33pUquV+zz3HPCvfwG1atmkTCI1YuARWYIQwI4dskPKhQum98+/j9elC7B0KRAcbPUSidSO9/CIyuuXX4DwcLnUwcWLJe+bfz+ucWPZY/N//2PYEdkIA4+orBIT5di4kBAgfyUPUx1SfH2BNWuA48flFGJEZDO8pElUWhkZwLx58lJk/qie3Fzj+2u1cnbnSZOAN98EKlWyTZ1EVAgDj8hc9+4BH30ETJ0KZGaa7pDi6ip7Zj7/PDB7NhAYaJs6iUgRA4/IFCGAbdvkwHFT9+gA2aIzGIDu3YElS4Dmza1fIxGZxMAjKsmRI7Ln5U8/yXtwJdFoZDg2aQIsWyaX+iEih8FOK0RKLl0Chg4F2rcHDh2S20q6hKnRAH5+wLp1wG+/MeyIHBBbeEQPSk8H5syRLbR8pmZIcXeXA83Hjwe8vKxdIRGVEQOPCABycoBVq4Dp0+W0YOZ0SMnLA/75T2DWLMDIgsZE5DgYeKRuQgCbN8v5Ky9fvj/MwJj8Dik9egCLFgHNmtmmTiIqNwYeqdehQ8C4ccDhw7JDSklhl98hpXlzebmza1dbVUlEFsJOK6Q+Fy8CgwYBYWHA0aNym6kOKQEBwGefAXFxDDuiCootPFKPGzeAd98F3n//fmvOVIcUnQ6YNg144w3A09M2dRKRVTDwyPllZwMrVwIzZwK3b5cccsD9DikvvyzfU6OGLaokIitj4JHzEgL45hvZIeXKFfM7pPTuDSxcKFc0ICKnwcAj53TwoOyQcuTI/Q4nxuS/HhwsO6Q89pitqiQiG2KnFXIuFy4AAwYAjz4K/Pqr3GYq7GrWBL74QnZgYdgROS228Mg5pKXJFQlWrry/zVSHFE9PYMYMYMwYwMPD+jUSkV0x8Khiu3sXWLFCznZy5455HVKEAF57Tc6q4uNjmzqJyO4YeFQx5eUBmzYBb70F/Pmn+R1SIiKABQuARo1sUycROQwGHlU8Bw7IcXFxceZ3SGnTRnZIefRRm5VJRI6FnVao4jh3DnjqKdmx5Ngxuc1U2NWuLVuCP//MsCNSOQYeOb7r12XHkmbNgJ075TZTHVKqVAEWLwbOnweeeUaGHxGpGi9pkuO6cwdYvhz4179k5xRzOqQAwOuvA1OnAtWrW79GIqowGHjkePLygC+/BN5+G0hKMr9DSr9+wPz5QMOGNimTiCoWBh45lpgY2SHl2DHTHVJcXGQ4hoQA//63XP2AiMgI3sMjx3D6NNC3r1x65+RJuc1Uh5Q6deRcmbGxDDsiMomBR/aVkgK88grQogWwe7fcVtK9OhcXQK+XQwzOnQMGDmSHFCIyCy9pkn389ZcMrTlz5PI9eXklL8Ka3yFl3DhgyhSgalUbFElEzoSBR7aVlydXDn/nHdm6M7dDytNPA/PmAUFBNimTiJwPL2lS+f36K7BqFZCbW/J+338PtGoFjBxpOuxc/v7V7NABOHxY9tpk2BFRObCFR+Vz8iTQrRuQkSGfjx6tvM+bb8p7dFqt3GaqZRcUBCxdCjz5JO/REZFFsIVHZXf5MtC9O3Drlnw+ZQqQmXn/9eRk4KWXgJYtZesOMN0hpWpVufrBmTNyGjGGHRFZCAOPyub6ddmyS0u7H2Lp6cDChcDt23J2lPr1gU8/la25ki53arWAm5tc+eDSJbl0j5ubLY6CiFREI4Spa0sVS2ZmJvR6PTIyMuDt7W3vcpxTVhbQuTNw4kTxFpu7u2ylpaaW3OsSuN8hZfhwYO5coG5dq5VMRBWHtb7HeQ+PSufuXbmmnFLYAbI1d/26eTOkdOwoZ0hp18569RIR/Y2BR+YzGIChQ+V6dMZab/fumf45DRrIoOvTh/foiMhmeA+PzCOE7IH53/+avlSpxMUFqFYN+PDD+9OIMeyIyIbYwiPzTJkCfPJJ6d/n6irD7q235OoHvK9KRHbCwCPT/v1vOctJWQweLJfsqV3bsjUREZUSL2lSyTZsAKKiyv7+8HCGHRE5BAYeGfftt8Dzz5fvZ0yadH9gOhGRHTHwSNn//Z9ceqe8wzRv3gQWLbJMTURE5cDAo+KOHQN69ZKzo5Q38PLyZODl5FimNiKiMmKnFSrs4kU5P+adO2UbfuDmdn8snqsr0KSJXNrH3d2ydRIRlRIDj+5LTpbzY968WfIkz4AcaqDR3N/P2xto00bOmtK6tVwGqEkTBh0ROQyrXtK8efMmRowYAb1eD71ejxEjRiA9Pb3E94wcORIajabQIzQ01JplEiAnfv7HP4A//igedq6uhQeJ16sH9OsHzJwJbN8OXLki3x8TAyxZAowYAQQHM+yIyKFYtYU3bNgw/PHHH9i1axcA4KWXXsKIESOwffv2Et/3xBNPYO3atQXP3fnFaX39+8t16x4MNnd3oFkz4JFH7rfagoOBKlXsViYRUVlZLfBOnz6NXbt24dChQ+jQoQMA4OOPP0ZYWBjOnj2Lxo0bG32vTqdDQECAtUojJe3ayZZc27Yy3Fq3Bho1ktuIiJyA1b7NYmNjodfrC8IOAEJDQ6HX63Hw4MESAy8mJgZ+fn6oWrUqwsPDMWfOHPj5+Snum52djezs7ILnmQ8uQErmW7zY3hUQEVmV1e7hJScnK4aUn58fkpOTjb6vV69e+Pzzz/HDDz9gyZIlOHLkCLp161Yo1B40b968gnuEer0ederUsdgxVDirVwO1ahXvXfnkk0BkpH1qIiJyEKUOvJkzZxbrVFL0cfToUQCARmE2fCGE4vZ8gwcPRp8+fdCiRQtERETgu+++w7lz57Bjxw7F/SdNmoSMjIyCx5UrV0p7SM5j0CC58Oq+ffe33bwJ7N4tF1klIlKxUl/SHDNmDIYMGVLiPkFBQTh27BiuXbtW7LXr16/D39/f7M8LDAxEvXr1cP78ecXXdToddDqd2T/PqVWvDjzxBPDFF3IsHQB8/bXcnv+ciEilSh14vr6+8PX1NblfWFgYMjIy8PPPP6N9+/YAgMOHDyMjIwMdO3Y0+/PS0tJw5coVBAYGlrZUdRo+HHjpJWDlSkCnAz7/HBgyBNBq5RI/P/0k94uJsWuZRES2ZrV7eE2bNsUTTzyBF198EYcOHcKhQ4fw4osvom/fvoU6rDRp0gRbtmwBANy6dQsTJkxAbGwsLl26hJiYGERERMDX1xf9+/e3VqnOJSJC3sPbsUOOjztwAHj2WfnanDly7BwRkQpZtc/5559/jrFjx6JHjx4AgCeffBIrVqwotM/Zs2eRkZEBANBqtTh+/Dg2bNiA9PR0BAYGomvXrti0aROqcOyXeTw9gQEDZMvuwgXg4YflkAMiIpWzauBVr14dGzduLHEf8cDkxJ6enti9e7c1S1KH4cNlS+/kyfutOyIileNqCc6oWzfZUeXsWWDYsPvbly8Hpk4FTpyQU4OVMDyEiMjZaIQo7/ovjiUzMxN6vR4ZGRnw9va2dzlERFRK1voeZwuPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUwaqBN2fOHHTs2BFeXl6oWrWqWe8RQmDmzJmoWbMmPD090aVLF5w8edKaZRIRkQpYNfBycnIwaNAgvPLKK2a/Z+HChVi6dClWrFiBI0eOICAgAI8//jiysrKsWCkRETk7qwberFmzMH78eLRs2dKs/YUQWLZsGaZMmYIBAwagRYsWWL9+Pf766y988cUX1iyViIicnEPdw0tISEBycjJ69OhRsE2n0yE8PBwHDx5UfE92djYyMzMLPYiIiIpyqMBLTk4GAPj7+xfa7u/vX/BaUfPmzYNery941KlTx+p1EhFRxVPqwJs5cyY0Gk2Jj6NHj5arKI1GU+i5EKLYtnyTJk1CRkZGwePKlSvl+mwiInJOrqV9w5gxYzBkyJAS9wkKCipTMQEBAQBkSy8wMLBge0pKSrFWXz6dTgedTlemzyMiIvUodeD5+vrC19fXGrWgfv36CAgIwN69e9GmTRsAsqfn/v37sWDBAqt8JhERqYNV7+ElJiYiPj4eiYmJMBgMiI+PR3x8PG7dulWwT5MmTbBlyxYA8lLmuHHjMHfuXGzZsgUnTpzAyJEj4eXlhWHDhlmzVCIicnKlbuGVxvTp07F+/fqC5/mttn379qFLly4AgLNnzyIjI6Ngn7fffht37tzBq6++ips3b6JDhw7Ys2cPqlSpYs1SiYjIyWmEEMLeRVhSZmYm9Ho9MjIy4O3tbe9yiIiolKz1Pe5QwxKIiIishYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqwMAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgUGHhERqQIDj4iIVIGBR0REqsDAIyIiVWDgERGRKjDwiIhIFRh4RESkCgw8IiJSBQYeERGpAgOPiIhUgYFHRESqYNXAmzNnDjp27AgvLy9UrVrVrPeMHDkSGo2m0CM0NNSaZRIRkQpYNfBycnIwaNAgvPLKK6V63xNPPIGkpKSCx86dO61UIRERqYWrNX/4rFmzAADr1q0r1ft0Oh0CAgKsUBEREamVVQOvrGJiYuDn54eqVasiPDwcc+bMgZ+fn+K+2dnZyM7OLniekZEBAMjMzLRJrUREZFn5399CCIv+XIcLvF69emHQoEGoV68eEhISMG3aNHTr1g2//PILdDpdsf3nzZtX0JJ8UJ06dWxRLhERWUlaWhr0er3Ffp5GlDJCZ86cqRgwDzpy5AhCQkIKnq9btw7jxo1Denp6qQtMSkpCvXr18NVXX2HAgAHFXi/awktPT0e9evWQmJho0X8oR5eZmYk6dergypUr8Pb2tnc5NqPG41bjMQPqPG41HjMgr9TVrVsXN2/eNLvDozlK3cIbM2YMhgwZUuI+QUFBZa2nmMDAQNSrVw/nz59XfF2n0ym2/PR6vap+QfJ5e3vzuFVCjccMqPO41XjMAODiYtl+laUOPF9fX/j6+lq0iJKkpaXhypUrCAwMtNlnEhGR87HqsITExETEx8cjMTERBoMB8fHxiI+Px61btwr2adKkCbZs2QIAuHXrFiZMmIDY2FhcunQJMTExiIiIgK+vL/r372/NUomIyMlZtdPK9OnTsX79+oLnbdq0AQDs27cPXbp0AQCcPXu2oGelVqvF8ePHsWHDBqSnpyMwMBBdu3bFpk2bUKVKFbM+U6fTYcaMGYqXOZ0Zj1s9x63GYwbUedxqPGbAesdd6k4rREREFRHn0iQiIlVg4BERkSow8IiISBUYeEREpAoMPCIiUgWnCDy1rrtXluMWQmDmzJmoWbMmPD090aVLF5w8edK6hVrQzZs3MWLECOj1euj1eowYMcLklHUV8VyvXLkS9evXh4eHB9q1a4cDBw6UuP/+/fvRrl07eHh4oEGDBli1apWNKrWs0hx3TExMsfOq0Whw5swZG1ZcPj/++CMiIiJQs2ZNaDQabN261eR7nOFcl/a4LXWunSLw1LruXlmOe+HChVi6dClWrFiBI0eOICAgAI8//jiysrKsWKnlDBs2DPHx8di1axd27dqF+Ph4jBgxwuT7KtK53rRpE8aNG4cpU6YgLi4OnTt3Rq9evZCYmKi4f0JCAnr37o3OnTsjLi4OkydPxtixYxEdHW3jysuntMed7+zZs4XObaNGjWxUcfndvn0brVq1wooVK8za31nOdWmPO1+5z7VwImvXrhV6vd6sfSMjI8VTTz1l1XpsxdzjzsvLEwEBAWL+/PkF2+7evSv0er1YtWqVFSu0jFOnTgkA4tChQwXbYmNjBQBx5swZo++raOe6ffv2YvTo0YW2NWnSREycOFFx/7fffls0adKk0LaXX35ZhIaGWq1Gayjtce/bt08AEDdv3rRBddYHQGzZsqXEfZzlXD/InOO21Ll2ihZeWeWvu/fwww/jxRdfREpKir1LsqqEhAQkJyejR48eBdt0Oh3Cw8Nx8OBBO1ZmntjYWOj1enTo0KFgW2hoKPR6vcn6K8q5zsnJwS+//FLoHAFAjx49jB5jbGxssf179uyJo0eP4t69e1ar1ZLKctz52rRpg8DAQHTv3h379u2zZpl25wznujzKe65VG3i9evXC559/jh9++AFLlizBkSNH0K1bt0JLDTmb5ORkAIC/v3+h7f7+/gWvObLk5GTFhYD9/PxKrL8inevU1FQYDIZSnaPk5GTF/XNzc5Gammq1Wi2pLMcdGBiIjz76CNHR0di8eTMaN26M7t2748cff7RFyXbhDOe6LCx1rh1uAdh8ZVl3rzQGDx5c8P9btGiBkJAQ1KtXDzt27FBcd89WrH3cAKDRaAo9F0IU22ZL5h4zULx2wHT9jnquS1Lac6S0v9J2R1ea427cuDEaN25c8DwsLAxXrlzB4sWL8dhjj1m1TntylnNdGpY61w4beI627p6tWPO4AwICAMi/Eh9cbiklJaXYX422ZO4xHzt2DNeuXSv22vXr10tVv6OcayW+vr7QarXFWjUlnaOAgADF/V1dXeHj42O1Wi2pLMetJDQ0FBs3brR0eQ7DGc61pZTlXDts4Kl13T1rHnf9+vUREBCAvXv3FqxckZOTg/3792PBggVW+UxzmHvMYWFhyMjIwM8//4z27dsDAA4fPoyMjAx07NjR7M9zlHOtxN3dHe3atcPevXsLLYm1d+9ePPXUU4rvCQsLw/bt2wtt27NnD0JCQuDm5mbVei2lLMetJC4uziHPq6U4w7m2lDKd63J1eXEQly9fFnFxcWLWrFmicuXKIi4uTsTFxYmsrKyCfRo3biw2b94shBAiKytLvPnmm+LgwYMiISFB7Nu3T4SFhYlatWqJzMxMex1GqZX2uIUQYv78+UKv14vNmzeL48ePi6FDh4rAwMAKc9xPPPGECA4OFrGxsSI2Nla0bNlS9O3bt9A+Ff1cf/XVV8LNzU2sWbNGnDp1SowbN05UqlRJXLp0SQghxMSJE8WIESMK9r948aLw8vIS48ePF6dOnRJr1qwRbm5u4ptvvrHXIZRJaY/73//+t9iyZYs4d+6cOHHihJg4caIAIKKjo+11CKWWlZVV8N8tALF06VIRFxcnLl++LIRw3nNd2uO21Ll2isCLjIwUAIo99u3bV7APALF27VohhBB//fWX6NGjh6hRo4Zwc3MTdevWFZGRkSIxMdE+B1BGpT1uIeTQhBkzZoiAgACh0+nEY489Jo4fP2774ssoLS1NDB8+XFSpUkVUqVJFDB8+vFhXZWc41x988IGoV6+ecHd3F23bthX79+8veC0yMlKEh4cX2j8mJka0adNGuLu7i6CgIPHhhx/auGLLKM1xL1iwQDRs2FB4eHiIatWqiU6dOokdO3bYoeqyy+9uX/QRGRkphHDec13a47bUueZ6eEREpAqqHZZARETqwsAjIiJVYOAREZEqMPCIiEgVGHhERKQKDDwiIlIFBh4REakCA4+IiFSBgUdERKrAwCMiIlVg4BERkSr8P0Q8lvl93EyHAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'the singular vectors of $A$')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for (v,s,c) in ((V[:,1],\"v₁\",\"red\"), (V[:,2],\"v₂\",\"red\"),\n", + " (U[:,1],\"u₁\",\"blue\"), (U[:,2],\"u₂\",\"blue\"))\n", + " arrow(0,0,v..., color=c, width=0.04, length_includes_head=true)\n", + " text(((norm(v)+0.15)*normalize(v))..., s, color=c)\n", + "end\n", + "axis(\"square\")\n", + "xlim(-1.5,1.5)\n", + "ylim(-1.5,1.5)\n", + "title(L\"the singular vectors of $A$\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Modulo an arbitrary choice of sign ($v_1$ is flipped in sign), this is exactly the case of $\\theta \\approx 29^\\circ$ that we found above which gave $Av_1 \\perp Av_2$. Julia has now computed a much more precise angle where this happens:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "28.997308395958257" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rad2deg(acos(-V[1,1])) # rotation angle of the basis, in degrees" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Any matrix = sum of rank-1\n", + "\n", + "The SVD $A = U\\Sigma V^T$ can be thought of as: to compute $Ax$ for any $x$ you (1) compute $x$'s components in the $V$ basis with $V^Tx$, then (2) multiply each coefficient by the $\\sigma_k$, and (3) add up in the $U$ basis. In the SVD basis, any matrix $A$ acts like a bunch of **scalars** $\\sigma_k$ once you have decomposed $x$ into the right **input and output basis**!\n", + "\n", + " - Note: are we missing anything when we compute $V^Tx$? $V$ is only a basis for $C(A^T)$, so what happens if $x$ does not lie entirely in the row space of $A$? Any remaining components $x$ must be in $C(A^T)^\\perp = N(A)$, so $A$ would send those other components to zero! So, to find out what $A$ does to any vector $x$, we **only need to know the components of x in the row space**.\n", + "\n", + "This can be also written\n", + "$$\n", + "\\boxed{A = \\sigma_1 u_1 v_1^T + \\sigma_2 u_2 v_2^T + \\cdots + \\sigma_r u_r v_r^T}\n", + "$$\n", + "That is, any matrix $A$ of rank $r$ can be written as a **sum of *r* rank-1 matrices** with orthogonal vectors, weighted by the singular values $\\sigma$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data “Compression”\n", + "\n", + "It is conventional to sort the singular values in descending order\n", + "$$\n", + "\\boxed{\\sigma_1 \\ge \\sigma_2 \\ge \\cdots \\ge \\sigma_r}\n", + "$$\n", + "In this way, the earlier singular vectors describe the more \"important\" part of the matrix $A$: the part that has a bigger effect on the output of $Ax$.\n", + "\n", + "Because the SVD **decomposes A into orthogonal components, sorted by \"importance\"** it is extremely useful in data analysis for pulling out the \"most important\" parts of a data. There is a whole statistical technique, [principal component analysis (PCA)](https://en.wikipedia.org/wiki/Principal_component_analysis) that is based on this.\n", + "\n", + "If we take only the **first k (< r) singular values** of $A$, we can think of it as an \"approximate\" version of A that throws out the \"less important\" parts. This is called a [low-rank approximation](https://en.wikipedia.org/wiki/Low-rank_approximation) of a matrix:\n", + "$$\n", + "A \\approx \\sigma_1 u_1 v_1^T + \\sigma_2 u_2 v_2^T + \\cdots + \\sigma_k u_k v_k^T\n", + "$$\n", + "\n", + "A great way to visualize this is to look at **images**, which can be thought of as **matrices of numbers** representing the **red, green, and blue (RGB)** components of the image." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "using Images, FileIO" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATkAAADGCAIAAAAmMGDeAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAIABJREFUeAE8wduSLNmZIOT/tNZy94jI0z6oDipJLUHL6BnGYGhjrLnBDIz34h244KW4GXoM6JFaGrVUVbtq79yZGRHuvg7/gVQZw/fJ//q//e9dR4RxTq8KsrpVaxGxlPLmdHt/OE3C1MsYjTAKk3hkd9pbW7dPH/7D8x//EE9P8yTpdCx3b9TK4w/n3//+H/v5zGtPVXXbVFXmJFNRHiVhESpMCUmCGYWBRhIIy8iFOVxHbR6KiLyDe6BwylMg762ue21jyIIe4RAjYIAPMwWPCOHc1JqZIzmlOvyybherkGE+Ht68fXv7/n65O2KW7mOYTgjqxiktNwsk3EcHgjSVt/cPNzf3dw/vb0638+GYphThw/oEsK5rq+Pl5eVyWV+eXr777rvLZX36/P3Ty/l62QPEIalh13ADMbQgkEIyRcToFcISoZEBUaQFONWu1+u1rVfVcbjF43J4ezyeUj5xenM4vL+5P82Tka1dPz5f/9OHx28/fX5eqwEgU5wuCSRTmXFKxjwSa4AjFttrfanXDs6l7NHbUGCYJPfeS34lPlRE7m5vDocDoDIgGvrQWvt13y7btg8LJAjPgAeAL1L6xTy9R7+XNJ/ur3V91P13l8t3Fg9fH//7f/vN//Bvf/Pr33wDQM8v2+/+8O3/8X/+8Y/fn58qfvv95612cFiYJ4S3y+Hd4QitW2/HN8ff/uvf/ubvfnXz5ZtK8rs/P/7j//3nDx+vfPdFOd7gPFUgj0A3bWtf13cHPhxLSVTEceiff/eHP/0/vx/XBgbhPRf+8ov7n//i3bv3t8dTOV+f/+M//fDttx9Go+lwPBwOyzGn4rnAwtOUZ63x6ePl5ayBU4dUe7+5f0eTk+z3h/Ff/OLu3dfzmq+PellVDil9ebx7kxbcdLz0tllr41lpq+PpPJ4e65//5cP20maZ2l5ftDJEEkjEY4zuWA6nw+1dzO/QxpxxEdBRTbX1ft02cXh4d//VL96X23kg8nRTB/3w45M/f1wSjvPH86fv5MNf/tkjUDCVXEphTu5u4SK0ZEIJSBaJ+sRmJTEqUXQD9zQLLenOf+5b70ly4emLN4ef/2rV1I8/DHj5/j/+4fz0XJrGqH30MUCvniwJYhbIGBkgY5q4JE4HGmbGCFOSOVFBmiQtWXRJ1ru5YzgTTsLluCAijY6IgeBgFuEQrwyi77UbdA01NXQnhsNiMbd0yQUK7tNORDsIdQyPcJNtNBDGUXHKCVzmckC+OSxfvn/79t17lskB3W2rl5fLMzV/enp6eb58+vT55eX89HL58OHHba1m0bqqJk5TyksAmLmCFrRwd3NHg1eO4O4BxAgoADg0tHVtHQBySrdzent7uluOKaAgEkQbG8bg2fauL/VyHWvzinlMiCxYjjdCqVDJkUUJO1sd3v2ltabeIRxIEAWoBxBAuEOAqjIEAOSUcs6ImEsJNVN75e5m5u4AgBRgwBACwO7kDmgB5O6ImDlnyaxtdNu3Ua+6rrtI1lfDVTVeOcIrZjAbbktKiKhmwrQcDhTQt7XtK9rtJOk0pdMkT+RmvW9X1+G5YMrMyTFH1H3vROQTEVImmqYppVRjnahYyBi9qm6tNx3FmFm8bdbVDQRlKgsnWevlZW1cz8u0oPP10moNToyZck5AiMhm2Bu0Xa0aEuSgihwaquoSjETCicAhmFwIi8hc0jIV36yIcOSXa42/gviJQ7wiomvfBGzGiVnCxczNcfQArHuldcuWuwszgXoBHDsCEXakHUn+8O//PQqmlMpccs5x+iLCImIqRRsIz0Q5ZxR6BADMGUEMjAl5TikXP5/S4a6+nBtoWW7w/i1gZuPx6S8/APw4+imlw/E+EJSggU7bqVrTsfvYSFXCchrJIPrZwIhxtrQYFcTsxg43Ccws3CdOU0lTyllSFgFMiChIiMQQKSDAwCOlski8svCIACL+SbOOwjgGrldvhEkwCzJXg7mNEY2aQhZmnI5wC/P9GPfdTk29Xvehqq1dz/vL56fvnj4+fnp6evnh4+fLeV23/vJyUQue75ATavR9VDh7oIYTiVsd7uoIUpiZAAkMPWzvhmK4N4Ntb2M0QZxzukvpLk/HkgQiAyDBtW2X1WaFz9f6+bJf2t7DVEegh8FJ55JyoVIoM3OgV3PVce6qpgOQANxdAA9CALCr5pwSsWpHAEQUkaVMmGKYRwQiMnN+ZeajKwQCCEACyAACQYAAHuaMmFISEYBmI1rVfe+tNUSGIPwrQmQRTpJnijpWQcosiOhmCDjNJbH37dIuL1ZvmGIhu5vSI9o66nB1DBKhcMEExB1lr1cSIhbPGZnmw3I6Hdfnc3JBtLX7ddueLunmYTn4lHP+6v1D2/vj475fVuGSR7msW20re9ty5Ui9W+tAakKnlAsRQKAZNIt+hb4jl1cwN7MxbLgVQEKQFIwOg1EwDCIwIkxH36Lvdd8DEgDQ/88gIszMuSNjhGnAK3cwQ6CUpYX1ul95DjdR4EBHUOAMEIQpySR/+qc/ICIzppSYOb1/IkAAmEraHh5i3eHLL483pzQ2R5CcmDnMJ5IqmQCv7bqPdqmas9zEPDpUH0FIWAwTn27ff/3Nr375y9s3d/m0BBPtc2/rvj7X/ax1dzNQiIhL3dqoa12fx34BFVOsTeueX66EgAFcjWtNCBwQBolnIcjIE1MmygAEQQA5CyOxUBYSAEZHGhjjjZyIGZgssDcbLZAMBWbhpcNwdDUFNaSyU6mUE+jF+4+X4NxHu67nz8+Pz5enH/70+enlsq3d15Wq5hHHFoR42ddSivqI3giBmICBmQOBhvXhFmvKuSQhCHcl9GHRNaqFA2SARdKS+Y7TiWVGIoKSExHVujWo9bN/OtfPl7bWqF1G7wKABLQjWqC58XBUt6i27bZvAEHImCEizEqWnJK79VaP8xIRvVUAIKLMknM2HBHh7gDAzPQTRAwPAsjEBWASzkyMToSvCIkJMMgdxjBtqsMRUTilhMwJACLC3SMCAQiQiRAAhrkDIFPAnEi3tV3Psa+U+Cbzz07L05Jrq0GF2JnREcgtERcSlxwOAeQR7jFN0/HmxEJUQyg5QNextTpUHWHO09c//3Jd6/m5vTyvaHK4OWk1bUZTmJmI5CwOPryb74VFrRMxGATQaBRVwFIKmWHdtWsf6s4oTu6MI0C4CGORPk14mMtWMIYCABExAhH+Z/BKVYEZWSy0d2PEABJOh6XcUNLYvYE3MANwDQxSLg3DBu6aB8rL48aMQizcmTm3P1JAuL+4rsejfvq+f/P1/ZuHuD1oOCYRyRExcZokYYB+fhyfH/V8vT+ctMH1af28b+vWbDOripCWm/s3X3319usvbx5uMEmR26HVxurRIAzczAIM0p7bqNd22ftKYCXc6j7W9bGDIEHvfdu9NhwWo4/WfbtyALrj0NG79Q69hxu6RXRsKqgCxuDhAAaHDco8l2UmTurW1S0cge5PmSNYEg4YAN019RaNml3O3z3Z7UOaD/vonz59/P7jdy+X5+2MvveJEhufIhnhTkMk/zD2hVkpOth0LGWWCLPwTaatKW9tHyMlXkoiBO0+lbTXHmGIBCQ559M8zUs5pDQRMSAR5pxJcIAw5vrctw3WDdpI5gwQBEMIkgsrRXhHDYSI6NEGdKWMJIlJ3NBiknQo2cY4u03T1Hs3ByZIxPQTB4wId8d4BRGhqn24IxAAERSgxJJZEg4iwleAAPHKAtDMHdwBkekn7t5731812vcdgNwCwR3UGTwAGNE8MWpvWnfQTjGOpby5O9wflw/7OWHOiSHR8EBwgMhCQbMkEGFEcHARyTkDQJhzEhEC4gAEJv5Ja9XdMQIdhNKSZvIQB1l6Sfk43zClde9ray6cC133mrBQEFEmyBATmoEBB6MFmEeEIwBhIIxw3W00d4OS0uEw1+PivaON5iIIiG4/AWBEBIA2apYpGCKYOYvEMC0oyWI00wbWGSIFJJQkmNGaN6UW1FEqXwgwLHw4mOMFJTERpIwqdfxwObfv7x/vp+PtnmQvU0oHHjQZHk+LRfcV9qc9LB37/v1f/um+3g/LP37c/vjjdzXh8uVDXeyzX7lfr4+jlHKcu9tIGISmbsSJl9Id/KR14yO//3o+SSfozo5hUGPNORPDUG3aLNxMX9l60dF6q7rvPnZrzXuz0WFrNjQhsMPYN1Alt1Hbp+HeB7YqOmbwgo46QMcHmIQZfPU+yG2WLCkDwtNf9uV46McP3fSytxFclA97umHONw9A89pt9aElWhq77z/bj810CzfOMkueCnj0Xt8f77rp+bC/tHrt1WBInpbjIVl+97Ds6+Xjx49C9nBXjsdDZuGTIAaLT2XJKKi0+FEiX1MFhgwxuYL7YORl4oMwFeIEzBg4hlXt3SeXjLEH4h5GCEs+cDosPE/McDoHWN1HTmThuzbnqDCkHmAgy6zh51erVWUHyJQSmieFApA9WNkQLU51XIQ8lzT1pV5Dve++j2N/GpG1tYuFRszXp+c2LAdqkLDsCMhCzL1vwHAyJDtNsugZ1o+dBfgEaabpPuJzPm8bSg7A+eYOI6YsElzVxAwbcs7GUUMxySFPtq5125ZlQgjo+vzhw8Hrwy++ksN0c8Ont7AGvPSaAA/3d+1lFzjmPE3HQyqZl0abuAkGKsG4XE9ZSPCyX69NbnteUqqJN4lLXCno4XA7SUp1zNCeCQ/HDADbsIWXCy2rQdAM0atqTlOeJgcavbF1soGu1sP5YJz2oeA4ZSYkHCtat2BVdkgeRAiUqchIFbKn60jSm0eEq0UEvoqA2s0sZQpnkbRvxlTX89iW5VpcE41OoDRdqYPCy/OE5Uamte2fvvtx/vhIOK8bxCDy5I5t8+enq/BTzllK/qSfCKIICIO7AjJIDqBDlra3HbHmqxAzMCO9uvSVOyMGITJzZk6SU8kDTYbkqdDNTSFJCBiAEc9+pYCppMIUo5MbRphq3cK1e2/RGvTmrdq+W+9p8zAdvfd1996HR9Phqgj507bZtg7VNgy5CBcLelOWNM2IxcF0hKCXxKc084zNlLVV75iEmIKCI2NYyXJ/uJ39cO29jwFAjFQEpuyJBXERonnGKWtK2DQIIxCM2vAAQBsWpkI18zXRNYkauGQop7Qc8y1OEWEeQ5XBOZzcw2wiUrc2RgBAYRIMgRFOiABChmSRcz7kqaRpycuWveNorY0xdt4a7xbqFDaI0ILcLTAQQBwhIgwCABiQkRJzD+u97/uOeIoItzCz3nt9NWIM8/BABsIxrLpJBIlQktpGBhqmr8yMAZixlJxTT0YGDuqgBgCYBDmBEkAgAiIO00CYDsvp7u7p8xV/Mmq/WD3NBAba7ZjSbSkzESskG6lbSlEgLBQJPBQxHY8LIl+3Jkw3U7YKEwGBqWm3FAAsyTTcwTRUvatNkIhZcpJBCERkzIiCwGTgTUeWhB5ZKDEPDAIAcx/99igEgaMTSikHpuSO7m4t6K/EHeKvDMLCMBcpBmnoxiCtOgBgECISc04Sr7zZ8FZhXyFxJIGSDoAPo9yt5f5CXAdQmToFVrxJp42ZLh/9+aO0NStbo0Bf1zZNZeX6g368vGzMCOBVYRKaBDMDMyJyMBOnIwgxIwUwkRAQEQOLKKCN4e5CLMRChAGvBOyVa2TiImWSLMgYuN9OTEBlwiwIIQjCmDyOdAQApIhwcDUbbsPM3jSyob3WXnfvw3vvtb3iVtf10kdz97q3to312i/n3XqdABO5Gxg6ACRgkVwlMJgMxcUJURAiCAnQJadlWe7mbEhdtfceGmEvIrDM+eZ4FxEYDqDMAV6Yg9HIh4cDUAQguvjzRNfDVKXEwmACXIzZ3ixvWtd9b25KCjg0erdhp8NUTU0HImYGzggZ1YNdHExVI/B4PN7e3pVSmJl8g9hC91BF3cQGKLgBAUAYeXCAIAkhIwGAqQIwImTkjDzcem11u5q9MTN3R+SI6E27hgMEIPzEIszBCSVPKefeO1oaw2rtyxglLBGXlI+HpOA7mPmw1pjEkRExItTNnYZHtSGA07wsN7ef4NsgypxGbdsedueMEkEp4jClQ0kTdw/OqOxw4FiZUmLEEIbjaWZmABfODlFNMbiPJhZd+wiZPAiRkDWgVu/ig5wJObMYhAdiSKIypTJnqexgZhQ/ISJ+hUxEiPjVzbENMwdGzMhBPBTqPhJgcLbA3ntAJJ7RhptSeOIQoVdijgQEiO4RAe5ORMgZwPfqbZy7kuTj/PDL8v7r5c0XeniomoYqHBKh6eX9wPJy3Vqt+2b8+XHaOncseYoIRlpf4Px0BjKPse8XT6dEwd44bBImIkAmYnU6nU4iNLwxIzCI0DSXN9Pb3rtD5HlKJYfDcAOAxACOFMgogiVzzpKZU398JKKUOTMTgxCmlIihxMbMmDAQjSLQQ4iZ+1xoBjjOhA8MwIiHgCVsrqDaCQ0R61o//vDpn3/3p6c//Ok//fiXQmsmPqR0XA6JmWKIYic0BBUaRoHhgK+ckBnHaPWqOJJMU0opLwsG9H2klIgAIsz0lQ/10CkJkhARgIdHOAIxMZzmqeR8d2fK5EIdrIepjyUZWFfozQa5szn05j6OIBgK6A4h3sNrc4+IHgEALSwSTren+e4Ewpv21HTanRqEctJSzNRUARoSAUlYRs7IiYURiQCCkAEByC0DNICwYUPH0NEtIugVSkQAAAE4YAAQURJGsAAIISoFDQOh9b7t+20fESFMU6a74zR8WLduGrWZxAhGxHA09U4g6t0dSJIIMAWTqjLznGdrFx8RLuF81RVLyoeS502VUcJCQWyvhldfLBMHUoxuoU1N143qNgg49BXdXH0+D8SY7pcpH1T3MXyvY0oyI1Im2MOsEUDOZT7Mp9ula7tul/3SzIFZ3ZWIJJEkYmbplQCdC2K4qzu7QxADFrcYarutSQsyRYS797FNzkguFCLCAIAAERDhwwYYJE7zPJuNdVt1WJIs39zI/K7efjlO7ywIrMESyNpupgxTfH6+Pv65h8H2bOfL3OP0xVc6fOzeN76sZ4/O4uv6wstDaINek/VEQADuYAbPZTodZoIw7XPJU2FByJI+1j/W0Z1Ilonn2ZhHeCD46CmlzJkwM3LCUspcUs68iggnYiZmDAp6xbDAgZhRyBmVAJPkqaQiEcbMwshISCBIJeVcJFcUoZIygfcS2+HmPM8/RPypjSmNBfFGylvmJWdmzhJJsmJ08+pgYRLAgECUc2mtvlzO22M3gsN0OB6Pc5koCrMwSUBEdMYIHtqaoGPYK/cwBw0gFEQUmFLCRBFCmASZ1GGYFlUXHomXHIJOYOEoDbN2Bk8E3QLq2mL0LBaxIy3LwhMTcV4SpnBS1S5dolMMAUcKYCRmELOGXQIFgM3IHcMAJQhBAIjQDT0SkgCQR4Tp/8dH1zGGOwAQM2Kk7gqBnHJo7zaaWtUxAQZg72Pbtt4bAeTE85Rvlr5uvlcNkB6EyEEGzJwymFq4OgAJCJnBILLMW98ntSIJEdZre35ZD8ejLA0yxaGMWfaruW4ZRhLtLVQ78XEa+Xq+hJqqt9rrdoLIUk7Orq69zTYmjEzISSZUa1UbhhI6YZqSXIcNQ8SUpHjMx2XRlq85V2tNwzXMwQ08XG1Affq0L4fTfJpAqLlaUErLtOS+bopjv55779OiIgzFA4wpEmJiSolF7QoALAIINlQkq6pj5PlQ8l1ak7ur62VsGfoKcSFrIhVIZnNxSIc+yAstb26++q9+dfdulA/f8vO1Lf1yrtvmvdF1vSaW6X5e5um6bRx6SnxcZrEB5j58M3jJVHWAhwCEk3dcW3/uV4XS1buHv2yRkjEpYAAIhbziRADhGBFEIsTmLeckOXFmyTxAh3UAeDvfUpJXgIhMnMq0zNM0kTVmFhEiQAAimOd5WZb9seYsKZNqba3Vrf3L89O/XM8/ANwlUkbDgbBvETnywvnANNxq+GYGGEBEQhjcIGiapyR9W+u6P76cL2ubc8lpTsIpJUQEV2YGt9ZMZASghQ+LoW6AgExE2h0xAhTdUkrzfChplmDIIVjmDISSzKVombiP4WsnYiNorzSGNa1tAChCnuTdYSLGKZT7zjllsHXYZbStdbPYu6kbScJUvO4Aig5oEUMHYxcAwsAEGOBBbhkgAYSZq5qFWYwx2l8NC3gVgfATMxuqZIrq++gv6xqRJ0rB1n+i1ieajvN8mNaJA/rGzARMHCFByEkyJnerwz2SgLAP51zoNLfr9bJXL3k4PF/7h4+feZnezTmnnJYTyMu17q37cQZkA5pHb7356G6u4OEe9bpbn8t0PCx3fUQb523H3olwDuuCEs699510lMDEzGnObhpqDuwsmIqkKcmcjkcCuEaAh7q72VDtvfNpQRJJORux9lF1CAYlwDRRgAN2Hdxp9JoT5iI3Szk6k+8li2CGt2/vf/XNL+Z5rrWC4+VyuV7XnPNhOd7dL713kez9g4+7Po675VbCBGBhKBk3RjDJ8NXXb/7Nr//V34z7/Od/Ht9//x+enz7+0Bi95wRRWOTh5tQ6n18+nuby669/9tXDre8X3ba67U9PL7tMqurhiFK7D+aA3BxGBkwpAk3dNdDgVTimwmbg2IkIKcxsjD7G0IGcE1CAoMzZMPa+B8CP8omZhRIBhAF4ZBahVGgQUUoplyR/RfM8L8tyvboIUYo69tpb0/H4+eXD9awBlAplQAaeC6bULXyMNiwQmqmGIWC4jgau1ptjFs6J8iE5276vez9ftpzPETGVMs+FAVmQmQHCBrjDcGvmamEeQRwI++hJkHxY21JgS4eJ5zC8eXvnEG6MCESeC0uBBQRICBDNe0lDtYFXsOYWBu9YRMghpLaCUMxrrasOH1ezVjU2HcMAMROnDECAAkEBrsMGGoKB9DAIAQBBKiw8QIfWWtd1XW6ncERkEcnC4dK9IzIAAmDvijEykyNc943dSxHhDACttbrtskxJ6HTMkwRZM08ejHk4CZAgI6esWlsbKIJMSDAdT9PDPXx+2oYCwABwg2vXaxvvRs7LdHe4u5tenr3h8FxSCRSe9709fnoee5sL55RCo9fW6hmCZDrszbd+ThNfrvV01ofbA2EGkNaCybuqCmTClBlrAwgAdwwUTEVSEcxScRs6Qo0gBMnDIyzSMlC6h/po2vtQAwMcQTNIljxJ7+5uowmVh5vTzYHnCnapACG/+OX7f/iHf/hf/qf/+euvv661/uVf/vLhw4+///3vf/jwUVXHsG2DMUbUv3i96/W4t3lkhlQgT1gSbVtKfDpOb+H49U38yveTvI2jr59kmcvpNLQtj5+3McY8laHb7WH54s3t3/3t3/76y7fr4w+Xx8fL+cw+fui0q3XzqtrcuBzu3r27fzd9e/kuSRJgbxHVQSO6qxt08DBkmKY8L1lEAIfaKHDEgdW7oYeGSrgqEDYdmYUoyAK7R/durgAbVgsDAPxJhBFRSgnk1tGBrUev1oClq3XVmXiSaUl4M9HD3W2Wcr1urY1mgEyBboDh1rfe99r2ddvDCYIpTSXnjI5Nre89CHoHw5rnWxQCQOYsRaxiBBhGACiYE1kAIK5Rj5ySOJqPHa7tvNbzaEDzAQAc1UINFShEiBMtpxMHoLmrAYAS7GBNB+/jyBnCLRyHZzH21p5fbiYG0sRRAVBhN7DoGMpATMzkgk4AAR4IQai9E2cMZyQhRoAxoNf9er3ejRtmLqUcDodlOVi11hshMaATmClGyJwlldG3bgREqWQiGWPs+57rAhDHwzKVTOBo5tpgqJEGK3gwo5oNb5w80FPkPE/LzYkPs73sfRgApEKcCuWC1acT03R6WG4f0xYRB5IjeT2eaq3nl6Zte/swZUrgmKVMxTzW2l6qApJyBsAx9Mp460QIZBZj2Og2EmgQAKKHuwN6BCCFCKXEI9TM1EDcmTklip+c9z7g2gKIkwcmoZRAGKq7cEplSm13q+6aRI7LMhVPQ7sNVZVv/s0v/ut/9/c/++Y3x/Lwxf3p5vCLh7tvb+d3/yT/1/ff/7CT97Zv+6afuf3jX06fc/l1fv4ZWv7mqG/nenwcP67YmPYv5+VfH/SL0en9sMW/MWuf9Kl5r0MSIkdtZ2tdGP67/+a//ft/9Xfvp5zf/aw9P/747Z/+bKN9tD+u1w+9NWBAOd2d/v5//HfLu9uPn55fXp6enj/t2xnHaOd9/byLwjbOYJADACeGRU3NO+YYoxNgZg833ttBqJBgxDIICTEhSK7sK7URTMIhaZomCowIhOi9bu2KqjKed4sdAhCBSKyeAH55WG7fPtxMcj/h3aF0033vaX5YQa/rU1KbmY5CrmPtFcmmm8WmqoP64FaTauYssEwy95mLx7rvylyYGQCOxyMrS0T3vakbDBPwwGGgFvqEeH8SmS779XqpAITIijY+/ZgyiYChenSWPM+HOZWJRHuPrglh4ZQiBIR4ut6xuyOGmXloMQ4NMNRRfjYtA1rbq5Vyhf3azM3vIBHT5rtMkywZATLS7LyMtGktN3OZ+nh5IYJjhqwhzcZjL8uRLkF1Z6i9j8BMHgBARo45SVGFa4sk8+39zYpEq7nWxPl0qvVUeU5LmpacDlnadc+SzTtG7l1Tge6IZaYBeFUexlOk4/Q2Hr7T09Xd5gLeFR2Vx8ftivPDwe4Sfy3pIulzt93LbjDL6c2J+rYT9bs3D1///H1JeLlc4Pn4ub1c06Ub1kYve9xd0hf3h8lzIjukoMKPQVoBEaY5xCyxo++Y5Hg6GuM2fD492PYRr+4GThgQw0eAI0I0ANgNgCVLnsp0zHlm4mrSqlpHwpITHuY8T4iwbdfS2ti9mW/y/v37h4eHu7u723x7mm+mY6n75fJ0fHhz93J+Wj89j74KxXW/2nA8fIbL2d68B3MAQAYigoD4KwQAZiFmoNRb9Ia9olvKaa6dtO/m+b/87Td/8+tvvvr5l/eIvJaKPtaByUlbAAAgAElEQVTL5f5lvl7KVsSMgfN0+Oqrn//2t7+9+eLdddufnh4//PDt89PHsW/b4+VZntpa13Oz2sOjte7DglBdu3pCYSEGDAMOIgKNblUJKQjJB8XkSJQ4J0QmQx/axhihg5nVqruxgBsTEQO6SEJgi0SeRUivD6d3b06FQ6FZ5NRRXVfrY5pKkhTh3WzXXs0xCckNuI+9t9rmmZZ5YonWesnJNDcIhEAIImJCCDfl0ITmHmDhajE0hoP62Gsd4rt2RWOWlEqa8fL8vQikRJSCCCG7gQ23x95dVQJnEUGMCPUgCK8DEfkVQAAXRCSKVAygEOE8q8gY44Bw4mYIYpwP0x3P0yyZibcdRgDCJUbDgNCGYALgYADNYx+99uaShiliSAJJ6ACGAIiGGBEKwwmROBPfhCyBcyB306326xbbkbPkpfzs4e3lpQ+7nHuoj1DlxJ2FIMLVzAUgOQy1iGDSu8MUfQc3MMtkoGNoH0GdxswcBSNxdx29E/OyQHhwopzT7fHw1ft3b+5PY/Tnb1s6o28vzy972y1ZNpuQZLTBCOwAqmOMFeCCfAZ4k0/QyAjADbWHRSaeJW8kr5gVgMxA1QGACJZFhDMiqqrF8NhVDZmi5IgAAGZOVETYHVob0SON7qqMKIfDoZSSc56maZ7nvu1J6O2bO8Ffzwl/z39SrVvrjy/nLTZ/PMj7i21Na4X1ouqBAIAOZBCARJyIixET5nBure99YKF10+u5Eqa7N8fT3TIfcrKICubQ1bbamAkxXplbSunt27ff/PyXN1++eb6u83HWGESu7XBMCxlf8LmdXwwcAdBADeY5L4dTHb2QzCUxkpsK0jxlCui9JkIHDIAg1qDkoRAAlKfFXcNNhLJQ69urMPW1gMPwYMigHcAnopup/PY3d3/zi5/P7J8/fXxRHWZ93/vlZZabQ14g4rxu697Pm1Y3nnjOCyKVYgn1uJT740Jgu/fsCgQQRr1KSqWUCVxVwyYCZGRxN3XTMIWwmOcCqG1o7b31DjD20Zk5AaqiR0ggJyJNveFQswMBMgcEgvnAbjAGWdzOMwK4DVWNCARnZgIUG+yaJZGQoZzSQWFRt3WvZaYgLDlLoMXw4RreEhuhAwQSSeboxFkHvnw6g8s0t+vnq+476yge4b0GBIExAoU7GAIocZA9PeEyQymY3HcaWwW1icSZbx/u7562D887mTOaeQWHl6YYjqre9xKOxqCDCWfud7fFa2rr7qYEse8rUZzUd6+HLOkmy+08zu28d3AI+tG0aoybaTod54ebw5dv7yB0pq3/eH15PKc1khAA7c2ul4ZvDrnkQypTErRuoR2iIWuCyEIiAYEeAjgRHVLZl8My37juhNMYRgiIwYJ7q0QGgOaA3KfJUlYiuTmwAoYrQEms4FHXaqPdwNG9h3likj5GG32YOkIggNvhMJ2Wn339xe27N8ubh9PNXfn+hx892vMKawJEVk4VaIwRUCmRRThEACFyIAeQOQmp+75t58fzmfJ8qdd939/evc9zTkvOS8mO1isk7h61j6F9aBumAAIApczLckypAKzEDITAVErhIxxOdb+s7uAGCZkICfBwuD3dnfbRM9bEMsbYrn0gFmBiRMEBzswiCUgEwZBeIYv2BkjTnN7cnw6HybSv69ra2H6EH54u4zrUDcwz2Jub469+/u5vf7HcnLyta9iVeSQn9nHIYMCj9+fn7dPnl2auAIbIEDZ0yqmwyISFjPuayAh74pgmYAv3LugzU4rdtRG5oBsqRjMY4uYOGLgcp9619+bWAAHZp5nylP1yMDAndyFM1Il7UHS7cCePjDwEJyRJlGVipDU0IsYYtVYPLV6mKRPRwlZr15DMEhCUJTN7txxBqK1rQpQ0SZoEkR24AAEYYkY8oBIyU+ZB9ty7r1Qiruux2TvMKVmz0GHDoWOYkBQ8Ch0wCrivzZJgSR6xa71s62mtc9c+d8yMEwcqZ0oFuo8RTnhIzMIBmJJZYZwSZRItKjNQtlgbMQzQ56Z7stsNtr4rz3Iqy91Cn671uXrF6bgSRFnk5vZ4PC03y3R3nITDEC4xfdbysqlEAk+msG697zYdcMnpUGTS4WjOFJkl5wn44BCeMSYmT+joeC1LzhfE7g4QzJTxFYRFNQ2AQOSEJJwSZwDYtg2DKACZGQnAwj0UHdTNKSCnJPETIkJEdy+THJcM5rr7zUF++c2bVj9rfwm7nz73T5GqOzrUCNXuhEIZCILQET0wkC1oGPR+bv1c+8vl6pDXbXQz4JnSdMrlVKZDcYiDtsNxPix5OeBLAwiEV04kKaWcC1NOJSctnFOZJzZDg2makIiRmIiQCAD/M0ZEsPAYva7bxSzUepGkqsA4z7MIE5NDMAJnTinLIgFjXujtm3x7Owsdeju1Nr638/Pl2ewaIAJ6IPjiTf7Nz2/uZ708ffj8+LRXJckYhj5Oc24q1zrO67YOlTSdjgdOwILcgcBStEI6s2eHJXEucjweRGTbcmtNRFJKzLxRR94DXUPb6JOMna0rhhNzQqga3RAoASebs+ccP0QDCAAXJMFECG7DHF8+fhamQ57aNM2cCqAgJQT1DgADRmcFgMwxceTMig6cXZIhj94DDMIb2jLnADbV7sbmEZhJTChAERFGiMY0hJ0STKkLefiwkTZs7dT5C5n+X57gc0uSJEkT6ydEVY24e5DMyqLN52DPAnj/Z8EPHGAWmB10dVWSCHc3MyUigsjs03PvpUQdWEbbI3ZQZ9VJSwasRa/BbuyduwhTUG2j9w5Day2nuWQpk2Y4yDL1CL5EWZMsOkUmqkdRnHKaS/rVFDtFDswKot7sCK9uVoc16zY4UTmnaS35tg/4lDnMScqcFyWNiFx4meTq7bwv65cp8+6tH3uNRvdLud726ZJYMakIvLZWq/VJXJ0oiCgQ5sMdLJA3ShHRe7cRCI0AEXwEKSIQQUKsmpMIebjDxxBOKondzCpiMEBgIrAjEWdJGgQnELMj2uhmrfXd6+24ftxuH2PsQrv3L0v2RZ3vm93utld0o5lYycIREaCIMBCCiTNxBkABEWGmHgQms3BKRKt7OZrmGOREmvIyL6f54eE8vX6Wo8HQ3tTem6GNEQ4mMJEKEzzCECNclERIIkQ4qaoE4CI0IQWTqqSUwoeNaECEzKnkNKeUAPgYHs4gs3j/fJGkl4f0/t18Opck2lq/XVGf5fEz3xuLTEvCDyf+658ef/lxmujlH7fPtR0pzaHz2LbeTHNmxhiNGXMpeZrOp5wTKIbgcGtTGo8XfT5NpyJT1qzptJzneT6OdYyRUlJVZj6Oo4/NYcP73vq9tuPwPshCPr1up0WfZx2gZqh9HHVrt3tvQQJlUMDd3IY52aAIBiVospQP8DZamBNRyiwiLmJJiKgRbYC67+HzNPFyItZ21NaahZtoUhYSc773eL3d9/shJFn1YZ6SqDcb3dBBELHslWqVUQdFG9bIY+VJM4bEd5j2YTXCWYUkCDWsBdFcsgLwCNBAHA23Kq8HdZLJTyPes8bY7u1OoFk1t+OstCSwwFMIx6qWhe5F+5xu6zQ63EMjZFQY0y5xeN8OJ5oKP5zK7UXrGHXbYJFJzOLY23W7348TixLrup7fPR3/+LV/jNt+v1vDUc+bRTVflecpTXfajj6OsLVwuIA4vPfRR3Qn5iIlL0uZl5SSuMHdiIS+GYEIwMOYAJBzADZGVs0iysk7ubfRHcN9EKZCQRwQkPZvxhgRAcC8t3Zk8tOSxkHb/Vb3L2HXtld0VZ/UXVhpmmUuNE/71kB4Yw7zgCZJU8nLkp6S1LlMcxk5TYWx1yZyYX6MOJkVC1JOWnJZ5uW8LPeeUmIBDK21+zelyNb2WmvvPSKG+9FbH8PCI7qQhYdwWpY8TbkknlOeKbk7LG68m/XbvTJ3Ih51tL3tORORKKkqmTvRp1/vD49levf4sOrlrFMux840Wn9fqj8/fvdU8ukyp58u/OdneTj114873Jd5RT7tlT26I0XIy+uX63VzZ1Fp9ba/3tPMzH22Y1n0+Wn58fvz++d1nYoyk/M6nU+nU2vNzHLO8k3vfdRmMWpre6u3ox01eid3+ji/SFLWHJyq2b2262277cd56SLEjBHe2jjqqNVGh0+ziqoWsA6mzgpARKgTiQQHSREhM2vWzbkbzJiNTpx0nTj3uu/D7AUBi61b25v1ftQqqpmzi86q3j0oLKhHDPM+nJLGbm7No0tiKUlZEaAcpXseIcTigKPx1DJLXpxcWODhrdn+5drx6fPhz4tpwjFOn7Z+35NTVwmx07wvGpMMJg/qRJasc8W5g2Qa83ncfbvXFEkCdITfIraIOiTrZUqPa/qSwvfdN3KLIZM137dxve23o8oUQWvJ62X158e4PU6jcuCQnI5A9wDLaZ5Oc77fSRET6VlLJMagu2DvgazME4ad+3y5rPdbfUU9dnMbqlmEjDkMhiAiEX3DwTBY610JQgyoZBIIj0RsfRjMh0W4jjFaa+7OzDnn0cOtc8J6mu832u8v9+unVrfPv3/c6mn4wh5EbCJENGI4BQBHfEMQVlVMs/ID/KqRszJNi8xlOsZp+S4wgSZCBodwSlpSSpo1IjxGBN4QUQQBDPBXKiyiKRG+IiJmDh9m3QwlWJRZgjhUWYJ9uFmYRe8xgBRIWe/b3o4msqvqNOdlIQe5994rXbgIJsWcaJ1SIq737Yv2x8dpucxTOT8s+cdzrHy933/3bqpaysNm6fb5dttqrb11vx9Ha53TnFnur7cBL2ueMj7k/N2Hh59+enr/fnk4l3maFOqOSed1XWutvXdmBsDMZprmUxvjaHWrxyTtLtEa3PnD44MTmvnWRjW/xPLu4Xz0/qeqgHvYfdu+fHn51K/XgWZ43VqXUY9OmQdFUHBOpZTHmKjHG36jiSSYNaU0Ojfj12tF4aeHRxU1a0ftNxqj9evLjT1KUr4s0zynqewYktXDA1xH6yMkbO9jDLdee7sTRp7SxITk5ujuKaIYTU7SnRpScknitTtBFcoY1e042mH3a48vs5m34RgxWyjrSOjRczepG/ZEGqzB7AZv3hd75NCqyye73vehTinSaL3ziMPZKLPIlE9TSmFWkZSOFtWOl0+3kuXhSff2/kRl3/p9O+7X+6gjSV7K1NwAbK3vvZ2DJVFWEQoNSkJWG0lSkHAwcxg6vNpImac5l5JE2hjdEdFDRMCw8Aj00VtriRsMvY7p4RHwiGBiVmUgPMboTuQwN4sY2k65wVNKIuTiiHI5vzsvnGT/zqvV4//9P//H7//+j7GPeX5aMtGJyvvpy0kO6zHEoyGV2EvvZu4AQ4bmmp+zPci/49Pfy7o8X9blaaI1XT7Y44cXSfdCEwX15m7eSGxJLDFiDGgWojj6FtxlIropQ4RZGJJ5mmnPnfUwEWNkptba/fr5Yc2zgDDmPCG60Xat7QAYeXjqhxmnO8JHFx+r4vbSs/BlWfcsSPnp4fR4Su8uJTwkzcscy3ne7/+5xPYs47syzYjr66fb7Utpui5P2yG//Xr/+2/X32vfwBH4rZ9Gv14iSn/5kfyX5/xw1mmWv/68fvjw4afvfzifz8s055zN7DiOfMLwEMATi6RMQgY7WuTKtSeyVZCVi9bWRkRMfjH3yn5K1DiaRyMbGsu7p977drQ967upfH8+v76+3rfjl7ru9bjVujffwxtA0tPsPb+U04kirPWSTqd1AZh85KLbftvqUfPqmVR15s51tPuxjy6J75tvgTTl7uBee++XSGSx70dr4xh+7DtSYn8hgiQRLkyQ+0G8A3g3nQJBYuFDemSTYilZmhMlidb20XaiyMv6ItNvd4/7y9PDquJbfRneB9iOzKksWzI/MIFmddGWkvPcPC3+0W7H8xZ50N97p1mu/e4rcmI/jvH7PNekRdXZRJpiwexanUe32xhlO/x//s/7tunVX68v4+PH+HxLpkyn3PbtyxjT/nJraRlJxFf1S4qj2//4tOOpPMg5cdC+pUrhpYmsad6SLafLNL8S7SU1cqIwN7h5AhxC0Fad+paFC8vr71/mZcGJKSER1ChZ4ob7dIzRxrG3464cICJhVhZlISIRKSUvk2hUO979/MuPf/7LL58/XVtMh2lnchtwUtI2SJK6fhOqaqoqJiFC0cOqumWmUymXdSmYl5L9G3xD3/C/yBtCj3D3iAAQw0QEHUQkbwLKX6nqnJPENItm4LRMp8v54eEhz2WRdDuObbR5nmq7MYHg8IggUeYAwnw/mgUxWmv8fmKVfD6ny8rnFZIl5lmnefsd8OPYeM3rupLv+33rdTyup2DuO257fT2GUwHz9ait7mHmGOT+eJEfPzz/9MPl8bL+8vNyuVwezmdVTcKiEBXlUuMAwG8QAmJmCkDEiJiNOYR1UBARgHAqc3Z3MhUbYipu4uIOgqVEF52mKc9tWpbp+fmRiPZG1/v268fff3t50Q5ncFZJiEjHtrXWGCHEJefL5byua72/QlhLTim5e++dWZZluazno7mWbfzjy3Xbj3v9cvMxEDM+74c42+FjWAsaIPIwawSQBQDCVxQI4NO2MREHxCHMM+VCkSiKhbjDjtEPZk7tgHo36sf+MfokLjaScuJESNxZWIbzca/9fu0RWs55ZrDufe/VvQUPP2lez+tpcPOubmVADnc+ZNDU41lyTFMdI0U4AaPfry+//aassR13ZL1vfhzdhglrTox7u790XU7aehqhhSfWzGnAw/zY7guLIrESG8gNsIiey5znqtNEKRv1QDALExfxbhRGA0IR8CGaXHG/fe5oE/c8lUmSA90G9ZrtCOtxNDEoAP+GvhHhlNI0TacTJuls73/5w/d/+7dfXj++fLziuE6j8CCedTqndTOuPIK+AjMJB+Du4U5WaVSNkX1M4aeUJIQjbEQERRCREBELmCFCb0SEGWEecAARYWZEFBFElHNObnf5KomezutBtEgqKutcpmmZ1uV8uSwpyf3++X6dppx2jmGJ2QOdSIgJIfBT0lOhBSjCS6Qf8unH83fvH87TWjgX4rI1wP/Tx+HtQIywcb9e76+3lDRP6b7b1mI3GrJyOcOxffl9HPvDVB4LPWb7y49P/+2vP/74/eO7p8vz+/JGVeHxRhnM7KzhakH8ZowIQgQcBMCDQUIMRhI1LWEwCnePCEEYsyAyQ6FBuN73cAJTTkLMItkdEH4/T3ubzs/y8Cm9HMcI3nvfaz2OXO/VDDnTse9fAP5mDJOks6zuXmvnQEqyzIvOZepwzg2Y6imI7tvt05fri+Pl1oSgxEY0IsBwCmTBGw+QwwIBEN7czQEQQRnMphwZLt61R3gnawiIuHgNGUGsEi+9T9Um91VygfnY4fQCY4mUw2EjPFvr+61VkHZljRHqfknyOE3r8PtxT5xno7gddWuke+x97Q7Wliigzfvwbtt+/fg5sduxpzmPzrGTtCjTvKwTt6m1PW87Xu/0mpPkM09bmce++VYjg31oUioU4a0NG5sjd1qDmFKWXEKrI4LEg6VLACQpawJgvd3H0SG5RMpDcsikqZQUDNm717QPH8O7U4S6u7U+vnF3+SalJEqUUpnkdE5P75Y1RfVt6kiC4aYsc15Gxz6+mI1uw8jGGJ179Ba1hlWxMRNSN2x7bHt3qz25P4QLQeibwL94MAiAuzOcAhRw93D3YQzKKbMPeUNMRHCzXnt4lplJg4hYJWUWJhUAJCCKoEiKIDJObp16L4oP8/Tz5XJhlt7mwF95/XN+dykPOqmUHNANr6NvWSOdpsT08vHT9eUTBT9eHoPj0+vtty9+WOrO1sgdZHSW+OOHhz+8O31Y6d9+evrDh8vTeX64THmWlFiZiDgiBBThzCCUADcbAHqzMPPmbjZgEfSGmVWpFCISe3N0AIGgQCIwKxGByfKotZqhlHWdSxv9tu29N7eYMv/w/ul8Xm97/XLbP71eJYJGRjFmJo7jOF77lYh678yxzrOIuKPvjTw8a9Yii1CieS3fyXOZ1+V0/vxy/Y//+I/x66fN7oBIztGdPehNkFngK4cDIFAg8EYy4ZuOiABswAYI2iXcBBBAncjdJRw4SW5jHMNLxEEjEcP8TR3HVOhSpjxnJTFM15f68fPnx/P5MqeiMieuNaK3vu392FWnemt9G0SU8iSgd3l5UO+DI+ywWr0N8mycN2dq2LpQmjrZvS+OMmfmfGDko/LLrS9p5vOy5JMv175t+66z8nDRIKEhLByJ3cnHCIpILNO0rKv5CLMwCzQPBDOLsvsYaN0qgMenCck4e86Sl3lStcyhzt6d0QaOCIXHGMP6gDt5EAcRReCNxwgMlp6nEQeIhzsNO1rf+tjN+xjhANztDbu5NxvRe9gIHwSfVNR9bK1vbXhgHOGCICImYoDjDTzC30QEHATEf3HvvY8xAKgqWSgLM5NHvd9u133ILmc6zQuzkihJsgiQGohZmRXRlYUoKquNFohsOBG+L/p9mVJPGPX7dX5YT+v6IJc5Fe2jTkrnRcdlXviUzb98/M1afbo8PJ0fr8f1vtXtwLC03+5fbr+llM6Cn75/+O9/+v5P358+XPTHd8tlTWsp58siE79R1cQSEWOMcAcggBNHRAMhIswRAQ9hASGYHRCBIDjaII8p3jhCAhHhQQCCKUois24jc0xZchIKHHTc9saaU84PyyzcrYlnnrCeptRaM+8v1+tL3ZlBRMy81101JzC5c7CbjWbHVncYq4zuIIhChERIVR9oglULTxzszsMZ5HBD4BtGAGAQIQDwIABBAMgR32AEJgJAAlaIgt2sm3V3FVZihgzzVx8iRAJj40VHwii0LrJMs3vZjvEZNsEua5rmeZmKf4nr/f77/XZ0f5pjtBHEEaT9EBEOCJN4uEMizSxIJKzalH1E9KRFIb4fVDttJR936j1pcIu4DcuGI/za8Grc3V96p70uRCQwiFNBEskayUjmwAKC5s4+ujcfyImGtb5b34htYltmrLMuK1XvW7tVCLOmZeXEOme00o9RG3mQElH4V0QkIr2FfxPG8VVnMU3WEmkW0nA2xxjeDDWYkqQqxP9CREFfOQJA1pKgNCCUnRLxZBbuDDCC8V/IKSLMI/CGiWDuw9w9hsGciPAmgpmzKhExheArCjNEgIMELElyckq6lLxkvdcaiVP4VzBPwKp8Aj0R/VzyaZ4+J3348aG8X+1p4ae1ke2v15r6w2U+rixttGM/tn0teS5LP/zYjSit02RRMl3R7wvww9P6v//ll7/94fnD8/R05qdLKUlOp8vl8RlwMwNARBHuw8zAzIHu4WYGcw4wMwlFkCsD5O5jOAIRIZLcu07i7sONLfwrNBs+PBHPZUpj2LDjdgergpZcbkeLYc6hxBPyRNNQKhyZNCK2Y9+2jQNverNjb3urSTNAiTmpsIYEBPJ63VISJ7fwl8/15eVl30Y/Wmkju1WE1YOBBDAgAEEBBIxBBDCIwICzO4GYWN+wEBEA8jAGnHiwEImIk1U/qrXFRtainIePhk5KXHiYRZEuTgXL45wfHnOU5CTX61g5fXeaLud5nr5ofx37R8LB1McQYgvuwwk1kUuExMiRI4KZc85JNTrV1swM0XNu8zzDfPTDWu2tKbEPeEPb4urbCP9yfe1bVWGHt95iIiMEtBpFmGYu2PNt09smrzdsuwbBAsPuFh5GcAbOCT88lR/enR9PRRb9eLP//GIvRx/b1lmLuCBMxIQaDGQ65czM5EEBAiLsm3D3eIMRqMTVuVDKlAKCUI80Qk1TduQWDmEmfgOmNxAGa4CZlKHMeSorRxGdbISNcAMY/4WImNndKcDEAMYYvXcZhm84EObhrsQpJWYuJZ/XnlMquRBRRBALiaa8ZmjKSylrTvdBRiQUiHAPT8A558ecHlWfVS7MdkmPT/N0nntOSLJvt317hW0lg6zfXl/sfpSsD+eLgPbb/XbvHFmQYPaQ6fwkv7wvf/zp8d/++OHD+/m80tNTWdcpIGU9cZnRa4xwdwjDwyx8BAnMhwcN62MMOIgosYTQoK8s2MMAEBOEYPDoZsMt3B1BYRatjW55OZ8mGea3/ThqJ0ZKKSRNJYZ379fa9+FSFJbRqlUXFsmaTsvZnu1ej23b9n2XubRhzBZkLEjMQRSGBA53glF4t97HYZZO04xpBMbrsTkhZ+WAmGWW0RlwggJgBBGxQCCFhEFKrCKZRIjJPDju3DQUImyUUuJCI2Tr6HUsRYqWMZIjl1NB8dt+/X3bUGieT8/fPb97944a12tfzjMepXy/ymUZqr2W23163dfXe/vHVvloIerGBF8YGSYIkMGDiJK3aaTEEm/Mu1fl7WxdVX2Yu8eIaVpsP7pfX+5VJQPY6tZHTSnVg+Ia0KNTOHEzRqSc91O4bYe+3vK+la1aIJME4RojEWbBrPj+Mf3t58c/fnh4XPOY518/V/hOHg0iY7iZW+PhNBzDwl1TSkQUEWbm7hHh7mbmzu7DfXh081abjHCL6G4Oc7jTkKRsTB4AnOCE/8KSgjgC4SSScp58lKA0hrl7BOEb+iroG3wjRE7k7mMMMyMiZiYiswEzZtY3IhSRsk5lSpKIiFVyzvO8smemEC4qk0gCmILdXZN2hANCPKlMALfu7mVpS8Rk4AHu0feq2342/xgesH3ftdvD4/Pzw3N7c/R2WKv4/PHTb592hf3t5+f/9S/Pf/7xfJrOD2susz+epmmd9kHOdFSbgtwJEJEsFEPDYSJibY8Idw/3CCIQvokI/AsRMQsRIWg/qn9lALMQIPyGRt2OPE0R5H1YH5LYPeC2nnjf68v12I/BVDSdSkZ4+NWokIBOy5qnJK8vH798HMOyfBURrXePLoAEVBUFtd4NPZjM0bowzbksl6eLWsY9Ne+lFAV4+CwyalCAvgphFmElJiJtHR7soUES4GHWRwzLaySAGBxclKdlCpZ5hBHPacm8jH2M0cqSLGrvbXIw8cM0P1lJDM0AACAASURBVJ2Xy7r0GCqchPik+jBhyQ2xZ6pz3qfp9TAQWCg4BQUMnXyOEEefKcytB/eWesskkyYl3m1Yx/X2OmV199EMTiems7eX+xEjVNMyrRxu5pB2exkyqWk4k6taKEJLjti/RMQ0xplYRBxEklj0ji1lTeQT+tOi3635+3N+nNJv1nPYTDwRIoK6WbTe7mdPNqL34ICCea9biHW/O00Tyr1BTBOviarzhxI/av97WBXvc/SyN9l0bcu9CRfsc263g2nyIaMqz49CF+FDfUqaTWyss+vDp5ZDJCV7XU7/8KiqkZI5FFllFVrEYi05CTYzEq+jcuZIBHgddUQUlqTZiO24xrhjRLs3akgLl1ULkXqQ9abz7pWSud+TjPDDkafzItd7kYm8KU8L1kWW8rA2306Zz48PXpJrtupLmvsyfflc29Xqtbc6ypRkQqNXw3b0z5YzqtbPn87D//v/8u5Pfzh9eDc9PF5Op7Yu0+Xhu3l+YCkLeVjEaAcPEU4sRE6CqbCRmTXhEj6SiyNbmAUFg5KoLu7Ow/IU8DAzd2fy8/K073vDQQQRMukRzux9O8ZRO1EoEou79ba7o+RF0zzk7rGDUnRgeGGdcz3qvbdeUo6gZHyW070deOG92rwm5rSPPikJU9v21xcHE3R+2W65lJLz9fPn89oH8xhjTnIucyZRUAJn0a18LmmmwXHYxCkzi7swdE3NRg/yiCAgTCOB/FnVuifidZqZbG+fm90nxXNIbYcsXr5/9+uvrd26N5/3Nfl9kfRuSY8znp+SndYvn7f0+d3T42lK5bIUG7zKs3159ddeRhuhGBCJER7wGqikUGAnEAEDjK/Y5mk+jhauzP5xOHmjAAJKmTd/B6dwBWW0+94nIgGx2aYcr8Iy5bSwEqgT32t+vR/k7iSSz48x1zckPE3TH+OSmcgqje3kOWq6v6ZxcNTf6F7l6DnEYqIxKydNC/ZPr/fPbDaXRYdbNzN3AO6u9BX+iQkAfaMiWVmFxMIAeJCHOC+gQmQM82gyOhujkQ8n9N7vx9F7mS6UpzJAI6IevbXRbUQEM0ti/WZd13meS0m8G6nQvzAxEUWEuw8f7k5EIhKAA/GNu49wCzczUbxx9zE6vnH3+CdYRBCRqqSvhEOIAZA5AFZigHvt9+t2+/IJ1tapXE6rqtZu1ollmkJa2Dyld98tf/3LLz//eHo8l9Oyns7zPJ2W9ZLTBEpm5j4MlFQAcAQBcMM/hbkPAMysykTkEQABIIoIizB3h0eERxjIPUbAgCBi+oa/UiIDQERMFCAz6330bijuBiIqpTiktjAzYkopWdBeW60Vouu6gvg4jtf7LY3DeJzP67xOS06CMNW01a3Vve611YfHx/fv3n0WjWFozW3YcPeBlIhVSUb4bJSBaD4OQziYhSlnPbqR5knYgwCoEODksY/GBjO/7q+ElrL/+O7x+d2lOf3++fbpXu3189Wach6Exrysp/Pj9PT09HC+rPNUwTnJMiWiAIXH8EHRD3hPMRL8UZWTBqENb+7BRMxEhJiI3LwSm5lj0NSDBioxgdgcDgoQIQCCb8I2nH0okImyaBIIKY1mY1CYSFNVYU8ZOdjulZlLKVlFSCm6VYtxXGZVwH249djH/oW+2JGUo93uu9nm1FgjmFxDGOQYa8q0yCyie29br8PNEP6GQMJO+KcggNkRGJXDJYI9NAgskybNWSJmwj2hY2zoDU1hGt0RBgcN0ADcyQ1pUBRiD0QQWCBMRCNGs2ERZjbG8Ahyd8QbAGYWEfiGvokId7dvnKW7uXtE4JsIJyL/hplFGQB9E28QzEhZcuFcxFxGkpAcQSBOWsbY92t9+f11+/R36vtpKqdlEtJa6xiEtNJ+J+vvH/Kf//DDH3/+8P4pr2taSj4/vU865bSwlAiCMDlxWMoyRvc+IgLuMDfvYwy4RwQzZ0qDw974m3gDIL5BBAD6FxF2F2awwIP4m/N5uR3Hfdu2PjyYWeWrZNbDSUSmKQ2no1Yzg4NFlinv+77VhiBVneayLMtu9zoqNZoxTaUgJ4SH2+l0yj7nXu3ly3Ecnz59+vXvfz/u/vNPFyEb1ntrjFzyZDGGuQxz6f3wflRxFkJJOlM+jHRYRLPew0yZKfwrloigMGG/XPIffnn+t7/98uNP7z/z9H/9P//x8n/8+++/XzcPgQ9ymtKJ9inzuuTTnFLY3qqPg3hUizr21j06Cex5yfOPH0jtwXMuRUSaja3XYeZvEPtVe99rE6Jo/ejNMmPJsjN5jADDHQARwwyIhtQjHFAmZoZ3CtIkmcwQ4cZetZPAU6WShPaRBA9MOWdh1hBrvfvQZi4EMljvFvfX8N40MXpsI6JTMagNeEiALY4cswiFJ3O9j3qt+95bECICTCQSBBA8wiLAFBEcnpiEQBEUoAAFJ0rZaiHaGU28Sq/iC7swOXmZ5HKaX6ua1ePYRybKGcRO7GAHE1EweYTFMLNuY3g4QO5jjGaDRq+9mRkzixC7E1FE9N7HGO4Ybl+5ExEzgykiiAJwIkpZSilJRYRyzn1UuBNBJFLmlEmCaZokFWhSzaqp9Tiu+/3La6ZIc0mpKIsb9Rbb1kd33/Y167sfHn758eHhPE+FT/O0zKnkhVnBAjARmJhIACIKDgx3hFEgYGE+xnAEEwXciYUimCOCGO4jwolDmCjI3QOEACKYocrE8QZABBGJsESEu0cEfcPEzOo0Al+5uxkiYoxR24G5lGkpJdXejlG9N9F8eTjfvddrv+1H2u6UGeTsMLN6u0tKzJxS6m5HraWUdeKsAoruY7g53OEW6L3tcDVvFgOWNBGcY6TRJBbvR9SN+sEBZTAQAZ5yRLDy4+Ppx3/75b/9b3/5659+eLzMstGXbRf8359///12wAEBLpdLSnXW9ZJpESfb7aijb4ie5zItJWeuRydr57l8+O758Wl9fz5P05Rzbjb2erTWupm7E5Za7/ftlSj6qNv9SKkwyz3GV9atdTMbrfc+3uxdx0hEpDk5+dFq7x2AywnDaIR36zZGR7PYbawzKElfZMzMzt7VjEezvjcCAeFwJ3zcqubKjJKKEw+QgTgiwRQkDNFZCQGCDz1Gv9b9sO74ygESBhOYwAQmVgmmXGQaJSWLZuY9utVaueUsQURgMsZABEBESpyE5pLOM68T7xQewzwS525kDgcFAUwkrFkkSypZVUWIBsBs4bXWOA5D4F/iXwCQMAmYOQjxhuCENwGLCGYWIQotJU1pSppKoaPeaIAFmlgkRJ3Csc5pTqlkylmI+75t19d+VA1TThTwYUSsrN7pfj0W7u+fz09Pjx++O11O6+W8PD0sZRLnGSAEGwVBmMNhAATkHEyBIBV4yGAoo5sHEEGI4Q6KYAYgHk4cwkxEDDKzCAvDvt/NzN0ZGhHujm9ut9sYo7w55YDU2o+t9n7Mj4WANqzWZsGqmlK6b0ffnYjgQ4TU6N5qEj4ty6Odmx3NTZSYGaysICJd5V6P27Zv9SAi404ELbm/cbNwj/CIDu8RFtYtWvQ+AGJKGmF97FEdiWH3WcfzBQ+LzImZwcy1cXNz5fXDfP7r0+lP7/i7ZRM88vxunZ5nfRY8TCBCmdO7d8tK9v0j/3Cmpwm72yc/EI3UVfM33KiZV9CYl/TwuL77+UMphZP23ufWAJDwG4KN0Vp/ykUi4n6/MyXhtNWbe7ghzL8ao/c6Rt9v/gZMrDrcttr24xhuB05hbqNZPdAahtHwMPAKZlWWw6XtbUPdRu02MuYAAhHEBvMRFBCh416ZIYLMlJkm1sySSXyriUkCc550MI7Rj9Ejwt2ZhVQcgDCrpJSmaUo5b7hCAhIWPszcbJiPQAVMJERpCLlQEEMZXFgLcaY+E1HirPnG4g7WxJLBEhgWpAARiYi7m1m3cIAizKzbgI2UEhFFRO+drUcEM4tI+mqwKDMH0xsAFpGYI4wIRGTWiSjnxEyixMzEECFVEgUwAp0LcSFOkESj19cvH2+vnyQGSILYPdxdBDQctaLW5X16993p6Wk+PZbH56fHh/endYYYgt0RLg4mouBBIR7OBDF2EZAJMyOyapgNd0SEmwcoAiQCemMBgJT4KyIaMGc3qnV3dyLCVxwRBBEWJBqARRhgZr33iBCRUoqNsLDWHU5lWlRzH/7p9noce2s9SZaVu1vYCNha9GFdmttcMjObWQzYGDRsjGFmIjLc9lYVJMTHOEZ4QwQwbHhnJiJhufdh4XUEJXPpPmprAOxyO832fOE/vc8/PefTzMwRhFHlCDpI5TynZ6rT2FLMSadaGftF+89nPKxzUhGN02mcSnp8kp9Xn9P41J38GNaa9dlAwUQSxM3tXo+4frHc68LzPJdSOPBG3gAMtOOLKCN5WpKqIkU4iaTkK4IFiYgZFOHw5j6SwyPc3UDmGGP04WOMXZ7Cm/W91QOjC6kGA/zJDu9jvx/Xl+2o+4u3awxzTFnGGBFBImDt3olISLYAu3FEoVCKiVrmpBSpDQYpAidVyjoQHe4IM2NmImJmiCDnNJVpWeZ1+cev/98A9bDmvYURhTHAUoU6wJIFiZ3VVJwjJIskQnYv5PxPwbWHSmHNxBrcHGEICEuSiBjh7ngThH8iovgGQPwLvgkmEn5DRMwsSTUnVRURM4sI877ve++dmSMCQIQRQZVTFhECmVkTdmMjCdCo+/Xzp39s1y8KL+fn8eboZjH22+vn13q7T0Tv3z9++Onp4eH0dH54ePdhzs9gAQ3oYAs3VmISAtGICBN2B0DhiPDRKQKAELGQG+gNHCBiEAkzOxwAA0SAO+ARFmGaJIKZhJkjCFAnEFHm1CPu+35ve23mjinPy3JyDAAiklKyZm8A5JxZwAxRlqQsaTvath9xvwUhAWDy1u/tixsI8GEJTFmXdZ2Zam+9NgEJc+08LBoihGL44a1oypompfH/0wSvS5IkyZlYP72YuUdEZl36Vt1zwWCBpUDInxS+/5tgKTIgZtGY7q6qzIhwdzNV/RhVM3MOIqVGxb7fJ7MA7/j+qf/hu/V/fuh/ehvfv8m3F6jVEdPzMny9+eluZy6577fjuCxt2eUFvr99p//yx8sfvvuuW7A2yLEKL8v+BjcN2iCP/Ti2+4gf26XbqkpCUvRl7h9/vf/vq7z99PlyOp9OJ38QdXdTBXB27YuRc389eu9jTFDNUlY8SLGqkEUEEIJ8OpeKs1gRono6LStlzvnWmqhmoVKBan4y6aB9G3ns4/On28/11+313pbdZ8Azltj3fQ64gImZeNAJ6c9kVO6zSDzIASjwbV+SrKh7wc2dJUVWVWa6O0SgAjOIe2vLaX0Qg7hBJVjJqohjzlZh5kWBukKtTEqkTEoM4oKusogQRLEq6TUyHqqKJQ9m1pa2nk+X56fz+bwsdh+AGfTvIoKkiOgDVURI5ldVRSFFVNXdW2u9dwhIVlVm7vteMwCQrCqSAMzVXc0FyKoAkszSEs5j3F+vL8d2V+EsPY6c+/ACjzm2+6m177/97vsf3/z4ux+e35ye1vdPb94xTzPY1MAk8SAiMIPCKgEyk8yHihCWkJlB0iBUCkUpVBURKESkeasq4d9VFb86n1eSIibQTAKRoIht92tEkFRVkSILgJndttcMJi0zt20bcydlP6aZndfVo2gGcaBmjOPg0/NlcRcwiJiTFFczGEBVBZAsVe2914xt28x7SAgzhFHFDIipC7550hnVxrHvR1YQvqo/n//w/Zv/60/f/p8/+bftt3fL9f0ztfF+JF9HrP3e7ZPYp4i4v9785GWI24F9fbL1u/Pvf7p0PSozMvVldNt73jGh4axBZrIqGTOHVhTgzfpy1BFx3P/8l/aVQtys9754U9X3/dldjnEzk754Bt17a8ur74om6KArxJzd6Q1/XV56X5Sas8zauZ+FchzHirs3whIyxLSYFI9Sn6ccKWPwmHmMnCFBKeoamlDAHU2lggCa918+pyIUVIAAoUAr+OfjWKw1lbLmT7IuLByvDnE5tz0rW+lTyjOMds43b4/F364NcxPcTXYThC2zzojVfXnbb9e57a/Ml75UW5cRjZ9DZu/2fG6vV1Tu43gli4Kw4+AxM1prpl7I0rgen3McXcWEZBXTu93mYSaYh2hRQVtN+tz3AMlM96lHZa7mrS1Kcypndk6ZOTN381elLPLL+NjdsR9+HBfgLftlLj3aasvOO3DpyxsEKmbNe1w/xvUzanNbxssed2YBI2Wy9ePtBe9P353w7Xfn353PF8nB2lUE0uFnagVLDGamVKRoBMzVIDYrE3mgChRVLVAIVQiFLHyRwFT0qkimiJTEyG3kURoVYtrMSEZVBvdtjoePn8cY83R+evf0fN+ObZ8F+e3l44zNvJPICIO7cBQU+ny67Psxo7yfaHVqvdaze0vlxX0lx5yuOiKSFYLT5U0J7uO4bfuc07U1qMgqGq56246t0BerrOt+iHnkLqjLxZ4v59fX2+sVje2tPV8+fP/Nj/3ddx8v+qstcz8tMseUmW+trf2k38Tx9vp57Blsx7RPT4i3sNdxX9rL2fbzUvtW941qO9FFmGjIhhHxwr43LLRl7X3pKnn75dN/fXx9nUn9dV4VWNRlahP97t37b94+KeOTXM14v73cr7+17m+enp9Ol3U93/WXTM9oOV3VtdPbNK+U1nQbx2aQN89Pop8TeX66qI71vNCrEH3xZqUpRnh8GhOvt+Plvv96HX+9HgHpp8v79lR+LQ5blnZaxQ0PKtw/ZVqlkRhIxXTcV1e0srafOp7fmcsXEDF8JUIoyQRKAAjN2BYPRsEBiFKKpBhM0XKO+CofWCyBGFSW3s1MIchi5ENJCIERmpSiAiqiRUZyxowoFapUAWNmBEZgBABVNXNVERCAiKgqSDNbzM2squacwRJVU3+wB9EHiYoIRB7bFoApFKiKqkqaWDufz713qEbmth3btmdWM5uj5mDMqUWXWs/L2zfL9x+++f7DD09v3qrbjFAFKQI1EcBEKKpUwRfyhVvGLIGYmxmkI2bWF1EABBAIIOBXAJhZmVWlKqAoRCFV4r2xhAJt3t2jMrZ9GweJqowcFktEkGkqVF2WBdBIcff1JL1cxxSRiR2oyFETKquZeFMxbaZJosqqpAqAqpp7VSVrzrnv+7aF4ji5L71nhZqpmGmqtqqoin2PbnAjzNz9fD6LHuvT+/fffOMN7jCjKkULEiI0QyQzc+Y8jmOMOUPmfgwjzhBNkSQnoaKqBlWICr4iWWBEVJW1ZWnN3UnuX0XEvu9bVgpEoebqlKyMbR5QIW0vVuaL2nZZz5dzmd3H2Hbs2z1fXuZ2q4Qsi69n6V0HTYDjfgdwOi8iou7P756Mc72sbVV1LKs51IFu3jBn2nFwxBjzOI4sRVs6IlHEzJKJ3k1tZsw5lQBEXayAnA6cT/p0Xt6+5bdv3/zw7t2bZXERPJAsKMSKQxQqpUgBoGrdzs+n1lfvzZc0MwAVxFAeEoi/ycqoKtEUpbRu6gphssAKiVAHhTLKkg3qcBeVUu6Z2zFQMDV31SyIBS3YCoOE/B2IBxFRVRQN4g9qVTXGiAgAogqVh2a2WqOIicwxZ9EE69JdFUyAD+rN3U3bFDmOcb/vI9D8tCz8eM1MfpVt0XfPTz9++OZ3f/z9T7//4+l0FpFISlJEzQxqUBFpqkWgmABUDSI1BdQH6Z0lRSAiGSRFRFXxVX1FEklkogoqAjgkISJKs5ERkaYAdVSOmMcc3tY5lWTNUZEgVdUBbWtEMEpEWmtZ4hM7EwZIknMmGk003QHjfduThCrJzNy2rcDWV+sSWQ/u6o4YGCNAttZUm5loFugsjCPmfpgdSxMpYl0oaEvva2tr9zbNyxtNUjQJEaUqmnc1n4GqYlaVsIpZrCRCtEyKnCruBrWqFAoKJFBVxxxR2VoToZkJ8bD09u75DdDtusXcF+/dXIQuYRqqoxngJKL3Y1343Tf+zdueM+73W8i63+Y8jts+E9h32Q5v3bZRD8cMEq1tmWXdv9m4eJ5u0Rb31c5dFpentZ2eel+Es7yhNevdvSGhZoYIy9QqzoHoaipz7rdrDAhEREWqd759s3744e1337z55ll++uHDh+++rTEdZBVnZrIomloQZM2qUBmY277djjkmdRRThIoHE3FtDX3gTmSBSVI0AYpSDSzJYIZBVahCBwHarIXW1JqaayPBY9ZtHjEjgqSqIqXGrH00ypZJVQAkqlBFQM2aZEkWlA8ASFZVgkfFrGSWFrq5mUEqZ/iyyBytNZVsAhMtCKHqps0BHDMj0Xwd7ZSx77fDoNq0Yizn5Yefvv/97z989+N377/5XlRjJpEqjgdRQiCAqZlTqkqZQUJoVFNvkESBASopVVAxU1X5qqpIFpBVGgBFIUwWk4VmvVkNd2RlREUAGiyotmVZcUKCovXAAFS+qJoRUcxCSWHOyW2/Hfddn8WaerXCQxUqkUohaWZtWdQMrR1zjpgiQrIq1eT5+fnpifv9GPctZ4ImyiSyAAHoAqvKKjDZZAgIgJDMnHNCJkREU4WqBAqgGpq3Eq3Jh6oymhACVAUzTGgOU6pSFYIEQBGYimmCR8wRsZz8QVDMqpwPx7FlpJDvLu8MAqZWLF0vZ31+0qUbcM7aws+nzg/fPL9/d44xbx5ne+qqLn455TEwZszKOTgOFhB0qgQlKnzIbZf2fBrZ5sFesMJy0nNfv3///vR0bFt+9rjtvJzX87IdCYVI1mKOVlGls8xphCcNxAMTwHpq333//Mc//fDjD+/en/DdN9++fX7z8eMnr4rIOuaYkQW2dTmO437drv3ltMxxf/3lv//6H3/5z7/89+vtVT5+Gvv+XBGL6dN6Oq2nj9hERBWgQLTUEhZQY4HpYFNb6CGojJjDab21Zh32RVIlwRn77b5t2zgGC2SNbd+2jVmZBSCTIoXKqgKgD8SMJENWqqqYQoTklvMYX8QYEqVNAakq6ImcqJAMFZgLyVJd17W1FtqAKTBvpyp5+XQ9ttG7iSRkrhf//nc/fPjD7968+1Zah4jA3GDqVahCqYmamsFFxKUmi1Cy0ryxIJIZRZklIubuKDX5iqSgmCSUIFBmBticR0YR5V8sZKEvw4xkJJva6XRalgU7jkOjkIyaUVB6VHAfk2RBAcnkMY55HJGHVTezdbUyjZTYjzGGNbg3qLbWvLVBrusqU9UaTI9Rs8Kar8vazO/Ezi0mj30ezEE6xay1tpTkiIOCKESWKMScSkplHUUhQpSiBEASQFQR+VAzGEmKEU5hReQgs/uDyQP4UKCLiCpVCEZmVUHVFFWFzIjYttvry8v9KEjrppVZcwjq3NvT2k+rrYuxTnNgQT6tuLR+Fsjiy2XtjkX70+L3TV5u9dun28vrdoxwWIAlSdEiAFNbTbv4qUSZqSh27eZvLus3b5dljcvSTeLTx01y1hxIMyeE3VxERkySKLra2pccgyRId6xdexORHHWoLsfcf3mp3z5/9qqoqIgYGVHoy3k/4rjd7n13ynHE6+vt08vtv3/dri/87dO8TrOxrTWNoTWhJUIRUW+wglippaignHSztfkutlXmsc8yhagqVBJMUaiQVKoXOrRBnAhR+cqaS0mVZCYAZlWBJSw4dBahVJGm9qCqYlrFAmtGHZMzRBzKqopkzJgaqNkdTS0JsUWsVSEJtcXbSbXNwO06ZtzNvDU5nf3bb9//8OGn999+OD+/S0LFxNRNRZ2zQKo1mtJUzCgFGr0qSmHmAmpZFSenFqWgak0NIkISfEgooRCoZIpqMQpSoKqJGkTmMUB1yszkTBS7GkUHQx5YFVkVlEYya8ZIiLgLzMhS0Jwr2lFKgZj1dgIy6joiGwpIVtW26RhHBEkAJJu7GuZxzNcYy3BxM1nXHmYzKiMTVYNmSQqrAK1kRA2huzYX+0oEVVFVVIIKKEmhigj170xUxbr50pqKxywmrDd3EwRLmFWAuokpgQIfCoQKACmCBZRCVHHqi/fz9bhKsTLVZemnpftivphGYcZhiLW1LlOrumrr1dd87hjPfTvaX3/b58btdSbTu9+zNGtWQU2X/nx5Pp1O4k1UUQKdzfXp3N4+2ZsTvFHWruH/26Bj2ICqLmLEQTwUUAQKqap9bfvrbqbm6q6uNmd++vQy5o57X07XUXy5TQeQ5KysRLIixXRR7Xnwmtvr55dPL1uUxlyPY+z7MXLYuM9xr+OK++c6Z1UBEBGIQYyiKSpFkAa4SYMahBUVs6pAncRgLqCoidrDsy/vzk9P68vrsadIO6/9ctLeWi7BArUYUpWZ9ZWJuJq7t9bMTERg6u4BWG9mphCnNHN1WZblmFKAq61LW5qrIklvq7sfY8w5W1/M2rHP7T5GwDQhdbqcPnz3/f/413/+8OGndX0DOxcEEAIiKpSEUETMpTkURRZBEFBRQgQUiGimRRs4CkKBmKsLAFaxCgoxmKjy4YiqSE6WeBOXBEZMjhCxnPPYthGlqiaaWSRRCVBEzEybd3cRyUiSoiZmBFq3Xq4aR8mYCcHJRa2LtMojVF3xQLKqVHVZFjGN5MOyLCfWbdtfXq4uunpr5gKPOiAFgsyIrILgwYkasxQUYVNxV2vaWlfVSpagFCIADaCYmpp/ZVYsdbXuzbznrIjS1V2sMqsKNCi1uYhkZpAFUgWmzdxc56h5jDknyWKMMZjDXRfXs/t56UvzpfXn87oPjn3vbb5709+/kdVmUwqrzk5pIqf7aIa4fsK1URJwiMoQThJN3zxf3l6eLm2JFQqbx6gKNT1f7PnZnp/x1M8il9qPFVhVn5dWshr0qJqZM2NWOdxZIgpTM5xWX5YFQFXeb0OE+z7qznY6v8yxHXARAUAyWaQcM93W3o4Y+8tvv/78819++/zLtu2UtcikkgI+BGtW7JlKEl9RhSoFoWjFrEqQSpioKuRBmclkBWtmTVQTiIiquuilLV0sWcnUh+YBttaYSSesSwAAIABJREFUISIg+A9VZaLuvnjr5iICQETUrLm1v3HP1k7Lot1Scd1SRNZ1Pa+ntXUVCVLdzueziADavAPycru/vFzHmG8XmMvT8/qHP/70T3/6w9t37zMMabKIqFYwk0BFpJnBG0xBFrKqSCogYkBBFQLAoAaAJKAARIQkvhIR/QrAjFmVMyNZvXVznXPux/HUeiWO2I9tz8LpdDL1pOxIETFTClqh96Utq81g1ZyziAdVNRNTTZGCj+MoZFuozQQGKCAkIV+oajODarJmzDmP5XT2daF8+vjxtkcZp6vNOI5jD0IUYngQERWJMiUEBUBEzMzdW2u9pxkBVJEEKICAzExBkayqiGChIiuyL42UDAoVUFKkRMRUy8yoEqwqUuUfoKok55zFaOYQPebsC9bemuip9b60xZfT6fz27Zu2fR57rb3evfNv3rcu0JoKpsPcrC+X2W+3/bLo2lATwVTJZjSBr+18autiDlRTZEaMmPeIcltOK5bO98/PY6jWHTEX0+fTeQzdt5G95pz7RBHilSBYyXo669Pl3Pt6HOO2z/stREjK5zhaycf7/rKHn7hWK8z0xrSthk+R6/h0u3/e9/sv0//zY/vLx3d/ef3lvtmtTnPzp2M95dMnnsb53XWdx4Roh2DHGJre5LTVR8/e8sybirZ8Pep89je5XErjetzux5E8F1tSScaYbeO8zn3WhFB1r8gYXbC50AS9aoYitClFR+AV3dYWKhNx0Xhq9ka832db82UepmSTTabr6qjr9do26dRlhEcYBFSqFZbD/N3bd7v3dT2723/9/B/ld5zulXmxpx+ff/9P3/3b++VPFZcJndZbJcTMIFKZ2br3ZcFiuTRUaIizQEUVYiIJGZyz5mDCcUphylTINBdClIyIOavEIKrKbR/7ZqprW4po0qg4ts+MrShjDCmaGsj6yoiuto9QyLk3KpDH0hrG3axSLGnXyahlit/zuO53Xy5uOkWU6E9PFzURqdkBiEHcyMwsRVuaFXjsE5c12rq1LVG3vXzcexmhQDmtWW++RMT92JWHKdzbiEBYnzWPu+nZ22Je6s29WSuRlpGIWYaMmDMjat8nC1kC+m0bDp5kU5b2b4q9juNkPKprDWubqgxp92EzrS19OZ3GkaarYMkQKFnj8nTyZmOMpJYYOdf18u2przET/bvL227XE/Oi2RchhMS61HLqaCfuq51r998+lw5v4SXST8kGOa3PT6eLNd+TIudkwApZczDD1n568/w81v7puH/GfNXMxe2keZ95KE+eQTJNXbnwsNQi883JLict5D1HBtgv+zzvn3TT3y6Hv3/6IcbNtblUUvA3/XyZc+5R1y32PT++HH/5+eX//fPPv/78sm/z2E3gAnN3SG37bRgyUymRFTNrAcnMVGluS/dI7V2aS3N1UwcKRQBqEBElImrf948fP77eXscYBCECoKryi4JAoSbuwqQKRUqqKucQZwwT0r+C6pxZ/yAiVTVnRsQRBWQW8h+q1KTMbFmW82mdOX/96y8fP35cEN0Xk+vzm+XD77/5/sM7aUHs/XTWLkBXVTxUMVVEYAoQFcxCfaFVYAEEyDkzE6SYanOvhlEAFCIqVSUiAPgAkFRrgiFQ02am7i2KZu3TpxcRKxJqMA8II6PydDrpg0dBCJmVWcicqipCACSrKrMiYs4JgCT4hYiYmburaolCvhgZ+3Hfjj0ZqhrJMQMmglqaJ3NEolBV+Er+QVXdPWeQqCqSmTnGOA7Pka5mJq4GoKpEgiwBWCJiqioiqir6RbJMVESUEDIzIRQRACICgAQpJOpB8EBSVUUhIgDMmtNUtWpWUYUiYi6LmzlEcz0drtmkliVbr/WkEE9CnW0pOD0LekTexxwjAO1maA/eTqdT713NIUygvuru53O7XE7unpkmQpEiR/GIHMHUEteHqoqiMSMCKHOYCVvjsri3Ruttqq+tnyh24bvFL4ImYt6WllSYikhTo6i1br4eAz//9+f/9b/+69///ec///k3yx4Ha+LI3LaDpHefOY8DQsC0kplJFYixRLU36ydPSrtSXMTFVaRyFlNAE+3upsasOcanT5+ux32MiQeRqhpjbNtGKNyaLG6iNEpzWkPT4phHUiNGVYkIUETlmFLCIKq6dReNCKUqoEDvvbWmir9xd/NWgKput9tff/n5/nrVhn42c377w/s//NPv3n14mwla+cmAhC1QhYiSWsUHQEBmIetBmCgKk1VkjeOoKkG5QlXdvSoqUkRUVUQqEw9ZVAWg6qouItq6qlJE1ZfldFvPABZ3b11Vj5kRoVUcWVKiVAhFFFpIUAOSxMyajGKqWnc7Le3lNjKTlSzqzCMrIgCMEe6uzYnIOmbcoeLWI2qfAwx1f7Oep+U97mOku5MECEhVRURmVpUISKBEYZV5bONoOu87+NREXVQIZlJFAFUFRL9wQB+8dW9KpogYBEBVZaYaFZKAPJgWhaVVqMIXSoDuKvgbMTOIQb1iMKoMquhurYsZTeHrvXx2VFuqdS5rAyIK4uIuaOIhIoiYMxAJI0Wk9+7rZT2deluhpsZhcjAiZmu1rP18PrfFRUgB1AISxSNyjwgRWVXdCAXKvKu1qFEhYrpVdYG46woppooogGx8yrBjm/v98GCNmNu+HzNJ2Wa01mw5Wb9QF+rJ+tvT0/f5+TMjc9Qx43bbIlPcCjkDXbtpE9ESVTEzh7lQG9oqGVCbZU53khVzj+M+jz1jEeKLIoP5FQAVTZHMPI5j27YB97WxSqjKQolQRcwFk+jmrlpfxMjQCJIAqgqAu5u1quq9TxuNejqdendVFSWZ9tW+75vy88un18+fTCyP/Z7y/runDz/+8/vvf4/+rFHwBdbjGNZFBFCBKKhCVmaRUigSVXiQKlCkKBWVVSUoQEyEIiUoUERUFWSISPEBRVEAomoUASWLzCpiWU/vf/ghIlTVl7Ue7keOw4CaL2Qmg9CCFqCqFNHyimSxsh5EtS+m1tsYmZwxI5KYAYkskvu+qepyWVvv1pV7ZUx1QjuZccQidl7WVHIE6hAKHkgAVcUKfqUiJFVVig81ar9vx32LfctwZQkKLAFFVLQgJmoEoopAa2bNIMWvRERVQaL4gCKsVDspCZshMyjQBxGaKwr1laoXWYVKJYGiiZirOUyqOAx7s+pq3brKqtIoTg6FAAYa2Fhe2ZhQiD1oc+/uLmIkVUTFYFKoUaNFFRIGd7VmJEEFLBKjeGRMymlpVfkAwMxEZB5ZjKI/L81Ku/YyHZ5ZggyIvV4ragJ4ebn5Prbbvl3vt23b5kzXyMz7/T7GELHWFrfGwn67jzEAd9ECEsyqg0U4RSgSBZZQlGKgkFTBYh7qC+TU9LS0LigmKyoGMhSlIgaTkt67xSEC+YpkfhWglvEBiYpkQcVMlHBgXVrvDeBDVUDK1RUqBAMVTA0mFEayqlShqhA+ZJYqrC8FyZy366f761WJ7fVQ4fn3//q7n/7t6c3vSYebtIZyoc9KETGBikKFxRIU2UQgoIig5EFBKATWm5LIILMAqIgqVQQlEILKAkpQEECqADFTkWRlZLLcfV1Xt/V+v8/MQhYxOZMhYt4saA0sSFKKNatAwLp5pZQiJcgMQiJSVTOTZFZBoN66OUlR7HNUlbm0akCNmBii69paq23TyLUjRLIvknW7zWQloKCKiUBVm2nOEFFVVykWmcWB2OZxvddxQpYoIBClkEIRMVUHpKrwYGomYmRWzhCimZsZGfwKImImcFIzMWdCRczUIMJCZc2qAkAii0IVqoiqwlVMCzKkhiZVvdvabTU5C50YIFWa4pS15PQYrWJBNWBxU3cHMGdk7V7auqpjzJk5AVCKXySV5hJZQq1UloEWFbPmqp5kkAGMLCnuGXiYMa+IPlJGzdC9Zoa6i8Tn637EoarbPtyaqlmJUsTdn9ezmc3Lvp+ur44msXheVsmF51QvexkqhqrKTKqBEkmdlclMZjCTVTBBUxGXVJxMLks7n6xT2K03X5ovra8SbblcTueHdV19bCQIApB/6Oelr46smlWZ9LJV+6ULk1nd3NUAqAlUxNTg+EIAjDGIBBARVVGAmblba613n5LrujZf1nU9vO7368dPv477OO7j7fnpxw9/+vDjP+v5fc4h1opiMHMfeVVVfCUiJPGVQBQCISgwAgKKGJbTSrJiVgxmEaKqolpkVUnxQeXvlDBHgyYrayRKVNSoTVQSUhFHlVIUkmQGI+eeWYWiqkBYZGaytoNVpeYmallZySrUOI4xZ86MhIiKq5q3iPC+WFZk3bYjWWLe2iLmUFlPvcZEZB6jKA52b6OBYyRI8KFYAEoAqAhERGmKKkALNSbnlGxGGosCeYAALCgoSaGglGRSqSoMzjlJttbNLMYQUghImRnVwBYZMaGq3lSEVRGRVYUHKviFqam4q7iaWqnSLFXSxLtYt770y9oW1SqFKnp3dc3Cvo99HxlFIgskVR3Ufd+Ls69YCup+xS0ixbAsrS2uriKklCW0RIKSqmiKAxVkrOvzsoy8j6qSB4gZz+fLdr/120HYKN6PMYtSYWYDtWdJMYS+nE9zwNxV1cS2+31dV0GBM/NedTXbT6eaK7IqjsyaNfbbdt/HwPkJZixWgVCIkUISKn3x3kw9U+ESTdM0ckYM1hyoVNDVemvren46PZ1OJ7+/AigWyfoHW1UXraP2eWTcj9gmZlk2851kBasJSlVFmKSJZlJVzTwzLc3dRURVpdJMzMy/MsBdKdDmkOPl5dOn336NiG6n3/34x//5f/yPy9MZedBhDePYTTpEDKIQhUhRBCCVUFGwBEUAUgBEhEoW1MyAFFYFq4pMMFgGoJhVYAFUFcMD26oSWsck001bc5iQkxnkVElTiGk1mZMxhqoCUQ8sQgiKwaEcoKm5t4KNMC+hqnZ8HiTlAUKyHubc9/2IpCAzx3YvUsy9G8mZY2lLdx33MWYGIK2TeTqdAOQ4RFREKqtYCTYVUKUYkQ64qqOYWL0t5qaKh4LwIZNZRSYBqKqIFFhVbKJERLCqqRlkVJE0swM0c5Eu9IwYkVRzdxFkzTmzqvQLURUDhFA1MzEzd3OjNzVysRTS1JrRvKCb2NZsWFO1nvt1H/OYnwqb6GRlxIkkyHFE1KQYxDjGYRsTTdBaP52W9dRba6pqFCtwipQ1mEKEBBMqoiqqBETEW+tdl9NKR1zWY2kja1QMppqaaTZEFMmBchGBaYKZGRHfPb9Tw2ulS56aXFZZPIW31+sv21HbaPsuPLb7/X7cj1gv6l2CVNGvYCrlps2bNBdR2RHMI2OfY9v3cR366fPb19fX+/1y9LQIRoLsvbs7/qa+iIg5Z8Y+Na779X77PK63+frbdv14266LtxvIrAeSokoycnRdmGWi3ZuputnSe0ZceU+gvooYETpqzDmrUFWz5uvr6/1+b2ZPl6effvzjH/74QXTc9r0/XdCE8ygJzvB+kS8UD0UBBAIRVAAQgviipPBVZlIVAMnMrMyZ8aBu/AcABvmb3g3IMQqSrXs/tao6jjHnQE1FqrkZwgSc47j98P7D9b7hdttHVBUg9tVZ1yqIyDEDX9BNTe18PrtHskZxzCQZMbdte70dp8uZ5PW6J+P8dBGXfT+4+LmfVZWRx8wAGgUKMcE/qKpAkCBYoIlUopgEVEQfiKX11pqrSYICfgGQxRIpkqoqImQRCVERqa/kK5IAzAwgVFQVpaRUFaBmBiC/AqB/B4Volomaqbm4qrm4a4Or3FhFQHRQouRGvWtLqEC1cIzYZ7yIbeoQ1pyTpABVFZGejMioxBlkEgqDuy/L0pbWmuhwY2hRAgozmAKKut7vxzGzsqBGgRRpESGXJVZP04Nx1ZwZILTy4gjJTM6iL1kvkdvcMuPSXK2LUtQvl8u//su//PTD+z/+7vt///d367T/7z9/nq97YDfJOTZleeqcDgSUpTrRq7rqbP7SGc9NXsbtjPVd77/l8AqJ0RNx+5R53fI61YYMu/R26vNy5zb9qriVpKyHne/yQS5zfcociFgrC3mLyWP37X6L19NlDeIovDu9Y3kdsi49HJNzH0fv/RhD3LwtN5k3az+Q59JLsgnYbF3f99O73tXAue1/+fN/vH7+7f/5v//tt7/+55t/nm/fPmfNypC5wKxGpFYzT1figcoiKASkQEg5qkgRaRAKrBBVQ0WyphSFrJjGWtUUEnM0M4cWIVlHzDIpMWfMHMkwE1/cXe/7cduuR2yA+tLdLaLmEShZ++W2cxzMITJUqwiBi6ie7Lje72NWb+fntf065sfbLUWn2Utuc6SYi7s2X8z8tIgPEW5zlwdIzoEEIyZ1q637ohfd9x1Vex7HwAKpiKYmvUdVVAppQNHUPZi0ckGimmIeI3gldMS89BNUp9ANM9PajXwD9v+fLHhpkuzItsO81t7ufk5EZFYV0EA/dV8kjSaTNNDf0Ewzmek3SxxIHIji4152N7oBFApVmRkR5xx333spq7ovjTR93xx01+XiXrLa8nLcjtFbQ/joEgpjzzGGrcWMafPAjjLW5vct4nqb/e354bHO47hdmzKyjzmKFVQiRs16Um2qONooBjfnx+JsC0sb9Di1IPPYbi92nNpWeT5fzofXn+802i9anW8uXtqEeVkthkYvxKnYkS/7oRyWdVouS32odSXb0bYb91s+XeNT2N5O5egWk/eXZxpqhUDFqohxv2tsx3jTtrsXxNhGhrGZQ1Jc44TToQGgkAQgKb845lGMNJ3Pp8u52C8fvv76/O03b7XNROLj7QPv91JjylEyKMlM/GcACHevpZRaq3vhZ6pe1lbqqKnwQjMWc/vCnWaGQGFpXqoNEW3B+eIPb6q1al63EnlZ53Z9lvkW95+uN/wcEbVWkgBIllLMjO4k55zbtu37DqOvZYwhCQBJdycpKfKzcjol7enlJthv/uZv/8W//FfffHX5m7/7h1IKzExFr0L4KyMJgCkAFP6CwhcCIInEKyopzDmRk4IkI41GY7RaSyugIhFJEkYzg5tQzJq7REIl0jIMKnPOTExmKVBahEbHcYxb/9D3QxHVWilF5D7HGIcXmuPSTq2efOLWY4sYgo5c62qcI1KSmSl0v9/HiFKKu7fWjpERgkRaZvZjJgiIXsiJKSkjgySgOSfMSAIyMyT1RSrTKUJgQi/Pz72veJWC0mgQmJAIGcBMSMxXgcy0/5abyWROlkYyMiNijiRZa1uWpXkBEBGSSEoi6bQ0tlJqrV7otOp0N3DylYEmIPEqJaOEKufgOGK79e0+jqEkUTwz9Qp6ZYZafVlrdTtgkAA4aGYAmMwwsSbGCM7IEZqphCUoY0gpmFWYZeZAIBBPz1FBA4TqWNYEZ6SkNSLGGIIKUyOjv5pjZtRWSLlrjNH3Y877dnua/f7m7VJb1qLTUnbS5MVPrT7smADMQAPAV25evLl7KcXMlKlMo4qzQJ1EJFKADEAmU5k5dmlaseI2pmZd8uGNP761x6W2tR4rR6/jdHqMiufx9Pj8c/1u9DCzUgoAM6u1kkx9Nuc8jiMz44vMhETAaa9IBpSZUylrbCd5++bXv/v1V1/9zd//zYez/eLbb7w2kfQQLSHSjQ4zACaAlEBSEgVJRAKQZBSSUEAigExFUqDwiqSRtVYrrkjNMVJTACxhTp8psXilALBkUCxe17frV6NHJowVatAye81ozy/fzzmYghVQQwooIKZqba02miuGV2unZkLZwtbiPcbtmhkOBhFjHkeXZM1bW0M5xiHB3XPkkUfAWqml1RzG2CmY2drqMceMIEAyIQAEAeQrQILMBM7U08fn/X6hzDIS6VYMFrOr0IyASaHPkJlKQkmkgQYSKYWTSbg7yczsnw1Jy7KcTheS8+i3222MEa/6iEhrRSGSRiAFprtVV2aYGSkHwIBSEgFmaawWPu+5vfT7/dhn0huX5bQ0FIseYx5zzrVQmgZf61k1YTid1vPptNS1eKu2HLOPaUePGYxkyGkNBtna56aEG2gORvHalvHm7tWcGRnhZLOTzHaN3SwzSykky5zzOI77vu+jj4zb/b40A0DlmEffXubYikWPq9lgjDh2xsTQsY/jJNTgf8PNinuRCBiAiJGjow71MffbPmzbtjGGvsjM+aofx3Wfe+dMhKQJjtpyWfELt1b8ltjp3RzL6c3p4dLWV/2YpRR3B0DSzCRFRGZKiohSirubWSnFMRx8ZWYiMjMguh1ztlovb9787u//djk2mGqt5/Nq9DBUc/Nq5qU6SZgbCAgABUkEJOELSUAiAQQiOdMyPBEpAPoiJRaD8RVIACTdnW4o7rXEMBTRUq/IlMyX9VT33kXNiJgzM449jj7HjMe3b8bR5xia2vsxBNbSTiftu4AxxrbvT7fteetbKkDTEplzjHnMEap10MxkqRizu1Uzc6tdPSKVqZl9jAHSay0FScIdUWttp5MO7tvGzyDolUEkAp8FJHgAkbYfGEMmA1Bo3hrCUv0A3CtJJUknXCLA6EORUFKhSc3IENNIZipCo0fvXWIppbXm7pk59oOpYq4vAGgGIUUqhuYkpluhwpAO0EQkkAAoM2sNRenZNXb0A5EgEcwYw2GSqDQGLZW9Dy3nd9M6oPNpOS+teTG4oc55jI45TKxGEdNqIVTX2rcxY0aEaxDRKh8u/rV/dVpWR+z7fShp6z2y7/OVma2tmlmRFBEjZmSCXJZ1PdVx3J4/jevTT9enH/fbp5eXj9fbRzIVx7zfF3qpvk1lJihQgPAXImCkZ+KV0wrNIcSMY5/7fTuwbZc+dkMCpKScYwwdin0qYPgiEkiYqqIqmhBIkW5pTDdIysz4Z5mpL8yMZEQcx0ESAMlSijMMNPyVCLrV1gZyZnirDw/nGPunj+8d8ebxlDSlvDUrDW7FDCmQkCBAAkBAElMApABESRlMISYimZkzck6SUkoKqpClFK8tx2QCopcqQm4snj6nMiIyc8SMTIHm5bQ+1hLd57GPMbI1uvv5su79dtB2acbMV4LmpKFYMSsx0WeOrjHy3vsROdP2ve+jI2XA7MO8FvN1XeMLACQh731IcwhjQBT6aGCEIpSJ/CIiMpN6hVeSSJk5TUikmEAkOxDB3tEzT0pvtix1HllYSDcrkElpdPdq5oAppxQOGmgUAQoGjKmIyMwIjDEz0+CQLbUVOIDWWq5s98MdXuoEqShmSEFBpCHAlATKGOakyUhjNWKOhJSTY+QcyilyxMBtm8vlwbzWZqufH89Lq6axI6WcDhTP4iKmIjQD4UhKaF7dpgEOKoejLG4EiEDurjjZODt+9Ut++/VyWcvR6/XoN/mfr/vTz3Nu9qoWf1XcHUBmBkQ3+kKU3vPl5Xb99HK/Xo/77f50O8aIiLEfY9sWaS1+eJaKAUmZmpkpCa9kSuILM1tqW2p1gNkxx5wcR0ekmTmNFADlLCInLFm9jdklRiAmB4UZI0NMWiBHxBbjehzHGIOktyoJgCR7VYq7R8S2bXNOGOecmekgBQP/AqTXUtellRJjrM2rcd+et+efv3nTGiZkiSxWQIcAN0AQIOEv9BlTf0E6PktlYk7MUCSVcfQ5u5nRlJlmEOnu+GckzQxGuYlsp9Uj+hxzTmRE5lQCUCgTY2afY8YE0yoNwK6YM8c0cG0LZtyP/bjdiGZWqlWinS5teL/H7bbfRCqysNTLKVOCydjKcj7bcRw9EgBpgMXUMURDJiagox8zkMAMCL33odxHTyUzAQMgiEIhspTRw2EhQtDM61Gedxxhs8IN9BQmXIQRJjFTZuUV4ZKYcrIWa8WrY3KYkUSXlFQyMyMiUwboCxARoUjoM9IAnJdzzL26tVpagSGgNAZBp9zhLjeQNJmp3OPq4gjOwRzTEkAqjlpbdU6EYphrWS+PpwKV63QHisdp4enEVllMxVlpRfTIkmLM7HtBRkbcPrWqdYFJmtE4353w7oS/+/uPf/s7/803Dyneev3+7ut3+1HGD9eLJACttUISwMh4NZW0xY21nB8ub9+d22K/Hfunn95/36uefro3fyri3Ld9u4553+eNVsB8pS8Ak5AJJmLqlXspZoZEplFMRc7MSaVARSLjlRsyRs4oVgpsDh4btnu+nIdh7v0Ojpj7df90vf28HZ8AuDuAzPQvSNZaB0DSzAC4u6Q55xiDIACSTvsLlFKX1opB4/FxrZ7HfrM4Htezc5LMSMAiI4RGRyZkoPAqJYipv4BEoxgAJCFCMxgBSZEZAYkAIhOQRLLPkX3MMTDCzGCfqRiIjAREpznTFGNKYnhEzplz9tQwT3FGRMHZEy4YzGhydtoQPr1sOWUs59Pbsl6MVB4xXZZIGmFgQq8QzEwA7l5oSphZKcW9cnQHWJxQz+yRFawohT6VR98nYLRXEg1GvEp/JRgtgQSREvDxRZ+uuXX1FdRg7FPDiiRKjMiYgr0qgCkZEUiZWTFzyIRIMQEYAJIAIvQKMEk5ZxjH0Y/j6D1mHyyVETApE0ApVr0YBcihYu7OUq04zcKATMbMtFDOmZ5JCs3ghoeCOL2hl9uxj3EAUzjXthrj2FQqinNd7HQubWEtbMU8wZjZj+zH3O86juVUWWy/6+Fsy6nmVOxxKvj2Dd+9099/M//um5fffNtp4zbb+Xr6+Xn+seAn98wspdRai6T4os/xao4c7oRfLo9fn9+9e2xj+7SU8mnuf/rHH07Lz+uy3TOiH+AEgnQAkjITIABJmQnlnDMiKAcgCZJRAPOL+AwWf2VCjKkIWBNydBy7jj3vNWOMvV+Frrm9XD/dt6f9uLXWMvDK3Wut7k7S3bc5Abh7rbV5GzElzTkRbgRJ+2cwY3EgwVxbRc7j/ny2/Prd4+nhpMMxI6SYmspqVQEi6YDwShL0GfQZkAAkMUMSMpCplJMJCpCUr5QRhW4ZmEIGSKOXWhdbKs2ut48jZmTwVaFPjlBGVK5TGa9y0CYYY27HcX81o3kIAAAgAElEQVRsX2mdmJFTr0w4taW1Rvfr8+045kwVuZt7WbyM23b0PmaGtI8ZsEIvc87RANkrAQYVb61lJl6xFqPGccRMmBcvlcaMPoJAqZXumaB7RhAgWehmpldJCSk8XefLffZoU+mZiG1OLUalXkVEZsKMMEmZiNkjJpT6IjMjUkH7giQASQBIAvbKaQDyCwDFnGbHcYy+L6yOkxmAJGhOo3lBMbobmQAkZoKLYTodJIuzVSxulxVPETA30My8mIGZU9GFVTlgSZ+GQU0hpGBMzIijz2PPfijHWtZSvH5lb94uy+q327aPcSp6aHis+PXFvl3tjW2pzXh6g/Uc7jvGGGZGMjPL7bQdZ3487rfxkfXZFp9QGMzrNjtfgiOlOvRu4sK6PDys0eJ0aebNynrvXspKe5A/X/Ppx/npT7rec769+u05yp6638q2XU6+EMx7xajpllvGcFu4LN3Y3j7U8zy9sbjm87x1Utie4vlpfLLjVErb5uXovL+8/PTh5eft+RlX1FqB6lRsx/2D9GuZXrZ7ZP14v28W7Y2P52sDjj52DQMul/VicYrjjMuRx7QeNdgaSM3b2D7M7eO6Xs6ntxinnmM5LzS45ATV6YwIR4WElKVBIgArIAAh0pYVY+7HsVoBQsrhHVAhZx8asyxN8Anj/Xh7vrzEHcVV7CXmw+nhdDpxbsfLCwSNDsVC7vu2v7zEgDsf/NSY2/4Mhk3EbfArXN5czufzdt2v91v2YbWZ25szfZ23O/fjZes3+rKsYzmuP79EWQrCjxG+Vq9NEms7egcSbuY0yDzBDsxZTZz3fYB1qaWRl8tSyfvtKOXhZbuqz+VUw22aRVdAPeZS6tnr0XdH1FrnGPuB338Y/8/7h7ePD9/ip3o8381ual7Wo+ccaWT24LGv57qYzUnbRzn5zNxyHoj9wLu2oqmda7Tirv047rfj9JW31vzcchClgXU/9se3FzH7uB2HiJQVdz+fH9bFhHtM+OrNS5GtKEr06L7Ueq7elx5rqsR+Xcb4qpRuy7DTeS0jRROFHCCqYxkzOGJNPRq/IU7HXkdfyrIPzoqb5t25lzJqLV7aqVSLR384LfbwaI91fjhUAg/F3rWmVuM09mXXxL6ZZX2X707vF877ejmTvofKufOdn2tpC0+tnC+OVslWn2+j7zdZ9O35hx9++PDd768f3/f7dfb7cezYbmPsqaG40YKgK6p0mn6Zvr7gdtx7diiNlqKSVlup6/HUtyMjzawQ8Ihz9bdLeXd5vGz7ukeL7AljU/oYPkOReduib9Hv1FFjW+LejjHnEVFgwJh5u2/levdal3ZxdzpelVIMNijmrGC1WrzV2orVKRBmViT1Y9vG7eXlyYuV5iLhtvgCN5CQAGQmSHyWQjITkSBBAgQJGkmMMXrXK0QqgTAzNzcw5zQzd1+WBdVRk24AMlOhOWeMOess5hYac8ToUCDn2Pb9fk8tp9NSW5vyCI1M87qsb9bLeezHfdtGzFLK6uWI3GNsm1V/c1rn9f5038ZyaUBFjnWdvfeIdHd6ESBxjB4RJMFpVkiQ9FeF25gi5xQ4RQi67yoAzN3M4QPITBn/Qpn4gq9AM+MXEj5+2v/056dPX59+uzZnmdHhLfCZWTEKlviCZGZKAtPM3L14c+/4QtKcc9/33mcS5TN7lRDJUoqkbdvooOFyuRB5Xkqt1QzmcDNniTgyXeJnZg4vpSCk4tlzzhmRhJcCsJAEKWVEAHB3MwOQqVJN1ZcV58t6vpxO56U1i6lQJkEzFKc7TTDOCEbU1AwEzSpLUz2t9VKN5tXWVUqXrXuUsmRdcDot5/Pq55rG8gutvShnqbPo4HG7l4clNbd+3J6fZ79dXz7+4Y+//7//r3/zn//pP7z/8PSy5f3cZ99njNSUH2gLZ5lzBmTyOr3ufhShENWTmakZzJCpdp5unT0MrBHh6mvh5dyW07l40xdks3LKcg47v4Qy9Hztx7XHxv22zvt5vJxfru9nP05LPa1LWplpIdHqnN0MQI6YzayUijkkLqU6vVpZrDkKFYWt+mLVeowPH3+4vnxY17IsdSLTzNqCORWRBMmUCJgZ3JSZEYw0EG4AlSATypwzItw9lWMcABJZS3VaKSUi6hddAWJkjJiEi6TgIIUCMlMjNKZyImb2rjHrZdKZBAvrcqq2wm2M0WMORSi7YubsqXsf27H3cTGbKffyYKUrm1s9nestfn56vvbe63JCSrQU55z4Z/oCgCQAMQCTAEihFOIYGpnrcim1Wi0aIyLMvNCmmWJmpiSSTieJLxL4+GH803/6+MMv63//qzesI8ZMToGkmRWzSEhG/AWTlP2V3J3EHJFIETN13+fRJ1m8VatFUkRIIilpjOGwpdbi1ZWt1VLMSBPcvVgiEzRSfGVGETIgpZjJY49+TAnFqmBCzghJhJsVkhEx5yQJTFqWUpfFT6e6LKVUi5ldMZVHzj5HVxRaEKkgYwhdmBJKg6eqo5VASAwBkEyBIy3sNNa51qXUpaWx/MZXOl/mKEfkPrfHacO3GS99fv/x+f1P3394/+c//vEP/+mPv//zz59etr6hTSsM5eg5j/TlsJrGJG9meythiy7reZxwPlnbpyecRNrMMida2zTvc+7MHUkqmqlJp3Uu9TB1E8y1tNnWvbSDmhkftnHcOo+cvV77eu3n67XP0QFbFiM9EjPh5MgOy9Qcozu8mZEU3c2QYgrJnAKssZ3KubXC+7i+fJh9e2xO6oicZo1EZo9pZjQDYGasBcQrEcQXKWWGUjFrKaYs1T197tsxB8mE0pyEmfkXAO73u89pOebsra7mlmRt7sX6GJQqYcQMxYwirl7XE4+xH9sOej2vbTlHIm63j9fnpbb2cE7zl5eXPnsa/bQo5tPLc8Lb8riel32POZJupS6ZOROFNmaksrVW2hLZAYgEUkJmZMarYpDTJVoJUZEJhbJCKua1aIyRUTOLu4NdEYEwSgIThPAqgeU25p/fH3/6ftz/9eXhkthvfR7WDKyg02kQSRiSApKUO1/pM0rsfRoCZMpSDriXZu6hOQbniDFGRJAspXixV2Pf4SYZ8VckirsA8zR3moB8hYgZMXNGcE72nmNPTcJlGTNAs+o+vSBx3PdhVgvvfYu+z4hUgCnEnMeYCqnH3Pb9Zbtv+74uSygTsmIwDmHKBl0xb+O4zgCapP0Ymeij3Mft4LK+Kb5TmFKJVPldVx3xcc7H+609f8RXvx09MUczZ2p7vj9/vB3bOC/nt5c3edwn17UsNcXZuW/Pbx6ZbUTUoLdAS15qKevD7VzqupeSZdbFTsQl+pt+uCKPeRxPY2x5XqbhQF5De1v2YtMQSHEGYmQcM1A5mDfMPcMk0oaV3ay1M4G1rks71bKUUrxwqXWOwxxJTc2U+KpUj6CmpSFj9mNuLU+lsRSrMY7b9en28QP61Zfl2LP3PoVGBPQqJWbCaARJWLIAAaSgzyJiRiizmgMotMTo0cU0f0UpRgymIkZmpSNiuFlCcCu1kowIRWLM2YcinRQYOeYcQrSljNzHq5SsGkwlzRe0C3Mv67p4m4lxfb72fQilVdpeT0hp5H0E5B6p6303a3U5labldL5tex9BL83s2DsAKUgXQhK+cAfMzUJmJs5EQBKmMiUBCVCfQSIgIF5ZkJSUmQBSCVCon56Pf/zu9t2P/e1lgZ9i7IQjCZAwkiABCDFGjxykCzFHSiJc0tRMwuj0ZmWle0B9HlKJiP4FydPpJGbmHCNchQApEkQylRlk4LME9Bf5KiCErJkVpWlCoeKiFQQiYvR8VUrJzOM4iHocR/Y+BuK/MmdKmnP23ueckgDwi1q9FCotUiHLzD1yCLWevCJhIaT5EGRcHtflBSMDnITKr77/uW7zfO1v//hPcT49P99qrXMcut2XP//p/Mfff/3zx3a9f7ssvz5fnm68yiawHLdlfynbp2t+rd6Pruj9b7T/6uXpYX06x/Z2FLCy1lx6aXHq98uOr7bbrzXgurx8sE8/y9/223h+GU/X+OHn509P1+M+LcDcW7+X7cr7c1u/rmaPrdhSjcppx8JSlSJgTnOlK6vl6qVVpiimGdwdE0mUUjxq4VG9NpNpzrGxnVypOZ4//Pz++z98+uFPeb+O0SNKzlASpJeSUr6CDJSUGXCCtM+ESKaYglSNUMQcJmRmKL1V+wxMjTk1Y9u2NK5fvT2dTjZTUrNsSxljzHEc99swmzlGdCIjY845xgjIzfroVsu5tH3my3bniMd3v7i8fdQ6Y86t92HytZWxZMpbLTG++ert3vPHH5/3EY9vvilhz/fttu21Vq+NXnhMKccYxpI5ASSMFECazOBuc6QApqYiwVAOAURXlJxTyS8yMyIyE0ACqUlQSgCSADkT8jv4n797/n//40+//Prd8tCSBpUAZiIzBQMQCBe3/TbGIa2SxhhAqbVZZXcBSBHmtAqjiEC6OzkzU5KZlVJmjjlm9erO8kXzYhZCaAZLghAcXxBu5u4ckWZGOFVId7qbk1xqe7rebtcbSj2fz0ttUs4+MgSYsRndWIyFLEQijxwzI5r5uizNi4EEK40SQjEyAw5zZzs1IfGZATW5bn1c9+iJ82XZ+rGubSrLu3//+9pz3fbzbWw//Pjwr/+ptqX0adse7z/Y+w+/3va+7Z/0SVuM6D0878/+43fnh9Myr/d5k11G1LHvD/j0u/MPD/W7Ft/Hz5PPR0lYy1JjGcfXyq6DiwX1u/1e//zn43Y9nq7P3326/nBc39/iqa+BXwCFvKR+NePbMW1kKeWynO5nhPOIzVo8leP9HIzU6H1T35fsB+LgqMIcoyfCCmefr9JaRCzVTic/rV5dyAFV5Rh9vz/tP3333dP77xddDy+uUwGZRATMSilzThHuzuIkk0kTTEBKQcgMjWa0nDHnXIrTUYqZlT722cOAiKmI2+3aNb/Kb8+X03HdlGlfZOYYY45hZhM65ogYOftUsNJRvHCRs1SUetyPMfdQnjTZgPTb7Tq3cVkvv/ztb96NOCSr5fn7p+fr/X6/zTCi7ocJbWnvfvjpD6UUSf04IgJGJacl/oIJOJD4qySZUiaSGcKrBCT0mD7HiAkjwcyccyLSDZmQRBKAhL8QOnxR2NM1v/v+6edPp1+di7HBXIMRmilSJAGk5hiHBDOTNOc0M/daW5t1JNRnjJ59ZqSTqs1f5RdmVkqRBMBfyV8ZVGjmIEFBjFLhTnfSBPG/yMw5Z++YI5ilWiGROa2uMed+zAW2lKW1yhikJHei1tbaudZTKUvxVkoW9egjj0GhwlwooFlRTkz0jL7n7MkKd14up8QWMETOQA97vs1PL3nbz3B4tXZaPKK0P3zvgvdoe4z3P/3wx3/75vJgE7EdcdsetlnFcfRaXi5ayzB1G/1TSAvG8vz++U//wco78U1kKXh5LD8s/nvH+w9byTHnsQNZq85NXy/uD8svz/WQfjunv/+wfbrfPl2ffvy4/7Q/cP2qnmebUay6r7X92suvaKPnYn6pbT9lx7wdmB6PHvHu3RzbuVmrthRfitXC6pz77H2PCEkxc7wqNka0xU5rWddWihkVyMw5j312vz0/b9drbT3HNKvFnEDOae40oxskq4WlABA6JOivKJBGJ1KK0AwszR11VjDHfez3+1IrUpSO4xjInNPWNufMLyRlpiQzc3cYx5x9HMhwt+Jeir2S2Gceez+OY+QwX/rcbruTHK/meKzl4c1jn1nGDMNvf/MPf/w//s0f//B+Wd6K6w9/fp7hp/MlIuqyZmbvXVJrjV5Jxr7rFQRBUv4VCg0gAEkAQZCAIzPnK6XRjDZnIjKV5pSE/xaBIRROR02btz32bUgO8ZXEzJQESJb6DEC6s1QjGZGQnG7m7hGIMcYx+pwZARhLrQAiQlIpJUZmTkGttTkSmXqFBGDgXyzL0pq508wiQl9kqkffj7Ids/eZaQZmRGiGhSQA/AKAmbXq2HcSbkstS/FqLGQ1ykDNGL1nHzmZAoVaCucMIGYc2xxjUGHw5qVUlFKUiOAcOjqOQzNsZs8ML5Ss/OPPt2IOJm4/RMTxtlxQ6p6lR4UlFKXUy+kU72YmnHkasX/y7dPypx/L9+5fs0QteU42NYsaslFyQscKzjFi9mqsGb+AfrfW7VTfrOv49//n5cd/tyzL/eendeLt9fY/Zv6LczwpN8W0OJ3O//Ljd2//4x0PvxxK1jKp7fpy/fnT2/cffnNYz6tMDALFr9u7nz7+YlmWMb++v6wfX9an+VGn+9rufdy350fYN8o3tOT4BPTQKewd7XTbv9fPcf2g5+d54c+IX/3q2973U2lZXeSIyWKltXw1Rz2tPhYwZX0YjAqFh8x8Gg4gCOtHW1td19vTx7FtXric65xz3/dZopAZh00850cGVluhmb1v9xdwnC7rEr5a64rl4au21n5c+35T9h8/jLIu68NleLnv97FftTkY57e/8Np++umnl5enh09fl+VSlsfL26+++qr8D//zP3Tu3//wEXatD30ed54f/ubv3z19uo3hy7LENubIypkkUcGwnFMDkjsNnnOke8+YjoTwKj2HGZTQsQfpEoYSQBLmJcppxqEYK1SLxcwIgq2i22R1Wx8ejmX5NO3vhL95aD9cbmNYRrIXM6t5AnBE1vsYZrasg+Nhfcw74rCe3nwp9aRq95gvEZ0e4nh1L7frfLreXsZdOTFDkSVbUaHSEG4dQM8O9rXK05q3tpZDgLutJaZBTH5zvfftPjMTigDZFtAjc0bAOY13xeXhbavc7reXXBe/H36L2lE9uYoWec9+zuOR422h1XIn7jkRsdhpDdqkogyN25Lxy9L/5eX41bvacqY85LmtcT0dt5eIpzwec2ZcNyLL5X/9X5AZo88xNOfpvt0/Pr98/yHmvbKKSC+Fy6WuMbuD9CXYK+25lMzsz89LLA2Uz37AeDxlv2AeH+el1uqleq3Odth4mTHzzXy/bO7bsx0ntna6312lHDP9TVf8anmw0xJQuH376dN5jvjzP/YMFaOj78cvtu14uW3Xlw+tKmCsAjL0Zs/H51mOXXn9NsKW9hv3kbjux+3oEfrbEb8Z9pv7fCe1avWUHNtxf7rdnsfLUVQLLSDI7vuh41A9SzAWdycdAElM0Qyp1GdTWUgrBmNpC5jjSCMQMfvW+5GZ66nVWs2s9z6/OI6jtFa9KScUzJCCJIAMbGNOo8oSVsMWVOZEDD+9ebONvqOc3z7+cjndrlcHg+X0+Oadctu2H7//4eWH72u7+Om+vrwc35T6eP7X/9O/unz1ftsG6E9PT+/f/3A+/yIfy+027nuYGciIGBEgSJqZ4zMCpYS7j4jIQAIEIHyWgAF6RRL/P25gSCEQr4RIZS2cM2fsH57y+x+uP37I++8e355Wm8XTKTPBKSILlNHpLMW8sBAOJYJWSJg/khcklMO1Otfil8KzJAD2RZLCZ5JI8TPhv5Kf6VVmMkELwF4BLLmUAiIj9j5jFlYW+IzhZWlnK0n23u/3HWvJkFNOlC/MjGRmjowZY8YuhbkXVgSAEoFSCkDLaU4Waw2tWDWakUykzRH3fVzvsR3H0c3MS4G7Syj/3f/+vykzR59zZsTp59uf/un37//Nv/3Dv/vHl+fn0SMS7vpdsRE00M3AaiBHjjHe8ViFk1dW2yNybksej2bb4e98vXiV+9357GOUWWhvsPsMWtlj1Inp9Yi0y8ltEdOZl0sLxTH22H464nkt99EPIUCWGBZaMdfWH60ordAyOCLbbW98ht+TP/F+f8ywUlI8EpssIn5Xy5n8ahsrh5srt5f9qT/5+58/vfx49cWZjZaJersfx5hVnpmlFHpBCgKBOVR8CnJ3VheqKwEiBc3MBGAGIOMLIMc4gLW10loheRzHvu+XhweGYsQxhwsxO5DGQjpOpcBwP66Ttgnwkesx+eabby61dMzr/Tb98uabN+PoHz9+3L/705vL+dvf/HpZ1207QmUful6vPz6//+W3v231ks5t78uylFLGiG0bRMkcxzHI2mqJHCLnnHoFUZIRAPGZjAZzZgICKBFGCV/oM/wXkvq+V8JBg4qz0PvUUE4pIUNJ5P3Ayy2vB7dRjYtns3AjDCpI1+QYNJnBCVDKmJozRy0LsCrbmJFRiaX4afFzrafMJOnuZiYSJEgA7m4WfGUwgxmAlASAX4BBigYYGMrdlCYxM2npLvgRmHNWM7RWOih8ZmbuXotVt/X/Iwu+emVL08Mwv+ELa61aVTucfbp7emZ6OBTDkJIJGxBkOgC+p/6rb2xAsG4MCAIkQ7JE0XKAZjjDjtMn7FBVK3zhDd7dNgEDfp4cYiBmIgb7kUIVreKCiOAEzgiJIJlZd+1dVSUxTgOPA6dICOKGql52O7/sl7PvxUWJcwwhMEU1C5/+8Z/jKzdXNbN2WS839+1l/c3vvv7142MpjfMQYr6z92YWiAOBmaEDoYvIQ5DR10NuaZx6QPM+g98G1Cm9yXGKwRlWgmvEmiE6jjaj45AiAAQMzr5LG+M4qu8gBL4rgoM71tKp9vl0KJ3cnREQMTHDoIotNyPiiNEIajfsC27SzDLuLDKrMzsDmrkxAQfMjNqqVxd0oVbdXtBlOT95Xdp0n0SCBK8dz9d12bb7E6IhIgOwSUdADNx7NzRXQ1d3VzNCQAQztdZbq6Y9EqO7SG+9lLLJuqfANzc30zBMQ9LWrRs4BefWpO+711pal9olC2sK8zCPc7wJ1cmRzXFdlnZ+3oFvjrcO1krTwNP9HakLBGnXZsiOIaScyTFMh2TE7xbcKnx8unx4v3z/+ydpkkOOfLNvbZpmcK6lI3sEEO3qPwAEdABEAgSmEEKOSdzI0Y1ITQHdEJDcHcwBwN0BEP4/CJSJo2MkGFNkjlsTqrKaEkEMY0YF7KXTVnCrzBhYozsgIjEASgAGkW4d0AgMVEx7FyniSgm1obTeVbUiaiRgVoKmyqYAQAiMyIjgZIjMxIExhEA/YmYCAlAifhVCQDYkREI3MFNp3qv1rgAUE8OYevS6b2KTAzoCYUgp5WFMQxaiMfYUeMwpRv5/OIIDEJlBd1Azb01czceQ8kH8LCJ7q71rImcyQiTvqmoK0r3sej73y+Ktk2IKHjgAIrpauB9PBGgmrqaqH0/Ib+7t9viR8atS1QFrs9LOoAAQCQGgmTNAQHj1nigqRCleWwUTbZPBDPhZHt4M+TYOELFGfGltXXdSZpsAYBiDmRE5Ipa9Hg7hjaEJxhBS9QCYeUQwk4ZPIs1j4DHlGGiIiRh671u/xBDGGCiYQEOuQF2g3+EcmJ2cEIMzBidEInoKqg1ZicW9eIcu/SyXTeCohuLBFcV9LcXxuq9XAAMwcAMT045MBMjoBN5NwEykugpyiETdxVV6r9Krdwzk+77u+7rvS23LMKZxzMxxGIayNzMDoEypGNZ9r6al1e5IaRQIUp+Bs4ZsYUpjTilDCBTDx5fn90/PRsB5IPfz+Urq43AIh7RvS9m6K0jr23ZVQ+RcO0oXt3x7/Hnfj7/+9e8uL4+HwyHnkCIgRgByg97FXDFgREYkcXAwB2DAEEJKfimbuwdHREI3QzBwIAADd0dEd8cfAYC7J+YxBlQPoDmlEAJR6NGsXZuAdWmgK/WtSBdQI+5AFIjI2Y0cABADCqpbwICIDOjAolJVVDV4AWNxddyBCgCqnqUR+I2Z6Y/cnYkAkZAQIEQKkZiRCPkVIioCAP4IANwVwNWki7AfRLSWbgYYAsTk0KoCkr9CYGQCAHc3AwDKCQemaQiBkdGZGX/A7qjqDgCETdR7d8MQIpAbmWo3EY8UyAOIW1UxDezOorjtsKy+F2qMEYQoSRPtPZwvhcBczU3M7FL2ZW3dYpxubz75GVEMFLe1kOxmJui997Vd4ZUjgu89BjEC0yaKgESj0ej4lexvZL8NMebQBn7u9WXrUmFMizmhpS6OiEzuvZ3CdGtHkZ46u3RyO01jZHJFPX8EsymkQ0oxhJACBu69N/XINo+a2c0koLF7s/apTojIyAgIZuAOrmRoQOgcgKMCVOhi2pkbv/AirCo9eUZmAQcU8G7akAm8e3cHQydwIHJAZESKMQa2LkRoIlspUvYuVVqtpuii0kSamfa+b9uyl3UcDimlGKOIuYg3l73uy7X3vbQuGDEcolIep1pLgUajhsQppvkwwt1w/+mb67bWXkKMbnI9X6C2wzRdLhdvkDgep0MfD+/k48cPz8v+pPEkAqqmatvStkW36mkMUKUWccMhHxxBrJsCEUWKAEYGRWp71a3sUvbeUNEBHdwAHRzQGAF/4D8CQPh77h7AwBREiGGKMU+jOXNM+OzLtasgOzBAICAG966anNwZIbozCKBjdEvggSgEygEVmYhaU+9mkwuCGqmjAapbdy2mO9CNu6uqiKAZAyGivwJHJGYmIviBISIRuCEAuKtpd2jooIq99xhv0VDERdE0mIRGYDBgAFIwhFdV9LJubgYACZRQY6BAjujMZABAWJvtVVSRfiToBqreXaT3rtbdPTJOYzwe6Dgm8wIKaFE7lN3XVbdCPRiSq7qIg3n4u28fCZDA8JXDu6fLh8cdfP7FL//i/s0fnw43OR32tRBL711dW2vLvqgqEanLuSuJ6r5vWjxyftWdV/ly+9tzlWXdZC/F9OpWHIAhggmai4IBEIEakp98/51blZpDFOkgOmGNxIFZeSf0CSRpwe7YCZi66VhDZjq2nFBdGwenCKL9Xs/0IwBzd3NxdwC45xiYBwoRglhXsnjAgfJiCwVC60BpyAkIAiJa7bJnzg6mpoSv2M2QGdRUOzojopMDYpV63i71fE4pEHrrVepm2kWaman0bb3u63HM05iHPTUTrXvtVVrpZd22/eW6F/HYNHAqEWmtTTiMd3e1beczIxoHfPPwxWlKTXxvlcjeHEfIEcHC8TY66n4lgwj09uYuQ3o+X7798Ps5HWIAACAASURBVJEhpXhabN/XF/OCbEu53E/H1gQwjOPoCOuuvfQqdR5nZiSigNQATFR+oJ4BHdCQAcwdwFXFnRgIABzcARAQ/p6ZujoBjDnOhynlQRxSHj+lT0gupUgwmAYdBx4iMku3xsk8mCdUQAUGGMyrGroTODNGRDSPTZqT1kacgwkhJEJLPKV4SHFiiIhsCr0rmQdmNwcA8eaeEeGVuZiZowMAMxMRgJurgzASERKD7vIKnAjJPfdGPSTiI2Hde+nqGAMhunsXQ7BoHdgC4SsAQERTtVcaa/Gyd4WBY0AgZFErCiL6yh2ACFOkIfOQQwvk7rX2dfHzWdaNzTOFMcUhMBMZUwz/+l/9b4RAgJHx1XWvzy+Xx+cNYJ6ON4fD/WGcjweFkVtr6uau3RTImVlEumno2rZ166sPcRzH3MDO5fjxJB+en85fPu1NNnUIBEwYRtkcYgUyiIwMXhPoaOEMKyg4U4yxG+5FrlYipkKA6gNIBDQwqICMHXzSmjpNvbOpemcABBTwW1gQEchfKZgBIIIB3CoMDFMciEKTauwTzHOiT2+Ax6jsFhkCq6po2ddFpOUcwdxdmYOjmTsjgmspRVoXETUZhsGkt9a2bYnxJg+5ihSRVktvtZe91h0Re++IOAxDzrV3LaUEJAYUkX3fz+eXreJlN+BD7PJ0XXaw6f5mvJmNldhS5j/+E7y9v+PE7IJu6G7StLdh+iTMLkxtWwyEYtpxLevSl49ImY+MRqW8GO/TKXa3bSu1akzjeDiGFLu2Utndy7bnMaUUcs5OGDjHZOOgVVZyYEF1UxMHcAdwAyD4/3F3AgjEKdI0TeM4AkDdW3W8P95tL61vC5ihaSAIEQJ7NwUCCOAK7qiIgAEhSwcjcnEPBMCq3jooWG/BajBBMAgQKMxTvpvH29YYEc1MVcHBycFdzcDNXf3/Bf4DBYAYYwiBSBEQAIkIid3xw7b03hExxYlq7EJOxDhh6L23vUGmPExpyFOKrF1UulMHMABDREcws26KEHqzUppwRIQQiBkBJXAIbkQgDm5i3aWrNAxD6L3vW7tc9HKB1iCkFA8343BIEYkag4QvPzyA2b7vrVVCgzTWjrsf4IiA/FHDU0kJo27UpDuAg2qXRBiIrfVyfb6/uZ1njvuOroNE977icoP4nL6/zosOcLl8D9QN3LStHmNKhDgMUaCV1iTwtezA4+d//Mtf/fk/+sUvv/j2my+//vLXTx++uzw/nnQIIXBMH95/BARIkYisNAtDaw20IVFMo7uLiJsRBnhlDoSGBu5ACIgjNlOMnrwjauS+HZ5ffnlkGD+/Hdnb74/l/PPPPn9+fHlc9vdP9SdroXEytBBRpNbLOsfsoq3D5eV5l8opzjezent+eYoJ+e4BcyL2QGLtup2fXTWEELeotS/DpZ7WfDod3pwUQ5yOuO8z3H8qmxbZzHqTp+/W6/ZCJxqn03rZvv39l7e3x7efn95+dvzs4f7tUFivdUmIQ+3atmuiilrtKSA7JUYetVJofnO8/cUDwP6izl9+93e/+f2HRvPdpw+7cV3L1ndmDWjrth5sNjRHnIYTJnD30s3MEYecEKG5lnFTUe8OAtgZugIAAbFLRHAGg1f+ygA9IEaMQ8yMkkLKIa7r9vL0nPLhLs238+H906NRf1J4LlrbRHCTp8ks6baMnoc0ZqhdvhH6GPoeh50DcfD1KlbdG0xDBRop3/atLnIptBjjRdpUE8JWoRaonS3ERMMorZd1SwPUiJVxBy9iSUrASkENbsE5ODEGCs6Jm2ntHczd1ck2fa+RMqW6oUi4NvEWMvLB8+gZK+xVHRjwruqKPuVwAGPr5DQ6ktGVUgjjVASqaYhU2ICh7JdlU/AUkolLGHU+ztL9xq/oc++Hq2hL3cbW/YVVab5tafewUy3h7vZzBC7btu+rqu7VE0rIEHICjK1IW6R3iFywuZshIQgIgKGoGqXczGup27a6ypAiAjRT4BSG4Xi6TaJLed72BRDAwQFUVawrNCByBXcBgz/5oz/+p3/1T//xP/kvP/vsk+++/er/+A//9t//23/1Lgx67gaOgXk8DOM4HGck2mrRiq01VaUfqaqIuLupIiKAqZs7GZq7AzgBmLv0YoYAGgC2Ai/Pi93tcRpTiHPADBZV96VeP3zoKkBE6K23UkorhbpK77tAR+dxCDE6x9rq1tS63N+/9VpeXh63p8f15dq26o6d3MwDRwAypBgzhWCUQppUJaU0zvPd3V3Z+6W8iFQDH/KBKeWMORkAH6bTz37yi09/crsv2/a4rw0ozpxiREh54hCYuoB0lX0rZdujhQAwjvnnv/xH7x6f+GU/TEdwXq7LeZPS7Wa46b3HlJhjKU3V3KnWBvYDF3/FHBlJVc2UXoGygQGRAxkoIAA4GCCag4MRGAAgOIBhyJziECMxL/t2vl6u64KlH0KwmGKMW2/bCpeXen6uL8Hj7dGRkTLA4JwdwIzcR0YkADA3R0fCmIZRxvkwjokjEXawalqAIkNN3MBicGYjFDA3Q0H1QAG6gjFBjDhEBAaKGBjEScW5myG4omtH8SCWOA6E1vpeqjdwZy7gW9N1r8iUcsaYlEBMu7q6IVqKzJwyH3IYCbM2rcWsNGwaDEI3UQgI3N2r1Ibb7iHAEBAIYqY0RGBpFapoaVabdBV3fEVEjGAAIkK9h7v7OVKsNZdt7L27C5BTZspRFF8eLx/LerkuVsK2rmLKTAYuLgBg4PGgZhITUz6iuzOri3hIGaLX0+2DKpTyFEluj8e7u7uO47Yt7z9+2PcVyADBFcDhLk9/+Rf/xT/+h/95ILhR8N9//zTenU715hQdAWN8d3qkYeBpAKYqWquLiKoiIgCIiJkBwF7WGKO7tdZUOyK6e7euvrUG5lGFtItLSdiBclnOfoI0WABGlYweXLaXp9IqAIjIslxLKdobJuulrkTDYcrzVESvpffaKc7TlFBhXbbLh6f16UnKDuYIaOghDiEH5KSGDhyHA0BQJ3cwcEQMOXGKZlZbk07nc0UUcCbMOU3H8T7S+Py4Pb77vlRXHj/57HA/3czHcci4rZelfXhZ1vcvL+8/PF9f1gz5GCZWT/MnAvPDJ39wePjJ48v2my9/L8uKxofbw7lechhyzs/1ioDjMLh7sYv9QNyQiAAJEZk5cnB3RSdwBEQyBHAAQHQAQHAHBQcwAiJCiiGOwzTFQFikF+mCLr1e18vx/u0wjXVpXXVZ/Xyma4jJjANJSUSDaRTyWr2ugS2Sx965AO5CzckCQDigI4ixQwKIoIg6kozQU7pbMGXjqAhdeq9u5u4UY/I84JhxDKgRMRLHoMQdCRzNXMHA1c2DGjPO5iraxUMnFqRrq09rRcQxjiFPkJIAAqMCqAKoUSZGSikNw5RC7B4Sd+8SACMSuqIaIsjea6mSD71fgZOzQ+gcA4fQpYROpeN169e9N4OQ4pzn4+l4PAy7S92sbzXU8qXFCI4hGhEEiBCQBwgZRcF2WFPfaH956suy9N5CCMDQXQUUA6cSpgmON6dxPHAM7t5aFYiE1w6GTIx0nMab6e1f/Pmfvdri/M03X/31X//1b3/721IKMwOCeI85vXn7MM/z5ekRRG+Gwx989vkv3rz5aRopxzhOf/fuu6ftutQmAZ2QNKsqACAiAKgqIhLRup1TSgC277toj8TuLtIK1dq0CYqwiXnv5H1IkdLZIgp787rLrsE90rVtay0mfdu3y8sZAJjRwAWdhhymwWPsXdfWrGnAYBC/++o3y9Pj5eO7cn0GqSnEaZryOMWcQ84QYhMTdQ4RPHk3YqaQHMEcOKSUR06Cpk/nzY3JecjT8PaWaXz//fnp6Tut5e2nn/+DX/zyJz/9woHOy/n97x+//fbL337/4bt3H776/uP53ND57fHhzeEmOq7bh3FKb96e7t98Nh2qCkXIZTd0lNrKtjMGAgCOOWdEJGivpKKZEREzEiUi2qWpG5iYGTqQgwEgmgMgOQCCggMgAJIDsxMaODIBgppxDHkYtAiAKaq7IjIA1D1cnuEZIT+vHK10Z7LGkdwiQN2rbhnFXs4pBV43uxYolixOBEbVdIsZppkEYRiFuVhOHpvF5kkBndlNRMAwQGBBUiRV0Ia2IfZITkGQFcjRxV1VsYn1psvFl4vWFigcAnExr6qKdBhGStkDddNEIQ4pczCzYfswTk5UADaEBM6MyNw3aQ3dCBWpIxFiNdxLC/HUZEMFBwIACoFiMgfAQ9ewtr5UEYiHeZ5v39zcvRnm47n4sj712sOXv/1fU0qREnhyo1P6uZJBZAjsjsvLvp/3ct6X/lj71lsDJQ6hm3QXTCH2m662ivRh4BiMqKu80nbZy3kvZ60vbu3N3ek/+7Nf/eU/+ct1Ovzt335yuVy+++67bdsikpmRM+YIKeCYcMo0pHic7n7y6cD4y9Mpj0OcDnx/iO/f6eOHXTsQjjqYGQAgIgC4OyKGENLgQ0wA1sas1iMxOnSpPWHrVkTF0BRAlB1c5XTKfGSn3lK5eq8gK0jdrluvVXopRVsfhoECGYCAc0hbbW3ZuykDEtK2XN89ff3421+jdtIyBBZj7VJKQ4xxnnhImIK4ddOMCCGya2uETOa4t6rgHIMD7K22zoS4l17LOk3ncQjIZV2eP324eXt7fzfO5w8fv/z6q3ePH5v367LA/MXHdf1PX7UPH66Jp8dTuc2EvUt9P8/D0+X27vl4c3P8/JNP7+b788vyu++f2bWsF5WKHNBl22uIcTyNiAhqIgBorxAxBBpiEhFsBgqO8CMHYEJHQAB3dHMLCJFDCMTMqlprNQQVISJmNmvI1Fq7bmsXQ4C96Lt3V1zaG0SOuxghxUCRAROh1n6+YBpiNwqBS4377h143EmPwFdbG9o65CZgmdcg3Df80B6fYSujY46JmStUEQsGLOa1SikWmsYNvTMDQSbwAABIBtbFe1Up/fHD+vJU+o4Rx04ArQ4hx5sMAIjgrWHGQMM8xJCimA3QpsmZV4ezGdXem5L0cpW6Wd/AK7qESNHRQ0WG5mLCDW1AIhhSymlMMrqn3mGrvShDHMbpeDqdbo6H4Tgo9+F5EOLw9W/+Y4yZaQBNbvzw8F5BBFQJEGItsjzv62VRrcwtBh0wZOYBZdcGzrNXqhE9aIsWA8aEBGjucgG9uqxlP6P3aRoeHh7evH1ApvuHu/v7W2YGd3IyMwQ0wq3V5oo59oAb6grSHfyQWwgekaacT3NuW9uLuiE6qLk7ILq7uRGSgofEzgCGnIgtRUJwR0qvYvDYuwcyMzCPSGXb4wEoSshTHJOyN2ud0AkdwMBfBeacUrPepAOhNaitbWUNIaTACJa9Xcrlzc0hkmU8kfe6rNu2O/IwZgwYBopTwkTqYtqIAyA4AgUGJkAGYgXca7suW+d5nsfAuC3b+/cfRbY3b8ab4/HT+wcp5W/+3b/57rvvXpY138yf/Pynt2++CHd/9v33F/Kv1s0WWKC6Dgtr/9lnaZrGUurvfnsex+EP/uCLh4eH+ThsIgHbum/dBSMY4F52hTj4nbsDgLuaobkyRWaOkbkxIiABOSI6OrgpeyQEAAQkc4qIOXDOeRoPAQFMHZyJwAAB0J05OoCZEFNwcMfrdQulee+ArIRAFCkyhuiM5k+lhiTX2mNM3lJvhE59ESiicXvuuu2tLRpSb8/rtneH3i/nJH0mHCIxh6jSTPNAU8QEht28uTe0xhoIttE9mQGjgHUTsGZSqW2mzUmYxLlr6no0TON0bZuZqntMPJFnMgJBE2ZNEQNbCj4kjgENiNgQ0d3NzN1N3YjUURXYJYAzCrkHBAIEcRMoQssu12K7GISUxiHnGAhThIQcKY4hhe+/+5uAASxaTyr05ddXRzNCTCGnkWmQ3fa11KsemA/Gx5DnOAhawSoO5I9AURtIQ0iJcSQOYGqtoV5Ar61ehgGGaciHCRBFZBjS8XhMIRIAM7uCgs4hZ2Q2iMwxRkPYWq2g719eunoa8uP5pTUhpwhMgBbdyFUVEQHA3Q3UGRxid3dQJA4MjugqSISeEpoHxwQACACJ2LRQRwXPOR1TDFZRaA6H0/yWciRm+JGZtdYg0DAfoCa1HgQjWgBj6zGZHOh483a7nJeXx329lHURsTzOALbrPuJIASB401ralhzBw3A4QoxlPs3zpTVDOhNRnkbx+GqcDimk7fKiXW7m409/8ra35f3L87fffNNFPv/Z529++tPDmztI6de/+Xf7429nuPziFnJMb2+Gh2MeeRpvD4HH5dL/7uPl44eXGNN8HI634y9+fjfPtO7bWktVaybOaNBFxN2IKMaoqq6A5CESKzNjIBJwQDIDVXN3dmdDInAAQIyBp5CGmBgpIrArOwTmDk7qiQICxzSklKo2JwiBYs45hnPZxHdHMCBEYiPoSOYSiKDuZimMJAqFI5ns2lttBOdmi1nvHRrvCSoAmKn7SE6BIgMTQEAyPA6Q2EBFNloa6pra2XOieeJxgHEAJjf0JrY1K83r3tg4QQhdg+kJKCGzOMVQezeAzDSSct2gA7oR5kSBLKJltAwSySKZhfqR9k5b48bRIDsEANPE3geCSMbuEYENdFczXNWWRV6u9borTJjH6XA4zNPkbmDizbxLOD//X2bmLUiP2sPzUiCAM1EM43hIfJAGbW8HW+J0OMVpitNNmAFx19LNNyraoEpbqliKqc0hD+KmZZS+1Xop5RzjFBOHFBXQCYZhmI9TygGBU8jBRdWwdKpiWzVraG5dlmVB6x+cm+gwDJfrtZvp1lA9ETeW7mbghD9wB0Q0QiPUru4QEJxYTd3BAbkzEAACAxoakgdmJOXqAWDwMAJra1h0jIc3h1uOkYhAzboItVZLPh7mmxMtB219Vw8RBkZ07b3Idv79Ul4+fnj5+L6ul95aF0POMeeHX30RB56OAyuLhd5rCIkJISRQesUxmHvvXd2HYdgrbfseIAGAmTHjPM/TYfjqP/2tSnOtP/3s01/9wz893D/sCNXtls+/+nz89PQnHOcYwgA9QSPd3pW87dB6LVtf13ZdttLKAePtzeTQDqd42dJlX6uQs9TWzBwRYwwAqKomzsw551YlIDFzREAiVUNTNyAAAkR3BgSkiBQ5RA77tgOTQkemiNFFXS0gNbVERIytdFJAsukwnMbBb1LrXUHFVNWhgxYTcfPdsRUD6Wvsij2gG2BbS6vEi1oLUVwZQ93ce29Vx3EMCE7AYMww5ZgDARQV6ZqvhuxwdQ9oRHo8yJhpzBa4Koq4FbHa/aJeK4MFVh+ReEhjN1HEnAOCgSWmYAq9AnkgTGlmIpWwb7BcOwfuZstZ7LLJywLXPfhAhFMIhzDKoI/9HbkDAAKkABGJnSKE3mArsqy67jCMFlOa5/k0H9ZaVLXW2koN9+GntfZuVDdfl0JIpEFNFbSvtaP03s2gxYtRDdzZGpUyE4dWoXVAUivuDX3vTZ2OynMzdx3F5MP7r4no9vbN7cNbnlKLMsjBk4YERqrg45RvDwP68rPPb8aBOVGTDMPBpuMWuPUdocYxMmpLZII+z/26uOMY37gWsRY5hsjyI3DI3VIaVbU1cQM1MDcKVMSZsyt6M+uFEcPEMx3coFzWOlCfuFfHkIfjTZgP4zhVdZpnAjajU74bhsmf8TI4nabJltH7/WGqq/7u6fzxw8vlca8bJPxDRctTvlwu18vFUPx/R3iS2Gv+5e3h7nYYZoaRPGvVtrVuqqDiEvIwjKf1ZQ82xYApubQXTuvheFNK+frrD9+ev/2Dn37xD371R4c0UcP+tEZmUP3FJ3/48zs5pgFVn5+ft7YV15flwutTu65S9/v7dP9mup2H+nx5XC87IyI3sVoqdg7OB6MI+lz0eDyOKZZS1mURFXIX1WVbm0oIAQnQTKwHBiSAVlPCyKHt3RwOzDOjlt3rSnmIMSKRIYacJhHXdQDxfT3lvC0LItA8++2dHA9Dd/OuYDHClBhNbS+6V45x8IhCW5UXLbu1aJ4B2l72Vt0opAxFFvGy53UVrNOoI0be9xXA55EDUFlbjT1HjtZ66ehhGCcKh+b65qPFyDERh4mDAnbRUmu5tJGIwDyYB3PSHt2tlwx6AyCK3iXZnIa59L6ua7gBtmHV/i2+148t5+xIz+frN1/1/eyD+UxBJOrFlaq7ZLeZeSCewd5A5JrPZ98Q35WHbdnyaqeXBfcr0teYLA8PnYdx/3B3+Yb6EqZRERRUepAY+pvTraqWVs2AI4uIWVMwVGh7u+gSsobRewi9Fant0tRQOGH+AcU4MmVBOJfWS5FNOEIkPrw6Ho83p7IFxzCmeBjymOLtPH76cBjS6e3bt/NxCoHJhJlTSsMwpET3D5/FGHOItXZ0IMe6FyIax4P/SKQty3K9XswsvWIfhsHdy95ERNXNjJkdg7vXfbFWm1SxHhSbypSiewgxAlHtrZR2mNVdRUS1AwAiqhsjpBRSGqT089Pl/nBzHKK1si2X79+tX3/z8tV3DTy8fZNCiAOndIw/vXsYc6j24uRmRkSICAAcAqRRl7OZuTv9iP8eGcUYDodpSL4NxIyIfnNz88Uf/XfHYb6djwTs4nmcQsrrtkHftTbkyCFQSnVfrmXfWr9eX/ZSU45fPHx6d/9wOk5oZVvOXappl9K3y3ZZ9t4dMDDF+XBs+7a81N47I8UYmRkAHk63tbcivZlv0ropuagCM7i7qhJBYpqmaRiGWuvMI71CADdyZ2aNAdyq9JnGnEKMaOJARDHEYey2A0RmMwIBZyROI8ckAXvn4IGPOPjMpMEsqB0Ax1JKU4fQt4KGIY415++/+ihPWwdxNHDll0cGQIAGMOI+hJSQc2RzI1RDf+QlxZBiDBFixJgiYkAfDtWZGQDkVe+qal2s95GzOVbX1lX2yh7JIULAUjuW66bft1LePzOzGF2u2zePtbV2c5zH8b5Vb605oRknmgEgBx4jBoDlqu9sgX59Jl6uvazNGiD2/bqfP74wwsaH5bKqagopgC0uRZr0ZgYAQq213nv+QWhovTUwy0zadZNtoJCzVAAhWFGX5RrIb3G8nadhyIETWjTAnMJL7SMAMx8P8+3t7TRNFEMiJ+tgnUDYhdAOOZ6OiQhEpNaqBvgDTjGHmB4++UlKKcehtYZOiChVUkrDmOIPuJTy/fff8cdMRPPxkBEPhwMA7Ft9JaKIOAxDPpxE2no9r5eX8/OHbb2gq6sEjMgDpWDgl6Us58swntbjvl2XCwd0qrW7OACom4EOTj7Mp3EkpvPj+j//y7/+H//ZPw8p/5/fx8fH55vT724Ph5/e33x2HL64vcEcVriQwN1nc0pDSNkcVJV7dXczgx/hj5g5vHIiAmacxkPOTuAOOk3D/ds7KW2rZtJalRlDIr72NuQBkc3AXD2nBrC2JgYPb+9j2p3GN59+9vDmsyFRWS7PWJK6I90exkOM0enlZW/dOOAwJk2sOYtIa62Xpq0T0cxTImBGRjPwFlXBmfXAybqYGBKkFIYh5SECGvZmJgSEgAh4mMYcse5XAE8pGnoKsWgzcCFq6JCjoyl4k9r2ZirBkdALUlAZA1EcK5sGCETaGiKFeUpiqpgPljBwTDUPusjL5XmrPaRwnI4cERzQ7IBTcGSEwESRNQcI6ATwyRTn8TDPww/yMKQYIxHh9hxCQERpvdba9tJa673TJYrYddlezutexbxQSIjMQrLrIptel5eIRMGc96099eqK4zTH4LUVYp+mKeSpNBcRpphjAMB9g6fWvfKTXVpjF0xMzENQbte6wrJiq08L7EJMIXOAPGgtkj2n9FJX6coA00jHY16Lqro7nMIo1AmMc5DMFlkzV1ZbM7iO4/h2vjmNCQDUXQ2k2bq1AJBDON0cb+/u8zgSMlPXXqSu1op01VpaXWuAvay17qodKbm7qrpjjCkNc85jzjkMCkCg1mLPOcdIIYQ8JIxpWK5T68w8HoZENM4zABhvkGJyn6b5eDym6aDa9+328jJzRn3v55ePu8gYyZAESNy2JmspTaT1vpctb+kVMykABsYYzJ0i33/yBmI6v//wL//6P/4P/+J/+fYq/9V/+9+sD8NX//pffLgsn1I9UrwFfXw+f7hc3tfn0/305vNbB0QIiGwGWgsRAYCZqaqI9N5FBADMVLRtO7gBoXXpLy/P83y46/emVHvX1gEg2I9CGOcjurVXtdJhCMdDkkqmt3fz3b1SnMbpqLq/PJ4vz4/X82OaOKfD4XC8mebTdHyfztelitGyXVMajscpcFqW7dlfepMYI7bOqsnRCJWSEXIOYj4Q123v0NCcmZCACENgaYbgIRACIHmKnCIPQwKgmFjMCAwRjLCBLabbcqbAROSEHhJxAGYkMqgirhQF8LzXhjoyR1F2y3k0YnVSNseoztXIQvSQ3e34cPOrP/2jX/78Z0Ogsu+1adnWvu+gFUENOkQPKdzeTafT6fb2fhrnnHNKA3MAgGxbCIGJRKTu5VVrzcymOm7b/u790/63X3/45vu6r8QCgAP1gB1ljQA5QooZeVCNFCQPaRhC6/tenrs5xDrwsGwXU0SUgmkL2HYeg7nQBgrMgHkcMqdMHtqq176hFnta/dIhcRgwMXFFZzSgNCVFqGaWGANbgB7IEeHt6aCqZjbNMwQWAstBgfNxzG7HeXw4Hm5Tcu2vmlmPcWMcAPKQbm5u7u/vD4fDmMaWnP4eIgCYaF/XgughcM5ZMMK2S1cASnFkjiGknEd/Bdh7BwPnEFNS7aIOyGkYp/kIYA5EISIHM1NwBQwxDtN8vLkTIrQwEvbehvnI5+du3lyvvaG1XfGAMaY55JqGMSZ+//07V3t4eDsOQ+0CiMjoRMNhtN5eHt//m//w7//7f/4/fdi2//qv/uoP/+TPzn/z7XQMzvCTnx3+6E8fvjjkYy3to9bn/ZPP337y2afzfELOiMwYpEkIARFVtfdeStn3vdbaE4jaygAAIABJREFUu3XpMSYA6aKE1mvZrhd3TfM0jaOriUjO2ZbFy4IxWNtzzqWXVwCeD+MNnMzs47vvAZmz1Hq+Xq/7dUGR45i3/bmpJOJxzHw6RAiXS+ndv7w+6r5u0ofxEBnHPBA0JBrHpGbkAmru4oQmQPB/MwVnvbol52GY36mq1vR9ezhDd5MtioNEybYsxddGfGHASG5zlR/qBAECREYuAhhGADlWACMxLUumyB7O2Wfvb1prVdU7ZPdhCOh5NCIQMeeciLMkRHT3iDAIFuacwFzNmnZmRqYsCdysNYwYBpmWAw+DJcJ5CgBAxCCIULNrbap1yIDGBlH3/Xy9Xts6p7SkPCQrOSPgvm4vp7V1hOCX88rAJeVpGX/xsz/8Z3/xF7/8xU+nLHW7XaCt18t+O0ffPapBRcFUZKR5WZbD4VjyKDIQMgC5uyQkIgZ096G2sTV3RwBVtfOVE7anD9/9up3WTSRD0IRaJMYMo4ANxNPAaWKSsco4DuM4Nu2Kw2XdbvX0cntWgHAMCDdDj/OQRwFvlUbOGT3EMCB4r7bulYgeQWT10VOJIl88PLTqGBeNaiF9bYXEyYSACcahCIPk9NWyAFBrDUQ260YoSWDzTpohcsKp0JIpOu1uYX0eDyIkDJyES56mqaQhp2QpcyqUE6aMDE4cgFUtwpGCGFzdzCIiSRnH+f5wzDlP02IQahYRGrfQGBrt+67N+BXKkMcIc3ciAiB3Nws3CEJEJpJABwB+lSSPwzCMKaUyDKZrlqLAnIfl7rH36gB7a6ff/DoilmUZpynCDIySkDAkevn4/Jf/5i///X/463dvH/7bf/mvfvrH/+Q//qf//J/+w/9h1/PPv8L/5o/e/5OfPb4VOcKRvnr4WfrT+7fvfvJHPx/G2R0QAASQCIkiwsx677XWfd9ba6ogkpdlenicwHfTjZB3q+t2/c2vf/P+3dshZSJgHjxa0ygF9lv1qFur58slwMK8bjfdWxkmZpYsVTu5ziVNy1KEb3sJQKYCaEyekw8DMPvS0741d/XeAJkBAcBUL9YDQQEtHBFzYqLcTJ4vLwBecl7GSZgZULXVWi/bXkoBSeDuEbfek0ewSEK12upORNMyT8cDL6NnyZIgghwFEJF37X2rLXYSzCyoUtt2ue0v18uNyJdpejekRGpQ2/b09HS5NuGxdnt4eEj58PD24U9++YuffP3V/XEcE6e78TJa3++hV4iOoRot2CixbGPOQ85ZJDMJMwOQmdUIDHgliJwtuzMRM3+/fk8JaFv9OK4JrwAS8Kq6HliW+6VMOE9pWpZAJs58kmkaD8cxFX739ePpev309PL8fPr2U60eZt0DMHjtPWu4GpsNmRCRAgYQZoBAdFjCQFJKIuMoj3d539vW6bzb2u0wLTEGMC6HYVpGj+6uwzB8mQYAuF7WHkA9irDMU11vT7EeUhlGPk75YSrR8bp2i329rlvbWwCTcxIpObMUyhsbl5KHBYh3BbVQYAxSa+7qP8CIEMkiQkSZKREyOQEhEhFShLu9fHqutQ7DkEva19pbExEM2veGyKah3c2CKFpr21ZNCMIxHAApCABUHRxlTAlEwYDyvNxfz89b3e2kucx1u9VaEVFKHqd5XEZ3uPzdr//q3/3bf/Ov/3Xt+i//1X//Z3/yx99+enr6L7/60/fHf/zln/6zP//Fz3/8ZmKop2fsBoUeHo/L3YSIrSlJZkYLYCG3/5+7m5mqmlkEsRCgIwYL51ymMe85hcPl+bkgwf1hnkcCBWJmRLAkBtaIvMzsjt4adCLBZlLKMEwl94qmrDGQoAEdjiyZSLrhuirXGrjubW1rE5RUipSiTt2clRG4sQKimamFuZqD9q7aJZF3F6EypMQCanWrtW2Xag16d3zFSFiNGQwlJWxdQ7sw5pyRabeO3UYSDnwlnJkSpZGzFddlpuJpv1RTM5GzNmgdAL76yZSOGY3jwlfbvr+ccpqJU6q3PCSehAq6aEikSYaSbr1Pg3AZOdzDNDTQgQJ5QEQD6N0QHQBaa/u+N60RQURZkrxCSillyuNhAeS7h7YcD6UUlA2Bw5EljfP45t3j4z0vEw5jrq0FBpW3ZZDj3Xh8mOZlbN0+fnx5+vj86a/+86fvzhdVISSiUGVoEMEOQ3TGwIAZsKQsKEL8HM0JLBx1lffv521Lirp6412j3zGjCA9j5oy1RXU1s4fHOcxBtZqhAAxDOR7W2+Va8jTmu7vD45vju2k0bXyODnWhw1Kvd1DnN493D/fLsqSUGIlSLuNUphklOUB1C2RkyTmnlERIkHLOKSVE7t22y7nnFBGcBEmYQBIRilKk5KWUlNJOO5GklIhou1V0FMKSkqCklDJnBgQi9GAuWdIrQXI1VZUcTtBVzaOUwiyt1a51GA/7vp/P5/uHRylDSgkI93X71f/11//7//y/fPgv2y9/eX8I6B8+HFH+xZ//+faLfR7oZ1+/0/10+vDb660WmVIp3TZVbaZHTtPhEBHWFSBU1czcPSLgH1Bt53ML2KcRl7lMw0AArTUhZowiPI9FEktOkVEhMmJHE8FlnFVbx0CtYsTpMAwCALfb7eXTkxiqjOHeWe/v03I8chq22tKYHFWtxkcDRgBHCBYUYvSotb3AzsyIyMg554lzRKjqU7+2bcffCwAz6707gQdsvUdESTlaIwB3T3eTWiAiEQH41mrcViOnrSekAfMkQ5KCJUdKxOnU1wFga/tJ9yrUiHrYTICzyN0okeV80RQXBfRbySNul0Nerm395vnD8Wk+3JcS0OrOdExIjIEeDM5oQQiEncDMWttb663te11fXl7O55f99hIRiWWapnkYc87Dq1xawn3Ty/O53lbdKmggBgS+vXt8+2b++sdfvHvgZUZJcbvdNDz625TpcJfffnF8eLhThzyPZZ6++tQ/bX/T9hVzCpZWO1qkBNoZAlwVILpplpKAmdMtazO97Hs1kDc//sl6ezrXyxfb9DAUW1Mw52kChsBQ1A46DnyQ8XCYR0hXsP96vWmeaC/39KOPuN/R8Uflq3f5q0EYWPM4l+t4S/2Zxi8P7yvOECnlZetatJEXMEmYxzwSAKqFVUm219g3gxAhAVOC7np9fvr4zZjHccy3q4gkKb339XLb9930GhH7Ng7D0Lv1br2Cu691PZ1O98e7wzTv1KgQjXCDNfZMROComsFHTsswLs/Pz94PkHnb2jdw/eOv3/zoyx9//Obv2nq+nL4X4svzSj8ZHuY3d3MBO/2//+df/q//2/80jvP/+D/8i8e798sx0dre3uXx7oG+EN0vdnqS2N4cpjnR6bat27XB4BkeeCjz7Bi9ViYgSdL2cHUkxew8pumY1+28XdtVb9G97fntEbM4kO9pPfVxvi986Jtf7NPdfdnXrqDz3fHZJwYuUgQYIlUHRfBxOtRxe9lOz8+t70c+BplZlFQMYVs7wpWkAtChHOVdKVRWw8tt3fZTiybD4gl3aM/rSwe/v79vXQ2cU0LBJCk6zVYw9OH4sIzLy6fn9XIT4h+9/Xq4rp9ezi9tH3Iu4+iggD5PosKatWXXMM9IzN6xVbtcol2eS9/uBrk7LNPDvadyrT1PuBF2Nb2e7i91e9psGQ53jwecF4jA9c2A92k8piqHo2KnpNC37ZvvXwh/5b3b9c1dus+8pTJNUyKOACGmIHdH5NYPt9vt+nsvl/PpdLrdbnj+ljAHJhmGw91hOKZhkmlOhKOpfPvd5Vd/++myQwBQ7CVhyun9+/LVV/b27phZOddhGJ8+uqfT1p3i3SEfzrgEoWa92iUw9roSgGpzDw8Ahk4oMK9WBTjnaGqouxBj1NBjVVQQIJZxOHqrRQ4lZ8JxmWcHkGEAIceoG+8cy5SnImOmZUgeMtbaGIaUIvvx1Tgvr46HZRQIrcS61XdDfHN6ie02JLmbD2PJY8pjEuY8DGUcyziOwhAR7m5m7o6fQUB81nvf6/rdd98Ow8AsRJRSisBt21Q1bDczkSwi2s3diQiAzpdnAoy62/Ho7jxkREemvSqRgKNu9XJ+2a43bR0DSynMfq37h4+XLx/GL+4f0fp336qu+qF9dJx+elvfvHsLgP5y+fCbb8Dxz/7pX/zzf/7fzdOd41b7GTwIMwBsq/V1B+3auoYCRsrciIdhmKaJmd0sIsAivG+3Fd2yJCFWVWs9ER+Xw0u3rmuv1JuYCsgQ3tz65fq0zMgiBQgRtcPamvpVhZhZmxGRqm7b3nsHgOe67n3byctxvnu8E4S9bmY2VCPCgL5ue90156EM09u3b6zkb7778NvvPmx9dyLgQQTKwCNPmQUNghDN13olIggSDiRzba2viFEGYaQAz1mGMae2997ruilpFoQibCOZkAdChxjNR4hRgZuea+u323o5t6fT+WHv8+ObSOnTh08hRBZW9+Q2cmgotGspx3EMQJgmmGc8HmV6M2GKgvd6Wdfz+uG366XGWv048kEwCg3DRCiOkFJBoG4eEfum27adTqeXl5fz+Xz9bF03ARBOgQmzHO/uxrtSJhpGLkm21Z+ft+8/XC7dAmAY8rBM7x6nh4fh7jjeHyYmQ2YGqwWuTdX7Xv10brtuEXG+3C7bflzkz/7Rz5+etqdP68fnKxHnYd77jmAEzgRC4QSEUMSIuG0vBUMi3EHm4aB1Hco0DclkPuSsFpQSJI4whUB1dng4jgMJ+5DcPzXZOS3zJB2WNs5lHMcyzeO8ZIoQYq1tvm4Zfb+c3vzoi/tlThGgCmpVt9o2ACgliQgiMnNK2cwiHAAiDNABQLXfbrecs0djTogonN291mZm88AW5lbVTVURkSUjekJ1tbq+XG13d8zSt3MIbXUnFAzR2vd1q+sqwUsZcxZB5yQW/br1x4dleXi39b49PX863YKfruuahgLEl4+nl2+fHx4e/9E//bPHf/xLqK2pjCESxGnaby84qi1qO1w/bevLWpsz5zwOx7uH+XgHzNY7eDiAttb2FQESS2JOSIzE5AOnIQ+MlAVc074GuFnHpi6DNtuayoyjSA7ibe99g/EuQQBpAJi37nsPVXw1F05lGOm4THcP90zAt7zv6wICQG6B297aXtsa6Cmlx4djhNXevvnwVNtKBdPApUuhCV4RS07haK0TQCnFM9e6qtbbtVpVYUYMtzpIXsbhtq7Xrvt2owAYkeAAvXBHioEgB0wWg1vpQEZXJdos1q2t1RtfRieQFO2MwplwNJsI7xI38mwt9MawMEeizqg5+2HiNBfSdy/n7+ttbW2H3Z7PrYQNGDkp56QGzYPy4MRd3QMRVlW9vjqda63u0DsgAIhIys3cr/XUzlMdOJMkuJvx6eny8tK0MwQCiqeUl+X+QMeZl5HGTAQORAbIYAyp7v3c1lN/xrwjWd9ut+v+43fHn//k6+ul/93fffjr//tXn54vsw9YcRzm1kGSHo/DYU7TXIaSACCrAUAANHMRaUlayT4W8pTuylS7GjMKBuJO1AiKyCAh3keCBpDRO8SQUy2SWeCVBxFJTsCRoORtzNs1oZH3t/eHdw93mdBb7dt6WvXl5VNtO2K8cndEJiIPjVdgEYSILPjKrE9DnucxpwERiah3wzDVEBFE5M/c6ZWIRATquN1u9XbZL6deGzLJUJBJsSEKegKl1rTXjQnmcdz7bgBlGEcp563/7W8+HKcM6S6xMsW+6+W2EhEEXk/XHOknP/vj919/DQlu1nAgpsGrMyKOTJyQs/Y41+283SDy3TTOj4/3jw/DOEKEuyNSqO7rih7RzeoO2gfhKafbtfbWmIQHylmQoLYtoBMRZ5cx1NbbCpn9cDgkKSUtAXgsIyISEQA0khyoqohI9wsAYIQkKoIRMQ2SZTomV9XeLHgA8Nu1rttFLyplGUr+8os31fz750vXHYDLkItJ7x09yAIAMwszD5KvsQoBgGpXACAicFCruZR5Gg51stPFI8xBW4QZaA9XBmBGZFDwQK2gQNEDNvUIAkqrxnZezf2+gACxcEbAXrMreAyhdfdQQGTvqM2thRuC87qe1+tlq5foFM63XUbiu5Q7vGDOW2vn3arD7lA1gBj1KiK9NXcggMw8ZhYkGQ6UpLa2t5qRE3IiIUDsbqvrtQEMjImJBkg5OGcrYpk9kaJHhEM4qrulbdXvV9PzCcouKQT3UPuDt/Lm8fDFm/LV4xdY9d//1X8cSabhmKbhettY4PFu/MOfvP3ii7fTnM1sbDcAUAdVFZGV5SrpmjKFlVzugLAHOCERlMQtcS7i0bWpNXVVaGrU1c0jBADC3NXRKTFnBsKx98Pt9PAwv39//4uf/+GPvnp3mCcAsN5r29btoroTkbu31ltrDAqv0OMHjgjMLIlSSjnn4VWZ6LPeDRHNLBMDQM7CzO4KGK9aa8oe0Vu9WW29d3xVBZnWviIIRMZgd3DXCKPE7bpiGKE7pZf19v3Ha8nEiF8SBJWu8fJ8bts+lKwK73/0B1//8k+OX30JicY80RTQbnu9sWnXeruet9PH28vH0/WqgMfj8fH9V9O7rw5398BspuEoAOagVbm3vm3Xl9Pl+dRr4wAOR1ORjhjCCRwaAIHkxIztul5ccwIA7UI8TQtLycOEAUyUU04pWRmGXMwMEQ2NmUUII7Q3CCuImPLez6raVSMgZUlZ9xYR9vzp4zAeShnfv31c1b5/vnawMs10I3gVse97BBKRgW3bVmFDjKEUJ3GzxElVwV04hlT0sLjD/qo2MrBdLd+CjEQFEaQGXR1yoEVYs7Z1BSN0jgYJXX4AKSVhRu/rut5uagNIN+uD+wFJEM11bs3rlgPlevlu758Ir4bgSIhyOD5++XAYoMkwVINPl+3pUj+et7XuoATh6h0cEAABEZmCmCSuJ84i2sS0pDQFDDTllLFGapA7AkBhLJgWSsVCCJOQCIkQuENgIpREsUNruO5QSZALYx+FcpLj8ThOKdHw7n759jdf/s3/8zccaISEltGEfEp4nMd3b47H+zkiZBP7Qbi7JLGUuoiyiIeqNgOwCLUQBAewMAslAmYEIgrKOaOxobgIEwnSq/RqKDwIJTLr00taDvmLL978+Osv7u4PZSp1ra/cW2t7gEliInJ3AIhAZkJEAEcUIkIMZk5ZmBKhIDIAIqaUZJkTInLAq5wTMai2COvaVNUhXlm4QQhxIJhZqLqRu4c3RA6ggE6ESJCzuFOvequNgHeXp6fL6flJv3qXszDQ5Xy+XdZDTnmev/6jX77/6U9hnEErJbDbtV5ettO+W7mePl0vn7bLJ6ut5LG8vb+7f7+8eXf/9i0nAUB3BwAmAkAhantt276eT+dPT9tl945CvJSxp6bq6t00UBAQHVWj3tZdiEtOTfV8Pvdud8eH4SgelUACICCQgsWRAhGSAYVJIISBKYEDuJndtltKmSmJBATn7KUYkey36+V0xtKkLIf5+OF5VfWBBACQKVPZ972ZlSSIaO7zcghzZq5WXSMcGViyFEZkXMaxdQNzdk+MYRCphweQEwKwAXZGTOIhMWQu4+AaSKlpZ8ZxmcZZ0pATEmO/+vNqYAZCqWrqXpKJWumeek/rTjU8YD0sNN4fnc2SG8HX75c/fP/mrqRhORrkp/P+2w+nv/37D3//7cfrrXtwzhnc0WKQBOauBhRiLZkiOhMk7MX3EdIgeV89g2TkCEgRiSCFpVB1CWAiQRaI5hBBARTgCoAukwwPcjgCrY4W5LLch5RbrXv1rlvODD3WfVuSjezTmOYiHA7mhXMehsiknyGQEHHCkikLJsWsGMREgQjOhakwCgY6MokwSmfFcSDcvUc0IFcLAcIgZmAChgiKxIa9W+WMnEhdSdDAeqse1tpuZsyMBPgKGNFSSkRAREyIGPaDjojgjCHgBIiAQCDEICJeI8JcwdVVAynQER0NSRG7RWgAYnio+atUDl3dIgDRwTxCoTFgLhIRXSsgcWLsfq2nb5/XoTwvpbw9jNv5dn0+weNDOR4lfEPiXrUHk11Ov+3bte/RVoS6c4dDWjCPiMhlmg5v57vHNM1g5u5EEmThwChjGdQB3ayrtU4WgjwwRw5ACNDWsfWOAmWQNDALlBHHaR4KFwxmTBwpY8ls3D2amnu0iDAzRBQWEUZEYgQHUPMwAGhW3SNJIRJv3dQIBZER4TDd6eVyu3WtqxvM86Gv+7puyQcgGobRGft1MwhClJxKIkVFx7CKwQAIgSKFwK03CBRGISzTNA1FmGgY0Bx7xwhGScDEOSNzbjcO4SAZBKWuN+uVY5bEJMzEGKSSe5IufKOhaq9ayWF37eGGoODd9L6Mx8Py/mGmpDX16u0P3r/5+s393WEaxsVcpkvnMu5VT6dLvfYKYWbgnklSSqrVXNFlmQ5pZMddvaGgI3TTbFBBG6iRI2AHd63J80SiOnRPjjmQHdEgHNURXN1eeQRlypNFM3fE/u2na/jLdrnq1n/z/d+jOAvzhmg1gSZK5L5db89PzwQ0TONm3T9jFAErEIlwFOSAUV2TFAiIgCBEpkDoZs2Ugs3DzACoW9etX7fW2q5QzMxD3dWNumkzbbqvde1uzXrTioIkbBCI6O4Rjhiv7DNVFRH6jJEBwMxU1X8Q7hGOgOhAAAFA+CooArSbh7pbypRScYcSQ9v2XTjMhYURxR0AVk3h5qZBYWBqzWAnioQDETFzypmItn667q05/Pb55ZAk4+N6uZ5eXlprxnyr/c08Ycq+rV4v1w8fx0x3w91NnTSkDMyLR2umkabp+DDdPwK6mwEAEQFRmBFRKWPPyZoIUhKJQYhTbR12u+3mBqrce6BHeB7KIukgaZ+KJDRBKzkNQx6yEHmLHhHWOzMDACKmnEtJDkyMiaW18I4RKMJMRboicu+23jbtoOru4O7C5TAfq14/na+NZJ4Pq+P3H57uhoyIqWQxVb/2vRHROND2co2IQQqzJC4M2KKBo5k27RoC5ow4juPdYRFEzwm7oTKCI2SKkmFgzg0+tH29XK45xTzMEQEODLD3PSEYMwS3wIayOoWiozqpIQIrJ6ABOIcyDGWZhnQ8TCF7SqlAfnw4PL65m8aN01ArZo4h5ZIGCQIFYDfvYAFMiBFgDg7gSplRgrOzO7i31iM7t5d9fdlvzQGxIQCFouqCQ2AmHlkGSWOHDg7AgOzm2nvf9hbVtPeIBt4I9MPput2u508fbaufPj7d2j4QGxi6vqqbXk5oVl89P1+Y0lYSABCigEgzcyQgCQRkqCubOQ8iEhBm1t2g93AXc6i1h2NAmLVSgFqMaRAOjXXdtnE7lkjUrnD50OoW5yte9/79B7berau2gcS93uXDU9z3NlAaEENVhzRE5d7AghVxbwaWlvy22DCVoUgaS0LEiACACDNtBRAQWFidag0MSlxkLH1LMj0cv/oRgqObuWIAEZy6Xa/XbbuFd3euzXt1a0YS1togqW09IgplVPIan876wvsyHZ7W2/P3H33fhnHAw7zgaLUyaTB/8eXPMbqpLlj3MosQevdWhbAclnK/wMTQknlYvbF3AUR3b6HNIc3dN8mHaVxrPXfoUVrdzzDybW1RZssDEF+66Mc6Zel5rJtl9rtpGMfRmFprfdt5caGE5tRNRJAIATKTNfWuLYKI5pLNbN836z3c18sVzFMP3Vvda1M1iFXqbafva3xcodkGseuOS7tXi1r3/azzcb4/Prycn1W1ayUSRLheV/CYp0lYXmHAzYMkWesIdn8Yl+XIzNYUXj4RsrY4NSXF43KQnILJ+M7xxHGmfiOxaWTOfPU1+iEiJqHa1UUudY8O43aw2uDWM4rvviPtKLnjnUxZtuMCWW7T3Xij6dJ959LG/GYq7h6pE+2IWyYPIwDkKN6NiRhoWZZfn05DApowSu/YE8fAScOre/W2XV7iWkmBgdyRCBAhAoCI8g38WFgSb+jKuFx863RBWCb2O4E93XCaMI283udV/uvp77fV+o0/ftuvL8iRrZ5SQespOviVWON66r99urWxN+TiW0rJzKZpkohw99b3dfXeiODAQK+QAcnpM2Z2hN/xUDV/RQGJMc3zSJZzFmYGhAh/1RW2lrpOFnhZ7XSBtUJTr25krwAgpZRzRm0AQIDdmrt5tIiEEpyIyN1ViDAizIgZAeh3SoHe/FVYhAWFu9bqtbcyC0hoCwxHAHRkImbUnc2pda97NTMGBCnCAdHpM0Q0s96t966q66pI8Onl5eNTua4bkIzjSAkxwFuNrsLMIt7CrAHQMJRQNVAch2WeyryA5F57gswQQURAGAAsxC6CaT7s6zaO47wszSO2XgNyzqdr35sadoUI5977xZug5cPBrWVs8Dgfh8wlkUigQ0RYt9rBPDxxEsEAlQh0B9Uer8DcXdVeEaAwAXI1jQgz67Xtao2gVnEjBDatqg6WUsrNu6qa+2BDGYdlWdZ19YiUkpmJiKv13s0ss+ShtGZh0XtvraZxKSUVKRXruhkyAzgBRAQGuHtEXK/XiBjHkomZ0NwpSEQQUVVvtUPTfd89IBxaa+4eEQBAnyEiAEQEeDBzSphSKpJ7gnEccylECgCICB4U8ApfAbp7QEQYAAFAJsgiWVJJAmbgioRJMgGuFqpK+AP4ByLA3QGAPkOEV/4ZABgEEJPwK0SyMOvaWvv44dPtvF9f2suHa3Q4jjklGbJgNUJAAG19Xbfzy/XGsAUkgJyBCJZlESJkRhFCMndlRmYWkRBH8pRSzjmlBIQo9ArA/DNmHHLh3CgaEfFnidgRMaC0eOShlLLsPZ9vU+tE3ADWAEQkouFVKVvbVdVdiJ1SAEVAJwIka1rX7bKtV9MWriICABFBRMwc1s3MASLCITBQq251B+y9194auBEEQbBgInZKJJ2ouXdwY07M7Ga9d2YmEmY3i1dEJJyETcHPt/rdx+fTdSMWGSYnhV3RgwlEBCJU1R0YKad5h92Ix3koxwU4Q3NoHUgBQ5ghFCLgFTISYi55GMu8LGbBAummAGrxcT1UcxfkAAAgAElEQVSbxap1NwukQRj6xtb7yyoJ5sKF+XlYBWCcynx/0NjB3bxabWgWKq4K4VIWDABH1RY/sHAHByFIkshRqxJg4pwzerQeZBoQWNLUPVQ3AEqcMVHv3SOISETGcUREgwiEUKUkr3ptqpoGRsSckhO01giRBUtiIjev7gqcCdFd3czd7TMAICIRYSSECA93j4jWd7KI2qGpahOGIIiwiHB3ACAiZkbE+IyIcuKciRmJiBFJ2NA4CZm7qhAxkhATUSAiYAT8ToAJkRAzgkQiZEAmACRBIgG3EGRHVAAICAAEgAiICEQk4VdEAQAWoeEGwcxEBAAOgaGh3a2z9kLjzbpuFh0SyTzOU6GUyOuWUl5ySQi4rtu+c6AEqAd0YAY1FEk0RB5+gKYMBogIAGYGbqrq7hEBBEQkmVmd1RCciYpQQ4CAV4jISBgQTVut0uyR8kOm8brm5/NYG6XZKYQlsRBgyTmldOvaW7MhAQRiAFggETsRmLem9XK7jj4iU0Ews33fVRURcxYAYGYgjAhV3Xt75d7NLKyHK7gFOHqAWwjoK6sECkwiFAbWDZGJCACYkwgw81DGaZr6HmbbdffvP12eb9VQQNijgXliAmJAtG3r3Qi4DANxSUKcXJYBUgZ1cEiU3VZEQIJAjHA3cHNTT6oOSCmnccqupes0RZL83Pha7XrtuyoGD5RKHhJk2HsmEaC6w8cPJ+11mNN7fo+WABSCIoICEAC0981QZgAQEQDwUHcC6O5OhIThbtq79U6BiUQpyMlasw5Ekjl37M299g7ZiSjct22rval3IkpDqb017VlSTinMtffuRrVikpwZwYVxzCnCatuvlxfzBkFNofdOyZBCCIl4GIZTxL7vTjzkJCLEFBFmhoEAEBGIKMJB+DsAEBHwWUT4Z9qb++AO3bQGKEkH1XCihEggaeA0SCopMXMgEBM5hmuEhRphYBiaUwdJwsyBYQ4IWKSwoGpnVgADgIhAAESgV0lyzpwTkSIRgLk7ABCnQNRw1Y6qwCoYwjDmsVAlWxPJUua5DEkitGFvImlkzsQ7tYHEiJnlZisxA6IDiwiFIwsBRIRD/MDdq1bztu97rZUJupsjAyIRRBiYhykEA0AgRAQAIICb1XW7vZz1skrtkwz+ctLvP+j5bHd5q1UWQUQziwhEtM/Ao2rvbu4ehMAETJRkHMeUhzJMwziLCPSOpB4WHoUl58wpAUCttbXe1QMoDY8DBACEm2tr+7Zvt9aa7p8gCAyIkZAYScE9DBEBwCzgdwLls33rFWDvQM1Pa1MgQES3CERiQIzeuxnlVCRTzgApAXpyRLTevZsoIyZXlUQAHhFm5gqthVZ9ZQ7BYoJOHAhCKDk/HJZP1+3cbykMkIcxH0VmxlzG3q1uu2k9nXvVS5rydHy+m7MgASbhkMxZuLuZa123UkqSJJncxaw3D3Nz7x7Qamt7bVuvBpvatrfVaV1b78URVZtZdw1t5oHuDgCtNatuoaUUSmIRZtYARISEOX6w1j15mqaplEIQzBzerbeArm2PINUIC0RMxKUUIjo9v6hqrYbiY8ksgowAwMwChIHardkPiOQVMwNA/J7/Xq217Zu2FNk1obGQiBQJBEYqkoqkMeWSMjNbhIUzRoSFgasyIHiAK5ozExMEQAQgM7BEgCESEaJDQEQAAjMxs4hwTiKCHMwcaO5u7s1DPV7BD5wgCJ3R0JA8TFUCxyRjSsJWVYUsI0p0dMVe0TTMQm0Y8ysRmedZIgwgEIMYmJEolVIocXUyh1f0mXpXIgTXcDNTa65qFrW3arX37u6IyIDoEV1rrWQ6J1hvq59fYl/tqDsYGaJH793MGBADGBAAIgCAAjiQIcQsCNM4H5Y3b+d5nqbJ3a3WIolV3X3IaZymcRwB4LZvwQnTzsxDfhBhYQbTuq+380mNtu0ckCjAPRCCgCMM3QUhiCNQtSJiOOgPvDVFZAi38LVDM3JKgBSEwBYRpqbmlKVIxlQAEYJRDVTNGhGxY1hAOIaBB0CYmTsEEiI4eCCRDJh2r2wIBqGq0KPdztA2YSiDIPEylTe5HHLiIbdqN0m3G1+vp+u+SbnMh3N8+TBlKpQ5IUsGcu29NQWr9BkAunsERgQAWKsBaj0EKafkEeBuFtfbFZwz0x6mvRJaGTIjXWqFV4hIyMRMPzAzEUFmVa21JuJXZubu27YhYhGOV6YBlDLeH6cruVLqQqM45wIAbhpA7k5EKWGSBACqCgFAyIxAAOAAHmDmkBinaYgI/ywiACAi3D0iSuJXRMDMROBgThFMBpEQCTERJ2QhJqJAAOtBHBAB5u7CmBDIIVGQaoQDhZQUwupWa3Mzd0dE+AeIiOUHgAgAiAgA6vZqb7W7BbCIUBIgI/BwnXK6cWIPhCgMRXAcRIAPNInDwohBrfBmXQMDYg9PwtM03h0P4qGIKEKlFOvFu6SUOEvy5NH594B+4PgqABw8wIMg2itrvXdXY8DEklkyyzlcECeRXnfUCuHB0DMl94jwrt41PnN36x0wEWYiIUrm0HoA0DwfD3dvjsdjKaXWGrilEu6uqlOSaVmGYUBELpMHo6wicljuS0k5Jde+3TKgXrYzMlIrZhYRTACA4OqhxA40qKqZJcnMiMjuXmtNUgyT2tURDMUDAQIgkLn3rhCUhHIGSkAELFB3AA2tZEpEyAmCuzmDQ0S4gRsAigghA0rpSXNdbQVhGXIq+aaXuq776cXamihnRAfiUCEZ5f+jCu6WLcuO6zCPkTnnWvvnnKpqNAGClKVQWA5fOHTp8Pu/gK98bZkmQQiN7uqqOmf/rDVnZg7v2lBL9Pe1wNbdl+6zn4Tt/XLBz7fl9NW6/XB+fV3b0VpxIaswUtkEFCozIjInH2ROc4MyWXD3ZfFU9ZHNGircm0BtI3Msq3dbbpV1LzyQIOhGEkBmLuvysGeOmL66GWtWSVU1t13NaGXdq8bSvB1Wp004QVfL9WDAtm0iqgqAP5EUBICkmZF093Y4VMS2zaqSFE+ZSdLMSAKQdHxYH6wfDncjUrOyoCwVy0rMYslJAJJAwqEESSgbDZXIEndaa0SZylI1xoj7dqv7NmdKbnSiJOiJT5JSVYSkeKpCCXwyMxIGOUAVkcghAYpmuS6NxdfmGNFRJpxWnqtvM/ZZ+z0PbcPSmdFIgjKz1qwvfrnNiGBZ/Safeu9ujR725N+Rcm8NmCL+LUlRZRU0QFExqyINYVhFM9P/gMwcY8yRM7LSYAY4ZK0fP7yeDy8fTh8+reuK2y3pkjKz9v14Oh+Pp9aagJakLao9g2jhrVlLsOSR2mfc7/PddsuUUb40sJ4CEPEkujvJ1pqZScpEUpEcUKQihSpJMJTTm/XlCHFEmFrvnLF3qRHIQhZAGKWiCaCkqgK89QV9dQu3gSxrTm9tWQ6HA01z25vV6lycNhFz2zdMVKCOvz9fLhEhwJd+ot5//fw+ItpB8Snr9YXH9eVobekrRG8QzUyFOWdmutPdW1sOXPZ7zJwZqfC5zzkzZ7iTqZhj226RY7WVVnO/HY9HMyspFAV5s947m0+o9z7nVKaZsVRPjVZVkdlhQFGWmUCZ0elH72yHXA9qvQCU5pzju+g0P6y9uS++HNbjcXWhFz2lzG/fLvd7vr29/f0fWmZKAsAnPFGQivT2YISCDw6lBFVVZqpKD4QImLXWIiZJPFVVYM7CunjvLU0jcyhnZMSce0ZAEEkIAqpUVQAE1JOkVGXmzGBzkgmlyirgSYM5ZkxVAFgch9VPx/XDS9/bXO9bVXoWITe5FUop/HDuH17OL+fTy2Ft2Fq31Qdf20pR6x9cPe7UBKszk7VZeWlUb/7pOG7vJ+sv8oPa8P7SDod5b1WIMbY7lhO0Vqy+L4WXb2k3P5zKDsUa+7EypcqdsbeqVmVCP6zL6eC+H4/eG8TWy3vhbL5Ko/bI3UZ9+/y5ma99vVwuv3t99cy4Xg8vL1URl7e6fNP14suS26kIN/eyM0+zf7i0b7d657iZmxGWqIjMtIzMxPHUzV+OzV1zn/dfv/RhbbPDCyKSgwr95a9fxphYP/S9ptbWF6dBQGZXQQP32cvG/cIcbgRIdeAECJhoLk6xrX2BL9gmMdPG3DePeajMEfucY+23DweO1XGvfR/zdrttfUW9fsLp9Zeff9n22icLq61cXl4ub/rXn67CP13/+PvLx5fryzk+3l8Ox97Xl/Pvb/5PW9wA0NzNAMzMqrrvozVnz5rzvs3bPYzrsixnfbpdvmz7pS1+6q+zuA1Va2bq3UYGZjmprGKelrXGNVR9ccEnBArdCUZGcy9UQa0tzVsplDBwWXo/nN2WO83XFc33fT+tbV08FkPl3PeO1d3nbaj85bxqYURUd2vuoVYnxKmtH2pZ2McBuSLaavuSQzmw3GuoWrIt7i/mL+XHw6IRk5qNd8UW08VVlmo10qzJPcyr9Ho6a5sxs7XleDxuue9zr0KG5j5HQYTZmlkSGrB0O679ta9H76SxH0ucVfSPzh7c5Y1cKzlzW3inyrJjaeleRDfvfVVxptbz6/pVedcheViOrelNl8h3AaM5lqVZ94lmT0BVATDv98J9G/O6XRJb4o1+6evJBD1kISsi5pwRkfC9wpShSgOMD6EK1YMqZ+XDnDMiqkpPlAAYaKCAmjHnPLAvap0tBRMIM7CqXvt68O7mS+vNvbs7jYKZAcjv4m8yMyIqxBJlhnJaM3Nad5c7SaAyoyTAmq+tycoix7bN4FSCD46CWuvMyQfHvu+XywXb67ZvXZ1kURREmBkASVTxCYAkK8ESEilERkZlogMSqlJBJFBm5u5mRtK997acXtpFWqQTrNCU9eXtbV7vaMPbIaSv729TpuZ0fLtePlw+fX2Lhg0jLPN+up4PRzEOv1slAuADrKryaV3XnBFRKrK5WUUpIjPVWltECZqqUibqASXJzHrvkmbEGENSMRKCGb+zquQTyNYaUVA8TMgcvXelShoxBzDNsSzmJuPM1FOVqgpPCTVAUpWU/w1gD5LySU/15HA9VSkfwALrb2SCSjUqo6qgggrCb6oqIioenFWtNXcHUFX5QMR3yoQAM6uSVAJItGatmTfad2VmADIzokQIBnMZH/AkqZ4AyPhQD1MhAXAam9GtlMGc1JQMlTm3cWdlY3PSRaSCrRnvI+Y2btftCyykO9sdnqofEYVCRcbDmBFR1mell0IloGgFlRSVI4MRmRkRY4yIUBakUuHJngDEd75ft3HdxzbRW9G8Ny0+ULe3b1bZ2jL2O5aDg1Jlpoh6GLc552W/bzn3Csky5x6zp1O1577H2CumIpAECQkSCZA0c7RZrISyIsvd14Y90jTHftvGrGrE5XZ9v97R3GvRLj6pShLM8ZApFimSegIKCCchqXLuQ4RESqosZezXMe4RW1VUVaYyqwpDuo5x22aJ7j0zLvcMJQ7zeD5M2FYVYutW3aZ03dbLrR2cVvvSCJvstcAPdoREEoCALCWU0NLatm37vpvag3dqh5RzTjNrjfsMSQD/RsqqgBEoEmBV5Zjp3c0NZiAlPEgCYGa9NaByxhiD5cfD0nsv116Yc27Q7g2ZLq+qTKlYIqQorDDSK1NPVcr4rgoE7KmqMlNSVUUEMzs6AElVigchyUpkZtBLJaigoKZqqgJyQBKgKo0xkJhztkJbVpJVFRFVJSMACRJA0EQCKADm1Tpbs9bMjGYGQFJmRgRkpOyBDUAReiAeJNHQWrfmJCHVDKrobHQ4smqgdmg4VkRoDtHIJoIOmRJl3ZGQFDkiwlqRqIo5qRGwRNFIA6oqMyVNwVUJpiqrUkARxRlhlcJ3lVmRLBGiwAeBZGvN8J2B6r2ay1saJnVHfN0vsd0+Kt6vx9aWuY/T6aX3fttvOyYaZ+x2t33f7/frvu+zRkhtvybnzK0U2+32dvnydfv2LW4z7u3B7UFglR6gGlbVVNYyANAXh0msbRuRKaCEb1/fH7AsBzvMIM1oJslEuEFCgiYZITKFElAwWU1UVJZywhpJUGUBm7P2Pe4j9lAVINg+877Fr5f7r2/vX+8D/Wi2eFtWXw7Nv+y/VKi39fjDOiLv+x7Iw2sfsd5Hu+1w1lu/ybfyXX32w+/7d80bJQFFlplVZYZSBcKskUWC1qp2klI9kNZag1BeAiRllp7siaR3h1uZlRRR+s3SmruzUAKqZJTkZtbsvsfMDLHMU6XKqMSD8UEqSQBS/wOI/45PrTWSAEgCqCcAhJMGqApFiHiyrBJBo9xoJmNBgr6DSDxUlQNVZdZISoqIqiLZWuvisuw5qoCqEpJEc7Rm5tU6zShklX6DSj2QtCeYSxSN9Ac+OH3p3p6srIoqJ5qBhJSlKCAKNmrGvjRDW1sJCYGEqbkv+THijoqcdxrMHDVzEpGIdLZu3r2ZGUnhO9IFSKiQFMpkaWZYJUlrDoAlPpTMzGkAmtnSmhsomJkfVzssXJ3N0cWuqPF2/QzN+3Uxsyrs+zutbdvWe5fbmJukfd8jBkkpS2tFtGtzpyr2/X65vL/d33bdyydcbB1OCVmqKkk3m+Zs9NiGQqEQsjcjuawHqmqOz1+//PTzL5hZtNZpTkAmPBVUiWwmM6CcAgVAqIEcigm4gaJRBASUEOAo7KVJqnV7qLQ56n3EEFs/tsNLVUPkZHP22wQWW9bjsR3yctkv3/bYl2Nf62DuMsGYlZG87Vu9iWgvLy8fP33ovgAoKauITBXceludfUxGIUUzW5ZFkRpRVWZNNFIkWzN9hyo9kHR3kt5aESIh8cnM4GgPtEQCsCcK+SDNjCzC6b1ZbzQDad5IAw0G0EowQSQAkmaE/w1VkGRm7m5PJPEkiaR9J5IA7ImkJABm5k9mRhKAJBBm1pqxclncoObN3QFIAuDuXJaD6xChGduMB0m98bCqL0YrMwgzc86pzFARTykUDeb0BkJ4IglE5oTklPGh0xxmlS6YylVdOpgfiV1gADOjRahaqDrQurm7Odb4NGdH3WN0ELY4NQzuBQoEnOYPNDxJMsHgiKoxg9KWnApVk+DmcACSjOywcntotIfWmgOSDGhOR1pNBA4Vr4ZPrhn7+K//ktZhdHceTkVEVPZe0r7vpZhzArUsC1Fc1y2/mRlNUo4cc+59jjOiHToAIpFJUgDogq5UxiSRMTQqclRl755iay1LiHh/3/70pz9d396On4zuJRkAIwRVlQpAUTCSeCAJFca23980ajm9dj+EMOe00ohtxP023rftOsaGsH2ft+1h32YEzdfDESva8Xad729b7KMise5suRykcX+7vN9uN1Q41dosZBZQcvelLb11iN++XTPl3t3asvrflILyZTnoJMozy2yaEYZ1XYvT9mkPtChlpiQzk2RmkuacBQGoKlYllGRJAM2MrYFgCYCR3d0Jd5MUETu0jwhrWMx6897MPVQkQ/XgpJlJKsie8ETS3c0sgaqSRNLMAJB0dzPDd/ZEwozNvbs3s2ZMggY20EgHDYQA4oFka82KqxnmsCcAkgC4e1/XSC1j4Nhn3SJDkrsvK/tCd5kLqKoQIImkWTNrVSUZSTMTCBphpEuKiJmIqlQ9sIBIKzHTC132gvZjWy8tPSbO67IeklSxCYDReoMHAHc3M8AkVREiaSS7uRcMMsFBAPqbUcpywZIaGaV53/K+C0iIJIDMVFWjmUmk0x6aeTMHkBFzztPMdrvj65sk+/z59PXt5dtl+3qJr29mraDWez/csqqJvnQv9DGEjAh3Lssiyf02ygGIBZQjD0hJRTmV3+nBrJHUQ/EH9ut9h+M+LWAb/YqiW/5Naelt28ef/vSnX3759T/88AewIiaAxRuIqshMM6sZgIxGNiAQc4z3b18/e1lbDu1wnLPu9zstxn7Zt/f3969j22pEDlze97dvl/s2VGaH5omYtt/Gl2/X96/vt+s29vuHT73y276VpOvtbR+3ZeXxeOB4nzPvqqNaHF8d564jk8Xt/e2+7z9dr++ffvh4PK76TWtNywFpsebxCDhrC0a5e2utlyQfEZlpZkABMjeAMwqSmUnIByhJ8MFASqosZC7L0lpzLlRRJYmlqJiVaW5mMCNZBIypmnOOyGNrJBMyyVszM5J6wm8yc4xRVQAkAfAnkpIgI8EneyLZRAgsKYtRVnLBAeE7M2utWXFpbcwBIDMjwqCH9rAsUVjHQFTbx5gpyRzubM1aNzOYkyYS/kQSwMwsNdBlLIIEjHADoAdCzQrQQ4pRzOAsI1a07odYOdPWfb8tJ7S2K03eAJA0I1wqVe3SpKUZzIomMAV1c5Iq/VsJZQRSFAxApLJqn7VPPBVUT5IAuFkR9m9ImDPmnOPXz/eff94+/JSpfPu2fLt+2EaNcHQUZqaprLZ9RgHW/OSHGQNAZrlzQUVOkkMuqVhAFQooOkjK8iGiABhBej59Wj59vbMW3tHm2vZl/2rXokhWoara2mofP//18+cvv/5x/tDKIgJANydZT2YmJGEkYUQRVWO7Xy5vqy0fq4ys1KgQtjn2+36bsUsCVKX9CbB1XRdr3GvcxuUyrpf7iJI52rrdt32b18veu8/YleN8PH368AE5OdRykjTQ0Y1doq96f3//9duv3y7rrPjx737o3QuYld2cD2bL4odTU+OsLd6vEty9NUVaVQHove81JKFKUlXRrLVmZvd94N+oqozImaqi0FoTq2KqxIIejH8jAkRkAsrvFLNQEKxoLEBm1kgCqCpVSQKgpzlnVUmqKklm5u4AJAHg/x8AIyUoi1moQomCw5IUQNLdCZmZpKoaObyZSXKZWe99Edd1jW34k1T4rsy8NTczUmZ0N4hmRlKiRPyNSIK/cXe4uaO1Zs1JGqAqZSKLYG/s7NHbfYHKr7PAKqpCjYZ9DoB5r3m/5f7T1/ewWh1rxpudPIvXa3uT/vhyHl/em+N06K/Hg/kidLce2G6GO/JjRNsLMaujqd1j+3y9rm7LfcSXb+cqdu59zVawvbrei7MdVmz/8OKh5b/8n//Xp18uf//hmLev8ed//uHtl/O+bdcvEeHuZibJnvKWzRpJAJKqiqSZuXtVAShQxQIrEQ+SLwIgCTI+yDKzqshYF77t97Mbb7nca4z4Zbuvbhzj0Dpu49Tx17/+dXy+rDemjVNrmaJQs+YerbUKtniRas/72oC6xe1it61+/qbD0v5xvl3+66+f3z6tLx8Opy2b69j47+91ve7XsQ3KXtY177f7bXIMu8f9y9dfP3+771r99OH4oZ37/fanLWbO3fv5dD739nJcXWGoo/vh0GJdWOJ9vLfDXA/e7ocf1484vI7Yvv7l6+3t8ul3nz58eDn3H9rS77je9k2dy2vfLpvum7dDZVhtzImkcqZU/cQ8vr9/XUUStLYsrapoauuCzNScGZCty1mzfb18eR9XHs//8ePHA07jdt0rsDRbD9rml7dfRo/jYm3a+fhyWE6X7fLTfm16TVaHN7E53FO6V5zaYe1mmQK4AER5RVkuxr6pZZ/l73P+ztXItgJMs2buOTUjczfsS+re6ImMCJHWHCaxqibNeu+FzIpwm0xrfsBRZRo5rOZZoDf4S62XurOEImQIR1jGknvL7QPi1XA+HPjr15+3ut/mZeJ+jP7Lvr+1+7L8cDr2ls2c3pFYjn15ORzOzTrKxWU5Htfj/latie6TCt772j45hu62X+6TOLw2/9gMBOph326X9xvmcU6jtd6dbFJlpoIPZubuAPKJkruv66rtfc45xgiLBpNREkl7IglAEgWSEUGyNWvmAGZlAjNx/Zc/f7blT19/Ha8HcO5vX/l+a2/by6YImRWpqnL31pipsgIgqapYpQcgSbq1B19kBCAD18XM+sIM1VOmZsw5s6p8mZGsCASB3O7xcq+Xe7ngZpU1FZz45cu3P/3lL8jy5hBYQsmAZuakCrYuiKFJZG63+/XLl9vXX6/Xd+fr/XKd5OXb219//deT9x//+HenTy93VqHNoffL7fp+v91jG/sYkdt7Xt+1Xw37obelaV21Nq7tvEUm2U9r782ZzWGUqAaamVQRcR/03YrLuZk3ApTajG28j8zcbvcff/y737++ZM6366X11QxVsa79dz+s9zFH5RZpUa35QvPGgg6Hg7s9kATqIaZgtMqlgIQAlII5UJd9fH6/vBzPP76c+4ePK7DlfNu3v3z5+r7f13Whm5Ajh+UiqjXzxv9OUkSg1O0AwN3Z2mxOEv+GmTkopKTMhMHZzAwPeoCgqhKS34FPAPQEgHBA35XpO1ahqs4fXj4eDs30dV4vme/XS0fPOatKEp6qKlNVJQksSaWQTCKKDpKup6oaY9iWvfa1yt0VOca43bYOO3nL9QDAaTSplJmFMqN1X3o/rYdXD4x6z7xer41kM+9mVbFdd+WdOLXVD4fDlldWKks58WRmkjKzqgC01pbDOneOmDMiKgsEkBJJMyNpZgAyE4CZ1R6N1nvzJm8EMBL7CH7+Ekt7v/xyevHzy3JOYGcFY7cIIykpIs3UGiRNw0NV6Tf1dHr90H1drLmzmIDgcLdOm5hFsHW5JjksAFhjOg8lBWsobvVy1YcNZtnpU2wwZ11u+Jc//zST3Q35HR+s2VOWUKUxY7vH3Pf399vbt/vtAoDFnNUOB4P//Jeft7fL37+//fgPv486zdi3uW3bbRv3KFWNPW7HvIWPeUJrh0TztvTWnGQd9xmJ5ofF3UvDNRtk3VZyMSOjoBHaZ7EVltCUUW7Wl1PMfdyixi3yl/VwWE+H4+mUKsnWtRe0wmS2LtZaW5Qvbd2i9jGyuCw9IsysNZuzAGRmh1sBUkslKSiJveGa+PO3d1vPOr58OL6a4f3y/vn9689vX8vsfFiX4xKwqWk1pmVrRkoqyUi6OahM4UlGe6IbAElVJckb3enu3byZd2+NZpRTIAE9ACjJzAiRNDOSkqpKAkmJVajvVIlKpGnbtmNza1YPLGXSnEA94amqIlTVARPJX7wAACAASURBVAgQS1JVKcsEgzutteZMSBExtlnabc6iSwJAwcwOfVkfWqdESqjKClUz78La/bwun/pZjH3WPaNFhC9lDpoiR1f54uuyjjxo9MJ0typKiojKrCqSrTU8ySgCbnArorIKKkhVFCQZoKwYE4DTDN6bNacZfXHvLXPetjyd89zqhdsJfHXIlghW82/NBAMpKQuJyoqqcrgkAm5GGoBMVAFFzIQbDWYlJSpTlbsiAkBfDnBrTvf20I9eRPOKe87QobBkdQBV5m6A+XroFbH/0//zr798fvuH10+oqkjRSDiNAqSaW8497ve8X+u+a84c0wizdloP/ulHt+My7ac//Vni169vy0v11T/8brF2ONy5Xyd9u8/bH5blxx9Of4j55bbdsmiLyuecmK05EvTVzJhhKDbqcPDu7eBo1YyF5mFr2roR27571YfT+fRyYsa8bWOMv/706z7zf/5P//7Dhw/3/ZZgoebX7Xa9zBEVuypa68fji9+36/U9iuu6Zgyjmq+qMjjIZjB4K4YhwDS3JnVX79/2tOu+TN4mNOf72+3LZRvO9biuL6eHXQJZjGKBWZVZswSzpbXGZo703oqICGQAMDOSWTVrppJm7r62flj7obXjshKziU57cIfT4LTvQJU9AdDfAIQJUjFTVcjvkKYvX77Uvq2LTy+9Hg7ramhjy4eqkgRAUpUyE4A5SAEFuAkGb9ZW78ObOwwG0oycUuSokOTgsrTz8XQ+n0/rSnLsO0knjPIqK1hVq3LoZD46byYeDm1sN9OGSmepxrIuy3rw3nu6p6u4tBZSZo4xNGdmmvVlWZKUlFWh8taWw2pmIkSaWWZKQhXgmTnGgGRm3UFzKMHo3dd1Hdt9H4XfaTn6crTWC8jIbQufgbeeaeXupM3ueMrEUQJAUkZ3x0NRmWFVqMpq3RuBpojImA4PFoCy9EaYW3O5c3E3thhIjD3SNZsGQUMohuDZ0V2Ff/mnv/y//+XP//CPZ0Uok62hxBKMJpjBjAVgTkRi7Ndv3277zXkq0lt/+eF3/8t//vTv/vjvPr/9eou9veJ8PnrTfj/fbrfr+239KdTeP+Tr+vJyyzz8+uXterO2VmK/5X5DI3ahd9KZBqV3Yl3ZDCvd0Ihib/A1uLplmZWwA4vcYLtiZKTsp59+Xo7+P/2Hfzy8rDRLxXpaltv79XYb+3W/7+wvx48r3b69fY4BMwCRiQivRGv2BGc5CZhkMrhba2beEdi4XHyJ9Ovl7frtFkO+mC2rt2ZmB1g5ywBLUmBIKZkkkq01sT1I2mNYpCS6yVgPUGYKKSRVjWaCQ1ZFVLNG90VKuJnJBIAkADMjWU/4zgBJkJihbFWAimwGMz64r+vaD2sN1W8kECQhCQBJ67DmZuagmTVapy1YSRrgoLV2WNxstf1eMSl8lzXnzBnhPhN5u6+EOZp5UxGyypjiGItxBQ7NcViamZF0Z+/ujt5a6w7IQSOIMoOBmTnGYHwnNjMLCdKsjMwi6E6aKLrJiJKRACggK8eU5KSBzUzKzEkraw1Aqc2ePLiaR+S2131o36PEvWdauqO1hrWRBKAJjcQDKUOgABSrWM1mVM0ov9O7kZix73Oe+xFGmpepzHxxNQ/Y3Ib3NkolTGpvtR+5n1mBOTSABUDa6/G4vW+f//zrvN0BKAslUMqioCxpMtNUnqmI7Xr99fPPhfzDH1f2pUqV2Y6n49/9/sdjO1dU207nY+u1H/vhvJxf1rZwPXa+Wzsc/Hb/esUMrIt1a3vHu2W715JiJ73JZWVOoNEhoCCX9YBV+RhcNQWj2TZzxhUlRaZwWo+F+vzLF+/8X/+3/3Q8n75d3s4vS6/znPPzr8gZEXcoz6fl5eU4LsMch+OSocwkjd+ZLEqcxhJCVYSRXWTJ17UdDtmPsRw2+RayYs5cImLO2qc1d3NANIBBisRD1sxsTKebCOG7gqD/BoAZqkJSRGQmlDH3cuIoligQBZAUnwA9ACAJQE8AJIIiqUKmKiGAtJeXlw+n02Hx3XKuiz905mEFIAnggxnNyp7oNKMZ7AE0uMMNrEg9QA6ambv33lex1ureqmrs+/1+n25YOr8TIQeMYhYyKEPmCl8AKaRszZwmc/Rm3pgZllk1M6ekqpIUkfXkQGZOzYioKifNbFbOOSOiumCkG0gzozWnPUiKCGRJqkiqDBW5Z2ZVARSdVvZQXelsa2Nli4RekSExs5uRNBLAANLKzEgApSdQ5uC4InNm7FWgAZCUkC9o69K61yiYWKiZY47TcKzEMCYewita7WuFYSYaG+VVOC/nuO6//PNf79dba410gpAq0yQUZoy6XeN6q/t9vL+/ff5yefv28cePf/fHP7SXV6xL7kIkVMvpLEbGB4IVe1UasayHjz8clv5xfLjfx15x70d/4eHY1sVcrZkGqdtIGuEQDFRz+urKUqiYglVZ7ZXcz/t1WRbS933PlLubmeC+7eeXl/XkETHn/LT6spqg49FfTuunDy9vl/p6zYjRrS/dlTOy1mWdyjnCfWWBVLDAkrQzUrAKRC2RK3A8nasvW9R6Xo+n180+x4wttuPhgJkau9Khpm5QzLmXggagHuaccKNsjLG047IsMBtRkkqSkc2LeKBgRDM30FTNYKCyakYk07yQstITfqMnAAIhA0yqh0wBMDMYzYxkQZnJzM7+QFLfwb+jWZmZu/M7yQiAAAEUKdl3opiZ2xZLjQ6s63qNKwAzc/fWWjcnaSBQKKlSkay0yu5tMT+aXTNZFRFtzknMOUfEzBm7dnKEWWZKqofIMTc8kZQ054yIqupm1jwz9zlGTDWZuZkBcHdzc3czS6CqJAGIiG74LitiRGWCbgsylGB6q37g2VsCQ8xj5R6pkkeSdIckm7ErDPYAQE98cioNrSyhLLi3tqytNTM7nI62rGlA69b7zIhMm62Zq3pouoxCscRKBzo6Vw7mHBrr2+X9n//vfxrjfyfZmuNBqioAEh/2fZ+3S11u9/f3b18+b9v2j+d/lLc5dvUFrY37RCRXZvG4/p4WkTckKo1S97UOx+V4GV++2TuP5+PhcFiKrQyW1z23YSNLEFSlAspg6+IRyFIVCC9gRA3pdRESpdjHLKmZoRAR49uXf//hH/74x7+fum3jTvJ0OlzvF83NrF5fzx8/8h5XlmpGxrjfr6Qvy0KyqlqjJMBmpVjBHJhZXCowZVGLW1/Xu3C/319ef1jXtbuPGelQkTJkpSRKcFLbfo8ICQ+Sqioz3TjGwOnYlsXdYxtRJYGkmfE7kGitHZZlaX1ZFmcQVYpKRiDMM7OqJOgJT3oCIIgwwkFJlASA9Dnnfd9y4qI9sa6HtQw1J35D0n5DUsqEgAIJmUrfJVpr3elp9znjNlP3g6mt6+VyGWM4bV3Xw7q21pC5bVsHhMrMyNEKLDmxNg96A6gC1ZIW8AwIXWjh59Eams95nGJhDbzRvqFWqCeq9/UY+rEft3s7XZfPP72db/2ch8XY161Bsd8Wr13zwBNwMlrVDfHeFcdqL80v2+zrj8jD7/rxsG1AhZn4KpOd7w5gaYZ1Rb/vexirNZiqG12BmZCdbZmvOUORlAHKqqmC4aQjCF9KGlTCwSVsQfVzOBuDMo2RkSmZMMcNZm6i9rXj08vpNO+LHw+/bEDtvNMhx6/7t9/1/vnr/pd/3v7z//Ef77f/itPh/uVyXF8x74hL7unjitpn3O63L79++3r+8HF9/d3y4VP3BTPmuALg0UmenNEv3dyL3Q49m5FzH263y32OXTXt1E9c2MxNGGP8nq/NL365bSGYkQTSKBZ6W1u3mRhTY44ETXwbI/a5J+gHY8tfbh75clg//XA6nXtvmFvVXjm52vnjinu8fzSbGPGnb9f3L+tx+fTD+ccPH96/3G4jUWato9mUnDAM49q6L0rLvQwo3xVl7osJTl/p65hZJTsc/Lh+qNPLcjosrXdHd3nbiwbmHBk7gOYeESoej+fmh+NaUErLl+sd4MunH2L/uXUsIkvb2PcKW+xwXs7L4eBcf2T7tKwfl1oWu4Zhaa1JVQEnlaiEWVMxSqCRe4kJHpZTziLoaDUHl7b003FZM9vemrMja9tuseWh6oW4RWb/kO2YWQuswTuaqu+BLSIqiOnYzVtb2lprdhfz3E8nlqbq/2MKTnsladLzMN/PEpGZdarO0t3vOsNZNORQtCiQMiXYlgEDBvzN/9kQYIgQIFoSTYoShxQ1w1nerbvPVpWZEfEsPt0j2r6uKRrGcOPkyqVqKcxxKvjmMZPMoTkHZRtJGEUJt4dpbXfBhKKZySAiYVIi5mwIDUe6IXZET9u874ROUESn2IV4EQ5f8/w+zw+0P3M/iqdABMRQzrpMk0oREcqMiL630buZeQYR1VqXj2qtrbXhtu/rbvsY4pIBA5fUIE0EwEkfMTMRMyczE9cByTRkZiDSBAKmy27MSKIgdiAy1JkHFYfBEIhAsFCpxhhJB50NyLaOtdkI99QWVybEnOFEzEwFXIvY3r/57tv7+0cwq1aMICK45xgxxt7HC+v96fx8f//Yer+a39zc3ZUyAYwAwPQCQiBmNgQoQQFEIiIQOSJtbLskTldXzBwRY4zL5XLeV9kV6bUUMBnS3ZiImZ7PT54UIE+OFEtJIiTft6H1ILowFUQql2WW03GeZz4cDtM0ndeHbdvcfZ7n3sy8mwcAIS6qKh/MVed5HtlFhEVrRWaG2bDhoEQAAYCZASYiVS2B4I9EmDmNMpNIiEhESinTNKGIgczhEZmUQSJZSslMJANgQWZGhJm5e4wR7vkRAEIU5VpVCxJm3pLFzN0FUYhIXkBUtZQCHwDho4hw93iRkQliLaXM85zmBRmNMkN+i5mThT/IcEqoahBlZACID9w9IihBRPIB5IMUEVWNCLMMBDFrKazOYRQhIsrCHxER/kFmErGqCAC3zGQi1cqAEhdRRGpEAsSsQsJZOBp1ghqbF5iKs4LEOZqSJoyjL5AiLJ629av1re7bPG6nYTVESdgLhYoIJX7L3fd9j2EARIQ1RKR+pLUkEBGJyAwwUFimTE5jxzAaRCQJB/0WEwHMFMocQZwRADGrMhFr/eyGVYgoEs3GsHBkgGmIAYFM5rIc9Pqkh2kWmbCEt/H4Dv7O2tn3jsvQzZMpA8oiwrPoYZnY4utvv/3lL3+N1FIm74NJEGFmYebuFjHcHp4ev3n3fkQux5vb15/VeQJTRCQRi4ApARQlOJEQgTjCPMLMulkv4EOZZilSy3C7bFsbA8xFUIU7Z3MfzYaPIjrNRbWGhXUbHo70DPMckVavJGZfOfuY4cdKx1N5dTddTXp1tUxTjYjL5RIRp+NNb7Hve2anSFWd53mppQrHVJdluTR7EUERWWvlUihrZ0lEhAlpBpklETGzKhszEalWZjF3M8MHLKIipZQJKuFBFC8y4R5KVEohSGYSEYAIuGdrYwy3fWB4BDIpPxKRaU4VmG89+kGqOVFWZiQzI4mIQcrKmcLEUpgVYIAAECSRlHhBgICYwCAm4gQnXiixi1RRT4hIKcWYMxyAu5thDBtjRAQRiYgyREQlq2jTIOEIN7i8qCw0EJaZwhAhYWIQAZSJMHhkJgsLlDnCKCIEYObspuAiSHOFB5IllagALDnYyd0jQiRYAuyhyGwqBy5slMqunFfeh4er7eqvQYdESSGn6JSm7m6WB61gYtAYIyKKaBXuEUnwCM8EQCBm1lqnZT4c5TDJfKjGbFuSG1GRQAQl3JMIREGUSfhvmJmIhBQqUhR3t1pKrRPLZAkPWCTAZHBPewGU43F5dafHY1ahnH0/728XsPSAtcdmaMMCGUBVZYIQT7XKYbncP/z6V1+jGZZ57DtTyUwARCQizBwR53V7vlym5Xi6u1tON6wagGeyiqjGCySYKBMIIDI9wmy8aGa9ch00BoyCMohZ58PVKUF9ayNsjLaOdXSClMKiNaiDnIRVVUg92PvIPka5eXzc3n/zFnv78u74+nun69N0fSW1aJ2YKBMe4URUa2XmiOi9t9aY8jhNy1znwkgppRCRR3i6e77QUoqUTJiPTCKmBGVaRABg1kzKBBEB8BeWAJiVScMRAQTcM4MiIDylwyIzqFQlIiAiLAnubmYR0Xun4flbjghkphJl+mgXYrJy4FyIQAxhgIIyI+DuqlqEM6mUIiL8glRE4B4Zo/WNtr7vpAxARMI93NMcSE4Is4gOEfoIH2WmmfWPzAyZQgQkIomIX4BUNcjDgzKJKCKGm0QIiAFKIAweYcNhbr2QZFAg3CMjiMjMqHdPYSoSGL0rwJwcJJxFssLcYvTwYR4SWiJsZLfIZCmlUBFdEkdlBhn7zc3xUelVKUsye3pgeAYyzK1bzMEpzOx9uFkhSqJkegEgMx0ZSMsgESm1HublQPMyN/DgzkHKgLFZuHt+gExCZKklwkDOrCLCIlyr1tJnrWWqyyJaC9idPDIIfSTccwiI6DjjONP1RFoSklp8reMgYypbpVZk1MnamoASI3xY771cMRvw7u3j/fvHux/cICkyzCgzQZGZw21rY+9jJF69fnN99wZlBnNEJJGwgCUjPVMT7glEhJnFGD76CzMLRFj4i0BmBCcqSWh93B/3rffhBkhZiDW0WlajyTlTM1NG0j788TzWvb1/fPf09v3zt+/upun45e1nb06318LS6jRlRh87M6lWZgbYPd2ztXZ+XrdtE8ahlqupKlsppdYaVEey+WitWe9FqBF7WISBCclm8SIzAUSEu2cA4AhERAZKnQDe9zZtE0/FM1kqU6pWBGdG71ZeVDH3MUaRKYPMHMlmwZ6ZlEFuiJ4x0jPc+hiNhZAlocjBGUBwIj+iIH5BGpQAEwRAfkAfJPzFMDdLUiESYgY4QYnMSI80Tw9E/hYAAogows1ijOHD4qP0yExOEJCZADLTMhAOhyAAEFGkpUe6p0e4uUtgxDAA7t4dMGdP4kyLwKBMCKflWHelYCIRqiJVZbqslkI9c0SmEoAMjeBACWiSCM+z4EbnimDiN4fD26BJRCMywoICDqVSymiNE0TEoH3fW2sybJADKKXUZa7zxMwOjDH2Pc0piMGSyklEKRqFGBHBg8ZIOPKFhaX1cXE3igAJsWZouKcNtjlpZCPrwzNGhEdk5uacme6ZBN+GPXvEmsJVJt8uvt57v1i0QTkq26FESwD5Ypi7r89Zl5kY7949/OIXv777nbtSpraPNKOIMLvs++XFtm77DpK7Tz47vnoDnSIigQQiE0hHBtIzenNGZKaNNAs3yiRmDXYqtZQ6aXH33tqlRzdsI3ogpRapgDaPde0PcZF5Hul7H5etP637w+Pl/uHpeV0v3dnjJPj+51c/+v7tJ68P82xIKkU92r5DVed5dvd93yOCWW3E+Xxen89TPRxqPcyl6DJNu6p2x4vMBOARlOBpJlb3tPBwj0j8VnKCMsjdIwJABNyMpuKez08XIpquDtBSp6pBTAVgAGMMszLNJRFmwbyAOTNVFUBmAogXJuEaQeHklojkIswgRKYnnCKJSMBKwqTh6enh/00EItLDCQmQEKtqiIoIBb+YVKoWZaFhPkZrjTy9D3ePCAYIH7h7CH6LE4h8gUj6iBPDLD8Kd3ZAwKpKiUhkUAKRlCAkJwiRQRHhnuGgTErOzIggT46AhY2hABgMksq1lEkLkc5ChSODjdh6WubkqMMVFolSRa90mnxQBpHuYDjIEJlgZE1ZaK7TRh0v8oPRP6hmxkFEdZ4Ph8OyLKIKwNx7yz5yWDYP9hhKKCRRlQYgMah0wBORbumD9+EZRgmijMiI7g4aSgZVHVNl5SAkBRGB85gzJdLSLHw9x/PjELIAqbp32rbyeNa2sY/MjKQgOIBMJlKwmRFRmcvXX739T3/1sz/+k59KXbB7phHg7r331lrvvZkHy+nu1fH6lkuJJGYOgnsIRQQA9qRwJpJMZyKV5KJFJiB225RBQGGVPmLv3MzP20gKUgf1lHXE876vWzOzlLH3vm79+bI+PK/Pa1u3NjIY+OJUfu/7r//gB29ev4L7o5lcHQ+1auYYw0uVaZr2fSdMwgogM20MH1YOcrXMV9O0RlPViBjDg8sLZqZMRqBWYrjLum9uTkQiwpxCIhAiyiQkEyQzbXhrcT4D3j3GMaMerirAzBlEUiQT4DFGxBQRAJgEzERcSmUWIJGUifTKWSUrsjNrKVMtLCKlsCgzEgwiYhIiQiaATIpAZuL/QwI46P/FL4iVWD5SZgA+DH1QIuO3kvFBRCQSgKpWUWamFwlmFmERYWZ3J2YlbYSISAEzU6YQKzEzijAzCotAVNW9CZiZmEFBRGBRLQXCEaBM9lSACSAmkaJcXr/6hHQy1nPv3fuwc/ZLtwwqPTjNJVRKLVwlB8x4mHoO94jACwYVaCV5AYoPKDPNDB4AiIhFSim1VlUVkQSIyEEZnEnuOcyMFMysohhM5EIiTMYMsRfdZBJrmsMoEYHhbpHhTutOKtF3UjgcHMwg4f4YwkyGGDE8AtQRw3PYIKEPPHVP6YOG+7DITCAzC8s0Fc1Ray2Sb9/e//znP9+2bVmO9IKZk/EPkpAAEU3Loc4Ll5rmyYSAuydARMkkgIhygljBoaQoTglmHptjdG+jW/ettcu6n9d+Xj3QLNcez80em12aDTciev/40Ls9X7aH83q+tJ6REML02YF+93e++MOffvrFncCe7t9fbu5uX33ySsXNKCLqVFS1tcbUpjpHRGYCYOZpmualigg8MjMiMlFrJS7M3Lat7ztYStWI8I+IVERUISECISIAmUlEAMxs2zw9rK9ExHWCTuGISHcXKZMw+XBPd89McNILZiISESJKgIgAZDBRYarMUbh8oFpEpmmqVUU5mRkJIDMjglkJ9AFEREWEmQEQERIRkebpTiFExMwEMOgFIpMTkcKcIpkJIIEEMjMyiCAiqioizEwU/EK0sDAzEPoCZTAHPF8gI4I4mVkZzFxVRaSQhGhzh7BqlXSkE0FVp2nKiBbJIACaHoTJrTdrMrVNp1qrewRGjD2pD+57jH2sUl/NMsW6Z6SNJn3L7fLE7QltriplClY6Xs2nw3MRfXrPsT6c311NdwWTDPX9IvGEPWW+neSaeCLNWmMCrmKmoO188S2JGQJhcZBwreiRmQCJhLI5TMhVbadkzUIxLLqRRTXLzC3fAlxBGjQRIZlSiMScrXWLRkRFOUOog5oNpb3tXGnWCuEp43bg052f7eBARDzb2ivPp+Ojj1enV1+vj//h777++1/23399cvla68izHfL1KrtojtiXm7LlShqZGSOQCguzDvJSJSjdI5OVubUmxJwIi1JqEd33nYM04KPZtj29f3x49/z0eHm+rN88Gcky9lwf9/XSRmSpdTlM7/eH83nl+doJa/YZVWBXE/3PP5n+0Y9f3V4fJXG+rNuG4xVvz+d6LP2DdnVcCHF+98DXfHy1nOrCrkWuky4d5+nK6pzxhGy7b5daryjDw4nZEDLNFQMj2mVTklrnNpIIUnnzW7GsIbSbal/ALnNPasOTu1O8t7NgnufrPZ7XbTesNHnLrpNCaOUQ0Vor3bS2NZ7hNq4WftpaSow0rxeeSGTSYRohYWHKeVOGaJdcW2bONKsejrrclGsu59FsWG+jb20bMagY6zjYmwHziGbNcm3edAwuyxGv0rBhhMTM5KM9bO3d49PT5oUwVT1wXYMl4+rIxNGjZ3T2PX2v2bbea62Q/UqPFWNmTaUBYx611kllogNTgcxRp64yCAaASaSwliAyJUpKyoIkRpdsZsN9rpNuoy3ONnrztnuXq2k5HkWKTPX5nNG6WpmighIAEQGIsAgKcwE0RYLIQEHKRcsM6rXWsczL1YGTDsu0nbd168+Xy8n7mOZQbApfSl4vuF76pJTiGCnphJ6e3UjMOSnHZV/BxKQiwgwRUtLMrJqZlA4f5J28iw919xnGAqEXmYG0iAQ7wEQCZnrBTEiOzEIsBJCAUgHjlEpW40LrhtIRI7GyHrS2YPaMNj6Zp8ffvP31z37++3/4g7nWkb0e6mhGRPOyXN/etO2yta6qROTD+migsOxayGNkUDgsJczmuVIizAQUfX/cPrisq+1btLE/bQ/fPj08PK+Xfll7XHIf5/ebvbu0ln44TadTiF5u767vn8/b84Nt2wx/dTW9urn99NXN974/v3rzWogv56d13SM8zWNE35u7qZCyWB9PT0/M9fWrTyzG8DFsE8njoU5TCfjet967iGitppKWEUFEwuxmROHIiACFu2WSR1o8JTF00unAc6QBM1PV6OcxzGPMCx1KuV2Ww7ywxfWyPDONbsxUS1WAMzkiVqWuDMDJuscIAFLKJKpJiCSiWquWwiJB6Hv3wYSiMhWaExUeZhZ7926x9eiWw7JbdoNhRwOYinLNGGQIACOjh7sjKYMxOLuN875dtu6pSghis+hmyeFGESi1ai1ainJY66BIJim69da6jVIsNQkJmFkfCSA/iMykBJAAiKgyzSKzSjGycCFU5VnpAiZKSksMzUwSBhMEWqUsh8PxNM8zJC7t3rbm2ZJGIXBYoQlI62MEipkmZqozu4SUpKXUOs3Kss5Ln5QZWnjS0qmNbX0+P172rd3OltYovFLOYlPuNXqM3XNgQNkpKUhGRAwbe7QhIqUgayoxFREGM1fekRSgDO0m7mkjIhD+TC8SiLAWAQ6jyGQEBExClETICJkAEXJjUGYQfCplOhXqtD33i8vFc09ymUG1Gs0YEvHJ8e7tr77+83/35//L//rH+mpe96d5LkMMIqfTjab39fn5+cKI9L57X7ehylqISISYVIq8KGdv27atl+cCvprq+vR8/+4dMnuX6NbP6/O7h4fvHtZz2/axX7aZru6fLl+/f/5m3aab5cvP3nz55SHGQ73+8ptvvnl+fD87biZ87/Xygy9f/eDLLz+5lcPhcHk+r+s6xiiqAKyP8CnDCAAAIABJREFUzZoIHU/LYZrP5/Pj/X0aff7Zlz1Hs7bvF2I7XR/mY237WNu2tZ1VylQjOeCUKcQvhieEwuHpSEZEJLkZsxMJK6AjxBNhE+GqsqmoUMY0LVWnQqWQzqxLp7mBOy8khViGA6izDoCoEshi9IHdHICyZ/rw3q053CWH5u6Nx+XTnCPZsxDVpGKJ4TnCM5MTRCREQqwiwkyEkcFCXCKFjd3AAbjQDkdEeERBMHvChbIidkTCLXogkpTLtMx1mj1jt7H7mNJb2Lm1dZM2BqSkgqqWWrHErFQIlNZaG62PMdJHZhKxMLMy0hiiIE6XDCVIGocTO3IQQjKUxtCeGaiguXCMka0lgUaL/eL7GWMj2+a4ljGKCtzRumdaHyWJg0oQItFN+pDRmQb3ZvvW1gua5XSsRbST7Vu7nPVwlclTx8F8aru2TXqQX5KEvFNCwEqVQr0NXxtDKAmggJsNMqhyMjhWYlHRLJVLCRILBIhGxwsPH8kUAwyiJCEHM4FeIDPBQYAoxD3Zw1MyqchhKoeh5Tl7s5ExXJBTBIf1ueJu0v1a1r/Hv/3LP/+Pf/u3//Rf/jCrtHBnK7UuOgvZ9O0ExOXy3Pe1Gc3zXKpG2H5Z27pNZWYu4XwZI8LOD4/b+bkIk3e4TdNE0a1dzue3z0/fReyHq8qau0XyToc+nseZGpbD1Rev7r6YH94+jW/PsV9mxutPyid3t5+9ufn8zenz13OneHg+P90/tK3VUg4Tp8doPbOVInp9msp8oW297K3ff//5PBABb7Yix7zwstRm4zLaZj2YghCZ+AdhPhIKDmREEIIyGETpQlyAAQJgkW4xnJ1K1mtZysRWDotlXfdMyt51PCU2nUiucMWB9BCRk5xWYRFhpsxeMjG23hvBH/vl2fdbjKHRNJ5j37vv8C+jPPSBRtrmM1mX2AtGQRZxAJExaUwaRaJKKGBhFJzKMDClEAUg3BHuAUqCqGot5aRF5+XtN6t0cDInmHiZ62FepjJDGEASWCWJIsLBrCKz6p7MrEW41nniA6DJ9whQEH4rkASP9EB4jGFmYSbuTJxG++ZRhdyVsyppfvvoQelWztu8tX75Li5PPk3cLofzhYdZYks6NtPzWipF69F2S/I+QsR79xjUW7s86cPBcmyxtcfvxv1jrBtAmS7ClSkum90/XpVjwmaTT5/Wzx8v3790G8jANWEeRluLqFmSlbhR6SmieOGZI4yMJUJZlMQ7qYgyFScRYhIIEZQ0M0HEFGAiZiaBsHsSQEQgi8xI56QEURpnAIgI9pwVJ6FXSgdvGlQyxHiJcRXj1bx8upRfXoVc42c//8W//rM/+0f//feON7ft/SOR1HmpwhibiLj1x4f3d5dnhy43J2FcLpdf/+rvH94/hvPY7fHh+fbz73362ZvDNO29vb88LZMcr+ZOTQ+49PMe77s+Hz+7evPmk9Yhv86LXz7/9PR8U9/+3F2yR+7GT5f47jd/P0v/3g9vfvqj37m5PlTmZaqL4uHS33373dPj46GU03JS9ra1QiiTuFEf1EdY0G5pbX142vOKUjTCiGOZJy0c4JE0MpLQejcokRARIn2MBIEYIHxERAIkUwk1lJo1UmmwbW4Xs4vDOVwc7FE9yjYSkt3oTOWZmIhYaimik8hU+PZ2lqaq4JyoyEEa9oeH0TB2WJfALFyEZklJI3fKNcajgXZMi62VUmAlfEljzkxXDmUX6oJBGQROQ2S6cylaZJKStqVlF0MmCSlRKUWmqZR5LuYrjydnygJ4QgiKzNEBZCYlhLiI8EdF6EVEWHbrXdUgqSpKfPxoW8dcqzJH2PAx2nathUHuzpGqWqsSkQ9LSiFepnJEavnqMTcTQl2f58vlgLeZJCKz9Zv1+RqDGGvjY7bqT7wkzlusLVhaa6KaMFaAbezP63uW/b57s8uDPFwWz8NhIkGYw0Z7d3/+5Vd3eyoWifrJ1+9++LBdUL9cFLG8PvDdQLx7bqI+e50ibeORIR1IcAKRkkRghgskiAQkTgrSCJYkJCE9KONFWkbPaMGWmZLGSUzsicyMj5ABmAfRyEwnmLHjutvnQT8mCqW9u3CfgEL2xTS/qvnE/cvT9O2v2l//u794+5t/+eNPfiK0g0hKErmozvMsIpfLubdV69Xz+f4wzYQgRFu3x/vz17/65uc//xXq7XKoP/npj/7oj/+7H/zkd7tfQD4v5eY46T1bXeWR7u5eff8HP9r22I95t7+/6fLe3tJfX95/e/n69r/c+A/KmH74+asff3Hzg88/+fyTu76tl8uFlCx8a/vD83m/7NNJicjMrV2U4vrwqaXtLR4vbd2zZ7m0fr/1OkskM+txno/HQySt3S0ZTB4ZbkmsWimRmWaWpSYLSDIt4cLEzJK89hSkeNYAuWXvW7uUvnK6PO0pg+Wk19PEV1UC4uOQQwbC3lpcz1cvuHKr46guEu5OCBXsTM3CDEW5Mi3MrHpX5ld1PmW9Xk63p8P1LFfzMi+HWq+66MRRslXWUJJCVcukZRJVFgAFIwKc5SASqAfS4Vu2EUpapUAkST3FMi2omYa5DyafUDyh1sWlkrOnJCRAmRKoJJ24wRGJCFCSG5txQIMnkDIVZhHRD1gTlMmJOs2S0OHCXrXOUw14tIbIiYuXwwGp9bszzo0VU99jf56IezNmjUjaNlXSgm3zOu18MVoSj5dszWr10TkjeQxmym09v1/bKkKgYf0yXyyCC0v3PmxY7+evvuse4813klczLfGbX785P/1hmc+3r8mrTXFrQe/PG0in3OugaOwbZAAgIggTEYgAZCYlEztJkAACZiQlESEnIJAONx8RRhSM1NULyECDyEEeEZmICElvTEYlh/EIkN+2/B0rdBBl3vddlVUQkbcHvmX/yYhPy+GTxf2Xb7/6i7/78U9+NOUhy2xyRkap0/UHxwjLdFV+2tepyO3t9fHq97/85Iun9+uv7r6+Pt79X//hF3/5f//iZz/7xfWrm9//4z8wGc/t8ZNP7q7mMr255ePy7u23p9Pp+P3vYe/ztk7fGh76tfVPA3Pi+rydVrs+3M4/PUxCt8eF0ranfYwRqc/7+eHxeW+NhFUVIESGZVp25yDtructNyOjso7+/rndLPM2gmR68+b169vXY/jzebNUEkFGeIIpmWD5gkEGBuBIDzAnixRhS57NzZxHokFpOeSFy3Y1t6vNk6NHP3qehp6cDuyj5Gt+XuXcLZfYbzJOhJpb7dtRSFx6azGCPW83wwAD1y5XW9SnNs35uvEP6YqKvJ5vbw7lqJihM7Sl7kmn7su+X9EpB6Wxu1xcrl2uXR6DFJlEzFwT3oN5lMBErIGZVcDo7rmzIR2x7uh7hs8CFBmtk1Gl+Xqqk+gsZRKtFCY6aTGRhuQIBVWmZFVBRWigOC6Xy7qu1nczSw9wUIKIIkVYqATGcGIHAUri2U1KYUi6Kd+vcSGuDNtoX3OcswXJLJDabJrLNJXS0sM8LENi33NYMMcYHbnj2aNkcHb3IOFUjoxx5VNL9942ivAM88v9/cP5sj28rblcyXF793Ym+0z0zXIVXp5oX0bCWgRGLyYW48y+cXEQMauIgBVgi3R3ikKUJGBJlmBOlgAicE0IkME93GGJECJZhyaCeBAbkQOIQGaCYxe4gFy1R026GniTdTkdC6FJ1kI8yR6jHKpK3PZoNH3x6vBu39/+7a/x9oy5UmWKC4JQy9X11el0uqxdQEXF997adjoup1evTrdvvvySfvT9n/z0d//xF5/9Zln+j7/6m//6H//T3/zBv/gnd59fN86mvJSreipLH3V41snKIbJiOc45nwg/vHk1/ZNCqJ+8+uL29nap02/skSO3y7C+ruvZIcPs7eN6f3/fez8th1KKiDCEP9qaSREnNXBQCS67xdPa5l7GcGG9vb27Pt28W5+3dVgQmJgZScxMRBFOmcwMIMH5DxhJREJc6yDv1leWUWieMeZ5AHhDRKp7dNa9+kPdfbnCQeSHYz8IYsY8ycx+FRsbKwaOixJ2H33vEiojZqpTmdFdzxvKMx+m4zremEw8fULzOK/CQYWUlzhUUjkcx9VQiU6W2aNsNu0+7T7tPltW0hBKEA2PvaewAldaGTSTUubeO8wVwslqqRQTcKiMIuc9owesFcnsZn1YHyPMWo9h0aNvu3VKD2EksYI4kjJy2L7vrbXezUYbY3RysT5a23qhwkyUgeZOYBby4LAggRn23fRhu9cGlWRKIHevoTBOIqdJdsqdBx107gfJ7E+hOSXVy55Ep30gihIDEYiNkeZpkZmegJm19/tyfdzDrm8OT+u5P6xyr2U+7E6UukUCebUciIeZ9cxehTiInh3uOpxGsa5cKCg6CUS4MCQiuiaBrKe7B1i1MBcPaH+fmYwEwCARUnJmHnHOTADMLCJElJkRsSulE6JF9m7Ukihxu8zHmMBJbz5zhMKz7f7ucjxnF3lNzAv94tuHd//nv3n3z/7g9f/2P2zjqe6VFPDoTG++/NS//mrbv717U07l7ubu1Xz9GmVBILR7+sRXfzL/+Isf/u9/+m/+9C/+6i/+/b/613/4R3/4dH6af0/ks+VwWpiuUc7n1t++PReaea33ZwVe3726++KLm8M0J3ZwWy/vl3YpUrendXvuvdFzx7n3756290+jaNXpuNzcOcyilKu7PcP8Ytv26s00Q0ZbD0Jo4/7bt1989rn1v+flfPwUOXucUVL6u0eLE2Jw26bSNKOFu9DWTAjehiBHugdQihN12MSlklO2b7/5+mo+3NXj906fHSZedKsMW8/sfXrkpdfDGu4+HuJGX5VSVHWaJgTa1pZlyaeWObyHSH37/t1JtN6e1nWVJ9W6dd7Gto/t+ShBclmz3VzAKmOjPe5Dnwbked387XEcLwyKEU9P56+/eXv/8K2WPM7awXOhKsPW/USowYXursubejwQbYRdXcbOikmqJ2+qmxyZ5Y6i3BTlOqIe/vPbp8NpOy3nE7/a0bbHbX3Mp3vsj2b3tGTu/XGz73B11as8IKq7Qg4iIajtuexFy9R6Dkyf7yvaZgkiMkoPZgYRoZy8TgOd8aRfXU6MZIJQAsG65EcAEqCPAKg/A8hMAJkJgIgA9Ax6wSkgIAkgIhAtEQFANElaeGvju8fz++dup8+010wUnQA2szkLM/cpMj094SSgBEdIRD0jC0/CQsRErFyIJF88O5gy4U4glAAEmSn0GvCIyEykU5AgicioAqAXSRT0In/LQC+SiYTACYBATgYDQM5JEAbrHDVbmZ37cCt6kJub756ef/Y3/+V/+hf/eCo2fI2wonQ4HO3202115gV+PFzNyuLDYDvADFqmg4Katz/6/LMf/OB3fu/f/+SyPv/sL//zV1/9+r/+9d/+83/+J59+/ppnyPPl+dtvL/nVzXJXNpuurjKUgMLqcB+DpLPKTb327mvCEnu3y2oXI3efalHGi7ARnIT/JtNf7HsH8HTet7XtvZcx3n/3tvd+e31zfX2Tme5OxO65b32qWkqJ8Mvl0g1clmmaPMLdIwIAEWUmM6tqv2zMLCLufrlcuOerOh+P16cjSUYzE/Ol0MLJ7XJ5ukzSVXWeGQjVAUARyxTDyhijrV1LnVNL1kJFpqtoiae2xoNohrcaXYro7g+XVUSC0A4ewiMD760fr8wuKiKkbR/ysN099R9j+Wye5hilailktXMwjeIXzO4XrCxNJQbLzpACKehS504kda4kpE0KC50gy2D7Sp5ifHP/RNnH2veVL898Prvso0bOCRTVqRUVhrMHP/ST6SJXN3x1HXMZMvaeW37XGxEJoZQyl4qpTNNURC1jy7b7oAX6b/uFEUhngIjkyiMiPRCBSEoIEYAwJyIARIT/n/W8C7OIECVFEqeyMPMBrkkTyasq7jWY3tLVO4wLHa3bi8MhM+28rdx2EXnYv6MEJ4S0sCgXYUYqdCYIAB8WEYLBzESSISz5wtKJkjVEKDONIjOBILwIJX5BHMFCH+GjzMBHs9MLJiCT4gP3RCTxCDgXjXBi53Df+6EG6Xm99Olw51z/7qv3/U//7Cf/4x99+ge/I0XHbgVc5uub27JdcDn3vZXT3Vy5EnEmMpOB9KDIZVl0mj75/Mt/9k//+JuvfrOu6+v5uO/749/9fPvmK1I0b23blrLMb453ZV6v1UYKZab03oOi1lK1PJyfW7Ntt+ZpSbv5cCSlvGAwZUQkgTNERUWlZtgY3SPHuvWtWw/qYzw93heR169fz/O8bW3bzQMB9gxWEamj9eFtWKpGgtzdzCKilKKqACIiM8cYpBWRFNmtn3veT/M81RNdZiUqRrCplKUWphLFuGJZllrrvu9jdHcfvROG4C672zlx0kO91lJEaVkYhYgzWqIZgwQFI5DGY2YhBsQp3GL07emdTed362+URYhjYO9Jg29DT6n1lFChqY6ckyQ7mv4/TMHZr65bdh/k32jmnO/7ft1auz3nVB1XVcpx7NgYy0SBIEVCKFfcoPyr3AFCdOLCoCgWkQ24ynJTzWn23qv5mreZc44xWGdblvI8M3E7xA22MfkguhsGYoKQEe9oD0DDELeGLXoM59Clbpd4eP40D0G29e4e47rpvCKFFdJX4BrNfRFGEU7CafNTH5xlaIJLI/bciS3Rl+8jwj02uIu2rDXnLMpD2LaQY8dZ//vnp3DnCGEwk9VbRKAZGSgggQQQUY8CgD7DZxEBIBspJJESBdwBZyYhAlWxGILuHpk88jicV3neisv1Mp83X3Z1FKHbMnPSF7d5owAHM6BwhTME4MAiEIEEIuAEY7BCGv8gwrr3gLESMyLcpOIzBohIGfRZMDEzEQFw94gAQETZmF4EXkQEzN3jReZs4SLi3plJRcxaCRyEnyr2Y0np+Lfx8fkX3/wn//cv/9s/+kOVtC2PbTOlpEM6nmzdPjY3JSUiBBMEEWFmrXvrw7hbr7e2biWVr7740ZQLBx4fHxl13tZqjbK+GDVnSW3dNl4CMR2VKbVVtwoWF47l2+9v1/Uyt82okYak2tZ5vVlQGouI4EUYAGEMOQ87EQKrdqfWuRmBuAXD/Hg6HPe71mxd+u22XOca0DSIphQdrJbKYNS7222pHP6CiHLOqmpmvfeIICK8cFcWSuwdD9dzhOc3dMxjV67n5ePzXHDJOrbqF37e7XallHmeI4KI1nVl5kMaiOi59W2tLJIYFAjzW28gF0RmSiqZhcEg5FJISVUhhLYhYjPr27ZMe4rw3hzm7FQ0nBE0izV4c9yMDC1AKLaf+I3zXGvtS3ARSUoO9/A4jq+I3KT2aGQiUjIXIbV+PZ/78/NqvhFLpF33tDpjbUMakmRp3pe1u9MwyDhyIJeBMERv3QMIUYHwU4F9Rh5MloEMVgJX3ywqSwTpk//M3RjQUAWv1sOcPRChQZlFiJXZWYgIABEBiH+kOpkIC+OFm7sDEIJNxIGth+WBzA+Hg/UudXsctkf68HD5VnoP89khvQvIRCiYIRxErhRE+MENEKGUhAVh/oIiiGxoLpBAtOgNnRuIGEAJih8YARHgQARACAIziBABd0TgBRHc8YIISiACE5gZgAa11pJJ7x0ITmLh3NtU47zEnXha1yt2f//t83/3v/75n/zr/+p3fvxehLflOQJ5wHQ3jVvSbBFhzeE1KAASELMmLa21ENaxFBq367q1NqR8OL26bkspx6kMrAIgayLrrutJ5lpr1oGIrme05/V8eZ4v1157a7Gs/daoQbeI2rfz7Zw47YoKgcJ672ZNSUpKKWvumSDWsVWsDdUpWnezaRhTSt4cos3wfL6tm2uZImhrlSyICCTeo/aWAHdXVQDu3ns3M2ZW1SBWlnEY5m1rsOd1brDduy89H2zEkqvVBVvLXcJxjhh5Td1qremF6kzcm93LLZfyINbn56XXvE0gqtbP3hkkFMJUWHOSkkSI75NpyKhjSsk1WxbzJiLp1fve6raem8xiPpBwo1572eCItrptdTGzIFU9jlpfT9uGp6tdbjXms/i2SzzkkE46qeVoAilTHvZJ94q0Xb/tbanNI4Rz4jwapXBqTcHSolM1G8mdV0VLrTekMeWUeu/WmgEgJ8eZu4UZWsCZoaQDhZJx027Swy1c/4vf+xdhRsEikkQ3VADkwSBhTixC/EJ4AkBEEYHPIgIvZFBiIgJ5mEe40A9u2lQkIoaU21YP+z1171t9cxg/fPrV3/76r55u393aGbEZknWFn0EEApjBQDjAgAFscOsbusMdgBQtpQRlI2oW6+q9MV6QAFiMCT+IcAqAnAEEHICBiADEP0Ag4GC8iEAACGFQ0IvA0s0ToUcAUJJOHBT3w/7a6qVWvy6F3YA/+4v/73//93/xb9+82Y3HtW/UO9A107jLoHBiJhCrSAI4vFt4ty5ZmRWAcBrS0FpTTokItrGkstvVjnmeu1ev1OFjCkMwY9vWeb3Wvr443660oG42r/a8eYPX6EZgJQaLCIDeu3hlb53Es7YW7mgtljXmpc9LW5o3rr22iKAIIiplJF6vl/W2VCuxtrauldzcUbs5RFIR78xMRGbWWjMzZhaRCChpKWVyOd9uqxkAJv/UWELzcBi/3p9yURBB4Dj1Z1Ulom3bUkrMjKendV3LNKYy6pM/Pl1+/WhxvRBzdcco8aJ7AEpbch2Qcs7vJbNgl5hVQDlY3EKSvk1fNZrnmhpBsIB5UGLvoUqOgkitbbVVs07DEjHsjvk4lDE99g+PTwtvSxdOp3H1S+EpBtoSy8TYqQszMOS33jZtK7FxUkqZWZWFytbqausaQZkTkWzN582jwkpUsdpr7x2IYAIwDIOZdZPoBrgwh7CxH6a7bdvWulF3/Vd/8IfkhAglfmGtAwgCfcafEVHCHkBEACAiAEQEwFOOCPeOCACJWVX5RRFKunEYxfV6PeZRqnltz5Tfyojz89/Pz9znTsE8tuYp7YPcEN1b9YowEMAxtAgEIxgQprHk43F3PB7XlCNiXfr5Irfr1npEUARZdLwgYhCYQBQgAEwUEQDoBX4Q/wAJ5ADILeDuFuh4IQFiD2FSYi7TQYUavHPQYOvtLLBwCPD4dP0f/6f/4U9+/0e///OfSCZhDe8eUsZDa42TkijnRJoRHI2sVgPlkltrADeWNA3TNMGjr2veFvMmAyUjMWxrvW2f6nbbbliWRYSW2+X5+ZkholqG4fHjp3n12qKFrGarVU1yvD+lxkNJEWGtpsRZc1JW1d57hHSP3mxr0Q0gduYhZW/du4aTO3r3Zm4OZmm1vVChIHKHEfgF+AURmVnv3d2ZmYhAFBFZ0zCouxtAgiao3Vq3YZA3b+6+/uJNSeKEF3VZ+bPWmqoCeHx8rLVqbHkYh+uRv3/+5i9+cV4jSByivXkgAkFw4VCFpE7yvZfoUtoQlqBDKpOrpjJGnJB2daCltyI0FD0NeWSe7ZbaRlaPN5ctqGGV6EdMZbh/8/orur8bdt/H99t352P0N17vjsN4l+ZdPKK30pFXUydiTpM2VkvMSURCCCqsCol1a1sCmFNiQsbSY+3JGOzuHdoJEeTEDICiiYQEIliI+DMhHiSCzNGRSH/niz+GA+YAMyg2C8ILB8AUhCACMMgZQETQP2JmIrKgsNZ7jwgh5JzHklQ1O9GYbxpVcBvT/bAbnVPzT5t/lGX7OG0fg2PtFMB2iyrVHTAYowHdAChYKGsS4bGkYcjKpEnGsex25W05msVVF6lGc1/cesARVRYAFO4RCMDN8ANmjs+IiJkBuHtEKBKBiII4KNzhFAggZGhWk4tHN4vtujYOdLvkNYPG5HvGu/vdftCk/vjhm7/65b//8v00sYu4e4B0nO6lVi3Zg7sZozMriwzThKF8fHrKOR/vXlX3tfcJ0cIvrb4eY77e5tnWzS6XS6uztdtQaHnszbqq1t7neY6I23U7P5371luNINZUzNvWbhAM4zCVXLLCe3CklKaiQ5JxLJ0uIhKgoETEEE1loKKHwwERvXnvvd6Wba1BTJI0pbauhiiSRWSzzZvXbkpgZlUF0HsHEP/IWodoSZmZyQ2E2nsGsmAqencqr9/uc2YSSFKuR/ms987MvffDQczsdv6Uy1QOBxqmv/3m4+X7p6AEUGo9EAY4MYEt/LosHn4eBwsqSzEmLjSdJkrDGId5bpo4oJV0FNrtkry5O+12h8u3sRKvXpMuDZcuZ5TxNLwdph+9fn045a93h0/pdBu+4/PDHm2akCd/zrG1enOXiExbSgnciJtEZCaicAIn1ZKlTaWkVkZjJ2FyGTQfRlznNQhEilRA1LzV3pp1NQAUwRwOkDCIgsgFs8o6FNcXOBZWMUe8ICpPIkKGaG0NdhFyt7XVPg29d48uhDJoViUi81Z9x8xmdd5Wd0slD8OgqqfB3ch6jipTmlogMumE+dPt27Y+Fb0c07e3da6beiYWiLZWcy6n05u9iLvjs5KmiFBVSSmAGkFexHfLjGVZLhdrLvn+YMttu5y7VXJnZnMjQJXJYY4X7k4E4YJIbhQI/MA6N4RPCDUHsJHUlEIYdQbxykqY1DG0eo+twNTL6UD393r/Rk+v97I7rEjXzf7sL/9q9+rVv/kv/5TX83x+mEpBUOLYvrtSyTzufBhFRnDBRn2LVyRRe//4IYlkVdRZzPa9L582MJuv1lcsi7fNghcjuAjKMjeyPJY7N4thWXO1aWRpibstfQvbuCyd8pbvTm9YKset92diTNNRA0KchtOn59u13VaXK9qtzvN1GZb89NX2ftilkqPaUq+3262T06S03A4F7ea1XVIMGvAQXv1GfCq7HgEWErR2kwh3Z011uZQM9OWUfb8r358322IaDmMZconul5Bp//reAbCR30/Khd3WqxI5hsB+WVvZ/YqT5Fp6GsdToif2IIR44iSZaouGgcaRi/ew1p7N7k9TGWTlcUnHKx/8MDxO2J3205jEDv2p9Odvf/X0xO053tD8LjHCAAAgAElEQVRrZOaYdnoYRGipfb1un7RccFwPd/Tm+NVP735i+/2v1gev9c0gTuKdP5Cu5k5W8m64S8xRFxQdk5BYhW3UVw3Tyld6N5ZhT5O1ZltVsVSMR/w287o1A+UyUcpqJB4TcVrO4c4WFBARMLlQAJMNY5nMTJJqjvDerbVaq7tvjdjYrC3b7NE1q4i4d18SE0VEM9vmxszKwszX+kFVmQE3hoPcwiB0bklEmKlbfdGtEoUqf/z08en5u6fLx/PlaWuNiJKWJGncH5j5eDze3d2pau99nufr9brcqn8GoPe+LIuIzPOsmnpvLwDIZ/QC4mHuzszCSClFb+YOQBkEIJzIBExEgQ5gky4EI1CwIxwe3MBymKZtbd5nwXUC3u3Km+OwH6Uc/XQYXr2a9vtBx2JaauRG6Xppv/r1w3ffzl/dH0HzVqPkHGaaKTTFC/OIILeIsOhCZIhwjwhyB1Ctm5nX6gSzVlvtbUNEYhHlBWv33npb29q8ESLIWUlVuRk+SyJDJhJOJYd35hAGi+SiZcxqKpy61d68d6rNXjBpSmkYBiKKCLNoHs2jeXjghf+jAL1gZbQwayHq3plZRFQ1sRARM0cEvwgQETNXMzhYaRiUKLa1nq92PvcysWgmTdytD5yUW+Wl1636w8Nlrs2rsMS2tU8P2/bYYjaQgcJGAoURGTkRmCgIrnkqcjjIuJcUbrZV6iVlGcchZWaYGcbDkFHquMT6bcPWtxEN2Y+JxzTkYBejksC5iI5DPuneT/W83y8lCSKRXta21W5iqShEUxmHKd0dSlLOHOw96s3qgr7BvQyJmYCwKh6JKBEbUfx4oG2j7uAEQ9uq1zAwpcJCqiB4+AtECJEwRbTWqXdN0G++/XX7rPfae0fuOWfAq3URGnkaSiaiCEAU3ZZ1fn64rmsVkSEPW3sSESLq3t0dHCICYAsRIWI332rdereIQPBteXi+Pfzmu799PD8A2O0O+91pLPvD3SkiUkpEAnBKJWcX2UqhWiuA+MzMaq2998PhoKrTNBCReXP3CACE/wi9YBZ2ABGwAGAcpEzExuGBtnVAQZxDlDzIm1r3ZmT1TnCY5M1henc3vbkfToc8jEqTlVL24zHlveiINMmw12H8u+8eHp77L/72w+vTHwyHL+fzk7pCjSiCCQB5hHViifCIgIAsem8WDiAizMzdo7uTm1nv3VvvbmBYZ6iZ1bXPW996NHg0rz1a717bWpetbc0NSqzCmSFRGVEELFJKmqYpGnnz2qOa907r5mbOzKpaphFA7b52g/BarXWPCCLuZhEWIAIFMZFEbM27CMw7QVi1JGkiRBDm2oyZiUhZpnGs68aMabcHtbX2xeZt5ST72zxpOWpS9KesIrDL+aEu69bsMq9BUmJA0OV8fXxe+hUZWSQ5cdvmrgESsDjxYuERwvrTt8fXX+yHQ3q49vXp0tpE/a7QmIbJowdF2uWSXie7LNdP83pb1useRlwT2T7pLosneEqq48hlx+lQMobhfr+TMqa6ptDLYs6hUypp5Dzu9qfT6/0BqkzKBKu2DVaXaKv37hK91W7kWTtSd3cScHyRqCVqFiDeut1i3byTCyErUWYJeDPrbiAwU9fabQM1Edf/6//5PwHsxnF/mFJK+/vY7dMwTcwsOe124wsSTjyY+Xpb12/Wjx+/++Xf/e3lciuah+wAeu+1b601hzEzEWkePKrFHKgiJJIQYhYUHYIe87QfXx3enI73u+luGnaSeJ7n3rt3s9YjYlvXXltr/YWZ9d5Vdb/fRwQAERrHklLy6LebmUXvDhAAZjazcDB3DicCMyMdenOzCJBRuFt4BaDI3FlCE3OmXpQHTontkOT13eHH7+7ev95Pu8SFqCiXROmEyEkOZbgfp9Mw7st+TEM5vHv47d//zX/4q79+//b+93/+tbRt2eYscJCIiqQgJnN4gwcLUXC4OcLMvFtE+GfMTCBmFgIFrNUX7j6eJFA9qqERm3m0z7bWat1a38I8BStTokhk4pZBRUlEhlxyzs193bo5u0k3b82aBViC+EVE1NaXpkZy3Xxp5iAAjvCASOlmrYZ779FFQyUI3cMoKAAiYsIL7ybEIgLwNE2X1ocBp9NpGDWruIUbPZ2j9irZOGFt1m1ZbtfHj99dr+e+1XVdJac3+UDw6/myLLdlXQMBeDChYjcWCt7MvLl7Vc77/f7du8OXX+z3J02fzg9zvW431A7nLUBadBw0A9lqH025X7Ns87o94VqdrkOa8rBLhUN0okEafN7Mr9pqhhdhdWhHBicKhVBwljSOu/3hdHIXAsHDAEUUCSu99zaf1wg36sbVaDN2Fs2pu7slAQcTWvXV+xZE5Aqj6DCYm0UPwIM8rFtvEc69Q381f3PYld3rL9/+9M3r1/evXsd+d5ymKZiYOQ8lpQQQj1RrnW/FTsvfX+n5b775xce/3nq7Kyd3N2/dzNENwcQvBq/EHlgCpkrDMAkP4ZI4DbshTfn1aTrev9qNB5WcpFzn67JsEZFzNuvzPF+v13mel+UmIgBqxTAMd3d3+/1eVddtVmWPbmYAmJRJLYyI8I/cHeHuIIrNclgHkSgrW3gnMLNnj0RWpO8KXo385aG8P5bjmI/vf5yTDkmDqVHUrDFNMY6l/ERlyuVUdqdx2KWBhQ1se975t/Tn/+EvSerpzb/54n6/Pi91u0bowCKaKSKaGQWIRBAeEAQH4BHm7hTBCIAjLMIpgsKpe9TqZm3j3ivMhIJEo3eYw9zDRWg/lTxpD+5uFGB2XhcSLjIMpZQhi0hjMkc3MieENmvujODeuwUiYut2W3uDXra+NLcgZoY5QTSN3dZ1qU4IeBlUXiiimVkjIqYg4oggImYWZg9PouSRNY3jqFlTyuzaqq+bb71JsVLwzVrm2S7P/fFD35bWt1vbbgNTnz4e9hOjDdmgmC/VlHQafvb63d3dq1b944eny3k1xMT5/eFuN5W74+50p2ttx+xPHSSSON2kaBIaOAp1qaBSRdcIDbltsV62tc+TpKEIEUdHbH17uN4aDcM63LaoK1uPrTXbpKg4bbfrrJu+LhLOHkquL5jDQAq49LoCYNoZ2WrYFlyWuFUL4TSQmTj4H6wLzuf1ttKL4SRwJ3OKIOIgCafohG22CGZum+vrnx6mId//aPf+Z8evfvT2bqJxN6WU3MJAKSXRDCDKmj2Pp5Sn99f69fcPXz3efvPrX398bA3ueMGBH5gRQcRsGRPnoq350qLXWgqr5iTZiTWVPE3Ceat9bhV+ud1uT09PvXdVdffWWkQwaLfbDcPAzLVWACIyjuM0TUPVZVmu11vvTpCcs0iyHv+AiJhCRGDxoveIfiWgsIySinZmH7OUQaeoY8arA7895fd307vT4f6w35fxKm+b2VJRI1keZXfQ/ZGHIae7Mux02LHoyr1Sjb7aNs/X2/eP51/+/a8+fPjuyy/f/jf/9b8aX9+vj7UuTKwggrmbBYyThjCMSFhEIB7mFIFAALVXdw+z1qp3E0TR5Czr/OzNvTYyUhYPktDM5eI3VT2UZFya+bqu1iq5iVcJHvOw3w1TyWAOCrDWeesNPag390AQWQ//rNZOKp1t3nxrEeAfkHYKYQrntXURIkXOwqCiUt3Mu7L8gJiCVZXwA2/9hZmlMuSUegtGZ0TtbWsGzplGS2On06315xufbx6bZ+9HilfH4WdvHn/yo1f78VVr9ul5/Xe//M2T+/5+/wdfvXv37v222t8P33z37ePlvCZNRVg0qySBKrLGSoEINxgPgxGBvHlnb1GX7XZ+evhAT09xW67nuq59kj4UmwRCHvU5dcK8DYc9ao91pdZs2xwaeTSPdbtsqqgnrjXWmQtLIJFAEKxhaBGtNe/aWixzu5zr47ldaw8Iq/4mNCJYICJtq5fLZds2AK/lGOZkziARIWFncgSeFiJKKTlBv/rxfbRNZQlchE6ad6qQLOQuJKUUlRwEQUpZImIKwU9/6v/iiuVafPubbx4dhh8EmMEhIinR3au7/e4oPNyudZ4rk47TVEoZxatHcAGVee29ztZ6eLcerbV1XeOzUsrhcBiGQTKY2d3rP2jr8/mx9U0EyzKfz+feXSW3ZhEBEP4j9IJfGBHesqnQmOkweVbLaqejno7D6XR3GuX1Kd0f8zRNnA6hu0rj4y0sD7E/SnlVprs8TTlnUpZwHTInatFFSIO3bstt/eu//ub//cVvf/Pt/IvLr+4O/8uPv3j/L//Tf1ame6ASCSyiWZiTcHwGBoEkCdzC2cNfILz37u5wgwfBBRQgRqC6N7etwxiauYe4Fp5S2pjEIAhrvVLbNCwLa6aSZD+W03HSnCLCIsBUa68tjKL3cPpBEJg5Ilq3qN7Z1ubV8YKZweHdCLk7hxNlVg1NoI6UyYzCgohKyszcu5eczQzh/TNmPhyO+/2emYEAQwuFwDm4OOl2X973+byQZVvRno64vB3td07pT3/u/+RrOk5lnv23D/LwHX/X0t396cc/ff/23ZfXy/p4OZ+3bUOY00ptq3G5NTK7PKzzzayFuYnXJhrRI5zq1toZy1N//LB+/5vrZZXe6yLrhYrXgZY3BYdEqP0Gltav1pJH9JbATryxR/IkfMiDHoe73TAxZNsaiLxZJXdnBIBa67ZtvWHZ6nVeL5dlW8x6bL233udc3Dsz55TMWu1rR2XmZQ4hTsQAmcM7nCkIidwjAgyQjmLzfOtzs9vJt+NWWRNDmEiYiSAA3DG1VErx3sLKj4/v8j/9w/Zw9ef54fnPa61mRsopJc06juMwDNM0Jd1by9uyCbWUUsm7nDX8aduW6Ft1bi/WhcnZrTsT0W63IyIA4zhO08TMpD7Pc62ViNx9WZbz+awvUqxLvV5vvXvSYhbdTEgc9MJfBNxdiVTlxeuoJeFuN97d6XGS42784v3h/fvT7vRFll5yZ/YN6WK7s98tMZX3pLqj/Irknqkwi0pkiUSmeaSSKKVx3BXR83cP7SE+fFx++YtvPjys1yf8z//bv/vP/uiP/tnXPzlNuzQQdY/Weu8cIEUgPIzpB8wMEWeLAOIH7g4KZgYHM1tEb5vVJkIRQIveTaxbDerQ4Gm/a+ZLRV9qXTe3NuW0H0fUngvvp2GapiDeqvfem8XWrHczom4WIsxKRCzi7mZGbuFRPdw9WBgEwLqDPQLMmpKIOrODjBkq1MOZWVmJyKyllCLCP+NASfn4Wd9WkIsgJZWCTozUDUssZ+3Ljs2zabd7tq8m/Pw+fvcVvt7Nu8wL8uDlZ/fT2A+v3747vj9Nd7vH9Xax5WZzTU5QK/TwfE7J1kKPD/PtulXZCQenWHtThgDh1tYrXZ/8eub57EsTKuZya/z94/ZKb2kneZ9K73VeF/aaqRIkPOWEMlQKSTKM+fWw62/2d/enKWcJ29baKof1F8ysqt6rmXX0zbfN5h6bJBqUY2ut3kI3mIGJtUiOlIxAKWksddA8JBWQmTW3IILw/jBZuP6Dev3Ynr6fL/KANd0ej19+/f7dl8e716IDJXF3TqmkPOfbSh1ZaNrVLfMg7+1PvvD+R66Pj4/btuVU8AMWEWY+jLtt25b5QrFOo4uI2/X5cetktdbeO30GQFVzziAMYx7HUYS2bav1dpu3cRyXWxDxfKu99wh7QUTPz59Cw1uHh5BEX9UpARwxc2hO2DQRT833Ub8ayuuh3B/ixPp2KG/34/71Ud/f69fv07t7Ho5L6x9Xu27WLRWZduPdXR7yKEE8lEnKzoMljbnsAAxlRxzjOOQkIjEWnShfr9dX7+6v2/L8vOx2uxD9P/7sL3/vpz/91//yj3e7Y/ja2CSLMIEVxAJCmHeL1r1bdENYYtJcAuPtegmGqq7LsvXGSt3RV/QFue1OOgJ8bs9tPS917nRCBLVbESsn3poCQlPxYSy7fZqOx8PbbWvPz08WRIpFbaZuIC6JQwEcy2GkcqscUhAZkYQjRFvvjYUpVPh8fmRK+2mwaEI5rPWcK5IRedvCzAWGEE0c15yok243LASedsN+P05TtxoEhMNCWNg8+kxoFxHjB56uac+gfUOsh3W5l/Fuz4fN9Kzpfnm8U3132r1698W7r169pZSv1+uvvvntw9Oy370qOlmP9YLn/fBQ+3PDSv7m9a7tspFM5IltiDb6nHuV2y3m/l4OnT9+8+m3S40gugZ987yOfTzQsJOHvmrZD9RsGPfjIT192jarXKq260FpeH+/vjO6X6dDstpk9WXezMqyKIDdScEtItZpOF9vG7Zhoh0N7pQ3GYbyPt+3ugFeBhGK1laEqfKMKJpUmYjCkc1hHmG7RLWDmVgHXZZ53tbn2+V2OT88PLzZ6rJt73vdH+6G6TgQgpwZzTZWJeroZOZD0vdv3/3Tf/Izne03v/nNxw+f6g96a83Mau3ruopIMElO5G5mrdbWW3dTTcMwMTMRMXP6jCHMLCLuPSLWtbZ2eXp62u1fufd1nc2MOIgo57Sn6Xk9Bzk4nNjCAw4QgYqW1GLw+p6Gr6fDe8WP9uXVLr06lr2mu2na749xmJbDqZYDZOd5EPYsmAoictZpzIcxj6QQTbvDcRwO4JTylIYxHOO4A1BKSgLiyJmd8OrN+UdfvP+dr75M0J//7Hdf7cu7Q/p0Xn/5qw///He/iAiQkARUQBTdevdEcITFDwA4IgCJCDcAzJySllIijEIBfPjwgToPsuMkvdtat+syr3WV8UAU41DAYYgXDs5Jko77XRmGIsIO8+ittdtSXzSzEI0ID4dHtV6b6chMP3B3+8zdOTwAR7Teu3tKSTKBqJtFcO+drDOzJgliQoADTGaxWXPEOE5pOo37A8COIICIgolAwQT3CNPt04Sl5DaOaDVS7al12dbbtdurfcmpeSYSVRz2p9dv347DbrNoq12v8+2ykI9WJOsQHrfbGmrWiUlVMuUSw9AgFBEOe+GNwkScM+swpJS23s0iYBHh7vYi4A6zcCOzaB5uZB0bOjI7FU3D7nif7l6X/bCcr+vlcpmXXqtFetHdIrqZkaRBU8+FREreg3TYbF4rZLBRyI044K6SzRoHUmIwQ1hZIkKEIgKAO0LCiC1cc9H86m7NSYOM+OHpUypKidbeDtZr37JNhtZ7U7OIALNHAKyIKafdbpdTYWb6zMy2rdVaiSKl1FpbloWIALh7KeXN6XUpJaVkZq01d5fPGFRrvd1utdbWNgA5DyL0+PSh976sN/wgAPCVQR7RQUhJNScAtZv1HvAylV2Nu05/OOY/Ogxf5/jRsbzalT2fU9FcOAa9lOkh75DvIt/Tfk/uXo1cAnkcD8fpNJZJUi6ljLu9ykCiuYw5FzMjCBGlLAwEDARo1mH44v70z3/35z/90U/+5E/+9Mv37zTa/THR7tRcEInImYiFAALBwyx+gBdML/CZu0cEMzRxEs45R2/mEEmSCiiYyWFb25a6BKA5Cbsoa1HNstat1hVB06D747Abh1y427qut7Uu81bPt3nduiNAIFb3iPAAGwJMxAIiM2utebcwQCKYevhqzTohCbMEU3XDZh4QZyU2GDwcwQxnaa3dtmaOYZgO9/dJy7LWcDATEYBA/MAQ7m3wmmg2qm6rrTNtqxQMYNYkrOEWYaJ92EnbSUrpuDs939a62bq01mK+VW+rF32xrWbcunsE9+5t69RdoAggFm/d2iK+qrSUo60CwN0iiEAiJCLM7CHhjBBCAikiPMRDwJlzScOUDq/41Rf59RsIny923j59PN/CdTedpimXqQQwcBYL2e2zJW9IOoFTUgOvtbkKRUiYhbgGO6VujUncvfcOhRJbODyIqDNZcFD03jQVzeOhlKGurXos1wuYbls9nS9v3q13r14fwkMCHb13dydiM9tqf3h4+PTt9x8/PXx8+HS+Xohka/VynZdlcXcWJOsvam/7/X4YBhG5u7s7nd6bWa31drut2/KCiFS1t7V+FmEAAtZa673XviEcgKYEeG/N0RHYBV4oSEHGALwzWaBvt6Py7x3kPz+Nf7yTdzG/lnbSeigFmlqSZ+IrsdMQvIfe63gEiKbIpKJlGg77cT+WUfK+lJJSiiAAmguJiEqvLV6Yw/oLj345X5e1tnX9+ssvQOnHX335k5/8bJqGXCRlgjwHNveAQwKkTAFyidYAiAiIuoeYhLkTlvXWWkMoIUe3F24Gj/v719u8qYMouPp+P+0OE2Wucwe5FiFBq4vXlUjJWkmZxVvbeq/ztjY3ZwbTai1IhZWyq7GhpxKSVDRrYiL03mqt7hBiIXXxbtbcNA05Z+JwBDOHd0QwkSoTkYWxipQcHK2FwdI4Dft9GSYHtdYl4CAKDzOHAREQixiTkyhFB1M3ahXzhnmDZtMUJLVFM26cVNJblpp0FHYiUcqAR2BbTbyXNzum5BTCImwR5O7sxBCBwcOtWWvwTdhysgZEmDsCwSQviOHREQpKJEVSUhmEmaAAORJFCsrBRdKe0n7zfl3jw9Ptw9M1pSLjbiDr4ayUy5iD92lcU50vW6sw8xd4QebugIuCKJGbu2sSc2lb9eiOMITjRRBAzB5kjK26Hg93EZFybP356fkyz5fH8zqO17tXa4dCskE3c3RnZutBROtan56ePn7/4de//ubv/u7vfv3r314ul5zzutSnp6cImqZJlIdxnKaplHJ/fy8i1+t1HEdmvV7n5+fn5bNt20RkHFk1tdbNrLXGDGYmImZW1d4bEeEzYo5wYt47e3hsFn2jCHEjUGb+gvGTxH+Qyh+M/HP1aduGrSVOVyst8Ux+zvRA5aa7no6qd86T5jJNYxqnVIakWTkpsaZTykJEZgZEhNdW3d1aNbN+623b1nXtva7zcr1eW9vevX1Vht1hN6py3o0pZ0navRIp3MPg7CKMINLw3viFMAUYBOsdjQIqCAcLKTGUS87umnMcjvn89Nzn2VpD9JJE80BJrvXJ3RJRoJOviX0c0t1hOhx3AvJu3e1F675u/bLUtXZNHAiwgl4gMWsqaSgi5NH72nt3Dohk1eTc3V1Au8+2eouInHNiZQvlpCzucATnJKXc1q0zcS778Vh2xxA1J9aibBAEunULggiBBORbJM6SyniICbFfH7Xy03Pj5hulIQ2krRquLSDlq+FAQqosAiUiJaFgcrwgJOb/nyw4/dUk2Q+E/NsiIjPf5Wx1qquq19vYF8/1BtZYIxjNSAikGfEB8YcjRgIJGHns69tbdVfV2d4lMyPit3DqIH/ieYQpmCIXpCw4pLTJCwKAY7hbc6vhCuCEwUz4jAAckCDAVbW15uwRQcSEAsTIZBDqwJyYU1B2EHUEEAd0Gk4NGrLkHAk7+NnWjMBAm5xBgCFpjWVdlm4tEAiH3ViXNYJyKYyxLEsA5pzFAwDMUJ4xJ5AwR0QHBIvARO4SmOdlPp+X+/vzedbrq9fTtC3DMEw7lI1GPp7q42ntazezXhsAHR+ffv75l08fPt7f3//zn368u7szs2naRkQZp6urq1evXqWBc8673Y6ImPl0Ot09Pvj9Xcn7dV1778S0v9qXUqZp2mw2memZiLAQIvZej8fj6XT65bdf5nle13ldV3ADRAAJxB7qEASUUFhYLMwMAi5r3yFQ7Wc/P2yKpsG2F7odn65eWyl6eamvbvP1m8vrN3TzVb64rhRpLGUzpWlIOfMzFEIU2QK4WovwMJ3XeZlPZr0uc+99XdflPLfWwvyZmeVpGIbpcnd5dXU5bZIIUUmpFD2PzMLZoluQAkWQGURipgBEgABOIV0gAgAuL/e9dwqgZxjau5lRQEYRh3VdDo+Px6eDpHGzY3YkbxGKbu5GrpvC+4vNzeWmDBsz0+iACampLefVTouqGyJ5hCMAMgZSCUxCnEjQups7eCROIokpV+3kUUh2wzSk0usZAnJJQwJtnQCQAgOIEQib1vvzyZyIc9lsUZI5NfWUh5RGFlRvQOFgSXIQI8d6rowopUyXm5y2fS/sZXyFImeMDKCcVIagDB5NVZEiZWFB8LDoFAYgTNDaCjpANnfrvbOt7h3QmHu4QlQCJ3AKAHPXMDN3jwBEICL+DJnRwAzCwiw0wJ9FeIANlB1QW2+ns368p8KQcm3WKNFmU3bbtBmxMGchASBRVQBU90BQiGrag0JYcrHWzSwhqftcXVUHkB7qEEEIAEgkSQgwItwBNQjEw6Wu9vB4/nT3FJBfv333V3/xr25ubsZpQuFxM6VS1nU9zefDMv/6668///hTr7qe5w+/fjwcDnVZap2Hz6ZxHFMqm83m5uZmM20XO7fWuulyWtZ1XZblNJ+ZWfthv9/f3Hx5c3Nze3v75s2bq6urUgoDMXNEmFnX1ntf13ld1/vHw8Pj3f39/c8//3x393Ge54eHO+194ezuDBicckrADt3c/YPB7XA9X+6frvcfry7azc6/fKPXV7q5tsy2GfnyYpj2Nu5kvJIyXY8bZIIsIQD4DBCJkLppXebT8am22ft6PDzMp0OErfMxItwC3CHoWRIZkuD+1VTy5W6/3YwpA4mzuKE6FwYO7xYzaWMMIEQmDgl3gACLzwiJmfAZELiZgduzWmtbGjyr4a2juS3nej7JxJmYKcGQzQEFu3VCy4mnIomxVW21ttaQkrpYJGJI2akpCQdiIBMxESUmStkRED6LQEQm4kSMgFobORRJhYUDUJ0YE5AI9dpar4KMwsxlsfZ0Op7WKONumDZ52pizASMBIiMLMQiJBSMAChKiuwuG9dqgFxrGUbZcJMr+0r1P65oFGEGGkoVr1bTMhGjDkKehSAIBZAREA4jW1xQJwc20tjPXOXShvuC0IWhBiugECACu0Jubd3eLAEQgAhEpJQ/DwNqJHFA9zL05dmJgplaX3vBQ8Sj9iEssp+nyotWKeRpSnnYbGYUzlbEwhEa4NmvaFlu0t7DV+txdAcX6siymUTXcYV27mVXvHgszA7o9g9hICUJzpxAMg0BGlh9++Pnh8XD3dL07f1QAACAASURBVHr37rs///1f/u7b37/76suLiwsDI+FAPJ5Px+NxVr37z//lP/2f/9d8PDFyX1YEZpKLi4vtdr/dbonILEoppv7x48eH893pdBqGYV3XiNhut7e3t69evfpv/ua/ffv27RdffFFKGYZht9uJSK2VPKXEiNh7b72qamtra21tdjweD4enn3766dPdh8Ph8PPPP59Oh7vD3fl8rvMy15kaETAFEODFu9/d/M1f/1d/8fvfvfvi8mID06hfvFovLiYdOoUNQlPCPJAMIsMgI5ogozEqWremvbZe0f3pXJ+eHu7vPrT1FN7m09O6HFMSip5zHso0bceSx5JSkpxSil0Zk0wiaA7RhQJBT8uySzuIbv2kZmGdCDKziIA7RoB7hMcLImIiBIugzwAR2VqnIAAYaRxZbEzi6q0jCaq3trZYIjwhEeCQ8lBkv99vp7HS0Kv2ZuY+n9fTeV4q9BZSSs7ZQAAYiZEhcRIRdyeieIGI9Jm4hdXGiJmFA1wNPZAQAUqShmDmwZikcJGY6zzPVC42u+1mt9/sdrUCcl6rBYpbNwZAeOYADGDhFj5JrLWjroAmnAjP3h/70j58aBcTTjdTygR+co2ITZYbJBhYxqmUklNqhBjqHuruxMjCjo0IWAIz5cKKFqgIThhEhEHu4N3TZ0JVESAiABwAEDEllsSIgRiBTgQkmBK3Xh1AI+rC80liN40X+zFPV7eF0C72QyZPKbbTaL21ZTX3pdZ5ba15N11afVpqVeM0qCoFqSETGUowO3AzHegZqhkZqbsAqGpydLUAAkf5v/+P/0cBJY+lTOOwm66/yNvrtNnux4EFAfzi4urp6WGxeH37HlNpftiUxAyjwH4ct9fXwzCY2bquADDPp3mea60mosZ39/M3X37zV3/1N999892bL95N03R5eVlKGcYkQgEdIBBxsxm3DKZAXHwz1dY7uAO0Xvty2mzz1fX27Rc3p9Npmefz+Xw4HD4+3f38888//fTTw8PD4XCo8wxM4zR9+d3v/u3/8r/+4Q9/2GzHabMxUxHxiLrbI2Jijgh3T8MgImvv4qbmLtStP52O8+lQl7Wdl8enPx3Pp4fD07pWctqUYTdeb8tYBp6mcbPZlFJS4pQSC0YETQQRFoCEEFHPJzxBAjikc1uXthxQ10nCiYA4JwFyMPSujhaITJMbdcVUEheApm2tzZzzZqDRuuahrCtULHxzfVGyO7hTr3099jyUtLkI7W2OMgyyufA8HY+1a6jaWrsFBueKTvsdtW5CkDgRsWBJOSGgh6pFj97BIaWcmdlNq/UegBI5scI53CQZkiLAYpyH4utC1i/G/Uq4mPFuP07vps122uwMyXN4KI7oodQNACG4pI27RzchGqSciZwZPTxxJwFNs04//XYad7P+cvlkl9Mu39cnyB+mvF4N7zW/NutcZL/fPz6urao6ommqEsphlSnGbfrUFnZYUZhvqJ2n5mU5wcm4WS6IIvJRL2R78EcAduPTMuuGLAvGHAJRBpyMisNSUVfo595OfRK+3m1fbffv3l79+e83r153xJATADCzq6aUrOu8HsruEuTJYw00QDvMT90AUIDVNIhGJ1oDCSgXFlDT+WK6KoWJw7wSYSmCSA6w9uAxQydbuvzw449OvNvftNZQOOc8DENKKec8bYaUwB1KSb/cP9ze3n777bdTyYNI1CrhCaj1bmbxQlXneXb3aZouv/js7es33337/Zdffr3b7LfbXSllWWYRSYlZgqiwhAjJM+0aQJwBWboZIhCqdW2b3VrNTFXXZWmt9bXO8/wwH77/s4fffvvt/fv3f/zjH3/44Yfz+Qwk3/7uz1+/fXd9+3ocx2HI7i5CANCRIyLnLCKq6u6tqaqt5/m8LGddzsv8cHiYj6fz8bQcD9bvq3a1SCld7Dc3F1dX2/2USx4TIgKAR1NjJOsaZuZVAQAjwAM9IAIDIkKEwA1tlegK0TubUEjCIMBAFnb0MEAgQCd4hoj8ImcEFlXv2B4fH1VbgDLzOI4ApD0isA8FSFTV3UfJQyrU4/jwWBv0VlvT1nRtUddeV3emPGQUdsZARyQAByAAiAhzewYA+MIj3BUxEJGIEAORWBCRmDnMMWDcbAoLkMzrqhY5D8M0plKQyMw8IICQiBCkZCIKtd5rREhORAQeDBkYPdQUlZxAOOVSxvexPx7lfeuj1N7t6by7TDd9uay1CQ9JMrMgMjKD+9r6q5sp5wxkXaspckqEmVEiAl64O7hHBCIKMxTAJAgUABEBBmAA5qHBwYmYAhAx50FSaizTlPNm3F7f4NdfDd9/f/n99+XmVQPQOJkZIdZaKaD3Xptr66GBJKWIqYrIMGQcuASEKRCrozkQQSZCX43ykHMZRJJHEKBDoJkH2Ci7cEaIoCSOZO5rb+u6zvN8PJ2uex+idFNzZyBOMG03V1dX7969+/rrr8+HJ11XJrLW6zJDzhHh7q21u7u7p6enN2/e/Nmf/dn/+D//x3dfvLu4uNhstolF1Usiobh9fRHhzwAd0ZAACTz6os00HFYFUAcZhpI3A+fzIWSSDOjuqUy9d1Xd9v5FkXVdz+fzp0+f/vEf//Ef/uEf7u7uAODL33138er1sLtIJXHO6MoiEbHhMs9zq9aqLctyPp9ba713Ox/un+5/ffj062+//fbpQ6+VEcjjyy+20zRtX13tdrv9ZjuVYSTBgF7PIkJEEeFBzcLdVRVQAQCfBWDAMwqICOsghFlIUJgjHNzRFCMYAYgSCJGjowUCIqobI5m7ugUAC5ODQ8zrghi58JBHTuIOSFa75mlqrakFkWQp0WN+PGh3HyftXpuel3auviy1t4DEiQYSIWEjJ6JEiAEYkVIK82c5Z0EikurxzLsyohDnJADAGM8YsDdTiCkPKefDut4fzhVp2Izb3aWIBKGpmwdSECIToQUiGIKqA7hgQkQNo0go5MGu5oAICJQlwWH/pkqcYE1aJVxG3my/yOUqyQaJEUpd7TQvAZlpIBR75pAoM1miGMrOKXvHzi313lqL1qh1d0dBQvKMIeSE4QAe4EAK1MKrJ+cMOZwhhAQw5x5OHu6eU9pe3exub8fLS97uyJy4tNaIqOSuqqI6nNqHpw/ttAhyljJMfHW9T7uhqs2tY0AgWaAHMJFQgA5al4SUEuaSWZJZb62pKaKDW29de4STfPX1N58enzzw6Xh8//7nb7/9c3dPKYmImbXmpUhKvNvtrl601u4/fcoA9XRcDicspb1Q1d7bZrP9y7/8y//wH/7DX/3134zj2FoL75hoO5VhKPgMukUPN3eLCHdVa2ZGKOd1Oc3n0zKrRdls9hc3m83OWqQXkiQhUc7FAwCwpFJr2ewoD6t6c9hd3ZjZbn9tAWvrFtC6mhlA2LMeh8Oh1mpmy7KcTqfD4XA8Hj/+9A8f7j796f2Pf/rxh6fT8et3b//+X//rv/j976826fLqarvfRESrdT2fmhsFnOtps9mM44gYz5CCmYmJgRCRXgjSM0QEACIQxswkFAKWEAKjO1EYIQoSYQdyREdwD0BEIIwIdw8HZnKEiBi3GxEqg7irn89au0EEYRqnHgCUEklddD6cGDCldFIzh6bRQgwcJNhdJBFRYqTEiRMRMCKoGoZZD/NnAIGI7rqu6/l8NjNJJIlSSkQgQu4GABwcESy5OTyc5nOzfHkxbC65DEhk4Y4QYMTEjEEAgQEIyFIyIgoTACCFK2QuLilICdC8q0EPpAwySEqTOEVbe+9Hf/r18U9tJykVCxqnbeahG4hkJumqvRsWNGW3YChg3FfrUL1VWquvK65r9h7ojt5CO6hFEDAAsQMqYEdviFAISwSZRSBbRFOVUO1ekIdhmHbbPE7ODACBJRCRJeMA0CC6Rfp0f5qfDtOQL/e0326n/eY66HA+f3x4nA/HeAZIyMyUKNzBGQggwDyMAAEtwIlgGHOKilRTZsIs/+bf/vvfPv569/BUcrm/v7+7u/v06VMZ0n6/A0gemJKIwDAMOedxHHvvj4+PI/N6PKzHc6yriEzTdHt7++WXX/7ud7/7+7//+7/7u7/DTKWUujAijiXRM7De+3k5Azi+AABVbb323lvV03K6f/r4eDyoRRq3+6fjbnd1fXVDgoUTMhISgAMjERkyIptF7+YOOQ+73QU9S3I4nfL9PREFWO+9tdpaW4/z8Xg8vXh6erq7u/vhhx9+/PHH3374z91tdYW2ANPN5YUIbbfTNBTmNM/t8fi4nk+JcJeHRFxyTiyEAQBEkFIehiElSUiISC9QmF4AQMoZwSkgITAEhrmqmlF3BovoKRyQEQ0RCYxSIgAlAyICJOEEZENJiSWRCK519nOYOycZp6kGTiTo2Gtr2nuERXjXu8MBJHWUzhkGTmCjGEoq08BJgsnA4LPAFyLiYIgIQILUWjfrqk0YE4sQYzgBS04AKSIyle5mCOf1vBrl3eXl7dthc2GUkJnCCJAJmZmIEFFKMusivN1uEcP0WctJtCtzQlQHQAzt0TyC8AIjEyYmZGlOtel6+HDop+vZhfPHTw/MSYqscwNrxJwydmuxUl3qqkgDggNG8DMkADAzVnNwM2Ow1lrv3cMJmEgQA4LdUGVwGSKVIHQSc3AAdZBA8EDElEoqQ8q5lyQmBAwo9AywG/Slnc7rbx/u7j982O9GRBynMo05SVLwaV3W09HcrFu3EJFISK7ohsxm5lU9CDEQsZSS8yDyCXODEGGU/+7f/fvT6fD+/W/3dw+c8o8//2Th9493b9+9ubjYbXeTQxDBs1pra21ZlvP5LONIRPv9/t133719+/brr7/+6quvvvnmm7dv37569ery8tKgD8PQcnLtZn1dZgAHAMIQSc+IKCJaa+CILi0OCaEwlwQA3uv500d7ejiF6X6/d9sOORORqQIAinBOpaSIsbXp6uqCGZl5s9lkwmnIBO7aVbVrretnAMECufDoOWDDAoAmCd9eb87r8rScn46PGj5N07q2Dx8+ncuw1F8+3n34dPchi3z/zdfjN19vp/HyYp8Sp5REpAyplEIEEbHJEwA4AiICISASESICk1kH9wgEpHiGqqjJu4WCW49IQMBE5kFgZhrh7kSEgPAMMedshoChYbX3bgZMJY1lJD3qsJ3qut4/Pq1uabsN9+P5TENWoFO1c4eKoEhQJA1lv905WHXVbhGOSAmBmDiJa7g7AKCjqjJzSgmAchYRAoAAZ87MGBHUSBCb9bUHlGFzdbO5fIVpaNWJmUjEhEIZkAieIRI4s0gaCgCYnQPo2TgQAFR1ByMkCw30YRyvN9cWWlWBMwxj4l24NoQPnz5F4Fp1u51evbqGuyc1AGw9Zl9rodHdGVKSZMhEJMOAYVwliBCRgRDR1NAUVQk+Q0QnUsAGgLksxJVSKUwpe+8eKCIDZEiJSRDRIwzQArtrQgFkD0CiQFpqP83r0/H806+frtZNGUQG3NQzSGodzGwombrW1rp21ybOWZCIEDkM3RExREiYUio5DUCJkxMOTFlY0s3t6zyM+4tLADqf7fHx0V1br8OQp81we3tLBKe1//GPfzydTpvN5t2zV68GpuvdxX/913/99ddfv379epqmi4uLy8vLaZpSSsNm52G9rr1Xt977IolEZLe7SinlNABA77quq3A1i6vdtke9njeH0+68rPeH9f5+XZbTw91vGF3QKKaSMkI8E0C3zhGF8XI7cdzcXOxKKdM0IUApSURUgdByGkqmcRBEbG1wvwAAM0NEVV3XlWuc1/OxLU+Hw/3TA0ZMQ+ndeuLH0/LDL7/9/MuPF7vtmzdvZBi3lze7zZhzLqXkkkopImRmvXdOY0QAhEMEIjIZ0zM1C0gOjgHoQEFEGTKwLe6resshgI6cQAADVO0ZIooIGJhZOCBiRLRWu67zfO69i2RmBiD3ULW1tqX1CgDC5rgyTbvNuXlr61NXI8LEQ85pHIgBgjAQIAAAKQgZEczU3UzDn6kuS+3aACMRlvRZhCNiIoSA3rWfDTI5oZRhvxuGq1dcJnNyMpacMrubaYsIhkCKcOQkTGzhYa7hBgHupaTWVveGhMwRFCgwbApupVZfg0CY08jFKVwQeV20+zCN+6vLmzevP3y8v/v08Hg8saGDEQVnoSicEqAHeiAyIAJgADMLSmYJo5FTYWEAAgwgj2gANaAjPGq/cB2pKEm3Bo5FSibiYcqlIBMABUAgGFJYi2dmzhxh3Zp6R4ygYo5Ne61LQPVgVVqbu3UPRwAKCDDzUA0KpxgABMAgEIAQkiku2pyvWu2EQzjJz+9/efPF65zzfr9H5O02reuqqnd3d6fTASlub29F6OE4//rrL137N9988/vvv//zb7/dlvzm5vb1V1/d3t5O04SI4zhuNht3b8+Oy7On+ztJtNtMKU/MRICbzSanIaUUAbV2ABIeACBhQ+r7HV/f7Fq3j/fnzXheZqOkQ0pCBO7W2rquvbVZZDV0dwDAZwAlCxOYNoFY2oKIvVd3T0kQkT1aKEAMQ3mmqmbGzIg4eNFwF+imx/noXREAuj6d6/byatrtbt++mwb56nff7i+vMOXdZp9zFpEA06bWAZ8FnecaEQ5hEEiEwiSMRICOiB7kFq7BGMKSU+KUvRkEGWBGBgQgAqEsxbpSIBJ59zovZo5EgdC0L+uy1FXdGMHC7VnXZVnOy+wIinFY50CAMa/am4MT0jCADCkPIkQl1VqRKCCYGQCEkQLBAwI+Q3+mqmaGiCLi6kRUSgEIAECM1tq6rrCS8JhK2g4b3F7w9sqoWHdmopQ5CbtigEdjIEAnLkSAiGFuoUQiAhGBEQEG6CKJs/BKBiCF+16tGwQHS1fvrRcIEd5sxvN5AYyh5Ns8bLbb/dXFp493fY7jMqckukaouTYzg7Deu7VGvZNZApQXbpxSDJIEMAABwCAs0BBn1Vzrca2X28HCVd3MiGhd1yiCvbfaiypHACIApJQioroTETLBC8np9vWbLFbGadxMQ+GuPi/qL4hoHIukBACJgkLRuvUAAKQEEAjiDqqtN1vaRW9MmHt3+d//t//09s2X15c319c3u922er3a71ISD00Cvdfj8ZGITvM8DPlq2P2r332zGYfL7eb68mIsw+V4MW620+VlIDVtzRSjr/Pj4by01sxUaMxp++r2upTi7pKGiDAzAMgIgZ6HAABS6o0SXgFsWdevtvvXUp+enlY2EcngKXqEka9aT8fHRdXWdVXAXEaQpB4WQJygVgCgfxERZubu3fqznPMwDO6OiKUUZk4uKSURQabLspW9IKKZbWsNoHdffb22loU2o2yKJIbfmhagEVCYBQAd0CPcKqK7AwARCQkHh6JHUE7EzIQozkIiGRG7u+JryAui9HpnrhMRpwwoMM8MDCQAQKEAEqiBFDJ0WOZuVQ0dAqD3fjrN8IJQkMTDVlVillRWmOZe3dtIPAz7cbtx9NqbOREQAwjnMmRgaK2t64wVUk5hzfVIBKUgwpDTKDVGTjmIGJyweSy93p8Ns1xdXpTdDohh2LqIuRk5CRJ5cncLDEKeQDgQnkUERCBTQg7SiECPeT5hGgYpiKGqyDym7VA2U7kU7B4hIpFx5lW7K/O5dpzE3WetAJAmuC3T5TXbktq6PB1P/+VPP985Z761Dv4AdfCClHHoinZeduUom55llvG6lHNAINRsxik/JnwEzRiz+hC0wXxJQ+YGHno6e6zsjABCKVFBJV97QkRAQiKPXltoz4kLU1/O2zS/+/Ltzc1Nmco0DYFApwPIaT0kZnb3WruqEgoSOvphPo/TkAVWXWs1EQHMCt3pcK6zG6/N5bf3vxzvH/f7y9vb21fXt1+8eUsl73a7cSpAodosLCKOSxXiy/326vIiMSWkRBgRQHha5lPtIRQRva/z8eHx/r6p3n726uricrfbjWVIKSHBM1UE/IxEMD4DgOqth6q12mvTGhHOUcbsrkgRrr1ZhFlXVwOP4/G4rmtXDz4Z4Fp7Nw2kLSf8FwAQEWbm7pREVSPC3XvvIpJSiogiiYhyzmko+dlQhmHIOQew5KHs9gUgwJIgJw7Qh8dHZh5S3pQ8lJKJCJCILDzgM0QMxEBEIkIUTswMQO6OyEQEz4KwBIcHTQAzt47QwDzcgcPMwjoRO3ujPuvce2cT05aTCJbeu/be27quS0pJcoKuS6utd8mZczIPRceUhm3JwJwHYDLTZo0DUiKRHGHW1au6dXaQnJE8njkCAAUwBBF68jmqhSQWQ3hc1/v1fIp6M12P213Z7SmgExsQQBBRypmZAgAdiDAgIhwQ3cPdwT2LpJwQk/bPiAgR3R0REJGIRGQcx5xzfAYpZyKRkiOCKY29R4SqtlYjAhE9VHXI+90yn4ZpVKTN4mtKJ5jdHjFeZaLM1EUwpUjZE1t4ONiQcYu+xBJO1th7otxr5SZzq93NIQARmZCBHBARXiAiACAiALg7/guN6L231iKiFEwJU8KcJecMhK0NOevZjvECXpgZAESEu/fezT2sA/gzInEIxMhFwtmgy7/77//Nep5bUyZry9PToZi3kjDly3Es47iTxET0CgoR7DfbccjWVduqXVurbTktrZ9rdSAgPB0fH+5+m8+Hd2+/lJx3u904jsJca13PMxEt2nrv7k4vEJGIcs6BEAjVdKn1PJ+td0SMZ6im/gwAENHMAJCIE0ukLAycxIGGlLtbAKRAImJmIkJEeBERZczubmbrurbWmBkAaq3B/bQs8/3ctKs6Em02m+12K9M1cdpcXIybLYBPWYqg9fXw9IAeOfHFbr+fxiIpiWQRSCMA0GcCnFAEiQCAOeELAA9HN4gIMzuZcyA6oYsHogW7UhhPBOquYGEa2qkpd/WOVcMamJr1WpfWFF2I6NxrRJx7NQxIzEPGlKP37oQ55ZQCRBGbWze1cEUvMqQhecf5uLi2TFhYDGit63yaa60lceIcHNaNB1zX2TvSuDOmGv3svRLm3UXe7fN2p12buUMAsjCmkUE93EQQBD3C0ZHJOkYEIABRKpkgwr33HoRI5OHu5hCOQEmGzTTmgogRUcogKUVgEBLRJSd377231lR7RLi7mSFkLjhty/Zq98WsH+e4r2ZSD/1E1r0dWz+pro17jSAWJWoELqRi3aAhLWA91FvDKnPrq2vDcI4QgETUAV/AC0QEAEQMDwBARACIiP6CmSUhkgeYu0YEOEEQQhqGwd0jAjEAoDdzdwDYbrfEQewEKcLAIwKJONDGMYUnB5T/+D/9D/M8nw7neZ5V9diM2E/nw9rXYSzTs+2mlJLzgIHWffG+zkuvS++9teZ9bmpz6xqgoYfH++PjPYFuNpuUkpkty+JmWtenx8c6L6e+qGpKSUSYuZQyTdPFxQVwcKKUuApa6Gk5qSoilkRmFhFEJJwYsUgSpHx13UwBgCUDQDftboi4LSMz55xFhF4wMxFZKLxQVTOLiNbauq4q/vDw8Muv7z98OD09HWpXImLm1ccOsL96dXP7ehiG3XYYMi/n03p8APNpLF+8anZ9tRnGcRgAUYQ/E5GUJCVmhhfWDV64u5m56zN3VwuCxjpzq1ltBN8ICVM3BUe1Wpd1WRatDcISEQtDc/PuL5oqEZUynZ4eW2vVnKYpE1lAM3MAl4TIEWwGrXd1A1ROZACOgIgQHtbZLHEpzGfHuvbzaQnrA2/LkDNaj0YCacjAQOCn8zrPK3G62Gzy5WWMk6J0dCdEJEIiYWZQc0SQJEKsbhbhjAnEiAhCWBAx3D0CAIZhwBe9e0SIyDRN2+1WEg2QHaGUnHMBRAACgHEc4jOwF+5uGmZWu3JmAr8mvGl2eVge5q5An9Zj92Xp994elvro0KAnQPNGbV56NTDInCbO7OSqHbFFVLAe4ORGgAycCB2ACP5/EDEiEDFemFlEjOO42+IwDMyMyBEIgIgikobN1FrrvSMARVAgAYhIymOACgczhPV1XXs3DJQMZgjBKCxfffUVeNiz3szsce2ttXlZ1rWZWe99Pp17bYiaUvKNiUhb67q2ZVnmee7tEMgaECzAGCycC6FY+Lquj4+P1nU9nT/9+v7nH396eDbfuftms0kpDcNwc3Pz9u3b7777bnd9ycySqGQpWWYC783dwQKCniFmJmQWCHL2ppWZEZGZAUCD3B0AGJ0RKRQ9IBCCIiiIAiwiACAxZ5FaK6NPQ7LkBDu1hgH77c4Dau3zvC6HFQExrNZ6Pp9/+63V9fz0cKfzURivLy7nb1bt/fryaq8am802Ob1gZkT0FxHRag8w/0yf9V7VmrtXR/JOulKbS6xbNh9oNyVYVzf3Cn1WWww9GImCzN0RApFKYkRQnKuuVhcLwwQJJBcn1me1Ve/GBEHuYeZm4aEsmCQFAoF7V1cDD0ZKjOBRtasqYmIicCSLJFwoWV13JTvh03k9PByqwsWrN6/efo2Xt1DyatEAQBJLIgQERnIRTEhFMhGFabgBQAiLCBIwoHmEGyKmnCURAJCwz2bhwzjuLy62ux1y0ItUhpwzInm8QEAiYS44uIOqm5m7J1XYTuGKiKNqGYertS2t3z61pbaD9+kMjw1H8OSV1r4coB8XXEECCtHEiQPdoLE4sRODECICBCKwIHQMRACIF/AviMjMAMBeRIS755yZwI3rarWtvQEQtqr/n9bauq5uEJ9hSinnDIju0VUjwMOeuTsClZJb83BKKcmrV6+JgJECPCI6QGttXdu8Lstcl9Zba2bWqkGAaXPr69rmdTmdz8fj8XS+A0xOzKVMm1GGkdo8n9Z/+Kd/fP/+fSZ6+HT3wz/+8cc//tPH3z4s5/Ovh/frWqdpZOb9fv/999//4Q9/+Nu//dsvv/3m4uJiGgZV9dbQzLRb6+hBzyQTCHogBkRQEAEjwTNyBwAJi7CIQGQIV+09PnP3iAAAzqyqZkYvWmvunnOefXV30Zhy2ZbttNlF4Dyv31hPZdpevTLkn355/8///E+/vv/lEFcfawAAIABJREFU4dNHCh3GIijHx+PTuGEUCgDHJBtPCQHCHRHthbtHrWbdQyOs99b6atYj4twMXLF36DVZnURPu3zRyzUnVezqBkPKCdxcW2+t9l7Nq4N7VINT98Ncw3X1GMYNJdGAIElTiqz9fLYG7gaBAJQIORjByH1MRVs3a64Nw5DJEVpdD6e1t5Y5BZAufba+Gbgk9oBlWebWj2snLq9uXu3ffru/+eI8Tgjs6+oSkpNwVreIIMmZMRMLMUZwsHmPcGYWESZED+vqjpITI6k1d0fEiGitbbfTdrtlZpFAZMkp50ySETECAkAoEBg/o3BQM1WPQPpMeqcAYJFxlFLGsVaE89LzftyP6XY79FgP0mdbPNRCLcFnqAASEZ5ScgcAeibERIQBECYQTuSI8S/gRUQAAiICopn5i/VFX6DXlbk7ggghg7sDABGt6zrPc2saEUSSntU1lan3FbwRB4KbGQQJwvlc66puslSVoAwYjsHCjFQYYxxsD+7Q1dd1ned1adVa92eAqm7uJZJqWduadKjd5tZ0XY7rPGQ+nk4ffnl/98sP63nurc6Ph4+//DofnsjDQNOEYeDaXOH4ZL/89INra+vc2vrm9evtdmvPuq7rWo+n1holTymVPISBsTMLIkOQZA4IdzdV8+7aPdSfxWf+IiLc3cziGQUA1FpVlYgAABGHYRh3W1Oz1mM1BTAySWVK03bow/Zic7HrQet+d9ztbT5vEjPGZrO5ubq+vrwa8piICRgM1tOTpWQ1EZG76wt3N22qzd0A3ax3Xc06Is61gQMZkkdoO5Gu7mfDNggGhLFHwgAK6Ia9OQUEiWFfFZthC1bMmNI6d4mcZAAHRwqQDuxo3hdVD48kQszkaN0cg1y81kAE04gAQgNfrS/L2bsnSEI5MNAUwxCgCR5O9bisOG6v3nw13H4Z0+URuBkQhRJxLilnIvIe7g7BknKSRB6qSoQkxOEixMzCFBFEZAwU8KxrdXdEdPfee855u90y8zAIM4tkZEIgx/+3Kfhsuiy5zsT6bJN5zHWvKdPVHk0AFMGBJGqkr/r/odCIwYkhRAwBEL7RVa+/5pyTmXtv3bodpZi1QASAmMPdrCGCW/VaWwQJSyCIBEySUkQw1cwkmhEibhI73mzz9rrun/z4PL88N3+Sw4vNxZZYyAs8zNEwLUvfKQfLGTGFUXO0xsxBBCAiAMSPAHcHwMxxUWt9eXm5u7uTth5X0EROTROROFGkLOFUa50/KhGhmkspAPrR3GugKgdREBBOBVTnxYxarc/7k5bWWinEMY79akjulYhUlUk64q7r+n5clkLc3HBWzE9TWea6Px76cZjr1f5w+vD4+MP9w3LY55yOz49//utf//Kb33z/57+U01HAHLHN/bofrNSJ97td95Of/OTVq1ebzWYYBiLabteHp+fjMFKglWpmXludl2WeK00596231lylF1HhjpktGOQUETBGqDJRBjCVxd2ZGMJEBMAvJGnOuZQyTRMzq6qIqCol1VI9RVE7ncrT8swkzFrKXR4e0/29cd4fTlHLqsvrtEv9sFoN19vderXqNAkpeYT7Mp9alSICwMxqrWYWEaXMrdWAAe5RW5sDxszuTkgsmShRwCEVvIQcWJJ0jM54agshFk6ds+D4ol3qUkKrKJY89VqFu1N9MdKELg2p1fp8PJ2mpVojRyvWWoVk6hLBvVl4rZXasogIOAAEkxMaQlVLrQByzl1OXfIhO6EUgnWa+t1483p485mNm5dG+6UQWs6ZmUmEVANwghPIQSTMCjMEE3MSlQjtSIiJgIgAMYXXFhGaEoiYOXVZkg6rcXu1E5GukzNmdpBZCyMnnC1lthbuICjAYO1y13UD2kyi0iL1g7ufTidBkCi4iwhjWm0ar27sdIiX/bx+NP81Hu/LHqhYBDXxUootZT61NjR3ZxATwQNhFBH4KCIARAQ+MTP+iABERGvtcDg8Pj76yVarkjsJqZqCk4tE7tQNEWEXIqKqzOzux+OROVicBMwI97K01ixLFk5OaBUadVGACT6XY2nBdCbiqipKSqDkiYmos/hoCFqPuRbb7bq3r7fPy7zf76+fx9e34/Pz87IsL9y8fsHLgdz3jw/TYS+tafJSD0l5e7P66d/9/Reff3P7+s3n777YXu9EKSXZbl7nnFU1wty9tabzlOfZzOBuVk+tUXsRESVmhhr9CAB9AsBaBZiIRASgs3H4KDgxM3G0aHOZ3G1Yr7bbtVv6cPcw+/O2W/thmpYloA9P+8XXcYi+Lp06OX39+svV1wOAPg/j2I/jkCRYIAKCnzWblmIAmBlArbW15u6iblFaa0TUWjPznLvVuNbUExGTquacO5XMrADzxkHsVsrxpeEYckJrztUSL6UWW8w5EIuGDmndD0tYkJB6RTucDvePT9NcSIWchCNpQdm3xURSlzqVnm0elMxqOFZpYNK6mLQc8GGbe122ftiGAvJ4woeF/lqnq9efbd5+FuvNXrtGqSCcXLV3FvBHJSAilPtobSUZ8KlMEWFhCBARM7cgCHealMWb1aou7Wzd55TS0/NDKeX29vaLL77o+97dob0FexAza5L4iNxdsWrRSrSIIOEzMGabwRTeSHixSTh1mwHgiLDllFqLUqI2Sqhj533q3tysPtvh5s34b7/54+/+Y9ofjuE9Ypf10FHyhsMpVY9jTZwr5RlauYn52pytLrG05JZ0mRthSZzMqYFmQ0UqnP9yt2/zw03dvb7ZDaw+V6/BvRhzaYu7A8hd6vucEiLsLIn2SVNKxJFERYgRZvZUj16NZupO0BZOFOLkFIQm6ICI8IjqLsThHwUiDEEfibLqwKkf3H3wdr27Km/eTtM0z7O7n06nh4eH7//u65fHp8PT4/vv/zrtX9T98f7+7v376zc333773c9++g+v37x78+bNercdx261Hih6ESEinJFHxDyf5nleltlbW5ZpWZZa5lqr1+belqVFBD6hT4Q0ojEzCQuLqua+S13WNLh7cCROuU/uxsy11qfHl7rU7Xq33u6Whv1xPs1L0rvv3//AIkPOq3HsUl71wxmDNputCBOHIEDmVkspyzIBxcwAMDMRuXtEiIhKkj6LSEoJQETknPu+J2EiEk45913Xq2SA3V3oWJeyLKVWa+bzXI/7x9PhKOZXN7thtVqWqSwzwOHVrXbDipmXWo/P+5eXl1YWa7XObhWdYBDqhZOoEBNRRLTWRESVQcIMM6t1aa3sOjVaJNwRs9VW/GhoTMP2Oq+32o+eespjSlmNpLRWXC6IiM+IiDmYAUQEgIgAEBHubmZ91xNRXIgIRdQIIYYvAA77Uynl9evXfd8TEZ+RgnDBAIgECGZ2c2buUgoiVWUVZiYiM2vh4fgRBzyCAFJlZiJi5pxzay0uZGSwDMNqs9k9fv83TAdZ5iQUFtFrSTFFOUbM0YzDOdiDAxLQIA6wR3iEOQnCKSKYISIRFhGiTLnvN6v11dW6z4QGdu6ElDayNTNQiEjOOSUB4O7dkFVViAPGASDcHbWudKwULaLrio7bFePMwzwiYAIgwt0JMBjiDO7mLRARQAUJAAucObeUJKVhGDp3J6JSys3N1XdffdaWpZby8nBfTsc2Tf/xm3//91//ur9e/cP/9D//4h//l1e3b1bbXdellKQfO0YXHxkRMeOslLKUaVlOVmsp87IsZZmWZanzUutC7GZWay2l2EVEENFMFhEikpk6FVY1ocZQ4UBEuIpk0dLK6XRaXqZl5nBolu16p934xrmYv7p9/ObrL81MRLKmLNp1Xd91AIjIrEYzj2at1rrUWhFRqxGRqnZdp6pEJCKqKiJExMwioqoppWEYuq4Dh7tHBLMScUTUYmdtrvN0OhyP+/3z48Pdhw9/e3h4OE2Hr95+tf78ane18f1jaXellOnh/tlt8+YrZqrFXl5eTodjSgmZrR5Ph5mUuj5RlzQJMxMxiHKXRYSZHXD3Wpt7c2+jurFDiRqfpnqa25RHXm2++vbbNIwxDBO0gcy0ttZqqGpKSUQiAgAzR4SqcjAuiIiZ7cLdASSWj1iSaHGngKbE4FqX+/v7Zamr1Uo1m5mI+EVEMIeIMDP9SAgAM5N8xCrMDMCbnbVmFg6HU1DgTFTdnYiYWUSYudbq7sWjW60///qbvhvvb65f3v/t6Ye/1flondTEM9sSrQWDI8KaFamNpFJr7JGCBIygFFRauBVciBAzq/I49hjH65tX17evxz4xGSskiyTuRnW3iGBmURIRogBQvSQRZo4ICgfgzcxysmHm4sLLmtTJgogiQhABDSYigM4AxyeqinB32IW7t/BwhDb+EUKEmFkoCa1hfZ0XQnzx9o23+vjh/cvLy5/+8uf15moYt+OwHVZX47DOfVIVVU7cRQQozgCPiK4jVc1ZvLVScimllm6apkWnUnSaT0QgcpEEsCqdMbMnASCsOeeuG7quS6kTERAhCEEBREQr9fCyf9k/tUlSfzYOXb+5urKQpbRonri21syMGVlJJcyWOLPmF9bKPJ/meRZG13UpcUppGIZxHFNKRMTMIsIsfAFARFJKXdfJWSIza625o7VWSjlNp2VZTu/fH077x+enDw/3dw93p2Xuh/HVqzff/Pyfvv377zbr4fj4w8uHv2Sm+1LqcT9NS0q+LIvVlkRSSspeCIogdzImZwYLESuzaoJHBODMxCykzAJN7M9/y2MfKTVvx6g19+n6Znj1ati9RkoLkZm30AATZxHpE6uqiESEuzMzACdXcEQAICIA7t4uOKCqWZMQExEumLnr89MPL8+H/TiOuR+bO1mAyUpxR0SIBMBEwaQAVEBEYDoDEQXCPAidaAVgQR4GSCBAAAJBRCKCC3dvrbl76gZwHlayWm/fvvvs+HD3tz/+4fB8bx9+L9YiotZGmnpWomQFgpCAWLAbu5E1MkerNSzCIkJVRYQZuePd1Yr15vbtm93NNjEnCe1Ee9VOiRsR4SOnMw66mMozMwsxEXFwRLh7mOcGseSiZSN6OOzljEFEOGtORMxMHEQEBAgEBIwIImAWDncTCooIiDBzRLgHM4mQinZZBRrrSoE+p/AWEdylw7ws948P90/P+8N6u/TDqmdNKUkSBgEUEe6t1mZWATBzRBCRqgIQBhFl0VpzP3T2SUQws1wUJgDMrJrPVDIAd1dOGsHwCKtlrstS5nk5TfPRV2G2bKwu0QqCoxqijUmWsKUZzFiZgpq7mc2ng5mFOeBmpkJ9348f9SLSXzCzuwNgZpGkqiklEcGFmdVqQQwQsxJZa17rcjzuj8fj0/3d/ePDD3cf9ocTJX331U+/++nfffXVV914u7ndshddlU0YWqvTfJI8FSpL8xZd1zFrRCzzbMuSqSlzEhty7jLJmYpkSZRqre4AE7NEa+611lk9wNSCDgYfNuvtq/HtF3x9NXnnhOpkQQCdKakkSQIVZWZ3Z6YfBXE0wwVdMDMRyUesqiIS5nBn0JC7nLNFOxwOw7D6/PN3m81GNYswETErkUcEszKzcMIF4SMKBCJaM/oIQCQGQBdMjDOSiHAKIgIgIulCVVtrXuZSplJrq41T3tzeOuzqdKWZy2m/SSSNkkkviSQ3TiIOJgLC3JuhmUvx2pzdPdwbEYGc2FVltRq7cX37ane920VblEM71Z6lk2Ux/ghEErAIAO4ew9ABDA+Ao5k7rCEMKUQ5keacXVtdvKACcIsIDiUiZtAZB18QBZGAWSQRERMTBRAARTCAZtZqJaKKj5gZRjlnwI/zZGU5Tqf9NP/wcOfu7774qtRFkqaUiDkozGprZlZba+WszrVWolBVs8Y484hwawBUlRmq6p8AYGYRISJ0iZmJhIhEEjO7e6tOwmcIa8vcWluWpS6llTokZbJ5enm+/8Gssvaiuc88zXU5PP/tw/tpmvphGNerlJKIRJi1BqDruqvdZjjLnZ51GYCq5pyZmYiYWVXdnYiYiRlnZgY4Ubg7Ebn7sszPL48fPnx4//5vLy8vd99/mKapBW7efPbFN99+9fW3rz97t1qtIq1IEc7jzev+ene93eXcPfzth/d//msphdmGrleux+PRlpmscZSOdd1323XuuuzuoSZJoxpxMIVoBsJrK3Wel9M29437CVK7fjVe3b77Ot3eLElsTjVczdU9DDBEGCISJyEmEIFAxMwAPLxG4MLdmZmI5KLLqiwMqu5hls9EI+Lu/mEp7auvv/7JT35yfXuFC6Lo8+COiBARlczM7uHuKJWIQKBAAHAHURDVcI8IJhKV4GCKIAKIEBEAmBkAMwNgZiIGpFqcZGplIYp+vRqGPrkvx/0YbVwPrAKSRnk26qiSSWlLrYt6EyJVTcnIiRnu7O4g92gBI7ah0+3Yr0dtixGaqCGczIWCKZiYKCLIw9w93ItVmEcQwF69VrPqAAeZ10CEFVNUK62EWWvNrBJRfGTuHhEsJCKqmnMm0ZSSqoKEmYOFiARCRA5XBhHsgkTC1d3NqrU6TcfTtOS+u33z2mvZbFfD0PV97vqUOwWstmU6PB+Px8PhMM9TrbW1RhwikrRTZqI4c6sRISCi6LqOmUWEmVVVRFSViBpIRABE0JmIAGxqk1VhCY8zM/NmVpvVJlIpyNq0zC86qeiS+gFgL8vpuH94/8PLfr+52hFH2u26rk+amTmlNParzWaz6kdmbq1NZYkLAKoqF6raWi2l1FqYOSLcnYhSSrVZa+10Oj49PXy4++GHH75/eLg/Ho+nqay2uy/efv711z/54stvb65fM2st1tjMXJTHrs95XA8jQSErn+t+/0JESkwRC0gIXVJzHzpajbxaiSqWYsZBLNM8EZGqipK7A67Kw9DNE4X0utnuhvVu+2q1uyo5zbZUY0cwcyIWAijgQSx0BiCCACISZpxFMDM+iQgiEhFmHscBgBBTRBCvhzEiHh8e7u/vc87ffffTt29f0xlHrVVEcu7dnYhU8hkRtwv3YGYiCoK7W3hEMJEjXAjMwgwWAOZwdwrCJ8xMRBFBRApOrNA0LKvT6VCXU9gCt/T63bLeaDk5+1NZ7sNK4mnsU9mbm7RWrSU3JSdlyakdjiJCRCAHQEQRBrhEETGKZuUQXsPJJdiEqXO4wwEE7EfuvtTJLCiIIORSa3MDQ4yWaIKIw+GgymAWCweBiE/laGa11lLm1hrgemEWklPXdTn1mlNKWXJS1V7XIkJE6cLda60iUhd299ZaSrlz71fj199+29zXnXz55Vev375RleZVjc2X43x8vPvw+Ph4//BhmiYzc28RQURdXmXVlOQjhqoOuUtJ5nmmC76gT/p+DGYAZsHM0I6Z4a5ZmTksmFkumFmZ3Ut4Dau1za2cHCGuqmk1DNvVardes/LVzc3t7c1qsx7Hceh1OOt61aySlblVq7WW0gBEUEqIILMwa7UacattcXcljYhSS0SYp9NU5nl+eXm+u3t///Dh+fm5taaJf/bTX7x98+7zz7+6Wt8kHQAm16wp1GtdzHxagty7cdy9ejcvJoennDMRHWNfy0wUSYRSAmnfaZc5KQEtqEQoiNebkc9ILXxZlmk6lrIAfFiio7S5fr29fT32m4Y41flUZ3EF05lSOOAGBghh+CgiANAFLlQVQHzCzCKiqjlnM0uipBrmwzBMp9Pj4+M0Tbe3t69fv845z/OcOLkvKSV3B8DMqppSElERYWYzFxFmDoKZlVbNLM6YLpiEmdQQsADBi0cEEYlISomZu64zs262GgjRnJeuS630cxZCO/YL9jI/17vjcznsV7nru0y3193TvkFIxRDVjVqlWpdaa2nUUUQA4I/ADJAjGtpSJz8ensNL7lUSi0v1i2juHmGftDz01CICROzmXgmGoChWwy0cp+OkSdQc7AYCIYSKebE6l2VurVl4RABIlCOCmXPuVTVp119Yv6hq1w0pdWEmLElWRDSu5Pl0kK6nPkN4pDdfjds3777thK3Wflgzy+n4cjrM0+lxv3/67V/++/75cDpODBEkODrt+n60mC1ykl6UmTic5tKqRRICQB8FgICfRcSQTnFBRCKiqiJCZ8wigvC2TJiPaFMS6zLNiiruXP3wBE2vVuvM5K0ZA0mG2+uMq9311ZvXn+3GdVIdV0lVu65zwzRNp1JLKafTaV6qqiZ3EHlEzpmIIkIRiuTwaC4ifcqn0+nh6Xkqx/vHh2laHp+eHp5fqkW3ufr2i68+++Kr9Wq72W41ZzP3mKGRUrpK1HIXLBZwYELiIfVvaa4fei2b+SGdJo7jqS3PrU1OV413m/F6vE4kS52zbkLy3NqcTMkHWCxGVpfDfPe0X22v2rt3t5+9e/Puy261PSz15bQUy72syiC1VopQ6QRRuQYhaUqNw6O5AR7hHk4fBQe31vq+N6tmxuTwOnR9Ms/Efc7LMqU+javubz/86Y9//h0Hf/2LX2TA57IbViTcaxrH0QmtNWYGcbXmQhAuixmDGKp8ZsohZNbMrKOOiJhZwQSCh4d7EPLYWnNvCtYAeehZn09p6VUTy8pSq12tq2W3aUvZ6P1Llqdejs/pTnKc6vXqXfKr2XNK9fXNdtDx6pD7fT93NHHrpFGjPvceWOZCrXdLdZG8M/em/XZDr6f5WOqMNtPshSYiwv+IiTm1fQAEwGLBWQQIHiEu4TS3mgZWd48LAoio0yxgAgurhZ9FhCNsqe4OkHtrDe4eMHevZimlWmvOvWpWySLCLNHQJeUuBZMg90lpvfbalvn4dP/w8vQ0H/fe5jK9fLj76/PT3V8+/NVaY5K+X3d93w1j341933ddl3Puuk5ViQgAX9RlATwi3BFhZx7mZ6VFhLsDICJmxoXmJCJwq21py1xKAQWrKLEyU3hYrcs0Hw/RLIKe98fTdFKRcRxubm52u912WCXV3JG7W4tlWU6nU2tWa12WpVZzd7ows3me5WLoMzGB2M1rKcuy7A/P+/3+NB/v7x9P03Raiua027y6vb39/MsvxvGq6zpVjQj3YCIARGRmYDlzczNrrSm5iKzGna33sRnl1NWT9hq9sAcNq1G7rDkNfZe6XDyKQ9x7b2VeTJO3eD5O+6XysB2u3nz5978Y1pt+vQnSEJJMOYgl1TqzBwAKEJEwc1AScScLZ4BZITgLghKy9qUUZkSwqqasESEiXe5aa2amqjnn5+fHu7s7Zv7q8y/GsfdoEeGROu1z1r7P1QMXAQJARMySUgozFlFVIgoHXYiIqgKICHcnIgbxhUdjZiJhZiICEBHu3vc9nwWYOan2F6UUY0nl1F1tDrvtsnvE4fT8crSBYnglcWjrRIPkVc5DCiarlZmttdIWBLdWlzKR+2rd9d02pUG4NyJhJ6FmADyR0gUzExE+ca8A4sLd4wJAHvtqkWrrmTXMw8xqMzeYs/BZl5KIuHtEWHhEVGYzcwsiimjubEbNiBoiPMI9WvJkklWVWQmpW48UMZfCzH1KZO6BwnWa9x++//B8fxe1COph/1DmQxr6dTcO681qfbVab/px248rzblLSVVTSiICICLoAm5x4dEuipm5O3tzdzNz97jwi9NpIaKAWS3mjcJEqOtEqWfmcAHQlnk6vHitEdg/HY0xrla3b9+cbVfbrEmYm03LXJeLeV78I7TmOeeIaK3ZJznncRxzSkC4t2VZTqfj2cvLy2k6nJZ5mosTrze71XZz++r1brfbXu2aMxFFhINFWCT9qMwLZyEiMLlFa40UIrJZ3/A86fEhL082vxwOOs1OhlBI1tSn3CfMqLXY0uqpmO1brXx1vTT/8HScZfjsm599/ZOfD28/d0QxmlpdKqqzE8NBFhQ4kwCdgVlEWZqSN1NVTsoMCweCmYUlJQFARLlLXde1VtwbM/d9vyxTSiln/e1v//KnP/3p5vbqH37xs5xzs6W1xuySMOQB1FQ7AGbmQcwsIgRWVRMR/QiAhRMRMwNISfyjgHkEwCwizGwGIopgABFBRAD4TJWI3J0cLCLMerE4h40aS95snrfr+bDfPz09r2R+FFTdpWad9L12WShxgjSjZgVwTRwgEWjy9ZjHcezyoCyueYgw4WZM8GlyvhASJsZFRNDAANw9IvwifsQR7g6kTlWZa4A8yAMBOMEJTkoaHC2cIoioEzGziAAozpxEJOfMKTGzMAiGoHByc0RjIivL0mppdRgGEl/m2eYyLS/3dz/8yz//l3/9l//q8/L52+vbq+1uM9y+ebfZXm2vb/r1ul9tu9U6dT1LGpIys6oSEYCIICIAwhQX7s3MmpXWmrtTzO5uF+7eLuyjTERutQq5CeDkZpYAEJE7WnNChFWrjGAiGrru6ubms9dvdtfXSmq1RW0v03GaplprBIKgqQMQAGtalqW2BsDdIyIRs6ZmFhGllOPpsN/vj8fDPM/Noh/Xw2qTuq4bh/VmN6xGVm3OrTUApKkTUc1CTCIWYQgGLD4iIqc4A1PK637Y+HZHy65NL8eX47wvKG5ZVrvV9c2NIlrZEySstWJlf5xqy9164RT95vVn33z3n/7z1ZvPn6bZDcWtNC5O1WDhAU8gEEcEBQhgZgEJyBkiAuGUBEywFhGs0uaZiPhMOItmYXIppdS67Ha7CCOK0+n0xz/+8XB8+d//j//ts8/eHo/H5bCvrcTskkRVmIk1ExEzE1gu3AKAfBIRzExEzAyAiESEPmJ3JyJciAgRmYW7RwQRiQgzB5iIRcRgETAHQYQR6sSSXHrSGhya567nsT+ga6c4lOd6POD+oWyvbrvrblw1XwJwD4vmURGVYMK23WrfB2uVVp0bvCGaRUmciJwQ5G7Nz8zM3Q0LgIhw94hw94gAIJJqbaVGc9Y+d2xBbmKggBBxsMHADEDcAIgIsbl7RBAkItzBzCmlYAJARADiDGbePEiYY2mllhaOxLWVejy1eXna3//2N//9n/+f//Lf/vm/Rq0v33z5j//w87dvX293t9fX17vb22617YdVt1qlYSSSzHTGzERNB3JbAAAKAElEQVSET4jIveEi4BfNzCLC/eSfmFn7RCBEZFZrmc0qwiOstRYtzsysVYsgZqUzxjiO/WrcbbbDMCQWq7bMs5U6LdOyLESsqkwqIgATyXE6lVLcPefc972IDMMwjmNEIILVRLOoasqDMBENu+uu6zQn1cwipImYIyJ3KammlEQ7FUGQu7fWmDkiWq1BxB9FREOEIbmO0m/71dV2d5pe5vl58ul4cM/CKuTVIkJEHHQ4TfOxfXh+rsP25qu3X3/2k9uvfrp99eWxxNKYzlTZSSzIIREBBpwI7AGiABBwQgsPFiJiJhImggUBDnIAqkoEZiaKs9wpcZy11oahW5bld7/73d39+3fv3n3zzTcpJWYWEVUFUGttrYkIvDAzfcSqSsytVnfnCyICQBdMjI+cmUWEATML8wg7A5iIRISZI5yIALh7qzXnzCICtNbYg86Eqeu4VA54tJH6rs+rvN1222UeTirHx/b9/fE0/f7h5N+Uz998fp2Iu3Ekp8PhsN/vn58eDvvnZTkdTj+Apix9q4GzsGYL4ETJIxAws9ZavTCz5oGLiAAQEbjYcB/VbWmlhpLHGQFCHIgsHYwEzipEVN0AiEiQRwQRMWtEuAURiYiZRQQCROAAeQAegFOJkPAWre2fStR2enyZD8fffP/bf/6//u9f/+rfXvaHPqVjc095+/qzq7dvtlc3u5vbbljlrs/9OnU9M8MNABHhEyLCmTciAkAUH8HPIqKZ+v/AzFprZhYGAbm32g1hDeRhblbnqUWEmbXUIuiMmYlolbo8DADmaXJ3CnYzdzcPDzABJI6wZoA1NwdL6rLIOI5938sFqxIFAEmJVCCsXQagqtQNfd+zCGky9+qRNAEYkjKzSBIWsHDgjFgjzBEW7kE5ZyJ3CwKqqGkXaaPjq9XObw5lejq26TS72zSdXl7cw8JDdIl4PB3vnubJ+NX25vbvfr6+fZPWr1rTpS4kijP3CEQEhROYmSrOKJgiiIAgkEeEI8BnKkRwhCgB6sBqyKpqZsQhIkzR575L2avP82m73R6Px3/79a+Y+Ze//Mftdp1zN44rEJdSzAxMtTYiZk1nEUH8UQARAYCZ6QIAM4sIIQAQkVxQBIBmfgYgIlSVmfERA4iIWtscH6WU/MwMgIAAMDPII4KNuiDhvJa8VjnuaO74Rezl7sPTZMc//PX98eX2++3Pvvr8zZs3V9tra/Fod/v9cf+095ifnx+sVKZsBiEmIkQjitNppk8A+EUgKAgAEYFwRsy4cGsgMIWE6/39fV1KeGM4nYnUWoOQI4PJWgPgGiklJlLJKSUiiQgAqtncPVqERQRRBNy9RYRbQ1it9XA41Gm2uTy9v/v+T3/+l9/86lf/8q/3dw+AUDfk1Wb95u32s3ert6/71bbbbPt+UM1MCieARCQu8ElEAAgHEESBj/wszuAe2cM93MMDETCQEjuH85k3ouTShBBwM5MU7m5mfoFPvJISl2melrnruvVqu+p67nSyxd0BdvfWPCJEhJm3262IpAtVpf+fwMxgxpY0peyDKHVdV5FS7iyIRRtaq0UUJBxBABMRszCzgCIIQK3BTAjQBS74rM9RVpGvUuf9lnFapseHcnyyqgmI2kSUVMxQApW5bm7effHZd//0n2+//jpSB8pkMSTdL4uZlVbrslitZBbRnKmKExODAOJABJwAD3aXpMwUEWBPKQWRR1vpCkCpc0pJhCKCmSNCM0fI8Xj8j9//9u7u7mc/+7vvvvuOiBCa0+ghqi0izD3OXIgIgLsjzN2JhZlVlSKImS4EAsDCI0LljJkJFhEe4UCc5TwQkXszMyBEBEBEEHFzj1LdHQCDmtsZAGstEEhEpExMHg2Udtu8JR2j22yOj8vj/dMf//zw1/cflv3x2/3y5ecuFBHi1b25ptTJmmlwYyteDWHu4cxUg85ERFVFJInQRbSKCyICQES4INFw0mpdg3744b21BrhQ8JlqrZWZu6Fn5mrN3UVkvb0REU6a0qCqCD4TEVZx99aKR3NvZrUZm9Vai5kv03Q6vNRpRvOXp4c//P53v/l///3h7iFABq4N3I/j7jqvNsNu141jXo1Dv2YInIhESSxaBNzD3XEREQCYcUbggEXAw88igpmJAAQRRzgRMwMgciFQMJGBGUw4IzTJvbubmbvHRxYXLSqAeZ5Pdem6rs+DjKusqfeeiNwREWbBzH3fJ+04ac45pUREESEiKSUROc2TmdVal4vWmmgSkX7cBVGdp2hWaztLuVdIdWNmIgLTWXNEa3FBREzkIADuThEswjlT6iA98ja5jevdsF4No572hmrejEVa9edpeT4dlrAvfv6f/v6X//jtL342e5uXMiQRCViJCDNrpXozhhPDzK1aY2LiYBKQA3C4h1OIRyYwc7XGRCSiSq2FiEQEM3ddp8qlFHevdRnysNls/vDH//j9738fEW/evBnHsdZ6Os3M7AYmzV0OgpkxsxOIyM8izEyEfxRmYCYiACKCsyB3V1UiAuAXEQGAmYdhaK3Nc1mWBYicc0pJRNbjyt1baxTEzEJcazUzdicEJwUnNmcQmqEW3gwUnnXLKeXcmulcymk6/uH3fzody8vz4XqzbnVu1UVkPfThfVhPLgyIJBInIlWmwemCL4iImQEMqeKCiPAJEdU+eYtawp309PJDKxPCKBzkfazdfZ5nAOPYu7sIX19fS0p9Pw5dymgAkRApi0qttevTMA61Lh5EpM2kFDbWaZk95dXYm8rDh/en5XD38MPD8qHfCHE+HBeb62D2Zr15s7u6yjebYZM1Rw1DiwgALtLc6AKMHxE+clQEh8cFRTCggXBvEUQkRI4Ld4tw6TnCwwNCCHEiwIm6hN4/iQi+IKKyqdM014eH6XjyFvNmbhskUU45amtWEZy6bhzXwzAQkZICsIgASc4QPizLcTrVeaq1LstiZsw6btZ93+ec0zACSCmXVplZVREerWZWcWIDU4CcIogBkHPngBA4PNoSEYBMFdmI8nrqp0dfqHKo+u3bPJWqR0m9b64PDe+Xlz8+z3sa3/2vP/v5P/2fV9fXnAcuC8syNZ9iOcppql6iVJhxmJG5g1i61IW7g8BQYWYFUXMyl0FxFpFEmZmc0DhRV9qiqrnrAggwSEqtIt3Vbvf4+Pir//avf/z9H375y1/+/c9+vn9+ubq6WqISoZPkER6BAGsmIpbUzJzIw+diHWnf96pal5O7RwQRKSXOXQS5u2iYGYBI3JrNtkRE13UmbuGNsYSZRWPrpRNJTF1pU50NQNJw8taanVHwGaDMJOLuDZ42w0by6TQgbjm32Czbz3sf19PZ3Z9+/Ye7v3zYv/vsJrH9cJi9v55YVrgl6TlB+pZ61QSiSFkbdSLCzAISEWUhoojo+xww9+rR3D2crZE7uq7XlT49P8D9/wOPx0Ow/TH/QAAAAABJRU5ErkJggg==", + "text/plain": [ + "198×313 Array{RGB{N0f8},2} with eltype RGB{N0f8}:\n", + " RGB{N0f8}(0.502,0.576,0.592) … RGB{N0f8}(0.106,0.071,0.012)\n", + " RGB{N0f8}(0.408,0.467,0.455) RGB{N0f8}(0.071,0.075,0.02)\n", + " RGB{N0f8}(0.275,0.282,0.271) RGB{N0f8}(0.09,0.09,0.051)\n", + " RGB{N0f8}(0.153,0.129,0.137) RGB{N0f8}(0.114,0.071,0.055)\n", + " RGB{N0f8}(0.094,0.055,0.098) RGB{N0f8}(0.145,0.047,0.059)\n", + " RGB{N0f8}(0.063,0.067,0.047) … RGB{N0f8}(0.2,0.027,0.078)\n", + " RGB{N0f8}(0.039,0.039,0.039) RGB{N0f8}(0.208,0.039,0.078)\n", + " RGB{N0f8}(0.012,0.008,0.031) RGB{N0f8}(0.216,0.047,0.086)\n", + " RGB{N0f8}(0.0,0.0,0.035) RGB{N0f8}(0.231,0.055,0.082)\n", + " RGB{N0f8}(0.016,0.016,0.047) RGB{N0f8}(0.251,0.075,0.094)\n", + " RGB{N0f8}(0.0,0.004,0.0) … RGB{N0f8}(0.278,0.098,0.11)\n", + " RGB{N0f8}(0.004,0.027,0.0) RGB{N0f8}(0.278,0.098,0.106)\n", + " RGB{N0f8}(0.122,0.149,0.086) RGB{N0f8}(0.263,0.082,0.09)\n", + " ⋮ ⋱ \n", + " RGB{N0f8}(0.812,0.847,0.843) RGB{N0f8}(0.482,0.388,0.294)\n", + " RGB{N0f8}(0.812,0.827,0.831) RGB{N0f8}(0.435,0.341,0.247)\n", + " RGB{N0f8}(0.827,0.835,0.831) RGB{N0f8}(0.396,0.298,0.212)\n", + " RGB{N0f8}(0.847,0.847,0.847) RGB{N0f8}(0.416,0.333,0.22)\n", + " RGB{N0f8}(0.839,0.839,0.839) … RGB{N0f8}(0.447,0.388,0.267)\n", + " RGB{N0f8}(0.835,0.827,0.831) RGB{N0f8}(0.467,0.416,0.282)\n", + " RGB{N0f8}(0.851,0.835,0.839) RGB{N0f8}(0.451,0.373,0.243)\n", + " RGB{N0f8}(0.882,0.859,0.867) RGB{N0f8}(0.427,0.306,0.184)\n", + " RGB{N0f8}(0.886,0.851,0.863) RGB{N0f8}(0.439,0.302,0.176)\n", + " RGB{N0f8}(0.812,0.776,0.788) … RGB{N0f8}(0.49,0.396,0.247)\n", + " RGB{N0f8}(0.729,0.686,0.702) RGB{N0f8}(0.549,0.498,0.333)\n", + " RGB{N0f8}(0.69,0.631,0.612) RGB{N0f8}(0.557,0.522,0.369)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "picture = download(\"http://web.mit.edu/jfrench/Public/gstrang.png\")\n", + "pimage = load(picture)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"3×198×313 Array{Float64, 3}\"" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p = Float64.(channelview(pimage)) # convert to an array\n", + "summary(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "pr,pg,pb = p[1,:,:],p[2,:,:],p[3,:,:]\n", + "Ur,σr,Vr = svd(pr)\n", + "Ug,σg,Vg = svd(pg)\n", + "Ub,σb,Vb = svd(pb);" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAACNCAYAAACdQ4HxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0pklEQVR4nO39abBt2VXfC/5O3ze3b/LebCSlUEophJUgjEwjYSMsm2djl8sUrnK5XrgqjAkoK2TCAUFFgP0BEXaE7Qg6Bw4CHO5w1TO85+dy8RAPIxqBDRICSYhETTY3M29/7+n7c3Z9GPN3x1j7Xkk3IXVPHmnPiB1nn7VXM9eco/mP/xhzraFer9dj0AZt0AZt0AZt0AbtVdSGD7sDgzZogzZogzZogzZo/W0AUAZt0AZt0AZt0AbtVdcGAGXQBm3QBm3QBm3QXnVtAFAGbdAGbdAGbdAG7VXXBgBl0AZt0AZt0AZt0F51bQBQBm3QBm3QBm3QBu1V1wYAZdAGbdAGbdAGbdBedW0AUAZt0AZt0AZt0AbtVdcGAGXQBm3QBm3QBm3QXnVtAFAGbdAGbdAGbdAG7VXXDhWg/PiP/ziPPfYYk5OTPPXUU/zar/3aYXZn0AbtvttAdgftqLaB7A7aUWmHBlD+w3/4D7znPe/h+7//+/nd3/1dvu7rvo53v/vdPP/884fVpUEbtPtqA9kdtKPaBrI7aEepDR3WywK/+qu/mre+9a38xE/8xJ1tTzzxBN/6rd/K+973vsPo0qAN2n21gewO2lFtA9kdtKPURg/jojs7O3zoQx/ie7/3ezvb3/Wud/HBD37wrv23t7fZ3t6+8//BwQG3bt3ixIkTDA0NfcH7O2hfnK3X67G6usr58+cZHr4/MnEgu4P2amgD2R20o9pejuweCkC5ceMG+/v7nDlzprP9zJkzXLly5a793/e+9/EP/+E/fFDdG7QvsXbp0iUuXLhwX/sOZHfQXk1tILuDdlTb/cjuoQAUWz8K7/V690Tm3/d938d73/veO/8vLy/z8MMPc4y4gVHgGPAaYAbYAcaBSWAXWACOA58BngaeaPvOAl6t1z5D7dh9YK/93W/n2S192mvXHS7HjgIj7RyjwAEwBkwA08AGcLP1bw9Yadv22t+J9n217UfbttM+J9u9zABTbb9PA8+1308B862f68D1cv+n2/5LwBxwAdgE1oAbwFbb743Al7XvzwAfBb4ReCfw+8D/B7jU+nkMOAe8tp3vdcBLwC+18421sRhq++62Odhq4/Gn2rz8ZuvbVBu3xda3rXZfp9ucjbX7OtP2uwksA88CL7Z7GwW227iNtfEYavM0RMgEZX4+CszNzfFy259UdpkjBeY48Hi7sem24whwuXX6oXaDfwS8iZigabpCu9tuaI8YuF77vkMI1xoxqBvEAB2QgrVZ9t1t194lBm2KEIZ9YrA990H7fa/9nWn9OGj7DLf722r7nCAmY4aYnFVCcG+1fefb9v12jNcZJSZtiFCYeeBiu5/1dvxW22+29X2kHbtOCO47gE8B/5lQij1CyUcJ4XoM+Mq2/+8TczNLKupcu/ZvtPE7BTzZ7uW/teOm2jmPtf4ctHuZafuebttOEIJ7rZ3z021ut1q/d/rGqVfm5EQbi1vAFWDpkGSX+dYh2vdH2w3Otw6OtE7uE4N1C/gE8AZC0OdIYRsjBtlKAwd9lxDUdUJY1onB3ySFZIe00Nt0hVdLPNvOvdbOr1dQYXaJiYMQxK123Fj7TUs30/o90fpws/Vph5j8mXadzbZN6z/Tti2Rltf7utX27bV9x1p/D9r539LG7AXg99o9qBTDhKU8TRiFPUKQThIGZbftP9Ku/btt/MaAh9s4fJwUtD1C0VWOcdI46a1OkkbmgBDCy+1ao6SyzLT7GG33uU96r+XWzyv3JbuHAlBOnjzJyMjIXaj92rVrd6F7gImJCSYmJu7avkIMo7Z4khiCa8TU75Ji5X47xHSvEkM8TUzPcDtewDPefh8lHe0oIYrT7dxT7dhxstp4nwQ5VX22SLHcb8ceI6Zts90L7ZrHCTHeIR38PqlyXm+KsFkH7dwnW19vt+vMEiKqLfb+jrdj9Uu9dm738SMQ2mnnHSVEfL8ds9X6PET6qWPt/FdIVToo32favvrIE4SKKdp7bXzn25iskL5zrl1/l/Qhe21ffflY699s+4yR866tH6cLTl8OXf1KyS5rbUB6pEAMESDFwRon9PmD5cZfJCZ3iJy0sfJ3jBT2EWIwJ4kBU4gn2vUUqAPSVm+TyHWzXcu/ghuB1Rwx6fvkRE+1j4Kvcg63YwQ1I8QkqHgCguV2DUHXNCk0w4RwqYBr7Zo2x8D+DLW+i1DX2jWGSf8BIcj7hPAutmvR+rVZ+rrQ9l1q20+1/bX7Y61vC228KlCxX8OkIO+3fa+267nPSDnfSDuH4zHR+tX6fiiye0cI9tv/N8jBm23bxgmt/DAhBMMEOnRCRNYT7VOFmfa/NzrTzme45uSq8XskMDA8U2hXyzU3yYFV+bRiPRJl9to9ankcY1G7KHyn3Cvl+h4/SaJMLe8kIYgqUx2LkXI+wRLtNy2m6LsqE4TgTZEWXeEdIi3qNgnkFlrfDsr5BEiec6v1U9C5X+4VMiJwThRUyHlzjAQ2w+269ye7hwJQxsfHeeqpp3j/+9/PX/krf+XO9ve///385b/8l+/7PDoeA7UXSfwsINgkwMokMUU9IhDVqctu7BNTMd7+nyadm/ZbXCkwMUqvtha6wGWy7/+XCCx8nAiMtfH6nPHW52USJEySzpXWb9VmgWQJZA/0DeL6fcKm7rVtsySQUoy2SRMgKzRCivxWu742Vr9gX/Rnc4SPNdiuYGaMVO3xNi+32/btdr1N0gbXWGSJADMjBGhZJH3xYrvuEhnY77c51CyNtD4Ntf2rKXw57ZWS3Q7q3CFs+RPA68kBWCfs+9PETQ8R6Jt27EE5j/STEyhi179oz6T0FEqBkMI607adIG3RUOvLBwkBHicnw0BTxkRh8NoqiROpUEBM2jHShq+Wvuy2626QYGKeBBCrJADQxhtRKAD6CX3JHmk/tfO0a2yQPvYKyYpA0qVTJOC6CZwnFPlau/Yq6VNXSWS/RCi7LJDGZYwkGIxcaP2tjNQUIbz230jiZbZXTHbvCJ3uY4VgRr6u3dwOMfAfIPhRndwVUgBkJyBuVgESqCg8Tr7CuV/2GyKpSPcRCFQNV5F+hwyjZtrvWm0BwTLp7PvDqU3SmsyRoS8ks1N59yUSvap0Ah+jB88viHPSocsS+btIX1CzRYajhpDrrW+iWy2759CyzpAhoL8J+I6Vc06We1PwhgiFnCXzADJIWvqD1o/rhJCrrPe/ePjQUjzvfe97+Zt/82/ylV/5lXzN13wNP/mTP8nzzz/Pd3zHd9z3Of4KMWyXSFCyRgzFGqnLbwS+gbAZHyECFh3WlxO29grwsbZtncSL+oFq22u6x8BG8k98qN3XXsk4XyamcJzE+eJjmQjPf41kSuZIdZPolKQUSOhbpsgYQQet7Z8kTcjNtn2FbuAt9lc0VQHtv5mFLZK8nG/7zBNMzmdaX+3fBukT19s1LhNk4zFS3fYIH3iSBFu7BJDRPi+3/jve4n7vy/HcbL/vkOZsp+13uvXpj9NeCdnlr7Ubu0SmWrSDC4SjXAKeInJnHyeQ9VViElaJ1MQIMWDrJD0k/eegVUZGezhGOlwDNu1mv/AOt3NfJVlzGW1RqzSh7TYZlE6TAbd+qTL6BnzuO03m+AxIh9rvCqIRiHa1V849XM6/Tld4oRvZrBHKpcGYI3KGBosCyGlCKJ9t171N5kUdN1n2ebpEgQI71rarCCruImGAvB/BlGMzVY4dbf1Y4o/VXhHZ5ZuIAXqBdFwvtU4pHKME2v56Ir1wnaSStog83V658QMSzWqxnEgtuShXJ20yX5Cg4xb9zbTtJrIr/yyQMF0htUbb1/7IHlD2pe2/RdKT46SyiGK15AIuefvldo/eG20/hURrpaWHpNfc17B2ot3fqXadG6QSjbffxggvZ3J+jbCAp8mwbYzwnIbrCt06mWdQkaqx8Dp6RIVWDzXXxmipbV9o43B/7dAAyrd927dx8+ZN/tE/+kdcvnyZJ598kv/yX/4LjzzyyH2f4/9OiOAHCZz+DDEMIyQzskak7P8M4fCvEcO/RtRO/DViaj9BTNXHCf1/G2bKYrsBURVt092mRIbJdL+irn3dJKb2GBEoP9Z+t/7DmhKJSW02BIAwnS3gsJxAu3id9DnDJDM+BpwlARft+zYhsjJMXk9fUvG8/VfNKhmpTzCoPUHWwpihNSYwCDZtJMh5iGBdllqfVwngMkOYwGfKmE4RPuJqOw5CPTSJjrNZXBkvsbt+UD/9x2mvhOzy/yAG89eJ2oZLBKoTnNBu6Dxhy8faDe0SE/8I8Bfa/x8mkLfb/zwh6C+0z1W6DrM6eAMamRB9gTa71rkMt/6cJgXR2gkZAO2u4EdhniFZXksGKsPh5FZG3/NUlkTQUidWXzJTzim42G7jZp3KUPk4xjttjC6SzLdsuFkFSr8EZMuEQrttkgSO4+2cKvVOOa/lELRt2nCv0yOU3hy1imsgvFu2vcz2isgu30kAkQ8Q1vcaIbwfI7T/McKynWifRUI4daoXgHcTA/PbRCHOGlEZ+E4idHmWsGo32n5G8TrvSpEpbDb5cIXWNMYJusldBW+NRM0KkmjabZAAxX5UC12LjsyfKpAKryh6uoyFyFvhtK8i1PVyvPfjR2BmNeN8mwuV23vfbXMwTwI/k+b20UT5Q6Qg3yQ9iuPqmG23Y+cJL1lzxY7HIhkBeR6NxP21QwMoAN/5nd/Jd37nd/6xj18gyLyvIB3n73E3KBA3G8kvEUP4JqK8y7S5tSavIQDNM0TQegv4JCnGkmfieI+rImPdn3bspfb9PPD2dj3rJkYIW3abrhM9ThKPMiPGIKrfPiFKljJoU83EGowKoiwfk3A8SRS6KjKq1la7V4nBq+2aiySul302JpHoW2jn1bTYf8uvTrZ7Na45236/Rqbw39Dm5kNtu37sGMminCOJ3eNk4Kpf3SAJZVmt/vjsj9v+pLJ7h0F9c/v/Nwg7fZUutVaDvlWSNf5yAmGbv9S+vYZg2i8TqNt6B23WsbbNQNBBUIgV7HlCWK4TdmqfmPwn2z7XyYG+QeZHTbFUn6Ft1vaaBhfk2NbosjraPFkRA1KpxBmyHsXisfXSB3OHnyl9HSrnV2hHSdr1POHHjGQMsr2XRTKKWCPs+THgeTJ/+BoC7DxN+OxtYu4W2jl2Scqv2vn+NI+EAeS8rJGprT9m+xPLLseJm3midea3CAt3hdR4naiat0VO+BuIEMSI3VDodQTX/Vzb/hKZRJZa1NJBTqZcqimNiXYdUaaW7Ez7LqU1QwyoFkLrrVu0pkTGQoAhgKgFWfK0omiVVw8kYBA0yLh4jgky8U65p6vlegqj46Wwm1A/QxZKmW+U2RDV6zEc+ylCwbXmFwmQ+Skyv7rbzmWtzwLpUecIoV8p+27RrXAfJYVdEHN/7VAByp+0WSdxglCV28TwPU0W9zu14ttN0rZKKE6W7w6rKQ9Z55oZNd2yRqZOpss5BBePtW3Pkqz62wibdpm042ut71Plc44IVI+V+xU4rJNp6zWy/Mm0vIHrRuvrKmm/VbWZ1kdrE1UL0yLWks+TKfV9woRcJEVRtRUQGlAvEmLstVQFyOLX1fbZJRdxGDR7jgsEoLlEqNHJ1jdrViaI+fUaxlXOu+qh2fIeVcdDbSPkCp6bZBq7piqqndsiV73o4GRRq/AquKbJddhWBw8TE7BOCu8UGcwdI1mATxIMPQSiXyCLOmVOVsmK5CESBM2XexVg7LRrb5GFSSLrytyvk4xFTb0LPMxhmufcKeNnzcseoQSfJnON2kmVvgKlG2UszTc6js7DMZJOldo8RfhShWyk7fcwofzPEwp+kaye7xdeGSb9GaT/3Wn9MOrQdx1qExicInNO/fSYQmdaQ609TgzQASmQtdbEepN+4Z1r51ghE+WGlnB3Dcp1AuxY7LNLKFrlhbdIa1dBxDHS+hraet8qpO6zpn6k+FQoyIn1WIsFtLz7JH2mFVQpN0hEqxeT7jSNtNHGRHaoAgRrSlQcqxyNWLSCNfybJMNI2Rnvx2ItI4iptv8yCRAVcPn9ylnrSe+vHXmAopiMk1hZllh76PQoyoIOia4hwpZOt/Pq3LVdNYCaIp2hYMF0yyRZwz5L2HizoKME4HicxPPa9iVyAcAFIiX1BCEGOmvVfZcQGYNWbfASIU7b7fsVEu9by7JAMj41WKP1Y40MUBfJbPF+u56B5yi5OE3TYspHNn2cCEa3CbOieG+Tq0Q1PRDYXzC1Rtj7h8ig9Hrp3yK5gksWX2bmJTKrWoN2v9tnTemhNtO51kJUR19TCbWwaJ4QNO3+OFnzZ1AlAquFoJC0mRScdkpBnCHXq58la/q87iIxuBNkNLBK5g8XiBTT68m0fHWkpjeWyeDMqMHJXSYE1spsaTcdur5I/2iafYsui2OwKYrfJ0GddnOkjOMtItvwXOuntY0yHNb9GWTvtWOcsxGSyrxC0H+99pvBJ+36y2U+BJiniHScaTcFVqbfMajpuUNrWhbByEsEan2E7KjWU37TGok5wspZXLlIOuUNsvLMSXIAtISzJENgPyzs2SaEUICzSUyEwOZWO152Zb3dzxIJSs62fUy7aHmt3VC5tCq1eMzQq6YyDGtnyAmE9CKGaipaf6GUE67Sq9CyU4KGPyJD75pPNDwbatdcJisrDeEEZ4a+J8miKy1lj+SfpXUFWwuEh1Ao+wVYy2tYKxj7/O1IAxTx4UlCzM+QtYUOixhWDL5OkmFOvVjT7KbFmGYZtYMSgUbxN+guNtDGSnydbfub6ni8XV9G4gXClsksfzXB+H8ZuYjCwFC2yNq+UVKk18gVlLvt3KZQnifYGu21KZhjpImZaNt2yeXZL5A1HYqdQWz1lzNkrfdQ2cfYRxVfI1VrgfBh4mnB4zwp0s+V+doo33fafkvtvk6VcZolfaKqs0vWP8r4CNAEVYfSRIqnCFuwSC6xMpp28ESE1rqdJoGMAmi7V3GUOcOJdh3tovtLuW2T67PPtWOWCKE4TjrWdRKJmr97jHzMxSLp0EX3FWgMkXSWweEJsnTgLCF410iKzfOo7GYRVFADYiOS/qLdYTKHqv8wsFXBZP+1ikPtPmWqBYC1IOxauS/aNZ8nwd4GWQy3QUZOInSByyI5L5UC3CCVfobMWtQ6lgfeHJAzROcWyQJR6SdZAsOQA0KI3tCOq4JQK9o8f02cu88cOZg1XSKwmSQs6UnSmnySzEN6HS28Anqy9cl8naFZ5ZYhnfkeWZI/Rq7FPEYWXRlSjZJo/ASZy5O+tLZGNmSJBGe11kZgYNQxSUYaCtE6CYCmyJBVlKxCCCD1VtKYa0TlZQ09xwilsLBBIDZLGqdjpHcy4tIraqBkd4yG7q8daYCiDZ8lhvRNxNAtkXahZsZkLqw7dlqrY4XEfpBMgaI5SzjYBdIhmnqZIwDGWeIhZK9t571EdwHCPmHXtHWvI8DJ2wk7r3NXfauIi10N2kxVCFjW2m+mfc4T8c0LpE+5QRbSSi7Ok49aWiWeV2VcoC23aRokLAV34vtp8llT/i57s96uc6KMh/Ugj7TfLEvoz2Z47XmS0ZE9EzhNkwtaJBH0gcYnmqb7L9X6ArRK/VmLstw+omkpHoNIJ0vbAt2aOR2u6NygyxufJYt1rpEgQuSobZ4nhHiGKMQyzS0iFjRsE3b9tYTyPUL4qpr3k4EWYIhu/U1fJjgR/ffIMoVrhK3dIey+iFaG5ET7/2z7/5N0mQjHuwafItYasMvwq2iVoZLqlGo1EHyRVICpdsw1UvAFUqskLWi96AkyHTVCpnrMEtTcpBmOaXJZ86E1B2yOmLBHiIlSC2fIZUbWLXhTOlw1EbrC6+9Wtzm482SRqzlGHfYBIXgjxAC/gRi0q+23JfIBCTuks54nFOI8GSlI+WlVpfEgWQMZAEMw0xd6hB5h8VZIwd0mLPBw2UdwN0so0jahcAqinqhOtoovGFBYTeQ7nhYqTZDLp2WXNBDLJPtk6meFQNg1jyhHb852jUwNaRTmyPocw2nDQFk0DcmXUA1KtUEGitq+up+qMUky0nt9+1Rb5hTKLFO2QbLwqpAZvC8ngsjXkeVKi2TW9AS5AhPCrn8j4Z/OEdNoursyDAIo/3cfMwDauPr9FmEqzrVjFgnG5ipJ9AmGZMEV9xPteE0A5btqKTBQ9autlb2WtTGttk7O0XNkzYvBcAU7S+SiO32FbL7+4RZZ/ygw0yd6rTcS6v+ZNvYStocKUAQfCvE0udy15swUOtNB0vvedD2fUbcsgpNlWlhQNEEi35oynieE+BFCaHqkQ75Jt5BzjRDWtxECL+q0ObgV7Rv8yfZq21VWo4Bxcoma7Pw0gUpvkTZOhnuJVAwZ+VpvWMfJbY7vcPlfQ6GCGZk83Pb5NKHY+0QBssXHtSxBoPM8qSjSlC+2vi4Twnq79MtUVPXhovYzZErNIrU1DjHNU4XXoimd/zqZVHdfhbEiRBmU6oA9lwCoFig54fNkxVpFlVKPMiFrpFAskyHbCCFI40QiXcR+uvSjUm+1lsY0h4JrDlYnvE9yvXLtUm/X2nXNpbq9KrxCZzQCGT7X74I7gYAhslFJHdPj7XqXySfBLpEPLIK0+hqMpXIdz7NGRgR7hEAaEprO0lgZjThXkM9KH+dLBqAYFFWg4bQaZFX7Uad5hFyp7f+Kc61PUCTHSZZd2+5we27TOpaNydCPENNzonzfJVmT1xEYXjK0xgVVVBVh7wcyGBslgy4Z61nCr/RIO3+cfK6IpKzn1/Ebj8jWiJUFHmJrP5ojVcP+WLi7QdjZYRJ7LxHBsLEQ5APpKnMkQwS5EG66nP86XTWdpxscnwC+qt2P5o+++z6Upg2RJdZ2O7EW4OtoFU7rCCuirohVG6HvqOkemfOJ8r/KM1bOfaz9tkoyutOkPV0mVqp8OZHif4hcRViVTRRZ7a8Kpd+y3yqirLp1d9Zf7JGPGjZY9HjpRdp59V8qoMjbcapgzvE20oBk2C3iFaBstPtdJdC1KS/tu/33HgRj+q2aPlKZROA7pLGyTkZwNN9+u03mqA+1BqWiqH4WRK1SoMZJSzlLCJcTUZ2tQqBzU6tN8Whx50jOHLLeQquklTZnuUwiYusspolKuJPtYzW2oZb8qvdi2FQdv4rjec23OiY6cM8nw7BC1svQ9nfi5fe9pgBOA6Dw+teCWS25zM0eWcF9mqyYPE4+1Kdae+/JVJK8syje0FBwITsiWFPoeyRle9DG1mhDqtIC6vtrRxqgaAdkU7W/pvIVS1nxofJ9h1yc5fHahWrfK0tTWRnFowIKiS7tjk5wiVRRGd+HidWgryVLChSV/iBP7K5o1pTUWPluuqSyQxJ6Ov01MhBWhUxt18xgZeMFBOJz/aOiqmpME8H0LpEiutX6crbd7zr5vBJLqxboFu2avfAetkmWRbxv5kIVHi/b5tsc7Jd9bpJZhlqqpik4lNafcoB0mgaktRbCAXfwtOEK/iRdYaTsU4PQXvmtonZTDP22/yqZvtCmHgf+NJmTMyVjq3a+BmJD5TeDNfssIPC6+gTPJ1Une3CTCJZd6GA9YqU5Fc59MvCryFdBkFp9ffvtU6R/Okay7/OkMo60ezcy0M8Y3dQSB39zewVK0oUHZezdb5vIzY6TK580EjVH/cCbKQ6FZp6kihTIGjaI+OScq9XWojhg0LXAKkSvbDds02kbPmqxHFDzgVpe+/A4+YCF03QrD/fpKhukolUPME43gnByBDVaSQXAauttYjKPk+kXx8r7chwrqne8RfdVePeIKGGMUFiByxxhYbXyNovZrALXGGglZbsMPQ9Iy+w8SXE6PnPtu+O2QXgAyCXOFu5OcL/Ce6QBSsVi/tUpKZZiReuZ5+iu+Kk42Om2MFWb2iv7ur9TOtn+Vy2nyeylBaxmGocI0Zwk0g6vJ5gT1dN7qDZWO2rJ2B6p/qqUNlixGi7nE+zoWxSpY2RNuqlzQUAlLCvu3SvnHiOXKesHHwW+hgBkH23nXiTAyTnC7uuvRtoYvJZ8VIfjW+viN8s2ayB7ZVw1J2Zk3W+dVKUXSRClqtYM66E0B1MbNFK+V4q/IlCL8CsY0AlDCkV1hpVBOKB709ZxSL3pa6bbdW+060lhrbRzvplgUM7SfYwF5ASpTDX4Oyj3U7MA7qPADpXtlVVxEo+3vlWwU1lubXhFuZ5DH1ep0DEiVfVnCNT+KfKxyMfJYjYJgV67/9eSmQOvVYNJabxtkjYdJo2L6HuPRNi3SOZqiHzURQWT3vOhNR1V7RCkJaio0yi9okct9Eg5RjSn8DrZNZVSQYwaLFiSaVG7V4nJ1CN4jofJ51cfp8vbVqERWFRmqArhXjlO8NIvuFqm6kXmyNU2FhzI53tsXQ1Tw2BIDyV/PU4UCnxFO+4/E0JkaNmj+xzubQLMXGx9cbz3yAS6qTMFWBpUECPDosJp1bW+KvhS6bsUoQzL/bUjDVAcHoghk4Wu9QWV0p8kHOYiWWvdj5VVE22MvsKArwZAtN8qe+4qEoM0C1K1VweEeryBFJHePT6qvNM+VM4tIKniUR2/fRbjG1eskRh2n3zR4CpdMvGAXHRgHYfsvlj4SQKMnCdZd/G4BctvI2sXT5CPo7BW5Wo79jgZW7nQpJo8x9r702QZv9D2XyEKkl8gV3L1M2HT7TPLH+t1Jq9c0945OSJnBdi6BSdEW6Ru1xxbRVs1j+WN14KhUbqDO0E+UkKab6Zd8wppW9eISX4tMfmPkkGZClLTNgKnujDDidQP3Ut4DZYrmzxJPnBIn2fAtkpGDfq7fsOgbRxqY/0YATCOk4j/HAE2dgihPkM+20vB1lD02nWvkik6Ac883foWAVFlTQSMfqf17zkSCNX8tYLsOb2vQ2t1wCfJMEXLqZYLDhQ+raeCrAL0O1+vofBWlA45eDXZ7DHD5FIqj9kin99hEa1CXsGLrQIs6FKZgixDXvskN29U4TnNVY6UbYaE1p9UIGTYtU0qQU0dTZftw+TyL5VnlFyjqXVfaX2UnpPZOEYKr5zyLDlXpq1qwZvbLZCwZuYKUeVXaVrHshbP1vH8/O1IA5TqvIbIB4NV5yXgUGzm2qeu9Kh23gHZL+etOH607GeaSFsoQ2u/rJ3ukYDoGKEeryUfMmwbKefaKeex7xXnq76mKcS/suMHJKlpzaRlZeNt2wLdh5YKelRPMfQuqQIbhP3+egKzL5BPeb1Elis8TPiwmmqpQGGXYDY+QWanT5PiLhOlGmj/BWqWUdRiZdVvtYyrqX7HpqamZjnEpmBa9HicLous3VavvXFIhKld8+YrmwJZ3+Dx1RapJAY39VgDumvkykeLhx4nnPsMXSBSA79a5+i9Ksg1j+kErJEUnUqg8LpdBdBmTpNBnAqsklYj0CMXV2wS/ultBPBwxYxU5/V23BlCsE0bWXWtUdglVuR8hlTORRLITNF97H4tLdCnu62CUIGUQb3U6TppQCALqi9zSK0mjceIATMMM7rXeeusnSBrHypqE4BAN4elwCj80lc1H2gFdWVllgjrYli40X5/PfEQh9m+a6pkrjaqrIwWo/bfuhfpML1JRciOk4pgdLBPLlHeLP1QSQUyjoPFaDuEhVwkn0t+QAiqobDVh973Kln/ocUcJhiVy2R0tNB+XyJZKMEHpLHRCnufhoveq4paef/9cg7B1pcIg9IPUCTMaopjl0wnCy4qs2xqxvKset7KlrhvzcypDoqFbLd+YIWcNhehvZ4oilXsjCMqvqykoYE25BSr2oIkSBZ5r5zDsZiimyJRzKw/XGv7b7ZzyArZlsk0lcSoAb9iCgmGLDmbIP2tMYexlKqr3fd+VcvZtv0moY4V9NHOY/nDAsHSWG9jrb4+TbNA69OjRP3+eeIdTofS6mQPk7V9CoMDJv1f6aNK8UFOmmDDSa41Hv3Cq72UGdBJ6gcEDQrFOPmcE6uhK2V4UM5pilnhsN9eS3/l/UMGjkPlA91iYdG3+Ud9Qc3t6Tu8H6k9QcoJ8hkBlTZdL/eucjl+XqfWBG6Sj7kQ9Y+1+xS13yRZKGlDDdXJtt8coVgGxSpDHQuVaJIQ3te0+/jXHHJTsAQIles0LKpCaL6r5uzMd0FaYQdMC1bDxjo5NW8muzBJd1276PsikVReJB2p4aRhlJ/KEEEqXKUIbQKgKriibGtMZEQq4zJGplMUbvuhA3cMZakEI6J3vdke+ZQoAYlKbf/nuDv3aQ4RsgDhGAnUvC+vAUkTClSkUY2a9Ap6qY1y/uNkYfKvcj/tSAMUAzaH8jKBm1dIB7VKt2i0ghSLK8V8poW0fR6n7XWq9ummjo0HFD9VyGuutW2nifT9Ce5O5yjS1ZdUTF6zsJCAyCBthHwSqyKnw1c9tI1LZLA6Qy4gOyDUd7t8BEXWbBvcQTcDLXCSvZGY1Uw4vpUQ3SeZ+kVi9ZN9fLQdZxnAs+Tj/WVYZtr5Zwmwsdju32XMgrDq0xaI51ieL/dxKE10anB3lXw8cA1OKkpWWAQp+gTzcQ6y9t9JVZgghWm7nLcKt+jac6y07Q8Rb1Y+y92sjv5I1l0bqrOvpQiV+TYwlM6SwtOXGXBtkTUya2RQ6gR7X8fIl/P1p50Egd6nglhBn6yWQMvfZc+175IAUnYzhJCqAGfauebJN17WuhLIBR1jJFhZJQ2Miq/vHm7nu0gI8KEKr8Jn5fFVsnqt5g1rCkdhdsJkXwytKiKHvHG5XRVABF4trQPrap4Dsnp6jxjgryCEeLQcV6vBtaj2QbBhKFVBicVbCsssWemoNxFZrpb71aJOlP+9P89hiFYFb6v1TUXaL/uo0NBd2iXrUynSPboPtROo1eKqaRJoWPRWAc8IWZSmUCq0FaDqRRViCyyO9Y3l525HGqDUuumrRAr3RSJwqaywwZRBn47dgFIgsECyMNpcMb2Ap2ZTtc9DpGOs6YwR8v04p4lVmWdK//U30K2lqGxCBTp+13cYO9QUyHo5RyXmDIoNCD0WMo4YI8BLZTlq+ls1cVxrttExs+BXP1B9ag2cvf4wKbon2n6LbZzGCVt8g4wZHJeT5MLA6bbfacIXyM57jDGeBOeLbQzNzB5KM72yQRbPXCZQmEFmZcptgocqMJUuUxC8hhNYwYfRupOuYmiz3S6LcoJ48qD2HTLSN+0kiyCbMVzOBek39klHv0um4ftpTYXe/kr3eV/uK1sjZUk73sDc+3QVTg2aVeT6t1KZjksVcn1kZZzMG+8SNn2BBFCnSSPg+U6QLPo0mVL6FN06FalMGTQIAa9ZiENpDrg00TVSKFfJSTVMqY6rOjuRYq3ic0L3yn6jfR8FWo7Wc1mFONW2W0H3JJFU1wLUOhgFQYcs0KqpCpkeazy0Zut0Bce+VkAlShbNVsAjSBgl0akWvUYnIuzKmduvqvgVtKmgNQwWBFbqcZIQXsNza4hkXFZIaz9GIHGT7153hlwTKs+tEXFee+RzYASfn78daYACMQ1rhN7+HmHnN8gHIkuwKRJThH0Qj4qxtfdVfCrOE2OPkmVENZNmSnmo/N8j0tqjBDP+ePm9/q1Yl/J/FXu3VSZ9iQzmqqpX1dggVWunHFuzi9VU7NB9JqGqbnBpkWzNnKp2xgdif8drmGRk+v2b4jtDMCgHxPycK2Osf9aez5NLib3eIlkeN0H3GVo75Lvrbrdxq8HpoTU7d4l4+ulNcrJqG+77Wyk2aSqDUG2cvsDrjJbf/N9jK0DQTq8SYGmcWE78KN0iLZVJwKSA1PS959S+el/WVayQQlFLETxOhhvSYUuP1TyskcIIybB4HRVaNma07NsvvPoElUelkN4cL8covI7DHFnvcppkfGboPu9khnw6okBugTQeUpwKZ61pkR7tzzI88OagbZCv33biBCQ15ePgy/WKTrVooujKzVZUOFa+62yN2mse0VTIKpFb2yXSOm8m82haU3l0zycokN2ArmMWQIyRD6TRGlb0X1GuwuZEm8et+Vb7ouIr0FNk6qcyFJN913BsIdmS0bKP42zoDF3FMWSvPDutT7N0DcM8WaQrBev/5hM0BiPlr0UGk6SFvr92pAGKdmiHSAH8PvnMC7N/ip1YXOc2RQY12oqbZX+xsRlNyb5+Rkan3l/zMETEFStEOuEJkmFWBFSPGk9URscprr5G1fR6W+TqetWkMvraZ7dvkHbfawviNslH3VdbXZsEoSbD340jarZA1XfsZMU1YeNkemyKNA2LZOpHPyob4uI5VXqPVBFrWtZIP2Lso1obF+1xyE+S1a5CMCefIN9/UBGzwqEtgbRX2qwNAgkbeK7RtS3aOZ2ewW5NLWsztbHXCICySFB/J8ilsApmzT1WH6Q9rExEBU+yC1PkMt1NMsi0bzVv2KObg3UcBERbpB20UKki0ANCGddIBaaM7b1ykv1jXX2lNlkjYdHVLAlAzDI49v5mgZeAppYS6CM1Oo6LrLrU6aEKr1bJyP8W3bxU5WcV3JlyTK2I3iLXjMtKyHcKKGrqpybdK5sgkBghFGqZGLQ3kRMyyb2FV+csq6CVsKkYggsroBfoFs5qMbV4lPs1wV15aYsRDL2syPM81bpukK+kVUBVJqMP56YCPS1wpVnNjXqOag21pCPlN1M/i6QgmjCvoapgymtZDKeFdt+aivrc7UgDFIPGmj6HHIJa1uR+s+QDeGvNmsGhDKt1z051v2/w/2orFX+n+Frr43ECpNT0s45cVbM5tVU9KruiiFuMqlhUoOM97NEVF8GI5zFLrEhXBmaJLotcY6N+sNTrO0et2XE/AYp9dtwg4wxNyCxdgrUGt8NkmYYsvmqqn1T16tjslO075NwcWqtMtw7STleAYpAIaYd0cNr4igy9wWqTtGEVcQpaenSFV6G/TAjBRYI9kR2vTHZlXxR8/ZO/V4QrANgjH3rmPqL8ShfW4NP7qoWq9qeyITXV7xgqODsk7ThDV/EUcGtgoCvQZjUcuxpcC9ocv+ozLE3wGhtlvBwTMw01D1rB4wZZfNUjH2B0aM0b6udjIW/CyXQg6iCJZD22Wt4dchkuJB3oub1WLegRyJi7fJEY+C8j1xpW9KkVhy5TU5mBOskKQrW8Fbn2ykeAUQuzRO8q2VY5XuGGDLuq8DrG29yNriswERQpWBVUOY4VaVcLrdAvknU4U3TDbpXDaj6F03NXA1a5dRXPYyzkvb92pAFKjxApGdYTRKrngMD1OqSDsu8s6QBlWEbJ93BV3NojM6oVi/qbTlERk1hTRK60c3453VIuRWOIro2str8WqELaYIPMWpzbz1z0+wzF1N9lS7bIglptu06/shs1NtI/VH+ln6Jv//5aFLcr2pU5n+j71PFep2suZHhUI4NQCVLHz2tq/2/RZcgPFaBACoAr/aTr1ujaGsj0fB0UbalCfZu0a3UlTgUWgpTKGkPaQX3FlXaON5PBrBPXnxurOcK6gqeCK9lg6c1+dt7ja8FXtW01b6ji6uNUviUSaFSAV+/Vc9lU+AoKav5V9qafcaqpNOdGpD1G1xd5nQMyqnI/hVeDVcdXhZvq61P1aYfWnDQtrBq3Qg5onVipny3yxULmu8zbea49YjIVaC1nBRM1DKqcMgRAmaJrea207rfw9X4EKPdKO9l/UbPhXS0KqBaon+ZUCQ23Nsp9yERVjreyJPX+ved6bkqfva9KC0Iqk5Skx6gM3u86mbKzn5Tf3G5UUys9TZW5v4pgBFK59PtrRxqgyERMEDj5ODFll4l0DXTFWmcm4VRtnSKlPThHFm9ebp9ajmWgaJ2DQAmS3DogFj5cpJvm929/q2wGdEGF01rVcbWMwQEJOqoojxBm4BZdfF+ZDzPCEqQCgn57bYqmMhr21+sZNNYsqaohuKlmxfGWFNBP1qByizRn2mUzv6rJKGEaTc3tkgDLWvrKHtX461CaOi4ImCUAxe9x94NrDA4dYAXXG5okV3r2yMJKK5rhbmpOhDdezmlAa9HR1xGFUzVQrLatBpgKQ6UrK63Vn0rZKttVJKmx2l/r8QyAZWbs43bZ37rNSh1S+qdi9tdw9Mr+1pf0U48KtGPnWIz2HScVKFMkwBJkVKWTgVHRVWbzmZX1MeVTfeihNTs6SrAUApPnyDoT0VtNqUiDLZOvAlWgHPApMuGrFRgq/3v9ep0qLArGk8SSM/eDrLJWmKs13SZXyLit9ttrWEDlShjPJ6UHae2crFq0WidOp60Q1LSLfdPpa+GrotdUWgV4lVWpCuK5ZHAEZfZLwVqlWxhQU2Majiqwm2QYL1s0Q+abKyqvY/v525EGKJYp6UjHCUAxQ4h/v0OvBZcGazXQEqhMEADlAqF2M0SNi9Oi/am2UDBQU+hvJpjsRbo273M5RkVIm2lAWtlvU0gujKi1kPoH1WWYrNVQrBUzWWvTYZvkO98myn7QxewyzIp3rVephGhliIw3pui+oqDGWZUEhlTrFfJhp9XXaALMMHsf1V+qXg8RAHabMI+32vb7z4a+wk0HrdMcIVbgyVLX3KW+QKFV4Gt6RCpsgrjRxXauJWKAVkifIcCp7LQOeJiYpLe28x7j7uLVXt9HQbES26BwjAQXTqqCom3fKtsVfr/XcTL4UrgVXtG0tKKrfQQBntuxNpXfH0T3+o6pLIbCO0mXga+RhkIs2KPte4tU4EqH6pOm27aK+kdJIyDLotLbN/tyKG2D7KBWWKRWhUznK71k2HBQ/tZKaK3UPMl6/AHpUCsb4mBVFCmd+BQh+MfJKF/rWyfckG2v/FUZtFT9hbU98g29ctpakX5krLCoXCqt6Z6a+rAoVgalhqoqZg2JHdOaqnEcK7NiuFirLisjUwXZ46VqqzW1355rhKwVqlWYNWSl/W5xmNeQ///87UgDFNlrCcEV0oaNk3aof5rNYqpmDn8NECtJVnFhrTkRb9ZYoQaJM21fceO9wInXqX3sD0JlCbyXTTIFVDOPs6QJsOxJotFaPVVctToo++6WY6ArQoIFV/kslXFW/UbKsaqP91Nru91XvzVevru9Xk/1V7UmCb9pXeRs3/EyM8fIzOpTxFuNN4EPAL9Dl+l/4E0Ha3X2TZJRdaKHyveKzGQbHJhdMkjRyVaGWvRd09raxpr6MXcnHbhODmxVjBqseX1rLexTpctc7WNAJ2usYk2QrwVRWOqkuxTN/w2svU/PV1Pj3pfXcdsmyVQbINagdZ+uL6vCO1x+r8JWc5n6wppu1xdDVoHLkAlQqo9UsQRybyBqPXvA08CHSPB3KE0ns0VYgptkFF3TIzXZLHpbJ0FGBSiV09WCWXz62YS3Iuf+EGeNpLR0uNV5OiEKm0WyAh+FbJq0WgqvQi2HLdqsCF1BVaErFVqZDlmUTZIV8beqnPfi3VUwqbyaz/Q+K+iq8yHYqvvWXKqCqHdQmeo60foXugC0GpjFdt/rJOq+v3akAYo1z6PE01n3iDcwTBMq49TWNIFMi87pgK64SKTdINXpRTIwU9VUKSP3SpYZM+yTAagqUfFubf0BXQ3mVBlBl+ClqoLb5su47JCPhhB/q+r2XxaiAoK5cj6ZdYFDj2AgngO+sozZbrmOfxX7msY3FulfPGc2wxqUob5jFkizI4G6T76A12t43tMkyThPsFlvId/S8REOOcVTI+TXEM/CeIlu8U8FAtrRftaiP9DaIiZ9nBTkfTIQrGlvbX1lagQT2+W7/a1OvDK0CoC2STvpBMoCmKZwIrfLMTpj7ekeud5dO17T29Xe1/R2BS+jffuK1G/QpSXtg+PsPSm83lMVXo8bL2NbaxKhC8Aqq6OyeewIGR0ctLGaIQX9IeL9QftEkR0cMrp2ImeIFM8isYzsEomcZ+nyrv30lwClH01vk+9av9S+CxC0Cgqi7EDlVCFAk467hnCU6/hd9F4to1y4CjpNKJWCbyJdCzvU9ql1KY7BKEnz2QcBlfx4ZWi8hkJi5FAjlVEy3aOCKZDQpeo8Rq/lPqaeavqpJr+1ziMkKDGcVzn0ULtkFbfRjd62Ryicll3gdn/tXrDsyLRak7ZMOJ4XuTv1otjr3KBb4zBEPnFaG3+L8BfPEfUnYuVtQiQFCg65hbqqhDUPFpPW8oHadJJOudNXmQRVwWNlPirzXMlUJ9VzrJHgoqa0KkuzX86r7bQfiqr92SPeVmzWoGJ0j6libHzgvdX4xRqUqXKt8XIu/cZsOa/jOEoURi+S7L1jolmZI1d2es5Zsij60FoNZlYIwb1ECq+TrR3WoSvABpkQN3SMtNvbhABeJh5TYXBmRL9N15lWQVNg1ukuK6b0qeZGDfr8vy6oULi0sZArUm5xN7CYJUsNxslXlmh/tbMVMPSDjF7ZH7rZBtpxnyQMRg0eK+gb6jteYKgyV/Ruvc9IOc7710/VUgsVA5Ihr2UYZiQmSPQ90z6TZR/p2UNr3sQKIWSXyfxZTVIrqA6GgqjAeDNOkpMisKlR/AaZ4nAiKhAZJQTrBlnZNlzOUVNLNa3hx0l0Uup5TZavE+HvDul0Z0g0Lw05XfapIaT3BV3GyN9qOqryzTVttEg3xUPfeasgajCqIusdJ8p5hsr53Fe+WrZFCy2AqgVYKsRw+U0l9tzTRLg4y/22Iw1QTpGk2x8B/zuRsXQln8WwTts0GZ0rNgKJiqV75MM9nyFEfokkqKraQDIRTt8U+RLB3bJvzQyq3voig0SBiOfSX0m8VUAhqbhLLswz+LROpDLlkOZB8a2qo+hpYuyfhF9ld55pY17LyvQhVf39vfqieo+KdTUz/ez6Nl1BVe1qTbombIVuZtdsSGXcBZSHSh+uE0KyQRQ4fZB4Foq5OGk5hVVH5aQf0HWcrnwUGIiy10hE3c/MKlSQA6aNVykMsOr+KsEm3WXACqABoj5B4ajMvYogPWbgJSpVYSoqrcFwFbZe3+9VSSCF12MutTG/VxaCvjHR/gp0HPORsu9QOb4yRwqlgMoxctwo91vTdLWMwWs4HpOEjb//IPQL0PYJ4V0nBvN3yFoRb8SBMNltGKVQmFTWUkNSTWq3DIQ5LydDa1IthpH+ZfJlHgpvHdQKeCra1/J7Puk96KJwmZ/ldp4zpKepdSLW5fhRIaoCVetL6Y/Cq6WrlKX3LkNVk+y1gEvFEHAYglZwN1z270/11EKDCny26T5NUmO1Xs5RqVr7bfrr5VndI53iuUgMyygRET9KiMqbiaGSaBoiWPRFQnVWCdb0K4gIfJ1gS26QK3f0BU6nGFJ87FSL4c1U0n57ngQInqOKQLXP/ayKKj5HBoM1TaX4axvXyTKr1fZ3kbsfVtej+4ieynBUFlyQ0p9lUEwh/N7vtLHW9yja+jbTaWL7GoBXdsu0GKUf/cyS59kgl4PvlvNUNTIAhxh/6949folMKR1a+zAZfX+6fWQSlggqX4eoL4Bkm/dIVv1FsobFVIFB3Axpxyvy7Qcpsu+r7XzXyYHWRzjYIkInx/M4KWtkAGtwukp3oYR2VVZood3XCfKJ45fpVlS7DLuy9BXRuq0GqApeFfgdggJ8fbtW3d/CJudCQRR8iMZHydrAmkqqSLrmPofaPc2V7UNl/0r76su2SJ9Nu94WCUYPrf0OSf98pn32ic5eJwpleoQgPkM+kGyfRL+XiMmuqzxkKKTuHAwFtN+x19Un0oYfIwT4WOtrTVtUAannscmzSy9qVVa5t+XV2s0RSrpAFtcaotawVWF2ois48f60pNCtA6l89y3y2S6UvggSZD4gWZF63arQNZLQU1XP5j4bJCgSeKrEgqjKsNSw1zBUDv3+YceRBiijRCCk/p4lWBWnwxWTQ+SrL3qEqLyWWKVzkkxvv5m0j29px20QD/VabPvMEQ9dW2vHXyfE4hw5NduECFVMDl2irmYJDULNVo6QL1ethaaCBINrbZgswQi5ml7W3/oZ69GtD6w4G7qqL3PjfjWYc98hAtCtt+vUFP1w36dHN71mUKnvq0Bhkq6KrJAsUAU6o+TCtlrIrArX8Zkh5lmSdomMrw6tfYzIH+q8KxX0PPBL5ON0rV+oy7EWCb9wkwAzu+Sy4pfIlLCFrlZFSwOKUi3SEcHdIp9z9VC7vgOsMEI3rW0gt0aCDmtYKmXn5M2RQdgI6cRlVhYJRbxGBnOCk372xL7Ufnk9BaIfwEDmA4+R7IR2VVuqIG2V4+3jPncrh5kBx2WdLoUpiBEACT6Gynh4TzJUi4Qyq0RL5CKQQ2t/QCBqrR3kQPwuIYALRMdvEVZSoTDc+BgBUq6TNzRECPM6MdDXSfpKAKLgQj7Uba/s/xly6RQkgqwI2okQmY4SNS+GewIkUbuWd5hQFqMF+XtDYZPOY8DH6T6+XkBln+xfFU4FZ7j8pmLWViMD117aR/c3VyqTo6JVK+/9GUqOlPMaWfRXUE6V/WfoPguhPx9bGamxct4vEYByjBim3yPSDXt0l/SO0n0/2Dz5BNlaYrTa9nmCKPmSddZpnyceB6FYTBMieqKdZ5Ngcxba/ldJWyqmrUFsv13zu0yHhOcmCax2yv7aYNkhs3ubhEmwBhCiWNQVPz0SAAmKrMuwVSLU/71mtdf7hDm4Rjr/sbJPzU56b3Vbtdc1oB8ufw1YNSmqhf5EZkvVq6krSP90jJj3HuHPl8q9H1r7e8Rk/BJhz4fIpVr7hJ3W8UtRydbKoL9ITID23bzVJ8gB3Sjn3iIQvYO7SK6AWSUE+FliYufJRQ1ObBWKOnjmzxTekXbecXJ1zwipiArYPDnB+8REXSNr7R5r17pFokuFwn5Ulh/SllYFE5jUe1ghfNJZumUPnnOvnMPg0H0q+HEsbSpkZcq1slN9/Tal5RhUMCXSNi+928Zmue+eDqX9XWIyfoNwxBbGCACeIW5qgbQW9UbWiMGvSd5FYrB+i6ST5KBdyqplHSUfGjBMCO8Y8bbFJbqPKFZ46wTXEM2UjEWtWkkFTsWz/15PRsR01DHC8i61c5xq/y+T1hm61NkY3Xqc/lDQbVpKEbQW3f6a9tJyyi0Lpizu6pWPlnav7O/1Rsn3Ldhc+2rKqlKpO+W7XHe/l9spx9/rPu/djjRAeT0xtB8A/lfSoYuNR0iGu0fYokeI4blGiki11xN0Fy9Y/rRLd3X4BJF9dAC3CZW73voh6LlB1slpd2rwJzE3RJYNjJIrUEZJpqIWeopTBRyK7y4hlkvkK61k7GdJW0i5R8XN+hwBQLWBZgzm2r0Zy5iJrel71UlTpOjaxxq3qAq1hqeCpKp2O+X3YfIFgDJoAjzNlsSxgG+bMHG3Sh8Prb2D6Nx14DdJWgm6BaC1gFJh1C4qvDaDmDXSVlhspS+QrdHBzpAR/DVyYcQk+cBPUzXaNEiUa35xjRjYGmSZhtokX4I1166p7deJy+7MEOBhqf3/QuvXLDnBCoD3UAGBglOVTcGaJZG9Cw+2yjk8DlIJak1lVQyVrtYq1loWGRDIRzQ7n4KTGbqlFQr8HN3A1kyCAMXFH4fW3k0O4Efa9yXS4amxVn8Z1Y/SfYuuAuXgH5Bvux0nHyagVXqebtHPNOkgb5LAZpysLpwjgYkTCLkCx6XSV0mqzv5fb/dwinzc8zxZaS73vklMjL8pMAqbTrmyN5VrrmxDr/ymMOoRrJWBBHaV1qxpIouKFTxzo8PlOAXX8YQuy6LAbpRj/FuLbmvRwDhhCDbLb57XnEBNq33udqQByh+SIvAW0o7Wkh1TIONESvs5wpbeoBuMSTBWAKBNcxoWSbWaI0lAyBeSHpR95kk73d8Updvks6rMwN4mmI91Ylpvt74r5jvt3DOE6lTxUAz3CJUTABl4uZBNv6MNNmCsY1IBimmjU0Ts8hLdhWM1DVWzFSskQFA8xfseqyo6/pW595zbpIqrMpVg9D71X5qtIXIVzwr5Dp5pDjmN/4fkYH0t3WBEJlxWfJywodfJXFllCWrtg5NmUFTTFf3pZ/fVsa61407SrUupQZd5NsHOSjtmhUSjJ0n/dY1QNiOHSSIfOtf2UxhVph65MER6U6EWQW+TAWENQO1XfxOlHmu/X6HLOnve/rRRrZOsecOdsq/GoQqv91HTaKPlf223VK9Mlz5cwR8i03bmmq2Ruf8g9AvQXiI6eQz4y4Rl2CZfnqHgmF+8TaRzauJbgdRa1IjbJbAK9RgJLgxlKlIcI2k6J9SUkAjcyRNA3Sat722yZuQCCQSuEcJiQdQUIbTThBBbFDRON4x6iSyk8ndZlDWS4akFsP3MBqSQWRlpKmqt/b5bjrFQt6ZyHB+BiMIoIq5Jfo/bopsmshDN4mAZI8p8VU8hcBOseC3p1cly/OdvRxqg/Jf2d4WYPshM30z7X7unjj9D1t7Vkp414lkqX09kMf+QGNIXSLvsdFc7qG3UUY6SL/g+R7IpiyQDsE6WYlkzskfWRtTCX8HQc8TqSB3xGeJhztrQYbKsbJVIP60S2WLFYZkQD32b2+fIx2dsl99rumWq7afoz7Z+VBJQwKOp0bbXTG6PbuAs6+O+ldUyw+DH2GSSVCXxv4Gu5kdTaZCq/73VrlNXdx1K+xXSnj1K9wZ0cgaOQ0SAuE/Yvppe1yY/DryTyHX+HllsL6uu8Gln4O5cGMSAnSeLdW8TNlnBdImXrMAoIWg3SBboPJkWnyMU6tNk1fZFokJdQZFWM8KYI2zZs2S1u/3X12gTDSwNzHt07fsQuQrKbIN9F/XWIN6xVRFkZqo/rRSf9tft0K1D8XfR8zR323dBn8ZLhZGh0UBttnlZ4JAByk3yAS2PkNpkqCOYsD7lOvDbxBPmdunmDA+IJ9G9g0gXfYgEHA5GTUEozE6OFkHe1LzhbUKAT5LMioBijKzyu0l4BMOZUWKAIaz2i6Tw7hLh2WMk6hVkjJVjb5LLJGSSbN7TGPnE3FrHI0L1/hReLf0EYclHyMT1MMkGVeWeJ0NxlUthN9XktUTrRjSm2DRI5olNrAuI+mnc/ujJHHGtadnkftuRBigniGk6Q2Y+b5J2SPtoimaHmOozRJHsCaKY33TPtwL/F6LM67cJ23eVux9BUZlfne0GWUunOmlblgjmYYlu/cdyO3aFECNVTbGRkZ4h8fcyiZcl8fQnVwgVf4FQI9NWF+k+Kkh1Upy1g7UeBNJ81FqP5TYWM+34F8lgd4QkaFfad9sY3Xch1VSQtYLeu+BFMmGTLBmwbkjfY+lFJTD3yDTUFLlw8WY71wnCjFzmENtJunUnf0g4ZB3tMEnLQQzgCdLJnSPQp/bnm4D/E/Dr5CRay1dT1P3I0L+1hlEbt0mmeVbICZsllKJHKM8z5IoThehYu75gw+BR5mKpnfsRcvHHpwnh1YbL5HyarlBa+yddpj+rAWFNRc22cV4iC7X2iKB+ru3nsfZT5qr6QpkNgdhY2V7TcRobSwVkiWbpBrNStWYK9Atbbdsi+cC2lTImi8S8H1o7TSachwkrsET3UepT5CPh9wkr9QJhfS8Swqvl/QvA3wB+mUw9eMMe71/Bhg7bMEXFUbh3yFTDbdL5ml+cJND+M4SguuxsnBjkdTIvaV50glTCS0SRwRTdB1LMt20XSSqwpjamSCspqBGg1CbDYYi13O53ka6gS3+a860W3f1U7EqLWuSqxa10YS1809st0GW1zB9DN0cgxy2DIigaIiu+7194jzRAeY4QBwNNI2Sjf0t3KuutHf0fiHdd/hTwftLpTxBT8aeIwPZZot5cvGnr9f0VLIhPzfqJ5V08oV3dbP8vkYRdLT0QmFRRNFs6TKjEHgG0LrdrbAD/G6H6F8lXshwDvpqonVwp92HdpEyyv+nf/MjOWy4my75PmKanyZhovN3bzbK/zIqB8AgB2AQ/Eoo2VWOZrMkZJ18GOUn6PVXpgMw6CyT1XzIu19vxF8n3NR1a+yPy8RA9QmdF1w6ya80nSGZ1lAAjfwb4V8SE94iJnids61eRNXrPkfUM0HX02nLost/HScdp3tHJhFzmfJXuMrGZ1t/KvAsgZGAOCFu+SSjYH5F05q8TQE0bf7x9niRAigFpTY1DItR6j6J8QZNFUBqLA8JfrpZzasstZxgjhGap7fNMG9NKL7qEzroRx/p6Gx/9tZTuKDFX2m/nQgWQ2qyFYuZKxwk/f4x8G+qhtA8QQMMJvkGER7IQEJ00Eb5EaPIBIbxfB/xrwvLKBMwSk/0UIcTXyOXLNidPxH3Q95GvVmDX6L6/fLj8f5lgOZywMTJJb62FwltDouuEUF0ghHezHXeJUIYT5IQvEEsvFDQpT6vHe+TyNFFwvdd+4RWY9dp1X2p9NbSDtLgjZC50hBTkWtRm2L1JPirTiGWPRMcaKfu7TBaKVS5exF5Bqn2Vmj3Wxun+2pEGKL9D4mlrK0YJu3eCXGFjTbbTe0BG0WfIJ06LObdIJn2VdKAVpFRmGLIeQkAxTtYKmsXTIZuF8+8mob6WNGnrJEMr46DqiO9fbNd9lAApb2nfj7U+P0/Utn8VkXa6Qtg24xNZnjoGkqvi/oqdDV5r6n2d7uK/A8JkqYrbpF2/1H4XWAraLhPm5Gb7bZd8XuMUQSZvkMXC1hkKlpxXg1L7NkWmva60MTlBmqtDa79KTvAUWSwlJSSAWCUD0bW2/QwxwVZpKxw6ZhGvq320tVV4rYvQqTtQsq867dn2v6mRIbLuTseq8EIuTZaNniVzj1Z2rxLI+jPtft/YzvkQyXb0CLt+HXh72+cWmWZSaPVfTrpBn2y5Am663u31r4yHUUNlky63842TNKfK4Fh/pu2nn6VtFzFXQ2G9iah5lTQA+rB+sLLcxsGyD33PobX/QDqsWdLZzROWsFJx80SHLxOTd5KwKKfolvtDhmwH5DIwE8DV4hrGafGlByGRnUlyzytHq7VycuRVReZWMBoGmSAea9vW2j18sv3/RDvPNPAwqYTrhPV9I0F3KryCButWZIxkMmrYpiKYMhGZH5RjNsjQ2HE3JLxFMkc3SI7ZsbP6UQWVXq2AztBzjwwbNTqOrYCwpocoY7FLyIUpqcq4fO52pAHKDllPbTmSNnGaGBZXWTrEq6SKzLR9Zwmy7hzptEwPaBO0R4qDRZY162fNRLWVipr4eLZtP936/HtEYDZLdzXhRVKMFJcxQpSqDX+IrDGfBb6NULfnCWZjnlAbz+V96ANrHd8CKeYj5VpzpQ+CLslJfYAsRmVfVkigpV+7TIIj72GaTMV4PVUMwmx4nkpEjhIA7b+1c18nMLo+apHw4UvkG+v1q5Dm61Dabbo5Ngd9nkwJ7JJPmYOwpWfIFw3Ntb8XybXeojfpJYMrJ2CdLtDQrq+T9sp6xyESpVZnb2r7IwTFWFMb80TaRoGTTTFdMkv6pNe1/e3rOwnFu0owP3OE8BqFVBZGkKDtNthT4SFX2Cj41sAYyJ5oY2kfte/75e8WKXT6GOjWowgyr5LGR7R8vBy/S76ae6yN37X2+7OkP/behts5/btKzL9+8tDabRKdLpPU0UL7bJLITArwOjHgJ8i0hUWnc6TQygBoyaW91snqvBq1j5Cvih0v+0+Q6wNnyCrFBWIwP016A0hQ5LWd4BGSQ9Y7DJFh8Hzry9eQTzm81I59lHy8pqyEoaACRrtvk9k6bxXXmhlZF1o/jpPV6DJKkEJU2RbHTw9VwcgkmTh3zLTYJtpF90YvO0S45xwvkc84MPSu0MJCtcvkm/Lurx1pgCL+PiBEeYUMRq+RzMmbCDGSmDpNOnWx8Txdm3OcLkiYaPtfI9TTQGaNxNmm0VcIkTbTeKucf6jtv0bEIU8TK//ngW8gA84KajQF+hmnvxJu2rVaYqUvM4M53vo9QdbTD5HiVXG055ghV7Yak+gfVIUlEuQIVMbLeWu2eosQ7deQy8StyRkhVO5cGdMJMn0nePttMsbxfKrTPPkkBIHrH5LqNUE+kulQGZTagbmyTWdqCsOB2CJr9M7SXUJmKlnhPUnU8Zkr1BcovArjGplOuUwM1HUyLb5FCjtk4LRLVKg/R+QTJ4gJXSLTQ5XpVXgFUFURXOQwSSLWJUIIzpO+bYQsNlsjhWOp9U0wYiRiUDtNgpJZMkeo8ZB9EigKygRui2RtpVmE17XxtRKbds5TbW7m6frRldbnF4ga0JV2rRXCl2l4FglFNb22QdCfRg20Me+Ry/IOpYkCrWbTOugY5ZtFUwqCtJ+MizSev4+237+MRJZjxOTK/QpaNsgnt14Cfp9cW7hGJvwVSIVvn3ivxCqhEC+1a66RDruyGQqviFNQcarc61Q5tzUsCt9lsqBI5RkmhH+FRKL20XoQwYIhpMBGoVVwFR6VTnA1Tir6MPl2udcQnk0WyUrxeULhFuiueDKfe4soElgjq76vkaHuNAkgrYFRYby/2+1jiPn525EGKDIbk+QK9fN0H0EwSdiSRQLbzrTjTtLNuskaG5SZER0lhtRzGuVX8dAeWZNxvZ1vse3zYrvmCTIL+r8QYvFGInh6ing78Fi7hxr4auM2SGBwQLAkQ+3eLZGSQa+poTXyMUiCmDEijhihu0jC1P8yCcq0lVOkCMp8jJVrT7Rrj5MrpuaIBSbLBBPeI4LiP9vu2bqgmrWcobuwcJgwB4KZ64RJmiHUbZ4s+VpoY/XpNu57bXzt32SbxwUOGaDMk2yALMIMyVqLFk+R+Umj/uOkk4UMrBRmA8YJEr2KzgQ82rRjpI15iXwNuCzAC+2ap9q2VeD/275/JTEZbyRs3hbhW0wXDZN2UOE1tfEcaRe1h5DP5dLWL5f+eb9XyYDZnKRKMdyuJfDSDw6TaSd9ymIbK4GetnSdfLP0o4QCPUMK7zcR+dIRuk/3Hab7XgVBjt8/SUQk19u9nCMiCGsNj5VrvUQyLtKno21+NDyH1kR6JtchrZ3OyGo+SGt8nAwNtSIWDw2X8xxvx6+QYMeJqqHZSZKamycGbZi0ds+3fUzkrwH/MzFJjxJPSTzb9tkiLFW15tXymlDeJSyZCHu/7G9B01Qbg5tkCCyCXqb7kIRa6T3V+ihHLuMhsBEMjpPLP8wPVCtqyHaWTJyPE0r6DiI0FHxYkzNHPtZUcAaZhP8MIcAWuMq8WLk52671Et26n12y2Eo5sGjs87cjDVAukOLksD5OiMlNUqcFKFvENCyQzlV7qX2UjRbHyhbLxkCy4+JZMbYZQlVK9uVW+5xvx/8qgT3fTkz/WwgVclpn6WYla1wi43yCTJsLpOzfFOnYFW99w0z7vkSWOA0TaqN5WSADTYNpY5JZEpcLfmQzFumq6mr7PtP21+ZPtfFYITO9EgDbhHrdJvyQWYFF8iWMZpyPEX7iArmw4qG23wQR3JtO0udb4mHNy6G186STFQwskqtjjPrPk2h4gZj4aeJGZslSAEjmZZeM7LVDNlPGBjr6mZqaNgAbIhTpJjHIAP+JWCr29W2fb2/9kiZcJINBaTXtnUzEImGflumWCQyTJQw1HQ6JPg2QvQeBh0GlgaRgZo9cUmxe0furhU4zJLiQDRcgWnupnZXOk3p1/PfI1a1XyNeXHGv3uUGClWNEJf7Zcr+vaft/mGCo1kgatd6jzNihNXNyhnibhJPX6ZivPEvcwDUy5DOxvkiXRhSFCQpMhq/SLR41P1Y5Zms6PMck+Yj9m0TOcYcIC58lHjw0DXxLO+c1Mj2lgIhspde8tzlSwdxXBTLFNE8uyxppxxwjlzlU9Gri2RSXrJHn1erXuhsByxLdCGeffFiEqSlpUFNXN4i5cg7mWz+G27EvEKHdKglapCE1Ngvk8nLzuufbOT8B/Pe2n0Kq15LduX/hfdkA5Vd/9Vf5J//kn/ChD32Iy5cv8/M///N867d+653fe70e//Af/kN+8id/ktu3b/PVX/3V/NiP/RhvetOb7uyzvb3N93zP9/Dv//2/Z3Nzkz/7Z/8sP/7jP86FCxfuccXP3s4TDmmUzJY9Qj7ldJQYsofJTOHHiemZKL87CIpZjyTmBD7aKwHLJvngttukLd0pv98kwNENAsu/lUyt/N9KH6zJM2uomB/QXTkzSdaoL5DT7nGKtr5AkCX7MESCrte235+jm9JXHS192yeXO18nGRtFdYtcUqwaGsieJIP0DcJcjbXvv0mwIItl/A30L5MPzdTnHmtzeLON5RQxr1/W7u8moVqCoL023p8g6wv1jzfafZl9tj1I2eUkGbAYtR8nbEFlG0znOAEyDkbrTlrNr10m7YHpDkjhtYjK42ViDWZ1tCcJR/ssQXc90871HaRt3iSXqe2QyN/JlEkZJ4TkdvtuLYxBlQGkwuuEnScXWohCH21jIAXoeHj/EyTadQxWyMBbW79DgIAXycd6qCRGMwIjbfot4FfamBgEq6zrpPAukUorc369faaIYPZ1JLi7SRIGo8QSw6fbb0ZAkIVYM3RqDR+o7HKajOD3CI06RtZSLLaOPkbWg6yS76nR8hqCiU53CIu0TgrDOlkLMkRM2Ey5lgi1pou2icl8jrAIbyei/zXg/1mut0xYE4VngW5+zbBmmky1KFwKzwZJTVL6ud/6sNU+hkMPtT4t011RA4msZR5UUIsFTNBDLld+noxk5JhVRFmQWTKk/Si5lr8Cuy1SeCsT5JhsEgI6WrZPkh5I9maMQNoWTemdh8pHr/f528smCtfX13nLW97Cj/7oj97z93/8j/8x//Sf/lN+9Ed/lN/+7d/m7NmzfNM3fROrq6t39nnPe97Dz//8z/OzP/uz/Pqv/zpra2t8y7d8C/v7+/c852drC4T9Pk6ytQvt/zlyKaqM94n293XkoxgcOh2zomshqEy70bd2fZJ0lp8ixP8ZQgzNvq0QdmyHfMXINsGYnKRr37ZIFT5FllAJNGSzBQ6yEyvkQ6YVG+/1NGHLTxEMzSlykcFm+3+x9VXm3/SPWQBt/wkypqnbBUm3CDv/LMlKm1KBDNANUC8RDMez7e/7gf8J+M8E/n6BLM9aJh+kavnZDDmfjuMakeL/761P30jESBcINn2+jcdfbH36arrtQcouc+0GtPMGpNb1zZF27yz5VvcLxIQtkcILGZCZLnGwtQdOhkGvNScfIdL3nyAmUXu1TT4c7jqZqnkbsez39a1fx8h83Nn26bff1unJSEtHyqKInhW+yTY2j5LCe4ak7jbadRfIAlnI8gABg35HIFiZlBqabbV+vEgAKAVPYKSdN3/6PFHd/jFiKeH/Bvw88P8jCqSeIx+sdruN3wtE3tGaxwW6j7pfIRThD9u1vpYoSpssn4eI3CjEg+5Ke6CyyxipebUgUkZE2n+aXC8po6JAbZdjZAoUvJobM/2h498lrMbvEZr+wfb9Bt1JNe2zSk7m1xBCdbb1yVBmq207V667TgovpMVzYm+Qy3atQZkirOQCiUoXyST0NiEQKv0OmQ91LCALzkxtyVQ4RoahRibb5AtRDJMNqVWqUULIniefnPhR4n1K/zuBuj9OLlUTDK624y6TyiaIcr57hLG42r5/OZH/nSIjltcAf5owHm/gftvLZlDe/e538+53v/uev/V6Pf75P//nfP/3fz9/9a/+VQD+1b/6V5w5c4Z/9+/+HX/n7/wdlpeX+amf+in+9b/+1/y5P/fnAPg3/+bfcPHiRX7pl36Jb/7mb77vvlh8CRmoOSX96Q1t/QWCZTFolcSTOHPIa91ezfTJtsoCVxHZJ21kj5ja59r/ryWfazhNsg8b5Eqk04SKSNYZDyyRLLSB6TaJ9VfJRVzef/0YX6yR9t/+qx5eT4ZFP+kYjrW+r5FC4/knyzn2SabczKf9FbzJep0kUjQQfvI3CFUQII2SWV7VQlNlHOGcQcY9w20sVshYYpvwaU8QrMt/IsETPHjZvfNgR9FxpbCGyn4TZNHUBbL41WhbAawKIJr1U8+5R9bGbZPFV9W5m155lnwS4HXChp8gizRvEKBmq/XtUfIhaLTtNZCapPvgTXOBE+TzpxQqEa2BqxGDwutxghAFrVe2y85YLygIsgTCfK723/zqUPnf/m62Yy6S75h4tG37Q8JX7pAGSRtf/9fY+FGYJQ+UgwkyQzBJVuK/nqj3eT8ZaXAIsttBbTb/r4I81jpq5d95sgpagNJfUCNjYWK4Cu4muaZ9txwri6IDNze5TAjsbcLqnG773WjnuN76/VrCaZq+UfCukRbvgHwEqMqyRvcZ21om+7Re+mUEsktSmKZuxst3efVdUiHmylhoNPQ4RiEWnw2RYE2GS3AkmFwkEP8EQZF+opzLuROlb5XzyukPk0sBzd+afxUMGoWolNCtWr+/9rIZlM/VnnnmGa5cucK73vWuO9smJib4hm/4Bj74wQ8C8KEPfYjd3d3OPufPn+fJJ5+8s09/297eZmVlpfOBJI8gp07VMS0joBBEKC41wIK0J06DaRbtpVlB7Z+pZRkP1ammZSBE+A8IluUq3YUGMsCLZPBpKZj2WRLOsqstcsGdTRH3+va/qoo2sbIyNW1Ty7H0XTukDdX2niVrRnbL+OgjK0O+Qr46xjmYJOz640SK5hHCbJ0lF3FUoKgP2SDNygbpn2u5g/enCfo1ot7nZunTp4FfaOP2sTKGD1p27+i26A9y8gQdOjXtxDpp1yvdp/CKEhXqyqoqmKOEkB0nl7PNkbUbu+WYDQJhmzubIwHCOlkneJYIkE6Va0MqUQUBpigUWkGUCrxNghkVz7HapGvbTH+skQy/Y2UNj+l6SEWFFHaFu1KnAont8pvg6CIhvK9rf8+TS7wde0GifnaXXAwhVes+Kpg+b4zwq79L1KJIKKwSfuSX236fymF44LJ7J6xRUGqNiMLrZItCl8kiHFMBup+R8n2SjPidIAV4ihDaC+VjIlmLVhmG6wTIuExWTa+X/Y4TFujxdl4t5QhJZ8qHqzyThOVfpJvPXCdXuFSlFLiZehGFWsVolGG4KQCaKNsOSLpVEGEdUGVbFDDvwwpugc8pQoAvENb3eBsXDVBlcqrSGurtkA9BkoqFtLzSm39ICKuh9xZhQD5CsDZFeD9Pe0UBypUrVwA4c+ZMZ/uZM2fu/HblyhXGx8c5duzYZ92nv73vfe9jYWHhzufixYtATksFEtp4I3mzeKrSKdIuGpGP9x3noOyXbfvleoqh9nOaXNmjSMsymEX9DKEmM+W4ybK/OJzSV8haeNNWu+TbIz5DpJWukGJTs7p1jLTfo3QZeMHDKN3nhDkGZnm1uwuk+AtqrJtRzGW2VbfqR/WPs6QK+Knz5PiMl78SAf02vp8tg1xFdKnvfKsEkQnhd20PWnY7ldTaYgd2n2RHRYKmS65y9zsKakCrs3Ni9RGy6OvkqkBzooukUNoPBX+VSH1cI18dYgA10baZgoIuOJLhP0PWRMpyf6Z9rpPsyF7r3yZJFW6RhV3Wp5gr3SMZIGtatJuOW011zZHCb6pnt+++t8hCMcew3td0O88s6Z+MAiprIsByXAWUkD5Q8OX/+p6VNjaXSIA33MbqE+0cL3GnPXDZvWNRHDg7LqI2pPLm5KpvkMyHaREFzVDT0HKbLIwSma+RFkl2QQSqhldO9YCwlrfJamYFQaDxEIEytXhOxgKZGJfTtpbkKjEZKpMMjkoqSjZH6Hkr+tVbWWDmeIyW8w2X/WRfVIBa82H4uU3y7V67P7eg9a0AoxZxaS0tCpum27xWHWc9qF7hKrkCQFnYJCzus3Qt7+duryhAsQ0NDXX+7/V6d23rb59rn+/7vu9jeXn5zufSpUtAphagW6rj0OmMq91/hHSOI+WjHa/ZT8VpiUz5+7+B3DYxHct0mYwaSI0QIOLFsl111gErZpTfVFPx6knyce/DZA3GbaKebpkMyhVXAVi12ZVhcmxUm2XSl9mXrTaWpvz7A0txPmTMoL+s96X5qizOMJmeqmy46iSI868Sot0WFO3S7be/zbYx8+883bcr97cHJbt36C3oPj9Je1TtxQ5Z/H+J7vt6/F3bK0LTjqwSdtN9Dap0mjLhkI5cIdX/3CSctoPtPrPk60pUMOgCCUGQQEilWCCf2fQsCTSgm6urQqHN3yZrJ2vqZJluEDlKUn+if+nBGmFU4fWc2ukqvFXIPFYF1sbXtFvNemgY7JsCPVz208bLJo2QEY3XqIrV1x6Y7N4RFK2MTthQYajv/7XW+ZfoAgxzW1Vza5J8ja7wKhQOyjJhfUWiCkzlno36R+mmgBYJIZQPPigfhWiOEHCF13tfJMDNXrt+Df8U0Bp2SRtWntfJFLBpvSsdqvBKw622e/H4Sg8amtp3FQe6CqmwK1Qm5KGbf9CyW+jw2YTXMa0MltbZfKlAcqhsv7/2smtQPlc7e/YsEGj93Llzd7Zfu3btDro/e/YsOzs73L59u4Pmr127xtvf/vZ7nndiYoKJiYm7t5NOfq1t0y4rahb+K54GpapFxe3aln1C/Kz3UxSOkdh1rp3rFlnnVwnLel5t6xpd4q8GzZTtlN8VVW3WEPnwtPNtv6vEWyHGiRT1WVLMDKhrgCcTrh2dpFuapohtcXc6XNW2b/0lEJC2e6P0u+Ju2SvHvIKPXjmHPkZQVH2Y+zhW+h37oe+whKOyNtfbcTMEuIMHL7t3HnOgDa3pGNkVU96U76Y1vGltXhWck+QLV2fb78fIQHO2Xf86+WRTSPujzasUottEv7LNpp76bZWO28BQP2Gu8ljb9zqRd5slcn+Cne1yTkghrGOxSz4HxaaAa9ulCp2COTLI1z+oZJA1IP5fhbcKVs0PD/X973EVsPULb81NitarHfd6zpUKqgGa5M7y8Qcuu3cQl7/ZYXOEVXi1tvsEgyK69ka0ToZR54n8WY9c2rtIdxmbtRMbJICp4WUdwMoOOCGz5MqUDbrrCE3iQ6ZRtglw4EQLkEbIh72dI9c7Ovnev4oqoFDwuEe/R1qfxkjwp9LpvWZIBajCW+k2w9EKLEydOVder3oeLfZ2ObZ6LugC1B26IXAFespJVQTH9Rb3015RBuWxxx7j7NmzvP/977+zbWdnhw984AN3lOCpp55ibGyss8/ly5f52Mc+9lkV5bM1bZ+4r9oJ0wLiVD/WoYgvazrF4bSmThJshlxUUUGDNdsT5Tids9sqk7NE+pNajlTtFqTo1PMZ6HmcZQCmadaJJ9L+Ht0gW3VwfPbLeWyqgL5DQCaos4+VVZkjF5o5ft5XVZPKlAhKtPmmwnbIErGaXpOhqX5QVba//XGDfVRVZP3n6b4NAtIMwYOX3TsDrEB6s7X6F9LWVUTZH6VXwdeOzZATYZ5T2qxH+hfBgOzxAV3bI+JbIZkdJ107VplslW+adPSmM8wdmrrRae8Qq2E+RiwyMOD2PkW2KrCTaz9HyUDQbVVZoVuzo0JXJfDeZFv0X157mK7y+1HoKv0JXcDhvdZ96kKIg3Ku6quqIfF8/dfhEGT3zmRqKeyw/1des0bQNVGuQNdz1qLaMXKixsv5ILW6TorKUCfFyZd1kDVQuGv+sNJhFaHa9znS8m6RdN0IgbCfJV8trlOv97jZjh0hlaby7Cqwjr16Jj1E5ZtNetdUj8quoDgPdT/Kdfsjj5rm0tPI4w+XY/USlSWCVE6Ptz/jZJWmFv3+2stmUNbW1vjUp7LI5ZlnnuEjH/kIx48f5+GHH+Y973kPP/RDP8Tjjz/O448/zg/90A8xPT3N3/gbfwOAhYUF/vbf/tv8/b//9zlx4gTHjx/ne77ne3jzm998p7r85bQRksUWZ2q7HfpaJFttdGWCqy1UvIyuq21fJRcl1JWLNV0yXI4Rx9YMrINeA65ql1Rr7XGtl6x15JfbdTbILMCzZNnWRXKlyn45h069Mjj1+jXboN8RbO2SzzvcKufqlWvU9Ng0XYBjH8y6em/6SPu6TfrVnXIO+1hNZC0Pq7FAJTqdk1vkc8v8e+nSJd70pjc9WNn1JlbIgk4HzoJ7nWoNTLVtVYgquNCm3CgDIaW3Sqb2DQz7bRakgNWirltlm76o+gAFqPbNiakI3P1ul3scIx9ko5BId0EKoUFopR/tu/1XwEfLd1M1O3QZmqkyxlV4HQPtvEJrH6rA1VYFXYHrL4wVHFpu4Lw6prYhEkBWCtTWWKNDkd07A3ijfVbIJ8lWbtrB9X+LeqpW1oEcIizLtfa/k7xJAIJVMtdloZLWp7IGOkr7cLsMYqUpK+1o/xScVdJTOJmmcQQa1dJbCLpG1K04edWqDXN3PypwkPZT8RRehWSGtJYCLejeh8Kmoiqwk2R42p9nqMdVRF4BVo0KBC9uE1wqyNCtjdHDGo3UJR6fu71sgPI7v/M7vPOd77zz/3vf+14A/tbf+lv8zM/8DP/gH/wDNjc3+c7v/M47Dwz6xV/8Rebm5u4c88/+2T9jdHSUv/7X//qdBwb9zM/8DCMjI3dd73M1WQbtulNe2dP98qksccVyE3SLYyHIxOVyLuimEVTPdbrPV1J1BUgVCF0i1MrMHHSJM+hmYPfJNzKbyb1Fiv11MsAyyypOv92ueY7ErpCBW60dVPW0oTWl5HfxelVH/YT9rSDiXgFnDf48V93X89g3x1NSc5bukwcU+8ryVJ9lqYWf28AvlrE21fNDP/RD/Nt/+28fqOzeiY4FF9B9NERF2pvcbVccWKm1WgdxpX2k4CqIGSYE6TL5+uw62KZnnHzI8oFNcpmxdm2k/K8t9rgKnDZIFK+dkoZcIalQayEra+59yYrY3yq8jplKreC6bwUY+yS67U/NOP5ur3Uf3lsVXvsDdyPiKrzbpEGxuFabrWKM9h2rsorYFVi4Ez0diuwyRL5zXUE25KmOrKK5irYrR1s55h2itP050rKJuM1D3m7HLrcB2aUrvHqDysFeaeeYb+foVyKLnuTcreReIcGVoVmlFk0Smy/cJx9y5jJeAZkCThmT/gRGzfFRxqifxzZ0U0jreYbpCme1iCrGSPm93/JWIVZ4eyRYq6GzY6jXrUi6smY1UoL0cp+/vWyA8o53vINerz90yDY0NMQP/uAP8oM/+IOfdZ/JyUl+5Ed+hB/5kR95uZfvtH4c6hT4t9oVsbZ2VbsmWVVZi0XCNiqGTpnse8WDcySuNaAUpKzSzbRdJ+zu8Xv026m8RT6Wf5cQ/w3y5beq62VCZWXSrZuphN8aQT6eI9/LM0U+XknH3Z8lEITUYPKA7gpNYxTt5y4Z8FbgUU1T9SnVRFUmqzLbmrch8i3Hq2UuajBvPyn90hx6zUeB/xexCO7TbVyfBn7iJ34ijnuAsntHf7Wr3kS/bd8hbLFV2d6kg6d9vUnY9suEPa7ouhZFVealqrHnN5hUmP3cIBiOY3QBioO7ST5FW5u+Qld4J8i6xjXyCXsH5FucDahX27EPkSn/abIGcZNcd19tcj/D799Jur7L8fd+BQP9CFffUFn3auMrQq7RkXM3SpYmSPPWxRrVp1fF8F6qElwkl3dPxXwciuwCaT2l8vuRmZOwTqLr/XKsN7pDWL1nCMG9Rj4NSSHXiuhwq5BCLiWoFtU2RAjgZbI8XuSv5VkhljBcaNtWSGbI8HOafMCBRVdy6FPtHmYJ675LgKxTdJcpHNBlfmpBsX096Pt+QPcBQo5DBRb9aLoKr+M9VI5TSPu580pZ9leXG25X3r2GniPcLbzO+V47zyIJXu6vvWyA8mpq6rzD4xQqEgIJo/0eyUbohMXLQ4SIXm2/PUY3Swj3ZgiqE6zxgmnnHWJl4CYZuL6lnaPiT7H3GiH218hAy/hBsVpv93aGZHRmCTWRtd4kX9X1AvmslT1yVYyZXsW6pp+8x31CJZeJt0IPk+8WsgZIM+J4QK6iqQyK56+ie6+melnTWRdd6FcrGak/lMC0/MI+eY+q1HleBe/ikYKreUB130ESfHjTIkMH0gBzn3h3gEVJFr9qk7SB1V7VFTl1EPdIxTGNvks+FvmNdFMiTsZNYlCtQvb8Fkvpq0w9LdINRK2SroBhv13zGIGyLQ6TVtThV+GyCcgM/BZIILVOvq+hgot+hrumfRQelaXmXj0eulGTY1BZEtG8RqiffXI+qoHycRTD5MNRa2HwA287xGSbxtDpKMQmhEVoCq8pnsoQ7BMFSBvki58U3oo8tbwKb0XYdSIduIouV4nQ8DFyou3nMgGMvJ8VUtBMYo+3c1xtxy2Sr9Gepyt46+RTAV8iHLOW2smfIgXT1EgNFWuqaZcETiqT1KMWGBJAaCX7a3L6Wz97oxA7Zibg3VehNsydIICfglgBn/MqOq9LB2+34++vHWmAYgpkmgyq+hlTF1b1T1dlRUbIlfrr5CqVNbqBIuQUGtBVkAI5zXuE6F+jm454GnhX21dbJ3BaJknTUVJlTEONEUGUpQuQdXxD5NNyh8iC0kpEbhGiPk0CGle5XKMrWrIY260fL5KlTpfJBWja1YrrNR3GOgd0n8wrIQpdNXFbrR+yttAx1RyqOl6nrgyqbM4E3eXJsjFnOOQ31its2pcqbNoZBaRG9dVhigK3yEcWz5ApIffzWIV3nKw9FBwNk48sEIWukgO9Rwpv7ZPszVXyYTwQ+czjZCW5lcqvKX0TdUMW7QqWVKoxAtTsEBSY+cy19tsCmc/UN0EKzSgBmE6TL86aIR+OWQO+mu7pZ51Uyn6qsTJfvXKMa/wrS1b3qSi9slxSp/r86ov3SArU6xxKMw+3QDrWfstbnSR0GQFIa7FH8JmGPNVRVoahAos6eKK4Gvrsld+crEt0lcu0xU0yBaQVuUymg8xP9ug+jniBzIUKYuyfijfbjr1Mrq3USw2TnLD3V1GunxXSwl0lC33Nne7RzeU6to69glvzh/6twls9mXllDVDNPdR0EyQ7ZB7S69biA8fIsLiyRp+7HWmAUpkScahkYmVHK4asaqJ9rhjWOMBgtGZna0ZPBnu0HFvVRPWrCySmiecvyW7bH1VylXxVx6OETXUl6jnC3q8TLPqtdg/XSGfueAyTz2ysoqo/fITuS/MWyFpNj6m2WhNkSdxa65t1KXB3Dchu2bZfzlPLHeo1IEW+sjm1nKDfRDnegqlhujKh2tRstNee4+Xg+C9Ak9qpaWrRdGVvK5rrkdG3SNAgtlYUmwLwPNa4VMRYq62HyZU32iQRqMW0QwQVeJN8w6ZocI0QRPvxBsIe24+HCUSoAC2TDJIKYL5RgVCotZc3Cf/wOFmAtU0ohYBMx3+vNP4w+RoVUXxlqA/K//vl+Bqd9KfXKr16UPbxmIrKaxpHMGg/q1+SJhU46mtVZP2SwO5QmjfiTQyTzqkOaJ1Q6ObXaoWbzbXUNedZC5sEFZsk06ASqfUOfk0zTRAAZZnuGzIFWtfafrMEv3qeBCVz7fgtwuqaY6uWCDJ3Z/Fqr2w3ZXWBTHlZE7NKF2hUK1oVUwGvVKP0ZhXyGrrtlnPVBHiNeNzXuajskkZgvfSrKo6hs8foBe1HrSavYLOfvfns7UgDFEjnW0k9seBo2e6Q9pOD9H2XVdFWOyX9NYojZL14dYqQaqMaODU9AgMbxGnTXEJ7jbDjxg/i+V7b/2GSvde5DhFq1yv76jO0i7da386TfmCafAFgZbXtk2SsZOMc3ZU3FZg4NjXVUjMINhkbbW+15T26al39wm7Zp6ZuKhvm3Kq2s6TJqSV0AlO3H2pTh6stNU8lfSXj4Y3XALEKl4PhQFS2FbqpCCm7TVLYHYz1sm9d4tojygSukRH8HmFfbxJs9utJ6mqOVMQZAhXPtHP5DBgDSq+lXXP1Z2VEDFir8L5IV3mrYpv2kXXokXWKtYhK8OZcWG5Qg1jorqjU6FTioPaj2vKaaYBuHWTNV9Z8tAagGhHvRdSuoh5K0+LWKr3+cMQBdWLrqpZKJVWkPUUmxrUAFfn1yjmqgFrUUwunoKsY1whLqRDskq8gfZFAvgKEaQL5qogL5EPmqnLtletUitJJVMgUHp246aN+lqgaAsdST6THEFj1yHX6Fck63gqgnqFSeZXZ8rqUY9xWhfdeUYT7CTir0tpvx1rL+/KE99Bt9J+0VdIJkrU93v53gYPOvgIaybJ5uu/XrA5Q+6RYV9GpONFrq1KVkZXF75Fvh3iYrrrdJHzDMTLyryKmnxghQMwWAXQW6fq5TXLlummg8XbMcVI8ZE281xME0VlFVX8onvbex8gXnqtmlTXqZ3Bq0Fjtq6LuPWraVDHZrZG+34wlaqCsLXdO6/Za32ifTIcdWqs2XaGtg3+T7tJeAYoOvNpnB88ArqaARslXkNRUjkt8HZyt8lstF6ggaYkQYFkMkbXKc4a7bZn3KIo9Qa5ImSUnhXKtilwPyFdXCzrmSABkmnuJdOY1Xa7wqsgGfdMkUnZf99miOycWbflYByvM4e55FHwpoFrYyozXupd6beuKnIsKSinHq3iH1pxYHXYNxSBXwDiRauUe+fjGeZJtcLthV9VsUa2D5m+1EAtS0OW2HVDD01VyeesuAVZWiPTLFlGNLWKtuVXPOUbwxhb1ymro8P0uynVJBWRqCIL/hnxmyiz5sLOqkE62wqYgTtNlgbx3BUWQAN3wT4HUaFQg59zZz3W6ilOjGz/9ob5zbHFBrW6s8znBy8lPHmmAIqklyWWtxzQx1KcJUTpOl3gUFGj3K+Oi/XH1pSLgtGjbjQmMIwQJFrbukCkbxdvM4fPAW9t5FWlXhc6TqlHZBElBHesI+XRafUnFq6sk2/Ll5Mu/FTOZe6+5T7A7NfXVL5L9MUOv77vAQCBnfbvndCw0HUPcncaBbrqt+hlVwnPv9v1WA1pItXCbvqEyMofWtLH96Fa7oJOsts/o37yfIAC6j8ytBVQV9BjISZ1BCvABISSL5MvqXqTL3u4TLMqfJifZ9Mss+dK8/pycYKamnqbJYFB7p7PfIN8h8TDxstmFMk6j5LNjvI9lEsz1AxX7VMe6On39Sb/w1ihji1wE4vG1UNltgqwqeDXttE++rqUy5UN9565zU9kyQaPMz6G0KfLNwtJRMhgH5BuHIQGMgyKoUfOdfAVjv29/yj7jhJDPk67LwTpHCu9HCADQH15J8zlJe+S6yTN0Q1In3+UOY4Tl9WET1QJp+czTypWfIAR3isy9GmIJfiqrVFFvjVwsFpAedZvjJ9ATyPVXUN8ii8EcTyMbvaDgxvHX89XrVMtbEXSdh8p4Oc5u3yuf+2tHGqDURVH75TNK4OE5Mp1Ss6MyDdblWSSv2ChG1qbUABC6uBS6wa84376YHock4j4BfEvp+zIBKC7SJSoPynkkAu3bEBE0Wty7RD5I7jL52Io3EHWJc3RVb59cpHGK7lNqa0qqipKiZ58tmhUn1z7a/3oPjlX1Gf0AovoU58e6QVNLvXItyrn0hfvc209WZr4CwENp2mJvpNoD2Q0fNaAd0f6bhpkq+8qgzJK2T+HTXikACruC60CutN+s46tFWQa4nyAnQyS8Qdh9HTikvROEmU5XWGr6XB+wSfiVa23bWUIpFri7NnK17T9fxs1J1vbWOpaqSEttn1N9x1VrqCJvlzGuAuV5P1uqR7vv2NVUXqVxoavs+tR67hqYa4w2OcQ2TTdxbmQusNgh+cnq8Gpaogqv7IcVZdXJaYFVGPfTQinUV8k3JsvSeF0r+z4DvIMUzpX22xvIwiSbg1/D0tG+ffQsTtwtcmXLHN0H3tgcgy2yEnGVRNAi9f7crX2yOtyqb8dFz1DbWDlO4YcuELPVkNTIpwISFaBSgR5XGS7HvCqF9+/3+0fXRxqgSJBNETZH0TCal9l2X5kRbZeLFmREtOWCE22XWUVtxC73doQ1he5vknL6g2HicfSV2XFqrW+uDHDtu6tmXPFzk3ysxBIh9pfI1PxTwNeWfkm8bZBYeoQueJmiG2h6D5qN0XatK62fF0nz4T1W3K9YyyDJlO+Vca/iL2vltVTPHbpzafxlcF8JhcrM1DjNvtXa+0NrQyTjsE4Mqvotu6JDmyWcqSkfC+OnSRu3Rdq8mvZ3/5r7u0WuVoRu8b1IXBDjdifwk2RukfLbMXLCq5OF7pr/dUJgL5OPa5Zau0EuQ34E+AoSPHjOVTIdb3HUEunzHDdtonSg/zsGo+QzXQyARcUCqppnFazZhukqq2NZ01OQ/si6znou/68pvH7KsOYua9ruUNH1KOEgHfxlkqnYIxG0lNk8yc9aYzJHWgCdljesdYZ0rNJwUmeUv3vlPDphJ1FLOknQfxY/jZR9F8kUi78JlmZJQHaTEFAVUa+wS4CdpXb8MSIsXKVbOLpK9ylY43Sfs1LrcxQACwT0UKutLwskqhYsVFAgYDGnqXdRcRzbmpPVANTchIZjuO/jNWWnai7DefQ8gh3rcO5feI80QNHOLJDAw+HYLf+bOp4lVzYukxlHz6W4VaJrvHycvrpgoLID7u959REH5Or6E4SI/RHwNW3fBcL/jJLxhaIlwz9EvttziXi2icHmM8SqnwVitelx4nEVX0WI9yoJvmaJ1I+AQsCw3sZFxr0GeN5bBQyq/wz5VHJBguJXUymVIDQbWjPXVcUg6yQN6tfad31gXcRQyxZGuDtugGRjrPnf5O4Y4oG2HvlCVeku7ZY378AtEGDmxbb9Npk3WySFTN/ggLoAwDS6eULtsvZehqZXzjNKPoK4BsG3gd8nlhtvkc8oGSURpPUdlUJcIpTuRSKQvU4I8G3gy9r+l4gJeg0hwMPtuLV2/pMEsDlPPk5ihqRDBRlViStC1idogyt4MWiVtdqnS/eNlPMKPtxfRO91Ksib7DuugoyqHNAVTvPCXrvWZtZ86KG0XQJ0nCWsixo4RDcFME5Yo2Mk4LhJvh/dCVAoBSF1jXY/YtNK61Shy49XarB6BC3oMwT6HSEU60Q7hzlRHbrO2WLaNSIse4G0qGtEamiEEMweEbI9VMbJNMciAdKsfrcp3PbVFEjNB+rpRknLZW6xCoUWTXCoENVtjmstNNsv59IDGOrvlG3QfQV3fygrYKzsih+N0pdQikdCSwBygnzXZS2krGypYr1NFodebJ9puqnpmh2s0bjiLnnYn/7x9xFCPWt93RlCHH6BqEMZIdR3jhB76wY/RRKQCyQJetD2O0mSiuukj3qceBfo2Xb/L7Xz64sgs7NbJEkoLq/3rXMfLeeXHdK0iK8FBzJXQ+RS7VWSzbpFPqJ/qFyzstmQsZiE5jzJokgq1HmqaiqxUAGT6ldr0CWhD6XVAqVl8uaGiImX1VghJky7PkY49avkAGtrTPtvkKmTWpksYNEX6JQdIJ2yvqYq0w75Zt1fJgDKGCGI84QNP9Gu9wmyPGGRLnLfIpRthhSKk20MTrffTrZ+vNT6qw0/0c5r0Cb9qZ2ELruswkPaWtH/MLliVXvpQhL9xGo7rm5T2MfL/lOkH/BeHVspShkio5aaKtJv+Jt5Z+fCyAgSTPWz+Q+0bZFLZ2/TfSOwiWPaPiLRDfItttfKvgqumq81daB1nmo0pPDq2GuI4qAbglUKrAf8V+B/bNtPEkJ9k7CYY4TlNUU0W+7FJ0L1o/0ZcnXQw+Rruq+2822Sha6rJM+vQxcIwN3epwqwucsFMh2lUs+Sr63VSt+m+5SwIZJurcBNwRM0yshsl3PLm8vl96Njx1jhFX3XQjW9ilHCOvfTjjRAseynR6wwv0BG5pJhNd1+QBJpKyTY+FqiDm+RmJYl7k43U85dt4kLdf6KlQHcKeAby/VOkIHlMhEMDrVrXyFZDW32bxJT+T+Sixcgg+9RIiCdbvf/tna+2+TrVo7TZfeXSGB1li5RaVBXg8hpkrRVBMfa9edJ4DHT+jVPgpgVMkPxJkJ9T9FVK8mEWTJWMG2juKsamiX9gr5An2MQqimrJG+dvxEO+TkoT5PBlfZqqf2m7g6Rj61fIQPFT5K1IdfIJ0h/ikSx/ZSXAWtldxWCGkDpJ3TG42Rdi6z80wRVd67tu0hXeI+3/3+lne+7CfAxTQj2MQJ8fIQIaK8TivAImQa6Rvq09daHNVKID8hFFQqtIKv+P0yiaO1kZY4MRK3TNMDV1wnOanW6AaSBYr8v8Vgr0U3ZDZXf/eu26l/3ym+1DMJ5lEk/tGYS2VDPlS1rpDUZJizTiyTlt01M+H8lBttQa5QQmE0ScTt5aq+sg9H/Ppkb85p1EizKqvURI8SjiZfbdbW810khO9b69Xvtvv6PdJ3uSUI4/5AAXqtksZTCcoMskDLENIRz+cWZsq3y1iN933fINycbuewT1lZe2XGpOVoZGO/R3O8k3bytIZu0aT/nbTTjnKhwWtH9cj7ohpnOUUXvJvdvcz/tSAOUJbIOGtL5bLRtZvdqqlcRvk2ms0eJhyBvk+xCTUPU+sQqQnWatsv3SmINAW8mfYa2cJ18H5os/ipZs3KCcOQXgF8j1OEUwYZPkk9BPQl8O7m6cY1Qn5cIgHKKFHfBwh7JYpxs2401ZMgrM6F9vEr4nteTuHqxbXsd3cdH1Do+QcgjZIkbbUyXSbE9W85r4CnZ6v4zJPi5Rb4hWgCoPMj6j5FM/CYZeOt7Dq091/5W9FQjf4O+m20/t5sKv0zmAKXdrHWo9r2mMCDTwTVVXZ15dfS75JI4UxwyOx8A/q/t+DOEQLsk7Fz7PAz8BgFELpAIVXAwA3wTyYhskIVVN9q+CouFprvko/TPt+t6PgW3KqrKqsCfIdH6FUJw5ugu77VmZ4Rg9AVya0QaSlbrWtt+qV3X1JYMyyTJ2kAInnPxIrno5Ll2PsGRQMx78d69Fw3SobWbdCG/gmN1NUSHX6Jbb6DwXiVfQjdDaucm3WWq/Uuk5MMr7VetlIqjEz1OOl8t3B7wYeDd7RqnyKe5mo56DWHRPgh8vO3zBJG62SGE/AKRWB8mlzCvkRXcWq9e+22m/GYNiZGBIMt7qd5nkwBVswQiX6dbSDbP3e+F3yEBIG37OllAsEEIcY9Qghr+yfvr1Qy/a3Gy86pF9b4myUhqvf3vOaQWZZXurx1pgPLvSRFQb6Fbn+Z22dNpQjSWyJWJNV1jqVetT6gqKKtwUH6r1+3Peh6U86jSliN9mlCDeRK7G8jRvj8M/B8IO7lMiJO+ZZHuYysglxYvlb6IlYfJ11+tEaBsnLR/io6ZSUiMTNt+nQAS+g7FTjLUQPGALGFQnUbJgH2IfJmi6aAvI/2M/dEH6wer/V8BfptMew0TpsR5OU+yLFukD63poUNrpqO1R3DvDmmfFUiRaJ0gBfOgb/8qfBWg1CCpOvFe2c9+6ehrCmiYSPP8BUIIF8nnlDhhI4T9PkXY1xvEZCn8k+23OTLwvEkG0d67LMcIMeGm/y+0c9wgU+3rJLBybFQWBUAUvEoGpnN0yx8sgZggVws5/sMEOFTw91t/DVQtgDMgFW1DZiR2iAD9020/ywwcd/ezvqUy50ZUO60fh9Ks5KvRem01ZKzod7z87qDpMGvKQcGzWAgSdXt8PW8FJ+5TBcEof4MYwN8G3k5MjEzGLF3LexH4SwTjc5MAKgrTPLksWTS5RKLseu9SX67c6ZFPHdRRT5D5Xa1tv/BW2myPtNRat73Wrx75CvA9sqBX5V0iwnPDaMM9ra1zuUpGSdPlukNkaNgji3jt2zBJudKOFYh5nvu3vEcaoDxNt2jSmvCqLlN02dAR8iV5VwlWXKDSH0iKJ4fIzNtm3/b+NFD1CcNlv9q0t2NELeBfI1mUGuz2yv6PlOv7myTmLgFclsiFENpxY4Yh8nEOy+3vHFn3KJFXMbiBmvHMNAFQnqabhvc6kFj7FqHWshfa1mNkyZz9rxnSHpmpPdZ+f6n9fo5kSCbaua/QzXbqZ82gHpDEs2Mnk298cSitpnsVlCqoCqO2d6zsYw7tMnkTNb0A3Zq56hihi+Dd1+v0yj5DZTt0C3hWCHbkL7bjT9NdweJ9TRH5033SnprWMo30EjHht8kngdtXF3RMtWMsV5CNWCaZBki0Xus3LKJaauP1EN1iYKMXFXubpPYcC4urpsu+02SJgdcTbJwkFPoy+ejnefL151blW0da88I9Ujntk6zQodae2J4grYOo1CSrTcdVLaI5xjXgDwhrApkK2Cv/1zZEPkinP59m6wdKn00hDohJ+STwdWT6qAq+fycJvliQMEHmIK21ETVbnaelMb1TPZPhl1SbNJ3j+NmEd7JdY4VQNA2GhV3SoirWMl3FVYH8HJAP4XBflXGXrOa81s6n0EM+Yfc2mb4R3UNaevszTnf9qyHj/bUjDVD+Ot3CVqdKHC0e3Sfr2Q4IsZgh7NUvEwx0TTvL9GqT5ojgaIMQ7XW6JKPXtvXHD6pOTTWZXvlF4OuJaF/b7fkEIcYeEqL75OpMyTWZEZ37LvlsK8XIe7cEDFLdxOSVYNRWy75Yv2Ntz5sIdYEM5JfIlP3H2r7aV3G66mrJ11A795vJ10lpyp4gguVbZDrsJdL/GVCqjpZzGAwftL6Okrh+lO4jOw6lvZO0l9qbGqVXys5BE3EZgP53ws5WBajnki46TgyIRUn9tv1eTEsNUity145OE7nHP0M+8kE/UwPlCbJu0LrH26QwLhMCuEKma0bIpwo6Yf3I2YlVaA3mZSCk7hTe6i8niVeKn+q736V2/ZsEu6/NdWyrIs/TXZ58jCysXW9j/gZCQT5MKvwUYUyqomn7nQcpTce+pvVVtEO13N9O98V+ldmogqLmSf94wxvA/0JU2DmROlfIZb5ThLM8ICyA3KrXqhNi0xLsl99lZnYJgRslcpRvIKvsvK71ElvkYzuHCKEw57pCFqIqwHU1zAJJPSqsFW3af0PHmgesRatVeJfbPlME765191xLhFHYINmeWi9iWLxAUpdXifziNPnOCunILyMAyh+RKSMVboJ8zoDgZ4P0MtVwCLJqOrAC2c/djjRAsWYPUp8Vh8pcVPEYK9vEq5KNss6yxQauu2RgZNBEuV4FFZVstEZOnzFPBG8nyOdP7RFq+pe4O6iW9FTNZDnM1qrSEof9QWRlhefoPnZCsGZm0j6qMqZYKvM/Q9aIaFPnyKcFaDo2yHRVzSQYeE60viyTq3TmiLT8owRYe7T183EizXWljeeVdv6J1h/BDuQc+1kj/SDlfmpwf2hN51gDpf7cob+Pk6+2qIMsMtOWL5IF8jIP2v9dMpVhHk6w0d8qUFLwRHUnCMToooePEmy5AigoGCMd7Q5dVnqj7GvwKqDy2tKcc+SLlWRdFNY1ust+K5VmQVQFLRPlOpYfOO4qgSBqnAxmHTNLByAr2WVxjAJmSJ/4MBGAr5D+1SJiBdd7qn5skVxm6HWVEwHKoQrvGdKCyH/qcKHLL4tYFUapNC2vKHqRFJpe2X+amJRZgnERkVaGwMF0sIbu8XFSTxITMEs48re0c8jdykzIvVrUZaW1NSQVkJgPdNXMHPm4+EqX9deWKPy1yFRAUgtNPa4i72mSiTG3uUWGdwINuXOPFykvkkn4VZLhGCK8xAjxJC2pTcgCBMGpIfGxdj45eI1WNXCQ8tCfU/js7UgDlGcIGzNPLkUdJXDgb5AkVF2oAAkgLOM6TkxZBS/b5LQrTrI1NQDV+Vbxcts0ocrHiBTNw4R9myRX5IwRKZnPEEy4x6rycPdjHXbLNsm1nfIZI8TFlTILpO01vT9KlqMJdhSnmmZSzHp0We69Nv5mGNYJ87FGpvgNqCUgtwnf9iSBy18gxXWEeAWAbM6byPrMEyQ5KtA50cZ0ovxm6ddq236xXfMmqTKqj2bs0NqLhHAsEoPqJF0jovebJICorEAVihVCAU6SrIWITJtXhbeiTciBh7T5/q101ymCvjpFrnJcbH9XiEBMwCU7XdMlTqpBnWmag7K9FlJ5LxPkU2SXSOpP5C8A0rH3ZwZEyKZGJsh3STxLgrw1Ml02Sgaj2lPPfZ4QzBuk75wioo5b5KMwzpCKI3pXOeaJ+bKgyoyAwa+kg+Oogsm2+f1QhffjxMRI/c+1v7eJdyRIkVX0paVSKF4g6KXzpBbrrA0HFd7qsG0CD8GJKM5cqNZnkRh0E8znCWGeJQR3q21fK8cZBVgEpJBukQ+a2yCTx273+oI2x0XqT+sl4FCwavoHutHKELluUsu7Wq5xk6jSXiWXMoviZWCG2j2eIK398fY5QVjyp8kH6NWalGlCyRX4s+SywVWySMu5qLUzK6QSOX+O6f21Iw1QjhEY7ziZRoaYso8R6ROjaDH5LLnQaaYdc5y0gU6fdsLr6HQVmX4mfKTtM0Oo7mkCcLyO7gORBS6TZErnWeBfAt9LLh229dshVcWYwPoP/cwcibG9tzlSjTQZ+2SxrHZfc2DKpZKnqtB4O98oyWbvEPV+twjRfYoAYwdtTL+CUKGXCLt8jlyIoqpukYXLpuzPtf+XyvWNkybJGALSVCy161SQdZv0tQaggrFDa08QT9I7TqaZRavXiIehrZI3rW0zX6mzNaJfIoGJwVOPDBZFjP25SEHMJElLzRJ26BwJEKbauebJ56E48f8T8Hfp0pmyCKN0XwIoutZOuf2ApMTMXdoXg02Z8APSH1QF0MdoCLzXSqtqf7fIR1U8QwgohNJeIP3b4wRyfoEQ7pPkSthx8tESpuVvlb7vEfZ/o30sJdAQmMcUMd9ox+tTeu2ck3SRvCzPobUJMs1gVK0D+y3gl8hJV8AgB8bwbLEdv0T3YW1quyBohS7/XVG2PLaWREcpCpwjn3R4nuTIl4k6mP+ZSFnVUEoLKyXnR7CyQXoD+zpBTs4amfccLueqiWgneIRc/SKVqgKZaJfPNmfQI1fwbJIViKOkB5gnhPdG+22xfZZICs5x22nnkQ3pEVbUynI5aD2HEdMMGSFIjwqueuQDmWSNhsgi4vtrRxqgOIUSiNrYBeCvErr9AZLcmydr5SS/LHeqKZLRdg7TKbfauda4W+X0E4+0z3mSKZG90ZaJgS0TmiTAyW8Sdv7Lgf9zO29labSvOtWaedV/1ZoZxXmWUFHFf42MS7x3cbuMkvekfxP4QD6W4hgJCLXjquKbiaLfs4QpeImw+dfbuVYJX3CTbhbW+1snF+kJ5iQkJUwfJUu1zFrvEvOqKVsmX4ZYQdYQ6eMP1cb3A4MponNnicLTa8Cvt32l3EYJYdTxyzrr4CCDxv32+02SEZByqyBlgmRJLhKp52OkvVWo/EjLTRA02O8QD2Z7HPgfSGpPxseAFhJdK3Tavi0SpK2TqZKT5AIH6/cU/LrqRT/i/Wh3a6p7jXxQzzCZMqOc8xSBrs1PThJKuUaCkpfIJdAG3MuEUF8jV3+eJou1zBXPEAZChbTPFr6tkUSDY6ciVlStzT+0dpVYAygfbKpgGvhmYpB+i6S7RLWGTTr8m+TacMglrlreG227SL3y4IZUVl6fIqismXae08QknSSQ9jTpVGUaPkWwQa8nKgHNOTq4OtaaqpDuq4n9SbqFotZoyJ4o+JUaEwTJ/ohAa2pM2sx6mOPluBpyGibSjlkkrOTj7T4tVDWMq0p4lUDoN0hhtqDMwi7bApkCcrtgbaltE3zJlKnYkEZvjPttRxqgPEOIwBMkY6qTPU7UaO8RkbrBpWmCmg6RRBMIrBF2RlypPdQ2HBBDfoZ4MNqfIsThNBnoOW2mWGZJ+25Zkdc7Tz4k8wqZ3oeubRqhi6m93ymyMNYM5GYbgwXS9tUguhKKBrK1JlDRGunbf5EUN9tB6/86WcspkzTT+icJaSpnjXzGofufIB+SeoPMDFDmYLqNdS1X09f0Wv+OkQDTvluqUGt8jAsOpX28/f1yQgAgGdlHiMc09OgKr45fe6eQVGZV4TVtXusyhsp1DGZPkA/deS2hTNpVK8SdyGkyYNb+nCX8zxpho2phWM1LaucttBomqbt1snZlsR0nA13T9/3FRrIvkIs8RLuiTwV4mFDQKdLPCeyk4hRE614ebvtbXOzYeYxo17KIatMFdLvlWiOEXz9DKMQtuoZhkazGryUI9tfz9OeZH3j7XeLG3krcUHXoDxPrzycIa9ZPn1X0BUkd6hxF3Ovtd5Fp1VxDFVM/p1s/XkcqgwBlkbSEWl+F4yFC8Gt1nE0lExAotJskcJglmQbRpFz6CbrVizpt61VqDY3CNUo3bKoh3FlC6FSabUKIlujmfjfbtR9v/bjStktb1lTMBrmGdYcELwquXLr3a473Svt9toyNSmROWtSt59IQ1bzy529HGqAME4sYVshiSkVNTLdMiLpZUR2ozMcG6dx3yLoT7SJkCtt0wjYhAt9CrCR6LaEut4laEgg1OEauLJwiVUtxWG1/3074qNeRBJ/7qpJul7EQ5Oh7BCY9wlcMkw9pWyXf8wkpIqbfHUt9hEGpKqkPkUC0f/qJ0XafjmGtw9H8SIzOlOMhV8DKaqhqNRXjd8diop3jefKRGNPt7zL55Pg6hqq09ybRemhtlrgBgcQjdGvzrpHp3Vuk0zMvWYV3jwykzPtpi2rdgtruhC2SAmp+0qIfmZJZ0kaJjPdJRuGtxMC/nmRuvKaAypo9nbRB1SL5AE9TJdsk4hXEbJBpq1pPYj5WYRwv3w1+LXaVPak5WoGLCNfgWXtrBmOb7gtnBXraXBWn+mmFt9YEGlhPEnNqFCH4g3wwqNfRTxpZeS4D5kNp83SF97UkKl0nwouadNX5W7NyklwFA93iU+s5dHJyxE6aqSSFSkE9Sz4PvCLvWTLUMr+olf/ydszj7Ro36RaMVuGVe5aFkS3wnqpSWEhgEnyXFLJxkhaEXJpgmqwWF2gdHTOtqqmmGnY5PhoMgRKksChAHmMfd8rxNZlvn8YJZXiIENhnyHdfzJHPE7dPslq26tEqrfn525EGKLcI8k5xuUakEq4QNYifIt8/NkfWEg6TzwqZJp5FcoYuALlBqOBL5FNbKceb0dRZXiOXLy+SKR0Xd1kHt0Ky2pKbryGmfoFuYFcdvd8X6Nb90fooGFAFrb+UtFwhxdRsq9eaJGu9Z8jgWRtuOdgcCRi0+0OkH7L0rKadoPsMQn2XfyvZp00f6tu/bjfjatazkoeCEcfYsrQKNGtqqqrQA29rJPswQtjqG4TgPk+kTy6R+cZTZBroBjEpUwQ4OE2XtfA8L5Hp/YO+j/m/R1o/LpA5ygWy8lw2WcS/TgaFBwQwOUcoxCQpcNagDJdr6nB1tpYfGDm4j4VT1qlsknZymi5LX8sPROzTpJ1XWaz10ccIljbbWLyeFNxREi3XwqXKXiik1sXU4rCK7Cl/10mDNNz6ZObB/uyWY1QulUmDot8+1HahfayDuERa3k+2/w3TTpA3LXiZIR9UYF3FFmHBn2/nEcWp3VqERULgLLK9SFB/r239EcDIJd8mH2G5STr4x0jLqzUQJI2V61U6a4RMU71ICssqCVgM46oFGy37jrUxMJw2/7dO98Fm8seOkecwXBQMvbaN2SoZTlpYUFNUgj5DSb1QpSK12pW7VxCvkJ5GOlXh1Tor7JUlUSn0NPcvvEcaoGwQ7MOT5IN9nwf+M/kMpIvkTW4Q9vA88NWETXqErkj3SIcsSHmeqBUxU7dL2JbHyaevGnRp1w/IlS1LhCjbp1kyUK31M9BdjHacbn27wd0u3YUOG6RIqgJz7fdV8g0OjoNkpLZwlPR3w32/j7d7mCLjgsrqKI4yIHsEizRettmfq3RXhZpis1ZQ3K5aj5btqo2Z1zlCLS3fMJZbJwDlzdJP++oYHzpDDjEhX0cI7ywxAVeI+sIlYhCq8JqnO0cI7+sI4V0kgYvn3SQm7bn2uURMyjXixr+SqAt8mLDzRvDVGe+RNRUvkQ+6nCKE9xTd8gMnwLyo55OVMIcqgNG2HicDWoX3GEmDWiilgvbbRBVQ6o9ynfE2ZgvkUjBBxFA53tzoNqGoGgIZ7rk2N3vlOEjwVQN9m4IvsyItu9b+/7Lyu0SDvnGznK/Si7Uk4lAFeITgj58kJnmNqPb7APmEu0dIC6HwPkTUeryeED6LmYyuLcq8Tljc5wir+2nC8u4Q74D/NsKKHycrCxViHaWgRMcNudbzOClMpjpEw0b7WjCFoHLYWpVj5ZgRch3+KPkedgXB9JLCIKsj2BDpKhBa9rOkp4AMTbWSWyRosP5knfQs0ySLY7K78tw2UbWCL5Cpim0S/w3tmDrWNd+pF6n1NZ4Xutf93O1IAxQDKAm900Sx/UVCnK3RkD14O2GbX9v21yHrwJy+EWKaTxF+wPqNF4mHJP8+UUv3ekLcnYZ9sh7xJWLhlgy2WcnTpOiYcdykW7wqnpY5rgSnTRZgnayfXCJxswBphQQoirW4WjXpleMEBbQ+r5A14dr3EZKtcF9rVPaIDPVz7bgnynUquNG2b/WdSzWsteICM4PO15FvN5Z8fYHMip6gW3qhWZihW195/5nQL0BbISu6TxI3d42w68NkcKPwfh1R8PQoMQjWgVTUuk+uUjlHOEGd/GVSeN8J/Fm6lJ2ppRVC0J8l6+vmyFduK7zm7Va4e1HFcNlvvJxfRTFVvUWwOEYOpnGkGFfJwlH9kOUKtYDMSdbf9MgH80yS6SJI5ajCC1268DN0i59UEv/3r4VbAiSjiZ1yvEI9TCj/U+0js7/VxrrX7tFcqAEt7btpNiOYQ20bZNHmAjGYCu8l7hberwX+NGF5T5MDJY8qwjvWfj9LCq/W9L8TD935c8CfJ9/oC2kJL7XPp0jBdPnZIqksWgGT3k6ubImTdq+CH+suNggPsUOmqhSUNbrPOZmnCwCkAxWWmtj2GiL4M6SgqlgqU62iPkeW/i+0Y8foPoreYyfLOQVXAhzTWwqtXuokIbhvLftsEZZ+k3ylt2OqsutR9Q41kvj87UgDlBFieF5HRvjWaxutjxNT/A3EeymPk1OlWpg91DbvEqInqz5OijiEGp0jHzRmqZF4/WME5r9CPGjzLxDOcZN8QaG+RVw9WrYpVsYeBo2qYxXPBTIorQz7Olm3KB6XSK2B3jDJvriP19ki36UmwBDADLf7OCjnVGxV/33CVMzRTflYBjdK1qHXINP76zcb9rESxpC1pC8SZu3Rdm7XCNTalsrav7xs6CvcJghheT1ZmHmOELgr5FprhffbyDS0DIKocIUQrOvt3KfbvlKDQ+08Y+23h8mgcZMYKIX39wgHfYPwK+8kl/pCAiMHsiJIvxvc6Uhr6tv/LU4SWM23/twiH1+vMMkoj5dzVD/TL7z6gC3SIMicCGCsrzT/JzsySz5W/ypZ0+lHdKuwbpI2ueYvTXNZ5yIteppuntbc9HOE/34tIcy3yYxCZd+nylgcWhsjhOVxslbBgVZ4p0nh/evki/ukt0wrbLT9X2q/PUwMksJ7nnyr1nnyEY7WqiyRwvu7xNJhLe8723FrdCsJpfQMXargGq5ZI1Ins1eOPU5afnlzw0Etl5bHUNhzCzTWyUdqOqFa0h75OM8arkkz1vBLRKxgrRJAzXuutGg9XnQtkKCMhcVuuySgOkNGNb12rx9vc3eRSPldJ4siNBR6WqMPFeXztyMNUL6WmIrfJNTjDPkMjPMEnn8b4bReQz7rztq6aUJ0ai3fQTvHJUIkT5M2ZrKd08yr9q3i5NcQovsWQk3mien6SLvOn299nSN9hzZIe2aplGIB3dU7Mg6Sgeuk2mySb3HW3q+SpWTaUgNR/YMkqeBDQnCh7GvJlKrs9Sfpgo4ZUtwN4F/TzneTtNXW0EjwjtJlxE2zPUr6II8xKO+RNUOXyGfWeI1aR6lpqGzOobWvJwbmtwhhPUs4xAOCCf9TBJut8B4jo+sDcuVHrT+DGIhnyaAHEvVeIIu2Kv1kcdNrCSX5CsJBmhb/g7b/O+gKLyS9p+3U72jXa22hiqbd1M8o5FUYVS5pM/N42mnoBqO10Gmz3fM58iFJVckck81yrRG6D8xT2K8TfniUfEBbpToFLjXQriyL+V7ZpP40zR7hY68SyFu/I/3rfveq+j609vWEZv8WiYavkZb3TxF8tcIr+lwln3a6SGr1MFnK/xnixhVeI/nz7VozJLrW+k6SpfJvIiZtmhg0eeyvb/vMkKyCguSkiASHyKUTImCLmiookDobJpesaS39bhpLLyFYkFEw+Vx5cpHsORKV9xe6bpDpKZVitu0z065/lfBYFmxt0H3hxzBdYKY3quHzBrm0pD8C2SdfTTtFN5Uk8jcMlBZ4eZDjSAOUA/KxO9eI6VghVMO6v7OkU7tKDOkp8smxBmFO6WI75ibd2rZlMh0uvhZQ1JrvoXb8I4SdV1zPt2NP0l3tYlCmLavpE5vibBofUm3WWl+GSWbcjOEOCTJ00AaZdZGAoq3oXmvbZwiR2iBrz+2X4qyPlNxU3SRIjRXGCL+2Sojzp+j6J4t150gg9nzb/ijJfteiWlly2nUvkI/wkHRUPfST2v5Vkpg9lLZLOKQRQjCvEQP9NuJREqcJxK3NUXhPkEJfhXebfHDbLTJQNc9noVSPfD+YwiuyHCZs4kXSoe4RE0DfdS1g0mGL7j2PyiCKrJN8QK400o4pvAqYxUn99N0I3YffVBpyvNzbabrUXbW99nuKFJS99td0m5RdzRuu0H3CoMGnimUaxmaw6P3ul09Vcv2veWfBo3lQKUYNxxrdyv0H3obIpyFdJhKsm8STB7+JGPyHiAnYIwfseNsuh+lKED/1xkzvrJAFRZDPRqmWV6E8QzAwouUDgl/fI5dP9TMK1VkLBkydKKQ643Eyx2aR6Qj5LG8nVG7ZAgCPhVx6u172FaCstv6dI1+pKkCrnK/WV4RtnxV4kbtCPEdWVq6QdTOQoGyKXBJYowPoCqRW3hDvgJjXU62vt8gCWj3XSDmvc3Z/7UgDFAPAeWI6ZZ8X2+87hOqsk4sFvopcErtMOlcDJtMww+V/bazTYcpEUZc0cxpvk6/fqAz1AhHlb7TvF0j7q5hVTLtH1tlMlO3aKFkLyBpy0zWQq3FUM89jzGGGWPvs5yb5XjNBgfdJ2a+yGYrybBt/a11GyLdpqBabhCl5tl2r2nnH0FK5IfIZi5Uxr5jf+7VMQbbfgNtaHsdPPznDIbYNskDpJElficS2SLuu3XiKtDVOvvlAgzjpNNGrTnanfJdRGS3fRbRr5EubhskHfh4jlOi51tfT5ApLz1FtqLYI0paNk+x+tZEGXgIcgdRCOV6foXKaXlF5KfueI+yl4MnzKTDWppiGEkjNk6uqDOwFgRUcvIZk8hVc/ZulBWYvpDpH6AquAm3AOU8Gqiqt4MTaG+29Cz0Ora2QjxM2ET5FApINckXPdWKiniImdId89obhDOTy34peKxCojIOWRce8036/TYYeI6TjPEZM3HPE4MnEKMD9FcgKjh5F4bHYtypgDVtVBFNJw6SjHyEr+mRmBC0K8jYRHZxt22ti3/5JP1oE5rVlpUTs7u/Y2deNdk4LFMzdqriO/zoZzqk49qUqUq3ZmS3H1vD3oOxbKdDP3440QPm29lfySp3V9t8gh3mTGMJniBqRpwkHOUyI69eQtcmKoaI2QdYIKl6KogGaIEaVukXaNNMsL7XPBsGmP0Xg/RNktk+x15FvkXXk51sfLL+CtPOWIRhsSX5qP+1vTdFIDirO24RZOUmu8hwmbbV2UdWS8Jwu17L0wbEbImtBt8lA8gyhisuEHzYDLZtkBqGCMOOkqi6OuT6mkgeySYJEjzOeqWzMA29/rXVgnbQhB2Tx0A3yXTHakGeADxG1gi+23xTeN5E2dIW0/QZWVgjrGKvw1oHcJx+NsEv4l+329wUCpDxCPDLYqF+l2CCFfrvvr8pjzk/b6rHe4yJpvyGdv/upaBvtvAZrss3Sl5BotiqpNYKmTRR0qdU5uvUsMi6CFBVqjRC2gzYmu+2vgGK/HC+77TjD3cK7T6D18XKtTTK3bDMFts0htr9M1hPYWa3OBvkQn1HycbrPEDUiH23fpbm+hnjQwwG55lALMEkIxCzpEIe5e+lAtbzDpGUz7WTe8wZhdd5MMDnTJHrV2m6TldlrdF+G1M+oyI4IGgRoQ+U3v1fh1crZFOhHCPSrhfavTl7rTTvHLGk8TpF1I7V4wGhFTyGA3KT71C+Blla2Pwy0n7XPzof1NF6jskvT5d5F6/efnzzSAOU0YR/3iSGRDDR9sUJg6Wtt26eAf0s4RafsGCGq2tETJCtu6kNGVnwt2ypZpxgqdqZi5lo/TaFfJWzQFN2nkS+R02s/7F8lIVfJJ+aqIp5jnUz11NqYSi5WlVEFVVHjjzmSOYLE6WJ2yvdKsqqux8m6Ffr6aV80KePksx5PkCVvslSyOxKwvXJO/6ruL5JPp7WWRTWpqX9VfZ/wL4fWHqL7FkTT806Qwc4NYgI+BvwrsgZxiECDD5G21UBxibhpc3QGYtrSys4KEkxxT9MNVA3MlshiVgOlVboO2pqTWkQl6Nkmn5StIFaABBnIVkXQvtpfg0J/65XzPdbGxPsVQStA+g6RunUx7nOCpOFsCm6PjFb0nzOEXzhNvmzwKimU+ksRdq1T8a/Ce4skJSxxkPqTFau+5lDzkw+RPLWoWmtoyLNK8qO/C/w0YYmN2rW8ItbjdKm7RXJijOq1iAd0BUK0JpVm2mS/nXeVXCW02I7bICZL6ye48q/nVhkmCOGAfDGfPO0+SYFaFaiD3i0fyOewWKiqNXoNIcAyLwpvrSZXaOt9G34qvFo7PZMKIl9cqdaFNibPE8v7lkilVRn7iw3q3x1yOYqsmGDM4l/HUuOjctxfO9IAxTIlSS0DKWtTzhP2/Sr5wrhhkt0YJ+r+3kTYNR3rIvmCPVndivn8LnacJVPwivPttu026Tzn2/XMuI60/qqS1Y4Z9Sv2OmoBiWpdUxmzZMHoZRKAyBbUFPwQmY7ZIwJkAzVtq3ZcPyLgUX3GSVXbId+ZU+MbiT7vRz9JuR+/GxDvkQARumn8mfL/btl+lVCvR8t1h0jmHLqL6yRqD61tkwzJGPmWYAuVHiIG4Rr56Hoprbn2+UYiGHTRg2hyhQxurfGowZA2a4J0ipAB1BIx0KsEILpBTMxXte0zpO2+TSJmyjU8t0yOwqfgSvUp5PqTW+16on2BhjZRpbE2x9rD17ZxM5h2XBVEbWNN3/jdAPRY+U2F9H6858r+z5DPfDlDPk/rWbrCad81TkPl3AK8GyT4cawWyfSd/TLYP1QGxXygOcIZ8mE8x4mBWCKFd5MMebTU30QsJThBokod3ToZujlQNZJ34hbIRLQWfbNdf6tdf7n178+QBataUZF+BTyQb6lUOKW1pMyMBvqLjgyJa37T4isFWQZIhD1BsDoWxPr7KF1kreAJQARNW4TwLpIrlFQYx87zysBMt48FWOcIAf5v5LJhQYZKqMWFrlCvtDE+TQIox1Da0BDZ0LmCns/djjRAqenc3fLd6ZQBP9V+eytpsz9EAId3EGVUc3Sje9MDknyqjPYQ0m4IAAzuxOVPtH68SNaD1NT3Jik+c+U8fqZIddLv3CRE6KX2+1eRWQCZ83XyWYWew3NCLr+WKd4knx1iil9gY6vApleOV3xvE/gfUoxreYJ2V3Uzxa4tHiX99Te0MbxUxqn6KoFTPYdZjIvlnofLdSvQ2ieflHtozcHThkDaFIX3JMmyvJl4P88ysWztCrGK8nESWSu8MrayKRYs6dQcRAdNJtm6lxFiAcZw+9+cniDCdE6vnOdewluF3VzepdZ3Ac8+wQ6ttfOttD6ukKy59rWi3YqOHyX8hePp/UFOfq2PEa0LZJYI4fX8zo/HVCHeKfvU4ix9yp8nnjHwKZKdMTvh/yqAc7FAV3jnyrW10DUltFGOP5SmJtmhfk5zhC5b8QRR+b0EfJCwiH+BEDJBg1G2/PUy+bKSisjMl0nljZfjrrRtTxDC9yL5vGktqcphruxewmve0D5peZ8hLe/bCKH9bfJNwjI1hleV/61OXvAyRSjwKbpCrvBWC+Xx9lGhXiEfnuT4K4xVQGU2FMhafDtKKtGniKXDt0kgYl6zPzSUmTlG5FYFVzWPqWceKufZIF9G9rnbkQYoMhuqy0j5XnVbe7JI2qWPkul1QYa4WqwP6UfE6Zb4eF1BjdfZIJ8CIChZJEi0TTJIlsRUPWRKFCUDRQhRuEmIzgvtOq8nH1hmKupTRCAmk2KMsUg3/V1jhT0CxNXSJsdDUOJ+NQaQDZkh1PMkwVipPp6nxj1eswbFqpkqNV7Of5xkiUbpEqKOj3MrG3SGBD2V/a/lZMYuFYA98LZKt05Bga25ROhWAC8QgOXjxBuEd0k0Zs2CaO6AtOMCC+2bk1uFd4dQCHOQa+SL/66TRatOqE610nz9wut93CKE85l2rS8nCr6OkWjxw0TAO0mCFZ211KgoVR+oU5+jO8mVKoTM+do/lX2KUNZTRMW6uVntt8LmOTxvDZohhVfDM0EoxOXym+BJVO18yIjNk0SCylVLHAR6pgEP1XIvkRMCKby1Skxtg3zj5AnC8i6RhZ2TJJ1oHUQV3nFS8yuIqOHRJplA32nnP05M1g2yCtk+z5L1GvcSXh39LiGUnyQfPWnNzDECPFXhnSLpwXpOaTOdu8DocXLZWK9cX+F1DBVereoB4WFuk9V8Wm3pvVp8YBqoekcVtLI15hfnyXcyQDfvqkAKdibIh/t4ztp3v/uRNr2/dqQBivUmGyT7XYM3P2PlGHX8HCFqp4kpXCZE8ApJXlrjbfAo1rwXK1BtjtdZIkVLpn2WLLitqgnJwuyVz2br06cIcTxN2PbTpNMeIeyr0y+GXyCfSL5Tfl8hF+edJeMPmRPoZgL6/58l69sPCP/zBsIkQJY96DdVz5oi0kdUEnKarF1cIR+DdJNgzQVjnsPz+jFGEoBUu67JUW0hy98Opa3SrctTuKbpPoyrX98PyKeIn2m/rxADdJm8+Sm6EzFCN2jSXvr/djn/Hvm+sSHyadwKr+ztFinYnluGwZTUVYJRWGr9/jJyubLO/I3EpPw+3SrpRTJzoKVy0hYJ1sNUvg5dMKKwU45VwK0x2SWES3/jfThmZjK0z55L4TI4tBzBKvIVMg13ve2/UM5TfYfNsdsk2RGNSv3oF5Y4xCbDYbGlGj1TPqYb1E5v4NG2/RRxgwIAhbcyGFVox/v+p5xfMKHleIEc5JW2n3nQOfJJfHoNBUKWRmd8hXgp1i1iOcObCUs7Rda3vK2d43dIWtFzVoAx3H4fJkK513P381iq0ApaKoVWhXePEN4nWj8OSG83Rda9VBZjrJyvVihOktWH0qrzbRy3SbBnBFCjBS2uSfP+Yik9op5Jw3B/7UgDlAoYnIa6AkecLE533xEi3bPWPp8g7MhlknGdJX2FmFPb7bRXBykmFVMekE+N3WrnPEO+cdm6yFW6xJequUOoxWXCxu8SIOAC+UK+Wqa1R4iRAdqN1qdjpW9mFm+3c5xq42gZAaT4K3puN9jWfAhQniFtsfU4lYmvafs6Z6pwrdvRZw0TccUG+UaNT7Z7deHIZDm3sZVEroC1xiSqe2VxapB9KK1G4lJYy8TNzJAPRDNHN0kM/FcSwddtwqlfJey8wjtPrvys7LKI3kFTeHWcO+WYNfJZVyfI1Y8K7wrJAilcVihvt75dJZ9u+5Z2DgWkFu+OEH7rNim4kyQilTXYa/06T77LxiK0XboMs5NvcK/wOpYjhHJVJTe1Iq1nCl3BlD3y3Ab3fp8na4hWCYU8Sa64UvhrRqTSeZN0V4LWQFqmSwNmJHFoTc2tDuo2WUwq5acAG+p9NSG8y0R65DOEI5wiV6L0C6+8p2FWdZAjZGGqFkELd0BMwoX2MfwzaS8CtBbDc90kUjnX2zFPEWhY/htSiCaIAtfniCiBds9aXkNo+/868gVcIlHpOegWpirQ5nxNRQ0RDIdjCt08r8dBKhllm2On0oySRbRSeceJKOAlsmBgmi4jA5nsl161cEFhN2yvoeiXSA2K06AKGBk7FE6teK0SkGOEmP6/CZz8JBFInSPLnxRZyCmuqWQxqgsX9kgMW0V/l7DtjxEDvkJ3GlVvyct9wk7faN/PE2IjGVkxv/e6Rz4ZvUeo6Br5RuMd0nycIFcuLdMtTajOXNGugbZ18hPtPq4Sr4mRhamBu35BP1GZdse0Xq8G9zL4Xvt6G4/rhLp/BRk875H2/V4ZXOeplsIJ2g6tCRC0OaInP+q2kyMQEDneJpakPUMg1ycJhuI0uVS2anfNb4myRfSeW9bb/1dbX86QS3dlfhSQfbJ4SFrsJvmkw0fId7r1049Ouoz1efJ15D1ySd0aMfmn2r2+ofXFBQI1VV8FyKDNlMhU278K79e2bRskMyTg2CnnqohbwfH/ewnvfPs7S9r6ywTz4bV2SXReg2lloDImvfJXP3BorYYqtdCool5R7A4ZOjjpV4D/QICTRwnhfYzum4Wr8IrkzGG6okfL2yNfuiSKXCJpxkeJyVgic6AWvmqhDZduEcI2SgCPE2QFulFCTWMdEJP7MLmUeZh8sMIaoQxniLD4K0kg5CQP932q5YXMyzruS20Mv4asTqxVgWOkwI70ffecNe+oJ/WaUohz5PIRmSQrHFUa2Zl+VkTh1Vsq1CP32PeztyMNUOBuG6xdqtE7dEt0Ngk7+6vAf2n7v4V827xlWzXArc2h186Lg1VRt2nfjAc2yMJUVVkM7j7aePHseNk2RPedmNCddvc53e7leVIFbhH2+K0EANso/dXmVh9Z1URgYhpFu/8pIi45Q2Zeq00fLt8rcJD8dNy8F8e13pvE5kXCDNwi2JTnCcL1NeQbMASUNZXj/1UO/HuoDIoDXhGbQVl1fJD2uT5m4teB/5UM8J4g38FQU7xD5TwOhIpQ08q75W+dSIVujWRHPK/MQr/w7tGl2hxsbaj3VtPSo63vFwjG4Wq51mY775OEHzAt5n0JKLw/7W3NMOiTvPanCKE6TVJuNdWm8Na6FUhQZmqrCq/HVyUSrFxsfXoJ+GUiGrpI+JrbdP2F91EBlrJCGbdDa/LEkAMq8tQCV5S1UT43ibce/+e231cQ6ygfI5CciV5btUom6LW+CoHrLSv6VgisC+lHnE6OQqpTl9KSf1cIPJcIstZ1TBDg6gmSi1d4BWhfSSBrlajfElWFr2xKZUK08n9EeKozJDuj8tZiW4XXc0j5Kag112vdjIBPxT9HhsYvEqzXRUIRVwiLvE/WvdSlC72+82mM7j80PJIApdeLifw0mTkzYl8g6+ocfm3mNjmknyHfbC9GlsBS3O9lB/prGfpTPrZKrO0RPuUaoYbWM5oS17EOkWknVWqUJAkhsagmwP4pjuJyr7/crnubYMXnyQV2S2T8YHaxina19aZRZCKWCWL2CZIs9Rj9iWy6pVKQIuwYTJH+Rl8mSFHFK6MjcfsCYec/SYJCnzygKktO1PSRpq6qifL0INqdaz1NvsTO4MxgRfbDDkvFySR8HPhFYlJPEU72WDuH4ALutvP1U4W32pF+m6bw3iBsks5ZYGKpwXDp4wYZ9Kl4nrPm5gRilG3jhJ+6Tb6Ib5R4+/JjdCMMUbYCW4NFg037Nko+l+QWwZC/gVzQoUJt0rXXNc/puFk4NkMqkJGDPlAAI404SRa8PQf8GkGr6lsUXv2dUYgC7T2paMutS4chu3ycTDRrec+Q67RFc6I+C2CvA38I/AJhfc6Q79ixUk4LV9E55OBXhF33sx+mcdxf4X2s7b9FpjTq+netogKnw9VSy20LErSO/pXBOUW+b2GbUJA/R74vwvTSJl2rO1K+e52R8l0rrfB+GUmjifp3yDyullcFE8jJGll8YF53nPQyWyTolHK82O7lefJJkcvtWOnRIfLZ6CofdHPKY+06H7ov2R3qPUgJf4XaCy+8wMWLFw+7G4P2RdIuXbrEhQsXHsi1BrI7aK9kG8juoB3Vdj+yeyQBysHBAU8//TRvfOMbuXTpEvPz84fdpS+JtrKywsWLF79oxrzX67G6usr58+cZHv5sCb1Xtg1k93DaQHb/5G0gu4fTvpRl90imeIaHh3nooYcAmJ+f/6KYtKPUvpjGfGFh4YFebyC7h9u+mMZ8ILtfWu2LaczvV3YfDPQetEEbtEEbtEEbtEF7GW0AUAZt0AZt0AZt0AbtVdeOLECZmJjgB37gB5iYmPj8Ow/aK9IGY/7KtME4Pvg2GPNXpg3G8cG3L+UxP5JFsoM2aIM2aIM2aIP2xd2OLIMyaIM2aIM2aIM2aF+8bQBQBm3QBm3QBm3QBu1V1wYAZdAGbdAGbdAGbdBedW0AUAZt0AZt0AZt0AbtVdeOJED58R//cR577DEmJyd56qmn+LVf+7XD7tKRbO973/v4qq/6Kubm5jh9+jTf+q3fytNPP93Zp9fr8YM/+IOcP3+eqakp3vGOd/Dxj3+8s8/29jbf/d3fzcmTJ5mZmeEv/aW/xAsvvPAgb+XItIHsvnJtIL8Ptg1k95VrA9m9z9Y7Yu1nf/Zne2NjY71/+S//Ze8P/uAPen/v7/293szMTO+555477K4dufbN3/zNvZ/+6Z/ufexjH+t95CMf6f3Fv/gXew8//HBvbW3tzj4//MM/3Jubm+v9x//4H3sf/ehHe9/2bd/WO3fuXG9lZeXOPt/xHd/Re+ihh3rvf//7ex/+8Id773znO3tvectbent7e4dxW6/aNpDdV7YN5PfBtYHsvrJtILv3144cQHnb297W+47v+I7Otje84Q297/3e7z2kHn3xtGvXrvWA3gc+8IFer9frHRwc9M6ePdv74R/+4Tv7bG1t9RYWFnr/4l/8i16v1+stLS31xsbGej/7sz97Z58XX3yxNzw83PuFX/iFB3sDr/I2kN0vbBvI7xeuDWT3C9sGsnvvdqRSPDs7O3zoQx/iXe96V2f7u971Lj74wQ8eUq++eNrycrzD/fjx4wA888wzXLlypTPeExMTfMM3fMOd8f7Qhz7E7u5uZ5/z58/z5JNPDuaktIHsfuHbQH6/MG0gu1/4NpDde7cjBVBu3LjB/v4+Z86c6Ww/c+YMV65cOaRefXG0Xq/He9/7Xr72a7+WJ598EuDOmH6u8b5y5Qrj4+McO3bss+4zaAPZ/UK3gfx+4dpAdr+wbSC7n70dybcZDw0Ndf7v9Xp3bRu0l9e+67u+i9///d/n13/91+/67Y8z3oM5uXcbyO4Xpg3k9wvfBrL7hWkD2f3s7UgxKCdPnmRkZOQudHjt2rW7kOag3X/77u/+bv7Tf/pP/Nf/+l+5cOHCne1nz54F+JzjffbsWXZ2drh9+/Zn3WfQBrL7hWwD+f3CtoHsfuHaQHY/dztSAGV8fJynnnqK97///Z3t73//+3n7299+SL06uq3X6/Fd3/Vd/NzP/Ry//Mu/zGOPPdb5/bHHHuPs2bOd8d7Z2eEDH/jAnfF+6qmnGBsb6+xz+fJlPvaxjw3mpLSB7L7ybSC/D6YNZPeVbwPZvc92CIW5f6Lmcref+qmf6v3BH/xB7z3veU9vZmam9+yzzx52145c+7t/9+/2FhYWer/yK7/Su3z58p3PxsbGnX1++Id/uLewsND7uZ/7ud5HP/rR3rd/+7ffc6nbhQsXer/0S7/U+/CHP9z7xm/8xi+qpW6vVBvI7ivbBvL74NpAdl/ZNpDd+2tHDqD0er3ej/3Yj/UeeeSR3vj4eO+tb33rnaVZg/byGnDPz0//9E/f2efg4KD3Az/wA72zZ8/2JiYmel//9V/f++hHP9o5z+bmZu+7vuu7esePH+9NTU31vuVbvqX3/PPPP+C7ORptILuvXBvI74NtA9l95dpAdu+vDfV6vd6DZm0GbdAGbdAGbdAGbdA+VztSNSiDNmiDNmiDNmiD9qXRBgBl0AZt0AZt0AZt0F51bQBQBm3QBm3QBm3QBu1V1wYAZdAGbdAGbdAGbdBedW0AUAZt0AZt0AZt0AbtVdcGAGXQBm3QBm3QBm3QXnVtAFAGbdAGbdAGbdAG7VXXBgBl0AZt0AZt0AZt0F51bQBQBm3QBm3QBm3QBu1V1wYAZdAGbdAGbdAGbdBedW0AUAZt0AZt0AZt0AbtVdcGAGXQBm3QBm3QBm3QXnXt/w8XFdPKL173wgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subplot(1,3,1)\n", + "imshow(cat(pr,0*pg,0*pb, dims=3))\n", + "subplot(1,3,2)\n", + "imshow(cat(0*pr,pg,0*pb, dims=3))\n", + "subplot(1,3,3)\n", + "imshow(cat(0*pr,0*pg,pb, dims=3))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHGCAYAAACYbuRTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsuElEQVR4nO3deVyU1f4H8M8zwyoIigsCw5a4b4jggqloqamgtrhk1yVRtPSKiabefmV6vWkuqN1wIVHbbi6VpmYa3XBJJcE1tRRuLoyipCYIqejM+f0xzMjADAwwMAN83q8Xr+SZh5kz8wzMp3O+5xxJCCFAREREVAvJLN0AIiIiIkthECIiIqJai0GIiIiIai0GISIiIqq1GISIiIio1mIQIiIiolqLQYiIiIhqLQYhIiIiqrUYhIiIiKjWYhCiamPPnj149913Dd7m5+eHcePGlet+K/KzACBJktF21UT//ve/ERAQADs7O0iShLt375b7vsaNGwc/Pz+zta2iNm3aBEmScPnyZUs3pcwuX74MSZKwadMmSzelwsryHvv555/x/PPPw8fHB/b29nB3d0e3bt0QExOjd97q1atrxGsTFhaGsLAwSzejRmEQompjz549mD9/vsHbtm/fjrfffruKW1T7nDp1CtOmTUPv3r3x448/4ujRo6hbt2657+/tt9/G9u3bzdhCqu7K8h779ttvERoaipycHCxZsgTff/89Vq1ahe7du2PLli1659aUILR69WqsXr3a0s2oUWws3QAic+jYsaOlm1ArnDt3DgAwceJEdO7cucL317Rp0wrfhzX766+/UKdOHUs3o1opy3tsyZIl8Pf3x759+2Bj8+TjbOTIkViyZEm52/Do0SNIkqR3n9aidevWlm5CjcMeISuTlpaGUaNGoXHjxrC3t0erVq0QFxenu/3Bgwfo2LEjAgICkJ2drTt+48YNNGnSBGFhYVCpVAA0ww7Ozs44d+4cnnnmGTg5OaFRo0aYOnUq/vrrL73HffDgAebOnQt/f3/Y2dnBy8sLU6ZMKdYl7efnh/DwcOzduxdBQUFwdHREy5YtsWHDhmLP5caNG5g0aRIUCgXs7Ozg7++P+fPn4/Hjx7pztN35y5YtQ2xsLPz9/eHs7Ixu3bohOTlZd964ceN0r4MkSbov7RBG0eGtBw8eICYmBoGBgXB1dYWbmxu6deuGb775pmwXpJCcnBxMnDgRDRo0gLOzM5577jlcvHjR4LmlXUetu3fvIiYmBk899RTs7e3RuHFjDBw4EL/99pvunPnz56NLly5wc3ODi4sLgoKCkJCQgML7JUdGRsLNza3YdQWAPn36oE2bNqU+vw0bNqBDhw5wcHCAm5sbnn/+efz666+628PCwvC3v/0NANClSxdIklTikOIff/yBqKgoeHt7w97eHo0aNUL37t3xww8/6M4xNDQmSRKmTp2KTz/9FK1atUKdOnXQoUMH7N69u9hjfPPNN2jfvj3s7e3x1FNPYdWqVXj33XchSZLunJKGjEwZ1kxMTMSQIUOgUCjg4OCAgIAATJo0Cbdu3dI7T/u4J06cwEsvvYT69esbDXqnT5+GJElISEgodtt3330HSZKwc+dOAEB6ejpeffVVNGvWDHXq1IGXlxciIiLwyy+/lNhuwPjQY9HXCACEEFi9ejUCAwPh6OiI+vXr46WXXsLvv/+ud97JkycRHh6ue297enpi0KBBUCqVpbbH3O+x27dvo2HDhgYDi0z25OPNz88P586dw4EDB3R/O7Svy/79+yFJEj799FPExMTAy8sL9vb2SE9Pxx9//IHXX38drVu3hrOzMxo3bow+ffrg0KFDeo9l6t8xrY8++gjNmzeHvb09Wrdujf/85z8mDxMXHRrTPvbSpUvx/vvvw8/PD46OjggLC8PFixfx6NEjzJkzB56ennB1dcXzzz+PrKwsvfvcsmUL+vXrBw8PDzg6OqJVq1aYM2cO8vLyyt32/Px8LFy4EC1bttT9/r/66qv4448/Sn2OVU6Q1Th37pxwdXUV7dq1E5988on4/vvvRUxMjJDJZOLdd9/VnXfx4kVRt25d8cILLwghhFCpVKJPnz6icePG4vr167rzxo4dK+zs7ISPj4/417/+Jb7//nvx7rvvChsbGxEeHq47T61Wi/79+wsbGxvx9ttvi++//14sW7ZMODk5iY4dO4oHDx7ozvX19RUKhUK0bt1afPLJJ2Lfvn1i2LBhAoA4cOCA7rzMzEzh7e0tfH19xbp168QPP/wg/vnPfwp7e3sxbtw43XmXLl0SAISfn5947rnnxI4dO8SOHTtEu3btRP369cXdu3eFEEKkp6eLl156SQAQR48e1X1p2+br6yvGjh2ru9+7d++KcePGiU8//VT8+OOPYu/evWLmzJlCJpOJjz/+WO91L/qzhqjVatG7d29hb2+vey3nzZsnnnrqKQFAzJs3r8zXMScnR7Rp00Y4OTmJBQsWiH379omvvvpKREdHix9//FF33rhx40RCQoJITEwUiYmJ4p///KdwdHQU8+fP151z+vRpAUB89NFHeu0+d+6cACDi4uJKfH7vvfeeACBefvll8e2334pPPvlEPPXUU8LV1VVcvHhRd1//93//JwCIjRs3iqNHj4r09HSj99m/f3/RqFEjER8fL/bv3y927Ngh3nnnHbF582bdOWPHjhW+vr56P6d9P3Tu3Fls3bpV7NmzR4SFhQkbGxvxv//9T3fed999J2QymQgLCxPbt28X27ZtE126dBF+fn6i8J827Xts48aNxdpY9Npt3LhRABCXLl3SHVuzZo1YtGiR2Llzpzhw4ID4+OOPRYcOHUSLFi1Efn6+7rx58+YJAMLX11fMnj1bJCYmih07dhh9fTp27Ci6d+9e7Pjw4cNF48aNxaNHj4QQQhw4cEDExMSIL7/8Uhw4cEBs375dDB06VDg6OorffvutxOdp6PUt3NbCJk6cKGxtbUVMTIzYu3ev+M9//iNatmwp3N3dxY0bN4QQQuTm5ooGDRqI4OBgsXXrVnHgwAGxZcsWMXnyZHH+/Hmjz1WIynmPTZgwQQAQf//730VycrLe9SjsxIkT4qmnnhIdO3bU/e04ceKEEEKIpKQkAUB4eXmJl156SezcuVPs3r1b3L59W/z222/itddeE5s3bxb79+8Xu3fvFpGRkUImk4mkpKRir31pf8eEEGLdunUCgHjxxRfF7t27xeeffy6aN28ufH19DV6ronr16iV69epV7LF9fX1FRESE2L17t/jss8+Eu7u7aN68uRg9erQYP368+O6778TatWuFs7OziIiI0LvPf/7zn2LFihXi22+/Ffv37xdr164V/v7+onfv3nrnmdp2lUolnnvuOeHk5CTmz58vEhMTxfr164WXl5do3bq1+Ouvv0p9nlWJQciK9O/fXygUCpGdna13fOrUqcLBwUHcuXNHd2zLli0CgFi5cqV45513hEwmE99//73ez40dO1YAEKtWrdI7/q9//UsAED/99JMQQoi9e/cKAGLJkiV652kfIz4+XnfM19dXODg4iCtXruiO3b9/X7i5uYlJkybpjk2aNEk4OzvrnSeEEMuWLRMAxLlz54QQT36J27VrJx4/fqw779ixYwKA+OKLL3THpkyZUuyPd+F2lRRmHj9+LB49eiQiIyNFx44dy/SzQmg+dEt6LQt/mJp6HRcsWCAAiMTExBIfuzCVSiUePXokFixYIBo0aCDUarXutl69eonAwEC981977TXh4uIi7t27Z/Q+//zzT+Ho6CgGDhyod/zq1avC3t5ejBo1SndMGxRSUlJKbauzs7OYPn16iecYC0Lu7u4iJydHd+zGjRtCJpOJRYsW6Y6FhIQIb29v8fDhQ92xe/fuiQYNGpg1CBWmVqvFo0ePxJUrVwQA8c033+hu04aLd955p8TnrPXBBx8IAOLChQu6Y3fu3BH29vYiJibG6M89fvxY5Ofni2bNmok33nijxOdpahA6evSoACCWL1+ud15GRoZwdHQUb775phBCiNTUVAGgxIBnSGW9x27duiWefvppAUAAELa2tiI0NFQsWrSo2Hu+TZs2egFCSxuEevbsWerjaf+OPPPMM+L555/XHTf175hKpRJNmjQRXbp00bvfK1euCFtb2woFoQ4dOgiVSqU7vnLlSgFADB48WO/np0+fLgAU+/ukpX2PHzhwQAAQp0+fLnPbv/jiCwFAfPXVV3rnpqSkCABi9erVpT7PqsShMSvx4MED/Pe//8Xzzz+POnXq4PHjx7qvgQMH4sGDB3pdrMOHD8drr72GWbNmYeHChfjHP/6Bvn37GrzvV155Re/7UaNGAQCSkpIAAD/++CMAFOuCHjZsGJycnPDf//5X73hgYCB8fHx03zs4OKB58+a4cuWK7tju3bvRu3dveHp66j2XAQMGAAAOHDigd5+DBg2CXC7Xfd++fXsA0LvPstq2bRu6d+8OZ2dn2NjYwNbWFgkJCXpd8abSvlbGXkutslzH7777Ds2bN8ezzz5b4mP/+OOPePbZZ+Hq6gq5XA5bW1u88847uH37tl4Xd3R0NE6dOoXDhw8D0Azlffrppxg7diycnZ2N3v/Ro0dx//79Ytff29sbffr0KXb9TdW5c2ds2rQJCxcuRHJyMh49emTyz/bu3VuvQNbd3R2NGzfWvR/y8vKQmpqKoUOHws7OTnees7MzIiIiytVeY7KysjB58mR4e3vr3ke+vr4AYPC99OKLL5p0v6+88grs7e31huy++OILPHz4EK+++qru2OPHj/Hee++hdevWsLOzg42NDezs7JCWllau97Ihu3fvhiRJ+Nvf/qb3nm3SpAk6dOiA/fv3AwACAgJQv359zJ49G2vXrsX58+dNuv/Keo81aNAAhw4dQkpKChYvXowhQ4bg4sWLmDt3Ltq1a1ds+LIkxq7b2rVrERQUBAcHB931/+9//2vwtS/t79iFCxdw48YNDB8+XO/nfHx80L17d5PbasjAgQP1hgNbtWqla1Nh2uNXr17VHfv9998xatQoNGnSRPc3plevXgCevMfL0vbdu3ejXr16iIiI0Hs/BQYGokmTJrr3k7VgELISt2/fxuPHj/Hvf/8btra2el8DBw4EgGK/1OPHj8ejR49gY2ODadOmGbxfGxsbNGjQQO9YkyZNdI+p/a+NjQ0aNWqkd54kSWjSpInuPK2i9wcA9vb2uH//vu77mzdvYteuXcWei7ZWpehzKXqf9vb2AKB3n2Xx9ddfY/jw4fDy8sJnn32Go0ePIiUlBePHj8eDBw/KfH/a18jYa1n4PFOv4x9//AGFQlHi4x47dgz9+vUDoBmbP3z4MFJSUvDWW28B0H99hgwZAj8/P10t0qZNm5CXl4cpU6aU+twAwMPDo9htnp6exa6/qbZs2YKxY8di/fr16NatG9zc3DBmzBjcuHGj1J8t7T32559/QggBd3f3YucZOlZearUa/fr1w9dff40333wT//3vf3Hs2DFdmDX0/jT0Ohri5uaGwYMH45NPPtHV9W3atAmdO3fWq+maMWMG3n77bQwdOhS7du3Czz//jJSUFHTo0KHcvx9F3bx5U/d6Fn3fJicn696zrq6uOHDgAAIDA/GPf/wDbdq0gaenJ+bNm1di0K2s95hWcHAwZs+ejW3btuH69et44403cPny5TIVTBtqW2xsLF577TV06dIFX331FZKTk5GSkoLnnnvO4Gtf2t8x7fOsjPetm5ub3vfa/0Ewdlz7dzA3Nxc9evTAzz//jIULF2L//v1ISUnB119/Xe6237x5E3fv3oWdnV2x99ONGzfKFFCrgvWVxNdS9evXh1wux+jRo41+cPn7++v+nZeXh9GjR6N58+a4efMmJkyYYLAQ+PHjx7h9+7beL6j2g0h7rEGDBnj8+DH++OMPvTAkhMCNGzcQEhJS5ufTsGFDtG/fHv/6178M3u7p6Vnm+yyLzz77DP7+/tiyZYteUejDhw/LdX/a18jYa6lVluvYqFGjUgtMN2/eDFtbW+zevRsODg664zt27Ch2rkwmw5QpU/CPf/wDy5cvx+rVq/HMM8+gRYsWpT43AMjMzCx22/Xr19GwYcMSf96Yhg0bYuXKlVi5ciWuXr2KnTt3Ys6cOcjKysLevXvLdZ9a9evXhyRJuHnzZrHbil4T7etW9Nqb8uF79uxZnD59Gps2bcLYsWN1x9PT043+TNEi5JK8+uqr2LZtGxITE+Hj44OUlBSsWbNG75zPPvsMY8aMwXvvvad3/NatW6hXr16J9+/g4GDwPV/0g6hhw4aQJAmHDh3SfXgXVvhYu3btsHnzZgghcObMGWzatAkLFiyAo6Mj5syZY7AdlfUeM8TW1hbz5s3DihUrcPbsWZN/ztB1++yzzxAWFlbsmty7d69cbdO+Dqa8b6vKjz/+iOvXr2P//v26XiAAxSbKlKXtDRs2RIMGDYz+nldkyY3KwB4hK1GnTh307t0bJ0+eRPv27REcHFzsq/AH8OTJk3H16lV8/fXXSEhIwM6dO7FixQqD9/3555/rff+f//wHAHQzD5555hkAml/6wr766ivk5eXpbi+L8PBwnD17Fk2bNjX4XMoThMrSSyRJkm4xNq0bN26Ue9ZY7969ARh/LbXKch0HDBiAixcv6oYmjT0PGxsbve72+/fv49NPPzV4/oQJE2BnZ4dXXnkFFy5cwNSpU0t9bt26dYOjo2Ox669UKvHjjz+W6/oX5ePjg6lTp6Jv3744ceJEhe/PyckJwcHB2LFjB/Lz83XHc3Nzi80uc3d3h4ODA86cOaN33JT3gvb9UzQcrFu3rrxN19OvXz94eXlh48aN2LhxIxwcHPDyyy8Xa0PRx//2229x7dq1Uu/fz88PWVlZeh9e+fn52Ldvn9554eHhEELg2rVrBt+z7dq1K3bfkiShQ4cOWLFiBerVq1fida2s95ihYAU8Gc4p/HemaK+1KQy99mfOnMHRo0fL2FKNFi1aoEmTJti6dave8atXr+LIkSPlus+KMvU9Xpa2h4eH4/bt21CpVAbfT6X9z1lVY4+QFVm1ahWefvpp9OjRA6+99hr8/Pxw7949pKenY9euXboPzPXr1+Ozzz7Dxo0b0aZNG7Rp0wZTp07F7Nmz0b17d721N+zs7LB8+XLk5uYiJCQER44cwcKFCzFgwAA8/fTTAIC+ffuif//+mD17NnJyctC9e3ecOXMG8+bNQ8eOHTF69OgyP5cFCxYgMTERoaGhmDZtGlq0aIEHDx7g8uXL2LNnD9auXVvqsFBR2j/G77//PgYMGAC5XI727dvr1YhohYeH4+uvv8brr7+Ol156CRkZGfjnP/8JDw8PpKWllfn59OvXDz179sSbb76JvLw8BAcH4/DhwwYDianXcfr06diyZQuGDBmCOXPmoHPnzrh//z4OHDiA8PBw9O7dG4MGDUJsbCxGjRqFqKgo3L59G8uWLTP4f+0AUK9ePYwZMwZr1qyBr6+vSfUy9erVw9tvv41//OMfGDNmDF5++WXcvn0b8+fPh4ODA+bNm1fm1ys7Oxu9e/fGqFGj0LJlS9StWxcpKSnYu3cvXnjhhTLfnyELFizAoEGD0L9/f0RHR0OlUmHp0qVwdnbGnTt3dOdpa182bNiApk2bokOHDjh27FixEGtIy5Yt0bRpU8yZMwdCCLi5uWHXrl1ITEw0y3OQy+UYM2YMYmNj4eLighdeeAGurq5654SHh2PTpk1o2bIl2rdvj+PHj2Pp0qUm/f6MGDEC77zzDkaOHIlZs2bhwYMH+OCDD3RDcVrdu3dHVFQUXn31VaSmpqJnz55wcnJCZmYmfvrpJ7Rr1w6vvfYadu/ejdWrV2Po0KF46qmnIITA119/jbt37xqtUQQq5z0GAP3794dCoUBERARatmwJtVqNU6dOYfny5XB2dkZ0dLTuXG1P1pYtW/DUU0/BwcHBYMArLDw8HP/85z8xb9489OrVCxcuXMCCBQvg7++vtwyIqWQyGebPn49JkybhpZdewvjx43H37l3Mnz8fHh4eejU+VSU0NBT169fH5MmTMW/ePNja2uLzzz/H6dOny932kSNH4vPPP8fAgQMRHR2Nzp07w9bWFkqlEklJSRgyZAief/75qn6qxlmwUJsMuHTpkhg/frzw8vIStra2olGjRiI0NFQsXLhQCCHEmTNnhKOjY7FZTg8ePBCdOnUSfn5+4s8//xRCaGaMODk5iTNnzoiwsDDh6Ogo3NzcxGuvvSZyc3P1fv7+/fti9uzZwtfXV9ja2goPDw/x2muv6e5Ly9fXVwwaNKhYu4vOZBBCiD/++ENMmzZN+Pv7C1tbW+Hm5iY6deok3nrrLd3ja2c8LF26tNh9osiMnocPH4oJEyaIRo0aCUmS9Gb3GJr5tXjxYuHn5yfs7e1Fq1atxEcffWRw2rAps8aE0EzJHz9+vKhXr56oU6eO6Nu3r/jtt9+KtVP7vEq6jlp//vmniI6OFj4+PsLW1lY0btxYDBo0SG9a9IYNG0SLFi2Evb29eOqpp8SiRYtEQkKC0dlN+/fvFwDE4sWLS31Oha1fv160b99e2NnZCVdXVzFkyBDd7D4tU2f0PHjwQEyePFm0b99euLi4CEdHR9GiRQsxb948kZeXpzvP2KyxKVOmFLtPQ9dp+/btol27drplIhYvXiymTZsm6tevr3dedna2mDBhgnB3dxdOTk4iIiJCXL582aRZY+fPnxd9+/YVdevWFfXr1xfDhg0TV69eLfaz2vfWH3/8UeJrU9TFixd1s54MzSD8888/RWRkpGjcuLGoU6eOePrpp8WhQ4eMzh4qOjtuz549IjAwUDg6OoqnnnpKfPjhhwZ/D4TQvNe6dOkinJychKOjo2jatKkYM2aMSE1NFUII8dtvv4mXX35ZNG3aVDg6OgpXV1fRuXNnsWnTJpOeqznfY0JoZraOGjVKNGvWTDg7OwtbW1vh4+MjRo8eXWw6/+XLl0W/fv1E3bp1ddPNhXgya2zbtm3F7v/hw4di5syZwsvLSzg4OIigoCCxY8eOYu/bsvwdE0KI+Ph4ERAQIOzs7ETz5s3Fhg0bxJAhQ4rNaDXE2HUv+tjGnpeh1/fIkSOiW7duok6dOqJRo0ZiwoQJ4sSJEwbfT6a2/dGjR2LZsmWiQ4cOwsHBQTg7O4uWLVuKSZMmibS0tFKfZ1WShCi0KhvVKOPGjcOXX36J3NxcSzeFqlBMTAzWrFmDjIwMg0XHNdmjR48QGBgILy8vfP/995ZuDpFJ7t69i+bNm2Po0KGIj4+3dHPKpDq3XYtDY0Q1RHJyMi5evIjVq1dj0qRJtSIERUZGom/fvvDw8MCNGzewdu1a/Prrr1i1apWlm0Zk0I0bN/Cvf/0LvXv3RoMGDXDlyhWsWLEC9+7d0xvKs0bVue0lYRAiqiG6deuGOnXqIDw8HAsXLrR0c6rEvXv3MHPmTPzxxx+wtbVFUFAQ9uzZU+raTESWYm9vj8uXL+P111/HnTt3UKdOHXTt2hVr1641aSscS6rObS8Jh8aIiIio1uL0eSIiIqq1GISIiIio1mIQIiIiolqLxdKlUKvVuH79OurWrVumpfOJiIjIcoQQuHfvHjw9PUtcrJJByIi4uDjExcUhPz8f//vf/yzdHCIiIiqHjIyMEldi56yxUmRnZ6NevXrIyMiAi4uLpZtDREREJsjJyYG3tzfu3r1bbOuawtgjVArtcJiLiwuDEBERUTVTWlkLi6WJiIio1mIQIiIiolqLQYiIiIhqLdYIERERVSKVSoVHjx5Zuhk1jq2tLeRyeYXvh0GIiIioEgghcOPGDdy9e9fSTamx6tWrhyZNmlRonT8GISIiokqgDUGNGzdGnTp1uCivGQkh8NdffyErKwsA4OHhUe77YhAiIiIyM5VKpQtBDRo0sHRzaiRHR0cAQFZWFho3blzuYTIWSxMREZmZtiaoTp06Fm5JzaZ9fStSg8UgREREVEk4HFa5zPH6MggRERFRrcUgRERERGYVFhaG6dOnW7oZJmEQshSlEkhK0vyXiIiILIJByBISEgBfX6BPH81/ExIs3SIiIqJi8vPzLd2ESscgVNWUSiAqClCrNd+r1cCkSewZIiIiw6pwBCEsLAxTp07FjBkz0LBhQ/Tt2xfnz5/HwIED4ezsDHd3d4wePRq3bt3S/UxeXh7GjBkDZ2dneHh4YPny5ZXeTnNiEKpqaWlPQpCWSgWkp1umPUREZL0sMILw8ccfw8bGBocPH8bixYvRq1cvBAYGIjU1FXv37sXNmzcxfPhw3fmzZs1CUlIStm/fju+//x779+/H8ePHK72d5sIFFatas2aATKYfhuRyICDAcm0iIiLrY2wEoX9/QKGotIcNCAjAkiVLAADvvPMOgoKC8N577+lu37BhA7y9vXHx4kV4enoiISEBn3zyCfr27QtAE6QUldg+c2MQqmoKBRAfr3kzq1SaELRuXaW+qYmIqBoqaQShEj8zgoODdf8+fvw4kpKS4OzsXOy8//3vf7h//z7y8/PRrVs33XE3Nze0aNGi0tpnbjU+CGVkZGD06NHIysqCjY0N3n77bQwbNsyyjYqM1CT69HRNTxBDEBERFWWhEQQnJyfdv9VqNSIiIvD+++8XO8/DwwNpaWmV2paqUOODkI2NDVauXInAwEBkZWUhKCgIAwcO1LvQFqFQMAAREZFxVjCCEBQUhK+++gp+fn6wsSkeGQICAmBra4vk5GT4+PgAAP78809cvHgRvXr1qrJ2VkSNL5b28PBAYGAgAKBx48Zwc3PDnTt3LNsoAMocJZIuJUGZw9liRERkRGQkcPmyZtbY5cua76vQlClTcOfOHbz88ss4duwYfv/9d3z//fcYP348VCoVnJ2dERkZiVmzZuG///0vzp49i3HjxkEmqz7xwupbevDgQURERMDT0xOSJGHHjh3Fzlm9ejX8/f3h4OCATp064dChQwbvKzU1FWq1Gt7e3pXc6pIlnEiA70pf9PmkD3xX+iLhBNcRIiIiIxQKICzMIqMInp6eOHz4MFQqFfr374+2bdsiOjoarq6uurCzdOlS9OzZE4MHD8azzz6Lp59+Gp06darytpaXJIQQlm5ESb777jscPnwYQUFBePHFF7F9+3YMHTpUd/uWLVswevRorF69Gt27d8e6deuwfv16nD9/XtdNBwC3b99Gjx49sH79eoSGhpr8+Dk5OXB1dUV2djZcXFwq/HyUOUr4rvSFWjwZ85VLclyefhkKFw6VERHVBA8ePMClS5d0/5NOlaOk19nUz2+rrxEaMGAABgwYYPT22NhYREZGYsKECQCAlStXYt++fVizZg0WLVoEAHj48CGef/55zJ07t9QQ9PDhQzx8+FD3fU5OjhmexRNpt9P0QhAAqIQK6XfSGYSIiIiqmNUPjZUkPz8fx48fR79+/fSO9+vXD0eOHAEACCEwbtw49OnTB6NHjy71PhctWgRXV1fdl7mH0Zo1aAaZpP+yyyU5Aty4jhAREVFVq9ZB6NatW1CpVHB3d9c77u7ujhs3bgAADh8+jC1btmDHjh0IDAxEYGAgfvnlF6P3OXfuXGRnZ+u+MjIyzNpmhYsC8eHxkEtyAJoQtC58HXuDiIiILMDqh8ZMIUmS3vdCCN2xp59+GuqiC1KVwN7eHvb29mZtX1GRQZFo7zgQP526iacD3RHSyqNSH4+IiIgMq9Y9Qg0bNoRcLtf1/mhlZWUV6yUqq7i4OLRu3RohISEVuh9DEhKArm09MGNUILq29eDm80RERBZSrYOQnZ0dOnXqhMTERL3jiYmJZZoZZsiUKVNw/vx5pKSkVOh+iuLm80RERNbD6ofGcnNzkV5oZ/ZLly7h1KlTcHNzg4+PD2bMmIHRo0cjODgY3bp1Q3x8PK5evYrJkydbsNXGWWjrGCIiIjLA6oNQamoqevfurft+xowZAICxY8di06ZNGDFiBG7fvo0FCxYgMzMTbdu2xZ49e+Dr62upJpeIm88TERFZD6sPQmFhYShtzcfXX38dr7/+ehW1qGKsYOsYIiIiKmD1QchS4uLiEBcXB5VKZfb75ubzRERE1oFByIgpU6ZgypQpuiW6zY2bzxMREVletZ41RkRERJaVn59v6SZUCIMQERGRFVPmKJF0KQnKnKpZZ+XevXt45ZVX4OTkBA8PD6xYsQJhYWGYPn06AMDPzw8LFy7EuHHj4OrqiokTJwIAjhw5gp49e8LR0RHe3t6YNm0a8vLydPebn5+PN998E15eXnByckKXLl2wf/9+3e2bNm1CvXr1sG/fPrRq1QrOzs547rnnkJmZWanPl0GIiIjISiWcSIDvSl/0+aQPfFf6IuFE5a/AO2PGDBw+fBg7d+5EYmIiDh06hBMnTuids3TpUrRt2xbHjx/H22+/jV9++QX9+/fHCy+8gDNnzmDLli346aefMHXqVN3PvPrqqzh8+DA2b96MM2fOYNiwYXjuueeQlpamO+evv/7CsmXL8Omnn+LgwYO4evUqZs6cWblPWJBBH374oWjVqpVo3ry5ACCys7Mt3SQiIqom7t+/L86fPy/u379f7vvIyM4QsvkygXeh+5LPl4uM7AwztlRfTk6OsLW1Fdu2bdMdu3v3rqhTp46Ijo4WQgjh6+srhg4dqvdzo0ePFlFRUXrHDh06JGQymbh//75IT08XkiSJa9eu6Z3zzDPPiLlz5wohhNi4caMAINLT03W3x8XFCXd3d6PtLel1zs7ONunzm8XSRlR2sTQREVFJ0m6nQS30V+BVCRXS76RX2kbdv//+Ox49eoTOnTvrjrm6uqJFixZ65wUHB+t9f/z4caSnp+Pzzz/XHRNCQK1W49KlSzh79iyEEGjevLnezz18+BANGjTQfV+nTh00bdpU972HhweysrLM8tyMYRAiIiKyQs0aNINMkumFIbkkR4Bb5a3AKwrW7TO0mXlhTk5Oet+r1WpMmjQJ06ZNK3afPj4+OHPmDORyOY4fPw65XK53u7Ozs+7ftra2erdJklTqWoIVxSBERERkhRQuCsSHx2PS7klQCRXkkhzrwtdVWm8QADRt2hS2trY4duwYvL29AQA5OTlIS0tDr169jP5cUFAQzp07hwAj2yR07NgRKpUKWVlZ6NGjR6W0vbwYhIiIiKxUZFAk+gf0R/qddAS4BVRqCAKAunXrYuzYsZg1axbc3NzQuHFjzJs3DzKZrFgvUWGzZ89G165dMWXKFEycOBFOTk749ddfkZiYiH//+99o3rw5XnnlFYwZMwbLly9Hx44dcevWLfz4449o164dBg4cWKnPqyScNWZEXFwcWrdujZCQEEs3hYiIajGFiwJhfmGVHoK0YmNj0a1bN4SHh+PZZ59F9+7d0apVKzg4OBj9mfbt2+PAgQNIS0tDjx490LFjR7z99tvw8PDQnbNx40aMGTMGMTExaNGiBQYPHoyff/5Z1/NkKZKo7MG3ak5bLJ2dnQ0XFxdLN4eIiKqBBw8e4NKlS/D39y8xQFQHeXl58PLywvLlyxEZGWnp5ugp6XU29fObQ2NERESkc/LkSfz222/o3LkzsrOzsWDBAgDAkCFDLNyyysEgRERERHqWLVuGCxcuwM7ODp06dcKhQ4fQsGFDSzerUjAIERERkU7Hjh1x/PhxSzejyrBYmoiIiGotBiEiIiKqtRiEjOD0eSIiopqPQciIKVOm4Pz580hJSbF0U4iIiKiSMAgRERFRrcUgRERERLUWgxAREREBAMLCwjB9+nSjt/v5+WHlypVV1p6qwCBEREREtRaDEBEREdVaDEJERERWTKkEkpI0/60Kjx8/xtSpU1GvXj00aNAA//d//wdD+7NfvnwZkiTh1KlTumN3796FJEnYv3+/7tj58+cxcOBAODs7w93dHaNHj8atW7eq4JmYhkHICK4jRERElpaQAPj6An36aP6bkFD5j/nxxx/DxsYGP//8Mz744AOsWLEC69evL9d9ZWZmolevXggMDERqair27t2LmzdvYvjw4WZudflxrzEjpkyZgilTpiAnJweurq6Wbg4REdUySiUQFQWo1Zrv1Wpg0iSgf39Aoai8x/X29saKFSsgSRJatGiBX375BStWrMDEiRPLfF9r1qxBUFAQ3nvvPd2xDRs2wNvbGxcvXkTz5s3N2fRyYY8QERGRFUpLexKCtFQqID29ch+3a9eukCRJ9323bt2QlpYGlUpV5vs6fvw4kpKS4OzsrPtq2bIlAOB///uf2dpcEewRIiIiskLNmgEymX4YksuBgADLtakwmUzTl1K4fujRo0d656jVakREROD9998v9vMeHh6V20ATsUeIiIjICikUQHy8JvwAmv+uW1e5w2IAkJycXOz7Zs2aQa5tSIFGjRoB0NQBaRUunAaAoKAgnDt3Dn5+fggICND7cnJyqpwnUEYMQkRERFYqMhK4fFkza+zyZc33lS0jIwMzZszAhQsX8MUXX+Df//43oqOji53n6OiIrl27YvHixTh//jwOHjyI//u//9M7Z8qUKbhz5w5efvllHDt2DL///ju+//57jB8/vlxDbZWBQ2NERERWTKGo/F6gwsaMGYP79++jc+fOkMvl+Pvf/46oqCiD527YsAHjx49HcHAwWrRogSVLlqBfv3662z09PXH48GHMnj0b/fv3x8OHD+Hr64vnnntON7RmaZIwtDgA6WhnjWVnZ8PFxcXSzSEiomrgwYMHuHTpEvz9/eHg4GDp5tRYJb3Opn5+W0ccq+2qerUsIiIiAsAgZHmWWC2LiIiIADAIGVUlK0sbWy2LPUNERERVgkHIiClTpuD8+fNISUmpvAex1GpZREREBIBByLK0q2UVZk2rZRERUYVwPlLlMsfryyBkSZZaLYuIiCqVra0tAOCvv/6ycEtqNu3rq329y4PrCFlaZKRmB730dE1PEEMQEVG1J5fLUa9ePWRlZQEA6tSpo7d/F1WMEAJ//fUXsrKyUK9evWKrXpcFg5A1qOrVsoiIqNI1adIEAHRhiMyvXr16ute5vBiEiIiIKoEkSfDw8EDjxo2LbUZKFWdra1uhniAtBiEroMxRIu12Gpo1aAaFC3uGiIhqErlcbpYPbKocDEIWlnAiAVG7o6AWasgkGeLD4xEZVAW76hERERFnjVmSMkepC0EAoBZqTNo9CcocLqhIRERUFRiELCjtdpomBGV7AZfCgGwvqIQK6Xe4oCIREVFV4NCYBTVr0AzSiQkQu9YCQg5IKkgRkxHwBhdUJCIiqgoMQpaUowB2rwNEQceckEPavQ7IkQEulm0aERFRbcChMQtKSwOEWv8SqNUybjVGRERURRiELMjgVmMygQCnTMs0iIiIqJZhEDIiLi4OrVu3RkhISKU9RrGtxvAYb9SfAPT1AhISKu1xiYiISEMS3Bq3RDk5OXB1dUV2djZcXCqncEeZkolVr4zC8kFpEPWuQaYG4r+VELnjKrfeICIiKgdTP7/ZI2QNbh9C7Mv7IepdAwCoZcCkQQLKc0ct3DAiIqKajUHICqS5acJPYSoZkC5uW6ZBREREtQSDkBVo1jIUMkh6CyvK1UDAyNdZK0RERFSJGISsgMJFgdGqA8DKK8DHScDKK/jbpvFQZAtg0iRAyS03iIiIKgODkBVQKoFP/9VDs7o0AAg5Pr26DinOXoBKBS4sREREVDkYhKxAWhqgVusfU8MGXV4IQEKQBGRlsVeIiIioEjAIWQFDCytCegzRIB2TwgWUE0cAvr6sFyIiIjIzBiEroF1YUSYvWNJJegxETAJcr0ElA7a1BpTOatYLERERmRmDkJWIjASSf7kBaVwfILIbUP93zSwyAcx4DvCdDiS0Z70QERGROTEIWZGQVh4Y4z0fSEjWzR7DyfEAChZZjACUHk4WbiUREVHNwSBkRQzNHsOudZqeIRQssmifZ8EWEhER1SwMQlbE0OwxCBvgTgAAQC7JEeAWUPUNIyIiqqEYhKyIsdljcEuHXJJjXfg6KFy4CSsREZG52Fi6AfSEdvbYpEmadRTlcmDxyhwEh3+GALcAhiAiIiIzk4QQwtKNsGY5OTlwdXVFdnY2XFxcquQxlUrN5LCAAE04IiIiorIx9fObPUJWSKF4EoCUSk3tULNmDEVERETmxhohK5aQoFlQuk8fwNdXIGHWb1xQkYiIyIxqRRB6/vnnUb9+fbz00kuWborJlEogKurJLDK1WkLUsgCktO7GrTaIiIjMpFYEoWnTpuGTTz6xdDPKxOhGrM83RcKaiewZIiIiMoNaEYR69+6NunXrWroZZVLiRqyDBJQHd1ukXURERDWJ1QehgwcPIiIiAp6enpAkCTt27Ch2zurVq+Hv7w8HBwd06tQJhw4dqvqGmpluI1aZtlvoMdAtFkDBCtP/9zqHyIiIiCrI6oNQXl4eOnTogA8//NDg7Vu2bMH06dPx1ltv4eTJk+jRowcGDBiAq1evVnFLzS8yEkg+exMIXQpIEnDkTWDlFUjHx8PpoeBu9ERERBVk9UFowIABWLhwIV544QWDt8fGxiIyMhITJkxAq1atsHLlSnh7e2PNmjXleryHDx8iJydH78uSPOp6QEqO0dt/TOxehy7DvbgbPRERUQVZfRAqSX5+Po4fP45+/frpHe/Xrx+OHDlSrvtctGgRXF1ddV/e3t7maGq5paUBQl3kMgkbiD8DNLvRy3It0zAiIqIaoFoHoVu3bkGlUsHd3V3vuLu7O27cuKH7vn///hg2bBj27NkDhUKBlJQUo/c5d+5cZGdn674yMjIqrf2mMFg0DRVgm6epFRo3mLVCRERE5VQjVpaWJEnveyGE3rF9+/aZfF/29vawt7c3W9sq6sn+YwIqlQRAAJADCcmQwqPg9HCDplaof38uPU1ERFRG1bpHqGHDhpDL5Xq9PwCQlZVVrJeoOouMBI4elSBJAkBBwCtaK7RtGwuniYiIyqhaByE7Ozt06tQJiYmJescTExMRGhpaofuOi4tD69atERISUqH7MZfcXEAI/Z4vvVqhd2cAPj7ArFkMRERERCay+iCUm5uLU6dO4dSpUwCAS5cu4dSpU7rp8TNmzMD69euxYcMG/Prrr3jjjTdw9epVTJ48uUKPO2XKFJw/f77EeqKqZGyBRbila2qF3AAIASxbptmgjHVDREREpbL6GqHU1FT07t1b9/2MGTMAAGPHjsWmTZswYsQI3L59GwsWLEBmZibatm2LPXv2wNfX11JNrhTFaoWkx0DEJMD1GuRqIOBOoZPVatYNERERmUASQghLN8Ka5eTkwNXVFdnZ2XBxcbF0c6BUAqv2fIvYC69D7XIVcjWwKBEIzgSa3QEUhZc9SkoCwsIs1VQiIiKLMfXz2+p7hEifQgEsjRqE6JzDSL+TjtTtcZjd90uoZYBMDcTvAiJPQjOO5uRk6eYSERFZNauvEbIUayuWLiZHgayzbfCm8meo73kBl8KgvueFqAggxROa4bGuXVkrREREVAIOjZXC2obGAE22iYrSZB1AuymrDJBUQEQUZIEbnvQMyeXA5cusFSIiolrF1M9v9ghVM0pl4RAEaC5hwWUUcmDXOv2eIRXXGCIiIjKGQaiaSUsrHIIMEDbAnQCoZUDXCUBCRwAzZnBKPRERkQEMQkZYa42Q4b3HCtPsQwYAahk0iy26QJOeoqIAK1kXiYiIyBowCBlhbQsqamnXE5LLNd9LUuFg9GQfMpwYDwBQyYBtrQuFIRZQExER6bBYuhTWWCwNaEp+0tOBgAAgM1OTb/SGzKTHwHQ/wOUaIBWZWs8CaiIiquFYLF3DKRSatRIVCs0+ZMXqhoQNkNFNt0er3jCZSqVJUURERLUcg1ANYLRu6KvNuiEyAE/2JONii0RERAAYhGoEbd1QsTBUMJ0e2V4A8GRPMtYKERERAWAQMspaZ40ZExkJfPGFgRuEDXDuJciyvbFut/RkLzLtxqxcX4iIiGoxFkuXwlqLpQ1RKjXLBenXCwkAEmSSGjPcJiL60QZuzEpERDUei6VroaJT6zU01dJqIcOyO+vgM95Ls8giwFohIiKq9RiEapjISM3M+NhYAzcKG4g/A/QXWWStEBER1WIMQjWQQgEMG2ZoJplm1WmVDDiqXUJIu+L01q2sFyIiolqHQaiGejJMpi0B0191esRLwKy+hXqGRozgfmRERFTrsFi6FNWpWNqQlBSgSxcBIaQnB7WrTrte019xGtB0IyUnA9VkthwREZEhLJauoOo2fd6Y3FzohyBAt0M9UGTFaYB1Q0REVKswCBlhrZuulpXhVaef7FAPFNmYFeAaQ0REVGswCNVwxafUF9QKrU8Gvn9fs+q0AGY8B/hML1Q3pFIBR49qwlBSEkMRERHVSKwRKkV1rxHSSkkxsEM9AEgqICIKCNqgO6SrGzpVMKQmhKZbKT5eMz+fiIjIyrFGiPQY3KEe0OxHtnMdcHaYbk8yXd1QXaEJQQCHy4iIqEZiEKoljO5QDwCwAb7cCqy8otutXrdTfWEqFZCeXpnNJCIiqlIMQrWE0R3qCyu0W71MDTjla+qFkvwK6obkciAgoIpaTEREVPlsLN0AqjqRkUD//sCqVcCKFZoOnmKEDZDRDeq2X6LLBAASIKSCuqH8Z8EKISIiqknYI2RETVlHqCiFAli6VLMf2datRnqIvtwMfP8+xD0vaJcgUsuASXb7oGzjDcyaxVohIiKqEThrrBQ1ZdaYMQkJmq3GDBZSSyrg2dmA53HALQ1wvYatW4Fh5wFIEhATA0RHa9IVERGRFTH185tBqBQ1PQgBmp6hESOM3SoASLpp9rLADcW35OC0eiIisjKcPk8mCw0tqYhau5aQppBafc+r+JYcnFZPRETVFIMQmTajDNDtUaaSAUcLj4apVMC2bQxDRERU7TAIEQDNyNaVK8DMmYW34yhCegy4adYRGvkSkNCx0G0zZgA+PiykJiKiaoVBiHQKzyhLStL8WxeKpMdAxCTA9RoAzSyyqAggxbPQHQgBLFsG+Ppy93oiIqoWWCxditpQLF0SpVKzmPSRG4l4a+97utljWjI1sDgRCM4Emt0BFDkFN8jlmkTFGWVERGQBLJYms1AogP/9D3j7lWeBj5P0tuEAND1Db/YD+owzsns9ERGRFWMQohIpldp1hgrNHtsZDyiDn5ykvUkGLOsO+E4vqB8aOZJDZEREZNUYhIyoqStLl1VamqHFFuXA+mTg+/d1O9YXptu93lmtSVFbt7KAmoiIrBJrhErBGiFN7bPBlacBg6tPa+lWoQa48CIREVUp1giRWZS6xpCQA4lLDdYP6U2xVxf0DqWkVHqbiYiITMUgRKWKjASSk01cfbpQ/ZBuiKzwKtRdunCtISIishoMQmSSkBATV5+GHEhI1vUMqWTAttaa9YaS/ABl3UJrDS1dqlmwiKGIiIgshDVCpajtNUJFKZXAqlXAihWaGfLGqYAJXQGvVE2HkXbvVjUQcxSI/rnQmkOsHyIiIjPj7vNmwiBkmHahxdRUYPZsI8XUJRRSy9TQ38WeCzASEZEZMQiZCYNQ6VJSgK5djc0s03YFqYCIKCBog+4WmRr44isgNKOgd2jrVmDYsCpqNRER1WScNUZVpuT6IeMLMaplwIhhhVaknjiCCzASEVGVYhAisyh9ZhlgbCFG3YrU0QIJayayeJqIiKoMgxCZjbZnSLdjvUFy4MibmjWHDscAl8J0oUgtA6IGCaT899OqaC4RERFrhErDGqGyM6mQGoCx+iGZGojP74/IKetZPE1EROXCYmkzYRCqmJILqQuRHgPT/XQzy2RqIDkBCIleAgQHA82aMRQREZHJWCxNVsHkhRiFDXAnQPetWgZ0jQQSvngT6NNHswAjC6mJiMjMGISo0kVGAleuADNnllQ/pAJs8/SO6G3Rwb3KiIioEjAIGREXF4fWrVsjJCTE0k2pERQKzY4aly9rdtVYurRoKNLfmkNLu0WHLgx17cqeISIiMhvWCJWCNUKVx3D9UMHWHIpUzbeGtubIlWnm6jOkEhGREawRIquXm2uoiLrIWkPa9Ri1aw1NBxI6sGeIiIjMg0GILKZZM2NF1IXWGioyVKaWAVERQEoTNZQxE5G08R0oL7BuiIiIyodDY6Xg0FjlSkjQ1EAbn17/GHhpFOB9RG/TVkkNQAKEVLDuUIOxiJy2qQpaTERE1QHXETITBqHKZ9paQyogdDnQ5QO9QKQlUwPfNHsbTk710Kx1DyhasH6IiKg2YxAyEwahqlF6z5BWCYGooLCaPURERMRiaapWTFtrCCipfkhbWK2WAZNufwzlwd2V1VwiIqohGITIahRea2jr1lJWoxZyYOc64OwwvZ3stVQyIH3cYM0dJiVxR3siIjKIQYisjkIBDBtmytYcNsCXW4EVV55Mty8gUwNODwXwJrfoICIi41gjVArWCFmWUgmsWgXExpa9fkimBhYnAsGZQLM7XIiRiKg2YbG0mTAIWQdtIFqxAlCpSjlZUgERUUDQBsMrU0fNBKKjuZs9EVENVunF0hs3bizvjxKVWdnrh+IBZXCxlal9pgOzTi+Dsq0Ph8qIiKj8Qejrr79GUlKS7vv79+/jlVdeMUujiIwxvX6oYBPXwzHApTBd/ZBuq45ogaUbJnBlaiKiWq7cQ2PZ2dkYMGAANmzYALlcjpdffhmTJk3CxIkTzd1Gi+LQmPUyrX6oYGzM0PpDhdcdyu+PyCnrOVxGRFRDVFqN0IwZMxAYGIjAwEDY2dlh1KhREEJgw4YN6NixY4Ubbm0YhKxfRQqqteRq4PLKgvqh4cM1O8I2a8ZgRERUTZk9COXk5MDFxQXffPMNzpw5gzNnzuC3337D9evX0bVrV/Ts2RNt27bFoEGDzPYkrAGDUPVh2lYdBSQV8OxswPM44JYGuF5D0iYg7HKhc2QyzRhcZGTlNJiIiCqN2YOQXC7H1q1b8eKLL+odv3//Ps6ePYszZ87g7NmzWLFiRcVabmUYhKqXhARg0iQTZpYB0Bs267YcGzM/gC+uaaba5xScIpdrKrTZM0REVK2YPQjJZDL06dMH9+7dgyRJCAkJwd/+9jd06dLFbI22RgxC1Y9SCaSnA6mpwOzZJvYQAbpp97LADYjfBUSeLDgeGws8/TSHy4iIqpFKmT5/+vRpdO7cGWFhYfjtt9/Qs2dPvPHGGxVubGXbvXs3WrRogWbNmmH9+vWWbg5VMoUCCAvT7Fum3b+s5BlmBQqm3auvByMqAkjxLDg+YwbQuTNXqCYiqoHK1CO0b98+9O3bV3fsl19+wdChQ/H6668jJiam0hpZEY8fP0br1q2RlJQEFxcXBAUF4eeff4abm5tJP88eoZqhPAsyygI36K9MrR0uk3GFaiIia2f2HqEGDRrA29tb71i7du3wwQcfYO3ateVvaSU7duwY2rRpAy8vL9StWxcDBw7Evn37LN0sqmKFF2RMStL8WyYz8v8AhXqG3uwH9BlXsBBjX0DpAs1YW9eu7BkiIqoBTA5CHTp0QIKBP/wBAQHIyMgwa6MKO3jwICIiIuDp6QlJkrBjx45i56xevRr+/v5wcHBAp06dcOjQId1t169fh5fXk804FQoFrl27Vuw+qHbQHzaT0H/0GQCGuogKFmQ8olmQUdzz0izEOB1I6AhNGIqK0ixzzZ3tiYiqLZOD0MKFC/Hhhx9i1KhR+Omnn5CTk4ObN2/ivffeg7+/f6U1MC8vDx06dMCHH35o8PYtW7Zg+vTpeOutt3Dy5En06NEDAwYMwNWrVwEAhkb+JEmqtPZS9aFQAHs/aY9dP96CJBnoHRJyIHEp8HGSbod79T2vJ/VDajUwYgTrhoiIqjGTg1DXrl2RnJyM69evIywsDPXr14enpye+/PJLLF++vNIaOGDAACxcuBAvvPCCwdtjY2MRGRmJCRMmoFWrVli5ciW8vb2xZs0aAICXl5deD5BSqYSHh4fRx3v48CFycnL0vqhmC+/tjo8+kowUVGtDsxw48iaw4grUP7yPLsO9sLQbkOQHpDRRI+m9iVAe3F11jSYiIrMo1xYbWVlZOH78ONRqNbp06YKGDRtWRtuKkSQJ27dvx9ChQwEA+fn5qFOnDrZt24bnn39ed150dDROnTqFAwcO4PHjx2jVqhX279+vK5ZOTk5GgwYNDD7Gu+++i/nz5xc7zmLpmq/MCzI+MxvwerIgo6QGYh4HI3rMaihasJCaiMiSKnX3+caNG2PAgAEYNGhQlYUgQ27dugWVSgV3d3e94+7u7rhx4wYAwMbGBsuXL0fv3r3RsWNHzJo1y2gIAoC5c+ciOztb91WZ9U9kXUJCNAtJy+UmnCzkwA/6w2binheW2aXC9z+dkTD3OdYOERFVAzaWboA5FK35EULoHRs8eDAGDx5s0n3Z29vD3t7erO2j6iMyEujf39QFGYsMmx2JAUKXQ93lA0TV3Yf2Xb0REr0ECA7mQoxERFaqXD1C1qJhw4aQy+W63h+trKysYr1ERKYq94KMReuIhnkh4Ys3NQsx+vgAs2axl4iIyMpU6yBkZ2eHTp06ITExUe94YmIiQkNDK3TfcXFxaN26NUK4aF6tpl1/6Ekg0pbUlVRapwlEYtUVTFSMx9Y2gLKuAJYtYyAiIrIy5SqWrkq5ublIT08HAHTs2BGxsbHo3bs33Nzc4OPjgy1btmD06NFYu3YtunXrhvj4eHz00Uc4d+4cfH19K/z4XFmaCtPfx0xArS5tKYbHwEujANdLGH7KGTMvpCEk95qmi2nxYs2wmbMz9zEjIjIzs2+6ain79+9H7969ix0fO3YsNm3aBECzoOKSJUuQmZmJtm3bYsWKFejZs6dZHp9BiIzRbtsRG2vKTLMnO933a7wcCVkfQIEiC3vKZJpq7cjIymkwEVEtUmOCkKUxCFFpyhaINCSosMQhCp2abNDfx0wu1+wDwp4hIqIKqdTp87UBa4TIVMbriIwTkGPWg3XoEzwM3sOCMaJTGFKcvTQ7whYMBRMRUeVjj1Ap2CNEZaVUAkePAiNGCAhhynYuT4bNgn2XY/VbfggJaMSaISKiCuDQmJkwCFF5JSQAkyYJqFQSnoQdE0gq9G8VhfXXNkLx1vssqCYiKgcGITNhEKKK0M4yu5x7Dq8u2gMcfQMQpqxjqgIiu2JJciaCzzWDM3KRC2c0QzoUM0cC0dEMREREJTD187tGrCxNZK0UCm1eaQOVZzKiPm8K9dXOwFebNdt0GCUHEn7GmwA0pXyaHiUZVIhfFoXIWF/OMCMiMgP2CBkRFxeHuLg4qFQqXLx4kT1CZBbKHCXS76QjdXd7zJlev+zDZgBkUCEZXREiOwF88QXg789hMyKiIjg0ZiYcGqPKoh02yxU3MX/+QaQeeAGAKTu+asLQYsxGMI6jGdI0axJxHSIiIh0GITNhEKKqsnvbOUSMaAUIU1e10PQkSVAhBssRjQ+gkN/gOkREROA6QkTVTviwNlj/kQxyufb/TVSApCr4t6H/X5EKbpFjGd6EL64gQTVWM3efiIhMwh6hUrBHiKqadsgs5f4XmJ04G+LOU0C+E7B5ZykF1poVq3fW6Yrw18M0M8sAIC2N9UNEVOuwR4iomlIogLAwYNaAl3H13SOY+UoIZC32AhFRgPS44CzD//8iIEfEX8kI2dYIKa26ana779OHu94TERnBHiEjOGuMrEnKtRR0TegK9V0P4E4AcD0YSFyMElfAkFQY6D0bzzw8jub3cuH0lzOckYfcme+iWfRAdhARUY3GYmkz4dAYWYuEEwmYtHsSVKKgbijbC/h5GnAkBsZnm2mn5uv/VyYTiI+XOMGMiGosBiEzYRAia6Jbh+h6KmYnzoYaakAZDCQkl1o/VJRMplmGKDSU5UNEVPMwCJkJgxBZK2WOEqt+XoUVR1dAdXwssHMdyrNYvCQJxAzLwPDR9sh1cmddNRHVCAxCZsIgRNZO20uU+0c9zF/6J1K/7FGwn1nZVqx+MmzGdRmJqPpjEDITBiGqblJ+zcTh0zfxw0938e3qp4uEItPCkUwm8MVb5xAa0QCKEI9KbjERkfkxCJkJgxBVZ7tTTmHw6hkQNveAR06AbR5w18+ETV81ZFAhfuwRRG7qUfmNJSIyI+4+X0GFp88TVVfhIYH46O+vIGpXlKawGgAUqUB+lEk1RWrIMfHjULj7/AynenZo1qMJe4iIqEZhj1Ap2CNENcGTwupYqIRaM0h21ws4Ng04OsOEmqKC+iGoEN//K0Su51QzIrJuHBozEwYhqkm0hdUBbgFAZiZW/bQcy88dhrjT1ORhMwkq7HTqisDo8Uhr0JW9RERklRiEzIRBiGq6lGsp6Lq+C9TabTtOjAd2xsP4Io0AUNCrBBkkqBATfBDRq1syEBGR1eBeY0RkkhCvEMRHfAS5pAk+UtBGYEJXQCqpPk4GUfDnQ0COZam94dO5MWaFJEGZklkFrSYiMg/2CJWCPUJUWxQeNsu8l4kur6+D2LW2zGsSyaDC4oEHEfxMPQ6bEZHFcGjMTBiEqLZKOJGAiZ/Nh7jzFJDvBGzeWYZtPDTBSTdsNq8+FE5/gstWE1FV4dAYEVVIZFAkrr57BDNfCYG85T4gIgqQHhfcqir4MkbTe6QbNotoh1l9UqD0CQUSEiq76UREJmOPkBGF1xG6ePEie4SoViu8jcd3x9Kw+n9vaG74eRpwZAZMXZJMggoxWIHoXc8CgYFIS2MnERFVDg6NmQmHxoj0KXOU8F3pC7UoWKAx20sTiExaj0hDghqQJAghQZKAmBggOpqBiIjMh0NjRFQpFC4KxIfHQ6b98+F6Deg3G5juB4wNA/rOAvC4hHvQTLsXomD4TADLlgE+PsCsWYBSWanNJyLSwx6hUrBHiMiwJ6tVr4BKFKkX0vYSlWHYTEsmE1i8WEJwMIfNiKj8ODRmJgxCRCXT1g852Toh71EeUq+nYnbibM3eZuUORAWzzjhsRkTlxCBkJgxCRGWXci0FXRO6llBHpO1BMm06vkwGxMcDkZGV0lwiqoEYhMyEQYiofBJOJGDS7kn6w2bZXsCdAMAtXfN9GXqLZJLANxtuwcm3EYfMiKhUDEJmwiBEVH6Fh822nt9acj2RSbPONLexjoiISsMgZCYMQkTmow1GenVEWtreouvBQOJilN5LpK0jEogZloHombbczoOIdBiEzIRBiKhyaGedxR5ZDt3O91q6IusYmFpHJEGFmH7nEJ3Qnj1ERMQgVFFcWZqoahSdhi9BAtQCQgZAGQwkJJdhjzNNLdHif9xFsNtlbvpKVIsxCJkJe4SIqoZ22CzALQDIzMSqT15HrE0q1KfGA7vWFakfKm31av1NX4fPa41cJ3fWExHVIgxCZsIgRGQ5ygspWPXTcsSeOwL1nacA2zzgkVMZ6oi0CtUTxUhcl4ioFmAQMhMGISLL080++zMXl9NSMfLXBVBne5pl9WpnZyA3l7PPiGoaBiEzYRAisj4JJxIQtStKf/XqMmz6qqF/HhdtJKpZGITMhEGIyDo9mXUW+yQQlWn6fXEyGZCcDISEmL+9RFS1GITMhEGIyLo9mXUWC5XRLT1M7SUqmHX2PhdrJKruGITMhEGIqHowuFijtpfINg84P6wMwUi/uHr4cNYREVU3DEJmwiBEVP0UGzbTKjx89sPiMvcWSRIQEwPOOiOqBhiEzIRBiKj6MhqIgCehKN8J2LyzbIs2yoDFi8HhMyIrxiBkJgxCRNVf0dWrizlhaNFG07CXiMg6MQiZCYMQUc1RuI5ozg9z9ENRBWedcfo9kXVhEDITBiGimkkbinLzczFk8xCoRZFaonLMOuP0eyLrwSBkJgxCRDVfwokETNo96cmmrxAQQLlmnRWefs9Vq4ksh0HITBiEiGqHwpu+Hsk4ghFfjih+ksnDZ/pBiXVERFWPQaiC4uLiEBcXB5VKhYsXLzIIEdUiyhwlfFf66g+XFaUdPjsSA8C0GWesIyKqOgxCZsIeIaLaqfBwWYmUwUBCssnT77V1RB4eQFoah82IKguDkJkwCBHVXrpd722dsPX8VrNNv5cKbhaCvURElYVByEwYhIhIy+A2HloVWLWas82IzI9ByEwYhIjIEJNWrdbONjOhjkiCQMxMCdHRmu85bEZUMQxCZsIgREQlKXXVaqBMdUSSpPmTLMSTTV8524yo7BiEzIRBiIhMUeKwGVCkjkgbmEwrsOb0e6KyYxAyEwYhIiqrJ71EsVAJ9ZNSIe2QmVs6cM+jTLPNABZWE5UFg5CZMAgRUXnpZp39mYutX87HCptUqGR4EoxOjAd2rkNZ9jWTyQS+eOscQiMaQBHiUUktJ6r+GITMhEGIiMxFeSEF6b8eRur5HzD74bdQy2BgXzPThs0kqBATfBDD57VGrpM7C6uJimAQMhMGISKqDMoLKVj103KsUG6DCmr9YTOgYNXqGSi9t0jTvSRJAjHDMhA905Y9RURgEDIbBiEiqkyFh88up6Vi5K//fFJoXay3qHQyqLD4pVQEv96FvURUqzEImQmDEBFVJb2tPQoXWWd0A77abGJxdaFeIk6/p1qKQchMGISIqKoZLbIuR3E1oCmwjo+XONuMahUGITNhECIiS1NeSMHR099qhs2yPYoMl5m4jYekRvLPMt1mr87OQG4uV6+mmotByEwYhIjIWugNmxXdxsOkYCQgSRIK/9XnYo1UUzEImQmDEBFZE92wma0Ttp7fitgjy6GG0N/0NXExyjp8VjgQAdzrjKo/BiEzYRAiImuWci0FXRO6Qi0KbemhnW1mwmavRUkFnUlCcCVrqt5M/fyWVWGbiIjIzEK8QhAfHg+5pAk8EiRIrteAfrOBCV0BychGsEYIAd3QmVoNREUBKSnmbjWR9agVQej5559H/fr18dJLL1m6KUREZhcZFInL0y8jaWwSrr5xFVffyMDM0JmQKY4DEVGA9LjgTFWhYGTaYIBaDXTpAsyaBSiVldJ8IouqFUNjSUlJyM3Nxccff4wvv/yyTD/LoTEiqq6UOUqs+mgCYpVnof6z0KrVhYusTVq9WoNDZVSdcGiskN69e6Nu3bqWbgYRUZVSuCiwNGYvrkzejqShQ7G0YSBkda8B/gcARapm+OwNPyB0iX6vEQwPp2mHyrZuZe8Q1RwWD0IHDx5EREQEPD09IUkSduzYUeyc1atXw9/fHw4ODujUqRMOHTpU9Q0lIqqmFC1CEDZ0Omb+YzeSh+6CrPA4gLaeaLofMDYMeMO3xNoitRoYMQLw8eFwGdUMFg9CeXl56NChAz788EODt2/ZsgXTp0/HW2+9hZMnT6JHjx4YMGAArl69qjunU6dOaNu2bbGv69evV9XTICKqFkI6hiN+8HrIiv75dy3oKXK9puktiogC8NjgfQCaguplywBfXyAhoXLbTFSZrKpGSJIkbN++HUOHDtUd69KlC4KCgrBmzRrdsVatWmHo0KFYtGiRyfe9f/9+fPjhh6XWCD18+BAPHz7UfZ+TkwNvb2/WCBFRjaLMUWLVz6sQeyT2ySavRZm46atMBnzzDeDkxLWHyHrUiBqh/Px8HD9+HP369dM73q9fPxw5cqRSHnPRokVwdXXVfXl7e1fK4xARWZLCRYGlfZfiyhtXMDN0pv70e+1JhYfNXhpW4nBZRIRAnz7sIaLqx6qD0K1bt6BSqeDu7q533N3dHTdu3DD5fvr3749hw4Zhz549UCgUSClhUYy5c+ciOztb95WRkVHu9hMRWTttIDI4/V4biVyvAW2/LGW4THMuC6qpuinbGuwWIkn6++YIIYodK8m+fftMPtfe3h729vYmn09EVBMoXBRQuDwZ01radymiu0Rj1UcTsCJnH1QyAB03AE33lbpqtbagWiYTmPGvC4h+3VnvvomsiVX3CDVs2BByubxY709WVlaxXiIiIjIv7fT7y6OOIanDCiy1G6SZfm/iqtVqtYRlc5vBe+YLSDjB8TKyTlYdhOzs7NCpUyckJibqHU9MTERoaGilPnZcXBxat26NkJCQSn0cIiJrZ3D6vXZmmW79IWPzbuTAR0cx4e93sDvlVNU0mKgMLD5rLDc3F+npmtVOO3bsiNjYWPTu3Rtubm7w8fHBli1bMHr0aKxduxbdunVDfHw8PvroI5w7dw6+vr6V3j6uLE1EpC/hRAIm7Z4ElVA92fXeNg+46wd8tRkQRjZ6lVQY+NpBPNO9Hpp7eMIJ7pxlRpWm2uw+v3//fvTu3bvY8bFjx2LTpk0ANAsqLlmyBJmZmWjbti1WrFiBnj17Vkn7GISIiIpT5iiRficdThcvY+uyV7GiGzR1RMfHA7viYXzXewFNYbXmvzKZQHy8xG07yOyqTRCydgxCRESlSEiAcmYU0uupkeoJvNkqGGJDsvGeoaIkNTZuvg3fRo3YQ0RmwyBUQXFxcYiLi4NKpcLFixcZhIiISqJUAunpQGoqlP+ajVXycVh+ex2EyZOTtT1EwOLFQHAwF2ekimEQMhP2CBERlVFBKFJefowJs09i3x9vFKxMrR0WM40kATExQHQ0AxGVXY1YWZqIiKohhQIIC4Ni3LPY+54bjtV9CivcwzDId5YJs8ye0O5nVniDV6USSEriYo1kPuwRKgV7hIiIKqjQsFnKglVY1rwptjZzArbsNL2OCJoeIkATkNhbRKVhjxAREVmHgh4izJyJkPNHsaV3CDK++w79Wxlah8j4/5sLofnS/nvZMu5tRhXHIGQEF1QkIqoECgWwdCkUZ69i70A37HL3gzQmDJjQGRgbBvSdBeP7mRWn3dushC0kiUrEobFScGiMiKgSpaQgYXIXTAoXmnWIAM0ijT9PA47MgKlbYnKojIrirDEzYRAiIqpkBesQHfVUY+RLgLpoIDo6o2DWmXZvM+N1RZx+T1oMQmbCIEREVAUKCqoTjq5G1INtT8IQ8GQbDzfNdkya3qIYlBSIgCe9RMOHA7m5DEa1DYOQmTAIERFVLeWFFKz65HWssEnVDJfp78pRcFIwkFCG1avB3qLahkHITBiEiIgsQ3khBem/HoZTnXr4KSsFM/63Wv+EE+OBnetgah1RYTIZEB8P7nFWgzEIVRC32CAish7KHCV8V/pCLdT6NxSrIzJ99WqZDPjmG8DJiT1ENRGDkJmwR4iIyDoknEhA1K4oqKEufqO2juh6MJC4GGXtJeKss5qHCyoSEVGNEhkUiStvXMHM0JmQFe31cb0G+B8Aui8H3vBDmMcSyFC2xRq5QGPtxB6hUrBHiIjI+qRcS0HXhK7Fh8qAJ6Nj2l4imzwMP+WEZmeDsejh+1CXMttMJgO++AIIDWXvUHXGoTEzYRAiIrJOCScSMGn3JKiEqvSTAcjUwOtfByPubDJEKWEI4HBZdccgZCYMQkRE1kuZo0T6nXQ42Trhp6s/Ycb3M0r+AQHg5Hhg1zqTi6sZiKonBqEK4qwxIqLqxejMMkOyvSDdDsCGPXk4d2sYVmAGVKUUWHMdouqFQchM2CNERFR9lHW4TFIDMUeB4Ue9cDm3G0Zic6k1RADXIaoOGITMhEGIiKh6KTxctvX8Vqw4uqLUYKQNRO6HxmP2g3VQmzD9nusQWTcGITNhECIiqt60wSj1eipmJ842vA5RAZkamLPbC+np07AtZwaEiesRcdjM+jAImQmDEBFRzVHitHutwtPvy7FqNTd7tQ4MQmbCIEREVLOUuEK1Idr1iK4FQ/rhfZOm3hfGWWeWwSBkJgxCREQ1jzJHiVU/r0LskVjTAxEAZARDSjBtHaKiCg+fOTuzt6iyMQiZCYMQEVHNpQ1EphRU65wwtA6R6Zu9FsbZZ5WHQchMGISIiGq+wgXVc36YU3oo0g6X2eYBj5wKhs0Wm1xcXZhMBiQnAx4eQFoae4nMhUGogrigIhFR7VSe6fcAIN31Qvin0/Dt7RkF0+9N7yWSCk4TgjVF5sIgZCbsESIiqt2UOUoczTiKkV+NNGnVaumuF2J2B2B4eh62ovCq1WUbPmMgqhgGITNhECIiIqBsq1bL1cDllYAiB1DCC+kIQCqCMQeLyxyKGIjKh0HITBiEiIhIqyzDZmt2AS1uA83uaAIR8CQU5cIJQ7DTpO08tLhoY9kwCJkJgxARERlT4rBZQaePTA3E7wIiT+rfnIDxmIR1UMEGElQFP2JaMGIvUelM/fyWVWGbiIiIahSFiwLD2gxDfHg8ZEU/UgtGvtQyICoCSPHUvzkSG3AZfkhCGK7CF1fhi5lYAhkel/q4QgDLlgE+PsCsWYBSaaYnVAuxR6gU7BEiIiJTbD23FSO+HGH0dhkkLE4UCL6mP1xWlBJeWIVpiMUMkzZ/BbhYoyEcGjMTBiEiIjKFMkcJ35W+ps0sg4SY/E6IXn0Cirtq/fnz2vsrCEScdVY+HBojIiKqQgoXBeLD4yGXSq/zERBYZpcKn+kCs9YPh/LXn6HcvxNJT0lQFnxmK3ANSzFbN3y2FLNMGjbTPQaHz0zCHqFSsEeIiIjKQjuzLDc/F0M2DzG5hwjQBCRjxdVA+YbNtGrbrDMOjVUQV5YmIqKKKsvaQ4XJBJC8Hgi5Zvh2cw2bDR9ec+uJGITMhD1CRERUEYX3MZudONvk3e5lkBD/oB8il/4AqAwHqYou1qh7rBq4+SuDkJkwCBERkblod7uPPRJrUiCSQYZv+ibA6eafaJZ2G3jvPaTVFwZnnWlDkRM0W3uUdfhMJgO++AIIDa0ZvUMMQmbCIEREROamDUTalakL1wgZY2odke4xyjl8VlNmmzEImQmDEBERVRbtsFmAWwAy72Wia0JXk4qrAUAOGS73/gYKtTOQmgrMng2oi/9s4eGz2Vhsci9Rda8jYhAyEwYhIiKqKgknEhC1K8rkOqI1A9egRcMWaNagGZCZibSNy9Bs7TYosg1/tFekyLq6zTpjEDITBiEiIqpKKddSytQzBBQZNoMM8TsFIk8Y/3gvXE90GX4Yic1l3gDW2ourGYTMhEGIiIiqmqFp96bUEWnJIGmm3ytN+4hPwHhEYV2Zi6u/+QZwcrLOHiIGITNhECIiIkvQ1g852Toh71EeAtwCcCTjSIn7mRUmAYhRDMdw7wHIzdPMOlPMXWSwjgio+GKN1tZDxCBkJgxCRERkLcqyn1lRMkmGxcFzEXwwrZx1RCXXE1nb9HsGITNhECIiImtS0WEzQBOK4u/3NWmxRifkIQ9OBbPO3i+1lshapt8zCJkJgxAREVkbQ8NmZZ1+L4MMyYO/QUh2ydPvC0tBMLoi2aTCaksPl3H3eSIiohpK4aJAmF8YQrxCEOYXBoWLAiFeIYgPj4fMxI92NdTosnMwZuV/C2XUSODKFWDmTE2CMSIEqYhHFOR4XHDEeF+KWg1ERQEpKWV5ZlWPPUKlYI8QERFVJ0VXrTaFTJJh8TOLEewZDOe7ecjd8imarfsSirvGC6t10+/D/46Re0ZDrTZcP2SpniEOjZkJgxAREVVHRYfPyrrpqwQJMYphiG42utTVqxOkCZrp98Jwb5JMBiQnAx4eQFpa1Uy3ZxCqoLi4OMTFxUGlUuHixYsMQkREVO2Vd7HGmG4xiO4aDcXeI8AIw9P3lZI3VoV/j9jdLaAWxXuHpIJDQlRNLxGDkJmwR4iIiGqSsm7joaWbfv/39+D8QCDXDmh2B1Dk6J9nakG1tpcoJKSsz8A0DEJmwiBEREQ1TXnqiPQULCkkUwPxu4DIk/o3a1aqjjcpDFVWzxCDkJkwCBERUU2lrSNKvZ6KOT/MKVcokqmh2c7juv5xS/cMMQiZCYMQERHVBoWLq7ee34rYI7EmD5+V1DM0Ceuggg0kaEKWMBCMKqNniEHITBiEiIioNirr8JlMDXzxFRCaoV83pJ1qH4B0ZMLDaC+RXA5cvmy+2WQMQmbCIERERLVZWYfPJEiIye+E6LjjBvczK6l+KCkJCAszT7sZhMyEQYiIiEhDG4py83MxZPOQEqfhyyBD/APD+5kZqh+yVI8Qt9ggIiIik2i39ghvHo748HjIJeOF0GqoEeWQiJSUHcDWrXpbdxTdqkMuF1i3zjKbtLJHqBTsESIiIjJMmaPE0YyjGPnVSKO9QzJJhvjweE0hdVSU3srUuvqhrYugGNbNrG1jjxARERFVKoWLAsPaDCtxs1e1UCNqVxRSnmuvmSdfqGdIgWsIkx2Cws+mqppcDIMQERERVUhkUCSuvHEFM0NnGgxEaqjRNaErlubvR9IHM6CsV+gctRro2hVISKjCFj/BobFScGiMiIjIdKbsZyZBQsxhgeifC021N3O1NIfGiIiIqMqFeIWUOFQGAAICy7oDvtOBhI4FB1UqID29StpYGIMQERERmVVkUCSSJyRDJpUcM9QyICoCSPGEpkcoIKBqGlgIgxARERGZnbZnqKQp9oAmDHWdACTE/s0i8+dZI1QK1ggRERGVX+GVqWcnzja6f5lckuPy9MtQuLBGiIiIiGoI7SKMM0NnljizTCVUSL/DGiEiIiKqoRQuCiztu9Rg/ZBckiPAjTVCZpeRkYGwsDC0bt0a7du3x7Zt2yzdJCIiolqtaP2QXJJjXfg6sw2LlUWNrxHKzMzEzZs3ERgYiKysLAQFBeHChQtwcnIy6edZI0RERFQ5tPVDAW4BZg9Bpn5+W25N6yri4eEBDw8PAEDjxo3h5uaGO3fumByEiIiIqHIoXBQW6QUqzOJDYwcPHkRERAQ8PT0hSRJ27NhR7JzVq1fD398fDg4O6NSpEw4dOlSux0pNTYVarYa3t3cFW01EREQ1gcWDUF5eHjp06IAPP/zQ4O1btmzB9OnT8dZbb+HkyZPo0aMHBgwYgKtXr+rO6dSpE9q2bVvs6/r167pzbt++jTFjxiA+Pr7SnxMRERFVD1ZVIyRJErZv346hQ4fqjnXp0gVBQUFYs2aN7lirVq0wdOhQLFq0yKT7ffjwIfr27YuJEydi9OjRpZ778OFD3fc5OTnw9vZmjRAREVE1UiPWEcrPz8fx48fRr18/veP9+vXDkSNHTLoPIQTGjRuHPn36lBqCAGDRokVwdXXVfXEYjYiIqOay6iB069YtqFQquLu76x13d3fHjRs3TLqPw4cPY8uWLdixYwcCAwMRGBiIX375xej5c+fORXZ2tu4rIyOjQs+BiIiIrFe1mDUmSZLe90KIYseMefrpp6FWG17O2xB7e3vY29uXqX1ERERUPVl1j1DDhg0hl8uL9f5kZWUV6yUiIiIiKiurDkJ2dnbo1KkTEhMT9Y4nJiYiNDS0Uh87Li4OrVu3RkhISKU+DhEREVmOxYfGcnNzkZ7+ZJO1S5cu4dSpU3Bzc4OPjw9mzJiB0aNHIzg4GN26dUN8fDyuXr2KyZMnV2q7pkyZgilTpuiqzomIiKjmsXgQSk1NRe/evXXfz5gxAwAwduxYbNq0CSNGjMDt27exYMECZGZmom3bttizZw98fX0t1WQiIiKqIaxqHSFrxL3GiIiIqh/uNVZBcXFxiIuLw+PHjwFoXlAiIiKqHrSf26X197BHqBRKpZKLKhIREVVTGRkZUCiMb+zKIFQKtVqN69evo27duiavXWQK7dYdGRkZNXrIrTY8Tz7HmqE2PEegdjxPPseaoaLPUQiBe/fuwdPTEzKZ8UnyHBorhUwmKzFJVpSLi0uNfRMXVhueJ59jzVAbniNQO54nn2PNUJHnaMqsb6teR4iIiIioMjEIERERUa3FIGQh9vb2mDdvXo3f16w2PE8+x5qhNjxHoHY8Tz7HmqGqniOLpYmIiKjWYo8QERER1VoMQkRERFRrMQgRERFRrcUgRERERLUWg5CFrF69Gv7+/nBwcECnTp1w6NAhSzep3BYtWoSQkBDUrVsXjRs3xtChQ3HhwgW9c8aNGwdJkvS+unbtaqEWl927775brP1NmjTR3S6EwLvvvgtPT084OjoiLCwM586ds2CLy87Pz6/Yc5QkCVOmTAFQfa/hwYMHERERAU9PT0iShB07dujdbsq1e/jwIf7+97+jYcOGcHJywuDBg6FUKqvwWZSspOf46NEjzJ49G+3atYOTkxM8PT0xZswYXL9+Xe8+wsLCil3fkSNHVvEzMa6062jK+7M6X0cABn8/JUnC0qVLdedY+3U05fOiqn8nGYQsYMuWLZg+fTreeustnDx5Ej169MCAAQNw9epVSzetXA4cOIApU6YgOTkZiYmJePz4Mfr164e8vDy985577jlkZmbqvvbs2WOhFpdPmzZt9Nr/yy+/6G5bsmQJYmNj8eGHHyIlJQVNmjRB3759ce/ePQu2uGxSUlL0nl9iYiIAYNiwYbpzquM1zMvLQ4cOHfDhhx8avN2Uazd9+nRs374dmzdvxk8//YTc3FyEh4dDpVJV1dMoUUnP8a+//sKJEyfw9ttv48SJE/j6669x8eJFDB48uNi5EydO1Lu+69atq4rmm6S06wiU/v6sztcRgN5zy8zMxIYNGyBJEl588UW986z5OpryeVHlv5OCqlznzp3F5MmT9Y61bNlSzJkzx0ItMq+srCwBQBw4cEB3bOzYsWLIkCGWa1QFzZs3T3To0MHgbWq1WjRp0kQsXrxYd+zBgwfC1dVVrF27topaaH7R0dGiadOmQq1WCyGq/zUUQggAYvv27brvTbl2d+/eFba2tmLz5s26c65duyZkMpnYu3dvlbXdVEWfoyHHjh0TAMSVK1d0x3r16iWio6Mrt3FmYug5lvb+rInXcciQIaJPnz56x6rTdRSi+OeFJX4n2SNUxfLz83H8+HH069dP73i/fv1w5MgRC7XKvLKzswEAbm5uesf379+Pxo0bo3nz5pg4cSKysrIs0bxyS0tLg6enJ/z9/TFy5Ej8/vvvAIBLly7hxo0betfU3t4evXr1qrbXND8/H5999hnGjx+vt9lwdb+GRZly7Y4fP45Hjx7pnePp6Ym2bdtW2+ubnZ0NSZJQr149veOff/45GjZsiDZt2mDmzJnVqkcTKPn9WdOu482bN/Htt98iMjKy2G3V6ToW/bywxO8kN12tYrdu3YJKpYK7u7vecXd3d9y4ccNCrTIfIQRmzJiBp59+Gm3bttUdHzBgAIYNGwZfX19cunQJb7/9Nvr06YPjx49Xi5VRu3Tpgk8++QTNmzfHzZs3sXDhQoSGhuLcuXO662boml65csUSza2wHTt24O7duxg3bpzuWHW/hoaYcu1u3LgBOzs71K9fv9g51fF39sGDB5gzZw5GjRqlt5HlK6+8An9/fzRp0gRnz57F3Llzcfr0ad0QqbUr7f1Z067jxx9/jLp16+KFF17QO16drqOhzwtL/E4yCFlI4f/LBjRviKLHqqOpU6fizJkz+Omnn/SOjxgxQvfvtm3bIjg4GL6+vvj222+L/SJbowEDBuj+3a5dO3Tr1g1NmzbFxx9/rCvIrEnXNCEhAQMGDICnp6fuWHW/hiUpz7Wrjtf30aNHGDlyJNRqNVavXq1328SJE3X/btu2LZo1a4bg4GCcOHECQUFBVd3UMivv+7M6XkcA2LBhA1555RU4ODjoHa9O19HY5wVQtb+THBqrYg0bNoRcLi+WWrOysool4Orm73//O3bu3ImkpCQoFIoSz/Xw8ICvry/S0tKqqHXm5eTkhHbt2iEtLU03e6ymXNMrV67ghx9+wIQJE0o8r7pfQwAmXbsmTZogPz8ff/75p9FzqoNHjx5h+PDhuHTpEhITE/V6gwwJCgqCra1ttb2+Rd+fNeU6AsChQ4dw4cKFUn9HAeu9jsY+LyzxO8kgVMXs7OzQqVOnYt2UiYmJCA0NtVCrKkYIgalTp+Lrr7/Gjz/+CH9//1J/5vbt28jIyICHh0cVtND8Hj58iF9//RUeHh66bujC1zQ/Px8HDhyoltd048aNaNy4MQYNGlTiedX9GgIw6dp16tQJtra2eudkZmbi7Nmz1eb6akNQWloafvjhBzRo0KDUnzl37hwePXpUba9v0fdnTbiOWgkJCejUqRM6dOhQ6rnWdh1L+7ywyO9keaq8qWI2b94sbG1tRUJCgjh//ryYPn26cHJyEpcvX7Z008rltddeE66urmL//v0iMzNT9/XXX38JIYS4d++eiImJEUeOHBGXLl0SSUlJolu3bsLLy0vk5ORYuPWmiYmJEfv37xe///67SE5OFuHh4aJu3bq6a7Z48WLh6uoqvv76a/HLL7+Il19+WXh4eFSb56elUqmEj4+PmD17tt7x6nwN7927J06ePClOnjwpAIjY2Fhx8uRJ3YwpU67d5MmThUKhED/88IM4ceKE6NOnj+jQoYN4/PixpZ6WnpKe46NHj8TgwYOFQqEQp06d0vsdffjwoRBCiPT0dDF//nyRkpIiLl26JL799lvRsmVL0bFjx2rxHE19f1bn66iVnZ0t6tSpI9asWVPs56vDdSzt80KIqv+dZBCykLi4OOHr6yvs7OxEUFCQ3lTz6gaAwa+NGzcKIYT466+/RL9+/USjRo2Era2t8PHxEWPHjhVXr161bMPLYMSIEcLDw0PY2toKT09P8cILL4hz587pbler1WLevHmiSZMmwt7eXvTs2VP88ssvFmxx+ezbt08AEBcuXNA7Xp2vYVJSksH359ixY4UQpl27+/fvi6lTpwo3Nzfh6OgowsPDreq5l/QcL126ZPR3NCkpSQghxNWrV0XPnj2Fm5ubsLOzE02bNhXTpk0Tt2/ftuwTK6Sk52jq+7M6X0etdevWCUdHR3H37t1iP18drmNpnxdCVP3vpFTQMCIiIqJahzVCREREVGsxCBEREVGtxSBEREREtRaDEBEREdVaDEJERERUazEIERERUa3FIERERES1FoMQERER1VoMQkRUK8XExCAiIsLSzSAiC2MQIqJa6dSpUwgMDLR0M4jIwhiEiKhWOn36NDp27GjpZhCRhTEIEVGtk5GRgdu3b+t6hO7evYuIiAiEhoYiMzPTso0joirFIEREtc6pU6fg6uoKf39//PLLLwgJCYGHhwf2798PDw8PSzePiKoQgxAR1TqnTp1Chw4d8MUXX6Bnz56YOXMm4uPjYWdnZ+mmEVEVk4QQwtKNICKqSi+++CKSkpIAALt370ZoaKiFW0RElsIeISKqdU6dOoUXX3wRDx48wN27dy3dHCKyIPYIEVGtcu/ePbi6uuL48eM4ffo0oqOjceTIEbRp08bSTSMiC7CxdAOIiKrSqVOnIJfL0bp1a3Ts2BHnzp1DREQEjh07hoYNG1q6eURUxTg0RkS1yunTp9GyZUvY29sDAN5//320bt0aL7zwAvLz8y3cOiKqahwaIyIiolqLPUJERERUazEIERERUa3FIERERES1FoMQERER1VoMQkRERFRrMQgRERFRrcUgRERERLUWgxARERHVWgxCREREVGsxCBEREVGtxSBEREREtRaDEBEREdVa/w+/AvJz3fgm3wAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "semilogy(σr, \"r.\")\n", + "semilogy(σg, \"g.\")\n", + "semilogy(σb, \"b.\")\n", + "title(\"exponential decay of singular values of Strang image\")\n", + "ylabel(L\"\\sigma_k\")\n", + "xlabel(L\"k\")\n", + "legend([\"red\",\"green\",\"blue\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "clip01 (generic function with 1 method)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# clip x to [0,1] so that imshow doesn't complain about rounding errors\n", + "# that lead to values slightly outside this range.\n", + "clip01(x) = max(min(x, 1), 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF5CAYAAAC1N9FKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e/S1W1UX/pnr2e97uKZyOVxUDqSoCGgKCKIIUaikGCKmAooGZUCOkIEaGj/AFAQaDSyVhlp4QZQaaqIohAYISYikqcVQKhAVTgqiIODhfPeavz/m7bPW8+zv9/seDnJe2+uc/X73fp51mWve11w3UVXFMR3TMR3TMR3TMR3TDSi1jzQAx3RMx3RMx3RMx3RMczo6KMd0TMd0TMd0TMd0g0tHB+WYjumYjumYjumYbnDp6KAc0zEd0zEd0zEd0w0uHR2UYzqmYzqmYzqmY7rBpaODckzHdEzHdEzHdEw3uHR0UI7pmI7pmI7pmI7pBpeODsoxHdMxHdMxHdMx3eDS0UE5pmM6pmM6pmM6phtcOjoox3RMl0G64x3viC/+4i++TmVf+9rX4rGPfSzucY974IorroCI4K1vfev1C+Blnn7oh37oI4aXt7/97Xj605+O3/iN31i9e/rTnw4R+UuH6ZiO6YaQjg7KMR3TX/H0S7/0S/jFX/xF3OEOd8B973vfjzQ4N8j0RV/0RXjd616H293udn/pbb/97W/HM57xjE0H5bGPfSxe97rX/aXDdEzHdENIRwflmI7pekrvf//7P9IgbKanPvWpeOtb34qf/umfxhd90Rd9pMH5kNOHA8+3vvWtcZ/73AdXXHHF9V73h5I+7uM+Dve5z30+0mAc0zF9RNLRQTmmY7oOKULv/+2//Tc8/OEPx8d8zMfgEz7hEwAAv/Zrv4av/MqvxB3veEfc+MY3xh3veEd81Vd9FX7v935vqCOmFV75ylficY97HG51q1vhlre8JR72sIfh7W9/+5kwfN/3fR92ux2e9rSnnZqvtQ9NzL/3e78Xn/d5n4crr7wSN73pTXH3u98dz3nOc3DttdcO+R7wgAfgbne7G17zmtfgPve5D2584xvjYz/2Y/HUpz4V+/0+8731rW+FiOA5z3kOvvM7vxN3uMMdcKMb3Qj3vOc98Uu/9EtDnafh+S/+4i/wlKc8BXe6051w8eJFfOzHfiye8IQn4E//9E8BAKqKv/N3/g5uectb4m1ve1vW+f73vx93vetdcZe73AXve9/7AGxP8UR/Xve61+G+971v0vIFL3gBAOClL30pPvMzPxM3uclNcPe73x0ve9nLBtj/1//6X/i6r/s63PnOd8ZNbnITfOzHfiwe8pCH4Ld+67cyz6te9Src6173AgB83dd9HUQEIoKnP/3pQ/859d7xnOc8B5/yKZ+CK664AldeeSW+5mu+Bn/wB3+wSY83vOENuN/97oeb3OQm+Ot//a/ju77ru9B7P0zwYzqmG0g6OijHdEwfQnrYwx6GT/zET8R/+A//Af/m3/wbAGaAP/mTPxnPe97z8PKXvxzPfvaz8Y53vAP3ute98M53vnNVx2Mf+1hcuHABL3rRi/Cc5zwHr3rVq/CoRz3qYJuqiic/+cl44hOfiB/8wR/EM57xjA9b/wDgf//v/41HPOIR+NEf/VH83M/9HB7zmMfguc99Lr7+679+lffqq6/GV37lV+KRj3wkfuZnfgYPf/jD8R3f8R34J//kn6zyfs/3fA9e9rKX4XnPex5e+MIXorWGBz/4wZtTGjOeVRUPfehD8S/+xb/AV3/1V+OlL30pnvSkJ+GHf/iH8cAHPhDXXHMNRAQ/+qM/ipvc5Cb4e3/v76VD9fjHPx5vectb8O///b/HTW9601P7fvXVV+Prvu7r8NjHPhY/8zM/g7vf/e74+3//7+Pbv/3b8ZSnPAXf/M3fjJ/8yZ/EzW52Mzz0oQ8dHMu3v/3tuOUtb4nv+q7vwste9jJ87/d+L3a7He5973vjd37ndwAAn/mZn5kOzz/7Z/8Mr3vd6/C6170Oj33sYw/C9LjHPQ7f8i3fggc96EF4yUtegn/+z/85Xvayl+G+973vir+uvvpqPPKRj8SjHvUovOQlL8GDH/xgPOUpT8ELX/jCU/t9TMd0g0h6TMd0TJecnva0pykA/f/+v//vzLwnJyf653/+53rTm95Uv/u7vzufv+AFL1AA+vjHP37I/5znPEcB6Dve8Y58dtVVV+kXfdEX6fvf/379si/7Mv2oj/oo/cVf/MVLhvu5z32uAtC3vOUtl1xWVXW/3+u1116rP/IjP6LLsuif/Mmf5Lv73//+CkB/5md+ZijzD/7BP9DWmv7e7/2eqqq+5S1vUQB6+9vfXj/wgQ9kvve85z16i1vcQv/23/7b+ewQnl/2spcpAH3Oc54zPH/xi1+sAPT7v//789lrX/ta3e12+sQnPlH/3b/7dwpAf/AHf3AoF7RgvER/fu3Xfi2fvetd79JlWfTGN76x/uEf/mE+/43f+A0FoP/qX/2rg7g7OTnRD37wg3rnO99Zv/EbvzGfv+ENb1AA+oIXvGBVJvof6U1vetMmz7z+9a9XAPqt3/qtK/hf//rXD3k/9VM/Vb/gC77gIJzHdEw3lHSMoBzTMX0I6cu+7MtWz/78z/8c3/It34JP/MRPxG63w263w81udjO8733vw5ve9KZV/i/5ki8Zfn/ap30aAKymhN71rnfhgQ98IH71V38Vr33ta/G3/tbfuh57cjj9+q//Or7kS74Et7zlLbEsCy5cuICv+ZqvwX6/x+/+7u8OeW9+85uv+vOIRzwCvXf88i//8vD8YQ97GG50oxsNZR/ykIfgl3/5l4cpIWCN5//8n/8zAOBrv/Zrh+df/uVfjpve9KbDVNHnfM7n4Du/8zvxvOc9D4973OPwqEc9Co95zGPO1ffb3e52uMc97pG/b3GLW+DKK6/E3/gbfwO3v/3t8/ld7nIXACPNTk5O8MxnPhOf+qmfiosXL2K32+HixYt485vfvMkH50mvfOUrAaz7/Vmf9Vm4y13uspoiu+1tb4vP+qzPGp592qd92oq3jumYbojp6KAc0zF9CGlr18cjHvEIfM/3fA8e+9jH4uUvfzl+9Vd/FW94wxtw61vfGh/4wAdW+W95y1sOv2Oh5pz3d3/3d/H6178eD37wg3G3u93teuzF4fS2t70N97vf/fCHf/iH+O7v/m685jWvwRve8AZ87/d+7yaMt7nNbVZ13Pa2twVgDtbW8/nZBz/4Qfz5n//58HzG87ve9S7sdjvc+ta3Hp6LCG5729uu2nrkIx+Jixcv4pprrsE3fdM3ndblId3iFrdYPbt48eLq+cWLFwHYuphIT3rSk/DUpz4VD33oQ/GzP/uzeP3rX483vOEN+PRP//RNPjhPin5t8d3tb3/7Vb9n3gKMv65r+8d0TH+ZafeRBuCYjulyTvMCxj/7sz/Dz/3cz+FpT3sa/uk//af5/JprrsGf/MmffEhtffZnfza+/Mu/PEf/z3/+8z/kBbBnpf/4H/8j3ve+9+GnfuqncNVVV+XzrS2xAPB//+//XT27+uqrAayNZTyfn128eBE3u9nNhucznm95y1vi5OQEf/zHfzw4KaqKq6++OheeAsB+v8cjH/lIfMzHfAyuuOIKPOYxj8F/+S//JZ2KD1d64QtfiK/5mq/BM5/5zOH5O9/5Tnz0R3/0daozcPiOd7wDH/dxHze8e/vb345b3epW16neYzqmG2I6RlCO6ZiuxyQiUNXVdtUf/MEfXE1bXJf06Ec/Gj/xEz+BF7zgBTnN8uFM4Rhwf1QVP/ADP7CZ/73vfS9e8pKXDM9e9KIXobWGz/u8zxue/9RP/dQQcXjve9+Ln/3Zn8X97nc/LMtyKlwxvTUv9vzJn/xJvO997xumv572tKfhNa95DX7sx34ML37xi/Hf//t/v6QoynVNIrLig5e+9KX4wz/8w+HZoYjZVnrgAx8IYN3vN7zhDXjTm970lzbtd0zH9JeRjhGUYzqm6zH9tb/21/B5n/d5eO5zn4tb3epWuOMd74hXv/rV+Lf/9t9e51HznB7+8IfjJje5CR7+8IfjAx/4AH78x3/81GjAH//xH+PVr341AOQW11/4hV/ArW99a9z61rfG/e9//4NlH/SgB+HixYv4qq/6KnzzN38z/uIv/gLPf/7z8e53v3sz/y1veUs87nGPw9ve9jZ80id9En7+538eP/ADP4DHPe5xuMMd7jDkXZYFD3rQg/CkJz0JvXc8+9nPxnve855z7Up60IMehC/4gi/At3zLt+A973kPPudzPge/+Zu/iac97Wn4jM/4DHz1V381AOAVr3gFnvWsZ+GpT31qGu9nPetZePKTn4wHPOAB+NIv/dIz27qu6Yu/+IvxQz/0Q/iUT/kUfNqnfRre+MY34rnPfe4q8vEJn/AJuPGNb4wf+7Efw13uchfc7GY3w+1vf/thjUukT/7kT8Y//If/EP/6X//r3PX01re+FU996lPx8R//8fjGb/zGD1t/jumY/tLTR3iR7jEd02WZYnfFH//xH6/e/cEf/IF+2Zd9mX7Mx3yM3vzmN9cv/MIv1N/+7d/Wq666Sh/96Ednvtg58oY3vGEo/8pXvlIB6Ctf+cp8Frt45nw3u9nN9Au/8Av1/e9//0FYo76tz/3vf/8z+/qzP/uz+umf/ul6oxvdSD/2Yz9Wv+mbvkl/4Rd+YQXj/e9/f73rXe+qr3rVq/Se97ynXnHFFXq7291Ov/Vbv1WvvfbazBe7eJ797GfrM57xDP24j/s4vXjxon7GZ3yGvvzlLx/aPg3PH/jAB/RbvuVb9KqrrtILFy7o7W53O33c4x6n7373u1VV9e1vf7teeeWV+sAHPlD3+32W673rQx7yEP3oj/7o3LVzaBfPXe9611W7W7RQVQWgT3jCE/L3u9/9bn3MYx6jV155pd7kJjfRz/3cz9XXvOY1ev/733+F9x//8R/XT/mUT9ELFy4oAH3a05429J/Tfr/XZz/72fpJn/RJeuHCBb3VrW6lj3rUo/T3f//3h3yH4H/0ox+tV1111er5MR3TDS2Jqupfvlt0TMd0TH/V0gMe8AC8853vxG//9m+fmu+tb30r7nSnO+G5z30unvzkJ/8lQXdMx3RMl1s6rkE5pmM6pmM6pmM6phtcOjoox3RMx3RMx3RMx3SDS8cpnmM6pmM6pmM6pmO6waVjBOWYjumYjumYjumYbnDpI+qgfN/3fR/udKc74UY3uhHucY974DWvec1HEpxjOqZjOqZjOqZjuoGkj5iD8uIXvxhPfOIT8W3f9m349V//ddzvfvfDgx/84OFa9GM6pmM6pmM6pmP6fzN9xNag3Pve98ZnfuZn4vnPf34+u8td7oKHPvSheNaznjXkveaaa3DNNdfk7947/uRP/gS3vOUtV0dgH9MxHdMxHdMxHdMNM6kq3vve9+L2t7/9mVd1fEROkv3gBz+IN77xjcNdJQDw+Z//+fiVX/mVVf5nPetZ5zpd8piO6ZiO6ZiO6Zhu+On3f//3V6cqz+kj4qC8853vxH6/X918epvb3GbzArGnPOUpeNKTnpS//+zP/gx3uMMd8Lc/5564sNth1xY0WbBrOyyyALKgtR0ituJHMUKhgHb7rnvse0fve5ycnACqEFX0bp+TfcdJB/YK7JcdVHbQtgC7HVQECsFeO+z8SEUTYBHBTZaGCw24YhFcIYqGjqbXQvcn0P0JTq65Fif7PU6uPcH+pENVoCqQZQdpO7SLF4G2QFvDHoAKABFIE4gIlgb0/R59v8fJyQehvUN7B7r3q3c0aWhtwYWLFyDSgCZQLTwAVueFixcgraF53RGMMlxZvyy/ou8NV33fsd+fQLs9096hACQ+Xok0QROBtAYIIIg27K6arh3oiv3e4IZ2orgARi2oAqKAQLETQRPgQmtYGqx+qSISeFoapAnQBBCryXAT9O3o3kfjCoMRDiMEaE2wSMOF3YILux2WtuDCrqE5DK0J4N9FGkQk4bG+en3OgcmDqtYpp4NAs8dRB+KvkQlNWn6v5AQdnlTdqt36qh19vzec9+59D1i8lMOlALrDVe+9XcX0vOiT5VS9fGYe63caGM8UjMP74L3kVUn+yX4mL5dcx/eQd+NDySNzu8Nt3zHW5XB3sK4oFNt7YN8t3wnhj3rrVCzyJCzJoAQ7AlYqw8wM77Pzo/VFh3rpH4gIdotgWYwnl2YlBB1LE7Qm2C0tv8PxYPLgcHWFqgAastQgDdgtzt9NvE5A+x7i7TcUDU5Ogr+A1ha01nDxYsNut2BpDRDBvis+2Pd431+c4No98IFr944fk7nd0nDBYbXGjGf2XXHtvkMhUBEsyw7SFixLs7oTex2iCu37lAX0PXpX7Pcnrre7odXtgVFCXd4EDcAiRY34WD7rh6Cha+ESzsv92muNx/fWdh7b3Axu3e2AZYEsC9qyQ2vN6LaY3F+xs74vTXBht2DXjLatGYzoe+z39rn25MT4sgs+eKI46bC/ajDtUz46WugcLR14su8plyICgfOPq89dSzWK5vhhTrcqS85UxWUssBU8b/xhbSr+9x//KW5+85vjrPQRvYtnnp5R1c0pmyuuuGJ16RYASFe0HozVIeiANDTpaOhj3lSUpoa0d0h8XLnK6uPGsSvQunkL6n9FIN3rUmdgFUgDpAtEFJIOiitlVYhWm+LaytoxI93UnBYhJdyboHUyfr17PcZY6Jp9gDo+kiE7RJsrZU2lKwCkdzTAmVJmrsu6VBXNHQq4E4eu1v80tCzAAukAmrVhyg6p0MSFuTs+whEiE1SK3XHDSsL6HjhG+DPmnGiDdH/eqRJ3TiVoQDObAsM5xGCHmoKSFv1UNOmQjnTkJP4TsXci9HEcQAu2NKK9DAvhzuyXurOj5DAKpHV3YCYB2Jid7c6TUIXs98YDroya80tL46rpYIfllDSC8bvwm20OuDPj3dyot3BQyPmpvqMcGJ34tiu1WQ5ytUPfkj+Ln6LekEUG23im4M/v1DHLM1n/EgOSU6prVctMluDp8PxJxOK36PDessczL6+GES4r5MhZC5r9FIjLjMlB6TL/63LRnPZMkgHnqmiuiwTqMlc8Iq5L0xR5vgYTvYaQNXGZ1IK1kywT3mUBSh+7DKliH/0p1JZucB43A+u//a/6++7l4znLJNOz9Nj4uxHyDaeOQwTfF/6qvpD/kVKgfGXGDc8NTC9Bm+xQ4d5tVFczTZ1s1lAHySPJd/YLrtYHPpJJ3xqfim7jp1aJeG9K7ZHcrfF7nuUZHxEH5Va3uhWWZVlFS/7oj/5oFVU5LamPhpsKVICuHSJ79KaAxphLwr/P0VZ45Nr37unuXUB9hJfvQ293pHjse0ZQlLxv8+oB3QPaTGy1eaRA99CINvTuo8hqCxBzmCBuYIptOwBVMSdF7HvU0zvVGYa+d8OF12URi+DPGvVBrJ4OU0KdRiCJIyANUo6+Hf74GyOETDHcjhFseCYaHorTI8r2PoyEJWBzpk/eV0VvAnEPXUXRPYIBwHxGmMLzeINFjgRJox5t7nvoCIMlvByCvaNBNEZrPUfXPTwFV9ZNBN0jKOW8uCMzMGvgXzeNPOAOSTgnXgcE2ZaNqFHGH4RqrShNOHzdneKMGPV6Fn2HRnSBojyJ99EIhoyEIxA8qtCKUBTBso9F74BrHTXpCXe1qqTpymQXXyS8xD9sGzwYkKCwDGQ27ne2T/0fuhP0q34yfoa2GW+bv6Lu2b05nIa2dF2ncj+7WzVV00cd0Kb+l3DStfQc2TIooK1Du2QUV1s515oOpfpQUKs+hqH5M7EPJPRs6UF0TfmN71amZ8dKL2vJrEewC8aJ91zeQx6yTZIRoP5K4tEcuxHfG5RI3pHkncRr0kLDN6jfWs6TdnflRFOvaW/u4IUNkrQvBm9H36tFaNKWSNGyT3JBgCncue2Fg/iES1wwS8Ic+muLKTMvIq9Qmbnva949LX1EHJSLFy/iHve4B17xilcMt4m+4hWvwN/9u3/33PXoiRmQ7jGo1vfQJkAHVPZh7gaFpwgFTQZ3vyEIe3JQPKphiN9DpQ1KLRlWnEhdoA3oTX103tNB6fsQlD4IswfGHBZjjAw5i00DGQjloOi+p5G3At43obrcyLFy1oDVo0JdBK1rDpdHwQ289M12w7DU8F5riKGSzlpFAaSEghTGyLTlHKmPmBU+ShdBz8iFK8dsWty5AESbDQ2ElEQ6c2SMUhGp088iIKpA999dLBLRVd0hMfzZ94qYxPRMOkuO5zTUzkv5g5QiEA5JOScRQTHfiaazEjejeav62UEJPnfnLMLQAULkHYxzyYtBUK2spniyXSXjX5YucoXS7Er4nx0VLjMrRDYYSu2S0tOxBCLYUnkjH6ORHZTx/aYTxIaIlDBTYmXLZPwZ8GQj80AyGWL9SOmf/E4jeo1+15DedQjMoLVqO/vU6zs4NB/l0rFAOT3s0XhlJmPl1Kk7DLp3veuA1lRf8UAZs26DmoGW5Fj0GDRY/RI6fRQO+6QR7jn9AjLMFVVnHe59LlR4XzboIsEXhcc0+sHbjJsWDXheUWizKAjEp/ubuH5troMs8qTpxDj8e00npatP0x1wUKBVLmkVcDP+1SIlNNob6ZjMHvo9qpucmtQD/pv0X7R93vQRm+J50pOehK/+6q/GPe95T3z2Z382vv/7vx9ve9vb8I/+0T86dx2tLViWHXbS0KRhaTsssvM1GNW1UkzBjKa0BYI9yjkJQpp329Ch5pi0BdoWaNvZZyOC0hBrE2r+cOdTTaErjEm7O1CwEUKUlgbxtTNoDdqaMY0bvFgnsoQBg6DnCEcAdKBZ1KS1xfGx2BqUcJxQawzE8RVrW1oraWTDFZrD3II9BOZ0SDfHUHoPG5rGFT7aN5g5uuCmTmwULU1S8mdjZH3XUsCwedFFxNeiOL6jCoD60nLtiylkq7tHANPDzUmTnFh1zAYdxea2d23nf1uuM1la9alJI6eCoh8g38kRywpRCtkZIYmptpgPjiiNCOEXLOQU+lcgppAUHXtxJxIdKqb09kIRKzLAcxQlYY4+kNMyKF1/VVMsQclSiOE62FSh8WiOGMNY+NSpisuchIkShiK/qvNHKsdwfBEsU85i9dFozSH9Dsl2BBaV4/4XpaJfgj5gxqcFJ3yx80ACYu9UyTHm99xPSTmKv+YfqPN7uY0ctQteaTHdAc01U4uvN2vOR52scDdrWO2njDl/u44wG6tuBQ0e88GNn1pLVWp62OWxtVqDomrTEoso9i3GNr7+oTUv52vjHBcKczLEYVCI52lostD6Lx/sqQIZKfKVXh5FMpU/mFPnBDjurGisRQG05FJtGhbBX5CqKeoWqQ+xcKydgcRaN+5D0KZsSKyDC3ti4/BwkN1eBcJha3taA1o3e5Sy545cQWr2Qr2Pjho0jGvoAheBV+/1emkG4wAy8HXJEGrqb3bIT0kfMQflK77iK/Cud70L3/7t3453vOMduNvd7oaf//mfx1VXXXXuOoKwQgbZmNUEwlKEm0pJjqsdAI1hhQId3Qgs9jGmsoW3cMMXjJaKWZ2IIYwhzCJoECza3eFZ0NoerSla62jNvGRbu2J1N2mALBalCW+eFU8TKBZjmFYrbcSFzox2Cbm4UujeWZdZE/7E37gGZRxBs+cNE6pWo7dA3WCUw8CGs0AOCuCOeevoPRwMa0NyNCkuVDH5AVe0Xk8IcigQx1O+a4s5PyI1+nOqh0uINBI2OilDEgq+pWIN5Zq0JYexUd8aORUrB0VdKfYazYyiXAYGIGeHHJSaNKIRCTsoMGVsjpArKC+rXWy6EUIOSdE7Q84A/S20sIMSzmNA391Q1QDAoCn+MeUdUZ1ctE2Osy1YKocDiCVE7DwWLs0ojs5JyoLnD6OuCAVc3yPFM0x5yIcp+oScB1NOxofpwEtL2OhHmeF1vqfvKD4weXC/QCT5JvAQVa/XQQVfYeDR5DHHkIgZp4Ar2i3dUDoi1iLkSgUZcdZC12Bq0/WNiC3nM71Qa7cCGhvQVLsGZ8+BmiSOKC85M2GWRdSnoax8l+br4PrKwAa+2UERsJMXAw93ZANeclA8IGKDSXJQYgtB8SQ86irANHhrqdtkcu7CnhgsMQOgas/VnSJzTuDrIEH4GLgs+5Q0QjmarL/CSUkeUvo98Eu4PNXCirfpl6yk63D6iC6SffzjH4/HP/7x17l8u7Cg7RYs6ZTsLCrg32m8mQZCNdZrCLDfAzF/6R6p9IbuiyLb3h0UjqDsdkhD5gtRbbTgBnMhhmodizs8KrYwrO8XNFU0XdB8/QVgTpYs1p/YxaMwxuuzg9IB7AXS9ykMBo86o7ph3e1MECIak3gwWJfdbtxtYz0zoVIyNqpA3xt3dkGDr/+AoOciOlaWJHThoLRSaCbRpQl4imcwwRpG0k2YxA4FiyStdvF4SKUt5aCghcFVaDf4LR4azkmY+JLGUM6tNbRlwXLBdiMsu6Xo7P0xGBo5EuRMeHeh0Z8pgkKxziiTzkjUBWRkqJwFrjSSG63cIaOQvfjiWHNOWm/Y52LtckQ7OSixmFqp+pAiaOEymjdjrBmZO2sXD7qY49k7eiPa93Ke1KNqpeakmIu6HnkzpJzOTSnfcLSs7kJdpO4ZbFGhI1crOhGDkFiwKapozfBaTsroVJSHwu9HJyRor1LlZMpTxnCsPvoiHAoKGWsCD5q6kUWNzBfasRewRUSm04Jedf6LiCGVa+K86/PPEtLjvCPwqVgl47q4HC0GWGu2kFaWZgtDYxo42lxsYCVLRVBiMXqDRqzDd+t5/hgcpMvgi3JDh7hj1LXZe4Ub+5hyteeNjTPKYId2NEMe/NgSXzZbbtM1oY/hOtI4UjMc0XxnJcJpay13HrYmkF19bzvCocQiWc21fV2lnDeYA9k01ivCI5NOK2cXUcnntoDZnJrAcw2M3NkJPgquJCWdphNuDxxPzZ+FOIqJfi7+PW/6iDooH3JqzT7ujdpvNxgt0AmUwuzOiLB5v6BcbK1jnR8GVEF120fgToG7zRISIEgYkqIABM2iND4Nk3GzJm4omBuoLU9pbF1SxKyuR3PCQ5dUxBDO71viXOnFYiikkLSCxaGNudn4C3eiMl7Zoj2BhIOXwPoPV2hoIzyGO6+nj4ZHuA42ABo62/shzaWFFLpQm9EfkVwQGCYvM5Mdden0+gt+NIEshiNZGvXF6Byw5ChQqD+TQ2GCrLCdRNF2YDykGKURoh2Ec0d1Qkv4oUMtaXl6OEE+P999WAUxA+y0LGcFbpjLQUi8B5IjWoiaBgkFlbNxZJcTvyRqAjUHOxY89yBB8G9UUsoNKN4EMK4HYIeEH89OwcqZYy0rteMhpgOoQLgr6Xim86SE/RoXiozKOWk76CPqETshCTPBDn4fj8dIcHZXgFxcLag6IiwQMgm492VGTf1ZRGkS5oZBX3GDIlK8LYE//6FTe6z3Is7Pz1Z6i2QtnLzwFHTKG/qfweN+uJMRKjj1uk58kDJIJMk6ncIk305oL0CWWAj26oDjifDiTuUKF0K6s9WRCeUYmOwg7EZA2LVoT31K9g8wWRikYJe5/8kGWZCYLbkdnMIujI+J39ZFTk2XtYNSZ12QUxAGPoYRQI7kkkPDasX3nOIxA2JCGROYGAU0HB92IzkW3loJddQhzkxoBGPPEV7WR0wqsyAEgzYxI5f5mk9jUP4tpndQkzscjqwnHKLgvcgbeEn8sQAyHlA4mBVTKhCCo/ksaUSucvstEI6I0u9qN2BH/RbKl6PIcP1R9UJgzh2qvlnpgPARNBxGOyjFwsoRE64HoxN8Isi5tjTwmsp8dHImPALFE+lws4IFjVYUvifaHBP4796qXDoNRGOeykON8qtVzlusknWEvBAsyf4R92/eN4UZx/B7Y3hFW+yHeRK2GEy/5FXLL1qjyTIgkb/6FnXZowmPh37L1LHhL7BFiwSA+UHdKZjLzFaReCFBBzDM7fDgaJDLyELymoaO2mT5yMeTfE8Og8EiqMVfmt9Lp2GSf4zy0dmppzbb1GbAFXo4nJWQt7kNOLPld6GBkOftM92YWVF1CQaUpGcs0VeUkzjrKBmrNxMw0XX6lFNCuErdQ8CEcxL94vYEgK+FGXmY+xm4ia9SNmyAMbKzFxp4mSdqqsPJq6HXsMHr50yXtYOiSwOWZgeoSUMuZhX7O3CIAuGQqHaztftYcGZaMtendIUucZ6E2KlHbQEWn35hxorpA8B+L4uNRhYgV0Frt7b3agZvUaC3WlGv5lRpq3Y0HQaPULTmf2Pe3fqfW88EeQKV+hQRlsWZvFF422Ftzcp72FXJQVmt/J719eJhzNBLw3tJRtdcrFr4yvx+wFsYPJrtcOZXsnlhIHzRozsNNSftcLtDEXxhMKD6IsgV6dWgGv29IpWIvLTC0c6n3HZLrnXRxQRSmli4FeW0mA6VAS05vRbKkdtnBTY7fiLWr1TizM9ET++JdudJj07Ednl0sQXa+0A5T3sGDTTfWdVhXDG2l1M3sb4LNY02OCr0O3Z/dKpH4DvQQtFL9cefhcrjqZCMFCrxSPhcQd7gt4Sb+bUsck7/dE1/jcD3ZgquGMOwX4RQ1iETibPggKJntFG+YNFZqL6gd0UBKIkQbYJvQTJmRs7gMD2DZnwUh4WJGE8wDg23JFDknKtHphE7SZz+4n0o3pHqZMhp6ukYELkebg1o6rqH+D4dj4gix0DSkR84paj2HEEpHnUaBmF6c73sfwNWKTYJGQ4bLvzOH0jgmVc795EO7JSGTzE7YBqDHcdx9NtsSOFPF1+X52trVBt0sU0SAacuIQMBcMhmMV6sZbIZAgesq9uViFC7vIVIpi4KPcw8Xn81eCEGBsHDKSj+kCNxZ6TL2kHxLfS5Qnkf1JjizaWIkcLVVbHXqiM0js/gIxbddWgeZJPz74jDbbTWa4h4Xi+ngk7GMBYl2jvFHrWNuNTUsJvct4Laeo9crAXNOlSRJ6KmgkEdxNVjvlRrW2l0VfwZIk9VQAaq6hzwkb9rzYJohCBz+Vz2hXg9pbzTJ2iTxlzCYaGxrcLxaXjeK3J+Nwc/zgvxKBRUOFpxgmpPXvHBVEhXjIwSS2qDkSjjdE543XjFQsMKpNWYIZMG/xSvDXTXkcamJ2LKxZw2+AJFoGiU3Q+a5X91AFPguAf/UR4oEi+qsbYf9R6o6G468a74UpqKhlFnOrfRBnW7E08Nz4jvSgp8rEaesAYsqAWvzN+JF+X3Y1sYytW7/Cj/DeM7ylCSsciZuJvJP6ThdXA4T9l4f4X4mL6RqCIYMbAzwxVlZ/kPWhePEM69bV7g2RC/q/bwwQLqqCP4yRoU10WuA1wOOw3sgs6q0Q73I/jR5XDqQ9YdxxrQgWLEtll+4FlFtUAd6dDSLd54Lx+mqKY5JkyeGnhSCX5Ha/ATUXOgiw9lIfxdaQG4jvniM/Ksrp5NnOp1EN87H2UZYftUfWQdhSzLGnPEwVq2Vprx1HRZOyj73nHi++K7AIqO3uzgttb8+GQkGyBXP2M8eOzE98nHEcDaFSeqOOl+xLX4oW5ii/sgtumWz3SIqMGJ2M6Sa2GLSRv2eaBad3it7m5HLncAfiiY9OYHrRncdtS92FZi924Vgn3fo6vBbXvuc/O7HcYVONDuJ7oKOVmGO2niJ8kaszW62Jq3kibeGF95vobhE6kgkA6RSC2asjUasWbDtEr3MxD2fFZBAhAKG8np4lrCFoo1aFOHHanjY142Tt1FjFqGPvhx9zkiVtRoSnJ0ZLTrgNjJv91HEs0dMfvr8Pi6pFg4a4NBGRRajsDz9F1X8kkQeB20a8B5ihfOemWjRawmUAdT2dUEcThbHtq278OWYrgxyWeqxCdliEB5w/kYDYWu3tHQrc5fobNo4vA4XkSbRoOUuwyIxJiH6JjH9KMGe6Wkw0EtGTD2qnbrLBjNPJ3Kdm+jT+0mpkY/n8gz0QkkY+54jlnqWbjMhQ3/pvU9HLE4mw1ag7bYnYEO7P1k5JgZ6J2chY488j5abOr82iwaJy36q+GFIBalBi1O4mwn4omT2ELu0zonavp17/LPC6v3ajDvVfMIAxtc9MR/5s6rRgTofgKzKw0Z9GJPXb0nXk+0pxXXXAxL1JkGWLFQ1ZiM0REOfMkX8RPckGcZhzXsR0S/YXbNdFJH65J6sBbJduz96P+Tbmeg7BWGU4X3Edh3DLIep8uGPiye9qU56guQJRaMW7218Dh4g1zpkFOVGnjk84ieFE9Em+dNl7WD8hcfvAb7vs9dPEvraO0ETRbbFUMOSiEylKPdZ6O942Q/3sWjve7i6Qq7c2ZZoPs9dNm7pxl38Rjm9yJ2f8GyoDegN0FvftR9vxba/S6eaz+I/ckeJ9fu0f0uHhuuKKR1NDFhU7EtxLFdzZbZmBHs+xNzFK4d7+KBC6Wtvt+bIoqzB0BKw43dTnut6g/jmvhyyQul3c3R4rt4dG/3WwDpn9l3D2HG7iD72dIIh+Ky+vYlpIjypShVc8yMvdjq9H3z82BiVOMojF0Asux9DUn4Oq4s6BTcQdFJVpDwx5bi3W5vPNYaro07SQR15ko6X+VUCGRlVK0vWn3VcbN7RF5423KAxnVTZVsNkKGPg/TqgL0eDkIaD6d2GHdSHrrVRsoQOTfEL1FvWc98W4cSajkofGhez/NbdKgXyZWMrYKF+zKOzsqhHx2ZMYLC5UenlZwbHZ2Tfa98o9qecUWweBc0+zYnHqJLlYtwO0oosqz3ufjNFig2NefDZLJjr36oIBRLiyPhyTjtvS/dOVGROqGJ6bnYAisC3/HVEddUSMiYwu92MVBt9qWjizkGiw/u4k6dD56c4NqTjpMTjwNI6Aax01SX0kj7fdwdE3IrWGCDg9576q8yptax2CGmavprv7e/OdeoCkX1Q1CzMHugnoX3qT4Yi+hm8FdHOhp718fJ3yEFAnPUZJ9UbzAd3bWZXms+yGqCZW9nBi1NsNv7Diqx/uz3J34f24k5KB249gSOW+TswJ50jsAHk6hTtQOv2iNS7zuAxOyNen9thmLU88mD4Ywk5qV8vtD3IS8K7Pf/jzgoxth2tH2TZudqNIVIR4tFgkAqVFNoxoxdI7Jhly6FVMWFcvu9e/hqW2lV1dZeBFNKRVDcgbQICvyemAZIOChqzon2PU78kqd933v0wDzrnBbZnyDWpGQEReBRAdvr3ns5VumguHDEpVC9KWR/AtENBwXhuMAXflrUAYkurb/+vfuVACHkdaKscyLp1zCoXaTOHRA6f8ANlUUzNhwUkBEiBwXuHEDjBNdaN5cOinYIFlOeXcCnILKDwqFHQDJqlc5V737OjOVbXInMDkqdXUKHrA0OCg+ry4EIxUtdc+GvxYOhDOpZ4XjGF9OrHEDDbZwomxGMwagj8w9RldHCRgtF71TOzh/MM+lk0PfBcaLv8ZzWJA0wRO9YKyYI5JjQ38ifa5mijyiHI1JMc3auhxyP6G5EG2LkOUaaHB8iA84Shw5LOV4j/dzCFyObFQTc+YAbgKx3chzV30qn4LsN982YOmyyN10T56DkKDqcx27vDSSBqB3GuAhclmubcYVbNCMLCtOZgWMF0DU2BlT39j4A3FNUlgcI4Q6EkwnV3B7f4yRZq2jcOpu996gORVDCWd+H44DaWh98HWfH5NlBKLns1E/J9S498dV9Di30C+KUXObN5jLS1ThPLGJuvqU7ZioQNCzxXYwmCsK9xkCxY793e9UFJ12x73C7VdGKGhAV83MUM66e4L0Wyb89cFDSuHJQiKfTSdGqI7+Hgz/x72npsnZQPnjyQXT1M1Ck2eFnsoeInS5YBhdAqCqt0XQY+n3fp0SF8tzvu4fIYCe2tgbti3nl6aCUQYgj0GXfPHpiaybSQel7c4auvdYclJNuERS4u6oRQUEu0Mx5RInpA1gExaMZ+2uvRRzjHJEhuzTLD5QrC7dSuCKCPewERrQysoGpMhQuwGHYe8f+ZI88vn82lGlY3dDTrqR4X0aJHRRrORRTmogEHNg3U137JquF+wByh4L0fe3ikTIUYRy7G8M0RBlB8cqkDpda+oK9Oyt2qyvKSRmiHYcclEpDBAXjmHt27tYRFMtFFEq8mBJbO0HpAPC0CitNcirmqZ21DiHHhBwUZLniF838M0xYOSUlj3N5hy/wcGoEJeDSEaNhiLOPoD6C3rHDwQ5S1V3K3m+IJaW7ip4EjPFlYgauP0Cl8AmYF4XecZ06tVhy42dQCAAf+doaSJOpvHRUcpZmcFDCGUrnW20gxgfAAQiLnFNJgbtODoqoH3Ypio6GFtPjahGUk5M9rt2bsxJ6Q3VxHjE9Gg5K9wGNRa8M3w3mmJgNYAw4kiKCouWg7/f7/B6HC4aOg5MqTjCIg9qcEkTlWLfXnJau09xJiWUCyfeBH+9/nCAusrfjpbSjq5930gF4NMXO27GoytJDr5pcx432e49i9y442Ztjcu0++JUcFKcVgDy3SJWnfB13YlM14ZRqi+fZW4zcDMSxBMEJNbUzyltGUHrHedNl7aD03tHdKJgju3e9pLUKGSCBLmLluhC/qySkKhjN5jyDyHvnYfFV0xQ2Tg/cHJQuxiy2cSLeWaQGvu7ERmOdmMc6YGsofF61+yIlcbPdzVDFzozu61AyepJrD2Lu2foWVjqVovpoCjbi0iZ+lsnoFpdzYn/rckKtaQM3gmkk3WBJGGkIeicHRRyHYZC0Qvvp2XP7aSV8FGMLWhBXedfC3GAI9bU1VrbC4zq0qU7bbElr5bmtoRGfdy/YAcVeNPsRoyx2UCKqk+tQmFnToJahtz44IOnYkDPidcjWNuOVA4Hi71A+PaKFFLVg52xQHIcdlMEpUn637ewwjEnJQb7ISfHnfVUehSsJfAlXnXAOjtaEDyDCzYcdFIQiB9dV73n6KowvTwON7kI5bWMjgUlywFbvq4vFI5NjRv0ekqBgQy1ojLy22NLWNvjGNnu+6teIO5PfllrE/B7XM76eTxLc2gygCjRfD9dV/L6Z0L0+OHFZVN/+YvrDbl+Pk1KzXl63FNBo9+nwju4urFK/WS9mW8R3pbutv4Fp2/Eu+WwcFFB/Z5kgmxCynm1kGRlkoTnBqr9+4rNvI+6tmV6TctbgNiumbIe1JD7VVOutCobgKX7eWYbEmSgHtN4vX6wT1kSBMejHshXco+P3+NuxwbunpMvaQTFDY+zTAP/ukQYbOls+/zcYB2mkev6F+qIpLe9SByK7EGkZ/CJ+qGpxgZMkBqA5V5th9vjLAAbj0Xkgmh+/IA9+lbmWcxAjhGD4mlttNvLxgw4iHB8CVQIudTZF4HVi5sRdwj6171UK1Dk4ZmctXCmpNiLoDrCyKKMXIryOoISqVo3phJhvriSO91gMRm4O9aFGDON7bsdOaGwoRdnVFzKrRU/sZmVyUDyMLy69sZNg5Nfil5BSoQ7KRh0Q5PRbncBIECdigm7khHMEZVLMmiCMCitrJ/wItRW8UY6HvVpN8dDLLDMbhw2YQDCoairCUo0TfFp5q31BLHpmONlJCS2buBjekROhU9nk1XqGgZKT9g0FPzsnpKU1p3OA2q0U8EX5AaWFCy27kmpEQla8Z0kOw4f7+aVfWNcVUPZWRliLnq7xNJ8QLQMOqzBOKg5nPHbFDXyA8EPDaWnVVy2DP/MH/G6pGIhVDwKIDT7zT+iTYCLq8kArYKo6rXQ4JrwYlHBB9ZRUaD7JKSYGFfRdqp7cBYW5P4F3XusReGS5yH/yd/zUgMllQpj/ud/Jl/W1ZKEmgQwOGhQzPjX6f750WTsoMf9fd6S03EkxL/qMLWjG1GUQe4/QvEt5R154lSNYEdiBaJ5PwhHqWS6mMFrc+SBxpLONCKAd6nXEJ7ahA2Xkmp8mG1GOAIKPuocqtInfL9FtpI/wDWpdRMszr+N9zclHn5rPD+cuG4Tgh4EI3PU8ch/S0P0m5KQF0QRZ/zj6z3eALwLuHnqejbkM+iDKNI8yxJH3B6d48mAj8X3/LiICCzXLuGEyIiAIfDsd87K0FndhtJraaRzxkPwekZPhMKzgwjwAg7QhCieIujFFUTKqMmPbpD9YdxidIRQwO4QelYs1VVJGKxfwhXLKOok28YzeDd3IbpGmJ6OXOHe6hC8t/p3zhYsbiCEskcKTIW+OAr1SoTajAwLfMFEMi7giorvBzWhiWU1AY3qj3GfJQyU2eDj6zfAPRq4mDLJvGzQWQr7xaiFeMXS3+DFyx3fXH3WmWbUV11ZQk8lTPN3IfGgk1pRSAeE68EWy0VJ/uS5rtmNk5dwfkKfEYKoyGerPRepMVgQdXZ4Rt6AzxtO6DuI/6H1EFCVoPdIkHL1slfgqhWWlySTLjjhef0z/lP5PjDfJCLJQXQ0cwUbqgEKlwzXwTWBYqt8DHpShXrNq4JArHZkbIFlZlT0lXdYOytJ2dsdDXo63s4viYg2Kp1Ro4b2pQnXvBOk+teKOC9TPAup14GzeMOwHwEmFI8MrtAMABXWbsd3WOd5mvIfdlAVfI6VpWNAW3/Gy5MFDoev5ssAwwLa6W1G3GZsqjrt4Agd8eFh6zV7P4pfqjbtEYuEjRTVUPYLjMRzd5/RQXMgFkOCGsmihPIDaxeNwNPX5Y3G4y5KVwWXdoalklwEf0aa3G22SB1Nh1ghLy7hbBdMiWSDvEFraYpdQ8hoUoHY/bToos0MRjDiOAtl6R/5wlrMOV+4MWw1fhsq9iWqjw6NdItDeoPnMsZGjIBqNOUzB14nbBJlHQvkIDRSBGfqnUxs0wmwEqwuJkmLXAYdpGRF8Dk2qGtwyOSllgiaHlLjK24zISzk8XK6e2CSJO3KDsQMynhcyxuCXpU1kyvBt6ifCGMyMNP8OoynpiJiOyKWkNbiRulOn+uaOqqM21FEO8oQvCyxZzHkioUWyQhFkeDmJO3la3maMroPD1Aang272zZNkzbPWphk9HfLyLrqgsqod8OyecHe1CzEZKKNMEY0w7hKDTTL0xHtxm7GIgM8AMb70BcVwR5zonDsy0/rH7eh1y3Td4+b3jfl9RnZ7ekV9JPrXWt6lEzdSx8YBw1IMMquP9rQnTLnQOPR28kvtaAKQd/Eg8EzO/Fg74wQZDQonZVM3HkiXuYNyAbu4aVaaOSzilwXKLmV5mIbhXTzSobLHPu6ZiVBirlS3UH9vO1sk23bQpRwUifUiZrZtW+rSsGuCXQMuCEVQcAKVBtn7OolFfAsYoCqQtvMLAy/k6Yi2Gc2jAKksgC4WBUD3gG18VwXQ3dFp2C07dwyKYSoELvaetsuu8FUxwMRVF3Poehyzxuc1pANNhpsiWjFqUEVue226R4RvM5IdijK53ARz8f7vXJhTcUS7Lk1tWTKaMuziEV9DIz231ZpCdlUuZRQiYrIsCy4s5aAMkSww7upvwhWdIUck1uxwuDVyhSMXjmIqSynnpIwaOTdUk9J0X/dFgto7tG3v4gk6H5r6QfQln5WDEqY862OeyTyen9f/+Pn249RTX7VLgf/RUJMDxc4WO13h5DHfR99UqSqpdyJK791wu3LtHn7KiZzIC6prw3kIByTGjekkDb2jcoPHHXSvshuYyWJh5OLmj9geGiPwpU0OiuNPHG89EOIV5u26VC6NXSzsB0XqVG3tlmeJ2+ZDRy9tcdVjTuXSbFo+F+hPzkxsDDDM2tq91mI/jdiFsHHLeEbMtajuu3hil2Scciu+u88iZ6E3y0FpLnuxWDYpIAFLI/7iaKA53SJ+R5qw66PQ0MV535rdlC4+qM2F+fG7mT1ZRLAsvItHsIegYw9patu4uznNeyB1WxxcGbMGUJ9mc3gzcuoD8xhosePYIlIMTbwER6d8OL+YfBFOQo5DBYrZ01gkfJ50WTsobREsi0UKzOs2gptH7Ufdu8tpyLPxjxlDgWAfpz3DPQVj2O6nsbrg2lbcutE4DJrmsncjbuxpD4+3NTsIrcXOCaiNIpq1EQwc3rR4H2IXj0EltpLaDf7iQtshlhfi60hq66yNeJaMJq0dFLgyWIZzUCKl8kdpc2vTvmmLU1zFV6ZnlRgNq/ghZsi7fkRqjhK0DiVGcuGh1xREjQRq1NX8yqOKMhhDBK38cj9/F/3ocOHoyDUq0bvYuRCaKEcucRNra85r5KCIOAxt6HP0EwRaGdS832BwvsI5GkLqjpDcHTQYaTaNyPo05sPVpuQ0/xpO02ing0LRk8ngA0X7apIiJdmsksPHHgDn9f860rHXXOMDqLaKYmSZ6m8Fhj2yQpGPOgCrHNJwHtMpESG7WuY9IijmLE/TXUAwivG7jPhYp/nNFvynlRH6uXZQxjIj/ZP/wtBJyVNzfo2pz9pmLL62QYep7TBJWVerG8lbWD5HrB0Ep8lfqjUyb76bsLVyPOD4bx22a1EbpAU9Kl9EXgxSW5PSbILW6SzknLSSwXBQVBHjTj9Z34+h8PiJgjhqA4+oE9lz8JCqMxyq5o6A6UTt3nbwXeoAj0B7BAUxkIk+SEV9JaMobfrrh0KGM6S+KtFOkDSHtY/wyyBBpVvhjmRsvEingyIoETmpqBnhYcJXOereL0VOp4X+LqmMHVDnS5e3g+LGqLYZtxKKuMANSA9R1Txb0Y7eTTBaV7ujxAWz1lp0v67AGFHnCwmBPLkUqNBg83NFIiTaHE5VgbaG3rxd6RTCdsOWoxRrL712Z9pa1xFXg/s0izsppleL6eNabxG/BluROMmrvUn5lCFSD/25E2XDIRNahY3G4dMzbIidwcOYbn28t3babbd1NMOoh+rhUWIITinhEqhwRAanyJWAutJSj2ap70qwHkSAt6IWCAckFCzzVijOUPgoem05KLMY8vRLOrbJo4YXdkYknL2gTeJFa6RL/SjfQKF+SaD6NfJdmznFfhqoKVAgFpKGYTZlI4MRFwOeRkKSTr8ZHH8Ra7vEodT8WlepiBS1ZaR8fIr2MwfUN139DieI8hNv5oL0oS6ZnnDrgV6jh0KTRyTwL0hnjCjp+f1rICnLOn20eHyQoeQH/ltvwtEN54s7EGYJyUNlVMIgNuJRK6bkmI8YmiOh4ZyXHtHMF7gb6haS01wX5oaUIjKStCr4eV0J0CCyT9mMwUSuXwnj7hiWcKJisVFz/ZgyNWAaTEHGWfRLEHaA+1g0HZCmXk6Ll2q1DnczYK+/iSeiVdCruc4DDHfquz5t12IN3rTBbjVOXEx0TY9BsgvJakFz57uUElp7xfkTeflAUj/UOMEHRt6mZH3nS5e9g7JEOFCarxU4FEGpUF4cgCOifkS+5mjAPD8NB9wI4BddDWtQxLzXKNtQo42lWUhuERtht1iVDvXoSK+/sR861o00uljLid2JQc0wetBwacPiwjAaEgs683IuX88ShgmuPCKC4us2Cl1j9CRD4IhFlrYjPo7YBpjRJRVinSRLghjtd5TT5COvVMQi2Wb6LKoeBrVD05ZQfGyPMhrUIJYhF+2xURafpspIjjucoT3CCYyoyW5paItN9+SCP5oa23TCVg5KRCnGKR7OY45RnbjLTk8pTEdKEZ2bqJFsU99y2G3bfO/2bO+GXIHaQRDbN2uKhGlezWiVSbVueVu0nXwjlR/w6ZwKh5sT3H1tjG/71mwGjJ3RnEga6UBjfoSxIWnE1Ue53XVBpzy5/Ay0rd/Br4hL8VhxafQ+oJN04ALahCV5YXIqovSg8SXL1N/ZezCgyi1AOrK1loGfg9Y31Dqqnl6iegQgYB6dkhgc5SDJHW1xrzMX0kc0y+nBkZOYtggPp6sPMH0tHnzaZF6LkRyvzQ6f1FhYTwOs6FfggrSSasv1K/Zb/EA7y1xL3yTxFVGDikTUOjCE0+10ianh2Blsp1c770k44KF75jUoPI0WuEJOb7VFTO+0eYqnAb6rUHNqyyNg3fCuoVdrH8fQ527bQelYhlHnrKZ4RPOaj4EbQ07CKglKztMXkhw4WSRydpsOp8vbQVmciM7UMW8XC7uKu2mUqBbvE6nDh1KzhaLqwLJQ1KFZ9EMX8VslzaDFUcCqtVI94BkdFHEHpeeNooudhOOMZNwgzpTRHqDJ0NavWvsAaWh7ScZI7xXkcS/ev5gXBvKvOAxD2DdkMI1UaWe7o8HHJy2muEp5JvOvHBQaGYQwKwpmx3HsRAJCoMIQ2T+io5OWjgI5KDMO7aZhMnri5zqgLFk4bGkIQkBb0bHtjLd2iwzKvpyHmsZKxSYFVuISFtmwKB4xsis9QeBp7ZjEKDcNHVlN8UqCF8NH6F3syHBRU1rdrgtgox70DiXV6RmqibTaqfiiVeYrqjPp6plyOqaLTzmpL/D2AUMcTOoDiHKBAoBRqeXuozSMriQzbEN8JOV4TV5Mvu8Kk1Pvm2b5mGAQF1P1s0F8kXe4CCUA5KRUlGl0V9l9YY0/MQ0ExeBzstrTKLOTTJv3wrjarHHxL2DRUD/FzZzUwA/CUJfxLB1kRBU1R8V41/GurusGBwUpS82tnoq1HTPZHMEJfRTtRmqui5qKL3GNPFV/uAyBbVsn6Pqrixvu4lsJh9qsKERqB0wGy8lxiV1bOVCQmDqF+VdwB8FNSjhjAucTp4nm/Ik7j23qy0L6Z+hjtYHFeKDFqRKwPLETTbr3wyOm4ZjEEQZ2Ro0Mp8eu9Q6vZfIppolla0qwdKmt2UIOEMKZ7uFYz176KenydlCI8Qev2wWS0OjKqwwFj0y0lYNiyigY2pVnk1ox5Y5CGmiFz8OSY0ACZmtQyJFxZlNxQ++e9+AoNJ/TDI4WDIYxlGxjR6GFkmDF4MIf4fXAAZCKjGGNxKPocHqaOyOd2u3urYerHA6IgEZgrYx+MH5GLiDI+dM20jby+a9UHrkOpdU8KYLUDSnoFkFJfVsOT7bLoVeqaKBj8dgSzrCUA1OhWGB0JkDRjmTBYWQOYBDU0NGzg4IwFIODMjoC/IwdFBvF+XRA9whCygHLRBnjXJtD4QABkk7Zj5QprieiXl42HRRyikzIrEzsQoPWFJAbimg/DTsZ7QgZ1xZpap8ZInDmjkRuyvO/Ar9xXOHbUMPZCMAtNRG724ZVh7rcsuMhWXH2e+BP7oZnzmaE38TUJPifqDrLCTcY3Q0erCVYiGMP0unwfD2mWqA+BRL1W4ZcbMt/gwnd0bcy4dQpOqMjZQUpSyGTq92D3s8wiiVTzkcNFvmQDaesVZ8ynpAG0nU2UMe2p+OAYnwUjlIW4y98PYqMNBUho4xwSsi0DKxBlQZJqf+jDuF1Q+G0OO0An2KVdAJDFsUvUG1xIWSCEP/SZBP3cQRp+0NdkqFf1X8MbXmm8PRpUDarxtPSZe2g7HbAsgN2TszFZkfSgFhykaaQMNRGcV0E+z0hUoG295uRQ9mpCaYu7jQskqE6zQiI7TBZBFhytO3P4F6sKx2ciMWJFwARFlQpb3oRe+dClbfophOGdAB0jzwO30agZkRa4kNyZ0sKUYTuBRYRWCLSUegKHGniRXPRk7j2VQCyiB9RLqPsBVOTk8SCYLjQZHxVGxUk36bOEDea1sLOFeWuIad4arSCVFSBQxFJwwcoul+41cV2D2ToNdmklKWFWgW7HXBhV9/TQVpK+a+meRBKkIxZGH0f7ZuOiB7XXH45OYXvUsChDlBOQKQYGfrtp+rHX2sX38xghn0v5QhowgUP78f1DRWdKF2iLkcTf7jD0MkBTk8MhXuNA48FuTA9nHNVcwCqXcZKJTel2WY5PRi+U4H8LeQk8W2qxn9Si3zZkeT+tvhtBiAjQsTTQrwrWXkwQT0ooyZrZR18A+IfUlExYAhMsOyVI4B03m0NHHxqtBwFK6M+0qZTQsmIhPwuUwRFwjkLnYmiW33KMQm9vCxRsWJR+733xbnR75raEJex0jcAcqCkkLG/NBXBuwH9HsDsI0eHJXjInZTAo88Ow8c41m7kCV1DtLbLDc3J9szGy8FD/jj0lDYg9uyOgyBrZ1ng0zowO7KYro4IhmrcMiw+hWNQLs6jrYkFWLx/4W9nBMUdPtA5nXZ4n/huVPqQoxtkMmcrKiUZRH1PxyV0uZTuo5MpzkyXtYPSRLCLMJhYCH4QplCSCOPdUzE3EezF82QkpE7sQ/PwX0Qnmk3vIBwUhKAg6zMl4A5Kc0MKj6AsHu1osDr25TiEcYU7WRrcAWceqX4tCxAnuOjif4OFVF0xmPDuPPIjTegytIhYeFTg1AgKUjnEQUc9ozXiPBrjJx5ZjBGUYX2Gc26cqyLqUSSakSsHJQTMerlIhT1jyzGPVsT7Wn/HKR7bxWNb9IRC+fDnHLrNbX7+WRbBBXLmckunxPSYkKNCDgrjlBwDKPUXSPzx9uWopwyKlKAHY3MbgK/qB7Q17PdqB/rtK1rR3InozrjhVKRTHsYfhbiUI+IH5hEFH5lO0DhzD06E81FF9FxpZbsYHZVQiLOrpNQP+HobiUmVMu4dZXxyXlypLp/iiZB47gby/nW4E+LTUR0eQXQcRdSles3OQ/Fz6SLhN+TJZMaBJyisMRRhowpgkDE2LKZKxJ0TSScFjkO4jpMWx5CXgxT8vLRygGwNCsowqmvBoGfoGiXDS5+wcksfo96R2DjajeXFRwI6sRhj/bVoHSlbHKWNaSH10EJQjaf/hNq2/iMduRYZVFMObWpLkn9zwBkmRUo/ImgmlQetnIBG3/McLdc7YU8ST138mAo/0dppaA6K+oC4HKfQp+HAQcUPKK075Mr5GPEQuBBRLCRXERHiQUGt4ZJxwT3xex2Wd750WTsou6WcEtsrHgtmBS2k0BFmxq450jr63hiszw4KPHqpsQbFnZImvrBVcuFqLv7RiKAYQ+2awXXBtxkv0lIxYxHbh78gbxflNShLswWy8KvGQyHyNJb4Ef/aJLf7miEQclBojYlIniAaAi5ueNvCDkoYIkU4B2mQIOkYofupjDmKdlRLjCLLScztuK0cANVyePYey45TRYNmYCPpCifovAsHxYWanbxYgyKxlseFwYywOyIoJaoObyx2C+VT5xAIdjun505oiqlBqF/rBbPVFSAcE+NBCkOEyJNiMMsynrwphNtkamTnrAX7N6cTrb/do4Xa7fTfRSTulhwcBJUaYSZeNNS4ZBNzpCINdb5zB0HrvTmABBNFHwLeMI7RbkZjBjyGka+2YnFuc+WsPDfiI0JVQXNnxkb+AX30351a/x7rBRTIyIv4DXyhbuMzOk7F/0MUhfg6nXpx3HB0RShj8uPY7zI2tQ4IGEe8rUlGAUxuOMJcDkFEJsUjYNlpn8aQLDdFUGDGNtaghNOb56oQTRoZ2p1HUATAfqnIyngOyrj2IpygcOya39jcQ/5blQnDKemgBI2Li7XRMw2e04RrdJCCEhKBH9dtTiWhTQLkmEDgkdtytIWdlhhoxMCTHLh06Baj1y5xZ0sOzKky3SuLRdH3TrfFI/WLt886NPg+7xgSc26anbxh0/VSjmk6TAKP3IidUovRZ3Z2QZ4147xtslZtazqZ4zTgWemydlCuuLDDxQs77Pykzwtth8UPPFvaDiXYitiZkvfhLDa905vgRGAau9uBZL2bt9gEOFFgv9gBbbos0N3OR2oNJxq3ZdrofieCi7uGK5rgip3gRq1jQcfS/ebiprj2ZMG1CixdcbLz6AEaZFkgy4Jlt0B3C9AWnKAYuvnofWl2q29vgPQFujeGhYfzbTrI8HHFbslV7t2NSu/q/lDDhQs7tKVlFCWMQJ5lQDHbLnvsRdBljxO16RLbjm9L/0ORphfeJM8p4B0BYRR6l7xUMXadlEqhEXSMblRxwRXvhaVhJ1sRFIH4uSWy85et6N/3hqO9SF0OZ2MOkjpXxu7sXtgtuOLCDrvFvi+uCJclthwLWmwzzh0SEVXxKpV4MCy5W3syTyuHJ/RY7lAILVnewSAPtY255w2n2jv2e/GD8ZrfRI28jwhQv7wyQvSx4FTLyCI7UW0AySPJV9DkmXJwnH/icsjuzpHG1JO3HTt73JEDkFvBDUGFKXUPpUPyFuSAi3fo8C6euExNgby/C/49pqjie54OSvjYq0Dgd3/5AY6qta5lwBQ5VhpGLXSRFG6VeC65gJ2UcFKj3471UPZBP2CMJttH3ZnoOQq/sIxn+XRfq7AXo0sX5PqgGmD4LrZw/t3Q1RSPnaId+JfAdzcZaa3h4q7hwq5ht7MdkCd+YeUHd7Z7a7eYDIoPMndLw27XcGGpc1BO9shzfWJjwLIsvruupYw0zy9Q6H4BWuh1oItCtNk0Z/dzRCJ863PM7JhYlFbdcUkrC1sUbx5cRlAEgChUFG3fEEsE0mADuUFCvRHxXTrRhxhsX9w1H+g2XHHB9NDFXTgopkP20rCXhtYb9h3YO+KDrqLA3tfsxFlD4kcOwAcKrcMvi0WuL4qtzTGdfiGiZ6Aoy6DXYsAiPlAJ2ZFy5AcZs9/nTZe1g8Iep20zLi80Iyhw71v55ka/RK93nwZw1vbj1wVOQCeMrTlp9HFHwHdkAEqh1FYRHQEWqB3F39wgt1r/0iRG+DQKD6sbytU93YXe2+FoDYvY1jsbNdon6o2IjhBH2UiQpngaT1O01I/dz/gn+xJDAojvwrDtaZL3eIRhRoJSzC7TJ0c0MV3kpxoi1XhFZnz8XZ69VLSqtWkAOoz0JIYEKSjWdxvGiG+p7A78KoIioehb/t35NsDYMbbqYyvHpK5/936E8QPtC/cReeRbOyjiDgo5LGHoKFIhKPzZdl674XXvmLOdDw292ynDuWYkR7o9f/N23/B/Up2Uv5rvYrQkERgaOl3GOsYA4rKj8MW7Ah9V0WBCBHGoXEDAi47VZVLUprDCMeHplQB8dHtjxFsehEDz4HNrvZzjCNH78Y75zubqI3IUo1pqsIhePgfr5LTu9EI4g+Rvmd9FhGgK0aSYk2MbhrVGwqaTMljqDm85SlV98TaSx/MAuMB/DkhqurQRbaPMQjIb08OLTLLjnWjTJ7DQHNYmtItHZhl02F2Hx1086v2I+gf+kZoWFNLjhjv6HkjWWjtX/JUN17oTKccECH5xQ+5wbfV3+LQalGZUDMhdQOp2IWjYGtBUE+agTfB+TAUFTru4cylAU+YhZJ9JjW6erBuONst+yAycFiHToVhyy/Y50mXtoLAhbuEUxJkogWkgvdmW3nezI9tbw96VXGA0BNyciEB6TevkFA/MSIVCt3t46p6YxadQFjQsEPRuXn44JzlF5JQOYVvEnCETZIMjnovXj2bGfe/vImSoYdBSMch4DgqUQpKFtyGC4syaDOclu6i119zJcqcoRqlNRvwNimMyupr5Am4X8oAN5X3XM1qILOFckbKlOuP8FQhqkawgpzvguCwdPzoo4ShEVGwnLdeiRPizHMa4CySmfdz5IoUZ0QTDacsoQx2AFPxcU0erCErAZhyN3GWTDkpQ2E9n7Q2tmVLcq9/BE86Kgrb4mkPaO12gKEx/F6Pwh3q9927Z6JSfx7tiH5OlBl/HhByl2wF6piw16W6NDes7yBgrf1y2bWrdox9Og3TyvaQtBI0wt9XXXYmbw4wJjuiKKXb1d82jN3DYmYrsP4AMbCAy4OyI7+N7Tjm4CAOYzp4i92OoTjJXTokZWTqjiXQDVx0L1sO4BCihQ0bDWUzhENQiWaAWoJMOYn0UhnVwfNxoh9yMDop1utZ5BW9tGfUwnoXPkOtO5dNBRgwajJYCyftmEj6oRxBCyiR5K5YIOKkRd+/U+hMgqNVTv+QGKGsv6TT2ZZk+O9c7AkdyLHK1EXSsEsi1ec2jXLkexOmUFBYrFzzTZXTG2sBPcKvJjk/JeDopIQMp/2HfkDYSVPY86fJ2UDJaQsZWah42FZqUIqsQsqSyta29iKXMZqTFwmOmPIO5yxkQkTrwB+RtJxwhfMhRdbSVIxqHDem9lmFKYfRyuc04YUAKW5cQEORogUcnASQv0JtH/6G0gNEAxJSC7e8vxeOawC/G0jSeBTuN5AI3LdS1DA6VkGKMJKT07NZOBStf/j46KCFcSOcHUk5KPitMJI7DURxGNjGPHopjFUFBzpWHULNzEqMuSI0yYopijBdFXaQEGveHjIor1rCGqQMUfgGfxxHCADYno0erBJKRt1jJEM5CTnPAfhd6Xfm2co54JBo0rCkWpX+dBiAauOLv/j2e5SgzFWrxC9ecEY4sb8/zILUwBsUeJQNS6zdaDAK8D43WoIiWLdCgAY+gJw86gyfxZXgvlC9G7wSbbOSlvuSPcO5CNkTy1erDfAOsZDI/aTzHRbchR234CAFWsilOeyvni4lRst+GNis6krQKeFd/rdMx0q9nXvcAq+uiKOX1xAJ4cV4KGRImFEUQuN+C0G8FS8qh+GBOwpkOvisc+VKQpHupoZDdLV1Jn7QlFckI+xRR/tD/du2GJs6NHjXSKFxTe8QvQXehPOywiZJudT5nGevOD9GG8UfZiJ59x7nTZe2gzMp78LwlRl6SyqyXhixD0sowg+piwRamoj/I8mTwh+f5vmDLaSN6Hw1zH8IBCYEa62XFIwkzqL6BAQPe6mLibsRbdHQ7xXRUCVOMJTTrn5XHIVwoCXkox1ASWbjUfSmdqe1BWGSjzcYjmXhXzlTUnQTeUBLsvOUuBpremb8XbQvX3mkfYY4LY6OfAgz943rGKR5kqTQSqJF0bjNuseDToiZo4petid9AXaFXjYVySlMZeRYJBlzlFMgAieEaqzUZNenSgg7eiTz4L48PTyqZ8yZbEZSq15p2rRkk1Kov5KKlH6fJZiwPwOh0zE5GLGoN+LIdcqrK1AmBpdGVgUcjapemcdABoESyzV1NON1JYfYlobc/tKhxJR8oWUgchmMbMjzKXNGr4Agdpb69V1D4Zf0ZPI0VLIEfegd6RxwoTgdxpyDbIh0XeQJ+hQx1RhsIWLP6ckSqrtJR4vhnGANm1aqbYlAIiRmUrxSdJRvZos2ow9MJQzhcrJ+Kjtl/h1eGTsYShnLMBhgw9ivJEvihg5viXfBf8PWM2xLRkluWvrPS5e2gNL93xy8MlIUuDGzLgESF5mp1dazF3Txtce0cm8ShOZ9nB5Mt6M03pNuJOb4LBeYxqiYD2aIn8dMAI1y2QHUPaNzp0jPyE+sAzPC1/KjD38RXW4cnvUguSGuL3SnTIiLkJ7LlDaS+p1B831mM3BXI922Ju4Ma4Uvzg1j8tvhh/Wp4bz5a99UqFL5zwQoY8ijqcKAcX0DWUQvVnK5SNBKPagmUdjI1E85GERT/LdmnZg5K8/7QMKLwUHhbOXutZV3NF962ZbE5/OY7pESQVwrMTkXUB7hz4rjLQ0AiVgAavUlul8xdCSIrB8WMSBhpTQUB2AGDtki2FFCOAF1b9aZ+PoQVssPKQj5osSxIiWfU0fEWURZf/4E4yt77ZXla8psaWF6jrf+K+Iy6t8XrW9T5IzRsOvM+fZDbk11kY5dOCyIHI8XXXsoz12OLl1HkOTwRSA1ExzOl6krpj+tk6knwVShyoynr5bIb/HCwZGks49VAD4zFRgO3YeRaOdB5eGL0N0QjnKeBl0MvFU8aXpqry55Rgu7b+6GO71n+fWtRQ886bWG5j60HHUg6STtas5O4pccdPaO+rIXkmotBVbvtmGx2LLyVEV/7xuo+ZEUmXJbRTj2jhecgSkybhg7qVDAHbEXWJFgOdhIP9N3/mp4OexJwdmuzR38MBrFllERzABTlLwfPyoiHX/IEXXYsZwcJtVg4++L80lGdS37nkaEzV8w4MMuflS5rByWNVaML3Za4l6dWUNYOHnVD7cvefMGg3bRrCtr2WyEZuWk5CD2cB2ketvK5Pp4HbnT7ZDgo3hZSYOOCwxiRuqBJ8+kmy59TQEIOShOHO4yiHWVu8t19sVTc7ln1mjKOG1sxCEDeZeGM091YsYMS1kCbZpt2tLJ4mLecEwhPkQjy4i//5AmxCrt4sJvySWOCGsGrb/+0umn6KuexQQ4Kbf31z+CgeCgtTg7uKrkIOiXRlVjylX9yC3vj9oVoOTkSIezIrg47TpLfKM9YR4Wt48qCQbBpkYjpihgFw5WO8bikB2TKW5225tT4QmhfuKuurOs8E4LPR9U9VnKE45Ejskb1wfPYHGrInjY3RLE4OhwUd0LZXkTUM7BTYXOaKmPcTt/D4czpLvcyMm/ymlmW1sKBKjtSDkEs0laKpkjiW1GGCI6rcfqmOMHysxsT771l6jOS5qNzY6NWRdwpVk2wU1HyWCfJkkHEQAqbysrNLDLmz3qbGzPno/jPkdV6TS1kZDvlxCMoTdC00aifBi6kJxpdFihia95GPUN1s1MG4/3YEhydq3olo1aFUpd7qSI8ZRTTSEHpWA8jAlqw6zSRmHbxPCGXzFnOmwwT46il/hH62CWzUU/zjRdNTMe1TtNobnc6HeIWPOwSNzojAX/y3OSciE0fDYtkpeQt1mG5xvEzrhi3JswV0Tu/h9LOznJp6VnPehbuda974eY3vzmuvPJKPPShD8Xv/M7vDHm+9mu/dmBOEcF97nOfS26rnBMyKtJWxuXMj4x/heuV8YbkwbsfPmTwJxgWYrhkSDLc48rtajvaX40UGo3cKbrCnngjfNTuFtrym4s7xyvLT8NTGuN0aFoqkqGdAZZygLhf4whtxAXf3xNOQL1ra1xx3Zs8EDiq34Ujcv6EvieOWFnwxWcttyIvEWWJ523ZfL7QlkIu3/jdkHcZn0W9lGcoN9U7f2zHWxv6UzuV2vR7xq9U+VmJykZ+KSXKi7EHHA+yQE690F/BOr8/W19mh+KT/MsjwsnJnfiwTX/nqNj8F6HkyTEf9FoYUhQMSIPA+ahu0G+s64o2MMFVRrKMzboP278PflZ4JxxNjsc43YmMbnJejqhuHeK4ptOoJw/BmPpXiu9Y3630zcE2Z17BQH9eSzM7RuXQUF2ICPpUP9F1m9dmejWs9BLprsKDjM7oWR/mXQT/jjAehH3gYRyod+LJ5N3z2/jrPYLy6le/Gk94whNwr3vdCycnJ/i2b/s2fP7nfz7+5//8n7jpTW+a+b7wC78QL3jBC/L3xYsXL7mt2vPfchvojoxIYD5G0BZBiGCAT3+oWkSidyOu74mP01tt9sEMbW8CleY3SDZfjW9jstpKV9ud7SRZYIEJTm8NvbXcEdS9fhCxF7/pS1vLkaCIreKWZrtYIA17P3RLxOBAU4tE+Fa8cZuxjaRtesaneAhO8e/BOQ3qEYyKoIi54x7CtJEUpMKZwehCinIwHsTANoqHxyP9EkUaOYoAudYhlC3oMLzW7JAnVxixEHYwWK5J1PGlqujNFoGa0xQ3+MJ2TaXgBJ7trBXjqdrJE1uzczv7PMXjo9NY7JpJke0NUzz2IIV4aaWMWcEPxkgrYhJYi992uGBHR0PzW6ebT8N0OP3VpoJiDUpHR89t1xS94giPMxDfmcPRju6XEipNn8T32MaoaNj7Vv7WbFSci/naGBnhqAhcIRYqM2bji2yDZ0j3kbKM58J1Vs9sRKnRjsYpGgRDrWNT9UF5tI9oQ6q2XCcRjTv8UrDncftlHRh4xEhbYsQdbxRev1D97HDNhnTUB7HYW4CKKkUTIUsIXbR2JJccEJehagWG7eJx+BvVkduMXWcsBG85WFvOkPU7Ih8t9MQqb6sRvsL0ovaKjjbbIBH15JotxHJj010RPUlcOn8kzjA7qE5Px13s9BL4Tk14tFEMZ7lzk/ThGsd1zEGebSN+oi+8nmZ1LVmv6cMudo6LRbEM7oIo9I3jMfUn9Rviu74okuT4jwWzqSpDToMX4TLvRNOQG9czEcJsWfrsdL07KC972cuG3y94wQtw5ZVX4o1vfCM+7/M+L59fccUVuO1tb/shtTUQ1gWFR0ch9KQz87wEZB4abQCAI7MFQZ0wEb6KLbE9PMJg7pnhIEnUBXVeSHjUAW+Em8tjtQfq7wPAgKO5gDeUcog5wFgpne+EPFbfJmk8IsWMLmyxhgShnMv+OYySW8lESpij7nhWsDq8pHjYYKgQPgM2cIdLCQ+XMQYOid6apapfqdgFqSBiGNCl1jcELIRoUlQjLUvZ+jbjbK/4Lhy0eUtd8F9sRTTnpPLIgLdySMbRX9mqwlYsP3NeTgMzOZD+ifYlphdpejK24fakR8lH9KBn2zXFk1OM4SA5T9huGfvepXbowGmeBlGrT8OH9Jjkd6eZmnPQwikSWoNC5ZrQlCJQtKdMec+UVj+cm/1wr1LKaQCT48hLDGUD6tSgiyXNoQzPxzzDnymfoTWMTrUbolgjV63fINipH83p3AR5uVyAnvlAOpXqyT5owWjrH8TWRACDDgiDDxkNX7qeQrAmv8bvmhoYLgvM/0DTD54n/b+YbhNq0zIL8UXIDMNU/XXYtfqf/EF0jfZqG3GRdIvcYxtOk+wn63FyOhG6k+1fbAEm3Dif5HQkgo9DW0T+jXKEJ0HotViDQjzg+PDlbvAlLyQfqC9KtL6E9GFfg/Jnf/ZnAIBb3OIWw/NXvepVuPLKK/HRH/3RuP/974/v/M7vxJVXXrlZxzXXXINrrrkmf7/nPe8BMBopPgwojImlMIJIRo1dJGF4I6/Qkvt9MIWPFtJA+wcSDkSM5mikAPKCEZEM5Khk7wJqjgsGA2+GTZIJg2Ps/sAykOFg1fqJylvecAntYBQc3oWMbzprEucwWioRTq1hRyunNjOODMPMSoaFioU9x+XiXjbtGAkYwmnRVHpq0ajAKynNBMPbr8gR0qEkL8bulBCjXCiY2j5u9SwSzuV0/oq3m+2HA0F4TOVKiil2vij1X/xN0IfLZ8hYRv4Jttb8t5w+AOkIx/k5doKm0Sycpu78FjAZXTQXftti6HIaBQjhSaWeZz4AacDTpYmHObLy0Wo4AE5zgc9Xu0aL6EIsz+3ueZSRDoz5CB5KR2p7fdMunnzPXtBg9f1dRkiMn0NftPwtebJtrEvoWZWsqisFg6EPNjjQ4TTbsmD+LDKH7FK92ZMEm4x6fHeuaGTM05FGGZkQCzu2cnQgY/CzNfgbTpIVKkvyaNEKJC+HowKUE84RHx74CKpNcf1YkYDQJ1x/De7EHX+R4Ity3oM/gx1I45QOgw66M7fZUtYcfBTrmM52PNSANo/XysGoRVvKUI8DLxnxLmbXTFebLop+hfyVA8iOZDkTTWmA7rRzlG44I5Mzm7816xKHDWRDY6ecrekr5qqIaEWphrVZ50gfVgdFVfGkJz0Jn/u5n4u73e1u+fzBD34wvvzLvxxXXXUV3vKWt+CpT30qHvjAB+KNb3wjrrjiilU9z3rWs/CMZzxj9dwMRRuckiGc6MjSRCBcFAHxU2EhHfs0zvY7jMUCD905NwZjxGmtIg0tNkOGsSJDZXWEgWlubJDPeihrlIDlYUZS5wpwGHAhOBbhxVhl+IZ2U5JKWEDwhjFPh05KCc4RFGS74QBIKuIa7YwwR974jTDQrpT4OOg0uOLGMyMopYjCKUkHq6SLDLp3WSLiVX1IuOHTPSgHNDrAsNenkQOMPB0454X9L0/NBGhBF0WdmJpGNHcQYKqDnFqe4vGisfOl/q3pKkW3S8S6TcftxU5MtqPhBa0hp3TU+aIHvwXtsw1WKBEy5khHKXbe01Ilgt90cALTIElNCeS0ilRkJyDg7xHhi8hH97yxLTnLBK6ACscIkCGXhJD0hP/OQ+wQkT7NaIw4LzX3asJNJH8kIws15iHBGnMXUQfkhclAym+WH/YbTwseQz5ct0SYnx3onK7QWNSpeQSCgp2LchIquldTI2nwgifU2oJqHvw1OyMiSP3ZMBpFpKGVlAfrv+8WDB2CWIjJ9SONuwjMifIyIlU2nKFwkBXON8pR0HBOor4YgKk7S8RhUpSMM3k42g7HJ/MGDzzDaQy9UXZjHJDmAWziskl4XIJ+QNKnhVzAFSjEdnsSnpLLRDBGj9ghHad5St2G1iknBOLyEjIhcEdc3UZpRtfOmz6sDso//sf/GL/5m7+J1772tcPzr/iKr8jvd7vb3XDPe94TV111FV760pfiYQ972KqepzzlKXjSk56Uv9/znvfg4z/+48kDrDB4Mr5IIZGUbSI07SuF76QGP80Zsmk5EpYEuVI5FEu2NzkUnlcExBBCxqsMTD5PJSXugQuVKaGMaJCAGV5TUHkhE0ScMVz5ghgv+1o9jJFhet4ofSgDvKFb51GcJGwBw+YUj1QEicbf9S+dcRFhw8BxOSpkBAdFFUYPPi8MhFNk9bkQD0OpgrpCrTIIKo9u4vsyKMuZxsF3sQMkg/yuN8opG+a9U1HLEOrlVHPnoL66sojoRRAmeEoqkpEjm4wq+CgHPm+evG1Po84wRmEA8l1Qoh4FCU1mSDmHUyEieeqlIC7odIdDQ7EVfQogj2K4YYlbyHM9hPfdDl4LI4OKiJZfYh8tNFl3xd87jrWaFjfCxXfpWq9pM9FscFoCFn4PBoJYM+uNPDFVxJqp5BHZZ5bNwhEkyvKUSbwgSUjDHvKAmgpDyJrBEtNERtMwasHLyAHKOGVjdeQ6GNYbSWpJWAtPQQvSO/E3nNugc9ZZ5WL3GbuqjMMRb2EjjKFT50nwhTsv+VxSvoJWkp2ZGaJomH3wZzxFbrgMHJQ+4Om5GhiNU2KhXxOXoD4Q3ZNHiPdGfCjhG5gFgHuXMhEPhvczVx9OHzYH5Ru+4Rvwkpe8BL/8y7+Mj/u4jzs17+1udztcddVVePOb37z5/oorrtiMrHBUgUe8qykelPnrQR6psP5eQihLYexTKEtIe3FPPQPyhL1hTUzAgoiWWDmeLohjoZPZESEyGcKlEDJeEp56RSQiZBhH8A+er5TTE6sVwmBwtKfwVUndgObCp4CLBDA0Lo/wA001xUMjm6SHZY7RaYXhxfXK4QiKjS6q/sBR0GpriicDDg6gSo3+I5JTddQ0Dk8dzvyV8ETUo9HIM4xE4NIxnw4EQvkyzgp2XncSFxSyMcr+aCkDoBaNtoyg1JUIPdelVJkkLaGHoyMJp7fcs6VRrowfGBbiI9RajjKepRxDNsIl0uQ9UmXEn+qGPR0tihvXtJXVrhNAOVihPgUSMyrjv8P4xNROi6296RiGYZpkJ/rJiKD20mgIvRzeSz3O7xFV4vrJYEsZuByVO3zp5DJfOaAROTFZCWeMDWIZKI7MBI4t/O9Tg64HoTWNIaFjUKN2nvplxwIYHZpak1cGtyIoSAiq32FEiYYu6zEdHgO3vASwakcZ4NKhkSdk1KoNaGOQU/1Q1PRfTvHION3D+qqBcJ20k0G/1XSy5uC0S9G5Ikg0hRd6c2BBGXDJBxSSanR4xueN6gt8BAt3WktnJzO7XvfBSaf2g7bnTde7g6Kq+IZv+Ab89E//NF71qlfhTne605ll3vWud+H3f//3cbvb3e6S2pqRWr+dhSYEhk87svZEOKoPq7qCs0i4UKM/yjHBNRqYMjOyYvoKZXMb9S6FY+ozVgzHiojKaAE31Jf1JKpS+bOBCgNeisXrWsFLmJYJ9iwb/ZdqkP89JYJSOGF+qGfCBNCifcFlJWI9EtcwjGgw9S0USToSla/NZQJvFAa3Y9UDwUFvXZfndvx5SwIGjYpRw7zHXH3XqiPxLwWXEM5jUWHhhZgh/7UMEb7NkAKNlFMBz55KyEeOnFF0JdoyJWORdOGIAVPKNspu5pJEffY3bPowvULwMC64GyHnMwQB+5ZjFrBUxEOGOnnwibl7mB4mjX3MT/jL/rngcvFRP9S7pIHMTROM0eaGzgmcragytVm6ongQ7jyUXlgjorQE1S8zDZi36Tckz03iHg9wARvUBFiPDagP2JXg9vfc0kz/rehMlOE3DOUYRZ/7RnRjmaY1gBmRhfG5CEFC9oGxXUOmdSrnUbdpPsE/9Dn4FCUoh9o5lK73c1Ce8IQn4IUvfCFe9KIX4eY3vzmuvvpqXH311fjABz4AAPjzP/9zPPnJT8brXvc6vPWtb8WrXvUqPOQhD8GtbnUrfOmXfukltRUEQhKWjK4UmQajDWY6FFNmuZLc2ZiVQJHkUa6sj+FiwQEJLH2v/qBgIenm6Z0S8pLOMvzMdFOfxwxDfu779n8kECNG0nhEW/E66oWMbWWfBkiZDqgKqGdsYMe+EU4Gmk1Kaaif6SD1W/h90JMVAaY2SHms8lkunm5keAeHATKU52kqAa0bEGzUw+sNKg+PUGOacaR19XHk0RmPa/yt5Cl5gHl84vdVO1WC2xl5d6LXgFsvP/Bb1DnzNtUDMECrfmMuQ5VxHn4hw99R1mTMOn8Zk8w/10IrQ6aVFDlOZGw3ukyfKM36qMpX3SmOUk/GQdQG/WT9btXFoY2Z8iRLVA/3Y/41lx2eEY+MjyYen+AMfTZQgWi6pctHmdno9wQ12yAMeQLPsvpd/220yW3JWOsWPDM9GL7RFlYdK77hemWuYxsH503XewTl+c9/PgDgAQ94wPD8BS94Ab72a78Wy7Lgt37rt/AjP/Ij+NM//VPc7na3w9/8m38TL37xi3Hzm9/8ktpq0vKTJ6fK4gdFLQjM5jko0v0cFAuX2nXTChEP9ElcShXPA8lWN2QBZPEpjubK0jcup3Gpg8tsPYGdvAr/RF22b189FDo+V8+b8/VZd7Wh0Q5i+sjgsT7NOKkV3xG4rwPoFqunla8a56CgG060e3hbAmfi7fspEKnQR0MraGhoA14MFvWwq6LHibrak5tFULt4QiCG02RbGWMRIGlFh8/56bnq9LTpgGq3FrOpLSxNJyc+fBBd8NlSU218GFkeEDXSKfgHcB6MFfQ9RjkxpIgpBFt8G9NF5YA4r7VQZHHeCEVTnM8hsOsDumCJkye707MJWsTi41RbqP92BnE4V1M8GrzD/yF30NjiXAtw1wkiebMPIC5/dthQLvCLv3EFPZcuBTeaui7Bp7W1OLY3xkLPdFpz91Hls50NVmNGMjzPoLC1YBCPvJRytmmaXBwsXidFVAAM0dWq10e2MbAlI5SZwhgNXhJo94zBV/VPRm2Qya0PRTykPg4QyUDwc3x3vAhPjlTXxHE+6AHS05CYBqV1IqkDCb74TwRAJ3iKH2ZZLWfTmdl5zbZlVx8EPt3jUNcUz4iL0RhLysE4+CyDHBXwIDLonAY/6Ul5GLZJV5aOcTqg5zT7akA0w67Zq4G/BARn0gxZTygugrTyBI4iA4IfZdjaLc5HGY3TGabzpQ/LFM9p6cY3vjFe/vKXX69tjkaRBRXAgMhC+ch4IZQu+blw0cPMMiqzNKQAwvhzdCEZgZh0ju6kYJJCG8tTGwFjMlUxt0r1dR1SrLaineoC4Stg58KpBENrF4SIegMO2p490gQJZyhbw6MM79Slo0K4ToOYXqIFlYVdZH2JqxROxnEQjh3OoncsXB34gimxUgQY8Ta0yU5K9C9wKDmN4A8HhVH1MZ+Myqe28I3UZsznFM+gYGPu3ncL0fZfQMr5C1MZGmVQaGlNV3wSqM4aM09pqFobEPxTXK7JIzV1AzrDoWDy15qZkg9zN0nsskn6gaw6KVPKo1A668TXtiSnUndFyCmM6RbiaWoqNy9kWcIZxpdj/4jGsl1ECY6R9+l7yBDJi72TbEsIfonfSQ+sgC+9lsu8k67JB9G+VidKXrMhapPbIolIOGOaIvihKDPoSyl4iDrGE2yMh76Qg09fiNOqzcB/5Akj7s5u8vtI6OQJrlcJBwhdlT0JHG/oAOhIv8HeEbZ5KjWRq+UkgD4p6yPMzPP2XakNTPkLnulomZouJZUicwWnpMv6Lp5RoYMIOhncXMRDYiFF2ByFO0NmPUAyUjJ5CgsxSnkYk0EjgxeMkYLEiklKUUxCXIs3Cfqsq8Qs4Mntf1Fu6O9oFKMfLOAQxJgQ/G00lmOfCnZWGSRugimvju/mNSgh1VLnoEBZ6IjmTrt4xthN7BAQrMRHRVZwFh2n2rzfbWp/hZvgqaEdH/mTIUrBX404q/1hy2X0NctGTUWpHu3NCs6/W9RCPWjifJ95HFW8zSSfBZ6JVLmrQSBTNKeQinIwaTF1jdLjOXUo6qUR2dxb41PkoWUY6gmKEelzS3nVG3XNtQvBr0GjSX5j7dK4BoWlZlLKTCliyzJuBQCjuGQyXpCDlAuPE/NDCn0G4oWhjy6LiSgR8ptGKRrkmKJSUUcuh0ralj4IeWLKBB7zIQE2GFGSfSRtpIxlyKvjR1D6BULjK84r5cjOw+mEF5K8VP2fYAFFoZJ4Yzxs7bKsu4xoK+EjGqG+pA4F45ZtVvHG5pqPZMrDsAg/JZqucAgk8nghOkda7J1zOe8euoR0eTsoTYZ7W4bPUkoq97mrHa8NFYi2vBBQzAL4DZyOYBHksSgtjIPkEmkjhDNJwzYMzRWDEoz8l7iy0XNrp9WoLsthvPsnyvQqJ7TjI+pE9sn6Y7hreSR83JVjL4DmR+YbnmAXiHGfpr7wKDqNDtfNfQuRZNwLKDY/Krr4zXhIB6GVog3Fk3e08L5gWF2tC9TfqdbWVJHa2bXFT8OdR7RjJ+8F4vtppN4jews/IwK++wR0y2gJbtbLfwV+ASYIfzREj+BMbk+xI74BgfqBMJpDtuJZEeS1D5nUq4wP2w/P1ylfEErUD3lT+CmtyGPuJYyEauK9LpkMVg8YGRBSwAAxBRB7nW3KxvCKXrspAuhQllZNBfLZ30kauKyzcx7vs0zuvnHjRg5aOSmo3+w8sGNKi6bLsFH/3KFgSxU0iOiGutLXNE7U5zDyMfUpSFkpGfX3ofc872AMZ51G5aAh+zTYQNWddZCuC5nMbcANo17I+mXohyklqWi2uDPIepTbDaz6cx3yhK6InKWDC2eEgyRhUBVUh1BbTL7aNh10S/IGnBPcq4HtsDMw9E3xS91F5Qvv0wZVH4qeFe8atyAz3yTRi871qLAkpT9ShigqOQ6fSv6igqjjvOmvhoNCxoMvowpE+dQ6ujYb6akxe9wHYoLmiO9SAt2JeXLfmRk5wO5zEe112qnIZNT8CGIl4QwHwr/H1oetdgaFslIUUjC6AzIwO+XN52r9yvYmY5wpDxeR/B1O0NBuCBmF7+cIwMohM+1STptI7U0TUgARZm+guc+CN28zbhQyTaGG4xGj4xNOESnlhnJOSjhlhZvBmROBLOV45d/WqO8kyD7K1o40zJA2jQx9bj4UUsKA4TI8z424mTuoJM7jds6Jr79xxOhSMatwnNgRsZ8+ygnnIz7UB6jjO8qiyKTIpS3kmFR4QdR4fRwAuIx2hQTP5SE8vGsgLUr0NL9HuVKimvmrPPHjEK0JDVHROVPhpWYFQJ77IYIw5OGWiNKkgrPwMM1DUKd/BUnaK/eLM03KvG7gpW3/FBHlPm4ZnPxOho77k2UbfOfeWNcwINDibyeuO3dl0CqSi2pzljFqI/ksKvA9tIES6SxXMhl80qvuvMfaudR3itU6i83dXMw3wga9eHGVz4kVhxHGcxVBXtcRcbVsv7padALpZfiAVMa/zmvDe1WyVR4xI+c0ZIY4ZcK705BZMGFjXBSenA1A1bisxPNqLfnddf+lpMvaQWl+c2vcGNvyZtcFy7JYJgmFaqEA0RDwBvVFla03U54SB3opWlc0PxmxLQ1YGvrSgB0tku0mmBL5mtgNtDtB2wmWxZYMLtLsckLw7bOCffMzONSeid9Oq/7Jc1CaeB8FbRG/BM7K5FAVCpEOaKO8VqdZFaRlUXg9S0PbFf6CGXsslFQBtPucvC+AVM12tTfEmLMONgtlJkWTiDa4QepUX+vilxz21Og2unQYejF+W4TwHN9RArW447A0NDs8ALrA++LnpEqce2LIVXhUw7Whwd6wLGK3A+/s0y749+aXdwWOpeUFf0tGtmh7sOkGd1BMkdgNlEoOiqbzkGeqSIM0P4+FnaWYdJgclDhwrXd7Jx2ALP63pZI3R0QhXVMupKvxv7rBZfpnH0zzdHfI4Ya5R6hFuvkWbqjsnwbNfnb0BrtDAsQnwpeqeXDEeRQaBjocYettZ+eqa52Dkk4VGYICPb+UjpR0qnKdsNdh6NVc1NciytCcrt0NQR2qku0O4RR/zqPGXNtGcJQllqFMRhiT0NGGtZ/bjAe5E+edeIaSGRokxfhIlpKxHDywzDaXq2YL2hEnw7hD2xwsdGvHlAgNJKJtP1ioIeoLB79llIMHmuHwm2Os6OhmiI0irl9C5uOp8ZpoM8e8N3fqGppqDlKAcMYlP+UguNpt4zklcBxxdEK8bGy+sLGW96sDvdWi7BhM5enf0f+FP831WEs91nbNbEpzXHdB64JFvQyMZm2xg0VbOjLuKHg/g16icZ6PlINDDmPqr+Qh21gQi9CFHDdVn5kIfhDJM1CCV5v6sQc+EAmn8TzpsnZQdhcbdhcX7JYFu+Z/lyUdlFJQduuwarNbXLVD9gq0Dpwouu5NoFQh1wr20rHrwAn8ro/dAvGPXlhyB03vgHQLqYfhXC4u2C2C3U7sLwS75QQdC7p07C807PcN+13Dbq/oXQA1R0J2DctuAS4s0GWBLXa0W48Xd2p2OwFkD5EFJ9cuxigxPOhmchd3dJbdYvW2hj1cCXefL24Ny8WlHKa4KhPGUGGkoALtir2oGTwo9n2xrBqjSV05KKFklp2v/l9qpX3rGnYKqgu0d7/V2ZKI5M4rDbpA83bP3dKwW/ywtJWDsmC5sKDtGrCI377rCvUE6K5Apfe84decE1carjiWxXCzu9Cwu9hw4cKCCxd3eYvyshsdlFSqoWhDiUVSNdx3j3Bo94BRLcTkOjaneFqNSzQtdNkrQNH3xt+9C/aLondgvyj2e0H3EWUPWNxZ772jdXMcyzlFLniXoQ/kwADppOz9ee9xnaAmjHaTtNW3b2rGpnf0fUPv5lRJOCZZd91XU1Nb4vzpzlFXSGvpkNXcN9Ey1qh0VISolVMRooPut8CSgxJTnBDf/YUG7ZoDhxgbKCqK4miCFwuOBjND88LsKOUIlRyUMGLwugPfYWCGxb1Cg45F0Fo33pEyfsviA6cw/F3t6ozQIYijyY1/F69v2dWgahHrgYo5toLuBsl+L/5XvHw4+MuuYblgFm8nwE7VDO9eIUtH7pqLQVN8RAFt6OhoezPMcVRYDq7iLyxy0GIwJs3GAr0GJ61LXt4q7lRoOCgAFjfKi7g8um7Lgyw11oP5rkyVXOdiw1G/ZkJNb6NLzEgibiGOBgYnJBwRx9luKZztdqaHlqZo6Dag80HqcmL17yBYuu0MbR2GK4nrGdx56uFcB8/WLEIcpMnR29aAttRM+ZJ5iNcpKhyuY/cOdwR+kdOdGk7sOdNl7aDITrC4wIUxNEPe3EGxfMZANoqOkWNEUBQNS28WZu4xim/ljXaL1MCjKLo0aHOPf682zeNIj2hLRVCABYplb86HqAutf/YeUVB1Zm0cQZE8VRYLjdgXsTUi6lECjakCV3itZ/RkcSGIuYHOyra1jBCkgwIAYoofquhqERkbAjSPaFi95riElxFedY2KA4Zcv7GU8e45j2B1dBHbWh1hSBKqMCUSowWOJjlZ4IOgtjTjCRd2NHgEJUbypqgWtfZyFCC1uBjuGKyU6645r/k16Es5JabwTYHzFE0OjMN56OoK0yyYi/hgZJalYZ7iiWc1B32Kg+JBNTP6Dfu9wqYjgb63yIQ5BZLOiPQGdNuCv+8UvQoHIYQIAukRQfFTmT3qAvGpzpgDcnkLYy/SylDAFTw0HQlrYoyOlBqLPOQAxKivO19HTncYcloDxUfhEZQzHJaDgi/urEQkR7QcotYVGlNUQbtwdJyHhuhJrqAND9qDC0rlnP+ijoSLI0dCsDrOylvxErEGgZzscbBAo3R3dNX5qDWXswXuAGCIxgxy54vYchpI/c4yh6XtvS53jMzZrw9isBR6yj/KcHO7hjG03uyk2uYR24BvKT0TwRtBs6l3x5+i9GlO66OiHt23vDVoRi1FxgiKhFH2aHmSKJ0cZ0y666q5LxUOa3cvIKZmEJEtxvEUUVncgTH8Wd+wF/TF4F6WOMXXHYr4aMySmUxJREzUeUXhU+HO3xxFcd0qURfCSfFoEq3rQ5gHqXVXTSqapOJOr09DhdN83nRZOyi7C4t9lmYRlN2CC0MEBQBcEfuITLvf5rrviGFX1wXoFD6Ujr2ac9E7oBfcwbjgEZRmI+7eANEOdD8GvYnBsxPsLlgE5QKA3X5BR0PHgv2FBfuTPfa7hr7zEXW3+tvOvGXdLfYBMoKy2zW0BuwW82VFOna7BR0WHcI+VtKbs2Fe95IOSocpke7nX4hHB5bdsoqgcIhf3WLYan+bzNnv3bj3ZpEQV7gZ/ssohEdQKGQLWIRm75d1qHa0MNpuQTKC4j5F3MC5WwQ7MVxcWCRHOWExJJytCw1ywdrti0dQVO0cE19EBo8gdCDPQcm56daw2zlfXWi4cHHBBf+7cyWy8whKOMcVSSmjMIihRyqM3pojNmjNcTd3UNKoSDko4fik0cspntqNYA6kKS7tgpNF0fcRQQH63pRO7+YsdYqg7Lug+whY1SOHBBs06kfRBh6NUQtGqkdgykExOFUVfd/Re/NRnUVQmhisvZvDUvVbr+IuHuOJiguH89q7OWTdHbKuYSjduLsxUgDSNd+HXgCAPY3uEKwU9l89eufTVm0x/bEA5RgFGcJBSfiK7ulgeL2NyoUx906m48IRvXS0EM6WO7ha1a8NWxmDJZz2mLb0aYFY96VQn3pDTn2KtMw7GEmxdXyK7hEpH7U7DfaLwbxXuB7y9l23YbEBydLd4d8bXLHVvIyxT4f7ooaulqepzZN0ocHVrmVUqEVsQOGRUXUH0Bxii7T4uSoKi9CKjXB8LIilGe6WFrEaex6DjZiqto0VrSJp6lPK7mTNERRpku/QIoIiqX9tgG26JfC1u2C/dxcbds0iVrpEBEWwO5F0Dpa9376+J6eCIkXNGTuceKTD5oPxiNjS4K+1qAe+5CEGozrKYkybZQRFPIJi7dUgQv/fiaDE/FhMLWQY3BEcSoF3K/Tmnp0v2Gux8EssPMiLYweD620Ex+Z0BnwlfcwShIEKYiM8aZtuSKYJhncwI8QWn1yAlHWG4Rv7nPorFOzqXYwiYILrCmg4TCzagDXYk5sE0nwdiMMe86sDThAhwqqvydifwpfP9UutdEcaXhqZhNmVYHvdqFtyZww2nsNhjntbtLlPKtQXcorgfYu6aqqFvkfokwW3hWCDIihkeDIc4GstEA5K/RWp+mIUNzg7MR/s/FZD/hgNhyI3GDp8pKM0D640qoOPnNxiay4mMAe+uRMSlHDWsK3J5CCZ0tN8FNGHiBClv+APVY0GLXiceZgbQ6Is/9bToJkbZ5S8NG5TwgmsvMFuXJsNSmqRoCTg07sJzsA8ZY8gTfY5FwxSm6vFs1lg7H88Vuq2zI0oLYYc9IHLFDU0yDtwoFzhb9QlY9lBLgmcrA+lH1k3h4xFnZjzS0WNiob1O9ue+pBlgYIpM8z5vA6t/iYJZKN+RN1aJBJJmJMujvMZxyELSXvioy0abOnNwdYpKGK2lZ8XPpdDG2wo2Yfpe+J7A6YZ18nMxC9AOvgA4VervmrwfOmydlAGhKVxKGIGAeLCJsmtnUgj1p3IKwbBxjMvXIrVmVbYYMvorKCItmW0A6BZeCCjUT7rMwjWAYYKQVvhLvPIIDyF6FFYhrr9fdS5LWiTYsSI85lphb/I+PVQ/3SjrVW9MyzlNwz4m/sQ4c6gYdKRHQen9/AumhfxULqPJBp8vRBIwclQRzii4QzFdzj+NG6pDNBjTULULZJOQDhp4fyEg9BhsCSPel0tZGZCocLr8u8WvqV+BI6RLgRi14nQOx9YFn6l6trig+THqrhoRE6UCGrSRSa4qH8c25KtD3V4qMsBiHbZKRHHCytlNoLcoTgTInC6ej8hnvUOT+vgAL6Gfm3JC+OP31GV23rGjF/AJFu0Z9k6IJMlF4ZT7u+W/A0okuCqEUdZhh9LDIImQ75Fs6F+ogH3S+s3858S3AFM4rDGXYVbTPUe6DfLxywrW7Qb8Mr8E89YBogPgiagdwPOqS9VxHskNAiY+IKy1HtG0znSZe2g1EJOWyuhvUNbz5B+bO2qKYuO2JViebo/izpsmBmL9GIIGfVheB51dS/jqFcbQsZx+jWf3wuOjAtTGDzqZVizn6j2fc2JTh/RKg9qV7JNUN8kceGT7QUDuK0+wJZ4APWDDBAr7IDZYIi1CG4Nk2469AVcPukbgqEjLvxRhtL9nSQ9PMyrgKJTe/U+K4EOdQrx1pp3YlGd+m9bJC0I/gs+4N0iXl/3erqXDaCBkVcBW6/RLMJhy6LIKQme0ShXbWCAtfAL5r98huwb5w2ejMhIogkTThJ9Mx11KO/cSPIUbVQ/Br5SFP8KYOsdNC20Zl+LV+oHWxstUIrSRJdQleUsKAqerFvrXfC7Urkio9EwYfB86aQw/OxppQCZds8dTNEHgqMArTbSQqykkPOWnMPrx0CvKCFrOg960XmuiE9qp/gqkFJlUTIZmE0m8HfO/8xPUsjNfCSkRKDAk+v9Lf0yyP2EU8YX0SDbYfRrLIsOGSB8MqcweJjaSZ2KCVYZYNUpj859CzwzL8+NEwBEGuKPkZ/t3ehGsFgNuYOfUn+xPArBN/X9nOmvhINiuwfU7yBRxN0rrMAHB6HT3z4ybx8Yg5QVl22sJFmpwmFx/ujOUH2jHlby1hlAaw6fFWSVRcE+My9meJH9ES14s16VoZ7eNT3dlWLqW3iZ2iOdiFX9tIhsUmaDYss0lh36JtEv5Pk28KZbTHGo5hSFUnu96/g76wPiqvkU5JnmvXAkHTkNJvA1QHE+hq8DjeWgTN9OvIeuJNa+1bUZfWOjQmxTlK5prCTsX9Icw7NOsMYnfs99SdzT+hH1tRrBtzESBeMiFSV8bVOsWRl5MZWo862tAZllgfmVeINoS5aCRcV35q3rYS835BJDG6RUWYZKiKtZxwXzbnwpWMmxSKNV9kFj9ClzvcF37pDwISrRW90yFDp8NzhCZmj9FlwXgp5l/xnfo56J8XF0gHXd6nfCoBt1IQ3qNr1Jz8RamHgWhl5RzxJuDTdkrBsBbwxOWI8l+PlMko+jH6UPAK2p4cI4yE9OPgtZqPpJ8Ae4MOQrZuDnWzrW9KetFRnpuMYl4XeDDkIAFJ6DmSoyVXXFLq9RLBj6rJIeRpvlpKzF6zzpsnZQQgHvxdjVvtvmUaET0NIIa/dzHLptc4zyvnpOUqn3cSFhV2jvvsjRRr5dxPKpAt1WjHcR9L1d5tR7s23F6LbzYd+x34+Gwz4A1LfmeXvotpWsw07K7LC6BIIufYQxHK9Y9OlMKP7eLvRDLljq7jRB3Mj2mGuI0J4MdZrAdPT9hBut31AK2SMGdB3Smxtyo0WsyQ9nweroZfzhci91FktcagcYrhInAux9LsI3XtlCZ4Gf61FKPpxTozXRHiE03XYRUci0d7vcru879l2x3xufCABptuhUa/+gneOCVpcpKk8kGCDd+UidxuIvAmehiKJ8F0FT83rEFwlWVKCMQ46dNBbi2me/t76e9KLffk+0cyXUe6/nKSvWhsFWSqy2J5fCDTqGA8Kamh3gooHx1n7DgeJtzt0NAlBTC8afSu1GHzSdpTAeks8iLytI9brKweLv6YApkEGvwQiQYRJSxFF/GiaQRpc07mVQa+Q7rmZZFR59pyivtvsCacjYcfJ2XEaCvrEOK87M0cANka630CMw+sAcKInFTEYg4wlhftLcOt6bbXllfQGU3i69Fd0uvgueaBFxZT5B5eFBqUmg9zEdD80B1riNXpO2SoiNjYsdFb3sTrnQXc3bi4XXSjviqm5vy8v0pDsSLmwMHnpzflsNNHq4ZEDIceC5qy82V6Jp9I14IPBMJCxeQX023nXHq6lcXiQr3l/xDRshK5ZjHJDU3/Omy9pBGb3MmtqJ3zxKWkUAOpeZpndSgWwIu38cACrDMJVR1EPtpwdboddBqIhpgJhKQNY9G4EZ9jBiPMWTfZEZd9SnuZ/T1AC3h+y3tTeoVVfgkUfhsKzaRowtJsb1ZxAa6URTbCSQI5pCCeNgo71ZKN2JzWY3easlHaWLbXd0gyba0dBsZ4ovUEWned6EuRzeiGrlX4kymuWb77gRaR5N0RqER0cI30DwNSnkUHS6/mRkj52O5FUQT2zhxBUXG3XmDQdqxe/xPajOdGTFmPzAjBXyTPmdS5Tg48UFFYFjkdVBN8xyzPwVtBvr8BaT93mibWAjhL+hKVsY82n0z+CRYconGGOqlDsT8GT4UwhG1OxDdn4ErsgV3618TRlHFKEiFnnY5Sy3A0uOfBLfRZkvCq44sp9hKh1SNLb3HrEa6qKIZNKH9MtA5wCduQcZHSmYJOuNgW6gWKiKg7QH44P4GlSecZV9tz6OuksK57McBlxMU3DeagMDXghe6kfs5OL3HPyrAUvgnxzrfBXtchRKN/F1WmpnZ7mhJxI6Ej6dXttXEugpT2XWdcEhz/iODdtM8EH7DhBwM1Xxms1Lic85Sji2k1L5jZdDbWuYuBNjoRQCUhgDv2Lo7vR9ekCZ1oqb21qBPv4e+jP2e0Vrgrz0FmuRjYaUM0/PQ+YnoR0VASmQUBbeScZqdVzrO8McrB6KdsaTDr2bkKoDXCU2I6ds4Zd5cCyzlXOAeLP5+s48vs2rzJuMmgmgA4UKL+u+TbK00Xb047R0qOmzH55e34i7Wfaw3afNwusWRpoqN7HOs1H/IPfMzxO8W79PI1f9mHOtO3ZaV7fofAaLjHl0XWru0sDMVOsWXdYwTtJ2gGl0aL/aOtiGbvVhyjt/OYhAHWV2ozOHdMXBeq9DuuwdlNoRwvMLOYtaYXt6xluELXyc34Z3lafqmX/UGQb1PgdEwvUh24GDa9MqBaBwWYK4ylUL3GWCqj5CPZ5gm1d9Cz2PzIlTwllB4Fvs4vlmfTK0C6lnhKUEhvFYj5lqw+uxL0zzud9J28pTdI/y1PaKiNQI0TP7lLSTgaa5bTl/Yw0Tv89OURvMl4TPrJtpuVHX8B1RZtzGyeUKBQOnjzsGEp4Nfov2pPJM6JvaHfmIgwWEjs06uP+Yy000nHclzL9msrM8DNy3Bd/Y1FaWNdMeSCv2yxeT7A08v1HBKW1k+azWa5WR6sxbmWtokxiCsVQVV5mBDyecVvaxoUHnTVhhWdrqoaw4eIRvrnHGZeJXpt+cJ3h3BH6LLiwHnov6Bmwy/lQ76/NZHke5oz5kPeNz0PNtBFZfVvJ1ijis2xmRcS72nNJlPcVTZ3nEuR5+t44fRR9KNxcxareFlH4wFG8NHo0JORb0W6XVXn5psBtSLRbPpyBW3Ra2rJMdpw+RrJyj4D5W3NTPtl0XhE5j9LobvbP/tIxE1tHGdgG/QM8Xofq5MFV3W/chFd4WDudyfi6HnyAbhpP3Y6bDAC08TLjgc1xQKBuOiRcRW3AqAqidVxIHM4m3FwIOMB/QJ881kZHf/PC5PIQu+K8xDrwFDxe3GFb0noeUiIdHY1vwcMz99LeOuo8wdak5VVqLECcHN7GDtPw4+KZeR5xDAg/bS50bE7cCN0Eu+I2zRYCYdjKUdSeZKKxOxNkyMUY0HKgWPlry6XoLPZS3MfsDFE3gvbUTKjXPsTHZ0dFcBA1geKrbjDHUxcbD2ESRC1Wj+ZRUTf4MOkQd0XqeARNrhcJQkMJW52sEzTBkGvgxQFVUNiWeUS1jxf+OssiyM7+v818GPIfO4HJU3ugeOkAT7JWsosq2lC8ddVfKHip/wkM4j3KKPNhtJa9Jp6oTsoanboUWxN08YFwkHKV/gkmT/kk65gfCD5LMxc1SUyeb+Drlk2cr6dxnHfEjhYPaQy2Ju5S3IDXJS9IdlaIftU2Z+s9cR7woNA8m+SUq4dpPT5e1g7JiTjIqfJuxDIjaLgMWwkPMPWvUEC4NpWdGajbgmzByG5jbDUZBwcRwbtQZZZT6UgqHhE2Qc4ybdRg0p+B5hCkUVTH4+HdWcCkz9LxOL8rm0vhm+5jrK4UUIK8VsNeffDDCb280JXTtoKzbbKf85nt47MKukmBRW0gcBjqhSpmtUxxFwumJ9uviwBJ6Qo+jS90Jsx3KZRB6fM/TaAO9psTy0DzHvd0oInVGCrJZAOVExHkpVq4MCab8WCnQDdkg+ivWeowwlh2OS/dGJyWZIfkgHMHsCzvDFAoX5+XaTWP8MZw0G/UhnBJFrZ4omsYFhrHIN/mb9DSEzvPI/o/Kn/syTD2IlOVz4EvGChcu/VVnCkAUE2o+LOla/0UtkvmE8EX9kvqNbKrkiuVeCKR09QaZ837RfyGnCcukvwxP1v88HRrU5+zL6EwULnSEj/GrVab0qhThqX+K6ljUEfqA+0UKifQWP17/nooRvM6VUb/Ezkx6TkkGWCZ8UP3Mn/Xb0+B81fRTfne8qf9NXjxnuqwdlOK9iYhAMjAgqWDENfOa6EitIVEx1ZNC4vUpl4fkFlVm6pUSDvEa8rgnr1VfqpPMl9IzCCZJDv1bQj8rrMxD9c5GODIMCjeYC1UXs1gp7Gij/g4Kh/A36gvDu5KQjBoOiKPumbYl0NX50eiRANIe6EH5acAtVQfR5pAiHBXHlpMSZYs6yrAyzlQx0yHLUnvVhmZ9lhj3cGdEfVdVlAXREPmsp0JzZZaONhC39BarOT2G4SCGUVWRTrOPYYHTiSAeXckgqHovnvAQv/OixpDrhJ9pKVKjbT6Ni5xfyfLeFyGHhEZ/1cdxy2VVRN8JRfFO6LsyPxItuYqxEGUInGg4RuvJ/uSG8XS6DR2UnUydQWKX+RNPQnXHw3DWhg6X7KQeonriPb/I56xbuH/RB+K90AHxT7UhiNuiQ+64P6Z3HZ0r9FEPqX/RzshfGA5iG2uRbNN+K7FddnaQh+qPDPgZ9E5GlUtnh15JfQ9y1IMPHBkle9Xy4JyA+0LyGnLB8PoPi0IhYQrcpwogEC41XdZrUCZTWegMA4RC1MwEk6rMGlbvZSQYhu9F0sFTp9ozt+Q/wwsZ/gm4xxo4UiDD29FxmCGVDcjHHs9Jpl4VvradnBEdrCAw9ONQOozZ4TvhZ4BjlXvqCTsJs2NFVbKioH+oj1PfVzw0FKNeTzTxTGEU7VnwGOMsFAhI6VBLMsE6shSCM6oepmF9plrJCUA5cZu8Wj/YWSu4ZhrZM67vEFew3TpEY6bVadw1l5aNz3lqkBkH/m1LJrfaPe3JwHuJnKr5VOhIxs7bl4MQyQY+XABYBmaYV7jd4pnkdYd25mcWwmyAmXyNWc56kFNkyLnZ74Hn193cLnOwtkPvD7e/1b0Zp5tvifb8N18xCs8FnZza97Oenzv3JbLoZe2gWJoINglaCZeMmSLvFsKGuialMRk6frXiYPZ0BygOMFUWG36tgBram/XJVG/Vd4D7eKST7yaVOSmUyL/qycqRGpqxfFIwVjfXHRpGb4cUADsKDP+G58TK5wDWi15UZ8AuVRV3qCAOWLKY5Hfua5aK59lW/OZ2GdLqx+B8Eb8PbVGH2XkYYBxGt9syMfBU1i/VzgY2J/aaFKVU2xOtVzVN9NpuSQYYSUyntHqAsecT0Kt8sv1oZQVk/rnZ8nnSJj63vm+INmOWcVM8si2rGz1dvQ1+34Z2u46VDtooOfI41cWyQU3PedYKfRLcAYSplQOdLv0/9XHG+bY3sFXTlG3N1VvlsuxGVyYtsdnCxtBz7PaqssPO8YSK1e9D6DwTRRvp8p7iibUmvIhQxg8AxNyqqNjiTKzzQmR9ZTlgz6d8+Sxus4zbMfnTfBGtSC0mW9VVgrvZBrBZzj7rRb6aZTfKgQUZI75a5YFUHnQWyKir8pSh4XnbQ32dy494YIm3rzTFk2sMxk+j+lZ9jgss4iY570Nrkvcv5WQWaTyRsa9cH7fLlwdKLJJttRA4buxM4VU7O6XHWRC9lDHgl0XGZYQyLpDN7ynhdoBWwC1AnpXQmh3aFHVAaw1K3KQqfEZLtAs7uXaebki1Jsh1NLTaYqCN1QVaIiFZ4bCATwQxP95E0EWrPKr+eJJyOEo/ctE3Qo4013aUsZNqP9Q0r0EBTQME/+YUleuOYWFhyNJ4noW37qR2oJRC7YHwXLBbPR34bzCIBVig3aZSeA1KIiDhKx0QMX22DDLUPcvzsD4t8cXywDhF5qnFoyHPGMsw/kjus32iKiifVT3WyQTb1JcgOIgP8j8RP3eFZyONwau/RYPCA8FIeBm4ifqVZYZ1Gr6QegO/jJsB56mno0sTPei7fSn+yo5oLQAeWIJgZSwVvse+lAzU+idbCiCVL9eeME8n8xZdz5Eu+wiK4ZERy4yLIia9L0GaDBECyawwkJyZo4AUnmL+ZLiZ8QLGmek5X/RlaLtgy3YyczxHli4GmmBL2FHCzPCSshnwgco/fBeGetWD+orqbykGZNuD8BO/Um9KmkAwrZsZ6DRAR/1gIUwlMvGNMGzxnvljUq4rRTHheaVoiIcGh45h3yw3tzPXiQNwEj8wfw/5GYaNdykb0V9g7s/QbhExKTFyitQ74gMSuZF2E71H7mN+YR5g+g3VY/5VsBEfy5iXZW3dv+jLWC5gCeC5XzM0Y21Uw5wt2pWh5VWGrWKzHAwDkgkKGQuhuiIohBL2mYbZV4Ix845yzM9ZiIT6NfJotc20Lz5hJgp5pk5ukHjUPSMyRjhG4vLvRNPEFwNvr/A8wUOg8nuhPtWz7T4OJBOqk2E5JXHeVfZJBkYbcFqFB5j4nOnyjqBgrYx5wWIwe95mrALpIShrg5MjG8FQZ7SjlJeNddyYGdK0MjK9vrdo26rI7XLsIGU9uYCSPpSHYUwDhGLSqNcaAoS8100jBqovE63Y3+wfqD6mCQqmoY2ZdjbSTrjyH1DkQ2lx80b7/hmuJCeFFyOuedRhTdUoc3QeTv/M245FxkhHE1L03kRvdl+Q2n7cSXd6tGRVHzKqUiMo1AFKpHvtOHPfyaMMq4/qBbVjRxTNZUOayQZvJ550q0NoW3tHGQz00SLkrId2u0wRlNrSWXw96C7lkVbwGUNFspqjd1D0w9vKn7KCtXqmg0KPrd8JUo4O65lI7N/h5a61IHD4OzB2rTSMkSaG9/Us5RdOPx0X6JbsMB1CRkt3ZGaSjRKPeO51S/WlVFHJ5lgmcqJw7XwSFSRsUp+UN3peUQhQWaezjM9i4XPoJdB3geROLKX2Rt0otc1YGUeB8yKLwVmbIBg3+Sy3+1dUIXU1KMKWfQ6+DbgKWayzyy6NNGO9WvxIREiqzDxMOED9TmbkfidLOi8xXqKPtfZ2wr3w7ubhugqZ2jgrXdYOCoklfH5mfIYZEwOnb+QLJsHq2Zi3bZcd6g51P8ElG/kP1c3KZVX3RtnN/hMXQ2jZ+tweB9PiXce0mfRAv+nvDMMmnud8UX57P8MarnPQl98LMGirLKfrek7D4Wk8IA1J68B1/OVtobxTabh17BD8W/3dwNNwi1mvfkjApv63c6mx35e60l7gfdqixQTfwT7O+YbKN/Lwcx3+zX5kdq6XO7fFNzp9P6vsFq/O9W6V26p/5r85zThQbMIhc5kJJ5v43nJJ4+9Moy250TX6krfP4uNz8HvI7rll41C9cx/mNHeCRHmTdlL9FK5jzVuSOMN23hXd5t8buGf+HnhmRYzp2Zy2+LHqlCHPgaKn4vRDS5f3FE8NA+JBfVZG/SxBwcazDSVyXgPGDHSqYA4dmv5elzoIxpUztMpYCmWucyUAB8pv4nFu89DzQ+9Oy3NaOg0/p9H4FFzO+QaeOw3eQ7x0AK6D/Irx2apdjPWc2Z/TZOCUfgz8PNc395HeZRWyXfxgHw61cVqbp/HJabjYqGsz+yG4TmvzAF7OhO8sftz6fejvKWU3ZVumrGfBz3x7WpPnkbW50HnyTmVW7eEwbJttWtJD71ZVXRf6xuMJJ6fqFa7nNFk4L74OwXhdym/x1Yde7+XtoGyk2aHTM3hHN96d6hRyqfPog6lMtieKlVd63s3i2c4Br/ZA22fmlfP0fbvcdppHDQfKkmyt6HGWzVq3dv5yc9vn0cNb8MkK8o0+67qNs+w9t7H5rkLpQ98PfI88egDmVf9Pg/NQOsuunBeHZ+i3gHXqwSntHZatSw0cfcjpEL+dkf/S86x7NtzvcpbczvWfE9659Io3g2dPkcVToZFT3p1W8lJ8nTPqP5V2MvLxQRi3+j9/B1b8v2WzNus+Rddsw7/G15mycUj/zTVeR5/pr4iDIptfTyUe/xCMHt9B5vAflzKJdhDGLWkReixT3o3sp1kAod8zvAcjIueo/pLSGVLyIbU99+nSmzhY3XWitWzjdYsOqWgm3tt0iA54ScO7CdaJv3VVDmP+ja5clxHnVtJzE6Tws6nqzkPfU2G+DtZpbvu6Z7i+G7wO9RACD7DU8OA80aJN3j2gRy8lnaLWzv+C6L0FW/w+tZuX0JfNiMEhuC4hbfH9IfycQ0ZOc/bOD9t57M5p2c+Pg78iDgpwJgUP+APbuJrr2lLup4HhZVKAWRDO4q6xnm0PlODhNs6VDgntbPg2DDSvcBJMYG/Vs252aGMW6lWdU0HBYWO71dhpgnGWMWMHYBO9G7BnXsbdOfBxWtVb9W9l3qxfNuCplNGy05xzpu+WEozyp7LgBm+fK++GAcksU7/PMqhzPzayHCp6yemS6j3Ak6fyLs7f7+usF06p69z42ejbqfXHswMNyGnO62mwbfXjEBNsVHAmzGe/+tDSJej3lT6+lDKnlLvOffvQkHKZOyhSI7RUtLNxOPA5tEj2oBGrvLpVD9Vnxz9E3qiy7mBZWwGk8OkMwwzbythw+bkfMhyvnCP2rbqlyuVUgL9XbneFi7n8jLe53rF/g8NxkBYzvic4ZM47lZcJ95tCPPMCJjxQWzLSOOk70JxxQzyzwZdKefTAQm9dPdvmvfE79VE2+oL1+4N457Kr9TCcuA9z2oJ/I4u3teYNr9+/6fwqnge8siFPWWYLvhnG+VnUvxUZOlTfVt3z4+2yK3nZ5PND7c/w11/dzHMo2rWFi63nh8psy9T56jtEgw0eFkyyZX8Ot3cYD6fDsH6/Pbkx43br3UyPqdyWHj2o6w7AmzI66ZsDfT5rin/E2Wk8MKdDfHt6ut4dlKc//emYt2Te9ra3zfeqiqc//em4/e1vjxvf+MZ4wAMegP/xP/7Hh9jqBiHPmDzbYtxxVcgW85yzwnNNEk7ZN2JvukXUgYPWda9WthzkuPMq2EvEw6n1nffZdjobhm3lc5qSOlvI1opG5+c6tyG+WUqq0GYd47M575YC3SobD3T8CSg925x03sbDQVaens33mByazjnY343K13ejnJLOynvuRR6Xms5jcD886SzanL+eDy+ch9NZRvW85TeSTjjZ0MPnx9l1xc/1WO762CFzaoevC6xnlbl++erDEkG5613vine84x35+a3f+q1895znPAf/8l/+S3zP93wP3vCGN+C2t70tHvSgB+G9733vh9aozsptMiz5XkblqAeUPri+bUPDz0YDI1Xe250V8nabsyOy2dT4Q3G4A3OdM3yg0eZk3TaNIL+b2hxwn+9kLnqg8un5ae9nGM7IvwVr/D4VdVM7A31P8zAOWZCZBw56KMEvW3SLvx5t2eBdJbhXTs+m83OgP1tOEfVhTW9Z9/FAfZfy7iwSM4Bn5qG8p2bewNNZRQ4Uv7QCBwqeRseDND01neJgHZL/7SYv6d1W+5eUztPwWXrzujSls3NzAP5LosVpDtO5QhiX0NYZ+U7RRZfSSInW9sD5EqrK9GE5B2W32w1Rk0iqiuc973n4tm/7NjzsYQ8DAPzwD/8wbnOb2+BFL3oRvv7rv/6S2uFD1jBEbeDRsGICEfghbUAdEjYfHDU/hx3aFGEyfyjVQIbh1mXrACo+mK0OyyHYEfXaczvYCpkP/pzL1IwFwZTtxbvKF3WPEcQ66CjxEG0W0TbqJ1zAD6wiOoBg3DpgLvP5s5wS4Nuk83wN2HOdcEw4i4CZUPvD7AfEuIDWSlgd0d5I35mXDh0Qx/w3XhvA/SZa0PH0aJKbcIqMB+oQyWsYrCtxg6x1nNWBNLFD4IayYsfbN4Y9JcOeK0/+OL4S9GhBSR7ykdfHN/5mbuqf0hHfzAJ2gBOTyAhK18MnHpk/4xoJtx/OI3EYVpLT38uAJBaQgR2RCHWGMtDqmHDjWW8LIa/FQ1aFH4Tv7ROT1TPGMoHDyJUqkvnykDK/iVuHY/tZ2HWsd+B7FkOSMX8x3DtN5aJeUaHbi2UQVxKh6m/gJnVltc/NVB+EAaR+eV2KES7KL2Nn6T1hKB4pBtolz6cuHvlm+E6A18F+zpdRG8mnfWUmrHoGvTvgO0AjPZMVEj0HHphaCYSx+gvWYEHxvo8sOOqv1Xv2NBwPiTOSH9LkXNW50oclgvLmN78Zt7/97XGnO90JX/mVX4n/83/+DwDgLW95C66++mp8/ud/fua94oorcP/73x+/8iu/crC+a665Bu95z3uGD4CJSCAuL6KPQulMizHvkAZMDpIzMSvVP9RX5QbZYanleudmsxzXX4w7Mu0arkFHhQARcg4pkHIwJoAGoz7Vv9V+ZJm5kBh8UE4bz7KdAc4JZxt9QBUDQA6CFL7KUZqAnMtPAsmwlfMQz0gwEe+mtuM9KT/uY+Igv8saD/SO65zrZRoX+sa+zjTjjs/stGqDeWiCcYW76a8MX/idrGAEsNmnmU9PIWfRjv6d+7eZZuDj59wZost2BdutyOEvadD5sWzBcwDBQ2sygrpV7qD8bjyvARPRYoZr6Ie93IZ/Ihjz+AyqbMB/4N2qqRUDrvPO4HC5FTzE71zPzINzPQPPbtFgi9e4PyyjMsI7yoaMbcxwbdGK+zW/2MCZDN9HXl1XfKCuc6Tr3UG5973vjR/5kR/By1/+cvzAD/wArr76atz3vvfFu971Llx99dUAgNvc5jZDmdvc5jb5bis961nPwkd91Efl5+M//uP9jS+ly2N64yhdeyY5KgivUyFDXv74M/JQcznRVCe26l/BoUN72GwPmR8T7ADnUcoHJ3J4vNV2jmKToyNCQLAAJGDkbWebdKlUlEPBmnBMwbwV7ud2VrgC1VvPEhzqm0jRmnEV8ILzrehE9Mh+IutiHHOZFPDN9zMPKNDW/IE2vpdNuHC4zoGX/DvVc/hD9GhK8M98P9JmoDkrPFT7I6wzbbEBf7UNhoP4I54Xz098PMXvSy6Jb1JZVuRlbGcDBqZ38BeVK9kipjw70J/ywGUqwkR95iFo8CXx59xQtafrv1yfEA64jsQz18myw3Bp4nLmUZnLM+5nmGeZn9pZOQWDHuW8Ix4GuFL/YfyefKEJ3wQefQn8I3l3yCwzGJV/5kGGeaxGh3rmtqv9qc+pv4hvqY4tORGqb4ZjeCC6hovxgJKp9Uo7gm+ql/PPjtapgjOl632K58EPfnB+v/vd747P/uzPxid8wifgh3/4h3Gf+9zH4Ju4Uod7N9bpKU95Cp70pCfl7/e85z3upKiFUlVhx7ErFB2qHUC3UGUeL67+rFNeL3/Kx1DsbUx1AeptMeG63+LaVnmh3tpQV/zReq7Vtv1Lx81ne1uw+n86PpPshT9X2egLi93cRrd2tU/lGH9z4nywvicjU/kZF6vy/Jv+VROqMUf0dSq7op0OtXHdCR/xVB35v4Yncaz0LG+bhUun+v9znaiyEsUDox0Vru6IeQrNdnSAhvnFZKD+jm06H+oI/zY9GYfVbn504LrCsc5yNZZVnevRVVNRQ90VW3/XFF5jQqgOTG/rr+ucaUHNmqu3eJF5SDDDsN3qKO8jPIf0H7/f5r8RP3CU6mS4hPrJtI+vXDfBkjT18jQgWNOW5RNTvqB9Arj5nvsXdFzVwXBN7W+2ucnTW7hk0mjJruOE+WqcBhUqPcKxxRXbeuq0Pkj24bDNGvuiUz3rNkuG1yVl+D32ZIvfZaih8FXlR3k5f/qwbzO+6U1virvf/e5485vfnOtS5mjJH/3RH62iKpyuuOIK/LW/9teGj6VJyZ3KnAfyHTS41/GTzsVkFE75MPEPwntQoGcOOwzTtgCE0So4dePvCOO6nTXzXSrutsqMdY2sfVa5sd9n0nUDv3M/xzo6PWPcTfTecih1/n6AR1aGfm43fq8dx0v9zO2cqggHQ8fP+Dk26t1Ipxqq0/6e0ofNpg7Vu/V9Lrf1fQuurfa26j2cf+Y5fq9D3kNwjH3KUls0m3/rNtxrd20qv6LhBJnyr6nuFSoOycrc1+3+Fv1PwcVBmp/V1sZfbitZ7zQ+2qId8bACa/1AZTaczDXsM03Pm07hZz3448Cz88B8dvqwOyjXXHMN3vSmN+F2t7sd7nSnO+G2t70tXvGKV+T7D37wg3j1q1+N+973vpdcd5O4wbbCxvGsAWii9kGF+fLGW1Qemd43VDg2pn2GcDioTIQQKSydcHE9nrdBN2Cw99UfayvzYuwfh16z/YBBpj5KwdZAfSB44xO4ivJ2/Z1OeNYRP9Fnxsn8fs5DOOP+zvlnOBs0PwN8YHirnTb0LXBKv6m94JnoQ/DOyBcTTqCEH/u+EP3Hz5R3+Et5RLFI1GPfx/f2fRFkvmwTnh+g5wTrBkyMtxGH9Im8c983eKQxn0e9geN4RnzE8MwykWWZ14lH1/UzrUnWZl5c8SbJ0/x8lX/rmaX8K9Nvkv/xxQbPh/IWLlv1Mj5AemGAhfE142+CZ5WH2ol62vB+1KcywTXLc5vqbrIuU3imqYm57tRxAZuO+VY6ewMnG/Rat+N0meGcccQ4PI1feGrvUPtEnyZjnYGvRvqyEe0GGZnb3urLnC+AwQjnFn626XKg3ZnG07vzput9iufJT34yHvKQh+AOd7gD/uiP/gjf8R3fgfe85z149KMfDRHBE5/4RDzzmc/Ene98Z9z5znfGM5/5TNzkJjfBIx7xiEtvTLZ2V9SnsK9o0oDe0SF2zfxGXkPktFNDkZS1K9YbRJqXsQvrVdpUzj7N3zcvr/Eu/hNjCyNiBPSLW+W0PqLyV19rt0PCg4DTUaYwYT2EM6olJRuH84t1guqc846/vdMFG/Ukm406i8wbu3iqvVQ+G7A1AJ36VTuKNFtm2gz4nmjaRGzHS+6GaWjS7LnzBOct7FlqDehafMPvG/MMtyf1LnYeGUdH6VIsKkDXhiY9+buJ8Xpj/hNTfDFxZf13SfG/DRVgZ+UUuEzaJP8S7YbkYXGWsRm3xAnJoMMURfF1dVuLv0CGQGtSKPgoeUM129eAPd5nUzzlFjoglLxkHqtXihIlBj77aDgN/cEyZbsdLLdmt1JCk6qMy2qJ6R6hfyobOowGA1yq5BHI/Toy0UkLr9G5MkysDwJ3MgBYesn7e1A+U7uk/oj8oDxViYx9rIpLdhlbUnkCHv4Amc2JJ4UTYMCB8VLRmnWfVAWDXgk8aHJb4WfQWZMe3LRLIumsBD/ld1HqX8iFZr9TCJQBqL8DbydMBGehOWk6oBnIS53F8Sm0NTtwEHr3UtL17qD8wR/8Ab7qq74K73znO3HrW98a97nPffBf/+t/xVVXXQUA+OZv/mZ84AMfwOMf/3i8+93vxr3vfW/8p//0n3Dzm9/8ktsKZd7CULT6K62l4HRfgyANaKroHZVH7IMgboNtyRQlRrR6u1gZpBGJBWNKhqtlGWlAQ4P05nXEczZwIKenYFJ3KpoItI2GS6ShNfG83eF3hsx2ZDCcCtiqBsoXbQX+QmqTtZr6UglN+FrAmYIgTgsyPsOH+ubPelNIjxGBGVBIrfEoxRzKJZQt463aM0RN7ykM1LRB0aGtQbuiNUHvLesdFFxj+jlPOV9Js3bzM79rTheBtQ9SEAr0rkCzYHOu7fMvXKeIoLVyiJrzS9QZoV8lgxDrm6Clh1prgKr9bZa/idMVCnQv0wBFt5miBqhKyUzygxiPwXBYAXM3tNJtJVNrEI01Tea8qypa78OgoDWBxnboJpAuMCqRsk8MBp/Zk17cQcqZjULRtFZvOb8ODsms3EsRp9OdzrfLebQjSKVL0KRuUnZ0EJXG93DC4nFankkGkXypXkxlKL4acAAsF7MsTs7B1sctzWE5dgrFc8JAy3JUHlU+BmptA57AX7ZDNJ37kTyR+cV1ctTSslx8hgGSjHUHlyePMH4mngqaVL+E6FS0zHq06oEU3pLWZ9DJ9ELoaoWgA64TUkdke76WM3WzPVdruHhXuQ8l20UzVJ1bshP9YT6EmOMt8Tdk1zJKCJMWzs6TrncH5Sd+4idOfS8iePrTn46nP/3pH3JbQsRj56SlIS2FrmLGtkPRGqCd8jezcBYNEXRpFYYWuHMSQtbQ3fmRpn62RRHXHB83XqJoaG4gzLFpLRyqiOQAQAltjHRT4KQcjUZt9MHwd2PEZPZyJFo4VDBGa82UXcLAjlEoyh4zth1wo67spJHSauJqmhl6EC4Z+iDmM0ClRvRWb092BvOv8zUrtTbUj9Qg6aw6jiFxJH1Hh0UWtNnfFoIJdVhC0Y2wl/NLdTeUc0KfJWgvBG/wn3sPogptPgLXGl8IZGxDyjkxXoIZ8qyvPBFTFtaGtBpTqzuui3nm5pO0Xmuim3g91n80TefDuIUclLSO3Z0YH1CKeNtMtJb5E0wnlPYGlZ70DwWtIsNS5DFaAJJloeXKRrvmcLj7RNEHKX4L8AEIeQ5hYHNAksoVGcWpPFL54pmGgxbcFPSwB6oEexgzNeyacpfB8FU+MmAgmJL+Bovmu9ExSCNJhnQ0fEAX6jcZtMTLJG9swNKogpxAH3AotR16bq5j/h39LceD5UfGvqgM7bNutBh3zzKGX9JZRbnqh5LjwX5D4NQNdBjaMuAm512R+ETodQSvSdHbS6u3A+7TBn6yT610nYhAtWHUh6wfx2nPAV/KsAv1kaLJxKfgvBvTShVtFfSMNhbuMrqk5OQIO/Vnp8v6Lp40KONTDAw9MzeRIth0ZNn4N3SDDPXGt2o3CF3tC9fBtQ7KDuNvlKCO/1UbqbO4DSGIJ7oPkJPy4RzMqFEFC/PQNvcpm+O+Ip9TryY8UW5WpiNUIw5TaVKfhOGtZwPOo95QCCNGBoUer7M9IchlpPMWfHPfx2eTYhjyBG9izE9wVRukVLZgkBmekb5Fr5Hnx3amugYem/l5qmPCw0jtEf7kq6CKFEyjNE0yMvPvXA/lGeRy4t+R09Y8M/PdGqoBwLmWrZxTKt46rcR2eabGUNvwnll+7DGDPmOEaTvKwMgHhD0Z2y+cB3LGPKdiZygiBL8MfD3I8EZtUgUJv0VjTOVWqnGAcoScHaf4TaBvlJ/xNsLC5QYdPemA4LMtWg7vBEOlpQcnJK0SyYNgU374xwD3utvDzy3ZPk+6vB2U/EzKGjOzrr/Pqm6uE0DNX59S5/xsiwdm5W51z8oFdSTDVhtafR3SMO9bbYx1y+pbPtGCcAsj2fY8dahV30aJCf41TFvMfZr8bCmfhEm34dhq7zCNGENV94j7A58NOEb8Og74+6reySCg+GH4rms+X/GHjjgXXeNi/p54iKmnjb4cxtmhPkdvt3G5iS/Iqr3tdmXV9tZfzn8a7NstbcjbnPs63Pcz4+Nc+Ta+17O1zJ1VDz/ZLLOS91Ng0PXzQ/LGWmjznY54OU0nTBBvwnYQdyu8b+NwE3cb/b0+05ZcAyNNVnI89EdW+eP3WO4UvqEw5qYsbvDtWXx62vND6bJ2UCxpfsR/n6WM7fvh1fiZZwObpymAgmeuM3aD0DtahQ6HJ34EfENfiDOGnTJSbWD4O9a9OgI56y24uG2Z25YJVzLieSy7jROsnmPz+WnKjWk8Rh3mj05lZhrrqn4Q/EN/ZZ1vgPkAHKBniBAp4cN+B5xBb+ITbjfbYLg3dlIgFpcS/9BupDVeN3aSCDb7PLbJ9B95a4Bl6N/Ex5ttjJpvph3TD9OzbX6k9qa2RtgPycj2Loyi/YgHLjP3YwvWLYHYlNNTnx32cg6VY9qvn9cX5r91fTNNt94f1keb8K4QtPlzA/YtHXY4yao/p++2Gepe9fcwj8xlD/fngI5hOhyQyfjCssY6Y6vRQ3CfCgy/ksN9PEDCLTDOTJe5gzIZGZmRo6XYB2GahnGU2FHYao/rlukZCz4/HIl2urEeyk9lDvPM5OycwiGHhGdLqc5tz+1ttb3VFteThkC229zq/1a9p+chmIZ2TsfjrKwOtW0Cuqb7jPbtd1sG/lA5bmPtSI4KR4fvMpTz5+Jw+/qqsT8btBIMzsbUJE5T6py2+rWm++jMDHXll8OyxrQ71D7/5j7NebbeH2rjNGV7uiI+YKDPkKfTyuIQ/sA0mGFftzcOjg47+odoP/xl/SdrnK77xvWNemZtgE8xsKu6/LscamtObAe2cHTW98N4Pg2P4wB7dPDW8J4O13VKG3rtPHWf/W49gD5P+rBcFviXlYqA4+hT0FHLlOyd+nPby6KrDzaejcak8vEJh4L5vMqpDB3UtRKwqZ5ZMcyGjfs9w7gFl10AN46emVG26xnxqgfyzW0Ds8AxThnuyD3COgq0TP2Zla7CQvzrURTDB7DgrOGe4a8+yAH8kOFXZPRJcvM6nxHBEzZjlGQr4jcbb/GTZMdn1RdABz9bpzY2YVelqaIpL/HKCOu63Xonq2djHzHQUac6Z3roqi2mo1B9I00POZ5BB17sO9K76sTwbsu4zIp1LfPR2vz2dMeiYDms5BkzLO8zf8tUJmpWr3/WP/ye+Yj5ViYczLhgHTjrkBF/QvVtyd+6nZleBxyJIf/MwyDY1g7nmlqFx7UeYRkp/RMl+FDCLSei2tr+RL0jHtf6fuTnsa+jLKxlk+3MFh5DrzKmZ6fqEB9vcbAQn27p27PSZR5B2fb04seWt4rh74ywtUdaD0bDno9lzYiD4ZEtw13vq/yWkdp+v0bCLESVWTAW2lLUa8Ud5UZFVj/WCmMLZ2shi+e62c+5niG8uYJfM8/wTsZ6h34Nk7KTslrRCdPUFimNQwc5hZDnO3JqZKw362R4t2DAxnv6a16Kruue65Loj8M0jD51wv+Mv3o20mBNn5lG298j35oGXMnAW47zuf2Z/wYZiO8sB1K42JySm/oyPzsN/q20kovp2SafDu+U8HLYwTkkhzL9mOVrnurYgm3lRJ+Bt3lwsKKTjAay+q7rvCudvK17slz2R1f5OUVeGXhfT217xt1WnVuysGVXtviC61gPXKb3h6Z6T6l7u51zAHWg7GnwreqXza9npr8SDgqAUvQsPKd+16xgfochPxmHlUDTKFgAPoSm1gGsy62IKFwfDYu5fxgFf8uYVbuHmMYVg4z9TjwAq7UlZUDDsFHbAhw2HG44p5W/IyxTn5IeowPA8M04mevN51P+4TOc1jg5YQDGUQfzlY5TI+SA1GVvh/lNVvUdwvHk5Ay01qHMeOLq1MYMx4yn+d1WO/xuov3YD8XcL2AqswXDOT6Y66O/9U6HPHP4v9o63+jtNP5jeAbYpvL8cIWXKf9YyRrGdURwze8MZ9WvK3wd7osO5bfyYsqb72XMu4kTAKNhBcbB1XbftuqcB4lz+5jKr+V9HGgOONyCQ8bfU7OHgaf2t/oz4oKqSD4gOzX1ZbPCA6AcYt4teTrUt9PwtH426smDsJyRLvMpHv87EX8LsfHFD4HEvOsHcpgJV+2S0oFO+QUHFfJpQgeHCRvvVouyDjDIaW1tPd96P1fPQV7+xvDoBGMAObRB8MXGh+hthAG3FMwAY9BI1jAPTR/oS+U3qDfLy1h2eH8KXU/7cPt50NYE4+a25LnvBfq6T8yLUccGnubfKodgpqkRapPbytBt0pOmOLxeHWDawONE86l7mzKpEzwlz+YgDQFqx3eVLxij/mG3FNbp0PMteEeYJljOKnhKO6cUOVdZzrPJ3y5b8904K76Z+HdV14YMH8TtxBPx4xANhneyfj/Kk33XjbzrWk+Hd+vvVh+jPebrgWZnEPegDqF3XMdpduYQ/DPNN8A4SD+mz5bMzm3PcnqgyVPT5R1BOY2p+flmnlNCfxuh1lX5A8Q9K8kWBzBME+WHSIMMr1ZMsgnPIUnir1sdHMrN85ynKN2E7bzzjOeYLjpPEqor4NjSKI7Ts9oYUHGK4qw6MTppmxWdxkMb009nKJC5vZEnJi9mDUr93ezYOXA0Kcv13tR1O8kbsi1jrKgvZa56O+pwvnznK3f6u8O8e/4+nMn3p1nI61rnRtXXtez88NTy59CflyKj1y3DvBbnutWzpSsuDY5LyX9gGcKBfNe5mQ+l0HWqeDtd3g7KkMKAsyGfvgNjnoMGYv59mrLWw/VkG4cNzrkZLjUIwXLwXgOe490Y7kyhw1XfpzniuexhJTzjYkpn3sNwaI3IOYeap+B3G574bIU0DpeXOe9WnfO71fdoc+1IVNKprdOGrlMdA12pLeEy3PY4/bfCzaWkD0kh62HcYsq3VfbUdOD9uS3jpeLiUHvnqGdLLg/mO9TmKTK0qn+DD8/01M7C58RTl5pWsnGKruXfZ3mRZ+mEzXRGX88rJ1tye5r9OBW2c+jF6+wsXAfeux4dk0iXt4MS521HXFKn56d+j/xa31c00ekbl9WV/q96tN7zVdOrZ1t9wpg/4Z7qD7gZpq3Kso9Ux5CF80z94Dqo3IyVse9bsEx1HMKzbr6kOuZ+bLQ/9znfES6zzFTXjOetvnHZVd38m+obeIzxvPV+fKf5fa5jiyemNlb42OjLVj2r7wd47QzY1zjUMT/jDPxuwuectugwv1vx2gG+YnqcKkuXmubOTz8PyQDDdSjLSpYmOTi1A3MfN3DN/Dv3Y9a1W3BvycoWnXSC+zQ6DO3q1OwM40Z/5vYOpbP4bfMdy/Q2SAMc8Wzr+1Ydm7KyBdckp+eB/VScTAAcgnNTL5zR9jnT5e2gUNJZufrD2cZvKnnCqE51KNWt9SNyO09YXTpThOpayXXmQZXdYOSxnHIR4o/a5jfYxrnvQ5sY7nPhfszwD2DN8M5CA79Ijt/Rex2cqxFXKeszjTAXWRFnfMb5NwR61pejTOv4TOtJ0pl4QR1u1eCdse+FC6fPjNeJX1fMskGj8su12mUYsi7qJ9EOCeuq28zZm/aJYWT8Drw40BuZd6LUUPdMpkFvrhylqcCQdOoLxjLDhzlq4i6iCWddy/i6ic0Hm4Zgpu3hLp3x4GDhAZ4VTFVuC8wZD6tKWT5WRNsAacUA4/eUjfWrzaQDHCR3p5Wc2h54eFsYtoE5AOeIs1PKnwHb0LcS3oL7EE+fUfcsZ8P7s+rYLLiGfTP/RvvnSZf1IlntfrmZ2Kerovstub1rhpxYkUeernbLsX0AqNoCWn+m6nXrWH54z/n8ArXe7bbk3oHeFB2Vv3eCIeuycnZx8NQOSC93P8mlb7QdioLgbwSruJLtHVmv0Ht0tYsPFXZpG7WBaGNoF9BebZkSF4dWNnBeHRHIACfjIBSlZPl6bnkl83b1m28ViFvmWle7KdkLSrcLvLi9PsDlOBaNe/CgTSDe3948f3ee6Zqn63SvH6idSuIXUg4LbaX6Hryn3gk7f8TqiEsPxWFRGE+1DuxF/YJFzfq0kJOYB/NYB/YMdy9ez0/mZbnQxK+qjrM8RKvMA6tLqf5S/JqGo/h1pEXRJOoseilxBJ8RoQMMxSvRLwQnJs8Q3F6nqhFHqfzwPdpBGYOSM3bwrI2ANNoeDEGJxdCv1NOqiNW9mpcyWnm719DaUC8frTBcKgHHiL+SRUlZa16Q8cj9R8ooy45d1dAChkKm40AH2eQsxXM64I/5AogzPjA8Dz4a6FM5V3qicK8b7ZA+TR6tvyL8Tu1Cy6CXfw8boSLOX3DcjjBr/Fdoqg8BMdsWlr2SD3F5dR2TNAE6/V3hnvvvdBOiV+JLdQXfiO/i1+h7VJr9n+vJZ5PMBb7PmS5vByUYH6R8YQaqa62VmAmuYKVYhhgpZJEvkD4pWVVXCPN7PrKo3rES5nY7CVs4FYMQowRc4caUGHhQ4vmbma36VXVp/g1lxXWVczB+Vk4ZqG2vr5WptDacFs2Vo2rRI5yxTvUlAF5rj7pIMTIOOzkCUXdbKSNvC6MwJ31ZKYoZNcgGz2gp2uCvaFj8e/51BLBxn/EIHR0Ug0X8wLQgNKDNDa1dLF3SHTybNAPx9Wj89/6ZnQLmyaBJGXz7XlPlhtCZ9xKfzp894ap+ljJFttGVeDvqZZ7wurauZu+Ivo6KuoxyIJ3kUVl+AocYBwGER1IJ2RcFoZ8+VoJO3mBF7DydNMVQ0ByScLTTObG/dltxPSOWo++OI+L3Wf/ohAf19oxmWn12Hqz+km4L2kQOBXJrOeNx1n+TzgANMiIvUaz0WOZB6UOlPrBzmTVJwjnUw33X6X3mdykUJC2tneKL+KIJ7MQzQ79HHhn6gRrOrfLp1qfkIvQgO+ZB06TlhD92VAqp1KfsS/HADHsWFatvloFyHCe6YcYFMe850uXtoKAYbPMT+VL5jkaCFXUYGja+gxMzt0VCjA1GGBR3KFES8lLQI8OUZ+v1uLNqkZBqZxytaPZzZGh3QMAjTa0Reiocr8NHCZ3aB/W906fwaPU2kVReJkRCjEmKUmY6FVxOVABChlASvrUgaxkbAN1HshFBQf7ZaBNBn1JMRQch+pfxDiOXThwkHRbggINCPHiagxL59mrX1yPrRDnbLNeEs3in2ObtQx/F5NwnTpnvIwpkSBsdFKH62IhM+A9ZiHzMP8lPno/p639rw7PCRveT4cm/RRcBPKoqQ11JbzLE7BwNbWP8Da08CFmNvBEhId2EhNjJKTLBa/wdBIzzSNMhSceFebNaGeTeR7VZxsuN8lI4whwt0Krb5HR+L2mgQidE5aN8TW1R+z1pqUObCQ/TMf8rbCbskIQhaR6wD6W4b/F0opPSd4DyEg6cl8ayWrjivkx9rr/UfvJT4HvWTcyP1kZXoGEeKDKP6rr94Fn+PfV7hVegHGXd6MtUD+Z+E4+pR+Iw0WAof0a6vB0U54r4a0NO+yg6JEOv9V79PfzYe3s+fqo+0gpKeaMtby+MuwlON6Wjreqk8gVLagQoFKIxzleodqg2YuKAQaFZb4xZrU6hMQy3G3VXVSQ16EBGN2gMOOBTNz+60RaNteu99wWqUCmarHCOMtKsABKeFEQ4fbeWTzHdSAsEj8y4d8UYQmxGDYYvDfeC+uH4SpzZHA/KOkU9Ws+4iuADxN+gffTXLQq8DRGIClQ7RASqks5CGEcU5KQhircHXibltqpDu1dR9EiKsuZh3DGvpPGeaLDFk6yhqF7dqttHtOtt60o4DdxrvUu6MA8RKNU7rpH4lpupN1MlRDcdHIlVxeVFjjDm33GKtMptVVjQkDuGMtxMwQHZ/l4IB4RvADFdVTI3y9QkWytcUHusM5K2KN5bybiMZYgPlOBUTHmhAF9twnw/8WLy6BafDugvubKuUnRYHecy52NczrxfkJvMM0/x+7FfI7xzXpclLRhSVjnrIRqu4BswRc0pcpdfOtRFzkEGMtGAgp5uyscp6bJ2UER7fqAd0juk+bPefU+6JDNIn/L2yoveIV29vvprjGnKXtQcHKOPUH1qV9qreDkP1Xe7E4jhtLr5A4MHSn1Rf2az7+Lzv/XhegLOiBz0+guCBcgyhpNOsGI4zKoiEOWgHIbfDFseGhTftXu9Unm0ufGmdSLu4A3RBxY0LQMedRc8Mu5EzDYDrhhCzviK3yw+zevAgCvpwTeC1uN+HIF0oIEOVGsN0hWtSdEM4/qN1hVdeyzaGNovWvvfbrf7SAOaNvtNp2RJdzWtWgdsRb+Dt3tH044e/K72OxS4RJle+LFpRo+8eXiK19EIL0IJmhAfCr0rQzPzTU8emD9ssIInii9KCWvwtPNLRKPiucEdz4I/kLJQPLMFR/Fg0jBplVq5YEWsraq/8XpwgbTgD6AkiCf0nvyN9GtkaA6xrizWqJSTGzJHeHD9NOCc+h50THizTpZT/wiXGac3K2/I0VTWLdrAJ/GRcWIh7obi/KkjLZYw1I3kh/jeyxEY+l08EZGtkINxhFQGN86gSnkJWLM/hedyAIhWIJImXQIWlom2jXPWa1CT76nvAQcPMiX+Jo0mnlT6JExRT+iisR+IMD4YXWFjZagLHv1OuoNpfL50WTsore8hfY8mpsxb39sHgkVOEBKeawa0Q3SPrh0aefseTfepRLV3NFWI7tG6onWrF32P3htaP0FvzYyG7s25UYV0Mly9WTnZo2Gf5UHtNd27wTD+auks7SG92ZoDABAbSTcx49h6L7j73lfj2l91AyS6R1ODO47gDwPmA3eINK8DaNLRpNV8vzsN6kZKVNEnfGmPTzhXfnKpiPUd/tsNbOsWohRfhCteVxjNGulbHYpacClq8ZKotzV4/wJHTure7F032gERpg3DvTcHs3d/r6n8VRVo5hhICzoGLfdoe2t/gX96R0PDgo4FC5p2LGjmyIjBF04HfKTTVSF7j+L1ENZwMqzcgmb83MTqUMECi6C0RhpUKxIRikgByH5vNOsd2k+svb3xnuw79n2fi2nEF6yiG987kIhpJXWj12L6QOF8FiM7SQUZfBLTpAZj5YWv8lPtvui6V5tE/1yMjaAb3HjVApzudO/dnL7g0zY4D+bEJbp8MbloPDe6pKM6OLfkYLCBnJwYdvgrEQyafkY9SHa172zLJDx9VSD6q42MY1Sj43fXE9aHhnQWwYOUnvwkvaPJ/0/e/8Vs1213QfBvzHW/ewsEiqW2e+9kU4npkSUoEkn0oLsq6BYh+VCQYGKJhpiQmJBC1GqI2wOp8cA/aTXxgBQUjJ5gY/RAW4MQY0yABmPxwGK2gJHGxEA3Rdjvc605voMxfmP85lzrup/72d39Ph9Z73s913WvNeeYY47/c8w/q6eNR9JmeNAUsLSBQZOhg5i5BcHwmnpggOukzXQMGTAOj1Xr1PmhA0zSwGfooKcOWtijHlCyX+xn2Ms+wVsCmdkZ8zWInstvDsTonOuFnx6hkCFoA+U7nW3qypi9/srQmxQ6YOoAZg1AehA5SgajvbBBM31Q2k+42DDSMXgYNKdctuz2IIEDRQlwNEhCvwCxB5rRLtseadM6EGrZHOigWeV1D2J14PG+6+MOUM4HXh6GF3e8jBmOwx0v48SL7OLp+bsZjtYdON/BHw/444Hj8WkabAceE35OvDwmxuk4pmGODHSGYz4AG8GmkcbefZZTOcZL4GGGF594wYmX81PMxzvMxzu8PB54PB44zgdezpk7awbGGLABvJzv4MPhduBwwEak+w+Ewzpg8EfgfpzvgPMEzjMd04SdJw4AhzmO8wWGE+ZDBCmEaGDgeCCdq+HFB3gMIrMa3G3i7sDjAZwn/HzgeLzL3ydwxkhlIAILMwQt3KINO0LBjlFOezgS74l5vstdMqGcSDiTI53JAMVxuOFww4sNvLjhGIaDgTvbxcAxHMMGMKwCA/cJPBLf8yxHHANXg9vIHTgGGyN5N3EMx8sDeLEDL2PiZRiOAbz4wDEMwwZejgjujnNEYJG41G6e9CezHHMaDKCNV9YJGMCw+DYzvBxWAUo7tnZSlYh2YJ5nrPWYE/Z4YJ7xPc4T5znhj4k5HSd38DiNoMd9d6FZj/7YiVkBSq7noDGcM+tNySB0gDLPxOkMGeXvMx0PzhgYTAlQzL1lUlJlDOoVX8wOMLJC7UyrETJ/tz+sABizgyxMVICUcVYOVvpDeJU1MYA71EKHUMYaOVVXA0zRQ09ce+eOFYAY8DQNpsBdg5R0qnMEfmYY5jnw8AiuzTBOw2HAkWHzMR1+plzGGC1pY+H4MHAg6kcgPnBkBsXPRzn6AxKQnGcKRgwSx3ngOC0+DwCH4eUxcaRMHhxoJXPGMIzhGKdjjFEByjFDZsaZ07s2Mc4R/RsR2JtZOtNZONZA6nzAzxPjPMtujxCiDmIsZGsMFJ1G2raR2QAweGjjEZ8ZOjCn45gTc2bgM2fymbJk4DZPIz6G6K/lgOccSeuB4/T4HmnXMOHnA/NxYj5OHI8T8wSOE1F25neOXQf1dWpQ5nG/gpx8brR/Ke/IQZp508Hi7xoqORMARgkFaleTlaxmjBQ81IWD77k++gDFznZ6wx4xwvZIv/cLGWR+cJ5w96z7wDgfqVReAjaYHp+ZGZknxjTM02BzAJ7KcJ7g9ES8tC2j/jNHwJiRQTkfawZlnpkxOdFTLCfGHJlBMfhZY6iAe47so2WZs7IQqI/n1NYZkfR5VuQ7KzLPAMU8nptjYMSoZMmgIEa7aXjmjCBob9sp9GapuHTMaTwm2mDK9slBg5PKrEIb/GyhrnR0ZmdsMlOTzjNZPc7Y+TCmYZwRuaQ7z5H7TCMlGRQAbiMWwVkEAsFPh2XWZJxnBA1nZm7ccFiMbI7Mpo1hODwyZ2bAMXpSIkUwFPlktmCb4jHgsIBhEzhGfAfcyOoMmWavjEnSpRYKzrOmpfzxAObEcT6Ac2ZAyAxKj6BRQVM46t6phAqeyiFm4FoGF3KPjp665pwn9zTKkjkRA8nfMRJNvmfWyXKXi3G9D6wWlnP03/WYlUraM2hBjkaT5bNkzXpUN3v0yWkuVL37LMsSEEECEvKbNwuntkea6WHtZS1JlrNR41LUlAQJTxkIIZYMioyKbVZGMLIQqTvB9uy3Z/aEwVwE6T2iz8xiZmMt+dmZGqFhOUCLLO2Q0f48Q8dkCpJTj0UhTxwzQ2qXDEpOfS/T6bOyLZpBYWYZWtenTNvqFAmzIgkbSZuU/1rQ7h70TOvis20VnFkQlQ/ytgPlWmbgkkGZKN5Y9nvQl1gGbGmXKrBIu9l+SuW45ZSZykUu5tr3tf/bh/fru+0ayj739wAg5hX71N7fPBmUxzuMI6O9EamuY06MEQFAeK4gTO2cyDn543xgPuIzHu8qgzIeE356OLFHOFVNHY4BzBHrAezM6YmZQms5reOccooA5Tg/hb37FHj3LnBeAiNLg5Aj78engE24HxGgZNgaTjAd5LsHBvHOTIadafgzKBlwjPMdBiKgYooS4ZsCziMyKcOZ3cgAYq4BCtwxHmd/znfwc2KeD4zTn2dQfMRopvDPsbg7/IzRkD0evd7B6awjgxJph3QaxJnZBc+MVQftQXMGRhjANPhBZxvZAz9n9EECIs9ptApQMhMzPDIoxxGZpsOOyNoYcMwMSnJ0E9kzq8zJHqAwFWznFFnkSISj3ghMaoonRzRHZVA04GknpxmUM529Ta8AJbJfYajnO05JZoYqgwpU9iBwquAFqF1FDmTGkMFAG6IjA4wOTFCBbiIWdSWDhQqWgi810nKZ4qkMCntulbmofcMMjNTwJR+ZkdApnjgHpGWRQQuDI5vcztmB5Sjjz4xRByixmFm4XcaZ0Uqa9FzM0+szAs9Mo9SauRqZmwU/dKu1BIWVceRnGuxkqn5GsM5AG5aZlLZpYwJ2hvPziSjHAMU75T8enhnQiTGYQTkrQBloHoxzBqwZIZWZh5N9RGYEbgHvPHOQGJk0mEfwcwJjHBinR4DDAOU8496Z01YYsPMR+JnDjs6g1DTQ+ciAOLIo89RBVk+xhBDnVPXIAMUQv5O2nF2NABaAjcy4GKbHgGjW1Ok6rRXb5YMmMMiaxxN2jqDROCKYxAj6YEb/D89p7RGZJURmKOx/ZmAeSePTg//JSwalEUAxSENmKhn0SbCGXGM3ZW3d7ABtwNMmSfCdAWyE0Vx7Z0mXtOcMzDj9NDWF+fr1/4IAxSMgGUdkLPwTjPGIdSUAMs5FnzOSQnM+YO/I4GuAYo8ZzPaIYMn1eU6MOcIopaAH8TPIeBwh0JUmnRjnp/DHpxmUvJPszcz1t+HgQpkP+DgRCcYYwTvXcTBAyeDGzk8jSMrpEo4UYq3HifEYMaIaVvbSZwqZhyIYRgUTtI8cBevhbOMxk1Yn7PGu2nUKvdEgZaDC+W7LrMIxahTmjqBjKtikk8wIHWZbBsUzMrdsizijNk8ZAxQfIQsWeVrPwGCkUa3AiE4o2zNIgDIAwxHrhMYZfceBYUemoFEBVwQT+Zt/2/0UD51xjViowEBP8VSgy2As1/QkMJMMCkrC01ECOE5mvSbmI9cmPaLfPifGY1ZAQkdf03l5j4ZlWYjKkeCUbchoXGoNUfKRgUmtLTn53QGKn8yg9CjPJ7MXvU8r5Gpz0i7yTBlNpMLvW65l6ikh1uE6C4CjOsnEJEy2w3N1lgxE0ol1GWAsF0E4g6sOXnp7OTpIQcOwTI2HLEqQpbzwxpHOL/TLO9ORizlLJzMgSWnPKZkMttKhgQEKnRVG6G4uCa8RsAQoseYi6XRyyiD14BzRxhltw62m+TQjC8ss7sggZByVqYB7lk1nyv9OhFM/M2BJfRvpbEPOZq6/ClvTGeC7AKV10dKecWoj3jbuTe9ML1R2KQNcrq9bMjaUFUNNBSHXGsYnfc9plS03i7y2vcxrgDLPCFDOB+xxZpBpFWx2cIKceg1DqhmuNTjJ3zZSbu4DFMrSSFpQnywHDcUXzgrwfmVQGNj/TRKg2PkumJIpvUrx+RHGKj3u1CjfczFpzkWGo3/Xo0oKCxnootgjmA/u1MjIE8ygOGDHEdNOFko+MGEZlOB8wGYGJ/MB7g5BLgwbE/ncc0suUkmthcYsRg7niTEf8DMicabQbZ5hMOYBm+/CUecRar1AUKejRipiugNjGTrRMNg9+pjVLqNwuAh1GsNB8zZzZGORGQAQGRmuSZiPWnuQzecIEunw0uggg8BMEY9UhFwOlM7b0mB57Koh7zkiP88IPs+zd6vgJoOSI4JhIxU+4I5zyuLcDBxGBkv8zQxSjb4yv8H+nC2H5ZaSfsMQa5EyA2M08s7MDgnUSl9XBRCzgo0jA9dxSoByxvOR2YfKWGQdd2YYUBmJkfA9A5Q6DK/aDv4xS6eLAzn1VIEIM30MShLfGOllJgMdABWNpPO1G8G5MwoVpHBxX2UlPWfGK+0NSTHT4XJk17+rcxKI9JRABoQCy4vTEYFThGvKpDIlDDJa3r36xYjWeAc2Qy5JC88ApzMpKgMZ/Xum++lEdepghB7VFI/2O9eOAAx22nmGc8rBmjswZZFr9qemLCpYyiA9p60DjmU26kRvMuhpYst1MAWD1PU9QOF0OJ3orCCCQRPmA1wHQhvZU0su/Ow1KEGjdLaTAyYJKr2zLDC0M047uQQB+imdTQftI/HIQW4FCNnumfQ+056eoR/sFwO8oTQo+ZW/Z/dxl1+d8gp5nC17pSsdXBUNZA0Ky1GWa0oos3CqrzUok8HV+66POkDpuJ4LJOWjIy7rA2MAZIKQq7XpvtsRutyvVcsSVWL/27q8Cez61FAa0q5Vu17tpDOwvNeDLgxg7R/LWxvyNrsrPvos7WW1T7ox+CEA2mi6oW6/6dEnvdjW5k4PicgNcDdM86JNBAottBmfgy7c4NWTWusjtLynUfOKu3RyXFXPu3ekEhY8Vz42Xw9b+XDk7wOdOTkKIqFmH4zZBdIkPOrShtnyuyCpTNcl1sE7JDrMud5xoexZsMKRkQLeaGLmN+XKwhLnyBp1Mq+4YRx5vzHKwAzWp6Uig8F6RtlX3nAsu2VQsPa95DnT+u6qOxLY3HxGPWk4cyvDa4Cc81tYxA9oPag0YZO9v329VXVgG3vX/pr84Fkl932UgcKTZ+NpnQ7M2q7Kc/mobAxjsB9yW1O+gocMk2D6fOkpB2OKl2po2wHaq27DljqLNhOHnSbWzhVQHq/9VVyx1ffst5fsPqO78kuwM/JktZu7nQs7Ss25e86/RU5tpUXTb5Xlqwy9/hlCu3kLwy6wfYPx1uujDlB05Nu/R/2tpiP+HfUrFkZOKYuSOpfvNraEnbtd2BYzM1JPcoRp+KOsV91Yhc7jmoHAwdgXjDwZEtknJL7dZ09cHJ6wPdvLtheYo4ONHI1B6Nb4tTA52niXNJp3eQjNqxyyTSywyYuu510f1vXKs1htZihp9sRDcI96zZ61P9a0Y39UViAOVspiq+87v4UHYfGCVz4MPpKGIgsGRCbBLKbMYt91ZRdoOJx1EgYI0xDZIOKmQ2YDmlAAgx0fgE/KWMhGyA7lPStE+igyGaT78HKACXHTOeG1TD24bTJT9E0VMZax4oWXXDFQStxSn0qvSg5MYDOD4C1D6LjAGdipdaT2SydULwKGhDflryVbtACUstZ1lr4veBMfrdfP1a1yEFHeGusgC2kfSmlM4CvNmFJSOFizce2lU+6dfKZ+tu4WnStwVvp72RZf6qhe9nPHZhtKxvW+0NTCdrTuJuyFTkJvEwMhtob2LE7x9Xb7CwwstoN2y27a7T6T5g0iymiATt6qLlnZ9pU2Ky07wbb3RXhdfc8sZNnnZGryWn2J2k8+K19S5Gz9vNhmrZT8KppQZpcOv/36yAOUdNL8jBFnlIwDbsditKblTg5HprQH3I4wyGOA21yCAfKNdDyj26DjcirlSMc9MpAYdFhsf2CKw3MGJ2UUbeuHwC9BkgBl0OnwfqQHvRzS+qEScTTrCy7dXtvl/g/sX7XpaKeXeIthWhy4dZBEusEAnyZ9y214DPaoJPyUoVS8+ekADgZMi4xQ9yd54Nkby34M58Gpq6HkZyht+jPHyAXSgA/DNIvdDmMsbc9U9tJ5J1UBx6yFqdw6W6OLYbUAe1pMEzVcFG3aAvSItwDB4D7jnOFxYGJm0BGP5whM+OLDoMvANL7iIGmNfnWBGhcfcVLy9NQRJ2/EmJtl8JWBc8bwnnRzH7F4ceOjBsYKC/WtssHsTOs49bEdnsJk31B2gePzqO9lzFdY1E/K6xpQQeESH4lfyvUX/i54bcEFaZewOjAQHITXfLEgdaScu+KLXWfa2d1+ZJppH/xVEF14sr0WRw2Orm3ye2IN/DNo4sBsaxdg+Zx/YbsFc3Rb6FzGfb/7Y6SrBMJtH0udgtyGWBuUvgG0a8mU7rMvNAda9yrogthF6QMuuIq/SX8SM7PWPuaWl7TNlHXJZC7RxT78aBy7PyJH8DWwZb8WPWS/Cd1ENpp2b70+6gDlAcM7WKUO3/kAPFZVc6YS6JT0xMh3hkw8MPAOEw8feGQ5S5hnftdvgRkMGDhhODHCAQA4YXi4BVwPvD4FQAOWq1Hwjh8P+OEkesogpCKSee8AHrUEGh5LfBq/7qtLWeTzgDlwJh0m8mVdMLxLnKaPjV71hp7673SvNtnuo2B1GjJai3ZJL7MRW2XNcgGgV/0HrBdcBrlg1nBp60f22yxox/5yGgDZ/ig6ZRlHvQTghOF0JO3znmMxHIbAkX+/wPCpR/L0QMjBabWPAEfSYvA7cTzAgQc9lRX9OcqvFLaj1pocLlNvHiPdM3GqhXrJGxqbtheEH3L5gOF0S1mNzzu3lAWU7J2Yyz3SS9PVvCZGrT8hjyZQ9OTGmmKnlJmIdw2dHnJN2Z2pbwx0Z/6eJZE6xVNnhAa86jcSnsoD9cez/6g6vM4s8wBwZpsnepQ+8/5a3wvuRAf/Kb4ly02Gxp8wl4BJgoLGPGmfTh/ZNryDG1kJAMu+tCzmVKIF3iOfnSXn0i9nXXUqrQOHpgY4GEZrzCH8fYD87evhbacNbVfP+u4+9/34MIg7kbIDD/iWupfybaBtpi/MgUd+CG8mfmXfnDazDyGjfPDlp7Pw8wxSmj/TUTIci8fZjuqTFW15r2xN6nbwoO0IbffDA493bpVYpG2nn3kH2uZVVs/828vm9DQP6dxyTKkQXc0ySHnjzrZpOr2/2letG7S9Plf9e9/1cQcoHg7m9Aiuj+GyIAe1SIdGM9YiheI+PAT94Y7HZHnkvfiON8FabXqojQ7L82hgjggATsKdwGmOBwL2zMV8D1/xJjxPeNz6WW2MgNdHVacwZzt8ARsEBvtO+OYexjXrMdI9Q9o6so4VeIlTTkG4w6cXvmvbAg/tzBzdp9qK6VaLvLxo4GksgOu22aYN65yIxZB0coDj6Go5c2LA5HZJdICy4U78O2uAUkVDyNMYwGM6Hh4HID0mIkuWQMcA5gylG9FsLI6djkkjJvP6uSY0F8yiFs8R90rkAThyQeMg/IRbwUh5wvUe4c/E9/Q6AgXnBN65c8dvlIUnH5Ofc6U9cYs4Sg5SczG4Sk8yH01/l2cqO9Nbhk8pV7DJ2OJNAFV9Yb2Qb7/UmdI/ldlyiAtuouMiM1Pw3e0Ay8KKHVWXNECqFsv0SxPRA1rHkm1jerzuWdMFzmCFzhj1UlGFDxMnKvIfQYa1PmPtN6ckjfYGgqwBXCfLRZSArzREHNy1thsfuNqSfulpTXssdPbun7eszeqjZ//yoLDK1nnBarvY7dEeGGWafGJblJ2kfQR3WPSMtu6knKDt4MQqJzPv8aV/M4GwXxVMeCw0P8vGeQQo7nhk5MUdaaXbN587f+Ug39Mek9boDwPiaUJrsVFcQz0Ir/rLgWAPgGvwcvNbdfR91zc9QPnb//a/HX/+z//5y/3f9bt+F/69f+/fw+/4Hb8Df+gP/aHl2a/9tb8W/8P/8D98cFvvzomvPybghnOEOZp+4jGAlzlq5OGubzOOfennOfHuceLxmPi0LHbcP0/Hp+fEp6fjUzc8bGKeE9Mm5ohdB9MM7/Jgt9qGOAyfPgyfuOHrZvgbPnFi4mVm/Ufg+/Vz4tM58fU5Y7rDc+urDcwz1wkgMjBzAucRKfMxYgT/OCceZ+A9zzj8i17nnI4Xm5hm+PTsQ404qjlnOOSBieMRp0AeaawoiTzPgt/upAvbbTqx/7E4NJ17jv4Pj+kO8zxDwa0MJus/SMOU2hgg0Al5G0LE4lYfcUiaI07rHcTbmMWZeR4JYqrm6GCr2jwnHpOjdWDygILc4msGTMxQ2jHw8sjJjmF4GchTgi23BSNPrt128RjQB99F3+bM3Uru4DsHatV71jlyvYmehXLkKcOjPZh4Kw0KvU56ndPxeMRheOd54jwd55x49/DCg4Ho9JCbdvjeAXOLRThG96KnGp1zBr36ELcw13WSbLZ5nnmqrHvJz3qybfN+WYAnaZwODroPxL9G7hZ1Zsm9BFNiIem0zgxEdRDjqX/TYxBzzh7YrG9nRgULzG4tAYpc5RSSfhIZy+8eLPBwPt/acamfsyCB34w0/Jicju20/MvpKduBJcvnAcs8qQAAaufbNIeddOx9pL3uWDlTX+d0vFPZyvbfzTgfxU4D3MKunh5t5ycVAWM6jul4N+M4B56D8m46HlmnsjXTY1feSDdpuZDUc8iRZwJ5yteZbZ2Jo4mswT2CPNLbdDGvSyCZ565YDD7OVGXKsc+QFZWP6Y6TPHSel4LaveOnxxbibOMdR7028OmZdBkT4RocSBv8LukY31HvXbbPD/XCPWhriMDonBkITS/ec72SzQzIRsBw89y9lcvubB0Uha528BUDdSsdVl0N/Xl7hPJND1D+5J/8kzjPTuL85E/+JH7dr/t1+C2/5bfUvX/kH/lH8CM/8iP192c+85lvqK1PfeLI9zucMMAmTnMciGPKNUBxUGBmGrQQ+tMdX+cWXW9B/tTjEwyPwGTmaaSTgUIeTsXjrm063k3Dp8Pw6TR8Pd3cmU54uuPrCffr7vh00oDH6Y98sVu8/XdGgAKLkS6NzojA6ExjcMphagy+ZgYpn3LLH6d4yqDGyPzwiWPm+RtoJ9BOYtaI5JwTj2z3UwZ5PnNERsEP5z4Qsn54HKdtY4Lv4wmnwboZKCQNy8TndIgzgkDs8hlpDI6wczgQmQ1moCNIGjgmz8TwfM2GlxOLfniPpmR0i1RSM8Np8czmxMv03BKbgclwvORpwYejpq8ORx1Pr7sfAF+M091BbQbLI7vRAUrS8wW0HVYZGT2UzAJEZjgygPY05hkUnBkkM6im46XxKAcvTj99ZI3iKzBRB876DESczrmDW2iAwrLFgw4QLrDLY6+TGR1AqSNoJ6p1Zk6JaLbuTFoZNBMqMsG+pkhwtP+AbwEKA41or78rJu2oQv4k7o7IVJQA1k6pzmD081KFyiCxLSbpYorRa4tnvUMlVeudB/yZfOUInYHZo+D2ziieLzMdmHNGViEi1dq2OoQW75QuyZcXls3A8NO0ve/cxWHFs4c7jpTdw70yNA8pe6beWto8m7F+bngGZ+6wPECT673OlDfC6XOxKKNo7pnVPe7cY8agDqajyVhkJuj1LmlXmR7RE09HjgykqCPDY5ALI58igPl0er5qAThH1/k07f+nSfN3yV/+ftRHBxReGe3Tm5YxZZkymErPowWOlDfuejTv3UKUxemckuWAwPqVGaKvmj196/VND1D+tr/tb1v+/jf+jX8Df8ff8Xfge77ne+reZz/7WXzuc5/7ObdFJjAFzXMYKCwQIrYxTYebzHukkgLIKZ4WZKY/HyKAnGek4aKAc473keUpKHRONKKLABE3zwxB9oMMfaDThRG9xk6XRwrVQ/rEvs5F2XvaguWoJEMM0vDVjrrgQAdDY8bv6dp/bj3zCi443UIDGsc0Z/Ah9R/SHi/aZPLNUskPjzbewcooTxlZG1Bb/UYaY4VD5SCPPOnF3VSc6BGQOBz4NA3l4THKOjgf7BkkZWbo8Dyl0315b06yQBx//NHBSfJ/Gg5kNmV01uj0WkK48Ig/+EZcB/ocuNmGmN/TgXciB3SSdNCroe02TJRIDbGjR0nrFI1Xn/mToyudWlOZ5By9J//gzIZ4jOqKlBocXVPp7gwVgroMdGuNTeoO5DnnxXXqKU1J483n6LUaOr8O/S428Y5Vge6jBDL5mGdM1MLLdMLLwvEibWdQOLoPZ2jlFInHSFnlFCmdcU15Fm281mNUSJj6fhTuXlMEmfSo9QhlExBTLgyMHnC8eOgcvG1fTUkANcgr25DPGZDTkbI8y1net1x/wmmbzioGkViXH/KBeIO0MfKhA79lGs4ZHIV+Tpf1J8kTwi+ZBKeAem0dRYNyzXVCtMsRCATtzNFrULJPj7T/9F8P96apyCrbLz8jstBTT+1DLHWNg7dJmSSvbZGO0gOX9soe6HNpr7Kcb7h+XtegfPrpp/jDf/gP4/u///s73Q3gv/1v/1t8+7d/O37pL/2l+J7v+R786//6v45v//Zvfwrn61//Or7+9a/X31/72tcAAO8sjh+HHZj1/YLDDpz2UhkBRneOGREdBk4DHuZ4GPBpTqqaOU4znOZ4Z4Z35rGgMuFPO+D2As9Fkg+Lxa9ApPgfFjhFXcOnFu2dNrO+41M78Kk5PrWBd5kJ8FxuOaQfbkcskjXUDqCR3w8LhXuHkc8Z/c+cP4xXe31qBwYnPkwEEogXU9mBMw9QOxCjEKsyVLf4DrqcRbfTYo3NzOG1MWNgzCDkbhTIQW3ZgAOx0NRC0SZXnZfg52p5pFJZZlAyV31k/v4wVFo0anEx64gD6mo1fmZQklYP4g6OSnvlfJ9AGuPPYQMvyRPYgZfMbrywjyNe6mWG/Laa5gnILYNh7JIDHA1F60G7wSke0g+wEVNZzKqUhbI06tJ/B2KXzZyYY0SqubJBhjkiwzctaZ685t80Hi7flUHJi4vCWzoywLDMUoq7LvnxbE94UAbQJqYNnNgWZpvVqM5AJNRRh+zVglnL0bCFFHHL/kwHftJpG3B6d4gLMU/KJLxHfdQZGn1bDf8iPwD6aIBEskLelARrx1V9LeImb7O/3MarR/xPkO/UFG8BQyzeHujF1MMcbjMzi7Gw0nLHi2V/HhaZoZn9d2dbqQPWdUbqJb1rqGy8pHUi6PWw3FBgAHcmPmzgXe64NDO8S70/LezwiVTytBMPG3hBfAdJZpYLvY0AcSReuVQ9bXKcyWKw1LPIrmaAYkg7NiLzQvkVvjkAnkBs5FezMwcTQZPYwZgBilF2Zy2in2Y5mM3AEdxpZCXP3N01uITYLPqddP8U0U7s7EupsbD97zDxqY30Oxm0mHVfHYgXn8xc41ObpHvBMCzpggWnM/v6sMiicCC4nwkT9LHUFctsivWUFgwaoOjC27dcP68Byo/+6I/ir/yVv4Lf8Tt+R9378pe/jN/yW34LvvM7vxNf/epX8ft+3+/DP/AP/AP403/6T+Ozn/3sLZwf/MEfxL/2r/1rl/u1+A8ohTNjMs575CERbY2KptTPENA4H+cyJ8uIO+dnuT21XkqZ+npaONA505AJXpZ1a+GifDSy9Q4zw5CyHbSyGGETr+wLvGHRc5yc/mCfHRXBu/XzstcM6DZY7ljmKiNd2nR0oI+dR46opG2bdJ6E503/pK0kfjqDgvLFNQoeI+qMGQ3VnDFQ6W0kXgYdVV95XiMMWqq0G8aU0gRekmdjxhtD4ajTa0fEGZi5BoWZm5riUS0Gco6afZX1HQzCkqac4x4jsjGTU2e6ZcmbNnXLvd45M2e8vNkTfx42/OB6gnnVB82gTIHPKZ7OTvrCn4mW5cmbgiMg8Cenc3rNg1MOCFf0tfy2Sz8hOM4b2UZnHkqlpMwpsPTes4W6HAkv2RrREU/dqW7ffVfQQpp1BgTYntdvB3ft7PDrMata41M8zDJzNP3PHL4ag7adft7omLftam8uMbJ3BsD9Sp8z61HfOMVbmYyJmvpmYLbAmOgMSuGZGWxLuzEyQJ4RnLj3FLOnfGDe867KpNBwZM+MCuWpD32MclyXUmVElzTr5vu3wES2P+s79Jx0GZbTOi4+injMlYaLr7r0tXWKC2xN8KQulT6b1CXuhlo8XLJBcgicKf1r2D2jUXqEt18/rwHKH/gDfwBf/vKX8YUvfKHu/ZP/5D9Zv7/7u78bv+bX/Bp853d+J/7L//K/xG/+zb/5Fs4P/MAP4Pu///vr76997Wv44he/GHPrp/e2sKTcQS3LaydUrEfIYOEMg0lHesvwiRgB0gjTuYlgjhwZnhmgPM5IY1LyGaBocKHO2SbyuHG8LUApmDkFREVMo8D1NDwUrUDPFsTH7PUchA3QyazKeyru0hfuGmJ61RKeybGKvMdXMHgqDmGVIcmLBrCDNy/jdc7I5ljCI8+R9B+8z7bQc7AaoDxmK5UGaHx7LnIhGBebjZmvp4dVujveyZNTPMYpqAw2rLNKcJkyqKio+8rvITDGaHpOBj20bCnPOwzSMdrx5lO/qimCld2gzpbFZXrAr8Zo+RQv27mXzKBlCKIry/dc/3agz6ehQfRKLIDueHEEqc9zegc15CVJnfip4eZ1brB2R73f34M4iq3EZBU4kO86aejo/q1W6npRp6gQWqcGD7jiWYEuWudPDqgoVzsvyAORKSZLDipK8SEa5LHpDI7aJnRwwd2EZ+JFG7sHxJ7teQbxU+pEcxJYS38ZQDGINhoPBM6LrFS7fhugVNcksFoytBvDDE2zS4Cy9U11ivbVfOPFEBxH0/NhjpdMYRhQg472A7nrR4OTnb6JBNVobriWvgG9nRitK6VLWAO29wcoQoNNt95y/bwFKH/+z/95/PiP/zj+6B/9o6+W+/znP4/v/M7vxE/91E89LfPZz372NrvyDgcOvMDwgkg0vsD9E5x24MAnqKgcPWWRR1ihzz6IfeRApM/OLBFnrOR6BRxwvGDiBe4vcBuZHjsLNo8dfvhL7k0H3mEizj+JFieAd3jgHTw/0SrqRI3oB/ACx5FrUJDp1j7j4yy8Hpk6rFxNKsIB9wMPvICHqMd9LyGLqZAXzEwu5gQMkPSC0Azg3voz1404Js46QwLVusl3pBAPQq9zPJhSD4o8pCWaW5bxwrWp5AAOjBpFreegjOoXMdGexJ4qnsPAKQ5IC3p+Sk7x4AUveEHsdTriOHtYtpDTSdVu119GXXlFkEwOUOaIe58fY+jzVHhEOGEKtBo969+eEjkxEef0nJnObbnWqRxPfk+fKWvr5B75UYERbqZ44PXp2ijqumDFLa0OtofGx32BvUzxCKX2Ml7t933yn+eU8PlEG2IAtTYgzo/gOoH4LodS8j+TljkNVN+NF4pSfa8T6yjcp5Rfw9T1OwLciLZaQ5r7lIEIRmiXrLAbuUAeiDOaYrJUz0FJffZ2QG1rBo6sRxux62m02jzW83RihdbAw0fZAYDnHwE8fyfWBAVuAwdODDyyBiXorPLkaZxDRb1ELl2NkX4uMC6ZReF2YmQQrhOKIauUNK4xairy1a25TqasfeMStIuXNTzqHs9hIcy+j9Joanhbj0fdN3yS9z/FSGoGxu9w4IE4z+sBnoOS61Kqr+SpF260dCd4NtcUfgVep9gabqPm7DIDlQpQql/AhPJGn3nRYOL/IVM8P/IjP4Jv//Zvx2/4Db/h1XL/1//1f+Ev/sW/iM9//vMf3gjXBhRDD7l3rNs8a+6UZJaw2Th0qBBcviFwR8LOFEFF6wwzmTrIYTQNTAlhHpUva8OrLO9XO0NgSpoAFvjmBuHsoAx1veubtsui7BPpla7R1P01veIMEl+al9eebvxQA8vPsfah5gt41RI7NJJCe4eUp5b0FvJV1hkWkL6s1gEBjGsaXGCvp1o2f5VXbTRuy2l9anO1jx4i9nwJliGw4QqDQKznqtVF6dqQTndYW5SSS/4zha7iTne8Fpp7w1w6o7A5LEqZyVR70d5TZj3l0Dx/p6z6lP4KTdhA4S8d3nHiPCKfAVjD12fXLo9ya6Evtht71deMrr3+/GYdSpcfT6pay7DJvb1uDZuH0PhGz4r8WtfW71oDlThXqlToV6lewcc2/Sn5ybq26ZVpm0DN42IknzeYZTsTh9K1sem4dxu7jC2yJX1Z6A2RA8VPeTXl+c73vtdDGKFt2ZfdjvG30k15cmMLF1wFN98L3OO30uFKhkX2iwak7Q5zv17TlfX6eQlQ5pz4kR/5EXzf930fXl66iZ/92Z/FV77yFfzj//g/js9//vP43/63/w3/8r/8L+Pbvu3b8P/5//x/PridYUd+XuQ7Pod9Uozr5UscK4WgxpvMc3eEzTCseWS8IeY0hxuGvWDaCwY+wbQXoBYx8ewPrjuwxIMLKCeGnxg2YTZzCuIIuDbBN6m7x8jBsg9ALJI158LIXnTKxVKxxuHI6QT2kttbY1Qx8FKLuWrGhVMPNpJWI+FuAUqNLtLhmNV6lYGZi3YBzvNzW23IqOJ7gItk+WIsB+B2JozkDQMHAHSW9G0AXyzIcIs4x9+1fz8XlkWb0V4tkqWjtZl9cNHV6yLZkXBapg4c9pILc03oZrU49ii5iDKLIlukYrl4j2NDzrGbwC36DSTcxGthUQcSBh62B0w74cPjLbFmsHgnPSxlkOc7WNEFgQvleOG8sCPlYtaTzkBZBjmGzq8QM0IzhNymQsIt8xhGBypSp+vI8GyRLGrBpoMBD9DH81sF3S7/knRtQyKbMXIRL/vD+Kf+RuTT4lyR3KHlaJndDTsDxnTmRuONWENR2zQlOLESmO6vvsV5ccCkqvVtA3WMdinOVjKkbGFA3yoe9ocvZUyap9xaLmoPPTqqvtEeJIrmXrSj87JUyWhrpEyHPoUtm2mHRtlPOl3LV29Shweo2yGnxC1ok3qOo/ppaYfIMx75XnZa+hDLRzv4Id8t6UqMuJ7McnHQ4KAueV5Hu1tkKYZF1jxehEoflP+SPxmIEHfmqIJ/Q2h3lI05ZJFs+I+Zmw9oG72+K9RI+xlvT7emDemPKWMiyk7n/CqEopktGscDR04DmcX29uoj0CckBwrDqBb/fw5QfvzHfxx/4S/8Bfwz/8w/s9w/jgP/0//0P+E//A//Q/yVv/JX8PnPfx7f+73fi//0P/1P8Yt/8S/+4HZexid4GZ/gOF7wMg68HJ/By/EJxnjBy/hMGz4P9YszRuKskUqd+gMvB3IiM/bPmzvmmLGHHMAcL7DxCebxCWx8JlaOW06t5EqnY6QRGC84huFlGF7GxAtOHOaxs8KBc7zgHMCLOdxOzHixC2y8wMYLXuwFfrwA44i2zWInxzFwGHCM1JxhOMYJ85jugGeS3YnDgWO8wMYBG6O2GHLNRcD8BMcYGMfAGC1Ys95ZFJklN4f5gA0DxsAcAPxMhzl7EEZDYnnI2Bh5yFj8rh0yMw2Sn/E1HTZmz7eDgVt5iFjrkTtajjHwYlY0RwZQYxhsjOx3tOtHn3VgR0x1UFNinp5BaTqD/H4ZB17GwMvxCV6OT/DJ8YKX4wgchuE4eJDaqJ03x5AAZWhiP2VwOGYtAOnJJYBGoA97M35btFUBMR2bLHqwdIjhtM/or0088ICfB048YkrNJswzxZ1ZDp5VMXIXTKzl6GdAj93gXgexLduMPZyHI+p3RmXU+p94NjORfkaI5hYn8Q6rg51qoazlWTaLo06KZZnpnoNCh+WuqFpDhNAbTeAUvSvQM9ShXuYR2DlQB3gZMvedTmFE/0cafQZDGU6D3GFYRr5WcJUBSgwW+Fys/W2AQmTp4iRwrACTwa217uWi/YGZfxvGOHBkgEJyOqJfJaMT1e4YIdPHOOr3oJP0ptUAaedxmvdE6vwB7hY80iZhxKs14oDDmTveMtth8R610IGjdsfBJ46BtG1hLz0HP1H+pcoOIIJx93znFqOm4Ps5Zq7HmOhXx4Yd6x14+cby0bmKo9jCwCozN27RRuLXu6Zi+oQDuBiUcQfPgI2of2RfaSub5qNofxwDx2E4jDuzHJ6rjh8j3ic3nQPiXBuXcjZSPzwTKAwqI6CMAMetd/nUm9SFFiPbZSCkQTGHEBHcjjxmoi0bp0I5lCCst14/LwHKr//1v74NqFy/4Bf8AvxX/9V/9U1rJ5wvsyjbZ9TbUIKhHqQsk2IziDW8R5kZccdokwsdQxGmRYYDdgCDW8JQxq1HwEc6ZzI7sibx8sKZo5FZo4fhlgEPRw3xcTvE6XNkHY5vEneLtOXEUfYvIveOvu8yKDAszwmfVotrPZbxtHniDpidqShHOK8yDB2ghLCzX/ymsejR28w+aHLAjNs8vYJwngmyZy+4SNaT/tVeBijTmC2ZNQRg1gYQw5FTdszC9MiRoxgaTxr7zJ7kywJHGvRyEhy5ZSNu4dzixYnh/eJZb+XVIIdtmKGMrw2OPXIKRUatnkFKzL/nDPt0zBG0RI5u5kCtpIy3KwOYM/ibjn66ZlckAALyZYG9EqHoODKg2bYK1H980Vvy3fObo9F6yVr9l6sCynlruEdHbyn/EnNwaI8ezXHL8EiYI7MPhBQOPhzM+oLENsYh07PoXR+ipOFoRykSfCj+Xa9WIRmngxt/GKoPhBtZkw5RKD8cBtcqJpuCtwS4pevMHlHmBU7d69VPnZ3MvBkzFuhVaD0y9xpNqw2gjenRe+ta5yvYHj/sKbMbyGBVy/DDzAntctT3as+rhc4SWGXfqo2yYc3jwsPbJsNibR1jIBZm0EnacwBXPJLgs/AWG7nTrOzdSHpvNpUDmZEZJ0u5IZ0dM/hhozYcqFwkFaADtIUO1jpS96FX9HEgtlYbsyRl/0JPeZCnHjnyvuujfhePBiRmkYFgSt7skxIaLnSLmPbMKQoGFcCwGcEDvJyV2ZkMtgoaONWDUq6MHYc3M8dLC9yI5WrDHxngzMSX6TnUUfBmOS1jB2Av5fxVqMs5WhwYxikeflyVX4KdEFJmC1ieDjhSiJZBFyym6Mw83vhMt2EhZ2u7YjSIKtpBV9BVhiozKKZ40JmJQJf8pgN2tkXl6UyFMRAQJWVggVReT75ioqampo5kE17TWgO8lKnB6Z7gw2ExQtc0bAQpQYNRwUT2xz3fJHxmBmkWzeimNPgyDXYGaUpYQB+e1JmUIOGZ56DM3JY8cwr/LHpYbvOooIKjqBqbd5CgOEaiToOIHMPLfcinS8x8K3NOr6X8lhwjR3LwGn31uJOOl9TMJ5aZG6bqM3tiWsdYS5wN6DwJKzMAdKxsO2lsQBrWiFasttakrDsnsNDfhiyXiSRxWnDLjKQY6fJ+4urLgXQGxRMf733IiyMw0bFw8upwN0eeethTHxIMepaXIKCne3LMbF4ZzzxpoxzTOqhKZ4rQS6QcjMIFaZ+I17Hhyr5JX5DDlZoiOdayYDB55A2ZTuK3t95xXYsGQG3PVvsWFGLglg65aBehsmXOka9xLbsm2NGHoOi6BitNn54iH9bTuTFIJF1zk0bxM+mVKUDDSNugr5JNYoJBCqpPi77c0OK6sot9tA5CYD2dk/a9prNLl99/fdQBCt99MGlkpqzOthoLgSnp5T0irJsfuMPyXpfBUrae1cgzR4mer/bO6Yow5DNHhVv9bG997wgwOKot+LnrwFLs8zv2/2/9yL1eyzkSTOM5ccTaXo7oIw2Kmvc3wkfX5/ss5k6DpM8yUoRHIJC0mOYY+ZtzBXv9PupeUoaS7kcak7Vv6RS5DzEr810hczL/Q/5zS2DSfequDw+jn0aw+MByLn1H7gixUWegcESZEVDA8DZoxF/pV5mTdIZG7WdQluQMgzN63RxBkhhyW+VhTo933tTR9t1+yx+qbPWT9CW9kf4421pfFhj/xYzVql/J6Aha6jmW9oufs1Rp4W8tm/aVmHMpJ5/Emc67ghmVmfxNWV3vK0x0XcLtGy3HlM3Er/4WsWS8w4AICtMqitHiZbfqmXnDcYXLQMFSz3v3EfkDTp9VUIrU6+7L0h+3mgbojxWNV+J4bTO+p6PIVMwFJv8FD6eW9vRdi7eLzcjyxbu1HSv6+qIj+q11zFc8WlWDn+ymkrwZ0Py+2N2mPJhtLFljbbFtnnpRtjh1ggMIn5b2rP3cyhvV/RWfhU8Lr7svJbMZVGSM2rA4HawkMME9edJ9tpJ/xW9p+43XRx2glLHLNR4MCuacmYr0GsUEEWe8q8T5Dp2s414Wks6rHXE4Qc/ymJ5zdqPuleJPJA4jjK7lBmMRqCVIUsX3bh/5Ph4vobH4Oxew851AKqg0OBrgVODCpYtUBEMFB3Nm1J+ZjFXpZyn2FW9tmwxB2dmGE32Z7vniMz3sa+tDc1aUbrs3kfxIeU8vFiPzgO+T/aZOEI+5Blk04ua5aDORz8BqqlzNEZmlGjl5BRQGj/UdGJlh8hw1o4IVL3mlBfJ2LvDM4ITpnWaROubLCzNFC+vROw2OrkkI+vTLAktGtiClAi4xbLzXx7zTcJUpBgONMrSkn6PWrugaFDqLJSik3EyAr3/QwGoNjtgzS03A5sR2p8M6EpqWL1Un0sK6wvGlXDNOyqB/l1ymkVE+6DdKDspVLQZcAxBmJ9xj9JpMFpzoV7x8JddruTNI6eeNr0k/dh1V58X+E1bzkLoHsZcMklan2U7qYit00Kf36eK28twu7IJbO1OxcUmzPvEy7wvPGwbxhjwQdrNPJSUo6YMzFmz5Ag+SUjjOMtnfsotez9cgMHXLZHBGW8XABWGTsAw0mr/3wUDToNaeCA4rXSE+wDoDSJmlP4WtARZ5sQ8IKogTvSnKvu36yAOUd824MTHPjOLspUdfZm0EEU4qDPcD83wHnyf8/LSUro36mQEHIkiZgJ8OPwBuK/Uz4IECMgw+jxCyGXsaJk6M+Snm+S7bewefj/ycUc4H3Eco73wHnB5BkCMFNtekj0j9+kkYiX8eExq4nxWc+PkOef7qNUDBgJ+MyXNJlSjREvi4w89HtRXtz8RhthYnvWFcQ29wO1JQR44y0/DNs2F40B0JpkdkYjhplIYhpp5y7jeDExgiq2EDczrGjJTDohjn2TSi4sIjoGTKM+f93A64ZUBzxrofHy8hJtNyR0fwZs6Y4pmDa08ym1bJTE976R0Q+5RdoqGwk1NtiYPNnKLK1Xrc6eRlXdSABoMrAJ8T8zwx54n5OIve85QAJmkcv+di4NTAtsJ1QIE0OtPzLJI9WCaOdDpntnEG/eecpT+eOF8Cj2q4ZQrABcc9uGg5pGFUY8x+dSRderEb8NIZlpuSNWyj2xy0DhpApvB+SUIVWPon351b64S8VEM5xmzfHLXwO140aoij3AN5H9bOeorjmNpv9pXPPKdF6Rw58MqgYZ6An/FbB0M56MBMW2UOzFE2FLC0r21PuEHBGW3lAANz5Noq6uws/N0meOqcO6QsYHnWkHvap3l2ex7HK+vgy2noSebZNoWxB9IJ8zlTnmG/RSZLlhs++dX2tBxL4DMpl1aDoVi4H/T2c4Tdy6hDaRf22JO+oYfJdtGJWe3aLQ6U5551CBuNWPxb4ZnnbE1LrgYjVZ/BKTMypJuTuH+TBCiYD/Tb4hwxl26xUK9fUNPWQpgSdfPjjx4RZIBShHQAGTzEogXuPc9dKGX5gDr/PgOUPB622/AHME/AH6UoZQXnI+dxHtmOMNGtcTBLOI9sXz+e30ihfwB+SDvZFrcn+Ei4oz29IfoACA0S7szP0iYFbjWySEMZfcvpj8FAyVFnnC8w0LFO4ar8My7aiVI85qDoNJtOU1239oE8SWVfWq1IB3WOwkye0GgykEkDXOcLMPiqBUFYpiVKUafS1Ot51d2/M5ikE2oH51vnN/iTMq7f8aEzWbz3MscCWpPmacl4Gjso+umc4EXXxlE+RXvhPXWt6CL9K8qIk17yz7i2UTQRfooctcHs0d0Vjsqc9HGhia/4lqzZVg+rbvEeiVcpNpHrwm8LUFgXUt+dQ3p4jeQNqAMB09vWJ58rHtpnR7e3wMvAgZnpcvQ7r6fQbubXiXppGBI3/RBHAGW/lMfYy6fela3jup7qlNiYc3HG6wcbXBEd8ith1mCjI2CRL+Up+520F1len+uHMNJmTvRic/6eYsvKDqveUM43Xi7BifgbV9yIV5NgEekWjEUU9fal7q4Xqtd/8wQo74KBmEDtZJmAv2ClGER5aMAZoJwJR41oftOI18sIvIMEMzG0LveOcmDIc/MwPwXOT7O9dxIYUWDozBG4z4k4EA4XZxWwGey8W4W1nHAakvkOdXAQycHAxxjw8JAjHakxQBGBmhqgvCvlR70ISAwwnTxyK95ggJUZAPJiTizBoScIQwtx2Y1so4Y12Qb3wJI2lpPsk4s2xICWkz7XAHAPLgjHhozmjviw3MlAxJAHlkQfh8jHRf4gBoU0zn/IX2ayXHDhFhTXDIrQSEgU/En459n9PbXvgs8lOJH7aouLH12u5/yjXwZEcH8XoCz6xcDklHtqPNug92GLEvixr4rvFJktQZQIlvKlRvUC56bvflfmphzUoe1t3AUZW939u4LcPQoXnPjAo46Vk2KQ4wAmKtU40UFQqYbYtUlcE2gNsgizFpGBAYrtdGFGtQZTuVhTgx3KoacNnGcHauWQj7ZjatdqTpcDrOQr+1hOt+2T6aCqbKUOFLYApXjYtDAN0otX1jQredDA0LudJTjVwVnyd3oPdGrQSF807gOU6hd55w3LtS1PPukgYO+/SyCtQddF6G7kkLTZgjYIPxY9mnjr9VEHKP54F9sexwt8xJqQ6SfMIkOx2qY+ByVScQ/444y0/+NdKaqf/MxMS3PUesLtjPYyU8OpgtxOkFMwR7ZnURYTPj+NaZHHI77PR37i3JJI7SGmds44IdZxIKYfrMvkCNpP4v5p4skpnpzG8Gz3HABOVMrNgZ4PHPAHp6byLJU0XJMjH5eU/eOstgL3/HuKcAMVKPTUFM9pSZqRH0zxn49KMy+8BdtHGeM4ZyBS3/ECvV6Mxcimp5WG9JvTDGfRiO9uic8enBDv2N0yD0fsATtiq68Bc47c8h3TMjyvZloukq3pmBbCyX6Xgw+MST5OE3FHUezyIlyAO5eQtCFddKAzJ6dKJubjlKmenK56nEUTXbzYa4wgi6nXLbdh72bpU/ttX+roqJoBDNfB9Jqe/l33CQPyzZFrBXzKU22765Q3MOExpziw2Ue2MzvLteoJ5ZUOGIDKK9kApA61HyNPDSn3TAABAABJREFUQq3S+CeGFVsUugxIOFJnUOEl34uKsK+O9I/M2lJHcuolD1UMe8XpGEsfn9M39c02IjCpZZkjdc8H6nC8swdFtQZmOviynIppMDI2cPiIYIlT6Dgfyfd01JYbC2ZObWh2PHUXs0+fiSnqQ/rEkDmnoc4HPAdCYSN7qtOnTneEh7fCuXlTvlqUmduWPXneMQ5lOu1x+RvyK0+/yaDMpwFnrjXMQY7DYkonj1ubjzjjJPiXMj0fmOcj/UlO8ZyW38JPRw2Ieuoy+1xrGCWrmqc7x7pLYE2+pY5xIJh84Vqllv+cmqw+c30K9Sbo8Nbrow5QGPk7sxs2g8C56LG3MwljyCwupCzDI/eXEQFqV0fVyUWyWjYYAFTKjqOVUtyGrYuYaIBil0uWGZR48PCGMGIZCF1HvFcBhPRTHVhbT8UjBNpKQ9tIL7Dn9l3PEcou3qyaImx42VyowV8+WBMx3vjEn6II7IckiCzJVjSvLns6PeW50EJWstZgt7Y/Sx3CzOe05Q6XQUSM+iXeE2fiS78r+0A4MsjO+CrbGT04yV55MVREHJTjucocF9vxU7zFglMHhCIjRURhCfklRTlquw1OUgZKDW/k6LL+pd1EBynd0YbrApc4QbI7JYddVaKCJdBY5R7L/b2NQiVhyd0mVP3O59ZtFe8rK+SVcYiA2as4NBAvtgne8qP5tTNN71/71t+0Ftb98xWmLvTsMhv/KqvQMLyyIxoQKtK2tFUmBS2XvpRV+dmCk01Oqu6Fn02TkjlH8gCFgxf7yO9cErr3YZEzYQFxFt6Z4Fb0qaSD6KIDtWPRvYJk6i7Xm6x83vnOv/36d3XLodN/nUC6lzU+60G8FC0aOKDVVbfecH3cAUqtoYj317i9oN/F85LOjhEcmRNDBU59xvRmTOdUupKLvGqKZwTMccBnHNRWUwych5UpHh6bHhHzGfdq1Jj4Lko+gHFEO55t8PyDfEWv6zcDs3m0sNX7xx3xskCmCfMbWAyUQ+jGEUkNz5k6lQ8dTAZh7k2/lSfplWtaR6Z4ygCRrmhaVIoeZaij/7wZfXSuA6L3ZwbcgTgHZsBnHlDXSFUfYsQQOHg940myQKduuUgtp3Zm/Ga2xS1S6s6+5cLWetZ6vtI+RyumHodXZp1MvtfpHrS1LCtIKDRkTH3ngk4uTuT6qH16x9HBuToaqINgc3sZoSPPQeFaFAAVZBf9vWnPQOmCT0V6QScIDYJI4pwNiyyVR2HZsTrsMp4SCdIhL4a8xa+c9iVooe5mu5oFAcCdPcT5Mj21tI/1+RKNbqdOFAwd0vMep4rZdutUyIGhp1w3ektAUe3XgltDr1OLQu4e0yrEt+RnrDZJpyy4PkzLTnpC2gd+clrDtvLpxSNDun/YXZl6EmfevNRASHiw8WSR/4VvCYPTb5cpHo42+O1b3/Q56ZLwuFYnN2IU3SfnsjmgEJoufAS0r5rBWWTjsi4JZdvWQHETMaFJ65bITNXdabqXfdv1UQcocZLsC8aRB6kdL7Aj38tzvICEGGlsp0+Mmv6wSFbA8kht7ovP9zHOuG9ucfja8QKMF4zjBbMO1OHCI0cdkHQcGIfBDsM44r2X4+z86TiOOL12xNkWA4B7nHw68mRcOw74cfSphcMCpgHjiF1JBmAcRyZqcjphWpzonLDGEUe+Y1itu6VjHGNkW3kSKo8JRNCJ0T2daWwtM4zjhJ0zTsAdEQCWaGZAaIY66t6OpNWQk2S936tpzDqJ0DKhQbXI8KlPcD1G6q/1cg9DHak/jgMjzsFP/eUhZJlCTRry6P86NMlQ0yt2EI58Xo460XEccpotT38dPHgqD0Srkb+MzHUBNnrsHTEdT5LlqbikZd+TlEyPxJJu4TRyl47H+72Na5DyMMKBKZm8hMFTZdOomyN25ri4ygxQdLeMo3GobGHtxpAgg06NWSe1fIgppQEIbK5tsZQHddgI2csmh+chbeCBbT0lxPUr0S2rpFgc7c5n0Y6NOAeJskZfbIa4H9lv8OCpNscmqEXmrDc5iAO35jYP0WosJMCpr2xhVCuBL+HnaJfZoppWrFOHAUMgHcupUj7zhGUD+lRR6R8DPeosj6ynHbLkM2mEhIHkc7RNuzluPrFtPk56n1E2s4TRRh66xvJh2JL2M/HMfuZrPOo7aTsqKOiI0OC57j0cOl+NAO+Afj30kfZs/Ub2q2iUDp5LeyCv9FAZpEySR8WrnT5H2kraueNIX9Inybo5bKZtHQPDo8/1ugfyd3q2lX5t9iF1wZ/uJO0WcWZ8tNBho0XtQiRdaPHM6tUS6BFV0CD599br4w5QDjKJjl1+j5caSM10dsPz5U0e+7jtODIYieg0mNsGalc0H5FF6WOVUQvTKkAZuU6BHwCGAzaPUEgKJY9xNgCboGJEFqiEg7BoJOq9I31aJHiKYJ2WOEJZRn57Gkb6q0Fc02iM0faxouz+GJV6ZnA1kz5Ix0h6MHtAA2cNX4845ntS4lRTROqXz/iPewp08oQ0qBMorQ8wqz6NojH43qIc4dFBmYfy0tEUEFXSxfjlKxXyqHsGDXUc/eD7TZ6cJItwBnznDaeoyrAD0h/2kSfJYgl8LKMFl2CTJsDcMdOzjmm5XtsyuIuCg85tem24MZ99GmvpyjUAYh9ISwcqWDb4EixwqodnLxi6ntFhpHMdE529Ay1fOkM6Z33uTTfiF2ujWYdwwmB2aJp0np2SLtoVD9Avfa1gIP7o4+OlDkMEQwbxHUS0Hc4BROpIxm676ZY+onBncLbji4LRQU05xpGd0D7l/cUu5eJ/k41ozsXYQxxsyWWfl9QB9gQHFHwHj+Vi+LZzW4DiyNO36awzOOBi/TjuOAOBtGfT4541bTLy6jYsKcXBpuUBh2j7dQka0EOExSGLYy4HXkxo3hgli+ciET/jtF63VdO+0kD9Jm2S1thtJ+1+7grQYJMZC4JCfRtstDCreLFg2+v2YS3vJeSlq0qTlm7KeNIjB9a8HE0D2aH8puvjDlDScSAzKHbEcfcMUNrhAmHUI+MRWZJ87ADGLKNtR5q0g07aImAYL7DjAI6XFCym3rzzXsPieWZQ7DiTqWcEKD4DxvAQnEH88hjo7I9nnwCIwObnQKcvWSaZ7lydNhpWBSmArBMJXO1IJ5zZBlTQpaNp0g0xc+aIHSGH1ZoMNeKloImvHRx9cdSAMm5IQxV0TINa/3KIjnZG3CFTCotViY4Mxo4DOFJ5B9sLRbV0cHUYVhC5puVoNKxGLylf+U0jj4OGW46oluCiDWm0zwACNQXT0zxt19ZAtOi1BSicZ6fXKlOQGZSYQpnljM0AO88w6Nw5I9syy1EVv1H0Lz3RoIjykbw3F6dFuQGAzFzxJX4+vWBZHmwXhtsL/0U2QAfcToXFLAcZ+rtxbz4yHkONdL02SgHWfJios0QYFBONcLpezqYtdAn+Kv8MHopFrVuXQANSj1iZCdxRdHDSjjLrDUFflNKOP6MG6mIOWiJaJSxbaG7cfUOdHf0d0XcHoBXsGzoI5UCD05I6SCI8RwQLY6QtlKPu8yV6VQcAMKNcHlVguWiUAwhk2WYFd64MkeXQO2ZQYqckgDmivPK2Bj220JsM7QBj5GAX4JuOmYmpt6OXjHjV86xbgcgQvui9GnAb4s2oXgEY5gjdHpbyj97px6AMQB3xgAFUsBIyXVNwZCKjjwoS+3ZF1llGVSACbqsILMhmKuAip0AfDfL+66MOUPKVmMJgOltmOrIcDXHOp7YwOexw2DyAfP9MOcSBEAjv0TQzKM01ADYzq2ClYOXADhq6Y1GmVthEz1WBj0U5nSMfvtF2GDBmj0jc67h3BhdtVFZFX0bdzNRkcGIHoyWEMUY7IqYxKzXKjEx+u8i1pjfbqFmlPinUZdxGzkNzihUkbRrOSYO90pgK1MYEErjsGZQ0LNy5PdqJRugwCuceha4yVQELA6OcugrDf2AJymDlBMstJf1i7QoNZjt/BiPMNOm7hkzeZlyGR50KpI9mYSRHju0M5dr4llem4jlPEy/HlODC+1kJFoMOXdzMxx6ZtQ66UnYwOthFOhhY6uGgZauRdwekYTT5PhurISGyfi94tDwDg8stSnbITy9wGUNZBdbFHcrvbFHSJR5FA75vImlKCTJYr3drconDVPxLBTbglHPBvzvUfcH1agdKxyLyV8EGZbUdUWHEGVbqkzccdZ42pNKyliL7xGnXEXypOvUtI/7hdQ/c0MCpjxrM0F7kPSeTEtHdoQt6ISOdeYmAwAuuFx5Y+8FkapEpaRUjg4BPHV8CSX5oR5ABsoljV7u4/l2ZYdJkGZT2gKwkqsox4MoMC0ddDDwYtNTUHSoIXTM5jb8tf6OfY+2yYLPJ6Fqo7BNquHEjxffXRx2gcITbUzw52s3fVB3OiRuDk1zxbT5hOHJ0GaMkZlAsB5xwpBPPwOHoAMVobBmBDsvRttUHAOzMxZY+K2MRjsjhwyKDsgQUGWCBCt9KbocF3u4lnMbXpQP5twRC6VRrNEzjfIjjZbQe5ALfbFuOaGYg57Eo10buva/MDBkCEXjrYMEyAEqaLc4tX0jIoKXgsC+8lYFXj8rsmkFhgHpIVqgCFOssLB1qSsfFKjHzI4EJjgP2cqDWvtBoWAaw7G/2fQyTrkjgy0XOPjpw0PQp6VWwEHPRafAIb89yFL1myvfMKZTZvtXPloGaWssMihlHnejghMGslXBhyZTkbWZIKkDx3k1RA4FE1NjfOUPugd5xxwAi+b5Or4jRYxnvMIHlS2LoiFLXNYBRztToNxa0dICUQRwDmyhrJSISf2AJnkiq/FFtSYCiVz/vv0qodfhafjDtjefvCj4ZQDB4Z7TF+5sdsYIWMk16zwy2yllSj1PvxDZYZim4m8VoE6YvmRddXxHOfcDOWfDCjvRABuJ8S/Zov8dIvKWMliUVSz5ymogLcQf1o90kJahIzUBgCDw6aQ4CaON0DYqL3ImPqKBV6qWyC886KNG1KOUrjgxAaK+WDAqCticq6GIgYDMXFVcghg7KGEzKCHMJYJNkVEQVxbYJ/LLuozOAQ5k+pEgCacffeH3UAcp4yYWLx4ExXnAcLziOT/L3J1XOAHDhIE8WdMrqMAznLh6eGRBGeyDm4sfxArwcmC+fAC/xNuN44+yZhlYWcL68wF4M4yUWlB4+cIwTMVc7A98zvx9I5Tsq2BovL8DLC/yQtxkfCXvkYinkK+ZfYiHwBGBn78IZYyRtXkrAK/uewcw4BsbLC8bLwDgGDkmRsnCfgzJTtmMG1M4XDL6VlyOLEtx20LFgNZSw5kyTF3GGAeJY+uFy5kGC9CwnTq3e5vySi8jSRlWAcmRfXl5gL8FgPwCefQNDtTtkt4lrgJKBARfajk9eMD55wfHJgeOTFxwjFqsdXCQ7Ri5stfoOvNQNdn+Mh8VVVkEDFMPB9sfIeMxwSAaFayx0KywNcgwwgy9jTuBEj2RPA44Jf5wRoDh1Arm7Z9T6kqL9HqD49k4mIGdGc5EtHJDsWwRS6czGxEznh5PBJiJDxo0PGTjOLYjtACV+Ez8i4Bo4lTuwCswdVhmR8J1cMt2LeIchdxRZ0tI4ExbPgXLG4cw7SGoiRYBVmdiOYKBBBtfAsV4Z+JsghdOz1DOns7UUqnQMHUikvh0pVxbOa2SWlLpj2dXJqb2KkXKUayP1ycqGjCPepF4BJ4MU+c33bTHrMY4Be4nPOI6wZTYx5hEL7g8OsDp7YrUonUF8LvJPhztgsVEhy1nqqhn9qcEw4cgp2TPpZsA4U84Nlckc04qOujh0WNo7C/teaxc5XWYjBwSo6VIA4LTLGBavxWBcYHHOUQUiSduRn1gMO8omjxfaccP4ZMTmCoSuHX5iepax2HQwjnxpCV/inOtKYsdPbGyoPnjaHB28ctAtgz9NRBsk8cPuOoIfzrAx3iNWO+UkeIvM2kCvE3v/9XEHKIPMPdopHwcOS2UgjZw7CyLanLklMnb0BAxkUOIjtmbFVGgEKBxFj2PAj5G7eHpUG6MtS8OQinyMSIQAGGduIZ5HCWMtrsxRIx34GNGGZUZD4cbUgmH4iM8YwME1DUmTzNJ0cJABCtI4p2PR3S5VrgzoTGPO7XphyCOYYLueBwoByACNBjYGBW3ceiHpyODDU7bjnTk+Z410kH2eNQJqB15B2sgAJZWn7L/2OwOj2tFNh5nyMGwNUJxOcOHjuBqMYTjMcLyEkYqA5Vh24DBAI2olg458+wEdVE/XMLCpIKcClQ5abKzwmNXQICjgZ5BhA3ZGGQYD7jl9OWUdQXjcMlzzlQBlecEZGI+EFZrItSYMUJwHUwGoA32SzzPPCwL338Ti4Wmx2Na9BrDoAMWqnxWL9Jf8WAMUtkqD6l5uPZZMSDxRGZO8wWUcMuitTFzFIEtgAegWywohtgwKacqFs3xeI8+so4sWl0a3GGhZzCrZt168r5/RQT8imHZEto2j287i9S4/Zn17XdqA+czgLu1gLpy3SRke0MFKr0HhNHUEr6nAqAXnxBURbNRai7pnXU7sl+UwyhyRSZ2yA5H1IzJDDSGYVREec3CggweeEzXS6HCKdy4yk3pr/a4wFZF9gWwvhKUPYJ/EDtV3BiiWdjUPixyODioYCJTcJgLsN3Weu26yXya4lexIsBa7o1B2qmU9PsMiKIng0WpKqQNB691if9NkUD5z4PjMC45x4GW84Hh5wcvxgiOzKT2qCaMZbwEe4XhPxDzoAzjzNL1aCDcGDj9xILYtHi8H7OUF85MX+CefgIsi52mRdUkHfZjFKPvF8PJieDkGXmB4GScmTkxMvLwcmOfE42Xi5SWCJfiI6YOXA8cnR2RQXg68ODCH4RyG4xg4BvByhFQ4EHiJ/YojPg4cR35eOAUWAcxwx5mGbRwjsgIvEaQcuQbFDPVm2qGnEIpQHrkAk+fFIKPx0NsOUI4KxkYrX45aYw4tnemwPrzLGIkHop5pweHAcRgOA15eDrwM4/KZDlCYDfrkiFFbBSgD7rNOY02hqB0oLppIg/7ycuDlOPDyyQs++eQFn3xy4JPPRAblSH5E8DBqRw+DC2ZCklwtg+6Y5yjnDXiNvGjUDjHQQUe2QYPZ8GoKBoxVPILv6ZgzAto5J8YDOM4T57QK/oYc2DbnwJjxhu86YVcDFFi11SfVslxkUM4MeKY7AJ69YOB0z8wMSpxq7pG04bccJseAPfQVJQ/MKGQ3O7hioMUAqyKL5GUGOieDjTSWJczOefvYBh3Tf5YBUzoei6zqwIRnZrXWsWSc1a6M8RqzNElBY0jAnU8RPF2zJui+mmFYvgQvucygnTpH1YyZYQ0Ggs6HccZ44HgZaUdG6a+fnscsZDCXtBmWZZmVzIHXoTtkkj4DngfBThzcymrW7b0cOD6J9nGknZyOcZwx6o/RIGAcCERm/Dg4xRNHPgwgMjQ5nq/sOQepGaAM0gaZ+eUKUosB0UBmZpkt5PQfPAc9nZ0diCzKkTzo3ZMpk7lsILgTp9zOkRmEDGAocp7Bx4yRyJI96YFQ+JvjZeDlZfT3JwMvuVDY5wH3E+5x381xIGh6ZAZlIDKFw3pwNPIMml4XlnYmZaqOTTDrJXhHZ1Aim8QjFFDBfhwXFjI7Oeiw7DciGJrZnvuMbNQbr487QDlaiY6xKuBx8L0pbWzNjS/ABCyPMvd0zhklcsh3DA/lmRG9IneI+DHKoY0c9dmcPf1wDBxHTEMcB3AgMjo2Byzb4rTAWdt0O4I+2MYYyxQPHeI4DGPG1NE4RmjXiFFpDFQzy3EYOtsx0vg4mL62Y2Qg0waovF8uIo3jATgaHvA5wrCMAQwPPDMzNRhYZBDAbMeRi0l5bgh9XRwl7xiHxdHW/f7pdCwyjZCGgdmEgBuGbpniqZFG0uaIUcV+QirfSmt0KJlB6cVqnUE5yrCH0Tgyg/Ly0s7gGDwfJUeaFsqe8VqNdn16nK2UBwAaUKl+1jmYopcsynFwy7HhOsVDR5UBxBn9i6nnIwICDJzm+WoPOmHPmaZMsZ8ZwI6bKR7+m8Z5D1AsrR91IQ7RSpnJgMUwEGey5JoAjnYN4FktXkE2Y9XKa1wyKBy1Mk6OB7QMOXKzLu983nFdtJkOyq2XT5T5pAPOOjEqZrYUPVoFDTSpFQ5fd/Eo/sZRZQUeMspY7pmMNm0Br1ePcmlHJMAFnY1MEXOKJ1U9MgIhm4NrKiTjMo62T8PSSfrIjFuMmoPPMconosRlme49DIdPuc8+ZkA2pA+HZRbNIrDw4FEOhyp7UoFZZjxGRo02Rp69M4CcdhjpkCci8zBzCjRY1oFJ/aZzrpFBZ1cYoHgeKOcW2YMh34DVBrFpIpdiJ4u2RafVfo4j7d0IXXYzzCM+Rw7CDpegYqCCtBpc6HqVGgS0vZPEjmTeKsaKj/ffGTeCO+Q8gxSzDnjcrI/4gMFHrnfr1Oh7r487QNGUZaXIeqoEQNrViNy4vTMMcJcLBRmoVGLuKghhNfQ20oz0ec9j3QqoLKa4JD7Iub/BrXHteDR9Ww4oR+HONKyhYCrcubRHhYx2NLVKvEKYrBaHLmlUKQcAfVJspGA9t85Fu2FcfHQq07ELdcPTPhUuM0arnnj2yvxkmUbYSaKGr7SyHlgPFF2p3DCTQ3E5fZd0BDQkKoPDBYW7AbVDjUgaekl/R3DauN1O8RgAxPt96uydcm9iyCknGYAxaCENkAEEMjhkH+rY9Tw5eKRc851Ica+3GtJ2xdQP13asn6QOKsqCPM/fkelKQ5wjxqpCA2b9zGdl1ReDGAhyGtIwpfWWjwAcmpXrChCW0g19iBv5yVrDK+Xdh0glf0bmP3h+R6/O7SBykW9OjWUgbSalSVhmVgpKy7I3Xj0bZJ1N2WMS6TuTHUCOTivSFfkoXDt1r/pTNPcMtGq3ItaD2uTTOpdrYAaSXhk0T8iUwFZn08nd5lTwRp4tnyDS0jeQT2pj8jvpW550rnCbTqTtSn9mfxZnXTzgYEJgVTCMFXc0/4t7JnxeeJF8WL7703aI8KTPAxhT8bWtD6TtGkJ3v/qz0h7XD6SNVqG2oaWdpbXyr/ci86X269dHHaDUmoMxYh2A/n1waA1wfruOgp8RoITDZTCT2YwB+IiFm/tBbSwPOlzPlDS8FGSJhAcwcGDkNmJnQCQKG4vxGv6wCE5QGZQY4S/OsgKrEYt08wCl0Mspwpt9Iyznngel3ZGwe80OD+niC6JsItbeTDkgyDgvnIEajcNilDoArNNqgcy2xvwwaTDRu1qQTri2/nkuAisaSFCwZ1BGt4uDAUpMF4x8p9IYAzNTwQDAl6nFnHIHo7XGaZEzbUOneEZni9IZq3LCYyrDgEz/zpLO3gQmGSeOCNVAlcHu7Ab9U+2EMkQAZBmEA5GnZbZhjtpGzoWypPvM1MT9GhSraCQWHecoKT2xE6/JrIl3oJtTbD5zRDt6GinH8ZXl4un4XNRKD7I76aoKZj1yRFxVMtiMwWMcAcGsh9jHClTNYgEoTJeQROAyLEePm/NKuacMqeGt4KFinbDwvF9lrf6hl6jf6ggbZtIcxrWoV2e9ByRbMFBrUEbLHscJ9EQMMHQwEDKZBXPwEhkU1Mt3y8lirad4jLndE/27BBzFy1jvUmtRuHaD/amD2hC/HbVrBtnmpY2F5unYpd0OCESmgJyqjm9Mq74jddiEfrOcsi+0xRaEdJ/HovO19mdwDUqum9wDl8ycrOtGJEAZJq8muMpXUwGF4/MApcuuwUj815acT7zp2yr9puujDlDqpVPmMf9Xv2NuldujuAbF3etIb744bXkR3PZSNQYz+mIm7lKIeKdhAbThGQDNueLFo8Qzvd/tpJMgLFpfrgUwAOb9WhPDgh8/vnzQ/cltgeUQmDao9vl2Zp7miAUWbmjV7yhCT1cw386LTq5oE32wjBP3l12xv0DCEgeMDAKLBsPrhGrwG2EkfAiOjHO2flRfkHDVyZYnT1k6t74TpTlzijBpNYLXsJ5/DaQ61RC7l4THVcizXjqfjAXK6WNw52bIQsp+eWjQYW/ynbjPfA/UPFca1FTOcu86xVOWyLd6aPq68hPdP+2r3324qHcu4pz6Gm2adXYIeT94kLJUOPO3pZwlrTSgcRIL6GDHpe0EzuDCu37Db1llsMA6C3jGJ/zHFf/sH4lrDYO/94CkbkIaqUeO/QV9Laue2cNse3oGsN59o047KnxqGyBykkENbRS6W11fZGR5z1MuWGUgqjKxEJl2N+nEQBppv6pnM2wB5/uaFKnZJSiCD+3jxls4Bw+EDzBSDYm2em7TI/iZhKVy1DwqWMIrkq6msCfA8zXr4WzZXu1VwpnNR5ZBvnNLebrqHdu99hvVZ65vapoh14MV3mgRrD5S9pZ77LtkZru5N18fdYBSRpVBif6uM93VIPar6Nsor29+vQYwopx8hfZEhKp8TTWFx0Y7/Am4zcZr/2yOoOBUYBE7IGIBacJE6sycF3hlMKis6ag56XgxxOYr/STAWHGaa/83OpXyI5FLOIFr4ME3TnuF3U3j1UgJb8so9g0O4gNnVJCyvJ9LlVoClO6DyA3S+FBrZSRUdMmy5dwJzwZ8TB49BvcZ2/5GjNjD4EnGI+U1FoRmJo/GF54Dufg7pkIG5vCcsggeztEjkjIuSVIamXnmu3gK7wk/if/EPL23BU9gIstm4DQ3udyZ0rLbRot/L9uNxTgCG90verDKQclpOX/PYVca0Se6U3QuE2iNYzlNOjAGC16LXha41TdsOGIz4N1eJdHFQcmf8kudGHGRUbbQ3SWwKQjlVES2kk6uOJIPwyqYqLreutKDJrSDG+pcPBxg6gNA3VW6qU1AbZ1ywuVARO1OOufCyZpHhEv9WGxOycDatlnuRpLgRO0MNtj6XXzMBSPU156mQ8l1S0/Lljr9opm0ycEr+eKOCvTU9vcgV2kkeqW0kAFi64HwsPqL0o/lo3akRbJlt3SlZSn6bnJPgmJqggMV3LHP+/cbr486QJlp8KdNTAzMc2LahOWeGWYEZjqDML4cTU7MOQsGd/HMHHFyR0MY3ZnBSRp9m/ly2IAXhtswx4SfI56fFt8+cc5u65yxm4h1Z27hjXNYGhcfMWqmDs88zGqaNY6J3/TOwMT23Fjj0L87dpkpZLDYkRHHnE9JByJ2O6nieNNp+uxP4gDkS9qMC7NQShHTOAjnOEaNhhYai2EztDJTnnkOBRdQzhELPGvOPAMfH8CY+TqDnJd16c/0K90m0gnYjIVkFmnWkis69TFxnlxNaflSvpzOyPNzQoc1Ze1L8MBsBvLcHZRLy4Wu1k5zWg4OjSvssa5dKCNTMV/woQKUiccZuJ/TQwZPbxmUIHnOmXLZHxrZSvuChnNWPU/dmg6cKS+UhzK86PsM0PbfxGlxOAkbSLl0L6/gSc94CXn2QfgJyk0u+J2Je/niGoVb160Mzh58oYKbqc+Xsj3Spuh3AIHiEcwENksbePBaByeSivQGIP6t69Nhw+G+BW/8j7qftLakKc+0IQ895ZcdD/tBm+edoaRzn57TVSo3Tec5Y5q8eR1KO3deF6GsnXO1C5jA7n5tjjy3uY+UG0PIKrMNamc0kGpf3bwrHmWAO5PDVmVcAiFgul3xo+12gen9TaaQxlNoMafDB+1VyOYptF50p/pmRXufys8rra1keY0bKMHV93xOnZrOKVFfbYJbvlyU9CINO8CdvtLgrdcHrKf9f+C1UdgXiVMjAIneWnGXOl1IOOb9p7YHeQ4SXODVfQErdS4g2up0cYFZ8AqcANa+8762J7fbat7cE2EWKe22yiBigyn93OhS2JZh9bWIb/0o0yM4Vpe6j11Nkem+lbKxP9VGw77oiLKedav5tT+bp9hkRPASeesukh5eNF8IqwZb+tkg20EU7y9ydY8jadK9bIqXPqjFcqHD1s/mh+Aq7al4tYzeiN+za5GvTa6hfdtgC5t9K3YFvQvyawjeCcwzhIWlCvrGMLsidzUYz5u7bXvDYSfbUsVXuqisFcL6ty8o3rGinu/qsjITlNVFpzfiq94ugd8TJBa5VXyUENrVKrsivIuA8uxOli6MvvnzfcVvaac6uyDmG5JCHX+C30KSy421nfrzRjfe2qdCZePbN3B93AFKXXck2Ln+hOC7cbgVuE3I735fLOArxuZV3HcJI+qOTYLX70sXn7WrcPy+v3ewgYuiX/q5avYK/yawex1P7dT++Gp0bnGo27cEvRWLy+/F2ylv9t8bf+7k4c5zKqwLbO3nXZ93ed7LPMF3V4mlXzfXHkje0e19sqL3ntH77u8rkPfcfgX4bRn+fenQG/G5v15dB/gqrbcft/R5n0159uyJrXkK5hmtN/m9LfY+HN+iqzcy+xb8nuL1Pjnf68rv9/HlffDu8HtabyeMyOcznXuLHi1gX5H5S6VXytz28RtUmpvro57iiVX1nvvS4zzKOFshN1XWIlnUynzu3vCsNxIGuHyiVi0zFepcCI6Z6zlqKxdy7QB4rkMcWhS/LY4dBnJ3QODDPfUD3rvg0Kub2aZnip/bJ7k7hG3kyRHLKmu3ponizm2RA00HMx68w1NgvdLQM9uFZ/JY6DwJf2+Hq7Rl9fdgO4biUdAFCZP9STosRsBr6sa8zyMwEFbXZY2Sg8Q11qUwAxBlDM2DmbTU9THFO+uDjgxefej7lt/7M6BlUuev4+/JtsjzVOZuw2EF25J++Xt0eR3v9AqFlqdZNFj7N6zpWlCUTnlXzRInMCjD+pwjzGWBb4H3WqRd03BZVl96W6/AAdfvoNbjcF1Gn4kC7oRdduSMrNe7eLhspafLuESqTw1ady+U/okcGttB6ykvq+9IZxfqnJGSmSlWiPsubTQv9u0NxInPWJf+q9q7+VCW8eS5bHBZ7B3nRUuXQZtmpXtNW9rdpLsLLLeyT2PHC6sOL3jaFU9446swuDum+8OpGPSifWd5tVUNQ31+1cdqv6pewqJvKfvrvTYMipdRlnQqVwTnxu7fbXGmvSJOTrtDPJd6AtPTt4l4FY+k3VsZueGDmg6VadIlDkpE4CLyrX1fJfz918cdoGAj8I3Q17JlFwJVuXaSIHM3Id3kvAzQwmAaDBPY4oAvQpgGm9sNd5hxeSFme5ubALeTe13AGHeUclq31217GQWVsluYhOv3z7SPS//U4FsGK3RKRUilq7eCLW170TzasuXZgvxWnkZsdcIrjy60roBPeFL3LQ0FwGBSuxJEapiFWiKwBF0mBkkDFYgwsrLQxd0LNmHAar1iGDagA05kMGIM2Ly26u68X2S8mGNNM33ej7oelFYSfFIXkhcXtomsrvioA7iRc2HoXqZgbvWWgd9C56Yx61rSTrvLAMi359oB6svdZUpXuzxY2oLoXTxUoq/9WnWwgw22Z9iaMwneik8sJH2+o/+l7Y3vsMJZ29V7ZZcWPm3rtbA2vPSn8GIw37rKthg41mFj8qxoYWt/bmVJ6yy60Tj7Bo+Dgm6L60ts4YeBdFO7pnza8NvovlyJ+16eurcUVWBV3q9y4Uux6pzCb9t+U/4N18cdoJiOaPVvjhRb5bnYiudUTUPt/R9UPJNnpVTMDEAUpxW+DOXWfkW25eiu5daAiqNxGe0iviszctnjrh/vrIQYBjopQ2cLaCRq9D9iISuyvXiRXo9qqchz68PFaC/9VIed7SedsdWvIGMbbfI7MiheMJj1YUYJAO7ob0m7mVIw8m9mrkZ2zrN/C14XeFumZDQOJYPDus5oZabXmlzQq28SNhoyy7MMyBPSz7r9inpcU0LFn4iBuPA3dSDPR+A6lqG7nlCbFoqQzCzWOpnuRZSZENnoWWbSmQv5eJUMmVcWI3TMK5szU1WZ2eSiPDpT8pcXnxNe8R9qHLOuJ6+N5PJLELR+GKB70bbKG2CSEhGyXYMUNczkmVLGsD1vnG6dJRomt59fBgelf7bSY9O15d6is1gC0ast0QFdO9LK6HKAt7d3acsXHV2CygueLvg8GfSB7Vrxq2yKrbhq/SJ19vuC80a/cr6K+xa4u2QwNIgrPtq17ec2ff3QDsBwod/iU4oXV55iw2PBy7rMrexsf6seKG00cKaMl5zSl77x+rgDFD3opg6t4adPkoVbHco106oNXw8FwuzDx/hSJDpaHp7Dk2DBdzHw9NY8eVYPGKoDxRBbRWGjTl9dT2jMMYHco6QFw+UAHwPqVNubD2ztk8JrRbIURhNYo+8DcRgd58Wm0NrW0yGLdiWcSrNrObaBifV+ze9wdEUJ9qaD4LC0owe1Kf1Jx8EphP2gpoZNa8ZTZOuAKf0tJwTfHahUf2u/qiexwn7U70iKR8anA5k6Lp/yY3Lo2+isDDWeu2xKzB2YiPfqOAKWex6GJ4djUTWmy1QLLIL1QTgNl47ePYIyDV7lbK+AxTcWu2RYUgdjGsDqsC4XXoScBsDRuYeydH1QG6do8sWCGw71pl/qVPWBTip5X5zpewGjeQKgMm0t10CP5mn9bQtOAg89bM7EMxksdsdsnmqRfX1GGiRM4scpn6JTli04xsHAppc8gKzuoxxU4VIeq8uh+s8+VUlUZuZiA7D9vepw6S4ah7VOSqfaueLZjf0j01zsjQBt+7dYmYLZtiTbF89bumro9ko+sdqXxM9d4WSAutNTYD2l2yDfwq71ydKo380rF17lLrHsqJVYaF9NZLrJhcKtVK/bBGSqkXJpeYieSXsyASo24a3XBy+S/RN/4k/gN/7G34gvfOELMDP86I/+6PLc3fGVr3wFX/jCF/ALfsEvwJe+9CX82T/7Z5cyX//61/HP//P/PL7t274Nv+gX/SL8pt/0m/C//+//+4ei8oSxu1OUY9ZvAoQ7pboXlhtlsIAPuSdSs5a7a7tUnAJzbXv9e9zAeUKHG/qoQjz7XOCM9zzHa8bnGY5C661+GQDc1MV7+P1K37Dwfy/3iizdBpXb6a5LkHITqJg8k/oLTMVvC3IL3lhPFF6CJtuCG4VhK65P6fZUPzZDeff9zBENrf+a7LUv6T8g8kVDujwouVjkjnDQRa+y1zxvx66yt+LDltXuXJw39BuX7+oU5KvwX25mRZMabK/L8XfpYeF41TGlKet0UGIX2ndx6d9Ow7tn2j9ru7bbj4XmUkaQEnzWjzUh1vsCT+su8rnwT+QH3TT73YGJVT3TppVmLZkruVUQ5X7/5v0bedpxN2x/C+93ukLkf5EFW9tSmdMOLNJ081hIv9BNypV9VxhCv7dcHxyg/LW/9tfwq37Vr8IP//AP3z7/N//NfxP/1r/1b+GHf/iH8Sf/5J/E5z73Ofy6X/fr8Ff/6l+tMr/7d/9u/Gf/2X+G/+Q/+U/w3/13/x1+9md/Fv/YP/aP4TzPD8Ilgg+e7xsfHgscR5Yf8Xysz/l3ld1hmAlc275vPgpPvrHgZ9DsB7lqAlf7Y9s9Exg8jh0b7FWSBzozYjd9ys/oPhD3lRYb/S4GI1MYN7Ra+WMXnIsmMABCmwu97Wk/DPos642NV2Onz7j5u+Hs/Sza69u4VN7sWPlPelIG5R1Rd/Jn+9+23RP+xGtq9d4BjKP5tsu6ypLgV+9H2mQs8LMLrtX/oq+VHF54ojS78HN3VKuTQhngrZwY0nZCHRTEM1zhCswqtPCWDkit7VrOBDYB6b9A49H4sO4OF9Ufu7T3pG7hr97gHlfsnkLoYztNILAvOO225O7+TT/Iu4V+Kz8WPLSvossLf4r/Oz0V1qrPu6ytOC/s2HjbNOxAR2XsiqcGM9j6BazNXvl35cdOq1WH177a1q/G+fpsI530veXZpP9aHlsfV/5vBBV62Va2P2+7PniK58tf/jK+/OUv3z5zd/w7/86/g3/lX/lX8Jt/828GAPyhP/SH8B3f8R34j//j/xj/3D/3z+FnfuZn8Af+wB/Af/Qf/Uf4h/6hfwgA8If/8B/GF7/4Rfz4j/84/uF/+B9+My5MMytluNwofiMIIxO/ugSpyxIGZ9R1Fn0n7P7xC7yuv8Lxgt0MWn/jcj/m7Hd41/0EKx0UXggd1wxUGbsKSsPspKdf/n6LoFnV0mQ6l4H1PyxniZ1J7fVqnm40NS2DJxCs+27aQ+E5lU1xMpGjS9/7ngukhrvLENf1aN2uaRf5Eb6Z1fNK7yeWCkFlUeXfDfV3wOMak8Chvxt/xyItG74rX1q2uh1glZy1zvV71wPipb1a5UplRvFSfVzxLBDb2Rbdbz43vXOjF0rvtcze352GSqkrbe4kf9WRZ8/Xv3dZiPttf1Ty7/h1ZxuetSkLVovuvtJ+0znFQ+GvPWxYr+Gx92mHstr3FXbz+t6OEbbd0H2XuNV/3MHZcdDntPVXP3bVldXWX+nRdnSlXetE24vdFj3DTfm7XabqdPUL91Dffn1wBuW166tf/Sp++qd/Gr/+1//6uvfZz34W3/M934P//r//7wEAf/pP/2m8e/duKfOFL3wB3/3d311l9uvrX/86vva1ry2fuJroF8eV9+CrEXLY5dgHX2DYzf3dmLLtJ4bJr45tF1Btq2D69b5OVO9Bz95v7cN94CP9IV38rvymHH5VFqXnzoOrw9G6hn7R3DPDbguf7sqsNFPjt/JyfdZ92elF4Auvfa+7ydEOY/necbCFjivvVjlb4V/ptbfbz2++HdvzHY+97Rv4z/C80OMqi3eyAex9XT9RwLZya328ARYKB5ETX+Hp1fLxHN8F5v570fsrnnFdjfwdLnu/WPfu99P+eJe9g73CuNqMhafiyK/yu+O6OlrSXu/r95U+ev9Dg6XuT8HZ5Z9lbnQeS/21Dd++r7istupKjysvl/p+h8s1SGn4jc9rMrfbz6uO3tfDBv9W/1zL3evJMz16y/VNDVB++qd/GgDwHd/xHcv97/iO76hnP/3TP43PfOYz+Fv/1r/1aZn9+sEf/EF8y7d8S32++MUvAlClGkCeOhLHjw8AR92rZ/n7WtbyHg04yzZs+E19/vb+9v3Z8rH67uDKrjDdbupb92fBRe4TbhnKtbzif/m40OSmbb0HbWvpgwHezxY6Vp8MC12l/hpcWeGFdKoQ/ix15VmkB8YCw/m34nbTB3epc/MpWBs9q4zL335c+LrAuIGHpf72vdw/4vMMj7s2N75FXzcZp+zxmWswM/K3fC/1pZze813mR8Fsp7fxQYKalmfclFFZucJbDfjWVhpW32Vnua5t74MM/V7qaZuXUfoVx50O95/34XQXKK/O+Q6u+z2Me748b3MNLpT+lMENjq91fWvr2b27vyEy5hhP8BKc/XpvhUtab8GA3/f7Um/hNcv39xp8XWVlpbfaizuavc636MMmo5co4a4/99clML2Bv9Jw15NdX55f39QAhVcvDIorzmd4HanXyvzAD/wAfuZnfqY+f/Ev/sW1LtbINOD134swFjFXQ7NHugR8YdLdveW5wn2KJPao8q6SLz9a2J7C5Mu9XsNPAN+OXMuorG1f8PKt3HJdhbVHskL7y8jqfWirAVRYVoZjoauv/bgbYfYhwYrf0ujdz4YpDV5GEN54LgfpAolzfqO/V3giSzf9W/vCka7QVPBqfNTobzIgdZ/K0SYPJXNLx29kyLvs+nAD/eTe3QjutbJ17xJ0XAteYT4xtm/RLQV90fcnRv8iGxtSIjMF61kdv7a9N7XweilnK7xbADfO9xk9/abMXbk7JOV324h7B+fE+6a99/O2790dlP0Mx1ftyv7jAuReJt9Leq2/yNbqc66HoitNXvcht3i/lwgf8uztwQnwTQ5QPve5zwHAJRPyf/6f/2dlVT73uc/h008/xV/+y3/5aZn9+uxnP4tf8kt+yfIBxCiKxu1vHt3fWtnvKXExrC4fIN7FQgb3+0gW5e85ksYFLNTvhlhePgb+3UUJY333BFY8Ifjn7yW9fvEQWPpWaBYuLrTb6XGlBQtfceomG6fGD9IuicdzSIkHCVq/l+alHekUcdL/oOWWOgW97lc/5WoeEf/mSb/gC0v9FoP1efNzhyOyJbBVXooMG09WHEQGFr5tfL4tc9NeCftGm72/yt+icQtByTcaftFUBN6lloia6ILyW6V65SkazW7hTp+2ctr+BnaVhWrCF5rcXa7fT8pgh3EpvOr1Utibircti+yvxXz96WvZ/rnCL71VfoieqQ4soHf41APVkb3vgrJLIdXhhcubfGqjrggUqE3WV4lRRl/bXuAIzS7CI4zbWFAo7mWbxNeyjpXOZftUPr3678/w0Q5o3Q0//WthzVZQyHe5rrJLeuMWl7dc39QA5Vf8il+Bz33uc/ixH/uxuvfpp5/ij//xP46/7+/7+wAAf8/f8/fgk08+Wcr8pb/0l/CTP/mTVebDr6cWoX49j9uudZ/nBp5whxyV2zuM+1nCu3vvuVzhvWKwlt9vbesbwOdV2u9jxl1YPxTm+4o2/CU/dgF3D3+XkdflQNoRA3qxNvXbBZc77d/LrkA0f3LN0b3O5z3B+ibYT3F79ofCkntP4Nzjcgdja6rk/w6NO728wn92fdjY7r6hbxzGHTy/Y+eH1a+vXVZeA/jEXty2/SEIvsLf91V9D8zrrbfYvL1Pb+zLM1K+r97Ns9fkxe6e+7XMByD2nuut9Z5EJ3ld7e03fn3wLp6f/dmfxZ/7c3+u/v7qV7+KP/Nn/gy+9Vu/Fb/8l/9y/O7f/bvx+3//78d3fdd34bu+67vw+3//78cv/IW/EL/9t/92AMC3fMu34J/9Z/9Z/J7f83vwy37ZL8O3fuu34vf+3t+LX/krf2Xt6nn79XosuJbZy71isFyNdvwySGRpUnAp53uBrEv+PXFetziv147P+6+1LcMd1LcEKW9s6hu2zP4W3/FhuKw/8s/XDGx24K4fvpeDFHqCuG9F3nTtspQ4mwCqQ8iewL0ERB/SLn/e6dNNo29yVln7Avd9VV8L3PYpuJ+L4LwueNfJjG8kWnhVqD6w3jej7LP6P4eqF3v4PvBv7T+/32o339T4N3i9Pej4xuvfGY4P4O2HdvWbGEj8fDX4wQHKn/pTfwrf+73fW39///d/PwDg+77v+/AH/+AfxL/wL/wL+Ot//a/jd/2u34W//Jf/Mn7tr/21+K//6/8av/gX/+Kq82//2/82Xl5e8Ft/62/FX//rfx3/4D/4D+IP/sE/iOM4PrgD10uCj92g7+m/pY7WxbVM/m5Hv0WrGqNchGpv80Mic4/TMROmXfB7PjJ+ej0zGOkPl7Qc+3PrCG4CtFsn6lLkNacQ943hoLb/Gv7PnNv7nKj2qU5btJto7iYLsxtmZyC7tlF9qdv8fSM/dw1QbhmoFAx/pd8CW9Shn93w4FX7+cpDv2vjrtz2/Blv7/BZArV8uNd9BcXKcr0meq89fIvo3z6n3G96cQfz0sfXrtf058kaqvf1YfteUWn5vufZjX24aW/VDV9J/oyOCu/GHj9t9FL2PTZRy9rN7/fVecu9V/EKGncwfz+kfGo/ntqRa7vv79IrcvTmayckLqi+5frgAOVLX/qSzO9eLzPDV77yFXzlK195WuZv+Vv+FvzQD/0QfuiHfuhDm7+/Lh2367NX63cA8GbfXgp7J0h0LDf43P5918Be1lKnXxGc9xrhZ9cNfguPb5KNflfvLfBf482H0AVPDMiHjCSVd7cJ1WznfjHgpc3Ch9mYXri6lL2bBroMstWhPcnuLOXvcHvWH8HjrfLytMwzQ/pWOB9Y/7U6Hyz3eK4zH0KT9zqyt8jkNyC3l/Y/AMZ7nMV6+z1wyxa8QrSMYWwp/4brQ3j6Kh8+0Cf8XHF582Xb992zre3SX5Z5LaD5wOutQdl7L/Wl3zhuPy+7eP5/dZnb5jzk74Xx20d2f1yzkxs8rPdtKXvBCLfcVdhvcgibQxR8bvG9Nfo3AcWbAoI3BAmvBVHftOtJUPNB9XclAZ7T663wPiwo03/v29zk9GmAsf9+Leh9Jdh6SpfX2nwbf197at8QD5/h8ZYWn0NaneRr9H+Gx1vbf8aH99Dxg4L/V8r+HPzVh3H6xl7d/N268LaA583lpc7PedDz9HrSxze38bp2rP5ml0uF9c20sXK9OqD+Zl0fDvejfllgvV9lyNHdetw4gJyzAHMPBgcGYLOPSDazOLZ7Tjk22WHm+fKjkS+CGnAeEw4ep5xwt2OXA5c8AcIDn3EpwyHFhguPN064fdw0sB9/bzbrpFFo2/U78cy+l9rb9ahzkov95xt3Ad/a1OPG89VuBvCY5XgixzNL/3ix/1Fm1hZzSyRqKssktKw2iTeWE5T3FynCLF9jOzGA4J158G/OBE/66rHoK41Hydb2csAsO8hbPfpdXhbIabMxHNOR8ke6omWTL5g0qzbj5Hm+jycBespxviXZgDwdNtuYfDP2AIZjjgGbySObcSI+gDktccj+oE+8mdlQna1rhuvLAg2TuNuoO6KgWXJm29tR6/uR3hQ38j2zUKAelIR4ci5xL9lAvm3YWqc8k1HWNeF9pEHLrVfWiy3xZYz1jpPil+X/xKO1q+XblyUzVQ+oN4r3cJXw2I44Z5Pn7EsC9rRPENjsd3dOaMz/imb9qaYUHuujeVYoQmGKfppdeL0e2b7fa17tMoG0J3zx33Jf21eZKhlJG42Wh6Udt+KJ+05/tWVX/rGPodjdX57YTJxc+FYytdkabPRSGlx0ZOx0tsZTaa/so1wKrmEzSHst3zQsESqDI/aAutQmOnyQBz5uVqJtsJxxUQFuPXnf9VEHKFSNUpMbAc+CZUpKnTYhqOiUSlhCSGFN927NcDKrBCCVEPL8ohglWDRR3QdKxvJuC2if7gV5fd8EGjdpO8WsDPjlv5ZIkaWsl7lZu+BTpkoUZ6ed4FwGp9AUTrbQltoILqp1u1OqcmqspE88QpoKS4rXm2ELWYWduFTd3ahc6X8xyi2B3TchjD6/GJ4bnkc71yEcaco/bJMjpQudNrvSfWt80v0pJ1BrJGzdl9W895QvayDJaE8mKg6+tUn+V4Kq5BT9zTIbVetkF5VzISwDHcvAbg12sq2UTXOBznY1UGG/bi5t29MZRDdEGba0fMmv6Dvb5vPr+XFZP1+fTDu08Nw6eGtCCGFKl6VpiXbXgIa0aBoFXWm3PGWK0uCF52KDNrKTviRr633rXMu7SQk5t2rTXSDxMq9EeeEt9spXNIWWbHclW7W6/N28jjteaPIZfTK0zk2Pmu22PGcttUulO7bbkexUwRB8O8bYcDR5oA2LbJihBrciiy2GVjaawRhpWvoAeYa3Xx93gKJGdxvVdgYFgBsGZr3gPoivL9PrUbztzN+cku/1MBHZghtchsN8YgzDvHFoq0ExdNbBRHlfd4JQeG1SLuXqqbyCHWb5Ir3GI57NlOPoH/QlczYveBSdxbDEiHzrD42Uab+C9m29WqCp7yX41ZcNHnaYSh+ahbVNs1mK4heYq3xoVm6YvM1YysSbhJnpsHyfXraQI/Y5MyuHAYwZjkBGJVGPLwTTNxCPfP8h8USfaVIGyuFmmO4YY2JiFIw5DCNPhQ14SXIOML3pYcCWQdkMitW4NHMjbegGDNM0gyJmU/SpxH+RU60B0CGog+v7QI/mvJ97ZzhKN8pwklbGxJOIbcJZIhvUELHbpgMjdkn31LnKi6itX4lXuKjsqStie42KdY/p8BjcmNfov+ly46zEpq3f3uUpr7r2iaiZ2JTs1MozOvy2LV0W0uamY0Wg7Vn9DdHLhrPQ8omdY5AFs8patK3ENYPCeos5IzyRK1/71BmU6IvKQlOH+tlENaw4VZ8X+u6f5NnG06YDg1Kx8WQicRUMVLGb/ipJUoTi1CLRYxYZAPQAo+lcA54ujLdeH/UaFJFaAC1w4BcZZHdlxeAtwn9lTjFNlI7MvBJb2qx2RCjFCNleT6XBVjh1SwWuoW393NCRdtX4qLPX9tW5r1J8A+9Gqa+kaMcq2i0472S0C/vWPrXR3lGp+lK5S2t7fc+2ukVbJdlNG4u2rqRY+NO4tNEseVU6L3RpOWW5DmyljQUHqS/w2skLz/XfVaR2ZlzodU/4jQZVZ6Fy82chVuNfOnKRYSiC8tu2Wze4Q/FX0qx9sA1L2Nqv/r5Djr+Ftzd47PJxh+da7u779qY0Ytf27vBVx71U6Hv1RMRKYZGPd/Zzlcntnt5/QqtNoZZ+Xrlly8/dDl1Q39uT8rb9/ZSZ9ciuTy59e42Oet9WGIuOS2cE+EVv977sbWzYrqjsMOWJ4Hitt964yK/K6FNGXK+PO0C5XKqoJKJJWPdc0K7MWhUCr96/St0efryG723EermzSZff3Hsq9Xcw339/Nwd8finhe38/QALZj9vFp3f43PHiGa9wc/8Zbu+nScvSSpl7XJ5Zotdwe08577+r3ct7XrZrmY14xdBufWtOP5P398F8izy8sd+87mdWpOz76PA+frzl+kbrP5Ot9fe9/fmQlp/R/e326H337QPo+L4eXPVnL/sWG7f//azus3tXrN5/vQ+Pb+xS7Vvvvo8O95B+/q7X7O03r+2PeoonVgZi+5jknnWbp0VOatpWj39Hfsr97rmWU3jouljh+aUc/77i7Y7IfC3tE6cn/dzh7jRQp7b3ZcO16+SjvOczv72PqSa+S39gmd0VwdR+6N/Y6AmlnwXayi/Bze/ooE5r4dXab0/+Ljx7FrguPFAYV1q60m6iQ/4pYOt5tjl5z/vbLGSTw5RpwDB4z6Hkgt9gXrfL+Ypdvvc+SLvVB8dKH+Wx1SLRpsla5sKjgtl4rTS74Q0N2iKXAtvy2ZIxETwWvm0wTdrTwlXmyeU334qT3mMZ2+tQ7rUP6MIKx/q79EhlJ/vhhLf3Y4EteJk8J6zFduz8vOmzynjy9XKU0a390brS9vZxpRVuyipOWoY00/JtPG5kzja81S7dwJQit7AVF2z1tM4zGb3Vi+1dSHfldpyX/j+pt9/fcd9/izy2vi03peDWX4W1DzrvcHrP9VEHKJf33fTLCxbjqu8H2T/Y6lGr6n0iwH2deu61iDSKT8BH48V2wXfIoOp4MTx+m8Bb3kkBff/Fhg/2d0p0n9wD5vLODNf3ODjcJ+KNulHCAMBn902sTL/zB0t/POf+s2upl4KHZZmUc8VdcQVQi3OX988E4gvfY78J6RNtmtKleIfC+8pD6otz+rzm0he+LbKiPNC+xO/pvXcFC+ra/hRZg2ChLxAc7cPyx/R40rK/anrzU7/9yd++9GHpsxfhuh9579Ln/b9FVlin5XSV5R0PlDS3zFEqW1cIdxV7lfPULDrUoo2oOTwGMO4bDOnvJnek0WpgA6/iMbrNBUYae/bRpS6233wa0/UJX9t1gV0/Gk6/3JB0N7E3go/2vXTJSBppxhf6mtqF0mlInwAGuCi4tHFWv5uPhWXzSjhpIjPxj228bvmykr2WOGjf+benbZT7CbogFbnyniUOESsTV9J5Ywvp/ORP5Xz1woOYamuw6cnKV/4ptkN0qPDZEVse3DxeRFzoQ/qKHgaq1pBKLTXqxjd8fdQByu50yhCrAlGdisFtrEu4xXItjpOKIeKnRpiwFuHWeovR3z4K0VGL31qpY6Gqb4YEQOGHBfc2fItier4Pp+qrwAl+uAkgLo5L6YXFCLhkAkz6zmfVT8FPyxQ/TWhBZfDNSIE4IhcZNr21ZinQ/h/rKr04EHU6gye8Izvc5Zv3yQel8r2sRmokS3iXrcCqZCEXviaMBufr37f6sAUlt7KIaxmhYiOG5a4LjjsdSpegfekywPps1S1A6RzJhJQDiD5TBlaJD/iVsaBcbrwQuVIc6i8XnLF+4EqFFWZJtxhk/jQsAKS9xlkDEqQugvS0NXip35vOdrTg11lToS0zMqp/xTviVDaRT6m33bGrrizQug2xUQRVNCTp6g8vXK1QEh4VPYiL0lSzfq3/FKjGb9VNLDgkJEvJ8+BgS2HQmYuMfam42xbBQel9Y6uqB6XabQOKHvaKziksh7TDbu7tYi2r0qUZ4vyToGu30nI5vGSqy5Y9U7smMvy+66MOUE4/Mf3E9IHpE6efGH4CcwB2VoZqOuA+Md3hWef0E+eMz/QT8NhxM33inI4zy083zDmj3jzh88QcjgmPv93hc8KHYU5+HKdb4IMz4M74nD4TdnxCeA3uE6PunXCPEyXmNJwWZ6nAgXOOgOVnwYkReTij6RPmE2e2NTK1fyKE7ZxhuHwCc56wnELgNxyYZZgmPIhX+EbbQesz/44e9KJLR+waMUecNzOogGlkp+OcSoOgtaWhMIvzNaiEzCxNN0w3nG44En6nHqN/wwGbEz4Dl1nGu3kQ+IeiTFCRLJzEiF02pxtsWtHxnCcebjX1gukYMBzZ9kxjFjtZLM+8acfkcPj0kKUZGZQ6OcM9Z3DybAuzOMcEQQu3OH/EoHa8rYfeo0zOeeIxJ+Y8ow/Z98c8U6499SJ+Bz88dQT5ve3i8ThjxUtuUXDOOQtWZBEBZopc5cd9kf85PfUl6EMYDpeMkcHQAhr4Ne77h5dlPyaifIpywWfw1/1m21iCJNKk3EmV7XIQUVQDXY6v/MwKX+vpLEJPN3gnjjZHV1111Cif+EdQm3bKvWzkdMtNc5402WUhuD2ynlF3fOTuo8z++Ux9DTm+8sGqfvA8+G7TFlko+8XuFqyQsTiKabMVGPX3qGeCN8KWe9lGr/bIv+mOIbKGDETMc6Y15QXpjEtPHRjuoadOGrY8era/DAiyBdo0wrXEofUj7JC7BcyJtD3A6She+KJLXv5GeTlpD6pOtEU9Lhkume5YpWQp/55IWtFewcpWly7CFjgTlFerNopGb49PPu4AZTVQbSAtBZcHxiijWK7veTlkKpMaIVWaVfgklU7iG9IgTDDFOZHCJMZibTvwo0GYNOr82yxhAdONUKo+hSwyDHNTCn0G6ZsVfPNwJrH7OAMIoRHQgY9nP+q5GOyxZKrDVU/vg7/cJ6aNNTuy0cLhYpcZoATQMrzkO3KwKdJuoMGMwIyPqYYLD0jf5O8630zcyFsaxXSajqRbGm3PrebOrcMM1RZhbWOBNPDwwtvSwPYWVNmGnIo+JBgT4mw0o5y3UZ6YJZftsNQprfdVLg01WI0+QHjvks0Q2pZ3VjkUXmugsPOkZQPVxiWDkrKh+rTKYyZRRAbKOYREF9UU//pNvS9ZVdq2IV/DBduCE6+/OW0J17bQEDJt6C7E9p5KgEeQWnXKyHdfey2c4ih82tuWgGftlwRA5B16qniiJpxS9h2To3rl3QJbeaR2qPkM0mmTA0g/XZ4XHSCwAExLR+wKYy+nlHCSDTzLx93KSasckGPLVCshFX4KWT8i06BOi1wVPcShb/SjPS3dEZru9BTzsPFd8d7kYOmvSX9EvKC02Psnhzi6o6YWFa+t/vuujzpA6Uh8ygghMwjOcy5MgouOqqteBhBwjgR2o25LHefUCzJYKGdtVZYjfYW/tAcX4wwgy1g+g7bjPfqxgrsGPl7lW4gtHY9lpqGiYSqoo06GAcul4GgQF8o9G18JtnrEzHYj7Tk4ekKObHwEfT3aa6fYo5qJWUpriidCMQZktJJwrRa+oNagwDm3HH1q5ySjtuIz6dIKEw45eQhbeecTZy5ms22hWgRHIx2qnuCBclgVoMzg8ZpByb+8s1ABC31P9Tr5s6SzpZ/unak7Z2dIOjPYWZIKZiiXYrCAXMuRlqrlhzKAGskxIC9HmeU6YNoHE1ju3zkyQBw1+ynPM9xbcKezrywB9QjtRAivaYHGp5xJ113d2uoY2mW3OCqvfP9XnW4FxjW3WVtXST90zFLf6jBbDNeAccW7neH0zNZtZTiCB3pg04FJ/DYjT0nIzcFKe0sWJz9wCSxVytxzYLM65JFzPNf/VKfozq3krWVvhcnfzKBowBKDHu/15AzALc4FIi2GrAtisF34UCeEHpWVY0tJt7vAKXyUtW7mPWZQYopH7FjJsJUutGxq4LJIwsavTXYJw7jWX+vbUg7VhravsmiCB+r5W6+POkBp5q4BBFN/aiyY8dAyDn6nKXKFJ4zNshUIGCPMWXC9Mh2p2hmgLJkWUbzOgoQwjFIormmZOdpj1iQcpkvApLiWoaiAKe9nhsTRQt/T1JnpoRnJ6GDptzde+4d5CTCqSAATyNTr6LQkEIGKKV1d6OMbX4kHQa+Gj/axDTyADDo6dUqF6Oxay8pqNOCxtNUzy9MZiLn8tgxOpo+irXkcrB2n1+/njECCh3bOlwCFdVxqZoBS99TptafdgqCbIHz5aECAwmm5X4aXAZAvfViDCPJpzepFBZUfMcA05GIeV0PdQUH01cQsigGlbgs+nriiHJuWoXnmZWvbFxxoOzacnHh5tQFjQLEFK4lLH9u/OpEKTIqTYexrQZieHOyKe/PEKgPTegHqObTv/M9wCQg32jAbudJktQm0OQYGgisOq7ywHrZ2sx0TG7bwIi2C2mTQhoXdVvxoP+Bqz6/9KD4A1YauwSNrSD8IbUq+C4as5ykZWem51u2aJZsL7Wgr+L3K3k4/VzjeOPMeWxe0KcKCV2OF9G+QZ7VRKOWqRNBDPz0FveXI0WsPRSNcqfL+6+MOUMoYhwCjvuM+Tb06Q/hc6kHqqiFtTcf6t89kwliV1cmgSP0HH9YgQhVStLjatXo+4c79qg7uCmo0Vhi+ML4LFkxIW1Sepe/x+HaKx/3m7619Tyepc+kBCKqEfHNLYHSliZppsRygIe4uej1mEZYzkH5co+IX3Nf2qE4pL869wivPmQVqfoViohQ07+fck489oEg5nD2HT3Y0DtxWbPBhsc17WNTh34a142Rr0WcCM+W71osI/+Zu5LD93QZWeUI829mIwVrkaZPJxYhS9rC0v9xf9BVLYKJrUC54Sz2dr6tR9caHdWHHpo/V301fFsezCl6ww5YyCsslYFLBcD7M4+J1iqeUautTqTjbqsXAXc7Ra7fqnvAb6ojRPKCHan5tut5PAdqXkkl+uciG8t1bJ9VW7fZL22NmdKFb0kxtUfLAjO2sdnENnJME+z05TZj4A1h28RTtwM0HPeXYQedGA3Ld5dtR/ClZ8YQntG++NK639kzaRf3ZdGEgqTRvGCUxqG5Xn1BBctNXJT/rynRvgKccp9xSRxfpf//1UQcoOB04J2IJqMHPExE4GIDHJmhkxpmrj07gPOHnGTDoOGJlEnyeaeANmCd8jvw+AxYmMGNxrc9wiLF40uBnOhSbcGSduX6Ho5olBFzUhdmLfMlnN68MTZyXQRgJZ0afnB87u5y1ULUxz3n9eUZfKbA8a2IL2FBtsL1Z7fpkxicWhbrF4tIS9glYvuXKeRrqAnOm05wtucziAExsgYslHZZnsVvbbKYqbASYOWETNCHJ+5n0J/5tHJyOgNMs5vAzaX/O+IwTfvZ6ICpfjwAjYK0TX311rUXLUzIoLmYh6eOe0z1uwY8J+DGCpkNjP1qPjgtLFvk5U0bOkPe4H3KNKUZ1auAk99cOpNh3xq6NKVIHVocBDcxP8mAWD/Sj7beVT+roPBaMKycjmGOdKe1W2VGGseY4FT6af+sHXWapJw5enO5Gpf6xW+Jm1PpsiUmyjyI3F+gu97XByuoZwMVSSF7byDksrooni0i7xjmozoB8hu2zGfQepLfyS3kwudBnKVt2A7bZkNRFczhoh9PWJaruc61DvfYZtnLOsnPRh0RA2ij+zcb3wvuFvik+YPaLvx0VaBntVqVaNhnyGzatbQZ+MfjwMZp+g92Y8WySL7Sd3rybnia7eek5t6n9zRTvLZ6USxc0aRyjyJ1AE9waRFdQVXC0HdL6bddHHqCcwJkv58ugJBTLEEGLXE5hOuP7PIHzUYFKCIZnsOLpPJFKciJeYPIAziMlZ2SAEuVtJA5nekszwE8YwrHjPGEaDNUnFYCByTwDRmZ345VC0Z6NhJ8424yPBik2J2KZfrbb+f9aeR1XwrGSxDXzkR/LkXjRKQMV0z5kyNOBAn94sGEkfL6O1xPeQgdRALMaNfnUEVQieHrTmLcNMQo9sx19YQyV8pz1sQwOu75lu9b4G4AxAtcB4JFwR/ZhWPQttg7lO4tYb18ki8aBAWA5Ku/AZmSQM0yCnVn4Vcp/c7TVmfMsp2CPkA88HvH3OYHH2c6cOE2PnU+7wZIAKJrMsjTuols2afBn4yKBrjEIIg923qshdekjAL5vZ/HkwFpnSr2kZ63pqLJSb8mg4AYH5RtW3Ja/cb0WK18ChjU3vpVfhEWuOcXz3sAWxxC0HKULITczB07hCDFFZ7hAZ/mm7M8K+hsHtuei+7Pv9yKxksEYKGXZMyMO/i6az2TZ6HqzAxRmBTGpO6ljk3bOmucVZd0HwhWkUTaV5/raYeuuafKq+k+7Wn2FwN5lOXnFoJF6krq09je/c4yJM2k4UBkXXPQIWGjfi+uanrfB5FXnqvsO6Jb18hObKq6B+I3eUDZ2HXrj9XEHKBQ6y8CDjhkZoOxK5bM/JbBnCywFLJltk2m9Vg6bkaUJQTnL+JbDnGc4lZlKjnAMfk5ph8oxWwiqbVXGQH85WZIGQ5VtN/IznOViWEiHucFhHEe7ZajswqLEd0o+xdHXAr91xGsjlc/Qxm+HSYVtREW59F7SdeR9KwK1MTVReHVC8DWoUkWRAIVBgZkl+2hcDThO1JHw5tBpn8oMEQ535SDZ6MKb2f01PksczEfXT1oahuC40Yfsc8T4h3yhbJ/5+9z5JylrdS7eOwXid5Mf2AwbSScGb02by73FOWxt3o7yqtE2iopLycfVyFaZ2t7OfkrdfBD4YoWhtNW27oKTChC2tu9+11sKfbsft57FKMul/dFvyH1HO8N0ouG7qdOjyyyBKvFwMPsU/Bqib962cg8mlS4sT4dcts9CHp07CFs/UfJrYVMrABRZmtLe9LQFuXi35CUDpzlT9lRO2qZx19AqOytvbgcZxKu24uzPBF9kxgWpn1Vu7YOxbwwcuc95xtZsZg1LB9XmT7qahmvkwV0gsuiC9t9u+kp54Mf6uZZbBg8MbLZBwN9sAYp5GF/DjDe9nvF7+IzMhYa+aSgtMyh2nlG+jPlMIZkRmJQjQdyzThfWm3VLASLUNzPYmU5uGsxm47h8vOoa2/AVlwh+AHpfM6+dNqYZjIIRBsDnjJEI25G31Lo7+LJZs8TB8neOQCzpelG0rQ8xRUFF93agHlMUsaMHaRzzbbk2UFuB2d80dj777cImJ3zSiUYfIlMVgzur3+xgtAHYHJEtWEbJWx9SiQ1AvU2ZGQv+PgE7UlZG8Nbc+rc5ho+WB+dbrZG8ksGGx/kJ8xTagYtk2aTlSv1oZzBQgufZKN2lyiq5L/PC4+Q5KBEYL585Mc7IiJkYjZHpYm4bLfike7UJzMWpWBlDE3lYHIU4lkX2OQCY/Wx3ALUNe/P/FbhXPxIGfFlvGrYhpuRM5Gl54XLhvxtvr0REOICmCz+EK+a5v2mr82bhVfedaIpB2/p5dxUcb50mnIkKynr9STujonXKXdOetETFCjbyWdIRoA7f0By+wle99ZXPAGrwx0DdKpiKYMgYSFRgRbsoMgnaVpOyQcB4FmVdbNUiL5ucr8F4ytFIeN6wq58yUIiF85u99KanZiV0Hc6Cy/TIns4R8Ef2aY6SP8u+QXSG/KsyEqhc5fqKY/Vb9Y1/U1dMZAz6G9X/us/+5sCbtq/1THThDddHHaCMMwzuQJx7MezEsAPDTwwcUaiyVKEANnPnzpwYabBHjTo5h+/xbMaWWQYo45yYxwyGMUDJIGHQcc0T4wzHMjAxcGJw9HoSZnzbnBgz5vHHnLAR355R8/DsAOJV9jbSaRH3xHsK/piOYRPDLGCa2D13cNPNMIu+W+xAqbdGGnr7nXO+NegypV2ucxgzFgIPzyAqHeqY4ajDyUZwMjJYmp79ZHA1Z55dkCjkWQaOsD0cpVviaRb7jgbEaaeDH4bEMToTYHP6onDubYYAYn5+gYPANWl0zInjPHGMOIvkcODACBo6cKQBO9wrqBhlMFHOaE6dShHDLgHIkUHOmIYxgoZxDxh62AwdpOgDF+HONPr+iIxfTWvNmQFS0H1SLyRAabg9f27SB65BcbaXz1hftyHT2/U6Jp0316wfF/Si5Y5tMjjSrhMd4i5yOhy9+SVlfwCh0y6JBdoQz3MtZp+fQR2hM4l67eAquKWzWUKTZjkNvV404DWFKaGN3cC5ZFX4iIGRS1niNFGDjlHBBp+lAzc6oLUvNYDJrASDl2ETY44ezEyvoLQHHdK+I2ychSyOtKmAle3rgCZkpvFI+8dAoGifdZAB/fS0mem80y5EoNrZQtp1DS734KQDH/R4hd81kGCZ/s54Ycn4lEyxLa1fMiayxN8z7U4GJsPSD52GMQKumcPpR/JjkzPNymcNUISGC53lN0JxKkjJTQYlr0j9spDUWmEn+tSDMgZhIcFK76bJ267/9wQoIx0uznS6Zyn3RBpiLkTNBZPjPBPGWQITiyIzYEjlHfMALE7lHOcJH6EGNs8meo6ax4hg4jDDgTNwm732pHBOR8nFiFZBERc4ZtDgANwwMGL5AyxHwR2gtPHvUYUGKACXgaQDyoBnzBPj9ITdXmDZ0cHdUUkr50hcgpRwAt5ZAANGBiTlsOEYYyQuQWc7CYftBK5m7SA0QBl03BVU+W2AcsxZWZbe+uixQFVpDwYoYUKYPQl8gQPAOEYGcoYxThxuOCbbNhzTcYwIMA4GkJbBhQqrBHoVoKSisgvDrGCNYRXkHUfQdszcldbD8AxwOgCdGezNGYtkbU7gERk5m5HBaUeLDhLdMSflA+A2ZB05eRoZDSJmytWyQFYDEwYsp7esnjTSHaS46MKykygjjX2mstbLzNiyPNiHrlIBgoMLarP+9O7V4libLqRvj/rughMGKHr1SBvoNhV3DVDuar/2t2ZgNHCs0atkPYZFgFA6M+MMj5C1IP9wZtBQjq4zKDmwoMPDTAc1F4c/hNdjek8V5UCDdm2cMbXUg7/4MGNiNjJw6SBmZAaFePIsJfNRts7mzIEL5VWyu2lfNOMwZmYYgZ4CSV4Pi9lxo30hv6zpPXIgBmMAu04TlmxQFtGyyGC3s0s5EJoTw3IgMj3scvFuxHMGKNPTh7h8rOR3MDipzF/y5hIodAATgYijDkmo5x1wlJ2S4ARgQMbTm5J2M+0DrgHb3zQZFD9POBfJTgD+CG8z4rdntEcBDEblIsLzjAWDXChLRmYK3LmIyy0Xk1qsQxgPxJkZ1vOqns49FzMBlu9xmADOXmBaC00lsKAx5OJYfvMyoM5WcMCJj+5CmhvMTAP4PGt042lwe9F5wkEYBxyZQzFulRYHQ3rJItllTQPW3RZmBh+OerXvyHGsi2AXzmePpCVCWXbxgAbdApZle+Q16USnM85Q5G11vdci2WyzaOzFs1ioWmFAyEjRBrH9dyD6E9YEPnNx7BgJI/uwOckgNeVq1niZ/XaLlfxmSFhBy1pLlF0GULxZ9MEBl9cvUNY8F8n69OiPczdD00bXI/S2xZ6+qIBo9hoTp245wIWOHQS3YQQDFJe1WBWcaCZlDX5i+qLlqugkThp7P4gxrSn7MrUOuhzrTLlP2XD5kD4VTBVjBbP13vK9JkaEd/LQLY5Qr1wKdSj/cgFKfXZU6eJDntXuXh4mX2/hcIvpmqLF6bVkg/aOQVTI+Ax75BwFIOwDeUcCUW7mTJPIFAQqc1nTuNx9OWWXjXEHS+7KyQW9kQ3bdn9RIKgXxKOmYdI1zv3T/NPMSX2EhEE3GjSRFQcwYkBVB0W60C8z6otOFc+2IJ44cYdU2o1aHHwa/Mw+jYGKGGgzT9IFsUuOMly4UC9m6TyztuuaxfxoNMw+DaAFwimmi0ouZkjEusS1dFBtwtuujzpAqXTRnLFrQhhvlp4YwZSaqnCmJiO4uJuj20dLxcTRDOXcqBI8mM9TU3MxGHwVAm2LXGQ/0O33otFQAuMCs63dWpToWjd/Zz7baksrI2bCYVl0HwgTfkubvQ9VFjraRtNthw8ULy7w6+rsQusG4bSeAmhljmpNg0wFs5Bv7XHtQMmSClYaqBXHCXjOD4PTVhF42aACzt7NNTjqkBG1+2WKZ1kzgeRzBr8cpQEdOOnak4rnAFSKfArvOfVHetB4Mluosr3QJp0NaW+k+6ZHxato14EKNDswXuGuawDudY+WLbre/WRvaWSpMmwLiRPlsWRCZNJpNWseyEWepK2lTZZj3wBdSEyc+GqN2/oOcaBSxhoGcp0ZQPtiWqhiHOoWn0Bxl3MnrBZxataH65xQstTTAFm2nHHzImBa0UuD2GqvZEbsZuksnyvsLmcUtk0O2D9b8GF/fcNT7uNqG1tGyLsVx+Jt8dFL9ptvCUN5mdmDdct56wHZu/y90HanV/epaLb4H5TO9noWk/JiHwVmyYq2Tf2hNLnIHvW+ZDT+WGJ/VxlUHki2Fy1rS8DyhuvjDlByDUikBj2dRi6YnavnqpcdMTCZ64dGvdJuHBFOh425BDXZOmqRLAV2mKQdEx/kVIy3k+y5R6YzvNufEz4m1vm8XHQ7rA3MZU41Pu4Tpu+IccDmWNJ2gFdqtKZlsltluAreSpOaB3ahWymjLAx1bO1P1O4YcYq2RNVOyorha4PXRjYXpqojAuL+nDF/OypVVAZPFyZXCjbbUEBFq0VGcspskLdcwBp4DU7r5OLWkTAXRyk4lAEqo4hlcWysP+npLBOYrOfe8Pn3mLPW+IwMirl2iGurnFOX3lMqI7N5lap3NS7Nj+IXjZo4H/M+Pjz6zDI9kDDhua5BWBzQ4jjTcaviU4azbQbTljjTNBpxF9nfgxEN1Pa0N6AyxzJYnQdpD+ugV4x2SbRkc3qKjrhksMSAhKueLUMfMrqczgK85Ae0DS5lyokS7/Vvm90vk+JqL3rdB4Nq4R91cLFFCpO652WTLzynjGBdbLo6WZEjYGszBw/FcwYCrWu7rVRcmRHU9hiotJ2wtW2QFuKoF9gdEHe5DnxanlbZrwXLHODQj3BwZI5l0W/pkAYn/O5BBbb2dP0b5YEbJeKrYQDea5YkEinvKoEraVX6Rfktve76b7k+6gBljJyrt8iAjWE4BnCkgQeCYBNMjyIFMg4COkZ8jxFptcgyOjzXEgzzchSW7cycxhnZvlMQLOcvBZdhhgOxwIlncxwWnyhnlRk3qccZpJgtMoBrEowfwHMBpX6cZY3wOPLOuWWzSG8aoj8j2zSredckmL57LHQn10R41vMMmEYp7RUf4mtCDyCzhjnjMySzW87Egme09AbyAtX/YVyzkSKf96pfiUQcckfjG8pC/KksdUBdRixGHiWsIz/1W9abUOaGAYcGFdbyF41wnpZBUwhj7czKqaFj47OZ4Ti2tyODvo5GIN2xB92Ge75kMp+xXQscgDBc08V4lHOI8rEGxRbnR6ff9sYw07F6Bm0cF7gYPtJ/pr5hAHNyqswi7W40+d7kEQIGOa36XienjsSNkSIrcroO4o+bxW1DOM6zTsbp83JOue7AaKz5XOxt9NMaD1vhVF9yQTnLCMpSoWWyJOna2ILpqnvotV8iT6OehQ7MEWsW6vgfDjIob6W/XbfQSZ2NF2V0oES7NRSXtNVImzE2PNnlsqMj8c8+UqdqLQjQOiE6Z+D7e4L/nsyKwR2qvAa9lkKiNpx9qbUoRRsXOgd8irFb6EPT7gp7Fn1QtqbxT5qO7m/5taRJiLvFagPaOjfwuJuC4dqH/dP4oWRbyub3EPy036SPe4tpjSWyjeHpK0UN+DoQFfP3XR91gFIEG5ldGKJQpDRQBts8dn44PKZpuWXVUNOtxdyByDJIO0jYZfyE2Axi6sO/oQIhzwpm1K8tpRR8KlQKrKnwDqujTjwXxDLEXQ2UKhKi//mbhsEYnGTbQLSxB7qWChLTvlbKthq1frYo6YZLZCst66cBga+0rOEhF1/ZAqPbaTouBiZpNYeVIxgx0MJIw1wvSBQmVxsMACvo6KxGwG7a9TNZYDeaLkA4+37dOT/pqNA0U0dAA1wBpCk8lEUwsosj9EwJj1xBzIWPnjQrp55BCAOEmHK2fCOsVSakDLAbxuCCN8sjaaJ1HxHUjIEKjADGNdFPDUzZL1rSWLPFl2cm68H+laAtjt8AcGEj/XXtnBKDS1hloGu00g6PzogZSwYZVadVrMp5ymajRGZEYIzEb7fIhBPBCfXO+uGiB/2IAWPBhmX2dtWDcn7Y/rZdh1x+I2VRcNz0rZ1aw++P2IBL/bZHhQcHT4Wndffld20dVnyRofKCu8gKbclGi+oLqDpSNmWh2SDBefEIFWyoXLApddDVXg4MVU5qOY9Z2bXuy0rrsnODg8i4aCdu7T1tZSJbbTvbZLbbF/xR9VQcRUcWXqfeOqTvVjoJym7qS+mTytAbro86QBkvA+MlhP0YFjsujoEx4kNK8D0E5qOm24eN3AY8MGauG7GJXJMeq6iPcGojh9DziDamGWLbrNeiQTqzceTnJUe+PnCYIfbry/MjnBpHohxhRFsGP9KxDGYt+Nxi1OIGGwPjcEwRG7hhjBHPhsGOgB0OLA2nIesGnmME3UpuMm1ei2Snp/PIlfcj8cvD0NwZVcuIRvFNXIYRxzALQfsZjm5SRQCY5XSrteMBlmBgHD3qKCN0ZJ9SDsAgBSiH7ha0o9MOsrR2V/CTPDoOw/GS/Hyxyp4wq3GMgSNPkO1dPBzNpQh68nlGSn1Zg5JaziBoyaBkUFJwy0Bp5oMGO4YwhB9LsGJqqrZRz3x/tVulhd1DFmL6JXHJ4IR+vA6hAzAnXwAZRovrSj13DnDNaq7KZKIIBstnVs4lgQMZnNS7jcivNOltMKnP5Gfcmo5c9kk823kBqB0EFahJxBBTMylf3N0zPOmU9HGPwYp5DjoyuHVOJzVuzRD9W7xk2qO7fu3e3xA2pShRTtJaeEXOlgHQAJiZY6bUBsoeDGS2DYitukBk1yqLKTrMgJxBe9HNOnucjK+sMiA2LezQyNTxgPfh3Am3+iJ1xkHqZjtpJ/lfD0wTftJhMJBjWsgMnADiAHQk/2JaLOU+n++Zg8rypG4w8I+2gm7mGfe79eC2ZDBgDzNMGaDSPrHP1XfabfUVRwcobmF7x8z7DtiBoKkHPw2JA/fdz6Q1p6wSFv1WqSKEz6PI13TVICh1MfSPfE/7mfdhQufc7v4hEcpHHaBU1JlTIgtBhxDBegU8VbsYkFmTYiBzUAx/NVweYvjqXtY1jgja0YGCmCkLZTaF1K2FHfmsHWbf46aR+ttWeKBtWeoInCaF1JVRjNjInsNOWpFO0udQwOzjkkpSnGxpi7jIuWgou21tdNW+c6RZZRRfs6Xv3WbLRkT22ZkaaheqoWYb7bR+Rht99PyWWVlkb6x0JajSZE6j1RwxaSe8FBkGHc0CF52CWObjg3EGynLrQK29gMg4p9TcwSO2NYtVmQ/CF71pJjUNzTSTIMLmGTyVnrAfXsa79I3tK88L1AJ5acvyORd/OssTPGW65KigtsHWjibNWlQE38q+7J1dkauidi1Lx+daZ9PRNYgLGlfQ1kJVeqp6XiqQdN71RnVdbR1pR/whz22ru+AL2rHElSN1oekVnm1lTHCRsvWYgOXRrrNofeo1PGikpW1d0Cri0KiY/C0kXn7TdiuQhQepF5QD6SLMbnCTcoLDxfb7fdnFpvLbV7wul9Lzgr/AR8vIYhBYR11lx85rhkXxfuP1UQcozYwW+GVDPDIIkEVPca5GOpwp3BHGX5hMYctGF2fowrTbelfhWQykCLbKait6/k5J2h2zKvcSFC1t09H42ojQr76BJoQEdIsyaP1q3tY+3pUxCqst8EqB3QReYsK+76ls4f+F5jsPYR2UKh4iSBqokWa7oVCDsbS5BxVbO2w8XqkjtKWMus5bd+WasjRUgFv4+sqjIFEa35gALp5qnyzxN267TSPKXZ6G3Oqqo3RpUxMDWVpE0ERyJHgC266IZjGg9WxtsSIEyv7aMiptXfIpz/htxueGWkS7waqGaf11HQm2pkWmTZ5fgg1fv03uL2U3hG27tRSjruwN2Vpmx7Pwta2hlMUOYjKrtiiYwKJO1NTBRuu9Xb3H9lUOtBe217dGwVebpoRS+4YNXZisPRTdhMC6kPOCe8o4Sa31RUxKB3GFe7E30sBtUKG0Lpuwt21XW7zweQ38AUiQ3rZB+32ROb0nHWBTPYi0JalXlRgratsXIrx+jQ8r/v/Qy/uH2ED0SuUut/z2lbcXnV70yOu7yviVqU8NDJm7tPvECK7NLYbwtmzh5Jeyl/ZvPj1y7ZXpy5oQrLR5Sz+1HrAKZtlGxbXalFH03t7N4PXCsxsc4/fmGS5yks9Vlrayivtd+zteK75XegJA7wzwBZ+9X7rr6CqTV17ewVBDdWlL+5S8ULgXXdlkf6GllFFUbbvf9L2OZld57l0RtvBo7/v1mfb39uHW5h3t7tp69uwZ3LdcH1Ju0dtnl9qcpb7K4hpIrvd84+NGvwsf7/lwJ7PP8CZ/1x16mx2/jfLu7aK2X7JzY0d2nO9uXn3CW3B427XLCvU9UHi/z7lz/E9l1P3S3hPVeBXem+XwDXg9uz44QPkTf+JP4Df+xt+IL3zhCzAz/OiP/mg9e/fuHf7Ff/FfxK/8lb8Sv+gX/SJ84QtfwD/9T//T+D/+j/9jgfGlL30J64Igw2/7bb/tQ1EB8IqAPTGOUede0arszqw7uK840MUpb23fXWWwb4z+7aXBxocozGv98LUPVORFqX0rL3jv/TGFccHlzijeXP6ErtLOXn93IHt9e4UfF0OrZW/os/RRaGU37e3B2CXw9A0WjfKNbC5B7o7rAmOl0yIrN8Y6cPGlrac6pbBv+K+/lYaX+vLRe8+c3VLnmY6/ohM7zIuc3On1K9etHD2zH+9zIm9wEh+My7O/b2TrqePGjaw+u16zRzcy9Zouv++6w2W/t8Ly+/tP7MtWZW1H+vGNBKBPA4NXaHsXRO443cr/Zrcv13to/ywAegaDuHwzrg8OUP7aX/tr+FW/6lfhh3/4hy/P/u//+//GT/zET+D3/b7fh5/4iZ/AH/2jfxT/y//yv+A3/abfdCn7O3/n78Rf+kt/qT7/wX/wH3ww8ksAoN9qkJ84XNsZdiMoF+e2P5O/d4d1cUi4Z9r7Rhy7AV2CgicGxjZ8njqJ3XG9Qahec+7vC5YuTh73NHnN2Sx9I6z3fO6c2V53D3B2udiDgEsAI/UVz7sAZoF30z70GbquyuwlWLozmLu8yL0lMNjwu8t27fqlNNXA6CJTiqfS6UZ+70a4BV/xFZjvczS3Qazf47xcNzjU/Sc4PsPnfddrtLrr8y0MKfPMoTxzGteM1hNcNn16FhBf9OKGL68GMlubz2wk9vtP7OHt9YyPKtOK653dvIMp+D0LzG/p/B5dvQQZ+7MnfXwaKLxCn7tBwwX3Gxj7wOFCuzfqg14fvAbly1/+Mr785S/fPvuWb/kW/NiP/dhy74d+6Ifw9/69fy/+wl/4C/jlv/yX1/1f+At/IT73uc+9qc2vf/3r+PrXv15/f+1rXwOA65Zei90rsRqasZfJuyImJg/58nzPwRgYFgeF2JyYFi/EGiNX7g/AbMBtBHweCmBcYJd1mQ3K9mvbM+KNtzCDZ1vcsWG1LaP/NlnQYMCaaVr6m33l4T3mQOIO2+jCLcuwOvWUtBpGfAfJFe9RsHw3S0qhWbyDIvb550vDuHaDeBa+jffYMmWBU6bsCQuz6BCwgJrUXPb0W+HKNsZALXBdVvXnZ3LLdB3mZ0U3nrHgFu9WguBdu6BKrrg7iu3aQrvYdTOW7dtWfQEc+Z4SDHgdLAXUFI/lzp+EoVuXeY/b1gGgTsYtqiEX/o3eHjzidIrhg2t0MfK0N3evd2jEvrXYxRP3cpsxGrf4acErT/4YwDM9DCPf9ZHtVx3U2onY4m55XkTSdrZMwC1e6Jp1LVssHPi7NFs+xq2T+YR8qDL9XNeg1L0LDG0jdapkHqETdTaM1Vqp2kTkWBfZdiegu39c+lXP9Z/SrxTjaiN3W1UbSByzjqFtAcFcZFPWdrBs0ftOb21ZE7LQs05Y7rURa73GrU5hFtiOvb3RtgWrvamVTwv80e0i7Fsp/wI3aWnFgehFrXPxapc8KFakUC+bC8jf8szZHyLixY7gX7a98GKhzWpz1t+5U4g2UHdsycYD5TvMG+9F1qm3lGus/TbtF/WndVI3RpguIPKmlRcJDLXO7o2BKa+f9zUoP/MzPwMzwy/9pb90uf9H/sgfwbd927fh7/w7/0783t/7e/FX/+pffQrjB3/wB/Et3/It9fniF7+YT0q7rh+gmVRFWwjWcqhCJsxZqlURNSIbqaWcGs/dKooZlbp6TyxKPWrDuexo6JuLYdgw2PDrsstjGqhdOBWdrYNLT4SOXV8qSh+7nysSK03wymUL+6pfoAJZ/V3okfdE69LAJhdLO91C/W1rW4r0AibLleOoOhC+KRSlVdOx224+X4LEpdGU96WnxKHpVXjUzxKkkoluV3iL6tJCyUU8VTQ2uW3JEAjd9FL2wquLCthWxO6+tuvVh69eT6vcqGb88Rz/y23bKRpPbC20Pb4DqJZGbOEuEaZlX0NSpGa3nRebtOq67X/s7Lq97IkcXKR3LWR7eQWw24VdTkR/tXsKdNOFu7arpY0WS1cWtOxGRBaLALXNt9cz2Xty5/a2XR9ccYXwe+uz3XNl5cnbr5/XXTx/42/8DfxL/9K/hN/+2387fskv+SV1/5/6p/4p/Ipf8Svwuc99Dj/5kz+JH/iBH8D/+D/+j5fsC68f+IEfwPd///fX31/72tcySMkRvt98AMR5HvWzz/WQbwdqhAv0sdes6ayLLJNbPJ1A9dL25FNt5pM+LZMxJuqslmpVlp9ze6FL2e67tK14Lh8rpAjfnWdPrDjA0O3dkLdpu8GD5QCiaeLeB0lV4aRd9xPoTii2rre3yws+rItZ4kEKG1bwLnxwJye21i9t+kJvZ7+yrFu3hWqxdw+YEWwTka1aIhLJicad5Apa8URXl5XylNsVWd/krNtb+1gv4yt5g+BFPcl71uCUYq1iKssFavmterCTepVXKa9dK7my9V73qAEuD1s4drYml+4fvuG6q7KJ8lWu7B7/C15JdxN5Wii8N9Q1L/e8KwhNr3Jzj9IOU6RG7YCh72/4qRUqmVpNyNaWyG/J2RUuxFpe6rPchU6rxBn1ksWt957l0R0L9dsueekmcWkgW0sbLXZsWxGWFoSeLamOXjR+K0C3svf8Dgq/O8SUzsIVx4JlEq7uuNOOPWn+A3Xt5y1AeffuHX7bb/ttmHPi3//3//3l2e/8nb+zfn/3d383vuu7vgu/5tf8GvzET/wEfvWv/tUXWJ/97Gfx2c9+9trInhqrD9ODJBzTUyN/36TW0Om/ziTkgUwCF2aZHrTV4Nzi0eUuabz8j6lGreOF0/M+ApLtSJzBVB2k3SqQaBa6pNM6pcSu8KgNLOVJIEDp1hm+7dnNB8RP/64D2WgebHWMyQdovyGZg8ay/yscrn3gAMC8n7vgrXS7yhXkFMxx28eSIVPcgHrTMRw8zJ/4d521jT29vgZCK08DX1/7+gy/RRa86YIVZ7KVvGh6OuhCI6NMo3QN1qKeL+f7LO0Vvbmds3UvBUsatjJ/lowr+kGnPVrgA0cVhB3H7Fvq/HWbMdvM+8QiU+R9R6oKiFtbsVtqlZXFvnTd1stoIAJWegzaiyYZFO/SF/5OxtXvhl+4SrtViHjU300DE5TrwLdFH1e9oDY39otUNm7etlDvK10NK36UHXeBt9QXPtaZKbZ0nXynbtZhbtoXbwrDKBOsS5q2bLfbpy6QGMo/8R1Y6bbIR8LggXypEKVbnK7iIY6LzK2iJfdXOkrRvNe01/CsX4sRNGF5N8uA21pW9zZfuX5epnjevXuH3/pbfyu++tWv4sd+7MeW7Mnd9at/9a/GJ598gp/6qZ/6oHbKCZsyuz/PDXQc4bcHEnep7fYKAhcbfAgOT55d20IL5W485G919mpo9mAHW/u3eAoMUNA2GNeAQr+xlcWqUKI47KPd4SRGqAMdrLwrBZf2wC6qkdBu39O9jNgmKx2sbPQUA7TQ/lWZ2mBogKHzyHudu3spo+8tkyfYvgbjwv834r/owdOyYrD4fZFPyPOmN7Z72p5Y6pYD9O+2rA0fJT+qrso7Ea+CJnBN2jO919a0fhWO2J61rBaaWtG2SljbawFf4d7V0vr8d9FttTGK0oKeKar5vHWxeKW6WHSXlhcyrfKjHVCZEGYUzpD7KmN1r35qP+/gKnzC2vsv0qT0L2IoP0zwV7oTjf2+ArIF52pVSLPSfKXJM90tvrIDAmvpg/JZ6aJc1z7KR+WidFOupdy1202li2hfJfrZ9U3PoDA4+amf+in8sT/2x/DLftkve2+dP/tn/yzevXuHz3/+8x/UluWR9vF9YBxHfOeHFOk3GceLsaZPDB+wccTinREnb5nPeM+NzzyJkxmUI53BAMaBCm4A8OwQGHIh5bEu1AQwcMDHARv55mXibLkgEKPujzHg4wDsCFkaXPwpCyXHEbhxkeyooRpseC+4HfLJ4HWMeN9J0O3o54coLN9g6P225jEcc2kX2QZy9NnGY3WaucCUDhrIY+zznS42auHuMkI3A085NbPkU8AcBRN9kqth7W+91Ab5ht08itmDBmPm+5jgBaROizV9XcCAHZStIcd/85OvVmAdkxeX0YAwlTxjvBmLZFV+Av86xt/Wd/+M25cFkmYu94IWnumvkVMFNZWZ/Ieh3ibtJTqpH8kbeLcxDPW3vm12gD9Zl4no+LZcMMs3Dg/EIvXhDox8BkMssAXyYPx6VVANyyFOqeQnCsbLxQ1jTE0mBD/LiW6fXHgNQx9hz0WGWUYT3B2EiZyjeRHlrb6RCwI7+y3GXXACy1Peq58Qobaqg6qj7YpzWBwa6ptOdNFJI89Remk86h8sLwFw/c5G81Ub5swExnua+t1G3daw1KM8R74XyLetWB3yOngE34SeZ73TzTeOoxfOAwU/30CacLnQdiAW6ZKGXP658Vn0TXkOkF7kSy/wDSG61l+me/NZ8ZXZfqH1WDZamGz8gNBanqcJ05PRs9sw0wyf6INZ80CzRCLkjS+ar6wr8mgLfAnCFr1oGmxxzqvXBwcoP/uzP4s/9+f+XP391a9+FX/mz/wZfOu3fiu+8IUv4J/4J/4J/MRP/AT+i//iv8B5nvjpn/5pAMC3fuu34jOf+Qz+1//1f8Uf+SN/BP/oP/qP4tu+7dvwP//P/zN+z+/5Pfi7/+6/G3//3//3fyA2vbbY+5ZaKQBiBOCdmtyjyPrtcm97dne7HiceN8+WZK7d3H92z+NHz03u3L3ntF/61F86/7t1QNo1ME99X+5KiCWtrmXZbpWOjt0e7WM6caB80N8QGr8i6ZsW+E5j0x/aNsvc4Wc1L30nY6zvS7+blpA57gxZNvWNZ+Tz2uusJ1MP2k8X7+w711iG1sFlrl2nLrzxel0mFVdfYS509aX+Ose+Xcpq/jRFQ2ndn763mMErbIVbRZqeK6ybynbNkj/vhNDxNUT2amgZXPUlvu8g3l1NH+WBehttW3FtOVkxNcYkFzy1X6TrZWneojNSRXSodYHwdeoYqQ8qT3eydE/ffU2EX8oRmbfRt/G9v399surCbtl8KbcfnffMT921g1v/8/x6Vlhoe+H5M5/z83N9cIDyp/7Un8L3fu/31t9cvPp93/d9+MpXvoL//D//zwEAf9ff9Xct9f7YH/tj+NKXvoTPfOYz+G/+m/8G/+6/++/iZ3/2Z/HFL34Rv+E3/Ab8q//qv4rjOH4OXVkN12sE46gRN2XVmF4MQu4dq5HqU0P0zIiijOFe53WBv8JZ8bwXG3WYy2IzEUB1xHtbO432PqmTK/+GTfl8jRWe03vt/97Waqzv8WwzoMHCPa/fLCsLrRpRGj3ScA+lOJd/Z4iI4yphDa8dlBX81YhtCyYlMNnlYndWu+x3R1e4uyHV8he6efdpdSLPaNu41scbjtK6tu9C+bte97pkC5ydPlr2mS1Yyuym4A14vPVZX68EcLdlffv7dbgAJGP2tn4tgboDfIPzXvZtOG9l31vJ2Ogt31Y7tvbrfW2/bm+f25k1eNzrPvcHdzi/Zu/v7mudp/Lnjce13JU6Lvdv214Qvcrna/bzuQ14exT1wQHKl770JdkpcIPUK88A4Itf/CL++B//4x/a7O013eHTMW3CfcRbd83hmJg2a2HchOeUgmP6hPuEz5n1Z+3qwQx4sRsiUsZxZAX/zk++OzXgZPnp8GHwOTBzFFFvAc62fea3fOJtsNG+3o+6hGFxVsdw+DQp1zhd6ksZdPcy3e9NrzHjDbU8m4Blqu4NXnftKF8AwFHTQ5wG4HsY7/HcFYf18q/EfyZNpuX756Ta9JzO84nB6ZSC9YS+/HgmAgywQXyDBjPlYs4ZbyOdwJwzAxCe45JTFeaYMV8DPa6a/Q/6BV0teR8DRE8Y8lbGSnMnfOMiUupZeJu6h8DLPXGds/Hm3x7n20x3zAmRzxn03Xi22KesWzKUOsh+Uc470vCi/ZTn1IWeLdr50/yn4VyCz6ojMr3VbTlq/mp7ZZS98YDAXeWvut/1tQ5xM6/y+m3l1XzFBYi3i8siSgZTlYnYVty6AK++eizOjHupwxA+7XSOGUbpZweuhTfUzhBGLiilvpIO2Mttbc6WAbPUAeqfK599xTPxh7TZtmZtD/xtOQ2JHZ/d1igvWL511UkDcHFrEax3/5j0UeR9lyvehfxmIvSKo/621lP6EmvdKd3Lsi0PIhtbG01LkeMumTQkbjLAYTlJwLV+pKzQ3iY+bHvRq6L3266P+mWBRdobI4US5Ci3WgVUGT4uawMvoiKJ3pahhbnqEZiZwOlni4I1EDE2WZ23i+vZj0o/tBCqkFX30KBLNAm7CKHtOlYkdIurGJ+i1/JHKWLR1BrO8g0pokgtBqFRMSCN9kpLrwImKAtfCF/w1uBgVRClAVAOQbux9L/lrJllwksxtiIvixoSTuJhLo7XdUu0obuh/Zecy0XO2HbLkCtOyqqSnSb+1YBJPdDB+tKkGsNF16qMFi5GiF502wUGUldlZhv4ad92GWuHvRlSZQQFCKqzop8b89SJrgxlT1TmN75XS9LeAhyFqPzszuu2INKMKCuRaBtE9y8D1aVPTRgxfde2QR5VZLyWw8r71fkIRX371j/S8qzU89Y1tJysXfGCESZY9M6lzIUjvH3lwyKq1rBFs8vcq5hUK76CvW834W0GnLLL321zmeFYg6+2KTf8LFxeQ2bDC2hdKxmQ+43qWlUEIFCw5f4bMbi9Pu4AZfE4ojxiCNeijjaK3gzcjXJxHC0Aqpy2lRPlUcfmPIlVDYCLAVGD7Rl/bsq/GBCsbex915HEhS4El0pfEbfCQgjXTqcus+FdoIm3tUdxBlReDg5ABBhLvY3WyHnO1ZJtbfPvzSEUuKalX/C+4dlrBoz0nJQFy8xT0ouLbylk0Un4TDXV9RnTF5jNbxpoykG2l6tTPZMqzsWdu8FeaCR9m33P936nfK6yqDqhMoF7ODXKFpkgbtDyuOJb9ZL+Kk8Fyot+nMa6WL1dBlP82rBr/7peYr/xG0uZ5bfw6qqTG7TqvjZmS32tp/2MBZctR4rg6ms2epbeKf4dCDadvfHhM4W/DDCUBn3P9R+lyS0tdSC1yuhif7RPKqPs2g3tVrjF+PWe4LHgVNRVOnoPPiQAkTFiliG/CfMaeC6itIns2g95UH30hlk0tLUccVkZUr9XWdn7rzhsuNxcLmXWdWFrHxY2LvonPHlfY9v1kQco2wcQwVQlV2H17YMmnAoyYUlqr8tZG8FduBQvCJxdYZ4ZR0jZ/bnhWn8X2uXmTitff2t/eH9fhLmX32GUFmOFpfRZ8GcdX3FeNMrXewu9RD3KcUGebTxw+WNpT9sS5a8m7vrJvqqjVJroUH+XkRsZXPotsraRYT+XY8VL7z2Tc8Hjrv1bQ77L3zO6sm9bGxeLpTiuaF/0YQN9ubStBb70qedV7uvX7x2fTa+e4bW0K83cyjNR2Rio6N39Ln3cvMIdTXYgF93A837vNFh01Z7UFV532vEJ3XYZew/uS70dfyW4yLG2eXevfj+R4wpOIGm7GxB3fyuur5W9e7bYgS0I2W3QRa8U/73u3scNgWf6tcvhfm3k7z7cyAnxusPpjdf/CwIU4YJGaGqktIxQx/VfX0dUvghOlPMquBtHGoPdwXR7a6sCa5GG16RZi1AZnpRXuuzBzm5R7xRU6z2NeneYnCPR++qwE2e7s7Tbtzr615R6Dyxq5LHhrHQTeWDxxchq+UWetvaXIPVG5u5ItPRxe1jwt7mJZfpAeHQXnCy/97//v+T9S8ht3XIWjj9VY8z17u9IkF8SNEc8BgXtGAkmAUE7iYp6vIAavJFGDCG2JUkngmjspCEiEtCWd8UEGyoiIip4AbFhRDEKYiSCjagg6jGX8+01R9W/Udcx13r33t8fA25cm7Xfteaac1xq1Kh6RlWNGtXWIoU+tuvVNvZyL2Ur9mvbM6jfOxjT7cfWnmt51znSeep5sx/bfG12L/O1Z5/xzzsqeo0GT6rai7jeYN8fHrvW/8BP9HgNKB56OjzP2hv3d1r3a08m5PWyXlp/aZf2/2LcNzPFtYwn8/lBjMSc3Hm9Pr+/73szL3P5ynfP5ldv65W/47enAH3vs/b+6LP6L+W8ypvPbtg/63b9qW0Ej3L9Wucrr1fv+ZCH7fVxAxSzu9tfJf8ugC4Ao+YV4AMtsAgxAbDsrQKNcuKeTZHh8pznCCHy5+Neqi3MSlt7NJ8TVOxGqwdodUY9aPUQtGVStbDf3vfrZ0IcSmeOAymW2BRZ1NMtKPYh25lv8XIaHVBtTVfOBnyifPbP3o9GZysv2u7tSl9yCTRKUBB9s/v26RZ+bAa0u0GqD9v4Bj2y3X2COs2yr4AmeDBhoRFRi+q3FedlbRbOaE/0V4tu+XgHI5Vl2OiH3U1QBRe5vXxNPloX3gu+aWWksItg6qJZxiRtrhWpNnSJrhHL0uZOAEHU3wx8vNyzv6v8Zm3vHW3jdCkjeFjb7bjc3viq/r+U4fTUXrG3vZ67lv4BZg69fOhKNcu49OOZMs7velGkV55/Qqs2zx/p2Vvnv2vM/0yCcpEPF/rFt4jG3cYIKNlxGfekr8swXwxe49+yjJQjdvhmuN6pzXF9yl/P2r31utXfadfpWuNUJOxMd5kfUWYfh6d8H/OzaG1/fH7SpU96ab9e2oDrvdHr3mfvd1+kbvzXF+d48mo8++z65YdXZsbT18/6YYE/u6+aDI+/6MN9wGvEec7A+yBe//bynin01xhwH7D907XeZxPo+vnStj6hHnr8jCalPh6fvdZzrXO/v5f27nrf1cZ3/PL6kvLJ0x8yDR770VXQfv3dde6ceB3LZ+N9vb/+PnLrrhSft+V1rnlW8/v+Pn/2fTx1adFTYfb6mH9ImQ9ukuu9Tyzdz0t9TzmfoX3P5vCzJ16XPfv312fDa+36sPH4//v1mgHmlbY8UkefXH9WxvvG4EPG6LV7PitdPwvNr9f/T42Bl0WX7/ntEWi8r+b33/F/8vWMpp+t/o8aoDwTDK8r9P2+dwmTfD1ViJfyrqavD2zx8+/XX96v5K+K7PXJ1BTbg+J49vz7RerrAv99r2s9T64/KKJnivvD63sNsD7//V11XPnm8fur9IldAZd+Ph3D7V607/3/Z3Vfa392bW+lAg1MaK2u+4seFc9zmr6bB5+/XhvVCw1effLdV3r9r0Gv/dszgPd/5vXBPXk2Bnn9PaW96r3aF1Kvy47nHHx9/r3teHg9p+q7pYx/jj7RszLefe0qLT/b611yt71e8Y68+noY3+fyp4/U/tu76PhsfJ/d+X+Kw382Zoq9PnIXT5ts1EzJpACkTOQh8CN+5GGidaXwbBL6b9vvuDwb37kxhuzl0rVOZHmZRirrkX0FusUa7eXYAVXPlUWZ6ftvUea17c+ff1Q+O83MTbH7aJWqnPisQNvRow/1lKvjNYHz0IMnrwt9CQ9m3tfUj6LLmZ0nfFvN/gBFTpygsWQJcWiYuXrCVaAAeW4ZtDGjvdUPso7cPZb/OzWvoQIPYyPv5vfop88Njb/Z/+c0STNzCxZOC5yivj/UhXfPsYfvvQXx/RoL0Np1ffbZrQ9lPhH/dLml84L2Mq5l7ZTCw7fwVz1r/0OlCN55vc+9yhiHZ3Ebr82Y1+a+uzCz/k77J2W8Vl9fZDwAbG2/X+VQWXUf5uPD92f88shXz1wa+3P9Oz2230t4SKdIaAzjtUQ/Quc87cO1fddrF19L1x1p0eo0u7T5gWX04VP97X26lLf1/7WUoLjUWc8/X669xo+Pr48eoCRxn/i+TdjSfj1iAJ75v59+R3u+xXogtpm1e/3cCHgMQprg4rln9XYBCMW+jbOq33mmT7pLGRe/fzKDtmdVEXEa6b+FNnf2hQ5P3g9030Yl5km1r7YbVxs25nXF2NIvXMrVRoMQoJc6L7QpXVC0TVGwld9iOxIIxjMtbshOdNrjOF9b0WkTGDEET3jO3LpJeCQIUtRpudGsZ7tAgr4bJYrfnvngt0RVz/jyQntt/23315Xtuc4beqnTvta4q9PlcTTtV9p2MFHSrPdgo7wzcfEgHvpTF19R5psf/9qsTpdewTOAEa8ee3B9Fnh8loq38oiEZ37+65zA83sarI2a8+4OML0tpYi8/g0FX99tHK50bnNv/63xUb+W2ePieqtTi1f2V91boH8b+PqbfN7a0MtIwvQxaN8f6m191Hb9Wm3WdB2jx7bWXGp1epszCV2n20YXfd6ePp8eaFNV1IQh7O150u/tU9tyvT1f/X1e6/tfHzdAiYDSCJ6M4FcFVEfO20xEdQlaVeyZWG2S9OCrmDQVFKpaACSu12oygkCpPbeyngoMrX/WD7dC9KCvfLXzhrLsFrQbAWwayrQARwaearS3wZYImuwJxyJHSQgErb9Fp1B+FXi5CdNqNiKLbeVcoGYt6GVEv4OtL8JYi8Hrovenr9oztwv54qVP8KBH9UFT/rbsra1Ou89PpIvyktd8XIJGIKiG9SwAam/yTlPrd+jeHowa9KE8yh1ebn73m7YEb0Abp328+l/dwHKnTbQPRRu9WN8UyMDqLtSTBh0QXfqM4s/kr+LGfEazHASXPOz6rOqTk3Ygdrm/i+iNhTbeqD7n9T58aO3V/ntU1v52HrrespUHBB9XvpeuHAi7ZbSeeixnu1hjStf26OVjH8O6VIHq4nweFsTgnfZuloIt98sm6VwuPVuk5Zhd+UG2cnbFDMDll8Zcym7G/PYyWpn5fxvnaHPmJbrsxOu8o6oOFPZF0l76ztO9cbq1pS2antEtg4wJGoH/FHS50CMHNf5oNiGC17N/G4/rVsTzV2tfrzGGEor9oKb4fulTMtd7K8zXxw1Q1gJWU0Kxu4MvEip+1xh0AeT05xewTvtdFFj2V5dkbnUVso1BBD8hl23SymoTzhXXULtvhTUl6rL6dC17ThYgkgnAIGyf1/Km950brgyZvOwTKtdy6q20gKXQNUBgaNAFaLnh2dpknTKlnkBCnHebMElaiT0n4nU7XcmBBaGUPWibzJUFVqutQUNpjBvCepvnPqY5gWnXC1EvqZN9n7iq6m0POrXft2M7AfVjkhXsm73sqAE7Rpd8zOxkVhWCcpxI2sqI00C96dnvVUcrlMXHu0kE9RNn7ahra1tcU0YTwqFAGohQWN+Cvst541zQ4A/n6xpfbMc1bMLrIkd2wNqG5aqwurIKIbg0+4+tLVLXU3j2utX5qGhVfKHVzp4U0XmtgPH1HVYE2p/fyuo0DXq1+doFfY6CFk3auF+x1bP+FX9rs4i0hclDagNUX5WKN3MR0xSfH6NQG9K8RT5PNOaLoBSN8x7E39HGcKVLWyCFa1Dg12HPxMGEa3k5JkT1Iq/gx0bkc7kedGAOqfokaE3+XLS1M6v6vcv/hqxq5bQT2xGLkRgoUScjZbm2YND83dy73t4YC1H0ZIw7+C++scWoy6DgKdczQOgaBSh0gssetrK092eJyahtDNH4VKt/OUdi/B7nbPKzUsOkWvS9MnTyYXwPPm5DkXyKJ3W9+/VxA5Rk7mXfaSF8ZEQVL2CyzSwUFKvIJSBZ/rbBIinGIVeapACJgNieIz9/h4hykCmEip/TEmeo2Bcrn7ytpJLfrS22OqE8IGNhz2lgK2cKIUGUZdTkkyzDfqv7ICXqbGI4j4mCxI9AJwUhjjJHmREDeTtDk29dzXpVQH5GRJrig+ISR6JjU7bhQur00KYcTDbHZNA0JlGidKeXWGOpPCJ1zYVcYvhYPXSaOS2svrZFvJdDwWPLwjlCGHEoDD/uHMYPpAYsTDfW0ebRQI1+d4Ci8OfjGaqyKI5sj2u9vBIYoRqDV+F8Tg5QSAS0pPGh80HQXIL37a3JA/t0o84PbYiyP/G8CyTS4A3d5hf5GUHJZ338A0zGuPlqtlMzZH7VW58fXhptb880XZQSVFufG22j3xWCVven0MWOlXsznoWQxEo2L/ff2+doY88LmOfApAJortP2puD5SMEQ/ZNLg/t4asdBYosmQpNN7GPRLM2p6Gv8OxCMa8Z3NoYUilnb36gzZJ+YfE150RS6zzj0Q4UoQI63j7zsBEPJKy6z2ljTE97pczds2DFXg0LBF6m/2/zYLXGNn5VqPsScYO+XuCxWuGx2mpHLOzQ5Jtr6hQ040wVEd3mePLvx8rX/fo5YMnXj90abuETajz1toD9/j2J0/+0DXh81QOF1Yiw7IG6wYihhMDBYMATJYSaTgjiuaNeCrAVeC7zOBCV6KlgUvAS8FKx2HFwuOghgV2jsDKKqYCKwEJjEnlHCUMGAgOUETnvzeXqdC7yMARUEFgYtYKzlc47NhuIKngdhiJVbZZwXq4B9ZlioLq/hoGW3oBDBylkEBtvnWLk7wXpOCxXFWAI9l9NlQZe4NSj6H4rUFC2T0Y0dvAyVVNo2DJJl2eqrmB+I+aM5+Rk+FkQYcPpSM5aRTRSGtYUhBhbYBHq3oOjyQ/SiLrIxMIxidBiqxlcE4ylVDAgGEwYRphjNmAgj/hKDOfq/CzlVP8gwhWMIUvudnK+mAxx2GhIBc1mbuMfotoleusYEdQrJ08H3WiBRLBHIKSBVLDHaCUxIIgEKXAE1pRgjogUgNIWOC21pwjnah7oXcVDmMqURABUS9UsefBb1Z72A86YDyFQK6rwa9LgIWar70X4OXgMoFYkdqmiZPtAOkozndhBndXOvsqear2bXWPUEhdpAZQh0BOh1ipMrQCY87NfOhlX55MCcnX/jLGsiBZPJJxI3ADvcU1GwWN/YhyMUDnPYXhlmPCSwWlkEG0eTLTbf1MEPiR3UCY05oCZnlpUJhcnVtUCrLd4CnIu3UwCWgKUKWgIWAUtQjUBrmayLuU+24E+Aspbxo7i8kqqPfH5LA0lhdEtDKGkagYg0+YhZUtapEhxfAGJlBl2CX9jVd9SV8y0XD3C5oSYzl9PNPzNCzvjcFME4BWuFDHV6LbVnBU7DHZywSC5ARcTa2hYmMcMIXkbQ1gP+Q7a6QS7nobhs1svzQB3oyj5POYwAH/j6qAHKWIKxBFMJQwkTyz8DU1cKBVVPUaWG/CUEuSustcqCEm6ecxnIWapgchBACyTspj/CCoAiDlAYGAuYIEwCJhQTgkPElIMIpiuKqYrlDK3KNrGJMETMpQC37rniHzBFOMmUuy7BWDEZ9lXCEMHwsjhO21VjluXCl0FGO5jwGS60QDAligAIpdyz3k25mDsoGVntLBFmA1TD64pJZuOBBFTqE0U6QKHsiisqUwYDwGTFEDbaEhWIo5hQYkAuzKWtH2FFUBGo2IQTwE4fRrNYkAGTCWAyYYpgLsJkGH+RjfFwkDKEXYCog1QkuKgVtfqip5tWo+maoGa4kjHwY4p5qoMWafBNkasWqkvbicW8jO/srwkoLAMCHCeiwu9Vddb361ogoQc312nGtWiTACb5XCCBcjMsBwAhlNUVfpxyDAcHqrrX7T3u+j2OGAolIIoUsmHhjvu3xZ/WSjdfDjhUFEPLGpO3aYFLdlDCPnYSIAVwpVnt7hiidrjZSlO0p+Hytvgt191w100Z1RdtpTrve/9YQpmoA3u7NkQxSDGCru7eEXcNDHWQgigDGD6fBmz+jQAoodgQQM2+D7fO2frA6xMrY/qcXGL3xZtVEP5L9jLYQRP7BBpqp4pznB9FMSYCFsIA2xyB+qIo3JZ+4rz/jXFE+6uNnuzv6C9r0MHjgZyW1CadKCVAF1Hz8idPltfF6irhRlrtYfHFEODym03OLDF9woypBji16ZKZY+iLKLVxHOL8KSXD2Zkn6uz0UNVcUAYNwqtkMrzxEpW7S51nRUsWBZCrfkeXo54Pf33cACWYHL66Jf8LwoDEessRXoAUU4hYcRy9K1xV2wHqn0e8hSCkIDYTnIhtX9YAE21wh6N+AweodrlQXqKYKjij3a4UAhwx22S22AaPQvGJYWVa2aaExKwSsQJ1hoOItYXEAYrRYKBckAJjYJsIDlZ8BQMgTfMbQHFXjKpgpEm+m06poW0ygQgXaKIYYBM2bbWlTmNJpI9tISlxLYSEqtNXzFoGE2IFUAhMjCk2VuQApK/i4UoxDspLBWwdt9UnUfGSMOZSTBJMcYDCwEFsAlgZgx1cusvHVnUFUNDaEAAiBKLJuQIo0y1ZrAV0hhZYyTDZ1FSvAxT4qpNWrGw1LQUFKBxgOFAIF0JZMwqghKIWV+Ds9y7n4Xi+a3b1vmf5Up/DerJZZVobms1kt6Z4W7o1o9xOGkyW9BegNuABbkEJG4Y9N5qiSrbzD6pIYBJCOwR+RrNo2kMaQKvxb7AF3XLWf0tw0jBKxm/1uzUswvV0KAbubQ2lEpaTVIbw1X8BrpjOEdyYCkr2fnflH3QfOVdD6RvNRoCNBjoILnfS2lB0NJDVFTdKqXZl6rRlcRDGDlQcJLIWiOoyTL3v7LzHwaNtPoZyJlApani/feJx8iMS4EafoQFgfZ6i8YnWQawPAEXbOInJTVuwOHBxWW0AxYBJALaRFicksAuXZFmJdktJWP+ovxG2KZdHbcyf0iKmuvctmF7djRUOwZxTrnt4Z+d3vj5ygLJsZavAVMVUxhwwRTJKNISys7fvIoiA1SU4w4KimkGyZp3xVQWRmzIWaNGjBUUNQJiJHhhhQVHFAcEhy81xC+cSTAdFQyQZhdn8jFPEwjygmLC6lxImXIGBst1jiyuIVakDNEffJrhsQsUK2YQPYS42EKW2AgFcoDtACYAQ1ocIkj0jODYCiZ2x063hFgADiurmYqQbKJRTuFvSZxsCl+AKsFw8BLdoENlbjdYBeqztVs9kgBdSaER/yJW1+ngHtmFQC2o1gDDhlrDlPEaKg6zsIYRDXYCQlouHKc3Sg7eoiQIDzQUT9KZGvyiLqQGUtKY05m8ABe1jByi0lgFytxIuVeAULFceAUKWmqBLUyyQvwHIFU/SMoFHmHdLEEoKY81+R3s2gLJZUCQBa41Xhh+htmEbAQIgJD/731Dc6gI2dL25bfrqzjVJAJkAJhJEDFwcSMWU90oFV4AzaAGq0VCtZ7XYsw2b5uenstofIqDFViBjQXNuJP9gAxTUwUgqOtRijtXjq7BZUFRhix3YXBiAPxuLPgPuZnGSBlAKKHYLioH8spTMZTEj9l3KgiICJXbrj7hCdmui02v1e2GTgUXK6oiw0naA4tZSn3wqYXHpYKosfuGusnntf4Hc+5D3sPfRaRGLTBH7PQBBvMPiVxYU+0xhKSJxi1UsbhmDBNMXupNMVk8yCwpEIMvoGRaUHF/nT7OGGd1sHhYgjPizuFYWlAAgZO3K2FznIf/bRK5PpbbbLI82AAThQi2AYkDzGdM/f33UACV9eQhkaL5BMIEqutLNUDE4YS2R7R2CKoKoKrCPfGXtgUpuQQHRHvDoK28sX++tUDziAbnle9xWjuICWKIOlzDu9wOp+aGlYiQiQCpdO1G2ltAIq4oF+MakKAEXwi98+66b7eVM1YMCI7gy254089WUB42aYDW6mZ+WXTlIWgAqmLNca31LK2UTGmhp4IUIFhwbstvfJNgDy3yCpJVC2lv7Ct0rSKuHelmcfaVFZkVTeGCs+/pZ3K1F9ZcCVLWVfwCtoFtcy+b7ij/LaMG2Qdf3ABQFtnEJnjPXVvsetAiaxrVU1sj2dbZIEK9VYVf6acloPNSFMV3HIOaZ+Fx2wZnjVTPd+OvS15izW+CuBjgpC0qA3OyPVEFpzZAYI805knynbfxQ90VXw7Wzjw2SPk9hSD5A6BXmPNT4re7Ny01ZVsm0tTPnMEqGuS/MeCz6HH46Nbpob4dfI2m1hFzKOVQ0zPGXTrdnYy2BgOueVHDtWqwgcny1GrjV53O5+/P8uv1tcyLKTloFQLnIAzR5pDUUid4peIFan/VxDIJngJRHKdeajiEp0Eit7xR1iaRs0k5T0Yw5yXkoKP9Kzkm/F9hp2eZFZ64c/8bjnUdLJgQfUruHst9ZZPJk+/sBr48aoGApiA2Vky+TcvJpkXFnfimmvWw7JYV/t7+0/BlyTbgolygEyqgyYyICuISf3RG/i1sgdotH7aYQU6zkZaZkdaWksUPEy40yVjFpbS9VxNqTlnO5W1BK+VgLo64wLXcXD9CsGqrP256CBgVMAkTl7HYQ5DtcbByQoCqDOpsQDJkNRFd80ggZpI/dAA2cWP0NOES/GSmA0uKTwDLq8/sTpFDSEEQGToCw/Vo7hvdRKCLcsO3+2dAEdoGaQjkEgQ+Kl9HBCQgGiAi+0yjKu0zy+J6C33kux0w3nukCg/KZUrx7oCqSL3oMhwavtOdC2Sjqcwr1Pu+CV30l3gFClh4CMeZCcEKQq9WdC4zebkp2SgvKJpCDbtr/Rrvr3q5sH7YZK1plIWc2XLH/1vghP6iPfTFk3kCCPUZ2K/tSZgIR+43SF4YCgQ2pUSgxV3LVf5RCBgoAAPV8jGc8EPRI3kLzKfuiYcX8bTKrAxVqbRQBiH3sn8xbQgKu0uZBQ822JIDpi0Nt1rI+to1fApTUNbrMWbspSLwBDg0XWDGBjVnU2ReQ3n7lMhm63CZim6+tUUSKTfYGyMx3p/9lTFPmtYVI8vVl0qDK2IBf9r2xX1hQNktK+00LqDzbMfWu10cNUM47cIfpByWA3SY5iCBMqSNEKzhN1GJSlhDui3Au4Dwd8YniFAviOk/CKYpT0utTCw4iLAJO8bIVaY6/K3Bnwl0Ib5fVq0KQRVgLeHsS7mfUrZk2IMxr8LaoWN+ECOI/DjKFe1/AuQhnS0cSz5hhwhTo/fTASibbKq9mPhfYzpQ7AyJGK+GELc7jlKZLVWv7Ge+TsJZindSCboHYpeOpYhwLRkxHKV5Vo/8pivtJKR9yMlONlyoQu3PuDEAI99id426QBCgcriVzYREBErmhQFjL2nsXsrGDuwQyojKAgdOQganAWwcO4e5bBKyBcuv5MyfDdy95DApKuVp/yP3iHQgGsLJnTi7XTuy4ONvOnhISTYnB+ocYX7X234UgQji936KEt8v+Lh/XuH+Jzwv3k5d51toA1P1dl9d8KvkYbVNvZ7hjDJuQ1aXINokAZ5Srjf9cEpLzRLyk3be02rG83QiqkpmZ7T7NObCafFzepxXPtzK13R9rmdXr9b7HeKZM1vq8C/MIfi+zvzrfBfDYkQHaOqsCvoMGDsccXAcOsLk+1MpVWL9JCafzJtwNuVSrX7FWcxdEspe6SNKODSz/T1qbqPjoXJT0idiGcxHuXjexy9UTNh+XQnxTgBugPfUQ4QTS8XwukxlrOS853iENlwTZWgFejyLXotr7uIL/NLCSj1+56mLjFDv94noAk+5uTb0gJX9PqTpD90SqEmXjdxBAy1KcADZmaxh+O9lj0BS4O6abas8GXks9cro+ENso2jzxxqsbBiwLdqzVan0eFuAdSy7nwQistum9x8LFvBcAy5flMT+0/6bRpsvi7R2vjxqg3JcpWVaFuu9R2XysEVUMICd2BMmK2k6a+1KconjrSaRsK6a6ElPcl+KuhDtF/kuFkEJJsBACzQTr8kE9SXFX4C0Ub9WDTUUhS7GWlfm2lR+CxgwwCl0VoGoApQlk55D7UpzLypCl6UOG2ndlK+MuEQiGDaAE08zlNBFT5MhJF0pIHaAAy+s8vd1rxc4Mu88AShoCbPKzCeMACmVyt2dPf0tb0cQqLepXDSEE3F2K32ECV9y/HgAldjEM8kj+pJ31Odqc9SIAp/OKN54o4iHM5/72NDowFMuwH5aWr/qk3W9tYEITeABd+e6WhlKn8F0PnH7wKGs67bi0WI5LdD8VqihiJ8y5xP/6WKmPXQcyqZTVFXWAqdKtFHzgY6eXe0SBM69pArJ4BmpxLirqStF4dmnFpphRpQU1e7np6swXJV9Eu6PfpgQKERAFgHDhiHomCLm8ziWKM+iCUsZBqxCuodRtylXMjeZIl8xB0FA1kWoX2Plcrt6bmZxqweCFXIw8mvWEshBxxQLCcsuhEnC6BeQUD1z0hH9L7drpIWWnjwFC1nifWNq4k4+AlEtQ2njYfHaF5308l+JkBS+7/y72Dr5csXpPOeryBSHz6r6kPcGDbr1cj0dTl18ZJOtWhBWLTYm50GWD9TktdTmvKy4jz9bSK0CxMYw8hNqUf5e3wXsqsTGiG380ARkpcHqMCwO4c+1gFHEd4fPYdIiNm/21Pp4Jpr2vCHkWVsYA3UUHEa0YPBjQX0D1y7nBjNjaFl5ltFmI+UMlR1CLiZpHMUve//qoAcpP3k+IKt7SwGTFpwwcDN+iVQSvoDuFJkBZOMUCZN+u0xmmFO+nS/Ezy8DG6Qo8wyaIsIhwF0krg4ETwouwIV0GlC1IduoJOU+ILHz57cKn58Kn94W3Zwl7yz2gmHxCZUC5ARSKgFDLk3GuhSULX74viAjETeaqClmCwbYdl+5s5jmmi0C1lcwCYQzJQMx4lSJqCmYJTrFgy09Pq3edHnipoUADhHiQHZMH5FXQJ4gSoCynf+VcsVcqXA3Z7QKWCAcBiwk3pgQE8VBaUERBo4BRKjwPFD2X2IodoSioDpZ0K8pkxWTBXQaWALfB+HSxbW0m223DbhmKoNZBtdsmgsk6UTPANGjmiiVAhoEc2uhF27Ve3oVeoSgTNAdAsa3GBgrEQK02AY0AC105l2CJtoVyjd1PfatxAYXalZZPNAAhDkiWCCJgPQFKKMAGhKT1kNLmXoq6+qHZdkkOhgMUJECpttY9IVRDcHalkmBCzcJzdzq91VZ3lrSDFG11JCdQjVNZ37X9Xm7W7TthKzfaFkAwA6ybghbRzAck7IAFgpM5d4iEdfh00Bqet1gwDbXtwQuaMsJW0upBsmav4gQoJjfDIjUZmMwAC04QXgQAA29F8dOn4Mun4NNT8HZZ4KtZTglwN7347jWo4i62+/HTZQrQxppwmhcEM+YIIiZGfUemuLyxOfDW5VjuFkuAYs8NMusNhxXBR2cQ3O2sYGKXFWIWkgawVRSnOF/H4sv5TGEAT5Z66wmn70gUNbl2MsBgHINwemLIt8OsoZMceKngfgruS/DluyTg++kT+FQUXz6BT8UWDfcmc2LXEimwfO69XYoz5iU5EPJJH0naI//JqS1ItgEUjbnV5MHmbcrvxmf3bsJ8z+ujBij/+1y4A7a7ggTHsM9MjOEZvAgOTOBCz3fxGMMuBygrAUpEPr89FV8WxamEUxdkNMENMyeeTRkcrjwnGHcmLCbcWSxfh1hSOJGFT9fC22WT8p5omkBYIAXmWi58xAAKzMUTW4wHA8t3BX15Ld82Gr4dF0xqEdfnySC2ICybIA2gCOEt+9bYB4DyaEERByenCO5rpcKznCmaW/PCRRJbZYcWQMlEbYDnhdHnAKUJclUk6v+UbWfNp0o4FAkIXKbaqkPYdzTYQ3n8B6y9uRJzBWMW7TAxk5tyyfKtMOMFwKcADlW8qG/5o9pZEwnaOpAIsJGLUO+aCXHxPgU4KZDCGzAJkOMJmp64jKLcVoXt4kEHKJo5eMKaUrttYk5E/hNtgmW30AA7eOiKsgOEBLXZvlJeAUwlAYqmxWc5XbIObwf5spVaLz3E4mIR7PU3924rKwRnreBq8bL0YlkKemoBsAAod636JMa2DYSrvPYDgAgiRy0UtufyiyYzh8k9FUG7rc8XxPwTW3RMkK3+3ZJ4h2KAcC7GoZI7zMIaZK7qULKU9B6esO3tcvCtBlAQAMWBgG0ntT699UWbqGKquZrOZW7SL/uA3EXx00vwUyL4GTE5G4y8ICbzCLhjByjL7zWAQparSs2iOnynoPFrxJ7E+VM+9zUsiL6jbAMokkDEAJy5bvv2Wkpaiy9k2PmaXPwGQCm+jrm0AES6FxETakS+mwmMkzzfiRKULLfXMQgnAYcCX/b8SwFQTt99+uWwagvhZ5birQA/vQxEn6oOUJAALKxeQYO3GvLQZGbkYhHsVhsiy+vl692KvUEBkbRIo7lJ29+QuW833n3366MGKD/tyuYgI+wNnlHWt7fFZE+TMApNmrC2VcPdKUwpQG3gPhXghCFMdUWsonb8gtIGUMJvd6NaEwkUE7Y9zoAE8FZsBfFWNc2hADIKfrg0VZjJT0ghjp5j29tyU+WngsxrERwiYjRg9yVbKuXuq7f2sU+U2P7bk+dcAQq0mUbFXFR9hQANy4kHXxHl9kb21S8zIgbVAY+b+xvCjxd15tYSOkvM5bIUOKTqsIccILFvdYS1o/dFnD4BUEJxdeVCrpGn2BbpcykWKw4o3rrg6smuBsG2HQYdA6Ch/qL1JXOyIEzGDlBCGHJZU+L5oXuZ8bwP1g5QGj3TlRKmXOlm3aslogGJaG8DT1FXbNnuSnOzxmxt06J/AySixQMFXPYxBzSBSAYwh4pI/tCt3rK6GBggaibmaCcKVADdAgOsBFPVtwJwtiI1gNJN1zYA6aqpIb3iDQRFuwspzV+d0glmunsrwj8f6zArRmx/DvBkCxUia/MQu2EpZT6S6pf6NmoHPpFs0Z8TMovwkHBdxsLBWsQ5bqYgQ2mf4X53vjtcANwV+LLYKv+tuBJNUtizcDkbdAvav5W24GRz6y/17bUx5zTa6HwaY+h1haUo7gl+DjpakjZNNy75tSA45zBpxmoF/6mWW7DPJ3MlN55x+g0HABY7pDhdTk414AhRB5yRJM/qCXfOpxJuHcXPOG9+WQ1EB8+me8flM2mA8bpP1GRbWQVNxkELoMVxdLloafMwYsbir2jETNU9EYfzNuff+18fNUD5El7wguFJsxgHTQyaZkHBiOUXwhfrRmgXaAuLBIsW7jRgwsB+FbJVx1syC8rChBJDaTjkIM9PIiYQSfEWtronYrwF4U7Ap2SZZJmGP7vwloA7Me5gnBTKgHzdMzBwA4ihxO7XN3NmuBIGAQsLQoK3RBASaOwPJIWQZY8dYNxxgMjSCklMDhgtGIxPLX2am0bDetCErpdpE0wgZDQ7yeoXkrw3mTaAQnN9RPkR6KiEfHaZWkAZyIGU9W4diS3BB9kK7lNQulo47o96QdZ7N+Wo99cmkUBIsSBY3acfqITC5ubWKmLciPFCE5MYN7Cl2YcH41361t1Y3GgRKMsmfjkFoOGGLABi44GW6K0naQsiAykdSoMBMAsNPGZKsAzgkrl6hBTLDzlLIY9Q8Mb3/dqmNm0gCnA4YFCEa0XzuVTUvswq+muOu49Gzkgh8S7FXA3+I29DdTSTcSIWC86jFODPCJr76GhXFOU6CsUR1hDN71GOAB4HZibw5coyz+Bu9E8XTyJGrUnh/FU816wsCUz6ALd+pxyLejTLilckxVqwOXICBjJc0QwirOBfKsvyCmBGsYjxeUCU906XIdxcKAox2eJzU5037lQcPojBYJxkMnrSAMgA0ack+GkifEqCL7tFArC6FhiLGAfCgqQ4fe6+JbOwKAgDEwz2/6NfbfeSzwKXXhASnEQ+B9wNRLE4sudiUcWABb+jLRh8Dtg5bzbnUxE3Hl/EfnzGghCX3HU7jJDn16aJQQNEjDuZTBsgiI/TBOFO5la++aKPvJwFxun6ZJHiJMKnsLCAL3scpAUc+5wlTeBGZHJC/P5FAWBMlg3YswFKDKRpZhvvst7xLDIgFplco9Gl6LOcNz/09VEDFNxegDmhNABmKB8AT1PwfORtJitCuLpLQRZUPOyZz1gCWICpqCn95ZQdE+ABHRM6rHwQIU/ijZcFL9RSmn2C6B0479DhBwFiIQ/dU8C26FgdmC/QYf3JMokKyjMBbKcZq3pgTCRqU7UQbvbnjxdrJ3OziDhNmKDHAR0OHLw+dYGQQXixpB0rjwZQnJYACQtgZ26qSHwg2uvlEtkJwSlwUO2mOhF6U4hZdzbZdzRY2er0yC2YSRsGBkNHRpb6GKmdx6ESUX+NkSgFpLpwtixFDJ0DmNO2Pc1Rp5xyJHcj5wc4sLTnPXVJKaFcTjSB6GMS91H5x6qvUV+6nxptWteDx7N89bOSktc9TildalVGZNwE6nqW12pI0NDGpdcbzwNPvnsdGRcguv2Ndnc+NdqE0q+BjjJVWxuzDUWVfMYbWm29UM7L2bbVZ99icNTbCgde2Oq7hvLmPENBjRo8PHm13xugKd6sbsZYYO9uRmlraNPYS+pmUp1cJjrTUvabmJWjGIlyzirZcyUjvMwYRwcsRQ8perscsjk0gDFsjoovqs7Txn64OiSqe+xQNW+Tyzcp2Kxgm5fMJi8p4sg0wUeeZqyCOP3XAJgUv2SbvdymgfUyJDHceS4U+fZRLyJpLg6O1NsehTDBTkUPWpg+IZdZoTd0UphmPTMkQSOtARTQBaWzdIQE2bXQt/OotrkZ+sYW7LQFiSg0+6Upf4A0o7he2PDzJphjDlDxUP7uPJsyEB/8+qgBCh2fAx0TxANEAzQOEE/7zAdi3RVsTcGsqiA5QesEZIFioqh6WnAFnQKw+4HH4Yw0gXmkYoqkWOorYSKyiegRa8TuLZW3wHgLWicsBfsJd+AAAsOt4wCNCbq9SQZOxcVkydYCqCxrO+mwiRd7xVz5Eg1gMOh4Y8wfq29nTmsrg24HaLCX35w8qVy0ckzIsoRfa4Ho7omDLAYm4ygyTsLp4+XaZy4rgDqNZYG4AEpIgEi0FU2xGBR1GsDK4op3sYdQ9c0B6gAFrQ+ek4b6RCFD/RmDQmQ8FWUdB2gM+xzxIBzbprkStzE3qwdF0UjwpSa8KIQFkCbspF2UQbXS5XbNByify7mQil2qHrF96OzC2c7nWaaXGhjYEvvl+NffJLGGS69JmGi/BVN5hlOt6/Fdoh5TFhEjUCeJ+5pLe709aNQHO4We7jlZglc7rGlHXVP2LWhedEO2DwhBShf+M2tX8BGyj5mkysFEyPAothRcwpQn4K9+f/ge4Nc1ZMqEGO94gigBCjGZ7IIC5IkamUCTbb4ncNNMxBbJvkK5bHN2jsbv6uNt8iYCZUNegCTjE2wO2bzBMe2vy03KPbZ+vhk8gfywxQBNV9qOdvI0bvKAWjAwj5qjkTMl+Eb9cED/GwCFEqAEKGlzhkqOB4ZL1kt+V1h+FgJogGJbtrtjiDxbNQQUJ9MHfGW28RzTAMqcoOjDKJBi4+Qy+bDr9j1ov+yZdVo7fZ1HCVA0E7eRx6TZfBHnSRs/9aRdliQuArJjnK3/5ACFyOdQl7nB35E2wVGdOjgpmsVcCzlRgPt9r48aoLx87g1ejgMHm6nsGDcMPjB4gvmo1Zf/i8MCVQUiJ851Yq0T5/2eTCrLdsLwaYx2KmGNG2RM6Dig84ASm1+2BWFFCvaXOfBmkL1ZMLEw5ICuCTlPSxc9TjDfMSgCAxk0bqAxMV4+Zyt1Hh5RbSuZTKc+COu8Y60TxAyJlP0uMGQtME+MMfDy5o0rc64YFNFU8i+3G9gByoiVFZCmykDftjtoQc6FtU7wmJAlkHHuQbKplN3lwQwedpBeByimm5YFKp9nraxRwjZX8T7hGMDBFrh2Y8bkyK2CXPEQE2gwRgAUJg+SjdW7BRevtcqcDxcfVJMTRBg8MAfjNife3G6Yg/FyzHTjDO+XHerHIOIKBKZy0TgDJl3rsMDW31h7kI2DgZ0qhxMAUS+sJj5KYYrzt4r1U3VZfz1Q1j43nzlgh49pC569WFC6cK7DABW65ReqYOcCKA7goRkrZe1YNgd9l1EcfqZoY+WfdxdPUCvwbIsBc8AlSRRTYjHGFRPQY1Die5yLtccSRD2WM8MWL3aOS8SzuTu0RrCGu1lhsu3kBvrWzrK8hBYsgEKNL1uRbY7WiwmYkzGHHyrKpiwZijEsiPQ4BiZzBsRHXAYvjwcSIFKxE7Hx9mAcczgf2vlTxmjLFbBuu3iIV9J58LRA85eJ43bg8MXbWAK5L9yEIbQw1CwoRIQ5Jg6v8xicoPBcCyyW4l3VXOxz3sBjYM7hgepmQeGwiMjpFjuTWyJi25HF5gC59UR8PsYhoYPMxZNpA5y+qdzJnUDE5uJRckONH0goajxOQOzyEcAs2WFRGhM4Dozj5jRmG5tBuB32eQ7Gm9vAHITb5DqoUU+cd/ZNEO4EWIDc1XOrGI8a4Iyzv2QDKLIWRM3iu8SAQ5xAP4jCcOPrbfXYHA1DbnJtzRNq7h3yeVS5e2IOiih0ET709VEDlDmnvXmaQuGJOSaYJgYfTeE6SFFJAS5ukrPFugBqac0FgkWMqR4doQQdAzQmdAzotHgUInLBbpPBYhYIYw6MQZiDcAw7w2LKgmCaR3QOe24M6IAlBFO2FfoYGMOYV8eAqikoYQMmTORnDBnIGGdZWawjteI2BWtWADAXMGBjFmb2thqAiVU6EEK3AxSLtVkAQLCJDnJE7UyfcrTFYzCBx0iwki4MVazlQCZW5c2M7YtFqzsmhKpvW/aTPX2b8QZQBjsoGrYCYzdVIkBWgKcWGAqY2fUCUsYwYT6nCcDD39yAIhOn4CYywR9ZbNmDUGp1iQRiKTCyuwVQTAkE0LG2jmZBKTCinVz+1QBAgPB1moAcTC6QLFlXKXU46OC2s+Z1gJLgIfgCpfxTEGu0TX01Zd+FBMqex2K5QiPH1YQWS0INpFyUdVDT57N4wKfCwQ88ODzmgysaU5gmNG3FWas4s6yENTT4schrNLI2DcsxkLmFNIlTe7HUxIqDkfqc9cHz97jwDkCeI5kgpQHm6Dc18EO0uQjZt9gzO7BgixFhSM6bwWzA2nfxkIN/sw4FbWORYfxssoSr7IyDKItV5OawxGfsyt/q48E2l4YpXLDHj4ja4mXZ2TYmN7gWNf42C6QBLSU/Q8rpY2UzmEfNEaexxZeYe8VyLPnhocxOM/F5w664Y95qLUKaMh5EyRRMYZVmkJIDY19GqViaCQdRhJBBKJcZuUzmonH0ezBheL9m+zsnNYDCgFoknCyLqg2aCvyAW8BygwmXflOU5dh2SYDZXaZccXUm08rTliANDazFK/ruPiF1K4rxawuUjcniR4N86OszA5R/8k/+Cf74H//j+JEf+RH8xE/8BP7G3/gb+O2//bfn77//9/9+/MW/+Be3Z37Vr/pV+Of//J/n908//RTf+73fi7/21/4afuZnfga/7tf9OvzpP/2n8Qt/4S/8TG2Zc+A4Bg4eGDRwGw5QeGJwdC12cpjZLQGKT4zFAGFk4iEhqqPoyaQozeGAYkLnhLhiUllgZbeg2F7845g4BuHmACUOnBMPbMUcFsdhxx178JCZ+HgODPfX6hgu4x8BCkHApNA5PE8K0mopUAw24HFMM7GCqXYxhNJhxnFMByhhQQkhFZadcGExPCGtMadYvUuHHaTYFGz+DeHmAIVc8YZ1hAlYno1S1c83CjHfLChxVhHBgmQnw1ZY3INS4QDF6hnHxYISAIXN3b3I8wAE+n8KUBhzDNwOex9z4HZMW12xjwORb2nnJ+DCBaVRtFb8zYISvwEx8QvIhQWmrrmFKMsLDXkBEA5QRAWLPRhuWQZNEcHksKC0NqntFNsBirs6cra5Um4gJS0MCYw8SDetPHVyswgZaJIKZpXlIMVDqapsJFAJ5d5dPeoLB1G1bZu+NdNWbqHsYCvcaGMDHqsBgrQc+blLCnKroN3LMMuCGQ5sz3pkZjW3EjLWJYNkAzsaRitLiFOGUNubcwRfASnd9ZrFJvCzOkNpBDgZIyxxvvNvGMgNkBAARRjpmout/OorXyYGezlzloxgquDSOLqBsVuyhCx4dDogMsuOgX1z0wpOHZhjYQzFYIG54+z+AFIzAYpT1+ctKeccjfJzDsLd8hDoGh5LYeO7YGAciMMJw6JuSjXmWx4UGOWRHQBrxLf5HxafsKBEALzC8mCp2rZsS2Rplp2whmu43ByM8AZICHMMHIMwJ5t+CwuKu+1UBKwWgKyLQG6RmF7X8B1QKlRtUrGs4kYOm1FkWXXV45AqzYGlNhgXgDKBAoE+LjZHkBYUMdiG5Wg6wEvMFahtX//Q12cGKD/1Uz+Fr//6r8d3fMd34Fu/9Vuf3vObftNvwp//838+v99ut+33P/gH/yD+9t/+2/ihH/ohfNVXfRW+53u+B7/1t/5W/MiP/IhZED7wxXPYmwcGD/AYCU4Gz6Zww8VjZi71nQ6D1FHmNGTnKytdtf2LiSDDyhYPmGR38bCQlSkWH8FE4DnBg2xyuwWF+UTGZzsQ4SWZoj8tKN4HOBjKpDl9ZTRs0ijU7rUeugHFmMJWH1YWRdCZrw7jXARy8MCTE8GXBYUTmARIga/eFMh6NZakzYISjB8AxVZBXj6XiweAr27YGLhOcAsji/UyJoRqrRJdyA4XKOrbF2lQ9X02gOLglJJONnkJLbq+gRO4BcXKGRiHuczGnB67Z4LFUvhzgooQkj2HSe+wHY8utaIplZZ0i5UgE2e8S1pmHLQgrBhFxvwuHjzNbs4WWVhk/ClxVpCaSTdobDEIO38EUKg4kAA03ZXjggcASQihJrlQ1hASqfrRtteTusIpsJR96WAj17KhoK0fkgsL41lTBchxJFceUaEo7DTbVDhethhIluiP/2QZUTXjH0kzrtT4fovS9r8RRJtzIxB00KYBvw2YNMHt8TNpdYxXmGUyCrvFTUQMFpPHv8GBM6VM4gZQ4ICMh3oQM9KSkFbPtLD6swlQxOPpxHYA+rhxyASpBQMPwpimhMG++07Uf1OPk/O9cV5n1B2uFYa5SSwkx3cVcVmeE8QD4HSfsu3SIQWZOnc+N0tHKEw0gELU9jjEXIbHiPmWlIg5A7FZwgKPeytNJtnOSTuo1aNmGJbqPgFK9NdoS6PReTYL0SCX0wFQBlhtccyDK1eLWAt4FWgNCxTFuCIWhU6LsKaF3I6/5LTOUD7NRdQVoJghzi1QMNBmJ8TXHoV4s/TFxvtfnxmgfPGLX8QXv/jFd97z8vKCr/mar3n62//6X/8Lf/bP/ln85b/8l/Hrf/2vBwD8lb/yV/CFL3wB/+Af/AP8xt/4Gz+4LRXrQOmmYEemNILs5XNmZTdBO7pVBgs7EznhlSx/AJMFGrlyCIaKUQ+GJbAHpoaAqHfEDjD8bKBQsDEB2M9l2JS67boBmwnXmISrvLzH68nD5bxdXHTpgZyhNyy1cpXV6w1ByBoR6ABpoW+91uumTFAo2FZ3f/e6HH3YoY52HQIHUTGuQEr4htijjM1KwSHEr/wQREYqoRAs7KsGUfWJRLlTprc5/e4JjLxutrHrtCPiqptakGz8HyCPyE20ksq8046f9JEHV3+9vIrODz3odfhqyeqxOaAZbGh9gFSTCucUAt3NsjGLXC+6QC4rhz/j4xe5OLryNAuGmc8VNu7sZx0JqE5yRQyXWQhSEG7Km6qBAV7I+LqDvfawfWRCJhVrZVEANqIEjFsQafAVAkzlCKTVL8BMCl4HDwmDopF+j0ZAYrJmByatnJzXWWMbD606E/+Uku3WzPgN2+9Vjp1TSg0I9nmMy/wN5VTzv4B2lPtMBtWctHlfyq+DsEcZUuOf16LfXab0+RFgonWWaC+jcXW+yV3+z+jUhqG1C8Vx5BPEZXlupNCQYeWyfKzjKitRMqDJfeISZ5uuCbCxdVmrLrRNAKjrxSfFvXsZjac6pRotALQ+Fl2TPGHtI2snLrR734vff8tnf/2jf/SP8PN+3s/DL/tlvwzf9V3fhf/23/5b/vYjP/IjuN/v+A2/4TfktV/wC34Bvu7rvg7/7J/9s6flffrpp/jSl760vQEP3iGLQDaU65/9O/fvTz5f79/K8dV2loP2pva3v/33h7rR6kVn/HaGTSuT0dvh97Xyom15f//8pLydPqjnY9//hRYP/bqW19vW/0bZvb/xLO10ZNr7UH2JZ1q/UTTZx7H8otGG6zjnG9joFObvpANilVDjTpf29vezOgZfvj9rR3/z++8Z7yqPL+VwJSqs+/DuNjz0Bxu/Xp/vPPeMDnSpm4B2b5tPqchqpdeFK+V41TyJMYrU2095p/FkzAVG8CV2Xs3xbYoV7TphK68/G0onFTNKKJsAvsgMxHPxjLtWWjkp+KPAQIyI8trv8Zn6dd1/7/O3z/8LXXe6l8zp8od6eXgsM8dqo1mfZxf5stGraIFnvHCRWdm33s4HOXUZ58s9NT7RiH2MsdHp0re0Jlxl7d7vB97pPNWBwjPaXvrfdVR+DzmG/r3TrLf3ci0HIPpaZr0AENuzyW/X8bmMRW9/0LWPHz7b6/94kOwXv/hF/K7f9bvwtV/7tfjxH/9x/OE//Ifxa3/tr8WP/MiP4OXlBf/lv/wX3G43/H//3/+3Pffzf/7Px3/5L//laZk/8AM/gO///u9/uB7BgKqek0MWlNxloJH3rlw82/3q96u9Eebt7Z4wY0c+k8hfEubrtZnbFWSIMd/Wrr3Myxu2Co0t0Gb+X6gQg0uZQtlm7c8g8hJE2YRt33uujLWSCkWsifiqTsl/qz38FSgb/fAj2XLLtu1HILdSRJv7StusMCU+y1XguQWtEU5DgOAWAlQcRGSYrHJ9OhBy1U/5W7Q/vmvVt41tqolWc7Ub2mntdOJog/NG5GYgcyJlnA1R5VFQIOOgeu4P62HpIqrVRuSNEcCPZLcdXaH8NK0ISB0WMS6xiyfHTBoPSuQBavEe3W2TvKLNulJ1xb1R7bMyyqwSc0NR8UyNDsGzGr+jysj6jR6VqAPVvmKmKhuKIrygx2skqbTiP6quVl/wRhbdadJMTOgEalAiy4n6XOhrjHjdndammEPUCqNeavH5fs14r2BP3FQ7qKodQWfOe3tOHG33EbHTxu9XgSq3sZSiHXb6qFupY3Ylz6RcqjKC9vZ0yBS3/mV7ZC8H0RbPaxK8A7cGbPcX3yHb0Nod+7wUyOR5jVcIqCBXDdpceHTjk+DM4pXk1eS9kDr6SBfvb/Fel3dRWZtrSX/KupM12+/RHtraptWxZNTiyZTZTpuNpzuva8nPHpuWtAy+3y980Ov/OED5Pb/n9+Tnr/u6r8M3fdM34Wu/9mvxd/7O38Hv/J2/89XnVBVpWr28vu/7vg/f/d3fnd+/9KUv4Qtf+IILYAvkUIQyGSjQQU7oGLiuaHeFlQMfEzAmuAMNeF2l3Bi7snMMmff5Z6y9ThSo6AIv6sy/yRgd8MTEle3+DSxom+Q9aRLQmDYYazlNOHk1xiImdU2g/Z1gqAl0oEyyMbHg9KMQIKlgg75BP58wKRFCcEbDo/lBrxhzwElVQu1VgNKBYRPICBeYFUZa5dUzlOUaoPNgOHhcA5yOTgfxcpKmcFCQu3j6RDX+sdgGczuJONjxGJqunNsAtjErukZ/RQqciPa/VmaePPwMoDQl3it+BCidvshxtRuaMriMAbb6rkoEJWgJGXKRQrDzQQro4qFULMA2zlX8JmKLz/NezS7EPZ3muj3nP3UlFu27ko/qS1EwHtZyw/olAyylFHQrrOqIadPnN1QzkDWmUM1raQqoaL53tdOjAi2NU0PZ1dytsWvPtfmdACdlXTwXny28MsuKjdiKihuMtgKoRVLNS4MnIfBavZHruIGDxgzZ18x9Q65oXa6gkSf7TgU7ir/ateCRNnLBq8hxiH520NZlPIDUOby1fVtEtzlbvBF8XHVR+47elmxZouhi1o2PjNHSxRi80uvrCFsR3NLkUx/D979+1rcZf/7zn8fXfu3X4j/8h/8AAPiar/kavH37Fv/jf/yPzYry3/7bf8Ov/tW/+mkZLy8veHl5ebgu8U8t8Y94chxS2B59CoVlpLMAvBLU9uzyrcLiWwzFhbcn4nZFL6mQHYCQpRKPSaawbWXiA2LbGldr48q6IsV3bN8FXKWpePyH5xKAb48k8t1C8EhpAz1VVgCGKNO2AYt6oJxGNHWdIWJbAqXNQAeI7fqmSLLvkvVKmyTpw3dBweTKG5TJjMwnW4JLEGnPS5GZMiok7q3zxGJmmageUs4ndSoa0A9g1iwq0Nbu2GKsbXKZ5SP7kLT2HTFKWAl6XRS2gNAUMj59/bzTXDmnomwKuuxNoVCrjIiNycA8ULsPKVji+ZjzkqBTbOcYBCt4Jd/7duK61rZee3vTtBvtT94twSQ5tzS3qCOVg92UdL/8NZ7MUtuYeFCkohZowQ/ZRuxlPCiIUh51XlBtoweo8UHru3a+6PX1v/U5Vo7Zvv5XQ6jXNU3hDV+Zhgzoz6FAczOtdFASY0IB0BHjY+ehsCuXkCWav7YhSvqXkgkuM/nBBTQSQNgTeeZN0A8xrtXPkB1xejWUkg8L3NgunrJA1CnBIK1yNGowx0a3WKhby1zAANWrrdz43HqDUNRhQVGnffzdxkTNZRUKvyVjbe3s7ao5oo0uzomtPdYicRnhG6udTr5F3oECLvO1z9nrQaDbv+T7kEU7T9v1WgAoVXutdSFjGgzJMghbf9U4+jpXaoZ+2OtnJQalv/77f//v+M//+T/j85//PADgG7/xG3EcB/7+3//7ec9P/MRP4Ed/9EdfBSivvlx6av5tEpWB3DuXgQrX32HWzn69vxG/XX/XVz7bdyU1BNC/998Bjy7f+/F4b++jZj9ffWPTKNk2fdp27xdff9PtPr3Uf22D9mfxrF2tvNY+fajvOf1j5ZzB9p29H8b/XfU/76de27j1PfjHxzN4po2FZnIAbOOu7f7khV7Ohe6W1iD+tnKD7v5c3Ae+9Js7/zd60X7v1qanc2Sng+b7Nb57Rrudtq/x9Db+/kql3fqx81W//wn/JM+059CexWNbFPvzT3+DJi8+vJ62odWF4N32fJ8zfp9u5bX7Xvmr7/r90o+Hfr02N9DaeX0Oz+q8ypx+fy/jlXl47csTWj60+5V6tNflL9148bFcfdqGy31Xem489ISfOu9c733Wn0sZWz+etP2ZzNIH3tZqa28/9rJf66M+u36lw3WMrmU8nStPyn7H6zNbUH7yJ38SP/ZjP5bff/zHfxz/6l/9K3zlV34lvvIrvxJ/9I/+UXzrt34rPv/5z+M//af/hD/0h/4Qvvqrvxq/43f8DgDAz/25Pxff+Z3fie/5nu/BV33VV+Erv/Ir8b3f+734Fb/iV+Sung9+uTCniqBDHjMb0IsQMNBe/XOERPOT37ldp/a9C3LAd6A8uSfe0Yh2jXoZr9XR2/+s3HgL9v5eyyJkxm+X/hvtNrqh3/fkfa23tx3t76bsntDtWqbgkcH9L0l75tk4+E4AvdbV33280a5p1fPwvvLVpV66tGH7SwD1iLDOW4RYzm4vwutlRR+35UTTYf1a0CoD3eI70F3F1YZr24JHYrmHfv3y7n3Dk+vP7onvwT/Axkvp6u5tvVIqfXD+7PXnaPO1v/GsPDxy+bD/ZorL4xueCfX+rLYmvkvIt3uf/v6a4H/Wtn6hzwNcvj9TLPrkOcVz3o7PXWb2Blxl42vz5ypLel+fvVt99Fr527g0/nX5Qdcyu1x4n/K93sNPrr3Wdlzqed8z75L13Kq90JOu8vhZH/qr//Za25+V864yP+T1BLO86/WZAcq/+Bf/At/yLd+S3yM25Nu//dvxZ/7Mn8G/+Tf/Bn/pL/0l/M//+T/x+c9/Ht/yLd+CH/7hH8ZXfMVX5DN/8k/+Scw58bt/9+/ORG1/4S/8hc+UAwWAnYk34FvWYp8/tq1aQJmb2E1l0PD3O28PcuZXz/CodrYBw7bEDSqFNGDCKgVhPOvXMt+Ab02FbSsWsfo5toux74t3n2P2oW/l9eLtfCnP7jcsPiHa5Acx+4uAVpZtt/bn1XM6uImYhpXBXG1Ouircg6BpMWX1AFFX3DQIXPFlyNOQgw7kdY/aqmgJjpz+Cu93adDMKbFp0xg79fP7+ta7EjxGe3uz/yWGB7UamrdTo62v6kntGEBsO62t2tV24zEfz4ncHk4jPiPOQ8wss7GrIZVlmk0BXUbDcNsAFpwcNLOcJ06vvOb05PCyhwCmIpdr9UhXruKm6OWOJI8Z5wAgBDcv+8UGWNL8G+VTND74Fc0NEuNn7pLKC6Hp2jM9Ye0B7Pf4XJEHVX+MfdAl2+D3mNtQPUdJ8Wl0I2cDV4oBAhz8EOxME7/udUZKgSgrBL1ehb+Qxx90/VntTC8D9RikYAS/N/pLbavrprisZIqGx++K/jTiW/QVIfO4tsyS/xZypG/vVafjttgW1PyN50Y9x9kockNPBKZav4NHN5kY8mh4G0EmXyPoO2VGk93ZzhoTcqCS21p72TFvtrFOAiZIN5nuYxpU5mhvKxPt74X/auu2tyXyzAU4TZm0cQiigSFDETS+9JnzM6U8i/NfQzSyUPIsq1YZot5ud1d3WdHpqMYjBfw68VofggdAtVvnwq6dbTfDX/geaxZkHz/09ZkByjd/8zdv/tbr6+/9vb/33jLevHmDH/zBH8QP/uAPftbqt9eWs6Ixaiiy4Cp2BSVKLkA1lSOJK04xqUlxQGAwT0zYyKvhOzSiXhNgrmD7nv943v8xe+bGaGcycO9LTRCNidT2wG8TXqr/rmURkqaXFbtKjHkUFMmyUghRbpdLYZjOUkqlUZOIsIGQkqL79Wt7E0wYrW3/vpG0Z6P1gpCr5PZb5U3AXn8TCJlcKW/SnNUGCJ12bKArF9aXycnZ9iY8Gq8FGEnAFJ/z2QZiUWBAmoBIweV/M8dK/0sGjjqtU5mEIggKuUC24QtAHjzvnOgCDTDACueJALHwTK8p0JItPCaggqaSV8iFnQHxHLJkJSg8549vkWQD7DFE4BBsTQs4cIk5nHyW+sQFMLXmFHWKjZI3td3z+L/d68AjUUawjivyKJNwKau3uoOUukgbSClB3rtNvbAY68s1jT56bEt+b0OSdG3lXt8mE2JLaH3uBH3IqxLzo4ai+MNbEffqVm+XB1EXbfN5G+etXlyuU9L4qlArR4pThaj9fv0eLW5g1X/PfsAGMvh/y+PRxMuD/GhDGOO7DyO1PlK2r8rZabMBsOBLSnW005L3cQ1GI+e5JAG98rm/W6NjTl/5vzFrPlc8WkwZkP7i0X3v66M+iycztjJ5WnU/b8JTJQdnRCBSZNAzoWm7MDAYaxEAP5OBGVA7v8Lc9FY2OCwI9llgmQltSxvvZ7SMyAKoGFBMECTPXuA8G2Mx+W7TYED2uuxQKTfWgC7JwobY7+xJj0RCu/juD793ZFZJZyBf7aiXOcLKM4Je9oqIcfXc4Kp2IqoddmW0MRhPRkdEPgWrJ5ONcVgEKtsqUYgE3+njliKV4noit3SFoHOEH2dEDK6yuc2oTITndMox8wA50t5uw6Qm7GxXTgkyTvrFGSaRJnw4OJlxRABRyyRb4DTPO0maejBcLOtdc9vvAVBQ6fKbNWaMdhaPS4AKePM+OGARYdstRADAEFJYrk9LtQ0HLWYtdNBEdjaVhOBrIB4I4eT8RW2HFMoKuchBEElJ5dyJEJZ2CjXmAtPXeT4utRuhAs0pG1Bi36ovYBWgU1o7qUlSVdjiw8dc08wS1NfYSWt95NpyH51UdqAnERBe41ZlddHbNq/nLcZ3TIHzunar+dM13X6tyk5V0KxvxTMB0hvI5f0dgE8Vnv2VPNaJckHCMady7ln2ZuNnyuRg7PwN8QURKyCXOn1+gC3VeU90mPKptzuBv/GaLSStfCW3TLeFQZYHt+Ymj5KDdWtzZXk1ACxJ2wLZxGZhZ19gMgIMGDNxgAhHCcHjxsZWh3g/YrS0qmkyq/ra32P7XPpiMGCtJujyI1BcvnHQx1PWB5ixzQpud+UCCBt4TMvIDkitbe5JopZ3ighhufM1jVPRxqXmlVk7AfXrGnsMPvj1cQMUMOzANj+0bfvbAIr/A4mlVkcwEkNJ7F5yYzMJ7DBAI2oOFtiUiz8XQpB8+VeCIdrg7YCCGxyOEyND4ZqRghAraHZhHCbimrSe0jiZ3ydCtsMNejF5KYSVLf8ZvqHNBVOnU9HLXuLKXElqLUsKTtqQwzPPoKuNuYHqC4oe1PoGigj6oGnZSEMhuRckhtAET+s3Zz9R8vzyewpdGOiqoE/OKH7TSXWQIbW2PvKUC9rL76OPO9fzTuq0dgT9lU1Lpnnc1VwcyFZgzAEKXc7iIQcP4a5DrNajfNuroRLjb8DbVvWVTCl2nFHyv7WkbSZNYYZ2b4/GJ/hOGIpD2ErsB5jIRub424F5MSckFAdCmGvtyAhQ0xR1/B4BjhJ80FZsqdzLGASCu70uSj92C4WyjWfgzxiP951UBUxS1napG5asRrsEMuTKPUwsVUD+Tb7Jvnt5WvMDToOo1uZegeKaj+1vyArq9+3vaHTcux9c6WWFBcvnPlMaoBNQPJ9LdT3l00bJva6aQyHrYiz28rdnANjRCYKeHVqdR0JWdjAjbo1Ked/oGcnPmIKJqi4Ei+aYlYUlLMPxu0vLRuji0aABtzEKGb7TMOY6X+jqQDToQ0BaqcLEg+Dhxh+NN7BZ07osv/AW1fd4maymshZplFn0AZWltT/7vtdHDlBqEE2B70oXgCmpEKcuEyyzut0TB/+ZgoxzFOx3W2Uae9mkDQca5+CTL99KKfPGUHGOQ4AU7gwIqpVlMh0bA8LPoXCm7ko/2m3PSE58AyIOGsBZJpGvlJxRTAZxlUklCIN57C4OdZDgRCDexkLn2Bg4JghnP/vfUMkdBNoW7WDm6LN/8vnFAYKs1W1iImcSOU04+g9TYqn4KGhn4xohL0qhcroAvQDN7S9wBcNxmFpfBYYAsJUD2WnZ/r16qsGmrbzgP5Sg5gB4MTqpjduIGU8KLK/LcBqX472V4QJNYZaHABhhDQuahVACUK5s7G+0z7YY5xTmcZ2jk6EsurAOPuovCqOg95Hq99igHcCCYXQloOKYUtjDrRYRu4OtJkKNEzmQjJVy8nWsOrsCUMWrqe7hOrq7win/AwXATDan+j3vo+x7PWftj1KtmWXR6fxb7W39o64EkcqilA5CA5ayinmbz3b96koRxu8ly+Dg+yIXvH3Zhiy7+vvwL9qDuE/z/pSbIetQ/aCLD4hoLzOUaACt8MtVWy+K2QnegSpQbS8goPlElFVWveBftHuKBs8AIW/Xwpvfr3eZ28Z9a4U2GjSqXMYQ2CiW7EjOs882WCV/UtE8LYyKHLOkbwPVH/L6qAHKGMMPBjz8BN/D3n4thFrkOmBViC6wCJbCgxUBiWhPERAJzCKyMMjiRgZPCB8ATygf7g4wMBIJ3crUOJtJTjDAmLogLCAWDJ6YrFisWLTcRM1gGiCaGDShPAEeFtfo0mM0N8/w7aiDhgUCSkgYgbBi0DR68ADRMIVBccCZQw9ip9vjYYHlCqs8KBHUpQwsEmTkPC9nxMbwMYHYjkLvlgEDSwp4ThFlU4kkklwfc1qhucgkUgxqx8bTExdPKHieYB6Ax/KUi89ymagvk23axuqfktblijP+mmP632H1k59C6n0czK2/1X+gTWRVO8WXJDPJ2m9avmEqkJMBt4w6Sj4sKHCTerOgxDWhYcngyCw0Aj+MDAyB0Vwk8l642wmeOSODosPVUuCpgmSlfve5xQqQCCw3kNtA1CcYGR9FAO1S8o001PoND2jVbJO6taeUc1j4Kt8CQUGs7uKpwyDjPkqrETJaVgDjiyi5OgL09qNbfxxgUgh/5zVXPEqh7GI0tP3vbaFQHZoutgimLSLvn2ul3tqSL/V5V8pvt97GcQTd8jicX52PyKx5ccBfgE8DOd0yPYrXyXjXIl6t30zuDoYdt2BIhTBo+GGadtr84AGQubYHq7szzcKs4FbnyLYGMGCPGQsrrKDfNxLQm5hyC7DzrwLWPgaYVrlzoeGoRwCfopnTzUet5rO7SnyxSiC3jNR2/HAjwYFPgfq4zknjvc9G70Euf8hlkMuFGYcFQiA8oLwwmC3gn4BB6i5om5PsTYBzfgHDaiuRFPjJRRFf6OBvlKuru3jCjRZvwN1eTr9czARO+QwI5aMGKDnAqWRH+zuSEORCOBUuOSjg4fEV5V5Qhu8YMaXMstejxBZPQmwCisnKCMTbDi00/52ClRGh2ek3dSVkR2L7KrzVoTwMUKU/sgCK5KqdQaJgtnTUCuThh9TuAXOaruFHyVc7rwCFUKmU6zOIISFU2OIcmD07JMrvCZ/kFDTqEzHRhJ0boSGc3DoTa0OiMufaolY3txUnHY2sCVAu/QG70CVXmGL1MCmUtR0WyJs5eB9HLhDCw/3DKMDoQmS3oLQgW1CCQpJwKWnO2gQpQMUNNf4gsrimbnoN0JjzwGmUaziy2CZls0/BM3gCyCPbTWdHOa68E4RE4rW2YvbfMsGbusUm7oWnRudQYIRMX08W4KFiljcnEHqko+pFmFHECMVKrpR9BDaze5LMInoRej6enL/XTwV73LKDEJyPq0PKopqlwpVbwRJ/EK6JiKoS/04NyFCwwCasWxkozRLuCcqy9g5EK2olXXzyzAVyddV0K6QEsdpcowDfxK1cy25K4hZc+GIvA/db3Qne7Q2P5QmZEAqyrNIRNxfyw/i3FGmzhLRFTyjVZp8r5Et1wvBGg6Sg9TnBcr7LulBKuUCSySmqnYDOHLuFhwpItudwbQtR2xDhtOkLH6cFkbjuahbdCOIPb/mlD8FTZS15xhtad+Vc2Gnia9S0DgcbivN9hhygLGo1J5A8V3P5/a+PGqDwGG5FCeURq172LcvGNBEgK7F6U4KOyNrqyD42zLMpZWZFbOuKwFXhAQxDuiAC6QB5LEGBjrIYDLZdyUOHMV0CKM7Vg6HrOIXZlb+/2UwdNqmZDfB4X5XF26VQifgKC8blBtoCoADwuXgFKN6mEZMagPgqVSL1sgLDVlqabTTLA3uwyM7Q9NCGtC7Afb6u5JgNWEVuWACmWMLq4VxtoLEEHXvdiXm4AMrwOokJMmpVDrZsvIMraFqAdwKU4Kk8+vwVCwoRezBr+YRT5wQeocpCCefFACcEJMjpgY0doESZjiJyPAkRCBz+YDG3jY8L3Pe8CFAZyIPJ3FJhwh++y8tjleI3XACQ7ABFnI6A+mffvO0WFPW2mtVEHCz5Kjv2s5PzsWHIjBkpYBJC3xk0AmqZzOoJYHkAoO8YTSWQga5ebeCnKMuhFSJ+Ol4F26xKCdEQVp/6Cdu3Z7I3FVM9Q09+fwQolOBmBySX4p8BFI7rzkdbIKaHLLJlHQ0PYI/P2VwOfZFEPsbEueMxl3csxaM5T3ewbwAFYD8Bnn3uGH364opSXoDErrko0wQ4JTPzpHO3BpKyAWJW+8yEOD09ToA3TNUUeCji/EvRFetXzIcAIURgcZASstxpFkbtBMiwa3AAF7ImLctped0BXcqhwUYzW/KCV/vdA2OZpKwdobtgGycKoCSOSj4O2b2DJjzQw2hB9VznR6LdBRT0DRO4tjpzLr//9VEDlBEAZUxMnpgzzPHm6gk6WOpfT60tDNXlyNwF91oWRCiW0hzwHUFqvm0dE+RvHdNXpmxBUGKWmWCqMSfGZMxJmIMwQZg0ITohKphjQIbgHAtzxM4KAy/k/UHUAxOMixljmmKckwCdABRjzDTJA0BshzTQZnShYeBowSxDy33xPNjb6mbfySn4xBW4cp2Xs0IhKjCGu3WGYjn31cRFTrwxGDyai8cFI6tieV26tFY2rhHCgqKhIdUsUeE6m4Mx+eLiYYAGO5AYoDl855EpxnRlJFNI28VTQcwhLOaYmJONp+bAMSeOWe67OTtAMWtdWFXKl9wBikIk+E9SsXbHADvwKYAHByjh9mnMHwAuv1sdyh60KstWMYuwyBT4WFaniLUlrCEithNMNK573E53IflnkXDRWdBfWFvIDx+URBfh5gna+1EQZH0WimTk5vpa7iZgCvATKelDoJeLh8XBkXjQrioo2h8IAqa8YoxJwjrkxGoaX5QQzp1AR+r0tIuEAU87Do/lEjeTa6wmKWcCuZW2PFQFOOx59YVTAIIOTmzMMwg1eNNlQQQ6d58+cs51S2ucchuWudrhaEDDyhkoPrI+ext80RL8zcP4cKTPzIBpxADFGIzhixUpGdDfYMYA2Q7HwTBLdcWRJJgZI9sJ9YUGHKCAQGj38MgFA8HjHBwMmxFPAR2AqrlEfCKxNp5wMB/KvWIIy+0Tx04EqABxuSo15oKDGQdeUjDXALOZl8uyHTTi4TtA2XWaX58DcxrtJ5ulQ5dAx4DOhTHM+jjUdvsNRY09moXQwTlpLD6Md5k9SD37TNV3DloYHYZbsbgwh+kBNdCIAJpK5UZVyk2LoUIyH9YHvD5qgFJ5TwqBxsq53AkeIOc2SGEHBGITObblapgnmVqOkcuqpMNKBxZg8e2OgeprBWwTT8BuPw50beiS8h/wvI5U+lE27/dtvs6uYHs9rSyg0Gu6EWKlEvcQVTyIxFO7ObbXTS5YO0C5Rp/T1hY0U3CsjMNsGm1ECt5oOLU27zSwH/VJvbGEYY3A3PotTgYO86zGCiL5qNezu136+G5xJ1y0TJcX4Csv67iCzOLFrq58J0+NBz/mVWnlZ4EuFDI6IfBjnDzrVjmouxFd+tYK18ZBneBJbi7DRojW1J3q9yKNEqnQMvi8WoTYB2TPq7tDW18kVpwe80E90VoLRmy8CY28Ob7i7zzT2xorYnh/tjmQnJYgMec7OugLvlbHEA4GYMqswEmQx0EK0SUPCuWzCFCSFqLW6PxS86J3qoBPIhXflVXzMMBQ9anLMW9L3lYrZbR+osmm7XkUjaIddKGr3aOXZx7nbLWJsDUddS1cD0DdC69Xn5SdMtP/aesz4m97JkmfY9Qswe2xrD8WE952JO2ifN2ei2FK+oLy+Xi2j8nVerHJMyabm4Bted9+L/5F+1y08/rDipGWoKg7uLfNj9aOnL+oa3FJo19FgnRlInG0VdotLB/6+rgBykUh9T371CkZK/NivQdlH4NS5rk2QJdJENtSYwI++Dapys/dK/SoXLNe1MTtoIMufXwGlq6g6VEoVVlGM836rvRL4eTmcilHooG5K23js+pDnXuzepvRhKP3X2PF2ITRJsGbH/g65pfJ/jhW1qcot4+v6egSyq/RL4FHAy8bUKEyxSZI4xCANjlttWKrfAu3oTR7AqbYE3ATPQU9Ra+UqV4G+arfcniw1FhFVuJI1sZM6arh8MTAaIEW09GtDFFP0DAo2nO2kQfmRQI21ey9lcRkWS6dz2UbD0o6lPByhZHCL25w3gj2yHZ14VfPVLkXAVx3llKJZ7LrzS8PpJDNpqD4tF1Ga15dTB6roOgEK63P0b4YX2q9KuBTFpRElk15hNzIraOddl22uUKu+WMfsu4nc2qXH0j+M2NXuBSp1VXteSYjgqcSjrZ2UAxMXq8xfd62lO5e1lUutuJStFACRsoGtbKTB4pv+pASXcaeqNrYxozCanYZD7S2vi5D23cvpyf73Nva5Gjyf+u0tq+dPalo3Lku2dbZ7crOzu4IMRr3JR0jHYBGW9sC4ANe/P5b/u9+0bNvwZTAU0at22mjdDBOXr6W2f/2WtskSmGxD+XODdvl60Xa63hgpP3a64PdSqbWwz5RH54m9KulHJ61e5+Ucf/2bL/roe99rLBPJMSEe+jJtRnXhpSgrWY1su7jvf/YyU7b9X6NLn3q9WV3QvC0+rowrnsb38WYdh661t2YIIVx0In2Mh5YMunR5kVRbSNqKgbKP9XGreyd55/Mmsfx6T8+H4adc+K/rU0leEuJtYKelf+8da98f/frSj9s35/w+3vrqjbT9XHa7rrw77OZ8aQmeiy3l/XYl1fa2vinyq25lvLzoSHUH98KvM5RbGV0KfI+uj7twPt/eDJHXqNGH6Scc73ZT3TD9dmcM5e58NqTD7UTbVf79LhMwQeCP/TrcaDe0f7Xn+206D+/Mg3fQ6f99VEDlGfWgysq3RBtTqYAKoXaSxJ3JrwIwAa/6VJf3N+FKbUy67eGaulyL/rjrezWl61vl9/qH1B96rRIym3t7PTbaYqtLrr87e3elH+vK+lX5dUKg560p9G7X29lPfR/u6+1B6HIL4Cx8UIJiNa3jQSNFhc69fG+8mKnWfBQ1Xmh6ZNntvG7lPGsro1nLnx5QRUb32082Me6/b/xwoXeD9Tt8+cyRiVbr3Olj3W0ofgg2XZ7USurj9/2aBvj3pb+w6WvvULar9H12kPrWt9faW+xKD00cu/tpZ7Lx7182vu4zZ9WfvLQXuNDX9uYd/7a7n2gQ/8N1Zc+hlee3OjS+KGV89ifZ7yNamObl7TxEqr/13ZHPx/6F19pHypc7u9zYOPnRqGH59sfuvxwndu094U6XS48lTS4yLet+Evrrrx0nS6dFeo79bt3vt7GMcj1jCff//q4XTw86j3i7wSxBbQmE3mEDvl2YOgCqYKHuMl9wfNRgnh5HMsCxSFSPKxMnsCYiH3sthND7NkIfhrTD/Lz/BMKMAZkDLD49mceVn7aehlEfp0m7FS6ifQjD07zPw0GrQVi8XI0zwJS38mCThceGZyapkbA+zjr99zFQxaD4gGO5usR0FA/iEq9fIA8H0qdU1JAMLbJZfnxJthZPOpkZKPfNq5EFVUV7Sa9xBl53gPfSgyCB+JWvzHIITj5+Ee9A33XfgR3wcu2v42vxgBzBBy3cWi7lDKd/+ZmbH1SCwZloj0PimqOM5MFydnnCpKlwc3NE/EnjT6IgDTjJxUBSCwIcNUOH4DsWmzxjnLg2RUocgXpRn92+ims/bFzR6L9br5lVYhI0jtsv5GwTMR5hTVpEmNgh1karyH40PuzA1JEsI3Hfvm2H4iZlsO15MwR12zHScyBpnzUA/xiP4eSzaecJ/BdH2q8HlG31Rqnv7UzzN2hMMtHb3cr1RNVRle6cTWUk2fioF5XlBrJ+XzONDekMY9HBflviK293AClR09SuB4R7lbe3lY22zyEAsJFU480NT6W1pbaLhtvuPu4vmvOvy43oq0gG6MYy1DOW/s4cj35CPgzKuzjxiAZiPgMMJms991kSc9Uyl2OlQ+RNldFkxfSn9vfEZcUsrXvFnQB6PTd6fT8HUH+4nqgaGhySaxvETPl/dBkBXdRMhDbjGpRg/Y5+r9PO++C/2dtUQlOpO1fcCslzxdbP6K9118fNUDhcYDnAR438Jjg+YIxXjDYPgehckeICiAnVC0NskU5M3j5rgqxYFqFghdbjhEFaBygeYDnDTJuFn1NDKbTd2S4gmGy9kzy9wJjgNfy/ZNq7Rzib0/iowasoj86D9Cc+zbj6dH5g0HTkl7RfJtbK02I2a4FjrLGARoDGL5l2f3EQjClN29W7hjg2MVDZPlCNPLGWGIxBefBc3yKpVEfgO0PqkC9nJxMVq7vIuIRuV7sMDoTELZFTkkgJA+7eGKfa+wUqHN2bFdB5ADwjVdOG/YxMIBiKUAqr4uC/WTmUsCaSQRK6PAcTpcDY97AxwQfLQnfdB7wCHwmynwosXOiVKELNlGIFC+E8o45a7t4RvGS0zF3KHDJigeAEp/XgoqAZJn/m5cHyC7AEwdC1HahBBhhG2OSAPKRB6X876F5RSR3AdjWYRh4cZ6Jw25s50Ql+rPIaMlIEBEKLGGCG7arQqkBKgdPJjxrF0/uzCAFhDKfDWKnFoCIEwPIsbbvuEmQbu1gp6NtTtUETRlzkzRQD55XV8xOq1BORSkHUDEwuICsptSjP6l0A4UUQEEqXqND3zreQWnQqDYJVLyPnVpu8zxBNtnmAQF8V5Qrr1Ax5IuWwQbQR8xhH9fh9IBtfBVVo43v4rGzYRzcj2HybExgEBjiJ46fhqM4gFQsBAd4TJNRBEAFLIDossWfQdrcWUm+eLDdJWrZtCOXU9AmABSPBMz1FxkPxqQZnB4nM9tuqBi7tuuIh58hRnnWj+QWaL8vDpJtPMkU22O4FkDeXztl3mXPYPCcLtNsx5NtZxbwGilfWW3nUuTeIg6ZUuDfRb8v0iTvSeDXcnnF4i/fnjuJUTudCGRijW0XnAXMM+J8LYuDgy3ivQHMaukk/p8BKA4aeB5gjs83MB8Y4yWRWiRqgwhIh20XJFe2G0CxvCjqCJVVwQLwuAHDwAnPG5SHB8YOsIjlJAmlPA9jpoPAY4FxgukEXDEZoNIdoEgDKOOAjhswZqYHV99+FocQcmwRGzfAJ4UJOLEDu8bhk9cVNVvWR1MkPuHGcHrFROAUghBTMJYHxQGKGtOpEHiIKfsFhALghthNwXpulTELVMT2Po7sEwQWhZCALcFGgiR2ARzre7N4VbkcB/c5OFFCgq0xD9tmPAhyASggA1oaK3UolDxnTlpPyAHvKP46DtuWPSwTJ0//6xl7a4tw5GdpCicEoShoLQfKkcbIhZ6DksokW1aTkRaUWnxE5s4QrLE1lsbpAEU2gEK8AF5mJ3AwImH9cP4XBxhhIQnQw65obSuppIUlz7Bxy0daQDTaJojMsyDx3WGhhL3/C0knO9Mnthk3kEA+yC7wYntvmkS8/LT6uIIn25MaiU0dpGvLd2LWLFNeYtt/ve2K1g3nVlssu6KTsLA0oBGANOkV3W0rVXXFEeA4Vpyxgg2g0/vQBXpUFxaqCIgMi0XkBGGp3TJp9QtroPGSZ6wBiSVbk8jEpRX0bfNtFlghzzHiyipPshYDocwj7DpN0c58YxBY3SLLs6yo5ABlNKvlGM7by+YOCLSWZ0VuAGUc3jZqeVCkFjiAnU+lauWqOO86f/tgl0IOg1PYBvyzhqIdCMsHgzOXDDQMQpazBJ5gJngGbHSVp1butpBzcELTaTd9wcTSAMoCy3J94PUOa6MtHEO22HiCbIqUFTkAG/u1sEhR8QsHLQwYEaQWocGLGixIlpA0FgWgzIMSVtk4XLLmzPtfHzVAmZ98DsebFxzjhjkO3OYnmPMNJt8w5iep7MStAaICkROqC+t8C5qfgu53P2FWQEvBvEBTcODEyWpbNI9PIMcL5HiBvvkE4unjZZ2G1MVO+J1MmC83zEk4DsZtnjhwYi5jSuGB9XZBlp2grOfpeSUG+PgEdLzguH0OertB5wEBPJMsY7pCnJPM/cMH5l0gPCF8gs4TKgtCd4xxw5gHjpfPeT4QS5sv6snWYADlePMJxrQJMEIYgCC6TEm4slER8LiDxh3EdyxlEJ8gnZBl9+4AhT1vwsCYE+R7/W3lYStkHtZmwFKzy5JaVcYqWgEdNqkYanllmHHMgWMYvdm9M2DYSmMMjJcDfJubBUVUMMaJdZ4gPnGK5+AAPFFb5TYgJhzT8urcXl5w++QNXm4Hbi+H5V8ZhDmHAwrLXcM9URtTWotsInteDxHoWu7iWflbd/FYWVTuos2Ckk6EVywoauMhApGF8/4Way1M/ytrge93yGr5TlQhS7BEIKJYcW2zoFAqf0nrWuUqEdV8XrQAiopZ11QVci6IuGAdAyoL62TIquviOYVi7CuHRLk6nGSInBNLDECLWK6eON4yxjJytbAAyw08AS4AKqDmxzmTBDhz/aaOcESwIBiiGMusKBK5VYDMZ+JDsv01AGIAS6sDLt8bGEkgUpqSgsFjCPx5cSuM62C33vpKexB4GugfEIyDMCZhHgfmMfLoBCwFloHBNWDK1JN6RW6RMQfmbVq+jjksFwYEehJIFkjF86AE/5yW7E8Icx6WR+h2w3F7wXw5gMGQsTCVMW+KIYzxKQAaAA2M48A4pr1vw8HxsiMczoWhC+Z0ZIzjBWMeGLcbpssvJgW75RdMUJnQdTfEcTKGOIeEJVAY4sduMFkSR0stD0wixGGBs1u/XP4TT8sf5KnmhTyzz7gnnxmIs7QNOszVj+khCMeBcdyMrjfLtzQmYd4m5sE4joH55sAxGcfLwBxO+0UJzs+1gGH5j6YIFimmAIth85yXz1kGy0oLCkDAsnw0LjlQRxqEpdoiGoYDlOGgg10OxRxh9Qyy6skz1PZDRyZqkXAtKcZyN/OH6vgPvvP/wtcYZjUZ8wWDD/DxBmO+AfMNY76plYkDFFIBOUBRIgyYWSotKCxQLAwSm+jqx1jPGzBfgPkCmW9slUAM5rtZG0SQSZLmgXEw+GCMeYJxYtACyQmoYMzDhIdbUEy7THchHeD5AkwDKANAZMwJwTOmJb5hhbULhpBtOxenBWWkdcksKLnYSoDC4PlibgsXRLlSc8tJKBsz37vFSUz4IS0ofAEoboHI1cCsVYGbq025MQYYsgClZSvsULgBKgHoMkHMbkEZ7n4ZIxR6ksD7NDDmzS0oDB2AaKyoysXDLc5AaZRCSBePCUk+bhjHi1lQjsMS+DFjHJX0avDMhEvplnFrUagcdXAo60zLVLgPgDoNe6YVhlNQjFGxLeRLl82CAqTFQdZpCj9cPGsBRKDzxOKFCYYMwRLNrLDEK12c4ZKxeJJyP4V2NCtjgQiCK/wQfs2Cop41VtXjuyI+BZZAzgcbkGX8yZqJ4FKRN+uDgdsCr2GiyJORw/IT1is/L0YVZXXJmAMbHaUAC+QJ1NTdX3ArYrhCbCzSDSTN1dOtHg8WDphYf2ZB0SDuKxaUjMMIOeFD7jKtWwhizlWCNQMoRMstj2HRmGB3k6QdMywoI1wZ5IuMUVbQTLpY7hMiAnnSS8tmbZYRdqbplhOeEzzN0sFg8ARonEbDMQG4VcLjB82a7FmPlc2SrWRW57SgHK3c4QnFyoISR5AYq4gvjKZZUIjAYhmX4yg2c8s4lqRyqTK6BSUStdk5Z+op9lVhbdNmyQpZ6MeQxBElaBYU5rIwUbiu50z3zUh9MnJMlRRrLYy1MObwhafRhgVmndKwY3jqirBehCWjW1DE+33NYkthVLbYIka4fsqyZBEOZPmP1F1fro+gHr/mixQVhXg9H/r6qAEKv3yC8fLG4k7GDfP4HOb8xD6Pz6XCZReSSwWsJ0ROy9ZKE0pvMX2FZALUlOVYJwYUSwA+PgccL8DtE9Dtc5bynhhrPQKUcbthHIR5M4AycbeMsW72HMdbzIMwDmDMYZZunaD5xmJojk+A4wV6HBgKC3oalul1DIt9EAwoBsZxt4mCAdAJXQtQxpgvDpTegOcExoC5grQAyhwYt8/ZSmUOAyhwfeGrZJKVAAVOK8XEWAB0YCyrF1pn8QRIyYyIx/RJ6C4egilXOqF0YghZXMNaOa4m+JypIwhX1WjAZO31zIrsAAUE0OEA5XYrC8qAH2kgRiteUD9QjxVY4eKJQEBftQ4HKPPlDebLJ7YKfHOki+c44uA1xhjTLSgjgcSW/C5W5CJucRJT6AkwuounMu8WQBmVhyVAlUSWNU1lA9UEKLIWMKZZ+cbEOk/wWlC+Q0RNOLsiXrJASwzYhPVEysXTg5ZlNYCCCGcRe14jSNbdOm6JgwoWG2gCM3AyeJgFhfiEOB+p2Oo3rTcaQYHdghIWUV+h+kqYVnfxIJU7IcJiAmD552Aa9dgzEgOtfmigKbVAf+7iUTOxM8SDjINGofApbk+gQglCwvyt5RbzVhRIuf719PDUsrhoKIYeg+IKdEScSVlQLPDaXZLTFLpZ+mAHBbJi+AqfAYupCBfPHA74jwL/5ONLBJbTwEMAZhGMRc4UEQs2zUpw3DBuL6BBGLQwFtkCbtocVlf4tqiaGUcWFhRzxy+QLHclRAydLersXnfxqFl2FACWn23mjidepweK2yYIluXZvHMtiMyeygRbQ5pVBU5vc/H4hgZhCJOXb3ODxzQajGGA2F1KzGwZYGMTx5hJI3MjO7g8JvgYGMdwfcKYt2ZBGYThC8hxv7urzjJFM9TCzeDhCcQW98YCFvJYE875S2Nl4HgFHZPHLVl0QPIRYiHaFl4ERB4rS4Zq/nZbSCCPAYgYJSYCr/9XLCgewDjmDZMPjPmCOR2szJec6HGaKumCCIM1VlYm6MY8C6DICUAMDIgxpowDNG+geYPMG8gBCoM8wFAyBsEsOuzp7gcmGBN3rPUWJAtzHp7mfmKN2NVRq4YxD2BaHMowh+cjQFkLOs0aQy50TdeRrYbGtFOdZwuUhQt0Urc2mKVhzulCaKSwJHG3jf81GyYsW/QAxjiNc04X9BopkOkRoIwrQCEoSTHxsFWeepiVNSFWyRFf7wCFnQZjWup/NlNsBcnWqsOAGUNHufeseDfDL8mASvWVEKhWP3NOjDkxp5lhZ7yHp7pPgBJ9DAtKAYsI54ObQ83F4xYUCZfWJQbFLU0bQHHhSxGhryb0CqD4+KvaKaeyIMMAkPgOLiaG8OntUKxVbhxeDCaj0WquH3VXSI9BEV4OXvwMZA3hEy5UE9L2QE/rL2Y1ceUsvppbpdbttGe3binM3fQIUOBhJx6USZTxCWGVCiVvAZHIMUhDS8+25vnjbV+X76wiSawTgJpVTGDnWPkJzT4MkdlUPSYjQIpeLCiq2QG37JQFBS0QuKx5Zt0LoBVYMaPe1fpebsECs5myPGPY3B3pACXS3MswThySe5l8zkaae7eyjmFWGQTgtxiHAUkrFo9AZ839OaYdR+IxKEMJY4hbDjxwNQAK2445+y0Aiik1HgYeXB3vFpox04LCyiBdZimPfzKhQ71fkvOugq15ByguW1zlmiXBrXacu4Z8YWMxvnbMBKOsJLYFzKy2pFBms6LkDqbor8utcKuN6XQbLuvcvTYUjAWlBZkDsoy+IoohscAx0GmHuXvsnk0N/27yVDks3xZ8q340QZ2d5Gs2t6QMB+ZMHl/nstpiefxEZ/U5qpwABW1DgrocJP5/xILST6+Ng/goTWe1zTgCdUKgq1qgU38GAHILKgG5pS4EXfgdKdDzAHmae6TyYC832uQR5WzXwWW+z+17bsqNk4eZhq3oU7GQH9AXuzsYdVrzANHycmwGFQq2skLh2o4gwEMb07xYBxiGBcXFuUYQpJ8/krT2MmPHQCqxAieVmj8i89tWObLTaIljV49vBXQtWytKF3RhQaE6AyMnUlhtwk0ffc2gMxMYUI+yZzslmkicXBXJDtjKAa1vRZ/LIY8eHFtnhhRYKQvKJQbFVym2kHe3i2uxLQbF6Tt6DEqUy7lucSGgtYsjV/MVBGoHZip4DegwhMm+rVuhuZPH9ZyBA2iWpXEeaXOfWO0eJO19g2q6HeMSonxwnAgBsOZBmHBXjAlz9SMnLHYhsGoEiVO3KrgrxmI33PLB0XbnXaKcW0TWLvdAgIK9EMDHVTJR8mLAyryL4OW1QEqNgNi4P7bnEnJIUBaU3FFEiLhWx1FuHcl+5g+X5wLGabUuAQ62+2tOtTl5eTM5NnOTe9+aCrRy0lXR/pqWsd/NLoE42TxdI8olExP4x/zSKi/6mO92nRmx48oyEcf48GXFH3LER8HdQikcwiognS8YZGdumDsiZEm+Kedv8kAMW7Q5y6RHeqMsymHlxKW/favy9RTnSlsQix52lx3Dzm5rcWkRlB+BrVsfJPmpt2vjl6v1znmtlxN8ntdiseD8mmdCxb/gewRcjTK9/g98feQAJXKH9Pwi9Tkowcoeh2AMDI0JUgoaNudsC2z43VhqIjTwgwAHOlI45eRreT+YzR9qpw8/ghNLfU7lWoiguPBRKkrZN4aNff+l9P0ZbQCl/x5lqRYjbZM7wA6QMjLzdET/ev6W1gbPtfAgDDuI6W0i9+UHfUPg2YEpDhh8mZhb9EKJh/DqQszaDF+59Jwk8CDaCNcglhKOaAAlwCJfxjqBSgc9ARwK2EV8Taxe+4mxCSnUDoZMBSkuuLQBlIgTyHrbNQ6BBoTyD8DgFSRvp/5bw2N3GKrDTfq+eyoS2gd4UneFoeVCQWtvWFtc2SNcFGrxGAYuEDjZgI+vnEjNnUBo/BCHxPlp4OQFMDEkQHTm8XCAYDV6IGeAhRCU5IpLNl4MdZ7nw0DzmVTE8XwK32bN0yaoEXMHJcQR6qcAlA8HEqQ04V8C24cNtP0efdnKzL44bVPAk4P3UprX96aIOJRggBCzfOXzrDnfHxVo/LV4ok3hmZT1+dXr78/FgszH/iITdPve39rkmrcX5G3gAkrE9jXnlM1rk4tVT9LS257xSiH4NqWco5l8krzW6eq883A+EFodMe5Zdo0JHuhFbZHXZamLRmmgL/iWqx0BmGLemJWog5DeB+flxuNGO6rbY6Ee60jC1h9F9dV2dXUeRgLymjcfjlA+aoCiuY3RzMuRu8PMzpKEiF08z+7NXBBa+R3MfF2BgOluyGfC59bL9XwLKqlbRQWC8qmHOVzCY3kpHw/1oJVLVp7XIf3ebdUbprQqE1om61r99rqizwBAG33Q6FbBkUU7DUtHCs5a3e/0inbCT4WVrf15IjNKwYVJMJb4dcqumU3d4op4UHRPNObxjvs49XqTXpxtCwGX/cuTf4uvOLZ2K2xCirilh4wIUquLJIn6DhjfdZL8hgJgZmZWSPkNDLTFcensHN3HFtiuxdiJuMvFd1eISPJfzZGigyRP7fzqNTdLSZtnOQfipN9LkreNvy40z+9xq7vBfMz72EeUTYjFuF/a5/pXFhzLMdTvcbIm09T3+quPz/R5duHVKMrZoQFErd9UA+VV3+JzQyzONfYcRb+rXLTP1YbgoAstFK29XYahld/bE/IBztd+35Oxi5LjAaXGS1lmtaXzGS5l9YBojTZ1GYZXnqEai7D2dbmGBz5r/KRFl6IhkPFdyddWHlHRotMerdykVecjFB8nVyiy/uSN1+bJk3fk9NrlP5ou2esM+rUfs8fqMq/zovp8M/pQXW98Eufr2LUKaq+6y7rqku0yph/++sgByoVpN+ARYamEDkS2e1D3hhJ8xtSl1LpSDeXdmP8ZU6E991B2Dayggu6uvwVjpuJ+UtYzQZJKrDNv/sbZNlsTcTFv6+tjn6QxWqsjJjFgwm8TQK2dBDzQoE/6h7FF9eEi/DyeMevmrT4zOduju9J9oDFFP5CSuYRM66+XKfpaH/x3ANBY6aHRPxS853xRDdXid4olelJGbHU110m5UDQ0SMSgNNp3Ht9B8ROQ3Nr97HP8bQOSNCllhALc/RltivxCo2d1y5VPLvwSfOnM5aNSArGOc28841olVEHyTiqLsHTEPGvzDe05refRv/d+tuapD0aQTjUMIy7pkQ1CfSmFAAr1QBUjodafGI96tFWSSOeiAFstfRwo+1y8CW1F5r94zv82a1reqfU36asFmnLuBiUvYw1VaO5s6nPzwk9ZV29DoxGe1LPN5Wp3tbm3EfU5ACVav6vHMdKNvllr8kN+vvxfYkar3t76rf/7HKu7dt7Ftgi89GVjuWTg/FidSGZt88TLob2d2zMBqqHQDpZBrc3FW42D3/v66AGKXN+wlWms/kqghvWkhKJZOPqkrZVggIJihLB71D/J66GYJMs1xioLymY9CSENF65wcOLPxi4IgS3GrT1uNehtbm3CtXVeR4AeAUr5EEC+ug5lKBr+WCABXTD7hcYPygRu+oettqsvWlkm+5hkm3blhNIb1TM1lRTgI/ohajEKBgbsubKc1N+g76Z80XjA2wNqE5eufCXbZ1LG0m7lEBcGBoYD7KWDQbHVbwKlbauO+wAsjTwOgKrFDi232kRegRCsIWSCpgie87pWWFCczuvJOGb/8Hg9BFTEbz0AvBwLdYths6B0vrzwX419G5vkC6SlLMa2fNbWngSIqHaqlyeNPuRBtwFg4vcQpmj11zzXTdE+KOgS0dt7L/GJSnLwsc9UIEAJPLjWEtGhlGQoDb0o1ijbJkhriysJbfVk2+tap/0uQYpfH5R747PiP3ULyl5ft4R13qKkcZSHfAaE1hZswOBB7lBrf5NrISdwbbv2OoNKj+NkdTcLClU7veM13jlXghTV552PWn9aTdSv6+P9OR9zjoR1t+uw+NzmT6dr52sEsOj8u4998Yox1cNvQIG13rfsy97fAC/7WOCDXx81QOnBl+wpmSliAiJBBsEVVvjHLPJerln87G6/ThWvQOTxLB4cmzEo7nNVwPy54S+sOAUakXa5Amcz8KkFRtm5FvHd64rzYnqAafgjM/bEgmQzhuISJFvnXUT/NJXhNV6HPAgXKJcBawvgG51eFfdCFpCw+54zYDjifKrP4djM+BMPknQkYvVTmPS1gmSDFt2XHn5Sj0PZaBuBpcNjUIj8DKPI5QB3Ell+gogu2+J2WtxRnfcUOyKirtqhFH8znsR9uqoRzOqgz4EgVNu4RHKkiGNpuzEiD0oGDQJhhUHXX+pq3ceRZdg4ssWf6PB4FLIYFKFK3BftYCLbhuzApbt4MkiWBCoW7Byp4p8FyfZstJmtMugLtTF0gMwilmETBgCTNsEv4RCHDRUUILExF5GMEUgODp8+ytWWQbIRYkJkgZesgNp5WhTkc+2RvnnGxS/vRXg5aa0N2RR0IFT7qX6rBTlhKzT/VrxVrmqrWRmLYsVHu6LfhNgPmsGcOV8iHgPItP0eh5L3t3lQ8XFtbit5EL+PHzyeTPc4iGrPLo+2IFkml19F6OdBspxtTRnSykUGpUeQLDL+BFu8ntPDtWzEo1h5aHRofwFrp4aYCDq1mBGCxxlqlpnyKSxjlNI35U3Rp8eexOced+gxKIAtXLZ4udBT8M+49CX4yTcHSB+bHrfi+nLjJ9R1tHgnBMxJCZF/KecrXH+g5mE27MNeHzVAYfYEQG2r2ci09weSeG7JgCzbySIExuHpgsW2pC4CkaeflwVLRx8DH2maJ2TMDJI164RtD4iD3io1sW2JZQBDJzAnsKZvoQtwYDYHRSi6qkcj1T0TNM7ByPcJHpGRc4Ij8RcAXX3rWpQ3aoVCYjHwWwpqPwuiUBpUPV7Ct1HrkKyTObbsLc9TIg+7eEyp1lk8dmZGBMTFFk21PgCeidCVmQfJ9lwPlmq87aAZlVAIDlIqMZwD1GmJ2iwfB0HHhCrASzyxkJUfqavRgtK2FN2+5Xj4dktLmOc7d8ZoidoCVFiulG0aqvo2b/IcJpzACw4MIpdK5UGx9oz5BKBkQrRQhv6ZYLlBmKB6WH1qdgWQbTHGst0AJGpbAFfs7PJsquyrXbHAVHZtq6p++KBtHSRfrUHEtuOH4AvTbqy0UyCFu9UQQuzmgSp0cOboybpCOYWiLvNa/oCxV4kAAGDySURBVK7wbZQosARQKla7frEOxCrOgTCpeCC9Cfiw+hlNXDCrbd+MfA65+4djBPrbYUqiGFPmQYcE30C73rWKlxkLGDCaoaUFlXuHUqm0xQnBsqCSJk/aPHRwDaRFIwKbmX2bsZbyy117kX6e/HdeIMQ2bs3mMJtbldF2HA5OAE/Dkq5dDxG1CdwXF7FT0QrmZXlLbDHJVnffGOFtsyRtcBA1nM7Lgaj3iRgSh6yyB/16qoRaq1iAPZHJ8FSu0sAVuewW8p1qCm07lyoAt4GFDHql1t++EOoLbc7cNv38MUU7q4fZdZW317cZd74F1NpNASZt+7BIk9kbYKGkBXu/OXksFl4O7sR4VcgSeSpxAlUQFV9J0bCC1N//+qgBynx5g+P2Bsd8g2PccNw+wTE/wRgvmPPnJCHKL78gcofoCb7XinmJJ85aAsIJIsFcd0xVy2x5ewO5fYJ1+wTsidqI2MCKn7FjOTkY8+UFx8E4boxjnjjwFsc4MXBiQXHeblh3wXkI5CDoAlQn6HgBHzccxxvo7QV63CAAliv7GcnJDg5Ri3m8ga2FTZgpnyAF5rxhHi+YngGVxsiAURbbIzHmxHH7BOMWidoKoEQuC3G6qHgWQUcC6/RJvQB6lqiNPSfIGJjH4XlcpitYPw2X7iCwgRC21OwPmWRV/UBlW9HPyTjYUkAf0xK1DV8kgWHJmo6BcXsDfvFEbRPel+Xb9UZ00t1E6mcrjeQHYsZxHDiOw1Ldv7zB8XLD7ZMXTDbgeRyVJ2KOA8SM+QygEKUSFlGIH0lQmWQdoKAnZavtzMQMmrGziwKNgJoFBaG0FBjrbgnR1sIYDDlPjMFY593T/A9Pba+eqE0ha+H0VPNLWrzWJZOsqkJXDzIvM/TpRx6IVHK2SNSmKhinpdo/Y2fVsrOU1kmQQZbvT9SS2TUztoGItuJsmWRXJpwTMHufENsqHSA735NnzrUjY8rOYWcLxR5kttwrnsQv6gABCsFyfhlpBbPCNVfGLXBbuyk7LJyBKcqkj3g2BXeAFOsv+25EO0SxgKhl+bUybDEfR0uwZ4b23Exk2afHZMxjen4fAyjgcM9oAgHKRG3D7x2Yxy1zccxM1Gb0ZN+arp4075ymANeK1PoT87jhuN1wHDdgMhadmKdaZuY7MIZAadqibx6ePdVS3jMBkNNTMZ0Yy1MCINLi3zzl/TVR24JCDFCTLaLgck/UrjMLVIq/mYDB8W55UMhT3as6AIhdohMknLvKzDVk2aBFIlVEJIkzEB6WWETm2Omp/edhcvjwcboNzGMa3W7DU917HpQhUDmgcuK4TZhLmjBOwVTFmIrhPDJAlp9FPMusWtZZVcFQGNBxXh9cW5rHQL6ZLdfNQMsuCxjYd4uMWdNMtsYWb1tcUvEX2VwZQz5cx3/wnf8XvizToR/q5smAeB6epGzG8sbjLXz5IQoSgsqJMSZkLLMyOPrWAT+EyQ/0AyVTsVs24AotTOJKkeukr+AtnbPlfJ3AaZaM7Xe2bcbmAooERZZpUMf03B1hQRnNgtJSI8sA1gD8MCxsqwpLkkZelvlPIyHRxYIyZylU8mynbk5VFugSMC+jCQ8Ix/Zp425bsTXTLBfyp8wV4m6ksMiIl2VwJ836YI9jaRYUW8GyJ50aqcADbyijWT2iXoYM8yVnvaKW3IhSW3hGYTdnZ9uLLmU9iYRVbkEZnuZ+dAuKWz2Ym3I3xULiVi5hQNcTgMIuaMOF5CbwOIZg1PZXNAsKnHZwNxKJu3FkOp5Zee9YbiZfdqJpZFUdMAsimPMAPWUTJAxKpSpYFsXvbp2I9xnwGCDrINS3tWRCOW/qUAFkuAl+QT1Xy2DOmK98HrHN2AGKWyjiZGINMGLc49/9Prc+aOTAybLNdQnndQWA2CatdmquxpZmz/1gSs92WDGLTwt3bebBZ83CYw8j45pQK0r71vY2NOvQDlCiD5zbV6NN6pYeR0Kb5bLM/ihLD7WV+gjXq+96GwpeZkkzF4LHOm3uUi6LBpNvGzflG9ZNIfWEZmG1eiyDR1hJQv552gJu24WvFgVSgOK+YVYUeN0tj1O4qM2m4aRfBieha7PWWFoJdyWG9NFwPZlCZgd9HOV5v83NU3JOfemmZHExwm6dJFtwaLiSnN/SgvDEhdMtTek63t7i1sLdgmKgidxyQmVFUbeKalCM07pa/FLt2Swo4YFi8vwrNo+2dZJPUUvnbyCaPadMWeJMjcCtdGUN/bDXRw1Q7KC7mRlT2bPK8jBUbZPclYOKmfmEILIwsLBkYYhlZMViEC3oIrCyZeIbrjjmAQzL8CrzMBcHDfMH0gKRp7r3TLJ2mjFjTPJMhPYs1pFZAk2x+QZKMddPZJO1TLKHlc9kwGYaA1sm2QOyFsaYpqiGOPgAMCKTrL1p2snGI5QJ+a6dGauVyCRbie3CxUMiUBlmRZkCXmLplOfEEIWO5TLykkk2LAEbYLDzPBIoKNzFM0EkFRAJmFtLNAPU0sSepxkXUAjrMKgAysjzOQg0TUGHVWioWYjGkswhIRQxRpTCccxY1Ry+yomzeHyFenjWRx52JlSAC65sjGEKDYAScRYaFrtQMK5kbLU7DZTwgKdtNICSSxdXehcLSgKUk6xsZgu25VD0JkjCShKH3Ykq7KRj8jN1xMFUuVk6QCEmP5vJA6MTGJlFwVbgsQOM0lVYhyP6dwLU/G8gDCubxAO4KZ/PGBSOE7ntGPdyHZEpMcCDSncLCoAK4HRSROwRHCYglKuh4QQzPbCUffVMDg4Y4pYZIMCFRnB0ypwoPywo5DzuAIWqD2hAJdof1zJOIswz5J0Kq4crku1UXA4Xj7kGSgFWJll2yyRzLMwUviRD5Pmhq5IMgCKe8NCtSnE6t7ls1eMkKkZruCse0wK/44TkskYwMpNsry/GzFf6dRJ6iwvLTLIOJn0sdUy3XAyoDFt4hhtFh59q7G7TBlAy+Rm7CzAWX87rCSrIAIrAMuiKAEyeV4ssxb4tQq0WyyJLBu7Y42YC/DW3ztb/OMx1Tsu+S2IAZcabMcRlY+gsVj/RWM2q4QuxjIBRIHMQRdyLhPWkAZfu7qK4HwkEfe2FzAoOQpzHw4gz4whwWUOsftpzB/Lvfn3UAAWpWCKz60gLgl3zFRc8J4ot0x3N1v1IX7gJH3vMLQhMoK2e6ZleI5DVS+QQKnGfBX8SehZaN9VHgCnZ6ig4oTLCen0AwlcZZcTv1SZ+eD7v4/4MMld29B9Bp06vUKpipsFkwjyvJupdVTfIadYErQucei765X0i8d+9bW6Rij5rLldizNTLodanqBfu5ql6M4g3QA7D6/NsjDFTYdc12shtjDIupca7CxVrz6zr5OAiYlkIxncRZxGfYzWsITS0VtjBj26JAfdrsXRxa+AzgOJxTUYuO3MI0V5xC5v6soZhOVwohi4OVyvrivGKt9Xfme/GmcPywLhPP2nano8lrUmnEo5J43BQh+3YARWwKfBU5BGrEjzn99kdBj/KYkHV1nymfci+OH85iG8YJqsA0VZf0j4LJYRHrzqAsoxkfU2Egdxi89jPenMrj2oMelraV56jjbZ8+b2l1o2yyVf9OYcLJNX4aP0OBRBjqVk2PauTu4yLeUyXz3x5a/sc/hi3oGwyM55Xt4zok7Iu/ddGowyaLV4qnmp89oTWFcit7eiCfNJkQAOjlLzS5fWFZiEDNjlUtO9xIy1IpvF3NCPGs7WrAf/Ot/u8eOx7BqKT823Knku5WmVqyKJe3XUSvOP14bYWf/2Tf/JP8Nt+22/DL/gFvwBEhL/5N//m9vsWZNPef/yP//G855u/+Zsffv+9v/f3ftamXCZbZ4pCsHE9hcDDvf2ZLkjqnvARX6/nb/E8gsHooaxsC65v7Pc/CJHqz37f5fPWliflxedXnrU29ue5+rUJyic0otaHV8fkSievr03kp/3L7znoD+2+tklbX/RaxkO9rf37zH7kKfBe//YOOl8Fbf/cymjPPkT2bzxzLYeelH+po9Nga9OlvU/70dr0bPyejeurY/acz4rGbR7nOKD1/zrG9nrkc+Rf7Xy01fW8rHpR/ek83Xlka/cz2lzLe9LOS536TmHd2nqdJ8/o91Dvtc1PyrnMD+1tvV5/Ul7R+1l749I7+OfVtj/hr0vbHvjjKa/ieTm9jZemA4lXntDuCd2e0ghZt2YbevOu497lb29z1bfNyWd9vdL4YU6h3Rvl4kl9dUl7c5wu2vuSdAkaPNLyCVE++PWZLSg/9VM/ha//+q/Hd3zHd+Bbv/VbH37/iZ/4ie373/27fxff+Z3f+XDvd33Xd+GP/bE/lt8/+eSTz9oUy465Zcz0A890gXUlslOJfCTy+IzGQXLiAXP1rj3u1yy0Yc7aM6yK2smRbilH5EFZl/ZVbg1LzBUZW9HaEidgimcttcUpIzPUbm2sI9Arp0WVhSwj8rwg67JnyYMuDfUudx9kW57QK8sKcz6CL8MFYWVGudEOcrr1ZzPoMiwo4C0QM1whez4WC25MN3+6PeLQRzNH2qG/1t44CO8xLw17/AJ82+vOJysCrH28lsICzQhWj9n5sZjcPWIrvzyvJdouVk4eoNcsKMZP6kehuyEklugCGLApi9IWgxKmfw3GE8Qp23GK95L6a32qnCZLi0eXx/5EYLnVTOniicBaTd7t+VUsa631t3hHN5655GNBH4dL3gd3wYVbJF6qLUfEdSzhPGN+NWQOFI1cLeW6ISDr3/KqZLn17JYTJMqI79kuquHweaDRYF9GNgdSW4GiFFy4cDT4osZYtcoNnoq5l9OuXVd6zD8T9GJg+559inZfaBt5jGKnVO6yutDtmkfnOmepjV2nu0/01v5ItmnzWi8ZoAWV12rLj4KWb0XD9d1l5eV+73vMpcqb5HFWPj62sdDdGk0eKRqNEd+Ln5NfUHX12K2kXdKqMjpvebtSnl9pWnmI9n5ho1fxStSLui+eoeg3qt0aNjL1ZKKUfJU8GfWnKIp+ZqRV5Wlp8+VDXp8ZoHzxi1/EF7/4xVd//5qv+Zrt+9/6W38L3/It34Jf8kt+yXb9c5/73MO9n/WVLNEFlIoPehysVMxcrNNSfSMUrKUuEvRBjm3AndkkFVrcbcPH1SIHF6qNUR04PP7rA9cmVTKRtyp3L7R2tLaiSnu4D5k1tk2Y1ndjvBAQlO21/l8yqW7TsAsGFMrO53nvm7PmLhzab1oK+OEJvdbsjK+tXoTw3dt1pe+13hSSlFOs6toEgoEi812TxxjYuAKxs4b9ZGDf0ucCLuhsMRuuvKG5TTP84HlmlDb3GhQUAaGBxlzAlXaL75Lv4vNnRy5UMsEu8LKdzhsE2Em1jS4l5JH8fRX80Z6icY1P0bYEXAlLXHgCBcqcItJGKHkhhTLKBWUUbpzae+FgYlPs/ffiKWzPYvse/22ZR/uzCtvxku1E/q2SKJ/IYNj2PACkK6f1HfudGy9Hf7LFW986zZrCQijfS1kPc7iN8ZPft3n1ZI7v8snLIoC2e6u91f42VzvtQ95QUhmlGvVC650fex1FKw96DVlIKFpq3V11+7f+W1PYO//sHLY/22jfx6C/Pev1Bsifjn8vZ28Lxfg9tK21L+KnLm0NEFOlWYk7z/Rn+537/x/y+swuns/y+q//9b/i7/ydv4Pv/M7vfPjtr/7Vv4qv/uqvxi//5b8c3/u934v//b//96vlfPrpp/jSl760vQHsjB6IGoq+Mr8K4BKkDZX3gb0q4rz3yV9XNhvi1/qtcngWOCkg1YVF3N/60gDQ1kfsdVzL2L83UPQgbKT61v9qqxcXxRO0DaZ9ouhxbcNDXU9g2gNYaCDtaR+b5QV1nzyr+8ITD2V1ul+FwUb3+lxK+WoN6597FuFuMZLNYmDl1aopy3ZaId8NgMTf+KzSvte9nUbX8rMnWn+zp3r9XvTdaHwZn845GxdpgbOH8UYAji7gGnDpn10ZOPfVb/m9twutng4M7PvjUwEInjwbv8Xv/vwOFfzvpgw7WEF90l1l7Oqh6LP/Fvq4lHNrtV97UOuX9mkqpqRHp4K+Qo+n/y6t1osyVr38vo/783Y+4a1nMiDLv4yhXvrwRD51ul7rrnHaRrTRHlvduJSNrV1PR++Bblv92b5oO3CVljswaXNAsX0PPlXda4Tu9RfPBl8+cmW/huS7B67dqFXj5N8f5t+HvX5Wg2T/4l/8i/iKr/gK/M7f+Tu369/2bd+GX/yLfzG+5mu+Bj/6oz+K7/u+78O//tf/Gn//7//9p+X8wA/8AL7/+7//yS/7FHt87/e1ZNcXIaGXa9jLiOuK5889PBPbH18rv5X38Oyz8t5xTd91L1559vqbl0NPrj8rV4vRr2X6vqTndSvSfP16P+KR+I0uZSm2LjzrTyrzZzS69u89/X2g7yvtz3Hnul/RVr7vqSOMIxv/9H552dra0Gn23j68g2eD3incL/19Rrsniv6B7v2xBx56rc3XurfBfnLPe+57GPv4TE+uve/zu6697/orv11ZnK4/7p/fPTb7s/rq78/mw/VnffbLK+N2bVOn717HVmqrZ6/gXfx6uUd31fju+7dOPNadvBImk7CyabPitbZfwine1Y6dms/pVvPp+vwrfXmYa++ZE69NlaevKJNa3z/wpZcvG898ttfPKkD5c3/uz+Hbvu3b8ObNm+36d33Xd+Xnr/u6r8Mv/aW/FN/0Td+Ef/kv/yW+4Ru+4aGc7/u+78N3f/d35/cvfelL+MIXvpArUohY+u3weVOsPj1wJ1aE0qwcF8tHrER3a4i21VutaJ/HoHhUs4ovYn07JrxN0lwLHdlrtS9Tg0d9iN+iPPKy9UmbFLuf1n6rk3mb6ybL7f31GIf4TS7ly5U2rV5XVhVvwVlmLz9dZvqcFikgKLaZxrXrvY0mYW5UAK2P5oeO+/Z2q1zHIPpedW71+fiJiG0VJPEsjCh+AyxnjcLGCdhktKpmTAuCZ7ViUIwuHi/FZNvhYfkLSOwui3FrdIlliYM+Vd3iT6TFf6S/3ttgSdHKsrLPEfX2hosHjS6NFy78myvYGE+/74Ger77xcM0ZwohIfYje8aw/Yue+VPxMskkrt9qH6pNxXLDe3gfsddWc8fLis5dpv1HDIO2fYjvXJNyBOZ4O9k2+p5/Bh12zbRSuiCy3zZtLeztdH+iX/Wj8hOo7VG13XfseY30t62HO+pv69172Zf7l80/qM2JdyxBU1M5znqs2Od3a2FrfGm+R842Jo0YXJIdc+WqjBaqp2nkkCY2tjTW/9OF6yWLvgzzpm2KvuwGDjd5XOiddgsViTOlpmQpzPyv1fhRP2j+qedOXqzkf4sr7Xz9rAOWf/tN/in//7/89fviHf/i9937DN3wDjuPAf/gP/+EpQHl5ecHLy8vDdVmWnXLxApN9Fj6xaIDW3UQ6UQloWRA97e86IevE8jKwlgXJymmCXZYfU09QWdC1oHJC5LRBIIXK6b+ZAhaolTsGZKm1BQssCyKWd8Xq9r+yrHy1PBHwa1gndERALENIIcsSFFmbzmxnlBMZX0UELMvbv4BlWwMzcFfEBTg5/QggjdvsulggZyhmZLuNdpr1Wn1w/6+Q78pyZUKywGJ0IaL8q0nf5XV5W1MHucD1hFyRSVZEjRZiuTAIbZsxPLBUCMvrpRU5M6I+sfGOtmsEby2bcFyAQYTtvU6sdWKtYf0HY8GSIkEHEOk5Wvp2AyqPidpEBHKeHuBqydMixwsReep3eK4Ey22gQphQyw0T24yhEe1ZkyGEzTptfLzdci6stbDO5f1YFii7NANe11pOFwuYTeDiWVTZy1dVyNpBeQa+roXIPrwDfp97q/hlSRsP0byu/jkBEtQNUBbwHNsXxflCsp0xv82lZYHxlsCqB4BGXHEE8gImG0SqjABuIXCfn1x9AdgImCLJu9iGR7FZxTZFDrRRbC97RjVCzyt4cVdudm8uQKSB8nAGSMyBoBPaPNSaa76wgjo4VgPiIpacToRgqeStLBL7HDENEuPn9z6Ae1mgpZaN2OVIj3WLxYu0AG8V56MGuE2Zlhyxt+9cg0CxAPXrurY2PC7MOqCLsSbjRTJgKaqedA3edwdI7P1WbHPmgV8SGnRA0RZ4GZBPTrug+4IsgQzCWpEz3PsS82kF3eF83Mayf4/5fAFAWxsTWGnsadiBhyqUfaSSXnUYZ5WhRUcY713n0Ye+ftYAyp/9s38W3/iN34iv//qvf++9//bf/lvc73d8/vOf/0x13O8nzvsdQxkYwNBPAR2QAajMR4CiK5X7Ot/i/vYtzvtb3O9vbVfFEqz7ifMuOM87zlOxFuHktxAeEB7Q6Z+JsdY9J9piwhLGOYATjJMYd70DuAPnW8jbO9b9rbX5PHFfJ851QpYxJY8TxHavevbIEwphxlIGKZvQBeO8v8V5v2f6cjlP0HlCl4GIyD1ynndXgBNLbaItzyHBEJz3t1ASDB0mJHwH2p7q3ibEur81mtzvOL3ec90h64SqVpI2AjjO8oHAzhUzkBIH6akIzvPEOu84PfW7rJWrTJIYM4UuymyVJwikjJMUrAYEMkjW85wwFDIsUZUl5YO1QxbW/Y51P3E/T5yrxYJ4fg5rvCdR8tccA/f7HUyEtwMQTxCn2s/isQRQdRZPnJuzAxR1gGJWv5UBsnDgxkSY03K4DGaQn71xrio3XWT5jhWefZcV9Dxxvn2LFX/PO+RcePv2rQGRJa6sxVPff8ZU985HHaCIg7ASvm1H2mnCdp2n8ayDJlsoLJxn8ZyV7QHF8NwKOdCUAKK3N+v3ZywvC7CcXEsUS6yYtaIsOz1aRHGKYC3J76H8lwv+tbQBuwBDtiMpAMRuQckFrI+vb/9uNMvffcu3btt77RnxSdnT3mzgRNUzzcJO3RiALMUis+yBlh2XwcBaC+dpBRERziU4l2Kd3r8FqKe6t/Qjxm9rndBA4uwAZS07fNPBfYDLtQRrGcC3g0wJ52kyb5wDUMZ5Ln+3BSJFXQuy2PhkwFfqBq7FgfRShRAw1ol1EtY4DSR5kKxlO17QdQLL/iYIX5J12pxcybPshwwuNVQeWV4s4ZnTTRWqyy10sWAkLEGCpfWwU1Sx4HKVXK4u0ze0LEmirBPrVJwY1idSnAzczxNMgtMyTBpAWSfu94XzHnRUnCdhnT6ePpb2N0Da8p2DAvJ5s5bzcRwxQZabZcEWgouAtQCwUZUdsDNrrpMMmBr/L/UgCqehyRFKWRLzVUQ+WMd/ZoDykz/5k/ixH/ux/P7jP/7j+Ff/6l/hK7/yK/GLftEvAmAumL/+1/86/sSf+BMPz//H//gf8Vf/6l/Fb/7Nvxlf/dVfjX/37/4dvud7vge/8lf+SvyaX/NrPlNbkmFpgeCWFF6AniCcyNwIvppYsqAaACVWxj5BAqCsttJeihVINlb76zQBw76ijtWgsgvo0ybYYixaYCywr9pt9RqWFN/yKZQggL1es4acPtBiq3YeAATMnJOtrAHLy7DP5HWstexwL6IEKLLUFqILWLJAi0LuIxK1xXkqKrX6yDql9WFZH2L1ERkII+0zhGwCAsbpqr66VbfelCVGxWKDwoqTaFvCVK9YxBhkY7LcgqJA7cBlmJVhuQAFIfdmdfq7FcFW6YDoMtcJs++ggfNS0fp0K4opX0sAx2yHMOogOyhM9f0AZTVh4daTBCjcFNNgO+fEhW6ey/Ng8n4EKOIWv7sDgPMMMOBn7qSSRSr3AhhaACTGNQGCumAPENEtKA74/JwhhRof+2pxLRvjAAIaAnKV4ArXUVj57DRldt6MVZdmu2PF3tstobDFEnuJWx5WrDJjxeu8WM8X6JC0QrjFRYsmD9tV3cpUVpR6LuYFUOdn2eqyVpPuJ8RDjg5XtXy1oMTK1UFcoBzNrL0EEctWrCQQCjBXykj8EMH87rxgisrAOft1cgsKiLDcguLLfLeguDUh5VmU5cpZ2nv5dvy0mIVVw6wZkaW4P+Npa7drRlprF0vIECpg51aekKt6rU+0+KxZPAy4+TZgSZsOXERb2ZmM0D6H9SIUcPDG4/bfvq6ITQDRvgAJDeQNShm5HFw6DIC63C16h56qcTRernmivsfesj03GrR2poMs241cCMBPYmcYLZJLpYy5uXdQnSbAZl2q7e4fruM/M0D5F//iX+BbvuVb8nvEhnz7t387/sJf+AsAgB/6oR+CquL3/b7f9/D87XbDP/yH/xB/6k/9KfzkT/4kvvCFL+C3/Jbfgj/yR/4IxhifqS3nMmTOMGR+J7NYyCAo7jDJ5oPkLp4CKHdbSftfAyiujE7BuRbOJaYMzxPCdwhPyHm3w+1YbFUaCpwJixnnnXAH486Mu54A7tB1h9zvkNNW7/e1cE9lYYKH1wlap5nozzuUCHeYqTQOM1PPcHp6u093U5mLylYLthpZUDKlGlmFE6CkBUVxnncoedpuaObv6abQtKD4KijeK1wIYUGBbbuNxHu51ZfMAjJgGR7JAUoo/dMVtjiQeQAoyyYOq+KE+dsPMkEZ56xE/CixpcaWOcAngNjT732x1buvOkIxwU2ZpCA7ZtUsKA7s5nni7f0OIsLbaZaNJQSBnUbNSzCGWYeG2JEHRHYWD3p8WShB728c9hcWFDuLh7CGn+u04uRmwhBx0EObNeNdAEXWwuk8F3/XOnG/n2VBCYUty1dTpaS7Kdb6oNmHikHpFpRmAVEPRA+gGxYUEazTAcoKgLKy/jwosAGUaEDltao4rKrXBbsoJFwpZIBVtADKSqtLlbU0BLzgTIBSglTS+uL5YvxzKFajVYEIhHuy8FQq2bCg5HP5e/sbRxbDgKGdGeXuiwQjqDpCqYJcOdnf5QBFSbCW5zfy87QCENsK2/st1k9zA5BlZl7WpnMNs58Q2ireD1fVBW4WlHNJtoOW5Qg6l+A8BXyakg0LSqzil1tQSMkV78ISxlpkYEqX32f8shw02AnHbH/DygS7P6w8ZkGpelKxL3EXVrP0+ZCxT6qAlexZYMnpzVAQCYjFLSfktHNZmcAl5G2zoLDxWy6IxaypazFONiC+FmGdwMmE+3mCaGCeJseC9ue5cD8F97SamEUsrSeisDNDw1UmDxaUAqcORonMLerWlGVrPbfEKRY0k8Y+AygLtpgWNb0Z7k7xhWbQY/1sWlC++Zu/OQXXa68/8Af+AP7AH/gDT3/7whe+gH/8j//xZ6321VeIUMe02xvUc0m4qfQiTLZVC/XryPvitNKeyS/rbVn7egbTLfsfLp+9fG31ZBnP2tTKb+aO/b4LDeI3U+kp3XOld70v2hMAAX3lRq/XnXvgqdfT21t0pXxGa0ySDvEZ6KPWr2c/qcYmbtG889Jvir72v40noNktRaWPLr5qY3sZp84PW71Or6ZTrc7GGxE4mfqJitaEvY64VvzS6EH7985vnT/3uRF0jBV44yG/FjSiVknVSQaSWnui7nJ1OHKKwuh67/5MjA8c1KqXT7S3D3BACTdQZFuSkI/3X9ue/Nfv6TyH7MO7JN21/3u9YTHZadj7/vwV4xfz8Trul3Y2/kb+fV5f8Xxv93WuvSKHGl+FDC05YaXbGBR9g+ftL5oMvNAhLN1XGmSf2jO9TopndxlItH+v+lq/n/KK5lzdXwRc6d7K7rJsp+1r5cRXenL9cZ52mdNlQ5RRcyeuGdcp7T3ZZN472/3I14orPz/p2iaULvPqIqc+9PWRn8XzLJ14fS5Gbaz0cC/VNQD7uSDN9Pr0XAeunQKZOvzye/7WDgzbQAzQJ3/V3RiHevmXe7bPz1Kx97LQ+LGfacP7fapeVqwcLmVePwM5caJshKJ9mlL9MlYxLlptq36grS6f1L/N8aJJPz3Wyq5zRbZ6AWQa+618buU8SzX/2vt61AGqAwSL5PVMs6Fcs/95nlPj3ygzzuUB4Ok40WEE+a4GCCPPT788b26P4Ouge7z9ehw7ir38ILESuzXgkkKp0xoEAiOi+Lcxvrwp+YRQ1gOt8p7w2i7lFA+0Dl7Z2hXPVdkEp39Ow86DDtezrjaGV/CVSqSTix66keVf2CLL3UBclWmPxVxoBbS5Qb2/T2j8eL2164FP3/G+KrQYt+t8w5Pv17Jx+dvvu8rHlCl45b4+Bq/89lCnBlO3dvYB6uPdCJ5kcF6P565yNtqv7bnL2NbYt/tfaTNdafVQH+paFk8os0drZ+eDfi+elLPJqvabtrmnva5GKgL02v+Nz9/9+qgBynh5g+PNGxzzDea44Tg+h+P4HOZ4wZw/JwmRLh5dELmbif2M48eHBbotAcmCHeu9sOTEhMWI6O0TSLxfPgdlO6xPxlsPxhIMZsxBmC8vmAdjvjCOeeLAxDwXBCeEFOfLG6xTMW8CuTOECSoTfLyAjjc4bp9AX16gx8123jCDJ2NOO0X3OHy7DRPm7Q2EGBJnD/GCABjzBfO4Yd7egI7DTvz0YCVeZr4bc2C+fIJxmxh5mjEAtF08zcVDHAcUMtayg/4sLfuAmZnjNGMgTk4dY2B4/WP4KaJkLh7mu4EFtVgiXWZ6BgCi2KZsUeMAwCqYkzGZcRwDx2QMJgzHFkoAHwN8TIyXF/DLBAZDh7sYVLAGg+4nQAyKIwmgUJooEGB8cRwHjnngePMJjk8+we3lhtubG6YHyc5jYOTJyjMDZiMQeHAIFCBcMebi8V084qZ2d/NEDIqVFafJWjzLnCNdPF6gb+G1zyFDFWouSK9nTDZX3NuBdU7zY4/hfu4KhJVVgX2r++c1gmQJyJ0AK39Tn1vL+UovJvMIkFURyLDn7ERdgsgJYWAthiwCndjqDdMw6AJ0US6UCvYVMFf6/gCrRCOD9ihjUGD+TuM0410RgAW6fDxWxDkAEHtWSbCwMJZigN1cbuAuLGnqOXAyViTBTQBD5JjBXa3dqrYfKmhAl9kOsgz9kG4eKfrbnCM/ldzkBU8Bk52QzZMwDsY8JsZhJ4EzkQU/nr4ln728CJLlYffOgXHc7OTuOTBYQDqggXN1YcBM9ySSwZnEhHkcmHNi3m6YL/amwRAemAsYtzvGCYwpUJogGnVq+O2GcQzHPzZXlU4LwAcDsHbx7YZxe8kAdQtoreBdLLK4NA/YH2tC4O4MlQykh5orZzD8bbLFxYvNZ1VA2U6epwHiiSVsNAOgWBYbM6fF57BtavC9VCBmyBjAtBOYMQ/wYSfKj8P6Ow7GvE3MY2LeBubLC44bY74ZmEPBWNClUL0DeuJ+P6CsJtNPwYBinIpBgLBikVm8VAgsMDe7xK4p5CnRqvCT2P0U6jwf1XmIBANU6yjHHKrINAjQAYJtZLD5YC5WIpc1pHZiu3y4HeWjBijHcZgiPm6Y4wXHccNxvGCMFxzzTQKUzKKpCyIDKifsBEtbIR4eV8IeYEpYWHcj5BCCzBto3kDHC/h4gbiyHkSmaNgAyhiMebxg3gxIzOOOA4zJbyHyFqIL53FgzRPnvEOGWhAfT/A8QPPAnDfofIHOmwlXJqzBphBdMVqQpWIeB5Z64BYAkPlw55yY02hD0wEKbHvmYrFJNyfmcTNhME0YWREFUCr41oWxS/s177bYnnZKdO3iseeJLVbDBOZRx4a3XTwmrQm6BEwMoYiZ9zZEHAQhd/HMwfaew8GK7U5IA8gxvF+HAzOyHV2wYF8TbY72F2dQVwEUt7LwcOF6YB4HjtsNx3HD7fZiYzwI8xa7eBygkB2Jzkx1bDkB4ciJLbqyRgIU8hleAKVAjr0NlPAscJer6IjzyFWKlSVjWOzHGmBSyLJdT2vYzggCfCfDDlBO32Y8YtvtazEoq4FHN+QMFZy8HGD4WUOqgNZ2dSEPaoTHPC3bQcME3zIOVJCnCfS+i4caQMltxqTOT4RF5OfFRAyKneC81A9R9l0JZv3WsDtZagEKgGH+eeNpA3yGHQyEDN8Rxm417VtIQZxm9wQSGvWUxTABCipGq1vv0prk12xhQPlsAEM760lzEctMNs94mFIZlEa3MakWDHNgjuGLXbXREDH6S7jXOHeljTEw5wDHs+zgEwJatruFSS1YdRHOYfEKtKK+iTmGyaTDFg0ThDGXzx0FjwX1E9p5zHyPOUF+ptUQ26pqYYoDhAGeB8Y4wHMWsIfHuilD9bSxJgVkGpAdE0NsIcfq6Qo88NwC3x2cEIyGAYcSoMRuRPaxYeMfUajH0EueeO6nLnv8kfgJ5WSVgHxMeE6XlaNodkzMY+Tf4xiYw4LGlRfknNA1MedA7KSZk3CqYgzF8PkxfI5arOEwUEaAii3eTM5YfOMGUAKoDWAQGy+pgV6OlBRwYyqV24+Und/9/Dh4HJEEz6MttN7/+rgByu0Nbm/e4Dbf4BgveLl9gmN+ziwI83O5Itm3Gd8hcvoEtrdt+7Jtc4wTJwvWOXBAoIuA2xvI7Q3W7ROzpowJoQEZE+Q5SCb76v7lBbcb4/Yy8DLvOPAWx3gL0TuWLqzbC+S2sI4Tehi6V5kJfo7bG+jtDfS4AQAWM8Y0pTwG4bjZLCAA5/HGJpkLZGVDw3O+YB4vuB1lQTlhenGIuJVl4vbyCcatAApdLCgdoCww2EJhIecCK4MWsPy8o9pmTCUs58A8brZqbgBFRMF0x+mn+SkvCK8GUNphgYzMg3JMxm0wbsfEzQHKsPhooFtQbm/AtwmaDBm2G0JkYRFh0bCA1CWejh1QGiYg04IyzIJyHHh58wYvL28sF88nLw6SDChyCPBxJFiJ3TaDTdls4EF8m3EDKLGLhzcLSqxi3GoyJzaXFXxpv8WCuVY870bTdWIOgqyJc7BtsV4nBvMFoFjA4NnylPRA0bQAZx+aBUUrSHasysOTeS2aJU6GB+6SpeaRdUIIFgi5yA9ji50WjwAFFAH0FSS7RI2fRTBWHHgYzGDjGAKal4LVdyDkCs4BiltNiCrAUZvyX2Q8NARQYgzbWmbjSmEJ8a3CYTgJgKJwa04BFGrPARUnVOAkLCgGFEAVJBugsQ5l7Na3ACCMMZdbUGBgfpoF5TgOjMFudfF2iOSheOIWFHZQMY6BOW8Y0wC4AZQFJbHtpg5QbKOAYC4FL9txd/hC6bjdcDsO3I4bMBlKC8epmMdbjKkYc0Exbbx8UWDvaV5NPZ0nCGMRAqDEImweL5hz2hyClAUFtoVX3QoDKNacUF0G6oQdIDvwCAvKcLqxgy/YZ6jN17CggAdEhgUEq/GIKqBjQMYwi61LTUDBwywoNAYwJshB2JyxGDIweNzs83GbuN1uuN0Gbi8GUBgWYE7rLUjuOG8TBAvUnofgUMWc6vLeNoez2CKACTZewgiz0RgMFcvnNBychDfAjT1mPSFgokBvWlAoAtEJhGEpMRygsFrwNgVIdJ4f4+IefsfrowYot0/e4PbmE7zMTxyg/Bwcx8/BnG8w51fkitMEzsJKF88d5/QV6vAMpx6VvuiOwbbSPaE2su7aGS+fg7z5ObabhwfkfmRStIMZx2ADTDfGywvj5bjjhgPH/YTgtCjnlzfQtwK5LeC4uHhu5uLByyfQ2w1QAygyzYIyB+O4saF6IpwvbzDc+gBi6Brl4rm9we3lDei42URAmcTDxXN78znMBlBAEe1fK99IAHeSo2sw9L5wgsFCWDzMZeOruLCg5IrrdrNV3Zzg0fKg8ADTMNO75yqocAJfnYoDFChIBTcHKC8BUAaXi4cLoMw3b8AvhwnDGVtEFxYPnONu/bi4eDQsKAFQbjcHKJ/Dm08+hzdvXvDJJ28wJ7mrLVaYsXqz/jKMTsMVTRh/Y6u77XoyUBvunXSRMYOmudEIoymrYZ2sdQuQJ9igrpEC8w7AttrPwdB1x5wjd5FNHluiNhHb+RMWlBXbHh28AB76Em6XFQm2ahvjUs3t+bsF5dxdPGvhZMZisq34CVCMXlseFFUsSAo7agBF2jbj3LI8lp9WXTFkxANxEvgamrlQWBRhjTkdEDEtgMw6slYBFHZwAxKIErAEpzKIxN1Ju4snwEm4eF4FKGl9KXfOFmPgVhcew8FPegoNlLBmPWFBGbEKPwyQBB/O/197Xxuq23HV/1sz+3lO+49taOnLvbfRECoqNTVg6kuCWokYDERb+qXK/0OkIERMIdgvvnxIvzUIFoT6AiqiIMQPNiL4GmmStpRCWyONVUqg0baSECzW3tx7z3OevWf9P6y1ZtbM3s9zzr3JP/ecZta9++xn7z2zZs2aNWvWrHkbSHrgqxVW65X02gkYx7KMdxqV7jzEU3rwq/U64x6CGAAcGDSRDvGokRjV8A1Cz2q1xrBeYb1eYX1wgPXBgdTJMGI9snxfyRAPaABoUINjhWF1gNV6UO9GVC9AwDBJ3UiIGNYHGNYHWK0O1Jgxj8cISmJE8UiqQ3QlyrQSOSPdiG7SDR7VyzZEYKVelCEQIkS3ZQMlMUI0A2UF2cxRGmOGDkWpgRJClJUvuhotRenUpDjIME8eAVhhWK9l6HolBsp6Pcj1mgOs1xEHrxmwiglEE3hMoLQG8Yhxs8oevvUona5hyxiIZe9PkmXnIRHCBB3WSgDLkH6MY/bKRZJh6xgC4iB5HgboEA9hxUk9xM5ASbbniRgogQMmyCaZNsSTdFM7TOKRHMsyumPhTBsocRjcJWOXw2qFIYr1bXMApJcXQCnkJXDgEWlaIaUJMa4gPbUkuj1NiFGXjxIhxAGIK0htWosFTBGRGUiygVrIBbvS3kbEMAADGAMGTOMKpO7O0rDpEIm6Ns2iRhzAcSVL+wIB0dx/MoyU4gopjohxAMUJiBGUBlGGQV2nIer3ATQMuQKCJM04DIhxpfRGdaeS6sfgPChB9kOZVuBxAsdJ510kcFRvADkPSigelNx4Nx4UJm2EYpIeBazXqX3KELRXpy5yZgSEnH/BK3NBzEBBQB5KinFAGIoHJXBCCjocxyy7AusGcASAg3hQvIEi5TeU4bJBZMqGmVbZgzKIB4XUgwLJY9D5CMWkEAMlqAsdKVRDPCAZGkIUA0W2qNWGKv/2BooaJLDG1t4BQJCJzcOo81PFWxMIMtQ1JUxUhnImLbspqauebTmx5KEyUNTAFI+kGJLiEZAe6ZQIZf4JsodsMtI46Vg15/sEqUeJJbdJvROkjTugbnEdngskddo8bnkhCSXdebYMjwDaBuehGPsl/IzQIRwWd3j2FNlQihpDgWWDKrsXudThHphBSg6/3PwQD0jiyTJzNwnbDJPGg0J62dbrVo9lbwqo/ECGDrJ7PiIEmVORPXGxDB+aByUwIbJskSA7F0PywRI+2HBjdHPKAmnDFGVP5STzCsy4ijonjaHxghsuGiIwBMTEgjuWMKz5FNpt08MoOzYn1qErVt4H9XjakJYOCWUPirCRpwjECOYIjgExleFTcJAtClgHcdi8v1yW9wfZrM06X8Jr20rANnRUz9kEMdpCEK+yemPtWJRgHS8Sr7kNARk9MUTlSRlasyEfGdKOediOETHpfKMYZbO4GGXoJQQWPiWRVeKgs2CCeL1VbFIgMVpMbohh+1iJEUJuWp4OWzPPDRStgIkpyw6zjgzoM9SzJEWp859OCGfaQBkGtT6HtbgSVzJXIA5rrFbCBFIXVOLijpNdDkdwGgFOGFcrwNbTTwRwwDAw4sQYJpmDMg0rnYeyBquBEgiyzj5NeQ5KXK215xGwWhMGACtaI4wrTJM2dMOAIQ4YY5LdCmnIBsowiCHEwxoTROBpCOJutTko0xE4jRiGFSZdT5/HuycxXKxRpUEMI9khkYFJ0ow6V2MYVogrHR82j1Ms29mLB0XnTeieAoNOAkMUvGxjk3mIx3lQhkEmyQ7iZSAbUhPzGimOCNBhKlPzFJCCjvWrQg/s56AMWA3qhpTBUXAg8aBovsJqBUQCD0DiScbVkygvnhKYdGMywrIHxbmaV2u71lipkbRaO0OTVmJAYUDxdLQeD1Fu0iAl6EYt7rI4hiM4HNHhQoVz/kwAZCIw4qT71E/qVCCsmGU4RHeR5MSYAmEcZZzfvBDmRbHFjbnhDgF5Iz8WQyHoEF/ihOANFP3NLGcKpUDCA45IOiY+gXUHT52QrvIhQzylsfZzUPL+LcSgCXlJtyxuUoqtLHVyOCCehkldHGVJPWQSrDXOScvJhniUt4mBGORuBop5QWwpcF5ibUM7bCXi5qBYPLFPqjkoVBko4kELIcowhQ0faT23fYbEyHbDqsGMCuGrGM7u0kaPSI02JsQoPVpO0HSoNJSDGeH6O5DW+QiaoogZGLaLdHbfE+nwpzauqgswBEwJGIZROxqTeImgBkc0g8M6TayiLPU1RDFQQDF3ROo5KLK5nTiGBoCSmMBpAKdJ8yV1KyQpm0RqsJA18Dr8rydZBIJ6RNVbFUMxUEiHNKLO5zIDcFKDNEjjHSEdryRWRNY1Me4wTIxnq0ENlAGDTnxmDJiGAWkQL5cMsaq3Y9I5KAmYwIgckChCTUbZj5Igc1DYDCTpwM3noAgPJP8JESEbLKTCLfaHdojMla16K2mHArqiLzAj6hyek8KZNlD8xK9SuOalQPag5JWUxCCK0mNK4oZLGg/QJiImGa+OuhEXdBgoijVOMSKFQeZ7pEkUEMH1NMRjIDQlDIiIqcSNRnMUj4soVNfTCBI2xSgNtM5UynFiwBQlXAgRHKLMZkpBNnILurpEjYSg6bIaBGDZ/MlPgrNKUjwoqvSz1T+Jl8HoipJuiFE8KIxmDor1jGJ1RSkU8aJMk5ZfQEIsngSoojZlzMVAKb0N45WbgxKQ82z5l1U82oNmyHOSXVoTGLbVfAqi8LyBEqqysrkm0muxibohRAwUZfIZRcgobe7OO0kt+xdIF193160MFKB4S1qvSYuTm/dwOFJ5VpoQZXIcIyGMMdOTiJFCgh0oNOnmWuaWDeqaDkD2oJgnJqnhUbwBhZ9spOgupiwzaaXRN+XMpqhlGTsHG6mHm7fjh3jcJNlcdgBYtxlk6VggT5JVrwtD8LMzKhgZV1CeBSYEOzsE+tuMfi7DlzYZ3HqBsieLek8oONxcirvyjmjKQeZuea9JMVDM2yKTKqsl3eZJITh+lbqXDTMSb0Nw7/3cJoIMcVhjZMO0KchEx9JQ2WTt0nBZOcpkVEYg5bnqMam3dTwbOkDWDSHP1zIvEYJ5UXS4M2jPnmtaVCs3eQo6xEMIzLrSSBph+DyYl5fFy5lAeRsF0ePI88Gk0yVzUIJ6jki9CaQr7AS/egz0yIygnpLgyjZpOdk3kOkaqnkcw4xnIRuY0Pk+6j3WDpqtOpJ4XC7Wck9qgIBk5SXVslx++4UOyHKeZZ9tDkox7r2hzbqhIFg6I8HtV5Ogns/sbTsZnG0DZbECuYpkOtyG642riLkCmJCDk0wgskImq4zmAgtNL1vjQhV3rlzNpWmxujFzJXECnN9rPtgqKcs3zgpG7xTyMwfK7lHvPizWsFSGAHVBqhvd88zCm4Fi0/dyLw32PeQKyq6ysQ1raOUnq9zqKs1bv5txYkYMlXgwhQ1VAkkaHpD1T5PDF4ob0nU6s1KxMg1BlIaeqpy8vHDIXifLhzUQefVMK1uxLtvo5uVQ9niYjC2BeUl44QJqz0lpkJfxLL1jh19xUMgGLKlBENhm3UMNBRsnV/pkXW4Z4gGygZK9BhzKVixJemFQI0HCSe+R1QBnSpK2yixsd9SgSyCD5EGGedzmU6STjYPyQs9JMcVoLmk74C2YzyfoBGU1DUU56lZXWQ9QVfb5LCmibOaZfFVGgK4eIu1RG//NWMjKxjwoBUkuKWqMk9pQsYQLAQ5rLu7iP6vpn/1WXlCuM9rQpPKezMljjXUoOEMoDTKpQQlr6JPVX52H0DZ4YX55PWF0sg/v9EKgNn8qDw2NFocoqeGUSmeI3EGmS+WY+c6oeQdXztb1sMZ7jgtUJpCKZxyOXs7NT+kIesNySW+2bZt4Qdjr0zzkYni8zJpILeXdy4oXQX0PmuEh1N/h8+O0lYVTbrm4nPN+UjjTBsqMgfkSt2ARCMe4gKxYclgVrloncIUT+o6btHyp1PH0jvIcap1T40Z9X8ofdsSbPQMQd6Q2+MROcIx5e3A2+WrDGL9Q0aAKF0UIXVIVP1sesvLJ5xvkKjS4JWeR1iV+WfyKnw5H5vcOHO0VaI7n6qAdlrH71WO6qvSszNR+Ma8isJRP432ZWQGlkIvrQhVvww9izGCJl6jvEqw0+J4jlU4joXu291QTbhY318cSZ1bmDS2GJ78zPbHEZn3vl2azk+G6PJRg52nKXG6Qk8ZhVfR5F2+qy6/Ks9Hq6Mqy6urhTDfmMFbn8sLpWbhKV/nyzLibOEt11ePKz5zj+gpWhWW4cl2SK5u/hLxnW62Ta/5mGXIMnMmp6dJa9aEYq1q6HsdCOuYh9HqtCtvwEs29tFW8zIPMw1IGVldqRtZAzQ9ycaooPr9c8sNcysbilLwyvFpYrD874EwbKMs90WUFWV7vCsvN933vruXaFfe4fJw07BKtWPh9HC0nyeNSGHL3JTzH0dJ+b+nflcc23ZPkqcWxC/8xFy2931X9jktrH+2Wz32wD8dJ5bPF09I7Ly86Fseucl7KY5veLnqWwu2CfWmclKaTvFuS/eNoOC7+vjLfV2ZLtO2io+U17Ql3HM4Wz3E42jjHpbFLJvfJ2DLU1O0rn13leFz5noyOk+EtE8J3p7cvrZo3NMN3LeDj7yrrpfpwdel+exgo7IVU92DgWLdZVbQ2/HGK+yQKfn7x3mf/19zmbVonf+adYew75vG4DYfF+G0+diuSlr9LtNDCu4Y2Jszz09DGHtdynk9WfpiF4yqNk/DCy5KfANZW3KXw++jchcfj24d/j3zzvjjHyURJ2/+dl7vdlsuylsldZb1L+Xk8u8tyt5Js3les3EVL+26Jrqtt4IG5oloyVHbRUvJSlcUs/pxju3Eu1NGqHHfxusG5qF92vMtk7pO/pbR2ldWu9Eo9psX4Jrcn7WgspbkPGGWSVpvubpprnbQUZhed83tbe/bHM128FMY/L/NrHncp/m749jBQTLDJPbf+NXZxqC1Y9zzrFTffr+Ki9plqnKTVREg8SdpLtHhcuysvVe/Md7dPGezKx24aMsz4iz1xF8KSTqjcF4dQx9mZxq7npbwSCq8sH3WYtkyXr33Kza7WcFjKZyZkB75duHfltymjPHv4uHhLRmXhV6l3S+XEimZX/Wjz4MPa712NPlCVVxsmR2v52aYFx+IlGWm+zeTCI1iS+RbHEi3HeR539bbKu5oPc7nyDfI8rE9nIY2FulDkp6ajrqMtnW3+PU/34dr1fSkPS7+PgVaf+LGKpXo0k5clWna8pzZcy4NddZfndC6msU+Gd8Wz+9wjXcvKcbqtxkM+/NLw7zFw8vU+pxTY/S384bpsuInRPnvG7uXhcQLUUlV7Lkpd5ibGUo+mJX5ZYJd8I0uVt8bcviv0zuPb+935nNG9j7/ueZ7bfd/mVC3DksJYel5SeJ4P+zi7FG+Pct2pTHfRf9Iwx33bo+jAWG5c6uf534W0jtU7ywF2l/Rx8es87avqJ1bSfBxPj8N79cr32uMv07rcW11O4dp4v6uen0Qel/h10jqMRsyulte79NeeJPWZ+YThrybQXEjrNGfffJgl3XISfbHvvh9aWdkfe6luzjJ2YjjbBoquKjCFUf7pZ8x1MGflUpS0b46Qn3a48y1+paRY/zuDgeuCmik1VYh5+WNGU9KaGwxW3CdrnOpwXNJsaJjhbnnk/3oaM99b2Wvpt7TqEHVYLIflNlzLT8cv9vzxeN03Lli4/FmkbFl4WgWB5nmXsmi/LSmYXfh2wa74C7+93LrPVelZfZrJwDw9r7iLbNSGNmeeNSFduBLeyS034Re5UeNdqr/LQR2dC+k0Hyq65sh2w1z2jyvL3ZjKva1DSzhPkkYpF8/P+k1bJrvS4VpcqiBtGezRAVznp6WujeWHPOZ6rqW/jbWcTit3/mlOyXEDHzOqdj4tYTuu1u+DZQ7W5bVTbo4Vn2uQ4Sa9q8Fwtg0UsqWh+RF5GaGb2dzOhG6mYetPhwT+XR2R8hRrFG+XTw+elua5WWZQoaqSIaXLfyw0+nXk9UxrlyhRldf82/Lg0vThyeUn8xio8k1N5hzqEg60wOuFODlPTbnm3/41VWkT1QHK6qFS+IWvfsVJWULXTH/P5eLxLYjBAixkcuf3k4bHjm8LzJnhbsLsKIvMqxzGl62XQZO/Wgbq1Rl1/chxUfABnv9eFqnGYZHIkeXS8q5jlbaaa0tLeuBoq9i+9K4FqsLuDFfJpotisruE0sWbvfd0z5KqK1SuDzvEwKPwS0Mruacmgqs/tbhSdV/k3UzEqSapwdWWafXD0+9ly2hbSo9afEWvU05ziT/lQ6vHF+lZem7YUX2qCqKWb59mldwOPsxk0ctB9alEqtoiXwYzQgt95RvVtC1Fa6uKl5cFPu2DM26g+KutUFj8bUaNGDKtweEFvS5A8u/tN2pcpVLXFznaJJpVEI/cVx9UaQAuqJPirGQWBK2tkJlWVwmMjkrkHH+yoUAOi6O15LvKRsEPh99wWpyqfByOnCZmtNbFbrhQ8ddl3vGgrYyFyFl+mrCWVjGOXJmj5GkZlhLFwnMblvaEw0IYar4thUGRQVcPisi6vRGquuFYm3+bLBcm5Y6Bpyan46rUAjuoKVsjFS7dJRaQy4tPtGp8Hb6qAfK/lujJRVHkbCGmk5N9ZexiNXh2SUiRf+NvibVvo6u6EZ+T4usSNXyrmOHjuJqEJjg1tJU67eO5/Phyq2M6eTG5rHVOlXcyipaEzuEmy2dDcJXdJl8VisKj2fsmak0B1UF2yHDL95YXXjiqumO8MQ5UZdk+LmZgRkZOdukbzb+1MmZ0VHf3cVHOj4EzPUnWbzLWXrZhDaD7TrFZY7oTYbVRm+wIaLuVUuBqwyAfFqF5hm4MVG3gVsIEBLcJj+2OSGWTIdm+EbYJmp2oG3RnzbzJWYPbH8xHeZclcmk3vxmgBHkGyg6ObjdDBBEq1tUotlEbwAUXedyqTNwmbHYWz2yTJpdnOeEyZP4a3WDKeaYkvA2B9MyT5HB6GpCVit+kzTZqC0G2TA8sx53bLpBBNxQjyAZvLAgcfx3PoytP2zyp2pytvXZKrPvebthGO3CdtEpb9W/j5m12y50BOxE7QM5dCsE2tZeDB/JJpLBGQc/c4SRH+Nlmbwwwy9EExOU9yfaS4KS7xOp324wKQXeb1I3aSHe6TGyyoJzKBoIWMsumbkmPea823FJZgcYzudfjXHLDSLZJBjRMhUu+58bV7ckhNHCdJgvv2TXIgLjsCbZ5mysero0d24zOLjPmM31UwthOy3aCcZ5i74znbEA3v+fvAErLG5PN4vlN1rSeZv7azqRg3dTSDFuHx3Sfr2MUdtJZ50Eb4eC+wX3Pm7WpToDKmdLIM/wlj54Xxmtf1jlfTpbKN1Q0W54L/Uo3We1eDlvhafRl3vU26yLZQJTdBpii+j2eWt5mHY3ZN3vZ8sWeNRwaem2gxsJZ2avAi6ibPHN+nw2vE8KZNlBKgYci9LkhQdbtpqSyoJiBQv6SVTZlt8UAotQIoZ690MSVE94pv/dnGuQtmVWwfEM9r5BmbJCkA9vltKG1St8rp1DRWl2AGF6cVNhqQ0rOlVCecoAc8akNnO2UWykXl3ZVFkZHHSZUz3B8CAAlucPO4jGlEVTx10pqpnRt01Sff6U1WaOV9LyYrCz18DwIvaViepp9mTpFQSpDMyPFKt6+Cng1BspxFbn9vgdP3rs6lCShO/RyQAqypTdzAkJASrINeqbYdmZn2ZU42Y7yzvANCbpbsWx1jpRsC1e3/XfIu3rmXVxD3TCKiQTYIYoEbYhQtg5baiBC/u4aNtMBzjghp6WlUa0balOwsMYp43LybrgpU6TnRlEuh2ycqNYxugDoKjX5Xm2Hl0Wo1g0A9NweoKSgd82PNSTGs+WGtH1vd84NU25s2npGBTcWce7CXepkraPKxR5/lXfkvOVvTfrwesH0O1LG1+L0jTUjF1J573mXpc7krjHqclh2jb6WpvtuMy9KfiqhnNPaGnKmq8F1fi09tytvJedKkxkLVXlmyUUJazQ6PnkWweePs62a55VQrlNUNlTMvCibO54UzraB4nvTvsHNikYZm3SHCt2OWU5urBsdcNLeQEARwuAaUTVGWkOBgyip1niwO8w42W9c+IY8b6mfDQPv7QgLtM3xLF7J76bphD/TDgDCQ2khWNs7dgbG3AiC927M0nVel0pZeQ+KGIOSOurnLM1t+qFshU1aEbzB5QzPAPGeVB4g7WVZI4hgxxg4mi0Nx//spVn0oJRKvyCt7m7hdxkohP249kGz1b3f8l69ZGACJREEDkGOkKeUj1QgNU5SSkV5JV2mSnpUfVBvByRuIHLnbEgDYbjlnBI9E8TkpDkTJMcPABKVJtspVmuoxHvCmMlabkhK40bOUChxrBw0XD5VWBoa0qY/YyMzAqzB4WwdEMgZDqTbZ9gz63E7vkV0Xg+IcVI1Vi6v1sBlnJYsoazetpSbODn/VH4X/VC/9w0biIrHZpdecS38buOk1QEe13w/9mxc5HC+A1T4Qo42OPwFh8geQWU9hXk6lpZPz3u2yPORHV+t/H0e9bcrS2rvjJwWe1luDIaZzrS6kjvNDW9CQ0MuZ9Px8t4f44FMm5PrKr+55mVjIuM2HmldY2jejJ9c+GT4rAPAnq/G6BPAmTZQ8rHcdtx2HPRQJUIYCqMgnfRcoxMRYhow6amZIUap/JHkvIMIhDDIwYEghDCA4wDolcIKFCLIFDhITriMUeOR4IgREQNCkgPbkA/5s6GCCCQCU32oHkc9jBDagIQgeQykeR7k0D49LJCDnATKgRtcgx4WOMjR4mBxyxM5fg2Zf0VRAqwNEWiSM1NiQ6Pes2tfhbicIeHCZ76EXDlDSAUXA2UFCUAhSN+e7chwObhOvFJ68GDmIVwbLPy1o8sRAyjKCbeUJj3gUNPVNBkQHrrDAk0mqpNV46DHzZtxMkAO2bP7SSudHwLaZ6BcK3j8g+IekPddiRPyZoaTDNmYhxE0wYYwEnNWJMG0bD4VWIdlQPlMGXEiUm64mcWoYYIO8zAQ5YDNOAU5uHHSAy71YDkRvAAOSbeE0IZHvZAqmEqsrsdgMcZYTwgOZnCqQcnq0WDSI+YBhLzJn5hSQJDj6cnOxUo6LKhmiinhEMQDSUGVe8pGfW1Ylv4kMl9cI6knJucwvsGGNFBsDW8odUb0mXVLU06rNFDOAHceZfMEVudvkQyVyXA2dPigPiwwH5xpeIKdT6Z6SX1Wwco8QA3berhV6pTqOzvPyp9rpXz3HQvTj4EYYKnzFJJ6ESLkfDA9ATnYb2k45QBLBiiCwlTO4Go7l4DkQc+NIoLyxLynIh+BdOifGUiih5DlIWgHSNqO1Hhgs+dC5SAfFth0hnJ+3VBy4bkdXirym6Lwr+hA1rJl62fBhjsln3JwVekY+I7urgtlCMm9D4R8WCBpFeWkZiHpEC+0w2EGGJsxlnI7cVI40wYKQiNwFLNlafoOdlMjhYJZjxY+qiJgURzBPCimhMxiDSWOjfmFoKdmooTJVq3O25gNJzUWcrbsSz5gHpuKzuJBsbQ8XabkzGtT88RwLSgzcsqITKEG4ZeemipWb6w8OSU9Uc7LPQCfdyr3ajhGDpKzIR5JX3meDwtMJU+L/DMaQ3VZYYtblF2l1DKGncPkhtUWr1h4qeYJKg+KE7ZjwRow70HJAn2VuJZw2z1ADKcJM0+KJRFY2rnAovwRVKkBITFS7mmpUcBJDnE0o197hiFAvSPCV8mTVjYAIB07z0OmwQ31eD4D1fyQXP40793l9r7pQVr+87M17ChnuBCys7nMMfE9UMq7OhMc/ixoxXtjXhSQ9o65lEM+i6c0USifycZnXL6a3z6e5q2cFJ1zaoXU1L+E4lXx7+3e8k6DovS4l+s0ZzpnHhaj2dFjvf1KZwX7bYUYajylcAs/lAZYg+f0Xam3pitE74Kc96ChOadn8m10m4SZ7s9F5I3NIg/FKwJHp8fv5Aw2JEKLYQWx16WtzhO5C/5dNf/E68JSi3J5uTSrvDg5Mn5U8Q2/m0diNc3OvBRvSkknp5eHe7jk8SrgTBso0nCYFW2/ydr3wo8EPSXVmgYChSHHpRCzPpWKDVCYtGCkF0EUAQtPUXoeFGDtapnLoXhsIpNa+uzSCmYUUFSPe4RvDEERCIN4DkIocal4EARPVA+LNKDiCSgKwPeCpDHRiWwV7wZQGKR3Y0oQAFKCnCA7Ca9zvuUerMEOScISOeOsGFOlgTdj0MJMyA1/ivA7RYqBlPIwBGljJb1B69GVsrb2uJ5MLLhTYARmpGQnVGua2ssKAFIIgNGSey5z2cppI0Cqjt2vWnJRKio3718OMKbE5mIgROj56MieG4b0oEEyB4UJCayGGLSHzOLtC1qPGIpHPBcUImT6uXg1bC5G3ncmMIL2zFMIoBRUttUbQ+VU65SEL6IcJS/5NGMiUJJerRm21jOTk7WRG7ZsmEPCizjZMKc1EtaYW6OtwwPExWW/NBfNjCdyc0jI5sCoHLM74dg3iDBlDtcwUa20qoY6lEYAxldpsAx/MRqK16kYUrVBXwyT0OTNT2x08ZohUzH4gywOMANPOzSkw3rz4di6c1VfZZ5d7pzltKHDNE3nA1Q/W+fDjIGksm5xm05iLi97tuEJ19iTKyLfqM95qYa5f2dNeNXQe95KGS125vyQstNlWTzye9O1KdNQDr8t1rh0AgOW5cTLpjcMkTMvctga686+Zp/n8o8rWfbGz8n13Nk3UPwVrAFE7ijCfpszwIYUq4obtTKz4rIK5gVQ0mDFJ8hCYX7VC2zK2XlqfO+eyM8yr7+ZB6VU2OjiqcHkKrP1kGscLl0gKxNT/DQzjLSSMjsPCqPMsYkN/UEF0XlTsvCHeQXMPEXzznrbxYPCsPeEPPXRamiubCGXMWY4S3kAXAzKVtFmvLVyzPkzg4UizLVMZhFVwymnEcyLYpfyOTtv1GpPnBtBcQMnUXLO2QLzQtmSOMDUkLDN5jft8KCUOrWk3K2xaHp4KErUGiXAt+Eh4zX3qJhWvqFweiALiw2P1A0Gcvpl0K2KnJWwreChzAdQmV9gY/PllO6STuUBYU9Y00g0z0aPj1I2FqvDVo1g5mdtBEl+vUu5eFfBVgeMllDXbS1bb+Bwro+lESt6zfO4KX/P/8boEP3COU4Olz0ozmucG9zibS35Nbrq/FjDWlZJGespy0ppS+07NfSbLnLGXWWEGH6el7G7Wpy1HrI8Mmq++m9LhgBX9QrGO6ied7JWyUx5U/iA+psNLVqgPP/EHR+dO8PQeVRmNCEz9Vg40waKL9zMaGcYZO3EtZ7h3Ehq4aJRjtbgawPplUhWXjk+iqVojPc6plUWjfBWitEZGebSzT22KozRUiqE76XVAuUFkJWmwjtUFd3oD8IzSmp8lMqVw3rabSKgF/TMhLpXiKpRKbRzrjRArgJemJt85fxrEN9kWplahWUdukAVz1JCblgKD+ryaqos6qGdlyzELwOOfbjdRe0zdJ5HUplrVlFZA0wEIOUJn+zLAnDLS2sZYFWIXuHXsuHwe2WeBYFdWJ8nK0vzKVjvjmErUJyga55U9p2sekWKQg1kWWS9jNfwFLo1bTIPisdAwkt23zIONz+FShxofS/Z9GXmw3Pxfi3GgdMDHn/BQVTuNvRALk8litWn8gTTaS5Nct98uhau6NVGTzl9ZXWuEGvfkX+Tf+/qYx2/yFwl81nGUOHM/DKPVsmY4jPPiL7mlsamvODCwgUt0tV8autk4VPW4U37wRX/fFFQQeUbPU+IlX0uS8zpbWSmEnmXVl7RD+/dK2wpE8aLds6sOiGcaQNlZm1ntxeKlwMowzDWYcjeLw2oLmeQWevF7dn2qJlcqWZEAXmZbtseN3RCDQ5vVJX5AdpYZ6+IEu+9IrN5IKHkIwvy3BMAGC3W05t7G6wimgdF3MgAyOZvFM+F772wTtib95RaL1TI+fN8YO0BkytX1v1lciXiJZqNX9b7q+lCbnTNAK17VnbseDYIvRz58DZmPlu1c9rByVY1DwVlnCYkdYNrrzgkUJI6wHkiISRCYPWuhIw/D5lQGeZDCmrEl2XGvl4VOZ0bNfmdzu1oDUffAHjPizUyRFw6GzCjx2jNKGrDqWpANVe+bcyxS4OV67/ziBCQJ+X6hqFqhLI8A/NGxOuEugGeNQhEmjzP+Zjz2jR41Hz3aWadVdIr8Zc8KIqPqUmnlIvna6mTpd77Mq+HA/RuZc0lLJo0a11nuUqlzoMqeahoykMTpZwzDzIfrHQsXLN6zHil8miNcuaz0mtet3ZfFjR3mvHeNSoU5uk7nmdJy0vpi2znTvmC167iu7NaSt33vLO0ag+Kl+E8F4WLHJbFUD7s8XCmDRSTnplF2fLA1f/6agWB6vel1i7jtxJ3wtCm4cfE2eFgLOF0z3WNqWny9yaOeSJAfpMopY8X8C1eaXe67btd71s+LuJC/VxNAHR8scIj34GhxljcU54zXjvhaPmtabMpm6X8XkUFu74wE/hyEenwzg6e0Y48Ol7kWUNLZZ/LtMGZw2EhTXcZ/a68C+0os/Nm8ShHXSznyjCwgNyEbb/5NDISlxaVZ6OBXRo+vo/KVMep8tqm6b85L0pVpqjrBHb8zmGcsYXCT84eCNQ0mU5Z0l2e4Dye3tabllftt4aHS3KypPc8DRamMZwqvFiIM/Og+O/uNzfxcz5bmcAcXwttvWj14uLd/c58bL7vpIHquO196bfHy00cP32uzbvPI3g5rRPAmTRQ7OCqyy++iABgWiccDSOmTcR2HRAHwrAqvLEVxlMC0gRwAsYjYLM5xHazweGli8A0gcYJ42bEeDThypUjXD5M2EyEI46YJgYnRsIWKQZMBGxGYJo0gQBwJFwGMKyB9QisVsAKE9bjZaRLFzFuLuHy5cs4vHwFlw4vY3NlizQROI0ItEZgwvbKJXBK4HHEhoEpEqYhYDwaEIeA7TZgvHIJ280lXL78ItJmg7Q5BMYteNxi2hxinIA4Jayu/B+E7RZYDZhY9s2apoQEIK4G0DpiGFeIw4BhJQwjAqY0gdOElCZAf4+HG2wPr2A83ODKlUsYDzeYDg8xbbfgpMvcSC16XUI4rAYM01aWNG91sinJ/hrjdovxaIOjy1eQ0ggeR+SRdpLJmswMHpGXGWOMGGMATSPGrSwnH6KMUiAAYYwI4woDJ8TpCBgC0gAwT0g8YdpsMB5tsd0cYTtNSMyYwOCwypOLoRNkV9sRRwfbPAF6fM0W02rEQAHDyzrE8/8LGDLBeQRwBcBWr41UALZlxgyMIzBKOXNiJJ1UbPugBCKAk3ybRC44yY6yEjaJXHHCNI0SlhOQRinHlDCNE9I0Yjo6wrg90t8bTOOIaRoxjVvBOU1IKYHBmLKDIYBogmnKlGQi7jQZPYwpJUxJaJDeoiwxnVhoHCeVfwbGifM4rcRjTNOE7aQ4JuEBs+mMhO2UsDlKGKeEo23CxCnzSf1w0EXO7sxF2wclwoaLGRB6OamBRyjzQFSmiJA9kFOevZ9pAiRd2IRkIqRE2B5F4RNHUBpBISHSFuAATrJMlZkRB5mcP24Z2zHhaJMwjcC4YVn6zYQYJ4xpwpAmIBDCOGKYIgZKIJ7A20OE6QjEEyJMBiZc2WyQRmCaCFOKGFPCcBiBQb3PQ8Dh0YgrV67g8PAQm80GR0cb8ZiGCUQBkRiRGIFGWWacRmw2G2y3IzabLRJHTDQAw1plhZC2o+ggJAQeEXhEOjoExg3SuMG0PcR0tBE8R1ukaQtKCZxG8DQCvAURI0bR45HKPYAx2IaPzIiRYPPjUopIiTAeAbwdkbYjtuOItN1i2o5IaUTihJGAhBEMwrTdguIWtDlCOjzCxJBVcmlAShHrQepKmlYYBsa0HcC8xSomBEzg6Qo2L25wdGWDy1c2ONowDjeEK4cTDg8ZhxtgswU2E+No3KouHxGnUTygpn/HLbbbEdvtiHE7gYMsGOAYbdEeIhFimBBJZD4EIAb1jLCpEVmWnxiYEJCYMCbZcyyx1DEkYEyMcZpwNI6ioXadFO3gTBooFy9eBAD83zvffZ0p6dChQ4cOHTpcLVy8eBE33njj3jDEJzFjThmklPDlL38Z73jHO/C1r30Nr3/96683SWcKvvWtb+E7v/M7O++uETr/rh06764dOu+uHTrvXhq8nPxjZly8eBEXLlzIx2nsgjPpQQkh4G1vexsA4PWvf30XuGuEzruXBp1/1w6dd9cOnXfXDp13Lw1eLv4d5zkxOAtLETp06NChQ4cOrzLoBkqHDh06dOjQ4dTBmTVQDg4O8NBDD+Hg4OB6k3LmoPPupUHn37VD5921Q+fdtUPn3UuD68W/MzlJtkOHDh06dOjw7Q1n1oPSoUOHDh06dPj2hW6gdOjQoUOHDh1OHXQDpUOHDh06dOhw6qAbKB06dOjQoUOHUwfdQOnQoUOHDh06nDo4swbK7/3e7+GWW27Ba17zGtx+++341Kc+db1JOnXw4Q9/GO3R3OfOncvfmRkf/vCHceHCBbz2ta/FT/7kT+JLX/rSdaT4+sEnP/lJ/OzP/iwuXLgAIsJf/dVfVd9PwqvNZoMPfvCDeNOb3oQbbrgBP/dzP4evf/3rr2Aurg8cx7tf/MVfnMnhj/7oj1ZhXq28+8hHPoIf+qEfwute9zq85S1vwXvf+158+ctfrsJ02VuGk/Cuy94y/P7v/z5+4Ad+IO8Me8cdd+Dv/u7v8vfTInNn0kD5i7/4Czz44IP4zd/8TTz11FP48R//cdxzzz346le/er1JO3Xw/d///Xjuuefy9fTTT+dvv/Vbv4WPfvSj+NjHPobPfe5zOHfuHH76p386H8b4aoJLly7htttuw8c+9rHF7yfh1YMPPohHH30UjzzyCD796U/jxRdfxL333otpml6pbFwXOI53APAzP/MzlRz+7d/+bfX91cq7J598Er/yK7+Cz372s3jssccwjiPuvvtuXLp0KYfpsrcMJ+Ed0GVvCW666SY8/PDD+PznP4/Pf/7zuOuuu/Ce97wnGyGnRub4DMIP//AP8/3331+9+77v+z7+tV/7tetE0emEhx56iG+77bbFbyklPnfuHD/88MP53eHhId944438B3/wB68QhacTAPCjjz6an0/Cq29+85u8Wq34kUceyWH+67/+i0MI/Pd///evGO3XG1reMTPfd999/J73vGdnnM67Ai+88AID4CeffJKZu+xdDbS8Y+6ydzXwhje8gf/oj/7oVMncmfOgHB0d4Qtf+ALuvvvu6v3dd9+Nz3zmM9eJqtMLzzzzDC5cuIBbbrkFP//zP4+vfOUrAIBnn30Wzz//fMXHg4MDvPvd7+58bOAkvPrCF76A7XZbhblw4QJuvfXWzk8ATzzxBN7ylrfge77ne/BLv/RLeOGFF/K3zrsC//u//wsAeOMb3wigy97VQMs7gy57+2GaJjzyyCO4dOkS7rjjjlMlc2fOQPnv//5vTNOEt771rdX7t771rXj++eevE1WnE37kR34Ef/Znf4Z/+Id/wB/+4R/i+eefx5133olvfOMbmVedj8fDSXj1/PPPY71e4w1veMPOMK9WuOeee/Dnf/7n+MQnPoHf/u3fxuc+9zncdddd2Gw2ADrvDJgZv/qrv4of+7Efw6233gqgy95JYYl3QJe9ffD000/jO77jO3BwcID7778fjz76KN7xjnecKpkbXjZMrzAQUfXMzLN3r3a455578u93vvOduOOOO/D2t78df/qnf5oninU+nhyuhVedn8D73//+/PvWW2/Fu971Ltx88834m7/5G7zvfe/bGe/VxrsHHngAX/ziF/HpT3969q3L3n7Yxbsue7vhe7/3e/Ev//Iv+OY3v4m//Mu/xH333Ycnn3wyfz8NMnfmPChvetObEGOcWWkvvPDCzOLrUMMNN9yAd77znXjmmWfyap7Ox+PhJLw6d+4cjo6O8D//8z87w3QQOH/+PG6++WY888wzADrvAOCDH/wg/vqv/xqPP/44brrppvy+y97xsIt3S9Blr8B6vcZ3f/d3413vehc+8pGP4LbbbsPv/M7vnCqZO3MGynq9xu23347HHnusev/YY4/hzjvvvE5UnQ3YbDb493//d5w/fx633HILzp07V/Hx6OgITz75ZOdjAyfh1e23347ValWFee655/Cv//qvnZ8NfOMb38DXvvY1nD9/HsCrm3fMjAceeAAf//jH8YlPfAK33HJL9b3L3m44jndL0GVvNzAzNpvN6ZK5l2267SsIjzzyCK9WK/7jP/5j/rd/+zd+8MEH+YYbbuD/+I//uN6knSr40Ic+xE888QR/5Stf4c9+9rN877338ute97rMp4cffphvvPFG/vjHP85PP/00/8Iv/AKfP3+ev/Wtb11nyl95uHjxIj/11FP81FNPMQD+6Ec/yk899RT/53/+JzOfjFf3338/33TTTfxP//RP/M///M9811138W233cbjOF6vbL0isI93Fy9e5A996EP8mc98hp999ll+/PHH+Y477uC3ve1tnXfM/Mu//Mt844038hNPPMHPPfdcvi5fvpzDdNlbhuN412VvN/z6r/86f/KTn+Rnn32Wv/jFL/Jv/MZvcAiB//Ef/5GZT4/MnUkDhZn5d3/3d/nmm2/m9XrNP/iDP1gtLesg8P73v5/Pnz/Pq9WKL1y4wO973/v4S1/6Uv6eUuKHHnqIz507xwcHB/wTP/ET/PTTT19Hiq8fPP744wxgdt13333MfDJeXblyhR944AF+4xvfyK997Wv53nvv5a9+9avXITevLOzj3eXLl/nuu+/mN7/5zbxarfi7vuu7+L777pvx5dXKuyW+AeA/+ZM/yWG67C3DcbzrsrcbPvCBD+T2881vfjP/1E/9VDZOmE+PzBEz88vnj+nQoUOHDh06dHjpcObmoHTo0KFDhw4dvv2hGygdOnTo0KFDh1MH3UDp0KFDhw4dOpw66AZKhw4dOnTo0OHUQTdQOnTo0KFDhw6nDrqB0qFDhw4dOnQ4ddANlA4dOnTo0KHDqYNuoHTo0KFDhw4dTh10A6VDhw4dOnTocOqgGygdOnTo0KFDh1MH3UDp0KFDhw4dOpw6+H/289Mh7iluAAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF5CAYAAAC1N9FKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7Qt2VXfh3/mXKtqn3Pv7W5JLTVqCdMi2AYhCds8DBZGIkoAKYDNQ8Q2b4LyEMQjWANDhKNIYGNZIiMDYmMybGIZG2ODh3EAA9IgCTLCVrCs+IFHSHDyk8xDUowESOq+95xdtdb8/THnXFXn3pbU4qXu4b16VJ9z99m7dtWqteb8zu98iZkZp3Eap3Eap3Eap3Eaj6KhH+oLOI3TOI3TOI3TOI3TuH2cAMppnMZpnMZpnMZpPOrGCaCcxmmcxmmcxmmcxqNunADKaZzGaZzGaZzGaTzqxgmgnMZpnMZpnMZpnMajbpwAymmcxmmcxmmcxmk86sYJoJzGaZzGaZzGaZzGo26cAMppnMZpnMZpnMZpPOrGCaCcxmmcxmmcxmmcxqNunADKaZzGY2A87WlP43M+53N+w59floX//r//73nWs57F+fk5j3vc43j2s5/NP/7H//i38Cofu+Ov//W/jojw1re+9Xf8u9/2trfxile8gn/+z//5HX97xStegYj8jl/TaZzGo2HUD/UFnMZpnMZv72it8fmf//n89E//NN/wDd/As5/9bB566CHe/OY389BDD32oL+9RMT77sz+bN77xjdx///2/49/9tre9jW/+5m/maU97Gr//9//+K3970YtexPOf//zf8Ws6jdN4NIwTQDmN0/gtGjdv3uTatWsf6su4Y/zFv/gX+fEf/3H+0T/6R3zKp3zKeP2zP/uzP4RX9Rsfvx3z/KQnPYknPelJv6Xn/K0YH/7hH86Hf/iHf6gv4zRO40MyTi6e0ziN38BI6v3/+D/+D174whfy+Mc/no/6qI8C4J/+03/KH//jf5ynPe1pnJ+f87SnPY0/8Sf+BP/m3/ybK+dIt8JP/uRP8uIXv5gnPvGJ3HvvvXzBF3wBb3vb2z7gNfzlv/yXqbXy8pe//P2+7zu+4zt4znOecwWcfDDjO7/zO3nOc57Dfffdx/Xr13nWs57Fq1/9apZlufK+T//0T+eZz3wmb3jDG/iUT/kUzs/PeepTn8rLXvYyWmvjfW9961sREV796lfzrd/6rXzER3wEZ2dnfOInfiL/6//6v1455/ub54uLC1760pfykR/5kczzzFOf+lS+9mu/ll//9V8HwMz4j/6j/4h7772XX/iFXxjnvHnzJs94xjN4+tOfPhikh3Px5P288Y1v5NnPfvZ4lq95zWsA+NEf/VE+/uM/nmvXrvGsZz2L1772tVeu/f/5f/4fvuqrvorf83t+D9euXeOpT30qn/u5n8vP/uzPjve8/vWv55M+6ZMA+Kqv+ipEBBHhFa94xZX734/eO69+9av5mI/5GA6HA/fddx9f/uVfzi/90i897PN405vexKd92qdx7do1/r1/79/jL/yFv0Dv/X0/8NM4jUfJOAGU0ziN38T4gi/4An737/7d/N2/+3f5H//H/xFwBfzRH/3RfPu3fzuve93reNWrXsXb3/52PumTPol3vvOdd5zjRS96EdM08X3f9328+tWv5vWvfz1f+qVf+j6/08z4+q//er7u676O7/7u7+abv/mb3+d7f/EXf5G3vvWtPOtZz+Kbvumb+LAP+zBqrTzjGc/ge77nex7RPf6//+//yxd/8RfzN//m3+Qf/IN/wFd/9Vfzbd/2bfzn//l/fsd73/GOd/DH//gf50u+5Ev4oR/6IV74whfy5/7cn+O/+q/+qzve+5f+0l/ita99Ld/+7d/O937v96KqvOAFL+CNb3zjHe+9fZ7NjM/7vM/jv/vv/ju+7Mu+jB/90R/lJS95Cd/zPd/D8573PC4vLxER/ubf/Jtcu3aN//g//o8HoPqar/ka3vKWt/ADP/ADXL9+/f3e+zve8Q6+6qu+ihe96EX80A/9EM961rP4T/6T/4Rv+ZZv4aUvfSnf8A3fwN/7e3+PGzdu8Hmf93lXgOXb3vY27r33Xv7CX/gLvPa1r+U7v/M7qbXyyZ/8yfzf//f/DcDHf/zHD8Dz3/w3/w1vfOMbeeMb38iLXvSi93lNL37xi/nGb/xGPuMzPoMf/uEf5s/+2T/La1/7Wp797Gffsb7e8Y538CVf8iV86Zd+KT/8wz/MC17wAl760pfyvd/7ve/3vk/jNB4Vw07jNE7jgx4vf/nLDbD/9r/9bz/ge9d1tQcffNCuX79u3/Ed3zFef81rXmOAfc3XfM2V97/61a82wN7+9reP1x544AH77M/+bLt586Z94Rd+od1zzz32v/wv/8sH/O43vvGNBtjdd99tH/uxH2s/8AM/YK973evshS98oQH2V/7KX/kg7tqstWbLstjf+Bt/w0op9qu/+qvjb8997nMNsB/6oR+68pn/9D/9T01V7d/8m39jZmZvectbDLCnPOUpduvWrfG+97znPfaEJzzB/sP/8D8cr72veX7ta19rgL361a++8vr3f//333FfP/3TP221Vvu6r/s6+2t/7a8ZYN/93d995XP5LN7ylrfccT//9J/+0/Hau971Liul2Pn5uf3yL//yeP2f//N/boD9D//D//A+525dVzsej/Z7fs/vsT/1p/7UeP1Nb3qTAfaa17zmjs/k/ef4uZ/7uYddMz/zMz9jgH3TN33THdf/Mz/zM1fe+7Ef+7H2WZ/1We/zOk/jNB4t48SgnMZp/CbGF37hF97x2oMPPsg3fuM38rt/9++m1kqtlRs3bvDQQw/xcz/3c3e8/4/8kT9y5d8f93EfB3CHS+hd73oXz3ve8/gn/+Sf8NM//dP8B//Bf/ABry+p/IuLC37sx36ML/qiL+IzP/Mz+YEf+AE+/uM/nm/5lm/5gOf4Z//sn/FH/sgf4d5776WUwjRNfPmXfzmtNX7+53/+ynvvuuuuO+7ni7/4i+m981M/9VNXXv+CL/gCzs7Ornz2cz/3c/mpn/qpKy4huHOe/7f/7X8D4Cu/8iuvvP5FX/RFXL9+/Yqr6FM/9VP51m/9Vr7927+dF7/4xXzpl34pX/3VX/0B7xvg/vvv5xM+4RPGv5/whCdw33338ft//+/nKU95ynj96U9/OnD1ma3ryp//83+ej/3Yj2WeZ2qtzPPMv/7X//ph18EjGT/5kz8J3Hnff/AP/kGe/vSn3+Eie/KTn8wf/IN/8MprH/dxH3fH2jqN03g0jhNAOY3T+E2Mh8v6+OIv/mL+0l/6S7zoRS/ida97Hf/kn/wT3vSmN/GkJz2JW7du3fH+e++998q/D4cDwB3v/fmf/3l+5md+hhe84AU885nPfETXl+f+mI/5GB544IHxuojwWZ/1WfzSL/0S//bf/tv3+flf+IVf4NM+7dP45V/+Zb7jO76DN7zhDbzpTW/iO7/zOx/2Gj/swz7sjnM8+clPBhxgPdzrt792PB558MEHr7x++zy/613votZ6R2CriPDkJz/5ju/6ki/5EuZ55vLykj/9p//0+7zf28cTnvCEO16b5/mO1+d5BhwI5njJS17Cy172Mj7v8z6PH/mRH+FnfuZneNOb3sTv+32/72HXwSMZeV8Pt+6e8pSn3HHft68t8PX1G/3+0ziN38lxyuI5jdP4TYzbAxjf/e538w/+wT/g5S9/Of/1f/1fj9cvLy/51V/91d/Ud/2hP/SH+KIv+qJh/X/Xd30Xqu/fxvioj/qo95nxYmYA7/cc//P//D/z0EMP8YM/+INXAM7D1ewA+P/+v//vjtfe8Y53AHcqy3z99tfmeebGjRtXXr99nu+9917WdeVXfuVXroAUM+Md73jHCDwFT7P+ki/5Eh7/+MdzOBz46q/+av7RP/pHA1T8do3v/d7v5cu//Mv583/+z195/Z3vfCePe9zjfkPnzDl8+9vffkd2z9ve9jae+MQn/obOexqn8WgcJwblNE7jt3CICGY2WJAc3/3d332H2+I3Mr7iK76Cv/N3/g6vec1rhpvl/Y1aK3/0j/5Rfu7nfu5KhoqZ8drXvpaP+qiPer9KLYHB/n7MjL/6V//qw77/ve99Lz/8wz985bXv+77vQ1V5znOec+X1H/zBH7zCOLz3ve/lR37kR/i0T/s0Sinv977SvXV7sOff+3t/j4ceeuiK++vlL385b3jDG/hbf+tv8f3f//38i3/xLz4oFuU3OkTkjnXwoz/6o/zyL//yldfeF2P2cON5z3secOd9v+lNb+Lnfu7nHpHb7zRO47EyTgzKaZzGb+G4++67ec5znsO3fdu38cQnPpGnPe1p/MN/+A/5n/6n/+k3bDXfPl74whdy7do1XvjCF3Lr1i3+9t/+2++XDfizf/bP8uM//uM8//nP5xWveAV333033/3d382/+Bf/gh/4gR94v9/1GZ/xGczzzJ/4E3+Cb/iGb+Di4oLv+q7v4td+7dce9v333nsvL37xi/mFX/gFfu/v/b382I/9GH/1r/5VXvziF/MRH/ERV95bSuEzPuMzeMlLXkLvnVe96lW85z3veb9ZSfvr+qzP+iy+8Ru/kfe85z186qd+Kv/yX/5LXv7yl/MH/sAf4Mu+7MsA+Imf+Ale+cpX8rKXvWwo71e+8pV8/dd/PZ/+6Z/O53/+53/A7/qNjs/5nM/hr//1v87HfMzH8HEf93G8+c1v5tu+7dvuYD4+6qM+ivPzc/7W3/pbPP3pT+fGjRs85SlPuRLjkuOjP/qj+c/+s/+Mv/gX/+LIenrrW9/Ky172Mn7X7/pd/Kk/9ad+2+7nNE7jd3x8SEN0T+M0HqMjsyt+5Vd+5Y6//dIv/ZJ94Rd+oT3+8Y+3u+66y57//Ofbv/pX/8oeeOAB+4qv+IrxvswcedOb3nTl8z/5kz9pgP3kT/7keC2zeG5/340bN+z5z3++3bx58/1e78/+7M/aZ3/2Z9tdd91lZ2dn9imf8in2Iz/yI4/oXn/kR37Eft/v+312dnZmT33qU+1P/+k/bT/+4z9+xzU+97nPtWc84xn2+te/3j7xEz/RDoeD3X///fZN3/RNtizLeF9m8bzqVa+yb/7mb7YP//APt3me7Q/8gT9gr3vd66589/ub51u3btk3fuM32gMPPGDTNNn9999vL37xi+3Xfu3XzMzsbW97m9133332vOc9z1pr43O9d/vcz/1ce9zjHjeydt5XFs8znvGMO7734Z6FmRlgX/u1Xzv+/Wu/9mv21V/91XbffffZtWvX7A//4T9sb3jDG+y5z32uPfe5z73y2b/9t/+2fczHfIxN02SAvfzlL79y//vRWrNXvepV9nt/7++1aZrsiU98on3pl36p/eIv/uKV972v6/+Kr/gKe+CBB+54/TRO49E2xCwc0adxGqdxGr+J8emf/um8853v5F/9q3/1ft/31re+lY/8yI/k277t2/j6r//636GrO43TOI3H2jjFoJzGaZzGaZzGaZzGo26cAMppnMZpnMZpnMZpPOrGycVzGqdxGqdxGqdxGo+6cWJQTuM0TuM0TuM0TuNRNz6kAOUv/+W/zEd+5EdydnbGJ3zCJ/CGN7zhQ3k5p3Eap3Eap3Eap/EoGR8ygPL93//9fN3XfR1/5s/8Gf7ZP/tnfNqnfRoveMELrrRFP43TOI3TOI3TOI1/N8eHLAblkz/5k/n4j/94vuu7vmu89vSnP53P+7zP45WvfOWV915eXnJ5eTn+3XvnV3/1V7n33nvvKIF9GqdxGqdxGqdxGo/OYWa8973v5SlPecoHbNXxIakkezweefOb33ylVwnAZ37mZ/KP//E/vuP9r3zlKx9RdcnTOI3TOI3TOI3TePSPX/zFX7yjqvLt40MCUN75znfSWruj8+mHfdiHPWwDsZe+9KW85CUvGf9+97vfzUd8xEfwOc/4VM7ma+jjn4CcX8MedzdcP4dZoRxp1ujW6KyYgBRnWwRQBDVQAy6O2OUl7eYt2sUl1g0xpU5nlDozXb+L+ewa89kZlY6KUAXKXEGEjrLeukm7dZP+67+C2CXab6F6xGSlSaMVpatwKYV16axLp7/3EpYVubkgFw/RLy65eNc7aQ8e6ReNY9yvAOcFDtcqdz31Xs6edB/TPY/jxn33MR0OTOdn6LKg60q5vMB+7ddo73k3F2/5/9Hee4t+64g0UIFaYL7nbupdd3H+tKehZ+fIVLF1wXrHWqMvl9AbmGHWwTq2LPSlYetKv3XL/308Yr1DNwRA1BmtMkGp6DQhdQJVPySa09Ggrci6YMuKmWGAiL9PSvGbjuckRE+YUjEVWqk0LTQVVlGaFroU1jJhpWJ1Yp0rvQjMEyqGiE+kiFK0oIczpEzofIPVFOsCJnSDbsaKsayNy8sLbr73QdaLC7h5CUuDtbEeL3yu1gWWFbOGrQ3pcZsGzWDtxoUZq8ClCF0FVOm1spaJVieO80RXwcTAms85hrUF6yt2PPoc9Y6f2mj0MUdFFcmZqgoiMefF51MLqoKKoEWQUihTZaqVqsKsMJVCEaEURcXnW0VQM6QbZvh3SzwVEQxo+FxddKP1Tm8r0jrSG3JcoXekGdpWX0+9QffX+xrrqTWW48LaOse1s7TG0jsXo8+QBFMqPrfdvNFhM4j1Z73HSoEZKEBFqPFqQZhEqUU5m0qsV7gpwqrCUpW1FnrxNajd0N6Z1wXFUKBPBSuKFZ9fFajWfd6ASQsVmEVQk7gGUAoqiqlgAg3hlnUWgwv8cYnAtYMyTYXzeeLGWaUWoYpgdHrvHC8XjseVy2PjYuk0lLUULqSyqnIshY75M9KG2Qp9xfoReqOsC7V1qhlTKdTDOdN8Tr1xN6XOzNPMmUAV4VAEVUWLYKXSBBbgob6w9JXLxdc/ZqCFeZo41InzwwHVgkphXRtt6RxvLvSLI3Y8Mq0LFeOgMF07cxkxTbRLoy2diyOsTTg24eZxZW2N48Ul9eKC2hbOj0dmjInOtBx9LbWVbkpHWDBWYAWWMmGqWFW4PsPZhNxzLfSDYL3RW/f1tzTMjG5GUwEVpBYoxZ+bNY6tcWtdWXvDYt8dpDCj3NU611rjRmuUi1u+vukwF6iKHCrzoTLPhWv3XKMeZur5OTKfY1poXVhvXrBeXHL5qw/RLi5pNy84vvfot9iVC60cDd61rLxnPfLedeE9bcG0I1Pn2kGYtHPNLim3OnIEeQikA32IA6RCmytWK3rtnDJXdK5ob360nqIaDEwLFL8HUUFU0CFPDY19p5L7U+hm0MEa0AzrRm+di+XIrcvGz7/917nrrrveJ0bI8SHtxXO7e8bMHtZlczgc7mi6BS6fGkqnAIqZYK1DAxKc9EaXDgqKujCIzzu5ZBRtdO2YGr0KYi7SdK5ordRDpc6FOhWqCQoulFQRVRriG0GVrkrvQhfFEAylidFQGsqiSitC70KbKpigsyHrBKVhoiCKi7GYJ79MrCmtVdZe0K50c9EpiCugotRasKpo9e+tCp1NZ1WFSaEUQbQgxP26ZkasI71Hp1vDMFcscQ5TQati5t/vc23blYq4AC/iEyw2NLYDDfOnJSDFFSu2AzgqASTFr9l/AwFT6CqsCos66LBQk2Box1W3NWCCbDgXmwoVVAzFmFqjIOh6wbSCdaB1nwaMtRt1XeHigvXB98LFJf2hCywACscj1lZs9YPYgJJaPPRnS7CDsKjSS/E1Uo1WjFY7aze6QhfwXe0SxdqK9YYdV1/XvecTodMddPtG8lUggUATEBZzRVp83hDBJqUgdO10aXQbksbn3ny+FaOYIAFQcg2YCA5NZCxMM6P2hvROWxvSOvSGrivSO7SOtuZgwvxv1huyNtq6ImtDFv+c5Pz27uA3h6YY9GaMdAeSNNsAbqyVjsVPXxkafzMNgJWsctw6ylh3uU5EQEURCpI7uRasCL3EOo15V4QiUFVdLohSCJBkoFJQ1MFNrOtqHTP/KeJbvs6Fea5Mh8J8XqlFqeJysfcee0DoAquI7wt1YGkilNAaXczliAVg6RUMpHd6E7p1h1yrX6Q2Q7Wj5saXb19xZRag2s9saFFUKrXNGM1lhipFJopOlDI7sJECJkhvNNZ4bn50EZoqJcBJOcyYLRjm68QEa0KXTqPTVehV6VLAiitFE0QKEkpwnBtz3Ap0kfHMRfJ5bfK/I7FXBXWcCx0kziX4PhaFboJ0QZsi3WVPFWVW5SDCOcp1Ma5Lp1Qd+1+qQBVkEuZJmGfl+qzUQ6GeFeSgmCitC8euLBTsrNJ6Z107fTIaBguUDtqBY4PjCstKX45Y6ehsIAWtRlFX7MVF6qbv1Ne6iweX06WAVqEU1yHSiz/3HjqnCyauXyUmU0yGHhUs5jb2WfxBY+uOCBJxWejT4X98JOEZHxKA8sQnPpFSyh1syb/9t//2Dlbl/Y21ryy9Ic0tclsXZAF/Cke6uSDsaoiGYLui9QEsLLqwgnErFfENIuILpFmnmQtOxQW1hXLuCEtrrL2zmmEh9HtsytZ9U3aDtYfhZwFBRFyAaXVLpR7opbsC6duDtFrp9Qwr5xgHjBnrBbpi3TcoFtelimnBpkqrBZsL0gxUaEXQaYI6oVIwKaGONJSfhnADV9W+wk3UN7tBL8WVgnVMu79oqbT8+0lBrwEuhGGZI4pR3EIXNgCkYf2XtHAlnoUrHsvPqv9uSGKBYHpW31Aau6vX3Xz4zjTtcamLW4CtweJKlNZcIRuuTFuDiwvs1oNwecQuLrC1w9qwy8XBw+rgwbphzRyGxUUlG+NwQ+haaN3oWuimtBCKXVKYCgm2SMakd2wJcNJawJMAZmMtb3PvFq2zJnRcGvWY21C8PqUBPlT8773737sOdiHf48DCn1Oa+xtMSbooAEhboTnIJRgUn9tgUMyQ3rb5XeMZtDaeAa25EugJwgS/mbiwXG7J6sRV5IQ4l+IAZbuXmOcEKSFIB54Ui/Xv3+OgJ/+LfSX52e0YazDAg4lcuabxN/z5jnOZxB7KRycBwOM8+6M7K2Il1r4qphbnDENCdtdrbOfugnWFpvRVsdXcgOqpxDv9uCKp1IsDkmYFs4KoOqsQ89nFXN50wZoGg+XzbuKiVBS/vtX3BKsLPls7vTkYbOaHL99Nvra2+BJaoa2d3vx1xegCTSUMvjCsQpasJjRgMWNJ9jL2STejtIasCuuKiCJd/NzNmbz1uNK70bvRQg5ZdfAlJZ5Vd5YUa/78JwczognoXYqqmLPOYUpI3GP+LUSjy8Ox6iy2loNOKxVqx0rbZEuD3re5TDbXDRqQKYBkTYPFNoAygLivrxDGm52RMkG2Pe7rSEK3OGiUHh8om9GYbAphMLrdEuuPmAvzn6GseKTjQwJQ5nnmEz7hE/iJn/iJK91Ef+InfoI/+kf/6CM+z0W/pNuB0hZkVeTiFmoLsgiiS0DrjhZFqlKsDrq/iFHoFDrSLpwOlRXTsKJFMGkUWYHmCL8ppfmCUxGKdRD1jbE6Hbk6v4LI5MJOCo3V0b2JA5TWXRZTfLOUgs6+4tfrjd4qvd9kvXXh1myp9BuPh2s30Gv3UQ73UOs1Jq5RKdRe0LgmLdDmM+x8Zb1xN02VNit0Q0UppWJ33U25fjdydgMtNcAbDtB6cxGdboYAH72EIm6NVgrWVvo6ueK0ND9CUKkjbqfBdSx4FfWgKNUBibS3Tb3EBlUtoUgDwJAb2YWoDbrfN6SaxSZeSF9EaWdI6Zipn6+AFUE0GIG+OoTsK1xewLrAcvTz5CZqzpRw8xZ2XLBbR1jNhcNxHawTzUI6x45NkNLZgBuKyYQV82MVrHYXeG3dAYiNW7U4f0+J23yj75WkYG75xhwx1QAofcegGBpsn3ajrIKW5i6EYNRqUYoKNVgmEf+42O57SQaFcY3JLkhb0e50ufQGzZB1HS4YmgMviXOO88YhS7qCXJlY9+fqDz+QiCTAirsVNhOx70GBW9Ld6aBhQbcS+2PaQFg3f1/HnHE1YWhvI4wR/0pTF94mFufcAEgXoYew7pKMQ/KgAa6D/ejqDKo/3lQKOLMaRsRaFEqCaldMayGOYN+I7yWMBZNhLLiSEOjFjbZV4NLoC0iDporWji4La7+JTQWdC+vk3yvT5AxrGDtNhBWhl8nBdquwrgFOBKuCrcH2FAPtA8y7xd+xxdyVWgQpinYJndVpbWVdjlxe3mI5dpYF1tVcXvZY22IcizMhJrBKDSBfWFGawaUZa++0bqzN3TbWVsqCc+03DakOKnrD3VDryvFicXDScGNG1N2dxfcNOIvVmxuxUgQ5FGSuaFFnIuhxxHt8USI9mElHmSQ+3vbQzqWiCvMZ9AmzmX5Z6dpo3Y9uK7YCx44cV5TF98oCWgTtQpGKsqKlI5NtYD7WICUMWHVjdGfybHsLZ/t6glESnMTaLoKofycaQCg985IA2ZLe8vXZm7OitmNGP8D4kLl4XvKSl/BlX/ZlfOInfiJ/6A/9If7KX/kr/MIv/AL/xX/xXzzic8i0IPOKTCtaCiILxbpTcbYEcmsgFemKmuCeSqPYivYVtRVZb2Fr+N+GdVawLr5o+5HSld4DUIj401B3rzQRrBboM3p+DWFF5YDIAVjptpDkvPbGakFrAyKKloKezTAbJtfoh1v065foraPHD9TK4cbjODs/5+wJj+fs+hmHs4lDqUyqzKJBvwpFOnI4R0yZ772f9cYFeumxIorHX9Qb91DPrzPf/SS0un+8Nwd0Zp2+XA4XT4IUWxd6a/TW0OVIbwt99fPaXijiWy6ZEh3zFbEfItRSh6tFmts5WFgQyIjsHhvZQvUEEi8GJZiJ2o3e9hsYzKOOhiWLOBHfgxHQ3pj6gtqKHh+Ci5v05QjHo7u4zJ0E1o2pN2ZbEen02gi6gdXcsukdBxwmEccCoVFo3RkzulABEY9FcUvQuZJk59z/nS6WEBkRa7F50ILlEuipmAVKX4dIsWAPxpMwV/zSHeyplUHxVjEinMKpew1aH/z5xBJwl5/fWk/XQrAO49l1NwakO9sj3ZzZ7A5GdKwnGR6WZNREPSZAZBPWosZsMu53aHzApISdpjE3rvBzzagKBXOFNCxWoVQHYeVQQiGYu5UAJJiHdB3tGRolWNGwyMcc79iTAVSSMXFcVuLfg+WQZCIIUJTf7/9ukutCYm5ciXeFJrKdP87pPg4GweXzHcvFcAbD/ZZIE7SBNndpiJmvQD06YG5KbxWrhY6gam7Na7KXgsXM2moOesKtKV3R7myDNtBiDk7W7uyFdQoGRdFaKNNEqdUBENtceNxVsJkdl9niMVT5n2vDuE/zeEGN+1fz++utI8cWtFA8zN7dRRtupt6UvpqzNccgCk1ibynaMt4onn0XaIKJugtEg/XCaCJxKF0rJp2WF1TcHUW4So7m4KiuHbEVQxxQHTvr6uEAvbg7lgPAirQlXEzu1HcXjlHHrgJtIE3BJt8jatiUjFqCPGewuu6Y8g62+h4V8zlPn3Nfk/iQsAUsRVEENQLVQQpVrjKL3cJ1buHZdWOkt0c5gwLwx/7YH+Nd73oX3/It38Lb3/52nvnMZ/JjP/ZjPPDAA4/4HFIb1AZlBS2IHd1iQFBWZ0XCn68UVA1RQ6UjdkT6EekLrLd8ozWDnsLH4yz84S70XuhdEa0I7gft4TIa/s6iyDwh4bJREbCKmvt9e++01Sg7QeOMXqGUGTGll+tYvU4/LMj56ueaJqbrd1HPzphu3GA6KKWGY6aDdBuKRUTQOsOZUu95Ahw9eNaa+wqLKOX8LsrZOeXa3ZSSlvWGdPt6ZKMoXUn2dUWaH7Ys0Bd4HwAlno4zgQHiBkDR4gAFV4L0ZD3S1nSmhaQKCbLezNmO8MerOR0rrdFlQVdXQoZfj0bA29CLhJzC/dzKgrYjcnkTvXgIjpfOoAR7UmIrFmAKhdmrfx4xSmw+M+hNNiEQQtNWVzYl4o8EdxWqQpOkeG3YKzZcg3nfm2Bhu4VwNbi7KHBCnKe7wkl2SZyWlgAQmuCPFgxiWHyhwKUEkLzC4hDKx0LAhcsuvlg0r8y2+BLLOKad8o95kQA36b9Oi04wp2twYW4xh4vtXHhD64KJ26lknFdYp0NQl3RablR6ESjFreIylThpzNnO9ZuAcOg0CctXcjfsnofk80jQINu/SUDn79MAdBuDYsEG+t97/C2dTC1l/e58fbiACBePvz/9/JaAziLMJlggGfFlbs0TljCCuwuC2eiEwhU8ANwyGskGOHUXlobicTbGKVdnSmUNS9osGLGOdp9nI9ZZ9SBtKSVYpT7cR52OmbvbHaz7uhzrU9SVoXQwHet7YNiOA/IWLqBm0GQEyTujEnPeoXc3LMZhOhhgj79IRjT2e/PvdgXsbg9TZ8ebQguDs3dn1q30ICXclS4IS5wng+oBWjMHJ6trq65h9E7hql0MKc7c+N51cFJj+gVCFwiYgyGL9ZTrGusDQPS4rx6g1sRCbsZ+crXp8xEAQ9puAxT8OSRrV/IiEqBHTNAA+7YZdI92F0+Or/mar+FrvuZrfuMnODti5xes5b2I3YJjoRwdTZeIK6E3f8iloPPkIIVG6Rdov0T7EeEyCLmwDkQ9MEgv6XKgLYb2A2s7YNMZopWuNVz/ERBrhklHZpyWremUWMP3unpizCoR5dIQaUgtDkTPr6H1jKLXYTFs6bTLDrgL6Gw+YyqKTkJrt5DlkluXN1mrsMyFcgBVo+hKmc/g7Brz3R/GnM6UyLRxo6gipcJ0HtaIWymEINS+yySJ/2tbaQlQbEV7o1tk/mDDIgU8oDNo/AzeFJQiBVWllsljOEUQS1dcG5afb2MbmyHZE1k9G8EWv5beVuR4pB0vES6RY1D83TzgtTt75eaGuYvHVoQF2i1YL5GH3ovceghdLpHVM4oUc1ZLC5QJmWaaFGzGWYF1pdU1GA7oyTAkc9nB1k5rxtIEaTAFO7IUo6nRqoVAM1ZxN4NP4QYqNtKhp/x3alY0AEqAwB7MkPXN4hO/EBdMC5JoagmXjHXE3L1mOLi2ANmd1F8uUv3CNABF3aitquNXf9b+D7ESQdk2QEmRDeB47LTH2PQeMQIdptZZ10bVldUMh1CbYg8SY1h/TcoWi2Tbap2romIUdACUKjAVpapSD4cR06OXhibrkBb0yFry4GVRd79QcGWk4QaJwHQTRwRrKHCJeDOfD/XshmBITKGpsfQMzbBwa8JafXq1wFGNVqAVQnl0ltJZq7E2G/FNRoCJ7q+l8O8JoFejrwar32deExKxJd2wpdE7IIbWyDRLpR/4rQOrGceuNAprj6DRrmhzOYUovfl6Md3iukpvfqIiMFdsnrHzA8vsgKhhrEVoVTkWo2ljlcXZpIh964cJqUqfCr1YxN64jPIV0DeA4t569KY6M7QYwuSAtqTiVrpO9BrAqK+xhwumFdwsctmo+Hpx9DNYPmyLN+qxRloVWi3uzkfo2gJQwiqFxQqyQrFGbcF6mgfYL01YTbiU7gxILdiZuJvWlBpZhnMxDtppNM7GLLidXhSwgpWCFPc5DhAbbm2/jx2Yju8v5mvUg+M1XFIBboOFzaD5kczQw0Iv8dwjOaJHDEuLBAzrviabGe2Re3g+tADlNzuaOTfXj7cwK04z4lkKNcCJWIOlIrUirVNKLoqVEkhdNawfzaXui9Yp50ZvC83wjdgN0UKXOsyoroWhTUKgSTNEVrAW4MQZlLVB6x4g1lN4FcWmAlNF64QUg9oR8RwEkRLpn+KW+dGDM2Vdsblg5tkhpRqUitQZnc6oh7s85VdKAJSIv8AXYO/hDzVBY1MiuA/2ir1IALYCpeIkdAeWzQoFhh+grZGy3MGSDBdEqgdvTvPmUmAC3K1CAJ0BUGBz8ViHdYLW6McFlgXa6tkR8dW9Hny++uKvm4bFyFAcHiUWGQBSPP6nuh2iEUhtGL0URCs2Tdh0RtNwK6wLrJGV0TfhYmEhsAt+zAC4glB60OrCiDkIWsGNQjz7Ii1BbFPIaf151gYRWiAjCr50Ra0j6AheS1wx0nEzMyjZrtwb5Bdq+KRt5x/XYCU2Lsukb4HPEZMhEvEisp3OwfCWXVTifSL+xNK67WllNaPvgjrEhNU0mAUPjPR16OcY1nwAlJ5LVUCquhIZ3xmXFrEPUuLFeC0jRC2EajeQ8PUm2ZDEkY37DneNOsvRxTzbJQmKuJ4WzIqmaycAThecVRUdcSuZBdiKjhgUiWdiHVqJDMCyY3cJFkUAS0OJwcp5QGwf4EuDzes7JsIirkZwQxjS3WrbedgAVeokjWvGMqC3DNeje2FcLkqdIpCk0xNgRzxeEDERhCssEv82iyy4zipbYGUrMoCb5lqKzzcixjo/XzdmU3Nh6sZ4dXP7tYn/7F2Gm06QjXEgH+jgxcZ+0Hh+qpEJU/zmLQDeCMDeM2HkmsmdYiNQvlswWcTaVoUSazpiYtyVL1umTlyV76tgDhNAqGeuWrCcGU8/BEvJhyVjjs0yADkYmdxcwra4ld0hd/4cBtc2a753/Hik4zENUNa+RtT3hUeqr+JWkwmTud9TrcPUkdLQZliVsK42vkqmDBYqt1G2LoikL+5GoceajSDQACimW92O4Ox95Zgr8t7WsMr6lqyAR+KreACvTYrNik4F1R4b3EJYg0gPn2CHy0Y7un/XYlPVg9Ijr0zrAZ3P0Os30GlGSg3l6YvU1u6W1a0I4jIgM2jYSXTrsYnCyhala/MAOOkgDlYsVqIkjbeqg5O1RU0ZItq9OECpE9QAB9p2FlCyPDuAorlxOiyTR+GXo1tC6zrqjkgHmQ5O9RdBerjiIotBAoC6u6k4WKrd3WFzgyKUXgJSGFaqB9dOMzadoSW2ylKwZXEqNPP7NWoopM+1G1aBCL4s5sJ8Hx2SImXEYECGpfl9ywYPR7iJ+HxYpAjuGZRUPBaZ1SJEwGfEVOCatw9XTHepHG+2lHIDkwpI36CJ4r73AOBEUNxI2Np/LLeAJSALBiVAYqYvo0ozczo5BDThVpDuLp4eyn9gl7y52wDKXhBKgIaxjgMt7NOIB9rQ7WkMKrrkXLmbTsIiRDY2J29yeEs0wAp+zRKaoO+uteMMTAuXQLdY+eIpnj3ARy9KKyUySApmPcCQM2e9NMzKBlACHFrXAY7T1dPTYo03Nxwgd9XwCbgc6jFPRXciIF4znJ1ZzS3gTsThjAj2WMOqEfvgLJcS7FAzEM/c6uLxLRk/2yzibszn2FMSGDWEGs4ySqzhJpHJUzxGxmfZs3o8LMZYrbN2n+egBXaLkisApUlY9s2c4ZYEe8EcxBxIMORpnDlo1eEiLergpFTJuFCXSRLuk5CiLsnckPZYqliK1kdCVE/WewAUc7YyjlKFolnrZzMXCxYB7uHyVwkmPwVC7q9tf1hJizoA2R6HhRCSMJYGWAnw4q6K7bCsH5EgxDaAaPjfM0j6kY7HNEC5ecvpybUtmCnaK3OplKhIk2ldQkWkgszoCPo6c0WrBnOgV4HVGivGUQyTCaGw9kqxwmqKrIZnu/iqN5JG67HIlhAofVitgm1BZiXrlxS6uOKqdJodqQ20rejl0QNbb11CBzGl2EzphbVNo2ZE1wmbD4ieI3WGCjIZ1HNamX1fBr3aIniR5sWTbDHaLfc5qokTIyGEJYQS1klHjxe88xojrfj9dV3JmI+xErvRlhVbG7Z2tG0AZSqVqpXVlNoK01Soxb/Pn5UL+OEOGExDKPfibg0zPK1QKmsTmhSaVJopTCtMK32VKN4UVGlR+iQeg1Q6MkGhM/fHUfoRtZVKG0xYV6WJspRC1cnp2mbY5SX9eGStF/Q1sprWNQLAGhKgxVjSKez30YEM3RQNN4GDtDpNLqRwN81gjMzXlLYQOoKza2ru2w6FX8n6DpImMJCPROirua+8e1qlC5nuAbPi7o9awv02lS2oNBmINIlVodbILhGs6gj4Xa2PQPDBhFk+RwmZJIioh5t4nv2W0ba44tGwLMtgGcN631ufWJgX3UFYnM/jN4xG8b9Ji7UFhngml+K2dqREr6vv984WF4bZ2M/NQovl59HIqo37bLG3zfdpWssRxUCTqL0T8sVrJMFiTuev5vPjFVei3gSFQgllXjy2xLpnqiBeoA1nZvrObcEA9g76vExCDyXb0WIU9b1Wqo3sE5mqF/GaQA8TMlWYZ0w8KcA1iyvcoh2Vhklnwt20M8KkylQrOnlWi1ahMDmzNy1e2HFdWZbOusJlW1lWoRdoVeit0Hth4eD3aMrSPOh9aZ4Xo2sYApPQJmHZZbwdTVjNuGyddfFgfju2cE10d/tVpc7OLJh4hoovPs/m1IZnlcVeqt2ouQ/M93nhiNEpRTjUynktHKbCtQrnxTgIdFtpEdOo2tx9q0rpQsWopVCmmXI2o2XyW+iGXnrJg3a0YHQafWnI6jFdJoLUQj1U5nmiL5XluBLhIsyTUebOXBePs0ToXUeMJLaSu2QYi5PHzIw4xB4uHPN5U9UIdAnGNoyLtGWtOghKeZBA0L1DTpnYGhdoFZH1SozbBxqPaYCyrO7eWJtgVjy9SiegsIrjULfctrhnXyJO8bdAgL1uBX6aLbgqNvAtCFYhXEhE1VEHm2FmmHocQjfWZXEl7iX0SLqUSPNkngJRZ3Cf0VpDjpesa0PbTfTWLeTiAm7eIkP+ix1Qq9R+Hv5BZZ1nWgQwte6WdO0eHa62sNiDIx4hr4/eaIvRV1hvRmaTKaUsO4ASsGSndDaA0t2C046px6o4mAlu3Iy2ODjpa2SQBAvkAKWw9s5UC7UWz4oVhhB31jGrmRJBlPg8Rv0MW9tID1xao/V4dlIC1Qd9bB5XhGTMAiNuQKcKClNkWkmkCA7zISxzkYwaBKO5hauFVaFro/fV6WlpXrAvZ0yMVTqrNlbtfn0qu3oS4go/ggZdeXe0C9CjOFooPjLg0zw7QntkMwdACRChadVAWNQRqBbWWu/BHgRdMAJJVTxQWz2AVMOiL5LWlu8hj63yzAuJCp2eWhvxL3gmxohf6EY6+JKKBw13kLsOHLz2wXKMIfm3AGfhZsigYt3HSEC4scJO7R7To9KH9SqIx00UiSB5Z/dajycW7hnFrWELKStRi8j/Hde4szKtWyRtOZgiAmohGZOYY0s3DiPzetSY6JubqkecQQs0JmJbunmzKCvj6z2gSMTOOSNHWNAW4N7SBA6XlYTRptU80L56erEWQat4ccpSkTKRdJn04q6DFHcRE1XF09KrFAc+BUe7mSKdVnnLFN3OYo2lG0eDJRMR1INTuxVMargClC7riFmw1QGfHvO5Rxo5vo4ucRfUcW20tblMjcyUYltsUKnF04xFIukhLrNJuB8C6ps4cSFefE/NwWZCQFXP6J+KMKmn61e8MF8LJW8RHNzV126xrJUSVZo13csBltYjjp3XUZ+lhzGqq8tjzEKGuUupSqSZS9gO1ajiMNbdqFtg+pBNGCksXAzlvsi16/s5C9vFsnJX02BXQsYM5oTB3g6a2PA9pCHBinoYxgcRhPKYBijrMtPXiaXPIJVezhDOHPlrQ8WcHhQ8joNKt4mC+7CrenVHitCss/TGgjhFiCHM4UedoBfohUwMas0ggvRESxQVWrm4dWRtC2tfoqKpp/9K9aq0irp/W51aFDqlu6ItZsjNW8iD70VuPog89JDXiuggdoZwQPVupF5Dy4Hzu+7hbK6cr515ae6X1E5ZHaWWdsTiGnrUK7FutCa0Vlgu/f6EQtXUbHYHQMEsIFvzKPsS4fvFAUsqBX+r0RbDmgtUWlqXPt9VlfOzmakoU9UBUGpsEBGv0JvCUCOmQnDk7hlFHky5rp3jsmwFl8w5XBHxwFNLp5EPD1z0a7B6xmEqlHmKzK6wrkN5J3XeW6cdV9a1syxHDxCkciQspX5kNTxqvwUoCGt+xVMPb0ljKXAEjuYFpLpY1BFQSq1xj+pBvEZkzvQdQDGv3RNO54wFycysLGU/EAUMwd9KxbqDaOkBvnYMSVWh1oIWB42ebqwbQMGiiJ56LNeoVKvDFdrMiX9LIBwWmKWQSvoYfE2HUE3qO4M+Pdizb+4ynwCypLYZqLXt53DxbfS0hQ+870CPBbvUFQ+upoM1WsZsSND0EkGRLeWwu7nyPsY9BIDIaxdNrtTf1uMxRH1EZ3EitKvvDjMHjR0ZBdS87uQO9MfeXddOWyMVNYoCZgZJN18/pEtBnB3OjB+PyemoeOZWmYQyFepUKWdnaDAMWj04XKcEKAIBUHztECCoedBxido5qs4wVc9AoXo2JRFrtK4rqwi31s5l69xqnWaTG19FXbaaYXqGlUYvjaYLzRpr31gEwf0gVp0JM+t061yY0AyOUQrBeveaP+LPfpaClEqdZ8oU8Xwd1tZptVHFgaOtuAwxoZpRo1KvdGi1M5XickThMClnk3KoykGU2bzsga7BVK6dks+guMjU5h6bQsSvFI+KLh1kiTiddaUdF9bjgl2uSPcgcid4I/OuQpmFenT7iQrTbJSpUzXKJTTP8kwev2usT/V6KUTNo6IhZ3NpW3c3uxFMTGRQTfmODRRlXAnC1f029r2G0dQ9hqY5sHqk4zENUJrNdM4wOYBUKAdMZ0w1gtMyw8SpWHDq3BqewoWMTb52YenG0p1CbUXQFoGSvfoG6kqLuIrWbAsS7Ma6NNZl5eatI2s7sqxeyRbBU8NqR2t3ZVKdqm+RvaK9cdEauizYu98N730PPPQQ8lALKQbGTUQqWm6ih7sph2tcq8qZdi6KMVNd6MwG3dOA+4O/Pvq5jIh/oDPRbWLt1/COJYWSLho8MNju+K+F8Ou+y7SDeEEiYGS0RJiLU5ShsPOLq3g57rMp+owUb1WhKgOgZDE3Dbaj7AAK5PmNpXkxpmXNDIYt/oNmNI/fBXRUg6QqZVJqq1yiHNaJo1XvC6IwiZAaqHf3gV8eVx66ecmyLBxvHVkvj6zLwvHmBa2ttOVIa1kjJvoKmQ3B2a1zpLMCl+ogpQFoR7VTxAs7OTw0tsYZETjc/XfS8gkrPrMIAGc2esTYhFLJ3AYCnJs6MHaLSDyrTQPYFGdQNGpUaACerRR1mEzibilER9VfCYCSSjTdm2PNJMuQ62MwAZ22bEr3eLnS105bV9riMVtLj0C7EIKjSusupsJjkCwCAH2VWAK1yCZGJNa/C+bkumTEkwQTpRpMUYC70ulrLolgvDIAJ0K582+ZpitBbXeJ2DHYgmzjNBgRyxG3EUxSWxNINHcNaPSFibltxxZyprO22M/SaAnEM1A75rtbMCkR1OuZKBYuQjwWoLrbQGqBWiJQV8acxOYbwCtjxTTyHq0LmxTwOiBYMC5E24zLheV4ZLk88p7jkcvWuQjkpgJzK8EYetZOUyIbpnttkTF1Tj31NeIuYr213rjEAUqLjCbMn1BN+Y7XZLJ0owVboKFkS7iaXV+E2zvdpxFjI1IwyoitKkVdniNRjsbnvC/mxQfXTimM4GvRMP6OqwcUlxV0dTAN9HX1hIzl6ADl8ki/9PjHZr52rXXWtgSj3bESDH3F07vjGWnMgTR//Mmied0WF3DSOqV1SumUEb+UzKZtD10JsNpDtjCyDlvKhgysjTU/9ucA2WyxtRuO+YDjMQ1QLKJzRCuiE1omSghe0RaGZAYdpoLbHoJlIFxzF0hLyndE6PtCxdKOUhqZJAzJcxkR4W6wdO/jsnZXTog5wa3NUWtrHnuCR6hb98Zq7dILhfWHbsFDt7CHLpCbBDgBwXPnSikUPVBK9Qq6bUHXS/plozTQbvT1kr5csr771+nLJX1d4qpjs5QzTOaoteARDG6BGqPAwe0ARXpqAwcokXJHnNlSmZhnKVnfqhBmsJS7KoXLqtTQdVNxyzUPZwSKswsiG4MSwjLX+9o8PmCJ/jk7fOU0aVSAFnP6WrpGLE9hAqSsrCagK4sKk2SdIRsKZG2Ny8uFmzcvvFHbrUvWZWFdVo4XR3pbWVcvWme907oDlFydWeFzpXu1YXFh3qQj6hZtVL3ABnkcAEXihiJQe7gv9gIgrEOn8T0zwmuTSLAk6nMf7iBXskQmSwnfs9O7kkGZNaWcfz7OTmyiTUmHAvNnLvEAUsjJKO7kgIQIHHQB3lYHKBsj0FlW7+PTFncNJgglY7eD3jJ2z3oEfjuDMoKQJYJ+gynyN0f6sPqey0zsjXTKjCNfdxmg2HTLlsn9Hk8gngOxV4hYLNl7eVxqBFCQfEG291s++XAJ9K4O4CJWyMJNYtZ9zeexJkDZwsvVNpCymSOZjWgR05XM1SD7xzoaESzxPyE08VjTIU8tVFOAYiev3GG4thaKCcS8P5OtC8dlZVkXLtrKsRnHnu4XXxMJxvd60RlA/w7flg40WzzzZs62td5ZgkHpkVmXz7yJA5XGnrXK9TOm6MqQ0LLjeeWzFhBRLIJkE7mZQW9e52i1HvFoNko7oDgAawbFGWDWFnF6DTSChKN5ofXoIdfd6HHA6UwZze+3WQ8AOrb7tpjNtvtrd9xePEYHLF6vyLzydEzOyEK0bS3kjY71YkNS7daHDXHlU+ixULaf+DQoHuF4TAMUKUqphTJ7sNE0z0wlAr6k+7KMwDFFwjJPIeRoVvAF07r3gei0iKQuqLiLQ5CwLKKXinnRLlFnYTrKaspiSp+9HrXqrsmY4tdUjMK6PaRIhW7rynrLO36uDx7pD3X6ze25OzSKomEqHKqgs7rnSRureVdgaSBr53j5EMvlLR76lXexXt6iLUeHERKpavN1ZDqjnE8ePEyBdRmWP30ZAm77mVy6Aatbx1mv1RL4BQhEXbDgLobcyGl7Zjl1pxftCr2epe41QIlmrMUQFg5SWmyilszQ2CMpNDxeSKV6hUsVtBdKV2pvHK0zlcrNyyMT4RvebbTWPTbo8uLIrYdushwXlluXtNZobWVZLkOAhCsv2JJ8YBFP5nOX1oZoBGK6NWIBTKzLwA+b1IxS2WSV2Q63bezc6D3mTcLd6IIq63NESL06UMn4kUy3TQYlM1xsd+1DyeX3Rn5pcAVXlFfvySy24ebpa4vYA6/2m+6bNV5fM5aoNQ/2y/iB+HtrNrwMWmwgim62UzSh0XpyRjI2TDLOeS8Nf63b1hogux2LGcW6x2MlIBGvbdIlYkLyeSZcsZyjWPe9j8mzYFDMtjnVUPiWjE4YBD3WehsBNRmXlYGJvgbWdQ0Gxd2bfm6XUOBVpPc0ppgHtIo6k6EBLrJglsdprOiyoj0NEb9Yj0HIMu+6KZyYK6ONJDATb8jatdMqjIDq6MvULi5ZLo8sy5Gby+rdhkWYZB2Mk4Us7N07dyOGlBbSNRk47xC8BiBYoyFss8ZqGR68A/M4uMzGeyqN4+WCteKNFSOrzQFfBOA2j1nxoObcp0IngEHfJKL0zrH5sxS88WPNarXdY29KweuHiDgTujZ0Wd0w0BKve/Tb8XjJui4uV8zd56sFcAivurXOsq4saw9j2MX3YCYSHAZ6GHZnSJU08HxxdkRdR7q7cstGTKOSvmUGeU8oX8OZah4+CgY4iVNL/NsL48UzCbeXrf+OAJTzc2U+TByuXaNMM/N8FvELAhQs/QxEupvo+Gw2UoJG74uXve+rR3NnMakURLUiZUZ1hsl7J2fsiQsbgcvq9VamFfqC9AMqx9hgDQkq0NQFmZmXS29RXXbNfhkRzb6i9EGcwlzOYJqZbtzDfNfdHK5d4+zGGdM8UarbCGYdW1eOl5dc3rrFg+99kOPlJevRGRSvyCjM1wuVyrW7AjmJern+oOF7LKhRypyMh/DD+hHvq7AEqg7EnpZlnDNKSpIauw9d4gKUiAOQfB7ihb+yaJz/LuP3YdUgw7thu/+lRWsIohNEaX3FUIuA4ObxEr2vFBEuRNA1c79bnCoKCrXOcjxyefMW63FhPR7Hs2vmVWd7zyQ/nycJevyOrO1wm2QMicd5eCBnsTbAW4JmGWDQLckonLE3Vnb33pM78GramZdcZFjCyUCJBihJxkq9w7UzCmE12+55DvCZUi5uavcAzIw2AErGofQBNHq3+N3B/dp83a+t0dZOa650PTDQWZUeFYqlE6Xrs67JBgl0gNGxqf0OFLIGimmsORkfAt0attWg+dWMaob2To11iDlwzlRY2x25HvuQE4ayky9DBu8FdzyD0BSu2Ha1KVoZ4MpW2UrMB+iw1rwoW1tpa7INyb4JRWvsAwsw5Eyd4plkJe5PzJzRYvXQcD16zIh1RqNPolAhGcM3drcr7C6jQFwziwJ0OGMqniLb1wVbV9Zbl7RlYV0XN2mimu90gDIZpbocsL4AHj8nxTBrlOJVm1PRunZ1AK89mNzeBkPujIWFou7DXUNv2CqslwGaIq7E12cPYB2AlwzqDEeeuJHbegBV87XWxF0dJQylYlE1NwpVKkY12di6lBE9GhcuS7hcvd7Qsi5eDFPM13wUzesJHi2ZR2NpxtJgCTDirQvCMEwmPPdxgnnZ5IatIOpsbhYtDKdjuIDiMy0lLp5+H27wHkt9y2hj7MttqyVYjutpPZoc/jsSJHt2Vjg/r1y/54xpPmOezwZz0btiERtAbmFRV6yxwC16z6zN00yLrS57zVOBCccOtXo9kelsLM7RMVbEo8znAsdCnRrFFipHqlwiNLQvw6fX1hb9HzqLuaW+ZMLPKtAL3QqNysoS8kq8gu3hnHrX3RzuvsHZtXPObhyifLzSF2/M1rvHRSyXl9y8eYvLiyPHZR2XXQr0esZhWl0zVQcSWW229/D5JseXACWC9bLwnDcLDGsnAErm1msxtw5KvhbwISzO1vqOwvS07KST8zlt4nDb3Emruk8437tLrUy3hwg6GcKEZll9vLmjhnGzLi6otXX65RFbnMlKsOX1IzrrcWG5uKCtC31ZtvmQLWXPU9kDF5izNRlg6gGSDpKKRlMxdQDjgMTQBCgirrACLOBLkC2MR3ZAAbdysJ3QZtOeus3L+C6ysFT0pAk32ig+K7ggSUYgBMyoSjp0wwYMEry01oc1mu0PPJbEAcq6bspsbW38TKZkzc61AVDyvA4e/NYkgVQqIxu6KIwSv/cuMpiXxFI9lImpRCyARP0KRkpwNY/RmXoo5VhrTTKweZv6NBWz1RrsDJq9W8Qga9toRsnG3GooEnfRhdXbctEEugqF4C7pTjZc83gn3K1HgIKw5BGLKr4BgCVjWyLINKj2cEpgugSr5OAB0xEP7LaejvsycfddN+8V2Fp3d7aaNwmMie9mtOPRU4svLjy+oq+R1lopc6EePPOkajbhawhrxEoZMlmElCVAkegN4waTRZyWqFFjDr3ysSVBMB6YdN+r69KwFhmDRsi8Poot5k1bPP/E4am4WyJUfO5797WzBvhTy2BeD0CIPNCMWHKRmpHQyxrgNGRk9/0iybh3L8pGxvlESMLaPAYp7Sok+oJmWm/e9G0AhdzaKltwOQ7wupIvOOPbnUGxEYO1GUxBBw5bZVvoA8UiuWYTpDjdjawWKO+Rjcc0QHn8Ew7cc/ddPOG+J3E4u87Z2bUwmYzleJO2LrQler2EKbsux1CMl7TlgrY2bi0LKwvFFno0dTKtXlmzVuT6DeT8LvTsBr1Wdy3N3u3T8ODa+XjBerxgWu7mICvXy5EzvYXaEVlvwrLQ18ble2+x3Dyy3Fy5WDzT47IrN9eJY1NnVbSw6sHRdBQ2q/c8nrMb17nnyU/innvOuX7twPWz4lb12jg+6JtvWVbk8ki/dcHNhy641TvHmC8xj8nSY2NuxrUb19D5AKVwcVHpfaW3xnIEb7IYAtgMW4/ROt3p0t5X7Bg9e1IYqyvnGoqv1oJMGVBZIiHBuLxcIghy5fJ4MXyvcZU+/4O6x4OcyVopHvU/FaWoZxFkBUWx1TdfKVCjc3IV9tXFrHuU/HJ5QVtWllu3uHzwFsvFkcvjkexA5PG2RmMJ5sevx6FcKnw/koEolWBE/E5KvMGBiXCY8cyhWilSGe6oFil9auHSCgYgMjwcvwYAGEJHRrZMX0MYYF47TyUalAlCuHPwNOKpTtQq1OrXpBEgTIDCUehr50ahE/VTnF0Lj1YozQxa9nTvtW+ZPBtAaSxLxgsYS7jD1l2p+3VNpsWizH0IeRNKcwNDzUFbERmF7xiWc4KSdGW5heg1LxgFvkzwgEKJGh4WGRVkdgXMJuES9mJfK96OIPpfDzcIpAXpczGYhrBUs/9MqDo0BHwHSsQQeLCjz7m26BnUlKrNAXdmXgSgkVRu69ZqgQTqZXLFBlR192lRmEJpuoqOQo0WfbwAVnVFn7mkEbfl2WFQZo31qXSpwSQoa7/keOwcVy890CsUXf0ee+d44czj8aGbuI+ic37tjOm8cu2eifPrE7Uo2txZ3M3T9nNjjaBoKbTIQlsum/eraVHbKbLHKp6xM3p/GV5Oofl0ZbXitbXI7PTihgmmU/4466ZR7TTorDCwOl7KwJIpkx07traRfZeFGSdV5hrZi9WD0KUEpdc6xgrRNDZLLYgYc610FW9tsnZW4nljkXkESxOWJhy7t5VwoOqdphU2t451IikTSQwh4b7BMGmxb8KjoIIUJXsUtcV/epyXpBqN3ki+x8j4qh1zOQzLBM15z2t3kPIIx2MaoJwdJq6dzdx14xpn5zc4O7sBeIXF5XJmXY6syzGdbiCwHC+dIl2UVQjhk4s6UKOvRO/5UQoiB0/tPdygzzM6VephHi4e6YZc3qIcLzishWtl4a565FqpFLuEo2HHQj8u3FoWjuvK5aULwcUM7e4IApjKxFo66wQFL+RVDgfma9c53LiL6/fczY17rnHj2sz1WbG10Y7uR17NULlkJqp4BnC4fTkU8b4k5+dn6NlZmDEygrLkwt0YErVksI4t+KGGHLNqprNQQZ/EolRmwXP0p0KZvQ8S6nU4Wlo/1ug9WpGZBwqnMDdhCF9prnyzHoaJIJFKrBIUKoxOnE7xK7VWdJ78OUlFpVC6uF/cunNjYfkf185x8dTHSJYlg0+34mO+4UKEpz7f3DiKJ5JVd7+XEtUeVahaqFqYtTLXSi2T0/FhzCZJP+JPky3KL1SIqn5sVSnTWtkF1GJkloKr3ci4id+9DUShoFTUQ8zNazekOZQNFrPJl3UHJNIiki89WumhC+u2rVHHowf9H7S81+0IN3qXCGx0S9Tr1ISDLKxWy75WoRI0AMHIzCGFYPQJiiEhmHVYvzas1pzCIKRinfr7J8u1E8XVxOnyoozkl/Es8rbzmUtc+w5QDSWQbhnbmJVkWzoeF+FBhJHGHNerqINc1cG6JmvTmxftSzeCF9QKcCbi7pwu3pFCjKp+THFtXTst0q+9i7KM60zWgciEymsp4k0+pQTgp45nk32LWhSrG9WqBZcZ4TpwN2jzXmEF5kk4HISzWQNQuHJsmpV3057QAQZb6yNLasWZOE23M81lXu7NWMtLLFfFq8wmEEySMWO7sQj2hAzf8gSJKOhGygKR3fN2pmHP1ohFkgJECr+DPBnZdZFJlJReCGaLb5Bio2S+k1xemM/3pR9+b17XqWv1U2SPKHG5mPIrvegjMdAXYcT9xPoMxsS/P4LsR8adh0lm/UppDJY8uzkPphIGYy4R/6XxLJSY7Cb06E32SMdjGqBcO5u4cX7gnhs3OL92N2fXHwdMmMHx8ibL8TLiBjYVfTzeoq8L62XlKA4QVp089sSaF+wJX3aTgpUJkWtouYEeHoddO0fnien8DI0NpB3K5U3acovrbeZGPfK4+ciNMlHsAjka/eKCdnHJQ5dHLpaFWze9dNyxQ+1CN19cl3WOomPKSkemSr12xuGuu7h2z93cde8TeFwCFBX6srJeHKnHlcWgXNziIMpBZPRpyBH2gAfaToUb16+j185hnihndQQKl1vOoIziZdaxS8EuoV8Y5VJoK+gAKBtyVhW3GiZhngvlfPYKsKW6guoBNmhI93olgsfjDIASgs955GRHwvWhXidlMqOadyPPwkeCB+dZnaiHA3p2Rrl2DRVX0KUZLN4krWvxoFU8xfyyC5cwCqll/dFNrWUoYmz0ygiziZYXjvOKBChxN0oVYdLCVCYOdea8Hqi1UnRyAdCMcMBF3ErS9ASjmgXsXNKYuuJPQGhRUAkNJiu7zWkBqRHX47CkmFKtMpkymVI6o1tzuuASQKhFMbDIPrBgOLzjNxGAl64HDy5sAULMNFzOUdsjMyyArcQ7XgWVDCIWh4OFsBRDbAcjko58d/NopKT7NQ+F6kbcBkhS6cKunHoodEC7MDXbktPic5GR7vHFJZiPMJUdoNhgufbFwvLZqVikzQa6CLtWtQ92TiJguFkfwbbaPTi14i4LKRETEvfkjf86ZemUdStB4AxKpJGLs05VOlVg1s4U39qLZ2s0bWRl0BHzBJGm7dCkUAY4qXW6A6B4Fg9R8dS22je5i808tiEOz1oz5gkOB+HaWeH84A1ErTdENQKSo3ha9E1KJOhZLn6thc7aPR4nAcoZNvrTOEPgLRXWDstwNXimZT5H1c37YLnnRlab0Gs2jnUImf1+vKRPAtD42WWsoxrYw2s6+aLVLNSJ7gKiNleL4fdcCsxzZC/1To+mjL6HovNYFKS04hWpg/THtEaGaGSDdUniygNsUwnYdu09zZ1gUNy95FrDOl73K8pFSDBuGjFxEgBF43Y0GF9/nzN+Gm7TBCgajRwf6XhMA5RShelQOJzNnJ0fOD8/x2TCTKKOlHKMaO1hB8tKU4Ou9COYdgoLnQWxBSFoblYvGNR7FNSZ0OkMO1ynHGbq+bk3+ROhdOi1wFKZujHXhbPDkfMJai/I5SW9Gq0Y7axgN73hVQbBdpwOXEsUTpKKqvtiZZqQ83PK9XuoN+5mvuseDnedcX5eOafRLr3sdZsrsnhlz0k1iicx6L0cAmidKPOB+do1yvXryGGmzZPHr7QVq4r1Fa8IYx5gVoo3+kKxiwtk7fQ6hWLz4FCNYl/TNDPNB+bDGfXsHKkVqgOUNYK7VnNfaqm3XLi3DDdMIWlbfAtbCqnGX4tEBUeR4XbJ9EArMNWCzpVy8DYHYkpZg7lZYZVOoaG2InF4pEFOVmGzXTcGJSrUU2ayVhlR6y8Aiv+7SvTKkCiEpv7Tn02haHG2xtyvLDBiT4ZFEleSdz/C1cL8szQDpQ/Kdu98MtJCDHPIJFwE8V0Za9GJdS+jzDVJzfZ4X5TuvsKg7ARdxqj04XoKIUtmcsU8xk0NR5q4FS9q47pH/FO4OBCi+Boji2CYukmRsL28TVNQz/mSZNzPBjSl27AwYctIsNAlYmzuoiRx0sLPd+d8iQ32RJJaz8eyD2SGiOcKiml3A9I84lH61uxw7LEoSSAR/O8gwJ8dap7WmwyIRGE/8TqzIl7636QFKCF2UpR5x+J9Fu4vRmHFkjVySsGsukzEu91Kro9gFUrMe8ODv7s1xDzkP/eIMyjKYS5+BYtEDASje7QmnRUP1FmNCMQlA/gdnIg1JulbnXBT0ikcHO0oC5HLNrtsi2Qzxuwz5TEy436DJc/4Ho9LcUqh91Fne8QCec8xpxWkOHMqRVmLWzQWhgUJ4FoaYMaoLFx3tBlsyZPbSr66/sdi9tghdx2GIRAMSiZ4+ZTayCKTwSlauJg39sZMdgDFhovHM+Zi39puPwy3q1+nFwYNRtMcLKV7+JGOxzRAkbIhPq3eaA+qo+ep0nul9urpfykSm1PgfXG02iQsniDUXJi2EYw2MiecHghlO0H19t+E5UmfQkDM6CSUA9Q6UW1CrNLXgqxKrU7hlYjvKDiVPAqU1bTknOKVaUanA2U+UA5nTGcH5sOB+VCYzUtBa2scJ+8504oXPStFvQOybd2G00LUUih1os4z9TDDYWZSPOalr9S+YL2QDIqMgFYvv6y1Rmn0Qldf+W5hFa/Pkj9rpdQJrdWBVncauk4zdV0oi59Hew+FDYG9ISyU3JnZq6eIhsJXqiiTarBf6j70qA48RWXMMpVhFSpuCfTC8M+XSHf2cu0bPAm7guQrM+it1AAoQVQkOCkSrxdneJyzcSA1DpTscVOytoN46XUgLPAMbt0AygAvw40WL8Co9zHq/OwCITZ/cFq1fVOeg4KNYlWZYbIHKMGBSyN6mliU8PZrH8WcdsGIe9p6u4Pb7mbnDkzQ4oq1bwI+hPaGt2QTxvtgD9tOnYGdVxB5fmsuJSGEK0PBB7XD5thL7GWbZE9wJXH+oLhznWYzOwwHAMFuyO5SZC+YR/5nHHmRurEvmabpYH17flgU8bPtcmSXhu76KlvO+U/Bi7RpODF9nXW2Kip5cNuR6f+6U+oDZY7L9mtxkJOT7Xs2W454fFVNQB8uUM007NsfMbDv2ZIGZsajZa+qnAtPqQ6rHgAd6zxbbch+Xezd32PNSuAhuXqobD6gBAfh1t5WnF05TwKkLhpMYbqrtsft62i3BnogiDQOdgxgPtfxS+7xAG8bOvc3uGEgY+mmODUYxsSV69hMhthWGeQqV35ml2MPst5d1H7/5/wYXE0dugq8Hsl4TAMUb3Hu1fQooFUjcFWpNuHk+eSwbeymQluK+9SPwGTU0uml08UpV59Iz1RpzdG/wODxZZro0ww10uk6HuAlHTggk6IHocwzta+oVHr3Xj51Emqx0XRrRAhoEPGlxuFVCGV2tma6fp3D9Wtcu+sG1+6auH4o3OhHWvEW5XY2U9eKzIWzuXI2T8znB+ZbR45HdyI4fMMZjsMZZ+fn1GvXkLMDfZ1pPYLUFKwvCM39vD1rw7iLpk0HZFrpdYoMC3PLo1a0Fgcg08w0HZgOB7ROyDRRTD3qfzUHgGtjnWYWA219E5FSvHaG9EDuHeni1V6Lcl4nzmvlUAvnRd06C+VmU4F5ZjrM6Jk35HL+U5CyegO2ptgsSBOWSThMSluV9VJHVcxhOYUlJ9KppTFXr347HTb2JJum1cGOKFPfIkEm0YhD0ejt4b5o1yReLdSwAZQzckJC+2ZNjGCLUYvCgeZC3CLroncbLdYpHuDoWaMWVrKg3VsiaAt3ABEbEWwHAVAyMagbEC4cuo3KlH3PDgyGJiV0Sr8dM6QS+tfXeyqhnpDAGIAKNvasSIDqyEqSYTnGT0thuhOzISANtvLsGlacDRwQxbN66jlfP/Qo4OcXLuYVXc0izkK8d0yWILWgXzITbYDCtgcQoeqHAsF9I2Z4JqFtGRFNvDt6bxCgIIFTlmeW3oKhSQUmRP0CthiSHqyFMygegZHsSWODAYVdQNFVzZWKJMFuaKNUnoPVCfnoBkTUlqJTxasKT+ol36t6YcbJe9RRA9louobSqt8pu4DdweBF2YiWx4pYY3Sjc/oqYFLHmrsarbk135Fwa3RMNIKYt2wTMWcAM5Ypb9afeyjwXG8xB+nqkd3hc7NnMjOOynfEyPwaYNMGkyfNO3lf2UcDwMazCLeOsgEU3xIaDFg+KZ9Dy8fbGUVCx33vkUXsC4/EC1d49Hpzl2sZ7+vmwcBjjdhV/J75+DbW5+5r/l0BKA3vmWOxO7R6hoSrhQWRCZXGaLIioGWiLZ1iFVknpFXmQ8V6oa2KrRZ+dDwoSgW0RDnoik3e7bPPU/Qi8a6rzVYaK6sVWm30SOEVE7QJTFAmQeOQyLLwDcDwtXtNHot7AxUPbBMFrR7XcX6YuH5euav79a0iyLUD83pADxPnU+Wh6jQlugUiQrTGEffv1qkyzRMyT0yR1tYalLV6YKRJABTxCqPF2QnRjNMZzHiwD9vKk7BGsvGcZsEwJKrhuiLP4nlehto/6YK5B/0aVLdquEmUWZVDKRxK4awqyZEIgiOIynSYKIcJPZ9IB5AU6LLSW8HOKkqjLRPL0VPPuxhZG9dKdfBZcn21K26cOtsuTdU2kBmMikpkhQzqP4Rw/h5KM5FjUqNXGJTgo0VdERDrYLAd4II1rX8xL32t3bN4NJqBFTxAUaGoB2BWNaYAKDM2hEbDRiG0PJr5A+5DODEKkaVAXmMdjHZkcV3p43Y/tW3AYayTreQ7IcClpAXmCkcgFE/8TGUxBD0hbGMNhg/ceoSei89Zgi4tXn1Yu8c1uPBOBsfrD/Uu/pwi/dQwRpt4E/c3RI+bfRD3UEmh8IbAZotmUpJ12N4Xt5ZYKur3yJiTJJN0f34g69tsBSj9yAoCVTxqJMus9wANHsTprw83ZQkgGWnyzlS6KzUb1HVTaDbclq34o5Lipd8PReNZKb0q2uNn6dQAJlNeVypScYndBiSXMQ/5fEfJ9LU7qMyiX9EupO3XSKys1rx2iVe6zZlPELlpzFyvgTrGke7Cba86K2SyHYFTh+tELbPBPG29YlSxqFQdfYvwvZOLU7qh3Ziqu4GLJpDahl+eRH+l+FKCcVVzwFLSyLHx3z4Tz7YtOO587MM9AbObgxEftidFItgrf4raFruTbrluwYqGYRETmW7WRzoe2wBFPJM/Apsp1btVei2UQjbCkxR0CkKl6YqsFS69Gcw0OTjRmgE+nlrltRN89blvsngsRqn+s26F2lortO7pcE0VC95fzBWj+o6k1HiQmWwxTExcwEt6VqMAkkUmiboVOVXlMFXO5sp1l8UezzFP6FzptTLXwlTS+tqW22CzYzWW6pV4dSpehbLjMTm1eKt2U2dImg1gMqoOwbA8iM2UlPTY66SbIQRcBEdmobArtUyEYWmmxaYx/xLKMN0jVd21M6syF92i9wXSTJsnvy+dSmSGCJ5ZUGiTH/TCPBfmQ6G1wtrLSFSxWjAVmjqTg7hbqBYLF4+nBZcAIjk1eRQsOkWne2oHVNLUSMs+Hr7uXTj5MxWf+pHCOu0wMUOKv4cAEv7eFFhEcTbbxcxEhkcAlDrAgQXo2fuxw/XVvfFmTwZnPHB/fwkhr3uBr5s0VMaiCKFnA1QQj956XPfOcBwyMzT9WM+5BuP/aWnbTvFnbMwgGOLDCQ4s7muQB6Q7ZRezZkZ2kbWsMWFxklEkIxQaKZT3QCX2gW2PXEhglzewV47b7UpobyGvTXbn5I61sgco0WZndNkFn4MSipXdesyA4CzcJzugne7JbEbZEWzEVEXppvhsUQ/AF4FehLX4iZcAN1fitSTjVTxzJ8XKBk5k/G7gCi8Qs0V6WA8X/JA/ARKy+qunF3vX4lxzmRZLgj+DTUpy9dkF6E9KxzGFy2PZzWMamRJ/L9joXOzGSwAW8Xkr4Zr007pVWrqN9h+actu277XEJHvDJmZnMCga4nmAZRvfY+PdBNF2+yKKv+721X6vWcjukU03QMr2e+qHwRSOekLbV1wFQh94PKYByhpBU1KUWj3oap48ULOXyqKVtVTETSpEYNFKqxPHXrlcJkqbuHVW6K1weSys3aAH5a9+lFLCtVPoQ/FVJADKYnBslbUXjq2wFqUX9U61JkyxG3v1DJcpO4AOSjsyV/Co82M3LuPItvIdB0mHqXLjMHHPYeIJ4ddcMco8cXPyeI8zLUziZZ737EkHLswL+a2GR+hHrEo1dZM9ah8QKW1ZrXMEnmNR78KrGTZP9XClJR6FP6XwCMEulmXkd9azpSKMIq47D4HASFHtEeClYQCJRa0KgYMK5+qpfAUXslIVIgivHApyliGATsd3/Nnq0VNt7Uxpl96IC6JqKGAFupqvMfFAOJXu7p0SnUPFv3My52iKuqVUMGonotjdgi1qTNWYJmdhvBAT/r3dApRtqbGkIkpOdsUzeNa0wjcF2tQtMDPDphBYxaKWBcxBrc9FmCf/eVaFCRcAcwgyy3mPZ+OZE7AWv/614QHhEZe1ki0C8BRYgjWRrLYbDRMdzTjoiaeR99DDygOGVZsum263sQYJRGSz/ZJFGXEa498McMVuvYXkDxA0YEisS/+O7JAkV64x3Tz5fhvAIUHYtsKvApArIIINfI2eYNtlxTXK2H+M1aDhospjk4Mj7VocBFQVZhUORThTYQ6tsBQGY7Kas2qixlQMLVCLhaK5ysIc0lVYIi29udxdwooueDxfLcK1EgDFvJXCsQhWFSlGKcZBhYPCQeBs6ETZmmjKVuVX1UFZkFz+DLqNTum9bSA06pm5mzOYlGZp5LkQ0ZExYM7MIvGsI9gWif3qhRMn8biWCF7zztTm2VcDxHZHAJuD2iLuD3S0TsjMLN9vmYIsAyG5AeOuf0GLRjkG6KJuiIvHznUc3akKJdlI9Wc3TZHS2112GSHL4sg1LakTJJmfAGtsMTjjbsQNdYK5tXjmlr7XvaE9CnMOWHllnSa5sivo/gHHYxqguDd1w7+uJBydd8WDaGuwGMmgNE9Zowq9Qq/igatVoycJEFZCl30nTVe0zbaCSRkLsJiwWHel3S1ZyKAWGb5vzYPNUtgE0JBzZCRC5uD3RFfIqE44C8wA6gFos7iFO4k/VB3nvhOuZuOsQTHv7m+7iNRYm6C1UFjNdkf3hesbQ2B379mwb1+FdGRMxI7ZYgXTXznsglBULpANGcK+SKTvCn6/YZWoij/v6v2KSgWt2/32AlY8g8qqIA3aJCwHl24W6bDN/O9dXBCvEekv6BWAomllEi4eUap4e/batmddqFRx8DzPDgqleM+X1hnZNC6QU1HKmPBSCmvx4Gqt+Uh0AJReLWqPdGwq0WdHR9uHWYW5KLN67YlZvUX8zObiSaXngjEEd3cLdG2eyVaLjUq8nsbJOFCvNaHxN69IHGnGKpQedVJMRivKTOlOIBINbtEW7kOzUBo2go49bmZb19IDkvRh6A5hChGAKexqqaTw3V6/Yt7tzWESD8gIRk4IlATKBijS0s1rlwFSEpSPpW8JArMWjI1MBx1/28C5b8etmmrS/X7j27W6HpEteyws9jr+KPTiMQ6KKxMNY6mkZR/nUvxz7qZgZMrlJpxDBpkGQ6AeUzLHyuwYUfXejUj1+iwunzzzUXNjNsu+o0FIZFi7z7cmfLTd0T3t1syhwRprZKRfkV18JDJnQn7m0oljFBIjdex2v1PcS/694fu0X1kbZAZtPIooOyFpgFj8jN/V1/N+2aFkyNNYfrleLWmxIpvsM78IibRjFWde5ho6JWp49WDERkAr243K2A+7ucg1vp8QC9CRumsHVvfMzaiFKURc3H6e06UVrHlO4CMYj22AEj1kkiEQsShQ5BawlHTZMFwGUrw+gwQ46RWmcL2Uql7lzvzhNQm6fyjyLGlsI/Wyq7B0YWmdpXsDp6W7tdlbIN7mgnRswGFVBTgJ5WBsyjgzWUxyi0iC1PBpduYQeYXOQTotNtWWdrsLlhpDRqGsUYY4zOYM1tqDEwtp6t1WGZmR7gKW6FwcwiFi71oLerWLp5UVPE4ZIgV1b0VCdj7O69ss3d3G2gmuCgFOXPnWcFuU4uBEq3Co4YapG+hoFWyFVgUmZy9shjY7gyK21euw4oq1qbGwARQP8pMBUDQAoQyA4kGwzqD4UajUKNJ2OJTouO3upG5Gifg+782TMSgJGJVl8Uqude3UKH+RQbKGeX0ME6wHVZKpksHSTWFNT6qcTyVieKKDMxYxKHuAsilEL0mvqDpzpgE6vUSNM05LN6SrK4mo3WDdO3+3oNjXnrooYjxwxZzzXfIZBQOQYCbBWrGs4Jv5WC7ZWwrDBHRkUGloR92UCFdASqwt3WmbYdVmQCMQcVAZ4Gi5Rsf7XIoPB4xtcSZuHKebwv+eTEC6z9IgGVtxN/dIAhTb7ZWUFxFcHNce+CN0mQN4lxPCFJpPwvLVaGchAeprtF8omvPks1stgurNRjxVbsZjGEUItHAXVoEzNhbKQnn2sLRLsDlTPG+JwjQSAdgR3LTt9VCMudYxCfnj4MTn0Av7rZJzmatERvYM6OZqHqy132OTIDAZJEDIUAdh/mk/cxPfz327HAIrhFsmFbmDFG14h3mxACqhO9KVG8oc2Io0JlIRB62mbixLkUjwUSZRB0F0Kko2XZ1KAFy8AnIvikobQFFCzjCAxDYfkqxHfP8V7BI3q1wFKPn7PmadCNId7tmdrpN8f7lDKb3P8dgGKMy0fqD1md4n1CZqKAOhUqZGwYMh09+qJjQRShPsTGBVDmfK5SrUS42y2gpdMSne0dKUZo781tUXS19coXUVjh0uF2E5CherctELl6Iczd0I87Ggi3pJ6b5Rt9t236wkF0I6FHlwamwtq72ugKPpI6JHVI9McqTqkSJHVBZUVkR22UtjRD+U6CbbIiLeWnae3Q7PnnHN0dYoQ96MZYVlNZbVIiMnqF98c0wrlEVYFqEuO0tAklmJpnCtR5dbr5dAMF3eByJ7Y4zIGbJvTNXOpMZcuheFK05b10nQM0HPlbMzpZwJctixPTAi00uDQ4FZlUkLl4eJ87MIDgUoXvRoVVgodBpCpYbFWaMOSrhfI7CxUEVRlJqCyqBSKVqZ6xnzdEYtE6LTiPUwi9iLaB44/OChldZ1jd4bPt89GSWS4m6jZLfVQnZKTYBSA8hNKpxPhUk9mHEEyZoNUOhY1YaS7B3WZhzXTuuwtAi8Czdh6w7aL3v3oljR8bX3TltXWrj7lh5VR6152f5Yh+lSW/N3C1BjQZubu7qyokVa2A60gwrfuZ1GXEvEh9weiO6jjL2wpaVGnyKyrF2ADPGKyv7FEnFdt1We9s0bdLgisV+TQdlzpR4EvwGwLFpnEoCsSySpuGtC4j6McGsMxjHOOJSJ7JhFP2aR4QpFPH6t9OIFxxREK6qVqVbvIF6qF6cUDzuvuOv3YIVq6hWIbSt2pgWO1ddDrZ4NOUeZ0C6NUjqzdYr3E0Aq7nIyQRe8eFgHO4ItEvIx1i1K8Q47YSR5D522Vvrq8mNpdbjGM2C1tOpF0URcbkYESBWv/F21DveKiPdcy8w9ByjK7DuWAzVKA7gWbpY9mTKrx7NIezcWicwXFKIj8iTKQZUJZy0r2feqR5JEKuutjYczNGlVZyxZJFjgRmWdS2S/aeTbRAo3INZZLw2pBV2bu6pD/iVLogVsVLYlvtfGXkkvjeKbIFegtxKIGLZqA5zo7rxpEUugP9+3sX9j75QPwsfzmAYoZsURdPcDG8WiUSmYenxFPkpR6MWZjF6yboV5MGFEQSeQcXltQ4nsYyIGVxvW7Nq9P4IzB45eW1NPZ0VHL4PBZyfPGwIV20eRJ27NlbHn0BLthhMohKdKi5RlL66W3Vs26HN1uAUXSmj443eCb/eT3b+3ObDBorRdkEsu7NaC4g9rp7eI8QhkvfVxsc0P39Opk5yk+4EsahykCPGZ2WqXlDyUrKjvZfbj+Y6GygZoBJQWw6orxKm6m4fuCs+tWsEiQ2sVImnRn8sUdWbqnKyHbC5YKUOgOYMiQZV78b2pTsyTl7kXrbsYBKd8S9kYFDeifOKLQk2AovEsAqAAWJPhF48oOw8UD9Zw0q2o3aEWpiIOUAgq2zYGpbdcG+Gxi86/EFWAJZSkOFXtVqXPWQkhlwzJqj5vLRRCFwc5mSnVgpEs5nC9mA0w2fFMm1TQDvaSbndw0KMA3IgH6Zv30IJBkcGEDDtut8/i35JsoyutZD0yxddQMoU39+cWlrvbM/GCib+YzeryU/nVPf52R/xJZocEwHPLv4esi6Z20efIxUUyKHFFaQDnHtntE8FFSE2XQbehWPa9jZLNwRixXxkrpd3dRxZsSrVkSnq0T+jUuOlunRZyaAmF612piRTvmKvoz2Kjx5PkwnODxRixWBaMbG+bXMkk52QGJN0fsumDnBWNmLqR8TeYGT+/M3VK6e6SLObuFO1+fh3POd1sWXna4rmylZW3iAvqgjRnVLKiK2UgTF+psde3+I0+/pYLKB9bugItqzDHSnQmN+ZQ3b1bouLyyDZKGc1Gj2T2kQRrI8iQ40aGChjZWsTZE3fX5TVl882t2CLDtbo1c90zNmkofODxmAYo3Qq9FwcDCVKi54hqofSCaGGUoFYvpS3mAKWWTqmdUjpamqdnqi8Is60Nt+fge/DFEl2H++JPsImXq18WYVmFZS2s0lmXQtNCo2CretvqEQyRgRotdHHPwALEko5MeOrWtmoNq1gHqlZpiKyYLCgLwoJwxMv/rYM+vHPedgFk6b65Ak5CGMSGTrfO6K3S3KpucVi3SKdNgOItb9oqtNVLPGvTACh9nO+K0I3CU05t5vt6MCn5gVBW4dYahdAiSKxGqehSPTC5VnflLSk9qnnBsdKheI0XmTrda73HI3CrluJCoKkEM+Rpz1UToDhlngyKhAXuIMUFnLt3hGJevG4qM3OdKcWr2w4Xm/QdQImuszuA0iJobl3dTZXXmQLMopGaAxTnUTVSjIVwhw2AEtlPGgyKeZzBqASbrEwAlNYjVbp4UGw2wOviSqsLlO6Cbe2uFNONUxQ6jWYu7JspLdRWApQEJRm3MOJScBaFUFA7oxJCQfTuxkeXDGw1ZzXNRavtrDkjQZ1/PlMg/V95bP8N5RUfTvp+7KjEBgkywr2kcS3uMoV0O7ngl23v9QggjjBfGzK7I9JYF9DSEW96hZlFJ/RkHqPjisa1BkKTLlFrxmvfFItKsgS4zLensiAy4GKe00VlqWsUZIV0OiOGtU7pjWKNag5CinVnWbwV+ij4iK3MspLsU7Xu62U1zBq9Ce3YaMdOWxxhmkj0JohJCXvLVugL9BXaEinE+CE6bL7BHIolFAmgIro965gyOl5SIeZNxYNUiwhlzQKLwTAEMB4Bsua9j5JRbCFnrMXcGhuq0FxS3SPNYy7TOvSl4lcXDUbC42UbkxLulzKiTbf1q0SgvDRYGsddCQdnDxMkjP8xPuwIcLy2czySaf4etNz9nJGyrrpdhozz7HROuqniT8N9+MjxyWMboFgKMxHvqyKVrn44mnPY6vUgOqJO04t6VVdmiWJtHakdqc0tbDWQFWPFK62EnWBwDJeLWBlBbhfdOFqhWWFlcuobaMx0jnRx0DS8s9YwW+MnbimEAKhamEyZi7CootOBebpGna9RD9eRwzXsUGmzcJQV+ko/KhcFLtS4kMZR3Grpw/y4Onrs/UWUo3oJ+6W7NbyKsUqhSQ8LBBBlxUvqL4YHBJux9B7da91Szr4bS3MhNHXPGEqrSNStXud5gtanO+1vbSgfl+8uwJv1oO/7iNnoVDot3EYRYebleMfhxYyifk2HTP8xNXrxfiRdVlocPZ51Bi+65W4orshdV0Wp+uJHNvbaAErZAEoEkarJjkE5MJXZGRSJAhJpA0YKswML27K5zWilOzAsDlLsCkAB66szKD0Aikh0MHbraB8weSglsjyUGlb2yMzpDhzSwvdGa65oe3MFh3Qy8Yh4Hq7Y+ih+5gydt57vFrErO1DcJMGIE/BNHMiZ4MJZghcZtF4o1LQ6w8XVRPxc3c/VJZWWBbhNgcuIFUg3z3DNJbtgESvAdsiY45Q0MjT3YFACQHfzvdbNQcpG52wABfGX1u4u1swgGUwt/ux7M0zbpljjNGtbWXscFg1NQjurGdZXzDLoJqNOI/hrKA9X6c5kNkQKa3MAQV9ZM0BahOrNINDjymRR6VmgNW8qan3xgo62eFJBE++8S4+2GRf0vkA/egyFFcS8SndrzQOwV7i1HLm1LFwuC9JhkgJRl2kYi9bp1lh7Z2mNpTeWHgAv5ltle16j+7O51G3mcUTSbATfChJ134zemveYmTzzUqoyJQiuHucB2YQj2F061hu0aHaa7uoWzIYqa4ARLelWA3qLkgGR8SORERgFHE2jqFzFs/Fi3odLOdjR4aoijBlx92jTFnWmPKPVeo+K3wnOJKkRXws7iD5iqeI/tpXOVgzQZ4KNMGH7RzqdttctjQcSiP87wqCAC5z02nfJLo8ehIhFYpeCaPOfPfIB9pWMopCGqI3UO8R2wqcPPd9IH7TX1mi40l4tXQSZCd/9Z7TntmHlbAg1Hza7JVKy6ijqiq1O1OqVWcs0I9MMU8UmWM3rrvcirAqrerBYdizdA+Wrcxbztj803Buq4WNNt5JBzHF288xAPwdtbnp7cypXFhkuE6RTGApbHZQt2DBuPxB8qoRBbZIU5ibEUzgMJJ6ctsio4eDgxJkb74vhijoKlERYj9HVaNLjiJo68c3KBu5055stxfuTTCVa0oe1pjuAso9BcYbCY1Cm4v7+ohWhxPNXRKLTa/VgNwkqNYOpm3QXpOIgcngDY656sHBm0Vwu5yCUrwcwRspxkeHyGW0WMDJolWArvHqqz226Ckyuip783XAmBIviUrEmSigIyMq0m8BLey2YZRiWHiMTxoCMSJRYuIK7o8x3sccEIGi4lTS+K9d3Xm14GK8EgUbsJikzMyBShrAN5iHPEiyhBRjxWwpBHpVKMxA279VL1fuXi+XeSfYkRXfMh7klb1GTKFmPvJbVOqv1aOjoik/iq3rsjW1/bQpmvCmfl+0AIG5U5B5c8L4yXTqmfkzNMDXQcJMn+9M7vYdLuYNkvREzByh9pXcvO5mOlVTs3Tpr6ywNjq056Gg93CBC6d4QNHHVaErZ3WhpPUAHvi57iI2cR83nFOsumzp6/FOuJfUml83ZKY2A6SLeQ3jVtln7uyBcSf/UaGnQx5GMdLrRe+tu+HUNN0++3+c7C6t1oslg+JIsnq6UhA4eZJy1jFRCvoU7kh6fURtAJ7soZyG1zRW/bYJk7tJVxHhG2/oJFTXWT4YkDDy4m6Oh5MY5bbeb8vVHPh7bACUEkDMCblGt4oFQGtaydfOumNqRsiI6I+uK9Ak5VmTx8vA6KXVWVxKrW0GyEzLpl/fUNkG6jiwfTyv2zAUXm0GBRbCZZPwIELstXBo9UgsdQc8inNXCapVuHlVWzg4crh24dn7G+fmB+doZ5bwg50JrR6wvrMfKsRaWqizV661IFepc0KoeSj7ypYMBqOKtAao6y0Aoi25oqYR5HAaYZ8hkgbVBVDByjXZW5xbYmEpl0wrenMwzBrJKJVsBOAsQoFu4jkTqrfbs4xG9jNT7DeW91AkvPDdV6jQ5oIsquSUEhZeRdlDaJ68AvBTlWArHApcl4wYihkO9kJ2UFAxGLYValelQI9bFfb3eWn1jUGq6eLpbokUqUzmjltnddSOuwUAapXjgWYniaqqpLKGv6U6DtiZQi4BizC23dIkF/SsReyUBlz2A0jOQqqgDlrQwu7ezlzBxUthnQaetaB6DGt8r7X3Akj93u3L42tiQ8vBdBz/g6YsyhDMaYk0YhdRobAwK7n5sXSipDJpEcK4r7948uyO9+RnakAAoAYpGyFPuzbz+LP8vAc40lb+FOolLkXRBZkU4IoYjolkH22WEiyeuMYOaZdTDHdcqItFE7qp10VqjtU6LQGTBRmXhdDn44xiJvozoLXGmynlh7/DbU3EnUKHvXu/hwunYsTEZLLgr1Vrj2BrHYHOEFe0ee2aRVdMTnERQtCCeAYzL5NY6x7VxXIxbx5Wbx5XLY0NN3biKmkEq/tytOSvWW6etDm4yPfuKxtspzJ42RjdyJSS5hYGYsq47gCLCtHqw9xTdu6du3p4kaQx6uDgiVrE1j6MJ9pje6NGBval6zBgGq4wMFstIZyI2UhKcRLp2VBlXweW04qn6IX+z35dKGSUsrBt99bWnUWZAi8t/MyL7KGNMZBgEA4yMuKsNRFjO71ifV/fHtht9ge1dN4mBhiGahscV9uYDj8c2QLH9r5H3LupWZClIryANmdx/VopgMoHO1DZRDxPlWClzpc7VS79PnWV1xaP4guipQAclEYyCbYo0U//ERpgusvvpPtDNEs+FMgos4WmqUynMVlgpNPVrOkwTh3nicJiZDzPTXCkzSJux9YhNE1YrVp1RkVrQqCY7VQ8YXQ2SJ0zFqtFCXdVLUXvwl7suCB+9RDzKaHInXDkyQGxL6IsZ2lkv6WmSENJb3xp3mVwFKL4RfX5lZFkIWV47wE3U+SileOn5ItTq6bXey6hQo7NfMaesvYBfibL9JdqVe6uAVYQFhsDzLA7/5hKbOUvuSwRf++E9dnx+6g6g3MagSKWWSi0TmmWEE6RGgG+t5kXcxIO207rvxTaQIqH09nR2kWHVmsgoV57BtmpRpVI8aymzPUoW0ms+/V50D3eHdiIqULDoF6SWpb0jRobUAK7kJH9mfxHrV3/fdulV8bZtq2B/CAFq4cazHSDwz5hlYCdjH6aR2ENB94wPiOfa0yeuG4OiabEmoBY8FdQys8E/l/UzRil/MqX4qrAGyCD7q0Jq06SDlZGNTfJ37j/l35FsjkOIVCqxI/YiaayGEZJICpuMA/C6UemejWDlbuwr+67BBDW8uFijU5ZOE3WDLwBGZl2t8dwzCNSC1fD1GOBHcr0GDAyF2lqP7uadZfVDQsHWFgH4gVnzBkcAt0XguoC3xCD9HxFA6pKo+43TAnH7lgt2MNiTde2svXlAefcMmWl1LdrMmLrSS/K7mZYNGk2pxLZu0B1DexZqa95oU/HAvPAzWiw+KRIVut0yk5DFtUYnYZNgjaIYo3rWTS0ZYxYGV4/9NGT5Xj5pZFluzKDs2cp4HmP/se2/XHc7z+pgCXOtaRgwaXRYbFciJihbjgURH+nOV4H3+xu/5QDlla98JT/4gz/I//V//V+cn5/z7Gc/m1e96lV89Ed/9HjPV37lV/I93/M9Vz73yZ/8yfzv//v//kF+27B7/Ge4JizjEsQbcGsVSmn+UzyDojcHJmWe4melzsXR8uJUvrIJ+4wEcvrZn0TqYN80oWDxLppqGh12dUOt7ALw8l/iNFwRVxyTiqelUWilUGvhMFUOc2WeJuZpps6VMoHoBAOchNKtJdCzUqq64i5RUA1BsttuHA5QBO0hgNKXKxuAsgBRV48t5CPWowuqQeszmJQRRxB3nkCnatRokO1EQvSi2AEUyEqtG7gpu1iQmh2cNYKjtVDUA1MplWKeJKyjbbxmvlzUOvFsnVXymfr3D9+vmxYhDP15afQS8r5CkbkjXpAts3iKeSDpxqDUEX8iVwCKBIMCU3XhV3YAxbTTNFK9SYASMgRnDzxV25+ViD/njJRQbJQWd4DiMSlq4pZ+YoSwpt3ttwmmHr7vIkQvpzBUxZ93D+Dh1lUCks3/7wJcBtsyfNvuL9l2Q86xypBoSRBbMGkkQEE8ZR/CJZEFwvoIIm6aAbOpG2TEoQyA4hTgzgMSApfNZ76zS/w1cwDRY26Tf9hiVoLdygncyWMJanHgy5Reg2Fl3PO43fH6DoDsZbzsLzJ/7ORVmLbea0oje8pr/qw2bGh6AI4MOG50ByirYRqxfBE7saWIh4sirPSWc9PHhJItN4bSMwdG+4rUSwAV6b4X5kipzueTE5FsdrrxtvvPn+Gok1Dw+WwDlGRQfwKVdfXvXVlRhLXF2inFA0zDfW2VzZUbAk8ro/u3XjnCVUVHmkRogfhGGo8nXi8MUJ7GYpnKBmYmj0kaQGAwKWXolmTPPHtvAymqG0Ax2z0PNoDiLrFccRJTeBvIZQO4Its63M/9AB/j3iyJuXGWfduTRzp+ywHKP/yH/5Cv/dqv5ZM+6ZNY15U/82f+DJ/5mZ/J//l//p9cv359vO/5z38+r3nNa8a/53n+oL/LrZhNqQxoSmbCeJn7GqmnpQhqlS6uCdY45ql6lc9amWpjmnDFE2yCSrTKJgPQAuFmFHnzALGBDEeqXDy5/b9H9kCAgBDMo6uxCF7FxZW3BzQSfWeEqai7GQperWEo5LIpzVTgQetX8Vhg3xMbC5LfmfU6LJggHWwQI7I/i465ZWDj9wQggoXVTVDyRvTxIgL9R0EftS2I1Bdgzokv5GhOEBkHCZS24mxbrQfvyTNFZk0JAFK1MGmhFm9w2KPaaEtQEsCmJw2qPTa8DQUpolvQawIqcTdOdiXevicAihavJIs3NtQeGUYUVIrHrWjBA2SjdDnhPirGPAVAKRtAUQFb1dkT7cGghAILOraXTIMPQX0lBuWqi2fWLTNBM3W2eU+V1sIKbK5ANBSQx5sLDY3gQ09P9lTf0AmZPSMSWTWx9I1ReTO8Z0PpbqyHRLpizH3ScLrTTUELJ4Pi8SYOIgeDYjZqjJhJxEtsCr2JbVYew+BmZGbEG4e1xybEd7La+//GewZYHBe3Cd/9vY7FbXBF5yZ42H4db00Zt/1rpxRSmQiDhR1KIACSB24H8NtdSALwZCl7gJ5usmXG2PaVawNdneGzzgCe+6tL8JhMjIWxwTBowuCLGx/pwi1dXu7CFHN3eeubbE9ZFCTIiLnpMWGaz0mcn0u5mvqh7z7ryZMBUJrX7Vki9kZyXa0dujCrN1XUAG9prLm8drezjnvdscgRhKfWqc1Z+NosegkxPN6ooNXdm9kIdVJnvZO5tiahRjaDsRafT4msJF9nXrgO3WLMWsSbeW64y1Tfohur5gbEZjZn8b40AgJDj703Crs5/UjGy6XbPteouJp0IAfhWSAMCh7x+C0HKK997Wuv/Ps1r3kN9913H29+85t5znOeM14/HA48+clP/k1/n+1/iQ07WtPHfxk7UXJSzeNVsndFsgIDiLMTM8aVYKv893DvhPWQ7xlvS+Se12a5mW2zGm37G0Ex7IXj9lOuvKa7+xw6ib17JQ+5KiXttuPKBPL+32vbZVre744uNWPE/Ozv//Yjr+/quWNOQqhdcQnt3pdxLQFB4/d9kGoIwrQyYkO75Z+sz1UmyNOU1SvRapaPF2qkdPvftnLgNQCQu5DiSGpWMwZFRwNBB2LJtgQ1izpACeGQfuWq3il531RNgV56xGooustO8UVh9KYD/14BKHgn6GI2QGnVDQRLCH4LwSbxgLqGko9AXYvPYc7ESPw9s8EIV4zjb+8bkr7sLl61uMsGJtyW2JSqF5HaBHACWULIGebCLoNkxa893Re5d3rsE2d1NiDgc8UAwez2+A4TjBGk3RVY4F+zsSSCgxphJx+2jXTb3t596x0CYo8cZHzWMhAoFr3t5A/779vtEX8UAUx2160j2DsBzVg642fOjoxr3O27vrlpMy5K7ba4s/wuIzK7Ik7DNtmkspvvvI++YzQMMgZ+fPf+qe2ABhEflVOd8Sb7Kb86uw/zpO3qr+N5D9kT7Ag25jMDqT2VO08xwpFHXSkic80P251vA0yye93rsyTjuF1Lgq8h8zWDZSWylsIVGkysDX22+0ysh9hmV4a8nyPX+XivQNZMGRDmNl2VM3k72N6OK0/0A47f9hiUd7/73QA84QlPuPL661//eu677z4e97jH8dznPpdv/dZv5b777nvYc1xeXnJ5eTn+/Z73vAdg0Ey5zjZlvimgdBnkgQrS2eIZZDs0hOhwS+Sqj01E0ovdLcw+gjltFOkZpU5Cidvtwmr/+3CQp/bedtZ4wPHLACf5U3yB7DMP3Be8BanuhdcGnmQnHzdr5ypQifcPJ2W8v28/cw7M48JcAUQsw74s/jhC+JjK9n1pqqXAyWvYB/eMw+c3i3p6W3PZCT+JwkRRi0Q92wbVKzVTumzxM55668CiFZhKxDwEQPHaJWUUZ5tUmGphqoW5Th4sWx2kONitG4NibmF5DIq7nBL0iCj0CBu1bLRm0dAvCwhuAMWClfD4ARkTJQEORnptzl9Qvb5uopamuCE1h2BLgJK0hqoHDavKqLhLADrRDVAgMkpUZFDfai6QWlDZLUDOqkrvUNTNRiOs3vhs142t0Azu1QgmFImYB9/nFhSf2BZ+6wAlhKhA2YGiBEEy4lfSc74powTEufj3Cir/vc9WkNhzEozL0IzGtsHiwewLEW4nY3s9/3aFdYkYGUKYRCG6BChezCwCufvus7bt+StMJ1cDlNNNV2KurtgjeZnx+by0AUx2yjbTx2sIg3TvEVa//ztijsS8UZ5kjxuP6xAsajFYsK1+bAApH2LKo928BeOSOL13hqGWz17ZY0AZAE6HkQkjFXknR/XK7yPBc9eVOHoJxf1s4tuGXMzilWo2St57exRx4NIYMk97GNPxyB0wxnq0DbAoNvRaHQkL0bG++T5pptAlElODJWWTkRnrtB8DOIz1zQCXJLBJoCmpXx2obEUlB1811vLQO2OfMYDzBxEj+9sLUMyMl7zkJfzhP/yHeeYznzlef8ELXsAXfdEX8cADD/CWt7yFl73sZTzvec/jzW9+M4fD4Y7zvPKVr+Sbv/mb7/yCpJAUtNioIDpVcao8Hs9cigv8sIhbNBKou94piobCc8v2SoxJ3g8pWDelka6I7HeQ1yVBe20dRkFUtqxmi8s3d3k4BSajAqG7qcLPGCllGm6LSZWpCHMvrKGEJ/woaFjagoyaCB5sNfyyUaXRWQcNcKYjKFFFsExhky0GZVhbCTb2oMX8vvcCATbQqONnFApPV1deYza4ENn+feXwiZbu8TLFfANOpkwmkZadrpYoLa3qgbB4wOGqQqafFlG6bAGjLT5nEJs8mRN3IRVNkKIefByutqkkQNlcPJlmXNRrMrmLx9+v6qKDVM5G9BEiGhFaABTZAEpkY3iPj74pk1TIeFxP71vgpGShtrAAE6BkenERn0e0u1LZARAVG0BCo3BheitbSDqRiGlIC18iqyGknexeE6KBZ6yHlIqpVISoNqsbQMn3WKypHgLT9bxT8d7BNoyUuGa/581OS/CSXwvs/raNAVPif0NR5h8G0OFOQ2MPTlJSdNvex3aOKwaB5Z8COHUZAas+OQlC4u17oL8/744uyvvalKkDkljWw105rOw4TRI2KumySMWd8Q+3K+/ba8Zs97KPP/Lg0XRf+7WIOPOcRtZ2Y9ukpBGW1zie1+6+t48IaVDZ0JGyPddcm+PZbiHI+e9cnVuFbsL1u4+3yxTe7dpGJegrltwetPbdmtnAUbr7R4HivOlMNdsBtbyTwfzumN2MJ0n3jkX12DTOd86b3Rq9uvLt9nWqV/58FXvv1tjDHXcMu+3nBzl+WwHKf/lf/pf8y3/5L/npn/7pK6//sT/2x8bvz3zmM/nET/xEHnjgAX70R3+UL/iCL7jjPC996Ut5yUteMv79nve8h9/1u37XmBXP83ZhmtR4Cvek+AupiFxg9dw0ZAxGKkwZFhQmY/FcmWfBrbttDe3WlMQ1RWyB7NibuKYiqaxjCRnb7+yo7vHvAFCyNaSrRNnqECWVjOvwYyzOBADcdqFjwW/CKgPq9oBi+F2J603uPYCEx/7YVc2Tn2UTNLL7ru0KtjlP5SNXJvPqMVx2cSRIKbf9XodA9Gtp4g0ASio2XEl7ITIZQHGP+vdZSenGHUzETtBnfZHttXCh9HjWGkzPjqUTYZh66fMtYZHcfv5kUGRMmmzCIhWvyO5ZbVH1g1mAEYcyYo+SXYhlkbEZqczI1+CKQE6LKoGQxq0khawy1K3LuRDiuR6yGrbd/lnZVk+yhKMeSpp3Oykn474Zbo1BOQ8r7zbWRDaltT+P//2qeLX9Hx9W8u7OkAJ+O9nDjvEdAVJs917bPdd4ywbWRfYn2d5nuwscimwsk+Hi1FgHe9fwcPeMz2xgaM8YMebUtr28t7bHIbf9e5Npu5Z9ZMfk4ZLOa7jtoYxqyrLdz9gD4/37G5Db3rS7QK6ee6zQ2PD7AFJ/T2phG4dorqvddcXF2e3fkUjR2HTEAF9yVZnsFMh2GRJM4TYxEvebemE82524zDimh3OhWLgP7ba/Dnw9hEoAPSJOZb8RdvrwyoPY38duCt43OHm/G+rK+G0DKH/yT/5JfviHf5if+qmf4sM//MPf73vvv/9+HnjgAf71v/7XD/v3w+HwsMzKKLAWlHgtUNWoakyyIf2JjZpL1wDmfRZq35S6mqIRLAVhbeMWd4QNYBoMSh5EndniVpMAUoO2r9F519ylJCocNTuNygAcg8EZLgrdgqAkM0SUKoUDygHlDDgzpZmiXZm7MpsymVKtuFvBCkoEZWI+UcHKKN7YboqaGJNKlKCIACtN8CReJTIo+yJZQnlXCM1kx/JsmUEl+9ZoPpvYUMFubPftThhI4La1u8xn4X5fpeCNyzzTSZmRYI/8ebpLBc7wn/twvhZnNBPW7oxD6RZdRjvaexg9gkqPYN7u/TmI9vM4ZT1JZ0KYgupVYQQk5+/ZcG68FmyfICO+A9sASVZ83WjlpFgzUM4CoNiYq1R7ediYsaRdJRgUGefM829OoE1gpDwStuDQLldBSoKGQf8STMneH2C44dDNf1pm2eS1O8gpqeBDqA83a1xLhiTsR15jMjIbKJGdcovfVXIhhRJmA8vsbjKEd753W4BbJtGGQnbzFRdgI8o1VHWCCtted8AxLvjK/YwINRm8xfaZeFJGZCimeh+W1FWYsIF4dkBdIl3amcQExpkJNS4rAoXyayQKWMr4Pb4l3yxhLggDYLtbwoYs1WA3U+6JBosZiQuSSDyMOCkGxQ1OLWFAqr9PEsE3Z//Q7fNZpHFQcJazswMrfZPbZjKaL+a67JgbnzVkeh77IJSyXWseg4eRKEsRS0XCNzbiqvJZD9ZYvDAiAqpYKpYrICsQRESPJ2jLlWABLvNT25pIDWjBMOoAuHm4gy72km1rdx9IvT9jShUjQM8e2eTPAWoSiIehcAX1P7LxWw5QzIw/+Sf/JH//7/99Xv/61/ORH/mRH/Az73rXu/jFX/xF7r///g/uywQHKBpCCe9ioNaDRYit3j07QcPPSfPftdmIayC7DA+/rwxGYQOCWTOgkwWWLCHKENBeung0s2OzukVS6WxixJGwDnZCNf4d9UE0KTtk7JXajakLU9xL7X6UTvSAiSOBDhrXtgc9e0Xo582hu+lNpTfYlgw+1T1AsQAosqPpZaNHdZc5lAovz5n5/OoBPTkfe0vF98yWsu3KVp0tMXWgGUFrCVBqD4DSjdq9vLh2d7nowxzeGC2zFNieYQIYlx8ecGrRfh73wxfcl31lPtlAQP4cgWsPs4z3NPZOzcV7r4KO7VXGX6+qze39KR6uWr1X/z4+Jftvs/ctS/ayyCmMjZwb77n6WhaVy9+3U+0Zn20uNuXycN+9UwD573GD+TMme3xnCNer2CB5enevxEuZhnzlHodQ3oHecDu5e3MDL+lK9fMzXk/KaUSMDfaE7XOiHqelGwDIC85aSymbZEza9lr+vmfRZEBRtr2VG/HKM9s9ANv9rqkbbXyf7Tfnfn2OS9qBJSOlnYOliP3bl3CQpCnZfV/evgFF/LXRUjc3pAuWTNclK0gTz3VMcCjMuLfxLHcKO0dmn9ioOg07b/mVeTLbXu8qA3cQwHiPTfN322aLzDIysrN1zO0AqD3me7euLdnm22INB8TezrOvFn6FcGObg6winW5ev4fdtcRC3TmyuAOQ3DaJV/bJwxyPdPyWA5Sv/dqv5fu+7/v4oR/6Ie666y7e8Y53AHDPPfdwfn7Ogw8+yCte8Qq+8Au/kPvvv5+3vvWtfNM3fRNPfOIT+fzP//wP6rty727yaO8XZYvA3ht25otCApBI3373zIphl7EJjW0XJ1p1sJIAZfvPr8W2gDQ2uh522SZsfkJvbHXbv1O4SG7uDaRUkwAj7uouGWwV96Ejlib+kwQo+buS1G+i8IxIN2zIiW1bp5KVTfiMcwUbkAInQdYAJ2zKfcjobQ7SGhtWzvh3SqbhPBhs0n4+9qnSw82zM3xs97s3rJMR8yNpokdg8V5aXanlYVcj8rcMhtsAyO5IozBZkCzGp2MpDWm1M842oHE76Nhe29ZigpW9iuDh/m+2racr5w4FKww2ht3Pcf69cBwXtDE5V5jdvQBPhbZdTj5idpf7sH7t/SylrrT8x5XVyfaODBodJ5Lbvj8CXneAaACTBBtXLnL/mPZXtbtZ2V9hfiZfv+1ah7GzUejjVPkamwLbAwD/XBQhe1/nv7JKcq/mqopnLJGgPVyBu3Vy++Tfhprlyr93gnfMuVwJiExwlNlkue9HXaXEXnrnd+X3XcFgCWh2x5aankcYO8T1xn4eQEUZRX9NcUYl1zEBOtPne/umlt3ndoDF2NoqOIMyHqrjiTSgZbwcMmacwMGJRbiupc5JEzv30dU1KNtVs9sYsYa3tZS1u2x3ipT1IyInfKzjM7s1OTbh7lvvHNvisasfGK89KgDKd33XdwHw6Z/+6Vdef81rXsNXfuVXUkrhZ3/2Z/kbf+Nv8Ou//uvcf//9/Pv//r/P93//93PXXXd9UN/lpc4r823HoVTmIsOFOIv3PKg0hBmxRmOm2AG1A/QZ6UscGqyKQJ+BGWwC/BDxTrQaDQnFbGwMjbLnkxpzMc5K4QzlvKsXDdPCol6EbaIwWaWbslhlCrgeXVoGNbulwyqVwiyVmYkZ/P82023yjrm9Utrk/YbiPrZI1gzW6kPhVrKmCCyaEeNGkR735j8t6m/UOAYIHMp7+7cHxXk7vyqdSTuTNibtw8WTRbVCZ7gA8Ugv3ySjQ6h4wacIks3bENuAWNkBk4w98ewc/2miW1xH/KcUxApYGRvYM1M2C8t7MnV6aUHLCBLdkUsV74JdJcrTh4tGIzOMyOIhwVIZAc6ajQKjzgPq2zoDY2vGLuke0HjfEeJ6hkckJzAsxWSWkWCm4m8bC8cOBEP2FHEV1kiX0OgZH4r8Cr0hWdDPQDfh1nVvkXlm0SjlnqnRlumQjPMNHBP9QoZ1n39PbOT+JFK8KeEus3SDgaJolo4XpUQLZBu3EF2d5DY4Z3cCkM1XL75nRLc9NEBzfHGUd9+r5hHdG9Hjg9bP+BMjYnO26ISxs/rtrhzXeH2k9btlYhH4aT2qZ++0qUODrIHjn2/qvZ403TZkNdKN8RHi8cMgcDTc6KNGjW2hsd1nfXx2PNMB3TP41F3LJQBEFxnxW8OYEonvk0hq8BIA1Rhubw23sEgJNlLCBZsywCs5C2DSyYJhhmemtbgsi4U32hS05vdXQabmnc8nCbFvm3UlAkWHq7/1bCEAR4QjsKR6H/fne8JjpYjmqYo0b/pX3O8dsqnS+0Sab76xdlHRO6CWRmCuA9HNRdhNafnTLPo3hZwgXafeSdz7GpkX65R4tlJ27sYNcuxCp68CDUd3pKPJLLI8LQ2d+GzG2jzC8dvi4nl/4/z8nNe97nW/Jd+lIcxdoDOCUd1q31kSO2vQhwuLTVBsEzcUZTq/93n5+7FH9ilMhV3RGr+mKlCa/0Ruo/+NjeGJq8uA0hQGm9WwCQySsYA70olHjYA7cso2kXz7K1dZKL9+6/HdMW0qV9+3m0n/ufv89rsEk3Q1c+B2A3DIcfwebs8wFmP3rLb7TaDCYESuMjIa1ObtbMQucm2YQTKynvL8LuJd6WUpe4mCeBlFv/tdonpjVJLNMvde1Cxii9TbDEhaNV2GGTdcZ2OeZIAKU69M3NWBk2eCBLMBiHmv7K0dTKwZ83WyBTHnwpXtoaX2DhE0rCbS6rLxb8bfxqMan/OHull6Et+TmWBZTTSZMhkfjX/HohqU/25PSUjUbQ+HhdkD0CBsLkG/nj1TsqG5fYhgKLG8GLMr2zwFcqrtYWXv1yL7Yydf4m+MdR3zKg/z+TvOE0ffX4ifewRR7vSV3f7B3cf2R+7hweyKK9aMO8trFhjM6pBJpHs2AWzYw8ZQuiPeaezZNHi2cwwXp+v4wXhvK27/3s2tLOOzMmTM8EKlrLntOzTmG5GIv4g52E2TERAqtoES8lrz+raf7nGzAaLGoxayLuWozBt9ppP7GD9TXqeMJssymH93pu+3zrjvBAXbGmbHYMe14Gz25g7KLGYJ206GG4d43Q2LMCjMwW9O/pWEtZ07dr/OrsSt79dirPWRxGa7JLOdzn2k4zHdi2fUi8gjs3h0y0YYCmuvVdkJiVDm/baaHfm3seN2mjGDASVQQf57uDIiVbQWn+Apim+Z7jIqLH9GIS2i86/IADl7OlNSsiQtKrvVYldrBNgAVTuFnVJKdupajH10vhuDW2R4CnyLjbAZ0lddEanC9q6KTK8u+TNA2xCY8f9xF3G9Ax/Ghh/lHvJZWSp2xsaQBBrIBiyuANRUXAls4rPh3iPAiZiOnHK1Eu0KBucSpfbLqJFSdCvWphK/S/HAZ2NUyy2RZpy9MZSoRCx4fR3UBeEudmdkDeAAxKw7AOpR1XLMoTNXFrbLaOgXzvtUIFeRZKhq8zWwuRduj7PY4jI2cLLbRPm7bKuBmO/M/Br+9CFwZVxPshqDpdGrezXBSdaH2L5yB3yUCMSV7V77tub//+T9v8t1W3cXjH/GmHPtfd3nPIm+X15JCEQNkkpSWCUKok1ECxtBUBvthFQiIojNU0hEC7HQykJiIf4LamUjgZQqFgFFEAxB8X2fnHPua+815xhvMX7MMdd13eecx28sbtw36977Wnvt9WPOMcf4jN+L7hckucaYJKAorwBTy5X7zpZMWN8w3Ug/XfvVsUU0Hl0xOblcNeJ2zDqSxB/C0BdGXJf8x5uxRvcZsumxp1lAY8WERUuDyM6LWjph/4jQjurliNFKqvFYiLDMBhNdxdoU4TlpzlsiHi2/93OF1TA3hrmu3U2yK0ALvFx7hDEZHSip8TQ14V+DrjXux2m4EXCwV6xmZP+qFkpw3jOSZi0C0UBJNGIcMYZl3BRrjCSY27T0f2smrR5Wo9kugMiDdp0Gc02kAksej85QjkViIxmd5ydWVe5q/4vyPQFOsoZSrjWHVIV+s+JsANCwjtgAIqrkVhBuRvHVKd3WwJVCP/36rAHKh3vHy73jfm+43RtuN+s0G82UzIzu4IOMMZzDmkM9T8HzKXg87f08BWMI5hRDk1pYchKkCVr1VaCOXgcpSCwA7NbYSpbfgNut4YaGGxjtIOjTuvcebG6VA0aAB4CTHL2TmTWtI2XLqHQhy0KxRl8T5wT4HHieJ57PE2ds54lxDswxM7Yi3KnBdO2ZQrq7WKEVIMUepEdOoFvQayNYGRkX2M0YXo/eON26C1stGsbtYBxHw3GYBQFAWoSUrInXhGLE8jGp7c3IBKcISATsDcqiKd4Uta6uUzAbg6agTcYURfM+H6RqHVCjsJNYkLQMgZ624VTwqWinoo9A9975d5IFI6tlC93BuBPjRg037ji81H2LCrKtZV2dzBgDmWOJdjCjQqVxmZWLjmq1y5riwj6YgQqoIQtpBTgFu8aI6fLbCVYF2QjOGdQgcyGCaJWgJ8VJaqZqYu8MLhjkZmxVSJjKucG65jpRwV0Far0MCAqrI2HG/0D9jQgSmoALXXXQwACEoz3FhmKdRgkUxd58flYQJgrTpALSyK+vYYBAWoMc7RgT5QQEy5IeLgIHcOTdhoQdPHuJeNVVLl5D0/VFpQ72SqaN0fvSlP22dmNtzJc6ONF11oh/qyg7gU0cn7ewjgty6GQ1ogBYppow2lwZbYMssH560HnvhH5jfLgxbjfCy41xNEAHpRKoROhQT7kPj4Ri0tL2rJKxoJHi6IB6cZZjKo5JaIfxiymEoxHuN8b9zrjdvQaRiHWaPxn9ZmvyBs9sa4TWCfdm/OjoZIoAAdkW3cvqzyk4tWGwuR+gVtp/doKKojHhfm/4cO+4HYwP9477YTzt1ih5ZPcsIbMUmHvkSYQHMT4S4ezG3Jg4O8Z39tpH8MyhqaBTwNPGcjY1wEOEPmdmQ8acB8+ODLQsZ0B2DxbnwlASWH/pspG9WwVmOLCCF5WLbuCWvYRQCAIQOkwneAajRiYjuUsfYEsBMhnrYCRab6jX82GXJbFWvu/rswYorTccR0M/Glq35nhWTjy0sFiMsZjFusKe1rLb3ifmmJAxIVOyOiqw0LmZ9+xDa1b8C50hpi6gk2nfjRitN/AB8KHgw10EYoBDmwt4xtvNtZhqm4C7nqI6YXbePC1mpJ0D0zeJZxgDMid0TkSzoORnVPh+0Roz1s/RWFocwjQf2nwNRvOUPwtIE3uubs+Xc3Ew+Ghoh/3NzBm7EAIqBGdopUS6WgggPNgrxCqYd2igogZUWE0AskoK0NRURb0VerzbZxJBE1t0ouZqjrG/IeJz2Pr+INLDo7jfHiOU/TlinJTSQsAgj1Hy+Xf1T+Zy9XDNWiqv0FVNrnIClkWhmqNkV0L5jvIca1vAxEz7HuDHLnzJ6FoBaCNErQiItS4kWS4VBnubefVzGZMjEes7whPR0diYowAysYL+UKwpvNTToE8q3u+MeLQfqJZjCWEG8BPqWrz+sQbYZtC7Ularhdbjfbxh368xVAc8TsfqGrqYhWtzVIQ5ez1lUrHF7lTr1GXOwnRPWBZTeFp3jeHHwqJGUrRcYgW5RWxPA6F3u46IxZ5QY7RpsQptGp+ayhhgHAejB1i4mRLYydJVeyfMzsDwTDq3GisUIsHHgs5K8k0n6EGQTmiTzP19GBA6AKvSfG847s1ACZFl2R0MvjHaraHLRFc2F1VDxqx0BtpBbvlgT3MH0JD90hhAH5RWSBHC9PICrRHudwMmR2/4cDf5cnSLDaNYx75upsDoXMUKQrpskN6cnhrosJLQ0i32RtksGhCFertmq3kiJn/YlC8N24wWcIJlFXTSyH1cCCFoK1KINzq78JckbgTm1UVXKG4zeJkFCkV67afLebBOkxfV8vWPgU8+b4By//KG25c3HF/Y1l8OtJtpst4JG1CFTEPzKhPnx4HxHDi/OXF+c2J8c2J+PDFfB+ZjQob4AmtuIWBvkNJA3cp96r0DL93McXBC69b1s3eg3Rn8wqCXaPvXQWcDnQ3cWwrv1mHNotoCEFZ7xYObhG1RncDzVfD4OPH69ROvTHgMAX/zDebXHzG/eYW8vkIer9DHE3qekHMAQ1JYBHKuyulumi5+zUj7Df1WbfVTZ1C3Z+DeDHxIg6p39T06+nGgvRzoH9bW7gfay821B4F2gjQLrBQy7XxyQUxkFUonRadcS/lNTRfea1UbpkwzAU+L9SHpmDowZABzQMfEFFv8OqaNySlo50Qfgru3Rj9glq0QEFHC/t4YL9xwMOHOjHtruGUFWQelyTiKK4ydeaTAqaDOAQwTdBJ0rt/6zCwAaWr4io9CHlRsqa0gPCDswZoMR9K8O+Cmfg9wdSOD998h024DyDmDp6bWiHKKWcFEQdMQHXt6NomY7zytXIo5p3dZFvCwgGeWAQkA6RMe8CoIU9xXsUzFLuBD4QiBH24yBNg1TdK6OnNmyQSEC/eKOBoPL4ppf3ZgxjIFs6fo7SvQKfv9qFkiVMVAiq8uAza0XMNaY3fUGmeGLbw4/E3YWJZOurnawmFS4stUyN0maoGlDOvW3l1R6ATq6qWPNGPziM2y2TowpWFog0iHaMeQA0/pmNow0dDvN9zuN/zk773hODput2bzfCr00cFnw0THoZLduJW88d9ToScZkOuK26E4DqC/MPTegPuBW1PcmuD+emAwoZ2C23Hgiy8OfPGDA7cvDrOEDEEbHQ0Txw86jm6NNcUCk9AauUuGcBxk65LNzUrK3rWboFMxz4k5xa2WlIoO0UTrwP3W8PLScXTG3S3y1q0ctvailogA56k4m6A9xXw8sd6aWwNdZpjy1lKiU9S2nlZ/yQx1ZpJSIswxoc2AMFSWkowoCSFet4uy6CdoubWT6HP9IF2CroM6EFe3xhoNEoVLyksnkIG9AJh3tVCKw8MXAsRkPFTIlpqehrCqOs2j3OP3eH3WAIVeDtDLDXg5QPcDfO9oN/f1T8tWkemajwh0Kto0K0obijYVfVqdjCZuxYDX8zgaWDta78Ctge4NfG/Qe4PeGXhpQDNv2jEJcjaQI2C5AeOuGLeGgYYpDXTrwNmgDnDo3oB7BwYgtwYZxhQGGKcyTmE8hcBPAh4GUJ6vgvPjxDwUIhP8PIHzxDEGbnPiPgU3FRxqxcMidVo1QtEYoObMu6QrpuruEVJsFiENYdh0BfpYL4G1qZoW0Rtw68BxgO4duB/AywG8dHvOu4fOT4qAId/anhoIy0BhF1BuGbVEGu9CbAyI0je8fNZeu4RXHRqFWKwPrNGd8yooW0G6+8EY09rQP5svMSZzSTV3T93MzHscjFtnHN06jnKzoNew2K0AZuzj6tYBbQztpkWFI56maaGpqeTPlgtDiUzbZQMARGayTi4U1hemLebCtG0vluVm4miiaO+S9wEmt/QZkDA3GrLPVHP3ZxucHWiH2HdTFOc04T8UmGICYAwDIyKCMcjfGVMGVCOzwIDDSIa6Z7kAJUbFrSrJAGkFnlrmkPcRio05K4dbIGNY5ShpTTOi0DVUhbmGcu7MIgcVdzPBrHVAdvWOTAtNBszLYqf7/UIV2jyzyVflig0IZGsZKggh5whFFNDZzMo7bZAYauuhN7d4GL22A2gdaF1NyLoLpHWb3zYZUxtEGxQdqgeGdDzlwABjUsdx7zheDvzg9x7Z8R1DMB8APQ4c84DwxKGK1hWtA2ADqPMJyEOhMm2tuRu+vzTIS4e+dOuu3QQvrxOzEfgU3G8H7l903H7QcdwtH0dOAZ0HSAX8xc3cSQwMlaLmW6yJHg3arJVJpDZb804ya8qYNjcwy4vCMs6Yp7mK7oyXe0fvjJdb95YT7C5yi5JR78LcHwrlCW4Tj6cEh8UhE2Cbk96bucO7a6HkvXo87iZiZg62PlndY2AQa9/fLWCXvG2KVZ7uZK7hsBJ1NvBgcTQrjCBBiSuozMvCwhzFSJHW8dbYQC6byy3ceXc4GOxeYA8B0kNJoAQhhnnsCZitaB+Tt+PYAMy3vz5rgIKjQY+Ws0LdfH7MbuyeBgnTSKAWm2QBjF5kS1e/imiMZujXYtm5m1DJc3eGeCQVN0/B8swMsGlusytmU8zOZg3pZv6jaMrj79rJtkaZBz/BmCAMtZodIgQehDmAeSrkFOipIBbwtOqn5KDkgG2RIRQZLitWPvBxCXkrrpz6dwhWs1q45lB9Ug4u0KYJDbcymRBuJojD+tQbtLcSpXW5TgQBa1gSyNKkWXMum5JnzJR4GNqzgt64zVwzXkF0thADqHQ2z8XstkgPXifqDlD64S6rqIrb2Rm+u2zC5VVcYGkxSVOK31zaRn3sp4ELBlusUDwLsLQhD0wTJg/50AyG3CIjgRVZHwDFhzvrUDiN29RFrRwNE4YVLiS4BcSCtzOTii1GgNx/L14YcHrQH4v5nZuqWf5UwA0OUKY1IRSyOXWAQyo+BBH/oe6VjOehfIKlrjmwAHyfotZ5UKyAQIt/LlkNGraQosnxGrgIAuRSYEnia8eumT3mDIUkAkGXhogEGoG01pxY1gy7N8nuOJxX5L+jGoPUYm3CYmBIQNOsrOY+K+ui0KUFZGu6FaNqK3vsDDVFU+NPhAYBo3t5gg7GIMbx0nC7M14+NAfnDTiBCca4MfjWMMWqVxsQArSZi2fCaEimWZNi3fBhUpRvDW0CTQj9zjiEzVB7Y/SXhn5n8L0h8aj/jg5Pz3XLpwKe8mvxGeJKgLg7BbBU6gYDKK0DYXbj7i46wopluTPud2sIer9Zp/Lmwahh2dYJyDARfxumBN8PhswGFbGYDAcl3V3bvTk9wLp9wwOHK0A52EEIxfp1IO08LLJDl0LmXkkz73gMW6lSDntXeEXY4C1uOYpMUXabTu2FFXy2tQqInI68UjrBYneEbEzFXV/QUgsGyOrZkf4t4WP+Hq/PGqCcveE82ICAt4LlW0drHX0KlCaUJgyZGHfg0THUrADz1jBvDS8H4xGBnNM1Ga/Go52gB4NuDNwYemND6UczEEJGoEMblAQPUjw78GyEszU80TBac/eIa9Dug41tdsIUxhDz/Q5tOLXhlA6eHSwdc3aodLB2L7UOvLjlQRvh0QizET40wp3NXWGM3MDP1KhZYBUvpEh0s17oEnocVhfbryrmAmD73YwN8OCrQOnGTEdszFlWuznQMIVyCe6955Cdo5HHvXhKilVw9ZL5jupjuzVG70BvhFs3YHH3rd8a9DCXBBjQgywu6MY4blY7gjyWSAZjTLF95PEzrplSaEG3hn7rrqV2y6rxuiZEDG4d3FbqsQEoRuMO5gZuB6gfiEqXNM0ywi3Mql5uAZTaH1wTCXeCTLcwRNtsi1y1YGAVVJmuksmGW3qnuS6N6ZCfbLoLZkx43JMLcwf15wDmBM6uCVDCwjJFzQqlwOk1FUSAMdSDmY0O5oS/swU4i9VoGEIgr5mgU738uNdSgT8/RYaRYjriyCwn+Bh4zJFoBOxpAShhrbERiV+Sp5WEjz/iiAKgsFtZSGjF2bg/SDNLzlxdcIFiSoEuK5ZbZsJXw56NEgAyll3FNlnUsK3TpqHT6cKCgtXjMFwX6N5io0fTVGuc2j02LGthCFJwsY/JVADTlCMmskD/O+F2B24H4dZNgE0lyI3Qb2YNuMF1lUMzSHY4kJZpBqZ+A9rNhJv3jAB1gN3ywoeNO99soxuDDlqusOaKXDPAI40wlBP7gRWTCdoapEUnc1MYiUxos7ob2LNPuGP15msGXvgOtDvQu+K4rWyeSOYUADoMFDQh0GlFM6ePeZ/As6y1HnpcW/MrcykUURuqdwsW5oNAvVSAVY9ZjPpLzWJ2Dm9ianF9JvRvx4RMxktnvDTG2Ri3iMXxYG/AlA3Ag/Qjziz8Ox7TE7GSvRM667LeOI2xgyIVeB0dfzwH8wEcScKzZYBHZyH87/H6rAHKdOYYgUDZeI0ti0J7h8o0520DiDswLK9i3oo59MbgpxEGNaNCYcsimWwgJAI6B0XZYMIgi8o/yaOk3fKR1o/UqJI2ET1LIkU5mG6GRWmIFEpNz9Cv9dRpraO7D/aODrp16NEsW6a7Sc6Ja5m2kdepKbxpOQnA4IGGNe00GHnEQdjvXSh5Jo2qZTHRNDP43DJnsKVvwxl2MOXQaiPl0gSyCd6INiE1kBQqbHTn7byDlt6i03DDzc2rcjRzSRAw3WolHW77NIYrapqpO+kBJvTDXU3dLF/sW/cuxtGZmFtLgEKtW/wTcbpSov4Jl9Rkq+6JLPTHzF5QC+lTjurCJgqNmQibqyatDAwTrmIAknUFwFocROjly9LUCCugMI6V0GyMRkPAhwuGFBb8qoC0sMW5vSIi+J2DmzZl7R6EJLVGde4V/zKTR1fqqQDuo6cMz4jsmPzehT2RC/2Q3mmPcCtK0Ffdr+v7DR7o+lsAcB5RU4Ij+BpOi/Z9uH80iZuQES/+23WPHvMQgdzlOgFCicxeHpVEI03TrDni97OeKp+O1tMzKRqt96hhwjEXfg6B0afNp3jgqPciy3oLglVR2YPQIWC39SrZe1zHnSYACYQETALhuA9ztQIeeyEAiTiKMRd8LZdQJ82saxYHJLGpxVapa+sMGA8iAyATNp5M5upjf24Kn4RbdK3Q2TSFoDkYAoA2VzqtFrrwoWEfD1ZrsULwsRKBmyLN/eLsNegty1NE1gzDi0CaZSsKY8UMG4iijFglL+cflrMAB6sOGKEYAcszFlJEGDv8WnEvvi9qx4i/hzVaHfCDK8pQbAFfiqzSm+IjDjUhiO/7+uwBytDFRMwU5jEoDEAbVBug3VOnZAGUu5kR290Byo2scuDTBQCt9NeZsQ1mMTCbDGH4IjiVLEZKgRPAiLTDwvuqo6V4yRFe6GA6CiyQUlw0cILsveHWTaO5kwXfyq3h1i0+ondKOWtXivtFLvQJDZywrBhlQ7h74lV5hccOmAYsGJ7FQRSpcWKAYKozEmc400+1TpQMPLRegsvcNMUbs1ufHTZRpNk5OOEdnBw9gljNtSTklXDdpSbd5lrDFaNucmcFPAapu0uu9ZXuHcXZum/sIIW81Gb8zcx7FWBuCVSaByCbRm1Mqim7MIG3UHdt0udA1SxKLC6ww8oSLh7m/I6rBaUEfDIMHIcFpacFZU21wBhkpOWTwl0xBtgtXVgdfLjA840dhHAIKFh9FrhAs8q/glWD1JhvI5tvd3ohau6EvCdaVg+353nxPSBcPIn+CwAJ8JufEYDCwVLcgccC2MzbYIgDZAMULgg1qBAJJgKg2PcRLUD5u6DxGGB1gCI6/d4WVDLQ5tYahJafdh7As9RMKFuM0HJsUZ4l9hmID1AAWDvO9czBeQJMRkwEPCvFVH3x9EEBWJxuBayeneUgxTa7DuWKnSBMqPcmqwBFxdzTJOrgZELmNKVmGlBJTUodxEwHJ2NiTt88pkgdQKg66PcYk+ginq4+jarGTg3DBTAU4GkuKW7eTJDdomCLqswgSAgyPR5MlzppyMUVYiJgzmXRTK/6WjNhsbAUGQWsuLVZe2kprEzhrnTBz+TWW+MnGvKFPbwhdE4q6yFkQLB0soWRIMVB7uopZ0Gy6us6gIr42g/rpWXBeTB0kTGWqaaJXTJn7SJavuv1WQOU8XhiPJ6Qp2Wu0BhgmZY37xBSmUEHA2pBrJAO4o4xO/rzQDsP0EsHzg69MeTp5mlWPGXigYmJCVY796t4Gu8YGCoYUHycgnkO4BwYGKY59onWBjoGjjHQ5wDPgSYDTabVjXAfciVyixcQWKi/AE1BXdEP4LhZANeHF8IXLw1fjDsgd8h5x/3lhuN+oN862q2DD1OTpVlnYp1Ygsg13tCwOimGE6VCU8gobAEKjCnBN5UBkYkpA2MOAyhY/YfkPCHnCTwH6Hma+4OH+fa9pgkVwbB0TxM2kpvV5ggXUiD4qMFyMHtGDVv9hH7gaAde+IaXfuDoB6R3KE0IAaMz9GDMiF2iBqUOnYKpjOkuJUvntfJsHO0dL/vyH3lzAlqFtjl/ZQGVTZyZiLt9NCcCJJ6K7uOX1TK5AhTjfeIMGLKsL3Yem1uSpRGRqy0pMskjjxgeRBxgRmGBtEF3RfsXtxiIQqen4c/IilLM6WB1uotHwt1jFrQ5Jqb48SfZ92P4eRM1lLIelNYCBQA2C2XUfdHC5DQQN3YGnBYP9Wyi+M6BUAAB+x2ZhdVRTIRISbmHiQgYnnm+mdZExZRpfvgt/9eEe1gC0hFFrlQFsPe7yPiZUBDY3FgE8iJ1bkFx4SphtfSnjlpCUy3uQwWIFhRN1ZuHunXBLZsyZqpJwIAqYejEGIRTFae7DkkI4+UED0UbgiYT83lijifGPCHjRKMBRrjknG48GDUzRNTilNpwq4ueoFcBXgXzcWK8TpyngqRZLZ7WDOQogHNCnwN4nJi+jceJoWZVNKsCee2maWnJzWI9AuwPX0gqAyQzFR2rY2L8tnUAt4Z279CD0e8eP8fk1Wbd7a0EFcI8gXFOjFPwnAPPOfCYA49zADDFpItl8XS07MQsDkaomQuF3V3dDrfYHgYzJ0pVWUa6zsWTHMBe81eXoqHGVrymkW+sOKkaNHwlOW+VUAgc1DAthXqaJLJmslrWV4E7uabIyz6o1QZTX9gtFRd1L0SFSt/++qwBypxqyHtOd+W4ChW6R05iC3htwa5i6bIRsKpeo0QzxkKdkShOMksBi4JVcIoxPp3qlQMtg2FOSxsTGNKHp/cyFM3rbViXZTcxTnHNgEosQZhYZTMDUuT6H+RZJYTjxiDqoN6BdDd4dKib4UIzSxighGp6Nr7n79Ak3gAPbu5ITZ08/VSmpWyvsTfGbXEqDBkTGNOCFqaAxgTNaVYKD45czfnifpxhKywTyrXS6d+xirlikuHBLS4eEEYOHbJQmhVNE27efVhW4CGbMDCmY+45UbN8VSHZAK9iSV691oWGp/gFtDCXjceueL+Q5laL2tQwGhsGeAj1KmqmRCBo7VKba5kWOEGamnxjV3p5HZsWBR+nKjuXFhMnD21Nc9wtuNUZzlwWsynT150BkQQlQ2zNzAVQxjChPkUwhwEUGTPTjLfS1zEG+bAekySa2l7csbrV4KodbhpiWOliv65fm+ZoboA8TrX8lhLETERNnaBJIIq0GQiaOU4xsAQyHqDuqigAJer2hGs0SSF0TDd9spb4rHD3uIvDas9IWqLCnSpiJRJEaCHadM8AEPjvFTrE407CgjsxZGJMwhDLqiIyK8h4TDTxGBW1ulFjTIwxMKcpYVG0S4NuzpljIERZBddcMHZenAI9p9dyEoxT0Whi9on5nNDutWWGWPbNnNBzQs4BOadZhi29xRxTajEn9jzBAymB2FAB5jCrjVtsDXwKgGFWxenFIc+GUwTcJcFP2KZIrWbQGIQxBOcQnHPiKRPPOfEcE1DKMhSsbD2A3IeibhYhByEMeG+iVbk3lDYrtWAUZAX+VohBFryhZCUrIBwGLAZ5dVuEvd4oNACGBY8HQNEEtmbssTUKUauCHuvUf5QsJI0ny/I9k6uYa4n9WPX7+r6vzxqgjDkslXEOK0zmkd2kBHBzLbOn5cBiJaIuiaXJ6tEh3QKrZqN07ZyieEyzoIw5wXOCh+AxBNIVOkzLGFC8DoEMAQ2zqEgzsNKmNczrIugyLetmTrALbIwJGpQCnDDBbnK1pmkWHMWHRbr3W8P9pePlpeH+AhDfgfMGPg6LhbAuYKEQptCZbtI06mCvTTETJUe6pBTChAMJLwlo92vlGCFjYJ4n5nlinCd0CriFYFPo84Q8w4IyzILSp4NsY1KYM/3JZrJdzIxAmFMw5sQ53HojE2MwpBk4JLM6W2VDjWozjAOMAx036ujUIdwsW0sko9SjDfl0Bn1OC+B8jmV/vMEyhwAgXF4qMKtHAScNvIJkySrGMrEzGtPgGpk9pVNCmhRKtYM2AYhGeZEZFkwgK5Iy5VxGIy6VYmmJxeGVX2PaA7B6RcDlk4amAJ5qmr1IzIunE0/Fedo6eJ4jAcpzOPgoYGXk76wys/j5Igh3zuEamAvltI40G2YOsObAjZ1R0qLpiElJsBJ+9Ayqtf8DRNgcIgF3zKkCEJnpYsxDw2Tn5zI3zrQCWqoYGq4aWK0XtWffAMqbNGOju6iOPNw6FS4swCw3oXWaLOO0oBAIEvF0oQC5RhrtJMbwcZ4GRNA0s108jxTi6eLjnBgawazdKsnKxGMQTlE8VTEnQQbjcTuBm1ppdgzIOPF4PvF8npjPE4wT2hQ0HaBMK4SJ6WJQCXoYyKDTrdGToQ+BPAbOjyeeHyeeTwCj4yDG6B3SLQpPx4SeA/I8MZ9PjMeJ8zEw3UKObo3uiAkCc58JG6AiJ/lTLe5ljtOLWDqNeDVq6EBvAO4NfO+Qg8Fn92QIK9Rm68ZUDQXhnIzHU/A4FR/PgW/Oga/PgcfjNIBCjCYCnoymFqcHDXBhsSTRaf1QxU0jfliTlsWDt0EWPtDhIIUZmhHURg9hgx+wY08CnvCNNPvtcNC6riaCIjYezGbpisKRUwQDDk4EZqVzjhWsKF7Emo0JT0VW744Gs+KL/fz+BpTPG6CYL3SCJTbTtCkDvLCrVuqKhZj1xTCCWUDOAcyhlnkwrBjRHFbwa5wneAzwGMaQxoTOYUG0pFb4x0EMsd1HE0FXQdeJQwWHu3W6TDSZaNM2nmSgZQoaSfEdhzEkYkOw6m0g4g+QcNllvpV+d8Hylg5ckIXmKLKsJFg+bXPXFMtL6HdbxKv7cl0bQWpt9l3MA2vUITEfuDGs0FqXABsBLgkgWkz8dOsT3DQ+I/j2Or9Ku63CLRmRqpdmfYVrvprNvSaxaRpuJyUwJtk5tEWRPs4Cda03tN7Re0dvHdQsk4dbX/EmQMZVNAcwUQaf0rfLDjzCb+wghRKahIKUPuWo7BvxGVADNQp2SSebBcXiGvy5Kdzjof1oavlh+QigIR4ALWEhETHNWorVJKwjqhha3mGWxGlhnf65OA5JC3CiNT0RExQMvGj+S11bIDLGI6wjYSkKLBe0vIwn9W87l4ouYO33FK6z0DE1BJmDipkARTHmLAw+TECULh74/shEGmpjHC6ejBNQr/pJatkWRCDyIoseVK2+tiATJBMMN8ASYTJ8vgJIx/XFaYVyTKIPceyJOKFICY8xUWH/e1pBOjEAMKe5dqdvgpGaM9StPFOA6dhMGyLYtukElNFkgOaEjgkZp7sPsZIa1ItMErzYpD0zQlGSibAFYCLdqczeDV6jK3x8ZwqX6vTNaUGjW81ANOc0umpLaETNKJi1CWieGak4RfAQxUeZ+DgnvpkTryKAwjpHC8y15ZlqmAwZy47RlcGTcBOz8HQV3HqsYcoqzdaCINYPZQamxYlYWq8SJ0AZCngnDzwVeDqrt3IGEaztclAWeEi3IKyBaeYLs7q71asmK9uyVF08VhZAGZGNJ7beOdiNeILG93x91gCFYqHp2sJ0VwWXMUNTVYrlM4wDmEL52QK1litDYO8RLBYCFeJ9TkJQ+5YR7xCzTJB6pPeKgrcFFz1mKCPBF/PA8gUWwbRYsz19FHywx15IeGmDu3C+nACuhhtDjutcDs/j8ueav9s2rPdwF0VAZCQsp0Ctl8cCDX4byIqfirJwkH7/VIQ38BkPFy6XUMMpmXNcVOt144ncqkCg9O9GCja35lk8XqXY32MjD5SNTB2mlfNvbh7O3hoRW6KuLVtVU0b02QjWBVDOR4rlEOJljmKmMsA5EY0fpEtwZjM67NPmyn5mdyUdycr6yhoiQWeIDVsQs53foW1G/gMRgKfbfW+PsAAHh2sDqy+IatgmClZZBPUuzWqht50EEvBkoHbNBtR6qGJZWNR5x6LNALtSfWyKBU6KZUbCRy+rnHnQpsJ890pi9Jf0QAuYigeAqrlbAQ+g1PIcZVupczYWNYNwNemDA8a1oBRx336OXPM+087zJIQ9Jtaiis+yeFDyRN9UwRT8eqbLStNM5sAU6jF6ufiRSpAEs9CMxyI1MEC8+o9ZimsEQEs+X1XIIgaLKeorMZiktEzJxZdrzPOezJ2hZok6czNEPTWs0+oWFHsGaxZosW6TNFOQiV2YT78nitYgNfYDKRQMzJt/N+5TyctKwPs+6dqSVwYPLN+JqFldRZERx4UvmzuS1pqBlsM0aTh5Rb4HfNEEJvJ/CkBpUBf807dV2j05uwLZT1vTS2H+w3gf8M+ADLXtFC97PyHnBM65/KAeW5H5JVM8AC1SzSxmxUoSR0G4ACQWh8ISG7nlJ6qfruI9a8GUhw6+49SnEeqxPDCRtefxFiZQZzDQKBIGFOfjCmmQuK7HsZATfYIlBEipeMcDMGkFX+az8Mq4YSIvqOTPQmWKsDyj4tpkLDAg4ynLVUOUXyI8qIGpJ2AQLzIXwn/dMZnk4wbqXv7dmg6BwGjHgd46+v2Gfjus8eGtr+1+93TjY2XxcM8YlGCKAVCIGJ07mle4VBdQAlv8lt1MEUK0AVKzmthIcXPhh7LKw2zMlgXi0ggppIMjhHD1kTPriQOThcGT/0cyxVad1XFxAI/spMsBXTXnNswZKWglwBccjNo/drARxe7gVYUV5nK1oGpkyqcFCVt8jhX1s2uRP3NQhrkUfaSCJSSg3fG1qNtKLsxzpQVrunhmiUFJK5Mf53fybgyKxUG4G8x/vwAKWduMWF0uFLkVoCpLEWMXVl4NfWmrCSwqyAgwY9ZZsKK5MLQsLft+Sl2/nnFFrk1DPMjdg+VlAMF3aaZCYozJxwxOJMSoAflEZnMJq4jKsDl1l2XeA0IJDVeV89hQ9kxyp0vCYsasWWg0L4yKAt2f29LlXZkkBbOBo0aKoylunXA7BLcDVlzuEHRvjgrYOlNlA4rMbh00YPJUxUMFDyeuqP9BCo89JMDdnXB6NvezK2KuAOA0cELkLq4GdF50RJ7F07pn8ZDRI9g/w6x8ZiGmDaDUYFqzZkRwu9NYoH9aoCMXjL/MAlsXFCU+jSDZrBLt1s9W5PH/MTEo5ILHBqg6KJD77F2TWYT5emmImqanxbQ0CWgxxvhctNoi3IMxprKhQARqLRywAvveaHT+oxCi+U9hAkhWYOIYhHMq7h6kGhkGxixnPi+BVrpq1GHHCtIssbk5dhsASG3hCgqKto6lvZtrJf42obw3p/GVkUwZSffrucv8lmHK71NbXufwIXIriAW0IT5TGeLyKc7TGnkmjbHYuPejd9sOAyS9NRxHRz+skVjvVhCwNWumRF6nhrk5XArTsgEM9vRipubDoKsGgTZnlh63Eq49f0wCrKIwW+XjiFPILB61mBqSNSYEQMLt40x5H2Nag/De5qnQabloDrq4waWJ0b0YGDLtXgGxooPWY4Ss+qkYw2XxaIu0Khh9ezF+A5IZ5E0O2k0Ic6TcS6Q/BmB2q0qC5xW7EyDlMvUbNSxaW+MdX1dAnDwl9tU1vgGbxayvlwwDgQ1BpchCpMFE8gQLjNaVeH0myvHA/swov2fPiILVSlK14oukDIjFcDUxWmpY1WezCq0L6cCQzeemkwnQ1uJpdMVA+Q1Hl+5sx0DrPvPeycusu6XRChpiOzjd3Zf1QXUcfD4X2CI0EntOZcuCUQNsAdqt0zJZU8Sbt7W4WVuL3pcrRUOuiI1VlFZYFu9lsQ0emLwwp0PLu2akajQ1NSuGrOem9Vym9EW9EytdILA4l60Leh0LNfAXMoGSrpY8y+MorN+2WSxdlCfQ7GDf2K1vXPSfnIuyvohAgYoSAW0E+q2vzxqgmFhZD5vCqg5AFcIS5mtsIKVqHmaaXSfbgEkCF6RGtiZkN88bmvTAN/XyR3q5twsbM8IpAiQlb2hJnlERcSbucpoJTrwbs5tX10Ilp40AKn7VDaDUlz+ZLpa47vstUMmsBwcpu/Dj3DTMkOX828StUXhzN+udtm/WnAft0wIqfi3Ny62nDIYShY84JBMZM7Iupt4tuwcosa1169EU7h6iDoDNahMWFF3ChOH72Ps8xbV0ZT5QWE+uFhTnwsxqcQCMxcCCwzuNLitT4RheRCGpyrkIBbOo0iKtGEtDDNM8e7dj619iadHRuggkpX4C+d9OIyT5zEJWPn81qaScPHFwCDerh6IRGQ0WT6SZhm2MVctYBT3GHH87IyyU4G+61h6FAlJoNZELvbGyxDk0fhjn1/Xu0wQUMJN4pN5Pvf16ongL5UM1aWOzaLociOUVa6MuRyYLelQ1dwA5HYgYELGaM7T695Ry+Qr3fmIV2Mu2WqQWH6Wa1jUAAGtpP2ExM9fpyUabAWI4lE8sGq18B4vX5ifdjzCcTW6V9tpDzZQFW+rB/BiNHaAcBk5yi/YBwUvAEDFelp3paQGDeAeK4kYJo31ifLGSLum+fKkWa+R8mty0TXqxUPMqR0/KkFbWRgyt0gbcgDfDXkZQL58dqNAqIJkgxa9PMLkEaFrAr6/Fs3W9f3pZvnl91gAlqF5gqFjSGOlBg/CIY0U2eBrDUiIt4t02GVYASMaqVKhh79awextRkcBTTv2dtHACTxJWypblQy2NlTXosQTlidctUDMzCoW/L7iLRX1bq3ALaDqH4DEUj1NwHwMyLJPJthNjnJiR2eRabVhhAKyYFVEPevSKsGRaupmvXdiF1pprh3IdhaUpFbzKmJPELV9ffCMwavn0GusQDbwSYMS+9KPDF7abztMPbjVMWEtcBFnwIGHFRyw/fcQKGZV0QxBQYjAryONFbg5Q7kfH/ehWIO8wi8rhXZu5NTTusBooBHA3S8mCaYthkgGYCHi0TsEek6EWcxD1DgjOqJ3MCRdrkAvlEF4Em5uoPhuOgqlmQVFvGBhnq287mPQbMB8KyLU45mj4BTQxjklkVyH1zCtSCMPdlmyuA4qaHWLrUvxePYgw3TwKGzG/PrmFpCqa1pSPTNipfSS/bsY3hWROSV04YeGd5kMPcEtJw4uN2id1EBdas3pwbIx63FuuBzeTaKwzXQwcfs8R4K3iz8YLsGz3CHXwD7dEYq2FkpVnqecOKMPfhriXcMzB0qq9K2+GnPg1RQH2Jm5NjH82RIl2s2p0BysqDkpca1N323Ryt5Fa9VhQOAcI4eJhEptIXveoWINvIJ6y1Do1f55QNnacYgGaYR1H0MpiRquyuBUlZKiNpdjYcRNYZTTyHqiE+0vDy93antzvVhiztVBfAqA00ADOSWgs2cbD3DlhsXaraWxYvBQzCcbulYPePCX6nAvsB1NQieSurV1Fb2yxTRKF2ngBNJc5sQWNB5hTV2wyqwfqbljjTQZEi7uMojKHeiFUi6sK15wvrh0ZXzBLXPv7vj5vgJK4YBdOxQCSed57cBvSP7aXZC8WlTgIWk+QjGjXhtaI5zWBcj/h91/Bn8s/XAQ9lRu/CJR63+FTHH6fyxoEv3d4sSb7PUVcQk2fjOvm3UcECFbEehzrP9roraqB9eHL+eoj2KVp/0E94fU8KZ3WKGRWx7bRNmYaAtffo5HcjtrzDn39m4mbKYAE42Dr59G90Vdnq0zbMlDWqsq25pEmhRmVEN108ezuLgKJICrZqlAKW5OtFxWDKH3HRAEQNvgChpXzrrYu9uc3n5IzQb+vjFWJX3xqLvIeQv4vN1v0r0mvkDNZDdAXLlZxRgv35SshuhIb013zRgEuYs5doOaUxr3QsiDk4Fw1tTxLAJKg9wKAdCcnlM+51uNfrP9cs7p/RgEwITh9Yb/9rV/DAUwApbjH4C0GBDVviOJzLrY1d2vuFfmTPKOL2MCn7u5hgoPYsATgshk4TbxHJdjVVcHm4KMFD8aKaYsRjUKEMWUGKtbIB48Ki1iaAhSZcptCNASun2oTivW4dLW4LqsR3mQTwb5ACdnTdPUzansD9xhxiefhcDUF5WlaG+uaWSNQ50XjRFbeP26/eUzY9MBfclpN06jzLbfUsLt5oOLgc/Edowd/vxJ4IfLlFYgDKH+7LFLV7WPtNnLp1ROGPCvn35YhYu1d+Nu3vD5vgAIA74CTBVJsCU0Nl4sHDF0DAstmBV4dpExf3tU3mIjdmRJVOGT7LcBzVeGb/ndW00PV6BczW2pNMOhYdJf7V6td9MbAUwCWEZ2j+qp2LFS3QA/yMlitsJeQhy+UfBVOTtWKst19XCalmX9J9eflwG1KfVHtkpKcCdnC2Z8lDZQRa1NibhZX3M9llg4rqmYBZgYAmLxkfm493TtHc1dPiwaAHUCE4be0oNiCdmYa+yICFjD3idMW+efdPrvdrQlvwNo1yAIqgDENgXjjMEnwQQWshTUAGy8noArLy5bCP2ii3B65QAtulsGy8VtX6E3+OUBKoRDC2E4ooXUmvV0ACgdIMQZKKXD3/6/kVMTf231a3hdvzTPEao4lf1Vy9owZbHVUcPk+TmzKkmZ2fyX7UHqqILa9ZHMec4UCUgjXQDJcJcSyKKjPn1m/QmsuIfNeYVg/AVTs+7g+I/oBmc26ISwUgjTu5WyUdN8MsFz8MvoYLbCryxMd54rnqM9Tn9el/IVlFFpd8RRBaq05lZOaBaUBR9PSdBHoTdGaW/6AHPvolk70VuRSPvV6TpuLAMa6wFfOpUKHy4bp8WU+X6FAx9pjV2wCpEDd+htZRzGn7y/qNS3vbez3I0YcUbQtMqKyIjWCBLXIqXgee9aYrnp6ut7Hd7w+b4BCXm9Bxco0y7Q6AxoFiDRdGdEfxuo9AKvYKWX1RZmebjyRjatAFcFEuXf7nJ2SM60m6glo3sOA3Y9NtFX1ix4SYd3J9E9fTRkkudSWZIJDgHMqnr7B880NpNhzZO5I62hN0LsuIU3WuI4oOgP5Rv47hmWlsEsYcWHP5Z093oK9T42Ip+J6bxrvY2Mb5W/CfRCuDr5sy2/MYGlmWoT1EelQawKZqbwGBkCtbN5ZmC1wdV2Tcxzh/uAAJQcDHR2MbuvTx+d2HOi94+V+w3G/GTi5HRaTcnQctwPsXYpVmwtbC5AlIs8uC6YSc+mqGAEQsSJTWJrXOzjKj0/1w2Ix3JQelhUiCyI1cNKS4StzBrHiEsyZvL0I4Kucq5cPawyH4Ei+umJC4lLEtlxIyGtpiHVmZZsL8ZRSUQfRCswKMGm5UxQCtXAYKMjTIU1YLwQDZLdjqmCkWk0qUFka+a5erOlJwKAltbpYQRa4L4rGZUxTnqZwulhh9mEuaOUiSdICigK1KjjbUW0AhNjiGRf2I3RdxysTaBKmWI8mhZc357AimJBujGz8xw50wOodfy0LJngapbfJ0EH3YmcWX2LPGD1gDDRRYTO09AuJZ4gaIADcekZBg8ACJwW7BC2yx8h0gtcjsedubY1JNmC929Y7cLtpWlKgC2CGimUxOhF/4xucPD3onUxTSesT4i3WLTl/cM1ao8SLuAWFNK3hhNrfa/XjgbqbKc/nW8QXRSyKrkiYpBVdrqDQR0i1BPqvLuvm6qF08bhxEOLzB8W77KtcDbpT/He+PnOAYm/R5dNSm0pFU426A8sNEoVpopjZ1nFX9+19NcsBSbA79/OGiS+bPKH0yPDtPYaosehiMSeQoPUnFlO0e49Cc4qI/l5+cATSccHf0NjSEufmiti1yryYB8wFQMqqh7TvX5k65IDF90Vufim4BWdMxqx47ctzBEABIuOFvQupaXtwEzEtMFOvX8BHulHqUiyrpgIGUm84SFYRFn5OZrYA2bJZYTbP3unu5mGrIqsa1WsindkZASEDqP2qeS8aUiTdL3GfS0xqPIHTRmqmimQI8djxm3SjZbD1DjhSiIaYVmyC92oNe7Pk3A3DTioCY8RvTOy0AAEo2J2A2wLc8RtT1up8FdFbXEommCgGAIHO9DJm10m/PpLW97pu3vm+Ln/bp+u56jHv/O69sX8XmLzzdz5/SmDkVSscqfCEXNjVkyZAit/GUtHQgimfLwNZdblDbLsGcHshR58XE160WSe2ZA23yEQGz6JXRUHxRr28FDQQLffOJ573PYlYxzJAQASzthwnAxhwV0rvVDagH76vIUF5AIumBsAj6DdKMNQAVvX1Wry6697WI6erJzVWhivGPo4r8n1/9gAQZLyEyoDQ5Rpv4k+wwGPdF9eAgxTCp9x+63ni2bbMnbjGu3s2AvjO1+cNUGBLL8t06/SKlxMnzKwgXjJdxsQ8rXT6OC1IdpyKeWoWJgz0utp9e5BpFlartVYmQNMFqAdeegRq9DKZaqXvh3p6KKxYjSB4syIqaa4AMMpIe07QoFk4boyJ5wCePPE8J+gU6JAEXlZfw0ivcUNvagvO4wUE7GXxeWeWFHEOKw4DYu8atURcIGfRMY/HgKoJ7O5ZLZ3BzfodUTOLikVVOUv084QVpvkWwqgxQ1qDqt13Uyv/3D3mo0UwWMkQersVkHKRPg4l3JVDVhafu4EjdgvKraP3A/fbgeN2GEC5WfXYdjT0frhrplugc541AtScfhyA1CJqKUSDoeSCNWBRZNJizIQFOi6CyECRQOEuHg+qi1JUoWlGnBUALxBntJXxWIUersA1waeYsDJDhj2nhLVI1d0x4kGy1oHXgoEjK8OauFlPpqK9eeBK9DUWQiYqFZzrwbEmJK/SqcZMBfDP+acAB4oKZOpzViGowVuwlIqilnxywzufEzOW/XlcnWi6vOfwa0LPDYwEeHMCSQBMESFSrLRxLl6xTjG3QZ9TGX1aM7oG3YR265ZeSm5UNVedgZfOEb+xromGFQzJ5GvcXRKRmkWUfI8i0LSZZYBaeRYHPBHblCBGKPF9BQFJMwGumoMOIhxqvXQIQO/eoZmA4/AO8S+M24ulFt9unPzGCvlFo09LhKjp11vdKqbM8gkUw0wouCPpnsmM1dHfRt3SH3JcmyH4PB61rlQAFL823GWn+zW2a1KZl8ILsSgi3X5s07iCZHltYSGLdb6dt7yWUqbvoZbvfH3WAIVKvQuLO/GYEycg9ffhLpwp5tY5xSKwx7Q+LGMQ5qR098zpJmahcJ1fuEkFFPZdVeTBWtpTx1YZ4sogQDLNgLnx2brLBou0HhPDQRhwiuDpxd4gFjBr5ceXsCEE0Fk+w/IIGdD25vHq+2ULNxSKZmu8Jiwo5TMFXnDhpvR29cR45n9Fq8P1pvwcfiN7dgWZJUNNyImDBSv6djlOyMAXAFZGo46uh1ln/N9BN3Q6cPjWqKPzYYGx3NAje4eM4UUdnhAjhKVnL2EQOiutDF/YWNBmulCsIFbPPHCGvp0vfx5uPQVgqcE2dgZUEriojQf8DgmAClsnZyWvqMyewbWL0/SVo/h44vl8HhkLHFs1T5e2rFAPUokYBURAcG68/bUxVqpPW1+a4LrS0brrAlTUhVy4WlKA17gA2s5h+301Kjzj7gJalMrnyz1UGtbgTytQP46JGckGivAL07p+nLha0dYz0vZ3nPEKpkLocaC9FENmKgng32TV2QiBG0qJ1rWdv15l5WOiWt6Lzav3BC91UJwx+YnC8rgqLrtypAulrng2ZEotUAF+AScI7d+biTKhk+JQSoDSGsBssVu3DhwH4dYZ925F0I6+AIhms0SyDvGzWIiJUHl6lDmQdSOeobPc8cHqWW0cYk4UyBbeREALK39aKBaHiaB+JtnGIOh2z15cBFlYy1t3JMFTxYNVV3fP2sjXQA3ArQ4G+xxp7JGGbPcuuu71u16fN0BJ4gjCSGeLM1kbxKyIKVhBsjMCZUsMipe8NyGGBdtj8oDFdOp9XP7Q/Km7fCgCrCrzir8qc9nIHFV3s1RN9YZuVPrSwFuo70G/9X7Zx6oyfaRZfxnFt+eism/xvAUuNjEQ8+HCaZMs9Ob39XpXMZhcOcda131cb1SLEAnwEUxRC9MIph+/iQkCgbShwZr8ZRVYbujkG3c0th47jVq+M5kVKgJkIyA7LBumrfizBLCgZfeI2hMRrGuSR/Ie6+BrnCtARRn1BTeQn9b3AeaQY1ODoJOR+dhJhD4qL4BixGIgh4CEIW4NIYRwB4Jus5g/u+YnBrLUhYF4sMq6Q022a3Na7EM10OCqplH899azvYSyzYHGcUXo7xttp439UaZALsduv63fV4aPsg6BjSeFZX+nyzUn8YXm46+4GYrnisN0jWLQSzzP1X0V2EThUDNAm3Jxoa7jEqBQsWBh3+rxwS/i+Sp9cq6DMnXxIXnH2q7CP04YZd0pHr2eKp8z4jX8GTL416wgBIuJMQuLuXOOZltvbjlqEedhCnDMURac43W9Fc+3ZFHVWpOWEFmcsPBGv28RWLNFgrcxMFqPdhO5HBUp6g2kwEAjgkeg3lTSwBXpVrpb8q0yffXlH8pW2Ifr3L+Tj7Px5LIGCBtdf9/XZw1QYkCjbbuIMxOxCokalpMoBz+snP0YmtscHpcyvACa74ugWoWZ3XJz7qLRCMsJN2R2xLOIAyBBZNcgc8+jl8GK9PcQsOJa0gw6cbPfUG9JLhgncJLgPAV8ehflKV7AbVo1WU/tCf1uFZPz623pyWpaLmqGQhBZvc/r32/Z/EaBlZrLN3Ydd0dp9OEoMCXGxEuMqy9vA2pl7LDijNIa5JgyGGkKmrj3dRVjqg3g7hpWM9dUa4zj1qzUtVeV5N7Qb6ZZcWe0w+3dYK+Ls8y/ABC9Tq4WoBwJMgYVmmw23QpAo4uNBOgIjdHOHyLLmGUILgopIUvDTGHmJBXMPQJnTQAv87wibpvSlaIhnbgAMCyBSSEUSzCLek0UsLl4eMJcRMpePwFrS4m97pWwniPcOuSM+x3WuDPFuq+Asdjk8jl/UMcqQAH23yTQ8DWx4t1WPAfK+YNDR4mB3I91v/EhD49zOK2Y8VGSlDZIdl2L/n3+U8AsspoeUG9qvaQ8eYO9YWXSG/RtJdkWFlLP5KG1NU9Hjtswj67/wREwqmkZyHv2H6Qe02htFRFt45JQbA2mB9SaO0TzmABWrRE62cbu0uoH/LmA241xuxFud8LtxVxa/VgumyyL5ZbGJj4WPiYxR7F2BMVS5KAqy1zEfQrMBerrAWR2Xx2rt44wQ3pkkGKNVbFMs8LcYgHoKp+u8sSJbq2NSnBOU24lDAU6lIfI4uJm7TbIg3ejnlNA6FxnZd1oKAl1Hr/n6zMHKEBEb6+FH2AF+W4JOCtINmJOti0sD1kHBeYTJF0qT902Lrg2hSKa96m4e8f/TjSMRRwLVRbBWwCDShSPs7L2Mqa1VGcrMIcpoAqgPMglGVYIEIRQQlLOqpmiS0DgnWcqDLU+N13+3l5UPxQhiXq8ljGsJ9H9mHKBEIZ5WGH0SAax8P1VWCWDo9DqzLRtqcNe36R5x+KjZ1AsR2CsdzPmFjHuUYTJaI/ShRI3HIt9PQ25lmtWBEVYAREAStex0HBIvB+bkiOTgpWWULuMYCG1N9+F0K1jFsXYNlXZnzG6MAfwVQRo8awk1eXK0agzySDh/I7c9x5zsae4F3ogJGDSBCc7eNBYewjmXBjle599S+3UL1RBbbga04Ly5jz09h50X9tXMq7HBU1uc3pdT/5cSfOhEOG7XwscwefR6J4ZK/g2LRRkndWbCXATektAB2AIa0lsGYDqcSnRabsGyWo5VuszlIcIy2uk0O4WlBiSmJXCe6BIK1s8dHnuiJ2KYN9Gq/RC7wz2DKV+CPpB6DdGP9hibo5Vct+Kq5nSy4M8cXAHITE/NZ4w37Hf4qbQAilXlJyPe8CIFQ3lVeIiLhPDw1TmsgyMj8FWHX2/i50Zb/QVvw/LjK/XsEj5vWWoX/xuP/ui8fx6rdvv+/rMAYqbznyit0qnKExIKjjZLSSSbaFhQbLxWVwb8L+DmDaO7lHXVwmQYEQ0q/wtC0plTrHsCsJ1E4yVOzbUpG4R0TG9iSFhslXBxbTul6u4HPJ9uXSqv9+zjRQ7GLtKrHe2BaYCJJQF82Zm6gd6e9Rb6fIt0rde89te5SnzXPTmPLlcyPtZeLBvP7r93a3vTjuabz1BS6RTk7cgJXjzeoW3z3jvevXeYomuxRqLXKksYNVNiLmSux7Hsxssc4zX7zYt5W1Ap+gaaFNsotwWUlCtayCPA7PRZJEyBoWoCItPARQA4fYRLiYLFyIKC35005c9Fy0CjpuhMm5vSKla+PzvBDGFT8TxuiwgScpxLXIgpBfXDd7Z9LLl2Je1HsLicjzKsfEg16VgloB34Ajtv3sftIQwiAN0BZiihKE4bXJn8MkmzNsKMN2ASggpYGnVBaioz6VGoALgQZxIS0NWSS2PksI2rhNNNcPMU920/kwh9Kr1NQY3BCs2EGXButb4cAX+tg4HJmY1aYeDl4M8GN8WnypZc9dO4IFlxQj3a7pha7yMg6yLgpZFfmOMXP4AK0gWUMjBq/pwZb6EtIZB4fGYl7kvxKa6OcoW4bzZtRZC3PEeTxjzqNku6Ep42xqwgfP0/+9k4G9enzVAiViRAAAGLvbAyDTLXuIzxAMCzd/uqaLK+fsVJEsu9H2RJIDBQr8RsyIWzirV3ULRI8eyGbJ+ghamqWE9EahOqA6onFBiO+9kyHhAZofMB2Q2cz9NWUDKfRsVROQfSRfOrhwIRfE5dYGi8V1YgBLIxKkW0afpWFM8bMReLS7rMEUAuHquxbELK06BV7aMW1jBqAt+RbZRM+5K5oJJRrGfCZZFROB2Q+t3tONuQITdSnLc0Y+OftzR+g3cu2Updav9wu3wxWcCmypYDaubP8ECJPFcRTiDHGDYD3IhhyXkImipnqYOUP0bwRjrZXdrUhwXFgmLMXFGEvFRgTz89owZNjv9mmnU12qsudwx1sSwmSWFxWJTAsiw0QOJMzMKBu9CrLxrvOeV18jkGsKizWqt3KwmUvZdaHWzRNU18A4I2bewgmF7jyUYLQgqOKkjSFdBWyf0ujtBGzahuMIX61ZBCmw+yKFrlATwMFeekaGHjBvaygAQF7dh0apdUJsFhQCxBAEjGIvVIs+6M3M/IcCYDdIKvyTycFuK0m+KsIq/U6MBYSnOcMFUuhbATzcLwyquoiE6h5vLwqwoBsaiUvSqM2I1o8QrPmOBPH/+2m/nyqG2udDAFhRTYWMKC7QHQu4E0QA6J1TYiRa5f1luaLnuAvy5Vk0Zi5Do510aMn64y4mwJaZrNSwmkcFDa2iD9FT286dLh5aruIK17/Pi7z7kx3v98Ic/3CeNCD/90z+d36sqfvjDH+JnfuZn8OHDB/zJP/kn8R/+w3/4X7pW0mkyklpMqewLBCpSiHcxn9RcctFctLHYl+aZtcW5cLkmIn4i39dxKNfc/4gt4HXUoRUAw8GLtSdXmZALyHjrNvKFkvKqLJx8BH1zeb0O8Ld9hl3nDYzemOTlmPf48HVi331dmW/svV7jsun1lGtVWRfiDqIOpg5ie2fuvv8A82GffR87ACKKd0/DLoyqDHpqYHbpHXktS0Cx+uQgvBUuOfgevKHbEBdgAgDvnA9x1krf8a0LWjtmBdsuj/96Lq2cqW6Fi+1p4ATKMYqifLG/zFV9lpjb90jr8mT73zuBvkdOScpaj6bLe12uxdqC9973daT7LexACPuYL17w9rr1aXT/wu8/jg8gQ7l/P3/5IeXwLvrM8S9A5w2wBzI2IW+mfnv9tIvrfdrWYGqet97DvkCu7Ocyitu2gOt6bVaOFOxBk75FPae04JQ1HbSK/fdXYlwjYu9plSyxVW82ifflkqmywzLxdD/7NjWBFvY7+VSM4Hvjc2E+5fv3eM/bJ37zl8Y547lLAPiP8fpdBygA8If/8B/Gf/tv/y23f/fv/l1+9/f//t/HP/gH/wD/6B/9I/zGb/wGfvqnfxq//Mu/jN/5nd/5X7hSaEsxmSGwA4jE+4R68Kh4PZFoCGifPSBWCqDxwM0835T3P0u4YZaJxkCE7PcUhLeBiXXvy5dkG9EEkdVaAYZtepplRU7IPKFzZGyKTvEgXguOVV0azlqElTMhV0YGYCUt0kZcbzl8YT+bIHmfyVxTSHcKr8fVfe9cS3dmR8HAAoxpEZglA6tKg9WuwI/XBms0f4BwA+MGptju+bnxDewb8WFgxSvJRm2YZGhcGVsws3eGIIdpPe8uoBSAuGXD1cfLEFLuW0B0G8I8tlrpqu0BSY8bUEEwFRvHlSGywEjUx9EKRLA04Dcbu4WL1vsbcJdbISFgG8u3z+dgrTBe9f3q47MJ+XfHOrZlaVrunQAnbxWX9yrDxrF7wHmxxlzu4bu3CleWYEsBHyAE+/74oxYTqGb+4A85D1sSKQEaCaaL6AKXBCDLXi7bVPhazc/LmpCUHvccrA8ANOrgrPuIOKD6/Ptrf74tCXxbK6E8FECygRPPzMstAEsrYMVp9bII36wRuEWyAhSEZb5Y8j0eUqWGGqjLKU920GlrtgKLXBO4rJMY1Ktl8fJ7n7v8q9DOUlqvVPjeaylQWgj7rdLzdn1939f/FhdP732zmsRLVfEP/+E/xN/+238bf+7P/TkAwK/92q/hp37qp/DP//k/x1/9q3/1x7sQGTmsNtReEIisKJC6abExQ7MgmJXczjx/qsR3veH1VtPG1OsBGGMWqBN/rbpK7CWQscosR8nl9NlilcAvp08lxuWuRUp7JLyVV2YcDej5TJ7+ypEqaFtoutHALQgktOwoLGS5/pyEQ43BylB2geT1EJaQwNuxit3r9KC4Bpn/l7zK1ptz5XDTOtHlIjYWDkuc0TA86C3Sgz1VuNEq/ibsxZaEMyB2VaPlZEhwwGHOdy+bH/ua7SdupXR/zxvj5t1EUcywRvDGLDxQNt5BQVAO30itLL3qEsDsx2oIayeawpw08kRjqCJ1OeopbGCIck7KlOHNYVi3SPXAOOE27zsR2CG6hFj87gpciZDxJZV4rncV9FFdZyE7/T5TFu8yA4t5lvl4593uVQFE4K9dO8VhYfZLSBIWey9sOpn05b3sf8Pu/avqodc3I/u+iNBPfYEQk2v42PkkVRcPsNNA0kixvCLSS6NjL8rvFfUk12tuUwmKBDA0sg65tYHgVvcmt1UtdQvARpocsBQXQVg4EhJoHL+e9xOjiAA0lDcTYMpng+r3NgiVMiynYmUUxhzWq9b8Cigy9msVesQiHf9D4fwDa4A0eQF5Qc3I+iH/vsKR9e8aMgns4ESw6DABNtRHM6j0Om77qrp+DpmzQvyDMXy/1/8WC8pv/uZv4md+5mfwcz/3c/gLf+Ev4D/9p/8EAPjP//k/47d+67fwp/7Un8pj7/c7/sSf+BP4t//2337yfI/HAz/60Y+2zV51+lfb9WU5WMydi/mdfMHsDBO4CsRPDfiVqBE/JduXXWnhqawEWJOliJYoPysMNTcq77XmSDCMwjhaABKs91xFBUxUo0iNMl9jQmXc8OnP5T72qNWdAVSQQoR9bsqQbWOXY0hLCKEAlyLI9jlez79K5cdWno1xeR7ezbnFV56fL1uW9Y/ofreWrNoI71kCFs1dx4VyHtZxwdDpMjY5NJfxSrDH9dg19zt9Xsb+ndenv7sk976VKJd5/MS+3F+sYZfx2Jbn9aa+5bmCua6/rpT5PljJ3yiwrJu+3/dt7t64kl5ACnRz3W6m9Hdk5PVu9ud4f/+nzgW8N+yafGjfBwcrxdIK7PMR56pzg+r8W38vXudAKM9F79N/vbekq52+cmoT7PmIVGRWTEaUYDC4ht+rxv0aP11sJvjqJYmgHpvPbeO1pRBSpZ4dxtbZrzT59pgyAgWoXK1i5SnX6HxqveUd7vdVzxfXeF/O6Tqm/u/XqVac6zXzuMtLv+P7T71+1wHKL/7iL+Kf/bN/hn/5L/8l/sk/+Sf4rd/6LfyxP/bH8D/+x//Ab/3WbwEAfuqnfmr7zU/91E/ld++9/u7f/bv4Pb/n9+T2sz/7s/aFKlZ9ettIJyhryr4TVeXcbkVZh2naTNW7WS5QcXHXID7PT29iga41j5myHP71XuIV+2sE7jLxlTr8gOpesKcAjffM5RtXyGsBb3KnSS5j96ncak2UvgGqbSu/q66rWJYXSaflsy2CKon9joORXkBApiaWKpSrAiZtVqUEEZ6d0HoDHw3tsNom/Whot4Z2Y7SD0Dy6vx0EOshrPlPpDAY7V14Hl62mZu5G4KtgvoKUjQcRkmEGcE0B481TjJxtn1nd6nl1E/p7EZK4yOVvt9zFNShqW7CCmoJYAI7A1xIAG5/b+sy5L45Rq4DJ6+8a6LfASr23SsPxeQGCABPJGjawEUCjgg136Wo60/Jffn7HRJ779fJ5cwUtd84mqD4BUr4NkLwnRBK1bYNUd5HTz/oulQWy7Jv6ObaY77C2MFtFa3beEN2IrSKwpGW39qXZUo89eyb6+YTlOHLHVgVl3QEEBVcISf2pDYttXtlPASpWbdWfK2lSvZKsgHnm1niCWayHWdnPMQ7+fYzBigcLvihly05skKQjuMLo1u2oNEsXV1B9xJj8IrKiKm/2SWLNYyq02Fy4FZQQttotG0gh7FbJt+LSN1+XV+/gtum278d5/a67eP7Mn/kz+fkXfuEX8Ef/6B/FH/pDfwi/9mu/hl/6pV8CYEy4vixe4tN3/rf+1t/CX//rfz3//tGPfoSf/dmfLUxBtpiPTNUtHQA1ZnyrtlTpnPwz5T7JSY3rTA9ONeAgOtOsRzJBYsQoHvOi3vE4Y1XiXguEzSh01Gfx3xFDvcqcxZnExtBGW9AvtDDFMi4LXGlmD4mK3eO2DSdS2Z5R5fKu63ni/NBo0jghygmqrkDOsoxsn0SQb96juonRChdZV2jJZf6eYFjsvzD2EGYxqlXbvYqAYOIOMjJUIjfaF7+3NN/kgb/rm8/FaF/5BjRdHwlWqAouLceWu1VFmK+RzHv9huqPCnOv+/cV9i2c4goCKrD1iP7CL1dEvz9xFsoShUYhJ3Zze4Ad1cKsCmt0obqnyC8Nezu2uk5CjuGyBuBrGk4p1zWdZ1Ov71JHtTD1Cm6o3I1iO0eeG+u+wuoSpfC/7+sKTKg+ve7Xf3Nq3chhfa5g2NOBE+uwg8NIIy1A2N6XIpO0kDRRgW/BTeUe1lPFjRce/Z7Ck4ug8PBYz+9glNTtFNvcpssmgHuC+wWwEiA3A9/cBOTgCmRgRhDgifOcu5W78hpsf1f4K9BVByXnkPJviT4lGvEqutFfPlYZ91R+isU96b2sDZS1eyWaSmfbqygsIF1mjSsgySdWhFto577lvr7n63+Li6e+vvzyS/zCL/wCfvM3fzPjUq7Wkt/+7d9+Y1Wpr/v9jp/8yZ/cNnstQRwEnxvCBrJxFxSOsRB3jHD8oqTrbiAotCkNAV6sKpgQ1MCmJfyhFTxdpwtr4VWgdQEQmHMLxI0GUuUhcky2+87zXYN2S6BvAogFRPAeOJEKOix1WvXbt2te9g5exLOu4r0CqxAgBZ5oGbVYcLqeeb0IIZyj6uUbNh5WJd6tKrWKZQCWXTvQ97M532HGlSlvMl/f3k9ojfvvynfx0L6ta+xzH8+7TPR6Oaae2M68lHAqF79KuCp4iuAqDB/BKC8Wnirk3nNfUr3vNUh4Q9ff9jkFGFDQXq6FnQ0UGip09B473WHt9VrBRyoQKSR5JUu8/fv7vLS8v0PJ3/1DfyWHK+B604rTQoc1x0lvsuYUZdtAShWYC6TU96T9On51lMlvnPYntTEtIKW8Fz10m4c8DuucVOnSLUagYgGksnkXPztW1rG+L55/p5L4vDJv3nyndQ9iVna6KfwwabjyiwpI6rzVyS8/yV8WRJdfXywb+6hrHvN20/Wea/qyVt4jxR/DivK/vQ7K4/HAf/yP/xF//I//cfzcz/0cfvqnfxr/+l//a/yRP/JHAADP5xP/5t/8G/y9v/f3fvyTe5fhplZquTPhaIyjNxytQWFWeLl5/xR0QCxV9HweuL0cuD1vOO4H+q1nQS7uYsGQ8PiExqDuWyMLInUXgWkgBIgFgTJZsGQjQSfBkZuiseJsih4BtBQ+W4DUOqEQBiDnIg0GoA1MA40Gbk3xchA+3Bo+8IGGA01veN4PPO7efbdbmXaa3v1BZkm/BggTDMHR1DezGChMy2uslgnEBoaEBA2CRhOMCdYJ0mHvMgBV0CSQMFgYLBM8B5pM+6wTLXoDqJ+rbBYoHO392OuzapqTw/FWTcidrTtpZ7Jg4cY4WsPRur17BVh0RkdDR8PRG7Q3zKOtAm3HAeo3UD+AdoO2Bm0MbQeUO5Q6drvmArOLy+jiqQL7PuoWbKru2iJoLNZ3LGDr31N20r7Qg4Op1zUwNiXl2wXoKtMILSuKc6W1x5VBCaUwgrNBxsCxmKFAi7XEg+oulpA3qfVhORSU9AW5pOvDs9togYtkoAucXscxr7PVrY9zCzBlYRUhs+CIW3TULToS9WcUUM5xgQqyc7kKWGeeixClYUxwc9ywc94VPvk+kJB39r33iutUfLxh45zXAJkrlqm59t+oeiPdNSxmPdCoHonAI1Q+r41V/R0FmMh2UFw36EsC/MMSFLIZIOx8TcU6Jqt63pevIa9qTUKptLMoWAQsajzNN0zNjCHEOLCChj/0FGASdEzoNOuYUAANtXpV/jzzFEwizK6YDSmxuZmVRL0SuWZRTOMDqleArebOd0OTVZd2K2mwjW5MjBtbh3Zu6L0naIoq4lAUl9qiC1sX6SQroNvnIt3pXqrCFc5FOb7Qg8jiAxdqDatIYXMCuBsqnoWQlqTSnyitzn6z4Uo0GtiVte96/a4DlL/xN/4G/uyf/bP4/b//9+O3f/u38Xf+zt/Bj370I/zlv/yXQUT4a3/tr+FXf/VX8fM///P4+Z//efzqr/4qvvjiC/ylv/SXfuxrBYDLjpXkWTzeTyVYRjsaoA0qDfPoEHEwchzgo3sRrp4VQpmnARPhTL1JoFKDJtti3uFgJaz22wFCGls7cqtkGN/X5lxefpmC8SxkHp+ZNftD9KOh3xoO6mhygMdhRcX6Ks3eWqS+2kl3phbZO2usuFHKQ8uAonyn5vdNpc031jkBLCDhjD8yBxp0MUe/kZgrvmz07js7eOP8O5r6RabO282zmlqDNEbTZlk8PbZmAKh1UOve1jQyeCIF1gu9scUmRR2ETSVEGdT4w/01VmFWnIEWNaY6dku1Iyqanu22DDFLi0QxbgSDWYw5bkVD1UnNJiUY3qY9OwA3KrM6r0QppIzR0Xr3o8mvqetOHEzouokAELLeadMIiwrnv0lckIu7EFe+3hP3n9if/Lp8559ZDYiTBphAPmMcE9bJVXhundeGPoQRcA0ajc8Lsnz3E1yfn75rq4IFhIg9iychROA4u8ZP5RnLzdXUDhhICbCyFGN659r1yRYdI/iYm2YUkUa+7m8LYfC/FzgyGswWCH4f7HOZIFORniagGjjj/jVSawyQCiErbUMtVsRbmaiXnNBB0AEHM9bcUn1so7fZag/CTsZXMKpY672YdtLiYYIcke7cIjuwJXCynkb2O45Afr+PTVEq7ppY+jvx7NRmU16o0ufx/biQeJpLBuj2vghiZXc6WHGwrMkuacnKbwnnuL5+1wHKf/2v/xV/8S/+Rfz3//7f8ft+3+/DL/3SL+HXf/3X8Qf+wB8AAPzNv/k38fHjR/zKr/wK/uf//J/4xV/8Rfyrf/Wv8BM/8RM/9rVsmh0EkDV767351qEsECL02+GmsIkpB5QE/XlDv9vWbnfw7QY+DrTewd2D+lr3PHgnoNZAXk0UvbkFxV1F0sA6TYh7R8yjEQ4iHGr31rrfYyvBnKSZcdK8imP0O2AINBo0dSvNfNw6bi8H7i8H7s0sNSQDx/1u2+2GfhxofVgDKe/GSbnADWy0ZuWcj6PhOOy5zKEi6OdicQoL2ur+TI1X+/IAKoBraKkNIYFJA9Ch6EG/bFaPFmCNYhwildkAxlRF05Uax1CzgjFntcfe+ie3w0GnHoxOHR0G3qR3DNdWDKAcDlK6gRRiKLXcFlgJBrGE/gILnOZtY0ZL7KcgT6uJmuaVI+eRJamJBHOVMGsVszuQCCGZEe0LPoRHqC1a6t94BpIJES8lLppBxaoWqBd3XwXvG6BF5W/E7rCaFBN8gpRiNQESlFAy+Mo0L89GVQBcOUB518vn4mMJhZ91MeoYzgW0CuwKS1cRjHF+ulw5+FAwcdqfaLtd1bC+vPsE25OFOF/KgFyAQsxj1DHZ/445zmw2BB/wi0QjPrcG2Hs8CCVYMMsGLUFZNk1aDLoSfydbN/CU/agvAnK+QGiIoHK7DgcwcQsKMwHiIEYJHpO9jol7hf+eGSwBcPxcE97C3h5cXfgruzXEY+DkFLM5dEC6Wz1g48AMt6B4ranMVeAC0MsrSqoq+4EwCon1HYquNlB3GdM6qusp2o/YsasWS4AUpZUL+hYwOK1h6UNVoVj3Sns8VezV/RyLX5E/c0JdOz6UnshwjKaiGnQQLqjYh+/9+l0HKP/iX/yLb/2eiPDDH/4QP/zhD///vhYrMkc//5WqgFC4nzF8Km4FCTNAsX+uFNGd6TAAzUVutTZCu+YtLoHRSh2OJXRtCwtEzfYwS4ILcrcapIWFGQ1WiyRqlURHUY44CSXQoGIZ8MwUt4r01hwQNXQoINbarrOZFu172xKgKKP3DkBBOqHaIaJ2HMfG6MQ43MIAUXTi9V2cP/fZ5nr6ui4bWDuYMbgCFIYom2BjoCvQVdd5/RrNf1+tZmE5iaZ/0ghNebOgtGb3wc26E7fWHZj25frpbmXrHXS0Yg5zodmaEWG4Lhx4pHATtS/rokwOwqBoxGGoDS4FACLHOOSnXHAh13UsdnJx6Sve3niri5CMgXamAmBxpORkKOI1/goxFP+H7TYuWPXHQAP2m2RMCeIEUS49H9mDaDcG5nQSmnhaARMZxJjA13zcKy3gk3s0vWWs1lGYUyXUBCgAzMVEPhapoWsR2mvoKBRjVEH5Dii5/IbeOeYKeALaBg+6vm/7AsPBaWZNQLG6rYl+CzEorStE7FaXcC2w/Yu6QYi5oW1uEv+SZ6N4jSlV+4WUbDqwAY3gBnWTPL/dBwUtFKuOeUDsvYUX1cUnq+b+prat4+PMbo1F2A33seC8G3rn7mLd1mJtMeLVKhlwNZSPRY1Jz+XzPo5hZbD5uiTHbHN+mfw3xGXYwIF23k+h96S3XMplvRfarJdw0QkKt83at3S3RRMan+O86+G+1+uz7sVjDAkbk/nEget9m2n4Qg5mv469/uT68wWJAk9S2b8zo8rPQ6BsWUsbjUXtxhqgVv5O108l1EoYlMwitadgCi70rm6VcKlEpEF8F2lwuByX7/G0fr0rw7nuQz4btu+p/J4u97bOsd93Td+tz3G9z/eqk1oQvjFRc9XRSlF2cMOtvXHrmfsHyDxKjYmmfbLTwlBgRRFUuyXgPXFVLQbr6Pe08qoN1Y+r3wW9c+zbl27vVPbUK14WSTA9MoeHMbjgTH6W+FzoyM5AK5sp6NizaHI1fWphX5nc9cECLDgAqfGF9M5x28CWz6EdX8HJu9fyz/Gb7XTv/D7J5J2Ho/IpeUydkvI72n4R4/bdIqAKnGAg9rHwsVgvfrYFFCu/i3MtMLx4Xsx5nC9+V0CkJhdZ7p2yr7C8PRYzxriM/wqJ0QSWO88uzxXXzM+Vf+9/r6P3+Yln2Zce+dzGexmpMocJHmNNXOaMgpjCrRVjWj+UubsuU5Sxic8Ui00vhKSE9wh8zaMP7qIEpHW1DG6lg3Vcvafvosq3r88aoETasJndlmm5pu7a+zt1DIActBDCWkcbKAwsiKT6pAWZNlkJKUzZW0Bg7HtLBrmwMmLe66WIBzmJgGo9FanNn3TRpwcoEQO7hSbMqfBAwOr39WBUhIna7s7jtGJ95L5dI3H3mjON3PfJbRFr8+vHfYW5NxY3+z1HEFgDpRvvU/ErGc/j2loE7FV0vwEfxrI29eZb93iclvuodw8gImQADgHLBOCCNGczaOYTm/iXmkYLOOvw8dYc9+VRsZiJiGHLHlJ+yQsfSmBzXQUrmM5cSgHw17Ur2VOhCCAlZCCInSuXX5iACdPy+rxrjsbQdOeXcTy+/aVank/LuNU4ly3ldD2gxhyU+djH259bsW3Xm9r2lbnaQI8W0sAuKN++6N3jUjyqXr6rYnSBhsW6SmZIvS8Ete0CWzZgXxSGWJPb1ULY4aI1+9wyLHYrAhDC1eT0lkBii7OlZckBYYvQ3Es1rd/mPLprRH1ZumtnBdyW61TFJ5Qf0lSA7FmRytISugbEieo41umrwMzfi3+lgpYF+shDSmJtlDVZiPtKa7b8fEei3zLBW5zX2tJtS9udF6CjF4KhDf+QD054lyo+yoEToDxk+aHd+MUr/J2vzxuguK8xgqGMKS1GHEWYRLxOh3cVlvLde6lgMflXxbj6o434i0/YuxXTVHOUBmiiGvldOR4u1/P94sV/IgJ7TotCPwd0DMwxIGNgDsKUkUXqrAZJLRCkDnTsXlmsrL4qHESVvkKxAcgMC1Hz24paNPxqw7zMhks6pLZK5XFoEwSuZddxkCJB1M3/PsaVxe5pwvtizIC3eHeephRy6PJvcSoDdZ2Xq+cwF1EAFO4NcEtKBgflhHO5l8KWFGXfxq4uCGBFeaTsL6RNgAPKECaaDDP+jvO+xzTVBc+203l+7iKkm9w+085AkimTzzEvBreBFE2Ayw5I2OdQAM8CYYABZoawzzeTrZtgckrX0cxP65uIDVjjWJfQ4td1rMvx75NRjuPKTqjWnjj0Ci3qnb7PeZWwgZT3Xm+fd99HNdMG+5YCAuX9zX1qsUxpgoUomU7MpjS0APhId3QqAx5zlgKcliGxbursL7LC1I+J8K1N/pWnvVpON7CC9cNqPQnFECWIF8mjkb/n8gyNI+YK7hr2jMAGywisLuO0oFp8VgNjCnwsoiAmyrasMzF36uNcLSv2oVrBFVFaBc6310ZLGS6WlHT1AMU6uQhj45mhXCNcfIv4N+PLBVNEYTsmtWduMc8ONqCraFzw+zI5RLTpM0TXC37367MGKEsYFu2wgJO9IV8EREW/hGJVKbJEy8nXeJYJ1uvmgaLqTDlAim/KC5zszcJixfnnENKRXgAjTkuVm5YyOSZkTMw5MaVhioDUqtSuBnC6wMk791oBFrzQW1p4ENrnJ7YAExFFr74QEphorolsIubAMYTJAiflfClMdEnrsrCQ478vvA1eEtY3VI+gPGrdHNZC9nS/iE3hyGpy4ILsvVM5UU5cEAs2hKHX7z4pvjZhEk9eo0C+/bX7ihfYKSK1Cq9N6pXbrFw2xgcuWd1ClMGSqGNgb+JMzwKqzccvolatEwwRByO6hM8bVwJWYOkVqNXPb/5OWosteEJ5lJwaWrSGdaEQJ4q4t2pS/xQ3/bY7/fFf74MTLfdSY2uQgqAy/5zCjZ9VK5juJngnawsrqm5VFzoO4sOqsqySulkmyYUWeVBrxINu6ywRBRaAfLsc03pDuDxIgJSMlbqMmfqzJThZvJmwrMoJtmqgfsT8lX0tQZndvP1eSx8x5JiY0WiBE6aIMFv3vgn+eCfFVqH5ara7bJUOkk6q5YbquBS+X+D1CknAtsSx/V4dnKznXIDUCtsl4F0JRYUOtVhJY39c7DJx3/H6rAFKE4CngucCBWGtEN+m2iYimGFJCaAChVDVqt1lQ+rpwVZfhcjTZaO4mAimC/cJz8cQAU9Bm24BGQI9xTKJpkKG3eOWZlnVgSr8vZoqmbkD1BX6tEjz8RScp29k9yCqGBAMSBZV1kKgzbcwfYf1x1xj1tGZhjjfEOjw+5/2Wac6UHKLjNrvLSjNniU+swrYrUkbuJnOnKr7S8JVJuCwoHgwGmPNRdRFqcW+lGzuopg0oJgETLK/Byz4OOZ/arUtafqnqCmoA9QBPhyLWOIB4MHIn1xU+qmtgLLCiNff+uYkS0CvoNNIzU1+UgTq29uxXy/hVRhTqvDBIDTT/xSwrIHmvwlhXpgJEUw7wtL6AgSi3LNCMz1l1U5ZIAG0sJ4UQVefK0dmAxk1ZuHT25aK6n9LPU8w+cK4q8BfxeYQPk8wqd9rGWMCtviwNP2vWdksVWXOYlhXGGUVHOu1rBSloZ5UIe6BrLTmhOpFUC2KO+AlmFasZJaOzCdoisbAjHhw53/MXoOorknf36AJTqLasipAXsuDaNFWEMJWu8ZpP+6HKe4vxsSFc5mzCIY1izAhOrfbflrfo/RGJvXsQ7gVRdHZntdqKgGd1WorkTU0ZNrpXWidpwrsOkaNglfZaox1sazxmhots7pVQi3m3sdEdKHsaCbbsL+vOMVYb4WOyzqN54/fESwAG7GG/RmznIyPXXPQGWPUmvpm+QEZDuBZpgRTekuikc0PrzkNMBtJTt/n9VkDFDgjShfP9rIZWn7R0hguTHceb8C9/m0bsUd+ey2Q6CkRhBAEkimDzvyWUPYy9LhYcuBMw09Ui1wB/ruIMVFAuWUV2bWo4/e7fTWeC2yZEupWmSyJn8Kyulb2e9vaBETBq1JSP6vZ6vqO3DqVx+o6Lt1IYqJqe47QeHPGTFMPU+dbxq3JhGPclGCuidhoxRLFOGvl4Kn6+bi1CJJ1GvE4k8jo2qSG5n97HEPd5FPfrefVPE9xwyAYISHMv0pVj4wHjrG5ghx6s38ZfJYGbPWZKEv2k1oaORd/ueby0WRycPO9MjJ+JYBUMGE1DgcgyoJbqrz4wFQLZA5M0FEdq4AqZcxyDLEDjdQsA+RUMBL8YcnC/XxJXwHsYuDcskCRDB4iPsbYQVaMsRbAQZoCE365tGL5FvFdPqyb1TuADquDAqbkM6ByfMxnmPZ53x9/hMXrrdsHi2eVe6s78qOPZ3zNCNooAqma9J1oKFZvsTzqNh9OC0V4FxyTZLCBVdGc3zWfhPhJJRv7XGmo8pQ4oAQrZawLrc1RYShS5DzRBL0Jew6F1t87os6OqUQ73fjYuIWm91X2gYT9VsylBHEQhAU23sxjPujilQuYaNkqsEUBKMEnbayy7kywSTLZF9a0pLWgmaQ72lx5cQ3hALa+z5/p+74+b4AShXgW4ExmnovXgQlXUNJXICQfbRVq620DKoQKUJZv1vl4EsNSUENohyXH9fXi3slXcDmiRSQwQW9C3GmPh7l4QuA7Aycii4/Q5hVuo1aL17pgX91bwG7Qsy/KN0KiXj/K7Tu4yIaMsaBnBgGbZWZCpdmxCaisd5CI9RKKgkdvS+GHpgRkgToU1I2lFWyvnIAKPqK4GlmxpVyxATycDoizQjCiUnALkMJlhcbc5n/wIIsCRnEBJpRg5TrMGSittphNWVpSIQSKJnihtIAEG1Yfm8vNbccgxo6caWz0uwCZjX0RJIVIMzAQhUzKEEALOEEBuCT5sNZ3xPsr6WpCuYBKgN14DFp/xyuODcCRay3uzZ9Xd15QAUkFLkFvy6cf47uEZTCTTdsMWUiwdGVn/sGtA6QlOHHSw2Ufl8cNNwkKWA3WwM70I6g9hVzODbI8wp61tsBLBSlrPMvYFqGWWj7FmBRBnkAuLChOV7JoLEmoSsPwI1GBBYqMFcxxxwIp7wHJHayW73w3lcPW2rP1udqhUPl90Iss/jjJcg8m7IGmgy0Comq5vXu9FZ+XsGz03MQBCiHiSACrySXAqhfSGP2wsgYHtxLY7QHGHMU8V4ZjKhw5YmVSKWjHLVxwqw6Qln4Du1QASsyXu2rFrVCuvxW2uujNxyQBCnvShVDVl+2WZLHRAC3vYeVPvT5rgLKq+umi36DdWGkgD3KkTCUlD4S06rFW66L5Z9umVZRVSzkNgGKBW5W5LcRvQtoFO4VQ9gZ67l6C6ioXTAQhdjNsLFx1UACrVCgCZQJkQOewxoEOUkygBDUsYEWRHuvCJoGAVEGw9+WRavnQKzjxBokeYLwAS9U8tBzLfpyBkumNDg2gaJ4j7mcbT7cYLPTv6Bu75hgftG5MWfU1t1yIRQCntclqv5DPObW+qjqGnydUgk1Y+vt3WlBoEWKlzY3p7uAkODzBuYanJLxd06H5lhvL07gQJ2QgpFKkjRv9B0AhtnsTJTSXvJTd45DghCgwByWICIEddxGkRRT3VwfE3tmBCRdYU9eRAbcCvCoICUGaguX6d72RBWjenaPLsPEaen93ROOCGA4KLRib1u3F2ChScKSDLoRmmTj2/WFt0bw25TgHUDG3hGempSUHy/O2AZJVlK0Ck3woyl8jApGThyhlKviSHhuC2YDBpqXTMkbGDmWXesweKcuwDpz2eRmYl9JGoHcsXbThkQQjkQyR68msDWHTYKdnqe95fHV12QlUIk5QIF5tVgTgjFP1IO4EJ+KkwVmYshNw5GbuZQPrC6CQCoQYQuZCAxO4M26HF53kZlXpBdYMVhkqJR6GAqj6/JYx84WTriwDJW7VgWatrbByLQtKEBpWTAkRWGi59dJzEDzDWaIj79wH5HfBOqFIFw/Dy1xc1sR3vT5rgBLMfxHk25jO8P5YR9PSvyC1xuU02xd8ABL/HLj1XWa3mKGKx0aIYorFhAxVdD92xr06C5dg9nCfcRjH47yYgA5EQ7+pE1PF4iqAbDApca44HwHZ2AoTHkTgtGFCI4KFxS0o0bE5GiFu7yhWj4zkiIADbANix5am4x73A2B1V96Elz2ECcTSjKvEoKQFxaTS8q/HluO5NuxXKJ/jRHyZ3/ib40LYVlNwNyp/OwfdrGPbwfv18/ebkPQdFF+51SSESIkHiT+D/NctaupVkTmSGjF2zRqFzs0/HvQPWFM4vy8XujYnBpbYBRr5dUIQ15gUA0UhDNbDKsJMjSXocjiLq+Xd7+w3MUZLy1+jvPZjAY5tXvyPREM7r1wynRZNXE96mcJ6n4oAKSYMcgkTEOnTGeei5ZpAgnPEmF/e6w1TTs6aS5R7xmULmr84APOd9Pqbsl/rsUEP5eikkfVNzl69v7y+ptEx4kd2g5kf6ws7AIjW815nlGKdvDVi6nY8lbOU51gsqLyHNW5Z5TJ+KN4RPY5Wv6PYkuILnS06IUTW0mrRsp41gmw3Ws/1W/fFuXcQv/Ciblv8trp4kJ+LpZYCHK8Yloy5obi/alHzEY37xLrXpOdKWfsUfuvrswYo0WJuKmEIYwjhFMI5CX06Ap+EIYQpwJjA9M9TrVqpKEPVyay0ryVqYGogYrAySNnLJ1OmNlOWIiEzB3qchpBgiOApggcET7VA3jaBU4ChhKnWsm+S5iYqEBrQsItJSBqG4IGBJ0498ZCBV5l4nbAAXFE8BThFMTTggwA0ADpBfIJJUnMDDSgNTB0YMjFkgN233yzxIQABAABJREFUKiqYMjDEvlcZELXPEwPTuzYrTYCmBRgDAJnlyKwXExMBpuxXQyfC5O97tvMQTQMkHBVHBUTT7jsDz2y/OkARCGYkE5NiwDSGqQYKWRUe72vjIp45XRigaV0N65+VoF6sx6WwU9wSRUXYXbmc71PnFtk3kB2I+k+rP9hOf5GqvD4uTpGqo18/hF75nSBjEphhFkC32FFo1AFKoNDUwJ2WKe4vWDz5rQR39M/qAebw+CYYOCe/Bbu3VdUWRJjO9ECEjMdC3H6IoeVKINo1wy3+wZ99BYuuuditIbTca1TeE2FQmq5rwTHd9q2JqopgugAQ4m/nUJoAowh5WmIz3C9vAAouzN4vnMvtE/8WKDFl7Lol5bryFSKNgscBHocQtM8rHsMtbhFzs4ow2mcKf0HxHaxr2CauWA21bSpBNYkbcPeG3T+H3W3dv1sCQRaAGcfa8iE33FjLhmtMWqRXL2BBWdG2KfvyorUJefl9Bw5la7rqOB0AOqytyY0IoyxbApJdGAekMseEDqsY3sGetOEWG/eLhBF3AY2wSGxq9h4QDLeakKK7bGlsv7dzUvIndnACMst+AI0ssk614SQtruhKSCxt3ug2AJzRWwZ5O4DZQeO3vz5rgJL1SKK75QgU4ptoxkGsbUDqu0y3TpSYiHQGWmCUpf9akTTyc9OYAMsys8257kPVBMmArTlV921qMe9gCZrkaotZQK3Es6o1OoQwdBJkADLUe0doulE04j406rwAawka0FpxC8ZEMhbXG12mydcZks74zPmesFuDLcUA+HmdyVB+9t87GDBpzUBlgOW3u6bEjg/qNZwZIbRCD1bUjIJwq42NrbiZVtOFZUhFW4hRj5lw8GPCKvZhrbacn/K+rbO4txVOiSoE46YBVLdFBTuUT7BbBi5Unyd8e1tLgIan5HodLSNXCxrW0atXppBIMQdLQq7zlEfFwiJF26OV1ZLCXt8ZJNpPtD3f+s2yFKyRCCuDs9j8bIOxxodiYBJ00hq+2MqtXCb57esTU6WX/dssXqf0UyeNgJbqS8s7ul64Etq6geVW1DXk5RVwxv64AHCN75xmllkiz3VdkYXIL3/X50IxdRbaqi6kyh+vj+t3HnOt5e/4tAnLAgAXbUZMBr2xDoRwXdYhvLOt69VX3MvbV9Dhzvu11K7afFebjLheW8vaeudSeQ9rIVYgnEeUpbHW885XUhEAlvWP4IHyuBy/XLvknKGC+Ryh749PPn+Asia0BHdOMYGtHhtR4iAkipKV+IrYVmxGWVyq6X+MjWa8lwWUhc385gTmnYnTzIiXiVu+LN4U/FSwsC0VC5oyTSZibmQKhNXBVilClzEqgMKbSlFDuHjgwAXu49xqAsHvVxyYhJk1NKhrVBXYHhIAaOF3u+dybJwHxWR7Md1W3RmXfXHbEUtSzdWCxVKzso2Pb5qP83MwBX9fcMbORIoV9adlo22qkjPUeImYxk+85zMkv10umfLt/ssM7MA7rzditfy9mHoIpxXEWkFKBF1fQMp2zQVConBc+J+3e6dy79vtUAq+yhwXZ/XxLXe1RiNOtMDEW0lFl8/12Av48VHXy/Hb475hqPtjxhdV1uCdz/W9nv/tLF/oIDGCLhojXH61041uP445BmoGyxvyjV8Ugf125fks5PQWMPGpl14HYm1J/2+2q9C6HKD1/b25oXc+rb/yeWl9Jixr2fY5QAo5SEEBNViC/rtf5LccfNB3Be9/Z7tWQ7Zt0egam+ulvmtNxD3T5e8YE6fCpLuggzKG+TNNWnkTkR5TX0ggyfnTjOxbX581QIkobfFaHjIm5piYUXFVFCIT4zwxxonxPDHOE+f5xPl8YpxPnOcTczwxhx0z54D4phMAt7S86BjAmFCeQHP3RtQfH1FMzYKuhBVz+LtaEswcai4ZB0iSFg+bQFMmmm8RKNUBaZiDMQbhfCqez4nnMfDUCcwTOk6cY+AcA2MOL+Smfo6IL/dKsWTXEOU0NM0JIIS/AnMyRBhzMjQ++ybSIGqbxa6bn2uPY2+5SWzaAFhKa7jXqptNHMioW1dW3RIqyhYF7vM6eObOCcvRVHOtDZ0YMsGTMCYw5sScgjmnfZZpLjVpEB1xRlh9bF0AhICw4uwAoBJhbMtqo9/JdJYFwwCxL+G09Hh2lAhUJ0DuFoEL+4p0AAPHcY+hfQmQnVpVE7xOkdR+Ip1ExMZE3MoUcp2dIdkjrmKAbwQ1ARF8aXTk4IIiHoq3z0pec4ewAsT9NwtcV94dx6gD29hXf1t+s+2jcq6IeaBwDBax7yzZA3iu5w2FFlriJ967pq7zIqdJy7QVQV2JqPLv5AcK9pDiyvXTrZZXirg1zjnaKmmrLKBeERgtOLhFqBRSX3Cx3G192PwuwKDfreaqRSoBKjmWNW4wxmhRVAEkVdEoR+yvch8ZvV00fIqYD3hewSob0Yi9zgdWx/bWvDGrB5VzsyXG6voLF4GPMgvhiorYLr+gx7SJB/OKKEAC9nVn2UJIBXoWRVoaQa5tXGocXxmYzfiS9L62mKIAIstNS4tvIb5bNPo2iqnO+67cROzhvp7V8VoBzt/z9VkDFGBNyFQLSg0mPOYqqjZcMI05TYiPiTHG2uZ0YOLZN1LcJRLZLoooAJdl8nPhx5pYE1SKydrmVDOTaUQAqe5EBVzIgZKhToUJ4DlxzomTl8vpnNPjSUxIm4AHah2QIDoPm83YjBFZJ1gBbCuQtyws/134gsU3IATP2qe0+44lFinEQApiQYdvFgCWOTX36/re4lfKfCsw1IvQiWKIojtQCeBi9eU8YLnQhxA8oyjm0Rb+yicF3mOFS5K8EY1FYBi7Qphv/fzRiiByj20/OzPXBBRImjPXYwgKJfKBkl3CqRYluzCxpNmLhS18zUEPUcQwauUE+GBY1k0wF6fVXZruwxTCHg4+8lX8PgraghiDgSWjfWfEi3zO0Q7+7EOQv3zLQvct84q0OrSqqK3WvfJbRbnvImh93WzHVctFeTy5XJfj2Whh43gKBkEc2RA0PTDJa8qcbJWkK49J2vMxu45vidfJoEmsd3Wwns9d+J3mATEjJcYF9R5lgXL/f4cvHpuB/fpKZa7yKsUMUlYblc/LDambweBtBdgoH8FemGz9He+UWW9s6fIl97aC61ogW5zGzWLIfnccahCmIuMV5zQbMJEr2SKYc2VMTqFSXLQqCYX4c1KvNIFdKVJY/F6umR0w6HWCC7VUAEvlmvqpTeBFEq3QIWt1xX//12cOUN5qC1UYmZXCtebh73MaQJnr79zE02JrSi0XzfYCVqwQW9CGunAIQtX0+oQwpbJfCuEs8VbJ4cJU/fmGKE4RnHPiycsEYs9j4GX6OEieD5lKWBmNHYe8t3gMAxBFwwGwB6ot8JLnxQpIU+IFUgK0OGOZ5DF3GzihcBRtAKW6qbPlEiynP7cc9wAmJmyHCFgZwz8PF8JBG5MoKwtvIKXMBKXQuzBPXfvq7AUYiZWr5T1r2KbWKbDQ32JBcavJsp6EpgRolYx5Xr+tC1hBpa3itlwAhZHOMV0ZZypeVE2NkassCwpcwBmAoRS6OS4adLuzsshQ276jS7RNMPqCDavATdGqZQjW3o2Xru93YbydG/vn/G1ZA5VX7+CDyv1d1qifZ1t3MTw+fnL9Pg9AapkJHGFxH9UpBV8Lrd5D3ngZg8ITQwlaabahSuOTrysvqvsWGVbr1HXTjWbynd7hbT4/iOvlMfb/0sixAUQNVK5r3DbpiQuNXsBJZLIxSQElAUxo72KubggRr3idF9OkF5vXFYy83EHs+1ckAAGgaWuSiDDDqj5DWTAJH73krm5qBB9RXes/5vgiW9bcGT1pEiS529bneJNhih2VBmIt195+E/RmfEOCLv0wCUpSk2Xf9/VZAxSLnlYcKugi4DlBc4DGANoJVbEYjXFijhPzPDHOYZ/HcHeQ9bcRl8ak1livqaUGHy7smwiax61MGSAZIAnHCSE6Dd904NCJm05035p6KXcRK1yjES1eozYsUrux5SZ1EBoExJYdQxhQDIicGPPEOQlPChfPwGMKnjLxVMtgmVDTjhjWtRdI9NzYzJUrUGbC4kqApc/EcisCG5rBZFYymiBeXbC10seCo1RyTU9TT0/183ma8Aq1IY+7JYvFhQsDXgLDwI6BnAnghOJ0BsZQnGql9m86wTrBQg7olmUpgMqgAHuKpyoOtTkXteyfvi3EiHS5MvZl1xFYTpGmdWMFXCvcEqLWOwlesMxSGNnN/76yawE88b9Di1VaoElDB3ckkWYW/23ZVmxSAJT1O0W4SDVBc2XmVmurMK51VftMyFou1RSvCBCrmSVwFTAVhKqLmBURpNs/u+geJ7Gye9bWyI6fcW9YwCFQuCejALBu3FrWYJBkvCzj4xqVYSevYeKUn9+LLapBvXsOQ9iytm62hdrq7+p+bGfNm0p5ssot0Gad3U0U68yKomggosHKnW7yiBxAFesu2Cw+aSlY2TsZe4YlxLcnVG9eiIj98LnQNR8x1i0UHiZ0yrJ/sUQuNUmAToSDVif0GlfCGzjR1X+HoxmgbcsCTQBx0kF1P0+YUjfDggwUF489Z9K2ExGpdRCJtWbG0wI6dJW6z/fCV6ATqpylG9JaBi1rasHMfO7cG1aVsp5jfHAde6S8SratZRbzmTTPG8DHwvgWKPkWXPzm9VkDlLsYMLmNgeM80c8n+PkA9SPMFYBM6OMBPZ/Q5wP6eEDOJ+TxhDyfkPOEWqACaAraNDByqOIQS2Odc6CNE3w+QecDQkaITQUS3Oz5BJ8n7uOJFzlx0xO39sTBJ7oO9HOCh6AN79kjBoC6KjqQUSINgoPIFxZ5Wu8AywCPJ/R8hTwaZhOMMUFyAtPiacaw+BMrK2+NrVqzDp0HPLhJvfcEgDYnaBigo6g/rAL2onAcwcNiIKupeKSJL/zQMFRxMPtGef/xXBGVEgIwUuIaPHKe906mWRUzmIV6smJUMQQti4pzZFVN184QQZsTPIExdMUkjWFgdE5jJiJmYVFLzx6wczaf0khrhTNOG59YykU7qdpNiNrqg1fXqUpmGEFK7xjYOWVajyR381C4eNium/UqMtvM7s2uk6gOoVkt11VYAWOf/y7AQhTac+YWEpc5zLJ+Sr/NGIYcEqxbWWmdSGBVJEJ+LxmTYlpcjhxRan5SxniPlwhMG/1JkHQ5oRn4yQ5kNW9jWSPC7Bz3Fsdn9obTYPfvduG67q3GBpmiudBPgVYrzloJreyPytQVjAArbbRp6cVTtqhTsQd77gYEXSQHWYY9FFMCLr8qQmeBwExGEJST2udUXQoYCitB0EwVTUs719VpPe9r1RFJoexby3leNBbdtw1Tx3wBNwLuZCm/B3uXYgcoGYNS+YsrW9yswzETZ3GyBPO5VXUN25aYLyf0IorzYB8kMit8BJtG1/nmaxUi6MouI0xpas4/03KBHZxsyQCLvFcMDi2aS3aCBdKDwmu6ciiYTCv9GBr9fRZwMRC1/l7nXeeM0fy+r88aoHwpE8cY+OLxig+v3+D29Vfoty/QREHn0xbSFOjXX0HPJ+Txivl8hZxPzI/fQL7+CPn4Cn2coOeJdg70OXGbEy8y8RQC68A8H2jPj+DXrzA/fgEZJ2Q8cR6Shgc6T/AY+InHN/gBD/ygn/hCv8EH/oi7PnAbT/D5hDwmjlNwm4KbWADjgGKSYfBJEwPW9O5J5D5LQh+v4CdDv/kKs02c88CjCUQGppx4fPyI5+srxvNpVVtV0Jlwaw0vB3CyxWtMUbww4QWC/nygP17Rbh3dBZ5CMc/TLVEWgBuCPdwjL0712hijNUAV99Zwaw1Ha3hhxgcivBBwV7NwHbLKnncRdBV0UhzBbFqYVc20KiFI2EBOI7X2A17ZN7TsURjZUAW7+4vOE8yCQRNjPDHGE/N5Qp4n5jnAShhDcE6rIdNhTC7ay4svxINKDZAQIYlMkEI93R+ephV2gAAjYT0hHYBEdQc2vZNNYxK3wq3WBAPQ6UzGWxioe9tVnF3SAisEG5WwnryTqabDgrtV1ALAHbxY1eMIXg30sQTfVdSYukRxWAru4IgKOEey0Qut21oREFTIG3UiNwOcmq6/6uYJphZVMpU0QQlIcZDm+cjfxbPahcyCOMQ0XSKXEQ5IkAx8AZWw1CkRhgvzMN1PCutBaNHq0Cc0axMNGa9JlIXaxGM+KkDJFFC4PSMYvm9NV4xR4IpV2n5ZF8itEaRkzw3fSoeKyKbLs78BKQaYoxkfO6BmceqPzuqRLUhphzWLgCLdxhnHkxY2BycT4KG5tbkyQw6Y0na4FUFF0F2ZO6C4FytHc4ACt8AwEToTXphwZ8IHJnxgxgszjmbfdSYwy+pm3NgCZLt6gKztYzf9SjabCbrOWUrMtsfHUFZopjK2qvBqBgFOLN6Nmr/Dy1fMiZ4K88RdCHdtuENwg+CAoOkEeeFOEXprKZW1ZoKe06rtf4dyUGs2CS3g38kbKHotFWuiGJ99JVAooOSKnboiC7RwG6VtrPKR7//6rAHKT7w+ccfAT+j/gy+fgpf+BW7Pgf7hS7T7C8LvTl9/BTyf0MervY8T+voR+voReH0F/c7XaF+/or8+cX99gh4uzMaJgwbk6//HevY0suye4wY5DowuiUJ5TPCc+L3PB34vTfyeNvAT94/4AT/wJX6EPn8HND5Cv37F+dUT5+vABydCiEJ1oFEDMIzJsmKCzBUxBS+vihsP8P84gI93yK1hNFsegoHzR/8vxtdfQb/5BnQ+0abg3g984APzZkxheFDWvTd8qYoPX32Fl4PxMif6/Z4aA4+nx+qcwDTLQ3t9gh8DdAp+IIRODa3dMA9bjPej4+gdR+v4khu+AOFLUXwxBcc5cdCwqroieBkTD1G8KOGFm7UXEAMgZqdlNCEMtyZ0BV4IuB0Hjt4XA3FJY0LWYyymZ3G9KmQS5jkwxzfQ8RH4+mvg8QQeD8hNIa1hyMQJwZMV1IHWAW6AHMbApBG6WgE3BqXmYlxJPKNiQRh7rc9muXf2pRMswywlOpG1YqaBPJ4TGCMtGqInoBPczFcetWeWSICdo6ZHh66vXoFYJlQGMIfR/fk0oeHlxw1TRUCu1wb2sRXXNk3Gpo3Dhakz3qqNKbxUDqUVxm63MHhhL+UdAMTPw2TrgCImoXYat/OwKZWm8YoxUGXTPG0dKoitxHcU8RIyrX6ogfTpYDT2z5TV3s7CNWpRe36Qae0EK65otiotQYCmQDSXO8Dan5BOTaSFC2w6OIJfOsYzAmHDzUwa3XHX1HqNMp97+9dgY9PcKoGphm3JuqhbViFBh42/0ZEgsku0mFtCiLIMtMngIeDnczWKezUrNM4TyhPKgqlk1yX1TEpgDuNMaAbfM2N/Kvg50V4H2jdP9G8U/VWh9wPMrrjNiSPqWT0H+vPE7ZwYQzAV6GAMAiR8dUq5Pg8C7sS4E+NLZgMozQDL0cxKEqXY7TOhdaB1QjsIrZOtN6+OkBYTXRZgi+shjw+BA/vqTrHJJV+KUHNeyjQ3Pw9fQ+zxLM07wLs8aK9P0DSr+YcD+GIyPsjEXSdumGg0wV6W0qZbLH5SRmbjxfpjZrMMKdC5OcAnaDP3OYGygkRWyCUr2X+QW8ab4GjA0RW9KXqDld5QL+1PNkpduQRnO3isTr2wlr5Ji/7067MGKPdz4K7ADV/jEEL78P+C0UDPJ3B/cYVSoF99BX0+l3tnTOjjo7l+ng/g8QA9n2jPE31YNs9tDtwmAAjk8TX49Qb++oC0Bu0HtHWMLq4RkbttBB+eT3wgwQtP3B8P3PiBgz6izwcgD7RvTvTHQDsn+pw4RDCguDkWnxQWFeAG02BYgT6e6A8Ff/0VdD6gnTFbFBcTzG++gXz8CHk+jcgB9N5xA+OuZJqNB9HeCbiDcDwe6B9f0ZlxuKZnCvmweJ4EKBN6WpzCFOAOhlKDtm6mXAD3ZuDkaA13bsYklHAXRRfFMS1Cg2TiEMWhwA2EW3CKpt7Ej6BRTZZNU+uAmWp7twaPtd9QvKppc07IaVYVnSd0PIDxMHDyfALPE5E+LuHGI/UeGYA2ZFmXxmbojrJOu0O/qLTJlux1jXgntx5ZsT9zJoXQB8NNugZeVs2dSH9OqY2qr9lL8j4yaBDL9AudCVIyXT6E0jsARcmsG+BlOcrsDnfFRDZAjdYIy4uWu0sT/DoA2a/FQQHkAnLC3VMV+zXEttb8dNGjZlW9NNCSZmsiD9ijxHXsdW1Elyso6H5ZJ5bS3H32qkMtniksBgjh699lwDkWTovpCstgPkMIszKahGUmb7r8/dVIFfDEICqtmABF+lgiQFmGQgeZJSUHltOaQgEWw/WS8XLuhhnDg5EAPU/o6bQEybi2MApYCQXKOk0J1HzZYCpoKPgp4Oe09xNAE3CXjPWzeEJAxkQbE226JSXGyK1w9gehqzXWC4ByCxePbxEbF6nGYNSCytnRPIDYsnKtoNEFTsoS3dy7i56MlOOhzcoRhTxpeCYdq4GSAAZRANSV3SYThzSzKMGaEDaY9dUspdMtVN6OJBM5ClQiNotJuLFi/bjlOuIK1Y9hcfcalQ7NrG51Yu/RYzJH43tY/E1zt7W56CwBwFffWjux5r7n67MGKB8+fsTLmLjr1zhuX4FPAX7nK+jLB8jLB4szUMX86mvM5xPj9dUzeATD66DMMaCPJ/B4BX98oL8+oM8T8nxgDkHzNELWJ/j8Bvr6FdAOKDNGmz7gXvpYgZ84BT+A4EsSfLgNvPDAjb4C6zeAPNDPV7THE8frwHF6t19VTLay7miazHJOsvL1c+Ll8cQxHiAMaCMMBp40MZvl8J/nA+PxCvnma7B0dD7wxcuXQD/QuONwgDLPE8f5wBdMePnqG3PDnCeOL4an0LGXixeM8wQ89bo/J/hU8ASefODoiuMOzG4uiNth4ORoDR/ccvMlMb4QoE8zCw6Ye+eDKJ7KOLnjtb/goIGjTesmTATtjKGCoQJtigPAnYEPLy94uR24HQd662jcLJgtWLXCivCdwxYtTwheoeMjdLoFZZzAOaDE0N7NXacTkwSzKbQpWgOoW4DxbDDtjNwDPmVFILIDD5d+FFI2BEUwKFVj+AX0WTCs213RzHowBuScKyZETigm9GgGCCb8eI8lARCsoLBTS0kU8ey0kQHi83liPh6elWIgE4BnDliYr3gnaLBpktwI2s2qsKSoC0bWRA6RWmluDS1CKQCOfycEDE6rl1X0paz3F8LfLCh5KUScCLGupmRkw6Hi4MSlvvV3dMsMWZp8+NTNxSNhZ7IEjYJK0qLvNS8C8IjPa8S0hFDqPvPRF2ulYiOFxHp53IrjzQW+jIIj3oPCl4/VcCFOmEDFM01Apfx4IAUhzBPeBwwYZNs8CTK9lhFgZ1fKrBGr/aTQKQ6iDQbpM8ZTIR9fIY9XU4RuYusm/AOqkCGr2nWTzBKJgFo6FfQU8McB/uYEfzPBHwHiO7hPtDnRxkA7B3AK+HGCHyf6OdCn4KZu2VRAOxBl+Q9YqfpOijs33LjhQ2u4N8a9uYunAdw0+xeiAdQB7gQ+rJt57E9wpwYqrUSBuWHn9HYpQr5vuXnhsR6qC5hGPAnOmdXOCcj5o95A0kFjgscAvz7RZKDJxP1Dw31O3HW5eNhdxSqEOdU3K58xx7S6KWq8gZo5YJgE3DjjtaSxuzjhVkt37Tkg6b62WlM0Fq8RA7egWFqAyooLaoDLQKub1dSjw6Jley5k3QJmv+v1WQOU/jrRPKZktK/xmIL2+Abz5QPo5QMGMU4Qvvmdr/F8PvH68YHntDTd1yF4iOAhijEU8pzAqaAJ8IQFsXrAqegE4wme34DOr6DcjNGw+fMbETqsr8IXp+JFzfrRuoJ5gtoDwCsUJ1SfwBjAOdHc/3qo4EVOC16Vr9HpwA0NLGr3e058cT7wAYL+2gCyniZPVrTOaJ3MzDcG8PoNOm546YqOiQ/U8WyEV5g5ewjA58DLOfDl77zii/mCl9c77o8vM6VuuIY5xiqh/zxP3J5PPJ5P6PnAc0483NJDINzhAb8q+CATL/PEF0/CFwz00dBbw1TBqYLz9SPo+Qo+H4AOnCp4usZq2q/gJC8BxxaNf2fC/68RfoIJP0nADyD4oMAh8GCDhpu45Ws80cYThAHI18D8CBqvwMevTHuZAu43tLugifeYIAsm5tbQGqMzo0fAL6qtgJYUNUUCHL79lMpLyzUJFB8jS2cAOqDWKCfrVYg3gsy0YI/Ht4wuBkg8mNkFil+iswBswnUMc41MMuFhuV+aGU8P9cKBxSQdDqMohBewK7qoHrQDFDI7cbrZrOdJgUm6hLOmpcI90W49CSDAnnXDbvUJW5U5fy7WodjiSu7asuqWq8FkdFKFZ2BwGp3I+vZgBVmrZ6KJm2CkmWar03ujNLbYjTgn7PoJEK3BkkNkLf/D7jviR8iOrYLMeiBFGwoLundYtQeSx2P7mHr3GAANWnqGAQpRxhTCUHf+COPRgTYYz9nxlI6u3R/H8iCBhqlkfcKiDkeUK1BgeGdbVcXj8RGPxyueY6B3E4TDJ53EjYAOUFxG2h0rg4VNyXmdoG9O4Osn9KNAPxJwTODmMYNDLFbqFMg5Iec0y8u02Ab2sEuzDti5u7t4GgQ3ajiIcdCBgxmdGxpb7A9YtvZCsU2n9UnLkiQO8KYC5xQ8fYt+byPwhoNVqnOlBkqyztUUzNMBxCl+Lww9xAN+wyRj4JCmWCapiMXwQdyCMsE0Yf3UzGI5IK7QDQznIeKkiRb0AnCPXktuMXIraASpE7mQAIGaLndYNyBHXUCdDNRBLEbJ+cAyivoapMgkiiBNs4yHbvd9X581QGljgp8D8vEbDGY8iMAyMB8v4OcHDGoYRHj8zjd4PJ54fX3gOW1BPSbwVMKphKkNckoWE2WBN4Qy07fMJxgnWF7B89XZo4K8WV5j4EAzd8pJuCnQRQ2Zm3/GxAMNI0Sd3kNIPZtHoDjNrz5f0WjgoAaNeifnwP31a9xlmn/dNTlphHYw2tGgzJZL/3iis2n9X+jEBxdUryBzH7Fp5rfxxMv5wIt8xMt5w8t8BbG5TmYz3+YYy2x4jInjHDiGaeTnFNzVQARBcYObIUUM8RPwBQNfPBWN2QHKNIDyfAXOJzCeUJk4VXFW5m92Is/IsACtOwE/ScBPkOJLCL5QwotaLIL1CrKg48MDp1kfgDyh4xtgfgTmK/T1FZjmN2Y3G28AhdiLNrEHhVlWQFNkweCUwmklWe9bDm0RUgjLAiJ41gKikxEqeU0XczfFcVLzWMg0v+Y+3Mmm3ZFbGojVha3zOdjcTNeeT9j29KtHbRmA8o6E4FYQ18x9U7KGYcTkvoeVAREAJRqNmaxatoMIkATgJotlQl8hBAFQdAMoHEG7YRYpQX1bme3IgijnDasLxABI83SkyIgRGMgfHjWoDlKUCdoiVVNNGQm3lMIsXSsSBeHECYCyiCMgqmb8iJJ4yKA4eDKkRsSI9Ff2YNHmjxDvMYqrw7ppp+rt7hhulVKyys9kvbwgjHMCz8l4CmNox0D3TDWv+OxVnU8lDIHV3ZBInDfQGzE05/nE6es/2lUJSjxGVC2YajEOYhaOaLJHQ0GngB4T+pjQ1wk9GTQsstash3Ee9YqqhhLMwLzGLSLDGjGaNheQ4uCkoXP3SrGRTqxJ2xHILUH3FKDVAQqtpqPDgduIrD8HJcNd56LLgknwWCkP8FUPWLZyFsPA1/R4MYWFIEhYFL20gMeqkHrQKQSdBM0361BvqzaSBayFq3jBA4+IKYuMYAkGcX/ajJbC1LOWqUc2hZXSrU4JVlpYMWU1MQyAQstS6c7DFW9C6jSf7OF7vT5rgKL8gtkUr+2EMqFzx0nN0LSyiwHG7wjwEOB1KE43zz2E8FDGCcbQ5pVeBcANAK1gOxogDDCaawFwJdqCzyKI80ZkQlrM3WOVTdm0Vg/UEAIeCrumAOIJhwRBn4KOE8ArbtwxiNGm4DkGHueJ9vwKfZppcAAYIEhraJPRZwMzY06FPk4czSxA/9frVyA5occND1jQ6XmeGM+vweOJF3ngzifusLgZbp7338wEPIYDNFHcpuA5TPjreWJMwXPYQiQANzR0F+43MG7U8WEoXlhtvxCmTtxkQp4f0Z5P9OcTx9MAylBjZpYdZDVOLATIAQoz/u+T8ANM/F9N8QUabmKdh5UBbYz7HDjGxH1anRqVAYwTNAZ4DtA5zYghhHYCtxO4D8LLYHw4G74YDY2sp/GhLdMNI9ANCBM6sjr+1qMIZLZj144KWnEN/IBId21JoY2hjTE7Q6ZrayBn0uxZIwLcOnBroKNbME6AN3XLhNmuQczQ5j7zppA2Dfx0YB6EIQ3Pm3fTBkO4G/VFoTaox4cYGGjdSn/rQZAWgt/TvRlmAdosKM4MC8M2+e2pkcyequiWAgdbESrL6mnACnAGJS5BYi3hq0XKxpXc3RbuJwvYtBR4FY6K/nYfU0GNMpuHOy/rSWdIg23MEG4YNwv2jCJ2wl7cjxRCYu0wtnxNYxDkljPylFwiQKw0rwltlwDKHZEiy+JuHkQf3/VYCVBAFmfn9pWws0QtGiEDJycEQg2TmqfXMh6t49G7x3IRtB3QdkBwYGrDszUMtygpTXOfsuL0+BMRxYMITwKGeycDwEaxQYSLS03RIyV0344UWwZoLQmAjbu6NUn4wGwdsx8QYYyuGMeBeRymRKqnAaNlJ2Db2rI+HWwum+Pm7wzq5j4nnlBmKAukqfVhbQTpHdIUsyuiTf2AuU8GFKOZFBhqn2ezNQEOxWHicEAHVxo8bzGhi6rFRNE00MpqLnM24+iioyBvsjHu7DF4bCnTUWPK1iAtxYTZXbQwFy2lRxhm8XerqLrhz2kRtK6XxetY0FwG1vpWkf1k51cHJQ5MfN2yu1Rt+a9U7YxR+zGCUD5vgNJvEJk4xwvAhNfbC3Dc0Y87+LjZYlXGx3bDswGvbeKEaZUPEE5lnGoLREihaBBqxnjogLIu4cMd6B3Ub86LBKDpaBapBQHGo6YT8pOBowFGrg0nwQQyWTEjCXNlmEnV0sgAc/2oTkydrolpykQBZQiDUBQZszogTSZ4nriPV0/fm2CyaoXnGHjMJ0hORG1YQMA03EjKfh8mBsVreIgKGgYaJg49Mw7DAArhJuqMwoBi98j65gZZJvagroGmA129VowMy/2HoXx4/EBzIWxxAISbMl5mw52BmzD6tOtBYCBKp2sdkgIynRi+HsL9QOpF8oTQhNAn4ZiE27BYhtAEiACIxY/YixZAyfKiVR0oVpNc8cYNFAxpzaxTaKY5WQEGTG6e4USYHJHucQkCtQbiBg4QAoWQV9MgcuYeRaU4aVi4efCvYrBiNOBsB4YSBtoCKOwuI1VkHiIxtMFMxG6/jRTedPMQu/a1inJlhCgiNdbgRYC1KJUVKbHBlPcslmUosQyTakNABvgtw5UJPnHBoB6vkuBpq7UdExuWE2/R4J/D3C9s2TmTG4RtXoRNw48sIwu9cE010r/BmzYa5BAVeDU1Vo/1gY9jHl+3mhkWR6x/MQDqRG5/GrCd7AKRGaeDjMFRSIzzeW3uPOidGpTE39kUMFYI2/0JCWZjTGbMiCmimL+yxsqzUAotf6JirZqNMR0MMrMDB1eQWsNswOwdozVI65A2zK3qfKr+o4y+NCCsW7qOlzBwN2DQAIPd4mZC2Yx0AisiacSStY1C9XcLooYpLqx3AbIRTg1KurCporTc5EAF/cdnBB17sUrFZvGpDQ3zXOQumphLWkHnlR2hXDr3B30WIwcuFMeV5jSUiKRAJPoJesR6Hi3rVl1mGcv8PwSgyO1uQkgFgxn88iXmywf044Z2e3GAQvjmGHgK4eNhFURlqlkUlDGEcGY0+MSkjskW1mAWEgbQob0D/QCOw4WowvyATpzk8IQNnJyieLiLp3ncgCrwAPAUwQBhMkOcQURlUdbpJjnF4UbWjpk1Hk4GBhmjGR4rMYhwuB90iIJ1gAm4nR/RMcDa0cnKvj/HAMYDosOCwdiDKHzxci44QByAiSqYJhgTDRNdT0Tgp/h6P6SZi8QLC0Ukt1VkDL/khNJEx4muJw554j6H+1phQbIey2F5Lmba7WTZPvfBuLPiGOQmz+ZFqFqxLQuiQmqufypCzZkFiWmsbRKOAdwGcPdkBQKWMIvc1oh607ptEqKqIXkiM3FaN+nZG8bRDQAHQHGX2nQtbfrzC3nZaBLLfW4N1HpGhQ6vYUJEmNRAZBafSdZnaLIkLU8mjEY4G+PZzIJyEkP4gMICybNRIFMyQPWYDGoEtHCPiDPyynDNggI4k6Ng6qE/OviAZp0OFw+21w1TV/EMB78hpuNssYnPqSBiCcgDaw00ENtCVrb4GmWv3cHrntW1zii+KGTCPWJyJndIm5iNPJA4AiftXMIrIDFcPiaTaJGE2w0MpgmyPkhYUfIZNS0M770SytHK4KnBOUHbQoxBtvZELbbqbIyTOQGGjZMBE0nFrEM8RsNcWw5QmsUXiTqttuZWlioBsVAl2d0G0OSyW4OuulkOp1sjAqAIBxjpmJ0xpmIcHaM3SO8GUDTiKtYWolRJoa1Bm2cPNDbXNU13SZa58RgWAoGpmXuNg3580EOr8QKH2mCB3RY+5g+34i5MKTMXjjjwAWCxLwmsyxyHMLeVZeuKzR021dPDM61srbcEJxwWTHXrSbjAgpHVFZOQea2vwrpQ1mYqDEC659iVu32TVDSiHUc2J4S9p+tYV+Xf7/v6rAHKK5sWeLYbGjPOdsMHvqHzDY0ORO+YH6HhoQ2vwh6NTXiK1wVReLdI8/2dagLZAsS8Jw3YCbij0QElixk4mQGs0uHqC+SEB5Yx8MKKVwagEwq1GAwQnlC86qL/NIdOo3zlhnOSFxITjEnOxAlPIpxkPvQDijusIBqmWDdjt0eMcxUJE/KmeVPw9HThB5G5oYRB4oZjsgWvUJyTPW5L/DgxoCfkfW3gQshMl4MsnmMouRvB4nuau9wsEJTxjRAeAjz82cTnIVC6ekyGqAXGhUZhNU4YYxqzMaEiHllvvt3pgWZh5DgDX4g3nJ7AnFbQ7ZiWzten4JhW4RcJ2AhuRnJTBoX0RTpSTUpWFIRNxDpgmTCz+yuzAwOPHXB3ivpcBvCMy80USR6rkMyYzILi0fHiWmSEmEY0RzgKzG5FOME4ycDJCRNUCs/iCGYWmlrEZpCbdGnV5MhKlOyRE7SEZghk+J0Y8zbtlWFAihyQr8hTFzCmMnp6Zh3PsCUsBhelxUd5t1gbXa4ghAUFaVkJ6+MkK8D2IM7PAVDsM2OyxaiY20TN8kC2frNhpj8tkgk7AE4tNQTq6o0VgZk+4lumDvnn6+hQfrcKExLcReaZPxnLlJDHBGcjK7A1yILasxRKcYuhzLe4IJxu0p9sEStTYwwWIPV46c0NpTFjUTU5Wjeo4iTjOx+J8ZEZryx4ZOq5AWlmAjVTqB6N8GDGa+P8ruvKCtqynGBxL53MJXKwgdTGhKNxxnAZLlR0buY+aYzem2eoGPgQcEweMC3Sp8MUJyvmBneBWIZiAyEomykCoHkprmgmKxzoROdzmQJmyZIH6spQ9FJ7QD0sIHqQ1dcKgDVLeXEI+voxnpqRbBe44ks+6dTuScMqooXmXCpErJSPdgmwj2a2lA1y63eK8je+/+uzBigW8Ac8A6W7IDrEgidNSCk+TsVzAh+n1QQQAc5hQU6iVtArIqhPWebu4UIyLMQRaK3w1D0xpmclfn2aJb0fuHkwVVQzBlb34FMtoyLSFZsCnILCeLVlpBHOATytgCOUgQfBslxUcGNjpKJWX2BMALCFc0614ElSv1/7/pyKU4DJgA7zuR8j8uTNMqpKOLMkh0WsP6dlyj18HGYYFlxeN3G/p39nVQ5d5pP9LdMClB9+nnP6YlRnNG4qn66pkpi/1lwgq38OifuH2d6jl5L4d+Jzd04HoNN+G/ULul9X/Xj231O4cII5kXpkuy7CC3ASq69saRImmPuJYcX2YGDp6T8xoULJFMQD8mZE/ZfUxRBIGQGv3kDMx0YiAFR0ZTZL0BZW7QZ4VgbCxWiMyxo42n2TC9cQlOZW9OwX3y8w3zOA5G5Fp9+1tDina4lpRi7m7RTsSuX+sRmnEJiwDHc+G9azTewGrWCMscW0xTawmGZYYpQWiJgOHvdmlXFMaId+r4hH0jIK2Bh6YNvKpGOc3KmA2oiQyvuud67AVXX6qMInwosRdOXCLYN/3V2g5Xx2M1SmhlIIgeoY7s9mhhNdY+D0rTGBfo9B4yfMkvyArQcrORbzsPptnWTfnWQCegBRjsWvX8KVixBOazMMrEy3stVKwUS03LkemxH9xWJsxK/X2HjbJGRmW24pvKv6YIA0q/1qMWZs72tsotv5ag5oh5wSrTg0A3LVCYhU1xxc1l8C1BirkEE7EZXjdP8CutEcQbdzx2Os9bjWYbY8CHoJ2in08X1fv+sA5Q/+wT+I//Jf/sub/b/yK7+Cf/yP/zH+yl/5K/i1X/u17btf/MVfxK//+q//2Nf6ZgrOKfg4JoiB5znxwhOHTjS1glSiwI9eB56vJz5+tChqmS64nDFCySp4jolzWqE2KyNsvVBEFDQYxBPMZo04CRiev6gwzeRQwuswQdFFcXbCnQVfsrjGY+xhwrruPrwcOUTQhoKFcJuBtiy49nEKvnlVfPNq0eMnFB9J8SRAuuLeBF80xge1rCB5GHgRUXzzMJDTp8XCnEJ4TOCrJ/AQxWMAL1DcxRsisvfvcRfWAih+bashhNcTkSmb2uJBHtehtugbE/oAbp7twdPAicxSL+2peJ6LyJvCrRaUqbA81Xznqvg4ADDQhuJBxpRPCCYr5im4D8FxCp6nja+I4BzT0xYF8pAs+003QTsFcxia4oD9Tb2DV9EJo/gFgMWFYccN3xyxWZyNWenMvWL1ak4deJ0Djzkg0wqyZUCZA6tz2P2oBBgZxoKbcWpuBB4MUsUc0wEKQYZVIwZbJc+6RUPMMQfOOfCUYRY80uXSUHOTQs1MTbosEACl5QQw5sRJ9UgNziOptuMW09MUZIEY1OnKMjY06SxoRMSVCf+1ZSeV4xysTjGL2Bk0KoB4XjBBMnW6MncT2N5OwtduDQdYTSnVFAFywEz2zNGzKYB0uGdinwSdXMYirB0VSpCDlhjTGN8AiFookWHP0GApqG5uRPwLQTGdZ8UsNRUcQjhVMjsuwBClixrmJohzwQAs0wJ904FuFnTzObUKy3CgvbTpqEorYg06dQo+TsXXU/HVVHwttr3qEq4nhfAzBe4BxUcVfIQpjM2B1gFzk4eFQHL0rADkAcFB1im4k7XdaGRW7ebgojNZ7zAmr5NCaMaEkhaQOsoCTp1o6w3UYH1yhiuazWeWQVbyXT12wyV1FHVTmOVep7iV2qrNnnNmb7DXKXidE485bf+0Yziym0hLCf3QjkuRPZEMOF/QcvExo7eIOSxO1KJ/cIItpxdyVxpWV/kBcgWSUtGqikECYwSA/36v33WA8hu/8RuYcxmi/v2///f45V/+Zfz5P//nc9+f/tN/Gv/0n/7T/Pt2u/0vXesrq4SMj8NMdjJtu5GgebqNKPA6p9XtmNNT12wgUxsIH6ASnmE+xPILimvMpArMiUmEkxSnB7OesBTbBkBOJ4qp+CiEFxb8gC24tHmchwVAEh6OMlUVLNbcrgcrIsY5Jl7PiW8eJ74WyTTRVzVtHEPwQaPPsRHpVNjCnoKfPM/sbfFgxvn/kfc3odZt21Uw3HofY8y19n7Oubn5Mbn3QgwisRSxoCBYSeJP5OIPmKCClfhTCAhCSERQEW5AE7GgQsohUYNoRQJiQU1BLaRkQFALohCjgiEfeZPce86z15pjjN6/Qut9zLn2c07uuXzm4z24DvOs/ay99vqZc/y03nrrrZvjNid+rXfcbeKmwLWyhPetUM+iwl4UDtb+z6AdWWLHSbKPAYtyOTIoggZAtUDVIzoROtRKieoggVuHzY776NhHRx/cNN04YFO0BsiK7tXYl2MDS4mfbGI3Gr6JgGXixj4yV3Ns7njxYMGMEzp7h9iC8NxIaZlNcSDdbKPoP/3ucd61gAVOIGRLAtSMXGAGPweVQ0cU0YXn72aG3XhOxSyaKBa0EF8mvZMREmmEAD82IaaRCoznGc3hik1GhQZUy2t2lLCXZOg8WX0uninAswCZnqr8cOnNvkR8LBdjW0xbC51DEQqicxNddEeIDZN8FjAFuBbJjLT9AB3JXq6Sy0h4CIzVLxbskHlc0zCZmwQo04AxPSqlcsOWBWYsGDgLBqk7ATE/9VmIiDg3TLX1YBMcB+PiYGqJy4Os6DGbEORifFaV+PFOBHRx/vNbrpRZXKuJR4BS4vqVU8wskFg3znHzoe/JSqjcbPO1llw5UhHUs4UuTo5NOgEYAShBAsC+OewYjPW5D/YpNV9Md0znuXprwIfT8ZXp+GACb11wC42DxHnO77VDcI/fvwT4LAY0MM2zhCJ+iiHcsRko2g9KrLrgCb5S2KsyRmQ1N90kLAVE40oSxCTDBhzN9gY4Nm5gVdOE4CKZdozfn5aLBJqnhx/HW+i+MtW7g9epOPDWHNfw69oDlCdALJFCc6cGsYG6xRaglHPfFlOjHiNNElj6AlNILVUCS35FMk4abFFUDqX+xiIASysDHo4hsuzvkXNFDs1Skq+f5PZ/HKD8lt/yWx7+/bf/9t/Gb//tvx3f+Z3fuR67XC743Oc+9//ze3UT7K7Yo1ZkoGCEcVG6ZDqAKXx8rgqdpLVDc+3ChVFCIxAVPR5iuxnWgyIVLhVDgD2iq5y+AxxQHfOBut+N86hJOO1JLFwiuEND4xILhxmqDU50F/QxcR+GD+fABzh8LO7CyU5b+EPYKfG9RkRRvz57+HgYAYoHQJkDd6M3ytUcl2AbCjy8LzhY98lN3pxlqGNODJu4zxHIP6NoWkwz1aWQKfQSmRO1RON1FeZZ58QtooE9IoKcGCUEmIAskWgxR1PBZkDxid0UHhNPHdhP1GgHwUz3A62/XiwQn/cC+uZ01SVWTmOvB7I0IsPkJ3Ohp28Bjez6nCzhnhMD4chqqZcAhpDR2QOgWAAUgAJiPy06S7iW/0ZGRBr3gIZRBIGdsHoJYaYWG7tG5ETr6kdgcuTJuVWpOHPmSE8DPdrO62GPnSJADaq7LHDCKDXFkGtpytN2BPtrXmClnzIFFQDldH92y0WwLR7nxqMZToIVcwtWhpoajzdPs7GeP5tjDwblSJmdLOVBEJWgIWNKi5FzzPgj/ZFutdwPGU1mrMor42dYBpyuwUPy5qSdERwpqfRC0XgvxSE9zmefAecDUMm83OmdzlVSCUBfV4MhxO18iXwXYzUeNJ6P1SUYQAg0bYESi9dKLZU5bRZuLniBYBfFDqPeR7KsnpoghYavh4R+iocF2JoL3PI6jGAl5MS03R3YnB5L83TOUi/Cjussf6bRJlAj4DpWtoDIkteTRhQTtJYgKJAwUzzOb1q+ezw2cdY4HTyjZEf4sCVwV8yAq+6UAnQ7xu9K7XqkpiP4WN2OQSBC23kenqXuniNZF0hICRJwmDTGUDyNmwBnCajyl4ERD8YxUqKn+cJxcV5718t+ottvqgZl33f89E//NH7oh34I574p/+bf/Bt88zd/Mz772c/iO7/zO/G3/tbfwjd/8zd/7Ovc73fc7/f17y9/+cv8oVyhbcNW3kNpG66f+Syerk9oW4NslXk9cxR5D/V2x7jcgD7ZtGl5ViMsxu+YtwJzhc0JiZVdHIA24HqlhX5rR+65GKNEOJs0TcP9diN9bwNbZRXMpdzh2FExYOixiUz0MSkoFcfEnbqE0SlAdUfv1Gl8CB5ptjUuV/i2oT49w6PKwsPCvb/cIPsd1SZwf4uyc2DtSq3O3RxfMdDz4M17uDw/4XLZ8LYVhD6MG5Y7uoYQ1pzNA31g2sBuN6ZNui82sBqiMZVAcUXRDdUQDo/0OJjCbs1v0XH3jt0H9ki5wMn0iCCMsjjI62RDqq1MfKXf8CQDnxmOqhtUKroLSHobnmHYxPCkgAv7E89iTM/NWJamQ03h2xXWLvj10vB1UFQH6qQltMCwzDPMgfuINA5CwCu4uWO3iXvvTM0Y04PDwyip6kmIOGE+MGfH6GTxapAD4r7s2skQSACW1G0wpaVClkRNCFB6XxoU9siI/kR79DHpk43epqNMRbFCLwoBN59SMcpGEawjDARZcSYBUKoiDOx4Ddg9mO0fCkDbccnFPVX+p5x6iJdt0hUUY8D2jrEP7H1g752NHUf+HCB4EhDPHjk9BMOTg6IP9jAZA9LZN0r7hM5wjR0RAtqAQ3nNJrAPNqu8TVugokxWXRRRbEqArpG1200wHMGqJvkWAEAkqqaCgQKQlTw0rovhw5X6KMKIVO9ROnqSHQpYHlsQGqVVmLnAiQs9j45oVE5mZBwHWiSqRgqAilqBVpVeGm5oPlFNUM2Yji6KKQUuDaMAKSSrBWgVaI38jLvDt+fYKAe2YqhKC4G1QbXKCBoFJhukNAypsAjGPlDFh6XgpTX0K7vKiBboRmuIUtimo5QKLWx0J2UDtMEkWkQEqB1h6U69GsdJ0SRDJdKcAh8T6AQvdQqaKDYA16nYFDSV7B5O2L6AWReK/XukYlOQm+zuBr5W1eyJxv4zmexThGV8CZjj9EgaEok8VcjzE6RV6FbDQbazHcfYYXNgSsFEwTDFHIo5BTYE1kGrf/GY477arRTxsMPv0HE/dHbiSIM/hF+KRnoNcf3YmiK8ZZwsVDH6bakBOsPwjd04Od4DjNKHRViWrvy+GpaAqWlKLd0nvf2mApSf+Zmfwa/92q/hz/7ZP7se++IXv4g/+Sf/JL7t274Nv/ALv4C/8Tf+Bn7/7//9+Pmf/3lcLpePfJ0f+7Efw4/8yI+883hxDgOTiqpXFH2ClmdoabwAzhjHpceJA0zHkadNRAqLip2M+ATiupCi6gWuT0B5AynbctHUACgKsHeFDHKHc8ClA2XAdbJ0D5nhi7jeHembaVAMV3ahzP4KBuwRBdAoH4wipGHqFaZXtPqMUpTGbL4DtqOHDXKB4e1MfxFqVjqYHnrxmHyywWWD6QVN9FSlERVHi66lZ0tSmN0PoZYHQDED3RpNieD9mKqs8MCquHgBrffvRtAUwc/atNngjQt8NVLIFwCX2Ow0Uzzh7JjOl24TPSh/qEfku9xZUCK2VZA2vjjIJE2yQvfRg0UKxsIBmQQDGAQWHVy0XuBMG/aOfVgwTCPcYJ1dYwOgiLIE2uaOudML3Gyw8aTR/AsG6mRCg0LR3AgtFKuf2GOHO7UFQAGAKaz6ElVYt8NWex9rLFGLwtdnJ9/QGgQVm+Jec15Hc106BTOBhQ07F6T8u1OpKeRgN4xX3swWa+bTHvQw1MTM6BdELdmcTJP1GbqFkclW6r/SqZSvR21RWqMfpQNCJbommuFAYgV6pIGDLXWwMR1EomWBxNgiSKyRJlNnTj+Zs0cu5Hzz0/9X/PMxzz7Hkn76OUSakSw7Z+1XGiW+mSBTCKesvj/cnT5asnPRsNLIvKmFw6qnjuhgVY70XlkARbRCJPmGCbjjcFOSEBVLVIixrmVpY4xsBqukolS5AKjh85NM3auzs6L6h+8CwOchCMeRSkugv77njJSZSaROfDEc1bkJNjhq/i7HdsBDE8HZOO98FTl3DkepJbhOSpu502BJSqRHfAEUC4sASQ+aMN/LFnxuchr3ocvqMY87gVH+LtOiaz2MNiV06MUKuhceFo6gPG/JJuYhfnyZ45xqsLlYzLKbAhbslkfZfGpu8sKt141ChE94+00FKD/xEz+BL37xi/jCF76wHvvTf/pPr5+/4zu+A7/n9/wefNu3fRv+xb/4F/je7/3ej3ydv/pX/yp+6Id+aP37y1/+Mr71W781WowrqmwockHRK1SfIEKWg+DEYLJz8IiHkwcb11EvMDnAXKIPXNL6BClAgcgFok9wfYaUjTl6VTaUS4CS/IYCwACkwEuHa4AUhGeIT4jGhQ261MJq2gKkTGPOfPdD7U7Fu6LjiinPcH2C6TNKETRlFA0RdGEiqPjEi0fBsYPuj06gcwPQSwKUC0wu2CScAWNqOAy7ZDmlhb+GBuV6ZB+SQXFPjQPTL5li4ULKCIKRlRKgOEHK7sdiWhzs5yGPAKUpP/slUgESAEWdeoLVxdMMmzHdAoCLuSvUC8QLqpdlGnVz4OLAzQw3m7iNjtuoqGKoUlBUGXVMA/oOH9xI76BO6a07uk3c+kCP3xGgRHopAIooAR9RV4d1NgtUDzFsmkqZE5wMWzRuApRpGqkLNirzjwQocwGUOSmiHfs8hKT5eDeCdXeauYnE542rwIwn1C3aGGDNHRGmUlKnYbGhpGlaUgae6RkjOLEAE3MmOGFaLAGKzRkAhfc9ND02LXQSFJDTEiCAXJSV+0xwYsCUQyzoJNaJKoQtkKLai2XVAb8CoCAYLJ2KUrIxHAXvGpR6pqiyYiVvmTx4ACaeq3LQ3P7uhrs2gQfcIlg+43FS89UzCs1Hz+DlLLyEL6nj2hsALAElZmzaOlcZMNOzZ3CQdH42yuSrCyogDaR5wOscGzTbJSRIKYvVyOrHIQFQXGLMCtg2IbuTa+g8/AGkLHH1GmQEW+4J5g3wo34mtUpqIyyeJMDJ4eehsd6QY0qgwuaP6S5ATWsWxIeOyvMz5dlP7RHCAPHQw0hQE+m0exjfBQgJU8VMvKYtgHuB+wSsROWjxLjnMQOczErG1zK4mQc4yZJlNn/kJHa1yAgkcIgkZuR5ziJ2sZwT+bOsewRQyapFd7KU7nqAFI+FBBKbgxzX0NeI/Kq33zSA8ou/+Iv42Z/9Wfyzf/bPfsPnff7zn8e3fdu34b/+1//6sc+5XC4fya6YOcYU7FagVlBbA7yitgZrymjWDG9vV9xuipebYIweSukB88mIdBQ2B/OCGeiwmUONG9tAg+8bvFxguGCoYpfCChBhB02xCljFPmNjsQa1HcMH1EPYhY7mqSNw3L1iwLEXx74JrBiwsfHTNMMYkz4oHXiZBXdsuG+fhet7AK64zQs1KdXxBjQk6pVTqm2KN9uHqKFRoYMtWYuXUXDXC+6X97Ftb7BtF6Clut1RpMPdsM8ZLq0GGw02dlirmDLhW4e0nYus0C1XSmGzvXaBtgvKdUO5XCBagFLRZ0FvAx9Yx00c92LY60507yznkxRfgWO5Tep3hgKX54bZKvB0QWkbpFT0tsG2Dd4ahhZsqthDWwED3GSBkuaxBLhjc8VmIaC2Hd1qVB5wLGEZ7znQOkGmUQQ5QnTZp6FHf6HVmM9Sl3BUOYSRMDAFNpTv4SAo1VioTVjyPSLSN2466bfhIjSdWuA56xaAV9sKH/ODiuLCJrABzD1y+uqY3YNwiEUeKYijcK+G7btUsKdUsEvI0yuR+oh1iNqGFIpYCHsNa4UEm12ZzAgcLNxfY+EuGRzH97Vc4EK4msGDCuBBNVuJRTUUACeaGkVX8GF+lBX3ElGepm5AllYmylWWvsWm0zsnNtkgDiNyR1gVYAH3B5HkGXnEZndmWUroQ1bkL/x+1HhwDKrTMkDia2sKk1OxKIegmYJ+WX4UkTPC6AWjcuz5EDgNi0Jj6iEiH/B7ge1sZjdHsAxOJ2JEVDx7he0VNloYiE34DIDigjGE1ggz1E6ioSehH9COYITdcZuO2wT6VFwm+wDNYdBumDoxdsfYHWxsTOdvam04TodTL5jBnQAQJXsztWBVacJjs3WmAYXO20VspS+3oUvHIWoHQDHqmsowlAkeu0M7IERb8IlV4j6EZpqZxyCQkWUzcHfB3QuBCArcCqoVlFmikS3w4hd4rOf3Uuj+rBumNpiwuSNcyfhFzyLtgIRSld2qK0wqvNBM1A1rgU2PlkOvhAgDOPbYjwgLSFCcT22hqnIxnvndHWbZoFIjJaah4eL4n0ixNoHg14BPfvMAyk/+5E/im7/5m/FH/sgf+Q2f9yu/8iv4n//zf+Lzn//81/weKfbyGch9AHMQ+dPwSimMG4o5lXk802iVTQDjQfstDwYc1BRf/4Qcp3BzAaMKWwtMGCeZQeOUrmVIwFywFzI6Sd15aOiF+gwt/DISV1Dc4H2iDQIg7RUqG7xe4eUCyAb3FiVejikVIhOmBaU2iBjK04ZaDDXGogRV2EbDxIa9btC6QcsGaVnfz+Z+7oYyWWotGWVG5Iy5xffmii0AalUCFC3Q1qCtoVQeWR2jqsz5tw1lDhQbqFFxIu4o0cDKysHK1JmtvwVlqyitobQKrRVSK23gy9GLRpbRHDdtXgeaJB1ywyTIM+IkQe1+PA5kBBTGTqAgWVxCeBrRWKT7HKRxFRabzImWjgoFRBTH/EhGyRltRCQSwIQiXF3RuK/IJKLpkHDy+yVAyY7C8Z8rljGUSVS5gRGfpfEWosz4kUERjXLjICgsyustja6MQHJVbcQ502SQTloU+CkFkWclKPDEkksgmnNKJBr0nR6PviHQmJPxQdZ1D83Y2eWWPhSyhIsJwLJvcEaOuVfncOD5x1pYkzFcFTFrjr8upn78mos6cTnoDMlfng45/U3+ft37WvDkdJ4e+xIdAt7DT4bjcrrw+sfhAao00wfwI4WQQMxAnY6BPlGxyZil23Ewvu5wk9D0ALbGcFyDRK9JJ64bAXam1F974GTTwKU7CnDKNTNeMez81X3NsaxCyx4x7/iQrOsZm3Ze5yi5y+Z2HkAoz8c6L1EGz5ShHGMEcgDrDCjW9cBKga10mB+VoxbpkCNFkrnhEpqRssTLub4JZLEda8xaXvPj710LVgSYzNxpfnBgH6JuT2SW61ecc2TKZu2Hx/k8avSPIOlxfB+z3x/+9dVvvykAxczwkz/5k/j+7/9+1Hq8xQcffIAvfelL+L7v+z58/vOfx3//7/8df+2v/TV80zd9E/7En/gTX/P7FAY6bLQ0GX3OzpOSA2G4YkzBnHocBsyYnO6RWjhfiHjt4rIiVg5GgRmL/ExSvOes0IkhOqVFIzYKsJoIqnSWGcOx2lvJRInqIC+sfnEwVcMB7OhjogzAOnDfC8Q37PUNhlzhuoGkZPynDVIMWhpaveCiivfeF1zqRC2GIbT0vwzA9g3Nn4D2jG17RtsueL7oag7VtMOcTqtmoYGYFdYrbBQYJlArtLKnjIij1cL8tCq0XsmgbFfodg3VWkU3VgG5TVQBNvGINpgCKcrI3ZRpOHdHM6rkNwXeu15xbRXPlyu0Nnip0NJglcdWKjat2DS6tCJhSYXC0KRQVCphuAQubhKAkARrLHRgKqNosBKuFMjFuNliU7AAsXNy4s5c1E/gNRdH9xK+NwACsCCo3lU662QGfSJ0IrEQBpDhYhf6EYSoeDWNy7z5QftbvF76i8yekR5FhhYA1yMBbcqFX1Q4uTSsYZQpnpn1r8oSQ2YkuGnQ5RTr/bPM+pB6hr4i0hgqtPtXcwo/PYYKwktES7iwggtzrrGS6TNnesDBezBi1RKLryrScrsKv4O7o+nBTCXBnuwMN9tY6M2DzkYIlo9rmavseTlWHNUfB+CQA5ysm8b+cGyqZ1zi3H0B82UGJhLix7BnLxLUaNq1n6LhZFJy42fKWE4BGh+TGRup00tmTA/NEnVHUwCdfC7Acd1nwZyM/NOJewZrw83YAnQEuxPARIW2+kfpepo4UMOxNrgEJRMHLRHphWydQZ0YtRMlon2LgI8ushqauqNiJ0FqZrnI+JycT43pwaziM4Tmz/gcunrTWHIE23OWPi1Alug9rl/2WpvwqFSK+Su5MhzXKVlPQVlprqIVtfAoUaEqOAKbBJBMXQYIdYXhZJ/gDGaoOJZ1TRAyiCzpeUxLnhDzujaSE3qlfmi8HcEaBBrXQT9CSbQA6Gsg/xvcflMAys/+7M/if/yP/4E//+f//MPjpRT8x//4H/EP/+E/xK/92q/h85//PL77u78b//Sf/lO8//77X/P7XCsHX7egayXLoXLhiM1nrSDC5mfCUSoYgHeI76AR+IALW/htbgFcJOreETR7wSwVVSqGcnN+FqAKO2puVTGjQO65NjTZ8SwWYjtBGR0iBvEBdu8EtiqwxsFULlfac4M29y8T0A7MvWCzCtf38GIVe0QvpRhaNWxSoXPCveCpXPCmNXz265/xtDm2Fl4ORpO1eqt4a1e08lm052dslws++1TDSRFoOuAeabBpTIX1O2zceX+pQN8h/UYhmgCt1pVL1sIUj7Yn6OUJohVeKktxbeLaKu63DfulYdw2uNG4LLtkmuqK6us0NCEg+OzTBZda8bRdIKXBS8EuFbNWWKt4KoqtCC56eNkYKPosUlFqgQyKHimKG1S59xusC+ZuTOtZIQCLxmWU94TN9sx8OmKCk4afsXDOqdHx9jQJTRfwkAAZBZzU8COqnaE/shB0Tg/QujYWUqiUdzL3zY2xrU2WDSMNw0FjrkhFjekYwzG6sXQRBCkGCW8FonWN5oAigFeKGLXTwMrF2eVbyWhJYbWKaWxm8ijYPEeIMKa0pqclv3MBzeC6hAuIH1EdXyiZzXIEbGGmlYyUiEKMJekmZBzJMNCdhZoHANOjhP6IYssSZnITdHCuJEiUAJ7Fjg0uQSANrJJHyaVdSKkj99skuh+X6ypZqn2UcGo8y7O8t0SaJYAu2U0yBDlXXDhndUX+uQlgpa0sAMk0wZiKMWgb76HHMDF2J98nRnfMwbSWIspiJzcbc6B7xfQGs4bdQEZ0+pHismRSqPtIAJRpqFYqLtVxaYqtDozCFJIKmWmKWYONjlR4AUEHVNFqCa1IMnQx1hYQFVyr4lILnlRxEc6OEmMwu4ZDHUW4jRYB9iHLpzGyw7hDcDe2RbkNwT6B+3DcBtfR+/Bo1+HYodGAkyDfnGyMhS6jm2Oosemk2Pq8Zg4RVt4xYkb4URHMXVrFpTZspRGkKGuJ3I8Ae0x+/j6YWhteog8XBfgEIU7QdGI2POZATtiZTJU9Hp6pwX4CKhPAcEinCafOqIhzQWEzJ86qCDAcHJAeQPeT3n5TAMr3fM/3HJTx6fb09IR/+S//5f+x9ynCtuc18tiy4Ddnpq8lDWshTK5WxOAyITIgGFAZNHcTKqPZQiux9DH52dvhUdBFpoQLjhQEejVcq2BTwQV3lNkgNinYNKUvSGzGxQXeNqA0tOf3gFLYhXQ6ZJIVunUFrOKOJ8zUE8yBUgy1xgas9K2/NMX1Arx5v+L5Irg0WQCldceoBcUott2entEuF7x53lDLa4ASIkefsN6OQwxoDbIXin6BYFDiKBu0XqDbFbo9RwqmsouzTag4NhXshR1WCVDG0j5Mzb49jjppQLQJ8OayYasVTxvPFURRlM3LZq24RuR0EQnBGSu3FIrikbdXhZhEuayBecEO6wXWee0MhVqKUmDi0FqCHU0/kGilUHjvJSLg3MQsNwqPoegnz7XYWBfbEWAqq21OFPuMjSZbBzBSZY44RcgAoK7L6GoZky0twhEdj0FdE6NGgipGj+E0mQBFgkWZAhSWZo7CTVPV2TBNBVqEgtsAKQlQsvT+TONLfBb6hRzffS2YzKPFHDUAenQTl0gdSFDw5+dGObiUtb0HF0ng4h7+FoJoEuhoBcsDJYGBZooh0jtZOQHzwzdkMa1Y1PY5aVGiKoJeR8GlBC1CdieC7HhOilKZikBAmXiSSuiyBMulVzxa3nOeItJgGZQxXXkwWAlW8rtOk+hFxXsK253h1Jzoe8EYDhodc4xNADM0shxPimEFZiUCDurEcs863H6DDY0xLDE+ixYU9Shhd1b+nRJuh+DZKFmKUugCBohVFRVGMesCsQQoAoKgrSg2TZ8TDpFApJiD7TGg1OWRYQH2KiypPQMUp1HcbsB9CPbpuA/BvbNkfY9eaSPm5hrXcqRaWV4d/iDih4HdGjXrC5DkQABQ0GOm1soj0uciB1icsc6MEUcwZdNTg+LwEr7BwVZy7MryJsnGfQvsxbheKbdkZSJDkePdQ3AjsUfJgwg5UqinIC2zlI4DVH6S26e6F0/1OwCDeuEMGTdYqTE42DXWnCQ2bVoNolStiw+o7PBxR8ENBR0VO1A71Cc2NRTjRjWlA8JuEKo0eqtKMZwAeAKwqaIWwbWUUGo7rrWgSsEFO2QMYE4AldVBk7SsR+G+vHkPcnnC9tlvgKQAFILrFLSpwK64mkLmhvIy0O4D+8uHuOjEtRquClRTaOv4zFPFZ54rvvEL7+O954rrpRDFD8d9N2wfCt72hs2+Ee36hHbZ8Nk319UEqylTLn2M5chq/Q7bb7D9BXa7AmOH7vR8EThqLcuLA9IgNUEKGRSUigFguOG2P6P3F/T9BeP2Acuy51jdRtmFmpqQOhktNQHe3yq2UnBpDQgl/A3RfbYoLq2i1YJNNEz5WC2gElR57UBoRDZxVAzI/hbzJuilYy8NVgtmUZRtQ2kV7hegXBjRVE5MAXUYamwP4Brlm0rGzvyoxPGJaGTo8N3gO383uBrBlc6LZk7wMEKcaWE+Bg8hKQIYMBo1izJg4aahsa9xA2LfpZdp2MfES+94uQ/c7gO3l459soR9RhQ2QvkP+GJPRAWtgM3TgkmpAsxCEFMUGFVXa4SSaZ7YiQWInYGbpQowzXDvA30YvWPmydY/onUXYVdb4eYoEdVJAC52ZvZVNTIhLOOPiBVm6Xm1WKXpdD0VyX5T0SDRmNKAg/S+p9gTGMbPhz4h5ixHNgDBXuUqW+J1CXJ8Cc2BAyhI4o5YmZLMlXjuuTfMKs0MuJJAhgwKv1spEl4nsQeIc10CGTRYNDcMsNCHYO+C213wchNsAMoAVI0Bmu8Yc+J+n9jvTFf6BGYpqAUsVw0m6u1NMHqB9UombwYYE8LR/e7h5gtYCdp/0vIdrlDQb6mJokpWzXCTQzfYvXOZHE5xd5+QPlACUTVJ99rwJZED7BPkBEApguoGnVy65529xGQYqhhUHL0a9gLcq8DuQC2AFmG3ZQgduZ1u1S/DuH4Oxwd34KUDH74FXu6Ol52l8ezRFGA7xknaVwwEOFFFEofiEpkWpk9LaNwuG9nsTYGn54bLtaJtF2ipgFQMU9gggJ3Gz3W7O17uhlsHuhUMabAisJbRlB3j0ciGuiMMMTOQwsmtmVqiORWjZ18jjjspXGNsgqzKiGtsTPEUnDt0I6qiDtLA/t9QxfP/j5vvL3AbmHcOAMwLdAqkDfjYCFBg2Pcd+xzccL3DfWDYHbAd8DsMO8ryKtyj0mNSuWwTPm9A3wC9oOx3WKE1mIc/oaqgVKBWTsgZUZbYEU16hjFxiKUok+NZW0W5bmhvnlG2C6Q1FJZKYEzF9U79TNsr1G5QE+BeaDksAlTunuIN9bphe77g6bOfxfObhuenxo1oONp9Yi8G7BVv70+o2xWtbdguz9GLQrApUbcGQHGbsFLCiIdukTIapBaIDQiAWg+RqqNCtEHKBVovtI4vFVTvOKCCVgtGLZhFUjwUm1sKnKlBKdMCoDjetIqmiq02GgNFJDEi4q9aUERp+x3pE0aJmSNdIwcULQE2O2bfMTswdi7uKCWQ/oRWxfDKayGc0FMsNtVUAGWX0jyci3q0VbDByK3vhrEzbSaghqMEM2NOgDLH4RY5Q9xGh04H1OMch7A1NjabczUvm3Oskuf7GOiz49537L1j3wf2+459Ovb0nrMwvAqAomG7LUpmyBSQqpAa7sslN0jAK9NfqrIEzhrkBkJMm6GxyvEdR5RlZxsFDwbHcGKWQVYGSJDiq8Gf4XCtZMk071fVE3CUTCZPE+fHQUqfIMrhmIcANmlvQxjMGWxEKwazgz1JpsMR2qUVBwPOypdDbBnpZsGJvcWJP0rNUwIRgnRJjYWea7SOSrucK54UPiiInsHUTWQLAMMujqaK++643w03YUNVlSgktx1zFNzvht4lmqcS+M1i8BFg3wW3G71qfKdrs9ZIc8U12/cTExgVSCU0JVJiUxsxL3qUvfeJWSdmEYxbB6rDOzu4zzEx9x0+GMRAaNOgSFNBGublbaX0XULQaphDMHZSPDIMA5OpvsLKMStA6QFea5iNQWgvD0F34Bb+PPsw3HbBrQP7C9Dvjrk73NgPK7tNI5jURSGd1n49E2VIJ6wcVwAUay0uVVGqLl2VI8TtMSfGcOzDcb879t0wOscANVZB8aYgNooalnBb1pBcIvecBWfBsk0ui7P70gfN0LU5u47C5yumMV4rU8e8xYr5fwtAsXmDjYF5dzp4jg1qSvg+xyph7H2n74Kxa417x7QdsDvE6PLqGJHu6YzLfNCszSYUN7hsgG7Q/gxMEnfqAVBK5t6Y90aRsGEgtWbgjPXg72Xy4MWT0JAqylZRn6+oF5bRFilwV+xDsTVB77SQ1ztD4Gz3nsjcoZCqKJcN7emCy2fex9N7Fzw/b6D5qKHcBl5sYN4Um22obUOtG1q7xKRQtMJtgOZYNPs5l5Q6BqQWaBVqUOAo5VCam7MtAMoGqVsoHxujRAAoZDxakTApewQotgAKtTsV7DHxVAsp3lJXBD2ynE+AokTv6Y5Iu5mcOB6bFieIZNQwOubYI9PjrO+vZaUTdDYadYlHIUmCkqBFY8K9BippRe/TMQfLNkc39D5gMwTVHwFQCBaCRclEDmsqocWhk+km+piEODK0BCKgo3HY7nfr2GdHHzv20bH3jt537N2wd/asSRbhkUEh0PAw0tJKR8+qAhRg1ojga1ri4zE1lOxA0gsS4m93jDRnW14NHsACS1S76GehXixJBYsofXUXzkMToMSKm4ghvV08wEks8Jq7vXiURR/pEEekN8I4zuc48iQcaQcayT9K0LHeOqNFPl1y44nH45QsgHJuQSAJaVZpcWrpDrGsxuOQZC4AkfRZ4vceweLN6fQfUcfeHffu2NVxN4Crx4BPwRyG/W7oXQ/jLQ2GcHQYFAPA/U7DP++OHelcynNpAHqPsuxgtFyBmhtzbHYz0gVpNmbdYHVSy3QfZE9KAJRpsH3AkoHW6IwThQU8F0e6k6c8CrrNWeE5UoMEer+kCqocrGTpfgIoBRMgkAfFsvdJ1m8fhlsX7APod8HYGXxgGgXacXgISak6OAWoufbgYNA4Dnxt7EWwmLJkyyTYZQLoYCZFyEbujt4JHMf0ENeHIF0LsjuzrAGOENcfTN8yf0kqJd6MICVF9gwCRI5UnoctQkYV6RO0Xg7n1zQcvOInu32qAYrf38KHoL/9EHfbMOQOuXwAtAtwuUZDI8dtduxmuBtN09wHrL+FzBt03lH1DnfGZ4I92JMdZQIyFegOH3d4f4FIh0iDeIUYaUcpAt0qylaApw1WlJtwnXDpcH8Ln2/h80Zh6X6H9h0+OnuiuECKo1RguxS0p4Z62TBLpUh3CC7VcL8bMHcMecHdP8Tb/mU0Ya+cVgY26XB0WHFgq7i8eQ/X95/x/OYKOND3ido6PtxfsLtBPhyA78HobFEJcXSuPbL6IPhQlq1JbUeFSwIUDQtlhOgz+n1KVEAlr00gUaC1wuXCiMgmYJXvJ3gAKNXSYt1xKRoiwYIR810kNEJrsQ6nUOuRzp6Ad8A7fNyAuQPzzpytCnp39L1gr8BeASuKMieqMwrRbXIcWNb2RJTuSa/HiUq6NkT8jKAtd4wALxNmg80C/YhSFMDhbnxEGSb5vQoQqaRoFw1uiokEZAVfosG9ajgbZwcnv8O9w+Y9okpbbM3oHwFQ8nplFBctYKUKNDsr1xKOyrKAii+AIvAaAEq54jqA7N561G4ei3ZuyiLBesX5laCjeZ5C64dcAIWNQmNNRQCFcB6Hhj7C83VTYwIn1a3pJp0fxcMafEYqeEbPEyxmRo43R7a89/W4h/fFQ6E5QUpEk2dw8vo/xGf32CTck9eJX0ReL6FMngl36pgsRMDDJmY0y5RIPd27477TqLHO3LBo+jeGYL9RQOtGnRZ7LRXUagFlBLfeMa1D5o7NJopZVNJwY3y5jdA0Ac0a+8OMAq8GHYbRJ/pu2F8m7m/vuL8duL/tLEoww10FtdAosbtQ4H3fYX0PJjc9SgSJyiXzZUAKiwI7GmwSnHREOgMz1iw73MUFkCqhIWR63sBeZDuYyr+H0LyPGRU9gtEFtjMIkUEAVtxXGbJOUKNhDnSmeU/iJ35OmTGfdY0IRLBVi6LWglZDZ6i2GvYt0G7hzzSc1v6TjKCIQAvdeeEGcWps2LeLwQ8ckZbGAh7HPCSDt3yNAowgtU9GEOZTuH942BK4xJw4tCiyKMqcJJ9cJfvpBijjvqjzfVR0GYDdgXGF2JW5cwWGdQxnN14i8AmbN+i8wawDMpCySpXOvifo1BWYgEagHZgdfgMgDW4FFtGVFYHPBp8VkCd4UcxKIzeRgQKCE593yNhRRocOVq64CoRqMFKXxVGroDVFqdzsNwHqPlHKAPwOsw8w54ew8WUMMeZJq0N1oPpO8a8CpW1o2xWXyzNggMqAz4LaBkqhNb5PTlqfG1yyiXhsgDZPG8lcdt8CDSHXkqpBo4QNzuoSQDiAERtr0nvCDUXAjUu1Ip1JD4DCxcURAMUJUlrRlYIwx6JSJf4uRgXc58lLocO9U4g77wQotkfZuMImey9Zup7GS62W5knRJhoJzxIAhz0FlJVZGamcjuOJybHQ+E7cYmHAEfmvlmYEJmzi58u7g71WsiotUzxAUT+q1yIVZGIoMlF0xnieKBhQ9NVETMLI7TBRiCUyQ/xYppZ3AoR5qfjW/AJrpV1Hpohk6lp8VwGuRYSZ3x2PR4EfliESD8rxNkWCdTqdWnFS0Iu9dn42jYoSODeOyIQsWwEo2RhoAIKIKk3OMt5YsBc7clx3XqZDZyIRga4FOS5rpnTcLYmb9fwHNoW7KhZaigGUkldfozPe5wSBsgkjs8bpSM2S4TE9SmR57FPQ49y60Tp9dDBFMJTeUKbR/XeijkirQbCPDvMBtY5RDFPJIDAwcPQ9AAoAqdTapSuvmDP9GEzivkface/Yq6KqYG8FVgxFC72506E5TSPFqTmLAIJdgHWxbgjWbUoWmrBzfZk8fxZGJhqIl5onQEe2LzmYun2wg/wA0I2VTmMa++GY0DB8UItWQ8OUdRoSG3qJNUTHhM5wJoYF8D4E7lmW64ggTgq7LhdHKY4abBbnuiUREuvIojrI4oAibPoU6ZpcRdgBno1KOTh1DUiOV41151hPcKxJMeYZaBzrYqZTxSe/T8z4NGsz8DPNZAfxyW+faoAyxh1977i/3HAbgpt9ALk8A/UCHc9AZcS3+8DuhuETKKyb8EkNSvFxDBYBCnbQ9/AO9QExg/UbxBsMX4bjBkOln8oYjECKwvoGv2wwvIdZKnop7DMhBsUNZi+A3aHzhjLvKLNDZo8+zAoXCnlrcbTK0mA0Dviuju3eUfsd8A8w56+h96/A7/8PO+VWwb0pRA1FewAUR2sXXC7PuF7fAwyoOoB5w1bvqNrh8wVmd8gMd0gLZgPRe2Nk6ZsfqigLalUqwUI8VzUnGABEZ1lHiPYQoiwm1A+amuka8Vgc4rqyTJPvW5SQqYCVP8RAQpbEs4X4shkCPHpQDC5oPu8wHxDrwHghyJw7vChslrCRHvGzxaR3GpOVGdE+IjIIz40TDapg1JrdZGUdIBsRgIL7O3VLFkqK3JjiW3NKS+iSJICdhEldmYyowqMk8YDEIqZxTmfhOYEahk64TDTpqOvYMZbGKtJdobHIqB2x8GdEhDSI8kxIxDJDqgh0dRX6ImgYpllWrnDnyAoVTTYiN1Q/Koggea4oCoYfqNUj0mOVly8b/hTSejk2awuQokKVWApgWeXEIZ3XxDJdZvG+C5SErZYQcGiAjay8SWFhggx4QLCgsgUHOElUIxE55vmLIvX1mhKrf7YKYLXFAVjdHb5KRY9xs0BcRrpg5daMDVVAw8N9sBplK4IGnig3x9gNcwfud8fsCVCOtFPRGSlVBnvwiSI7ZnEMobEotUyG+33HiGERpTrBaJI5GIPg5H7ruL3suL103G4dm0YDyqoYRVF14g6K6kfvGIMC92HKqjalVg3CtiNM8WUYQJDbI62rxmuqzt5DmDOKH4TtN0LLpKm9CuFoH5MmmPE5ZqT9ZviPIJxcqzmak/WrTsHoYEUALAQ5NVK77pm2dUjBKstlxSjFpSqCqmzE2MpEK4paDbXYqoAy8FpTjuAB/C06GTuqnhgZ59Wr00LPpSHmp5/LGmILnMR6oh5pe1tj8xhzAYY9xclpD5eaGiYsDZyH7plmPfRZn+T2qQYot9sLXu53fPmDr+Dt7rjNBmxPkLqhPD1DGzUZLz7QYdh9UDchfoATGHApgEZzQNuBOYPxiCZxu3MDswKZHdMLxhD00QF3dFX0/Qq9XtDthntp+FArRgpKpcP9BnhH9TsaOqp3lNlRhL4YDR0VHS7UwhQZFD2Ko/mEzg+B/oLx8mvYP/x/sH/l14EPfgVQgTdFLw2lAVthSkPFsbWKy7bherkS6EiHTUerbAw49xcuglowLxtTN7XCvHJwjbR3d7I9WasPDn0t9dhQtawI1jAO23e3ozzUOSlbDP4qrH4q4ETNHLvniht8TnEO/hZrM7f3iMpOkW4gIcAmrLMbqPcXpjZ8QMYLYAQrUiq0sFKLRXkeTcNIbVehar1B2ZtHCkpIoyVTEuZhswpk3Z/PBEbsbm3R4HDMiT523Psdo7OMu4YYrlmQrnOujRuhtIc6vDS4Vng1wA7WiqWoAlUPsy5ArQM2IkW5Y9oOmXfIvAFjBzo7enuf8E562iLFw9fURwqo5PapnCPgPEm2JmOktGBfy6ImwyUrQMtXiorldJRfzAP8uJYP2Wr3pTVcXX7jPGXO2zONFizDwcr46efAD2lFsOLQHD/5BIs00En0/PAiCHAFLK49gIxHJBuTBAtMOHCmtldKZ8WZOeLPYxnH7uF+/AxA0jYXqVdJcGPwieh3RM2ExeZwG4bbdGyT5odITcggy3KPtF/qCdJ8Kx13Jhxmg4WzumM2WW6qNAM09qUyAqkWIug1no1aifs+8fbe8fa242XvuM+B26woo6D1yc68alQG2sR99EjVxuapZWk9UqjOHlgEjgXs7MveUXlJLR6PcWOHfmeKrA10MQQOesLEiJruS5tkMa7VBDW9AATheQJUZxfsYoBEp2EbvpozFp0cc+K4BINSjK0ADMKO67Og2ETxghLghxoX9ggTeBiUUvBDzx529q5mAXT0YEhAm/kcqyZk16qED02elwByRaIUPtM92eJCDhCYI9mR3E8CFRZDmAR7ekpr5nj9pLdPNUDpw7D3ifvecb9P3Obkgm2GWjToM8X0Dgt6b9G/3plfFoPaxqGhevQOieoVJPU/JtwUU2+YXjCHYE4ClKEsxSoFGH1j7lIndi1hbpVtwidNepD+EETUJegvC3SZUZMgUgGY3FTnDowbN93xQkagCKAVyXEy1cAKCi0FWhu0NrqcmkDLZG8cEX4/D9Mqi+aJbmFz7UsbmHsmR+fZjwIR0QEuhakZi7LYWDQmopEUGIHraWxKmJtV0LNgAZRceGOh0QQqGry4e4AWVp1QFOtryT9EsbyWEgdSU+AWSD9ssTV6CNXKey3Q0qClQUpjRZI2eq9Y0iG5ycliAkjxCnxGeity0UclTwjZRghpae6w2AWbfjBW5kdzrzEJFKIxHjMrDvFkK5J5oLNjECir2aHOvJ+QwUPHhAxnjnwk7Zv4JNNJERFlRBWLohgOhsX4XMnWDXGdeSiwvFo5TtLI+2DbkrUA0kni0EBRg+HrumZe/LRX+8HG5D6ezt7cOMPQKnLmS4WbP+dzM83m4DVMjLD+BkcEGc9Zu1mM1sWUH3vWupd4+VyoF32eKbG1fB/wnP97REYHdxLPl7X/8KOFx8VZnGmCle6ZFn4ZwfqYR5O7uM++Kef2AAmcJkAQLkYzvPTK8KOCKh2889P6+m48plFEO+LoE8vgbZigR+m7OSLIYfVhCkOHCarxs5bTdRwajK3xc9Jt9njnEpU5NEjT09kmX47ksjwgsocmDJGcNjIObtkYj/OgxLjJa23rtTiyp3M0jzivAGIN5MbfYGHYpyxthxBMGQGOToPaDPO6BOV2oKglwMXSgqhTszdxGhiInmAZFCBZbJ4gS5x9mqMJLI5cdoB9OViqnMP5fTIdmkAFOITjORI+OTz5lAOUD++KtzfB2xfD2/vEzYDiA+oKrx0VSYfuEDcUDNRceJ2N+6o4Nq/YXNEIlQORemwwTrX5dMygB4cHXQoyMMUKSqQV9j7wooK3KthDzCSaURowi4blMSnNCV7/LrTFnxL+DrHJsupnQOce6aEPUeYH0PkBzD8EUICyhZhK0aqjNUFrBbJdINsTcHlDoSo6fBegXsLoTNYiYlpgWmFaMUtj3FSY8+V8mIQJPhYAmsl7O/j3EXx17ehu2DXdUPke6VS7FYQjqbN7MIwTFVj6itysDhN3LjIOQDExZcCmouWO5EZApoqqFVM70wyC9ffINIEAtRXUraJsF5TrE/TpGfr0hq9RCrRt0MsV8vwZ+NPXwZ+eYJcrTDoMnU3V3GDG0nXzERUKLNOc3VeFwrw75g6MF0V/oSeFQ6hdKsJydmRn3tjkLCZ7YiHLqJvpFO4eQlANVlCpAN4LfDi0K0pXWBeUHah3Hu1mmHd+JnTHmKCCMPbAUqgvEhHUwt5JzQsqCqorKurynii6Eci4ojgFeerlAC/p+YM0mALBoVAH5pJFww5z6mTyywr8ZJ+OBRZsIlJSMU/ZV2A1WoxAe/XPsgGWIY8QkhrndBqCyVCkoV6Ka7l7gqLAzo1YjCxVDKOV7iGakJCLBHiO6Jy6GWXE6OAGAoqbNYGc8vprGLNxabd82TiXp3RggIfgMPn6D6LDeGNWCLAEFBRujkH9yT4Vd1KVMETbAwC7UAzrIYw5AH9BCourT35NmTE7QwOiZJpmmRjigCqsVnilxQC0wqViuqGb4z4LdivUdgDY0VCwofjGtAdS6DvQ97IAimZ/mjBdVFMUo6bG4JjjcAa2KugqdM2tYNokepaJhhFnpC+rFGQLBt4cLhXJv4nMuC5zBW0lGIdjE2XbigrqZyqoF+mYEHFUEXRMTLWV/r1opLeF05BMzUTtTq+mPlH2AukU4iJi3QXG6QIHTIcGW7NNJpLpAxWMhzO96mmsFktI9QSVCZGZglVP8SzWtZ+LQQHTrJnKi2EnYIBUgn11cB1Izn0lOL8GhPKpBihD4wiaytzZdVU88mlEp9WNgxK0TSfNbOFI6Nhg0W34XKftJ5Yg92Gh8DaoPDZzE1gpmBsP2yrbaWshLR+bOaI/rxSutu7soOxF4FXpzLo1yHaFbhceRaEyUUzRasNWG66Flu5PCnwoLEXbiuK5FVw3xVNzXLeGy/WC7fk91Of3UZ4/w8W67ARTT++hXne06xVwMgjt+U2UHDe06Bwtgy6ObAgWJZdzoIqvUrjUYkBL+HI5RDt0OHSkPIoDtlayTO0CbMoJeHkHoJxV5LkEBtqPHWG4wUuHjIEhQPWJ5hMoJXQtBVrZ/Wh4CUGogw6xjEC2qtiqom2KugVYuRSUUlFKQdka9NLYkfnpAnm6ErCki/BOrU8B2SeAtHY5RcO5iCTgQLIqWTUSUZ9HCHMuTQyEyiMtLkeCRRyhD4QvpMfGtBiMeD1NJmVMlDy6wTo3ahsSmydQYIF9kt3yI5oTLF3CQ/Oy2CyiNpIVOyp0EI5Gjqi0IxU3aNQJOwSIFEpWyRz0gS8gYA9qUsfRKJHj60jSZPR7XhwPN9M8X5IMZTBeuWCuggU/UhcHHZB/y+emtiQFxUvkDUSrCj6JIngyfMkmZO8cHhpjSsLfiwDGU6u1tD8h4i8EqKrUd0jhesQPA6TTqGT5t2CdmcQuJhFcIHBeEczqmDUcOeJJEt9bvACIaqcwhIMavBTqTGqwCGqQzTjWlZWN2iq0FWjjWJAmkOaQVoFWIcOALvBa4a3CWlm6JbLeBEye5mdFqR8r9GRajtygg/KMtI4K0IWbf1dFr4jKHwmQp5giBDuiGGEhD03dRgQACVBsELieKlhgqf1IBpOvYa0CQrfmphM+6X5rUeFnysmkBdiyAi7GkQZ2bqCepXgwxMH8JPJ9cKmOeYJkRjy+awJ8cEwfcqYj5SJrTkgEhqebIM49Vkn/qh4SiX9z8FPzRTaV4z+aoEqmeA7m1L4GhPKpBiicaGBZmJyppwi5ELSrZXQ2udCqo/hEDQal+mQ9P6K8ldnnEw+GY+HMnLyDJVYgwPBWgFZ4r6cjxI45ydlHZALZtbIAqBoTtkG2jU6ydSNAwUQp0TRKKpooGsIZE9mnAuGeqNgKtSetbaiXJ9SnZ9Sn92hZrDvqENTLM+rlLVpjW28tBe1yRW0bSttQLxeeu8HKHXOE8RjNkooc/VgO3rKGnsBRZIcNg47MqHMQ5z7VLoKmTpCCGSBxLsoxRVlngCJgNsthKD7X5Nh8xiYMRlRKIanrsRFoTCCLTVxcUPV0pN9AVWgVnvem0FYgWwG2Ctkq7y2ciAtBj0w2a8uKmhgRZECCAUN6m4QXjk2O0WwqaPFcN0ZBbizJjC513BTU4DWYveRW48iN1WWRSYysUiNDXh8yjNe0T/7cDTJZwZDXUaMp31E5xMjrnL5YsbUEShUNUMLeRUvPVSq8sP0BSokPy8m0dCweDIGxP4+EODSveSY8cqFNoMGZvrYPsiRBrKydeJ2izJMfwABiiyE41stzyuI4ENFkopP87LkkLGO7QKSepa6LQYlP7PbwGVZX4mDCiL8dSaWLYKUpmAoES7oDmEhQkpq6MD3mmox8/dN6CXJTaXCX7NQsTF9YdbIhdgBdrqGx3rnBO4Gmi9EvqCg8AArFdDHuVSAtAEotC6xKJUBBq1zz6BYItArfEqAQ0CfYfNRERT+OEn5TqgsQZosCXiZ+R7pM82DaW2N8eVTwsFvw1BrvkZ2CfV03hbPtQxYCzEh1TmozxKmnI0ApqLXCRTCcneGrTlSfMEXI5Ni/TAvbpOQ6dYx0QfUU0EZAcFBykcaMtFOaQRrHjkSgoYuNyyqaZN5OAzemClnrhCtyHjLHXBNEA9Rj3iWAOYC/hG0GmaScYWmQuPxf8Mlvn2qAgo2LsRVg6sQ+JmwKSh9Q7fBBQDDHTjoek5uOAJjktVWFqZ9SUesWWhPSz1oBQKBDMEvoQy/MmXqlWtsBXFvB9blguxbgqWJohSptiS2iGuafFUXpSmoAZAx6RTxv0PeeUN5/D+X9z6Be2GG4AcA+MGbBJhuaF5Q+UW536IdvIR92lrg1sj+bKi5N8fR0xfObN3jz9d+I977xm/H+1/8WwBT9vqNdP8RnPrzj3oHn9/4/4StRcX3vs6gbDeKuT08QhIujYzEomANuE63QA6XV01ArNfZDg9zuKGNCO5vWJUhpyk6yz5vgqQBPCrwnE80NGyw6lALZ6TS1JynAAqiR2ccduN+gfUcXoy/HcAqSYSgmKHOHjx2l03hPxbigeDQLnIZmhmqDaUF0FOkhwnNIqZA6CQoaYE3gTcPQzTDQMW1gzh2jv9CN9v4W877Dese83TF2w9gn9peB/T5x++COl9sL7mPACoFRq6wmEptswLgPyDRoT18eh10a7HqhsHXGIquyUjzzfkRh3jt8dIx9x/2DO/rthtuXX3D/8lvcP7zh/utvsd8m9ttE7xZW6CHSFIVsDk2Q0RxW2SbBoJDGhV5zA5NK7VEp8FIhRal3KmQFtBVIIW1WWg1Q5rBRWDI6lIZtbuwNY4DZBKZhuqPH3uWhm5gWmoTof5LdZEOfvH5eEeFpw6ZOgJvTShWaYYyFumCusdaSvmB84kcldVGYhF9GMmWR3lEleGZVkq0FPJ1/BQ6f0XE5S/IzZaTZMiAAEMBSZ6EfhnhUfdmI5ynKpXEMFMVI74so6TbHSklPkP5VF+wQ7KJoWtBqXRqCUUIoKw6WHipUa25rcK+xGRr0vkFsMs15rbCrwi4SZb0Oq+yELgr4tcIvBX7Z4G2Da4M9CVPmX7cBL4BcO8puKO8/ozxtkIsCc8L6hN0mmZKMxFWhn7miXBX1ouwdFiDOQOGKjxOIrYXjtxbMayHz1ITnUrDGrUcKCqLB1ETUf7tHZYxDewf6gN8HZJ8Uvw4KUtUMm4DMq1aUecFu3Dd0TOxzArcbWt8x5x7s1ICCTHKmoO9gRnE4Uy/NBRdXXEzRXOjHNAx2M4wxsI+J24cD+y643wT9tmPcHdJBXZ0coDVTOAl8DcmKkJ0yzZQyx3YTdobWE8AmiEoahqBV478CpoGTVVWU5fbtKWoPGwf75ATKpxug1GvFhoZ6qSgzSshCiu02iPzMYH2sslQbTNnJ4OZn6vDageYcOCOcXiONIUUhhWVgJgK0giKVufDJM33dKq6Xiu3agKeGqRVNG4YQDDmSyxdulDBo2KeXFkZYraK0xh4weThFfqpz5fA9rJ/nfmc03Sc3xX2HVQemkkZXQWkNdbugXa8QY+52jontckG7XFBqowiuhBZjuzDNc7kQ+xbS/RbRUyb5t8rFdKu5oAs8AIq5Y9bK6qcxV4dYB9CEqvFaWRpbFWiYaDA0H0i/JcWpnv/EoAA0n1IMyFCmCYSRK9u8T7DsF5iz08Z+RNWBpEFYVCL1CZQ0h4huW5OmSYwgj+qNVABkFiV9EugRzGaK7pM6FO/rcE/h8eDzwHuXNJvSyOYIAcqckDEgg1U2CVAYBVYCoxn9cQ0BUIIRVCGDOLCs9UfPw+KYGPvkfZ8Y3djpdkjslw4pB+sgJqcGhQWCGnl5hUmBalv6AguBsbcGD4AiLYFLhW/RjdjDAXkORoJKR9msmEkTvGxi6BbsCFJ86Yt2flhx5QAl6z8no8ZlgRUQSZM7nGX1w0NwHBGgCTQMsbSE6Dh5nJIbZTwXAqxUDI7F2+aaF1BFdiZZZEACFPCalWD+ih7Ra3pWlCKLKRNL5156JCVrpbAAKBqAJNJMMV4dQc+rkO1oCmSgJkIWTTMZy41atWE5D6JSA9KNZo7T2PG71UjxxLUQBzf3UB5XMjwejCZqCNCuDn1ToG86ihZ4m6hvLqjPG+oGyFBIFzgmvAPi0UajKOqbDfVa0C6CrdiyIMg0oYxkSIAWvblqq6jXRqa0hSZIAKkVXhuQhwjYYVu46N3a6qws+w7fJ9AG/DaiunNE1V6UDpdCUT2u1JVNXfNZQBBrHZDeIWYok1qPHB86mEp1MWprTsUA0cOYzMiMKsExGEQOYRf1cIZeHYoXSxLzIa73ubInSJ3VbJS/klVEkB232fopw0RE+5BI+QbTuETzThZFidCZgPCASUc88Mn2+E/+1P/33S5PG6YatqeNrb+tHxfCwrkTA/M+1740SmibB7MrUwCrE745YKCPm3tkXniStRTSoibQRoYEJiiTK+TTpeHpacP2tEGeN0xtuGjF1MomUT7gUb5XIkVRvaCKolahYLNV1K0RKFwuZDNCdKllQsKV1ebE3O+Ytxt8AFMMQ3fMACjeFHD2dqi1oG0N2+UC8crFeg5s1yu27YJaG5kcrQQm7YK6baiXK89jPQAKF94BsYmt0eVwq3KszjUZFMdsBTK5+WtQ7+5AxUQTlhCujqYYKD6j23Ag9fA2UXfURbWmNoALFoqwWgaMWKdNODqyBG6OHWN0zN6x1I/hSeA24fuE6wD2Ae+D/x6pHhNkj5iV40WIiXPRlwQoRuDh0UYBA7buo2JL6H3imICQnXu9gbizPYPMDgyD9yiBh6NqwajRv2ZiRecwhFiZmRMVBEARzMHqBx606U6g0uMYg06bYzIlowrITOG0BrWfnVErBBUmLVJpBVY2NjCrDR6NFtG2lXrwVpnTOwOUOUOI2aPqwuAa58cmpnC5nsaeIpk5yJYObDVg69xxhZVIw540Hoi+UOFdY+NdgCJeCVBCWKumcCEoUVOoD/bVQYAUNhyi/kNkaRokqpwQDAqSiQEZDo0xvQBKSddljiNVpWtr+PwIAOg8MSix4Fn6UzAF6Rqf19kqQUoohBzUtqms6gyeK4l0coFuhWBcGJmj0PBPpEKE1X8S6Q+XSkamR3PBYcAskK1Cmka+2ZG9oui7YUDD6nzt4a6NS/geDaC831FLAfaJ9t4V2/OGdnFIH5A9AMoOqDSIKkoraO9fsV0V20VwkQENHSHMmKYfsVmKoNWK1iq2tqFdG32EWkEKzHVr7CLfmFb3AHyAMk33coPEmqF3AhS7DQa0fcCVbKVP7jWIuSDlCUB0re9zAZSVAh43iA+KVZGmjSFedUAKg20argVLFMGaOtgfbgwGq2PSk2seDTDPehOCEwKyTEVnaibbf2hoWggekjkMYII8DoAi/HZkIZ2g3j0yCguchPaQXczgJ3Dyfw1A+brPXHDZBb/6macVfdB6F6gwok8/rId9HMHNHNGNWMK/y52LAsiWVBFswsqEUmTRYaUVzFJRXNCCQXneKp4vFdtTw+XNBbVukNKwSQCUOWiANDraGGg+sFlF84pWBM+14ale8NQueLo+4enpDa6XJzbZKjv2WVCuz9D2IUQro8oQ7s8B3N8C97c7qhh2rRg7NzMIKcdaGxQV4sDcLmhtQ2sNNUCFFOZNWwClrdHddYyQI7og1F0QN1xaQS2CrZVwt1eg1aDvHCiCOgfKmKTpQZpefYbnSKRzwkOFomPBEmmFFXz6SpBeZPQ9XZe743BHdwuXR/ZYoieHYcyOMXaM3uExyWVMAqc50KHYp+NWBLenDVUEtxZM1tYImFxh1zuw76hbh1g0ZJQJ0QktBi8GrZF3z864GuOsCKQqSyALcJkVvVaUyUi2KBeBJtxMnI1lAHhUv3BxKVuA18uGcmGna6LwSEW0LfQiEsqrGBilwUsnhV0qbB3CtKiRmZhBzZoooBWi7Eyd9HepFaU0oFZoIUPiES16aWRIKu9RNzaRLArZIsVTC7zV2OSj+gkI5smCsSpLOE4gkpUhsVxqYRWCMOosWT1m8RypKDbJRkmNMukCQ6SohhE4xFizneeguUCns+pnKnFshLtSFFK5+TsAC2CikQIyORgUUbJ4q84ZXFxEM0Z1gqhgVSSs/4HY1FOLgoMYYgAqkXbBQcEXYbQupxQWsDQSPEkandKDoq9Ms7WtoW4N7bLxqfm6YCQi8dlKpue0wKXBpkPLBLpS8NU5BrLzNA8L/R9TTjRoC723ACiCcqGO7mKK7YMdUxTQjvbUuH5eJmRzSDOIFxYbFkAr9SzXz1xxvSquF+BJKwsd3LC5hmsuOF4gaLWhlobWGrZtY3VaibMrAr1uUel4Qbm2YKQKAbQ5rEqkVcnMW6XYzbDDy8A0zhmVATNFrRWlNuzbho6KmytedGLXgbd7R+8dM6xqpQN6N2w2mUaCoYdwF8GSeaFOp2yVWYImPB9xqRMYS4BPE6WtP23EIdrgtQRjFBH65JiD96iKC/FztPNYrrYBsNPbSOGoIdBXkNmHYbnqUuAf9DKSHQz2zBVpw2CLkf5kt081QLleK0QdT9eK3iv2+8AcAKZTXBQnfCbNSZDP03NGcauMM4WBSnYDhfl2jcIKYZ8IiVw0QpfcQktwqQrZKmatuJcGi54x9NIZcLDfRLOCLXPBKnFfULWiloZaGwWrxtbnpQ2Uup2iGl2ff+kwh53QdIimVo48mCCRtfmIllhoo+wxEHZqGUR1tXBPMjDLJbUotCpKKZFmIINC9sNRaqEBUH4+D4rPuLHQiwaAkEikuI2PCQLdA+8cCJo/85jHcVQaUbTGdE92RM5ggoMgsjzDMHVi9oGxd4y9o+87svGf1Q1eB7SPJRCGpadKNg90tifQ2EOqrCheGs+tCzdBA7D1gotURhxFUkKAGpuwTWVZGhhleMQgbauoAVJqaysCd/Da1lpj3AIs7XX4rNAa4KJSqFhqoWhxAtqYSvMpETXztch4vHvIEjqmQFEhMRckhLBSFNDy+Hg9nreSRzlmlPoIiIYtvmKtuIoYJ7z6GmPZ4SgWdLLjZHGv4VKbY7cEQInUoxL8eaSskqkrtABlACNMGxaPTyqAh4nVDOTpi52JlF8wKKL5B36IEXMngZBViNIcCSYmVQHrfCTQcKwF6fARCfbnpD1KZVZWbEh+NmBpCVIDo6qct4XjoNS62EY1I+mjx2fRuJdgYkTAqsXKWEWyOksVKebOjd9ToHya+55ra2VJet0IgkqdmEVDpM4UTIra5xbzwssCKPVaqT/ZuO7SYJEOqeZOnUaoOlphENZqW93WE5ThfE6qosTvvRCg2HRY1cMgsIYHfqW2BdNhpQA6MaOHmSsri3op6FAMlNBLKYYKhtBzhU69IDCe6bzqrEBCgNqibMjajoNyAI4j9r/C6iauof2AgsJfLVFlVUObJ6DhUQDojHCRtvnhho1jzuWaoJIuscfwVM80jyzmBTEvOfYfV+51L+fHvvrtUw1Q3jxfsV0K3n//CjibJc3dSOdOOcxt6ozcXUTSvqb7AiuktBStVBRVbFqwBUDRSXSuLmgbRYFpAQx3XJriuhVct4p6JV1o9YIiBdOBMZSEvwq7886CJgUNFbUonkrDtTRctOFSN1y2K7bLE9QU0yvqxVG2J5TtCRrVPatcHyES7JNeG10jFeDLihiZW8wFK3LeWpRshbIiJ9a+ZSaqUcrKCZ2LL7jAFaU6PxZLVFJ50w21FTZhE/C6OKIXh4UTIgBJVwEhFSqMxI5tmWr2w1SIK8X06K8BhA01wcmMyDXN9xilZ/O9UMiH4BLRYXgA2O8d+23HfVPcXyrmnCjWUMITRu93zJ1iW8zB18dkOTtLvyAtogUE81DDqXE4ygBQHdqor8AGdBtA4TJahIuqV8BkMg0wHKgRdYvg+vyE7ekJ1zdXXN9cyVis0SvYWnqTADZYgqlisL5BfGBcN/T9gjkd29MIv5sB1IkyBTLrAWS3LQBFgV64KZQrS661kl1ihVOIYCtLuqUWSK0orcZjGYXzd6UWZIWdjTB2mxrX1WlVbzEAC2snNIWtonApZOFYy84xD6xKm6I1KnkM0ApVloybkEEZnUyNuzDyLQluBHMw/y8zaGoF14+p0c8ne4nwHE8nQPETQEn9BSspXolkwWZtnr425fCFWQBlAREE4jrpuzIaiU7pIZDhG2SZvxwbCvVj4edTwxuoVbTW0LaGtm2oW+PcTPsA5fqUspNsAilUSjKyd8DqUfYqEaCQogkdRkbPwZyufpAB1hi8FDQraJeCvReUfUKbolZFax5ASuGzoDDLBGkNujW05w3tomiboJVJHys4ani1zHlokKpWlMKgrxSer3TGdgHtCOJowfq5hrBTHWOUcKglGyWVa5XXMLOsdIuGAx2OGYaPvSiGFOyu2IuiT0UXQRc2XDQPTBcmjsXpCWVcEFBbgZxsDuqVKap2AWo1wDqaKeZU1MbxWGesxwZ4SV3NxmopjTebM7yh6O0l0xfAZGk+4uKD7K9KAH1AlYaisV2GxxgN6IpTJ8bu8ScNmLz6Ocd4AvFPcPtUA5TtUqDT8XRtGH3gfm+YSoDC7pIKMaXepBjFbwCyY2N1ngBeSyX1WRqqkt2oYUPsJiwVdWHpXAkKGdzxckHWVtBahbWG3hqghZUG6uizUt1eFNUVDYwkmiqaVk7aBC1KalKFqZTaJlq7ogVw2bYntO0KeXtbVb6pQHcUUmomhzXzYCtzm1HqukpKIxqTAARJ9SLKFk8LDtY274cwwI1CVfgqE12PLxfXyG0i+I/4XQoPD3ARPWRATUm6IrqtWgLADdMMI1wxGZ0lw3PcHOlLEJFpTgrRdZ4S6Oxj4tY7dC9otzu7s7qhlopWGnC/o97vkG2D7g1zdLZ+txm59tAfqDDtgQLT6DlTnCJHcaiGfqQ4milbvCOEb5OI2dwAKA3E0pdaBNfnC7anC67PF1yeLhAN+7pgGFotJLVJEmCqo6DC9wb1BrtvmNcON8PT8wWiAxBl9GqCMg+3Gd1qpDcKylZQW/jENEGtglXwsLyyyCLRwZgJI5X4XqfRw0DAA+CdPEejSsIjT+7BGiAAwOrYLLzOBSCDibDDd1bIlaxegTwAcAKUKFE30tHDwlXEFdYYIWb6ZAQ5mSwCnah9GVcJKBwmw00wQ3CAlQpKBjABRp4BCYpQ9BAsZnWE5PMW4xffHzFuAaiEfXiWdiPxCednfg5iAZbLs7LEF2vCDScCgoyeg4GcdrLscoqWxQg+YmY+aH9SMD7BFDmdXzlH3ajEKkZ/kpIZrgeGhl/DNVjLvKrByJRwWq5QSFPoRrZDqgTDIMheVyUZxwQoLmHKSWExT21UNll8j8EGrFqUZdlG5mKleEbn2jkmRd1hF5DnJqXyCTzT5mKCfd8mHNNnHIZDiXasT9SFRNqsFkijB1O9NLTrhva08f7SUDdDLQLMZMEmakEwUEpCqwJihQZ5lV4zyEamWiETAAyKyasfQdECwwIsQZvmmhmB48NCG6wd0ida1hqkAUizqEAZB/P7IgPfT3b7VAOUWrkYta2gbQVbKxgzO0cg7L4Fs8VgclZFsI8KPVEKgqkswslca9SuK0qqkgvZADGmN6yEQZVxNUsWoSg1B1YLtkpnVk5QIutZSE1UpQlPzVSSKCriXhVVC6oGQKlArRSwtnalkLWxHJiFaYlqGXXa0oQjONa4zxyH+1ouVVNQBqyeC8jf5yueSstwfk6AEcnNJzplLtHX8Uky236AHKx/J2fiseEgaGGEBiVTHRq/ME9gcp4wr2nDY0NIOp7zjxS9RxQzzdEny9PLPnDrnYwGHLV2WN1RIndc+oCNTi+YEDUtwyORNaHFg+6t3KAnsDqdtsYFS40RGkVvNBR0L7AW+WlNfQ5n97Zt2LaGrTW0Ro0IwHSFQFBrlBSCDJaiADNKSWtFbQVtqxidosGwReFGOkkJ51WVGsZrQbnTcyMiqtR2rg09VLqZeEtns6X8fX2cwSvHSMDU05gLMZ4cjpQJUjy6YJtKVB+whNGdepFlyLbSGaFnCQqaJZV8LTM6+c4aYCKGMyCYxY8Rm5R1fHQ4F+CMAl0JQCFYgnDRI9LMdH6QiTFWcMwbJFh5XNtSS3RYkAd0iDHMVEpuio9/fPZZIWMKpnVFkRdxpVY9bfDtEaAEyOAakc0/42oJ9XiZak1wMj2DhzNAOcq//fz5llxmNf4IxjONz4zp0xK9m2IMcujHOSy60hzcQD0ceZl2SKdYfocEKBPDWPWESmG8lgntg+lL57xiOXxWycyonAkfIptRocf3tFwbA2gPd0yxMCWfHwFS8jzg8AiJdJqWFDFX6Eb9SdnC7K5KbO4lgFekX0KzkiAb6TtUSlTZMV0oszAosNAmLRAS2rUIAnJ8pYj62BViHiApMSx/lhyBuR5Kfq+46vmS/CCvQ8qPv32qAcqlcjo9XRRjV9w2hRob7ImUSCdQl4Fi8BLt7G0C8jbKvADZAN0K6oVurVUVm1DNLxOwRjMcNUCrUOwlwpKwoJ2rhhalUS+gG0Wy0x1dDPsomFYizSMhxCV7ctWGp9LwpA3P9YI32xOer88QaShlwLzhvfc/i5d7x/N7X4/Le5/F9vTrgHwlRwGmVAxhibMJQ9yiBVWF5m6B1qcKNlXa4reKYgMiwnxuERqpqS+0y8UjByMA5++rOloItbjAHlHQjGh6+XggF3xqNyj8Z519dQmr9NzoYuwnDRi6l2PDQPwj4IfoOjwiJwXY7iDKYROgMLdE9qGH/4bcB/BWccfEUFsLQpuOywBme0b9zFumL64FsLEcdcWiDDrYGamNE9rooujKoVaENtuYBaqCYYPVG7FJSw9HVOf5RPbHCe+H6/MTtusVl6cnlow/ABRWm+UGPyXK6G1ibhvcBtrlgtYnUzzXiSkdwxWurCSwkZu7IMwPQk/qvBd6zHD7iv5NZsDs/LzJiPhkO3gUiJMuFy9QhADWPfpa7QH0BrLiQ4JJ4YYdOXVFbKqK1Da4MO2zhgFYgWCFdvkOsj/ZX8mEotghWH15imVFENNMI5jVZBGHO8ddpOk1xlSKoEsiaUEwKDxyc02335wXeVuLuObwjm8RCzo8obovMKAn5iXFuRBdm0mmT/jcg5XMlAo3K4ErK7AMBcMKuinmmOjDcbsPjD6w3wetBUpFhUDNILNw7QxGFrNE1UaKJoUdh32i+8RL75hzwGaHF1L+96HsB2VY41QDmDomhnV0K6gD6CPK620g2bhaBNKEuinqdiGFBQulKFqh7wZALRsJmEjvO1mqMR1jTNzuOxsaOtmdMiZ0DOzj8O9JBmXe7pidnizYJ9tQdIfdDT4mrHeMOWDZRFUBcUW3jgHF3QUvo6OPgbdz5+M2MYOPEtDttkLQhCmn2iqenzbo0wXtzRO2N0/Ynhu2p4raJopMeO8EVWoRmLDYGkLwbqXB6wXYNsilAWJMkU4qwDnWCLJmpJ1GrLsFbJlhGuAeZBAlUpcS60RM3SiDDZASjMpxi3G4xvUR5n7S26caoPjkJliM6ZoWq0WBQLRxAxCDbxOlGES5QcInr+ccVFBfmHvXbWODOIlFzwIRg820enCaDrbo7oPlaHcX7B24dKANrgstUH5IYKDGduRz0mdFZ5TFRf+EMh3FDNVnVLkwgmDlmmK7NFyvF7x5fsab5/fw5vl9bO2KGeWLpV5QSoMswyGB2cCcHXPeITYwxsAcd0zb4TbC1jyi1jmhc0CnQkYPhigZFIARCtMaDoUZj1ycZZ58Lu43dj4eA6lbyQh6BYtrUY+RHiPewU3MozZ5dSx25l5tDsw5mQIyiqEtlzynEVYJUWp2+C0RcEEMJgUe2iBzcIJ1oO9ceIpRl7HJwC4d+tLxdOvQS0e7sdW82KAnRGgDszGeeuosJKLDQ9QuYhRri5HWPaU5nPWGNEs6e3hFlNS2DbU1VhjFIopVxhd0OeL8WmoHDvFfOQkja6to5uiD0TO1QNRYGbAASW787uFTMlkqORLsOUtHxdhiQOaAlEKfmhnshWWOn/lxCronZt8pPB79oCVm+ND4ofHXZFCQXBvHYUadZwItfUwyvUdhX7JwHjDb1/jIc6/n64AsK/clsE6AkXbdD2/s+eY8j/m3ftKgrPQLGHnHNzhAc4zLtXVHqWiPckONa8Tv7aglGMd4zCLdCeNmkxGvTKYZsxOuulAgPhyzO7pMjDGx7wMvb/sJoDhEDXUHtM4QQE9kHyPshfYKBtyjgGDKJECxjvt+x5wTZh2lsk/TvivaMNRhQI8mlXcA9x1229FvO/ZCQFQno0LxiRL6DmpqBkHq3jFdMZzVccUjrZcn86Sg9zGXy/K+s7Hs27c33PsgQLkNaGvQVtG2svR5Dq7rdg+AMo3lwhPQ6M/k02A719RstApnocBuIECZwMutY987Xu439D2sD+zQl21K7eOlAFstNJcLV11s6U6uFOyGmRq0wpV+SpE349jJdV+VTsFRtXR20855QtEudTG7ePQOYkYBEOzx8z3WyQGgzTWUEX6KlDBY9BByrEax5hEshcD8OB47R32126cboAw6LGp0f0yAYiJQvawlHFE9IzXymz5ZdTHvEOsUA14u0HbhhHSEXwOzot0FHQFQJpe14Yp9UJ+iRq+v3oGnQVqyTQ/RkKMGKGE5bLbytCWOKhOsezeD+lzluFDmYUsTbFvF5brh+ekZb57fx/Pz+7hcrmQCEqDUengXAAFQdoxxg0vBGB29v2COHW4dJSJ4uEBtHOZCs3MBnUHPAPAsf/FJZ8cpUbIXG+ooa4G3+40gY4xAAYmuD/p55bDD5MxtrDLNaVSZH7X5FpsvUywWRkUSC7B7btj0iimRK88onFGGh2X8BLQsj40x6Rmy745xN5QpKNNwkYkuE/U28HzrKNeBy52mb2KT4ldnhMtmf2mAhMhPM9rPxyCGpoCpMRUQjEOSoC4BNLJKQoXOrKosC99alDGWtYjmpqahZYBjCUE16OIUq9bKCKxuFXU6WjWab0kQAxKAcH3e2FQj325GkwaP0npEqS6FhUfVjtpYAKVOarMkAJKnKHNEmmzESYSDHgC2rLoXzRw3QjqOxGQK/PR76CLbDh3GaSnMHkMEKEDWg4nMeF5oo+IzWnjg4DQDmJYCVi4yPk0gtgPgWMaLQBikkEcMgMIqsGBG4CuggGMBjh4gR0u8l1BQnd/es0TfGPTAnTtFAhTzKAZgwKYuwEyAYugO9D5x3wduLx19D4CiDtFJ37Jovika49QFOkr4ZpCJ8gAo0wb6HLjf7pg2YTaYmoCi90JTwB7go0/IzeEvO+zljvFyxx6sXw1nX5V5FDOohG5KYPcd06lwnoVaMkOwbcACKG4O73NZwe/3gds+8PaDG257xzCD1kERcS1R5UNRqDNyovnloMEj+5IxoMwelzZmNDQ0Gn6SUsA+DMMF9+EEKH0EQOmsGoyOlqKsKCtCkXhW3VhjXyJslQClFlhRzBJzJfq8IQPuFJGHuMFEF0hB6H0SxGX12RAEQAF2UORrwWqLAB0Uv+4BUAoYQ6ZcwGek9ywchD1nVAAUsI/SgLArtHu0AnX8XwNQ+s4FhlS7oJa8oBVV3lsCqRYobrfI6WDC+hO83+Czo21KEdLTE6nNacC9Y/Qdw4CbO3anVXRjsIJhwMtgOW8XQ90nyj7x3A1FjU6psbhPs9C8DOxzp/iq9xAMCmSf0HuH7jvKfkcZO4oNQCpqAbaL4OlNw5t5xdd942fw2d/yDXjZX/Arv/5ruPUd3Sbqmyt0U8jGRcNsYL9/iNvLl/HyIReKsXfcX264v/w6+v0roIaFkbHbW9jsUN0x+44VzQGxNk+YsdyWbSmyZXss4kVXBNn3OyuJxjxsjSXzpEK1uURFrZ0YFDtZhcfPy+XNeQ6jphrWCVbUaKrHSduCSwHQJopOmmrF5jOLsVoBA3diRIyo1NAhaHegRJPDqxueZWK8DLRbh9069N7ZPA+OzWiuxfJabjWarnZOsaibRzFGUNpzAH7HVC7g0AnYZPVOMVb7RJmo+lEW+vR0ZYnxZUPZGkRDWBdbp4oghctSHToEUhxmF97PnemgUtAHUMqAlIZyHxjDIDu1ONQSpGMrHlMPbsSniMV/BquVn6Uwp83KkeiJtJWlBdFKCp6t4WOBzg176Z+CC8vqsSind3CIKIJe1uPz5Y0psqOcNTAhGUYHdIYnh2GJx8UmaugJ1CckgXEwdO6RvgOXDQ1QLMOPcZ/CwnWejgMANSoJqGyeAFR8xvieIrLAyZiOewAU0bIM3orQzqCVgtZiYllE+B7fSR2kNSYDNwRQB4XzvZPN27vhfu94ue34ylfu2O8D+61DhFqVUjuyMWZWwIgomhRUcGObBbgXR4NhzoE+Oj54+xYjzul82jBmw/N7inrvqHXA5h1zd9gHA/3LX8H+5Rd8+GtvMe8X3LeGsbERqhXguerqlQXb4WNiuKFXlh23qfAmKFcy1iIEFhJ9qOaN+pHRJz54uePtbcevfPlDvL0xzSNakY0ua/x9rlFwAHtfY5XT09EM7Hwcc294CF8L6AuzF+ymGNNx64a3t459DLx9uWMMwxgTY8SaJ4am1CTOpkDoTvxaoXHIhX3AvBVMjeo2ALYp3Cqw7xxLU4E2yaDNw/PIS6F+ErFWmUGlgM09CEDu7ri7o7kjzCJQY4hv6Xbrjjbs1GPMGaQ4y6NnpPYnFCYG1jrGGuseehwP+/vFfX7V26caoFikUyTEgkULvDS4N5RyCWUzc2oTzlOmRLmzG6yDnSarhHK6so5ehDbGa7GWlY8boL5gxGFGH4ye1QGT2hQ1yTUL4sxrM0cdYt1sOqfJkU2mnGxALdII4QhblP12tqa4XCurOd5csb25Yu4Kn8ECNeEV1dAMWMccd4x+ox9MHxj7DTZ22GSPGgETw5S5SQjEyAhYisk8hGHBXizZrJyizBQNutOKfxrmsEDLsXgUajAcc1UDmI/YGEZE6xFlp4dJAhQLxsEdMmcIVbmhpdjMQouhEJatCsttD4F0iODCYGmaYY/GViIaVVuKYhpGRIJnA24GXIzULfP9YWaEApWCZWwUqRyYh+8Hrz2iJLmooChfZKVJ1h8GY5aeNQjPiqLLXKtGZ9iVA5JkUHjeuUGGEM4VsxW4pUtxgc2KbWObhjEofBSxMClE5OwzCGVS5PBXwZHigAVotUMX4kYXTnfmiYrAxJD1vJ7mZXktYXGPg7GRQ3QskR7xxKentE7wRacbQYLmfIvPmmyHLdqf9yVK3hG+POZhKe4xJ21Gl1oyWZllmc7u3vRbibmRdI0IliNoCKX4d0faySNNFhNmfXZ+d1nAz2dUmkBW64EUYmuM77KqlA/H42SLRTIlFQxEjDJ3YE5fjsT7MNy74bYHYNltsY1lCIWqotDiwUZarC0Ucpdk7TAXQLn3nSkeGGpTlCHoNjGmkTkYE9YNtnfY3jH3jnHfsYsCBlRjUNYLS1e9BAwfHHNTB20CJjAaU0tDjdoUIAAKN9Cxcw3q+8T9NnG/Dby8dLy97dhHjMGYR9lfqQRAEQek92DNHBXshuLm8BJl/SKLMWC5u0f1T+CafcLuUQm0d9jktbKltqYLtBShKVzYxpYanjBFVjNwWcxmMi0MaKRW0iEhKZDcD7PQS44hmnz4K17wxHwsHnBlygYCnMcTH9xgQzO2dIrrl1jvArz6WdZbf6LbpxugzKDDjfl/FUGpF7g0tPoceXeaCxkMVdh/xTFh3TG7wEdBKY6tstKhDYfswMhSQMchFpICRAw9UTCc3gtiwLCCMRU+Oep0hmVS0GA1mIGCufL6GbHJNObwx6D+Y3boHIAPLkbi2CqZlOtzw9N7Fzy9/4TLZ54x7wrrinItnKTVI4qamPOG2V8w9gvUBKMPjDsf83kn+xT5b8dEOrqaEfA92L3PGWV3KWyMgTwDgqzNxDH2waqASZovxZ7Z3YviVUbObuxZAxuLNcm0QuqAEHn9leoJwITQGFHYntBEIFLCIjw//yDwCmMph2Kqos+CGwpmZaShWlACcHQUTFdcXfHWFZsLnvzoCaNgb6MilVUwgrCPDhM3n8cSYPz8pQhqoSfGhHDjzgWR8BBFC9KTp4QZ3uXaoq8SPUZWaXhscqmZcnOIRxt6KbDB/jm2F/hsEDP0SyO+mKHHKCyMlAEUo1A1G0Sak40oCVLkWMAWQAlw4K7R+TooRlOamxlBitjaUXkdI2XCLxCLaSyqGnNPVJaGwJJaBrKA4PEW+MPBiI+iPW5WFqyJGH+e01aAUKPipJpFiflEOZW5awpy3ckgmkdKOcZl6j4eQOLJIDDAlovTNj2BSzIoEj4pInFdjNYARlGymJ2qKugNky065Gy6layN5ybFjVUDZIhw25lm6IOz97ZP3PrE292w33nk/lE02F2xBVBKUUgjK6jFsHuIk0En59E7bvudzQvhqBv1KrvNBVLEBmw3zNuOedsxbjv6rTNwGIB2btBbY//5UrEYVGhcy2rw6hh1oHthimlGWfbKO0yMu6H3iX2fuL10vH0Z+PBtx1deOvbOgCVtCtR5LYqmUZxTkxdr3UVCSOoOVGPDxhKtFyhwozheDX4HfBj8bvC9U4qw9+MaaWiI1OEp/GiAbAKNcv7WgK06WnHUQtmAZHmuFIKTJvy7AaBGetjJvlrOoQT+qaECFoAGIsiMAoesCPOY5wastWC5esdBjyKJfUDyjYMNlRU4SuKWUyCZwewnuX2qAQpzlEzvFFGUUgFpcLmw2V6l+Q8qc/+rHBQCKwVTFVYERR2tAFs1bEyuQoSt3Uws+mRQKa5CNbxIgcokDS0AG1I0PgcFBUEDhpso15e8gKxDpyupULEeLqWadHMc2aipKAVytSnKpaBcKlkTVAKNRsWYRBojXICo7ZiDe8EYwOxIiM/oNXaHk0dIxmJc7wKKJHVtXGSAyLkGQHHRBVBsDJbpTQrYOEGOoNGXU5Ej+/skQFmCRmNaRlILkA25kjqPtA1hPV9rLRTCChrOtIIMwx1B28zc6GjaNQrbratWMiKqKFLRpGKXir6OsibdBD0lTEsAAoYpHuG2rNRUbLoldCEakVJAEnh6fzICrKGZKYnnIhWtNXwhojGbZIIeER6RNKGjZswNL4BUx6yAh+nPpTq8Oaw5OyOD1wmgH0sUES2NjsRnKQlQSCwtMHAsdac56Yh+NlnueiIMcARREiXucnpMcSxiIiwtJskXcylf5IFC4SKcLsBZkRMPL58PfjdHceq9zA0t4scJ/mxBdSuOkldH6i4JPNqJKWGpc3x4T2GuRVVUSnMRwPrkQYRTWlAEWE64tvRonlxRnECBUWPm3Ih5TmMe+GlzcBBYhIqO0T6t5tgjCuE/NMO3hF5Ew47r4LkBSYhsYwC4eYCxudYENswcGE59xbAJEye7gSixBRtrihdMnyG8pr7DJ72rTBym9HqxAKeM2gNcAsA4xpyNwbYLM1lFLGEEX3dG1dhk88wZPakGReJHSo6BZHYyLxKk5/Q1HouEbYBjMcdMCTllje7R3JWBM6JhZ4vS5DHP4zwBirHXYqSxmhq2MnEpExflscnAJmy9osFOiCPK/9OlmSyMKg0kCxv2kMEEgEi4lLiXGBcmtlLWKpwX7PuTzFvC6LgQSGbwmPUHCFpb67EqiBBgBDO6SMz/W8qMVXwZK2Zfk/T/lzDpoaeDr14lKLlLcgGHBTumHJwaJbIurKQ5OklGNciJElTREEIer39EnIfPCAWbSblyEQs5U1QR+Ho85Y+KY5Fe7q5RK59umwgb6sfGc+dtg0fSvYgNPo3qEBvBKus9eESeo6CQJJLsx2+O10ECCiA+QKJsvNpE3vnnu58zl3RP/J6fPwhIrvSx78dkye8tCCRP4OHpexEbhANIfBLEFljkGBsywg0R3FiH50F76ulh7CU5XTNy1gVSCRBO5y4AQ55niTFhlgwBgmDJzYrsQRFS+GmEFs7X0DUwXh1ACjTCNI6Pp3P8GjL5WqchZCcA4kpPDII3XgGNhVGTTlxve77AicweF+HjiKeeQArO//TTv2MsrjSPB8CNX640k7x6jWP4rb0q3ziHtoNjPr83hIuzITvG+vLBQXwHzY8uLFA3OeZpwqU8C8e8Pgl5ETg10mByei6Xf0MW9CtwdLd1rivHNwzeJSox1uPuORq5J3zE/CdiCRCf/8WcSh+PxZjFe+U3S58k6qkS5J9e243AwvOIrvHwEEem/ZrhYW2Kz52MaQqUM6UH91dj6fSzZ5rUToes33O8hKZppdtirTIKkVeVYKRmoh6W110CoKUAb60v8Upr6Mc6J74Gn8ZjqdvI9Ig61rg4X6MDmOc+EmNQ2FS16vHvXLNzfhz3j3NmEW7BjuTynum7HNeK4zMdNYH5b1nnfX3P87qf53pdn1y9uVZwLPnpury7ZH2S26caoFwKKbBrNfh03EuUCsaFXhcLEVXGgpURTVKHAiNihqFKpg0MU9h9dipCpawoQc+pO4YyBVHFcRHgqo5rFVyCokNhdDUgmIXp+BGDBvFeVRxN/ISklV2IW7gAKsVGZavQTndAL4zaA6ijG1OSItHPIaI+EV3sT3GhQDRcB0sIiHOISQj1EtTlIFqMRhHAsmyN6RNNDUWs4NSwAFZkjcKJ2Inj/dKmP2nndPBYNFNcoaxw4B4lK5efm0HCl6goDMMorE3a4zn52Mo8hBBxRsn36Ibdj/LvtP0vamjV0bujdxZeUbEepf8ajqILqCBWGmVEG8JZlNwbSF3PSd8DE1aAsX8FFkBJIBL94FYeWrKt6TJXygH9gLgoVI3qijSxkgDfEoDn+Heko5YL7MkwTbAWorgoK+W5YJ8f75+8BTcPPe3MuePgtLGtlzyBkgCWMR59gTo+V1fUJVyogWOMAoDzOkBjk43PO4HVI00kSyKxtssZBFtTHiZAi0jawPy/I0R+GnoV8WB2fF2CTPHkhri2Y0FQ57wOB5A7QGl+HwMDJI3AJb9dbh0a5yEPRuKRjspNxnPuxSc4UfgLrOR9BAIrlZvCXGho9Zh+QiQ1/fVmH2BEImU910GnjzltOcuyioNNQl0cUf8cY9CiLDy+uwQwjnFaitO5uNARHEXg1VHjaM3RakyPmPQuzu7uFi0nJDfhZJwC5ASDIuaA6LH5HkiJwGm5n54fx0mHF9xdMmKnnXht8ue/jzRimB/FOhABcfpMFW4BrfLnmGLxJwFOcKDx02xdiEQjHSyI3j1hYZ99/RYYDkChHmMMNLpbUnz3ldYUA3uqxfh1AcGr5ZJAkO+gPCGnfYJfxSe/fboBShNcCrvQ2jTcKwCjqrrAohU0YgBZlEhG9JC27xYTxmMTCTGYFsHGTm4rijankZlnFFZIjTYBrtVxrcBTBbYmaC2EgtF6elaFD8VIAKBsRthUadCTR63rQC1woRwzFeeO6AgZav858z43zwMfU/vBfhTFBSiOWep6r6IZB2osCAQR7AydqR3hIhdune6FC4crhYKauYD0QeGAVONGyAZpDOW1ZmWKcCEWQCRUcOLsRB3RjIf5DwCEmnOVb1JolqkGbquZK+W+GfGaM4rLTTLpV5/RwLEDo1O8N4sAk2WGVoCmE70O6mn6jMNWD5fs8WNpm51ulSk1i9yvZm42jpJaC8+t2pF70crT8h84HHBPC96rRekBoCBflOfO/R0egz8noIJEDvqkoxDEGCPVrgkcMn2G3HDzcxyvjfhbyc95jhAeFlFul3paUQ3s5UHQGRttgKH1nTIazKjswMF8JA2jJGCvORdjIzjD5EY0ApC7OGrlHKhTUAZNFGshaDQF/VwighwIBiXGN8LQMIGI5kZlx3dcOX3xo0QbGaFmE0RuAyXmgCFSahA2fosvW7J0PI51vZNtEFlVKUQa4bIruRZQmySq7MmiYXK4wA8hSTJ5K9VWovN2bG4S/XH4xNNGHSlvV64DrNg4nGYcGhb1Hs3vTkdV1CZolUdlA26UaK8gjYLZFv2FvLCXz3apaJeKS2WVk7oDQ+CT+kI4YGZoke4vmoevOaKxeafrrIqEOV9eIT8NYzmoSVWYHvMfJVLk2QF7Aumb5TNSgdDT/IlAyw9gjliHS9XV4LPUssbp0hm5Y5VTT4TWLjCPJKvONZvzhmNGTFe6WaYssW/OoWV8qRKBUnxryR5MCEATADvXBA8GOteAHFMRUEjM9xWUfMLb1wJmAAD/7t/9O/yxP/bH8IUvfAEigp/5mZ95+L2740tf+hK+8IUv4OnpCd/1Xd+F//yf//PDc+73O/7SX/pL+KZv+ia8efMGf/yP/3H8r//1v77Wj4JLVVyaYmuCrQqaModfk4ZNl8pEqkHx8Yif5wGoJf4raTlf0nqeTqsZZTUF0a2Gl446NgW2ws/x+uDfRsmc6vH6y9ZeUZTOr6p6VB+Vo0wzS/4QC2KClBklkzO0cvyqsRjIsTgVYYfXEl1ekylZVRqnfSQNzs5pq7RWLtnfo+iaPDmBaog6a41zV/IxWcfqkpoLqZbjKCFiVbZxX/eS/+YCQBfQACYLnCD685wYErM4P8jWOQxcKHnh77phdsPcDbOzJHHuE2Ofx79XP465PFhYdp1i3qM3BzJSxZmSXQHNStfkoXKk/c6piWMT5h+fe9I8MCcPLMoRtq2tcG3usoDIYrti4zsiff7eTj+vv8Gr987nvPNzvhdegZQERViA6ZTEW5/Zj6l6HMBxYt55WTk2lYgYy2lDpTtyjNuojlhHguWcbwHONRjGEr9f8zGMr3IuiGroAHjkc9a9ngD5yX5fy7t/ly6mOTfW/Dw/b/nNHEHOEqC/c64D+OS9HuvB2X1ZkKmBI5WsEuchz6fKagciJS3SFdlZPdOcDpogOrKlBCseLVydPXRuEv48eeS1KUUXY1jq4dReqrCTb1OUjYCG/aF4v1qdbIqtFWwbj9aUR1XU0/pzHHy/qnzvHCs1P0eyviKHLfwJnBAESHQxjjWphH6mCIFKpuDjMDmP/0hF4wgmgDy3x1gpazyl5xESyR92DKe5soIS5Wc7f2bJa3haU9Z/p/FzdMbWBzCdjSL1fCBTj1gpyOO/Yy1D/Py13L5mBuXDDz/E7/pdvwt/7s/9OXzf933fO7//O3/n7+Dv/t2/i5/6qZ/C7/gdvwN/82/+TfyhP/SH8F/+y3/B+++/DwD4wR/8Qfzzf/7P8U/+yT/BN37jN+KHf/iH8Uf/6B/Fz//8z0fN/Se7XbaKaxNcLxXuhvsOYAjFXnow4QxoYiMDeDEnUa1NagK8sPx0TVhtUDUODktkWVBqTH4XtMYunw1Aa6G83gSXTbBt3IHcgYIC7wUYlR0vtWBKDcBSV7PAIsoqEqEDp6/6Mic4SZoxKEIq/ifmMMwudO2TYAfisKhcMJwWe2TWME4GgHM+F5HT9dxkASBFmUuweHjMAow+4DQmU9PQ8MS5JtTmell8bYLHQhoTNibpXLnh0yZlylJnz1QNwcYCZgHUKDodyP4eM6p/xJ1CvEFwMrpj7M7qBR0YimhTYtBiKCjYS0O/dYxbx7h32L1z0SkAzeEicsrNUyNaEF/RpxYEmx6Nziz6JYmSwYMiW5QLYjNIUXaMldUFLLv0LaAQ73u6jqGWAhUTGepy44DEa6jTvlwjVVGY23APE27PMkPS3qosyxYJAAGWFiIE1Qc44fNY3n3oc9Kzhc+19VFzBMrpWyR7kg7COfTW8wI8E0jj9HMshR6bPMjITCeT4npqVxFAyoSeRwqBDkCrc64XBL3jwaAcwmOZSjt4TS1XADQke0i2MQW7i5mKn5P1EBzjZpnuufP6+Tw2LCkxxrjhJJj3EDB57Fbr9aLXzjF/YxxJRUk2VQvHqE4+9gBaAqxEKldFodHz7AAo4NqGSDGt9KvF+2dErQ+HI8z8iqC2bCtR2GcmWJTShA0q1yGom0A2hVdFrZVMbqmol235A201ujQ4ICMEsnu0ZZhAbQO1zmieqExxxnlf0X4GYiJxbXWxYWd2SUqBF4KSKUIfkAQqouiFYuy9AHsVemgVCU8QxZ5jxNhRvUHQpqA7bSwovK/wsmgkdo62GJfDVgrqrPdLcDJFl2P2qjCEBeh9FewFw5Xpast5+xD86BKFP7wvgPTXyecSGB2fxSTmBV4rbz7Z7WsGKF/84hfxxS9+8SN/5+74+3//7+Ov//W/ju/93u8FAPyDf/AP8C3f8i34x//4H+MHfuAH8Ou//uv4iZ/4Cfyjf/SP8Af/4B8EAPz0T/80vvVbvxU/+7M/iz/8h//wJ/4sSVUdyPgxP7sWPl//W1SYm0d331CPhweYAdCgij03SWRk57EwR+52HY6Qm0feP3UDZDNSwLvU4Yg84msk6me2gjTmmiyLRTny8llVw8ge0YfFw+vgLDg7XaMTrDhEa3F+srImvuPKQyQTEAti0nS+IvbcQeLnx2Du+BVr+U7vfOQn3elV405dTX72dIX2ZL/8zICdD0SZLeByetGsAvLjuTYJVgjsJqYqpk5koz41YNRgTqIiYJW1ZJQQ4yvFzOu6BajLr6oGag+Kr2hGCxdrA/1BbFGsOCLbdaQRwoltOlMteflSSCqHrwtTHRG1LoR4kmELEWdGc1yswhXSwwof3GjSG4KBWwBMPyLB/Cw5bFKxfxodp8XJ1/d9fTvTzfmeEKz7HEvxVeP8x/NDx6SayiZhKgaCozSSaR9WzyXLkODhAFsemywX6xz7ma45rQs4M0FxfpCJvkyvHQv0opGAQ+waDxnC+MoPvRPEYwPAotmzvUOe5zzvevr5NOWxJmTGsqnOzk0j5peF/kIlBbMeFRePol+C1yPYk8XeegREcczjcEtgFtdLz9/bT+cTZ2kTsvvxKg54xWLQip+gVBOghK5osV56pDE8P7uf0gcnrL/2ZByfwd2XPmqNDeDo5AxBj9d00IV1iGMXurTm0YPdHX7SrUSV2l0d+3TsYSC56m0C9BPon713DuYrx39eT4r55fR3BL4ZPCCBicvhBmuUB6gEWHHec2zE3M+qqszq57nII8dGnJtVUODnQ9Y4+yS3/6MalF/4hV/AL/3SL+F7vud71mOXywXf+Z3fiZ/7uZ/DD/zAD+Dnf/7n0Xt/eM4XvvAFfMd3fAd+7ud+7iMByv1+x/1+X//+8pe/DIADUKpBalCQChyulHFkPhscaDngcuLM0KXM4uGUSUZFo7HYWVhpnj0XLNILdvwXm3uyqaus1CioLEqEX8DXPKu7D6os83/BoJRK4OUOqSVKyhKgJDihY+ssjBYHQIO0mZt/LriCA8UeWoB1yJKdHiFrrijOTfe0tq6Fl7ec2X78LNxVMn+7QE6KyHBYlwOHyNX91P002B+WGeNk2vYITs4qWc7fnCoLzSwh4LrugyZOo090EYxAjqIFpQCjTIyNaZ7UKqV9OIFErpFRtaUa7IcclVh+sHiAw6uzFbo4HGwZYEVhk2BY4HH9T+Ngpb/qK4CSKFUS7QYbVQKs0KcFcnSxlVMB4ZFYyhGgAUqCiVsLbmz8kXM+2JXj7UM2BBjPB4L2tVjY1hhJQBqXPcfiIxnk7yy8icXWviXvHhr1NpJ/H1Fx+pBowCjquWJFzY1OFGyo9hqcYAEUsgWs0zl4RqyfHSHIffUYKfxHMI7X3zt25Gm+eptwk4pZqr6+vIbIV0O3dJTiRnB1RoRrngc4OW1Q/MNIMeS0Cl0NjIGOa+hq/Fg1ZqyndNXnd5KVaiaLuXxcxqmUOOaqyMF8EfRFWjZeO//LtXRdtFPlIh5SF2QFNNZFjcjeXWIdDeYgmdpjCeGZkVyDEv36Gocen4/haBiSBUC1AM1stOfLEn460EGAsQO4geDk5o7uTEOvhc7DhbXQPfneCVC6sa3KgGIG02f5+WMC5PxYnkEnlpJ7U4Flyk0caSoZaq8FgEaMtWGZbiZQmQleMnUTe6Gc1sHgf5fG6gjZ5QiWIVElGWy3EKR80tv/UYDyS7/0SwCAb/mWb3l4/Fu+5Vvwi7/4i+s527bh67/+6995Tv7969uP/diP4Ud+5EfeedwKLcKtTMwyMJVU23xFSa3qi5jE4ZaO2R1z54CcSurf4JB0c1zWxFjIVxOgiMDcor39UT2ExaQToLgp+7ssNTWOqr9gRNWF7ilS0OqGbduwXS6w6wWuis0dW79j23e0tqGWhioVaoWU89DVQ0jEUWZF8YZNr9jqEy7tGQ2CiQEMxVavaOWGpi26/gJb2VAK+720uhEdZ9Mzd2DORdPCbCm+XSJ+1hMINIR/zOS2ILkZxGZZQngGAK4wnzBVFCfQyzp9bgY4aTzCSdYn3AvYFwirSy3TAmQh+AkNw8rCYNMUcwp0CLQLZBfgHtFVLICREeF16YIyFMUKqldUqWjKBl+bVmzaeF8qalFsRQ8GL+zHVzTmDikOFH62aBfM7y+pbw9a+cx6BGg9kO9Jb+BHFModnwCFzhQh7AYXm+lhOW2OYY4+bR37MOyDPUT2yXE+LI3aQnwXrISDwmOHM8+OY/FERGCrHN+FqS0/tkoAj6AlQcgKio+cv0Ra6fQNAZzFu7m3M9KnAVxsWvn8zM1AjgjegkFRZxQckXB3Rrm7sfzcQY8lj7WDwC08Q4JxsABomRI7Hwnc4myRDTyFBpIAMB6blkETMAcX97RCQFz2ld5MjezJlMZiDZIA/1k9dGjTDlbLTt8px8OYUVgQgM2gUNjq/uxiKKYrCGD6GtmxATYcPjwKEJzWUB0Un5uguNKzKgI2ic1/ZhVQAJXVywWRQgqWK2kiPxGArAxMBj3xRVzrhccDwMd7DePBju0JgFOwnIEVeA48ISdfqkPIfVIZiw6LMSOrsW8Hfbl3cdzg2EErec8LcGpBBeG5uzlwv/DoU9AnbQ44jxUzGFFPIL3YEc4hsjmc62PN/dQfloDVR+hOCwU6oPcp2Ed89cJAuiuv7Sxcdtko0Y99ay1t4VsTwMMUMOV+OoRrzoixNpyfc7yzk3/87Teliue1U9y5p8XH3X6j5/zVv/pX8UM/9EPr31/+8pfxrd/6rUzXRtnvgyNefo4YBCvKy6htRQyBCnFKE0husqco3RELzhFNnP87MxGSAVlMHj//+2E/8TXnclIdQj8KZKWWiMgRglkeSxyX8WXya56LVQiZUjcjJTQBtnKsDz4twPHepzz0Ei+6MOJS4YKoEmVpQDZs06BAE4vEFVh3S2QmSbfGwpwnLCaOxnkA0t0AwPl75r/z+56/+0lZzjWK5w5x2fJvJMNfrtAElsGVew6QE6JdayNOArA8h+8cuVcfkf8xGOP74yQ8je8T3A8/pwDnChz8hkeOp3yd02iMKOgsOn2gW08Moc0TUxhiY4uNcZ5Spss3A7noI4tnInPgUbKZehI+tip2gkJZAOKjbvLq3s9/IOshLtQe55T3OQbzT86vladcTj/nGxxdjHMj9wUiOJaO/8gsJQhJ4SNOGpRca2ItynUnB+L67sd1z1NjnkCHnyFQ4mIQ12uv8cwx+sDQnNe8d1ao45SuP4/N0+LaWZRTa3wOQf58MrxDsBUPayUeGE1PGi7nm6cQ3E/n3w+9zuk6HKlAXmM5Fsq1sL++notxy8dz9sgBCw/DSYKdlYYUh0eoeYzN4zMZfF1ny0kaYyCXElsAVqJzbzDa53XlvAnleHBhyjm1g35+6mkdToDhZ2aMjy9Jwrqm6bBzpGDTLUZinTmneML8eaXq3GT9O8l1s2DuktVeLGMeRypzbUdnAJ8Mym8MBR5u/0cByuc+9zkAZEk+//nPr8d/+Zd/ebEqn/vc57DvO371V3/1gUX55V/+Zfy+3/f7PvJ1L5cLLpfLO49z4/c48LhuO04X8ZTayAXbToeD1TwzKLzgas/6BuTAXu9xTBYHgPSZeMXIu6/iFH5OHEZM6ZBIS+1IC0R6qFSBVWX6AIA25VGPqp41E/P75EYbo5vEQBrQAa6HP4wm2xuUqBb6DWjaKmdKZy2ofG3T+Mxr8vPMqkau3uM9NM94nK9TTuvwseAipgEsM1t/ppTXjDsJULJnDBZLhuNcIqnPMM2Kpx7SmmPx9MEqnmxuBTMKJA2wLCuObqapyk2tg+TCnV8PHwFMElDlA7GA5r2cdtA4zQ8LUGqgXq0CjwP9vNN4gpLTOM+fLRakc+oyhdQTD9VOmZPmQsVk0Ax63k9RLpzMhSMEnB69jwRwUSgVqhG2H2hjpV7lYBkewNYxw08g5vTTGWCsjU7Of3b8Ky/BK2ByxiePgUv6CIUPSmwuj/vL46Z6AJB83vH745PHuIufz0Bh/f+0eXo+V/hzaNAf0pr5OfKDrfl6Rio4fvT4eYGoAKM+bWlGRGkY55YtHQRmZFQQ6T/JzTgX0kjtMJUTKZ5goc+PwzMFx/c5Jb9wrobzdUrOa8ix3koEo7yeBwjJFMUjaDkpgdz5+eJYgYauLOkCBbmoJoOSac30YeV51MX6DFOYBrsGlqR30I18ENacBtDDaOElmod2cDFe57GZ6/wai4c+5DUwWYJXrFUUAH+XS/HrAGVOfnZDsGG6ljxWuIY9A0EKP6PCV5BwaHQWobeWq/TlWiDomMpf9aZf/Smf/Pbbfttvw+c+9zn863/9r9dj+77j3/7bf7vAx+/+3b8brbWH5/zv//2/8Z/+03/6WIDycTeJtEiW6FbNn7Nst54U7MzBSTxGX5Gsigjle+Tt3xUqnkWHmf87SrU0NxzkZkXkmrbBBXj4eTkMIku3YuNcfTXSpn4iHR8fFpxTIvcY5rYWV4t25zbumPOOOW6wccMcd9i8w43NAj1KWtwG3DrMOtx2HjPurcPi3s+/j3+v380OnzvMdiB+x/tx+rmv9zHrmLNjWsecO+/Px+wY8/gdf+6Yc2BaHuywbGmd7Yd75TxHwxEB+avHph/dY4eR4k6qO+/HnKsD6RyDep+1yB1U/rEY5C64ypawXKbSgyLKvM/lng//XqXgBVqi8ia7hqXYaiHMx+PQbxSchbYc73w91QrVxp9LheR9PCePQ/NSAhCnsPbY5ZPjQoK2M2BaK+opco1Nwl8/to4DrK2/X/P9fMi6T4nCRzNaqQtKTcsJLwagXGml/PfD8VjdIgIc3OX69g+pqI8DTR+FwR4eOm3K+d2XmPIMMnKcvcIh8GMfX68up/XqtEI9fiA5v+VpD/XH67iChscN1hHusc45kddxiWYT9J2B2+k1sjfTqgxJLLI+++n6xOc9X/2zIFwertmZZT6NSw9AlDuwvXvI+h135QRYr8/JGbTmOpNuug8WBK/O43HRcPr5uF7IFGeIhNeUe0Dm+d3P681Hofc4V48D/6NjAuD0u494QiCP4zp85BOO4zx/z/HaJ7x9zQzKBx98gP/23/7b+vcv/MIv4D/8h/+Ab/iGb8Bv/a2/FT/4gz+IH/3RH8W3f/u349u//dvxoz/6o3h+fsaf+TN/BgDwdV/3dfgLf+Ev4Id/+Ifxjd/4jfiGb/gG/OW//JfxO3/n71xVPZ/0lgtIkUKnwOgGa+fqBSlsnORCdTr8HdCBeAySQjJ/HPgRDZ/d+x6CN5yHTOAHcCHzd5aFd0l7AKfBzwniD5MBx7/PA3sF0b4mCZ/GSWE2YLPzEIHN/PeA+wDLGSND7hNuEsdYkeD6bNnXJ8udVhTGxSXiLv5dAqswMcsF0B0rVMlFym3EZh9gwzyAR4IAfh+cFhOJyE3ye66Fgec2Iw+L683vcCyn+TFSr5YCvYzOIOGlcoq2zp9nVSwk4MERyeRaKKErOS50aCMewMQJ5PKPlqAvfS40tSeyVOCnRSjfwE+PnV83fTJKvFZ5ACAESpG7VwtGbZ3BZXSWbJ3Elc7twR9G/0fcHtbg2HXWgpXjW1ZYmOnCM775qFeXV/Pv9bHYLBewoopN3RhcZJoB6zst1i2CjTSbIvA5goAEMDi/RjzuH/E5Xp+C09V6+F7H91uDNE7AMW8kmdpXp3e91utfnl83v2du+K+f884Lr12XZyfByev1ByewkesITpv2K+BpCcDOAPRhIztvaPmZj035vPY+fmRZ1zAr7CBnCJnb6fG5TrRC5KqBzPEnCEt7AvdTsjnfPC94rnl56dbrHyD8o5kTvH6hhwF17uh93nEcvn53gOKPWBPOIOSUCzsDnI+CF+dz+nj/zkl/Z++LSXyMKXn9+9/4HT/q9jUDlH//7/89vvu7v3v9O7Uh3//934+f+qmfwl/5K38FLy8v+It/8S/iV3/1V/F7f+/vxb/6V/9qeaAAwN/7e38PtVb8qT/1p/Dy8oI/8Af+AH7qp37qa/JAAUC/EEGwJUBVRy1sMQ+vyBJNV5ZzZkMkoASLEveOV6DlBGKgp0nyKo+0UizyMOZWpUeMyVXRgaXXWvf5fO6WEz7GMgSzOckECMIY7IioeDuWQffQEggw58QcHX2/Y+w39PsNEMEcg4/1O0bfyUZMSpbm2JETJmlTt+NLeX62MdgJ1oG0xwaot4lnYo4ekVMKugSi4ToraeLEk2PxfWcfbNPujjEOQDCHR47bgDlP6RxbwMnmYZoGhCMnMncMAiGc2ZNHwSNbqPH7aAguRzIrIZSeg0zKLMCccpRSeuZ7sTQzGhthDNJj5VInEwKHuEInwUfRLAUUelREmXkpBbosNU/sSS48fnrtHHsq4UOT5k7RpblUzGr0waiG0gy1U4xYpqKYRw8p/tvFAI0eU6Uc+qnIP7Nr8yk/vjaP0znImZJjHKcFG6Tpj7VbYjOI7/VqJcvT+RqInI/chBejGecowclRq+zH4pllrAucpAYKUehz0Ocam16+nwNLw/BVF17PT/+4wR8M1OnxBP+n85WMxnmvk/wA5/1ufR5ZH+xgf3Ijf9y8H4CV5ybsJ/CY7Eam5rhVZq+bA5jYSgkcIN7WcQYsmbKV8xc6VcnlmiuQ9fkXTDiNmSOBI6fvnkXRr5iuvJCZr4l0JNYzwbUtv78Fu2OZktLQoh3QnH+b8+/MEnqehFOuJN77DMxe31ZVTgLKPBlYW85hwudHifXJgmI5T5+v6+nTHoH24+/PjFUOH5yuw/mxh5LO8+CLn2Wd//N5Ot7nk96+ZoDyXd/1XUdk/RE3EcGXvvQlfOlLX/rY51yvV/z4j/84fvzHf/xrfft33+9hiJ4RuD88Z0UAscEdEQHWff7dAT5fyRT9kACtyYzjsYcFwo/PsGjXBCQPn//81g/DZb2zv36mn344QXc5jXsPlbnnAVZUUAJ/HrISEytBlrw7+HLTOA/n9Rnk1T1Ofy/H3531Exly5uuu1z6VP54+x/lK5nnOpX15seSijWO9y/X14VTlZXp4/NhkV07XTj87vUDWuVx53/z9ebF83C8ezqQ83K0f/KOeez75r079x91yyXlY+tbzc3AeG8wDQj5/tnfC8cdP99WXl9OYPbDTuiDvjGfkdT7G+3FO5OF6f8yXBj5u0UtMIO9+g9dsZj7ngR3B43SQ07l6/TU+7vIcr+Ef/zx5fJxggB/e8fh5PvIWg3q9jbwaUV/top0H4WnIPVyMh3XnI/72fK1Pj5/wM97ZOvxjzkcO14cvfiywa6PERzxvVeGcn5OT7SMu3vlz+kc8np87x9Krz3i+PV7DV2P247fN09+ewM9JX/P6rV/fPvJ3r1I5C7Sff/0xr/Jwfl8zZ2sBffzrhzHzag59zJT5qrdPdS+e81J2ksFCUpAkxknueoCSM1iBx4bI0XkkZE4zTvyd93sARX4MqrPems8/fv5qg/P4g1e7kXzcZT7PfF8TL/+fceyqmV0rTzwGPYEDHM/3/Lt8D6zvfPTABM/Lq/dcf7N8FvT02udjcar8Wfz0WKTckBJUXk8/fyY4gDAtemebOb7TwTDgoxeWBeRiaXcgXREX6PAEdnICJwfge7XFPbzFw3k5UwDn2+nf/JjnBer1Bz4//u4L+TuP5fZ2lmt+koPPldfve16xXz98/kgPL5WzKmfD8dNx/R72RuDVOX13KcRpXjgO3v1xQya48Y+cQh91Ct95LKfgRzwMwRHtn39/evy8J8rp7/ydv3v87O8u5guqvf4a737+h9vprH7c+hPLiH/En3zc7WHf+qi3PB1rNJ0DoHiV18P7N/5+/sAMrOvyaok8ltCPmg2vPue7gwo5Ho9lOy9YrA+xNshXOU9naCKZ/j1/2Xfu4908P/sJZMHXVvAxM/IjPsdHfPsc+/Lub/+/5L3Nq23Lkhf6i8gcc669z/0ortUoL1zBhi0VtRA7dq7NUrQlUihoq/4BFbQaoj3bogj+AdUVEXuihbbloqA2LKXAhvp4WuU995y91hwjM+I14iNjjLX2qX0ez8Z+NTdjz7nmxxg5MiMjfvFdafGj8/YNNPSxz9/YTt/q8XkDFO86zDTBNLxID4G8RkbGjSDMkbU99+oaGq2uLcI8/vYOm16yPbJpmoMWIuuQCVI0XTWErHU9ea8Vu3LtaxFNuLKgV+TyRwBj38D9Bu4btN/W93u35lHRr4e8Oi2QHYutjoS6Gf+Gtr1D297bQQTwQBNG257Q+wO930AeY97a3eugbGhtM/O9u29sMw+QNrA2gK37c8SCAMsUblyLwRGzEVyEGeCOVfrczMJMDTInSBuI3I1F002tHrEfQWrkwWvkpleypEBSS4kDq8cdWPSPZURH0QSLNF9Bk6XPhLvyFDVGxEEcdYA3KG8AbyVAtWcAaQRZ2wEf3wURnTbx+qy63sMttEzmldN/lBMuAV1xWWAzdXiiAo2YI51QLQ2KIn0n//breQzKsnBdBpz3EgZdv6aP6VUfH6OUdU/QrOOQ7lK4ECiA6xVjToFUJH+1+jCdvqKI2BPyrDYyN5WESXyBmPOVU1yBsDLgKO6CzkPgMv8xMyGTq2yOucoaHH4G4zfI/jdQ8rLk7oKqsdF+XWEAgjeEt8crlPG/0oTLdL6a0nRnXdxD/u1wg8Mbea64qgIaPNAT5FmHUdVVI5i18sR1JMuItYj1IQ+G9qjoUqtt9bYKLFHWtZDWisGg0137+phSZMBAcc4hOStCa21jBcs8uUs7YsiIZaUYyXXGF2GQ31/IkVUwl7xMRIxb1w5S4BRgXs/qE7lce6dbxuupOKsR5e0yyrLl4sg1dzU3r1noqYD2bwNSPmuAkq3HnZDr60ChqGRF4UsNYXCxvJxS19a5kgFhLYYEoyrPQUiNKauKqm/CBDlUgvHqeTNq2wMYmx/hk4x4mdI0ioMo6OJDz3Ns4OaAB4biuc2VwcHNCkGpgpv16WDuaG2zCQ6mr8bqrHQ/MgaFSIFrDIoqGksWaCNEDIo3/yN7zrgQBlgJ2jyGg7wIkkd1mLYpUEyEdYfgCfVMIBGIR+yrxwuxFzRieBExXWOJjXrSvICTtl9EjoOpyMZZwa01YyZOtsBw3YUfMzf4FJfnakmI72poVXhDuBB8TtavqptpWU80X9f8ej3l2meBA6S/3FTGnPekBa1X8Hgi0Gnsr+/6Otl1jmj9nUhhLZAplUXNrqgAdDrfstUUBqnrJ/n+5ahrUYd5tSLRG188MWldz/Fhnv881PM1NfZyjLUIlHy/jD0EStyYFoGDi6BKkLKudXlRMWOeaAmUiEE4STP7GVVHRpFk/rv6/br/sufPhYe9tSZBfZGtfj24/u18HAH2kp9f9vt1vK+uvGauSoG1C8+uSFMIchA+AW/M2Ynmr7RFp6+d6IpQVtEVGa1KSCzi2htaaahczeahEOiFoMuuu07YmU5Osxb7jcr7dPrO6fY/8fF5AxSYFaOxWBaPE2U7zYYuawWMyNkJOQIiE5z4ORmhvcuqG+LCh3ltpuY7oKkXV+PoyMnZQVVZrdR9YwcuvKwi8MrN/n4ERXLv4LZBe/f0U+T7rXfvJuzNBUtqtWkT6oGRZkXh7Q7uTw6WGnioWVe6WUu8lBl6v6H1G/q2ofWrBUUBrwprFTgdoESgGc5BslALKmMRVxgItcmZclviTc2WpWrVdEEKhhfj8N4TVq02tDUBUVhTJpStcZt4AC5ADlDIghzFVRFRaClSl4FfINNUnQmFOdZKnTtFhKWEO4LrkWfWEF3OycG66CJUXwOME1/UeHlie0XrvXIGOp/OT3b1annOEgzsBQiJIzKyosjBPNXRUVEDaKQAl6rCEeSqAXscpKgnRcQpcgzFxZM3XcbtHFjLa1sWZ3Bv8cr8rroAL8CwCjrFicnXQnpMglonIx8BCClo/7w2i1+sa9IbQ4vABa+z5kukl7VeQAA4C/EQ8Kvr7EXmleEmrssBLKtDuaklfGo8XgnUOonpBPVLAIXgDToLSJ4Vgag4N6qKHlmSbHbLs+WkBvIuGb8UOJtvLqADpKXyvbrl2g4v2ZJW8WvUXZmpXAW7fSp/n2biAvzre2UPOM2u52JFfAWqr89FmAd448JXkg4CicaYXTmoAdQ4770EWMHunADXqp9ZyVW5iDfCNbmA7HUu469Y9+uJrr/7nR+fN0AhTTNYuFQibVKLiSO1D8XyG9dyDhGf4h8SrUhtO4VvLLXzk3etZO8KyYqSMRFt1psBFFFv317dO3641mSWmSBCr1+RQtHcBuT1KqhFrYplMsV1AzhDSHdK2ISLJYAy5TQYXM/aF8RGFlG+Hk78RGLgxDrFYQUMurkX63XswzSpugXFyjVbJotxSBeAFJH3UR7rrBWkoNTFLs9azcXNgKLRZGUv5PPSPkr9AvHrE51rOHi2jnowcZpVcbJNrL/IOQVp2e1xv+VIVoc3Nq2u4V4DM8u8rD8vAMa/swDLW0DnysLe+txFa3RvjrMlk4pVoiXTYy6SYZbVLKDteiV6YwSUv3x7mq5MO8n/I6+DJnOv+4+CkupzvV5q4ZexJE68bsEYPJ2/Gzd1Fn/2/tkyQMuAictnqD+K857Fypq3AFRrp7z5iCD7em85bvIxV2Dv1y/uvyrwUIakp3eprMHblpNcA4qDytrVI4BL4am+x1LhfAuA5qT6iGKCc4SEDOau/rrgJdepK2fPZx/wycVZzWqvIMH6u+C5xbqvxFd+VUFJHcNrIltvv3ETv+PnVx3rRC8EWC2ksg91cemPnvd3eHzWACXmfmnEwUSCA/hfZLYT830uYb3Sp+pmQe6AasJfsQ3Lf/o6bQ9YMQ7I377lxz1pSfnr81LG/2XJ/XfX4kQlHToLHPu/kgJN57OssQdzBBVZGN8+C0K6nAenMSKFVMaEeoBZyOyVQbru7nqH6//zu4bgr/N0PcNlIyheff+6a9V3+Up7VdRmhAZMpDzzxe9b60GE3NalcXzCI7IE1mwvpv/N5yjsX8/MqjKvOKUCKyue8IbF5e0r5Dg0BE/cc4g9E4IrjXR9+c3QBy2/jzEHAIz5iLksP3an14kZ/85zvBbiSgn1vXXGeL/GpoSQvtJ+7J3LOYsM0vKd89XO77y6j8J/Tlco56qjPYGAdeU3jsvt6vWPE7JYwgn1bRfAvkirs3nlGwFcKdcVcMFVLUJlV7+ax/ocFpb8TvDvxe6jozWqJefN24u96mHpxV+i5bvBD0BupaAzbV5hxuvHK9hQ7qiM8GopASG06Ovs1HiTFWMW/OJKA9dr+kR97LOP7pCwMMeFY96dN593BAqRfnQ0n/L4rAFKIrbTs8cMaOn6hijc5hwZBKINoBvA4gGXHaCbo9YJ4uHHsnSQNkQ/FoW5dqCrGmxTAov6AbC3GWeBHzY+UgZ5GzLyLpPkTdV4KkgmyBszGJMk8JQ8R9OGph0dNzTc0HBYs0HAXF5oaMr2mznBc6CBgDHQxkCTiTYFXWCNEaFow5r7dSI0Gnjl4vG6LDwtqNKMAGpuAZ/h2PCYE+zVXRnweW8e3sAIY4vCGqRRVjuzc0rUQygMJZKtoq8HRQMYtdLu0MhKAjLPnhisbExHGOxBvqwdjGaBucpJO5gLbGiU6Pb6L3oMyHFY0CIRdGtQJmhr0OYWn+bClk7cI8dsB+UhSl5Wnkr5ZwvbbhmS3cA14+rKERXulrG6E9HEbqh1WrWupYyBhomGSXYINwg1K+DHgLJ470LJondK6k3i/EAUv8tLIuoci6NPawOggDJYJqKudtaFQbFSELwXFkEnW8BnMGYCJkfultFIxHuJM0gp6IvgcQqENFxVWVTn7cRICRmoq+UA9JxZX1FG0YbT507rY4+Scj5Dfq71mzNsWBVjVhyZ1aQBzC2rqRQZr2C0pXRFpl42jbo4NAjG22DnySw00ZJKDw87IjsNkPuboplKRb5hhcxZd3uzlzHIqthoiw9rs89931qZHQIrL3XK9zwlL7B1XiqI0xeMj0aYu7UgpBwJYCD5pKCl29KLTJY6KAGORS24PgX4GFYaP6ys5DWPmvFlZZQePQUUqppM0QkK96lKocFzxiJAZrn2mEHizeIEs9p5z/VeY7VaTFYNG5hRPdtBq5YxLSuOrd2KlSkHl+eMxK5rHPQYlu5QFBaQqor9Cdvouvzb4Ojjj88aoERxoGCTJlrmylJI+2sgyyIpqvQrfwcjLqIKtRKBhj8fsOtgYlUODEKMoEMgfP9ZnKhsoDSBXp7PguiCS2kx92XKtHMm01P/VQoMT/etYA7OgHJD6fJHF+FKoWnU913jMKuIU2A+43z4rK3YBSxPjRZWqvCxVmZFbonwb2lg9XXanJdyrVMKuc87lTFkhkxYQURM4PrmESAzh6KXiIhAp9qz8Nm6IuKMPgJIbb6WtgFUhKWlL4cxm9V/JMYluf1j3uKeiqTNP8+lxK+vxat8llqf3/xP17dNY7P+I+T3tQ4bpTFvB4ci2btFhCxThg20G9k46AhrVco/deBfyWntvCS9fO10EVNMOH+3kN+ases76/lMtq8dYm//Ln77Mabr9P7mOd76zfVbmjelb3y7fjf20Nmtst772HF2ZVqXdnK6yUmPRjUurI0+/S6SDyDpLjs5n45iSUv6WfSE8lsr6uafFQ58NsXpZW1irSg/TVq+7Isoslizt2bwiSpcxSpK12aBAuRvIQbik2YKYNa8T5x435vrXZignv5Gfp6ngTc+qfMHGP+BWyALvZyqM7ukCOBxpfGPHfG/wPWNmPugzdivcc1440Liwas+vl9ePz5/gAJnlC4AAjQgsj4CMcKEw1tHknrR8jSf5cS0rJMgO+8oGREofXMyGJHKprpsmHIHAIpgq3cYXJdy251DteIerls1b+O0N2pRM+jlC6fOiaddVqi1MK0436L4vObp+z7SFYy3OCjl911DOv025q4AH9j7el6qy72U14j7CuCg5XsBLpxxBXMms1IZE1s9d1QWOBEHL2eQcl7bVeK6zl1dkMX4jC5iT1v2WDLn+G6M+xTXYnMfjCotH8noPwWOVIAv+V78z1ppP4SQrOvAmSJg1kImiJo79Soc4iR1l51ieuL2itCL5Scfh/1NJzJeTqYzGcYc57XKJ6/3S92n51HGFZz88nzx2fn5m87/+h26nv/0qp7zDaauOP3KfuHzTGdBcCbDqIC8qiu/6okk6lswwDedP3eXh508YrRKjDUu51Oc1jkJCmsvAvW7IfDF+cx5n7yezddTU7efvLpvVwB8aq35JWUnbsB+JBWgcNzj6s5d7zVWolb/jX38zSP1X1ZNi9axOMA65+Ib9p74Z5UyF62eEU8dzcden0Z4Yl26WCgFIIr3zps2+ODaFUv5/9THZw1QUoi49cJKKpNpuGol3FGIRHRCvLC5qPWZFEwwBKLNfg/vVgmBFKZtZmyB6AAJQUkgeth5VKwBnh4QGZg6IDIQNTxWnxl/neWfL+Wg/fMp0ZBumkldCFPjHDZ2zWsPH0dLd8HUiSF+eMM7BmHOac3v/BpDBqYcgAJDBnSuTAoiClu6T/bM+wjLAAugYpq1BJSGNd5LCwTULVlGzGD7bpgdZ7nn4fMwYo5Cg4lS96dmXquGh7o7abrryc6vUBKMrPcxMWXYvevEqMdUHMqYDgQZwDEnjin+PHEMm8tjKLbGOKag5Xw2kABjLsbAKtkUkpxbRu8gqEB0+pr6ugeDVD8JCFG3R70nSJiJM9/MuXWAhulgy0r4S6Gz1cAsIYie4UgeBehYW3nXLmPPZSNGExzW4dVdPExQUTPRk1tN/LiK4LAAhiqeMUr+WwMruoLadRmbxYVwdGWFCxomPQmE6oYKgbWaR8ZnFZogmTwu7yd00DMEydeFEYcgASojX+AjntMeGMLtIpyrYIK+Xp8l0JeQP732iyQU1bWlVzfbGggegeIKVrcUAg5WbL3ZfHIQMYDCfj1RwRQ/VKzHldNhvifiLgk597nSMgaxGK9Fs5TjjzmM709fy7nILC2OAUrO50byFHEgYvVsHMqpYoYsd2I5ARRXCVUs+3NZUDSBS22nkZZMCUIoBHOiLnef6NqJ+U9th4rPyVQp9695zaUIhCVFyyWTis40mjRfAdb6XNw6aiMMmoNb2Iy4hPz6FL8JnoLz9bVc61u4eT5rgHJiEMB58TUlw2JaZVOfzqO4LN4bR9kc5O4bvQqBS2O5iONYnW8FlQmZ42ExHNvYAVBMmA4oBiPfiw6+MwFZPLt/FJTnGHPgkAPHPEBEmP76mMPBiT1DFWMey//uAEV1bVxrme7AywWHJEBRUPhTVTG9AaCBRkVEDIZGaELBQIrIcIZlwElEHUB5V2KzqdrmdVCy/LurnoeoQU/rFeLaHowRhnUoGWZubmQvnngm36yn7zpDtXExhsC6H6tgqAEyVsII7QJAKwKLQ4hWur0yDwcDZ4ZSda8QYkihA0SQYtFAUV9XGg6Tq3Pgqw+6BlGcIhEpvWuZ7aC+fkC66qqCf9lda3zO+CNOhBAWmpQHgFvb2DX2qz9PYxsTnWYnJj4Mb6/mOvZvMk99BU6AmBo79wpQRT6/kcRx5kGX5+txnR969f4V6NSV1jfPdZn+V9dYV/LPXn94+d1H7kSrBTfGqmVsCwgqisBGAQpaXJB5P2dqP/Py830uQec0g/NBTkNrf60A3bUrfM6SJuExUuT36N84EU8REqjrtlbNvr7uKH9zen29o/Ko7qIy3rMldNFFALFX+628rntIr9eDA7qrSwmLzmsSU/CdFTkRPP1K5z6XaSL/f//4vAGKmx5Dsp4DK51hJUc7Py+aCzcQluBEDQysCJ5SA1bgFIMQlpEEEDJtQU+gpW5SCzg0TQOmyct0AHGgzwNjHDga4RDCMfb8bEg01ltWmSlW72UK2XlkYJ879vHAYzwsBnQMHHPHPnc85o59HpjjgKqizR2NBI0EQtaWKwEK4MGiEzLHCmZTIAu1uaRSByjq86ABUHzuVJtvODKfrjf6Gw6+5iwAJTQYUe+QbHU6yNuhG0Dxa6kdUHgkvwGXWYLUJACFA5Ch1iTQHIIOUJwhDGiCj5jPY04cougOoo7ZcMhElwYSQleGiqW8i6o1FFAPMVNniHASTOFzhiFv0rlbm4IVJM8LUk/6LOc88dOg8chdJA+K4zI4jwZnN3uz4lwl1IFKvOeMjdLX7GOkM69bfLkya/vMgLl9KYLE4e4haJjh7XwcGh692sopGJQcYFYGH8ISWMIS5gQuzt2F2+Kl3wjFvSkKWHljjcqz+jhV7Vni7zhVyowCft5az4ADrnXy6Tv2n+D80FfDW7QT75+btb3OobMT1YspKjgJwU6X0QYNLsezAcJUAuJ1KAgSrr9ynOaRzkPI85qVdAKYSt6RHGjqd+B8PS0edc787Jn+qrrIWTUtdacR6Pr+yhh8I3W5zMEiUFmvgTIIPT+nqRBnq5fTaFo8Vc90e13qNx/r22/9JmmjXP/8HT1tgRON12fUvXfhagkEv2GYbzw+c4DCgHZAu5nSQSDPZxFY5DrQsTJm7BHZM0QdVtUnsnh6KazT/RAozdQi1TMqEpkr8jkE6pyCOawPkIpgTvVgyxWgZZsuLB7q7pcD43jg2F/Q9heMveNojIMIx/6CY3+xLsTDAUoCHjHzZQCUeeCYDzz2r/DyeIeXB9tnY+B42Pv7/gHH8YIxDqgo2r6hSUeTjim3An6dzDyjxcrSR5YN5QZkNs6rUMzjMEAhczFQr4MicTgonHNCptj9D7unI+5NxKuvu8toTGMWYlYsEnfxyHTrjgEUBmWUfrWgqDjoUCQwEX+ehAQoRAFYxN1lh63N2HGMht4Yx+xgsecuApqEPsM5SJFXgeavCZplvG2zuzsthVRgh3jh5cGjwFW1cpSHw0Jc4IgzHs9tqHVv2gZqCm5qdedUwJ3BQmBY9hWRgkVM4BOsinEso4+b1S1gGjVmCZkGms84BXEbOTnrIqRJmhy8ihIgUe/GrILp618ztciycumTECjCHaGMaGryYT0TXXN6Lb1umNqK/om7KF93BC7gJjh4cpjziqhz59fWi8WVXguI0w2W89Lp3eT+RXzW1NRTeQOK9N6aNfRWUbBFbka7mlkyUTAtW1GUhIOqccf8Lwuxnlw7S5C/fqwSD1HJOXhuAZvuYhQlAyoUsjSsJuuokDALwDltsr9mrE7YCw6Z+9XzQL2Qp2ZCaFYXPwEab6ui4q5eU44KsVzWn7C6lF9h0BL2yxPwBgUF+ZQ1C6eUAcrF2+KSdPlNLWJIRDHt0KAJ84f580IbpxyG8myDcwp1ReZ3FUBJy4mTjgU9eaqbk95Zd2DXup3o0ZyBA7Vuof0dvVi4EB8WkWUmTIGUru2Hg1fJsj0wV0Bl1Ux02crcEjMh84CMAzJ2e1Y2S8M4LN11TOiU5WCPHcua6oWKQOeAjAdkvECOOyYBMqa/t9sxD6hbUGTsiH5F7BpbMA8CEiDonDF4v2d3d4mLIFXoPNKqFJogKUG02z22jtCCwoIi084tov7sFpQCUKJ9uapbUVStmmxaUCRjUMxKJu6S8/UIC0NY0Cra1zX++G1axqZZjuxQyGxmKZvTAdbEZIunyXo8C3dYfARw5SvrmjhPadXRgvuEgA6LVAp7F76njIczmdn30xJSyvZzWxUDOSwo8D0CS8EHRenOE1OCnzdvJG5iie18VmfaQedY7zrdE0TY4wHEQotgVZjrmfJ+CumfAYpNtqqtwbJFL3BUT/KmlpcyYnFvImTmW0qC9fUiTs6nqj+JF5RCvPxCT6d980HXV8mHfodfULmplE7X7wVoeUuAnOHQ4oV0gWGvLYFnfRqX/bcW8Qwl3s7xePWurvdtOcnpwjaSlu+VEeQPjZd7Ng5Q3D0mzM2qJz4+gRdSON1vlQuRebgsTdH7bZ1njftyL2mtW8DwdJ+Fzq+zXbfAOm2RV/G67LsTfiggpbCb8+t6/vwxvX4/z0+n61zZxbd5fNYAhYRAwrB6FoEsDWioAxV79sqlAntWRebno6Pm7GeRM2rrsDOmb5xcGLPbMlnV65coaMx1KJlQHQKyCFasiC4sqSWwCMvjAB4vwOPZjq1Dm8PYxwP6eAD7ARwCDAWEQJP8ugA1BTGDxgAdO/D8NfDhDtyd+OcE7Tvo5SvQ4wP48YCMw4JOO4NGB7UGeKn7qt2QCDCtNPoKXEQCFKI1tzQGINbwT8OE6tVx1fsEAb4Zp7tr5rR5ElnviYImbH1EoCOyjJDRfgbGps3fHD5kr30Ci1VRdwdpzj/SdKKi7gFaTJQB6BiQMSDHDnm8QB43zJdnCHUIOmRrZoFpjNkYDQppgCg7rnUA6+Asg3sLAMpgNzGXIXkNCXUmFlaqqW5JcCuAfaFk76S1ya1RrqEGqU2Ntphe+4QFyt0AQBMrUdECIc1kLWHlUeYFDBRFO61MMjjoyvoQMbpTEmSl4HDVwAiI3DXLxDZ3niEHN2WDlooh/kJco4trC2GBGyNKRNfZlU0VQjEsakHZemGwWAyaCRRNMF1VPjF0jfGFwLb3GWFZ0tzeHPPlYCcuueovr2GEW3ANXQE1AMcav3cXrMYtVGB4uRG/Ulp8g3byF+V3LqjT3ZG+qshKXHOXWTZxppjnMrWhtGkqaa5sTFuHdZ11vIYjCwAuT4gFY5OguPUrUCjgrdBA3IvqSps30BgTwo5RFFGuwoKEKTOXjK+QfZdivyrCPUkyyzGwaqHUVa/o1ZQHcotdNjFVKve2lF8tAb8rMFdTZ83Jj/HAJslkGF4/qFBKsaJdh+gIrgCit9AUObi7nPdyfOrjswYop1DhINtgoLlnymbMv424amGhqMGRtUMQBnI7As40dYANoKv7PsWCIrsougja9ANerGxO0BRwFby6MjxYFDwn2jHB+4G27+CXHW17WA8fYrTHgb4PtGOiDSuy1oWsk7IAHYoOQmdgOya2feD28oLb8wfcbg03BmQK6Dhwe7xgPB64HQf4OKAquD12tDbBraHPWViCk2PEgUxZhFaAgnl47PUcHiQrExK/Z4aQARShlvE90wNj57T7Ep+/FYOCxdicycWCEnzDumAWT6MhiC0tSkCtCGgo2lC0aYXpeAp4iIE7C883YCFiVoNtBx479PGAPr8AL3coOlQ7sDm6jFgOFcO4QkAjK+IWZmmQx9KsAnw6I5DZYo+CXqUJGBPi6cwigiZiQI1wYkL5myFpiTrc0jOGZR7NKRgiOMTjamDurYOAQYRBMOsPEya7q8sPoSU4QwKImusrarcEc5zJkAjRNdqKAJqD1XZKCAR7UGxDtXaQzB6T0BQQxgTcjE5OY8bxBOSGThsgs+seHhgVmRlhBVQPtA53ZDS75KChan0iy9AI6wefgidTCiKEaNi2zF4bi3OCbGbVI82PtAKa4GWKzPpi5zNwcBLr3JSSB63sGXVMURCHbxGbNqc/BF6wPVOzZmrwKufw9fwsQGTXrCwOj/kp2S4F9SCtuxlot5QPlshycxeLWywoYpCu0SN+XYZnDrFlGjUVNFF0VTQh6zbvYNQsrG7BCDexRtaneFCtXUcoJ2wxeM+8VFEQTwxhTAKGekNTFY8HCZcyMjbOnudyRV+sd05dSQHhA+B8HSFhfg8+jzqtNpP4vrZgffK4OnFlpFqqHEBGgkYCyev0XpBLpaMqU42ic3njL0XI0HD/Y4HbmNdIF/8WCOWzBigxGQVTI1gGUHmFz8irqJ4AJEi6rODkld8WZ+wbm9mCIX2ziaKp+fCZTNjF+2vDOPonZ5JiFWR5CvgY4GOgHQf0GGCxZnTtcHAybUOywMEJGUCCBWX2qehT0MdE3w/0x47+eKA7QMFxYNsPbMeBPgZoWrXE7TjALgx7ElWZTfXNITPBSWxSYAWaqSooXDxuJbATkWnsJBA33SsR2jQgMuYETwv2pWnjMODiTLoAlNBwTuNyd0toUaompKrVAuJVfmd9NuFP002TvsnQBjA6cAyzWu0H9LFnIKkeh0nG3oF+2HT1sACQdy2zI+o4WEr0yjzKtEy3oJgvz7szuzBVtWwhUgJ5mqaRndGwiibDErE5mFMyVX1IBAUjgwknWZdnAyKUxW3r6zgIJlxDLtcU5BB4UyxmB+FaYYKKBXWaFAhxrAlQQt9fjRmLXANZZdtpNCJZG0LdgmJ2B4HCC2waaHHUkcow4IAWKeDWgeK2iTm9BCBS+fSk/i3OnMw5AYe+6dIjrIBW9Vspl0juFTEO7MCnyvu0oMTvNZ6L+9kFU9II1lxEvFCtl+PbYv0dMqUIsRV4rTlHnEAgQNQCKKdpWhewGiNzrcEJnOQ9XyTj6U5s30c6uQE1nIAO5eIva0y1nujJ1StgRFKvOsFT4S2ShdrYU4sjtTfGF0HXQLFmxbVfHReiKLRhcTALnIRynMH1roxHqEDGO8ahKPuyroddVOk8jlV3ps7y2w/VRUfBH4uIWGuuuUXXBxq/LNaXKxj6hsdnDVDssQQB2DRX87nbp2lVW3N0AhsZeeKEwK4V2HeKFcVlTqBcEKETYRKhEZn1AjahTRVdXRFUYIgu7cg3UzBJFkUTNeAxJvo+0feBvptgVG6YTGYVGRO3IbiJ4qaKG4Ab7PU2FTcFbqy4D8H9GLg/73h6fuBp67gxQWRiHANPLztkP/BuTIzDXCBPbeRYuizqS1O2b24JF08yR8/iKRaUMUcClKzHwL4mxBBezFcKQJlesfWYK4NHJkzbERPCubmS9n1cUzDHdG2SzG1BplWE9myCXLGJJpBrQ9CGAxYAEAaTWNDgPkD7AXocoMcOetmtKioJ+LGZObZ1cOtGL5sV3uZmjSWjkaOGy8k1xCgsGGnlQ6ZbBazIWQTWqQqaWiZRmFyzSifwJkAZc4GUI9Oji/WEkM+TkFYTYTvCcnICKADCLx9puhMh3AL8qGfRUBiTrC1C3XxOR+zbtgKU+Njki7uInAAjlMQMn9aFGGqgxDKOfIxsMUqMlDXFAqEutMStD0UQI8CJK/ykCF+OnDHMxziQ7YHydzm1dU0voEUL016CPLGvKR7Oj7SMs6m6BUXdwvKGNSMEhK7BhFwMYBKVYk9H/ESx0E+9mxBoCGBabiaEoaxfEGDtCSQsAOKKh10/7wXBhwtwTOTlA/K1jDmOjK6wnJj1xDsa+1gCRITrf9UJQfIWu9KCcWG5yvc05sy+yWp7KMZMQAL1BGfq9x18Xtbc4QSIg0psxtjXNaMjfY7WeWBusVDcYm+rB/372M7g0wEZy1ojjRXEaV8kJit0HfelzmwjaL2GP1YSWZ6INQ+2jSJeKTb5p5tQPmuAotqcsfRilqbsH5KR32EHyMBOfy3mzmGJgz2mhWDxKLGFAPKqJa+9hyW4S91yEimwEW6u7taJ2BOJBXSLjcAE5THQ9odZPB4PYNugjdGZsT0e2B47+rGjjwN9DrN2yESXiU0FXQkbNWzHgftjx9Pz13j60PDU1Vw8Ihhj4unlGfPlBbf9AR6WcXNjMXcSN7TWUFMRDaOE/3htRI60a5+X0D15mqUgLSgEB40DFovQchbDhDocYEwx4JBBsu7iCYDyCvEr0hUyx/BtwLnEU4cDFMuukikG5qbgNtUOr6GywCnhNhm3MXA7Dmz7A9tjw21/4NYEGwu2Y8PGhK13bFvHRsB2NO+DZLlkpAw21JNg4sQQQiNKBqHu6tfMTrQj6HZ9V+O0HoQND5zWMJU4rVm/FUY2OERz90czi5a4OyxcIgwHUHMhlIhHWkSLFYGyXqUkLDzZpacz/DDTu1JAbjFQz57QsBA4wAMSmNFpHOyCV91FBKT+7a4UIrJY+GTCyJgFFoUq5bWAc9ZHFBKk6Abu1pll+wlqr0LH7vLKesmngGlZUM7fp/LaY9w0Yo7IrUN27xy8Sinj3zIw3oJbCrYghHZm/VMWt0rOVfhk/G3DudyFu7xWPsASYyHIQ/lqZW+ahddcqn2a4tPE+UWCEceCerl0Ruyu8YHI4g5DaTzx7mjKavOWLT50qZr1cYYImrQj5W/43xeDex51HdnnnTLswFxQHNInN8h1BHbvTeC9ieA928gt6wBNzzgSNUtvtQqrFvnm9OhKZVoLHU1SoZdX+denw+dMQy+h5PmxRDGrMX7EGuryDiygbKCkYs5PfXz+AEXVAhepaoDn1LLs2SFI1dCAiAOS09F8YbuBFG1YJL4CRKHOzghYJkv3O3rQp2kRHiBr0H35E8VdR0LgCfAx0faB/vJAf3lge3kB9QaEBeXlBf3xgu3xQHf3TJeJNif6HOgi2IiwqeK+77g/XvD04Ws83YEnHrixCbNjTjw9f8B4ecFtf0FzgHLHcIDC6G0BiJqooQ4aFkqmlEShhSgULAWgpFrF64CDQJC7jQw8DAcmo1hQqotHvLGhKT8LeIYvfQzPMCoAZXjtFIgBIJliVqgRIEVw93FGOjAp4T4I96PhvhvYuz1ecHu54caCGytuuwGU294NpCAAilqjxtywZKBMlxk9hOaplw8IcBAhwRjc+BMhMQDSxWUARVcAYg3C9kMjj1rs3LZC3bG5ZJNAYbc4KdlvVOw3PF1ohOsmOXBwLiS3CVmdnBx52DxIWtwyzoI8noIok4nMPeL7AgugmCXFJf0Ui/GplyO31qX7ELaaZZjVvcP5/hWcmAtJnVbFAYqSAyOEFSGAyoVRJxP24Fln3utaERcAJJv3zzJgOABIMH6yJTEBRmhCBnxdyXIjJvQkQRHUjHSgOCCJsN6TilUCHqkcaxDJdXOnhyUYoeljlYAHkJaN7ke4pwFvoLpmoFwPCUpyTKUDPRyYaAEnzZ+toSshgooXmHwlUv2+F0iJAGyiZWGw4NmYygLSYh4JiIDn2BoUhKXmDgpX1hmgLHASj+WuchoQO8L9T7QSMWrp3LQmazlzEL1/JxSKMH3QFaQUsLL6tK2h2hytmatjr0G3CVByLgJ40ol8KsD9nR6fNUDJMscgCDGiMmtsIdu57L5/GKf3bryYEbBlMQ+ZZdO8WG8i03Wc2l/75okYlbhkCEPLbqH1umTwnMpRB3AZE9gH8HIAzw/gwwOgDjS2bIKXF/DzA+3lgfY4DMyMgW1ObEOwyTSAAjIX0eNA+/oFrTezA7GVLW4i4A8PtMcD/XEADlC6KhoTmM2KsiwoC5FLxM/4rs1qn1BU1t3EgYlGb02YKuAQgDwNHIpswEdTrWOyKjAkg+44MmxUMGd4e33DeCZHVPHFmD5k6xRsAnMmGMAwN1oGMU8PsrP8Fhc7pp+xBzfzMczF83KAnndEbQC8bE4HDWjNGEIjQBtUvHtrI8uA8SwYUbXU7mnp5FZfZWDMsVKjp9XsMcDNaGx1bUiNDqbIshhPp6NjpWqP4/DU54E5rLaMBeJ6JVwVC3L1YNBJCuEVGKoOZMMyIXDt3xlZun/gz/6duajFAmaTN5oVbGlXyyRu+NaQnAJQRy7qFxVVr8fgbh42wT3BubUj5AfKaOxZY0qZwp/maQe9ZmE6A0KzwlohMXPx2DnJlZ3EXVjyH57RQUnhzsYJBamFiLQg4MLWk12sR4UMERhs74d8i6DeBD4FcAEhpGKkVK6gyJLsp3/INc8giBw0AalTUJYjqWlMWUAwngvQWEGe8DgvtyyL1eYIm465z90dWq6jfoI0gpxmLu49LNVhZgr69b5owWOLSEzQw4uvk6e0C9t2Vpf4Zok1QhZmaGNIY0iMlWLtFQF+qvv7NCNJFxWYxO9W3BFnfSc/xnT+IV4mYlpQ/JgZGB/d0Jf7N8oyTFNUaNqRgcJhiS2BswV4VtoMkRaf2NZU1Oq8+cWw4CwmbTRJQZz1jU97fNYAJQRVbu1TDuD6VuDlaHwGAB8xeub3VwzLAiPr3AX3F2SvKIsTTlrn4DVw6mwq8z/CBTQmcEwLzjwGaLJtBg+e5SHoc5rFROGHxbx0wLSVadoKHwO8D/BjgBq5L9NdSYeghaYtltViAMXAzKnapPO6NBfG5pNw8ZjmYV8zi4D7F2y+KZC5gbYVv2JCllTTTTEdzKWfeC6tky4AJQSFtR33zQeAiCC8+mYkQFE1U6osP35DBCZWXWtlC9B0ADuMWdAxgc3SyDEsK4fGBPEAZgcGXNMvExcsIKwlkUmQgcRepAwEkglmSjeLKHtgsrHSAG4a7kNRr59TCmBJ7XPi/Tx8LZagchrnyxHvVe6zlu58VH5UyCXXqLqjqkla16kh6uu4HEYxX5aN5fE7zcCJXABUlDWKdOucawYkmSJSKVgmFTqP1e8hwBdSWw4+4O+Veww+G/w3PVD5JmWdjTB4rB+//bhOcbxZBX/yjQJY3tJKr79ftHi668XX3FK2WB6dPjvxQLpchM6kc7Jb6PlgxDPldSIRYV0Di4/nZGguQt6PA5X8ogvK11WVy107uFoSwAYU8RLGs4xPBf/KjDyi8++pgJNy/x/ZLq9WKLcguRsnb3/JCzOhxutyb6Ie58crODZAwCmd3iPHSoB+mFxO9JzruT7L+0fZA6H84fzjt2j3bSjyDRvg8visAUpYsJYvlU1Q0lnAKpCVPeGbJCb/JJCwXBWhsVn0J2fwFrnp1zS75sJI7P0CUMxUa8RSm8YVKJMP0hCCExSBmS8HqO0As1k1Hgf648BtH7gPwZMInlTxpIoHgE2AGymeWHEXwW1MbC8H+m03101zC4oK+sOCcG+HBVOqCG4AmNgCzRhr/spAI+/eBI75SNOCQoWsPcgzGkcBWAwIlP5nAygmQOe0QNnm7p641pwurN2Nk3IzGURY0sxyYxuKId74sJXNPMS+d1PFJg7ugAxuDgZIWMHObSh4n6B9gh8T1Ce4TwOM3MB9gPqw+zuGV6d0OnTVVNO9olC1ircSxeW8LYKCXMmYGTcCnYAwxN2GANt6JUCBx52MBChzjsxomvU6RVtSUrdWuDWPHanFRkERKFhyAtBltYg9JMjMjxD7cQg8qA6aLov00ccjg7rWCVVh4Lc5UfkAhG0fycJ9ORYAlvkDdetDRUyLBgKoUIqQs00hLEMhOTQd7ItBvyVxiDS1ZpAmBmJ14GOc/QyCLuzbQExUdw2gQykcLEh/HTGAFIZ1y+biuXmfzuAk6SCEL2FZUIBluQoLSrFynEAKxfRQuuqgNqZGtIJg1QPR3eXQ1F18ZFbCtKKcAFGZ67y/BcgowEnE+4GyvEA03pNc2Qg9JF8Dcuudc3ziwJR5wZx/VTQij2/kVYcneJ4ucMI+wtXmYpWqOKvE6zeNCJ0JjSwRsJGihTzyDD5TRCSPpZB4A0GEa2sFJ60CcQuYRMygzVFCkIUkE5AhxVm4y8NoWY0kp41Ap+U6y7hCMh9BLW8+PmuAYtUvyQRFA1pXtK7QSaAoMk4NSs2ixwmYbHU3GAyWhoEJAmPrhO4Hw4iXGp24lUKhbCXIlZb5XoTTb60JYLzgDoWP3bJ94u+TUkKLPmpKGTzYCIXQO5EFZzLj1gg3JtyI0Fm9qD8y8hvi1VnHQHa5FIVMb7pXUDo50w7/IVKjsam2jRjo3UGeLBdPDS5bXTk1QWAwWgrqz3PI0hIkzJs+Jo/XWQW2/P2raTmCNjNAUi2uwlXa1LKDyXOQzilSCbg+F7PkaZ40ymP7wbamzcukN2ZwY1Bnd9HxYq7igbPKkMlondHboqe+2W95Y7TNPt+2KHtPmS2liiw6p/Bqw2KgSEg904UxiAE0DCGwCiYxlJq54KiBHcgpCYgVogxma1ApQx2skVu5gKgXREXEAwukEBnAbWQMl0n9eTGpYN4hcFvMZe40wqlYlJOMlZzxPcTk10FY7L1c+9pv7AI3ljG/RyZEMjCX7bfEZMV1HfiACdxouTR5lcKPWAsKUgGZ6dv3q4er5B5KC4oGvQatFW5NRrvwe0qXDWGBjDckQJXp8dsoVQ42Phb3yPF+ZTxlf8YJY2RV16VC864PZkDkMovWoWnuzSiLz0X42fdCrVmWtRCYAYoCvMR+zyJ81ZqRGZzIvyNZQigCn5dLUh042/5xJSvciz4iduI5xxYtnsG+nuKWD3baDiuhZWSFpTY54WlOGxyoNaB1Ks/r4OZ06fSYz340dt7TbO809blwvsTspMCRXYh021FdTyrvVxNYsayGUlJXOUgo1jZ4Ypw7AE2UjGJ8+uOzBihKnLNBrB4/oZBGYF0gQYm9UJLY3xAkd3OneqsLD0CEl8aglEwOIfgK8TOt+hHVYWTVWCNOxRcMFZzQ2RsFJPVqUdfiX2W8zV0xjQFmRfNIb3ZGABRTv7sQTp1EU4t1FB0mP12gorjSHXgsgLJkd+iCi9GEuTHsHUuzjmvkCZ0xBZqPKhSywBCCeWleK4SNX9iZRty3zSv7eoSAsPfrEebUxX3W/5RM63RUzT8eYZ52BroEndNlczREgJKCptFiawRxy1ZrrlU1Ayvc7Wh+9M5uufN4iLCguNASFYtzIIYKpc4mYhxBlUDMFr/hzRqnWPwFEby2g0nUMSmlq8Ash40ctIKgkzzWJqIvLL6iqQWSEgycMC9hZoBciwVxAZZgjiEzTwJwbQFnfLZfmj/X7yY4YS2/DwImgNWL8CHnkagIbo4xO7Dxg5lSQF3HZkGZWMSYl3N+cYogtJ2sWGZ85AwigcvCKwFGllDT2JO09mRed5Hjq7mjnDuP8Qi+E5uj7KUzxadKUe5hrdMCQ0aHr3dH7MflNnrrUUV3gJOYpBjz6kXlegoioBmpjKwstIsrxuknIuICnKjGPrehZup0hRLJ61xBQXXnGM0n7cKOEh7lVpRzeMHiiNHjR11+qbvYYWCjVfCs1qHCg08r4Ez69b3BORcF4MHnUQP8FzrhAjhTLlFZ27UeCyCfFzNJicpX3/g7LYOf+PisAQpaBxqBu1UR7F3RuzmqrWSwl6rnZlYTVghPSGtozNhh3wMR+kbYXGs1JmoaMGngPRO5EsFRtIpdKVmRq0mEyYzpjfHgAMo0aB8TLwIIcGWWmGpCLE31uHmWhVEstwZu7G4bgJuikYDYq78SwWt9YkBwYGJ3gKJq+fI7BDsE04MkFYrhYXxhQs8iVoUZRlBy7FeHDs5L1+abFVj4++naMllRwIp4gKIVJAvDbNhgVtdZL6aEuoHYgYierqWephFR5CBH/a0eahks5JU0EVYgE7kW+NkgHjqpEEQpdY1skmbaKXWnla2Btg7eGHTbQG5FodbSxyyToMKRZwRAMGeDgkCtod87uHe0W0ffNrRtw/3pljVV5hA3JmkGXctBWUTPCvJNyAQ6C4YQevO6CargEWAc6I0wprhWpuiNAFILrG2EOSyLpwEW3DoJDROT2GhnApMVPBjNA+cAZ7BsxXYbAZ0UEWpKALoaU+4Ia8eKe2LXBqPMvCkf5u5h1/y2VgGFXas1BrOAmNGDYTd2uRKWDQddU8CuuDB5PY5O6J3RVbGBoM3AZevNcYb6nlM0d40RwsdPAauXdA8LCp3hLwGm3QYWIXOVXpJNihvI6Y2WxSACd0ElFoCC3bhQChNfs3kg5xlm/eXVFiMR19rnsXdDnTthMFoWSHIJTBSGZslziO/DbD8QAa9sVKD1e1iqScvfIq0/FH5nZo+HtbYIo7V1dOe1yZcJszXnxw3TXTPhAKlKVgB9hQV72/b2+xZkOX2/DTR43SuKZbY5jFi2OGXUMuliVceXhajwRRZXRtTE2Qa0jdA3s6a2W0PbXCEVC9rtE+iD0Ydi64xDCFtr2LpgEGNThnQL3ufGbkFRsDQHTc1p2RWknF63wgRfi3AJodWaDkvZSHINWna6UFeaY48GemlksYGRiv4pj88boPgGo2JBYfZsFI2eOgH3rVR0pIWpL4rmhBIozGgwJkKNQNN/bzZFYwquPsQmWn7lFRmeAVXVcR1qS3mr+voS3evqtiquLaTnp+o46TOMbWfXEDIRP1QyeyNMuFbYR7zluRULUwimp1oyvAgUTrpTbt4oXGRvUgYikn9pAZSzi8cU16JJuOlU4DEo8OwSH1dYYQZMwARIiXFR5EYQpUZ0rjjqM0WRoVL97pdDl48avjQVFNk9y7I+IaGZr8lVYyv2TQ73jN+/ZwZUU21jD4FthB5mW7emtHaxoDgZ6qqUBWEOeGlAF4wJcz0C7pYkgFRPFhTRZuBcge6NHbeZLNaoWMO64ffd2E2FQbywFGUsA1MLl1dx7wAFWEJdkytaHEJOUsrL0NJjTThWnlacRivfDQtL7cqbP9bynu9D8r1OQhZ/RWEu54w/aw4mNMziobGKa6n5WNZQq2CMNfhAKrGRJALKw5JBOFlM4r5D0S7TfUoEWUuw3so5paLROrhzUH9WbS/uZpQT1ROjkLSDlGRrHHuuWHXyvn0vuiRbQdX06p5yLuLgOsZqDVm1asRTwTM2hM0uYYHUrvy9cc+JHKlMYk6rrrlft7noL2nQ6R8rwDYq2i59iBD5i4tnLMuNCXGznCyLCRKMr+oM9fVa02pFMbeqj8s3RVoW41pKZX9crJCxdzjeo7IuQT8pHBY4Kfu3WlGKA+JsVTkTyTc+Pm+AQrY7yDWhaLYUgWa18RGxm8V9Eish6JUogKLBuTanSzgEbWeQVDKm9V6CcyyEXb+7VisiwkNr0QjWfnWENrjOLiAHJ+oAxcCMuXWmB2BGJVIBvOx5BFaVvhQVSKUZfG1iVbdmaDGFKi4AJbSQEpCJ4vTSBShCokXTvABL8TpcRdMBjWgBKOqCxdmG+ZbDpYQcXLyf/y5rszQ8JAAsIgWrp8VKzauVNwXX85194glOnAOQBzewGvOsMQ0KZzLVr+xApcV5QKaJogBVVadZc8coe/dtIQi7q8ZzSSnX3mrdTEeaXRVdzEvepsda+fosgGIQKO7LCjU4ABJf12C6ASDYtcos7maUEIAnt0F+siDxWViuvZxMFDEuZ4QIhqvOmykZLBTplj2dOJhxWYfw2S8XD5vHkaXEQqxTXSV4Om0IOR85iLr3415zPGW8a8MUzr6OaFqX79U5q2MrgihdJUGLl+MstPU0zgQiF+EDQsZ9UB1f7geUffem09SvobnnKl+k+lwsPaEQCK3aLhJ7jsztYr2wIi4weGwu2powLUjkBK/oNL2U4MTBgdNY/CqBdwIY5PcjUHgFk6+4PIvLCZCiCVJObpxw8ZT1WvIt9lu8b9cPuRLfy3TupIMF6HN633jfRSwCyBZySBoJckkgEpaXy5Zbe/XTH581QCF30dghyRirvzomBlhoDpT8B8wWPxIaBgdAcXNoxBSQBDEBgCaRSETJIwIosQrVAFApf8dnSPZU9oZL/qHQ4c+HIhrlYZTDa7lkBLtOkHo3OVOvLUD2mJBjQvcBacW8OaYfAvXGdSuan6DUTozC7ngN00gnY3AAAQAASURBVJ7JNenl5kmWnKAgYkvWuQxA6QIokZcfBcdErDZKvOfujMjkUSBjfszXutibJgL11JJIO9UlcAs6Wk96Bht2BgckIpChXnsgXit02iHW4BnZsDRjeQ3UBstaAubCfEMwoQoMD6zloEFOCUDut7IaDOLCIXIEyj/PNFuuMHdLNAVrAzexZ3IQIQxGs35QWBpfABRMBwXNYltIGNS8cSSzBxHbYqRWFrebCH7JoyUSKEgnM4KK5yRlO5Yybq/j/EVOx76qQiVWlGh9Qog4MuMhxoTdosLkQbImIdhvRNTXgsTXxxvGEdK1ZW6Bsq+deTNKPFSh3/wSw6wqhaEnr4pHCCRQmdNwlPq9RIBt/u2/4WpRCrGpZZALyOS8vSFcqpCpgGRJrKqWrXGfAEisdXwEnO67zh1i7Hy2fBmwiNcns4Lti4jDS8vJ+vx8gXhdJOxl+Ndv257151zTBWbCepI1YHz903UVU+DEa5YTfWU9CffImhs6rceFMHxoQdNB777alW4KkHkFTurrAOIoG8zZWPR/OM2iA+ZXYw1aRsWY5zv4pse3ATMAgH/9r/81/uyf/bP44Q9/CCLCP/kn/yQ/O44Df+Nv/A384T/8h/HFF1/ghz/8If7yX/7L+G//7b+dzvHjH//4hAaJCL/8y7/8bYcCACl4qgA6Na+6CKOzIuOLWAQELhOchFiBSHLTc7vwyEY51zzRYv7ABaRfNwolyIFgnTv8oFEoTcIHWJpkadCQoeWwMmR6s9IqpZzH6g+U5/XrZhVD8aqPDrLW+bACHsOi4ee39zRTrTPzRdbY1+aNkM71evXosFysmqq30hZj/SpzKJq1agqwGHMKs4vymcz3csC/m+uWa4DI5PP2BWf6uppWQgAHGApSRXl9ei7HIt0Ad2ecVf/O3706SRH4sW9ON/tNE+D/vfn+G6+LphwDPP+N04Ogr292/fTVPJ6EXLk3Pb0XAuzV4K677e17ocv81K9UJlvmJnhFTlUIClzeC56SvCdOQzgBhVeMvgqoM6/KocSA6SOvwyWH14+cQ7q+r28tzXmK8xJUbugjs+4/Ij/Ja1H3xsCul3m18+tr+5bWa17v8zT262zoilu67C9g7bP609N6lylYzv51h9WdEoA41zatc3Ra548KdN/s2e/s1eO6FnW+Ueg27uE0+DJ9l/Ocycnfu+yzpOHzb4g+ci8feXxrgPL111/jj/yRP4J/8A/+wavPPnz4gJ/85Cf4W3/rb+EnP/kJ/vE//sf4T//pP+HP/bk/9+q7v/Irv4L//t//ex7/6B/9o287lFWEK83wq1BVatxxZE64A4dynjNYKrA1/H60tuZqCb4OnP7WTJmt1WNNoGnukCDb5Zf3LeauJHaQYOBAF1CY/p5oAQNFmJMLciI0ZXQ/mkZDQ/ZeMbR6ZQjKoeXw97R0T1Zv+x4H6mE+1yjZvMo3r/E2Bbqfy8azxrWe7djI06qJsBGjE6ETo4HRiU+/NyBTUlj1PE8LjBVQRDFfyOPETIBM/aYEI/B+GAXQVQBZ/obiBGDSuiLhKkK6jTTcRhemuN5bv4mqkdXtd2Wqr9xPeBsAnc3wQeVLQJscsW/X3+B0nrSXZZxUNekvxaGcRfO0C9x/dJCxdXWBsnpP5b0YF3A+3eLg1cIS/61F1+thDOLEzE8/Tia8lJ1zFsTy5y8z/AIdV2BC5bvpUmLCVaH7qIsmB3kWkadDo7MYrYDROm/O75bQ08s/JP/K7JmLEF1z4Za8iOBQZNp2/S6uZwh6dsBw/UYK8gsPxWUsHyOrHMAbRJRNBV/tt7PyW+cHWO6LdD2eVqEodARk2Qn+yHGSCwWQnfhDtTSfx7TIc8mZBRJwppfzYJOeKug+gZLcOPV7lfbj2mswdPn7Ux/f2sXzS7/0S/ilX/qlNz/7/ve/j3/+z//56b2///f/Pv7En/gT+K//9b/i9/2+35fvv3//Hr/wC7/wSdd8PB54PB7595dffgkAYO7p3mkENEw0nzwuejejYWk8zYlU0EpWRuMNzBta2+xrymhtWl76tNddGI07yEmuUfd1mmBqfvDpMHNj840aWUVuwmsdxHaEbU9ZSwCnpOulbi8nOZAy2JsaWoox2xgy9kGgPO1owaCAqEp4QswhMSgYD0AkaQrPR0XAJ64Wz4sjKGzjLEEQsSBFK4hzXLgUKSxllhauBJkFgQjZaqNmBaQgSxakyX/WLrF1QPQEApXvX29NLXRXp+VE6YBgYKJh5uvh4b3Ds4+mb9JI/SUs85YPMJkATowgmS6vY9XzsDmTVCko59puS1fIAsdSLtBtPnAHaQw0FgsSh9Ve6FMhDWhNlsbongCr7eD0w826o7J1jzXgQRCOXjt6SjGmiD0J98NVCpGvHwErEmspEMtf70QS5zzxV7r8jdxj0bJC1OdU4QLfBsnwzIUoiMiWeRH7sbUGEktljTYQzLW/io8/aDgEaxF86mO27ssWer2ozuzmKkDzsgfa7DXF3HCHetfsOEIZEm7WcgJqsXTBazjovPt7diha0dA5vx+8w0Kske6FFZDc0KiBuVtDUe4W56ECZbUsQt5AfHjtIgB+fVA3uqFmz6oACYg6mDa7H2qW7cbGQ8O1yWxZmMEjLbukgbQDzX5DrfnruC/vIcUtXfWxnpFRiXBjh08m/YfAEuvlSLDgciVqXTldZxE91TSTKBE239uSfIogwX+a1TzqjbG1DVvr6K+Olpk2QaNVYb6aGRma9K+E015sESTrIKiV58YW62bZcF48D7CQ/sj8ilhPn49QkBdm0bxYI0DZxh0yJTP28OmPb21B+baPn/70pyAi/NzP/dzp/V/7tV/Dz//8z+MP/sE/iL/+1/86fvazn330HH/37/5dfP/738/jRz/6EYDYPISWG4wyWC5oL1Gro3dO4ltug/yXiJzLpg3fs2kCUUSK6+bN87xB1AlAz9fIEZ78o0s6194ZVYMBkPToUMKe/aNq6pQ8loYb2nKcphL30jQuOrBvgtC2T2DCbzDPWRG3f+e19lXAgwOwgF7xeRRWWpof8vvVOlCDVd+816pB+QkMw9gA31LY6/nC+rbqyZS0ZNXX79V7zeyFdb85byjCmtbTWWEpEr0AxZOMP/1xfdvPRCHY39C+sV4HjZ+1/Te+i+s5kM+F0h1PrEHTZaxnbfZscTnTfr2pBSNz+qjMWwA+XObt8nwGhUsYn/f2smKc5uGNowYqnuN/3prnbz7X+bzBixZfAoVGXHjJdV1QPy9cz6WXfR6h5vHb+AtlnBcgWPlYWkeC29aNb2tQS8rb6sXJzjFSRLzGUO4fOP+d7yfIDODh95vgjBYQrWuQY3+9P5xg1+7J36xZCgrHZb5Qx4cSb5EyAhlYm4UIcbHk5uGypygq1TKRuyeVsaW41r1/XruyhrmuV/rEZW+vOai0tu657LmYg5xVOn2Wc/AGH/imx//RINmXlxf8zb/5N/EX/+JfxPe+9718/y/9pb+E3//7fz9+4Rd+Af/+3/97/Oqv/ir+3b/7d6+sL/H41V/9VfzVv/pX8+8vv/wSP/rRj7xUMtDZ6nl0EnRvW0Y6F/P0XgWkAvLgUipRjaTWwCriFiLiOpEn1BrKkViQnF0BDRNWXnOCaebnUTDN8yFeuRAWsdYtbf8LyNOLGdNfTz+sr+DKvLGyx9N6sYi4O8C7AItiZlwtWelwEAYtz9MyEVq1D3YqVgniXcGdCjd1UgnMc2HvRoEUNgkwAGSQrAJy2kSLYVm2DmXjx6nkYyMfJ06vQVjuLVlibEgNygVAZJkqSt4ZmCxTSLwuiPf+GUAeoQgfAA6x7s/HmP4sq/neFBxTMLyEPvszlXgjVWS7AyK6gLsFySzAzP8uFqBFFecdrSC/BiFdJ28dcSatpwjgcBXs5fWavvVIQtXL9zRvR/NvyjXPD5zeYl5EV/p5/L7Go1B5pvr7y1xUoWHj0nzNROv8FBbDerNnYcwU5df9e2xmeAAQrgCG1l7xa6+RLS18DdK/FRNaGLn65jILywUIrK/n70OIXMFAkavnJaOV8XYVH8GL4l3jS1qefR7zb+drOYYQi0WBKIfkWq8m20mTRWjy5XUtOGn4Q0uqrYt15SK8V0ID+0RoVSpPAjnulSLGf82WrxMTXs3N2hPrHPU3qPcetFX3Sa5NVbf8b73EquR8EF6tW2xo3w9nl9PirqeDIsrvAkhe3eP1PUJVgPN7er5C3Aq5NbWwL4s9pGX5jt9/6uP/GEA5jgO//Mu/DBHBP/yH//D02a/8yq/k6z/0h/4Q/sAf+AP443/8j+MnP/kJfvEXf/HVue73O+73+6v3CWq1FlTMvaMTDQOiAGEiSnITeeZ5pNJAkxlZJ/pArH4QoEolojoAh10n6KBhAJhQDDRMePUJGwsE1pfWxphZQwgmV4u3LTMkXRPirajEQtFMp018Sun0ezCzZwfarRyFIbvgDF+ncmFiRDYeEKK8ujETJ1uyLJ+Ecr5hYpNZN9lpvXikCF5gaUlFo8vkU1IAbN1O3c1AIdhVYajJs0UAt0H7c0rATKFBGgcJcP8BUgtI8BVbMUCVPeK1HdEp22otzHiNVULbCuytGihXn//a5pV21/9LrDtnqtwbwQ0LMDSJ5taZWJPXx/liLg7X6ZZgojXaKiyWCDoLwnU3a0QnroQLByo8i1woBGCL5YkzJYPP+8UaaFz5cm/06qYcDNCCDq808LzHiwDz1YpTRQZCAJ7cxxRkZV8IN+wSP0Vw0SJBhRWriptTkG0jIS95YGnZzd1RCi+uxotvWHVbMsWLeQmtTO+MY1lKYs8ZIPIJ9f4PKXR0rWuKRQeOXNY9yC5ctebGLCpYknVN9WXnG7zO7+ChlXVcgfdYwe1Ib2OCQ/X7O1m4I8hUbQ6p0EEOauGC8+vyh0qQU0X6gbZcCYrDJyky6RgrszD2VsxM0ALF/nS34XIvFleLH1ZojcAJsGMlAgQugBL4PvZZlODItF/PtnvbUod0J1dLUGwUqnMYgDvIjlyxKueqCn5hv77f8MmP/yMA5TgO/IW/8Bfwm7/5m/iX//Jfnqwnbz1+8Rd/Edu24Td+4zfeBCgfe0QzJcYE6wTr8GeYhYSsmBdDskoI+9KGr85ShRcSjwVikcKQ1C0jkoIc6v45mBWGHaA0v54dwR6jGeEydSURVDNe+EgbrXKczDjHJDizRMl+oQVOrC+R+6n7Buo3UL8BvSB6b+kdG0PEN1dqG24WdVNpCEBjKgagwkMZLiFDzwYQWM3iYU0F1C0IAc4sJgjOOG2FjMhNq7HQPfYANWK3QohCaa7rBeNpZNeGekO9aBjoQsiFR8RkxKbNQgPEyE6/hbZCUK4iUM3rLsSz65SUumVQlb/vIt83du5JPYv4C9t37bIyA/8vBHQCEwCe1poCvQjqGH+4zwLXBGcmBJDTkt2k5yNgQ/FzL95yfh3PJ2hCl7/z/eD7dBLcITtjvFm7JGBDmZaTeuonPcemhAWCkv7gDJIKiIlTJGR2nnBdmdMlC3hZ4ASI4nMrisbuPguMwcoSsAQMQMAhEGk2oTNBwZ5u7ZVjKx8g9mWWBFVLML2lda/XyEJOi/7O6Rh1Wi/OGS3TjZxoLGBSwYBv3oz3aOtvj8FJTT3mLw7NnWBrENeltUaEEKYVpLjw89i5SiInUtHY7bT2RAUp4dL2twiwtSjAZFF22cm0VJGlkC6QkpcjykKAXMEI+WuqwbKcJTDCpRYAveKmxFuhmwX/4wLW88CrejhIkL72zlqLtScL1fg9L7oHxT57fa6QU1TO8SmP/88BSoCT3/iN38Cv//qv4/f8nt/zO/7mP/yH/4DjOPB7f+/v/VbXYhnW/Gg+QGOHjgd0DOgAIAMxM0rspjzJCHUUUMAAuHW07qXkfdIbqzXhI8HExNQDHS2DATfZQTIA3dF1w6YDHQMdEx0jLShLp8ZCsln51gLx+q2j3zv6uw39acPtqYPfdQxmUAOUGoY2tK2hdW9GV6wlRARuDe12R396h+39F7h957u4f/c97u+fcGs2lgmFPDp4b9jHBwNvDPS66bkb/AniBqwpYghe7s5orLjX2rimXUyJjr1kvVvc6hFWo8abbTY2jUrgJuA5vSNvBGqqu7bMbTXmzMJr5LuFiaAwa40Su9tL3bjjthBH90qegTQVbetox2YgbhzmEkTV/Z2xbjfgdgfd76D7E2i72eHAj9oN3Ddw22wduFtQXwQmBoxUOIDzIYlpzaIRlmgsW2FlvEMfE3Xq0eXPN/ABWwMWA1Bsrp71mlenYayCdZHlJtNr4Ig/j7nq0MQxxcEfAfFZZMedTMvn2JtqiarxOCc1MoRQgIGgtYzqc6tB/o3lCzhxf1tb8r+D+VLShqZQaP7bFoCbPNuLgGhmZ8AtJo48Sw+rp0ru5RX8HbYg4iT1Agp9DGRAJVtJBLhEfIfQWNynbG0siI0OpTUrwFfaXJh1xYJD8xpsVkZNa4aHOSobSBEH1O5CFiFze8pKPMyxuvXCtrV6N3E7OAXiGxaSCD6FAuy12/sWNdxB1HztgwawlAdQljkw77lmFuRq0kku7Mk7IdvRuXlXZAWJF+sMmBaAI2Ob/D4VttbimzIApUarC7cKA5gikEGYPDHHNGuXcOIxZpvtlnRoYQfL0o1ESdTIrOS9g3vzpqDdjtbQe0NvfvRmiRoEb3MiAM2UaVYV2rNXNRoTxJ7gJWuIwZO8WeACQBZETEueZAHJWJtqUXHQE5dAAI6w0Nge1Qazyns/oWVJDmz16RDlWwOUr776Cv/5P//n/Ps3f/M38W//7b/FD37wA/zwhz/En//zfx4/+clP8M/+2T/DnBP/43/8DwDAD37wA9xuN/yX//Jf8Gu/9mv403/6T+Pnf/7n8R//43/EX/trfw1/7I/9MfzJP/knv9VYGJ4C68SLZJpIFAzXxI0Elyk/UiLlcs5EwFpjR4oFxJ+BFM8AgA7NmJhV4luzQNMCvhdtoSLNsJJEL4QWgIGy78vq2QM/KDWvrKboB/UGjqNRzkfz6HFuZm5e+ffus+ViQQmidKuKkpWPDrNxWEhW3IVgGYjZNo068w9Tc1tR8GZFiZ8bx0prqqqbspfwoBSKcEWQ7BosiIqSQFhAkH/be8uqYXaaJfBrsG38PlMxiXOexSPal2sn3EBLizFAse4jTqr1InXaiuIWXjETGHa/4vXnMmaokDd0pSKfD10Z7loKzylS0MQx69/TD/+bXDAvUGXjMJCCPOdKl8YKO9EFkBbwC5bvBa18vuwWyeO/fA3Jv0PIdTqf67p34znsB+erLhlB5fsh/HA6kK81AQC0niPOX+mrgC4t7174MRUm/+r9evjp0/pDRSjkZ1SudR7LabKS1hwY5X7V/Ow0sWUOrpNe3wrt3WLnzp+li/S6dgFKK2+s8+onJj951oZSTVwKLDf96oq9XFTZ1T3WXc/nPt9EXYQyf/V+Y/6C/oNf1doyVM7h1p7zewghcKEJevXqNC+x7nVMp/E4v1hs+PTdKxx49Tddr2/39Za1I/eGf9nmldL1bqT/Ddarb/n41gDl3/ybf4M/9af+VP4dwat/5a/8Ffydv/N38E//6T8FAPzRP/pHT7/79V//dfz4xz/G7XbDv/gX/wJ/7+/9PXz11Vf40Y9+hD/zZ/4M/vbf/tto7dskIEXwaiHEXDXfgI6SyZ9FsVq/FcbteDqJMo0sMPAT7bLzegBiE6yx2GR2AJ2WrzoZS0XQ9cB6XaO2A+FKowwQs5bigDIy/mHCGhWCTGO0mBoHKN5oq3X2jrlG0TwMnNRy/qGF1ih4c4esATJMUHMJVEhGKzAtXxlNl1MtmhSeTInhzgpgFSBEyQFMCDryeBl4RV6/XrEMRCzDiRkW18ICoJSxANfMnwl6BVDm9bMAKABmgMO8Jk4HIfoVLQabD0WpkBvMRR1tGaMJ5pxgJUAJPFA4JUHQtXogovdB0lV+Z72nJYAaHkStmPMMSgKsTP87hBedtGgsoHN6tp0UjSbFGVnMa2jkK8iuBLHGehXhBbgLtnznLZlSH5X/X5l0gIq3vnMWjCgApbzGuvj63RIHZyZ8GSGdX75i2M4LMtai3gyc6SPihcpHtF7HvFR8pHAXKUKgngXuAiduCf3I/MXJNLPgCjgprxOsoMbjFFweg6N1hasgu877dd5CQazKY4Nal2uEc80VSrX7D1cRyjXepKFEGvrq/aS92LdazqWLJwVVVC/a6fEWSDnR1JINGRIQXy9r9kopEa9DFAtUbunNOcaaZ5TzX9fhLeD+6rbI+LOW81wf9A2ffezxrQHKj3/8Y2SmxBuPb/oMAH70ox/hX/2rf/VtL/vmIwt2tRs6A70NNCbMBig6wvdp+f9wunN4QSVgrGxSaBAHoaGhe/5/o81dPpwEM9sECwARbNzRubmp0UyO4Stu4UukFSFOCLPxYoxmYrfS8yLDXB5eNWFGOiu8Jw4phENQqgtF/44MyDwwj2fMgzD3idlcaECh8wGdO1TnOgBzOZCJFPKgM8QcufUktEm7t2njBhBVdaPMPnSam01HCtLwQVvZgWnrQrSi/N3FM0b0vsGbLp5hiGcBFE/zPebhLgyN+L+0ApCaOXu4EB5TLBtnTAwV7AB2rL3TIHjoxOPY8dh3PB4Nj/2G7Qb0nfA4dnBnbGPDNg5gEPoY0G41RXSyB1c7Q3Wzr0lxBwwS6cs2byoCduk/IyPIs4PgzG/OZb3AVHPXDHOLiQjG9PNOxZgrkysEywzzvlo4dwgTQXMgxCtVO6QOAFJx1wCla0CElqtqWtZVABFwAYdk5BCSTDVCJb2xGgEKBnmGnAHRVXyPlNFIEFqpeG2dtMBw2b9R08InLK0oZX9DNV29AXpXMOa59EArgrSmhEr53rIYRuyJy6B66TxSQuffMWdVuEUoZA1HNp4RbgskkA2kQR+TugXBaJyoDCr2R5ybyx0FGDDLTTH128qdhHXWJPRhTPW9Jp4tF7SOYClehyPP64UW6Zq2vWLjYn1Aq6p0bVLOMAVCca5IHVW0g7biflWvkUblfvMvTVlxjjczNwujWDGpLsGy1RHVd/2subcWgKogjP2zQHXqE1yVCcsiJExVdxcvKywH6KxItOyBeM5ClLp4ZQUTpDgXoPQszyUrY8v5WMXfj+ci8+x8n45QPu9ePBSBRVY4iLmnUJAMzuIECjZZhuVJw31hU7cWJhaHnQFF8bMoxsYeowIwN88M8gJD3DwLKArqWEjuKZcdEZAXTCCuHTu9+vndrxhMFZoxbsjN65PhzDgq2RrQOaBjhwzbiMazFToPZC+fYJG1k6ICgADCi8JAcFOIE7azhmCOauM1wp+gACk6/XdYG0UIyvZatbhDPF3aYh3ccuDWMNPe54pad4AZWT4GUqalYEt8bvdbQWiNnTDNX9yqZlaT2DoDsAaGc2COA2N0zHFgjoYxD3v/dDSPu2FMYbAKMo/xBHwv8sHHFPN64h35HftVMJ/Fb+yLWelSwkpyFRhVGKrTrPurCcg6PBm7EPbEZX8yZqyIvjOnscY1HFQqO051oRnVLqEwS4xGnIq65uW06+aDaJNQGSjH+VEmzu8pJyTOmTT8DbwjeQhS6K69XwSy84hqZq+fnczjESyYOKGiAb8q+b0EM7+MqQqoKGjA5zOc3UPB7K9T8NYdX00t9bWev1uFJbDu/TR7VeadwEm4Ics+k+ICjH0Qcx/zS+c5WJZmOn8Pbxx5TkK4Cs+r+sb9vjlPFzoqX1LEHl08y9ga5TLYF88LkfPoL+qq15YcGV5wGjmlYA9wf60qHfuyWqwWjby+yTfnz7+61jzWmLCyvoKfUTlT+aGeaTPPrYWO9Hz/v9PjswYozM2CiuSG3hm9T/ROmBMg3AB0KHWrcAhYFogLLAXALGAPkFpI3YsiMRzwiB/w7rL+PVX0JhYXIurftaM1C3YiMidQWFVaRpoXLc3dGhBn3h6caE38xDvbu5sEEdVt920R3+w+2BWLQzKAeUCOF8iukDYg3chCiIBhn0c9GAsQnUAyWIe+Jc04U3KJHdgQAqBkRogDFJIJVQHJcKASVBlxLAJSz6DJza6QMbNpoEi4LyitDWZZcitQ1mgxQSui0Dk8ADQ+pyW7FKj+nbBWTQxMrDooIZI7gEMFx3jBvj/jeAH2l45jA0YHjt1o7jg2jHGAZ8OYAzQZmASWZsLc3V7hqjqzfSxGDk1BtMCEa2wOxk5CIECKu2tOcSWuuc6weCBy13Rl+nhtCSBciOruPnGhoAA1vwihOGqcIZMBzXBX1ZgUF8TmerP9pbPSRoFBZBqzWeA4LTVhBAGZrirRkZuCITtwc7BaBc6JfZJ9JzB2GkRSWJwF5LkzrO1ZVQPUmVXhjUlDSYj1iqyeio/I51x8LKpm/bSg5yLsPIstaIILjUQMB7CsCbH+rwALyrVdcqd7tdy4xl6o+8Nwq1FesSwtqi3nouh6rSeaXHj8YiX0fSlqQaMo1pOoNRPAbMVDh6vbFb6Yfx8/ndZq1bKxQP5zxgt03XPGUkm4gq+o5ezyL1g5ab+ESdeVLvimWkQssDi+XmGPbcXI8PT5KOnGq7bLeoQ7NVyrWSPLwRMKHdVHrOH6C8Vts6xmJ1AX9+vWUrg7PtPv4lwOPEMUnFxDvp5ZefZNYPj24/8HAKV7fxdC7ze0DvShmNphbp4Oah2W2EGu2QLZlTQmNxYpEL4GEie3nAiI1NPZfBPxtIjlKeC2JTjh1kFtM2FOusCEb8j0jcZzms6WBAotOsyKmaKXpZ/biuMADDQIAd6d2ADKA3IopAsk3DQgB0AmjhNzr+T/1BLMFFdQMgjZnjlepwZXgioS+Aig0wEMXGv0jBYyA31sfAvQ9IJzQ9wT4mbLsHQMMxFPwOeCrEZEWFjmWC4esVoyWTgoNY0FAqO4nZfby0JtAE7F2+YYmMeOeTwwj4Y5ml1rRraSFcuLflDnnJYlKMBl83MRjH7NZCCpOpZYoBzbOfQzluZsyaggqEpmmAWRGqK99hLO/jcY6aOBvDpPgC6E1hiA7xo8mNPu/5y2VTScAx4Q64dHSmuA7LInswiV5u3Wu19i14VafR1SPK2NFDN4ZsV0fZ0WEp/7BDNY36s8+s2HWUrDapDvBl7XcjdLAi5e5LFW1aRGovA8fiRiFcn7DItTXqvc+9rJmT+0ruuuUGeUfh5aAqzM2FWem3XTLJ8IJQumAMjk3Ndqfr7zWhGMr0YcWoh+Kt+ppRiCN9Nl3bGSuyKt+6wIYt1fHCeo8DGpeYUwax8EQIYvgWH2K//2OcISzOrzrSS2xgKfOwfxOT/xQs80k0u33FP1OY5lD1z0mM+FJ8a+9KDM85TUw5mlJbmVBQg54sKT6mU5xu2zV8b/KY/PGqAEA7EUqejlwM5/zQOpLtgpNrqnZkIXk9HrSlQ/bwoMdxUxLybFzc6V6VxxNGThNWgGvdYW1uGOCax77orsN1heBsVmRs8pwNW/HITiAhMyoJOhk7KmhIJ9IyxwksQVF/XZPT1rCK1CeUtdgsPrBCi123MILEqJZudVLK3bNsdcDC40cneT2AaeiGqi6vmaAX7gYCiEnIEfTVGUt5ZmUo8FyZmrDo31twDGYOdwq1aAkTgclKQgXc92yTd2Y9nBZwH38Z1bzbfGYMLdstwe1VqUYCWZl/9ucb4yjiWiX4t9n8Ers9LCiC/XhcDdPLrIR0L4evwMdFkQoMnsayBtZca5zMn1XTh8BCK89W6wcPtD8/aorsVJGMdXXp/tOlM2vjUeCrrWBU7q6pIGZVDeWM1WCeCf7t+TZDotcpl8nP6mOnl1Uk4CSNepw9Lp2nQqH2/dvI/jVBsk9lXQfgFQkbqeFBzAJIGTnk5fhfT1OBNi/CZmkxDxHhcOlvS6fnblea/P++qRPJnilIgNeNqH/uLNMwWBvzI7Xa5NZzpb19FcmsoTXlt0Lrda1xr1bz3feh10ZZCnzxWGAvX1dx3clg1bNsHH9+xbj88aoCgUQorJwGzAbITZ2TIQIviJCOieAhdZMOLmVdf6zPZUIoAArN6sbjFgNWtJA7IAVicgTN3xmR/oMN5DCulmxdAmELZDybUML7evp9L70yqqqqyAJRIQq6cLEXAjYCNgA7D58GH3QeRVbeUAC4GnWkQNWcqsdfYVEFvV1lXuHwtAEZnZn+o2N+KKcVk60WtmaczXQUqN7HDLS5iQ4y1yC0hzgNJEPFbBpt8YnQXaQUP/cwCoNl6B+j2EOd/jH8IQEAvOft8UOT92Zyv6wo5TJQlVW49ok+Djo3hf1a1Fmu8vOyw7Y3aa8c+iO2p2SbUbhQSo04irKcAnzNKu6ZxqltRDy+F/L0BYzodkd+d/ZTxVCEVF36w1I/XvVWEzFEtwFM1b2iFkzbkpXOpaV6CacBnGYtRr+3uyrhGlZTL1mWKpHdT6PSIta06nEsRFC6z6PaS1h2O+EMwiLxrzuAJZC7P3q9pDCsOvgw5GLeU+A2QXcO+FzRbon4DCXWHl/QAFRSyr8zSNKEeY+0yV0qJRrX6Wiu55jV4uYAnC+CfruIzXI6HXvcf+TzeyfU+h5m4nySPiHNZYJK+2FAp2OvC97EoL5vQQuuDrXusnLJsVIMm6X431eZXDF58sKHKyivr+0BJMumJIjBeIhmog11Vxmjd/2uJBbqFHlUNrvWtsYlUO0gVzRUIBeIM/I/Zrof+3AFIBx0mXEpZnRSgR+YVCH9W2i/KVFB31nJ/4+KwBShCDi6us41R9rurWj+WWiA2/ILkxtYrq1iJprsEZxltRKf87q8CGZQMp3QinorBZh4oiXdCPkrlrl3IfUBS/IZDVD+kM7lGgrXbznPbDRusiJbSdmq6d5PRKIJAQWMMQGgDF/5VCbanpYWm3aW4O5O9aAZF3ew1zJ8qNXrTV4MvwwMpcIqy94vuwDsHSrn1pQ/FblUFN6GnMG3uhKg3/eaz70jLqget7EUASQDae4579m3Y2Z0gZU3FxWchiHFQYRWqser3xEKZxmQACKIKhgogFFJKRRRZQCm7NWJ98ngKd9T0z20ORmWrG9LUIgCgQZYc4IyOOobuQyTEtqxWgOf9hpagKPpX1ju/HH4p8s75wulpfWK6ONRcna4Qizf1aAEwA4gpoTsXpyvlOIk0LP66AqmbX1N/l85nm4tVbdFmMF5dP6nvrsssic6YrutDIEkyK00KcTl4sAgFyFWtO6tfx1kNdcTjfC1KAU46rPi/LcnTMDiVpKQekxsuIyapkq8UXhhKRANnBnKb7MoCJrDG+HnV+J0BhFkXz7TnVbLZSYq8mtJQrWGBcgg+63ImeURUmVXrS6x91D5R1Wcu8KngLjBeLB6tHZs+K48JpDSP4Vsvp65YponGRhd/OIvnKV7W8HzTzu8SCEiWAsnEccAqUcklf/Mm6gIXQsoT4jqnrcNrACCI9g5PspllLw1fXiw3kAk5W6mm2xo5nBzevjgZ70QnUKzDp2Woc7OXjmVEqxq08PM7hO5/wCBtxcKLesyGBCpUDqLEcJz9imPGDiVA8V80CuRlj5eJZpbBkLpsCxksihTT+jp9GmuLZue/jC3BClKnReXAFpWu9q/4EXJiFfzeJjEILUtQKpCfXXTBYcYsL3DXo4MSsMgu0mMsqbl7PvvJVqa1YLrAYjQTTlPy7CtQqCKuFAA5EFmiRM3CJ7yiskuyUDGCWopVqAhW7XpCEBbaGthmavuQ81/1WWRilcKaCZCm/UX+xCELryU57F9c1uYKUV4DOtNsVF0Cvv+NH1OGpQiPjZXLui8UH+sb3Qwic77DSI8rdv/7eAn1VaOW9I5Q5W3/KzaWvD4pxU877ZSAXvFOACi6PmAbSldYdY0HdO/51H/cZ1K+xXd9b4ETdKrxSa628gKXtVyBTQcqa1+vuf/0Iy0ld+xDypAFCVoPYACj2bKnPxgc1eQqc1zK83pLCkwIKN6lLoXpa3lxlf9OyGw16sa71EQpggsyksp/4XPkMSH0/QMaFPMLAkzzRx7fUi7Kv43eFhGIPfOrjswYoUaBHoCvfHZTVKYP0llaNFGKxvcN8uMylE8v/U4gbcAFPKzjVo8q1RJk3L5AW4IAA9AZ0NkuKWVOi47H37CEvh8wKbgpeJVzysASLc5XZNBtFeWHArA/sAq8raLPDmgXCZiYi9MVrAXiFVwNMbwAUGKA5oWkp8xnMz15GjJ0/lrp0bgLnZsk4R1hbKBi65iYQ8fea5iYF23coAgahqTKez1sIhhazjOuEdlPjT4AFUCZgpeObQprNaxyrm9kyy1I91BtWStSkJc+0MoHOUfdE1VwfIqBpbiirpjYBnvYaxjgyTkfhAKK4cq4uHllZUcEQVdRM4mNCh2eLDYGMacHJY0Lm+ju5mVtYVlbG68whKxRl3yf42qk6SEkR6ns3BCvlWie55Jrp+k7+kpK4DGSv6y1wiCXICniuIDK5rQ3y9UHltSLjtl6plJXXan0R91u+l8K/AMb8XeqXi5YR9Cru6gmXQaFQkhyP1mvH/Z3TVnwIi7+d4qf0Om7yiaRckxCu4fAQhIuy7FuE2Pex5z93rYbuGPpF7H8U7uDrZ+XtL+1Cco9Z9qH1YoskCABqtoumbklRnzddM3xZsI8+tDxfDzl9o8gZwPIVCBhsx3QXFIGyGKHClWvVLKgYtazOMgm4AsoV31OWV0PHiRpGAnErbrrvigV0VX+OTKz1d1LiBZCtGLI6QYtuM7NOaYExfQ1aPvXxWQMUM7nFYkkJxoK9BgE0AbFCZOGvDGEAsXodKmUDq6UzLj/xOjKANWY4uUt8jhMR1RVZmuxiACeGQv4e1XOG78OILe6Rph+i61DbHFnaOTZ/VJUt8a0Wr4IEXuugt5+LhSmxcobOI5mvedEM/GhE5sfvwhKzzoA8DQcfNCuXGbiWxYvZ2aWssQZTiwDfiAfIUDENH3GsCxaGKQLkmx75jbSguCYYJwxfdjKTCdUG1fB9AypmzUmLndOqStRt8e8S598kDPXsIBYr2mfalPr7cfkKSiKewEGJ0/WKNfA1rAxKJlCea5xI0lyqQA7nioB+JZRoTVp+I7Von8r4vFqlyo5I8JBGiAVKT8yuaJM2vMVYY9E01j52W1U9Q6u77PGTdlf3er53pRsDnvXdMg3rkwKUw5KmuVfsB2lNKPNyFuIIAn4F5NbJL2I07t/3x5pLv9fLOXNdGF7s0Pftq/WKfW2DTBesZ53EHFcl5qQs1MkKhgXK8Wi5jwBOqnUur1BhXewUJ0P1PlGSCk4Xv6zaq1k1yiwW9+Qgwaf8dGZdd16VSp6eAFl+F+vvq/X1TRdclXcn4FBcqM4nIvYl5daVLuoUoADDV3d/3hcRGfGWl+b1DK7z0VvX/oTHZw1QJBkyTOtLzRCQcSB15JhNmcD06qbjAB0DNAZoDleCu30n/CCxyAUgkJvbiQjXilihyUJc+1WDzuIm8/DRv9I4LoIvBV4Ijwk735g2Zj/4GOAxwVNW9+XQOOqGiFgWIAHEiomAARzUzfIatAALWKSbDCjSZwECAwJh+qYVwF3Okefx2KDmAcy2wRxY+HezUJnnpRpjULsXJ3pGBPq6UPIASThQ8v4AyE7OqZmdc5PqY/ExmygNdwUquBh5iBwGSEQhYpYTcQf1qsqr/v6BKSMP9WZeMg+78GTQbJhEaN1g51TFnA5AFO6iEasaPKenc06vMhnpz7YvkkWIpXPrHFk3BhlMuDKUVvCjupxbGihoPSeQuFq+Lp41DcWfgw7i/4QlKUDzmorCgFfn7KxoqxYMb8YOKcWrjAaiIFqeJwV00fhQwA6CTq9gJQTEIoqTjFtbK8llfS9o/Pzb2Ff5VRduUTMvt1cIPRfc9pnNc7pIyEYbCkAK8Jw/E1ISga9lnYQ022do3QzppkZxlzoNhZv7ergVOTwoK05vjamKvbAo5PcUK5GBFoiydSuCMefTGRikgIYFUDIehNQqbhfQtW5U/XWOCss2skRudC4Xb2Kp0R7ElSizpkdTQPPncx6KxsFjvY6Nj5/gfdyg1lcOnsDg1tWwvmaQrys0cjrYlRArq7Diczxmh+y13VFtzrEUPKO/NYMXYrV97sqoOu9N1k/nr+e54r3YELpm9VMfnzVAeRwDj52sbPk+MR879LFDXwQ0Ip2GwW0YqYkAcwfrBM0dOHbQOCBzog0CTbe2sHkSJ9khoSXLgEyLHbCCZwd0DEhUGD0ajscDM5vwmB97vuyYLwdkH5DhlT6BRNWTFFMFYwqO/UB7eYCen7ErYbaG2RhyDGB/oP32V7j99AOevvyAL75+YH8+cDwGaCo6A+8ZeCeE+wR4AHQotK8wBgAmMKegPyZwTPCYIAznMyvAmCOLp8R6qA/aaC0o1jf5yWpkH5Fokns43dgLtpnY8xLU1kTIg9ssWt9cLASBoMGATphCAQdabj1R9zlLFHlzRiFgkHNfEYYMwU0UdwXuAJ78eOAcoHYHcIMlSUUWj4HEAT0O6L5DG0MeHXJ7MV/zjTF1gGYHYUB7A28WKxSB1HEuOXbsjwf2fcfjeBizkwlhQpsDzU29bQ6YN9tw6nEYAIECOhWYgrnv3iZgWpsAibL3VllXHKwRkRV1GxMyj7SyWFXhYaZy+DNNMA0ALjt8PNTM/UTtqpHpWnYXJMIuLgwtGF1I+V7+xvZEls8WZ4BqXVaZ3Tbo/vlGCmHPRmGLO4vmiNPBYWtRL8foURyoyfRu2WRZLlO8YrAKBhSDFCNAACumO9wTgJX7S43ZZjcZMRFSqSdHDEpqzTwdUKU1IDIwyAQLwzsVh0s1hSJDG7tr1+G7ErStDrZS+2rRUgU4XFaqEIp7tzWhRqBuAaZNrRBlY3jHdOtIiwZwJ3AnazTqtNx6gyrAXdClG//cNig1tDmx9Y6tr/Yf7HsWau6YBkajht76wn/FfZ1z7kpddNYOEGbuJV87sUJ3RIShE0MmDp3YaeJgwWwK6YDeGLhHAUJTWiz7qKDLNPeR+WZUgdagvUE3tuxNd+OzlVvCxoQbAzciwLuUN8+O6KxobHW3+BJgSI3QO+N9Yzwx4U5AF0WfAh6mlAopVAbmmBjHxBgHxnFgHDuO48AYjDEEMq2+EUkHSTPlc7J7BQYgI62s4f5zXJm92bjBszcDmFkmpES4AcHuDz51fhCwkjoCrxLAvNSRCGX4XQNQ5jShLmNCj2nWkHGAh0KPHRGZwu7Gs77ih1U3FbO2wAt2NTVXSZrOEBpGMFJ3A01FFKnROcwiI6aRyhiYx+Ht0TvgNUf0MYBjAodkF7cMQoJvNDHhOveBsR+glx0HGoQZkxl6HMBjR/v6Bf3DC27PO97tB172gccwodEb450ANwG26eDkUEgTzBZajwk2moK2T+g+QMMrycIJMBhcaehn0ea8Oia7dhE6RwATBVLSR4O5U70XFLdRgB6XX7z2TYYBQIAo4hTvhSuNKOSepoVKXBhhCkCa2jRCu56CTRQ3BW4OUuIYa+i4+dHhHbNFl2ttCODMA4cDFmbofnh/JIF2QNEg6Ka9eGZVmGJl7hjz8LL5h1lQQOBqQRm227ktnWeMubyPHhcyx54CeKa1zmNJHKBQBAYLoDoQ5enI4wKsEKFVTW7s4KgZklgCNeKk7O+Vhu2CRTWx6hLerocuZXTRQihWigxMtQU3GoxS71CzLEynxTn9PdfK2DVYTLckxN7yukMGUNyCGc8BQGDBjdOtCaFpB4a2buQGlk/aoo8xVEbKzQO3Cix6BzStDkJqljy3ZCaIEbsP9f1lFWztbDMbhS5lITp3MxkwiVCRcKXmPgtF1oFgwJmwrEaFbCvFwN5vrFTNzjg4Ay49MFCOiSHN6z95PSpttn+3xti4oTN7XyWyslE+f00JHYTO7FZlWokCFGItFCBdBo4AKX4v4rEWU+2TKQZasjFsrJ3HB3Inq/gc7teIzl8T5byQElRTW/F/eR6GV7q1OetE6L4Q4msVneZB595CVCxOnQm3RtjYKkeELCLxwHTyoPTpyscMsG3uX7OglP0Vad0SsYYTpSIcwja1LCcrkYMKyAjeHFVFNQDKwuTrtdNUWFfye7SUUw66e+Um/fjjswYoxy4YDwcm+4H+eOD2eIAfAh0EaIOCreKrADIVUw5H3ROHDBwyMdWEeguPDmzTTwYmwy0oE5DjlHWCfXeNesdk076ODx8wxoTsE4xm/PYxwB92tOcD7SFWl8RN3gpjmvMYGAAeP/sAaRsOIey3HUIMIaA9Dujjgf5bv433//On+O6XX+IHP/uA9uEZ2/MDqlax9s4bvvOYeGoD+HLH3BX7k0D72hQqCh0T/fkZvD8g4wBk5LxGmejISgI5I/ICdNK7M8iWmnAN4ooATcgET2sWuEopEwjWI0mjGqxPaNYXmZLFMgkm+FgVbfqzu7MIQCNC9C1qQ1IwY5qkVCEAFhsiUPBU6FB8ocChhO8BePb77lgA5Q7gHYAvANwHcDuA/qJoTdB4or2YtYHoALXDmF3vgAp0dlPOpFkMiXZEb/iIQZFj994+O+Y8EI1oTAtSYBYB3zSj7EdYUISsfLyIgWK5NFqcxqTVTfsU80xYQKR7KiYbEyQvudAa0AZhNtPiSQGZ1hyQYEUHJzN4AjQF2hhzCNiBZSjyNXDd1sHcbZFxkQGtAJb7yF2DBNAkqJgAtH1i6toBs6CIRCNOy4AYXdHE9m5TeBM6p2ln7OZyVcDrEA2QVQwmtWDGZqAEjYDumqPLyGU5CRUxpFqZW79nK8jrUIkKYFIL7J7OaKSavhvHSxC7WwOUnbQDvGgVfGB3A6mDKgKRAYLVT8zGpg7Epv0M0gjSGceNMclMAe9IsRHw1NmSA5lATUGeLNijRUJTtG5hqts066TOBt2cN0DQW8fWGt5xwxMxbkrYJtAdSDxN24PvibNDODrj1hhbM8EduQAnl7TPi8lbzcaY5H6gORXHtKaihmXVrB2dsN0abrdmwe9CViZeQllyKe/X6EQgVvAE7hujd8atE7ZO6B3YOqGxojHh5taPG5DgusP2wSTCoJVUGQDPrFeM3gnvO+N9IzyxWVDanKBjQvYBsLls55hW1TqqWM/D3cscYVtoUKgOsBzm/fKge6VVWFIgGbzsxcnNWtbtNXVbn1AkAiXQDbZIUfbA91aGMDnotSSClbka2KkBaKTpUPuUx2cNUHQQZAf6IeB94rYP6H5gHBMYHZHfY/Eipj2POSAQDDKXAKviUEPzlFgvNFbv9CoTOg7g2D240c2NLw/oMU3YiHXr3H/2jH0TjE2xOUDBLqDnHfw40F6m+xoB3dQYJk3MqaAxsW8bpG0YYDy2md0x+8sDeDygv/1T8JdfYvvZz/Du+WscL8+Y+8MEQ2u4ccP2YuX45WcPHIfg8RgYW6RAW1wMzYH+4Wvo4wEcBzCPNa/cjJlyS7QvvUFaw2wNo3cINzsCQXtgpRVd84Jz0+J7VtBlkHwziwMzDj/HAHnchMdVwPTPCULk9ctc1zD3uMeuuHDrosm0AmpYcVkGXKNSMTfAOwV2Ar7LhBePwblhAZQbDKB8D8B3tOG9dLwbDe9mx9PsuPmxzY4+G/rs6LOjSUOXhqbNjNjUoWEbZVjWjs9pd+13C7O8a1MtjrYOhsWg9Ai2hcViQA0wWD6YMwgPEGZ3E4h3pg4rSmuw5oZKbmEh8CCMOU14TnObzkGLZ7v2tpN4YUTCGIJjCvqwjLTpFqwIO+gQq7GjAmXPjiNBI1nCO6xrzvM0ZH5o/BJYwLvtRtStLOsjyNYUbqkfgFtLkILHYpgNKOlQayNFhNFMeEwyF0pqjI2AxtDmv2GFEntGDdK8UobrN+DKuHqwYnxAl3tMK4CDVjclhbWPqx/YIF6x/MCBI+URSm+oAB10KjZolzLNXoixNZj7zMwlFk+lDU8QbKR4cmHaoEtBUEHzLEfVjhspBismi8/PSq4VCDopOgHvfS89KXAfggYAOnHfJx77xP0QTHargxLuYNzB2JTQ1V3A0+/BkQzB1lMGYU7CHJSVuuckyCTf9wxGwwbCnRjvmXA0RnPQP9XzgcirfnuSBEOxebArk9XF7GTZmE9uSbrTquZwA7CpuYQxDTTxUGAoZCjaUBPOnrlpFjSzFnVm3JpiY0Uny/6DTAchLZUMeIxdI4tp6Q3YmneCBwGz1FtxKcZufT4Ha9PJgsYN6MFnWhh7PW0bHsMERbuZu5BF0WHgYSkadj1NkOz7lk2GZoYt29x+6uOzByh6ALQbQOn7gBwDfFgwbASDEUzBlyFgGZavTjDqgwER849SMn2h8HFiBRV6zImKB5y97Pb3vkPUEPv48IzRFaMDXbshzkNBjwO0D9BjGAthssAnIqiYaZ6IcHx4gWw3MHe8dMnmaLfnF/DLC+SnPwP97Cv0r7/G7eUZT/sDYwwTTqrox4G2s5nEP+w4pqIdHa27SbFZrA3PAf76Gfp4AfbDOhwH42whUC2/WYkgvWP2htk7xiYQbpitWywOzPoBFXeTedXV6UHI6qp1MGhiswwxY/TuGoZVtxT1WhseDDtD+4RZHnIzkDNg5tQOz7UJbBwykFYdJtO6hnj8CRG+YMKzC4WOhfZvsO98F8AXaHivHU/ScZ8dd+m4SccmDZs0dG1oDkqaNLA2NDQTE6c88TV2k2+ETgZQ1DfvxuS+/wVOOhsTJXVBCY/dENOaxT8XZ3oqnO6w3AORjk4WRMpNs+aCqJny2ySADKC0MT3Ow/aP9VSxtM1wiQwy83wj20FTrElhmHJ7Buo5KPBASMtwMHpIcJLxBclK03qTTcawNOn4gnoMvIpm1WBGWLLDOmcgQxQZ+2tEa0DLwp+MztEcADU2ixez02y4e0OJiTEEWa/4ihw7Aoz4F2kBPl3vIkFKWgkUkUIacVuqBG3uBnOwk9YEtQkPKMNqwjL6fbW4XUJmofSIiWIGOmNqA4RxVwvafIKBEzOWRJ0Rtfg9JQgmDjLLU1bGjurYDlAaFB2Kd+TgRIFtWEAo5sS2T9wOwW2IxdkpgE64KeEGRgejK6MJBasGjWVBwaAFUtgFPoApBBEGxOLPGIyNGDciPBHjYAazQNW+O5nMqoQAwjZvt7CIOUAxMGKWkuYWE48jjoLe6OGingDNBVB4Ojhhdnequ4lgVpiN1WJVzFxpjVGHWU24AepNcMhlV2cDFb0RNt/D6uMOfggHXOHWSUhcQArz60KiFoPi9EMWvEtQ9G78q4kFTzS1+Dz2+D/yAYSbBxRPVCtigCMC/BMenzVAkRc2vP5yAPsB/rBj+/BA2ycgzVwQ3GCRz4J5eIoxFOjWuE8YaOy54moMVsnBxhQzqe0PyMsL5PnZAnHd3z9edsxjYO47jvuO43bgA+7Y2oEnPgDdwMqYA5i7xajo8+Hm4wa5Zecl6G5ddSHexHAqnrfN0LNM3D98DX5+Bv3W/8Txs59ifvga/NVP0XdJzZ9kor18ADVzSR1tAx8TunXw1tLNwONAGzvw5U+Blwdw7MBYXFOaOyKbW5+YMPuGuXXMreO43TFbx+xipmeglH93oRQg6DjK+7ZphMgADjP2rWMymwYVufnTsg3EhThgQ4vMm8ySINNy43VokAB5nJFZpSKtZJKiK2MD4YkUsxF+7n4DDsG7KXioJgMPjet73PCD7Y7v9g3fb+/wjp/wju54T+9xoxue8IQ73qHTDRvu6OhoaGh0B3EDc4c2dn+HeOsKtW64LiSEzd3FjdGbB4amRkPo3a167h7RqYhS2yCGKjuDYkx4ajF5uBMsroIaACavKMkeqK0A2ONNCHOKmaSnYHbOOiiklD7wwwNUZ5uYh2BMxdEUd/aA0+kABb5WYmBVZzMfOgYyZd5BZWbAwZQFS+l0SwTCKcgeWEnLLeSBqBbXISas/H0mhUynEbXAWR0EmYAeZkEBAXsjHDALnnjch7kwjHMHfUsIM6WsnacRGOQUGmDBlAV7lzNg2wGzAlOiSaWByggcTpP89BinAClNYS0amlsvKOO7MFcGnm9vE5guPJpo1gNpbtIHG7h86oTHxnjqPQNObzLQRXCDoquBk6YuXCeDxgBIMIVtzkghPKFsrTVFB6JFA2OiE+M7rPiCgPdQ3A+nh/1A//rAth+4vwzMrUNaA3fGkzTcpeE2GX0SPFbbwPkeJipAdrPgHF2xqwFUImQFfB0MmoymjCc0vKeG77eG3hr2Fhk+bkUhp1mZCcZuTNYWQ11x8CNcT5sjcSK3KIhiE4V4oug8gObe8zkjSHQuF0pzQQ/FjRhdB1ga5Nhx7IT9AWx3oHUDDdAJVsHGilsnPG2EdzdG4wbmBiZTvogkEzsM5JpLN9OX4dlfMJdLZ0CaojdFa2adaQ5MOsziqSzo95nF8O5K9rmglLyQjM8Mi3AGaxOQ3ak/HZ983gBlDmDsQNsVtFtAaMb/qS2CxUdM99d7Xwao+e3cpGihEwZOrH4KMAgYw3ybc5jJTka8tmDJcUi+N1hxkLlTHq3hhQ9DmMKQSTiOgTEm5hArL8Tm0sB0BjgPy/BgBe0d2ICHbGZRkAl9+Qrt8Qx+fIVj/xrjeDZBXrVLwJnxgEzCGLtFUZO4Jm9qII8D7djBx+4py3Jq5Sviqtl0SE6m3Vg+CbATWyqrmoUDQKnHop4i5+nPhxEvS3BzZwosBlCgC6CEBWRKaqtSqLkBGZwpFKZETStPKqtrMtZNISQKQLDO0hs33PuGdzAhsCkQTRU3EG5E+IIb3vc7nnrHnW+4txtuvGGjjk4djUx0smdnrEOzQ7VlpQAaPWlcCNnGXqDFTOk+dx6/wkKg6UBRCc0bJmaPHRfuUUETLoyWSdi1cKWlznusUD7cfYIAAK7zpKEh1oIIQIOQopGtvXmn1LNULOstpp89ADeCOpWmn3O6JaKW+6LAG+lmkwA5WJVCw0phUya51jILoAlLQfMzqtG0DC82N9R/KxiNja6leCKDXMhHOA14iag9T7+e+QgW0bm1qQamiq9tZIcIjM9YeHIU0HJ+5RmCsZcwdVmWlCwoOuIHAqAUC00UYLTAZdNsWQVNpglWnWBtuZfY9xCYIWQu200UjQg3iKW/qllBWI3GfWEwVdCxsjkATyrwtZtubWhEnhGn2Nx1RUMxDwUNP6bHuhCDtYGloUm3KteTzVLulkA9vEwDKeYhmG1i7AND2VtbwADSnLneNIEmhM2ByqSGRgBIzJIbIN4VB7OKKG7pqhB0aiBqYGrono3T4LxPzXLVDUeCxGOuJpkVR1yBIzeAhRVYa6kDX2uZmPPAGITjIByHKR+N1brUy4QVKDUX2uZK9kbwNAfF0Ano8BIHvKwoEScoSIS9xoHcZ2GpMSXDAx3ILDxRnzJAXGRSghyIp+2m2mywXLfr6ZMenzVAOR7AoQp+ALQDtJu5D8O17jSHRz2IYT53uI+aWnoezDztTKwpBgjHEBxDMYZCHPzIAdA0U+NxeBLPYYi6QfH8mNj4MOJWRVOGCuMxJh5z4hgTBzFGIxzTM2eg4PEAi0AwLOe1Dbz0hqkCkYHx8hXayzPa46d47F9jH3sqWUXUuLY3LcFkPjxNrQNwgDIJNA2g0L6DDgEdy3QKnwuQQtmrPjKZWd8slthBkKYYguLiKQBFFTwFbU7wqADFGgdOMp+zARR/3Tx414WvUGSduJ0QFnRmgZe6Mjc8tkWV0xxPJRtEaU1QFH8iKBoztk54hydIJ2xCeFI38xMvgEKML24bvtga3vU7ntodt3bDxjds5NYSuIvQhQsiSHeKMSkHzNAJHZbuh2MAw0BKi7iUKeA5jUnO4YGtkoHKLYSU98zBiLo7xbUVReC8saEJEBNyoXm6fyj+ANSCSyFAV8JUS3UV5zQeAeEm5ObnNO25O1hhWpkwSdNpYmBndewWklgFWpYTNyOnsHOUEHEnGSAZREoObOJ6bom05TbA1Wg6+w9gIVY1dxcLIoDgYMEATPEYvp+cpgXAENv3cwjGsPNMjzGQzMiLIely08R7NfUsLSilR0vQp8IASjkw3eoYrrjpxdTJA8M9Y8t+DG/UrqalilenlglWRhNg04amA6QW3N5gYIS5e40Q/xsTN5Wsz9EdwLKyF7Y0kCUJSAKAu0uWLHbMAIq5UjNlP/bFIcChwAHwMJCkxGjS0aWDpYNmAwZDD9g1IZg73IE0MR+H8WlmPCY7HSJ5yNwn1JWvJr7H3fE0iBC1jQQWX0QQAx4RgxJWThV06iCyEt8NoZQEa3FrhADN09xlEiLLggW2p6CnFl4BJhsCfNvePY4Dxw7sTbE9gD4J2slKTXjNq3CfbQ4MQkEACF2HB6NMaCNHTYHsPTZrDkTzUwM8yCrX1thxARTjpbIACuw+I/4kUohW2XzKoP4o258ZblVn/ITHZw1Q9ucdH3bB8WLxHXgG8MLQaTZtZUvTtdpphHmoB0UZwRzufzymCb7BAtYDyhaQuL8cmPvA8UEgz4A8M/jRgcnQyRgPj085zAupesP/funYueGBhi/BJlQE2KcJ9K8G8EKKFxIc+3CJqxanIkAHWfRmA16my7kJ8AuBHg3YN7wcNzwO4Ku5Y6gZP5bWCjyk46YboHds2NDRAXVdVAAMM5vexpMXqZNEwwBBtRkTjLxKAWR2TLL5PMYG0QZRZ5Yw1wNE04duZdsZPNnfD6HoAEXJAA9HsKaBDaN3LygVtmtyDcWfN4KBAjEwosQ+1uZaCoHYkoaVjtUrUhmTGAcYj2ZZG9yMaXW4OZ8YRGzpjyC854anbcPWG9q7G/B0g9w3jO0G7d3jcAyoHEJoXn+m7aF90GqqyBaTgzlBu/mZdSrm4bfZ3Gfcp/nXO8wKcAToIhNcouYCcA0bHuSrqtDDQcucDgodpDt4mPBUbC2aTrjVHPSEyZancWAmIIoR0jGgh5fJ95o+t6m4uWFIIsI/9Cdf04AqGW9EZNY3p7PQtlxBd22c3LqDMEU4DasDz8j8wbL2ucWNm4E8A0EGNObwVP4X3/CbZXwIgMNL/sNjlSxey0XhUBy74ni2APzxCO3cC/E5O8/shpPG4HDMN6eqWXNCBAiF5QugIZbyPwS8y7K+sUDZ4j6km5tqaliFpgcm2t6gRl6nyfeRssUWqHiqsLqABboObBjYSCDsVgSyOIyurhAosIGtzYawW3FgdMZuqXKXzgRwwNbNwAKhucAnEEQUDxXMQ3Hsgudd8Xgs+mcAbbiydCjm7sBEJyZbzNTjsHlQdLy0F8xjYs6JozuwIBOaqoLjcWAcA7IPtOPAfU58B4obKSZ7fxpyMOyWv2hlxuoY1oVr65S82jqhIwOh1U165IGxMjQtbOLWlBmLrwqZZi1CI/RhKeX9IODFduveJ2gQ9CAQDmwb47aRAVI1q1ObpkxsFLXDXbEUU6ihChKzvhAJiEshOAHaY0D3iZtbsfpU9BGFEaYHOCtubHCD3ZIWMoYp5IWncWt4JGkZaJAqUJYZCBD9qY/PGqC8HIJNBMcuoMOEPMLFQ7D+KeqF0aZbQjQKgLmQZIvkb2NCxkqrFSiOY2IeE8chkMNNwwMWaDcIhwdp6XCGC+DLAzgIOKB4CtOZAmMqhgg+iGInYGfFEZtdzTRB4gFkuwJN8ZhWlGxMBR52zAfwcgD7AL7WqGaRLnUHKPBCbYSNTNBCOdMk5QBwENpBoEFuAgXMQO6oV0xYA0Ckza0OGGXzhWKu8GJrvlmFQJOslkeAE8/iESKP2nfPEsPdbQCgfm14+iQcoKyI+azF4Gpqkju7iV+xsj0iC0CWU2FCccCNG+4esvTZKAQQPZ0MrGizVNfhn4vPB6tlfw3XnLoLdWZFmwIecJ8reQyBmDttmhAir0ejM9wYBGXx5A3TWkUNnFgLAEo6yVgFB5ZR+ItLUz+rh6BYVR2XFoUAgU5/6hVq0/rjr13vQXRebh4nFEdE+tvcwkvKxUPzX7yvWrSoGEoFMLrcBE4Or2I9tGqDcAuGJWzYM0wgM2uEcdj+G1akLRk4xAJhYfxB3WLBxaoxQenGnUPc0qL+fbOmBHTSGBY0hYa6aR/QtPiJaFq1gnGrni0oMtXiS0ShTQERCAviny2RZNE+zuBEhrLX/yGCkmDOaZ+H208joFbQ3AolbgEDLWUH+Uw5Hxxes3BbOv0MaFpzFRHfZNBN1fjYrurdRgQvQ/FhKF6m4phmWeGGLC8wY89OAAOYJAWgEBQT2AUHTQyeGFPTghJZK+aCtzW3eTIhq7R4SYw3Yo9ZzVJpAMWZkFqdkEiVMp0p6NmBfoBJMUWT06NisxkWM4W/EGPeNOM+TQbIYfLMAmknbi9i3kg1S46o04Uu11CDgcvua9BETUmHB+N6NHW4k0L54GmlG+z8ih5uwbC+xW/8uTnQTvqgUHJCpiLr2YjfZ7Lh2B8xT5/4+KwBym8/JnZS8IsAxwQ9pllSxDfqtLDk6cxnHiMDCGVanQdpVq21aUMnZwiuhY2Hoe/9ZWA8BuZjYL5EMzXBcQyI56v3yWid8ZVObES4qaXJWWgfrE6FCg6dmDeyuguH+7NJoW4u6dSAMaG7YDRgeEXQ8fXEfAy8fDnwchx4zB3PWMLZy8KhAbgdE9sgfH8ObJ5nTxs86NRraRwT+pUFtsEj7lMYSWi0SztUkDUk7IBu4js8gqJCqqgzW9uoVm/FhGiaosPz7mPRTT1Y1LYvAV60y5h3+MktHtZrn7imTETQLmbG7F6llRykDLMM0Rhpjmyuagp5uSoiq6LJ6jVfjF7ILTLqmkMjKwI1PPCXJlmdAgbosEqQDerpwOarbzs8m0ewwctgs1WipTnQ9oEuE20K2jjMHC7mlmJxUNcMwFiYjbEXdvBAw4Mm0rLggurwyrHTSmKTC/QwA6c0xBIwEjEtGf1pDDACcclQ60olTENuXNvM97G6udKqYXhJSVCLpY1wFQhwTFcegi6cMZKKCYfI92Ty69uYIorF4qAty2mqEYllHNna7SLY3V27PxTUBCSMG3tatIMBVgUFaHEQNobiGGpeOXfzBEgZboFRtxAogKnnOYhdyuxap9M3gKx3oqIW4ejuD91jfWGcnwEhL7yn04OijQ9FE9IbwpuoGc9jFlBTpLpMT3938AQB2AC1ssW/zYgngqBr7lbLHBHTtBmKNr0sA3sVbC+O9hCx+iOqaDI9A2dgzIE+GuZg7Lvg+aH4chfsu2I/zH3Qm+Lu5RqGiGWVOWI6lDEFeBxOV6RofaIJo+vE1szytRFSEKuDeB1evFCN5jsplK0ei3q2IDdKq0gHocEBSlhQHNFYgTZKS50BDges7r2dwVanp8XDXF4Rw6didbqUYCYnNjfW7ISDFM/PhDGBfQLggdvBmCOy5Ww94ApIB9z6Y5WQVRXbNDDTxGIFXUPLOBMozMXmVsDmLTl4msU306HJS/Cz7cXGC1iou/gmhbvSXf7BXshoO9y26QpkcyV96uOzBij/a2z4QAI9GnRnYAf4oYgusMQO+dP3fLjwU+hGkI0h3VwajboJ8uZQmSjLqj+mYB8T+z5wvAwz+Y6JQw6IWsGuNt0cOgeijLOXqLKNrK5fqgUIKivGAKQZ49H9AA2rcArtIBmW6SKCYwy8/GzHvj/w5f4BX+vAC4APWADlBi+EA+AOwU0P/NzxFW5zw7ZvVuuAzaxu8SsHXqzkFRSaFhg7LGw+K3kCUDBIGDgaeG5WI6VvWVU26o8YNgk3gnjGgjjVjrTBkAtIEjZTMHO6BAzSrzS4qBviy2Lgxd+X6UUJxOodELnF5JigMdH2sjaI7CSzSBDBym236fU6mqUlkqU2diXcpeE9KTbu2CyEBqQEvnvwmxJ6F3NBdWPyzJS/72DcfdN3clqAx7iAsEHxBDO/bg4KGW5edj6o4cYCpyYUBhH1OYsgYWOySOvCCaDwgpuAAXEDFcBkr0FDVshMxTI1DMfRijGyIA17X/x6EuNEAT32gYk6yvil4a7VQwi7eA0LMS3awi1srOQXYPW4IongXSBqm9haOH26sU/ddQgzTOMAYwJ48eOA4tnXsIHxHW4I630nz3xplNVRVazA3zEUk2cWOgsgdRS4FtbMUTTmqZTWq+ZDJ4pYKniEDHId1r6ZK8ZEGdBmwfJiWVvqioCqYFMTtjc1nsViYXgRZjRUHUASBowmLdDcnJDTBcgBM0JLWMvgcSoq5k5QxXuYULxJxIABhwo+6MTXMvC/5/TkAqC3A9sUfDEJbTbwbHg5Gp4PwVe74OtdzTo9BLdNsE3Bk1oG0h1uyUBcw8b+rOygc/Wub56Zx6Cs/mzsQYvFI7ijzTr592LeK6+++T1vbjkksew/VnZncD8FtsLjs6ZasLW6W4em1+5xug0LY7pZozKsEEinucm0g4RwCLBNAsu0OCi1jJqoBDwhrmN4qjK1XC8T6m5pShZOXiMJrviRK2vqQe4GVskP+H6W/NtozdlO0vcItzGAgbDK+soowK4gmEtXkSaYT3x81gDlK+kYJJizO1ruoHGYuYw9zYmNUHQAegBhY1aG5++bFGgq2NRQJlwITj9eQHgI4TEZj0GmhQ2yYNEgEAV4YmkWKUbYhX4kwJrZkrzSoaprPa4V38X6nBArqBnWOgbw1UPxcih+Sya+guIZhOe0cRhAYdiC3qC4QfGQB+4i2DBBs0GIMJjwMgYOHfjayNw0iLjtFGAL/NhjgrzoVhPTBpsiA1NDmVdBArsJhVWdMW2cHKAwjhSkTdjz+jlNs5AIDHVria9RMNysW+FFp8jrM/OMAkgAH5ZF1I6B7gDlhmbzqqYdWJEkyiwFUgcqxOhiIOVJBA8oNhJsSna/zODD812I0YegMVulW88a6OI+YiW8B6PDfN+gBiLFBsaA4MlZp21qjyOgdV9KzY/4VF1jCv14+cBNaHO+nwfBy1cTssEcbI9E5oUQeVaYp45OxqRIZSbT3kjN0mVpIuZP1uVuC94TdFOtCEMpj0MJhwK7GwyGH8E84zwMByzV5+M+kQBoafWDfUYU1zcXpakPy+368P1MnmHyRBajYTU/1MqvN8KMilXUDHg38eKEmpVdjemGtd4LvimwA0vok60QkWW1sJvmN4rKmr5vaLVaME+yIFJ/PVocucwowFQjbst+z+7a2VWRHaxhrsLmsT7NaS1UBVF7PmAgbjrwC0tEE+Mrd5eyN84ZBgDsUDyr4isV/FQVh5g2vcnEJoopHc07x38ljA9D8eUEnt1FRqq4i2XRHQpsIOxKDhCMv+7EGMr4AMKApThb+S9rwWFl5q0XjllA1BUWuHs0nbb2z+NszL1IIO8rRh7k2tUyCFkos3I6uZLm3QzD6Q21NV7hVx7YLZTXix0b7k5zhwAW+hufWRB08yqvSgYaCZ7BCE0+He60yLizQ/Lz5ld2rI5sdUFGC/B03+bzI+EGJriVMuLWQilEKh8KeHFDq55u/eqM/sKKzkRZf8fAfGRKfbvHZw1Qdv4OGjNm/8K6w7YP0PYM6ITw5mWaHeliQuWA6m6a3abQm0K7AJug3zrutxv6/QncutWnwAahgXG7Yz8GXvaBlz5wqGIXxS4HrFj2joYbGBsafR+qGwQ3DCs8DNsCDxAOML4yHM8EaR3SLH1XXHjcdQPrO5C+B+vm8RITP6UNX9ML/i90POMr7HiBZpH21wvfAHwPiifsuGNHExiz1oYXJexQ/MzZlL7x+7ceITRuEDQdaC5RggEGSBkRiPzmr/XyrrkwmqfExserWqy9qYoUBiO+p2vrIrQZ31VNCDwbNjGQsAnhiZqn0wKkuwGhMdDmnhYApgVQuhDeDcZ3sOGOhn67A/IOkDvaTcCygSC4bc0Krm1qfT6EsGnDTRvu6PgeOm4EvCMBcwfrxJ0bVA8QHcaIGRDu0HaDtI7Wb0DfrNHg9gTAM5W8jg9xRuFZ8KQDFXObC5QmstV8mKeZM1aB4n3XfuY096ewN9RrViVWncMZ+BMrGjWNa3EIdagHsjpAhYGSXdXLjgs+DOubtY+Jr6ed+0XEsmLE3CdBJiHMLSDWYoQ25RI74aDfBX4wXrBZ1gSwYoOtQeAFwMhK408AjzbBraP3DbR1NDZt9UkIHYJbY8zWMbhh1w4hxUOsNYAKpRJyFlBANCw8lFyzBHYxQQpSbI28ZcPEasjJ6X4YqhhgHMJ49GbB5ESwGuQMbB3oHdo6MsU6DCwMHBxxVIQXomwwKLwZ4KINu3awdhDUe5lZ0O2YNtbnSZhCUOG08DRhbGA8EUMa4YlgNaZc8/6Agf8Nxm8p4/8WC6E7FNjUUou/p97rTGEABQ0/Q8ODBMoNXYF3ZBx0V3OP38G4UbcA0tZwwAqsfTUti/BAg/QN1DfwdsOtW32SdyBsiJi8A8FBwjoaGZg8FN26cFi8TriYxWq1bOp1UIYpnjchbJ1xU2v+2YyJgzzgUYlwsOAgMVChphSFcmpg0FLaH5g4GJgb0G6EdifMO2N76uj3DdvTO9DtBrrfMJ+eMDfCcQNUppchUBxqDRKHMEQaRLrVN4JbRr2xJG9mibR2Fkher6NBp1VKtp495E0QGdo9V5IU4gE1UXwvpNmBZQ2ywo12GKnbWsBrO1kRSVgLCko76Cc9PmuA8v7pPb7od6ADekzM2wNyf7amabR5USKyoKEh0GOHyG7M+zYxtwHpE8o7to3Rnzbcnt6Dm5UoFxpWr+MQr9thDNy6BAM0d0vnHA8wdTBt2Pr3QGoGfKt9plDdQfoCYLcAzruC74p565jNTGFH61AWgDYI3oHwHqKbm2AV2p8APcDyDsBXgL4A+BLQB6AvUASHN9AxHb5EZL31mVHr8okNAx2C94jwRM1CKHEAC7ZQntv7rXpdi1gJs5ikqbtkZqzfxtYIkBLXXebE0IjjmzVd0wQAMng2zQJZm5ndDGTWFN28bxDY0v6U0Kh7Ea6oVHtAeHjwYETzmxWmTWATwrtJeOiBOxpuPC3DYFrKptWZYDxhojsIsbRNtgKBraE1y/TRbr0uOm1oPLFpwzZ2bNytyBMTttbRb09oW0e/3dD7Da1t4Nu91LiYFuAWLkMWkLjureol3N1kG9aTTuDesnw7kxVioubx5GTpzXMKpB9W1TgakjnuozlBEZQb62/RdQAixqi69wywDjYAMkhwYB071GrgYAUtB60RzGWxkaW2hvE9ikBlHyYsTc8ar8Ez8ADlDuJu51PgAGH3wli9NbAX7Lr1hhuZdeA+zc12awzpDZM7djUWefRpYMbt28Z0BYMkK90GmNsCZMNKF6hbvXqzOKnGkSVm626lcTQtHKIAT3MDC6tV6uIGbE/Q3kCtuat6QLVD3YxFjUHN+lwxw8yPW8N2u6P3hrZt4L5Zzx81q5Bys15HHiemnX1/hS7um48bqDfQJqAO4N4gbWJiYqeGvRMeHXjcFDsLjiGYG2N0AxitNXDrOLYbRBl4stRfjIE+zGXKWwNvHW1r6LeO7X5D64zt1h1gELpYJuYEA/0G2jZwv6FvVin2TowNbt1Vsx6F9UvZAtyJzTpC5BzIYyKiyKSEhcPBsnpQPzNl81ZqhNmW+36KxRfuQphNsrGgzrCfOFAiAw/YCHIn0BOBnhj6roPevUO737G9+y622w3b7Y7b0w29A21T8DzMFeR7c1KUEbAaNtGqQdPSa7F95AAlMpUAeDuTZq56nh5/14DWQW1DcG+1lsjIuEGt/BduQvV6Kk0Qqf7htm9s0Y3Grs2df1VSv+nxeQOUd9/F92/v0d/dgAnLi3+8QMbAQZszLoC9sZruB6Y8QzAgt4HRd8x2YOJrbJ1wu2+4P71Hax2Num3ArhDt0A1Qb7gwBtAno+87ZAxgf4DJqvndb99Fw4amXgVWJ1RfoPIB0BeIKOg2gbtgPG0WEyIE9A0yJmh0KH0BwRdQvZmAJQK6pa1u8n00fADrC6b+L2D+FNDfxgIWHWbMNoAysACKhz3aOXEH43v+zgTwNVaceaRMuGO/ABQTFGYSpLxmBNNZCOXKqYzfx6OVc2ckmf++XKrSb31dgXdsKO4peNPJzw3Kd4sfaBusWBJjUPe4pIlD1M3xD4w5PSNiXYPFOkK/n8AhhCcw7jzBk6x5mJiwsjDYic03cGxKuBAcrVkTwc5oG2NjoIvgCR137rjNHRspNmZsfcPt/oS2bej3G3q/o7UN1G+28UXBOsxkrc44pmCSORtFxeosMCyQNqxCmzXtoM5o3dwUSpY1IWSphTwnpkyM/bBaLF5q2zpEO0AZE9HyHmR+86hHAvFsEEUekwysTLbeVweZhrlDsZMdEWRn8JgypkQI2NTcETPdpW51MGOJgQX/AZH3jWJnotyN+cJMzYe7PQaA3ju4d2y949467gw8TeCJ1GKCHKBI69h1A0hxTAZtA4cQsEWrhmlmbnfbQN114paeCc1utErW3dc6Y0/c1GJeNiIMMTeHUGSJMbo0TykHwN0sQrcnaHNAMYf7OjX9bNwb2DsKN29ER1vHdr9j6x192xyosgVSN7F90929ATj9mJuZo8M2GK0xWt+sH0sn0L1BacfExDF27IOx3wjHjXDwxN6s/1ffGL1v6G1D6x2T7wA1dCVbs3GgH4TbZs33tlvHdu/Y7hvuTze03nC7bd5GgvAypykcIMx+A/cNbbvj7gDlHTcHKIuzTRGM5r3DUnBbZo4KPA7DLZMklrRAgLQV5CqNId3pojdIZ1A3XqmqGHOa61ImpA0HKA5axdwwZp0FaFPgzsA7hr5j4IlB7zrau/foT094evddbLc7ttsd96fNKrz2CRo7VIYFSfPApGF7zEtqaIvQdc7O18rT7o0sJlPhjmLuNs4EKmLgtnWgbUW1NGssvF4RirXScKyCmwXnaWaIUbYFaOajTwvK7yqA8oOf+y5+/un7eMffBSlDjoHj5QVzDjy8e61AwZONke8HxvgAwYG5PXDwCwY/cEzLc79vHfd3X6C3Db3dMG/APAj99oT73nDfG16+a3nsUxqO47Dib48XRDzC++072LzoOXRCdUDka+j8GiLPGIdA2wHZJo4nawr4Mggfbh1jTujRMOkLTH2PiRtULTen9447K77TB3p7xs4v+ICG4/mG40MDxleOlBkqz1A9YN7hsFWsR0cH8x3v7z9nmRRzYoweegPErTGU8TP2MKs5ofPIss32sLoCqsY4wB1W6Npqg0Sdk0hz9CASOzPDHd6RmQEUWXQ24oQBJpz3ja3edPdA2U3KbxpIb+jzycpma8MTNhAJlAZoHjhEcCigB7ws+rpW+FSfBbirq836bEG1BDTu3iCtYfJhmoIFIQHcwE1dIbEsn6033LeOp064CfCOGE+DcB+EJ7bMr3u/GUDpHf12R29PaG0D+s0Y3VRgHsaCRKBqYZkWXGy1STN3krDisLYGunW03kG3ZtixKbZmQHOQ4BYAZdsta2xOS71Xy7jBsAwk+22D9gHiYTU7upg2PhWj+Rqr1YTgpqDRLK2aIrRQrCy9l6aPYFJLePHQXgcTAwZExBljNK9kwuoxA5iC4J8NAkBR/tsyrHYi7Gqzde9A2zq2vuGpd7xjKyb2TixA8l1naPemnXoDk1ke+TZx4P8h739Crduys2D8GWPMudbe531vVaWSL6kKhqDtSBoKgh0TFbVAQROMgg0Nwb6YdCKIRpCAadgIaEs0GlFbKhJEYkPSEBsWKKanEEF+JAqiqap737PXmnOMr/GMMdd+7y2TW/AFfhd31brnvOecvffaa80/z3jGM54xYTFXKgzmy4uo5eu3IJU/EOgFUADszdLhdWKLtEcXilins4plNMc2JjZl+mu4MKWjDdF3TEtt3NC8fo7NgE0F29ZgzZJJEUgz2NZw32/oZui9cc6kz9NUehK5dvhUnNNhm7FdQQBNjYBbDJsZ7r3jg85uw3tXvPoD8IE2Hmh6omnDLhvbS4yT6fUmwG6Q2wbZNux6x3Zv2F8a+5PNgXY0bOboFri/2bG/dNze7NhfbmitoW87TjecE5hCTVkPgd926L7B9h1vO9mTt2oUuYLs1lDBKcBx29jB/rHRs3JM9IGsXksLgHBIKG4zReytrZYDfdvQ2wbrN9jeCUAaUG7OnBsTIoPaNxV0CWyHwzx1X8pqoWMHzk1x3g36omg3xf2l4c2bF9z2Gz738gG2vqP3G+67Qc0hOhBQ+DxxzIOBgTh1YsqFsTrWSxYLIIG8oppJFrVHjZtnB2tRg6sD2iDWIK2nxoaceSqVlrdJJLMZmgFvzPRY8gXSe1ZUdUurN6FvnUJwxvNu9Bs/PtMAZe87bvsNL+0tAUqfGNowxoCGsS9JeIpkHS4dpwUchmGAKHsUQIydIZuim6FZS8RP2dH0FyJObcxZusLDYAVQ2gZS04K9v8WGhh0NgoGIk6XNgwvaqRsrd0ygvUGzj8phjaJPNXi5FoLOhUCjdkEEzSZ69vEeuAFzRxwdcBpPqyEBwbVP4ekrkEZEKujbBp2BoRPwbW14ZOuDVHHRcxIogN1UoZjEAsLUCBNLiY2VAkUVzcZ1CVKqYdtYeZongIKnBOnTSX8coKwjQU19Za3ok2KTd6SprkZ+LY3cIZ4K90BzJ7jKis73gFCRQcV0SyBdpJ6+nhAZEJmMPJNOlSzfZHlxEjzKzasJ0wwtDBYKm0mHWtGiZGFMFcpe6Ok7EaTaPRsfJpASWUmQ/D4vgSgpZTWmO9Sg1hPkBcSYQqBPAk31pMUCAQ6WzvplmQmYsbTbA2ikuDUk++A4oiHRhMOCKTZzpr1UPSPXFBFGVknkdSYfJ6WzW+MpagDkvaj+HrryKpdUsBiTGn+Wn4Og0mFR3aL1OgRpKEYw04TiWFdjKk7Z2fZUYxmzYZlStbgGrOdnmjl4JOKaEwJ0tSU87UiXVgHZrvdSDQCMmiv11NMoI3fN1MQSYpqssVXNJSX7N0kj89GbohkPSYCiwTSENhpbumQH9ACmgWZtamimMG3YzHBrHXu3ZPuUFXoTaDHRmqP1hr7RwM3FOcaK6EywYsaKJNNOQDkFXTu6TnQN7Jth3wzbptg2Bma9N8DZS2zrlxZtJmNkpgRoKthV0YXpMmlsFgg3psZaBjOTJvWbgE0kPcckqMfYjOm3rTdaGMxA2xr3hd6YKjOBGlmDSKNLBiWc7NYMNh3NmZYSibXubw08t8Zu0s0I+jZT7GbYrGGzfD+znDeB0KxekksivxYnYYAspUNCirMhazlbz8lFrVK1fHqyojmTUHMsuMYjuLYUQBHRrJb3LDyIteYKWKJtyq+lQan+P+U+/mke3zJA+aVf+iX8zM/8DL761a/iV3/1V/FP/+k/xR//4398/f7P/bk/h5/7uZ977zm/5/f8Hvy7f/fv1r8fjwd+4id+Av/oH/0jvHv3Dn/gD/wB/K2/9bfw237bb/uWzuV223G/v+Clfw6KBp+O0XaM84S60IEwJmQoYkxMHbDTMUOzKdLAiZOCJhNsCmw5kXtrcBAsON4AbadoURXuikDDORKgbK/M04vg1t5gk4YbGgQHEAd9WEZ6FtiWDbYC2i3d/hTdOBmmkVqeVjklAhTRHXRTdURPkS1usLnBtg44M/LS6Esw4RhVcIErWQMATR2tAdu+keWdExoPdmx2No8DkHqF3OzMk0GJdHRFDkoO3rJsCICRhbCFOYEiAcpwoc2D6iUqqZasBVDqeB7Dz6DhUu5x9uSCy2Pk14Cqs7TXBd0pbtuu7hmkIyXZonz66xMAEmEWqSkjeIsCGQOmD6g9cpFqUD0ZresJ1QbTCdMJVYOZ071Tk30Cxbe9ORooPmyTorKWnYvV9GkTZQVPKLiBpUZG06+CZce10MgSX8aTHgero3KDameay8AFNqNohWKIQj1gYAkuQli14rgAZWu02m+RhlHKFg1tcpPLfPwMhRc/EhOtcZy3FJmyG2pqlQJcWL029BT3rohvYc5VLcQFt+6mLPak9Cn1vammjUikXbsk8EsQKPQ/aprdcxHoBQqloUvLTrPcsEOzJNs+BlCS+dEQOMiUzPoUOZa31KAoKB6l1TwSWBKSqeT5pj/McFBboEwxjByr4tzsZmZpzEARbmkfGiN8a4LeOLa2xt9BL1ZzknuHa2AYN7/pAYOuDdJyw7y3DfeWAEXJSkMDGwZ2N+zTcNsai5/E4TLZ48ocrbEbbusKoAGd+hIbiq4nug50ddx2w74b9p2pHiuAMhtkCrYDmErzspmbvDV+NoKUAijBnj7hUDegEeyM3jL9KdgMq6eVlkg2HLfp6AJsfUMMplF732BtR2s7+p4FGNnAL3xymLfMbXYjwInAjlgApcDaoweZVWOaqVngroG7ATcT3Br3g2YNWwrbSzejLmsMaE2IqmZSejBpGWxCmL7F1WSzQATNJvOvKtDJfxAA6dOyy3Vm1QWKUJArzxU6fgVHyC7tQialfFBoooecFZ/u8S0DlA8//BDf//3fjx/90R/FD//wD3/Tv/kjf+SP4O/+3b+7/r1t23u//wt/4S/gX/yLf4F//I//Mb79278dP/7jP44/+kf/KL761a/CzD7+cv/Hx9wEc1OcO29BTMGAYRjr8KdfjooumswHfQRq5+WNlZxUsuQTUIIAGP01uAGxOzGt4Fu6sNpltiSC0Tbu0NK4zEbAZwfOhjg7RjSSv2I4zUhBumJYw2yK0RpG2zCtY0ZDGg9T2CqChzrO1nHawBHGLqCN4jdAWKLsGxdkH98UoKBtiH7D3G/pDeWYMRKgTEQ2FINJomWyTRV1BwyRPT3WduJYgzfaDpeGqQ0Dlr4Fko6Ok8CizCRQICVTA8DHUpTxPkARZIqHOg9ofwIukfQQfxdiCG9ANMDZyYfCW0Of1U9D0dUxFNjxROwIX2oP4I2wjHvrgHaK+VpGP9YUaqDhm4E8vzGFggQAoezv5FqK9xqbKUC11FXkordcHCs3XtU4VSKc7Ay4twApQyCbwss3QUoVegGZMnRiABPrdSWvv+R7zvwaWkwBVhdcUUGYICajcc28c0xFmTWxESZBT4OyDUCrRmSGw50N+IKL5yj6WGI1obRIaloyl615PIOQZxSbyGWJtwWrTNLB/Lc7F3nP1d1rPEkNr3LL4A9XWeQCrvyBaFY+VAoNWCJmLtJyjeGo0nDQDDBL6TU/O61EnGmsLHVFMihen8NS4KnlBh0UebLsjAAlr5GmWHbkvar2xoVTlRpaglpnaluc4k9zjofp4L1rCVBax2aXZqcLgQCkQTHx6g2vLXDrgXcTuMpUhZWJDTBjRQc2y/WjrQ1b0JLhmrDNoJtBNgpJw4TaD9U0dhSU0CjSwMYNGBYwFQxN7VUyQe6c/tYU0slsiNP8b5sMVCKcAs8CKE4PlL03eDEovVFo3Br2zdIhOrImG6x6c8NpDhgrk3YH3oQToCBwGPBQ4LTAMAZqvHfKlC8Uu7Ccue6lJiOiQoGp6LX5D9BbKVVhrM7L8Z/Z0uX8YijNoFz7EjJ9+omChott0QL/QVY8rxJmApwpirneP1t7JEBpIECh4LjsDT5e3fkbP75lgPKVr3wFX/nKV37Dv9n3HV/60pe+6e9+/dd/HX/n7/wd/IN/8A/wB//gHwQA/PzP/zy+53u+B//6X/9r/OE//Ic//ckIMDVwCqMSquoZEQ6RJdLjos3f189Kn4KnG/feeocM5D8WubGMiqtPLRZ1bwPcFETou+BghFhljqHI7r98MfaRI5rlAlR0LmlC8bUrpD8F0TM9HS6J6cwT1KiVls9dcg1c+XoIm4OhRGNCys0twYYAES1ZDb0W52xQERZg2RRSn5jXUOuqCWCNoi1JFioZFBdBTHBFgRHIoQEycWmnAqukB7UJJYLXlK5wN8dVwYM88uKnRwqRRuIezU1EKoq+FnhRgVmsUmPJNdAc2IJU8AZWeeoTda4Zsb53VGl7bQrPCFGvheP6LHnU5vdNjqW+r80xQTf0wmTI6KTs8Ss9FZLvVQClVKhr3D/5pSCBieCq9EmK92nYcqznBlhW/qFpy69p0CRCk7K8F00pNJxT0VTRI3CarKoD0yuiKykNWSsGD4skW0cJamuCfvwowHLN6SpHfm4J//yc5x8/P++9x8cvRCJCLr5yvdFaQJ7OcX1bUSoSvMi6X3z/0trgot7zvBejuSJd+dhzrg9R5n0V6RbIr95UXoFZzhXNKR9IcKhkXBYQK3Fpps5MmELtynvKn2WqTGkppspNVNOp2TUbRwY3XtecbGtOX/ckalwJ1joVuY7WtQ198veQBKLgeKVlSV6wFXAmkAv6pUSwDF0MYMl4pvyQoCqN2FqmX9szUNbgGpLjl52QFVCFKfvYbKI0aJTLPbvXsHgCxB3l31J6kTrkWh5UrrmxLtc1h6dcv8vMJwGKJMeSe1WNiRpHKs+p1BqmVxq13r9YEJfrb12Kyan3yKD/uuz8G1xeMO8Fy7/J47dEg/Jv/s2/wXd+53fiC1/4An7f7/t9+Ot//a/jO7/zOwEAX/3qV3GeJ/7QH/pD6++/+7u/G9/3fd+Hf/tv/+03BSiPxwOPx2P9+2tf+xoAsEnUMRDzFYgD4xyYj48wzxMPl6ygcTZeGg5/DMzxDhEHXB9wPeHCttSFurlHpmDPnb7Fx4NU3zgRD2pQJho8NShxvBJDisI3x0DDlI6BEx4nfD6A8yBDcUwuZgYMy94jAqYlLCA9oB1oLfOswZr3OU+MAOY88PCP8JCP8M4/hL++Qzxe0cYBSzMxEUDt6iBKJAuq93tD7A3RFaef9GCYE2wTOsFOlmOBBUFGhogVzVKD0p4GD6NeRvEEOyFK4PRe34VM5+S50FY+tTWabcERywlcUA27uLme6pjKBoOsvSN1i8Q5aL52MBFGQ4gymJOMZin4srxGoqlZcGpsa3XQSIDSgLfB69g3QF4Mcu9o9w7dOuTWsd86+t6wbw2WR+8NvRtaHtYoXKyx5TlTQ8FNQHKRTIq+Dk0bfwSSUnZeNzAnLTPQ3LJqAdDBBZeNlJOONayF/iJYK4rK3jBPFvTVvC4WAK2NFO+BuFXdbYKwXHjqFgcX3Rw52Dq/nyHYsgxyJPBRyVSPY1UNWdBpd0v6vjdBt6c0WC7ulVoRzWtlXNCjrl/Rzh5JgbOn0VpMFwBQsIQF18a+jur/kvcur83zUSD8PQ1Ngq+63lXd47h+HiKfYA5XL6x0Zo4UR1XZLBYF/1QZsu4Sx/lMZeJ0wTmJSiwULarsM+AyEVlOXGsN2w8w4mZjQEHEhAQbmU4Hpipc7WKDgKWtYYsLfkiCV7C8WrN6KMf/OQPzMWlyeEyufcbWAZpGlj5Yb0hmLtJ1WJ7Y2jSll5bGeRTma641TNE7P6PUFar/FIa8tub138ifps8Q3Nk2Q/hV3dMtOlsjoKpjsDZ7C6A7e1eZczRJIF2XI1m4oJlb6bA4kHjfk1Cu+WG5djgEvbOfaHfgzPkqzoAiJFInz0HRUlukyJMD1wJRXaXIZXpJ7WDNh1ymcYEU9pDi2Kk1YrVJiEgtSo7CmltatgQJjuQ6j0/z+P8coHzlK1/Bn/yTfxLf+73fi1/5lV/BX/7Lfxm///f/fnz1q1/Fvu/4tV/7NWzbhm/7tm9773nf9V3fhV/7tV/7pq/50z/90/ipn/qpT/z8G48TTd5BYAgXjPPAfLxjmfGC2c523sMRx4DPrHBpB9zOLKGSLL2lLS/5wZkW+RPH8SGOQ/E4FI9XKutP11XFg+ORk0Ah/UBIQ6DjjAmPAfePgPkRMN9BzgNqJ7RPDCM9doTjwIBjEhHLA6IKi8n8MJSN+DwwzwdOfIgD7+DxIeL4CDhf4eMEFLBG0zBVCn43ODahB0OYwXvDMGGzxPMVY3pWD71LPnRCMDk6Xa8UD2qh5tSnPfJaGZcol7bmLL08w3G6rwqNyvfCZy75pABNjZtOhq0h2R8FkpbvnHhNgwxSGmm5GSsckrau/HrkYmxgfxuLyW6sULDHBFhSFx1NboCxjGfm514si5MGfnFulm1rwP4C7C+wfof0Hdpu2NoNrd3oW9I61Dr9S6yn6V8jPSqCM/1WLNicy4C0Ty930iuCX+XcxWCAnK2Au+TSAOUGpqW8z91VkO6NGlTpi8CTYF0N/1BKfE/XUr+qrdK9tJiy0ko8kwdcQK/FJxSrZMwyomUlK/te9UmtgIegK6MCMZqFMbKTpKYDW1z6CXtiqLjaRv0/0wmxWI9ZP0PgxFUNNNOfZSaqsNTKTDw5H+e4jWBvmSM8nVEn+83k4ZM9j8b01YvEgwBsICtzwAah4O3BTG8aON8PyMg06qjeRPRPKX+Uuh+ungxEAZyKRxkuR0bzLJSTVZl2Nt5Em0AY0kCsKusYEnuw/cCZxnkzOG/MAZ0cPzKBu02YKrw1BM4MaGggJu6px2DliwqoZRGFCJVNx2RJ7uM4IO9O2Bjsn9YmvAGyBbwF5pE9YNxhPjAcOKficU4cnmZ4g8ytTG6GFSSVD0o1dAy/5otFXU/em2otsOTM4bA5U/gvLK2fDhOmgyNpS6nUmnuapzlGjpk5+Rp98LC8h9UzyZJNjNL6oDQinA8+JyvkbDBo0OyMvtK7JYhmjEYAy/45Jlyfa5K2XD+KGa2jmF1NlolHDqdVdo1MMee1sVwMJFNjjiuFnfq4tXhJoGiUyHXIk/H9ViiU/88Byp/6U39qff993/d9+N2/+3fje7/3e/ELv/AL+KEf+qH/4/OiaOtv8vjJn/xJ/MW/+BfXv7/2ta/he77ne/DR44Di3RqE4zgQxzvEHJhC/wI2tlKqzY4B+CsA9vQO0ANdMg6I1EpUjwtkU7DjmDgewPEAHh9NnBM4puB4AiiVUI1+wkH9yBEBx4THAzLfQeIVOg9Yn2jiGE0xRbIJ84nARMNkKA2BysySrtwkZoKK+AgDr4h4B5yvwDjgPvL6aW4aLG3dAGzisE6AMq1TXAfHGK8YY2KMydfxLLWrJiuZMik6emZViCsjppCKQUirln3z9MAINg2rHivLB79YDWGDwp5U8fYEUBCxaPyWgzmUC9YQov9hhqk8RIttsEVtm1t2Jq024zOXgVw41SDSIXqHQoE4GUHl62u60W5TcE8nTesbYnsDbHdof4H0HdJv6P0GazsP2xOYdApSpQNSjJJkgJb9TcAJOMBrUCBFFl2drIleKZ7FSFUeJ5Fh+Q8AkjRwZpVTgByrTXzGewmUCqBULr5+h+CCXizKlQbCYsFE1hq01qVKNwHUBLhnhYnydy3TPX0BFEaSrkkdk+aBgaWkTZH0+iLdKhhOQJxxb6WuhFbxZCyYpz+B3HTTUNAZca6f4QIniuzMC244p9MzZ8wLnEyfbP45PV8jU60RKQgvl03qu3JYkVEEAPeULkRqYzLtnAwS3yPSZReou+Reqekqyc5IGXKBFud9mPk1nJWyEDCSd4JGVg1Rf4CssDszIp/ZOLFaWqgoXB3qwJkslssE5LzASUxoZFA3nYDAOON6Cl8Cyg7Q58TxGojXA3YO6HlCerB/zRGYFpiNYn4ClInThU7Eh+MIwQlhl/dkW0IEI/fIhuwKnwAFM1mPDJAsXQS1rnVkl+Bcm3Sw97YGoGNSBC7F/jClLMZeQT1dci0mWlzjQ+ZEG4MAZWbzRQWGCcw155VmCQTTYppsNfvzTGAOTEdWg/kCGaUlWgAldSgmscZKARRbAU5kWXAyRzVvP547lee5FGClJMPSsAQ5Ccap7UqdXTgNA3Mfr7U0nip/FkBaE+E3f/yWlxl/+ctfxvd+7/fiP//n/wwA+NKXvoTjOPC//tf/eo9F+R//43/g9/7e3/tNX2Pfd+z7/omf//++/iFuHx1ckaYD86BteQS032DGMrkNLHFUGzzEoZsgegOaEd0b3UfPtnPDDcHwA3MOfHiceH0MfPRu4MNvPHCcjndn4Dj5exxHMigNbm8obPWOo+hdmTAcMAx0/ZCVDCIYPXUl7vB4B8GJPQLiB9TfwcSWN4RmRLPFgR0nQgYe+gppJ3RzbJHVR7eNIquY6IpSgCAaadmpjcZYMTDHr8PPAR8TOD8qJJEbmyT9C27aniJjN4gLJ1rlfwO5gDNldYITa0ysxWqtqBIQZWVLV7DrMwS7XNbpIlgbmqVQ14VeD1MFtzRAczX41iFd0+sjc9hZuqtTsCuW3f0NgJnBrLPiQe+w/gYmEyqEWNQHZDXLBNoAbk5GRqwjbi/w/Qa9v9COetux3d7C+o6+vUDTrbPbDc0azGhTHio4ETiDPUmmK1h51bFbQNKozfoNaB22bQjrZIg6y9ul6IysnsAsyqKD3HBQpJsRY/XJUU3LaRWWVMuVYvIEmZLpHugloENG9dRxJYVbtqla95I6A9F8/2wdFghoTCgcFlQitfRt2FPH5cr1T0uPE0KGSLhw3+Do1tCVmp8CokWqsxFlmsNReQB3wbvIcTcmXsEA4EN3vBuO1+l4HBMWipCBdwPJXw8gJnnMKezQq46vT8dHI/DR6Zzv58BxTswx4JMdkskhSPqhVMCRR3aohgASll1+qyst5//M63wuT6JJJ1YPzLI01WBFoQLTOBeZu2uXcDEEEiztl8jkSzIpU4AzyY2CNJ7dd2PQk+Y8gXePwMiuyiUH0Qja/7eGN5ujNcGMxnJz9bzHJ8xP6HhAB+fO1res/rkh7AaXHV8/HOOjgXdfO+EfPqBjwOcD56Zom2EPQx+GbTq24TAbaC1wzBPnFHzto4kDhlMaTkzERmZHOzUwdyEzqZiQ0yFzQM4T20cH2uPA/nqgHQd0DLRz4hwTh/O+MyideJmD4ngzdJ9o7oiNnwXWsY8N0QzWLdPogj1T5XNMnK/vgNcD9tEr9mMSCMHh3RBNcd92DO00srvvsLuh32ltL71x08eAgy1Jyk2cInqDC+c7GaqTlvUqiEmmxWgPXYMOVSk5GLvQ5UpS7N6KFaKPCkuhCXJEaEGhmt/bTGEsx3g5RYfQAykSxCKeBLSarU8k4MrAu5oOfprHbzlA+Z//83/iv/23/4Yvf/nLAIDf9bt+F3rv+MVf/EX8yI/8CADgV3/1V/HLv/zL+Bt/4298S6/9jZN9cfQckJgwP7HJIGpsrYppKERyZ2kxkp7bdanEo1SNpnBtmCE4pqcQ1fEOJ97hwCtOfIRXPDDxLiYeccJ9IPxIpMjeOxEN7g0jLCPNQJeBkAGVNNyB4cxNYYQDMSAxYDGyqCVzp7ncizhMJ/Y24Mrve1KNKootuPm2rXFRcYHOgQgpxxKCrkjrfKTDoA6oMhpCbizEtyXP4vdR1UvuGF5CN6Jjj1gApRrDeeZSry5wyb/m9UhigA6RgexcitQWRKrPr2I3jnsq2VUbuhpTPK1DGi2yZWs5MRVtAuqBzTwb9wEblAClGbb0MWh9h+lTRUu+p86AOvt1bJPRkugG327w7Qbb7kDfoH1Hb29gfUNr97QSbzC7wbRl9VdWh6U1NcCeK1OM27k2iqStI1pHZL8VfqW1OYrZeO7eVbTFktURBNKBtN6JACVKVVcMrADQGgt8PRUiF47PjO4TD0mxHal8i9y9nsWcVWnEU0lAWo/8dumChem7aqq3hL4pNOTiS4D6HOWVPgQkA1ZXVaZuOIKPyuPPwCOQjQkD56TGYU4u2sOYojkDaJnaQUafBBwTxxScEysVOn1iPDMoM1mTOgofFrWd9sS8tETzMleiDaLZ7TWZx+ej9DiR88crkvci0JaUMdkkrPlyFYleokvkdZLUD/B1SshPfcf0ZF9m6UsqOKKmLObMkndf91jEocn+WjIKIcmUqdFCQRumcq6LT2ryTjpxTx84xcjInkEvnVMgvd7CMQa90I7HxAHQeG9Lxs8uMO65ClsEzQFnQIfDT0cbZDZ8kCWZ58AxBo45caSfifjIdTPQWmPKKjwr7yZNyQYA0FtIkwFmXODQmHQXH8kMTbovs6qSrTFMe8YVitYN2jutInrq6pLxTP49GWoykbzf9HWBO6TNtR6okfkiSmD7gsW+hWeLgKuKpvRM5QzrOb9mVQ3mocnAnJpzTYIABSxSoaVzsrIiK8DhGlIBRLYXQBUwfLrHtwxQvvGNb+C//Jf/sv79K7/yK/gP/+E/4Itf/CK++MUv4q/+1b+KH/7hH8aXv/xl/Nf/+l/xl/7SX8J3fMd34E/8iT8BAPj85z+PH/uxH8OP//iP49u//dvxxS9+ET/xEz+B3/k7f+eq6vm0j1+fJ7YY6POBhoFdJkzTgGgfsLRa3jTQAmiTJkyqgO4daES0M4gKL7+OwKsPvApwwvGhHHjVA+/0gW/oR3iViXcy8JADQydCH/Bg/0zuzAbxhkCDJH1fRl5TB/tfiGZSJzBiQmJA4gGNFKv6mTn1XASUaaE35uiNDMZogJ4CfRjapBBNemc+fwrmaaR4cyFykMadyg6a1jy3SkYxiMzX1uaXegCuc9SbexjGZAQnait3PoavBdWBK7E+K8eDBCncdCyyA3To5U+RiwyrByUbfnHx5dDO0mFtoGOcAW0ja7F1yL6l8FbR5oS5o/tgl+EINNB+3lrH1jeYKdqmVyVKpCi4AMoMtOFog4AP2uHbDbHt0O0O2Tpk29G3N9Cto/U7tDXai9tOMzbVVT4cMtg1FIEJwxBgSNp2m8L7hugbBcBbX0LgMFuaEcFEzIRsVgxKgROA+R1PiiQf6fshKVqktkXWv5ku1uwaTBo+hAuceyS7lAAlS4wjjaOklHyFk4B1LgUkVpooUjVR4CNBiq/UUBm6sZKiAevfV6WG1Kdc0aBnWobCYODhoEZEAq/BxfTVA4/BJp/nYOMzMccxaG6ooJaAZeBMwQwJvA7gMYBjJECZE3OO/DoxZrWO0JXiLIDiADc45AYwk25MgMLLUikhEDw5tREjmSumeAhyrhQPlnZEowpIs3wUTBVYgnnkNV5ysWAqJYp5CoCp7YBH2gEkQKGw05m6CM+eYCdPJ7jN1f1sMnlgZtWGYlcaj+1GV96pDS1ONks8D+B8IMaA+8z7qPADCAPQBNZ5vuKBcTqOM/B4N/EAAcqjUQdEVpHncSJbN4RDp0PHhA2HHxPbMaGnYyZA0fPE4xx4HQOPSWdmmROYJyYC1gYQhJ5DAuaG6QPRgmt72zhWQ9n92Cd8ToxxAucBOR6XeBhkoiwUTQPSAd0UtnfYbUPbNxYwqKWWi8zEiSzFX/eRtgae3dXEDRgZOAzeU4ygXQRKd5WVrX51rV5rsmTgAmrkXAv08/3LfoAMTKxqqhEEKp4iYcopsFLOK80pDBwCDGpokPlbCFD+/b//9/jBH/zB9e/ShvzZP/tn8bf/9t/Gf/pP/wl//+//ffzv//2/8eUvfxk/+IM/iH/yT/4JPvjgg/Wcv/k3/yZaa/iRH/mRZdT29/7e3/uWPFAA4FElkT2NlLpi64q9CW73jq03bL3jxQQtHFvm5lUB3TpFo2o4JjBKOT0BH45TBA/hRHjtigcUpxiO2XB24OiBYzTSwaenS6oiPbCo8IbDhNUHe5bbdUOWhJAek4WPy8WVlTWYg2LRjO610zyodYFnFU70Bj077DGhhwMwuDYch+M8HO8kcHpFfkyPcJFhRcltzyjKBd5lSUR8paZkDWQHkgHxHG2BGJk3j0jRYEZ7qbUgsoilSUD6he3Ga9HA+2IOmFMvopXe8aQ03deAVq2XyRJITVOzptBGcFYN03pMphVCoO6s4oBClOZPW8uGcVtHdTAmG58AZTBHbWPCzuDHFtqNx7bDNtKx0jqjIGssS8yGWE0u8Zs6MnWVwtZ1cRjFeCrqQ8unA6nJqPzxk4AvOFYqbk817PWQTP88sxea924J4MhgVLUTtbZXmTBLLwNNhF4q2fuEgjeKwZmuq/xyilQBRvgcyUs06h871lXOyK8YmIWL9WkICdJGm7GghCzNzAyOb2pNPNMqQoCSRo0PJ4NSOpIxHXNw05nmOE+OP0IM5vq5uDqGEJicIzDOwBgTPiiCpKdPjvucH1W4/fQfRrTFtBday+dQqBqoljtea9DTEHnW21wlQ3F9Xxcp37vubXnzidFCX4xmZFHMTrFFSDZMFW6WLRuoLaiy/AZW4rSmaE1gjUaIxaIZGCtsTXBrBL0zDLeezRgbG9lNY8r1poHdAmY8/55rzVWEymBIsyJHgvSYDEcck+NTFHMbiBgIHYiRJe+8g0wv+oRlocM4HTaSDVxiYsHIVPRZqbQM6Ciqzvua+glP0Xodi2eQp9sRlzBXE0yu+6cAmkC7ILoCm8H2Bt0MujHgIhOfyjBhekRcIVPhlppKSa8hY3fppUeyPGlhF3J3dqxeDTkzCD8gbPy5kAPW+HHP/ljhTN1IsTJMERVTN5OJdQWqyzj1J0h3Xi5LU1KMLVeZsb+3YP3Gj28ZoPzAD/wAypL5mz3+1b/6V7/pa9xuN/zsz/4sfvZnf/Zbffv3HhSlXSy3NoVtNOVpt6vEsxlLHnuANfki0I2OrS4GHxxUMlIYuGrvuam7CfUXXeFbNgoDJ7RPNmuaaZlcLLd5mW2lmClFnsbQEV6VJ2sxK1Js5v6fwCVAzUyqt3UzdsDcFbIp9JxMKzRHhMHRyMa44tAS5lXZXC7ymc/ctvxcEWzI5pxYjNqSIq41Eeufq/zxeZGUqiopsqRuklxfhZWGq3VO9SJpK6LOOQxG15pPjEo/pIC0vAg07eHVaJrGRmgEC13ootgQpJQ9ICDLpGbYemO6Z9ugYhDRtXgJBGZJD8uEiQMTJI8zBWNZnaPGXiWM+nWVsJIdSo1F4jrh7HwukEnR2ZUi4Hoha91gyrCuc/ULSV1RlmV/8pGDsHasJ8L2+W/erwOpyqna7y5WqZJ+8bywSD27Fp5rk7wW6+tz1Ca6hkS+13MwJSiQIuuP4gnrem7ypTuZUUJXZO+brKCZZAMcGTVGGuM5BZxkiAIxWY3D0IAzj2/NRXqAC7yPqwx7VT89Hx+7uhJPVySuqybxyTnyXiYsf1DX5ekyJGDLe7bYtLqGdTET+knqHRNLVgpTyBvxSseT6DnBoqaHSeRgXWAdZAEt2UBqjrCCDzr2Yrkhez6nG4+WAFxEUW7zHbHO2aq8FYKrBUK+e95zqVzjzAIGOHA6QifinORNpD5hJjKmMw0yYq1tazN/+lrl7ZHiaU8CMgKrMux53tT9jvdunDzNjgpEPhY7JFmhTYAyjkvjR+uUGXgic85av5jTiPecYNfakeBJ1mCo1cOTAS2dVrATMzJIeFqv6xwLspZPWO1D9Tn4+wRr6/2v8flcPvy8jiHXOAjXhG++Zn3zx2e6F88YbHXunWiTAEXR9obtvmHbOratY2+CLo4dMxkUhfW+AAoOAKdjHBMiVGy4KWYdnT040AIxRubzJRPoKS4aKUCbuqpuNGvSW9p1dAVau2rOVTkxZEayCwEoDbLDJ0JmIm9apbeu2F4M7Y3B7h3t1qHD0M6GeGUDtuEbegu8GnB+ZJl7pKagFgQ1QeuC+73cbg2zzVzACVBijawUTTrbRkUo5qhIj8PQoxa/J6gl5buRg1aBzWgv/bIlCAkKX5uw/4WB0ddmCVAUjNKT2tdm0MamZ23rdHTdO3Tv0H2D3vZsdtXQdcDE0cSoBPTM0KvBbMO2bexavd+g0gEo3J8Wx8nyQjkn5Jis6ApDtA3ROqxtbD9vHaYGlcuZVtPSvU32gCmPACqIyTzFedGlEzSwmqGYzqqt6bJMmODMIas7IjsNt8yNV5hd194qBI9Ky8Qq3cXzZpm/U+R9jALFvN8KLlRSzwv++72FJ29vbZDPYAJIWHQhFBTEISiS5a9ATcr1WrU517McBCO5hSXrQD3JmXoNilOpfzonPT6mscHciEgdfaYEzqxYUsc8ZjbgY3O5dLtbgGWewfF+RvbTKmvziUgxSC25LE8vDoBXIeJShrREbpLXtwBMXbC6BpFpUNUEiMUuZaXTlKfrKJfjqFSvo2fTQMUyCgO4s4RoUafICAia1SktDRBVMzgCPZS6Cg3ZrMq+g/q9DDZ6E+xdcdsMNgUuhtvesO0dt63DzTCETqmbAFsGb1AyomXCJjl/1GmtsCDw6TweYwEnPAa4cJ6sDBHFe3DTBzAHdYLnRAzHU7EXR2gCVx+RGhTOtRDQlFJrg845RaoLEVf3YxGjB4lmFVhcY72cXENB59su8N3gd0O8NNibDXrfYC9bprmEVZW1voYDyQhKIleChQySOWOxquwkgOw+LKxT5/qdAIWhjWZJeFzAIvRCxHIBb79mOmYVRWimEzP4KbqzrITEeQq1li7wJvUVn/rxmQYoPjyNzpyUuFOoCrDvCLRDtJPqrB4mCkYC2waxzsEFQCV1IDnmr74uku6dnDySjohszJT+eOW4itobMloTUHi0bihnfOSoXeh8hdqZ6ilTCKF+Q4RNqDQMho19Q7SxP0T2DgImfCqad4w54HOiN8u8uaS+UlaFTFOmngIUyalRpObITQtYEV0EEwoRF1ovj4548ujQRN0Tulw+C+ewj9DV5bLYkz3LTgugmADd0kFUwOqqXMAkAcrWmabh0alB6R3S9hRH9xRLT5hK5ktoyKzG5+z7Dmsd/fYGIvRxfA+gpP8BWlHIAZ8pZK0SYmVTR5MdAoNFh7hBXaGzXQtpVAM1gZ/ES/PMlFsWY8yskPIwfvX8zBxVvJ4FZj3g8+JZOL4u9qLCqxX7VMS+buoFUyqFtyLpjKYDAcsFq9I78rSRlLAOafkeernKqpLtUGTUCCxmSZOZsWIy81hT4bpqHzvPC/hUxbpXtOvJpiQGnJNjk54UsUSo7kzLRNLg9OXPJKs61xGp6JFAKObTUcZdTz4xkqBNpNi3YqR4/XP0JqfwlK9f8UKswNMRK40peb88atNAliqv8PoCevYMUooNeWJSngZARdcSTGkVKCy/GlPqi2jLT7xmEqvFgCUjQ/kTQYqrUIjeCVSgBCjbxqN3tr1AWDoEs5KpvEcsPxuL4DWNFZnWWFqJEdlRe/JvRKFzpoHmrB0Rnr4sBCjXUYxBXW9NBkjTikKe7ucS/0YyTXkNi72i+aNwq0+n2J5iLrazuIoNeo0H4TovBoKUTRE3g90a9Nage2NgwtzMWncXg5Jl20VbRFpRR0YFEXWfIyEIlSRMdcXKtKdMde0rotfPfWEUXhdHBlYZSTy7YleAEyKX4ZxwWumsrDLXUi22VZIR+63UoPz/08NnUr3qy2WQ1K7B5RJUUnCk60LDlC2ljZsMK0oGdABiviKR5/4jC6BI1paI8HsJVDdZRrvJLniaZCHPKeI9WmxZNAdRujzRsGsA+UDRm+JKHUVk+Z8qtDWYk4GAT8QUqHf0g02xelOMQRYImQ6riKtltFQ0nigLkjWKQgb3hacqhMh8YhmnueSkFALAysOLYBlRVQ6WUaUsYWSXlOIo/TA2ra6yZFrK0KgqN1yq+6ehN1biaPbG0OxFJG2DtA6xzlJrmTRhTZASAAFK7+hbz8Zfd5juCVBqUSZAYTnvCY8BtjYnQPFsugexBLgEOBoNEsZx4mx5XpYyNZk9SzplloKEqcEIghPqP+rg8yGymsdp7Y1PwGJJEXDleeMJiLwHXvIhiU2ixB7511IhTqbTStPwXtpHhS6UbOoCcQpmo0oh/QIe5dj6Pjjh8zXKhTQ5hgRBtbku/jj4rcT1Oep4z0NkAZEn87lZGz3n5PpHemGE6/JvqCCiBKQRlRqo5yYJvlJrudnn1ZO6hnkX+LkqZZPVEM9MUm188gRsnoPSBAgr+EnN3ZVakNWZnJViuuzo18nkVlnAJF+IG3KeteS9iBIop+e9eH6OSl1Ksl6pjYtcT90iTZ3Z28fz/rdm6xBh+bPmdVnpLmQAv4BqRt2eEVwRggkSZTpZbjF+P1PYqp7XjuDEY0KyMidy01/gRC62qipU1vqdIKXASKquspoJT2u00xgN9B9pUog8nqpgnmztay8xMinUEFr2HsoKxByX86T3iuYYrnG/0l5Po4sgJYFVjUFJ7iP9aUgKXpoishoct5oAdZ1jLgceGXBWAEpi7TJ1e4oY2CMospn8E+uVcbfnmIPmerjE9L/54zMNUGIQnLxiIqCwUyCjYcwN4TvO2HDGhojAJo6JiS3zrM1ukLYD2rhcxAnMB3AmGLcBM0M3xUjhYHigJ7V2umIWKg+DhGN40Preg46JwpztFL7G5tmLR7kTD0ldVjiaTWgbaHokgzLR40g/joBOg8yOMTfMyXrzgQ2bBlzokSIuQBj64Dl8bt9wi8CBFBMCFDp1gbTcbITiSNVK93iWMHJpi1whquogAiwDdC6YQ7ghDGRUG8zdj1CcWdaGnE5dBJsI7ibYJbAJ8GLs5XFruhiUvaVToiSDkgAFGwGI7juwsdpFthuPfge2DyC2QWyH4YDKgMo7IA4yYghoa+jbDff9Lfr2gtvLF9HtBSYb4O09gBJjItqJKQdmc4wTmNLgaojWcqWzBCvVM5QeFBad5dMOsHXAoPp9OuYA5nR0KMuNoRhhmGgY0SDBf0tumpL7Kl0ws2dS6KLtRRokt0JN2lVwdZpCVkLxbvI5EVciwqVYAEnaPQeAKla0HYIAI1Geg8MnOV2RuTYGmbzbQxwRS8GA2cAeLbnhmTvnlHESuNJ2XVRTEwTUIlqvUol2bq2ZsohrYC6BqWd6C742OASWTqoaHC49TzJLV1ppjfxVpcZINusbpGwJk4mpa5dIQlf8jBS5M5CxpCR4DrhSWZKalfVx5AKd9TGFr7tST6GLKWmtkXFsE5LdvT03yyGZCIhnkCJMBSCBTVUCBfVy8JHiXkmmxTNYY7gtGlDz1FIImxMG17feBXBDaMe2k6m87TeO50lrfgBpjpY3x4xVZGqAdAg2BDZMN0AmIga1QJPsMtttTLQYkFAGEN6onYmBiBSQJ0hRd2RhEDbTtQfABNMEQ8ES2uDm2fzqadMyoGqSTBIcnKlkTjYFdgNeIGx8aEDTyGo9brCS968pqy9bV8RmiFtHu++Q+w1yv+ExBo4x4cdBYOUjZy4AWLJYOT9y2EtU4TANNokZPbVzlI1rVthUT5yiTQSpa8zxyT5GTIlq5GphDmm8VtZTm6MUEUfwe2rsUhs4OUxMhG7e6cDo7OkBEYrVP+3jMw1Q2Ddk4sBEaKDPiT39K7pj5TPPWqaT7Qg1LuraINoR6QomNgkT1Sq8WTeyED/ZDL9yuFTrXT9PC2yM7Apb5Z3OMNAyooSUEBfF1fLGWi2kji18RSuMaBm58b/sssymwA5Li00NQ2sd6AP3raN5YAvgSLfEAWA20KBHSQYyR2qksLUWx0CB5NIk5Dq+tCcAjeBcWIVDsJVMU/orFPpnKaJSb6Kp5hfgbobNDLfWWPWiBCgtKedngBK9kyHp1IHQaK8DbYP0Deg7YDtE94QKykm68vwOaw2tNfRtw75tuO13bO2OpjvEGxdyF8gYFFTqgYGO2SaGgd2ZxRCdHWbJxjVAbW0OYpIeKEhxc769EEh7UnMuLDd3MZaea8tDFyNxRffgRkb/eKyYO0Hcovsqb702JEbWFXevbHXRrgDt6fLfq6P3CvEvNuU55RlZcryiOfNMFcqqZFNnOXk4dQsrtpo87x6xxOUtsq1CmsoV9wMkLYy1m/P+rPmZfymRHgwrsHtiW5KCqY8V10Gwl8QKrsqLJSx8Bih4+oqKUhdCWkzHdQZ4vuK4mJNnKiv5DVkf5foVhPcfJRaW9+4hU9blDaSpPyjB6TOrtpaYvI51qvmmkSFtar6WXW8ipqdPiIJv3BB1mezR1bSaPgrChGX2jT4oBYKKJUH6vEixVFZvUGlnXRVfl4g119zq/RLcHK/lSFZbI681q0C+PKV3gGSMWEIv64j3rpoUOybJNK2flZLDU+emtNcXMuGXVSHSKqF0eck8Z44pTNGsQRttE0Zw71rzDXjSZJVImTo6tQTalcJOpkOSFarmoJZVeo5kvjJYrL2tPJq08rGRz8/rVqkdyVS05Ntpzi0XpN5SkiHM62vE7oo0EHwal6IfG+i/weMzDVAqX+cxMEXRzolt0llwW0pwXYpxRUAz9SNJ06t1AJYQeQJ6IGRi1TpCcK1gT8KjkVGjO6tEpkMmRYxl4BRIcGECncK3QeXmr0ohPAnbmiENfQJ7ApTqexMrbiMilUTVIQE0UngKozZlTOi+YwRr6NkTh6ZwZyNIOaWKK3OERlJ3wAIiBVCqzLN+Xp0xKXBjqWbhtdJxhD+pCURWm/bdFDcF7ip4Yx27Ke6to8nFoJS9eQGUEIP3TkCybfBOUzPvO7v49R3otwVQNDe1AijigRAng9I79m3Dvu+43+649Rc0u8ESoGgIMAZFkdYx5MQ8J04DThhFre0qDZber0U9BdTaWlY70PI9IJiYYIdnB4RpSFf2E3KrdKTl69JeXFJ4h6g0i+W1r/Qi6AmTbQiQVO4qEwKwyoKDDEppSCLHjtemFRf1DSGdm6F7imUJSiKpZiyAwhAzgqcSubE05/MjKBiuTqcQggxHpmVdKSwUyZYFbNfgef6lZ8qY79pyc+6EV+oDK814bTU1htcP6oxRgmD+fTw9P/2JEMtHgiAlBZRxCQ+fzMMTfuRakWvwMzBZE+u6xHWDru8XSpGn3xSovD4bFkAR+h+lAEBy3fJMB1Vzg4q4NTfb1YX9qQSUOokLkK7L7nmNYl1NRuuZWmpG1qERrzPosmy1kZoxdWrcTJhGjQQcTIUXsOZ48SBodebIEZOaK58JUpDakUxFl9bBcS3VBAWZqi69BXKTrhRVgpILpGSDggUgfd0Jjt1qGUkdDHvfpH2EBJqWLIueMV5rPS5DwSUupU02WqOoH61x3ddY9/x57SwQWlWINF8zOkTntStZQi7lnEPg/Xhu+ic114TPqSbSEN5jLVAqFzhBAlCvAo8nGYCGrJ5IlbIt0FLpI/6tXIPwUz4+4wCF5YMIxzBkB1RSYLt2mG1otuNs9AAYNtFbgzdDtB1oN8A2iBo1HjYh2gAZ8FBUR9ES1j0L82ZWB8z8nc/IunMeYzgrTxCAx2LN+1PefdaqmWWjJo6e5cjNAntk3toCUyN7swhOTbMy3TKiZW8XDaFzgBpgDXvrmJ2L6uHVW0TwMMepuDap4CJH+jrHUdSGxoV5ooiIWtgYCRq3PFiCp5qEiKLi+VAAW6V4RPAiwIsIPhDBLoq7UEvTVLCr0Ka/onWhTXsYPxessadQ65it8172HbG9UChrd6grgMYSYa8IeS79ycu+43a74+3LG9y3z7HhHzZONgdTPHPCHyfOfmCejuMBDChOaHZsznxsSzv7xTIAsrW0hneIHHCc8OB40GoD3IwW/TsrkmRv0JuxZLor1Gb21AnSyjHRXaBuNI6rvLdtSCU40E48GdoAAG3604SsPE1clNcSAFkJsGOrS7KBfE+pVa44YvgCBo5go7aZd1goEBahyR1TNgRpHgqfQTdRZ5US2f4E4Bm9i1FXBIAjq6ZIkDUMCHvReaZogEV21mdZFUxrM78AAaPn6+CjwEkko3H1kqrjCobIkFaKwqdfG7rkBhR0gQ5wI5aKThNAUhdRZ5VMTAUaKJ2L1Kldn0AyepcS3BJMs4fLtaFV2L/gRL71czRc4l6+x9NulhezfhdrDci5HUy5MHXgMDVYNoHsCnS5BP6bBnYT3JviDKbtumZVkQ86rmaZuIQDzVP0qWkaR5szdeG6Ohw+JkuLw8lcZz+e0khVYZLkcC0mA3VvNVmQoJpTdAA6EUKdWbZkX1rBdb1kXhJGGTCVZU7XodihaKBP0fTJnjx1K7jE0zgu/Z7qxjSkd7YYLNNxVzncEyOhLIbQbrCtM50/Fd3pXBvngDn7Ill1Ka4gGDWFZQXHl+9QMjT6BNwjGxMmgysWEAO8xcWmFHPlkdZLsuZWxk+owrEV6GsC0W9BhPKZBigOyQiHJmGHO45M75whOIM9WEaQah7MvECCtFOJ8HLbAKAr+lsMQorqIks8Y9bXtLsOR4zyV/DLW2FmigcBnY4xFToJStbmn9Cy+s8IKu+ZpXvgvVzlpkkp06uElEWDpINlRmlRS3MiXlN4Mwj7IhLha7I7IMASkPJc7Ehe3wTIC2jUWaDON/+gvGhEmC6wYAV2lVzW69Rks6fP1wVZdpidjQXYn76XFBOv6pFE8CM9A6624UyTIO3lZZk9PTFhwBJpmiqsOj73hq11dPQsEwY1K8Pgwbwqc/nAGXzNmexJiNKSXi9WAgp6slSPmozINAYwWlJNs3hxliu3tLS3ltEVzfS4KV2bkWhqJuYkk6JCx9kCKFeJC1B/m2OdTqnXThWSDq2xdq0FPmpBZxbpEv2J1V0EZJaoOMh0RVWb5fjy0s2wm/YsTiOraFqwbHW4onlkekwzXZmW3FEpGAJph6aGI1Kcl6I/lfcG2nubdUZvtVlco6EeCS6SNajxdrm2FkB6/vpEg8fazp/+Jj7xdzXvn0XoFc3yHGOljOolaRBYCPFiY+Lp49Vnuv7zMUaoPjP3/vVZUdxKPDE0xaZ8Yg0o7qQ+c9bcpJlXCU8lOZuCkybvN42s4LlcisPJQshaf5BsSCZYgszclWpbi9AV5sf1uevC8LM/pTJXqgRrQ14DoYB+XbD3fpf3SZ+ut2Cxlwp+7mrPUUedwxphawlfHwblkVP38HnPKd8WSRTNrFB5PzFNbGAwg+q/lHICeT5vKXVaYU9ZBFHtOUXayRqPePqbWOuMamaTEuDWZCAYSTZ3Xed4/xquC3GN3U/z+GwDlKDl7jFzkB8T/ZyQc2A/J6Q5pLFvjSsRsyIrUZqjS0b/caUnIqSqvFJf4vQ+OU/EORDHCX+c8Ac7CHs40wFn0Gr4HJgj6D4pACyrXYwRZR+KZgG3wKwbnTOjKMOu7OS6J3SCgFGZT/h54ngcOO2AvB4IozjLItByo+lZQriXKxoMmxK0HVOwMqSDndIihEr4uNAwcqJ40IWVNC8fNbA1NwcNAokJsJGgyMp3S20OUR4RbDvQQS+Em6QWRVl+bCK4JYPScjKsSMBkua2qsi4fxWJIVpYkDVorcekMCghq+hcoqtTasLWGfevYZGNPoBCIGaJNuAp6KEayTkcYWihGMiauyr45mXtH0aubYTm0KXcG8QG0zugvZrZaKFBiFP2apRuuAjYZLUukNLuqrARiCXwEQGdFEd8cFwCqgRzKNGTUVpMZdDGE0KSPeoKs9HIuSgSy76//BH4ptGyBEtZWRQY6y/Yhkp25eW+a+2WtL4A6PStmph5njZN0LIUwmFjrYG5aEuzV5AiIX5VAgmQpkWwQqL1hxIysDMkouqjnFR7X55McNpJ+I0KrbrnIfl47PAlor/U31s8DZbrn9QtBBg8pkgXW5pvfXvqZ3KAApEg2N90EA3hvw3n//Z9TXTPyGibAXWIDlSchL4FfgCXv1LSlGFIuYKX5WmSOKhVSG74vDUJ1epFgA05FoGWDSmoR+PmmB8acWS6fDen0OidAqV/KtaNKyP369Fhp+PfqX+v7YLoU6Yi5qs5k3f+wBNxNIEOu61wLHSujl5nJ2sjz+6x1WG0ZlvFkzpfnwG4RY1k9tpoe1fGc8ppZfeRXRRGXNsllQhCugAas2dLxyHKyvgIQkypyJwtTgU6iyesSFkZOcFL29hREA1DuWXV5NVOcGs7sQzImT7EgLuSMK3h7RkSf4vGZBijhoKfEmOw58zhwvnvgNMP5+sBQw1DFcIfqxNCB4QGZQLOBsrcqe+8ArYYhlw6Ad44LfpwncDyA40Q8XhE+OIjGyDr9AB4Tfgbmyahb1LJBn3KCn4A0ofocSL+Ba5Qkj5MNrxhHYFKFjznheGDqAyMewHagVV8eFaZcNMlfERqIWePIUwHcETJJBXqwSqXcFce5VjaBrHBRfJJVCVnhA/OvKYxiG1oySbgWQ5lXxJphEcWdEylwIzVNJsPQzLIEWdIMKs2qmmaKh91UI5mGabxHosVa1KTLwV+bdNRGnYt77eu5SGmWRrZGIyotpiKBhXsuYJ7gKCP5mnCC9AbBlbePjFwguMYQrnPLreeKsJ4m9aUHyM1DKtrl9lhgD3U/uPJcq8yziKTCFedKtFIJudFGqvbpt0L6NZB9ekoolxuVLLl+bujKn0mVpKZQRSdNAbnwlc8Ex0P5ISjoVspOxuWfgqfoi9eiSJHacAUFPPDeQeAk6xq+FyZXHqc2enU88fZMzeUmFAZ+Hikrc2TPIR68n2BpcqalSLjWhiAXayLpelLpHs0qlbr7FHwQCD9/mAAi2I+F63vkvRMs/3olYyZS6VxDOgJyTMpTCXuCO7ISlmtcXbj0jYrsmp6eF6uU1DmeIrBSBVGMVoGdbC1R+Fh08mKqMXWezs7qjTqZLKUPZ7l9NSyEaFby1NxCMii8rSuskCxi0AL2tBWA9fxMBQskxyuv2fKuMk3LBrpPSxPoVEhz6Ex1U3V8fhom7+FYxWIqqqxboKxs0hIsC2TN9I8/nu63CtJTIYXxGfjk5411Ellske+nOTayrSf1NPVOa/3hPVpkhqW43iXZWaSwP1PRkEtwm/NZjH8rTaAtBbLKwI8FbJniZYnQxUQVC+VYAuioVOf/LRoUptqZl0QE/DwR4yTbMU4yH4O5xdC0RU55cay6WQBr8CtCsh9CLTgiGcGRwYg5EPPMgwAFc4BpWW76yO8BYRnl6YhyJ0vhYHLn/KrPx4XwV48DYJVIyvBsFpFHvo4gJ5/UwkBvEAU4+TM/KTohg+kKGddAWwMuODgFl+CVoqlrkxU8naMwDyzLWTEnQ70uqlT0eYPR1QROrUOt8XwlNyvjZFBNgKK5MDXqTtA6zNjxV7UB2pbAVEosWu8W132Oen9wMdSsGKFNftp5o5yAE4BM9rtAE9hgqnA600TVuE4kU1B5e2V9Wo6sePr8eDqftXQVGFnXuEa4PP1NDfqnX+Wmfn2Vj/0beO/N43qJayOtP7nYEqldoYaqXC9TeflahKKucS5OsRapuBas5wxSCvm40Mv7QfAzxsIlkr3SGZk8eIrGoq5yfS+Skf+TqDQ3bqozn0ZjXq/FPORzXbE0m75+fl2H51QInr5eAFSvn6N2N1mi4yrxDXn6nZRwtSija8zWa8RqsJPA5PlrAYa6NjVOcu1CajvWzlFrz9O/ny9NvW1JiN8/Hzx9LqYWFnmRwEmUhQg8mHKlL44mmyUX3ZNvXKD8GqTPA/Zpjjxt2k9Nh/Lf1Zw0ruuyNmugunHjvY8f76V45OkU1lx7fnx8DtZrrUDpYx/j48cCzwla8yuPmeGpfgKgXEcNX55wsXJPC8uaC6ixW/QIeI6smANF/spAKtZnfZof+XmYWo+rH0k1I2V50PvX80mzRg8qeTqfuK7/p3h8pgHKHK+Y5ytwfARRR9sC/WHYumA/X7GPhn0a9gZsEdiBtFpW7Gpo2mC2QdsNMywt5x/wNjG14VTDoYpT2Ip9xMCIE8MPjHlgzIEZE5hzpf3dyUqog43qAOzRsQewh2BTYwmq9Yx6jKY8+50057yR+h8nIiYQCokJm0BHw0vfoXbD0BtE77i3hjfdcO8dzRpa39HGC2wMWHtDgObsvOo+4eMEjneQ8cD+4dcpKvNAn9taGDWzqBHAnGRQJp5dRJGLkjIF5gEckyAq25vbCDSl6V0E3SL3zbBvhu12o119a9DbCyteto31+AoyTA1QE6rqcsHT7YXXbdvZb8ca2r4j9jvi9oLY30J0g6IDcQIjILITnAZw6oT1G/p2x7bfse0v6Lc7+m1H23c027KzMqBNEFPhlnPxCJgJWnaKlii6nzqfMrErMy2uCQGsyo8Jm5PNB9METoeyvUEK+2pHjOTYF+0frDhwWckFJNWFhQZXf4V8sWWDnzttMUlzLEFlpT8UJyQ9IyQq1Rd07UyzKyCFiTFQvVBi9RKeCJwImXA5MGWwI3Aerg63M0WvLMIkX++AOc0RqZRce019uEjQXFUzU0ChumQKRmV1Ix/CZoEcq9nwDVWJU6vGNYYjmLIAJHUhFE+6T5zu2WAwuySnKjAQq1dJuaE8Vyd5Xe612VZ6gR8sAAq+I5+ntQlleilRnmeu8P0KpobQjpDOQCrZk2idtvOSoE+yE3gwSginj0lzWshfzr3FEEdqiUrvlHqCRCQ0DQPUMz2ACt4YHMC2rOYRdFNAOqTd0fsL+vYGrb8FnF3jN92wS8cehjPYRZltNRndVwpEBrvSCyYt7meOkUq/M3mUAWUDpDxbU6qfvlUunuNyIoJfLzt8x4yJGQPTB6uEuJwvwX9NTZ9Pab3p8LTQnzExxDAUrHAzwanBPaOeC/qsnAoME0RWIsp2h+4vkP0Fsd3h3uDTMO2VrVbcINoBbRDboLYB2VbDMVm94yOZ/LSojrkAeagwi4BsmKmKE4IzmTEOyQa1ErID7p5pwbkwqGbgPDK9HpIO2GDaB/J+1R1y7WORSU71kAze0gvsUz4+0wDF9RWwA5ud6CZ40wMf7Iq3e8Pn9g1v9g0v+463d8XegHsLvNxuaH3Dfr9D9xu07wjdAAFOH+yKmwLMKcApgtMMozfMuWHebnT8nJJC2RLNAj4CYhN9AnYGVDpMG273G+4vDdtueLlvkH0DesOZKQnVHV1e0DoV8TIOYJ7wuFF7IIEtDJtseOlfxLj/P4jt87DPfQdum+G+GfbWoGYQ24B5AHMALwdbw/vEmCdt788DON6hjQfe3l7WLLSYTwBcMwiJBCiO4ZnXRgp9MzrFZOm1bnM182rF7pwUDQPEYm/uG95sDS+ff8GtdwpT9zvMGq3qNVNHvUyPBFgMikL7Hdo6bNuxaWM36m0D9jtByv5mARRVB2YainnDxIZDBnTb0O533G53bPuOZuVfgmWuhAiEciWMDoQb+3KYQEZAJ2BpkW6Skxa5OeXYFL0MvTxoMNXmRK88s6do2Stlk5ElnlI4IamELy3ABVJKhMaAp27cM3jJoxSGkyuvjBP50SAyKaCLE4jBCoCYWI3JztRYOcdAwHMxJACagz2OZA4gGUs/H+z6OyfOyT42czrOedBqfqWRgJB5sZuWn4eOWFeKJLsV07Ke2g6CEi6YQzWNAZFl9Fg9RwhOqHHJxOMKCnmlPXthga3kkb1YcOIcjnNOzFr3iXZSGzCzEsfzhte1Zgm0ltBVFr+zAvVnGqL0Ne9H20JWpIQPS1EoKAlmrOj7iXkVSaDD1KslUDLoIuvMBZotEiTLXejlohQun05QOjwrZABksFUBNJ2cyMp4NMxogLc1fg1ASIfIBtMdpjvUNhgU3QJ767i3jje9YbaGMZ3rba454XSGVTlhU1lJ9nS9FQn4S0b7JOpPuojgPCY3bZxwHPA4MPTEGScQJ3Se8OPE6znweky8vgZ8AhighxaAw3hJjkZwgbzVZwdByBg42sThjocSsJoAD8L19wDKUOA00NW72nL0G7zdIXZD2I0shgmk3YEg6xS9wVvDsB2qG6rp4sTAhGQTTAag+uQoy15oikMERwQOETzAwpGjQG9glWhXA0oPSiKYCsxlZHJ8jerBJgwKlpg3CwvKCqPSwsV0TsgTa3u5jH+ax2caoIQdgB/ofeJmijdd8HYzfHBr+Nxtw8ttx5v7jrcvDXsTvGzAPQHKdnuBdLrJntIREnjMkxbqxuqGUVGZGWbrmFvAbw5PW/SYg+xCApSYAekO84BNYJOGpgQlt1vDtituLzt86/DOArMQGqX1/gY9NujeIPME/ETgdaHYTTaY3nDbvwOy/z+Q/jm0ly9i39jWvDUuVC4Nw09Mnzh9ZMnbwBgnxjzhxwE53qGPA9v9LYpVVlylj9RZMJLxyUqlMbL00gOHzyUG1JFeMOfg4ueBfk7ocOhI/YxQkPrmvhM0fuED3HvH3jpav6OZEXhIWqEvgAJqTvI6Wb/BWsO23VipYwZsHdhuwH4jQJEOkw41h0QDEBjRMNDxKgPSO2y/47bv2LaNNtxUeTLCBzJ7MYEU9zkE3jJdNwI6orSAENC1M4AscZRkl7PcNBwz3S27OzavcnX6hFhQjyQZbRdYKfIDKC1PsigZ0y2SoejkJbsvcFJLYy7YPgAf0HFmGAgAI/VFdC+WmNQ91c55EoCEpygSwe/TB2QmOwefwDgQc2CerxhjYk5nV+Esuz/9TGNF7pwBZO+bySjXSDXDBJHqaF5TybLeuXrqFECZqpiWLIll2X8Arle3Y8+7Kk+88hLrgsJEn3mf0yl2xokxJkWcB+BTEENWCjSiNsxCF9Q4Le1M6iAiU7RVbPVMv6/sRV1ruWhwpgDomPRUg5HXbYk9koKvFEG9Ot+zr7ShJxtDYCSrPnRW8iYBiidAGQlmc+7OFM5LarOCPaYiAjMaxAlQIniuDQKgQWRDkw0mG1R2QAVNHbfWcGsNL71htIYTjqmGISmynxOCAcVAazRa1GQgIyY0lpcuCqhXMm1d7IhkDAcCByIemHFgyoHDT4QfED8xzxOPY+D1cLx7cBjLABqxMh4GHAFskQAlF4fzBA4NHHPgmBOnThwogBJ4CAskjnqKEKBME8zGNivaN0jf4bYToOhtVShKvxMISkN0hfcG2I6hne0IBJhiWYodaX1R/YY4AmcyjKcGzuDnOCA4ARwrhch0d2kCy5tmegJGSbY4dW3zROpIkMHY9X4c16WZA5CzrkTlDDbI1j0zLb/Z47MNUPYHpA9sA7g3xdu3HR+8veNzb9/gCx98Dm/efICXN2/x+Q823DbDy01xv+9ovaNvO2AbQjoeYbBHwKXj3cPwmArrABrgTeD7Rg+OviFwB/YBaSdZiuyQWm06NhdsAG4A7mLYTPGyG24bbaD7S8NQwykGcw4ClR3321uyPD377cDR9UAzxdYb3rYX3OyOL+zfiabfBtM36O2FHYLT/a1o7UdMHBL4sNP/IsIxzgfkPCHHA+3xEWyeeDneLb0FUkEfUdUTjLpjDrg7znPgHBPnHHh3npjhON2h50kb6pPOq/BAPwcbOQ6KcVVI/X7+5QVvbzd88YtfwK1vuFnHve1oatjN6CQrwEunWl0VLJMGB3hrO5o13LcdXQ1mBuuNLrLbhuhvINKg6LBoEBwI7TjxDme84iM5EGaQjeC1dUOPEzLeweNAhC0XX3NSnGFCU7huwKbQ4ZARaCNFtqJwpV9kpJKQoG+mIl8wpsKmYs6G0+hhMEPRra10n+ZXOt1StNtswtShMqiNqRxubVDZmA2tOn4IQ31napB8KjsxiwZssnkY3OHDGfS7Y84D8BO0BR9csNwxz4Hp/NkIbvQzEqBkWwePwbTmeMDnwDwIUNwdY1bak+xkJIBT4fVis7JJV8wUMGoztE49kQmDAJ8zHXUTvE1QrWcKzKx4GQEMlvxLAz1dZjp+ztR/ViJhAqoByxQkNzXS9gHHmA+Mc1J8P1Lg67UIR26SuVul5knVU5iYkWim4OgxlOWikpBRk4UEQWfpZkrkrSIIa9STSVuALsr4DsKNyhTaSNWrFM7J+SalhDICNskU2UjIFmSPZpDhiuGYx8B8THY0P9OMck6OhcaI3KNjBl1PZRp8MMXiQxGD90OColiNPCQFsi1w33e8ue14e98xHiceOnEIS9DDHfM8Vr8p642W9hhAsmzWHNEcYQ7tYNuO3WA9m52ehlV6NQZ8nhjzwDEfUDxg+Ag2X4FxYnzjHb7xUeDr74BvHFgtPk4A7wCKZc9kok6gB7B5mm164LgdOG3DKQ2jp9mbZsNAwWoPkpYl8Kyq1G2Dbjt0I4MvbUfYBmuCHg37i8N8MC3flZV+e0ds1MNNZeA4dcBdixxlCi84NqLl+wLv+fmM9PAptg3geldBS7gyE4wMIGaO9ImLIRag9GAqSGPFDC7zZ76CpKi3SXCPi2b+FI/PNECxRoqqQWGtXBWr1MqgajQSah3WDK0b2rahtYa20X0zhKXK3QV9E/Su2DZF77lJdEEbtqoIemdusG+CeWpGmJcIbRfDDsFNBDcxbCa4bYp9C7QGtJ2oNcTgk+9vTbDfG/ZNcbt3SqQE6MYoYu8dL/YGN7vjpX8HDG9huMPQ0RToLbKcGSz1S7W33/fUQwRwvmKcJ8brK/D4CHYeeHn96KLz7UpTFH33SYDCQ8aB4Y7uE3aenCznIE3sjvMY8HPCRzW9EvRmuL+8wf1+w8vnvo0ApW14adsCKBbcc+9d0NIifiZAcQDNNgKUvhGgiMI6XRjRO9yyaR8azDsjZNtQJOMpQKQ1PW25A4iTvjKg2KRMygKzZl9azwtoMQ8gNwEBnTFV00cnWO1T5kV0aVVEGMydYEQoBg6VawOqIwW/lYeg2DmLBJeKNACZCHWmwFTScC3Ddxv8W3ck3w5o+Yny/MMzks77JSNZkJhZjkxUEZnCiVnm3RXJViM+gpMZg9/PsVKKc3o278y1L6u8JL1XAACS0ZkiKywuTxgswTOo1VhzjCJrNrJLJ1BHOoTS7FAM2W5iUOOgAY0npYOlC6hKppacDpkha5NKuIdqdihZUkSmRRYDIqgS7WogKqkZuqqlak0qU0RP1oRBrK7IOexJ7GopLhXe24gCv1XOnn2LWrYGkODYE17XS/G6An8CFMx0ao1lKDay75SfgyWu82qWiMzWqjM9MFg8jinBFAQMgg4PwYQmt0GR58zqu1AFPaeDwv2+8Wg9NS3ItRiLdVz6O2TXa1P2dmnZZmIztK0j9g3Yd4xtg0AxrTocs3xE2UZ8rWsjARkyBfk6Aq8nCaPaNx/59RXAazIojyxyLAbl7MDIBrX0gcp7YkibgMlpCDBTZ8h2KrrGuDa6wiJtBaxxDez7DvWOGRPeDdEUvjVq8wQQGdTehCbRJSRInSNWRfiakn9fmjIn2BSM1D8CYZ6fO9XBz4JhyWq1TOX4rHlbQRKuYonae3P4ihLMI5x9oSDpHp3j81M+PtMAZd8UEYoOlqqy5wijlghuDKyD75fPRNsgnYOjbkgDj80Vt5vhcRpuu+G2KzwMmJaIWHBuQiHdqQBOtOlo7oCwN86bdsMmips03FTRVXDbgK05rDnaTkQZEMC5ELet4eVzd9zuGz744A2aWpqIOXpr2HrHW3vBrje8kS8AY4OMBgw65MImZHsS9Kdbqn3hC9hM8VDB7XjFPE6M13eIj74BOV6xf/3rjDIjKMxF2o8XB+3UEsScCVBOnGNgmydGTMxwPI4DMwEK0qTufBzwY2IeJ/UpoN/IB2/f4u39js998Ttw33e89D0BCu3vCVAC9/YEUJpycUFApcHUmBrKGn9NR1YYW3ghNJ1W2wIoTNIITpWsyFFqfcTh/ooYKZzMjVuyk6iYQm2jur4JAKOwdPAeluEbNCms0HRiBWQOllECZCxUlmeC6UDEyNJHjs/QFPpJ2ubT/YnvJxMig+GcVJMLT32O0OwNec8sAK3S6oOhj3hG6ly0ERQDUrBRkTLDVk+GRXzCD4JT97lSJctBNRzDJ9tMVLS3wAkFfDNLsh2CmZUra0GrlEvkAopGwV7jsfplySAgSadk3l+OFdNAS+XinEC3iWh063SfsEE9WXisQIZl5OwhpTrhCn42mRldBuYsIa2u8tRqcueRBosSWb3Oqjn2Xrqo7gwLuC5Uzy8hsHEwAncAvspmNVNbucI3iiNVezKbZH6qbDiy3LQ1y55IwTxC0exhZFtCqVVARdKct+5CXdoInGe26DjO1NlgCRwRCchcIK440PEQRVPAM0hwbKn5YQphikG1YeQxrUGzvFn6DbrdYfsLdDshks7Hmbpid2qmFanDAAW4nV3pWwiw7ZD9hvbmDtxfIG/eQPoLU/KnYJ4CPwWOje1Mag0PxeEg6zYD5xC8G4HX2njzcYD36EMAW57ZfpboGridQD+BcypGsNknjE65Bod1xewCbbEYM2nIFu4GzQ7G/KqQTYGuaNFW+4wyxvPNltnmEsnPAxDKDOZg6mWcrDhEKFw7kA1ENehca+GweSIyqGSJfCBkrJTjKvIBTRevcvs0CJ0F4S4HZ7Vs7ArhmqxcgtwkNXg85VUEHYD8XwNQkmPahGkVKz45N1W2jaWyuRAflqC+aFcaCW0iGEGAcoyGl3vD4+zUNPgG14GBCUxB94B0QQtgyMQR7PEjYnjbmH7YtbFiR4B9A1pzWAvY/mR+FRS2tr3j9sFb3F9uePn8B+hqaO8BlA1v9I4NO/b4AP5oiFPhcrIKpDnkLln9Imi3G3C7Yfv278DeDKdpApQD8/UV/o0X4PUdmjaQh0+AksJEOngiq5O4SY1j4JwnxhjYfWCmAv5xngQox7lcdM93rxjHwHg9Mqcs6Gp48/Yt3ry84O0Xvg1v9hte9hve9g1dFZsZDIEG4N7wPkBBCau4UXQ1LNVGlW+q4ExHLTmRkVlqV6RlQ8XswNqFBkcq8JhXr5ViFAqgwNi8CztWSaVcnVLZ6Vky4lbA7ZKAzAmdJzAGZJz0yjnzGOlIDFCMPVjpMhuvHzuGVvNFQEBx7DJPy81evRQHuXCUIDY3Fl44v47hGSlPxDmAc1JTMgZWBUAMSLKCUefpTGmkvPVJMJsVLR7ZbTZbPWR7iKKEIzdVPmoSPkX7Uj+/ov1MkS8ioKSQ3L8JAss/JbEcWiAZi6wegANuCA9Y5AIKar4MDhM2f/TSPwgZP5eM3BFkcqLMrxIgOE3JyLa09wCKCIDyMcnPyhReX345DhAMAdSHpKcPUqAPM6DfCdi0I9IziRllAqNqe2GtOj8Hnp2D3S11BUq9TgDDA6crPCaHxAyKgYcgBqihq/JfsSVydHiyIw1Tb5jpQ0QzQVaaTFN2Bm4HJgzW32D2F8x+h7cbAGOKqt0h7Q7tb6DbCZMTDRMWBguFnppaF6xDhU31IIINBtt3+G1H3G+Q+w592aH9xp5jh2PawNSBeVIfw1YmXJ/TYQqeaarIip6PPxxkUo6no+7oOQgIpjc4GqC0dOgBbBrY9g3ycGA7WW2rwOgANgNuG7b7Dn3ZYG922JsNctuArUNaoI1AG23pObwbvMTgnozlYIWiHwPj3YHxykNBL5iW7KtqQxNN5szRR0BmClk1UgNmOUe5nhA9g0ZsACB0LV+QKQIIJUemFGE3EXQVbMb6TwuwasoFrjT5cxH44Di0/1vKjHtSTC2jInkCJzGLdj5TdZ+sCibKORHIOEcYqVZHzmaC3hRbN4xBim1OharjzDrwkQJ7k3RNVeoRduMGuqmhi2XaCVD1zEXj6ukAmhi1vqHtO/ptR7/d0NX4GjbRzLD1DU12GDbI7MBZC0eu8RVFN4FsCrvtwG2HvrlBOtMZcijm0bm4BB0+5aN3gA5GFJ30y3JBSR2CT25iIgMyG7RxIyOVOyEFUNrJKGwwJWF6cCs4JxQg4Np39G3Htt+w3e7Yb3fsG9M1ZFCyHPkJoHjTq3IoGH030VW4IkijvUxlUbiYJuVR/wY/b0bBlz8CgKSTPXPgqyEkaF5EbnYAaLm1cFuJMqaL3AhSbLYAS5SANEFyJYqzHQJ3GVkpwjpKz0QRNhYsYMPIXCRIJPB65HVYn9PJSFRuhZcjVvlmCeE8QUt9L2VmV9fMI/tPlatpoKzlLtBRbOV1eGkkanZFbfXJoJAXxhOPjMJY73fhff/4+KM8eBTyZAPOChqLfD+llX4AF0ARsiiW8w+iKY1mA86Q0vrkeBEqVzTHTMlUSS0AgmRQjKxnnh2KyZCc46JtGdU5QGE5sKJvqAI9U1sp/mYJ6LauK7Q8h9JvSAVmeo1jtwVOI7sHU7JbqbZYGJZW8xRaul/3jyktrk6V5wpUVZVmiXM1tbRsarkloK4yVIPrDrcNbhvCeq69AmiaqtlGNjtYSswWEwIdSJ4Ll8EYskmeZO+a3tk4dGuQrUN7h2+8vhIdIzUwYjxHbtYGiSz1LhZyja5PApQah/7NjmSVHJcHi5jx/CVg2e/N7FwAWw1Ay15T3aC9UWPTjQxwM5jnHKv0oAgBSqZqIJHrIJL5TJ3YmSl1NWq1VJYNhCrruCwEFoZArM7zZAevXksmTx88r73XNwEC9pz4nHu8V5yD3P9KgyKpsZJg+bxE+q14CcY/3eMzDVDuGdVYCFoEcJ6IxwPe32G+fojZBKMB56vAZMPRBlp3RNCJUY030KWDG1KkqyjByW0zxGzQh3KPUSqTmzCCtpgYcJxIG3JxvMjVSyctwTLat3wPWeaBIaSz220jMLnf0e8v2NXIKujkxt46LDrEDfOcOEbgPBzj8eBcV6DFBpMGawLZO+xlR3u7o+2AN6AdN8xjw9xuGALmh7/2DS58cMAaYrEEegEUo9gTOmn25jM3S0bzLTUo4zjhI3Un1nG2AyqvCDuZDlFF2288bne0lxf02ws9UexiUAyBLeesKTC7roqM+TRxolIS7msTP51lqxKTNGgq9ocOTJ2YoJOqJI2MAL0MWEsAz9YG4nSdFW+0lI4Tkj14wkd2r+Z1YyTLsINUMgGKp0mgjwEv08BzIMZJJsOdwuQUF7qCqaZBG3rqgSQZlAkq9vgc1auUz4NpKQC8Z9MvJiVZE8/u21HN1oZjDid7NpnGg/sF8PL5C0dl7pgW8FEFIetBRsdyR0kNzUrpZH+r4o8lG11CCPLyc5RhfXkxcCNPQPWxssTqkKoqbL6mLKttyiDEsgJBC6TqxaAoCqQoWB82OXuD5ywTcOtwV46RpVzJsksAJnOJoYGWAucGs9QoJeThdTBU1/S16UCALH8WpNhXDeiWrqwNst+AjwEUOf1iqxKgqCUYS3ApKTD1sHS8VQwvq3iWkUZYAhhkeqWhQmdJV2DRlsCS3jCy+l1tTJu2Tu1XU4Ru1KA0gbcTUwzoL5jtjtl2TNsQkSky3eF2Q9gd6AcEB1QmWup65pwsL/ZLf6QqFJEK22To7Y6436Evd8j9Dnu5QbYbBgAzx9ATUybOx4bwDZgbOjbqjrBDw+GhsNbJQMv5/oDORxXIffzB8a8ANoTuF9gSgTnI8OwDtr8iiV/EBgLQBFTWM8XTbaV4LLiuXt44iui2TFrldHqRZNVkHAf89cG2K4+TaSCjQFZElotvckZoMrIYwjAz4Kl+cRHUGQlRB7LHKhDZZ8kzjSisTqQHcTp/52F6ARQKwCl+x8yO6Z5BxP8tDErTDsUkBRiB5g7zEzoOYDyyYL0hjg43hx8OfwAzDC7sfxKmpLpcSPFXr5ZkR5rSI4F19QPmgM4J8xPmyRp4sBIhAmqDcWJopgKQKDt31lFQVZg7TiqYoDjp8hz+S5M0AzIHSzcfE8frwPk6MV5f6cnhQN92KDqa7fBzg52Gds50CFQcE/AZGHNgJLs0jlfE42A6zAlQ6gC48Xn6D8xB9fdwx9QsrZX0RYGgGgc4Ltf/kakTya/HnHjMgdd5oo2BNgeaD0yx3ESu8tmWCD3ccnH1SxsTIEsW8ZR+cJzjpDhuDOB8AH4C8kpwohOvWd0iovCDm73PBwYGAUoxCZ4NHH0ynfB4QJwLJY4JOSd0UCI4s5pCkGZX6WuidVaS5mIiaeTJ1UaTFbn67Exway2wW396RSfryNhYMuokYqsVVvMaJc2yUioFPo0grrw0IsAVDVjqVU9AMfP10rQJAMWYMXN8r9aDcJ1Jx3uyEFGZ6pwPqesol8wEX0zfOfu0OE9Z/GKOylqdwLTi6arI4dcAlrNvqOTPGBS456LvKa6Vunqcl4zJyfJZ5ti9tYyQA1HlvmFPzT2rPBcAsn+SZnoGOYCLGXpqmxGLPSqWLT9TalBWy4Jl1JKMUu2SQlYGT66fSdgt4F7vH/kese7Q9ZJkJIQBhxgt5rNgoEznNNM78ZRG0xV0IUFb7WZPAntkOjZoSzDDMWJmN3ehjiNYEVTMjIinEJrC9TXmLW3j0xZGcj5Eukmjdcj6SgbFfCDaBvgJb1v+7QZz7hXmqW/ShqaOph2mJ+Yc7+0tiqf+OriaABoST4rQJbcM+PIaMkPW8lCUXmM9AqygSkc49xPiBoRerOQ12VBDRnK9qDaKKRRKc8VYr82/1LyuHFOS+4mqsZeXGlSyzFyu5ULX8JQ15lgdxvPg33HgclSVu1AsWnXhvLiqd2TNiCtv8Wkfn2mA0rWRVtIGg7MDbgQsJsslfQDz5DECOAE/hWVxNqkZCKNQLvtDVCRpkl1vGTsBSOQYbKltMWHpb0EHSvalMfD33IBwmXymNgEeV2UCkOZcWFS6zxTP4eq4LGBkLCMgx8TjOHAeJ87jHdS5sc/HCcOG2Sbi2GG9sbJGGwLAOANzTMw5MMbAHCfGOFgeek4gWP0RqJ4hzwAlLqOscIwcmqHMa5PdKCfCWNHaCD5fsqrhmAPdBx5joM0TNk+02XIjYOM3kpBAi2DkJJ6gp+hNzuKY2UfIq8IkcI6Dgs9zQJ4AisvEVMcjZ6KIwRtvCAHKuQAKlkgWBCgikHZAnb0wZDjkdOipKXg1VNJAcyPWBVCSdUgHRmip3au6Iws2xDOq96xGycqFp6M2V2qdYm3OUivHWkEqdQIUOJElvHKmEMrhdzXSSyCdrqoMn/wS0tVmuyjx+puCH4CikWGQXECFi9diT54WT0/gNFNIyzQDCNw8UlCbdUPFxC+w8/yeRUuXMRU3VYWkoRUWQOFCb+t1ao1UYSrE8vNTWG1wp9FbSOfmgRL1JkAp4ARqG2Qp1K9z5WnTBXm5xeaOU43VmPK63GRrXcg3S3ZEcK30su5uoDRKdV+uu44ce3XpZP0PyYvkhiXJDOK6ds84aq1VghyLyWrUucoT2Awsl124s0LI6SejORYG6M/hKUKuvkCCqsLMNVcKnBCoROP5CRTaOrw1SAITKWG1CGw2RG8Q74jeEaMjWofODsOATpZFU8/l7AOmDXPOT1zDdJpIYCIJrfM6qLLCKsFJhRiscDJqO5T6pzLsi1zPi6lFVr3JHGypkam2xd1IXPcBtcFHOv56zttIsFt3t44KSmhWyWGmDGpU1/wihKpxvQYL05yZ1nkKfZ5WFs5vrTW1WNsaqsE04gIl7wGVT//4TAOUb/vcF7BZoG0N5hMbBC8v1Da8ue247R233rAZUyYmAq3eOafDfQBT4JNJGoShzYHujhvY4M/SDv9sjnNjXr5hQp055zEnxhxQo2Piy/0FTXd03QDpqwRLdHLx1nNFGSNpYptAO2j5jUfAu2Jm3po5fS6YzOudeMWBM17xmF+DOAWYTXbo3tHHHd0P2PEhWuvAvgO9Y44JHwPzcWB++HXERx9iHh9iHo+0w88ySGTPD+QgS4p95lcPZOkgEKfQlMsd87xSPOf5wDkOGsbFuQZ/9wYZgq89vo5TBh5x4nW+ZopHE9hRaJa+cyyxA5K9yYgaQfFmlhlERhTjPBDnRDxSmOoDIie1GxoYxV6dCn0EgInz+BCHHxhO34tKb5gI6dHbDe3NCdtusHanMNUFLRpMO1qb9BcxlnxnRhamFFKLKUFiY5v0zRQ6WPGyWWBrwK0DewvcOnBrWereDVszmClMhQuSTCgGpEoBy96zKIbSyERpZUCWQFmRhN4R06BywiXTTu5pDDgSaF+lxUCCQPNcBwORrrh0tWKqU7JihKZdlt478aRTAaYby2tTfxIBnBM4BnDMwOEKODU1FkT1s9x8AxCvDVwzVUMNignTH00EmzA6L8YgAjiU70sdzfVzE2PKQDQ/p2EOWYydKz/iCOonZigdmZ3W6VNTCIzGhd+yilBWggdrS3lqVlc/V70YlKvJYN3GoF4p8WbAqBFxRe1JvlI6ZODoYTOXM+iKvk1y/Gg6hmo+Pz/3TP+QnPsVQZuA5nmELGimdLpOI0vRLHOd/LyP4Xg9Ha/jwAi2rNB3H2Kqo+0K0w2ChodMjAbEzSCHEegX0ZwMZINih2J/Y9g2w76nDlAEhyvGvsP3HXLboLcNdt9he2elSHN4m/AWOM47pjAJbzghRwDnKwJjCUA3ndgtcAzkekIPqx3ADYENkSCFQbDhhPYXyEYX2KE7Tmx4F/SrmRF4lY6hHcM2wgCZGMUYOXAeJ+T1Af3oI9jXvw45D9htZ1ouDGZbEp5kjyKZO5fLQXflWTXnd6bfXDZM2RCyAbKRAcygQWRmf8dYfk8c7MwOCBqeXawRlE8gpzqeNGkqgKQA1iJoeeATxfohPMELoGcuR4N7nX5zyc83fXymAcqb+4Z9E/RGY60ewO12x77fcLvdsO83bNuO3jf2frFLzKaJ9CpXz2UtS12D/XrORMHeNkinAtoDqTmYEGsYaV5mbYfZhrcvb9Dbjm47yyQBbiirM0ikNXdgJqdmoH/KJobNmKaxvsNUsozL0EIgk0K4djJFo4+KnZJJmHo1SBwDMQdkMLIjSmeVAkANg3aDRmNliBUFnX1AIMv+GBHQGWuhn7n4RYJ0NrRNpiAb66krdCrz0UFGYNsMvRusKftsKDfVSLTteW6sIopsUmhgeSvV5J6r+HLyLIc8OHwQJNFcKnvLrOjlIghikGJ1H3g8HniMA+ccGFXRlOdrraG5YLMHzBV9a7BkSCQ3Wkm2rHKu70WdmdMVAFBBF6QvhyAm0C3QNbJKWjkuq2V65Y+NdDwp3ksrwQApvy/Kt4hpyeoithsFPVaQ1U4TxcxzEsyLmg0KdKvrMSNdVrU4qgfNVSjkWR1Cn7TGr7jcW3lX4llanBEixy2F1ppdUZ7iq4o0V/4CKEO0AikV0VttyMgoP5BRI+eFCFal0QIMAagEmoDsaIIvSTADNVYeQCDRmHR78hgZvFhJuStW594CBXy1nJuywEmdvwNYDdSS/RFZsSby5AnMcnRfUfQVgS7r/Pzj9eyKuhMEpZMOsMAJuEElo/d+mJ7MSAooIVhNO3VrQPoOhTaU18sMwXDJdgPpUeuBMSfOOXGOiWhMxUsT6K7oLw39ZEdiGSOjcACu6JLHbuibYbsZotGP6DEFujXMzaC7wXaD7YrYko1RWwyG7Q3TG6t5zoaYjczGYhUCq6EhWo7U52tcq2vqkpAO2n3DbB3DOk5tONTwAKupIoCHKqYZRsteQaCfUySTRiujgJwOOyZUabqGHCutPL3MIE0XeFUl8KszrI7HDqMRX/I8tHXk966GrDvMlBNZlSpd92TtY9ZoJed6pXsZOND4Li+b51zTYnETXIpcQ+kJ6LzfQkxyQH+6x2cboHxww5ubod8V5o7mwLbdsPUb7m/eZEO4Hft+R9842FvTTPlyx4pgNYMCEHH0nNC7KIayhCz6zg0XFIW1PWDdYa+PpemwtsPajs+9/Tz2tmHvt3TMzKV4Hgg/MbPHxzmDm7fQTO6mHZtuuLUdbbvDtlv6cNDAp4HiTtiDVTXhmI9OK3ofpNAKbE2HToI2yaoUT7DBdIqwpHHf6XA4lS6HKBFfkn0JHBDpNjkJIqqmPRJouQTTPsJOsM0bpjhO6fBM7aoI7reO297ZMLArmrFuXjXeXxBywyQ9WnS6r3TTAibxtDnHZElvlZgnrbmqdZLmrooUn44xBx4fHvjoeMUxB86z+sywmstax+aG2U70aABOuNDwi4LIXOjSKZTjKh0VhQBPnTaf4an5AL0rYipz4OJoLS7wbG19VWMZuqpmFGSJCiMBoqzxtYCadF6LzH9DQL1VXQuNqzOpAkQuAEKYrgQyUsumewk2KpE2k86n/jYt511wZs+c8RTdz7yPjlrbMl0E3tMRSO2SJ+h90jXkAlxl1CJxARTNpFoAyGeQuk4x6ZMKz1QWQKlR5pG0vTD6i0jWw41UtTSElv6HAEXLllMohASymgbUj4heAIRMU43m3Oyffi/B2+OZmpPSe8hCt0+7ZAYDUboQLNFkPNMuS4OUT69LEMmGQPMecxcN19VjZWljJNOYQuavNh5FAua9AVtHbNygI89reGrOwODF8z2GO0aud6IOWMA2Qb8Zbm86xujQ7pBHW9Y+Aic4UcN+TwblTlA0VbBPmjPOraHdDHYztJtBthSpdMO0BteG9q5heMN5EqT4NJxKgFKsKiyNHqWta/gMUBz0vfHeMWGYMIy+YfQNZ+t4WEPXhndieW8Cj9YwO48ShM+miKoqyk1bzoAdDpUJE4eaw4zjXI1slTWmwBEsNZ6S6zSqIswWfpAEXyJM3SE/a5XRM6VWFUwJVtONw9O7TXOdiOydEOEU8k9HnLIARo2x1Vy10r2aQAU1ASLT5nwuGZgnIP6bPD7TAGV/4eDdb7es5GnsUNvvuL98ET0ZlP2DF/S9YbsZ2sY+Lybl8UG6mouXYdoBM+YmTRu0bWi70WtkdyA62gT0cNjjIIPiA9Y29Lbhg7dfwG3bcN821qMjEH7AxwMxDxzvgOM4cRwTwy3Lzjpu+4btfsPLmxfYToACFWijnfuuDQaBHhOPtuHc77gDmPMBnw/IRlfJ1hu2+1u0l7fob95CNqZ4PEuv4+xAE8jZ0VpWm/iEN1sRkSOjtwQC4QEfE3MM+Eia29Os66za/LnKZMcmmGfDHD3BAqCmeLndsW87vvC5z2PrG7besUlqOYCl/WgSaXQYTCclezIToAiwFmZdpk4TZygbz4nnRAnAuBCFBEb2snE4hp84hyHaAXeFxAnRkYtuwJrCekffXrDd3qDf79hvLymaE+za0WzD1snQmTVWW6XosBVgzM3KGWIglKZhDsCEwMY1GOlox5QGkQaNK+utUdLE3GhQTrZ8RG7UZCeyPDRKkOq52Mh7ZIvXhutcnGLp7mT9frpkLxxcTEna9HsAJ9IATAKH0MxwaJVfX0DTAQyxpz00z1zm06ZddFyWu4tkC4HcNNzhqX2o349kcsoMro7r2hTLEVcJJQAIr6bhoqzprMrKpTEj8V4AZTaFAoNVQbVeqvTH75dP5velNSqmggCQjEP9nmxH7g7JotETpa3qOg+FTmq+dAaGC6p0O0oQXVEskuV7hv2VGk2GMOAU9jewc7ewLsOMqcjWt/wYvJ69KdrWIS/3tF1n/zIWATIF2WDYd3Y+R2vYN/a72lrH1jt6a5B7h8aAjw0SOx4PwLqnPVDAhABlV8W2N6Y6twbJFM/NgNkCswW6OZo5uk2IzdxYJ6bxgE2cuemfBoyWvXC6kk3awNLsaeyaPiPnTQZgEuxmbsDcGhTOzsCb4tgUR1cczfAww8M0tSmB0RVzM4xbYwotAQpuHXLrtLrvG1unaDWr3SBCgzXVvgIVVRZY6KQoF9Lg0sAGAA0njIx8rg2eWqaKXSJNFSf8WrezT1YFGSPneUgFV1gA2/N30xWe14dVjjk64tKDUcTPYJRGb0+pYQAIzWDh01Mon2mAokmN0y1QobLB9hfY9gK9vYFtO3TbIfsLZDcem6Q75wCmUacwx4oii4otAZgKabYqDW7YABd0C7geNN3yidY6mnWWCvcN205NAncAwIfDRyCCjoAeAQwuSk2ArmQUGElTdxAlGjMaFVG42xC3EzID4/YCn6Qx2QGY9vxb39BaLghZY8/o1RDTKSxDoPkd3tkwztsVTVW1DIVPWcVzDvhpmJpVQD7hE1lTzxRAOqRjeKZlJJZ9t6nivm3Y9w23fcPeOro1bFKeFBfy7kIKnmuf8v2RlTARK6rmOfpiKNTSQAy4yuWaL1MiZawOj8zVC3D2HUcADkOkVWcgyGJsHX27o2+3PPYFULo0NOu87409dZpaAhShw6mQwaiKCrZj0eIQUCYm1AAoXBihaQru9HknzEft8SXnSH5hHe/Ff3IttuvtCjDleK/gm8dTZJbR9pWqqCmia2MKSbAjkR2Es4wV7wOUeD7zAJZotgR+AMQvoWgmuGleVik9qU+VjAKuNNP1PbJqDGt81IZcby9IejoZkMiqreowXSLvymNJOWlC1mdaQGV9oLpKkoAIqLTZ1eqv/vqTd4y/jYvkWmkWgVgySU/3qRw+r3fPz6b8fCU6fb4OEM8qqxwD6unNhCxVJmRrRrakZZNOSK5BjfPBeoP2Rk1TnoMIYAlaW6dYHK2hNbsO4/rmTTG6YuuK3hXhSq8p8HNFY8rblO7gZpbXg79vQLJpjg5Hw0SPQR0UaLwoebRkyMmCkDk0E6ZbTGGNTKk2gbVMaXnqyIT3UqmDJUOTcyYan+/G3jhhwkCqMGy1LlBJAW0gmkJaAs/2VE6+KsDST6XmAErUHKsANJEsR9VTxSXXjlxHcmR6ro3ugGcydZkuVsPPMlOMHJHXNHn6JsdWYAFe5By69kms/bIGsSDnv3xctP/89Td/fLYBSubq2Q+jQewtcP88sL8B3nwb0Hc2kXtzQ2wGvxt8E1LyOIFxZIXPsbQo0HENkBQgGZEQBA2hNwr2BuDtgKYtuCk1Lu3+Bq032N7YURczQ8jJTrjopPNiZlopYBrIPlLpzufQGJnvC6aXWrC30N6hZ8DC0B8n3E+0OKCd1R9NHfu+o20d3aiCF0UO4Cy5VIE0g+nLtYkUgyKss1/8X6LuaQdcD0wRjDMdTz1ZiTxCAqHAaaQelxZKeJ/u+w37vuNl27BZipejyotrIacroaYqIQRZ8inpTKqZrwcBCgLhhogJK4W8K5avfPfFqihORNCevcVEG52vcxzoI3PluXFqLsjtzQv2D76Adrthv93QnF4MHVT/d9vR2gYTY8mipL10+oCU38UCAmWKBV3aAhdSt4yKcjwneHAva/VK4WSePGJFL7VZXmvKFa3X5l3PWZH0J2ZTphjq3ARknpyVVLWBIIEdKwLIyy9djNdXvwBuvfoTrSvINENtxrPSMpK7ga6x+PyZrvuecuAEJOlBx/RjgmqA5dBz+cIg2ZpMtSQ76NnYcM46WLFGExiAdSd5LpER4Uo11nXlQL3g4RPwAqhTKh+QAjLh0Ei9hiDLtqtKBNRoWfbUKvjj3JgFBcR5Db1YGMi1aeT8IGXGz6CZHqTRm0NaisJDEbNB5pVqbH1DtSQgYKEGq+1klK1LsktkBDWrbUY0nk9ruN0b9r0xTVMd110wh2DbFPtmQGSApYANskMNii4Gs579XXi9AFpJiA/YNGzjgXYa+kkfqxAWPMjxCpwPtHkiPNtKCP03otNVdsLTYNkw3XBumjYTknpA8OjAZoK2GVrQrZz29AIp0FHrLECrCRI0UKM+RAFWFvUG7ZYeKAR6trE3kbWNDERWUBJcT8TMeeMlbE2+QrJJo7ZkYNlOg2t97R9BbyXQjDIGLSVinGkiWWnyXDNyjQC8sGfqAGNNTTgy4MTSSHKsIvVzklqcWPuXaAYNImsGfNrHZxugoEHi6gSr/QW6v4Hub6H7W8i28bjdgM0gN4Ns4AXDCYwGjJPodU5G0Dq56GqHyEhNAd0TgQ7VG8IzLRENMSe7D2c5ITR7t0jj64kAIMBBJAoxLYURUBGrUxcxzwGEQakbgzYKC0/pZCOaclC2DbHfuBlD2I9HEhApo705DggcGCd8pMX6mWVtiDQEumjnikxnLt6S2g8aok1Mn2RO0nzMz4PHTMfZjFgjF32fqUpVhvv1szlnVjKV0jsnhaf/i10yw0gGxVPjUEK4enDjJHCZxjxwqOV1BmQLhPDeEnukcRiyhHHu1PmUBfwTQNHeVooMracwsDZFGvxNZbdWZGoGC2p5nt3ERLILKAOyrDzKc88wlvnwbKkealckhoyA1/Z2LSpFtfJv8toUvVFtfK1DJoehWAK4xlVUnAnl0jVR0Z9md6KreSKCUZlWE7ekjqnjErRkCktgG5HMRF4JRbEPuD5BKeoWzKrtvVKN8rGbvGLKT7I/XmkZUKy8UMz1N8UesDFgvmvl1B2rVFPrxkTxHci/X+/+/hF5SEWa9aT3f881K29N/skqwpJS3iC5jBWMcjRF0uj1FU/AM5H8++W/yTOmiLgiZICsF5cloR6gaVYaOVq6rnaz9TpqitYMvTWmekzQrOZd7lkZjVhLANrYBFUbn18Ch6W1yfNmmb2kfwi/kkFhquMZbEkEMKv0NiBluHQ+XeAZFDxl4xz6GzLlZQBaMnT0WAlsSlfwTZNV9LSrF8GmgW6C3uixVs1MzYBm7LhuycqYUGZrkVVouXYGqMsrLbIqncq1KbQrXWXTsE1BBqXcjislCyD9lVKSKk/rhfHExGY2KcxUU04O9UBpLXVejKEmwLa8EaL8fDW2nkmO0AxcooAw0qfmCUgb0tcrAxjn8yK1iXiyTriq2X7zx6f/y3z80i/9Ev7YH/tj+O7v/m6ICP7ZP/tn7/1enifI0/EzP/Mz629+4Ad+4BO//9N/+k9/q6cCZJ6eTcU6xDq0XP3aBmk70Panf79/oG2QvrGe3ticC6XqFrsU3jlZ1DqBSx3WV5+Nes4yosp4qPLj5TNQTcgWjZ2LdaSQz8dc9sXzODHPE+McmGNizGxmBubnwxqipcjLLkMo0t3OsuLzYA+e44FxPDCPB+Y4McegriNSABm+dB7X93MBk5mNA2fW7lcbgQVWlmvq0zGzcVyBknzNaig3nl6PHi3175nvkQ3o5nUOdY7lszLB/CvdcQVT9ekwfjWFWzbdSno3jJUBVZWA1iCdvgpY17QBVjTqk84hvTsmqMeY733Prq4eBi+FfbAyKpACPSSlvkRradSVwrbLV+PpKBeGlbuSpw2+2IdaXur3peng63J8F7X85CNhnU36VrM+W99LpgnVsvtqfb+OqjrKKiRNEzC9BJe18X6zJmHF8lyi0mvTe/73exRRbbT1xFVWhKWxub5/Ai7+BGYif/70utWCIr1UUR2r5Wm1fgYm+vSz938n6+v7v79eTUKe/vZiX8pnpG7vBVqun9U1kOf/5ToK+eT35b9DAIP3DtN0AH26f/yZXL97+rmun5dkJtbQJfklab9RbyBrd17l1KioPAGhfPyoqqcsza5xnTqqy1Pq6b5OWfqp5/u/npPXuk6J6fL6vjr0xPV96uCuBp9Yn5kfKZ6uozyNHVyvlUeLes16rbyGpkxhZSGEphXBEioXSHmuZouneV5zPJHeel6BCCRblv5d1bm+DjL4T59Bn+/B8+8yhkpgx9Qjlm5KFu2Xp1U/fxrHz3v9e1qt3+TxLTMoH374Ib7/+78fP/qjP4of/uEf/sTvf/VXf/W9f//Lf/kv8WM/9mOf+Ns//+f/PP7aX/tr69/3+/1bPRWUgqkWdHVS41cTtZr6T4O8HhoQY5wujXUKCAP6JPLedugMqAxo9jsGqgdMLYopuvCZlH0QVLhhBFMLDC24SYdHtmMReFhWLnDjOT3YwO31FaoDKix7k9Zg4wQcaG1iDsM46exKXxAA15bHRcDpdIp3H1bgSZv1OYExFwLufVsbAbtWcuGYk1UhbBpHKnAeB/w44OeJ+XhFjBM+Dlrc+0yqnAv/GJOutV6pAdLEEY45d7SmOM2wqWIgUNuvBD9Dc8pDuf+msCp1KAElGMNT1UOe93CnJsEjUbqwnM95H6ZUaoOofkJxiOAU4JTAmRFPRKTfCWCDn9cyHcCeFsBA+qAYiTiVhq5CDQqYtqrOyNWMcMAXqApELp5XwqUm8tpQ0qhK4klU9qQnYMUJUNt5oCTOT+xMRsDVGRbuCYaUrJtPNrVy5crugykzn4iTDIvMa3e3vC4egJHSgrNAg1NyedVU/U+SulFUxgVIFiM3nSI8pOgy8+lTKk0UTKXiGZRJsh616EqKup8rwtZFy7EtK9BeL6WSUSvZLRGButDvbl5BxoSwOinnGTzL7mvRrftV1329/Vrdcw16SgVFmr6Jsjux6VXxU860RhfbAJhaVge0+olFaWMv0LN2hIQ2JbCOi20rbVS5wS5A87TJreGzNrkMudJI0DRZD5R1f5JRQoCOSluKYeTa6yE4Jv1vzmxP5Yv6v5ip92Bg7baVeiywH4qZEOCyUxMEGoOCdVwpsqcpgbIGEHeo00OmgK4Kq7ZYlZeMxATT8pGMeeR1kEvUz32awn2mxpPKUWc5PBwinp0NBNINtrE6yraWDAmrlDSZLNSYqusknDy1ThXDvYqO8/6oUiCOvCpAtlcBweNi1iSd1PWp23eO+QoAGBgxdZRVBE8aP7lK4gqkcIXlPAaWd6QZXc9/S5sFfuUrX8FXvvKV/+Pvv/SlL73373/+z/85fvAHfxC/43f8jvd+/vLy8om//VYfJjU02U5afADjQFiDH68oeZsfjFRDG5duA1RrENUmz4WK6aIJ6x02B5oEInQZ24Sfa4UNPyEpOspsLTdXN+jMksUs0ERGciyxqmg5v1rLRSxXtgiwqaFDpjD9dA54nJg4MA+W743HiYgDwAltTptopWYDAPOWazBc4WLuAfRKyc3TU2cQiGUjL6V6Dc+Ot9WzBdnuPSsOhBMlU4yLggXSqwTUq4QP+DTmhfWJVQKQiUuegwhihT0c3WV2mjZFK6iotEEge/E44JN0KDLDAeXC4JobeWpxpjvGOXGeA+d54jjGSlMx/UOPTVeFTXo5tKD3hkuD6cBsQbGwToQFTFpW8RBYSLrdUjwcaeuei0pGMu6aVSTsNOtBwzHNjXcJMys8lKALbGo+4qnR33tN/9LeM54Y8LWBaW1eT5tBPEW6woh0MUcuJeXIypm8H7VmSSRNH6tfjwsukWJcia3Iz7TYME+wXUBCuChOxdoYr7wEN991359ExGv/VbnGOCQFwVjPF82vEhTnBiiyZu0vx44HwoAIbnIR6RAcpKrrRQMppM/GbGsPQf2HawqZ2DQHF45RjvcLoGgnK2XZSK5YLk+AoQhotikQmWssFyCTalGQr7mi7biY2nKoKQDp2VijnGgguaEs2gvZgC7WnFzW/cLeTB5K/xMPDAXPVxqGNqjQlwOgsduAkWGUTGNaNtprKey05JvzPVcIL4aVfmsN3jobBW4bdO+QvnHMDoBOU5PXcxrktKu7a4lXn6iB9X1c47pWynjvZ6UfwzVHVOhabEx7ilQVVoKQwIqPJdkFM4JRVTInksykJECwlgDF0oE4QE1e3dtk2v0cmOeZ1ZXsTOxaQSGYyhKwAiwyjHUuBuqcQ1UVt8rJQQZrNQD1S6Qr16BO7CgXhlxsyRNDkutOARR/ug6f9vFbqkH57//9v+MXfuEX8HM/93Of+N0//If/ED//8z+P7/qu78JXvvIV/JW/8lfwwQcffNPXeTweeDwe699f+9rXADzRZSBqlXmyB4soor9bUzAeZWbDHiIwwK2iOk+ql8BhNVjqDW02LpYTZFNmWkrVRuAnm+c9AZQeguaGNlsuQMnOLBo6VwAh1Q5R9pOojqa5jFQ5FzS74Kbbq88H5uGYp2M8DgIUOaEeCBNor3blOUoWvXlFjLryuXOBDsb1CVBKPPWE0LPXOwCW8LInRvI22XWXDqTOfClwgboCdDHARmW5SIpdydmMDADkzzL/b5aInZsaVTYlmC2Qwg35zHSSDxDYCS+fZBfpeEriu9Db5TwHzseJ4zxwnGcC1uwN0pSNxUSoUWkTMwHKTBGft0B0wLQhjEDFslV9RZ50vY1l1z+9gAZv9XSlxbsrplv2BCRAgSuee2/w3DwNA7kVssy6AMpc9y2yNvhaZJ4AyTODgBwcNHLA0oAorpSW5MKYgCUc+fsc2kKmZMoTYEGClsjtMJB+POmlEix9HOGYsyoQagNg2W8JRxfyFaWnBi5NBfL8n/ALP6lg6Q8uF9uLZhahcLQAiikDkYCuDxWwdKdl2TVFkAlQIlCVF6LZzVieEkIJUMRaghRbY9ZN8z7Vhv8EUFpG1JWKy7jWBZianhlCRZLmCpMUy7q/F6dK9my9L3zNvwIoZcxYGBWSi2uxk0tgj+x3pEwvCyElXXZZbj4lfZS0Y0rHkIYzw0hHpUNppEZdXoN0ap4UAT2vaqYluGmCaiWgouy90zvstvHYN2Db+KSBnPQTujXIbJBuwMh+N6bAJDMVmp+zANcyKqzA6eIjPa502uIrnkAK0kdKnKwCPawugILqhGDpoVR6keV1tRKL6dZLDySIYjqBfQFvlgrPTP+fmMcgC6kNmn2aQoqFzRxCgGyJZ1puEqDEVIJPZ2M/NtO0FZCwIelTUJvAfM21j6VxKm200rmGlUp9bjf1aR+/pQDl537u5/DBBx/gh37oh977+Z/5M38Gv/23/3Z86Utfwi//8i/jJ3/yJ/Ef/+N/xC/+4i9+09f56Z/+afzUT/3UJ35+a8BLB9gndCD8FXYK+/DIBpw7cOzcfI8OPzs7R5pgtqcCSpkALoOtMNbeAw1tBPoxMYXuo108G8BNnHLSkAyDyFkUb1VZPmuxBJUjdSNMrqShUAIhiEF7x7ZtaFtD74w6RAQxuDGbkk5Xn8DxAF4HcEzg3YcIDEAHcFNIJy1oSA8X6ykGE4hbgipSmjIDepwYHhzsTwDFvwlV7tWgTIXaDS5NSysyU3MS7jiPA/McOBswx1jR694EWxPsTbH1hr2zmseUVuUVLVd+WAWA2YrAMbMxVmkLIrKiIidt2e0fA9UDxtI8TVSyTAoUB4K6mPHhgfPdOxzHA4/jYMSfFKaYQbcD83RY3+ggmWI7XwDlRGwDZh1oA24t255fnwdZzsc+hnV9k7FyXptAY2SjZQs/4VlyztCO/ZIiTgB5fjkPIm3qSWecF7j0tK0/5wLSOj0Bb7ntpuPuChVjsWozqeRy8nVk5UyOirEOwQO0VTmRCSapFADBy5FzoRb9iMAZwBmB0wOHX9U4VdY701dBBGjiqYcIggoknlojNKcWhOyX5H0Pvi4rVxJA5Os2QQrBhSA7jVUiU2isSurLh8YzDWDzEnQjwQkpeb2A0WJ2BKIU8otR3O2kUDJQyH+L4v9t79tibUuu6sacVWudc7ttt7AMdDc2lpUXIiat2M7D5EUcxYoTJ0T8EJQPR5FAjmIkC/+E5MP8YUUCCYk8pIS8JKRGUXAUKU8n2AaEkDAY4ZjIcoITSGTLCoK4H/ecvapq5mOMWWvt22132xD3vfGu1u5z7j7n7L12rapZY4455py+qljfUrFcXQugkEEZ4bAlgG0AtTPlX+yUKavIuxioMLD2TWG4TgBkpMOk1GmGddWa1HzOnRVDWXwKbmHgQVoNWCqiai/oXrfuaIWtO0ZprMVRFnS/htkVGhYgKiocoyxA7ShXV6jR4N1RmqPUhr51hr0U4i1LoKws7lZWOjNjBEa9AtYrLI9co1xfY1E3Y8AQ3dFuBvraMbaV+sCoQFTWGRoVAwv3TwtY76ywfd3YaLRwYQWAcGMNFAeaVwEXYCsLqlecvGKrFU0PrncH7qxqQbLAgmpdO3QvTo2XlaqyBEU1RLiGlmUhi1JZA8cHhed+Q6jeW8d2c8Lt3VvcPHOXJSBGSAPJQqI8Y1gbK11U6wUMHBQV8wwMCeFhCmeB12PqjzWaspLUBNXEilvIiRrCkZPwEvOrBpBEVlB2EchazjjrC4//pwDlH/2jf4S//Jf/Mq6vr8+e/87v/M75/etf/3r8rt/1u/CmN70Jv/ALv4A3vOENz3md7/3e78X3fM/3zH9/7nOfw2te8xoszt4mSySypPlzDPjg4jc3oK2ABaIEAgWR6nVx7GEDU2yUSn6ngCmCVK8NpnLBgeGBUhjn6xkD18QvPrBYRzXRyxY7hASEUFPzQUhJMZ4Orc7GdQZgtA1mjhgb3AMBegRx2xGnjth0LFinN2JQE6qOaIaxbSwx6IBF2/sviPpHV8+arkYJ6ZJmSIH/IFhJrz9/x/iZXBRNHL5SCxNqsrinlVl0aRzUybN0psYNV2bFPaAIpmwRHm59hHoYSW8yWPQn8/ubxLnMhKJhHZ2Uqjtj+Sh0+4cFRgPGtveT7DrbR9KyneIyOMW6aDxcKwzhHcUDQ/qNWgfQgVoruhc1q4upWWJlVWNPo4w5zPdhuKEUQ2vOT651M5R+yqaUjSHGM4ASLMAn0MPSvQlQxI6pxYEHtRyI5EjEBCO9Gv6L3rKztsmIA5MyJmOS4GCYmBar6AZ0UxYPhgD6EOvVqTHBvvza4HnbBot0UZydIIUalBTowcU2hDGTyJJuPzIp3M8WBEcGMQJaT5Gp3/rgqR9hadb0Nk26D3qsVIkwZEivcUjrkc7N3snYvTwvQHHVuSBlz+eLMdPJZNQj2xuoemiRaBlZRiEMFQSIPhiaYqui0P5OgMn3j5EiAQpNI+/x1JekzkXCbAw4mApci8tR2lkpL4W9eKY4uqbSCVMIU4Kpt2JQoOy2FIz35MPM9Hqs2BsOtHQOty6AQlah6JB11WAoAXgtgNKWS2YLZdoT9LbdsFSyvKM6RqVesVSClQHAlsDSOx9rQ/GB4YEljI0C3ZR0acy2UcHDFNFHqXRISqUI31RXJAX4tSC1Xzbrn/gUkB/FwAQoNuc89yb7jIkRla0braG3hpYMSlNYuNMRYXZk5xqc8V1xQUeAkCyI6NSjkBUjmZHQmtbzWl+ppko2xLT2cNhimH+HM3vzRRAo/+8Ayk/91E/hE5/4BH7sx37sBX/3DW94A5ZlwSc/+cnnBShXV1e4urp6zvOrF1w7i30ZKNajyCvgaPR8OmDtlof4iXqScMdI8GIyXCpXnkbQvNIrlnFIz69ElnpX1kYP1J4pWIHFGxYbWNEZo428OTzMu2XMGcrgcBkUprlu/YSseNZOtxLgObrfob5hLOinwGjB2iq6dpQFwGBRNgeiN/TtluENY4dnA9PLKpwizt4R24ZQ2+8UXg2JMs0wwcpe90HoXF7YzKfvGyCgYGOD9Y1fh059GNAoTeu3dylIjYHorB3SVJQrGZS5UYtgTgROvaNH4NQZGuj3AJTtdMvsp1vphEC1fE2lfF9Us6CQDeiGvhX0kx5bUYZO7Cd3B9ro8AK0osZhRuNVvKHUjrYOlFKxrhsPFy9Y6u79W+wHc2I8AwWWY6bw9SluG6NgREVPYxZjApQhAJJGDBEETxniCUpwiVEEKkenRitifk0VP1lDHcKgkQm32dIgQSC/kjkMhUtHDIR1hk8LKPx207VSm5U1ctohzMOKrQNbN5y6oXXgtqljdhdICWZlZcbIUFHG6i42ncZw9vCJPEwlclbKI0MaSp2HT4CRwszU40SYDmpAxTs1Izz5bKSYlCE3pgcH/8b2w37P/Mmxa1BI2fOnfXR2IY+YoYIEJrVWLAIoVqoYFIpi+2AlVe8CHRGz5VLWteNuYxG0CbpGzOzzPJQoAK4IX2EgQFgWQy2Oq6uVrMkEKI5aK9arFfVqQV0XzlkI7OjQKslU+QIrVwhniXgW4iPwhLQXxVZgqC5J2dBLmSJsC0O9YkZZXasYFBaDi8qeQEt1pvyq6JyZIUqwQm4JbOoLFguz9QpW+LhGdyPTg9hZog70NhBtYA3DAsNDblidGvJlKTB0OnpXV8DVilhXlsBXX55mgRaD4GVhtV0bDQBLFnhVttxcK35PxlJqpwYQfdqK0ZMdZlbndnvCdnuL7fYWp9NJnZiBrV/BxoY+NrBdnFpeCEzH2LALa/sEyBy2g+u85zalantCgjt1iK4Kyelc62iYvq0l46LPlKDr6Pu+iPH/DKD8yI/8CN74xjfiiSeeeMHf/fjHP45t2/DYY499Ue8RzTCaY2R175g+JSI2AhYL2OYoUTGiMSapw8oKc+PCy4R26SFu3TBGlUfdkT4nO152UunWkVUNM9ywbbe8oYf4fcv002HYhqHpuRYsIIYINczqGP0uot0i2gnt5lm+qwFruUaxBcWugbFA5YxUkZD1VyxWptT2E+CBU7uFqU8La5NywbGzM7BEzBBN66dJ7WdDvlnQCglOgLnaAMACQ3UzemsEC2PsaczbCa0r/BDAqLdodYFFYFlW1MqHO/sRJco+SzmU1xnBMEBTSGCbAstdb9FOTWnaFPkCgWo0uKUUel+jwocDTs/O3VDrinVsCDTMnkUpGrYAmiE6m+fJp0FXFc5SGAsuJbCdgFobvBQsSza0A2lRsUvZ68cMrHfgjlYqamb7YLD3UudhzENH7RiiKzMghaNiBjrDcwR440CEJVMzpEhgKfHMlkpBXE2PyCAwVBEu/VbELMqXwtZwib5DlSm982+sAVjoDAwxPiYhpjlmye1guvk2BrY+sLWB240ApbVA6wIyoXoTbhiLoTqBbPHpu2Mnow6GUOXay1KQ0tsWAFQALrNQihuqcy5JLBGVZjKCgWLlHqZyG2qIt+eATMY1m6NlJtCRQYkwrTmFWmBzn43AwbakOjX1CDaBJLBn00wKStecfVOm65qvOR0M2im3rhpQpPPhxjBS3IHZiuIbamWdjqvrdaYVhwXcHbU6rldWYPVCpqphz9qZolE4wlf4ckVgZnWu/TGyp9bQ/man4xKOYRXWJGwKasCssMpyFi7E4PKCB7A1hG/ofiP23IB+wjjdIk4nNQ0la72UihKBenWHRSl7R/jAqg7jFa5u7OzHtgB42J3gxICrxXWob1ivV9TrBb4uStVfVD5A1Y1sP1cMC9wGkL21BGh93uO9sV8M7rnTuJ2MZh8E7aet4/TsXWw3NwQopxO2bUPrG/pggsLAhhGG3p+FbwUYjug7gNi7v4MNArWnEcDe9C+w53BrtRqLiVo9/L6LMS+MKJiTrA/ZHWZl8nW5XG3Oz14P6YXHFw1Qnn76afzX//pf578/9alP4Rd/8Rfxyle+El//9V8PgCGYf/7P/zl+4Ad+4Dl//9/+23/Dj/7oj+LP/tk/i1e96lX45V/+ZbznPe/B7//9vx9/5I/8kS/qWigqFJ2blK0mWrcB2YZc9aVoeILpaZZPDMiLgfTt7FEQErSOg/FJBBoZ/U5lO9Sbpjc+J2HTgKFFQY8itXtRvYwg6a24MMYtMDb026cwtruI7S7a3af5CgYMv1Ja68MArmlQ6h14LHBUeFPGxbbx8EDHdvssKf9gz1geiqQgi+vzdhZVa+0WWcq7J4MCYNLjc9b3uHQKarPmyg5QsrYJgUpIbwGlLW+lInrDqHzsAIU4foITF0DRFtsGy5BTt7DXQ8mNxvRmVgONyCwHm4fUrDtjdXqQhiuyCL6gehdIYNL40Fzk9WezRSAIQN0wOoAYGIWpn2PQe4soFBN7TIBCoDfkdQLDCzwEwDoYJmjy+lFmgadkI5AAJY4AZQc99Jx572hHQndMlXmM9R2mfNJUeN+A7F/jypAJhTSnoNJCAsJ9zfJnBVSRB62VAFWIQWQVWhfgo9c2ojPrI4F72OyB0zoz1Dj3PICH6HAUeZRDAmqxGARnB5FsKB1V7GgE63mFEAyLUjHTKgencvf6GAG2qbvpSP2NTaHvPYTinimF/D69HiEe0RdcSxJ66/rzuWRwp2nJ+xhcZ3sxFzkNI19X73eP7T+ofuZhk44KPWA2QTVjnZOq8u9LrbNSaCBmV/VSbNaZHBHs7u2mAmWGEpkxeahjko5jxFkauonJKWZioIBSKmb4ThcakEiVWJsZPiNUFbUhSsOAKgT3vQZTtjnIdW3OEA9vQ0csYn8HyzaMwrDzMngwXhWCd0pvmNocA9SRLEVC16x8LJFtJPVq2FN3gCkhSHYtwVbSWrGfLYg+712TPdu2oZBOk31Vbao8j0wh2GRaOxM3bOzYNRlwVtyNuc7Ogy67jco1Z7Ik2d0asX/EFFCnYz9fKoH1XNOBmRWFFz++aIDykY98BH/yT/7J+e/UhrzjHe/AP/kn/wQA8OSTTyIi8B3f8R3P+ft1XfGf/tN/wg/90A/h6aefxmte8xr8uT/35/De974XpZTn/P4XGqcoOAX/xkVBmdTysw4AeOPKAEqXARqBAlKLpgIOqoCBbp3a9pzJAMsN09qhJVCBMhuM8VNKodiErmCg2Jhmga3oC0YUbBFiVAoFhTHoaW7PAO0W7e5vYJyexjg9i/bsU0jvpxUBlOXl8PowzO9gjYESCwpW2In0fi9AgKGA22d+E9E3YLBnbAoH+1JRakFfygQVbbudi32kWzp3Ui5uba5kUBQOikHBaWTfnp5F3SiizdBRLwWlMf26lQW1VDIoptg29kPSzSQQJi0eMGzyqk8BbDF0yGU/CaOR6cHGhaqawjbkLJyWjfdKVJRCtYzFihJqqidoQHhHbwZBsBUCKvlzeJ/2JwIoJTUUjId32A5Qsg3AQY+kSD0KgN7pQw3v1MwgUJE1DYAIiV2l4UFISzQBCqahmd4SDobAsNdHsKzoKAYHkPpgjy3TiAVbBIw4a2MwYkgPopCNDYZ7zDCsaU+IOTGlTaPLeBb06CoxHhRXdkdTmKd1ioi3xrlsI1CHYag65gjVkMjwzDzwBM4MOqSkXwAmQCVAoQVlcbFAdQKkebwHZ3DA5ciomVoApxHYhgqVJkbQXFkoPCzgN8NvuhFu1DKVqc8xpZxLfCwc451hiuKD1ZgDel29Xws+rwcjwQlJLTNldaCnp7o7U2EdWfAtC1mzLUOFq6VHLcEipV6p7VBGHUuaO9ezMymBGVCBqWAxVmodyu6h+JpZfdDhOQZtUwR32LGgnJvDyyKdjrOEu1CaQ07fCFhXsYG2yTk1NeYEMFjhum+bwoVBB9MyHXyhlTGn+jWdqnVglIFRGgGKQcwKv6+VTNUYYJl6Fcec4GQo200hKsXwkU08shN5BJhdR0SO2Fi5fLgY0mhofRPQGAIowLYFbm83nE4nbK3x+RGzRxk7Yqf93qixGUcrYFP/FMasq2wyOdOXMaazj5GAMkGX9k8C/en+aCsigBTMGtSmlPWRsoxS6svGToC+4PiiAcq3fMu3vCBF813f9V34ru/6ruf92Wte8xp8+MMf/mLf9nnHMGfH08odxwJHqjlQl0m1FaVslUzb872dPazKrMg7NhX8yY8oagqq+0FVpehR0WRog6lqWvApXDX9vUtRz9LiFGta0rIBZII4DYti/aq6ml4PCkM9VYd2qQVXtaLUBaWo+6UXrF5o3AGq+1Xx1ZUmGGFAdVg4qqekGPR4BrMnjq5gYpRsTpaHYP7HImJjfg159ykaplCU730oNph1UVVXgr1KRJDTw9dlsEQ63znLgntkYTD+wIFJPU6xoK6/kF+SroVlpIsoVoCGhfX06GabwFQegNHpqQ2FM3gABeBtpg0OkJWbmxuhWiy6RKc4LdMyc3PPaqbi8V0HYHrIbH1xoGKHUofl1UxPOnOuE6DkfdYpaZN6x4zlmLRQxPBjF4xCblAyg5MhzP9cVPH0yfeH2BDWT8CuJRkMoXQdMEP/TvHzODyfuiIeLIPt5Y2F3HIx7mxUPvKqTVd1cC4sudTdWZxO3sGBjEgmxM7kKaEMhiRD0hacuYGaO5tZPMnE8GduWWF3by2R1PcUtebfp4BS6adZOwUBZt95wDwPdlBjEtC+9f2S1P+EOhTqVMzSm9X0JAu0LxS+Zl6LnATq86RnyQJyXrh/FGLiWpK2Aqw5lX2V5uQhnUja6+KmjD0n0AptcohVcMz3hyuFOgb22KnNa87lnkx4OFQ4LoMV+rMzKzPm2s3SBSP4E9NzPtdOthplcGZIN5RfJztyuKa8N2Y2+yp5yWqxPqsxZ8PAIUZyoEMkEdew9EPJUiTAz0emAZP9zaW//6fVrvtk+qmd7wfLecnpJ8OSest0ApOFma0UpkXbbca9w/R+c3xh+HA2HuhePMzH94M6uqjsfGHpem2QUpdZX4Bl6wsFSyptP1RJJnQ7UoAXslzhUBVHB8ZKMFSMfSEGN092JkZvMkq8fewKWyZA8U41+FC9C8aqx0Ti0JXs3WBJy5NZoOBzETC5WlYUddT1uqCoQ3Abg2BoWqMxaUBMKh+oUp5HZgpZoluZewNmLHJa8lyWwlZC1cw6oYc+jbneKBf1sWQ0jdM5aEmR1q4BMEFHnfPga5a8wrC5+PPQSm8ijWGW665W9g6pSguNoViwetLY1CHos8oisFw6of8A2Qi6GPpVhctiUKvC7/dmhxibDUDyAABR8klEQVTSoPjRYMxppoEMaXLz0JLo2rF7w2RK5umyP44hnsQY+eI4Bx4zBCrDShp996LmbDu4hizXjd7OIGOGe8DJbkATL6WOhF93fdP8PPpM+0cJhXASuOigHSZG03BsQJjvsWNVZRzs+HROV4bmTGsljmt0fuoU2B+iMnnymRZgghXshnd2Hk4mIJ9LYCEth/vOvBoggWvgWLMigczM9pBIHDIzXkJZIGMyPvn/yWzOZ8R2DIKa2cwxNxS41kKVtSh2jR2gZHq+gIIVVzlQApSAyblSxdO4p0VDtm2IBE4hQTGNQCmYjgOlcsowcYIe81CROAj8Bfeq72HmA+7Z7bYdHtjvMbRWDXtOSRZ+HCGQAimAAvvPDus8QcnAPeDkYHMs10qCvQQryiZkyvbeNsKKMnxU4gAoZM9GrjuFVA97rY/9MSIwS/PgCE7SUu+rNeb3u4WIw7Xv+0KMTH5u7bXDzso7elhMWkeHc2M+Yfmuz4NgvsB4oAEKa2ksuL5a1Mtggdcr0njLCnZ8LKgLf16Wyp954e8ZU+FYen5I2HcCwFh/CLQAWSuiq6tUA/qG6DK2bcDaCd5OWLpjQcPqDUm+9lHQFea56Qu27tiaMw99DER3hG8YpcPHomqLNj36UoD1uuBqWfDww3ewri9DXV6G66uvQqlXKPUKtqwopaJeXWHrN2jtBqf2LNrmGE2ZBwYUd1zfuca6rnj45Q8D4MFw2hbqSdQnZ8e8xOSMWQIITJHbGNkkcGA0QxZMizEQo0hA2+e2KKUy2+XqjjqVqseRKvjm8Tk7mBpTNBPdF8XtK+xw4O3Ivm3yxBuFnGaMp5cUTdYVXlaUeg3zO4io2E4Fo7KuTGypQSElP6IDY4P1W8Ro8KEy1xiAb5Mqr4vAj1rLe3HURVVFZVxggeH7yUBDrc9f11n/oixVLeCdzBLzXbUeZRDFVt0b4kmAB6RHkwYjEV/w7DAoLVaCUFcFzDx7g6zXMKIF7xRz++AhokpyAnUDcMb7wyUid1C0EXW3271gLxxFUZ2PBh+FAu4mTiuSKaOex9TAxNSjBMWxf8hdixM4HAZmU+S647UE5yYWzdQ3+jBfSDCja9B7HDUe8/ARYDfo8DQV30qAgp1FcS9wY7G2PMzMuupPSIyegtWlsrvteoWiw4tgHHDr8GjwbvBKLUgEw5YTKCHBeyBDgT6M9woCK6AdUNULpvI6UEtgUc3IdV2UvmuTKfTiqNdMMohS4N0whsN7RY0KiwIPsdJ2hSgrgEqwPRoQDdjYOd76hkUC6IKKjsYMsdZYJGw4RhFAKYNCUwwUolat3WMGTMmFps7g5EFSgsr+Z7qNDtr6Hijd5bhwWQ8zNgQ0m8+7cb7Z9RnUQhVTCnNBrwVtqQxf9mCH42ZAFb5wwBcD1gJcF/idK+Cha+Dhh4CXvQy2XsPWFTFOQGywdgsfDRgNbg3e2PTPq8ErYHWF14XrxVygDqzvpMfwIxuMCdw4R6x/MlkvFRuENG9uO7iJkpIGnANgJ6PPavwqB3Cou0mWF/J4HanLROsslvcixwMNUK6Xguul4npdUZcKX64IPMoCLCuyOVtdF9YXWBagsKmflxUwFmNDV6iiOyd20AiOWetAJabB+ifQ4gkd2tYHynZCbyesHVis4dobivy2Pozi2FHgreC0Ocsdn6RqN0PYFd+v34GPE3o0xHaC2YBXw3r9MNarh3D18Muxri/DsrwM1+vDKPUKvrD5IWsLXMG6wRuw3rmGV6A3h0UnA+OG9foOrq6ucOfhh3n4R6BuVTHiIc1FLksehOwlBCnx+9SdZHG2UYp0EhJZSRCbHT1hWcKZAIWNFytMAj23rCFhh4JXKhsNZUIgKVioiBjOUneLUYMyfCBK0COtZJ0IIBZYWVHKCviCMVhKunR17jBRsuHax8F6EoP1cEpnzJ4e8pgAZalFWQ4qtFUctRTp4pJOJROXI8ORcBVsqpWanMLXIsNEj9IjuT2xHolIYl+fyfzMs3syIjqwbde08JF1F+gxljzc+df76x7Yhik6FcjI7rOGUM8gHtJJN1gnsHCMvSUCnNoFY6psGY4xqBkZwCz8lGJI8zwkE6S42EkgRcsi7wgWLEXWBWWmWMqf02E2AYr5mT8XyTLJuGYGf8ijdrEvWQclkIBov645r7GHeu4N8QA2U8pdDEoIjGeJcy/UiVkp/GwhsO2BUli0LgB4MOQQwX2zfw5uDpshC6hOC+vGFs+6pTyIvQBLCdRCvcVSi+qQ2Czexg68i6qwuqoLG4otIENc4agIy67cC5iMYBKEAmYLC2mOFbXw8C+ojJIPIygxQ7ijZ4l9T0baRNgwzFQyXddZXIyEVUG3gm4sp58MzXDqP4jgpAdT89BeHIsTEI0I6U6MdVaMtVC8ki0autcmpXA2Hh2liEUcYpr4GOZcRBLWRq2IpSBmk9JldkuHWFyLQVZrOPdIDJQSenQ5dioMqDIEnB5JBVSuNZLFiDQM55TTFPQeWCCGdHd2iusl93kybQQxk+2WHXTf/02ALp5K63zI2fpiWJQHGqDcWRc8fH2Fl925g7os8PUatt4hQKkrhvEA8nUlnSaAAnmvCMZRrfGwte6wzpoh3vdKmFZ9Tn6sFQhW4EzRVulBkWk74apXXHnDndJQ1S+DeihHH47l1nB7Am5PQIUASi+Mv9cCt1vm07unK4RSDVcPvQLX1w/joVe8CuvyCJblYVyvj8DLKoDCRVvqgtIcrTlu28vQThWjLQQooOf00EMP4er6Gi975JG5GLd2l9cSLHiG4yEYbJRHPYZSijvTiaOr3oUaDGIq0QVSMPLkUPnmBfXqIYIT0z2wPa0SZwCFMW8AQGY9IClXCTUzTDCA5gJOY8w2pL4UApTiKLMb9QrYSvGcsz/kMFCUp9c0y+1t6lvBNOUyyOSYMXXX3LAIANVSzwEKEqBIWnvGaOwAJZYVXlT/Imu2FJMRkDdjStW1THFNBgXYG+KABj0PcBmCqfmxOHRkNSU3EtiVyV/xLwMp7k3ywZg9cSCP0yvrCFLVGKLz5dUNAQRzlMVhyqQrYKGRMgr7EEVB6QwZjODrxaGsvLsOR1dnXVH5DBnoUpRmamIJGdbzaQsHgKxZUktV5pZhhyUKA8UOTHyPaVHwZ2Tq/GhfzaY3X1QHpSotlqTVAXjIHnVjmHIMgpSQpXdp44rWQlVn6Qyb1WGoNVAbDyvectVICQIQXpNYOgGUYmAV4VDdjwgCYUiXVVjTolZgXXgwXy0VdVEJ9mSwqgNXV0AhQ8F6SxTZmtReWZwtfMEwpt9CwN7CUMtKwXB0giQjM1GHoUWDnQZDpcPR8zMWpUiHChdKS1hLhuw5Z5Aj0AtZYPOCzYvE0IfO8glQakH0gqiOXn2Ke6sRsK+17OnoRUUWu/rmEMkhasWoFb0UivYtWEhOndKH2EYsBWOpsLUiVoKSWBeEwInVqkrfYulGVfbpRkepDNWHC67fsoOUTE+dWUVeKVKHQtfcKsn36atPQANI6IsjCMlQsAuUA9PhAXZnR1js+NWMTh6BvsFVAM8zfGjHDfSFxwMNUB5aKh6qC+7UhdkgC0sgW71CLFdsnmQFvq6wpcJW8ZeJGHNjbwXoBdYGrAFDvXVScMT+PNzELBHLrpZkUEib1lIQfcGdYbjyjodKw+IsBt17MBugg70Bndpu72ImPHitWFHXQFsq2tUVqx4aYIvjoYcewdX1Q7h++VdjXV6OWu5gLS+D1YUAJcvcFxZzq31FqxtGu0HvJ4YnQCP70PVDuLq6IkARr9/GHWUUDbS2ISuTGpTJsbEU9GgDXSXle9swGivDxgGg7OmQLA4Ho0fvywIvC8rVywCJ6GJkCcgEKGloM6afuT27GHIamcziSIHlSdkiYyCqPwegeCEoMhnPEQarA9077MQ+IBniGc76C92YpAsbqIMPNqas01tfnN56lVC5GI1ihh+G0pRHGgkDzAuCBSUwlhVeGd5ZljrFdG5isXyhqn80jFDocSpw4yDEAEKBawqiQZp/xOxXVaSxEDQnQIk+velU9obmG8jI8Z6qfNTSRADVHGVwvkrIixsqSV8Co7NZ3BjGrrCFXb1ZR6gzLRsBz1anpaArRTT1SktJKp5HIXINKItneugAPX+nV3xkUEzdYWup9KyRLAzQZqgozjx+KL1115XkjOAQVjmEGmiSdw1VsiogS5gaqRSSIxTiSWBu0tLpEPZSkDeTh0DAfRwASgqTMRkUJBNmLBuf7A81HwMlYgI91iIRQCnA4mJZq899k/VIrBZEXdhHKMX1AKpVsA5IAhQ1Zk2hrNKPPRxLX+EjUEbj5wdZGC+D93+Kgn32dRqW2VGO4R2mcNniC0O2foWiYnMDrEDcfcCsYvOKzQqaswZPh8LCZnJidIlyTkK6mGqGteyHbrI9CLAVwNTniE1S8ccxgiEM2R/eV/5NqLKt14pQ4bZSK6xWRF1YVDSdNRsw7yi9Qggc6+ZoDVivrrCuK9Z1xbJU6tYcc82gLLIPXPlZml5ENmCp7jM1feS6S4ExsNupYnuWmc2f6aMlKBFbXWYE03h2iEWMIefGx87wvMjxQAOUWgqWUliEp2TJaaZ/hUI5jA3zIPBSOTk6lFnnhPFwC9KcMVwUoAtBArMUsdPPMmXmsPZJoBqNfwBYfMXqnRvcifq7D5UzB3v7lEAvA4vTIwgjwhwAhl3BYuPfbRvCArY4ynoHdbmDsl7BywpzhatKlUhYXUF18EUJLOOaaau9SD/BzbdcXWO5ukJdrxjjNzD+KoBiKvFvSKARGN6UhtdFmXa4K4vqCFAQwEiwIq0E+WXFTRf41RXZE6MHjWnOd0OdO8IlHE4aX2fRZE9cWR/e+UNXul9U3mdf6tSgZAXHeZgEU8/rInGn6SuyfDtEy3MN1BBAGWPG8t1cAKWgOnsgFaP3PgHKSICyeyc8bVQuW0aqHEI8R4ASCOoM3PQasYcfgT1vLwRQdHBl9o9pfbro/sxS4DYIHai7f5Xgh/Z4UNSIg3BbBzkEgroxI6FgzDoY6MGCWEq6iFHQJTDNvy2dYvGIgVI7XyuYoRUjdJAq06NKO+JZ5ErrwaTBQX4WSAjN0IXp/UjkUNxZvEywPlhXX3F3AQaIwo5koM59zxTazucmOPHpIZ7/p3og+W+TdZ8sVbqdR01Fvq60TCOm5mKGkdJuAQI+O2NEgCK9hrzd4i5AGkrrl77CTWnGEq8X6S8Ky95nyMJ0EKdANlOVi7Gu1ND15SFkLg89EggTzJTR4CMPXiUSOLsbl5IAhawS997eMNLkwLjnflNY1ZNBGfp5RVMZfzqlXT1iQjaXIZ7QY1GIMQwzBFhV98U1LzAyMXu2VWY0KdzDnTrXWTgZMwp9xVJYdoHW4T1DK7YDB9srDrtz4sI7aimTpa2pqytGptIxQz78e9kGN+mRtBwME+xxHZ+HeHIkyzF9+SRDtbaKbi1DOjbDPVmdnSB/F13D9hf7imFQrtcVV+uKpdIzTyACV+zvbNJt9zJjOorzOU+fcMaR1QFUYYakmg110lchdoHdZRmTvoqB1TuWuqB6AzBgXYW6LFALKchaBnpRv5IRjGNaRVT2TClhDKtoNZTlIXi9A9hK6i7Aqp6jU6gm5d6wQGo6lqsrxHDEWHYGJQzr1TWWdUVZrhMbUDA4AUqdDAoBx2CNi0LxqRsFvaVsGEU1OkbbQzwToLCGS2Z+WAKU9ZoMCip8ihwERMx0IGZ8X6GSwDwYmRXCiqi9UwQ4jOXHR3q+dNqVUEAvcXabNQn/RqDUjlpZbI60qAIyhZ7bKGA4xgILDKUbyhQdAg7H4pVAxcSgOFObc7ENNTTMjqgACAJlPMdS1XKe/U4ylGHK3mLdEaVzQr1ykMEJilXzvbLrLLNhhOoG+5tYGMV2iNTUKcRj08jkgQ6tZ6WwMRQRIN0sAeYwppdHOBaw3kV4qL4EGyZm+M8t0EdH6526lMZaGBCT0PsAVHV2cLKo+xFAoR5ALErO7RBAcTCzH/cwKCUBCjMdoAMrQzw01GOuLdP6cgmCPWNYof1hUIbHbiug9ZrO0QQoutcWhln6QCJZS1AQg+BFgfsZCtIBO0uiy4K52BP+fExmxKRL3hmUpM94v2ASJYPMXgFQVVvGwa3oFqh1YFko8F6Wiqp+N7YUtYhw9LpgeAGLXTJ9OQa1fgNlOh7hhU0zdRCWgN63wseKInF9pHio8gCNZdGH4R4dwnIqsUj7U5i1uCwrSj4K65vEoG3oCPR1ZU+ascID6tvcFBLrXNcqtGBdgv8+pj7pqrjsPvU/rRd+iKWirAvqsjKkniXsQ+L+ZWXrj7pyD2crkjyfMqwy2Ukd/mIsPUEvDTObSlbDUhvWxbEubEmwVGCpxjozzlYQxcXATQCtcvaxZ4OaMeQG7CAp2eCdWbVpewA6DII06W/yvhwiRcyu2sENPBlg6NxIlvArBKAsZSEQUEZI1nXgntw1FGxOB5Ysz1xwk0gooG6gxN8O2eRDnv0ugAPyprpo1aD7onbdhhoFtWD2ECHFNngwGGRgDMU7SjH1KQuMytctQ4KpTjFnYNB4CWBl3xyA1+hY4D5UJ6VOdsiclR8poDbYKJPSr3WRkfa5O9KvDhk3qr9dkznUtp4HuYWrOJcjvHJ+R5X2JBmUrgOIh2e4wQQivWYjsYLIBlwCJMAOUCBDAZwDFAQFu7wW2WJLF4HAiB4/6UXeVENmfZheg6EOln+vEuQNgbzhYiwclMmYoUKp0pOKpU8sucs9KdRaWwF0CfRM4QKuKZPqPmP8cvbSIDpmSAHwqcan2HNPm+UL7+AbNhUqMNJiO0s4uP52JgDycA6ev2Me1KwCSmqWxSVDb5kMC/VGdXTUCKCT5kZhKXGYYfQB90ZD3DvgbBsBMxRVMR6D9L6PrkOYYQkyGXvqbfG9ho3lLbVQxnfIQ8b0/kstc2osMJ0Xr2WGtI4AJVkiN1XcdeFsKMyToGbO9Q6ozQrX9pE9SZCi4pFeGOJxl4A4mJ0SLhuT2gKFdrJmxqBLqmaCQz8jQMkEjgGFRvV59+yN1Cf5tG/FBBTk9WYmRikDZWFJ+5oAZZHeohiZiMosyIiCormvI8EJH2FFQlkBFF2jAyhOrYX7osKOZOps4aEZS6dNLdSZaRFMtg8RDBPXBXVdUZYFZWGpBQO3vqPDraOt1N4FOu0XOgys6B0KX8vSkPHr7OuVXe3XzMrSQYxe2DtLCRdeVz0W3jMoY6quwNKAdmKZNg9kqfudwcVkM11sdWrOSDhorbkjChM3arG9gaFhVoUuydzA9n2crAYgO5Tvw3s+Yi7g+XCB8ALp7AKY4XUcmcR7gImedDElBCBclSah+phMXgqeX9x4oAGKixZPsdAwYAYBokuwF6xNgtj7RKSSOBRNHokyBTsj0eDucdM4afFo36SnyjgpADMJrFJUKwFeEjlTJIQpMAJoZF3AIoscpZYhc9D5JkExKjZS76bP6kxBozeZFHFSwgGLSq8QQsfy0gCkPz8PrUgzNk9+YnxLQ6GDdf6+OT2oQ1iHYTIHBsNgyIwH0cN2XN2R1Lfv1+O7YHYyKABiAiQ7OySgeYi891AvnmRnhoF6h5SCDr5vSJcB1ZBVSIVse4g9E4uWICQkrjzQnVO9Ptne2IWUYUzP1fcKu8NdKYGy3Caj44dHMqPEiTbnKWSsEzAcoz3JrthMayHAtUFQZGM3MvN/Fph1PNJdT5oxGOpIDa5OPwEYHujdmWkwjFVwozvYMAWwFPcGjRWrWIqNOWMLGrLhGw1tTAPJ/ZLhjRRW7ntw4mgZ5FlPpOwAhY39lG0jD5PZCQIfh/DVFADm2Z5MxXG55dSdMShl2ou9UZphok8v++8nYKVl5/wrO2RmK+X16s1cHv0MMQRDf0oy3p0qgHV7LHl5hylUZzpICNK4zsoEKDa7B5fZVbnAFi1sZazAK0N5moaeVCUo/GYvHoV6cn6hNPbBlGs6U2MW1/ASiBooS6XGqdPeAnIYk+ELTNaiLMx+K4vqiQBk8JRRVGpFjIo6Fi1nXhMz/wbO6kQ1sidjDLFl7P2UB7AbbV2BAVVgMhs6CoDOtVqqwrcLAbANpQSXgw2yuZbSabLpQB32/lxjtjsvCU70mJWILffLDlBsngHJ2Mm+hGzKZFCSuEqgkvsCM/swLbWB4P2Ib5DXq88FXQtyv9rhHn6lABTSe1fwWufmCzZH4aILwZUuNL9VNQY07OlOJvaEli4pN4iGhbxLxxACpa7Es2OrhHoWjUj9kMEyVEwhy/tGNzn3ScVOXg8pSoxZGCy/Zx+UHrew0rG1PKAdwxaUdUU5XSHaQ8wGuW4sw+yGwAakp52fzPi6o3X008ZDBoFAQ/ZZGUm96soQUJqxrit8pp5CmRDTjwvmve+NG/cCQUk1Rh+wFEwlFW35FZj0NPIgPgIUpjn30dDHYFno7E3RbigkHVly3VB6ncyNlZBxHLBC1GCtwbcNpTdgdLInBtUJIPGWF1AAVvPUDT0rPLQXzpCBzg2KiWJtfi6DFXYEDTegsolbihV5MMVupCJZH4KlyHkVS5g8S05awrQMrc1CYEOHoX59LyKlQ0x76HjfLdkSGTTew0NWkkBjNQd6YwXRwbkMr+r1xBou3TvCGopYCS8N5oMiO1MWEHK+GLraU3VlNH037gAL8wEhllFbuxiFnZW1V7jVQoLAgsgGlJqs2d1ZoZsSu7h0hgwj74W+z3myIzJVHxns1V8DRr2YVSotM3BvXA+sIwOCp7pXuj7TOATv0XyuMEw2e7qZWDExKLl39uKMfGayUE6GJIXCpcRkUJbVyJysC5aVLAqWRNCuzJTMvuP6GYOBkg4BMThGVuROsJl7u5CSDF8AMaDmh7XdO0v6K1Qzhch+YPkKK4X79cqw8UoGA5wKhC/wEijtiqHaAtZligFDQ0Tle1cwvX+hozv6QPQ+mYTVkyWlY+m9sbx+cYrv1zs6g5htRZ1Xgy/XDHv3NjP+UBys+VS41nrAWoe1JjCKg3Yv9K77GWFOtq3YgFuDIx8dxbgX6djEBA2ejKjMUzKP7nz/6XCkCfMdnDCUqRNRoCIB47yX6VxNZywtfjpT/Dtqk8YEJ18EPnmwAQqpx4KZ24SAShKKPtQhb4PGqXcpiO8BKEi2pMrA0xCGvJOZJoAMH6gZmjQbAPh8dL5XppWmNcsvOqAPriju+aFi7xPY6+vAAJvx9chcecBsAcYKi0ZR52hE07GSGrTOxW2HdzKQyoRhNAIUWGCgTc94hlKQl38ATflxIsGHS5i51xlgJkkyVQl08jt+uFDTirnkI+aBbgnBQVg/2RrNNw89ahtGbxi9sWlY31jQbDSRJ8baLtM7pn7DjJ8HAaZfdj4QY25uS21DxlTkodD8Yk+9S9YFSc8eH9BBZMcJ4O8WMEbrwQPGDJTnHjx17L8feRlHa3AU3VquK9vfI/iXdnjv/NZyLWi9M81wTj5/x2KGPncKBZhVip33bZZgh0KfJgZlAG4N6E5Ahsa58Caju1cenY3l8vPHftE2/3+Ylemm5aTuABwm4Fds0pQsJOfzZ/l5516LSFw8J2iScNqLI/89zm4O1/5BAJmpv24Q5Mp5JVgcmm/2Mto/Vxwf85pkRXJvnu2n4009OCHH2x0Hj9wgECymxBSeLAprVcwS+y4mxavPmh9w1RMxpd5rj7nuW+h9zq+QE5yC73lIwSVx06QWJ7tSC1nAngwadhCYoUglBqAWpj4XF6sLhpTUyoPVWSt8VJQB0LmkXWc3Za7xNFNDYv8EKEsKmRWGChV1m2nXYkoYyipyDMgw8bGIORwCc+ThhnrxROuwbUPSNBbp4Op+QSA2FyCGwGiGpxgWGjlHhw0eZ/dB7Hqua4gRTRF9LmSxroetty/zZDRTF2dx/n5niw7nP8sH9u9f7HiwAUouVBdMxOEERddBGIho8ojLNCJJWPEgVSjBh9TnBqo1UncikGMDMAlf0QVKUq9BvUUgG8NlyCEPffBmDWCvB76jkJBWZU+d5N8M9SQZsaGbofcT0JVFYhVoK2yc4B7o/UoApWteQCZFXnQClKFGhqPtYaKwrkV2Bq04EujNpB7TZkzD6vvCBgBnmik8GRLNQ57TQ3Jy69JSHEI8eZqm4Y6MrkKMFQW50VmDZbTTDlL6iUYmtixRhLA65xTDdB9jem02Brw3lJ59j2jA91LrybCp5VMIoAC752F7Cm6K4siA2Dwzcx7nuZolU/P3LQ1mAu2cBpNRyj/cX2ue1XtuIA/gOPzwMI52YWBGiWdGwVAI5cx+5Fvm4tEagQDKFGEOaVmCeozwDguwpYM1VqOFSzTa9Jmrvs+w3xGeHeYLR9raDxcXZx8zNH+REdzMrjBoTyrs4KnroP5p5PrW1BOU2DS8zOzSfsyfT2BkumfMYsm1bJpHD72PQErM40VAZFLsWaPjPEvNxgGg3LM37wUxz73b+RjIj+tuFBFXhrmonYo9xFNVebnuD1tUzVmHs4PZZOmlFzvcM9mBPFRpU5R9o2vgMhViksk2d6AGwYUHS+iMA9xOlsrolJJtcol39UF0P6AQsy/sFl5iYX2R4PqEMjC9M7Tp2YxyAhSG9Ba3udZpVjt66vpKIXvjAiiwve+PK9W3LhLTa/6R7U6CIaVTg502OnlaGamNm6J1gRTXGZGlH+bDZI8OAtWE9TGNFBMLPMGrHVZHAkQL1p+xUOsDPZ92DZlJdQ5QjmAjgXvkvpCTNI+62N/3xY4HGqCgLBhlwVDGw94GXgeiOpKN3ifm3D2Ug+diroXWxcgUeA2Bdt4gd9JrbNTFR6gTJg+zXFxEvKlaTylHhm6yeyZrhzRkB2CmLCc7MPbGaZ1NA1n9Qu/dNtig4AtthfU7cBvAeoUWHd7vcAMrIyScGRUD8nYGhXmkxHcvPs3c0HY5AhTWG5EB1VfWgdkzSKZFnxsjjfKEKAKNCiehqw8SfzcP7x08Ss+TQDHIcvSxYfSNBqWd2F69NYx+4u+gYW6D6BTAIbmEznn0jiyJDlD8Gq7+GoUddCmSlTduqigpj+bYUDBrSlT11nBnJkTqbBLQsA6K4sCZp2cJEGhbi4ANS9yLwdMBYGnhkfeD1n0X04IercJgnGsdptIBxQwvYorFeY90CMkTzN8xveZsfpcnIxhyCABlBAqce8EZ3sHoCCuw3mClcb95w7CC0sluet3gY/DvS0UpXZkI3J8lcEiDzbCHnbMrOkPS3U4MxRCf1j6gjsw+wYLByaghwXYItIAHmL7txqrFDYEWAfWUnBsjAPhwrpOhw1tr2aUxUZYpvPNeDAe2wQ7LTffHAqg9sHmgtIFtYzXnTFGPCLRtoLfsEj4w+lDoWKEcT0/dwOyqDsTeybwUptTXaljWbNSXtT4CXgK12izQVqpaNiRAMer8WlBYTuBIYJdgl7PCJnxkK2hbMjOEOiPtxAkGBebdWCMk2FHZ2gEcp4PprlDdvm9YTXgcnBsuDGbGVe78wTUe0RFii8sIjKWg94JlLbLLDem+LubaY0qiEOvRwRtaFpYHgLsKDHJumMm0AL7yvYPMRx8O78A4dfjNBl9u0esNvA2UtkD9Iaajws7WtB8l6GgHOswHSg3UxbAsanUgYXUyrDGki4zUttDWu2zz6Kr51IFkbnvGSGNAJf+wB+p2VjgByjlQxtw/ycSmu5ESh7130HOdp883HmyAomqkROOJQPNgylkbOkhNIEATmF8FUOCDBXtCBzZI48kdoLFQfxdDSGQU+w0CkMcPPS1je3UAZ7+UWRW6NiRAOaQtRycIGMPQO9A74MqIKbYB7RbWOwoMPRrcBsZWYOikYB2wWOG2sGdGBGZbbePCZNVDGiYecjt9PNLIHzxZnoUEKeMQejrrbJ3fHkMPOAKU9PjG9BJ7ApwJUHbgmPcmAYoJoIwDQOFXtXAfG9iAvM1LoefrBFfS5CRYSjW9QWm0Or+YcaSvLu/NlGGjezei8NUjkHUpZq+ZYlMIbO6TzcmsCxg92amE1ce2+fUID7XNkyI26aQm/52eDX8z0mAjYPMniuXjqOgBcATsWRcBvv84aeMEMnzjqUtBxuhl+CjEZngnXN28zYHu8MJ0ZB9BUWHpM8RjKSDNUO2kq00YNz9/MiixR7SQHycPx/yen8UO7J7KfSn8Iqgosady/uZcR+zzlQFbMpl6j5jBs3kY23R66K2GQF2AB0YoZXNoDx0bK1ruMdX1YYVp7Os19ufTMdrZ1qGwRRyYftlDsb0m54Qps1BdGZul3M2DBSRr9qBRGEgPKMHAQdH3QOodbGeTAMywbeS+Dzlu0vKl33JYXvNWE6Fjdj8PHvx8+Vwbvj9wWANItJNLlmvFvQBlYDhvwo4tWWdnDNYS6cVki0vuAlRzOpLJaLeB5qwRBbcp+qfwNmYVZJv1DZg7bZNdpzYvgU5sDbZtyBIUFBVlBp6cySKGH5AzOCZY4L3ka0ZJDdlB/zfnTuvVEhAenObIUHAy7Duzx4mUM5J2yWR7co2lT6pw8myuqX87bHdscy8clssLjQcaoLhfwfxKk6Z01gACKuscrL2ARmvAOPJB46HXIX24wEqn8rpUAvFhMqCgXqDIMItGPkRoeEMCyKQv7kufotnsXMrHIAMymkBKn1Tt6IHegN4MfXP0xuqBGB0jGgx3Ye1ZWD/Ry+4rPK7hpQP9Gg0bDBtsuYLhzqwP417nos8eKkVgzCV2AgBYLqQDVQh9TrVEH4OhG0a4Dr811zR9kP05fbZoiAD66OjRZ1fOfIX9nLEJHisO9Ros9UUbuoDJliGetiFiAwtiyMsBC+p1xW1LAIYGBLtdU6dAox0AUE0dssES404QE57eDL1hAkzSupG1LExCPvWNQZGmwmdFAXkyggEldU87+zHllTanTcA7k2Kl1+CLMVyl7JgjuHMMGTXOrJLnJ0hEnL2b1qyqo1iZ9yBPkZn2HXmXtDpc6boRcHT4GEx5J8IGU00bUJr672zSBjSezGWlWLkEbMbtd+YJ6MiURbN8/gCQElro24DCLYGzzyMTOwFJAjHX505jOh2WGaLJ5wVOMOZBBIAHs8JpPvYqEXspPNr3eTB07rNuZEd7qHu1prqPQB9iRlpDj7w2+Vqq1TFme4kQi6KMnUwpNr3ZPQxKLQtrZ6iORvUsSJbhFwGUYqqFwjTjstZ5cPWRjoPexoIMEDKTkSCga6ExVbjDrTATy4uAic9miQnYWfagTLvqAAHtoF3NwkZZa8UUMkQ6fpbnKddM8cqQlDnouKjTH7pWPXbnUALViJ4rBdV87zU2AtYDY6P9JmbaQ3kjBloYNgDui2LBdAxcrI2Hw4dN7Ynf3iDWBT4WjFigAJG2HQEHq1OzjtNQw0WzTMennSrhiLIcwJLukebFZN4z0xRhswJ36hHTWgyjzQwP3WPtJAMjCAdfZUwyQF/GYf3b3AEC4jaZlNw/L2Y80ACllAXFF4UflV5qpglI9CDNwgjRWsAet02kmfoHeXITKQJ78RndRjPs1fEMcLEpQzFnYNJsU72OPGSmj7a/foopd56MQLobpsyl0RBZNLQ4wdoNbNwyzIROA98WhAesV1hfmWbZ61wkIQ+EGhR+pt4HskBdevaAiUHJbcof7HHENJjyxpNSPBxce7a2AErkYcraBtmJmAY6eRupuyNfSyDFmEpZDKKsByIaerDse48NXSXgcQQoOrRG0DC6MgtM4DEPPpZZ32+IpW5HoRZLDwI2A09aXfNgnIAi5xFpZGx/XQFi1+cs+V7zNc9FaJNBiUMsWl5h6M2zVs1U14eyj4JHQ4YbsgJGpE+jdU2GxxR/yAyTgnsWKGbaN2x+cAPUaTfV/gIoIxjicRlxK2JQyL55GWA/pEZQcuimOg8czS0jU/nOWe2Wnyrn7QBT8goBy2wEgsSBY3z+4IUL9MX8W72Tlxme2espiSGZ2VrQWpfDYmLa5CWnbYHecwjopbCUqFjoJZ/LcJuljiYEDOLgZes22OED62f7fT1/Phdp/tylMWH/IAISXhIBCrvmuhqssskdxDhZ0+8O116VVlo2E5ZWLgTkyQzPfWAmMsQmuMsyDwZpbmRrPJ26DmTlRbJvSiueKdmmIpqmw1OAvNApy4OTb6z7bmwKmEUHk52I0QQvuUfZEJWav9JYH2f0IeB1CK0GuZMYwPBFwJsl51ktm/c0s85cCRddf4dMyLDQmlc4htQbEFCasCBAZA0UHITuNtfRzlIc9tO+JOd108TuiMHSkOR6SRMA4Ehw7k64Mul0K2l7DgjE5q48blC82PFgAxRjA648REIsBmPvB63HmbfB6RtC3LSHMpDqnYNM3zSIktxjeLtvD+zHMljBFTpIkBsUuyWR13pm/H2uhf2h13CINs40x1k1dgPaCRgnmHUyO93g4wSMAo8NjgZVJ9BnUIpmPiDyOrUU5Gs1qweXDshPoucOn3CmF++LbQ/mnD/LEJkhKcw5HQlgDr+a4979dUQAtOuRkmQw5i00p0JtI+3yUJ8jY58eHtZdB/Z+tXmw5c21+fWeecupOdCi8x7GDJgc1shhGvQ+fngrHM48w3m8eP6pqPsMI+TrDk1kLinM49v2A3ZfjUjR28TvAI5XHGcL0fYQ1KTY8v10bV7nXFBYHmJvnPdC1YsDoOanxEEUq7oQx9YDaRT3c1hAZf8s+YnOF80sUzXvZQISU4gws4zy5u7FpHzuYSDvtUoRBOfAEBJYn6/OUFh0B6Ipht3TjPl78rQP8xrjkAo0L0VzrgUS+X1afjv87r0TNZ/fF9ch4rSvwVnvxmdVT1N9DREYzPRRhoxlY7yc+9yy7tlmR20fdD2pEQpMUuf8M2IP5Xkikf1XzOWkRWhN5XSrzkoph4c0SapX4rkWVf+qFFfD17w/ySxqrU6PSBesqsjZzZrdsBtY8FDi1QBMDMwMbcXEENxdrkyekv2JeP/GdHqSKyErRxDXuZbmmXFwAnF+/hwCs7IZuUbu3Rf7Wp1L7XD+HG3QtCG5RQ7nX6Yvz9pMdnAITNeVgHOioOObYn/+7Gx54fFAA5SqTpUYpOFabxjthN5POPVbbNsJrW24ubuh94EthUEh5Jwbti4oEYBRHQ44RbFSt1NeywaBJSlAefKInWIG0ifDrGrJ9c+494hkMgYFYYkgAqiDdQ3CDCUCNQKjVmyj4dRl0HpD2+6in57GaM/iZB21X2G1jnG9olZDYMXqA6UC69WKdb2DWq9QyjoPASnrYHEzF34RjW86kDIdMldsFnaPkBU7O4LFfiC9EdGpQUEqdSMUiY3RgcKaMiNiirH2XZIonNeTnUUZ5mFjwt4D2DpCwfD0uHZfus/y8t4dA6xYG56N9rB7JbCpHfEsRFVZfp4ZXxUJYKuKY2EEuoXAbwrJbNaVMLBTdR7/CSRiApgxszsMjE7PS8+5QGiuM2yRsWfOuQVIF0/7nsEXn2uOhXVj6hbG6CopD2TdELKNjqxqab7f8yzdDewly1lsTQazLpgnodHLxIg9rGkFoze4byjDEX4i27KdWFm53rLkeR3qzlpnKEDqkQmuqfOR1idPQB0SvE9DESBaVHaXLjoklJN3YFDI2NArjzBlSYgp8npwLMQAFP07mxOabgIC2Y04+5rEGb0BebbOJnJp9TNGrP5E5mCdlKq6I8uenUJnAiDDFLBweB+qlwNYdosrWSDN0DMNOFjWkRS/PntRM8IEKdUEHELNiB22VvjKGiO21gm45szrs8ySB6AuIkingHWOoJ+HtCwUrWYmFesFkV1N8O/DFHoIhubzTRXaKcuKUtmLZlmLmtUxw87A9wtGcXhPRyAq3wMzE5NC3Zp7CTnHA0ibLltuG2ssoY8sRMzaJZn2C8j4MHQc0WHjSvMDRK9k8MOYal8CobonLHnQd2SQqbywyeKYKdtKiSDVAiXYsLT0znUAdmJ+TnQgz7dcjbn8HHtYO9Jy4EzmMwvCOee2GPsfHgHKEPvtWn6783QA4/D9mlzSiAlWXng80ACFcUv1XhgDrTX01tA7tQnbtmHbTjhtJ/Q2sPUxNQ+RCN1UHdAqvHQWTtJh4DZQRMU5VC/DOswIWKI3aRCAXOZJhs9MLS2aFMRNkCJUb64brO9hBWUwo6dLoY0OdGfNj95v0bYbtO0uDA2LEch421QYqGOxgBXH1dWCq/UKV+udCVBgrH8y+oa+7Si6ZB0KM4q/5CekV5j1HQCHuQ6mBDRIalUGezSCk5H1YphVYh3U0YgizU6ygA6W5wUovgOUcIxoaFtHREPYgDdHDN/pTR0OBihrKpAVrZiWlyBDGxYORxXdXQlQSsXwFaxvkEJsx1LKFDb3HhjWCCg5Q2qglQWxdktgisnO2iu5d5FfMwSUnlx+n5qCOHg0PGSztsJceQIyezjD57oEdsM1JKgEMPsXpVfGmH/eWt3zLHWLrJS5a4vC1F5iHuQEuzMfHSFdgasEudGglhVeGnuqlAYvjU0W1ceoGLOnzsCJ54OQzuZUKQSSLE6CL8XtrVCkXLQzZ1M9/ZsgEIixP5/N2pKpYwaJPmYWFQOA1F/ohoZCYemlQ4d6zmW6oDzEDSmyn8SL6nnspYltZzZ1EhBMg6xBsGgjQY7+Ttc6LB0ihlF7SKqZYClTsPWgODxY3bgYspElSlUmlLQEykIKd4KspMhIdWW8h4BKNWgsAtkA0zzfuzA8kOLNGT+IHfh5U/p37HupslaKZxp0yUNUQTWFx8McGGUXuApY7wAFMywEmEr6DMyeYgiFGwsYY+pisoMFDw+sBw/fwAwDloVzUvsUvI7Bzt2zg7POBZ9JE8rIAyYjG0imR310jPNfbFeNJTjUobZrK/eY/f5Fy2rqjLGzXcBuf48kajksRTZn5t7PGFKWrz8SfHGwa0daZoai8OLHAw1Q8uBqERjBRmQJUk6toW0nbNsJ2+mEdg9AQQSyZDQ7dXYh6MNhpkWAYOVYR2O/EAtYsEKmRR6lttPUwE67YSbuzAwi/ihZh32xuPQGEY4RToAyDFGBzQYaGmKc0NoNtu0uIhqGG8ayovYGjIYl2DXN3bCuK+5cE6DUuk4w0U6G1oDbZvtCTB2Am7QB9GLDcnFNfhZWVsyMijTGoou4yZXON5rqklCszE6iBlPNlalR4SxMTQZrTdDYHwGKBTObDA0jKti5lCme5js4mQdDQDVXZPSSaklPJYx1Eozlt4svk56NcoWwAjhrHbgVLMUnQGmg0RtivKiqD5UiV2NCgZQOetU9jagJkImqZyn52Hc38qv+MYXIR0DoE7hQdrD/DJY6owNFnkBZBp8HMt/XjYfEAGYaIsC00FTfeMbvD8KZ0DoBnGwWsQP3z+T2qTHxDnZTrp39S3oClI1aslLUcVp9d8zQkz0T6NuFlIqNqvCC6fCk95chC/6NqS0DV5zPtSp+ZrKb5gmKfQdd4IREjB2waf+GJjY1KBN8GEMMZxoUy7m2uSbmBSdidRqCFEfOUM/0dHAIkUhzoXCGeXrMuw5B1Teo9UIm14vNyWsoqTvy1JXSw3WbjSwTsKdwddZQEmjkwsl9nAAlWY/QWveZfm+iIbJ78QiyyWcAJWlRKwhnZmNqpbKpJlOgTb2vWCZgAhRTevDwmcSQYt5hcQ5QdK/JFKbtGvMzkLVKRjj26r0Zogs5QAIogLHZKgIxFoIGAwaqtuaYtxKB2RhzSDCc2pNpqixrM/FWjcSw+2rdw25zxLQD0+9LYGLJGCeGSZuJ/ZexazAJTEJtOPbn8312ydNEVbs9PyCdY3bQVw6DoiI9qUdo0dH6mECltY7eOtq2EaC0rk6W4OKTQSx1JQJm7usEHflAsGeLhZr+OcMIPmufyIAi9vvtRzCCedAfrAyypkOGVQB2baWxH8C1OrcOwE4D6B0WJwyxKGOotPi6obWOIo2NmaGUiuura9y58xAeun4YtV5xoUTgVAzbCegnpsqaUeHPpogOXxbADB0H9kQHgxkLFLmpLoUWIOnzzETapJdJgDJQRkfvhjE2lK5mfod98RyAgucDKAVjFOoc5OW0stCr6ZmuTaOhWrkUtzmbX/lQOWgImERFwarHgmorYMwmCb9SHHnlQeqOtRZAGRTVXenOtyhByrg4KVwrpjmk6LrDVHQLmPRxTcbK530JDHpnnI19nTtrWLB5nASLXezTCApuBRTNnE35YmB44deQeA/gvKeXRRtOQfHQOhzid+GwYKZEQEzSZBd408yvJnC1IkPpMlbKLgpntpoN1rEoEajLXRa9WlZgNNjoqJU1japayWMUpYAWPVcm6Njz3PPgEUxJw1tVcGyhxx2AOrlmtVwFkOQIQPMT0jlEhjBDLFyyBHl2zj0t4CtLHmKtElxrde+G312Hf0rTdT9Ma38WliMzEQIuoY7SyDT2TGXPkI/ngZQMCpmiTHDtEVyDluyIM5SUFVB1XSaAzey2BaEHShV7Agxn1WoCnbKLmAW+QwDFDtWFC0B2rLDcP5uMFmUBmpibOpklWCDQ6SyEkdZLzYlEu14LykpwUj079TJTk9FlCq5ZhM+QRNPOeslBFSh0tz3EM44AhcJ7s2yhonPCOmap6Ri6BxJw14W3tqqauTl6NJ0NDciyBwPwzns8hk2AklCZe2xo3wsgFhNrlE1KUxGzr7kz3JE+y/GRfobWs6zMfrDmcj3gaYcamOba1/rNMzLF8oEDe6g1ue8T3y/mRY4HGqAkrX3gezniuY9Iqzz/bTwMTG7DzoMglQTz8OW7zanPf+Hs+T20E/uPyHrCtPAOh0jqQUAPaNLEEuZFkWeghxt7MaT+xWbtbexIPx/GJmxFXT/zwasI9LZhOGP9/JxHBsVRZkvwPWY/i1yZM2XZVWPA9nmCAIphT1EjI6SNE+q3ks6GUDcXvc1NZZFblIXadoDCZb+HA/Q5ZwfVVLQEutLOmSan/8wP3zOmbbbAbWWfDL9S6WoyKFkRshRmRZVSADSEdSA2bsEYEAQRexIwl8Aui+Txw8NjIOWzfrAYNj3qfe/mvTpbh/J+ABq1bLOeJbSzhLj5mB79OcN1WJiHFZkgNO/D8bBLMH3+fYLqfZ2c7bdpporuRgCHmidnjxTKemZjuLJv+HnOxN0ZRLcDiJsuYv7IdiZFz4WZmiTaPp+452HA8YUiDElnZybr/nuHPX6YM5uvcc9X21/XjhcLGm3+eJ/z3fPUPJPb0vUc7qsZTAXTYMf7ZLpXx3ueH2//27n2MvV33nqf4aKZ3j3/3vfXSVs5nwrMOjWuazMTGNiztZCsp+5pTGSrU1MMx3Tzz/bK4ZGHp8u7D4URDDMc5gPsQJzrYh6W2E9fY561TTbIDskDEpmN2P/WNb+Z1p37QvdpAk2taUTaUH3eecbkgwEbUyhKHcCOt2uukXv3BJfkvi4P2/sLPOKwbGXjM2982uXD7x8vJq8JhrO4Tl6f/ts1KPuaJ/N4z5p8gfFAA5S9HPBhLgOww39pPG0WI+CD94iLQw2mYahzQ3KjHTIMYj8EEqse1SeuQ2deh8kwm7z2ubBAAGGhmiRs751pnwFTHJWVHV1NotyyHRcFUuy+yrCQB6+fWooKd6Vf1wW1rKj1CrWuc+PVsmGUhmIFSeeVA+hwXzgHOFBzvhvAbBvuomUtjasKl+0AhQY2hkRw0WfJME3cnKyjBmW/N0eAontgjtIbiq8oPlB8IQ3sKhoXZJzK7G8TEl4SyFjOkS0otqD4Fbxcw8uKUgRQqgBKIYNSxKCU6oA1xambAMFACYfZgM9MFaCUg3cKCKBkEaX9fsMcNspuNKetOcDhIzgRQLFIb1W/mes0V6PApoXzb4ZNgzSB/PRk8kbcA0jmgZnfJ6jQzZ0AxbXHcmdmamTXvQULs8Vg9kWmijrTRYdCrbMh3OHwgr5Pd+4IhqEvZ1b8eNDqELK8hpzLg+Xdl2AaUdPaV1bgvVM0/3F4br43D3LLxT/f6XDdEzRiX+xzPjXPSvW2w8GaFVmPYG0CMs/XkooTmPdsDwne85jZLwq7zOWYP2OXXuT9Ch0x2aLBAQuWbp9L1xg2YbRi6FJo3/JeZ4iHz7kYX+yANQBRC/z32O3I8bMz5Bdz2vMec/517zQvHmSPUpucB0UWVCRI5rlAJt2QLRxQCsXfRU5ECbDkapBtNO7tFEhPcZvCdHuPJn8uGLOyP5D1hzI4NxfsDkZSkpDsez5/thYBHEHYQdPDydrX216M7cBsnL0G5jo8B0qhGmH5crke79l88+aMw/f5Ii9uPNAAZfJ2GReMCRUmWrcMS8y5L7vxMHUOLVdAWQFfEKbOo1k0yivC2G2Wcce07zu5lcAiYFPsNJX+DNgqdS6NZS5SAgR47ItlMJQTvSHapscJsW1Aa2oLHqqK7AJVZAHMWV6ZhYyYfYLMYAmfAC4mUPP5aZB9KoYfaH4+z8+Rz4lxivQyfXriMSlPO7yH7ffp7H2P52QKP/fTIA8KbiTfF7UBrKOx6WuFuSjWAClaMz1HNoH3WaBKolevK6xew5c7KNmV9PoKqBVYFsSyIht+lUIRrRcHsHFO/QSlCcGGUUQ9r5x5I5wbl7nJAujzyMoPQ6ONpI53OzdX2sF2TM2kzmwuv92r4hqURmF6XOo1Mp/DbuTcGerMSpQ1gYjvqZxVYELXmoDaa94fLQ05m5i0v0SKnUrGCAFghVZ31mQXxGao6sz5OMcde5g75pI4MKSmr8p8kX4n5h8J0xy+nz9KA2vzVfc3ADB1JfmcMbycACeOa1m/e4y7W7IatoPW3bPGfrAJmPHEz8sYskf53vd6uSagkTZGbEWC1ekcpYNvahzoAg58L58NAwkoilJ6eQjHBAbUx8ppYIyNn1WVYCGAhyGAUtKhkdhagDhTVCeTFjG9ecu6RYjddhzvQd6jOP8+zm5qTjmv0UuCBE2n9oHnmTBSbM8/HMWoZQlnWwYVSMu3NDm78xCfYPSwjObBnuDQFbJiV2bURancDYY+U9CPFWGPduMMZGqJ+NSSZZgo7U1MpuMMFuS6TUZ2rs0EN/x+hk3z+/wcPmavJIu0z77fo+nQ2gwrJOC+50q+4HiwAUqOI718OBTjsKhDVFxS7IFEtAcUO6tVPo8HeeYV8b9psEILJjcHLSYyzS8EnmhD+d7TCMVxJWtfTEUaa0lkvfvonZX/umKtx881P8sBmR9CVXuTtZmmgSzFTetCgDFRcKTa+rDDztIn711sBF6TIcj5uSfl8vx7HF7jeDgAuycvdO4OKMXy+e7RfJCP1RxkEbYDnZq0tZfZq4OPBaWuZE9qRdRVYYlFhzMPUqYSBs6KiyU1veck3fM4HIlpOOV55FzNubD8WRqmw12YPzbk3ZmhmeM73+M1nx1iMqIxX/DArJyxFQcAM9mNe1iOYsjmgqkRNDE6xN1c6yPG7vHd+3WCguPeOs7iXKHzyZyDOZ+Hw2gKbA7zfDZB+jf32fFF7Tnfnr/xPbfycEHPCY893+l07+PwonP+Dw+yR7yXofCFnf1cL+/5tzv4wbwWPTdxVoKU49cjm5LnCu/zGYgM6qgmcHQQCNuhGKABQ6e3F2boEDCl3uMQLjrc27Sx006NvDn5edJm5X3d99U8hPMGTYHVfgtCyQdTw6OpSWCcIHmeFVogAWpymFGGswwYh7HwYN4GT5cjmZzzvTdBy9xnrj22OwNT0Xu0q5HfaWdMEH+0MAft49nySmdpTpzuB86vK6/8bE0cM8b0fPr2AoK5zzPElzq2BKy70XqedfsixwMNUEzMRHTTWW4YneWY+8BZP5uRz8loZnjHkfoFptNhPnyKaGHyQsNVzc8we28EF6snhY48qlj/ImLiC/ShhoWmtDfxjVNUl/RmBDsWZ3elNjC2jnEa6KeBtgW2TbHV4ShRMFAwrCC8UjgrfQYPVz5ys7rKRGfFSw9DjBREOjB2lmnGDBMYzEOeWgEchLLc4GQu9vTU9GpiMjm8efkWO4CaVTADU3x5lr0RyqjszDBAL2qEWDC8Ir02FmdrM5yUSbRTp+L0Xrwu8GVFXVeUZUW9WsWgVDEo7Kch28ZqtiiyIRVMGywMXXAmce7xHZgfeYbpFU1DOE+ZI8rOL3ma2uFHu3GaZ6UlU7LfsyMuOWb37Bh+N3Yx1XCWneMEQFyt5dOwi2kRWCtVxBhUJkTXmDbMzBFd81LIvJXmk0GhB78zKDu7I2Mcu2nO5xL4JkA7m6o4TMy9ICXmyyEnYkK/nKs8WA6ZKGf4GfnV5r9nJehj+ClB+b2nxmGeZ3pnsgVT/Orz4QWshZLX4kPzBh4g4DnOFhyaY+xC3Vl/Jdfa2QGUqdjsbHxkULJRoFfdbzEoLqDhPhCuashirAGtKS9y0jT5WeBMYOeYwcEQeMwD2oszdC0S9xyc5CG6r/V9jSfUifmvCVl0IGfmkldXlWiglnwdpa8H1GvMAHX2naGd4SgjdYH5blKSBODhrE0C7p2dVLAZbsr1UXS2lMxIWiq8KntopBOGs8/tWkMHpeE9IOUcsMw1PU+7mIlhuRRDwDNtPJemfl9gtQjIFVfS18yBNmAcMgj74UzMPZQ2Rs8f9UMvdjzQAGUE1HKiA60DjVVWrW2wzgd6g/XGA7+Rep/pb5GtrbOqou93Zldf8aZAfS3GBuqmN75uSBimm8GSx6rQmiCgFUR3qGcUMng3U3cnzYapOGdqWqjWYFbEbUDb4NuGsm2wEqi9oY6OCpZu3pt8FarJq8IVVbc6Qh2bFTtOwJU6ETCL6aAUORwFCSSy+EA5++x7WWala480MPOvdX7sRhklPfIdoJhCRzCb94V6ClMl+wpvFVabSl4XeGF1WJPILY98FrbamXFu0ExbTSNRZSQqbKmIRSxKpl/mvcmzItMkB8vnw1Qj4RA/tjwgoJRPC/Uq3Sc1j98hwDBsn3MzCMzEPD2PjEN3enAA0GWww1UQ0AzDXF+VvXF87DfkcODuB+zUFKWI8OBJ43Cf5sVCE6vPldq5DCEGaOlisFhZZo3M65nfMz06oKho7oMDsBp20IXE8e8Oh5V+L1OtA5oDKJwCfb4zRnUPJUYCiLEDOa5XzAuZOAS+35vUu+Q+yQPMds1FptRaQI0nsQOGCdwSxPFwAFhHyYfvJG/RlcvL5aEgB0PgcG8fkMfZ7mAky3pvFV+fIMb3sBumozx/TjYh2eWDPs9l8yKUhCO4kLY1x4g9PDIPXLHaQpOpG4zDwZchK6I01R/xFJRjhvoiYt+7ZtOWc/3GTrjeE4ZIB2qm/U8UdO+hmgBJM5s2BQOpFcuQddzzN0WHdCnM2ixqPcB6Ts7K4IaDNtH22jm+r/dMIx8QWyXAt2PjnS0hWBLwmWxRXlPOPWAqmjeVEEnEJzmd8zHSSAGp3zGBPAMOgAz3kNy224oXMR5IgJIN6p56+imgNdx96nNo2w3u3n0Krd1itBNO/QatndC2DXfv3jDNeAsMq8gmYmVd4UvDKBVtDLQASmwobUH3gW3bsLjDbp6FtxOs36LaBosGAwujIbQ4jTeYhbCyCJnqmfSKU3O04biJBcMHhg+08QzCOtw3ALy5sTXEzV3g9lnc3DyL0927uLl7F7c3Nzjd3OD25ha3N7c4nU5AGcBygus5W25Rb25x9+5deL2Lp555FoGKbTiqUt8CgdOzz2B75hk8/cxTKlMNbEuWIHeUdQV8T1+DGeshqDaCb6cZHsmy1QZDNt4a7cRU462h9w3RB8Zo6P3EqoqctMlSZd2HRNaRxtQMtThKAshg9+Lb27u4vX0Wt6cT7t69wXZ7QjudEGMjYu0nnJ69wdga7Laj14FWGlqhqNbqQMOK2oFRViwjUFvDEg1YFjIoZaMxAAAZoWJgockWaLdPs2pxuwsfG9iQbQNcNVEWtmEPd7Rg1+bWNoxxC2AwzVgZQwOLtBpdhhv04CisQvEKryfUtaEsDYCh5+8HKyonyIswNmPcTjid7qKPhtZu9Wi43bYdDEn8W+sJpa5wryhrE8PkKLWyImstqGWRDmeZDEoeQA3ACUxX7oDAWjCjclBPNW5v0NuG082zuHn2GWw3d3F79y7azV202xvc3NzgdHPCzc0Jd08bttOG223DFgV1GHrZlOFjiL5B1CnDnmMgWtvZiRGoqGj1xGsww6lne4Oj/+noqHvVI+PvuLO+EQawtRNaD9y2gVMHtgBO6Z4CYAVbruEigOIhezABig76nodhwSmC8xZqwOYGR0UMB0ZFGabCslwHEQOnU8PtaeB2GzjdBLYBnBqw9SHBPrNBRgDbzQ366YRxcwuLE7wZbhfHzXrL/VQKltJRSkdd2gQ6rM3GudjagrpR0NzVy+zZmw1bC4xu3EtG9pYunJGlDJEOTSUG0CdTEcG05xaB21NTzyxHrAtaKSjRMBrZ4rvPPIPb1nCzNVYaLhWGQLQFfSsYa9ZAYZq/BRj+7h3ogdG4dwFjOVQ3YCnsXQalzdrOCCIGRm/IDsYYgX7qaFtHaxtuTx03tx032wl9ZKNOdkWOnu7HgN3cIPoJ4/aG3Yr7ht5v6cg4Ex08mOk3lht2ph8VMWgfcbpVajbPhK1WRBt8ndMNnr57wjM3G5693XD31NAQaGVDA8sPdDlplqEpSDczxL64YRusCcbmjw7YQDWDY6DZgDeCv1yHxTl1EGPYxkAfgdaBrTlaN2xd510IhCidm8VTB04b7c+29bNz/AuNBxKgPPXUUwCAN/3xb3iJr+QyLuMyLuMyLuMyvtjx1FNP4ZFHHvmCv2PxYmDMfTbGGPjEJz6Bb/zGb8Sv/dqv4RWveMVLfUkP1Pjc5z6H17zmNZe5+xLHZf6+9HGZuy99XObuSx+Xufutjd/O+YsIPPXUU3j88ccZ9vwC44FkUNwdX/d1XwcAeMUrXnFZcF/iuMzdb21c5u9LH5e5+9LHZe6+9HGZu9/a+O2avxdiTnJ8EXKVy7iMy7iMy7iMy7iML8+4AJTLuIzLuIzLuIzLuO/GAwtQrq6u8N73vhdXV1cv9aU8cOMyd7+1cZm/L31c5u5LH5e5+9LHZe5+a+Olmr8HUiR7GZdxGZdxGZdxGf9/jweWQbmMy7iMy7iMy7iM/3/HBaBcxmVcxmVcxmVcxn03LgDlMi7jMi7jMi7jMu67cQEol3EZl3EZl3EZl3HfjQtAuYzLuIzLuIzLuIz7bjywAOXv/t2/i9e97nW4vr7GG9/4RvzUT/3US31J9934vu/7vr29uh6PPvro/HlE4Pu+7/vw+OOP486dO/iWb/kWfPzjH38Jr/ilGz/5kz+JP//n/zwef/xxmBn+5b/8l2c/fzFzdXt7i+/+7u/Gq171Kjz88MP4C3/hL+B//s//+WX8FC/NeKG5+yt/5a88Zx3+4T/8h89+5yt17r7/+78ff+AP/AG8/OUvx9d8zdfgL/7Fv4hPfOITZ79zWXvPP17M3F3W3vOPv/f3/h5+3+/7fbMy7Jvf/Gb823/7b+fP75c190AClB/7sR/Du9/9bvytv/W38NGPfhR/7I/9MbztbW/Dr/7qr77Ul3bfjd/7e38vPv3pT8/Hxz72sfmzv/23/zZ+8Ad/ED/8wz+Mn/u5n8Ojjz6KP/2n//RsxviVNJ555hk88cQT+OEf/uHn/fmLmat3v/vdeP/7348nn3wSP/3TP42nn34ab3/729F7/3J9jJdkvNDcAcCf+TN/5mwd/pt/82/Ofv6VOncf/vCH8df/+l/Hz/7sz+IDH/gAWmt461vfimeeeWb+zmXtPf94MXMHXNbe841Xv/rVeN/73oePfOQj+MhHPoK3vOUt+NZv/dYJQu6bNRcP4PiDf/APxjvf+c6z577hG74h/sbf+Bsv0RXdn+O9731vPPHEE8/7szFGPProo/G+971vPndzcxOPPPJI/P2///e/TFd4fw4A8f73v3/++8XM1W/+5m/Gsizx5JNPzt/5X//rf4W7x7/7d//uy3btL/W4d+4iIt7xjnfEt37rt37ev7nM3T4++9nPBoD48Ic/HBGXtffFjHvnLuKy9r6Y8VVf9VXxD//hP7yv1twDx6CcTif8/M//PN761reePf/Wt74VP/MzP/MSXdX9Oz75yU/i8ccfx+te9zr8pb/0l/Arv/IrAIBPfepT+MxnPnM2j1dXV/gTf+JPXObxnvFi5urnf/7nsW3b2e88/vjjeP3rX3+ZTwAf+tCH8DVf8zX43b/7d+M7v/M78dnPfnb+7DJ3+/g//+f/AABe+cpXArisvS9m3Dt3OS5r7wuP3juefPJJPPPMM3jzm998X625Bw6g/O///b/Re8fXfu3Xnj3/tV/7tfjMZz7zEl3V/Tn+0B/6Q/hn/+yf4d//+3+Pf/AP/gE+85nP4Ju/+Zvx67/+63OuLvP4wuPFzNVnPvMZrOuKr/qqr/q8v/OVOt72trfhR3/0R/ETP/ET+IEf+AH83M/9HN7ylrfg9vYWwGXuckQEvud7vgd/9I/+Ubz+9a8HcFl7L3Y839wBl7X3hcbHPvYxvOxlL8PV1RXe+c534v3vfz++8Ru/8b5ac/W37ZW+zMPMzv4dEc957it9vO1tb5vff9M3fRPe/OY343f8jt+Bf/pP/+kUil3m8cWPL2WuLvMJfPu3f/v8/vWvfz3e9KY34bWvfS3+9b/+1/i2b/u2z/t3X2lz9653vQu/9Eu/hJ/+6Z9+zs8ua+8Lj883d5e19/nH7/k9vwe/+Iu/iN/8zd/Ev/gX/wLveMc78OEPf3j+/H5Ycw8cg/KqV70KpZTnoLTPfvazz0F8l3E+Hn74YXzTN30TPvnJT85snss8vvB4MXP16KOP4nQ64Td+4zc+7+9cBsdjjz2G1772tfjkJz8J4DJ3APDd3/3d+Ff/6l/hgx/8IF796lfP5y9r74XH55u75xuXtbePdV3xO3/n78Sb3vQmfP/3fz+eeOIJ/NAP/dB9teYeOICyrive+MY34gMf+MDZ8x/4wAfwzd/8zS/RVT0Y4/b2Fv/lv/wXPPbYY3jd616HRx999GweT6cTPvzhD1/m8Z7xYubqjW98I5ZlOfudT3/60/jP//k/X+bznvHrv/7r+LVf+zU89thjAL6y5y4i8K53vQs//uM/jp/4iZ/A6173urOfX9be5x8vNHfPNy5r7/OPiMDt7e39teZ+2+S2X8bx5JNPxrIs8SM/8iPxy7/8y/Hud787Hn744fjv//2/v9SXdl+N97znPfGhD30ofuVXfiV+9md/Nt7+9rfHy1/+8jlP73vf++KRRx6JH//xH4+Pfexj8R3f8R3x2GOPxec+97mX+Mq//OOpp56Kj370o/HRj340AMQP/uAPxkc/+tH4H//jf0TEi5urd77znfHqV786/uN//I/xC7/wC/GWt7wlnnjiiWitvVQf68syvtDcPfXUU/Ge97wnfuZnfiY+9alPxQc/+MF485vfHF/3dV93mbuI+Gt/7a/FI488Eh/60Ifi05/+9Hw8++yz83cua+/5xwvN3WXtff7xvd/7vfGTP/mT8alPfSp+6Zd+Kf7m3/yb4e7xH/7Df4iI+2fNPZAAJSLi7/ydvxOvfe1rY13XeMMb3nCWWnYZHN/+7d8ejz32WCzLEo8//nh827d9W3z84x+fPx9jxHvf+9549NFH4+rqKv74H//j8bGPfewlvOKXbnzwgx8MAM95vOMd74iIFzdXd+/ejXe9613xyle+Mu7cuRNvf/vb41d/9Vdfgk/z5R1faO6effbZeOtb3xpf/dVfHcuyxNd//dfHO97xjufMy1fq3D3fvAGIf/yP//H8ncvae/7xQnN3WXuff/zVv/pX5/n51V/91fGn/tSfmuAk4v5ZcxYR8dvHx1zGZVzGZVzGZVzGZfzWxwOnQbmMy7iMy7iMy7iM///HBaBcxmVcxmVcxmVcxn03LgDlMi7jMi7jMi7jMu67cQEol3EZl3EZl3EZl3HfjQtAuYzLuIzLuIzLuIz7blwAymVcxmVcxmVcxmXcd+MCUC7jMi7jMi7jMi7jvhsXgHIZl3EZl3EZl3EZ9924AJTLuIzLuIzLuIzLuO/GBaBcxmVcxmVcxmVcxn03LgDlMi7jMi7jMi7jMu678X8BIQaruoGbl/8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF5CAYAAAC1N9FKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9fbBt21HeB/+6xxhzrb3PuffqGyw7llT5sME2GDAhooogUHAhZGwQH5EVElQV/SGRvClMcKJUAgKclEvIJoSywImdkFAQx4mDUzEm5bKRIHEZS7KhHBM52IkBOQUYWQTp3nP2XnOO0f3+0T3m2kf3Ci6YF0kva6i2zjnrrr33XHOOj6effvppcXfnMi7jMi7jMi7jMi7jY2joR/sCLuMyLuMyLuMyLuMyPnxcAMplXMZlXMZlXMZlfMyNC0C5jMu4jMu4jMu4jI+5cQEol3EZl3EZl3EZl/ExNy4A5TIu4zIu4zIu4zI+5sYFoFzGZVzGZVzGZVzGx9y4AJTLuIzLuIzLuIzL+JgbF4ByGZdxGZdxGZdxGR9z4wJQLuMyLuMyLuMyLuNjblwAymVcxsfQeOlLX8of+AN/4Nf0vX/9r/913vCGN/AZn/EZHA4HRISf/umffsb3fvu3fzuvec1reNnLXoaI8IpXvOLXftH/fzpe8YpXfNTuyw/+4A/yTd/0Tc/431760pfy+te//jf0ei7jMj4ao360L+AyLuMyfn3GD/3QD/HX/tpf49M+7dN4/PHH+eEf/uGP+N4//af/NPfu3ePzP//z+Ut/6S/9xl3kx9H4zu/8zo/a7/7BH/xB3v72tz8jSPmLf/Ev8vjjj//GX9RlXMZv8LgAlMu4jF/lePjwIdfX1x/ty3ja+IZv+Abe8pa3APAn/sSf+GUBynvf+15Ug0D93b/7d/9GXN7/T8fNzQ1XV1e/rj/zkz/5k39df96v1/i0T/u0j/YlXMZl/IaMS4rnMi7jlxnf9E3fhIjwYz/2Y3z5l385z33uc/ln/9l/FoC/9bf+Fq997Wt56UtfytXVFS996Uv5w3/4D/MzP/Mzj/yM//q//q8REd75znfypje9iRe84AU8//nP5zWveQ0/+7M/+ytew3d+53dSa93Bx0caE3A8m/Gree+Hj/e///18zdd8DZ/8yZ/M/fv3edGLXsTnf/7n87/9b//bI+/76Z/+aUSEb/3Wb+U/+U/+E377b//tHI9Hft/v+3380A/90CPvnff5x3/8x3nNa17D448/zhNPPMFXfdVX8f73v/+R98402Pd///fzaZ/2aRyPR775m78ZgJ/4iZ/gD/2hP8Rzn/tcjscjv/f3/l7+m//mv9m/9x/8g3/A448/zld8xVc88jPf8Y53UErhG77hG/bXPjzFMz/P2972Nt761rfuz/0Vr3gFf//v/322bePNb34zL37xi3niiSf40i/9Un7hF37hkd/z5//8n+f3//7fz2/5Lb+Fq6srPumTPok3v/nNPHjwYH/P61//et7+9rcDICL710zXPVOK533vex9f9VVfxYte9CIOhwOf9EmfxJ/8k38SM3va9f+JP/En+LZv+zZe9rKXcf/+fV7+8pfzN//m33zac76My/hojwuDchmX8SzGa17zGl772tfyxje+cT9Mfvqnf5rf8Tt+B6997Wt53vOex8/93M/xXd/1XXzmZ34m733ve3nBC17wyM94wxvewKtf/Wr+2//2v+Uf/aN/xB/9o3+Ur/qqr+Id73jHM/5Od+eP/tE/ynd8x3fwZ//sn/2Y0R384i/+IgBvectb+MRP/ESeeuop/uJf/Iu84hWv4Id+6Ieeptv4U3/qT/GSl7yEb//2b8fM+NZv/VZe9apX8SM/8iO8/OUvf+S9X/qlX8pXfuVX8sY3vpH/4//4P/iGb/gG3vve9/Kud72L1tr+vh/7sR/j7/29v8d/9B/9R7zsZS/j3r17/ORP/iSf/dmfzYte9CK+4zu+g+c///l87/d+L69//ev5x//4H/Pv/Xv/Hv/8P//P82f+zJ/hta99Ld/xHd/Bv/Pv/Dv8/M//PK973ev4nM/5nI+o+7g73v72t/Mpn/IpvP3tb+eXfumX+Hf/3X+XL/7iL+azPuuzaK3xX/1X/xU/8zM/w9d//dfzhje8gf/5f/6f9+/9B//gH/BFX/RFfO3Xfi337t3j//w//0/e+ta38u53v3ufB9/wDd/AgwcP+At/4S/woz/6o/v3/pbf8lue8Xre//7389mf/dms68of+2N/jJe+9KX8wA/8AF//9V/P//1//99PS1W9/e1v53f+zt/Jt3/7t++/74u+6Iv4qZ/6KZ544olf8fNfxmX8hg2/jMu4jI843vKWtzjg3/iN3/grvrf37k899ZTfu3fP/7P/7D/bX//u7/5uB/xrvuZrHnn/t37rtzrgP/dzP7e/9pKXvMRf/epX+8OHD/3LvuzL/IknnvC/9tf+2q/6ut/2trc54D/1Uz/1K773d/2u3+Wf+7mf+6v+HXP03n3bNn/lK1/pX/qlX7q//lM/9VMO+Itf/GK/ubnZX//Qhz7kz3ve8/xf+Vf+lf21eZ//yB/5I4/87O/7vu9zwL/3e793f+0lL3mJl1L8J3/yJx9572tf+1o/HA7+vve975HXX/WqV/n19bX/0i/90v7am970Jl+WxX/0R3/UP//zP99f9KIX+c/+7M8+8n2f+7mf+8h9mZ/nUz/1U32Msb/+7d/+7Q74H/yDf/CR7//ar/1aB/yDH/zgM943M/Nt2/xHfuRHHPC/83f+zv7f/q1/69/yj7Q9v+QlL/Gv/uqv3v/95je/2QF/17ve9cj73vSmN7mI7PdpXv/v+T2/x3vv+/ve/e53O+B/7s/9uWf8fZdxGR+tcUnxXMZlPIvxZV/2ZU977amnnuLf//f/ff65f+6fo9ZKrZX79+/z4MED/t7f+3tPe/8f/IN/8JF/f8qnfArA01JCH/jAB/j8z/983v3ud/PX//pf55WvfOWv4yf59Rl/+k//aT790z+d4/FIrZXWGj/0Qz/0jJ/7Na95Dcfjcf/3Y489xhd/8Rfzv/6v/ytjjEfe+6/9a//aI//+yq/8SmqtvPOd73zk9U/5lE/hX/gX/oVHXnvHO97BK1/5Sv6Zf+afeeT117/+9Tx8+PARNuI//U//U37X7/pdfN7nfR4//MM/zPd+7/d+RIbiw8cXfdEXPZIi+6RP+iQAXv3qVz/yvvn6+973vv21f/gP/yGve93r+MRP/ERKKbTW+NzP/VyAZ7x3z2a84x3v4JM/+ZP5F//Ff/GR11//+tfj7k9j6F796ldTStn//ZHm4WVcxkd7XADKZVzGsxjPdHi97nWv40/9qT/FG97wBv7KX/krvPvd7+Y973kPL3zhC7m5uXna+5///Oc/8u/D4QDwtPf+/b//93nXu97Fq171qo9JAeu3fdu38aY3vYnP+qzP4n/8H/9H/ubf/Ju85z3v4Qu/8Auf8XN/4id+4jO+tq4rTz311C/73lorz3/+8/nABz7wyOvP9Dw+8IEPPOPrL37xi/f/PsfhcOB1r3sdt7e3/N7f+3v5gi/4gl/mEz86nve85z3y72VZftnXb29vgQC0n/M5n8O73vUu/uP/+D/mh3/4h3nPe97D93//9wNPnwfPdvxqPjc8+3l4GZfx0R4XDcplXMazGCLyyL8/+MEP8gM/8AO85S1v4c1vfvP++ul02jUav9bx8pe/nK/4iq/g3/w3/00Avuu7vuufStT66z2+93u/l1e84hV813d91yOvP/nkk8/4/p//+Z9/xteWZeH+/ftPe/23/tbfuv+7984HPvCBpx2qH/48IA7en/u5n3va61OIfFcT9BM/8RN84zd+I5/5mZ/Je97zHr7t276Nr/u6r3vG6//1Gu94xzv42Z/9WX74h394Z00AfumXfumf6uf+aj73ZVzGx9P42Nn1LuMyPo6GiODue/Q5x5/9s3/2aWmLX8v46q/+av67/+6/47u/+7v5N/6Nf+PX5Wf+eg0Redrn/t//9//9kRTK3fH93//9O4sAAWT+0l/6S3zO53zOI6kGgO/7vu975N///X//39N7f1aGaa985St3EHB3fM/3fA/X19f8S//SvwTAgwcP+Iqv+Ape+tKX8s53vpN/+9/+t3nzm9/Mu971rl/xd/zTjAmqPvze/ef/+X/+tPf+aliNV77ylbz3ve/lx37sxx55/Xu+53sQET7v8z7v13rJl3EZH9VxYVAu4zJ+DePxxx/nX/6X/2Xe9ra38YIXvICXvvSl/MiP/Aj/5X/5X/Kc5zzn1+V3fPmXfznX19d8+Zd/OTc3N/y5P/fn9rTBM433v//9/MiP/AgAf/fv/l0A/pf/5X/hhS98IS984Qsfidr/1t/6W3vZ6oc+9CHcnb/wF/4CAJ/5mZ/JS17yko/4e/7AH/gD/LE/9sd4y1vewud+7ufykz/5k3zLt3wLL3vZy+i9P+39pRS+4Au+gK/7uq/DzHjrW9/Khz70ob00+O74/u//fmqtfMEXfMFexfOpn/qpfOVXfuWveL/e8pa38AM/8AN83ud9Ht/4jd/I8573PL7v+76Pv/yX/zLf+q3fuleovPGNb+R973sf7373u7l37x5/8k/+SX70R3+U1772tfz4j//4r9vz+/Dx2Z/92Tz3uc/ljW98I295y1torfF93/d9/J2/83ee9t7f83t+DwBvfetbedWrXkUphU/5lE95xuf/R/7IH+F7vud7ePWrX823fMu38JKXvIS//Jf/Mt/5nd/Jm970pqdpdS7jMj5uxkdZpHsZl/ExPWZ1yfvf//6n/bf/5//5f/zLvuzL/LnPfa4/9thj/oVf+IX+Ez/xE0+rsphVPO95z3se+f53vvOdDvg73/nO/bVZxfPh77t//75/4Rd+oT98+PAjXuv8ec/09eFVOl/91V/9Ed/73d/93b/sPTmdTv71X//1/lt/62/14/Hon/7pn+7/0//0P/lXf/VX+0te8pL9fbNq5K1vfat/8zd/s/+23/bbfFkW/7RP+zT/K3/lrzzyM+d9/tt/+2/7F3/xF/v9+/f9scce8z/8h/+w/+N//I8fee8z3aM5/u7f/bv+xV/8xf7EE0/4siz+qZ/6qY98nj/zZ/7MM37G/+v/+r/88ccf9y/5ki/ZX/tIVTxve9vbHvneed//h//hf3jk9Wd67n/jb/wNf/nLX+7X19f+whe+0N/whjf4j/3Yjz3tmk6nk7/hDW/wF77whS4ij1Rkffj8cnf/mZ/5GX/d617nz3/+87215r/jd/wOf9vb3vZItdFHun53d8Df8pa3PMMdvYzL+OgNcXf/DUNDl3EZl/GbZvz0T/80L3vZy3jb297G13/91/+y7/2mb/omvvmbv5n3v//9F83EZVzGZQAXDcplXMZlXMZlXMZlfAyOC0C5jMu4jMu4jMu4jI+5cUnxXMZlXMZlXMZlXMbH3LgwKJdxGZdxGZdxGZfxMTc+qgDlO7/zO3nZy17G8XjkMz7jM57WDfUyLuMyLuMyLuMyfnOOjxpA+fN//s/ztV/7tfyH/+F/yI//+I/zOZ/zObzqVa96pG/FZVzGZVzGZVzGZfzmHB81DcpnfdZn8emf/umP2GV/0id9El/yJV/CH//jf/yR955OJ06n0/5vM+MXf/EXef7zn/+MlteXcRmXcRmXcRmX8bE33J0nn3ySF7/4xb9iC4+PipPsuq787b/9tx/pYQLw+3//7+dv/I2/8bT3//E//sef0XXyMi7jMi7jMi7jMj7+xj/6R/+I3/bbftsv+56PCkD5J//knzDG4BM+4RMeef0TPuETnrGx2H/wH/wHjzTy+uAHP8hv/+2/nf/Pl3wV945PsN1bsKr0RdAqSHGMDRsbNgYiA1HQJpTjgrZKXY6oVIpWDssV1IrXhbEcYVko10/QHnsCvbpiFMVt4GPQfEP6hjy8xd7/FDw4wYdO+FNP4Tc3yPpLiK5I3TA1xjBubzrbw85203nqF59i/dAtpw/esP7Sh/DewTvteELrRm8Pefhg4/amc/PQUBMawqEVDkV4ziJcFeGoyrE3lqVxWBYOh0JVqOZssjC80ccB84J7xUXADfdOEUPUoHUcAwzvA8zADFs33AZmHQTAMXPcBHNhGLh5vH/ybwqogApSCiIgOLjF7zXDthsYG2N13ONbZX5JwVVABCvgIrjCoYJqoWpFlgUvhb4UtgK9wNYEaoVSkcOB0ZTtINy2jhVD6mBZCm2p3D9esdC4ssY9v6bJkVqeg5UnsHLNdnWP3ip2UOSgSDFK7RR5EmXF/QG9n+h95akHnd47p61z+2BjnAanpza47fjaGU+duH14w4MP3fD/fughp9PGwyc3um04g42Ba4FW8Oc0aAJN0WQE3cHNcAMb4Ka4K+YLJpVRKiIFQWlekPyfVceFeKo+cDdkG7B16APvAxFQUao5BaHNZ6YFWRQKiMbmoA7FhKKKqKKtoBLPTFHM43edcMyd7ganAZtRuqECpTjL9QEtQmtGqwMVR2UAjrjhqzPM6WZ0nI5zI8YQMPX4XGl26zlVxxC2DqPD9rDjJ8c3RzWn7XB0jJhfqtTDQm2F69aQeAc3KnSFrk6vgqnDNuCmw8MNPd0iOIJTdEGLsBwFwRB3at9QEYoIh6VSRTlUpalQVFhUUK2oNKDgqgwtPFxPrKNzu54QdbQKjz/vyNUT97j3gsd57ifcZzk22qFBN2zr3Lz/KU6/+BS3H3iK2w8+ZLgzinAjcAI+KAcedOPW4t7NNabDqQ5HoNGoWlgOR5bDQjscqI8dkVbQo3I4VJaS90gUVHAVjE73jYeHB1gZeIVDrzSr6GmhWqGMSjvF56RU7FCwqlBz/7TOePJDcNrw21tUCiqFxoFyU+AEt0+e6LcnTqcbnlx/idtxy4PxgMpGxbinynJ9YDke0McbXhUOwkbMw26ODceH46eR+xRYVUxhqOMYjiEmWHd8GOtqDDO6O74I1IIej2gtSNGY4yY8HJWTGq6grXBVYz9+4bHwRHOeU0H1hBWhHxS9V6EproVFlKMoz2tHDnXh2BakHHBXtu6sD29Ybzdu/98HcLNiN7dwA9Ibsh053Qo3w/mF287/OzoftI3396fobJhs1P4kaiu1O6VDdWgbyAAdsZ5jDVfavSvqodIOC3U5oK3GWu7GOK2wOjKEOhqFmN+LSu7rUBpIFfQApgXTwtoW1lJZS+XWC92EMZQqK2obbX2KsT5gO93w3n/4T3jsscd+RazwUe3F8+HpGXd/xpTN4XB4WoMtAHvqSUYXhjdGE/rmSDVQx1jjkB0DiqNFEK/UeqTogpgjZQHJP0tFaoGlIcuRerxmubpPOV5hRcAMH0b1DbYNRmMcBN8WxrJgTRibMnzFpGJ1ZdPBUOdmDNY+2Gzw8Aq2rdHXynYCHwMRo16tUDfWZeFGN261c8NADIoLhwKLOF079wSOCNciHEQ4FOG6KU3h6I65xGEx+jzpEBfAUB8IA3HDPA5Ld8Msdn03wzyAi8s4IwjAEcQlDtECmHBGKCA7QBFkvhxnEG6OuuPuKOcfWwlsU8QC4MwVoAIKi0JRoaiBxNbS3Tk5dI8DCid2J3esG5vBcTNGMahOG04bxrU5DeNozgGjyKDIhpUTVhSGoofKsAKuUAypncENnVt8PMm23dC3E+tTG30bbGvHHnTsdsCTK5w6sg7KUyfKw1vqUzeUp1Z0G4gNYDBwBnHIsoEPi5sgRsmPjwluEo+vk89FGPlchiuI7AexOIiDN8ElAN4gwKF0QzaDbvEcJJ6buOfhmwAEDyAvcgYoBkXy8nBE8vmJo2ZIrltNMFpGzCHMkGEJFhxGjbUdyALEYufMOTG6MYYzhjHEGEAXcHVcPQCBxIM2E8QEp+Ae98iYXv0etLE7qkIxQdxRgQZUlCYa1yLCVjQnoENLMFTI6y+UVRE3Ch7PRoVSEg56fJsKFIVa4qsVaApFnKY5lTUgnatSirJZPD8boApanKUJy6GwXC20e0fa1UI9NOgDWzvtyRVrhVHi2arEZ+1iOMKisTYcx8Uxh4HGmrW85R5/anVkOGoea7FEAKeHgrQK7YAgKIpjqIP44NgaVgoU5+CV6gX1RrUEK35AKLg0DIm1v1nEMt3ZVvANfBRqq6hWFmk5R/JwvL1l3NzQ1oe4nxh+ouqgqnOQwsEt7q8CVfBaKLGTIcMZNjAGNtYAKsNRqQFKVTCxnCuxDsznF9hwzPK6zXATVMEQLJ+fV8WrIIdCa8JS4epKuVfgujpaF6xCP1T8foEmeFEWURZVDq1xKI1DPSDacBfKZkRkMBgPC2ModMVPHvva5ozVsJPRb05sY2Mbnd5vGdKR0lHpFDzmn0CxBCXxsameQYYqrSqlVmpbKMtCaUvsNdr3ZyUmqFXUNOa7JuLFc5MSqAIZKGlplNqotdFQSi71QkXNKEOhCKPIM57/zzQ+KgDlBS94AaWUp7Elv/ALv/A0VuWXG+uHPohuxmYLo8JYDK0Wu6r0iCAtdlipioyGi2G9gznUAWXQpcAAH4pRwQpWN7ydKK540Xj/MIyMRFfDNsN6bqrm9Dw0DcFc90jwlBvhVpWtHegHGAfHr3ps2CL49QqtY61gMrBq2OKxqZgyisfCkg0Xi2iyK94qfqiMo6ISUaiZYib0zXB3cDkzGmIUdVDDS27qDiPpDNdYqHgsYJ9zyDwX7Ywn4z0BfBKNJOqQRCfi56h3bglIROdx4Aki+ZXAJlYTAXRUKBWKFDQBpGjBS7BFEBuHW/7iPKkKjvaBq2HF8A2sQT9tKAlspOGioCdGqZg6o4NtBesF74qXgeuG+YfAb3B7kr7dMrYT9rBj3fDN4GGHkyE3a7AH68BvbpHbE3K6DXAyYos7H6Nx2AYAmTcf5u10F/BgTbzHv90i8jOV+H7Jw2j4/iB90huiiBi4Bxj33I5FdrKreICPQvwp8/bH2Ulx3/FiMAaKmM0LDGCbAGP+3cbAN4eek8ocFMa25XwxtIyYwxJAxt2xNdZQAJQEcCIBUMRhjJxXjnusLyeZJRNwSVCdzJxI3B85z835+UTPAEVKic9bDNEAaOK5o5ecrB+m0jur9jzXx+QC59/j/giCmAUzZYkO8psl34OP/DPWlAvxfDUPQy2g4MXxUnApOLIHITYCsBoSsDeZTRWPD+txL1QkAKYF2GPk6dE3GAUZNT+n5X3bP2EypRHARBwRM0K6IJsgXZEuMAS65LoSpEdgIm7IGHg3/BR7pnVAHFWLgGkzWDv99iH9dMO4fcgYtwxfGd6D8VXoBtoD/M7nDppzJr885pFtG96TTcHxEnuX7eumMHqC4+5xS4yYtxrzVzRAj2i8pAhFA6jWogEGClSN14sIKoqoRNBTNH5vjfummod6CWZJNACkANoU7YosFekDtoZpIFgX2YEUY8CwmFtjoAzwjhanaAJeJOI9j30WASyp0VJwUZxc6Gg8s/k+jXMi1lfFTNAEb7nzoJ04t+48A1BE7nxB7j15HZ77hj172etHBaAsy8JnfMZn8Ff/6l/lS7/0S/fX/+pf/av8oT/0h571z/nQz7+P0/Fx1usDXsGXTqsdVUP3T+Z4bZHCOSyMm1vKsmDHE96OWFvQU8frkV42+nHgbUNulPrA0OUhXir5mCnSIxJeV8aDW/xmw9aV0TfGGJH+KBpoOzeb0SQOfSWijXKilGNGKaB1Qa87vgxoN3ivsFW8N3ClWuVY4cDgvt/wmJ24ss79zajFqQWW0ik2KNuGbx3vg+63jB4HKVhu0EKtNTbmQyViz4H3jrvhPrDe49Bwz3Pfk12ROByy+MsnunEPIAjsQGEEdeoMcMN8xIIpUKpQRKkiFK2gipaC1Lm6JFI8EpGHqyJa0dIiOlbBiDSRzsNqxAYp3ZHewTcCThpWBpsqXaHRWX0wWqGpsxTB6sDLDXa4YRyUcSiMBUwH5rf4+EXwh+j4EG4bPjq6DooJmFJOEd3UBxu+DnwdjJtbxsMT9eYUdCsJBEjaHbBkOLi98x93gAKwABVM83nE5zZxvMXBr5KbwIiUg0wWSolDKngGRAX1+G9B2cJijorTVNCqAeKrxiGtUCwARhxsudsNBwvg733DPKlx6wHS+0jGRygWoLkLmBuleKQHZKASbN6cW9Yds6ToNcGJaHxWMVz7DgFMBBPFSsM97k+ikrjGoolV41ATHC1E1NsUOdQADRJRpItTdODaY2P2EUFJKZguqA/MLfYAi3k2N39L4m8uCDGCtRLfgwJVpUiJ64JkZwYyOmxbpJVcMtABc8W04qVBbRmhFqhHrNzQaaxWdsbpZBsrzlaFMRw30AKqFWaKCahjUMwpNlDZUAz1jp4Gqo06DhQKRTQYlnmojA1sQ/qKdjDLz3Gr+Krx54g1aMkM4RKnvXikd3rsMf2hMbqxdYMNRJ3qjjx1ggcr24f+CdvtDdvpIQ95wIrxMJdFAVbgQGUpC/WeIrUivrCpMHA2WRnWYz7dbvja8c2QVgIYHAQrsVf5aIHRurOe8r6jsQW5UdWoorEsRSkoinIoCk1pS+W6GFfFWVQTpChaBC0CpQTIrWDVaVUoJQFIqVAbRaM7tfQAmlKFbVSkLXg9MPoJV8FHg3VFhlOLcEA4IhzNGAQz2xIgtUY8RzSAxJAIZi34aq8F1wjQjFgHUEALrhUvFZO4R2YF6aDmqA+U2DOoyQyO+JzmhaIV0xb7tCgujoyezJ2zI0Abz/qM/6ileL7u676Of/1f/9f5fb/v9/Hyl7+c/+K/+C943/vexxvf+MZn/TMe3N4wdKHXQHJiA+qgFo+HkqGPjTwwPWJ5Wzu23jLqoJQT/eHGKAtdbzm1h4x6wA4PkasPIe0A7UDRgpZCa4a6ozbgdo18tW+4DqiGFEVroS0gNQ54M8W6YB1uj4IdJA7AajHxD0fafYVFuD4ONj/Q/cCJI+qVSuW6CUcGT4ynuF4fcOy3XN+eKGJUddRPcTDf3rJug96Ncuj0PhhjJO5N7cHS0Kq0Y40IRiaYiIh7jB4phcl/uGO9YzP3T6J5853O99SjRFAY6TCGBds0DB9OoaNitFJz044vUUFVkTLByUT2kf+Og6ogOpNDcUhihm8RIY3hAbIYDDa6D4YbBqARCW3SyX/SDzUi+dKhnJBSkbUht7H5sJBRxIqPDyF2g/pDGKHPad0oLhiFvjqlO9upx9zaBnaKuSE9MwjEYpvgRMi0hNxJTxhT8hMpstznlWA+iiiWm4i1htaKitCGozOiWthpEE8GRcWQqTuSmVKDOiyuS4m0RfEdnIjERiTi8wKYEZakbgmJDJ5qrK0uSf2W+P2xRcbPaCUO9UKmReaHtvjemQqcm1kwyMGA3PnPALiSuoi8WBQtijAiM1dLpgziYNEJ0KqgCZAnkJPiKZ06A4ogoARqaG5EQMYdZm9nqECl7ikcTWZmJ1V8rh+CyRELcOW2BwA9o0kZ0OdXd/pmwbyVYAusG92czWAzYTOhD6EDt91ZcdbI4jEmA6cREIhGOkpdIi03iCCux+cuq1CKUzdhGQvNlMVHqppg+MBG/OCxVoYovYPdKmVV9CQUg2YTDBtKh21kwLNG0DM27DSCdTPFjZhH7oh3YGXzExsnNlZWnBOhr5kARQE1QUcwNNJBtiR4JYgeRtxP2Rw2Qk9BRvEl7oOLIF6SFYk1E8xPoRRFq7KURiuVWgvUykKhUulJUxQpLA7VAmy5CcMFJxgPHxrXMSLdqJYMioO5M8zic7tgwzALRSClQGvIQeAQgFN6RbeBYtRNaZuwCCySZKV5PF/X0KZJBQmgPqlDH8GauAZbN5L5VLM4z5Bcj35mw3MvcIzBXI++k4HF5jz3ndWV/NJkScV77NcjJ/j4GGdQAP7Vf/Vf5QMf+ADf8i3fws/93M/xu3/37+YHf/AHeclLXvKsf8ZtD2Q/egMEdUPdkuacAMUxK3FI+kDYQvy4Gb1slFLop5WhC6uu3NYTvTS2dkIOD4PlWK6otVJrZTnMjdbRU4/I1Sx+rhpNgCpoU0qLTQ+PvGXMgcpgMLwyLISO9biwPH5ADspyVIYcMTnS9RqlUqVxrwlHOo9vVxxvF9r6gKubGwoW+o1R8W0Nvcxm6HC8QR9GHxYRoMSG3VqjtMLhWNGSiNhhph7GODMok8IfW8cSCEyAMkZqVzwBjkfEPRKUxG6bAGY4VUI0ubQWkYbqTj+KRBpubhROsDWime/PAyEOMQuh8jDEekRojBDHmWVqL6NzIk0Q+hVj0AkYszLKwLRDWWNT6DWirCoBUsRw6bjdgq24b4h11AZlGELoNugwhmP9zikzRlynn8mRkvNW8xAzyS/1HaRg5z/ZiYEEa5LpxqJYVUpVVJRFLTYSI5hDOX9vbP5Bo6MJUoPcpfhIgBKCzpmrnumQeWhH9ukOQJHz75DMS3TLTVAFNES7hRKbFRH1haxIUbd47snIBdaRMzCx/Pku+bsj7ejzq+YFWAAhkZhLTpw2pWlEbOIxb9xDxzTZuxoaG5cEV7Fto3viLT+qCtrk/JxLfB+p0ZkHuOR7I3WUD9mnSPVOSnTfkfK5R3KD+HXKSAH6GE7vhm5GKbm+eoCZ7tARuihdlM0sAAszQE3dksx1k8/M5RGqXdwzReBoF7RD6YXSO2VUig8kJ5Fb0vLDsa4ML/QN/HQHoHgA7FbyPg4D23AfjHWN4GGMTLfETTPO+45ELpshgyGDjrEBPb803sUQDfYsBdq6i/VTa5TKYPM4RANLJ6BRQUzxQCQIJdJfGoJ8pyClUmrohBatAVBKCcY5cm10jZNbEZqHAJUMNObc8Q4+BOm5784nLxEwD3e6D0LXF0FdMPAe61w1Unq1QANvAk2QESC7mscXM8UaLGekiyqicbbsrOwZegd4gkzlewKUYNJnpCT5jGIPCKAxdhBiuV/FXBPi/nsWROAj170h9EwP5vO3PJ+f5fioimS/5mu+hq/5mq/5NX//h4qwqmPeoUdu8rQ5VZyquWIwhm6RdqktwkWVHeXFJlQY2uh64EYbm1ZO9YC3I5RGWY60trAsC8vVgVKUUktEgkRkWzyih+vitADJNNijM5cUQs6qGQkxnipwJcgTB+rxQDseqeWAlgOiCyqF6oXr6jQrHG9X5KmC3Ag2tzcRzGvoYZph3oDGQe/TkrYcOekEqFVQdZbq57xpaTvSHpZAxSO6tQQofWptyNfcMLNUynuKypy+bngfWGovyP/eJASvV4dGLRGpZMwQqLzEhjoPojxvdsZBLejBvm3Y7QnfNsrDW+x2xeQUbIoNdAzqNmZwFiyABLcSS0ZYvWfqyPeccVD6kTEYVRkidBVGQDKgUswj6jI5MxsW90W67xGsEUK1UeCY8gND6a1hRRlLCTGojNAceYDIGXHbLhbONM6M0GvJCEspJQR8bW7AJkHNZ9Rj3nHr4CeQBG3CDloCKHjS2DUZj7qDjsAzcfC6l6gE04kSBUplJNjxOhjuRMo8cutVkzNyaFMD4ZHakGEBDi0iRyz1EZZiYo9DO0BL5Ok9J4Z4BY8oUUtFckOPk8BotcaBYBKMDE4DDk05NLi+mjOuYw4bsUnjwY6K58SrUK4UWSLn7js4UbSwAzpV33UJkz0JvVCk5YQKUvFasKJYq5hE5aFhASaKsLUDRSp1ODe3neESQmoPRvLUN04YpyasV42+KesonMRZ3RllCVDvKYQWjdRQQi8TRUtCprxWd8e7Bdt3u6HHDVVF2xp0A5r6PMF7ZYwD3ZR+gnGbGpRNKRLrahQiyvcB/RbGGmt1JONZys4QWLFIJbilPqKyPrawqbF12PqD2Gti14pKv3sHuH9A7jfqAXQxtGy0knsWHasdq0ZvM9WnSF0iAKoZhKggeoz0sCvSYr5pbZSlRAVWFZaq1BLM2ILQXOgjkI9IpsgYyEZUGNZMq3QJ1qCPYNKrMVpB2uCmCaodlY2ScxwzejdsOGtfAsQYdBW8gDQYS5z1WgZl3Wj9xGFdkbEhPvagr3ilSENKxUusZTdineXGOjBcI20jtiHdQ7fiIBaAXovgrRCUVADuAPIp5vfYc2QEu60buGxAMOQBgDfoJ+hbMmkjJQfPbnxUAco/7bjZTozbgq1r7uXGJk7VQPIzZOhasBLCV2pstDKjztSFmAw2dW5lsEnhpCNEkqXR6mBpG71t9NuBloLWmrlJQYvuFH4vQWcvDZbqu9bOicN+9RGale2E24ZKRBo64sHpRmyyGukIc2G4RuGDd05jxUZs7MU9yzUjsvBSsWaoHBBZUL0iuZ4U4+ZhnffGZFDiQ+BlYVdIJjCZFDVGpEJGsCGR6s/I3EL74COYDTdHtEI3pIzJN0eUXCJSb9eNVgutZeVIaiW0TNHsGaBMUBUAJQ7Zvm4sp4Vt3SjHxna7st4ubAeFvqHbibZmVUgnYmMXbpNaNJxtqbiCaN+jhJLFO0PjOXaUkxe6xbIcCM2gmFK8JxOSAkRxpMZhPUTg0OJelhFKdhPMogRvlBIRTtYGdJ8AaOwpjYh8Q39QRBApAaT2aMwoGdtXLMWGTplCTyGp2oSAGU365GbdkRJqoipGrRbpj3aOujXKgdgDIxTP3Iznzw3qPIFHbmCSh7eUcefpBVBxD0YixKw64XqwdeIMmUWgHjqujDz36BhCOIyCK2qZrknWACTA0GTlSqSZFoHjUji0ytWhJBA0tuHo1K8mSPIU7oJTapQtlyJYMkkuut9jSVYlpFFyTiUk0AmOMKpVrGQaMwGUqMScnuuuNkwLwwujK70IZZNgYA06ipWKLQ07LIxi2BiYJMCThZpcTcm5iaQA0lPk6THXJ8ASyUDOQEyRpOG9j50tk5HA06MSxL2EPo3YOyKwCFBKK7vqWqnxTT7ywE6KTwtWGqhl6mCAdFwLvVZGrYy2gTdwy/R6i5Lf6wNy3ZCrSrmqlEWpi0INQNh7FAkMV/wYpcWunve9IEvBK5kCDXAyPJ5tAJRgKEWTPcj5re4U92BMUvhdXBAJXUZ8m08JXay34bAlwzNsEgls45xyLclrqIU2xy2Ez2NE+XwfEqyTWZTg+2B4x22DsVLGRrWBEXoZVaFVPZdHu+76R8bY99UIPIOxkxF7eVEN4XzOIU+Waz5rc981KGWKwD1TVwZlREpbcEpW7Hnf8F0XaTAF0s9yfFwDlIenW1YLglZwihtZds+yZFmUOGupsfDbgo8ylYVojQ1GdVYOKLfidCncklkiMQ5FgpmoRj8pUmZqJOnuopHTF1izxLAVWNQp4lEiS7AomzhuKz5WZHQKIYb1dYtyLI9NPRieFXHBTFgVxhhs24mxbdg2gobNjSgACkCjyULRhVai5A8vkWuMRDSeG4Mh2Iz8SohVfT/+7mALB9eyU3Q+efiZTnMPkcCMhL3EQSbjLB5wom6+Ku1+Y1kKh6ZxoOZGORmBWQZL3Inz31OcOdaN02mlr51ytXC6XWm3J9arivSNsm0st8bYYNuibHCYME6TpjT6UfFiiJxQ6aiMuH8aIs0hsbechnDyktVLheHCknljiPSIYlAso2ll2AAMqbHhWQcdyjYaSI2qManMElv1kUxSHjZktK7BDkSFjZ4PQAlaVQkQUSWLINV2Fb/cuYcW/Pid6pPzMwmA4tQaAK0023UUwVrEBmmZmw7x6tRznSl6EqCEKJTQThTInEhUxvgEOnlwesw3I9k4jzk5RLIqRXekOgnq+K0F96C6dFZB7OVmQkWzBNf3VNVBhaulcmiF41Jj/jus24h0qCUY96iEi0qDEPaWEp4SoR+JA203gykJVkqkCnSPiyahLlHiKjXBTAo7JXUJHgwKRfFacalRATgU6UrR+fDAvDBKxVvDjlEVYz1Zt2H5yaMcuu15uEgjuU2QZ6iEkFNmBJAAZdcI9IFttut0NJlINaFqAEP3AJHz2lXzUFxK3g9FtSEjDnGpGpUnxNy30iBX43Awqbh2erIQ1go+UtxbCnII/6oJTuSqUq4rrQVAkRLrWjenW0G8MA4BhEUdmczNQZGS2jY0hOcW4YGKRPown61KQOjgoSawj8BQXDJwCH1bK0KthM5pLlIjKvRsavHCu8dsVuZ4kDlAcYsqJ4NhUUpvXQJwZal0N4sSauv4WGGcKKNj7ntmuhQSoChSIrgiWXCf+WOLgNI8HjkOFGi5QezVxGR6n1yGFroSJbVG7qhppIgGyBixV1nMwWCQQqhsW2d0Y2Z8nu34uAYop9NK7xvFU1VfHK+5kaQiT4piDawItgi+LFAKUsFq6B5GPTA40P1IZ6F7oduCyzWwMMo1ozS20tjGPXxE4sFnjjUjYfHBwTcqg+adhY3CoOgaWgYZ9OaYr7iv8WClUMs19eqEtCt0uc/1FRyPTm3JDLlwJUI1R1en30R6o8oJqQVtja6RohEKBxHqgMO2Id5j8zZD1aklAJOK08SoNXwdZnQbwCTovLm23KN8dPQeCnm3oKZTPOfucaK7gEkYsfWIFmZeFITNhYNEFOI+EFGWjDiKBoARFWqLzV7201hjIyUoWx0N1iO1O347qKvRVmNZN3QYSw9W0baoosz9gcNtp7uFCuXoaBnU8hDlhMrGIXcLL0qVgnZluy2cHkiAnbGh40QZK3XckucsSlKs1s+M0mFDeggd+63jK5QbwVdlmNCl0dEAliqgUSJfiu/shWiwGYWBapRklpLMRyHoegUVo2DxZ9UUbArMklRITU543pxluSMZPqfVQimS3hTJojgBTnp8hXDadoH08DC2Klk6bBbCOymxyWupkSaQgnoFV8w0wYojXWJTHo6tI4SoPSJ5dcLczAx3o/pUIcCQEjqEyaA4MAbmIz9bOSuTlUzJFDQrDKQsSJZmli024BC+QxmZzsn7pcUoWVLqWgKPjwRncAb6CawQ2YEakNUMYUgWeiPN5x7pRFrbc0WmMR82K6xbwanEFh05/tUKncJohXGojOrYSHFnjxLgQqS4m8zzNLRie3psT0lppp8nkxJr1EccjGONOVRUKNO2xoNVsOKMJXyGIp4KzUatBS9RIaWl0PQ6wPs4IT0W4+kUB/UWJjfAFMyOrDJJ/UQttOOCiVBaQ5aGNKUcFbkqyLEiV0sYzC0NSqYtZQ1AhaO94gcLkKBRuUiLtEcE+LpXpc0qWzRE0YpQdQTw0AgCTGONW5bR1snqFKEuhaXWSC8m+AfFVNNPagpVlGFR9eJSMA323ZxYC90iCO0hlt4ebNjq2K1jN7eM9QT9IWo3VL/hWCN92QvIwdEFajNER7LfmqwM+NhSJ+KMHkzdluydlEgZewaLkxXx1PDYjEFjc8r3xTkcACsArPTJsFikcvt2tuPYdC9Lf7bj4xqguCZlndUDUohy4+oBPkr83avh1WEBOeiew5/OSt6ugCP4FcIB8YraES/3ETlQ9TrU+toYdh2Oqgbmt5gNuoVCXXyj905xp7rRvKPeKbKmf0mnL477ivsJRgAUVSinitaOVOPmODgeBq3dZNQjHPGYBCv0U5QRt9LRpVGWA1YPcSiIcxSnMlg93BLVgWRQQsIQZZ41AYqq4lJ3tmRYiKCmfGQCFBtngBIGbyMreRwJLhUxYWySOesQpUGAl96dbYNalL4JfYNDzU1QoZUASyP1FRFxxkrwpKodiUDPoLuzomwqbLXQvcbBXTXo+CoEGhLUnNLymiUAipSBlIbKbbAo0/2ppCajC3qjAVpWY2wneq/oKOgKJoZJluO6RLqGEBBv6gwddOXs62F7YRNdohpq5AEeRmQj2AeNDVIzVVGIyCUqX5NG1qiWCJHfTPUFAA29CnHfUAaFxAShaUhWSjICVI17VopQdoCisTtp+O8Y5xJz29X/Ege7BwvnFpqLEA05Us5rMykhRoo13T3na7q3ZvpN3FIMndcgoUGZwtrYE2caaupayCqyTA51T4+fc7WBa0bKpvQRPyP8VM5eDkKk0IpIMEVOCu9Tb0TZ0x4kgxSl+emoewdEJb7LaoYAAiEuz83eU1A5H0e+PwIEobsirqjNQzyi3RCuB2hz4hdJegaJB5s3mSY8QWWK1H1WaOTv3P2HdNJuDZOKeEWszOQhxUjNUlaiiVHqYEh6KXmmBzM4RBXRlqm+SPntLtHbKVKv5vucmglyI4CcS/h0aGo/pOi+F+ypNZ3xUIhmJ2Q0JIFgeI/sn3WyV0sJikBCcOoSbMIkk4p66t6mp8g5bePGLiJnspoa11lqgLJSyh2lrID4HX1UpE1Ik0VPljBs9kJjZTbomzE2o29GXwOg+EZqODbMNtxDnaN5H0panKgaJRA07oZ0RS2EudiWi4H0NLozBzxEv1NAP7/izZl2V2GWPfndLwnhbUXCN4wIVElmUzw9UZj+KJPt/JXHxzVAkTuyCRUiZR92kdjRM4JyrA28GRyAY0HqROThMyDLYwhXiN+j6BWwYNxH2+OoXrHINcULxSu+HkPXsA7GeID5ytZXbLvB+gnZNnT0oLusI3TEV1xOIJ3RHPMTbiesp1Keji6GlAUtD7iqK4d6YqlPxsZgzuI9cp9bRDdmcFgIUe3VFRzuoUWpVThKo1JYepbR2aTegz0p2iMPLREdqgpOjajYHDPLTXQKVmPhuPX4k3NKIja9ACLiUativUZJW8/XMlVwaJ1Wje12cGzOscExD8ZaJAEKHJYS1RZFU9AWZcamLQW/lW7BRKy90K3QvTBoqBQWbWn6BhTfK2TtmNcuHT8IVIN6DboFOFjSTbjWECt2oTwAloHfdrbbB/j2kLFVepHwBfARxlEmMIJNM/eIkIm96tadW3dOw7k15+TO5p4bVKHUFs9DlZoi1zB8SlGaaz43qKmJ0DIp+KCwy3yeddLOuXEQO1hqLZl7g98pB5Ti4UNTlFLbLnLFI3UlEkyL+wSys0y2Y1nBs8zqEfM75mjTz0YhD7uRupIAvRYGZFvohaJoRzNNmHokz/StKIm5IqKDTFMlH21ZymhTfBtAyLJMugNbiYlgdwK43iUrX7JsWIVaLa6NACixkTtRuhlA0DL1FBVk4SfRybUkMouwgp0hcvfhup5+Lz5TqFPvFQdKRKohOE0jJWZFUFTkDcbocUiZ4F4j8E8QVDy+QrQ+GD0OvF1fI3Fh+8GvirSaPiENkyMiB9wP4AWs7NUZQqdkSgMd4R/kYJ6O3JqshBeccJwNZmJW3girr6zDOW3GkGjBEdV8G9HUYyFq8+s8487ARD0VdQG+IpjyXQxP/nt4iECteKTpS3xWLUptNVP/YD1TgRLAJm8NNbmrCAYkU4Xn90WRRYq0tVBUqaVQa6GUmoBcwAtSS661MNgMjx/NfX8GXZ56EMdGZ729pa+dvkZ7FNvAT4KvK75t2LjFLHyemIUWlV1TVmyFEbq7smqInC328Llsipd9jQqhiWsSerTCoCZQQSRBkOKks7gKozquKYrWWDddoqow/IfJKr4SKTaLNJyOEZVpz3J8XAMUv9oDs9hczozy7qEe5WO5mMcJxmGP6JyacynoW9eG1ysoV2h9Dro8By3X4MdwHRzKVhbG5nTp9G4MEzac4YFsQwxGiMqMvZyPZB1s65ka2rDRMw/vcGtMy+AbXWl6ouqTqEUlzGJb/JwNbMQHOx6UdlhohyN6uIfWQm1KpaAulHVWRmTaQCOfXjTKwJRxLnkdEnX4GXHtAIU8eDKl4xjTxEJmvw+fTElFKNhYcCt4r3isSNyh6YlWOh88njhUS5BSgkKthVZD07EsWUJbQrPiJbw/Rsk+NFS6VQbKaguDRqdhckCpLAx0JdBBinoRYXVjYHS1MHUrzrJMszvhQMkKkRqVXB0+1I0nu7H1DrZRfaPQqdJTBxJsVP6ygG5T6CkR150In4objFuMFWfajsWmGCpNSZ8WAXbOWYh54wPxnmXdpE9KpL48fcyn74kkTR0AYd4GTR0J54h96n/cGZkP6V5RL5mGiUjd9oRFXG2cBRb6lFkpk3+GLGlGs3Eguvh+HVMDNNNEvdudg3eEyt8zukaYFvclS9RnBDsyKpti7uEhHPe02Bcm8xaAYEi0I3KBsZIsj9IdHEWkZ0WbU7yE94cX6KGDmQeYi5wt45OSciXcQt3Cs0eDnZrA2MXSvVRmFjTRSVxr7FOCj7ILdB32ewe+gz8b4WA91hBfGx4VOOaUIZFum6JlCxG7ph/QJLJcBdvNxKZJX1jce50i7vgigUVgTom9Qx0pneGWHyNSh27G2s+VOU2iJFY0zPyGOU+asw7jpuck1lminL2mJNJcQzUYXJJty4fYu+O9YN3ObQKmiSBnFsoEtnwGroQpJIJYAByRybolxTYprISbc67tQlkg9ESFc9pSU4MhUWpMsGMBqoMBjBMmkoDDQWzQCWG0a5aQizMNXVw2nA3zjWEbPYMAE41zjC3KsEtU+VjL86+kZsbDRTvWrlB6CKxLzjdP+ml3jtYJMNJuAJ01X+f1W7IHG2cWZdQozR6TuZHJuASHKMlCIiXcyYuFVqmGZ86zHR/XAIUW1J2m7lULSXHH3+fknGW+5rOE0ZBZmkBWkaQQQlpFSkOWAxyOUK/wcWCM2Ky6NYZ46FTWW4Z1xlYYmlSjhllOiLDO+otcaSE0TZ8OG4PpEBoawni/y8qQlSK3iA10GMNCs8IKeKJUEzySlWiPKNiashH0HbdRdTPtxkWjGqFoNGsrKQATYHTfAcpItffIKotJZzMt9tPcjewBMiM9IRuiWcetYKOGKDkvo8kNTTfG7S2HOjgUiwZrJXpDTAZlqcGgaFG0SYDH0hjlEABFGt0rg8LmnSGNwRJl2xiLgGyEOt0iDYKmoF6MoQZZktvMaCXM/VYfwYSYsqmxdni4DU7bxtY3tK/Y2CjeGTIyHRHMxQQIQzKyk7N50ZpbyyrhbDvt5CLSUM5J67EzHNPAIBj5FDVnWTe5H8tMn1j8bpcw/pvUbbwWIklLpssT9GTOYn/vSB8TyfJpYQpkBRu5ee+RfqYPRqYaLER8EbXnQbqDjDiwXCdo89Qw5VzrHg3KRrAWY1rf58ZO+imcqeeQxOfRHPcoGRnSbj8uQs/XKvH5R9AZ4UfksR7iJ1tEinGE714nMAma6JkzA2Mgq32yki0Pb4h9xl0mix/XlmnoLIqKh7eLy/3MBNmdPYkpVz+Lg2FGwo5vA5/MQQ+AEim3dBRmpM34hHrzI8md62Dn8tPv7vx6AilNkMf8iPlZRGat1T47GWasdq7BshEpA/HBGFGFcjLjZM5qvnv3eN5o95miiTTN9N2wRBwuBKBL3ZKPZBNtVgLGXmf5s3qK0D09sZxIlZICZhsE4Ntt81NISp62WbI9790EKXO5SjJVZKWN3XluQnoLObvofFZy4rnwPD6h7Gt/in2yrHfeR+EsTp97TPaMssRWurOCcx4FE0lsTXfyiex7zBSQTxZJMmU6SUmfz8KDFezE8/d4HPtXrtQoDpXJRMV+UnaQmGsi2bBnOz6uAUq5PrA04ViFqnDQQZXo1kuZMW2U57nMMsEZx82vvn+pWuQtm8JVC2v8ujDsEKh9KGttWId+6HS5xVpQyl4bXjvLcqA5LB7iJfWC9gARPgZb9zDkGYMtBbbdZV8Y4TCcLqgWwr06AmmJR8XFRPYHBm0YbQ1x5oTCm4dOY3vYI9/r0b9FNMDcEq7bHNRTn+KMLZkTG/QxkmqOo2rGJrFAnHOpQi7JSWdOUZ/3MMezFj1tMgda/YYqK0/pQ1rpLGq0VlJgF+mpqAbUc1VEDeTppWH1iEtl6MIgmJSNAyYLQw5Y2VCpLHpAe67zYSk2JUyeMEwG2hwtTls6S41y63pYoFVojVEqfcDpdrA9vMG3lTqeovgt6ieqnWDfXEJfZNLTdDq6+loq7sNgKzrMBkgB41zevNurSlLmIrjV8K1AQlBM9NwYowd9qrB3Pk79imC0TtLP84yem4ztaYl5GKFnZq2PTAEOmL1qLKPiEaE6OFHtFDt7WqAn+pwahzGrEILlCDvtyrn/BzM2y54p+XXqqXMauZcKyDinoSSb4xHlnRmj7hVFKh6dj/M9sVGTEaox1KFHI8Lo6xKgfXY+jpJgQ/ddIw6yNa3juxOVSXlahRjaQmApHnOtZqWVnsvl4/3p7qnsm7X1Hqng3uMzKFFh0iNtWGVQVWmlID4hQDIu68BuezKdivee16+7SDtYTvYU+M42Me2zxp568nn4oaDTH6ijQX6G100GdZbPwzA2H2wGt70zLCqPbrctDrcilBG0PnpijI0xNh70QbfwbdG859U8nafHvgcNG2xZoWISVUPBMhk1Gy62YxQARJplhF4o+9T4MLYtfEVsQJdIT5mOfM6OW832AgO3gnhoz1p6jziS3jdzLWXlmQiIhTGjBxAbHoyslNAVFi1hN6GTsYlgBkkO0Z2xK5QNlQ1qR6xTWmjV1AhGXhK4DXATRj0b2I07AKWkJUASsbjL2fzPw79q6l5mzy7ReW3hkTSIAKvnfOmZHg6/oFwWOgOC89kw+64NnKFxXT01XpIT0VINrNWf9Rn/cQ1Qrp/7Au5dL9w/FBaBgwyar5TIQAYFmU6LUeewxCFXKqO00Am4YGOgOlDvdAZFwmLaq2E1Sj+thpOjHyQdAitaG5wGcrUhp46uzmPWuZLGfW0cZUF9RTeFVbGt8PCms62DbR3cnJzhwkZJ0VukY4Z7Cvoq1aM75XWpNODok64kW5DPhxhmXyNL2fqAbR2sI657TJFZid5ASxFaOYv6zqZsMbmGB7DJHTaOlKQj9z+ZpZkEK7XD9RFRZPZaiZ/rDOtBWcpG6XGfy9qJDrFKKXHo3q0s0EIClIqXNZXvC5aius7CkIZJw/SISqXpEmVvTlRKZX+MaLYWEb2qIcWotVM1xGYsSxo5VbyUOHu7oestOjaUh4isaAqeJ+XvHn2Mwh0yIrfNLCufYkMe7owC3pKO9ej/UtQpdWS+O8rGccFli3LtjPCDQYlUjwLuule6RvlgHKriYz6y/dAxmWkX32ld0dRnpHZgWAA5HWPe/JgTSc2TOYfw7QmQoqn5kB2gsLsNm0VZ5MyxU7YzK8HZ6t2cYO76ODMxxK4bTe5C86Bj3KHc4wNUSaZFY35H2bxmefOMmYPRmL1vRJOX3qn9mN3FB5WeB3EH78BgM98xmKZouIjGMZ8URsEoDtUyB+8a7SeQ8zVLqlJy3YiF1fno4X2jee+LDZp1FjqLCE0UlWCqmCxFN2QbzL4mMnr6m5SMnuOeTQFsVTmnSvJPs4jMw2QxGV6LHlYhmOxngBUCpBAcM7VGsHZhHc7N6mzD6DY49R73vVtYzauBnGLu2mC1HoxeS8AGwTpZcglNMSvYKJmWnOnATCeL471jq8BpjXWEU0rP57ghI/plhbOzR1VSpqcdUEkQx7iT1h6Z3BhYtk6JU5+5yICCe4n5bEqfeTOIPk9ZylxKoZaCt/TKKk7RbIciFnq6BB2TAVSJ1Jk2ZTm2vfLM6PRNYCtRfl9K7De6YdrptgUhhwajZLknJY/RTRIsQL8jzI3nGpWBrmMP4KeYZ6Z3NnVmY8pOMrYi+x7DvleHh9HeGiMDV5FI6UjOMTHPdNizGx/nAOX5PP74NY8fFw4KRzrLWFHvjNHpY9BHZ+skkiwMDU+UroVNQtg2zEPrYR2lM+igg1E6UgemhteoAJhmUGJhi6xrg8NCOQ3q5jzG4LHSeG5duNaF6ms47N064yR86IM3nG43bm8KTYzNhZXpGBkpic2cbQh9FCpwQLlqylGFa43S3AqUcUJHR9NCepjFhpH767bFv1eLvQxNMatmXxutO7U8UwQumvAuBH5zbfrcx1wyApj0dwCQ3Vr8EU5x5t6nODCilcGIDfAO76ga6Z2Mi3dkXhRQxbUStEjB9IQnQBkk0KTh2lCpVI0W4UESeFYERZMuJKpSVEawDtr3fLPVdraXLiEiU3OOdoqycb1FS8c13SH3coKZlvDdDqan4Dhy7xavK0iTMECz2By0DEqNHkWq837ILkjljqiUZDScTB9M6tjPZaQF2ytIPBnDqYWBBCe5z1g+MzQs0iMVZnm4S3qTkM7C8WSKEJqDkT08PMWXyaCMTrZAcLpl+gVHyxZMAr6D8Qle3QPYBB2/w16UkRVN5yqlEjROzC+Zhm/hUDwrjGKDDBA9LAFPpndl9AQocVCfvS56WAIkvxDAxmZGI1IrZEVPphI1AYoC1Z1q0wsHaqbKzloGApyktb6bIeb0kY6zKpThFDOqGwcGC8qSRmDTanx1j5RGN6QPJKszxIMJm15E02JBM60jJB3vkerbq4FMMtdBABTriBdEejxxCd1F9HmZSSew7AW0DrjdAqBsw1htTH6MjPGBdR55sQ+J7m6uO5D0PFhb+DZhJXvHBLsSlYPRs8a74dtA1i38OMSghJdRlXzGFuyJ9wj9zUYetJFaEeIw3YGyaWhUMlEDAiOPR53AjqRSRqQth51BthJ7RinUVsKLxBsHjbkTPb/y+ftMZZ1VG85IqYLQDg3Vghaje0Wa4FsiJdX4fFnVaOmYLR76Jc2fPauEOpLsiSSDogkwJsMXAYlNoJVXNDKttBb2zzjPAyCZwkwB5usj1+S+wRBif+YayJ5oUn6TMCjPf9nv5BNe9AJe+PjjHItybcaS0e52u3JaT6ynE6dTZ+uDdeusPbwwVoxbH2xmrOug24nqDxhtwRQ2u2bzRhfHl4LJEhqONsJHRQv98QO+CZyctgrLVnlBWXhBc158NJ5TTzRf0dPCeKqyPaz8ws8/ycOnNh48ufJUDYbj1sMe3sbAvHMrhZMqt95YinKsjSceu8/9ZeG5xyPXLahDTjfY7Q1285D1wUPWdePhWHnSYmHe3m48tPj5joTGphbqcuBQj1w98Zw0HXLkYZRMjzHY1lNuoMGgCBlpTRpv9EwF9TxMspxMEp/XpA3T1dQrYSoF+FBsNq0i0h1AHNg244lzei5ayxgiK6H0h6lEiCMsjpS0LUNFqQRVG6I2obSC1oIeDyHswjDLqM7XYKtcWCfJrwE8VKCJ8xxW7umgLIOrRSiLUq7DA0FLyNgdoZf4rZsQxkolD/sMGaRIlLaL4yMYO/FO8W0HUyRZYcTBIKSXQjINPghdk4RbozI33wQonhu2yK7S2KmWLOud/hZTzBqt3GObtG1uus7mWVEyqVzx8GwYYR6lnlb0JtmN2OnpfmkWaaMAt1k5lk9uiifcp75iVhslEMs4r7lnOwgPnwuCjYjKM0Wq7Rtx9CnyHaAEiE79S06x2VNH9uoiaJnWqd7DFsAM6Z11GNWdrgGlxUl3UVgIIyrNmtdCsJqL5Hyj0MjXPXRGs8QyGl/CLcLmwOyjA7QBh2Fcj43HbeVgzsHJPH74m7gE4/rQNLQ7k0mZwGwE01GqQgtTSfJ3Dh87E6FZJl4QSg+361pA64oKVC9UdUqFQ2lhcTBkrzbZEthYd9aNDISMTXqyYh3rt6FH8y07/Cp1OaZ3ySH7P3lEU72GVcjxGlkVvRXsgWBbx9YN7I4mRZLR6RtFBk037tnKoRjXLe38RXmqLJwGPES4HULvxmkbWc3i2ck6Z5sZNQ9d97Bmq0Vp6Ugh6hRTupUIsjIFtfXBNkJnZkXxWjgcJCoRR2VYGLjRIsj1Gl3Vu8BqkgafwTS1orRauVqu6Bai7noVWribXlgfrmy3WzSzvV0ZpxUd0eLEN2GMNWz4h0dTURG6eMocnKEaQlUvu1ZpDEd8Cw1hycoSlC6FUZRVdW+6OteritBq7iWF1OmE3okM0yKtHPNVNJ1401DyV+PU9nENUK6vrnn8/uM854kXcF0b1y4s6xobzO2J0+0tp9MtN7cr29a5PW3U9cQ2OmIr1kO+2PttOPn5BuWEUBntBpEbxAro/ZBWaEmTt0gD4CM0K8WQ6pQO11V4bHGed2U8rzmLO3pb2FRZi3L7QUe3KFsduqEWIi71Lcs2R0S8JapXDrVyvRx4/LHHeOx4xfMfeywBCvjpAf3hQ7anDtyYoHLL1p3aByodSWudcyomDpSqwtIW7j32nFiU7kh7GC6Fo2O3N2wjGKUp7wrdTIKWLfLFalOUSApG0+RIRngYqOMlGYOioYAfDmvbqz1CKHYed8HJ/MrgM+tH5rvmn/PvKQacojadKaK6+xNolvxBMEEwm3ZFZLdZpgSSGbGMXDdO9MwZaalUUw6Eb2fREPQ4IU6uGiZ53iMn7WXs9vAIu3mY4andGHdcTNlFmPv7JQDJPMjj9TOAis8aXjfueXBnDie4KCLqSqFwLZHuKiU2nn3D3+9mbN6eVQDBpOWdt4z1shOtMqn/SCOaRbfd7jq3qWRIfO9btTfz3IFIXmXky/bHqZN7mSLKfJ8Q1Sdh5JZsSpQ0MeWlwJ6unNkp/AxrM4sWAMVDX1EstBBRyh9pHR9xUAPJnLJ7geRjBA8g0hCaRXfuCVbSdmz3sxGbgtJgBWSExsU8fljtTtuMtg0Oa+dK4ajR58YdtuEcRvReKqb0NLajp4fGFJ3anPvxIScwnCJOz4km0x5gJJs3lDKMYoNqg+ZGFedQiKpACn2E14qZotnh2Ec6n3pofCK9Hn2gfIQkXGYBQVYN6ZJmgrEYUzOVzDQF8wVdD3HlI6u5cr8IjBuVM0Wd1o0jxhHnXolKlP3niTAEVgd8JLiI51CzfacTAMQk96la0FaobWGpQiuRFhpW0dHoI+ZyNEWV0CQakRryAHqmwSrOCjd1CY2IhxDdB4+ky1WdWpWDCtelMhC2CqMaVWINaw+GZDscUv8q9GVDJJnOFWymrXwKjS2/Ms3vvmuPgkGxPaUrlRDZZ9AX+NlS2B6bsOQ6mAzMLkdkpm+i3k09EmZqETSVER3f6RZ/PsvxcQ5Qjjzn/mO88Dkv4rpdcY9G2yLlcbpZubm54fbmhgc3J9Z1Y7k98fDmKdZtRbYbzB5g/YZtXXExSjmB38KmiD+F9AMcC+jADjC0otJAK7IssclZwRuwgHbhulWeczBeeG28cDEOPtDboMpui3Nz3dHThtcTXU4oYW+stoXHiFu6+lVqqRyWhcevrnjB857LE/fv8wnPfT73lkjz9JuHnJ56ktvjBykDSnnAtjltO1HVKLLtgrAoYFAqzqEp11cHnvO8F9BKRUSoD5/KtNiGPXySbXTWseWm4PRto2+d3jfkZovmWH0g6XIUFSkhBKtasgKnpPtmmki1Bl0RHdgmaV0xJZP7efwIYInN9e6f82/nmo7JJ6bVVjRvrC3ARDtQW43mjkvDxFIHM1IzMXaZ9ARbwWXGRt4ZbHS6DLSkQ68p96TStO5uki7KKoWTKWu6NuqQALYl7kuXON2CAMmybR+Mzk6DMtMzxIZ+BhvnMzyYIU29TtyByYbUUiOyn66nkxZOkXRNx1gtivpUtySUdces75GQJbNiyN4hXT00KTZLKROAdDe6xUEws/1jVn3hUb7o0ZMIO1s1zWcqjzzFmAWedJLPvNnkzzwOtwppBifJmgQwiUaJ09Mnojh1oneRRDpo5umLhb+QDqcOR4bja6YcTGhMz4ozd1ct2AzN662EH+BBlJoM3nG+ztnPJtKLISL0zZDunLb4pCKEI/JpcLzduL5duXbn2oWiJQp+NuO2wzKUMkocBlusJbcwvPPMEk5AWua90ynovlM0nsJ7GRHllu7UYZQR+1Zj0MS4Khr3XITVIm1g3Sh9hOvuXvUnRB9iS9uF2azSgrUjmB1dhHJIEOEecp88pMUVkxac6GngVKQX0ic+IKrHcyo9GrIexLl2uOfC4zVcoKfpXgh9hVuMzshKo1kw0fZNR1MHRFP0UKlL5XB15FiVpQrKwKyw9cq2ChuDLmn21o2th27QXamV6Co/BLXob1M9G14SACVmuO0BkyoswLEoj5VwSt5U8DI4SaTA66FREcbVrEwsjDVsEzY3rAi9dzYbKWydFYMBUtyCISrpKi4zKS0BwINsKxQF1zS7LDPAnZVSAWLmqiieGX2CSZmqOc1ecSVTn2U4ZTWYX89yfFwDFK2V5XjgeH2Pq+Ue13KkbRYW43rC5SHGgc4triub31A2Q71Evwm/ZQxhWzvdw/Wzm9K3wYnKyRvbEE7HG05l4WRRSREqbae31KVoDW1LNeoiLEfj+p7z2GHj4BulVNZRWaxyfVDWJtxWoUkAh5jAgnnBKVAPlOWa1u5zdTzyxP37PPe5z+e5jz3OC57/Qq5b9PnZbp7itjYeumBPPoBhPGy3tDqoxSilREPBpNpD51FYloXj1TWPPfFcWgtBllwd6X2jj41+aKx9o2xrRFxm9NOJbd3QdY2cNWBbMiyeACW1LSUjkLJUvDScWJxasgpBhFELYyvoydLmekReNVbLvih4BLzMY2xWF82c+KTxHZcUtpUe0VBzSnNqdUqL6A4fDI+yviqDMaNtszOF4VNIme6z2qGXOMgcFpQmQkvh8c66ZD5Xi4RdgrLre8JRRBL8TFEo2Ba/crfblqh0kTuVNneP8h2ECecyPuJyWylo2tGOBC2pKU2vgzkPwhNi2rQLoSuYrpCZlGBWywikzkWZdYiC7mWTMy00PC2xBVwtc/5O9IRKJml/qjMxd5cl2hM+5GzAiRLxyZdJz+7BmeKa7qI7yzKjumRp4ptmSXg0VMwqZMrIaNJ8r/zyTjbWk+y4rVFxkXoT9WRy8mrnZ0hfyHguHumwYFosKq7StwOPSDMqTkbqLwi7+j6QrVPWnsZ8Er28XCjJWkpqdaaPzMh2AIw7d7BbXPuwFCWmLiSrceLzBRNQLMBZHc5i4V948Giw2AQOJSLi6W3h+bwyRI/ycCTSaRIKNmPDfA0WBaPQ4jMm26zL1K6lJkRtT3EKMCwmq4/zmhoyPZmSffOsBDIPjZjDkULVOEBPJbqRn4rSdLCJh55G4n4UrXvhQBFjqcpxUa4OjetD5d7xyPVSWIpQZNC7sm2Fk0PxzqaZkjZSaxZuxYsn6ziDi0yreqZYIwhJfZQbJSvRGJrynLSscKWl2dxShDGiUWNbapKQwrb02J/72KsIt1logQQ77FFdEyL6VNmMqPoz67m/ZCq8BHsvtQQDVeYO8ajo+7xuPYNY9uKGXXs159gAHY5sBpuHePpZjo9rgBKBolJbo7WFpkeaBF05htK60bpReiDY0h1tt7HIZ5t24mAaHuh66BoSzvWWrd2ylUMc2qNHCsTTnFhSSKQxUXoJvwlmrrVa5C89kGl4PkXuWoKjDMGjWdB9WQVB5j9VK60uLO3Ashy4Ol5xfXXN9b1rrhvRR4cB60a/OdKWhVpbpDK0ZOVKCSGjxSRX1VCY17hfx6sr2mFBtdAVtt4pY2WxDn3FasnNMBItngdSrw3tHdUSh5YlVS+RxlHVFHlFKwFDI4IWj7Jfs718tIya9h8e6ZKMMDzzmmXPe0YEnPJzZp8ZmGd6RKEzl16aUKqwHJTWNHrNHEJEqXkgSJwPkdSQOFx3zwc88wTsYk4I3YESNH5VpWWL8+i5IfSklEt2btZ5eMrdn5XivFmWmylZ8zNIcWE//CWvax7iOrUOGp/X5eyYUYvmJpjsBuwARZS9mWDJA1om+ksiwibYmRtM/jm1pnLna9I9UbE1S845A6adDXLU07hpf1rzycV7VKYZWGxw8/PMFN+jab9g5CwLY3Qil/nk8r7tz0122SOziSAJ7HR4Gpv5uYStn9maCX4Kk/k6U9rsn+H8ae7C56xk3il1PMqvRTJfnzmo/fL3EjqLA6RLlB1nyete2nxHZDzFi87UaMT1TI8OSW8akfk9dp7b0/RkhLBRkkGae4ZaVsjg53QiCSazImNXOccvxHd/jzGpr3hikms+faqkEOJ8T3bHPa0SfJ+vdxXGPg92OT/qc01K1GgWZO9DFGRIrIc6NUsyn8YUwp4Fo2jaGpSzZX2tZ4+m2TkcC8+rkSBoBk2e6ZuY91OzJfvPPwuOZZ+jvhshct5Hzc+FQ7mflRlzZSuQWpSevY9KKVn96HknjOEa55lHRWGwoJ5i2gQq2H4GMa9ZRpbwlxDsiwTLliz8DI80z7AAqeTPzfPY5jPJNZCfac4tT43Msx0f1wCFEu3QD0vhcGgcypGlSkRB0lKPLxwkbJy7KOtYMRWan9C1IquGmG50zDtDNES0Utn0wEZlW2/ZDiubRZ26uFI8yMwp3BKC9u0aoCWo5OjJU2QwJCqE3DZGX9nWE6fTLbe3zu0tbFuwMSIFaeEpUlpLtuPI/fvXPPb4fZ54zuNc1eijs1ZHbDDWlXa8opxWdGloC+pV2yGj4B4Nz2qjtiPH4xXX96557DlPsByPaC3w8MjWN9a+cluUsp1gO8UmMix0N+WEa6Gc0qa/1Mh5q+0MSoCTGimq2mBZcCmIKGVIbHq1MrbKWAtOVFzZ2ChzAzHdS1UXm7qBcMHdedsUgRmc2Ql1qipLqdTDQm0Hrq6vWFo08aqLMLyzmnOz1hBCdkVX59Shn8LMK7JWuRN2gVFiGyqVopWlVI61cqiVpVW0Ka5K1RL5ZoPTNvCu9KrUEnPM3dLLwOibM06O3UJZyTwz6bx5JnIgDu5CpoAITUKT0CEVITUwcYgdWpa6qkRkDWmQFF+1hP9LKdOynb3yyJLGnZ4NI0+EMYGHx2Zjs1Arz+aIICVtxmVnUELAGgfC7KTjE2TeqQiJAO5OGsvJ79EdoGQWLI+V5C5MqCY7wNmBgqT2xO7wbwlMSolO43u5L9PTxTLCM+yU/J1ofo+HbwSki+zcrM/QZEKuyfqEtY0ngxI6F88PoxnBkt25mdNtGN4HvnY4rRG5lph3gqA9K5EyQJqVdnfZpfl5zZwyottxKR56J90nd+LlFL36QEewdrQewsa1o7WjdVAOlodz9HVRc4pFxVGxgVpHpnljRurR9bFnpRyUYtExO5lMrYORjfqQSA5J2m+75oSvCl3xROI+508yi5pNT4sYTYxFhUNxlhrz4dCU1ZU2FF1BVNNNqARzjc7EdDQDFIm+OemiW0qh1cJSIyDpxFobEmuiZOo6Wg6cr29i9zOMjeBtmpjtVX8eYLTguUZT5G9R9iviNNK5Szy8fAosNa0uhrLWihdhK+BaGGKsnt3bfQY/5+fiEkxpbkRZ3hlj9B5pnqXQZMRaKzArsEQ0AhxLZjX3gzAEzNc19rKKUJ1Ih46BjoGcBnYy5DdLikcKlKIsS+N4XLiqRw6jIANUs1pCHClKWxpaFXylLQK60u0G91tOTzVKt3A3zBCzqtBVsVKorTGWRj80fGnRLr2Ws1UyMSG6n5Xmu5U8HfHZVXjDx8oYK9t24nQ6cXtr3NzAtinmITKVtiFto/bOYoPulnSb0FrhUJVFjHaoyKFiS+NqaWy1cixxgFYdaVVdcZlUfjTiojS0LhyurliujmgNjxXvBduUclqyAZ0lQBnIVpHaib44sUBnGa2nuHTGNMXPkVrUxae5HBn91zQ8snSMQ/dTVIgyaJeMJjLi1AQo0UMkv2+mN9KSUtUoqiy1slw16rJw7/6Bw9ICpCzKoLMN4bB21g5t67STcbs5sgy2DtsQzGtURHThsHUODodWWJqytMJSo5Sw1TCTMw1Grcyv7FERXg/hXzKsZ+mus506Y3Os5yJ04rNO+kBh2ryHm6cyz3aVbANQkqHJ7qIIlJq5fI0TzJIz17sARY1SJrCLA3+YJxtoezQ9Msq2DJBtMg3pq4FEXnsoFA2h3mxeFiGV7WyREGW1UnzPWWOz8os7hmmypx7EJwKKt/udrwBUESFqls1O1kQljaksAgjRFKJPuHSHApl9ZqZN/rSTH5IpC/+w/PueTrpDPT3y/7MyJX7HI5zR/mvtzDxwB0S5Z/ol7pV6AoEs1dcpcDwTCylWlBQ0n9kYzctRS0bGA6TcOULPN3P+Izpw3ilhttQSWPIHRiXky1WcprAoNM37pclEzuq9knO2QGtRflurRjmtBtBz4tAtdmbzRoLbooIXCXFniu3FQ0t158bGfNgrs2bbknLeJ2oaxuXePhstuk7TtRQvZyppOrdO40spCWN0+n8kCyLsgFvSa0nSoaBkpVwpurMeWgSpwsL0Sor11MhDXWS35N/L57mzp8gMfCO1q0rqyc73xOdnmQCIyWIlSJ3rySYfeWeMjDxGrtW53slz9M71xK6d/FHuD5Ntna9NZlISGzNCbiC/aRgUZT+0l1Y5tMbBavRmcN/dCx1HNRZW346RArIDp3VhWxtLi2yxjxF9B3Tm2u7QfrWitUYDrHr3YDVIa/sxxVdyptEkJYhZkQ4eyvYxNrZtC6+Sk7P2ilkIZGULh0nr4S3QfXpfxERfinNQqLVgtbK1yrEUTrWwFA2nRZ2xm4TbZP5pmR6RUqlLHOLaKnVsech62P37QK2ET4KQwC3pVs4VEsM8vTk0d5hYGGXG9LmJ6G5cFcIxswz/p12lnL9kHk7ieSBnZF9CPxHdTbOhnRAUcVYtVBWWqizHSjtUru8tHJfGsgRAMZRtDPRUWcdA1miXrmuIWHWAdIkcuDm6OgtCM0m32+z6W6J3Rd2TsUlxck6NiPo5qpzOsqSB4AhTPbP4nqB5Y1rPexaFD2dWw/NAKhr6Ai1xC6X6HrWVyu434OZ7IDc1KEU9q3jyXE7mRBUsH2pU1Tg1U1LDYuexFFviMauRs/onXDozPZPPLViIOOTVo6pLzB+xup77fdgnnCXQQYlzB6ScGZd9dc1b6+y6DCcOZfOszkq2QGDXx9z1c9gjS5+HeObvPbxJdutz8aRmyGf64dcVr+3M18QukxLKF/2R/83vY//XLD/aU04THUoCmLvXnpUUMzA4/0wSeCYOsrkW74CttH8/F3HM35cpWMtUj9vu+BpC+AwWZB6qnn9GSf60PkfYOxhLmamWjMA1xN2uvt8j1WkyNidFetvM1Ev+fTJ3InLnfp7nxNRQxUkeC+TcrVknwj8/pDt/PT8V9vUk+bsF2dNOzplgvZvG0fzMmkGFTACZKSYStFQ8KqRybhY/V4XNLzvfhh3g7qkTkd2D5O5H20F3zOi9ZP+M8HNWjDlDPgwo7GVvzqzO22e3+64vkbk+4VzBw1y/59eJGOWOTuXO/vIsx8c1QPHs2lVr1J1fHxpHbxSXcHKUjkqnNWHbCkuD4kdOzSgcsG2BvvBwqSgbIMkOkI3+CMW16K7fmLNBpKA6gglwYYjQJevNJ3rNBm/qnUL6XfiWTMoWiuvNOK2wbiEMcy2wdGTZWLZgUW7HYEuE32rh2ITrYqgvHI4L9bjwcFnw1niqNo7aadIxg607a48aHsfwzdgs5IltWViOAVCabViBoYOyFAolxMQGrh4NxRLCD8JldhuD3oOmVjLfXwigl/nyGXmYangzRegSzQU1xIdD4msS5yLRcM097uncFKc7Zsn8azyTAAJT+FmLsrTK8V5jOR54/PEjh8MSLMqiDF/p5hxvV9ZuLKdCK8ahBQg4dTj1FIwOgMGVDQ5jUETiOVLRu7X8PqkPSOojrynSKVocrRZlmYkKpjHSjEqqhN/CsmSa5053Z20TvMXPLSIBUieRVLI0WmFpft7AXDLHf97kW4m5XEs2ynNP8BpgadvCgKsPqBlUL+asWwKUEWkwyzJJc+iDiK6zpHJktcqsEZqpoWhaaXdRBhmDhi5kRmKe4tc7+6sNzxh+aobiDXviyCdwjk18NrEYEzgwA99zfnz+e69S2CGDx3wUyAbdSI0HJioR4jt53+QMfvKgMg2BsoqHeHRu2xLX3j3SMhvh7rkrNTwlMOb07vTibFsCL3H6iHs9/HwQh1NvzL35KWJepZiarF7iDG6EqH6pHgdAdaO6xp8WVTxljEjhjJEGdMFgtJzlhtCIFMSB1CtIsD0DDy+g1Iu5RNn1osIhD/IyT7Y8kSWBn2WvmVGiIZ2aQgu2Ou7z7ECc8xbdtRbdlY2CpnJmaKReSYZBp4YjD9Gm57hIE2gVOZsC7izVDDwUok1CaGU8id9AJkxJSz6Lec7HPgbsIKYStvQ16Z/i8bzIdNFci1E9l20qJDVVdzQ9YfQYKchS51duRbZfxYefmvM/PsN4FERMZqQksJ335MygTGByBlGRzmRP/+xO0wl64TcRQBnpFGvWszyy7yVQYSNuFI1utbhjDdYGDFibcGjCUkNUWZMgkHxIPgaevUFmqBuW3vMrw9879PAYxibOWoytG5saLb8nnDIBpqAqu3fGtzNMw+mWEl4AHgBh5JE4CGW3Zy4zqLYQaS6qYfKTos2S/51JX2e6xbJ1ezRrs12XICUORc1zNijD+DOu9xx8fPgCnIBbOIs/p2ZOmIIv2UWumhHM0CkeI6OX81ISOUc2+xk1z2iJBlQhUo0vLcEA1EIyTMpVjXTMvUPhcCgsiwaD4kq3WFq1Z7tzCzvxPsLzYCmhqfAeAsNDjxLAmqTPznA8coHnDyDENZb5XGqo7/uwzPkHWLEWeo5m8TuPLUS9pQYV3IpQi6BzJ81IrIiE/iUZFK1TRCgcW+h9RDUdYDkDFAmAUrKXychcuIvkNHZ6jdRIH0ILSQbNnK2GqZMPj94jFqfLXA5F470lAUqkFdkFtLPiw/v5YfudfXIPZE12mliRTHWcActeyZXRahQ7xI45KxssD8fpBRGgIYOPGYDMiZz3zUVDR5FVDPNEkppJ9VwLYp4HUsKZBIGG7AClC7n+4nfMjdz9rBnZmD6rCfgJQ7xuAUJO3dMoLcqaXUIntY4AjWlBgu3ah0m5x+8MN5H4qnf+24zsqyRIIVML+T3TMXb2rFMjhMSZkpniWfUsIfU01NtFntHyQe3OfkD2JrNozqkjyk53odDcV7Nzu2SKKzFhpl7iOVWCXdX9QI//PizWdU/PkXDLPYtVVWNNNg0mueBRgZdLa+q6Wu4v0wQxlt1kUCb4z5ROBktaotWBTfQX6HXfH+cXd8HKPMB9f3tWwTnbCB1jx/c+XtGE9I58IFmnWsKSqxVoRenZwsQt5pMNubOzfvhqe/qQO/+bAI07S2UClHLnpwTTyQ789wqevM4dlOx75Ef+/R8+Pr4BSu9sPdM4Fkt+OjaqRH+dUozmth+ghwUwWBc4NHYjnnXS6ZYE2YhmUNYjJcPo0Ql5jDBG2rI2nwQo3RjDWTHWYpy2aAzX3KH7jmcm7HZCc7I3c7JK98LwhnhFvFGodCpdKkMKI+tWY62G50JTZSmR2mklSuxqpqjO8WaS2q7hFusR2ZJurxHp50ZUJkjJLBaxCe5U4p0ql3OEcDdiOP9lTtrJLdRc6D4P+twBzuKy82qYhkDxj/Ofkv4fTYMyXlSin025C1AK11U51MK9pXA4aAKUiGa3ESxN66ns9zi0zSRcMUsIlq2E30frEsZsM+Und5ZYoqdomJibZ3pGVBVaKRxaQfA0UIqmjHXZEt86rcNS4eooHK5qeEVUodYzQJHYkSIKVOFQsvxxZ1DiXh5qjYqFCVCSOtDcUINmD6Zp5IMLP594ln0T+hgMK5xGuMmehrNtMb+9O2NEBY1Tk0FxahE2g+URBmVaqkusmWFRvZ0SDJvXNx/uTgnfoY81RcJz03OYJlE5pSP7UWT/DKGRmfFc6HPmITcTrs4dPYGGC60UjfXf4meIpl6qFrwqScaEKPkOyJpl2j2vq+e1zv04PosnQHE2d9ZkUXruWneZldWCxVN1ZE2RLs5Nd9bubCN6PplPnxr2tTP/vzCdbMPCQD3SDjPgryJhLkcc+mU6MO8AZYIUyea609+CDxPKBvDY+Yxx1v9Yvm4JcpsbzaLEuvQxJwEM29snSBrY4U7LZ72XGJNsg7CXOTtEYYMJmwmraVQBquzsFQlAqgaLM1OUB9FIn2a6ZNHofTR1ILNabk/ViMReqZp7ZkkdSF7XnCJ+rnBxk32+T9Ay9w2ZID3X4MRp20xRks8aZ2iWknsAlKKOF2hVsCpsTVia0FMXF92ZhXUvPf/wzfTpY8LbqRcsMlPMuffqLsuJkvC8tyJnRnLujWc9iu+/8Zmg0q80Pq4BSu/Gmk2qhocdDbuteBy2JXULtUpU+HRhUQUrrLeN7XbhalnC4n0MTr1QrOzRz9w1ZylbHz3+0yoI0XnUsAhrNqOPwYaxlhEbESC9MnzBuUL1MUSyEdmo2b8CNmmYFLwcoDyO6ONofT6l3UeXJ5D2BFLuI3IIJb8N6ihhFCeFe1pYVblW4UqMoxqLdqqGSj5uioBsuGyYdFznl6BloDXo3VqMqo7lxuhqbBL1+nvvi7w3Z5Aydw7J2t2B9I726CIq4pFzJShLSafJMTZ639h6Z3gAhrpXpUSEOd0PnRDlFqJfUDFPQOAUjx4mxZzindY3Dr5yXU4cm7EcO8sVuGwMX7najG0I99YD964ap5Nz/9BZN2HbwL0F6Lxd0Qpl3Xh8KPeXhat2oJYFlQJeUzEf3VyjmgXYCjIKxQtNa4Cx4rhnY67q+NJBPAW4ytVV5XhdKU0pS+pdqlJaCP60Ka1VSpEQAqdIVovvAGUpLcAMGn1eJqOVm22RqBQIQJbKCZmsHtjojJHz2CLdsFr0dYqmfnbedCm5qTq3a6QOV4MxdUrYbq9um0fzxDV+vvns2TOvcW7oPBppTTZunNOuex5+4tncGWc/oijRzj49HumvThxcZgJ9soSK6BLVIzWMpWSm41KUzrHhRaPXihNM6pghb6wC82DaVPJ3E+ZY00lzL8f00AZs5jwcndMwTjbYMvpWgzKE22E8tRkdYZMRYlGcJzfjwWlwexr0dTC2jvfZ82Z6U0wdT+ipuI2S4fBUSVGlZxWYFxYqi1SqFKpUCgtqBbUFHQv0CmuyTE5QOFkeohYM8TIsng9Qe7gI9x6dvJ0A+SXZj3qzoT32GZ0aPd+wEd3e+ykq3XQIvhq6Duw0sLXD1hnrmFRaVPups6rz0AFTlkOhS6G6sua6xMP1+SDKvVI5pr3EodZkkQWVQlPhnlautXFVGk0XWmnUUqglelqpEylw79RlY1nSQ4tIS7k6S4I9lfqI5YNUQWu0SjDLyhzXbPUjDClsCLeDPdXVvWfhRQIEIs1fJMw8fRSEjnXlunWkQS890uATwDE1LVPdNUutAy5Mhq9qoWqlagQ/tcS5Oa0SpLEzTru23AmG1jMIknBTVj8D2ejr5OFLVTTSds8SqXxcA5SRzedmyoJ5y7NyZE4+gawuEFoLSn+pSb9PylsmbUhscpat39MN0T3KsgLpAz0y3fvOk/Xd0RjKzl1dmQ6DBdJbEllwXxi2BZ1ugtEwqaAHRI+IHCl6HV/lGi1HtCwUrSnEdNRi4Q1KOFiK7Gx0FY8uvUmz2bwvyZwgYY40++VoEXQkFZp6jjKjDZVdQf5hAvqdug4mz++wJ9MQynbb47NzyaT8JqsQwMP2wyc1FcyFFSK9LM1Ph1BLwe/kXmLFhBQkytrUBlWMVgZLCX0GMjAZQY8OkkGJzze22Lg3EdwrrtnJd6moG40QH8+OtXgceIYmVZ9MtRGNYXvceM1+LEV0P0Ajao+I/QgsTTguynEplKbURaktAcpS0VooLYS/obOJdu5F5eymKuEkGyyisGWH4GyplCLluYmUbKRH7jgx98eIDrJj2B6pt+FseS+82F5WCZGi7ObUkk6yNtmKBCjZKXakN9EQpw9hjCzJt/MB77mbnqNN2f8usFc4zTTGDk4SoEgyMufinywBleQSPZiAbrOqLDbWnZXUszssJTRXUkv87DnRmb+LaPw2I2DCdDG+OxjKs78KO6AJvYRF3xrP4CrneaQpQhh/GvOhjTD5wrndjHUbAebHSBfmcWfvk52xcSKd6J6pyjSLiacWW4BOUaOkJswKPko0zByKd8W7MNb4rOIweoBU6yPT4Ml6pG4hDh+nhE10hhV2jqLXLbVpUSWoYggbYh3LUu9gbQTt09DO0D4C1Ax7ZOMxCRuXrrCJsPVgf5Fd8wvJvJVkjDT1YsvdhIbEvxtKcQ1RN7OHUoG7gFjrpHHYPXbE9mN/n4SZxnfStC2n1j5t75xlRupojOiEvs/ZdNr2/dvD8TYD6FpCq1Q0HLyLjD3Fb0D2Xj4zefsO/AgxvYNbvXN9SlRrJcm4dwmXqbOdVbLJ0k6W6fz3CEj3NXp3vf5mACh9bGxjC1tlD4tl17Ng0JNrKpqSsVroa+g71kOJTb4WipTUQ0RkYMMZXRjLidGzZ88IYWu0tbbYoPIBIcGg+BbNyYZaNF3TmFzRm0qBisoB/Ij7MZtNGdtQRllAKqJXiN6n6GO0+jit3WdZHmdZ7rEs17RyoBrZ9VRRQkBy0MKiJd1NnaZGTf1NKRPpOucuvnZHwAl1RG52WAhQmwU7E5UauhsenVX458m+l1A6u+HSFEXOXHXxnOzxDbO+KMtvB32MqJoRmKUFYXg0N9bo62IiVDeak9R3MDjiaT6kBl2QbVD6YJER4rzmHA8GumG60drYUxNFCk3Bt7CX7iLgFS/pwniqYEaz0P1IHnyWAGSTyBevLmwjIuSxBUi1LqmrUIqnnwrndudS4EqdQytcL43joUY31GMwJ6Uq9VApbdpvL9RaWJYAKFFuHOvBRcKLJX/LtvVs7Gf7s1Jm87qCjUnTzp2X7Iodh982fBdtbpnCtGG5+cb3TFr6tJ2t7j31HubZvXp0eh2Rki3Otg2GhXg73DctK4h4JAU07gAUU8mUwFz95w1v6m9cZd/I9zSSTK0IYKGhkZ7zsoa+BbLrb+4ZmqWlUjVSPEJsxnYGKGQljE8DNAKMZDJ5B+hxg87Yxhy6WQjfzVgz+jaPQ5keQdWDkyS7Gge5IzzcjIdr53btUQE4Bp2NkVZttisDNKqXiPRR6fF3jyY0UHPtThDnimnBJDq9CwU7KT11S5vYnqZdt+jAvPVO3zqjb9hpS1uNzN1iwfJ6WsdVgTpgdLwI0pNd1BR7lnP6XFZHuiKjoJujm1G2jm6D0jt1Gykwl9h/CbZhNaWYczpkxRvpozMMhu6pqepKyUmyzLWQKa2mQrNgPdVKALZ093bRPZVmgEs2Ss17KOnSG7YMEdSNcdbGDNcMvpJ9I/I7s3nj5kpJk7tFOxn/0G1LTVV85tCGlPRMEUZtwXQUy0Bb9/TeCGj0iF5kjkdBy/zJ8Yt2h17xXcc5G3ZOUGYyjRl9Ep070tmN6TzPVDnLYj/8On6l8XENUNgGuvXMb4bxjtAI7w9JsGK0ViOS1k4dnVNR6BsPjzfcHG5obWGpjUOpHEo0PJsKdccwjQ1ylMjj2273yf4A2EusZEeiEBNrpJCvF2FT5VbgSYdfHM6HBjww8FqRcqAcrjks1+hyj3J4jHa8T7t6nHJ1Hz3ew48HTmtk0mftv6mwFmUrQk91OQKLRvOpo94J/ki2SCSo65pl096ABBetojYoXndluuZmLSkgjDMqKzVywTuWMzXYjEiLRWqnaQoHJ1WcUfa256sDoIQfQclDYGYwDfGgwguSXXYLm6dnQDI17tlFUwXLrq6HotxryvVSuHeIzd/FWdXY+uBBH7FJirC5UT3EZcFTBaWzqWAlIgJN98XeR3g+4JxQNoSHZmwpYozD1/KzzZywZqRiwcQUUFGuCxwPlfuHA9fHhbYoy7FQF420zlJpS+VwaFxdH6itcDjUEOhp5MX3DSDRiiOsmU7pW2eKOhO1g4cZnidFu4tPbZY/C61b6qM8uqIWsJEbTwoVJ0BZJf7eE6C47KaojJE9ekRYXVglqoRWOYtsp4jcx9RW+O6C6Q6jhPnYXWHtDk6IzxARc4DKqXOykakrmaWXQW+VFNWKpFolm8UVJ+nz8LfRSqYpJktheAmwEh4zAxMP00ZhF3FHn6U4gHaGiGCLQoRsDIdt5z8EbIvnZQEEK0qlIlJwF07b4DYBytpXuu1dVvKZeyaiQ7egxJpbiY3+aLD00KR0UguDc7L4/JUwPSsOhyYcSo9eN5l6FYG1B9vZx8rNeuK0nXh4e0PvsI2cWjiDkVfmUBWtldJrFCOMYGy0WphZ2qD3LRbOA8NHhVEpphn4DSSdvHX0tNWPLtCxXzi9Cr0Haz2Go90TMAjSifYnPdqg7OnozZgWBTCwIWzunHI9PHXaGFU4aVTdbB1uTHngcOvCk6I8UOFWlVXz0JZskknY5x+znDoqiIKtXnFWH5ykc+MjrAZMOUhhwfGxBrulMGwLcDzZMNcE3/H3cB73hCRpvTD1Uxr742TO2HfpCaMfHZPtsszfiDnVhJKl5j501hCxbdG1fO1nbZNErir2SbIyLcG9ZBVSmXTosxwf1wAl7HNHoD0nvTMUlxIbiVTQhpZgEg6l4IcjirMeDhwOC60t1HQaXWqhqdGUvbZ/CClQFFznQp0H56MYlBRH7iVY55d3RGwaYroV56E5N+ZsLiDhXih1weuC1IVaF0pdqC2+SqtQKpZR/prhpUvYq8/qBfKaw4o9xF/dwJPe10nBlSjDc1WklP1Ls/NvsQIZDUZ3YtnNivaqHgKozHl3ZvKS8pU7yu+8ISO/H+bmnxoWC/p2ijfnO87VSKFJcbHsHJsVDSnKFLN4/kzdRbi7tlo41MJVcyTNmQpxGG0aJZHRE8n2A3wR3/0FSppFTZ8P8sAyj+z/6rC6cDJhSx31NtJLY24mO3SNe1QIKrpKiNsOLRpDHpeFZVEOB6UcCqUJS6ssS+VwXLh3tSRAaTtAmf4W7sTnyyivSui0NjkzCrvjpSkyDavmfCCrWYQEeJn6Eqe4RFdT7lR6kEBEPHpJWQKKTKdOJ0uTEH12h1bzgJQAm6HZ0RDVWgIJiyTJ5uVsyDbYf/55ZkyWjTNtrLZPl5kGnWZ102huzNI5C88KwXcjqqj4gVLjIUlWr0yK0FNnYrP5XkaTM8kspPtR9qTpWAqFz3N9+LQiYLepB6d79uVJgaqKUkayhwhrj/TO2jvD+p7a9v1+zDLUyaBMH98oD57CUiMA3PSF6eS9yoaBRZzRjb6NTHn2HaBsmV4d1jn1jVPvrNvG1qM0+gxQQkPhOOolDjh3bCu7T0lY/oehpfSOrAM/2d72Q7ykGDcmr3pWCDFTZcQzIVjqO8VA5+czOAtxZwo+GQzXSFdGC4aYD11grXHQP9wGbINRYq/ZhnIzjIfmnBxuHU4k4J77vMTz6miAnQSK04yt5P42iAabq2caOVOxHTiWsXfMjj4oublm+sxtKvJ4hM18JN2pd/75yJrxnU19ZlZl7iUWAVVqq5S0Gcj/ZjNNO1I0K1OwndV7cv55ybXEXNjZoGc3Pq4BinrYLKtP+2fBpCLaGAWsRLRTDsLS4HgIRfy2NgaDJ29uub45cbx3zbCBe2e1jqlx5c5owS70Vhit0luhSWXMDhU+F2PQ9tHFFI4iHBSaxmIXD34xytQiJTGGc9qcreciSjv+djxyWA4cW+VeLdxvlXutcl2FYw3/i2jyFJuVjFAq+XQ9VKXWMK27dzxyIkSLZcS9oRw41sZSK2WKt0oJpiM379ZasBIMZIRT6NIaWyts2demZTmvlehvU8neFxriqlYiLdSKstQw0isSBY/uTi2VUsoO+Pbhd77uTuTg/HGUlai6qqJ0SDkiuId3r1vFdImmi8cr2lVluVc43u+Rv2VQTh0tzu06Ukjtd9c3LdNZTSvNFnoVtj0HoXjJaHhYABSTKAHtsrMOnvQvGp8z6NYg4lsKjivO8Vg4HitX9w/cu7+wHArHK6UehNLSPXipXB0b9+4daEthOS4BUHJz3aup8sAeHkZ+vQ/WU0mGYm7kURJLei5M1CSAlzs3PdOYSqSRIi/uCe4Cbk0jtyqcq7kyNWceQusxwvStF7IkPtJGywghb6R4JkMu6QEBK+HVYsApq0OmsHci/ynvcPJ7XfZ+T0HLx8HjuXl6snXhNh0dlyUPkZHgtRXB6jQrjphx+t64xGcSS/ZUQ5c2pm5KIgXahzEIwXz4Bp3ZoL3slHPGSnLuDw9hcR9OdBseMd9c6KeObZ2x9WwG9+g4+8QK6x7rOlsCFCdE3C1ZLM1nGNF6UPtTaH5UpxnU7tRtBibCkGSSPNpibNuJB6cT2xbtG2SWmItHg0UhvFWmFcOSabepkyxx4PmpY6fB9sD2Fg01K7jOZefsxnvxgWPCmWRxZRe2LtTMaWjOl9GF3i2KKrrvrWBij8uz33oEI6uwmdM2Zy2Vh+4chlE2YTPltgs3p/AFejCM2wRKPiUCu07RUvCsyIDy/yXvb0Jt+5azcPipGmPMtfY59yb5iya5wXgJktgwaQhKYlATBYNpCBoRPzqmJxgDEkSIQbiBmBAbYs9mTBpBO4qC4FcjEZF00lHiBwE/0MY1KOr13nv2XnOMUW/jqaox5j7nJr/7/m94+b2uwzxr77XXmmvO8VH1VNVTVbOgDeeMwKscTyZmnF5XqBubwL6RBw6lrK82kHw9lz0ylxE+TX09SdbGQUGWjqjJ8+ICM/reE8oCQax2wBipRe5BkSH0Mk5ACg24OcWz/Wg4FFWgBEj3sGdwaMRYO8YnUiM9qH9AoX/g8f8HAIWZNOrDTW+FuLKm8q2toN4Ex5OgSEdpwNnveHpzw/3tDfc3N8zxApsHnoeg68TTnOhHgRwF/SBIKa3iBAHKNFZZnZgYXrgtWq1XTFRZLalpfU2fOHNLdOdRg8WEaoE2uu5Zm4CpeQcmz2meaUBtTCs3VxlTlqQWlFpRG/vE3EbF3abXgWDGT1NFC7a1X2WQJ1ULihZyGQrTY8UmOSiexlyc4e1VpGlxAp6+yvofl8NToNXTpIfBz8XznVnlEQhLIGoPXNP4w1tF53UW0FMnBE9wZ0pDqXeU9oR2e4PjVnG7Fdzup593APOETRY9I8HWSIae9C5ACrNedGJWLqz+AC2wILF5rQWW/BdPv9WtirQTEBkngIGktWgAFsXZ2lNFe2o43txwvG24HQX3N4p6gB4UL0T4dGt480SP33GnB0UEkAwjRPVTJ7EZrXC4RWmDBcjm8KH2zBcT5yQ4eJ7q9+bsalOBTs7zBLYeM/RqKACJjC8D1zpAkrkMTB2Yyri2FE5midbvSg+K7QDFQzwQtk3ogLvBvfw+JMGfGK/Zv9bXgAHDe2x5+k2Ehvg+y6q20JnLjqFRg3mxKylwvkJwzXwpRoRXJEnmyXnz84ziNU487JVlP4xWfkQQsXm8o/DXkKjQS4UQdWSyrcRcciN2ROwLp5O7Z0WxU3erq6JpgjJdLbnighHaVJkoJhgVqBjku42Rhc7MeQiC6YTegccYrHjdnf/hnuJpbs2PieyEPMjRsGFIVDuNNad6R3+4IsZkPoEIq2LbgKGgewbONPcIxeXPQmU96ZXTIavESue1ncPw6Mgu3zYs5VsfJ42TIjhN0E5DLxUPA27DUG+KcwpehuD5ZDjr2bNIL5WzHaBABLMrxtnRK69BK6Bkavt4Iw2LGWDKQTTE0+udX4dpbG5qBsyOKB1rQ9MzBF+bWlYrjFKVfZYm/XuxT+hHsXS8aHjHlaEaDY+ieV0iCW8UB581oigfuAl5vgA53F8e9vGNmT2WvowYz1ccoPzET/wE/u7f/bv4d//u3+Hp6Qnf+Z3fiZ/8yZ/Eb/ttvy3f8/3f//346Z/+6cvnvv3bvx2/8Au/8GV9l4LpqmKDkwjzuLSzpj1JnQRDRbspqtxQquE8CUzuTwfuTw2jN9hoeD4NHQP3DpxNgabQWqCtQGpFQ4VYwZzqVpmgy4RKQfVsmuLghBENSzekxURJcO9d0AgQLWYDoBTQ8qiePhtWiFq0W4e7QalczO9VakWphUTXVnCMisMmyOck2Ss8HerXCazsjgVU1PkMEzLLKlWdZFnxfkVMxyyGzPwpJbKB+P7ijbeKVAcolgClKEnKmaKBIILxiL4crj195hkjEuFni2cs0RFDgFLLDbXe0doT2tFw3BS3oxLB24nZXzD6JOkXxoyDOXzTGUQHomPwrL6hm8A6kCEewOvY6ApVzOl8Ezij3b0cHvOLUFctLJNfiqA+NbSnhvbmhtvTgdtNN4DCIm63VnC/Fdxvh3tQmndoBTAiW2dj/yOAiGdxDGY8lOEOOwNE3JaKWgdAWj4M1US8nsuT4QnqFepk2zyI4XT2cB0M07wHkUwMpYs+AIoqPMTi9VoiBOWpwKwWS2tTXMFHcatwbZsJlY2DFHbuDX8Is1jm4HqZ/h74+0jkFirbkJdiWEUg4NV4w91h6SHxeBEMVGiRHLeACxX0MHovxwayIowV1T7DG5CnFSqDGYjWQVbMLzsab5g9PusSEZ4rFyAF8C7rYLMN8b+NrComSSCGTJTBRm92GqoBZQJlDraDKAo5AFGWHOjOsTqdU9OHI3MBZuH3AMwonM6rsXCPBUFBQeNgsJbUPEmch0ySeYU1R8TzUQhoU6zmCBCc8BjDy85PegyDl9K7oXtmGgHu6g7dz07poySs1g708kAHQ+ltFPTJMO5LZ8j8ZSxPqcLDZMbeZYBgnorZFfMUjHOiVK4LFMPe5wYBUDwMZpNKXkVQ4BVYx4Q5uVsma1uZKGzoSh0EZc5eNbcU9dCK+Pfk8nWjxJit5uBkz9SMexLfg1GfxryvTmbeufdNQidHtEl9oL3yrkQb+f9fApSf//mfxw/8wA/gd/2u34XeO37kR34E3/M934N/82/+Dd6+fZvv+0N/6A/hp37qp/L34zi+7O+aGB6L7RjOGI+2Ll5qjxZ2Yw0JtALRhlIHbo+K21PB/ang9qTop8BO4HaQNNaKZ8HodMuK7rPirG5YybCCyOb6n0oWt7vtphhsdJh1TDth6GSAa/eJQ04gfIHIGJDzhDw/A+8K8O4G++I72K3Anu/M5WQpFZcH5JBoZbZHycZcQK2GOqYTsOnxYTlio4A2hcziO5bps+y5QW+LyHSBVNwjIoGlWCDNW6UXeIZPkWwLwLblDaU2cmm0AaASb6WilYJDFd09LUPIe2AdAQI8hnDCdOXiLqZoYA2Hm1Tc1XAXg4jCpML0CbfyFvf6CdyPT3ovHsVxe0BFYdbRzxeUczJlGJ1ZF6OzQNVg6EuNsWcCFHiLeLfG53BLELA+yenoxuyDGTwdcpZKDbBaCO5EcPO+Pq0q7p88GOL55A1Pn2i43RRvnhT1YKbJoYZbFTwdiqd7JfC8sb4CBMBpCYyGe3aGCdBYV0Eq9wU9KORVFdCLEeWz9yjbcAKzGdMrbbAY1jRgKNvaF2H9menck77HGxwMDPcajjlhIwo/URBWz5yoxZwUugEUk0xjDKLn4m6EcqGFLGMJ9aw46iReqDBrBJZg3mlOXgLeYgNRAUvYNJFmT0Dnp0wPiim9bDaNqfmm5Fh44F82gc2FIwitGp4YmHtpzEMYAngEFDugYljOeTXdq7hiiXhGM+jPqloxPVVgTucCREgu3PgBSvwaAlsZBSph5jRUcVAUpNMiKA25x03hlnvweXgIJiv8+m2K0fOlg6FNpgoLgQ8is8WvZXgIUoRZKh4GVmHtDFNFLSTfqmcJ0pssQPGEgQcBmU564WxkWSYPH+ryZJkx/DcMj4e/KMw+K30CwlYlNgTjQSD+mOJZOUSTMjgnh/jcDGYeiQrqHAzDDoHWwZDaMEijwVkHj9AVUUZBMLKiMhtHTljv7Oxs6iDcB20KcDL9OsLsNzcUh4d6zOc7uFDqhvzwBRT2YXAGKddn8o7CMDQ3Psi/cy9mLBwRFkeVaDTgh0yYdEAH4B3UL0T3X+PxFQco/+gf/aPL7z/1Uz+Fr/3ar8Uv/uIv4vf9vt+Xr99uN3z913/9/6vvYhWAKNI2k0U9Ywe70peMIEgSiCI9MzprRpXUcPnRrTbSso4NmMWgJoUpd5akRTctS6LQ9e9EsNX5eJHX9qoFQKhfEuTQJ9uuP9h+fZ48jM04vM8B0s0ZOegXImtKyOsCM/OQAPKSfMFLPqfvLwePv2d5+nXB65EfTb9hHlIKJCrhwkMfEnUGQnRyPJJkHG5DW9dJZ4SgeqYN678whdl70wNSvcBSQykHGz0WxkkhlWBSN3MhLhnmhDJuLhX2+MkiRAFW3fqPxmjLetqHwsNUyqqtnJOSlVyZ4k4+z3EcOG4Vx3HDcVQcjVVvayNAaTLRmqBVFmlqlfweNjEDG1zG3Emk97GdAFSYQurKTrEpRLUMj0BiJXrPG1NXpsYQDwgc1MFJKDwCESTpGaDlCnMlwRnGGanQ8HELHkzuZSSHZkze15DF0aie/oj0mIiHmxhmilRjOAfHJKpYMO5OQz00sruhY7MqLqAiHCWxJtLL4gO1fVUsyO1DIQ6CwOu+JeflXLA2Eo9ctpG5YjWXcdPDFfCUVMP1/dz76oWy3HtiDHEZAox5D5i4XCCJjAm8gGweGDFCetBivNyWkljzMxsKFvOGi6HEoBxP4RxFqQGWHQjeAwMN4je1JJWPSXFDQVgZfML3UcR93SNlxpDDFGOdluKkeZfTmf3lXgMJWRJf6CjNHBSbrwvrccwMTdD7hmtLgOnjOgjE7DSvqTOZNq0GeWF4cyl8I7jp5obNvqamg3yBgXrI+nRGtbEVihAMauxpkHA/BGi+FkWWoyrWTCzjWHeWazk8IFhdiLEGKP6Pn5Y3O6crLIyU5aFLw2UW33Vdvb/649edg/K///f/BgD8ht/wGy6v/9zP/Ry+9mu/Fl/zNV+D7/qu78Jf/at/FV/7tV/7wXO8vLzg5eUlf//c5z4HABgy0O3EiY4THV1YAVXUGCtV0KVcbe1KN5+ksv4H+7iYFwyKkFEHou5JP2G9e8l75yoYXeYhUFNgWvTTcALRZKMl8SZx5mTeaPvuUcRUvpisJCn+C4ljJ8bzifH8wHg5MU4WLMJYZLG9ANfK0gEAhpUiw4Cx/eEF7ma6JwX0UiTJTqINuV7DZaFQAviElZczs4ANSbsFKBXiB7S6LdfJD9q4JmHZBa4Mb3u6zx04iAF1Ist0H1A0MbTYXdKA0tDqgaPd2K25VkhToE6Sy2aBFfWeK5qALvrsqLhAF1oiQcLVWlxRcNDCoR7dSIOXQWuCVROzsWFhyCwKA94aPSGtFbx5OvB0r7jf6Um5HYL7LQDKRMPArQqOA8w0c2DDIoQGM/XsF45gcGNIpZFVEdiHcphPzaBVlQQ/ADDLVG3TALZgSNJYxj16lUTdjzLdPR3q2EBCpAnZ/hAckTnOXFx0Zeq1uOUZfRSD70IntoNHMNxAi1yyguX062UTQXdDBzgIa9CFdQKgGavUCYFhHAwjsdCQvX+iKmsOTcjVkCOJ2y+I5hVQWUBgP2Q7T+xji/GPjCW4XHGAYuHG384hwjkWDxsGN4HjxM8VlzWRnaiunV3KpAIz4/1T2foeNFuAxDF+ESpfc4JznXMZdX4z02WiGAm6dbK3ULVBz4mJPy/VF0YTVAhOqnthlXVRAHomYgBWVo6HUKAY52RPJIvokWWxNnFgVHz8vEUbgbeliIFGZko3iKcmS3GDaSK90QJNz1wzVhiWPmEvHuYYE1q9h1vzhefhGoHXinmZ9Kr0ACcgF64IrDJKIDZhZ6fRYOo7Y3krqlH+HY5whq/LyBCLzJqojROvCcT5ZwtgqK+PABcESZ7ckcJY8jmltomvAUkCuQRg2cCr5Jd9tMevK0AxM/zQD/0Qfs/v+T341m/91nz9e7/3e/HH//gfx6c//Wn8x//4H/FX/spfwR/4A38Av/iLv4jb7fbeeX7iJ34CP/qjP/qBqzecynzyh57opWPUAa0+gZMsD61BzltHdIFsxVj7RFlwq4YCHIbaJ8o5Mb07lwxDE2H6m/M5hhiGGkwrijbYrBgwPDDQUVFRUbCKZzWw5PIbUXyVFkCAz6PgNguOWXEbBdULCw2deBwDz1/oePeFjud7x/kgGbQg6pkEUZRhlVqKcxNYSHqYsMcHbwFmrFR4eiXL4lUdhxi7MQsR91RBiGlLT4g4eSChvtvHhvS0bCnLWiu0VUhrkNsBlcZznoBUJ+EmmXZ5b8g/4SJXQxJAAYKAtyJ4K4pPquKTVfG2AG8rhQ9rSR94ez/wdD/Qbgf0VmBN0KsXoYLiFMbkh1vgM8iHw63XElySgvAGiYNfcTeEOsmzqe+6QksWYIq3NkU5Co5bc2HbWBiwFNxaY0G2WvCJNwee7gVvnhqe7gW3RoBSmje7REdzRr46UDSwwBQFuzp5coHMaSE0xB3pzpmQOAxTlRkUadYTYmSqYIBNia67PGfU0UnXli7eCeMo/rrsZIEAt+7BtACCshS4UKnFW0nR5merLWt7ioMYBxxTKCzNPQl7UncwmzhlsngoAIIcTcuaFi3U14H4OIQf20g6nWIYUIbKwBpHUUgrPCfwUBNrMdGzGjfITHbbwE74DTfPkEn27po5nO+ZAW6ACUuoO98rvCitsrQ/hrh95r2kQDC+UkLpATOjw1hi2kZ8j9eDgWRDPXo3kSGoW8gM3yqm3DbTPQY3sPFfE+BeDEcxHN5vSjw7bIjXi/JGmXoTlLuw3YOwoq0VgTXB7CCvyaanSjObToSVdk0NDUpRBcCmeVdgIJQqH1Sc5m1SwtSakzVRRj8xOjy844XaJgBjf+jizGgCOaZK4zGA504VfwIdCu3AWTpkAHYCcvOsLwPkxaMffe1Lm/DsNxKmg5QaJQEZimH4tMpwLqTh5p7A4TWk2OPJOUe+J2aso1ijOcscFQ1SbHCqMryztnIx87R1Fjpkw0igGRtbqohzeyIEyHUigO+L91X5l3r8ugKUP//n/zz+1b/6V/gX/+JfXF7/E3/iT+TP3/qt34rf+Tt/Jz796U/jH/7Df4jv+77ve+88P/zDP4wf+qEfyt8/97nP4Ru/8RsBpXDqMlhvQCdMB0ynl3FnS2pRssjD1UQkN1Fkorr13cQ7e4KpnySIsRnW9MqxYuaturk8p0ywxTgAJ2xCC6YMNvdzRn1kyoiDiirkWTwpK5c+pHiRnoJmBcUrSo6Xgf4ycD4PPJ47Hi8d/Zw4xNJCoHdZvHy5pAdFXUCGZyQdbebFszymnylssFRMIVwjpLOxntKdLHuifYRrlLFj2dKXxUGK1gJVT5Oz4QXfotAYe8RMV2QLoDhIwVIyVdiy/UmBJ5V1FIOak2Nqwb2xSV+J4nIFXo1U0osQzfoITEhus0nNY2Mu5eKeo4x2OUYLa6OE1e4GrIKNC0ulgG2toHh2VasNpRQcxwIo99uB21Hcq6JoLRoFcv1Wc1a9IDVhhDiY9ofMWKBSdY+YK7xQjrRqlv3td5WwHXBc4UdY1WaRjbbsJ0lx7o9UuAuoLL9NWF/8u5iHSSB0hU9h3Qq/L34g1nd4QyLjSNx+cw7K5oHzgNf28xaOCVHseCNjJcEa1OVhsQlmPQUwsHUvrHGyeJ4slAivnov0rJhy3KLmhwUC83sz37eWXjBx4q3PbcynhcTiQ/17M/GtgEUUVaCVQL+4V1CnQgbDoQqSX+P7Q7EzSm05707Jubh7GJIN2YL0eoY3ogYo8fA5AYp78BCdwBmGPRTs0l0jK8j9xcqQnzngkiYoB/lbRRVTlfyiKgQ/gkwy4DRGATn2BYLS0xNvmAiZtnu0wnMT9WS4Fsh3ci/zGOhedj/kJzkU5t4vX2nTi8A52RdGzsuog52qD7YsgMuM6R4snGAqb9/WTgBII2iTCVh3j6G4qeGZVFLcYLWJCgJfhnrEqTm+KMVvXDguUfuI4s3f4yG5neOUHhQ3YmIPqVkWgavGdVDMkkcDCW5Y0CLiK3yffMTHrxtA+cEf/EH8g3/wD/DP//k/x2/+zb/5V33vpz71KXz605/GL//yL3/w77fb7YOeFTQW2noBvSindAzpKHqiyoTK6dkYbi3BwEbnJ6p0HNJx14E3OjFkoovhyd/xBFZenIPEJ7ozWdGyw0tDq2LQz49ZD+gYwGiYhb0hhh4YcqBOb2YubBz3pBWfqBW/oTXUJmj1QNOGKhU3K7ATwGPipZ+o5QWff/uCz/3vZ7xpB56/+MCtUrCXucIhVVjm/KgFrdBKp4dHWTQIhmjPdRpT7s4xgDGhc6A7K39gMg1a4DVDZLlci65CbqVAS4XWCsik5Vb5e7kdKLcD9X6g3W9oTzyKkCRbxJit1Apqq6hnRasFGHQPtqoeVPE0O980DYInAF+lgq8piq+piv+nFrxt7kFRYybTveKr7xWfvDO9uHoZ2wHWkxiTVSHPc6I/BvpLR/dQmp0AzqgtUGG1ATWAmUG9Zra5J6UIY74qxowcB1S3yhThdrCBWWkN9bjjOA4ClYMVYUstePOJhtuhePNU8ObODqX3G1B0QIUdYot6XsYEMATzpLAwM8zHzCyJIBWbAf0kyXGebhG5ZaSeJBFOxbCESYBjyGWG+3zG3/herje3+R2EMG0+ir4xrGhg12xm8nhGje9AOPgsLlBN3VtiVyGYChUUVJTfiwxrEwnEF5AmnM3us3H+8HQAkbBCYDANKGBfHfegjEnrtQPpDSI44r7oQiLxMKBX8UwuwYzQqAZJ1RXoCKnv1uTWyoHWjQvwYSTYe3bSNM/GStW5+GuooKehFZSjoFYPGRY2vTtGoYE1KmrKCc3eR+cgx+cEvZRjIj0pQcKcoDFintGnhYBfhbVZ1POrb8pGeKL0VJss4AEAx5yoCrRieNOEGZX3Crs3TBWcNrzOlGEewgKFbwraJwparWha0B8D9pjAsychdILIVORgOOJ5eAsLndn7S2AsDQGfIxV6VSTk/sSZFXkZBi/BQXmw6FyfhOjTAA0PinrfKwAy2cwQjxP23OnVEDbanIfBpKB3QXsI6tPMwp1yCr1Vw9ewiqdGC3oVuAuZcik2hufNiQAoJ70Y03CAIZpBO5BeFFGIcs6ZHebOcFUabGUBNyIv97I5kmNfTPU/E5nLZKShGEFTBUN4bUb5AUJ5VoOeuYc0gNMHtfyHH19xgGJm+MEf/EH8vb/39/BzP/dz+KZv+qZf8zP/43/8D/yX//Jf8KlPferL+i6RSKkk4mV5aSe1GntByOwrHxtANjifJ8rsqNbRMElEhHtUYOQ1gIW1qp932qCrWcjonj6x1QWWqkKsgOWvo5hOEDc5ddFJtpaCo1bcmuJRK2rx+iOi9AYNwzk6Ho+O5+cHnt+deHk+cb4MDFPMYp7FY+6ydqvGeSjLy6FJ2Iu+JOSA0eLQSZAyNQpmbZyYNdDuIXFiZuHPDOVU8ndU6S0JkNIqSmt8rhW1NaYZm2wAx9OP/ZjKOS2qaders+UhtAQbBIcA9917osBdXeEqm7w9FbLZGzxm7PVLzAXPPCdm9545j4H5GLBzwB5gPAxu/nWBagOTQtbAxP/07Egq3QquB3YDZZbO4UCsHRXtdqDWhhoApRUnyBLMMPMKbOGuzoOwkVZtxNTZoNpBRfcU4+HprL4Px4i/Icl86pY8+xe51ZReBS4Okly3NbBZ0xYII97u1p65ZZegBYtTcFlKXE7ObZAM80DdewH39IgLQHF+j4/vMBKPYbQOh3uvpluCEhZh/KxRx2H7e9xBuK/DwkPS+dLrGBVZA3xNSNaDmeYhnKIZFkqPiVf7zHQZcS9JhLv0ClDEv9cM2Sogxnb6SiNsZ9iMIsW9JtlU0gsoquBuBWUY6hhsiumetz6MrRecsLNzc6YJwRSW98c8vBmhW/UsPptLxhR1H7F4KF0Fps5zCPe/bPvCOVSzVnSKSzYo1OklvIuHR9kwsyqNrQqGTaVyjweZRILQC+YoDq8IbYhkBDioVQKDad7okaHtIaw/smrysuAYu8YLPapecMrg4Umf29ArbCbLBooTXhHYgPOkqSWPvnh8hUB4qsBOD/uNFRIcyuajXZDxQwtiSXo+CSEjJUamD4cYuXMi6Z2mV45MLY19nClrvvrEAci25afvNy5hca8QIut+MybCw2KbjDAPn7mXXpB70jbD49d6fMUByg/8wA/gZ3/2Z/H3//7fxyc/+Ul89rOfBQB89Vd/NZ6envD5z38en/nMZ/DH/tgfw6c+9Sn8p//0n/CX//Jfxm/8jb8Rf/SP/tEv67uiAmlkpsQBT83C5WdB5OUK6D+NRnYM63CCm//cAFSPqU0vkKSTJfPFv3u4pCu+iWWLAZgDlC0QswCEsjZIKwVHURwOTqJdtZh56ubA4/TjQbByngOjeNx+4urCD3e3h2KiT0mQBlOhAFkYyKa7OIPoGMcaZH92Aa+6nv0AkIz73cNSqmZNllq9UJuxnoLq+0dxjRTZKSRA8vpVok8KOR+H8Lir4CbALQEKAdStKG4l6r24op8hDHjM7go86i/0Aeu0ZowBYE/Bnl4zxmPAkgyNjBvDwxZskeCNxwrd2bdCT8nRKlprKK2h3Q6GfZriOOoK6zhAqWV13MUsSagOARCAwiYWX8EBisX8rv5lmXlgFoLE5zUARwoXQbj8LYgVeHX4x8Mjkoe8ekaspVhNDuRCR4P62bAuKT4PW2RlCz3up2CciYD70jV1W7OyH84X0sC6vrby9m0DKWaXcOiWFbztH1n3qbKODCNQEcLcUo4zqAcVTJxgyxvL6wlijgDZCM89KIgV51OSmYjVwUl1Ze4VnA8bqENRh5J4754R0Yk+WKBw+vqNzJ0IjVC5YwGUBCmx70GFl+NLr2gx8v3gYa9pM0ntLErInlxVyZEZVT0l2XzMBPAmjeLAq3rGmnmdk7JxV6Jux67u9sJnPG/MX0ymbetsFc0cYouf4cr1NKHucK9lbJPq3kN1XosKqHfm0kFBJpAxOF+PQfBWFHoaAXkBuTUhk9TJ7YOehiLCzNSpbDqqawuEj2tV6nQSQeJJD5WruvdEUl8KHLg7VyXGI0PZl2+gN1YgqW92+yXBfgombh73py7iLCw5WjPCvR/h8RUHKH/zb/5NAMB3f/d3X17/qZ/6KXz/938/Sin41//6X+NnfuZn8L/+1//Cpz71Kfz+3//78Xf+zt/BJz/5yS/ru25zop4T9WWgPQzH8KMALSWd4rCCaoQfWUDEDjQ0POHAHQ3dGvpsOEfHHIJPnobnwdyMx0uFnRVzNFhtGMKjF/FQjmDoAMpAtUp3vAzvLFnYAdddpSxaVlFrxdGAoyqOekD0gMgBoKLD8DKB2QfOs8NeOv7Xy8DTY+LzA3gLWklaKlP9rKGXhqEHTG8wVJgVzMEY6jg72e1TCXzOgX6yuqIOxg3PQisiSb9OalK6CIJluCS2L8j0dICKmkXTgFZoLd2aH4e7i6egePw5UqID6YvHcli+3ZAELlcgEfM+VHAvgjdV8dZDPG8aUKpBWoW8qfjkmwNv39zw5n6n+VYMsIExHpjnATwa7FExTsF5Gs4+cI6eLkyGJLgF1Xe9lgGrBLljegXSKQkiBF7KXVmz5LgBx5Pg9qZ4J+Ib2v3OmjD3O4pzc4431avFCm6HoRXg1gB1tr4XnQCc9pYW7wRsTvTowD3NG6iFQA+hsng8BmX2injmmjLAHdleIbRZpG0CM3wIoI0pI7FNAl3MVNqQeG2R+hbgdfKq8I1uVHGdBWfDVvzdRxgS50XoCg+tSqQqr94klt9ClgRBCVFRpmJvy5neH/GMF4FEsS9hirJM9+ZZBFcEprqBGE0wNv3vAi/iaGEYLA/MsvM9NKUekjK4RQyv12HZKyfGsUCdLDzTU1qVBk6Nfk2t4F4Fb2USGAwWX8Mk8fbRWYtjdo7HEPXaP4uzZp1gpjhCtEbRKYdAD/UeMeSECAg4Kti+Qas6N1C8ovLEMRneOQrwphlaA1oT9Kp4iOC5K1snGGVIVcPRgKdDcW8FR6k4raFOw70UvIiiQXE4jZoPxjXUS8tLyCilx9vcI5reKYtyEIau3jPJ17E6IZ4V2Q3VCh4WO4gh3SLAUHJqpjBMYxQxeGB6FhprDWkHHo+BQ4DDaNiql5N+nJznc0gmDDxYThjSuTYxgeGgBl7lNVK/S+mINgQqFcUEZbCSbGR3ZT2TWPsC3zPet2vhsrhFzLl4XIhdGDVY5vK0wa9P3HAgpSsKDVJQRTVafofkvv4oj1+XEM+v9nh6esI//sf/+CvyXWST++Y2y54Nrtb4pi85FmGh2Hv/cqZsHUGW4zllSdaLz1i2v60YeGSkTETuOlOvCC7geefu7YmrEo99Go/TBrqRa96FJcsZM7661KeF4rJF+svX4rB8/Uu62yR8PsgY/05FzMOHKn4PEp16qGZVn/XMIgkv0jpnfmWYqmFlY00FtqGnoSVZcp+Hh3KaQo6KelQ0Dy+ZcwwizGam3uwqDnjJGwPS0xDf66spvUaW1uucYKq698cId3dV59b40fK54HDeSa1OHG7k39B7wo6nJerzgErUdBXS2wcj6GvLs7HEtScKXoYvs3LiTeIKO7fs8rSFZy7Xx7YlZK5LIQBZvzsWgLewudScEAeby1XtHBE44devYW0pCYM+QU0AV7PNSpSwEN2aTcufC1IAtmNQT58WSY9UrL4ltcI8tH2otzHw8RJJebD2kVue6XV69VHbZ+49SbXmKEXNNUS2z3yM3yKwRnVnErSbSnouNJWIAxBhbyQW7CNvwIwFuswBncHrAAmyNUPxMcw5wbKi1ZMF1ENH+wjkflXv01XpWYSuOjmU5eEFYOZOtsmoLAkwvDJqnKsofD5z6TD9XZByN7KWxNdY3GuMp4beX6fg/WCRRSUnxBbwSaHHMRtYcphhVsvXWI0YLC43JkoXqMfuzs4U+3P6+KuhVyPvzO8FXmgud4B6iAmW4x/GnZhk2frgOQWBPzx5F5nga5Lk31hdXC/xDblCw7Pq5Qm49sjLijIHNAhCX85lHIUucnD4UR8f6148a5NeF1Uc0ThtbewNbDhgGK+O5HOHFRh9TiKeHgJwixPH65IXsXkGwE0b8UK1fmlySOZzp4a0sJd4TJmYMtC9dXnHQJeZcdMOEsFs0nqeHo5aabPbwnD3vpnk62tgBPv/weqmsuGN6Y69NlAYKnFtdO8U7FlFobCLerfmiQQnUa9lBz+B8WK6YkPF9QmQHpeqLrC88qcKyIE5yPeoNwKDWcFaIOL1Q700/dzAyfApkB3ImSAsYnabFq+VQeUUinhCGYaRiqqVHjL//nbQsq3+fCQnp2R2UyvVwQkSoJTi9o2Zcxw8PQLzovsi7LP8tD5SqdAReh1Rsyfm1vgfojt3gI0c+piGfa0EOJkW0wPAViaxIF0dshfIMkmQEgo+E4Ll1Qp0Qbu9wxVfqHOu4wTDugwBYgMP/yiLaU3wmkcAFJWlfOZaXxdQsknwuLULVkvUEOAQDlp4M1c7LZD3+rxc/rady+IydnDyGiltZw5DyMFeVQ8vVqBNZgwG8BfnzgAkUk6skC/Ju0C0PTAs8FJ1nbfq4lwNeD2nADIaITvzfW0JLgPkNG8kenhr3znFOWIs7MfqzepgxkM8tWBWxeiaBkm02shinH5Nq+gmcl2IBAhe4Hz6sPqSRsUK3cVn1AEcizA6IAE9FzwmIu6SoSIsHlhEzMTHV7yCZzktq1KfnVWY+2RYrBSgD+/UHlWMpxcilqXn4OEtCNITDfXieInOXE9l+QEk3EhQYljtIjyjLa439m0+vOZMyEd6YcVT7+FeTZ/3tIwtwVEAk1/Dh3F5fKwBylEMh07cnSR508UdITOdA98H656EtrY50M+Od+eJz58P/J/zBZ/vD3xhPPAOHc/oeFF2Iu3KrpxR2Gu2glkKrBamIopDCuc+QJVZH1WhFVneOZPg+wN2vmCez5jnwDgL+mkwfcBwg9zZN2c0J0t5o8KzKc6qeFHFO7/HMSa0d2g/8fnnE++eH/j8uxPv3j3w/HwyM+Wlwx4n8ABgzs+eBpm2hIEQj5NwOFMtUOj5pnUrh5ULLatIRpfSqpEPT4LxIcBNBXdV3FRxV/Jyhoo3QpTNSnExIR6vDPeJLlBkEX8N12UVekuaQjxPXEQgt4pyb8wguh1oxw3WgFkNc56AHeijAb14nwzATgP6XFUi4ULK9UJ4oCalAVDo/g9lGDHyIhW1+HFraLeG4+lAuze01lg91gu1ZU0K87LfE+7mljDMlhUqNQm6e9BAECnFirBFh8RPhYx5RfZ+EVfskQIcaFCmkdjn2RsWmSYwl+QOjsw/EwZkgFvn3/B0CgzlOa24MSBO8JQESoBgSlkkTVuhnahZ0bFSeoNP5asgn9Jb51YiBF62njdtxnCL+D3n2nFwbcOLahWlp0q8cinC8o/qx9NDRQHB4ZhhJnZYlEwHKZd/K0QV/J7wtJiDfSqNqEEzk+Oz/o9FscywGS53B4RRWbQIWIAS05Wc1zFBhFAJtFmugCUHSjXURoUzlV7JVoFP3AXHXXC/K253KkGdAmvAOLcibMraUoB4uJiYqxRmtNWb4rgX3O6K270wHDQYsr0pO5SjMHx7rwzvxKGzQjDxdKt43Cv6o2Oehn6yW7HCayrdCjQynMpMoDSsYkzBoxc35ry2TzGMYugS/g6BNNb0VwXluHPm4B4OlQbRgqIN0MKsKzV0q+jW8DyHk0lZrl9Kwbw1zMby80NIGrMx8XJO737O7uMVBdVC+CnCCmJYkL/G2oaylEG0FhlaaKyWiV4KurIRaxdbdYx8hXYDw/3D0qDFtM3z5F+RCzZsEf+Zm2rVaSkOJsQNcs/HFmPJ/PjoVNak+aiPjzVAEUflVcU7CcsS8o4A2d/BSyBXJ4Wehsc58XIOPJ8D786Od/3E8+h4ngMvNvHAwEMmTgE6O7zBnNg1qhDRS7RSpwtZlHFdVqoFiVwwxvnFvSM2WClwdnZ7HRNzKEaY8sZS/VaVYdWjAEelpKgVU5V5SAb0yR4Meg70R8f5GDhf+Nwfg6Xxzw47Jz8AAHBFbBGjZ/2WqVRMbL4X8eXlQhbZAIVFAMGrR/rPEdWMPiclLCeJTeWueUfpWbFwiXW3TJBGJ8MqMwtQSZyw5olh6qmDBbBoEey+blH3fIhBUNFn4WR5hS1a9l4nwpVbMXpmtLp3YfNOZIaIuoq3CJO4JR/p2AGekm8TFtD07LK5/LY9vHKa6YckXW7mnl9ntBpYVnwmOubPLNKn7kkgtggwIZ7BA/A7xQTZH0aFRGIj94JfJKxa7IpOM8xJK0qj0JsjOfV49xR2gqZXhvMXIAQ567opbls1enb+ReKhReZbxHC/FAtA52cVBzTFV6S5oTDdHa3rvaO7sFSFec0chhaYraIIUrSvWg9RTttGPCxueMbctr4j5dIcsMR05oy5V2mt/9gDqy1BPMJgCLAZ4NCcphS1mlgJdw/whT4zVA8dJgHaPVFDCLtOE8wC2BDW5KmCN0+K46643QXHzQHpoDzslfyCqiGLsbI+HMSLEhRqVXJYDkU9FLOoJ+2418ctfnpZlodUvaps6cx6q0dBuxUcT4bSmJJbhEkG9SjQJt7ccAYGx5gFYyhKZ5XvOUEZ7j16xhEE+AVQIktKiicdKFihHBTuohXmG7YrYIiCb17kURSoBChyHJ7hBLYgmGBZABueUk4ZRK+WetaRl+wXyz2aXmy3haNatRbFdEAzletwejbQEMlGxL51mcpsnlJvBGzsJ8W9QB0qC4inx3D5/7Iukfg5y/LqMFSOlUHnC1/CdfURHx9rgKIynR1ecGhBk4JmiupN3HAa7DSc7+heazD0c+J8DHz+/wx87vMd//sLD/yvLzzjC198xheeX/CFfuKLc+JzMvCFYvhiNUznNeBW8XwvGK1wc5rhhOHhKFTdxTcOgx0GaUx11tGBR8fUE7AHzF5g4wVjdJzdiVLlAdMTMgZ6VUz3wsjbO+QTT5A3T8DTHbNWDADnmCjnQHl06EvH+cUTjy888Pj8Cx6ff8H5+ReMz79gfvGEvevpkhMlaatMQZWGpgdqvUF0YEDRDajCInRk+NM3rFjKUV1RqbE2B4wN5CpY/I7HDlAkszVC6GZpeHefkvjHgnqlhPAFSpkQL4qnCqYZ3gQ4FNYUoyl6E5xVMKugHoJyE9jhnqxSieAFwDigo0HOBukN0iuKFTSl9TEPFtVTVdzuDa1VaCsYEERLCTEvVlWNlqsLYJhnI7mFDr9GHOpNUAzTOtn4wrAhy/0XzFEhpxKoToKaMRQmg8pxRL8NJ/B5XrAEOVWYQjnVYFoSKtIDEeBhKbQgHTN8McmfMYLj7JYN8zjAgHVFOQUYA0XDkwLoLJiTjdvSra8GQ2V1V/egmJmnTBJ80DFDi45CEuhzZNfZcxDInJ7JAgGshFfClctwl3SGkEj2Nr9VNgkUMNUfQBU2fRwKGyWFpnVau2ycVqFacLRGBVkEVYKIyVouAtZBKi5oC+8WA7QUCaS2uZMAdtM5IOZgxsOhJs5B42tFAask+49Jrsj09M8iQhJ2dSDoZEp7cD6leYVs5bMiLFj3YnkDRKmKVoE+FacVJ88r+lT0zrCLmeA4Co6j4qu+2gHBnfypOYGXUlHPggcU8iLwxu+onnY1puAcNHpUCspdoW8qylse9S1Th2cHbs+K+00xTnpX74fg3iQzeEqt7OQ+DfV+4OgTNxhmq/AqCTi0oqiiHZWZPm4UBOobg12Oz4eHdc0844bGouHmhe8U2pp7wNWBioN9pbdlWAU7Qiv6UIxhsC+eGC8FeKmQfmNavCdDaFEctaJiQm1gvhuwl4HxPDHkJKVABFAWXmMaNYBK0AOZkDo8bAWGtauiVKDdInuyYlhh88w6MIt68TuveBzGgQPrc0yMweco0EmGXkkup3Ok3ZNs6UVe1IbgjnFjzrG8mGW6oTfdm2m+X5fZ9ZEeH2uAwjpjBXMUCp2hrnwBdLCYTzfYC70ofUyc50B/TJzvWKH1fAz03vEYAy828CyG52J4dwjeFcXzrWDeKuRegKeClzeK0QSzAedkJ9aX7i44MbyI4TyA8yBQmU6QwgnIQwJ8QytdqqUyNW968S8rYNfiVjFvDfb2CfZVbyGffAt9+wZ6v0N1oKDjaEwhLAK8zImzT9THRHmZkOcJezcww4UIJMGRbuECQYNIQ9GaiJ12FMWnRT0B7zA749lW/HLnuSySLgHb8PEpc+Ls/PIx6NXyfZdgpbryVRG0UpyDKLgNWgSzAPcK3FvF/d5w3CvavaDcWCSKRRYAPCn0DSA3QBp87wiLmz0U40UxnwvsLJBRUbXhXhv0zv7IqkyNfrrfUEtB1Yphyt5piDozguL+TJsUxmYKUTYo1FJx3BqaW3vlAIpQJWOCXrQx3ZQv8LrggBSYVrBKbCGgDLYpghvAzU4vvftORJPZX7Ww3gNYTXSae3siRuZ0QLprI69FYUYirsl04GLeyp0ARV4A6d72wNd09GLRaDEMN57UG3eaumeE3bQxWFcoau1MyCqJ7evCTlsE77hR2bIA3HPDTsJ0Qa9wd6SWRsjJJbr7KLQKqhP3aI0K7ByY05iKqwzvHK15N2Nharx7gWQK6004OGE5gEpFh4lh6l5Clpcf5kXcfL+wcitd7gJaqW1KEsJVWN+oKcPXSYnxcFD0yQnQr2DGRgFrBB03wzGA2wTuQNbCSO+YriJc3NOKMaPvrGJIQZ8aVH7cbhXHreJrvppE73ZQ2c4ueC4VXxgVL6XBXjqqTLTiVZUNGEPQu3M+dOB4YrZa+8QN5e0BedMgViEPQOtArfSONJB3UqqPJdTbdRR0TAytmK0Bd4O06Z4qQdFKMn6rWfI/gJmIoHiH+fagonUfIpI1og1S4N4dVntuRyFY8BTroczcOY3NGPsQPF5YEPELXyh4eVG8vBSc6PTEtkKCvCqOWqCzQ/qJ83Mv6O8Gzio4irJSOdxj1RRvP8ESFLUUlIhxlooqhqLM/CwHO9bf3rLPmWoFvKP6bZCMf7bC8POYyb1imB/sG7T5MTmOwRskZ7BggWeGeCj/zMtCwKG7R0G9ThaYyekg5UD44R0QIrwoH+3x8QYoJixa5hYAvLSzAsBkVseYYBnhELqnV948PdVuzLTyBgxdGdLpBTir4AxvhpsI5yEEKAdwDhKZTpi3y2asr1d4GAhMNWziVVjFaxd4O3f20kOt1E8oBCjSFHiqwNMN9uYGPN2A+x2436HHgSInKiy72hYVHAAe5r0QBssu42RhsiBsMSSBFbe2YJZE+ywHJpDMTODilAtP4HU6aCgHluc2L6XvrnqPc/ZBRTunu6Td+qVejdAE0XYNBjpIymOtoomjgjyOKAffOJZag5MCqHtQtFmWSo3aCKMb5oNx89m5XopQEKBW4NboMm0Fx735JlVIF5ZwhrEoVVHUw00Ft86YIUMCrBYvylYramO5boVAvdnb4nLQcyFSIWNAZqPin+pue8v0ghXVCE498xJIMqVrV4UeFNbAKT6+4umtUZs3Ug7jXH5GdxEZi1zQTe19iaYaihV3T4OTK/A6IeKkuAVQGD+fHkJ3dacE69lIDBHikOT+EIvZqnoLLth4LyIa46BEp63CU+5OnuGBdnBivpZESMAkBLf8uxah1dndehQWUdQiq5IyDJgxfn79zuMSUy81DmzUWy8FjnTfT4u+KFEinDNYfUlE+C5J+EURSDTI2pieiuuYlaEcJVADgVMzZPO4GkRKD4UGNyeJxlPTK2ReTr6DYQET54vcCj7x1cULDlJZzxMoZ4G9Y9hlijLM7imw3GvkZk2jeGlPFe2pQu8VeiuQw8ttl0XqFNWUk0HU9yWRRNJuSm5epRfbHHxZqYAWlhmIGk0xXyLQwfRqps/7mhHL0CFcjtSb4nY0lKo47m3jnxCg9GK8hik4u+DxznA+PFulTEglH0+qot7YvqKq4CiF6c+n4WUUdFGCS3dHCMQ7mJPrU7w2FmMzTOuLEg618dzlKKh31pwSLZhdaKTUVT+mKHvzqHtZaegwDDozBEnZEskNWY8LztVyBB0JEzFPCK2hWOFtIQclQ/1mzrVzmWJb6PojPD7WAKWPipfR8MWz4d1ZWbVPqXSjT4AoyaA6fFueBvH6HxVO5qzASwP7Qxy0OOZgWfuzBXgAUIHHAYwDGDcu0D6Ah9C7oFA8S8HzUfF8TJy3A8MOwG6Qxw163lBvB273hqc3Bz75li73ORpeSmW555sCbw+MTzxhvH0Le3qD+VWfBL7qqyCf/ATqV30ST/rAJ/DAV9Vn1Goo6DBH+18U4GZAmwacnsIGcmQZSWf55cegC7a70OuTYCuOMdxtPAHrhkc3lofvTI07h1d29uCmgO59iOHlpCfneEwcLywnPb1UuxnweKEXazg3RgZ7HoVbsaYy5gKl80LwVIE3VfCJQ/CJJnjbBPcGHM2Lm90F7Ulwewu020RpHRMnRh8YE3j+4guev/jAuy+cOJ8Hxkml1FqD2g3aDNoU2gpu9xtd00Ngj7DqhanDtaK9YRBYSvFaGApIg5Tmrt0DtRS00nBoYUx3FGiXRcT1NPNDjO/VUCrFSY50U0cTPIiwXolwHs0VqJTq9RLUWw+QYCdOuBQHm4BkzQSClOApcB2aA4toIDhdcY9itHbVXbWnwYaR9y3TrSNzKwvbOQ0w98RNFkzUMVFGugZIsBvG12ItzXA3Y3kXErFQEXcLcOsl6RHkYCC6cWeRMQkF6KTaZADSTY5hwMPlhIPiKHQ4TVcWn7e7mB3pM5fO1gB1UuHxYSiD5PHZlwE0Hbh3i2wpEh/NB06jLXZdqaIESVxfswvLr5+APcwJ1l752gaOSe/JExSfKOSb1CqQA86h28AJ4FkZ7mRSYDbBKcpmiEoi6+EA5agFt1Ko6B6GowP6LHgxhR2K4iRZwA2Vk5lxZgJrivq2oL2pON4QpMxa0AfbbrwMw2MKHkZgVPwa+qDsGTbw7mXg3UvH51863vWJd4Oeaqs8//Q+RLPw8yriYJj/SoTWLKqpeoKDkB/EOi+A3hXtJjia4unJvTkOeEioZcuMOYF+Ai/VcL4AdQDPRfCuCrqSuH/cFLeDHJujgFyzDjx3vucUxbwVyPSspYOVt483B8RJjOPByug2FYcSoNxvBe3W0G4Vt7d3qLIJansQLM2u6M8F1gueG0sgYCjEQ66iAMagRy4qB8O8XQkNNBXKLEgAOoJlDepBc/6YZ/KoAq05UBUkICxdvfszrQ4zLDLMR3h8vAGKVbyMgucueOmKc0Y76gJVQykUthdymRj/psFaB44maA0ozb0PwzyW3jFnxxgney3MvnqLAN6WnrH/ScYSOoqzpieGNkxrQDkgpaFU8hqOo+F+q3hzNy6ms6JKwVkUjyo4A/G6e3h4GGGCnIp6eIaM3VDtgdIbXu4V/V5wu9G7UApdeoM4xYME9BKd0/AYE+dgc60yDN0sOQDhAbG0ap1UtT2TN8BnWrNUHLq9zusm4KkDSZ6L89D7EtZ3HJHuap6bz5CI2EAx8lwOmbgpj7tONNUUxq0Bt0PQqqGVCZGOOVni+3G++PHA2TsLnBm9CyJBqFWIZ3OIWxO+wyDiAKU1tFuhFVEKwl4QrZDSoFpRakNVphAfUtzSLuy5YQK14vwb4BDGleuhKE2g7lkLYq1t7gNzxT+D7OrWeXTBdRS6HuYWf3gfQl+r5GvY5sHghLwQKA4Wg7Ph/oR1ent1jomMaWfzQgchXhkrs03MQCG2eUIEsvUOWV/26pYALM/gCuJI/j2uJe+HJ02rOfzM9l68UsAUfwLSbnzPnGwCx8q9BCs23QM7J6ZNZKlPCKLbnwQ445U438ptSIu7iNW/DabPPTRxmYNVBJ4MmEGZVghwSjW0arg3oHlRNL2BoeMIG217i+RuBfuJhT9NvIhc8FacOFyZfTcL8PCCakMnpBqqA6K1Bqi8pgHWDLVO1MowkDi3yIwe13PQaDonb7hCkyiqPpdjeCj+0fHSO17GiXPzLpnRuzmHEaBA3RCg97KZA8kxGAZ0DD0xMSQK3dOrPQvnxSo4cIXhUvXQIlShU7J9BsZEGw+c/UQ5T0xhiXyxCZnFif3KZqRe9llg9Do0GhK1sBKwVhpIFqDUyfgmxkzGIt5/qaEcLKOgeb/cW616XSgnLmfqtXJtigBa3WAZ4vteVmJH4Vqd23KMZR0JIFq5NjXWnwpKWyRZc2/hcM6buKfOKYsf+fExBygFj1Hw0hUvXdCHMnbv8XctjK5GKp3qdlRDrUBrwHED6oO8Ai3m7G8D++90zHEC44SMzn4u8U/dBvUMjCkFwwHKKRVDGkwaRBu0NKA0r/jYcL81vH0CMATjbCgoeCjdm88+8XN60zLPlR8mgBa0Q3CrgjtuqPOBcja8PFWcNwKUCH2YEtj0MFgBAIZzTjy8AikBCovBjWEbuOAHuAkjfLP+FiCm+/uGu2DVwVR3cBLgakxasdE7arhwmpajGT5/3xyLzxJ9ldQU1UiQu4nhLhM3NTSdKCpoVXA00KviQlPAxl19Tjw6wcnLeeIcAVBAYSAe6so+RvRa0J253Ji1eRG4gzVMpEa/JYVIhZYG1bIAipCES/JZcUKqsribk1IbwJBf814jrhjUUQEpD6FctrRUn9TgB5n3LAJiHIEIIAfGEYkUVAoW8ZNMd8FOlyB788CVJYMlrFxxR+gvAcF0cBIhPz+Hda4jApS59qSvr2KWkRkBPIvMEhGpxOpNXmwGVOI5L8/iZyoQZtY4x0sI6tipGgk0mBbtYYUxSOCEoJtlI0YClGghwDEaczinxuOVAZLm2ECKk5ERc7FL/ii5tfZnDDQ96rIGPvaHuMKK8ZJJcmc11Eaj634zHAdwO0BSuXcXjrTSKMFAgEJZNitSVtAjipXBp14czV8vMlF0uqEHb+vg68EzQ8zXgVXzdhcTzb2s5MR5S48xE6SoKgaKk5slweYYHf3sOB8dj37iZXSSqB3U2JwoyszKACjq4f7ioQ3WnBpZx2kK2LUYE3PSghrFy99PZbn+MaDFQ4VK5Vw8I00GMMZgtd7+gJ4PyOOkvCoARgU6y1NYVdgcmHNwHbknQyu5MkVZ2j+IuYB6+rKvDyuY4QVrFRp9zkr1LvYCGRNwb00rK7OqJEDhZlKBk8jhAIVjHPxIRF1I32u5XoU1mqzSmA+LRcUdkhW5B6YbG2NyH0cBPgtj5SM+PvYA5bkD714Gnh8dZx8Yk94NEcbEWLeAsdHi9GSpRnfoqbiPgvsnDtxnxe0sOOZAM0ErrDEi4wHrz5DzGTifIf0B6RU6mFWeKbsWKZwsADaHMAsCFToqilUICm6l4d4a7rcbPvEkLK3dD5RR8aJMJv/CHMDLg4zzkymfz//nC3jcK+xxorxhA7o7Kupo0PPA/e2B892B2ycOHG8b6ksF7hX2fGI8dqtX8MDEY3Y8+gPn+YLyqOjWMebAmGemP0ugibQwdyVBj850My86ue6udXFBEbVWivcoCaEbbdmZIszNM9UL/8gkf8XLrat1EntN0WTiLhNPxfC2TMZbm6A1wdEEbw7Fm0NwHMAoAy+D6d19PnDaA+d8EKBMdj6dHbBTMUy9v0YIYgOUFqR6dlE92IW5NO87VClMJbxbpWafparsXn1o9SJuBxTRAbUQoIDEUQ2OgJMDRVfqaXcyqvX5fpfh6U0BB8GceWolJZK5tW2ZgYVoMWCyaquMcCO7oIYDlD7IYTrZTHH2wdo93sOo+9+jxXwo/J7cIzbYnHNi9LA2e963AM458dof6l5J99oMkaxumQsPzkmyLQRkG3fDIkPDn4PXoeHZYZHDMCx6H8mHCk7HkOGtDgTnjKKH8T4HMg7gurF+BoFdzBgIWDBhyQg0X9cMuQ7nIWl4EwBvMcD3Dr83mYsDsIN5ljAAoM5pOwTljaC+ERxvBU+fENwPxe1QelBE0CF4POg1xTlXGrdUehKcL3baxCNA2Bh4HJMVUKcBamzB0U96IWdHwYCKeQYPQaAG52CSw1TlRIXgZifYUbygDirV0Sce3fDSCdSbj724YVBkQsE6UrM/0B8PnOcDj0HOHk7B0KhfUzJUp5OU/yqUMZWo2j0oBFF9TvQ5MGWgVMF5L7BbxaMq+s3rFhX1dheAVcs9CgjOF8P5MnF+/oHzizxezk5DQAt6c85aLZlq3sdJIwCeHu37dUqFuoHNdgeCx8BmfJBrecwCHQrtitnNvaKUIyYTVSfUD4mwYVmei5TB0wnALkuyq3eZTvyXrE4RvjWG8qbzt/i9UTTKKvcvi7lNeuV1ekUIdnuHAT3K5H+Ex8caoBi8NfVklk6SyeADb6zzwRRWR3nmVU5fN9nyWGMR9pUoE9DOUI+cA3JOPxxleoaI+7MQBSyCfGpB2pXlfBaEh8bJsR5aqi06IpsXuZmwszMUYgItB/rzC/rLCRsdIs2LTZEYKt4nIw54iq0VAojxatyGRUhnOBgZGEY3dXg1piuRACav/0XVRCoLt5r9sM0UXm3vJTkMMRhpOUo4WDmrvA72uxleL4SZLwCGkscw2d77MEM1tv9uIGv8EBaHayJ4uJtYnO+A9AhN1iHorIvDbCeGG2wAwwa0CKwaUGV5VERyTtUzKYKoql49t3qJ/xZHdKquFaoN4mZKsOgjPi5ZL8VJgkYPhwpgHe7VQ5alDhf5yD3gilFdg4fbQ2yFdiTIcUybFHPlOwYB6hiIMtWs0WPk8PjRx3BA5ADE3dzmYDYs4jENZ+8wn8vpAMVm0LXz0tyA8Fc9FJs+BlmhrFgzah6hUYSJh2vVaFshK/8ol/HqEBT+jNFHxsUnmAI+OCOYJji9UeicnvvscieJ11jVp7dgDAjy5poHMIsnW1X4DZbtugciRs95EfX7dCA5O1iN1Mxd6yCZthnlUfbMAcoB1ANoN0APByKTfC9WAXaeEZisbuaejC44p+DR6UHGVDye2ZajyoQW7pXeB7qvianuEfAxpsdtpuyQadCpKHNkYUcMZkUh9rl7UUxBMnHsMw1RQoPJ5sDsHePRMcakYTMEUO9wZBMe8IBOryIsTBmHACyL4ABlGs7ha9o6SgXsLCiPilkVeFactbDhqOfcWjUaJ04W7Q/D+TCc7whOHl984PF8woyem7MyFFxqJfhUFmoToW4plTppCpLsjG7unfOU+0nvZFN6P8PLPSeyBk4uPWB5oQV+WD4DLh409pasrLpA/OI92YxJH35KgmlxmeXnKu6VFI0sUAMkCyBwbYXRQYIY+uVif/XHxxygFIYPujmpUwCQ8SxanIDmLlCdEB1Mx+oV7Sh+sEdKqxWtsI5KmxO1C8qL1xL4Ig+8M6ZbClnaqMsFyVLkBWbFlQd/F5SsDqrC8JHWCW0T9TZRu6IdRKUddJtikNh5Pk5m4qDg+Qvv8Hh3xxgnoLTcRUGG4A3MK7wL8CSwG4/ZCnrZAQqRQZ+GxxgpZHrv6M6tGTbQPaZuoGCCC3wvwJ9u0Q6GhgCW3a9uJaa7OuLYEbIoGrzJLEIUrc6zrb3B6wvw2s4HPShlnhi+yfXsaH3gGBM3ByrVDIcBhyneWMETCqr33qlzQqMgQAesu5B9DJwvA+N5YDyonFWBWibKg+Bv3hR4gqcXlxR+AnUuiQNiERQoDimoojhE0aJjdSP/qN5uKPVggSeNXA6uMR8uAMEXEe+katCz8x3TMDEyRBahtx7FCAd/Z70bIAoaRIxYHDgWRNTAAUrv6L17nH8g2qQToLiFe3aMPvA4Txa6GhTu5JdQWpqDFdZY4GfMFZJ1JPCJzFcRxqfVi1SZOhk4uBaQ9BTBFqBNo80HLYTtVPfEhONvzKxAa8DmJfIqrUYXPau3OigUghRzN3UfThqec3kQZYVlhu+biOMv9D0T2Ad2iXX+cOUBGKqugE9Pb00418Hx8HewozrnrPreyh6oB2B3ygG5G8rTBlCaGw+DRhfGxLTB7WDkYUwbOMfA88Pw6IIvPthx+GyCN63DurCzd52Yj4GX547Hy4nz5USrp2fT+B5mbDaJxDrNsxUF7ewwUQgq09Y7G5c++sTjnAxDGRVrZD0Wl52Cybo1j47x7oGOSY1exUO0Cnb+5t6M7udTgNIYshnOr7IILfWOs3eMeaKo4HEoxq2iFcVLlaz8rErDVKqhHtW9nQW9A+cJfPFzD3zx8w984f+84PnzJzuIm3iGDWuroCoLSR4GbQI9gHqQc1Ynq/CGV4Lhr8kMoQiD+tI6h6B1rzXp4TlbBUsopyXAMNAFOJXPgKeCF6656TSAOd0LCAAy6OUTwRlgQlgKojqwVUzWehF6uaKgHEAv5unrXzBZBFAZejKwqN1HfXysAQr7r1DAK6LQlyGrkcZD0q4KvymtdPcURFfLELY2JnAO2MkceXucsPOEPE53e5MJGg3Jot8IrQV4KqAXqvGaCCWsYXPQg6hBYevnIBX0CTwm8A6s36EvmF94wfziC+zdiflSyZL365idbnU2FgyF79ZVVisKMejW35yw0fMI/4fYfl1XpSme8mn+mp+O8jfqI6sLlir0TsXR1Ft/r3ioyeZ2N37nNEDd7drnwDkmyclzoHfBGOzSbCOsMB9Td9EXY6wziX0qK/VNJqKuSCgdemmWF8LgXgZXcnShF8hRITdyTrSxsqUqU/zgZbZV+VrxnjxVC8veVydIHwdKuzHrRkuObR5mznbnrxIchmHJGVFhaiU5KOGGkvDVI2p8hLoMzgKMcxiFwobS6hQPHfVOgHae3b0DnqLunqYxhrvDZ1afTO+BGJW6uudFh4OAwRCHhy7M90hEQsQZwFxnEdrSbGugEOcgUWCnf2I6OjG7eOUkN734XnLPGdyFQsY5146fc/SRhHcuFKZhR1v59CjNEdNCsml4YNKDQr+UI3Mk8Tvu17yPuk08zDMjRFbmjwE9ZFJ4pXgmpHlsUbHEuMegtIyLsZVDBcyPdCuGi9/PIoUcPNFgFwi9XOaGx2QNk9EBBYs3zj55/uF8DSesjt4xRvf5pnEh6aHwejM+zvBO0QUDkdJeApzbQBC035chHqEo5pwXhntldugcJPMOL1NgCrMR/hPyT5w7o6pUA2oJwAlYmfwgg6pYhjoBT33+yT9hFWsDBmA2WF22F2YznsC7lwe++Mzj3bsTczA0L05gY9kDerZxAwHKTVA7w0e10jDSMqC0tmGmGA5QAENXZp7ODvJRojysC+WAtcENPKfhnEyS6JPZY1xG9HJw/S7gzD9z7s4ZSRppCfhqUaj7R8RW9F8AYAafhWA7hKi43I/92fX/Eg/Kcv9ZKvgAJ5QJm0UTj3D7AptX4EqzyGZxMwQ1Y7BwQl2k5yGsJt9cW5Yh3KDIni7khtnlACwBARIU+GtT6OqTDSw9Bi0IByVz+nWFVWiWwItxd8Hq22G40AkNSeLzghbA5TrWuFKhbETLuMFQNPG6K4n0mqTnhPwNUecUpPm7LiXc8iqLWMlw00yXt4WFmROILUxAhbaaEMZzZK6sEFKkxa7MlXXn8Q7kvaiDElaVZZqdAxWvBLsyfjw9zwsZaRQ88l4ZxTkrEgVwcsEsL5UEwcLg18lxnNt9pfchhIZrfNYpCIUnOU7EAQFc6MqN7IhMnx3GNbXVBbKxFGZY9kGcjb2T/2L9uIvYgllr8fMGksOC0sAZ7r1QWWvDhW5+zNKBkWuYS1u4PuKN27oSM/egWPI5YrMnj2f4/IsRYIAVXyPTZfr+sACODl5cnV4MnQxUGud0CXxiSFb0XARSDsECIEkcd1LuulfJ+4l7tOJ7xufWwmNWNlBSXPDotk+8Gzdr1ESmVBgbW1gs5N8WFqV8XCHYGd6xtNDWWg6jy8wuMloxAZluWDqg2UE6nCPlHgst4lV4Pfy9y/rJAmdIDqBtssCJ7RbgJUbSkOE3r0xDNt3woTLvUWRbWfYVhhNhCJjvNIyh6B4qOvvAww/z2lsQjrlOJXAcPJ+aorhHR4vXjKoMMRddimieAc6dZ1YElsO1uI+h7/zuyC8yz9y3rdT9BvQj9EKQgrVesZIU+BrlSspp2GXGYup3HRphKbEwPuG9gMTDoR/t8bEGKCwmo4tMFhDSyaqhNed0hYUo7saMk9PEn1mgqENX8TfPjJiTFQhlMH5Lz9W2kQN5JuC4Zj0EONHwoKT3hGWPuX0GD5kUIABz+DuFHh4GPE/Y88R8npgvE+NlYswOexmQc3hGDq3cYV7/QqsfB13U8EwVK5SYrH4E6SykFcotNngAvf33y+tptdorMIJViM7Tf2tdH8oMEl+oudCBHNMdpMSminG+CKENnGiABAcD0Zrd6yylgFtIFAjCKouczQRTpTaU1lBuB+qbG+q9odzq8ggdzTknHE8RRdWDxdlK9RooXjPF6xvUo7KvUq0cGKaycISdLJoV9eaCTPTOWAIfW4Y6x9OFB4Q1bciJQehGF5R8gdYsXcORxRMhrwC+mW6cYRtbYN2WmIIDE/M1u3SUed+ReN0Vj1t50XlAPCcxygCwF1FaHSy8tks9f8gQ77Ul9KIFD8FTGpdOd2KwbSDF4G2xXPF2S9AW3gy2InBB2yPYP9PzM4N4C7jnwZW2K0vAgXh4D3yldxfW3QEKjZi174aDneEdyW3SYo2BlU3hkcTr1+JN7GY150zZ5j0xcubAvaoVKIPpyBNUkGZgXZvp3hWJveVNExwcaHpZo/M61Z5IAAhAxBcwi5DkmKksBwKFyHQOVxApJmDIlNiQH1o4Rqr8HpWZHvMy3DCcghKbYk43VBg+q4W1Qxqme1ToFdSs9jcgyvsphTWJmgqqsBqqYnoYF2nDiXG/mkhmWp5j4jEGHn3iZTivCUrwPeAGrmQ1V50TBcoS/oXysXVvuOg8HpjCeniyBbN5MsFkTRO1kiRbFeeYyCpux1YS4p47ySZ9EgYsGPYZwuc0stM43ERHbqvdgF2PkOHTIlNzyZri1xJZif/XNAuED2ZY1ulFCMEasTybLnSC5DdxevjgnDNDIzwoSDoWsgyeWhhzKwgSisG2S6K1m0EckSTwIRaBh6FULPvWpBBQZHiCoZAGdXa3oCA6l0a6Y+T+LlKpp7LNZdVIXKc/0rhNVmu8VRJU2X5btn96UxQI0XsFM+sNBIh2+dQCBzF/F1AnAerkAvSiVl7xTItFOyY8CfuMxcaKWweywcEgl/qR3BHvZWHcuNWFRT0OrzXQoH4U7/NRSiF42QEKCqo2FAcnpQRQqtnRNBqQJbLaSGkReoRv6gAvNkEPirups6tqCYhmrDhZ1vpc6PFqnSaogwO6zWpVsNIkQ0gOwD3zhZVgOb5a/O/C0Bo8XTrnFYBOkkxLoeI0I2GcynrmWoky9Ak3dw8KBCnHLgh2vz/bSMtcvREHB2SFfETcmI22isb3YiIqaaqAPAb3msGFrMT6ijWr23XE1tj2z76u8zMJMNZ6z/0Qe2u9kM95+bk3472u+QNEGVZIKY7LuvIRVvM6HySNRuaTmtddmiy1Po1FGFths8Ba13PVgVEim4PjsaezCkAAHZkdbtEUX7vijexCLjhORMqe+Cc+U9s9plUfQyXbe01zrkJCcH96LzBVhonK9BTz8LIqhrDgYlHBrSnuR82CY8WJ8TCsGiCNYZtsxmfwe/NQr1RyaIwUeLjhZG4pZWTWYq1iedW5RS5GFPyuWOlVkoBfC6seh73DPenrV3ZpvJ5Dnoa08K22vbaSOvbdKVigLQ71OUeeIyrWcq/F+pOoSisObTZ9+Ws9Pt4ABQAMaW1Ms0WCCysQBCzABHTnNvC5e+y12wIqI4/0COfSnxLgBBeQkmIlLCu8Uo7uwYm1EupUXFFElgVrDqiHBgRTKgr7NEOsEFWHZ8dd1pLgzN2uFhkEAaW2wYrnUIRx+CI1X2gp53fF4D9zkdvl3AlULt8XHw2VsMlr34ALnPjP8d22FOpSYbJBkwxwhAp1cMLDvB/NRg9KYUiBvrJvihaPM4fHR9ODIq2xfHarDPMkK7955+fiwpHcEwKSskI6ug6E4EiUYMgKZTEngRB32eLhnelhM3OPCucX2R8ngGUqcADANb9kZfOIAwWOVfTzYfYbrV9M/x5QABvgQMV1tX9vhj8MAJS1TQzQ4s0CGYD2OZB1f17YLPeTLKVpuRj3q9/HxMM6sm5XfO1C1jrORQ1+nyAEpq81WWtWQGMiKu3m+GAiW0LzQn0MbJs6uWytZVLu+ygs1LijUELxWUu8st9q3jIWt8ZiDTs4mYhw5ebd2oCpSVJsuMbLwjkcP8qUWgTDC30RrKs3TlTUQgUJV0zhFbnU2oAbAD4p8SxKMCC5NyXD67uDbM+Si0fcY+psQ85YSob8jCRECc8cAQqPLCYXAAUkt4sVFAVureDWCjssw730rwCKNIKOoQUnyLeI1ghRZl89t12iqnO4cWWZi6k5Qii6XM014bI5tkqAlOqAqwZI8fuamPz+yxjGSL4GJ68flu/1FIAlt33tFOB1I3kkncT3y8w5tNx/mZXo5/rw93/48bEGKNOcvDcGHh4DDOBxTqZsGDr6OGHogDxw9hf0/ozn04/HO7ycz3icz3g5n/HSn/ESscRT8LCK8zyhfaB4iiXTf9WJgkKehHnzLSvoRmLSicJuoU7YSqGWLlMjKoXnicM7AGsgY4G5Ja5aIRq9UytYgrsg/P1jGsaYJK71jtFP2HgA4wWYzz5ijLFjMF15eBZG1I1IkRYW3is8k8rGgrsy4bmtnsU0V+zeldEwOmSHK3G6sfEqxk0vEMG1UdIFokD4RpY+z2iUC+npcdiBgiEVUxuGl0XspjgnUyfPbjzOVTtEwEJJTPgpKJXZC/VgrRP1eidSnHdSvThSOxygVJLhoKjSWAel0CvDo0Jrg1RWmU1zpwjY4GdDfhflDdeQ6k9RZFDZs2nQQpugVbzsHhdB7rlL6z/EjbA0dSgYmMCU2WNmhmLhjVoeyOjCiyEoUZDMS2BHwbjIwAKmZwhogmhTcwLdJowBWpOp7K/gZIGWzWJeeCD30lWB+3XEaKTFxrFcstE9LRLhDF9QiUrWZwjv3M/iOCUUsEG8rICtKXTQQDIlEOEtyNpDcDJ29N4h94OkRzMk7wOGvJuwpnOchnghMWTaN40TzRB0IKRI1wVY0RVzYjYiJ1HSe4dyDZ2dJkFvwFFZ4r61yHQsJLmqpqISsbSso31Q8GJCrxMcWbZtMBEMKU7KJTE3QEfAC4i6jOMa6ZNtRUbKF4ucE5et5utgMxldMaoGwDKGmt17OqYx88sTG2oR3I+Cp1tNgELgjgQocIBiIuii7BY82X+nOAjTQg8ivUUrJTnSfhFg0hmtAoYsJdxzw/lLEf2K+3D90IrgqIKjsSlgrcwEGjYZMtqLTSJ4KgFwkQYgt2ustTAUhYkecy3d4FI2AFUMLeb7gv8XQIexMnREL/fDNpD9UR4fc4DihCAPb6T3w5UuAK8WuKyLyETog96U+OzIOhDTw0B+WMcc3pwm+B15uFIP4YTXIQW6u9JKiAu3LSBhr55dGXt1ZObHO2fDjQUPX8S7QyyDwiFcPs5pEHvt0VhmSICS9VjKLYiX8fplSeUNL42RenY78i4tIIa4AN3Ot+nnMJZzE6WaWlcX1p4grJEYd7fMRGFa8ufpFUHDFbsyttZtqITl44JmL++9HVVZfK2oe0jcgyJeqK1IWcAkUt2dEEs2Pwm1PEIROjdI5n6HPiY7UdKlf1oigizAth3qI3bx8L6a39TU+bws3eV5iQnZTib7KS5waIGDEIowd6GHktrfua4nQnqXS833AsEfCQ+FxKKxZRl+KYvsKga3kFHoqOuXrg/l8nZ+im1L3cyVZuz9V5a9W+cIBWM+jpuHJabVJECM31V8mRMMse3wC1KzeC8yTHvJJNzuaJvi5IkUpUEUheHEvzw4IkOvnhFGJ530Ds+KA5z7ZFuWXNzXRqJ0sJJEdQ/5xDBQXAWPb7tYEMhMhyzTgkS83r9nrLmfCCGMwhBcYUD3HuWg8BNxDQqgVaBVQav0MNGDwsuxCaAaPSjVmPVl5LQUb5J4ySCN7eWcnpTfoMdRDATt4b2OsO5lbrluDHG94dnzyr7Ol4ufdcrqtZVyRK7yeVvjfjnZrDO+N9dRbH8HFSKWHuzFZbcEpUsvLEC9NsZavx8dnnzsAYrnept9IESDtFq6E1snVv+Zc0z0zp+Hvzb6XGTTPtBHx5gdfXTo6PSgRCglQkAxMZvODoLSexQPXwESgMScAGYsw1xgnrtvLhwMyLRAHnu11jhkW4iBullSHIuHyavLZ5u7Mxi79sfaXfEHf94BSISXls/1ClL8mi7cEHeXW17vOue+Gd673FeXtwC7YG8MN9XBiRZMBwjTY8w+JFmmPy47sn3I+qcbu3mMvpZVdC3ACVOHSYCNlGKZAVDcu1JWCrIU9ugh48+bWGzuXko/2+5wu/nMzQXCwo9aHdsQLAHsw8nXw4OwndFsGzcCHNgCJzEl+aH4/KbpKCQtl4jiMk0Ags8R8WheUVyLbV9ABRFhlqWYFuzZH5vwNknBmO/bNeIaBf/kFoAMz1Io0ZSb8Zn1PQucWD6bwPfOK/kb1wZkZdrc/HmBWB4SODIb65JX9iC/OMHYdorcH5tCsbCCtu+8wMDwFAm8rD1rbkzw5wBBc3iPMmVn4gVSZIEUC+Vk7leyjUPHi4w1E/B6YgGYfYpDVq6+XLHmfE/7twybmdywONPJAExPX8xfghMsYBDfX9Ry7bBuzgJZrbLx6MGSJeRZCCWXGcj2bACqwWSSAKq8f5GVjRlCV2xmGBI6r5y+DVwyNrIE6Kr9QwAjIQZ8n+wJCVpZX0oLMqT1ujhoyOLgMl0Wb5B6Ys2+AhQCODhxkILIploAJbwiliFQpFcx9gLnKO7/urN/tcfHG6D4DniMicdg06nTKxL2sYTP6QWsprEjb+/A4zQ8OvA4mcfeo1PvyRDA2Sf6OXHawNk7yuiYg3n/Y7CJIPvjwCeZ5cJn1BSYUdDM0uuy908BliiOsAUJXfDGd0DzxnHCNj7sdeBRnSkspAO3MJbCF7DXS0GVygMFJ7chAFr8qsUzAMT7TAgi60KLwmYBYBCb7BAdTfQ0+ArFXYl8X7gV4xmI/jYr5hzpG+xxs9UOkTjgfWgKdHqBJx+jAkteR6lL+aMopjJdaMZR+QxVDBG6YSFOgCaLfIJek6KFhDPAqwqz7fn93tgz6Wi4twOtNtzqsboZtyMBCjkoCoUDFD9veFMyHcELx0XV4bWQdZGdpvqzIDIbaLF7mEE8JOUFzTCNXXCxK2LHPSEyXQ6ltelLZYaiFokyKulZiM8lDnD0w/RUWtFTWbkzXLkQwapkSzKmqF44KEzh3bxB7glJ4nkAbyyQEEf6mEIP+M/pvk4rIUDfK7wSiEo3cDF3lLM9ApjALlgD7kHhWyzqsS2UFheaaUD7uRfnKmtR7ByViJ6Fu527xxWO+V4PnpZ4JVa65DGEtYD89ziwXZsIQQYU7NAOZH/DIQAqQwc2gbOyn9URTQcrUKv3Topmq240VSfMVtfkZizpr37uGVl9VZIkTorFSllPVJMA3HvR+LiwfYJ7P30NX5wEK4a+1jErvLldIN5IceM5h36eBGKtAfcbj1YCoPj0mLmbxYDiWZLTcAzDWQ1NvWFi5WGTgGGFbN1oNmeFiYM9ky10zXmN9RRLk1tr85pstaVqU/ei+Ll0o7hBPOEg9ox7Nv2eAbCp4UA2hb2AlxzixZPcDwnvEPZga0LU6+b179+w40d6fKwBivlks9z3VnTLvSgAF3MPEulk9cA+LI/s3jucx3E5VlaQONSf3iSMz0torbBJ8DBsbSbbD5/AlJCUThf56ZtbPSM46r2EgslGeraFcAzLteybPZnfaeeu/I10o7pQkFXeE1HLBBYWu6blTgtaN8+DuIXitLQAKFsYhta5OweDNCayAE3UDRHfiMLeN3yN98hmj24tJGDy86lbxZGmqiyuFJk8GbfHLq95XarqoeUQLuSgtFq8wRk9JuE5yTBPIagKkiwQac5xbd7yPYv17Mz6DQm8ApdIARUgxXyero+I78saYt5PCIpN4YZ+tldyI9530WOCV9+1hOwKJeXwARdLDTAl2ZLTIA5wHD44eWOBBn5yAl7uexuTvMeYLVngBDvZdPv2y40hz7WHdtIFl7ElJy2+P2yX8buc2tbPZtc3mn3gA6/esxso+9/EP3+5XMQuDTlxtY55Drl4L+WVd/I1SElvm0TIg2e6hnUihBDhHT6LhYJyj4ls8io4KCHWYplHeCjHfl1eDkGuqbW+gqRp2Az8bWzyMyHe5n4eP1x+RsZJLSsEOUFAZ+4hYjd0PwqzVigWPaSnRo1ZnV83Ivy17p9ym2tOr5OYYFa2+V+H5NoOcLwQOseNUyVLTiq8ZoysmmAi2IY519i+R+O77bJmtt+xXaO8vs74nt3Dt85sl0l9tcZTwHx0hPLxBijTYPDMnCDKBlm2Mkl4YuI8pzfC4996H3h5DDweLK/cTw/3nJZhnwj9DOOzIxivrOmVMqPXe/gpvYTyAksTXVjltbofM1OgE7Bw1WblSyBJjCVya6Pyo7BiZTemR0efELh1wVRruMBimh1zgIqjXHpQAgCE8HA4zOZ4wlAHS/X7ocs7EqmuJQuR0f94ed3T6kJRR1fgyJ4IJb64HYruadUqzBwwKzBz5wO8tEOtqJXFzqKTMIrCyvKgWCkwr9RqungohngOUEagVkpBE69/cAg9KDfF7VZxtIpbq7jVhlobjtJQa0XxWicsylYRHVUVxQFU3Htx9n54TnYgAhc8Eu4wJGFpwH+3LBERLo7LP0cpVDjiBdiWsJih6JdN47LBLgpi9ezYFIcsoCRwIWh81lDQSkJmuH75AQUK62tME6iRiCjZ8AyeAh/gnuOg8Z0iHhoIl/JStJsxugH89bcPPkLBgGtdDF5/xcc/Y1Q+nrkLLa8xp8xiNP3j2M6zI75NaGcFXNlPtoBVKoqcK8BsgTHxS1xXtj65e1Jk8uc9PT/GxvaxEyezelo6m1I6V2hSMc/gYXj9otbYKbxUfu/U5e2VyI7RIMm6p6xYVgSewZXITJdAEfuwyaZsNYh3G0iRXJdQemI0jCZfkzSKsBR4jTBIeBsMrYVXiuA3llAtQGuK+73gfvPMpVD4cF2jBqvGHmcmmF1QT+e9e+XsUhSlTpjRp7qn0kdigHgnSHLNnasVIZ4JL36nmaWpEToJcPkaEOWxwIkCFw/N4vVdgXDwT9LjBiCrL/sKp9EsqxTGBgBXxNZStiz5Zvm9cX4TrNjfR3h8vAEKKAAW/yRSh/lswiK+j9mdBMuOx2dnh1seHuoZgnMoHrPiHMz66PNAtwNjNsAOCBomDkwcMGlXKeBHNGZij5mCyV618PJB6eWg681QpqBM56EgOCjwhY7V6dc7TQ6d7PTr/8RYqnlMknmjASD7oyzBdMXAXKFeZB6Gsd0LV5J4Lx5xjSnpA/Ry+MY+PVEDgyTfTRBiE6KyM0v4HYuhs+z3EKBL6zjl2L0oYSFknNU9E+ZlJ00qTCtQ+Dy1kiQrXq9gMqtoTHYFZdo2UkBXMfJNRFHlQNGGIneo3FCkQeVgTRqtUD0yfTi8QxE6C7CW4CQJspuqMUGQ4nIIdu5C8BE8Dm07uMEV6GQBNPNy624ypXLHEhgJSkxyrJeeFyy7iEIqjarL924ejMvzup4o80ICItfBxALicf59VSxC4KaQLnt9O+J6/brMv98ytOMSNAEpOP66ZRuZ83Cw+AwBGGy79z1UDwSgwIWbQu8poeCMudwUASyI85aeXwDJjV7nkjxiD83cSXGF19BdFjSc61q2q819FVnuEdLlmvW/TYGpohXFGMqwjdfZoCyi8rWNiBkekeJWvaqDagk5EnyfkvuGnCwC9iS1e9BFwgMbdytANBLNNo+7+2EHNAnCwpWA1cvHPUG1CJqHQAKLxijVyk7ot4NdoKt7UGLU5wTrWxbAirBfGARaDVJmem1nUczq6zJL9nLfzOHSdnBtTAjK5DiOGXzCbGGUdXi4j65SlZW61Q0i96aETESESeW6TwJg5/oV2KDhYCPWHHk/Mv174rumg5QtJBVZOebrFpDN0gmwxQxPFrVjiJ8G3Ud7fKwBCkK+m/cFsXUMp7UHHyQyd87tyFDPZAvoPn3hTcOYBcMKxiyYViCu1MwKDGwKSOkTjMsVBKXq9wySixWwrnvFzm3FCbGWoMpyk88IvyhwhRVOcLNVAyXLT8/5QcLcPniru2tCZ3fdTWxVCrZjLmt5U2mw9+ycL2HRvgZ0c533fXX06lgW4Booce9nhHECqBTnv/idhN631QWU1v3m/XEhy5oJBaoNqg2iDQI/pEKkurBtma1jflH0oJRViyB4Ox8M8+RtXcFJKjv/8RWPYIGN/TVk1tUFCl4IGA44DGlp7l+/z2pc3wczvCDbz9isc57R8ufUEy4XgzszkTVDXq3MlZG2C9YYEnsPpETsZr+Pdd59cPxcie9iLlyJbh9exqOlfNmBCvJP/vcgm2/XNQPN5IVKjmYI8/y8xvese91pK5ZzusCbbKeONWJ+LTswSiSXw8AsmuS9+FgEqTJ61kTNEBY3E6bNa1Qx3sMJSymGFy/2ZHg/8vxRCyTiLZu047gqYv1mmCfHIMbY1oJDbCVxL5ikSLlcU4Z3xHkzdEqvMBJH5qgrfbdVJ8jH+IAOdCuAVWTfpjJXmGXJI+f0mcujuNcAHdOWZ9NYIiGmLWRm0tH8tRXa8vHU3ZsdXilgD4+twZNtDchlXS8yGtIAyvUWe3Tb304OyOe1GfbPrIHlVPl+9uxNfuT/EoDCFFJPIzVJpndm8fhE9GH0nJw9j5eXkcfjMTPc8zhZA+Xsk8ccGOeAeVn43tk6fg4jqzuUi28OlshXBwuKKQQ45vCbBMGS000womu7mjnRiUJiJp9hLY9M1Z2sNSHGcvxjGkZnSGqOiShHfe13IYi4QXR3DTKmM792SZtghx4ZFxJBu1+U+lfEwMjzt1Xld3gWkjdrs7GdOwCViJ+DfIXs8+GF9iQAkkvlKMoXNVkCuEXquczB9dBPjPPE6A8/2HxQZAJFILWQeHYDyqEot4Jya95/J3rwkJxbWmUV2aOtAmwWwnV5ThSbybq5rJcE2bWdzwEnERgM7cwxNxLm5kL1R8IOESJc7DBiwYsokb40Vyi+UNwbIIC4pJSl2NVg6jU2VPx+nTy9tCGWv5dAd9ekIk7yTQ/BpviX3HwFCFI1LcEaYCXDpNv+y/ds7/0SsoPf6/MRGAJU4nk7ASZ2wBheKB/HACMXkBJp/n6dkAXgEK/5nEQvICC24ZIlS9HIjlgWmJn8/BwTs4NW8Jjbc3wXPxfcAZa/5xxNz/CZSjDfKuVXbfCwSEFrrDBbq2IOcY8J5RTSSUhlbcLJpPPAScS0G+hAdGWezRjnqg5rquwS76QOg9A7NJZcC9lG4woQmyQKYzLchRXmyX5gQeotQC2RdWNJEIYAx+HekyfF/cZQV9EF+MeY7iExTFE3ZgVF2VdowSgXsZs9ktt2GgnKme0SfuSdHL6VqYB/XgSoCmkKbYpyFJdRFfUoBCgACcgim/cVi6/o4xzhzmu9qhTbucwklp3PXdSZ1Apo4wGxi8qIe8pCiwmWds7j1ez5tR4fa4BC8KdeLE0215gk034CSYbtnpnTz+HHRO+2HRNn/BybIUrJe4l8hk9YEwUDyIC8Y4DIFsrJRwg5SXDCADD7t9B6cbemOUAx32D+l93gCWETlVCTJ+JIeEVNXDHYdnGp0vy1zfxKghZwySRI4ba0Bt8Th+/IlKVxHtuWYXxuhvD3a4s6LSnZsXa0/77iprt9HRsptQbeIyK7wp8AbHbY7JjjxJzMwDKbMLGsVaK1oDRBaYrSCkqtKLWxTL2uYm26Zecw1FNgKRjDSlyWIyV4mJs+colR7L17QPa/gQM3uBdlU8jYxOEGJoJjEY9Utvld2xSllWsbMPHx97/bdiZylADxMAngCkdi/rB4VOIKOubNL0JgIFHG1wIuU53fua4JlzlNQboBYOR821p22zOV4RVU7A/bwWKu7OtYbUt2OUVynft3x/lzD27ZKbbuNbdenN/HZt82MWUxKCJwD9nlwi/YdhU+xFUObF5UCeConvnl67AIjbtqXsE6QyKsVFqienLRDEPEUhENIIDkKVmud3KdZkQ6Apzk3G5D7VwSqEICoPhURKLC3sgyPmzeZ81gixwsMW6aQITXaatGom9Ncd5GOwT1ULRDcXiIp4RehUAHgcUsBBDo3itIFkcoZVKMkb8ogoh4remzkJnx6czPSn3heIb+7TB0vFiNNHZVl1o8sy6yvfIL8B4CMaSRcLEEYi5iHcY2CIASALMAUpkVJdWvKdLhQ82EjItrlv1kF/jzkR4fa4By8Z4AmyflalSNyN7pE+c5cDoxls+G3nEBKQFURncLvkcX4UHPRBwlLmRbACFM3bBn3wf3ejg4ESkeLuieu776R0TYZ0/nAjYwMOF1DxY4kcg7znoIlhZcdBVdK2gmILD0DTtgAGO8EXZK1O/3t/fMoULixb3HSt+k+oWNDrzaMNt3m0FMXi3d7W/7+bfX95bua79Zen0MhjkcnIyTP8+RSkVUobWyQmxbqXvajnw9QApj6Dy0tAVcJq9KHIxcyJbpC8e2YRED5Pe4tEy0KeD6CU+BLIG8/cNmsV03v62vSHr++nSMMs+wrs0uQgSXn0VJWibhl2w3ZnrFXGBDB7h4UEJ4Ghl/CCsrtLIhZKblNYVLf43S2lfMotu8dBeQ8gGwuo/25ZwxTD4iZjk/F0BxAUtYqck+dfHRNZ0+BvneK99noUxzhb3CP+uiZE1BIJZ1wdjL3K+Gjq+MlA0sud6ERonPaBap3m/GK1PXouiTVVeLexaLg5PIxNm7hAewCKBiJp61Q9kHLHyO7RnzyvGJsFCAE5SozrJ5YdPb6vs+1znlGJd7rCsfsCB2xmkLS8WrCFAd/KmgHcBxI0BpN0X17CWOvwMUNUwFxuSNlHOV/F8BuFfbx4+rRyGmP17Qy/MO4JK4nlxEepnEu6prY5XyXLsSezIG1o+Qudj+jNg3l6u+XP8FnHgpJy/SfcUc4e7ZZV6cL70nS+581MfHG6AYS6j3KGU+Bd1JkMM5IdOU5Mi5nudU55ZUmDXYPGDWMGfDnOcCF6n4gSD8ZHn3OYAg+yQoYNhkOlF1zsHS7pPXwXLwFUCDooFF8AFFQXGAElVlxasNSnzX6LBxwuYJzJMAZAZgkPz09eCif59gF8J9bXg2MNuAFrAtcOyr+hU42Z5dOFhI9g0IRUv2vU+Q7RsoPyPX77o8rneS518UOsB/nqx84gXaTgw70dEx0DExXGgUSLlB6xNL1zddHpTWUGqFths0fq7NgQn9nJGZZLqE4gVgyXYTErZQgJQt7PYKtCxFHWWkAkTYlggk63s9v/NS4twsY+GAk0FjmPOaQmBEAzdFghr/yuDyZpxflwiNNvABQuKzCWRlgUhexYTMmTHtmP9obZ8iflfK20IIvbODlpnjZfl71NaYIYD9/asCtP/d+FoIas3xkDzb3D7Hc/mF7aAvAUfoAbuu7wWrfT/EecD9AL0CICx9E6feJm+BnG3PvffYPrfUwyLMmjBbDw68MRuKNqhW56KYZ6mVXOerHstatwFU9gJhdPFHU0lgbpwQIMZmLPnj95Iht6if5JNND8rww0G8h3RzXxCLMOQNfl/Od16rk3s1GrGCtTy8TosmGZg1W9gIT9dwemqMCT1FzGhxLw3UzWVJp0E8r2W9vCZLRlf/bJD2qW/YusA8uyraVXB8opRDcnpizykgkVjAtAAmUVj3n7friD3qVwPRjDpcYESOm+WYRdgs9iL1j0ct9jB2yClfEx+Gcb/6Q3/tt3x5j8985jMbSYnH13/91+ffzQyf+cxn8A3f8A14enrCd3/3d+OXfumX/r/6rkDSQQ5dx3otNkH+LQBDhP2dILQfCTZTh4SlhvcR6Su0GnVQdg7FAvu+HLywV0zse4csprkkOg/FszgXWa89QcOrAzto36G731N6ICKIiOu58GqxvvfgO+S91770I+9lU24LnPzq8732+qvv2KcgN4Ftr4Ximlv4LUQ2q6CINIgcED3Wsx5QafybVvd6hQcs6r04nygydLYQyTZEuEwQPjRJtt73JQ/kpl9SMACIXH7/AFsuYc92tu3ndZ6kO7uiwP78+si6OjEe+/M+VvuYhaDdBJprzhy+HLPXU73Gzz7wl9f3us5h+1svSy4tu/Ai5eOy8xLILMLuDk728V3rescXyPfvZ9zuaZ8UvLpG28DQtmds/77LlfPvQWrPIzyk+9CnV2SrY5Tz7nv8sp7W9e4KZy1jD3GYXHghMU557ykrfQx2kRrjfJGp28/76Nkad4JKf99rgbKBlHUsZR9k+QXIVr2m1YRvvR4kE3lvLS9IGNlKAbgIusL7FWjbw/9x35t3MPVYyup9hvfvXt8YTJa1um2NeyymVyvlNcF12xzX9fihx2UdyPVcWwDs1fL+SI9fFw/Kb//tvx3/7J/9s/y9lJI//7W/9tfw1//6X8ff+lt/C9/yLd+CH/uxH8Mf/IN/EP/+3/97fPKTn/yyvoe1TTp6P9H7STJkPzHGiTHoijbr/nscTMnlMzN8ptcReV2oLUtWe8zIpm05YJPBVeDC+WDsmUDIXnsJ5rZpLXweC0/vXTeLs8Sj2ivR+oTYgHeQSpAi4U15Hd6xxY33nqwI5U1h6WTZTehFAZ5dHK3fr1ZYPtur318pld2iyBBxXMdFXQKvl+/aYu8v+E0MgyG01dF4OvYOi3radW5lkgxos8LsAOyGsGbYWyeydgKksI26OO9E/LUQDmyq59s0QKW8utQdhLwm+Gj8/XrYroi3vW8xFAaasNNf25WIpHi6yp5UMK9DIFvmRcyET1qmd67CIfAFzUtzk19kqfwEGVDqO4MDlUkr3gXpjtMMVCIGy+fX47iSgOJv27jm2O6Ljws0S/0LlQPHdo0PrX/+YjKvoXoHtn6FS2jb+t4g1CYQCaW6Cejd28MTRGo4Xs3FOr9NHwv3REW/n6Xg0s922aes9xEJqoIoxy4xRmIJTqZEraOSFnMCy9hzIpfxCFDx/kVzzawlLv677De1xic4Vx8AKGsMgxj7CggCwJ4ZZnCQ4kT78KxKjEEAso2fIhG62ssEeGaML7gZY6LuLXFOC70YIQBj/7j3R9ksECK5j6kTfO4mSGgGWB3c53IK+TZzTohE080toeA1vtgFbM5rhPfnZZ+uD+0TtkDKZd1ta3pO2act1/0y3BfoojyWnPcw+iXdsR/98esCUGqtF69JPMwMf+Nv/A38yI/8CL7v+74PAPDTP/3T+Lqv+zr87M/+LP7sn/2zX9b3cF7s4mYsygJlRYt/56umb576W7xYmUYmDeSiMzJl75WX4vrlWJo5ES08XXW1pubBHPwhTF/zqvXRIBMVQAdLuq/aaeGS9AqqRVEru4oepeCwilYqmlY8Cku2N9GMsYbLGq8u3fdQ5tGXotCqVChq0LKs3BAsmc7mVu4uCBE/uzLYLbSt2Ctj1oZlfOcb5Bq6EAqEODQVynIDR7VbEQoTRF0AT+1VFcZrzZipEwJnI+zx/V6fQStTirPAWqNwdkASwqvIKtAW7dUN4S6dKSTWeGAjyW7oLKfmqlyjb8pa27beHHF91/kBSpjFE6e7rseL8nBQkymJziGRQBPb5SHOGx/1uVmT70I5FLQIluSUK5DIc8q6d/FwQQitXFMbKVTWtdkrwWavfsqQibv745VQ3fn37bNraLi/V+LMK08JAtzbul8AYZXG/FNwvPKSmF2+b0EU5DleX9s+XXla/+7LuV59YO9PE++KfRo2fHRuFs/AWO1GV1BY3nvefpbtHjavUci+WM45zu95LDxSsl2PbDcm+7GvtSh74Czg9JoILuPCIc1ZXSdNkLI9tl9kfenVEeLAjF1b18Xt0bVrfoJEIuJli69pWvySNbpXL8M+x+sSQ6BqPks2Hw0mdFz4mpV5mSvJcUmQEUZKgo6Y3bi/+Nx1zHYxJq//uAGd/Nl8NTqQ+aiPr3iIBwB++Zd/Gd/wDd+Ab/qmb8Kf/JN/Ev/hP/wHAMB//I//EZ/97GfxPd/zPfne2+2G7/qu78K//Jf/8kue7+XlBZ/73OcuB4BtlNbq3hun7QW9Ljoi5ays59QTEU//EgfiZ+BD4m53p65NiOshK4wTx2WZ2r5JsdYmCDqKWwABuOI5KsS+X44c23XGmG3jsCmsaM0urzbqfj7ZL/Jybrsu3ETy18/vUig3givA/fcpsclis8galMt9vhaCEQ//wPXmdfg5VByQXKu/LqDjlqVeXb7Rh2jvP7SHMfZQxqZ9fXDkci37nPDplTDdxjo8FNfz2QfH9vqebXFhe461gA+893JZ8p6A34X6B793e122cy9RHGtk/X1/Xt+11tdrmGGv/2rrEzvAeK38P/TaDh52T8f7gAfXs9j+/u06XinOD93BVXrs1/E+GPmQXH/vtU3RfGDZv5oqu7wen7ounTU574VW10deY89Ntr4+5NX3+efkejLJ73w1CHgV0nntsfrAe3a5tEDvbkit/bN3I77uqdh3tn7Oa9uU/A4IzK6/xxURuX1AY7w/M7s8TLmXdZY2mX3dMGsdXh52eboMa37m/bW5j4VcxkTW6zFXsmR1grHrTH5wHX+px1fcg/Lt3/7t+Jmf+Rl8y7d8C/7bf/tv+LEf+zF853d+J37pl34Jn/3sZwEAX/d1X3f5zNd93dfhP//n//wlz/kTP/ET+NEf/dH3/yAA+7AYbK/XG2Ussch6COKQDYiTNMWirgbWjGRox2BJUD3X0U9gdB7TlZAJLvl+e50QrDUtkAROYe1HBUACFoNaVIct7r0BWDucFWMJoJxW9apyaclziivYWDy7qJtO9DLY3iVKBq81XIOyF2sL4tV7SzcthRV2fH8DR0yUgaYcjHzePSfRQ2fzEC4eoG+K3YsTIs+wxZTzNaw5wQBkQGQkMY5cV0XxFMN6lMziiTLfNQs3Aa2sjIYSOYZeTCHjvJf7j99jB+sVBMDAIhH7rl9jtsZakKAE4VUZLmSBqKRpAnivA95zEOZ0u7Z9/NXSbWBbSOmDgCW6wJbl5aHnwK8hFIRfE3zfcX9FmGFCxoSod/Se088xs68LrXqvOhvKYlu/a2ktpfReqMo2BTHX+lkOUa+9keFYvPI8B1/JOUtg088saJgKL15xWJEK6qocpq/StZPWtWr+fLWefXQvr18EvSxvou0aNf7O1A8wyy/YEJJKmSRZZqaocnAom+wCLnQDkOkh4SCncRM1R4p7NM0mC9Cp91nKYmJuKNpuEG6XrcIUWm8IFP3AuLUs5wtmq0aSMFlCYm1MH2ORlF0h35bRxdolonMjfkamT9RNAb/fia+qg2s7xicmfA7Aq3nb7MAcHoEXhpm9vpNtxNcAvAIfQOeyhQzdE7BEnAvGFCSOTxxlyfh03saY+oZItWRg2EWuElwgSw7sD/HF6S5+aXEI5ADroIBG5AKcIU8sSiWxsJ+fKzJS30Onv8rjKw5Qvvd7vzd//rZv+zb87t/9u/Fbf+tvxU//9E/jO77jO/z6rhfI+P2Xvugf/uEfxg/90A/l75/73Ofwjd/4jey3EgI+q/nFsStlP2zNmHw46ElBO6/v5Yrr65hxlKVYnM9xiRVO7pgohrZiiIusGQ0Fpw1M83RYKyycdAqGDr6vP2P0O+bJQmNjFIxpKDPKXIdQjltxMZkofpVBp+AdmEYOz7DOBa7EK9OCMU+AZkEutv3ag4y2LIS4pxW/3P+OdT3T/JxbdoSF4hDAFm+E5Z5DUSzFsVqSr3ncnVxrPjfgCCptE093FaPiLa8ONUiZ0DJRdKJ4t9aoRBnFIRcxzhZSS80eAQPbXvuAw3L728V2tRDkFpvEpUq0IHBhfVnjwKqa5K7wyxrY1ebuGVgrhG50Cti8tOBrvAIxqynP2jsq/D6S/IXgZEYY1qD66jyuMOe6MB/PlT9heZWhz7xWEF7ZnLsmzzdzblZNEiwDxK4Kw3Iq12hcf7pAhG3s8YFXZPtbwJm8Uj/X8rOus8Zf1ty8/sa44/gXYepYYQrJzrjhHealLB9IgJT0cvrPa+BCRS7bHnn1+11cAUwAoOky+OqJ3ecrri+UpL8pan1khkogo7j20LCx2ZGGnMGXf+iDPdS2e0m8t5no/AD3W7EVosqrhY5tXDYtb91BSsjKznTvRA1+DymGLPkZe9bWjKVqkkXVpoupac4mEWT4m6eg/OKwLNAMw9adeK17xK+BNCEZItvXHmJmBZgq5Meo28zF/DnkNTB0NcadMhOIw2XI8oznFX7kx697mvHbt2/xbd/2bfjlX/5l/JE/8kcAAJ/97GfxqU99Kt/zK7/yK+95VfbH7XbD7XZ7/w8fypzIzeCvueLYNxXLw1sKtQumMSybZRP0SHLq3J59l0M2MLOXmndbKUm1GzHMVqfjLESECRsdZkx1Zj24gWGC2V8w+wNznDDvtROZQlfm0hLnr//F5qJNuGpu2BxI0pbCfx+IdOC5pQTu5N8AEAk8XgGSVC3+ugD597mPQwARY4r1Yus7yc2t2GmvFK69vj9gX/7pRN2IY+sZWH3OwarACVKme6LmqkKpr2rTXA7f5RfShbzSKx8CKIYV5AtAE8L4qtzW+0NhLMqzi4N8TwCYtYbXzyv1dY1V8CteK+FFRl3vNbwPTsTHOMB9KjE1ghONv81UiBoAxT07mmhoPWK0IvwfYb9LKDTR7ethivtdwniBWHvvQOgzLtJXwH4fGcvZkf1L7fK0PS6DiKWi46r2hWTb85d+rDNsyl6y3ONWZECcmGrYC72JrG+6fP1+M/u6cQW/QOCa8yVzHYxgAZ8LANrunMtpcV9iDyUvKoCKCmReyySILZCU877cUASf3sQyZy2AMOJaZyweHpf4+1zhkm2ATFhp60KsNgOMsvKqHwg0DOLeS3k1nAKYLuwQ1y5BNF3qZOo+C9eQT3qWL+9Ye2JFB2Iv+P3Eer8sqiW/CE7MPdmsNpwgxb1u0/f/nPFevo8gZTOE4udXovGjPn7dAcrLywv+7b/9t/i9v/f34pu+6Zvw9V//9fin//Sf4nf8jt8BAHg8Hvj5n/95/ORP/uSXfe4yDDaBNgWHKW5ouOuBux64lQPAgJWBp+NOIqoMVB3oZ2G9Exc+9zefwP2l43Z/xnHvOEbB0U7ooYDdgOMAbgdwa8BReDThEW5Iz6ApGGjScUPHDScOnP480DDQYahm0GkQ1uUH+mThN7BOBHDCMPm6VggMZT6j2jvc5AX38oKnonhCx61OHFVgTXHWgqdacZSKQyqqVSgqmJ0SClAhkxlCVYCmQPMCTFEZdCTI40cUbH4YzQwza2hM3gN4HzK8zsVgmXmdEzoHik0UDETbKxKBr87r/OclrPdFH1Z5WvEOJlAZprEGyAGUw1AOQG+A3gVyV1RU1LOinRXHvaHfD5z3A2UAR2s4jorm3YlLqdn9lJVkC7sXl4pSWMQqs228NGBu+IviB/8WWiAtqlQLCC8Bfy/rNXVFrhNinfMWwwRsumNTOK8FIJaF/low7JZuCG6VmeM8N4WTn7WYq7kJQEDnuuzEMGm1mTusPIw6uD90qyA74XwxCzASX+7n3cJ57wFCf87bTs+crVICNmFT8rLCW3IpBRBlAJbay3s2r2sUtY/EPVbi0j3HAksg8xJdAebYMWgl4h4lzO29lmGxOFcYUfSwz9SdCzy63yS4UU54hxPDWdSLy8oK15R5yPuiAAWwyfOYRRDXFdluvHjNJ7Y86IB2tj4QDw2n5ueJJdeyj6l7I0QnRDrEKCcLOooMVEyUOaAYkD4gfUL7hFbJtbfCTw52/Xuuox/40i5GYbTVmN4aZPhelMFz2TSMMtFF0ZvhFIVlCy3C4dEHQ31q6INl7juA4Uo7GrpKCZkY65dedjWG3qNCLzxM32pU63V/oRiKTAdEg7J6CLR3aO+QswInC4daZzhpenaniR86YNph0mG8SgdRvoEcPGHzYCVQTLRkyC7rQ2Ddx6MYszl8wwc/N/dD/Akb+kq5FKHGj/74igOUv/gX/yL+8B/+w/gtv+W34Fd+5VfwYz/2Y/jc5z6HP/Nn/gxEBH/hL/wF/PiP/zi++Zu/Gd/8zd+MH//xH8ebN2/wp//0n/6yv4utcIxYQdk/oSqVSitcGNMErTVQodwAPCBqOM47jv6Cs59oxx31uKMeN7R2I/egAVqV2q8dkKNBjgZrFWgFVtVrJqubdVTwVc274hqqTjSdqNNfc9TKjpABaniEOzag7Z6uGa7x4udvCrQCHMYGV60omhbUUnj/WlHUs03AY/EymE5X/P1sCMZsngAoxWMYYryvuVWQpIGzuWYRCmoJ2SVg4yAoWR6MpXyW+zYslXgtfK4RXJXroYxRi8eqze9Bi7CLqVdaLCIoR0W9NdRbRTt4lIENmBSUsrg8zG4q2QywFPJ7wqpbIAW4oAfbfr6gCs0Nmmb6TnrIRpOMRYdGkqkZ242YbhRm4rrzc0hseZ6DSg8ukPxvOfabxZp2Kdbai9AO4mNyFTK2ybEPDkNYawQoH/LY5LlDJsr6WSErWual0yVwncR9cPx24uAKOGyXY2ENfggKz+0Vv2y5srUuJ/rAtccH7dXf1vSa4624gffPE2Gu7aP5HLOThOJ8Rnom4HtpkcwZAhgiCaHZGJOgJC6Dhv5ih02TC41uHYYVmhas+iKv1/qSBQmOYz1FOn5KIAe6En3evRu60cjRMHSmIjwtIQuXJ0ZyfNeE7KO4ZOk+j1GBl9SQ5bWd3Ri+OL3fjsnid4CdiKeYF95U7/nmVctFkz9HTlAYWSD6FqEnrzgoKAKWmfD6KsUzchB7dEIdQGYyhdnlCCfQLnoIxN3nF54PbD5An5b0pFxWXDRV2cYL9LzJpDEiUyDTOxtPrjk6od1bBEndsO/LXcZfvI4f4fEVByj/9b/+V/ypP/Wn8N//+3/Hb/pNvwnf8R3fgV/4hV/Apz/9aQDAX/pLfwnv3r3Dn/tzfw7/83/+T3z7t387/sk/+Sdfdg0UAGhCK+MogMQs6gABAABJREFUgqMojlJwawVHqzhaBcQwoej9YA+Gaih1oJyKbg+c1tFt4Li/we3+wO32BsftgeNUHE1QbgViN9j9Br3dUW83jFuDHQ12FMzqCmuqewyYSnwU4KYTNzUcOtECVCiFSAEnWsjbJCKdAkhURtkUh5C4VYtkS/CjCm5FcDNFK0w5ftSGoza02lALj1K8OiQGCmZGlNlvg+nKrVW0VqCtpALonRkpEwMwhU5FL9HtdAMruIRAF/dys/6KTBS3CpIspVhAJ2uJrIWcpDCvdAl4rQxvxJdZNw4iUCtQHHBFe/hWIK2iFEO7N7TzwPF0w3wZGE8PaAeO0nA7GlojUCFYcbJxeE1qdS+KE/eKJIBYAnIT2K+VsYEgyy2WS9A3JjgASqQMijA+XgCAbmMJJqeHS5hiSKkkWjYBTDFFMTERqVDZE0dIVk6rCUt0XCypXIXxDkQ0BuagIXgdqcP9mZfgP2T4MSSjbbpLPAQk7mkXdzaFKz/829MxnrvXCwW+CcHzirYuP88FglgEOFdIEvF6hIFkBdmA5Qh6P9QRqCrmzwcgURQSiG8LADlQ2/TnJ1JX2LY0dhlAwW45dBlkQKaYe+0fAhPFAGspU4kadGJVWTWBDQclYOHIMQVj8JhJuzN6TYZh6iQvzhgejhLskgtgTb44+FkF/rbeYwjuEJuYiof3CFIcnIxJL4pFaPgKTlLnxfbLPSSu4D2TLv5tWzOavEPXWEIn708Uo3YM5T6XpBgK5pgYwqNPQR/AMPaBGzIxVWHe7Tm2s230ogVQaDiJufFYC1tpFAcomFAHO1aoK7IshfEgQKAXO9ZnhsrhQAp7fe0FKWF2jURj/yWYrWkDQBzcqnvdS3h0ss0LULwXXKRSxDzv4GT/msvX/xqPrzhA+dt/+2//qn8XEXzmM5/BZz7zmf/X31XKgNpAqxOtTpRm0EYgoo0CTQH2DpDgRfqirZIdNsUFzSJxhReAa2q4K7Uqe+iYFBgqhnhDK8+oqTKRPgtRWu8i2ZwqjVezJA9iWCYfiZOyChTVBAcAdWV9qOLmz03YT6JCUGVl74QC1yJQL9ccWSitU+QNEMzdquLWFqArrabAnaNiDMOUCjhXZZTCGixF0VRQ/ZhelyN+r8Jr4nN4dAqKVl4fJj09HjIJD06Jjs1bPZOiSk8U/F6Vnp8iPPRS2ZXhLB4HFKSal2Ko9UBrDxy3hnmrGPcKPUFAe6u4HTw4Duzc2mpFbQXaKqTWbNK1JrNsKzGU8Kbidqt7q8iZplWAk5C40yWa6fbxZXmEvI/+HeaFkwAC2BTArnSYxcNiVNmnSfm5KEm+A5Rll7o1FCBlC0UtjxcvcxXewnpOsOmFsALIxOeMmVzEKzQgKFh5byQAegt6UKkOFXT1aKgQz3f3Ekysft2LFrzzA+Xye46/IZU1MaaPYYy1vx6+rQIkyW/x2xxiiFvmcfoUwctaTKG863O/rs0Bke/eGS/TzP1i67HfVzeGG7oBjyl4TOB5AKWDxkGnJi+dYVqAAGS7ba4nd+fT9aL04GW7Dz6btwrJInEbAFgAPH7eyR0+mhleiFHhelk1rFYNqfSqrhTByz/1NQMHXrAFdAvgMohHlGZgSYC4Gk29sGS1tx0JL7EXrossw6ydFf3VLEisBYYBEwINS+RJJWOiJM9GanCMU9xazioQHmhgooigiqGp4RBD85+bkmFQHQDE+p4m2Wm5U714bdG1jzEj5Bd7xNeTr+dd9x1xKHBXPh+KjAYsOsAaI3OdFwaDSkqxteA+4uNj3YuHC8hTYtWfI47vgMPMkqyXJr//PY4oAmUh5X3Wsjsr1jbjn2U7+I5gzUfBt7VpsZ3zlQiz6/dRwnL3qPAyi/85iropsHkwVonqjVyAVcsEyAw1odvShLqWx7Vyre9x/uz3Q4tghXdWqMcFuG8u3a8NPg4SgiSuM4SRriJ0fr363s+8L1WPwdteA0a2963S6uqVMCl4eBV0xGyhmjhsdWut2X/D48EZ8lKP7ftxIWXvGmUTypzYTQBfViuWF/XVZ3w9XTdwgJqAEraMke2rdu+2bD+F4Fhp2QuWxN/8nRTUkJW9k/CFIIV6IOY0gNcrh61gZTDoGgOJ9+4p5NgIf74rpr8eno/56hiurDMB3oBL2q693lKSUbBQihZjbkEc3cY7Yk35vk0tyjpP4DCDpGNoByZJJI5zxo8fOPZxdhp5vnf99goDxufdhW4J1BzE2fX5dVeMhFIfuqAAb+YgzWSNk4OFGOs1t8i/rxuPsXSZhLWu1hVECADLa/YKPK/3b36j/Vr3wY1P2PVqNOZwe1V2GYK9ovfmfRFjsct4r78v79vkKtZDgG7s8uB6XK/oQ+Ak5tUu0V/uVcsCnvRGu8fJnwmQ/fsMl36sr/uyZrjRbAHFtRjzOcatODWhCO2zVXh0kV+nT8XAlW88XTjlbe578SM+PuYAhWwdAdN/iWC7E4U6ON0zyUPTG8WxqkEcQZTzdFpPq7UxWGoCAzIGdEyow1HrBnRAykqLFXe7wUmjNgyzu+twGFuFZ3darpZYBOmuE4ONiM8KSueUWxkkkc2x4pCAe06EYQe37E2V7kvBFuMdzgMBAEXB3HgyXHiROgvwVKEAQ2GswnKLW1LA9DJs15TPCPLjAilhne9AQ9PDtMJHIhtwEkXViWqCpoqah3tRHHxAC8M0WhnW8v45rNHgnBv/bKuKAjA8dhQcLZ69WWClt6gUhpHCAlrht5i5/bGlH/rqzMcuoEIYbN6IfI9rWpvi5a1Bp4x/RgyI9FhEDRHA1XV8o4vx5DBxPqIirzo60U3phvUTCiW4HbuKiP4/YRkakEz+vC0DLKMym6vbkIotKwT7R4cDDe5Eeg7CIzIM6LDkkXcznAacZvx9At1bF8TzmLi0rkgQgVDSCwgGTybmw6Njfv2hhBdI2cHY9DmZtkALEDyYbZ4TEuwellc6QUL57+tpA4854h64C4UOepE6BB2K0wQnBKcJHiZoBoYjphs6m4NPLgrLv8/H5X1wovk3M0ni8b4Top6TqJJTx40HNfXU3Vjvy7CbMRcOZiRCyO5loEEQZevlMne5X2IMgWUUCidGXBblNQJX4+cig+IIQwdb0Ut1PoeDFB+fRKexrhJZ+6iKkGDqe2uvSbKDNRf460Z807ALuMtUMYITNzaD61gkvzLXVHhNhpegiK7oiSi279npZYmrzQ1YByVBWzgKcFTgxoj6kjlG/UVHLcNKZdsPO+Ba3/3RHh9rgKJhwcmrVCc/gCAJTQyv7TFGx+gdc3TMMRyIMG0X/jN6d1ACKDqkd9Szo50d4xzJotbqhZpNt8wWfu/shjGowPug8IwMhtiMVMLspFkmF6L06dYsoGOQTlY6rHemII+B7PHj7PyLFzaLsE0HYB1A9+wBScAiiJS4yGeL1enm1l7qP/r7zCBnWZJhly2EzO5YHiis8MLwzTgFWQxvE9NBswoSbfwtiWwCblIsoCSw/E5+vwt0F142wBh6t2Tyx8ZXcUZ9FS/OVlBbcYCyeVHE4ZjHWc3UhZMGgvP/dDMT8g+bUFiCGPHSLiwsxgZr7DZgEpt8GV2WGjTkWwAWCp5rvD5So0Pua3FlYuacDqIJMV1rVODjBXqqZcKsUP4DFL7+L83IGcrGoMPTx0M4GmgsQGIZpAdkbFiBv3tthQQclsluYyxgMnxvcYl6LH7CU/eXDnFsd7EuVwhtrcJ4rDDC5lUiUkMkdUcq5nZ7CKHMv8tam36fU8LzAwSxcK0NQ3CUZp5vm2MErl0eAN/JIJWNbv1u4uCNJM7dehaJcvdcB1MYIjST1SxP6D1gpVJdwONVqFIkaGKSGSoCbMaSixVZR4zTNPHQCEErCiBgyw1t3npD2QE+QymbgrdJI3BhkmQoefhzacHXnl+Gjyc9qcLLbRVolcZLS7K9kcAqXmASNEjT67Lv01jAcfjXz5y86GcTeomvrTptlp9hqrTLSGEEIDiUtRpqA8P2FajFvy6SqdKrYzlO2GUkKEvjusR5nCFgAhQVNdQCHFVwNCaw3g/DcRhuNwKUCYN2B1HTw6tTVvE/BUZkcAXOjSX+ER8fc4CyIUcX0NeqBf6Kp8yNObIJ0xwr/cw8jdCmS0BPjyVPkSCmjIk6mAIX5tsYYX9QMO6eEHpNQsjaEoxACgctWRyQmTq+C0Og6ZhQYUNDL4ridUj8Dl1eLAywUGwUmwpN7fQlZMpj/m3nT/BeLj7BlOq4vL7adS+xvL/+2j8f1ls0l7IAMjsQCZByAS3haXLPjJPq9jDaAky7wHCA4l4py2CsqwZX1tFandVjFzBR58Qg3Oi75ZaxdR8vKILcmuAk5GNI5Q1aLM+JrHPseG0f81w0HgCIcUuts42XuHoMpRD7BOsSVnhs464kl0g2R9AKEcEsLV3Vzc2OD/A7wl5NwMJ3kMgqDk7E04FX782xDUF4VQKYLIsQ6RmZ8WxIEHMBIL6st1X9nrs7wN9SZUAAFo6nZOgB/rzTbvZwVPyeHhRwUAwBdq5gaQ3X+2vBttXy/uG9qUQSzxKkSIZ1AqTEuO33xz2ElBvZLE+3+92VuRtTe8ZdDELuoYyABi8EpGiFMaO2bhOvxIotb4MIoJUe4QBGEUacc3WZD0+FhbdrB+RYxR/DS73CmuGhQVa+ZYNWdYqZoEZF7oK8Dgg5fWqCEgBlk0HZCse5hBgSiBCeZ8C5n8FVoryDwJmvPl4pE31TBUgsBi3GXIAmfK6eG6AOfk0yZLvW+CZrU46u0HzozenrIoxDgeulAtRqOKrhaIbbIay40fj9cy5jSYZ7MdXS8IYbzwnCdlH4ER8fa4DS3IOgytUxhbzl6T+HuGDF1IHeB86z43x09LNj9g7rI2t36GAYpcyJZhOHCW7Gv936wP2cmI8BtAmcE7OxnLEJwQ6moQ6KqamGPigsTgPO6crDUXNtwL0B5QBwGF4GrUGd06sLK2o6OJxsGM4NCDNdCjCrwArwUMMphlMX29wz92EyPNxDZabidlekD46oaeCbvU9YnwxRnXEMzM73srYFQU4w7fegp7kmmR7mGufEeExerxn6yXMPD3tly4EAJCGFjGGkCkOD4YCBw8VaMiWscwdB6od0YD7oRetlor+b6O8GxsvAPAfQJ/klMLQCtCaoh6DeJAnGKORMDNmdS17OOxCm62IAyJzA15pvV9wBJkII7aa9uwbMxzjGcMUaNrDt4JcaYAGUPCcCsLnHyK8n1p9KVMQ1Byi8nWG+Rn2dSJx7e2IFSX5PKNz42lCQBMe2gLNf2oDlXrh4PxyIJD4DuSan74k+DGc3nAM4O48+DCO8lOPqyp4JYJCAYfPGb1LSwS4CPAU88Gk1ehsMW0zdNqwOLA8FgMxq2oD3mhO5COb8qxmisufyvbx6XyJNnoOAcr0ubhw9T+B5GN4Nw7vO8O2tuM1l2AB+WO4ED1r8nqMFhALiNYa0YmW0xGD5Ui4angcelZx6XnPUvYH4OXhEZtFjCl4m8DyBB4BRACsCOQTaaDRAOJajG84+cT4M58m10Dvlaw5vzJvsBSSR4xpGTniRRLwAoz+3EiUbqJjVW2FkIpJ7CWQupV4B6KBylu7Pg3MRyDjWhekKpwS5UKqh3Dhuta3J7p3jIeotNm6C+xvB01vBmzeCN28Fb98Inu6Kp0PRJ62KEEWx9kfYnj4UZTNMwriFcVwm3Bvml3erBCJvbsDbu+DpDnzVG+B+A+5PyCoHjwfwfAKPsWgAAnaEOWN9BkCpApnvr/Ff7fGxBihVNmZ1pJZlc7fiVj2882zns/Ao2lD1QNPGo8RRcZSJowzcimJYAQozaG4eP+fDsj8HmR78Wc2LrXmRoyl7mXYgBFVYLSQ+hezhasq24nPQxblXcA1bTaa3+6bAgpNZEaluEoWXtjhvkADh14ElUFfZZff+uJcp+DMh/JcCuPJpoqptlPqfzuMZY2D6M+DnnfQKzWn53anY83dgcXU2vg4WkMHl73b5exTimtu98a65SasKaqE7t1ZlGndhTQLdYuZRv4Ez/gHlAyy3jfcG2dwJWD5NWx9JjRZmzK7lXi3yAEf+NQkIcg632YxLte3VzExDWn5xFF8OYeHFEonLeE2RCQw2EedcdLcI81y9mEhvH4BtH6yQTHhKpoWDfhuS8FBs+Dctwz0Kuf09nE7ZRiHMlFjbfq2v55HgjevD/I6W18Iu95prYb/PGH/D9oqfZwd62P4Ew6qD4nIhr22b2NA8XlMDTlrO+dqAYIR5TttIslhjR8K1e4X8BHug1oBLeHzNqCISV91EYv8aRBsIAhyGnh3MuKtmb2oXczCmoZvRiHJAm5mUW14wbZUlcxLQ7mtiG6wJQ411sN33h6oH59rc5d90D3VkyRmchzPzmmg0aHo3g+ui8ESGkF8wqAmmqcsp9xKpoHjZiHq4/GnqXSoMNfhF5smDBQ6gCASPwozJpllahXIv5m27t9gBDO2Yh6fM1xBTmCcEKrxnAdtIVPfsk3tiOIrgXoB7Be4O4Obks3kW1VkEvQjO4SEgc6AV9pzbdDLxkR8fc4BC8mKR6Oa7SJOqhRNhgqoVUxuKdpRywIqhlRtGvWHWB27thlu94VZZgbYXw70MPNWCaRVSKm6l4F7UqRRcCBlSgW80myjG1GfMjuxpgwAp/gh3psiFlc34aRREAvkmolslRJJ5s36AhjBAghN4qjGEZ5xbOpwBmxbDAicBOHxxE5wYPRyDQGX4Meci+zLOzxPPFCIrhDbGwOiDvYN6B0wxbaKPgTGnC5uZ3x3SZG2uNNgu5NwVCd+UAGg90QPjANF0AyeWLt5SCEhakRV33sI72Q8EXF+7QnGzDit4AKyg86tjadptzG19JDRMftwVRxAUY7nE2OScwRVLjINgfcM1syK5FEIvQhCSq1vAEbaYSWhdIGFpZEuOl26Mt7nND+I8u2KLefRqrazVcAXs2XPJLdNYoob9eixBSoKaGDKf34yG+XtGrMk1tNt1OUwJ7xJ/Izhxz5fkaztsWqsgni8AxQFhzEsgSoOHOCRo4q8ess4Wv+a4ukm7eBwLpARQmW6MDDBtIIiypxGwzCAEb7dh+Z+TT1+Bwyj2tappDP+7gxRfCwFO2AqCnoI5HRg7sCJAcTCMiWmszTLmYOGz+ObIyASLO3IBzJQzO0gJD8G8jBoNP4I02cCry7UNIEsagmFMwQ0zYA7XpMOVOTTiiE4FUP/ikAUuowxebXumMTFtgUHN+ImgVkU7/KiKo5FMMifLKkToKEFJjXpfi7Ta1NN9wytma72lPM2VuVUnXkLVOUD+DjHPROW8tsKU4lshKHmqgnsR3KugqGEoi7Z5mSI8CnC6J6ooMIpAI7XaDXIziteP+vh4AxTfc1tJHkikiYmmMGCp8olaBmbtXDztDmsPyNHx1N7g+XjG0/GEp+MZ8xC8OYB3UxGl7m+t4VYrhpeShkbmAZ+7N7Erk2LCZsecHSP+uUIW3zhIsqVsjPBlLYxpVOwmGOVEP0/0zufRH5j9wboFcyyLyxnnEBYyW5TS4FS7EHUARCERHJfV56YHuBjTmwaGx2MmoLh4JkIARAPAOROcjdkZXpsdInr5zjF3D8fujdm9Koirzvm8KgyLW78oEwPBY6RJm1dsVA+u1lLQWsFRC5rXZWmlsJOqKkyjSE5k8LjrO2LH6cP1HToNbBrm1xXB/2nI+vEJWuKyN9JhmBhaEBhYLb57u9fw6rhnx0KLpdZjyFFsveeSXokFjqO7rcmq8/E+h9dVtSC9lXEr6oqIQodNzhYNJ24yQq3wn4HVnC4OcesPeR+8Tif0uUKmJSbb+33GZQ3pou5YPq8rWZ61CxgOgBDKH3JFXvt6izh/3KOEp2gDWNE92nVbwp+4R12n26cuo3W+xHKaFWkUxeJYRQ596XhIcgqLtXXBtZpsABFzX+PknmAn4I06b14GxTwM5/tVPCvLjNmPiD5VFmmoDJcMWM4pQ56RFcO1FSB1zAhBLyCkFuFeD01eDBYsUIvg3iyAksw9MxTninTbaoHEONjiXJAuSM/DmOQU9m5AYe1tivkCMcMcA32GoSYu4zTXanHQ3wSoC8aBgXVLPCNO0q1FvR4VC2YetTB0K4bHkJznAmGI2wwNE808vD15iE3oJDVg5xZGR3pmb1K2F7GL51QEXgUXyZGhgbfAT5OohSJZE+Xm8mMa98t0MmgTenaKc3zUPBtLlxfF2Rgf+fGxBih7TPRVEkRaNtcPIFP6WEiKRb7I6i6ZjhqVVmspqEZ/FguELYUVwjEK7kyTq7I2BxlCV2bfOBKZQrrLvvfcj576bOqK/vUxMYaS6zFXemW6sFPghmViod8QrK5pE8OFBWQkQMnzb6nXcw5kC3psRF0f2gxLudDJjsf+HdNo7gzzjKo4z4bwQ9QsCU4nf7gv00OyTWm6un1+cy1gETiDC7GXo6ai0yQERnph1JSxjdllrqglrMLU96G0trHmYOB99qX5xcV79rtA6h5gwbF8sgACglefSgyRWGJ7/7LX91DVAizxE977Pa82f5Lr2TbIsx+yiHD79W3vWQAkQGWM3/YZ+cC5t1/Wz9fPrS9BrokdvMTvrwdQ8vXgF4Uy2b4rLiwetlZtfvc25XZ5u1ye4lQ5xjno4mvo+sYEctivaR+kddM7LKRHKYDJWncWeyg2zUYAT+8t4vfEcimn4pIjrLG4B74ujIZiuHeZEu17CQtcJG89rv0yGK/mDb5/Yx+LbPJ+hbOpdCUb22X4Ms8jyJGPoU7v0jIgLAyLDDchlUskAXDLC9QIJIqw8mvZ7mJ3FsR9BEhYqc08zJmrkfzBcJBnMOo1NJveZAtNtO+Xa1gnsGLOFyL65vt1G1NYzlxSD6LYaBa9879NEQxY/h7VxUMOrKW5//6+DPvVHh9zgALY/4e8//e1ZUuy+tFPxJyZa629z7m3qqEbiifUSLiYSJgtkEC0sAC1MGlhYrYHEhIYCP4BTNQC4eAgHAykNjCREBZ4GNAgPeN9v91U3Xv2XitzzhnxjIiZufat6qb6PVrvXbFuZe19zt5n/cicGXPEiBEjqjBKDG3q4sR4pAAFJTe07pZHtv26f8isJuuiGtbpJe3Nay0svuClhiOqVMQL5gU3pZhGR4ILOgQfQu7DdIPdYMPZHErekaU7/ZjQLVHrtHlDGG79BCj03MKV4Y1mO1tvPFrn0QaP6shujH2wN2PvTht2gAuThmuD0qJFmHmjd0wazTvNOrs1hGcGpTFGo4+Gj5ig3CyObh3zTnjK9IMSD2HySJvt+K9jNI/BgWIjMhU3unW6x/M4MdQqDLr9iMDCQGSEUZufAwZL0sBICHtNzqz98Ngg6W6XAIeetO+8EVUPAKJyOtNWScZJFJdyfJ0BbnY/HHfwkfJmIIsUMf48+AhijroFZzB8WoHHt8djbgRzB+VkbxIMzXg+GYl4jye9O4PCwSXKE8voeeCQWfTHDUie3tAU22bwm3gMPcS4wfgEQ/jMCMZm5c+f5sM+f0ar8/P4h814gtMM1kYIO83Pn2vW3+X8elynn8KDqcnKTG66N8ucpyInJT+z8iPC+3feYF67g+k/2JWfFYST+cHSSXRqEk4UJMc5OoGgJlt0dLkdwOn8t/KM2jzbdy2+ZlNixpmk8WWWEOW4XpI+BXL0f+fufoywjV1TXKObBXlyas0yO+EKHCfktD9TLYfLtamGWBqnoTQiJnv++8N8Ls//MVdIhKFzOF9k7VZSoyTh9DTX06iCzaNItNHPxIRckx76kHkNzlxOcl1IrulczxasjB+W7xoDVz2OxYWFYBHWZK4mvzJ7KMMoU87zR4xyXSQOy/eSjvhkbhwdO+XUokz/qumJYjK1Lxytz89ApMQHOQGHcjJaE/Tlup0ws05GSFPvIpLzcePzKaSdR/xsIGHHT3w25axsxP+yzEya3/2cj+81QClFkBLmW6rzpPghWopF59np4TH9sfXwMWn9PPo8Gj4aPjqMnmJXQcaO9B3aDm3LHqyKF8VrBqzeYDRkDMSja0a6RfDEc3Ix0SI3W205WYjJukxDnfA0LBQqLpUilUJNyrFEIJkZj0X9dApPj6wkIHgOpMp5NiLHcCrJMpPYU/7jxmGqMgQfGkBqaBzTl+A42yP315l95WTUZIlsnAeesc/OAOpTI/OBmZr5wdwgZyYzfxavFYE4z+esUY/ZfdSjA8cMbw1aQ9JLRrznzWsBgIqj1XPQhWfN3/E5QweOje4waxM9QQkZUWR8Jxub6dZ8PKWjk+Z0Z06OZcT7O7qrcpKsPnWkzY08t8LYhw9dwrk3Awkep9R05pqJhObu7N95f/lBz7Jh/P356pl/J345g1sAxCi55KF81DfIR5r90Bb4edqOd5Ln8Mzg/acG2T1nvHENPiC8I/H1BICzW+YAA3Keq2dE8cy9zs38wy88nSp/WhsfGVE5fuE5owR49u7hO2/5g6/PvL5Mr4qTTSHPddxTWRbOjqfRnd6cJjESoHdhqEdSpCebclbh5prM187ySsTRk7WU+bv2/B7Pz3Z+/A+RLfVLCb2mNsQkuq+mV05WoiWHfZLt7B/ayOdg6WNNnPemZAzS3HxVEzTNMSAT0H042SfYm63H0X4cDtRVJSwHRFNv5QFQ4q1mS3HG9ac6ks/5V7nQD7CtHxeJJ3DwiSzm75WIyWpKqYQ300Wpl3J8rRelrvEZbXgMTGXuBWF1/xxnzeV0ckafmGf/cN1mGTKVAmiFssSU+LpCnRPjM9xFeSmB0SzlPJdj9TzPx9fvLvrf5/G9BihT9CjyoZqfN/6MGqSpTwo++8B6/xlfT+M2H6Ef8ZGbcG4c3hveO0xAM+btq/nvnnq71I/+Suc5sD6JB78b+H2+bTlAyrRsn4DlbKo/52H4EaRm7T2f60ih5534/JwZpJ8yXs8/M7Ot58N/xnE0qPlxHmYWdwKWM8gIuWEdz/fck5MULZG5+VOZ54zsSRMfQY4DoIifot0JUlyjlORprMcIJsctzQkIVudIPcoEJs/AYu5y57meme4Rlmf0Nv/4no94+LyRzl+ZWojctf2p5Xt+Pz16xDi6PZ459yzjyNPbORL9JzDyDG7g3HA+biVP/z2DBX/CYMk6Tt3JB1aCqVOZx0c6PnQGT+/In7yB8vtDscsTKJnHvH/m/ewnSJlg5jjVWdL4AB5ObHK8Z4E8r+fGJRNUPC+Bubk9vcYHIPLhuj692HMczpf5bu7ozz87LuvTGnp6H/LhfM/NWZ70m+m9NPhw2DhbjY+l8+ENzPd9rtPzjnwCUs5RMw1XglOz9Izj49dSQyL+ndOT197kGeucu/isY8hTbMu28cMJ+Lk8/vSYs9SOcoZ+x8/lwzl8Aidytt9qJrslO23mnyXjms3fR049RQKRuU7n+47Y+nxun9Y3MNvxJ4Cb2cUhKp5fczp7tF+nmV1NvyYJVkuO85WlPYPTDO+poxN5WrLPUWH+Kc/RKYnLw9EqR+v5jDNHu7qcx1nP8aOE9NML7ud7fK8Bik8OS/Ji+xRxhoYihJaD3hut7ezbxv540PcH7f7Ofr+zP955PN55bO9sx7Gx7xt7E5p32N/RLY7xuIcqolR6iYnGppqdKgMZp/Zk9AmwJYJF3mSH86OEp88xAC21KpYZuoqiZGs0FahgFbNCN6UneOgmbMPZzdjMaGbsbmETLqm/0IiCDgf3d1p+C5g+3Uclz2VJ/UnBTLEsb4XsKg6XkbE4RLnx98GKxL/LYwS4Mhyzgls5mJicNMEU9R7sjD9trJNByfc7jbr6CDdD78aYRzPGNujmWBnY1vBtx9uOtQ3GjhePzykddBBWvnZEYxcw15Olybq6CDkG/rm6/Lx5zUCUUfRAUvmzQ9XnyfzEugjWJAGwj+yWiu9Pgagf4CVc6PJaMqcXw2EddogN4xBC08TRURMANyp0JxA4fj4jipz70gQf5h+/N5J2t1n/P9mvI0iKxT2B/NSsmDjyScUPrNctzZ/SBKqHyXNuvNNJlsP07dRK+LFJzK6kM8c/dWPxt9+BDPM55s+fGJS49sevcYBwnl8bnvUeH3+XjwdPr5XnUXLpyAFy5QAU7vF+4v6SefEjSx/z/CR70pxGlr27M0qWlcu8l05R5dy+NMse2Rz41JI+afscIDiyJJTnh6fzMLk6m8ydC+aDeIbZfaNp+2MxRdmzs2R6q6fPuvVcO+O85sdMoXkP5clTApUUIUSy+KnzeAIqAUj8BCGqFBXq4kc3zbJkG/ASHX+qiumgJ4g0jZJTAJRYwIclgwX4Om+9XF/JnkyRsLjRPcrg4kZN+iWs4jnBRIpBpAqyaPjErBKsyqIU1yx3zrgojC70ofRkUuY5nlqf5yGfUzk4497JsCbwKIJWj0G8axxlzaRHHel+sEBHYneI4OUALPN5n4HQz/P4XgOUKGOELDNaC0N70X3QbaDpbNZGj6Pv7H2nt/ja2s7edrbW2Ftj73G03mm90bvSXaE3tHdKH/TDSOupJx8/gq14Tlr1s92tS3w/b/zQQ5z11ekEf6ju5VgmiXZPb4nQVITZVcuSUE9AspmxP4OT/HcmZzv0GUTOBkLLCOgffn7qwY8aKrMUPSn89IVRMNFzEi2a6vDoDogx8MHchDh2Ctzk+Zb4Gclc4vynvT++nhm1PVmRTtOuOQcpNtCRLNk4WDLGyCA5Uo2fJRaS1RA92l/Dcj1OiopT5hs1OTo0zjf9+xzkxTxu0icO42AJPMFHOh3n99NIK8YD5FXzED4HyIzW9KhgzPTS8u8H4ufzBsCR+Hq0YU+35dlunk+R+ozjPfv5cY6i0VyrmSQca1fntUrGTPX4uclpzz7FkrPiFefKT1bQzzU6N6ZZCj1sw78T7/x8GiYoOXd5zj8/X5ufYlg+PulkEZ7ByPNTfLjMz//0+XcOwBSvf7A6kEDk/OVZXDwMijkZlrhXz1KNHGzUPEfz/nhmHp5AKKcebf7/AYiYrzdBWWpJknU9kWn+4mQWj+ThCXgd1ydL13au/ZhiPSdZpz7hyc/JZbKrnM97HB8vQLzdSAJUE2QhqM/ok0Xj1E48W/nPOaAl7QfiSIBS5ImlkMNxucgpJJW84Kddw4cqWAL4k0keRyIQOqpull+TBZ57Ssaeg6CZSfhkI551Sc/rc772073yXMGTvHTz3jB5Ag0+S3rnXnDUjAVO5Jrr6bjnOZ5jPs/TzZY/+Q6Q/zkf32uAMj9ndrM/daVEp4vHDkZPwec+AoAEo9LY+87eGu0AJo3eO633bLN1hnckN7jRx+ENEgDl2BuPTHJkxhhW05Ki0elREDfObHkbB0hJcJKb/+xLn3ff4cxJtOY1C/Fps2j16u7sx2EpErb0aclFqLGZTT8LfwJ2lsvnSO6fjuO9fsi15Nho5gj6I6iIHiLUAC0lDmY74wmAjuoGPN9mH4L9EeSewMrhh5E384wIk+K2nl8lwUcPh1ZL07gwkCspJrZjI3xOVR0/N8jMOIZnqfi87z4uxkMX4U9R6mkn4zmgz08lzFZrMrsi27mzfhXtu7MddabYHisizK8mgyInxHxmcQ5fmAlGJLqzJGSgs238GKMwAcPTDvrc3nleMz52zk3gyvPHTUHjXNtPwPd5LUy32YkPzvPPhwB7lIQ4N+Nn+uK5oPAdbuSsIJ178Uc8chBh/p0fPj/8CVw+AY/5r/z4109gI9mGWXrKDf34RzK/l+P1jVhrH5aPn8dcO47H3uxODJnM6/dcDjM/QMpxjmbG/KSR+tDHJSc7coAUntpiThHDvNAf2aTjNE4wOdfsvIbP8eRMej74oj+f2+O8PZ1c52iWE7dTFuaWIOWpsCFnFenM7rOsU3LkxQQoWd6Z7bKi8flKApTJKk1QQJ7njyDxI1g7w9QZsyZDqGZUsyOROLVZniWaY+s/S0FP61eez0re7h/vnTO2B7CYcUIOIPUMKZ4ZjlPzNA8/Xz8B01GmenouP57x+c75Tmz/OR7fa4ByExBxrhgXH1TrFNspY0dGiSs1BvQtjz2PlkfM1pFBKLJNWaxw8UL3SkNSZy2sDqtHGWYGxj7RrpCdQWHUc8G5SPSRR9FilgeitVml4of/c9gZl1ooVtAgUjN7ckQH6MClMXynjY02HrRW2XbB2kZrO9vo7NY/lHa8KCyFMkpYtGf2VnLwG94x3zHbIxtnbhjhdXBMfZ5DJqY8PMVsWqIWikEp5ayLqh61W33qgQ/twhNzk4F4sjuWZZxpCzX89K/8ABjM6CMOGQPtI9itNqht0PZOq41uSis7rTV627EnEbTbqRua/i3jCP5RcjsA2qSxlaQx50/4AAAOFZ97ek37iV6dDO5xe86gMm/uqNWfJZkoZsdAoSMmSGxdcxgkz9mPzGebZ3UCjpzhNOdQjSgN2VEcBh/JMA2jj+cNVI6C/pjAxU9AMsGJSXRXDIuv/hSFjnr40RAijLRqP7quNDL++QnitPoRjE/qmOOQp2PWy8VmO6ZPKVXGUmeCN3kCNULqJJDzufN+nX84hPfYsSEeYfcJ5ZwY9GcT2B8VQc+B+6dgFM/NqSEc94+/63NBOBNMxzUNMBQMq7NbMK1zyOIUTE692eyUIRmNQXbLEHqyyT3YoVPLhGzOxZmsiWmCIz1E+iNDBkQnEYMYHikJpI5NPF5LMvJFeAl/FTxEmDIMsVmC8lMyxtNay2tdHKob1aH6oLpSXVEvH8AX8575zlo6N+O5huJqmWRMYjJ/fnQJNmIk6/Dz5+HvEknp86y08QQnCqeA1VzSSTbAzhQpF49RH/NY3CgeZnDqIwdxhtBo2kF0t2Bf/AnUzI8lc03Hhz21YtFMokxw59laHO3Fs3vnIsKaTxbOxbDkZy5yNjcedg36dJMcKPFn3CC/x+N7DVBex0A63NqDy35n2d+oj7cQN8mIOTFjULY39PFAH2+pJdko24O6b3jbWHvn0ge34eyWM15y4V8yHVnGYEkxrbeGt05vjhGZeE+3VO2dV+1c6VyqsRajSszoqYNoY/MQNjl6GFEtmrbrJlSyZUucoVASTLg1rD0Y24O+1Sgl9Y22b/S255TmEIEKlgOwwtnvMm8GhEWcykAO4LblhpjAaDTEOpqCUrGOZMmsuIUaRqIFLVxroWY3VRzy1DOfqnePm1Y88+b0TXlWAM7ukBlz7NxDj8XtnKxO98gey6wDpyalD2J2B84+Om1v9OzYogUjpt3QDHzyJLCY1PLZ+qnZFjfHKTxnjvl4Zk1m+vpcLJ9RYnKbB8d58kY+N8upGfGk5yZi8o95+wFNnjKq4yfJlExGhAR1lhotEGwkd+GE6+9hnudzO85NyRPYPjMlfAh8BzEkTz/LS3Z6z/AkgORngo0P55MJ4nJrP37vSVJ91Lo5/qxPzyf5codw8AkWzsdxPZ/fhCTY4eyaCWDyESj89LM9fe9857fnd87Zwv0RqDyfA/XUO33nXx/P4pyVlnxBdznKze0JpHR7wskJME8JemxQZ4l5sqPJgCIncD+ey88hhMmkTE3T0VU4Y+h8r8+HeXYIxnPGPTzBRX5vUapVi1lpmkdJCF5+xhqc0O7ZdTqVcmlSNhGmn6B2ilGLHPb8c9bRyPUVm3EkfY2YMbOL0CS+76Rp53EPxL93z/J93k8zbs0bZOZ8ceT9n4zKbIGsLixmXNxZfRq1RSyehnaYMcd6GLM0lGAw3/8UAT/7rsyusPmeRQKclIzdMQNNuBDmbFc5v+J+fO49P9fCxzZjOWL20yr+qZv99398rwHKL+w76nB7/4ZPqty+/R0uVVnGndpuccGHUb/5McvjwfLljfF2R/YdfX9D7w/KtvG6bbA3rHdkGG04n8x5HbATbarLvlG3O/544BTQhaYF64qVQu+DPjq+bdy083VtfJKdF21cdbAOow5DG3if7boFI6jDlxLC1xuavh2wGlAMl4HYhvc74/GF/rbS1Nib0PtO2x+0x52+PfC2I6OjbqwK1yp002O4k7lwVePiHd3fkMctbQNXpp+Cth0fhrYOPdpzy2hU6yw+WMUjEy5KrTE9bqmFmg6tVy2JtIUlg061vIGnXfTUPXDEuEP0POTMyF3PIOqpcxmEjXfLYFcG1AG9C9qFrcFWjH04D9nZtp22bdhjQ/cd3XeKVspi1ObHELAjvB0tz8lnabRjV5lOqk8g5ZnXPASxfhz+RDlIptqBKSZTkdumG8GWnH3ZIWodzCQktrUAFj7N9o7/j1+KImAwKT0ZlPLEoIwxUssSvg6C56wko5sFK5ilOJFwEFX5yJqc1+zM0Dyv39wEQ/A679SnH4QJw8HMHPuFPGtJTmAiPAMQmIZ9LulcKqcZVRHyz/HyRUnQGZvFRAxTrxP6vSckM8GTB4XvxrERys844ppkhj3hSl7T83Ocy+S8ij8doGNzffJCmR0pSOonsmMrE/9cSpkRz6b82DR2nLs7i8F9OJvFMLfhH6/jeYQmronQVWkiR7Y/JGzzLTfR3Zw9Rcum84RG2SeYlInP88WSZZn+Iu7gPY705Ud73L+LwWrOOpxlhE1D6yP0f2MOcY0FoxON2AlS5hooAhVjYaR/x6CIZbmmHJUqZittssGSAl0r4IX4fLnOu0Yzw65wV+Gh8K7wUNgUuiZ7KIIXcNNgGFQZGdPi3EcCrJZusCNnGg1Hsmuv9GCFvQ+uQ3ixwasZr2a8+GC1weI9fLhccR+Yj9RfHg5VMZYlBcKohqfJTByzY2kcACXPoUNx5wJcRbiJ8CLCK8Jn4Ipzy/uzP607wbkCdzyGKM7bP8uX04X6D4hPvt8A5Y99+ZaqnXq/8/L+xidRXu5fuL28crm9EH33Rv+fP0buD8a3b+h9Y+wNezwYe2PsjfrNO5cvb1ze3ni5v9HvnfFoPDanmTLq/00tC0UrWIHLK9w+0V4qvihWSwZ3w7aNi3ReS+ePXDc+l42v9FsWf6PaHbYdvzd8i3TEhrM4PIig+1n8sGffXaniqBhr31geBf3JTyKobg/sqthojLbBT75FvrxR7w8ubec6Oq8FfFGqFHaTo+pwUePVG5e3b1nWheKDslyDxRANEekwdD9bsHXb0T3Ewi+e/TalhH0/UEullnDgfRHhBeFlOLcWCvXCoIuDhdg4rJkJTxaL+c2UGhOEyzRlkrgBIYLKZcEvK2Op7LVQSohvq0SI7kSgHAbvW6fp4G4P9sedtr1Tv7xT2s66N66ycFsG1wEXF1aNVj7POUaxNRTKjGQeN/TJAc8cNO82h4NK+JBTP1WIPSZjn2xLZk5jZMlxR9oONpAcM0CqdyY3KxqgxelzhyUMCeJ35iRvw+j0Ewjm6IE2OirZsVXi3dsYtDFoZmxGdhLokcWX/ICzgBTBbKaBcNDhTH1TfG6ZQEDs9NVIAaJbZGoTG+TJ4PDoYLJtAWwKnpsk6BHqn+YziaWRX7Im0/MhQfnUBdi8Jp6lIxKkqBwTXgXPLpW4D4dPHcY0pDvZgNnNAhKA1Dm1SMTXQxmTXScTZPjxfQCTOv/8xNbIiA1DPXRImhoI0jvIkkaJmShh1PgYwrctzveC87Y71xogpSVDG2J2jmJuw9gwNld2ojygHizj1htqijjct519b2yt0WsMQ53iaoYxOlg4MZz0zvxMJnh3fHf8Drw15G1Q3jurVq51cGmDS21ctgqbUbYd3Rpl79Q2WC2YmUEwHpbg0xO8Fp3W+5F3LXpOKC4qUMFrrP1JBUsVJKbiYWvBl9TsFY4SSDdoGgDlTeBd4FsRvgi8i7NLzKYJU7gSzIkHKxUdmrN0G4lndWEVZdk7K1DFwRo+BsuesaA3Pi3K56H8wDpfeeezd17orHSKlJxlFFq6lsfmJMgMBbAUKBhriVhZEZZcRzO3mikBEkZyFxGuOK/ifBLnK3V+oM5VhasCFvG8JkBXh2998O6weDKAR/Yy44FGie7329S/8/heA5RP253qO7JtXHtnubxQMcr2jm6vR294+cn/pLw/qN++M+4b0oLpKK0z2mDcN/xxx7YN33bG3vC9se6DPpTx/i1lfaFcXqC+Ipcd9p3WK14Vr4Xu2Sa876wMXnRw23auZedSH1R/UNhiVvw+8GYHFQpwSQR6FdhU2ItyeSL1FxvU3tDHHXlfIwPvglvH+waPB7JtaGuUMVjcuCTLgRRq1n27Rcnn6kbdHtTtnvoXDs7TzcJYrg2sZedLT48YC3SNKFailRgkxgJooahyEWUldTszU+jBZxpGMT/bGLXgJcs9NWe9FzkwgNjcxARZFlgqXitWCkPj90WmmVIK7wwaxj5GCJ+3HXvsyGOP89Mj2NVhVMsmZzkpXkm9jgKa/PcUoR7afT9J8iiP6RMV9Jwl+6GFCNYkMqUPrcdpDHgcNqA74jF+AM22ziMVzw3a58yd3AwPLUsKoPO7aDE+5yMdbqI5CDFmLUVbdshmFJPcoKb+IEHEEyfACcQSlPgJTsg1Ah4+DeqIGtMw6yAujmfxYzOfrzRNF59FgPEx43fnz547GXQyLcxDjjhwiFDzh/Pnxxs5LlsAvzn3J0p7Zwn0O1H9eBwszUcC5fg8uPzUZ5m/JyIf3sIHhiZLmSqkU2is+akTmjqMGK8RpZ1twEOcTWAfMd/lkEUlJBoyu6hO9+2OMVxyvUg4P49MKBz2Pmi908fAdIqqp8icc+DeLJs+nQqHKOt0AqRsBlskQtqM2o0y5hEsgrSIPTIMHcE+zI3Uci0dJUnxKO3rac8+W411moapB+EzGZQs7+TEQ7yU+FzFGTqBNwfDtAt5zO+dJqedQypvwVJXF3ffIcKXLH2pKKXPzxlCXUaYM2ofUYYeg8twLmZcPY4LFntcqoYCrud/PidEc5TqwqgzmRHVLN2cbLBn3JisWoabo4y/4lwkjqsYN1EuqUmcnaIbSsNY3Kgup6Mt5z0X/lYToP+Me+D3eHyvAcrnb37CMt4ZvbOuV8rjgfzka+T2Ap8+4xK5H7/7Y+T9gXz7htxb0Gd7ixrgcNbN4P2Bf3lDvnzBHh1527ltLXwXttzY9p3y3mB9QS6v9NeCJzzvEiKzvQ0qzgXj0zp4LY3L8oUqb6hsIDuMluLdgVnU7h7ZbfNJwBZFlsoQY3NjHcbqnVvbWL79Fu0Ol3swKN4wa/g338LbO/rYWMfgivN5XViAq5cUToW3RHG4qnO7v3FZFlZ36mUE/SmFBQmPkd2OFt22d5ZurOZ0KSy1sqwXrERWMBmmopUXrdyk8OrCZQQVX9xi4ikWwEWUtVTWy8qoJczTlhKeMgV6ammWxViARZX66YVyWeHlgtcVK8G6aKmoFkYKj92Fbe9sY2d73LHHHbvf4Zt3tHfqGKz1ynrprCNEZyJ+iH+LTJEyB019eE8/GeUBT9z9IGV7fGBWJAJU7iBoD6fY2QLmbqFr6g32KEExRrRK+xTC5nQPFVyiPGY2xwxIlIIyL8l8KinfHufVLNbICE8gkacpzy64BYMS7eqpPyBAXyF0RlMPYj5zrWQgEpRMbYO5R+A/bSXjPJiFh0ayUNPVc0LwOV12grh4spNt8inyzPKBZ939oDImUDlYpdmTcgo8nQBkcjAcCURkJnoTIElS1MGaRauvPr1XQrs0wdsBKfzErCdHcnzOA18eD/lwnDblsxCTv5WbmmhoooqEE7Tna08WZYwov1h3NEuXF4P7Do8KW4/S6JIZ7XDJ0R9Gs8FmI+wLTBAf9BGgcm+zxdi5PzbaY6ftnV0GvcQIEUktxBieXjUJnIocpSpcAn9vjt8H/tbwt4G879R1YbksLL1TW6NoQbaObDtsDdlj0y55P0r2BwcA0AQHFrEmu3JqmZPK03Stkk61frIni6CLomtNFmUJ7yQ1mvqxpltqTh553MW5S44yweniMRG8KJQS19qm2J9sJ57aEQ3rJVfK2jL+WFBPo6N7JFFldC7Xwm0MXtx4YXBjcJFBpaPphxPANLs7zdmd2I+04qUiHuel1gQoHrb1mvFrRqzJLopIDgV0birc1HkR55MaV3WuGmWllsnQDgwvXExYDRZzihlq5XxicT6Uen/Ox/caoIzNkNbZ7l9o9RE33n5nu91YH2+54Srvv/NjtvcHb9+8se/pMtqN2WOz90Lrzm7Cnh4ectRiBzbu1O0nlLegq7VekfWKPAqkq59JjXJDD+X54k5doRSjLBtF76g2tMyR4oZskSn7gNE7y1B2N6628MkXXqTxsMF775S2c9uFz/bgur6wLCvlWnEGap369sZyv7N++cLLfqcyuCxKU6GV0LUMixuJ1ljbxlc//l2uY+fyeGG9vIT9vWZbsBEi4Ozu2PdGayHIrfvO3jpbti8KHHVVZXAdneu+8SKFCxrApVR2MXYGj/Yt0t4p+8bSe/jJMLtEnIdFyasBrwKvInytwleqfBbhFbhhLD7AhOqF4hXxjljDxwPb3rB+x95/jN1/jD++Zbx/iQnNzimWtUD3oprjC4KV0WwDkTEZHXnSKURwPDakmR34z8qBPal9A28w9iemJDfm0bGR79taOsjOcxLH7O2a5RuTKTKW0ypb5SixHOWYjBDucw5SXLCRUCYAitOG0zy7lzyyqWLxse0Q6AbYOvJiTwrcpzImtBjqSRVnKWnWNFxmlw05DM2TzfH8l9Oph2iDz1lLQ4Kybuo0ha5xToYZQ5MpMj96wFVPunqaERaPTDuGu9lhPiZz9ryeJazAFVFWYZTsei0ni3SAuzhRwdJoaAj84Fm+A1IkGZRnyBKgSZ7WTHTXzdN7BnI/ni8Y0bAii39ztLQaSLaRtC4Rz0zZmofpZC/0EV0+cS0XOgvdw/Rx+jpFq87AZWAitJbsiDn3/Z2t3Wlj551IhO5kCWoYvVtO/ZgTwQWRMJuEkuzJwN8b9r7jbx27d/w28N2wZlgxugz61mlbiNxHH3h31AKcqMIc3GpSQm8hjlDIvAWtl0heyhIz1lQPEXXY1U97yZNxmaydW/KP7oe4PAa0WjCMeZoOMWpSwtP5dQL6Z8H6LPEGkJYo7R4de3qWY2ejgxmKBujSs0Mt7vXQoYXHltEkjN/mIFbIz1myM8o8mHI5tWfCk+4rkx2cAN46w1zcT1r8/F7j88SfswdLhCL2dF41zfGmrX6WzUgg93M+vt8AxQS689ga2hq1VkSM3jYWN1QrIsr7l294vD94+/aNtodHhpsgsoDOGxR2VzYpmDpaCr1oONJaQ8Y7ZQfuAmVF9pXSNDLuorjGzBzpIWQrBrooUhxZBqI7qp2ynvub7rlg+3REhYcP1rLyYgsXOvfRee87tDsXnJf9zlpvlLoil5rKa0MfD8q2U9/fuY6dqs7N1xyylYItmRSuU0fj9e2b6DbaH1wvjxiWqBUrNRxqmzMSoLSkdvfe0L2x98FuM6OW2MzUImujc0G5ysbFNadEK6sYO517f8P7A2kb2kcaykWpwUjVeNZTX4BX4LMInwU+Cbww28ojcBcrFOtoAhTpG7R32N/x+7f44wu+fcH39ywDR4txZPUz4571WgVN5C+5IRwlp+8AlcwqDxAynye7BGIHTwTHbPmNmU30dmT/c7SCWYufJ2U+8NSaapbEptmZZ8bop8At6erntsGDE0jgZx5lSPxZ3MZTd0aAjCHHHn0mPHJCrvxkT98f4S7+4hilEP9IiXPps7yjT2K5fK8iT51JEKDn6bMOJcTjKUgMPJgbyJMw5FnzGrOG4sPMAW3iMextlhjROSRwUiukpkHA9Kc6hZ5zzQjmudl4Wgmk8GLCkviaH3SySd9lUWTWG0gQM7Uy89fnP5j6qNgGDnvz+apumAkyhNGEXsJlujWlTXdRi3K0AsMXhleG67HpBjgGsRFd7gKjxRoaZjzaxtY3du/BHoiwJ5gTwHroUMYg3meyPsHIhTO1d48y96PjW89RFLEA3Tzt+T3ATh+M1OrNUsEsu4VmTTEtqacIIXGp05Z9RWtFa835OvJ0C0+/6lgLAU4kAUrOvko38mltYCl692T0sFin82LH7X++Rmz62fbv04IgS7uiHLUwPxORCWiiHJQ6vQns8/IfjF/eH+OI63EwS58SpfEAZh4eL6kxOdayjfgu117cWHLuUdPmvhB72VyqnnSfzG66aYpH3ltyMNMxJ8iP1v9DtvVzPL7XAOX+x/8fMH7At99+QnDa7cZ+u3FZVtbbJ1QK4sLb1dn6wtsi7DZr84qwgC8Yl0Dsy879smKlQ+2M9Y71HRmNta5c6kKvgqpTJDssLOp5QtTlhmdd34XdKgpsEmI0Faj7CGMgFXSLOmPZG3Lv1G5cTVkulb5UrtK5j8Zb27H9PdTVZYFypemKXBY6HuKoPUzm7LHFtMuqXD8tMdhQNY3gjOaDJnEjvraN60O42OC1D1QrKtGhNBmU0ePG3M1CSDkGy95pw9m7T91f5HNJVYZ6vnOxxjokqExTuscUY29vXNrGrW28jhEbo4CPgqlE7TwV6Tdzbqp8VZRfrMLXY+GH1lm0hAq9FGTsqDWWxwuqAy/O5fETvL1j2//E+re4v1HXR5YsKnLd4dJg6VAtp3+dme5513JGiFI4BlSUyaDMACWxwY38XbfpYY8aWZTNjSuiPZ5+BT3be4fPzD+yjCkF1RK0tVSBpaRQM9g/VckgHO+pjNgQxZyh49T0SpSf5niBcPEMIBHsSjojz7bRZzFwySx/0rQSgSoIo6nZSVxWkpcUoapGqUqSJ3CotdNrCYZo+FFBOygA80PAapY1fAn7fOvpn2IWIliCmRELozqVaF2tnl01GiLSkthjOnoWsaOFOPxYUkOQQGIcYISw+QaqO4WCDYvNMDeqMsGJhAdI/LPCnIM1AYqSrZ1BRWD5+q6FmOObtfuRoCdj3NTXnIGf6DrRZITg3LVMkFGQXaELrsbQGh1/ImyPhdYqvStaB8bK4EL3K9ZW/F6Ru6O7oc2RmoyMnPqW0QIwDIemyl6VXYLfU5M0SwygAp4Gg8H6oDU3uBTUFMGr4F7w24p9ujA+vTAuF9pyobmGQ/d1wV8W8E5tk0FR1mkMyexGcSjC7SZcr8rl85XlpbK8FuotWJVSDJGBIlSxEI1q+ESFb9Xsg7Ow30+gEOsVRhfqBvXhLO/O+p5fHyA7SA/WmRGl22YESOmpoRkpd8o17t2x4nGec0ZZoPqII3Kr8LrApxV/jcNuC7JWvJYU4sb1sA7sjj6Msjl1D4Y7fFM4rP5Dv2SRjPjZ2QWzRGpxE60OV7AbjBfor0JbwmrfWuhOtg32EvqckRoy9QAW4Z1SaA4mEUeQmfH8fI/vNUDZfviLCJ/Yryvg6HpDL1fGstLXlxCTGXx5F7bxzpe7sls/AApeEV8YtjDoDOCuA9OCFGUsHVdHh2E5udiqUzSm4FIEUWcpiibt1rLHUU141AjejwLFa+Q9FrXhgqBD0O7UZmm33+nDwRd0FKoOFuvUvjN6I5aVsHtnFKV3ZXgAlEfr7G3w6OPYP4t7Vieyr58YnV2S1q4i6VkCi4Q+JCYcRxlERngPjKNdNr4us+6fGTYSrzWD6dHiR5/zl4P2945Y5zIa3VoOZBzZTQAQ7csLxsWDsrx6AJRPrry2nRsh2FpySnNXBUawN/s7WhxZoG7fsrR3rH3B7A33d0p5RDZRHJYGteFlcFg4x1vgFFTA0To8KYWUNU0BKG7JuMQnj5MCB7XhT0+LH1kPjHQ9dtoY4Vw850clM2U5Kbrk7q95LT+UmGLHglKQUtASzyFjJONi0ZklwuHum9udSWhbXKawLtkW0tfC0hXYZzmByAYnjiuTfXj6rE+dMZHhp2fsTAVzvOnHYYIE4DBN998nG3w4wIPL6UjrT6f4fO6ZwdokI45GJ3/qEIrm/vivTxYpM+mjXE6WbTSyx5Jib4PQn+QeIhZr24ms001TiDnfmB+vpSpZrpvLLfQ+06bsYGOYwuD4GmcseRhJTZDq0WbsxPdqivRp9QhowbTQF2i70lqhj8qYxmrpdMFY8F6RVkLrsYMMP7wzpuFaxATSv0OYRpMmerBtlmydW4rB/dz+cmEc4CRdwOI0XQvcKrxe8PWKLResOdYMXyosBV0KQopeJbpC5t01iHVEUa61cF0L6+XCuhbqWqnVKMUSHMxbPuedyZx8DFE0D+BrOp2/NWfNwEDD06pD3Z2yxaGbo3tqfzoh9O2dYnE+ysgSeIZOU3IeVSJ9TxAnBIOd69euC3ZdGS8L43VlvFyw6wVZF6SWAPPFMBmh0UqQIs2R7mfXoKQlgcgRs92hJVSZZdwyS63F41gFvzh2gX6FsoAuYfWwm7JVi6YO5UMr9cGiSDBzkonGFOT+vI/vN0D5Iz+CpfF4/yposnqD5UKrK2u5ImHxyrePlYd/4ct9YR9bImSBUSNrt4L5zgAeGK4dqmDSwJwyBl0LvQitWjqkdqgFKcKS9TlRP4aeKcJaFM9+8wAmEl9dAqSYokOo3dj2nZbte3VUSq8UdYp3qkXrKSLB9Eg6K2bduJvz2KMM8+iDBWEtwWrUbL1zDRq4K1HGEKV6CeFUCXO1SXfO2R7PpmEReMKkbZlM9xMYnkIvIYzZqghFOjWp0yKE4ZsPrtawEaUOGel6KHHHuAg7g2YxSOvq0dr2yQqvbefFjZuPAFkSGgJnB2nodqNoQ7SxbD/B+zvef4L7G84dqRulFGQxfN2xtWFLMC6H2ciMp+OMuD7ybhZLLcLMaT03x9wpjm4aSVAzDgTnM/Al8nFiHEMfztbj+5HTJGctOgCKU6jZqRRKfHcPfRUW2plSoFSkFqRYBEEdscFmWSjAiWOiDErqAwJYuUDPboBp1OYumM57oxK7/wlQohU+RM02tR4Quhri1+MRgx5iRygJSKY362l7zwE+ND04RnSWcM6nOmdUZbDj3Ppm59Xc/86McHYUnIu2MM4uJqZzajIUedmnjkQ1dDTFneqhUVFT5ngILRw6lyh3WoTnNDCcp0L8BCjxHhK26HRQndT75HHiuZRTpRIt1LMjRRM4+IHUpAdbIaZ5LhzXQq+R+ba90HthjBLzkVhwX/C+QqvIXtHdkT1Yv9ncoh7naLhTTCjJik5m5Bi0MMshPtuUR+zEE6RIABPJ4XcswJoo86UES/Dpgq1XrF6x5lH6WSuyVGQpEVuIThQdeW7ND3xMEW5r5bouXK8XLtfKeiksdVBkHLerGlQGVUocM1HTKCmqRJwMAzvPgXyxubYx6A2Wh7Pc4ygPZ+yGNqPsjmXXZQ1SkGp8aC8fCC2P2M4zrhTFlzUSCVXsdsFeL4zPV/rnG/3zlf76ArUiqjG+o4RWyIbiTfDNYTfY4/yF7sMPxmSWBE2cnTRwdD9M8ERCB+SLY1cYN6e/wP4isAhelS4efjsVHlV4aHQ1HeVhCcZwkRL3xUxkMiH5eR/fa4DyP29fI1d41ys4tPJCr1eqrix6gQ4ug28K3HXlC8Y23mLy8O5YL3iX1KV0bDzYH18w28EeuH0B31htcFHlqkqpS4hJS8FZESpVK9H7EobEQqFQuQNXCp9TeR8ip5qZmSDa0r9Baeb0Pti3xhW4AFIKG8KdQqfgUnB9oekLphekvoZ4q3cefKGx83Dn5sbNhauNQ1UdyDk9D1RwKi6XEPzWlVaWCG4e9W3z0IsMRroFOo1wZ70T2XbD0wo63QPzBtQUZLqPEE3mz845L3FDKpVCR0iPC0IzUDxA0HCJNjcXVpeoxIwACm6Z5QzDpIN29v3GIo2FDX38mNLfWcePcXnH5YEvnvRmp8udJhu7DtZQySWw8CjNdEsvZ8d2xz2Zpxpi2lR5cuxsE5zMNNLzuUyzUyKCwZAw3nM6wzvDAlTaSPG2pXAOw6WDO9WiVFmoaYIUTsMhRCVZoYKUylKiJFdKwVXoGlqEURSpjtdYR0MXXBcgs2kZ2MjM3WNDlVKj9Xup8bmVuPIluyjWJdeyBvj2KIUEKA1vBxsdk57aCCKrJzpPhk0Ldj+HpFmUFYdZMIpTHzEMH4J3wfoUuueY2ydGD+So3SPR/RLEzuDwYqEzOYwqEGLL6G6Ix6TCQUsBMxaJcoMBOgI0uBBljWytxOzUSx8iGz82pvi/CbGmMuX875yVE2Mmnvq/gPCOiW9zxhXkPClJTV10hiyjhCmkFrwU2g77Ljw6tGw3tpmiEz5EOiplFLz3HKDtYbBIXM+Ra+KS/uY6YLEUkx/3tqf4etB9dnIMZFwwq4xRYv6MD7rkKA3p4R1ycfwG9rowlgu93OjvRq8d0woJtiUIKoqF9cJ0mZ2sjLpyFbgW5VJX1rqw1sJSWsRgJ+KzGkuFtRbWtXJZK8virDXKPkOdsZRInsxppbPjbN0jbjO4j8Fbh32PTlDLBozSRs5rCzPJYCYO5RLGOehVTKgmDC/Z+WZRYpcAAo914f2y8H5beL9dqC9Xbi8vmFaKaNhWlI7ojliFUdAmSAPJe2Ta9Dc3XAT1iOXDO3frzGGpFWeR6NzqavQK/eK0q7FdhbeXwr4UlgU2YHP4ZoUvxbkX+CLOg2hZRwqKs2jc3wIpyp+L7+d7fK8BylYvUGFfelCtekP0xtCFIZfIHBm8+4W7rbzZwjYqo0PvhvUIeHtOKLbRaSPadvEdfEesZZdJ1I21W2oMClaD86yapHluwJp1OChs7gwvR5eL9GBaJvIXM3QM9j7oI7woXvrglmrrDeedmPswJDwqNlNaUaSXpPWcRxd6F7YR7XB9wFfTlDR0e0d3656CuEGUuLCFJXISSG2DdWUbHoK3bF9rLjQzHqbpmWHMQXqVKQ4LKnzMMoVlaYLJRsA+wt12mORk3Xh/YXoVQaTkZhKW/6k8t2RD87lFUmE/Bj6EMRo6lNIFaTvad9R2XBrowLI843RGMlH9KLmcW0GgqARBgxwQOTe+3MTrsf/EY+5tR3ln7ptzyna0cnZLpb11xggTvL3n9OLhod73KHq5xPcjZ2wcrbX46QUiPG3OCRCZrK4fRxaYIpsiuw/mp5ZZTPCns+CTI0qGg2RQQlERZaPCnFo9BaA6harAIUzJkbzOxG9yVs/8nN0yq2k9/3ysofn5LO6Zp398XCvwo5vlaDv2pJOTQTl5m/y5zBJKwmgn2YpUd0RN5RD26iwtyFM3jjzDjJQdn6ras850LotDwCzznpk/hAQpZzfT+Xhao0+ZaHzcfA/myMhEYRwvNh0NDpv6edom+zmXv+T59VDL5nmLDY3JjB6dPtmpyxSWxr+Z5YLnKdmpJoV87dOOPQaaukTYCQfX2JitBIPgOnVfep5Xzm9VnCcOJ8B76p+qhnFk2BBYXusof4XOPdq1NX+vaGi9XKaoNIwoBxGzQ5RuwVC7sLizDKeao4OI7xZW9Zq6j/p05STDw8jr7BYgzidwzvPtLiCKYunuK+waMb9poaf+LrRO8w6V4xqSZbjAA4ZpgOSQEwVL0t2yvTz8kVINhkpcm+mkYJqu3sVpMeAIL85WwkH3Ic5dhAcxrLa55tyuoIzCmG3uh3PRPUvAf//H/3aA8qf+1J/it3/7t3/q7//23/7b/JN/8k/49V//df7ZP/tnH3725/7cn+Pf//t//wd+rUdmeJuOvE1umN8otqCsMcG2d37SV+5t4dutsm2Fvhlj8/TEclqLti63zrCG+47IhjJQ9SOQ9pHKbokOoq6Gj4paR8tAdCHG2xfUFr4U5yqFVy0RuM2RfQ/31KKwP5D9AY93tvuDsYcO5vM+eN0HSx3sGG8e/hRDnId23ktnLwVajwXYO/s9dAzNBl9X55ML1025pfW81CgN2HC2JpHReuXeK5dSeUiGmrBPxIbxeCg9jZdasgDNYWsa7XamMyRHiUg82zdDWLhI0OJzhDc9Vfq70JrQu9LHWSqpGgr9WdcXzxa7zGjdJDzM4BBzNR8HCFusRUYywHMwpI5Oin5CKGnnDdp8sKdNNHP01Yz6R3nH2ZvRh1I9Z2EA2snInuhvbsYzuJOtiW70Ed1P977zaBs95ymNvWOtM7bcFIYfmb5KDIgUcZZW0EKW4xIgtQ5ueFGs9fQqUWgD2kBaz10pjPZGAuA2Ol2iIyamlISQdLY2y9TbOHiWEN2EcvQGJkCSeM+mOdXbJi6Q2NskQZBNYHwCke5OnyRV/qzP30tSxAax9nKzE8vL6LEReF6budseG6JpWvkbB6JlOs4aIs8B8gQjE5y4Z0MQTyBgNmY97ZPI/IxTeXUCvWkgNn/nREkJEadOBxLszIKSHxvOz6rUy3z/wqnd4Xwz6p4l5Lk+YRRoLTL/rTstgco8RZ7CYoZHtj1GdJV5lCcYSrGK4CwDrsMoZqzuvOBcxVk55+3OmTDDCF2en4AwNBwRQ+b09e6eoy08HKSrMmqIYK1oDDydXXMl29YNUD8GBhZPG/uilCKsVViqUteFslR0qSGMdZAxJu48SqBICRawxPNUNLu6NA3YgnHQZMM2E7pNS35nHcFSxwykWGs1r98EKBBzfCyiTKzXXOwjjGOCiJ33FXE/bg4PAgg8iFk4u8vh7SPG7DrOFnOHaaPR5+ytOPfNY5L5ZFC6G5ufDAoSzzVnBkUZKAGKwqbG0OgKuovzEOcLzhc3Hg7v5mwW4xBsKMiICoGdAPJI/H7Ox/92gPIf/sN/YIxx/Pk//+f/zF/8i3+RX/u1Xzv+7i//5b/Mb/7mbx5/Xtf1/6PXalbAKmblyL6dFNPB0UgxRgCKmMI5R0jJ0fYUMwsWYIVyyWBkOTESCh18UnM5QsKdh6UfxUh7RI2bHw+NyOchrGK8qp3mTq1njVihd3yEHuPuc/hStNW+AMsY7MA7sLnTZbD5G3cbtL6HbCJLEj09NAaNb0341J3SnZfuXLscwdeG8egew+IMrqWxKrxkMLe0WBzDeGx7OEZa0HazVLG1frAjE6AsKjmQi3PypoSgNuQZuaEMj8GGrdN7w60HBZrVkyISfhJJB17U2YlZIetIcyAJa3PEaDIOuromL1CTInefXo5+BqX0MRmaR5EjWxN9mnhqmeVO/Y6HWA4iuJTJYGTBKjatALqWr2uWoHEMmnW20bmPnb3vtD4N2UKncm7ACQAI9kTVYlCjDdQHakGdSrIp0TyUzr9q5+admZxkVsfT34dw1vN9StalZ1Y/N8/peeLH17mJHvRB1i1SWnAyN8eP/ek4yxyHaJRTcQFnm/LREeQz80rrcoGevzsnqT5n61jJzTHFpt9hXwInJAOQ7EnXKcD14z1Nn5ZZs5/3/tOHPrLi8fS9PX0lV9LMnA9CJT9z8gBpW88BZp6fR56ePwS8k/GZrxi/NLvgFySP2Ygc53AyU8FSZYaeosw5ZT26sz4OtQsGILL7kkD8hrES2fFnmT5FZxzd5zvL66wShdzsU4pJ5Aab+ZH0RJtz3GOOHEA32JvZwZTt165pz5+TgvMOjC6xHHnhJYrHHnorkzgkNVtzHc7ZXvZ07ifQIs/5ZKFKroF6nNsoa8esH2ERpYlHeUhOwPnMoIynazqvcU8mqMOx1s2ik2gM45HHPb9eu9FGOLYWjzhQzNPFNY5j0vFsbSa7Aj3Lgd/5nJFwHOTUsa6e13kAKzm+3wjgdEe4I/l9mLa1/N35GU96ebJe/NyP/+0A5Rd/8Rc//Pkf/+N/zJ/+03+aX/mVXzn+7nK58Mf/+B////q1cuYvSk0hZqVIifZiNPURgcZVymHa40WoNYcpiVAp6VGxU2gIlaKFiqLs1LZn61/UiY1YWK0u9FTKu1ZcK7sXPAVkJjGiuh2ZGplIeVKp0d/fh/Hunhc2wMmNqOcfAAUYbmy+swEdQ1uNYD48DL4CFzNc2U34NJz7gOs4N48xYOvOGA42uHhnEeGW2dicSjqG8egtu0tOR8SBs41+bnZxCllcQpArOXvQYvhXzRZTPAVbw+itMXqn95ySzJyOnCJAn5mX0dxZPQDKMkI4C5qdLUZnRP3djJrpes0sbt6CU08QEpdsP5U5eFAPCHN0yMSun8VuT3G9HGayMUQscgxJ6iDWR4hdzQdGMhej00cPH5nR2XqPCctpaS9+egfMoCacpaQYfz6nG8fXCXZhvo1Zzz6BSHzl+GqWbb3JID1b4cd4gNjFwiE13sechDzp+8M/YVIkHqWbORbgePgEGnYcHIDuacOWGbAioCuzSDK9KYTnWGa5GQ8J63Hy+ySfMoOX7EgI0Gf+BEwSrHQ7X3v+/HmkzofXPJiZ83zMoD0DffxOWpqTnT4JMTyf71kgGT85yzvP4O0stwknbJyMyXxneQ0gwUowO3UeRCY+2ZYPz+NkSWhu+yGYD5O/GGzXJVZgWOELE1IerGgKZ8NlVLhK/G4nNu4+T6UokvFYJUvHGUe6k3bs+frJcU3iC5ldL9Nj5SxCOkkUPIFczcYESUFvd0nQc7bSznU1z0isF45yS+igMqmRvMecp1KinxcwF8uzeP0wLlNJTf3ZsfWU+sTra7BDITbXY4IyRDI4NT3dzwntfTi9e3jNaACzkolIMT+ASYCTKUHPJNLJ5CQTEcmrn2Jxd8uurVk2frqVE6S5C2aK2HQh5gCKMeVZU/gbM9JMkgwQS9AqPw2E/hePP1QNyr7v/It/8S/4jd/4DeTpXf27f/fv+KVf+iV+8IMf8Cu/8iv8w3/4D/mlX/ql3/N5tm1j27bjz9988w0Av7S+oJc1bcGUq95YygWVGhnvPhhroz6+5q6Fm0O/fYW1gTUJX4Uh2dq7If6OjgdFjEt1ltKDareWs3bksDe+m/EtdtJ2HvVdGZbLQtES3Q/DPaZn9Y69fwGLTLtvheGFB0tKXI0djkXtcACU50xtYlTylAhQ2EmtPd2ddxNqh2tTLlrC7dbC6fG+e2ykBG1bdXCRwuzeCOMuY2t7GBT51AJEwN73fpYkMvNcSrYwK1xVWaSwlhK23AK40UdjtMb7/U7rRmuW7z0E/QvPG3U8XoAVuAn88PLgVoXPq1JLtHXa4qgtFJwfvHcurtykBBOkFcpKqVAX4XoTWBZ8vSK60llCY7PD2GOi6XQXjt3DocBtjXbn6AZs6S/RU6DczgDW0xHWgiYffae3nfvjjb3v3B/v3LcHe9tpWzucLC9LZIo1qeJC1K8lA0mZIMXC0MoAG5mJm9I3opbdB/0xsGb0zbk/nNZg78Z9Mx5t8P7egw3L+rJngBnpX8EBUISyGGVRqg3WNUTeRR2pihYNtic1AgU5dkBLdifayOPAwvVZR6N4TPFAjVpibReP8p1lN5GLYpaCcoSCHiWgBaF1YSuVvUEfhvfOGJEd26S/8XQOPr+aOVsLZixY0phuK/XEpkWi5DXMaDmLarQQEY/ZOjs1FWZZupJsDU+mY7Z2z/Us0wclup+KEQyY9cNWX0qANdMLjMhXs7KBSOiVa3GqbTjRwloBKQuqystSMknQWJ8MhjasjiiVSO7UQ/ARwzCpNcXQlX4R9rbSND6LrtFS2pdL+BwVp76sSN1ZufB6Wfi0FG4lynYb6SCKgYIdQuwXnCvuF5rs7MXYlxW7Gq5OKQtVXljGynoX1m6suuPbA9sfLH2jjp1uLbSCrrFmbbJ6J9uyOCGibp1te1C1sGqh1hZrzvc4d2KMfWfQ6Ci9CBTDdIdioTnqSzjsOuxt0DZh35UvA95c+KKV+6LsqzGuGgLjLoeWLPREsYYPmsYIwLZUWBfWz68s60K9XgLe2gDPfhoJp2sdgt5BvzhaBr50rHgMA3x07NHRvSNjR3zHZcMl2hqEfsjAdAyKJ1u9KBShKskeZqda2kMUG2gH3QrlodQqLG/ht6RFWe5Oe3hOgw9g2FXZF2WzQrMVY8XLC3O+OhKTqZf/fwEo//pf/2t+/OMf8+u//uvH3/3qr/4qv/Zrv8Yv//Iv81//63/l7/29v8df+At/gf/4H/8jl8vlZz7PP/pH/4h/8A/+wU/9/WphdCY5GbeKUb2jeLjMWse9U7xFS5l6tA/PirQqNsJZkqQ6dVwoAre1sNRo0e3W0Sx9LImOuw1W64my0wbZDEbL2p3k9Mh4n7QdbzvWOt47eMM9iiEqK6W07IIYp3CQA4p8R1Y0IXw//lSTC4ApgJx1/vx8I0pcrTuPZsf05VqEokbTyIonxTqGsY0eZZwDoARIadaPjD2yYcn20BCz4hyUbXFJEZ6yW2QDX/pgG8EOwQlQKjxlOPF4ITqabg7W4WZhGldqZI2z1l2LMza4qHCpio+Ce0GksqhRDV5N0BF+D9YE3WHfjLYNxjZYisWTwkFRU0hTLKA4JrG5dhkET9KO2TDWGtZj5o0nGOttS1DS2LZG2wc9za4kGacws8qMl5E16CmWNcYY9N4prVAkvCCsp0BZHN0GNgStTn8EO9W2zrYNWuvse2fbGo+983hv4TqpOfVYMtscfugSZtlGrVBNWYhNoRahlmiz1RIMSphm5awgMuucoqAxZwGNAAzjqVTlc73a0b4Z5YXMlCezkixD0WA8xZ1S4r2WEddG/RSpkhQ2mTGGfTu0kR1CHoP0YqNI7VTN8lri0kM16iOuYTd6izU/PIDFBCihXePQKT+/9nzzRxvyXN2Ztcf3/UgpJQdlqlakTjHnLJ3GGAkF1EZo3Qzw0H4VKTFrU4KBc+0hspYc6qd+8DtTqyOpZ5LiSHVYFF9CQYEt+CLh/VSWZDAMqxWxJfRLmp2FKXoeM255+OooFXxhsYJYCPqbaxiwURm6Jhu5IFaRXpDdIm4r2LYx9ge9b4y+M8aenWbJuLgdnU942De4derYKR36fmfUwmglhKA6I+pAdCAjpjTrCLsH9YFoi/uuSNjye85/6qG56ybBnovQSrr1VsUWY3qpmqbUwBXR7HQzSREyFNIWYFkpdQmjxRJGfzE6QrITjHTd9UhG7wbLwC8Nq85QxbZO3zujdWx03BL8H260seDEJUS8BDgvhN6PUo+MUN2PqdUelwFrFd81FLFbCTGKKr7n++oOIzoBB4VOZddCY8VkBV2j3E7EGikW40N+zscfKkD5p//0n/Krv/qr/Ik/8SeOv/sbf+NvHN//mT/zZ/izf/bP8su//Mv8m3/zb/hrf+2v/czn+Tt/5+/wG7/xG8efv/nmG/7kn/yTrNbRnrblOCo92l0l7JptdLQ31BrqnYLhClqiljlbJItXROJQt7BlXy+ZNQrh/KjhiFprtN+NQW3hT6IjskUbHR97hAF1LlWpOKvtoA+QjbE03Ld0PA6jJJULpbZoeRwWrYB+Ag37mWcFOMnUvDXmtp70pQUlN1zxVFfvNtsNwxm2lKAnTWeuF8cwY+vjqPHH12BQmlnqJk6qMJhQPfwdwuyrxOYhEZB3E9pwvu0h/tqIgK5w1M2faXCAOwlQiFh+FdjSkVFK0LdFg3bum7MWuCySWpqCSGRQqzptKEWiHs4mlNXZH4P2GPTHdJTNnWsOjVE5rNljUlkKAi0YqUajW3Th9Naw1oI1aI3RdlrbuG8bvQdI2PecBNssPDQKhx7CiY3H3Dl8VAi7b5FO0WSkEEYP11cRpWwdG452o2+N0XoMc9s6bR9se+fxeAYog6HhmTmSkj+Ek1mTEBHKUMpQLj5wL4xpVFjDiFAYMUxvDgBMBkXGbLPMwYg2EClp/PcEUKalONN/4aSfPUHKUQbKOTuUMEo09RgAN0JUjcwySiAFg2Q4UoQ7nBa6QR79pJrXml1i5an0pB7I1y20Uq2z7f0AP5azgIJSbAdAmXLQRCXzVoyVnZ1zctDluY7c8nNOkBLzsMKO4JxxEpvHHudsdGaXTXFlquqKCtPbxUoo2px++N+Q4MSmESM5F0wnSCHqrAC2QhW8BEAJANAZtSJW6V4ZWhjE0d2z+2q21QNecS/sVpERmq/NlJ1Ck8oQz9LaAlaRrrAlsBXDtgdj3+htp/ed3ls4+ablwpj6ozzRs4xRh1K705vS98KoNVaYGqLBiouNGI8x5jrPGU3WmGooV5JRlizXVrqXwzywF6UXZ1SwKtmdJpiXmM8jBcoSChlPnxojXKBLRZeFUmNOmaoemrB5+wuOd4/Jzw+H+8DrwC6dsThSCuyNvnd6HzkuY84Yjlg194QpK5jFw9gnsykhbS98RCGMHvunD/C24LviiwRI6YoXgc3xFgDKh+Y+s9Ck0rSyseKygKxhl5BjJMRzT/05H39oAOW3f/u3+a3f+i3+1b/6V7/v7/3oRz/il3/5l/kv/+W//J6/c7lcfia7svevKOXGvrUMrBesLKgUmllcuL3xfje2+8r9URmb5dDIwkhWAVmidiixMooWOlcuXlAVHiMG420Oe63sGO+j894fmPUYWuc9GZslg2WItiLo7ghrgBTd8RJeBI+lxvA8WejLDbeFygVpsTAvzWnDWIbx5o2Riy4ezglQODJQA6hXyuWG/JEfoa+f0dsrXpQxGrbd6V9+wr4/uD++zSFZEkr3iaqJMev7Ug9gMiZ97UGpY6eoSzV8NroKRYWxFGpR9lqSkIjzukmj6eDbruy7sefbfyr//9TjnSzxAK3CReElhhaHKLlA0UGRxk/swdqdtRk+NoSdRR5cfXDzQVuWaA3MQFTHzj7uuN3BHnFQAzVkuzUsh8cCxQ9NRbReHhzKoYjv3hnWsbHTxk7rG1sPsfE+Ottk2pKNEhcu6QkiFl1TajFTZe5xMgJUuwthi16iFECAg1UvMUdJlCJGFwCjuIbIc6QfQmu0tke7ODot1Nj9bPNNdBIlhaHUUXACvJvN7oH4KhqvUSk57oH0wIkgadLwzOBNVoo7rtHefYy991mDT/Ozkh0MaHoTynGEbYClfYchaulJZGiRA6B4SW0BwlCjO+ySU2dx7ilXVGKjrq6srmEF4GGiiEdXX/dGs85u2RZDijlTm2KcTsiz4JAfLNaP8ARWpqQ8svCQNEydglMP/vAwv48W7mw5j2dJ35/suogZN5LfcyQR7z3OIgilCbUp773w6JW9VVqvuCxhAqh6DvFr6S9jls0GQt9TSzQG22awOwNla4Wlxr2ydee9GV86PIZwH2nWWDTWcgKUb4fwbRe+7fClC1sP5qiZMkxpsWAZGG97421rfLs1vm2DvY2oukrcmS2ZhmHzrAGmrKa0odEN1j0YazWkWLDp0qkSDPjV4MWEW3eqdlT2LEkrg0r1GLQq3ZC24M1ZmkVpo8UcNe9+lP+6GYN2WCFpOk7HvLDwC4KK+4Kx0L0Gk26FlrqZ3ZdYDyIMvWLlipdLNHDoGok04UHjI0FMG4zWg2213ClE8WRIRAQvqZeUYD1dc31lgmE28LQE6KQWaY4TSK3QZHiaR6NIiGULD1EeUnnIwkMqu67BjOmSaz5Gwyw/VcT//R9/aADlN3/zN/mlX/ol/spf+Su/7+/9zu/8Dv/jf/wPfvSjH/3BX0RviL6CNjDBuGC+4mgulrBUH9Yw12NUe3zVbGkU0NiIi87MVRnjEuOqXbCxHwIqS2LaUxU2Y89M8CpTJR3ZuuKZDRU4voajpokwNA4kTNJKUrpk509VQ8UiA/RO89+bT5n8h5aFut5YX7/m8ukHXF8+Y0UpfceXN3YHyhKlKwkjpmVZA1HnBjXMcqpxABO1CVDkaEXV9G5QgaWew7iiHTbGnaumUMuEagXzsJ42j/x9tpw9g5R5To/PlNmu14j9Y3qQSIiVIxMddI82Y+kOY0e8UbQF81H9KKMEGDVUByqRUakMjsEj/nQ2xUNnoQIabcC5NxxX+ok8P2baRMkv3WLN0uMmg0eyI2Y5Z8bCFdSGICNbwDMrR7JckGAmwEk5fEhElKIBylUVl57EzwjBMZJeKCGy9WGZ7ad2wmNzHSaZtZ0MiqXQ3Ee2okqUIHKAzWmcS/y76XcT04Q5zs1k2lyzJPPkKRIW9yksPH43BKGiKTfNBWAJTgKo5N8HMRCINXqFo1Nr0nCzzPL0fk6QP3tjZsVGzlJNlnBmyzhi2SUyHz6x3JPob7KQs7yTf5604NO/Y76OnO9qCmp5+vX5MdzPlZY3X94n828ncAr2tY35Z9grbC10O9HaXxmjIlpBSwDjrsHKpQmeeMw7MhFGH9mFZ7Ru0OMaNVO6BUBqRh7hbN0tWCTP7ycrEEB4MrLR9nre4+e1sif26xjS51PWG6MBlGARNQNG/H2oYFTy6+zwSYYljihzyASknuUzHyg99CLisc7Jr2bRij887Ssc62lV0bOqOTiAazCAEhs+T+vRpyj47G+zQ9ArYUoooQ9ytSgFlYKmVkhq/HkGwKkZjG7V1FqlGH6CdOEpiE4wm9+7nGX1KRSP957rezZ45bT0EFNHsmAJYOfXQ8idn2+ORPa8zw7TxD+ASvYPBaCYGb/5m7/J3/ybf5Naz5f48uULf//v/33++l//6/zoRz/iv/23/8bf/bt/lz/6R/8of/Wv/tU/8OvI8gP0+gm1jg/B7MKQFSg06XQazfekIR84l1Rsx2YwspvFJUx6tHiwICK4LrjWg6iQEXqTMOAZIfYbDfHGouFOKSm+isDph817RSHrtSPNrZBolzNxvIRRlAqsWikacyOqRL/9ZoZs8OjKT3o/1vrzQ5+Oy+XK7eUzX339x3j9+o9y+/RDvGiUG+7fUMrK4/4tilF8UAS+Wi5h/iOhdR82uOz7oTvpfgbBPjOWjKgqpJZlfh/jwWsJP4/JF+6ysKvDuPHQRi2Nnk6gM4uEpBYzmFwVVo1RHdclnLHXp+mYcYMZFaOMjdI7utfwQGGwlI1Lda4m3LSyFGddnNtiXOvgUjtLGdSSAGXePD4BinAONyKibKr8p9x9Ku4/GFSNMJCzPvAehmwjNSpjdKQ3Rony24iIgXSgZ/kkahRAUhs2QUChSKxNpYAWSrlQ0vraS+gLiloA4xTJnb2mnazQnd4kpOj20HKQVQoFKukvHhdkaA5sjmKepnYLDRc8SYOpmFCcQUszgxvERNVSUjsU19EE1NOS38HTRdXEz0AskkP9wmM1ygNR13aN0m0wXB4lEgvgoTL7QzxLIYNKamKw1AVEe9bRpSAc7uyKU8SpYrFCc81FJhmfQYj5WnOe1CGcOZD1/Hs//6wTFHFmFvPINRUlmQCTMXJiZrg2fy0bqmKjG6nz6AbblpueCReBSxEeD2XbK1ur7C1EjIUVqLQG26PTtigpqvTo1DBoQoLbzmPr0AauwtaVdRQc2Lqlz0q0wXYLIHvoduwETJhHOcVHlBo0NGVlIcpMQgh55304AkhUlCrKopVCpXiOyUgnShVhpbLKwkVWVrmwqrBItgc7MaVZNOkrPQNptN3g3ok5VE7XwnDN8lUCr+7szWm70zanbdD2mB49ReZHuiJgHsloeAWFLiXuFT3AyUSnPVuo56gELZW6LJTLSr0slOuCXpZwdmbqflIX06F3p+1G32OidBC1E4hMwMBcpcmycJRSbYLxFLBLEXRxymLooujKgWa8SBq5zUQhnuRwYM5GA9GpF5ID9Hx37/r9Hn8oAOW3fuu3+O///b/zt/7W3/rw96UU/tN/+k/883/+z/nxj3/Mj370I/78n//z/Mt/+S/5/PnzH/h1dL2w3G7hzNk1ZkrIBTzszK3sWClYaVgBK4MhI8ZTewxpay0o5aoeUyX7YEjWtkc4C46RBm6WRl6E2K/4OAOYhpZDiuTQtkJdgtBS7zG1syj37cIu0Zi11BrUra2h4Fd4WRYuA1ZzrmMJUZ8bn/ad+9i5Pr7l2+2de9sZu1E0ysbXOkeOD15fr3z+6jO/8Ed+kc8//GO8fP4F0AAoj/srt4vyuN94XXoGCefryy3EjrOGbcZj29LNk/QriJuspThvJohKuL/HrJDQCBS1ZH+iI9590LZKa42X9RJ6iL3ReviVRJtuRGzvI1GKcdHBqsKq8FoKi4RTZLiqpga/xjiai3QWN5bRkdEoDF7VeAVe1XktI1zbq3OpO0vZUR7gD9wfMB5B01hMXmXkNOg5xVgCSMxDTFHXw8a6iB4gLkmww11SDiRADlsDRgTX7tPGHbxFq2+ZXjASWZov4JaAgYpIRPPQLKyRCZeCloYOR7QerqeRR81W5RGmXEbY60/mIK8pOYDNcaLURYCzGsE8NsPIsGxIdBKM2P6VuP7OBCvl9JcQTd8hx9JV47kzLdoSydHxcYr7sz+HS7hfGrSpeSDnAInF/UMkELXkzJ/UiWgJAKZwCrnjQ4YAlZz2OjhYoXAGhZU8hymOn5lnxNpwLJ1tEuJnRuw6qZUJUp6plukDk0mFZFv1kWmfrMJsBY3fO+VRIomVOfU2UZkR+oDWpqW9sBWJ7oo9jrYX9hadbpqOs6057d2wR7AEFD+YRMtSnHVh3wvWYur4vVVKX2jmbB3u3dmGsJukWVfEgmVEy7dbfOqi0eG3lkI0gqWx2qJoTYj8hPOUmIwrKlxKYZHCguaUg0gIBSgqXFV5LYWXUvhUCi8aFgqLhy0hlveoxuwas1j7btF4r8T8qegiC32Nuab7c9j1jwa9GX2zGCOwxSiB7tObJfRIdt55Cc7ONNJy0+4ZD0p2sOFQSmUpwloH6/XC5XphuV0o10sClDXKscPpXmimbF3ZmrB1Ye8l9VYSovNcTJbxfUYEPBLg+LHjc6Bh2kcw172Cqx9rP4CRPHWvhUhWsimi+izjRPLSc0rzSD/M/58atQH8pb/0l06V+tPjdrvxb//tv/3f90Li0Q6mSRXPjI3pc6FHr/2Y5lwS8yK6e9i3jxxVPV0PeyrlPTworMCwxvAQINmcnmuR5c1sJtoBs6xRCmWpLLVmNwThjeGDXis2QmCmWiheqFLRJTLLy3rhBeHmyquvaX7kLG3nfWzYvTC+xF7aaFSFtQjLUkPv4sLltnK93Xj9/IlPnz/z+tXXUedtD9YFxN+5VKfYZ9Q7Fefr6yvTVRGixHN9PA5r7OiCIOljIoBYLnWBJTsIoqNgJEgZB0DBB7sKfakUrVzWzrV1tnTD5QAoFgZ23hE3Vo22tIsKtxLeNMXB0m9EzdEaQHKV8F1ZPMJCxSN7FLiKcFGnHke8P+i4z8nK2TI8RtTsXMKtt06aX8lkNl1M868zOdapzQj6IVkL5xg8OLLEYnEiDWeI0EZqTjp4i+xyehaIzBk1nGDimTqd10wmiIrs6xCuQlyszMinotOTUZl/HYArykFHjjN3xXSm9CzJmEgMH5uzezLjn4lU3ppJrOfmhmT5S46W/W6TRZgN8qGq6hnQ26QUnGTuhJbHLE9NijnOyWwfno6jjukAjxZ4CHMtSm6ABLMjxOWe9jbZTDUNiI+4YnJuPrM0UyQ/oxxnmsn4HEHen9qN8+SozxyaI37E9yeDd4AYJ71i0rci3d1EU8A5dWIkKzaiK6vP89ahNaLE09LFucVSKCU257Z76PP2XJ82T1DgVLMAyq0L1oNF23ph6TG3Zu/KNjSF8GFijHpaFgTDFEgquyVVs8w3TcJOkTRuWV1Lh1P3ud1RMkFZRKniB/At4hRVbkW55derasQEyG5COUBdlETCZmJ+lQSRZtN3OLQXhqaXUIhBo8xDlFKyvBOyvCyLkk60zPs1r6zo8RrkepLjXplrQ6ilRFvvotGCvC7UpVKWKPVQSrwHiRLXmKB0QB/JxMx7apIbSpjVJfNHslnt6bUlE6qawHS+n/gcnKXGGdrmqJJMbjSP4vmCSTcemv8jHv7eW/p3H9/rWTz79mMuU0nclL5fMGmYV/Zu4dg5djZ2NhoPHezSGWLs3nhYo41G60YV51IM2RvqHqKfJbQU0FMzYVgP45nhDU8RoBPRRRQuWqi1sNQToIiH7Gsw6KWmWElZtaC+hNXc5UZdVz6/fs0P15WvloWvl1dclVbgbo33sfH57Xe5/s//ix+//YT7lx/HgtBCUc0be+f1F37AVz/8AT/8Y3+UH/zCL/L5qz+CijLaxn6/8PZqbI8r75+j7loFvr5+yox3GrUNHo8HPWvAe7cIesNpfa5QDi580RAdihjqqevQTpHO7FvrvWE22Iax98E+jK21oGgtZYbu2f0xEqBEe/gqwmVqKobTe2NYZx8PRAeqxu2Wbd25HRQGn5adz6vwuggv8yZfoq8/JtE22tjY2p3FV2REK53ICjXq0WMoVhdkrZg1zFvW8gfeYqfUFLeqGToM6caMGr43bO/0e5jTDWtIawH2HJqPyDyGxFwPNwpRcpLiyBLi0WWFrWdnYIIRpdAlAreLMPKwGR/C3xs0Wk4125fFDcZ48kgIVkhdj+RCKOFGWcDFGC2m4dIL3kqUeUpH6mkiIhplPRGjSE+dQYqJB7ztg7fd2Ntg2+0IdiODWD9q6dBSu+AebE/vTuvG3qaOTMLa3tOwLe14tWgSFpZZu0MVltSQXL0e1M3cQFwkA6cnOIm1eJXQiC01gn6fm1wG9kUkdWYxDfe4LSbLxHwpTQg2Telmjh3eFEo4g4KfLA7h/zLBS9GCFkdLCGDNwrBuzxEcw6PdfJhwN89ygfPYY9rs/R3e3517Ne5iqb/SaBrYnf1tD9t1d8oas8pskWSQnb0P7ndhtEIryvoI0aWq0bry6MKXTWhDaB2qx9Rh6RKdXxpCWLdYO8xNK+31ve/Y9h5sYoN2v9MeD8a+h9DVYozI7NortYSWRJUlR0HcLpWXS+W6Ki8luv5Wd2g5eiJtKVQsSvBxa3AfkmXqitUaou1aw4hTSoiH94pvBd/Ad8FbyAT6SIZZJwE5MzgBXUAK4hWVSpH0nSkaM4cypyhCgjbnuq5cVud2cW6fLlxfVy4vK/VS0TXHpHjohfqAvcF9d96bhBDaFnYptCK0rCh5gVFyux+RKAwPR1/PZV9HXDNxTemVwihYM6zB2BJYOdhDsAf4JsguSFNqVy5Dc9p3lHgcaD10edseN7i1qQH7Xz++3wDl2/+LTXf2O/SmbNsFkxcGld2g7Z22N94fd7a9cd8fMZSvG3tvbH1j7wFQlsxUaTtqHtN0u+aMGct2Nsd7xcTo3hiygURQsJVoxUpdFcSFjLJLx3rDej9MvBg9fSGMqsJSF+p65fLyiZeXG19dr/zw9hmvhVaFqzXW9uD+jfCN7TzEGGMP4aRM0ZSBCfV6ZX25cv30wu3TjdfPtzBvakKrDeWFS+3oeD00KJ9unxCN2SwToJRSD8Hn2gZ9hNFb75ZZtx3lmaoQQrSs6z9lfLPiWSVa6SrCxWJ43t4DoLiNrKt7qs0SoJQAUIsk3e7kfJxGHx1aiY1cB2VJzwgzsBrCN42Ol2htO63gXCqGxmyYMei90WiRCvVUrptiOmjaMYshhm4d97CoH8NovedcopiJNHpj9BZtka1Fi+Te6Ftjf2y0tjNGh7Yf9vadEi3sLlQPG/0iIzdbpzajLMY6jC0dc0UTDGJUCTfYQmo0no/8z7xjHsxUrMHQFHiSKhFdifLWwX4OnILvsfnLUEaWwHxE1xA1SmB2ABTQFHbXEu2O7sZAaQO2Nni0GI65DTv0MAY5jiKclc2c3Tg0Y3PAZ+/GnvOhQtYRqd2spxse5ZVJWcyEVbOEMpVOHkBg2KThT6dZS7QkWRaQqR/JllaxudbJAaE5+oDJpk3hrQR1nrqkySpBCM3Fk62YNAoxUwy3ozTHZLSOFNuPslgAO6cNx2ykviht449W07Dr2kx4bIPtMdjWzlameJTcgJz2tuMjfGnmpOmRAulhztY72yNjQIHrFp0xqoO9G49m3B9Gt3hPSy6r0sM0UjVGSLVmtD38h3obyBD6Y6PfK20hhOK7s3+5094etPtO2xuMkV0oIYhWlWzF1jCxq0qtJaqyQpY0o3ThI+YM9RZqVhGj1egE2i08mmJgoeSheJVk3TNJ2SWASY+upKytxRXR0KhJcZSFQySr0RihXtNRNzyEJEX3qCOpKwqgC6WEr9NSZ4U5Qb8HG+jWj7Ehow96H7Q2aHPWUlYLDE1tFmlnMNvg474bEu60xxKzYIEdOcvYHWgEKHvEOnQHf+Tf7Q4NpGeZapK0TBF3xpo+kBZGk/5/DED58n/Tys72LrSmPB5Xht4ZLOyutPQwuD82tq1zbztbBrk2JkDZ6T2maqIOvaHDwp1yKIukrXrGbB8LMbGz4Wyg46C6MAnPdk8Bp1sqoydAaaeZzgib9wiCSi2VZVlZrq9cP73y+vrC589fQy20RaljR9uDn2jjcv+WtW1sjzey5zIWX85eKJeFelm5vFy4vl64vV6oIhGEdAe7UPWCbReUQRXh5XYLIW/WQfuIINmHMcxD0NqNXga9JO1q0/kwBMGSpRXvIVo74u4sA2gMF1xKCYcGN9bWwkTJ0t7dPb+3BCiWc1icBQEjTM72ho7OSIYLGejiR2nOZZbgSpY6BCjZqeHhVeB6bIhthJ5FhuNdQyfhSm+dvcQE4uIEcLIOI9ryegKVYTEN23pMKR796WiN3jp967R9ApQWmlwLGKAI1SUNrqDKQGpsapecv9FGgDrPDFCIbqRxdKXIAUgGhslIm+mcTcRIEWA8h00jvmRPxCQp9bhmQZ8b3qIEKqYMN8QKmNJVg00pc6oxoEIpRlHH6zTTd4zOPmBvxj5GMpwpcnQ5qmFz4u5wozlHN0Ifnt1QUZo9Razn3m2c3QdHopCTwzWFunGa9AA2Mg3qUpdik87JF1B5KmMJmM9ukPz36S2hGZA9fzbbTGfLcYy/OFGTTGQ4gYtACjUSLukBghK5H3EvwInPqmH68BD6uSlmPxQ+RkdpHqBg30Ycpce5c8d2YzSj31vcwxJgLubOCTqgmbH3MP/rwxgVtt3RGmtxApRtj9jZLT6/aTCDNoTSI5tu3UPDsQ/6PpAB47EzHpVeHTrY5uzvd/b7g7Y1xh6qT6sjulvUYuNPgKJVKDU2/+gUewYodnQn9SxhqRitznbZGKnBE0CJqcoSs7o0XY53wRpYlxTyT7YxM9Fo1EymLCKg6XRDjo47Tc8RmXXFvHeFwWGbX8JhudT4XmXe7z1Zp6Dq3AKgjD5oPe6NKHtqmuhpiLFjomJmy7GOgrkMpjKAuXwoaYoFUCQBCur45mc03xw2SYDiSA9H2TJLPgTr6hg6witMmqWJ5f8hAKX97n9lazfevnT2XXl/LHR9YchKkyVulGG8741tH9wfjX2D0ZzWGntvSbkDEkOfxCKLtjaC4pSsy8/a9JJ+LNYCRspAL6DXgl4Lwg1fKr2tjDrdn/rhhNi3d2y/Q3tQRguqty5cqrJeFl4+3Xj96hOfvvrMpx98hdfCVpXR3tk3YFsYl0KryiacN8is4wJeHF2c5WJcr4PbbbAQIuHmxtgG3jpIGM1FiapnHTgU5pW4SaJ26niJ85CAPIO04GNS1jPoZp12quSBmfWJRG221BLCYpxasjSVACVW/5xFYyzq1GyFni61rRmmDe+dIoWcFMRUqzrxc3zQ2enu7A6lnToZW8J74/6A9TGQ0ih1h1FglBBtmtI1AIrTKUpkX2ZIir1CnZ9zbkZqRyYtkOdIXY/arJpM/zXkuHR+bl4T1Qm4ClJCXO1F0p7F8Trw0tNIy7EMzKYS56U0KJnSlIEXm4pdphjAPYXI5hnwIITP5SBQ5sRg7/naHgDTvIfYUIlAWHLuRuojwjbeA7gfLrEFyxZN7wPPrP+oZ2PzlHF0aGkGMsv0bqZ5Ykcr8WxtBkOGhWAWAnBJqDhsBL+kB0BJJOFT4xNP2y0YUD9MpfJ+Sggy1/z5Rv2Yt+KZ39gEKbnyRbKVdr7eB4CScWWyPKlwCdfNNHCzkaBhLhgSuugB0sg15945lS25yDLDD61COBK3prQ934MJY9MYj/AYeU4l7uMOvYFop6Vx4/3eGDZYFng8BNWCiLOnnuxxD8DeMxFworMETZi6DfrDaO+D/a2zbR0pncftwVVg2fcAKLvTfvJOf38w7juWpSerAbpNIyZFq30JF9xsRDAhp4hnV9cI63sbnbYF+ynEhPjSlLILjyWM12qp9FqD/Ui9vGm2UG/O/m70HUbL+0WcxAGUIinqWfOynMZ5gWfDIdqTYWOAS6YkQ/P+E6SOjKkxC05doC94G5FEygJN8OZhgTEy8Y0FR1kqVcIsSopQNNyXlyUEsNjpCq5HzE1Ch+zMGyBdYI8wbkbouRI++zv4LvBQZA8GRXs/QQotAIo70nektzDgmxq8n/PxvQYo4+132GVh+2bjsXsClCsmK10vqTKOm6d1o22d3iT610c477mPI3hpjrqKAW39MH5iWFp4A3YFHB8NtwAoESgW8IrXho0FtyVMchQQC6Ftb7S+MXo7XtslN80SpkZ1LSyXleV6Yble8VqiqUR2GOH42t3ZbfDISbhzKatEf4SIoTJYymDNVtoKmHWkDIp0lIaNR6w8BBsb4rGoVUoKV3tS4U5ObEEwSgrbJr0NGRafKU+yZJYZgk+aPG/m6ZKpXpgdDkeimEyMiLNo2MGXBCghVrNwEXVFi2Oe8nDJVjY8GaUwDBtuKR60MFVSp3Rh9BAL9pYZnednGMEYWCrbT6tQz80ADjfpZ6HY83EIZvX4rCLPYORUz0cr7OzUkKNTI7uIw4q9SH4f7fBak16v0aYpmTV62pqHidn0fPFkEJ4EiTxlQ8TGOYHB8YPj4bFOVPJDZxv0GPk805EyNrY5W0ZNzy4eslPGc9ZQiphHMhKTN4hzEht82LPnGlNjzpX3dHKdItKD4cg1NjhLjGTnSMKC47eRZOvcjo+rGsHa9RQShsLEEc/n8HgeOTrPOATS2SCKT/bkaT0fX0n8+fS9Ok/vbNq3W25yOdtm3lUWepmpbZPcZDyZQ46VdaAXZgkrmKlol20WMc2HZBbu9DGQvH707N5LsWwfxjYGe+uYD0RSkNljfY0+TlZkRKN4WUKb5fPojjVnJHPSt07fGii0+86+KruPuLd2j7LPHqVx6+k6PNKq3+NsuxS8pGZEQ3/VCcKgjQkKM4FIDZOPOFd701iLJjwsNShFGD26wyjKKAFShkvO4nF6D53PBKIxIFWOe1CPsmV0r5CXfjqCqJ2D+dSCK1NN122HORBUXVHriBVktJzGmC31PVmdMRLoz2aNaNQwDeAWcSMbA0owrl6UanEOo/OS/F5ySnOyfS5xLbrj6oyWcd09mKTDSXYKZScrGM7RM4bInKx8JJ4fgsvv+/heA5T27f8T6cLbj7/w2I0vdw1goitWX1JRLWxj5HC6wRglLmxO1sUclRWlUKSmwG9QvEcbsRnaW8xEGI7Xa2SWvWN2BwbegLHCWPHyGVsWRlsYZUmXzOgEMhu0/Y71Des7wwakuZkWKIuwXirrbWV9ubG+vGAlVPLqG7RCx9mt8xid971lFigsUihzd6Wj2llr51ob17qzIAxraOks0lB2RntnDKMAvV3QadwkNQvc7aASsZ43zogNlxyqlgj8aE61DIceAxGnCj+E3VONfxrCRcahR7CHzFyTDVqKp3ofxGNehbmFM6P3sBTw1MI8Re2UfmFWot46QnsU4MgpjRCR7ULfoC0kQMmWSCXATgpf3Wabbq6D46aUE6SMZCJmySQFZyrzyIxrdn9p+uokSAkgNqejCrIIWoVahboQR3XqEuBE6oh1Uwclu9liCl2wJqUkmCmzuyWvwXNdJB8TpMQF+PiTGeTj+kcpCPUImmiCkrie6hqfAaWUDEdylk8WN5ZkE/xQSviR7xdJFxSZVZr4T0eUjVQNKbO+nQBFyDUWDIrmZxCJ82/DGDlIQTy38QmsNTQgLtMdOH01oicakjmJdTnBhR3AQhPIzKe0J9Ayw3AQNvMvnsDpzFzzs54dVHZubDZiKnuuEc/7RkRy2HboXwQoTMAoM8/lBChn5+JuUWYjc5DenZGbt3gka12cZcTadDe6pRPyvue9FoMoW40SbNsHbRvsj57Tz5VSDa0BTLwH4B97tufee2hLtoaLs79VtuLUnvMrdmd/f9C3Hdt35mwjm0ZkTnSlaEV0ZZSIsyo5/dicbRqW4XjLz9gC5AgBlGWAVyg91mu4Ysvh32MlOtcG0HehPWBvQu8BUFTC6mFljgyJLhojutU8r6t7DA90CQsGz1gZ5RuJ4XwzSTHLjhiNMS2mwUA0P7rVrEsOu+0x6mXEuq8qrLWgJUcRFEGTQVnVksG1jG1h3zBzquohki1oDicNtjcq2h7MO1mK3YzehNFCTD1btfERccQ7pIuueAePbs6ZeP68j+81QHn/yf+L7W785Hd/wv3R+fYOvVwwXfHlU9TQUXYPoefeDfcl2h4bOUsAtFzRusSQLo8WYk/fE7fBaBveooZJW1LRvtN5IAx0h9ovlH5h1ztWF9qysJc1FOClMFIs2PcdGxs2GvfRAGGhsBRjWQy5OLIqsi7o5QIajokuYc2/PTrv7ztv3z7Yvn0AIEWjxFQc0U7xzkLnVjq32nldetaUO1IHVTpijfZ44GOgLrRlQ0uISqXYAcLc8vtZOzQ7XEB1ekBkFjwDIhJiTLOGjXEwKqrBFInJsYnpsZFMBiWzELKsW6cnRICAIaBjnLsFlTlfpLtQzJExsEa63w5MByaDUWJuiiD4Sg4EqzAqapXiK0qo7SWtmtHKSJCJkO2yEjetES2GKSJse9T3+95pjxjgNfYWItm20fY7+/ZG7xsy9sjexCkl4Z2Dz8F7JriVrHPHgVeENQj+3LQkDcRi8wXoma304/Cc0TG1MS1tw/c2stFIDhag6ASKgliYqIWIWbLkoAF2LGaXRInCk6WYm2ZOZ57aKKJUWpIecYGm8dmHGFMlY55ARUL/UITshPG08A+3Z0kTNmcyJQTUkY7JYJpFiUTpaFJz4pNulwM9ROuwn4Zv2Ak4RYK19Kn5mAB84uCzxBPXL3akpw7dgz6PF4svkyGa7tPTHaPkmfC8L5DZhpwspk/DudTUWApwCRiy0AkvVOGdaY0/SzywjUhstq48EkyH06uFlsX9YP3MQiOmGDYaYwz20dj2LVjUAr0LPdvPRzPGnoPronKUNvMOPbpy3GFsg/5otPeN3ht9tGBjtp32HnOSJoOyvd9jivCeYFIcesPHGjEp29dFlJZzZXzOxUoQuBBu09MvMqpzEW+ah48RVigWzrOSM5Ms16lbjmEQGD06lDZXGpKTmGE1i72mKlYKTYJx6QaVGK9QrdEY9ASOHaO6JZgKHQ0e11Q02coisEfX0NgqfRk0K+wGNgqjK9tu7C10lWJGceeSzHM24UQ8VeeiEatDLhlJ0qKWXJuwuFD9XJfuHnpNzXVQpgeK89aMexPuXXiYRvu/xz3sPLWMP6cfPjsJ/w8p8eyPhvTO/e3O/dG532EUi/r8mv4QGsI+c49SDT0CVS5YcYlZIu7UpKfwjviewX3g4xFU2jCwJQ2jWgKUkKONpBBHWxk+6D5oxTAtmNXDN2G+FyMMqUiqz4sHpR8kRlgLy5m5MjqMhveGtZ3R9tCRKIjEELmaC3PR8CVZi4RHSon+dGaWnZRez5KHEhtsZJJZSgFm7T0iawZskRRfSTiXwlM5ICnm6UEjaZWemaFPNaBoDkTTQ+Q4ywKRUcpBPYZTZ7xu5K0zotcQbj2Zgc2fC35m7c4HettTbxDCzFCQBbGZanupobjXtJYulVILnt0qQXnnTejBsEyb69FC3zQyWxtRdj38EqJ9No6wdD+BxlGA8ONkHuWU6R/gB5vlma7HNOEo83G0yvpRjvQZF455IdOie9p0j/Fk+4Ic4wsmkHCNbqajH/Jw3ww2Yh6aeo+YFBSzQkrYz+IpZEScIc4qdmzAQ4mxAC7ZhZMW/HKuKM8NfZbITOYotCefl7zGEyyftSXJcyVP2pr86rkOIDtt8gbIdR+AJACLjWDIfJY8D58S+QBIBM9zeYKQyKLj9SbJp5z/Ro8jM/coXkACWJIDOUBKgklhEj3RVr5wTnYOMzp/KrCeTFXHaT7LeuTMldzIieSjJRmYDgHJvsTmJAl4po5ByO/nkvNJKsmxrvFYl6HVysOTSfC4N3p3mkj6AU3vlmN5x+scJdUwosvGloiDc9kT2rDi03E4BgJi4SUMjojSUTRcUuKe9yeA4nNVxZp3iYSkDaGbhgRZPDqIdN4vocMqolGNkWCyqmcZxyVFqFGmL6mXkizteAZTbSMAaBHYB2wde4xo+XboRGPG2dkW5WuJLYQ1Qb1LTgDP9VTz+YfHWTDx9JJJsGWS5cYEMsYxaFPVI84RQtzdnN08p1PH5xnHKrMnECLH/Xms9/9TGJQv38YN9pPfce6b8b4Di0MFvVpsbgVIXUn1oOMESX1abHxLaVyK8yLGsB23zugbpPho7PeccWC4rnScB43OnlShsnihWkH6zsgA0Exi1Dmk+I4QG4qES2FVpIItglyEehUuF6ilI75BeweIOuT9J8j9J5THN5T9C7W/gT1YtHCtwlcX4VKFayl8vlZeLwu3y8q6XliWawj1TKEYc0jVnmOyVZSdC1WW2KDLGplgjRHzlkzEzE40qUzTKYaNYGcapZDWlRaDBhg6jghdU9jm64qXMBObwVnyOaauYAIUKbPeIDm3xXAvhx0+S3TUuEXm6ZnN+6h4qfRSaMVzaGG+ngkXDxXEkBXXGMRFvYJUhEqpK2Vdqbcr8vIC64KXhe2xs9PwLYoTYgNPirzvSt+Evgv9oYymjFbp+0Jvzugrfax0i3dSUmdSlkIhGJ8pVJODjFJoGhNF94LvMc9ITEMkmw6UYSkt+KZ4K9ESuSm+CbZJ+BbchZiLmH/eNBmgYDkUxWqJ7yQzOA+g71oBRcoSGZ8L6utUP2VpSqgaGiaRQmE5w5JEC7iUjpad7oOl9JhXJEb38Ew5mBSPademIfBsWXZoEn4iIzdJB9yfNquUI81Sm/cw1rI2QUr+boLVnpv3tK4Pm/MsA4+4plESjt83YhcMvxij2Anh1cONVHzkpv3kSTWZFT+nJhwNRzLXe/jJ+JOgt0zo7emPYzHvq2gI8GuJjhs3Z6EwLJw7H62zMXjQ467K6zlU2EXZpzOyyAEOm0enlhCdLGEZkAlYMjMuncLIa1ToVo7nNQWrMdcMDeGqVDkYI5w0kRP6mO3Q8WijsrWVQT0AyqNDH409N7wwnbvQ+kppNRoYlOheymqjqqVPirEtwqqFi8Z4jNnmKzpC+K9KS2+SBzUF0E8z4XMu2zTGs+b0DruFAyvuLKJnh5gEwN1z3EAzaIRB4TYNCoFLAvWjc5RYs81i7de9sXSoXdBvGnhhLJ02BL0KejWGd/pQ7u/ROt5b6FkWnNdZnsZiGG6qtwvhBSM2QYTPCm2Uq7rlGhvpGQOP5iCDRrDfA+gOX7rxMLgb7Hnf9jnLjGS2KMmsx+uJJtt4CLT+14/vNUB538CGcX8MHruxtVnnj757SiBHSV1C1ZgPI0hqGaL9L8aZh+DUerAT+36njQbWGeOem7SHnsThkWSdiHNZlL4WxqpYVSihHZg1TWrcqGEbrHQryFDUdqiCrivr9YXL7YXb7YXb5cptWbiVEOhVh1dxdnG+UvhahC+iNK1cloXX65UfvrywLsJFO1+/vPDV7YXX6ysv11cu1xfMBLyyrE5dbyzrjfV6wz0MoK6fP1GXlVIX1uUCDrX3Y1hX6HfiCOYjgqRNF1gJe3wzC6vx1rHWgv0h7t2lxMye622lFg2TK/OzwyGzwjnTR+VcyzO4qzmijULoNIoHdRGzmEjFYdD5agVdCrI6sji+zE4YwlhlEaRqHCU6Zubr1gXKKiwXRS4VlgWTytBo4tUxkN1hG5HdtM64N/ojaO7+6Iw+smZOeOVYIcTUjpQSBF8VylqT6k0xdmbKs84VwCsZjHSJ/XA8WcKTVPcU584SSDxm+ebY2WEK81KcW/I5VSTn5miMhK/BJJVloS4anjOXlVIKpebvaXzVWtGi6JIbbpZchnt0BiiU3pGSG5bFxms+sisqJhDPFuSRVLU4aZYbLZH+9LniIU/H8yNZlGSdsm7FMT8J0omazCYjYrs/z96JQI4LWjTPoYJEAqJMNkYiQOCHdiUTyGBDOYXQyYEw3WHPUROaAszIuOe1UksdUbKMJLtYk6ZZpFKybHHxAGs9pjzGxqDJUmXTyOy/c7KE6UACFNE4R+Z2uIYOCEoQpeugEU7Y0/W3q2MlIJXWANCztXWOpiBLblqDaSg5FgEN07dGzqgBulS6OBYS/9j/axhdesnp1ymq7SQ7mhqPodmoXYj3kcNLa12CNRHHimQvbw0AniBDJBnk3tGSAMVjJEq3dJeRKHEWibEoSrYO59LTZGpLMg5qng7K2cJNmP7FmIgUPvdwAC740YTHl9BV9cugU2KCcot28u7Gfh/pJ9OBaGBYY+hQgE8mc5gZj2WciQWZcth8/SnG9mBkepA3sXe6Q02AYs5795xanaMpOJlyccv2/NRy+QTYU1f28z++1wDlsYX5zr5Hj38foViOrpink5MdDaKWyz8u1rxwkum4o9EK3HdaMihYp9uelJmAdrrBHrkeRYRehVElwEnelKKH/jMYnaLpHlijS0QsJ1UKlAVdVup6Zb1cWdeVy7JwqRXcKG68qLKJ8iLCTYQbwhXhpoVPdeHTZeVShbUoL+uFl8uF2+XKdb1yWW/0EZqGugyW5cKyXlgvV5yY/XB5faEuF7QuXNYreGwiYdTmaOtHz71MgCIxNToYkmA3hoUc0ZZOaY2ZI6kGOFmKsN5WFg2AIkeHVARZkRg6OBmUab6lTnQCmEUWlDeBWsV6gtC0n3ckAiSKLCV0PYtnu27eJVXy3Evu7XJO7hRHalSRSg0QE3RHbvpORJpmMaL+0ROgdMYjNSePlrqPEUE+J6COHhtZ2LFL7rhLBJQ5DC6DIT5LA6k1cDhLbZm1PW/IfhSKzqyVZJqmMDXqGke5KP466w7MjTLKd1p++pBSkKpoVUpd0KpoTZCiYZSltcS/X5ekvvP9mIXXBJ5TAzyuQeqbJAXWY3bEuCSNzgddSVQPzs8MnBomzq/ntGM/TsYsw8S/yXOCHGs4LskMo6E/IAWa8zXntv78PvypxIEUyI39oO5naSj1W0UnPCEAv8aMmqP4k5+rcALM+XGmiHomPDZik68a5oNiwqKF7kYZUzY7y0HB6owDvM4CgMDCwaBMNiC0UEHvO46PYBpMhUGhp5Vdl9CHWRnRWp73jKeb6NQm5BJGEtBqMn8SQokpo4wNfJaJCYt2FFhK3NOLPuHQWVogzrvFRtmTjSxCjCCp4GuJLjcBL4LllMI5p2YCFDzjhcaUdjxbv33EuipxLYsE01KyjCNZ3p5jE2IOjyGjUC1KIWrpv5RdiU6wWN4I02dziuUae3j4Cb0bo1gABxs5wBDaox+Gd6GPStPMpKwO3JnlOE2AMrvYkPOOmUDYM3kPE8uIrYbjjawOBLu1dWfvwWweZdiM1TzdY8eR+q3pHvDzPL7fAOXtDW+N/W2wN2MbhjZBS2es7RjtLtVis1kFW0JEN/ZorbMBfel0CUvjbX/Q2s57fxBcrjGWvFfVkSVaVh8tjIOKCsulcLkM+qXD0gMk6aTPotVYygJa6FpzXpuzhwELDMd0gXplvX3m+ulrXl4+89XrJ8QMaw32O7I3vi4rr8253nfW942LKrcX5wXlospa4HW58ml95evb13z98kO+evkFuil73ancuH9+MLry1Q9+F1eh1MpXv/THTwZlDa+XfgAUo+1h097bYI4wr6KMkWI8iRvRbCDvF7bekL4fIkXRmKh6KcpXLzcuWlhRtGer9AhAqZKOkCWo0y5R4+/u3Ed0EozHg/2+0rcH8gV837BdaXv4uiwjugeqAJeKXAq6LknDhoLd1gu2LvQiSbd2hjakengfXI2xxjHBgw3Bto7dG/7tHb83/G1jvN3p20Z7+8L2uLO3jW17HO6t3Xe21vjy5c7b440+GssFLmuhrYreLkG3enQMiUNxiyBYJGy+HWopXF9WVgz3Gp23xRHacU2kxwTl0cZhFNd7C9+fvdH2nX0fbNvgsXvMt/HCUkoMfFSn1ACUI7rO6TU9HlSiU6EURilYjn73UvEaWa0vFdY5vbEeeiUmQOktWJ/eY1NKV2XfLEuIhODSwuwrlkbOSzGCyUxgNQEc7gfQ1QSwce8FA6K5mYgpYhpMh0W3zjEwcc43SmAsNhBLY78a3i2kMqRk8J2dGFPc4gQY7TbCuI8I8pO5Gb1DMo8hMA/NzQQotSwBvkVzs4lJvFE7MXxMkkwC/GWZVVpoY9ZSMJTuMc9FvR/sgrjzaM6jC6sVLk/OpqLJHCjU7DhbqnJM5t6iVGYNfLmkkBPGutJqpUkwNXsdPKhReqpKW1d0Wdj1ikjFKbQK4wr+aaB9p7ZUgtwu6LLQerQpd4IxDtBT0LXCUig//ER9ubLerlQthxZoScAvU3gqHkxf1RyHrvgiyHWy2eClQF2wukBZ8sJHuVKcMINUDS2JGaMPfB+UZmh32AfeGmLRmVY0zt0qNWdLCWRzRGtbuEq3xuPtjbbt7O8bo5GTz51tDxO8YoO1C5chXN+d1Q2Rju9CXwe+NnaH3eHLbmxt8P7o7HuImUsK0IUQ607xeWgOLWZr+Th0Qwf104EhSAffQ4vT3gOMtuJRunahufPNpmwG7yNM4ZCIIYuULF8XKmE+ySaU7vCI4br2f4oPiqYscknU3fCww3AHwmNkCEg1rAruQa6BBA3fRohbLRar6kLzThOjF4+ZB6LnbBMFWddQve/ErBUhnnsBFqGuQQEHOPJA3cVA8v3E4Ats3+jb4/9N3tuEWrctZ8FP1RhzrrXfc2+uSYTEQAQbsaXYsCHYMeIfAbWhYMOOiI2AIAQjgtiJIBFsqJC2EFHEpmBP7WgjLQM2tCEIQRAM4YOYe+95915zjFH1NZ6qMcba7zm5bz6+D76D6zDP3u/ea68115xjVD1V9dRT8CLQh6B31v1QCuQ8UF5uKB9e2IlyXai3O8pxI4mrdfS3i0q5bw3jyzfYxxtsKPwwyDUg3VFdcaDiJidn9RRBr4bzuON2vOA4voAXoBwV5/0LjvauB87jBABI7dHy5kBpkCt0VFhAQIVg0ALTWEY3zeUN3tnpYlOsQXAU4CiK8+WGUxQ3KKSFWFgPwpgIjqPE0EXyY0aUJLQ3yChwGMwvdub0iiEdHYor9TmKowbPw28VuAvkREQIbH02qYwADYxIBonNEtGcRQbFIqOCiEjykJwfZIPdTn2pBY/oTjDvMIzQwLnQH2/orx/Rx8VOpqEoo6ALWzWfou5wfmKCfhSCDUvl1e1MHDNiBEiedI/OGUh0Ra9x8S3IbZc5Hub8/B4lDnA6rynXsMehylk/IpxezPIROTxsSiTRECgQPdj6WXlQApwzRiyzXwaIlMhERSTfqAbMaG/xgLPddo5xz6g7siKyEnjIwJ9lXu5dqeScaCjhss1Ypy5ObdF54AIIswEiALxDhnKExbAQjSNBOHVHgGxZ5dpwlOCl9EmGHwakElw3f/4Mwf/QiNKPutrRsyxzsDbG7HyOMRaZtskmeZyjIIbE3hSPxmqeJ7svyFcyUUqwK/MzyXeRQuHEqorjKFyDTp6cNgEawTu1bBRynNRpilEGI4jFEIQ8wgHTg2qqpcKlAjem+0tvOK4T0ji75TwPTnc3j8m5TiAW4xTKveK4HTh/6I7bFy+4f7jjLCXzhTHElSVjcuIArQVaqS113hT1ENSbUk9IBVor5Dihxwk/jlk+LZEBwTVYwgEBivYRWv0Gi/qHtwYJPSBRZhhLPZhBVGZ64QZ9vKG8vaK8PTDsgo3Ov2k9J2RCGud4FfB9qxWUbtBukMvghSVj74IG4HLOYbpC4p7zdSKVobFPbSPfz2weOVXDLGWwuLaDvI8RLdZwjDd+Lyq44lQvF7w9wPEJQyjiqcKstMpWflQUU5QGeBOUB6sbk63+GY9vNEBhm6bgpgooJxMvwaxoGYQD1ZmmByAguey6Gh18Hxg24PWAHoYmA10HenXoUSFFYeVgEFMAuR2MvC4BHhfEHXYK/FDIyQ1QS4j+RHli6AinwcFSaA/Y4xX97ZVktFPQr0Znrwo5K+TDDeVbH1h3flTU+wvKcQIQjKujfXzD4+o48EADML44MXqBHQZ/dMhlOExxesGJChVuwFEct/oBZ33FeXyAV4GeG0ApFefJWRIYncbIDNAC0Q5tHavvhfoiAFO27MAwNG9BUJSpiIkiONVxquK8n7hJwQ0CUab3TQOgqOA8a8zUCI5FlDl0KNALDB3mB7p0klBj5PhlmBwOZmMUfj+AlwI5BTKE7dK9Y6Cim6INR+sDrXd06xOgjMoyTynh3BJoTWhAwwMf0Y7e2I5pHGLYI3tiGDBvLB22N/S3j+j9ATXBsEJdHom2wkjGZ3eFG3k5vVdK6tvqAMtCZVRsZrlgFiB8pcs7SNBrDlzG42HAIybeNkQdGhI8Ehp2r0y7a1GWJERRheCEoyEJThwVbIEuELmRSBvRqURpUxRQGyTQToBC/oWJAtcFaI4iIOchp/QCIWeeujGa7IkoTRk7Wej8me0RfjO7MkZ1iFeIK4aUNeLgGlS4HXxFhMPmIMQBc4GXEL8Lbkhq+8AdHKlAvklKexfTuFcEnDCqlxZjcFSUE88hjEgZzCiOkqWeHEAInCJTV2d0nfeJiqK8vw5esxtSBYkUq5wjFFCK4FYELoUZg9TnQXAGRHAeiloV51GioclRHhQmlodjVAYBhxdIORnAWc57IlEeArgWmB4YcUg5uJnApX6g49ZvKFdB6YLbcbJE1ShlP5Q8FaBAVXB+ceJ8OXH/zge8fPsFH76443aU4Iyxg0Yga2qyg/e/kod23KhzUkNbSFQoLXHeoOcNuJ+0vaVwjTsglyHcPDBGDAft8GswU/m4INeDgoXukMr3k5cbtPB9C1uUoK8foV8e0O9/icfrl9C3B8QG0Br8sphnwyxgkc59OARlOLQbcA3K8nSBXcAlwAOCC7R7bfC+W/CZkpsmyOuRJPAoR4byNcXX4uFRfvHoDDOZmkQAcFXgguByx+sleBjwaguYyBGZwAiGs5usXgI0KvH+HwVQPhzMnshR8XCBtBH9Ohw6lqoC1hTwAqsnej3gAlzd8OgdrQ9cAkaNUjGqhOhPgZ8nN3It8Ap4cci9QmxALwHUUMZArcBxAucp+OKD4iwFZ9UgD5FxPbphDGFn0PWK9vZ9lNcvIVUold8bBwceB44PLzh/6APqD3+bqoSvDfq934J+/3vwo6LZwKNf+OiAXg23PvD64QQeFXIC7fsN/dUgl6D0gsMOiBxwaMy0ueOQF1T9FrtISsFZP6DWA6UobrWSA6AlapcGBdvyRoCT4uzxN4abkBqjyd3go6IOR62UpEYAlEPIpr+dJ04UZr6MksjZcigqJMIdFVYq25UBEsLUcQlw9YrrrOhe0c6KZhXNCh7ZJidAQWXq8VYh9wNyVOB6wK1h2AOP6wYbBWoX7vUjDUMxHHbilBusK6oavBd2pqgBqDC5YPqAlwe8XrDjAT8ecHvAzwccLWTo6bjYnQO4OG5fGuwYGN5xC8B2U+Ae4mkOmWS9AoFXQKqi3m6odx7H/Y7jfuI4T7ZCi0LlYFoVoDKvUGhJjxtwduC4wY8GOwx2UJ+l1442RqRsD45xrxXHecIORakFqORjUICK83YstIWy/TIZl6IFYgXFK8oEK5lBKSgKvoYLVXBBcb4sw5a3A6aDAyuFGQvasShdaQ2Ve2M20+h4NTk1MrjnnRlBLRV6nOAwCaB3gOaO6zgH2pHMzPq6GHMOJopiAShUpwoqYsorRxkEQBXOvBGPbCkc8MLzjIyXj85syQgJcy0oJfRuJvgiKVk1FIODP6CZuRPMzFiEtAjWA4or4IYzzr2qRDkVOBpwgU58kpzPE8d5jxS8Q72Rz1UHzlNQK3CeNukwRY0penW0KiTS2gn3GnofRpIsyHUQZwfUGBQ96wj+0lFRD8f9ME4MbhW9APIG3JT2BE6dDAYFEZ3fKj780Be4f3HHd3742/j2D73gi2/f8XKvKEUWsRuC0nV2cplolHFKTABnCRNJtK4nyu2GcjshH87gVwVAMYFdyWMU6jkZs2O9sTff3y6M6wEfHc2d3Kujwr59gx8VclYO9hwD/fsVrQIXDB+r4hWOL6+G9uUbQZmTTJtwsniNTFfQC3xgdAbgoziaAk0ErZ7U+FaBlUKAUpWUASGdgKM4mKE3d1jhnhjGsSEeXW0EY46sM4zo8CO4cTwAXODXtwY8XPDmgIc0ht74tajDKsuD4gS2CJDFdfz5Pv4bDVBOBY4inHkzBJcK1ErMBA2dkTAYQIX4AcHBJSAdqTQrYMuXp0XwQJ9HIOJ6cGR1dehNSU0RBa6I2mLiZC2OegjOSr5FFYsaOlUchwsuN1zWUEdDsQYZijKilIKoYx4Fejsg95P2zxS4ndHqWkPIymfLVxuG3jqasAVxxHRSZMvlCETtPnMfggOKIxReC52c1EgxUyvAQtgHJig62OevGgCF0uXMRtPJcCMxe5TRuwXxFEqdlhpkQAW7DTxKX9ny4JJ6AoVRWMpXicBMYaoc4FUUVuj8kszGeTESomrkPshxQOoNUg+gKdP47uiD0fUDhsfV8agXHleFx7CyMi74KLxH1uBg2tekw2UA2hlW1sEjeC/qKS0fqXiJlglTnDeBHUy136vjDLrGrRAITIMaInZ+EKAc5xnHEUcAFOEAMpEj2n6z7OkYdkArS3Z65HFCjwuaUaQpKAVfgaMSxNXKbOOxmMqiUS6RaGfWRbCMfiG+P6iDkv+JLM0cVUbepkpZb8129bJJ9W+dR6IkK8c7oJRZKrRJhMTsfjJjOtncUA+F1IJyFhQUDLBZg6J+mfomsKnO0oaLQwbHLpikV2AWJ8ceMI3KrKFIgpTMXbGoZjCuE4TisiWBk1yPLGNKEDI1Myjzc2Pyf3M0wSTz6wInyehmpypLTzU6plRIRj9EZvFNBdGRVVBKdGU52CZtPRrE2FygJXg7CsQIbzgMdUQHiwk0gKkZI2yXpMAmWVWnzgyTYAIEmKiiOF1xHgrttBs8T87nonCe44g5VHpW3O4n7vcbbvcbzvh6+4IBVa0hFQ9F7QpvTp0Uj46sUiCc9Em4mjyecqDEofWIjj6uGXHM0p+bwLXEXKRoU+7RWCHO0ro7rBbgKLD7CZwFcjvIjeqDZd/bgX5UAovgIF4WitvAbLmeHWOTxC/RzZh6Nmy5trSb2e5YdNkcrWBtDkQiQHRthHZSdCoRZ/tU6oVEZ49lnlhmsniAtovgReb3QLiJkmcYTwT4fuaQkanezA9/3uMbDVDuN8GtFOilONzgrePRCol/4do6HF1OuBwQvUHlmB090A7XTv2OaEfTgxPnqhEoSK0Yx40LvBrKC7s4SinABbCr2ChBfjpuN8H9ELzUxV7v3aLpgwuz+QMPe8M5LgxRVDtRfdDpV0W5VeiHE/LFPeqBHf7yAXb/ADtOjFLQY4ENMEK6HoPTKL2gPRz9Yt9+ykx7QUixKyGvHxC5gxz+gpT7p/lWQJZYlKhQEVcHSWQQltfcon7tIbzF1OBJTe7ICGC2HlQhsbZqQUlHIVEpT/EzASwIyxI8EY4CNHQt6D6o7FqU4mmcs85jREW6CIpWgr3zBXq8QOsJ1wvAA2Ycs25iwGj4+PqGKgPn3dFLQz8GpJ0wdWirEK0oxVFwwPCAywWvDTg6ZHTojVFfMWfCbQgOi04WcZTBAWT2WnA0tqLfD+A8aKS/dVOwzbLC6ok5D+kQ4FB8+NYLjy8+4MMXH3C7nbidZ5QrFRSaSoDiGL1AFGjtBQOG4+UFx8NwDsHxwXCgo3pDrZ1tHX6inhXlKKgfbgTIVVBLzOcQihkWYfmnFmYAisbPoKhQKiKjBPmSxDnKWEYGBQQomZEpaTDdqKmjq7ODkZxPEKal0nEZoJv4XypxupSQDgDqrUKPinI7WM4BFUCpBEHWTDd2NLQiGI1CidIJJE0UJcYpiIYOSuwfN0AbJ5HDjGCVMw/Im0B0egxOKkeUOB3Osg4QnycAX/iXzCRp8elMHeRjAB44KDyXU1AwNWbI/hAcASBNBS9VcRXFHeTmqcQYjfPAeTtxnDdUc5Q+oHjEKASL7eQoVaDR4aYR6ZgbvIZ20qgYTSE99rd5dKAxS5RRt0e5oBTa06M6tPKz9xvvy3ilfoea4SCJMFrwC3BUlJcTX3zxgpdvcf1/+NYLXr51x4cfOlGOguNQVK1ch61QtXaw7GHCoMYRIjm9B+dCIHqi6okaIEUqu4MIUBgEmsl04nNGW2VWJAGEj4puDqc6JuyLG+Qs0HsFukN6Rx8N7eOBdhY8VPAG4NUGLvcnd60ArAJ+KnArLPefCjkASIpdWpDAhRjESbwuyMnY1LLSaMiQMSBFIcaBsGodeDBwcDeK30UpVYDJR3MmtCjhMDZwMo8gAvcIPkqCLEOWqtWDvxMHgfnn+/hvNEC5nRWnKvzmABS3TqJbGZmqMqLycgeOA3p/gdwPZgbUITpQukOPjg/3G774cAMO9tc3E8hxAuVEPw6M4ujVUV6oQCo64I+Tsw8gOM8Dt/PA/XbgfhTcj8JUuBt64+j4CsdVOQPmoYJ7UYxSUGrBrRTcS8GtVhylQAsNDZzpu66ZxqNzZkQZyBUAnJFmqiGKKVVFR4p5Zdo1iJGGOfDKo50sp5YNI+dipuJ26gWScMW0tmermicDIghqQGg28qcAIiHNyNQ9CJyD59IH4IhZL4M1/wFjzROOhw8OK4uZOmM4U7mp45HnmcYnVGFFTricMDmjZu8YfnGEAQDzho+HoUhHvRtupaOXAb0fcDcceuAsJ12BOuAXgIsgRRtcL3hp8MpsCrMnzmKCUIztsIOjDj7ccVwv8Cp4OQTnUXEeFd+6fwFowdCKUZknfQIoX7zgw4cP+PDhBff7DeftxO28IawU3NMQxE0SwGwwnd9P1ONEPRvqOVDPG+pQHI05NHYzV9Sjoh4F5SjQg23EOgc15hAxIScncEcRdgvUPGCoQpLfousoENk2C8LgQHB6QEw5MqKNbI0HqRaC2WmiNSJyOKowqyZAaMcIzEvMXQHKyfp/PQq788DW9YEQJXNG/CmDgUhT5xpSomTAQ6tiRq8R+1VhWUtAPkr+PMow4WYi2xFZQfBzUX8io11m5ZJHMbuMNaLXuDYE+/FyGWrLtp8KpfFvlRwKV8HLobi64uXg/C45udZqrdBSIMpAzJVESQEBRpcsM0gonHIYZ4dhiIVeTORKOrtsRmSOPGZipWQDtU8i/I6catUIfOjL5+dNVjQn3TJQqYVt7MdZcT8rbmfFcdTZyj6Pg7NnMuDhvYjWfAl9mwBL2XXF2zoiQBWUQ4AYzFeEmcXePMZYkDLQxdAwcMFDq2fMUQ0mHhwkwHLIahKkbaBbR7OBFtl0jjENu7w7NcFsuJCzQM8COQsnNVO/ljONhA0I5PhxXZXCbGYJ8C/KacY6guDeec9hiuNQ2GC31gABiJRYh4qZYRmRBWMTCuKQCVJSzZn4OTJKAk6cjiy6q02ldOITefehv/7xjQYo2e3RLwrJ1BMcCtZ3cRqH1CPY2kx1mzqGHxh+ANIgB3A7Cm5HhRyUZy/DqCxWqPPQC9OfpZKpLoPy52UYDnBA01nKdDrnQRKcmZO5MRghnMVCgl5xBkCpJf62FJxaQ41TpxQBNxnbvVjKKKHLseOGyB5El0X0I86fI54zyZVAkJ8ipeqb1oZnoi6ByGZHgNBjyJQ0U3Y5qE8hmLN6wjhInEsOw5tL2hdSz25M8QBIxsXeQUGiDraeknm+2juTuyoW+MqZms72wzzznGdjTgVLN7DTwjquZngrA7cHy3h+OM7HGzuI6gN+NO5eKOCcM+TS4eg0SqkISczIej/YnliL4PSD5307ofcbXIGXQ3A7Ks5a8XK7wbVuAEUZIYeY3O12w+12stPh4FFqJO+ja4fE04i23RgxlQIphYS9WqFTcM1RKjM+ZoA5p56SXJcHUhYCcWvnkprTkMWRww85BCyKpjOKdsCDDEsvQXErkHOUJE5FcJmEM3sqFxgMWf6IrAsIUHgvo8QTi5JDISm+VkKzpUakbhuIh7MsFKsiJkBHebdgOX9BtHHHNsgNsK05IP4m1QRDS4ZbJzIIc88JPNKMHl0O3OBR8pmZRp5PEp/H2ipsgQZmWzByL2qInqmSlKwUJTviqAJ2l5Ty1EG0bEHudWNJyjTEvPgwJ/m9e7pIZkcJTlL/JaTrozZgSRKOrx4gJYEn+dchZCmRgcpLGZiwxIT3oyqOWnDUglpyTWSZRmOtMzAjco4bntOwkeUagw+219J4DgKuApbEXQEfKMJUwNUshARZSk+11Cbx+UZf3A5E+/tw2OiRbvAZffXe0EbwvrIbbwMpacEhYJaKLY+QM75Wgiw4ps0xmTFjrFneUw1iu2hJEhM8s/424IXt16XyeZEA5L6Xtb543cjPJLCXCaiSh/ycDEljnGAlgKH63GO5Bz738Y0GKC/f+YDqAqsD/mYo2lEeBdbJgAYY5Zd6gxwnyv2E3mtEAOw8KFJRKvCteuDb9UCplEvv4nOE9yV0kN0NRzi5hgKXilKAH4LgO+XEd44bfuh8wf08cD8Pkj/N0EpH84HmA/3sJCqeDd95MYxacdw/4IfPO37Xecd36g3f1gNfSMHNEXMogkxYFHqeKLc79P4C4CM8F3kNEbjjgJ4V9Txw3E7Ue3zucgB9oImhnopyUh/GCgexuLRwOKnGu4SozD2UVhXq7G8vzjZmD4p3ORjemRv6qCS5UUKRdcdQJ9Uo8WjMb9FSaHQzwongdYDqvgM5R2dgjM72vj4oy9wNtYcI2jAcLaaUDptTfNnv3zGqwAdTrcM6en+D2wW0L3EAGF3gcuDWDtzbDTDDeHng1oC7n1TBP9jybf2iqq7TMLlGFHscbOcO51ujM+MGg8uJ41sF3RVoDR8OwVlodF/OO1wKuhaMys4I1QI7aMlfXu54ub/gfvuA87yjHgdQT9CbRWt1ek0fWGkOHlLqBCnlqNRxOApKtBmaY046drcQ5goHKyAoRjim1E9wZ3dSRNYDgDpF1pBS/CM4K8KoPvVuZDToGORehYF30FFz+nch+TXWi4RCbTpCKWUaZk6YpgMk32GgRLmqVPIdBp8IjcxhM0ahzACNMPZZSklrTcSravDKveCJoLGkuxEZB/eIHBEfM1qIu4HS+WboZ0h/C8GjioYYXQCQghmF95B2pRaMB3onwK9gR4okB6UqS121RPuxoJRKjkU92apcT5RyQvSAo7It2C3GABhBd+s4TFCq4KDsC4HioBxDi4wJnN0yvQOWpZTBeToWM2FMOrVuiqJ3RR0FbjoDGAmwhMwMByjtZ7QqQ1BuinoruN0KbjfF7WSrMBugUgDMoAGCBRbBXGQZ0Nnq7Y7RG6wN9LcHx5Y4gNKgraC0ChnkXHkNqqgJ3lposgwCFGZKDEO4N/iLGKgKMMtxKOX643tpbLG5vvcR7X9/H9d3P+L7rxce18DrYGddApRUb+63E/ZyB754gXzrBeUkQBFrgOcwy1jzwr1IxBA5NS8QHBA92cmohlI66iDXCDAcbcAcOE4GFr35zKAIa46J55m1787WoQBJxPPkOEnofhU1BgwJ+sCMCwNMRz8oUGginGPxGY9vNEC5fzhRgDno7n4xYqpdMaxOhIp6Qo6KcqsoZ4GL45CKUw60dqLUim/d7vhdtxcCFDi6VtavteANFZcZmhlqvzFK64rRB7R3VAB13HGMO272gpufuDuFN8wHqpEQq97wGI7TK05U3ITy6YecuHnBzQRnd2gz4DEw3hrRewvnbIaiivO44XbeZ2TLNRG1+6yLFsqDW3FYcYxiaG5o2tGkocmF4W+w3mkQH19CjH211etMX2eENXpDbxT+8kjxZVQCUBchTDV66+ijM5LIVL1qtDgqWrmYgXHBNSelEkgAzj6LqP+/QUks9oHeHhijwa8HpDVo66idbcqcyioQVxxWcbqimnAgl3R6gNEg3gFwjLVbwxgNjx7S7g8qVw50HLWjjIZeBuTGKbqHBqkMQZorNEr9FHaNaJlzLFJluKridIcbO6z6zeF6kcSYEW45g0yqnIMUgk9WFKiKox6ohcJaCNLeLKEAU9vAI3tCkTMKCo4JJqZtARC5tCzTGWCROmiXQgaNFMmhCLEqcjNQmEquqpBhqAGsbDQcvcDRoUMhR2gwRBq+RirChmO0zsGbnVwONXbDTUOv7BIT6CLOxuqyaIfN9D0gEUgQGBpoAyJ8w2L7+ZrfNJiB80E9ixTKspGZNZ0Zg2sMmDHVH13ldMLmExhRRdamE+tuBNQe2QWMSHljJjRpZehQCXJ4vgkKeyjAmkgo/kbJQASSpF0YheKVZRVzoy5MZG6R1xBJqGW0PAZHV3jrsKujvYZmjzfUS1Eq23FR4twiazmGR7u1QaXD+roeNgh2RuM1dwFK5WiM5BkVd1TjuY0OWAN6Ax7NkOniluXgAJAi1JWFNbg9MPqB63J4HZAHcPgR2YHQMBoaqs2Gq7W5F/qjoV8djy/f0Do7vlwPlocOhdwCoBSBoMANeGsdPUQ1hy2eXM6vFjPWqJ1G2KsAh6JfBVbYDSoXhROv77+hffcj2vc+4uNrx3UZHq4UokQ0W1SK0fn9ZNvzywn94oSehV3hpnAblNbvHLehIPDzobEeQ96+aCj+lsiAOEYpGF6oPFwrpDrkCNvoFlObmd3rhefUQgzQShKkaXDUOIbhIGqe8RBI40ITIEm33UmL6FXXe3zm4xsNUG4vN1Q19M45iveLBq33AreDxkGEJZ5KcJIA5dSKGw40Hcyg3O74Xbc7J9e6o7eKJjHx0oWEUDMc/QZzh3ZFGx3SG6oQoNRxx2kvuNktAAqdfPEHxN8gJriNgYcVHF5wE86AOLTiBsVpwNENeg34o6O9XVRRbYYxOEyNAOXE/XYPDYMQEwpwwnQnKCmujqFO/owaug5cAU66P9DHKxwNZsD1+D5g1CoofkSKPiv9TlXZPIS1zhGfT+AotgBKuyhU1ntnt0Okt7Mk1Ooq87Te0VMh1sZc/BkJvoFjvC83tP7gvb4uyHWhtMYwbhgwaETEFdULDme7pU6A4iSJORsi3SlF38fA1alxIQ9myboP3ErHYQP9HJAvSH49LBk2AhRmgQBu+jIMpVYcRuPHdskgmA6H2QBuAm0A9IZDmWGpKqilMsOgkQULDQOPOUG1HCh6kJcyw5rYBAk8An1YlME4cdui9XYr2WWCPiJOTmQmgDHL2gZLDibO9vsoC4wZjXHOFIahCkfdW604isJwEaA0OgvK4BfUUid/YnSCkfT6YlFSjc4cCI0sO3lWjWnyrcKhOxiNOcBr59mpFmnt7KBxwHMMgiGcKZVrfXRyKYbF5GlESp/X8PIxFWyTJOtG5VqP7I3Fyu98t5AhX0MPyaZip6BERpSU3eR5RdnH12fsMcDRE4wFmIRkqdWQM2OyRDICjHko5TIrRbCbROodoIw2MK6Gx6NjDAYV9WK2qh46ye0+5xYhOq4GqvapOWUWIK9TbRXGdH7pA7XGPQa7FNWd5IXmGJejXYa3ZkgV1+YS3TxYhBsf1Bnqina9wYth6IBWZfbNqFwrAGAyM6rX9cAYA70PPN4utLeGL7/3iuvq6GZsnKhKvZWDNspVoFJoE1vn7B1fS5MXtUSmghkcgVOdNrrf2quSNygALl7nx5cPtC/f0D8+8HjtaM1wee6pKGnVCj0P+O0E7gfk5YR+OKG3Aj0klI0HtCv06px6PBTe2V6MvL8AgwNnN6QBGIUAwbzAovUaB2kMzMgwUyqsUaOHtkkvAVBG6C9FTUqHo+ZOSz58+B0PzmRmBkd0dbbBzsxZlvqMxzcaoHzx7d+FUgb6UEih0Fa9V9ioEHyYhp6CaxKRAbf31QyPB9BbRa2Kb9/v+OEvPqBKgQ9HezS8jYHLDLdu+GjAR0OUeIRqeqBw2uGGAwdOnLjpC+7ljnt9IeHPDQVvkF4h4xW3euFeK67zxLcdwFFx3k98+3B8q3Tc8RG1vwJvLxi1spQ5fMqdn7cbvvW7fgjf+dEfwbd//TeYwRGHvhToTSE3wE5Drw1v5cKbPvAqr2he8LALH/tHfGzfw8f2XTwev4kxGkQcX56K66g4akU7TjqGEJaC5/AozuNhG2xwTEK2uJSIcd1xPd4wRscYLYwT681c/IpS3mYNnAMIDW2EYN4siPIevyGUUM1wRc3Xewdag44Oud4gndkUoVIRp0sbUGQAdsFGbDjrsPaAXx9h1wOjN1yPBvcDj6F4heK4gPMC3Bj5fOfGNC8Algz0oAiR3lBdUEyhgwO0uoXjc4P3zvY6d6A7rA3UcqHfXuG9o6ATpIijFm5mpr7rLIkhhJ9uH9haWc9bpOgLQmEFcwqvaGRPOM12WNSMo3agzvbJAwUnCm5CYKUe8vLOrE8fmC2NHAFAkAQtqCokECu5G602FGVn1lshH+z2KJxgWwSSZZZacNRjEqfFLICoYbKkjDOnpIBqtgC6zok3LJ9ENkizPg7BcA0AVkLPgY5utghnGaszAzDGBlAGRQ29G+waEQg4rj7m/WwB8MwS5Hh8tQkcEi92xAyTACmWJcvgG/QR8FaY8RtC6lIVciqSj5Xj7D04OB7EDHHHEYBUhS25DoMIA7RXcbiTFPyqhqsIxq0ASu4dzoquggsMeHq/cLULXz4ow/64HqHFogQWsUcz3hUBzuqhmxSD8gDIGPDRMMYDj+tBmyACr8LRIF4BnFCw7Du64/Fm+N6XHb/1/Yb/6/tvkHoDtMK9UGVamW2R4ehXw/XxFTYaHt4hH0/I7cTrG3CcJ+73mJnFZRv3duB6fcVoHa01fPzyDW9vD/zW//4+Pj4eaH0QBgUgT72RLCs6gNb6AofxX4GiaGXGVTQytIjWdmY8L2FJ6DJmC3sfeH29MB4D/eoYXz5gDwZ6dh5A2sf7DX47oT90R/mhF9Rvf8DtO9/C7V5xvxWID7gPZo0fHXJ1+OtAv1jua+2CO9CsAF4BHHA9QH0qwagn15g59IV2p46OXtiZFIRBuFC/RgswDmZn3Mhbw0AEFBGsSSxidcgRHWih09IFuFTi70HtG2X2Cf/X5/n4bzRAqceBWpR19e6oh0O0wqyiyImc9loPtl2WCtSDjvJsBWep6M1x1IJv3098536igMJMzQVHa3h0Q5cepgA4cIRqZYHLCVfBIYZDTxx6w6E3VL2hlBtr5e4oJijHQBnRWXEeOHrFHU6AcjtwPxW3AziLswvCBvxi+YWR3oD4QFF2f9xvJ263g0JrMOhNeJzgYquGUUIVV3sQvBq6X+j2wBhvGP0No18AHNf1EfADsIN1XRHWMxAB+2B01AcNl8QGTYAyMoPijmvLtrwHKCKCXiKlGwDFzKiUGoP1krXlcLSsIZvDchzAGJDOGS6Uiu6QPuDXSmuLkCNgkdHgoKoOGxfcOATSjen7bkKewChsaxbF26V43ATN2BLrIcIkRv+nULgpiivqkCkihojMIR2T4CGOgUHBE8gEKCVGw2uxGRmLlKWTEQDlOA/UYw3hmzoGyaJW3iuXjSsCzGwP24+XAk4eR5SL2qYt7xak37wDGiz+Soc7wMyAgkPPzCWGr1GrBiN4/SZQH6hWCDyNAKyCXBVNXgUieCblhEPwwDKFbNyX4RvNZitVeWQM1KlkLEFYdYCZoR7kxWy5H4BHWQeDYyGYgctSjwXnIkjZI0pgURKCR2Ymu1U8SYNBIA2AMstqMmfEBvgG4CTiwxECb/JEWjWXyLwgACZBkBpJ6MMdpsE/EIcKv+/C1vnhHOA21J9lyAsmP8N94HLDAwNv7rjc8RiYXUXVcgcCk26uBFuHUf3i0CC++4A5s2IjBOogYJkrdD5gBol5QtYNrTkezfB2GV6DOyZJONbgK8d1t85MD8AyhKcsMm44T8B7ISeHMRLVosdAe32jPtTV8PHjG17fHvjelx/x5RsBiqEgWeAjPmnqyABAD4ACEBQXV+6bclD5V5U8JgXk1DkQlvPL2BnZYsjq9WjoLaabX537LcpJEHCsx1lRbmV21B1xnEfFeVJk0L1A6sApVEQ++gUf5HYwU+ZP2R6ZpRYGDYgsaansACw3JY9TJPiE/OzMwgskSn1TMt8AHUAZEVgw/okSF+CFWSiLoMuEZTN34RTqkKD4bB//+U/9/9/jdruhaGc7YTeUG6Be4V5RJUbBq+I4JUiThuPghR69oB8VowPnceLb5w0//MIWTO+Oywo+QvCGzk6cQPOH3mBe2C5XSBS8i+FevsC9fMBZPuCsdxzHB6DWIM8VFB8UBf/wihMDN3RYpaz97YsTX3wo+PBBcbs5qhp0dIzHNQEK2gUZHVUd91vBy4cTLx9OWAcUHfVFUW5AOQG9GeQcGEdHPxpabWG0Hmh4Q7dX9PERvX2Jfl2AOx5vd/g4YMfJNCKLz7zQHgBlcFqxR+q9hHIsQJ4CotRwXY1GvtFopXGTrL9rx3SBI9j+kYrN7xFkzBaiXFRD9JleZyhskLguOgakRQTtQuVXdVjpGHXAi6GURoCSk6pHdgQphhVgHChecHjFx7PgpVc8cGDULe1qLF2IFqgpihXUEWTF4RRwGgbxxkhOjJGyECBJPWDWodJQi6GqodQ+W7apRBMgK0iPtztJz/Wsc7Kyh3gaAgxk+DjbKrPLAwQn1YEjjtOBezp24zwlGcz2jDlNOR5qgLH13gqCAxKcHx8xC4ZCZMWzw40pZnVFtYE6CszZ1WTCjrsStaks4cgGYCXaHFVW14CYT5CCcN4CmTXxERk9MxpTT85JCyLog9OkrQN2JUCh4BYnrQZIMXZ22RiwbvAWvJlhUUbLlZsZlNXVMJAdIzY7h7JMQ8ErnyWZnH4s2zUAcjwBphCXxGvAuQfUmdkypUozJRNG8AVSTEtwKeeJGcBW0wQo6uhx7g90vGLgSzHKlxto50DtQbeVvVEBqkYJoTqAzkyZCDSALQMNghSoo1sn58E61XQHy2X9Mlxvjtc3w+vD8OUVU+YdUBTAmR0aI4EfSZajKXp3WB2wOjDagfM0jJtQl4w7IMBmR3t9RW+cLv791zd8fDzwv7/7EV++veHRBnKKM7nbjlTqVeUrjdaRk46qCLV+vOBWT9SiGLVEqZaDaBGlUL947r0bx6kMw6O1UDdfhHSWlgqBeVUct4p6Vpy3gvMsOA/B7RTcbor7vYLMMUcbJbSiBq6Hwyv5huRrRVC5qqW0uVG6SSJwahrdvHCUw+GwLnMxT479LYKgIE/XweflZOISAMUV6MF7HEXQlHOhhsZrunBxqqyT+4zHNxqgnJU6E7U4hdLqUuE4JGYvqOA884I7wQqI8LoorCluZ8G3zopv3StqU7hyjLSAQlWvhhBYA47jBeaFqdjTYdpwiuF2+4Dz/IDbecd5vuC83eFHJGEPwyE3mHYcjxMHGm5+wItBzoL7h4r7FzxuX5Ano6roEf3CwTZqN5xwSqQXx6mUPRYByuEoh6MeA6UOaB0kQcVMGTLJnMYR0SrbL1hvTDe3ji4KlYFRjFkim24quA1jGh8BO30soUZGth49/lF/tzB4lKAP5oCsLMl0CmNgRIbERmY32N7oCVA4O4Atxp0ABb3BqckMu2hkloKtQ+pAqR16DNR6wWJw30rzCzzToU75bnhFsxs6brByB253yP0OvNygofzrKAQqg6QvGbxG2eorkZRIUi2jpBAwQxooY+v6AXajjAEmU5jOp2gXUA+gHuTB6CGpzbasz6DKLsRQOh1LBHNTUK+6oZrh8IHTWbocFHkgEXQEdyAJbFFl4ywdX9yOFJ3Z2mJBoWa2EhaWJnLAYjpvA2bbeYZQAkTbskSbM423BlApqpGNoCNXY7lPo90xGhLYAimI4jtf36McJBbgqxvHvzafWRMZQdAFSa4FBhNDiYyEg9dIurEbwwMhhQPjYow8lZP4StBhc98yqyVRMmXmkAn5UB2OkhUHrMUFlZKioByBYFHQ8jEVpyVbnuEUngxHYc7rMWRQHVs8LqoCOkDl5nAeMjDUKEdfFE1DRwmh5AxZgF/o/JkdICDJkgCXvEUGhUPoXBCyAGNmNLx3dte0gasPPDon0F/DOHMmaC/U2GApaAThWByQzmzfKA6rBvUHcAGlK7TEuiTJCJgAhRmU63HhcTU8roa3q+Pqfdpxg7AjKUqENcrV1hrvU15Dp26NH4PCfgPRwcKOliKGIor+ALwDPUQyYew2FDCWKGdghSpAagoVwe1w3A/HSzG8aI9j8Igsq4FZRhuKMRy1FIzQK8rWebb5M8ij0OGAi82gzcUgFbAiOD2E7IrCLomxDkbbUelXEMu+sgsbLh7ZvBgdUMCJx1XQMotUYlZUZnljH5ayMvOf8/hGA5QEILVkZ6VnN94y0MqLqHEU4YKT6M2WAtbiKuWha+hKoDraYGRdy0AdDsqPMFFeKlBKhTgzHqVQBKkW8jhqtPwaDEMO1F4xjHyXWgvqoVSrrRTNOU5meo4cEV5yGgedRqzlBMGxIBf5UVKTIvJwEvNd2B5MIyLhBFK7AmaUWbYoI21dCQCekK4/ES2BSRLBp//M8kI0/sXPFurWiNJJkLT13sHhsJ7nFaqcUf+nEi7YhREpeu/xdRhHl2dqPOqiCG5FwQBkLO2CYdEWSWTvhSWbVMjopoz+ZLXqopap9VFKmVXpkmlRhs/RfhppewnAkfciVFJRlCqQ1YMARwujI6JqFxq/soDKvKcJDPKhQdiTfNss7iydEWqRGDSu+VR23A7mhhdAmRo80UXCdSFzHXigGAdC90C20kWULxDkum3lvF82dMQyHXICFH5GOgtNm5avHWUHE2YmykpucL0EatBYuwQ4Ueozlkt85FShbDlOIEXVUBGbbcwIAjfy3GJ1WwIUBIhCXqs4fY80t/O6ZSkrx/5plFOTNL4E6rYUOmlzvA5Y5GZ2OUeniwiQhHSXqZXhWRfL/ZC6PXnP1ONr3Ou5cjQgGB2M5H2ed9IniEWUpsi3jm6PuPdz3cz1s8pfBFNLLj3SYrPjbHKIZFBIDJyJYxgYovxeyRWTBI8g8HTrc8q49/5u38fgP8fMoPROcOIW2Us4rDPgcPEAibG4SpQxo6MJTGKFdpVDu/DfnVlVNYcOnxovCkRjQ6z38GHzUOfkd3UcJQ7iI2QZsGgMnQz+0uRybVZYwtch7EK+v+ce8wAhg6T3kH/hNUg/oWDZ1MlJceffp8ZejewJJ3ow0ND0ORNhe8hM2AxIPvfxjQYo91vFUQZuN8EYjqM6652uVLScjjwMs3eK+cBBPeTOqESocHhUpvE89noD0ekxmCJXJxnKUHAgv1ccCtwq1WM/3A683A/cX074edI5NoPYCfEL11ExKtODMIUeivtN8XJTvNwKPrxU6K0C9cTlB4YBxQbOeuCsFTUXJRCZh6DnjQ4M8mcyuVxqncPBxJhy5MTiwojNmXmgoNAACp09LICOhTUFVkQNMP2eIknTaJcwLCylWThrZGYF82X4+plyyfA6n5Tp4gQpkUFxAzxSkD5oPMwsUvgLoJhH2UkHIB3eLpTeUI6Owy64XRjtQm8khD7eaP19OCz69HsRPE7B4xK0zn4LaLTmKVuO1Q64KVv2OsWcRuF7slhv5OAIZopek7sisWEPZ2bviBJDMwbnhgAo4biLT3AyMxhzj8v6Gh0+CQ6WpaeDdRuxTnp0r3R4H9F90amWiWwh52t6pVEpnQ6Ncz3IGSDfjaZxjCQTaqyVLA+wxGQWDkuXo0IAHjpZTAEuDSMmqtj6pkiUtekeYcIM47DMuAhGtOcyghdIMWqJpIHXUK6N48hPEPwKEcNQoyMHO7o8BMeQzigJ4QEWEj/MDEr8LDvgHBykOSKAEBVoZBBpQYKCGbwi2wCuFI1AgpmyYqBEPdZBLdC4Hohrh7EyMLl+ossi15FYBDWaIMcgQsEAVcz7B0Qb7HZwPcq27CTKXMGf8WjPDa0gQzhoVXhxWGGnC2OOID7nTQlvO+Gtj3m181pyNtSA6kAphlJCBA7RloyBFFMcIH9PrMMGp45775E3I5GcmVQuMgYhAEYnWBWfNre4smMP5GGoR0bLEB1Ta+wEQTOzxTV4OaKg6jMwVVs1AulDBWcB7ofgdghuJ7Vf7mfB/VbJOYLDO1A7P7MogyakbtVmo3OkAuJ+ewxGc2Nnl0DJjxws9WZd14es+6t5gyOIEpkAmkBrARQNkcf5gYTzp+BgUBTK2v/HZFBuZwhhVcGogodmS6WhOGfTCGigc7GzJOKzHdPcQmzKSeA5eFHVlFL5CvacB7GvnBw1XwQoj7jJADMwlQvqdhTczwI/SkQgilEVVpgJOSIjMsLRV1XUEkdlayZq8CIktlFEWR6R3xiG3gaJXOCEzR71PzNuZITce1EOBSxloNQj5tTU2EgSEWYGWYtUuXtCUc3wkoJxoUyZNDrVUOyMWrkEZBeMmdWi4zUKCUWYKwhiGjw6FgDREMFCoPct8qSMsm+HTkOTjnX6P2Q6BcAANEohowtaA1p3PK4AFdZh1ihTXx2Pq+JqDS2IwWY0NOKRD4haLzchVuZ/Ux6dmStI/J5E1RyJXiK1O0VFw9NlhLFabHl4rgFgXjvEdQ3iQpTA4vB33zudzrxPWYaLiJa6Hcx6ZcA45vMIKm2CoCihxNqZHS0bGp3y4u8A6qdHRu3rZ/tDYp9M4BNrRiQi3nCQErFvXpJayRcqYdRTfXgYsyRdHD2yEBAKvYlHi2Sh0+oaZN3i8OgH1USRSIhBY53ZA3FZn1k0yjyU75cAHfQpAczCmVCmnoco/051ad+4GUrEEbWQYF0Khy4SQ3N4H4XcPOfMcXRAIblaNWdEcc8WXeXAqoiSBmdFGngNEDOlDmU7b6mCUjFfE0GUNq2gKB/4b0muBMX3kMrGJiinxfynVDhmO3qRgiJsBig1MgVFQlhSOYSvkrR+3kkevb9U1AAo4gYZgHeHtpgu5opjkMxeCz+vhqKpgDYQE5AJDiUYMQ27BE43qI55TVUzK8qbzxZlCnv64DoRhC0bGsM0M4uRvKR3G0FyracvKKhxXTTmVnlsao8yGw9HTvemaQiSfY5EUWZ7MIjQpWxaQarLzAf4mAYpjJJ7jJMIkJxgzjMzGPIL7vMDMsBaWHNmjibd6jMf+oOf8vz4j//xP+LP/bk/h5/4iZ+AiOBf/+t//fR7d8cv/MIv4Cd+4ifw8vKCn/7pn8Z//a//9ek5j8cDf+Nv/A387t/9u/HFF1/gz//5P4//+T//5+/0VFCr4KyKsyqOKjgKYiZI1HYjFcqoPAxoGOwUsRqZbgSjLBQBqnKScRx6hPBUJatZDol5JbF5osQ0S0XHOq+zUtL+0JguKkJwgyzVbNLwmbbLVJlmqi1dET8LCaOG0aI1shlGj8M8mkfCXEthVKRx5PeSYwG5mBSSo3gwVUq2c0snQb0Vko9zcFyNeULUu4jvS6ExK2VKj2cLI/Ut4vvsStHsUIkJvfPDT3hOQz8PYftc1tMjcgsssuZceBAOQwHYogU3RCDRLsPVBq6r47o6WsujofWO1vskB9NAGKYYwKI0RvQ50xdM/0YUomEQ8yhx6HQUvL77kTrzi0C5ygBPKZQADAlC3nv/LTG1gQUJrk7gN8f6fvv3fnzyGl9x7Ohi/dsnUAzISQONLWKe3BR5f/rTmkmmst9dw/2o8wgBvBoy6UVZvg3Z9JpS37Em6bRkfY1jptFLasGsPVq29VzymPtiP2KoYnn+eS1l/l7f7ZH1HH6G+vT89b4JEETfn4es5+jaZ/vXpyOvrTyXxqtuZYd4zbxuc56PBGE79qvv+zQyHhYOmQq6PErl3Ccq/pb12ROQ5GeognIoB1meBTWIpPUsJJPGcd+Pk8d58DgqJx7zmkiIWspqFY57Wp/WEEnBtNcyZRXWfsXKMASgtTi88kC221dgkkQkHDvSLsnMPCP2h0b28Pk+yfID4c8sSt0ebftzVMlMd203c/KQBDmRPOuIWdqbuUpZNobz5DLLFMlYkylqmETqGQxtNmCaQ2zgZFmuz/Pxv4PnAgC+/PJL/KE/9IfwV//qX8Vf/It/8ZPf/8N/+A/xj/7RP8Iv//Iv4/f//t+Pv//3/z7+1J/6U/hv/+2/4dvf/jYA4Od+7ufwb/7Nv8G/+lf/Cj/6oz+Kn//5n8ef/bN/Fr/6q7/KeQGf+TiOirMaXm4HvBvaIWihlCeokQaMHIeQHAQVttqpTUf2ABUMey5GAawiMhECPzVuvsDPSO4KyHwOQSYvzk6RylLTWQ1SKYfu2tHQMdBRBlti0aJLoBBg9DhGkPegjUOqomZq40GJ9d7Q24Xrang8GnprcO+4Hs7sTBG0rmhNqWEW+g/muaiEXAvnvBeRjpSgZ3o3Es7RsiaxWFUcqTiYE2b5HETKr0S9FqiF9Xrx0JfNvWfgew+JVEcMGTObg9GYISlTJGzYmNmSvmdPNDaGhpCQMjU/Z7QUCQPKiae1DpSDawKdmYNmHW9twPGAd4F18oqOo+BxDjzeFNfjI67rFe1xA64K94tdCa2zNdkKxtBJiEWWAqLWL4VlHWaAMv/B6OtQZfZMhARGrSzrZPapEEyWcoOWA6IHoDWcAdsOEW2oSqUlwDXuYYz3kwrIAejBslc5YyCuRdQ72P6Xc4WwRf9ASM/XOCTS62lmGD5y7lGZ60YyGoyyhUI3oAued7bjyObcAqSQ18FrkJEdyf/MpiXQ0Yj+NDIjijVkMKPUEi23NKRMhR/ukE6HUQN9mfO5JhT6MwMsFFUlZ8Vkx1qNMnF0eKQEwVPmCAguiE4QJsM35+GzeyidD0SeurN8+7QTrKWORFG+RvEQTwO0HDi0ACY4KvdNH8DQClVO5VatUD1iT1OJVD3FKJOTY1GCisyUyAZYJCYd6wSak5iLGA4X9zDbpYfRzroAWjmk8t6VYOKquIVeTinMeBwaNvR24FYr7rcDx43TkPvtxCgVVg68fHHD/bzhw8uJWyHZWd2BXuGdnX21NIgoPhrwMOCoJ2qhXhC1hHidNcvNApwlOCg6AikvnpBszt+KYhSBF8dVA0So4nLBKMClMUxxMCBqFsP3xkLxLBnzOars6uvZ+e4sFg4X9OGUeTBDe3T0R0d/NIzWQmBQV1YDBIqcbJ0lHgZ1iMwP1zzHFLQYY2CbmGGJJOHoDOoxAL9AZkSj/SwinLxc2E3WQuQyS3weIEgy9Bl84WwO/ZzH7xig/MzP/Ax+5md+5it/5+74J//kn+Dv/t2/i7/wF/4CAOCf/bN/hh/7sR/Dv/yX/xI/+7M/i9/6rd/CP/2n/xT//J//c/zJP/knAQD/4l/8C/zkT/4k/v2///f4M3/mz3z+yUTkrTkQTQ2qBW5RbE0qmoAAJVGiG9x1m+XkaMPRh+FQygWbOWe2DArADRvoPtC9weHoLuje4c6fDxaKaKok0o3RraIYUB9QGwQfU3PBIdm+26MNctDZcGw721ZC+olfPVpxUzF0EDX37mtuRCDdpzQ/9ggaSKQsokGkW0ZyRvHYygw+Cwpbni5/En8X5prZEY8plroMt4BOMKLqVEVlFxt1LCwiLravSmRIaOB6mOuM6FcyYctc8J2eaqKMQADVLAkFMc4cbUSt2i9mWGoHUNGbYvQTI0ChJW8jNB/wlLHwmdqcjlcxMx5UgAXr/Q6m+zMSDy0JSIFLxySHOgGWFp3ORXLGTjp1T+fnAQh47QU5TylqzQE+kYcWdmmoToGqLFXkfjGecIhWbXTbqEfv0ZV7/lwnx2vFYPIuZNpAWqwvmcZ/X1q5HnN5kYBI5eIs8exTj58zMtAoL0V5phSHFkExX22eW7QXy2at51zT4YxEfS4v6rN47IkFIebqEzpnDxvlcx3ndcl20MwerX1kEY1my3JysOAs7SLwlweXKbkZfN0y7312n8i8duQfzEO2+xe2gqVZe/e+ilVWw4qWHaHVwmiemVubHXmu7OaxYfPn7swyqmTDAVa30n4D4pprTe0qQ40J1X5UIPZC2TJMRwEbICxhHbO5Pfkps4MuSTh5PC1NiPjTj5Lga8DigDiLyhYcHXd2eeauuEBNnCtAbTd2zVH8j8AjuXS8HoAdgqMYjpq+KEDKPOJvLTupaP89SuWLo4NYT7nuIhgIm5r/Ie7f8n/saMw0tAvmGBmLwYfM2PAwRwz8juujjiYW3WPkIs1BjHFdzELz5/9LgPLbPX7t134Nv/7rv44//af/9PzZ7XbDH/tjfwy/8iu/gp/92Z/Fr/7qr6K19vScn/iJn8Af+AN/AL/yK7/ylQDl8Xjg8VjThb773e/ym1LJqC4ct63Fo0TAQX6ZXFoxyEheXozQpjNvnUqmfQz0IANZN/R+ofeGPi40G+g20O2CiQVAaTBvnPXgJGPlfEoRti0KBooPFO9Q65AkKQY5EYWlmpRndubQApwgYrM+DwcBynDOBmohJNW6oXVHp24ZFUEjBQdfNcIZ2UEwywga8050N8grgyIiqTcWjQK6bXI+JK6zJAHUneAkLr1IcGNC3MvEFokWzKyYaBgBDaDiEZlhQrTsJXqXiQRysyD8U8lygK7ZeVLmuQ8nj6f1BvMSGitADRXG3gT9OjCuN1i74L3F3CKCRGyGPbkdgUpm+pSOAcx2RIZFgmhC7lFB1YEqwrH3WgJv0YBICb5AObjWnzIojJSTAJfGVQOUaBD2nsCJFmZCZBCgCL83RYyLTw0OD2M26bDhOBPgE5SYU+skwUleg1WoCZD77kCCESyAopGNy0QzMlpFYg4a4fyZxwLQuOzFMruwyIIORrdwApRaOA5Bi6/J1+HQch3O9ZhnG+AEhURIrr0IQdOZ+bIwBHmztw5Z4mAQSsKMIq9TkAwDxCWvmcrJHl28kfnJlheQsGnIXpN1rZmropIOuRIEAzZBSR4hNx73NJuUbDgEI9pIeU+jrYUgZfLMJMjKIUYXwV3PbG/Oo+oFYwg7aIz7RoUk8xr0iKKY62U61+R1VYUe0WZ/stTu5xm/D5XiBCnK8n4mmMxBDsdYPB3R5F5E75bruofRfTYXaYAvg8/7myHUCLK0OK+Hxn3j+rAYkJcikx3DDI8x0FJxGhJBIZ9fBBhdKdxYDI9muLozu2GCw5h96cZseLccY2GT9zTXO5J/yCPp2kF4mP+50/+14XyvZtGE4MBgdsQdnHgeTQjaQ/iwO6pxu7F6YNRBkcF1Htw2KP3PBKDBcXsKCn7A4/9VgPLrv/7rAIAf+7Efe/r5j/3Yj+F//I//MZ9znid++Id/+JPn5N+/f/yDf/AP8Pf+3t/75Oe73gYPwUjRLatMr0KCz0iEWQY3AtXSOZNCpKHXgv54oGuHODAencCosZTyuAZnRrQ3uBy4uuAtdEQOM1yjoY1GgOLMmBQXSA4LHBe0X5D2AK4H7HqDjcGI5bqAR4M8Omp3FBgQA/5gDlOgnho12BN6nsBxg5eTXRHWATuAUYF+QMeBMk6cfsPNT9z8RAfFtg6k2u0dpb7AD4UXw3F+geO44TxPnMcL0+fpEMJ4jhjsJuF8y1biKeFcPbIHw5my9SCTiujkAJkmGPOpIKvSoOgwHSgoMcacGaduDlUCP+eJQGyQEFcUVhtGj/k1AFQLzgPs+xeZG1/QULqHiFql3HcDz0U6YLrGw18VcjXo1VEvQ704f0mC8BgsWCCGBOa0EXopZ5u4gyACldcvpPgZSSIybLFhbUTpjQDFQQPIpmSWa7YiNq97esRIKXmm1IEN2LF02VTQRNAEuERwqeBNgYdwnMCbOBoMlydZlo/qILIaEuBREIIkgCuGAiO6lmrR2Z2SIHFGiGNlzdJgqQTPw/h1ApaZEwjQksghV5ikS5NY1fF3nlypvDyOUvncevB9KgR1rMwcPDq4sDKSDFgM13A0sPQ4NMEZZvou4PDmXuMxM2qZ1dgyBIlp0lFsnzZn3sCcuiEuEB3ISd/ZVSeFWTkBlpaKk9ifQUdVcvGKO0YOEFWBRfuF5Toxlg5G7xitTwBlyvsLKKQkh2txJsYkJgEYK5r30EMBaLt2Qa+igqMSvB/DY1YWJnjPJw4BRom5VIdAboh5NBxbUiJ7Vk9FvQmOm+AMvogYGLUXoDwqW8sHJQJc6aTpJyR6n3KlYAY9mcTs83YHoBVmwys6gBVMGIJoC5b0mgBdjBmFKHtcY+CKwLH7et0EKH45TjXc1ILAL+hGuYNmCjWZIyyaC5qH/5O4j5l1FongI+xTZMhddIIDde7H0R3XZbjeBh5vAzGrFeLJkRO4MMNv3aBvBmvM9FenRtioCA6SsQF0OKwrrPrMoCSHER7aL/O6/+DH/yddPO/7nN39k5+9f/x2z/k7f+fv4G/+zb85//3d734XP/mTP4m8xdNmZHQ3jfge8dEZRNAenIHos48yC3vsiYQt2jBH75wXE5LpZhb8FU48zWyGRXeHR2SV775anKPNOTIoGNniq/HVICO0KRDtfxJ42CMtncMAIxogIW0zmpl+j24E3Q8gvgY1NiNsJXeAZTKy/Fkuo+VIDsrs0oh0YbaZpdvIXEomELLe6ZFVENGlTxEdKCY0oEwR5kRaRynZXrrIzuYUY2L9Ume5JD4ZKAFNqXMtJRINCsiIGn0QpoXNmRbscxuRmlaBy+C5K+CjUwCOOVmKfWVbpuQn5ecJGDw3IT+jLsIaSM5lmSAzBXn1Vpkk7+NkxGeJMj5j6hHwjfcju2W2rpn4fuGXvWy2SMSzfObM0Q33OakaYJYhyeQ64j7Hm4yNRzFEIDA6QMlkMx2iTYI698ZTAOVx7fKKeoKUbXHF9Z0/SG7K/Nut/BL/ThQUAXmU+pZOQ0iCRMScFw0LRNvqdJpbC4IsFeeNZjp9O1H4PNsMx6clyrLP/N22jvK+GnidNp4C4vO5YcnB79cMdCri78ntBIj5xKxCTkAV95GfmW39uV4ZaMUpzFrYOvsJmBxPOjmpo+RYxM38M96LKD9lMlM2cOc+7XPaj6kVEeRaTliWBdT2Ayu7BAs7WRR7V0qeznyf7a5h3dlFDN/8C+3fsvP5u3Xn+dcDwaWDR049xx+EigMQsJrvNHk63TC6z/J8Csd5+qq4Pvy5T3LtU2lHshwXZbz4N9up14fN15kzqnqUeDz3eJQaNSZPd4e1lUFJntkAWE7VVQKz6KpMWXvXXKkyzdfnPv5fBSg//uM/DoBZkt/ze37P/Plv/MZvzKzKj//4j+O6Lvzmb/7mUxblN37jN/BH/+gf/crXvd1uuN1un/z8uaNiW27blwUVZC4gh0yjy3kbPeZvJEDxUDbtnAORPJGwG57RB7JLxOeRt4J7i0tYMVCso1iHjBaZlAsygtx2NWhr0N6hg0PTsgxAxUmDFkeplEeWmgPcZBmcLDfYvvoSGA0IlF99TRbNDc56r8SxaA6Iz8FrzU1F45/LLV3fau+kT6YoHpBGkVGzazjeMOwS/BkHnYUW3jGWQnw6nvQhsqEg1YyYmdEQKMQIFbQU6BmABuGJhHNAXDsMlF5n/dVgHgRRB3VxUNBbRW8koXnr8DaWVsxUwqXDKmFkJbgje8sdW/GCLCwOD70YCeIsbx7LNQRfe6SeUSsVPhG1aySQT0tqZPPPkQCzkysd7RocOLB9H0ePdc0pvqu1mNeak4ZHl9k2jVCkLEl2VeZ3YIoefyPCqJ5+RjD64PAxUDbcEwgaIguIWSHj/l3edDpi2aBAgJQparf+AlNIjX6KwDydmEW5zwEdmc0JVxR7x2OkQrZuWrxdgmvfbMxckGlpfEGphEsrR7KDsPd/H/ff01sRbFNHIhyhbxty+1uZ12t7tR2cbRdnXb8EYz5nE/kY4dws1qKD/csxeCX4RVnSnNcrZO5nBsXHBnoIWvihSQoV8B5k5Yk8ubAl6qtMlm1FYfPYprmytlIBqQIN/aICCWmJCNCqQLpMvRbE9knwORKkIc+RZbEEKxNs5bVSIDv5lj/Z5l/F3w5BDNpEMBONZbsE/8hr60iZug5msqxRfNKnZIAvocruMSvKgguyxi/kPbEAJ7Y8EViKkxgVwUVgtrIooxn6ZZHtjd0Qe3KIowcwkSvOoQd/S2krIvpdHYAmsJhqzHbVqfQTPuTzH/qDn/L5j9/3+34ffvzHfxz/7t/9u/mz67rwH/7Df5jg4w//4T+M4zienvO//tf/wn/5L//lawHK1z2OAhw12ntnOxxrzTFYEiHKyhSyrEOjwyeJhIu0WFHKgVIOjrnPUfd6QuWAKo8iBzVGovMlq79FtiP+XUEDXtxRzFDMcbjhdMdpnFB6mKMOQzGj8mD6Vd9jpcgXCLuNiqSxSeXVBFqcJDzGG3rnUEDrr/w63mDjghmH5pk1mF0Y47Edbxj9sY6R318Y42JHUR792p4Xv+st3j+O3kg2HuTz9HGhxZH/HsbX7uNCNx4tns/XveJcGz/nJoVP1I5JqjVRDBF0aBxCzhAU3fPIVO+q+ef02ha12RbksSxDwTb28eY5yVnV2YZZsxU02jFni7eWIOwGNySA3dRKmT9Z7eEiNY6C6FfEsuxR8pmEv4ysF0dovU7Zujg+PURrdD3x8Dyg0+DNw5eWSg5yTNJeXkd+DeL29vPnGvo2CNI9Mi2YoPWTh6cb3naExCeXvHLbtZT969rvyUVYrZxsuy/ba6jL9jrP13c/n0+OeGwx4+Yq4pDnn+eLTfDyVZ9N1udJdJMRvkXwsKLsIHMGHJk2D9vryLvzc98A81ed/2I4EPwkCdeC3ZCO3qdTt+0+ZqCSUf1z5i7Pd9McDtK7R2fgJMvPg/ucmdfQjyk8pJTINMvk1mX2JLPmOdTQppr2TJshBxsyuJt4PA5forxZnnXMoCSv0srQyMxGrCXy6YIR+OoMnm3W66h1+bjEaUe01JNoH/ya4J1QgkG3sg8NVXIPN7osmHHPfbXboEW4p3+TnGrBjlGsgz4u89nbaz89fofpE/w/yKB8//vfx3//7/99/vvXfu3X8J//83/Gj/zIj+D3/t7fi5/7uZ/DL/7iL+Knfuqn8FM/9VP4xV/8RXz48AF/+S//ZQDAd77zHfy1v/bX8PM///P40R/9UfzIj/wI/tbf+lv4g3/wD86uns99PMvZY3ZqlLAGs+IRrcUp7pRhxLP2xGa0DICWMN5Jthxk/ofhViEosVk00afv0hg4dqPHBV7iqLEPqzu7C8yhw0jc21f0HkXORfBsLrP2awFWLECKhYMfEJgtJ2/GjhSP5nYfHTY0joZsM55pQ3eCgjEiLbsMJQShtEkzNUlyFoqygkkocwfG6EhZ+xEdUmN0jAAeBFh9zv9Jo5I1eg8DMRn2T8YwU5rRKhgZDQuOwvCV7sxj5GW2zCRQwKun84woMUK97YY4jV9ci/zeI2JPASNLLoU6xELqHrkWk7TGKHuJsS29mNWBo+uaZ7rBM15PcLLnEhKkRAt5HM+6ONwzKiOAzCS08P5vZSZH/Dje0jzjs7Dtwuu1lxUSeJDBz4jMjJmNWWYNgUVFtBgnSXh7r7XQn7MPBBD+9KmzBDfPdd6vyPhkiWDue19tpBOURNYjXmu+cL6ozzh7OeF39km2r/Lb/Jupu/yg/vS33Dv5/TqffKZ5RP2e/85Ok3U+831lOY4nB7Lqgrwuu+/M6/d0/gGmotzpsp+Rr+WToGWCk80mI0qMeM48l/1qLv8/Byfyb7I8SZDiorTx8A2rO+/3nmUGkDOamB2Ls5AoRcW5J/2YoC3sjYT9xkwYLI50XsLtKsz193RXvwZ4x2dPgDKPAnaezXk9fJ8MuKeekmxaSniCkjwyhZb+b/+6rYNcF9j3QnyfyZB8zQrEVHQ+Vg1DvuIzrnd5Lkz+4MfvGKD8p//0n/DH//gfn/9Obshf+St/Bb/8y7+Mv/23/zZeX1/x1//6X8dv/uZv4o/8kT+Cf/tv/+3UQAGAf/yP/zFqrfhLf+kv4fX1FX/iT/wJ/PIv//LvSAMFCBRZopknEKZtM3lyQ7BLIariwou5hNHikBRgogy8FkGtA9Wi938oqnqosh5ErlLBLh2jlsAGUfLrBCjOuncxgpFjhKKlOc4BHMNQewwmS6Zj1kyTVxNRoEaGpoqQxAfAx4B1gbXOCZ7twnW94fF4xfX4iCGKdj1wXW9o7YEe7bODLFG0dtFQIwmcvF45epyZZ2YSGNllfTPs9ig8XwBtjOmURt4I1VmrHr3PjiWW14zdUr2xs6a1ACwDvRsWV8in45rMdbP5PqkEaWDGRJxkUYnrL84p7d0QGZQof2BNzfV4fnNBM8EV2ZSeBWQNy694tiSiXIi5EcVjqq4Cg2bXIy1m6sBYa4IzXNIPB8iZ2T0CiWeAEkc6gXCyKfC2C+HxqJtgGMdDHPF1VMHRgVaoC8S1uirsjEILv4a3zCRtlv2YNmdKu48UrAvHNZi2r9EtU6J0mSBTxedzVJfhz1LJBCebw1w6K1hyKvOqpJHeUQ0WOAmdkRQHVA21aDGSqWcWZUWDUXl7+tz5zZNTSj//dNK+zjv+Jk11gsD8dgptbRaeQODZhRCICCc8B9/HFcDwcNqL9+BYziYj4OyISnHG6XTxfG33c8isT7YuawL0beaPxAXY8U46bgRIcRF25MVebA5c5jFob8E9QVyP2JcjXqyZowvvSRPloQVdAxinfTCnGrCGnZJYq75lTibkyXfJ9UW+Wgmgl1C/zkOCqLsyis8ZlLiFskDC3K5f6b7j+pdsq5ZQ6xXU8G3HsTJgborbIRhdcVWFVw7nU6Xia3JOZjcPJtlqgo+EYfO9990jumXpZdqV5Le6ADfQ/55xTwkgFwxJmzp3oey//fzH7xig/PRP/zSW6t2nDxHBL/zCL+AXfuEXvvY59/sdv/RLv4Rf+qVf+p2+/bv3wooqNmC2zm79MLD8XPRPA6x81U8nt2CROoBJciUhUNTImYgeUyJtmztypjk38thKH/q2ARiBFo+yTv7eFqLfMfnE5vJ8ALsx2JBsthHODRRpJbw/3pUKnAuSBjhaZeHrbycqeWfGJoFTMhjZbkpuVud5zMcii87IJYvnyHSyIZVEc8VLWPWcXzJTudhS4dsamKlWyLqqLnMt+ASDmZ7O8kNqBQQ+MZlcE9mv5bwZ8c7R9ZGdJesp77ZpkHW5DmUt7PnamA74GZRslzDX9NMq2e+Mp3/Y+YJTTPKTw0Gn47kyNg7FzKzEotuc9gLT/JuZ5p/rMMSnHNOwD0eIhOXCJU9mj1DXlQjoMQFLApHtUuD50szruaGYtBvv99FX7QyC8fX9xB1f95D9PskE+vMziDw9bfuj+eI+N084SEkgRDCagcAiQGI65q3qwDX6VZ9pHqu8k380syPT/sTZ+VzZWzkgz9o/ee3na7LdyLgGqxMrbFWAiOcbsW6Ob1/XsW2TzaT4Vy307RNP2wjux7RtM0EVny1ymvPU11v5kl3awCozofvP3n2/zvDdL3lmT5nxZU7WZVDQ72j+zD9Zu3EBvuouhN2cSzDuPZ6dh3A9pJ1aIh2+LrEEtSQOA7Oe5EvmV58+QOa6krkUPvfxjZ7FA2DemU9v+bt14oEjHdinbLI0ok8ghfcrOAc+VkurOTTm+qiD33t26ThkWenp5LKmme+F0DTIkezq1EvReP0s70zQsz4Bdsf06cLMDc9d60GuJB02R6frtg1WpO0ClhGgWMtuN5rrik4DFu88zW+Khu1nsi36Jwsy0+xAaoWoGExCEGum3VkW4O8FVALeL0MamWDvZ2oyAEuSGpdxWu42yY6RJ1jrAcmHIKbs82ALO8xIxNO55dYi3L2OPIOnlQbfDf2qAfPw+Zlcng0gN7ov6xK/W8FCGoT1qZ5swTRmGQH7pwfiCHCSMeZaZz798/tz2yPmfLDslhE/JmAZ8blTGqDE1+xYmFH85gglbrr4c3Xbtvd99gWSlnEu4+ReTKOfhn46ZTyt23mHJTOGC0N+9f5YP9ndmgjvCDVNfPvL7WT2R97HQGKpoLuACbbvZX52j+cuuPDsXPeysGzvBceyPbmG8zwzK5Hn/HXO7wc8VuyysltzevJ+TXOxKaY+07pZ+gROnj+Yr4+8k312oPIE/JfjYFnV1zlsMCXzhe+zdqsElHtB5vr5xCFlwLnv1U8ASq43n3sUzx/9q0EL/LPvxifPe4pqfTUmbHaCS82fzg3ItoQsAJP8yo7LvCaR89++f4fSPuvxzQYommqYZJp7CFGZHhCtcETZQQSszEaq3YPWFRbTNYcuDfhovI6jA+MB6Y3tv91QuqOMR4CaguoN6g3VOyoGSog9r+ZO3b4PlrpQqKgot2kpjkMpU8/BkzJv5rrhSU9cRCrVnI8R7YSlQCsHb+lxQo879PwAPb+AHF+QM+MPlOYo5wfU8wX1uBNYmKEeL6jHyeO8IXVLprN3hyrLLjwPCTEfPqfUsraKdqhxkunsMJCl4KraMTkz0UGlpUJKhY4BSIWMPmX/Z5dAz4wV5mZ36xQ6knAskKkgy0QN3zuBAKcDyxSU3P09sDJqbB+PVLQpLlNcVlCdJZDTdDN48T47SEmDmVGPYBrMqboKh1gBZDyV8YAnT/js+besxZ4ySwA++ThxjTb6MFKMXNkkz6FsMlBloGJgyECN9lAEnOPQiJjeClkRlSCAZFjKaHmnVHtY7SQnhmNJvgCJe8EhgGIEUX3VrzOXptuVjegruoPSGaW0+g6d98cEWNPoJiBLOUBeC/UxgwS4z6CjRDeaAchOcGa91otPQTnbMw7xs7ge1Gn5FJwkeRcOypNbgFBf61GwLQfWxeA1lWRT4txDFbgglWklbEg6tCTYb+9Me+N5kCPHa8MgAeZPwGauTY8LkldHcm9hEkunnuPuWJUZMymr7ZvzatgSrFWhB7sJpZbZsZjfa9EZ6syMX4Rh2c+HWPUzYzmPRfzkV8b/8/7NI6KgADO+773cZCPnb0VxJLq+YGDJMlTCZ4TT3qH3r1qnjm0eWm6fDbRFNmiBS75m2qx3mGe+7oYuZzDi4tilLLg2Nx8ja07Y7NqL8rYouULsAPewBUBFdj7JzKrA06flNfWv3Kdf9/iGA5RNHVBKLMjseAhzKrrdJRrONCPTqE1gu4V5tro2ZgbFszxjM5UFbNHnftPjeEK7z+uMJZ64ydxost/KZ0SN9Ro7SEmNhzlor2iw2CtQTqCckHKjASkOLWcc7FDyYnCx9fN6QMuJ51k8WI4xNmSeb0Z2GvwhR0gYZStuAhRlyywviRIQqk3D4eB4coAjCPgaq+2Rr5czfta9omgaN0UK1+rMlYYw1QROaajCYCYWSLCTcehWpqPDX26d721hCr9mo8l2xL/3TDMj8VWK8kAxGZ0+b+At2prgxNevnp+x/xh7qSCPrRcnwMr2/Q6EPYw8dGYHuRQ2GDE/5wIWmRZPJzkjXmxfsbJ9U5tlbpTdeeenlXBKa1fku+UZPV98TIyYL7JHmysi3Eq3cX2numxGyQkbBaFdgTDuiPJLZsdiffl+FgGU8z0F8/ogP+H03JgbfDmguO1Ru3mPhSe6jtdNjSJkJnF72tPX7U+fXs63nGCWePa/mbaSX32/S/M6f0Xp7GkfyOSuqsp0wkvJWuckhxyImMPyEIHHxP6CLfNnE0hBsL3u9vrYv8/szbxT82M8Pfat5ojWXwIyeJTx04ZkWSODgyDXz1L//oJf8YjttZVBlhGZYx+wgdX9vbagbbcGWzjz9Cay/X7yzT71jNP3pPLtlqefayVX9Z67U1/ZQtnO5+mifsbjGw5QymyPpBiXQDSHqh1g+MoNIRkZCkBTM5czgH2BxfMmQOkc6BXtv8UH4AUGYOmHenRC5MZKoSRugET6oTeEIguNFvE4cpR3wJTYfGk8NUmET+zuyKAUXZFGKZB6QOsBqXdIfYEcL9y0JtA6UOqdx3HjIjdDPW6RQbmhHrcAKIY5ENAdoh02+jRaBZECFSHBOeyXS4cEGS1gDiNsJxAZfSlOmiqGpkCUADpQ03AMAk8bBrURYHLN2xAneZYdVRKKwaAGC6fUL3Gi2D47sAtLDEhmHbY2TVsdPGxTVoyQERdeGej812bFdb4dZpdPSqbk72cpgwvDRDdnKtPIrrSz44n7MQ0DwkhFGSCXsCc4CYuK4FFx5vPzEarHGv9WN4ITj2Kgh54JgKXxkZ5zgYMEGwlEEqRMaCRp3+X5uVzdyOm3S+YlY/z1SCOYMvz5vsAKOpjRSO/p0UmXkeNzaaskQEt9oI1HNku6anDJ9n52KgEJSmJjY0GnCVYCbM6yEjA1TaZpz6h+c0JzuW6p94m2cr3O8sV6qgAzY8XX9M2RvwcN6UyyxIjpfGdJR9Yem6WMeeZ59ZVl6/3aZ9CU91Gefo2cXVdiWvsutJZClMkJ18yYpF5T2DqNe6SS5FqWyWN0JYBl4Z/KWk8nFL5hZrklSqjbYt321LwloWtPrRijzRM2AFjQBSiyZqEtE1Lxc+9+9WPe6g3gchtsUHOivSjrzWCaf7wCkv1VY23OF/Sw2rmHff6tR+BFW7HAB7KzLx6yLUfF6ubLDBDLOuyjtAm4mLUBsmT5eY9vNEB5GmleLBa9cgaMRcJPBJZOwyPfvjsUWZd+v24iazNmXoMZEno4NWpaQAtviMbclNC6kFBmdYzZk/+8WzLLkoMF+aazFXp3fNvizBIFDUEaKxrGGLuzpdNLpNfz5wqXCoSCrGqBSYnohWAvLAPfbw6jQ6zCCdmXUc3/admuXRi/jE5EgEjvw5GWPl57RKaJlk1mFKjLSMqTOZ32ernH7VK9/9m7mvO8tjPyMM4IckrDw4hLqRxs6B56Hk7NhowSVlM1MEOezQjg+W03Ix3ObY+Icu2lIdx+vpZkGhVBpklXJil/v4OHZyM0I59I5ep2ZCZhKR7b/Eh8bZsOlw+bZxTV55Vx2sCUOQnRKxO12kTFMYeKbfToLWxYGYDtduI9bJmxXkbFns/cDWpGz8uoRoJtq6Nv0WM45WRs+Xy+z6ULX/dpZgi2277hTewlBD75K/ZPnu77Bb2tk/ncSXxYnJQnICj7pwf2Cyl4/prnnWsktx+ersnKOizblPdof8WV3dp8LXz9ersJewo497tOMLWIoJlZiXs8wdV6KcGeTREk34oBH7LTeLtI8Y/9IjFi2OlxC5nsp++YgG3PXMxp9/l3y/c/8aN+u8f+WfKza37+vBa5lrf1ut7sGWs6ZPqVp3u+rZH9cmx3C2l3dfvpHtPt4C8h3u7eNC5Dsv72Fbdn737Q4xsNUBZwyJoikDVGbPyTtaU2kugUX8qa+fQgYRt2ITewLiuJ0CNDgnQ2u/FBbKR4OayN/b7WuYSTlnPdj2fMnW+ka6FGyeIJWcu+dDftinfXTHwJhdHZ5XVaKdRpM2Phc3PuEX6SyPg3GT0+m7BA+sKNPR3r0/lgO5fn7/Pr9mrr9WcUvgWAMoPa2Vz39Mjzf7rcaWjASEhXJmWKiXk6XIT8+buU7eY0ni9CvHDubPB5e98No5d1vr69TP4+3+oJpOy2yYEn1cvtd0+vIe+uyfSDAWDiebJ/vnwD2S9bApK4J/GcYR5qoTTiw6NcZD51UgoEQxO0LAnvvH6fXMb3viSXwnb53337/qavjzu3y1pHy9Etp/z+kc/97RzN1FjK75FrOTkREkDgGS3kfkqQNX3KvOQSTmWFS3nSDtmoSAkZ4+dz/S3nNjN0kK/4nOlItmuD92WefOvt5Ke92x3iO9u1H7unfAI824/yDGW/BrtVWTZg3lMs8GrznD/9nM+gYZX35jXYn7CW/dMW3gODfWPMUs77DfjOSb9/8LItm57ioUtsTlcjwAZU8O5VnzyIYK3mJx/1fL0n+Tv33bv7u4Ppef99iYZm7ELAv133/T5u5/o5YC0f32iAol5QHBA7ICZsAbYDYgfgLPEIKM7lMLgzEcio7g5HW45FbhC9MbMAgxRB0RGllxEaAsYLFqWgGvVrje4end0+0ZMKrBrkkJh1oICHLp8ARQoO8HOogXN5ontoImIP7+8kdqkcKHqilBsF5MThOOYBr4AVeHd4A7zHomkO6QYdnKtSU5bRAO0W5LgBkREGdpV4WJvn8L65EPdoBrn4HDo6YIPp39iwHoBQIfCB6dDUQtrePETsADh5ZWrs8Mg21WVY16Y38akuWWJmiMqAIyaHW8huw4EOaAekK2QoxHiw+rfxJIy3ofcYHNcGrquhtx5aGUbJex0gEA4rNiW1ZRmw7DCYLoQlF3PeYzNO0fYAQdlVBd9IgI6Z+BthBAWSlZuYJ+RrvNOQmH6KqZib+RKWU0qUR0M/RSnkJpGJg0QK25fLNsgkvQ3xCRLSOXRnOaggM4MB6mBwGRDtLJkVwNVQMyrO7aSLNJlE5BUBRl+Z0GGuwYIbUHpyOmGCd7CWn2SWejaBR1n8IGCBuczGJCBYr/n8XvOGxQ80nrfgRr7+MtQziJD1nPk+oV8DX6VTiMCLkEweNZAFb7ecVt7ruDbMVHB+xQzeJNRdwqbsLnjlKuM+IvkdtA8TDKjEaAkgs6MaAR3Jox4ThFPBuCwF5UDgeR05FZtrawVBGyj3tIGLBG4umJo/WmIsCCDBZFYzrmkMJLuZpZdQkh0ZDrD0qT6mPbEsIduaR/QEsSLDKDFc7NNQMojpHjPY3bZnSK6QeFj8RKleHmX2cpwodXEFSxH48BjiZ5vQ4kKPKUaas4B24CARuYkIJejj3yniNkuzEQCTphBaXhHoF+g0cYcIDhGcEhPoJcq3AViGRIApa//MIBqf//hGA5Sc+0Bn3uEYm+HowJa85XM7HB3mPNxHqKl6fG8zQhYfa7JtjAon6WlgaoTsv9valOeQsa87MOPg9x9oCpXCn6OpOexsM+RZt4XuiHlzhRlRW4CHsGSznSyMj2NFwPBM0QPTOuQfz1Lkc9QQ+3z9KCTLs72Odn7bok8wH5OnshLK+TMgN08u7vz/3kKcDjSjpxTXmloayxLO798TYT2UThFgIOWw+xjonYJxvRtqMQz19Rnf52/lq77fo6htbUyJ97Vm1g1f12dq6UQmglkom/fD8+e5JufAtrXe5osFIF9qr1le9HkXnm4OdIGAWAeEWU4CuSRQjRWlglm2NDBoGIoSRl9hk2zcHZNYrrZAzxBwTHvMbcmM20x9W0ZxWx5rfl6+xsocLcCBDT+uzg7MbMcn1xsrmyL7Dcnvc8PtKcH9dq9n8nvP9eyfvMz0x/ulf3qVDUHNLCn/ILuD3Tx8ccDg7Tpg3ll/cvpPM3PMlg3xdY4zmbABhQw88vrM1ePvn7+vJpnvneW+91m0PMdne7nee6lG+7vLJFzLcTa+31CszOKIEQuZBZ3cLue+ILTwaaO+2pn6dmE3exJXZDOl016u83n3Ol9xm1fjg0xqQPqAd75+rmls18OxuF582VVF2O/Ffh8y++bA1v4t6wZvhm1Z3f3r+jkgk3CdF0EmkMsF/3mPbz5A2eZFcnBgRNvesZT06EEToLjzMOS/AcMIkIIgYeXQqwAuOQzLxoxeFiDJ4+tAyTKgtv37qTY4DZRPTJCbDr4W5b5wM/2XKbqJbfb3jPY3TxCRRMDNGa2vsT09lrYzkp4LbbM4Lssx8Jr73NAJiibnEJhhpcdzd9pGGrrdGeyban8OPvnZluIN0PJkzp/O+9NjgRRO3U0HnrNlxuA8mRwYabau6fOwEayz+4r9l8Yqr88k5aYMfAIUTRIbjbl4Es18OqNpONNRbOvwPUjZVsU6NoS4gxNmTjajjjRcy/lzDXP+ETzWjIfCpQuBRaiLMqu5SjxzpwYoMmB+/pFs5rnOl/L1gbIAAQAASURBVDPcuxbyd+IELLvh3x3j1z4S6M7b9G69PC3ir3kh9+0KYRGct3Uw1+r2Gu/XcYKp92vI91d4Wvi7Z9qWnOfOSjsjSKG9nc+0PtLu+J+Dqacyo/sEgcsBr+ucMvD7ufj+XvPf/u73e/YET8DkE6Cyrbv9XO3pPWTao3nptn/Pv91eY9j8y3li4kAkVJkZ/7p1lPZ5syG7Ldmfty+jtVb9+cXmeXswDyTc1gIkT4SPCUz2gGK77rP0vRcstwzxe8sf92Dtp/2xW+avfuwrclIE5iLC0zkuw/V5j280QImmczBb0nh4zhm+g6mFMJw+YN4ie9Jg/gr3N7i/EW26wHFyMYsDwvZbLuuVqsvUPGe2DAy3IFSOhc5tReZMw6+0og2m9c3ZVqoJbsww5lA6dhAMjwnKWB0lNqdpMk4yDJh3DGuheqro1tCsoY2GyzraGFARNBv8ubU5uG+MC24DvT/CQYF6DIi5KGkUPWbx2GDhTEAibixK3TbJGDlDh1oiDszJsI6Y1IlYuJGBsrh+OX+nx4wejxk8OZmZRjMwv1tco+SIcFV4gA1etw1gWmdGJMoq3UZcE6CZ5HQBFAGuYXEMtDHQcqL1QERgwFPsMD3nFnkIP2WGyIYoOyEmBse66Dm7CEETDdBZwhMPC6aHsHKYHTtJrrcR124YLGcbPa3JGI62geiMICe4xjbd22OwX7TSi3lkRVh66SzcRDkwOU0Ez0kmFfVtSBm7YWpZXCd2xghk8Hrp4KcvIdYHF6r2TozODI4CFFYUzD0wXVlGw2kc3znAZdKDn/U+FM0FPAF+8I1kZR+Wo/fpxJ//dlmn92Z9AZPtN/HnE8jnz+YfbSnyLWYNOBLBTAIJi+nQmLOPsuNpycbzuQabGeIl/+6zA8cyiJhOdoEK/jBj5RkXR0Ykp2Svtb4f7BVDDO6URT73AOMg7dp88b5Gnn/8rDs/G3PmiPJCiDrCo+TN4Mpg87VGDKnssTd44Xlm6lw34jt/5fk2zVuSgcwM/gwWfsYcc57ou5hue9gnr+xMbQOyRkWsJgh8Ak7eRXSxrrBsjGcH4x7sbZlOLEAzRzTugG97Tp7tzNHsJLH8TbzXymwt8PMJiP18fPINByjyfss6WE/MdAGfRLTLmiAkS0KxivKyzY6R+JtMAYfP2VsmgWWLnrMmNr83C6DjvpIWtjba2vhpCNNIkIMiZugjJnj6HtGHk7FtRk38nZnSuTsdPIHIhWYtAAq/709Hh4+BNtqsWXpQ6DPLkzXyHALITGO2imKSuvK6cOhfArdwISLI+Mx8lZHEB4cb2uDf+UCzjpZGxEYYggG10EEJcJIOdoKUMNuahguO9pT9MvSvADUWm5SzaPgYwHrOPko+PuTTHnsCJXs6B/Oa7vN+0mA6NgcBm+tireh30auv9SbhMJ6zQF9TWpzrdVvDGUlJOOttB0XRbzkdZKWcj5kGh8ODLyBxTnl/JLhFlLKP62yrxh+ivDB1ZFmU28U2Z7h7+8y60YvMCFb23Rh/EwBgZhK3z/F8HdY1+PqHzEyEP6Wp19v65iB2G/HpqwoS1vr81/7wp2em7crOGd/W1gaLkNBpwijPTNieadmfPZfZ09V4fyby7ifPPtHXfdifJc/Xe8/frfXPY4KYuQefLisCck0nuufL3RfYIUjhDKIsDX/S2YQF0JbXzBuY1+2r78NXHruHz+vs62/nGvDPyUE8m42Fm9/ZFCycmutiDYB8fpd9nW93LK7HtuY3kIEMqOIN5h2P91/bZMs6xnXet9DTPZRtrb0DVJ/z+EYDlIUK06Sn7oYBPubN4CIJ2frIgMicibnUAFNfQBwheBZDxdIoyLrhBCdYHILMcNhWBmAbQ5Bk4/cjAIutyGy9xsAYDd47fHQ0BZoA3Q29M5JnluX5/cb8eQCU0dDGhas/8OhvePRXApR+4THe8BgPPMaFq1/o/QHvA6W9YYSjLLHyZgYlN2BEXDmyvcxFLtBoSXbEMMDkcKST2NKOnHzsER2v6ctmVJV9DIKnEUJ5GZZQr2JLO8MxPLJYyAxEABQHBgyXRanOuCaaG5o7mkfrMAKMbCtCEREgItPhAQB9V3zNKC1W4XvrsumfGHKAW0xvja8Jam1ymJZrYxpcItOBsKOrRJjtjjBsmRF7ToP7Th5NA/XcWMtMgk2CG4XTFCbM3ilktgL7vu7jnGYNOkGnb67fJUjQa8rxMIdFxPl8MKMorlvUZc+eXPJ9grgtDuwERN9ACt4ZSl9AywRTU9dD72e/j7stXaBtRYTrtdf7ftor8uzyJYz+7HbzT1zZeu7yR08kyJBIxArL1hslYMsM8P7Z873fv0+6oP09ZT7n+fPszpmilM9vziDuHThIsCKY2TSLfZbDOscEH/v9kqfPwLb0zED63KddSMbsIhgSGVDIDChtrmeZWZZnTtYqd+e9mIAbzwkLfXck9GNJw59e5/192UHK197z7LjeuScS4PQJGS3e1JPo5Lx57wv3zyezsm+ygM48FiDaZx+tBZCLxOfPnoDJ9vpPwYAsL73/+ec8vtkAJSYIKwrUK4oPlNkztQxxcaC4Q40GSVwhzmHRIkdkSipEKoXeIJAy4pDQHelAaIvs3d2IaG9N3DX4GDwcFOvpFOxBJ1DxAClIlRtzWO8YraFfD0i7gN7QlNOKmzv6sCBqEuRwsq/MRJCNgTEEoxe0fqG1N7w9voe3x3fx9naHiKD3C2+Pj3hcX+K6PuJqD/TrAR8d+jiiTHSgeAfwrsQDWQBlCtEFvVVCfybuSx99ZnaaWZiCDaA4s1szkegsvxDYDDz6NcGYDAtHTLG8JPhmNESAEuAhTJQKJ6YONzwiQxM3KVK8PufAZMcDjRi7DFwVXRUdukp51mCjwUx5zMSoYepTiyzr5TLvr4mHESYYMe8wa/D92LIzi9y9slL5ddlC/8QDr79PA5TzlkocHCcgZUDLAa0O9dDpqXT8UqKDQphy5iiJyqwagEWp296Hlo+nlCQGkYktR+4NEQwYRhisAcGw1XkEsKvILLq9Igk6jeAM2eIXidR2Z+M+FdiZmYxjA4oGgavCUoujFIgaVMdc1xodLLINQsnSb15v8QRDsm7QfPisw88oc/5qoRyRvVS0XMpz8EzAa5MlrE+gVTM9m6B5lnfChYbjWrOItgxxBBopLJnvNzvIQu1VlYTmosap79mq5MyCaUwT9lleiU+j4EThOP8hLM10z2wmzzdnoc2L6FnAC0I2FOZG0USwvNxjmnHXgq4SwpYKdYv3zFEo72b4PG8c7G47Bf0KqGyd4OTANs04pmF7dg9NBdw8/Kmpoaig2F7YkaevIoBWRanKKcZFt9dFKOum7Dx4/TcNMFVld0/cPwaE3Bs7VH0yDQgwhxTekJkJX+MAglsWPE7FWitVJDpcN5CFLVDbQO4TONn3wWc8vtkABaDKpaemp85a5hQoSXGO+BnJhwvEZCvy1EYRDsojiq2x2Lb2uqRUu8y2y61Ow42VGRT4qlNGJgXbITuVfQz46PDegMGyC3kJkWGZmZewz74+h1sAoREAqQ86+/bAuN4wrleoCkZrsPYG61ccfD8fHdauqP0m3+E5gyKCKHX4ak/T7L8RoOjcChbnPvIzODblUII5idBCJ0CJzz8GbLT43pJ0MUHKE88AQHZQ2TQ0QFZVs3yCKIll2cGDx5G3LduY00yxC0hWxGYjPlOHWYkyQiSsd1sziW25EyNqSaONJLOypOXW4RZgJR2dCKBOcO2GFDpDZkQWg5DdWZ+UdLB1GO04Jg1NtpqWcL6+jYuI9S+2nX9mxrYU8bbkHT5JcQKCsewMEgPBtEYGBcbBgGBbqUEoiifMqiU4MYtymIUwmgeBz/NayrKB+1nNk1q18DTMO45YXwWrLfZTYvZeuZ9yVHtLceKCPI8NoGRGhQCcf7MTZhNhSALL+BmxhE8nkpjkKarFbnf4NTNOrhLrLG3cFhm/uwTy7t+5/J6PBT7WKI/MOgdA1Pz5c1Hhq150XraZ3QubGcfTRfQELrLWP3zuzVzTLhrd0k5EtCvxzYFbEi/5br085W62U9/ASf71etl0xJgOeXfMM8MxBda+yjFvPxFsHZpLOVd1gYQEPD5fd6chhC3eMx7zU31ahsO2HraLPVfsBLDx6XkbZbYYZwZ94uXcKXMP7awXYEGhr8oz/vaPbzRAoQR3aIqgRIo4yV2xiQOQUHI4SyoCM0qvwxmt0jBHhBm9+loNOnLB5EwIjk1LoTZxrMFQeaTMsUsAD4d3g3WDtQFvA+iDyDi5Fb0B1wP2+Ahpb/B2wUqIcTuik1pCtySzQAqYwAdgbXCrlQJ7XPDHG8bH78E+fhfjy5Ogojf44w14/RLy9gp5e0DeHgRFUOCqQK3w44qa++Y0RWZJwksMOAuAwiFxueE8tFx4LXgdEsdn1skxU5VkPULcIKMDZihXg40ON0MZyW/ISJEbiRFxNMFmecTpaCh7bzx6AB1zBBuW2jChD4Mh4RBDcTgM+zBBH47WB9rV0K4HxvWAnRU2Kqa2gfgsDc55BmkkuNh4jTDgQdB2u2CDQNH7hX69xtMV6icQWYt8jEE9BjNH7z4doyRAGYsI633AhmF0diDxo0sAnSzphJa4pMaGg/MTnMTw0FNIEJhlIgvATSItQWX+OQG+QUoKHwLVZM4hUTCalULyK1SgQzgEzo1Dx0wBLzRiRfgzLAOffB51Zr1W19GEpIzCt+vvW6fVNKIioTWCuadV+vrdjOKxzK2vI4OK2SUVTjCdmudycI6xSBkABaYjXqU3R1LN4VsHXWY3Cs81Mz2uoQ6doCSCH5a6LHg9K2MwHU46pffIBJGQD3Imr40/H0FyXodCSwIuZqyeBgPOlZuAu6wjS2pxb+yJhOIzGJG0NSZwE9oSiayQaGh58Lpw9hizb5oZFLep7p2zvhyO7MxkMwVXDuCweX+ABLX7pdp5qumgk4A8nXCCB8fMdmjhOt+VT55eWQBRQTmUx6koR0WpFeUoKLVAa0EpVEh3o/w/R5oUZv9CMndSBrACLIm9kWvM3y+AHRRO4JFZVwkdlBXIM7toKJF5K5myQQ4TlahqLHiTM+YWBHwGg7/d4xsNUDgzYBmTRVRFLML0EUJ+Rx/I/9jxEHwRZx1/cgo4rjFuvkG1xtwHR8kxuIREjLidxkhnVsSXYzKPzAZBCvklJH+qAWoKHQZpDdIu+PWAXA3SO6RHYcQFEvxeGcK/8RLALEb29WBg1AG5GvTtAf34Efrllyj3GzsoxsB4vOF8e8P5eOB2XeiPC947TryhlIpaC7S1mUHZN17Wb3e0DzBa3ks8IxymxjRiEuIWlo8kDFQEnDHoEI/JxmYoraF1dqAU88m30HwFWSn7hiDOheEXIWgpxrKYNZszMbw5xuWoF1CaQy9QvC4+J21TRO+d66VfHdfjgcfjgcf1wHkZjuoYg9mUlUlJFj6W048oTWxQ9Mk6fESpqF8Y7QFrLMfxFJQZJSmcsO10HzqowWMQtM5OjXw75PpKgNI4L6n3jtap4TImgNn8ALCM1RZhTuORqXdBuP7ZMjQ70VzmC63X0hxXAPjQmTVUMNUOFUhVWIADoUeFAChVkVowbuwYEsn2R0cRcgm8rLk6eX4QRLbMwqhiA4gbjkSkpaNdpahiyJpou6J5/r2EHpHGPvdZN4qLCUEOAtyBUMn1HRkOABso4Xrmvw27Gm+WLyUcl0bZIB08O+dY7oBliTczDYMlLPcob/i8o6vdOJ9rWBm9LYiY/AKfnytBylzX70kVy9cSwOXTEtghHV8GdcygifGa7mB7HRS+VFeoAW7KqeAATNldVgBUEVRVHGo4hCJ/Es66SDrJvZQ85v1Y2ZP1L/LOZr5s3s98pgFzSsdOvl2vIxuYDtCgX+eSJRckpAJahSWeqnMO0eSkFMlYewaE+dqLa7MS8lxbMT3e4/x9nWOC48mjzOxrwLC16gUxJhtr4vW6l2WDo5EmmJPPc/vt08fTT3/u4xsPUFZ6LjGyhU0KQ5OKmFFqsfwvujpYBpCMv1b1JzMEc0YEj2ncnMp6FoYr9y0cs/2TOiRY0ULU4j3aZ2E6BxHKYFYFrQO9Q3rwL2KQnAyErkTg01CjnXNJWI8AukPbgLQOfTygj1eUxytKEaAP1OuBo104roajDWgfsNZxiHKekRWoEXsPT8Mdmz424y4Yl3ZddfElZMRwxcgomVFTYC5LX7XtWsI4I8iyZkDrKEEGLrZImJm1ZSQVYmwi6E6QMreXEyjKcBzD4R2RxXKMDtTh0A5ojEUPZIJVlxAC2G509K2hXRf6daE3wRgSJZqI1AKIzA+H7YMia0rROWZjkYJHx+gNvTf+uSpUmMlgaZKigGMQDBgUvROsfAJQPADK6OQzJTAZKUyF6Xjnbsm1jnenHE96ooTH3+6dY5JPtfzUAVAAJlTWT1F0AIW1+eIc7NnLouz2KBFCBNqNg+EyWy+xn4UTq9MBzLR+/nura00S6vwsdJ5pVF1WJLy4GcuKpLHO8tXMlm7XZ3qs1K/YLiZfLrJ+Cx1wq8Zyyc6n7MmZdBoAOQeFZigj5K0Ul+cQ3miW+CQsmeVz1nrMZZ7chBnQhU2cz3wiQW5A5QmA52vta35L7G/gbqX813gNToPHU5lc5jXxRTwN8jTcou08RP0kYkgQcFYRVKFjlHDcqwSBeS1Iln+6Ip8s/70DKZby/Pl2i955nnXf6Y/Xm+/NFZ88eFkChCQo3ezrRpidmexpA7djO+e8dBFfMIMSJzAB8vzet6Al796W9/B1w/P2Yz7jeTlogJES91bfLZexn8BnPr7RAMXRw6gZI041dgiIAxiBcDVuHNVjx6Yka1NZVkBtlEZ+gCAilRCcCpJSkTX3ByKoEc3khttBSvqsvQXZ3Ga061EKChYhpNMx+9Ug1whJekMOUismqK6oKKioqFJxSI1/hyF3h3ZDaR3H40J9/Yj65Zeo9wNnoaOT1nB/e0W/HvjQB0YbsD5wSEcxRwlg4ZLCZaummkwKLZF+VqFxDgCTyDxJkcMctYdKquUGoBEqcU2rhhHcAONxNfQxMIYvgIJweLHpR0QNTVaroQOA0gEdg9omYvwcPgQ2HDKA3gW3ATwGUA2UZwfl//kQoAeX5+q4Hhcebxfe3i6cp+A4BK111CNA1DBIcd5PkZUrDivB8QdBns6vfQSQaGitxbkXFOlIHkVYLJRhcA09nNG3pE0Y3eT6JECxEdoqyQFK3RNMI4dp/HRKqyfZbu+uERE80cK3z5XZSurzRPpYF87LdPgQwVCb1ZDiGkAlsmJOHkxmdkQE5iwVJUAxhDS9CaysEorsFjAJWgk4EKDFl8MHNmKfaOzpfIHliPKRE8lFJDIdgu7yBFQS/KzuBL5XEi2Rn2vDwtlWLZaV+XTK2Bx/rvo4v5SqdwY2HuVdH1k2slCPVb6xrffm5wpr6IJd3G/MLrCvsrL53qtkNDvy4gNN4LNdh/f2MLMl6cCK056V+Xw2MpQAdRx7wdEXSwbfUZ1lJ3fHAeAUwSnAIcChQHUuVmZQViYrcdQuOPf+kfc+FFJQsa7d2H43Nj7IxFfYHHwAJEyCLvev21e8qcTCUA8KmLMMOoU411LYmGxI3Rd2pOXgzSzvbGVZi9brScYGEJmVRWD3pa5LI7GyXE8tWbKAZJx8ApO47NGQEsAiTWLStzTP6/MRyjcaoJBjutrJhji7BBAWckszZauoR7dHZjF8OLwsEivtbyYFF6kwGcw5s5cR2DrykQtoDklzCgt1x2xdneed3Rouk9xqrQG9QVuHtjENsXaD9sHoMrMpngTf+ebQPlCuC/V6Q339Hs7XE+eXwFlJRNTWcXv7PtrjI27XG0Z7g7eGwzo0mOFa6I44G2YZ6JlBKdw8RSOMivRtXu8pKmeOvgGUPEdyDghOasmoKxysJUCxKPHwzzKSTQc7NAGKzjZhiyhPi6B2tmbL1WHdYd0wukOugd4Mt+a4d8cNjgtRg87FMhznILgqrUMult78eoNfAm8K9M6MVx+LezTSG6XVAGCARvJEHU/RYWqzuPUZ7XsZcU+zHoMZKSffyefPo6Q4bANBPH8JlSzKzcda8UzCVmTj7KonWxh0i0nYA1QRBlQKyiRAGiwS4JH3enbO5jMjwTQ+oJaOOGaYZK8tZHmwkXwmcG4VKPSW/nGs0BSSz3M8cyDDAmsCa2CijSw5qAMa06sJTAtEDFSH1miFDY4LBCIlMpb8qpH1QBCr83WfPFVG0BNoIEqkmzN3mbW2eeom03i7c33rZofct2Gn4Z0kQAqBwoYIJvdmkb/zSIuR+3n6H00/9M64bRH8ngxalmc5KgXBhzvBJA98clTP7soALNh4HomhkcAFmdhEzVst5DjVIThMUY2/K3EfzH1lagLkqK+o/useCVLidsx1PTMUwknx0dY0r8fcA57Kz8G72JZG4NDnh6xrm6Q833gfJHzHBwa2+7WAIuKepS95etO0aZI2I84rTdW+VHj1sVgkEuVV7ossy2fAumceJe89MMs8jpVlAWijPdf6Zz6+2QAFiR5loUkxdAEYV3MTDpdQNo1OjJjD4yMcxMgoO0oyEYXsKa9MDe9kp4zu9h6HOQXXLdZEABRgqiZ2yNRhsDA6JIyNcIQX5GootVMW3BVydUgzSGcWgKFS1AbjfMRJ1q3Xhfr2ivPjd3F+qbidHWfle5Q+cH/9Hvrrl7g/XjEer/DWULuiFJkAJdd1EuykrN52LVGDnL36QA4VBCQACt5lUHzazmJ0hlUFR8nzXw77unqo7hoHKMZdmEZSaSRMFE01NEzYxiii0DJw9Y7eB/TqsEYOUG8OvZg1erkMrTtuAK78XB5OHY6zG84+UFoHLpKO7fEGv5RH6/BGkCI9vPDYdn0AFJbmwGtvHg6OWRX4iC6eHs7W4aPHPS0zwyYR0kk4HgkySWZQJinZCZRkWBC3McuC4iWcaZ38DdrYEZkTI2DUKA+IIrt5iijJnmDJNHrL6PudXSOyGZ1p5uKyqBFYJThhxg2RPo64sAschVHWEALWTGkjQEh0Lwx4dKvkawpyuCXPMb2QYG+0YmJLphSBO4LHRYqkS4zF24y/zl1fUJzcj0+iSoTx8dyHWI4nc/Frl8KDPzK9YP5NvKb7en+bKfZgXXiBeAFsUIU31tmcRaQe5aPdRizJhadH+jHdvj4BE53fJ+cBm1NMB5idk5kdSVXVasxQ1hHAJAaUVsvfCapjgpPnQ1ZEHkBbhRkSCW9/THCiOAKgsD2dAFhNgjSrSFHW36bYMh8uG9eEpmmCEy8KK0HOlSz+rOsttu4zq8cRCsjumBPFpv2cRnSClAXXco0937gEKdjuy3z+XFsIEsh+n9a6nVU0vC/xpHwHwUZ2YM7AQ7c9l/5PeB9HgJMa5xg9sbAnYPz5j280QOm9o3ddHQsjZIwHSEqM1TW6s9bfHuj2wPCG4Q+M8YBboxhaV7R+ovUTwAnHQB8XeoiHuXFCLywjXMY2MlGoo5ujDcPVeZgCNgxXd/4s57rY7J6du8HawHh0XK8P6GuDvjVY6QRe5vAL8AtAV4hVKE5UvaPoCUFFlrscTsf59oB997uwEzDp8MpFK8NRvv+K8vEV56NjXOwqKjpYxgpiFoQ+b24iVWSZXQsXqEYGZQGUWIIR8Yg7pPsUrstosQw6w0MER42rKZGmNmYtRid3hRmUyLJEaEVNBYepoXmZYk3uyo0iggcMzTnedwzDaIZ2GcbVcTwGanOU7tP9ME6Njc3ZkxjNcT0GXj8+8PHLA19++YbjqKj1wPXoqHWgXwPlNIgaxwdv1wDZLWANsA54i+8bbLDVe/QHentlkKOVhkCpJJxR0OhHOCtgPBpLb8OeSjzuId7XuF5tMBvHtRvjE7Am+WqA0eqOOhy1FpbXShKfHemHVHR2UGVUb7FuCawF3VbifBIiN/a/CGBCgAOLjqnBtT0GwU4JzpE5oEUxxorYatzXroJasgNnM5YqzCLFntQo3WRGIp1JBhuOd/ofEyavA1gdDZhGO6PAeG3jepwZk+0h4D6YDkIEq8swD4+M7XrNrfFolpWA4KAka8c1Ai/M9HxaAFEL/grLIawU8ueiJC+JdogMpvfUAgmAOjiiQFFIZbeIVoVWfn0SsDSfs2M4wJQdUUXZWq6y8WjwDD6y34PSEEHAxLrfqttajeydTU4K+TVBF0ZBTGIXZkqyrf+ZP7MBgK97CI0bO9nAxTUGM5JKG4hyQI7K0mgRRK8/18DqCY+NU6bejs0++bky5tu65HvLSh9JZNaTO2mhK7SXYuaGewc0BbPkRwBMFLvPEcuyTjeb2WpLn5QezhlkwLg2MwOlyH2TAITAp4AAcs/KcPAns6od9E820+k/+PGNBihuBovsR3bj5AZPRjzEFhks0uk5/Riek4gRGhcxq8eCt+Ks53NTbPVy97kZJirMG2OIWSYBFwYXQhqSnC+Ra8uRTsbZOXINtgz36EARkn49ZE/FMgVXULSiSI0oL1kYEu21A35d8LcH/LWwSJsp9+tCaR01Im03sLbrgIYQmwti5gQ3i6rPrOEkDorMfyhsbf5YzGYgQInPNxeyDRwmE6SkMUVcG50bxhl9T2SPqMNwBrM5UMTRIaiIiEez09dRBLPDZ0Q5pA9ntGXOCG6afJk+I52Nm2N0Q2sDj2vg8Ri4LsN1GVpMNx67vo3vB7C7O5Y3Issxsyc8xujzulrpvK5W5u/dRqRvESKA5C8tXZ2BOf4gAImP53EOs2gZEVBRoBTAXFALM1lmEqTltHK8nyoyCbkIQEetmC0m9y1CzD8NvBbcYEA4KNAyqwmQSA2B9FCy0cHpx/E6mVZmIiJS2HGtyFNgJMe9SIBSTJGswGzblUTHGSfOpZsOZc+DYn6QSaQFOQ1Dkji4G6L4nEi389s4wbwbu7+af+NrtcR5jfxdllpBgnwKH5ovzoEF8nnyxU/ogCG0JHKaWbHIOs0aywoGdp5SEMdmaYPXzhdAlORO6ASIyf9YxwrvWDJfIDHFwhJQqMjTayA+Ru6pHcCoLBL9e4AtP/iWIEMU6qqkwycII4dEogsteCX55tua59f4hDPbpKv88pVvm89dt3lmqbCZE9s1nJ6B9AxM8/u1dbFPNt9RzVcOtN0+SsLHLArOLBnwdMh8PmbGywKsWAAaJqYTmH9ODms9vtEApfeBPij25Fmy96w/kg3Cy5aRbAeswz0HCzYIWoCagmEXzC5YEhInQHGoG9ORkySUlXyWaTI1220147g6rDvaYGalTbASbbFzEQU4aQPX24Xj0VD2DIoX+OVAA423V1Q9cNYTh544UKFokQQWlEGuCT6+AjcFyoBULqfiivp24bwa7j3anwcjkWVgeF5s+QyzUoKDImC6fgsWAGxEw+iSSCJWj883Voq12sAhLPGcSIMUGydQfbaAa0zwkzBe3H3Bf5Agh4mTkxIs+FIElwnaiKgbQHfHIxZIG44XEzwcOCE4ILgAbOaMkUMHRjO8vQ18fG34/mvDee84bgOvl6Gc5LLcuqNUz8EzmPWOZV3AWHhQudVX27FZI0BxhxSH2sH3hwJ2AFaAQWVfN4SwHom22dLuNmb2yXqWLSl8xxEBxgyVOoo6agFGpRaQCGLQIB2vHYomhiokICMMFYyOswcBcf94U3DQPVLBcRmzH3OAXUjhPLoD0OgsiHXiIkGSBFwUalT71XBWRYCi0a2RAULxqaBZNOT1hLwadT4fnpyYDFg0fDYdTgIQnhmPLGVCFslSZUmqpz8JL72Od5aXrxGOSnZCpU9HMi+WLxhp8AlM1vydpfCpUd407tpQRObYhtxjJVi6kvIjexZFAE6cHpi6N6wEzdKOiwSKDSQ7v5a4KPyEbjKFwjSUTb04XBVFdapOy7yPvJdVFFUKqhYcoqhgV2SRUF5VxNcg0gcoqo5ZvC/w4E75BCkCgZF4tUDp023ajFaAwrBgYHt/jbZzYKhCgthZVTG0YGihAnF0mWX2K1GvSHKGuI6X1H465m2RxELi7c3riOQNcN14ZE2C7G8R+GV/xQ5WJlJI4LkRooGFbiSD4sy6ZrYlIoxZXgMmiRlAEJZjicxAxQPGOAnK8REdfMsuDICHYgY5/2eRZG2l8GZ7VgF5G7GpSwWqDZxngYwC9QFDgQ6CCy02yxpzKKAvtJrEIt77bPFd/0XyPKZ4KobxezEusKk/gc0IyuJRDiOwkQG0IegDOLKOuAEAjfR2rTzOo+AoihobYiFamrmUzx9XwZiEWoUMOsijAKPwM2ZHBDUP+J4r8nDsJNlE4vGreHLGRnGloiadOyizFAJHjexGyagHwFLUjE4DCbmhLcJdhF3yI1QUqtTHGApyUMKwiVI62g6d0vbaATsU16G4VcFpgqNnu2JGIPnZuInHYHnu0QyvF4/b5Xi7HDWItleQi+pAChEvxyP0cmI03qUoqipqKbyXWlBDQ0ZLwVEVpVSUUnEcBbVW3E7SOc0AtTIrR5lFSTE0NxBAGODDUbSwLDQyNUyJ8tYFtQJHZUdTKUDVgUd1qHb0zuf0HtNNXOJ9gBbOpIviCuCdQzWzUyud+q3Ga5eMsMMAbuCWTltm3V+A2UWT+2UPfnNWTv5dxtaZKJhZg+kwNgeQCzv4L+pYqp15jvE9lOWc81iZgNGYZSolQYGngOd0Kml7k3oyts+Z7aBJIUueA/Lfw2PSLzUFHUF2DqejGnyNMA2UjeeRr+sSv5cEQGsZrvLGuqKedvSrjukIffIXLK668ZQ2wnc4nv0rDJ9G6sxkqnPP5aFgEEhBRn7kKmCWtbCcYhJNCgH4ErxObkzUoJeImzxlg3ZAsK2ozYjFNfHVzDCxdoDFJ54O0TSfs3fd+HrZpyyZbG8neQE3Iq34J/cNMxPk6wUx+7pWlkklSm+IMpzMc0q888R53s/P17rN500gue3Dsh0zg+I8N4+sCUASuQc47GBFIbPqE9x/5uObDVACQOTeS0lg0Si/xKJM8mcpBBPwdJW6ojwAM5LxbLMMHsYEKUjLyIevv0syVDSBYAsqIypb6eNplLdjjik3WS2bWcMPJK9lU7UtObeBUYnteyy0ECxS/jYo4JQp2dTu0CgqWsmMuM9NxpdZqzZTp0Tq4UJ8/oSLchJlkz8RzmTeIw+I9GkGZpJ54JAcOb6Lpwij36dNG5stUU4EmiiyosGjLKczopRxFEENx6k9T8Hnndz/M2dZ6BqOR4CRq/PfrfPow0kAzJuel2E/qQTPEVkWlSCf6hS5KwFcSoDQoxbUQ3EcZWYaMChyhgAieAdQFBFZqUNVWXIswWNydq0UdYiQL9BL3G8vUKG0fiuOUhydVPwAKAYbyhKj6RJfggSh3JHSGxqRMoUu+XU3zu/Ux58aDrhXFlDReXdyj034uGUi1rnM1H7YgvmYVhkkMgo/V+pO8CvWv+Pe1ZqCX4KrEHDNQChtTHoAPH8mAJMfuxMvWY6J5Z7mxPN3ySdB6N34FMwrzlJMmdfJV3fJdt2W7sazN9i327ymScr17fq/c1zZBKLJfVgGcAYsu5zCU3T3DpzA199kNE/eUOz9rSQnktd6gQxNWsWeudpAChfOO0/85PB/sHv8CvM+7+H+nkn0XgBlvb7Ma7+RiuUr3yVe25/Pc7dpYfPmVyzbNztrNIEKr5npcxMDzeEqV64P9nw6mameJRtZmOrryjv5t0G1mmDGkKAF4MwoWfyrz3x8owHKiAnBvJ8yBzONACiaNUNhp8ExKjAOqAPDSRAbo8Kcoa87Myo2mE7vjd2kFObCjEazS9KiLtgdaOZxYJZ5IADGIsQm6HDRMLbKjIuTnQ8raFYx/IDLAalnSO9XqtiKoN4r6l1Rb4LjLqh3oNwAe4QxQUZujmYD1xh4tE4me8xe6T4w1CAnz5FiZbSWOUUUwDJGsTndQ8wOCRxWuk7CY0oaPSzDtxttFQRYAme06AIIHkjcPOu+Pp29AyT4ZYasBs8g8o4i63sUn3u8ntw2IsE7cUXpgnKLCPoBrORrlgUBA4eZtWF4awOvj4GPrwP3+8B5G3h7MxyH4fEwtIulk1sDZh9jSt5n7d6ZHq8hUT1KjaPgIOsY9ai4nQdqPVCPE+d5oh43vLzwRpkDZ8EzD8V9tcw7+TIevJQ+BDklO6/t1TpaL7haQWsdfRge18B5c1xNcLwaWnRAtUZ+lriQE9UNjzJwFUNrjtoMxxCUZsxOOTktJTgIt6ME8Tpa6mOuygQoEY2m6F5m4RLsx52L+7FabqcM/4yISWYtmVUr68hX0LLeVCKEVYS2kCvqoahHwTEKjpP6MyIF95eKEqWVbgUmhnopRs5/2ZCyL9zOTMPmcLLE5Z48nADRHvsq5g8NAN0cl4OlCpCHBjdUddTiqCBQMQANLJl5BEYcRb4cBbdv/OebALkrYDql5D1VaZF8H8z0v0f7vwUJgl1eEtmQ5PaNGFhKTtWwpWDczZZoYKhqT8kHzzakEW/akV0oIoXRfAqaiDL2CeJplly6VoxitPsQ5FBOZ/qOx8afWX55RwwJOmRmQCQcviACwRjmdxwhx1AjgIXxvSJz4aZRVpWloaUyg1ZMbt8OSsKOqUOLQ6OaRhcW6t1CNfOqjkOZLT2LoBXBmZl1AwoUXhVWmXKbI3U1OD+a6wEL2QZROStMLKcCFT6zfDkscWZSlnmeSaH34CW0QwGsjqzydN1/+8c3GqCYhedMBDmJWpFBSdSdxK2yMcadaXfIMpxUnI121ZzRYrJFFJHqZlj5FDVktL0fDrwjIE04jNX1EjNSEhxZGGFw+qxqHO7kltRsBxaUys2rFZDolXUNXUhnR1MfHW2wzsvhUwUDoRxZ4oNJRGnvoO3KynAzpfv2zRKnRDZJoGkcl77LrDd6RnbJd3Gmv+PlF9hxWNbFExwhNzS/mKQLwzyvyBlxY6RCMGy9VlLQdyWhyFWmEup+CLhvu0empDnJsZejXY7eDL35PEblTvSC5ZjmJX2OWTItyrS2B6bxGbFk7Z3ZB0GtWe0FYIUZlJJexCf/yo3ZkCzHaKdKskW5wB1hANfX0pl2MXCsw/BCld0evCNjytaUGSgOS+T50MmSwzPgG0AJYHKUKciHXONmFEIFnsh8BgBxLZLk7p4NwCuyT9LdSkvLuq4SXBPJrSbrout67pwbJexImRnJEka80C5oIXApwjlfJUtBMU9oqmwKCFCw1jqyJBrg5JmAG8RUz3+t/cUgIDIpEMCzeyWAlq/sCyVv1hDJBBUSpZnswGDFVEIaKjNLyw7mzZhDViekya2ZF3tlPbj14vzdg8SZ4m++uA1bx8jzkeJw8bmTtLvZi9xAcTlXKQTMmJgoBoKPI9EZlqdbnLNrZqsXv65uHiyECAYS04c4p1mXwnK1iqPUKMmWMku1WhDzooStxwGCssstxQ+zwwng2h8pCBnrMpOsU14lT3lyhxKkRLwja5JwSa6PbITueYTtkUVAnuTXCDyydLewUjxHstSz7FnZfjbpMvFBZvk/rq2DYLvIyqTMEs//KRmUdPxPPdmZZksDFYj4aSx2dMKQo5LGM8o6Fpsz66+GaSjTyNOCWsgm8zc5z2KCE1tGaI1kX4bx6d/TmUck48Hj0AJRDjBUN2hujMgi7AfilRCMfIdFFBNHnIuo8Fwz42Cb8dn/v4OqAAoEJ8yibKY2SjjL2ziW80iQI1GHBACTgSnaut3MNPCGBCj5oabdzKs1D2S2BRNrAVMdM+cr0fgtkIIAKf6Ul+SXJDRGROuIoYGG1ng8AZOQzw/+NbRiZn4E67Un9su0tufB1Dlk8QsyguFBA0SHJ/DKyN1HABS3JTBoRuMQ6T4VnTytNPUcoMZ1wrJhRMw+IOoYVqdRFOH9hoVoWAesKzxmEA0IXAzD2QU2DOHIec615th4gifK46/IcfJOZO2EnHIrjiC7Y2ooZLnB/d11TQ+G1VWUJZq5hLcyUEawixQuT46kRButRFSqwsBGq6J0XSqfeU+n7cmMYYL22B8iM4W/VvlcEGvPzCPAXuytVMM1XyqnDkQ3VIKUuD4BTGbHx17/SadkGxjZA7YAK7SJn2zQ+LyJDnNjxh6Mg62sqV68gxVMsLKCuChSybtC1SRh+NNVmsf/Td7fxNq2bedZ8NNa72POtfe+vravreBrcbEoUIojQ4hAggI2IODyJ8AkRCARIpR6FFsCI0UEJBQJSggplBDiJwJKIH5KAQIpIAq2FUSg4iDnA4lYiGD73rP3WnOM3lv7Cq21PsZa5zg+B+Hv0xHzaJy59vqZc8wx+s/b3va2t9X8fAVSPH1LUosSAiOq6maJhVaaOMdCvUHtDRol9ZEu0QVWAsRG874AKLJYDXWLKqcCQbl/nOMqgK8gq8qzxmUIl2WBE8l01ufAyhuQUqzMq1J5Kc1VgcsLeIfXAKZ+5ufPFyhdr0kIjyVAfdOM7y4AZbFNXIeMvAEyVWXHKlX+so+vN0DJjZMmC22GKConvST1n0zKFV0u86ILc2EWIlfJTscTTbbh8p5mC4VruneKT8p4q7xSsBkT4szvABQ+TZDS1jmEbbVgU8LrZDbUOnhn0nAJa/0mJ8XWhRCcchWbkg3YsnHcMcJYzBXPzUksqNmGIWm8JcwzeMnzFX896PByXPVzk8jeFmfPBvA0qXMkKjziZq1NT5ot1F4bi+f71kZ7NmyrHG5sKl6Tz2OGiM9M44EtbcNMW/nsGj3jPqmnf6/aJUqJBXt9+AxrCqzOAcfuPB7Gy7PxeGc8XozHi3PfnMeLsz+Cdj12Z5Oz63J97mUhnOIkLw+TawfsyBmu6s+ITiQ1NrGwRndbPdfvpGaDQUlwy0nXg6GpXVnbYEZtVVYqswSqHdQZCVBqE/YUTEwJnxyb7QJQYrPoCD0NzKaVT4lGJ9Zk1S2vbeir4lyW0NKqLDTOT+YZNVsulNVwzfFwgiX+uOXYu6YSXz1qH30DoGN/klcMSn3duiIaXWT71hZA6U0XixImYGcFh9f9uK4V67kA4kXhlGCFEhSecCbBB6sBZqValdKc+GJQgp0gqvEobZdjB0x12kY4Kghphhf3P0yaAuR6fV0d0n0lhV4xKJ7pHdMzHVs/nuYr5V7scZk1Tosu3GOQgN6yYWogKKV8TCz1ZxnHu+e6ml/ndapy1VV6lMEdXrsmCcCrjYNcNt0ErnXUupwMStNMdUikBYUELP06RqJ7smqstTEdi/JITuGy1ywGRQj0uCi+XH/SfyaaBsqbyite/3teQYxcgNe5/l7B5Vtpy/qta9BUYOXVObMAkGfKrfVM6xQgck9Qm/elggINMbNp7FGrb9pvMUX/ag/97X/l9ePP/bk/xz/0D/1D/PiP/zgiwn/yn/wn62fHcfDP/XP/HL/n9/wePnz4wI//+I/zT//T/zT/+//+v796jZ/+6Z9+Q0UJf/AP/sGveiqcnTgvnTkrfVH13xcaMSb2mXKptE1R08sMJ6OV01ulIsn1g3WIn1/7m8PWcfFpofbC3HivnEBuNisfuBaKal+dVlG5SZ+iYL3ku2X9fC3+FvbfaplSIEFOCu5O0JOqej+buFVGpLqHVilofV2vdU1XtHxe72dOc8veGv46j8kbynI9R0np9Xn5JhRC5/Jv5DQSshOpr/PPTb8Von8beVwXZCr6yIhnBksyxmvmZIxiUDzy6nlcwcg6/M2/L8eqxLmoqhejnlHeWlTW47LcyBkQvhoDi5qQtaDp2+clvJY0b8uor8mrVFOVfn6+mVmujxdB3nq/y78/P3dP3P5qWq2URVW/XdMCn/+dM/16mV+XS3W9ZOe+cAYs52Z1Oc8LA7s+q5xizcXW5u9QEen18172i1e3jDffv/Ld8pZJkVf/XkJ7kYuw+ASg51oll5R0/bv+QHJDP393jbd1c95+fQKSt74Z6335/L/r/fzNe660E76AxzJVWzJoe3UV6nKWxOv06VhJicvXstJ7r8uKudyjN4OCtcW+uhcBPl+DmhJl+/rby8+5zL23byYnCLjO1c+V17wZQ3XrXp1XsUsFEnn7kFdDi/NMXz1i3znHGlcW5vXHfvX963x5+7ulY7kkM34LYPTbP74yg/Lx40d+6qd+ij/8h/8wP/uzP/vqZ58+feKXf/mX+eN//I/zUz/1U/z6r/86f/SP/lH+4X/4H+YXf/EXX/3uH/kjf4R/+V/+l9e/371791VPJVIYBmYpyvKZ33OMSRXWTpeTbvSkRF8BEblijuiMOyt3alULnB1ywxBNJL6Okl1brInPaL5nYzJFYKbpmlVDppp+laRINsVTi5LUvVgCklXSHJT9AipS+c2W9GJODG35e3pqSJP2bRLAofpZRP+iFVjG5HNfm+KF+AHnsnQU9ZriRi4rFE5pT4INyd/0LC1G2EhwIWREc40uiw6vjVpf5Z2BzCWfh2cCd8q5RBXolEzdKWGH30nAc8kPnwAlPlM5yhZFPlKDUvqT4/BM9RjziIhwHuF5Yz36/kTqJKd9sSXnLswqEU7RoDhh1nel52sxf7Xj1lS/0t8pGi1As8LCy6Kb/5OqPmnJAAiopa7Jyl02qnmspaOmCbSIpJYIXc+1tTKW9T5rsdLLgrY+xnU39JP5KG2XOTLj9yQ3V5G6DPF3muX7gjNN6s9XOewV/FCvX0OcV3vJ50GUZJy+gFwA5hOsvAYm+SchhbOK8f31e192hovM4zyjdX1kvf/riqU4mhQ4uWyW+bOq/PMrEChAUpmTxayd46riK79cN7j8/QrqLsAkh/TrqS/rb2tTuuxkLAbLWOlNzUAoNrWcK9n/CU7WpJaDU/ewfuNVgHK9l5KB3DqfS+D2ClS4r0HhF9BRQNCk5snlqHu1AMgpPubyHvXV2vhrZGiNNb3s5l9wiJxjZV2+k2Fzj3/bK+AYv3xlv8/hJq/P6zJPfP38cq3Es6jhOnF8XdPLn6zXLQk65LJB3Vs558PvJED57ne/y3e/+90v/NkP/uAP8mf+zJ959b1/49/4N/hb/pa/hf/1f/1f+ev+ur9uff/9+/f82I/92Jd6z8fjwePxWP/+3ve+F19IA90WJa16ZKWHI34D6SCZT5aGapWwykJ6a2D5hnvHvShsTeqzUbX5uKdJWRw9J+xpkATk8PE0EzsrX2Igx8n2pO42pHXQvjbZYHni718lktcoqunYUNlQ3Wh6Q9stPlvXqPzpGt2ddWI60v2wnZu7gmZvD5M65xitcunncVmHLlW/KX69bp41Ywjmifp7zRQQZ9pAe2poiqasR9KFUcVcC94bYvBzUL02iJMCjlkXabcqWQ42VE6xdAsbb2ntpF1Ls5KrcwmN9zl4jJ3nsfMyDl72OO7HweM42I/BtsUzHVwbm5HjJO+fnEdZjqtY5KCzBHxZNyhnOetK5Maqr6UrqGuRYLv6t0Qp6rlwpiwlmWc5QV1+PafHHLDonG3DEhCPSA9l6cFwpaHYMaBHKmp6dGodTA7zLLvkLJXe2lrXmhs+YXkk1FiSGF1hGFarl6FlZ54gS1OXFf0XswqMMyVSr/U22nv7vXMIxSK8hIb1rJqpnKi42noPEzgTeg9fmtYbLdOdy32UqNX3XCfqvwVWCrDZhQr3EiATQUn+ey3+lxQ03nA6nny/t4a3ns+NMOWKn4mGwD7h+OW4Mg3t9eEtGdAKbi7PeawtyKPhZEzZumce5yZVWDqBhkvDvEUavUBUrbwZZPXSdvSzF5g2zYKA+Jn0+FzqQtMOrUdwJnXUppo3WGXp90R7aq/aWXTQPK6pB/ANnUij5Rocy0tCIHl9vWImaC4/bQWPZ6s8WyCuWfQcWulX0gWbqGxrIoQXeKcTzuBNNvRSIFFggZy7gTY5WX1nIcbcZU7NXq59Ib5PRll5g4UuDLWWOV4cTT1T4MmkupwstJP+WUbtTJ7Xv2y8umQjV07GXN5SO3+Vx1dO8XzVx2/+5m8iIvzQD/3Qq+//6T/9p/nRH/1Rfvfv/t38/M//PN///vd/y9f4k3/yT/KDP/iD6/jOd74TP1ioOBfeC+n36j9/LUpdgrBCkydf+vqg0H492zrULSOA1ZOYdELhKuIsepJ6t9QSXBkAWQNPePuoVMPKyy6cqqjEZJEEN+t1FtqvxFZ2cM6SxdLunMZnrym6uLR+vWS1313+La/+/fY4NQV12OVrzhRyPesZwVTkEt/TV9HL0vvJiY9qo4poonpVnMLlVz4MhZbePK4bna/XiTLJOWdURI3JmHP1rhgz+1hMW/n3ayfna3rxbPO+4s2cqG8H3Hl6r6KUN/fiVSfR671b91LeHPoqzXMySCcTtxbp5QJ6fS4G4fo3+W+5CEczIAir85OhWmPo8plKh2HX617X/s29jDX4qlU6v/7CkOw6bt8e63eu68d5XM2vPned5DKH9TKP9fz7olmu8ytuip6/s373i37vt5xUrHKPBJmro+2bD/w6MZKHn+vjq/XwC/5bFvX1tuvSXVmI1H9cVkDQCwuRjA6SG3Y1Ejxf+PXaIwugv71OogU66nvndTiDtjfrqZx6v/XJLvf8tOM/rfnX/b+u1V/09Xmlzmsq57WNfedMScnrs/z8X7/dE5Il/9x4OdHrq6VjMXasG3Xe4cv90/r67fqxfu+LrtN5XV6tLdRryKvPWFvFAkCcx9sp+Ns9fkdFsi8vL/zz//w/zz/5T/6TfPOb31zf/6f+qX+Kv/6v/+v5sR/7Mf7CX/gL/MIv/AL/w//wP3yOfanHL/zCL/DH/tgfW//+3ve+x3e+853sxRGboeF0jI5lJ+Fs6lf0oE90TmQOZA6iG9wIO/A5cGu4jTiENKQ64veu4ARfwyzs5QfKQeOgSchqG5Mmk47iWU7b5SI6EoU00pJM0XipCTkXoRP1txAUqmVKp60NpTaIuumL4jVfPgRzGrMBMsFaRnxUbHdGfJcNlUueGa7b6oUGRi5bg9dLXTb7BAUF8pKSmUVFXrhuu77+erla4BKQXBgc7JxYXDY63LOKYUT6ZAxsePRESoFeNJeMbskFLqZHszVPUbQTTEWzyXEMjr0xjsGxT8YxOY7QoEQbA+L5UpBQRVICKxe8xJFyEUmS4upkfU7GLFm0V3fgOrXrjrx+yOUv4FzPaiFRFcw1WBxXBEMtdSj5vDogq65Xk/Ro+BzoWaLGV0vzG9Tk5xmvNMHJMsSVOGn1qESzPHeL+UI4oZj4q3LjeOFzy1yL7vXr6x5NRnkFDC7lpaE1YUWSXTOil4r43wAYAkjLAtDXWyW5cdSIPW9EfsT1O7y6dm9gSW4ICFy3gSr1Ln1JpDNZkfsCBmu7eH0hru8RDECc3nVjuZJ3FxJvbUgFgAI8vukLxFkGPczDG8pSmsUlHfTq/Xy9R5xPje+aQL/FVXoDdrjeowU2TtAVnzGvV06QYBDC5Tma24W9PcmUXEF7AXNRv8zt60Oup7U+22LV5GQ5ruDsNTjWV+Bfq/niBRycYEVevfcCrtcF8i1QvvxlxaLw+lyKfan4va5bAY01HurvvGZyjdcaeZ53zdfd+7KP3zGAchwHf/AP/kHMjD/1p/7Uq5/9kT/yR9bXP/mTP8nf8Df8Dfy+3/f7+OVf/mV+7+/9vZ97rfv9zv1+/9z3Zey0CTp2bO60uaNzp5mDHzlYg8pTn6hMNL0x1C/K8axiEaJPiiJgE7GBziNp9dCaxICLgdPtwO2g2YjXt4HajGMmsWWGzpF6lYHYvICdunm52NoZcVSdmWdIIbDSElpH7+sIQzfLtEUPGnhFWVyWSYkIlyAkxS0ZiJmt2n2VrV7JhgVQCj2sDcISbJwU46utJ3l/ceLcVZBLZ9Qq+yvdCJU6qlcr9ktqKYzzWBtkC0WNiJwpKgeZDeZERFExXEnWa6JTUd0QnYh2kPLk9AsrExMpjLPO/krHlGhHUAuupQOwn/xZlT9G/5u43rEaVTrx9eGrGuESayR1XRHidWE+I+N6vGERriFRjqXq8yGSeiY/G/K5O20qZlFi2y38Slq7iDFz817lh3WmfonTL8IPuZ5aDo/68RJ1cn5vAY6KCBOE4Enz5n296o3fak1eR5G1KMfXVQYqaFZHZEWG22I/XsfiJ/WtyYi0rE5abIkudVi89srPe2qnYtxXDl+ELKuuMeHrHkn+XUTPtTZIsL211GfQcuYA20rbVkra17pxHquKce2a12GT8+3VBS3x6uW+1qi7bHhrjtZudNkAg6XVXIfaeS6VB7wA3RDa+0oZlDZlbcbJ8Llq+M9opYGi0qo6LksPjVABxdLniV4YlcVQJAuzNtUz9ndKyySIa64rsl64AqaFPlzCpC3HlLgvgH8yRLFBuwvtso5dWZUTqJ3uxQWwtIK8TKVHeufSCNdPpvl1fbLHeK01E0GzNjhKzs85F23E5DK3U1OSMdMqPsj5/4oYt2s6JgT/pmSBhKw1R+QEdV/m8TsCUI7j4A/8gT/Ar/7qr/Jf/9f/9Sv25Isev/f3/l62beNXfuVXvhCg/FYPnQc6wOceX+ezTAfG0jfEFKreLrZAilwPMnVTYMVBbeA20aztlywxLoDSbGI2aTZoBUws+tyIJYMzZzZDGayuhtW06Zo+glyYC6DkolKjllpU2zq09dBQJCgpgMLSVtQgvUzMROZei0qyQkanmkchF9DkZ+zu63unRgUIIWwF217i1NdpDYGsDtEEVS1K73LxNM5Nyr3uGqEJ4lx01lack1+154IYixs1ycYId0fJVJdEl+TFFrQe109OZ7UVkFMg5QJQDIZVe3t5DUwyKgzy5G0E42vRrpG4WAYXqtQzoukCJ2uLDBgpejm/19ES6wq/hSnnpiEZ7ohKjP3qP1UL4GJQZD03KwfYADAFTioqigUqz+iLkIK/ASn15QInoc5Yms1cIK/iy8n1xpfwOcZXjJUSZL8BJ/nOi3lIWuBacbM2E3sdldamvO5A5uTxNxU9r6LYAoHnZw+F7+X6k3uz1WZVty/mQPz71CN9/pEfRCR1JrUJJQAQ45refV0Vcvl63ZVzQvm6fzV/LvfwAk5qJVgg5fJaS8T+6kh9TurfCjxhxcTVZidZWp/i2bgUef1j3ZAEh2qx/rK0ZAlSeo5hhfKfOjsxn2Do1fm9XVRWvjnF4clOiV+Y3Msdid488TqSlFO8n13AyTmu4h4W8JNzk4c12xcouYyxM1Ne6JyzAjDBSa0D1DmtlBgnCP6Ccb4COrt8TWi+VHJOpsmfXAFK/kwvIEUvV8fz3yWQDQ1ZMijGl378Pw5QCpz8yq/8Cn/2z/5ZfuRHfuS3/Zv/6X/6nziOg29/+9tf6b10/4Q+Gnbs8Djwx0dsf2AHIC9IC9jn0ln6C40bWTdcPa2Fq9MrRncJC+cxsHHQBniEyxRVpeLIMWjpNXI7DrZj0MZAjwORI8bSnNjjwczD9gOfIwDPHImOO65ELbynGKtFRJCtP3MhieZ31lscW8O2jt025u0e3hpbQ5+eaE93+tN7+lNnuyu3Tdl6p283vG1hh++GjhbpkKHLwyCQOVRpyEml16bg6Y9B2l9HCmVFv2UMVpUZ+WhbAJPbuy1cRntVIOWGtXQFtZFAGHvHS898tYhIM0LRjYroZoqJxQRLO3jbJ3YYfjj+aTKOwa0fbJPooHq/B9tlnsA2NwIP4aPRmNIZsnHIxsHGoDNoDBpTwsmyFt+4bxoATEHVwVsCQUVNsanhUz06PjZs3hAUsxvueXAjehFs4D0XVF+LJpXL96vqyZc4TYTouhr1nMlWQV7s+HZ+qwygmnp+nYZQy6wm9DhawuME61ULXN2V41uCa/R+Ckv0fMvSk8DSElXP8aK9zw007kHd59I0mOh54AsQVsrA67MVYEguXTRsytNCF3LTU43GnKoVPXLmJjTGQ3TMddDTwXk1hlsAIEHl8vy5ThhWJUTsi7ai1Fy6A3CZoOnXsza0lca5pGhabMZ4jzT2vgUzK47PFkZ+veFbi+euS8tV7QNqDJkJNllpTxszOrmrYmrLKkUauBi09K7JTXQBTYlrLKnElOahld02ZNuQ7YZsG7ptwZ7iq4x9pdXgYoUQgm3NFFvbFL01THsshdqw1uj3zvbU2e4b213pTWji2IwFXrdgVhZbuzRteXi5iEeRHRL3f864/ofGWBCDrcVY6Ez6NEyix5QJmAp0Xcx2DAFfYHEBmxwWUsyEJxCoqs1kKUq7oshpk2CODEdm0Ll+TOwY2DHT3uBky3MyJ+MePE1UfspK253VnRLeKtH5Jazo8z17fq0TfEDb04pCZFWExhYb4zwYWc+Rb1juqc31orW5zo/f/vGVAcpnn33GX/yLf3H9+1d/9Vf583/+z/Otb32LH//xH+cf/8f/cX75l3+Z//w//8+Zc/Jrv/ZrAHzrW9/idrvxv/wv/wt/+k//af7+v//v50d/9Ef5n//n/5mf+7mf42/6m/4m/va//W//SucSrAWRfsn8fXijAIRupCSURgymFbSe+2lsanAiVUp9HWtwu9BgtYQ2TjZhOGwOm0dlTyu0m0jXq6Q0xCFQbExGKFobuZO6gPNmri7LgKnnAhI9bNazZOknMVnObpvJmCwH2lDFW9NzvyOpYWKBrfMuM6QCcxDfX9RisgPKmU9engoZwUTmp8JH1mLxuYWDAijUdnWiftd1n+o+BiMQzEeVWJPIvMANEIuQkVGRZ2tOT+BaEegleDpvM5f1iokwvA44nMyrx70fHrn2OsKg92Q25O0LX7QqIUGJcz4bt9XieYIR1jXmjOZcLpqOfHk/53/cNlknEMmDy7gvtiNf2K8v9IrnePsG60TW3y1dST6T96six/Pjn67M0SE22bjLea3rdonykYhky3jO5GRUlhzdr3A4/kzP4XBO3isOWuP79Zufa0GlNnwF3ueLcXkRzg8h5yW8ushy+VP3GsgZ8qyQVtZ9Xvf71a3y1++XKY3SwESKcQ2t8yOt+5WvfxK5+XW1sajv+fq+56B67fJb53Rq1V5vO0JdvRq+18aJr66/XJkrP9M8yTYsgzVNRit/ubJX5U+jyURV1uVzhE6xXtTact6M6yWta22XDxV6mpjXM69BVJQlc1ps3eVelIC5BAQ1BOqaweUmXa43dp2LuR7nfiYXH661ryxzvLfz+/WgX4qkxdxzLS5cIH2lcoi9ryr5ml18s4QFUBaDIjXm4901z/sK2F3O/eLLPL4yQPnFX/xFfuZnfmb9u8Srf+gP/SH+xJ/4E/yn/+l/CsDf+Df+ja/+7s/+2T/LT//0T3O73fiv/qv/in/9X//X+eyzz/jOd77DP/AP/AP8i//iv0hrja/yaBjNBc+ojlW1kYtjLaDCirgmsibxVfRZ6YxCry0nsJnQ1w5W1FcUnMXvC9Ph7nAjy7DydZYWw18fRZ2qGSoRsdbGA0XFXQJKzYV4gZJsOCbxPNSZIrhyVr/oGdHrBZy0pDxNY8AikqWPsYlLKdzyMy9w4jkijYhqrZZLqao3Kqo/r+na3iIdk+yCdInnLaLY2sCsrnOsWlxXMylwkq/lRSG3IkvjvGpTsBQoW2+UGdoZjsxzdaMAYJWDrzUBIVM8CU4OFw7nckSDyGHGkU3Relb+LCMxCXO6t9TsAidZgviqcdsSOssal54nVFUQnz/iSq++j2tdqJ2OtXG+NTD06wSAy5i9bmy+0M/p8nu+lr0BKVV9kyHT2jArbeYJTspZ9rqEVvUHFWWKLMGx5hw+XVXPJmz+5shB8eppff0WmVzBWa0FFPUev3fd7F7vaGt5ON/Xz3+f8gU/f+f67FzO7wS2175e52pSr+NvpUwXcCJZ5FtDzs/0qQXYSrS4gIrVeuUnOxpBVVxftfKOys1nnSSfv/9v7sMCpX75dJdrWSnDVuCESg0Ei1fFOpFuSzCgZzuI0kXVa9n1dYX1WrWsXLfsmhinKeb5uE6L8M86/Rdn3tgp5+cTyerDPEziPkyRpWnLnekEna+MGkv/5+eNKTCxutUmMJmWvkmWPl6X6sXLOKznADhwesu8ASn1XODET7BYwVTPnzX19J85AQoemqEaz7HmnzLq6tPG5dy+zOMrA5Sf/umfXhHSFz3+aj8D+M53vsN/+9/+t1/1bb/w0dnYtENXujW0WzbzApcNdAPZQHqkdgRMZk7adKHNTpw+Gj4ajLj0OoVm4Q2wuRSsQaTRCNt5kUbLjpo3bWyq9KItW/b1cc8C9GpPmR4oPunS6LSo9iH7pvjpQFsCKMNXh2JTj89ysUuNSqH4/Un24LGDY+wcx+RojemRSmricW0QaI4kv+cycnGpbQQKOKyvcoAXwIqdyBbqv6ysNRg4Nz0Ib5cWiN8aMou+htAYlEj13AXE22WyJR0rWQklGuLjnAbT5tr0R5X7DosmftOZMzRD5kccNsLkb2YJMR4LCjPa3ZP58GPHUD68PHj/svPu5cGnlwfbfeP55cHL487Whf2x0bojYvHcBGmOHwMZUT0WFvwXx+HslSTC6vaqc2IWQEcrlaLBEKzmcG+ASC0Kg8sCkDtg5ZVlXdsSCmaSRTwrBtLkT1oAZ7GMDEvf4Kx+ErWNyNqnAsyJLEHilFM2V8zTnhFocZvl7hyEnGUAEK0QNj3Fgk21CuVpLcaBeLQYUAlLddMrWHoNpMLEzdaw9LJQr42QUxuk6FnVIfHe1LkslMLr3a4eFUWue3CCvreYKASDvjartwDpvLdXYFhN9s51YjXfM4+boFHJpjPs592SoTkR/okWM71Q/cmWEsJLnHkyDVKnmIaTtXF5NSOeJwtgVUU4jXlE5dsYkzEy+veyO4jqME0AEq07rgZfLKa5UF9ttssAcRoyQ/wpGUe55yj18zg3YznTbJnGblIgidXEtMrAMaH8o7imiNBgVHCm5zW9jsFct4th0SgbWgxDANPXcEnePC+gtsAbrxlZP0Ws5b48CdY+mPoz9FqShgVI3gCVumZ5HTqwXdaTjqT7eJhtKhHv1QSQvJ61JjSiQGGBv6+CTNZ7fo0fqp3WNkyUNpXWxmpVDQFQRDdMNpavBzOfa2YZ2EA8TMti0QqzHaXhRM5Nitnw09Sma6DkheRVrrrUU0y2Ol2e4rbQTtaGUAxARSCX/xaJkDOo1sd6nyIayAV/RbTGtJELhWOaXW3ThC4+JyfwWhyT5+Ltr0JCz4F8MlOcIdllAT2/f1lhK8pcKS/JaKFxcR17zcqsD3YZ1et34QyrYukXF8LN12OFqWh/Wuzag6RGU6yc7r+rJcGCZuUaEydtTA4btHmwHwfHcXAcgzEGMw8bA589XYQbNiY+NbUhnn1H5rkwX44CytjpdnxusrbGQ6zNJ2tQoAC56C84KV65gMsTJhQzVyxdqDajUqDK1auKRNbXZ5VK7nAXMaZzbdrmyW7EX6/Gdk4u4tV+/bzWtZCLEzR9Ao+I3BwXDaLLQkCqHpb3qic78EXsSbENXlcjr+sVaJ8MyWt2pFKrV1Hsmnec24ksZgTexqyVQhUu4OQc3TmniA3aa6Ncy8DnXu/V48JWrAZ8xXBYXJ8ZjgKne2wClJpWcsl3F1tVm2S9pVyPS1BySpPkEpRwpidq7mWkbxn11/MVoARIyXNKkXCA49o0/c2l8LWsVFC0zs1SFLrO+fKpLsvRq68vt0+uPxBy9ta51fMlTXQ9NaP0ta8YyvVmi0DIQYSs9H0s71Ve/PooN+P6WYxBuZzHef5rTLwB5v4K0fzWw+p6v1XOc6p9J4zeJHrAIUswWxeyUpVOYjo598wrpv+i9/6tHl9rgNL6E9v2hOBMOdjuyvbYONwx/wCyBSiQW5QWt2QvrCf4iHx/pDU2xDfUb1GhQ0TCJBBRrfLguPCbEnqP6nhardh7HNo1ULyCzIZsHdk69C1uGEbTnkeYrblINCd0u8CFs3QsKndCrNeb0LM2X7SmUhlcTcyUMQ+OYYw2GRLlbdYUMQVp4ckSOB/zcYINm6zSOk5wQkYgXiDkqq8x4+wlU0fFyOSonyANGyHcMqoRW97Q2mkgR7IGcCQXCwuAEi3na6PsaxHSMWJxHPX+ZFM+CRfTA2TMLPs+oDxwfGI4g2QBCGCSPQ54McGH8/L8wuPdg/3xwvHYGY+due8hfN4bvg/YsppjE+gJxEb47YT/zsz3G0yPY9hBdBKemEfLhsXwkSAlA7l1kF2Ng7On0iJXgMJlAROyqmBtCJ4ZMUldUzgKh5tmpA5FLANITzCT5aKiWTlSzF5iQHGOBDAuwUIUVNjd2d14mJ0Axd8wKGT8PgOIuEAXQ0WjQ3R6owwL0LKYmMvnjgXykgrJscNiUGqD1RRj+plTF15vENnZuGXP+bY2idwIa8PnBDb4CU7WUM7PGvMNrunEFGqtTbYo+AJOuj4Lq3Kq5oKbYzNZlGRLSNzRWujTbICPhGKaV7jyIDNVsKu8/QQp5wbvCzSWXi76e2VEnELbRJ6RerAcu9Oizccxsd3wY+LDFvvjblSF3Qq66j5wsh6rYkVONsiv+cISeeamGLqt9Hv1YINOEFUNDDONnzfKtVJbtgKhxTDW8lWBKvWacbiAz9Kd5GtkE1l8reInEFsi9xxP2f37dC+Oo28t3YudTuwzszdai3mqOolPGS+8WBQ/QaLmHFvpa9Ztzhly+XdKCy4SxtD7xNRna5Fq7QKb6+q9dqK3wryCSApkVcN/1y8j7IKrfrvH1xqg9NsHtqenWKzaZHtubI/OhjPnB5AOdEw3bBpN90hx6JHWwyX6GqhvqHeW7TMO2mNee2gy8UteU1P06RJW0JvSutA3pd+Uftel0N680/dOGxutt7XhVwlcOd6IOp6d7U77czlL7FxX47Yu1Qs5u/R6sgfMNJ1LZiBzyGGZHYvHykMSufzKecor1dwlUiE++/INOxPKi3YuNfxK+3BhCirnPWOT8SEYeUEv0U01VDQPUCYIfgEoRWPPBCiOINpXhBdAICp2jNRjIIvGZoCMDC/nI46xZxqNV8f5COhiCDYPbEYVFmnqFyBnnl2Jh+FdYeY25GDz1EhBVpOJ4TJxmZhEmqqu2boHUhGmr5kdpY167oAO0C4RrZ/VJFnqutYDv0oEc6E0X5S3FAry80KczeSWXJSlE5GqivCsrvFTwEq6eUhGdeslfbEes9hCj7FeEqe633Eacn59GY+vgrDc3M55xPVD53W6PBtZTePXT5Mgw5fe4fR9qdmSt2JFw3UeS822GIiz9Lo+n1Nwbf0MELfUIF2YgMv8LBYLThfrs2lYVk+NYioCWELp1GD22DwDh8gSrvtCugWD6t7mZ8oQ/Ay+i6W4HjlGpgfwGJbnEj3gbQzsOAKgjKo4yWYFCb5jnBtlG3DqFs7bt95PPBif+v7wNedkBiOo66akXtCrSuZyrnXUgrbWvJxD1LzJayDn/RM516tiiwoAhIWFQHZSdyuzxUyxsOKuxQCdjQe5MOOajTujs3brThM9iwyWF1ZHdNbgz9Ra3pYEkpapT1unXfP4XAhKz3TN9bxiEzPnpq20KcmemKSMr5B5ghNlpcekxGN5m+vrL/v4WgMUbR3td1wJL5J+hA5lOM4Nqm+ubmHQpYZqR82wS1+FqJy5HGm6JFVvXwuO2hpkkspxKefNdh7Vsh0ictcqO83Sryi5iUX5c0qx32KQLL+lS2pnGeZcIkSp8GIdNd3XSvMqp/vGvSMWTLekxPNCr1ULFqe9aMQzxXOmds7NGCZrRck8bUxeIsNWr+ms3HYQJbVE+/l+NvPnTpnQnQ2CHD+OEI4d80L7x8brrsiUzMuGCZ8UuLhwva82vvWIxM9bp1febELnBpgRTEaHC3TkGUXqznNjr1z8GeecS965uL3aFdfJXpfyusfntnleurz2a7M+j7eUd4gkYZn1nVj1vL2Xa1ur3Nqi5fz+uu15Dp+zqC+AkhuhC2tDXGB3Lay+XvMcipcFPj/3GZ3lX+TrVt8SSXrDzU6xwvUiXK+xrJd6fbHc17iU2nouF0nWu+fvSl7LTOfU3729FwsUXM5Frv+uc12arxPMXsv/XTz7M/n69XOoFki53NPXn/4yvmo8nf98K/av63OOmUpLGualt5qLWXG7fr4z/bBAQFFp68ZfPrNcnut7MxeMmf4jHsz10lZYASvOeVmMbxV7r4uQ66UbC2m+ut9+XiR3ziq6SmcJLpnCKnDiBVJeX10Blk9SQYbcXGqDXwGqEuCrTOfUagO6oHE5lx/8GmPG81UAcl0elvQhr+s6QS9SJJ7r4HLk92qI1HJ0trbw848036L+5ks+vtYAxdNJMRi9SF+ED4CFiHJFevH70iwOD9bBhiHd0e5IO/1Qrsrx4LDg9SAiuK8pp+BkU7hFZYrcFG4t3t8U94k/Gn5r+C18D3Bl9OoOm+r75su7hdLIZAl13GtbLIunPYZvDt2RXiJe0jFXo2Yf6A7NLOraZ0Ot0jkKPhAfiB+cVv5RZ1Eftx5LiZ1zNdI9lRY6N2z31LW7vVqMJJUd6iP8DjI+vr6e1mKS7xWNyVjvUYtJRe9YdT/1ZDVytbxuoXayA82MNo02D9occdjZyMp5nWmCYKo2oGsq2BOc6pWzTHbjrBBba+L5+Yjf9bznUyOAtRx3pier4hKpIC9wVNHWNFibRF7zebJVjIzYPTaFYGziVdRDJxLC3PC9cIt5MGdEtzbyOb+Ojstk1HlWECxF3hLjZbdv4zRInAkafCLJIqnZMtSrxd+lyI9MbUi5iJYU9xLNLqXnORCvapMg9y6bRm4qXmwOEtfSDeNaCRG6rav41PLaSIvx6Mt0MTVMPhfw8AqL1/1+DR4Cw8gJzBbAd06t1zn6KmI/1Z31vQpE6kgHbGakpJORjUahxlTHmjPzULG8ivmf2ILD1JiVqBC0XJcyQM+lzpcwv87XOVM1BcoXui1gn0W5C4hfP1MxrHXp/EyFLYbWUjs4M4jUBmPAOPKwJVx1j67yfhz4MeIYx0q1euS98i0zJJiaWolIkSPCnGHUCc6cGldZlGkDJ6wazKK4gJlB7VTIdK7YOE07bSxHV609STx1JlwCVC66Qz/HVF4XMtgKgW4euc4U2K/7shhxMV7pBvEFJgo8nDinWE3OMel1nbi8ej5exUie1Uu87q+W6VCyUOWrPL7WAKXMiU8BU1ELMdg8GRFE42aVq2A181oOg7ryi8WjNHyNj6WcJnXuS9B0NloLn5FLfxwNTYliq6qnjkh6n2VyLcvnapcMy+yTBjW3LI8Oqq5yTF7i2yrfJVgfSS1MNgBKs7coyY0jNpHlsO7E9wvR54Ip59iMzy+yHAcdSsJ9gpjaiDO/ehbWyQJ1spL98e/4G8nX9AvpE+dRU66+8ivVyumVUOC/yk9LTFYpktoH1gLMlaN4fbyOdc74RNLEbC2ql2dWUiO6AQcIZnk6LLCUQKa655Zh2NmM643ivSLFBMq+qrsuIMXO6HkWULRK51ksumj0qCLobXsjXrSk5y2BS31dAKW0Dus5dQZWJdWkwJdzIw6jtgubdqHU455dmQg5xaqX5xW9UYkIWc9rjX0T+J3j8PJeFuGb5BgrROzzEt0nWDkrrPK5bkVpK4r58XNsrXTcmgrXzYIv/EmcQyWwLiv3wuyn0NnfvOaZfjhTzqGPW0vgeawplwJUTsDH5RzPnVDW0AuAJyezlSe3BKBep3ymMGoZES6gKo8q2W6c53pG4nFH30brlYQyPwEaXkyohXlZmrMFy5JAcsyLk7dRTt6vZ39ey2JEEqgihNmjhx5vzpkARZijRQUkpMDeIsCcsbaQAH+OqNCbGRC4h73D5NJe1mvVYKXjLe0F1lS+YItiw1almhVb4kt3soD/os3q789/r0RPBgJFa5wj4VrPWazgOQ5Z9AqvvhsNauMvaq11Z2nnarn/so+vNUA5rXsvX+slPVOQVAWq+VmJSrVSOefGsArtaj9wcMvytdxEVWWVIFaJ8QIpF3CirZZU0oJZlhVz6U4CW5zPtXGLFkAJ0WQcKaAVD1DRKlK6AJVauHv+u2uINTd9BVY838c1AQuSwCBByoXVWCPWuNCvCaIK6tcAP4mLBAcrXojf6bFaSs/P2s73qQIdLyhSyIii/6+IKRfYnFy1GNYP18a1JoS8ikzy6iZQ+TxA+dw441z0pe6PXNmh8+tYQLMKxU/TqdXbRDgBiiQ4LVdcOTddONdbFnUPZcp0rfJZVRFVnp60ttcKhyVDIbl+2xuAMqNx4pivmykOWwugzcuGnYzDMogqrRG5cK7Ftxb/s2pj3ej8gAvCvtms1jW/XP/XP/fzOuVQeQ1UEpyYn/TyGss1AhKcvPpsfuq3EpDJ+rO8DwVOXkGN3BSocXw+3hCP5+/Uqi/nwn7+7bmKr+/75V8X9qEqwNXlFTCJMXZONV2b/mvQAGcAsM5zMT0nWK63r82yrun6rG+AxcpKXpgfTdBicgKn1+vKebNPeZ6/AiqCLzdjSQAikzNY8PheMV5+BSl+Acq5YC3YVyW7PuN+ZysTCAF7MSiho0mA4jPmowShLhOYJzCp0upptvSKM9cg9CLnKXCyQMrrTF6Zi65jkZcJuK95vLc3yddCct7hwhjXSVTj1M9rYpcfLwlJvfxljK/1Ncd1wb/kzc6tIT/Hl318rQFKy5wcQubmWogmm4OHtgSCyQi9SEzcaODmawdQCUP1sLmP581C7e0eahVINC+nR0J1v+ytsaUCO44AL1We2DVskbt62CMnAorunRa15erLSEwx8MGcB3MIczqHTMacTBsMm8wZz+ZZ3Km5GapH2moDvYVFtN5b6mMSqGyCdcH6dfBIjm9NMw0/05OQJj4JQkZCYvEASkZEy4napUY/1fYsN4kWKTm5FViUVfnjdkYghbpjP7N8//B6iYF/WQnXGdZGWBOStfDHC1SU4sxuzGZMNQZwSPp08GbS5UOJiaKdGFuJXg2LRSwXo2AeFGsSlRPu0ZjObSneJblVF2VTZZPG1mJH6apnkzByMS5hZH3KiyDZLsDEPdIx48KceOprPGM01wQoI0WLleI5JmM/GMd4dcwx1npuc6ZI+awusiX2rWuSm1H1ItEYAYhFKwkPC4Dui/HNzTsr4FLTVbR3kX8qlV7LZ6nO4OlfkXO40iK1ianHHIvmbXIuz9Pzemlei0xppS+Nraq087qGbmOyIG195pPqOvVQuYp7AvNamD9nrubx2WoUlxWCJECPDJEv0ESeM8zwl1CjNadfmMyyW7qps6mzSaxnzS2uvyfg+pwuqj5FbtYlsMxSKbEQnHptmEmOkb9X6ar6HCcQqp20GrFaFiA4W5OoDGmkf1Xc7GuJd9P4HW3xnn166liM5iO0h+NAR/kh5To0Z3apn4s5ec2PvoJjazMWN6ZHGuyY+bUbbUxoUY4vOvNawuEz/KlmjLmJLoBS4GSMyTDLALa8hWKnnmLYEOZhjHVMxmHMPGJtMo4jjn09z/wezCHRbmTGuLDUEYrFfDyrrzIluwBq4UFf4K3c2KcLY1Hm8fuFg8TDMftq8ljXcHoYh4bD9hWkZLXdNZL4bR5fa4DiXmiv6LBaWGpCn/BQPOhA9RBv4aXtmDSf2bkxu91ybq+FlFdcU7im/vP0fcg9uDahFVlY/Y2fx4okazO39X4RaZTz0QDTsEKHzKuOzL1OZExkTtRiAYruMWfZZFt5Y87+IZdo5Yt2Y4GTFLl+/0oFZkQaBhuX38rrcklgxq8W0rlULZX4K+6jLFAhWn+fj3yvSkVhMRVkUSdvltbMgb/qgZEhdtmO1+/F99589i8YZ4saX9HcawHcaZg1MWsZecnZB/DCIIidm09cr8sGt35wvvZiRuozpfAwIqmK+sf6XbNK+xSlHec7M8ks5rgV2JixWa90TQJeL/auAJ9QFRdXIS91HWtjLUZEWN+r+bPE3lJDx0/pBRe6n3idlb6FV1E5+BsGJRHButn+ZtG8Xt8KLP1VmuZq7HaNqZ0zrbD+tsaMFCC7jJlXE+bNiHr1QSSvS36q+ux6ZR2+4OX8NS5f1YQquVlwejHJ2+uW1yZfLUDT9R7Up3uT/BHCZIxYpcolp5aAusO+TrpWRs43f0XB1Ecu5jrFn9U7aXnscK41xZTmZz1fss7ScupkasSvVg3ZrT1B4duFrZIXBsuTrT7PslNCLqYD4emzrppczqM2+ss9u16CxSlfzj0kh8UGeVYD+oXZq3tk2XMn0rNzFtMZa800yT1Fk7mN+XrmEfwLj0r5XaW2CyDXc84lSwBarlnxuXyNzZobK8V7mZZnkuirPb7WAGXV/5M5wlGRrGPjIESaQsDvgYwdnTtt7vjcwXaYO80PmjvNG8pYN8zK+xdhiT6zrl6sGltx9i7IX5fpcUA2d8pj2hJN+SpjEco0rcqFQ1Q4YOxhv9kMWuRU5fFAXg705UAeB20f9DHZbNLMuAncyMhJMrMjkUaqBW0tSA6nsj0jNzvTW0IBjprTnwcpYeLloV5fIsAajLUA5yZWKbZchFYzt4rIcjIskFOQHFbws6oAc5G5AoylMcmv16KUC295U1EbnPj6KOcE/fw0ang4XGq0JogTec2ejDEyYhq0Fg3HlHD/Le+TABdJO1c6pkJS5wQGCRSW060duAQ1POfBdAtH2dKjzGMBlMh1e2pQRqR6ajP00BBFSmdEjj2rLOYcmMf7mY/FzFW+2de/jeCxa7AbqyO45nxQVgS8Ul+L4YNKhfjlWlcUV+mAiLTzPjkgZxro1ZbqBThSC5P/Lih1Kjyk8EsMqVx0Z25mMze0WGR9AVkj1xBhbXRroNTmuTbkM+XoazxHynlt4EoGMJqRZM2pAillDsdqq1GVUa/0OcKyfo/sbmzO2i7Xf22YJ1irryw/p8n53evIj7lz2cokGr5ZGktaTdxMC5c/zprj05DzhuVrXhAKDZEzPS7VmTm1e9UpePW1WeYceRHcIR21TQLAL50ezmRyYAycIVF2bZUar/Q4ksNA42cqUWiR68tQxYhcy5EppzCuyBVFTsgXKbXwuiG1fdU3qEmsPUrK9pLVA6cbdHO6WXRbr7Lp3DPCNyb2Ihsz2M5jMvbBcQyOMTmGZAYr1/F2MiSxrxmNsqM4f1bOtOEOW3q+y3jxHPP5rZnzRzydc2uPqGCg5h++wKJnmvAcXZfKzC/x+FoDlP3xYP+oHBj7PhgfP2Efn/EXg9koT0uVBnNwO17g8Yk5DzheovPx2OnzhXe6cZvQ50aTZFTswCwraFKMFU2sFLVGS2q4j0k/JrpPeDlw33HbYhjYxF925HkPYDGCcvRc0OtoPiOFsu/w/Ix9+gj3G3PfsEfHpSPD2L73iafvPfP+4843H4NP++Szw9hmuPx9ownfNPgwnfs+ghLHkhuPUjiZsYhoAx2DNmeo25PhIZ91hRqyQIN4pWVYJXsBJGSBi6vMgIoTl7YlmZMS0XolhHJzcgIM1mJWiErjvTXzqSmpDH+ATEfNlhuF12LuqdHMUvABOoQ2hNsUnkx4D+twziip4FUD3gFP5tyOwXYctOOI+/TYsH1nPF4YDY5H59CJSmPvW1RZudN8JDs3aGOHcTDGzjEPjnkw5hGptakc44GrozsgWTKZC/UEXsbOtAQoc34OoLwkBR6rS+TSu0SFW9fQA/lM9qQabGKY5HKucUS/ovNKSIscfqRv4lCPqhzRoJXVUgOVG1fuxjmWcsG8RmgXzYYkeEJHbsCBNlcn3qbM3NhHqkHFPHpxmeYmXYtqoyeYyJ6Sa6P0RLGx1zkPd17ceeDsWD7H+TZxjtrMkUgFUoI/SXCe0s/UD3kOnAW2kxlUQCV1OdfoXzJsF5BuqEWKpjfPz96Q1vHWopdWHtBwi/Sy9QbimJZhpCKboFvovbSBNl/pSYdYl5ohmyE3j/zmkMW0alUjbi0qEnuDreG943k+xQiwBZjsDmKDph2Vg77duN02eu+0pq90gQKobDS50XULQ69M09MUV13XeSYN7KIZZIR7cRgDGjvGsxMmgSlynTb55JNnJi9iHAqjC9w0Dho5QcHD1E5UIg09U4PSe+YnjNHj/I4m9A4eXUti7Ercr1uDm9Z4jM9wU8XVUBM65V91ui03FTYVPojwTpy7O20YchjyMPxlRhUWk/k8GC+D8bJzPB4cj53H44X9UI7Rk3hutLSbFK9uyBMlU2yZ+lEPacEmziYwG2zqIRO8RGu1vK8RK1epYQWeJ0ip9aI41krJB8COQP//NQBl7oOxH0Gx7wf+2JHHjuwTnS+kgXdQiXPi+wP2F2weMAKc+NxRO7gZbLPR7Yi8tSlh4Daj/HUGQGlG6E+8ItFov61jBvjYB8gAjrybE3kcyD5ox6DNGCCWCFyqKsQ9zzE+h7088E/PzHFgRyhkmIZ+fGF73rm/HLw/jA/T+YEMZhvwwYX37jxNp+0j+z+E9sRbx7dcELXFYlRpotrsMqKPPWBxKGQ+h1VxU2PxKjFP1qOEnfH7JGMRX0emwSuUOG+ms1I9nu9zyRSxQsz886p2Cb1vptRSLWiaDgfO2TV4kgAF+hBuFscT8ESAkCuNW4KwLX9+d2cbkz6MdkzkmHBMfB/YMZil3diEfjhzQDUxi8z0pHnZ7M9kQcrq/sLIWOkhkp3REeyGCNOdcSRAWYJYw60AijNmRTwR+ZUXwdVsalUwlI4io1FagGUaiyGsdIZMVhuJDHaXgeFqDg3JkuR90WI/Mnok6HHx63CJ85V0iWV9nf9IpiEWvCypTHHh9Oj9A86YyrFSTAHopPmZ6tBgIXDHLZvO4dH0kVODNCUbcEp9XSxcDqNkM4JVoNBPbqDXGLHGd4WZ+burIsvXsK55EASEp19TGIy1dJgO0WhWfIWQLhqApki/efQ+Cq8lyU7hVTmYGg/1tFdPPUILjVTbEs/6qftoXdA8PF9T6nmlacM1WZqmQETR3lPL4eGC2rI/WaaJTlPA8EDtEjoslYtYXOs99MKiXJN6kvcjOL2BsTtR/UKkIqYZuxm7O8PzPirQA3xptvxYa54GYxMeArnktARUQgCmsoRIPUx6SC7X1WKs6341ApTMHEAbAeJu9TfEGrEJ3JXl3KUWDDzD8SMlC8w0vJvMo9psHMw5mDPNOKmij1PxEXJHYxl64gskCF4FnuvcIz2Y60aN4zNOPZ+L4YaL6jV+t8DLAjG1dxQLeE3h/zaPrzVAsU8vjJZiwOOgffYZ28dnfJ9gKWgSZUsPg7m/cDyecTsQ29MV9OAxD97p5P2A+7GF/fzUADHHpA2nTUOn073RpLG1jsydNg/m3Nma0rUhnz0jD0Ko6uG70fcXbs8v2OOBHUnRK7SeVCyOPsIG2r7/zPEbn/Fyu2PH5OiNR1Ngw4azfXzw4Xsf8Y8vvOwTjshZfpqxML7vyrcO55tycPvNT8gG1jN66B1ud3R7QltY7Ld5RI3+8XwBKCk2lOJQcrFIkLC60WaUiCe9eAHRua8Fu5HsSMxIDyfZ5njzdB29aG8dVmdUONfxy3vlnhtRm8hyN2wSkVCqYWOznIYf4APaLsgUfCjfOBrDGj8s8P0cT3deA5QSx74H7uZ84+PgXTu466B9PBDZ8b4z7w+GC/tTZxOj+WRstUFJWlKnqBRbVQy1wYmci24BRL8AljHDin+aBUCZkyOrE9xDDGipizlmArsiVEWwfnJheqng0lh5A4C3FuOcRh8OW0OO3FCN2OwOOCyaCTZ1rAEjNu3dsx27Qe+xKd2acPrW1O2XUwOyqoAI3RV+ETXHWJEwncF6Q1p4egz3U/A1ZTFnZuGceuR9O1RocRHiHCDYtelxro3FoDwLvAi8qLB3QTv0LuxNaE1wV3ZVhipTw3o/Fu/G2TzOT6Bdk8AvOqcEB7HwW6ZR9IJxLFIFGqL9kpomF5jC/OxI7lEQEGzGJDTZlqBC2W5pmX5r3G6aIn1ALaNg43Zznu7OuydhNMW6chdlE+FpU9pNaZtimyK9IZvSestihOjcXg0F4xp08A1vUY7bWqdvjXdNuUtu0NPpmXt9543hnQ/SF2u2NeXWlK0HO9RaMEgiHSRYGyXKc6fBmM5jWPaJScbFItX5aU4eM0CKC6gqt1vnft8CxFpfFXHWEmQ2ZY70t2nBTDFBWvzMW4wxTQKmHBM2gZtEMGMe5OOccB8BNPr0SL+L8y4rQXs7Bd/vVHincCfTO8fEHoP5DEMdGMyXg/nYGfuD8Xhw7A/28cIxG9MdkQ0VobdIwwpCd6fZpEkE2+qxFkdxhnFTZ+RCd+uwNc9igFxDClA3AtDmdFrSsxmBTFVIFYSsgoSwIAjeVLRsOr7kBs/XHKDwPMIodh704+D+8sJ4eaHvE3xDJHrcbAiMGXT8sadRT/U7iev/ZHCzMDRrPpMxOZBxIIelKNXwmYuRdpgH7gPGI5E72P0j1ibeZqQkzGnjQX/sbMfB2GNzMIleNANldw0NjTnz+eDx8QHff2F4LBx7E9QUH459eiCffaI9P3N7fuHdY+cH9oN+TESEd8152gebgfjAuzGas3fFemfeBu020da4txbVHDbwvQAKLJqu3HsuOWZXYUjW7nvSfQ7pK78AhOYecvWioBneBNtiU5lNM88bHYqHpUjR7BRYZbdjSVZAIPtB5Dmu0S6xkHgyJaVaPzx0PAP8iO8zjQ8IA+Wb2vkhCa3FFaAU7t8IduUGfJjCNw7hwwPePZx7d/p9oi8WltPPhrcZ1+meUVkufKQouHQarhu93eh9ctueQIS+dW7bjb5tbNuNvt1oW1DkhqfAezCUBDmZzhFNMis2hjCHK5Qo9N7QraWbcWye7ll67I64YYfAaGzqyOjoESXHWLAnrUfu24DRoieIHDPo6G6gk8PgmJ5VbFF9Ibl49QMGM0Bo5dUpUa8vAHHKUzNFUkjxXCfpXtovXz1xyuZ7pgaMFl1bLRvIBaEU10tGVgFhPBx2EQ6N8Wg9+wzdOn7rzC3HvVdTxAoz47pVWb7zetUNAH8C7ZpWC4DnfarUZ/zfMp3sNLPQOOPJEyhtjHClni3HNylfUpS2BKcqym0d6TRAuA0USBIVRhNGV/beVn+km0ca4klkNYRzL5M9z+7hMf40UwdNSjo6UI/eVtNntOZw4b1N3o3J/Ti4P45ovmrO+5eDuR98OMZq+tKnc7c4j5sLmyndoru8m9AHWIJw2T0MOrfooxXGcp4NEw07HB8xDjYXbiK818Zoja0RwNejQ7gnW2Oq7HIy3E6A62ytxaZ1JMAgQPAN4eZkmxWH6YxjckstyTTnLh7gz42uwqahb2ri3CSqrdQNHwe278y9Mx6WwOBgHjs2jkzHRwdUkWDbWgtQa0T1VkycrDYiAqRr6lxS9B/zFKzl5+mkGV/m6WUmo27IVsFmVXPlGjRDg2Y2l4h4QnQXL+YSzfcMXc6XfXytAYo/Jt6cNh+0cbC9PLg/Hugxwe+J9BubSxr3HIyRToLMkPx5XMAbkhFgLNyxax4BQsqp8JhwZM5ZW1RPWPR1KRfR+fE5yv600kQerqXHThuDNpzZI3Kd2UFZPFTYNpz5mDyeD/zTgyEwmrBL0OgyHD4+4NMz8vJge7xw33feHyPK7ES4N+cmRk/NjGc57bEJ1jfa4bTDoxxaFZsjIvECKJXbIHKoJ0BpWE7iqeWqWCwKZ6TtF5Ftsh6L0mu5CGyhFwnwpZlPDh1xvFRMjiAjTx8KyY3J4aQgkwIm6XsMZAiam5Yelp3sAqRIbohPuTF9ozW+qaHn6JzsCcRmWCmeDeGdKe+H8O4Q7jvcbs72cPQRDsU8ZuTptQRuevrPZEQddtwEg9U2epvc+g0XoffO1jd639j6Rts6rXdab2lUJZi38HwgUhHlgRBCtFwY8rpXeb1u+RpblJvHwwI34YgZrQFj0vAwuOqTdiRAMdA2aT1AdJcQE0qb6DBohsnkmBHR9qZoLuJiwfC1nuWSFp9jtTUQy8qJAiVn3tos73OOnyJNkogLKtrq1lffqUiFYYmZHaiKqhwTDI+eVuLsEozLIQlQLPNXW8O3BCxoWGtIBBZLpSqhJDjjxnoueluWzsav9yWB/TW9E/NFFuuo02gzwExj4CLojOvd+nwNUKqSMK0PVJQN5YYEMCE3VyojFSmaocJQ5UiAMokgrQN3yXQDceKSgEzL0VWgVeqycqg24+dZJSY6UROe5uQ+B7cx2faDjiDTuD8Oxj54NyaVfGxm3Ey5mdBN6Ka0eYqF24Ce3SnkAJpjewhkPXvOREWd49n9U6ZnakV4p8pojV4AJTUr1jT7SUWKxPIylbnYTZbf5QInXaOrbwPS0JuecgCm0aexjRiI5iwG5Y7RRdgWmxE6kDAHNTzTN2PfmVs6nEu54R4rwK4FVyTsJXquXZtm0QISIlkxqrf6Eq3n52tKNJ/tV5+uyyK+dGcegQhQTRtNS4geGgPHsoGnn35dqTeEFact244v8/haA5T52cE4jDafkbHTP33k9uklNiVpuHZEO5vEhJCx04/I15tkrTaNhiAJFqbFBWYaYx7M+UCOB+0Y6DGQl0DkQ1qY97jxmAEQ+nHw4nfQF4Q73RrkxsHcER/IiGLgqZ1pMbwbhGgxUf94HDw+vnD4YGrUwLf9QI+BfvbM49MLx8vOfPke+tn3uX/8iDxGUJjS6TZoGlHtlMmhhmyKtoneDN0OeihVA41Pg+ORGx3hVZJGdAugtBaTuEXKyUQZ0laEKLkzigfN3zzSPt1KCOkZoQjH5hxN2FV5NI37ILJSPDHxqtSvtC8sL5EbYBL5a9VKE2myLzCGRLWUW2hsRpXwpf4B4UmCCfiB2xPfsgebCN8YIzZP4r0qMrqz0enceOLOnZtvPA1l24X7i7N9shCm3SOK9Al26wEayjWr+6sS6iYbvRu3G7x7MlBoW+d+f6LfOtvTHb3d0L7R7xtkdKTdMRscQ7GpmIUg3AkNiozciD2gnYsEe5IMCj3TD5V3F+I6NUX6DCHtqiKYWajjbNtkHhORhm0Hdgxu++BpGPfDuN9iUxgzO5hqAImiNR6ujGNwPAbzmFmBN0/TuNwUwjch0n5TOZ2Hmy5dxaZpnihcnIRjIBosE6/pLMH2dA/zuen4Y6LdaZvw6BLMjwgz2RMRhXvH7xujRbdtmyzwV5U7mtF6lSGXHmtVM3hElxGFh8jb3MN/psQxLstfaAnx56SNgY9kfLIpYN96UPZJmvsYtBH+Jg64hq6jieZm6dzG5N4mHecu4V5MpiOaKq13dLszpTHF6CO8oO4YzYWWIlGxgVbqKgUYmtYNbRoyBnIc6P4IH5ARUkrFeH8I7x8b77Rxt6hc0WG8//gR9gePlwcz25Ro6zypcuvO7RaMROuOjmBVtxcPW3l3tId+zu1g3jL4ET8N1p4n+pj03Xky+IYLP9w2bt05fMIIvZp5rGtOjL2HhsYLWBqkLqc3y9ajaeutS3jM4DxNuDvcUgemWSZs5hd2KoDMewI0dBtLk9M9dIwcB8fzJ3aZPHzw4hvWHNPJse+MIzRvPo8AhBIeWjcvni3SO3H1I6XTzWgy076iFuxINbcWDW7dGn2L1GakAbOmTY8AQ82YW6wxJhFgqMHh1WLFE6CkLkhhSDAzVaYc3kZC9y+/x3+tAcrxGOw+EHvAOJh7mk9NA47Mtae6vTwcVGLjuAqvBFwak45Y4Ds3Z3dhuqZQOXKu1W9kkJQywu5Ky7bjj2MgGVm5B0AZQnpKgEvHs7uLW6eqUUzmOqdhEzse7I+DIcYhg/Z4QfeD9ukTx8cH43FgLx/h8YyOEQPc5aySICk3NUbS7CITHQeChSAKy/LnjJo9WQmLSL8WYyidSEy0nYgsKtVD0tJ1baYH49Nzgyj7+SpvPKazO+wy2WcAlEMip2yljM2IaYoufryAj7qsSHE2jwi3aHgT5ghdT1UjLYV5ih4H4F2ARu8b9w0OGiJ9lce1jNTvLtzY6DQ2uXHTxibCzYztGNweO+35Jcr4NkFsQ0aPygjbiD4pG7LJeY0cxBT1TlNn6/eIDlujtR4NLVP8GN41QOa6tQtYtDBHNBihvEbmYZ4k4pjlH1UKwWMT9+wGGxmg3HBSi5KJ9xi/2ZBMUnBMi3Cob/HasSw3yJ4vJh4pyukptIuxGL4OE24WGgoyRTiNqYrJTAO+EePGk65nkRTZIoHlg9H0FL/GR/QcnZJjgGgIOs/80JzOzLSVPwbaAqyMew/2IMXFnmGlt2AMR+ZlbDrHtLXZnNUMOapXiX1c3GA2shQ8/5PS31j8PlVVlfPm2s+qUio68rUB3R8pdA0RsVh4JTVCu6PJoDSUzaJ6L1I7g80bN5E0rpNkIRLY6xasqIYuoblxw4JRJgGsZ+dajXM08VXFFQAlfJl0zGAMZp2Tcz8mt31nE6WVNcOY6L5H0FUgDpA9Uoa6e6Rm1fHNsZ5OxXsayJljLwfThGGCHA3RTBuml898eUTxxH7QxqQb3GmYdrasrikfHFtp0mBFjFgHgoULlqQqbzYk02iSKZ5I0WzudPfK47FZCmJz/dxY7WvXs3hc0jZBsshiPj9HYCmTQ3pShpNxHNiYwdQ+BnIMdKTuyyabjxjrLkxrUbGpyaBIpmkqL28zQJ4GaLWWRRM1l9zXtSwzfs8g4rqea905OcvWJxFczNS6LT1haY7t/yUMyuN553nsmL8gM/N2x0hXvyN54I51jeVLs+TJW4ipkqS0TFsMaZi3mIDT2a0xs0FOrpOx4bjTLMCLAYdLlB3PxnZMTI5YtiwW+2AbSkm+4bKBbKsUGZEQULYEKTbheOHBZMhg50Cfv4/uO9tnn7F/jEjUHjs8jgQoWbqXA2Z5AeT+My3igyj7jEold4uCI8uUYwIBsiuoiqamLxb9meLOh4CJM+T0EqhIWxKcaNKd3UrAmjlLnH1MdnF2cR4SW/hAmCmahNwvJdJIVRW0pVq9uTCkISI07YhEltVNYwOeGm69WQJXD28xeaJcNEo4m9+5e8fU6Jq+NER5Xveo9LnTY9HX0IN0kajokWPl9vuRfjqPjr500AM57mB3hCfk1pC7LMAU+fkNF2ULtIh0obUtSjKTxQqNgiWtnmyBhnZBVVITVVFtVJmVqkFyY4sNL1bbsqR3i/w9kFqWAD7i4fIQFHDQwqoegkGfUd3hDdcJOpDu4dXQAqCYWRpwZQ+i7IkiBwwdDFGGaBpNzSgfHhYeL+nvIqlFEsjqEaDHc1URnYZYdmFQCqAYUwWtZodOOHo+RlRCPO9I7+hh7JYVO9NWJYR3XYzh4VFFMYdxzHRzJnVKUhuiLIdNSvxrVwYlkz5Ziu/TQnSebB6VqimXz6qgmqHxCa+iGfoTZjCxLQClzkl52PdkFbsomzttOptbCFTNuHuI/KUF8yZZSKB6Y2p4hagMVCx8lcp9do5suBnXmx6puWr+2Icj+wwWd7fsaRRribrx9DK4s7NNDybaM2B6HKFpmZH2dAPVGenSbvg94V+NMZz5cOaMtWL4A99iw7Yt1gOTUECYzRCUHwM7DnSf9OG8k46KMJpB+lEtgOLBPN4zaeVuTI/tuZX/FUrP6tANDUsVnI3JhtErCJmphXGlESmorMXMUuOq2Im1s03Q3ZB2MD/7xDEf7POZh21YipvHyJ4++0QeE92NNoN9CbAJmqmWMYVKlLcEiuW3xPRoZugWoLa1EPxmMFR+TTG2R6R4iSBksYVe1Xix3zieAWUWPLRIic4WuNsg1rivopDlaw5Qfv03dnZ5cPMjct2jheWvAXKHVLnLljWQEnGWkxdPwlvh4Y7OiPh1jIhwjgf78wM7HsjjQGdM+MhpSoi2sgRwAuobao1PQ7gRFOmduLHSNbvXCkdXjqwOmNH6FZrjt6ySaRq9ajD2OTiYPCxR88uEZ+HlWTkejcdjY1rDmNB7VubcMBncZDCls6nRxU8fkqn4jM3jbgUskvmXMp3q2RumL5+lEPXGZD2QoEUzs4nXphibhpAsB2FSJPlcwtfDJ4cZR4oUF60/LUtOWUZRs4J8c3p6vTy7sK3FuOVni5RH7BqN1lMc2U9gZjYWQAnfBHhWZ26RZ701o65A+GQIXRSRDUED2LbOjPKrOO/D8JfBmKGtOPZJfxnsotx25z7gjtLujTka1Yaoa2oxtCHbLcFUXFdMYQqmsfla0qNRMhypK023WMuoqCjXNi2V9ZaNj0PHw8VXIvaHWJRFgh9bfX3cc9H0TImlh8mMzYgCOBJ07XSi8oKMRO0i0bBM64nQb8IQZRdlRxkxaWAktkKXkLWAqnE212xlhZ+MSQxLz7GXg6gYUSNy5AGNMYexT8bzYOyD+WmHPpFbNkXUGGRdE/x5pEn78EjX7cZ4NsbHI+73kcyQ+RJOVTn7cqRNRmaOJRRJcWFsXKQviGShiBtRfXhk75gxcvMOHQczjNIYEx+xIZMaF3psmHcJi49No1pGPdiNTS0YwOYBPIjy2s7kpsbTJjHkNKHtDDFq8xAiNyvAmkAh9SrVEKYND4frI1gU8tL4SNHvA9wHY8BLtwVQ9mNEa4YxWb22RmyO051DQ18ypmXVFOy7RQ9AE+jBOs7toLeW9/80RZypN/Q56Y+Dd8cEDwM2dwnRvl8ifI+NdmiyYxZBpRVLpx4296vaSk6hOTHnZMT7Tpvc3HjCyt6wCITsyRN7iI7wB+mPSBn6MI658/KpIR8H+nFwU9jV0/E5GOg5IoUUEoEIR1FdzHgx/DZz/kqk28POwuHYYUbLhJZVPE3Ch0dGrpmeDErqpkiLDHFC0+cZ6JTGMFkUT0L27LeUDCLhvdK/Akj5WgOU33ze2f3Bzfeo8Q5QnJmKCU3CJt6dapJX5Z1TWAPnkROwe4qUbGL74Dgi1y7HWGau1YdGp79yPYyKHeHTcDacmxt3ynbawmQoKa+Rx6TU/5KLNEH7egi79unsbryYYS+GP4z5MF4exr47x6i1T9HWUBrNG8Mndwsha7eoeFmZEvFlFnXLqhd1icU5q3Y0rYRUstBfZCF0T7bDkTSrSgYlmMF8TrFf9u+ozs+eDE0JYofDbkkJeqQ6WQAlosIRf4IbK8Vzc9gkAdApUYmoLSd/Q5fnSnFK04OyP3Be8lbuHp/HUjhYhQ4xwUIzM8hI08p3JenvjFIPEbZpTGC3xjYb46lzb8q8Ndi3uL49qnqaBANSOhtJqU9cPMU9FlC3TO8koKzeL0KliuL7ZidDojPoZc8eKlbMggZyEMmyXgtUGQRZKvxTd5Mu2StKSrXSAiZoAJ9V0BLfik1J0yky54UluWMKpMOuaKz6ntfXLIBoaMI8FldOsbLmHU6IfTJ9FHOSgMVYZViOh48EcR18d+Y+mQ/jeMwUTAuyzSgx1dOXIlRiZIrKT4F8OnuWklqSyqfYR6trHhU4lswLCVpK8BvCcTmbglowaz4TnNWzeTQILX+gMdZ6U+XTDlk6Hs7Rtzy6VKNKo3vk/ZtrGncl3SOx8Us/U1Y2YoFUlfR8YjVPrd47gZN8+fCURbtX9+vFJlmAzhFzRAxeZpi6uRn7DK+SMeNzxjydaI+eNMdhUQmyl1YkAEr0/hOsDbQ5bYfRIu3lBMAJR+b0B7IAdTIshMM5v1FWyrOynR7Le6xtchrzFSCODKBnXyhH1k9Y7JlarAu1RlzHspDXJhmmJbwqzxOcQ8gq0kiJHQ0OCXDgwEGAtmkhREUkNCb0SDUTFZGTBMPCCaC8UvFxrPVOiogL8LicqdMTiwxAsJM5Ka3Vmot5B9c8lagvi7D2bXDx5R5fa4Dy//n+R9rxkTuPsCOnJoaAPsKBqHVstCj37C0HXupCMv2yT3KR87ChnxPbHxwvL0kPHqEod2E+iseSdGbMVTqdQCOzFPbC94wyb5sGoYPSy8VQIodf+okSiPrQZXl/mPEw49MY7J/tjJcXXj574fnZ2I9I4QQ7AU23WFiH824amw/ezz1dBI01KkSZZqmzCOpSEXrLbrqi9C0iO+1+bpySJbOaYE+uw5GYxYm0vVCghyFTlT8mNxgLhsUCfkw7B/qMaXzqC4TDycjcFuDZ0FC9p3GVIVHaZqR3idInaJOkFwNcvViYOj2I6g2TeF/xgWBsWCr1Zbm3usaUD9dcQX3E9Uqw1Fx59+hsrfHu0bndO/3WeNec9xjf6PDD72/cRbDe2FxpLcaASrA8LVQEnOLgdHtwwU2jhTsJBHKT6+n1YOarb4dYuFCqOTbjenlWtdS4F43SUfO6tytDkFFy/kOrDLZ+T3Exmmve2kyXJpixxoqoqj5zWqTShkuAABOODBSmhjB1JxxAXwhd1+HGnnotXNgs2wyk2DoWvtjMlr7IPbUymdYahOC0qOcJ9mLMZ+d4mbx8nDEFB2y9o5vSugTlrkLXNHeUWOh9eughds8ARZeep5SzUVHjTI9KpTFjPB7HqSvRYgM9GvxplZwnYzSGM4ZxDOclO0oH0R6fXIfG9EvviWq4uYlwV9ik8U7gnUS1iIiBzwReHuJZitVMLUszbpvjjQDjM/UXFVwQlSBqRKXIBMh5NKMJXljxRKuR0NzEw1PrcAxnPwatNV5aQzKoeXE43PlolnHfZLPG0Rpj64z9Rhfl1np0C3Z4eRhjROYwxquhzVBNL5Vs1+A+MQ6qDUP3AAs3woguMqeyqnSiZCdribJPgRMszjTn4uLPLRscbimgJofGMeN+z/Rd8gFVXee1RgEv7ul26+FPYpGSHq74ATycfROeN+X5WRMMBfsgAq6RHj8A6xuiRm+yroG7Mnwy3JPoqAq5SeUidcR6EWXOsYeFzqbGchpJWiWKCOFw0k0z5+j0AidEs12quCDXRwmbyip+qD5bX/bxtQYof+kRdNQTMzoQ50bmDqIz7Llbxy1GlvQAJC7ZZ0GUKY3HjNcTYmFzm8zDOI5w7Wv7pE/oJuyTdCzUVxGFj9hVg5QPOVWU9ym3h9MPp2/whESXYdewjdYobRwjNptmwkbWtLvxsMGnMfj06YXH44XffH7me9N5Jhb0RvqCDKNZo8/Je164+eCDRx18qw8HQC4GEAM1z3gblnS/0PeoCNJtiwhBiOuXWoCW5lkisXlDRdzxPK0EqwnGsBB8ZlKo+YNohDjWguYeaQTBUzEfa8YDcqJ5MixC85buk0rTvtqgH6aot6iyyTQPljbRMvlkB7sYL+q86Jkv1WwYeTdjE4mydANDGTSOQVTM7KAem9fWPSNT4f1m3Hrjw3C2afTZef8YfHOf/OARG9m72Tiss1mno8zZ6R5aF626lUj2xgJOj2ucTlCiWUqognio96eHdmm3AIouUS4czqvF0CRASI8H1+rqDLY6gUejSSF7iWQuzmZtNgUqDd81ytJnW4s682R0IscTC9oxFSF0PaKWpfjO4crhaTFvwm7Cp5CqMAz2GSLTgG2RjrhVKiRRygJUib0bmc9PYKWEkDECAFheMcCelJ8IAcxbWMRvXWhduW8d2aKO9BEtthmb07bY4HXqioAtXW8t9VkTZ6ds8Z0HFTTFZiBEAHP3TClzki8v7hwWQPqjTw4mg7Gi74YGMBahW1rNu/CUKUFmRPYbsGUFUKQpYmMs5lZT1zUsKpiqq6Wb8jBL2VCkH3QS6R4J5uVdinfNJy82kwEh2JAZ3cELoJBKopaBn7qxzUn16o7Kf+fFZ7j4ApsYt2nczflgUfb8wYNtnu58cg0GgQKsWTlIsX1Z4opFH6wsw33y8EJ5Z7LMHSNNGz4oUgGUywI1oQ08UxWisfbdVNm08STh7YGd7EMpjkjWqXYWx9nzX+EzHgBD7ECnss0ZVVUi7FjcY1WeZ1teRV3SuwTPDEAkeFKuvoS36Z8Y6ey8C0YEAiYLo1SGjiRdyZ60qFwyDGKrqu5FfTEnR1bJlTN0A57ceZIoUW8Zt7dklEoMvgbzl3x8rQHK/5m1TO9F6R4K6gJ5qK++A149byilsTCyedQUeExZ0Zl6CA+HxYY3TelTaVFpxcuKyCXL7kL3EJm+ajUY3++Eov5ObKgbjQ9jo7VOm1u4QHrDXDmys2wfwl2cG46gPEz5OOHjdD4N4/88Jr+J84modqgB2c3CtVaVdxzcffLBz0F7fdSgnSRiBvqFmrsxg+q2U7uyrK5N6L06kF7QuUkuiEkvmqYGgmRmqgHcZONAPRxsPfIyyThHfnqTNHFUeCGirMOckYyAuLLRkkGZC6DsC6AYH2j0jHSnGFMmH33noc4zAfAqv9xs0t14shkVOlnaPBEOcx67MEdj7r5SVrceG8zmwvsJ9258A1aTxg/H5DGiUuR95szFG5s1ujTUovx9yx4dInFtYhwKrcpWRGtgBkhpAZKaEGWrGENraZwhniTEsJWag/D4EJWwLScGgKetdxhB2elRkOyF5w2MNImGsNHJ9E1QJzKzI+okI7ICKEFtTysWJhiYiTKQJCSEhwu7w4tJpP2mL0Zzc8m+bpEGKm3QemSJphIgvQAAJEBBUmfja7OZRIqv6Ho0xnVrYSzXm3LPvjP0Fqma4bQsLdUpqFdeMXemZKMqTTKkvFUCYJvkhkVS7aTnhdSGRnZPOZ1tP1KbWKU+JCNUo/ukVwd2DxPHzVJ7VxqgyQIolnoAt0y75pwe5hyWYMsE91hvYr7Fa4tFxU8TZ0sA0Ig19WHOiwVAfpjx7LEJ174sl89bbFdfn+ZkFXaMPa/BZsbNQryMBQvVvdYrCe2YR2HCSpt46mWkwqHQQYxc0ApH3ygPjkjjxfvXxixLb6fr3CtjWPe3vGZaCJFVV2+wIXG/6zXW5+aMDeseF3B4SHGlAW7bOn+joYwKLgFf7ER4ukRAEunuIuaEqCra8jNk3B0MsxQ2kLQlKab2eiziezFLI6/jBD5lkYMBe86lke/V8vt1/UoOUNej3m9NlC/5+FoDlBf7YUSeUD0iWWLO8OpKGp0QlI5KR7Sh2iOKlHSO1MZU4ZFTKgZIiB2G7gx/ZurO4Ts6FR3C854GUwjhUatIwoCwVGpk7QNCRPnbFtT/7akz332g3zv9vmFbMChz6xxHAJT7gMlgctDlGxx2cMwHz7PzUT7j119+g5e5c9gB7OFBBjy4gTSkb/yGHagb35i+um9WMYvDilaui0mnYNVZGtdm6jgoHUkAuLtUjyNdA3tF5RkFDguqOhiSmNhp78ZNCqCEE+9iUCyijg6rv8uzJLtuoRNOmcoq+2vJAU0iXSAINxof5p2NWEhokct+0cnenJfuvLRYuEFghhBsG5ONSCEJcY+HGcfDmSZMn2vBeZqei4HwjXHn3jrfsFswJLPzjefODz81Pr5s6D745hZGZk/audNR2bjXYiHZP0NaWNA3CXF379nkkXUUmMCM1sKHQvXAIjEfS26L/Ipkfl3c0Wpnnbb37p5zAbxZAvdIe5JpmzEtXU8zjWQWy6SmUNPDh4aZoyBaeYNQsj2mOocKD4QXhBeHj+Y8G3zfnBeLAOHjlKzOUI70q3ny6M2CKYfryt031RXRqmtsmu3sH3O4Rcl2bwHQPBiOaCw3eWaARLmybYLclN6V21253ZT3727ILUGKA9PZt4PWQHtQ4jJjNxKLk3LJHj7m7O68eFisf5JwrHZJfxhn6RcQo6f6YuI81Hk0eO7KZ6Ic6XhSs/RBsG2N8L2IKhzBpyPNedidl8hesY+0QTDBW8NnZ84eJfCuyXA19hnaPVL0/iwa5a0tepGJDMTHMjp7eFQICcL3cD658DwjTfMZEVBcg+Rit+rrzuls2nJVMk7dUZ87t6Pz9BjYY7AT/jymASY+G8bLhN2iXN1T2LtJ3JebZDWfG8MK1oTL8d0FM+dOMJcyqicWMW7NYAzaOLKEe4+qLTO6d+7plXWTsAGY2oJRwBg6OXTyUBhZibQ1o6fDtqBpJBdpo12EF1W4RRHH7anTb0JvEax4l+ibdg+RV7WyqP7ixZAqG/hG88Z0TT1hjs3LOqkJ0iTpOt1yx1IF64jbKt9HskzeJLMF4d8zNapBpwc4LYBSy9OGp0MuzB6sLar4ICrdpENr6NqNfvvH1xqg/ODTN+m84131RPDQNETZWPWM6LT7Lfo5bNtyCxyqzDQJe6R9s0pMIMywORi3F+ZxIPeBTEVMuT3P5d5YJa4i7cKgnBoCNJiG7da5vdvY7o1vfHhHvzX61lYp49w2Hkf4NrQDbjbCbI0Xmg3a3OnvlI3PuB83xvGMjZ3Jy5lbkQAo3nqI+Ux5zJeF2q9DonwmLOOI1xFPwJQmDWvb0oKEyY6mcj3bpEsMH0+qb2Yd/JAQlg5l5UBLICjuHCm2qrLjZMCpylEl6XpP9O6pI+O12CyucvojZDQkwMAYaJgoeQ8TuYwKh7OiNb8K1SzeIKp8MmJCTrdTSFI24oCHRjRmKFsLIHHr4dzr3RhqHDrZdXI0Y3THN0XvjdY7/SmEs61VBBI5Znp0o+23Him23rK8NgBi3Mi8fgRoqKS3+8DDWWsxKEFb+2ocJ1u40pYHggtpwkBGm9lu3nz5RDiOaQIUl9xONP49c4P2s0qlhMkHwp73O7oEs7oFP9zDZj6PkSBzosyMLI3qYKtpMx9shGb+L/yGkpHISh9tkSuXFvXIYqEnqChySKQ6gpxSpLXoQ7RF35m+NbatoVuH3uL+ZXfzlaKR2GzWwq+XAawsXUKiwwwpJd4vvyVNUu/j65AGkuWyesQGyoyYOl4rHChC/xPCQ0eSIUzzw7oO6VbtDu2+RZXf7QatZZpP0r/GopGoB4MyRBjHZI4Gx4GMBrktigrH1vAWG9wYjTlnaIcmPJg8qLnC+v+VSbhVSCeKaUtha45Xj4SxZjpTU7xdn9Y8WJ/hAVgPadGWQHq0jsjxKzU/ym/DUw9EpVkkGeMCh5ZaJgM/lnYFGQyNa+vZKLN1ZWwd3Tr7rWUFnfE4jL1N9nYwWzhZl3WvAqKd7E+YKcUo7+W+hQbqXWfblN7hLk7Prsl9Sz2MGy3TZOqp/yJ1JxrNgayHXcbRqqAhBdZJY2imS5vBtkkGHtHHx0rHJVn1MyTXlrlkBOYt0oUemp5pMPRkrp5EuGmCrC00ja4SVW8OSotx+P8WBuVH3v0Qd3Webj01DiyAMlFIgNLvTwFQ2i28TiR6UJhKApQjFx5JJsFhTsb+YB4D3w0JFRmPT7PqYum95SJXRsIV4eeg0PAc6E+N29NGvzU+vLuz9bAWdhGsNeZ249NujGmwe/TcmAPsiPTDPLjNjaEf+WB35v4Zfjww+4xYvCbItt5Td0MO5eAlNBacUUytm0FptoiQM4I7S2w3XDveo/kUkjnW7GZq2pKyj1c1Mo0SSw1DQgQ5PSJo93iN2uzcTrOl1znry8N/qx980S9en+OM9szuN0JYyBQQXZF9cOG5OSTFPWcBFFi5BElmQD2AQGzXuQgITuO4bbFw3Qy9OW1zZp/MPhltMJoxO8hNaE8tnWI7W8uS0DzPxrl49fsWAKX17CDLpfJHsow2GarxwPzAPNo1F+wr9T0+kR4C2ba1ZKDCewT1039HADRkJOaESU6l8OYyGAtdx8CyBweEJoHc9JxYUHcCDD48us0+vMAJC6TsHrBvEGm6SsMojkvDshmfSQgJwxMi0lWqPSpVRHLBh8DnE2kRoASdY+l7FFH3lAAZptF9V3un9RCHt5uy3TZ062hTHjrCsZgToITLchLjmumLEhy4ryFzVi1IVAk1TdavfsaFeSJ8TtLdtVmjHcbctzMIwZFUX/pCQaFDmmqMJjx6amryjFWU9u6G9g7bFi06JLhMtwDUQfsnOOzhUWPDkKOHtbpG2DVVGN2TyRPmcWBHzPsx4JDJ8LGqIwuqnEnvWHe6NJAOvWfnYkfmgdoMPV0LEXETQ9MoxD2ElsUKHa7s6eOKbojecBWiu1nqoSg20Ne834nvT4nXD8flXEMz+aISPW5cRvhXOdAd3WL+HLeObB29bQFQpvHozt4nRzuYrfQn6VWEID39dbpm64lO7x15t6Fb4/auc98izfgewko/SbyqrAk/mmB6ovJR8DSsRBuedhbeyg0rUqDV+b1VIYjDNrP8zjIV6zmWiR5LSAQgKhWkgFoLFsiMA8/AsapzwuH51jRaXWwRRLhI9CawMnxsUQ37JR9fa4Dy7R/4UT70zu3pKdqMizAtbbRxSsip/T20G7QnDmkhjk2A4ursdsTiIy0V3oF6xzGY0xhHvhaNse9RLeGWPUdiEbD0kRieQkeVtJcPBmW7x4B8f+ts4mxYoHxtjNudzw6LsuKHMffBPA6OY7BPo82BinK/fZ+mBz98hADxGDszqUxjW1HQ9KdQvPM+SbiZy1UtaZF66ts91Ng5AWqg9dYjqrzdUj8SC21rSuvKrUcZsnjLiRAAZWgo0zWp1GZh+VzLlM1w2z1mMSJfCoH833xEIiui8iA6oxUpp0osvQ3OukiSk86EcNQUwhYbtu4z+1IY21MwKN0P3m/KUzPe3YTbzbjdJu9unfsWXa+177RtZ7tN3r1zPtzh/Tvh3uHWIrKJyi8iTSdKu3Wkb0jvyxY93C4jDBNatH3HGLIxOTAP1YLjuBRkLl4vALhKo9wiK81AMomWmzZW5YkB8iLqtxwjSoT6LTM6cT2mTEwtGMR08txtsqtyqHK06IEyizWcbZXdk+6oSmqMsrpFPbVO2uI+ZL2rtmjD0Fs/KeymtM5Kw+QXAKtkfGb1kLesSGsBUNoWlVf9rmxPje1+o/XwAuqSDfBmiNndHNVehEbQ6WmIt+WbDY/3bG5hRZBppnvrtExFPBF6jM1S76XOvbV0Ee5wD7+Ll2MsdoExYAffR3rSxIDtatH/696wrUVPoU2WPfvTh+jv1LYbk1j/djqbG5vP2DwldEp6zKismx5eLGMwPhrdLbr1Jlvt0rk9H/huzBdj1/BhkTmyHwuMcWA2kbFnSbrQ76nB2zbatqEShL8e0Rn+yQb3u/J0g1t3WqjIs8dSsmzSmbIx+i0KDW4bfbuFQJqGjGBsdb7kWB2rYk713LB7K3M2Z9G4s3rverSJsAhE+rvO9nSjv3ui/eBTgJPtFr4wI8JAcUdtgG/oFLorNw/hq2w9mnX2xthujN6Y24Y+bbStcXvXuG/KrcEHY/X96WQ58JzIOGBO5jzY8Uh9E4A52NFY5qx5lqZHlWFoU2KN8QrQbo0xg/UIMJmMihvYDPYyjR0lr80H6WDJ4KXpqQFVdumtIfkZt1t8bhBkHDQzNhvR+mN++XX/aw1Q3rX3vOtP9O0D2oIKjxb0xvSQgIoo2t/jesPaO1TCwno2wRu4Ot0eSRkHI6I5sY9mzOm0jViQVdmORyiqmSGS0lhwfAGjcHaULuiW1QG3xu220Vvj/RYizpuHg6KrMm4bt268zNBGHE0YXXjRlj0dNuZ8Sq3BLRb6KUQPw9B8VGM0G7CrcMiZ6Y2YIRiB+Lqj0ujttloAoNGeWxR660jm8ItBKYDSm9L1ClBO1fqidQMFJV0YD8v0jlQKYJVk/E49YhNmcTT9PDcn1Zv5c79w8kW7a3GXYWSkKULWFKrethAOdoenbXJvB7feuHfYOmztoOuB5iE6aG3Q26Q3Y+uTrUcnURHLBnEpHcxUjlxCzxDFaWoS0pZf0oE4uzEbnlx63lNJ2hpb6TsRzf418bur0WIKcl3aWdVTVuyc6TdpmtemBdjREFJGrmPG+XCeb5xjfe35HkUfhHA2Ti7ja0lhtlN8XqZRNZkGT9Ac3jrRNDCChHrZ9UXZbCc7VCZSK5zPa6yp+2lNFwhvLYKbqjhxjxTDeSULvMl6uSayrNLL42jLkSUi3CW0XE2iUq88SYpZ7Imhb115ytJq6e2skNuzbH54VBvmGaxGcCILhwfjRvQ93IRtC9Y2Umjpju2pJdskXBK6YpvTTRKgxDFoNBfuwNYjtWXe6TOSL5sZ296ip0vek5J7W/h9ZRM6gsnrgtwk6EOJcvo4l0ZnRB+nKgUmxaUewtgAKVmBqRpC7xbp+rAc6Kj1ZJVzrtCyCi5SpdHJGjrVS8wpwTUJOiXnRMuiiH5vbPfO7Wnj9rSx3Tb61vHDsWa0x6Rtkbq3m9JM2cS5eYj5pdK1vXH0zuyNuXX6U6NtjftT47ZFiuR9AhQlK70sWUKvRHOOe9KeIcevNpIRTV8dO2OwU4MYYWpXKFFt9DKL5n9hNmuhTzPDUzGyZLQiiFeDzwD+rmkd0CKFQ4IUTSCo7riEwR0iOTa+3OMrA5Q/9+f+HP/av/av8Uu/9Ev85b/8l/mP/+P/mH/kH/lH1s//mX/mn+Hf+Xf+nVd/87f+rX8r//1//9+vfz8eD37+53+e/+A/+A94fn7m7/q7/i7+1J/6U/y1f+1f+5XO5d5+mKf2DXT7IaT1rPyITo/Tj1U26/oB0xujvYtcnZRD5YQ2udmn5XlB74SFepTVxj6W+ewmYC80Bl0mNw0H1o5SnY2HzFj4NqHdQvl/vzVufWNryvsmPNngaR60IxDlvAvfG8qLwccbPG7wOITttrFPpx2G6nuOfbDJDT8UH449BscMxfs0YU5luPFJjIfAoK28fgmTgt4P8fCtvcMlUwI+0/UvqGhpSttiA0JAMJq2KLNruXBH8j3ARw3eajds8eOzG60QDlqTZbv5O8qg1Kd9sMDJNdE1U0/v+2X35dy8UsNAhxvOZtElOvdmbk+s0r5v9J27Tt535XYztm3y1Bu31tjaRmsPut5o+mDrewCTLYFMF4S0Epc0aMsyDBfL8lxNZb1EKwY66C1y7ElFe4INIStsqspGcgTIKSpWyUoM5trMo/9OilI9FiltEfkjLJdsNGje6FQa4jrV7NuRKZpYOifV1q4ASrh9FdjwIgACdFCutvG1pl9CgZGqZqqS4fLWidsl2bso9AtSAznB5gIoJW5qFmLjJFm0S+b8I6ru2ROJNCzENavSIv2FVImvpynghUGhjAyLQY+TFuAdZQZHVsSEbs5T/dtTh6I3kC1Krm9pCucWqdRjGIdM3McS64s1xGfMtQJeCXR7h/vNuW1w24Th0XOsy5bCVKPdwLskONHwfjEPgcEI9kst50EDQZmjB/BgYnOw34SnG+gkU+yh+VheQwrSfH02buBbaLjU4jO0MpUTyZ6WAQoPh4dFld7DlV0ah3RGawFQNqFtMXZDKLohbojcFvurGoHG1rMbMXBXS/YrNt1waK5mlFHXHlb3Sn9/oz/duL1/4sM3nti2YIHmbszDsIdh+47tHVxp3rir8F56BHTbxtHC48Vbj8arXbk9CX2D+zu4d6U34d2UtRS1KREcCbQ0GzoIL6cOpzmiajb6SwYl7S/CLI5M7wQY05iiEbrmumGEjVeVIZdUwTM1FK1LTs0XC/RrGjEKe+9Yb9gWrKRIVpm55wsPyHP+so+vDFA+fvzIT/3UT/GH//Af5md/9me/8Hf+vr/v7+Pf/rf/7fXv2+326ud/9I/+Uf6z/+w/4z/8D/9DfuRHfoSf+7mf4x/8B/9BfumXfimEQ1/yoT/wDrm9x959QFoHDf1GwPasOndwuWPcGHJn5CJqacYlIvm3EgnsLVmU3mhZhzqt5c8l+YKGyYg6ewBkqZ53Tfp4U/QegjXrymydIRrRzszBYRPUsTYjMpCIEg6PLsvTJUyJcMa8cXDjccQodAQfVYJ7CkkjddLDHZUTBpxchuPSMW2MfidMkUNfIPoaoIjG5w5K1GiqdFXQvqJb8oocTA4xhkdDtaFB8b9QXgOxcUYp5inMjVTM/68eNe0j7y4i3JItE0m9TA9udW4tFOdb5w7RumAOWjdad+7vI8rZgB/YOnftvOudbev03rh/o/H0Qbg9Oe1m6BaGEqPtjCbsQkYY0HyuKDKilnZhAoI+9hQk452yTte6wZejJWliFmkZIcpSYzMkHS4NlRkgyOIPLJsDumZ3XLeYS3nZLOv3W3Yg9kwDyIxNKZpnR3VLpTRWHbfl2CtdQPa7knVPbAEQUUctKnOih1M0huzJPHTyyH/HflxAJtmVMtnL0yhwEpukhNajx9yMqoMwg8t9k24kcxQmZOXKu46M7Eu7RJmaeZn3hZeOeGjcYkuX7CYcR0+35bNfUgCqlkxOMOHRcC6IMGF64zEU3ZUxNICAy2ujvaTjXzFFkZELkadc2AGycibqb7EbWArJ4/4pTGXzYFBu7tzUowpodO5T2FE2F3xuHCNSG+Ut0sTwJlha0kpX7H2kZfbbhmhUQdqI9ENXkG0iW4d7Z3bNVGuI0h8uPDS6oB9NGZuGt/9NsZucjWBDzYrMHilIm2iLKpXWotKk42xSQZsEkHcLYNE1zAE1ABJoVl52tlvnG1uwHq0pQwk9S3qjbK3BFqnHp6Z8kB6am21jb429KaY9ujdvyv2mbJvy7qbctmCo7ybrvNTC7mGb0aiTKYwRlhqdbKmAZNf0YKaHV8x1zg9NYtgTtPecmkiu4JKCbwmdl6b/EloeOISBoVuU2afA3hKgzEyHRwq3pbN5GIF6C2a1gLxfy7x+m8dXBijf/e53+e53v/tX/Z37/c6P/diPfeHPfvM3f5N/69/6t/j3/r1/j7/77/67Afj3//1/n+985zv8l//lf8nf+/f+vV/6XKIB2xat7bWzbMAnaxGEEGlWlcfMqMO9hEwsRBi7c+hGJAVrPgWdmjRW/H7RxUVVaZZimjozKtGwEFYzU1CWc4HDwrF0RmwZ58dMFJtUeC4q0WEv9yOtpoY1oKJPwuHGkb4jISArwreB3NInIoVUAFgCD2VKuhKk4VfR+ZVjSDnfElqVg0OXKBUrcyP3ENBZOg9GueVMb4C4TlFtlyN+yXavKZhz3f8igC1v/v1/j3uRy3NM3k3JPi+xHnuPyEZ6UMetR9fSmwjvXGk92r/f30WU14VI22nnfQrf2ta4PTVu98zFdsJOXNP4SIzBZOSGRnpaiDXc05nGkm2yXChqd6y+LinGDLO983pUUeqSyXlZnvuyKw8jqolLRN3haUKuYEREbxY9YchFLd93KRXLdMnPU1tfJ2l2zZzVjvn2P+WSsllMi6yNvqmkJOgEJS1/V+XNAiySb3bu2J5fF3BR1ayISqFtAsWi1DUp9RjXpJdIfRa5fJ7Pf0ZJUBJEhizGqj55T0pd87kAWji2+jkLcnMIMa1mWpQQZrdMbZRW6HJVz3O6mPF59aKtzamutZL8C03ig4uE0dvqrVIzpgvNgnXY8np7iGzQ7ljX0E/06LNUZl69pUOyhOmdZwXM6C3YDwnDSpHc2DDcGt6DGbFcc12i/9dBpK6HaBhtZnpnCVBVa0WOmbAlKhstL2ZonaoEV3TButQdxr1omeYpfRFEQ8+uyqbCPed9rWIjU0+WbIRLVCnd1bjnuC2m0iVeI6vn2Zpwa8K9Cbdk8jY/vUnUlJZAddOGzLiuNSj3YRn8JVbOaZy1TBlc5tgstjLBvNZ+RoWZFTT4mj/SZJl9bsYaq4t5kQAnoiFAr8+pdT0zACwmtu7Ol338jmhQ/pv/5r/hd/2u38UP/dAP8Xf8HX8H/8q/8q/wu37X7wLgl37plziOg7/n7/l71u//+I//OD/5kz/Jf/ff/XdfCFAejwePx2P9+3vf+x4A7d5pd2VXwzhgDvooA7AjozDSdC1cDw8yB76B9vCSaO2IfDqpQxGPWm6P0lm3kZ4QhvsnIErRouOjLy8EiAjcujJHYxwBdrwH4zJEwjnQB913mAfSBG/RuwMTmoVbJeKR03NnTuPBC4e/MPdnxuMTY//I8fyR45g8dsf9DtYw62GZrMrtdgv61xq9JzVfAieF3Q2ztIZOkWzQwwE+QtNQkS3QYkEve37RTnFKMmNT9VR/RzWGcWQ0X/0mloLOK7zbIsonXGYdluMiVB1/5mOJyXR1SPxyj8vOmTOv5eJwv8O2Bc1vjYj4emiApAlbV77ZlHeifOBG3yZtm9w/VPQtfGN7z73deGpPtB5iuP7NJ+7v7jy9f8d2v9O2DXr47uw4jxIlkw3cLBkHr6oKQ+elPDsrjgp4KJaaA4dm6BabVRNy40ow4aGdoRYfA5OoWDCiSdt048j7NSWE3sOMxxxJ/ebG746Mgc1oB+E2o+tuRszTAqBGF9R8Jq3axZPhIButhQjQNTf9JmsDdYlF+Z3DU5PQZDRdwsG7Kl0jX695R3uWYWtGf56amnNRbqi28EdpPZ9beqrU5kRUZYxglKZL2JdbspoezRGtzHicEH579k9KI8FiVU6wUoAl/iuQEk0aT+swSV1IpPucS+vKnIM9ou9+i9YBhNeJ0hFv2BTmIVmVrFgHvPG8h7g6Sq8jr2XaqEZ508LCdzAZdnrXypyIDeaIyhHzk/ls7twkNB2zxybbm8Y6kL8Xer62xj49KhZNGi/WGBb6k/sUont64+hZuaZZj+Mhrn+ZYSL34o1DWlRjthCRa+94vwVoE2JEqMK8p8eC43IQCsFgeCWfI9gLONCqpD7BaTFSgtEtOjxvc7Idk17M1cOQSvOkRXe4IMPdw3AzqoUmw1j2CYIGo5UAsaskQ+1sub66hN4v0lHKdhg6YQ6j26TbZLxIlPuacExfY9AzuIScFBR4j/VQmy/2NFZHXwyKZt1waZjKS2tzVqBTzEuFmAK0ZrharC+Vlq3Ap1L/8JUQyv/jAOW73/0uv//3/35+4id+gl/91V/lj//xP87f+Xf+nfzSL/0S9/udX/u1X+N2u/HDP/zDr/7ur/lr/hp+7dd+7Qtf80/+yT/Jv/Qv/Uuf+/4hg4ccvNhz+DOMg37s0YKcsRT+04VhYbgTLIVkntpAJtL2mORiuYgqyOlo4nNi4+CYAxsfcT8w2yFbVm9miSqdI1X0R+8RiTdla+E62BEeHOwMHjK4+wiAMjY+zUjV7N5O6+GpzEksmPuvM19+k/35e7x8+ozj8YnHpxeOMTmOqtjIqgWLKv/WJctX07SqfEpI0x+LFt42R1ZoxCD1TGm5Xal3wXssPOGHEhTo8rxw43ALo6pp7HPymNlkzSr3ZCHquQCUloqYTcPACbccy4H8NzmdNyvKPHKglyvjenwhBdMJ4n4DvSMavS2eNuHWBx/eCWkPgXWywiOqTeLebfygNp4EPohGimczbk+yUl4fbu/Z2o17e0J7R3qjPT3Rn+60+xP0J0zv7N74NEib7lEpfp7c6KZsdm7iUb0bA6H6zSAWJZDEHK9IiBYlxuaDHo1oMI+2e2Sax9PbxXJx9mTxzKMC6yAioUkAlGnGKIDiAaRwT/Af4AS3s1GheebxR+ghIjcSeX3C46VJplIkQM+9AEXi4GI+RIJBeeex8d2acM8FvBbzLsm+UEuvnRbengCtxkimWlwapj01O6EkDfLnBFhjwjFmeKbg7BaGa2MxEdk0LdmVaZEGiDLYMLYKr5hX8eiClZ7srWfeqbxCS6iJsxx8Q+di6/5HJ4SGyBbsLtnNS8JekKnZrTpAUzXP/PRIEb0SAtUm53mY0zzYtDEGL3YwPNeTORGbzOc9G6nWfGyojgTORpdJl5Dje4FUy81XO7ce4g/vHWRjmrAbHIMcO1Eh1FV5SCeSF53JhnvHvLPTOWgcaYY58l6KdppuDO1IUw5ChIsIut1XFWKAT2E3W5tyS12PFXBORlMtTAux1F+Qa7BMXA5826NyRxuabUxuc7Ia6Vls5LfpbEyaOGYSpdPNaJ5p26bozJSmhfHeK22Wkp5TsT410stIhTGjerd3YMb9HDMAMbMYbzk1ZXIujcXbB5qaSygcYyIreUqQrqyqv7APiJ8XwzMTtEd2IoN4C/GmZQm0expyekrMv4II5f9xgPJP/BP/xPr6J3/yJ/l9v+/38RM/8RP8F//Ff8E/9o/9Y7/l35XR0xc9fuEXfoE/9sf+2Pr39773Pb7zne+wM2kcPEyis+PY6eNA50whYCnr24ruILUnritHr2nMo2WYVOUTdWNsZ46dsT8Y+2fMeTDnAxs7WPSX0NwAxrYxNRte9djoe29sSfXtHOxp4LXJjMViNh4jHA3NzsoH88acju3G3H+DsX+P/fn7vDx/Yn955vn5wTgmY1goxdWD1UgR4daDauzaaD09JsQWozGHxTENsdj4ouefg0oKrZK2a6empTfFPBxzF0CxKE8cZhzTOOYMd9wjHRqnR7OV1YsAIvaLqPimuVS7oLPifeEpWYMybapTmgliJvBK5IqfO8JiaG4gN9ju9KZsHd7fhfs2+PCk3O4x0b15eAi0MJFSDRO2b0rnCfggHd0M6XC7h2ld18bT7T1b29j6E9J7CLbvT7TbDd3ueHvH1Bu7Kz6Df7MUEVumbzYn0jW1aVtM5PDXiHEYY3XG7YhblIvIgbVgRLrPWBw82sxVuF/23+VRAuVbEynCQyzFcQFOphlzjtWkrTZLnQNLTxQxO8GJebYqiE6y4hPNRpWajE/DMvcfG8CRHhhq+Vm0qOhoXXF3uLfotL1psF6hR8nSTagbvbwaSDanMF30eyGrVyoyPb1VYmH1LNeP636M8L8YyXQd7stILlIn8Zkt8bZfAYoTDR4zzWGSDQElEyorMs/zl3TIxZOFCWBAppmi6SH5dRaMyhbO2GTqTjaULbxxZlRVHavVhPLpkfOknWwOVPoqrABcJkMOXubO8HBWDs+NiT0fqynckzhNDelHtheIhnctCpgDvE7PcvGorNm28GCx3pEZ3kv7YYw9GAfBOZqHsZ808B7AhB56OW8c3hZAmdLSMycAiutG0w1Rja7J+Sm1p30E8RnBQ1cYmAjNWGkWw4fT7cIkWFTpdWA2Q31gHNjjCP8Y7cgObcBt5nzwZLUsOtpvHiByNkL/0kLfgkQquRmoJWtm88IAZVpEI0MmXTJwyUqwmg8jPoNWFVIClNIOLpF7zhSX1wFHdH4+Ezy+5pJVrijBSjZ1XSAlxvo0ySAg1w6PHnJiFuBEqoCk0tNXJue3f/yOlxl/+9vf5id+4if4lV/5FQB+7Md+jH3f+fVf//VXLMr/8X/8H/xtf9vf9oWvcb/fud/vn/v+/+WDd3awZ5tvmYNbNlXqrecEaWx6Z/PG3bMsUgW9NWSLbp6tg2wCN8f6EX4OcjA4GHbwzCee5yee9488f/y/OPYXHo+PHPuOzxHGamRE2++YBBU7JLQe2jc2Ddv1mw62BrdOyGSaY5vhI9iYmwuiDWmdLreICKczPvuEPX+Cj9/Hn5+Zj4P5kOh+PKMsT5uG4LfdUOls7UbTLRxve6gTnByUorCnJZZH9YgQ4MGOyNOazoXmvSljTnRrUZ+RToixdVos6vNMDfgY+LHD/jhBiZfCcEvCu9F755YGP82Dtbo14hpoRM+RCqnOrvGolvNFR9LIqG7mhNjAO12e2PqN3m483d+HgPXW+HAf3Lrx/mmw3YTeYlGK/H8ucCLcEL7hyo2wyiZFtP1dW+Prdn9PaxvanrLMrsP7O37fmE+dvd0CdE5gHijGzQffaMIHFX5IlbtuTO3cbtG/qbeggL1FFKMtKhE2yQLWky6ANkOtXw09ptCGhCFSilQjs5Ypy9pQiY17qKU9TAGZ6rhRaluIiieP80/be7HcIBOgqAUgmjajzH9m21mbTBs0z35DatxabAbBTkyOHjqYqIppNOAdRu9pQ7/pqjILJr/IeMvLYPiMMtznGTYDJpPnQ9in8XHCiykPbzxcaC64CZ/mjFb3HnqN24zWF0NiU/zsMD5O40GZvHmmRCc2J2OefzuRqszN6o8wWrdMbymWfjfRaFItUFn0OvEMsiz8bDw2DjOjajrmbNgMFkJ6bLBdPIzdWofZMA8Xj30Gkt97XLBtCC8m0RE5WoHj0REuUrN+cPgLz8cz08KZWGwgc+AvL2wO71S49RCx3t/NTOGAsCM8UH/Gj+foXyQN6e9p242nd+/w7Ya1jnw6sPHg+PQCj4GYM1XZtxbr17axeWdjQ/qdEG9FuiccZIVhyrDG8BtiG+J3dn+i5+/dxOg6aW1DeEH9mceEzYR97PQR8+U2MqVlg8Gejft2fgDjSeCbvXN3uIkwng62Lty7w2Ny652n1unWUFOeRjRcvU/neBzI2NmOF56yymu2jpc7MVuALOvcaHQkmYboyzZTrxWBqjIVRhOQtIVonTEO5hjhw0KCZEYE+rOAiUQIkjRj9pOMFNecYAPmI1kUj8qiS9AnOLOFZk61AgHAI6VU1T4ztVAjl3jPz9Oirpw5Z4LhGZqs/38yKG8ff+Wv/BX+t//tf+Pb3/42AH/z3/w3s20bf+bP/Bn+wB/4AwD85b/8l/kLf+Ev8K/+q//qV3rtfYt6dPH40K0Jm0eTsd43uoZR1q3dQ9TpmvX4AVC8G6tIPJpNMJqFeyATdI/c5e2ZOT8yxvd56K+zyzPP/hmP+YKNgRxFuwvdnhDpiMQgdGlou+MSVTyHjKxZFw4NZD7bQMaD5pMnd1q/oW3j3t5lpCWM/YEdD9SOKDtzaBcJXtXVSOYvy0zLNahQNFrRRdQcC1TrseBFRD2SYi6E7IsKDGAe4t3QqYxFSxaiHiP6wQRTdRAmLY/YpF6pJStBQZ5taH9UKgfvufEnuEwVf3KX5KmzFXXbJRbrLmhrCVAUsfB6ubfGrTe23nj3rmdfpI3328bWnfvN6Fu8X2glYmEI+BSlle8Nbi5srtHXpDf600ZZpffbe6RtSH+KSrDe4H5Hs5+LNWGIgR+ZThvstkdBiwr33qFB3zaaWwpXU7ya4zW0GwEihRizUeDjZ6RTrVezcgTJf1fZYkbvAVCESpq5pLBRSDB5MiYlyF3JdZulvkyAFD8KgJL0eAIXmX5+34Pa7hibnFooUcvS4PoYKYbNa99XtQ2r2qqIVmfGpk42p0xYtc/Qj0x1HtPZLZpNHn7KoPBYiA8LndROCowt0kFDwvLuMeCYUTZ70uTpQJopLkvSrp4rUvXL3yDlDRKrePXDEdInpmh2i840VgYiXoWhGtQ5GqkFDQCkeLbcaOCS5chhORCeE8LjyE2np98dktSBRBf2GWmrY05e9iMAiu0BUGwgjwcIbKq4D5CB+hMqDRdoOoJFyZL2GmuqscZs9zve71jbaA+n6Y7ajHXCPNjfjIQsGRKVLQBGlr4vkeesayuLl7vUdiW7EoDQe2g9xB05PuEcyIz0SBvOHNEaZZ+T4QGkdQb7N+V0XXaJ1JaPqMTb9MC7oT3mQPdoqaA5L+Y0ZAzkOFJPJMkSZiVa0nuOrxJ6z/W6yvLLlwhteBNmDwatTOWCj8zWFuapp/c1JnMSx3gVQmumkY45PJk5s1yfM12b7z1RSvfmYrhOVINhsVw/DsBMVnsTTwalBn5L/ZyVJrHWDOr5yz2+MkD57LPP+It/8S+uf//qr/4qf/7P/3m+9a1v8a1vfYs/8Sf+BD/7sz/Lt7/9bf7SX/pL/Av/wr/Aj/7oj/KP/qP/KAA/+IM/yD/7z/6z/NzP/Rw/8iM/wre+9S1+/ud/nt/ze37Pqur5so/9w52np/fciJz1NifvPJq9bdsTXXuYo/V71NYTeXBR0HuPvgI6Ga5Ym/g22HWgKRaTccD2wO2ZKZ9x2G/y8vxXeJmf8VG/xydeGDbwuacgTnnv79gkIgBjI5xBnzC5oShmg5mq9c/EGTI59IV2PNPt4Adk0voTvd95v/0AXRpdNRwb94M2R3RtBqZsoGH41kpKKmHE5Bp+GaZR4WQadPbhFmJQJtstdQJi2D5WD5bpIWy0qFXNwafhfE70WAkQYeFE64aP41J5ssPcA6B84aNiwhImh8okwJgHha89jOF6C+1Ebdjiq2R0U/Cb0G5Cv0mI8RgwQ++zifL+pjzdGrdb48OHTt9ubE837j1p0i60FvdpWAGoGE8d52bGOzMCy3a83fC+0Z5uudo35PYBaRven/Ae5cm8vyGbIBvMfuCyM2xnP3ZsPGjHc5QoNuXptuHd6bqxMVBC5Cxqma4LAWhgtazYSJACcNJcoWtIOi8+ihF0rweWsdQSBBUl5yZamheHVadsp/5hsSkj+gGIeYZkxL+zRK5Kjs1ABvHvERR7AOvJJpm6asG+tGZhSua5gGujiXPDVn+d3k9bgKU3MV86moM4tYHwmBaCVjGeR4CTR2pJDo/x6wRbs09HZYYGZoYmqJszJDRVL0djn1Umn9c001huM1inlSo48/sLpCiLPI+FPKzEJVmXcKFObOmO+wwGZcam4eZIVdsBoKjews4+Evoh+lWF1dgN5gg9Cq6wC92F2VK746GN82nhqXQINqMi5LEfzLkj9hLBkA/a8QjdQ1Nc9tB9+AOVLSrddNDThLBlP3eVuGfb1ri/ewfbE1M3bo/B9nihycD9EfOdTpOGKJh2TG9Yu9G3W4DSlgGZOTJYm7qlZb5LY8oWQaH2qCoBnJYpb9gfH8NteZJ9jpxtt/jMCVLINd/ceIiiN1+VKh1nqmFtoLaHm/aWwYFEA0GZMZ51jBDYPI4FvGQ7AUpLAzRPOtC14bphmaZqnjRhi3Yjvim2JfMBiClTdqYc+O0IwDwtOGaHMeciq03PRqAj94DdoGX5NfNct91zn5D0FxLHdNJaWN5PbcEUWnQgN5xhMb4R8NQPipE6lh57hAXwrv5hUjT4l3h8ZYDyi7/4i/zMz/zM+ndpQ/7QH/pD/Jv/5r/J//g//o/8u//uv8tv/MZv8O1vf5uf+Zmf4T/6j/4jfuAHfmD9zf+XvL9ptW7Z8vvA3xgRMedaaz/POefeTDlTLgRlg3qGhJQ+QLqZPSGB3ciWMfkFDG5ky9gdg91wQ20bJ0ggt4wbQgi1JLdtMNgNo0ZRUFVZwnL63nPP8+w1Z0SMUY0xYq59MiXlzUZCXbTvXed52y9rrRkzYoz/+L/8V//Vf0WtlX/v3/v3LqO2//a//W//XB4oANunjdvbjW9qYRPYzbkTM+pWb2ksVvi0bTSBJpb5DoJsldONzuQ5DNOBFeHUqDCZlWKNYka/bfSvG8d9C8fa94JvyqjC+YT+9PQfm5Ewm7LU4hAd0yD8VJTjeXK48jTlZ26c3jn8SRlfKN75XAaldWrtvO2FrVRurdBMYA5safkdNleynGZxDBez2j1mg6tbNguEoCeKpBVaqZTSGN0ZdQTiN50xo8vLbTY3xoT9LYmvYsEuWLPF2bMST42N/8sDF5Z1XGGGg6Rx3biF4KNEPk1MVHyNY1N7v1WiO6pQ7kK7KW0X6r6QAuNWYSvK53vhfouxzqdPlbKlzbaUhEArcRRWzmyTnUgpLh6jmH3ONCtqeNmgtAygLFFItDuUhpc9EJaicG/LFAPhxM0Ys3M8D8b5hOMry1vncdthF/ays8+OVqIIXUiHWTxPXzqmLEZfpxaX3mkVE+LX7HgR3IKPGI7H7qvzT7rcUmnMCK00M7xn8KZZFp6W1t5cUirNSY5kI2YdzhHcjPXrmFnXJAUJXohQKQnC2IsfUcuSFqfoREEzako0v0fOupcq43QiRduFwyzGMTY5RmyiI7u4BKqjwXQiyoJlGR41V+nBW+nEhHJ0wvMlkUDBLjKoJyE0Cpg40CRHUXiuXwjyM2v2H5lG4gGDxYqLdQuBPn3AYj5e5EuSvXwoXF7vFyz0k4uTY+bICFKj1InX4HOpOz7AuzDP4K6cHfoRe4CmwRdAyzFFLcKmzl6Me3O0xfoe07lXeNRQXeHOqcLeCrdb4/EI/pfVxqez0mfh7WuMw8TgrqQHSEFLo5bKVhu3vaT5ZnjzFIN3exW3VPDqSPU0MHVuNZCeKpLj7uCxSCvYCBn0Qo/6FI4hHCOS0pmCDKgeniqPJMEXVfpMCwALXs1cXiVLLlzzupRwKV+3aCf2Nk9jNispiS5RoFgiJYOSvMgQM1zyYFksmsUPEaBcaGEUwZkbhEQw5xUvAkPsIgIPrZcrb5mG2sTPQEXFDFr6VKlcgY2kitA07qNFij0ztmTMaFQ8G4yluIzGM8ILfTG04+aP8MBf8uPPXaD8zu/8Dh918n/y4x/+w3/4Z36P2+3G3/7bf5u//bf/9p/3x//oo1Rozdk32EW4uXBXpUlYDhctFK3c90pT2MQoJYiI0hrVjW4KvUUWSY2qUd3po+IeYVCbbmyy0diox0aRhowKZwk1zCwxZ57CXFwGWeqLRBjMsrqNzJ1jOs85OX1wzo7MQWEgdUSCsQXjYm8RdLb7svUmlWOxuWMakrBlnrPIUfKy5r4IfFwNNSIhoV1whOevJprPmdw2FywNV+udZOPll3FB/1fg1ro9/sUfy8k0AM3F2feMYieLyZcUNRCUQBFcBSoR3lyh7cK2K9tdaXuOQzDuNTa9bx6V262y7zUKlHSADJt+ZVplcmN6RcfaCJQGFIzNBtvs4cRoFUqD0qh7g5UT0ypojU4oi5aYSUQH4knC9DmxczCPjj07ZxHOopyl0stkzBnkVo915VcbXoI3xOXjeB2w+Y5+uE6evyw0JHlHHjC+W3TlfiEj+c0SgvX54997dvGePBMb/rrMU8J2fURHGsTrOLDGdMYIXsWwKE6mLXIza0TO5WCf4IRm4aKS1zLRsvW5KUrIbuwqmyMG3iL6YVhwbQbOnPEcLA/uaPaSoLqW83o5eNw36gx3uhuzCza4Xv8af673JYq9bATyflmHS3Bm1l0XWUNLlSPpViWuvFZdjvZY+h95dR5w/a3jYSpoJPcqrNDlKmy45nkXV8clr2NeTzwR09ftG1lZwU25koBJNQ6kgiqC/Frx2H9K5EntBW41lFlWwjhsq4WtFfatIVvFSmXflK1Gzo5UkOkfCNCSij2u5qRoSGIjoT79aiRM12aO50W57PEv8uh1AWLPWE3OtTPF1kw355xRTDNjLZ/ExH/YStiOgkTJROys+4dlvtNCPIlRVD6ZDO2L9yK8XWI8LJlZE9KcEl4ua5QlklEUcQ0vR5SUhMtaa75MNPLeF1nLORFwwTyQwCvENVWsI/dtW+rKfFNk8qO+Z4Gp1/slvNb6jHHimvxeM811X4lc3MaAEe268f3/nzgof5Efja9sXrlJ41aUhwr30sL8ZrMgcqrzdodWNYiYNXML9i3m0mbUQxgymBpkqdM70oXNd07vWFdsV8YufPVfYHvhEON9KkMPsBjB2PCEGAMm07UBzpjvmxM3Q3eOMyS+c4YHgbszBH7YNDk1yiGFncJTG28aXf1eUzisa2iveMkKVcM/3UrgD91qEHaXaoHYWNdG3/YcUYwsFYqjxV7cBf9QZlj+RyR3s1yQcxUky5kkJN7/sgJFgFY8uAhu3NUif0I1ihQh8mzagohf3aItMuyu6A7ahPZJI2jrUdhugpaJaouwsaa8fdq43Xa2fePT2xtaN6TsIcX2Qp8b3W5MazznB/8BCQSlWacmP6hYer9opbZQSwUEXQm+j16bIpUwZWMpmgb2POHLgT2f9PeDsypHUw6t7DI5t1Bk1RrKKtPgE8BKG14HXfIIXP70mzvl6hBj88iU5uSGzGHXQXXtPPDilWQx4rl5+XQsia5mhnRbI2v8dDxZoTLCWXaOwdGj2DpHcpLcOOZLXWPXNCrXWap51mvQ9NtZZmqiEk6oiXwbMaaKzThe28hD5pxZWKiEoqzHz13JNXi8d5pjvFVPBwtLrlW7uCm9x/cO1ChgIJ9BkI3HuJAuFgHf17Gx/GriBFiCYkiVDCG/Fl7yclcDiaJAJGWjecWHBcxfksy+Ln8rQsFTGZqjMuwyvotAPkd9hMJRJ+olClALCex1gl/lQUlGiNNkBHKizr05j81520NuL0UC0t9g7MLnDcpUmjY+3XcejxvfvN2QbcdL5fuvyvEU7tXQGkhfWw2LGWXM+Hm1sydQIvQ0IlumkxWRjVICPdG6RrXyQtxw0JBPe8ZGxBBkFavBwXgO49knR48xiQxnJ9CDs4Q53ijCnHIZVg5TxAozxRDeKrK34Jk0ozwbyEQYcVCrQt3wbYOtofdGuVd4xO9122h7i/1EhLYkRoQEXKeHSvS6Tqsp+KhGJb2S0sPHouDuc6bCxq98qOkv40afAulHw8pYQy4Almtdv5x83JWaJFk1uWqPVaAFGhiKM7wRCdySxP51lvxyH7/aBcp4p/RQvGAZMy5b8BeAKo2ik5ohYFoF3SqlCnXP9EkXrGxBrtLKoFJtYDWiu5tNRo2E0tOcx+07fCjHNtkrzFI5RYGBEcZL00PuphbVo83owiLJN7o6nyAzNoy5VC4SxCOZUTg803gtTmbYkoTUCKnZQvTD4TbahpXH8IIFX/AgrE41/AuWzBoSBiSJfx8eV4nsgKdP6XxVwxcJ4SpQ/jQs/Sc/xEnJ6WAT5SahEGirQClGq06tzl5JY1tJG3qh7AW9KbIJ7V7ZHpX9Ubk9Cloc0cG+QW3C/a2x7RvbtrHfHpSrQAmPhWo71e6pCChRzGmJbs6NOk/qeCaqRWS+SJBul4yy6B4kRSoXvl+DjT8cnmm+dQ7Q05DD8OfEGkHu3GG2S/DyeugrnG51f2SnXbOlEWQ12LGXZG3oFp4c69eZAXD2ASGJJjvdOT6qgtbls0TIlrW9vSzuLUUAjFWkxGho9snZMyNqLETIOO1Fc8ndNHt7uX7UInxH6x+QiVyuxnKhLPIRLFpyx+lZP4TVtxnMEq/X1mEu6ydEka8LVgc+Gla5x/caczK65HXxCPecdhUnc45XgUJyqT6gQQGAzOsOfDmerFedOSULClMgs4Rq0RfE7+noNDWNvhYqFD8jwu/yjk+StGIsW3OVcIitMqlM9Lrv/YL/yyoMS/LBImEs1poqrUQOz97icduc1oLkjMHchfNUHluBoWhpPG47j9uNt3sWKFq4tcpWlvpngXyvYlvdKBoxC2UKRR23fh1sborLhvvMBk0u12dybOKyCtIlCxgsDaDJZC4XZQ+12fDJWNJ5z/APlzTmzDHrj7a0eI8jEiXcpmsrVDeKRbqy+4S5ReihKlY3ZKvIVtE9rPz1Vim3Rtkr216v1V9HnAUuFmNwwlX5VWMvjV1IDKIcW27Kq1DhQk8hb7BcZ+J+fU9nKR+gSO5fxN6nhNqs2PIcCpVP9aAkG1kzaZK8FznfJcc9BfGa79gaZSY55pf8+JUuUMp4R7ripcbCpeA6QBuZ0xj+GZeiJbG/KmiL2xAXNi2JesTho1YZBdQnxSenOscwbn1ya98wNthbZyuDrqFr9xzCR88Us/AgC8Xc0hJJGbYcNx21iV6jkVxIqxtLSR0WhU6aRl8M8HCbTdhSc+PO7l3Wn02uRS95IEAuZ3cuzsgaQ/1oDLCKk3xui4FNjoWuG3YhKB9HO/9qCC/UGuGwuImxi3EXp6llgeKRj1KcW02Fhwq0sLUuW0U2RbZC3SvbvrHfNm63lkaZRmuRQr3fKm1r+XigpYWqyhruDfUd8QfFN/AWhOJSout0Q8dJHRvFOjUVBypKK6GkUFWqbtk9rFlEFCjDBn0SDhFeKFORIdCDq2Gk382MDs3T5MssOENuQcx0kqAJiQBwXcdYBpIHcF6C7GqmffyeBDKyCpQcAcm6Xvl3/qFQ8QtRyfVwcS6y855cBYvn4T1mGH6NmSaA6ceykGSy0Fg9148fxMa/Hlo+/Dlep2Zxs1b2KlCCKxPF/wcAKQuURGsUwik6E24TS7k+0oDK8h5dSkzLAkXzvQgjshmPOfIYT9faBDajNki0hDg0iseR7Nd1ew1t8qXH1xeh1gX3SzYGcWNLFppF1lkiMbaGuG5puiLF+GhpHmMz+9HDU+1iGs9IXSKD61LGpIeNFErej/UKunS25llAQG/CvSm3miT90ti3jdu+c7vtaDrIthrCBZXXwegoawFH556k6jkDWdOUuK8CpSQDY004sjgJwmkUmeqW+/Fk+f5EsObrQWIq8+JlRaO4vHHMHNerEuZjlbI4VJrNb22RWVQtwvLMKoyWxmoaIbStIk3D4mKL2VjbC2Ur7HtyY9x+5GgbPL3ItFnba5wDcdRnbGVGP+T4frm2Xr1LPG/Jka46V2TEKiri9ZSkB5DiwES1NI3kPjS85bVzxB4mwadxj8bCjSisZa0nstl4rfdf5uNXu0Dp3+M8+Tqcsyh9q/R9Yx8bdz3ZbGNjw8dBkUKplU1v1LLhm1xheJuvnBulSbKlzzudKCj8/Q3TNyYPjmdF+QXj+ZljeyD1C67fhz+sDDQhxHfStOaiZzg2B92elwtn807yqoORrY5sBasTKwPhHbxjo3BgDO9Me2f3k2odSQ8GtySJoYhOis5QJshrAxRdPARD8oS048kcJ3N07DjxMWB0pJ8pMR287op1oHBBdLHdfiiufokPITIddnEeTL5hhhdIUTZ3qgh7jTFHq8ajWuanAFve5Lcdvzd8a8j9Rnvc2R4Pbp/ewsm1aXrcOLoDreCt4C18FUQbVRriFeGG8YbJRtdbsOZrg1LCmMw6db5HgZKheyKvPJgiSl0i7/lCNKQIfQ6OceK9gG48GRQ/o8udEn4p0vD6gHrHygMrd6xsmG7p7Bq9tye8a1l0xjR5IQK5VYhR0oU06ol0NZ2KjeCP2AK68rLGaCPm0zORtFWo2jRsBCnaF6wz5oWoJPs02KkLZRkT7+nPMOb1w8IzIw4lXWdTwgyCQJkIQtVKqy1C87ReXWGtkmgVTJmYSJrDBa/DFwroiU/IsqDPpXv5SpNAdUXZspjIblsg5JbLZdnoR6JFlme/W+RMzcGYgzl7FieBvC2zrKtIEb84X5WFeiZvwFdjEZ8bxG9FNqVt4RarEoWvu6Cnoj3JhzP9LVRpNV6XVXs1ygtmSshJFLROSot4Dy0zU6kdK1FklKaU2pIsKqgXxHsUOtWQzdBbp9ygPYRbzUZCY332obztjs+Ktk98enzDp7dv+ebtO6RtTFG2/Wdo+4rpgyEEd882dN5Q24A9u27Fh8aYVIWBvZo7Qh4mFWRTdI8xyxSlZ4M1faB+RifgHZiITIoalInrQGSgDNR7VqILoyR4RtMuc8MI6soikYpqZGztG9x24e2u7F5o1mjPW5wnyMULHLUwm+KtwKbIXtBbZb9HCOG+ayJzjttgJppTrGQWj3zwNwnlJpegAZySJpQxFhcNoFslrPAjRWOpy4SbakaH1NzVBa3t2uNlhkdNm5qNGck9zabp4vV4ev0oXQvhGx0O6OKZtbS+f3QMf66q41e6QJnnO+c8OPukFGHMBr4zbIOtYLrjc4B5XGirmEPDKBLmRhHTnoqO3A3VnJKoh7tRUSqFRqWx0dhp3KjcYkzhW4on0mvELZ0p7SLnmY1YSDmuWDkM5orOwlSLan2LGPGpSX5NJ9HpM2VcHhuW1NxYHQqUGlbSWmtkbpAx5pKs6pQ4Tl9d4KTby0hLkuwqHnPntbnF5v6RtMXVJWoeZh8xk4+//slRoxDHRFPYBW4ivBXlU1E+lcJOJJrutURHUpVHDYtzLSU7kIZuO7Zt2N7w/UHdH2z7G7f9G7Q1ZK9YCb2rNwuvFBUyGQP3irCF14Lccb2D7NR6w1vDW0iIAzLvVNPMTxpXQVDQDwVKidTRmcetxDUucyCi9NYxM7Z2p9U7NQuw2ip1a5Ttjm4Bg0vdkLpB3fNMFVzKJc6Z6Uw6PvT+awv4+OY7Sd7Lv0gdD5aENUlIPa5vwscX6L7Khtf/1r9LbkrL/vojeibX7+e1lsCvNejZmhWJDRQhCiiVRAGT4JiJvqWkukWWmifXc0k+gL4OgA8I+IU6rdKNLEtWcs+rB1zjnXgtC6la5lPDggs0J0EKRHL840nKXWPQREacC5nyLFDWb17y8B9fqqtIy4JNFvE6yZNIuTgCl8mkcBlnyQo3TVLO4tZ4vr/rvS/RxEfYZTFUAzH1VAUGoisI4QkUJKpV3Y1IaC+SBE9HSnyvquAmbE25bbC3SteGt8atbdy2jdvWkNYYCK0WqgaK5V4S9VLmjP1qXQNPFHC9l7GHLlRvIbyraVKW32634EwVm8jo8ZidkszucAyfuIY2XhZnbrGFea2jQMhiBGYzy3dV8Pi6oiG6aMXZirN5hCmuxkLQ6w75iMBcBasqLT2aWi1XCvRIhNEWerkIzxboGOrXnn4VwRp5VLVqKooCeMI1EDMWny2GLa1IFijlkkJrifyeAP6CBlAs4xQg3h9ZRVLsA+jr9XrRsKP4OBKzuB+jcdMggX8gYP9ZH7/aBcrxA0+gy4kU4RgN8xs332EvTL1jZWBjRjc2W8ikskDZdKPVFsnFEje1O1d0fPG4qMUjHr1aiQLF9w+PTrMdy7HM8PBPOGzSP0g3PQ+GIiHXUyKeGxdaCUa6Fce3RtdG14rp2tIiHyVUBIJIdBiRRhkrobYNakNbi8JLoquJUiVNdzw6w94nQybnHPjqHPJAUQ8eyGpwPwwRrrnxuskieyPesx/jKJHp0n/0d8nMB3aN4uShwqda+FwL37YoUJoKWwsVVq3Kp/YKedOtoW1D9h3bd2zfmPuDsn+i3j5xu3+HbvHvU3t43GjPuT5ZnESBguyoNpo+kPqAskO7R4GybWG2hoF3qpcoUMj8EYK7FAVKobkGDDv8JbFToY9O0cKY4fB4297Ztgfb6fTNaXuj7hv1dqNkbo9sN6S1LFDihHGRJHJ6wtZZ9LIkiFzg1uv3aQAWhKQsTzS/Rq/rRBaZV5Ei6zAnDnDJnyKvf19fbRhImqAkbJ7HO5eh3CoVsigRkUTjY6P1q0CJ97Ne3jTxiK/1F/lRJAl9r+JkvUcrzfWliVmrWF6kvVWgePBPYrON+9PFci2HimckimIfC5SFrqw4AItdWLUg7jmeDX5P7Oc5cnlBRtcv6w+v0X1s4tG9pKta8gI8ycR8PJQkCpRSNGH9F/QuaXAYlChJX5KQ4hb1q0CxEjC+eex5iuIzfFdec7kKxfBiSH0VKFpSZdOUc3Num7I3i1yc1njsG49t4xGEMAbCVipVI9f5RwXKiORek0wxTiL2osBdh/UMNVxclBeyG2pFwaZR5kRHR3tHx4mOMJ1TD2R5rVm/ipM1Zrdc12tkOJli8fxMkzQg8TVSKGq0EkjvXsNFdsv7cuT9dLmryiKfW3DwJPx+tlKppQanLQvCQY4tLThUuowbLy6IX9dfNRqWkl5BLYtFlUBNhOhBNZHFq0DRlbJcXvd1qYGqmuNpnre0QssyQ3KrWONIFEbUrniJ/Wi6xt5gL+5jcM5Kvo4PY9U/4+NXukA57Ss2B09/IkU4yw3mYMxJ4RNcWQ39pesuG16UrQ60KtoiAO6a9efNYDYCRp0T6yc2ZkoGIlXO54bNhs+GWcuZvHD65OmTryaclvPPi5RobNl9hoROknG/ItQ9AgYT2o0U2TxGclM235i5mbsrV5h6Czt7rRtNNW3gR0p5Y2GbhUPuIQenDw6fyW2J56MSfJYw9IpjJghieTMsopNfQpWLU7kKlNWxR8KlEDZC8Soqzg5RmIjwWYTvBD4r/EThljfOVrLCTyv4srgepSK1UdrO3G7MbWfsnyj7Z8r+Dbf7T9H9jt7vdD0ZDA45CNqbZSegFK+0cqPqzt4+UbYHUnd0e8DWYN8iyl0c9476RjgVjOv1h6mYUqWweQnb8Y8Figh9DFo/Malo2Tjn5P51MKzSaWz3eLS3G+2+Ue936v0TdWvUfY/DOjkYbmF05qOnVPVD1m0mcSNQhmTX6aiVKD6GYxmuhpOjkZgpmzvVo1AVz/n81fr4S42WbH9sKYwH1HUwxP1oAkwnUxVi7UiiG0WzUFRqGBsHwZFMZc6CrxZl20ocukWuI6GWV+e5Nk0ZimQd+Srm/JqZhNxXr/do5QgDVArF0xzQBbBLKjydDA9M+/k8v/Kz4u+nJTE35MOXE+9CY1yi4UmU0/HXDTLjxglwZZX8XIfx8smD+B6SDsG2kmqTKIvEuCrUH+HBogJVglC+ChlJcVmkMAQJVWWEaZ9FRIFapNiqRdcfOQtZvIYeONUcJVRAMpOXEsjUrQpHhVuNfUOqcq/KoxXetgK10BFutcT+5JpOts48Y1Qh5swi4RVCJjAjUZQb+HBszOCgzJlOxQTXb2Z5MeNzZEzKHPGwSUvBsKohalfqrjAJB8of472JW+f6jYsmqy7WEaPIYmxq7Bo8ups4m3tk3VhOjTQ4PlEEBAITKdF+7f019xFjIhdfbJ1DocoxIUejgm6xv1d36gSZhgxjmw0XZxtBNZgLVXMQDfTUSZQt95awl4jXXCTdjWUJ3fNek49cxry9iieZBZCgItfygruiyFmopOcX53Ut/5oUKH2ezHHwtGfsjsNpI2Z1+zxRq2iqYNTSfMg6eOG0kSzjCLm6wOncnIaP6KAWW39MbMRMfg6/FBdBpPMrdiQFDYzLe8HTACJ2nWmZnJrHwCpBLnJSZhhcklVfR96qc4QRc6IgtRGfNgl4bUGdKk7DMmU0CxTSJVZmHDCZNhus7h8rcILkFxtyoIov1f2CjStc8ukX2vK61eM9XRuwXDLiJmFktyvcFO4i3CWCAZvCrtFJNxXuV4GyRj3xmKUyS2WUmsTXja3e0HpD6wORgjKInj6i1oOZHp10JMLG15bS0NrCibZt0Das5jvmgQcFK31J6DxDu5JU7RH6VYhuRojn64RLaGsbdQ5q3Sllo9SdUkf8zNoi2uB6tBjzlC3ltomSqAUPRACLIL6rKCHJpHl9or7wGH0sz4G8vKqVhTEIkrLUHMH4SxIL4eFCITpWPEEWy3aqYCWUcJYqDMmDsY5V2KZWJAuPGOEbpawCBaYnGTmLbs1rrUUCBXC9DtmFBqxRB7oO4Q+P3G81UZUoaMKxVVMV9KP/iVz34IIyXF6PD3fote84/EjZseS+DsvXKj9nedBwjSrWob9Gpx8/VnH/2uD9Co0kOUX+o9s00SEuaDNJxAmr54W93pfrEZw0WYSV9TI9TsEA7Ow6pD7gYB/fgat4vLp5yY5bVnmR0VWxPPJw/EDS/yBpXw9Tf02WsshdCFj8Gk/5lfAQqM+6O6/RwnrvP7yzkgXcAs7QdejnG2dwVdvrZpI/+Xi91iKxN1XJeIb8uyC15jPyXCCevjXXa7UsUl88wuWvY/YnHixir17j1YXIXU2Kxxhc01yOvL7zKlwl71+5kNewsl+rT/L/r3X+8SMAVP/R+xCFzIe///C26dWYrtNArm/k/5Kf8S/6+JUuUJ79K72/88P8CkXo5cTrpOtAz0/M6liFs1uQ4rQxe2OrIGNjFgmilkYWghHz5jmMZ+8xCjknx3Fwngf9OOnHiMdzcD7j134MxhmPiGef9Jn0f89SemWwZGcqHnDgOvRi8YGkuZxoZAktj4XhHbdw7pvLO8HjhivqSIuFv3vIkQWiwmdFpAchbWKYnEwGMvuVl1KurjyY+54VuOcIYG062fgGl4TXmPpSHvPRCeXHQH/D2YCbCneBN43HJ3U+FbhJpNbeEkFpRXiUQE+kCKVG9o1kYTJLpes6zDea3ih6p5QHETnXs0gqTA9327ydsytsmaETxUndGro1ZGvMWnCJTJdg9+eduQ4IA0hFiGm8L2rX9VQtFJ9UF1odtGrUeruKk1JnFCetUdqN0iL5OB4bpe2ZR7Q4IEFaDqLcRD1yBwIdqFd3o0WzkiUgcY/OE49N3OqCx1Yv5Yitgzva0cVtMg+r/bjAubMrzCwQfI4kylmMW2bIZt24nvtCUERL8q9mcINzJ7PceOfKLCmglUBPilxk02u8IxJ8qeWPcj1IfkZ0hiZBXJ0a98/imkkSqIooRcpVFDmV5cEtXuIEzNEgKmQsUtZp69T/U6cXH87HQJQ8C9qrauEqUlZNkMfna2KRDY5kwSip5ovtRHiZwn0sGlZx8uL3LETH8j621e+EuOLHXQX8aKTootf9e93jTqr84iD1ROpirLeOtpVkvfaL9PCQOLCUNKq7SNYz+amp+LJJBOaV/HxSCp4HP+QoLIvO5AdWSgwWXT80dVnAZsGrFnsIo+BVmSkRLi0CV32C93g9AsHlCyg6OGmFCO0sUQyUUiIEtkQcSTXPYqVgUikryiMINFFwpfItGt2Jjckck1mUMWak0/dBHz3+TOx9Q4LPhmiM71eBktwt9bjnSonnIzMyrkwDZUL8uheuke1ad/k7X8Xuh6u5/nWRhX0t+7URCpEszct5HBZXcmGxC2Fc2Ub/uhQo5zvH8YUv/QdQYXpH1TAfbLdPrHntEENHC6LUFmzyunWcFlr3vJkn6YQ5Js8xGL0zzsH78eT5fnC8Pzm+fuX88pXjyxf6+zv9+WQcB+PojDMKk2kz/LHXnJTEIB2o5QMLOncIN6SMuAG0gbToP3JDsOn0PrExGGMwJRUJUsMKmnTGkIrrhpQId6oSuSdNLDfD2HKqRGZG+LA4Op0yJnLJnmM+XVgjnDXiSftxIQP7AvX33GvW8gyDuuVkyxoMkaHw7KLsKuwF9lrZ1kOcpsreItSv1crWKlLy0fJRK17iJJtaEImgMCTpXLZcHcPwDmLTMouNFIkbWQjvGy2JBlS5HpoW7FhuymSybI7rdDoxww4ExQ3oWaCIUErKcd1fPADVJGZXamnUulHrQlQCBRJ9PVhGZZBoV448PP0zchNRKWSDFO99djhL7mcliKVugtaUBUsQRf36fnEhw976tTHN0jOnJsiBPpcfR3y+1YF3yXRUi08TRYcjQ14bVPpToFCKX89RLdEQ4SqMrt53oQwfzva8JB+wvvhYnXycXatTzuLDU3XFC4nU6wDT/NnJ/QBEKhoxV2iVCxmRRMeQQqRtG1ICRYs/l7XUEi3KV6LBq5AkuYXqJ2H0/Bokqn7XQE89RzfC64VeqI7IhbC6RoCllJUplCdISCYwuA62y630ci2NQ0QkCKpKcBncBFePItMlSZQvaMhXjYsk/yACFmcWSJ4HeiazArxQo2nImMiwzGd6VWUxUpl4rktf6MNCCGJAS+SOFdTjUVzRTAKWlOdfaEguEJVAYFsNsr27MVuntUIbhTZjfTpO87BxWM60C9W78vvS/r5mkVI1XcvFE8fO983Wukzkauaa+FBkWhpDmpZILkaS/xQcqG7B8xIbUDReo8ewOcxvffUjSPrZtOu5OnNtfyXeR8tLKSWvlbzMCij53uExIpySVv6SZFheEEmN37uSOWlkUno8GUnDT5GFY8WacuRflYLypz5+pQuUc3SOfnAeR8rohH5Wai30ftJ7p4+OjBZjk2GM7pTq9AF1RqbAYo9PYAxjdOO9D8bZGWfneRyBohwH5/Od8/l8FSbnweydOXpUwrNjKdflgwFbXDUHwuArbuCsJKPlRNTRJJCtGUssPqe64R56fcuhskjJxFDykKvRjZcRDHPpqKQ0NqvfgkY3oRozSLjuIssFuzq7xUD3xQRP06dlJ1M0NnFLluzqHPH4XmVqOkHGyq4aCp5WG02TZ9JapPi2LWbaKpS25d8HMVaSNKhtgxaIh6YcWEsDDfto8pCIDTccD2MTi67MbW2Y6ZyrFdPy8lFYSoW8wdfJ5Pg1r8/glZDZJto0TcEJjghx+CGrsMmuPDs5ST6NlkDKtASyp7qhGoFnC925qo51ifA8tMI06ep1VF4boWgejK8uRYw8lDzeS9Zpm+qQ7HaUlADnV3ut8Xk+IAmkASXE9S6tXBtQFDGAFeqEKDTk6oLDJyEOWV0dPvDKHHnd1y87eblet/m1jeYB+bKvv2B94p5ZRD7y+/Ph++TA7HqsLvD1JOQ6WCOtOk5j0VWkSL7HmvesXn+W5JG9snLy4NU8CCSQEM8ZhayflQdANEoh0xTW847xxjVuuQoU0pgs2arqRDjbCzXw1QcHaYAVPHk98mXH6MuTp6d5n8u1/AJZjfdrvd/uLzo0EiTnKMzyeet6jxKRyRWxQijVostWu/AjlhOq61KuZOGaQ4PLyTQfmqiKmAQKmEjTmtf7VaQkbVqgaBh6kvtFuI0rRcFLfE0xiWIjC/UlDoifah+ewXpWC3nIhZcIpczEoMQjPViys8s9cg3CTPJBBDxG3k3Kg697czWZoMyXbu5Csrh+1mogyWZSlEw+fz3Fi1T+YT5qF1rrl2AEB0qMi8fHAqXkeEj9MhV38RwtwxoB5VYY61di73mNlf7sj1/pAuUX7195vn/hfH5FVWhS8HaD4sjwTFhVxCpiLbT2847MBz4ezPFglBvPcWca9Gkcz855nPzi+y8cX98Zx8H7//UDzx+ePH948rP/82f88MNXfv6zn/OLLz/j+f7O1/Mr/ez0MTjPMwqU83yRM9YhWJW23dlaIAOlaUKYFu6O4pfCJ5qqyXJFbC2609kqXm9QNsrtjdIabas8Hm9sW+PT7cabdjYmuz8pHlr/lQfkw9DypG2DN9/T48GZc15Bci82u2AWBFPJAkuW3bqEO+W0iZuj4+W6qKbRLXQoCSKJKG+78rYpb5/vvNXCvRa2+51aK7rvuUEK5bahraEtPO+DYFnx+wNpO/p4g/0eip63z/jjMzw+Ud5ulLbTtkYZjpnChD4LwytHpnV6qcj+CMXM/U4E9xTkJqFQqBb3rEVROEc6sA5PpGDCCMmxEV2POExLoy8R1MZ1kCIdZKDJv6hNaLNSa6PqjSJvKBsSFGLwBr5xza3TGp08rNS5JOSQh8hCWtbNnxvJtfyyE/2Yv4LmwZE1B6QbZR7iysoaETwRGNfoUkULbjXzkWIzjkC9ZCYUx4tfI4LiMzdYv3gSQYFY8MgHgDj/E/VhQsz2qtfOHmGxvUcfsDhhK+/nNU1J5YcL7jP3ZiPCLMOYa1oUfEja+YulkWIq8NZsJ2YLV0e/cpik1CSOhrxfctOP0dBq36OYMbIQmauIUij1QlNnibwZc4GZBcWln84iRRVvGtC/lkCEW8UVahYo0TwEamuMGLeqolpzrBXcmyw5kihvl3JELQ7UYpNqIa8vNuPvp+NDGF05MzCraOFUYVRgd2RWdKtIyout1DgQZ+xzzSe7d24eQvi5imIxvE28GtY8un59jR9X2rl4Ra0gXSI45/DwIHJBnnIJc8gsKSyjBSzQRtWa6/NVnBRZRZFRMao7JUc2xYTqIV1WOjp2dGgohWaDWZKH6NCN/jwZ70/mD1/TqNCjYtgLMmuMmKxh7IxyR8qOlI2uQhdlyFcG4U+ERz70ALbso6zYy8oik4vdHCPUdKpBrEWDu2IS7/HIdmm4XWjXXCSc5NNcq6J4oHBuYd6nTv8QguhFsnlbTVTq5qbFl+nI8WyOLkmFlv9JOvK/+uNXukB5n5GXoWxsWrnXb3jbfo3H7Vs+3f8NHvdvuD++4fb4htp22u2N2+0b2nbjVj9RdaPQ8FEYfXAeg/cfouj5+R//n3z94Qvn8+T4xTvHe+d4nvz8h1/w5es7Pzy/8HU+eUrnvc7I/5C4oCpBPi1p7FWrU1pBq9AeUBroRjLg4+YqXlGiyKoassqqq8NUZN4QUUq7I9sD2o369plSN2pttHaj1sq+NTY7KN7R8QPMjltnWvjByJy020SHUT9HZRsckkRn5rhuqmCTR/y428B9xIFtZyxcLOLJLWBbVoEyibHRDGIfIqhWPj8ab3vj83ffZoFSaXsgP2ztghP9tkdhUiujheTDVSm3G9o29P5A9pDjtscnuD/g/oZ8vlHqRttabAJulLnTZxSP2k+mCF4K9f6gbI1yKxk8OCLk0Ue8Z05IGs8TOxYqNtA5EAvIVT+gInHGxpxXslt2YgQ2pUdatg4oaSCXvh4gMCvMio8NnxteKjYrYc2dnCBPTsIHSfgaZ7DQAIGLR5HdUsyM/eKXXMQ8iw0o4s/D5jvWbhQFsS4H6mFoZUk0Nh+BFGVRHZPnxUmIgo7cKK+ODYKHBTHtVH0hIcvgbUbH7BLFyHJVIYmFM0dlkOmzQziPyMrpE8YMO/+5IGpLl9B0h32RAgXR8MhBJpaKGF9mb27MGbwA76nu0Bz9WXSXcdCtkV25+C1a1ojIL46HwOU4TI5KFlICytQsUFTiei+vjxnoyyKHwqqPYv2aJrJYd6Q08ryI4k8FLYlveBQhC3m53hvjWgeeUdPaJ+WZ1d/Z0XFQ7KTQA1Fw8KnMGUi11PDjKQ0Oh0OF2STCAvPXWZSeY56JIyXURLcWgd/qwrBAidGJN8M3xzcNy/imWRyC+AgUkHwvp4dx4JnjaRTv/iGzdF0zLjsEn4pNhanh1jxj5GBzRuGY5FUgFE5JflXLcZg50jv0Ez9P5rkxpHIWx7pRjsH5POlfD/qXJ9NH0tVKGNJR8K7IjALfZmNaQ2yPfRYQvUWx6zHKnirx9ZmGrKUEkDsjyXsRa5cWaYoyJP7cPR6nO4f75bUiHrvGNLuQw6L+IjAnRuMys4yFvuCXCwGRCzEWQlVUPO5lGcGZ1JkjLdIZ2ySMHX/Jj1/pAuWYE3O4SxAk7/VbHvuv87b/hLf7b3B/fJOPb2nbjW1/Y79/om4bW8tFIMo5BvPsnF9Pnt9/4cuX7/n5P//n/OLnP3C8H5zvg54ZIz//8oWv7+/8cH7lq58cdN6LMTwq1ULM8SvGZpOqzq05rQllM9ojm+O2IEWBITSrFC/sUqnVqc3YWslZZ+NWNlrdub19h94/o9uD+vlbSmkU3RDJsKmiSH/CPBjHzxjjYIyTOXvKS41msKF8lhvLTnxaWj7PybAzfQAMGz2cDWd8jzlP+vnEbGAzXGfnnOFCm53enLEBVsvlq0opjc+fHrzdb3z+tV/jrTXutVJbi429NdIgAO7L0bVitcW4SQS/bZRWs7jYkLYh9wfcbnC/I287Wjdq2ygZ1bGZ5KhvIM8nU2CqUh43SiuR69NmbI70UJ5MjU1rGPbs2HMwe87O09ROOWNcU4PMuSD6y4xI9SIXms4oUMqEaki1IIJKqhNGwUe7pOs2a8Q3SBRNsZmsbjBVV26Xr8hF2EzIlcVPyUkOGqM5KdkdJckRhRWaFm5kL3KbuIOOmH1rj/UTO3mQpq8NO+GYNM9ym1mkrJEmuS7OPCECS3c0DsgRqJ5bFCChPIqNbyJ4emjFgR074zEiGLCfcZaOD+hJFMRZLDKvHB4TSSkuyfcK/Dt4SfmezFjzc8xw0bWYW4aTqsb9MxPqT5JmKQXRSrkMH4PbI8moXfyjVUjGq/AXEbVEkOdKow+vj3VIsODHqDgreFWsVCxTtb3uoHGPyDRS+BSeFin2N5+v4saTmZIeGzY9CrE5kbNTjhM5BxydYgfFOkV7TL0sDvU5hPOsWM0MH4XThUMCRTELNZcVic5d4oibEmheXQ6secufM3iCJkCbsTc2wbcaSeEZSCiuiFqMq1zgItoOFjerZNp28FCSg+Yv5HBOQbNAmVlshRrTYHX/9rqFLk6TEfeQeyy8s+C9M/tg6OQsFgXKaZzPk/F+ML4+E4EG2oZKCY7PKDCyKbGG2ca07SLji95j9Eu7DPJmAapiNfJ/fIR6LsIPLfZvShT2UphiDOwqTk6HA78MRMkR6lgqP0I5qYvHlW/Yy3ZAOIGLtb6qFF8ezVz7AGbhRLsajylASYsOxf91KVC+jCdlGm/yiaafubVf57H9m7zdfo1Pj7/C49O33D5/w9vnn7JtN/b9jW3fKbVQdsV1MGVwnD/Dnu/0H77n/Wf/nB9+/sf88f/n/8nP/vh73r+c9NFSxiv87Bc/8H4e/HAefPHBqUavCUe6UreN21TeuvLJDzYx7htseyAn8snobXJW6IuUdMCexm/38sbtc2H/VHh8ahFyt7/xk7efcrt/4tvv/jJ6/4RsN8qnT2FHbcr5tYeB1ByM5w/M85339/+D5/mV83zn6J3l+lrbna3d+fbTb1DahpTCsMG0wZids78zbYQHzDiCnHt+pR/vnOc771++Z46DcX7lOJ7YGFjvFzFtzjhwzAkSYanUbecn333Hp0+f+Td+49/kbQsTp7cibKrcSmFTpxXl8Xik3XmQfk0cE6PshdIK+/1G20KSq7cbsm+wb/h9o5TKVjfqbKhHmmZ/TvoxKL/4EjeoGnovQfNoHecJdjDHkeMF8A7jNM4vneOLMbujU2kEOVibxahGK2WLTA5pEauOFryGssYsb2gN6Fn24O0Uy3GDGXYkUXsrMBtYVq8oIjM4Ae4Z9pbQ6cedoemlwMhEug9dDoBHN+lC6dkhur32mCGxiaSnwtpkKgOTTrdO7yfTw95dR45VjhNmXHs7D2xMxnlwBU1K1iQGfn7N/UuDAIzGjP0MIvqcSfDEg5TnEbY4hwR8fiyyHTxN6cM5z0iWDbfviqccU0uqHPKwRkC29D4rgnjJiavA7LHOz0x67oYfURUpjt5amqGFBbwOo59L7klIO3ONl5yxr6n7IsMsWapLehFJHNZROCUpVkLpwLREBJZKT2K8WQRaxeuGbXdmveFSEd2YXhFzbJxZpAotyZzBWRoxxEm5KxZttXVjnJP5/sTHwPsJzxPGRHvPI6njtWNFmVbpVjln4f3cUJ2XH8vwmLY8i9PFQCenGBV4ypIuO7439L7RHpX2VeNw9YhZcGCIEhYAk9H0IsVPC7uAWQ2rMTaS2gJpbQ3ZNgo1moQh+CzYyENynIz5DmNEpmnCCuOpvD/h/d05nqk+A3ZCoTiGEq+gINZi7On9yglSW8GZHiq0FUexEsDPEaMyCGXTDtWUTk1FSyVCKytFGl6IQEH1ywhwSIxbvA10y4aoKZwH0jVyvRgMg8kW6wlhcjJlMEZn6KSr0ecIZMUHs0eUxegLPYVWNQwSa7kUYbFVRPHYR0l1hGYhHsutScisBQKZ7xM9RzR0c0KPe85VUSto/+XP+F/pAsWn4FaYVKY1xtwYtmG2437D/AbcQO4gN9A7cSrp+g6EOoKAbj07wDmY/WScB/08GNMwgmVNQvzqkyJO1WA8k1K4Wy3cZ+VRBg8XNnUeO2xbo24VebszauGsyigbbopuws2/YZM7j/qZ+3c7t28aj29vUVjd3vjJp1/nfvvM5+9+M8cbG/q4BylswLGdUZyMztgKs+/U3WjnneN8p/Xzms3X9mBrdz59/kuBRJTC9PB7mdY5+9e0ee7MfmKj04+v+XintsrsB/3cac93bMT7tTT+c4xIWzVDSqhk6rZz+/SZ++dveHz3Ex77Hi6TRdlU2IuypfHT7fGg1kbRiumW3dek7EqtynbbA3mpFdk22CJB1LYkHJYXsZUZZ+/ITXT64il4mlQNzDvuJ2JnVP8GdsI8jX4ORndsCDIXeVmQElwNlZjBS1GkhkW5l4JdcP+a4Qa6VatSa8GqUD2sw1ZtEROMuO2dhcTE4csaozBZpMEgGxCzwCWzWpZ5Klx6l0RbLgTDLNaNkB2bcBFA1mP5HMjyZE3eRBZwH741S0UZXCZeBD758adfvkCLV3J9/SLECilpeb0H+b/pH5QPnvTk5UCWxFVlUrJASW5shMYpaMvk2SIXibAqoUDK4JKLYkLA1iYkUbagJfJwJNOGgxibpPNUcahqSitjthV8LbnELIvaLEtRkWo+SRLtRbwtIZEO/5aAHbyUC1GUVqPaSuWaWXjJTEJNs75vZFcuunQM//3DNZjreq1spfkxWO/FCRp5VaoIJ5VDIvgjmqNQtg0RTpRTJiMl5kPj+Ywk3LqUQAZLxUvDSgleneR9KbFGxJ1qRp8xEhJPj6rFYxCNQM9akJooS2txn9hSAxk2MxTSNRO9CeffGfvUQt7GlGtvtHy9HQnux5I8e2bMOPgyUVnImCbpWLNRSdWP6YcppwbRlCqRC1YrvlXqVgMVbhURoVhBm1M83IwVx9TwOuLoKiEGWaiiE4Z702cQ/yX4jtIkip9N0TkpI0L/3Gbci3NeY2IS4UoyW6zDhcp6uSTlLJ8cS8J9rovLCwaoGhQFubxYLPlO2VStRfVLfvxKFyjMFu6ttlPYeD8qz6PSjspxbtS+0fvGGDtSdnRuiNU0PAoQ2Vflh1xbIxDw1hz46PgUwh9CqT5oDPYkVTXglGCtFxG+kcbdnDdzHt7Z1XnclH3fYjF+vjObMqtgZUdQqlXeyk/YyxuP/ac8fvrg/t2d+3efaPudff/Mt59+nX1/4+3zr8VmpQp7CcnocJ63d+YYnOPEjhs2To5x5+hPzn7wPI8LQdEamTCfHr8eZNQSHjDmk2mDPt5xG9jo6aLbOY8v9GcUKG9vb4x+0PtXzudXRu/M8wx9vxnneTDnZMwJGht43XY+ffsdn7/5jm9++pf4dL/zdrvxVsKQbS/R9dWi3O8PSg05rstGxrdRNqdUZduj6BHV3LQFqwo1OuhJT7+Ggk04RoznfjjP4CSI0VoJgzA/MD9wP2A+L/TATmH2kHfPKfgKC2OpG0LyuMzeViftNa6NFM2Zsl5W/a1UttqwZsg0qpeILk++keprw4sDpmR3HWRTIWyk43i22OwKwZ5bUgPpsRGsYsUnMSdJq83LZvpPViQfFv+qRC6Z5ioYskhYoyvX6zGS/9E9nXRyrBJUAE855VIXxfv4ynFaP1gvSWxIeZVLRYWnfmJ9/yhE47ulKVhyaUrRrL88DyuordCaUqukJDQFFRpeFGoW5EoP/kZIk0Ey20pqfUkoJcIr10/XUqi1UGRBRnGNFks5RHvBrzHLogNligb5WNffpVxcnIgWVIpKktYqnqnAc9sQbUR1WvD5SsWO0NMkP+qScNcL6bCLNzSDwmHGSJ4PJHfmKg5TUZQcMET5qg1kw9hD2ZfF6yT5qmpMCxPELsqpwpmkXEQZujPLxqw7Q590hVPhtHCftkXk78bZJ5bBkKfB6dDTEdlLhbYh+4bfdny/JYomIXvtzuz5HplS0uROMs3bp4cwwoRusmrm5FooJ8IT5fTCaYXTa5QsTroyp3Kwhk+JNo015U5tmnJFjXE3BCSzC7IX5N7gscF9oz12yn2j3m/xuW5MtjQNFbpHgWKlx3oXp0jEAzAE94EZjDkgLRe0NYo0KJPN+xUPYONE5wQtqEcUiCRC4m7UWkPV1Oo1JpXlx2OW4ZFB3C4JDFeBTWMPvynpipu2CzqjAIdUWaVqcG1Bv8THr3aB0hs+leeouCn7u3N/d8ruPJ+T+j5p++Q8kt1cHCnZrUxQGqKwlTuzDlo7qPVBre/Ueqe0d0oLaHRtHPdqVCbVJzclteuacjXhkzY2h5sFN2Yryttt53Z/0Pad/dvPuXhj0ytSuEnj0/5T9vbG4/Yt9+8e7N/c2b/9RN3utO0Tnx4/obU7t8dnVnIrLfJ2fArntl0IivUTs8nh33D0k3OcPI8jDmczkJC17u1TzNCLJmUhVStzSyQpv9fs9OdGP+7088n5eDDGyRjvHM935uj045mmQ4Pn8yu9d85+ROWsSm0bj8edx+PO26fPfHq88Xa/81aVVpS9hAy5FGW/3dOsruAas1ljUquhBVpLUqpEsJZ5oDZ9nuCTYZN5xKy8j8bz3Tiek5/94ms+H+Ghe4xo6rhmrMwkcc0oTmx4ki6jCy4J+y/EzS0LxBlmYzYydfg6jPL9Pr4i/aCMJ807LoNSnOpKZbDXQSudoidwBKQ6J1OTGCqDZYU0szQaGhtBOLBmaZ3P6wVtpPbbZpBULYi+0TYmpc4spTATlox6kTRDShAF+iwxJvrR7CiRBNFUDOjliRB1TYw6YhySRmiyBNJLkRH10McGIfgXlnDGQlAyO8Zfxc7LSTYN2iy4B1qW6NPi78RRiW5RE7Fa+TReCD5DE2xE+nEZ4UEkkAezvH52olOisUmjSi1Z+KwC5U+M2ItGrhBSsOLhuUOJMEeN9WgilFoRL+GAXRoikVCLZlJy24JvooEirGtu+WQjJ0cSscs1q0pJu4JFfgxFnyYSQIzcahwckccS77/ZiXlleJxEUirPVJxYuadHCFR1Bk4XGKUFgbc9sHrDdGNQgxplxjBlWGFSGFIDQSmSCo8oGnQEJfv4emLD8dE4++ScxuyWEtgliY3rNMjRGR4k/zmYx4kcHTlOau+ITVoSw5Zk/DKt+bCmLdGTjtBd6VPpFrLm4jDDE/viHtVSYg8DmitWg4szGljcNsxdsHuBtwbf3JHv3tCffmb/6Tfo/U69v4Uxm81wMc9b8Eiyt+kIRZk7YgOXzvCT3gPl7Wen1hIcn1Ko1bFFO5hCm0IZxhhClRnv0xRm0xhDexrQreaK2FfH9NwbLNRTJe6vmoqiprA1pRXhXpVi4W8zW8XHxHpHDgvhhFXKUFbQ5S/z8StdoIg1zAp9hEPk0eE4jfM0znPS+6Sf4c4nZaI1HtEpRNy0ooiHhZjSkmwai0+lsnIuom+DTToqA3TQSujWyQ2oqPJQpSE0FzaBrVT2+4Pb/TPb7c7907fIVjMDqNBK4VY2vrn9lL09eNy+4fbtje3zjfb5M7XdKNsbj9sbte1se7ukv1Y1SEdFKThzFsaMg9LMqITFehsdPZ5pnTwxD+izSnktSo2uz13xCm4z5HNFmaOkTb1SNbI05hz0udPqxhid3nZm74wxoiM8DyiSbqSx+dYWpNi2Ndq2se03thbfr1XNAkUo+y1km1pw2QgzsRFx8QpSXqqRpbroYnR74jaQedJz5HyclefTeD4nv/j6BAStBd2d5iVGfIvMaZoeJ2H863FfXrPWj94ZkZPhmEXnimjIJBPJMJZaYuL9gAwsK0xqElarOw2nFaOWmeqvRTb2l99HBiPk8ZghgOGDEwqVJALmel7ma1fBskiwK5th5TIsUtvIF7oO15ny5mU9agujWK+TS6kSxEUJYo1KqmO4uBChCLIgY6fpl5LjksufJB+y3uMsTlySOJhKBZcr+wnWc5AsUNIhQ0BLjLfUXxC7yAqBWP+VhOjzeaqGS2glSIgWn7Xe6/XW2PrqBe1/MPIKBdTyLMkPX/+ekDcg6hRPL48cx8S/Fy6PjbqnSigLFClXCGhe8fg5CyyDRBXlNYLK1bHe1xgIwFI0rUeYQyYJtJTrcz15FWYjCa+VkQ+Vhl3ISBYI7mHcSMPLHj5DstywY7mFt0c4vl7jmpRg+1WESowL+2SZ1Y0R2UfLnJsfIXlZvOeoY64Cf0xkDLSPDBhMF9u89i5RVBaJYpHVqKQuJVdu4pXrscY74Smzrn3RlCNLFGxk3ZPLK8aMVaAVdG/xuO/s9xvlcafcb2ifgXB4j8LLnDEjrEPTrRU3wkS6gGvwX6ZFVpzG+1VZBHiiSBEImXsJoriXeI+UfO/jpX+MkAgRmaVrLagJeI2xZhGqhs1EKxFOWEumKLuilh5IJfObfCS/LSXj9ss7tf1qFyj+CbPKcSrnKJRq3L4OSjv54YdnZJuUhpQvtD7ThG2ntsJ+VrZNqA2KrHJ3u0iKwpa9Ksh4kkwXdHzPnCdtPqFsUBqlCq0KpURFGU6CyqYbW925vf2E+9tPud0/8/mnv067bbQ9fv5Wlbd949v7t9zajXu7sb1t1MdGebwhZUPqjdb2GCfUIMKaz4Cxa2yGrTTMKsOzqwd6kbDen4PteKZ8stOnMYdhiSyBUKRe3ahIQ7yEFK8IVkt0R7Uxt5053zAPstV5vDNG53y+0/vJ6Cfyw8ZxfEXeK2NGpnEpNQuTSt026n6j3lLqW8JyWjXn823DJCPZteXGNSg6IuBL0rF3Dt7nQbfOaSfH+IKPAz+/8P6l008LEtxz8n4YP/vSEa20bWfwE+63HdtbxM+LIImIMIIU6xbTkWqezuexy8ZrN4Qw8jL1CK6rsJQrxvKVmdg8cJsU62zF0OZQhAZUce5lUuqgljML5hIkvxwFD4nnZ5Abdox6PF013ct1KDbrSbT3JMOmq/E8A0Hp5xq8L9lIVHIXv0Sy5Qt+V/LnQMI7QtaoWgSV2PhLnVQaXjpKuxAkNGWMc4D1jLh3JJ13x6u84hVIFs/Zc+SArY4/xi7mFuZkwrVeIxlZw6HWY6RixOswWbyG3NwtUJH171FoxOGhLQLTagqQzIVRSlq8p9M0samDXK5Hsy+gAACd1UlEQVSiuizTQ26FXY5W2ekXzYiGqLuEyGoxTwuBNFvTuqWPiSDbDS2rQAm+TRiTBQdAfSEgEmtWoWhA9JpozuU9qIEAiVpI3dWY6slViANIfBBePOHH5ApjHox5MnvW7lXpuqOyM+UWNg2l4EWYHinus+6xVtoDKw2TEiOk6diw9LARptfYUTX2l1CpOT5nFDheGT3ue5/GOY0xHZslDzvBR9giyAgS92DSx8k8n9j5hOOJHAf6PHAGKpOWxYQUZbZCb43eNvpIFQ0SDSbJF1qxzRop6E4YKarUNLWTK7ivYdT0eYnU8SQnAy4T1KFC3RvlfqO+vXH7/JnyeKC3N7SHjcEcZyriPAqWJH8vjqT5AfLEvNBPy5iVk02jSG/Ec4OQgDePhllLpY/wfBmao52r7RIW78hwusV9akkOMrNo4hM52YpTFbYi7FuJJOWqV1OkrUVR2Btez4jbCHJP2gX8ch+/0gUK8h1eFNOJSGV68EtWns7sxjwn8zhRwnBq+kR7ZcwNnQUZBaowT8V6yM7mzERTgs8w7AvuA/zEx89wO3A7UH8QHixO0y0SLjW6E/XGVpStNfbtwW3/zO32HffHr9PuexA9N2dryu3WuD/euNfGoyj1FoRarfWSARcPZj/ngcwDbIbBjzRUGyW7bTxhTkhYncs+23wyFfqYTOuM42sm/BKurHnDaRr2MGfwUGZApp6ybpckY0mNllJq0B08kjinVqYUhghjdcAy6LNz9pPjPGlbp5yxWqsVTst9YAg6RxZOM+yRPaSrVXpoqfyk93fGPHn2d455cM6T4/weG0/8+T3vv3hynoPnMXk/Js/T+PlzoHVn29+obTLHA8YnthaGTbIIdMOwPq7UX4fs2IL469kKmsVIoxMyVIoEDJucmXje+TowpgjU2DwK0KSwoewljS2rUeoInxS1SwqbcaQ5TkkDr1IC0i8aPAmCHyLW0zsjh8SXzSMvTomvSVAgJB8ymANVQEFmdLVr3k+c0pIjiYCSDbUwsHIpSO+hekgUKQ65GYZW9sQ1x0ozNsHFAwky6OpdiWKCNf+O4kLFLlg/ggCJ51piRmRldb6BluQkhhUki0cHnqdFrvUw6VoOn9oAdVrGF0yX6KwtDtfkBXNZ83sWKKrpwBsDqYtg6uR4iizscpQqOUrMdXVhSIt/U4ix6+Uym++nE+q4JekmxzYW5enKay6u4a7qr/GXA0UmSyLtGspD90TEPBQlsnwvNB4mYby2nF0tHU6jmVfMKljsq31Cn4HY6HR675Ry8Hw+YRqzT47nyXkMRg8pd4yc9bXuIApjD+VO5EiNcOk2sKlIcxjOPGf4F7WTwcGgMI8DP88wyjw7fnZ8DFaScdMwX5MkEfei9FJ4EkW+4twIy8QNp6UQoigRumph/aCahbXHPSCzh59M76GGGivnLC7j5RHkQeQuiUQsBZjUeo0G3WaiNzMQbQmDRF9j5WFZ/NU80wJNWsnUxWYsGclFmozxUaKpGRZqM0tyObLQojQn9BjzupMGjbn/5X3nmtJ9jRGpbTHKmjWRSQ95uU2J89kMjzTVINcuws8v8fErXaBI/RyOguUgYLeQhOESB+YIHoH3kV4DEoTDmUxmGtND4+4j3tA5SdmiYJLJvxzgR6g8/Afcz/izxMZUy0YrMaZounJrJPJl2hYFyu0zt9s33O7fsd3vtPuN0oxtE/ZH5Xa/cWuFu0xKq2HspplLL4QHhU/cOjqeYSxUoivSBR1DwKy8FqUnB8DSkXa4MTz9TPoXZlpO07a88SIvRgCxyP8JFGDESMM9C5RcsMXjJioT13iYlsjmAMZCHczpY9DH4DhP6nmiteMSnW8tnmoHQYdfh6bpvBCU6sGtFzvo51dGf/L1/MI5D47x5Di+Z/av2Nef8f7DF/p5chyD5zl59sn3p1Hanf3+Dfdbxa1TXLGxUUsN59gR6IL3gbpdiawBpxs2sxNXT5jaUSlR2JSgC3oWKKswWdkzphoFCn4x35uEiklzdKUl/U1Kji+Krv07xhBJHg00LSWutUY3bYJoXScZ18F3FShx37xWi+TopFyQ9hoRgbw4JSVi3DGuoDkdEkVUbtCGINqZvg7ahLhHj4JqbEFsXUVbjv4kixNdo4gk6C7G/wqvFHIkkQd6qCZy81eimJNl/x8jIrfM4rFUEFnIWXHJfJya7ykx6ow6EBfJbBoNA7ixtESvAiUKDnkV9JJFPaxKJbrRHMGYv7g3SwJ9XRuyYBT9Ecy+/HWuGU6O/eLty5FcFqPigYJe9u8zISYN2F3IXkI8UVK/kKdAr2agMzKiwNKQ9k8m9DX2yXytJXdyxTxIFsOgD8sCRVAz+ujoeVDKM4v+yXmc9D4Yw7LQ8hh9vaROQMWz2cTT52PEHrIIrkzHe0p5z87QM3xA+hko4eiBDI6Jj4loZL3XADEiUFKFXYWzaLiQO1SMnZfUeI1sisaQUy/elyQfzQLlmyM4F6OHsGLEWGPRLYpFowUjvm75jVyRAAWK4V5AMljzWnNpY4GH2kxX7lqNsVOOPlk5YamcUX0R000kC1gC9coxsGbkipNjHbdwYF8qPbiUeqswd4kGQzVN+WoWKlc1Ee9tkLYVnyVH3/m67U+QtP4VH7/SBco3v/5/x7Xy/PIFxfncNr779id88/aJt8cb9/3Ore7sWmji7D7YplEolOx0fRreJLT/wyieTOSt0fZCnUJPgy73QZm5cXqlPXbaduPt/uDe7ux151Hv1LKxlTvb9h1b+8znz/833j7/Jrf7T3j7td+k7A/KfsPKpG7C43Pl7SG8VfjMMzeMKLhkzcnpuE3GfOI9fAvmPEBroijZ6Sd0PlTp+56yf+fsB2fvnOfBcbwzjnf61/8THRN1w9sWEHGtlLpHP+0xy3UzzmFME4YrlA2XwtBlw1wYUuhSgrkvyqn5yPtK3fjaB/I8+PkvfuAYwpenUdt+SXBJmH/Nlt2DhOypqFI7ER/4eIaqqD95P77n7E+O8c7x/nPm8ZXx9f/i+PqLUBqNgz4HfU6+AnV/4/74DsZX3m7f8v74wm37RC1biF1GuETqPMNkbxO+2QqoUKmvAMDscLWHisJLxUqgVIGW5DhDYbtlwblXdAup696Emzq7OA+J7hWvH7roUAZIzRj1RMpUk5uglZZGfiLRxfoEvCdq4rljzGhvvHAROLIo8ZkcF1+E1Oi8wyxspsNnqEJM5cNmSYSJrZm+G142ZHRm2S4M13DoB64Vme9hUEVnWBrAXYVGjC+WHHvFuJdU4JDEaDVW5Ewc5FUzBiHUXDM7/vCl8CA2qhPJE6lmSJdk1xJk2lYuoqM2DVWDO9ML0wv+BD8n53CEcA+uRV9FVSptSsbhWFQBcYhDFo55TQmkS3Is4BDzeo/XUDxdMS5eC5lbFOVRN8JD4uBSk4NdHJxaSzhrZBFjEk6utYQYQFNCKp6GgUkerlKj0PSZBUqYCXoPTkkZHTwKZmNLpFoZs0KvHCKc3TlOeO+gMjnHkzFga++8fznT+ND5xZcn7+dgZBYWdaJVoaQzripqD3Q8crUZbhm8OrPIm0B3/AgE1lVQCw2u9ife36E/8X6i/aScg1YmNR9NjGLBLjEFq8pZYsxU3Pkkzg3n4c69DG4tPEKaBG+t1Fg7jjHHYOAc5tjZ6c+D5/Mrdp4wIRx/CISbAf7E/cD9xHwwZ8dnpN0vU0FVoRKcpS0Pey9B4LYZXj3UDS/hYjtyejBnZvl0SSxIE4RTqpTL0l890BuXSa0afBUIpHASxaRJ7A0q4bhLILorE8s8wiFngVE97Q78Qggn6Rw743V7n0h3ao9E+1/241e6QHn7dMdLDYIhxqM2Hp8q93thvyn7LmwbtGZhN1/sIqxFjPlEfCPIewfKGWZY4myqbKXQS2XWlvHhSsWJEhPa23e07c79/g33FsXQ2/bGVna2dmffvmNrb3z69BMej8/c7g/u942S2ncvSt2UR6s8mnCrxi6Naxq/kDCJsC4Tp7hQLAlPHl2be0930Kx2l5xzwcgA3lHy4Z3CwHWgGtHoRWcQVIvG+0Rs1iaks2d2YhZwuGXh5B76Cx8hscUr+7bhdgunWSCIqLDtd9p2iwNXV+FlF3Qdaok4IGxaEkTzwLRBsWDi++zY2QMZO0Mm6n1ih2MneE+i8CzMkajYTKhdJkMH59eDOp+8z6/MBkX3zNvpeO+oHbQC81ZovgW5TeXqKpTVUSwoPuY0i74YybLxz3WrlK1Sbzv1Vim1cNtgF2PHaIC4gq2BW3a+NeytVcOtNEZ2AWF4GjItJcZyyiyry7zMR1bLk1CDl/iaZfhxkVBzl7IXNcXsRRKcOSbAXyF9iyZCIO7x+IAKGB+8Z5ZawjMIbY1cF1HyGmHJ9dQsAYLFZ4Ek2WoJaWfJjCuNtbfi5U0qxS1yYzxGSWI10KAJ4ET6cGzcIY3MAUNCDSKBRFQVmhhVwtPDEzFZSqCrQFGukUoQbMMTBU9uiNYkfkfHOgk33qKkn0t58Ro0oiFWcyIS10EXqXWNiSAQpbUMr6DLSNMt6XRbt0BmJoSiR+P+8kRKLl5Rvu7wYhHUWxxz7Q44pSjS9swPariE94i4Jl6Y2S/JAQonemPoiAIaQVulbDvt8UYzD6RBNEYWWiPSwm7UusdhilFRpIdkF2+wFWjRuVNBqlPqjOvrE69BBp9lomWixa4xjbzmmzm2imu+vGnUctwovJDShaRL0NVNI4IiAiBmuLSaMOeg2uCwIPuyvn3eA2sfkzGQPil9wmkp3kjvKE8cU0gCbyBepqG2EbnwRVbKehC4NQMHKybxiH0iv1Y0X7alh8lCSXMbILyI/AM6do0pPQrtpBfn/b1ckpMXL8T9lhQH1ucl0uiy0EOP9f5LfvxKFyifvr0jpXBsZxYolbe3wuMu3N+E213Yb862T0qBUiOsLZSDBZENyRtM/aTwpMlgU+NWC7dSsVKh7ag0ihi1PhJ6L7RHFCiP2yce24Nbu/H59omt7sk7+YatPnh7/JT77Rv2/cHt0cLJNs21ais8WuOtwa06N3VWcTJmgnx5kBcALVTZ8BJSvDiMUormpHNpfA+WPBoofmKBddBSiVSqXS6lW4uU50hGDghTPOFxCwlaNUkIP6V4Eh3NFEW3sGYuYozb/brJW90uOP9+D1Rr3/ZINL7GF+s15ijEUnFiFi8lVShiIxwZ58j5tcdzmmFPX60i3hC5U3TGZicewWquAS328MgYXwfnOHg/v9CLIXKE7XdCtOonrQpjNloqE7Rl6oRIzo8VWvgOSG2Umt7d6Xy7FB77fafsje3tEb4HrXBrwiaDzSfNBmKk8WCOYJSXB0cmNEv6XgTrXi5b9+Iv23IZK6/Hg5Q2SQesKIDkGgsEyhIJsGseQcDu07ARRZ0lPLyycTx/lo+Q/q6q+LCw0D5mqngAd8vY+FA7eRYp04Xh4ZmyELiZhZ6kGipWfNjdR22VC9lDhSUlVHCrQJFa8vPi4JnuFA1p8RgSidYjxmwxXQly6q4lDnLR5L4ktyN/fgOmCE1eJmhljYVE0JUoruT9Et4mInFwCFFslNLCjTZ5RRFOR4z7kiirZfHA9KUgVCDvswjTjLFueEq8qmXRNOcqQQKtBMG2lkK7hfpCgV5iTBmghOfIElaYXkjGw44hDkml3HLNq6J7xGOYCKYbJhWREp12esNIup+uoMhpM8agKtTbzuZwN6FLRfoAm5gGp4KqVL/R/B5cDXGqDOp5MqcFUtIKvinsoDvoLswtCy6ZrNyw0dLCvxqbBiEdXYqwWBu+Rmga12p576zGydTSrj8S3acYQyxUgzI5EdSddzOqDcqcnFk0kLeWejjy+0zFXJ/oOSmHYc8g/xftsdYlx9zhBHkVKKIaBdMqSJKLNC0UTFHKFaZUZlhkB1E2laami0xtOTJca329H2Gp4CbRxJjlG5PEcte0rAf8lVFU4PJ/UaLR9MVh9GwInFTs5ff716VAedx/QCu08hUV57HtPD7t3O+V23eT271zuxW2m1MLlPriOqhExkSYNgmMwZSDfZuMAY/aONodqd/QbsGOr7XSbrdwR6079f5GaTu3/ca+3dnbzu32FryTduO239lqY9/3gOPrpJQfolOyQnGlSqUde0j9mjKXSY7A8DOWkIDWxTt4izh7c/z9TPLqwG3ANOqIAWIR0C22WfVAi6ZEuNQUDXvo9s1FUqxbC7vu0ig1FUwuFyFv9JgDzxELNsQuk66TOY0u0LUwauMmD86tcew3xozDRlX5dH9w23d++u03bFuj1ZYGVflxNfXhautzpqlejBwaYTilvjPHHZuDo3+O0VU/eT6P8D8Yg/f+pI+T4/zK83hyngc/HCcqhaob3z4+0+pG0x0yz3W6BaeG2KxKLdA25nan7zvnvme3LLC1METad9r9gdaKbtur+8rOV0UiXqFt1P1OrbcwbVOlErJi835tPsjHNyNGM2JJ0IVUOUQPZWURQcNe26cx+jNkfaTVtAUMJpbdoWlsPjljFo/U1qUaYCbPJsMe18Zy8Wttpnois5s8DP6e55M+Os/zeHExnDDsG52ZYTm+xkaiMSJUGEUYH1xUY+MMmDgyoaDrvDo80zi8w1o+TpdQBq1rl6ZqBGIa9y64tijKFkYpcZBHHhKZYgw2ogN2DBlKmUbDM8cpEMUFZXsiIp4W+qjHuC4RzSAUbxTNdG4NLlxkOjmiyWGSgtZ2FaTolp+7OALEweBGCZZxdunR5aOC7YrXeCwFUKtQt1xX5lSdWJ+YBEfDZYRd++r2VzGckuaijVpiDFtqpdweQbK1ESirRnMi3lDbotjG2QrsJcZVe2vhtCuFeje2Y1DuB2V/43mcfD3OdGwNs78qG5vsoYxUp6kzz4MxJ8eQyOlqSvlc0VujPDbmXnFgnpLKQ+inZSqvsxN8Ly0anBGL6zhHTEK9pmqNQk+kqhk8ayBTrQSjbGB8Td7f1yIZ4CdUUZpXqsO5P7D+xM53jkQXRiF5SoViQplCTdv9ck5K7ax8JtkS5RTlI7E9CsvJHGcaZR7MeYbvE8LI/fuse2T5aBB/jZB3jzkYlkKGoa+cKlsFT45zLMjA6tG8+lR8BlexEFycVoyq0KbQLN1kp1zJ3JIBn0xDj2h4mMoc0M9/TQqU1k5KdeDMg6BR70a9O/XulDuUG9SbR8x9jV813fhiJhex8iYjNqIGrQbBda87sw1UaiYG79TbJ6RsaNuptzulNbZtZ2vxqHvatG8bZdujsGgl5ubFQDr4SMisADXS32tA01PbxdqfFt2g5yFhWqJ4UEHN0SkwNMxBZ0Jubuny53im1eLhyDh1UtQieEokOA0SxNgV2ldKC2k2mumlQU6rMhgymeLYmJh5Vs2DKeHhoRrs9KkaN0iNCHkQVAv3/cF937jvG1sL983k7YdFuLzm9rZ4D8s8TYVKyeOoMGvBZqOWSquDLc3OZvoClHHSZ6edX2jHO+d5IO/PKMak8ul+p5VGlZoeDHGYmkm4xhKz5m2/UfY7uu/obb8IkZpR8rrv6H5Da6W0do2u1BP2RCm6oZLSdW+xIyaiYK7ZzKQ6yJdgOHIroMSkLmc4ljk64Zj7mtRcpnAeKBMsfkhscJc30oXb8uGxZoN+/ZxAVxYg5NevePCx8iQPTofPNPXqmJ18KDlZKcGLZEoiMkFa11RpeR7E6RArJQ4bSmycEiZchlybePhCZKnhEgiUxtxJUtVg6xEY/sWNCVv8hPtzJGXuy4+KOS5cO76fxUa9HE6ieBESGGf9S6RhfyTBsuDa/DV+76mauICshZVLyp7TSXfJW68CRR10pIvtC95fGHvk48UIZ9ZAW2YxLJEkx0AN0ZDqi84YVyck70luDn+X8oLwk8SqtSJtDwQ5u2kBSi0v8rKFl0vTsF6oRWltjbhKPDcZ7KOwHYZRGRZ7zbQYC1WpbFIiYFWhqTOY6MwRQY52tKWDaytYDT+PYVGc2PRwlq4ODRrpzavrPSZ4XmW91XE9ZL0HhJzdK1cqc/rqMlToReiqdA2UaogGelXB6oa1yWxnIhHOqCTyV5IYu9bBugWdCzdMx2q/1lwgEpp8MbnuUbu+3kSYUlI9qSyriyA2p0dNEoz9skAK6rN9GOuy/Ikmkf/lHqMbg5a5QkWS4A9UE6rlOMqjuLEkmXsGUsqM+9Psw37+S378Shcoj/0rpTm1nQHX3ne2b5x2h/qNUu9C2aHeYmxRa9iKqzhV7ALM1UKu6MD+LMyxcd/v9Ns3FDaGKbXdadsb9f6TsM2vt0AdaqG1GiOL2tj3G7WVkAlvJb5vG3jpmAymnNh0dFqk5pZGtUHjjs8tOB0ahktRoAhec5QgDam3azFJrYicL9mjQJk9SItrxMCg2EDlzCIlJbAKWm45zy9RoGhI3lRKzPpdMobcGDiVyXCPjB4GahO1ntCrUTw+z8SoKtRSmR4dmZbCo924tY1bDefFVpY/heeYZ/XeCVuuEzJOmTCWSxg2GnJHq1GH0zejNpLIW5DZGdZp4wv7+U4/39mfX2KcBXy+3dhK8A/i24droq1EXjyu7ePO/fNntn1j37dwzxQCPamNst0o+x6KmlqT3c8lkY1XE5aS3hvuwTHwEhwH9eD2/LizT/Qlu/vkSQKOWUh1w5GD9NVYhcDEGCmzNZA1rc6z1ghLd3sdvPFrZrGk0/DHvJa4BCtB2TGbiE+KT4x+/Ux4EmmIB7Bm73q5uLoGcdTLIoATY6drUJ+HeMkiVRZkbUxx+vQ0/ApkRRI14ToY4wU6HodMbrojN8aZRacQyIt7Jv1kwWceLptmRHK1xzU014DGkxC8VCXreA7pqOf3i2LHFzeA14h2bcmvumcZi+U6T2k1EEiSlsjbyTTvqGRmIPQzuRY5rZsCJs7I1JwwHSt0Ji3l8erEKMVPnI5IKuJ0JDchuU8rnblsUYR5qD9IOTv7PUZAw2LvFKducXRXwvdGEFpRthpOuNv+oUApxpBBG43t6Tg1O3fP6+VUCk2WN1IkcVMkGqZikbRZLOu34CKNojGcK2A1DmJpHo3bhJ0Y924qKywKMp5hGuxbIgdJJtVUjEkjTsktfGfMoW+NXitH7vmlFqbq63rvb/jUGKP5V5DB2JVyD/8TuTV0q5StRPhfJVi05H4vsRZCqOBkohDCRMQumbKmyo9SwldIAqU6PKz9JZsPTyM7y5RunzMKFV/QTDQsK+xQLfiuxf0iXGPK5gMVoyBshNHpBpdnTFjEvVRFvqwxXLKKiufpv7xP2692gdIwWiLhUoTWhLYpbVfqrtStUPfKtldqFbYtzGRUYh6Zyn/UhF4jLbYfDfzg+d6wsdHqQfdC2bJAuf0kzNN0p7Womreq1FKppbC1jdJKFikhodWWbOqUpwkzN7+A1mbC3tFVKRF6VcK3QQN6xBpuJTrF3HRkLaJYXTiWToqDKeE4aD5Q++Cm2GccwB/uUyWe26ulnquJuPJ1rJ9YP/F+Yv2JpxTXeg/ocdiH+Pac909wjzh5rGKnMsXo58RnJNXK5QTmr44ipeAx2lkj4VAbqIRqZQR6SB8SUtAp9BnhXieVJ0oXZepkFGM2hzkyFRhuWxQou9acxgo9oU73KIxKK2z3nfvbG20PkzlPhQml4rUxW7DpRWMbWe6lejmz+sttUhIi1XjNRQwkPD4ueW1KbyWJk0FC4IJKlBamTxJExqtZnxbdcKqIksyCozGPS1OyePb5it2DKE5N9MpAE+/wROASOdE8WQNxtPh8y9mze3ogxNhpuXUucmCMRoSMPrsIsl5WYRaHe/ABorNczp1r05eSnCgXrnRFzfvlGhNKFlZydYhjxHPoQyCVDTUdW1+U5Cjupga/x4uiMwvmC1VJTs76/gmex3gkCgK/ChTLdQTmRkl+QJn5nFGmTWbK1t0t2ngvyY0BWo67WhYO6xp7FJSawX4u+dBYHcsL6XRPx9Ywhav56heqFPdZSpqXatArYaXboLZcPylhDSMQZvWL57Pk34HocDU1Ib/WIHaXgmhjueEaaTK57NXdaZIIgjkyV+OYJGQhDuw+YHS0T5a0OvaQwpyVPmuMYGYNWevU2DsCNMrRW6xf0WRUqWcBbDQsXMGToLrM6ryAl8j6ml7And4qZ9s428ZojVmTB0WQ1LVteDNkG4hM0IruQsncnf3eaPfKdq+0e0VuFW6VbnHvWeHC54RFYpYL5NTcH1yDI2klOV6q6Xy8+E/JK1roZ1IDLD2rru9TCDRXNNZ6FjaWdywIIsaGUXJs3cQycDNddItmMa1xnbPZM0o2fIBp2if8BY54/sk/+Sf8l//lf8n/9D/9T/zRH/0R//1//9/zN/7G37j+XT5yCj58/Bf/xX/Bf/wf/8cA/M7v/A7/+B//4x/9+7//7//7/L2/9/f+XM8lkL60bxYusloIKpIwVoRS06OkFrZW0oMi5MQFRS1dIM3Yb8KcjdtN6KcgcqIUSrtTtzfq7TOiDZWN2uICtSJUjVTbpi29RII8F/k/YfWt4q/DSCw7lwUc56YrAfu7F8wi/CpuuIIXDajMo/PzuUKc4uG+3AajWJG54PjwAojAqHQ3vboyYtEIqeaxPC6ILjQLhTnO62Gjhz/KyEDBaViPTdlmxNavAsXcrlnqHMJUY5wW7pOaA1CIGyL1+AE7Zgy4xUEo5sxFblaJcDoX+uQy1xspgz5Qnh7kSxNlSklL7ZI3vVBKjaJSa3br0T0srxdVKE3Z951932hbpWyaPjMxxgovjcyiQS60Qx1KWJjinpstRCee3VGR8BEJKfKCcvNgTwQlHnkzC0Rk+VxkgZQS5f22cne0skZAnoWQMLAMdlseJzF8ivfeL83qYtl78hryr5N4LQt1uMLwwrYcD68ITzh+dW7iH/weUp3jS5miMKIxD2QkNo/LXweI8SMxmvhR4rLkG7rWy1IIrIPXX087eA1+SaajHAm68ST2gWVoNSVGTlL0gtfdFwTuV0yRs9CxKPaiJljzGpKXk1/rEtfjguX1ImkGWhV8iIu4KPG+y4pbTvm9ezQrQKA56fkumlLcJCmSz2rGGxooqHuQL/01ZosfYizvFVDCzyh5LzWqDk+uyyKTWnI6shKLNauJNrx2MpapIGnquNgL5iOLpNUWxL94rhebtlhFsbQ11p5nhpTMCRrcElt5QqZ0q0zxcNJ2xU3BAg2Q15KPgmr5cZBoBPEIOHKhY/G+2hqdJcrnLgwtzFKYpTJXcrlG86gl0rStFKRFeB8qkSq8FcpWqFuhbZUtfy9bwVrYz0dzJB8KjHhPNd92uYC2GBmaFEzmq1Bf9azEXqJ5nQIVXQVOBmUS5+VK357BborP/yDRW9e1yWvMtVLYo/kqHxqqdc0JpMZjRBZBmxKhgeUvcMTz5csXfuu3fov/4D/4D/hbf+tv/al//6M/+qMf/fkf/IN/wH/4H/6Hf+pzf//3f5//7D/7z64/3+/3P+9ToQzN/dkBhSGBMneHYchwZECZYT7WaDRtEaZUCk1rygwro4EW57B3vHQO+8Isb5TjQCeUulHqjbrd4pCkhCuhwi7JZfGZ95PmBqLXWD/myjWJkzNvXlJauMVoJc0UbBp9Tnq3kIepgw+0K3VmNWwG718JvOBEvSNzRIcxJ0bElZ82OG3y7IMxMp9oDgzD9AhSlgpbDU+NUkLRoHmwesL/4zyZZyImWZTMMel9RBbOmPQZ2RHHMenDOUegQxAjHp+N0Sr4LSSLRS5kAEhuwqJk5Aa+HDENqtYsUCLAzDycKy2VPH2EOuRJ4Z3O8MG0r9h4YvOAPthzc/6UgptlVuVEcRP3f2yKFz9HQ4YtEmbn053TNTKRRiBOLtH3VbJAmWtW7NRSKaWAziCfZfevEgVha5kPlVsFEl4gshQGucQXm94hI3JiVGIr+yJ6uA9bStzesZ1YUk/tVdSsmlj0ZQzlRIdsq4D2hLA+blbB6A8yXHTNUwXRGDUslSFu6cZrXHidTJYmqCXqBzPQEVn4TnKu8jqIJLndw4hQM9VV1C8U0LmeYnaQnshyFJzDgwRthFR/yTi9LHRzHYsemTbV0RGeEyaeUun4WZIdtqz3M3Epsph0ia9xItzREymTNbJUSVl9HtLr8FRDq6ObILcCVUO6D1HsdhIOsFC0ZaEkqcwopVzVsKrFfbw8VUSSRxMOLMsZNsZJa38qeClx6FUNPpd4JOVCSlaF4CZntQZROBnRNJkjaXq2jjLzghFjt94nvXfGeWRSfFgHMA3pBkcnsJ75Ad71kP/PbLR0wy2C/MwrJo2ntPB/Spt8t4JMoQxoM7v/xcHxl3BAMpsqngsYE83IiiGTLkpx4SxxvyrhHN01eCkR+ho5SQUPAmwFb4EqlpLvzy5RnOyFba/s98rtHpEm3Dbmvr2aQcvrvSwDclO0Gcaj1p0x4tGXkic9bFSgaqFK7ARlVYxOCiTixq+iIE6tJD8J+iwRDtgD51x8FdKZORC+tWdL7h/JVyqK1UB0pkQ8xJwaHkouuK7CUII7+Ut+/LkLlN/93d/ld3/3d/+l//6bv/mbP/rz//A//A/8u//uv8u//W//2z/6+8fj8ac+98/7oWWPQ87O2DqdKzxp9smska47enADRjpxUpMAWvIGLVk4qFCL05qyt0lvIf+EGcQgjOojN9hJ84D0NiFHD5JEJGVORUZFE44UC4ZzqSW8TEQDTS1hjiZ5SC7H1bNP3p/PS/Hg3aEoLV0dBUOOdwqDSmfT14HYJQ7bTk3nk5k+BSMfYWQ1Z2fNyH2UTGQOCLysAy8LhTlm2rzDshOVokGGkoL6uED5gOPTYdTXkRMIwBovBGz4erDgXLiOV8+/D45KEvYSonWL+87yU5DXd1YX1HqoWcY7Ng5snFjvFIQhhSOt7NHX4d5dr/FGKU6dCmVCM6pHh9R9MnxyquI68Brvu6RKYR0B4i8HVM3nvrxmokBO1FwXYsJVrL1u3zgAwuI6SBVzBs9iShxCIpLhaDlbjuCT6FhmfI3OfCzXYLdrDamsFvPFmiCvGeJ/qkCJCYcvsCAlyB/G+kgc2p6wvRvTYxMllUKLezHX7y0U0TGV8uxYQzExfY1VSDToVbOtd+r6by6EkPYmLJ47dP3AqdHMNlLx4DBIIGZ5q8bf4eElUmNEUmZm5EAWkBLvHQTpsUQX6U7cE/n63UNmrCXl6Cn9LMXBNNZYEoTL3tAtHiG/aVDrhS7IVpBekG1Jzu0ieFKEsrVIM9bYW4oqrRS22pJ948wcB6jF+hXPrjvfPyeKL8sixi+mtFw0oRgHl6xzBUrmeOFXEaQfJPKplb7IwEtZVdI3Kfw/Ji4LDc79sXnWTYJpwWbatW8N2yq+V2wv2KaMLVaFecF6idFYjYePWAeXpHh5B62GKF9vJCHH7RAF5qSMWNGlr6LW6COavWkzxu+u1/20zoZQaaUgohjeS6LYnpyOOOglkZCQlAd2LawmKdC2iBLQlOQL53TOPjjOTj9O+nmG2VvVpHE1qmSUBPJCQtGLTG45G26F615e5O6ZyOOiASSGExychKKW7F+yMVmj5oVQpbDsWjPuvBquX37C8xfLQfln/+yf8ff//t/nD//wD//Uv/3dv/t3+Tt/5+/wG7/xG/zu7/4u/8l/8p/w+fPnf+H3OY6D4ziuP3///fcAlPaIVzBIuZTGpjcsoqv7YJTJqDMWGQFRYWHrXLNICf5AKANqMVoR9maM1oPkbs8YJ3mahSWBsWaFWrMLRZTTHJvKGAHticUxRXa8NY/gcH6MUUNpaaqDJMrhHIfx9f0rw52BMItBEeoZ+SGKo/2dIpMik71KbkISny/KSaMTkVVDhCkV0zPQD+JGu0h+RUJyXUqmkObzXvBgSkQdycM4XlOhQM4aTUMxUC1yJKZ5uIFei9Xy4elvFmMxyVn4q+O1y0E2dxDwZTXt+T1IU6PookMFFAXacKd6ODTO8Q79xEfH+mSI0gXO0eN5y7zC4IZzmR+pGLUpU3ZmMeqsyAaDwWAVKB3mpLihGiOjtdHXhThk8VqU5CkFel6uMSSvseiHIuX6yOIkxmdp+e1JkdXYGIcF+c1WN5iSZbXYKHWEc2YovJLwygzyqgcy9CpM4CpOrl/9hUzIVcYEOZMco8h6rIIhitmZBcqweRFvV3EyPEYvy+TNriIzDozO0v+QkPPrvZIfFSe5LnkVu3nSxthNgvOyODGam2iRSGVd/iILhYmmPZCCWmOUWC3GuBPHpeQaTFOvLFAWgmJTY9RDXE8tG6Vs1BbSYYpShoBNqoVRGarUHxUoDS8VrxE74WZIM2Sv6KyhxCHRjxJNQd3bZdZWa9zPVQt73bJRipC4qZHuvkiR2YXlGvTXdY6uIpf0umfT/4cah5MLUrdQOuXXimQ+1OVTo9cV0xJoammV1jJSw4Pg6WlHXwjFTdmIa1MFaw2fRu9gbWO2BreK3yp2K8xWcvxYmKNgVvCmoTaaV3cTs42Y16RSkMzGDLRoWiA3kfobiEQUmZKeLE7vI5DjEXw+kui+ihP1gfhA5ohVbGn41id2znCsnpKFTSJ3kplIYrlZ5mjGXoaMA6U7nNM4+uB5nBzPg9nPQKG2QKULFtb8EjSGtY9AOiWbr7eAkhb6gThKNnoeCLXIy7BYjGmanBSy8iDOuDW2TYRJc9y4OD+Wha6UEDFco8pf4uMvtED5wz/8Qz5//szf/Jt/80d//3u/93v8W//Wv8Vv/uZv8r/+r/8rf/AHf8D/8r/8L/yjf/SP/oXf5z//z/9z/tP/9D/9U3/fvv0Or8J2tKh20zJ5ZoLmMKfPHG+YM6fTh1NLYa+duY1I6G2GWaHPio0TsUFlsjHAO3U8aWY0d7T0REsKpcYNK5oVvgbJaEjlHIk2qDOG0XVSNdwtt0J4WLRIiPUy6TNyLI4Jz/cnz+fBz7//vzjNONwZChSl3nfKlmiHHyHvFWPfdmqt7G1D0knwq9wvJ08rG14HOs94n7ri9kz1Rio6WJuRXgXb9VEa5Kx5JWWahE+KWdy0Y07GNNrRGX1wnp05RnSAIux7o7XK49NObY3W4s9xgMtVYLiNIFbZ5DXqTyVCbnTBCfAoRKcxhnGWzphhy//eB6cPvtjJaZ1zTg5LUyGFPjomJ08bnKMzZvi5BFIRRFOthfLlznZ8mzLjgkskKlvVlBaf3Oag1YpsG16jky4qNIm57a04rQq3Vmhbi3Fj0fSg8UhoTR7BIsRFxxpd2bSFBA7O84jXncWEA2IjOTsTm88LIQlUa1LtpDIiaZWB+ozOLpU/ysk1i0wDPLIgCvBCFpgTxeMcmA16IiDDnfd8TkdUEyxljCV6clokFKfnHjbhmHBOOKdwuCZaKDmKicTomKXndV+IGzlvX9wVolBYyEbN964IMbJwYR+rAI3XESRZo+UIycXiPfQZRE2Pn1uSWF8aVIPu0KkXahcHbhy6gaDI5fWyhnZadkoJL5zlbVKsh3LILLtRRdsWicb1hpcdL2E7YMQ4q96CqCqb4KPFTxAu4uFWW6jnNDxIikbGzCZBeB0YsxViDj7j8DZwSyt7CzNEBEp2feJwS/+QWgoPvVO1xPiN2CtK25McHuiAShRHyzFaVVf5yM33sAbQxrnt1z5xjMmYkzpPqsAmsLUAQVqVbJCcoztTN2bZ8E877A3ulaMK3eHZlLNWxtboY4N9R7aTmysNpQroJAxthoWnT5v4NvARZm/JJQWHPqJBKHQqHqPz9mQAdt/ifTDDmmXu24ywwueBf30GTw9jbBOXAzg5vh/I20S/GP7Vcpg5r7UsmrCGakimzekCzzF4ivKLMfj+/cn3v/gFX77/OT46FbCa9va3MFLTEtMBCNRTNGzuqzsjG44pOZrLKyoS6HFpQdbtkkVc3rNKThEDOAou3UIn+xmGhxKeRNWNkvEwoRkoFz/rl/34Cy1Q/pv/5r/h937v97jdbj/6+9///d+/fv/v/Dv/Dn/1r/5V/vpf/+v8z//z/8xv//Zv/6nv8wd/8Af8R//Rf3T9+fvvv+ev/JW/Qnv7jGyCbIp7uMW2fae1Rt32ND6qH8g7cQGXXGyROoca5pG6uGDkoiGVI42P2nSaLQgvDpHVF7zIdyRDPcE+HzFvnhFzPmVS3ZgVZhVcJt0HwyfJ0eV5TJ5ffuD59Qd+9rP/g3MODjwIpbXS3h7UfaO0StWeMjzYbdLaxl2CR+JifMWZHrIvnyXJdWGI5ISEzVOeaZDDfGH4jAWdhTxwbTAsJUUSQ9cnxUhTUDdqxt67+VVxC1BLFFaBnMQhXvWVoLzmmnGnxIUwSUhUs8NfiHOOkwKuDxQJ6Sg56oowd1CjKWw1fpZI8I/ivjVmP+kenilzjByLZKDdDAfO83kLKNyDR4IMvApaJjVNvWZr0f1ZQNtbDZjaVUGSqJwjjkAKEmcQiW4vO9yL4yZr1GWX+dzsJ/M8mRbJvDl0Cet/D3m02XEVKCWsznCP6bxLdniZtKw5mLGEpvnosZAqC0ESWElY3O3FFcn58vQgC5tHkU6SaJd/yVybPvG6B4JJBi8IdILTE+GScvlhzA+jvZJrRImfKQT+HO+Brf2c1ZIvryPyvfZ8P5dPbJhOGdXtel0hs/b8t0TrEhhZmSSBROQsXgStOepchhpEgaKpGHIpaNnQEkX55f9iJZx4SRK5SIyataFacZIsbxckFUV8UXyroQNdL7ckIlsaTYK4v2mivKKol0vFLP6yEFCSXG8ONiNbyQKh1GSWar6x8b0KN6kUygvYFM3nm0+zxF5RlpfKGmHm/2pNpdu+0QRmmxytUufkNGNYzQLF2ZvkvRsu0GbOdno6D1e4heW9NOcsRndnn3BsYTXwvDecBt7YDaqHFHoVs94MHZPSJrV11qAylC8RbbIYTr4UNu5BHzgH4xzx+1Jijc8YwUb6+8T6CM6IByohh2OHMQ9jHEY/DDnDjt+LRtHDGkcFR8Q9IwPMOM045+TZO+/Hwfvzyfn+HhW/SHAES+Te2BorLF8XCTTTfYWZvor1UJ3lCNYXqT23+MwcisIt0TV3eo5qeiKvZqGUTjw7VdMW+46R+4RcUv1f9uMvrED5H//H/5H//X//3/nv/rv/7s/83N/+7d+mtcY//af/9F9YoISSYv9Tf//263+JcitI/wo+Y0OpQTjdtgethvS3tJYE0OAJrMwPqJERMpO/klLMosrWKrJvbOIIgzpO6gi4D18M85jnnUJmMyzIOpQyU+KS4gOkIzKYx6S0gGD3vaUttTCPyeiTrz8cPH/+zzl+8cf8/J//vzitc8jAS0XaxvbNt7S3z2EZvXHNcve379j2O28ONScNX2zEoeGKWkjOikWXLPmIuegIjkBC17OExfWUV+cjUlL2F8S7VUA4UVhNS+t1X14CDtVCAp3HcU0bbnWPg3ARYVc7mg5COnva2tu1KZivJGGSER6oT0lFg3oczpqci+bCFGcrMd4aXjm1hbS1Fkx6jAPfO3O80+VgzBMZFgmobpjWyOGotyDQ9YZoBxmgng6lhX4cbFvDzhu2bYxW0Fbx9JRoNdxgVTvuAcPPHBOCMC2YjYJRcwRWNEjX4sYYB6N3Rj8Yx4HNeXm2BELRc+Owq0CB9Pgh5PNVJ1UM15mqhQiFqxckPWNTDulV+oMs4CTlvM5L5VO41E8RLLZhGkUWw0N+a4MleZxKlEZZmEyMU51D4tenayCeDmcm1w4PP50isFelesoiPZEKD0TnKmhzHl5w0CDTrvk3EOspR5aaXi41T/8ZcxTcw2ZjjW+9xL8VEcQKHQVfckpBWiYiq2aBEju3JVvVpYaxozbKKlCQLBDDLPI6EVyigKDirrEfeYwfJCtzqVEURYITcV8m/2mjssHlTyEeFgqMrDlPYDhiYeKlBsUjdVbmQEZwlEQiTmLxR/amqIfI4JNXChXXIIoOBdGWNipZSWVBcpEQ/KXuqYk0iVZ0b5gb3QZfp3G40W1S0z323pSmcFO9uvT3M5y+pwE1MpmkhpP1xHk2D4sBrXwdexqmTdroqBltdhgtLQdmcDtcuPXBKIN+dnwKYk61dQ8mGpaobT8GpxbOr4OzGifOgVGnUcdgjMHsg3lOZoKTNkFvhu3GfJ/0rwP92rEvHTENxDIVQ7MqntleQ5RuzjEH7/3kaz/54f2dX/zwA99//z1ffvEL1BwrlXO/caL0duIDtFpaVcSyDBP+KIqHa1jrQzqRxx4qazSd4ztqEFzNCMO/5EO5hCZlAptbmJy6pfss6d9iiEzECtPD00nSpfqX/fgLK1D+6//6v+av/bW/xm/91m/9mZ/7v/1v/xu9d/7yX/7Lf66f8fhL/ya3x8ZuX9EkiJq26FoybKuI0prSRNgzHKyI0DSJWKKY7ECYIzUpUI2tTXxXfNyQQ5HjHT3eOY+0f59hejZwngbP6Rw47xbyxYEyLHwJ+jyZdmJJWfUikQa7VQJH7Iz3g3mcvP/sB44//n9z/Oz/y/f/7P/BsIOuA2kbut24ffvr1M8/pd4/cXvbaNseeUDf/iVub5/55uhs20DKna9TWVY6xSOGu1jAbmKdchzM88BGp49JgtqhLCID1LJIWUFnr+C61bLmDXg5mfprPDM7bnGHijhuhdEVm6FqqbWytQ2VCGVjRlHS7KRkh++aOg+Pcd3yl5Dkn5Ts/PGJEAhKxaOjVbhXx0sJSfD9gbfCbMoxn5xD+MUPDd8a+u5hRz0mOnLD0MbYNs5tZ9YbvYTRGq4RMWBhflSsY90pVmCA1UbdiZZCwfWkqFEPD2KiNJRK5K2EWD6oCc5WQ/rYykyib2f0Z6An/WCcx+U7MyyIy93GxRkw6yxHWmUhEEbR+L5PCTFhkcmmThHjxojCzqKjlEXKWRuzBOJh5JiEmFePUoJHoiVK0OQmLfjf9YyCvpDXQHCvuWFa9OfiyEhERoI/Ns0uabCQpFUN9K1qFilL1bBSYN2vxqNI2HBr2pRDjKss1Q7TojiJMVc81ymByS3PiLmg1OaRllvCpsCJ1GGTdFGpwTUzUURbctEKQkuFXEsfkBqcEkkEMkujWvUFHE4Lztv0RPHCpyOGBE4pHauGFVLBpbGWyoZS2EehWEYXpCdRH848JnM6Z4+UWvdyPbAaPuzjhCMiMwRDWo/Q0FopNKoI21Q+TaOpIa1yVmEUCft/ibUygSDbhmQZUXJgEeMFJqphlNm2INqa7NxyPHh4ZA5VdR6b0gTu6lRiTd+PyTgHo8/YswF0hLeOw1GdQypn3bnJZ8ZZGbeKHD3u7T4iYXsMoNNE2RD2PtByBmoxFDGnmQQ6kcUkHhy1o0fR/+Xr+P+1966xtiXXVfCYs6rW3ufc2+60Pztud+xYFghQcLDA4eHwCkZYGAxB+RPyywiJyAhHsvAfHj+cf7GQEilSeEiAeEiRjBAxQuJpiO0QRZHi4CgmQZEhBjtgY8XE7u57z9lrVc35/Rhz1trXz2snct8b72rtPuees885e9eqVTXmmGOOiZvFcFRgLYLF92qxAUsSEkmUeRd4B8bJILcdcrOiP38iE9iD1RDA1GmMVxS9Ukd4Gh23t7e4uX/C8/dOeO75Gzz73D3cvznR7bU4bu+fUE1wg4LSVhZfLAv3oAKYbJHqcay8EmTOB7WI1bZgzxw2XZ019jDaAnjs81tkEJoJqg9UHziMDdUM1cKBVvi6xCvUIwhLA6uHHF8xQHn++efx3//7f5///uhHP4qf+7mfw4tf/GJ88zd/MwCmYP75P//n+MEf/MHP+/n/8T/+B370R38Uf+pP/Sm85CUvwS/+4i/iHe94B3737/7d+IN/8A9+Ra9lufMEjneOuIMDAcpwbFIjemF4L0IX2el9Ag1xXLjzCT1HshlbUY8yYWWnMCuQtrFDpm7oCAM0oSlad8PqjpOxYdpmFqJLpYGYGU79hG2cCFLshK68sW1hWsnWW/R7NxinE06/9lncfvpXcPp//wfP/9+PYfiKoR3aFpTliMPtLdr9W5TrJ3C8e4XlcIXD8RqbN6ybQdsBy7FBiuBkCzJ3Xz36eMTmrD5Q1oFxItpfty2i0pDZRi5fERULJZxmldHP7p8QqYrptJnpgsHctrHPjAidc0UV7hVFCxsxdkPRKF/sfF1qG+iaOGhCBATQs92nBMx5I02XxMhshKiTFTK8uaQJRXt3G6wV9KYovaOsA+soWLcKswHtpKRVuUGZssIKtWIrleA3RcMR0bkbO8ErWPqnUe0+BBtoZCZjQAVYxymqAzaIF6jQT0e1sW9KAbwNpsisQ+0EsRVju5kAZawryxGzH44buvXpgTCsz9e2R0NAUdL2Az3SYoauZGxMBkW0ZihR3USNXqR1RCcA6sQtYFl2dCR2J1cjBdHTIVIUmEwHBGQ+pJyxHf7gw1JXQ0M3Z30+qDHR0DaE/gnpUWJTB8WSZJaoSjAf6Q6SmiVzHtxcp5F2A1gph5DaGoIhjGjRNdjytBA/818Rsks4e/D+SA+MFkipMirmFYHA43eWvYorhA/JZPm8hkyXmZCCNyEo2Ks/eAAU12AUnc0cu6FvjvVkGN2xdQNviLiuFuxSMKkMiT2i7E4jSCha6G+aAwd3tBBhahFsBdhSOC1kfPiKuW6g0YgxplRBFrcAWAoro6wwDc1bt0KVOohlETRxLBKgyB2Qzv1TBewOSU0aK3C4X6lWMkM4ohfBpqD+YxuAb5Epjk7htUPrhtIazOhhwj2QWpqobiD0iiqz8LvE1p0fB2aHbhPJpt0PfJyiJZdp3TC2AVu3aOiHCVBcRwCUkiba7KOz0SZi3QbWtWNdB6+pR5+gbthC01PNMTqlAwlQhm5kFhXYYs1b0jvWAV8pDtYwWBOh3X+sQjbLpOi1G68lOwow8PU+0OJ+hBuDrrDTn9L6cPZ92PEVA5QPfvCD+GN/7I/Nf6c25C1veQv+8T/+xwCAd7/73XB3fM/3fM/n/fyyLPhP/+k/4Yd/+Ifx/PPP45WvfCX+9J/+03jnO9/JOv6vYBzuPoU7TzyBJ2VjLrUbViedRNdHbnJLdeY0ha6FBRRfSeTPuu9K/qbpJMjDQ9zgq6DfV/QD4I1+INtKunHtHc/3jtvRcYoDIxO0ozv6GLi9vY/Teh9bv8Xt7XO4heNWHLdN0ceG7fYexr3n4bcn9Gefxen//R+cPvN/cf9TNzxsClBbR1lWXJ0M5f5AubqPw50rHJcjrg7X6DeO9Yl7UDMcrgekndDdIbpB5UhxmHeo37L42DvKxlxoXwfWdZtmVJEhQM26dVHIGUDBrLwBZoLc0xciau8xIB4AJcnEyLWz/XxBUYp6WdoskBEW6t6jxb3BqmOI0Ex9sOKmI9xZBViqRfNHRy82UwrslMyS8boU1KWhveiKAKUK6u3ATTFsa8VYGnQ4ehdIoRcFWwhVjHrEaWnoteG2LKCVcyVrwdsWpVZorUA9wuuCURt6qbPvx9YNsI6BDVu/oSFoBxux6YJWD2il4LAUXB+BWhy9dhQ7Qe2EvkWZ9MoHRnjT9IFhRs1Q+LkMHzuImkyGzAqq4n1qDGphJLvAUG0QoPQEKIFEENdYMx3lk7q3Gvlxj0DTAAzBWIGxAduJWTsYMPpuRRcJAGTLCRNDpdoGxQQ1O/UizBgFaCpYClskuEXVBVI3MtD7QJqADKG4WiQ0IxKlk6G6GeIoKJEe4lwNJKgD3Fj5phnhQIBSpuGfhzjXLal/CQ1JpEAlpIThl8RIX/aUWYCioA8YaYqHBoTl+dUYZLE1IH1YTC3s/hWbAQifHglDsroNCj+HY9sMW3ec1oHbmw29G/oASqGXUBGdSMI2ATaHrAMymIBTp6khBChOVrLBo9u70zepAlsR3AZAtWBSabxXgMq2GbUms6TQvjKdNLZZZt+ULq3uBYZDpOcMpUl0pO5kc0D3b0TVH1slcG4LqCvMVHRxYGwHbNstZLnC0Huw04rRb5iuVY0qnh52AQd+vQ6I829Qf9NDu8cOyW4dGwwFFbdecPKKFRWbNAxl6taPB/jW4VcnSCGwkbpADo3tAkDmT7Zb+OkGjgGzRpAsgCsF+lIrXVkFrODbHGMD+qbYRqFvCRoEgoED1qGoG3BzGqgjTEJdyJ6ow9j9E1oEXZzp2WGQsQHG1hWxvWNUw1DFUJ/s1OZRJWusLhIXOpkPsnZ9Myw2sBi9oqpQypCVYQaDr0Zl/EOOrxigfMd3fMekRb/Y+N7v/V587/d+7xf83itf+crPc5H96ofP9ANLhh3mZboaJkCphYdtU3YlLUKDNXJr1EIIGerow4Cgxqm/MG8oC63vZaUAjhFB5/E80hTY6GAY7DCjQhrosCPgxsoZJwodqhh9Q99uMNZbMimnG6zbCWvvWEMIOXVOIkA50jCuXaG1K9R6QC0LaojXCujxQn3JyoNEQgSLAcEK6IAIUPVALUFVaOcSynLdPCD2cs7YzZKyRKQBIseciX6JMCndMQgt0tAKYHVQeoP42SP+jai0iWhZArMyU7CvO7aVBysswmpBfFDGUoClLqiqaLWiLQfUdkRdrmGF/S+adjIIqMzEDKcuJyJQhGgV3uG6wkZhx9NQ3HPX8YnPUq0xw+GzLrQRA2PYQDdapntnREwRsMBrgWoLS3amXtwNajS/s3yEI7B3Y67bDJuP2fXWAqDNNEuKOUM/hGAiIML7JRgHekKEOFhSJLu/NV5enyk2SLwnl6iQixTfMIzVMbZwDOaLQd+CCRNKct0d1lNUGM7D/ex9mjPVEwGFjZwviWKjXZSYKSGPNUb9juzNFAVMUQk5ktA9xpuiSNRJAVCUaGmYhz1lU8iCSB7sfs6ahC+QVJbga51MkkSvK5aEU8djsq8V1UhzIYKB9AmZd1+8AUFE1bRd36uWSlQVKmgYGO+5BINclSnl1OyAka/P6+q7QBhMAwJRsp/3cgnwVZRtO1r6nIQHhnNPhHBnpI16oT9KqZDSgikKYKoSAWG4kQrdvDUOPd4+THFIGOlJiTkaCHdVRwJSEZ3VbzTR5L/nvWkOK1uUFG8wKdFBytG9oqOiewU7jDXkDl/z2mJARam5EgmdHp1krRZYrfStiYAErQFLgyyNJ5QBKOx+Lq1Gp2leZw+SJtXxJhLaGs6daQlmKfYJavhn64VhBFIMAcOuXhRjqlwxGYwRADxTVeaIvjw0rJttPJSskUMDhFPkSnkaATlT3bGO0m/AENeHc86yS0U6D/P6RUTzkOOx7sWTZlhFat6PqJYAhRU1E6Aoa9irjAAocXR45MTEglrMckafAAXGviulLdBGMx11j1REhI/MEgNiwWA7Ow6rRykwD2vxDYh8KtHBBowN3ld42MiP0dlTh6+QUZ0KpBSUdo26XKMt11gO11jagqUeqOAvDVWj568D6GucMTwURAwuG10yi6CUAzuDumKrY76PbGKxez3IrKYQ8QiLd8ByDlAQ53NmpNNpMx1MRTxKs3Ojwv7wqC6QADHq0XeFfyYdkkUwb/DW6CmiBRAvPGy6oNWFTsG1EZzUA1q9hhWCnqorG0YKOzJpUMyRIQqqOvxftsHSZ+879Z/ZLc39JV536HRYdhrXTvqMIMyyZ5EFLQ6I01VnVKHXgFFzk2LVEWmJEdoTD0o+S6PJoBjLEmWn2OcLiDREgkBa2Stb0cdO7hIgxS1+zqZP21yunrjFg1bGbrgWwlaEw6V1R09Wxfi5eXoiANl7Jfs3EZj43tPJIoUzAsyHq2mRAGCZsomIjm66sREKJjWei9I1wRr2E9oBj7XOTgEZkEzUCUWBCL2BoGw9sfPmD4IUyZRLpDboepxaEX7M4G4yKMEGCEKYaOH6mqW5s1oOQCU4QWGNkItCUJGdmtmXJwzJXKj2NZl9jDKgyHWXwz3v0f0GyOwG3eoJTqQqJCJ7qXU2iFYn0FVJL5LQuZTK1HBtEClAsJ5cqp4YnmJehKdK6pLEAqA4Dd9KzFox5pvMdsAoZfJy4jWuDWYzTO8dro2pC0kmzCLUKBheWBmEgi6VQFLYIkMkUs2SrS0Al0FbiULnVK98EEkRoEill40kI10qgUeN8uuoZkQJ07NgQEVYqSX1DBRHZVWiTxZqBINnMvU/CU4smG6LSDvvjIwnec2DZR02DR1ZKbmXxyMZQgfCLOYsQNWEzpC0sE9fHZMza51gYxMZpb7tIcdjDVCu/RbXvuKIRrRbCxZRjKhfMDCCO1QyKAcd7LcohqZE4OIDZfRJ79YAJmDwALjAtELqAVgMhytFaQPaGo2A+oa1NUhfUXqndsAJTqwrehcc2oLbU8e6Gu63K1y54QaGUykYvWKVgW4dQx232w2O/Ygbv4Nyeo6HYQOurl+E4/WT+IaXfTOunnoZDnefxNUTT6DVhqVWXF/fxfHqCi966ilouyYhqxYakEEL9qDUDwd2X74+XKEHIKo3DWN0Voj0FXALFXaecfuCNJsnT5xc2FkosFqHEWFu+eAmHs6S2hbmiUtBqQ013Gs1VeBBeUPAMk7h5nN0ixythHCSLd2z71KFh15W0ArTSGxYtgBlAZY7EeEq2qFg4BrH64rT6Q7cb6F6CqGiR1NGQF2Beo2mDUs97ukNNaAIpABtqait4nB1xOFwwNIarpewvnY2x7PRsQ3erF2ZUhDnWlQdbAwXIAMpOtQQG0qF6YjNNZgAMXSJDdOdgsQQtnmgRJ8R3X6YiA5IHA6lJmtl4YFhcD0hyw2TRaEwDpFasYQBGNG0cQOrKEIaiI4KkwVddkC3JkuDafUUQVcwnQlks2eQcH5yX6PwGhR5GsIXI3vcnKW0nBVGGcQlwnckq6VQtGhLwaaVhqhcEtCqPbQGBFIVcJaqmld0pPmcznRLMhmOAp12iXvqYfZUCi3PIF1DYbHInA/VAq3UbDRpEbXXuOaCrQpGVfSi9IgBUykefMvQAYcGnU+w64WVKHWjORudXqkBIYChXo735oLibNuxLBXLYUE7LDg8cY12WLAcD6h3F3bhPSyoZy6kpg1eGhv4uWCgAss1pDCASqdtHbeQsUK7Istd4cEciEC9cH2W8NMQptsQBoProPPwcF5Hdkpn1RNfjAbgoRlh8YHiFUMqA4VCO383jywcmYpSGqzQc0WcQuiDVmik3ZpvwcIUCsyXgnK8ghyOsMMBYzkyHSIDaNf01qpbCJEdqAfIkQ+/cwXcvQN54i7kyRdBDgf4cUHJzTYayokWmNY4Syq2QUBy9+oa96/u4HR1jXE8UrLQFjI2h4Z+qDAl8zTlmOKxHyDWHFG6K9+vg3uIl9wYGkToosx0KXd/89h/hftyhaMM7pOtOOoYKBYtBMAsnAgLV+AVrn1HSQ8xHmuAsujAsRgOdS/XG5roN615aYxWxdnCOxTZVZ0RkCdl6yEK84igeeGQtKE6tAK1FW7ypbMh1NjQywLtK2pneWxxp6nPWDH6hsMBuD0p1rVhWQy3Zji44aQFY9uwCbvwjnrA7QAObjiKoq30M9FFcH33JThcfwOeeuqluH7qJQFQ7jKFUSqOV1c4Ho+4e/cupBy56XhHGMWiBqtTRHA8NCyt4Pr6gDEITEoL0eUYGL0Bbiw7m2xI7EQAbDrQSpSjxgaCEMGp7I6vyPyU7xFBO0wqvNRK1kF01sgThEc9vmrQ9PRYAeIGCYM8yV4XAmQzNFadZP/WivCljMORG1/RiloGlrrg0A6wxVmOqXR91AAoBvpTMFoqE6CMopP+ro0AZakVh1poLx6lkROcqaJ4Qa0EwPQE4OvS7IFU6A2jKSC1EoyTxesyWBmgHzI3Cbij+JgARUDamFU1EaGXgnzpSauXtNoXppMoho70VqZ4gkKRZD2UKRpB3DJaCShHpAQVYbZXARjz7RHFsmndTjtHrgOzUOBzHm4IDQ/iEMxyc89Yf2chEI6qoR3IjtC8/rKXieb9Hi+Bc1XjHj97n7HmOaJc2OltxK0i8ygzbo/fcfY1j/sm9hWJ6NU9PFk8pyHSuEJBKj2F6DCtUuKgIGVPV/XUX2Dej8lueYoYXfYmd4pwus2yWb7awgkg29SSAaqo4Jo4HFoAlAPaYUGNBxrNCK1maXHMZWlAWaafkTut+qW0aCUSfkdOtZFGYQLRCfbUbkjVNJCpO9N4YvToIdMGzB4XrkjJPOddI0BkPyyLqpI0B6vBVtAlmE1kR1X0WgKMkDErrjiUOpuxVhdYB4ayO3VtBdrY9ZnO2xUWbTNcKhmb0maqw1slo3Jo0EODHheUqwP0eASOB/hhoWstEMEKq0pdCsQdpoJTN4wxcDw0HOLRWtyDFPTAlcwPGTWZTBuC/SYODE2URLUjCEBoW09wpIVNekqwNbSu3xmVbORZJJgwFwb3RVEGX/tMgUvlijON3/91AlCu6sD1YjgeuNmiCMujlBGHOYVbS2zEDUBxXvAqjrTH0+g8S5ASAMXyuCXtqFqA2tCWjY6cNlAOV1isQ69WHLYV26AVfoWjCdmLMTbcrgecTldYtxOev99wOwZuhuHWBaMP9OUGo93BuL3FTbnCzXKFm+Uu7uLAw3JR3HnR0zje+Qa8+OlX4PobXoLD3RfhePcOaqXx2OGwYFkOuH7iDlwXDBPUQtdRN2eZMTgPx+MBy9Jw9+4VzKiNOJ2U5kJmGFuYfYXhFzfTs5RDD6fXscLT6Cmfi/CMEJqoSbbfFNCNtlSgHZmTCbHsjDBj7jM29DhQk+KWOPBl0jqYERgjQZtOpQ5uiiX6BhEgzB9DVdL2V23BtmzhDUMdhHcLipLPHo2bkE+AAvRsNlEEdakotaA1xVIUrQiayD53+f5KYY6+OEsJnSJKkYZS6ZdSC7tt88ZvULBZJLVCQDEP9oZrl4ZSRr2LhkFgMAYJ7KREewRxlPCoCTsYpjthfB1m7G0lAVKSHdOsXEK4MeW1KVHlMtCLk41QhwodkoED2ZjhKNrZXw7Un3gI7dSEDdZUYIXN1sIvkUFCzDcVTbEGPBRNqRFQm/epIH5mVpjlpioTWGh0muKrqZhCCuFOzH96XOosyaUvCedWp3fPeR+pmO4AplHm7R4UPaL6J3BFHJhmZ+lChMi2CEo9cM8pwRKQOQ/gThYk4iqMuDYWgHokSIHAxckaFbK6JeavCMLrAjzACg3lqnD9XR0XtCNBSbtzhbI0lAOdWa1W9FJC0xFpo9Kos0BqbQq8LoA2ZJNUAcJdNivYojcUHKU7WmEqb7bDcADDo/AgAMpqoJALnJAzsWxG5mxgaag9mgv2DjeLqj+HFs5TaQIZCh0KrAVdDE0aq3ugOJYank2Oik6BauHc11pRliNQFwrjtYVwWwFtk1FCXvHWIMcAJtcH1Osj6p0r6J1r4EhH3MyKSEnrewbbxSma7XAAA9fXC66vFty/WnBvqYB7pIvIDg3NdFoiYZ+yhQlQhGGGVM6feOzDRViFVti/rkm0l4y8YB4FE6DAoUZgKFWmjs8t4Lxwn4Oz7YBUJwB7yPFYA5RD6TjWDbWwtAyFzfhQhB05I7JoGpU7QAixovwzOntqWYBIB/nocRBHtO6xKbkAXtjky415QgiqN6g3HPsCs45mG0vj1CHoMB84bUes64q1b3j+/hO46QM3Y+BmANYHxt0NuLmBrStOd5/FzbPP4va55/D81f/HiGopuH7RS3G88ySeevqVOL7oKSzXd3G4vkatBaUqDktDWyoO11cwLRgiuH7ihGzrLr6b7ByWBa013Lm+mv4l26aTMh99i58ZO6th+6NvW7iWRodRD7DneyXPbJqVyUhxpllKhbdrWJZdasXMtZ8BlLR9Zy4+9u/4Grf2rKGh+Za405tmUAORzaxKMSx1oBmAuqJ4mZol1IKr5Qi7BqtpdMXYqIPQODhKEcjSKHSsdVLam3ikYRQa3y/LwsZsWnAQYRoCA1Ia88KorNUEfSpmhYewQqpVMltFKQAWrxAfgBSodqjSCp0dT3mt2J7dd2YnDi46GTPtwdRbNvEaiasYd3poheKgIIxnNZQgNzTOuMQz8pi1qgSSPtCrsvdIE8gm0F4Z0Q12qtVtm2JUi/RMp/onHF/ZnLGooaqiD4SGixttqdQrpX6EFTrBnJqm6AYIgMLn7pGa2VkFkZBNoaN0C92NEwgG7Z3MhnuFGVO1vYTuxs4IlEQGCGFpiAoFCHM7J8sXplc5PEzjuo9wWw0voChT1tZQtEJqmw0Zu9PaQDyF3B7vIVoIACFapiMvEYuEeJ46vBmoRNQrAIOGIZDi7LFXBFdXB9RDYwPDwwJtFdIqRmkwpSVDNt8jwGHvIBUyGgUB6EOTk5dOY7lCMrUXB3ghKFH0CDgokmaj0h5pA4OtPcAJgTskxabhbhvrET6gpw1lXeEre3HpoFfr0GDiqqNUR23EUR1sspoAZSmZrHNqxApTleJArRW1LhClz5R7jTXDA9+dZn2a4LcqOx8fKvTqAL0+ot69hj5xFzge4csCuj4zAEu2U0JDsviAL4LSgCe/4Qo3z17jdP8O7j17hHWKeLWSoTYJbY5iL+EXh5QA3ck+I+7t2D+ZhCATIzUsF8JHSIDQZPJycV4ihDdSnj7K1JYN87kTBbKG9djDt/7QZ/xjDVCKOsvP1CBBgQubQnBvIpaYGoY9pgLmSRMRBXOXg3nbaBjluWmTm40LEz8b3LQKN7GiDhvA4kATx6E4RBQWFvy1FrTOzUY7G7jJFuLAskFKg68bDiZoQ9CsQG8jolsUV3eexPH6RbhzdRfH4zXa4QrLcoXSClplC+/WKpbDEaPQgMfrnt+X7LnjjqUtaLXS/TQYkFKiPNUMYxRGLNPbxMOcjh9rLTAbrGyZFu55yAUQAss+w7ppMiiuDb4sdGlVltFJzKdneBlz7056eo5EnMA8nHntovqoh8FXB7ILq3skRETQB5tJ6JnPQbrBtuYYncZvBh4AqmwWVw6VAsGSvrjM/PO+400sqYPRoKqB1ItFJKMPMD9SPeZHARCg1EImhrbupOO5LrlFZC8aiwPKQgMksVEjgIh5VMyE0JTRfLJhMqvUMn2HECby5GdacZa+YqeGOTivItQHAcYu3+rAUPaYCjbT4VESPSK94dPczoYAQyONSk0HxJC9bIBw241Neqb0MoUTuhsFpkfLDlAAnT+LmVJx8B+SeQkH9sg77rX8mKFieLp4pKhszkP+3M6i4Pz3yvwDXMeZh/mc/Ls/8PxkYyKC1njEwbBXl+1Dzn8PQkvwAGPk7GiLAApC/UnRPHgliWIIGnUEqmiNzrclmv5R3Bk6GhSCEmDug7sHDI8thUxdSaaI9+BlB7kE0LmmQkxPt/RdCM2+B7sL6QgRZrQB8LMFzRRjMG0jChXMJ3vqkcagCBSQAA6jlqnmkWjit2iZhQHFBT2CIBgbf5awXhApiFqz2J90f4hG6lD261lYBaXTnoAiW4sNUHNaJYC28GvLUGxLQTt71KqhZ8v7I9mXvFdC0xc2GhIARTMtnsFHpiJFEK6R/H0Vc/0V3QEK55NrSKJyle0gYt+2sHyIeZ4VH7FXPux4vAFKdWj1TBOT5mbd2qQ/7exjpgMkJiw/ehgUyUBUbLBqI6N0Vjfk4ol+DeDfVRGKmYw0/OK0aV4KaTWDQhtQOvtNjNIITrrBN+ZUfevQwzWwbdikoVnFYg31BjwsFsHh8ASWwx0c6xFNo6xYKppS8HpYFgo1lwNGpZCS2y57L9CrmDd6rQs76x6WaOLkKDURHS3KEeKw+bUUJZqjR4rHbHsAoEwlZVjWE5ycARRd4NpgwaCY0M0wnzBFjWcpN1cufh53NlkcCxdVLnxnKmEbGN2wbiOcPQWlOjuPuaAugzdloUuuI0BIETblqrvIvIRetS2CekC0sSedToAw6A+A3BCNbXpgyFJHuM8on6kdpehXszKK/bUBVjkUrfThAaJsmnPphb1b3CrMGKllWa17VDtJaE8iMh8OjDGmRkhD1CwWkWqw49xGLf4eAImfsYyafGcu8rCPjQ6LYCBcPntFH2wJgS3av59aUOwDttYAuYaxdVgf2MTQC1A2AbRDu4QwlYzGGDswKUV20OEJNHjqTI0HYtMFDcDqWQUYGasQ/Bn2qi2UMKeKtVecHj0RjFjVqKCLDTsOjplGKjUqdUocVlnyy4fHQeFB1+fr20vGEKAktG5R+bMfMntQxYfPVKeeHf0a9HzeQsPinjGPKjGgiEbrAI8eWEG8eeidikwGZTks0V25wlt2Jq5MdUqYmU1QRbIf2KuVZt9bz3QpIkCif6nmtRPw0BImrch+AhgC25JZLdEfR/LdQqDQQWCwz6+QVYmFWk1YYeJM0RscRQ+wEkFoHWjEJyiDXjp97ZgC57gXJeZIy8bfPejl1OoRtRxRdEGREF5DAK+AszqwoPI6xH5dJD2gEjByvkwimMslkVtmpB0hZHpqd9TqqJU+RloQ1zitGeiQXkSim3ECEprfJZa2uDekaIBc36+TyAQSuuwBSq0SGSOPeY37yMD1oNnHCLHmomKwxxkNh3aBnjGJX2481gAFseGMaOJniFLZMAqyOCtFwnQHwkPEmLbOmm3JRklp0Z6tGzPqxL45sFw4kKfQY8CKhnkNaHilpNNyMxKJjb44Kha0HmWThSIubwNaN2DbUDbA72+wtmEtlZVIQQW5DYyxQscK6QU6Wjj1NYqqoqsqqoLt4zU2rAjlo5SMJbrYNwhwoSI3PtJCs/8F4LObqJuhlAZ3mgt5pHZYhnsOUOKRaj4ReOSjRz0yBTcPaL5GT9aKYgMGtaEc09A6pMNoblWe4GQw14xukD54bTTWgdKcq3dldNwjSvBkGZJdoiAuy9dVQuwbKQPX+FtmMOuh/wy2yAp/jw0goiqePxHFq0JaQVlqlBhSBClSAEnvBTYzy5RMmrq4Am4Ksw6xKFUNoEQRq02Akrlftbj+wrWdJZwIkaskQBGwWgtxYItPcJiBKftsStD5e8CMxo1PYBi9oowO7Sd4b0DvzIn3Du+DrN4YNJjTDaN0RqNxHzP+HCjmUzQr5jPa07Jv6Br3PQQoY08NSrAZuYarFohmMRIdnjO+FbBnCFL4N+l0sJtr7KmjcBJGzEEKcCXYBNQSDEpqK7KCJ26waFSafijpSzM3ePHJENEIsYQGIGvn8/5Ihmu/b0Ukmv7F31OCDDVAhIynY6B5YYbBC5oaD66iM31GdoZlvU0IUNpy4FptFd6oHZNGN2WTWDGx5sj2kFUpkdZxsJrGHVExFU7WUaVFO4cQUhaBxb5acq+IoFDg8MJqKDUmj0SEegbonJL0/+G9kXuExyGJEGfWMNoj84sx0IXpVHT2Quu6Ba+UZ0YwDBZaixYiZq0oraG2hlobKxKd2pe8QTT2NxGfv5P3GR9pq4DzsmHnfjS/LMm8jWBv6NDto7OVyOjUokWqtEpoLuMequkRFb5RGVxYlDcnQBFh8ArfiUUkG3pOkp0tw0zXJWhOglBDQ8bgPm7PAKKIkvWHHY83QHEJkRmjQ/NB1OERb2c1LNJaTaEjDrsHgAojYtgI9mBALPxK5hEfecGobJmbW0Z14Oes47d5U3hCYsTFq1woddAy2swAHVBhdIJlxdbIcKgWZPmkW3S1HR3aO1D5cbTKg2r+AZ2HCSMsABOwxk2f7Iob/PwmzLxkpEAkqFIkEs5ul2pxkyv2LrDl7PPoTuY95hAR1FBsSuHffoinMjyyNQhKghSsytTOuPHOoNEVX6vl183iunHjoaU+yxRtUKYwxoD0oEJDvZ4+HB4Mk1gK8vwsYstrGKxOgMUp9gQYPQgmmGS6QObmzaZmFbU1aJRXa1ROuNRgBDS0UQkUBPABQ4XL4AZhqTnghk9Cf5/jTH/s4maeaHwvFn8Hk+qlziSOOJczgJLsIM9KSTYiK4wUwBKpITG0IpDRmdopChRK+jycOsXJnlgfM4VjdZu6Jx0DUozvcS6+PIgxPTM0QX9cEg8dBgxIoyxxRHNQ0urqUcURIt1JCMV8IdJ0CR6KyyRlJyjL+coUTFZa5McoNRbZs/O8/mWClOnAfJamOmdkJBmYBCZ5UOepwQXG6xdMUvquOAh6xWNPc6W3jTtquPM2UN/zAEDRADjGdVDVUVVQI72jjR5QLPuK8tM9J0QMli2f9RygSFQQfi7wDwt0DQYm0oF5QUvqOKBkvQpTeQUMFqLr0zzoQyAIIU98nuRCaqiUiJXXVrMqi2p6jfvHlg6VDlb7ydyCEhqmgaPW8IZSpmlKpmW1RPXQnu5SFfqDwCbThQwEzh4w7OZmuacEq2cjKb9s6WDTXI1nFdluyD6VNTRs+QgrHgKxZAE17uUSaRsI79G4p+YljmskOZFxH+26NJnnywMp4X3r4c87oqIsL8jDjccaoIwhWDdAh4F9WOJM1BDIDsRGzmipQOgYarTmVeemXMJNFmPAt1Mg0kGBYogwy4y0GPF4UchYACmgT4LFwWHoEtxFHF7sj8TeJSZ1RmsFcSBqtMYe+3HTYVjHis1W9NG5+GygH6/QoKgGHLTiIGRwytZgKiidyT7XgW734HRuiAMc3KS1QaSSJJpqvx6La4+qaJ6UJwHAVUvhYpZLTh8KKUxHsD40vl4wsbRE+Z2U6EmyR4fIl2HYqfaE6MCkuVNXotE/xmXAhJ6QhrCijkZ4kluUKVM/rthuGOmP3tCVzdpsOLbbFWPbMNY1epLYvBG7FFbNDJb89XAuPY2VYjB3aBk0ZkNUuxQjQFQ2AdSqkFpRDgvqcYHWitoWAhQUmJfAPmQ+UmTspqRvobMaK/1BFNTbYHqIJMwMQIl97hBCY0gkBeaBGAJUoU5BwOgbkY/W2GS1yKymmZXCyaCEdsBKg45OwXlZ4bXD0eClw7YN6grrHUNCf+KCURpByYioMwA003fhmCuFm6/vwt4EjFklIM52CDvoijRFLZCiIQug461ZRPy+R4COiOpCpMrKBc5Nj/dcwL/vcSBL2E5LKTE3GTHLGUBJ4FIhSnOzTOeop45J5j23m7MVzM7IU3MSh7iU2PB9ssI1DsQqjc9zYBSDd2qCSnUUG1hAewVVD4AS/Y0iUJBeUMVRVHA4LihLpHiOhxCJNxiOMLDz9IiX53ESSlHUeI8I5sSc/W9SpF+KhMNzITuqrPwKvopy3qI8zdSjJYSjhHBdB9PjGA7dEqAI0ipz6kCMXYH5exuK1ADbihRE+BjYWkNt7AE9ekddezC54J6eBRNmcN1gUqHDWTl5XLBcVRxaRVNBNZbYehjZeakhCZC55sRYJWjrgJ8GcOo8u6Bz/xzmUUVN1p0GfAPr1rGe2HF5207oK20sYEz1tAIsVXBsslftJdadehL+u4tEVb6c3UvcPxL3AXSbZVllpgt9MtoyP8YZYFkwkUAlfy7mMyDaHjB/+fF4A5Ru6JtNmhTK6Jn04C6yGmNAnfoBHSPoOtoqKdhPgLmiQXt4Ny6s0FK405a+CGk8dvUNx0KQfh8RpYW+66xuHFR0B42XkJKly8TVUA8Pg4xKGDJmE62BnSnog+IvHzTIKYM9EMbWmWraaMwG6TC7B/eNICUoCjEBdIFIAyzjREE2CJwRJTK5tTNA8WaCNbBJrZ8/hT+RjJKefTPDpTgw4lDNqpz95/IPBVuTq9l3YR1AkJKtw/NjhiRpi81rE0CmK/rqkDFgPfKxYFqpr3Q+te5RIZCsFULnQvo5MiQzx5pRmgrb3dNBVuNBx0hGWBTDlVan8LA2OlaqyEwPsnIs2wxk6iZD5jMs6cnUxPqc0CQpYs8d9oxBi1QTIoJRmjJ5pobON4/kZsP4LfzI94hoviaGRvS7MWQ5rEfKg+frFsxAj8N6A/mJhEQRWXqyU+cMVfQxEcQBhwmeM4Fp03/HJwBjag4zNWSxkWpUO83UgCcTw+elXmQvwxTM1BkQ64yJg13gXOb9PJmF8889mEIUiJdgWclmzemcFzhzZxltzy09hp59NSo+5nMl+otx/6glyox9Z4wqMEXctYTLtbIpqDigWnipNUrnD1yvWCLFUxuGL9zLBvu60DgxdDNFUQor3Wh813l3xvpQSWaLTItosEO5Rzj2968FogZEebS4IEUSyQZOBiKYDpKuIawVD60R330sedSa18aiIzSnfhmO3ulv5VO4GK0YUmMXjfPUCPDqsaIuBaUFVz1ibdRIiy2NnQRhbDcg0QDEBnQwpYRtAGXAdczWLOY7e2jOoMQU6IPSgNkzLe5XiVSNppdSpa5qelHlQkOm5CS3VLI2gn0vz102Le7DwBAi1JIAezonP4ZmLbVrWQHHpegRGBP1pArgYcfjDVDM0DeyC3lBJRadTYBi8L4BFjTyIN0sFp4QoqHfceb3BsWxZED6BCjZ3K5URkriC8QL4CxZTBFuyic0qGL+ao8ImZsQD6YSm7lF0MMbU8EcJypr2s0Lho35e3qUDroJ+hDUTqA2ts5mVa2wU5ussPEcHCscW7wGlgdCjoDQcIkmZhIHCM2/XAMszRgtxjz3AjHzTt4PRJ97xaRpHxyshtg3pDF/79yU5+Gbv1sCxOwAheBkjywyxUfPhzxDo2zcDBYOjOYdohW9WAjGWJ9vm8E7ozUJujU5CB9+1h5cCEyc1w8RdWg2PyxnlG/j57U0pnNqRQnHWa2suMrDSTsrh8z5fnIid91BAoK99iHz7HupMddXrjVeo5zcSF8AkyWgXxDZvAQoBqZ08s96pCS8RN4lIyzkBppf47ViawMEcKnwKJl12QhMJA/YFfPYTIYgN8tI1ZH+7PF6JFyG+VESiOV9eg5xxaeYNsGiIFIHysMN4H3LiFbn3CJStVl1lVqKnHP3EUL7ACZnH1MYK7FG5ufQuWZkvl85x53zeXk4JxrN+2FW8YQtqCSYyftO9miZRsQOVMwOuWmk1QSTQWkFUDWoSDQSVWjdmZzlQN8TXRodUAu9MYY1DDtbh3CkqZgk8ODuHIdh2g1wRyilTQfp3NNGtM5wRIpRYr40XCbVEURavHeLpexntwd//8jgMzQjNDQsszFhrRo/57BikXJQmCt0GMq2C8sRJc5sTxE6waJs5qjKyslDQS1KFkFpNS9Lg/cGXxooORhcJoXp6WHUyenWgXD4hQ4Y2GRv+FkwULivWVQndosy91z1GuAy5r7UglL4HiWqFydWFs5ftrRIzU7ud5kpdgnPH/BWjIxsZB193k8SAYXEfetjZ6/yjoTMOCqOjdCPPeR4rAFKX1f0FvQhHCXrvUOU5CFo7KcbAo++QoIhgbGHD6MGmRu+BRgQEcC2eSFLWVDqAna6adACwCqFtjgrnnNuTXRuTeVLxD0uYL08I0ib0a7ArUAsqg/aAe14F+3ON8C3E3ycAD2gtANKvYuq1yhyBcUV1Au0K2SlAtwAeLkPyC3MfhXuN3CcYu0VQBZA7kL0CB8FRdnIS4NBoQcEV7TtKpYzcIIzrUkKeBHfzE665xA5olAH86pg5Uemsmyi7Yi6XaYYNysQOHch5gwhanYW7fHYbPD3KuAiGINdkbttQTl63KENqkfU5lBdUOo1xMgoSV0iMuOmOoXN6nPjdjSYVHbhBYGctkq2ZKloCzeItiwBWAo37ULQolXp6VF85uUFG9OJzsqk1FVQNBeALgD4dOrUnXHIECngW6RJuBnSrCuAokiABuWBUxs3IyE0VgAWGhWmRYITPusrFGFXvKaMgKnsEHTQfM4BMYhucN0gZSOrZafQXJxA215JzBMMyYB4j4+D3bctCB+rBO+eByDfv87IT+euPatfJtBAGMwpH+ky7Mo0GnLzzlnkWnRRDFR0Z8fzzbZ5gKhFmsyip0qUAydTuuuWdhdgd0ajrgGcEV4RUYo6oirQisKL0TE5WDaCGkahNpSl2sb9ymAhpHZkt1NqUbimirJyphZDqwNFaYpWgjFpWsn52ILsJbUcDyiR5pHjbqy49cZeS7YlNgotAw/LcsZwlbiO7GcDpAkdCgXyHk0ht27oEj3nooeRu2LYCI3YALYOGZHmievuoZEKHT3X4mDwSZacAatrpSmhCpYaawOM/uuoqMNQ2oH3jDnbPkSqItt/+BjYese6rYB1FAGuwpixCoA+2PxSFDhexz424JtCvANq8GOFLUoPJaeWxPqAdoKUIRadq9M9m+sHiqhO5VqrS0M7HnC4vsLhzjXEHa0uKMcDtC20c8DY947cYz1AszFFZ54aSwRrG+XXGm0cDAyaAuDQrgERUGNeZwaCgCdLEjeUILIII9joofAOyjAecjzWAAXp+pnN69TiZmDeflbnbCc249tOwDiFEtphyjp2i43WzabgVFSn2DN+G6pqOIDr2eESh6ac0cbzTJEZR3EII5WMVoN2ObfOFghEG6QeocsdqFRorxBdoGVB0QMElRt1GFSJOaRTa+JqML2Byw3c7sFxH45bEspSQa1ODcHfNhkKyODebaQ/PdVREYXPrEFUvXjkHDPSp838ObMSW72c917hXI6Ifg3hgglE9ETb8XNTuPQBEWDqLyQqrcwGNhvoNrCNgTHTHYaBHgBl5fy4wQ0QDJgKBAe6Zyoj09nEMH6e1QLsk1OUwr4qYQAolQI2gE3SSpv0dtGI2gP4cWNPpdo54wCQb+uAr/x8hhqI3HohUMEOMCSjfNJvXDsZeQt46HpuH0wjmJxVc4nOw4aW3Cx/9QBbU5PhoIW3CqDhgJuw0uNjLvQIYzNFSEzpTAt4hVsB9Bb0KNow9RWTMYjne+a4bQIWQOd9NkuLI1rGTO8AaQMwv8ebeII3LnLl35YIElLcOVfrGRsTvXUMNcidYKssIs9MjYrs929S53YOUEBWSIOa06A1koUM8Olx7UjuMBqXAG6ZopAo6aQ1AnYg731iL96zsV6SiQJ9okSzIaqxd50wqGuaCapIVZaCulSmeZYGWerZvCngBBR5vCW4w7yavI77NYzrKDuYRghVWWm5H4JzSSHTAUxr0Ol5pw7EZZoxZgoCQFQ1McgqkZJxsEydbWbSB4gBixYyCFKiu68J1Dum/1PvMGNTzto36NaA0aHiaJVlvLnDudBFSZYD07XjitPmG0Q7sFSgFZg6hrDkX2Mvo14nmGFH7L+8F/jGdJ4pRWKvaQ11aYABpbZoJcL9ZqZZLK+II513xZX9AQPcP7BWkbVPmJVEZxeWZwQASKzdGWQjbCIkbmWd4e1M/QSAeeDPfZnxeAOUbUDXQNViqNqhskFgbDcdimfc3oNvJ4ztPrzfgtU6Dijbo5fIhbrvEaeUMktoTagiL6WQGXGFRqdecUPxTtAABW1ZSJWyEp45bUrAoiW2K3OjlqW7srO1ogQnhwV6JSh1Rd1OEESKSa5RfIEOJdZIO3lZ4Z3CYdPnYHIP4p+GJUARgcsCyHUgcYfgCfp7FMcU6kqSpXEwppbBc0ME3NP7JNILQAAU3lDnUf1U9HsmaRw9BcXOzz0PRaXtuFka/jj9GUAWqmhuehusr/CxYd1WbL1j651N2FLxPk7RC+kUjfCc5cdYOGd+gNcCrR7lncqqzkBDGqkjxYYi7HzcSm5CC0qRaGuu0W9E998jBJl5AOYGavDYiBAsyQaxDeI3yLYLSYWaF7JtbJyATDkwKgGZijA2mzWAECAAitjAsMxnZ61CXFNlrxArB4gUjJD5a5wQwfdFikfZXA2IA3OE2t92l0n3aA0RdLXHRogBlw2QE6R3OJRNxPQG0L4Lps/ySj5BGg/XTI/Ad/EwzsCIOlkfDQDD5wEp8ybQyEOsEvQpRZGOFmwmQDA3MM3LhN7T7o2p4hBMWgoB45e6SwQzmiHl/sgDRgUieUgHgLNIa7hxv5ECr8mYZXUNGQkAMFd683SBbICvTF9b7zBfAwA1gsGiU8Du1uPe5j6hkd5sjYC7acFSAYUGo8wqs3a1oB4OTPMcFoSpeawPsj0ZgI8HxCApmhyRIo+H1AkWAL5P4idWdkElyK68HqBPVB8YWwfWEPrHek/vk0xhJCvC3TfaJ5rMapgWldutAdlJWRAaP1eMCAYARfFOtsBlMihjDGx9YOkbbPCMqTJQfRBkaMHoQFdArjz2hAL0BvENKifgUIFDhTXwevnGxomD9heWMt84wEkMjgh6KWBXB4oW1NrQ2gHtcM1YoDRIOwCl0QBzCMii9ADCvPd5PxV2Fw+R/Q5QCvf/7E8X1ZKTKksgFj5jiDMh7bLY/y3uCS8R6JBJogcXZvXsw47HGqAUKyheobC9E673uU9YIG+fGoMsKeXheN7COu6baFFNzwp2eQQ3+LqE8EkJm5uQNi48EMXDH0VlRuO8CUgHewj32CgrNvsxguVhlCGgE+5sbd4OQeuCB48oRZt9ZXoDLFfuZui+8Wq6wPQWLisUgzoNWBwGiHCTm7oNpsMAD88JMBKe0WDSJthpvDxck+EghYKZjw7ggYzik371iFDg8+A0DztrvoLQR3imfylutIhS+SroMxDl4GYDfXT0sWHrPehybo5mK8xWDNtI98ZrkthAR7jkUssSB5jKWamIADKS6+JxF3qNzOPy7JAp1tNgs1TAarGgRKfXxaCgm2bHDsUK9Q1uJ0zDO2eaQAMsw4Vamfn3WDoNL9x8ncZwcwFH6pBAc8zrsDvH5CIITUQIWnejqwSWQnv+ZFyAGdkixLzQnc6XYWSifCDybAFmyASgLhDrbEMfegZExJe9RzAFpDGv+a4EIXxNAevZDjeJnP0ens/X/feyWaEiTdXYqymamMUvSnsxFWH1ECpkNG7gMuDS4o/ZThmkrkRY4Cr4AiNuhT0ngv3eyoeeCaJVgGqRiot7EgbpGb5GuDrL4+M6Ow/VCZDSzymQBPdH6syKgAGPMgVJnUbZxZZLQTkoykGhLe5jFxSjXYZWCcuG0DdJrIO5SdjZ/pFXlCB6qsnEozP3Pk9yPifhILuzzGF2l4xkLXHPItJgTga4F8CMTTTjpZQW/jaNadu9WrEw4PSKZHYKtkgn6hlAMWAM2Na5p2CgSIfaBhmDV76DfTLH4PnQDOgAfCMIXxS+FNih0DyyGkrpvAc0C6QBWuXHvRbAW526kdTXlAiESzCARSIwEpnC9/Pll0sOZ3M9ATRyv4t9MEEJZIKJNHcM2M+nOyYDn7qSZN5dNPReqfHinnGGcx5qPNYARaDsihkIk2b/wUbASR2OsGgfhhHVL56HqASunCpbIAvGpZR5MRUlelEUMg41c66peTFkOmffSAFEZQMvTkaJTKEwNRMAJcrLRDwU2TJ1AlKMUemI5MWgy60JADcUZyzYS5YJF3jtCHFMHEI0BWM0XhFdicjcJEbTB+l9INdzLNb4Xs68yNlmmZsvmOoS2w+QuTfnv842oL3aJJ+XX09AIjj7k3ye5J/j4WzxyM9pRNYngDEfEWVnhLX/Pd+3BP6p8I/JfDrv2RGMWZRXBxuR1Soab19ic1XLmzdstsUxHRYFkBEgSVJ7sgG2QeP1i8WNHZUKgD3wupHi5bB3FYs1m0o4FKSDo8gesyKD3PONy/fUncf78WB8JE5619QlSYBXxcw4xaZKXSO71O5VMoyeSPUPet9kZ9tSozy3zDTYtHRPvQUSb0T0KAQbqcfIoRpANt4DXzZTYakN4YYa4CZy7HMTlQRfeb1jHSA7sJYdOEgsDsj+tUxVpQ4o7oXzAyJB+rwPElB93k5NYCklgoXiIcuKGivzPUsY94uc30cP3FsZSESVWwpK87/p21KinFxp8lYpLs59TuNrAJs4zmaKJX6XZfZhf2ESoF8CXebfQ1zf82rBfdJ5jXAGsLKkNSeN1zUrhgo0SpUziwoAPggWZQyYFe5vCmhl5Z5WQ/TSi/XAVJ6ADA88zBJ5lwNdIWrwMiLAKExVhO4KBup+RgY6DjkstKPQzgDZldegCdAU1iSKvwwmBgZCg4DNQeZjgrq8f3mtp59M6HAyjbLfMfs6SiuICTg+Fz37F/1HPNXn3pZLPoPrzOLOfcVzTZ89cl+SPeX/lY7HGqAs2tC0hbCwY7iw4MLYhKt3Rtan04beO0ZPEafPBnOipFg1KHopjZ4VyyF6T8RSLRVaKlpz3rTFALAiqHmN6gK24mZVEKmy4QJYwTDBGILeFT2CntEpwiXvtZHOq4IyFLWxpbeZQkbYlo/O2vdxgltHKQ2ng2K7InXXFsUBCyOFIliWu9ByBS0WFtULXI8YfheGAwzMLUv6XQhZHy00UfIJqrADFMeZ9CBXaGIVboaW7rJBLSarMmxw3i3TaXiAQZFC4GQgi8ASyTC3gqAIo3Pvg6kJGdAewaca1KjDEe8w5+EvbrsZVZR7QhgVagO0Gkoxlg02zE1ZKvuWVAgWByoMTRvcF5i3cHHlHEi4t8qgrJg0bFSRIHsBOXQ4VAerJ5pDpUPR6QppRvAyyGB5VHE4EJtyAIQwoBMvoQE4Z1AUZFDCaE5svw4GDDfqdJRRqbpAgzcuhWWwJQ9DkV3cDd0PxjMNAUqZAFYAqBlKOBjDAdERETngdgy/ixVlu4LDULZbRF03Sj2g1AHVNVx2HWyQWPmoLaJE+u0ERTA/8AWEWLXILLeUSmuvKgagYCDZIjZzmwLieKfz92QpdIh+CUCp3YJbAEDM30UtT/yaAAj5uWUKriTgA5+fmD5TFU2BJvAm8AWs+igBpBOIDId0QMsZ0B7J2obvCmS3WNhC/2KOURReC91vkWaJFZAlKrqi9DwZ4qrBFO+Mh0dqx2uwekkmaayZFCY7K3tUDSg2HXJLAAwtGuxLsBcJVhxkEEYma6KisBI2LK2hloJaC5aF1TkTcADsxt4HbBhN3kLs2ZpHastYAS9gMBdaI58ARaDYIgiid4/3cBjvBCo2Gqj0rAyQbTAlG2JQVwF6ha2CPgrUNwwvQDWyPUuBNKAUg8jG3toBKA2RegGBfg1wpg64dbKQvQMbncd9Cw8VeFhsKFyD4Uz7jdyj46GC6EKdIvt97ZNRt8l1aawy8b0TdjLG9DzBbHy+o++JTpEA3pMZR7o2Pdx4rAEKc6YaKYVo0x514tsw9GHovWPt7HI7kiqEBkAJo7aku7VCSyMQqTTUSpGnhA11i9K8uTE71eozho3NGioYWRLZDVsHRhesXdAHy+G2dWXOHTQzgvV9I5ABYINjg/mKbdzAtg19vYftdB+jr1AtOB0b+mgo9YCjN6AaDkaX0truoDVBrUJltzSYHLCNA7pXnEaN9IFiumQqe1DMiBFnkV8AFFXeEFPzhkTcIfKyPjfUyWaZBUAxFLOZ7rH5HEZHBIThG4M0u4rXFqkD04oeviNmVPcAij4i5hYCG1PHgMxqLTUF0OA4sAy4lgCbCPEgImJUaGMJepWCBYoCR5MKswXDaOtO4GUzkmUZLGJNWThlpJwSkWoyqEWqRwEVhXlFVqKlqytrllJoFhFnlHPOdBoQB2z+BYa2Eu6asBHBE3scm7NM3SPaodiWmyaDY4drnesgo1lxdks943EmI8E9SSHqUGhsenv0pyEqxmgwGYAd0JYD4B12OE5Ny7YssN6x1YZaot+Qh2dMDTvx0PgEfUhwn6nJEQLUYCDZBFIhld4jLJsPYzxEig5nQs+g5rJDNauhNDEfmYKqIYAVTCfNPJBV5s2QgX/+b4qQs0+YCrJ6T+Ln6E7L145IJaZZFzwaXpwFpqXkK0+GidVjJRrSufW4t4wOygDM9EzbRP2NoWJ4gaYgOzVQIaIcAcIdSINhphg1X2De/2cx/FxfYcmgNvVZJR1sCwEA4HxN+dMW0b/yvaBizo+KYlkWtMrS3mXRKB/2uQ+xhUiBsRlRMEmCWlleXZoH8x3rdwIUvgZLBjc+dgO60mSzi2ETwRBWejJdy3sWjeAN5tQ9qsNlwegGM1YkofDrCmGQ1jtk3XjvgRVdTG+PnTEsGruIw7cNvm2wdYWtK8a6wrbOgAsV3uLCeYZ8eUEybbrruJKZmUAacYFD0yhx/4oF0EEwc8Zrn33A3OJcDd1gRgxkzOLftj8yA/iw47EGKOmGKBYln859ygYIUPpA74Zt0J1vZE4MCGpa9py/FIg2aGkopaHWhf4V4UqbXVVbWJoLNKpMwoCIEAe5abjPfRSjC7YV6EOwbhKGO4Z1PcE9XGslNxxgNyDbYFhhfkLv99H7Cafbz+L2/nPo6y0ggnU7wPwKy+EuTA7Qg6B4QROKqA7R5RhlAaTCpEG2ChmC1XjoZWXHpMZL9heJg2audD7S2l+RCD1zwAQoNtiXZ3aDngwK0y46zXx2EANIpC3Cwio8KCTEn0n/ugFDChQVXdhRGVG2LeEhohLVNvHcotG63pnesjj4SgmAEqx/ISnAdgRVUVTQRNCksvxbKjs9j0ijhKYkrfinWzEE1S1EjrrL/oybg0pYujtIVyNKaOd8SvBwcVAmQAszrFhhXCtGChkROXuwKbOyTFIgl07HkfcPul/dJ1OjKIDF38nTMMAjz9M8IXMp7CkZVsNFNW/cBqT6SYujNRgIUEYAFN8OEO9QDLR2gLWOWitKbTCn+2kJH5naFh7AEqlJd94nUarqjriIMg/CWnaAMiBID6Ih+xxOj6Jc6EJxMAGKzOCUluAaUyqYedAE8rprMTJVOgFKACL6ySBEhnl6yh4cpGOvJjbcoei040s8lL2+RCCDVT6lhI4kAJkA1Iq5sbHlIEiZAAUEKxaVVjoZDDokS2iqZCcLz15Hpmr2qQAYoOU+pkJfkEwhaSmo058mWEKhNiitDdgoktehBpPLPYlBxuGwA5RDo3A+AYo7AUovrPxhOTf3dxrTMdWzZ+QS3LOiyxOMmQLOg3cIXVc3EWwy0IXu0gBQxTDUoa7w6jlBPICKs79QdPnuIxxjNfx8hpMJ3rYIapjY4X4YPlmqqGDllDv9vGzb4OuKsZ4w1hOsb2C7jAQnUfGGoDlUdkRwZtyWgCM/AIBo5PvV5rWc51KyLUAwhTurZwlqfd+XZOa0E5zkWsSUvTzMeKwBSqnst2GxmZqRqhtwDNtoLz+A4YUSVFWwMRurBTIIMKmgP8YBtRxQakUrB9R2hGqNzYzRTCm7JmC47SFYUGN5t1rWuhuwbYb15Ng6cFoVWwCndb2dDIrWEtUfgi2En2PcQ+832PrzOK2fxXa6j/v3/h/uP/drON3ewMxxfecOuj2BduUYOlCOFc3v4CAN9fAkluMRx8MBUg5RgVKY2+6OW++kW1VR2gINH4MSHXeplgc3o5hzRt26M0axSdKfIwCJUVPjMTm87w19Clttz5uHXsUdE+zM8s94eFCGbhujkWro1WAdKDKwkbVG7zxmVRTwGsBIUcoBpSwQVJgVDCuAHCBCAFoQ/UmUqZlSlL1IVNFKQdMw9JMC2QB0oAyyXj74HhROy3jjXDSpqBIRXrQXtxA8iwPFFLOxnCjTLFkKG+Rq7neQGqnHBm2NZ8goYSLl4V0S94DUiHoYAbvFdzKdGWWyIyrQ3BE6rvTRIfiaJ+2ZlmVqOSIdKOmjDWpEsj9VppWMtYyxIR0o59ABs2tKOXxD0YhQb+/DzNBOJ7S2xXsBWjuitQXteEQt7AJrg6lRswEJP5Cg9gBVlKpoTdGWQqt2KKDUEg3I7Fht8LAWkEgTxfvRFExSQ0MHVKCOEM4HLU5AiZ3hS4Fx3CmTbgIm++ESoCfCmSmgltB6hCiWeiQP5iOu5dgDhFKpB7BSeB4KCOKmHwsNCgGajAGCPhrMC8wb3A8BTgrG2DVDBaFtWPfS5Cwp5zztQDrTfulFQ/Bm2M++AN/i0cVXsVSyJyVS5X0oHBUWnj/JZEEFDQ0VbAdQw1focFhQi6IVwaF6NMiLE8+BbQh6N/QB6BbFAC6zyl8nnZkcw77PwD363PDe6+4EJhCsLthcsDrQPVQqgvCSMVhwIJm3oymbhS5F0WFwXwHv0A3Up1mH+QlaB6RVBhGxaGr4J7kv0wrAthV2e4txcx/j/n2Me/dht6doTLswOi92FuzGQzIgT54qEIVH0UgClBk42Z4aOnvQ1TZZQsJnphKTeUIEWlzj6UlGpEdLEO+Idfxw47EGKBn9lqCjR0aZ2bBpLr5s0hWCNzjSxZRlpQXQxgMrWmLPjxr9LSIOZZ+XAB+BuGe0OTcnwsTpmzBsNqXrXWnR3zt6X2EBUArSMK2gD+pn+naLsd1ibDcY23309R5TPOs9bKcbDAfqoti2A3/GaLXPip0GlAO0XkHrEVIOnAcodAymGTQieKWXR7JEmv1FVCZo4GYkcQ7EhhpsBYDIfydjooDv2cb4KmBKfUpPgJKoPwAKEFEhVW9MIZSZ26cxlbP02BsjjtqSxyUTFaoPkfCvQEWtxwAoDWaCbgrDAuQGGoGGarQrjzQXGRam/ajzYHUARcAyw0qJklERh5hAjT45BC0IwJRxcIhIkT4clQeiYx6G+Rxzi0O/RIpRIw0W8+FB10alEzdNJojEwpAtK1c0X8O5wt/3j5IbSlxrPf8YYl9IbPJ7xJ+5Zsl0YARsU5AbrseIvihqdNJVi0Z0o0EtwNcU0NZozsbaUAoiaQnAih+Pyjdg79ckZ0yTTNBMc71gVUJ87PMeTcp756QkD65c9+ozTacAo/44RCXm7ZxFOd8HUnBOkeuDIMVnekxijgVR3sWfzbSKYYLKmRaKdBDvRUUyKVoq72URqG7BSO7sR6Y7kjXI1IZBZ3xlUR1kGfEmPR83J4PnPZ3Df/P7Ot85VQz0FwLSbI6lzHsju3Sx6YXryo19ebISyWsJAT/NyUqraEtDLYKqEp2ZLQ6xvB8R1yHORfB6aYhUpvvxxI+amw73LOO1SQNJAzBcsmgqPqZ4NGwjRKj7cDKVmaYm88jVY2EKCNDXx+KiWCFIVjekdR/gsEohLCldMpG+dXjfItWzwraVaSJXeI0+aMFxTWG9YGc+sAtuuU/n2khJcKR0wIAp7w3+eDBnM923M+OW0on4XqaPErwjGoJO0fNXMB5rgFIK84+IPXsURRkVVpzuqikaK7QVV80oh1H+zMWVAtUFqgeosrFUlYYqC4os3Gii1C9N7VnCSapZoHPTwnRXNcA7bNCrYAxH744xCrZ0Jewb3DvZHA8thCvWbcO23mA7PY/tdB/r6Vlst5/Fdnsf2+lZrLfPYb29gblgawVbv8ZmzqaEUJg2oCyQegWpdyD1CloOESUIStmCPj8DKDVcJAXQWuJQO6Nx8+QB6BaZwV4AlxTWinBukbf33AwcOiqGsWutz0R3CGptHhFnB/FuIuYIi+chbN8Oto1Xo/6HZXf7NdLC09VkQW1XqPUARKS2DaCn74EBxQzFKSwuqV+Ifjo0QDoSoHihoFU2zLRHlB9OA7PUY5jNUsDpBJoMFhwiDSILRBtcF6Qigjd2Ru/JRFFArKVCa9lhhSXTEUdHahkEEC+AUUxLRiVzSnupX16v/bEHk7PTbWCbyDwEcxLfq0QxFocAkDgo1n82szbh5qysltCtQdGg2wKzTsfY1iCNTdak1FgbNh1vpba4T4UaLYuFFcIIDy1HdiQ+r+RxCQ8JI2jQ2HABi07HgvDB39m6c4AijNRp6LizicAO6hBC2bwOD5bxcP37jGYFYbqza1cEZCviGk0NtkSU6nmgKK9h2YXRkunZ1iJQEMjYIFv4heDzwUlWKTkqsmpOwGhXAFoy9NBVnJ3hicl2dVQAxHzaZEEl/OKEZbFCcFIjAKjTGZU6Fxu0PbAJwqg5cxGgFrQDdWPL0lCFJnOLDBSnA1XqpblQeQCPynVpZxVE0N2E7IHDUmKtqpEREAQTT2DSzTGMlg6Dwhz+SOGJ4GIzHOMuRPbGTeBDMQYBSlo4qPLvDXWaxBnPFJoLdNgoBIha9nYU2wpbN9h6wjidYKdb+Lbyuo70D8pwMFmUTMoxgIsYZQfAvq+POBlB/yHZr2/iigQ0wEzv7FXl54AfkR4KfZgF8JkppQfvjS81HmuAot4h4xR+IgPqK9iVt4NNyTrYY4Y27ihs5gYI3DzEro6aTdwatSc1UjytMPKeenLxkCuxeZToxoUQjeN4f2/wMONCRPzbcPp1TBDB/0xGVIPQ/D3zvqe143R7wu2953Fz8zxubj6Le899Btvtfdzcew639+9jPZ3gomh9o5uqAEMUVmh+ZVphKIijHNl/JNomcNMb+6JKk0aI0MqbdzvOxW/ZIj5dDhMvn8Hl2Gj3u180NyzAsMGFSnTYwO4lEhG8R340BGISOez8bWRTHHTCXeBOMCCl8GDzCrJcZIGgCpMDSjuiVDrwjilUCoBhhjKogyhVURr75dSFeqRaD9B6BCSbmyjV+sJqIxIjvh/KKgFQdgF2kQYIQowocDhqOUDqgV439cj36AMZ6wgEZgSv7j5F2ilMzR5OEs/fxzwK49qEPoU7BVLLs6cmIrqVZJGSmUz3zYh48/sCEo6FNiZJlOSWw5Q3Qbxgqi0j3UB9lDYyKaVV+CjwQeCVDRalKGTEwZvlyCW/H1EqAAakYQJ1Bhu4DyZICPAR0zQ94IKR8Ojovc9ZgB1kzBhMK5zzGPdITr5HCeXMHySTs9MlM0U240uhxwwbMer8cRfuAybZXDRodHCfSNflediKAlJ5LbRAD20GGcUqymAjOzOC5JLAUvNzakF2y4DsTUMWYXf8LZh+MjGVpkBRC71NsjbCrtCQ+JvUaRUwqCmiNK8M8XmCwFroLs1DTSbTIYLQFbFoodSCVmvAKkNxJiSzaMUM0To+6Y7ckowBjzItOQlvy/mNe24C11wfLP0fRqO2bh3DevQO4vuyBJmQMCuMdecCHxKmk6zgzM7LEhok9sTZn88zPACCUdM2NJq4wmHbBjutsNMJtvLh24nrwTrfp9At+JwlCVQwQYMi72Ves3MGRXNZ5ZbumPdWCsO5Xe+aKJzdfoKzvShtj3O+QyA+F9FDjMcaoNCtcGPe0AbcgpGwzo+If88ew0mBywNRQarn8xDgo4a4soEAhZPPs9dhoDOmxV2wO6mGEtupczEzDMv7hp09HezNMQvL4eEbIEj6zMZA31b0bcW2rtjWE9b1hHVd0beOvnW4FvR0DEXqaTQQd0aBe4zjeZzF5pyq62DheBNEJsCinAzxsxLv++xL/JCRVVLrACZPDZxtfnIWbTpSGT7hT6YQwHnQ+MXZERpAGGjFxik1csCV4kzBFAYWFUi4BEMWqB6hesAEmjaI7J0HkCLM06bAMg7DGsCH9cfMnRYDCjfX1MPnfuAzvMh3JeGhsi82E86haoOUBVIWoC78mo1z2AcGH7w4O2iLHSHmf+6pkpHOWZiDJHpjI5yHdl7Ac/B5/ohrmeyJ7uBkbmAzxxwOuXmNgCgppOYlX4wqD/7svDq9fs4e8w9JCKYTXOXP5eY2wUCCgwch2v4F2d9npA2S9dzLd1IAHKBGMAH4fMQkTwgke5pMPm9K84aIQGj/oQmBdlM8jVRm/mz8PWFqJUIhPgL4ed4PcTBK/C1RCoKZfkX4mQQrW+LVnF1PkSBxgi3DfP8aVNmk0uIezhJmn9OvYbKWv6OEPwnv9dB0wMiQZVpYsvQ+xbMSWsC9im3XuMT9Hjo5Tc8WZDm/hB2NzHT7lFdYAuU99Zjr2pNFB/bqNS6FAEi8vyaIPX8g/IrEJ1u3A0auM5+gWKeuZvZoyr1i3n97Gn0yE2bcy0O3wdYcTg1H9AXCoD0BzfiI0NjBOJZf/sacn6kjO9MPKaZuSnLPktBFzVfnD7BwnMyp3uHWM//e/HaAmZzLPG8lQAoeejzWAEUGRaZ92zBsYBsreu/YRsfW76H3DWNs6GNQICoNauHQiDH3EamN/hdV2XU2qgZqPTLSTbt1ByS62LoMFDmxdNJzUzZ0VwzbsJnOttirbRRXwTGUeUcI0wrqzmi+ccWYk/o1B6zzvW2nDaebE063J9zcrLi53bCtHVINrXesPrCJoytgBbAibO8dDx4GMWkGAOGR0Fn2JgaMalHaB1jk3ecqxL44eQN4lMn6NKUraW42IwiACzRLh7Fv4KEVgRj1GXEkR/C0AxR9EFyZMr1hGr1wojGEa4dLgyuN+kp4LrCiZYHjAPMDYwQ3OO0d+fd1I4XvbMVeW0WNHhdSF2hbIPXA3z98djYdpcC07B4X85STMx0KNUUFLTYxR3bbLiWYmXaELEtE92Nqm8SZx6eQbiDTPjvoyAcPMJlRTeSFAygj0xcZ1cWJeYYTp74iI6tkSyZ7Eo8sjU4jsRJ/XSDT24DHS0ROxZAuebTeJm0vUcotlQea7H9gPma5bzweREqxZuJrPnatBdfqrgFAVDjNFAe5e6RImxb1MbcaoCks/Hf05w8CmTOA4mcAHZFOkoiOBengO0ODADdnKCE7RZ8FKi4AmxhGnl+EKQAZ8z0SnMS8SQCUJe0CAB0K7QJtwupWALXScqAWfq7RuiVaYPH6xL2njRohnT1euEIUgEdvK/W4hzyE9qqQyi7WZuxvxT4zkY5VQEFrA+pTAswowB5qgxVu4P6SKTWEu5RGjZzOHSGZa4lr6eGDQr0aUyRcJ4Ks4tkPSxmRAIl7RRCpJiXDLnmDTG1IVrQELtEEgQReRXLfrGAqteaGC8eDuTJqhiiMliJABbxHJc+wyH4PdlHOsvrR2a5jbECnTT7GBrEWqW6f1YgTfJ99Lmf39yhJk2gmlulzEq+0eGivbDdKUMkAKn2q+B3TTGc9uI/kEofm1MX9V79OGBTbVnTZ0NcbplD6CWOstCfu91nuOsJoRwpgDfDD3OBoxqVQqVCxHeVFhE5RbQm/FISGLSKDAWDoXNx0NNVIAZQoqeWNasb8I6NKlqxOl30vFE21BS4Lui2QtkBqo0hMFaaMUi36W6gNakjcscD4iA6lreQGhJlq9hp0OCKyUAOks3GiF27iIwulJcpmSxxgkeZxCWSdNv67CJE6n4I0iXLLXVbm7+TnFHSdu0juCP4s3i3lgQh6RhpTg0LdgEJZSigK0wGPnVaj5woPlWiK59F3I7rBJlgi2GJFl6YYs4aGp/CjFYKdAcfQih6P/LwI01VDBoqUaCgYJlBS4VkVonwnxG3x+2vljgEw3bGnkeFekP21zufMYOigxCM8KCe46+IY4rM8MtpZnm32e7iTrsfnjyL7YVOiCmlea2GZ8y6bCEbgC9ybk2uLTXAHHPxoIvEg8zUwsQMf55/He03lbX6Pc8Df03G2poSCefZK4g5pMRcjft6DbUrnXL4u3m/ZMRq2z9cUFJ4BxPyTmdaZkXTOc7JWwexN5mMKfeTB6DJ/NHUUScsFxekj9h6POT2jQzzBXZH98Ay9hxcqRmaK54xZSY32nDtIaNJ2PZCUOu9DOLCrylNvED2otEAL+0YZ273DR4GUfsa05r1ZQyOV+00sF+9zXe1I3ZlW1WCWAkzZDMV5sA84Nuejm2PzETePR/rX5vT7tAeIy2R5XfaUXQYAPoHjmY4o2IcJUoTgvPh+33NVFlAXF78WmBqcWgpaY/qSfi8KGYLNkpHZz3R69zB4dDFqXoS6FQsX2lyPWvgC2ZNLkHW94mUGGQquDbNo8CDUCgn2btEyNSXpnp38rj9QSi8hHHdN2wKfwu9spilxD2CA6/Yhx2MJUFKV/Oyzn0EV4Pb2HvrY0McJ6zhFme4txujo1nHbjZFuXSDtGEp3sJ6+VhpYNcfYFL0ZltoxBrBWQdENulGESWvhxpt0DIzsjAyEqZHhuW3Fah23tsJtZcfd7QbrWOniWSLl5Aa3Dbnlma0wdazDcXtacbOuuN023G4dp3XDaduwbR193ehA25ni8c7GeX09oZ9OWE+3ON3e4KY23Lu5F+3MO0qhmMrNcf/5+zjdnnDvuecmfbptp/BRUPRDjcqJNtMK8yZUR6kawWvknVWhSlM7QDFPVROw+Rdv9m3cwmzFOm7g0UgsPUK4N/NGokV5WorHxgiNOaOa3bZOA7zThm0b6Kuhd9pPq9Ad2FywjhVSN4pRneWXfUTnZnWIGBpOqNoxrKCOhtoHigGiC9AMVgl++gC2m1uMmxPu3buHcTph3NxATyuKdxwwsLSCVgs6BK07Dt1R1hE3KkDXYHAz2AyyDfSF6b9tBK0bG4sZ6VyzCIEDcBoMW+d6YEv63VipS6PnTx/oUYLbo2psRFPFPGxLq6hFMUpBbTT6amODVmoZWiNAWYqgRXUItM5UnYb7pk3uJlN8PTbOUwAth60Dow9s24r1/vPop1ts9+6hn27Qb27w/P1b3N6ccO/Ex7oNnNaBAcFmgCwn1DAiG2ODjXiP64rReV8ki1GHYpMNXjcUY+S6ro5tKN2ch8wU5xrgpWfUXJRWbpEn6KcTxuC12VDQobitOg8PCV0P0wd5D+zAfP4r0kYe4GRkqqFEegTAUEOJ18LGkgAcGINapDGoRzIPd1pVNpkBoEVR1egVA6Df3qKfbrGeTujrigLBqopTu+VrDRG4VmULD9nT36KKbQBtONoysK59skKZqt62eD3DWEIsTI2WMgiivaB3Vi/KeotMj29rCfF5RRfFcOCmO3o3BpLjNrRoYeYoCi8H1MMGrYXmbCFabuZIg0QacRpuTx2nbUUfHZuNCdqW7QBtDa2fZreCMRhYMq0i6OZYV4v3ZlhPZKxP24Z13bCNgdMgWy8KyChoXiAFqNaRilq/WTHWjvX2hH5aYduGbT0BfoJghQ9Ht4oGwFamkt2ArTO43k4rBGSC3YV9k1xg/YTtdML9dcXN1nHaBk59oJYB3TYsW4evG+RUMfnVNG2E0XNIHEUF6wjzuQCBDvZZmgAlepWpnWmngnnek4/pBh66ONvZwl3T5qF5JPA6dcM6xgPn+Jca4g/zrEds/Mqv/Ape+cpXvtAv4zIu4zIu4zIu4zK+ivHxj38cr3jFK77kcx5LgGJm+KVf+iV8y7d8Cz7+8Y/jRS960Qv9kh6r8eyzz+KVr3zlZe6+ynGZv69+XObuqx+Xufvqx2Xufn3jN3L+3B3PPfccnnnmGbLlX2I8likeVcU3fdM3AQBe9KIXXRbcVzkuc/frG5f5++rHZe6++nGZu69+XObu1zd+o+bvySeffKjnfQUFP5dxGZdxGZdxGZdxGV+bcQEol3EZl3EZl3EZl/HIjccWoBwOB7zzne/E4XB4oV/KYzcuc/frG5f5++rHZe6++nGZu69+XObu1zdeqPl7LEWyl3EZl3EZl3EZl/Gbezy2DMplXMZlXMZlXMZl/OYdF4ByGZdxGZdxGZdxGY/cuACUy7iMy7iMy7iMy3jkxgWgXMZlXMZlXMZlXMYjNy4A5TIu4zIu4zIu4zIeufHYApS/83f+Dl796lfjeDzida97Hf7zf/7PL/RLeuTG93//9++NzOLx9NNPz++7O77/+78fzzzzDK6urvAd3/Ed+IVf+IUX8BW/cOMnfuIn8Gf+zJ/BM888AxHBv/yX//KB7z/MXJ1OJ3zf930fXvKSl+DOnTv4s3/2z+JXfuVXvobv4oUZX27u/sJf+Auftw7/wB/4Aw885+t17n7gB34Av/f3/l488cQT+MZv/Eb8uT/35/BLv/RLDzznsva+8HiYubusvS88/u7f/bv4Xb/rd01n2Ne//vX4t//2387vPypr7rEEKP/sn/0zvP3tb8ff/Jt/Ex/60Ifwh//wH8ab3vQmfOxjH3uhX9ojN37n7/yd+MQnPjEfH/7wh+f3/tbf+lv4oR/6IfzIj/wIfuZnfgZPP/00/sSf+BN47rnnXsBX/MKMe/fu4bWvfS1+5Ed+5At+/2Hm6u1vfzve85734N3vfjd+8id/Es8//zze/OY3Y0T3zt+s48vNHQD8yT/5Jx9Yh//m3/ybB77/9Tp3H/jAB/BX/spfwU//9E/jve99L3rveOMb34h79+7N51zW3hceDzN3wGXtfaHxile8Au9617vwwQ9+EB/84Afxhje8Ad/5nd85Qcgjs+b8MRy/7/f9Pn/rW9/6wNd+x+/4Hf7X/tpfe4Fe0aM53vnOd/prX/vaL/g9M/Onn37a3/Wud82v3d7e+pNPPul/7+/9va/RK3w0BwB/z3veM//9MHP1mc98xltr/u53v3s+53//7//tqur/7t/9u6/Za3+hx+fOnbv7W97yFv/O7/zOL/ozl7nbx6c+9SkH4B/4wAfc/bL2vpLxuXPnfll7X8l46qmn/B/8g3/wSK25x45BWdcVP/uzP4s3vvGND3z9jW98I37qp37qBXpVj+74yEc+gmeeeQavfvWr8ef//J/HL//yLwMAPvrRj+KTn/zkA/N4OBzwR//oH73M4+eMh5mrn/3Zn8W2bQ8855lnnsFrXvOay3wCeP/7349v/MZvxG/7bb8Nf+kv/SV86lOfmt+7zN0+PvvZzwIAXvziFwO4rL2vZHzu3OW4rL0vPcYYePe734179+7h9a9//SO15h47gPKrv/qrGGPgZS972QNff9nLXoZPfvKTL9CrejTH7//9vx//9J/+U/z7f//v8ff//t/HJz/5SXz7t387Pv3pT8+5uszjlx8PM1ef/OQnsSwLnnrqqS/6nK/X8aY3vQk/+qM/ih//8R/HD/7gD+JnfuZn8IY3vAGn0wnAZe5yuDv+6l/9q/hDf+gP4TWveQ2Ay9p72PGF5g64rL0vNT784Q/j7t27OBwOeOtb34r3vOc9+JZv+ZZHas3V37Df9DUeIvLAv93987729T7e9KY3zc+/9Vu/Fa9//evxW37Lb8E/+Sf/ZArFLvP48OOrmavLfALf/d3fPT9/zWteg2/7tm/Dq171Kvzrf/2v8V3f9V1f9Oe+3ububW97G37+538eP/mTP/l537usvS89vtjcXdbeFx+//bf/dvzcz/0cPvOZz+Bf/It/gbe85S34wAc+ML//KKy5x45BeclLXoJSyuehtE996lOfh/gu48Fx584dfOu3fis+8pGPzGqeyzx++fEwc/X0009jXVf82q/92hd9zmVwvPzlL8erXvUqfOQjHwFwmTsA+L7v+z78q3/1r/C+970Pr3jFK+bXL2vvy48vNndfaFzW3j6WZcFv/a2/Fd/2bd+GH/iBH8BrX/ta/PAP//AjteYeO4CyLAte97rX4b3vfe8DX3/ve9+Lb//2b3+BXtXjMU6nE/7bf/tvePnLX45Xv/rVePrppx+Yx3Vd8YEPfOAyj58zHmauXve616G19sBzPvGJT+C//tf/epnPzxmf/vSn8fGPfxwvf/nLAXx9z527421vext+7Md+DD/+4z+OV7/61Q98/7L2vvj4cnP3hcZl7X3x4e44nU6P1pr7DZPbfg3Hu9/9bm+t+T/8h//Qf/EXf9Hf/va3+507d/x//s//+UK/tEdqvOMd7/D3v//9/su//Mv+0z/90/7mN7/Zn3jiiTlP73rXu/zJJ5/0H/uxH/MPf/jD/j3f8z3+8pe/3J999tkX+JV/7cdzzz3nH/rQh/xDH/qQA/Af+qEf8g996EP+v/7X/3L3h5urt771rf6KV7zC/+N//I/+X/7Lf/E3vOEN/trXvtZ77y/U2/qajC81d88995y/4x3v8J/6qZ/yj370o/6+973PX//61/s3fdM3XebO3f/yX/7L/uSTT/r73/9+/8QnPjEf9+/fn8+5rL0vPL7c3F3W3hcff/2v/3X/iZ/4Cf/oRz/qP//zP+9/42/8DVdV/w//4T+4+6Oz5h5LgOLu/rf/9t/2V73qVb4si/+e3/N7HigtuwyO7/7u7/aXv/zl3lrzZ555xr/ru77Lf+EXfmF+38z8ne98pz/99NN+OBz8j/yRP+If/vCHX8BX/MKN973vfQ7g8x5vectb3P3h5urm5sbf9ra3+Ytf/GK/urryN7/5zf6xj33sBXg3X9vxpebu/v37/sY3vtFf+tKXemvNv/mbv9nf8pa3fN68fL3O3ReaNwD+j/7RP5rPuay9Lzy+3Nxd1t4XH3/xL/7FeX6+9KUv9T/+x//4BCfuj86aE3f33zg+5jIu4zIu4zIu4zIu49c/HjsNymVcxmVcxmVcxmX85h8XgHIZl3EZl3EZl3EZj9y4AJTLuIzLuIzLuIzLeOTGBaBcxmVcxmVcxmVcxiM3LgDlMi7jMi7jMi7jMh65cQEol3EZl3EZl3EZl/HIjQtAuYzLuIzLuIzLuIxHblwAymVcxmVcxmVcxmU8cuMCUC7jMi7jMi7jMi7jkRsXgHIZl3EZl3EZl3EZj9y4AJTLuIzLuIzLuIzLeOTG/w/1284TdUjTQQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF5CAYAAAC1N9FKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7Bt2VXe9xtjzrnWPufevt2tlgQSGLXysI2NedohooogULARMrbFK0ImQRWrKpLiSmEiEqUSEOCkXEKYYMoCJyYhIRDHeWBXgnFRBgmIyyApFnFMcLCTAMKFACGs7r73nL3XmnOM/DHGWudeuhGCEEsKe3btvvfsu8/ea68115zf+MY3viHu7pzHeZzHeZzHeZzHeXwYDf1QH8B5nMd5nMd5nMd5nMevHWeAch7ncR7ncR7ncR4fduMMUM7jPM7jPM7jPM7jw26cAcp5nMd5nMd5nMd5fNiNM0A5j/M4j/M4j/M4jw+7cQYo53Ee53Ee53Ee5/FhN84A5TzO4zzO4zzO4zw+7MYZoJzHeZzHeZzHeZzHh904A5TzOI/zOI/zOI/z+LAbZ4ByHufxYTQef/xx/ugf/aO/pd/923/7b/PqV7+aT/u0T2OeZ0SEn/3Zn/11X/9zP/dz/Ov/+r/O85//fOZ55mM+5mN4+ctf/ls88v//jRe/+MW8+MUv/pB89vd///fzdV/3dc/4b48//jivetWr/qkez3mcx4di1A/1AZzHeZzHb8/4oR/6IX7wB3+QT/mUT+HOnTv88A//8K/72p/8yZ/kxS9+Mf/MP/PP8E3f9E187Md+LO95z3v4gR/4gX96B/xhPr7t277tQ/bZ3//9389b3vKWZwQpf+2v/TXu3LnzT/+gzuM8/ikPOffiOY/z+M2Nq6srLi8v/z9578cff5xP+IRP4Pu+7/t+079rZqgGKfpN3/RNfPVXfzU/8zM/w+OPP/7A69ydT/3UTwXgx3/8x5nn+f/1cX+ox/X1NRcXFx/qw/htG3/6T/9p3vKWt3Bens/jd/I4p3jO4zw+wPi6r/s6RIR3vetdfPEXfzGPPvoo/+w/+88C8L/8L/8Lr3jFK3j88ce5uLjg8ccf58u+7Mv4uZ/7uQfe47/4L/4LRIS3ve1tvPa1r+XZz342jz32GF/4hV/IL/zCL/yGx/Bt3/Zt1Fp54xvf+AFft4GT32j86I/+KP/r//q/8pVf+ZW/JXDy3ve+l9e97nX8vt/3+7h9+zbPfe5z+ZzP+Rz+5//5f37gdT/7sz+LiPCN3/iN/Ef/0X/Ex33cx3E4HPiDf/AP8kM/9EMPvHY7zz/xEz/BF37hF3Lnzh0efvhhvvzLv5z3vve9D7x2S4N97/d+L5/yKZ/C4XDg67/+64Fghv74H//jPProoxwOBz75kz+Z//K//C/33/1H/+gfcefOHb7kS77kgfd861vfSimFr/mar9mf+7Upnu37vPnNb+ZNb3rTft1f/OIX8w//4T9kXVfe8IY38PznP5+HH36Yl7/85fzyL//yA5/zV//qX+UP/+E/zPOe9zwuLi74+I//eN7whjdw7969/TWvetWreMtb3gKAiOyPLV33TCmed7/73Xz5l385z33uc5nnmY//+I/nz//5P4+ZPe34v+mbvolv/uZv5oUvfCG3b9/mRS96ET/+4z/+tOt8HufxoR7nFM95nMcHMb7wC7+QV7ziFbzmNa/ZN5Of/dmf5ff8nt/DK17xCp71rGfxnve8h2//9m/nD/2hP8RP/dRP8exnP/uB93j1q1/Ny172Mv7r//q/5ud//uf56q/+ar78y7+ct771rc/4me7OV3/1V/Ot3/qtfMd3fMdvm+7gR3/0RwF46KGH+PzP/3ze+ta3UmvlxS9+Md/0Td/E7/29v/cD/v6v/uqvAvDGN76Rj/7oj+bu3bv8tb/213jxi1/MD/3QDz1Nt/EX/+Jf5AUveAHf8i3fgpnxjd/4jbz0pS/lR37kR3jRi170wGtf/vKX86Vf+qW85jWv4X//3/93vuZrvoaf+qmf4u1vfzuttf1173rXu/gH/+Af8B/8B/8BL3zhC7l16xY//dM/zWd8xmfw3Oc+l2/91m/lscce47u/+7t51atexS/90i/x7/w7/w7//D//z/OX//Jf5hWveAXf+q3fyr/1b/1b/OIv/iKvfOUr+czP/MxfV/dx/3jLW97CJ37iJ/KWt7yF97///fzb//a/zRd8wRfw6Z/+6bTW+M//8/+cn/u5n+P1r389r371q/kf/8f/cf/df/SP/hGf//mfz1d+5Vdy69Yt/o//4//gTW96E+94xzv2efA1X/M13Lt3j//+v//v+bEf+7H9d5/3vOc94/G8973v5TM+4zNYloU/+2f/LI8//jjf933fx+tf/3r+r//r/3paquotb3kLv/f3/l6+5Vu+Zf+8z//8z+dnfuZnePjhh3/D738e5/FPbfh5nMd5/LrjjW98owP+tV/7tb/ha3vvfvfuXb9165b/hb/wF/bnv/M7v9MBf93rXvfA67/xG7/RAX/Pe96zP/eCF7zAX/ayl/nV1ZV/0Rd9kT/88MP+gz/4g7/p437zm9/sgP/Mz/zM0/7t3/g3/g0H/M6dO/6n/tSf8h/8wR/0/+q/+q/8BS94gT/72c/2X/iFX/hNfVbv3dd19Ze85CX+8pe/fH/+Z37mZxzw5z//+X59fb0//+STT/qznvUs/5f/5X95f247z3/mz/yZB977e77nexzw7/7u796fe8ELXuClFP/pn/7pB177ile8wud59ne/+90PPP/Sl77ULy8v/f3vf//+3Gtf+1qfpsl/7Md+zD/ncz7Hn/vc5z7te3/WZ32Wf9ZnfdbTvs8nfdIn+Rhjf/5bvuVbHPA/9sf+2AO//5Vf+ZUO+BNPPPGM583MfF1X/5Ef+REH/O/9vb+3/9u/+W/+m/7rLc8veMEL/Cu+4iv2n9/whjc44G9/+9sfeN1rX/taF5H9PG3H/wf+wB/w3vv+une84x0O+F/5K3/lGT/vPM7jQzXOKZ7zOI8PYnzRF33R0567e/cu/+6/++/yz/1z/xy1Vmqt3L59m3v37vEP/sE/eNrr/9gf+2MP/PyJn/iJAE9LCb3vfe/jcz7nc3jHO97B3/7bf5uXvOQlv43fhJ32f9GLXsR3fMd38JKXvIQv//Iv56//9b/Or/zKr+zphQ80/tJf+kt86qd+KofDgVorrTV+6Id+6Bm/9xd+4RdyOBz2nx966CG+4Au+gB/90R9ljPHAa//kn/yTD/z8pV/6pdRaedvb3vbA85/4iZ/I7/7dv/uB59761rfykpe8hN/1u37XA8+/6lWv4urq6gE24j/+j/9jfv/v//189md/Nj/8wz/Md3/3d/+6DMWvHZ//+Z//QDrt4z/+4wF42cte9sDrtuff/e5378/93//3/80rX/lKPvqjP5pSCq01PuuzPgvgGc/dBzPe+ta38vt+3+/jX/gX/oUHnn/Vq16Fuz+NoXvZy15GKWX/+debh+dxHh/qcQYo53EeH8R4ps3rla98JX/xL/5FXv3qV/MDP/ADvOMd7+Cd73wnz3nOc7i+vn7a6x977LEHft70H7/2tf/wH/5D3v72t/PSl76UT/iET/ht/BYPHscf+SN/5IHnP/mTP5nnPe95vOtd7/qAv//N3/zNvPa1r+XTP/3T+R/+h/+BH//xH+ed73wnn/d5n/eM3/ujP/qjn/G5ZVm4e/fuB3xtrZXHHnuM973vfQ88/0zX433ve98zPv/85z9///dtzPPMK1/5So7HI5/8yZ/M537u536Ab/zgeNaznvXAz9M0fcDnj8cjEID2Mz/zM3n729/Of/gf/of88A//MO985zv53u/9XuDp8+CDHb+Z7w0f/Dw8j/P4UI+zBuU8zuODGCLywM9PPPEE3/d938cb3/hG3vCGN+zPn06nXaPxWx0vetGL+JIv+RL+1J/6UwB8+7d/+wctgP1gxhYxP9Nw99/ws777u7+bF7/4xXz7t3/7A88/9dRTz/j6X/zFX3zG56Zp4vbt2097/mM+5mP2n3vvvO9973vapvprrwfExvue97znac9vQuT7NUE/+ZM/ydd+7dfyh/7QH+Kd73wn3/zN38xXfdVXPePx/3aNt771rfzCL/wCP/zDP7yzJgDvf//7/1+972/me5/HeXwkjTODch7n8VsYIoK7P60K5ju+4zuelrb4rYyv+Iqv4L/5b/4bvvM7v5N/7V/7135b3nMbL33pS7m8vORv/s2/+cDz73rXu/jFX/xF/sV/8V/8gL8vIk/73v/b//a/PZBCuX987/d+784iQACZ/+l/+p/4zM/8zAdSDQDf8z3f88DP/+1/+9/Se/+gDNNe8pKX7CDg/vFd3/VdXF5e7t/r3r17fMmXfAmPP/44b3vb2/jTf/pP84Y3vIG3v/3tv+Fn/L8ZG6j6tefuP/lP/pOnvfY3w2q85CUv4ad+6qeexnx913d9FyLCZ3/2Z/9WD/k8zuNDOs4Mynmcx29h3Llzh3/pX/qXePOb38yzn/1sHn/8cX7kR36E/+w/+8945JFHfls+44u/+Iu5vLzki7/4i7m+vuav/JW/sqcNnmm8973v5Ud+5EcA+Pt//+8D8Df/5t/kOc95Ds95znP2qP2RRx7hG77hG3j961/Pq171Kr7sy76MX/zFX+RrvuZr+LiP+zhe97rXfcDj+qN/9I/yZ//sn+WNb3wjn/VZn8VP//RP8w3f8A288IUvpPf+tNeXUvjcz/1cvuqrvgoz401vehNPPvnkXhp8//je7/1eaq187ud+7l7F80mf9El86Zd+6W94vt74xjfyfd/3fXz2Z382X/u1X8uznvUsvud7voe/8Tf+Bt/4jd+4V6i85jWv4d3vfjfveMc7uHXrFn/+z/95fuzHfoxXvOIV/MRP/MRv2/X7teMzPuMzePTRR3nNa17DG9/4RlprfM/3fA9/7+/9vae99g/8gT8AwJve9CZe+tKXUkrhEz/xE5/x+v+ZP/Nn+K7v+i5e9rKX8Q3f8A284AUv4G/8jb/Bt33bt/Ha1772aVqd8ziPj5jxIRbpnsd5fFiPrbrkve9979P+7R//43/sX/RFX+SPPvqoP/TQQ/55n/d5/pM/+ZNPq7LYqnje+c53PvD7b3vb2xzwt73tbftzWxXPr33d7du3/fM+7/P86urq1z3W7f2e6XF/Nco2/vJf/sv+CZ/wCT5Nkz/22GP+J//kn/Sf//mf/w3Pyel08te//vX+MR/zMX44HPxTP/VT/a//9b/uX/EVX+EveMEL9tdtVSNvetOb/Ou//uv9Yz/2Y32aJv+UT/kU/4Ef+IEH3nM7z3/37/5d/4Iv+AK/ffu2P/TQQ/5lX/Zl/ku/9EsPvPaZztE2/v7f//v+BV/wBf7www/7NE3+SZ/0Sf6d3/mdD3xn4IHn3N3/z//z//Q7d+74n/gTf2J/7ter4nnzm9/8wO9u5/2/++/+uweef6br/nf+zt/xF73oRX55eenPec5z/NWvfrW/613vetoxnU4nf/WrX+3Pec5zXEQeqMj6tfPL3f3nfu7n/JWvfKU/9thj3lrz3/N7fo+/+c1vfqDa6Nc7fnd3wN/4xjc+wxk9j/P40I2zk+x5nMd5/H8yfvZnf5YXvvCFvPnNb+b1r3/9B3zt133d1/H1X//1vPe97z1rJs7jPM4DOGtQzuM8zuM8zuM8zuPDcJwBynmcx3mcx3mcx3l82I1ziuc8zuM8zuM8zuM8PuzGmUE5j/M4j/M4j/M4jw+78SEFKN/2bd/GC1/4Qg6HA5/2aZ/2tG6o53Ee53Ee53Ee5/E7c3zIAMpf/at/la/8yq/k3//3/31+4id+gs/8zM/kpS996QN9K87jPM7jPM7jPM7jd+b4kGlQPv3TP51P/dRPfcAu++M//uP5E3/iT/Dn/tyfe+C1p9OJ0+m0/2xm/Oqv/iqPPfbYM1pen8d5nMd5nMd5nMeH33B3nnrqKZ7//Of/hm01PiROssuy8Hf/7t99oIcJwB/+w3+Yv/N3/s7TXv/n/tyfe0bXyfM4j/M4j/M4j/P4yBs///M/z8d+7Md+wNd8SADKr/zKrzDG4KM+6qMeeP6jPuqjnrGx2L/37/17DzTyeuKJJ/i4j/s4PuePfDE6T9AmtE60ywt0mpGilCqIgOI0caYiHJpy5+KSqTUemm5xUScOdeLWxQW1KXUCJkWmQr01I4cJr8rqgDmYI96xtbNeXXN871363SP9/XcZTz3FuL6LrE9SSqdNRp0CHfbFuHd3cLrq/Mov3+XJJ4488f4jd993F3rnMIxDWWkMRE6wDliMcXI6Rmdw4oTTEVYoAqoUL7TaaLVxMZd42gFtuCi4IqKIKiqC4qgbKo4q1FnQKmgRLsRQ4nyxOrhTcFSDoXITcMFdMRPcAQNwEBB1UBCB0kDFUBmIdXCDYVz3lWUdPHHXOZ7gtMBiwiAexmZ9OnAMx2kYVYSpFubDgVqVNs/IpEhVpCkyF2RSyp0ZmSp+aHQHcwdbKN4RBrUaTWEqcDnP1GmmHh6hTI9SptvMF8+iXRxohwva3NAiSDG6HFlt5Yl7J5666ty76ty7EmwY3p3Rj/R15Xh9ZKwdWwene/e4+9RdnnzyKf7JP7nL9XHl7lMLV2NloXOXFafhVOZ55nAo3L5UHrqApo6KYWPgbpyWwehOH053wRCGaCRoBQqOuMQPVUAEVcFEsbxMbgPMcCfmQyk0hCrCrMIkjUZlapUiShWhmqAOah7vDUhRhg/MjJM5xwFXw7k3oBuswxm942MgY1CKUCrcuXNBrYJUR0rMF1FHPa58Pw3Wbpy6MXA6cC2Gi+BCJqOD7J3dqUBD8DGwPliuFk6LsS4OLpgLZoK5AYJK5fLygsM88+itC5pCUVgRusFxwOrCcBjLyjheM65PHMdTGM4AhIIitALihrgzu9OAGXhkKtyqwmNz4aDKpMJBlaKNIg0ryhDhWgq/dDzx1Np533JEi1OL8IKPuuSjn/UQH/vRj/JxH/swFxeNMk8cF+O4dP7xLzzJL733Sd7z3qf4hV+5x2rCWhp3u3ByYfGGmeNulOqoOlWdmYWKMctgLpVWlDu3H6K2S6b5knb5EK1WLubG7akyqTJVGCqsCu8X5co6T/aFf1JXFjEWLNdXQaioN4o1dCmIK0hhKQVTRapQxagM7pye4tBPXPYjMgQ3WLtyfRqcToP3313pp5gPY7mH9ZWxXlH9RGVwoc7l5czlxYGHH76gTZU6V666cRzO+04rd3vneh2cTh31uD+m1kDi/PcxcDNkQHNjMmMaHcHBDWsNK5U+HRitYkUxgeGNlZlaFSmFOlUORZgUHpvgdhvcap3p0JEGNiunS6VXYRWhAE2Eh8rEVBpznVEOuBfGCv14ZCwr690jfjxipxPHa6MPZRmFJ47G3XXwK6cTq60s3rl7umIZg8UNvb5C1k45OtpBDXzEbeMOrUApUBvUW7cpc+NwmJmmiak1Co6txnJcuT4N1gGnUegCiHA5g6qgChcXlWkSDod4TymC1olOY3jl6iT0DrY4E0bxQTld0Zcjy3rkp3/ufTz00EO/IVb4kPbi+bXpGXd/xpTNPM9Pa7AF4HefwpaG14lRK2M5Qq1QSpwwEQRoxWm10KeGdDhMM+VQkUnRVricHKlC0UJpjTJV2sUBvZigVbo54qDuCIOxdo6lIdfCQoMuAWAEfO1QOmMa6Kw40BsMH6wyWG4Lx964Whp3rwXtufTVBdcOnGAxfHHGtbOug9OycuX3GJwQBi4OYqjDhDChLKpUFZqD4RjG2gfigohQhbhBMIpCKU6pUCQ2oa6G4gjkd4WmcQ6384gHhEEKIIhLLFDiiIIqiMYNoBI4SnKH9OIMd9wCMFpe5ik3Pkfw3IDkvv9PCE2ECeEAFJSKxLGYghfEFPVCMY1FryvLgGGGWXwfcadWoxZnbnA5rVQTmp3QcUSXwlyOTIVYdMpAABfjrt3D+4n17hXHpxbu3evcvQvWgQFjOWG9c7q+xtcRm+bVPfzeFTz5FHLvGo0DIq4OOAWLJZHeB+ti9CqMEtdG1RH3uCfGgOF4d8xgoKzieGBGio/Yuw28KqggWnElN/h4L9xREUpetyrQFC7UmTX/3pQqShOlxTRDh+/g0VToA4Y4wwY6HPrNsbkZ0jtiRnGnOlQCAFcVRJ2ijohTJA7a3Th5gLF1DMxjNpALowigAQgED6wigqtiZpg7LnGMQ6Cooh7zdgwQhFKUVgpTqcy1MZVYsFcpdAO6oS4Md0yM7oVuil0rw7cr5YiAawB0cQcL7FQE5uJcFLhdnUt1ZoGDetx7KowirBrn924RhsFdcVScVpzLCW5fKA/fbjzr4QMXlzM6T9w7DepxcLi1UJ88IiXXFXeGG92cYcpqhWFxj1WP84w6ReP+HThmhpvia1wDKY6OAEizFi5qY27KNJW41gJrntjVjWMBxVCzxIsCMoE38IZLxUVxqQxiWdTubDMopqrgWpCiOYGJe2Y11rGwLivrdacfr/Cx4nZCZcVlQINCZVLjssJcYW5CRWjiHLvF74+V0+mEm2Pu2JgRLaAlgbpjHdQtz1neQ0RQOIbRbTCGYDUO08TjfioVpSAysS+YBaQpdVYOtxSZBS4KeqmsVXLeOgVBa0O04WUCa7F+qaNeYuVuhTEKo8d9vgCnAfeWwb3TytXVwmorw1b6ccF8gA98HcjwuGeJNXhTmbrHVy8FWlVKVUqtTHNlnhtTmygOXUcEoMtgACcrdOL7y+rxHkqstRaAawtyy1QRGoVGJ2IlM2Nyo5hQRDlJBFjPtP8/0/iQAJRnP/vZlFKexpb88i//8tNYlQ80lrv3kNawtgYoOS14iZ1SiiISi1OtEYH7PKHdGdNCOTkyD2TqzMBYKzYaZQxKr4waiFf6oDuUmIOUYhEdWsAAl1gcvYAXwU3iGIrjGguJaz5XCzYNbIZxALsYsamowtRBB8gCqyMLyKUgq6HHQeEewonCU3gZoIYOp2mh1orOBUFwc4bH4neygZsjHixEwekCtUApQi2xSag4xkASJuARGTUkFnqE6AYSm5w7CJoAJUGNWZwvoI1gUIoM1HosCDY4jsEyRkSqIrhKMDzoPlnjmmkcizgzRi3KXAqHqVFqpSYI9SK4xPcWF2o3EMGk4wPEHBuxuYjHTVWqB9BsscGIdOgnvBTcr/Bh2DBsbVAcK4N13GVZjyxPXLHcXVmuVpZ7gsW6gC8rtnb68Yj0BCLX18j1NXo6UtaF0o2anIkREXcu2SiD4iADWB03Yk5t4G3EphOPAHKeGC2io2D38HhtIJMRLJdILKCeSFFixRKLYEA97hHF9o2naESdaoIaN++N4G77ORp95J8eDzOGxb+LBSPnAhF+rgE2cMQsNkc8uAl3bBl4t9gNPYCAyn2smkQoKB7fPai6EqxmBhDBIQU7SBApwShyP4BO9K0B3DU3by3xXd3jZlcVSlVUNGMPy7tD8H1hlbz/2d9fldyIjILkumGUZHKMvOfwPOcjj5uc87GxRKSaj6JIcVANUIbQXehurMPotv1ZE4AEmLISsKpJwjrXmFtm2Glg3jFf8LqAONqDla0ITQVTQQWaGY2IhKd9HmiyNXl9DIY5bE23lZ29Q4zhhnoETbqzs4a70B0W65zGymm5Yjl11uPKulxj1sE6Lp2h8Xtz9wBlDpZnEs01SjUCRXdsdBhxPoZofF6JOSTuuMVBxmtvAqNhMe/GANPgctFgJlEBE9wDpLp53I9b1yvuC+qKUovgJcDkDhpqgGsvirsiQxFzWBUvQi+FoYVeCidxVgiGzJzVoPdco8zxxeLkewQxeGz8WoQSJyKvUcxpKXFcoiXW3nygsZ6Lxk3jKpiQq0Is/cOC1cbj3IwhWD5UY45t67nm+5BZDN3m+LaPfJDjQwJQpmni0z7t0/hbf+tv8fKXv3x//m/9rb/FH//jf/yDfp8n3vNeyuGAtQOoZMSYK1UN8lEQSi1BYR5m1svbHKaZfnmbZb7kNB2wh24xHRrTxUy5PKCHSn3qgnrrgE4VikYUr8I8RcRnvePjhPsJKyteBz4ZWpSiTmuBVB1BrDKmWOjK7ZnCiSInSr2kUGjTgflCmCpo6zAUt4ItDRvC6MrDnFA5Mev7Ea4RFmQ5bWstRTo+jLF0rpbOae2Mp67pvWO9UyTYkqZCbYVShPlApGEYnCy+F26xIHswF7KzJ7GwuWmkThDEFEkeQDCKOEWgFqMwqAyKrUTYPzh1Yx1wpGJa8aky6RQphaKoKqpxnCKxOB5KHPNclYupUVWptUYkA4zgmSPV0TtuA18XvAtiwjosFnlpgeK7I9WT6lH8NHA5RpqhCbQJnxq9VVyclZWnlvdz3Y8cr65ZT0ZfjPVomAVK8NOK94FcL+hwZBhyPNKOV0xXVxxOK+IBTBqFjnKLLf3iWFkpYkyrUc3QZEbQikhBDcTk5iGKbiyWOGVj1XJj2qJ9x252Dw8ggCjVheJKIYCoqsZKoBHbyEaFWaZJOpEyIzattQ96HyzryjKM3mPjWc1Y+ggGDlCN7zgAu77GiuM6IOeMu2E+MI/UzDDwEYs7IkxSIup3p9uai20GAyqQ6SgAXOg4Q6G1AsS0M4kFtVRDSsdLwbRjqpgqrjVIABHEBpIbaWngpmiZgrW0zpCCq1ASUQjGkJHEoqBVIy3IlgIKtqGIUr2AOIYGAJQR9573/F4B/jaA4YnMhATxBcjUw6qVE8rJncWM67VzGrB6gQTIvSpalNEqFzohYlRPxtaMPk5odUqLe4Z1ppbOfCFciHA5TbjGtVu9o7bisjBQjgjFlLU7Y0RGegyjD4uUmghSgs1yAHOGxX1xvRqrD04yKFVAYvO+Ol1zfbzm/U+9L4KApzpHTsk3wgGYgJOAl4FMzkUvjKniMrM0WIrRDfo6GOtgGY4vA1kHMpRSBqVZgkjBXAPAmmAegQ4iuBfMC+axDscmXnAKmOZ9GN9rm7/WFZqgKJUAeRVFxejiFLEMyIQ6ZVBZG0UmxBROjothFXpXFpSTK3evT6zmrKVw0sGKYxbssXZBTzFnwJAEtPVQmUqliiIEI2nmFAnArbUidcpcfI17QBtOiT2gFbwFGPGhsW6Y46PHn+r4EkDZquRarEhrUBqqE6UIUg1pA1091pk8Zz4+zAEKwFd91Vfxr/6r/yp/8A/+QV70ohfxn/6n/ynvfve7ec1rXvNBv8cT956kOugosahmXlvUg+raFupRUKsMPdLLiW6VhSc5rTPaGtUuKNcz5eqAX13GJnX3NuXiFjLNaG20osxVuLgM5I8MluVIH51FO1Ydn4TaKxShNUNa4HvXETnzIrQBzWEacHBFKUzTTLu8YJoq8yFSK0UE8QpWcWvUqlQZzFzBuAd2guM14hFxui2MvnK6uuZWX1lH5+FHrxjWGZlfVQlUXUpDS2GeW+gACC0AbhkhB92p2zxysNUiohjQXTJqN9wy4nVLnOCIbNTCAAu6X3xQhiULkzcDhULqY1RzYyQWiYQ+Q/PnEqKBokIT4kDc41gx6IO1L6FekJXeM6PiBdGGaEWWoJ+7KstSGUXpRVDtqBjSPHLPpYA2zJ2TGdf9mmWs+NKR06CtxnS9JKAb0NegqJeOZkTfTyu+LAFkxZmASWBUY6jTizG0YCKMBNOKUjzYAHMHryAFlwRvIhQpEUXXiraIVKp3GJFa0hpRuGikp9ydYStuRMS1w3ZJbUkSJBapjWE99Cwikb+20AmYxzURUdQH6oOK0cSYdbBoR91ALDZ7EaoKKskDJdUOoVXxZHs8N4qRzF8cUsRckcKJ1OAyPPUkjqkkoG3UGhtIrdA0NttWp0j79ARlbsGcyJocBpgXVqt0N7oL6wiANTxYN3NhUBhaI3WF467JBsWGpRjiPdmbAKtm0IGVSEmpb5nRiIRXFzpKH/FYe2wAjnBaldOqHLtwXI3SB5N1zA33gfgRsSM6TkhfYTFswDh1zADWvC8MTJBa40qXuLeKVwpOJdNvNihjpXahjkE1ZxJlKisXs2MJMmZZWWWlWgeLoKkfhWWBtcPS42PNLFKT6mi1uObmeX+swYa4IyrUWqhKMDcIq1e6V3RIMGI7o5sYe3u4MEwZo7AOoXRhGUJXZbjizDsYl3GCXpG1x1wRpaGI2EZTBcPlTjFLvV6h1MaQErqh2vASuZGY8RGwuspGBwRo3tijLoHma7CdYo5apPigIFqZtFGlUiWATKSSc53TwlQD7DALyxz3UBFh6Q4UlmUwVsVEOcl10huKFRBXvDaQimwMfrJcg9BzuWvsmSLoEu9jHqkbH3E/thJLsSYb7wbNNZhPsVBjuTByHqOKjoZIBFWIJKvYEYlswzDDMh38wY4PGUD5V/6Vf4X3ve99fMM3fAPvec97+IRP+AS+//u/nxe84AUf9HvcXa5pdWaSKYR/GgK8yOfFiQFDpNCl0HujrwurF1a5YrGKjkrhgC4HZLlgLJd4m+nLAlcrtJlSZ6aqTE24XIRSDS0DW1asD1bruTEaU0ZTRYWqsVmYj0jRuiCTI5Ojs1E3ZDkpOh/QeWK6KBwmZ6pQpII3xGem2qgCs9/G13t4P+LzVYSJ7vRxpK8Loo1ineGDS6akcUdoGYgJpzoj2pimQzCiAjWp8EDNa6LmOM9uMNZ+I9Q0MtrryaoEwpak4NU7aoZYRyw2LnGj+Yh8vW55aklxJ0EtZuQcHG1wAQNSRxH0ZGRpR6RDRo/rOzp4x/oCvoIfGd3y1FRcJtAJLw2jgFdkbYwCWoymRinCqANL+nNQ6SachnOyNbQR3eHkyDKo1yvuKVpOlsh6j5SXRWrQxmB2xxUaofHwybHi9KYMDZAyJCjzXEWCkh5GJhWBgmYUV0oJsDY1SiuoCo2RnGtHS6TGVOM8uY+IbIdgHiBgo6MlU3lJB9wAeveNjNnWYLjhIyMlhVHUYsl2ZwqhDyYGUvYMjCYTtr2HuTC6JKmm24x7YAPCM2PvJaJTc3rfNDuOmiIUzBsQC7EQGrJKp5YW6SYPJiPmF4haTrE1PzOPJ+nrMQIMhbg2hMieaRVGJmFcMqoONirOSSy4AfXJ8wzD8/3yM6xIAFIThitmsalu4pk+yg5a+nD6CEbNfYB3NCS9AYps0yUJ3i0Yl13wNcAFGZkesho0Phr/bbqYTbxIDzbNlUKjqlNLxWtsMnV0yhioDrw3rAt9FZYTrKuw5PXEobXMoOH4MHQMxrLiI5kaBa0BUIon252hSpGCphB51xrlvJCcgUgmxxLM7g9IOBNzQ70gVgOoGagX1GVnZyUBwX6HjUhvaClQKyohw7YarBVagiVwvVmn7kdPG+tlmfYZAcDJzR0yrUJBvMS5Nqi5zvrwBEtCU8WLQ4XWRp4L4TDFdT5ONYon3DI1HmmnTHDGWkLBpWQiMbRj4r4DFrOYH0sPBtoJcT4WW0rVXB9qpHJC61ZyUYgkPC6YFcaI72amqG1rSY775uS2V/iWBvwgxodUJPu6172O173udb/l338/V6gLh96pWoNl0KDtmqyxvUlESMME7wU5CX0lqmSqsFRhWQ5QD3i9YK0XrGXmut1h4ZIhEyITpRXaVDjcbpQGbdqyc+CiSO+oDQ5mzNW5nJxbc6doXPHTUE4GT2Fc68pSTljtIJ1RK0u9hWrDtdKac+vgtLoBgZWaG19PkDDWeEDcmF0bo8Iyz5TpEELQOw+hxZASkbRYAAIbB/AJldtoqahW5jYnC6XJgOQNRwL0pPVHtxBNMTBfg5LOHG7sOoavSwg7e0f7QNwpbpgaLoY2SZreGWNleFDDm6jOx8hFN1JC2zpw9FhQ61goyxHpUK47sjiyxA3LGJS+4qfMSyzBpAwLzYh5xXxCLx5B60StymEy5mohbEsN09Eaq1eurdGlMlwZp0K/NuxaqNeS4sgQjrHphzWo2lWN1mAulduFiEYr2MGw5iwt8smrOTZCseBe6D2Os6/GrlTIzXKIYqVE+rIqtRVUlUKNSKUUioamqKjjvmKunDQ/26GzLeyCjVjSmypTUZoKrcguKlaz3Gwi5SeEgr8z6JKVEGZ4ietXJUSAXiISLLWm7kQprSDEwmgSws6uoetAQrOEG2KDMYyRTEP8CZ0QXYZmpyBSmLVBqSGIL0KTgegIansMuhZsktRgGXOLSr7DoUWU5yGQlZ5sTup/hmukCkToLZQiDMkUWqS9EEVUkFJ31jZW5YxSN32ag0tEluiEa8G1Ygq9KKNY5PpVWLhg8QOLNfpQrAsynNIHdXSqLzQ6VQ0psbGYlKx3c3bqjBAm1yJMiXoNZxQIAkA5zCWuuxTaJNTmaOmoXKMeQAgtkbaq8XtDhOveuHcqPHXXuToJyyp0DxariKJTC/2BAGPB15VxikBK3WgXlXlqXFxURAeOs9qgNqdOQr28zejCOIY4fFNiVQpVCuVyQi4adlBoA6lrgPT83hOdyVciGbUVGt6nc9tBtIN0RDbQYhQVSg0Rq2mlWGWUCSsVk4oTgFO2VI3eCM7NQ4OzDmfpof8pHdaT0IdwEpAaglIZhtEjLW3rrj3TbjRzbjEz11h3tDtjNcYUafOpOrbE+y3uXOnAGKzDUhrgLDW1wEqwgAhdIt20aZ9kWOwnGKt1Wg/2rLhT3JlIXZcIQ4J9USlxDiTnmysjsDMmjp4Gpcc8AkXGiqxX6LpA74z8k4+EFM9vx/DRsdM1ywpDCqMWRlFKEWiORPIeROgq9D6wqpwKDDV6g6Vp5G6LQq2cqrKqc7cWjnS6N5AUZ06NuU97SXLJRclF0WEUM+YxmItz2Yzr1iliqA+WNajQp07O1fXK8XrBl0EVx/xE12uWAYvAUoQloy3D6GOgviBGiDGXe1E5Mq6ykkMY4pgOeoNpLvisjMugRrREVIwT+c4R6nG3CqUGTJ5qiPCkhNo9AY0nm6FjoD2AQ019g1NSKJcAZQSo8CVy4d47Om6qL0oJsWI7lLhRK8nwRC53EKkjH4bZwFORvlGUsqUW+oIuJ2Rd0etrZF1hWemnEzIWynrErxd8HdhxYN3w4fRTj6jVKlYEKY5Xo1ZDq1FaiBFd4TScZRhXNrIiSOLcnxbGacXXU9z6udgpyd6FwABaCTGgA1Ujeq6KzY5VOFVYhrB0gjp2YXhsOsMdUyCFjeM+YimEZ7YHcLugWAfKiPx6sNc7a1Y1xLBGxNC+6UksGL6mypwAZSq6V6cUk511E9s+D8wDnIuMFLsO0ACikiUtooI230V4uqWxTCi6KSht18uJRJS1FYdsQmz1EJWW1P5bngLdFJiWwl8hKlIk3x9o7mgUIzOrc5gKF7VwOFwiWxS+hhamSqR3fES6MtjATFkURyowPOblXvcs+7ku6nsJZpHgmSI6j7RckUgpaqZbtGiIthO4acmqJIn1u3uyLL4BEEBmqDMyHZDJMhWiSAcZIcrf02tECXnVjeExMuOJF6LEgthYTCzSqe70+z57i8K1FLTk+dWGakHEkkWS0N+oorWEWL9ktRaaFUeFYtBcKHNFpwJTjfXNQ7sySugZaLIDcLVIfxVCd1ZqoRyiIEBnoc5Km4V5jvumWt63zejVmEoPAFhG6tA05qc6prHJmkDH87tklVayiOJhkxBVY7ang0Q0ighGTTuF3AdUMQ3xv6tEGtujcCFjPcydxfIeZsQcMEdWj9znnhaKe0V9E2lv3JDvIELNKOaZqjU23kLZhLqad80mBgq6J0irmPejB5ATg6IWTGSuN1vK3vOGFJcE3hYpKSxkFT1FgFrC+sHiXg/xWke6xXcbcX99RGhQfluGGX46smIRbZWC1ULRgsyyTzqTWDCXtTCa0hSsGH0SDt1ZfSBl4HWw1M5J4akStf8LkWbRVqltYhqD0gp1DrGbCLiUnCjGYQxmMS50cF1XqhhldHoPdP1Uh+OycjoulCUA1BiN1a+gO0dzZg2vgkWV4bCMKHH2YXgCFFtO+LhKoZ8ytETEVh2fFJ8Ly6FFyW8hdSAxzX2t+FCky00k1lJ3EOrGpC1vAIqrZPmq7QuebNfAQQahRxkWC+qmKdnLER2t4U8z35qok1KaEsWPjm8ABc/cdTBPPm4kn1uEXcaaAKUj10dYV3xZ6csJ6Z22LtjVNb6srPcW+jro64B6wnsw4HaoSC1Ic/oU0U09RL7eNWj2U4crM06ZQbF1wdYTtiyUccqo1akWNEPNNJS0YGKU2Ae0BfizWhlNs5RYKGtsvKFrjPJGyxrvKMMOsaq43ycGvsm7RNn7xqdGZZcoWZ1ysxyVTOTElrPXamFZituKMJcsUy8SxT5OplIC3GwVAvj2uRGFkcBCEqBoVrNRBG3sx1NKMClu+W+emyobkLLM2bOzd4WS88eohKB4kBVGHqLLMCjJqDYrJWpu1AaZGnPmIhymxkWrHOZbuXw4wyP1sBABhpmHWBbLVJlBTaCZQLuPzrZ8S1ZsROm+bBZFJJlPRalaI31RSgrBQ0xbPMo9JeeNl2BSBsnieGH4DXh1PUBdkWlFpmScAO2WQLmE/kNCW1ElS/1TXDyIqhTfPosAm+ZE5Z/fgKPuilBBGlIqmunQohNFlaIdVYvnNQBoaQU9lHyOYGB65AnqkCh93gFKy+85WKUzqjCqRJl8CwG7rAFQq1Zqy5TmnABlEuostFmZD1Gx2cwjJducXgdzHax9MMqgFI30Z5FIn0hm1jI9t+0VKpu43DJtHbqZKM+HapYpJKVWiXOQcxyVKJHMEy9Sdn2KebKFm3ZPgpWsOdfrGp5KmOwBQqDVYL130sdjL1Czm8eWW9ru89T0qUZK6qbCbQM6fl/10YhUqJF7ybbO31RvbmbzYiOYEkZWC4LLyMqdZBNd0RHp+xuAMuK7bWxL/+C3+I9sgLKPBQhRn1sNEmttpFcZJholvq4UaVCVtUDdVM16QPQAeslaZ9ZSOZWJkx5YZMLkgNQwgyuHi1hoagHvgUKHIj0YhsPxiskWLm1wmxPVO3U90pfO2o0nHI7Lwum0hDCNyqz3qO0erU48NF9w5+HK7YcKchHU2mLEgukONvDTNfQVdMVrxcvE8DlSTSoczGldeWqplCFhpJNlnxUJOtGM0k8UXVBVWj9lXjduUjZQvmkWxsB6DyOyTYjHpkEhN7W4AT3pQ2yLoOOmqa4UD2BkpdC0REZFBJG6V29ouxHL4lEJ5QmeBI9KlzGCnVmj5Bt3bIQvRxsDrpYAc9cn1t5ZR+d0fWT0wRiD0QoUKG0wlUEtzsWc7JEqnApyMo5Pdk5PnRjHlV4cY41Tcy98AqwWRjW0glelzpUyZSSZZX2lhNjVmOiZqhlaMQ1QUWTFtNNtgWJ0dSpl1w24WdCsEp46ZAQsNQFADX8Yzah5YxE8qdgq4YsT+qKbu8ZzTW1VmVWoGuI42FI8G+uWwrbMs5eilDV0EtadrsLkElXyw0NwU6BckNow5VAbioS3SJqojRRRevpQmAWA6UWoBkJjaBjf6dJ3+76tfFct6HKRZN6MeA+ZIBdXJACA1oq2A9ImpF4CAxl9r8IWI95rjVTtxhBoGQGAMkVGBxsjfj8FhKYa2ibZFney+k1uSjm1bIRYgs+c67XEvC4S1gQSlP1I0GBWIkXpMOQCKwNrgzEZwwbdLFgCM0idkRNRuudNPHqn1mCeooQ1Um3bxjk09THdGV2xUTGbqRwoOjHXylyNQ+tcVrDq9CmE5dNw1hpoSJujB0FK3ENlbgGi+oE2OnUMRAZWhLU6qwZT02vb07w2NazVFIG3ZF4L9SLuq3Kh+6PdKkyHwnxZKMAYzsmU0yKsHeZDsHxdB+1g1CaUQ8ESCDJqCp0ttXmRgglTw2AMrI9dDRMCeIMl2KLmlmkbRVsN4DY12qzBsreClQxiRg+Nk0FP5j1AVS6la5Z+r85pHfQRpofLcc37BMbxxDiFMll6p/TB7IKhrCgdwIOx1zFC12d2o4uRPRkYTIYLLj0qrpLB8rJNTdnXbUQyIIh1ZKhj3jOV6WwFD+5x/26MCwOkV2TVKPVaR6QRbrrW/Ibj/xcAJZBh1lqncMJtbAJ+TJOKHJsALkukpOBaMJ3QOiPtAuYDUlvQqOUWWg64XEBJQ7h2wNIIzseCjUHvgrAivjLGwjp6qJV90KxTls44Lax9cHcEQLk+nSijU7ww66CWQS2Ndb6iW+XUFb0Kvccy2EuAxbOMdvRQytcJ6oxNl4hGlHY0oa3GjEekphKTlojydY3USekb2haalr0cbbPSkRvvIiQBiqVLaERvI6t4tqA+qb2kA0Gy3j4mex3hSSPaaYvSWrkxg9PgZKKGP6qyJJXvLlkSmiWcQ2JzCsFflGCGZ8ZNZC4lbmRvJ9w6jI5cnMKXZQyYClKhNqcVo6rTphrHq4X5JIyjMZWFKndZ64m+LIxlYSyaRoAZNadfxBAnyRNKud/DIsh+95x7+fAN5+WuJZ7vKRIAZAcofqPLq9z45aUbXhxLKlYSdItsIC9Fs8RmtFVGbASNqjDVEObV/LtsjNfmMWIWpYUJULb5MWUU2t0jfZEOxdRIc4XjZrjWHlpFUKqlHsxDG2Qj5tzo3AhnA4lSSE2UpslbUuWpQ2cTp+7lx1t6KKuVwjMmUqDmN+4kg0BhLlt6SHbavsjmvRKR9Garx6aN3Fgs2KNjd7JMOEW/IrkwSaaASaOvZK8S/+9r1x7e3oS6kpsE++/cVLZFOiaDbG5SYruonUgl9LxHjWA5qyo2wn8jd5eIzj3Fn2l8iKWQfCuW9ZpnzSikn48MWhnxK7VA8XQIDgpp09mI35/+iM12EzYNjc2V0qAb0g0pwdiwicHdM2cpCfB8f9j2d8lNV7azkVaVYnh6n2y/I3nf7Od82zv2f8tNAzLo8j3HLBtrJx7nrxruJf65b/uK4hnkiKY+SYKa8m2ekmJpCWZMLcq1fTXGMujHzjqMtRvjFGDVRLF1xfqa5b6xHwQrGozdSJaZ3oPFJBiZ3QVd/WZeeWrNcr2pchPc3F+vsLOxLpHGJe6BOCV57mschBWN4odU3e6MjYffjdJRV9Q3+fNvPP5/AVByvQ6XPja6OFMHhEmP4FDrjUBQwovDSsPbBcy3kMMd9PYlZTrQLh5iOjyC1EsWuQBtuDYoUy40zjheYb3Tj4b3E3BiGUdaX1m6s5qFAv64YMcTfek8scLV6cTV8YSvC4owc6LIFVWVy6o8dQ9uPQFl6nRzjt1ZxxolwB7VIbihU6HUA2W6hcwPobVR20Q7LJTWaBctNk9lw7iRcujhHhnUcNysTdKVc6R5VFKJWySqNuLG6PGn5FIfYCSugkq5iRa3P0vdRWUqg6LG9d0bQea0lc+mARUilFqD+lYl6vQjdWc1UiWquhHsVKkRvbQKbY7csAnKgrSOtUb3qGoa48C2rMtc0RrOj02jtLtNNdKDWrGTwLFzujxyPf0Tlqfusa4rx95Z+oovoTEJuj7ytw2YxKnJWsQ+HY6imvvc2o1hsDBC8NyJwiNSZ5PAJ4BSpipsAx9OabKbtG10rJcS4EBAPM596IlyCy8JcIlUwJajlhLlj1ONFE8TYWqyLyxlpK5kEz97AIpVlbV2xpIpMQlDv3A0Jej5otSpRHqgVh6aZ0Q0GJSsFAhAEq6dywJ9hJcJbgGePKh+tQCnSsxR2b5ibuoGYGM3KBzdYqF0No85xhBWCyOyJf178DT6E4u0SKYl1XUHfGum3dwTnFiChr283wJkKeHQqrE2bGtEbJXpBbP96ZKGadxEm5CpKt+B7aZXQQImhdg7mJMxBn0MbARjmaE520waBBNjdEoycEVKiH5LQSyuWXGh0rIEeUIsXGHdGuRDLbx41DrVOtWNSU70msfdaqaOPHU0BWSKjUpic3UJfY33lSLRzMITzIgWdIS3SpkOSFsjHVtLrElyA0xCMzOChWSwIqxoCOCH0UewpX10uvcQdKsziqGqmZbdsGNCPtlSVYboiDpxu9GDeBoBYsFEu7OnYb2CV2FMUZ3WTaNEuRQ8rLrzmijuWTLODSjeRNqsjp0647SyPLWGr1DvrOuI81ca/bRg631BovlWs0TFWIlqTT+Gb4/XEmn6DRHXTN2IIlIRSlSbFqXVylxDZF+3tURSGyUbBeBZDg1uAYiGEP4vRRlTQTdguwagK2nYiQxcBkOWtCb84MZHNkBRRUtllhICpszJiW83abq9euTA/BiT2VsLsRNhyuObzf1c6XrB2i5Zbj1Cv/Us+nSLVQ44NW48rRmxjKAlZWEsA5ee+f6Uo7nFDT0GpXdsicl3Og3WBCzeFxzhKJbBk7Po4LTC3WsoZWWYcerOOpa0Y/ZE9RF4lDpT64Ey34uqlGmGeY7a/Zo+FJooO3USJYqb0DU3AwdNcGJ9hDiMcM/djNpK5k4le7ooISzcpppQQjynsSmR4ISycYagvqA+OIgHKBDhUOt+k2w3bmk1Ta8KUgpWClYbvU2hbSk3LohaJ+o8UaYZmTsiJVJJx/CKsPWESWdIbA+axaoiTrHCQSqHTSBKQUtFtHIcwnHAkybc7cbdtfNEP3FtCydfcF3ivJQReWhxJhlMRAq6SaFKeLZcIGmUR9DpRDXAUMfUQDtmPayr2RZki8gWjXmcG7EZN9UhJqHR8cGQ1F9s9mvpn2Ii6Sgac0Y9S7Y3doaM/C0EfsPkvgrKgmBRYaNRImjqDDU215uUzJA2V3vFDxa9fERirpWsAgIe2LRJyvlmXidUS4AsHptS1fjZkioQuU8sG+FCCIAl0pemWXXksDl/Dguj2mP3nNcZf6qjNfwnnGAYqjuLR81QlAtb6gDSAdaDj4mN29HRg3kYKTzVmG1DjKGxLg2RtEsPdCZjUEbUJiGAlUh1JXNz/3kKYBNsU9yna7RV6Ib2lTLimvgOdddkgAIaac4d85v33VJNkYqMiN9KeL8MrXSpiLQAEQVq6UxlMGqmmFKYaSX6hXVSJJ/HL8k0ZTI4o+k4X8U8KmA8NqFNWCpZRecqdA+hcjBsEizH4vgk+Kq8fzXWEqLzFlIo7plz7c6ReKwexXw6AhShmX6WzRk1HoJQLO7H2E+DTfJMVW/l73gNozQv+BqltQxBThKs8CqcLFgo8bBT2ALoTVu1nRvTKIXXDPY8H2YdGytjdIaNZPolTOEsjeES4HkJMVFki0eSaBFUaA+xbfFg+4qk71TKZFRhSslPK1DLxmbfrOsOGQ0EixJ9wMLuZRDnFksws2kWJVjl0KQJpeW93wreojrtg03zfEQDFGlKLZVJawCUnnlls33R2yoZwgo4on9XwUahD6OMKNsNTZTSpWbJ7syYLrD5giGHLOeLiB5SXLS0QPjFw7Y4xW9YRKcBNYnIKHOdm19FPAaOMDJXKG6IdKQEOi9Jia7D6eMUr8E3B+GYIVlGzCh4XaEP+rrGQrMp7fG9uqCqUNLCXDshvDUPIdMYjD5SJBjoXDLaLmT6bHPbxBOgZMSd1T+iBa1TmmAkVZsaAbVIsRx83ACUViiq1FrwLcVTa1Q3ZHrES8VaY21RphmVR2mq1Dpl7ZTZkC6olhAfnkIw6/2I6Yjy5hT4xic5ZQw6Ti9Rctlsq0BQTl04LcbVOrheO8e+chqdk3WOPjAZyVpoGin5HrM217g02+JI3Gh1W+OUjGp832XdLbUHWW2R/0QuW+658eVis6cSsmxXCOCCc7MxSLzGTDOlkGJPCTZ/AyKmUX6Mbx4RfpNxSFCzRWJh/Bbpg5Gi0htKJFKH5O9Gk5sUcA5L1CM3tMbGHmxsxGafutPDOXfZM+d7GkRuIFL6O8RWk5Ar2K0NEm1CxXQ07cP276gen7KnbzTu20jHCbrpOu7LpexW7eRxZoQtZnt0GSAjqXksLNPN99YYkukzTeFhvHjclwbIrVM2Hjiej/N843sjIwKhOHdbxc8NZ+N7cXZG8ts1zFSD5zIlqfFy2SzOt7/L7oC6VSsVdUoJs7d0fonPyg3UvcR6u6e27AEAqoSwvDpsFfp2s6rH/CSq2bDtezuaYhztRunOdbg0UIYwp7B09a0NQDzWZPbWEXOhjjxmISwS8r9wb47PqsOzqEDzeiToTn8e87jy4S1EMqOwdI9KzBGbdUXSN8VznZTtEmRayjL9l5UxacOAbAHJdnw3f9vTKkLq8mRnotKFLe8/zzSO77YBm6dRrOkRMFXNR/4sss3/bfvKRSI4x7wu0Z4gPMjJ8wPdYp/Z9ifdhP2b6HZzui0fzO4e4yMaoMy3GofDxEO1xWRfO7JI9s9x1tVZezyC2hsU74ncA+WOUYIqTeali9JLZWkH1unAerjgqHNEQ2zeDh7dZn0Jis8JolEqB28cxsRtm7kcp6jU0BDuDoUeTQwY68rqWQ0QFn7BuujA1Fk9PEK2gLJpIl6iEm9bSxWjWkfWADA+Bn2tdBFOo28Z6MyhpxOraxgCmWLZ18FPHUuAEgZo2yRLEyyBTdlOlpmWDaBkNCrJPmhbM49cw+SKKCfUfo2OlWmsNMlOq7VSilJr0MCI7LoFKSFG2xiUtc1hkV9vtCKlTZR5os6HSNNJQaVQlxM6VugnKAYlfGV027wk6M15qhxUaapIPYTWSBvrUNalc3zqLldPPsXp3j2OxyPHvnDyFZM1qzwyh0302VldqC6xABMGeC5hZDarpaNklH7q8MhjS3TktcXoqaqPHkLhbjm2BdscGxvD4Hui2IZAMkPNMzykhNEYIUhOMj6ZtHDTDf8QpU9K0xFC5gobethcipVN/+Rgg3460ZeV4xIVUuu60peR0b3vKaYyRmgKaqMOUIli4SgrT4ZhJGhYe6YYc7P1zF1vS3NqaXYNjWyyhH3rJYsgqbmkG8EMuiuMQe89XrXlsIhGZoyOe0fpiER1illswIzoLTTSA8gtPH3qdi4JIKrdkRoMp+FheyBOz/SR6EhxJrFgj4H0EZVoIxmxtYQQ3QbDepTgB4QmDNpWGAssJ+R0jZ46ujh1LFnJUVkZKSa+KZWIdSLuU5fY+FezTWsdwMJ7AGTp4fujgyEpahWB4qSHWdxOHSSDm24ri2Vnco2+PgF2Ar4MXVIHtiIjgH3DmYbREIp76tuy0eaITt5rWhWIOV0JiwTzMDdUYz46i4ZXzWVuwKsrS1rP9VECOKxRMm+FsIMowcCtHlbwQpQ5R/dnSedxDcBpjiTAjwonjXZREunOkbTmWAZyGuixc1iiT5j2wpRVklvtXFQLjQQXlloOw+uAlqXj0xYoJGhEYp/pmUYrIWruJqxFWEfsLZvxoe6ANL16NpZxM7nbeu/kd44S+QRtCUrMPdtqsK8z3SL7tTgsHuAkPLFSt6bBcFoG2KZQ3G5sLqpHe4XfBOr4iAYojz73Ee7cvs0j80xF0LWjpxXvnbVHu+3TsrIsPbQnAlIalEKZaji41uCKXW7oPrtPyGSEmGvk32WS1EYIstYou3WjyEStg0faBbcdHsW55VD7NeXSsAsY95RSjIvWOWjl3om8+bPhHcaE74haLBmMqkyl0US4VbLiAgmnRgu0jlaiiZhFlYqDrUtaefuOYkVDxNWk0FJtj8X2lsWVmSMMBL55LoWGIiOuzbTL88bbXkNS4Oo3eDuFi2axGOvoLGu0fy9i1BqgKapOUjy15aYFtCheCqM01jpHjjsZFESj+3Rr1KlBuwQJJVIdwdbIWJC0epmnoFsj8gvty1QLE4Uiyigzpg3TFh4UfWDHa8ZTTzBOV/TjEVvXMCjTjdvMGEeChZBMKdhIWYBAdQvGogpTDSdPIA2+MrXmUY3Re2xJI7UfAVBkd8u0rM6QLfQl51CCiO26GSNdeON6e0bJpgRoLElNl6B0RoqVZU2J6K663NiU/LuN8IJZV9ZljY177fQ1WIrRgWTuhi9IGUjpkT7Tjd/YIJDuOoxNjKvJUECctz3CTdbJPDQamwZl01A5ShHBRZkk2RQfKdCziLQV1DPszugeccRWip8osqISrqpbaU/L6pIyovGmJhGU3mXMRNAw5fEWyIV9c62VyEOZBajeGBh3qhttBOA32RgC2zdoGz0a3mXDPBkr2le0L7S+0npndEO9JwCNlhbrffAkoKpmmfPGd4S1QpUtEs4UjXdW66h11rEio+GjpJ4nWIBozhGCYlzwrOTatDGmPVkT3z9ryE1bCGVQy9bB64ZJ3ErEiwajWkoIjVyCFRjmSA/GQVdDT8bxaKgMqvbQfLmhw6gGE8pECXPCtG/vQ1iGRw8kCW3ivvJpBGNVg4Gs2YYjNHWb+jgYEHPPc9ZZLTRF62L4yfHrwXQ16FSkdpBKKQRz751NvIuE+WJP0F1qABNEaX3Ce8HWgvURiWltdIlgo6xGj7IzrK2ht8wu7pHCM0Zepbj/c/EIm3U8qgpS60Q6LA92U0i4Yf6zTB+BbhJQOU0ULdc9z32qj9DJqScoJ9PBJYKdACf+O4dBefSxR3ns0Ud49NYFTRRdBnI6QR8cjyvH48L1ceF0OoUYz7JnrwheS6rPJRcrB0b2vfD9xvGNZk21uLX0dNACh4pIuptSmUrjzjTziMBz1HkIo/ZCmTs2DfoBhp2YpFI9BHADhVr2Db6irOZ0k33RbaVya5o41MLDbeJCQ9Bop6B4pY/dTvtkxpXByRxbQsOyAZS9/0SKmnQqkd4pGmkQD9Q70h3WBcpu5w3sdGMSlpl73NTgm2agWEa7mW+PtMBA1xF592WN/D2DsgZwKioPbF4ASIg4XUs2SZswLZiW7IWR/gs1RbLlkDy9UG1FvKO+oi3yoBeHehPxjqjzryUauYkri850rQxtOApbKfbxKWQ50U9HrGe/E/FIXWyVA7k5WsS6kRqQINpPHpFPLRGthEdCihsxvASDN9R3C+vudh9AKbv+ZGylvxvtzJZ5GLERE/8+cqFxIk8tIvdV/YSZEioJgjeXTWLR2+6BvBJB+2YEaIO+rNi60teMePtNn6bRN9DqFFZQQ4uxyDEFyHvtTYj/tmov2+joSB+S4NcTBNoWlTu778TWpiH+pzvlHdVFtgt8HSJF0MPXQjUiWDKtoyPmSWUNIfdGa6fgeXh0DN60rIUEJPnnJOkvhmcvpVio5X66PVkvzRRHAJQomXdCaCtjY2w2cFLuE0SOHaSU0akWvXGaeSZ2tvtzAwYxQmWje6O4YDOJOUZWkmAMPLoi20iA0qOFxKjRSdlJcXVaM0jJlG+Y3ZlFewYv0XvKZKTNvzFY2CqfKB4VeVLyXn8QoFRVaslmelpwCT7Icq3xAWN1ejWW06DooNXBQTPt7E4jYMcsJZodWmqsCJG6pqmIpZFnmJGFKZ+p0KpmOiKv4wZkffsasT90OosHs7J2i87Cp8HhOMIRfBpMpYJpFm3k/S4RVAyNFLCo04qjUxjJNS/hpN0DoKgrQxrVQ4BcTlsX7IHXU4KTEQBk/5T7St8h8y4ZBGp8ztYWRlKfZ5m+inYYnlo13wFKMEibn5ymDiZDGCNTqBautSXS3tveGVVeHln/TVz9QYyPaIDyu3//x/Oxz38ez372Y0ylIt3Q44IvnXt3T9y7e5WPu5yWhevra65PJ9YxOLmxjCiRNCT0IMuJcX1kSMPv3cPaHDeHOtEkqqYGoqCt4KOFxq7AVI2LBZ7DQzy3Hvhd04FHdKL1a8pTgj1RWO9WDn7NE3Xl/Vr4VXVWhFF0S8Tgw7m3CFdDWXzOapyZhx9+mDuHA8+7vM3DVTmIMK6usdOJcTpyOl6z9M69deHeahzHYL0+Rk+XYTs4oVbsoQk5TNx+9FG8RwR0d7qXVvaDcToF3Z4pBpFgBiwN1Mbag7JNUw0hfSl8czccN8Iw2dwiB9oNHR43AcFiyAjDr4hag0EZm8YCT8PL2IA6pxRpZZk44LqRKRIVLEREoxraBylGmQtlKty6nCIVaIacVhhRDj16oVvhydFYtLBKhVooGAcWbo3wtpm8Z/bCafOKljAmS/QW6aXW0DKBzqFjsHDpcYguwlpDvJxJiOHGIp0TK9feuR4LfQy69V0D5CUYneHC6Ll5pzgTz1y6W0ZPAQAiXW9RYVOiqqAURaawL6+UvbxUs2mh4fTs4zTcGPumHxbXnimPsVg4sI7kcS02N7tPaiJEeiuqUka0a9BOycqhwBQpSo0te4NDiN+IsiEWUAmntmCdthMQMcVOQYsGkJ7YdBaWKU4iNTkGQXuPXUA8F6dYR1moslJkUCTE9CuCF+VkzlSENQHHJCEurBrf8aBwUeCyRip2kugEHo8AByXp+jAwcy5KaFBWdRZxOk4dButgPa0cr5YQtBNBxNoHrEYxmBAud4+d1Hp4fEXNTVTzXBYK01SpRXf2zsQ4EQ3fqgiLhLRfLdJOfYlUxdCo/pkvGqpwqJVbc6NopMpWK/gYXGdFCWbhW0NnuEVKJ/2Swg+nUMpMqRVtE1IN1DBfaTXK7G/fmih2QRnG6AvrqbGeTmyCHxPAFFuccT0Y3hmcqG1wKHB7UmyKDV0vDzzlxhPduF4i8FptbPlAvN2IxMdYKQJzcQ6XAeqni4mpaIpHYfXGaczI2jkZrGMwVuNkTjdlWQqn6xW9W1mtINqZqRya5gYd6Z7Q3wqrRjp2eLg9Hw6VhnKwS2aLTtVtHYwh9FGp88rp2OlyQK5XOHamxZESwHqsxvAQWru27CsWEyP0jfcDzK1as0fp+VC6TBiF7hE+ep5wHRHghm9O6MyahCAdSX0WhpSVMjnSHJnLDvKjN55Rywi73/Y7BKDcuX2LZz/yCM999nOY6oQMRZcVWzoXTx05XN5jvrhLm+9yOh1pV1fo1RXLukKP11nv9LXjfeCnBbs+4jR8ukLKBWKVUi6ilK4pZUQpavU02ioSEboZTeC2dB5phWcflEdlpY2BWsVGYXHliQuwa6O3wakOFhNWJWOYIOdWFXoBtHKYGrcvDzzr4Ts8enmb5915hDu1cCHCeu+Kfrxmvb7i6u4THJcTXMOBwWTRtdRsZDtuiGJ1oZXCYZq4c+fh6F45HK+N3jtr74zjVZQxeugSBNkjO/oIqrJ7uAj6Fmdr+kBoeCtsrEJamrpLcOzZRyXmrqS24Sbq3kbkZiU2uUQAmtFBd7+vsiH/JyTjFTSs12CMpETjryKVInPediPs9EeIPJc1bO3v9c4q0WuCElRwZ0FtwX2lqYWYVpVDKwFQaq52okDoLaRMwcJk+mIQ3/FksfGaC0UCnJgNThaL3GLRn6cb9OFZNp9iRW68MG4YlJuozjzSPCp5vjOSdk/H0vQfiNRWNGbbV33KZvUQ+gePap41fSrMgjp2NxjRTdaspBAvAGxnpLrfwxofbuaCCzIi+oo+1pmaYZOCsoPOGwZtswzYsukbTL1fbBjnXvCblKDDlMrF3QiOjCs3Z2PbxInKxAhQnY351FKE7lEBMRPv6xJVaxB6okklysg9wEqwKNGddj/P+39Z4ZRagCJOs2go2HzTsIVoXVZjHAf9amUVYZUE3d1hiVSVWgDMxriJdpPF33QxludYJQz4SrKUGxs23OlsjrURWHQL23kd2Xcr75GdPVFlztTqEOWKMJFsw1KfIDg9QDMj0mkWJYMRsGjaHkj269mgbAwVoZZCq402NWqbw9Cv79RFzCpPG/gOujq6Ok2cGbj0YLe9KsdmyGSMFvNg7SMrswhGRFvOtdSCZLpdW6POjfkiWOtWg63rVqm9YafQj/XVOKYuoyco9uHYatgq0CPlVOKUJQMnnAjtSkiYZS9BJ9Osk2pWnwVPEinNgrUICqbJ6Bb3YZunuAdHp7YW537NKj3ZtI0pys5rj4KrpYuvbbMzZQy+M79BswTAlzTs3PyGkABtAHtvHSMLBwwtsrfd2PR2G0Mo9jsEoDxy+5LnPvwwz3v2RzFPl4g3ZA3nySefuubyybscbt1lvniS6+sj09276PQkx9MJP14z9Jp+POGnu9jacTvicoWvCv4U4gfKUml6By4E80brjaaV2Se6CJSGsNAcZlEeLs5j08pHXxQeKyda74gXuilHlH9yOfCrwZhWjmWlAifKroEx7YwariVVK7cuJx69c8nzn/0Yjz30MI8/9lE8XCsHFU5PXXO6vsvx7lM80QpX19Gb59IXLoYzqTMkhJc5ywDlUAu3Ly541rOeA1IwA718kqWvrOuC35tYx8oyekxCd2ztu6U8fsIZ0Lfccggeo0y45OLYggYuicQlElhiGrqZTZTY14iYLSoEhKw6SfX+vKWT2GoFJLwPJLQyK7E4b5y27P8PIW2tjalNTFPjUOeIJOisqmCD1TvXJhyHcK+nZ8B2QGJhge6xBD00xeJx2Sq3DkFVlhLnFFGMA15mXGcWZsYIKt1sZXXPrs9G82yeOMLP4jgGyzCOI/rz9KHh6InsefAQuJVMfZAq/PS41Oyai+9N00TSv4Twv1ANUFKlUEUpUtMnRcHLLp4cbgwTug1WYiNaJUpt3SQ1EhUzydLi0ButWcrdc9/RZLr2SqHs3toToGhS5oE1tt4o29XLyjB8K9qhpGeHZmkqyL6xbxmZDcTMmUQPAJqtGNBMqUkClFiM2wjnzdIDpGhWb2ydZS88NRcidF3BjRmjSRhbIQFOZoky9QCDlSI3/VC2Un31+F9J7ckYMGcJtJhQVuBojKuV5akTbTiLBcAxc/w4QhTblckLw8uNAyup4XCyLUBch5IMQC03PVYczxTPRtkPxISaQmJdlb4ORu8h1vYEyyIc8nu5C9cG3Yypd+Ju3gq0HPFIFUXJt0fpv7C7K6NbhdWNdEqI4Mlqo08H2nyBecmm5ZF2FAsWqQ4oPVoM1JMzSZTzP0RU5IEw5kLtjs9OH4Oj9DzGLEdvByDLjyXSj9oK9WJmumhcPnTJ5VSYa3SmX0fhtFakOtdr+KucLFsTsLWECDErqyGrUVYL5/6iwR7GJcYlQV2QE6Ejk9CETCXmXxR3Ol1C++OtgAuHg+9FG/PxApUVtZXpekFc6b6myaWA9xsvI0Ld65IKNRng6x74WDIeey+hrGgLg7ctOMqAQ/I+jQhsZze39GXZmi9KVryZoavhacj3wY6PaIAyHYSLy8bth24xH26hckBWj3xcu5duhOE9oHNlFOfoC6M6RZbIn/bB4qc0eFpDwT6cEwdGucCsslwumExQjLFGpN9boGD3bMqkihWltEqbnIvJuSyFqRSkK31RShcuZ+F6cg7NmYtlOaNjlDQ4KrQWpjlTu+T27UseefhhHnv2YzznzqM8+7GP5qFSmEVYpntc37vgqk705YSjzKcT8wJTH8wtIhyMTEaHlfNhnrh9eckjjz4L1RZlc9PFDUCZZ5Z15TTWvTSwLwv9tLDWaFo4ROhjc5V1iofQVFWpOlG0UcuElBaRsURZcnGjeQ0C3RdMo3V80JIpKjBJ/wHZ2NhNaMEm3NxluHtqIyb9zRbXUNIoSUvab4dy1TzTEVtqf4u099o6yxAiTt5w6CrghaKVqVYuZ6VWo7a0Wqcw0LCyR+K9U9C6puvjujjWBtWg0BnrylhWjteddTVOi7MsWUE6ohV7EY8KKk3DpGQnNoCy+UBpApQphZCabIC7h7NtGvY1CS+cyuauGhR3eJk4xSREb7lpbukTNv1tbqh7bYh4iq89QIBujFeA0sQSdIsF0HPjV4W9RbxIWI9DpGosWaGU+Gh+rplSM5IjmYetOkWiVCKOOSO0rZR3AzrbUNncYqF6MijuiUnzeycb2Fxi0S7RtA4PYWwrmrqpWESLwlanvPXOUcL1eNOyec67qAZNUfOudQuWpHdnORmn6xG1KLpGZYlDX8Mbw+ncNOvjgfLyIlvlWByOtqhaUdXorL5pCrA0b5Q9yabbRpamjNY73lfYfJG2R4Kzyv0Va1GV53tyIJnWvD9rgm3dLoSEBmzzsike8x2VMD6roQUZVVmrRv+WLOPeOLYwyQvdkw3Di1IIllNVuJgKpw4XizN1oXfQjeUVp05hHqeAlKjgmefCxeXE5cXEQw8duD1XLppS1Fm7clzCNbcunVWFa+usaiwWoMvIaheLP90Et5AWF6LwIoxEozklHsxGV/Z7pRaN0n6N/kIC4VxeQ9g+t3SeHcJxaiHcXp06Vcwine6at6yxB3tRDh8B2OoWOiHb9qAALiFqH2G2SNyjkveoe8nTH/cc23LcI+0jeuNEW0aw301TmzUMzaat8julWaAWKE1oc2WaJ4oe0OpYN+ZuzOvKvC4cliUW777QThONThkVXQRK+EiM9EgY/cSg0k8n7HTC2inYlT5gOKMbUnwvj3Tf0g6SJVexQKuGbXb6DuFZOFEklc4ygn7LBd83kahECqRIgzYxTTPTYebi8oKLW5dc3r7FhSoToCMcA0c/0qaJMrXoKFo00lAlblQpQV+KCqUoU6vM08TlxSVawvHx6E5dV5Z14cJWdF1hXYI+N0tRXIgaa23QWwhWk7bWrNKIfHtE6yrhyipJYxZJcaDIngYYLDDCl6WUMCZzlyy9zAV0SwHZxqRINr0LMehe4uKb/sFDAFaF2pQ2KVNTWtOgN93CvCw7hsp9QjiAvbA/ciV7qkREds+WqQktH5IizdULKsrqcXw9U0+bwZYTkVV3UB9ha70OTotFM8ke7SpsmxpkpLKty7p9v5uNYhPESy60pcRGr1mhEH9PnHbfxlJSVxQAJUtvY+neI3HNlMl2ajbQmPmR/N7EEUm+R1A6mZwJNme7J/CI/DZwkVfqJnWVi57c59+gnkFAHtfmO7E9or1BfLZbUikbmPX9gyBFmOQ529bXYPNyc94u+31zKazqQgsVFU/B5GwMiXOD4bbvyoOHGEmsTJGF7X5A7BtJaxyfOVG62o11GaylsJ7Gbvlu3bK1hG/4b58Q9x/HJloP/U+yaZJRym5fm9H0zuzdZwKXho2WmjQbcdxuG/z3vRopHpZzMXVL2E2JuNx4D5W98+9WieZ7ALT9XUlQrmSDv1hLt/XxgYgl2Vvfg5cEaRpArVVhqtAalBrzhLyGLqTL67aZyF52X2r00ZmmwpyPqp73VuG0KsOVaRVaDUNChUxb3Tf1NjC/sZ45h/e5m5YNI9e0rTAjiYu8Z/P+ZfOxCiDVVOnFw1ywZHCcbS9IY8b7/7Ntjmus55nMSYfoPE4doUnDo0kmEk66+5z2DJDuAxhJxKSWHRkRB+pgF4SrbymeKNnnd0qKR6pTJ5gvKhcXE7VehJvdIJpfieVjY1Dg5AtMwrV0pnGk9mPQ+RZlhLY2xhCGPcloF5hU/HSNtxnWlbEMEGUpI+h7j+oe7UYdzlpCKOi2baqexmfh0Oq+YrYw+kJfT6yLsIyBlahQGaUyAnlR2wVtvuBwecmth27x0MO3eejR21wKTO5U6VBWOgfKkxNlVGQulFOl9hrltyOiwyFCKY2pzVwcLrh1eckjjzxMaQeQgs8Tp2XltC6sBdqyUNdTLKzDWOuRRSNt46djgKMyYdaTQVGqpOma1GBQdELKFMpxFxoSpZl1RlkQP9FLiulGp5Wg0kHz5o1odVsMw4URFuK9OhF1bblyWcKwrIggFwfKPHFx5zYXlxPzPHGYCt4HdlKONlgXkMVY1ejJjAXd7BGGQgDIoSCOtsI0K4eDcvtSmZszTbGpG8rijZNXTl7pp2iI1zUASh/OqRsnyEVi0NceTSRPI626BdbcaNNYSoTdN0A3ECISbrXu9xldxaJ7qAEKzG2PvLduuyp7o1hakiK2bdSEJsITFOxgIP/0/Mdol05SujcAxdCs3ogdU7ixUnMcy0U8pde7iDPW6g3MZDpPUn8ihonmBqgM2RZYcmMKvcgWeZIMmIV2Oxuixe6wayBEdi+awKFxj+q20EaxDNsuohr9laQEKwJCG+wde6Mj9MYK5OdKLOabkHv7adtTDcey6uqBTWQYfTWWY+d01dMFVGk1kOm69GjQCLEJlWgBsHnLkFjdhQDoWUJKnmPbRMd4BFtIVF2sUWqrMtA6cBeOZUV1RWRlveiQ6VcfscEVLMqkfdAs0h3rPmcMT2UGYlCFVge1ljCh1NBf+SbuHiM3rrRsIJyDaxVaKyxbB8v87uGOnWXcWKYcPMuEK60qrQgXBzh5pPxqTw2bOd2jQlFLpFY2Xx4PFIDUqHScJ+XiULg1F5oa6xrrzliDYbxucNFgdTiGvC7aMGzTx25A/WYIuBleuoW3jtkIBsXT8VmFStjbiwtNfP+eHuideWuXVISLWtA2oEWDwjIU+o254Mgy+6jwswQOYBJFDp7usw7ICFawmoaWKvpbxnzaYYmz6c42QCJrVm8m+C9kU2eFWtI6YBiyDFgs7Jw/yPERDVCip5VQWqFOlcM0UagxMRi4rUBHZDAdlFIdlyOHK8ka9RMqC3Y1sZw6y8lYM+cuGtU1Y7dZb4w6QWmoVqKVdvo2prPe4mGPvfqmCQgZVOhLwn00FO4r3ReWMTh1uF4Go4BpiY65VTEvTDZYPRT+phLN8moJkZk77VBpvTHNjdYqtdYo0Uu9we5YEK5J0dvFQ3/QauPi4kCdLkAL12aUtlAW5eI0B+tSskxzWJQc9rB3XjVs0VU2VJ0RkNyUC2ZGKeh0CYowKhqg1CSW0159s5EWiSjkhlIMMaxmpCfqGSnq7m7b3ClD8BEMkRKK+HLRKBcTtx46cHk5M88T8xRVB2MpVDHWRSknsGPki0+nMJtaLaqdlED+h944iHK4KBwuKhcXjVsHmCZnbrlwoxSrYAUfEguigmOM0VnWznUPa3IkTPjGsoZBWY9FtlAizeC+g5MwJ7P9nGqew6oS1Gk+vxEbtcWC5h5RzKbT2ADK1EI302qmKMWwYhnhxUKm4qh5OtTeeKJEKm2gYrh6bvQEQFXfAcMGW+L+ANhccVJImNcU7mMc3PcfdP85gSmRKhEF21gSuYnsIFgATfaAkp+WGyDiVFFaBXfdWShPULPZCmykmVlqcSR8YywPShN8bQ02t6ZrvoO9mMuq9wEvTSZsI0pkKwON5pK26XYTtIVrKiFCX/ORF9F7zo0ETPGIzXs31ZPsAaXs7p3hpJCRuQdbsoFdzZQag9AGrCOctpdOP3V66Yxlzeofjco323QpwXZUCRA372A3NvC9EaOGtqRuvaWQ0DTld635KBZpRpewXp9brBG9KWsKwMeu7ZEUe0K6zdMlhN1rggybI1Us6S7m25rjCZqr7GRb5B4FapTDSlq010loLfp1CcFuTi322EOFixZutUuuz5Qoc2+EALo6yRqzpz9mwopgynu25VpZhGzEuLkiR5rEE0DJBuXFkmUyWnFGhZoeI6U6UrI/lAyGD9y3koKAOWKgEoBlAycBngIg7k7VGJsNgJOBeP7pkikg8RTLkIFFApcM0PFMxkd77hDI/k5J8Qz1XLiEUgutNZpUcBhjoq8TvTfM5mgJ4511vaAWo/uRZZkYfeL6olKJxTUahYU/QE/l+yjZX6ZGjxmR7B8p6QQLu6te9xAC7rGRx4UOJuemgVeYIkWp87JCt45p1uwTjZVCWZ9+AnCjMleJosxWaa3SpkqthbqVk2aqRV2ylDRz9Pn3aIxWmdpEmyekVA7rundqnaaGsYlrw4I5mvUVRubeVbaImJyEORnvWwz3BnYai/We8kpzsHA1lIy6uaHMs6TNib4P2+YhW6gs7FUAUa9v0WYgF91WlHqo1EPj1kXj4mLicJiYpoqNzqjA6JQGXgaLDsYCB9HQJZlEYy2H1qNqZ8KZdtpXmabIBc8tGRQPjcQ6MoWiGenhWDZ3W9Y1DLgwel8Za2esUaJZ0nksqmz4NY8tLWgB+lSiqRfJFuG703VtG0CIjSH2tpuOy7WGYLJWsjuwoCUBUW70m/dBlwjHR1q0WxoIbvbrmh0QfQMoFtS855zY3zX/7mzpAUnfoe217PqfnXTPVXNbPLdNfZPFkHNlg0D5kTtr6RmlmltWUGxphO09t2O/WZR3gOKe62nex4Hesow5Gw1u+RS/qTwaIlv3omBJZNMc3Hyz7ZiHsP/7xmIFKCfm/vDdAiB6t7B3k457ICo1RMPQMSqm7IbNSc2R6s3nS57QxHcUMt1lRMm6eboLZopnHdGcbh27li+wqiXL5ulGewNSRl71uFUlU1FKFaXmPWqZsjB/8DjSLiPmscJUBKvCWgOFBFhOQ8G8ObIROAOhJ0jpGqkaq4I3buy3TfA1NCEuxp4fvdmhN7179C8rkTItVXY2spYHH1OBuQozAVBcw5039pPtkSnTvA4VoZE9iBIXFU9x6fbapGF2bZDfVLTtIAXbWw9oOv1q8WxquTU9eODuYbvLNs+kDaCwvS97/d/NfXXDnWxedQGYIf2TfL/WbH9kLlbEExQHQxYOor9DAMrRBkfrcVMk9TWlwEhnhbUgvdKYWBocSqf6gatpMOlMGRPNKutl4UqinXgd7OY7AVSCNiylorXRS0VK6DzUS2pQwjJ/ceUowgnlhLASN6+LYTowNVw6Q0ZUPBCM1/UKS+90cdYipB821k/MY+J6LKweJnNSK6VWJpFw7BuGLwsX0wWndmTWiUk6EyvVJanrnKTiESmZUFEupolpnpFauV57liLC5dwIZ8EKI1qqU6OBl+m2mERajKRnw+EzN4lNzQ27wLOI0PL9tcamZ0SVzPB4NHM0WZ7tNln9RtFQ5EYwtulpJ+JDxDwaU0m4tR5uFabLyp07MxeXM/PFTJsqNgbLEoLBZVFk6oxm6Al6MdqQaDymIyONwcHD4bcV3xtrzRkxHvKYon9J0MfmThOjajyKDFQ6wopbx3zQx5o6JrIpYzTrmjVZJrIzsjh1SnaoyN4341CFWbbKjFgVXOFiuqka6SM3/tQFqZQQd5Zw6swK0twkI0pbq9PT10SJSLEYrBIl2a6Z1vQAmkF8BFjp5pSRqY1to933vVjRYn3S3FRvmIa91JwAAbEwh5ZBuR9YbMqaBCq59VvSRuJx7OEInQDFt3LejBl97JoR9oL1wZaQCTfNYFBc2XacYCBxkJoAKcWFbACrRIRPlGBvrMrNfzGvB84JZRFnkcKqTvcwVBNX1gHrGqLy9WRseKiP0MqFK/bGTKZ/jMf1miSuR1HNx5ZzyJPHxpbBATgQfWyqGc0GbQilszvWSm/IuiRzU0JkapY9gOJR3Znz3BeP77LaDehiJN1v0X+HBLzbYQk3G/i2ZpQirHOhiaOjclRhWcO/A9L5tATDtYpwFJhEuSIaHA6pnGphnUJwLnO+/6jRWFGUMsX6rRiu0V29zUJtQm0J5jMuLRImiZK9z0oJ9mIqMBtceDBiDlGuPjx6ga2CF4eu6ZkkTJnynXuknKqk1m4ES6wj06DO7ozmw/f7aZ+vMijaKWVQiuWxCqWk5U8GjTdYY4PH8jQQQv5LunHtfZe0+H6Pum64fAPncS9uJMqGfCWZSTGPHFBWJETft9C9fLDjIxqgrKNz6p3RV6ynHTSZw/ZOYVBk0DRWWavOoTo+OcdmHFpU00zVWNQoGmZFmnqRELOEXXbxzQzL2Npw7yIvYlMaFo2iTuacRhh0hTr9RkQbi0owB9G7Mubg6kIXYblvQbuJsOS+BSnJfpEoHdWblM62CW0lmSUjI9ncRyUESlukqJmPV41SRCvKKBruqhp5XEdxN7reNJbamRFgF6fBAwtO4JLNe0FwvTE82nL3sEWrae3u0VFUc7OErYJN9qhMhWjCJZm2yBt5s2SuKsxVuWjKPCm3DsrFQZlnpU6adsyFkW0KBo2OgcLKoI4oYYxGfI6KMDtMTgjlNMvmkpIteUxO0MvVYyFuKjuYmYowSiyAW5ne/QUyRaCVOO5D1UjfiGS/IqhTRVXRLBltKhzuAzOyn3CYp7p713TreXnC+0RFQ+ejG0BJZiNdIYPZ2TwWhJrpyjag1yx17Tc5ey0lAUgs1t3hlBXttgVNHgt7F0l9pu9fPKZl/CkZMYrf+J9w/yIqudbmuc41MOfFzexzl2RMJNwuc8E0zXSNROuKwHRJUbnslv/geL3prE2LniVSt0qlvH8k741Nc0p8R0kPFBKIDMmKqH0OR3pjIRvZkQ9xPFOxasKpB9CXNVK8onFul5FOnlvlhd/E1cWTKZFoxKkSgB3ZzpEnAxT32EykGSa4SZdm1C9JyZPeR3i6j7pn9+b0+LBoByCmyfCl8ZjdsE9mAYCqGTV7TCHhlLwJyyIt4Oj2d4E5l7peoqGqq6TXysbMkSXxEeidhnA0KIMwQst1N0gn2e+1qrFBN8n5lEUKoc+S/b7eGkJq/HrqopLN1GALNz1Xk2BSB77rmhieoudgwiQu0P7vsqU8EthEWiYquTz3htFtL8jYdHlbsFbVaQVGrjHbWjPlXHeBdVuQfUcQv2a1vhnb3inJtm6Vf9tdODJNvHUkcWcTd+2siujNed7XxzyPofn6QDv608dHNEBZ+spxXVnXldHDfI0aJ1ptpfhKpWO6lU4ZFy0ozGMzLurgUAdTGbQyUA2hmHgCFEuAYiFoq4SZESbR9Mo3++KYiH04J4FTj5buC3HDm0X6Z2ybgYRl8aBvUjJW12h0lRFY0WySVwpDS9hDb86bEku45KYT4CRNobIRYPEAJ9tiIsgNhZsgJTbXABE1leA1N9JeIpdLRolV05hKbsSa21Jxf8XE9lykeKKkVVL8FSLYgNvDNhDuO0gR8223z9RRnJsE5nlPxY21Lb7RODFLJS0dGatyKwHK7Vm5mJVpjpzyauFoOUaLii+dMLEUzA1ad6ZBAMHhoFFqOo8AKDUXqCKSi0SkWQyhebAvAeacpmHoNVVlmDL32Ky6xfkICj5SNXMRDk25mLKzcrI1O0ApUYHVqtJUuKjKdD8AlAhB59Z2Hc8YPdMrG0AJHUBUeWmUQQJRDhwQpXdnmNJtMLnRE2z3NZsB9vsYFA2AMtxYutDdWcaN8dQY6a1isKjszQRtZx9uQEzsollR5TcJkS1lGJqG7frfLK6+vTb7xYBHqiQFu5Ybq6kwsvzUchGWnJvx/SNFIiIBFNBI57bocK1tOzbbq5/29I6zn2dJcWOs3RLggg0/bpYCwslJP58wSts2Xk9By/VwbAVTo3mkao7mnHo25UuAYn6z8Cuyd6Wd7gMoG1fhEtJlIV4zEyzclBtJJdI9u04g0z1RWhY3vRKUmPZBSdAxJQtRkw3YAMpw369D0ei91cZgS5NtFTyRuoqbXu2m4mTKhWRoBG8uwsKNaaFtdNoIcNKGcN2zzcSA1UIbuGXFYj3aplqsHeRbBECR3d9mbwbp+x58U1GTGp+q6RyswVxtTsOS6TLfwEkNAbQO2QRWCVBgK0szh1Gyx08PliOaaSZAGb6D4ah0Ymd9vAijwlwVKxIBUYLxBwH8rwUnW9i3/ZTVcnvgurUgSZBSgj3Z2UfLaaGy4x/d0mK6aWqSId7eQ7iv+u83Hh/RAKWPKM2MflqBSFVGTMTsrdGkoy3SK7MYLOEEaR1OF7Bcw+XkrKtxXAKADIyS+XTyIpWsQx9ki/nVs0lX3CGSFqDDjbUY63AW3TboircDMnfq4Tbl0JFpsJRrFoWlhM3wkErXSp0uKYcL2q3HaLfu0C6fhUyPQH0Ikzk6dLqjJ8FXpXSlddkfdXXqYtSlU0a0dVIIoevS8TXEmp4sBpIApSqThSW2jVioowW44NWhgjeYK1iNqD+9w1DPCpFCbK41UiJT9agmqOxlhkM63Ve8L/RlYVlXlmWhbj4qJbt9wh554tEBtQhRdjlitagl1GubYBFArFO8BrAoC4eizFWQKW+YqaDtQB8TF0vj9umSdVl56N416zD68CiPNkeWFe4qZVm5g3HrUDlMlTYV2hRlxtGlV9FeYoEfkZ6IzaxTPCLN8AJY0TEoS6BW6ZHHPqhzKYM7U2NuhcMcHZ5rEercqLXQWonPLsG0TBq21eEaCSi0tjEo0EePvjoWegVlKz1PkLbRVFtDsDSVG9Yx6yw2EnSEa6YNz3ReLpQJCoY5Sw+tVLetsWaUWfeM/q5Pscj23rNHS6QsusEYHqXVdvPYWMltY6+iFLKFfUbZPu4DCpJqUw/hacSgFfMeeppccEmApqWiWikSHyijBsVuID2CBFeFqaZ/UDCQ4o6UsYMrRm5EtoWTscwv2fhQNordg8b3BOOLRUrsaJabaBgPFg8N1L0eG97Jg7oXgcUGx2FcD2PpyaQY4S1h2SE4GYLJMr0rNykxnDTPioBjpjBTmXJjKq7Y2GJeMIzRO50jmgL84PIjfVGWldYHhwQVJgNLgLqO6Ctl+I2fzYAma+okbBftum8bcFRDWrZamHqwN8s6qGunr9HPa1P4rT0TEuLUoawr1GYsNjj0+A7LENYBbqHpm3xQ0xnuwsa+PRtKQzigzC5MrjTXaKoqlVbiWEcbTJNhFOZFONQRnZcHOzPN1qMoPYVsBJgMh+LQKRUPXxizLe0Ha4+2B6c+8piy8evO0oXur2mhNGXScF9aVCO1NillCGsJxCpET69o+bDxjilcTraQfY1VWmnUUqOBawkmt+wNJsFb9I8TSaGxB3iM8vP4twikksnBmW1Q+oKwRim0Zf+t8cHt8R/RAMUtLYN95+rynMdiK751Gg5KTovQKvSylVtGnldloNsS4QM8O09a35s8bdTeNvniAG4KwH2j9DTLYW1TQhMbgIbQVsuE6ISXKRmUaM1uOuFaca1QZqReUNstartFmW5R6gVaD6i2yOfZCIW6ke6aG2uypXVsV9vnGQE8Kxv2zAy5u2evDElDpwBkZTPS8mRPyk30sKU4Rp56Tdp4+7OI7wzDJty6cbKMqJi0eg9H1bgNdDP8gj3Pv7M0SRl3T+OnVOOHwRs3X2oYkqm5KlG1UotHCeCeVyn0kXnboqy1gBm9D/pwaikBUCpYryBOG2tUR8h975Ndt0LfoGkC59jY9Dkju/TG9dCx0eOEHsiziiEB2KSSbEqlZulgnRqtFaapcTEnQGnRkbpofP4WGLWWjQFF6H2JnkoGmtF9TXCimqXcpNgymUB3xaxi1lltRAO54fRi2RBuK8UmF6roz7TkQtqdbCQW1PuwAHxNw0Z9XTWadroHGOxGV6dL3M/Wfb+VR7JmwibKljxebnZdv1GuQAAm16zYyCqEjXzbRLYjz5WoRCNFJxC0bBR6sJOuCq2SmvjwlnG/MYMTUkSeotwt3bJNjfuYRVxQgrIyN5bcOLoH42D7FI/oe80AwggWSwQWN05mARgT4GwN+TahLyI3bNP2fvcFrGqRYt0q7FTYG2fqkH1/jaqNBAttxaoxSpyLKBsfeDYylGHJ4HDDgFr8rqeV+u5zUtZYn8oG5+L9sI1lyKaXPvY+XbL1ExvhQip5bMMHm6Zn0UIVOJ06bW+OWehDGEOSOY731BSIFrNYiSTAQ/VY83TEeZLU692k6DYBuW5cA8K4yYE48T089oFonpfXKJ+P1iC+i6EtpQLDnT6EVWINQsLybthI3C2ktWsEILKlpQquxrppjkRu0lPJbNl9HAo8MB3gvm+yVUdtGraNdbK8rLrnu5IxtGBOdo+aquklk/sIkfLTEXqZTUhbfqcwKLtZ2hZ1WZ7NXDgyvMi0QoidpnQprIUUJxlqHbEVsSVy7B2sHxn9RB8nGGu0bscCtCBpwtPj5tKgQzeqchczOfvmL6VR6kRtM1oPoCdW76zAKgUrF3ipoA2dblGnh5gPj3C4uMN8eITpcIc23Y7ftyUAmIFaujl6OnQ6e34zjC3iXOW9E7Ka7fiysyUqlCxtLlbCqMgKzRMtY7Qanh49F7cwQ7rpWBkVJRb0aJbBRZojKD+pQpWNAoWFoMu9G9aNvoZIKyzQe2hAZCOk4xu4R1lc1OoHiDIv0SE4W9lHBcfYU3AtqwFaFcosmKbOxmssIGtlPTbW00q1sTdMnGqJG7wLp94YYuhxzSqJ7JzkodUwUbpHBc/ajXXtUaHTw42T0eN4hlHS8I9+k95oFhqXSZxDES6acjlX2lwprdDmxjRVDvPErYuJVgtzLTQNC/tEXgDUVnJTh74uDAufCc1lqGlGOhIAJTb/zeHTwVt4I/hgHWv0MBlO72lm2J0b8ylJ7ZWHl4+n1DSt+buHR00fxtUU53ZZVvroDDOWYSw9QMqyBEMzxPbzsmbUiEjqOhIwZyDogxSpBshio9YlhYCicZ8CSIAgyOKNLde+va/ZJkHJRTqNTqYEKJoTNxSqcQ0lg5GtJHmfqdv/N+AS61Mh2II4pxv4s73rtNqWaBsccWqP87NV4iy+svpg8cGpWxi65f1jafg1MsqOMnGgbNtTVMt4iqbUA5yIZFpn5InRBCbdsN4Zq9D9Gq0VreGiGlmo8E+xbvjSM/2QVUUuWfa8AhbMa9FwQkWgVLT0EMTvu2CuWX1FrIN3WJPtXUekmdYRz+W5HbYm2DVOo6C9cJxrmOq5oaUwLACKrSu+rujacR+54drOPlqun0VBI+cepd6d6FdWQhzslj3HXFL7mTqTFLx3j46+Aqw1ru/ahXUYnv45A4vjHsYa9A4iEaCoOUc9RT8hkVhDHMxLFE943MeaVhjRwNZp2sMAcwOD5jdBkW9B4f0TNGZpvlusAbqlbzxnZGpuYPeNub9B4A3Yz7LvWm7M7pLVKTIQ7SBxp20s0Ac7PqIBSl2hrc5sQclVL6jXWEt8QnxCfWbKxm+1NpgW6hCW6chT7YKLeojeOtq5kMIqsVFW79S85VWzdKvGgrfnfwOyROS1lx6XUGKXASV0I7apJKxitbJq4Rrh/SY8ac494uJ6bdh0oM63sPk2enEHvXgYvfUIXN7BL28zDgdOHk3CTAzRiOC6Rtm1yVbgLIg3xHuIfhGgYjTMK0ZlqDI0qBGvNWIRu6FKlI3Sk9gDK7HgaZRB+3121hGoFWJyh/RPJdqhB1VY9qo+44ZJ6R4bH8Ze8nYSTwsF2a3CIatEcIZqRtiRc9/s3z3zueKOmSJUpto4tMblPDHNDWrkbEMI6ixiHFdnKWASOWDHuFANwyic62r0Ov4f8v4l1tatqwqGW+9jjOeZc629z4t8CrxEfEMMWBAKJhqQqKCJRAomivnipSI1E5HEEGOCxAQShGDBWLOIUCCxotHExFsBjDFUqGjwEhLRaOGV6K+c9+y915zPGL3/hdb7GM/c5wDn/X/I9524Tp6z1l6XOZ/LuLTeeuut4wDTNT4Gju4AChusQdBN8eFd8Pal4+XW8eZ24OU+8NJZTt49NnYpob2Mkj+j2dNzE7xuBZ/bC657xevrhnphF+Zt33DZeQ2vny5otWJvDUWz8WKZm5CEqZcDuB8VYxAoZQxIzUr4UUSvnoykRQC4zk10GxqsCZkPM0cvoRGJwyNKPJTpC5NYyURCfyLoA3gDR6+Ou7LXEKUNjvshOIrihgg4RIIZENxnTUGwfGC1D4MDivaG66xLESNDmMwbRNiKHtSlDMnxQT2Zg31iNBhSU7KRLXG7Atow2SneYNB/KaJ4dFbo9WHUSTC+x4gEx/AxQZwGsLNgDhlBR8AjEk7JdIx7CeCYplgAyDaGwVvvd9iw0Blx5hxxigOCm/l0102GqYhgH4qqTBG32BRrMW52lRuOqcAHaFfegTsUWx3Ym7JTbZSXHwcB0tuXOzdqE0ArDExPHd5prlcBKQqtBMKlFtbDK69RSpnVKvbuBeaDrFAfKH2gHR2X3qGD1SA0+3c2enWD2wjvEkD6IMtysKWExC7a7h12HzjuCQjADVycgZo5UCi6vWvHCwQfvT1QaoWpoHnBYY6XbngzDC/meOOOd3HcweNwR5fBtJMUvBXe2xaatKKGGwZuNvCCjo+MLGcVw60XXFFQR0F1goZhPcBQqGFdIVaBOeYruBOVgBopdMUsJMh2EZmDYoXbifbhzZhWAuIDw5Qsbw8+WwAvg9V+4LOmRClSRsp9c0iUeysDjHv4DgGIlC0D2k+9x3/q3/x/4Ucx5+GYnh8aLcwwM9Y1XO0oPuzbBRgDl3bBpe7YakOrFVsp2ItiUzIFLSZBig9n3X0o99Mlcgr8chGVs5GQTA8Qol0AygqODsHd2eG2I0ZStiFvG6RuTOnEgboRwNTCvF/kGHNxdeUR9ZrI/iRyGrgMAwsjALCyhgffX1whhYcWnY3qDGk5jekRkBkO5jpDzCg+D9VI9aTavSzbgS4yhZxwLLYpPg2jIl6UgsJJVZsHQeY4RKL0L3wkDIAR4TO9Rj6ylIYWx6U1gqwaGsAuofjnc67B4Jg49hDEbgKgCY7O6JMpKDahO4y6gbsZ7ga8OQRvD8OtG146GwB28xnZJitE/wreNxVgb4J9K7huFdet4WlveLo01EtF2Qr2vfH7lw2vLxvHa9sIUKZ3Y9zHmv4ggMJCYJjDQqZ/jMhyXFV9BCgWwsUiCrMob3dqxsVXSjEt5oewsoqW+THWhdUcQ6hJkcYGj5vTp2K44N4VhwCHGpoLRqeoNFMXFdnhOO4dMn3A6DXPd4pWY9x7gBkIz9HCd4X3JSvGLBZefl9lrt8h6gSrd3SNc2QkKufxz4BgiLGzMHJ+p+PRiDROCH3j3maXWZzM7Og0TVboHijePYzYAG7Ekf7wSB966CgcacWVsv1ga7AASosmedUJ/A8JFtljaUAwQUKWqDg3eVfFNgy7E7SLctySbTS8HMdkESADJkKAggETi07aAnVFbxHIwdhIVNilhsZ0hnEP1g8+0ztlsMEmgi1hdY2jhddNMgWzOibS2wpBtuYtY6AEi+mZCpYcRCCDZrxfvQ2C5nvHy71DW8FQ4DDHbbDz+d0sQJhP36ushGNPeuCAoUuaf3JddKGovMNwgGzYsIEDBEhuwNtxYEMY2zlT+T6cD9g9QKvPcYM04sTchog5Tmn1IDoIT0Kr5zkyJgB3pHeKWwS7lqX1wczHek92PpjHknKGLK1ncUMBcWeu3yzp/tTyEwCfcYCyuaPaiHQG6X6Xxs22NrbNHhsuF7pIbtWhGNhawTFu+NKbV3jz7iN88OoKRQhaIai3ihengv9WKoY2uDbYDKdYEpatzgHMxabB0MTQ1FBnZVCwCWYolToL9cGcagCc0jaU6wX79RX2/Ypr3bFjw44Nm2woXqFGmMEhNDAGfTUKxmOVRylxNLQx0CK6crQAcIvtoZ8xnXhdDBUDbWtwGSg2IKawLjguDePecNzpWtsaRZt2kIpsQLhFlhCQFrQ9jlbR9hY2z5xoLwfN5Yqmvf1C1RIbCJvVBT8eLMu814G3gnFE9rnQWXpZAd1R6hPK9oS6XdAuDXUD6haUeGfVVr8PHIdTBCksN2/VsRXBpVYILjh2cuEJxlDZHPDWFW+64qULPrwB726Oe186gQPAXZSbco2r1EGNDwiCnp82vHra8fpzr/DBV7zG09OOD15fUS6K0hT7VnHdKl5dNry+XlBrRSsNmgDFs/szZpOw4YAEQEl+hZKZBaY9CC9WtOQ4XiyFiEEG54SFAFWVufrUPDmCShZdSv4A8xaCVYpqFaM4ei1k/4zg7ehMAb00w+iOozu1K3C8IGzcA4qzyoVVrzaAe6fwcoRgjz4LcqKwORbEcnpyE5XRWc1T+ixDjroSUt1JUZe4Bwh2Lsba2gVmIocsCSLLLEYtgRgO0OvnEF8UYYim2cIhVxSmJs1ZGnt4BkE2F3jpByrSYj6rYDAB6R0R7EAxQAvz6WsBVqa0eG7lOOl6ogrDj2AQhULgUjpqKbj0jq2yJ027UPTeisKPATsM717uGN2iPHZwk5fwBVHHthn1HS4oXdlU0zu010gtNNidxnDHmxfqGwSAkBWr8UyrUOt2wOIY0xdlE0eDzfvDe+RTy9Sc4m8ZI8YyZSkcskLbeRVIK3gH6sc+3Btc+Sy2UTGcrN/LwRTbMWwKWHnXg41zsjQGob2EA4fXWLvDXsI9KuSo0XK3mTl8XQ8MH9iLorkFEAg/EQvR6sTr8aoJSDQraegqu21YEogANcOMhVnJkAddmKaCboajExhVH1xXFfSAkQxzYx5oCUt7Eu8inLu34bPqjxOaAWYDNWqf9uMzDVDgBu8DvbNaoA/BiBydx+artaBtDbUJsAHNr0B1vD6e8MGrK969u+Bzr3dUGdjBPGEpFe+sADsp9nutGLWilzp7gsynntGVrjI0Hglb+XOXM8PBRUAj4oMw0q91w2W7YC8bNlSUoZChkK7wA7COKVDkhy3GpApKU9r+x1GqQrtCRzoz6IwsJ0UYi7KDyu0xwm/DFK6FOX0YwUQt0TacYCjFtFzYMb068khDsFILnW6D2xriaKWenG8Ho5m4rkz5E22nORGCF+OgbSLYoNikYI+j5bMQxVYu2MoVe3uFvT5jbxcKTDfHtg+YHejljn4TVDWod8DuFNLZQDruiirKRn1O3RUpeqQINADKjeWNH92A2yHonQJRRhPC/LvzGTFSV2zg+W4FeP18wevnCz54/Qqf++AVrtcdr19fUfboCdIUl1bxvFc8XTbet8q+SBJRIoej0z4dsWlbwQD7JEncQbIb/Dpz+Z4LU9C9YhoLoE7gkh2Ac0HndUTKJKPDySYmLUbzsxSqZzJcnWkEGuHppKG7Urc0nIs4Za7UtAzoLKutIzaXA5DhUc1CsbTRvx/ZPkGDwUw9FjXwwTiOmJNAlCZzTJtEC4ZcR6eiPESkAcY8SuZdVjuH1LYkWnMlgzMCPE5xrQqFmOTeIxCmEWJGoCNAjwd7qMMyRg3QGUxY3Pf7aZscwaU4ViWUnZK94vkkw98GCAaBUUA1RxmsqLu7sXkeKrZCoLE5IJ0asrd9oB+s9BoeVvYqsEK2dSh9QpoAdYxwTkVooYSduA+D3QduNyaqRNnNWKBzA6TrsUbAReCQ2rtrEewq2ITlwxXcDB1MC2/BZqmT/eQ0HjFUHdYHVARjDBzK7t5v39yglXzNYVEK7I5jdHYM7mRqSgjcBRYVe+yj1IagDI3meZ1rcXRcVk+O19eaEvqVYRatK8i4iYfOciCCkUAJcJgXDOsYNjiMYk2uNfRx0XQrA2lzh0bVuLtMGYKoLlzvMR4i1ZuidPVMYBoamDI0Xa66rQDpZHx46mxWeZ5gOb9/2o/fcIDyYz/2Y/j7f//v4z/8h/+A6/WKb/u2b8OP//iP43f9rt81f+d7vud78JM/+ZMPf/ct3/It+Lmf+7kv6708qiUSvR8GtExLBKQULSitouwKbAXV73THu1/w+nnH27c7Xr/aUL1j94F+ACKKj3rB2BQStbNHKTANxA+HyIDoCOW8zcqJVEQvCpgLmWgAkxNIUXECFGXZY6sNl21Hk4bmBTqEfSRCuOvdo2lb3gE+dKhDq0DrCaBUhTaFHgo51gY1j0w1SIAUpUGURjmmlihFE4X5iigXAEm1dmwEkpS4PICUM1Cp0b+hwWbPoKpkUWIuThASpouYQzk2tgL2rtgg2EWxa8FFKy5asCXNqMCuO/ZyxaU+Y2/P2NsV171i2wz7fsBMcKjjpQqKsIKLKJDhOTUWldfTwptmZy8fhKq+G/ByCN7cCVDe3MGy92Tvo4IEqpDiKFXY48MNm4T3SRW8en3F6+crPnj9jNevn/F03fH86oqyKUrj7+1N8dQKrnsjqCs19CdCy/oo1U3b7+GAm2KIYqCs+3i6qdMf4/S1ZQWIcAOk4DUTBeeXCNYlx3kOL/jcFNfClCoRAnlBmutJKP0VMtjluouHvsqh4cxqUHQpIRZk2ehgkyb4QWHhCIGtSAA2p5BdZ8qHASgkgEk3eLGoFJJgyZnCHapIKxSkyDXoKRbkSCT1Nb4mEMEEKBGVurPCYfqVhC4k75mGWyiSZucPslItTRw9DDDUCE4U1PqISFRjyawiixh+Cm8JZuJSIDgw61Fm0SOriJLc57PezOmEPICbOxkJcey1oDpTdakJeRti3fvh6DbgEto2B9tajNR3OlpU62Q6SoReUaMbxjHwcqeAtRRBLVu0xyhkegTQqjjcUB1hjMgCgV1pXLhLONsDLCeOjb/BaFMQ7EW20sjUMe49iArFoQXignfbgVIPuBSmKsANvvvAMDIDajx/Ae3qq9PsU4agdkXtHfUAtHfoKKziUyeQcY/YNtJExuqfYRbM4zo/mQUYivS3c/Eo0SYrlCljsulsaeE1g6oAHM55ewwyzl5Oaf6IuxFVXGxqyfPLSs0EL5AYM5LaGqBF+tuF4BHO8ZAeAvN1Pj0++Y0HKD/7sz+L7/3e78Xv+32/D713/OAP/iC+8zu/E//u3/07PD8/z9/7Y3/sj+EnfuIn5r+3bfuy3+tmgncDeDMElyG4DoWawr3AXGdOODpnAWDzBJGCy0XxfBV8cAG+4gLsndT8sTnQHf+7dNx0YBS6qC4BXEZPQvt6IBYomqmZBCXtzPHPjKR1mGdmmqqE1GfAwPRMqbhqozhtDPibO0a74/7mjvubA8fWYXeDDEYN7PlCYNK2iu1SsV8atktFvVTIpvCDKZqRnhEqzPsDQbVHsRMwy96yiReA3L3i66AiPcV6qxnVvGYO0YjGgSzDVQ03VHDhSIDSlJUle4iq4DSZKtEQkEEDFxoyJ8CzAK+14EkrPqcNF624Kv0cAFZrfFCf8EF7jQ+2z+HV5TWerk949dywbx2X/Q7rX8JNBe9qxaaCClZzaVTclE6DLzedaYtSc2FnVctxB96+G/jwneDdIfjozvLK7EmjIqhKgObRF6QJ88JPVfDUCp6a4qs/94TXTxf8Xx+8wm/5ile47Buuz1eUDdAKbOrYioaRW0UpCik1dEYC6TYZ4Gx10Z0VXiO0IAlQ018mMiCRHgghqSfrgygVpghcQK2IhvYgGxby/jC6Y24ac/Fi6SiQO7KG8Dn7FjE1xPeqw6HNKXpVzDFU5eSpghLAS1A7AUkRbsfdQGAjoW8a9KAwyGxGqWAVBsd3lLe7si+T0uBKaxpgnY6YBzbnPvUb5gKTAQ83XboOU7CiSoM4IKpjI+HC9AkhBkvyQ+OSrEbh2lKE+jo3RzFE9QgXfySHImT40syR6w0NARMSUiGFU9XE+tk000MKw7klacCcFtcEZ8qqS3ghhZDZleyVD8PbqMa6HYZ76JK8cA4X0NkVUWhwdItNL8auEkSzj5njo0E36K0oLlogpWCDovmAWEHtN/QBdItIHdTS7BBsAJ5dcPGojIuqLHfa+jsEL6pQpQ6iWGG1kTFVE3Fj2Ls7jrcDtzIg6ByYsYM7uOGWMbAd7GIvDqYYB4W4ooIyBK8U2IfjqVU69ZoClevEbRiuxnTfYYYKshSugI8CKwQJYtTnWKdvCjU6BhdGQnSbZfVUEcGmCi8KrfRp4vjE9OnUuGcGVrRKsIBIjYkgRofAi52YmRiDwS7T7XOJf6swrTWc7WLMDfC0KOV+R6Dz/yCD8k/+yT95+PdP/MRP4Ku+6qvw8z//8/hDf+gPze/v+46v+Zqv+f/rvQ6nxfHdhIcz51ciJz0yagnUJxkrBiVdwDLjgsEW1xions2ZTu2offX1SHrXNJnfXFFYMWCxqXIByPemTb5PNBAR0XwvbiZsr07hphwOvw3mZu8D4z4wDptt79VjgRbMFvLvsxzzvFRi82EUMiS6OcQ90rhP7KTuEal6sogB4qO+3+h7YYPlq7khc1Pz6OmSQr2ICDPvlZTSZG+ixA3BwCATTxpmYzmUfS60CoT0WbBJpHi0YtPCFB0cqoKtNmytoW076raj7hcanu0H6gaYNgxrKKGDKUp1jktk7ILoIs5ihKtzQw8R2TBYB8ahGEewXPlslZqmqgIpBekw2sKq/qkWPG+Kp63gg+crXl93vH7a8Lw37JeGy96gDSiV9PhWaYW/NfaBklLWxhb3fkRpYbZeshKM3tRlROYhSbgAKyNAlwujKqZJLdg13ohw6Z/OuUVYxcMGgpg6l5wShCjhS+JAUQtxdiSXQusi8ZtuKbRGkOVrMZtVOlEFk+XAE+CTzCAQ8aiWQgKjk2g2okOMSLmOKEeO3lEelQwzowPMr9OYyoEIQgK0JOCL0ctrSCY1xyy/TszPexrPZCkU+TNn6ox9bgjybNrtLhaLTA7HJgXE6TKdGqzzfHKk23K+V3ZkkdO6CKweWkyRyNwgBDKZGAnwsiwVTutjJok8n72sNdhyPZwTK4CgxPoRQt8Appl6YOuSSFKp0ssFZCyy63ULV9tiRgt5XdodhGkeq/IiVYTcKBO6x3VGxYsEyvduGIdjlGCrnbAOThGvhr5CHbSaGA4cZMwLDPUeLVTuNgsNNMZp6exdVYZT7GtYTVALeCjHgHdjRZpHqTPWfUzWIwXsaQR37kQ8x3M+w7j+OX7l/XU2LB/Ug6kLHcqcFM4qNuj83fSjdmQ7DJvnmHc5e1N92o/fdA3Kr/zKrwAAvvIrv/Lh+z/zMz+Dr/qqr8JXfMVX4Nu//dvxN/7G38BXfdVXfeJr3G433G63+e8PP/wQAO3hX0zw4oIXV9ycIEV9sQGIDZWW2AIOLh7iHeod1Q6UwUPNIIMQ28YdNu6R42NJ24hIzfT02KsCnav3iAirw6eLHwWx2SyJqEAGo6NigAxAhwRzopDDIXdj1vQy0F8Gxo1iTuuR00e2O+fAOWtDuIHxfDw6gqYuASLTXj+7L2cOtDuV6SPKYkugkyyT5BHuhoN+IaPTv0KC3hNkQ7OI9IL+dpZFAAAkktMTpMwFnXc0a/MnQPFVdcHFk8Bkk4K9VOyl4lIrduOk7UVx2Tdc9h375YLtekV9uqI9N9StojSB6AuKHai1kc0pZHNcuMlkrYEGaEFsypaIbQx4F4zDYXeBdQWOiFHFKBpWwV4LytZQVFG1YG9s2Pdqq3jeCp5awW/94IJXlw2fe77g9dOObW/YLhu0OUplpUUrtMzfN5qsSdE50aULqeHhk0VRAySqjMZC08iqKM8qEWRNhU4GRTNKR6GVtQBdlZoTRXSmFQJ4Zw8WlwSl4Erp4cORC6oHSHeZ1LF5MJGSIJ1kZzI6AvZeMTAiWAAlXl+dWpZJYQMU+VKLxjSqZiwYGyvmJmliURobgsHJ/OTGirnBJkZwsMovf24J9jAhygImnnV0HE/z9/20IZ7yYwRs0dU2WlIwphlzk8nNxf30esnuTnCSReV8ljU25jqZE24aI3iWRZMucLIjmwBz/mbZPwM4I1NtGXQFfRewhy8VsNKjfNos+peNANUClEh9F0TjP5l9kiwqC1FSpwKuCqH1ExDEFWNVTumDJfQ97B1ijaZ+g32D1JjmYZrhvFEmCA6O3MgO4XDY3WBlwCQU5ZZmnrxu6dFOxAGJ5qlyp5i0mKFWCnfLZnzPDEY9qpPuBh8BcoS/48NhVcmgBFHhI4wA/dTSYUYdAMJQTp0eUWM90jlWErANo1CaneI5oDKNSZDjBIJiEbxRAFurz6BtGIN1JOvmwsIGSMwfBrUeczOBz4LFn+7jNxWguDu+//u/H3/gD/wBfNM3fdP8/nd913fh//6//2984QtfwC/90i/hr//1v44/8kf+CH7+538e+75/7HV+7Md+DD/8wz/8se8fDtwGldD3QcfLo0fX2w7YwRx1P9iVUTd/iKLYnIqlytluXOycxQ2vDwy4OqQ4tBGhNgNcKkwGegFEKrSQj+lbxdE6eivoUqBDgaBecxAVE1xccbWC26jYbxW1VGir8JvD76xW6Lvj9sZxeztwPJFJEWWr7QrK3tj11eeiWBD9JAoj8FoiZe6pD4jcpdMKOSOcWTYXLEsK/VakGIjc8tAwToi4OHoFZck0tgLZG+TSoNcNIhqvaZBaIVqhkkeBzgI0miEBsUmECDRZGaZOCrZScG0VT63haavYIjzoVfH8+oKnz13RPrigvNqhzxv8qcIqMEpHH4qjcLOxMKiSYlGOSmCZiypTwTJ7yYxusEMhXVCHYI/7lDbiRQXXJtg2wWVTbNeKVuhdctlY0v68N1xqwbUp/q/nC657w6vrjqfLTufYyw5trJiooJdMDQAqWRY+KQssLUiWAisBigaTwPvO1CCmHvmU1glwNwJAjACMBm4IFiXjOhmUxXQgmBXzEN/F+cCTReOGwJmFWLDyDPIbi0Fh0BhsRJw7QQ5Cb8GoXeK1ReVU/oy5iI/B1K4oWTVRheQJhEaF1At/L8e4HTIZxkxhjWAYHbTz94hc0wl2BCkytcDxXOamEXNnBIuREeUsn87HSAxIESIWY8PnlDMwbnAIZdSDIwmzLXeBGm0CGgRXiYbM6sg+SqlxmULc2O5ShP4MCrhrAaQBaAJpCDMvCa8hBi0beO3ZAwjBiiSJe4Fhd3YEvxRHbUC5CtuBF953M+p0dAerUDb+TolUEczhXXDcwbL+PvASHkrUFg1WDd0OHE6B73T+dsft6Ezh92ivYICYRdA4MLznXYWMg0DxRlPH7oIeIhQ3CyM5suEWOVW2YCB4sWNQvNwH7iLMcsiBejj0ohj3SOU5sL0wQC3x+kVoEVMqq3CkROAWY4+9kIx+JQg/k+HhI4N5SBcGzccC2QlS1JYtQPXFuBHccx9p4qgFuFSKX2l46TO4YdW9wTw0mQnu8hqwAp2UvWWPI/H/lwCUv/SX/hL+zb/5N/hX/+pfPXz/T//pPz2//qZv+ib83t/7e/GFL3wB//gf/2N893d/98de5wd+4Afw/d///fPfH374Ib7u674OBk60HpG9mc1NRLJFdeSrLcWlhmhdjQlWsrdHPKV4l0jNCA9RI0ApadXLDdkCqasp1KPksypGKRilwKTAvURqKBYUxOIhBRsKNi+opiijAF3DwZALX787+s1x3AaO24D1AdTMiNvq+QKi+EyXUCx1KjuL0I2iXl5sNulD0LPdfS5cWbGB0AAs8i/IQWdEe47V0pmWtv4KqSzV1lYhe4F4oVnVUfk7Gt2XRaPZIUnwkBmDUaVPaj0/NFIntSj9a5pibwUbyP2WVrBfQ4uzN+hOsITG3Gx6czA7ys2OAyOz8ly0zKJ8VzAp6hxfHoBWnZtJAqcWQOJagEsVXFqAlKq47vQ52WrF096w14K9Kl7tDftGn5atFQqda0GpzIcXj+d5EmJmoEo/hPWfBZMRmHE+sgVmZP17Ro0yOYtkIZI9SEO29LBJkZsG++Knjfl0agiyZcbmGjiWAtnwYnAuVrllzzRaLMYSgD7PZ6ZZ4joyhbjenDeKfg1LqJ4dWlPIjhhliHPIR+8jGJ0gBUbeW896pKjeimXC1xKycKJgVvMg3o+aHQ/mR4Ma53m4LtGqeAIQifQt56o53ZxPjikE+2G5nmwkwYrEDFIyjVDsatHYTiZzVQdHenca6uUcS4CyKWY3bilCE7Sy7qM79UDwsGcIcXwTQdIc2d5id7IxG5ygpwJ1U2DnfDQo+p0+OKVRIKtNoBtfM12CXQW9Uoh+V8cdM9acQnH0jq5cZUXiybjRuXeQJc5u0Ny4qaFLf1oBmRBWqhFsDOkYmVZxI1Ni0V5gls8K7R7MMA6KtdUEJfo2eRnRnoOTKKRtKHeOu3TZ0wAuGvuS1mTm5o4EdY48y9EXCNmHz+4ryExUAPrJ9CVIAU0u30/y5ZKRjUpb4ViohdVRXGNCp+Zy+ssIMNyDNQzQEqkfCZC8EtOf7uM3DaB83/d9H/7RP/pH+Jf/8l/it//23/5r/u7nP/95fOELX8Av/uIvfuLP933/RGYFImG/zXSDHR3j3tFNUe4ddqNV8vEyUBTYD6Vo5XCMw2Ddg0lB5HrjZcFNPStvoAQopTraTr2CK2kJV0NVh2tDLR0yGmwD+uYY2w4WL28QO2ByQLSiaBiHVUGvFf3YUW1D7Q1y0BOg3yiqkzrQPjzw7lfueNlv6G/vwN5RSjQCnB2XqQqvYEfOphIW7+ARg94ckbox9NEho0d59kA3lhQeqSEJnYFLXi/TNHTLLRBtUOXN06IotfHYNpTLjnLdUZ931OuO+uqC6iXSWYbSNtTasNWGUTq20oK9cBoUxU63Jmf8X2h1v1XFpRY8bwWv9opXe0UTh1fB2Atev97w6vUF7dWG8tQglwpviqED7oK7sxHbfXT6yfQb3G5M6/WOHiCutgqohodG9OrpA6MLfADVBFcomiikRMVNETxvwGUDrhfg1RO9TF5fNzxfduytYd83VFXUorhsG2qraPuGtm/QFvewUZgqFokOmVnnEG+GuNHGBOfHCP8LF3SPzsPIksZlM32O20uk8CzYKhgXOg/FbImIZ0jCgpksDXqYqUYBAVMyddRe+cPiJwFKMi0zslIBudhhptFG7poOmGmI/LjJ0nNkaRc8SpgFwagE9SOFZ1uM6QMvwZxIKDIsWIyh4c8g6D00NbG4OjDfcwCr8zAEXZQOzkpa3GKj9sH+TKJKeW8ENZI2A3n3S8Ec6ObRTRjYLEe9hxstvU2Qc0ErpBQ2PSyNICVcZwWCOhgl7wAuZczu2slGjrEC76wEHYMbSBHgWtgnkWBCIE0hG4MPR5TSO8u/tYQ6RR1SW7BRBXCef3NW0WzieN2AdlG0VxV+bfDScPfKIA6K7amgVkHbFe11QS0VRQrTqd1xuxe8NcG77njL9lkwAIeBKZPj4FwZwuAyBpBFq4Zu0S8qCwSiMeENC2SqjbD/p7ldO9j81CKowxjhYRPtRpwpsZpaxoNuNFIIjEorqIei3gx1L9iewqtLBe0GaAf0vkB1OYBa2X1d05oABLiCkAmkrhEyG0ZaT20gJlAhM5XC9AgWQKbLRSHRx4txAAU46mDhQAGu0d2+BjGefj9jIFcirDAkzPHg2DzVSCNSV1Hpc440P8XHbzhAcXd83/d9H/7BP/gH+Jmf+Rl8/dd//a/7N//zf/5P/Nf/+l/x+c9//st7M9q0koof7L/ivZPiDRMhOwb6MTDugN1l9nbInisWuhCzpHDzYVEEZDLg6IBQza06ZkSBIlHNI/BKBkSkQKrBS+RXvCI84rm5x2cuMGCPnuisKlLo+eDRIGwMlHvHcTtw3O7otwPj3oEQbMkpVSWekRcjeaYauAFWVfarEQ077Zi0Y6APlsR159d9DPQQv0Ew+zhwr8jQO8g8IT0jkEnVSCmzb0dpFaUxbVVahTpt3iniLShRZtxKQdeCoSUqYMosXS1isZnwGwKJbrzUQbSi2OOoSpg+KrUeW4u0SAq8JFXoxiZcg4yUx4He4+sOy8i0dzr8hsCPmoDVA0otIh4nq3AVwUUFz6q4FsW1Kj5oBdet4HMXpnH21rBddjbUKopaK7RWyFZRaoGE54wWliTSJZL5Xo/QPZdeeIqWGUF2s4iSFT11WL5YCep5ZIkh/PSADTOl4UnDOB7SFkv5gofPgqWDzvc5yfg43iSir/gJGb/F2HHtcmSP2dRyyAz9ggaKTx5sRX6G5nlQm5KCRPdVPu/hPDwpkDxDX+eci3Dag7ufhe+Ruz8xIJ5CHdJcIQqnw61Gr3kJYS0kvF0Q3FW4W4mA4k4JEyxNMOizR8+UO6rAzo7PZXW1TtuAWqi3aG5oFbM31gy6IVMgT68ZApbiZD1aYbfyVhWt0k9KKtculqrKZIRFKaamjb3OdcwDPVRn9VoTp1dJVWxbge8FpgVqBUdT9KZojZb4ZSuQrYTAvNCtVA1jI9tyr4KDmfPJRhjyuRpgijHbfqyx2AWz0nIIovILeJE53IN0pO6tDYKOah0GlgOjE6CUHMPu6AAaBhrIyAgAGZQZsCdNR5XYoEtBqcIg+BBIjwOhjZFADDmz8stsUptiY4/6sGjbwSOeZ6zRLsvoEKfxU4QgXU/VCUNyhWWT1yoymZQa62emLgMindKDK82TpdMazHSKaKus1NKn/fgNByjf+73fi5/+6Z/GP/yH/xCvX7/GF7/4RQDA5z73OVyvV3z00Uf4oR/6IfypP/Wn8PnPfx7/+T//Z/y1v/bX8Ft/62/Fn/yTf/LLei/m17E69xqTiw6E6jkakB0Ga0LGpEcdfnesEu3QVJwo5Fh+cqWGBBIswYEl5UkFusBqGqLpTF+wgV3JX4Zkrx6pPIqwXFRr/E76GBDlS0Tsx8HStX7v3FCzVow0BwVS+V+U52Y+WkMToRrRsUTyJDY2hFvsATYv62En7RH95OJ9IvImhU2QIpNiTv+Hs12+VkWpdEQtg/H7uXOyKoEKO3HSirtoJgdI1doU88lc7FXCOVd1skVVKQrWRkfdrRbU8GqRKa6LPXlEFU6UBk4Rc1qIC4GKjEETo9jEcwPLDU3ATsQOZ68TEVxEcFWaRz0VxasW1Tpbxeu9Yd82tMvOSF8VUuvS7dQKqazUYWsBi83ulBbI5xFjlXrKJWY2T7dKZPHHBJiS1TOeuiSsNJqHODSEpAlOUheRi/f5Y8JG8cfvyQIcawFLaJt0+mlUBTu02F+fCcW1nPn61/vo6LyepwmaBIb2iR1g8t5r+vrscb+yis08eTue/coKh3AaYdCWQvDJ/MWbWqatqDlQXcDMJoOyWA/a2HMjUMm/FVCfE1VQE4zpTKvUCVDK1IhUU1RnmqcUj87tDGZgFOf3GAMJvDR8WUro12p4aWxTeM+Fb7jAO71YECksVW7YLa4nK50AbuA0amOKZyts74CmMKWOrRUGGyV79qSPUwlPmR61JTV0IRr6sZC1jXiOEg/RhXq6THvOORDpXbJfeQC3XE7nMOK4ZPmvofoI9iyoJifLVjwE0HDsmYgLgbA44J0ARbWjKkXrdWOqqFkJvUgcE/RmoLwGK7sXx1BN51kXGMaDXcQcnw8H19CJ72P9lAlUGJDP7GewaDyyWcp5Fvp8n1wLPRgl9QBavs6kBBNZhamfLwOf/MYDlL/zd/4OAOA7vuM7Hr7/Ez/xE/ie7/kelFLwb//tv8VP/dRP4X//7/+Nz3/+8/jDf/gP4+/9vb+H169ff1nvtQ1guw9c7h2Xe8d+DLRiqAZoj8qKXoBjgx8VcmzcdA4A/RnSn6HjFWQ8Q4dDDkftB/buuHTFRQT3QpHTGHQTbVogpaK0DagDplG6NgbEDDsGtqqRu9vRfEfTHSIHDAMi7GTseqG/R6mAXuDYMHzD3Rte3PHiDgzmZfVwvO2Gt92ZoRKl22EhABIrOLSiSw3pLGnjRPdqFqVsAFwn0zRGZ7MyE9xwoNuB7h13sGGZy0Bxfm3CMmxHpw+KsQR7Gak4NSaw6GrsqMWxVWBrXJC0CLzLXHQkTeHmIhe+G5IVFUAsnSEHNtLwpaK0dN7dcN0bnvcGLQA2xXje8er1M55fv8L1+RXkeoVsO3YFfAhGP2BHQT8Ex2Hox0DvHd0Odkj1I0rUAfEjilIc7C5yMCetIBiqAw00dtrV8bo5nhrwuQvTO89X4CufFc+Xgt/yuuGD5x37dkG9XKlhUsGQEo0bK3xrkNJQ24VdCCSkcRaNGcXm+Hek78CYlHV3jbx8QYeG9kmi6gsBkgMQiERstSLNjKYtFjEg7K2dytriPksTJWmMXEfzdQMVeRpLBNJhb5il6UnqWnAqSRSEdoBgqLhiRFQmLgFuQjEjIcSLz3OJD0RVk7nItAspG3T3CbyyRN4FSOGsJzU+MFsDsDqF99O8BAEjTE1MMqpEJY1ODQ8vieAyObAFtoWBSwIUDESxMGqCFWdaBh5l8AigiQqBokrFpnWa96WJYoWioqC5YCsDVYyOyVEWaypLc9Zj7HQygipAbTKPfReUTaC7AmCHYBkGvxNEodAYrQG47Lw0A1/PBjeupjxeVcNlM1x3B/Zwmb0DvbDp4qUMSBW0BuxbxVYrmjT0ENiLNkBouzb8XRYPzaoVOZRmZh24SYAvBRbs0PD4keiRAxzieFEyj5xYSROw0pNpzkj1iWMaR2FVaL0CsAdIyY0ZMLRBLYpA0Zx7FnRgb4BXhdO8Gv2OlFBhGFAaYN3hB+BqMOmwwoaXLG6IlqwKuixHqnGA7Fp6cg2QkR8e2qy4RFWmbqvPUBzj1CaiGHV+xdLZm53MLdJk985Gr+yrFoBM6XtDd9/oh2SD5nXgnqD4f7gXz+xN86t8XK9X/NN/+k9/494v/qObayyEwAOCnCZiIbizoJnye2w+FtRTPiTDqfFUqKfBXHuWnCY1y/EvE5nmQaMiIlCJkFc9UjLmE+3LDNuwxLqOkMXZ+k9siSCDusuFNl9inL6OsbbY7PznRL2GxMOPROj5q/V3ZFOwQvdY4H2ec7AKEXHPVFOwOAI6dMpZRIj1dSoslxWyB1NzXtDJvMz0VVG0omRKoiuhtopta9i2itYqpLGUqajT6MiDQelhchQt6z3Er1NAPa+L7y9SoGIsqS4VYgVeoyDZw9a/AbUZWhOa5230Y9k2CmF5VOjWwP4XdEllRFPghdqComU2XDRNgV50zw52IZm+jNZyxKfZyUwJ5P99MSM5d4AcejkKTped//f3RkUszulrMQfJmpSnMRJjYo6ofK7v/ZnGfbZYpf1MksiM7iUrdcAIbwjTEpyCBBuRhZwbk4CTdHYonlqzBGl5Q+aNCVHmSnUCMu8DzgzWvLsy/3bOhwxZ8yXON3d+LGYwfyaZfst1Ip9rgLB8qdRpzbVHo+qlUIdWIWigHq0Iv5di5DHyOgEpkR5RstJFlodPU0GLlGqJ5n4yEOxn3vfY+iVSkrGIadB0874XaitqJePpJUShKaScWiQywCxx5Vxwy5JXnetKFYVFhUMD5prrEe8zO8oxmmkT9yXwHxAUp1O2hiOf+3omHvuE5LOW8/jnhwnXYNZ6ho/Lw7D22FfWut+HoYiw33WsO70H1yFsXZOOsz00LiKRThGf72WySHQHqLnyxWRD9OE6CGx9idc9GdYITiznavwspQ/x724eR2qYyNSaGJm4ACrmCCGxY+aLM+XrmYr7dB+f6V48pkS0Hj4MHk51rimgC2QZIGXERuOewudPAilY+fdgB8RH1O8bbXqVCNSjZn9uoYIHkFJkWTFnWZoOgw42E5HBf8uwgM02N5o0bfBkL4LRmGZoQWtKLGjDPNrbRyXT3FRWtUVWaSTs8dBjvL8t/WofC6RESiC0KtN5NhdYcJmh4G4dpH4xqynOQGVVZMSNzI+o0PD5d7FYKvsCtarzs2Tb5Naw7RXb3tC2Cmmsl6xq6KCA0ofB+sA4qEOxbquVwCDCmgZIseCJtFhs2ZrAvUK8AVKgCE3NpvQ+2AraVtG2DdueR8O2bdi2DbJtyPbQaekuovBSgVJCo0PQzT4ZbIRHTuN0bwL0pkX5InVZdZKlfqenh9xFzT0qwCyU/pm+SjhxgiXBoOTmPE0I3Welk5xe+wyA166N9aqyRh1On6EBF2KjyLEkmoygzJcrnuOKQ8bmHOQctdxAQb66KNkUS0FNzLWHBOZZk/NwznkfToDtBEY+dh2fCETiR4EzHn6cvHe+aAYw5zd572PhIAFUokkcM4VNo2eV8+si1IHMCLqEhk0ywJHp9FsgoRlhVU6LflpaqS0RYXUK7/UpFFSEsRfHimgwVZESTwv2FuJ9L5EOgK1rxXmes1dXLVTDWhkUlquiCoXpZMUcm6f+js60plx715xIKF+mRsM8AaTj8DE1Fal+GgmWuAR9/AnM5Urm+roSsYi5OuHv9Fc5hoVgnb2MrButMMK3p1TeO5ivVCUw1/0OhKmdT6kKQV1UgiU40agcFZyAVXA7Od5sjWsba8cYI0AR+yDMDt3s/efoXcmgIFhNMwxdzsUyBrVTNgL4GDIL/OtwGA8fn2mAUrSjlDtqvaGWO1TZ3tTDprtDcXjB3RQ6BC1qxK0Lbl3wtgveHIo3R8HbobgNweEardK5iBKU0HxLxIAikBBxuQJD6EGCqtBR0MCS0r0qLkqPjM2pbZB+QO4HcDuAlztwM/jdMG4NkA4R5jazLNJLmFEVp1V6FZbJFsFQkPaEAq64DeDWHe/6wLve8dIH7mPgbh13G4iCJd4X7xjocKGnimSvFX/cdGzmrLPxE30Ejj5wHH0e8HCgLLTe9r7AVxmGao6abT/tFOknEJNc3Ja2JBeEGh2NRQo2EVxawbU1XDcel1ZwaYqtcgGUppB9w3Xb8bRteN4qZCvQTbE15pTfyR1v7B1qfwc93gL3d8D9BXIckMOY7lNAOjAO8BmIEqCUglINNmhnPkZanzuaAlYqrAl8V8iloTztKNdXrGi6PEEvTDfh+oTUJlXoNIYbIbaceWKxyEkv5o8LDBdTtlNnWm0IWTYF0z5cIBlx5TLJ7ri5EC13zCw574E1U4ch6RCaVULdkUTxCL3SsEznIDYn/r6P2HhiAfPA/CNA0HIaWvo/hHbBkrVCbCuae7XPstIcO6YgQAeflQhQBsXApqz+6SIYI9NYAT4DaPPeDKy29crIHiz3dXBzoFjVEF3/JhCzOK/AHStafAB5ca88OFFfGwf/ziKNR+dqeOf9FwozMzrnq7GihzGM0KxsaIAOHgPGMlkMQIz+NYXXJRoddAfCqC5sEZ1gv4jiuin2XbHvBU+vLtCtQi4bhpfwmzpwv79gDFAXF4HT8LwaphpNAVSDNwEiTaS7omwCr2ybQZBz8BCyCKxwK2i1YK+s0KtieHXdgPuO0jvuEdjpMOwIq4LWYEorgRezOcbEI/UzdFa2HCZM6Y6Om98YsgnAnu6KowMurC4CCoY4DvHZaysTc+pCAIUDhsKUjoBguxBsoWywwh5FLwoMGI5xxwjtWzefWp47FBsEGwQHQOCCPgM1i/SsC4E3CxVqVHEBUgVoDDowjMJ/MKLN2XvEOuxjwNMLyxgQUbPIkdYj5yeCZVZo1CARlBHYYchcZ8Q5JtRog2EeOjCjHX//MiiUzzRA4VLD6evCiRgURIhXg0Hhc0JPtmkgkCAByeE6S+bYNUCDYfAQDyW1l/SAhFrfEK27ohRXWCUjKTCiQKggfTWCKTFyZBT1CjA6PHrAxLhGUYIQDsA8WO7r6qFep4U6wE6vvE4LsSvLhvvIf6eXA8uXKZoylrEW5hktIq1gtDHJ5BkEMyo2C2vrEzo2k3CWJDuUh5hDkiWKsjycIuvc2NKoC5LeB3z3Eq6QEENTCl+3Si+RrVQ0ZV+YAuo1soFayygLjApVBBsc8IHuHXXcUe0OtYM9eKzPpl8e+Xt1XcbDBVCpKIXjwnqkgoDZqIuloAVDKoY2WGmwusPKBtON35PKppNKLxhIxfLQ5YY7tSHB2iVolNxccwIIKHaeLJ6fSoHj55kDzHcIeuLMjgC56MXcccRiuP5mTIbFkPJV7vHBQcRngWA26ztFqD6FvEvUe24JwdJivgbN4h5JiIwiSZlzvGjML/FzCmSNX4I3VtN4Ml9qUzzrnoPc531KgaqKhAYI8/oSLL0fS2cUnT9PGh15XXEPEgzCbY7vDAwIGHk3JDRgkHiOGmwH8rmkKy8gpuhmgAwMU24Chvk72ZR0ApQ4wyxfLSNSr8bS4CYFVRWXS8HlWnHZK67PF8hWgW3D4QochnoHyotCD4l0sodCjRZ/5ggxKshmVcCbwmuJBnUS6Zcsl00Y5hGg6XTFLpUsI7zgslWMS4P3HbsjdA6Oi1Bor61hhP5iH6tCDKas4OrlAaCYH+xsji1AFtClYkBw7xJrps6nc4gT3MUYZ0UcUMZA8wg2PLyoirJBqCpEtxhXAQzCJHMEKz6yz1Wmzmbg5igSQXKo/C11BcKALCmq4gU2QIPHXmlBUXqMV0PmgpItZcAw4muOyzRg7EYWZxgLFFRkLtsrnRxfW0i+h8+0kR/c79SouiKrwvXh/xiAMvyOjjwOPmw1aHGapBWWrnZRHBDch4eFveMIcHL3grsXHKCosGtB1zHdVE0Y/UxWAeAiUbgZdRjuADzSDhZlhoLo/eCG5gPDOswOgpDeIeNAsUFL60OBegfqQcW4sryvu0OqwhvTFt42WG0YxTFU0UqDa4hYUTAMZDd6p9PifeDl6Hh3dLyzsEGTwoodDEgxuhZuEgJETrZWGFtrYIe5mQUocae41uzAiJblZh02KIL1fgD94HXeDxq23Q5GiibMT/qYJnguVGJJZYlkaW2KE6sAOrioPBXgqVU8Xy542i+4bju2Uvg7PsJZ11FE0VyxORepdArebEDtgPV32Ppb7P0N9vEW27ihjwMXgGmXoth0g0oFhlKbAqC1hlIFzQUybqyyctr9wxV3CO6+oaLiVq7Y6gX3esGtXFC04Z03bF4hVrGjAhLNdqJqia7AnQv26AijetBMKqsDeC6M4YO8lmDanIsQQYBHSaWja5RHxybiM30YAEVOQtEozGLeHhQgQiLnzFTiTLtB4zVkLnjJSpAsKwtl2IAZcHfHMcJ/A8ktJFRyeGxuKTW04INVVusFSKZC6ajsoHw7c90S6JpDiHoDKwVaIsVagDR/m6XUIJNYVNCqoLWC1shgmXuwQfKwOMfeNFO7JTagBoKn1At4hAXqAyUChERJmd5g/52O4oPdteWgA66ApaIB+LIE2xzAKHF7C8agD0umJIYdKHoA5QhtiqI1gVaNk3bIEMhQ+KgQFKjTl6iVglevNjw9bbhcGy6vr/BaYa3i5QDKbeCOgpfjDbq/UIcQmxw7X8fqJxQNSwHKXjAuBX2v6FtBL4Tb3R193DHsDvMD2etMlWnOWkNHVujn9PrVlb2stgp/fSW3IYKn0G3JRoAyRHHzxRPKIAgb9wVQaCvRAT8gegeKwwtwBEB5N+hW3hExJRxdHMcRbEIHRlcaN9461O8ofkOVg0LlpizPVoVqRdrj+8s72P0Ou0WhgiBaggTj1BRWDaMCoziKDhTp0Kqr8i+qJdulAkqJsnuDGANXg8HUUbyH0JazJEt97qF76b1PBSLvpWJD2PMMoCirhUo4LXqk+GqK4HyxJtoFGKAx6m1M3U1JWBx6rple+hQfn2mA8s463vnAOxhexNCLY98EUmmFbiE6rBs70WoYr0k0GStVuRDtDUeYpPkhZDtah9VKxiI0EjS/WvETnRgdt0CkxQ3vbOAljjs6NjtQrMOjn49Hzr9gYBPDJtxYRy5SIjEQK6OMyw7feWDb4WWHFIOWjlo3aBvA0dG0oIpG6ZujmEHHARkHaALDdIJrbG3izAfHPVAbZAxMca9kkyQoueycylJimSWO4ae+cvLgpKcdvGPc2UeoS0fXgxPQY0JPAziCPa9ZzKbQfWMeFfQwEavQodir4NIqLtcLrvuGy76h1YqizBwLqA1qyu7EdQyU+0FGxh0mLxhv36H/yhvYh29hX3oBXu6ovaO541ppvSteUdsVpHU1BHuCfW9Qoab9ZoabdLQxsBnp0a05rpeC/bqjXJ9Rrhfo9QrbNoxacNMNb6VigO7CVQqKhOtuAAYy8kaQ5+m4lADRZ1Sd8u/cyrO7abIxQ6PkWIBDPdT/sdgqZpdfrjFhAe8Ec9Q2+tIZ9fAwlTH9dpJpEaemZ6RPTP4d2A8nMAtgjMbu5rgZZhVCMkc5fgCEqRQ38NSxFElcxEVvvRcDh26L4YGwqooUUlD0CmgZ0GIoXuf7qRANiZNVKFXRthL+Pboq1RzRGoM9VuJU4dOHiGW8xdnLRqOJpiZDEIfGos5UEcIkktw5wQlNwVTJyJRCszB3wTGE6ZXo0+OISgnQpXTDwEVYTfaqDuw6cKkdzzs9gfZLCj4VfTMMKxhWINigqFDdsbUNtVY8v9rx9GrH9XnD/uoZXgtMK7ab4Xbr0ZH3glJeULQgxX+CPr8GCL6lObanhv25oj1fUHYKwd2VUXe3aQuBCJSK6GxWWGN2iwuKFrS2kb14CsF8U2ytoRQGcqr8ezFH5NFQrCAmwyyIIF99AOgo5TZbmfRaYaK4QaPrO0H0cOe/ewyJA+h3gR2O/rYD4waMG4p2aAXaXqFbmb5PPjq8d9w/dIwX4HjTMW6VdhdeYl1VyNamb4+qcR5E6kZVoGnQVyu26w5RyqE3qxid5eFFGooahh3B2hj64F6Wa4m5YcEThj207qAjOlxo/hadQsVlNnDUoijBxiRoz+aWoSVY9etBaeZ68R4B+Wt+fKYBSofjBscdjkOAQfl5OB4CVSogg30NQkkuEdkUddb5Vw1b8TAFqk7nngJqWWKjTOpqNttyn832Dvdp3nV3Z68IG9NbZKZEQpAqMC5EYmy8Jis3yKCPSnWowluFtwbkURqkDCriS4WGqLKqhJUwTuXFg7bNNk6DIpWfkatXeh046CEylOr9VIT7BCcpbA3r6dW1i2uALPMp2qsQpPTD0Iuh1wEUNp+bfXVmqkynyECE9vhIEygHNFwhSxM6rraG2iqfWwmtBoBZVaUSVQEGOXq4DDmG3dDfvOD46AX9zQ3j3R1+Z8OvYo6mXFRVG7Q2RoGWIkzqikph36B2VDQzyMHu025Aa4LLXrBfKtqFHZR1u0Bao4ttaTiUf3+kVXlUJiAWEcxJn8/tIanDSR6pCElaNsZUsiEOlvmNYEageOjObACGLndJc5mAJMVsaUrnkS6QEdZPtmSA554zqcdALOZkUGSBDWcZ4wiQ3x04EqBkJugEvfCeC4pi0nlIvkXxCFSyM/hpJvF1wgSHALtAy4g7FtUbRiBWwtQvUwvQgmws6A6aIjpZDSRLM/ImBUUPlmJLAJQEH27nthLhSAqLxTwBis0OzSU2qFrSG0nCHoFN4wgIk5Y3FDc0MewCXNXxXAb2MnCphucmaJtgixJgd6BXoSuvCdkKqSiloTa6Gl9ebbi8vmB/3rG/vgKFm7a8GPSlo/c7Xt412KjwXua4pTFJbESRgvYd2J8q2tOGum8ojUJ37zwZD5t2GxZWBSmIDuO4WF9j0eC8KRS/SytMP+0bUAq8VT5rFWhge3GgWZhUdo3HxcAr+xnV4tAK6CbwrcGK4pCCIAVmSrIjbFAGAcq4Mf677we8K7wrRDu0CtqlolxqpHoKrN9h/cAL3uKoHRUFoyLSo43roCrQtrmWUfweRniVVg2lVpTaoK2iXRtUCFC8s7xa3GG9wqyj3RQ+qH2ZHj3i1DuCr58kJ0MPmYGiOMLYkHNJnGssEM/PA6wng+I5j9eSxaBCeD2e7/DpEcpnGqC8hWCH4ktS8EGp6HuDP20o+07kfVeMu+DiPayW2VjPYSib49iBfhE8PxWMUXC/F2gXbuwV8HBNTPAx3HAY1c5mKSqkN8noDjkcH3XHl9zxJXW8qdECPDaZDj7FosBegOdCYuOlKG5h+FZAelNU4dqA6xP88kRR5eUJ2C4o20BrHRff2Sm533GpbH63C7CLY8fAxQ9sNtAMqDYw1OEqTCUgcouRmhreUSREcjFRGJ0WCg+1zqMEMJJSmeMUwLXCpFCEa8BxAPeb4/aOmpviA9Io+LwP6n8GOHGybh8NcC2wmm4QGoI0onsUUqalagDLZcKWwh9Sq4IiA+p3jPtbmN1h7xT95Ut49+H/xof/41fw4f/4CG/fvcXto45xA2SwyzBKg9Qd0p64cHRHLQO1CJ5bQWsVRStMKvrmeNkM9yvLF2vbsL26oF6fsH/Fa1yfr3h6vuLpUtFKQasN0jZYrTj2C1DJnpSKRKbAEdqE7L8QC9RUWQgARA+mZFbi8p23ACmCNTeYUOzZI2LsNTRWIhjnigbE301RbGhBBiDRW8RqD33ocl/22CgNHe5kMhLMm5FFMQd8UGh9uPCA4Ag2zxGAiwm+cCglMA4nxRivhvQM4emu94IJCti4bEidG9BARVaISa0o8JPoucBqgK4+ohkjD8kScBNYB+w+4DeyKQRLvPva75Pm1qKEVe4ELtNCIHRnNlDCtmC4rWcaQkVVmv2VUrBtNBlsG+XTDsH9ZijvOnQYHbFDQF5FsanjtQIfNMerzfGVlzsurePaDlyeHWVzlKcxKx/HoFDXHWRsS4HWDdo2aGnYnnZsr3dsr664fO45LO4V+0vH8XJA0DBuFRUVFxCUqNBunRcVpa5a4FfB9ryhPe14frWHKZsAx4B2h98Gxt1gdz5HGUAZQDkGCg6W5h4d96PjzUc33MbAzZ2WAsIWG+9ag9YCb8l4gwLcQVbrCuorqlLQy41UI8XT0eUeetOCuhdIE+xbVn1RkDpAsfUEYR3wdw67OW67ot+CUdEBbYJ2rSjXBmmK2hQ2KsZxx6YX9DeGvnUidRegbPBChtvrdYL8Y0TK1w9sleC57RvK1lBbw3Z9IpgYCr057G54gQOjQLzi9rbAdYS+siIN2wrI+J3DH8Kcgk0qq6IsY1CyKUwn85lqVAcxZ4NI6iHyqgA2aqHKcJRSZopHIBhuwP3T7fGfaYDSpeKOigOMSD3smKVVVGEZVxHjYA/6VOhTDaPbPEqTaTtsgVjTDdCcOguzA+4HJCj3LKslfS04d/c9THEfBTcrOLyio8IkbIyEtvat0oBor4KjVlxCODZUZpkjBXyZx139IiVEVKV4lP4ppETn4mgOWDQjMQuPgYwnHfCxruNjGw3fO7bIh4MOteFYqeuzqGZYz400dsrlM6NwJ60qIcRjBMlKq9wgR4oGBbMqxtxwGOAsN4jS8FUWLUKvAJq9IVxZCyO0JpAKmBi6dXQDXt694O2bG7700Q0ffXTg3cvAywtgh8CsxEZJB2BkisnDhVPZIboJGSbZKqwAewXGXgFX1HZBfdpRLxvac8OeIsOdbM9WG2ptKJX2/5LtXkuqxiLcE4Q6Uyg4nVAkdBMSsCQYCw8RqhsijCHjsISlmN4Hq9w7Ch0lSy75/kxLsHxTwhZenGI8h8KHwIewwgsBEkIrYVHckgxvljpPZJW6j9Pwmp1U85uLNHmMs5KtSSIlblV4BK7XRZZ8xvdztMRrpgBTEgQpNyqoTfdWgC7LBkGP9IMNCtvdlqFcggskk5NxaKT8ECwUqxd8HYjnJcnOZJqUPKrH88/0Z3p40HlaZlWFhF6oFkdrjsvueL44Xl+A3/LMTrTXBmxXhzSH7AlQgGGD89Id2iiUR0OI8oHIZJKwCOCvwk1LzLE3w94cozrqhqi8ATv35s0X7nC2C+pmaM3wVIO5jvOfJnvxHM8eUpP1M0O/D9zvHe/e3vF2DLyE+BKdItk2jAClljl2/ODPynB0UDC/YQ4MrqtGPZ3KDaUCWy/YHNCd7S2mpaqsQxKQuSDL+9UPwA5YP8J+nhu4KaCWa+ABGz3SkIDWGG8SFgmk72C1TJeLcdAZGsOjTFvRKsFJDa8ndWYMZBhxcPEwRYvKTEuGiuMuRa/sOpyqNoKBIkBRj6aQCGCy5pjEQpLCaMs9I+acRjVmVYW6oxrZQBEJfx9ATP7PACgmlQLXqH3nDh0eEiVM0sVQD3qrFjdI5eaZNfml8pAiYYKWNQUD5nQWtXEnn4dosx2U7uRLneDETdGNLq93r+je0H2DY4MIAUotFbVWbK1ib4KjVVxbDUoxaLQwFPIwHUqTHabVwyK+sAyP5mRJTQdwKQFOEqjMdT9oZXLa0WAuQMq5E2YScZ6UX6Z3lseLJGUurGbK1VKSUkdcwzzCjzCMkSY4keguDDAVIVl6Ss3E4QgdwIiu1dQlZGl0sqKiEgtp2OpXagpMmGe9D8e7lzvevLvho4/u+OhNx8vLwMvdIV0hppFVyFxwlJvGZKeuJQ5R1L2Sxt6UkTIEtV7YJHHfUJ8q2l6wXRTXC/0cWmNjNy0N0uipQvQQu2sMqel0d3Idy03X5o8XQHnYpB1ryYnnHgE/88unVB1FmmFL7vk3K52JrDow6qLcFd6U82QIBrXBfO+4fRCyAOnRo74EnglScKp4mYU+EwgvhOIT3OAEUHyCkfx3bm6cOjLvhfkyn4tLm+k6CV1Z4sCk1BN0mdF9kyZ+I0rnF0CZtiU2kBqsBCg9dCUJ+DP9lCaW7kwz2wRS8Rw9/I0kNu5opTHHQKZe4yBrQfEo9U+OV0/AB1fgt7wWdtOuQN0BqQ7fbQr/h+UaV6CbUyBaZb63aZzjKRAo4qjNIcPRmmGrhl4d2Oi1slVEoyJeGHVRgG2K0gKgFKdXS1SiDIlpF+ueRrlwSTYZoH6pd9xuB96+O/Dm6Hg76KYq9woZhnIM9jWqOvcHv9NBuxpgqtgEuEiugwBco3ihQ+yOUoHjXjDcUY+KNgYQAaAXmd5aZzHyrMq0Du93jPsdhxlQBBbpN+mKYgr3DreDVVfx8DTX0SoTpFjVLPSEhnaGJefRg6wyyG1RyTgD0GIYBei67OXxAE4IUGIZYFb9EwDKzN7HGM/wafgqY7fwTxkxdtV9jU/h81UHmkuY662tR74MK9nPNEAZUlnLPlhdIm7TlVUjOhNEjwoHo+3S4NbQSyOlWblZeKk0+BGwskQ7O9viBSYvEL1B6x2qB7k9GeQ0BKgjrM+c5WdmimEF5juAHcAVgitUOmrd0doFbbuibiPcRi+4Y4NridQHwoLagd4xjgPjeIHfN+C4QQa9D9j7gG2/JxgJp8a6CbZd0W6CdgCVZfSscqJTGbwfsPsd41YxOv0AbEQN9qSoqWcpTgpvGa/pFGux+iGFW9yMtTIVVGtFDcQvdWNptAUUDxv2BCnpaaEyZvrsNpxRR7/jqRRci+HwDQMNUGqHShW0WiCboFwa2nVDe97QnhrsWuHd0DHwMgzvDsdHd8GXXhQvL4p390IxrbHJoxigw1HKCEdNRVUycmLKqh4V6L6jFmCrof1RRS0bantCaRvKhogaO64h0m4buAgp9T4AWN46wQa400sBygaWnPlydDSOsan2idTB0W0uPl5YRrts0YHDp+PJYmKACIkA6k6SjVloRwYrPtRD76E8va7E6LmAeQBFAEChBXYFUIJJKKfUkbqHtwjBo9iKwlTSJdYnW+S2PBrWhi8T1PRgaaafSoQXE5w4X4t58HECgyfmwh3Z98Qh8D4CIA8c94ONJAfXlzy7xEbp4eKgzXgSYMGl8JYIxbh5nl0cR6bVBFzYY31i+W10TA/mNOHcIYquCqsFaGFnUBTt0rBfCp4+qHj9geArngRf+TnFpRRcogbfVTAKGUhDpHiiokibsRFf6XBjw87eGeW7GfqFWo9SCwSsVhF/B/gdggOtOq4NeGocdwnKhtHQoCurQCqA17KjRZq4NYduThCVrrIZaEXlUWpxhjl6H3j3cseXXg58eD9wvNxY4XihW3QK9zm2AdzInldzvKu8F091kXTuEk1jO6zfUIpg2wuurzcGF0+VVU/BWg1V9OwzJtTuSXfgMLz70oGXN3e8vDnwchtkSFqBXpkuKntBKKIhxwsrOI3MLGsNwnkXDqitOLh79JOjEF3N4NUgEjZycpAlNecYHQYJIGTjQD8O9OlZxRqwolFZpcpUghFUstrLWXhRQhVpHlVaQjYbOX2YHrKYEwoHqqBVR6uCUtkCpoEtTxS8fBuAdAH+P59uj/9MAxQgo48AJ56+G1zsGK0zF0egIhDZWJqrG8uzdINLg4POoPA76VQD7+ZgjvKxIj4ioVhQQ84ZZyRIjlRCvKRC3wuPpnhamIpAZRmx1qC/kNQy/VXM2KHZxgHvdzI5dgeyF4gn19DX18LFxrPNbjRSnikpjcjGB8ZgR+fRB3oPB1rLbrg4Rarna4toTgS+QlIsISIjgWR5tJTQjbARnkuBa5+Lr+EUsQOQYHXG4NG7wUaH9wNdDb0A1scEUIoFmmQ6zBIUldaA2sh+dUa6Yzj64TjuhuNuuN/DhCx1DjJCFDwikkhtgwJdJgkAFPqtZNfkKPuulWm8UoWRojpacZRIJ559bR4cSbHYBUiBlKBTZG65K2VxAikA/RT4WhapFYTxGc83HZNTi8G/SuqW4CFTDHamY7gCMWXBRFywZelFPPg5fBpcuLhi+gYF8Jn9mvhZgOm0TPZjbefpCZJpwulWbPmaD6QKTzGj/vn95DImd8I5jQWq4Hh0anVWlhmSPWFn2B7gBE7dVoqQ871HwBWbzwWsdvAT/gM3bhPh64pMQ7xkkyAJdPjvMYnO8GhxivFHMl5haoiiXEOaouyKelG0J2B/LtiLY9MyXXvDMvbhulP/Q10GfYzGAI7D4bjDXXC83KFWGRQp10TvnWvj4H0pAJo6WiinzcLZJB5QHYo6FLv3yUL2wrkhc8zYWmKiWzzL+HgPuznuB6uIXl467gfdZXEbkIzANAESCFAMTDO0gl4F3hZTZg70o6P3jnHcURTY9oLeB9qu2F8yhc4WHQQoXM80KiAlBL4vbw68++iOdx/d8PKOImwtCrnoAigaviZ+R4WxgWKlhk7NWAZfhJDbQZYyWnGMg4yeusCOMZk1KZ0jxsFmp++vn+fDggsRVrTGUsP1zBCKZJYnmwa3IhGvwmmnEevCXH1iLVJlu4GiCq+AtOjhBV6TIvbUfmKwPsXHZxqgKISWuuOAjgPVDLQFESjq1D2IF0ia3ZQRCvNnuL4B5AWOK8xfYKOBxee06dVONKq9oxgnYnOkvDTXPRohxSatUuY8Kbqj+o6qO0TJ0pQm1EdsAjSFN0AqIMeAoBMwFMXhg66i44AdN4z+DtYrMF4Ab6Bx0AF3pp86DnR0dGFZ75ABqw6r4DFOi7l3DOek7EeHHB1HHzCnaQ9TKVwsMzBebe1zQwgjvIhYbF00UKgF0lpRtoq6VZRLgxdWxuA4QL8LVvwMI3BwiUF9dPQ+2Mn5NmC9A8cdh1V0d9j1YPVNM7Zyh2BTzramDVu9YN+u2LYrjm1n6ayMqCwy9NvA7aXj5V3Hy/2A+UFRbZg+0ZJaUTSARqX5ElJvNATyvKGUiv3ScL3Qar+VhqYXlvihsGw1wIk0ALuQgg59S25AnbbFYIqDKSZ2M6b2xqVTmB2RLznSBC2GI4FCJChFJCqDwpBqGjRReDo1Lb4Avmd1STIVBuouUk+BA2wgecCEBlMdnf2hQPYOYbxl4WjrU6/FBTdd2sRlAr80PXFg9tvJc7Ps5xAMUrIXAAJMyEyJZMVSRnWLPUmgJ3PdYKmjsyonrtcSdQSD0geF8f3oyFYXFv4rnqcFuqeuVJIlep1sjwaUTBA1ABxwHE5/mVkdF9dlAHw4NLvguk9QNHqUjoNVWK4cm7IpZC8oT4r2qmD7QLB/TrAXYBeyyyNAHoaHaeK6Px6Rvbmh947jMNzeEaSUm+P5skH2Ct0rpDrsOGC3O4/7AZWBCmY7t8pAcQyDDHZuli6ocDQ4Lv1AK3SK7dVxqwatg2NcRngiOQFKVaDqEqg68HIfePuu46OP7rh5BEqlPFQUIluW3IwxmgF2qdib4r6HqB4cU8fR0e8d/X6DKrBtBc/PDdum2K/RVTnKs0ZRjFqgrS0xrXMOv3zpjrdfuuHdl254+6UeDKNCdqbgdS+QCmhxbM3QGnBpQGsZzDlqjfT83udac7wEQLkP2p0MwSip7YqqxwC11h02aM559IH70XG7D9zuAy93w/0gs8P2BUxvstMtgkW0cKPoOAqbWBJoEqS8uEe6nsUTuX6IkiWt4PnXJsA+ou1BpOGhkMFUGdZU/HU/PtMApRZFE2CDYfOB5mOanwno1CojBWmARcLZXHGQmcPNHTdz3IbhNgzHGEH7DXZv9AIfdBuVYGpYzriKIhWp7GcapIqgCtXQDQ1buIaaFLacjhyyz2gaK9QKupgrkkO6Ebzcwyb/OOCHwKpMcIF+sBtv7zhGp4OsGytklISLldgLchE3ix40ncegxfZqJJii2Yxoz3Hr42YBJJEi0wW3hANkqwU1ql+sUEyaLpoZGZs5xqATcIpkx+i0gT4626L2O4Yyx2q9U5w4PSpCzRflcVCWjGurkGBupB7kjkN4bCgwV5a+yrn4zbHcPmn7XCpLMKF0i/LagMsOvTTodUe9ZtPCioqG4gXFNCqMJsW2jlxIgbnhWYT3XHAs+u8oQQG93YH0ofFQR7rMlED2uBxCgALNSiiZzb7mwo1YkCyu1QY1CaFLmuAlykCzH5UHgLWIrOahIaYFqI/ISy7JevhMY5QQHFB8u+aRxSKbTrHmMn8WuAFnoOGxWJqygaLpqmlKISoZT/7dmdVgHjw26pEJcZkeERb3xqIrWgohcbreLJWn6VcCFskJHKWZocHJORcpqQOCI76X7R0EgI9BgDY80rbOFAKvikFDpPIsGMv0EEJLoBJR+xUceyirlHmspqc+ohElwigR0S178Ln3u0PDgtteNng6kjjgxx1+3JYhY+F5FwA1rPWBQV2CsdCvxLrQ7EBzRZMRa2FoyeLRagmX2w3c3Evo2ZqEPQcNx8w67IgqFNGJPwWIhwRKBsFAy6phiKK3WQNGpsE6ug90P1Ac031bh6IcAjWmmLh/KHotkNEhRdG9xvRwvHm54e27O96+veHtR7yPQjRAcfNWoBWQKtg3x7YRLNVWwu9kYKuOWgztogGiFccLgyo7Osou0MG1P4ealB6ib0GW3A+QLTnMcQzaXhxOO332RxIoCmOknDch2jYJ59ekG1XYe0fIiCXwT8bbLPp9iaODFTpka5MRi7ULwHJD/z+EQWG3YIpfM9pQY1REQycgV+QUAyU5PmKxoGFU1Lf7e5bejlDjBzVt0fAoF1afCQ9M9waR2cGYLeQ0nPSiyZakAY/MDWtmSYAHdCl+KlNM6/iRpkYK66vRYPZFyZJobiKxgYV2YOKJxBxBCc4mCwlE5u/5/F0grvdjY4vfWNme8CBQmemsEgc0+lbEPcsoDnYCQ4qVErCxjilGy+Ssfew58DxkVWqEgnaZysk03csI3E+HyBIic24m0GJZtZdCcWtjN2LZNpRtR9nCllsLilcUVzJ5kSJaoOS8imJ+zUUixNuZLovNUASADsCWF83jDV8DiCmcZLskqhQWIwHPjT0ebaRwEC0KptYjHyvLqYBT5dRj5O3Lk0sxTzjkRYye4uFogpL41fPoySH18ByRyY68XzFuQr8CJCbNG3Uejuup5qtH77VYL+XUgiFeLVMD8Ro5L9K9dw78vLdslRv+P5mPj1OQXGsmoYJJ2kg48gb7o9wJCFBik4EznWFC6p/7bVRaxZpG88SY2yHiRI0NsbHqikLveCYWYvfcM3ThZFZmrEHhLlwbosoLvROs1hgP1te8jPsTcBrRgQcegVvec3XaLajT/bdM+HwOek5DOiqWpMZZpphc1u9nf6cI6VaMl2tMgATOGUOOjBxs08VaBueYnKPEGAwm828cyjExOIpHDzbLHPfecesHXo4DL0cAlIg8WGFT6bNSogpuEGBXQ1g9ADYGWhG4DLDjsqPfyGRaN3oXiURDU2OmILQrIlkRlGAYAVZ8puwt1vB5aXE/bK57EdzMnXIFPSkmyDQyizfyqUWQ4ats2ef/11qBEwv/aT8+0wClqVJiMRxlGErPbsGZCwaytNEFQQmH2EkFhwruqrhpwV0LDlV0UXQJtUnkwcWYWldLNX5M8ozUooxQ3WfTt+KKArqFVtCwyEBBZVVSYRpHKYaqFIVqCREqJMAXIxk5ePjdYYdjHNRSCJsKzTzjMcI+2oVOuFVhDWwM5gJ3diQ1k2xIBPTQ7sTkTyDCe+gLCOD9A3NSZIaHnmsSLApLcquGoCwiz1WBEptAAiSJsFTwAMoidISaocRRfVHgadCVdv0JjHisqodpVJTLabZe10IwEWV8pRS0LAffNrTLBWXb4FuAk9ZQXz9je9rQXu9oF0Eryj4mQ1GGRjcuTyphAqTTDnzqus2mdrljxN5HkgTAdJiM881UosWmIEqaV10wSvTsKAUTPssJWMwoPBa61FnZmJ4mAOdNUi/iDmgsUbOCzR/RBg1YuAFWzpWiPkE2AdOpoizG03ypuW9wIyamk2mK5tl3QRhgkJmweY2c4LGVxNzUyfrFqcap6/A57m2E2LAi8vrgNQZwkxFLrtrUQ0BBgOsJTMIrCQkG/WE7HEgZGBf5A0AXgowap67go4BHgBH6Kqgg2wm4RE8TITvCRqICr4hmfIDsAr0I9JrMjEAPbpQlwVDs18aXpyDSwbUk6kipRRospT06wUnns5UxICP7Vw0UpKAcqDJmAFFimosB1YHq1Clw7hr1ymYRKHEX1QzgqkA3gdQoE2sAarx/gF+OLUxBRIx2hOIBAplGlLUICn0us8jwoeGkBojeKtAaq5Ra9dCjZexk1KJJdAkGJhw7vOM+Om6948V66I8E3mPI3D2qDIF+KI5d0a2gdIqjS3HsRdHKQB+dqjdXZvSjEof3N55DeMW0mIIiNCpVpwCWa8va8/KQCCoswH3Gv/n7DCRWYAEhWB7iGGIBK4MdSdCcYCbF72dg4kujJQIMjUzGp/z4TAMUSUSYIrqH9ERU1YTF9JgH9ReHj9mThoehgyAhfRxSuChxaBxZRTAjvtMGPsPB/Eg0g8zH+RyQNUuCo0V6dRqQlQA1zYWVMMqjyIQtEzxNfwnEmnpyqjyLXfO0ZnQcm9XpYjHtweOUp4lpwO1TgUdsLD5fSx7e4Pw+CMo+nlN8nqxNiDCT9VKliVA+x2jFCADTx2ADgnBeG9KE7nNkhEbAPU8xxKJ5TwhWREpUdwlKNZRaIi21obYNpe0o+47SNngYJOlW0a4X1GtDu2xoe4AwKdAj6IMQgzLqi5U1jSVOt2qA7r0s/wtzslhtV/UJkZ8Y89VAYSVWsC7Z/dlyDw0GK+PT8hC1kJlYz5CrlRvdZBdrEVEV0SLvtLB6geOejffyQ2sACge0KwF9tTkAqAtL6/fEGjKD1kyYzpJax4xok82aIT9ILc/rDGAqknOS16GnP+C/OScmwxxlrZDwhwldRz43j3PJ/yfDJirTdAqJOWXdZD8dEgG5+NrMZnw6o9a8Bz6XjBEAAgFWuRT5BDNJHGWDOxeHh8gRRSCFLT00J20WMA2OfY8GoR5sBRxsdJeeJyU0firhf0TgX8QATXmIwBRozDBN/Td86sDnfWXpMNtZAAyQUn+8igbloRR+6t6wGAFHDpMoz43fyyctzrGiSBPK1VtpC0ddLZwZ5o6hBTU6xhdhVd7TpdIVeluv5e7sRlyVYv/CaqoD9Fl5VwttH7TEFp4jhydcRE/f4Zgda3pMYJ5LI8B1cpgs+4fch4SvV7WgKS01pOpk8moN1lpD36Ia9v+LGZ7rSjC86ZjtIuehfFqrVsTEqRizQn16qmQzxLxnkmB4Mr98DVd86o/POEBJgBBRS2oaTlUNFBJSXzFsYHhHPx2Hd3QYRoCUpLI4WCIvnRUAqaKewCAZBx6p4k+ccgYGqZSXE0ApxcgyFNpsV6forUpBgaI6o/mqddpRS3T15Gtn7ibfa+XPV/+PE6Xv615lJP2wuefedF5hTyDj4YV86Qsefhfn9zkdBppEpSBrgpTQewQYmTb9voyGcjxHEDWPtMPOazqfA06nZHNziGg3K1pAHxeK1BAOtSynrK2itEZBXOVnBEApe0O9bKh7Q9mipFjJmsHJZiA3bwHoerWcr5IyZlQDKiXEkGkaz7Of1KuutBVjbZ43KFjTaDYoiA1WUwjIay4C2Ck394Ch4yblK6yfyVyk5uIkMoEJLytF1NzQGDCEsNBAj54YABrCPubAc+7q2qBzsZxABZx3wnNiqit+5B6O3SeRqSzNSooGdV7PAhmaUMjz3wEqHgBKCFCntw9iQcdcbEURrOMCUZBPmg5+mmL+QIs/fOS9jnk2AvQzjfXe7/LpYKWRfFL0WSkiMTl4rziXinEomvn0utAoOYULiocGpIQ/B8KQURZI0UAeRdkwzqgBnQU3GteSG1WOXw3WD8FMWzBQSZBa6KO41uZYWHdppg8CoaSjcD7p/E1uwAmokj0JLVwVtIaoYOG4HEKQYuEXtTfFZa/YqmDfo0Q8AYrSo8RrpS9KLZQUiNGBO0EB21qe4Ahm8UReVAZtOS3nmJkBFJeEEeBETOa9KdCwP1C0eF8pbFxbHdGyQVc/nwA0FuBjzRnMebYQHs5fvL+kzvu+xmuCEj/xVidQf5p9OX8+NvZ/jY/PNEBBgI/uA4cZWREbqIOVLOaG4QOjU2nu1jH8HXp/i5cbj9vtLW63N7jd3sXxgtvtjvvtjn4UdC2Qo8MOW2GNEXGmnmGGOCFBI5Ub0TGyizBiATFomKjVKMtrZXUQro0tzzcUDFeURpFprWwOJWVjNYwKHFEClJblhik4HUeH3Q/YfbAy+Z4RSIcdFMaO7plGXgurYEo8LK81tKgjO1UOOmt6UOTs8qzx/ajbH+y90sO8rhsJ0mGYv2Pd6DERh5QoQTWHenR/jQoTQYih46hxBFEdaYGQRU7zt9AZgVbv3VjLzzbrNIwTZUlvKYJaDTWaJ9ZWUbYC3cJjIXxcyrahbhvqfkG9NNRLQ9kyckxRkUadaDz3MBBk7oPPiw7BuQC8tyB75GzhsYkXjhsnxZp6JnhsEJp29bkzxOaAFWkbItWDfM4BvjMFFaXEHgsYAYoEwI00gwjSbl7VYiEmrGFGiRtiqexhVFpsBOrTh0jmCSS1EK8d/0zWZjIMeFwzM+2VAGOxm0uiMLes1GDE/JTIg8spZ6+n3KQnQBF2sI78GU/4BKJEqA8QSZCQtPcJECdDGZc6NSh+IvtyfsV1nuRukL5eD1kSqiuFGhXDD/qCBWxDgxdH0eBsCpkCM2d+gPWt8MrnZggPpR52/5AleNcMlkjRV2VZsatjUzIolbcRsGBPsO539kJDtBBwKO7muJviPgRHrBVVFB5g3hCVfs7WGN0k3QWm9iRT+O9veyKI1DI38a0UbJXuuiW8guAsIhiMK1BVsLeC50vB1hSXPY11Yx4UgZUAKCroKqjDUIQVU5tKFEic/WtiCYhUHUFsCJ1TqE21Dv9zwQhRs5jG1wzacuAUZUPArbA/mLYCbRT9mwy0UlCVDAt7vZE9sYDs5XRujx9rriSjC49AwH3iZF1Tk2sMENkFfKwOYAa7sZrxMj7pvT/54zMNUMwtOgrTC2IKRRd3guzaCMTPo2JhjMHKFRtROz7gFt8bI4RJ7KswBjfiMWzmh30uDKc0yozUJZiYVWJ4ks0xlRFCsSppgBYqeAFK5OrV1yKTKy+9R0q49kVTvbAt52KMQNwR4RmyKnWlYR5SYvzWQsWCT8TBD2o/nOA+Tv9GRAdL9Mntay02ZyZnLSnzD08i3Pz33MIZBSKbss2kwAJWsdm46gSP50Wc/ZRO0VhsOjPvLcsYilFkRiGkbkup02OllhY9icqUl8AIeKYYB3GC0ZOEzyuPSQdEGkCwHsFjDM4RxUV92p57cCZ+fkrvxZQZpSEXlGAUMpSb4wkLbMcoTZp3nom8l0X7hCBovU/+473IjPw7T2qeS/4Rn92k7J23LYWncnqtMwg5X9saDZxtv1qgtu7sWcr38Ws7PwWJeeXip1Ql5nyDL6Bv503U12mtjGikeIJgEpzWj3gdi/mV5xk93iAWr/Fe+hX28a+TUZqPRM7HeW2JjUXf+538myl6Xs+BszrTTX76myVY1bzDqfGYDyzaW5wZlLz2CU5jo8w1LQcj3ruuZOBOYy/PVSfTw1YgVYWpKJUwRSNgTLlWVbau2Jtga/w60yI0QQT1PsVp1iihQTKgSpTZytIbzUyGZKDA90xjwrmBpFYtx4B5zHEPtj41Hvk8TmtU9o4qbENQIpWT6ZZ8ZjMFerpPc0z6aS+IdHOuQ+f1Op9Ipu+Q55RjIC6FlZmRYg9VtsxrJ3P2aT8+0wDFI21z5BGAJUEK1cMRzThn7wQnlsCDIk03fp3fo4kZYDpgR5+GZnSt5SI1S6/M54JkTlHcyM/IDP5aTTKdUd87hqQQCtOqWGVAZCDFXJ4bsCpcCxmAbJwBlqdJApTh4QsTR67ZsRqscXKi+/AebY7orxNfz63wPVDCByLvgRN9PERnRcLaDHy+xlpMz6v7SvNk7r28N0n4FzJLbhEunDYXQi6C9Hex6ATLM5hVRxLtAjQaJoZgNjuRZg+lFv10Wm0RqTRqWAQ8Qy1Em3XurMF9F6BUeGhRXEvceVAnkMzEBF/nRTic9kTAlvYBSeaCLVMgnPlsdZm3cHqLzM37lN9PcBIAJE9KgDB7O2PQxw19pjix0jbrl9dvcpNK9PXwoHN1W1qNXNUDhM2OyfowOgA4Vp/XTMGex+MCW+e/O8n3piaEwDnSjgKstGjM6xiPEvPD83fMF9t4Aijn7yczlO9v8zXje3b6Orrkjoh60sgvKxKVtyUeip/yljgtOs7KJHvEiJMZ44CLMevhXuszpTDBSBh1raVFHkPnOUYNWcETyTH+zBdIgQR7Fq+dY41zEuE5k8tSLkQx410jVc17leBEYw2AkEXMJy5AekYim6TXaE64FcGmp872WIyWhK7m0ti/KH1K8rLdQSFpdaBQSFqSYVTHJo4mEXCqp19haJbCVl7W2JPsEZFpQvOZqsuCSljYy5/uIxKYRCsP9pKjmVwRZ3PaYEwybM3EsOL0/OI91piNsWVnJk4eADjBCYFZiQmX45PPfwEaGzQ77OLBpHH+9EjnfdqPzzRAsbjD9zFwGx339P8QxzgtCrmgwAxj+DwskN5s9ueyUhkHMA5DFwNuA/rSobeO49YxtMNax70YDnGanIXiqw8+lHsF7mPgjoFjsIxTwriKNBuNizocTQybUuy2qWMTQ5NozKXsO4Mw4xrw6JdBoIJobkeNCj1PC6gAL16g3plbzoU+V6sEHkrHQ43coIuiWAVMaKUu3ArYvZj+IpLvFwd1ECW6MLNiCdnkULLvTvp64PF1Tr2Tzu3uPUo8S2Hbbx2GrSr2WrDVQnBQooR4pit0goEEJt2ii+4Y9LgZA8NZMCeCaZPfmmLfHK1VtK1i3zdsraHtGyt5tg37ZUfbeTy1hr1WbKXMKDRKgbiSZRENsBgUabPjs0k2SgRTBjBABzdoY+ryhCAwIZoTpKzPjrA8i2SXx8Z+AijxszPoYIqQm6/pySsFWADFTwtOBn2W65Xnr+LMasBP8DNWVgllp3gsrvG6KsLimAQ1mcOI5W7qlfy0uUIgbhiTIQuR7MO98oVxZYHhvB8TqEgyrQx2cuecESXCJySCG7GIIVe5DnwE2A3afgGUpf+yFM96Vv2cYNPwOSdXhdViaSGgDbryZ1kOndVRaj4Z0qzuQAeks0JwVrvEs0+QwEykzB5WbjIr3kLdSvBehJU0LD8ENDtKY25UJTbrIisQE8QUEGY1s+cZCkWS3UGPjm64H4ajL3PImTZ/VMgC5tNvpQiBh+myC0C8J6sIFVtjCmRviuum2DfB0x4VlKGlsALar4Ni3+smeHoSbCmS1Ugdu3O6hTO3C/uEZRPRpyp4aex9dDSCJgnWRZTXn1hSPO4/Yg6ExkfSXDHoSxf2RlKJeRuOwdoKdCsoe0HZCmplL5/WgWGKFkxRCpnzGIHgNNmpM0hJoKwxN5ypucWg5DMPvZ2etpI5ZHwWV/QAzCKsSstxl4Wjn/bjMw1QSIGe0jaZ4vEZ4yGFo/k0skHeAijnhxC5wfi+RddWi26mo9vUYIwRQAg2fx+WNtlYfiTii8E5nQdZvRO/INGMa60Pp9ROLpZrQZ2BakZGJ+aDsUyWpU6J0qJAkZs6sPLqMn9JRU/Cu0ghZe49Dz19DZ9fp4/HuaR30jPBxWbTwWQumGKh+DJz7KZLhS9KsMa8KvPKJX6eavR1rryBy+8k6fbl+GkRxXM/DIFscdLAIZTNo8yjnpp0UbFfsqvzudw1Z2IyAfP8lrV/HkllTyln5hFigc4qrUUmPT7FXMRlsggrxZOih2QV+D2cNuj8c1mf1ys/qPjn70dE+PiLj5F63oekltNjI9M108gtwIOeXvscKrpLbMoxxk/RH/foh6t974TPJ7nOacEqD+C9wMq6r48vM38+b8D5c/7iCf1nWmZN9RlpzuuM+7hA3brR+Xs2v+WTGYuXXwAFp+cbRy4Oa0hm4u60BsiJMc2HF7vgQ4on9Ew4A5dTKjL/TE9/k7fx4WWxUhIZTBgwmc1V0JdAI37PMedwYrp8Tc5/PiSJ18vhU2LdoK5M0JqgNkWrbKxYc+0IcG5KlqEVwb4JUzybYNuysjwYYRUCFOWcUZdwwebf1oJZ0mw5UCNQKYWvQ+2Qz+E6Z/M5pYXHYWY4XVysm6s5qkRfHYkO9quaiqAx/x0eS1jp3zlNTusCAqiIrvfPkXh+pmXmr9ZzyTNnwH/ap9bWsiooP+XHZxqgSFDj3QaO0XGMEWCFB+DBmgzAwt69h416NE+ia6xNgecYRkvpHg5+En0QDsM4mOaxbnwNkC0Zg7X87CMTFtnmdPPDQLcxm/pZwNWpQQFpwSr0NaiFzEoJnQoFb9n7JDU3jsMd/bxISvzPMwUjrKjA2hCWRf8piRAriwbn6cKqkEXjM51ErxAN0KCh14imZu7Le0RLRANlGaVlh2BhCzs9vU4p4cKqSq8CBVrhziQwjMK/qQJcmuLS6olFCQO45Gyz05iWpUFBpN08TPjiNmkRIMq6tybYmsfnim2r2Lc6v95aQ2sNe1tsSmsNtWTZ7wk0pEg2+ecATi6KgYIjOjlnmTMmvEA8TK4MWcrOiH491xlZTnr/BFIi1cO5gQA3jrR2dywmJIjmM0mzQEIuNkFhzygrd/UEVqfNalLQgtDt0L4bwcyh8D0rAESaw8BdWjPanOF9PLtTpHUW9WUfoWmNMpGEnFbdM3DL014C2QlS8k/iXfPvEAAr/3gu1Oc5B6z7cTrTpR3BAiuycMzS1azXmq/gZz3GCeQgBMjyCDbm8V6qx0em1nyKMye4EMx0TTKQWVKc5T1SnJtgpA8Qn9NPKIOMnH6cgrmmBDspmELldJaWEswAwiTTg/ZHjK9k0d5HPMgIXmbKxiqLEGgox99SsAFfK4p9K6zK2Qquu+KyCa4bAxENB9sUJRcArQqul4KnJ4pk9z0dboNhV5ARKdTTHRZGiGa4VLI1W1W0LVgZF3jQSKVKNPsExghztPN48hwfPgMq95OHzkQHCNJ8lYOX0KFUP/lOBTihaJd+Oz1TYXJics5HDsFcd2JAeqR6zuAkGZQ1uQI/xaC1EWMW6dUESImOdv+nMCiKwcHpB9hf5sCwA2YHhm9R+ksA44NVPL0bjmPgpRteDsfLAdy64t4L7qPiPlqoywcOUxyyw2yDWkPxDeYbBvKwSQGnHTbdCYEhRho/Ux1Yi0mKPasbG2fB0KKnSYVNJKwKehuow9Qo2JU8gCGsE4IPMkMp8O1ZZeMw9jqMXjxBa49gkqL8mtUbuSv5OtGTOPd9o5P54/g8ZbqS2pVgSWQtanO/BkGXzORPfp01KuekkCF1/anPSVW6nkI3ak9YJeOlwbRiqEYlD0FdN5spH5+TiukRvn5B0YqqDbVceOgFRXcU3aHzaNCyk/ougmnlLMJXknLayBGbQWaBT3qJ884Xm4u/py149LuJRc+5YGaDFzdF9s/xeHGCs7OgW2baYma1BbEaBciaApC8loweT3FULJ4zf46V0pEIkc6mhUCCAObITfw0F0IQC8xGefz9BF2YC2CeDbC+ObVOU/eUG/oSA4uco3Jn9Ks2jeV8oRPMFFqeoa8RP1mUuGcLQJzbQ8hpc0nmNIBObkBYEWSmsAiN1nOyqd9Czpa4Blr3Fw+Ame+bjK85rfdNmSrS0ErM57MYkizD9ZijEEWx9M6QsEMoKMru5GWmcEewpcFkSXqcSFSO6RqDEQhl6wnRCpQCV6Y5h8T8dFbVOWK9iFUg7zunhAXz6XOossyda2xKlNSd4thIGSej0VTRCvsF1dSoCDgeY11pTXCJYwuhrEqKZAk22J6EFYA+lhGkq8K0sBS5hCkaJMr+mfIxia7MIzVLAowo4TY+GJOVtpzzVoCaYyBLtjPICya3FIUOnyzJXMPXhJ4gf/4/aZRcS8B5yhX4/Kexnluk8lxQT8B/zudT8HQmGfNe0I7//yCAwmkdPUTAzTYPWnYzFzwirWODzMcxDPfOPgVHVLkeQ9BHlsUWDKvRp6UAphhWMLxghFEze7kk8j8LQWPxCJHmY9dfTEHROriAFBhKNDRMM7fMVWYNZfZKYIM2nSkLzevNz+HOaBaRVIjvVqR8WkBP/+XHx//93lcntJ3C28eI7pRqOnPJE21ztRaQVYIvR1guUyl9XGb0CSKSvlyUYo6ESKNEtYwH7KFo2sOkj+Lo2RDPzyZUEgtyQ9GNR2kEI9ogyo7U8nBEdCnRz2UClNSI5KXnCecGKPM+prDsVC8aFvSnz7Eunw0Czykg+Gmjnimf02btQCi24nhv044Nyt1Pqb7H8z8loh5w7HksnNOX58tW5DzgJrlgkKSkgq8eG94ZhqzflDX0fAG3eR2naz2f0nyd04ARXQLFdRGnd8tnd36BfN2pT1lgbVZAJNuU88dPwOb0TGa64uGCZL7Ouq78O27W049D1utMsa7bg4blwbRSFkOXwILZUFkbMEIHkX4n4g8bYVa0rQAkg60ITiZAiWABFgxZzrHVegKqcM/5mX25JQClPjwrRwqZoypzjuJ4prnG5LMVj/PMt3pkeUrIaaZAOJ5RVWpQtkKzNqaD1v0xE+pnCiYDVJBp5tgDhI7QXoJ1CIBCUJz6I1vXnIyn0ZIBivDZyvhkcXrr/gR79R4LnSnyB9IJnziMT+Mu502O78XEPs6fgDT+KLrN/j9++j2Z602MW/cAP0SF7o8Bz6/38ZkGKKQCdSL1hTqXEtoN6IdFFU7HcT9wHAdu7+54eXfg5d2B263jfuu43ztu9477feB+GO5dcBdD6Q7tDu2G3pfItgt4ZH+sGQFFnvE0sHKRz81bA1knTZo6FBWLyUPUbJW5RokVP4WB5oLhMsuIR3TqHd3QD0PvmZIyjHHe/2z6mKQfyVRw5/HeBvkgeklFt61rzioSHljU4WmmTNpwnogBsxfQWIno+f7s9SE2WC7tIOSIzrISqIumfCMWvKUxGd7pe9Mdvd/Rjxv6cefX1mEgEJSqKFtB2RVtL2iXhro3tGtFbRV1ryg79SjaFKXRm6bsBbopsGdawqPRSoRLkrsIMDnOh8004kOPezLoCSN9RMdfCyt6LstnMstdMKuwYmEB1hg7f+Ri4A+bLjciF4W4MR3nxk0LWNqRiLKy2y7fP7YTAdzZm2qx8fH7JTavKhxbCijYJEzFl0EgIgqPioccL36KAs+b+YMEJOb2uVomN/d1nUtXs14+AoVgCWhS5iGVCj2DL4VL8kOWrxInkHPcZkWYB6vls0UA3FelVUwCP39ffPZ14d/PYYH1VwFKIascHXh4/2HG6dJB3dwA09MwWIlGphpbhpBZKSdDNyn0sPBInfT4rIrQVsSh9LFGiGHD1Hj2mNEqUxB8Ngv0U3U9IsVjxvUrDxP60EQ9MFCUFZDmbOPRB/rBNXxY2EN4PttEuanLoSW9xvgiULHQZQwU7VxnC02gvBi24mjNsV2AfXdqUPZkWoLVEAIUMiFc51MYPLuBOyjgjr8jOFk6LxMK0s3Dt8gFcD15kwSv7Gkjz79FVUgrkFZQ9sYu8XtD3WoUC2i0KsCJUQs95QxIP2FOPHxk2imgTAQU0GTeBBLVQxpNFy07YeZkDn3M+R0kTSqTqf0yPj7TACXROpFpPvgVHCEe0AhRaz84yI87j37nv/s9NvVjbe6cFIIuBo/qjxpN+dITxdRIEcZ7SqDDk+h8PqLcFM6HRvqDbeaFzAkCoMgqo8vBgowf5mKsmJ0AJ92P2bvhoQwSJ7D8QEF7mPJgoe8Tql4XgwVOfJ3SOdrNpfaMdeDn0yf9D2MFAtynVwsZlfy7Jf7j9/NnJ/S+bgI3DJzz/rFg2CDbNJj6G+OOYQQuHiel0QywtMJJ3xrq1lBa49etopQCqYxSpJyOXExnigeYEzEEfDNkkbXZzYUhI+5sTGdLy+QB0NwentzDonIGKBllBxyJn/t8T/5tRC8JJoSL4yOA1hld85qy6ibMyfKzAdByGhQxfnKzh4TTashxjHynusLE4rUy3eVIx9gJUk5Xm+mPXDwXa/CYSnk4Tvf5fULkYdBijf3TJa9l9BR2zteb75fgZI3V+TlAdSbU8ncmgD99z89vME98ndwjOR/AFKdzSLH/mUGJAwFICC7zBABNZ7vQNIgLW22kwFR9pg+qZoqH1YHZeTo3rQy2KIAOQHXC7atqCCfMJQ+3jKKVRXNMLyMP/6IEYnld7gxqIMiaagmq8ey2LKGHyTYaeWTlf97jWpniaU3QNo3PixkKPzWatblARrCusrZ8Pz/LHERZmn1aLJc2LudtrHC++r+dx3A2/gzBCdNlYdyptRBgnpnPANKruuw0Ts9D7GFWnNmax7kisbCLxFipmEHIGpeYeqaIADAR5Ps34Mv4+EwDFET6hFRhggKZ3cURn8dwgo4jgUnHcRs47objzqZ75+M4DEc3pnyEkW0fY5q70QvFTlU6CAp+AaSM5iwG3gQpoG8JjzFp1OLpWmiLRRGEwG1tM4jXJQ1HqtRn2ak8sB9pmPMw2IEZtSeAWbxzDLRcx+bFnL631rhVjRH/Pjt55s8fgEp8ng0IQ6+wDjm9h3/sfVZaTE6ve6Kyz28TzIwBGCPAybjD7A7zzpskgNaC0gKYBCDh5w21NZTGRaDkwlAKpJYFTuqJLclFBus5TFYoJ+5CJ6eH4ROcsHlalKRnI0XxiKtOoOT0QKcSRFYXEL7D+b6snXamHJGLGgFzvuCywc7FThYw8azawrxmQTycODEyfsF6xRijLb1BXQmluPJC3WdJ5kxN5XmuAR/gZIGCCUzsk+Yd0xpz2OWGPseHILur8lbJQg0nQHJ6UvGo4jXlNGV83efzBJM4j7Xsv/fc8uoCxM3Xf9gd4pT8NIdymMUVzX5jJlF5qI/BiZzGYIKlSG8kxVBCU2HhGFtnRUhoHGZH8gIZyQL7TKNkRYloaELcokIvyMQEJ/F+8ehXEOfchKEauq4CFI21c1Ve0ljTTilaB0K/xqEY99uBrA9LM7q09if+STuDHONATWCyKbZN0JqibQQhIkAxTbKDLJEIyrHwx2l5XgVlM60f8yl2ez7r1E1FAjs1OKnIy3sTV+gq8DzpWqC1TICSKa3JXPgJnDx8RlSPyVx+frWPOQVkPTdATl2mY07H4p/L3+zxM+dSDoAzSPm13vnx4zMNUIZTdJQeF8dg9cxwqrsBBIChZmSgwLxioMGwwbEDuEDkCSp3iOwADvDpjTnBV4WPL5DSB0vUJDb5oFbNDUMMvXqwLKTB3ArcK4ANgh1FLqggG1yhqA4MGLuD2kCRwWc6BD4U47hjHDeMfoP1Rov64YBx85ideU+CSg9Efs7SAFhaHetTKHtWBsyB9F7oN6UUkuKxtbFlrlbmQugQOb+zxSv76d8Pq/yc3Wc9hc8eHR5VSQUyrxXnXemE5jOfn+Xnd4xxQ7cX9HGD2Q2ODhEJEeCOUnfUtqNuDa1taNuOWhtKu6LWC0rdUOoGrQ2icaSuJDUo8HmDcnuURFj58/z+tALlPWFZt8El84Vh85d5NEQv3EBwmd/PyZ8i2IdILQCuP7w+kLls6k7o7yEqZEmwXna+kPjpfhsXJjVS8nldJ4ACDz5LFywQjY1W+F7TSEwD2AoyjpwCYnIucU2+FsLFl52Seu5YjTLtBFKyIk0XEegEBpNBjJdPK+/8N3+XvzcsC/wxxyQ3kWxKitgIHsfk47g8/SzvTOTAJmY5PcIcLRPsz80GsTYt9oTnoVGxFmLEM8OD074Rm5SoQkuBlAbxDepb6KwEqoP6K2kQYUsNjyal8x7mJpd6i9NGtUZ7jr84X4/CBusYcXQbyNYTqTozpFd06E+mduwcceXascaIi5FMtrydgtS2ZHXZ7FWTQBrOZq1V0WpFLfQWYbVPpCxGpE8KIMb7kFWHRcFAExIhKN9bT6Ak2SYgeeD8Kv+rXIOnyJTADAYa6eX6nECkFOrfogHSWpsT0gzAO8R7fA7lS2LVGeRFOvMsXgkmaq5W8bpsqjqJHCT/Q02UrHUj/s1VLHRxoY0770Of5kN//V/58j5+6Id+aOZy8/iar/ma+XN3xw/90A/ha7/2a3G9XvEd3/Ed+IVf+IX/n96LGxDbU/cxYsCPibQZgfp82DMfl9GFCzJNMtMlOG+Qj7ne1YzwfDysOacIz2ZkldsQH9KSGeX/s0cxU7rLFyUHUEYKjJTG+hww2w00kXpPJ3IO6h7vG+aCnlUI+XEGunOzkvmt9b3zzx6OE1A5fb2+t1I5K+x47yw9Fpb39vUEX/O/yd3PkGUBhIxUwEXRUiDrBGXIaxaFSIVKhcrGQ3mIbiGSXQJZlQqJ/kf4WG714zdvXtUMKiLKO1HPkvdk/tn6nQSHGUbPO5VfC+Cn9516rLXdv7cznW7p+w/z4Xtr/p4e3un1TqsR1ucUi6/KoAWkJEpIz83KHr9+fwz6vBdyvhfnUZ2Pfq68Pv/Dw1fnv/KZ9kk8fxpmvHey7jEX1TXnF2PzGKG+D05kLgr2sZTkYsDWa7w/D+b8P10ify0rh84VROe1Bic2JkHSuo+Pj3QFGovZLWudmm0ZNJ5vrosBEd9bZ957OvMBrXTd+QkZlj4idT1naXy+dl7be2vV/LzSaPljfziRlb7U6Aif0CCvMZsZktEuUzCcVUU6x+mpiuacqkcIfE9jPoMAmXMk95cYY7kH2WmgzXEV7uZZ9OGO88gGMJlQOc/d0xOQT3wq593A4Y//jLX3NFTxOK4ex+Z5bzg/3yUCziyC5XXn2v4pP35TGJTf/bt/N/7Fv/gX89+lzGQf/ubf/Jv4W3/rb+Hv/t2/i2/8xm/Ej/zIj+CP/tE/iv/4H/8jXr9+/WW9zxidjQL7DcfxgiOFkPXAKAc1IeYYx0FxVc/PkabpHnSoMEeeEXsIoLJvi4+0SKd9bwIdM1KY8TTmxn9ePCBngSPZDp0HO4hOZ8Q8NNz6JDGTIUtx3Fku7UPhI4SU6SSZdtcPRgqfMCw9aNLQOMyoJBA/p3JOAABy7usQ00zwaP4jJ+FvRB2T/k3B3GkDXmmr09mdzndNlGRD1rlFQfP8jx85WTOpLutaoyXCGB1jdNjoTKWIgkYFFYINIheotFlOXLSilAu0sLS4yAbFBkXDKrTLj1R6LoAE8XCHZK58sktz88IkVxg4OX+X+TWIGDz/nTcnMjHJhDBinbEMfN4Tnssq9Ak+4oQxJhWd6eIUPel67vMc+cAJhBfFcnp28doJFCT/HSmqYE1U6KIrSiZG3VYawNdCd8ZMLn462RN4e08MlUzRhCFn8CE+F8Z8Nsh7M9/wNEeQkfwCJ2uh9rnYLhNGnHZqgpIFUnKROP1Ofqke7xBp2xAo8mmdo9zzxsWAy1XXRhYpnqk9iaBG3LBAjsx79ghUwn9aamzSOd9rgBWCcY8IfzpuZ/CHZJtOm1AyOKF9n87GJ8hoATporikr6DNMgScmeDl3Z89nHJu/PDy4ubvmeeAcGPqyfU8YFFpfFCmo0lCkRNk0sKqccs4IfN4jXSme7Akwq5CEYFxLzM8TZPbUCsayDoqbc9aaREorhMAMjlf14RpCMdcnMEnAsMYfJlO7oM3EzTh9+Apo3E+icHOE295kFE8zDOtVZM6fXLctnoUGWwqNdNUDKvq1P35TAEqt9YE1yQ93x9/+238bP/iDP4jv/u7vBgD85E/+JL76q78aP/3TP42/8Bf+wpf5TtGNIyah4rTRq86FtValV0RZRyrTSzkJw+agjPXK4qEGE4OJAE9IkElerEVoRZ7ZE2HZDXPzbipowsPFMUBzNoPTBwXBoAiW+CJfUwuqVrTSsJUNrWxo2tCkomlFRaHV/Yx43huIwEL40y+A/WYSTBRTiBVqUISKcpoBTR+0AB+sAoD7/FolPqs/iNF0YYb59zzFjGZJFRIACUxID9qkBnOh14yFZolwlnI/lERKGMwBp8j6JOjUoLi1sIy45LFBsrS41FleXOKzlvU1B0tskMlvs0kF70tO8LW3zkUIAFbTM/6uTjAR5xj3Mn+e69B0fZ2MiK5X1bV4eA5Y7hA8r7jJUlbkZc4qDrMcGh7R33qlFFk9AF2s6+FcOG3cyEVZ1sIYz/lxYTtFY6fXm18nwI+//BioPS2KOP1kRX4xvnxtEvPuyLxL8LhFa3+LyBUZ65/++nSduSCchbPn8D3Pef3qeYHHiviBCYBOya3z8s/vzo3lkTnBubQ4XiG1KyrhL5RAzvFYtXd6Esu9eA7Gh+/lcDJ77/0DfKxI2h/EwAk4U1QqoatKwPUQXZ9YNUjwNvH7D4xjjksk+JTzuyHLqBf7Ecf5v1xz8nf15G59BigqU09OQC9T13IiJh/nx7otE+TMI8DT2ecoWeOH38txkOcQwCe9ZVB0Vt9lGXjegjN/eGaw5njMMecJFtectfm7mMHUx59jfEPXmMrftHizNLhLjWaOn0/78Rue4gGAX/zFX8TXfu3X4uu//uvxZ/7Mn8F/+k//CQDwS7/0S/jiF7+I7/zO75y/u+87vv3bvx3/+l//61/19W63Gz788MOHA3hvbvlCwwkyVBfgKLMyZh3zRs9Behoaflrg/TwZ141eo/H9JfY8+GW+z3nQpwVxdr9M546zcdlJ7TrfTCCThizvHSqKErlQOZ3L++MhT30uAJPxkPm1nIIBPQndJhOijrMV/7nj8swAyOk15r/X3yxhop8WS5lpi8dtLK7+nBI43XEAp5/pGdCfrjjuYUaPKtCsyJneJmlIleAl/B/SuTH9HGTZ7K+LPR/6+G+sG/4wUnITyUX4/Xs5n/tpqMVrMRWx3oPpnfmAfpVzQ+SsT6zW6dfWcD5v+af7eBafArMk+H3gss71EdRMFgmxUWG5CGUMtxJmmfqKMXaCF/muD5t9fp5z1OcGcQYij8t2bur2+NnXRvu4sTxuHQ+byOlvcqPJJeR8ku8DlPP5n17h9C987PPjvFhrVRAnk63gvfqEFNonfDxE2PPj9CTm0ugP9+j8m/kCcrpAOf/GnJf+cF+SIX0/NTjH5pwH76EenH/+3jzPn0mClU+Ypr/KdOW/H5mmtIFIk8lzMsrPzyCB1/z8CfvHwzOMV/HT13klkkeeRKRJNe+PIgHd44Z4fq4fe5yf+PP35/D5HOajOe0N2WIsK6PyWTlW6i+ZNf77k9b0X/vjN5xB+ZZv+Rb81E/9FL7xG78R//2//3f8yI/8CL7t274Nv/ALv4AvfvGLAICv/uqvfvibr/7qr8Z/+S//5Vd9zR/7sR/DD//wD3/s+ykvoieHA7Z8MuhRKIA4VDpEOgR3wO+A3/gZPEQOiHZA2W3LozHfND6bwlimB3hEHf4pgT2XzTOIQW4G0TtCyUZopfVzqYZScZLx3iEoXGTgcC/0M+gHvI8oPlHSkHVDLRtqaahaUc+RvlQAFeliuz5iS8goHMEsiJ02O8M0WMkDY94bfs70A8HT/Frt4euVsnBAg3KOn8vp7/HeOa6RnJt6aBeSOUmwEj9N86Ll4eEgfxplxcYGgew2piibsHrn0lAvG4+9TY+B0gpKE9TGEsRSgdqA2hwaHU2nMHTuRnG+Ez2tPj0i1MykMRlJsWSgchFguwN+43Tvzh9+GmO52kiJNMjjtkYL8OBXg57x3KiCwZI8GUP8wx4uZT0Sm+mTWVmWxI0IQURsiqKIEmN+rfN7NBmsQso+QYmBnkIJq8lHEqCdr8viPsvD7h8LYizsM82QTybCNZasGhfMk0/ECNpcYnwi6PcpJMfJJCx2VDmlDx63RVkUuDwOizxHCgoX6JHcRU+bkkEe5oRjcrMfnynrjyILHN5GHZNZZHwzE7dwnPVPUQWTwZDZOvmFSCbb58PpTz9samy4cefYXvoviXvikGWwmNeUbIxFaijqV6XGUdgVfG7/vhjQxZxk2gwLQMHiWm0xucVRqnHNLQ4tBlVDKfk70cywCUozlIawkV+mb44+x/0Efa6RJh/wcYePI9LvjtQ3etKSwEzJMw0X7AnoR0Q/rxhDyE1dYg4oRbG1QhsPaY2fSxi0eayFssbDA9IkNR0gYgFFxnKcv+KZgjmBkiKQxhYFpTnXzYuituBth0NGnGtcE0zgI5cUfk+DCXf4l8Wg/IYDlO/6ru+aX3/zN38zfv/v//34nb/zd+Inf/In8a3f+q0AsGio+JgOuU0aQwABAABJREFUlr/Kxw/8wA/g+7//++e/P/zwQ3zd130dhYue4q4QMp3QXE55WbMXCFWzhwe8eweNvvIzD/MwD3MFbMBGR7eOHgBlGKt8MPOyHgJanAS1mEr79LmAL83H+s/4/jjgdod1wXBjPx8t6MXQ7zf044bRjwmQzJaAai0FsSD7aRHAI1pnVYJTlxHiUbGOpD3ZNiDuUfiGmPcQmX78ALAAnQd4wXvXh6xW8LkYPkZh501nRVfnqGMNmPj3A9XO6wVyksT9Rz6XqPzIzRkyO7Vq1eg5ImEoxUVNC82cShlMg+mAlPHoHns651TfE3DIWgyCqBQEeJqq9gBsEWFk1Jb6jY9vU6cbcd4ZZT3r2Ebm4p+UalaezHsEzNVsVljI+Ub7/L0pKAWw+rpggh1W5+ToWhuvKmaKS5XlxFUd42TYpmB37ubR2NfPeoYYB/E6uakS5684MynoRW7Ms8DcEh+RQpCTy3EaQXGvX89xmywLHsdqXunHw+HT+63zWFyRPf7qzBvIe3/88ecgp9edmjac5Je+YovZxGVIXGtsiAki5jV6VNc45+TUw2SllD+ennuMWZuvosEuSIwfgYdzukeAyJ9pgO15HXNwJRMQmo04JBxpU+u1sPpprfOYK/N22QxYJgOitsCYgqZtavx+ptDp8RB0gC9d8GQP+goYMh3iwvXODG5HHD3GrVDbqBNun1gUi7FwYvAmKnAss8/TaBCJNBNT14ivZ/ofp7n4Hk2zHt8n7LExp+Y6lnf3NH08BlnI9dhXqwZjJDFKbFW8GQwjn2uqHyKNvFqqfLqP3/Qy4+fnZ3zzN38zfvEXfxF/4k/8CQDAF7/4RXz+85+fv/PLv/zLH2NVzh/7vmPf9499nwrrMmn9lXMMkALEwuZzQZubQmySNPc568Zz9coNgVGFh9AyxUpmAxRNANn2ntVCPsGKm0+AMoVrmTICgDk4AUfnBu532KCXSx+DAMWMJcbHHeO4E6CkiZfndZybjvODm9PHo67lP5BK8WCdYlDZCaghQIg/HFHy6gk8sCjNvKZJmfu8TpE83/OkPNOfGXnEvcH5lvnj13gELYv0f+/ze3SWI6MGTHfLWdsfXg4sXEgdDYFKUYIV0RF/NICM2oiE5oI7ny0CjOd5Mpl9JlhiAo/Y5D2itQeS92ML9NyILTav1L/MTRFr70xggrUxwdcWO8EK1vJ0/tcEPwmc8spy1TvtnBOk+CdR4zL1RtCYD+oEJeLoSS3lS3sATEV4hayNkpqKR9XBGgyn+z0/ZP4K78n7Yy6u7QH8nTePtbnkY/xkUHK+gwv8PTyXOUt93v8HIPXxkz/fZOD8V1PwedpLI4KdS1kO/bz2c0qOfzAv5uF683uy3n39pQcQyFHFFztfwRy/AnwsdelLT7UuV2JCEJjIQ8PAx7s0IfYcqjkXc43PFDvByWRvp1jfF5oLHVwyDFPRqbJ+LgCmd5KfrlCBXA8f1sdYx+bcJ2g6a4R47UthMUeOr98zz/UA61485Mvz++cx8/jAHzi+cxQhePi5yCkoRD7/eEWJU9WYj5M95mvk1x6azQmunONx6k9wXqc+3cdvOkC53W749//+3+MP/sE/iK//+q/H13zN1+Cf//N/jt/ze34PAOB+v+Nnf/Zn8eM//uNf9mv7EY6b9wPSD1RzbKLYS8Wl7dBIso/D0OuGvTbctw3H/QVaNtT6hG37CC/vDD4qbi8D9xcA/oI3795gGwdehmJsEjbnBVYVUuWUeIt+2kEtwugEWmywGaA7GoAGQQN7GFcUFFcUExQDdAxojxRAuUf5mgBjwJVAxI43sGMD/CMoLigqqDrQxh2tdfRmaNWwVUeLZoOrBmAJeAGEQdpAlYFWBvbqqNXnBHZb3TYlBpsUdsM8FNgEuEPQJrxml9rqiOt1bO50m/E4YuEYspr90T00e3KErt6Z2T2cxx2kBQsEHUIb6YywSoWWAi80UkuTtdJ21O0CbIKGQbv6TVGaozVDqwPNjR2R60BVQw1jqloKaqlopbDLcmGH0lIBmRcZIGXOTJ8bgkdFwiwBDwqD9L+SfndEGpJXX2ORL4WTOYW/AoSnwwiWgOOdNv/nqhA7TfwEFgJ2kbboZJ0bmU6tkUaKRpKxiehaElDEeiJZ9TUMOvhe5niwf5mL2snxs4/lXaFdgWGwPmDDHpPU7swkzrAtP7I+JDeUteEhAcuqs4lqFqNbsAdrplm4H5bqCdpO9gOZ4nGkyJC9m/K1zGhhwE05F9oEe48Mn3g05wtgIvwmPOefZ+wcH7Ii7DPPktA+Z2+CA8W6T8nQnaNrU84HZkwGbckr05Ki63U5LBWU5bc4KNG3SHMNE2i00TgGN3t3x90dd7C3lcBwAGgABnwFMD7m1tiFKXdDh/od6oVr3rhD7YCMAzg4AO1+hx870A2llYj/BE3BQ6KjhCD8QWLZTbbNxgmjDgAK0QEJUTsZiIXhNFg8ZDVk7/wsfDZzYx7HBCfEL4Wu/GHotm3sit6qox3sWpw9qFIrUtXhxdFKGHyC3evraf3NxrBqAyIdcKCaQ/sd0hvQFd4P2Kis5AzGAhhkecqA1w7XDtcDJneYDB455DzXXSCbME5noQAqs9GlITxgBFYCCw6B1GTGLOak8L4GFTxinmH4bFgp4bNk80x+/Y/fcIDyV/7KX8Ef/+N/HL/jd/wO/PIv/zJ+5Ed+BB9++CH+/J//8xAR/OW//Jfxoz/6o/iGb/gGfMM3fAN+9Ed/FE9PT/hzf+7PfdnvJWax2Vo0mgMrZ2KjUSW7sm8bRbJB7dWq7HocNOb16QkvL+9wvV5xub7F0R2X/cB2A7ai6OkyWhusht1wZTUQS7AS2RKAZy+dBxGsph3xrEEhynfhQn+SaqwIwVcFRkYHwqi+qLPpVZHp8ljimlVLlMoVlg1OuMtXZoWRzg24FkU7VfEMUzpSSgEQfW40Kp+i4oll0IoRED9LpYuEp4sEGyhZWZVI+yTEFVklsJK5dx7RpxnDwQZa8JMkLSc9J74q+3gUzWqjglILUAUVFaWyl05tPFpTNFfUpqg1qphUoSUbcMU9DKFsOsgi0kCMYDR3dODMYMwgMVIP04sn0m09XTAjny6Y9wUiEI1F2bmYAThFRAEaciNVwJ33cp5DgtDYaM0F4mvTU8/u0tk0YN31FSnna8U3MyR6r3w9r/mMi9yogRhm03HZzaJTs2EMjxx9/K2n2zHvEZCY1+fb8JozFRU/T0HDiYbPaP/srTGjuryMcyQbPzd4MFgyI/tzpcpDKXGeH9bteYg3z/jq4/+cf5O/b+/9jpz+nZ9nEB9/LaevIGtOpNGZTQiUQqO1IcxGhOH7ZMZXzy7INmSW+Io5LNqEjGFsMxUdwXtsYuIewM8xQnuAyI6vyp9Tj55Ac9QKRrPQrCuGcTOMdg8h2YNJVkRiVgYWjdeVHCCZzuYGOXvIZFVOCDsnoJtMUob3HhmcSEsY2HYiHhjbBqQGJsmLfG2bXaC5Jfhcxw2GpGwlNnLN+Y5sUhptNOJBa6yHJc7wXEAx02t+kgsEMz3TdQLQsG4BITuP0dNauniwx2UsB9859fTA2MV5njLYJKKUzz+XDa6DfIPcG8/M96/38RsOUP7bf/tv+LN/9s/if/yP/4Hf9tt+G771W78VP/dzP4cvfOELAIC/+lf/Kt69e4e/+Bf/Iv7X//pf+JZv+Rb8s3/2z75sDxQAhHNmEBtQN26EqmilYKsFpbDjrF139KaoXbFtit4bKb+g9V996RWO+w1vX3+Ed2/ewf6/5P2/r2zbkueFfiLGmDNz7b3Pubd+dlUjKBDvWQ8TCbMFEogWFqAWJi1MzPZAQioMBP8AJiqBMMBBOBhIbWAiISzwkB40SE9qUFfde87eK3POMUbEMyLGmLlOVXfdEl1CV51Hedbea6+VmXPOMUd84xvf+MYQPr113ppydqXf7tTbjXq74fuO7Bu2FUYtUQccssRl8waq6oGwS7hslBHBE01o4oJaPGXkk/RHkXT68IvBy2QpXr8ItQpVCnWUmCVTN0qJZy2VWmp8XyuFSsz1nTdFsAN7Lexb5bYVthRchaPowDRu0JDvGlYLeynsRdk0WrOrBnDBfbVpF2EBmKoBTKpE9jNFWqUESEEvQd2sNM9g1ydjgoROgdnXlOxC0sA6e/0W+5EukLXAJmxS2feN7bax3yp2r4z7xubKbdvYthgKWLb5u2WBvXimaG+rsE+17DSvmgCFxQhIBm6ZIMRSGOexuVsPdgGzFT8qGRy1xFEuh9aXgJXsTMzkAMtBIkFll5fSVwRuITfo3Hx9zHPtLyXRpXJd/7nP77E2bp+mQNNjZx3zC455Cfg9AUrrtkqRnhv+SFfmVQ7J17Oc1TND6WvAD9w1wawzlcZRitPYySfjw8RRKYRN9mI6yToX8Hg1XYTZhhvnflge8svPyPpsK4WIz/yi9QJf4HBtU35dy/W9l9e6jjWPi9efn64/F4BcL+Dz9wOcdNeYuO4afk0vhbCpmVigYWj+e8G8MIYyuqyhgz4cTx+e0QddQaRg3WIK/DKIDGAyTBgp8wsTU40158KwQvWwesAjsVQPDxyxLLMHtYW3BCjDKJl0+txL8mvPZMSRxTYG2ErWKdtLZgeelskY6gJ0Bss5GPxKdpMhmNniCtw2Mw9bmo3QlMVrl0z0qgpVnCHBGM8mBRHiZ520z48k9TWxlLQsKHKx2XgmeMxp7x8BygQplhBkgpFoZ7Bo9xBPR/M44MmnT8A+Mjk0XqC2z9WZPLxftpTTOSrCWQx1FAlgLBb7sblfI2fMgyCYScf/kwDlv/gv/ot/4L+LCH/4h3/IH/7hH/7ffq8iGRjLbLXV1Vo8J/SEK+tAtVM0qC+VTtGGclI4UY58nigNlR6IVRLdloqWLZ41vpZSGaVe9UAz1HPWSNFsXwUtwfAEfExoLi+6kTnF96WXSwkbsF1igYsqmxY2jfLDai0Wi7bimR5kz5dqQV9KFJtqNCgQS24rlVvduG37em7bvhgUHz0oULla5aworSh7UXaNz7bLhco3gU2EKunz8louqYVaa/TsmyzWpk7W46UdfGUZeUOLTuBmL6WJi4GZ7cBkuWe6QGqei1J26n5j2+/sb2/YMRifewCUunP7/Inb253b7c5+39lvlf1WqXulbIruG7JtMYt9GcDIy/Ui6zB+lSs8qONZ4pldH3NXEJuCYkmdxQxF+f+pSpPpchlI1XVkdiMx42bCCq0XG5FhUkQQi3q4pFpWcLCLQVHJTFsKU4c1D+tVRikiqxvIpSywPN/zSrJemYQ8jqk9MU0xZmTEa6KxTBYj9FI2TydZMjCCys+fGUDD6UDPnxnENFybm7Gk5TtXAH+RVfLKJC43YskAzmQYEjZLzB5SucwmEV0b7QIpcL12ZtBruxc+rpf1sxd/JS//9lNG5frzlb1fwCTAQTehdTibczY4zii1bp5dLD5Zhzy0MV/bF4Ph3aBLMgkZtD06I0kDy2lYadmNohcBkQBIX87LBEbLHzvPTzAKvvw8tthjqcFmykzSuBK1pCDm2pu6wrgOUeqYx1MCdsVXmX+fLMQ861c5TfE/ZfugSM4Wyy6eCajnwc1Oqe7xnGaZ6zpPpkZXmWfdWxKwE1I3GbdBhAdxiszzHp9xF2cOTr/NcpeEj1YluonAcu4cMfJlzETBk5S6mIvXnOq1620uSnFPO6fwvtpyuvW9Cm9VuVflVlJGYJFIal7noUoXoYhf5S1iD786Xl9X9T/48Ws9i2chvCsd4eOtMSm5K/++RLAjcvScV3AVFYy52i7R6esmkiuMXLirxrii64ds7+MsFE9w8pJ+TrFZ0vgTqQsZ6DLgXap9edFHyeqHvwRl87OyFr/KhZodWaWYmr4pYf6ml1GbJJNi1002TeemUfQqXSV/N8s6yyRbZrntojDR2NgvM6QLlEzGfgU/uY5BMht5tUefPzjtpPXFt0T0slWPzCQAm5aYAFprGNrVbWN7HRJYozQUJaI5pyQpsWWUMNcDL3c6TH50lXdmcJ/H5GvbuoL4LMksI7W5hq/1lhXvABByfZ8ZXOc5yMecqaRJvVkGWc028le77tm2PWlvRLPk4AkwLs2FZhvknL0Rx5PACV+bm8+Sw1yPqikWD4BimgMuxdeZiDX20kSa+GD9PU/Lq1HyMkxmOlJMfJhsxiwtzECxNmFZZ+oDaPBXgOIvAfe6p67LJh+C8vx8fxZTEiju5T2vq//yeYQphX6FMD/ZdfCf/n6WTgKkzOqI0AcfnmMQou+piQI+WO/DlVLnep5txYpf1zr3p9mluA6cn4C7WWL6cO5ez8H887yvkg1l2su/3Od/Rrb9AgESXFoEac/P7QsacY0NeRGEfoRPzMGsH/YjrtIanlfB888vyQbZ2r1kYRcive6Judb8p8chH67vjAO6EJ6vz1IlS1u5r67POt9t3g+JN6fMa7mhv1zq148xz8T6W37+8GWapqfBiG8lwVGClpU45adQfzHGY0Lu/ITrXvI/85r+/R6/3gAlO2l8DLyP+DqSo7QeCx9JH4z5jHYwrCHWEG8I+XU9p628s5wO0zchWLWPFxxeUWkMLOyzVitGJ9p5dXkrxEqeJOukOnFLr5MRdOAY0XbngveB9WlNTyYi110VgwsDTKzgnt1K6oYyKLloCilqTcajilwARcJq3/yq1bq8/mwuWuI5Kfn59/XvMtkRXVNRY9qmZwmID6Dng+MjLwDsBfAsRkuvr6KKTKFsrZRto9QNLS9sUs4XKRqln7HXcN7dNva3ndvbxm3fuN0r+17Z9tCqlJxaLEsQvS5yREuIm27NQfp4A37ckqcLRWxEoXvIn7f8uqxM87dyg58qeF4Do81Vlz8ruSj8NdTl2RPLAOAJ4tKgTiOr0VKiVDpLVPm6M3N0pmh20unXxxs+j+iVBclnMhkBzhXTKDsEr2lMpsLxNa1hntrJoCTzv7LDbnBm4G0Wz57PWYXqqYnodu2LTgK6D+FJX8DGFTidCPivA+c8A1SemXUdZhZqdl2O2bUZ9+AUu/6pUJQxKIBhbPDz1S9gMpVCF0CJn5h6k+HBnvQhnB2OBkcTjibsKWrfsuV4WY5P0JHP0F/MpyAWQTIcrS8g4J4gaEAfYWGuC4dcIHdmjAE0Z5njdT+Jp+XYAyTuYaUk+yzLFVVe2coVYPPsTdbEyb2VLH0Qx+EvTMTq/FpnPq6qvDAoU1uXAVrzIJIEjLef4u70g/EuLyxKMH6LBmTuycz+idX6H68bLM0cebLAxmJaQdWpOJvAPoXC6mw5TD2Nq1c5ZVgwKPPZc4BuX+ymLEDzU6Ay/1W4fG12hb1EdfutwtsuvG3C25bO1x5rrFvc8z1L/TL3N3vZynyCan7lx681QIkAOUVNnnNp5kIZkMp8Rsd7Y/RGP9tq1x39xPqJ9xO3E7eGjYZZw70vQx16ACDGfEaNVD1Gi5Oh50KyTndo7pw4zZ2eaH6y91qgVrAKW3FKN9RHKNoTbXvvIXZyZ5yN0Rq9jyXulaRGXF8A6rxj8RAn2mSLYqUIrM1o8dIzIyBe6yUdjQCSQTkEyZ6lrAtgwUWVSiLvi+n4aRYlH3Qa4iH+KkQWdInofG2Uy6qAl2GKs2ThVw4wGSBmYLWsw07twyy5SBgz1b2w3yvbfWPbN+ptCyHtXpAtmJMlhJ7gZD5exRKv5/HlkGfPvyS4ir04uT2bAejK+lZv3muWsYLelcGt9TFfQTJ7XPBnbUNxbgTWyPkSpbJSIxgE6CmARd3c5lsm0HHLzTVedfrIRRDOjDxB+2RUIkYpygBRzIyY6WLRUZGj6/80ws9NdL12XEebwtsh1y04/IU1mOAkO3Vy2Ztf2guXPIcAMpmVGURZ77u+THD4wo6+JLbJriSD84IrhbUnrzA4mYXJLs3W/1c4wvw8/hHYsq6mv1xXmCWpBRoMWifLPPlMgDIswIQ7L+zrK1Tiwzuu+zdx+SqriiTBHPusuC+mdGrvolMGrhEWAVAX+ZhHFHx1ctuZZKiULK2GJkzL3NTIRjWZt3t+vTxlpr7FbaSWVV4aJ7gY3nU/Tq1gMARbFbaqqV+bx+wrASxma80EwxRr3rpjzbFmH8o9PtcwLE+YDwBl3mPKsjNY4FFeGFiJUspWYduEW3YMbVXYtiiVRxk+r6bFvWHTsM+mKN9X8hdhI2Lj1OvO9RrxIdma4tw24b4Jt5vw+S58uguf3uDtlgnMgHMIzeI4m0HpLIO71/1/MYD/qACU4tkx4mQ71AuMnKKmDNQ+BtZ7DguMp6Uz7GRX+GDalisph+qt1x32Ups1lKs2PTPk+CgBSrqHS2aXKX5yyLHVpbBazEoLgILNUpNEm3GCLOsjBZaXffKq3cjLNjMBSgZoX3fEi+ERflG8s+KVu6/M/ru5G79Svyt9X1vuh3z0dRlej7kxvzxewYlP0ONMoyfWpZsAZdaSua73Txe6sBigGUzWGPphH86diCPpHFn3ACTlVih7iY2xpv190Wv+xYwLr5HoA7h7BWG+gIlLZiWSIV/z1/2FPvcAjSv6zx14gjB+EsycVX67Dj6/+izSSKxhiAw1xQLquhiUUnJTryXWeApkfR1gUBAigo54Tc31YRlINWdtrMjxepLiB+J7L0MG/fU4Jv2cq2iBFOCaOj7ZS48uk+HX7ehxr60GI3+prVuIAyfgmOdwBvuPICHvgZeQPe+WWUefn8wmQEygEkLZXOsec2/4cN3mHXJ9fX2HON3yAmw+QpfX/ov5D2vpeVxyG87oTsvn2Z1WoNcAcsX+9OsubxlegM98C4XpyrwASwbACVLm61xW5xJrODVlS3O03itAy8x/Qk8bLAMl9WRpnKglyj0udrFcdq2VtU4TCJDnQZZYfcH3LHP7crOdZZzVdZiNB6UIpV5gS1KsupKNtWZy/8zWZB8BVLyvxZcfMtaDzcvsE2hd5/5jiXteH1/nSyU7NhOgbJuwv4CTogF4VS6m1QarFOe5j17X/Aob8PLZ5l3vce2rRi/AXuG2wX2DT7d83oW3PT7/GI4M0AHNobac1yZ8lD28PP4C+OTXG6DcCRajdkNPg9PgMOQ2kNOgZnJ5DkYbtKPTno3eOu3ZGWfHWs8retm5i1hmmk6RMGcrY6DDKMmeiF2tmyuRfUGiHTgFDo2vmzpSoBZHNqg35+3ubKcjN+fZBt2gWPigaDhU5YY7GN3oPdo0AaRA2TNwKFgqxy21LWticZqqzXqsw1VSSsC1LJhzhdp4Cer5HD1YiNgksr1tReeIso4tJ0EjPk8nAEb3yM4Xm5FMlwyjmFNXBh7f1+5oh2qwO9zWU9g9vl8WKI2PELXZIMTDzsA5fXA+OuejMY6G9ZBXllKpu3N7c/bPkZXUewbtUq6SWYGikSlu/pIbT57SXkHJy47jr9+PH40NYmZkfIyo08ROsphtME2gohXTmR1BwSZYCqivjB1gtuoCCyqqgvgFIVcX2CYZuAVsBuELh354rPrUh5B+6UU8BHndsnPAs6PAL2trc4Junixn97VpT5AxPNbynCJuuVZG89BUdKF3X2WdoLDjfnutwc/l7c7K5JeGRydQSHbsQkgvBz/1CReOn2yiZe3HSat8m8vBE9a9JAB+hVP0VWfi84Lx8ua8TmOey+ujhPa62BGMnO4h/nw+4f1hfN2cr+/BdG7q3MbFoEwx1E+N0xZjRQRjKYJuQtliJMfsgGEI3kE6FPNVAtiyYzHYwRjZILk+psZDJK1GRHgiPAye7pziWAHZhHpX6i2ShwnYh1lc5z5Fn2sYyXUupsgr97koY0diU9WzHOJUuYJ/lfAh2aqzbVzPSupWyM6a+CxrfXmWyzo5OcXjeQKN9PTJ+yqDgsPyc4zXBa1Qd18llHUPJ2gzhL3C/SZ8/ix890X57ovy5Uvh86fCp0+FWy2MAYHEBR/QW9i5WGdphURYzQgl45QlUBqSAMUlk0W4Fdir8N0bfP4Mn+7w29/D50/x93v6po4Oj+4cXaDMezzOYWif5EJGMnmhX/3xaw1QNsuMZYQATCzqeTHptqYAVKlljyxi2pe7UOsbtnVsOPvtE7f9GZ0c+41td/ats2/G5nHii7LU4LIC88xKsnSQLWDuMUK854bbRRjpGaLJm0q2+lJSj0FsKAxbgX6MZGLEac3obaQJVYh6Q4NheBaDRezadHip1OT5WltfMiosB8TpJhvbZ8whSaOr1yev/QovHQrrTDiXPXi8tqVN/khdzbTmXzbmGT3kpUbl2TFwBf/EgC7r+kY5KBXs+buXQCuFmEb4O3Qiw8lZTUoY1G2lp3GbUTen1mxJzMLunGA6vQWYZ3VG5bnzfKBX5OVpL0zV3KVedrmVbWUxf3LHa+P1VUKDOSIhzt8cVT+9TCaLErQwF1rOjxdJTLY5zkneE3SkDT1KGOExgyyrdpxnZF2La5OJDXB+pmHTsCsBigXIgAjsloDYelDi5Fr4WGd5QTQvIG7pvyy1KS4Jhi9tl63PYVeb8QIo+czgMauYrzeHr+8lWPB5Ni6XZHthPjzLDK/AUOQCOBOeTPA959d8vCPzfV7rZ+u1LvZiflte/v+6pJoJbQjHEA4TTguzw+7T8f6VOVoSUi6XDc12Ak/GIK/6S2nF7BKEzjWxAMgKP3M/BHk5wbFuPPdGp/mgWRi++ceiD3Ni8VwSUwu1vsILg+hrdb4+Fz5YgGwd0suJfLnfck7A2t0mukWYLb2XKaJ/eKGpMSvEmK5gcaBrJGgziQgdWJaXEgTMp5DM7zwLnqWdArcKt+rxLB6GnCXYFexac8HmXZbz1/FZMF0iiz2JPCq+zhlR6tGBWEtID/YC9+LcK3ze4PPmfN6dtz1et5eoCmgxHj3AXvngwuBLBD8nk7+u7z/v8WsNUKoHWtdhCVIIh1YKVSq1bJSibLUzvFCGRtYoFfYMNBTe7l95vp3c71+43x+cDW73zu3RuHmAiFhUEkzFyy0em1gKX2cAsRHteG7RDinh6xFdMwWXaagWYKUKq9TByACkzmiRGTac1gatDXqPgA8tqdWBabA+yItiXXx1vs5xYGsJr0DXmR3z4fyYAOVl059j540JVK4N4jWt8w//XXN6hgeoGt5R0xwV8FKPnUDEBZldQwlSbH6fF4BigpomMClMw6kYoCjZnRLeDvEeyhiRaUYr+ECls5XOXju3mkB08xiAlZ4GlroFRPA5gTlHGiwBygRS81x86NaY+98rEJGXNhS7vp8byApOqbK8wObk1WNt+TR/K3nm5YVDmbqrDMyRrX3U1JfMdstUORcwdTw3TrPruk6QEpXujyBFEsTMw1wdHpNF83CNtRR2+ys4SQZltj6sEiOsGvzyppit+Cs+eIITf3lasjC2WmH7YAGUuSHPDpFZUnFeyLB1LB/ByQxInozmBa556ZD4gB5WuHyBEQFQ5GOR5wqnM+JPZmOWJmSJ2+WDYOb6dSeAeB/CYcoxlKcpd1OaK0MsWq7lVR8zxczphUJJD5VJSuZMnhk0g0K6KuhZQr+6STLgXWf15V6YMG1eH08wNWjWw6VXO0IDejDYC6TkXjOTmleQddWnIplwVjnZ5+Kdz6WLmWj92ryunD7us8uOPu95YI79mADlBUIC6WmCLDdtSVawLMDp6y1r6jv2DW6bsG/CrQoxqywYuckIBjhx7tW5V+O+OXs1tmILoLjm4FVevFBekhgycVWx5VUVGjFWcmJZFldPtjiFuLd8309V+LIJn3fly+7cb3Ft2oj5RqUr783YN6jlMp2zV6A54+Vf4PHrDVDMQ4A3ooffR9yt0fWRbqqlUuuNzZXNIrNW3Sju4aYqheenb7Tz5PH5K5/f3uld+HTvfLqF1XpM10zTN5k+K7kccqcano6Z1nEJ5qCb0SzmjITxmFIJgIJMx9dBeL0aKw5m8G7NOc05geez8zxOjuNJbwc2jiy3tLh5mIuQ9PmaA6c+NlnHhpxOnzYYNujWI9ibRhadAwTn0MQAGgG4liVQEh4zJnui5elcGB4qI9gTHzF8ME3fxkT4r8nI3Hfz60xWXiv3Kd/JPUcW6zI7faZGRVZ2CNODwXIom6Ygbt88aqv7zE6ydS7dZMcMCirBvM2DtJdn/n3Mz16u9jwhL6KN3NGJzW6knqnbdeDZrreMGFY9Rde/X1l5nm+cV4VKJCZyJXYvFLPk60cWfs2qYr6VXM7HoR2QrATEayyA+PL+89fXNu9wdcRMhswSTOXZTO2WvgT7KXSWmWX6FcQtxDlBQ2t2jSxGwVO0GZteGLLNzTnYk2F+dVEsgEIOLY6A8YoR1/lcQW6+5gTpFyuZh3wFzGQ5mNl6vMzF0OTJEs3PMdfMC6a99B5Xa/2aYZfgZP6OfPilmIjbKTQKJ4XDfbk8dXT5xaxu9mXqVnAvdC80L9mB6JjJAiJjxEBLN7LMbFE+i5tiSQyW+Z0Fk6YmV6kjbsYAjgZtQBudlnuQWEfWcNLBpZ+aT7m+zgW87h8JTxUHE4vyyLxFlWvyeBpzxsXKaywT8BjumUDNu8tDJ4dIDIddZfNZDovzH0JWpYqwy/Tpif1qZKv+EF0fv0h0C90U7lXYi3CrMfk49uu4J4d4DiGIkR3x7FQG1QfqLfOaHH+xQMoEJYZKShUIeYFKdHAGeBGkBLgzic63qY2bZbFNYBfnpvBW4FMxPlXnLSe89GSYRZzbFsyL6rUnjVni9KvB4R8ZBmXNAlg5VG4nk16GRYDPml4osXWBBLQmm1EpZT4vF9GgwoOzEgolx1wW5AoCGSjt5dy/Js6zw8CMNeXxY9vNzJoMyAnLlKDDHcyVMRojpyivgYX5Jq9M+Mou/tR/L7naCw0+26Fjl478qifw8/w67a0DpOTv+nWe8/YOr1p/dTKMp+bvRUeSJUi5fmpyPORmMAn4md/NmvL0NFCZwWZmJddGNbOjyw9jZhJ5fjU+Y5ki5SmOWy3JIc7TmfvqFThWZEoU5RllruGFuam9Rm1+ku4yz/NL8S0z5w8RX+WaBJr7u6xjZSLCFeUulcLrutSXz5tAJ19w+p/IPG/zzf0VluTqfFk8Mxn0l7Uur/+2ovcUKvoCHRMCzOs2vzfXv/o8D/E9FU/SKq/5vBbG9fleE+K18X38cB84C//TV+Ulmf54Sa7U78Pp9pffeyU11uWbvzhP7csLTsH0BIDIpQ2aLETE4NlxcTnJkiAohhu+HPMCCBf2bWO2YIeR21USm9dUrmek0MkIspbnSgJyKOo6xXl6ZyvuBKu8gNS5Lp3ZBTUDYepQPDodR+5fQiQX81pdhfTZsn7lBJ4gxfPExulOhZ1JAn1dxiFepoVCnuc035uAPdbotQjm6b2OIxb8q72EJyqdw/DCBv5y057Xp/x0zeSJXALdl68vTWZXWSonK5ecr6appZGXPVBeF+46K1NDlTqq9bsrJ1l7ik2ca3EsKlfHZOGyjtgk7CM2CRZo3nfVYi999Wf50zfLx9vsV338WgMUqUH/mnZMO53O6Z2TzpmTJc2E04zTBocN2gjBZ9hue7RkeWQg6SOPaEXLTimeACUmxQmF6mlV5gXxio0oN4x0khWPiUqG0F1oHptFH/FVQ4eLjOh9X5N/yWFUkmIn98gmPLIdGxtjvNHHSR/BzvS0yPf+Uy8ITzAxuEZBXcDFGOtcHWNw9EEf0cXhBmcfWHY9+Yg/H6PztMHTOofF+W0+6OkXMwdQOUrDVov1kQABtzCKskGzRvfG8AaED02Rllc1wERlMGRQGOzEwMVdYxBi1XRbnKAuqRXJzMrTcOw6Bx2jBY1cBqKGbiEyrlthK5WqlcIGEtc6mqNiJ1Yd2X0liTolwJQFagkdWm5iwLrLJ0iY2oJAMfFnfQUo/tJu8PKz03xhRYFgDWSGQ59anCwC5OkIxXZJ0z+ggEiUwubGGvUhyRdufNhJVp39NSp7Bi7PjZn1fvM5y1ezg4IEpyTA9EmBaTIoWaLi9dx5bsp4MpLxJkGXz1/PFlLTjwF9Mg8TxMRFRCQCcZwiuYKcXIF3AaX8czQd/bRVcoL9l2DG/KfrZy9jQfI18/c1wICKhskVsxNrBvJ5HJZCxhefILJb6FWIkuBkFVbN6R3aGX4o5xntxq2HuNhexh1EYjuFR7omgWr3FK7r9XRFrOAyv5eljAxWsSNm2fVFJ8QEYVOZWYShQhM4gMOF04XuSkExKZjEwMKB0lCGGydCE6GL0EvstUa2qk+ApiUsJsTxTfGt4HvBtxpCjlohW5mn30+AP82uwFhXMdAu16QFnBPJ4D0lYnNa4ctT7TKw3JSVBkzdYbBYaZ8k0ygzh8iKsIlmOSSBVNT3otFjIwXLUGt0GkVSleyxRNXgqmhd4KSUC2PVcgEULFOl2BYW6zSJqkLMRd0gXcNhV+WmEm7ixda63yyeq53bWWNcdMxOsGRvecnzfoXHrzVAuZUw0brXnb1sVClsojEnwB3NOT0yGt4afh6M4wj/k+Odcb7Tz3fa8Y12vNPOJ+08aO2k9ZMxOn0oY/SQRbfwULH57EQO4YVQYg7URk4nNqQPZPZg9Z5+Kj1p/qn7sCyH/OS/xdXHAi+6UXVjky30NVRqGpBZznVYm3SKcEUryNw+pmeAoFpR3RBqACor+IgsygVGI9o5Wx5Wi+/1+XXIPBx6+ImHkrzHR+6d6LRo0X0h6ugZivo5TG5aQ8/Mw3N4nZMbuKbLLZex3NLtpH204Qx3JP1Nhltcs97CIE+MMc4AWpbG55KmTGUKqKNzRzPbEpWXzpSkKLPDqCy0MKP2MjwIyHClXHEi0tI7drZMK2aNYopmX5kU9ygJuWcP5nhpRcnXJNfcytnTfTOzcZmBL3/y+nLpWBZ7Z3J9/g/0fDBnU38xM9np5DpfcmW7K1Bk3pZDRIQSWAniczKDfmayL8FeEgDo1Pww/W9ijs4y4PL5seRFs3ixAVngXZ8ugJusDJ9cgxcQfEn15nswy0zxeXOs5wW85ufIw54ZN7kGfEaEF6y52JiXeqbMf3y5TtNJOkaaeF7r9eLLGC0PhTlkz0XwHkL61pTjGDzL4Lkb5+mcFXrX8PaQSIBiTkuU4GxMZvYqW0/vnGmkHKvfozyOL0PGKpNNmWWRuToSdCnp7nw530YpaRp8xQw1TQfnUmIvmwzu6CO7CK/W2ZUUzNtCQFSu8R5F2Wp8nYNadTEOtsSqcyC9KGs228QH4VA9Ga8ELhZ7jptnZ2XudWN+vjl4MS/1/HCQ9+f81itwm58h7skYUxFGiqUSSdStst+2fO5s+07ddoopw7JZwjXZ9jTySzO/pfuYQwuZC3J9YfJ483uz9XrbYN8lSuE34XbT8GLZcp8cOWdOXx1k5SpVql5/zuRKX9iqP+/xaw1QVJUNoWoE69ByTDOpRMBDwmW2d0ZrjPOg9xM7D/r5pCco6e2gtfi3eHb66AwrjDGinyp9U+bTh+I5tG12wyxqe9lfJoMx20RnH6SvglRqNqa87GNJJi72LD/U7E4qGbwDp0/nhfxpLkfHqcqY5GkuQw1gAyWzaonBXkmbmuXQsDxs68SiHyyzrFdrGDy+yhTQDb9+f3iMbO+e9vmeffpwuXdeCxu5OnHkBaBMJ1mRy2VilnA0AV2UvSyuj3iIA+e1shxd8JIZr5k+6XmyxEV5HabYTDy6xGJjnz8SRfioXefv5Ie65oLAxdcmoMhN6APOWZEs14h7UmFTxzIZhtdSxXXuliINki2ItcDcxF+DsBluObtknkT31So7bcznYLE4Ll/WDhcEk4VzVhlllRtmCSnBXWaGr7M5pgZgBfwXYHXt4WtV5PH4Ok0rSCXb+OoEG6DtVaQ54RDXufCZCFznYK4r8CUL0sxoZ8llUvq8XLb12vMVJii5ziBrevM83nV//5SR8XXOP4DM+eriLyX8CcDius4uqd6N1ozWnNYtGJQ0uDPCgMxSh7P2JfcPpl5L0CtXizCkiDJh05xg/jJl5+NafrnXJrvkpDZuBnKPo7jGVaTDca6P0JNP0OyL3JvXDyZYvHQ/Kte0dU1n00u7NNfWdVyxDxBgegKS+XPZmosGAJ5MJbnfjNzbevcFoNa9MhfB62JYx5tAc7pQauyJQTHMsljuTxqt3mULn6YYDhtyhIgPCR2XjIAcvvkKO3y9Jj7viPnx1qr/AFJUuQbe1tDu1XyWEis3iOX5WnLdswJzIKks5vdXBybz8WsNUKrE0LytbFStUUccHrbwZ6cPx7RzvD94HgePb+88Ht/o7aA/f0k7v9HOd375yz/mh69/wo8//pIfvv7Aj+9Pvj6efDsGj1Z4tCeST2sH3jZ8nBGcrSKSaukFMVjZ0Bzn7tPPYVxDoDrh3hnsan6VVGXk3RbjuZVat3iWnaJ7MCBaIVmSKGvEZMqBZGtzCdqUkp8uwAyy4VJxL5gVbBSsl2QloJ3K6MpogjVhNOE8heMUjpP4cxPOZFUgAyNRL25NaF1oXWk93Vi7xjENYXQuBsWSWl2hKLLgKpGJb+QgwsIyJoo9YnZuxMRc9RDbjdGR3mjeg0WxYzkDowlSFKQqUhVNO/tQd0104qtM1rNMFBmXriAVba+WU1yvwGo6NRb+gRyJ3To54hlh5uyEkYitv7AW3bERoLe4/4QpiGt5gZRMcePDM/PXCa7cLDt9ss1XCC8LzV1xOk5mx41lF8zrARjp/inxvrFWhByBgpdgZrzk1pfzfsyjhBBG+wPXEm3xWX6Kjhku8CXXKXNkAZEAxNNJ9sVFdpAaC8HTOyiJ7whCzHXJdTFeANtqA19AjviepL5CNMXDV8COj3mB2dfNfkKOC4ysNCPf+woLF7uTpZf8WfdZNxNMo5wxhc6x0GS9vmdJzXE0gcl5Dp5P46HGY3eeh7PXGCZYieWnlhYDZVrzdmT0FKE7RQe1FLYS3Rzz1tiIpGDjGpcRw/VmaU+uRCAgxjrXzuX225wo4aB4KehWKftG2Te0VkTLsm0/m3F25xyeupq4/p4DLMEp5snGOpvoZQ0vOVuMLD2QoAtPYzaNYYrp+aJbyWF9V/DVPGbJe7Y5AQTb4DyM5+E8z8azDY4ejRGhfZOl05uGbUMn/gsWarYO9KmjnHvPBBqZ1Mga5RHgpCZAwRJ8pZxhDAmvoBFPsyiJTQ543gWTv7zuv48PzeaAbRP2PZxk93xue5SbluZSroSDBCdzjElVXWBQs8xjP32zf8Dj1xqgTGvzZcO8UK3Re0ctFvBxnBzHwfP55PF4RinneNKOB+1859v7g/f3J++PJ4/nweN58jwbRzeODm0MZET5ZmYZE5L4FCElZeerBJFaiJfA7cjUm8XnlwQUBawIVrOk4kStOVtWggzxIESyZuiwxsEM0rEWz7ZkcgNgdQ9drMzlNtA9PBLajIvxhXNcm/9kQ9pwzhFeeM08nxFThRdJhc/XjedIyr2THxrLG3fFg9jI3NcmODOzpXeTHJYllxxjMhXTMG71/k9hrwgjTfZWm/RU7Ius51R1LSGfZ9CcGTZTsR8b4/TBmazC9LpxQDPLE8tylr8GQK607PWxWkjyWHzgFmZmNnux8+EL81wZefyqrLhl8+d8siCWX+M5z4/nBGZP6sST2o+uG1tZNOss8NK1dWVn1/c1gIdEAX6WBxaDkiJG74IXCa8bDebDPtANsd5XmWRSLPM6+Mvx5dfVVTFBwcyMXzZeJQLGfI/5LyESns+54SYGeGFQrtIUuU6SL8gflJ9c2ysn5fqTJ3i5doAPzwvQXCE9bPrjs8sEMFzHNYOd+lWeG4NwlB3O2ePPfbKemtczu59mZ9Xljp0FMlmNL1HCSfxbiUpulHmurjmZ7ALzM14wc62hZIUm0B2iDFVcA6RQC5IztExCL9Vd/tS8peu6hw5tWbnnlhkO45KaQM8RHawFkoRInHWZ7EkOGZ1JiMTv6WKAZP08PynxtO4czTiHcVqMNom3CrAxjQfXsEtz3BUxo5mhZtQ0YYz2+Ph+dFpGmXnuzUxgPLcU9+VQsEj74S/t73kF1p/lZX3+WWv29Yrl201madJkcv1cdv9fTFhuCKGNkXX+Xn/1L8Kj/FoDFE0KbNYWPbNpG+EXMjeU8zw5jpPncfJ4HrTz4HxOkHLw/njy/jx45M8cZ+NoPW9soZlRXjbuVYx5CXi5ekk3nEtrMAOhyJUp5t9DX5WD/kIKEiDFAtWm489Lm1x8nW2Vc3MOW33o+Gpxu8BJPI0L4UY2nCZw2VaI+fp+s49ZqiUYeX32mcm8fMSp+o+25mn8FABFM5fFZW0yrwZdATyuWyOmw+So9ETkkdFeOn/8pQTjEzQkAwCYJDjxF6MtmU/wD9coF9UKEDO7uGryPT8nLwDlOpb4vllon+Yc+hVomcFwLl6uHUHsKvtNBmOQjqWW+oW5sVwBKijWywRqljtmFXFimzEceWFQTINe15GfyS5gssDZPIb8zL42pWsdLc+J3HVCaO5Zdw5ArXm+Z3nR5/iAIviIc5deU6wzlaBEFjjhQ5Vq0vyrc+0FA0IGk+xymKfZcn29XN0XiPVhz+cVRlw+H8mBzP+tv7z++eUY1nKaJS24TuSfDVDi9kiwsgLL/KQXOJnvMX9mguAoh6S77vAUx/o11Xgus/m6lufh5US+fqKZ9Zb8SoKX4lfh+KddPNe9JDhzvMa8h2bn30eQYposawlHTNfQmM1On2YvXT/rnsuFkEL5V3AVw/c0ZobZixPzDJ5TXzRXZZaO51Tl+enF7dJNSLTiCixAH+W0BIN9cHbjtGgQmPdKEMXZrzivjxPMVyZ6as6WLt3LNTc1Ld2zvMVMMK8FdjW8BQCbAGUSsx/uj5c1+fEvf9bDP/zIq1h8GbAJL2s094WX95lgTl/On77826/6+LUGKJ9yLurdTu7jYOsHpT2R9oDzHkwG4OeBnQd2ntjZGGfDzo6dhrXQqcgQiikbhZ3CJypPcUQqG6nQnpkScSFm5jwvHiLcFb4ofFbhrQh3VW6q7KZspaClhG4l25tJYVjdhGpBVZbhVDNq6VSUIY7yROyJjwejP+ntxtkEaye9NY7eOfvgHGOh+IbQZWYjr9tvonvr9Hy6b6sVu+MJnny193VNIKWKlYKHeuuKHNsWfjFbRev1Z9ly8F7VZDuEMfUhCzaECdz6ZC+GZIKF/4XK2nAyTYgOqiHIKPjo2XkUorouRpNBsyf9fDDOB97fQU6kNoQ7QidaqiZVnKULz1R6Zc0JDhyWz4bbNZhuyAIiPt1SJdkT82ArnAjenm1cdHKQB5cB1PSemRlYgIprs5iao4s1eGWinCh3ZNWGngMJh13HYR7qeruY95fX8lWW9BkAXq7J1EvFe1mCUFJA+9JWzhQj+wI5SxtTgg3EI8pNkSk+YUMEHFI8PgPQYjjmreZz43zRE0mKbPNnp6W3JzBeXFTi0vlnuBiT+Fa+gU6AEDS8MIdU5lp5RUX+Aj5/8rggUKaj2MtrxIeUpCxEEkYJII6rXpnzigC+zlkAdAnxZtrBtwpHJ6Yb9+genPY7nkL4KaicX68/v5SamDoQiXKsvyzX7rCRranhoRTlhOwmil+M8sjwZbY3PNeJcPnGZjkXfRF8wyWStTB3W+JdLrY1i9YxrytZneqRUBYzSpZINc/TCtjCWniR7Xt2Vs3zm0lIvr5NAG9XAtAt2J3JLk9mua915ungK5lA5l2/WrHD7VcMtrj983V9MSfrM84S49V4HU/PPcUGPuI5xkg7imm2EWt25c7zFkNW+7VMTZivlZr3xcUcLSfaFE7DFNPOZ4pl55MXbcq8r/6Cj19vgNJP1JTd3tnLnfL4irz/SLSa1vgK+PuP8Hwi79+Q93e0HejzG+V8YO3B1hp779zN+GRBmVmqlt4QTnPKMGrWaed05D4KNkBd8UxP9tH5js731vkyBp+l88bgNoxb3qRzn1GCRdn0Zax1gRvGLoNb6RHcZLDbQR0H2p5wHNhx0reCPRvt6PRzhIlSzy4Zy0VJtrS9ZN5hqz/wHt1N1hqUjTkW3VKPMIcN+gy0uSHLi3hrUqKa4Cue0RVTZieO6BJSXa6fxmC2QcfNNyul13+ZCmgs7jUtOb8fwmRBsntqWvIHg9IZnIzxxNsT2jOuuzZUovwXgr8ZOFbeGKycQc47j6DsTrEpwJb0i/AwB1wdOQ46eB16CBc7EFLl9HyZV+NVcbnARp5nn5k+zFB7qRlm2PvJ7f+aNf0ZGdSwyIBnJjr36dDcxNe5rU0tBpN1WgBifs7XK3a5WCIWm71eG2wwgrya/15dzCIvoIzr57nYrkwF1pmIjfbyXdCseQ8hGUpfHUSv04M9z3nkEz7xQso64mzPDnHkYhvXBO0JCObjBRz6yzevy3j9wKuY9gItCU7k2sAnE4XIckiN6/H6eglSjASPV4lxjCmOjaelwP0atzDDvDAVO+4/mbI8s2RkmW2RgTleyxdowa/fj6cxTJGZ+TsxZNIIls8SmL2Uhdd/KUKWKd5N9+FJDUxAMlmayNLJEhOrDCawjB1nG/Fr8BWmFiVYvtnRo7puxatceh3uahUOoJGl8DyexT9NQixL/IZgYxpH5jmYTwMfqe2y2VwQ+4r/pG3/GhuQ62ne3C8NGK8t3hf4ij07WpvTCSkR3uyuWixt3heX8DnYpSjXvIqO48arL8+wn3lpjZcskV5nZu1mv+rj1xqgfH98i5Phg7fubG//F1oF2hM7D0RDMcCPv0SeT/TrV8r7A28nHF/RflD6iT2+IucTaWd4fpjxxYWfoxwm9G7U1qjnSTkP2Db8fHKezvCKFF8zRmo7+DxOfu4Hv70/+bkd/ExP3trJlq+/TNaY9V3hrUbr3edhvOvgOTrflSMEoiZ86t94O2/Uxzf49g1722kujOdJ+3bQHp32GLTzshIvwK7CLQUdM1DuGNsYyPOJP5/Y4wkEs+OicOZ059deYptonWxpDjM78YoAtW6UulFTwLWVSi0lha1KVYmbDqN7eNaEkHXgMtDMmpFJi07vS4siUXpHaGYRTnrEWEzoda/JbAzcOs2ewZ70r/jzK/r4ET2/stUR7ow2qOZResp27SXysXkTKkUzh8rsLAaBZflkZK1rWtgURxKgSAGIjLTn5jmZhWAGJnOzIgbMAGi5QePXppo/sqqJLxu7zsLTFYWvjYoXmQusoY06SYnc45qzdEyzVCZyAaml4RFjimSXcyypCcn/ZsbnU+8gnu3bglfBagbDkuDBP2pKAjRNYJIPeQEnhPfG9OFA54A6wvZbZ5vlhIOS9Hdu8BIlL9W5UUe4trwGKmnslT40buHpUzxKisV8wuQACvnJJriCC7otkJLdNxHIIgpeEDPxVLKwoWVb32R1AImtNTIj5zRcxQn2sA2aKMc5eNbBcRq9CdbLHMiTZeIXDZFH0F3LJ4keFzCdtutRkhg9tBeW9ZZYIglQTFfrcLOYOq3iwXKaUKY7rRNdJibBXicLsxxfXJBh068g/ZjCxqFM0Ay4zuAZiYYkkgigM/UoEeRmwIyllAwfFjNxVMIjJOdwTcZokCeDFLxaavY8ZhydqY8ZeR3CpTncqC0pC2eO3dDFdsb9LTEXdMzBgCSDEtYMa5iqhX9U8YspWq3czgJunvW9Cehi7tjssIm9bNcSAGWCbOcaiipxbPM1C/Yy7TmMLOezFqUWC1FuCV+UptnanSCoTruPeft6JBT2ocT55z9+rQHKb3z7JdUcjq/c9gd3u1PPB/r5O+TLz4IyBOoPv2B7PLj/+BV5f9B7w85vWM6I2dvJeT74fHzj09d3+tMYj8L5Dr0pY/ySrXxiq2/U+wbvn7DnDxyPG2OreLlHucccPb9xl5Pv6pN/7Ns739UHv1X+L/b+J5T+lf7DV/r7wXh/Mo4Da41inc9Jp3+P02TgBVo9ObrzNOFLe/Dzxzuff/Ej++fPFFf8feDPxng/sF8+8a8nPDqlOfuAzwqtxoI4XTObEd4UPvtg//ag/vhOkR3p0TJtWtj6gVrH+on1mADsx2Ccztad3QWTKPVM/cNeN7a6senGTQo3lJsJtw5FjapGt461ho3G8EEToxfwKtnloZdwWMLUKcSUGp02twI3xXew6ow6MhsPrxlTY8jA/aCdP9L6g3H8Ar79kvr+A/v5lb0696Hcn87tk7BZtG6jJcyc/MrkIoPXlU7JmqPjlB7FZB8dzVqfuFHnAC9KbPAorRQcZ6iFyRwDnQBlBUZyoHaKbGd7Oh6dS1fehxGTWqcGpa7M23NTvTyA3Acxg2RgDNoYcUxJ92uuicPhdDh5CVLiaVAX3QeDAAERBDx/KIMn0xIwh0IqWJ2wjCgNDjArjF6yVEbWyrMrw6P9VYlADqFTmUBnbmxB5wtbbnjBNGXgF3AtZAM407+lS4AXd48x2DNrJgIkXRIUkpliZNNu0WlXENRiMGkdWXh7aX8I5mjClJnpvmiQJrDJtRQ/lSCUgCnFAhiIfxxNsdQHfvnuTFF6hs9YDSM67jrO89m5SeNZO+dDGRuBQrcElnJpIyJpCM5xrjrFMFEawtNP1AsyCkc7aa3RW1uW9HNQ5DSPbNltMzzu6pLzsZAS5dAmyOHoY6CPQXka5Q1KF6SDthHg8XHA+xN/PJHniR6N2sfSkNgUtxdBPK89hkv4Tk/tW/GXoLzcqzsi46XbxCkprrERzQxtquJcAmRgdISHX8/TneYAku3NBa8l8xyJO9VLALKRCZ45tQfroC2ZUgfr2Up9BthQM+pwNnN2jw6q+irYlus6TlG8j8mgxKoqEq3IVYVdtwug2FxZvlieMtlQv2YKbcCGZmdUPKtIdHNJlK9uHo0Yuwmbw+bOZmH0VjzeJRKpef/+IwJQ7s8H23DG+5OtGmX7k8jUzgNrZ3hbAPzwJ+j7g/LDj5THA+kNaw/MRzTgjkHpB6U94HgyDkfOjX6ANcXGO9vtK9vXX7L9+BnGgfnJ03b6VvHyFrm+OdLeucnJFz34vr/zuT74VH6kjq9o/4a+P9HnSTtjJraOgbixOewON+BNncONL9XYPDbEz9Z56439eVC/PZHtiVvFjoa9n/ij4c8OpyHDKQ73orx5CNF2v6jKWxHu7tSzUZ4nZT+R0nA1VI1hHbGB9dB02IiMaQpnK8omBSuVQdCHW6lsWtlKYZMSi5pc6Kmr8SkgzdIFyurogHTzRa8OG9HIsFRCy7IrbBpZePEccJdK/nyaGO6dYQejP7DzgRxP9Diox0ndCKO7DrVrbLxMfjduo9zpmJk1Wa9d9RKLrod1PJNSlXATjlWX/T6qDMtReyIzn8+wCbxsLIwIgEt9u3LcKbScTExClaytF1iitZkXS2paJJ1+YyDkbCEOkyxNytx9iqrj+TFwBlBZNuNEeSTs1iXBSZbjZngTzRkomqE6hbEIVpRRQq9gM0tPgbZn99WVYUmWHScfMbU+KYh0WQ4/08VzUtEmjuZwuKUbSX2FJOcvKmiOAxC1S4MiH0tHy4Aqs3K1ueWSa/m1hJRlpTx/dh3Jh3LbK4yZR7vmTL3scUs346+/MYHJ/JqMAlNgPWh9hBfK6YxmjKZL6gQTc+eV81V4vcBQhuNwxO4rqPXR6KO/mLqRr+EvZcJZ9tDUA4Vnk6DhwRNe90hzdD6Hx+yeZAKkExa4rYUdbh9IBm3VyYKQCuZIrsKDMIBqsJ7y2qD1cpWu8RpXt4mv15x2C/OngmEKnU53ubok/VWwy2IqQhweIB0vcczrOga4VONyFc97K9r946vMRCVLsq+OwnFPkl17ccUuYXx63Cymrqw1rFKiRGOzzBzHt5iWyYRh6Q6cnVoiWaq/yjuax1I8u6Zc8s8/7em4QHpcC3ldxn/u49caoNx++AV7M9ovOlXu+LvTf/gl7dMn7LsvAVAE+i/+mPH+jv/yB/TxhN7Q8cw6uCNaKDaoo1F+2eAU6nPHvwGHAp19OHvv7NLg7Y59vvP8EgDF6htDCgPB28FG4y5Pfv724FN98rn8CWo/IPZEzoa0EQq288DaQM24e9zQn1GGSggJzTnEeJpwt86X8+Dtl9+o21c4Ffs0GG3QHyfjFw/G1xN7DEqDmyvf7QXdNu4OHUsKPfxjPqny9ji5fzu46QNlg1JxLRRy5s9IkDLiNcsIdfyhG1sd1P2G2YaIsO/7Ku98rjuftPJG4c1yVsOYQd2oBCugVdHbBlViIrVuQDoPDkHGoBQP19etol9uyH2Ht4Lv0ZbtaQUtG1glmBQ56O0b/fgB+/ZL+Poj5ds3tuc721bYulDfhfJJ0VYJ8w6NetuMDkld45J94MJqKTgNzoE0qD3pVYIOCDElIDWRRAZkMsvOjb94jw2qw9EEmiNnZEwya++zxLJp0u6TDidb6ANQlhn8ZHYzDcQ7aieWrTKz/NJHi4xpRMY92zSPbHnsaSCIRxY9PQxMk+lJVmFRzPmznrOZAqAQ9fc6e55AimIqjF7ptUcQG2NNDDDv63RrgsE5LqJbiAljXIQwxiAcBCSBCkmBW5pzhfrWUhS4BL9zY8yxCJOOlwHuig4Lqp6rLq9qWVqMPrRFVa9dKNkr0ndmwRPWscdPeQKb6/u+fjdLV3ks6uEVIjJ/fpY/V6VrPXwuVQAGYwi4cR6dQ4yjQns4fTfsBL/LJRKFLIvGhPQYPGrX++Waaa7IKNALx3mk23ajjRFdgB7P5pc7bF/lRwFVulSgYqbhwXOAPi3Yk8MpHcqIda0dhA7PJzye2OOAZ4MjtGMFohQj0fFDKQxqrB+zBVKm0ElWBI97w+m4dMR7sCwicZ01wIUnwOoIw3UBruGD7sLT4HA4zDnNogvSY92ogpYE6Ao2wrZ/MBFEGFeWZCh0SzZjJSmGnPFzxWPv3Bx2ZulEEqBJ5kwJDofTu4V7dyeSojAlWhqSoluCeEMk0KokYzLToHmq5pDCXcLqfhNhy4GIVVb6dYETE6pBHddn3oCa6UXedpFE/aPCoLRTsafx/NoC0dkP2DBujyf1fIZDqMLzT/6Y9u2dxy9/yThCByI2orOkKn27ZRtY1BXdoy4XxfqO9m/YKfj7gB8b0jZK29jOQqkFL/ecI6H01ijeKX7C/cBLw+s33N9xO4PdyMUoz57ZgiOnUHokCxvCJ+DNO083nsPZDuNtdL788f+P3R6Ub1/g7RM0Q86O/PiN8v6gfvuBL8c7Ok5qbRwyOMSia8bT+bUbtyH8xg9/zCeM2/mN7fhxGb91jS6VPmfyjMFxNs7zyXE82Z8n59k5hi8Pi21AFae48ek8+VQKX94Lb3gOXSzc/OAYB4/3b8jzSTk79wFuEcg0uYGOc4rQVfhShc+qfKrKXeFWnE0sxxnMAY0RMC19+b0/sPMr4/kVe3yDxzv+fDCOk2GVVjb6MRinMVoEDoElTGSyN07U7ee0QHn995I6hsrqdpk/Jr46EmJjIAVuFqMQvKPWL/mJSwQGjzq7mGM2knVxcF0te6aO6cBLi/RLK+gjprQCUjriA9WGyDua6oKpKxnjjA1TB5af14dxdM/2xpS0uVKkhBu3ykurtiCMq8NmRdfMjC5LTkRqvFZmpS6DoUbXypAwE7TFfk3KOoO/RLdXrAPlEKUpNBV66lvCW8JS+9kzQ5u6nRRcTnrZAsQ4sWGHcLukVsihKFYtylCy4dHxGq3eeJZXCuEAPR+vDNf8zuu/fmRJJn3+Ijf+EBg+gJfJBAjJ8PmamDDHQ+SJZ7yg6nnc3qOUYif0M8dU9NR+uBChI3LkmU/Hec8oQgIX8yjLjIJ35X28c9qDxuBdnV2Fu8TvdpvaiWA+mZPEdcP1hsseJZzTqI9OfXTKowdAOTt6dqSdASwG+PPEjxOOE1pHuuUU+nAyHVrSP2XDpDKFHD6Z2WxXjiAdmiqhI9Ly6yDMEJR0auKaJ8QSHI8Ex2NAG5rPnGI+2QENhqIQDQKmgFyeT0ub5ZYs3GzXnvq6uVIlGRaPEotHWWVPvVXN7jiRkOt2GbRoB6BZzEazSZNlqTK2s3TqfUkAZkJw2WUopF6sljDHvFVfZn0x4dgokwmeAt0JrEaymh5AqqhSaw5uFwmR/BIT/2qPX2uA0m3HTHi2IzamckJ9cloMldOcq/D8+iPt2zvPrz8yjoaNyHJlq7AVhu9ZY1eOHKJmqqCGqFP8QLtQT8MeA7WKDEV7tM+q7piGayttoNbBO/5oWOmMeuB2IN4j2GRwldaR4TH+/Yz66+fuVBHuwGaDYxiPPihn49Y7b7/8v9jsQB9vyP1TUIHnQB8n+jyo7994a0+KN952o5VBV4/j8/BIGGZsdvL9+y95U+c2ntzHY83vGSVoy57lnWHG0QdnOznPRjkbZxsBUAAkyzjdKEW4t8a9KJ+LcseppcRitYPdTt4f7/hxIK2zWWyapDjOJQzmTqIN8bPC5yJ80mjhvkkAlEkt4oTJlBluHe8n1gp2PvDzgT0fyHlAa1gbEZzbpL2jdKVLvQaXr3fuuqvkMPl/FoCZXUyLSVgRZP77Kx3qmbFMz4ax0tgoXUQH0hS9mQUI8LmpkSJTcVwHruHz42pQzihPCUhpMX9KTkSe+JQ/uqd3w4lTGN3De0JCQNpG+mXkBXUPoaZmbefykZEsNb2IfPO4RUMPsmZBSY3XR0IHY4AYLjXW4wQ+67zNgAyuTheni9DEaSqcKjQVhg6mh45N5kYuhkGy6ysEl1OdEuWcCJlRclAJ0tzVQ7A7Rq7nsiYn4yVYVpkEe15rXpbDT/alV6Bh699lBbMJRj6yKf7hdw2y3HW9Uyy9FG+vnray4FE07abI1EK/Yx3GnKHV03UXBSm8zAhfIOUixmzpg8w021eFww5OPznFeKpwqHBmh9dwuVgAmzbnFXQH2YPmzDlleg706PG1hQuuWhhiygS+reOt5/yyuC+ipJniSymhN9GKJoNiJnHdClA0gLvO8o2hMlA6IjG+T1daNLJduy/2NIgNWQLXyQ69+kPN/6JcGEmWaADKBTSFHASY5d0sfSiyjmUmII6kxioOYdNgL6oqmwpV5xYVa95kjkINHdFIewbyNedTJwObZeLYa8iyeIDmxLvZRhxDWTdNcFKcqi+jDZI1jXlYlmJn1uzWIqHF0xIiZkutEAsg/2qPX2+A8k/8f1Bzjt/8Gid73/G3nX2rbPcSi24MHtY5tPBoncYRXS5G0PBeGeMeimSBpw9chFI2uBtSnVobb1vhrRbe3NExKC09IYpQtUcmK0rv80bqlN45ZWA6ssZK3LxkYG2WNVeB09ABWw9QtImhvXP0YE/02alysJvD+4+MfaftW3RfDA8/lzYoz5M3g7vCphWvO7aF4HS6FJ7WUHO+2JO307nxzhs/MmcnuMYN2XJA1zDnNOfsg6N36vOgdYupxwAiIfxURYewU7l54+6N+3hmuzHcrNFGwx9f+XQcfHc0HvM8IgEyBJqE2VF355PDZ3e+d+d3Wud7ge8Ethq99md1oCPakR8eUatuB/JDsDTyGEgXYMP3L/i2YfVTWPw38MPwA7jJ5QMuyYHPKNJtSvrj34rBngHagzlh3uBF4++pshQN2223gvtG9TvFC0Xq0s2ghpVOn7ZO6bNiHi1DjlE1OqIky5LRvpKpmIwsZypaBm4N7QfiT8R6biTR2RUi5YL7vvQB7iXo4RHTcOeAOpea2dIsVznuHdHI3qIsEROLaw0AtFkMNyulcLvdIogKmAyKDtwb5gXZBlLDu8aH4V2ZBlhTlyOlx2TjGiySb2CbMx4Wng99hD7KDJcBGmWYoqF4cMqiwBGjWE+n39jkCzCmz4g6UiU+g5bVBq2UzCaNXoMWHz5yKQRAL3k2LHkSI8XVzNb4BEvJMqnNlnPyZyJQiWZW68FmuYGVyEpDwVGoUqhV2VDchN5jirARnzVnXgYnM5x+Dp7f4H0T3h9wawUdJcpIUuleGVS6F/pQevccQ1EuAH6vGWyJhGsz7LPibwV7K3jVPK7JxwT7rEWQTam3ne12o+wb9WgU8RXIpUDZle2+s9939k8btYRugtsRpfCq4a80ttC0lQjYhUn2GCX3bXb4tCtvm/D2Rbndlf0u1DooGnOSSwIAneDOFO/BToqGtYNbsg7JeKlJuumW5bfkzfH2OtAzWVN71YmN1HjkFHWNY//g5anRPRRaLaOOKKHsAvuXjdt3O/cvN+6fbtzfbtze4lzKVrHqWBGG+pqDRnd0CGUoZh6sC1FCKyqIaUjahQ8i58g5AihuYtzUeKvCW4X7HAqtMeLAhuPNGU8Y73lPflXkAXoKG8peKrd9R0gQVGuwx/0C+H/e49caoOjv/hOoFuTLI4SAtWD3itVUrY8T2smzd56y8fUcHP5gnCMnEScFOfaYk4Dz7GFipcHRRTuaGm+ivAF3M8oId9NoHRS2ktSylJiuS4glxYwmoQ8oppQB0j3FcIIekelUz7HoOXdikA6oc5Ma0a4GwmGGj07vzslgeBgEHT2slrt3PIHGbMEk3RqnvX2pQc/tCls1Nu1sONMJdtqPSw+X2TJNANIEoVkLMyQfuSlH/XHq5uvobH2w98GmPU17QKyjo/Opt9CXuHEjy0Swau7N4fTIyD4JvAl8h/PJBm8D9paCOhVkOK4dLw379kAtA/DXd+x84keLrM6VkVOcXStz4ijdo8VjzoCfjMDMjT1Tp3kOspRDnfUZsu0k049ynXNJo0Bl/qqstuyp24jemk7PjgAbYVJnI2vlpCYlGR6V6cAp4GFE1X2EMl7AJNbP8M6w6JiCNLsahvWOlQqaradameJTTx1UZNGCepYBZMugk+c6w3EeSK79FOwalFpijkvdmW6zxonISMbM1poYQ4ItUlu0emRleW4nXb2nVwOOd8UYaekdQC6epLyPq8vBIlBsyRUYcV+GO2yyLrGbrK4lLxk5FMQK4cJeqLVgMxAHHUKxy8NjDofGJV2KpzhytnpysW2TqeAa4RCZbYqmzVeT1CTFNds9q1a2qikunx0mUcaYnAheUpswOBo8T+F5CkcX6lCqhaNwzPDKKbgm0cHSYx+wLVji4hOwRvu8Vkf2gtwquufEX08WKAXVqFOqIzXXw6aUWig6lnfSbKmWWqhbYb9VbvewKCgosm3RvVf0KlFYMB5qIN2SHAyRK6LoJrxtzqebcr8p+02oGwkMfDFqYVSma81bl2TNImkQBA1qY3UIGUoZkvoNx62HLsUs2/TTvTu1OdFROPVhkWxYVr9GkdCmTfPOWsO40EC9rBbo7fPG9nln/7Szfbqxvd2p9xtl25BSoQq+CZQc7+GE86xfNgCGv4yymHvVtb3FgMMAtNMIU90o4ulxEkzKxaAkHhuSSY8zTrDDo0OrRxwoUqh1C+m8gNVYZ//IdPHoP/b/ot7vlEeLeQUFfFeswJCGnw/8+eBp8F7v/Nicd/9Kf3bac9ZWlTHSM8EHjzMuWGyO2Y9RjHuWXd6sp1iU3JSFG6QlewhRhRDWNZy7O82FzQrFNcogmYTrWbLWKJzdaMN4bxbTl8egjUIToWnkYaGihsNGgKQUvnZ3nmOke6yB1DTMyS4ELSGM1Oh1L1sFsrZYna10Nmkk5gp604gZFlNnYpLzOpzhJ91zfkTy6tVsiQjDEKixt8omZyrEHUbOMuqNzQY3Nw7+dKdDI7pKBnBPgPIZ58sYvImzi0WNXQUvV4fH+PoVPxV/wnj/EWsH1k98BqISQxaH7rEZh6lB1JPOjB4ZBMmuE4ToJpge4WTqMx2gIHtYyZR7Pssq92h6s4fteSU2RjAfMZAQ40zxXR+THQjhImLIZAk82gxDv0GKXz3meeTGG8MNO91Oej8YvSEyrk2zh2swCjJqbPBaMhOVDx0Alr1YyC2DrYMG4IlgFRFUAK1RWy/m6YGj7PsOZG+PK8UaeJSsegltzpyMPXLCrmW9PwwCgxcIbJTvJY41jYFzZ7AZPl0z837lhdpGkg8SKMlOqY28zpYlpQjUOn1b8hqKSA5kg61WWh0LoGRxk61neSS1M+YgFtbtPrVL874ggGbG7/VZJzgRn4Fk6n1Ax+VyWquwaeGmlS2vWYC2GnyWjOzsMuhRnmmj8jiN90P4dsKnLmzpPRL6kBc3WdMwemwgXSlVoCjFSmJuoxRHN4IFvFXKXlAd2cZL0Pn6k5/dA4DoFq7ZuqgDAY0pvdteud0q90+VXXc2r+j+QOqeTEuClGxdXgBlxH0oRdEi1Fvly6Z8ugmf3pT7DvsGVWNflisbYg6YjONO/QUGVZAi1HqVv6SGRiNcmVuKyyMJ6G6crtHVY8SejdNpYeXvYAwkB2l2KlpCoL3VgtSK7nWBoVI2qgRTtH+/s39/Y//yxu3zG/uXN/bPnwKcSMkuJ8GrMUSjE8/n3KIw2RMP5263DGkuV+Lg4dZrZnNQEO4d9RElJhF2dfYS57BmDjZStDQajAPG4YynBBvd06dIC5tuWUaCUSM5KX+qKPr3f/xaA5TxG7+LfvezyH4h6n6bpIDuG+P9G/3bj3z75YMfn/DH2zs/0DgGPM9BPz1s0duJWcfGybfHyRgpKFXJDWywF+FWhduZ9r4qlLtQauHtvmebrTIbVQvOdzJ4w/mZCHdXNleqh39DRZgTMwvCoaEI/2GcyAnSYFA5S+VdK6MqUgq3kotbwgwnkL1x+sHAaNUoHmpraUZlRC+66uqVHxJZie4bpTiiULRfN7BFR8Lp044+HRRFXujrK7MTQpG+HA97lB0im8/WUbPINh12jwyqiLLpC4OS5/vE0wjeuYlwU7jppFidNkbY5Q94HyXlZ45+VXQDHo3n+1fO3jhsYEWxolSrdCJTOZrTGsEitAJnSQCSd152gCHQjpPRB3h0iBRVZPPJL3OlIkyX9nCzz3i52qfy3M6srbsxG7qO5jxO4zyic4rRMW8BUPaB12mudGW73gOUnN0zs9Fldz7aoLWG9RPowTSk8Uh0LoQPiBSN7i1AlJzxFDoF3d9ijdzfUClR7TrPFOl5TINO5nGzACjVPDxxSuHTAijhZtpHoRZnLx5TV7eYYzK6c0rJOTKhCbGRQs8hL3qC2ECHQHPn2WOirI0YsBhGeMx5hbFeUvQZfR4xSlP8JPwphCFGtMEGsAbwGtc5svbo8NoGbAlQgoGJny0y0j8i7f7TI8anOlHL0h+pJwCSKWIMhnaWfM3iXI0Y/xmv77PNNNri9+LsyaIEmHRMo1ThgIyx1thAOYfy42nUE35xOp+6sw1nm5qnec8mi2ZjyjAMTiibcPNY4l3i2nlxZBP2rbDVwiY9wrg6pQSrK9Uptce08M2CTcnZYs60sM9SnkbJ9r4rn+6FKhvYjuiOS83W5CzD5N5kGGptkjBsydLcb/BFCp8KvG3KrQYDMCu3KQTCVTCpdApKCe3VcLRYtgoX6u0Wwwul0Idz1NBvvN8ax9MQNUxDoPruhWZh4NZ7DCrt9NBZAZ5TqaOkKotBKRp2DbJtseYYFN0jvlRl+3RjX883bm+f2N++RFJBQduJHgXdnVEqTQsHwinCieQeHo7dh0+foUjGwtF7xDNNJ4tHKVRsUEZ2EHlhzzLznK1jHiZ1x4BHEx6H8DygnQFaxIPtu2k0EwyFnu39y1zwV3j8WgMU2+/4/VMY45CygU0wDTQ4utHPxll2Dt14UPlmytOEx5CouTfPTa5jo/GtnZFt4lGflriUcaHCoEaT6iqiFFM+ibPXwVZioyhEx8AzAUoT5U6JC91TmY0gPV0CRXkM5xjGD92i5XYEODhx3pVo9UPZe4jgVIXNAvU7Ss/S1LDoAtpM2Ax2gzqmX0FsgkMV8QK+raxNs8QzSxlmMd48ZrsEqT/GHC6YMzd8kuMhJhOLwIVky5zmByIASjVJei8CbegXLk33ZMCnLX+AmIuUmKWn5jnvAzg9A9QYnC2slWSc9POk9xaW+hZujl6ilXTkMLU+xwLMMaMagGMyLlOG0trIltgY0W5FKMXSYMmXsnB2kGAhdJt0vicwmIMAp2C1D6eNnF46LHU9hvXQTgWD4rEeR5RoimpkPMOiG41gXdAQm0bXhWWdvDN6dCuMKSadn8UnrEs/idm2KCxGKgR+ualOMbBq/o4nS0RmnnE9EShaKFopmT3FrJBr7IFprGVcooNLw63S/TKgis8WouBYYykCZpY1yLkveS6mriS07cGmvuwV0x9GuY77xV0lfibZoKmLvvx4ZE1OF01WLTfqNaspWUKVixEMAPLyGZLlsvV7edo9xce5lnx2fOQ9oKTwMOfKRBVRZrPUYiRmt/ssH8UgUTiH8+zOc4SWrKfm4GPvUGLsFB4PM+bE6zJfUCZT7LjyYnGeUlsJYbML2eEWmgvRACE6z2kyDXOsAnk8RYRa4qtPjcq64iwgF2WdBPxZVioa7a07FtoNJXQqGonPsh1iru/Y0wppRf+SQ8BLC3oJl2mRAG5bieR0CVXzvyEvs3aI8z5t/tfHvj7+PBp67m021xihR5mjRGJsSAldlRY0Z7i51pD4SnxfJFZ2SlDW2Iru64TREwxmtIx7YDIoOQhIc2+Q7GyM9RbARSlrX5unPzqbUmTfUg85UlvnWSrL+9kkEvJr5tGf//iHDlD+yX/yn+Tv/J2/86e+/2//2/82//F//B/zN//m3+Q//U//0w//9s/9c/8c//1//9//hd/Lth273bGyXQK1Gq2LxqBp55SDh+98s50frPLLUXh25b0breW0zzZy2FznmzU6g0YE4BhoFQLW2R42NzE1KFX41Ad7DZOyVeZw+ELnDefnKG9UbhRu3dklRtXps8emhvK1h47kl9/eUaKWbChHN771kEe4OOXJah3b66ybg6fWQHFuKtw0/FTuCDtBkQZAcYzwJNC2BWDCeZOpdTBkxOZ/tlmfjJvaEhicLWYQ+bg29D1liZKizmXPnJuImbEPTUOt/CzEhsgMkrBKLGtTElkbUk89wQQpHeebKaYDyqD0HjeSHpxnOF42h77FzVS0IGpsdXAcg/Mc9HOwtbT0X/RHmI2FZsd5tk7rA7NCrUI1YS/GZYTGanENnUlqFDKbthzkZaNnCcfo50lrndY6z2fjeDaeR+c4wtpbrEVbuhjncaKlULctdBS9MVoMvQTnPE7MhepCb/Fv/Qy3z9HPYLM8p173ABPUHGVAZjirO8HpnkxZiEHoBJAEGJ6W9zji8zpeTbPXgLC8nLkzz5ZqVotsghWZ/QwJVF1XOcxyfguZ9RVI5pFkHALkjRGZeEm9l2q2YuoFEoGlz3ht8l1CZfL6BQojXHmDmZqYWmZQmk+u175wyAQ7LAHkRRHG2YoScLxokQkTLPutwt8VUurEtGpPh04J7ZhkV17ROGUmEZA8KJ5gPj3Kf49u1O587YOnWWidmFJo1vU0jG45aG70OK+DMPYqgrixSVz/qgSzWWCXyV4lhZhARdP4UbNle3Xuew7W83ha7htFYSsBUkNXIh9mv4hcbegTbEZHSQwI3CbbWuBWla0qtQoaFHLOAGLZ0XVSLkZMghcPvV2qD9l0MmnpTKzCplFmnbPFJpAdQjYizFEd06pC17Wf093dZTmPNwvzOfM4Fib+JbtvdM7BkeR6Qt9hmbBG11boOizv32aZ8JhzjqlzG5wWyVfFUA2X6TE6PZMZhi07hBnDNh9sXtjc4tzE8sKGY91p3Tmbc5zwPJ0zOsIZmTAFF5sl4dlJ9fcL6H/G4x86QPkf/of/gTHG+vv//D//z/yL/+K/yN/4G39jfe9f/pf/Zf7oj/5o/X3Wqv+ij+4FMV1ThRVZ0zoxxa1gVqONmJ3BncFblCrSGj1aNnfcD/AaPeneURl4BVen+Qi/Bi7EP2l8kbjxNyftySXNnOA7N+7AVxHegB3nNkKdfVPQPtXfgx96tBP/AlubtdN54nzDeadFkO1XFnNrZZWbxM6gOkW46c5eKt964a7CnsjcM9C7j2XqtYmzYdw5o/5olloE52xjSS8kswx3OFvP1jLP+riw+8g5OUF2h8tnTih2GMPYLQR3RZw5ywXiHBaipIrEZjGIG3/H2TxEsy5BOVaB7rERvIeLGGIxMboqFK8MrxnbLDeGbK/LwBvmVA33l4nG2YmFCFKC9mcJKgkTsxS2OgmeJFxSg0iwJTSuFudBsDVLZLQWAx1HgI7eO7012nky2oG3E+knMjpqDTzKbjpOdNT4Wgy8o97i82O4nyluFQK2dVyuWdFksJoTWuf4+WkQtbxDXFbG7jJdK/N7CRzLrFzMHxSy3BgMlziZVcuHjch9AoyI0+YEmzYrahkMNX2BtBulDxikrft0hDV2j2GTZbVrhwZFtIDFWAEXIijN0puTrF0NQS01xKUeWhGX19JQggaJsxnZH2Hfr6mXIb1zX7LBJQbM9cJkfBbLkrd7ZtIv5Etm2hMoweyUneAkpkQlTEtgZ/kZoxQlS4PjQpgWpiKzS+rAFwiCOX9KNDsZMxB7OuqOLCWSM3Q0L/fNk1HRGKXxWeFNJLtdIlAjsjw2RK91hEuOr4pydrPQTIVGKYL0ZPYuXdrFoaxGXY9ZS6Gdid/vI/bGke3y024/FtoLgJQowpuQLbfxX+diq7bJiibXcrWqJ5MXfTiLvdACWuIKub841MxWMK5rbJ7HnMlQI8wdo9ziQGiqYCAjEqPWjbMFQ9xasKKezLmOQbVO9UHJdDrdgZIJi93UGbTR591Mlcv9RucNkkAzT3x2312g2QijOnVobpzmHOY8bfAw4enCAZxIWls4nqMygkGLuKV63TN/3uMfOkD5nd/5nQ9//4/+o/+If/qf/qf5a3/tr63v3W43fu/3fu//9ns5BbcICEHLsRgM94J7JWaC7yA3RO9o/YxulbLFBYys+cTHAWNjUCneqdLpmzOKI97jEksK2JzoONgcCoyi9FSZh0h23hBOQygUTio7GhQksLkg3nN8t/PDGLzb4Bd83PAOjG90Hvl3tUTAOHdKzpEQCj2GA4qyV2EXx0y4m3MzFkMR9tRjodsNo4pxSxdJt6DjbTitjQVKVHQy0LRwfAoPlwxWu89hfrHgi0TnkoyopQ8ztlGiuwmYs1Zm8KtkIEqAMgev3iyylrMETIoMhqWNecAafvdmYKZUKXRqzEaT6Fawole69DKbJkLQvEHjwwiSAoYpf5hma4S9vhh9du7o3IQ8XF7JwDumaZbjvWFjMFqntSjXHGdn9MbI0uI0mRPv0aJOBF4RQ32g3lDvCX5zUH12E6RCKGFdgK0ZpKdg/qJzAx3oiFKQyMClh9fDCO+MKQ52m+3JeWGYG3fSiFN/I6zyRpiIpdjQR5bB0vslQZFYMmvTunw+B2H2NAwZMaGabPmcTIgTLfhdZvtkduYQwc1lLObfTFdJLeJBeKF0KwlKlDmBdxl6kWUayRJJ/r75CyjRWQmNPSERfIDAhIQzIq6GhfzmfJ9XgIJPtiXXsk+b8SmpztZhCSqfDCPzfbKjOcpkGUqlOowImJ7arvU7K8imC4dE6SB8kBLcScIiLyFMzVLsLtM2XbmrhEZMYqHZ4s9gzh2eM16YHSXmIeL0OHfRiOQrcfBArgGm50Yo13Omb5EIakpKLLoTPVyHowwdLCsJusvLcU9Le0vB+Vih2rPMk4xhrl2Q3PeVWTuM8mNE3vgSSdJqJZ+0W6KjAAEJriSSssukMMsf2MVcplN0H2GY2dYzkprJ8kqajhYb2dKc8wzcYp/PLjchvg7TmAPGBboWMlPW5OeswDIZUsODPc37peX5be4xj4iQgjaBptATzNtqUYvrGlvs/4MA5fVxnif/+X/+n/O3/tbfWjVXgP/uv/vv+N3f/V1+/vOf89f+2l/jP/gP/gN+93d/9+/7OsdxcBzH+vsPP/wAwCdu7B7ufS6pGk5XviZEa22p3N6efPruzs9+60Yt75zPTnsK/QRrnpT6idrB6M9o16sDvQle4SEjLgBwStT1TjMeHuO1igb96W40mzkKvCHsRODcejAs/fFgjJhW3PpXRu+00flRnzxc+IH+UsusXFMTOmRt+szz8G15UZCdRFBtoBxUBt+4cZPKLjsqJRF1o1sLvcLolHRT3LyDp0bCQmzZ2jTESiiRqOE8OwwPa2pi89xLmAgFTZs6GFXUwvFhuME4sQHnmULO4StD3ImuI8iSQf75rQSlfS/C91tlL8q91nCJVKVXpQyleoensd0KRe/0WrEyGKVHE8oNtrea3QSC3DtsB41vuD/AD5Cw2l9uqApSnO8+tdD2CHSN7MBqGjg1YrgXgM/ugs7WwxXWrdPPYwGUs8Vxny0YEghrfrRR6kEZJ2gPoVoyKLsebERLa7Edd2Mrvjb9IgOVHgxIOiXF1OAatH8Xzh7szeMYSOtoO9AnoCeURhslbOWH5nRTpT4H27YxngfbVtJIqqe4FrTWJRCad/e0hjFiZonkZmn2ZIzO6E96O7DR8d4YOYxyHJZlQ5BhlDHYjzN0EB6AtuPsMhjlZKsduccws9aERwP3wbRtZyR06dkdNEYOUoPz0AzsaQdQCQ+ULEWoGMOi66k9O72NKJn1QZvDFzPjb4zY6mebNwFiNfUnOsUPqTFwv1rPIQLXNM+qNYKs28ZmEdg31ZwTE+6pFI1AMyyTh2DEVAtSJXRzJcqxWNyMcquUN9j3yiaVajW7g25ouaPyhmkM+6x7ZMuy3Sg3peyK6J2ihvjJW71jNqiifNGNz6LcuIWuZRitK0eH5xB636ltxx4FGYJV4b0RVvFF8XvNtVTxEh0n5zFQjWnqZsE0WCH8PmpoO0Sz60g0OsI8OjibBrMyhnB2R07jRoCQTUpoB4muqGACdbm4Th2Nu2Nj0IeHcF7CX6UN43hWHs+db114H4V33+M9i1NqGKox8twTCbTVnGxMSVEzweSVEvfUW8wY8y3WNzlLSWlUa3x7HHx9r3z98cmPv3wPz6HUpogo7en09xN7PJB2oKNRiC4ctUHxhniO4BjZqalpV18KVbP85RXfYsCoWsN2Z2zCUQuHFJ4omwk6Amx+G8o3Ex5iPIvw2JTHW+VRK4+x0cqOlx2ve+oicmxGdsD+qo+/VIDyX//X/zW/+MUv+Jt/82+u7/31v/7X+Rt/42/wB3/wB/yv/+v/yr/37/17/Av/wr/A//g//o/cbrc/83X+w//wP+Tf//f//T/1/fE8sFoSbQsmhS7RxHS0xvl48nw/aY/BOGKjFmoIDWsJ1C9AcWIe4wneULHon78rsglvYjSEJkIv0cp1mvPIqbyhNwjEeo4WQR24SUx3vA8LG+c+GPYVbycmJ70YwxvNW9BhKGULkZEYKPUDn/KaA5F/mnTwfOJR2zQDmUNqdI9JxTbo4px20q3TCTAmGJvP3n7HTVeJJ26oKxjicHb7QEOrw55+LsXglhvr5jFJlARZwzpjGI/utBGbzaSv97gMyDzSJDve3LkJ3IbQRmdX5b5JzMwoUc+uOtiKUrqzVaFYWKm7KF6cWuM5dqFXaMU5ZXBI52knn6xj1heVu7LazIwpUQu+pdgvnLhTBZ8iTe+Wwx+DEnbS2Xac9HbilnOTetSJvbc492oU6SAnKmfAT+8RqT1AqfuZvi0lvAcyu7tKMWSZxrhmzkRa5K5Bq/fw2HkcMfNGzrxw2jBpIXx2pbuuzLC2zrZttH5yu5UA4mrZIilUq6u8sBKQXEPRkeJM1GHeGdbp7cl5BEAZrWUNvMdQuzF9UaLVWlq/SBtgWniqNSqdTZ1bSc8Om6LZQfc4H1jcCz6ixBh6FePokc2KeOrG5jwWWePsp+K8t0Zvg/OMtdvdr7sws21PzcyUnU79h9hlPS8T5DuAriBm7quTJ0pMAkXi3smka2pfCoSuxkYyDvGM0uqgli3PV/I4EhhlteBqiQDtEUglBcVSgk3YSnTmKNHOu9+UbS+UsofRmDtFNkQ2Cn15Jg0q3YxzKOfwFE2Gz87IycWeAObZndOiI5BSYmRVCWbIXejNEQ0mt43OOQanD1q2448sKYsnEPAoaqBhBqYQ7Fw3ns1ANUswml3NGZwzkdqLsldl33I+mBpaAhCGU2yYUUaJBY5eluD4MKGZMvI6KySYDEbWBbRK6oNyLk2y2UVJNjj1UlNEPwbt7Ih1hjSO95PjXnm+nzy/HdxUeO4PtBRUlfMwno/G+TzT3+saqljMqf4SI9zXPhG7gyZTHAB5EIylmIWvShFMK0NDO9OSkvUs5zwdHihPVZ5FeG7KQaFpoWvMdZNpXAlx4JN8/RUff6kA5T/5T/4T/vpf/+v81b/6V9f3/o1/499Yf/5n/pl/hn/2n/1n+YM/+AP+m//mv+Ff+9f+tT/zdf6df+ff4W/9rb+1/v7DDz/wj//j/zjjcUYbl/XM2kq00Do8m3E8Tp7vB89vjfMxsAZY9Iio1rD6JuyQQ9AV2pNS4O1euH0q6K7cxGlojN/ed4YIp8GjnQwb1CWCHBz9YBK9uxSqOVvrSD3w8+Q4C4MD82e4h3qhe2RFSLAQfubGuhbOpPGTXn95KBHYJxUMEaMw0LJR6o1S73jRcBW18GVpw3iM6UJi7AlEPDOvYXAsgHLFPfdgkl5YQRTYzZeg76aFzYTd0+RJghJvFh0nX/s1PfcDQGFhgxWUPnv8222Ek+2uzpuX8OAo8bq1DPau0D2mFHtNgZqAdu7FuFfoCWxEjU0Guw/eR+M7a5iNZb4VdTq/TnAyBLcqi449R2TRfZqqDcNbC4AyHPMAJyOfbgPvxhhxbbGBluwqyb5ykxMj2oLxcIBFHLMWbE0v2QEzO0im3PQKrJOilZerM0xoHY7TeDyj6dDFcOk4ypBCsxLlDsnBiaLU80yActB7DQfPDUqJDA7bKCU2OdUXgJK25GNSIhZKjmGD3p60x5PeU8Q7BsNCsD4sfVEsRNXS2loHTr7uGIg3lMGmzqhxNsyE3oOxmWqxaDMIM6kxoh27mfMIP39EYuJ3QSmqbElHl+xoYBjjPGltcLYRTp1EXX2Cg+iAkEtb4qT3hMWVyVKf+quiJ6GMhyZkBjYVWYZkVbN8W2YTczBLUTLrsd6y1uwY6jXmgjnJrEz9EUxH46I5K8ZllUXncMJKel7UObV247Yr+66UmoBkGCobIhX1EqBsCF0KbShnt5iB2p2zR5tpUUGOLC8MjX15xAgDiobAtWgKY2NmEDmR/Oydc3QOs5g1w7i0F5LcVCYVJkaXDMbDke4czXKuTCRMAUDK8vO4qbMX5VaEfYtOMsTCKTlLdiPboWMNCEcrHD1mVx0jre/zwkcpyWP8RO4b1AB/ll2PHliKKp6zdeJ3xIzRB6N3zmeI5AuN5wQo306ObydPFR57XGtV5TyN49E5nie99QAoWcItFp5bkomgOMjy8CnpFTS/Rq0wzNdCf0kRvMSeMzQYUbJx5GHKw413h4dIgJRaOKgcWjFJcXF22IbuYnbi/eqPvzSA8nf+zt/hb//tv81/9V/9V//An/v93/99/uAP/oD/5X/5X/6+P3O73f5MduXvvf8Gb35j9Ed2HMTW7B6U7/OoPB6VH76dHI+Nx1FoPajkYTWEluktMZGl0qMbwmPTLkM5ZeQQW8G5Re0SoWXgiXljKeHyk6v9LbwKWo8Bdt6ePEaljQenvfMLP8KgawzONGiqW9Sab7Wwt8i0Os7pyvDO6WOp0OGCLGPSyw718xvly3f8xj/1/+bTd7/B/dPPMBXOdvL+/BH/xd+Fxy/4+kMYDbmPyNwyWxUpjGG040gDLE/VeW5+oWBd9V0BDk37aRX2baNWpW6VUiKYejFO6zRRvvURRkJ2lZezjA58hGBvRGmlqvC23dlK5bbtkbVnCWYX5Ybwx8PZulObha21DnY9+c5CbfJZwuDrbETpQE5++Hbws2Pwqfua7RNK4L7qptQj1cke+iQG5QwVe2kWeGKE0Z8Pjz/3E7MDswPP8pwIa9KpuFNLp5SO6oPOgbR3mj7S1yPZEBGwgnhFcfYa7btsNSrIqtzfbpRakVIZ24PWGsf2pLJzHAff/BvtjCDYR+PszmGNNmKqcEMCJE/WJcHdtm9s28anduO7HgHrboLXLcz+SgxI2zRKmeFfl7VvGzAaPhpmDfeK9UE/T96/nZytcRw9GCi3aAPPNTXSmG60YAOMEKq30XPcwmCYgwqlpE8JAVplwDhHijGFHAvH051ndjV8G7NDyWnq0ZKfwsnqjumgdac153EOzmY8z7GYk15steP2Qf45Mvgp0Vl195lmOMy242BVLEy5GKmdg43IpmPviOm6tXDNc5ISwWNItqwPunUKHbyivqWmRDgturYc5TGUNys0u2FxRyX7ubFZmDqqO52OaZROaqm87cptL9FZY9mK23OGlRtnUx4S5/hog+fhvJ8xo+sYnp/bGc/GGEIr8PXZeRyd1gJsFoOtOBWleMV6jUTThKPFDLDnaDzH4HAHCkpFqLTUj7n3MDaDEM9aYYzC3gtWFO2FbYsBo1o8AQvcNuO+wX0XPqXbLHSknqEzQzktxil4a/Rz5zjuPJ4nj2PwOAZHCy8jnz3K7omyPQXCJcCUCTV9XApC8ShX7umjEw1ekeiYXZOvxRWoqO6o7hTdUdnBQ3/Z+snR4PF03p/zM42cuSYMC2BsKKdVBqEpqiP2IXUP5lCiPRkJv5rtJtw+KZ+/VD5/hk9vwnb3cMp14SnOV4dfDONPhvDV4JcuNFF6qZEclxu63XHPcvY4c/3/6jWevzSA8kd/9Ef87u/+Lv/Kv/Kv/AN/7u/9vb/H//F//B/8/u///l/4PQZvDD4R1cO5gcw+EmH4yfCCcYSsVII+jKge+XrsJ7IAihOljmA2CrgyvK1Bat41AQq5UUSbJKndYGY2gJFOnRao1MzoY6OPRh+FPiKzbTlJ1jFKDcOoosqtREfCIDb+Zs7owktu9JOiTzzqvnF/+8T3v/GbfPnZ7/Dpy28wVDjbwf7tDfOTUp1H+2PGUNw6b8k8sQBKMDZjAZSk7T2OOwDKld2VnI+hItStBFip0WWUuzOlhg6m7p66zoslmlAl8MG1hE0z21LlqDujVLxsi/ZWGXkjG88xGH2w9UbVQdVO0TOp4LgimEZSb8aoUXaZ2gTWj3m2UOd6yRY5zIgOpU6ZQGSM+NyTaiKvv00NyoBpjU20wU43jCnuFL9ErnNooNsUwJKdVdNTYAoag3MSLdT9jiZAEfcIZA7bM0wHS4nuNEmRhFmYo7WWPhnEWHkjRZxcokpwetNYd0XDt8TjKcAcclbSur5oOBZbtIJEmWcJDkO4HYZsQowxCd3AxZ/JEvOaaQoXPcykTJjmoQOJFuUcyobK6kIKjQg4mi3ys+yxPkqa1g1sOEMFTdZQRuwsY7Uv28v5j48oHzqfWMDemTQKycJFurhKVOtOYGmyxRdnmHlN7ENGTHM2jXKDk++bG/zUS2iWklTtzyj1xsfoPczD+lBGzoSKH5kTjaM7ZvqSxJyWqyNpCPn5goEaFn4szcJvKdixLF2uLCZE0u6xN7rlWhghki4eJpIiEp2EEsaTJcs37iybgpLHqU6uu/TRMV3ltdBAhy7MrYBX3Cqr9cq47ifiusjLf1cJfSYGlmtmXNomU/osSXajj5Fmc/MS5rWbM7Q89FlBsCSTQLAVV2dWtmjPPTD/TSU0LVtR9lLCCLRWat0iQdFs8ffCsBjkOLozmqeuclZX4/posoxKnqvU4c5yoIssbxzBKSVm79w2Ya8eJbCSr5UZpDuZCIRLw3BZe4gUCSPH3PM9BbZ5iL/y4y8FoJgZf/RHf8S/+W/+m9R6vcXXr1/5wz/8Q/71f/1f5/d///f53/63/41/99/9d/nt3/5t/tV/9V/9C7+P1J+h23d4ucciModstxQHqSdaD7QKpT6o2wZu6QOlC6lGZ0uWN/REJJwuh4XNtSGMMeg9Z+RIKvhHz4DA2hCm7bkBiMYi6AXvBWuV3gq9KdYEOx1rxjh6AILk4qoINxU+b5ENDYnR22cYjGaf/fXw/J9IUJef7m98/933/JXf+6v8/Ld+ny/f/w6mwnE8+Pr1F9w348cfNuh/QusPfDS+yJwRA6qFPgbvteZcB5suyGEEZFcXABOgSHZRSVCqEbSmYjsC8UmlF9hUow1whOcGSdm6TM3E1YK8FU8hm0JOje4a9kqarXrmseb62bJ8Nyhl4KWj8qQOqKbRimcOPaGQDvzZQz8yhS9ENmTp0qq544vANGCr1mOoYw9RWQRLIqAQgWp6n7j1aGX3AEExoj27ArKTyCREj/Np17jU+Dx95DwhQTXKdlrvIBUphXJ7Q+oGNYb7Uc5gQJ4HwwYlp0krEq3F3bDTGGfMEGkESJibywK9FhnWqBW/Kz5K6nTCFyIofI3Xr9OgUJe9tk3QYFMc6gyPINnTryF8eUBlY4aMQWTCzWdnjNESoLf5fVLrIQFil7W8Qf4i09FilgHUIxiU7CqynPzqQ7AR4koyQIeZr0OPkl1JnYEnIomuBqcuUTAX+zYZlNcb1D2+NzFMghbJc+XiL6WZaNOObg/LLr0Y1BY+P7HuB54kX5hp1VzCRowcsARZXaBtcJ4aCZLveUeWaMf3GkyuG4cPhocibxrVhcNunK93C9arEh12xZTNLYcbZscZ2QJOQT3GeehIX43h7GbcfHCXwRDhVoy3Cm9VuRdNIKDcXTgd3sw4k8wMXVW0RluyDX2ELYCaoL1SxkYZO3Xs1K6UHuJO0binpm+JrZ0pLRRSRyiaQyGRMHok2tqbhZHi0YJVa20wuuRwRUngmq8jxARjNdBg8SxbxCPJ0Liulwxkgf2tBCO4q/H5tuVz59Nt5+12Y99vWDIZLgGI+hD66fTD6IcxmmCN0ACRt0FTTOM9bIS5HB5tvyrpxSLhkbIV4bbB2915uzn3HXRPJm1k63iiV4+KdASmLBdpjREG5VbB5r3GC7P4qz3+UgDK3/7bf5v//X//3/m3/q1/68P3Syn8T//T/8R/9p/9Z/ziF7/g93//9/nn//l/nv/yv/wv+e677/7C71P2G/XtHgZj5GY3ZysUMIla2P5sUV9zR7YR8yYOkETHfU2jjDZes8xGxKK3Xlq2e1lM+0y06WmuYyXryy4UqWHCJIrqDi44I7PBgh1vmYU3bmWL1mbdUO6gQat+3t74XO/8rN4hVeJPTo72RH8A3r/yOM8wGgI2yIFY0VHz3aed3/juE7/3O7/Jb/7O7/D9b/wVXJTzeOfrjzuf5Bs/3p29/ya9P3BrfF9ui8tQLYw++Pr+nt0C4UL4ClBAEY+ZPssjQF7KNdO8CQvRGEZvd/roSyjXzDmMqOFztSWGUDLQ/V5eMh3ZAhaJLP+LQrRJFw/vDJHwYyl1sNXBXhp7h30ItZ0RLE8ID4VCezw4nk+O80k9nyFbGDDOaDfdNLpkhIvCFYt27lKEmjmQOfTiIeRj0A+WMNB6GKX1Hq6L0WE7UGmINKqeWD8ZR2M8R0xIbZHJCULdnG0D6zEYzokhf5SNcMHaYgHUCrZFBmQ9NohWFoVbeNkfhuPdcvaLJCen19oGsmEc3ww/LdpVu5DEYt4yucGjWcu2uO807r+5uZ9WOAecvXCMEmWAPkslYaI3i3ytaXY6SQbcEO82Uw4TTk9mRF5KmxoIPXQcPY5XJF1Nw7xRSvqw1Eo6wlNT+7G0Ge6rTIdlm69I6iTARTjFJgHIqLO2P5P0LFpODdTsAUZfaBMioXBWB8/y+vAw+zp7gEadbexTq5BJiFRLb5qxuo/KtF1GuW2JkDw4G3OlWbAoUxAtVpbu4MhxC8/UAtU0bTSz8PPIPfPbqYymVCp7r4hu7FnaHMOSYfNcYxZJQM8VonDzcNX+rJVDOkNS+yJXy7Jnm+qnAr3AZxV6lpDDPiKYPDVhjHAvrR4auE8Gn1z4jPBFJGZ5AbuHgN/GHCLASxkkXmeaQmoOixQ0hpI7SMkhhxKt2QLp68FKzKYbsI3XJFJwlWi7ndYKsZByH0i2NoO2qrLvlV3hrShf3u58ebvz+X7j7Xbjvke3Vc99KvYefTFajPcZptcsnry7h5coGXmImF0DwIpOZs7ifuC6l2KaeTKgtoixBUr8BG8CXZAenWZShE2UqkpN4yTJZCOY1F89xv+lAJR/6V/6l1aZ4/Xx9vbGf/vf/rf/0N7Hp3OhpjJZL3Cmi2JSyl4oo6K3CHCmkUExws7ZumcNcVJRgy6Gtuzd156ZbYy0nmp9piDPPWmrZBVEQQtaEqD4gC2urtZKGRXPia9DC5tEsBFVtm3n7e0zX+6f+f72GSkBUO4cPNuDk5PDOt0CXFVCla5bblLi3G6VT283vv/uEz//2Rd+/vMvOMp5KDdt+PMLN97p377QewHrfF/fmPNFVCq9D962jZ5ZbrOp3QmTNLI2StbyYxv2Vai51OJxjQSj141hg5tNJ0l4dF+bvRNCzT5b+d1jjkb+515JJwPE4g4p1qlq2S6tMU3Xwva6WmxMmzubOcVGtAEOx6wwSg+32X7SegpaTaLk1jLhLUotAXp0ZIbrOS5eokMADT8NxcKddUTBUSz4T7eggtuZ5TyDPjrCichJ1QO3hp0dO9LRsSUYkmTNul9T3cnApwplRSdy7C7iBRkxnE1ria6bFLIuB0wnS1tZ3iKjbKb57uH34mpYy/HyXQIkFQuTwxElCLNwGJ7VjZGgY26Yw+AcwjGEZxeeTXg2eJyZueI5zC0eZ3P6MM52+UR0D+OtNsKDwQGSZfDcUGVR95oAWdJe3alCXC/N9muJDV7VMnPNCbsuaUIYizLaUgUvMQtqlhJmeacWyfJFiE3HB3Ay+ew8sleF4EsWGe3hcQxOdElYOhmPETxl6Fvid2J7ifKvLOldHrvKEv3WEgGQWXWa12MQSdzIkpp5lJqb0VJCZ6apkxmcCHRjHCMATIvyw9E1QQOxzocysgPQLMSalmBvWp+rCTXnkm3JdJdZznFPDVP4wFQsyj8aOjTL43STnMQc53uKfCspqBe4SRhizmfJXTu8bfK+yj/H+mX5+IQ+7aUAJNM/Rdb+U0TDAl5y7EmOanDyg3qUrz1Zs0sg+lKK9GBrY5K3Qa7XrRZuBe5VuW8b+7bFrKES11XXPIUI9raOI69dMqHTuXaar81SHnO/tciDJPcZFXANoJcILAEva59wm6Wj+ZxZQnaHeZyhOdi2CJckwWel4pX//wc/fq1n8Xx7/F20fKP4Mw9eGb5hXum2M3oP4eIW5mp4jdHUw6D2sMTXQbMzBrT1jo4H6h1rDTOnFkeLh4mVKZb0KIAQLZujAiUdBbUiGplFKfco85QUO6pQnjdEDkQ37kdMi3XbqS5IhS+fv/Dbv/Xb/PZv/ia/87PfjDa1anR58Djf2f/Pz5S/u7P/8o95Pn4IlFuy1ROn+ODLd3d+/vNP/JXf+56/8nvf85u/9T2C0I7K+1fn+/qbfP1ifJHfY9iBYPxs+xxlFIksobXOjz9+ixkw5pytv8zimWWKEt0pcZdEucsT6M3dkLRWEmd4DyZBJU1+4FuLKczhKBkAJSbcBhAoGhlg3MzRGh6TkTtYR/tGZbDJiAm6KrwV5V4Ge+l8Vwffaec7GdzNYtro8DAbGsb7efL1fLC1dzi/YkNozTmecYwqldqNenM+Kag2lM5W7hTNIV97tIO3PhB7IuOgu0E7seeDdpyczfj27jyeTmvGeZ64P3F/stVvqAyUEaa2HpqIMIEKYZ8WZzuMoxleDTRaGLVK7N7zmf2Tum1sbWfQqe8b22OjnlvWsDOYW7RHW58bhmT5MzOd3rEOA6UXaL3QqHgPseSzbJTZaVFLGniRs62MfjT62emt834Wnsfgh6+DP/lx8DiMb++puQH2Op1nnXZGaepsbUYNhnSaDboNOheNPOlxy1H1CV3i4b722arREYMrW93TkyXmZoekJhkSD0DmzaE5myiSHRPRjhvMSjeL6dBBNYXV/oh1OiZrsortCVKmOCQOaR7aAjFOCIXNJMzkNAwHNafrevTQJvUSBmxmRvcQne9pSU8JHViY0UUQRUNj05rTDud85vuL0b1xNOf9vcV4CxdUB1YLvSq+Fbx3+nHwy18MrAcwE1fOm3ITRbpDH/RjC3Fyt2whzkbdLSgMOYRyKlsr1KZxnzMYz0a/HYzHOxC29GUcVG/cxLilIynii72rmzJS+F5rPD8X+FSMT8V4K517jSGvRTrigz46pFncrTlFCkWinFJSx5MzOpM9iTJWNWUzZTe4U2goX1Tw6pQtkpcmMSzQvIRmcQhjFLxE9yAp35J5GY3oxkrcWlKD8/lW+VQLn2/w6X7jbd/Ya8QXUSfcZj3t5nv6KzWapVNwJr6jSACXxBm9BEMqU9bQnUfL9aiwl3AFrqJ4KdHBI0qzQemOn0YbSuvQD2KK8QneA6RUCp5mgjfRFC7bms7uZ2McnX5eTvN/3uPXGqD8+Cd/Fzt/pI5nbhKF7jeMyvC3mElgxvtx0npcxJ4Oms0bjSfNTxpPkrRFeUe9xxwUN3zE4Cm3AqMsyjTytBY3ufWk16OvPx6Ca5SWzCx8R7yHUp6B0UE6opmdS0FL4Xb7zOef/Yyf//Zv8lu//dsBUIrTeOf9+MqP450fnj/wtAPTFu8kKbPy8N4o+87tvvP5+xvf/Wzn+5/vKNCPwV5ujMedYm88Pn/GsiTws/17JAGKqtJaR3yj9WgDPc62Btb1bIF2L4y84a+BeJ6dBpF9Z3qe2WeMDNhKYY/QAG3kuHJbDMpsNXWfXQ1xPs0yWzOiH3F0pEP1QZVBkajrblXYEqDspXPTxk07VQoiMSdkaGGo0nAOBoc3GifDI0N/dhgj7MSLht0+N6fKoEoPP5Cawr3VH+2ru2K0M57nST8O+jE4vxnH+4iWxePE7AF2YPU9uwscWSLAml1Kyeh0o40I0JrHS7FwDK2G1xFmY2LLDVR3obRg1ySns6Ok3sEvl8o2/TmzjdpSmKo5WFElpmRboZdtUf9nrZTe0d7ptYSLJuE5EoM6c97Q2XkcyuMwfnjv/PLb4P05+PptLHHxbZ+N0fGZhg3abPNS6FiCAsM0fD02DeAh+TOBYlksRbxydkOk2JQpxJQoQw6bglDJVnpJ7Bs6JE3XUdWXas2qCPu807N6MyXfPt88f5jMoP0iU9ILYDlTy3TSeKkE+U/+HDc7MScomMxm0dYr4mzHiBbpIvSWvi89wOwYxLU+O+0YnJsG40esr7Mb7b0xLLJg3wo2FOtCOzTbX08eXzujD2qNVn0bhUMFiXYwxuHLbn4C6E0JAFPhOJ3zMPoZjMwYBt5pz8a5HzzqO0Lc5+fzwXg+8XbGvW4DSjooa7jlRoaulOIJUi6zPWVcHjTpLeSjpfFzikk12cBKMN0z2zeYzrLDBDsFOwg/xyZoh2qFLbulBsFe16Kr5bkhtNzToi6atdG8nuqpbcqZZpoGf1WD8asyXZnTj8V6CMW70nt4G7XWOVvnOEc2W2QpKRPimKrtKRXIQqJn11n60rgSehKB6jlDSNMVV15KUenhNO+PSCQzJCJZAksRsIOaxzXrA2+dcXY855/9qo9fb4Dyi/8TO++UdsCAMTYGNwY7Jp/mVBIefdAtXF7nQK1uJ82edD9o/gSi28J54N4QO/gwOn3UeDosrQYtNh2viA1kq7EJTkpNI4uJOQstuoG8495wYgbM0kxIoZSN/fbG5y+f+f43vudnv/NztEZJqrOzPSuf33/g/sMX9uOdZs+URaQPg0XJqmwbdd94+7zx6cvGl+82Ck7bK4WN48cdP298ut8xq4g4n2+fEZkiLqXVzujC2UKtrnqGBmfkOfTUKPQSYGKkTbV7zIrQnDeRniKlCCaRLbAVhqRxUe10D1Fd1FNDgzJLKdNd1rMl3D0odW8lNq3To+3XoyOgShhObdqpRdnKLf8e/+ZppORaMC25iRgnASCHR6fI0aGPqNuXEn4FWzN2iW6bommGhEfnh87zH4Mnx0iX1Naw84zN+Dnoj047Ou048PHE7Qn1GePoN4nZKBJmWSSrEMxVgsPU3ZgaUgwvhlcPoFIyu05aX3bQM8FJ9eWqF2LVtNFObVVYmUdKvyzxJTakrjB2p0uh7+kyYk7dKmPEzBCthTmJeBqitWRPznPwOCrvh/H1OfjxYXx7GF/fs+NJnLdh4eYp6QeRDMXMmns6hnaL4yhOeBAiaz5Q8t2LsIAsLUxQoJJ+IBqZqERZwibrkuvaE5z48DRxDI3BEr5Ohsm4gMgEE/4KTpxLEZtWBsx/s2WsF2A/rk38u3wAKIs8mMfEVUILgBLf38+Yx0LVC6Bki4kN4v5tg3YO2jN0FG4xrbt1oz1adloI6jUYGg1WoLfO8Tx4vnd6H9Q62EoINGtJBqU544igNQaUGlKpoXGtZDjn6WHK15x+xvpz75xHmI2V1PPh0J4P+nnEfjLCF0hTxCpaKJX4jMkilyKUKjFBOUQwrIvvEU3de1xvjSDrJRmZWfMQsrwZDMfw0HbYqdgRjQ201FsMD5+rBChTk9K1UoxgpMlRCkv/EU0cZABXsxUz1CcLacw0JT791AN1xkgd0ZAFUCZIaa/JY4Jx0ZcFpHPpZYLioQEk11511gy01xJlkuJL4hCGilm+S7AeVVZZz7htE6CMgfcRRnJt0Ns/IiWeH//P/y/9dsPf32Oy4il0bgwqXj8zFIbGPJvgLEbW1AzvjX486WfDWkdsmoadUbnzFnoGJ/wxRklF3D3yJIHiLboCrFA8Ju0gb7hXjA2XLeukxmhPenvS+y9gfIXxI+oPVE5qMUrd2e473333iZ/9xid+/ltv/Py370g61x7DGdugfnlD3+5wv9GPLXUhcRPI7GjR6O6om7Df4Ha3Vee13ak10PpIQbCQFtLLgyH1BBICL3dZdPFrOX0ODQNPAVgsVsm6tM+ME/ASinPU0S0nY4hzlxjCVz0Ezs4EKPFRirI0PyPFkZjhVfFekOIUImgjyibBeG2cAUpqTQv+GL0+PIKO1zuj3mm6c6Kc7pzWo8QzwmiqjcJh4RmwZUu4zIP0FiW9ZHBEHfeWG2r440TiolStWBFuxbESVPQ2dAHfrdSYwFsSDM9SW2pItlul7htlr1HWqBLsTZgEIzshuClZvpRgA0vplDootSN1IHXgxWJQpgyG5H3hlgZvUSacRmlODm7s0E+oYgFQUkzeiiK1RgmklMzuhZ4bWhtGbxbahj6CBerG2Sy8WLrngoFaLOrf6lFClQATEauMmMkTZdY51K9KsGW1RFCaG2vfS9qG51pOQCHpeDtJ0OgCldiwYenQSJznudCDtAtgPJwMDi8bdZAhUw5HxReInwnNnE8VCz9KSWvnl8nIGmG+ZxQxigi7jmjBJV57tvy3PK/nGYZhjrN9bdFpUY3He8sOFGfbcnhb2+in0f7/5P1PqH3bdhWMtt7HGHOuvff5c2+S992YRwQLsaSIWBCsGPEfAbWgkIIVEQsBQQhGBLESQSKmoELKQkQRi4I1Y0ULKRmwoAVBCIJ85uV9z5t7zvntveYcY/T+FVrvY659zjU5F/zgHVyHefb+7b32WmvOOf603nrrrR8Dp4Jl4NPQj2Do7iO0SgpFC68hweyOfk4c9xP3L06M0VGqoUjBGJzP3jv87Bj3EaaVjtoEtSn790wyeffuOE7H22G4H/S08e5otw7Xk/ZDod86jw847m8473eM3umwLYMGYGooG7jpbw2l0M+jbTUa9wlLxYcTIEX/qii5CcM3IQMwAAd9QUxZZcYmhKAoewJvXfH6Knj73HF84ehvgL05cDdoB+qUUHukyFdwxvidIMihvonMjMT6p8WDvQhEJEzbTVH2eBsdY1Z0O3FMMlUMHFPYPHA/J47TMDqr0cQLqjZAFFMr21IUpsQ0B7/MkEFdysGlY0Is3q4xHXTZEKSg2ObFtEZ+iluBRlA/WbgyMSj+PwZZs9Mxun/tPf4bDVD66/8F7Rvsi88xTxoFda8LoFgRTKUZ0xRG9FJiI54d8zwxzw7vTrwqhR4X0XypmCyAIlMhUwG5ZbiGYmfoPiqq7Ciyw8tgORkaJlossA6bB2wcsPkWkfMB807HUXVoBeom2HbFfiu4PRfcXgpEFcMB7wVtFBp9CdmEHpFK0mzcPBOhkx5k+SEjfZeI+CMVMfrEtAHA0SsnPqID5QiHz2nXV/byeXBhEUXULlw8tOOdhwLgq4rCIiRka/agRAWXmDEYEiu6aPFsgMbeLqzEMkvtggFOx80Cg0uhql654ap47PXRyA4ppCS94LLDZIehhVGYPmwqWPoFBelYzPTyyMZZkw69k9eaBmXsI4JwgSVbSnV7KYAWixLoaHfoczV/VH+I+EuUTtbwk1lfWdKrhdeGlRt0CmUeLRLKIrEhJ3Mgl+hNo4FciUPDZyPXLmE0RBMnRqMiDmh0p4ZdYfK671QZiiiyozPvAVbJeVFWoNTC8vG2MqYEJiUOCTFdalIcfPmrQIYCvKopu6GAFYVAvZVslgcAM8aVxzXgRp/0d4nS5OL5/BQLhvvrorr5WTjAHeE1gOxPJYnVERF4CIU9x1GOoUDsqROM4PUaZzFfVJ0snUSEneAmQEpiKTpOx3WyAZ8aDMuI1IOjTGW6JgDVmI4+jKZgwaiMMTH6QNECL4o5/KL4T4vUUMc8D6Z13TA6x6KIwwdt1nuf0arAlwWJGvtIWVTcsNOwoU+mLR2Cc0yUbjCwd4zMifM4qN86zlirgLS/FWOZOzfUEkGVhC8IGYZ+IppTgiwjrgZ6KnTUrpMVUwcEI0zxxpSohCHDcE7g3gVvd+B4dZxvjn5npZ+fDgxnQ0VhINdizrmySzKnTAZ9HuMm+naF5gxApNglBOj0c7FwqqYFwcQYBBdj8BxnsH0WrdrEwgQgtIQmWAClFaXNQOE4Nqe9v8daUVSiKimYnmggOp1zgeakrEQ8w0dprAAZq2KO/lS4qjgjxEzvoB/k8Y0GKOdn/ye8VvTPfgvjOPH6NnAMoj3fXuCFebdRuOm6GkpjsyixEMKOydI4adC6UZntLLOrRqV5jdSJmqDIFuxtNF9yQ9GGhicU3OB6x7QKs6jVF5Z6zfPE7B1jfE5X2fFGC3RMWAHq5qi74PYsuL0obh9XPH9MI65ugL8V3HtUITiFnvczcuXTWaEQG3CW6KpTNFt9oroDFu0Ho9fJcZwYk3bid+1hSsbeFGNO9GgwNyY1NLQlnyHq4nX0CDc99AtZ/29i7NYJbm70VGCYGf5FEAC7MtBtCKYmkHvCCdVgVaj4CcM4wcSES3RiFSV5IAVFHEXYE0fFojwwyugcIM9ZATwB8gzDE8x3ip/D+Ang5ysKVE87akCHR9TpmMI2AF4YHXJMzAAnY01MipgFswBaHaUOmHU2BUSHeEf18G9xCiWjEROZkqY0vtsqj1ZQW0GrilqVoLJUhIIOzOc4MlWnymoj0QIp0Rvj4fACnuCqEBFEKxFS0MXJ1tTswWOLgoaNyJ9bWN8T/ETHF74vkSiXKqO3wm0LhqVH6SEcWzVqfWLcwLNsl+MDcoEdkUi5CbDFwqqFmXqDwJqu8SV6AQYEuGd0rZDJa6ImtJEX9l2xmpyHs09MADy/xCdxWACxMKlz0toJqgBGy9mZOPXeEoAp9TH5t6tkVZ0MQQDaZNt5pePvH6j16zHINMEIUMCSWp0VY0SZe2eV1FFCBN07+tGXPqWWgmIKrbbKuOd94DwHjqOjn2/IvlWzK0YFRBpmiDWPMaPiw1n1pQQBPjm2urHR6jEnjkmBtTnQ+gTOiWMYZA7I6OjnK/p54H4/l3jXJDqxh25I4+JYVNgMK9BB8Pg2HbOCTQZLaFJswDGhcBynAhvgOyAjCg1UMYaEDxZwTDqIH0NxvzteXw3HB+A8HOMO2GHAYGpHqkIKnXhJhCqGc3PuFiX1AhYUGMKSntN9lfkrAYpVjRRKx7SGOQd6WAbAZ/j0COZpNGcbDoTfS3O2NTCpnKdcJrEVZXrbwPXJDFuNGh9lO4CqQJGyAMoYiq40Oe0DOI0s2P0gE3b2aGEC7rUl4iPGS1yDyXBPMu7wK6X6NR7faIAy7r8JlILjw//AcT/w+ed3vB3M0Xl5pm2zCqYKN6nqpLkEwBywMVg+iYpWN2C7sb+LcLhkPwyi7kCEVpkPnAM4WZMnUqHzGWU+weUVXujqSdtmAqbZZxwfMPqBMQ68nQcnS1Po04A/D+jLhL4A5UWxf7JDtaBNx0BBPVhe298O3D97xdv/7y1yp4rWCgmNYnA2xICencdxEr2eHdIHvE+M0/D6yh4jbo7NJkuz1dErWYr7nRHONNLy2ZciRYNY/iXAgsYaQlExDLnYlSLC5dIcbUp4tggarjXWU7wIQXYZFaWSfEjB3YSC2mHoxk3fMxWgAvNKDxKfKDJJLy5RssFMYLPCTSC+QXFD1Wc0fcKmN2y6A8VhzVCeuCC6NEihWHLvBu/0NZlVYYVpIzIVFAefs2P0A72za+/oB+Y80WfHOV9x71+g9zus3yHnAYwDY55kdlQh2xNQN0QBGIoC3QY2GxRW6wAbfAz4CMHgGVGRMpoLvTfGwYqNfjjOw3EewNmpWTin0BfDBUMUNZibUnVtssWo/W470G6CtgN1FyRZ02IBYrqF16FUgWmkB0sNp0kym/dzRpUbRbNPu2AYy1w3oetKxeUbQ3NAMlY6JwZCWC1pF24QU+bxAcCo6yjVF12NKIM28EN6dMKFabCiTGdhTmh3zC7wOTGVnZBFyWJKEWiMoyIUQhoi/QsgkEf0h+GGk+R5MiOaU0TSmYJjv4AbXBMaA2oBBaDFUKohPTI8hQTJcAl9KlqQbmwGMsMRlA0xRrxHncDba8fby8C9FbwpIMO4FqyeSBTtwxSjR6k8DHaeoSfqQHbHFUBlQqQHEJ1wYQoxXQi88ZprJfJyOIZPdB840NGlY8gMETR/jm6ws8OOE8frK/ox8PpKp1KHY9s7tlFhW8WsWTbPjV2EYLVHQNHFsCm9lHYdYA3ayXBHHWUvmA0Yu6DfazBs3JTp+US33GGcK/fT8Xo3vL6xI/txOOZBtqgUid4zFaUFE1wFm5PtQR+YbhTeqge7avwdiMIZ5AEdhl4KejX0fqKfFce946gCH47ZlDYNI7oZHwY7DHJOaJ/YJ3VyUPo0cfALtqggMr/Yyufia919KoJNFOoG60A/gPudrK7CcYfgGI63Dnz3M8Nnb47vfSF4A9BVobtii1Lo2qIHUqFhnExHL4ZRLFoKfL3HNxqgzN4h0zAGO8b280A/gD6U7InkEaiuGkswBcCcBCjTADRoNdoDVz7XxGG1EOAI1d1rOXGDW4fPkwNMGjW2wyGjQrxCvABWGeV74e/m5MbiLH8+jaFqUQeqQjaFtkKxZAFKTYodl9eHdUg/4WeH3TtggEpBKSzramAkJpFLpKzEl+31ZbZGmu7oXMCPEarrqMQwjw3MdFmLT+f3fEq6v3LhuOr9mUpKBtzj80PJjmhoRSQWVxF5oP00wElByei/FEyQip9hsU/bc2ViJAQJXsIfIcyJlnl8AUYhSB3BxJhriNbYv6Sg8pACUepEtMXn0Rp7j6MOx7ABzAqrypxzjq+gTKf5sklfR1xzfrWwBCdLQDfGSA6EL4UYGPU0B+r1Gtmex0Po7ZNaktLJ8Iki/CjoYjv7pCgyvo4+2UdlGKwbfHim5IMqT4aCWpQq7FtSC1NLNdJMdMIsKFqWv0q2gK+lwAuFvl5r3A+gO91sbRjmqGiFm/aYtOkubsEkeFiWhyHsDJsFVSzDqEwLRhTKsDQryTK/n1EcfwcPYq5gIWIxgir2jFHeh0LjReork9+QAONh7x+qEjrTWopVVjqH02BZr9EFNkY4AcvFsHj8rki6MXNekEWR8AF68BeCh2+KIF2bLTJtLebBVJ5bZqPSLG9ER+cedgGZSuP15RHYLZgavoD5gvgXG7lSp8xNseIMkEqNj7gATSGNaUpEKjHbhExgva8o59Ban6ZjnI63g6La1440VSYTHoSfjWRG6VoModtuNiE1d3QFU/yF6eQWgZGq0PU4jOu6l0h9ajjUsqXIcA3hvOA42YDw7I6ze/R1E/iU6LsT0lal6Z+KoJoDwtdDeMtopipxZQ7N+Xk99iYaoQmsh+vzMTEqhfliESxOXNb2k+wu2whc6RR2VucFqwEMKHVh0DUijSfCfloNTD35vNphJMi+u+M+gNfT8XoHXu8gkyLUepZKKRxAkF0qUKujFYdXdo/W9Pj/mo9vOECh++noG0vl5kQfgt5lqfMtFNCqBmkTPripWqey2AfzkUIvaViNNEQhwvYqsDaIdtWgYU7GJns9cqE7zAQ+HToK1CqKcSEvUBRvaBORCqD2oDvbknsR7FpR9hu22wu22zNKqaDK/0B1ph2qv6LZB+zjFdv5hu3+BjneUKXiVgUvRdCaYtsEz9uGfdsgrcFKxZSGIcAJx4GGAxV3L/hgivuka+c22dVVpGCgwNxxF2Mk6Y6hBTOWKQ1aHaqLPqeDJr8fdjBSKnOt71IA8cr9oTbqK1TRIGsiZUpgWagrKYQBocV52Gl3dSZv0zgtAssxOMmzt4WL4r413G9Aa87FaBacc4MO1t7W2dC8YkNBVVY0uRq0KqpU7G2HW4FPYLwN3LFj+h1TnFFb0zXhppFGH10wz4JxNvQOOArMynIfduyAPAE64DpgyrLsORywBh0Frju0VDgq+lYp/DwLZlfMUzAay5m1dMg42YdHFRgn3E7M8Yb7hze8fXjD/YtX3D9/w/H5K/qHN8wPA/46gFf6rhTT8HsTtKqx+QFVKjZV7KVir/Ri2FojQJGCVrZldc+ut4LW0geoQmpjysWFHcD7xE0qnkrFcXZ82E+cUUHCMlK2DrAepe0zruekS3AXgqYpkzIdE8jAAsUewlRxCWaDYDV1G4jrL1Ha6dPCGIypPBM2DHRpoM7GMS1AeGGu3l2hXlAMofUiz1DBRoPTucCXoLIdNL4ivW2hVVFkIsjgqAHINylLp5O+ey1E6Pn5k5F0pT+L+IbSyT493QpsKxiloH3e0QcdiT1WnW6Owx0HeKgyLeHaQE+jAleC/omK7CvmRWA+AC9Q+UDwWkHRdqvxGgWlOMoem64oSmvshPzU4GiYXjB7wSwFvRTMrRCclgYrDUNqMKTA/RR88XbD2Q+82gwMLdjPDdvguGSlCChyDgaQ7QBCrGwSoETwvFVsVfC0A62y18xpBdob9Nwg58aKSxVSPzmmYgEzo9Pu2znxxclKlDMsFthktqB4gYCdnhdgVaPHlYZlvhHYSeGew3CQmqIRrt11MjWvAOQLVpfaTtZbNgNuFoyT4Xwd6HdjddHknNiDYVQLx1gPrdPgiJvm0B1AdHkWYXBThQFCmxPzBM7D8PYq6JgQN3xhirfu+HAYfut7hs/vwOdfCM7CaqhdJ1odAASlKVoD9qbwTqdv2xnknhmQfY3HNxqg9DnIBMyBHloOr4Tzq/wbXAhKAdqmaI2GTFOyK3CgTUz46Jg2YAj10iwYTWhUU4kQ1ah8n6PD56BmSwwlyj+pyp8UK8WHcHUUsGW11gYZgKmjvO3wAtS24Xb7CE/Pn+Dp6VM8bS94qje8lA1VAcAwFDgEeBHg2QS3qXgCG0m9tA0fPd3QWkHbgZfnG56fdtz2ii20CzYAnQZthWXI+4bt6RlemQN++uRTlFpRasVtq3B3tH6G5sPQBzUoNmeUwjFqZrfjlDBwIZXjjjImpNOGWyI/qz5RBHhqFbvS3rqEyMDNlqCzLsFWOEaC6nEdRlFZCX3FDM1KRKSLLRVGVF4EvgWN21g2OkxwTuGmoIX6o4lYaGb4XhgrgAqwbwWwHTYU0jt6IaCltl1Qjcp694F5Mic97xM9yonPg714zuF4O4HXE+gnGHUZ9TAqdWl3ihAAiOwh2i0YVqOyIPoVRWWJ4xLtKtKM0MKLJcBQCBaDBlsGURqbuAUz0ATsv1ErNIz/GoCtKW57wW3fsO8F275BlbqfvW7QoiiFwu5SFdtWINpC89JYiu6Mmku30CKxogBF0E52KLYTURZjGC6QKTiB8P+gFodlmc5NQ2OjRizAAZINfo1HyRcIvUjoQNLSXox/QwIkUzkOaxJ9lGxF6S7UFADO/mKuDFhmQTYilNisKFrnumLA6gFE4z9AVddYVTjdfrVAS3jfiKxyZTd5D66C3VKafZC9qI4ihttLge8FVmkiJvcB+6JjToIkKWAKWA1WC9OKUX0FN7aBCJ2Lj0yNTaaz1DAKNT4qglkEoxSmt6URMLVkEXitSq08Lw1rgBDrl1g7aqFeSrQBKHS3NQ+LdsVAwZAaNXosZJhIC3dgGlXN7s7eQQ5UVwIU0NOjOrC5QJznoVXgG6N7bAItStYnAKgh9g7xEHzSeMwN9GDR0Jg2gTcnM+6CvSpqpRC+hDqa0IZaQBNnfySLcRQO2R5CqznJZoobU6sBUuUOeHGMz5lux84S50FFDezO6inMjqqGVg23zVBAF2AJU0pzplkMtEIQy9R7WWXB6gTQBjInxyn48EYLArjjc3OyJwfw+SvwxR34cBfMQrV66WSTYDGuERYQwnYkNcSzrpkW/Z0f32yAMjod/GwQWIixTNMpMksZmoDgojWgbXFxgtqezpK29PB1o2bBfUDC2dHLjJJbLu42SU0zAmP6pbmhRLMsuEDD2wOxIJeS/UocJgXDoxyuCGpp2LYb9v0J+/6MfbthrxtutUUENXAq+0rcQNf8ZkAFc4a3UvDcGupW0DbBrTXsrUX3S5aAuoOCwEIQUtuGtt/glVP/9tHHqK0RoOwEKCXzpu4YvWNMKvVXhB10KNdSLnLmBqsNMibQB1mGiNTSGvrWKnaNnDubR8Dm5KKg4fqpjOiHCkGHCeo5MSe1QQPpwXKxOCm+ckQOXAVWCqw4prIj7nCgh+DZsnTVEfkTfoaijlYNtTrqppDZYFIwC1C0QsPxrDgjFkwjeAijqnFM9KPjvHcc54Cp4RgDH+4DX9wnzjNajUYkX1GAiMibMdWkVqGmUNPoRCthZR0+JQg+HNFcMCpnPErHLRZDd+o4Vjt4I8Mgq+EjUECPGJrclXAmVjR1bFWxtUqr7VpRK8etxgZUAqCUnSmgutd3bsrZp4eGdobNgGEUAU8Y9TsntUVkQWRVga1NQpnyVAm7eUciF97vACSRYVwPgT/YOQS9HefL5I1kDRo3oajwmzUEynOSYUEwrBo2bE0BRG8WvZgbamAkTN9spZs0KXeTSD0pMRNvB69nzE1N4zkqJ7F8fx4VsYrQxJBhJItraE8KuVV4UzwbX/s8mEouItSHCctuadqlq+/MAnqpAzbQ0DBYaBOmgqSyUmWqYmqB0mQnQHNSpbEJh3hbYg2E4fLK0ELWTxwQ1hmKKyyaFbIBZ8GUAlsARZgyL9ScILySTOh3lakMQ1RUxc1XsBdOKYK5KebmQBXMjWBOwnnVo2Fp1ULzTKVmilUtQB0FtQ5sqpjDULpEFY5hr8p5q4o5SwxGucZkUfbOsSwy9ivAmJFenw+VbxPQIZDT4dUxP1BbJ4MpYBOykn52YAyIsYN7Kw5vbBkgJhH4hIcUPRpgme/XAP+RMsxJZGAa8OjA6+HLefZzA9468CHSO28HcJzU2ig00l1xnx2rdUFxphjZQPLytvo6j280QMHx/4V3xzw+4+Z5AOiFC3vQZxIiyiKKVgtaeHDQPyTQpGTlgsB9RO+UgTIZiWePgyIaNP7E29ExTwIUbyeCVMNWt6yGhwvzgVVLlDVSNJSW2XtjemJvEx8/KT79qOLTT57wrU8/xre+9W1869s/hAYDzhP29jnu7QOaAThOzA9vmH4CJtDR0dywiaKpoJWCohWQjWW0smOqwEoFqqDePsX2bHj55EfwJAIpFT/8I/9vtG1DbRXbzmHRR4++KobeO5X6c77LlaclPUQoHraJz19fcfSBt6PTPFEIjoiigU/2il2ADU7R7pyYY4RwC9gqVqfPoTRO6yZ4OTuO0fH5/Q0fDsW9H/hwCPqYOIexsgaGKRR+iiiGKE6QYhxjYnZgDIUWCjKndfRxxzlp6ayFm9P+JNBmwO5AB9AFpQGlOJpyI1UDykCYqE28fdHx2WdveP3eB3z+Pz7H2/3A2/3E3Qc+3Dv+P//jFd/97vdwv98BHyhOfcJzu6FpwSYNz9sTttbwMhxyUpd0dkKv2hRPnzRM22BoUG1QmWxQqZUbn3L8jmm4vwH3O3AcEoein4p5hhHZCMCCq7/IViuBRlVUNWpQKjlzblISZSfhTBn1vrMWSFPMvQEhEhetYA0Lu1SjG9QLKhxeNHqrdG5g50nr+LNjHAedaKdhRlVXlcrSao8+iiEoTOseTKwUGkEAo2OE/qgYUw5SmW5IIVafM6qGWZ5vBpwY6NoxSkfvkxt79PYCgBnOvnPQaZeaILpWszSVjrfTLQIg7vg+Q1BcNLEVDECN8vFaNlzKlfShARydFXAY0NQDtY2bCiggLTqxfaSoTw3SFEcwLeNgmUUJs7s3F2yu2GRDVQYaooNpbQyySlGG3MVCtxVACYLWdjTlmqH1I6DcMGWDqWGK4dCo0gvBpYmi6wZ3hQkrKocrThPcR1a3NDQ0qDHd3G3iwMBZyIwYNohwDd+fn/G8bbi1CpyTotHDcAboTImDwrGVgtbImu8vQNsd9WOmN7QC0gqkbpC6Q8tOFk0qtkLtz66GrTYWSzgoJB4d47TVBNTnCQlmmP5XFa+DujmD0I3cJmyyinP2juP1xHkO3O/sBeYhVpYQ4bTiwTAJ/E6fqNfZMV/pabPdIgATUOA9JsrZ8awn6tYxhaJvn8A2neZuJhhOewTxk2N1OKZUzCilj2wi4IrvvTnepuA+sTQunzsF9scJfPaZ4ujA/SzQraBOhRwFcijkLvA3CnpxTviHAbwN4DVKfv53cZJt4MQq4e+hApQsY82p7g/iMgAr65cBZUZcMamyUZcKFzgesRArKVGvglkmhgwIwEkU5lps6BQiV2Uqx4SOhkwnCcbsaONEGQdcuck16djLxNNNse8V+7ahbjeyMA5IdK51p1PrGCedcm3CRjRFmBbKs0GfE1MMK+hWMZxajqEG0w1eNmjbIhJu2J+fUNuG2hq2jRlzmRUGGrpJLRhjQsd4ACiI6N0XTWxuOG1SbCas6IAAXhRNDE2Bfd9WEy8pZ+gvSrAmwN4I5Eoh0EhRr9SONjpLH8VgChzO3ixu0VPFAIiuaAhR4YPoZeLFAO0QPagc8DfYvGGcitHJznjNSgkwlVBI3ZcdqF3CAp/nPbvj9I6jn3j9cOLD28CHu+Hz7rgPwdsUvE3gi9Px3fvE/3jtuN87FB1NwTRXGbzeRVh55HSxlUHB3RzAGDXcaWf4IWQpocFlrtSB6mQL+uF0Ew1jpN59GaXlwT5LFEAXI+CaQU2nj40JN8kezCGGxyZADYML/3aECFCj27KCiz3vQ6TSirELb60E7nOgBTvQK23VJQWXSpFfyblJIo3R8fBUdKwc/oxy5xmsSVFlRZKyk+80h7YGLQ2OLcULcIzQLUWZuwCoTNewLDgqbpSpRa4tBBozxIHZEVpN6HRrgmJY3WTpMAx4pgULkM0JDX6lBiKocvBvLzKIEbxDl7dNievEtcyiXQY3ZjgoOg69DZzRuoH26ycUp1TMmMPZhVrSYVeDdVODlQmbbTkke/Xw0KlwvUUARO3IwMRr2BAwPcs5eCrrXF2ZluCcdsx+YoxJc7GYaini5z5JX52iZO5aLXj5+Akf33Y87w0a49FOwyks7KehHZUjW62ojRWO7RkoG7C9OOpGgNJagbQdUneg3oBghAhQgK0YNq0BUChKn7PT/2RaFFmccBsQOKYzHeW+MbWpYYxmE9bvmMcd437A5DMMGOzO3kAz2PgUz0+xKEiIJpnTcAzq+aYF6xeBXxdq3wAyRK2RyYEVOJ1KMQetEFgWRwbjDLF+txGGiMrUdeq4DgaGZvR7sWn44Fep+tGjMzscMsP47jDYXTGro78aShWcKjhfDf1uOF8J0v+3MWprOqBqOIJ+LOCmYuJXLhTcP1nZRUFm5vDNlzcT83EqMC1UoE9ju/pWSPdmzrcWuBdYpQW4GC3APXwmtkrkW6IHhS9PEBoEYQr6ONH6gXq+wQtQhqHhxF4Gnm+Cp1vFdttQ2k6K2RzZUMUcmKOj9wMngN0G5mnwcTCUGgKfg/1/pqBbwRnmdV0UQ4CpG1wDoNSC1hq2pye0tqHUirYxN6yzYLoTJBWFjAHphZEXOHgmLRLpV+K0vt5G5yKmCNEhmMoSdibdb3u4vYLM0jSUXthbpQhum0b3TkGPfP0wQGtHHR1dWEJoKnizTl1CT9MwoXg374k6pNCgD00gw6G1Q/XOiekNs290IT4FszR4a1iDRwxeJiCCchO0wZ5A42T6a/SJ+3ng7TjwxYc7Pn8b+OJu+Gwojqm4W8GHOfD5AH7rMHz3mDjuA1UnbhWYVXATg+pEU4Fp55gxAAFS2JuoYs7BPj+TPVBg2S16xjhjTxIzYwXPYRgh6BvDLvfRqOxhnyVSxWUSoAzPU4/qK4C7xWBfJDvZZbbifXdfhDOuToUrtQeCEiAxmgAVgVQKK+nAXFGdW2dtpIhHySyBsA9TAEWtl+6m9ChBDstwN/YNGhaeLErRb6tKnQ1i/JSNQB9bGOJZvE6kwIQ6Bmmk2kvAHwPnsRQJ3UtkiFUwljg3yrJDJDuMDO3wdOaVZNXJSoXWxBEln4VlxQExqNFFpE4DoAAPvU6ymibWF5Z7hxGXcdOQOYE5eI2iBHpAcErBXSpq9CVSGRB1FKW+DJGy9eqQjX4pbhM2egAUAFphfsNEYwdwGA4TfHCsjrgmZM+OTAWhUmwf/iCjVF6nSbxYnDGWBVsjYXtfVXC7bdj3DZ986xmfPt/wydOOCuodfDi6UENSYvyqA1stKK2itQLdWZlXbo6yMRitW4G2HdJu0HZjmXCpUSoLbGpoWpjyScv2OWCdAGX2jjlOmA2yzM4CA+jONielhsbO4Ocr+ocP6B8+4H7ecfSOiYkeQYcPW0BjCOUC3R1nMHA6JgwsZ55IkCiYlQGcixCQC/ty+KwMCoy9pXQCdnJQjUHQPCcdnrNJV5a/O7huH4OVS7OTbbm70R9m0q5gRjpIo02AH4ZZJ/WSlUGhquB4c/TDcLwS8fTVnPR3fnyjAcrmB8QNdThmB0pnPlCducrHFI+UAkRlAQTQrTEvrALVilI27GVfdO08K/bWaIZVwp/DAC2NXgi7QDsIZGpdqZGPbo15+6CwDezEOo2RsQ6F9zvm+YqP7Q0mwD4NLzLwUoFvf3zDJy83fPS0U4xnBtMGlxtMbrByg7UN1ir8mDBE6SxlUeH2KphWMGzH8Bs6njG1octAl4qOHUOoFKu1oG0N27ahtQ21FtQWAEVZFmvZnTiujQYYXM6nYEQHZ7TaSoTeRdbv2Y/HUQuwtUjhIDYZvXLXNNhokJYhJVNyao4m9Ja5meF0dqPez4KujoqBKieKTtRiaAXYVLGJYtOKrQCyGSOgfkL1DojjGBMfPhi03LHXDjt3YNywiaDtRupyI9DBx439ktrE/O4d8zjw+vaG733xAW/3A9/7/AM+ez3woTs+6IaxVYx6w+x0qsXTifK8o5aJ563heSt42Qt++JMX3ErBUy141oqmgg0Cr8z5P79UPD033J54n7a2o9UbVBpUKhTb8o8pWYmCAXb0oaBVhHn7CTZL7JjomIsdSQO6NgamBmhxjoFqijInylmwDUHbOUZ8tmjQRuZsVAo6S5vQiqh5V0gxqCtLFzv784w+ow9LaEOCpZSmECthOFVWe/nasjbR0M5waXVlnt0U8zAcxpRBuu62VsMiSoJVrgAE5gnoCDU8crjRQQSlFOYZVVkOG0JxhMaB450BkJe5AArUwqV5snVG6FJmVPi5hvJAaABHVkijxNjDDZlMx4QtJ9ow4oc7jdgEBPWp7fDYvOYZ4KQY8DaBw9iKQcAS8H0Htid4vaHLDkNs6FOgZmjRhkFVUW51mdBZH5hj0MsjxJ2nUGshU5iumBN3G/j8vINCYsXLLjhadLVt1CwNEfq0dHpIeZ8Yb6zgm26YRwcmxZpbY/PVsis+/vgJT083/Oj/69v49sfP+PTlGbetxdgWzFIJ5kL/IB6p7lzPWEpFFk89bBwK6sZAcLttlxZIWUgBm5Bk4ueMvjKDjtLTMc+BPk7MOXHapJYDAtt2uFagVeqOpsHeXoG9wWrB/L++i0McH/qBD+cd85xwI+h1sNP7zRXDDU0NXQeGCjbltTw4Yzj+tXG8aIEKA1q2c6ix5tBtVodjvB3w0VGOiXHQHv/DGDF+w9Yh9swTST4TnNhkFVhKoTLzwAJKNmX0cWK8sTIUZ8VdhMdxoPeOtw+DBSo/wB7/jQYoRQwSRlF5IJC0P3RWRKWBjsZXKFh14xR/aSmotWBrlVTsJCPTSkUtYYAW1KlHPjKFhHAsm+Ba2Btkr4K9SBi+MUobzhbfpxc0H2jWscvABNBQ0MSxFcFta9hbxVZTXBaG9VLh0lgSWBtQG3Ac8BCTXY0Jw03TNajtwvI+thGLFEKYVYXD6HtPCw33Vgv1vYSRz2OCLI2mIqZ1rO9ZE8I4sDC8jT+S1V+EKnlEaBxrvsZiq8JUllam06KGV8DSPHUnICwVrRS6HwpQEB2NMZlKEg7uBl2Ha6OoUUFjKfSIBjZqNO4banG0KjjPndoJOVEKc/+6bZCpUGMPIJeJMU7048B5HDg7c7sDwKxtCTZFGWWUfUO7NUA27Lvj+anh5dbw0SfPeKoFT6XgpooKQbNJ0WYR3G4N+96wbw1b5dFqQ5ENIpFOQQjTFDA3iv1E2cclG6mVANsauC9oYjcs7wuLDdLimsOZA/dJMKk6I81gdOiM+23h1zHP3Ewt0n4cGtWDFk/b7lVp5MiWAKIcBxoiyOqkrYtGdVCOtfCVSICC6RjG79VkNY1rVTGlYIYI0EIQPVP4muMqxikZiWgbEL/ts7CviGf6hcGKaVQqhGgZnkZsviSdcNLmFvcmHZeTFBGV6NeExYakQ4o7DdcoXo10VFZZREsID/XQEtBarP5OBkWN96ZqAJTaUEIf5MqABs6gDvB4XTJhtDrgdVCn0JkTx9csn8bzPc1xTsN9TNwPOlNvVVFlg4jjdCBdB10AKFPjpINpfjiFxQVz2PLwqIWl69te8Py04eVlx8cf3fDxx8/45KNnPD/fqMnRwvkmVxUJ/z71VCVSIh4VmhTjl6Ko24a6Ney3jWt6pR8KAFjok9wdmHShVRur6m+2AR2VBRMjXIhdMLcNTgqP7VFmSMWPO2Q72EpAQCuGYNkIlQUQR5VrP+kFkAr27ClMa/NWKKDG/l1hTa9aeWdUYdJY7tyEtOjg2jg7mxJi0C9nINp2GBlDCVGxG6I1A8GJTV8l+zkucj9Q0LARNmHDMWA4/WIAjz7Qx8S9W+wtX//xjQYoNVxhqjAfXIUAwrXAyobsXiqtQFtFuW3YnjbeYDrRQwaR/a1teN53+KS4Z74KNlSUzBU7e9FAqc9oRTELF7yq9AVolTbeTxV4YvhERsMtOuY6Tq/ofuDwA8/awx64YC/ArRa8PO14um3YNzrGOShkYq73CV5fgO0ZuD0Brx+4HJYdVjZYCcMjROQ4lR15J5tGdQOGF1KRzl0qAYqGAyAX6Fz4AuwlQHmgAD3EszOainAsx8bk4eiJqIxZ1QycBBr57jQ5MxVYoabAVOMeVh6UVMLhNP9xoNWGvVbYrLiphL/LJJiAYVfHJo5NBE8uuHnDDQVFDb0YUO4QMOV2zBNvbwDkxG1TiA8UhDhuOKoJtm1H2xS32wuKVkiZ0N8C/D4w5h334xX348B5HuimGFrg+wbRgqqK1hs2rXj6cGDMV8xT8MmT4NPnHZ+87Pg/vv0xbrXguSo2sEyxnGd0LBY8P9/w0cdP+PjlCS9PT0yR7TcUbSyDREH6MRQRTHHUqfCqkKp4agVve8GxF7S9oI2J0qPMOAR00d99IX2PnkyWJc2TDQKLGO3ulZGVgkyE9SirVS61FpsXEhRFFcGcoaGZl8AUCN1JEWhlcaI4TcCyGeBtrwtItDO0Rh6l5tMxpeBtFhxmS0i61YKpDdMV94EQtRq6T6Q/nir7s+ChzF0qRfZqbDqofcZ4iTEujNBduCEJAqSA497F4/MRJEiAEg8SyKOqTZXlxAl0RMIR14EZvXQWGe6xhTEzBfoO6cPcYzAhAMXb09GcOi9sAt0U+9OOuu/QtgNlI1gzQGzCQZYyWTeplUGLBAun5GojXwSHwibdjY858dYnXs+BDx8OuAO9Vmh8+nvowlAbWYkxoAjbgNNoOCkCg2F2juFWBK0VbLeC548avvXJEz7+6Bk/9O2P8UOffoxvf/IRPvrkI5SNndut7QzQRpbuhhN4EQIUsBqxD3ZFBpwApTW0reL5qbLHVVWYELyd58DIirg5oD5RrccG7vBzoo+BMYzp76wd3yoBSq3UgQxWpc3jRLmfsFIwhPq5wy+33xlBmzaFNkXZCs5bmOFUAMVRNcZRlNlvWzhpo6KhhEyywZSVUWqKMgxjTBzFYQdQdcBnh82JUwgoDGRKVQVVNMrkObZYfUQ8SSNNLGaJ0ggw5YgBG2ykacdEcTYOvc+ObhNvZpRRxLj9Wnv8137m/x8+yrZBi6PdBqYCVRRWd7g2QG+rRFGborSCupMiZ6TGSEB1oLaKp23D8+0JmALvhjHJbORgZNpkQhs9EE4Y/JxAmdhbxW3f8LRveN4bnqrguQBwRiVjGk6fKO44pOAEsLnjJoIpCi1MJ+3bhqd9x6aFOcODPRdGB+ZgbwQtFW3bsO+NDpVFmaLZG9quNFBqG0rZAG+k+mZlKsgUfRY2ezKgu0NtQm3gmCemhF/LqAAcZj3s7WlKRLv2ETXzjmITY6YXgQJgLn+Mjjk7LBTuALU61KVoRJwIkWCyPh6uo2R7CiqmVwypQUFeYM89uBGvqF7QoNhCS1DcUQ2oCGbFFRUVRRptuGvHbAKZg/d1TBwHIDB8aLfwzhHUesM2nVmKsbGcWE+4dricGPMLnP1z3F9/C/cvvof7G8uKpzzBZScgrlssoBW1NMxueNoAHwe+/VLw6Uc3fPrRju98+yPsRbCLocwBGRPy9orsHv30/ISXj254eXnC821H23e0tgHSIi2hgMwMWVj67s5+Uh6OsMJFpBYPTx9HaWCPIBNI2BB7wWpBb5l1w1Uumd4qXLEsSqXnEmhqVwJQN4ocI8qvySbJxNRJkIcspQVgjNqLNsxZglVTtBCb37YoCjamB510D2QIMEJUrAr1aKpY2CV6SmVvLgfO0QF3jNBlwBDNHdlxUwq5IykbNCqPtDubt/kAxsXgkFEUSGwvGn4r7gaN2hP3iJxTsKosQ4aQOmd6wsJF99L8mBI0pHnhukgjbnCAFFGFoKDAKFp3QCafK51CGJnpUsuu2qoVImUZ5boz1C1CtqU4HZKhDVIr0+JuEGVbBTGLvxMyYQPoNtHnwDk6zvNEekt1m6huLFembjP0aNFrCNEfxweZG6e4W0qBS8liMWwquFXFrRXcWsHeCratYHvaUPcd7WmHbztcaPzGHjacB0xTkIWSdIi1aJ6Vg9yUvi8xvkehRuatG845MczglgBlssFksGYz2KWBginRwJQXPPo/BJBtihmHNYU3hVAOFTgzy5wFcy+YtwrbK+xWYS0MQ6l5jb5QZNdRlMaJKEwdCkGXlY1aMJCV0j6wsXsi5uxoW0Eb3C/gFNqGrQ7nbAQYxHI51lOULsi+DfTtiXYMHl5EsRYnI9cjezCSb5H/TQBKaxukOOoOVHE2Katxc2QDgo5li/pcAEt4bRRUjRbvpaCViq1WiLAWXwsN0AVyVeEE5cwNsXDgiGBrFVtr2MJ/5FYFt8obZgZ00TWxm8h1KD0ktJRw6eTka0qPDR8GGGvL3Ri1qFLvUluNdMnV8bZWNpYrNUyfpEIoZwxaTSjwzdbZYiGcmxg+uGCLRumpw2xgGpkS8xkdjcdFOxvLioHISaYgzCej0mRT5LLozp0uPw/SF4EcOKKGFR7VII6C1b3V05+TrIFkvBemY6yGpd+ECjtwqvv13EIPD0b0IzwXBvqoUCiO+4GqHAu3/eBnrII5bvBZAT/hTi5szjvGeEPvr+jHW3R6NXjhmCxK35C27ajR6XS8dGwyAev4oY8bPv14x6cvO779rWdsClQMyHlARodLDzoauD2Rgt73htY2tMpqlKhZ4AIicfmioiT6MoYfAVI7fDXyKogeQ0wtSLhbeXhl8FZdC6xbvIdnWi/La/0qvxCQCp/xmpF2EbVwdiUqqDqRzRRX6nSZfNUQXgOQglpo0b230H9YzAUDfDD9AKfocYrCnML2ooUpAiFb2MzDTp2GfGkFn2M0bIkBODdi4ayR6JtysYOBbMA8ZVjDAUKQYgHOJN4gq5EyxRNE5GKq3lcZpjkY04Jw/r2TOOLfZTonz1tAc0HHml9uzh5jVDFCPCzY43BoCIzDyM+CoXT27FGNRK0QoLDMWskGOO0tyaeQUxnOasIxZ4A/xxRlJ3SP/jPiTE8AV5VWrAvIpGIyqsHSisT5Rbojiw9KCZ1M4b2uWwX2Rt3hFMxJYbLMYKQA6kaQXi8cP+lZMwcw1GJMSDDNwNs5cMyBbhNu8wIokZqTcaU/zsk+UUOy0zmwfFDAahz2kros/k2zslCuajeRACQV3gqwV7pVJ7sZjDYtjehF45F+41sKIFHmX1pM+MHKqlZQLK5ZdEivJbxLNIZkXPMEIoIAeMGHSeypMfyRlvkE18ZzdlCg61gsYOprXJQi668pRPlGA5RPvvXDFPG0O/Q+cb46ht4oKvWnmMTOBq8a6C2aPngH0B0yCHZbEeyeE9gxRFb3xYEJeIf7wC47qrIxXdk2oBg+3nZ8+vSMbz0/41sffYynKniqjM7MBs7zwKEdrU8cZ8NshlE73jaDb4r6/IxPX2749GXDJ08NL7VgFw0bb0awqhWlNrTbhv3lhttHNzStBCN7QdkLyk3pZXK7od6eUOsnqHVHrUq9gStq2aF1h9QKq4YhA+oDp73CpKJAAd0JGGxExOxgh94T4p0LXVDTudKzgsoBNVRlGsCc/AjNeTy6fVIoq0VZhhqLrwkjeUVBkQ1FNih5EJhw0wByf2gQaxBvKN5QUbEFLSsuNDiKZkCzeBiUCrySLpVdAgB0dDmZjx2Oglcq1k+DuOLp2OB2w9NHgtkG7NiiedeBt/MzvB2f437/AvfjFefB0l8o28C31rDdbtifnqD6hHkbeCk77JOPoDD88CcbPn3Z8PFzxbc+qlAMYNxhR4GfB0w6N0QV3J6f8fT8hNvTM9r2RIqeXtUAQjwi0eHE2fxxzIo+C8ZQnnuCwdCfaDXUMHCrZguwOOTy7giKH2gpwCBYNZYLWjSFtMlNSNzhOliWLTSZ0xi/W+QuXB3q0YxPrx5XGxS9FvRCh1B+3oqiTCvVYgFOYrzM0GBEdIdW0ZyLYG0b9QfaYGgYrtTlnPTl6YNpGHWDSoeHHombeyFDpw0ilV2cJ7ti2wxBIYzVEiLwMgBwsXaNzVZCdOsByjXM5kZU42im0yIqNW54CeBcQNO62MjcsLRZgvhB0RW9qjpNzgzsJzaA+11wnMAxwFTpbDDbMWeDzIrZyTRYH7DzhLrRjXsA20Z3VXUFasU5yVB1ZwWHGjfbQeNfnJNMQ58Dc3aumQb0eaJNxfCCiR0uA+HrBn1kEDaPzVdDi0aNjNdIU0aPHxYyCrwgKiNp7ofo/uyK6A9GEavZIFAxwzyYPjreBuaIsm9hWqdUwWtjpZ8Vx1kUpzk+eztxjI7TRjAoRoCC0A6xtRrnmzusOAmZTsbDaxhJDsf54cDb5x/w9uEVn58dHwbTO2fIE1yZGkYw4vbUgJcN9eMb2h6Ba2KUKezVMx0DNHR0q+gwODtNQusOyAbZlAxn6ShHRxVBmxP77cSTTRw3pUeOJFgmIGS2SUBmh1y3B8IUiZhIKDiuYHuBahks8flAodWEp2aFlJYUobfU13h8owHKy8vH0OLsqVAGhg90REmtN7IPHhb1KmhF0YRiO5UJiKEA2KDYodijJ4YrMEtd6PsAgj5XbLKzakYcIQ9E8w3Nn7DhCbu84EkLnovAo5NukQMqBxQdmwuaDRRsUJnhXLjROcIAjBlGUMwtJj2NEO+1ptg3wW1XtOaoZUDkBPyEeIkPSsOy5e54xaoP6RSDzRPd2HDw/vY5UbUU2Dj4V87yOXdnWWo/0c8T6UBKlj8iRStLIzD7wRznOJFenSYRyRnNoyQM68gSRQA+JfwcOqYBpUzchWJBszBJGgNnH+idbcbdCoGK7KhyAzDDzhzLg8Btg3kDnSj38G/omMLuqrAC84K3vlYAPL11FBG87AV6nqhng5yvkN6BcUBkoFZ6ujw/P6MUQxsK255gbYc+FbQbsO3UUpgo9r3BFCgwfNI2PJeCmwiqGa/17KwUAOn/FHqXUsMGvXARD/OyxZ44giJH+N8Iuim6lVX6OJ024S4Z+QtSZilgxGdTMMYIEED2rygoajABXFGU/ioSTIinM1aIWbk0GY3RVJkaM8AkIy9DmeztYX6xKG62/CssiTZJTo36F4+0EtmCzA2FX8g6p6hGEL0YH49Ina5kTFtgLvBvcSUsx8s46MgrA30aul09sX2JVRlPjkhhJr7IVKQF65e84HJQDZ1BzkUEa5JMkgEBbsLhEyXYwxXW4rIbdUAm9SGZ/fE0liSbRL+e6LNjTjZ2ONeI0WH9xLwfBIU26DGzORQHdANQDd1oJzBnZxULqNfx2eHWo3LSmU70+Ijhqq1hVM9VeYb6gELy5HQQpeguGmxCDGuh1f4wQZ8dxzjx4XiDNIUVYL4WbHbihs7eWkrx/4gS2nF0CpzHRH+b6Ifh/qFjnFH6LQ1ahCXHaUZYHF0F3Q2fvx3sTh4NXtUc1cjfgpd+Oe+agPb3VWBvhYxTUQLG6Tg+HLh//gH3Lz7ge693fDg77g6cItkjdInidROUXdFuiv25Yt8bbltlDRpvHeR0SCeTJqAVfzfHBFkrKRQCB1aGOXCGM/fUAglzwNYoAg+FfDDaWJpDVYELQbhHZiyQPEvvmWtcekURBYxNVslw19AiGpo7aqNjM+5fb4//RgOUp+dPUJuhD6DoiTFOnF4pBJ1bLNhO8ZOy/0OLrqgSAKWLY0PBLjxqGHvNwuRcbuyMchRNdoqIcmHzic0bNtyw+RNu8oybVjwpwcLEpOeGvEFwYrOBig71C6Co7qs/iI9BJfQQaCECdeckVlVsVbAHSKmV3gVkNg7AWUaZBtW5yGf2JS25KRibmPPAtAMmhre3z9BKZcfZvnOQepag0YW19xO9c2lRxCJobNwGixZo7gFQBnz0uEqI9AMBSq8PACXs1y14QIlNd0yKHQ8Zsdgb28KPiX7wc8zu8KlgE8IdRXbgsarLAfiAew3digKyw3XHlCMaqA2YVRSv0JFl0RNvbx1NBX42lHOg9BNy3sMQ76C1eFM8PT3ho48qts3Rp8LrC7zuKE8FZRO0jSZgUwS30cK8CXipDU/q2OEodi4jLESfDEmAogotDao1BNoRjcQq7rgASm5kw6O5IhTdlR1Z806kdiIXokgtwAho5xCmeSaHE4u9SqQJwrRPBJCJoiM2PaYAakn+0Rg5SjKWdHMlXc8eIcWzFUSkT6JqQPAeoOTGzUHCsaiR6/bFOuSmRjgjAcL4IBRY6ROlgRwytfUgAGdfKQc6Bcomij4Ewwwj9U8h/A6+m27UOcCNKwYdZCPt+UCWZyUcBaFpHMlwIgNMMoTCqBhMyXqAFYc+VDvRSI0vx3LwSwMQVXyIWjovBLAzAoIR6blgT8bbHZhkiHQAvhnUd6Ax5zM8iwQGxDuvZyFAgQ2Is3KpuqGB6wyN4ma4rAZAkYkawHi4BxOR6SSFlwIvvJ+sJgsNnw2c48S9F3xx3GGF/jNjE+zzwM1P1E63boNGp1/DeT/YePKcOD50nMfE6/c6+slOwCZRSFHYPRpKkfdQxzDDF8eBMU+mv32iGFCMwEriPoXGm93omwJbgW8lOjdHZ+RhuL8euH94w/l6x2evd7wdA4cBJ0JzpB7YmQCl7op2K9ifGm47jwICDh+INKTDOpZOpA/uVqcbtDFtK433Y8JxAHTZDtuN0gpqK2QjzUJGkFFB6DdLWVYRNixY1PQNinQwHNlIE9HpnGn1CpENxbn6wAylBVXzNR/faIDy0be+g32bUNnwdjsA3PHWWRo458ch0mF+Ohy5UYsEmitos6J7RyuC53LDU7nhBpZSuk24sHtvM0dv7Kr6/FzgqHgagjY6rAMvCrxU4LkJXm47XvYdL/sGuGJOQ2kHRD8Aesf29gXqGCh7BwYge0F9emJXUGVfoRPcBPbKPhBNgNut4emp4eOPdnzyyRM++eQFTy87nSJ1YNgdZVbILBihj/DxBvQB6UEM9AncT+D4ABxfYLx+jtFfAR/YhFqcqgWt7ly4PXJM7mHqMzDGpHgwsXFEwa2ki4SjHwfFh7OjwCNPGaIurZCuUG1sKpcp9clBLxDcNf0vlH4LzkW/98FIrnfM84SNDjsOahYi98pe4YxGTIFTHcUFMh3agT4Vx9lwPyv6OfGhV9RIJb0NwQbHB58oxwk0wbeNeVVxBXoIeVFRPv4Wnm5A+0Tx8iPAGNzcIQ2IBlwroevMc5+NrI+Y49Y02K+OcwzYZDWATuowSoueN7VCnz6C3J4g287KgEX1J1BBVEMpS5wFFPoVdo41LUzXlIpaG1oztDrDfTXKio0LGQap8il8UVGHl3AZJa3GTXkAHZ0W5zrhlc0wxSem0cXVXFGHAENwVpbcFk31goeC4WFTdvaXAnhaU3xFfzMkImb6rszWQfGgFQoXFZFOUYIFs3EBGTWmGIyGcgWCLT7XQGH1nhnGeWJ6Z8O6WTAmU4DTZmivQofhUXqZ1gbCn9HmPiJX0aUXCCQDgGuJWZTTCrUQrM7J8mtu3O6hGSFnRY2cskRUZMJwhKaK98srQZrdNnit3FHLDt93poXEAZ9had9h/UA/32BjsN1AH6i14X54VNKVKMs3qAw81YES7SAEBItb6RQ91wlvUe1YJmo50VSxycCuEzcxsgBiODVSwuJkpkL3ZIVgWkFxJSYgx4R8ceJ1Ap/PgrYfaPuGl8869n3D0/OOuiHK3wMUzIn7hzvGMdCPjg+fHzjeOj7/LaZjCVBagKNIswAwNUAZwB2dmjOk05QLqhdcFSyUEECAuhfoXqFbgxXqNaaDa9SYeH070I+Bfg4cH17RjxOHCboWAALVgrZVlK3h6XnHy8uOjz56wqcfPeP5tuP5tlPbZGTARgsvk7eJKUAfwJsNjBlC4xpAqjAwMRMMC1ZN+Dl3GMbLhlIGSpnwmFsGMBWjgq1dFVDjjMq7TOkGsPasky90t65a0UKQXaQGYGY7EC1kWPHdr7fHf6MBym2/4bYZxu0ATPG0ZbdNZX8Ij3RtibSvGisAnDk/WikLNmVn3U2AXUKs12osCrQdLmViTHZ1dXADnVvHFLa33mvBXgtarWitoe07AIWGp0q3QQfOXVGHogxGcrIV1H1D3ejTYirLfVVjk4t7j1KAWrB6pWiRlRM3pxFccWHjRO8wP+De4UaKDrMD8w6MAz5O2NkxzhNmHff7nVUPhblsejiO3C6ig/OM3juMeGZSfaCJN2LQWojKLMr5MiOZ1Thy9gAtFiJHCs24S3JR14i4T9G16HMjp0uqjU5NwOjwMQlwcrP2rAgiWO9GOlYB9CHoo/KYhmED0AaVtpwvAUY2Q4Ut7StTLOZMuQ1X+LZTZLY11I0uqDYE6+ZFi3g29aPvQTFuLG6hw4n7yx4ZwDChoBYUT0urfO+6R8+QFoM5oGDQyw5EiwZZTd1IXEiMJ75PdqBuyi7YpoVOxR7ulI5lwS5gRUeBokqJ/k68L9BkHZBnyPsbPjxkGSK14amMRIDIHFthLx8spQoXRpWgrIEQA0ZSIBiizOwkL5JsiylZJIRux8EN0EOw6OEyi2BNNNikFo37oHSj9fXiNFzDkKXhzA/Akksu0px/slgRgj1bbFZGnwJwrCNT9CkU5wKfz8qrosq7YBqC1qWqjaSXg2lmScYoLnimvFowE2GYyOiB+pgEhoIJkQFEc9TpA2P2uLYHTAZMNCxMDKVMTAz2HwuDNEpHPIS09BAyp06kFIeGq2xxR40y+IIUbGusw2UdZFV5j6cBGA49DXrv6A7c/Y5yTJQ28DaElY+vHaV5VOxo2NBP3L94wxlNO7/44o7724nPvveK8xgYw2GyrzT4cCBN9FCYxhvjhMggNBSPisCyxg6C4RN1tFtF2RvK1jA1AIp5AJSB1/uJ3id7OPUOG2TosrOvRIq0FmXFUg3jxlrx3CpeWr3GnwIj7QEORxeOBTPHmGRQpEfVWJdISzqvZ7AkpRRIK7jt9UqtTo1q1WROaZ1vHkDZSPOZh0g4mdhkelu2JKjYa0VRFqVwHxbYYIHK/PoEyjcboDzfXvC0U/ymVnHcuOAdInBtYTHNBnSqV6mlOxCsImpxbErfkpsCz8qBoqhUogeFNSJaen5+gntBrwLvE7N0PAF42hq79O4bfSqebnAtUDPMJmg6MIthu1c0VFSvTM/cGvbnHe22oe6NecvoY6Pl2gjYSI8bWyraebYzuvR2WkW7YnrHsBMTbzC/w/0kfTcPYH6AjDvQ75jHifM4MeaJbbtjRL+LOWOjEHYfFoDWzjM658ZC6kLvDWYcopewRAopNp75kM+ktsFIJZOMpe7GHD5nlP/5ovpF6BEw3TGMrq82LazeWYEgQSPDmZYwQ6RIuDYPo6BsiqMMWQzK0Xd2CTYA5Yk26EKNiAt7SMxSoDeKjnWjrXd3GlN5a6il4VZuEAu90+lAn5Ax4eeBYYY+4zqYoEnBqPEZhdVO5sAx2W10mACgBTlqhWwN2hpkv0G3HdI2mu1IIRScBEPMjoVLrLIUcRSWEM/oQSSZIiwFs1SMMqHFMMANJL0QEvyIRGmqVNyiDL5E8728zyX3S3GgcINCoUunaJQtKvuyaGEbe9XL1JNpQg+rbg26HzGu6ZCcaYt0c3XXdOO4wBhIzRO8kKkTZGk0GQmEX09WKrAjt2DXEnVuslIyY0yYGWTE/bQou7RIhbmHLsoCniEo7mRt0gU2FvCcF56sA/UuCbasIJq1hY5GySSZKEzrovApd+GGloJwk3QAjVVfED2pCFoW/V4A1zS7j943Mpjq1gGXQV9hI2OJ3KwgERg5thoApSKaN5LhVY1iH4sSWf55VNywhLk5xdhFFUMCgKVXSHWaT5aGpVmb7Kg7o1JweIcchvlmkMoqlafPO7bW8LTTYJFrvHItGROvn73iPDrubyc+/3DH2/3E9z77AsdJoayFm+6EYjxWlUS5OWygyEQRx6YS5gfsOE0EH3dCgdtzZaC5b5ig/fw0h48Dcw58uJ/R24b+K2T5GlCZAlcFWi30wmqKj5vik6b4tBW8tIrntq2CBVcKlLsLUNiHaYLr3+iGuw1Ipf5HCtdm/tKBqF7aootz9Q1HEWy1Y3bFmI4+2BRUVLDvBWaTFZQ+ua5iLjaQPa8qSimoN9pd7FvF861FJV2DT5bxW+fM7fb19/hvNEB52hzPFRhVYa3g1irmpBmYq1Do56wgUY2IXaNccBKFTx/YN8VLMzxvjmcBi1drw4Cgg3oe9zBo2l8gHoLQLaVeBmnhVNuUyumbApW547IFqKjAdlJ3sJthd4fswNNTwdPzhv1pR9nYD0fD+ZN+DB6bOKlLG8xrzj4xB+nHOSZm5eT0OeDWYXaH+RvcX8ku2AHMV2AekDHgHbCTyNkGI2pP1WMInlaXy+CTXNiiTUVQhakGEboypqaBaQDFnLoiZ7o8Yh2WLaJnUOaR5khPCjirIOh0GAxKn+wmHWDJ/aE8E8B5dr6uz1VSK8Nw9mg+KDQK690wZsGcjW9VWZbuUYJuReB1g+w72vML9OUT6Mszf98V8I7SNrS6YW83FFSK0coMASPdUsUnaKteAWF35lkuWttsYMLY8EsEEywxhxY2tmuNfWtqJZvSWF1BxBgboznSQ4L54Ijjo8KBFSfs1VKFYNyKwCpZmglHg6ALGSdWATB6p2FWwa1W7FsJgMJGiYarvFDgITY0Uv+F1Vpawgm2hFFioR1AEwVtpJgKmQ7IlAgQuWtb0PwUzbJ0nJVl7CDOyi6PpLzDZVLjhAfvkMXmsOooCj7YHyUAtKhyMYYw5QJg6gRkwjGhZrDpLJ0ODYzAwzZgLrfNLJhFiEUliBj6o8RiniDJDWN1QfY4zwiMAnDUaLRnWlAmI2OZLHUtISinsRvvb+ppSLIIUCbFtiVYIQEcJ1OQyuBHzVilFEVaiOZvBHV9VekUF6SnywjPmzmZtg0rDmS39lKiK7QCiBRVVtTJzNJiAjoGgAVDnGwySpwH57BPptjHYA8qnIpeRwhQC/o5sdeGse2sHBQap/qgs+uHzz7gCIDy2duB17Pjt17fAhw66KMKxMW5HoY1fmaOE9EAz6EBEwknZm7aU4UCdxuUBTvxAAYbWc4j+kdBos0B519RNrrdxPFcFS9V8UkVfFoFnzbBt5pQPlAZxFjo1XtTimKLAoVayuycPIZD+wkvhSA7Kvw0xyw81kOlvZsCpzKg6d2xDAGFsogZVZutlJWOL9HFs5aC0hqNEW8btgAp21ONdE+hmHiC9D8MbXx9CuUbDVC2amg10h7Kr02pP0As2OYelSF0vxRlxQA9UAxSDK0Ktgpslakeircqso5dTdbGi9K4IagHLUlps8Rk1SIUOjWBN27tqmzGVkxQN0fdHG0D2gloY1lf2wraXlHjZpdaWG8PCfHSRXsykGO9/wxltUXJKDcsDlR6kQzAR3gk5PdBNUxELgChsxBcfgnhIRMRIF0vCTQ00miNyjxGygug0EocM/PycbNEafCliB7yIbQyC1AVjbiM1QVpBDbACHiGqdo06mHG5L3N9xQgIl+e93Ir92hwpawGcRsYk6/D16VsBZSaQDwvS2hmagVv1o2AzRkBa91RakNtGwoqF2BK9jkbC6lSiYwPV7fYUMXhPmKjN6xEmESzrxCxsYeUBoX6kFYJgOK4tmGOj0i5eTawyxNbdSrUgQirXC2cTDN1slJxccuSbVidcuO96ZmRMnEgo3rk4g2+iD/8l5UBrCQl+ChYJ7DScWx5ww2D5fVMjSjpFlLiCwBkF2Lao2cvHF4mWZ8xwTWTJASqHikRUbIjlu0qovpohqvrOseH3JIgS4ixmBmJe5DnnY8lQia8j59FaivE35Ri6LreJagmT5AS5RP0WPGoUGPFWyRyeOUlztf1AbQEkAttBZHWpFg4etI86q45rjx8j6j9gXDumFgYN8pqU/B+q8lUVI5NXawW/Bolfo3G1XZDlxlYXEQJYIlgGid/PsSR3kizdAxEVUqUMU0RYAzYmJjniXl2zN7RO/U1fT5SJf8TMw7/Pv90W+fGtdGvtS3bgM8QIEuw9I74eWzQsQbkOpvpVIWjqqGJ0pSufJ+jkg1mNwNfrSoiZgimO1aDSLsv355cM9aYB4MH4VpvpjAr7MdlTMMZhyzyrkis+UVssSsi0UajskVAqSXayXD90kL/J0RA6yarau7rPr7RAOVpH3jagLd6YpQTm3bMQiCAKrFQE5QgiXDlRK9lAIURyW0ruN0ET0+KW3iBqBP5wQAZvNnTHVMru9kKG63xKUYkrYZSgbIJ6o0Nx0wMPiJeFMX+BNwG8DwcH02gPAk+fin46KOGj142vLzcsD3t9DOpDRRYOgwFA4qOgo6KjorT2EpbPNxmi8OrUakf3Uwlyv3gAsWk94NNduccpLF1Uh9RnBRmk4u6raqkxP1aNFQVRSN/n8FEpY+3w4GiGHNCZpQIIzZg52dzhEtmOJEiShxZtjgwxgkEm0JzOLIoc3CBHEH/2logOeAZaRGcRSwIjzRVUZb30kQuvC+cLIajQ03ganR6dME5DKcJplT49gzcPqKQrW6YraNsN2y1oWzUGsEA1Y50QvM5+LmoXl35ai4vE+Yn2ZVoBaCQJWSleV+YLWmBZC5FEEZjxpYMYeBnw0HiyWB9sPtsfLU++FlWhdCMKIqHg4zESl1IaCoiSlQ4ZgUFwFDAFRODzEyAWAAEVq4YUiDGclEKYitEHMXIzBQBAFubaUn2InDyKr4JrUIuZhabkluhBb87SnhcqBF4UWzLlG4KOE3JJk2Zy6KB0X1uxKTXfQo2CllQhawKXydBXoITfh5d9zNHX6RsxKOSCfE8ebh3CdIoCDYwql7Go0qxZI3WEwjzLjXHEHoKJYSsQoarBuAsASIIVoyptQKUSrZCqoQ3B1YqjkuiXAAFAXItqlwGRZHiQuYSHEYjGJQZcihTNiudoCneMDqHyhCMSqBuiBJ3LcG2VAyLVhwdKMrzKXG5VD1M7tJldzI4kminUACtjlodtVI/WECGDgHOezFYMYxiHIv6A+QW8v6Br9vgaHBs4H0KKRAhjkh4gdDjhyarZPDFgq2fc82ry0SRFX1FmGbdVLGXguet4nmveNkrProVPN8Knm6FzLEZxoileAKlsh9P6OAJXMJ4zYtEo1Mw+CnK/kyTrGYRQGZoUJz9wsTBdG2UumehCfcPHlWErRpE0bboTl5LNITk+1gwsnHnCUmJooMX/XqPbzRA2TbD3hxNB6oONBkYQmTHaxqRkmYcF/02EHXihUNGN2Xd+RMrOgoq1AvqIEtRPDfRSdYELMVk3xiQSk1U2gS10dFVNpqHuShmY5VHrYJWga3Ry6Tsin0v2PeG7cY0T9saaqM4zWIjnhHtD6Px0QDLqYcL27t7RiMSlD8PiipCV7CGmEaEyXUKLiEA0zj76MEhbB9AFsWZm3UPalLRgjVRAZtsRQRmAESZ256RZstGc67ChcJkNUtLTZCvjFDct4ykcoCvqDCcOh/y+GSXRpTLsUMtN6A0vory2Uh7uESp9egwOUjla0GbCreC+9Fw9I77MIrCpACNXYO1KLRurPWXsMp2xvPpCDmV9LzHhu/rg4bTqFtEwEyj8Cwd9QGglOiTJBKGaZ5sF1ZU9uhtQc8HNl/zcQHVrJDKMl1fLMsMnRaYZzaPagYuKYx+HHUItAyYMzKaCWxi45WkvJ3CYm7Wgp7e2VNQJtOhE8BUnnt6U67wPe5nDCQuZgJAhdS9SegreB4jStSngVU4RABLN6VwekuYRzPDYIksolzlRurGDZHRKKPCWQTThAt/biqBnoQlQmESF+wNqRN4vm9AFE1DN1CwzAg2+lAZWV0tyl5YlQ64RVPnQJBiSuA0NQJiydQZU6slgKRKfM5knkqktJRpQm1swBkiIbjw+1UtFOLHZDvyGkqcqyDLUBUuDS4VJhUTQuM2r+hWqb0CIFYwrIZRW6SrSuUNUwekBlgvKA9rlGp4Pwu3siIObQqvgrIprPI8PnracWsbXvYbdsyldfFR4WNAMNCOgrIpTnX4XfHFydSV/bZZBlnn3kA90A5FQ8EmitZi0y9BBsPQWqT3K88jmXcYWfWmnB+pHYInMy7rHVMXVdIlN4+Hvk0cazl3mcr3B8pTi0AbBbCysbII0SBUB71cdIQYDE6d01BWTxWLPc3XumUWICXE/zkOijCd16LfFxn0CCbcMYNJMrAlCiuQOMe+polsntIP9vh3/+7f4c/+2T+LH/uxH4OI4F/+y3/57vfujp//+Z/Hj/3Yj+Hp6Qk/+ZM/if/0n/7Tu+ccx4G/9tf+Gn7kR34ELy8v+HN/7s/hv/23//aDfpRAz0zXUMwUHW1looqt49KgeM751ZxMSqDBxoFctoq6FZStsdSzVUhUTmSvBFeW+mUjvRTZL5CyLJlZbVOLrAWFkY2glkgpNUVrbCffGlvE18YI6oJVFjoM0nzDJcSwIa50RHlYeh8EOPFc/JMEzkUgKDuQKr6M46+FgRY7yu+FOfEiZZWR1VLo1lkquwvXh+/LdRQtD0dU5+QRYHId79IYScPngfeUdRy50XqyMGFhbxY57EkNwZwEeGYJ+JKNmei94wzB8HnG0TvOPnCMSW0GBF4qxau1Qh58SQJ3rMqNCebXPbxMrq1xzZKVPuOGSOV7+9J1y9bvaTwmEebm+0X2hsAj3F3jJPk12sJnrS43dgQQSIo+TPvsOuY6Jq+RXQ3+xjDMYSuasyVktOU/MSf/Ju3Ps0HgjMqufG7ei9WNN0HcAzPBaJppj1oJ8CkSJ0CuodeoRVD1wU7g4WhF+L14MA6hS1sHrmONzxirRZa4N39O+pp0dsmvNb9qHIVzJLQ+JX+3Np33h9Z4zRLNOyMwYLednIdkdVQiYlaKjyXaZbAUPP/2oTt5dHFPRo5rWYIURgYE0UzH+OO1B7IvXQDRaD8hhU31RKNTemHAFKzIMB7TuE6ZaFSt8GJK5ihA5i1L5kXi2scaWpti2yq2vWLfK/Zbw+1WcXtueHpueH7Z8PKy4aOPdnz0EuW58bM8nl9Yiny7VWxNslnx//SR15wdvyQORYu09lYVW6zXW5idlXf3Ptb7kB0kw1UScMfo5jyOkvlcq6MqRiXHWqZ4k130BU7W4cForj2NoEGqEqRsBbJXaiObQhonySrIUPo0WRxZ2bT66iyQAt4jRJo2CkpKzBmJANUzDR9NCsfM9cIf/IG+5h7/9Z/Kx4cPH/AH/sAfwF/+y38Zf+Ev/IWv/P4Xf/EX8Q/+wT/AL//yL+P3/t7fi7/7d/8u/uSf/JP4z//5P+Pjjz8GAPzsz/4s/tW/+lf4F//iX+CHf/iH8XM/93P4M3/mz+DXfu3XUKi++VoPLgixuW/sh2OTkY6PKyr1kvUuFaIsHa4StSYTbIsdHY9VCkWwQfc6BFYM04AOIkB3R1dHD7vlUw0jDlfme5nrNxgmirMhn0xWePBwmv6ETMQGKCr1QptmHzgHc8DnaTjOE2c/2bQvjKOGB5XqwEAachXS4Yia9tg4WWUQkVx8VVHa9oMIv0ocET2rZLeblTUHt2pdUQAQ0VXSH56iPzYeRCJxIBYpAGKXEWpskjMYoOkSZXoFDsfwEpuaoxeW0Y6HhZTUSXw2H6DTqIVFe050LvqlAXT3jUZnNnA/T0hUNpiQ+RpbwYcn4Ivnhs+/eMXb24GXs6PdNgDh2WAEP8MnxcbTMTO9MibcEO3TQ2jsFJY1FI4h4NoVweZ4PoFNC6owMsmIbKsbWvSLWvSoXGkRc4uInoyMBzNWnPeyxB3h2FakcZeFBTxT5wS63dNzQ8IBV6BTgMF+RyRyNOxXgkEDmzyKaXzlCtRn0PTTUAbZkgKgx36U7JtIVsBgjTCP3TH7gPB+Jtt2pXgQ6QZNX5RIfeTnQqU3jFXlBTa6B8+IRpf3Q0S3vC8FKAbxCqmG1drBGACIMvLnp430D2wJYy/dCrBKwgWwobEHcV6IB4sbGqMEvBbpgbwaWbHmlhqCCyhJKUgbihV0AKjFopmoA2WLPlQboBugNeZksIheCCSiWonxQOhbLiInUjMFXgpmYSdtg0InfTj6AI6TzNYA00plRGNSA2bcdI11pqmSoQU1KBpMjaqgacGtNjQF9gbUW4E0Rd9pgY9a8OnzM562HR/fnvEkFs1BnVq2MdAa8HZ0bG8nRuEa/8U54B/ukHOCVyhYNZaSQRy41UZDuTEucBEls7UU1I39vFhLwDVJd11iSAGCVc9BTV+SbPfkznsqMWdNHLU5zsFjTAajM8YlCwMmRvhQ9c4g6jhP9HHQp8cb19QSLq5bAbYC2csqM8/54WHBYC44DHibwBFi3mGOHil1OKDh1+Pm0Og95BPUeQqnVAaKwKCgfIRwGx6p5ORkJ43h/p8EKD/1Uz+Fn/qpn/q+v3N3/KN/9I/wt//238af//N/HgDwT/7JP8F3vvMd/PN//s/xMz/zM/je976Hf/yP/zH+6T/9p/gTf+JPAAD+2T/7Z/jxH/9x/Jt/82/wp//0n/7an4WTBUAta7JKTQqNLdsdvugsgSGNs5JRuLovXtSvRZXPCDHmiD4Tx+zQ2WEQnDZxOkWd3Se6D3SfmKzPCIFSHCuinfCowLFu7KA5HNadEoGR0TEXPJszIv8QrYWNNlmVTJ0EzZ3nAKzFPthxqCCAwXXIWnhSAHU9d6VtgIvlWPcY14s42Y6F/tfAe2Rpwt8CiM2aOWv3yD7FPXLRQPBE9Ob0gJgeojxlM9cJps3nhY+Qu8FjJC7guTkYtaoSGHBRZpknzec6xC7RnplCvOA8Go7jwHmeGCct9su87ms6L2b/E4+mYVyE+Hoiyr43iJJs0LHSnJGrZB2uaGhJgJaMVYlISiW60BZGv3ndldkvjfD2kc0j5Y/3Cb1kYJAUdBg4OV0xkomj3j8ASrzXcIITRPrABUzVRZoOEGgYisEzEseaW/nvTPWlksKAhzQOVnSW4bsmSwlZ85ZDzFaqq8Qgz3P30DLEHQi9lD8wdpkjS5FqpriwwDwDxYdoMj7PkqPK+sA5K+KaXhA+K2cEkc5BmN/h4Rrm13i9DBzcESYgfCy2Khoysjuv5gzP0BqpCbrASnJ3j7RxrHsrQqZGJAWxmUZQF6THUj4/TIGjpJ33mrrb2FTDAmBOowZhTpiVKA+PirIAPWnNQoYmKEHXmLsSlUxlFTC0RgZAt4JZBCjBYMSxa+hAEDhUgWOrmO7o08hM1/rQMNZBvjiWEEtRNFZwlr90gD4jguVwKzF285pwjDBatAAdU6h7nDB0NwxwLllaywugbgQoAM5h6AFQZhYGrHmTh4VT8QxDQON6Ar/WAGR+jwxJgkvLlKzQ9gBO4NiHow+jGWGwzRZmJR5rnplBgpFl763oQl8TpIN6OnNgPoi0YUtXJHAGF/j6j/+lGpRf//Vfx2/8xm/gT/2pP7V+tu87/ugf/aP41V/9VfzMz/wMfu3Xfg2993fP+bEf+zH8vt/3+/Crv/qr3xegHMeB4zjWvz/77DMAgGuFFQClLEMtGVFt4vXaqSMvjvDsSIBiEUXOGaKvGWI6d3g39G44h+EYA/fRce8DMs4FUI7ZYdZxeMdhDd1HRGcUYK629GOu2nzrE3by8FOA6pgnHUbHcIof47NafK4RA9IC/GTKh5s3z3Fa/OxauwNwyKq+0FjLJEGKXnTnorHl4e8e0zBY8SLeIZ0ELA9ogbbotkBKicVYhNUxpRAkoMj6rFYsXEKDdnROgBG+F9NmlONmhU1G4Qs64apYCfobirReJn3OSYTJ/P+YA+fZycBEBG0jNCj3iuN+w/1+D5Ay0GxewHOyeZZPC7tpgs3Y3QApEBXmj0VDYxPNwzBZrr0ASolFlR25S6R+pDCnXEsLnUKwixYARWlCJirv7qsDkaq7QMpK6sVm6NnRGhqdVi0YlMtXRZWbWDGhiBgsm09jMRH+HBq6J0v908PGH5Eao7CVbQowiqhyksQkcQ66qG6Wdwaajh3DI8KHG0oCl4wQPYWWIb6dvMYs4bUFzzLNtSrETJZJVZr80Qgums9xRsVfB5sTIMgz1Sj8mbnH91jlqSbAcO5KS8sBrJuWzJcYmGqbFpu1r/TYHKzeEInBHz2ZxHXN0SuZKyty5U/ShDBSjzFDWXwikT52iLFKyCGxfgXIkWtcCMIL2BEbEoHJGLQ94DoKzDEwp4ZxZAjCUaGRamMHel+gCA9tA0SUqc+i2JugbZGi2OhY7EXYAb6ykd6uFAxXgIJxBfatYprjHIZWSwCUK/UVXXWiAizBGdeOFG4nOJlxLSdofZAjYILABWtERPdmsC+OR9B6YqIbvY7YAT6RO5kfNeDYDEcz9n+aV8UmS/Ht3ZF7AncFCT4vAUqJAIjWEUskm7A9xrcbgrUxHJ3NFBkss5ki2Z1oDmoRWGfKPBy2tceGMz36clmk8HJNmqwWzLm9Ut5f7/G/FKD8xm/8BgDgO9/5zruff+c738F//a//dT1n2zZ8+9vf/spz8u+//Ph7f+/v4e/8nb/zlZ+ngVd3trHuQnMtc4XbFtG+R/TjUd3BZI+FKIzVDw4b4cUBwE0wD8NxDBznxP0+8dY7XseE355gUnB0w4fzhJ8nqhO8HCMMgFKgiPD0ODst5t8O+OsJvJ7wDyfBFBTy4YS+dpTXge1gHwUUx7maOPnaYLQ0aNlQ6gatGzT6I1RhV9+KioaGTTbcyg23uuNWb9RETBrysMPxjrbtvD4+sd9u2LYN+75h25/Y+K0Io41AJ6lRyPx4SUQe1QcSV9c0NlIHF8MAMS6kBou28HSxpVEo/UQvBXMO1FIxZ+dEnoOTck6IdgKB+UAZ1QB+Y6BLRmKCqg0ai3KKWUUo1JrzAE6HH4Z57yEwDZap0VxvvHWM14H5oQP3CT2MYlHQ7lqH0otiCtAZfcMVLhUIcMG+MVg+EKTqs9naDG2JQFA46Ydzw8+H+lp0cnNEMv8Z6me5dNCyaU5ooQ9ZvwPbwZ9wHDDcxXCH4xTDq/Bn3R2nB7UMdnSucIyi6GOiCtX+iMqYVusaB1YmZuE10cIqkmkSMbOhVFuMR3xsAAFyggVJtg0hIi2adSkXIHYnS8JsRzIqvkAABdrpVsFI3FNMWhQ2Q/Qd0e5wNsPrHTi7oE/HMScOs+jSGykw4zrhDsiMPAj8gThMBiVLiPMeRnonAJv7VQYNMKWRIIW+TRzbc3CtUlwW+2aZNlU2Y5xMkRRPvQqrua6qPKzGmQCv28yyYjhO4Xi428Q5Dfc5o6M4S1BXDNIUVhVeCzvuRm8mjehCYs2jRinAFBBN6II1USxNiYN+OQCvxxgTrkwluwDVyGZKqSiVDVK3rUI3hW60DDAV3G4VT3vF83PFS2HaXgH4oAfTOVsAQ8e+DWxtopUG1UZCDjVOwEMEHdxiCcG/6WJLKNXxZYVPsb8sQ0IvWM3+8rxcAKsB1tXZksHwgDx4AU2A0wTnbjh3x2mC7oITbPVRY53owp5WXRVdBWcBehGMQgG2a2HxAduVA0rNEdkdsh6a4Hs4rBuO+8T9deDtw8A8KKi37vDOsekzelDZRDlC02cTLfxuikzmkwWsWA02k32/+L61xjpXBJs5HoQ4v+Pj/5Eqniuq5YOT8rf/UL/dc/7W3/pb+Ot//a+vf3/22Wf48R//cVJPYYZFhsFCJBqUNy5UCXjQ7I7lQhMXcS0mmSIwpy9H1NNbRAZjDIykL43gyI2L/7RcgK6XQaDQVSMfnTW9M2krU6F9An0C54D0wU6vxSKUkocXC2HlEvCR8l8b70OsnJtGTRETnZRQyoNANQR2NFbyS6xXaMhF1oE6ldVtFbkVpJhV4govNjQW3ojYJYl2/gZRxaCh7YFIKE2Y31djYSnpay4S9C7hxqRqK2oFrpVXIl+UJlHiihqgxD0EprHgsqty3mMLVouUpkUUOlUwumH0idHJevkguFnbJXMhkIEw8eI5aklKytZnY+O/hxRPsEkaYjhGwCD7I1lJ4bliXlc3Kl2Q4/WaPBdwWb+75lL6TuTCsSJn0ExqJNXrjtMs0j6kaU0AnSR0DWmeOWODnuz+LWRWYMAQYdlv4UJEAzdG1yq8tjNSUFN8MXyyxpKsj//Asq/zTBYvMkLQ9Vc58h7Wv7yEj2lKuZ57gW6mN2zKorgpEvaLlXSEIy2whNuID4Iv3ZIEBAh2J+eOvX/uEj0ngxIsU4qe4U5dgWcVVlwXLnCh/cL6CuDSkMShcc6IrxT5c8gwtcdjuC82ljM8X4RgQDTbJoRGKda5XN8SGKdQ2gQ8h2zAmDBOriNBXqYQ+PxoaRAsCptlalS2KSxyQ6rCAoRGANMKvX0UWJ2za60sokhhsj6IzgNkrUkTvjc0n7vGysPmgEzgOfzS/eSAWxg6ZxvW9ctq0jVG0m3NY19yjj2L1MrSDfoD43jFI8FkPdhYSeqnhExJpJAfL3amDi0/VqQ0xzD0wWwBA2sGa2zciuUXZUHl+OR8MYCl/RZBoWQajGNs5kAVg3sJHZ5yXfgBRCj/SwHKj/7ojwIgS/K7ftfvWj//zd/8zcWq/OiP/ijO88R3v/vddyzKb/7mb+KP/JE/8n1fd9937Pv+lZ8Po037mHeMiLQzt32BlKCkY7JL9J+WS5ofi2OqkAHAI1Jnh0+bD1UMxteZSXNCmVdEVNAE7ZoLCEzoQDkmvSnOARw8ylSIdOjbCX07oPcT5exQ7Yz8H0apokNlRBWQolaW7Fkp9DzJhde5qRdx1MIqp1Y5fKsZajWUEkfNqg5BaYLSOOFLi7K2SPNwMQ9KN68P6ZEAeM7zXt/nVAYSBHLi8IdaBab0XzFEZU7SvBcWIggA8m5GtBmvFX/Dsl0JXBl5cSkoZSMwiEgbER1N5/S22TFHRz9PzNOCQVG4M3d63Dvu9477a0e/D4xz0DcmN80UbHRAemwGAi4IRQGpFwY2jV4w4ZALik2LhEbCFTZpQo4ZavmZS05KH+U9CPkKEMkfPgBEsB4hKyYcBeaFYmRTdKMb5WmOI7xljulRHeYQFVSL7Wo6y9Bd2EVXIqIXoTV/cZgK1Gl+KNGDJVOSpTBlIOD9mkWAmuOF6TfE9eN4oyssHtMiOf5St4QATAk8Ewrn2Li2/gukJHhwvvc0A21iHLMToIwZInSzh+ovhJAyXn+9kHzfW+N5Kx4A5cM+zb0v7l+Ka/2hGsvCUEwuAc+aIxKpGBGHzEQKMXFMgp6/9swEKavlhEik4RAAzFfABST44wuQOZDomaMBUAgilr4ug7gQcs7sQzUH5ixRbZKmUp7CE1BAH15ERvYNKnRy9tBglbJsG3RT+MZ12lWwtcoKn1vDXpgqEcdi87atYQygNUdrA61N1NJQSqX3DR09ITB40QVuS4kQSBNU5npmMcMYQEmyhzFuM+3ssQ6qOwOTBDI5CKY9zF+iVp8awdKVRklx6sWKzhC1R6rnQYPCYRD7z3LfC6ASyNYjiPAYy3MY+mnoh+E8Jlt1BPqRUEOQMQnN3UjLggcViRpZwpgK1FpFbyNxuBhq7LdSed/X3Pkaj/+lAOX3/J7fgx/90R/Fr/zKr+AP/sE/CAA4zxP/9t/+W/z9v//3AQB/6A/9IbTW8Cu/8iv46Z/+aQDAf//v/x3/8T/+R/ziL/7iD/R+dMT0qJhxmpBF/eWFd2MIBhjOyD5ZhBL5aVLANCqDAF6VZczGRoE6R4gWG7xUDtHSYMVYpfNYt64FRSodIZ20bEmlunHgVgc2cBA0d9TpKMNQI1y7fDMcmQemC2aIx0rBVkosHFd2nCkONv8yP+F+wvyIrqrnl44Oj37dNk6YAlOdOd4QrGQ+1t1XuWhumVceHTCva6/sYZhGLc4VLwa2IegLr5I5R7zuGUd+z4VuzhHpiiglztU/NpjcAvN9UnRoqUGAr/JlEWHVRslo8IpEpnP58YgUjuG4d8dbN5ydJXMEtknvY0WbcQki4nOkJjE3XB6ZAGDILeKhNVEgaHUxMkBMCcSfaaTZUiBkfi3y5pzwhRUB6g4vCp0Puhst0OgsqjqhWsFW7TUgtsA9zeO43zCqXjsoerC4Lh5Ale+rMyJ8sRDUKk61ACkOG4h8g6B1uqGqslrDi2SmCKhAdTIdyLEcC3s+xK9rrg/X3eP62sOTU/qYvW/e8yvX85LhQILt3wYAZsBDIa8sKAg8gJGFrmV91seHPHwjX/7Z9aHefYB8d12l9vk2D6XilgZ7Uf1hWAJLfjYyiCqFYzT4sLW8ZAm6xVYcDES+H9mCZEo9ZzKSo/YoClgCTuNGPtfr+novsgC+WJsOHuXiAJbg9F31UOy52TnXVVgckWX/NcrFjYwlMNkjptnqFaPZAydZkgBxcARrcvWPWqAxdnRWGjlf3/g+arn1Jyjkaxp8/d6N81Li74hHHjZ4JCiM8nel8d7SAyro0VOwGKssn7/Ke5MlRmieviSKVrq3MSWlazwINNbRmAIZpEdQqsK0nITZZM3MvbDBblV+zQAhz8bwcK8FUV3IeWv+fcb8b/P4gQHKF198gf/yX/7L+vev//qv4z/8h/+AH/qhH8Lv/t2/Gz/7sz+LX/iFX8BP/MRP4Cd+4ifwC7/wC3h+fsZf/It/EQDw6aef4q/8lb+Cn/u5n8MP//AP44d+6IfwN/7G38Dv//2/f1X1fN3Hwokx4Vl5wkt05YO/vN5EFLIm3qXaTmElUThigU/PAQSwqXCtFKDFL9Sjh8bjofzqD8xGUmtqQDFGmOpAjX+XcMWEWVTn+Bo8wAWuqsryfhhKgVSyCXCyAL5ASicQgcLze+9wH9dh7L1BmlEwZ7kYEQs5mCOa9NH7Wh+uqcQGnCMvHV3N4zz4pKUJ+jJAsRl1/ZPHtDjy5/Fa9DuJxcPzq7+LqPkOj4j+SjetqpD0s4Gkvmt9RbxuN5bJ9sEqgDljtVmAK9+MzI4Da4EgSAlmLkMxLluLVk6fgxI7gTkH8/IbiIonLqjlHdBZ11oDfgejtBaezI8nRf4uHRgW20Ivitx0IpkWi0s2zgsdCTHbEtchgjJTj0xkgL2Ixi3vwATGdJRImwxh1DZEuNBCmOYBW1GI6nW5/NJOxLRd4xDwiyGQaw1Icn1hlWRj4vuYRCto8Ycf5L/y/mca5R1AuW75wiMJTvwB41z/i9dem/s7+PKlhfrdTnH97OEccjitvwuAYsgya6z2DZSveWaFHtJccl2Eh7el9tuv/NjD2nilya73v4DKQ+ojP08yqI/fPxyZoog+ypjxYTLdu+CP+GIkEIFHkNLvWB1WcAZTodH+wBANKvU9MImTSDC0cGXoVzR+lzM2r7Mgq5uS/JFI6+Ji3uPWrbHpXz3WYHp4CAKU5xR/SHtKgJSikZorCD+tq4gh/XL4IIu8zi4ZFMnvr4zBl0bf+jSrJQUuwTBAB92spGsBkprGPZVYI770mgQqcgmvPfaLr/n4gQHKv//3/x5/7I/9sfXv1Ib8pb/0l/DLv/zL+Jt/82/i7e0Nf/Wv/lV897vfxR/+w38Y//pf/+vlgQIA//Af/kPUWvHTP/3TeHt7wx//438cv/zLv/wDeaAAnDxNlYxFYUO0VPA/puuzLTrd7ML+3rM/R/6dL8pdEPnN6qiTDEqpg8K0UoFSYQLUUmCloFhZTMwCKFjpaZLrHgBkTpQxUadhd4FWxzYdrRvqaSh9wpvBiq/90CM6BVgYVwPBbsoOtnCjhfkUYFIwOkfH2Q+c/Y6jv2Gq4hysmz/HiT475hgYo8PN0M9jrVTukQJDovMLoMw56VWAKPEEABHUGcwTBGMOrG6vsUDli3gAlDRXs+hiPMfA6GRO+jhX5cKYc9nXe1KjsRMQm2QvG6zVhosYJ1K0EoGA7JOlgdqiPzWAjK2UHVxxmOIwwTGz/G9SqABwpbHrngAJHmNCq9APQQBI6mKckYiDI+MxGT+5KBYDO93GUzQjnhJNN1QyJIskcNz7wuiOPaLS2CnBCY9S9MrFF5rCtcISbppKeeTmY3uw3BgUJpUzRQK4BOBKMmcKq4A80jJSuJj7FEiINvvkqfaJtH5ZkaIIIBal7gkoVx1KhmYLWUR/wKi4CGCgAYA9o8iF7K9j3XeELi1Thakb8KzywfoEj1B8meMFinH4Epxeu52v986N3BOgxIp9YfkF8WMxf9BrJBhIsY3zM6WewFb9dvROAa9JZwcLnOar6s2DtV1td+TSIrxLHyV8inGsIfrUZTwWpv46TikAAQAASURBVHXBWqdOhTJofpZsbZF6CfcQSse8mxAMYRPWE8DpQE9MJlhX2xfgoSZquLLJoivPydl3ZxbFrIUdkZP2AHg+C6hfoGq1PLdIDacqK6v/QP+gZCQTBBaktxB/T/bvqkJMp1U4N3feO1/meewanYPrASDGNS8lDQhpUEe3aoGG+VvduBarFkwr2FpFb+xFZ4Xl0woHojI1jaaSP0RqFJM5yRnmskBXjlgV9smi6SHpJBHHXi7Qs4cx4iaXH1OOeluLcYJTfX+sis/f+fEDA5Sf/MmffKDtv/oQEfz8z/88fv7nf/5/+pzb7YZf+qVfwi/90i/9oG///r3eLQwL8oeSOVa+x4hqIfSMLXLFsWv1yXwdHGkJfvlepFmSxQbpWLx45o8fHDlN/NqEgx2ImmaaAMGhc6CMCQ0DN64wEyhzARQDrlKvx7RPLHbwBDNX9cA79uhxjc8JkuhaSkQVoVWII0tSJQyy1oKJ7xPJBZC5JI6P/Mq1CK9/r9AjJrEHLasxsUTjOdwIJaL7x2GdKNzXOAgh7IoaYoREuOvutLP36z4uWjtLYIVvu0r7TNbtGJM6BRIVzi6h04AhSMtqyXRBRmoJMEwhboiEfjxH19XKoZv35spZP1zhxynn8b+HtMe7rdjfX/0rApZVgXWJrZ29PJSdVfWaQvG5HiJoSM4M5Ea83sdCTyCZVnF8aXo8iP2ClUGYpAX4ybx5RvmP0X5GX3h3bn6d78MCm4M1r0cMmHWhr0ia44wRMNNkawnIoRrXnsdDGgQPufSHlN818/IHHDO+NFPXDZXHhfrxBq7PnJ/bryj9YRphnTt/8ejpkqZuECxROII5XkMr5/FXNAEJkmSxeJepoLy/zu8esl7zK+cQX7PKI4sYlmVAPDl1Mo/LFB4/c4LFAH7vPspiyfI+f7/TStBh11wEB+m6Nst2H5csIMbAAovr1j98gPV9IhTOcw9G9SufM+7bGvnv5qUsR10yQcIuzvBw5E6xry4voseF4BGfXyA/x/HDOeSknM59099/zKQM+P11TSsEVQggOJcRQMev6/V43R+G1Q/y+Eb34nl3xmsiXJPpyjvzuau/Cx5XIiLoRTx6dlpyeFQIsU/JdUCChs+eLwucXCWe09j1cTW8M6YyfA7IHNA5AICMyhzQMa+Knh4A5WHjsTBA8hkgyXLB8zUgfUWZsZAIrgXhQXZ+RdjUKDiEpbiPh1wMChc5vpbGopqTypECRAIdB5hvRSz8a1XNxcsDlMxlYCWQaFZVYOYBlDz2k3JtItd+vl72nVX+Aihfuu8R6hvsvegrSpUvpor5cY1NlcJBRqQJUgoiDz2NgtapiF6Ma30Q4AIn4eUhKSxZDqR6DeE1dpOKzV/g3YT+KinAG5/R8+N4edzIEdd4TQ+NKCk0WJpGZvF9pkDz+i6aPxcdT5F0bBbuV9VczjFZgWqAlDDfywNpEkevybI4x2QtYrN6h65jM46xnkZjaYz3/nhYISQW6QeQQiBkuQ2t84oSkusWLBDoDwdwPQl4t6o/rElLlPt47R7+5Lq/72+c5yAXeaAUkgngE/kxPBid+LsEUA/Bioi/Y4xzZ3qI33KAYG1y6wO/X0/TVBDpTfOwUedrPL7ce6AiV3AkutaldQnyviQQlhizcYceX8wf30BiPcnzsetj493frd36AaTkSPlq6nYFf1g4gmmdde8iIJH4+ghUhPeL50wGIt2X1+fO+/5w6rzMsnyQLpCi4eHE9H2mrmSlkQPU5/B8kAZ4MK1fGZ7JnD1EDly3OcZUyObqdXdAHTvvTcV1ZC0DmyVyLU9AD32/T30lRf47PL7RAIU04wPQUDDf7hRP5aIkArgZVB0OCjfFaCOuLpAGSOXFdJlAuB6anbAxaK7WB6wb5nkChSWI1jt8sAOvhT6DrrP0TyCXSjv04TSBA2gDXKPDcpGJ3SfajBLjPuGRTiBdxlLHMXocM4COLfERRz6pO1awVJTSoNsNut1Q9htEor9OH2jbjrbdsLUnTFB9td8+Rmsbtm3Dtu0PKZ4rB2khaE1Bbg08JCIotayNofROdblF1ROAi9VAaF8yxdP5uqUCUiBlwETZnllZx2szmgNmFUwMdHfwObFxiaepV7miPEfoVxwOtl633qmYnwEwg5rmRpYGcR7GZY4zPQlcUY3mUnVS3OquCwBK9j1/tMlci1GePHIVuXbPKcGRJuy79mVBDO8FWK5c/9IgOGF2OsIaWMq7IlXl55KSYnBFzcOBNh2tsDFY1YuFM1x9a4pEiiBSGy7+vrrycQNJTLFO9wIkdBZlt2CClRJH5M6jFMAgVzUzED0j4/d5DaAPRlXRS8R1XdfF9OaGgtSaKVQtBIZROh77FBJDRuoinViK+KWJyHkXY/8aasEhPlwQUUa9DAwegUjMK4nzlsc13BZ0Ms/Z52uuSZZvp5bIL7ArIOtRPLt5I/w5gCQppQTorBwTj92yM7VypZCiGiVBe4BG0UwPXKJLaqqS7fxyl+VwkFWJpox6MQGxIbMBaUFrQGvAthUejVWLqIpZqU2xTDUhUve5KZJuXum6dTzg0y9NxjgsF7MQZJMJXPcqwB47j1/nc+ljEnNcG75Pp1t4+IqE6Oba0cF1tLhQh+ix6YfGsK1+U4JWADUJb6qH1Kg8gKxcgfNmRYl3Nhh8lDXwTocwOZ/jFnMEISVgZ2+AwvctgxcFNnU0FWwaXa4d6OLRNJJpMBPeG743FkC+eNff+fGNBigX2ZhfOfFcI88WsNoFazECWEkjtUAr83WraaDyhjOsNyDcD93GYktgk2g4kedD2PowNh+SRddGkYvACkhyA4CFQtyA+ZAP9lww7EvHFaU9Xg3Egpe5Si0VWhu0bqC5kxO4lIZSGmppkW1xGre1DbXtqNuO7H2SQAVw2CzQB4DCEk8PgFKXepvpjrDmToCStCcyEuB1ncJF191p8OWAFFom83Yxl4z4Hhnt5tfojOzCypxkzVzSzItIfnXxXSzUQ5pnbfT5+ukE6eEXIsveWyNX7ZmKSJ8Y1WjshdU9NCOjdwthhrgWtIsBbFOLa2fHl9fRxzH2AFDevzL8S2Mtv76rXFjfP0Zt6euwFBogVHr4t7+/9nh4HvBejP4YeebBefHQVsKDVTGmyMxibmSqjbttzAPJWx/7yJc+hVzvf42xC2hda8XFti1CMV/pkX5af5v6FKyvjzfo2u84IvzdD+VLX/EexV3Q7vrQsfl/mQF6N9Vjvrw71urnARyA7Iel0fdq2WLk97jGQ1IO1z30KxJ/mB/vWDpDsFj40nWVZdydcw8xftQvIWrqWeTxfBDC8ZRdJaCu9HBC+jgJWHzwMGbVo/FjANNVOYIUvj6wMevxpXX08VZ9n7HD0ZbVRnGszwEkiERet3kdaSp+FfD4em3+M1kHLH1fWdeTnGIYSD/seV+a/TnZrrt4TcCHc8nx7rGeLEYUDipTfJ2T5JqbOi0JPZPIWjeS5Fssqzyem63PlO9yje7f+fHNBigSMyE2dE36MezNoTSIoQ+KhTPlgLmgeMOchdbiVaGVddriAJROn8CE+IDYILoM/QJk4qqlerzZWHSzhQjT1dgzSK/+K2kxX8HIrMJQbELnZOogqLZQA8KQ6aWI9Bc9ua5EHGnUxpbtpe0o7Yay3aDCRnx1G2htj2OjYySAfX9G23ds245t36HKTfMxv2mD1TcpXSxrFQIBSgx4KXV1wpWgzH35zQBmneyJDYgK5iCROC14oGkLoFAkaMhw5UL7cd9dATW45/KTFLRC3KNnj0OyaY6Nq8txpuLMopLn2njTTno40KEYYDPDImApe9Q9SqbMirBrbAMkLDwlw3LRLwETOuQuddksKxRLgTckF3fwNRYzkAsKH9cG/QhMFKv0LMKt7Ip6deh9L3hUoVg8Rm4s0Bld5QadQDHTBQ+i9lihctnMv8uOxVc7KrphCoR26Mp/F5Pr9OL9fdVg4QIoa23LlFKkeDI8Tubk4VrlDLmkFDEHBRBJ6zpfWo3sheWwoMfTUM6vfibIjSko/PcL0/q6AhOswRyL9DVnc/tEMjR55sGO5fkvALZAZ5ozRjAhGtUcggZbG4VVsiUarROQ1R+a7InmLo6sCrIlgPPoAWSAeLQniDYFngqxWHtifVPluF4A15PRYDECe/0la3JVoazKtiKo1R967bAbNIpg1NSVPXSlzmIHI8BNbWB5AER5XAaT76FKguGLEONGbGt/oag2mQB+3qv82xJ5BHpjCnli9vnQew1kUWI95RhLwACIGdRSzHxdlwUGkOAd6++TjSVTcQEn82RQHgBCBreP2krP+ZkBocVYStDpC1mRUXwIaiBkFhlDBCD2h1SwIalJ3jJb7ODXfXyjAUpezIzycrC4rHnMyagS+UMOTnFhdUGl5gDVWXmQ0gcn9Zl5PnpJRO5eaSOsYDrJC7u3ihZI2AvzaKGDMSABisbmEw3eEsrA5ztxbTbWunjniWy+tBaoxdcS+BiokF8Nx0SBQo8AbQ0uwiqiWsmsKEGMRFkhWZUNGkeyFsvEDh5lO4Kkvhc7IELdSmwKjNAoDJVYdEVLjlpcXPpDGiLuWy7QVyT3wG5kZOS+rp2v0oqYiBGGhNnywwY0sYylzJZZkYURV/Y28gARI9qFn8NCFiQ0MLOMMfJWxIIcG7+oR/17Rkb5v+tewkcc8iDKjI0Ca7t6iPDXC8W4j7Sl5ubtl9g4wUj07tHl/xDjWa46mfebf+SjlyAnFjQIQXhqkhwgtxTp0gfOhZupxH0yiEWfl6kYYTzXhcDNjDnujMqkeKQfYnooc9p5DVbJcY5JyX++93/gRpKA4eGPHtDN2oTkka3MBT6B4cUckeT2xTgtG2+s0Pl/tkDlzFlMQX7wJa6M60oclQLqTCngISqNz7ui2ismvTBbjMoFoNKGXRZwyADJPbVIWT2VEXIC1QvUPQK4fIsVlRMlvjvftQEnSMyUh13PSCuGkm7KyvQ0D0CV5n48CFq8BKiKVES6Az9k2WKJuSqwJL+u4PVhrbkuF1ZUv65vANDH6+vv50euRwk3l3dVNNZLC2JPu97VxuJhLOaYi8BgseqSAez7NFWCg+t8ryKC/M8emK5kZUTWKr4ejovNvGYMz1sjxsnCWkGMFzitMoLZkRxvGcT4Ne74mQO05HD/bWbL93t8swHKg4BO4lilXg9k2Fr41eFSOMBzIZ+hgk5BY5SJLXAika+WbDbG18xIzOVCugmAHqfL4wJ+LZNyTYyYZHBflOqi6cQfNt1rkbuMeXJTWxAtXlsvBJyLUnzmoiHCinJogrzwfwliWGMTI2n9IOb09zRpPoOb0sPQ84d/Z9j3uL9+6RTfT5uHv7vm8RVBv7u6WFOTHT6u3zuuCM4TEC32BUjrcJv83hxwJWAVx+WumZ1aQwDtehGV+WYEwlgGjl/dsx5OZi1ykctwic3xcdP9UkQeEcr6c490Ql7q+IoELQ/3PXMZqzoiv497kjQ9cpHK13+k9Nd5YzEcNOdKb01cQMMDiD0I7zSuITubUhsAVXTkvKIRlRaE2Zwsil3XZckNkcwPcF1nj38QPD2MpncX8f2szNm4Nt71+v5u7702ElnjKgHAu1eOTTtfVR5+l/NkgZMAIV/aVr/P9wk0rr/JDfnxvRdmuBYVZOpV9EvHSqc8vNDDx8jrcLnlOr78SSU+13vVpzx+4u+DDeVhDsv6i/U3/ni+fgmzVyooF8D8wBeCW//JV6/32gfk4Vgf42ERip/my0ukPdaldr8Y+4exg4ePJciX4xx/FKAuxPDuHq/Vk/vHw/zUWOeTSUmAcV25x4e//04ePuX6gXz1lnzpSLDBWCneNzGzXzuq5jh8uMKW57JSotdQ5Dd8lyQPvu7jGw1Q3Ap8VPisYTKm8Fnh1uCygUZUuWtQVQCdAAqknRCb3JCrQNsOqU9QFIg4ShuodaIVx66OXYAdjo24EwUIm2FayNNk7SFNM2Y0b/JoSMhIclqBWQFQAygUFC9sHHgCfk7InBCfMdosoriED5WNAXVDKztqmYzasQGocKdIWKGkU8VQJRxDxdBkoomhwbCFqRPcUYeh6kTRidIHIBL7Zm77Dpn0EJCFiGNDEoH7vBb3fpVTr7bxi0Z2wAbEJ9SjkuaB3ICBduprUZOVOhNI5GivhSOjAMqPLzGWgyZQ5hNqhmn87HM6tDtwAn4CdkZJsVAKIpNA5eyO43Tc74b7feC4D4zO8QD1KKeLhbyCjUDyiOZZCznkSpE1t9NZGpTNNOaFckyc1S2WrCCZBASeGUb/kRUWARQN5qEOKwGmUmIf0SfelXiGXM4NZoJpSvGqRWffScGt58KkWG7Mj7hq6VUkwEimRgKIVB9oJjDpqNHcbCtscterYjRgbIz62LkZKxVRSyyGQlCdm6KmXkwTrF1MQubdE+xbgtFHVgTXmvnlhd4E4eWRoPXabFNvgHyfB9DygJ/XuLzKiJM1kK88bz0XeFjRM/BwsELj0jpcfbj0Wts8+o+pUxAdFWT5fGwVsmWvLab9bCaASVGKXmnU/AiPm6/nx8uATIPOZwCXTK5KxvThno0C9Qr1wsOUS/AEWYbFrvhVnWipw4iO3HndJdaEvKZSoJKVh3FfFSu9qtIharxekoAdKQC8MG+s6Qv0gJWaIleoQPBBkLHGkDDgo3uAsAhDAtBHh2faRxhksvnme5inTHuBAuFaNtS6sZlr2choa+N5wiINCygGrtTewwiOl3Xh+Xl+nz9/GP35/fQQ14N/U0Lsn943tS71FtNxUKgZmnAOV1xpyxTSF8iqql5DOa57MuRf9/GNBijTBkzG6vXgruGUqqAVEAeeSwm6eiD7uiIP6UjdistYyJoR4sQSpkaJsUc+dokuHxxTzR/6W3gq4S0qcR6/hp9JQm73SPFMeICAS9j0sLDKlUPPZn9ZavYlXP8QwUSEKDEs/YEyzKd9ad5eQ96vf+We6+ub98/IIOF/cvDN3i/hj7HEO9TtWGBE1iYfLBkefvcw0RhUc1XViKHYD4P3TqPHicxM8eQG5g/CTS5AbtEle/oyaeuDnVrT9M9tRroEWH3Zk216VNit033cCh8iqqg64EaYjdojz573x4EULpq9WzLjdw8b5HprebiwDxGofumryFrEFpZCZsezQog5bUGKXA0u1O5kVOcgWKMxXwCU3DHEUAbnC/UI7MUkMDKVA6gjNE2IihkQ9Hh81HfjJQM9uYZUMkELGCT78zgGv3xbHqgIYshLFMqqLl/X93oW1r3JafCoI3h3D+Txjx9v1Pv3/crcidddH+8d47F2mwXIUqtkFu0aAmStifl4jsB6viPAmD/4AwnL8fk5ZL1Hjr8kAC20Blhj5D1ZkP9ejN+Xzg9xv1I4vbIjEV64P35iW+eMnH/y5fF9AShW+Ob5v79v/ni+joTpZE4BVmploLVuxsOYyZ/n1WEdb3yPtU7mOvZ+cn71seCCPODEpVN8YL2SEbXcBHSd9Ht2Pq/YxRM+vAseTTVyzcs9S+J3yFn9jnFNgH6B5XcAFl8abo4VpD1qwh69k77O4xsNUNwMptlsarIiwGnTzuInAIuAeg9QPMEJOvUa5ESQozqmOierzQVW0geFxEOCl2tRywZPvja83AQvkLIocuh10x78VC41Nj/J4+K8KN8cwGuTeT8PciGSx0njSWlfQ/aqc398zzW2kInatYDHi0si4Vyg1yL0kBrwwFrARcQoVprl8b0AXDqhPIH4rbybAo4Lmlzz4JH8zGiHPTBiU4wKLHloFZqSizVhY9ayiRybxvVpFziZYb4X4PT6SI+fbZ0MvsJnfnkVWYtgXCjNcXoZ061rukBXbojvgeHjzc+96XHM8A++36ryJXAi/gBOHAhGZ4kiPfxkkGWLwXLlyzngQgCjM268ZiO6K+Fpzv4mdbL/yIhdTkRWpYNZ7snv5wAUUa3xsF+sa/wlsO7X1XqXrJDHr7yQWR3nWaLr79N5/FmiIlnjHvK48fJ+XePY34+BLw2HfMr3A1D5uVcqwbHSc2v0Ozhmc60SwE1jo11b81ded53fw2F+rQf40t99BUDxbQnJH36eHjf+lb/JP5T1syV5WhlBeff8i9m45tY7pgyRMlgDA3HFYko+TIr1fM/Re90wizVxlXpLbqoLel7jbE06W7+5UoT5768HTt594MepGet7Vlg9GuW9S9M9zOV1vR8+awK+XAM0QctiUC9QaZ5xVoCauKgSAczS++CrICX3g68wknG9YhlZ9/wHeXyjAQpbTSe9nej/jOtyQH3AEW6VTl8TsFIbbh/g9gr3e4AawLwyauISikwcXM2wBiNJt5iMyYZMTJ8P//bVxh3mmNHLZU7DmBMjKlxMGS1MeLS9f2ReuGgvNgYxOR/0KBwRBpMZnyHKYX3CnP1syC51gqpgmlavG6MHiQMY43igVrgz2ATBTywQaUu/gvH0zBCBaDIRjhGdTWe08uZTLOg+B9krVrOwLw8bA9IvZkb1zES39ywWoo6/xGK8VOEPDNZS36+fP4iP427+3+T9v89s23IVDI+qOVf3s8+59vVrHBhLRiIgAmSwEAmJCQ2CBIQskEAEzhEggQMEIiFGSPwHzhEiQ2BBbFkgAYlB/kSASIDP9569n+41Z1V9waiac/U+1/Y50ktwPvfW2s/v7tVrzVk1qmrUKF5vHmcE5baR1SgLQB19Ot6n4zEdz0ldm+lO3luBlEWmwcXDLLiVKK4iP/n68dnfhhtCuVbNCUoUgDvJfQbBrOyabDDGzF52etlMXZ6xNGYKwIfnz+p65zHc13EuHR8Cas54YRdRwy5/hDhcUjdhZbZonF08AVZ26iQJ1tqG5i2dg1gAzXG4VjC6vERDAWeuv2tkujH87lK4Wum4OrurU8X+tRdJgOVgY5d4Xr7/6jgLPCwHXU4tjfzmQfDnVx/6dbiAeqcLLHy+YrS6vHDBVGUT8jNPB0wdkzqnz7gHFTTV+IirAGVlUGQDB94PeX3RemcSawlXSYzR+AX0I+00qM1D+wRK1rvm5OzUzag29HW9PUELu/QcSnuInLgtuZ/lmsQMQCPLXTzKR+RIzGUT9jDJvUC08HEtqbr/tX6cmSrxgBszn7xeGUQUlnLJIXt1/38nxFKlqSxLXUTndik9geklqKjyzXVdG6odQFKhlymZKhFaGm7mjC4gZb2/Kzi5xjEJlCqDEnWBLsDxAkDW3kKB2M342jODvtnjOw5QBFEKRAXlotBtpvA804FhgNdoqonSOCF81wtivqaSK1uBVfuoaKbQt1yXb2zzFfF6On45zLkpK2qQqgNGDVzKKL42+9o/FQnv4He/borLvQAmWyAlRGAJWvhxwHxg+gA8cM4Hoy6JjOQlsx/lerAM2QYoFVUIRNsGKIPianMaZgIUZF20AEqO6UvQNDmDJ4HT8IkzDJMsEqyuJhgkaGz0EsH45ZCgqFBdkQm2hrKEonDlPB4TTW2TvO75sXze8BRq8yAwSQXfwMUwCFKhN9fINTtRN6pC35dHfR/rPXzNIl4Az44asaL8iun54WqmqiVwH0vPp8DaBbTVsdqtL6B4euqjKBJQ0P5bnUGw3Mh3tKOs0spdHQQhsLRaZPRzfakA3R3TCbzEBS3Xu6ajLld/8fXLGkoChp3MLhgPbChRV3aDoxI/XDyTC4C5PupKO8ohYDmGyo5F3s6liir7uZaZyF9f38Triy0Me10hkTsvYjuK5ahkBQ4RF+xwwcNR0bBsDsELtbLWWMTqjKuzWK9VgAjXsvDrxF9cQHq8/Mu78XIe2565Y5dLr/focv3qblbydTu9BL6xnTIByOarFNfK89jXNwMuwSVjW3yfuj97TVeZT7DPa2U1IzOpAZRsvqw3sK/r4qvlatpXufh0kvsitk2/+BOsK/r54oxlMuoM67nrmm8789n3a02+XJu9jq6lJVQvRdmdV6yKyphvPxXrGtee2e3dn/397/H4TgOUKOESzWFMCyhUuyi/xYtGmfmoGZpur6ihSForYsAikS1SXq7lYpmzJBh4xaJYizMyCRMmiCnwSfIhXzIjguw1GSEYwSyK5LlMzawK9o0GrtHY3sqU5S8EbbCYmH5ixonpAyKC4QMjTgzncc4H5uCwwPb8CPOB7gMzbgA0o/hdBLLUYilWveg2aRugADZmZozI3ajU6B6VM3itxMFpyoz8hw1Mm3j6xOkT01NxNosOEnR9Lba+AjJd63XPIWjhu6gngCtvnKDBW4dpZzYCghmShT9KFFQkMCKnGVtgTscsifxFSJTd95cEVFw34bpTa7Xi1UN9djOl3g8F3CKB9VUO/NXlFiYPiBB4cyRAqu4Kv8baF5WNeo2arVqqM0M0PTDymE5HBM8oKJ1WQZ9FV5ZMH2eUVXXuK49oOt/jdJbGPKPXboJmwDS2kJoL1IVqwr6dRuxnXF6YTpxro3gEcQGur8DkUugNv0xe3o50+aqFLJDgZDvBECQyLxt0McTXHSllSvYaiEvG4RXE7p/zkwQOQDq4FD8rEJjtsmmkuBaxzz2K0Kx1frUu18XcC32lSjbwpU9K/Q0sKm52AbIk11o9B1CjJCCvwUJIZk8yy7CzJ7RrBTiKOBlyyXDVdQRtLJBEdpQga+7fPCwBL5K06krhxi1jUEc6yxLzBBaxXmqFiaxymlygwcKWCxj4PlFgdyIVKHEOiDXPpoplyfhsdQYqsacIyAbb1zLc9Z4tG1Agqa6XXAHI148NSC5rAa8Ad3X9Vcv/pb9ZszwvGTis138BbJd7KvtvK5Armt43fXynAQpwh0iD6n0jvpzkKKGApeR55WFNUVMexTpgHbAk0c6GsA5I598joNrReqB1z49ATxZ8sZpLlXKTTKMqL5AZHO0zgBiCGAKfCp9tSX5LKMIVZpEloAlxRrvjEiFEK7EtWXLRPVUXVWorE6QwM3JizAfGeMc5PhGgjBPnfMc5HzjnA2O+Y44nfBpaV8xxoPcb2rghRDDnzie5YEXbS2xOtlkTaTTiERQnegEoGeZlGCY6M6VZIIXp5jkGphmedhKgBHMc3KjbLRZLQ9L1VLkh5a2y3Ef/NmpjBFUpwxxxdHhrcGUmhZOMKeOdUkQYoThdWN45B+bzCZ8n/GgINIQaiZ4lflXjTguo5JJDRUQvhel8JDAhik6D4bEACqqVHMy1L0Y+0pghX8r5tQLUj4vIrvn6uGKnfV4X38QsAmXiHb4+Gir6buhshIRJlhsze7kNP70jNXkIG0QAyxZ/diItCiQFzyJlzyXAxjFlV1vek8pQvRhQ7IhO8ppyHaQAXmSX0+eQLksXVeJLSLfeC70v8Zy2SF0yBihR6LpVACL7Nuq+dSynbIfmee8XNsgS0PX2R6bMt5OvqCpdWWynWXOdlv5RYKvu8hezpFHZZTqGksQv+YANUvBKmhdZ66W1mtDOj9oErQFHD7TmOFpb3VEWDlfbwDj3bEra5jXiuRiYmZvGcq7V3ZBVVNvgJJ2dZXaHoLKUnRWGBkPDRMNUzZZ0WW2+aB3RHKGGEi6kwjaFPFUaVtk4JLNDvF5NQHtbQAOX67SvImpD6drPsuQLe10JCfTLzh9pVVsdygnG1Wr/AlKyvBULlLPcx+zPFuqj7ESwaSLXLXLvXOHIIrVLkV9jrdHV4tz20dp+3WscVreWJjw2r7BAdjnEnv5Sr6/5zR/faYAi2RLMNrOqvgkiFPBLnxyyjmkbPYYLYIowQsXwRnJZtFxuAZHGNrVa0Oqr7ZFpOd59fVkEVdOMVYQLk9djBS0FM5F1Y2YUkHyWSHLiGg1fuiwiS8+ECyYzOJHuO2Xkwwad6jghKvB5IuaA2wm3kz8fTyoePt8BmxAbgHMLTcNyayz5OHkJqon2y+Xx/Dzr3TYmfzfJpZVBqR2uzZKxHiz5FNnYqPJaowXK4SxtjUyHyeqOiNcjklUZntFEOYQLoSyVMys9ztRkEVBz7QQF2TgkMGDTMCenUa9gJiXEGRl43qNLCrQIssspfQZOcP1esULB9bcyKFlHjzLaW5BJ6pqua1O/VzHaJRa9kjGSBLwnOW+Q8tKFkQeKG4Cap1P1/gvjvyJIeXUs9YVosOMnBJqTFUNpWs2AqYCZwhWwJrn2dZ+nCDbLWgqvAbHPIq6IC9vw7uucn12w48vdKFOh4H1ce7qMakWihT93KekFdby8nnz2vdjfkfpLT4Bfn29GwN59CdI+j4o/e48hVfCKy1XZNrD+j4x+cYnKryVFZJamhoru6bqSGRQ6UgjWOpUFri4Qbe15Gkmq/tLW2bX7cZ1xvv9LmeTaUbOidFTJKCclpZpvoQRpvNGibb8P7GnnS0vqkkEpoLscdcQKeksdtUDc+vf5IqrgIf9dOyOrBaMSdOsovNmqfb5s1euK2t+qu1jPtPIwiRbyl7M2u11gZj3yyXa572JL91LB1mLhN7cWy35FgqUcnhoFlLFKvZAftW6xs4jf4PGdBigqB5o2aLtDNYjeI5KcVNA9Ge2ucJOV9gxvsNEpQxwNMVJTpR1Y9cTmRJGVRVHK5UujgE5XEo/a2io5E6JuGgIxIusFkbob+b0Jis2u3n+D+ED4SYDgE+491WcV0hqkNbTW0PM4uuLQkl+3TCsCsBOYJ+L5jni8I94/AqqIMRCPT5DnA/J8AM9PkMcnfn9OhHZ468BxICCwyQ4OIGu5ztS4ti3ZX6PeF0AJwFJKno7dsIa2ZfoVBzUvOKxMVrRQXTY2BluCnXySKr/VtE29bIZFji3OQmRGqWqmmb1R0ezPbzRcGRUQFDAqC8twOBRDhFooT8Pj/YHz/R3jfMDuN0QcCBkcYdCwlDrZsZKcqHpIYLEyLqn0V3AygSRVU4sEmDNAReIGtb6yPdMSrChdgUYgbF6IjpYk2CRIF+jLwy+fr2M6fAYP8yVSRyFMnucAU/AqvqJCSKAlONOcxBwg+TiCFt1bBVaTmS3lIDQVOpLOYROYI6DS0RvBSqv3KJklkOV/sLotMrRLiE9Ay2T/4lTQNudAwPrdXCc0qpduhMzqSU7PLo5CyRiS08A/jFxbCR/S6GM50gpWKnm7QE0Uz4AA4wqhPEr/KLlxtYQWYKgQu2UGCrhOKCZ1HKiJ0QuNLXeoq6rjSfJc072jSrEVDHGfcJou7Q7n4gC9A/3A0i8Kc6jWQM+LkLmAdiJtlygtpbuninNKK6A4UvWEkkkkB4wBHjwDu1UjYGZPpEP0gHYCpxaKpoEQR+sdvRuaTgZVkJVlqUxJXeYXsT5e9AQLfB8rCF2E8H0HF0BHld94w0MYRLrsbIljD4hQIDW4FO2m0JuiHQLpOYJg6T4IqgeZPJWc/gh+3DxMoAiTNUl9df4sYMb1vHnPtEHLRoskMJWvtTqvLFKQ1NxAzlhzkt4LkPFU89qlJk/p7Kwl+Q0f32mAwvsh+2aA6NwjoLW/E6FXRB+aSd4oo5yx+bILZVZiwduSvS9p5qoBtySmVOpvzU65ov2INAbbIITRGVPGKGNjN4hXBiPF3lK9E4qMABgRqCZI0ZbiOSCxxQAxCq2184R8eod+/AR9+4DWBD4Gjk/vOB4P3B4P3J9PtMcTfp44RqT8fYN2ApSYFZHRMLCrI1apSVVXRMOUM82lzuSqTAfmZCoYsTZLP8ABYF3RjkL5seb36Jw4snarl8h/EQcv4YUZeG2d0VyaYUxlvTsMmR4HGhQzBIeDU4kLANV9q5y/8Asfhudz4Pl44vF4x3k+MWfOlEFbEVcx02UlcoM3bZ27vxxr0GRpssyRRNXAMGXmZgZCHa4NcjtgrpiiOCfBjgl1QzQCsLEASpxPhJ2Y54kxToxRU7AnLLNA/gJUnI7A+ZHDFCO/L+krOD/DJDDZB5E6GEVC5DWuGrgVaFSgmcKbAo0TbEME3hRNBDBwDhUcY9B5DBU0bRAIhpDvQF9cAw3TMSQ5UxMB8B+J4asTuFJBBUaiolkGFQ1XBeh8Hqk2VMKbSgLUq4CvglXMiVxf0LQaRAAqkg0lsZIdss4TwMv/RbfZc4Hq1XfqvZwOnRELfzvzsfU9ahmn7bqsyMjf90hgkuug9t1KpqBKdklEyCzFVtyWNfaiDLHsS7jts1ycolDKfil+V6LomrYLh4RBgmUKTeI0ywgKOPllLdn5XQSHKG7ScNPArQEdkiVv4GiSk4F3eWbxOIq7kf8V3alChmqGKFFCXddlF0sjs+RR7iI2nKVVvGbxY/ms5bsEa1DtKqt0hbadtZKrKnhlINZ5XrpwpD4vIL1fmwTten3Ze1U2L8sR673uDBMuO0QyY1IAhUCr1y30QEcws3/5vZVlkuUaM+j5Zo/vNEABdkqqbkRtwhoYhfweR19TN2UpPdS0Sdnp7lVyqRV0WSSV8rpK3G+GfN2DHRMF6nkv+ijpCLDIRnlk+zKzCARQKMfOd5rIf4OlGlVOcJQqqi6cODwm9HlCHg/o453gak705xP9eaKPgWNMyBgELoZ87gbtLMv4xN6MwqjUXwCKrEzxtWxiCcTEDDEyg1IpUxV0E/SjoZmiu640p7nBwoFpSS4LArirowEW9wWBHelfsvsagDqVUC3zqhU99RD04Dh6jQ16AOT1zjKROnw65px09OeJOU6qAZuy5RxIY2S5Ai5gpx5XR7naEPJcs52B7dvVis4Mis20AMGMlCkd40yAolLRm0MuAAWTrcU2B2yyO6raw71ASF6s3YUQv8ORb8FJVNRl0Dy5HLYMXW1EF0lyNTOZkeGihiGUawDBTIqGEPBJYM6G1gTmjd1D5mvIs1aGIEsvWoYU2akna7fBw5ktjHQgZSQRy0kVj2AFp+VDpCBIgYcNhTUdQMm/ZziP18mtl9eJmkdSFqJE7DapsS6urHbXbRe2TU/Lkk6jwALWui1nmx1ZuPBqyhlflmJ9TWHIkkPwlDbY+70yLriURuo8irNTyQ6sd7VByjXLUCWFKo2Xs9u0rFzH2M2vBDJVFpTMMrMNV9OuU8CZIORQ4NBUMQ2ChuLqrUTE1TfUddm38mtE55ejLuf1ez+iXijXf1LXsOBu/U5dl0tyJIHKyj4UpxK1t/bj4jWSvH0FJ1hXcYGTeoqXm3LZM8sj7rO7+rT1eVxXxc6maASKGLHBSbxcC6B8RVyuxO/9+I4DFN9hkSbQkKpnXrggQWBQhjpS3DdmHgiWOCw7ShJxLkkf1g1WBmCDloxqgEUnqcOFN6k0IZZZjwzTw1L+2fNgBiVsQMyglgTHMk5FiroAlJ6RKAc4cUBVM6CdA+3xhP7wI9oXX0H7QYLonDieT9w/vePt/YkP5yRf5JzoUgDFoJP8l26B6/DBUp1cAEXksjeLtgrWl4v0Ow1r0J8Q1Byu6OboR1sARYSjAywcx6Q2h0V16yDT5hVVylrk0yWl2otIxghmiLJl27NOnX/nHriDYwvucNwAPFBmJAFKSI3ehc+JcZ54nk88ng88T8E5BGPm8MNU8w11dHMio2q9/JzQUSIRFsxOmSPMsi3bsosmSzxWa1wSuAWmCMwmImqAXYJaO7m+wxBzIBKcjCyxWTqgncbFApgcxMbR9t2ZIWzh6EGyq0jynSDrXnDBZ7Yh1wADgdRgCPIGtClEPPUvaE7tEpM56t5xzVh2EzVjieX0PTCwZ9llNawI308NIqMDsbVOCheWQaz0u0qgS4MrdVmaenYqbLBVHBsIOAiyIs6MlJdnzfImv7wClVggaGm5AOu8PDYI8vzbeg7Nn6wuktr38dJPk8BSEhNnW7hw+raBZR4ROvOlmOzFZZKVQSl9JmdakCVLJ0cvEglGNhbkzOAFOMrTVdt5XfP1WBczfzeS0hmCFsrupJCLw8vJxKHp5BzqiuZYwVF3ZsEt9+69DuHR0naHAl095dcTAFHjIX1BteB7Zl5ZwnQtRpjke14F6M17kRq2IYunta5T6ApsIYHQCdeCARdg+jlgKPCtFYRuIc6a04O1pitrUlkUUg0clT2re1EZwFqTBSSTpxSvxxVm1uTmZFwDnhkUxyLIssgUq3TVM6vFAJCcci3ETBeRfLfrIvndH99xgLJBiWcU5Snuo240xCB3wqczg3IRX/MRqJE3kR03YSDvI8oJ5oZcGRRcamv1OVaEx3NhV4llzdqUDUTMUtIIigpclbMzmvKuwxAxAJ8Qn1DrK21YDrMyCbFfGIkKaISnQM8T7flA+/gDtB/e0DtwNIWYwc4Tt09f4fb+EffnA/P5RDyf6CgCrkJbp4NZJNkLQEGsGmVFlQB2BgWyHKI7ZeKL7V8ZqNsU9K7oQ3HcWkYMW2n3FaDkdoodz1aJja+V5bsUnQI4G2SAOiYybM0oEVXADKc73iJ4AHhi8y6L5idOY3jYhM4TGE/EeCJGh8+e6sK7k6GaL9Y89GojyrkjW9SmSj3Z9m4TPkc6jCoJyuLQoPg0mk4wsy6Byn5Qvj9S5we5zmNG9WMCJhBXiDcI+nI1TYAmji6OQwiADqHOTGjVuhRNOg6Ri7HnOtBae9iG9xppVTTVIlvDI2vVoWieoMdBvpbNPFdl9520JbKlwixLTSuvtnuEo12Ce2RGqAQEY4e6GYmDzhGCFoKOgErLtnmm8SLLUKWbw1EShBkuLVPgOTJ+hcQVRNQV8ILE3NZJmJYsAtWfJbzJaxaXCIfPE8vxscOKs1w4a4uxF0FKZQC2vkhlUOg0PfNFjvoe9rESaBVW5+vWRc3zeckeXLuY6j0EIHlt60fq21G19TmvfQvyGLTuS4URAiyl0riQMR0QJwBxAOKCnsfhiu7BICvTq45sz8Z1ag1/llzeXEOXDMkFoCKBceGrDQaopVRBUhRaKAasyiprLJAcu6K1QEpe8/Izm7VU151gZ+uq7Cd7KU9dHnE5p+va/9oOzfe6qg75cmsdF5m47it2NmcpyC7Qn6AFmb1KkHiZgldbM7vrvt3jOw1Q2OVAx78GpoGKquFF1lI6zOmwkTMYCqSM5IYEEAP5NTdGODd3gZRVXhGm5CJBstcOShZ7iDM6y4Kda/bvS6JcRWpoKLw1RGuIlkReMYSfEB8Qm1CZu53LUqY9ttDPQvKRTosWD/p8or2/o/3wt9Hviq4DvSnEHX5O3D7+Nu6fvsL98Y72eCdACSzimGpHBPUpCo1DGqrHQFqWvCqVnsY3KtUYLGmZU5G1ylUqXLQ3BY6uJPrOhppYaqlPcbO5VHQZMccy2twlGW8JdUxKaCxSJ0VVMSCYHmhjLnE2dAWmYZjhrUAKCFACwInSKmBW62a2AIqMJ/x8wseBsOOlVIcrOLE8z2W4ooQfGL0V0LyCkzkyigXcq4tHluGkUeU1ELu8bpIKw7LryZ0lNXNgFEiRRMctHXWHgM6enWAcEtklcIjgpuX4/IU7cGi2YWaGwkGnv95qGh8BUvX0GmVlpBUEIw3BQXAAmivUeMgEW3p6AyRbkRcAiYxMC6Bwz1WJh2mUXGs5ofual6/6ObvBJVtAOVCTe7qmFDpBCuggOGiO+aNSq66e7nBfZZfqCOHV0AptliHnEn6hYb56/Q1V+JfONxYulCNQhXsOCYzkN7nubAcqSRdcP0qvugGKpPYMtlOt5RvX80pH+TvUO8rxXctfkmffLtkQIAGJXQCKAz2P5gVSeE+YmI48ygkWOKE2DhKgBCgiebheDgIUmosCN6VyvDMCa4xIvpH1bzlrcq1CwOurkroyVYBSkuMre1wLv7IMeV0lpW0vVd0LQIllIyLPFxUQJ6iMFLOJyx/u035BIFhPcbkbhYJK8TrqJ4JL6WiDkxCQs5Qcy3XNLmv4dRbPBcCo5IDHwJqbipxTmnuvdIF8vf9v9vhOAxSp5GKJUmHXF6vGKAHEBGw67OmY1dIa1bVAo//shudj4ugDTRmSjPHAnCfcJuADGhPig5kFBVApQ6PQmKWM/bSJ6cZ0VnZFVLafJ85SkTZdveaaHQRmE2qcY8Ihhw0OTf6K7NSv6tIqYLmZqcowRzyfsI8f8fxf/wcPNzweD3hnBmROR/x/fwD88CPa4wk8TsRzoHsNflOoTkQoo5ZC9Ys0dQEokgnpXKxLLTLvQ0suQc0Z4nRTwV0FRwscHbgZss0OOck3cDPeJ0+AUoS1VdeVMhhMEsxIFdgCaBA8QykGZZllEXYM9HGizxOHnTh85gxovBhWINCyfBI2cT6feLw/8PHTAx++d8P9vOO+AKGiZbmvXTNay2M4MAePc8Inj/EcsHFiziee7+8E0EbyrQcBlhuzOHoecBHMCIznCc8p0RKW3V8napCljxMxDTYGxvOEzYk5Bnyym0fCaUgUOBrgXfDWFfMgnBjma202z/Ug9c7y7rouIxMRC4dds7lMTb+mwjexNLAE6JKXNWeWJIZAmrKjBTtr2TRYknIGBekqct/w9SoFGpCVZds2vEB1Q2/p5CT5UBA0c7a/t4DopIRACDOPmVkkaViymzMqMVJ4eVWcc7nuklRFqL7cP+ICV2pflZPxYOlSRCGm6Npg0tB6h0qHpoM0BMwUEw4LwRCqVLsgiZcKdOG07RaAzsyOBPZcMl9nA1GEdAQ6Oxu9I6SBY7EbIB3SevIlOFsdyAxwU0RvaK2z29+dBP520VZZ7du1JgieqC7LwFG0dJZqK21CKs16si389VBn5oyriikNlX0UGluc+Ch7tUvTRTCNvInSCXoF4ORe6TjkwNGPBPf8K4rSpUI1Wg4o95TYH7CVt9/JFoA+oQDalBSzU+Tz5FgAB3VjZsAGOyM9fY64p2glS1na9vqLldVP5XQMLIm7DKQDflkDF24mQGAcWfa2gE6HD2bGKfeUk9YRy74fEeiqOBw4EDAR9OpSRWZmK933DR/faYCSZgZARVH13UT4y1HwYEtcVJWEHTzO9LFN3nybluTEWLNM4Nuwa9WJo+rMsVD5Gh4YKWjmumr/L1McBdh9a0WI4slWCx6q1FSb5gJwyiBrZh5Y7iyyLcinGQPz0zvm0TEFaL1x8XkAjyfkeaLlKPCoun9UehUJMPbr44KAkeWWmjbLc9rErCrJeJYfPBcpI+lcwBE4ELgpN5ZiAxR1R8+/r86NKhEhX8PTqA4It53UeZKfI64YEpii/HmwdbbnRjrgOOBI07uOelTbOILrYsyJ5zlxDsc5HWdk1Ai2/yr0sgjlYimqzl1lHc8W7BwFMCbGSeVdn5UFzCKMGFzZaVEiYywHGWDGskgYxE5yp8LhY8CnwQeJstWtA8/hftkZ0xTojXyRowtupvBw3DrTguLBqBWasJJrLFa49Zo5qbVNjLgzKLsHILenxFojFYEzAVhS++TMwEhyXBlLMG0cShxSFEFNMKAKXougs2Knt67tRv+b56FtpaRba9zTSwgxWyyd2YB24QK0xvH0klyUqzTL1f5UGVg++6Lw0tcekhvrYr88I1jLcgvBXiMIllyd6RRdee8sI9UAbUrW8JJXG5c1yXW58weXi1QQKko2YHNQ1ntZgnGZqVBBNHafUAyRN6zsk6xjNxosDt/6OkGnROojXa9rZaFqsfE9yMvh6/OEzBnAck3UHqx26qV6moBF8ppxdpvvEg4aOEeszrdtEbRrBgPMsAj2aIRSCjd8PvOGj4RaLwnYkudf6sWxq8KLS5bK53BHQTja7bzHmXrad9c3sHspNMXLv+tyRPrIcFC9w1EpOv5Aaw9icacaQP4JMosSgZ7XWmJXur9Wm/pdHt9xgMKLXkS5LaJWaak0pg7WWSazKWvy8ESWIgJ2OuY5YWOsG09BswEEWyHLqUnQMfdLyo0dOHuuyayMRnbwrAzK6ndkeQqZWUaCgjENMgN9giWcxtRspfo0o8qmjO66ClUP11MHZA7g8cD87a8wPHCeJ/TgjncI5NMD7f2J22mI4YjhUKqyodRaA46WJa7I1N4ayGVpNMXXstYFEAo8JD5PXgUsVnvnG4AjCFLuGslDADkHoNw6h3oFoxRB3uMyVJrRCTBEMoNS+gPUbThMMQCIOEYwXpzGAv304p/wXG74Og+Ft4ZOfcyJx3Pi4/vAh8fE7Wm4Z0u6SEOTDtGG+7LEZUwTHccEnBmMAsEFTMY58P5+JgcFrEOIsr1YaQzdBgFKBGI8mQ2ZE1gt6c8Fim1MgqCZBOgkQyJoJps4egNuBxDBMp2HA0HV0AjH6YHTAzMJxorNtZkJWMzYdm6yDVCl/SWzWE1I4t6Cglwry2dfDKm5Q9wwTCE2yeIoh+YVpGe2sWJe910WUKxOEPROcNQ2SKCgY+rhdKDG1vegEWxmqddBZ6QAEIJbz0BAJDNHDjUGDIadvZEKOCqLUu9Vs9yiWN/cWSTstJ/QPlUpwbLEhGiY0aDR0NHRtSG0p/ULWGtpbzgmwPN1tBQ8u0KKDJQ6UXzNzDbFFaTQzQQa3GUBIJYcEilqy5uR2bVQlqhboB0N/ehpRyx1UxTaFa2VUqomQNaUSWiZjcgsS4tKyFzAjOTaEQLnVJ+m9tNFO8ad7zP1gOADiImIEoA06l4l38ujCMS5VSFQY4uuC6gQnRTQEGU2SXse6d6DNssIkyErkyLsuoNiQl8yKPUoUrkhBx9WmUn3DKGirpnTltpMUnNmTMUdbJ6IBKK5wlILhvd3ApjMuMKpWVQFe6kInn5paQXlicalTB0zVkmLoIhBagtmQjuYObmJ4JYAcAReiLh2AXXf5PGdBiglKMWEhCyVPz5kkVlLv6S3EgpSeGSXB/Byk/Z23ZhShJLyR0+NhgwLurIe6UJ3xsKAwtEWf2VlILACTxSInJG1WQvEcOA0nE9Dmw715AlIzr/AsgtJRpKMMCXT0RvxRmqu2CTgssGyAQpEmEHDcajAG6OfalOu+Dfy2lR8AI3lvMsCVwyB9VVZZX5QxIo2gWvvPAW+FrDKpyQRlnEHpe2ra6Qip8pOWEb1BHmKFFoDc8naSHZsDXBXHM7uhnMKoglOVdwaRe4OzXsAZMdFRuTYLc42Hedp+PQ+8enTwNuniQ8PAzrv1e2I7AiuSDnPt6LWjGYl092QVJYs5lhOUNMoZ0cexnF09FvH/dbhAvRwiDV4I6VkhcxmKzqcTRKgCFpXGuPDlgaPNsOYhn40HIdhzIAeDu2C21Ro54DE0wPDBAjmicKZIRyjYQ6DmWIk2BvBc68YrdbkvRNQ9LaLPVy36Xwy/VG7z5I+Mik2C7HSPnmNQNsKQip+zMstGZRcO+4CqCxlEQ/VCS5bCHoougSa8Xq1KcwsCdf07aDtIJAjeGhzkxsZedPOhNNoh+4YtUiWa3AdAtUGWiKHq8SQ5YUqXQaQIoQ7yRIZnSOyxJlOwBIwrdRNlk0XgJJ9jUJxEeBaG3hvxLKF4ZlByQ6UKBYamMEJcvrKuQGV/Yi19qkGvFuZJTz5T0DvgaORctQatj3YiZpsFeYRRUBNk8AMyNaZMtnRvhvXkc2ATaRzp5NfIMVToMwBT0n3ZOsgBJhQ6lE5OYU1FTm1f68Up+R5vBZL6mpdwcmra+ZfeN7n1exbpTDZt7OcRqShL45NBQGaYEHk5XbgReAldny8brPv506IxT0qWy9oWff6OzC48TQ/UeAObPu+CXBPUD4bYCpZusKapfRNH99pgEJdB34uFc1U2ik3saBKITSW5ail2OpF9MtIsB5xOVg5qHJKOUlJJ1mFnmySy2ijoo4rQxvpwFal1HdzDswh09P4O4507qURsgCKVjpULqBsZ948HX3JSVf7pikNVcherZKGKhpT2nzjktdzZwsjN0ploWO9g7pS6y+wAE5+qzQruIC3Y3lJOaPg4CtA3M/9SquqOBSrs6MIpbKi2Z47++iSYk+sP09JvYRLZJ8dgde7tCN87Hbp85w4n4bnc2KMiWN6SnZnlujyftYTVnY8QYoqDVtxOmpuiKSz4gwQgfTsdOpUDHYhuTOOlgPYEuG6AG2nr1WVZZ3kILg5PGcQuQfB3TTyLLShWYoXCqCDXWenOfoFoCCKA8XrNkUwJ6PNFgQV4ReAory2BPSC3njXdkdAXdt1J1dgz0Qku6jc99rblvfyHMHMyBqOtq4913p1VKwMR61PKw0fQXNFg3MWSu41zdISwCwlOWKKMRXdd8nn2tmwrJBkHklqFe9CAI05GSiro2E5ueJB1LHLp0igvh1W2g9gly8jn1M272UdKBeDdb4rG7nuBdfsOtu4BmoFVPYeRSzP9rV9uz4moFn8uKqnYGe9NDMmV2e8Pk8uSoGpipCuvrfKIBabkBmxNBA5lHV9jl1yd2YYluP3tnxAgYDI3xVnRmIjha8Zo+VD1noGFqcovv5X677u8r/v107ju7OMl3tUZkUS7MurH9iBYt3Hy9/9yBOL9blcn3t5Nim39fKGP6u2Edzl2mua3YBKW1vZ0+s8o2/6+E4DlHE67AxgGtQMLdN9JXxU0VdryojROqJNdrOEIbKOWoawiJd1e5cAWBpWLW9bR95GksoOzDhgzsO9Qb0nKau6xZmyBRQeDdMVOoE2HP4+EXri/HTiPpkIa4eid4W1HCgYguPIiEODhjNVjgOZiXNgBKPaM4BnAM8gYVVypUwFrAnknt0KSXBbqKIm9ha7X6pLIBVm1uqsDU1nWzuqJq0GkNoRArSKvcg1MQEJcT03ovL7NN67L/8K7OiYdDucdPo1UC5SAlpaY3QRVDcUN4rGBbVBmviaJ7IyPJ9bEM0Uuk2c54n39yc+/vATPrzdcL91vH/1jqYN9/sdduvwJvDM/izfm2lXHLktvS2ugysnujZ3tNI2UcXRAT0E+tZwu3f0+4EPH27sJABwdCSvxBeJKmws7tOcCVbMMPP3PJV9wwLnmBgjwdY5MafjfhpuzxPnmPxohmGOswBQdkq5Cc6zYZyUpj+nYHigG9eXB9PVxdu49ZZZv9SLSCe1iM+oAI86NhAuYpm0eooLUPRAVJSbmYFdAmDpgBGlr4FwLde0iEBayYNnR15m424aMHUcprgdgmGCe+cNFGl4e6PMu2qDxYCLop/Ub1n7ZXnVhO7Kj9wm9XlmTiRWK3AFUFetjQInEyAXYuVNtoZJZLRgHuQxGUcbTDESY9E20VNKMC7ZRGnDWnO+r+rY4LbP3yfqXLLty9kVMTsY0CQXqjraPCYsKaEePCezwSGg88QcA3ZM7m0xQCekGQ8BWGIqn5kek9xcoGFloSzLKFMUA4oTWc6N0n1Bagm11BVqMGcJzC6ghYb+svETKMIDNVm6yobMLLA80lvsrE6uo8gMaYkrXilpW6Dus8AuNbIckc9DAqsWL68XYMbm8Khkeazj1gK3FhjacGhDF1/dcbX+1nieEIhn44M7h51fOgzFYs92lD3rrcNZytaqUuz+rUCBOH6hStG8yMy8pJ+ZCaRmJOH39wsHpS7ORt3VppacBSSqSyKXNkbx3ODCFGhBcWxnSyfMG1wteFVdqPoxHMll4e94bMEwrwPAdrDphYv1h0seOEBdjWnwyTk0AFaXj7ZEyYsRW4Bgo3rPxehSpS/HsMsh+9cXma4JovO9rkV3cdY7Bf3yzdzIfJIrWClwsgBKAfV8XYdnup6pcEvAJPm8K14LXzyWet66kogr777+AkswrMpOlONzhNBglgy61+RUBUnIDUuBNtZrSYURID/CKHz2HDweJ+ZzYI65WPWlFIwcfpgLdEcodZHcU6DNKRI4SGgGgh0SWSNuyrR3r4mimmWO3vK8nZT/cA6gLMEp9eUwZE46jm4rgpXWoX1yAGZr5OX0iWiADqV4mSnadLSZGcoQuPGotmMV5zWy7FZwritFlVQFR2+bxO1ADbNbRroizsBav5JRLoRcD819XX+gIEcg9RHz0mbsmHtsDYa8huRp5YUDgJgiF4WGoYWu69zzmiOdeT8IUEQVbWRLdGZYvMLafJ0Q2UB9GaY8z8t73eY5AU3snGSt6P2R9ob7R5bQHaKoAeRWcc94Zo6ijFiCCXoe7v8ksGZwtXVCBKUNKOtE+NpcW5kVLh0eF9T8qxWoLD5L2cXMMLqtkor7ZUCgJE8iyfaRQci6bgmOyvaWPFBdh1kf08+Wxk1E9aaU4k8NEbhE/MvYXR6XZVMcY8nr1hVUrG0sAZZKrWcjQam/1h9X2W9pRvGXgYh1nbf9zneVBGHVIBenOt+vmT3Nsk5Omu7q5PKkCKGiSjEJHPyyQ/JCSq4f+JVkvHbRAv5rMGLuIdH866gM5t5ikMv5qaALSzu9glbIKqPrN8cn/38AUKo0gUvaHJfhYJcLp8rIqdzbqs3KxSjExg1XhjWDJbms6dhp6TSwC6jELrkQ3KQjlksGQNYuTB6CpS7GTMGxOm9dg6728KpLKrBMWZ1HGvhS5ZwzD3CxA7KzE7mJ1lyNCBSqiHrqa2ohEq5EsEQGrAsQa6UGI6F0RgvcAStaoNhbXYNlw/OaxTZgCTnqoheM8tyAhabWfZM9eyQnxux/kQAlwY9nxFhjRtd9fQGSBFlmjFLHORZImSNJqNMWOPGK4PLevGgu5CJZNflpiJk6KGPsaCsMisa2wQLVrQijoE6Kp6NQpvgoLJhpdKURDHeItsyc7NEJogadqafRGtpkn3coIF1h6mhTmZEcvsjZZgKz7GoIg6Clc2HmyAzJ1E91Ws1ZSxVJmhAsBkFVpaHXXisjmWsX0BSMS45VrhOX3PdIrkfpR1zRwAoKiGJWCahASgMC3IfNlUcRObMUzP3GDGZr9BLaFS3LQ6sVdvUa18qTfRoXoPF6bms7ZdeJXIBLbGAvr39dWmBljxZ5shy/5PqrDXExQuIZRec/Fa1c0sYCC97v163NFWlcipeCEK6xCygp+YYlJOZXKf3kfRTgQbW6Bqpp4OUW4vK1XNYJcAEcq09n9ezQdsniC/GjZun72nfz2eNS9hLsUkT5jwIkrRGocK1k92Ao7KU+hQVSaOd0d5DVzbuCsPy4AmzFjzg2xaBAShcSjbtS6kDhuxSEWgPr5n7+con/YneA1u8sXyWrVAqpjOUr7ofXLZPVpdUuIKUrSdYOrIGC7fdLBoUoXBbqVGX0yQjboMG4ILJJr1qC15HtWjUwLRLdl4MuJnUZQyxBo9jRcX3nAkw8droWwDaOjdGXp0T+JvgFInIK7ThXj3sXpsumClq2PZbzKRZ3yTYXKjcH+9VPhz8M3iZcOuIIRAtIJ8golUctsHZBEpUVuUqjr2tShgsFQMqApuGSS6QiF6VZpKJofixCKDLdTXJglZJ8GWFyO2pXOA2Jg7wSBVAlquR2MIAsVdocjlfzaWrqbwTFlrQBXetpOZAsNS9WuykAN3Z4Pd+feHx64PF2w/l+YnwYmKM6A0jUi0I7EsnUm0yFTx4+BmwMzPOJ8XhgvL/j/PTOjIDfcLzdstxWBqPeO0FKa7EiTkh93mn0lV1PK5Mjk3Od1NZalTbJQWkD2ie7V/pEdIWOgWjAOSe6TZxnqgA7UkguwRN6akCQA8K0OzJFrCmfrzgOXdlMqHAgZ3i25+7UsCOYYal/4msPlUFWJQfHMxVQw9togAUWmoaT62jzrfhzlwR6q6TBz5uwQ48dKMyS9J7rQBXHrUNzEm8fDc3aZZhbpeZr7VUWb++ZcrRRdqC+9g2udj5QNtCXfH9YMQOq2GBl4QqgZFcHs4MZ8s9ghrgUhQHE3A6TYzaUqq7O55KoSewZmkkOXjSwwy7XuKvAVKHFnQps/kS5/8h97E6Cakrqh+XEeaRsg3ryULbTLy5QzeRJVEqbH0k0Xvy9yEAs10TqrrtlBSoDthKOtJlTk2F4QUTVPh9p2xEJ315BQ51fK4ddAA47sFuZnjx1Commo69fShRU+5hKZ8ygtBbM5HWsTEprlyBbNLufIoUGd1aETRK+5AzEIvfoXqtYgHjzNSXXb4FvznkDtII1ZQmLy7P8RC70YCCgqc2Fpjiy9H5LfqMEOyVL1uGbPr4NXwUA8O///b/HX/gLfwE/8zM/AxHBv/gX/2L9bIyBv/f3/h7++B//4/jyyy/xMz/zM/jrf/2v43/8j//x8hy/8Au/8DWU9ku/9Evf9lQyQvC9qMJZKqnj0upbJL/VkWY721BtZ2axpNNr7oy/bLz9OhUV1wbNkGcHLhUt19eX36nVuQ1TZITLWTzw7EmRTJnLZRFdzuHzaGB9XadKCds86NTVZUlAl3AaP0/p8biM0UYpb1aPUioF4lUxsL98Pz77GvuQ6uLh1FEu1hTKunxsUPQ6pKGl/sP1M61/Uh8bVKj6qdgJ7Jr18ZLKrHWnOWFVL4eUMNcmm4VTiG+eI48TNs81HbiAYg3fi+sCy/bzpZFziSbNWDqyyTq9jZElI9vPVwat7uuKdZI/JJUG6kCKbIUcCOHXkAPQA9IOiHZ+bB2aR2sdrTf03tB7z491KI46WmZG+s4ybIP5upd3xjInsuZQy509fN3GcdnKL84kRQ758fp5rGM1QdVzIDtsCjjgunkKeLbFU1Gt6bG1JrB5Gyty1ct7wuokf+m24K1ZmTAA2G9U9oeVKrv8Hl5/7fp5iR+Sv5Iy/LLCrQXiazjqS1NNoXy/mi1mP9ZU4Ytpk73ILjfnmiHZWRLEXp9xeS+V5V3X5HJ+RbJd4Ptyna9k2D2Q8Wp38Xrkue3FE+vrbXu37fdLIPryvHWRvvZ3uV9xeW5c3sM6v/rxi5fY3Vt1jxZI/fqx3lKmN9YSEeCa5V8Xdv2x5hNcAMPlfVd57vNs2nIScbmGny/N9dr7ZtZeupK317sugCPVBVTHpcsItFpfW2O/y+NbZ1A+fvyIn/u5n8Pf/Jt/E3/pL/2ll599+vQJv/Ebv4F/8A/+AX7u534O/+f//B/8rb/1t/AX/+JfxK//+q+//O4v//Iv4x//43+8vv7w4cO3PZUEIgr28xvCJ8JnCp1V8i/TfHNHAIW82YJGlT6WQthSWoPBSjjKhQaPKDV7IMHW3NeNsQ93lilgsQzDGryHi4FZ9Q9DuJCDwlCTwEH3Td/1eBZLarXtf/VII+QKONUoSwNCW0MHIGgrQ8Sosp4LudJXCIjrgtpLkr/jtTgrisBur9vUPp5TB8H4DRfmuVy7HIo/sl/R0XJTVHSZ5ystPx6UJtcGFwKMhs7MR5SB57ErWkJAU07qAtq4CTWNJ+vsPieFYB8PnI8bzseB8XxijmeClJoUbOk86BojJ1MvjYaLoWQbuGGOgXE+l6G2eUJnQ00frq4DyUxS5VVqkAMNY5bUAvBLH6YLhxgG5iVGn2v+SQsAqgSMCXgPT2KWRHIN6P01U9CzKbwLYrKNm6JovF6S17fKkk11/Z1rEkXL8KHANpat98ryuC/DzqnAPN/IEmSVagE6tJBAdzpHDa49TYdea49p9gbRTviaALWFohm5Xgt4YJNLWwIzWd085YAvrJFyzstw156OF2cDSaLkBYisXXbJnJTPubYnUxujwbUjtCdY0XSxXCN+sUVX/3u1S/Wc6wWuxIzPHHEswFfrbLcde2YX8uqu989k8b6Wkp1BxYuocgKzEnVgXf8VjK2F4UBJ+yOWM96M4rV49vWrgNR8lZlqz7mVaFmBk3o+Aq0icwMpNOk5HiUPrEAjOXarbHvBS9igcs/wqVOXvWYUl/u8s6IvQPcCTF6ybdldt3ravd73viaR/KOaEfcK7vAZUKt7eQEmuhd2ZfbqtZcfiP2EBVCgyqaH1LpxUCCzIdak42/6+NYA5Rd/8Rfxi7/4iz/yZ9///vfxr//1v3753j/7Z/8Mf/pP/2n89//+3/GH/tAfWt//4osv8NM//dPf6DWfzyeez+f6+gc/+AEALMck7YA2h/Qb0Ca8BYADwAHBAY+DLtNTcMgnL7pnfUwChgMWHRY1jCsgkdF5KFo5hSKfgazA7qz73txxOCfaNjNKZ0uRyriYJDJPIEzHu3a4Zto6f8+s0C/QMmI6chFPocBZd6CZcPqsM59QLHEAJMS1APpgy88ByCGQ3qD9lgq1QUee5RQBUIJba4ETeQBIh5ufLUMRwvwlGHHwx9edtSNL3rDlli7WrO7qXrQa168ACB3b+q3kPlBtcjuBbWCX0gRUSNQSodhzC4F63mPvbC/0Al10jGVpPIHsOYHnCbyfJx7n4DENbxbUoBBNsKd8hgAUNR9nAH4mAH0C9kTYE7AHMN8R4wGfTyBnrVTaVLCzOXK5Vq0BoVGzJWmbrZwKko/CZxBLPR7bziRytgzbIloCKIU7IFCYB1QmVCeF+rJmOdXQ1GA5sFJCMMFBjFMd1jic0cHW6NaYeVEQ7Fg6OVFdzg/VuupA8VI0SHAUZRcWU83UZ6muu5aLYxv9wEs2Q3Z0Xt9f3RDZ5SI5d6R7R2uO3g70duBohqMfUFH01nHrHa13SGu43Q4McxzHQT0NCBA9AWJLEcjcLbkWI3wTQFVQjGxK82PxQkhuZDBBR0DJAkeDRweis1SrB6IdiH5jZq/fEHZDSObUbgfa7Qa93fjxuKG1DtW+IlpVRSgl81U7mnZ0NUAdhzC1zwGPxtlJrlBXdG+Z2RR00axY8fr6Kk/cEG1AW2RGknnSyCYCkmuZ3ezacLSGW+/oLaezd6B1gXaB9gY5GuTorHeIQkzy/qWmVRK4OSYi13i1FqPk2lM8cpulr9mcCykDstYTgxXeKAUyKIK0nfZJ/ajSXqI+DG+zWkBnoE1Ht1zziJwlRe4Kw9XM9qJBpUOkM9upByCNQDQqM4hFeA+fgE2UGEl1GzUhmBSwZNBg6HC08JUJv8x4X9n0JpLkW2oCdRF0cdgkDoIKgRhS4TiShI0ENcG92kRS5kCADujMwDSCHaWv1v13fXzrEs+3ffz2b/82RAQ/8RM/8fL9X/3VX8VP/dRP4Y/+0T+Kv/t3/y5++MMf/o7P8U/+yT/B97///XX87M/+7MvP96ThjKouochL1J1GqQRGJDtqKjq/gksAqyZ7LW80D0r4uqOHs0009qHhjPoyWlitWxXFSaUx9WXRVzbFV2fSNXOSaTMwctzp2VxesW/jC0AWQ05gA3L2BnJu0UrhrWuyyVyr5ng5Voifko9sqcuP9fN2/Vu8Ms0KjNRCT/C/p3nLy+TQzezfuaIi2K7pEXH5GNU5UKW5rb+wgEtmAxgISRoyWX93TUVfyX0kHLNtl22dziycV01cXtZQpcNxibwiWHL0yvTVsEBPnoxfyjorwtjreAfn6XDTdlYkWrZUFNk+Lat0oausodm9Q+ck2T6ryk6VViWfVgqfnPW0SK8/4vMiEK6MyZWQXvXstTfrVrzytWoMwTounIVNAsXS+nghoV99zPr4Spt9TZHv9ShpE1SKU8LhgLtL4nq0Jdh2PWr/7L1zqQFV5Cvb5uyf7Y9lC+T6O+vsKzFe8vb1fO2SRdEEb/t8NGX71zmKXGxKcnukJpi/ZmnXKy47lmMSVgYEewgfrhv9YlvL/oasvRYbUV7O5fX1l+z9OhHaKOj1+lz4RQlCal1tImx9vn+v9s8rSNk/vi4RBfa55Fp5LWXymu6y1PY6lZAgVy4W9sl4KrmEeRUuxOX1b71erivoOrG93He26+upkXqLsZI1+Oxtf3ZV+Hm+h1W21cv7/WxXxY84rudfUxbSTXASermHH3H5f6fH/1WS7OPxwN//+38ff/Wv/lX8+I//+Pr+X/trfw1/+A//Yfz0T/80/tN/+k/4lV/5FfzH//gfv5Z9qcev/Mqv4G//7b+9vv7BD35AkOIkUakZ57e4ocXMjTVRUxk3Gc7QMBEy4ZLTgmVCZOaN4OdLOh8TGpNyzlXXDmfkGQ0tBnoMNB9oMaAxsm3R0ODsIc+Jxotc1egU1+yPxnTY0pF3oCIsbZUmx2JVACU9TchUMzPKYDuyfGVBjoNNdmA0zRbOPYmzQgpeo8tSzaBhPS5pEJZkihSmO3NxzXC8frEe6/wyaNbrOUdgzRzyTcRlmSZ2Nhr8uqaT6vTUx5As6FH9MILlPpsDPk7yPB4D43SMp2OcgXEG5gjM5B6VDHNAIOKLkGfKlrl5GuZwzOGwHDTpXoZQVzq+3jgJh/SmboHpG+iMOXHO7Aw6B1oP9Jt9ViO/XLjFHfj83tT94/eXaFh9P81BuTwXlkukswETAoJqb4yaGzV6PCjw5gLASWZsIcthm2R7qpRZ2qTe+rdq40Cm2jOyTeXcsNjt2V5mT1a2w5zzoFQpMQ80qPBvNNdKLVDJCyBpxS8/evm80J0kyNYooKU7epSLTH8CE1wcvpZzKnCQQ++w3CGve+Xldm6zDLiu71zcYX4V2GP4LqRbFMjjT3zZgbRNmQbdbzGd/gugqjLKJqPW4XkKTWK9QrkiZn+BVce4cF2wAOfumikAShDP/cVj84QA7D0cGzdUGVY/y4jVFrjaoppXk/nsLO1dgcrlCfZyvDz2RqosW88Aqwk1PTQUGnFpQ5f1uQp1c1rwuv6oDM21qI9cEdWeW+u3PhYYqD221lqVUAvoy/7dAlQv6/uy5gvEb/mHWmXy+trrzz+7ZpBLVxm2Hc7PQ8svYOPTAiJSPMY9t64yN9/08X8NoIwx8Eu/9Etwd/zzf/7PX372y7/8y+vzP/bH/hj+yB/5I/hTf+pP4Td+4zfw8z//8197rvv9jvv9/rXvhw3gdMgc0HFC5gkZAzICnCiWzGiJywagm29SDOscnpYiPE08p9saHCc0TpqLDPk9iY+CgAWH+8yY6G4ESNdDNHkHxkyL59TN4hQEsnYqSBo9YgZZz9LQ9EBoy+SFL8PIiJA7O9KwuPBbrHvSWVoenh0ua0EpWwu157KpyCRTkOE/GpXXggUCSy1XsdL0lcKUdB6KxFvluiSLUdHWRqjnw8Vw1bwHgqC2N14+SnhLVCG3O0Qb0PpC8QpFxGAKVME7Hpm6luyDkLkiFD5/Wdzc+JFZi8ym2JyYc2KOiXlOzGkLpCyAAt3XOQShHORW81g4o0NhkYcJ5biN4ZZXizIC10jt1QphhUQ03Gnd6/su+z2IojQxyvho1s4bqD9BhVVnGUECh/MjS5iNGivivGcR6LmmlgpvLkUpqyXY1guKpT6a5Q6vAZqLq5X1/Io0k7OggUxVM4rnYnJITqfW5Nys4W8rbN3rbWfu0vu0DukHxI+VZWhhaM3QJOnX2dmShaCV9sbFaaxETEbBsUBarU8CqoSp6bgIvGqu1hp/cYF1O7sBNKU4I4RlbKK2DujBMo8YXDosw67IQu8iTusuY63yllw4HtsHrUwJy76y7im7S+t9fe7cipvC97a5Mjm8UPZhedQQPAhysGB2p6xzqXAlM7orySw5QZ0lPkFG902hXSBdIFuHD4UC+K8EC/jcm8r6+qj7WcThtaZrXXqt8UseoZYWmHXA2u9VUmwrSN5ro14nv44CgdjZqc8zShcw4YEF6kuDZvOHLu9GLiDk8v826ZtYXcdqQa6nWLY+3ZRHloLrJZMfV3ZzW8EEilkq9GC51hOM+tev/+/0+L8CUMYY+Ct/5a/gt37rt/Bv/+2/fcme/KjHz//8z+M4Dvzmb/7mjwQov/MLGTCCw/HGhMyZbZ0gQNFcVXkDF8C8IFCyi5MQJzUjJtAwYXFCYnDrF0BJg8tJo5wmO8PQw7LMU2CEACU8NjBxX8JJcolAJKNJIAhUgnkAdqZ0EskWHwF7hWuBlE2Q9Yrkk5/DQzcwqWFfSF5C2MK35J3kRizgAOyPhcyL7BuaQdUmm8Va1kVBy62ZxNasPu+0NpLdErXEsbIEAoFHDRS5JHZUWN9uDXq7g4Xr9gJQ4B0Rc4FTOFv2VC2dzOC1UE0hqzIE5eDrrZPs6h4bpEy7DO2qiA3LUFdNYQ2J0zTckpwCNFg0WGiK+wFYBqecbF7wS9Tz9cfFyq3fr7dwybbIxakKI3t1cqtogMhlCij6zKjcG3rT1SZOcbvqmsrsySo37rW8s84FUlD4E6uMeYlwyz7uF0osovu5KDcOaJGMnYFFAeJXMI0FCOjdIh0bCbLQDtVjZRSa1T6r3i+pbQVFrA4E6KUUcVnt1zsj13Vzcewu2wlr8GupvVJrBRd7VI5P6m8lCeAdkTwU18nPpWX2pkqNlzLRKt1mpC1XG1irvWxjbLApQLnVFVFjv68FTtIg8HZniVP3sXhZlyM0M02K3fGjPLfXe5n74NriCmrY1Hlpzbe6KGqLRnUkb0OS+ZXPWwm+vpU+W69pp1dXzHLkVeqSfR0l30+uqxDgZWLzZf+uLXp9q+WfCiTk/ZfrOS1Q8HpOy/68vI+9rl7f4+XzK8E4P1/nse6zrD3oCWLW2IMIFGLZZOhNhG2xJSVa7l/JvfxNH/+vA5QCJ7/5m7+JX/u1X8Mf+AN/4Pf8m//8n/8zxhj4g3/wD36r15LnhDwCmE/gccIeT8zHE+MhAAzaDNJYZqFmQBLPguTBSpcKdqqxh+OIwBEPqL3D7cQhLXUDOjj5tUMgONzwDMqof+GOL9zxZo67GY4xSay1wHxM4D2PhyGmZ6dORgQCqBll3ydJaV06ut4grWNqwMPQD4UeAekG9IE4BqIPeLfVHRGtAW83yIc36Jdfon3vjvZ24DgER+843t6AZFbbfJCUawBmbuAiLb7g7ws6X+S/LDM5AJdqhQdjWdlmZkWxCugBkQ7VN3ZTVDcCcgz3JTpLMwSPg8BIZMc/KlRdbQ16eyvJVcwENQ0N1dXl51fw5yf44x0hH+HvA4924haOQxz92Zn6dr9sZ2FLdgTgFHgzd0wfmHZizgfmeLDV+NISXFmN6piq8ewI9k3hANA5JwftidB3uH7CzL4qA9YwsroMjGYK5OW1TBBD21EAVRYuqN8NlDHxS3KjyLTIGltcIj5ZnJLK+Gi+jgunHl/mwK1OivDkA2eZzq1Os4o/AB1EOqm6nyLwzCq4blOa47ISWKXzTjJ6W/wieTHMsnQtqk28WsjBSPs40I475HgD4p5CUoGYA11ICFYDdAZkWmr2CHqkOqeU/DezS1JTdIWvG+lo69attZ+ZOw5PDrjyfXgSnet+aQBXLSdRXdfAW0O0Bu83aL8j+h1wQ/SB6J1BiCf1URQuGZQUv65Ym8XPuPiWmnZt0xHTd6qlUhJSysUE2ZWOEVV2KMq+Z9Hy6MLjUMTROJ/h6El4ZV5VHNAjoLeA9oCI81rWhOXA3gNdIAfFyFqSk0UFx01w3BXHm6LfAj3LU5U9ETGI1Hg6dnWu585Vs6BmKn+b0ma3CIzhkGlQN9yg6JbDGdUQHWgH4JkpY1ZXob2v4E2bM3DShrWRLhmYq23dUhi+wEcplfPcqvsULEnPHHrIQemcNFzBbWZPVSgKo5AFFpjRIFhQC8h0yAzIZLlcc2yFJlCVXDrwQEzqE+kq8zkwZ/LhcqSMZmlMAxqc4txTk0azqJHG/hs9vjVA+eqrr/Bf/+t/XV//1m/9Fv7Df/gP+Mmf/En8zM/8DP7yX/7L+I3f+A38q3/1r2Bm+J//838CAH7yJ38St9sN/+2//Tf86q/+Kv7cn/tz+Kmf+in8l//yX/B3/s7fwZ/8k38Sf+bP/JlvdzIWnCdA9IEwT+EemuvdrJi8B49NqMLeqBsNbmJYW444cJeapLM3pIBOuQkX9ZsI7qK4Yet7lKTvEvO5tsZlHX4t1izxVDq+Wowh1yFmNIKhARfnoQHT7HwABbOiauYHU9rtONAOQesdvR+cGxGUgr6WWuo8maqoGI/v9iWF6HvhsmwUlyD+Ak6QjvBalFwGjjrOkgCl0uWS7x6SEVPkhhcAiOXcpHdAG/TI7ElrGX1IggLJa3lA/QB8oh0HdALSnd0cKfC2BfnqUdFD6mw4ZwfN0i65kGZLwKzGuVdH5LUNvM57KWBKqluiSj689laBDC4kUL7t9RHAriWv4OrrhDXVBCeCbIncc2gr8b1mHnkskvAlVNv3/NrOWSeVb+8zWaAFilCcLan3s1WWZ0ZhHjkaIv+2VkAZx3yzWRbkvjSv85bXa3R9VAZppwsutfXMfywAWCn8iu7ykEs0mPtgfYxLXLoW7+5yi8+2ywbr1bq7Cw0vvvK6XvISmywcSNCX6/8lCFjPtwHbi13LoGOVugvkliNcCy9PWvZJbfK3vJzvyxIp+/b5+xDs81pLJtZtuOCdjMKvIUqu5OrSK9ykXA9VAiqbuNinga9dywIDazm8LpS97nDNaL2+t6W7k5PiKba5ifwvt3Gtr70ffdm2vSaQ92jJUmQHZ43OWArVGntqsyf3zeojcnq9rL24X2DdBh7pYlaZJS5GJ8HD2gcoYF5XI9/f2v+xj7p3gUVfaPn0JW2/ylrXc/wGj28NUH79138df/bP/tn1dZFX/8bf+Bv4R//oH+Ff/st/CQD4E3/iT7z83a/92q/hF37hF3C73fBv/s2/wT/9p/8UX331FX72Z38Wf/7P/3n8w3/4D6lC9y0e1aRSwoCxxmqzbLC4HnBYpPJibHu7OjcWUa8ubuAIX5K8HyApMraJV1Uiembq8k0UH0RwF8FNCFJ2KBX7Y1mbAle5gMJy4/reaz03ZpPqlMAq6bg6XB0mDhMOF+N8G8BZxIYcHe3o0NuB3oVCXAdbmyUMszYkw3SUhP013b6Q/sWiCsD0p8Y2xBcexBaXQnZKgUP9WpZAEhhUF9W2fOU1Luz16Ot5pYyeCNBY4qlZ7dJb1go+f84G8Q4NXgeZATkmojVEq9SzEzRcNnPkhjLPqAkkuQ5zjJndPDOF1sw2SCmjnCN+y3Ws257GyoRjBbkuabos1+S1o8jTiFVtnKBje/AQLN5JGUJUqr0MYDq25fjyNez6OheD+Cr8Vd9D8oxeCZKveGYPvrsCFuR7sxBMF8zq4vFSQ5VltERYmVWQUNuFHQEAsszDe6IRl9fdzlGk1hE/Xl0QLmt9OawASsBvpfAToGhGkjkhYvWqXI39ut+XQ7AJ3bh+HsDWCPoMnBSwyLtU3WqGwEwdC8HG+ev10kdUMPXyg3xPkoSSsi3Fp5BlCLEdVZVEpcoUa3kRIF3eSz1/vdw+B76Zbfb2muJTJ3BoAW2RIziK88KVvCL4wpSKLOvQ4UEuyR6JBVIKJl4JsVW2WCtj/UzXd18J31jnj/LDXgKCG0zIRdW5pCHqRQrYrQ7FBN5YlycDheR1lEZLiRLuLsIELJ+BlA2WNkiJcnC1AOt+15rNfVMUA7FcH/Vxla9ynRdhWq73PF4X3jKasv82jwInpbu01tsaRvR7P741QPmFX/gF7DbIrz9+t58BwM/+7M/i3/27f/dtX/ZHP6ghDMEtzeINETNLAaypazqs1SGCjOyQRKtdUE4jxHbeQw6I3CAQfE86DnR0ZLouNSp6a3h2Q/SGe1fcu+LWFEfj8LHaFnqQyIWemQ1XlidaW3VfWBJbZ1DqPkYexRBJgesVfrCeHu2AS8eEAQGcrpwYaYZpJyNUC2YyvGdWIel0afjsku6HJ5OpNlHt0qtJDVqIrSyZ6ql1EQtzS7lmhjaezjVCIN4hkWnpMrLc2QQm1YEVB59PsLQMQgBJ3glk8qM1eDCLpKJMvYYhxidgPlgGtBPwSdKrByc/53EumXoatBgcN9DM4OKYBtwfji8ejven4/EwPB8T5+PEfJ6ws8PGkfcSgEyWAXzCzwkbBDZjPjHnE2M+MeaJMQeek2KA9xIR9NcAJf1GGstcu5LXEjlXqGLOasPUVD4ppFWLXLHS/8XRqLJImWcJvfBLYhlq3vvlQnDtTSDgyU6q7CypVEJE4GmB53R8GkydL6XYNMgRO5vINsfA4ak+LIKbYk0Wvx0ARHD0yqJ8Ttzc6fJC/RR1HIC3y4avfVXyAAVCdCkXd2VHD4TaH61KRzVpNL3nvhZIoPgKnuoOrPuU5ZZ1PSvjtPhdCVKCYxsimG+rKcHhhum25m3FYBtnRddhuacdSQYWEoCdZTxfjkOXUCEitWfiNeandpRwOOWs+p1Ts9ITp8y4iGHya0PAxDGfjvlwzIfBh+WMDXYJXbMWL7xA3QlXuQAkYswL9yODpwWG13VcNGfy1aSOMviaf8//j04uSz8AGEu8rQmiNKwuf79ajJF7BMEZb55AxZ36QqkmHSnSSNsiGTTnm/Jas7Kvc4GYWj8FbOOS9Vy/ExfZhLwfske3rMx8AlzU69c1c3aB1joU6Lr+TZOf2QSePcPX963I0muWh1u16IuiC21xRz7HAigLv36jx3d6Fk/V+EUofqba6bg0UGI+yDkakLxPkgBBlN0yLlvLYLHehSJmcqAJcKDjQMMBclgkSyMzSWCM8uqojfVZFuHaGJ5iRWszes6hyQWJpck/FwlxT5zcsu6qFPWBdLicIGfjojHhnO9Tk5a5oAcQPTMSWNUXzygu1sfYzq3CZ6SRlVzgCG6GuJDPgqHPMtbrCcmTYEZA0wCmkNhywrk50VClHnFfzP/lJRW8NqV62luC1fwVyRAiDJjvkPMJZJcX22bmyg6saMQj+UVJjDPudgqv0dCP6Rg5fNGGw4bBx8yJxJPPDWROs9SNt4IlFWcN5hPug+PonfwWzYFaa/bTcrq86lfnlYsfm3fC71XtGwVUoqIbXfeO8z4aRG0DFKk1vYHK1Ynnk+/yAeo+VaBWQ9vKHvKHuiJnZ/bJA8Mc56UUW9d+ARTJ6EvyPmcaXcHsSfMd7Hu9Z9Qv53UpZ+XYYDtHDsCTk6D5LlO7aF3xFRBe9TmwHSSuDnLFpmvp4+XabaAP2c5wXdmNWjYArPtdf77KR4HS0kEOvoxLlB2e+kBZsgkLzqUp//QCQCsVIheHLuuc9vC4pLlHpGPDLk/X9a1sqyNfF1lySOCqwdlgl3lVImktXspK+7qtq7qud9StveyIfe1lfSc/l8x1ywWY6C5n4/IXdbVFUtU2S0o8Niq6akK9jG1AOey6j5WFoHbM+vqybl7Odn1dWjrJoVoZZhpoqVTG521Y1xV1XUe+g8sCzXt5bXAcL38ma53XYEAF/ZeqIFpKXoRAmxPIX7WP5HJcIK5WhvKy7L/p4zsNUFQ7Wj8gnmPRD0M7gHYLBN6g/Q5tN+B2B0CiqZoxi+B7Sowe+2j9oAomGlQDTQ7c0XCE4IgqAyi7eLIqfYhmdFUkw60t0DwgpeR6KIfTBXUOWtds6yunLtl2ORF+AvakUU1HzbRZR5MDXe842gf09gbVO4Bnlq566k0Epp0YltwJAUwPuOXWzl5/5GaDsB0ZofCUKI3VaoT1kbYkUmE5syeSv7s8GBf6YpxnZORwuNLI7hJOOhTHMpjiu+ov3nNj16unXHrpUswbMyhN0dIYNwQQkwbdnpDzhDwn2vtEezpatqZjGmI4fJBP4j5XpGOYqM09wTLPl8NxDsc8A/M02HPC3k/E40TcO/A4SYRNtdeSuPdBWXubA2YnzE9Mf2L6SeJtqqiaEFiw42eDj51bEHhqz8hiRGTEtK5OGmIoqoOtjC0dcomocShZQBAtEGoIdSyCaRnQ2Hd/Z3VjlatqiuyMYDYKTIE3cWKBIPB7DMdjTLxPwzmMoyUsOEoiyoQKFpbXXA45SI6lnxxs5yyLRfJ4Ail2KBdDXQbaubcoNTryMhokKFyHMOg6coBdGdmWQnX5vDWfqtzSi6BaRtKxv7PuSAGVup4lzlW/EgUKUqlwtbivvyUUlAxawhVhOQBz8lpiOstBwzF7wAbLAjDuFcr7N4J6EpQQ0S5HvpfKooYt5xpOgAMTlkgLyF1qVTECfgJ+OuwM+EluXAuHP3N46ZNgRSLgzRPIZMkwy5JyCQC5ijeHpDK3BU5qHpcg7WiBRqG+VG83tOZobV6C13YBKRs4qHruC4cq35gqUucjW9JLpLCxw62pomWGTCuDFuzaDJ9oPteagtT55d+UxIFmF1JXtFQtJmeQh94aVXWbQ28NYj3bqlliEvVchhvKMWGzS2ohyDpNknSCPoWNB7zCLpV9LaB0AR1JkkZvaM45aocougYOCAsDAvTGycpdBA0MRLWA7bqFV0bL7/34TgOU1jv67Q3qHREdxz1wexOc4Yj4AO03aD+A485F4hM+Z4KARNZoaL2hHXl0KmlqZHuvztw0SJTMqOLSLpFOvpBnpryyNz+cIEVvgNySuZ4LSPW11rotW0mkD46ph6YALJ23BvM5DQc0DkgcEKQ8v8tmSnvKIBc3I8AUt1JojmPsGyDO0lXIRt1rFUUaM91RgpATcUXdFVXnXryY5vpfEJioAVzMokjZQXarUQMaYVVeEKhziVJbJR1x1dRV0Y40Ok1X9C7hsJiImICd0HMizon4mB70CWrXnydijJx2bAQluakNKydEMIncXDn1VEyAEcDgc+Mk2FkESV0XYEW07o6IicBAxOD1yImxECGnpvH+XMUrNpGZGQ/eTWrJ8HNd4FBQ2ZJcoxn9LjVXQdbs6bAiHfYq9C9+CJaq8ap9x4W4d+EV1Pfds7plZHpLTi8O9xeRummeZUhfgAcZHK4uhEDmDS4ZJUlJeWFXREiRrZVRc5FE6veLfyHgXJY5MsK21M3p1Mqp4Y5RNM6Loa4tmTV6WKxU9SvQiKpTZoYvLgs7t8mVsLKcOx0G0/tx+T73XjKWslw4cq4WqPk0T8oqjATaIBj2ZuzsU4N3ZlIiHXdkN0nUek4ZLc+Sh2f2RHMvZX2BS8mcZZwKPLzedsBH7CnqIzM7YfDRYCe/H8PZbZIlh5hB5D+x24exywcla6JZslONBd4quUu+BANGDcmMCddQ0wNdDU0PqHaW5lYmoW5C7RbbYYA4alRCZPqsFHmvApspbLOtxOL05HpiX14aRf6O1MmjAsMMHnJoqbaOvoAKOYP9AAXibg3mjnYDu5/OgHQv1JwBo+y96ASSRcznHsqgJ2326qZbS7OyMjySzkh72yhkyEGvga6RWkHZjp9BI7OY+dxRibIKVvGtHt9pgKKNEt2MdgDtB9sJZyCiQ3qH9g4cjWbHjNtwSS8LvEvSOeRV3dWFPI80mqiLnK+9bmOm4CoAQaUCc9yJaNr/HC5b44HFsTPsnn+XzqPKE8yk0PhmPybWfKA177dV/ABUZLOMS1Gmc8AhrUymHpnCjjSckuieolz13tJOiuxItE4PSEMsWHnxfBQhk1/sa7bp29y4VMDMhWvBloUAYvJJwgXiE7VdXkSXspbmcSwp7KjXc0fEiQgD7EQ8J2QY5ASN4RCITYgZnWlGjLvPZfuJ+npdB2QkUvVUC7bfZRcZZ0nuFD3WbUigtrzbZeyAYglPSXZgXfLb2J9cMhrFYIRcQHMQkNbffPYGBK/ZmH3TLuWiwAtRtiZ7x+fHRZZ/H7lHXBkZCzNs7rYmye45Ip8RJ7FOZa295dgTwO0OHEa1O2tS2QxghWuXOvtGXEbwq7scVByBmtJ7HTOw0uI7dbRAxALra23HAhXXOv/r+r/ci7xW1W22/75e/vJ8CVQQHD4pNjMj9MpzCMRlEGXAewHLOm1ZzIuvgb/1SmuH5enw96T4RE6AERZYbd71/SotuScHLO+1eX4/dseXX4+d5UMUSNnXrIDSKj1lVnDtjABKm4drnLZwS/lfp5PXWtsXexXjo0BSAmxEUTNeAoUVn8rePxt45pvLdhVZ92+vYz4ln2vJyWfARYVjHtoU0rfOi9b3WmQXYks7iA04ClPmfnwpQ64aWX1d++q60bD8Xa2UOl9VZqkVpaQb+XVcAqD9V3Uuy66sW/rNUcp3GqBkgQbICwQVsuqO3GLdEd2Bg9FR6EDICfcT4U94nHCciPtE3AS4G+JgNsGMNwTSMAEg3VekPoE2wexUBHVTRG+IQyFdIYdCjwbrBWwUuAlwA+LYkUf0NBwC+mwVaA8AJPT5+aRLbh3hHZjZ09472u1Av9/QbzcctwO33oFw3EXASlKkMJyt54YIyxpiaUep6xLI6Cs1OFyTYKi+DPbipADLeK4Jp/kMyOskqOzKRdOjngMOTULtqmmnU8zRnyvwEAfUssQDLJKsSYZ0KlCMlW1oqBQmB/OFTyB5J3I6dALHVNy84e6GN3e8ReAeHCsJbGBS/H4gMaUIy4CdwDekwUIwJvAcwOMMPAZ47YWKq+WkvLJNkl0Lh6PfDMc9cNyB4w3od4Heheukg1GvYhFhsQAD3Xl4ZMoBKOGkalckhtpeQEpkTZOrkF1HNTGZPJkJMwrR1cc5Rzo7p4LunLBh5N5Mgw9qZ8RwxLCVDYODBtaZ9ZJw9Ok4zHDL6LIFZ1pVV0uJdlXE1hS4V5OWAkdjKrkneXKT2yUBIQc1LkPoQCrg5VrPoZjNM62ec37GwBwDNiY7sqaRL9TyuswcuuaAn4Y4MwtQ0b9cSh4W6YAK9PIeLI5yqs8th5vApKqjNbelvC4xGdP4EIMgs7kuUB9Qn2jO8lTNeZruOI3aHRE8dxXgWNo2PN8nHE9xnHCcwk4hRF1FoIvlaytKaDA0QSc8+VqXwC2zauYk9vra/QX+GQB4liMNgRkkqoeX81TAGwPHwHouSzsWIdlZpRDhWJMWhiaThGZIUo74aj1iaX8wCxpoizgTq3wkAIGeRnaWsQw1c0I5nETlGYLphhGWyZLAiQmLwAxZvBPxAYkJwYBikNwshppvo0GORxMATTLbrqvT0ZWHVUyZbTUFYkh0d3iOnJiS7ej1MREwM6WbxKrxypGs8k0dO+DBCsDYlcMTYbaEQ2wbgvIXWdxSEc5lEwJhODAhmJ5Y2mkHr4HfN3l8pwFKqTqudB+IwjWb49cgvLYgL5YUOOjUJDU5tF1mH5RLzOjmBe0DLxEcMs3M6LetaB4560MCKdWcSLgIRymI1ULQA/AaN96EHI9wztGZyixoCLkkQOqcsM1WOq24HB2AMZuSQAk9AVMVCZuylpinXwq0VZJYxj1/TswhAOKl3pzNLvkTYI2ezycooB7AagnMXfnCE6goNOp18sUjjfMe4Mgn3VGdXAKCilDiBUTJ+t107BkVEuQ4ORfiaXBtQax6mwW36iGS9zFLdyjQ4NlePHlk20muxwtTRARdKzJqiN5xO3gcR8dxsNSouU6WMuO6QHxHYVT3qYvBzzd4sRz7TNEwS4ASWaOSBCMFTnjubpPfq7bpy8cXgu/0/F5+vwjAiwiMlcRRRM4l2kY++yHpNCOBVy4HZoare4DHS6WrRlZcAsEVwPLK7Hu1w8idUTEUIuZ1SAVlz/vm18MMbm2979IN2T+zRewtSftY9f3cTHXfMtpf67g+xP761WB/br5zbQM7e7CG95Wyzna2O2yNPagO+1ivUVESdvbr5dTKCEiVGbPQueb/YGVSr/o51xwd8Lo/1xgDbPtR76l+twJ8vjrtu6yzuVLHXzMqq1ME1/f+elzf2edXemcBdybNKjNVXZHCifLTPPkbOWsoIkUiGUCac42YETBaHqEK8ZIaqGTnlRCfVyTWrXk9yYsNLApzlUhrub9kLC739DVIXDfnNYESOxCq0h4U+97Vfcm2bgkw4Kr7XG4Wzu5REDARaO4K2O8fgIK87gugVK0wGdytrVohnWF+DrZB7q4dTjFdUz8lU6HpraoBQJLMJZGbV8uKZitbzYfJ+SuSr6upYVIAhHMbOJiqZ2tfywm00ujw4RQFm2qJRBum71HdaMrwco0kp5iAQCG9rQO9IXoDOlnYUCW7X0FyZDqKtbCBpXMRq7UHC7Cs9b24EPz9ug8FUMBLVeXWLCZjpSKvAKX2ZqTDjYsFi4qSIZ/TfrDSrvs3GDlcjPLatBFZe40NTJTZJBdGhD8KoFxekmW6unZIY2a+nFyYIScLEpAKLlNfea4zJwejd5wFUm5H1pvbmhBMhx37jMp4et2v4gthG1YPmNGIaZF0IyPw/Bv4xclaTVYukDKTeMnD5wWIlHPO7zELk7yaS/nGWT2ES2SLpi2jj1Rf3QYvdlOCNkZ7oglMZH/UivrYZaGynd2rFb98fnXSuRaZUclL2tKt1/tc79dw7bhyc4gQYHkJ8y3H5dnOnVmatdirtHp1irLu49c9zyXzszbRtSzwe4OTWAAl/zwX/u4gyY9xea4fEc9eYF6e9WXzymVA4eoK3M5wdxvu11zgJA8tbscCK6+/s14510XRiuq5qqHbr88J8lQ0naxfQcnVU1/e1+t7veJZ/j2ca9iyPEgOFTs3R+odKYDhzgyKKpWCJSeg59+Y5cfct5KZkdcScgETyfOQdT7XAugV0JetsspeeWZRq+lgLYXim1ze7wp+9nXeYD8u9zTW1wCuTX+ZWcmrWXbogtEROaVc5NIlWbb1Eln8Ho/vNEA5WsfRD3goRgO0HdBuUCcHhYTDTFEGVkS1/pXhzA3bQPlfFU8BuKAE/GTqXByQXqOQUjFFYo2p762jt4ajNRxNUxCNJZejAbfGEoAoMJWzf7rwJsRN4V0g90b2uE/K9nvgbI4BwTlz9LxkHTjVcOQQ9DuzNAcE7a6Qe0McB7wf8NZhXWCqmMVkV4E3pi4NDoNlQjZWelpiO0dkNMZgPlaroaR6llzg+xWVr02RfJylaFq1dyHwi5kLt8LN/H6Z1g1DomD85uykMVf4us+LIwFm1qECPzjcEB0ZzU/gGKs2fqG05aslQVY57qdKMHEABsewifP5xOPTA/emeHx1h0QHPBPOqTxVehNNOo5+Q3ig3z8gPgxgGN7PAT0abveDIKVnN4EYUs4tN71mKp3XiuUfyfQ+3/M5sb2FTwDsSmhN0BoIfOeEzRM+CU5inLDxwBwD83zmcWLOkwDM8eLEV2YlS0qrtBLANotYQALhODQQ3XE/Ak1zhpHHGmQpB6N0yS4JVeDWqcXQVHCI4NAs8/RAb7stVLEdkqSjamAHCX+WayzI2whNroY67HnCngN+Jll6DrjPdMTsxuAQR4UViPMsWSy1M65OzZEDKoLQ3X5faXqSIonyJTVKKlsQQLY7V0dRLLKoGoG0WE1dFygmmhiaGlqLJPCmI/fMtM3LUTYjskya86TcPLuyCh5RqgDW2PUSqSVCdSggOjlGoiuDdM2khRc4A2JZFF9BQZWu2HtVQmCxo/IVdFRHDvd4E5ry3mgfHIFDAgccBww3CRzZ/WOCS2kDm+Ol1J9CSsAniQ6BoDIs2CVnCfmeTkwbTtE+iENdAfNVThrumCCoWSJ64VkSckzw53YBTtUfaJENEyl1YBaYMygCOSzLrQ0zdYFKzXZ4YMzAOQLnDJwz5e99Z1NqYS3F3gaWxy4gsbrlWvoigUOSq+WT8HdG3tc8/0qsR9IBFg2g3ASV6RBDMEIwIAys0638virxlG5DMU6vOHyl+yNIjouZ0eI+crABxHhj1gHNopkzcnLkJEeOf09q9BWmJqLcg5I0b5o668E14VijRKEsNz0WybfKQIKgdH/yRWgsjXVvc4jl8EHjc7Ug0BEFDklcds08oPRRSpSH18+jMgcEKazTE+OmqVqpO5adyphWuISdUpECLAUaEqQE1u9esx6LiFs8igYs0aKUDhUBJIf8CIrYl+5PL9FlHSjDeCVgZmwpKU7WIkGlo6mjtSie2QIk5XIEyT9JPppcCGkW1DOZc2KcA+c5MJ4D/eB96AfvrWTttwyuCIc4tnag9QO939D6Ae3VkZLv4CKAF25837EjEYtYa73ACacuV+TjCB+QBCjoSTqOypYM7gM31OTn8MF9kpyBay9TFOlxEagui/+yZnivql0ZK6vVWpD53+mIVgeIgm3oHQk6dxm0HeTyqDLVX4Z2acxJXau6Xjvi/NwIVpYQQJI4ORwikmfgscmya0NXMHN1xNWFdtn4O0Oxgdn6DSmAIln2wkqXL42WtY4vzgMX2aS1JtduzudwgrQWLyXoqzJwieE1JbcMyd+iw6QjrXNF7a3aCdnlGJU6zA6qSPXsyHLZNev4Gq3nldE6sqwh9XsZfFzCeMYt2bsUVcLYfHxu0Ir+Y1FXFl8HGdHrDuKWzEv+sqy8jKJ2Edk3FeYoQgITKfgIZRYbVEGe+QY1wYbFzgpIBk9Vq5TM6K804CKT4nIWwLXDq7hkS9m5wPylO6eOBUwcK4NSD1YUmIW8ZkrWKUoNyE0bGLF4gZTcr7XEm7valndSZa0a1P5yDpB1u6yJBE5rrX+Lx3ccoPBmR4ITr3SWJFmQQgwQycFx44k4H4h5IuyJOJ/AeELGSaQ5DkhLSuzUHOrnMAMBgzujo4peU1pYfR/NDc0Mbc5k6hvaGOhjoM+B7hPuE2pzjRBX4ZCl6NkPj+Bk5sfJLP0BuCvl8J8D7ZxoY6KNgWMaCZ/iEA28aeCmHNgEF4QJzCitPoPaJ5LAwt0xw2AxYTKwTJUbNu0w19TLiozLNxIy6OXbazOkoU+Qo2mo+XNaleKoFIiqfSoKwDOqLlhUGREUOKo9X7Dl6lB290LxjyL1H1QMvRuObrh1groDqeEBLIJsJVtuOe9MlZFvSMDCMGzgeT7x/njH0QSfPt2ARoPYbh2B/R4VwvKFdkgLtOOO3t/QbgPtdk9uC8t0jHQN7gPuHe4DAecEZEtyp+V6T0dTAOUcadSqVR2O1hx+cLy9ILMCllPGPEFQnPvAyashhjXRLrMFm9ZaMbfv41KWINlVltM4pK7dxjfcR3lU51KWXEUkr3nmKiVy5AMgLR0Qqq0SBA/CtLy3jIwTHJRRZHaQJT4BnYq5wbLTyCOBingSE7MciNR8ufxeZQUAJ6iSWuZBjllFsrIjzipLRe0/YAH7AKifkQ6jC8UbvewZdqmDJTLu95KKD6dOoIPkzgpgSlhQxZi5ys05U4nWgiUKS2hSjIJqJuUE6CMnhncS9iULLWFZUpg5+HHPtWKWL0dJHArvCusKa5r7PWAFdKSc936vFjliwoHhKyxZWYGyOSTy1kd5AZXeUiiu1l0BB2ncByRm8Vw29INLy3JEg2dwNUBl4SENXQhmmghGljEgKXvQmFlnebdDD7biOrD0dQpAa36vQQjEwcDNKza2DUpKXt9yUOBM0chhTq0rL9CZ9lMYHDWNnSmJCxiRQNNgdl+AKQwgWjAbHjPBkAYTsRfV4IgC3jsJIBGQ0rUxhVsGxVAGUMtjXFrzv8HjOw1QdJyQ8wBORzwn8JyQc6KdDvhzQUZ5BsQGp9q+fwUpgDJP+BzQeeLuwNE7u0IQiKmwMRCnASdrit3I7m6tQczh42QmZp7A6MDZEI9PyAkaNO4+oc9P6O9f4Xh8xG08IDahbuihOLTj1iSngQpb7h4D9sMHDJ8w+sToA8MGzALt8Qn3H3zCl1898P33J97PE+9z4p4tbV+q4Mcj8GE68NUDc048Hw3vh8Aayz7tdrB97RaImEBMhJyozUrInBsfoJOlVYGEUEa79FWWFkTVfCuC2QlUoJACdTdaEu6oilvIBUz3B1i6kgSgmWWSgiYBsOMoF7lWlO4IMZhTngQnn8umsG15ZPoRjkMdX8DwY+r4iQ58X4GTT0WOD3b25ADwQYAbgJsZdBjkNNjjiSENT33Hp+MGNcf9ToNmcOCuuKFjCoWZJJ1OS0PmrcF6yxLcQQcWQsn9aZB2wrXDQgB0bnQXPB4U5hono2M6QlvR/eOZOhVZwhIN9Btwuyv6oehtuVuKPGWJRG1CwffHGNJpyLIdf8nYN0CaQ2rqLoJdWWFZ5gOqEb61hpYOJDTQ6eMuvKE9q8RWRL0j4hSARvEMKjPnwU6kE4C4wxpBrHXB7IAfHd4BCkUVPpEFXIFAT0N+iuCEYAAFyzCzlGTKjjGXSrZOjCQ/utvi1QDs7CP/nOn4fElmGNLpiuaWUb5XWYY7My+Nu6KjsesmFKEcm2val3DcHhoq6E1hvbGrS2LNcxIPAhRzzGlsEfUJURI8TwwMNVizS/aSfS4hChwH5HaD3A7E7cYb1ztCOpZuSgxIil9qASufkNmAMXG0G/rtQPtwh364Qe43xHFwXhgUpje4DqAdHP2R9e5oHM45zNEm8JyKmLyc05POLsz6TmEH0hCsjM4Mx3DD6QOn8Zip2Bx1X0SAaKh+o5nrkRmUnsAyp5BLg2mHacNsHVM5cBUqLI9HJAexQ3sqfLuhqeJwRXRLsbwEKJGgP5gxPw7FF/3AW+u4aWeXkivChI5eCTx9UlTSssNujhPnGBgWmK65JtnhlFArO5cMPSY6DA2OJs7ymATeOCUEaII7Lz/EAR85IDUDcaoikLxfRPYueeR6ow8AeVqTNmMm+OME6szcfAsf/90GKGbQOSEjIIOf9zlxTIf6qBwwNBw2TsT7A/7+gM4TYTzcJpoPtjGOSWE2kdS3YN19DmZGxGm0peSl50TYoHT6HAlUHjnKHsnNmJDnO9p4oM8nDh+LG9CFi6U3XelLc0ecE/P9iZAHzm4428QYRuGd8cDxfuL+HPhiTnxvGn7M2RWhAL4Q4EMA9xnAxydsTIybYhysU8jNcbwFSwoOIFKoSi4MjKwhSyt9FNbPSQ4O4NJOupIZaYwRmXb1yOi58pY7Jb4AtOhqYatEyyVW4q9ALota0ghLYZqdsyygI6zHVko/nJc7RoI/JfB4A/BBAl924EsFPqEGsmNFNwVQ3gAcCHQLtOmQYYjnhOvAbCfO24mnKJ6fnuj3A3oobmYU2euStfZ83y1loFu2puc49pDIycasFZs71AyihmHkRJgLxnliDsfzQcJmpPibB9fk85naJSkUJQrcQlg+qqyVsOxTDHzVQMtGGz3YWRaZcYpsNxgWLE02ckJcKz1MoFKarlyHzHh0jdWNA2FU3JI8LGmwqqNhIgEldspfSqodwQRNrolKOxsCI5j+bmooOKM5VKdKrssnRMVwWB8HBEOYvi9V3MoGsOUTXHOoltfMWP2IMhdLeHz/Ly9SX2c1mpF0qe5g/Uydr82W0FQ40gZTqguX1oRm1oklIM4K8hoJHLJI/RWFk0uToxfqbKW62HK/igCp4ro6ILNLUA6qsEojfGKdU5OoGxAoejS4O3B0nqcDvXccneRv7Q3aixCRly5l6FVSsVd1lacFu7xTbaq6ygzMddS/DAe5NnDhf7jB4pIZi+KqVfDEi79LwtcbAtQ8Hz5vlbcaPHVVrgJnJSsnwk48SiA4Wg+04Dy0LTyHtKUJUFRxaw2HMjtTCtuoIZo5NgClMXMlcbst7glqRcUuBfK95v6svZqlxC6BmwJDWWqtgbga+zU9jbK4XPRmkhuWAKX5hc2TKZZwTX5aqtWmjb4kNL/R4zsNUO7PT7i/C+IdsKfhi48n7HHiNgwe7yjHqHPCnieeHz/i8fGHmGMQnJDeBJOJL2H4cChaHFkSarDHCX8Y5idDzw2uB50KeofZCU+1UjRHNIN9+gCfD8Q4QEntiT4+4f7pK8jjE3x+xAjHEODWDtwO4H7j7XUJPJ8PzB/8EO9x4DwmTj3w0I553pjYkBP35w/xY+c7fuo8IXNCzfHu3Ngf0PD/nI4vzoH4wYlTA580oDfF7egY9ze8fe8LHPcD/Xs3CAY0BkSeyKQsItjX3o5su05nUak5Tp9NA12JDKkugp1+bm0DlAin0ctFH5nmXbVXB4nJnrndsqQmmU2hM4TQUbKcJysiEhUSLZ1pYQG4oZ8Bfwf8SWClh+PtLfDjDZCb4PkF8NVH+u7Dd8GiNPXuAHrQOPb3iTefOOYAjgf8CZxPxftswLvhJh2hChOgff+OWxPMaFRfVEEceQUDiOiIeQDjBhx3GgMVTO1QUcyEZIyGs0NnAs/HifGceP/qxDxJ2BTY6hx4f4BdNtl2pl3wFh2hB7yRqd0PoB2K4y3nRwGQh0BPhXdDOxV9KMxilQnRJrQ3PJ4DGoaWmhvuwByBB3xpTnyA466CL7ugd/KrRlTfhaLXTA/NacYATlOYK4av4JJDLJPYkEm5lcGjjoZjCiXKZyjupjgPXv8hgPdUwfR0JGk8m1BPZYrgqYqnKh6ieEJwimI2gR0ddmuYB9fntCAhMh0EyaAsLRRKr64k6sBtUxySWUZNflmGkEsPJR02o2yOOG3SYFCoHFCh7s6a3SXFIUjgqQ0iwOmGPK0EPQFMpyBhF0jRMwWAGFQNvQV6F4iTIFJAoTdFOxT9aIhbApTeIXZwz5rg0I4OZg+mBm4CstmGYUpDywzKF/cbPtw67reG3pkRDeO8s44Db3KwLN0V90Pw1gW3xnUJB9y4BqkJyfwNlOBjhuGE4xFsEFgtwTYxbcCM4yXEJjQmjnDcFrSJzb+7FNHW8LylvcBzVdTct5alSRKp3YMAJVgW43RmY4m4C8nZk3akAzjWWt7X+nvtwIfKoHgDTElUHVmajCD/cDqQ3LE11ysAQKHiDBqCNoFDLwNdbB8ItA4czeEt8MUhwCFoh+BD41BOzT1GUmsskbtDFEeL9FmBWwPeVNBMIDlXK2YODZ0csDqc+9irYzawppN/k8d3GqDo40TrB453wJ8THx5P+OOJ2zRYUPo9ENAxYM8njvev0D59BZsnzAdbwsQx1XGbgTY7VE8SQv3Y+gjnpPiOT0wn4QutwWIQodvkoE8F5seP6OcJOzpUBhATOt7RHp/Qzgf6OEElcFkktSGki3s4nvbA7F9BQnH2E6d0PLTDHzfABdoMmJ/Q5gO3x8CHc+J7w3FMQEXx1hQfLMsR7ycCBhNnBuV2AG8OnQK8ZXdCScLLiWqNjAgGD0fjfAxRArCM3GzxJMswYxkPIIl+GogGdvkEO4KKJEtkbpmAzEZDF87w8+T2MMwDvKX+Hrs/Cs2UXPPSm8nmJCpXTmA+Cd7mZIlnCtSx2n+/0AMuwI/fDf/PbWDeHPLYGZQjo4O7EKhoFsY/wHEPw9unE/cJHCZQdMq6f7ghvjyAuwLnl8BxMDskPbutcs5LCBAH+rjhGBP3D28Uh2qC4zjQbw39puj9jtZvaLc7k1wCHEcA1jCSNephEKGhFTi6cIKsgO3TdJi3HPvQoUeD3oF2F+ibojXWv70P4DkwIZBzQMdAN2ersAsCA9ImPjxnTqkVQBRNDeICH4KzOaYDH+4d93vDl/cbqQtNmOlIR9AvIlEzSPh9Ils4pSU3gQJUQJIEs8xYxUFkFiUE8EieVVOYN8xQaChmtDXlgbV8phVUjJkSbZx6AGBoYCrT3S4NcaNj9qOxwyu7zCrqrsKm5PNfybmxvofMCu7ONc+s3tJUyl8kXYuAXRDLEWsYFJNtrXOghaOHQOdEM4Pm6Gtm3ZI8HUCfjnsz3KbhMMNhiltmCEhMZUnVVDAbuSHhgbsAhwbe1HGIo2sCXRgkyzpFjLnJSJG0AgscZeGgNogG0BH4HhxfhOPNDG9jAgG06fjiNNhwPA24uaK74u4N9wA+OHC3FD6cQJsptubVPRIsvd8cYxiGEzQgOHLJclJIjIDMQPPAzYEvaArQBeQUXQBK5cEGWF6T7GZUBN6C2dQbmHnIQR3JaWfWsXlmE7Lcoe7okdk/F9T0tzsIAhSSwYvipooOQQuwc3TQ78SZpcnunIPksf5Ws0mEmQzJA+hrShafj00ZlSmrZHN2xzXBrSuiEyj1kjiwBNwRWc4RZvRaQA9Abp6JtMy0CmDNsywaiw+aK5x4WSrr8s2LPN9pgCLPCekT7RE4nhP3xwl/nuhz5jAxOlsdJ+z5RHt+gjw/Yc4TMyYJQEk061PQ5g3QkQtdmUqbbMsUI0ixoHNEExjmIs5Zy83+znZN7wrBSedvzyzznNAxoMmQtyQXjaxFuAdOB+TxCYDgqQNDOh7SgfcbW5ZbAP6E2In+HLifhi+moxujqrsr7uYsc308gZhwGOymkMOgA5joaJOtdYiZpL+Ba9s1FIgbsx4hQvifAIXkp1gABZlqLuGkapLneJ9MN7ova84WNSNLXqhJ4/EZQOEdRjhHGZgCLWdkIAzJP2XaOQQKRXRh22wOhpM5oJPzjMSYNmfqvOGu3MZfHo4fOwLPPsgfSWx0y5TnW3JpJCO5OwI3ON6eEzcHDle09mSU8ekN8v4EHh0YzEuLCzhnQ6AtIK2ip4Z+7+jngeN+g3pAmqAfB3onX6StDp+DKWMB+hGIKTiaA41VZhHAhYqxXQkGzSdUjES5doM2zqWSo0EPgdwE+sZ0NJUhT4R2dHeWAntDuOfcGYEbk8VvH26sMQdBpWASXA5gNJL43m4dt1vHl/eDAEUFo6TY4Sz7ZFkhO/mhzoxGy+wRxd6wgGiI5H3e6fnI7Fsop3VTBVQZwQWfh5p61eYYCCuHLwjz5J0EpjDN7SVoeDTE0WG9AZOgz5Hg4wJQPmtbwfpWfV3ERSlQj4ugFi24FKpZ4KScimR6nsrLqo0cAiharvPlRIOgwDNwaO64GdV7uzm6k3ezOsqEwylNE9glQDkQ6Aq8SeAmLEMLKFaniynJ93yLiS6GVkIFyUXyYG5awIzaF+F4c8ObGW6DzQNtEKzYNJwWOAzorri54ubA3QM3S4c7A20SwDUnnyskOH/odNjpmJ2dN3BwXtAIxAiOtphAN+BIAPaBt5jlOqRMYz5nyiBmS22sivQ9BAdY6m0ZhDHI5M975DBJJ9EU4QSTVQav7AkEN2SXFgjUuwhuksWzQA4xNcQ5CbJQJR6H5CyomgPFTlYO1OwZyPWsC6029VWKu1QepYjsBCbeFD01uiRLkNTWjGxF5t7UFpAepdnHEiiJhamAy061Sj7Vi0pmTJty2OA3fXynAcr5w4GHndCHAeeJ/vET+uMjYk5InOzvD4fOATmfkPevEM8Hmk00AKNl1sOBGI55kipHIK4Y02DODgeJJ8RPzHNAwQzDzGjBnNNc1R1P7dCmqbh/csP6mRoLBn8AQwVPbTjPBoXi0QCZTOM/7cl6gxtG+4QpDSc65L2hTVq50wbGnPCPH6E/fMft00AbdH43BY4IHBZo5riFo4O6LhCDD+qrqJNItltN3xdAYXueYN7aWrDoLF+4klS4+jiUG4WOg4CLtfGAN+Frg06zxN1OAaYoe+S1rTrlnJFJHIIhQOHRdutpkjJbGGoseu+S9W1OajUzjMcT8fwEmQMtJlTI6mrokHZApKPjjfwSfcP3byfibeCYj5W4uSs1Fj5gLCc9vaP5gW6K+3QcmLjjgS+eN9wUuL8/cHzsOO6C9tWDrcQ3Q89Sx+YMCORQHLcG+3Dg7cs7uQIQ3G8EKLdD0Q6CiuN2A5I4p9Exj4mGjnFyhD2Q3Tzm6D0F/uaAywQ6cLwRBLWD7cxodPiWfAJRgae6rdyCmb82ADM6SwdgHV0PDoNrDX7rOI6Jt9Pwdh+4HyN1NQL3t47j1vHhy2NpUZyzkQvgOd0VWHyhCWbaZl6bkS5ZsNn/kaXGxSlJJ+EABDWtl7/ja31KslNBsawx4XMA9kSbju6CsykJleKwI9ttbx3x1uH3jtkI1AZkdZyoMn7WCFynTTvoiMJil5S8RkggMzngdUqCrGTUzyYpdkLoNLSZbdNB/pGLQmOit46jNfRxIlK3pbvDxJmwS4eo4ugwHD7xhRsOd3xwOocqIb6p4kNr+HDrMBF4M/QwdAnce+BoTgASJ0mfwo4v5Pvu4gRMzmaBmCdkDATVG3itPPDlaPixxxNf9IYvklAZw3B++oTb40SbEzorUyo4HLg7cHNG6114HtLATBlSEO2HE2YDT5zQHmjSIKE5hsFwfhWYnwLxzuV8d8WPK5Wbz2DZgd1GgHXaNm+K03LZJJKUYPmqoThXmT0TpPYNr+s9eN4yKMMvNghuJwntNWTvA7BsZPE6buFoZpBxwj5+whTDwMBoHXpj+dqek0MXH4E4A5iyQEgHs74ugQ86EWBG/DBFA+UoCjS4IZsWEqBog/eO1plR1e5LLqOJcVYdXRKsgaRqEBQ/LwRaj1SObYDfeG69uDYq8Jvg1oDb7xeA8nhOvOuJnoZnzEFxmzkv6c6g5oNPLupWraqZnpJklHvHmB3RFDW0qjoXSOri97a6Km9wJLs1gq1Vc+S0VgkSdb0UKan253bAo8PiwBid6X9tUGM3xqh+QXmyfqo0jDplzQCJc8CHIT49gec72hwZfSlKoRNw6M03MOgB7w5rE1NOSHBmR5RYV5w0PMEatSozHZpdJ+HYAEV0cTVKup49OUWSRNb5yRTnFaJTCQk8JTCFPJwhtgCKJUARAEXoJGNfoCa50SKZ6Kz3w4XiesZoyc1hT0ZPMdPhpDpvCBAdiMa2aw8FvKOL4tY6vui63v9bAZToBKRAduQ0qAtuc+KA4w2Bt/OJmwrunz7h/lFxHIL+w48UHDsOllZEITehG8uOHWiDtgPtuLGlNcCxCzVyIR1uRSAiQLvRIfYvGoGGBbs9IuCWa3YCOgmeowUjIwgq+RQzxzOl4IY0wIbApyKsYQ3E8yK1JUBsgn7c4Deu5ZsPQA0uDQa2QIcFbndK99/fji3WhoAHOymqS4wOeuuH1GstJdJEJ7njtlPIXExIrRVyp6RyK26c52JVR0kV2Cc7IHAOzsSainnrmCnjH0CFlYhG4ulM0bOZvB5D5ITbKtOkPaGCYeGh5IKQ1LhKPOL8G/Pil/P9ZGolUn8CHqnNBEg4NLgXCNCMfJE5IZMaS8hr3I4ivqdz0cABZi4Om/hghu5cvxYkbzZRaO/USJKG5hNNArcm6NrQRDPzwjbVGqrpkm2r4Wg5MqE0pcI4miOC7c4fxsT9OXDTJ7qzEzKm4xgnbj5xSOpPmUNPv5BImc6MFjANoDnmlGV7xscBeAPwgHRHTSuu5obnxxPn+4n5PoDToRa4SUO0A71vEGvhdLzCr7tg6bVAeC4HiiD6qmvkwg7MDsFNgCOqXJ/2xwjwNXaJp0tNAd73v0VApgHngH36hCkTQwaeB3UQ5FCcT8OcgH8K4N2Bh7NrdQDNgCNFBW+otTTRhkKNDQsQWY0DsQbkSEpdtFW2AjKliSCZWpkdmcEMkwY7ihTkgckkwIZdutQO+uiaSg0Bu9U1O0K/4eM7DVA+vk8c/sQNEzEHTjvxzJHubsW4D9ZNw5j16Fl7RVB4RxQWHSNueNgdx+hsGcs0cUhAGnUP0yOslBsjOwGxdYd7wxyOIYERDrEBSY0KZlkUZjeYH5h64DxvQLb2aQKdIZy8i8hx6STMA2Nyau5jwh4Oezr8na3VOgfvfgKUUEe0gHwooTXnPs52srMBLgPNMn1kHE6YeXNGq03QJbt3hM/HFJ7iFAK3GuG9MihlGMFMQReiegXtflV6n83YGghgrIhX4TMjFghK2MiloUasN6NRPIJcCxVw3lALamOAbHl7lptgSQpHgsgm8CawJji9YXqDe0eTA3c1oB8o4u+bsJTzISjXFCCoUigJs8NweODNBr6QhpsbvjgEb7fADRO3//UBPQRdcsZOdJZNbgQNIeSmSAf0/pYTX31F55ciAhC+VDb1xhEJDoEenBoM0yUz7xrwKWiDYIXdMNlj4KynuAtigK3yqhxaOdmG7aORs1Ot5ACQqejWFP1m1OQRtpzisDzmIo8eR0NvDbdbSzDGe2PGabyU2I9VTkwYyY/5+xJYR3EmNpDZpcT628ZQgs8TdAxhugSsbBjmY8DOE/F4wrqj3QTzjWrKPoPBhijHQ2iDi2CkYOIYc8mar7KTYqts7rPKklI6g2oFB11aZKmJ5l9SP4jvmbpKnkRxX/NkNK+BhueQIuUUbnPAJ2q6bFNFi9TdmUbCJCY+2MRtKj7MicMaWmMJ4wbBTRT3fmfwZgyqVLIlvABK7u0eAdZMmBWSzIb0YbRPw6CTIGym6rG448Nz4E0UN3P0k4Dfw3EbT0xzHMhutCL0Zkk2AJLDlRmTUGAMlmZYXn7CHgF7BmafSz8n5kRMw/nDTxiPE+P9iXhM6ADuSm0Sl4bQvPfhyZsg8LkrS2XVDg8Eeu5Gat3VvtIa7VY6uzicDQHmJLSKpU5POuqGoJhm2q/isTQPyJjAMzC/Cpze8bSGd/StI5MNo/YUxCMgz0B7TPgE+gBu0zJjxzluMRXy1DUgsACKOxDn4PUOgUZjNkdSIwuTZBo4Qg2eyuOnp4SeBTsMg63satnhU/ZbAdwJiFpJR2ALiLb45j7+Ow1Q/sf/Br7qbJWCC+az43wGbLacQp7EuAQRgMCcqWb2ZxPpP42L5wZDm0+ITCAGjb8725CDcsotSY4NgGXKd+KGJgcUHc/ZcA9Oyb3ljQsXpMoE3uWGh3S8x4HHJGe/qUC1p3FUSDOIMG1roDZDE871kdHw6V3wfAje3wVmDRY3hN4A7VB5w2iGoxnkrvBsZZYiu+Y8DQ3gY9W3ZtaZk2AnTRg9+47gqcPBmuPg5V5GFmCEwHTlhQAmlCcnIRJLBGsYDcJEYEoSB8EMEdPTumYoWbXcRRLlFkDJLE1nJgLa4NZWF5D0gLQD6IA2ZiVCDlh0nPPA+3nDaQ3vs+MMQzRDu3csuSZh3DtgrPsaQ4QiB5ukrFvu+DEN/hyYXz1xQGH/+yNu0XGTjrd7RwuKXYkpz+kgge2mgi8PljTcgu9RCQzZrhJADIQ2SCPpVVrgdssyggExq7VUoC7IJoAF0COyHm8KP7EMxtBOcakuWUpwwMdSVxXzRairwYKQyOGXDceRvAg1tK4pGBdojd0J2jQzAw6dbXE4OPzSKdltZPs/TLY4V+5di8qoXMEJFvG6VW1dkIrNGckNZpQsnUp4UO33/cR4npgfn5Bm0MMRXxpcIlu5R0a0E2oDGApWhAznx4nx7pjPVNgsoqtVJjHW+yvpcmpF5hqJbZXDCXKyRkCQFSwzr+s8B+CepMgEbHYwSyAty0dZEm0CUcHbvXEUAMDp3fm3dzHcMPGGiRuY8neZ6DpwOwwfPpD/hqD0uiDQVdgiqzkNWKpVnpbTUKJcjPx9TvgYKOYyc1lG8vgDMBs4n4H3Y2Tnk2NkxC8hnIwNlie1KebRgMlIXC0gp1Mf6SSwhgP4JPDjhN1PaL/BtSVAMQZzXz2Ac0CfJz48B44x8YYsZ3LRpMJ2ceoI3CY8gT73jwvHn1QmM6ElGU7ZsaWRM9UmED6YLbRBQcVcz7V+W8iSZRBRtiM/WTKWYTjHgH6lkA8N+unAoyveenb2uOAxBc8JStwPg2eJ5TYnlcWVJS4PQUxdvK2eNloiEO8jNVUy2yOS9mxCPMdj5PtWcUiNfkh533kaglE31b6Dmc0SDtRbAviWAxVBrlfZuW/6+E4DlP/9PvFU4N45hMyfhnFyPLzP1IMIpqkkVTE9iWTVO+8AnkaxqY5J4CgGoK3oq7vhCCdBKiOaReDL2rRCIaF4N7ar3hy4GX8XjjUO++yKMxRP4cdIIABgaY1opnY5hAoYwTYuTDqaT6fjPB2PETlYqgBYg4biBqb5oLrkskUz9gxJ6X5BZwoDMlnFL88lQYMni4mKHNXOGuckXiCxDOBGu6Tlma9I1ncKS6kuDUwKc4FR2AQj18we828lHY0CJvtnmtp3R2ADlOqqUoFNQRVCu2gaE6YvRRWBjuEJUGbHmA2P2TC8Sn6p7SA0WBOCMxRS5YPYowokxxb0oHM7VODnwHw2HF3hn554e3vC30/0c7BJagqBkyrZ9aDzv1cKNW2EOJJFnwbRqtYRmUkJlmayglGtpQJBNL4XdT6/V8RuvtO79THbwdHZzxvI9HsEbVUmorwk2bPUE6pkBXrszEZrvI/uUG0pwEf+hifIkZQbtnBMF5weGKmxcmZCwACMUtCMKhtipYWrXJSQNrsTqH0i2c2CxaPydU42HPN0zKfj+XSIGmQaJIXKPGuL0rBHH3hwRtQM2AiYkSi98MYFdxToo4gcp0o7k5MLoFQPUOQ5I0tU9XyegMeMnAXP7AtSYExCSx6DpeYEy5rp+9aBQzn7q8YEqcXmiqxDslXXIc3RjrzngTUBuUvkGAhPIChZrrMV4M2InFWzlYzrglRrbISTQO1CZ2YMVqCBAV9S8TVQTszThjDzFyKMiLKkZ2eSYB3AHNDuiJMlbM1WbE+AMj8+OW/qHJA50Z1TdnhzCV49S/mBC7iM5KUoReC8ypQFTgSre2YVQaNKObEyiWHO4Z0JUMpW8pdzPbtDDWiTvDq4wAwYU6CzoYdj9gZvDRrcY8M11WOxCOswgTqzUZoNF24lB5EvGZR5kIoSEujVW9uDHi+6RuJVzEq5epY8l48dtRelknu0y9kQgH61Od8idZKP7zRA+a8/+IR7KN7u2QY3n5iPkwvUJhG+cygYc5QGx0xRrDIoRKKQBn0OyMFMhkVf8sfsIU8+xeRN7ElwEmU//FJnsyxFZCdNC+pDcC4DAGGt11XhnuI/1mHGKKxl77oIx3sPCTzUEY9BAPbVxPtXhvPpmFFuSalPIAGdgbs4bmH40gdJTrBM77F9bkyqFOLZ2Kg+I+vLXMztyGnMPTcTw8rspkjjX9WHBD1LbG0l2nlezF5IRtPZ/ibFQbAUGMKKCAVBB5dTrIb4MvQxWZc/4DgkGeG9JZdIME4lSTc8SW2C6ASOAEs652x4PBs+PTrmVExTnhNit+eVlHnkPIzBjgF9PiE+yQOwT5zlo4EPYbjNAz8WhnsM3OeJLz/c8L0m+PF7x/F4o+T1EPR+kFCLvgzlWxdqBgA4HYgodj5dCcXykoOgXHMNsoSQOME4ywiN98Q9BZKcrb+WXS4C2iUxAkUyjSW7hBJERK2VKpQh1y4gR6Oh1XRCDiAdXIAcLRFmKx0NNgXThNmanCl0uuM04JMB53CMqXie5IxZMBsVCaKr26G4TEtYLFPjAEELozckGbycYyzHb8/AeDie746PXzkdRHfcWkA7KKB3sFPqaDnhXATTQVXMSYLmzGwoG7sDHjU0DxmNA2Om7LwDY17KVSgDzc4IkV3CigjMHA9mBoyTGQo3S34LS6x7fETL7Ro4cr7UcQPeOnDXdJuTZYajsV24q6GrpWM1RsndMp2f+9AqO3XhStis3QwI4+ATOQPGclCdURenQC2EnDqY47TAAwMqiltvbPXvgnFQtfcJzffukDkxmuJwx61RrO7WQOEvAM93DtTzlO9nBnDiaLZKPJ7yEOP9mXPXBm4y0MXx1g29sTsllE7XSqMnS4MukUDFcHqRuG3ZwdKhYfk6gU7uBXIEWcqkSJCsWTRsqWeTAJSBVY8gvy4MatyPJwzeFfOmmO8HeqOQW0sAZqJ4BnBCcEplGRU9Shna8jUF5jl5OoNt2trI8hP3mOa8M5Xd7NCFwFaTIxZIKX0nAH8Ogv7zmbZegN6zSQNch60H+i3BUGTGDYDM3ycZlP/Pc6BD8GW2usngJFYfkylHL62EqBzXMuRWWQAA52DaWBo7NlwbTjQMIGdUWEoGB+IxCVDSyFC1knLXgMAnIEb55yMoG35EzUMQdPPsR0PKOhMkTWcEe9OBQwe6DEQ7cYrjXR3n+0eMh+HjV4aPI/AMcjiYOxHoNKgf6GF4myduOvA9vPM8QU9TMdyZ83nm6DkIqvr5eV1vM0maMyuvFSmkc5TcpCJVc0+UDOFCrIgEYPpZSLAkgZbvUTHYLYJX4yiIZJIrxCikNVwwnM4snC2Yh1D87HBKgUM6znGDuKPHwIc+KMEsNR5eMbzhnAce846P8wtMazDvaBhoGOh+EujCcxggMIdjPkGSpT8gFFVByxp/F+CLOfHWBN+3iQ+heIPgx58DPzEM53R8cOokIFpyBGSBsfCAGjNB4hzmaFAIDgIUUYgedJiNOgSS7daLy9AaarKuNrpud34MKRDb2aCq1GswE7h2hNIxi0xIinfVoEL3CUg6fjC89wGETurjgNmqitY54qAACjtFRubTemM0ycyBw4TqrSMUZziermuWyGn7uhzCnp9abwRqmxCrGVlDssspS4IkljaueXG4KOdRieCJDCq0obUOdEFTQ2+C1gX3foMeN0g/EDMwTYDDEE1J2ATBGzkwG3Zw+S+aIWYejF7zF+qRQbTmc3kApwvMuTfHxCqhsDQakJiL+2IJiiICb9Z4npMlUauuwEEy6gxGxGMG7sayaIOSE+ctgV621zrJrS08SZ0JUILpJTUOkjzF8ZUB7yY4DThn4DmwQJNoKVNLGgje+5ulZL9lxq0BUy9D7ywZfRp488DNAx+YgoND8DGYuZkZ6bO113FXW1nJCYPB8C4Tnoq5H+C4ieN7MBxCm+hITR8E+XSVKMxs4hTHiQIoeajg0IaaNyDrdpbwW3FLilTA37B81gnKSlTW0y27cIzdVSoCCU+CdkM4v38Ks1mC6qRUnFDMPIeiGGoGaDnoHhJADYld8lLYWbuV2t9kGhT7rSg4JA8DT6WGzBTgIzix65nPqcEOpg8GvHmg++YkkqvEF9XkSH3Tx3caoPyvycX86NmzboE5ItNPNdI9GdlZK4ycB1MSxS45jEqy06Fxkz/QKB7Fy79ks+0kM70BOJrQcVT5BNSDEBeIpVQ1UtwHbOe69xpdzkFcIQ3uDWemdN5EUiyJWYlTgU8eeB+G55j47XPiKw88kMYPuTidAKBLxwc8cfz/yPt3X9u2bb0L/ZVSH631Psaca+21t4/PtvA9AakRAUhIJGBAwJEIAAsTAuIfQNgJSEgQICQICCxBhHhKQESACBAEiAARcCQkyEAyVwT2NfbZe6815xi9tfooNyiltj6WfWzvI13rskVf6pprzjFGH/1RW62lfOV7SON1npRYqOhzcR7RUR/tqSZI8Z4awjZXmsqTrKnIFVueg+zkKGUUI4Ori75SSOPfZUHn5gqcXTtZGkkanhvhz8yGP5sUxkeShIcKpwnHgLceMLCZFygiVLwzRytHd8g0z8br2SjhXrtQnmaJs3ceA77ORJ+FYVBoJDp5tlCDhE328Ejz1jyArbtjBkL3jdH8ArqPyd47XxncU+eWlEdzNVkeg58N2OfToVLiT4JbQBxgLhlMIal1x0rRhGiOdaY+313YngYcrgmWJkEdJSP+NJb1erhcqj8PUWFEgSLVuSSejtsddbQgHMVYSWX435nXgSruOOgqqos0+WOuk5uBhclXQOS+YZp7lcS4p025vErOWEBuoe3jkBkEPpHnBhqaHcDHH1eXTxQzso5eDVl1FEWECbi4zDap+PpUJyDX7K6plEwrE20TcpCsw3PFuSPzQhLXIQz8aH/x1uXCt+JbI1vIVpPkY4U1cl6Juc5zCXs785nn1MmY8jRbngbTi8Q+jT79WvYEC1eSrPwUR3WEMl29454xvretA2mad9vJFs9sksYFi6DDj+FTJ+9T+DqN9yE8BjyCMrVe4yp6VhMDPp5N0/kQSb3asmz0GcnL0zloaXjRsiWua2QC7wanecSB4shvDhK7q/vER0cy+Ro8vvVfJwi50bS5e0sUKDyNxYgCvbMKFAkuVqAMobAzDTQxeCqLaHuNgfDmMbZJlmy+2xPBB0epVrM3xQv/Gc8x2gyGr1h/DHOhQovnrh+LZGLsd50Na9d/2vLHFeOjnw//LaUY0QwgruSMb3UjRTU/k8Szq97jA/ZBeBB+kSvCwn+DXZdIDMT4dW+/0QXK2/wpGZfWKZMxT04OhnUa/TKMcVKfIAX/SMVi7BObSJ4kzeRU0ZKZ6j31uar1MYIbIEw9WQZEVQuqmZR2LzhITjbDOQpiDcUDyWrJ5JLpL69uGZ0zVrJ3vzXTRkesu+JIGiYDzY0ug1MGb+MXvNk7f6X+wNv54BwearhuvsA0JLV+Md1G2Cubf2l5Sp3mm9njWU+zFjHIZfPuHib+XyRNkESoGg6IV4lNcHuctNexC64fQVJ2D4+TRGdLy+Cpe+cev3nEVZvUSNk793f1sccx4cvJFS2ezWedW3Z+kUrnPB+x+TdeD6NkIR8JqQLFkYZhk3PCe5/0KFLUht/743Jd7CENb804zbeyHu8Y/KgXZmewmfHdo/Mqwh3lp28n378dHO8PPh0n8yi8NHeKFc2UmfDAi8EaYEsepOmEX0pBa0ZzhuLGaVoSWmI7iiBAGfgHPgZzzOiyfTtGRxxg+GOKj84ihNcRhiRIcV4MMhEpPoqbExuZxXweNkBdwTNTxmanJ9+W1vvnap0RRYIbq/ewxO/Tx1i9G2f3wu/RJo/mCczvzaJogTMULHUGX0EcqVwmZil4Ii6PDOv6rOScnKw7Fyncs3VMHF5f6+gtPkQRwZK/pzkptSRqFV72gm4FSnGX6D4huwJspkC4hhOmZopW1MKJVK6z2QuLMcKsEFaKso94Zjw/e941YiAA68kVfN2CI6UMVTeWs8kxwyzPJvfu/kv3rjzMgwZ7c5IpQyi5kKxQLPGYiTyyk/y70Lu7vWoUf2aOQWR5cu6sP6IoVXT6sXkm4/cHfBnwfYcvY/K9wdqVZP61+7XAJc+vzZywm5Vsa5yltNMJ2DozLzmzC5wtobhB5pc5Oc3Vf0ndpbgmwbIjqlmdjNlk8iWNMORsDDp7cEl21iG6sJIYf4QCB+vMOTnn4DDnACYpJMkUyZALlhOpJDfZxNwbyjpjTjfKNE+PzkFgJlCaIXBIogsMFUpxBVatnoTsOUxGysooCreMJmFoZKGZr4W+nJKDt5hwJ+aEQFJKFNyEYGEVEeBFqODJ6lntUqI52do72rGUhuqtgKHOHRMv8Ft1VKcJYI785JRpFVoVWnVflZ6T7wHiWWP2hypPfsMLlNfyE6om7rvLa0fpnPmk9845Y/5MGHklRUtiRp6LRXKTiTF7J0mipkIqzvBuCMccXqD0yTLKmvVEo8PIubiKIW0+qzENnkTIsKLqzZqoNZNKJt9u4bOQPHo8qRco7YQ52OdJZfqmoc6t6TI4+wuTr9zuv89MX5B+cNr5lGrKBlqgVN/uDJ/7mrP5r+ZAVnUrLh9bDCbWjuKQ5sDdW4Mm4ShNcla25KX/9wovnoGPHATPhZGnU6PLRNUf1eaVlbMIZuCdwYinIIFOSPdMlY4Tws6lszd/fmpCGz6OUlwZsgSfNhO5K+V030KZruaZ5qOE1j2moM1xHTAMJ5gpdvGXhhmdHv3X8/axY2nx+s6cOEsil8SR4KHGQwZvDN7FeIhypkLJFUsZpK9jPApIQ6d39lrVQ9pWN7+C29LCump87gSJMo65tPgRzqJ1ZY4XICrqRm3Tu9gh4mO7wgVZq5gXIdOt0rg6KEdECAdbmz7u8N+bvIBhYjNwN4MeUfDnKkq6cY7JGWigo1MzeCgjilqjDSe8JvMDXHR1kH7ApCg+3KY/JO3ZxzMpTBeWZHKFss3Y2Iep00TFlV0lZUpSap7UMj0LZhWC2XN6Wng3iCweUKzbBV/OJ3Yek6NrrLPGAmJOFF8X4upUkfBK0Xg4FTQlzApzJPpIXixiDBJ9TM4xaeYqMzM4oiF5pIzlTFdl1IHk5I6y+0aqlXyr6Fa8OZJIydUnuq+qzJHdGmGhNmZ+EMZ+qiYYg6aOPDeMc8Cjwxs9EOc/6CqJJgQ/mC0ce1MEMi4FWA/ELqXkJpoJevLP0ljhjj6qm+p+NZITLVdHteQ5AhrXa7Tg88GZNDhcxChTWbiHXy8O8UxxpaE/X6BMtAI1IXtBcnJDP7PY76LgmW73rvb0a1EjLOElUuvV/z8rsyYkC1YVsnNMkoUSrgh5S5cX1bX5BW8k2eLXfeD/SSSlx/mmwTtc6GIsOfJ0BZIkY1r6UYEiGiOvRQ4msLBAQBQoNUEklTs66jErtboLtu4ehGXZ9znGjPBYJ7T/urff6ALlm/2n3FLmfi+IeLd2tJM2JucM1Yi4ZbhmN80KuxHvHGNIN/tJFmHTRC5e7EyMc3T6dHMczL0s7NFiviekXByClxqtk0Cf1xxQcEgwZ0dPNCdk3y5FTFPzg6EUzvOBjU4Z7TniMEcxzAZjvqLyA8drgbyj7StzvHmOhE0sVZ+jaIU5sAFtGVw484tVFsSsBlIO9uka9PjCmQH3WQrXU/HD05LPjDUTCiZf8O4DseblhD/ECFt8h4dN1V15GZFSKkF8c6Det73nTYcXMM9/+/GiXoAnM7MMlNxg22JzzeSZyS2zaEIl6QfFRAtZ65IZOs9EAzqOJwkM5iWQ+4NvE2VIotfE2DI9QuZaMh46eJfBm0weKhypUvOG5Ypow6SBntcQOc0oJIqiJYdU2n05SNnffFlgLy69HA0LlIekDjczYmf0wb5zh4ScPaNKgr+COknU4tCVKDDnfNo2LTPDaYmZfYzDhwIF5vXZDgm3V7xAbQPOMTmGcfTJ0QZn65zn4Izi5Ox+H+a5KD0KlBJQuF+PI4wDpyMnSclZvThRD5pLyblOV0bUKoGD9OvGi+5ZJJJR8QTZmhJbNrYy2aqwV/eukZx46OREQ/nihajqksnIhUwSctlVmCS1UNisb3ViKABBRnTIf14zjJSD1+AndISv+fvidgXq6eRnp83I75XJKYaq8CjFC5SUmEQODJDuO7kW6s3dhCVnL/eyuERdlxIuwayXMmkGw/gkhdu0oUEKPsUbgiGTPh0Re5czSO8f7z++GRK8J0WKS9xnCgmrToZOV/5lY2ZjJPECJUaTTdy7qktCUxhrpkzL5Rq79Wl0nT6OM+8dh4gTcpOP59Ja3dGc6PU5xHo3c6mxOhdIq2GbIHsi3QqpZKSWQI2dMzLMycK5RQEkXpA4TyzkLUmhJL+mS8b25OPDzdOekyplBEqYxA/74F7ZWIiokacnwY9AVZxqpqDu4D3WjGeNccx5R+aXvLtID42RXXxSKUY6akRsbBDll8rLx61JhG0aORslO89P8dForW7SqLunX5Myps1N+IavWe1/ALz217n9Rhcof/T1p9xTZn+pSBKGTs7ZGdM4LHZ8SaRyC8fO3Td69UUiUZkzHl6giFKyBWzc6f0M23BIZJJlpHnOrIp6ZyuKSAnnPjygjshECP+NlAu5ZDd8y8X9TWxympMNNWXOx7ub64wOXd1kqsMxJ/fZuUnikXbu9uBt6zyG8TYGzQbNjEFh4ETQ957pDbqbJ3DtOOsWsL1WCYkgAaD4hp6yb8I1Kys91cmrDkOW7OwaJYzNLNQGkbprwapajG8v7qcz4qfRun0gpF1Piue/OMLzvP3VG51+uOMHM5Nn1B8BhQvpFNIAbcZQXEY8B9hBwmHsLv45GmFIJkLSFXoY5zw+Y+/ivLIlwkkGr1XYsvB5F+67su/KVkDzZEjjQeONzg9MdgHEO/eaXeFrJTvCE5C84getwwO6GKLR1azY9+IGa8PCa8BHKKgXaCP5E5dpiLTo5O2CkDXYRxI+BxaePhKk1AnBV+FykRTxMRnJPJl5TtDEVC+Ixhi0qSH19TygNgdn7xx9cI7BOTrnxyKlmyMtvcds3rOv1JzPMDXUSCk8GXSQc6ZmYSs8uUhZvHZLFj4L83JhlRg92lIymRuaFYSbKndV9izcNmPfxDOEinOA3uiePjtAzJG6mqLjVDyjaPmaRCHkRVEQMWOUg/l185QX+3O06aeLTLwoTYlUMn0o3dxKPJnn6MwDzscRrqsxlhBzd+QicKtQvbsv3VWHNxW+fb1xK4V927BUMc10lD4L3TolJzfhy4mggZEkseRz/UvB5oDZSbb7wTWF7WujH4M9TSpCmf4Zu+HedC8Xt/S+rty0+etLe0I3H1/4Gevop9oglUnZBN0SRNFvlpgzkqa1MClQK5ITY0u0UjAVJ7enxGgJGw2ZShpKKqBJkBKcLoQ8TsQc1c3myfOMw7lTDMoclOEquLJnaq3stxufPr1SaiHV6g7DwyhfD84viZ5gk04xZTdlC+LrKI7ipyz0kmk50Wsm7YVUlH1PbEk9OLBzjS41SLAyvQF06bKTK80I1Dmai4Sr8XK6OE45uJNqC+0OJowk8tQYTcb+kpxHMmTwCNJ6i2vZ7QecnJ/Fz8P1BFIgiylnUs3kUqh7JmkKCoTAHNQefJ/+Nz7XP95+owuUml6oOZHzjmQlZZDpULEEi0I0kfLdw9LKLbpQL1A0BfFzvJOBKlBD+5+lMdoZM2hIkslktH8sUFKgESkWj8HwrxcVR01Uydk3PE0Ov61grXOcmLhJ28lkjBz+BwnryuhQhjvSYjcqB7TiZNshlOHz6dMcau3TOEaYLqnRVYLYGFgzxP/PMMx00p+5LMCXuRCZDFGICFe35yoSdwlVyYhlf7wZM5shmDorecGDFlW4y/9jvCbEpJ3nc/rR7Vmo/PU6Ma5j1P9/eXM+v+r6K3BHS40uQ2x4MrUFJTGep4a1fkIjuXMVqqGCiqfTZEG+wdMxeNnwA67CXmDLEjPgicjAQyU7zQanDRqTcw3aIsvDP54gqVmMXmLswyXtXmC0REGBFyEfwTE/C+O1+vvno4b1OkOSK7HxMEk2Vrni8streiHXstFQOUjAzRrvmfNo/bA2gyFuxieBfrjhqRuX9ShY+3SUxO+TNpzc6QWKhWnYB17TUqzEe7HyfVYS80JRLim0l1cfOuRVR68ucJEPw7NBQxEWgWklpyANP4niz2XoJEnH2TyXxRa5MEZJ7gHkzzmtwyPqTVkYeTyW15R+nSTxzjnnpXpzu/4ZXXKekBphWx4v6sLd5eIppSg4qsCWhPueuNXErTqPZYrSJJOmkk18/JyUXNKVVK6ibtk+lDwKFmothZDjKqVBnULtk5ITJacgioZsd12SAT6KeJHghaTfLcl1/dqS+Uu4RC9/I1UfOwZy4ulixdV7yZGUnp3w7QTsaJZSeV7f2RGsVDMpZc+uGVy+Rpnm/lOju0sykVA8JmMaec9sW2G/bby+bpRaSbW60WDYH6TeOVumdqVODyb0AsVHOWQXYTyyc29aFdLuKMm+uwS7iFC6ozu6RpThN+RL2bzJijXZdaFyBNcy/rQokgehnPFNeNG1k8aPGZdpoEeAxEieAF9Xo7iI1LGrXmNLllOtf64aEvKUnaeo4uaRJlzqnb+lKp7//r//7/m3/q1/i9/7vd/jL/yFv8B/8V/8F/zj//g/fn39n/1n/1n+w//wP/zRz/w9f8/fw//4P/6P19+P4+DP/tk/y3/6n/6nvL+/8w/+g/8g/86/8+/wt/1tf9sf6rmk9ImkBUkvSM5o9Ss/GZcCQiWT8guSNrTc3c48KVLc8lmToeMr2WLZJyPLoHJg5wMbg9mhiLuCptFiVozvJuvD7XFRjB6EoeRVdkqUUkg5EBQVzBpzNFfu4MXPqZM+Bm0Kc7oram/KY0z23tjSDxz5oM7CW1fObryPwTEHxzROE9oQvtoA6ah0Hsv/xYgu3FeGJ+tCzWmtUD+rxUmJKWdUUxQoi9RkjgalRMmuCJGZfblP8zFjCoXDxB00h18kS8FgwRFZB03o3P46n+5frzCBpVj5q7/7x7cT6N6XxQY/phLsInIMiTBclocf7PnDoadEAmkUAZt4uORQkEoEQsLnTdiTcN+ErUj4UUyqOnnXOOkcnHZw2EGZiWMS3ctA9Bl+mNaLkehC5dIFuBZBngeSfzDBVZLwhUjOOZrRlfvcdzmuhhMy/r3uS+O+CV6V+JzaYnOcwiVN/Hig+zTTFWzYmlvrVZhOHLXzomTS5nKNdYXO0f3+aM5fOIcjBYtYvUaFTrJOqLm64WMxoCoeDx8Hf1GIVpHzQtOepNRrzYREW9VdUnMUKDUpW1K27Fw0TS7QVzRGWr5AxDxN2CSFWmJxGPw3SWzhq0hZtYTXtMvkK0ZnUTBZdKdZPEm4BMcrRe0PoNPfp5QmKh1WgX0Vz0LKHkBZS6KQuKnxmoXPL8q9KrfistSOckpxs0TL1D1FQGW6EpHFxKX1Q+jmDZgML7imgfbE2Vwme/bGrShbFTfvwouUtq79xrOoDPK7LCb+RdIcnh1jUbi7PI0piS6ZTmKY0iwxpWBSmWlDc/KRSSlOmp0rRgFG3tHpPI20+RiwbpkteSGw93BxtUnBRyY6PJTQxBuJNibdoOwb23bjdnvhm29fKbWitdD6pPXJG8pjDo5+kkemmvAiky2ytWbNlCyUJPQEZxZahnTzhPL95ihgFiUvJ0yMGeaT0rvvF3Hdrsu/25LSO2dl+VdZuM2tNaihCFut3FheORZLV30UtspFWWsTsMjPSpez8QqdFLJ6E6caRWf23+8FypOi5eD2ZCB/a63uv379yt/5d/6d/HP/3D/Hn/pTf+oP/J5/9B/9R/n3//1///p7rfVHX/8X/oV/gf/yv/wv+c/+s/+Mn/70p/yZP/Nn+Mf+sX+M3/u93yNdJMC/+W2+7vSyYZ9eLoXDuugVz5FwF9EN0Ypk9zYQ9Rl/ShZmWyns2RMp+wy0iEEiQpWERCKTYQZHRXEvBQGzYPfPSZtrkSRyrYFEOJlW1S8ImT42GUzv7mREgJ6nqzrfIDHUA9hGgiGVppX3VniXzCmJd/Nk4cPwAgXlRBji6qCyCTO7UU/SJfMMW/tFjgxKLCOkaQqSnHA2xcl0vmj9fUESWbLvMOIkMRM/SJwF4USzIYMhg5MenbDQzIO5InkwfvcqRD4WHX+j8c4a7MQa+Ouvjg9/emvt1udrOPv0Dgg+Gap+WKXkqageMS/k3Ek60TI8ZC5DvvnBuCF8uxe2VLjXTE6ZlDPlNbHfhW3DzbB00KXxbidYIk3Y52Qbg4xLopcLrobeUYM5aUkxCUmrjSi8/yqJMuGHA4642AeUZA7c0cfcL2hOZHpIJHjeBmnG+DNa6MhGcRWr+saIITZ8bj2DfG2+/r1UdRWBBa9nTDc2a0M4434M5TGU9zF5G+qEzyk8pne/jrhF+GH4NxA4xoVoictks6yI+UVcvYAJVll3vfIll/5wFyG8bNY9zMks4HTz98CR0aejbVoDGvmx4Nk/jjAuXP8uxqWEkzDdC7TJphdcM9AXVS/6JDlKsxA6ZBUog/1QjqyMrI5MmTjqk2Arwq3AXp1CvSfhloV98xFkrWFwIEqSJaif1E2juBFP+TVX7Ei87twTDCMNz5HBYOsZaZMaBVgfmaMXUneDs4F34zOFyi5eW9krWhK2FWZxArsNh4fE8KJzy5Qtk2pwsRIXh6ipRo5OQrKTvmfxu2qk5+qANrFZnx49lQ8ISnLEPGVchebyYw8+zOTgVZg60jfMKHthq5l9z3y7J0qQQXvypuWtJt6K8ohk9WJwD16jJkdQtqxsyVGPM8NZ1B+nJvbNE8yzKqk/uXKji2caDbmyfRiO34m5Q6+JtyApCj6LLCELRFZZJGOXECyEyhZAvXbEtWyBzeQaE60RkJqX48HicjED9kGbk3yyoK6KS5rImkDGM2MskMBf9/aHLlB+93d/l9/93d/9G37Ptm389m//9h/4tV/96lf8e//ev8d//B//x/xD/9A/BMB/8p/8J/zxP/7H+W//2/+Wf+Qf+Ud+/SezZ5cC1oyVFHnTfkDK+nDWzHftI1FOiop3npE1cX05hzW7JD+JotvRYEJPC7282NPqHS6pYBOCcOYoSxKhScgica2+W2b51rnQ4yGegNxFQq4ZxNMYk8zhIXdN1dnohPOoxT28Ebp54eSEyJAxz0ROSy2/fm/YnK8dHZ+V+xpN0f+lKKD8e8x8OXpxEk5zUQB4lHcQY8UY4pB9M71sy91pcl0Z6x1fHh7wLFZWgSJ87BI//tTfCF953lbhA6usWY/09EeMIkWcD7JC11ZR4yTn5Ly2fUIFqUa5Of9hE+HTruwpcSvJnXNTIu2JrSZq8XGZKN5VxkjlMRztYI6Qn05KvE8yw2MDt2R3xCIOO3FUah3bH98vkUD2puOpMp6Fn4Uiw8ceEwm3ZcNAB9OCYKfRaU23s/aDxlUNFgUPYW2+xify4R1dHRgWqq4Z8uGgIkQeHj18T/zv8sHc7+Mn/FTOXHBxFCMp/lxmZ46u8OH9iGe0NthYQI5gLCQj/p9l5T5DkhnX3wxZu9lF43ru4XIphNZX1u963p+/9ON+JEgUnHr9+9OLguvfDN8/1i8t6oVIcCwh0IykT4ntoi4t+lJSLoK0J5Q71yjJKq18rJUSqEZSrcM710Umzvj0Yl0WEVjZsmJFObNyy8qeldOEbkoyo6dA4yxCMFMihSLNJIUhoX9mIqEKEVcxpVDbLO8l95bxWJGpfhd1C3hL/oYsdZWSvSoZ+cqOkWLR3WtI6gnrg/X2OtKiU4KD5+OKFBERpXgBccvKHtLmrE9ElQ/vs4hQTNjw/WGFZayVVoULeS/J73sWao4CRfTyGupRzerABRnTvFAJlEOHt5zubeSPO2PNmICoXiRti9EmInENyAJOr1W8UNISXaClVaDgzs6ymjrndq3Yl/UuXkq3dZ2udWfrT1su/7/W7W8JB+W/++/+O37rt36Lb7/9lr/v7/v7+Nf/9X+d3/qt3wLg937v92it8Q//w//w9f1/7I/9Mf7En/gT/A//w//wBxYox3FwHMf19++//96ffBVSVbrGJjy8M/Qh6rVqwIbTIcfhh2/yi2UVGqpnbHJ+YXh+jVemIIze6b3T+2T2E7OQocG1Qa9Z+SEwkzJSQkpHUyLndNkwFxlUaWxykuwRqEZyvb4Ztsy5Yv7tF/cAeWPy4Ogn763zfg7ezsHRh8Pj0yWUbfjFn3LiNd9QXL+fsxcCNge9H4zZOPvDD5oRgXjxupNMP9cu/C/+yM+KfC1AYyXprqrfuzKb5o6YK310+mF8Ja39qMRYZUK8oR9QDv9//3wLy4BoeRjA/BuWKQYcfMBIrt+3jpYMTlbNUPZ0bY7TUhxawssmbCVxe83IPpFtst3cLG5D+HZzA74tF1Qr6Ibe7+T7Rr3d2MqdknaUgg1ldH9f3DlHyeilIPTz34/565iLjYd1oBHM/vi3lL2nV4EcpLYrvwdHuGaMEWzgioze6X0817LiWUQyrlyVx5hX4rd5QBRKv4iBYxl4GSz3WbPGnJ0xh/tC2GBOjzSYc1yFzZK/pwCOyipKBEQnxeCGF341JfbkBoFFnaRaklJUn+M4TV4k65JG+mduV7EToWniHLPwXMXfEC+EzTzwsA8PPehTOIPn5a7SzzVntkrnZaXl5e5SqC00aI1Vr73oA1/FTfDmUyKKgmnwPaJ4tkB+gGrGJsKWlJ7jdU/1Q06dyyJzpQlPkgmneBiqaEJnwYJgOiW5tJdBjzyXYcZjriyaxOxepLZHFLvDx53eVjiaYknYE2wKu8D7BKYjV95NQ66gyRVpI210U9qpzOZrR+Ykj0w2dda5hmWCummhq+2UZkrTzNTCTBUpOynGO1KLq1AAyyc6m7/l84R5Ynl4enEymvj11TR9KFCiSB6uEHMkOdzDzUdvbv0/yNZJww9rT/adbFGIr3FGGq5Cy+KyXTFDy+LCxPuX3MSzirGrB6vmJBT0WezmFLtjIg2QmZChz2u0hcdQRAF4oe9FqGlUqqtPSbEnLJL8nMweyGgsP0dW/Lm4lQZhu64+njMhTYsEY2G5chrunbJMllwCH2fB+i8aXflDVCj/Py9Qfvd3f5d/6p/6p/id3/kd/vyf//P8K//Kv8I/8A/8A/ze7/0e27bxF//iX6TWyk9+8pMf/dwf/aN/lL/4F//iH/iY/8a/8W/wr/1r/9pf8+9dviI2/KAdYfAlI6rA5BuuJtCBkJg83AwnqXNEii+IGhCUSkD0BMotnTk7x/mgPzr9aLTzYMzBmJ1+daWwIN5DhKFCTwkrXgzlHA6gKmw62VNnT52q59WNvT/cudRSuuKx55yc3Xhrgx/ef8UPjx/45Q8/8OVx8N4Gb82Rk3N4IWE4JJ6SE7O2UInk6LgMn2mfeF5Im2DDFUPuBipxDmp0cKsnxkl4Ad/5Eel8FTP3Glg6fRO9Rjp9uvX/sx6ZH/6ysFfiUFpkRA9Z8+8PBVGoJ1aZ4fjY8wD+m9/8AS8HVsRVBxi3hBPUqlJubrynKQdfxV/n603Zq3D/JOhmyDapdbjhlA3udafmQi076B3SjuyfSfVGqjdEPwM7Y26cTSJ0q7mt+Axlg6RQ6chl9uXeI/6eLAmr2LyIvoh3MY6GuU19yKdwBze/Xx2ShAT3OkRdIXOFvgWJec7BHF78DlyeSaA8SZoTN0NVcH0EfXhn1xp0L4Bme2D9wexHPJWBzH7lU63NR4Lv402lu+gWYEecE5ITW3EJZla/dlPyAEhYELcXeTPGrAMvfI7pVuxtapj8xeu7VAqDc0LukLtCGkgrNJRmwtscvM/BOcNdeHoQoEcBeKHmKrgoTpYjLs+7INfhsewI/NpafqFR8JggI2Sti9BL5PZg5DHIc1CZnsESJlpVlExChsuSPahv0JKQDd7OwONUIyX8iS5NE3qLa7FNHqNH5EByhVifvH9tyDAvfmVSFFKgf2IDJT7TaR5FHYZGSRIqiS1nNFckFR6zugVCc4K0S5cXWpYYRZmlMq2QCK4b3rARo52ZEjMnpFRX8tTKqNUlx0CKItlNCQ/mPJjSGOJjVoliOsf2Q8jbfU0+rw9Hey0ULBLp1ZE2rYrOQFws9kbcf3uYkIZQx3P8ODScxc33HQQ0Tfbh4bJbvNJs6sV67L/EODcrpJm8mB34GTQmXbqr04Z672fizWIMXlyZFyhUOES7X1W4iJvvxbaQ22CwXi624jxGMSMVufgsi4hrsV7NYISFhA1jni69Nu20MeL5+uu2v5Ujnr/Z7Z/+p//p6///xJ/4E/zdf/ffze/8zu/wX/1X/xX/5D/5T/51f+5K+PwDbv/Sv/Qv8S/+i//i9ffvv/+eP/7H/zinfWFa59EcsvMOyz9MlXKZW6kuVn+6/BJcr62UrGxKsPaXZbf4IqDTrXGc7zweB4+vDx7vD/ponKO590PkHhAV4qnecTb1uagkiQ7CObV7Mu5lcC/TXVBjc3pEgeJzu0nSyRydY0ze2uTL16/88P7O9z984Yfz9AIlwsva1EBonHOjYcpVE2yhVU/ZO4ERuPraVD2LIaDDBc/NGNBfEHb0GGEM5MY88qM55tNa3Bn8K1PE1klxjWpWcRLdpVqQdoOgaSFDm449JllTOQ1FBPF8PhQ6f9VtfdcT//Hfq4yLc7KLUFS5FeO2J+qeqXtFU/FObyQw14K93DK3LfHyktEdpMCWD5J1yji5lZ2SCrnskO5YukH9xguUcgf9hFEYozCb+AU7wtRsKru6aZ/lFQMfiNOFJCmrGV8FCtZZeTSEVPjij1yD9xF/+nss11Qm4GbxQ3pZb8/YrMbszJAELyWOMPx3WAtSY8jTLbgwq0DpDVoUKFGc2DhjHTxToBMWWUmuMkgBOas+ycmbrALFFQ5JffyW0xqbpev1dPQiRPeBIz/qEQnn9Hv/UKAMS0HgHU4+HdMLFE0eNMfgMOFtDN6Hq6+6ea7NGBIcmTD0M1uTryhSVgH4XKG+Yv06WuMi+8i5wYsbmTB74Pvmio3V2aY+yNOzvcqC5lXJktxRe0wYXgw5R8g5au89DBTTGiR5wT+jGXAi+4y9tNHn8AN5+HN5fPWMsjQF1cFUqFWxEQWKDZIN0jSkxVwMQXOOoDtB8wapcp4JxqQfbtRnM7gfERsytPp1MnMUKMuBZhUpGkVKdk5h2Zh1h+oWEiJg1lFrWBaYFbXCsINBo0+w4VYUUd4CTs5O5u+vShSL+BjIC5RAiscIybWi4cEkaPCLfN/t8TmW7kW4hBop4RyZhaqMYWxmFIOKkPE9rvIsvN1d1jxexHwHtAm9+z6SmD7+l3Qttuf17XuyfdgFpzn3cSkpVxAlZki4BBMFcQo0xBEgvyYFv16XsMKisxhXorV5WK+4wm1qogWCOqY3wf9/LVD+6tvPf/5zfud3fof/7X/73wD47d/+bc7z5Be/+MWPUJS/9Jf+En/v3/v3/oGPsW0b27b9Nf/++/YLdBRah6TKXQulFvJWuL1s7Htm3ytbLZcapRZHNPabm6flnJxzEB4G7fSAuMfXztvjKw975xfHX+H7L1/41S9/4Je//BXH8eDr4yu9d8wGab3jwiXjG6JQFMlC2ZVchVzgpSr3zRUfe/WutbfO8fCI8JtoJI4OpjXaMN678Ze/Dn54H/x/fnnyNgbnTLT06hCaWYwX/LVt6mSsezZqGeQy0ZQYcXilZI4cacZSxgS2IE6pukMnsZBmdDcWxLpFfNKkaHY0QCZ+qAbXwaXZjX6c2Hzn4r0sUqymS2aoYe+cUroOPdPoWOxJKJxmfMivxQifi2ER0e4kxzUCkjgFPi7wUrpvmDnxUndqSdy2xO2lULdM3jeXo6dK7xnMUdFvXzdue+Hl2ztSE1KUOh/IOJD2TinFC5v6wsyfsHTH7j+D7YbUG82yp5y+nfT5YFpDrfF6q3y6VbZv76Q9Yfnm7rFAmm2ZuPp8PubSXpxE6yJBu0/di5EYw4QMw1+0ApJDieJhlXM44jKXl4b14KgM5nTH3M5k2OqmJ2qNaYNk4R3BDADMP/98dk/OPU7G2ZE2sLcHdpzwaPA20QalGXu3ayOdEDLHKFaSolrIAjeFbVPKptz34uoP9bWrYS7WApSb5jb6HeNXh7sVn9KDiAvvj0l7TMYxeJweLtqT8cujcSA8bHCIUmYmp5MDOGzyl8/G1974oXf6dAv0YXGAT0cBLq7NXJu+XxfeA8Th78fYZQF/yZJxXdkwYQ4YczKbkXp36f+cYSgJMjq5D8qEqoEokallp+bquOIMKH0qQ5yg/KXBO75HqikynPcwTSPl2jNwztZ5f3ujtxPr3ddsnxxfuheRlnmvnVsVXl4LKg2s0+fBHA8YB/PtjTFgSkbvGzlXtm0nlRvkneNoyPlg/PDO4J1pHWPSpCAUjn5DyZRa2NmomijJPVBAeA80wjQz0wuWbsz8CvnVx1hAUi+mk7yReTDsjTS+Z4wH4/ARqEx46z2K54M03knjpLSDT0nZVHjJjuTlKGNmmlg/OPfqe03KYe6ZyBXOUjg08WgTe+/o++HokGb0rsxNoAovinO9Cuxkila2fHMlqiZuM9ShCHlTRCfJSSiOcIKPaMeAckI3rIVxYod5hovu9D7PixG32Xdelb8HZp05mu8lGCr5YpAn7Tguea5NCEnpWrfu++M+n73D6EY7/bxqw+jN9+okwYtEMMnUnGOE/evd/pYXKH/lr/wV/s//8//k5z//OQB/19/1d1FK4b/5b/4b/vSf/tMA/IW/8Bf4X//X/5V/89/8N/9Qj923JW8yUoLtrtxeCrd94/XTzu22+X1zCZpibMXlifvdpb+acswfo1t4TM7TRytWBj03jnTwpm984Qu/HL/kvb/zw/E9Z2vYdIMfYZ0m4fQpkZ2ShWKJMpTUfcbZh3ION+SZc3IeJ+e72wHfwXNqNAKupvEY8MMbfDngcfpMvCNMLXGwTGS6aimxXC+5Dh4zV7AsK3HDN8iSXKXDhGIWM3pBQwc2sbC29kNEo0NgzUht5ad88Kuw1WF0mI0l930C3g57ylr0EujL0rXGeMsXND5aMvMCUhaRUFD83zTQl2TuFKsLcTF39K0fQJdSjVKglsTrvlGyF7D7rZC3TN72KFA2Rk9I+Ad8et257ZX76yvUAjmzzQPGAecbWoo7JtYXLL8i6YbdvoW8YXnzsmw25nlwtIMxHth4MHrF+sZbTVRR2sZljmc6Ai3xz8IRxhlIin0YlwWaFGjUBXiF5BZwC+vgP/g7q8/POjZrNVdbCfFw19sWiE3A+TI7xnpu1ywqeEye4i2xa1nvnlDXPX5+gTxZnCjoFucxdgqU5yInqlB1ujQzC6UEaTI9FTgm4bGCoyMdt19/NM9rOWXyNqAN49FjJBPrFXNM9TRzNdIwdBijTdI5eYgjKI/hCMsl6o3O04JvsMiMc9F+eF4vYEEe938da9Q2JyvI0OvGoOkGwDjwcYsMvy8zs0V8UYJEiqJSyamSUllXfUw9NTgAiXNqqED82tIUcRcm9AmjK73DcRhvXxvtPLHzgO4qpv7W3VpdCjcbJIR9AMkTsN3WYJDFxzU6LVx/lZQKte4+6ky7E3zl9HVHQ9Y7a46b2VRcnJDJqbg0OClterzF8tzwii25Z4kUjOp7L772LU0kPUd/vR2+H+IjCfqgtx5IXye1Ex2N0hqalKGJXJ2naOreJN2MPAejD0aaWJ5I8mFKDnfwIaBzYn0gZ/MFk0BaRrJ7guR4LSaLp+PmcaLuTJ5idCkiQQ8w/+CWatQreeh+7riVABAjs4FdcvFBrFNZ/7bWv1f10568QCcZ+wh8EjwtGb61iO+zsuA8iXESTnIfKvF7p8cxRNO+GIQWEro8n4TzX+f2hy5Qvnz5wv/+v//v19///J//8/zP//P/zHfffcd3333Hv/qv/qv8qT/1p/j5z3/O//F//B/8y//yv8zPfvYz/ol/4p8A4JtvvuGf/+f/ef7Mn/kz/PSnP+W7777jz/7ZP8vf8Xf8HZeq59e9zRc3SysTtpR5fd355psXXm87n775zP2+c7/vvOyFrEZmuPtkUrZbRVLGNDGGuGNs66SvHX103rth74PROud28F7f+L584ffl9/kyv/DL9guO42CMjh/CvgkVqguSNZO7h5dtFHJkw8wmvJ+J0rK7Co7O+9s77f2EPnnF/RCSmjsj4o6o3z8K76fyODOdzJCE5RJumcOhQ1OKJbLhm0QYZNmQ2Mx9sx44626r6mMGE+ocwQOQ0NoHuXL6ahq6VBPBGDe8gwzYfIzJGM5dsNFgnMg88N7t6XUiOKHOczP0mVLLkmfaKtj9+5V1KiySQqisQsFhDo1mpiNlePFS50k246YxhlIou1GqsG+Zl32nlI1ab5R9I9WMlp0UBcocbpGfzPjmdWffN7ZvvoGyQylsc0A/GOdXrBRmyox6h3QH3bHtW0glIM6DNif0ztevXznPr7TzBx63jfN+4yfFwezX/c625JAsJU+MbNZ7wIxaLzasq5T4UKSs2wKciO9dG1BIdbMq2CQNgWmIa4r9MxZCphwOktOLE4abaSFRoExCBukjHh0TaV6UWBvQBtKjeJmeYrvJGulJFLVRoIh6s5EdVSs6qRVK8TA1WcoO8Zn4tDAoNDim0aa7FX9tg9OMU5SvYQR3juEcqdi0iYPujEPfxoTmQZl6Tg4mDxu8NQ/m67EWvbZxRORZnDwTvFfx78Z6/pmtweZwzaaPhXku8LmUF1Gs2ZxwDi9OuscXmIYKQ55jrikJk0qpOyVn1igQW1eaMC1xjMVHCO7YxG3/p48j2tlop/D+Pvn6faMdD+b71xjbDeZjeFBeqrzKIIsyRnia6CSlQU6TkjzlPRkg0zOOSmG73cnbC5p33r9OzvcHxQcuGC2kqiUGE57yrqlSa2Wryl4spOK4OWV8diu2wOnzFSje4YfPim3uZeMS5a/M4Vyo1gfzHJRHY7aT2U70PEi9UdoDUqElJ+4ui/qenPg6dDDOwZDOzOG1E5Lwy7KgD2Zrjh4akGYEfrqJ2RqRGGGDIRnTiqjHWijpIsGXQFBMnR/iqpuEpB53kOY5VXRH+DqTZvMq2j2kcKkofa+WEC3MEc2k+UhG1B3Wc9j/q3SvR0Tgw5B98ZimiJPmJUIazcemR19bUGglQ8U1dOL5Qb/e7Q9doPxP/9P/xJ/8k3/y+vvihvwz/8w/w7/77/67/C//y//Cf/Qf/Uf88pe/5Oc//zl/8k/+Sf7z//w/59OnT9fP/Nv/9r9Nzpk//af/9GXU9h/8B//BH8oDBWD/LrHVyqtkXkrhZ68vfPf5lZd959PnF263nf228elWKWpUGdTkWvu61agRhcfpipPevLJMqrQzc7YCuvHebxzlxqO+8z2V/kOiZOH4atg54DxjI/f8iKydmgq1eKJj2cyN2jQKIUu8j0w34eydt7cH/eG20D8wgtRqpJJjYxLepyeZklxipmtuGB2L9jhgJDxxxmS241IEW07eSQzn5yQyW/WQQ0HIc8TGBn02Z/gHQco7wtgQ8QAzpsO/7hQq9Ob30WM0Iy5dnOMpPs085bwmq3qXKLJ8VONo0HzKQNd5G/PU5SBa8iSpUVL3cVWCfVspy55YWhReY99GhLIXSt2p+51t+0RKO5pvaInwr1RJuZLTHtoaL35ebndq3cgvn71AyZWbANaw/ooVJ+6deaNR3Vgql4D6J+M4GP2dx/sP/PL7X/B4/57H2y/5ut94u994lcxowpbuJKncKliCwiKrLfZCWPkHaPKEEuA6mfrqjkbkLNkH+k+csPF++m4TZGf/Rx/lBcw7VJ4u5fHwtjKucNRg/SprwuzOO+rBPxrTeRdTlZli9BAeRHlt0lch/fzMl9mzJkOyIYUI/HTS+UKPZneEsQ3j7JOjeyFy9OEhdiq04ajKoKNpGdMpaVPy5j4akvwaG+bmg+PMNBPatOCDuLpN3aoamb75j1icy+F3xmez5LEOmy+FT3xe0/w9XAV3FI+LJL7UOz4LkhgZ6fUxkrxQ0+ynsKSNXDZSTuESTIgEzB8XR0fmNMbs6IzGaCb3qhlKe/hou70b51unvTf62wPpJ9I7qQ9SKmjtVIxdEy+lUp3mR52C7cq4ZV52HxE3rey3jf3uaHbZdjRvtMfBbJn3kpCewvUbMpkshVwzubrPSN0SW1VqmTQGXSB1H3ckGTiu1ZDZvCkibAIIewAvT7zU7xM7O+3t5Ph6MI8H+e1gnA/fJ48oUM6TnB3EuU8jF0cxLCWPXRAYDx/JdYVW3PSvj7B5EONM5utdnVjuHkOTrhFAqImuwhB1I8KRqF2vhPiRo5jUJRn2c2qu3kQdOZwWFGuBEYaMZsPDcs9BG8ZhGlYBjqAvjoi2Cf0D3296cSURj/Hcd56S/DyjJ1Lx0FHElW9h2Ndnj5FhNDwWjxF7lOITjz8MhPKHLlD+/r//7w/m7x98+6//6//6b/oY+77z5/7cn+PP/bk/94f99T+65QqluhnRrSj3W+a2J267G9+s+233CPKqiS2FlGurvsimHyJdQGyyFedB7NvgthfGrLx82njMnfe58/K10qm8nZlzelfqIz2HzKQMt41ORinmfI/smy0inqUwhT4HxxDOPng7BiMckgx3J00IJUdapTi3xcJG2BbFIDrJZdpzNdszeu85P/ybw+nDJFw3PTthGZdJgBzeFQ4/gGIxXQY/ji+6yibOxT580bf+9L1YC/DJefa/LyXO2rx9EmHu9OhtbDh1rgP5QhMBQZPDkA75+3tbi/+9Rp5FjoTbmyaqCq9VwvdAyVsl1xtlu1HqHUk7knbX0qWEpELKlZIrSQqKExD37U4pG7rdkLIhubLlhFhDzNVaUxNZM4clOkpTnGXfJ81Oxjw4z3feH195e/vC25cv3qEO44f7O7d84+tr49NtuPS4XnWVv1e2SH0xfzGiII1Zx6ogLr3yj+/2o//n6uyflYf/uYjPq9s2eEq5zWFd40mwvJTjwzemtUGNSyUUBY2GDFIEVrpqjEac9GLP56PwIwvWNQ4Msy/mepnOVZpB/vb3O9A8gUnIq+MikBQ8F4RUlrrO0RpRwY0HPURtTn99S6mkAil5QThZ9d2CK2SVIP5kRVgpsEtSafahHlmLez3OQgNRJMIQV/CbaahuJOpLrz68SNHk/Iacgxg/fJStkBZiFgopM3xkpMOvRPlIlMfV1sMu3sls3XPHevORFEaaQhVjS4U9DbbIlvF8GeUsyl413H49OG7bCvtWKbsbGO6bcFSlFjiHc2J8b4g1oYsGEVk0aitom6dnzYSwxScydGx2319FvemZ+MJkBFLQGW140OLZmWdjHo1xdudMPTppDGabHH1QitJL8D1MMIdtfD12byBmj2slxeWzrh31oEFLyybAWAZqfsevB0n08KTpsXYEnLgaI8CBI5hjzrBajD06Lj41l+wns+v/Jcbsc1j8nNBZKJ9hY15Os2OK89PMHZNjl4+xZFzzsQf3NWVSR64lbA/m1Dhfku9Vgb56jAbXK5O4rP+Wjnj+73Qr2tjSya3AvSbudbDnyZYmW+p+18yWPfhuy4UtiLG1VofAJkwGKTV3W7VE1gHdrcpetkzNg9tNub0I8IVPd6GmB1s2vr4LX1Kjd2d436ob+dyzGxml5FwUk4KZ+uY5lTaE99M4GzwOZTbvroZ6dHxWYSu7dwRJPDp9wJbc/nhOw1UasRCQy9Tpw4iRCPtw9Ff8sMnFITf3RolFJlycEh/bRMcWjzcW38GE0f1xzNyef04PeLPRsenkVTcZm6jYtdjX4vbn7AdsNl/MxYxs3ccz1ybltYNv4s5kT0ncAG2DXJSyK2XzzXC/b+QEW57seVCzcd8rKh78pnlD8o7UV7R8B7oxtTLD0UpSouRKKRslVZIkshSKvpC0oumG5A1NhfteyWmQ9ESrq28OhKMN2pwcY3CejcdofOk/wPE9j7df8OVXv8/33/+SL7/6Bef2wrmffCuvaK98Ku+85BfoSrpH8Ss/tnnKzIvMvBCQC0FZO8tVdMTXfEdztGI8+RN+ny6bnE/r+4QXdSMe/8rEAUAZli5S6hjG6FGgDKVb8ryhKZwm7jYiiZZD2WUReriKnzGZ3XN6FiIowVVyKeTievjaW1b8csk+CbXJZDQf0/YxwlgOP1zNVU4pu4pg5uTd+Z6oJbtRGU7OFTKzZ9/E+3T4fDoakZPEFCWFid28jBS98ogqRAU0kE5bJYyjGhYb+PqMFPc5mRpX4kxXoCPTJfy2ChSZkD0FWHPGtCDJE4p97EMYf/mfi+fVpnfPfbqrq0z1DtnnXWgPFdOc5JBP9zagNWjNvYJ0cOPkc1F+UivfbTe2zRHiJsJmSh6JX74WalMesvP66cb9042ffLo5gpIy7a6MF+P7l8no0Jr7N7EMBLT5iMMSYhWx5Qnix/MYnWkVk4aNE0bB+kmX09f4iLHawKX49kDmO/b2YLw9ON4enG8PxuMgfz1ox0EPIncaw0ncaZCK0KTTuzKKuklhEPt5xPWVfVyqTHLkUuUsaBGsCjNsdy0ZUiaSZyCCAkXDYNSboyTy3FOZXgBMYTRf7202V8qYOSdpNJidzOlBgtMo1hmzk2dHh5PWrevVKIxoTmz5JE2YlldJwmJj20Jrpo8BZzQC2rncmHMOQYWkCwVHNjeqDFWh2CDPvrpp59TAE5X9NW6/0QVKHp3UjyuLRM6E5QiLqh45PUUZtTFm9m0+KTYTZgWILl31IluWrKgNbPcOb8+JJIOSJjUN2g/fcjNDH+/oMdktkc/OKYmhnVve2FJmS4WSSsiXKwMPoDIbV4fpvI2AxIIIOqb7QJBzdPnLjQ9/ndY9r4TnffEBLu07AO5l4GtPrgvdZ4mO6c/paowJoUbwjvNoLqGeocoBN2/y1ekIwcoP+VigOJFyXpDrGOM62ISnd5hMN6eSGa6F4iqiSshL1aHjpG6itg7kkoPTs2W3565KuRcf3eyV/eVGzsJWjD1PcobbVmPOmxCtkHasvED5CaYbQwtWEpaUlDO5VGqp1OQ/l6yQzU3WxCqaCykXtttOKaGSql5MtDl5HCetdx7n4DFA1O3+z9mx1uiPk/Z+cr6dPHqmjMLXLw++1gdvXx4cnw42Vc5U0GyrkWIdZogfsmW9qfBscaKgcMK2gszVc30oSOw5VgmFzpzu92NByvWVxBOxubxrrtLH0bgZDrGroDXothyNY41bwMuSGBqusfL0ellW9G3apTxP0zkaJlFQqXf1BMLg6ha7TKIWS9V6GE9N70DFXKbrkknCJdqJtqlUcimUnDxoECVpdkRssW6bb/KXY2Z8GCtskIDMbW388bWFqbD+lIUG+gu0y8E5cEm5wI6rO1XxrtRCwbOQF8nOuxNPZgtTsaerbooRaM5RoMThk6Zz1VwFlsgfyJLZoRSmGjVmsCOpxy6ojxo3dVXVpzL5XAff1kbdhJzdWiFNwbryenOVW5LCy71yv2+83jdKqUhK/FCFUsR92KpzSeZw231/gdMbr1iTYyiSoI3OOSZnh5Y6XTxwdaGuffaLE+TjY0PsxOyBzQd2HMzzYJyN0RqzdWZzLko/O9Yieb0T8Qte7A5JTBRrw9dFwv8/RXebxzWWzGLM5IiuJGVmf12mMTpJbsynyeL1C1K8oNFsPoJUL8bWIS4jMTHfZyPJ0RV5Lu+WQE3LhDKnE3njM+1zkrqryjzKJVBHXPwgFmgfKRrAdKF73Rw/vWInomgR3HldwxvF5GmeqZoDMZzk4Uniea6sKt+nVFdD9Wue8b/+t/7f75Z6i6jn2OZaYj7UQ8aO7DN0TYxj93GOJEZ22HXNdeG5MYhCLoKKBwQKeEQ6HZGO0Pny+hkdg/b1jeNLQ7swHwcHSpPOlitFnYGeUgmJaAkcEP+9BGwY0PsKZlo304Slgq1gQwFdH7L6yT5lxqZooeSJHf/CxPEXtLxMbGXxEBbduKMoflG3VaBMo3Wv1ocNVkqwS5SDm3D5N/gIY84ZcjXfzJP1KHaePq/r92C4E6GFokMjN8SMDXODLm8wXJmVwt1WPcws5cRWS2R1JNJtI982ym1nf727r00Vapn+81txbxgUwQPGZn7BymcsVUdQqpvUpJIppVJKddk2iTQLOioyMzo9OVVzoW47pQrbbmzVC8E2BkkS7TxJ84AsdLEIJvRTfKxO/xx0G5zSOY/G8Tg5HidnQNC9Z48LiPfPL3u/ZQ3iWaiazOUA+KdvDnNfPxU5sYGCLN6Iu//GZxR+PhaHOQTC9WFtrq//uNjhki0GSBP/Lhfq8dFzZalgnsXUs+hZcnW1eKGRNRRWDM7NmBONjs7/HqDFx+c4HCkixc/j0LfFeMhHpOKFZhi+JV3eIK5/88efTvwd8Z6IXOqRhfDY9b7w4f3+eHvO7+FZhMwL6XoWNCbiMmpbm33A5h8uYRFc6pmUFYYqSV1dITxHISpupBVPKc31HNbnOcMIzlHRFGTsFIZgI7n/BhpOsPj1uCW4ZbcveCmDrQxSFqq4+21ryr4lRnJ1zb4XblvhvnkxKKqUEqF2V8KjW/6baZgUrnHkvOTPNvDAyeGHbpfhhbWvHITJsMkUDwpcaha1E+yE2aB3Rih26MHPClL/7I7imfd6dIzOZLbJ1O7Pq3Xvpgw3o0uhThsDUTdrM/GoiJwUsifXjyhQULuQBU0emKhFgl/lFAANF+RJi/2Zq4EcwzlXYCSTKDbdT8gRFN9X83R/oWxeSKRpoZRb16NHtGTSgqYvkUJ2R0AQv4YNgfmMIpmxZ5vGxb9cciXGpimyppigjgLlKbikeRXlEsjsr3f7jS5Qbsc79fzKfJ8cOfHl8cKsd86yM4/vaLcX+v1gHlC2je228xhC2YxdcnATXCI1NTl8apk0jX3bqM0XdHnbyG87Zb9zHELdvmHandZfqPkHdOwcj4PWm5sHqYJmhrqM11DGGO4rIV5UKJOiHUmNlA+QsOivFbkpei/UvUdg2MRGCwnv4QSpaTFi9YNPxTdYHwG4b0aS4nNC0Q8jgSgOeucc/TpYjrY4JJNHO5g2GESBYn6QLcOhtR8LIYOcPiZYc0Y/OMGX1zpxYNJhGtqdZ7MZ/MTgpsYndYl1jU6tqhvv3YPUnFMOP4VCvu1w32ArzM+v6P2F9PLC/vkn5FqpW3U4VQ0t8iHQKpG0YulGKt+4rC8VLKTDuXpxUmply5lEQi1DLzA08jB8FLS9fqLUGBNU7zZSa6h+JacHyldsZHoVcnkn5dPRmyiKTKvHwScvpLvCyeQw42HCRn4a4cW8Xc2zcxyFUIfBl/ojNKwp2P/I06F0zKWwmox2+gY+uVQtfSxvj+AwxJjFxsD6wHrDZr+k5Gud+NcsgtnEH2/MS82TI1AwGQzNXqDohxGHOXLSQuIoeFFxD5+eEnyxrLAzqaIUnplXXQlHy+BUEGypgKElQQ7EBk1oqUj2FOJUCjlvF1KnMT5ywKMj43SSaGu4tDKFlXq835PLbtzWDD8KmBWweSEYS30m7qghacSl6PEahKeLZHVwU/Env/gCRFMzLRQjrtZDM5oKJSWX+DoczBQN91+/Th2FCdQneD2rEDAGRFikFEM2p4bLWUE7mjpqnVShbHDb4L4br1vnvimlCGNmsjhx/vU+oWVU73y6v/L68spPXl7RXDAV8r7DvnPsG+8dJ5S2DLOgljG5YVYYvfDomabOxfk6B+8Gp7kLqiXzTaSAbTB1eMGy5PBjYOPA7HS7+9ZIvVMCecCGc07GYIyIO1j8KrxgHo/mCF4ZXqwnXwZSPWRQaiIlyExqTmQZ5Gy0Tek90XdPXJsizDwx7ZgaJYXFdy1onaQ6qLn5Y9qkj0dkWLmgwXl/4teVuaRZbbjKhhmqSmFz4hV7NCUqfl31aW5cGMXJFAI1dAJ7bNnULWNwIWtCFMgW4+HgO2YzNpuevC08c5NKiuVu2Oie3TOc47k6VAvrhl/39htdoNjxYNB5p9FSQvpg1MFZGzNXuvnWPnOhzMbBoGelMBjFM0w0sr8NQloZ6IKGO6smsipVEpsmbnnjLDsvdededno5OfNOKnCSmDn7BiHJpcAsStdwDYaIb9J4KJWI5yQv13erFfaCVCfapkAcFrmKlLAiYbUiMFwCWtS7wVJzJBcL03IQ76L7CyatMYJ4NS4yYOsWFuY+rhk2f1SgWDhaShQoa6BkI7425rOrX/D01S6vjl7joA3YGHgReFHhW1Ve1HMp7pmL/PpSxWMJUmbb6lWgzH3Htkrf78jtjt5f2O+fyHWj3G7e+ahB9oDGVaCYFCzt5HLz+b1WrGYkZ//ZQFBqcV9HJWO9wExO+VmhZ/sNLYpUN+NTM/IULHUkG+TBqJNWB7d649hObvud++2F82jMs/Oy3Xnd7+yvn6j3V9J+R+uOlIrlgiXBsvuWEF3QDKXWRC9fGJGV+/Ls4WVhXxffxAlzfSyFjxe2ZjOK5xEjHiBW7RpfLPLzNcpYhUogCAF5+HOwJ4ExMWMcEvB34DMfamWWwqgn/0JCqCV5cZI9qNFJ5xJOsgsp8u+X4F3JIqbGOHBGoZYu2FBD2ivPbm4aTALlCS6JBS/HwhlzOLowTYJz4q6ZC21cB0kMeFiF1yqYFjtWnh/M9Vwl3gtbKEuQ19d8bV1PjoDiBNp4DRJKOf0w3vHiiMuP44m6BKpyPYkoTKKKEgm+mLpaKo9MqRVmRxiU6f5BTk6f7uwbyrmanDe3ZaFmoSYvnoZm9lLYa2WvFc2ZIU7MR31v7KgnHodc3kw9U+xKwQ4hWph/tVB7zcWzCuK02/d7GzLtmSs0bKLTR9BedHNlNxHvW1P3VlmJ0lGa+6hyGm1MmgituUFeM3OeU8lX0W9zOq/HvEisSMiEfcw4gItfFShhEieOp5xJeZnR+bXlaQEWzuIzPm9F16Qklu+6Ftd68Hw0paREzbGWp5BcSBSxrF6gpHAen1FQID5CN0DnpKs75yY3QbkQc5UIpvR+npKfzYBkuT6XOT94XMV1j4Y3z3ohv8btN7pAmceDNg/6eKCq9LNxbp2tnvRcaeYOJWdKlHFQrdGKUOn0CsUqOTtJzuFFtzZfHY/bFztpMKNUlHsqtFx5yTuvZWOUjVYqaRoF5dBEQ501HTLmyQxOUnzYoogaRRSbGbKhln0D2TZsr1hNUaAYESbKVAm3wcy0FHIuP3Bq8sTiUpOTHMEP1Vi8SZ/joD794m29BRHKszFWtkjr3Z9zyNaIn3vabjy7sRlw6hxP9cHUUEAsA5IPmItDykY12IFPCp+T8F1OvOpkU+OluiqnFOHTVaAU9n0j1Uq63Rj3nblVzvsdeXlBXl7ZXj+R6k6+vdC1M2XQ1YuTFQluWpi6Ueod1UpKFSnuP1DKTg4EpWQfDUFmDi9Q1CIJNSm6bX5BVr/AZU7SsJAqQ6rmAoLNeLkd9DF5vX/i08s32DCyCS/7Cy+3Fz59+x33T99Q75/Q7Y5su7erhfCeGmDq8tRh63hhJeNqHEzrQPQiY8awxg/cEUqAPiNLZDhEbJHpsQoUzJFs5VmcrAnkEggF+OKH+DrYLy3zc+UnCaKoeATF2pY0XGOvJ2hCL+6tkySxbREGmO0Kb8xZr5iK65gWLv7FR0uYpcqxdRgZPzroWWOA4TbhasZU8XfVnBA+VgE/hhMMJyzR91ijhstVVp8FEus6W63JGnIFQoTD6auYXOPlqyhRwvfkwyVDvE/e4VyjK0eK5Hq9q0AZlwWxP3YW9zpa74VhDFmSdXkSetULQpteoIgNRCZ1DmqBWhNbbh9EB0LN/rT2JmwZz03CR9R7rdxq5bZVJAoUTRk0MyUxSHRbCIBfocOc1NuHZyjpcKT4HO7au4iimHvCeMPg3ikgoV7xlzamo7s658Wp0iSXVFtUaSoRTwJXOGy81eeAU4yTydlmjE5c5ZPaoPXpkRXDkUKN8dxKMJalrjMvsiTubtwfzW/OoRzM9B57sdsH0bsXKIobUCZbrrZyjU+dcxMjQk3k5J/BHISRolxikGaOrHQW3yQRBr2IQM6Zac5xa+rhilPm1VGYcRUoJcI7c3L+jSiQo6i24M5ZFD9xvZq4J80fwkj2N7tAWaOHI/bG1o1eYDPDbNBno42T1t/IZ6No43gYlZ2jDurYKKWw5XENcDU04TyMHDbqZ/N7b04aErxIUE1u/Z78PuegqX9AroYZHza6Exsd5nEdIpesThym1ZThtjOSMHVlx3hAmq8EYjVUjMwYXJBmyS6xLVnC+dOYZw9C6joQjInnuJgNLLrqMZyEtszWzt6wDzPe6z4CIo7QveHtJ5dANC4ImTm2YngyJ3wkpBibwR34DPxU4VsVfisrnxT2BK81lDpF+bwJOWV3fb0VdKuk+0673+j7xuPlBV4+wctntpfP6HYj3e4cOtyTQKMpFUEibMy0UvILKRVy2vy9VSXlzRGaUsm1+vdT6LNg5oF+oeEM5c/E0nSzI1yxlPMGZKpWVG9IunFYQsrGu3UebbDtL3x++Zb77ZWX+yd++tM/wueXFy9SPn9D3ivpVkjFnDwnE6wj80T7e+TZPEdqimLin5YO/6wuWfF1QHZgYHZCIBuKH4hinglksjrtwL1S9dHHNObIToqz9fkPd9G0aAkXtDtdQaJTSbVcNUhOKeSn3nn57zAeTTi7kIsjRVkzr/sLJSdK4uqSay6ewaMJ643RZmz4M4qD6NZUyFpcnpuc8JqM6LCXaql7M9AH1pNn1MQ18tEhFkKuenEiBibq13Vf/IUOJC8WADSMsNSc0Mu4qOuyrvtpjsbhxeAqnuYa50ggv3CZv/lT8OtNgvS4PkONRmpO3IxroTbBSdmIEZAmMCeudybTnMQ55GRKdyM4VVLK1FzROVAxbja5VbjfEvcN7hVuBW7FqHky6JyhWqw6IkJDudXKy77zcr9BLjSBtFXImYZ40OkUmHqZl3XDU6S7oM3fmsnkGJOzD0ZrSGrIaHEduNdMVvd8QTXGdU9isM5Gmt2TiHEfFVFHhBvw4FlMruK/G+5GPOEUaObhqk3g7IPUB2fvnC15gdPdMDSZxw8gbgI6A1ibsq5WJ6Wq5mhmdids58KYJ1OEx0yeoj2ck5dUKJK8uBJx1NZCbj17tCgZteaOvg226Q2CiltB9GHkkCp3CH6kIyhrq07irrsyIa0ctSBsOyJvV4FSUzyvtPbWVTgRxaF/rjbtKs1FQiiiF/P/b3r7jS5QliKhT5+tjYi+tj7JvSO9Ie3EzkxmUHTCWXx2fRa6GfXqgHzAuAoUa1CGbyatT2d2jxnKhRnGR0HOMkcaLA4Gb9C84u+hkrDhc3xnna8CJSj6mvwwyO5mShj8rM1HLXncvfninmQgO3qicQglN5zSrB6NjjMIRebloWFMRFzGBkvBsSD8HimvA7P2sf/+cF87t3fOepUmflvDH99eo5r+8B2Ko0GFIMYCdxFeRHgV4VWFXeFTUvbkG96nrJTkkugtSLJalDNnWqSkWi5YrmyloqW49bxklzhHsrPISrZOmBZqvpFSoeR6eU2kUOikXMi5IpqYUrBRmOZhZRYIiiVzh0b1Tm11X0pEtZuQslHypJaNWne27ca+3+l9oFO531+53z+x3z5R9zu53tG8efJrzkg2NM94PHV4WNzRdR1wvkaWlVt8BmYRNvgcN/w1nyN2cSY81EtDqSLPu5anegy3w7bpRmfgDpekcSXvIoLOScopqA5rxhAdvrPpYlPDn0eMDftwfkXWQt28YF8FCiLeaap6DtSc6PU1foxGiKvyiPHs0JD6iqwkBZ/PW3S85ujCs6mTMCj0011ErmYCFtnwwhBjxdv1+z9+Bk/C8VL9zAs1+oiqxA/F5yVXns4qTJ6eLwvN+tiCylXgeKrzGr3FFoAFciLk2CvcITrgfkJZaPPD1SzBW9NnfEagNf6nRWPljtfuQvpUfUkgZEkjuytnN4oEEA1TvKcIK8BYlszWET+3O5DYn5x3RzR3M/w+5rWn5MV7U/8ZDfmvSvC3cH+lLDOCKf091quB4ZLVA5e774oh8EebUcrIc4x0PTeLBi32G8c9uBRfcXuOZwIFCXOblVzuYZd+drQ+A4FwFVrUcM+F7iXu2gWcNC3mn5vinJ+ELwTz5y7Bs0nrmrzG78ZyPhIkrg350Z4AK2pgXW8LEXwu3zCfvuT1rN/59Jj4q06Nv/HtN7tAiZHEo4d99fQ47WqKPR7uM2jGKZPUMnlUjiTU0ThV2Gqj5sKtTpJm13CbM9LnYZTpc792Ns7z5Dwb763xiPvRTo52cPaDNg76aHQRmsExJu+9RzEzHD2xgdAunY0GcU5ThrKjZSPtr2CdiZPT1BSlMKy78sIs5JsurfNCZlwzzxkXnZj96OLU2HjdZnsgc0YH6BD/bKfL+qb/7rX1Pg+09aff1qWx8BFjbVAO8y8mAh9+wvGIKEyAV4FvRPlWlZ+kxGf1tOfPWdlLYi+JT9WLk5yCjFp98HnUzFmKp5mWHSs3at7c6yRVJx2KMFP1nIuUrwKFlCm5ktV9MBbMmVIKqXGmbAXTzJDK7O5hMwnL8ST0mKOOsDR3MjPP7FVNaHIUpNSdbTT2euO+vTK7jxfvt0+83D9xv33Dvu2U8kLKtytRWcM3ISWiQ0po8nm3dC4JrcbObPhB4WTKeRUpoobo8PtKNxbn5IgIaolkji6k5E6yKcIJkcwkQczyZToiKKm7B4l2t+E2h7lFlSQJy8Nx8thMy4KS1a4CRTDKqZTcYySSSFq4bTVQydjaxVG0FAF5aU6XGV87pV13EcJxNiE5x5gKLGWmWoT3+bgjxfV3Ob+uAiMLkiaaJ5qGHwxTsch6ccvx4UVpIDdr1EIUFmuMtTZvXZWJ+dXi/+bd6fom5yp4IzKH/FgtZT6CXQeKxfXuB37CFE+1tbA3X2jn9OcxBPQqY5WBRXMldP/bdQDDc3So8Vr8z+nIWVzxoos4N1gE5af1AVGYJiSFEWKMI7z4eAYsLqNBwdGYYY5S6RwwnLPnI+PY15iXMs7N7gP5EIk4AF//STqJ7n/GveggqyNcIzkakJKPfhxh0/ggPIrDHbRXrIBiMuI3yxWmOqddxoQWqk2/3koUt/7k3VvEloCIGfxk96LxkU5rg+PsnK1z9ubPI+HhsbIw6A/uxCLxKSU8Gd5QzaQUY2GLQjiW3vrTuZcSXCdfmyqrxZQPRXSs00D2FvLpr0mfSG2MHv2hAi2KP+dVGKX15V/79htdoLTmH+pxQDcD6TBPrEPJX9Ex0BGJw6WgrTFRznNiFFqdbHVAVzRlUspgyhzQz0myhEzhfJycj4Pz/Z3v39/4+v7GLx9f+P74ypfzja/tjd5dxfOO8DYnb814b80Z0cv3A/PuMjxXRPc4xHby9sktq7c7Mg7GOJHhlbFZcfO00b2goHsHMnt0MYSHfEJrRbuvJDs/dIZBErNrEYH16fK53pHxQGygdNJVdsi1eOX6l2dxUp4PBawCxf++/C3G9T12oSY34C5xT4V7ztxz5ZY6W8KLk1rYw+8k5ygctopUJ7VqdrmvpIqkDUsbqA9DDXOvGxKTDWMDqaAu+9aUsexMei0JCcO7pBbGeF7HmDrh0IYT7/ocLNpPMx+ZiA3a0dE+KMdJHp5uXUQ8l8g6SSdZjS0rt1KYdafPxH2bXsZ0AADFNUlEQVR/4WV/4bbf2etGzU7a9fFhRWIj9dDioHha8+ZpjmjI3SLeL/xFkgxJ8QcUbJmxr2AxxW21wQ9nnb45ebq3j7P8veqYZjSC9vqYpEDbmOrmfCExN5uk1pm6SLiwQgqz+nusEgXK1Yv6mmnFHU5VFtckhQX/eo6BckZHO0WeB7cZayC5Qi1FNQqV6OhXi7/W8EJFFsMvffy6hDoNpE1Hq4Y6wZqQYGYnGUvOgTakiOrw91t1EWHt4sk4aoU7dkZhIzEytMtYLbrhwGw0kBMN1AaJbjSSyMkFcgnEpTpaO0cQd71z7mGlPyx+59oHrh7XLiBmEeq90HQFVZozrPOFKU727wItuvCBq9C6Ok9umlvDW8pRGLqacSzitWvTA9ATkPQs5rR7IUCOgtjHBG4GpsHfkMi9Mb/WYhw9rgLJx9jKiXIiHCQ5SdLJOsnZ30+yS55zU1LMNtSemTqiP35frl1uQVuB+Axb/iMSw++FjnB97wpt9fXqhcaUjKlzclgFAxLcqBGOrxMkCO1BH/CawMNk7cNamkzmMpSbUVwuBAQnUhsuiZYkscktfMcRTAnbcfkA2bhrsV+xKuHsm1fjwwdydzQ1gaaiGvV4IDUXI/z/IQhK79C70D1xGmQy1YOcxtncA0WVkU5chKK02kE65xFzdAZZO2n6Jj3DIvg8BmIZpnAcB+1xcD4Ofni88/V458vx4K0dvPWDx+j0uB8YZzfONmhnY8YM7uqWskuARRXNxUc7ZYu7G4GZdWdBB2QYusMPZcLqFM3zG5KQayGXEom8CXpjnC6R9Dk9UU2PGBd0Hx/FoZYlDgyb12+BD8TG+HOBgh8LFD58bWEu8lf93XiOdjb1OPMtCVvZqKVQa6WkTslG3gplK+StkPaEZp+L67YjtTLrjtQdKbs7wwZq4iEu6cMzzGAVY8Nkw6SGmVAOJ7iQdkoH8bHakp6vJ+8KjifB1NW0RuN0RMwG8+xoG9jRAi43NGmQSMPFNEHJSi2ZXgqZ5AGE2862VWop5JzDeCvFwc46SX3zMPe+8LTXFP5s4R0RyIAFO83VV/Kjz4f4/rXJLMWaE1EC+tXsBYoq04ofUkZEObj/DlORMUi5O6Kk4l30nLHW1ceULhEIjoj4AaBQJNQBJvQ0GEkp6jC6LNPEi/jJwrWfr5FnYbLSiUOQc3WVFyQS/IwV3PfkglgY1kE4dF/vla3NNUUBY2ALhmcpqJSVheQIjG/iiPPUVGaMfPSa0V95Ehpjo/UYgZt7Z7le8/NDW22CrM936V1/dAczl1D749h1QJo+Ywf0uiqf1/jC5a+vyPP1JNUrnkJ04SRcRcoKlhwSxbzG56VORHXCr7K8KB12CCVZMDwlDk8VvChfkvFFhp1cvBtljdy8eFOW1bu/OjeGjGLcAvGxQJJluIV++MRoFo86SJFHZcpUD7UUFsr4oaNbI1JbpPXBnMktGcwt5RfiZbG+VuHuqjBxJO6qeny9L2XgcwQSn1u8/ita5sNHN2Mdu4+WIBoFS+wFlzYhxQ8kLiQFW292fLA8fZXMN5Wn945KqMD4wPWKKk7M5d6xT1kQYgNQudaz86pCiLJe+695+40uUB5vEVL38A8z5RFzf5d6FSRSfhNiCZ0Z6QV6ZrbMSJlTM9rU8xUYnGfnbI0vX99dgjvg8fWgff1K+/qFL7/6BW9vX/nlL3+fv/z1B94ebzx6Z/TphU3vtHNwHo1xnDBBSeRUvZAoN1IgAmnbSCmTyoZWd0lN6l239uaR5+LqnqreiZWawk1SIO3kXCi1su8v5LKx7Tc3GGqDx/fvzOacHEcV/LHL+Y60k1m/Z57vzHbwODKjn4xwkfVLQoNM6xc7xCIMTksONMGX5XPbm/j6Hfx4BPQiyktOfPPplW9K4XOp3F9fudVKvW2UNFzK+LqT9s0JdTdPJJtJGfvmipv9DtVzcdLLt8jtFbl/It1ukB3eT5YxMkXv9HJj5p1ZdiQntGS0xgZV1YnD+HszosuYQ5ndaOPkcTTaGHSajzRkMNpXJ8f2CY+J9sk4HIbNquhergs6l+GS6nvm/OZO3StzKPeXV+73F14/31xGrUqpvo5JytMJdu3uwrpkXVYcMvC0LnqDkX0D1cZy2URajB8EU1c1JCw4CXJxn71AWeMJHx3NNb4wJ7ep48MYiVQmNjKmDay7B4qJn/hiPwpWFhuAkxfLBVY4PJ8xSijpJCU3SwyOiUXH7dwoV1ic/eCMEevZO2efrvKYPtAUFJ2e1D1HCldRX8tzgh2eStv7ySGKtOT248nXd2fQ+6CPEQFrThicrO413Grnctz9MOJhNZB6IRNrT55L2hDv5RT1MVQUecOGWyPYpH/owBdhlyiuRQuWdx9bptgPRJBZglMznLxsfpgKPg6yiM/z6zp4c3bRcTGGN7kKkjNFKiUPqlVqneTqa22qqyOTrcLHyaZDDc1uJEiFXIVUxbsSDPpArZHnyTZO8uxezKWNoo7olRi7ZFFy4Eh+EAvDlGyZZJk0EzpA+0RHJ6cRRZB/LhavX+dAZyfZIKtRaqKou9ramUjdSCttm+UavIjNDZXuXBLDx5x20ttB10pvg1Z2zrxx9Mg1G3CeJ+M46I93uh3P0Zks401f51oyulV033y/GM35ZbrCIwkkQjxVuWRI6saSo2FjMHrEYFgPVZmjKKZRtOsMiwGjiwQBOFBV+7H+DgvaBIOZfEwnhrveZqLZCDK5zlDjWDRK+lyrM3h508c6rmCVC8sd9mFj+JvcfqMLlKM79Fq1OtN/z3z69MrtvvPpm2/Y951t36m3FzRXUr2R7y+kulHuL75AcnJ9QzN6a3x9+8rj/cEvfvELWncHv/PRaY8H/e3B1y+/4v3xzg9v73zfBo8pPLQyU8IYSD+BRrVJngkZLieuqiSSs6eTR2yjPu4RG8g8XapqkdDJcOJm8qyZve7UnHjd89NFdQsGeNlIdY2LNs5z0s7B1+9P2jlpbXmeDOZobP2BjZPP51esPZj95P3xoDe/+FrvFylvjhZmVGE9PQe9N+9ObLoSYq4xVlxUSwpprNIbEeW+b7zslU8/+ymv28bLtrG9vpBLRW8bkswlHq8vsO9Yrczb5sRUEdJWHFLfb4yyYbmit1fY7sh+h327PBGyFH+P841ZNmaujDDRU1WyBl9jwa7TL87l4wHOuTjOxuN4p8+G5IZqR7Sjx1ckcmR44Iy/LljODm8XC+MtRbIrfNJU6qhQHd253Sr7PbO9QlaPqie5mmLiB1Wa0+XkrrcIFEACjvXuWlO6OnDnUg+UjInD/RDhd6bufomTWbkcZ2OQZxZKledIq88R6GBIb4dD1bbUbgQSM+NR5rNzXF83M0Y/vZuMkZXiB31rndY6Y9rVqSHhLirGDAKnq2UAg+NsHK1xtkZrM+SeYaNvi2wI9BXo7CjHHP68ZxOGGm10Jg9XRxRclSW+QY8OoxvW1FUmU1jKtzRbKPKce+Hl2pMSHqIflrJB19sRkhyJDVpjHLWyidrw97uNSZvezcpzxuCHGhWRiqiTuJN4Cq435HqtD1vp5OaIwRPFeeayrOva+W3TR8gxdlEJlEEzSSqpTtI2kVwxhWGJNhWLXLAefjBJB1kmmjslN3JuqDrBWuhkGWwyuOngRTstKSl1kvhryaIUVYpmai4XH2hOJ7meMhEyMhM23N5g9MbMAxSSBeK4SsdQqKkFtqfxmEwv7FLHpFyokOEoihEoRPA60OYMmTlo/SDlyTGUwzyZ+1h8wQHneXiC+fvBpDvqmATNmWw+BnMum2f3pOKjZs3ZCfqlBhIkpEDVNVe0euq61MxomUmjqZtfypzREIo/fiAwA6PbM/W7T5dsW4Rzumybi53kythFmnZ/HEmuerLgr12FoAEh4RZLTpYPTo11F59Adq5RoDPTzGkFv+btN7pAaR3yVPcAKZn9duPT67fcP73w+Sc/pe47dbux316jQNlJ2w0thXTbseTwZOsHZz95vHd++P4rX79+4f/6S3+J4+i07km94+z0o/H29QeO8+Dr4+BLHxxTOLRiyaHFXZ18V1f1bkYx91DJ4hkapp5+O8Na2Ka77skcjvbQHYFLSt0yt5eN7z6/8rJv/OzzK3vkz+T7K6lspLIxQ1ppWng7Juc5+dX3nccxOc7J0ZtvQKPBPFBrbBxYP5ij8fb+Tj9P2nlw9NPJvaMzusujez/p7aT1k+N4BPegY+fpSEIbAb96F2EWc1D1sURKmdvnF15ebrz+9s95ud+533bq/U4pFd2ru4LmhHz6jGw32DbGtl/jh16yhyZuO7MULBVku6F1w+qG5BywaSLnQtJMLjuzFixnhnr+EoYHauGH6RgeZNe7Xa/b5mC0zvF44zh+wOyg7p2cuo8EHz94cdIFO30TdNLKBqVi0y9OVya76iRLolpBtoRqZd+rO9G+eJCc56Q4n2Kpw8Y0d7D9aPyFK1UUP7tSzlcRJxPQgUlnSosCJaBnBFJzzg1LGniVJzHO8m1aDEcQ5qDPCOCbFq6biZXRcRWi+Cm8JO7rvuzgx+GIzlS74humOWLpBQph9Y0b7Ml0lRSTMTujHyyF3NE6Z1s/a/Ru9MFlz21IdG+BfpiPd/1AM2yoJ73KYMzuyo9soN0LFHEDQ5uK9QqW3Yhr+kGb+unyzogIcA/nRVO29RGFxNSfhygfVCjmkD6rs3R5p3sQTY5+cg5fT/ojw8iMSEF1Q7X610TDPZhLlSExtl3tsYoFGTdgdlsdrqf8TgveSu/uSDwDqVNxHlKu7ni6TY+QT8Yk0YcjKGO4uZhhqE4yA8uNkjsle0EvcyLSKTKoOrnr5EyDjrlbLTG20RRFSqLm7OrEHI6vuIQcyzCdKzj7pMf1KnKVJUH4VEfzLKTH5s2LoM5NSlzwQLcRnf1S7nClDxOKGJuuyjzDLfmcymmFYolmnTyVNIV2OnreH4dzOhSkiPNl1ihF5crt0Sxo8agN7YVSt0BcEqlUUs4+/q8bmhPUEshE4pQT516uES/BBVmGdV6ceIECbRhHd5crMw+FXONRCcjEUZIR3K31/3LtEYYTnS2co3WCmPtAeZSSeWcQdvquSgvPlvH/oALlh9a5q7JtN+p+4/b5W+7f/RYv33zL6x/5OWW/U7c799sncq6UuiMlFn1RmnXOefJ+/mUex4Mv37/zy9//Jd//8vf5i//vP8/b+4OzdUg7cyijC++Prx5c1RvvNmgYh+hFcrtlqEN5yVCSkRgUhKpupDZTEMpC7jvNdeppQrbEnnc0b6SX6s/99c43333L/+vnP+Mnn174Y999w+2mlE0p93twKTJv56BN45jw9hg8zsmvvpy8PTpvR+c9Cokx3M68JOHzXi5k5OvXN87zwXm8834c9NFp7WScB6M3juOd8/HO8Xjj65cfHG05DvTxzmwNO5sXWQbzXFbqId1NHsL36Wc/45tvv+Wnf/vfzrefP/Htpxe+ue3cS+KlVrYk1FK4f/6Wut8pZUO2u/s2WJDEksK2eVehPh4jOWoxpsVYJZHq3Ym0W/buOAu9wWiT/uhY93sfB7012mgc7eEjutZo56AfB4/vv6cdv0B48PmTcatGzpPc34O8UGFWhERNG7lk0lYp2+b8mT35fH0Koxtzq/QOSUt4vQjbFv3LDJrCNGxIzJ6XgiJ40LoYNsLyH6FYbLbqGQHDkOHwtVfgBs2wDluqWPccEYfnvbCY0wsjxrhIeGgUGBiYk/ZoDSw5YXF0R/+swTiw3pnH4ePSUGcs9cn59vARoxipeCHZmLyfg6MPmgjuexeJOKFYaCHXP44Wrq3G18M4Tlc7tO6BhSxn1eRupR4vIdfsXXNGUkGGuTmiTcQ6w46QVEw/qOl0H2CAJbLWUGX5pj/m8FHodLflxVVIrsv0gnLaZUblPjPygXcRKN2a21Oi8BIfGbTGeRwco4AkShYfCUtB0h3Nd3K5O0FcQdSLzdB1B/IRwaDmyJbYjAJmEu4ZdOvMfjLbwRiHo0PDk46VdCmbJCuyV6ROuE24vTA36Ln46++T1hrHNE7MLfPpaD5JpaGlI2WhaUqqnjx+3xL9YXTpqBzYOKPorYE03zxhOvk4e4iXfw7WKdOczi/qTZ9sjj5gEuZshln2YnS6mELM91wzQ4bRhkSavPH2tizvnwqsQ8XHIg6i0S5+iX+2p0JL0LMwS8KGF0NGxizDTH7Am1FV0ZKpW6bvGdsV25S0K7orcsvAhmZl2E9ozUeMJE+qLjmzb4VcErlU7HEw8sGYJ6OdmL17cRHXzkrxnE0c+W498ozgbNB7Y4xOez8YwxFk1UQqfrZs1V2bqxlpDHR6E+A7UjRzYzJaJ00jmbvmJiPMRV2iJAoyzdmeQYPQc/zaZ/xvdIHSJzQxTvOLqmtlphsz3aF8RsudtN1J22dSjHi0pOjUBazBOCn5K0UbSYrnm0xh9k4/3ulnczOumZgj0c/TrcF7ECvXvN6cfubMd+/gcx4knVQR6raRakH2GzOLUwW24l3iUG77nVo3Pr28kvMLKd/Zbp+5f3rhm599y0//6Hd8+3rj25+8sG+TUoy014uEJkejTQ+LSnWy90neCrdH53523o9yGbGpuDvrp9vmXe3sbPcb7Tw4zweP86D3Tjsb/UOBcry/c7y/se37VaA83t89HfQ4L2OD8ehuOjWMlLyQyLVyf/3My6dvef3JH+H1m8+8fP7E7baxl0StxaPicyZ9/pa07UjZoN59Qx89OhmFWiEVJwemGsRBYfbG01gox+YftvvdOA8nT/f3A3t89Zj28eDsJ212znZwjuESv3PSj5PHeTDPE6VhTUKZZ+RInRbZPH9JEjVvpLKjZSfn3Ql4KtGVCzoh6cQUh5qv/1bfHzD08m3hAzmOgCqCiOaQf/w9Ty4jCgvtogT7f6WtLWOn/NxkNE5RJ9nhPA1g+XUsGsMKqPRfG4XT9UUHlp0cHF46wZ8w0jJtpcWIw8T896oL7g8TjrkyQbw4GXEATVE6Sjel2ZOAGPopJs7TcT7xksUqkl2dgGiYCzoyh4Q/xNBAq3JEMnTAu3xHfJwQK+iaOfnrDvm2hiRXmUH/cXXSU+IadHYhxptROCx+xwyioVjwiBah1xaMgITZl0T3nHJ1rloOyD9l78yXRFqDArt+54cChem2AZrWGC5IkjEWNMURI3FZMCSGqI/BRDg0k3RSZPKuQkriKrOwwh/AiXGKMXQyxVOWZ/Jxw9CQ5QpIqmiqJPWkd5XhxW8sp6mgo8FwhEqj6bG19A0u6qpkTFySv0jywwTopGvUF13+iJwbnMQuw+jdox96X6oZRzCH4EGzkTrvZnbrvR1unJkyWjZy3chbpWyV0hMFpaWK6YlpRdXcKbBkUvFCSreCbQW2TK4F2Sq6Vd+71N1ce/fRJZrDiE7YqjpPMRfmiNgKHZiq7y/iShlJMUPViZThZPWMK9LCoG6N3q+RpD1J1RLE7iRebOiMUXJn7UikLs6MHuLbjy0/muB8L0gsLfL12nV+ff4J/IYXKC0gTJlCn4pa4cZOkTsjfYbyitQXL1CKFyipJCe0ZUhB2BrnAYdwlsaW79S0URB0dGgPJ5nO7EXKeXike5+ekxAQoIgb82yqlOzBZGl3BUTWTNl3X8SfX10NmyHvFZHMnIX95Vvq/sKnb76jbt9Qts+Uzz/j9umF1+8+80d++xOf74XPr4mq7y6bq37YjQSzZvKc5Am3mx8Gn8bgaJ3j7Lw9TrfoHgYoqplb3X1zsMFxPOit0dvB2TpjDNo5aOcZBcqD892LlPe3Hxx1OA8e72/+c48D654Men599387OqKed1RK5dvvfsa33/0Rvv2tv41vf/ITvvnmM59uW8hvEyW7zDW/fkarH/yW/TnSW8xExVOeJbv/g/ghaNNo3TcYnUZrFt3ykjtP3r98pT/eGe9f0fNX2DiY40G3k27di5RpnAMep9HPztFO0hwU8QM8TSXPCPPTjVRefNNV91bR7cXVRWULToVDoskGiUyKMQUzO9wpeNcpT07C5UARB5Zvxm47PeLCTykY9Dr953WGgun0Ll2Hy9zSojA2h4K7Q7dg4ZKKE2CDKzE1RhtzBYQlbOiHw9DbKBMvWjwKwccETvIcsanH2MKEjvJuPoIhxoBG4gQOOifOh5luCeZNgrnvZzcfA5yWg8ZpdIGhCtmNB71zi1BAUbTm8LNw4qszlZ1YKaaoboFkdOcyzIHNFh3w6egVMTNPPhJwUvKaww+HvZkeh6GeRDt1pQJ7MWcB5aelmEr4aaAWMs04YPCiyLkRCaWg3BAtpFIpZSPlSt5vpLSTcnXekZifBNnXgdgaKfo48Up/7k/1TdAG0BIWZ1auDK6pGbHi7x3uG9PFnXo7Hn3xi5Q4NfHQSrKGWgeyI8LJOLMwpLgzasr0lGhSXGYsGdEbmm6kdEPk8Oc1YtQ0DJOOWsG4o607IpZ8JLdcfZ3qIEwtkDYk37F89yDIeZCto7NdIwhzuSc2GyINmROGMZrxOH1/tB7XDb5ftOlrbGQvkodmxE5IDa2FtO9sL5/YX1+533fuLy/cW2JXYdQ7WidnbX4+pAFbRW8VvW/Iy4a87OjLjfJyR19uyMsLuU5aG9T9Th9uPDrJiEGySU6ugiPps0BJDRteoEgoALVuEMRubaB2kiyRRmPI9OJtMW5SYi4/peTy/pwyRZUsjojoMB+LN8BijDQibXuky/up6iKL442QuCO6o8GraVkjxF/v9htdoNAOuhhfLHMOQfeD16PRWkgeBXchLc5RSbWQa/FsjwLIhtmgJKPoBkM4Hm/0s/Hy8i3H+8HoRmvxpg5IEWxgraPZAzVtVZtq3IunTRZN5JookrhtN/aXV7bbjU8/+4Zala0Ity2TtCCysX/6jrq/cP/0E3L9hlw/wevPKC839s93Pn+7c9uFcjOyCFkSuUxfrFnRzdNmxzCCysA5B4/eOFrn9ji8Y+je+wnJ7djjsBr3GzYcTenDobgRUunRO+fx4HwctOPBcbw7wtJbFCgn7f1BPxujdd6+/572ODgeD99YRCm58JNvv+UnP/mWn/zkO7759id8/vYbXvdKzcqelZTcJ0Zvd8g1fBQ251EkJdERhJRWUTKjCxr+fB5fXEkyjG7vPic34ZiNYzS+/PBLrB1Ie+emB4mBihvTDWYoKIgAxRh/ZPGsjJSoe/IAuyRkM8/y0RJGcH6IG048pOHtfhuc8+Hw6jlpj0kb5odDESTDNpP/fA5n4WhrnBMCo/vBOHU6JK6eA+PPwS5iIGJPByjzderBgPFvK6SE9f3e2WRzvMAxluQcGPzcc9qLY9xOOEyhAPngWGpEuvbKS/EsJueP+AhzxHhGCEVQHDaM4M1gyPCE5Jk6oq466HO4YzOXBVjk1YhzjnTE/H0JaAMVYBV3M57fcsfEO2AVfIyTI9OKGMM40dFCOQI+7ho2Xb0l40pkFsLsLYFmN4FTmVhezp8WilsnsoY0yd+wcLu1dH3cpFoouWAVRD8jWjy8Mhd3PS6bH0Bibti3Zn9lvebsiRgKu4rLb6cyihPA25yuRjIhpcKcjjaJeowBE+ZMyHTUajBoNugnHDY5xbifGw8tvOeNYp1sgywbK+PllA2TjOgnut3oc+ccbtfQx2ROz7ayURgt+zXR/XNnTpCOWmNaw44zivTke64vJi+6Jd7PyPYZUjBJ9NlIw9A+YTR3Ex+NPF2l48v16V8yrwyqp+YwcDjceyU7D0eLj1iZ3G4vvL7c+Pz6mW9fX/h03/nm/sJ+CNuczJw5sxtwmsuaPDF935D7jfT6in76RPr8Dds336Ivd/T1lSPyfc4jSOlj0oePB6V3J+jj3LQzS7j4ntg8MHs45y5naslgKZDj4KvlhMkkNZA8aS05KJ38zBgTVDz3qlQf8WHG6C7pZ3IR81Wc5y9hTZGiuUrhdzOBHunSLkAhjOz0Stb+dW+/0QWKzsFg0uaBSeE8TnrrjN59nhpWyCpPQxkJQ5kVtIUo2J1+dvbbG3W7U7Ybpd68U5HESn+1bkhU47SQnyXX0rujofuJpBRgfeTrpPuN+vrCdn/h5dtvuW2Je1VeayJrIaWd/fN3lP3Ofv+WVD6h5RPz5RPptlHuN3JNaAZLI4Cy2GRTQpMTy8wgJwuSqsvl1vMzjBGwoatCQlUUaK8Vn8ubLTMlmM3ny7MPzmOn7SftOJybMjptdB7v7/R2cr6/086Tdp6UlDje3ylfC6P7jDyn7J3Gfed2u7Hfbmz7nboXSg7oMrlNM6Uyw7zIdBmvLV/L1QU6gbT16UqQ3mjHe3BLJmd/pw/lHMZ7e/DeDr7/4feRcZLtZGxGTUZNPoLxM2qpQPSaM2uKkV1yIls4oAdMv5COADGD3W42HS6eA2QwhiNSsxnzGN7RynC30CJYxnkyl7wF54UQsrxLWRMjhkghNtxl9oJOBaQ7Hi62qi0Llv+HcVGMG8K5KagsYQ4mz+8Z4VeyHDXdeTZ9KAAW0hAEOxZc/ISCo36JsYNwPXzYaLsbcTzG9CKFEcQ91ZAYh0w+0CcnA8aIIrxJFogcVVeMArwiuTg1Fj4tqqwZjJrn6Ng0dGb3Q5J8KW7ARztzWGAI8/J48LdJVq1xbbwpjOhmfN+yiZfAvc3MZaPikt0rmViSY0iWMHUEJZdyEb415adyayG3ScLGxlErjyASirqhmQNs0w+I/pwSLtdsNUVniiIO74xFgtDrYxIbXiBLmrz1CqMy+8YmmcJgk+T7C5Opa/SyMymMmRhLPTVgznV9pfhaog+8AZzRfa+KbQ4Y6pymVaDYfMqu13WHOp8qCs0ZGU0aSe8yQwmGxTUaZYrP9z6sUv/8XLwTviuiqDjXRc3NPGupbHVn33a2bWffNrZSqd3IaZDV0bwuEtcOTHFHXU9Nr6S6kevOtt3R3e+k4bLp9CxQWreYkZ6OwpmTxl2ZhRdW1sHaxT9JEYti4j5+C7nowxG9HONPVQMpFwfFM4Kc8yQAM9R0sSmpZMLahhAOktQ9nnz9ZpcxI/RY53M6z/JyAtb/ByEoefrm/zi/0E9j3z9xfv1Kv79g5zv0HbGG2RFeBq4wSVKQmSkJUha29ErvsL00yv6Jsn8h75+R9FeYlmiPN2Y3Rjd6jDf60Sj7hpZEpVBX2mqcYDMnZi5QdvI337B9+x3318/85Od/lM+3yudb5idFqTlRy87+6Rty3Un5BukV9IXj9oKVjFWFOWht8JWDwkGWRiWHU2DyzU24HCwxQ+iXGdnEF3xqPuaxIczmxmRJE3mNvlScW2GCDWM055O05ujI6N0vdjOaTc7D5cnH+xvH453zOPjVX/m/eP/6hbcfvud4nD52kcTn7z7z6dtPvHx64f7phf31hbo5oqXqcLyp0FKJYsGfw7pH1BTSB2dr9D74+jg4zoPzPBxB6c6H+fql+Wjr/Z0f3r7w5fGVX37/l8kyuBf4re9eedkrn+8v4UibmFpZZngaJ3eqwlYzW4JcFAI58DGNO2B+7LSnjQ+EvwGzM9rpXUoz5tEvZ9qZhVlcTmu1AOpXpEg8lnelZp0VOGe4I6uokYuRknuISDyH0m2pI9163nDi7SIbSGZFQDnkYy45tuRjkimk2Bwx5xMkU9LkchG14QZtPQoJm4a15h2a+M6lKMNcqYJNZk64ZYvENeKz6yRCdnaMj2r6iBn5YOj09TbG5Y7qdYPGaCwFP2BF8q2zzR+PKKRczRPwMoImuzgYKRJWF0FZp5NrZzjnMqePdGdn0BxtW9wzvBjQ5I8p0Qwts7RVyLkRWHr6pIC7/fI8EgUlpQ2TQtENzd8gWikpu82/LAm/d/uSwqE2e/Kx818SKTnCt2VP7UqmdBMflakTkaeCaHEBSxE0rNqlQ29+wFsP+a51WlNavB+/erxyUnhY5V6MLRmWZ3iVTB/JSgJ9Yc6NPhLnOWH6fjOHMEfCbGP06irJRoy11A1VNbtzacRxSDN6W8huEK8J1VZ8di0k5eMxkLOh54k+TtLZSL0x5iR/OBcdIXPURFfVFlV1RqjxjLJ4knrOlYJSE9zuL9zvL7y8fOJ+u7HvG6XspLNHmbxYZQQHTnxUEwosyg2tL5T9E9v+DWl/QW+fkDLIc1K6E3b7cBk+fUA7ETsw67R2UEomZ8XNRhtih6P4YiRpgTcKOQchOytDEtqANBlnYk5lzhzy/CjwCO7SiPFYqPZEIKfi6HEyts0dt0uNJknwsW1MGo6RHZHvgykzZPcK5s/x1z7jf+3v/L/hTTW7C/AwZnf4T0Z3i/vZ0Ol5NmLtGtFYNyfzycaMRGKNLAbNif8veX/zat22rXmBv9Z672PMudb77rPPR9x7lbwmBphkQQgMrVmJKF6tiBZEoiAiEX+AYiFKgVYExYJ/gGKAASEWxIJYEAtqVUVBBVGxGJqR99xz9t7vu+Yco/fesvC0PtY6eUNi34RI4hBzn3ner7XWnHN89N7a054Patozt8bpzkHw5Xzk5jw4nr9mnCfn42TzOy0apexMS5v1tAjHA41IC+1Ffh/3bz7z+pNveX258em+8dKMvTq3fef26UWITRQCl2FYCQZyqD275GS9PGn2pNpg9J3SoJ7OVhfALXRhMjni5DlPjnnyOA6ZT10FSjCfQS2VWgs32ynVwSvVsiLG8uJUS1rcma2pu0aEqHqIMFu2TTb7jzcex1eGTc5xMIh3h9EKVoKg02d+Jg98ZFebfI1hZ44E5LfA1KbfTKhYzKGC5Dz58vUrz+PB8/lgHF+Y50F/PPjyqy883558+fIdv/7hO77/+gO/+v5vsjfjJ6+N3X6H+PSJ3YK23fG6SfqdUkx1DBP3yVbTugTFoR+DdyvpkdLSqX+bY2RWi19jFTuXJA/FrSdhT5u1UUelRlFtkmRXs4uCIuQ51uqaeRYxGcF145tIDzKcisxfmvLYWS6bbjPnNvnz7N2AiqmN2qdhfaT78GQW5VQVnFkGw11F4HR8BDG10HFOLJxZgpVVMqmMERQbeKvYXKNQIQnVgjqMs1iaRyFvnRkiJUaoA44sCNa6ltfncslU9HxZ/5QprCQPRBD1HEN1WbroSvLiKuAxycRLwSZs0+iJvp7nSZhg8I7uq2mktPfdjyaxEf2X4x1MCFiCt0Jjc4LXs5zqWUkFIl2LVN6IVKk1K5kZlC7Xqbpb+SasAss+XCILYSKRItMOElm5WhjVJdW1Il7VGOnmmgnskwML16Yv4RZjGs+HXkgFujObpSuwUL1jaB2kw+PZifKE7QET4pwyPTwHo2fBfgqd8kXQda1Bs6gbXyzrVaD0WRJdECIc54Cjy5GYYDxO7Nmxc+DHVFHUNSIcOXKLa/OVCu09o0i1+0awMWk4zaScq27yaSmFtimrq2yyPQhzOZlPFdRnP+njUFyJnUAQo6ZSLC4EPGmlGA23pqTuJLcry0cjbRn5qemMKYq2tybTyoxoCJcKb0ZK54m8L2bK9k05Zk6uPWpMLNGnEbbEbAKuYqiwslyPyLlOBWtgtyxu9/QvMl0f0Y3ZjXFq0CC/nRx15n1SEwn/MY/f6gKlZBy8AKXsGkPWx1qk9bQ4yXsoCXCT2Z2oJnKacXUjmgsXojaGO6cFj3HQx5kX31dGPzjPU17PJXIsEEBNu2ZxC+pWqLfK/nrj9unO/fMrL58/8/py5+Xlzr0GWy3c743b604tBevBGK6snTKz4Bgc55uIiP5gctJNm0PbHIZTmnY1xy4J5BFHFikHxyEOynkOepfCZjwGrTbmaJRqOTs2wqt6AEtEJQsV9yIosJQMlJN8s/RNcLurSW9f79R+UJ4bPk51QTo84IIo+zg4+kFP4ismT5ogUlqaMra0lGacVLoKlHFyHG8cx8GXLz/wfD54Hm+M8yvzOOhvX/n+D3/F8+tXvn7/R/zq+1/z3Q/f8esvf8j9Vpnf3PnJi1HpfN7uEE4ZpswQz87XZkYJTDlbluUfQQpl1rhCrP855dA4TQvCNAXr2RjUngS/FNaIKDsoYYpnjxCZOscWLBSMVaTk8hmeXZ44F3MVpEi1osiOltC8DPT0nTWJmznPIUeby6gtc3WWhw02KGmu5TalrZnIBnwtmMMwjzT/cxllTWPUmYuvMShp+a7i30KXQElovlxUDNMxST6UjJ1WV7ukvFxjGbBEabIon7DyXAhky5/HL2yhKlJvTFsjgqLrvSYlOVwpuKGu15bJVRbYEiyssY1dzrzmfmWdLI+Iml8TcBUngt/flRMzR1ZSQKWGyyrFJYf2UnErtPQ5Aehzph/NKm/yfF3W5auyRSF7633UtJHLY2pulGUUma6sI+338QO3ziCvtYn8fmZSqp5ZBBqs1Og6yftycIwslgs8nqfULO0NC2P24Dg7Z1ecyFi+NIGKZVCRUuQVNRIdiSxG5Ozr4jVNpBTs8mCapaswfg51EGfH00UbXZpckRDXzOGdBkCep0oWKBYqoC2UR1RWwKRTWpHYoi4bfxXYcwysn5zjUIEyDwqnzvklMc8x5UI0kxBuVMwnnmPca9zKzKSTSUQVwXnWTDsvolElgiZUTl5ORiKJqyjDoOVeN3I0PcXni0Srj1NBhnEonX2aJmyXdHlzXdwtsJupULmv+jeIbsQpf5fF6Jkpdyb3xWLJ7fuRj9/qAuXzn/o97jFpL2+U0vjpz7/l228/8ZNv7rzeK7fd2ZrR6sT8JMio+qhAZ/prQsYNxsTpuAe1Ou12p9zv+P3GvFVGGdK7mxNnweugfNpot537653XrXHfGvfbTt02ttsLL59+xv3lM3/qd/5+fvrz3+Xz55/yu7/7u7zeX/h0e9GN0Jz7p8b9tdKK4c+D/nD64XiMNAY6sXjQR2eMI6F3eI7BfJ7QIkm/6haPIVXK23zw5OAZJ2/nUwSsoyeRdjKeXRb8tRHxQts2xr4z2rxi1iOdBmNEQuuZOZIZIBbZwa+IzjFg3+G4EbedeZ5yAZ3BEfAYJ999+TXP2amPBzNzOi756JyXS2jvgz4hpkzhSsi9c/aT5+MLx/Hk65fvOB7yaBn9jXEoluDLL/+Q4+sXHj/8Ed/98Gt++PoDX44Hr6+N589euO9wPL7ivXDb3mj1TudOeKaW1knbjNdPhSh3IhojnLNDdKfPiucCOsIYxTiLq0sjmC53Rx9wx6lmyiDa5NMCxt6MrRVeX3bK7Ybf78RWk8DZc7sDH0OcDYw1Nn8fHWjRXKmMapI7RJfba2RswZIk28fNLAf+adzG2hBy7rxUKVjIKbIMsCZ7+3kSo6UCphOzYOVkRr02Z5mPDcp5MqPh4dQlYc7xCeXd7E00BL2mapU0IDMdMwuhBtWKxgFZUI1IhYiBMRmPQ9beE6wPugejp1lYBGEFvEFs1LJpLGKawUNhuisJnSB+ACw4j0p0DRmLNxWt7mxWLo8aS6fZ9RmCRLgoOJXiGyvQ0ebkJDjnwENpudV2iu3Usst52tLwMc/3W3/wOE9mP+irmapTztSu+AxypNCnMx2GV9kaGEzv4EMbsVcKlRkad08z2RT4ZKQU/jShRs8xdC4oxOH0NZJzZ1DUoI0uztpXFc3t7BzjC+3rwfY4MPS+vv/64HFOxhp5WNDC2IpTm1E2KeOor4xaVAwyRdYN6FTGdPo05jGhdGgHzIcUcM9npsiOdDV1jTIoDEubdanKJT8GOdfqDlCgqRs3N7Yid/laInNIDbwSe2E04+lBmSPHYgP78gX78gNvb79mPH9g9B+4kQT03mFs0HesP7F+UHqnHwM7sqgyMvzViOrMKIyyyK6VkUnI51S8AVVS8O7BabofxpRfl1saGPiSjCe6WSakFN8j2Fu97lWek+Oc4o/0NbJTIRVmsBeiGaMG/WbEZnD3y+6gn5OjQj9lFRAFfHElJzQvNFecwY99/FYXKC+fPjFNC3D1ysvLxr7L3MjTC4CpKjtcVaHlUH4mMSv6xEZjPB/M4ynW9xxUM7Zi7M253Sq1wRgF9m/0887Jy6dvue03fvJ653Xfedkar/c7bd/Z7q+8fvoZt/snfvrzX/Dtt9/y6VOiJ/uN27bTgLY5+97Yd6fl3lSyCJiziEeQevwxRYSzSLJoyCLdEyESsSySA6G5vVQMktXZZWCUmgjrmgsCxKlNKQoRXV4G2XFAdh+sbvTd7vyyPCYrbfe03N+o2416kwskE8oujxDlgphg4ZkvH/H+7KeG4WdfuxzMMz/TZPZT5yDl3owpEug6pymT5IoTSJKbX7zQnO+ePB8PYlTOIk6NYtUN6qTtCnS83zQ+KLgQuKFuz1GK7Vxx8sUpHu8NbQiF2azQ3Lm3mkTgidtJywVwv9/wbYPaGMvDABKmB/f5boGSkj+p1BasYNemHzlPJp1tLUIwbqIplqTMj9/Hkm9qsC933XwuosTleIolqdUZkVB1FAZFqp01xjAucmoUEyqZY7t13odnyJwny391bbZedhXFXNeeipZUWZhrLBZG8ZK8EJlmydwvoEitcM5C7YZHUGuRsqI6W5XCJocgoEsoR2xaA6I4Z5H7s/zQ8jp3EQPVWa+8H3XAcf0sw62l4msT+mQwLO3bizb4QqF4mhp6FTHb3jfOiPQUWoRnVW4sDxX7iIqZp6u0Kicv4jlVU1c9xpTTaqigs0S5wgA3hpwcKbPSY2L7lLCgFrb9hreq0ZhL6j+TCDosmKVhhM4pGtH5OHUP4tCUU9U+v7C9HURrjP6kNqM2Vy5NveNVuVmQY7kIvKcEe6uU6uIS5f0UpWtNKWd6Jin1XShJuvcuhC0LlIsodOFca63Thrxs4s85OEbGfzB59EHtg7fnSUw4vUgt83xix8FzLD+gHO/N4BwDzhPrT+I84Dzxo3M8T6KdzMeR4ZSo+Lju/3x/q2lA0QJzzvTjmhqXDaO77kUhcX6tD+vzKERwaMzniEivlETyYsA+/IdlgjgkSd8uJHgMxOcci6CfiGCIxF3yrZtzjYkWAvU+ivzbP367C5RvPmPetehb4dOn3Oib5QYRIrceIt7p8uvohHdmm5R6Eq1xnF/pb1/hPCij0yy4VeO+FT69bMxQ1Lrbi7rZ6dxfv2Xfb3z7cuN1v/GybXx+fWW73bndX3n59FNut1d++u3P+ebTZ+73F755vbPXnb02GkZrzm3buO0oht6N02V0FB3KDEnkPIuHvI9iyhnVUxjqMbMgC5gqUCxW2qca6KWuULrrxMvAvacC4czjUogs+qZxQeVaJVVNrPFBkDOPHOEYQlNKbdRtp91f2ZFmn4D2+pm6v6QLbEmOC9kx681ZRNooyzbdhjgnS5VFkkcjORTzgsQHPidjOjSj3+TPMGdnH8nXKJ19b9SyEwG9Dx7PB70XnMkxR26ShtXBdhas7ey7NrzqBjMx1aqk3+YVaw0rldrqksSIYJvH/8UbW6287jfa5jL/9U41eensVWPF2Voa70FQUm1iV+dP6LwxJe+7BudXcaLTbykfiVn0fZTciKTQfK9P8qKQJphMEmP2kaZ+cc1IRhISB4tQB32mOmMaR0iaelCu8RQWDJNRV5SiBTK4rp1ucLolidMSQTGGLVnxirFbRVGWEPZuaFdNiguKZwEqhGROOT2ULiPE0wLv2txLrUQt0Ap7TVMq1vWtWb44I0reDi+ctYj4bvJxKS6yr3tN5QTYTKOvVABpvTCKyZzMa45CTchSWFAiWSpW5HVSmnwoak0U07JAAdkurVTrtb+qYItMxZX0tkglVATJe5NqUeNtLk8/ZfGsUnU58eboyCrDgl5c6iF3rFX2l9cklE9K8Xxt+c7MarDlDlaEwkybjIzucDfKS6ONO7fn5D7A3x6czzehJ8WxfcfTMVep3okqFKOMTp0FduVZ2Wb4BmWbUM8sQE6Ig4iDI0nNkZEj1xCukyZjGrFETKCSbDJGGhqcIfSodaOdhxzAZ/DleUI72N+eHOegmXOOoDwelOPJmREIkQVRCWS6dp7Y88F4PJmPJzwOytuT7o2tZpBgdWxv4uM5SR/QeiB+iVxcz3PSj5VlFZxdKGOUinuDa/3IMZ+Zzgv2XsdO/XllTMW11Ns1csNWiZDKrpH37qn7u1eRrM1zzZ4al8qMXyPRmcqdYiW1gj/+8VtdoNRbRfErG46z3QpWghGd8+g8HgfwRjvru+PidYAMypsgu2Kc55P+/Io9vqeeX7nHyTet4C93Xvx3Mshpo+03dTq+s99fadvGy75x327s28anl09s28Z+u3O/fWJrG5/ud+57ZW+FYqdIgMd5zSDP56DVAptLVZAbeOtDCgczXjF5XmyeFXRwvh2ZiXMKXp5SGtlotBDB7ozBOQdblQNu34Y8BkIT9oUw1NsmW/q2iQtjRTPzzFOZTBk6jZM4D90005ld3UKcR8KWJxvITO32wt5UDJg5n++fedlvfP78DXuVv4NBVk4zQ6iCPhojrZjHiJSaJkM+kaLelQ9zHidncoKe5yEp9Rk83t44z4O3t1/x+Podj8f3fH37jlrgtld++u0n9m3n3l6waFqozsJI7oHIYIXplWfIG2ITUI1bMCuaQ2877XZTOnVryalIlCRv0nvdabVxu72ybVuaIQUWXcjQOPNzZyFg6LyQG4MtB5BJyGAFsqjTtbzwhXcJrBYidVRzZs7IWFJb8nt13PUehJzMtLAW8ZxL0jlWMNsQWXxeknWFUD7H4JyTJxpJLDrEwOjmGv1MkVFjur6H4ImiMXtwSYfn5U5a0rE7eJ6ZzpryT30+++BcsSZYpqwtxEejOnNUXdMpr3evV9NcXewRm+I5zDmVP5VrTOsqhmdp0GYiH9rMceTVs9AKQU06ltlN6t82rGxXcrFOQLr7eqpvrODbhpUKtRBbZXphuBiIM4zZdpmOnevEiNQ0s1MNF8kf9+x2DKtyfjVb5yUYHvo5QwRSGzovPp1W0zrBKn0WxpzsEVhRoN3t/glzp89Dx7AYdW+6zqjEqDhBLZOtQHGj3STPNS/4Heprx15e8E83no8Hz69fL6R2WsHsRrG7/FnMZBNxK9TRsRGM2hib46+B3yb1ZUITGZVyMO1gxkE1WcHPcbLFoMWgkmjrhKByZoNntiWPwziSA1ajU85gWidc6pPqE9oXHofGXvfWuKVT7n50tgjOVomtErsJuTbVRDYHfur82Tko5+D5PBnlwVgxHsU5zi216cqiWhJ7cQgn3385+fLl4OsPTx7fK2/tOBy2StRKZWOW9GaKpRhLvs90ojujJ89x3esj6B1mZjEVxDGzIiSfHGVZJ4uRoB8wzqBWuRS7ixbgocJ6JjraE8FhVvGHnuvu+hF7/J+gHvi77uHVqJvMlgx5aUghFfSp2ffhBzDlSJiLJgjOjfFUBLrD7CfzeODjSZknmwUvbcNuL+wtDZP2O9v9Uxp33dhud2pt7Ftj33a2tvPy8iKd/L6zbzdqrdy2wlahFsOsE6E49TGd2Su1G200GIXIsBUzo7K6cafUXaKDrWacx+SJ57jDMnU4ELCaG5Bv+ByZi4BSWhkpyZyED6lNXKiHlybJcta52buxhukxNFaZp7xSlPiacGYXT4TR5UEQcrNc5mPLTbZWbdDFjeYkKSw7zjVxcJeiZkZ6jqV3y4fSu4/GHMG5q1Dpo/M4T3reaLfj5Own9+crz8c3nM+vvL19j3vQqvP5851WK5u3dEU0/BAHZsxJ1CGjvU3ZSFY2zFryIQxrBdsKvjfq3ig1u95VoJiOshPUViil6HtaFWeg5Cwju+keUleNxROpfnkwRML5FuTOLxTMbClEkvy3vDYMrvYtg7pEhIMx3gsTy8LQhnJ2Lr+P5cA5NRLQOG+N4JYdfCI6rAI234NG1lwQhGeRS80OjAwdhHMOTg8OD3oWZqvomFiahS1nz8wOCjE6pECyi2Ct5F8VuLJrX8dHsLxnaJyw5prjnLjUUgIf07ehv2eF+BSZt3qREVXJLtTyuKZHzMzwRqmG5oWaE2oAZnK2lveJXivVGV5zDClVjRXPsZgzy7qKNN69YP/M9JHsPJHN/PxqdBcimWbCJnCvJEF0jIGPQfSODY2zbBYhQhnuWUIqOtXLjm+F/S5VX10kXIfa7FJuaQQXNJf8vbjRdnm4eFqyd+ts4dz6wPeCNbuk+30aHg2nstRHGt1VyoDSh4jNFbzIsK64uChBQCbvmk+te6TT8HxPnV6S/elGSxv56iVHe56KGPm6dKCHcY7c6KeUSO6Ft7dDqFxx7u7URfhNxHAWlySdIM2Yf+Px8ZrrvRNTM8+xvLqKSwWZ696qTXvKwZUtluncXdfgRAVIYud5j+Yj/RsjLeqve3tYXk6arVoI+VuEai0nDrEoA641sicvhyS8t3Ihm27pL+WGucZDQRFqN348hvJbXaDUDbZbpdZ7HpiNKE4nlN5rDzlATjksUnNWbGsQqVVkoQMxBqV/YYuD11Kwl898yoDB2+2F+/2V/dO3lCrde23y8Ci10arIprf7ndoqbZNO3S1opVM5cZQye3aZdZ3DqNEYZyf6jb00WnOad6oFu5/580vm7hRgB7QQub0x+8E4HvTzmR4lJzUU+LbbjRGDYZMN3SzDBt2H4NuW0LlZdiuqfm0x8VnohdJox3HQj5P5eDK60n7Pnj4pubGPiDRU0j5Zizo6z0weS/mt2YTeKbFEdzPVK7CyXyKmnHKRgdoyBsNM1JMcPagghe2UeVsfxnOuJN4n0R/MrpwhUoFxv29Ud0oAp0yg+uOk95PeO5RBbYXt5cZ+exXsjl8c0/qy5xjrxr7vH3gDUr5otJK7lKuTOJE1vAc0XBvMDJ7nFCH4GKSDoNJNd8GlpbqWf/NEJiQPrLaaWMsCJeH1HIWFPZNn1RPON8bMIuNDcJ2PzhVkl2loQlPIaw2u6vDKn8q3qvXqkhqKh0TGSTgjpV3q1J0xOr0bYwwOJs+AJ8gx07LgIBUjVpTEGsFjrCweGZmtWAAPzyJFPAuLRBIscosRMjPdLqjbXMfT83MmrZkRQoNG7xqPBpJ/JselVkHvPeHyAIalmaBr444ZjDKvTMAgNz8vWVjpPXRkI98t328pV9dMkcJwFpElV1KTxmUaYUV/LxyXVfkcXWqSKfVbcaMMIVbVghoTP0PX+5E7XD/UUKjFo2038WC2kpMQScOtGrUZt5sQRLkbQ7jh+4cE4FQyVndqeZflWip+eg1a7WzWuIdRjxvt9abGYsLx7GiWUjSWDSTvdh0DJTpohISfIk/bmec5kmORUt0sSAzJh2tAs6F7tISYzc2Yw3nbq7hbXlTAZJE5C+8+OwF9dt4eHeLJXitWO1EKn5qQNMOEYrUK+yaXV0IOqsXSVdjT3qJk4xjE7FLQmOl8ZpEiVNHxUrIwMc7TGaczj8I8C+NszNPoJqR35H2p+i4HW2tmnwWJ0r5FOle0RVyzBb84I7rvhcIq5V0obUrRU9FI0T1QTcGGxQtF5BvCh9ZiUp06Twkqfuwe/yeqCP5ue8SEqDhVC6OGnjmLHyJ7phKguLNXkzmbrSiwhMjDOaZjQ+FhtWxEbOztM2MOyrZzv994ub+wf1LwYKuNWlNF4XKM9VLZbje8yebeajp/eognkmiECGSTA2MUsbZ3r5pTl13JqWaXqZWXBtbISbkWWcDLrplfMaybbtRIV8AhotLs2TWfXLHb2szyZsgRkk9Bd1JsrDjsSPv7SX88GM9TYYmPh8IUj1MGbnNyTnFHRsAZwYnC4JQkVSgzOA0sTt7syTDjNNKjQ4jWlaDqsDZakTBzwJGcDNJ3QGm8793bQ0OrTIsejCIyr9dGnQ5bU+ftlXa/qSuOwLvUR6M9GaeKFCuT2iq3lzv7/ppeIO++AnavguRvDWsi47Le6yX5TY5vaN7rnNQISnHGcIXTzaHcjynIVdeyY7Zhvin4q6hYNBsaBYSuqeoig1dM5m9z6viE0oeiGDFOJkOGk1ia7JE8H9K91TKJWu6uhF2bdlxjpHSuLPJKmaHsqZlSY5BTpQC/9/O47OWny2FymUFNNHHq2TWPma8hTSVre5nrukLjIi2j9ZqTa0SZBUq2iDM8PSGMPrSBn3OmTPiKGaQEbFlI46FMqxByYavAiER0whJtFJStTlIjgXdoL0m+WHqJqJEYaav+7v9gnKjw6gvFivQTWSiYfNWZ1S6ESo66yj26rDlDTqkiJkqubcsNGUUXLATOU5Nq2TlLda710ZGkvpWJV5kAinMfOV7MAtAOWTKUrmvNpeKwNWVUq0ih4rlmeYZ2KkLiIKbjEWzJS6leOUJo6pgjZcBDSB5ZUCfxlKFwPIrumZiFGI2jiCMofxMRZftoMDsWjUZQPS6+UYnAq66P3oKtJYrnFyAlfpVLodc93VWj8HSJGA5zRl7oNSXhzSTDny7lTFHVjrnctGtp3OrG1hr7tlG3Tc7ZtWiEvlDOXDMmQks1qrQPz8KMqieSwUO5uCOy3BAypt0uWMGpIgy/I9vqMhT5EEX+NK7lH8OYWaB0M+TH60ybaryKK3KiOWPb5KruBR+o6emDMtI4bpjiTHztL3/7x5+4QPkv/8v/kn/z3/w3+W/+m/+Gv/E3/gb/0X/0H/FP/VP/1PXvtmYo/1+Pf+Pf+Df4V/6VfwWAP/fn/hz/xX/xX/zGv/+z/+w/y1//63/9T/ZmkhVoubiJSUwSBhWCR8iiuxi0UuSwmDbB2lLIytwymtvxsjPmjVZ1k6hA2Xm539lfP1NqSYfHSNuKRCBKobQqS/Tq0OZ1cS4jrWXpHEVk8zAy0rswrDK9pl10pPZLxkqXyciauoQhj/QF5nUx3WeRXficon0NkQOXHn3OhIRdGnkpJoIolrAc+AcL6JhS4Yyj08+TceSzC1EZZ09/hqmFmdx0kNUzEZjr53ULbDpPil4bQa+2pjeLvFXUoeo9LMifhMnV5Yw8BpckFuc5E02JyHSdCR40A1xqirCicL8tSXgRIgoPpX5aQvFegtYq+/bC1l4S8jaGpTNic3VKVXD84glIbRMaZSzax6UiEAw9shhYi/pI8mdYgTT6M6/5LHn9xKVe8QiKyzhPC67gVBvL9rrnVZHvdRREBpR3zuXvkZvZku9arBI4b6/1a47h8jDmKCmh4FU8ppPqjEhnTvKkvnf4a6yiKUNcssnkWX8YvyZqYH6Nk2b2wipn/RpNXsfHFpydGytchdicygjqLqWJMeWam5tp7t+67wpEkTOGxVpPuJCYBeHr4OQ9wiV2YiKBeOdDdlCamBF5L5Oc5CwA1nHJj0ZagqZB1/voRuT1tDW/fp7WwevbsrTToNdzJJncnCz+wNM/Sh4ejq1ag2sSlcGGMdXdq4SBsJEjxpnfsK6NvPZJ5AnHomJUiJqNBpebNzMu5bvbexHokyxQ8p6Jd1TQEuWzvPeVel0YUXnGJqV9DJgbzJM5q3xeqPm+I31rVJz6JLOL5IYakfYApiVyIUQz1+e1yQ93RqJikRy+4k51p7G+PtGlyEOeoYfVC1up7KWx14rXClWhiiMXjchGlnX9eSS3KYHOkZykVNLNHGRGjp/TSkm8rLzziFBDwUJKdG2U1fygMfpM2GrGQsE19iGLHBHJTcezqBCbpTGT5B+JpuBgIy/eIvKswlOTzP0jH3/iAuXLly/8mT/zZ/gX/oV/gX/mn/ln/ti//42/8Td+48//6X/6n/Iv/ov/4h/72r/4F/8i/9q/9q9df77f73/St8J5vKUZVkLeZVKsavGaJxaa4beK/EY2534T8tHSlr6Yg288w9lGpb11jmNS7sF5SMblxbhtldtexUkoRvVgs3ciZMQinYXs4RJyDteVVUxdTkW+H3jOdUsjrDFDz4jCGDJY8+cXCoXmndYDqw32jXPCOeD8CtYN74XoTVOr88R6l1oByabFCzlgiCfS5+QAHk/PwZNgaLc8JrEgOHXHMSfn46kC5TyZx1CaZhIlx5wc4z1s7zknZ8AREH5oZl3kHdCKYZtcRAu5wBrZjeXvy7oRIm+d7J5dOmwr2mxh3YAqUr4Mz+JkMjl1ExGXEdqcOtf4jWlVOUhhtDkpMwMShzHCc6Es1FlobLjJL0ObvrI9lAV0pMlY5pqMgQ8ZRE3VhELahhAUIihTn6d4mnFtDaaUJe5NEtat4lsVb8UTU1ijltCs3IrOmRxFzzxSlkV5ECaVxRwiy2oBLpdoR5wBuchK8ZXS0Nx04+ruF5FQC58KXLk1g0LMVlJs8EThYll8jEjb7nQC7YPzOTj64Pk4OFZY3MwiI3kaK8OEtOv3hVSYa+xZMjXca8YzmDx75lRxMEPJymkZfozOaYOe6ifl3hSiNHHTnEwFNp2LLs7BeUzOmJxj0kOEWbf30L/3/2Zep7r+zsxOGokCTgpYTVLsu4hEBYoKDIUgOtEqcxN/K4qzRnaMA7MnNp94epOUzEYqZtyrFGLuwUgKh1fnvhV1+EPKtTGCyDgJOeFmwnWBuYsHF5txjsk5Bo95pscGNNLnZh0C1VIJ96sw13lTtacOv1zNy3hM5tHhq6zorQ84J36CnQFfT2yItLylzcHwoGdadsRE8QaN4Xd6feFsn/la73Rgji03SMf8TU7NJbi7E37KfJFJCRVzZQR1TErpOd1M+0PjaqJ6JBqMnML3tjG3Hbvf2VrjXgqfW+MTk5c58SIU9/Cg5DU7kwawbTv3bee279xvO36/EfuNozXsPKVaHIOrMs5xOWMmOjTzmta5OaNzRmcwNJqrk71Nmg+qq9hfKjjNfiKR1rSvb2tsTDphB3YMpvXL0oBsXLVtDZQDl81ieiXEVpitMoolsV/TAyI4q1DQmaMl6t/BAuUP/uAP+IM/+IP/y3//vd/7vd/483/8H//H/Pk//+f503/6T//G37+8vPyxr/2TPnaXJE8Kjw+Vo0VmEsgJcPXYSSdk6SzljVGwulNCLo51iDct9v6Jpo89PSgmcXat7h/mnNlSiAEeyotQEFYsZprsvgluBuK1OZsJJt9wfBr0oD87Yx7YePB8fMHDKDyp7cTrhm0viv+eRv860ta/43PllayNRP6608UDGO6CvsN1k0fq6MMYgcYw7nnhJqxvXIu+umehF16bPCHcoYwkTGkj8xn0/J4xZ1bsOeoyoTTu4hDURThdO1+SLEm3z8gNd6lWp69D/T5+4Nq0E51K2HvGg5mcgjlDJLcoYBtWBiWa1FhhnLPjszPP89rQzKH1qrk/G1udNDeGaTGYo1Oq/KCiNYppEyjpRiriZY4hEkXTxooCWFMp4V6I0G4iBYMW1+VoC2t+rGJh9tUh67XdtNiKpJweENF1kY2TmCqyF8l15uWfKm09Ej1ZbLy5CLCCFyHHHGaJ7C1VUZoiRIhOuMYPM1GPpRJQKmvPYiUuFVosFCyfsH5P+mog2DmLpzzTv9EdZr1GrN0y0UoRZAU3B0HJsU8gYuri8Wpxtg/S6EQ8C+mvIl5V8UmZkf3nVPMRcXGmoujYeHadtgiH7umRUySN9ZKFpUy+mnMRY705tJL5W9mN1goxkkCpdN7S3tE3y3FvcWOr5aKyRBUk4svrJYmLVoog+ZhCB7IwFH8jGKVcXe4zZK7Yk+BqRRb0s7iQjSyAvbQL/NGtLNWO13JxLkj0yXPNLXlMdFlLqlqmCOzm8xo5LxTjLK7YhOL0reSzYluDrdFaw0Iu2lEb1IpVx7u/03tyX12AlVAHMZVG9Bw5TinNAnwMThyPwtkHZiKJrhgOjUiUFOy1KFyQ0HqWaOC8xiSrlU17eyvXcYpSpQLEqK54iYW6jjF0b3jJgFKNrccIFZA9w3GnTEhLKIOpZjabYhj8ukcsPBuXSARFCCK55s9AyMjw5KrB8mOatnyVMjs8eWAtx2Y11tq3vGLjOsax0EkXr+fHPv6OclD+z//z/+Q/+U/+E/7qX/2rf+zf/tpf+2v8+//+v8/v/u7v8gd/8Af8lb/yV/j8+fPf8uc8n0+ez+f15++++w6AW5W/QE98VQQdy+fKUBDnRPCcNs7pmSWBg1dB/tFw2/A2KBHULRjdidmvbBIYecPIj0LPBMhWgTIH53CO4UrpTLJQzYLJiomsNY1KoZjkqzK8mfR5MvqDeX5lfP2eFfldykPvcz+ZlrLY5xOPQZlK0BS8Oinopl7Ga5r3z2uco417KXAEy2dKV4431iK/Nvy8mL3gVTeLsmAa3leBIh+SHsHoJ2RQ1EgycrF4Py/FaMVpuXhZkiMvK2rSZC5HHzMkI50Li/fs2BJUX35iCsib2Oww3oi5SK/ACBnt+Y77wIeSpJXmKnO+kaFifYjKXlvjiOCMytY6mxszvRVmOyk12DZ1bdULzVverEahZnf6PrYqtVCaYNVSZTfuVomouvn1hckZyM+XIwrSCyZ6ZtNA2tAbNkNy83kS/YAYWI4CmD2VGuNCpWaOEy7ZfeEqUoJgoerT19/rvlt5OJFEuWWeEgyRsUPE5FUA98lVlPQxrnHOTGVBZIFxjXTIIjoLlWl2FaGGyJpBjlRz0bxqVJAsPomo4mRkJ03Rop8wtYqttLj3BYtnUZbKBW2Q4q5WoE19JnFOErpea0EuvmtTMgNf8RcTPDdj31oqdQrFQ/yxQZqeFaw5lp1otI2olVkLlth+zAMfldpTZxfrvcsAa28lk2Yjf6Z8Nba6ksDFF4g1CiviMywi5fR5SV3NjSMKJ85JiPhYKlElgRU3aRUoW6IpMgBzq7RSld7rhVKyswjdA3Om621LLlFMrbkx2baCT6POJLKaju051JSVE45WObfC2Ctlr/jeGFXS8h4VzkJ0mfF5hdrzY617MRG+sJVfo/iNMYI+9YIlDB+DEo55pBGgxuNjaDypLcTf1VeBTDTXhh5k4a81bER6WWXMAiYEMIoymGpyuspcFZQQFF3jyr6yrgKlz/ck997PnCR0HTtaNuhcXkprZOqxCqg11stZbV63Mwv04SbeUKwGXKlBavXnquwz7FOgd5nZhCYHT4nr79YH4Un8TiL8j3n8HS1Q/upf/at8/vyZf/qf/qd/4+//wl/4C/yD/+A/yO/93u/xP/wP/wN/+S//Zf77//6/5z/7z/6zv+XP+df/9X+df/Vf/Vf/2N//4me/i7ed5/Ek0MHZtp1Wt5T7NvYmCDgCjnMwIk2yamdrg1oHZXMOJo8Jz0MR189z8jwfjOMJxxcRDa3jdbskspQVGpZzSXO+1MKzOG/FOZNLYjapTJpNrBp3V+7KXoM6jc0P6NKLP8bk8fie5+MHvnz/R6rWcXUkpbHdXqm1iSU/DsHDFmyXpHmjVfEYhi33zmCcG2N25jjw3uRX8jaw3ilDHbAlBwJXJ++mYDpSSUKQowBV5NOU+zBnsHchD31OtvPg7J3nedKn/AkMuG2VrRZ+8npjby2fNVEVYyl3ItQRxJws8KBPwa0qRvJ1Q5yakRyD/ej03jm6MkHOKLydnX5KEt27OhDspJ/fK29kDvp5MIYIv33KOXJY4FVk2tvrD5KOu1E4cE5sO6nN2G6F19uN1hov202x66VxqzeaV5oX9k0R67f7C23XeWq5oBHGmSqiec5LomojZFRniXiNkcTkZ0qAxzWnXglfMQfRvwpfiU6JE6NT5ik4m6Dakl4mq8NVPC7KzxwzxxWTC0Yz4Y+ACs7gXf2SaMmZnJJjyZGnuDU9UqaZJOBhxixS2XgISTAPcROQZ4qKGOPMXV8jkJGTQPWhRPq1TC2g4gFoI6kuB8xiap1nTG6jckanp9/OKnqapeR4Lp+IiQ3UiRpQpZ45zHl0XWtnJEHU7OKLUJ3T9C59FjoKYZtWKEX29a3t4kB4YY5DXW8McC3afdsZbaNvG327MasKAkNftwjzXiv1ONJ87L0p273qGFhk4eVgGiNGON1IszkYbvQhR2URgYV4Lcq6ijpnVqf4S/L3KreXFx3fhLnMnK21RLQ00jDzDD2syflQ0TkwfLtznpWyb3Lv7p1xdEoPeh+8PAtlTuoYFO8qiotyrsaEtzN4euPpjdfPzthhvARH6RpbluRdlcl4dPBOxMk9TjY6uw9tpESaDqYtxej0Li8isoAuQ8RQ805fSDCDXh8i47/c6MXpFjyr0TQlU1EXRblEw641LM6AM3h08BNqN+jIEifHtqVAbeW6vnwR7YcKeaYyro4z+Po4eft6EP2gThWXFmDbnoWrGuDrYTq/yt+RUSAxUuEnfxifCM0ikqO4SNTL7DMb1kU07zrn3kmPFMOywVUTq+O9ipwA/gQq47+zBcq/++/+u/yFv/AXuN1uv/H3f/Ev/sXr9//wP/wP8w/9Q/8Q/9g/9o/x3/63/y1/9s/+2T/2c/7yX/7L/Ev/0r90/fm7777j93//93l5/ZZ2u7P3J8v0qLWNWiovt1dadVopbMtl0slOneuimaHFfZLjgISlshxm8cpknS0i4pwLSs7gMxP3YVjwFoNnn7wV4zT9LKNTY3BasNfssNyodTCrMiw6Mgn78jz5+uXXvH39nl9/94dSABiyj6+V28srt7bTamGPM2FLY3/5xLbdCH9l1B3zynF1ppkhZMr86Obyf7FFoUrV/3JqnZGdZ1bPuUlpCpPBUZCdpoipa2QghYdC4sCps1wky70WtlbZahYn28bWZBWuIjJVGOk8FTa0sE0RL88xddPE6r/Xe1Sn1cgbI9UXigh4hyUjadEFV6IwipTvx5PeZfTWpzxJTibWCweD0wv1bOwW1HhS4sBbFijPyjzllcO9M7cbc9syCyNSkZVk6WS8W900xkkmp14NsfGTEMiMNCRDxcuQ/PV8HipWRqodQkorkTAHsz/FK4mBc+IxqDZoieDhOpYJniQkrzHUR98T/VuSsnORi+RgvBuqpd9CqDgfJv+aGOQIRJ2fOtWVFJ0Lpi+CbpJE3bWIoyThAZzxPspZRM688tRcJpkvbKE82hw9PVHcHKNqbm6JxJhchSG5LWQDOQO6SKE2cjy0FC6u6z5M9/TUbpLnNAsUt0tmOhZqgxNWpcxLGwK7iv+AKPneEvGshVgjliJp6SzlUmOU0ii1U9uWcLoGTqVYuuoqFNIt8l6VxDjyOPWxbAUSGsrsoZjzKvxnFp0epDtvwVtjK06rlVobzf0iqhrJpUqEomRh5CtiYqFdOcKrZJRDQv1zDObWObuky2xGGYMyO9VUoKSVDj2CdgQPNB7fWjDrZJSTXnI9r51ZB9EGZwtmfk2bQUWE+aVcikSfRCAW4dtyRCGcbCGUJnZqpBz97Pk86b1xVudIXl+LyBwnCQWWdHeScSWraE9FZRkzeSf9GlOKZP6hAI5VwOjvRgTHmDyPwXEqLNFiMJ6dbk5/nhhKq47pF/l8Lh8TW/456eUzVpGSxUeIwUAi2AttNVdjwtpVFmIt9bE4K3kvkMaFizu3ePPXxvsjH3/HCpT/6r/6r/if/+f/mf/gP/gP/rZf+2f/7J+ltcb/8r/8L3/LAmXfd/Z9/2N//9Nf/P3sL58IOiuiulRxKbbasrnRhalTn7wF8gYuprkrQ9K9kBDQNfnBN80JJy0D9gYzF7VzKMzYnQzaMs4IfojBYcHTgpPBjIHNkzJPahZRh8FhRq8bxQt45a13jt751fc/8MOvf8mX7/+IX/7qb3Iy6CXwUqmt8fr5M5/uN25b47UGtVXq1rj/5Ofc7p844+dst09Y3flqXJvyUg8p1Hb5iYA4BIpwx3ImTcOnvB0utrdX1Klabm5ScoR4V9e/jQGEUc2pOH0m74fg1gQ379XZmozNWm0X83wO/RyWiugD0ikDLW0ufcWW54a55JJlQIygnmKN1yTqVQu6G61tWiIto8815yLOk34enMcbPZ13z1CGDPPgjaHjP05qf6OON2o5KdWpW+P10yvbtvP89ImXlxdutxszOqPdwSY1bjiV4VBSrRVWASnNjilE6IyVVCuPjjlFFpyn3FtH7xzHk9kHvXdGLixzvB+o0d/ELwgZdjtBK5Ndzu5QIo2puNQ4XjQzi0SlbCEzZUHBWVTkAs0s2spc/IGrcw3JFDWimx/4LqYsrDAplVI54C4Y33vIOCoX7ec86DM4MGoqizazHO/k9UCkd4a8TrDJ1hqEIObqlh2+5u4llXCW3XMk+Xd91ugTupQizgJGlPUTlj/PJAVeaBLZaEQWJyRpGSojFWPhDSs7nqGcliMoNQAiH6/bk+SnRPH8tRBV3AMPo81GrYM2RbS2LPxrEUpRqKtkFFF7wuzG2Qd9Gs8welGTImZwEhknatLy/pIycoorVQv7fWcrhVst3Fqj2CpQVD5WT+5LQY69y6DPElfJzckDtqIE9m1WbDSNWsZknELvOO+UcVLGSeWk2KSY2rwR8MNz8NYnjxEc22C2g1neCJP7b5TObAdjdp67xrXnGVhXQVdyJwgKUUhljbGtSnVCsZHXXGh8sYqUVDWN4+AsxvN58Nwbz+q8De03HsGBLBWOVeQTOrc5zj5DSGPrAztPxZr4zCZy8VhU5IZXcVVzDDMjOPvg8Tz58njy9jjw84Q5eGLUPnjg9ANKTghU14iWoPcCwzOPDXkSzZy/rmvfbMUsqLGYWVCGBZF0BCKwVKKSjb0lQcxrNj0el33BnKSL798FBcq/8+/8O/yj/+g/yp/5M3/mb/u1/+P/+D9ynid/39/39/2JXuP157/H/fUbWh1a6NoUWal4wpAJjcbIynCkiVg6CrpITtMqIxrbvGVlC/swHs/GcXaOr9BPnfTHUz/DuhjgAD0Gx1BV+6UfnAxOOt06MTvRpaYps/PD7OzT2MO4e0moevDD4wuP5xt/9Mtf8sMv/yY//OqX/OGv/l8cnBxVjq+lNV5/8i3fvH7i5Xbjm9ed/XZjf33hmz/19/Pp80/5nd85uH3zM3x/4a2+yAHVq1Qks+N58/s84XFKmdNPehzZLRtnP7MjW0Rip9ZFBBWT3XIDUHmuha7YABtsPsTzcG2SM4tCzSoDZmX07EZX8RjIsG4M4hSHhTkz4RjOGXxNSfMZI18zC00jkRODtO1u02gopfZ06JawrSuFdnbJfQ8KPhvNoHpcKEaPLnOo5sQu0up463A+mY8HI04ZdLXJ42yM3fB5ELPSp1PaScRSbjw5wzn9DX86+CFTqHRwpR+IOS0i3mUwdYr/NB4Ho6trO86TObrGUadGan2C/A+MMZ5a9CPdYSxozTmasVUY1agFWnX2TPGdJTcqkzJgzkg5biIIVxcXV0elwsMZUeimdNq5usV5Mseg98lyfw3SyMqb+DgGbQvinNgI5qmNKs4cZcXkSDIqxPU9BXWjCjQcHHlNTMT5OqvhNmkOI92jYZH+xGkZCdVHKEwuxmQ+VQATIZKpTabnOChHQGSnOMdIFGB1KNlZJilWOTqbupy66zP7hpuK/CXQMKZeK7vRCkJucux1eQLlN9SAEoWS0t1sMzLjxGEuHkQQZ2eck/6cfHl0jhk83LD7DdsadS/4FKwcozHHqZyV3pEO8cDcqbWye6GVQksTs4LSzsUlEI+sVqPWHB8kHy+W0Rh+SZDrQj8jKOv9TmN2+XzEGPg88HFws4NisqgPU+TB/jj5epy8HSe9TaKceo3MrJkEvQxGha+3yhkbx9x1fU0jBtmQmpLHTRyStohWgUztQCNdA0eqTbndptvwUtIAB87hzuHQmJzN6c3ou7y1wIhth61hW+UwhGz2Ex5PDcznO3pW5iFX31qxtiX5N4hxMsbJs3fe+slbP3nGpMyB98Hb24M4HD86ZX9SquJLSBK4FTUkpVo6GCcimgWKjYFb+ivle5mupOtAgovIpjtyDSaE8C5PBUvA3atrylA8v8+F0miu+KP3+D9xgfLDDz/wv/6v/+v15//9f//f+e/+u/+On/3sZ/wD/8A/AGgE8x/+h/8h/9a/9W/9se//3/63/42/9tf+Gv/EP/FP8Itf/IL/6X/6n/iX/+V/mX/kH/lH+Mf/8X/8T/Re6ssr2+tn9m1Sa1A2ZLfrGumQzGafXd3SFTqXXUaCCIMiVUc06tQs1lMO5WchOJnPAXR6upVGBNZlOHOM4HlKOvn1eDAYdDsZdC3W5wPOJzY64zxoE9owNlxGXceT777+msfbV371h3+TH375/+aHX/2SX37/Sw46Rxma39bK6ze/4ptP3/Byv/Pt5xduLy/cP71yxMbzmGzbKy+2Uc7guRneBl42GaINmea0LFDsHPRzMPqgk+Y5ZsxMO51uF1QbaNHGSzqlqjM1W1SI9FjJkdkqDtWRJit9qgIfo77PIxP+I6AfSinmTLfBqQWgZ4HydnbOOTVqMyko5GMghcJHZUhhkSC1l9RUXBQPqienJdRN7C5zLla3YH6ZNs3qV0jcYUlMnIYPmTUZTpyyJB/d6NMo0zjDqNM4R/Dsku3N50GcTnBw9kjG6KTMjvuk1JnBlwm1nkp0Hs9nFiiSeY8xBC+fku4e065Z/8hcH1USk1VHkjwAt0jJto75iDU00a9LKj5jdeh2uf1GSJm1ZK/Ly2NMU6R9TGQGlWGCY3mS6N/DF0FQBR+I1O2oY7dpYJKRihuQhG9ys+bDuGBdP3Nc8QSWqJQhVMPTVRP0PlYWz0yyL4jLEwNGDyLjXChJoHQt5KuAjvePri8MbXiRo6llQ++RKbBW9Z5sqTYKsRrIyDC20CgQS9PCPO6VNedfvhjyDSmhImbiLPJ6jZJcJUsCqDydogfjhOM5eM7Jozh1C0oI9bgcgUNEayjIR2dmVs8QkmLk/SSEIM1ur+nv+nNdcu8sUJIxC4lbQPq0hII0a0nPlOEMS1+REtqcZ+HmhcqgcQK6HmTQqGuxl5Q7L6JGGMOgu9Fr0ah1nNB3uk3mcBUlo2aQ4RBK7Muefdnhr0amZB0qdNjWSDU/30BrhbxAPA04YVZjZlq2ijiTFLct+/tIFWUqcE5d98yJFadeKhsoteS4OqTSzGu9TyG9I94Vc0eXxcEjoEzDqwJh14jGqxK4S3WsJscssuDOAqUYIs03Ebqj5qDGhH6OmFehdpH4x5TEvKeVooFPl9hiFpa5UqjKJF0Zf9we/6O/Mh//9X/9X/Pn//yfv/68uCH//D//z/Pv/Xv/HgB//a//dSKCf+6f++f+2Pdv28Z//p//5/zb//a/zQ8//MDv//7v80/+k/8kf+Wv/BVK+RPojwBeX/BPd253ozWj7iVdPdVNRrLf6+h4vMtxL4JgwlRnLLe8pklIGDvOdkyOc6jweXNmQx3UUxvDPKRUeRyT53HyPHsSdgfTBwMF3p3PL4znV+J48uXte6wn5DiM3k8eb1/4/vs/4vn2hR9++Yd8/eE7vn75wq9Zs0x1Bm4n9+9+yfcvD+63G99/euX+euf10wvHUXh8/6DNyudjsr1+Il6/yLp62zR/n6mxHxOfE46D89SooKeveawRIjlOzEq6bltauQtRWd3dUlOMHBFEVsmjdyEz47jY3DPlhb13vIr0ayUvwfmhQDkOFZVZoJwBx4Tvz5EutUo3dYdbk8dKLZJTB0GkOVsJ2NxYSZ3K4ZArwzNv8DlOenSMIbOmUohiDJIsVJzYbkxznr0SvcF8kcFczufr6yvltrG9vFBvd8q+Q31hlspJhTN49gM7vuPo33OO4PE4kggb3F2p1tu9sO9SYmwE/jzgPOhfn8x+Ms6D0Q950/SDeSpmYE4VkrOIT6AmNcl5bszesugSK78UjTxauJRIEbov5qAfXQGQq5DPzafE1PVzPGEcMLuoq2Pqew5taJyT4znoZ+dxnFIC4DwJWWPUovfmcl1VQxUZGz8Y52CeaQ549hwPGcsx1l0F0EqntSyIlTGUaEaEEpSrFGmrivaUcWskpOs2SKfkK91WaoQkpshXxERqD4qMsWIoT8SMWBkoU1wcilylmWm4lyNWQyPWJM9czr6rMMT0ktUmjMFtdBlKDr8KWTLjypJ0DOT4KjOPl7wzN+lpxgm89cFjTt5iss+gAZuXLI48JzFpw5BrRIwBVSogH2euCVU+Iq5R7UK3YFz25iK5J8/PdceVD6OtElPowehsMa6iS27CRme7ZM6tVZoNGofOVEwho2GcGFabXqOmH30aIFJvxBz4LHi94+WGPb7A+WQ8vtCHcc6T0zvDO9NPouzgB/iJVRF8S9uTo6JrQBlVwahO3xrnfmfcXoj7XciUBR4Du+0quHvn0udvO7Zv2OYYA+YJx4P5/EJEI0KGbVYKzSvKZwpsVjV2fWSDcnD2k2N2juga/1fjDOeZviV+Tjw63uHyPCCw6pRi1FbwKgT6ckkcIrMWN2ZzWqCwwTkvF+dO1YRhCNmOLFRG17Vp53lZfNRNDue1Ol4bWGFMk01H/ztYoPy5P/fnWCZZ/1ePv/SX/hJ/6S/9pb/lv/3+7//+H3OR/f/1oa2qS8JXXBLY4tmxeM7KA7OhmyKGFmKkqiEdHkemPBqFpYAqIVt8AsZW3i2Vt84ZGR4VQ6qE2TNnwBhl9TxJAszZqbwfMs8gPb4tjD5EzjyOJ8/jyXkeMuDhQpQBnahicNsK9+3OfXvhfvvEfdu5tzt72di80typBJXBnE98BN57Xqch3xQBwngpxGyAvROoAkilQ/IK8VCHaZmRozwW8s95jLI4WQvpInVKx6/Ffla17Z7civCZRWLOqE3FhTyA1LXkiSYmtPCFjQtOdmNvkiyX4rK+LloYb15pNimzQDqZlmjYdBglN0EkHx+S4oqUu+DIPBQ2mLMQVpjPwE7BtpqGFcxzhOYquLw0Qfq2cZEQEw0IOseZBnfHASPn4kXIgqVjfriQDh8D6+lXk34HY5waG8716+KgqENf/gwsQqr5JYEf2fUFkhASlhJmbRJkdyop+kwnz5UiPLLAzUJkDgIpafq1qen89zF0DZ89JcPy1JCrLbqXShYoXTyB54qOP07Oo9O7vGaUPyMatzrVBbMnOfjDdReWBlNwFaWR7Zsl54bs8FXFpf161g5cZE4uaXVZ3bNLUhuepmqWYWwppcUVdW8ibqSpYM0OfT39Gr8t+MGK7glLif2CdSeLWKiOXcZ8OreG43Xk5xKZ1vK0R95MnqMJnyHTvzHSxyh/fmo/I7RuzfS6Wbuxrd+bXcojr4XaCq06W62sqAmCVBL5NeYrGLM48ldaFuySTC+/kBrp4kqGVJIcifV5k1TsSbiMmHgHHxm30HYd16qk7MsLaYbMO89cg7uldKQJIqxgcWLtVC5RmczyZNTCKIVRNtwro+6XQRmWqhaklullY9ZNsuu2U7adaoM6nSiNqF28vTwxluqy5k5zFaLVJiXX05mM7XWdRo7Sx0dJcR+cp5796Hr2QRniDkVKiq3oXH10bI38fyHMEkKY5T2UNgS6BZZj8FLirPufa5x8joWy5r93FW5lTI2KXURzW5LjyPtteqoz/x7J4plxAuc1CnbnUhhALgogAzEmJZIbQV4Y6UxoMRJuleZdUKbGBwbEZjAUgf7cGjWMNjXL7G6JWiVxc2YHkYuDFAnL24GrKFqWTwNp8HtP+/jRU5mQayj6OBvQivNy23i9v/By/8yn+2du942X286t7extE/G0yKl1xkmJoIxxqRU8gmI1XXSTPmzGmBoNTA0VBd0hJcnMuqTHB6KV5V/qTyK4TX02W4Ti9EhJfF03ocVlGrZ8TJbZVI60Ex1xFVXZ/caUSoeIhCmlXlgFSnXnTJ4BxbjVKeVKFHU1BHVWJXeexvkcDM/lNE3QZCe+ck9SFZDQahhwBDYcn1XwpakokbqiUUuj+KantVSR+HW+51yOqoPen+JeBPQomFXqcMbQDd0tYwCSQKvnYIwu7sSUKdqyUL8Shm0lTOVs6+IC6DksxxFJJFmjnJmnNIVFuUHqK5XfI4RFIYMZLAjXe5O5WxYoC4JeEtaYWtRMPIAZk3CNWnrXLP84cvE9TsbRE/4ejPRkkJIt04mDlFrP6zX1ATJs0dAxyc9pS4rjWVhkgWL4u0fDqk2y4F71ysLHrRTJoadGXnNpPMqHIiRNt2YyRtffW7qEyRAtFy8tODJws/VOU1WRhODVnFiiSCWNPMymXKUj3j04tNBpgzMpmJyhBmUreE+lSo4cgoTcwy4++lWQLIXS8vhwNYClVKEa1WmtqE4NHX5P1REf1qz1uculGJLCSgXKTMt5ISp+uRvah2Nu2Ar1sxwD1sCaxnXWboR0uRpr5egsO0LsmMqZamB9QhSsDqwFFlWGdXVCGUJdhtCYWTZGKUS9aQ0Epk09Y4ibURqzbFA3IS6tUXDqlIx+rsJsxlXkVRevr5rGzMVDnzsPj5yEyfDJVFoKcHtHLnoGi+ZzJP9DZm46X0Kns0BZSpxFfOJjsRIXOZYxxMlkIZZ6RhYpMSM9jdaURk1DTEtfSH2NFBNp2pnFiUVPFV0ivH83kGT///Fo/cneH+znSbNC8cEsg/AG9npV907OGL3I0dWCkm6YIhOecui0vGAQmXO3IErwqRSOsvFoxqsVesLQ53Gjn4PvH52vz5PHIRmo/A065+j0cfLlfuP5duN8vjFuGQqVr3c+H7TaaXzHc3NegK9P43Ea+5uq6trg04tzv73w7U//73z+/HvcX37K55/8nG2vbHvl9ZtPvHx65ae/+BkvP/lE3RszYTZ3zxCxBSMrn6L6xtaD3oPy2NLTZDKmxjLMvto4MbhDPY7C4YQIrI1x5EiAkOKA5ZOx1htzetEi2yssdx8vcUldvVRsVupsaYMfNHe2MPZp+FiKERUoXoy9yfituHOOLZGBwq11ig8qDyqdwqRFZfTC+Sz0fRCPQbs9qc+TPjoVwZkA89BM1s5TN64Z2+60GrSbVFW2Vfy+sX3zQr01bp9f2e47ddu435LVb8GYT0aIOG3lwKJT6kNz5pR0443JIGJjWYNjss2OaknwdIIqaL4WSos0c1XXZKUwveYmLU8bbZJbEsKNYCw0nAl4TOY485xBjIxEn56FWyT6pNGCfnYTBG31QltGHIRLDXdU45yFR0GdccBbEv1mqkXkoTM+LLZp4X12Rt5DPrrGD27ErOIJleR2zHRiRZvye+idCujCO2djmWdFKm6wkvV1Fs9aJLS4xvKYUZlHW2TXjUVEMTvJb2DWXUTCUpllE4pSN8KVPi4OV8VdxwxC6p4pdcUs5ZKBBp0owSzQi/K8vGaEPRq32DTN+2d7R4BdJYd55OamgLtZJvhkm46dQy7H25abqeVr8m6AWFxrJ4oR2O43tvuN271xaxv32vh0r2zF2evFYxeHrzZKa5kNI/SGtmHeqLaJMI7D7BgZdlgSySkmm4VSGOMmA0IfjC2gTIaLGzNtcpQpJVJtzHpTMVBL3vekrDbwIVfaqBuxbTAL7o9EZjbqdlDLocW1Nno0ynFSnicVqRD3tokjFZMSaiKdAy8mpNoy0NVkvlnNaGbZ72Ti8xTXo7jT+qDNKQPRavitYC8b3ESgXQVtL5WZ0SMRKExUJBKsNkrZaL6x+8ZGkQOtGa01JUjvkn2b5Toc5PjRhNLUVXwoIDNAkvJS8K0St0bcm9RkZkKjptBjH06Zlt4tWeDUkihso/hU5EzT2mXNFiys+8WVVfVjH7/dBQpKxGxMzcxmTyKaEd7lA4AlWqALSJuNIMlIhYHGFQtXTW+QsITwc/TTCiUqdq/MLXNb+snZJ/XZ2Y/B8+j058lKGO2zc/aT+/3G4+3GeXzl/FoYfYpYZIP+fKO2YCtPjq+F5z64P588jifbD2+Yy63028+febl/w09/8X/j8zcqUD795Be0TbDr7fXO7WXnJz/5CbdPN8rWmNUveNrnzAIiaFZxkxT77NCH5M9zypZ8zKLufLxLhCO7UpJs+m52ONdv3k/MgomNPI65iSxL6GSTS6kQ15x3kW49PVg8UAeKQTjbyBHFB8S8lZmJ0rKTnsvWs2Q1byUTU4PmO94rsVWaBX0bcn9tJ6PLB2fJbZUzk3knRT//pRS2gBbIvrwW7NZot0bdN/atySuiOA3SV0FFn4UmuSVkCb+5xk6ecG8pk+rzimowWw6VgdWKL4QkW3wzEt1KGLWo052eWVQrXdnWyDM33GSCBskXSlXCkt3OZYs/pKpZ3RCJy4CQALn/tmy6J5JEdo1d0zxNXvwjuysSPRGpbsRM1FB5ObPLrI7RsS6uWJn96rilbU/jQLfLw6R4sjXXWMAMmJlYHqyhgwq8kR1lJAqUKrvIYarndTwXBpWxDL5GNzmKTDYTOKPmmMErIqupA9eIR8ffE72yRBiCTOSFaxPQfZZybI900dWSVPLzKUU5XbBLuWqrd6yoSKqKK4DUglkm3tSQbWPK3ZWSdu4iJmu8t9AmrRnb1tiaUnfb6v7dKbkhljWKcYi0bjdyvcxzs6jqPlcX/2GZWEWROVTDmoL9zNI7xVGxtlBxMsPManrE1FQoLgdmreeW42tD/ifWNMa1OLORGdRqjN4Ypclxt2hdaUenPk9KTCrGrVYVyVNcGT9nrmtGrYmAENd97qiY8TE0Vs9x6FrT6hjUOWmIUFyLY60Q62lJIM+tiCQDB9qfvGqUXdfT7GqC3CxpDrLNz0OiNX8t3WvdXUGUyVuS18qUD89Wib1it5prilFW+GwWyD4dGVPnyHaEEC24fHisDu2pTdytGbKwEEL44/f43+oCZXe4u3Ez2SQzcuZtQURj5kLSvKrCzC7SXAXKXLJwy5l/LkCWF3rJC6AUo9lk2GTzsWgQyaaevJzB2zE4+mQesh32mCpQRueHtx94e3zPeXzl8fWTOAVjMpH3xsvnnccno3/9xPnlxtvzweP54Idf/03cJ7cNfvHt7/P6+gt+8Tv/Dz59+3vcX3/K609+TimFWp26Fba98fLpRrtteK26AdOLwOaSG0xqFmj7VuQlMYKtVSEoY3KOh+b/40nESJb4uOA5yUfl7EjCw++zWgWYaVb+YTN18CbYtlaXx0Kahtl17KUMujgyIHgZx0KulhNp8s1nSuL6pcbyLKAujxRMXWwt1OZs2ysjGozGbYN4Tvb2xvF2Eqf8UOzsxHESw8RdwmTIVp1Pt8bNjWYQJEu/Vepto2yNbWu0WrT4zIzoCnmWKBnpoETHZVV6KYzcF6FM/iRXZlFJ+WgLlg2+F/EX3DMNLrfgBfWPXOTIDJqlamKZ4I0cWeVoRLLBE1spyL2nbb5+vXzv135iQgVAGVa6X2DWAxsdyoGhzdjngN6Js+MzxPnpwRySky910iqKmFKayddBXWspWaCUxexaRVoqEnJDtaWKAVaBolA4KVtGFk3L2I2ZWUXj0Oe0qWBPE3LnYXKTTYt3qxuR3g5ep8bBZIeeydOLc6IisaSE1dQNu+trDBXQOSKLImdXTTLFA5s+UpGT6o11nSw+DAbpjzJzXCrCa2GEDOKOEOeoF7C9UUtQ+0flRlzS6DJQhzwjRzXGfbvR9o3WGps7mxlbehuV0Ph6jYedVCtRr/NQMI1URiYUQ16PkVJUncN1o9tsGpmeVSpBR26wHsQKvwQoTbSTBtObkIDkW9kqsPJ4+qYktWpGrZMxKspObcQ4idvBdm9sbxu275znyfNQ3pFH8GKGjfPdQv6Y+EOoxlahFBV+qygpNqkx6F3urv04sHliaKPd+s7eOzvy9Wm1wFaZm7KXZt6r08BJnlWO0b1Aay4PmeZs1dgKKe5PMnstlFaFkq21lURSsrHTyZGNQIRQrKvSrQU2h71hL00IXjEpueaEriJjTtk0zOnJPbNVAWFr+Gka3VNUUM9B+qks6fmPe/xWFyhbMfbilJTDRVdaJa4Zt+ci0XyXbOxDdV0sGKbuUM7C6S44yMVBIVEZyI4WaSVFkhsuadrUpvHSJ+cMrM80BBL/5ByDL8dn3o6fcJ4P3r5+Ky5BTKY96ceDr9//jP7dz5jPL4yvv+Lt7QuPxxe++39/S7Hg1gq/89M/zadPf4pf/O7/k9dvf4fb67e8fP5ZhnGZTJKqsd88K2gnyq6NFH2wmCIemnXZ49fkNozJXmuSeCfnqMkBUBDj4k6MIU7JWWBOz6wVES2nj+yxc/Mku+zI8MJiV4x7a3aNHMztqv4tv291ysuWWUO6QlsAvgWQm2eiOJHvfYYx5sG0oU2RoJSNahvz/gl8x+3G9lqJI3i5vzG/HpTnSXk8OR5PytuDXp7pmTN5uTdue+EX39y4VWMrSnodJrM+axteG23fc8YMbQyWP8boKgakSNAmWDKcsZhUH14a1nZK2TFTN7Ua8yg7s0uGHCOLhCL4nAxeXDPjufgLSd6OlIzGOJij04cIuzYyXHCKeMsU8jf7vArRa1YcyDDM89qyDSsN324X52OOp9CP9lRm1PmkAHYcUE8qYu+bDSkh5qScJ/SeHS4sLo3km1rqShZvzdU9+grWs8yBsSo1URRIJdLKbpJsNON1RwYZziTETo3wen9cnJgosIJ15kz8pVSiNClGNqFTkkEnr6fIkG16ymQRd2DFiJKnJtbULTeLNfuMlMgLRSnMkHuyTUsO0KSUTBt2IO9nr0KkmEnonhpv9CiMcB4zAwLcsc2kvilTBeMYRD8veX/6XMri35wSzs03GpU6jfo88QE2RCoexTkrybNJ+Xg4MexaAwjHouDIbyUu3otMBAO5x7qDl8ogeRee5E1XKnQk6dqnCC9T3UkSg0s2NUJryGtiKa/KJgSm1qD1nTksyddOzIadje3p7C+F8lI5zs7zOKQiHIMtJt4dhuNdcm038Shagc1VkJTZKSdZoHTq80G8vVG/fsXGiROUPmjbTttPtmE0Kq3usL0wtxtsTaj6XBw9IflqYEjjswo0Xl8ar7fKy62yVSAL9XJrlG3Db/tVoJTyjqIrQy4Ie88s92hJjg6oThQjNifuFWtOaa7mP4I6V7PjkuXPYI56cQoXRWCO0DpiQr96H0wTr++sk95+fNnxW12gFMukzMQOI5nJmoImf8LzRskqPG+f/P18r/jy31aKJFMLBpBEIS0qZnalYpoLdtxwrIrU6CkFLCgZs87BbGAbHL1iVRvEiEHYwXneoDqzOfF8JV42tq/fsX3d4HjDgVtrfP7m53z69HM+f/NzXr75GbfXn3D//K08QNypHpQC20ZelE6U29XlzCQ4jp7EYgatdo10fEo+ncVKGZMxjG65oM/0zzBjJP9EroBahqcv/r2OrHnJUVn+ZwslkEJH1tzZDSaBzNJTZBUo6yxRMuGXIkdCvTqkpHjJSkklyZwrt0JjheGec/Gqgq3eoNyxUnEP6qk8pGYuw68xGGeSHNNBddsb+63x8nrn1oxWoZyyxLcQq9+KZUcvJMfTrj6mVEslVSW2bMndqKVSS8VrKn/qjvmWm1xhHZGwgruMw2LIY8PrnhB3ydwVHToVcPp1DFNRigo3nWaNd+ZFLp3QRxZ5Gu3MKdO7SCt6MCJls1iDsmN1w9tdRDyHOQrMk+FqAqI4pR8se+7SAYaccXMs47lBypeIvNcSTQgVKUKTPINA03smu2YRT/P6iAIj7/+ZI8LsLKWoW4hRdqUZaz+HFs/187SwpI8JIr7icvScpeVoJn1HWJyYfHq57oGLeIr8VLD8PMsXQwMVML/GPTrOoWt7Lpg2USOfiToEC3nIu01f70BUPgYujiyWSooFSiQkD3ikBehH1m6IJFlwSffTrNHnu/Lu4palKmEN0vSz3tcAIkcvWFaE+RjLUH/mGGOp9VaRLaKcJSy6juNMDpTbSqjWmh55rBeaaOY5+kPqHos0jazMCOrYZAg3i9Kja0CFsxjl7JTDiadhY9DGwHLSaz0ITnovzIFGXmnIK75Tmn/OoHSNSr1n2jxB8U7pgzIiE4fVnIhEXRleNQYOiTfW1WOJGCpkFVrV+lMr1+tHJAJd7OItXQVK9SstOzyu477wbUNre2g+o6W3meTQ1Sn7u8meL6h8GqPbRZxdxt/MQXTXOTZFV0wj059zXHd5Tv24x291gSIfjR0YSdbr13BgKSfWQhuRRKp8CBYd7891A46uhM8u8ppRMUMjmT5EREMViJI67cqmKAHeVaCIc6fo7rMGsZmsnVvVhmED7OTsB7ZtzP0Fjif+/Ez77pe0tjO/vOEBe9t5ef0599efs798y+3lG/aXT+z3V0rVJteKIMdWpwqAUvC6XWuQNm4F48U8IDrV1CmUMbAwoRBTss85jNPT3GgMCkb3wZiC1sfslLlGZcHw9GAIU9ufMJ4l2VDvSVyUbVX1ZkQawXlpmmWL8sWF/dZVKLyTNpf7Z8zB7CFH1n5KAZLJubRFMNzptdC3jVFeoN6Z9Y550RLeBmUThFmrMT3oputJd6acQfetcX/Zue3QKvB4Qh/089RIaQxxB5L6Eqc2Y48pNQ5ZnNWS6qONls/Sdkhb9IjKDBVVaysjEY050EZsFW97FjaF4sZScKgYCSZDXKeei0QuTePQ5uCpxokxJL1cfIZZUhGRbT852ilNKbxtp24vlO1Ge7nj1bFqlHnQx4mdD8pzZxxPisN4PhiPByPeGHUw7IQzlL1iJYuDWO73BJF2JHksi4ylWqvigyxPdVvmWLLWGot3NII5FkdFBMZAMlYbXZvA7CoAxmR2OQLrBvIsesCjCkFtu4iyqdiQp3tTp26ZPWSGJ//D1q464VLCedH7LJap1XYVbizOhen+A3RtD9kh+JjaRIupoTIFLJYLKveMPXG9rymegLzN8ueXKkSB5BZNmHYKcSCLvFGwKNRi1FrY2kZtOT42ya3dshjKVF4tgougmoUCy93l/T/6QuLmxWuCqfTmavmZPBspbbYlpZlSmBWlCgNeG2MW6izQM+gvuMb57kVFFcnNTNNAmQhWZhQi1W9ldLbjwXY+sceD4zx5Pp/E4wF9UM6DOBv0kzgbVk0utOdJM8tcscJW5bLbArbw3D9gnGRKvVyqtwHb4PJyaaoKlGPlhdKXgds1E0vUbRX9wSgioVYfuHWgJ5VHxUiphbo1jZ48aE0KLKsumT8pSc6BqJArZEjoWeik6WnZoN6Si7UQwex+FE1gjB459lGxYh7QyTVI4aCaFqipHYnS/NjHb3WBYlk99+zC5ox0fkyL7Nycx7S8cYv2zyDVJ5nHEivDM+fg2SmsDJJgyFymT5EWyYUzF4CVIikRQIKZa/Zvmg2bR3JZSr63iflJOw9sOpONaIesgZ8H8+0r1Rr6Qa6NN7XwR+9477TZIQTxR3Go4G0KCnfDKu+kpCQAR8jxdG0G2tji8t+wKbZ4FDBruginCE8lpa5lVmYM+qxXHswYy3ci/TfyBuBjgZL23a395gKNK6U1IkdDHwoULx/QFAQRyzMhJXAzrjA97ydzTKwPgqKvPQp965xnBmuZSKozFSU634KQfQ48JnUuKbjeYknVkFUHVwces6d52pMxT82+pzgrM6S0WAiInG4rVKfthVILt31XAvWHAmWaM4an5wCJXuianEMN/mWf35qKhkQULolWoJO9rj3PKUwWhF7AZ0pWl64x3SpZ91Cs8U5kY2vULVN095263anbje32IiOvaliIUEgVR2WUivVTiy9O7zC8MyjEOcVLaIdcOYvysSOSmBuSdUYkSbVo4fWFtBUpVayoY54L4cyN3tDGVvLYi0M1KZNLDr3uf89xkpnQECtF2TJRqFEprWaIn3NBp+l9sjgmkvR65vBkDX1xQ+L9fS8ZqGeRQjo1L7Qxiyn14vreRXbMm4klPl5SYCc5Omp9qUMwWksezTRT2e+StzIW4rFmTkHMTZt4GdRm1K1QtzutiYzpoDT1RPiwd/K1oJzM6VrCAtNI9urSF9kviaQkAuPLX2XJtM2FQLhdUT6Ra3UxETGLN8oseZ/I1dun0N11oJIe/k5zyfHZIuVG2kv46FIu1cJpTqmK+BjmGj26/4Zlv49B2fYrBqRtG23bFN5YpW4pofHt9EpxjbeMSI7OMu8Tp85S2eJRVAyrcpRKa/UMpuP3rkWYFz8sRhe5I8CYK1SbViwDWPV7z7VrmnhDItfntWqp0DRwG/KlKbxfd5YoXQJc16I4F+neLs5PCRg5ojOL9c3vz8v1sfzoPf63vkCR2RRc5MiZ5Jx4l7jOaYxRMB+CN/NgRi5UF4Y4F6qSm+3sWjBU5ei59tW56kqxrnPQdKGZHyl9gmO1KBW5BGW1qkj42WGMhM9n56i74srNL2fQMdIAq3fO3im9c44BZUjhcTHD1pN3uDSvEyKhHcv3Fgtuzb+fujCX6qDMmp9VhaDF0A03BSN7ZNDUgvqum2oNzMhCb+UepWql2jtRLuFxK1Wb70JQMojMP8DmhDJXlm+KTptUKDaGOuSh36/PPnuXH8spsuoqUIRILGfdcfEXVpHisVKC4sMGkZ8vJLWes6ezqzYIh+QfuC6ENRO37MxrsLVGaZV9f6HtO63dKNtOkHH0XUUCVwDgVL5QIuURImBKVpyr+DUhyEVhHfsPi8NSUlmOGWZulhCyo86RmefIbMY7wc7MqG1LsvFO3W753FWgNLm72jzldZPfG9vtIl+2JnTTJ8zaoA1aq1o0R94xM+HnkVEKvHOV3MU/cTcoSYx0y3tvde+5JrgWYaXrqkApU6T3ue7K/AazNW58L1CKS4bvoaIsSrmOlwIWE5p3vZ8w8dQ8C/PIMYjQtPjjxYl/VEIlB4X1WRKdmFcJvj7V+xWYxag+K+LLmWNWdUwG1BCSOyOlsKFC5ZKsV8trp2RhGAzLAqUVFc61UKqnmWDD64ax4e5IzZLoppWrwHJfYxZPDwzer+PQKD0vrA8ju/cgvWXSqHpFa0qJuEJyi1fm0LqrUW4Ol82uNfAiza8jtpCqPHexvmecsqe3VOaZnJY9kOR3aty/PKxK7ZSme7WYUVrLZ9X1CUner/mZVKwZca0FrOIwjw+XV4hfv8/Zl9ZTF0Lhc/mRLI7YuJ4GUhGZkKf6oUCpqVLysnhdWs8771w1y7ckNdCHNOwkKUWut+v/rt4yxQ3Xfrz8fNb1Getb3s/51Zj+yMdvdYES4fSR8/40k/Irw2hcJcKIpxCP0yi+VCXBmr8KJZCaZRyniIhjpYPKQyRDR2AsuKzg5QYojGnNQs+Rm9+UsVkPhQieF7S2TL5SIlkLJW1ipzuDNwWwDXieSWrtg/r4Qvcd//I9o+2cVoh2Y5siFVqRpZBXNHdNLs0qkmZkwFV2/XMOLI4kZn2Ql2YHvtClufJULh8OrRQWKTnzwmLbzWtSkFdtAJllIiJgvF/8i39iuUCVwopLM7KkR13yUqIoJC5HGCYkY9pgMCA6Ns8LCYmoqdRw5vmknxvH2xucU8m7Q0Sv44cH59tX+vPJ/PqV+fZGPN+IQ/Hn4YX+Vjgdnm8ns0MtweN58jwOQcJh10JULI27ELpRa1MEfTHKzeWTsm/c70pArtsNq+1KaT4P8YKmp1fEAkXe67284XsutIpfX9ZeM6bGPPMk4hCczSlinA2h8iT12ys2tUnkq+SxXneYX5tO2TZKKZR9o+53yrbTbncps6rQyTFPZYkkglJ6Z1hhUJjHZNgpt99dBObYnvJk8eTKmIqjXHHJqvjiMC3C7KI8TFaBTapDFhoo5Kq5U0vl3YDvVEE8tDZk3JZC2uqGNRUkzTYajUYVJ8gLozYRhUtl5K/ipuRGn8ihLfQkETD5dKUHU20s+fji0hRfJHxTsRzaKK5NVJRZgA98LVOBmshRydyfWmUiOSfUc6TvzDvK0kZI9VKhpxeG3nsjpjO7UZpTWmG/vdBaodYiBKY0Wt2ptCwGVud9ubRgIVK729pwk4fVh9ZEJu/y+WW5XrBaGYmEUbiktFrMJ1YaZaSyagrVtW7MOPGRCKgvM0LLTdLSZqJACL02h1qdZYzH6FA3ouzs/sDrSfjG8IM48/flwagHsxzijUyI9qQa1L1RX+6UJrk9Pcdu2w1rJ9buV/Fgqfa6uBkZ7+BnEDXh94xAGLmHWa6pNtW+9AjOY9CPM8NCD+Y8dfRNI2qpFcslP27VrpBAiW1kfNhyUUnqkMrgLAQLSTyeJGcoJd4JBCjcMd1/uz7LnJN5npoyjImnk6xQQSWOT9Nri4f14x6/3QWKlhkVI1dUvZCQiKG5I5OR8Lh/gJ8soSuNCdINdijaXnwUV+6M+nlxKSaqxKcs4md4Sv10YUYYpNWXLkxT9xFrK5EyxZL4J3mkSZ3RQsh827C2KQW1bRfWtsKoZLccWVANbQL9ZPQksXaTmsImzJNYnIQsOMZIu/QkYy3FxjgHq7G0hNtXamfkXPT6OaxkT6FTiZqvk/JeIceH3m8BAmE5BtMBsfS0eK+2yQVG32b2ni8yQlJQn5k0m4SPSJdHW8/y3mVG5KY9evJvFIIYOT8d58E8DuI4oZ+JwgwKM/tXdZB2kcGK7tOyyYWydXFNSG8GbyjzpSUsXtNrwTXPrxu1bLS65e8bYVWk1VivkSOWhKTmOnxLGpidVNYUBKHznUtBMBnzFL9iDmIoAXlGZ0lZ4yIiCkdfmUq2Fi4+wPVeKK1dvCYrG+4buGTskr6mh8ucRAkUuHtLH4qgbYc8TWYwW8VGYWziHsxujMyqXLPwZbO/7lcBg5ZwfXy4x3Q8luJFPI147yRz3l1DoXrTB7MXTTgmUuMUpcZ6UzZUtUalCe30xnRtoipIlglPWYsKmFAQR8fSE71d79OTY+HXvW/X4u2rSA+EDuZ2H7nBCx1JxDFRxcC12ZG7S/o1eZIPPX+WT60T8pIRD4JcEwnx6dTQqtqY3sRjaJW9Lk+fkoTQKr6UNQzTOmRrXVvv2yhVhdMad2MhVfVqCFeRVTxN7BJVYBGfeVcGrQ3VLFFfXa+LHrVcww0hLpHIsDp/3qtty0LKTPemcyFTZS6ekzGjUtuiAjQuNo0VZsZI1DGJXuSz0xxaI1rNZhTOEvS6MdrO3DYs1YazOLMY3eCc4uJEn/g5iTb1fWn5cF43fCJwuaT20Ii/j/RsSodsX0X5R5IsKlBsQU8XyrpQmg8cN7IxYK3R6u36tZxH7pWRAF5kOnTKh4c+z+Xv1ZMmYUm6jmCdEp3pv0cKFG1CebLIfJJkQMsyPq3WbWTVLG77dbQuQm3RmCKVIASUkNKimGy2kyMutUVoQxGvZenVE25PCNPML7fGChCC14bnvDtvUjPHmwhJhhHnjm13fL9j2wvmh95qrakskRJjRBYoo9P6wTyVeKwRtEiwcX7NUcR4LyrmzFyYvANyQxxnX7sgkL+dCbtfvI93j5Er0fJyKnyH2d+vv9X55R/DVDxaJOrw/lW+YEN0Y61xheXxDMA90R4fIl2lb8WSJorXk9bUHlrEyM88B3acctn0yHj3KcTsPOE8lKKcJmFkgYKpwHSdPAh1QVFvgApQZvJNaqNYxa1QvOElTZMKQlBqpdaPxclG8cpQyIpk0iOvp8VhWAjYGsuxpNVZrCz43BJBscjrXqF/MUUgnrNnkSJVz1K4EchwLjfPCxy3RFhSyluqSLLe2gcF0ZZImGdRoTEeFTwctlN/N42xPRkhtCd2mXLFXuhWGLb8e3W9uU3CJuYjRyFx1QL5lnUsEo6fmMIvbXlChDbWpiIlkMVANWeOcnX/NsRNiFqxbcfbhtVyFSeFStgmEu0i55Yie/UcTXAZhSUSMiPffy7uaGTqVlC7816c/MbvswgRGyd34EkWfn6hEoGQgmmVNRZaoxqvieAIp82cJTnq+gzqzB0FJY17cpOKJSQ12mX0tdeNViqtFkVJ1MbWdjniIrLoGSp3l3mDm2eBkpfjEHdi1gUDIi7GGuvUcimy1vG65PJeSPwkZee6ryMXiatIyRXEUplgFx7wzgGK4Gr0zIQumKHR3DRKOGUUZjTqrHhUovQc3RVJ2bMgHBHMXqlMvAF7I0qhz8kRcJTgbDtjOxnbTe9+dqwVRo6tnqvhO7NAOSe9TOXtDMVCLPqZxfuoZMzgOOW4LC+jcd0bpRieiJS3xf+ZLOrNWkO1xL8j3JbH571QMWJC71L9jZmjRNScWn7f8jacaegY80OBkjzOaz2ZU6T/MHoqxX7s47e6QBF5LlGQgRbqNJma46QPuVT2nlD36Jc3xIxcnJKwNEnUZeokFDe2zHtpVS6KrRSi7NTZdBKGYdYx71d+QikuWbO/M9x3c91kGKfL4XXWwqi6nVp21HEeHGVw6w+OOXj5/iujn1gELy/fsu+fuH/+hv3lhbZveEkoL0QQJbJwOb8y+4P+w6+UgDs6g3VTKysCN7zVy39inGdycN7F2DPITj1SKrY4H+8Iy0evjKvwW53Nh4U3gos7Mm1cqoDi6apZS6p8XESq7OzWxaxiRpvQ5KRbp6MxxyS7OU+2uCvNVoUcl3JvHEMLzzK7Igm7pzauWpsM6MjRQpJ3t62x7ZVb26i3O3bbGL5h84T+Cevy8Wjp1SItUoacFdeLJ1chQsGTjOwEI+jzpJ+D4/nkODR+GzFWwywiHyTfIAuToTwecRVGesOQsMBQsT66zlEXgnIZtFmIm5y9b53vcl25JycRt2z59ysEsSh3pG5yJC1ZoLhjNDk51w23TpROicasD2Z94HMwtwejGY0nvQ62WTmfJ/2Ax9ukpy/RbFIgeE/b7OIf6gORtmeERq45u1cdmwVK07EvTSrhIFUopYiE2eSkKgLjJtLryw3f9Bm3cGpUnMKwTUqd4owi1c5c5GTLvJRsODzvAUvUdBXv7uqEFVQqWedqZMCv5iaSe2Qn2HH1VVgFq9q0scLwwkBjhZjvxEef7xuy8rlDeK5NzCdGx+0Ae2L2VEFhTvOmka1VSt3x0rjbPcs0rV/VC60KEQzgDK2eI4K+kA1cRRJgIwNHJ9ieKAfQV6Z4VPpc49vJLHLQjbIKZXj0oA84e1DmxKeStxdAOud4L9SzubHyjqItEFIvosJbkvYsJr3QSmHExr5NvE5KPYmWnj63nXk8mOeT6AfHcefxdmecX/Ho3KynOaLx1ruK8lmYt1fdmq8Dq3KltjLpzZglgEGZQ6nDx4SitesYk3NOvo5F4hZ9wZJPRUyNc5PHd9sKL7dGqZXb6069N8p9I/YtJwhycl6cEI3gk4sSF/uQBZuEaZIwQwGFa91dE4eIFShIEuIQoTf9W0aqpJkmH5+F1gz9eUxxofyStv/tH7/VBcriNCxDmMsPY5Em+5Bs+JRb5OgHc5yS0oaJcLiIrojDspwOixs0FUATRdljQZlF0uU55BI4AvMJy9bZqzo4EilBcPNEUKW5cjJ6MZkowcXql3fEHb99otwf1JefYacKlHL7TNnulHbT/Dt/dkTasw+F/Q0m5/ML4/nG+f2v6edDIyDLDbK4ZJO1UNnfq/N+aCWfsMzdIqtfZS5EJliSBYpgvQ9ij7wRdC6U3q7Na1XuF+eHkRW9ges9xQxqS3gXZ5FoNWpIhIXlE9CJeRCzM0LPcw563pQzgp4ptYOZxNkpt9hpUNOBlEW8SwJp0chqOd66O14bW60Zwli1AW93aitZCG9wdBTi6TlZyqJ5dXqRRmQDzZ2ZzDrEpM/R4jg749mZZ5fhkQ3J8T7As5atqTHzvCeL33I8R1wFilxS08xudpZR3zUeyWvxnWCpzc+9CTnxKl8Wk0uo1BslCxONQvR1nlbZweJi6Ou7NttEDep+UxccJ3E0bApBIdUM/dBmK/8GwfXTExEzshBa7zk37pwtJnjEdQEnLL84icDFvbHM4XEvKha5QW34tgsdcqdMKSsKhWmpWin5zPHD6sgjyY/pWHOhB+J/6bB4jn1szhzz5HvNcZXldaL6W6oUHxorCp3LWmbw7iOxVBhJ5o5sHtbGtvQy86IFq0AxG5h1sJGqD6M5SWqtQv680azoGaai25ztMgPUWDudTPTa6wLVLOoD0hGJ6y+enl+RFJdyLHTegqlCPgrE5MyRx9HlL6XCZKJgBX6DL+VBoqcfVCS2YIMkon4Yq3mON0txKtAMnZ81dppdo55aiLMyx0ZtQkX7WbB50uKgZLE5MM4IjhpEu8M2if0gOGA64Z25ScnXTfJom8nVSNThTGfysZR0MS/Srpb7d9S0mAiwrS1pccFbhZaBh3ONVRItNZEPdDhshT4nEpl3ziocIjn6uVYs0jF5rS7R4AJv1wxaVNC16OUl7p5KyUUGfu9jf8zjt7pAqUyqbnFiVWYpO410ypxnh+fjkoT282CMyTGNmbbQnhIW2X5r8S7FmbtTmlGiMbamWejslGHUccLpMIdGAFUQ6247TqOi7B9DXYEKSccLnAWsBt1IuZ2gczI2uz6DclbqN+CnuuSy3wSzby/gm+DGfrIsj+Z8gA3iHDy+/prz7QvHH/4f9OMr/XgyXHHwtA27veDbzhafKK4NZPbn1WkojdkJK8nniSv0bawCZR3nrLQ9/29toqFdhrgW0tDFizoflUDvRVupzhgiEPv0a1ErM43xLCimAmUMZRz1PnieT57nwfN8piuoNuGTwbDGtCpyJieFJ1YGtMFW382/rAyiJiHYIEqh7PLcKG1nY6fWnX27YbdX7P6Jcct8nXESTxWq3gNbZOM5hcSQBUOsr+9EhRbGrJ1SCucIRag/Dno/dT5FGlBWi2egnNu1ecu7R06wmhbruMuobMA4kuWfssSFnrBGMn5Z6XuIO2Ne8bJnAdKwelOxQUNkklWgpIqounJUqiEb1iEvjjSwM5P5nLcd+puQQx8w3ijesb5hnDhnFijQTUVKROBzXsWJ5MYVL6lsUyqTrOADbeZrk5tF/1Z0bQl9UhHmkQ7TVCI2zF6gNfx2uwqUNk1fF04XA43p4hAMM8LlKwIq5rl4JOl7syryhaDM+aGoMhxJqBfHIkzyORtS7/iAeoIth9fcBGYR0XFmIU1+/0QjyHYpELW2TCYDRU8GA+zA7MDtxH1ogytFbtxWKGyY7xRv7NbYkPJnAyoZhJdqkPBFqE/VmWVOlus9Ye8d+uKLhDkxC3MU5X2NVTpNrCrzRsWb+CDnKVThecgPpuTrbGJNpwoGmNlsRFBtanRl5Lg786qmJ2JrV1q6lUpMJ4aUU4rvmJRxaARmnTifME7mODn7yfN5cBxfiHHg4wt1dmx0ejk5Vt36MrFoGiE2g/nA7EncNuatchTTmHtMytmx1rFe6LPT5yI3qzF0glh5ZTGInlYIDls1blvDt43tvuP3BrfG2KrM5YZCa9faMCP3SpweQ+hyvI9+BotPaMw+VXjMmeuvEMpr1LqsJBIxkTBEiNg1QQahJ9lXagr/9xCCUphUm7phbJGuCoIByiUXnaNwMokpO/dAJzwiF2jP9oX3uXAtBW+GNSdqy3jtRrciNGQG9IGF7I7FMFeMmNmU5xORhMmA5eyXNvyYc8bAZxL2TBJGkbg2vNyw+pmIk9k7R7Ls7XlQjhM35QOdNRhtEuVJcUHjz68/qED5+h3j+ZV+PjVDrQ3GTaRHnLEvdNrWJ09kI7k5Lkk0EamwyM5lETn7zPIwL8aFoOQVarm5JLB1dTQqgLLzSjmaNuUhmBy7lBoyg4NiQV0FSj85z87ZB8/Mz3gcSQoN8VOOqY5hIEn2UU/8+cBbpWwdbgr18+KQxnVmHSuCXOvNsjOpbCEzvLIVkV5ro1bQKlCIoWvO5sBcC4hmWTmK6DKWszE48/zX86TXSimVjtPH1Agq3hGOWN3GjFROrYOfduEzxzycrKZE/J6R7LV5dVyqb4zILB2vhVoaxQotlqdKxetNo5urQFnGeUq5DVMRWTxzOtLFdqkmrlFRzDQOm+qg2i730rHj207Mk7Lt1HESs2c8/MhWbWmSFjJvipDPGHmNNbgkzCSnagWjsa5Ky5UVrg3NgEIjrIHtTH+RK+6FoBQRJ2ce75kL8cK210gnURBd8jmGTNTkIgHadUvktrB+n+8x0OKeaMOyIjC3tHI3jZHTg2Wu++eaXdj7vaRqhUUwrxYMVyHrmf9k+WvxwGsSX2uj1YZbw21D8yStSdMW9+lq3/R3bpn58/E1U31nfl3Dub2q0VnS6rS+n3iOi/PyZuIxKGUSFIr3RJJWgSZuhEzFJDGHHCE48qcqkWTB5CP5MpfLkUOimtO1Hst0U+djpXXLlTvVm14k85qNOTutD8p20nol5gG9UcaTMjpeD3gm3+Z1ZlMRzOdkzIZZg72Ks3KvxFYu8rD2C/HH8ERM0k24JPlcQg0RYxudZoPNB5t43GxNAYaKxnhH0mz5ciFel+4LuwjF61L9sICo6O3yY4mutXd+QJpJQu7iUYl0r5E1sVDj3CPIgjXvj48CiB/z+K0uUOq6BdYBWFrzrJTFt7DLEMgy+ly41IJls0BJ+I+UjHr6O4gFvULAijooyEUyfaOjyxQ/5AjoRQ59ji4EX2ShVYVqGESZkofFFCw+V5eFI6bhBqbx0DGS6DlO/YxQtstsAS3wdlI9qAXO40E/n5IT9/Ma/6itGKzhrBrqXLitfEBoEz1xDfANLSQLWYFUm5R36Y4q7MhKfRGRE8ZODgvD3i/auWi6azGzC4iWGREksKWvMFlWs+zo58jQRbHa5X77bqM9plxve6q7xuhYN0pXomj1iVdl3tjsWAj+XihQ3ZRD0bZCi5qhcekdYtqgCcvFEkkinXcUY12kMzIZWOjWYIAZxxzUWhm1Mq1o9tuvC+DqDv84WW5hq3EVKmQRIqSAa3G6PH50d+h/l8xVm71bpdgHBKWpOKEoX+gqUNJETwUO6U2S0HPOmm2hM4mOvaf8DhnxFUXbl9qgbsy2Mc/GTOjcvef9O3j/pKvQWH4ZKzG3aLRqk7Xirc0mFo8q/XxgnZfkNGVxErZjZcdqIj21JSE1P9eS3l1d5io1lpIo7+vgev1rzb8Y4HHdV+8jOnvfD2K+/5x17os8cy7+VbatdhUyq/NdL3xh8Nd15/lFKtXeHbPXBlFKSZ8TEWPd9JxZZKziJGuDtQ0JwbF0IM31TSvUO1kYTxWaOYvsvlAmX8WKvx/guVAiD2x5EKWPiwdX2vJV3H3kuF12BKn+8qmfYy73+w9N5zpHKr60Zl3H/DpmUJPwXEvRPZ3OuVYGs9REBKqoZb1oTZ6eUvaAm8byNk5GOWRN4aYgvq0yW5EfTSIpOpIzkbQ0zQx9TqUZqbFVASxErNhQ05ZismWJZBbX+1BsS8JvNhPG8HUUfvNpkaPpvH/GAmd1Dfiq4vy9VtdSuO4H7agzi5PrWH/8w3WlX4vS3/bxW12g3DxoKBxskTnXh/c80YWs9qbkhIp8DiUwZjHjzbmyCzIyvLX3DnF4yeAD5TmICC9fCUHJhyr3YhwzmGVj1GDLDIhCKomiaKyziEOnoDJrm4qR6cTRFTg4HWcjIjjPg+P5lRhPrH/PPB8wnjRO7pvx6e789G7srXDfGrOf0A/M03SpbETZsLpJo7/dsHrDfUuliaubTq8JOd8WKNvCVXIRTLXCusjnh4v1g8pEMuaUfkeOhsZcgbqMUxLhmaRe0GjFG+DiHmhNiuygdQOtefa0pccSK7yH05fCgQkh2WofwdkVKaDd4aC2wnaX10XZVLCWOGVQ1EJjnVpon2QZve8bNXaKbVgrUDTr36YxQu6RaxuY1wGZV8fKPDXWOTvzeRI9UZVq2pRrIcrGCqGzWtShRFERyLwKJ8FU8+JZjZQrGqtQ1GKhaHNnzA8baXbCFAV5WG1425IztV3hg74JQaE0St2QiXvRXIEkQpo2g6q2Tgv+FA3yIoFGJEM138H+klD/xMYpBGYcyQdwjq9P5oDykEQ+LHKUkEXkNXbS2BHreSiUYD585vhEdvKSA7d318pZcK9UK+A3wjfwG9PvQnqyMFtpuMTqOBPVmlzIyDv3IfJ/WfwvZMPeSdi25GlYbpw6j9fWsOocEiWriaAgQi99eSSQzvJ+oVaRiIqFRjyeaGPSFegzydTjyYxOj0Ppt8VpbaPWm7xN6o6Qk00oc9h1783cuYsHsjhUcdJZ/keoOLDMlsnjMFDcyCSL65QVF2S05qZgxN4HFgrOrObsqcwLG9xIBCTRZQNaUx5NbR/caoNcv2eSl4VKeMmi1bjguACFxJppAGZCZFaBTYT2DFPqungyuseiBnVMpOI8YTboD2ychB/ENultKo9m32Gr2FHw+QC+yg2uGfGyCU0poJjEU9dB+r6IaKwmtoVpUoCuyeKdjc5mnWadZiIEVyY25a8/zoPRFfypolS8I8n2NaYRL4T3ajfLDIVGBvTAesCRzZYFpSZRnaAWydeXAEyFrNCXRf1JuG/VPyxV1d8zHBRZHMxUl0xYi0l8IHQGGZrF+4LHWhg84dRMA3ayQ3S2TXwRzOjkvL4UBW4FiSjk5jqCFU0RPhlFTn+UITXB6NpcTZvTGp32p6Axrw8om2DPtyCeHU7xC2Y/6OeDt7df048v9McvOd++Z55vlDh4vRUeLw2+2blvG+PlRS6HBHvbRewioGaB0m6wvygh1+vFKahNColaPDvqNK/iHcpbKo+S9oEWC95fSHqiF/1Ismpaygf0K/0SzlWgjLgkz5PAayIwltQ+U0fgFjJGMheXIrOGSnT5NgynDCNcZFCYjKiYFYKNZaEv2WU6zY6Rc1rTKNBCAX7VqVtl3xt1q9xujUrFqEkum1qcEiS6YhPs3TwuErIlu7l5jb4y+TndgfUloQsvu+RiQrP84zwg1ohGm2Sk58UcsvOPa5fTv0WEpLBZOsEa9UAkhD+9MV2qlfAqLxCvrFVoOdUuC3dbrP0sQJY7cFzg4PL00DmzmEmAlm27tV3HJjr0h3gH54vGYnNSty+UY+BVPCHZfme3ve69WihFJECAUYOV9cTUiGm1dnZxVnTeSkysbPK3KDcwhY102xIhTTKwpFKJ9L2LVi9oIgsTFcI67rZQlFiwuaoQs3j/ZrNEe+C9jXo/bxrtvN9L3jSWIAuRMDL/6x0NsPw/cRWkVKrm4iybNpqZkQwRncm4LPu9Lln1DqUBlbBMFY738VqYiO7TpFbptsjn+cmNjPxYhZOQBIt5wUZmpMmekLeZjsA9hLYMPNPM/fKHCjOqL7K+ohgM2BuSj1d91ot4mUXHe4/+fm2GJfKbJ3Ou4nEBketoLnBynep4R+NGLM9az3sIRDgOIYWbsTqwuA8hqwzOkmP8AOqAmvw84hJwFA+iLll9UD3RfZPpnScS8tHifj3XmNNmSBRSOpQuc7yRij5TkeJ5bV7O6PMdibumo8MuU1Ihv4nEIHuKxS8pubb5/Gg5kZf0+vUCZ5aARQf8QlV+xOO3ukARQqfFd0H766irQLFkjIsMO02FxMXRMUFUnoZOtQqmLMXYt4QIDckRi4oUm+O9OOnj/cQWrpliVCmCiIGb3POWpdHytwiC8yECU6kOtTEpzDcjjiDOkRfhQT/feLz9mufjO95++D94/vBHnI8v+Hzy6b5xfLpR4zPnXbr7235j84pve8qjXcVJ2bC2M+qd6Y0zR15eCmUr1HRwbCkplWR0Md/Ts8WUdLoyT1aD6MZ1/Hs/NFaZHwqUMdPUJziOkA/ADHryJEZMPPWDg5FF3DsaVjxkJj87MRRoNqNS6pkFisiTSfViptQ7aMwl7Z1dcGra2i/yoRwU5Z3RamHbKret0vbGba9UGkRlTOg2GbNrXIVQlFUIjCxOwlNDkUWKFWCkn8NEicHjves1ujbhhJwVCbA2NdCyaJdZ2USbhhXN9EVU1vmI1TZeHilZ/i3vGy+EVWY+Lc3HVKSU9NtJhU6Rc0f5MP6M4FLWyJMk7bNzc3gf9UH44iUE0bbkx3ToNyYT73cRemNSt53aTo0civKpyBRWKy6H0uKUKqIlQAmFHs4IbORGj13f45kULRluYOUmpLLcsyhpwMY0HRMuDkW6ZzKvtWKN11aXDVJULPVOrA2OtS/reFn+heoUz0blHYm5IEjei30zxOfJMcm1nK9x2ocCJV8m0V8R88vFqQv6HMyRBYoNGQy6wiZVnGwaveFafz40X9rk9XrTUiacqMoMuwRmH9cIXAjKQooWAKoxhAqLCI1Izym1T5/GctddVvm4cmTW2D5Q4bIKFOWa5dgn1ngiOTlrVHEVd/kkSaB5TuPD91yPeP/l2lN5b3ZnFmMghE5ojRNbvBcot6lmJianD2ytTeUUSmKJbI5BnAfDgigDL1MTsrI8dmYWzYGF/KxidNkG9C7Prik1UDqNCnErnZXWLSt8EXnEDcwLJgsUVpEWa9kw6JpIrHVKVgaTvubtAcWmVIZz+WOt+mOdA64p/1X4RRZCf88UKA7xwQuDdB1dOvvxQY0SbsoNCS3gs8+LK1BrsBVjb6rka4F9j6Wa5JwOacc+e6bE2kwEyxiz5BTCiHPBrgmvmW79kY6r9CFDrjl4fn0CU+SjJi7CeTT64czDmMeD/vyB8//T3rWG2HVV/99ae59zJ03b0NJHkqaGoKjU1oCtjxRfRAwGqpV+qX6KCELEFIL94uND+q1BsCDUB6iIghA/2IjgM9IktZRCWyONVUqg0baS/KOxSSczc+85e+/1/7DW3vdOHs2YlsyM3b9ySTJ3OnPuOvvsvdZvrfVbw1OYnfk/zM78B9On/oGZV/6F0cw0KHa4cuUKDK++Eh43YLTySosYGJjyoBVXwbU6MVfFtRqQbxGoQQQjioNrdCBas6JV58Q7NL7VQVfW1ZAVPJl0A/G5gC+HfPmZJT0I29Bpiif2ZeGGZEq9UTAaihaFRkEIoQipcRZek1QcFN3DTYJZtLWYpQMogDkhIoC5B7seEgcg6OHZtx4xMfre6juSoB+N4Fj0fhPplFbRCNCB0LJH2zSYagdYMRigbVutkicPiEPXJXDsEGIASwMhByfeWIwIh4BIwa4taMRECTFq+3HwDsJaEAtjUIhUQEuluFVt1jUObduUfD+QitolO23RBKujEKNDihr5EzlE15TC2rHcujrMJKJrgxlwypqU4Xe+tQN9UJgH75xG5QDy3BAp7ZqqXqk1Q7pGBLl9Uz0/oYisiSByhbIpJDqzhxkpBuQwt5k6owxKMwdyI910xSbxOgffOFubDjrlV7tXvOQ1k8u8VUnTeQ/XtHCtpc8cAe4KwA0AvsIS6A4kjJjbXicidSO8jR1CSRfrxitjB5DSRMQD5FqLCXdpgoWxwyn7MtkxsZoMO5fViRYZU+X5kCRlyEr9BWcHyFgXVsfdO1a6nwVBQtGBSiyQdkoP1mYFyKmDksi0ScAaOMAiYnNMiJ1KlBONW1Ut6hZz0bQkSx3TxCqeWJRd1bLwlNA2xpJCuxnRAz2ZCi+c+Yi6D7fw8OLQkGnwMKFtLdvOggFg6a1UNGdCNLZD2OqbtYEiEau+hzEI2fGwB8l+f+FObG/P4pbK9GZNJa0HAphaq0sL2q0j2i2VehSmPgJAbPSgxwhCvToBfYTEDhFz4FGH2DPY66A+HugzqQX5rToBMSB2I8TRCGHUIQ47xFEH9NaQ0Au4jyDqte4rRNMn6SCWEAeSPqcuIfWqWxIziyJqCxHS6cTB5A+sI1aFpBKis/k+yeQz/LiuMOW6JGMMMwOFhNL1mYLu+wvF8nZQzP3Lwjz5ac19JTnOKOkJpyqBEI2+9IZZdO6UUnSW7mlcKhFLUrfWXgRhlVTXXSgC1BSP2/ToLZ2hOT8tEoVVRWuRZwraVioSkTiCes21h75B6B1iR9qBM5pBPzqDbu5Vfc2exmj2FIYz06AU0HDEqHXouhH6wUAPfmgqC4MBaDClHQpuqohrZSltjuPuCOcHZTiY8zp3hX2jxZAWlbExKM4qsiiHSECpjyjRs0TAlC0ZUDXRqEMFI7Qdl2IC2NmwP5Pnt6K7vISts1ALxYTU2XQMnzQb3ljLYkxeN26IXaNDTHqtuW3PWbzvXTIJb9VDYVgrcx4U5zw8e/27DfzSFIIAKWj7Z7TuBFjxGRJ0HlAAJIAtB0QEwBMk6Zwkcs5aY0VzlJbCIGcqkD4XL9pQSUCdGWuP1JZenQ8VU2MdILq5EzmbCk3WnmqFtSkWplEPRNU8yUWnyMXjWf9kshjVDr+S4hGUNANlwTsxKh9UimZzATHZ9ZFzgGgHFEo9SRZ90/Rj0VdxDIq2xqyot/w+zlE1yjWOC0jN6WALKJj1c+X0A1u7NDeFqsidPeNNevLvxbXAZPJgnAcop1zZkfSP7JqgOCi6NeWiUfs9yHSJfc5JZiQ7H3ljkbyX2Z/jX1V+N531szK7gDxYLn8KZj3E8jwhchhLC0ipP9ECcGWyhDMTgfErB9TZSyLoM2ipqUIHmRUYWiMD85F9UoeBA1vNnTMGQdPs3jsk6EBV1d0htC3BcYInQYtxK7og10GpwxQBq6XJ7FVmqVyxcW4cyPdWb2f+zxiUaCNC8gwwk7LIHUBWParpZO0jL2sSbCMJUkKkJl9VqWkSSYhBVZRjn4q/m3ILN5HuiSImnaGNACkHuWGchoGdLeSSpXdiUXiFjbfQQlxj73LddMqMGdlZRSVoKOu/pDxtKWaHA3amFQYxn8Gw4ukJxx1jBuXNk+KxYhCS8ZTMZFX4KU/YtKI+R04LHclrHzYFZOVJ75LWHxh74jzQ+HEFqDIwupGHFJE4gTlZJboOphOLCnTAkt6YJAIipeGiTamVThdlDBH97FDFvtABTr38LrToA6PvCd2ZGXRzpzGaOYnRmZMYzZzE8MxJDKf/g9GZaZAktJTQDRp0XVAZ5CTWUtwCUytBK65QJ8UPNJ3DTVmYLqBM43TtCh1p73Xuilb5m4OSnZRML5cCifxnviEWVTo2jz1qfto218ygJBaEkEAhgnyPGBMo6P0ApLgnmVrV32QieRQhrkMDbekdmA4IUYQklf92zKqzIGyBhDI0PUNbGSnqIDRHaJht6i3Bu3YsRe8abTdk1YVNxIAEIARIlyDSQ4W+Gt2YkADqQKISoMya6db9UDdFH/RzC2uLJWXbtg24cXADrwPImgaubZE7JyShpCHJa5dMJLWJBAfhCO3C8hDX6jj1pGyyCEDJNFjyiVJk2p2lUbQINTMnuS5prHmAUvxfRhRwPkS1So4SWR21bYD5vhvjonUjHkjqmEjS+gfyvQ1WyzOoGozn3BjDU1RuzWlhqydwubuHCyOC/KzaAD2QN2eFQNSAqIW2TOthVHj8kNPEBEIqSpvZaxmnEoB57ds0yVjnYEjtQuU/W83lUZHCzhQj5/qd/JOyowcUKp4AS7mM/10clfw/WTClnWl2rdFSfGxdTZwdxZzm4nE6g/OvI5iSG9Bo4bY4q3GiMSukNX9Wk0b2VyIN1HQjLq3YBGtV9boUGiKkwGiSA0Vvw0eVpXXOxiGQplLYq+PaeMBRhEfCIJkiNeygJQ1Le1GtjQhSUU1zpCNpl6UIqRBZivMcKJiDAZOiSJF0wKp1C0YrHSh+lyckz9al6ZA7+PKaLKlTTkipGXsEYs4iCaRPJXVEqlqgzKPku+rV0jGWupIUjIkISTv/WNRZ6W38BwcNhFNEijbaIGcZ2BwFUyKIkdR2QqXbVHJnFAHE9gzkOXbZcUm2piU/5ram9WDWQH5iHyhppFyrskAsawdFQgcRVjrLPnjqRWesBJ3Do38XnajKAmHrBZeAXICprLfKY7MzFsWTRn0mLiSWqycWsE8m0BEgpgZYekgoWPW/UoKUlCILvXm9vWiaqA/o+06rrmUEOG1A7mOPbiQYjSKGp09hbvY05qZPYHjqXxjNvoJ++lXE2Vmk4RBMrFokiTSHbkN9yA+0W2dqCpiaAgYr9GuWa0+dPoBR8jwhhz55SGTrmHCI5OCTjQATgmOMZxJJbp1MEyHc5J/urD/tRGMbVJdbclmjDRZo/YPYIZC9fIwjXOsfgSDCOQd1ShJSUlVM4ghJA3NQXKF0+yRWsBsRGtbJpxLhGldy4uqgQCf1tgNwaw6dDf8zFQJ1jlKC9D1ir23MManWg25OAXARxAmu0RoI5xzENYjOnDzXIAYtoiPTEnHeOqkaQjvVwnmPxg8QTUlSojE8noBGRcgcEZzoZiYs6qDAIblWu1mipWEStHPGRNvMQzE6VueLiK0LsaFoOV1Tgim2rcYizDJOXa1i4nF6m/Wo0u4XuDyTQ3SNCqsypzlAWpCraUfyOqyvvEQZr6x9kqXlc3+Drj9nr1RYIWTlW9LCZkIDiNP0a9LREyoYaHVDMSEk7fjSNDFZ6liF7bJukkxssknGDsr4gMunVqa7i7sy3qhtc88OwCSDYh6QOn7mAZLR46T642NmAhrGEshiAjmHUZGsHBxVbZhE9Vc5C/SxsUou76b2nJlTAWL4tkHTNGgHA3U8TZ8lOzNazyXjIIYZsPc1WhQIGC4kC3C0e4fZAY1Hw0DyCU1iIDhQTHASy88jsXtqBdLKquS0LNDYnsu5xVdsVk5kPQuyF+d0XwcxGnalIS5mOXfkOT+maita0B9TQt9HG9AXdECrna5E2iHZJtJW3wDVrIENe7SUa6IcvLaA6Awk5LXLdj8sJZiF/cJQhekoJoQUdRfNk4MDEAMh9EDo9U8HIDZA6gE2fRfYPBwOmb/L+4ExRgkmmqapGTZHD3lNsoaLDLK9meCtzknTiXnNZe/c9mxCYdoIZJ1m1unITrumcuv/ArDMHZSgG04fShVxDGJ5rqyTkRCC6Nh3FSvRzcEUR8dtmPrw60ObOwe048FZYSHYFCpLS22PFG1uCMRy0522ryFYbQKsJdSG9iWUAX5SeLao6n3QQtIYImLfI3QziKMZxNGsveZ08m6vRVCF28wtwEV3wsbBew9q7GWfhaC9/RJzflVnJMRoNohkrbP6ECYYiwkqOWVPE47ERBvlmEvJLgVQKuXAY5owTygGJp8H5EVeqvHJ6GKYP8PmpdtkVEJEcIC3QmixSn52XttNobbXIuloomHqoGg6h8Beu1K0LMPSDq5RxyTfd/J23XbYSEIKwSKQnLtOIBdVNdTaQZ0jbb10qq+Riw9iE62miW0CqS+dZK5trCBUa1soJS0oZTs82Lpi2OarOLKjzlgG9kVDhQRmq1wrZAerql3pszPxSpIz8RN1E7bSyy2R7IyVI9aeiYmDGsm6OCzyEsnFFdrBkCmZyVdJNeXUzIToG43ZCJz1ook0QmZXCttiv5Qy02fy6qUGRLRoOysl582VcyfUvNAvE1DjIvdsnfFCtn2pPAOTz0N+b8KTsOeCLFotPk6hrGDOghRmtvwkyfS72juzAPaEocyoSaVVoxSzlhfDIn79kWyBMed6qNbBtR5u0Fi7LwBiZTWj6nIQZ6Vni8CZi8mYVfCNzenNjHYelqpLQdW6BQSiaPPNzDQ5DWcvZXLtdxkzp2ln249Jpz8rDaSfOTN6RdqeudwqnQCOsr+ImVKsrCjPG4tJg9wg6jDoZ9PP4Dgf+BZMTeoB5QJfshZPTVTrWWFpuFLfB3teRTsdIyU4qKJ0diiylLweGWQMjy4Vifp1y23p6A1jRizUK5wei9UNEaz42Qrvyx6uzygR1NmyLc4jTxW3EKcEKeOdYPxM5mVfNnd1TCaZlgVgeTsooxESMULXISQVA+v77JSE4qTMmYMSCoXMEAnaWuyAhEY7fEonA4ObFs5P6YaftGUV5CFeW0X7KGh8pzoUlu+XlDAMQ6X/MUJAD8AGaklATNE2r4hEvbrdCCCJ5lWSMjPoIWmI1J1B7KYRh2cQh7OIwyHSKED6pNMkvT2MdgjCNyrb3bbgtoWbapUVmGrhnGpaQBwoAGIUYa5s71rAJdIpr6TBbRKN2piUmtVUmVZsO/OStReeMHaK1TkZ/10XY4IOCosgbT+GxpJsJykzrC9/Yqe2ArdClYsesqr5Nk7j5N43LbHQw107DcRk9e2QJ9ZoMkaQ8yZ7rS1zyqB4uIEqnaIZqO6Ns9HrBIiPSNzr3I0QEENC34tFpwLnkraHeoLzjaYMSQuUBQ7eaxFykgRqjBnwbM6j2sEZW+C4AVIqwyu1vIItfWbS6Q62tQB5HgyRV+fNNjtVURerto3Gtqnjl5IVDyYu0umq+GtOeM4ZT7gr+UCk8rIoy+64ujg26tRyTGQ+kjgy/SGyAkzWMfbG3kipi/DmgAHEjX4m7eFH2S0Bc4CM1cwpK9J6GmVQHBgeYnPFxRyUaIe3IJVW9xS1+0o7j+zzCsatkVZ0bD1ReQeyA8Raa23Jp4mVX7Zi+8zAhKNrdTWlHcYlZDpPXHaqCBLU0aZeryNfk97j8fGSTzEV181ddDqPiUiLGj1rp14R9jKBMyF1MknMSWs8mkGLph1g0A7K0cVJnboUAwBdX96xDXRUVkwsWldhxgAXo8UxpHuoCQNmtsqlCKEEBBtoaCmJbGYNIfXQZ1YGlymz1tqFmSJrAJJzbglae6MUoP7HKr6YLEMYkyt3k2E1LGTjBEJCCpoKijawMNq8nKRZnBKssQnGsOhqS+Q1y0V54CeD0NlzEY2B0DSWb4xF4cx6CWI/bh0OpHUjDtkJobFzEgix17WVgl14JHAieMkFDJnFzvou2ukV8zZNubCV51Vt5k4oeIEI20/KzzvgEMpzQsIoPDeZO8QYO6NRg1sk6IgEfpMwKH03RIJDNzdEiAGhDwh9r/UdoVPF0RjQx6QHWtOCGp1Eqk8WAQ2D3AqArrA8uVXzsxWUcqs3wApEQdqu7CmhEYfEpDMXjCkJxpyEpDdBkgCc208jNFepHn1xGERHkAMECs4cngRqO9CoA7kejgM8R7QMLRL1Dt47XOEbrPAeU77FwA8waAZofIvGNyq+5lqwM1ZAQ1ilxEW0tUYiJDFSp8JGyUGLdpOoaFTSDUtnlFtYLnmhaXokOzFjtgQ4O2rMtHd2GiRlzZJcTCrFyVEfxQ4yGUcjuhFEo/RFac9cOMtizopS2KrBknQqsHn+yYr9wA7UDDRa96yRGyfwwIPaFmhaiB8gOVYnhdThCRwQ2SOyQ0BCEB1QSClZDJFU40HyB2EweVUrJYaz7huRBG695dWtZgJJHZfSZunVYqQsHJiKhkUSHe+QOFfQj49DwUBtrdWxhfUC5fsQUNiEPFnWXoVpyBERoXRmjBmCc45eYB7fMv632M0UEMSZEqljBGZEYgSQvRg9OZX8J9ZgghiJVZcjQoX4IFpTkMX51MnV4kThfPDps5ucR2Kvk4jJmXaHsmoR47RNNIcid56ob2zrOBdZyvgTjdM1EybI63Vez/2knfLXJxe42YYw4aBAc42N6dDYfSCGtlGLDb2kpB0aE06JWPGmqkiKjuGIujb1iCJ4cjZzxxJlkp3rcRzMugWCW0bb6qgH7/ValFCSMfOgIbal69jYr6bYR5iRnANxKDYSeIBU+l3TPgCzh3h1/RA7DfBSr+lUAEDQn5OoMGCA1sMkc1+iY2U4GOgpqaicFaYQjZPNpT3eGMAE+zsp65Kn74qxx9HSfzHqdhlS0vou0jEmibNzYm3eUKe/TLq29auDQRkkDp4FjtRBaVxj6SereaFos84YKWoLdmbUAnlE8poNgEeE0/ejMuApQacF270hsLYCW79vHsTJ3q5fjCGhnEAfp9TnF4qbc4porInYSJKcrBzXeyK31tuaZ2PSNciyQHKcV7wolqWDkquAT50+DRaHudlZZUz6EULXTTgoGkHMxWjDvhpQ2yotToKm1bbOFK9EPxiiDwlt6NEMBohCaBqC4wgEpcGYlPrU2tyIEPQhQuRy+M52s+hShy7NQWQIST1imEXfdYgxAOJRKpTCyKKfHikpu9BFxlyYwzDMYtTPoAuz6MOcDgaMwYqCNWp1Yod2VI8/9hF9F9CNegznOszOjiBJC0W9iyUCHZ4ZYTQXMDM9p0q37BH6XgtjHWM05TUi8plu1+GJbDU77JTWdQ6lqI29L3T7uRS3MSgxIqSIbmZmQmgoWmoMyLNUyOysP8u6aEhnK0ESUuhUCyAmdCGgi0AfgSTenD9GTD1SChj1Ydx1ECNyYoIig12Ciwxv80kSEpooaKPARwEcgbzqOKYI9DOz6M7MIMzOYnbmDGIfELreptQCDQualtA0DjER2pDgA1SjxSKVmJRV46QqsuSctkGKRaVkDhk3VuugNUtGY0G8Oihd6HXAYJLSvUAgBOgQsBgEMUajqE13xpjFzFI1bQPPQOec1uJ4RtM12jrpCI0XeBY0zubIlDROgOreOox7BPJdz9u+jqrTBzZ3tSWErkN3ZgZpOIcwM4t+OIcwnMP07BBzww7Tww5nuh5dFzHq1AHspQfP9fDWaReSfsaQ9P7HGNB3WhwIi8gjB1DTwxut3vVi06691Q0BSAkj0RkzMVm0C4KLDazNAiH0FjkLuqiiBsNcpQrddAudz405mD005mUTEdMDJgchWiRtzp+xeOz0nrFn+OgQvaYARNie/YTUWV1JMKFBKJ0uKVraI6J3Hp4IMjqDMDuL0dwQoRtpKsa16OY6MEZgni2qtOxyd6IGHnAEZ0xBExOSiya2RQjB6vuGXT7B0DWhjILgTtnglMimc0dQN0QezN1KBHcBFCI6AnoBhjbzMkUBD0fg1IFTV55XmKaTazzaluEpwVFCI3luDRA7TeUPhwGjYa8p8tjrPXIEH1stRA9Oi1hIi+dV60aZuJSAvhP0XULsEvq5gLnZHt0oousjQgroYw9JWjsXuh7UOCRHEOlNFkB0InkI6IY9wjBoveFcB6QOJD3EB6TGafqFgrFoY8mF0PequuuiqitbKjj1PfpRwMwoYWaUMNcBc53ASwR8ghtFRAqqx0XZmbakLelaZVL+cxQTgqiujRF1No1dioAdMntqz72mppI5KNYVZE+6wFrQlRq0ncCcnQDNOoSEUUjo+jjvHH8tkPw3PT9LBC+//DJuvvnmxb6MioqKioqKikvASy+9hHXr1r3m9yxLByWlhOeffx633HILXnrpJVx99dWLfUnLCq+++ipuvvnmartLRLXfpaPa7tJRbXfpqLZ7fXgj7ScimJ6extq1a7XY+DWwLFM8zIybbroJAHD11VfXBXeJqLZ7faj2u3RU2106qu0uHdV2rw9vlP1WrVq1oO9beDltRUVFRUVFRcVlQnVQKioqKioqKpYclq2DMhgMsGvXLgwGg8W+lGWHarvXh2q/S0e13aWj2u7SUW33+rBY9luWRbIVFRUVFRUV/9tYtgxKRUVFRUVFxf8uqoNSUVFRUVFRseRQHZSKioqKioqKJYfqoFRUVFRUVFQsOVQHpaKioqKiomLJYdk6KN/5znewYcMGTE1N4fbbb8cf//jHxb6kJYcHHnhAB+9NvFavXl3eFxE88MADWLt2LVasWIGPfvSjeO655xbxihcPjz32GD75yU9i7dq1ICL84he/mPf+Qmw1Go1w33334brrrsPKlSvxqU99Ci+//PJl/BSLg4vZ7nOf+9w56/ADH/jAvO95s9ruwQcfxHvf+15cddVVuOGGG/DpT38azz///LzvqWvv/FiI7eraOz+++93v4t3vfndRht20aRN+85vflPeXyppblg7Kz372M+zcuRNf//rXcejQIXzoQx/C1q1b8eKLLy72pS05vOtd78KxY8fK6/Dhw+W9b3zjG3jooYfw8MMP46mnnsLq1avx8Y9/HNPT04t4xYuDmZkZbNy4EQ8//PB531+IrXbu3Im9e/diz549ePzxx3HmzBncddddiDFero+xKLiY7QDgE5/4xLx1+Otf/3re+29W2x08eBBf+tKX8OSTT2Lfvn0IIWDLli2YmZkp31PX3vmxENsBde2dD+vWrcPu3bvx9NNP4+mnn8bmzZtx9913Fydkyaw5WYZ43/veJ9u3b5/3tXe+853yla98ZZGuaGli165dsnHjxvO+l1KS1atXy+7du8vXhsOhrFq1Sr73ve9dpitcmgAge/fuLf9eiK1OnTolTdPInj17yvf885//FGaW3/72t5ft2hcbZ9tORGTbtm1y9913X/D/qbYb48SJEwJADh48KCJ17f03ONt2InXt/Te45ppr5Ac/+MGSWnPLjkHpug7PPPMMtmzZMu/rW7ZswRNPPLFIV7V0ceTIEaxduxYbNmzAZz7zGbzwwgsAgKNHj+L48ePz7DgYDPCRj3yk2vEsLMRWzzzzDPq+n/c9a9euxa233lrtCeDAgQO44YYb8Pa3vx1f+MIXcOLEifJetd0Yp0+fBgBce+21AOra+29wtu0y6tp7bcQYsWfPHszMzGDTpk1Las0tOwfl3//+N2KMuPHGG+d9/cYbb8Tx48cX6aqWJt7//vfjJz/5CX73u9/h+9//Po4fP44777wTJ0+eLLaqdrw4FmKr48ePo21bXHPNNRf8njcrtm7dip/+9Kd49NFH8c1vfhNPPfUUNm/ejNFoBKDaLkNE8OUvfxkf/OAHceuttwKoa2+hOJ/tgLr2XguHDx/GlVdeicFggO3bt2Pv3r245ZZbltSa82/YT7rMIKJ5/xaRc772ZsfWrVvL32+77TZs2rQJb33rW/HjH/+4FIpVOy4cl2Krak/g3nvvLX+/9dZbcccdd2D9+vX41a9+hXvuueeC/9+bzXY7duzAs88+i8cff/yc9+rae21cyHZ17V0Y73jHO/DnP/8Zp06dws9//nNs27YNBw8eLO8vhTW37BiU6667Ds65c7y0EydOnOPxVczHypUrcdttt+HIkSOlm6fa8eJYiK1Wr16NruvwyiuvXPB7KhRr1qzB+vXrceTIEQDVdgBw33334Ze//CX279+PdevWla/XtXdxXMh250Nde2O0bYu3ve1tuOOOO/Dggw9i48aN+Na3vrWk1tyyc1DatsXtt9+Offv2zfv6vn37cOeddy7SVS0PjEYj/O1vf8OaNWuwYcMGrF69ep4du67DwYMHqx3PwkJsdfvtt6Npmnnfc+zYMfzlL3+p9jwLJ0+exEsvvYQ1a9YAeHPbTkSwY8cOPPLII3j00UexYcOGee/XtXdhXMx250NdexeGiGA0Gi2tNfeGldteRuzZs0eappEf/vCH8te//lV27twpK1eulL///e+LfWlLCvfff78cOHBAXnjhBXnyySflrrvukquuuqrYaffu3bJq1Sp55JFH5PDhw/LZz35W1qxZI6+++uoiX/nlx/T0tBw6dEgOHTokAOShhx6SQ4cOyT/+8Q8RWZittm/fLuvWrZM//OEP8qc//Uk2b94sGzdulBDCYn2sy4LXst309LTcf//98sQTT8jRo0dl//79smnTJrnpppuq7UTki1/8oqxatUoOHDggx44dK6/Z2dnyPXXtnR8Xs11dexfGV7/6VXnsscfk6NGj8uyzz8rXvvY1YWb5/e9/LyJLZ80tSwdFROTb3/62rF+/Xtq2lfe85z3zWssqFPfee6+sWbNGmqaRtWvXyj333CPPPfdceT+lJLt27ZLVq1fLYDCQD3/4w3L48OFFvOLFw/79+wXAOa9t27aJyMJsNTc3Jzt27JBrr71WVqxYIXfddZe8+OKLi/BpLi9ey3azs7OyZcsWuf7666VpGnnLW94i27ZtO8cub1bbnc9uAORHP/pR+Z669s6Pi9murr0L4/Of/3w5P6+//nr52Mc+VpwTkaWz5khE5I3jYyoqKioqKioqXj+WXQ1KRUVFRUVFxf8+qoNSUVFRUVFRseRQHZSKioqKioqKJYfqoFRUVFRUVFQsOVQHpaKioqKiomLJoTooFRUVFRUVFUsO1UGpqKioqKioWHKoDkpFRUVFRUXFkkN1UCoqKioqKiqWHKqDUlFRUVFRUbHkUB2UioqKioqKiiWH/weHM91kM9NnZQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF5CAYAAAC1N9FKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9fbBs21XeB//GmHOu7r3PuV/6BIGR5CS2+TBfhhBRRRDIchAythGICIUEvRX9IRFXChOcKJWAADvlEoqJQhlIYickFMQhsUkqxq5yCBIkKWNJWConRA52gkDYCBBCuvecs3f3mnOO8f4xxup9DvcKLoQXSa973up7zu7Tu3v1WnPN+YxnPOMZ4u7OeZzHeZzHeZzHeZzHx9DQj/YBnMd5nMd5nMd5nMd5/MZxBijncR7ncR7ncR7n8TE3zgDlPM7jPM7jPM7jPD7mxhmgnMd5nMd5nMd5nMfH3DgDlPM4j/M4j/M4j/P4mBtngHIe53Ee53Ee53EeH3PjDFDO4zzO4zzO4zzO42NunAHKeZzHeZzHeZzHeXzMjTNAOY/zOI/zOI/zOI+PuXEGKOdxHh9D4wUveAF//I//8d/27805+a7v+i6+7Mu+jE/+5E/m8vKST/3UT+UNb3gDH/7wh5/0+re85S284hWv4IUvfCEiwotf/OL/9wf//2fjxS9+8UftvPytv/W3+LZv+7an/LcXvOAFvOY1r/k9PZ7zOI+PxpCz1f15nMfHznjBC17AZ3zGZ/CjP/qjv63fu3v3Ls973vP42q/9Wl760pfyrGc9i3e96138+T//5/nET/xEfvqnf5qLi4vT6//QH/pD3Lp1i8/+7M/mb/yNv8Gnfdqn8RM/8RO/y9/m43u85z3vAeDTPu3Tfs8/+0//6T/N93zP9/BUy/O73/1uHn74Yf6Zf+af+T0/rvM4j9/LUT/aB3Ae5/HxNq6urri8vPxoH8YD4+Ligve+970885nPPD334he/mE/5lE/hla98JX/9r/91vu7rvu70b+95z3tQDQL1Mz7jM37Pj/d3e1xfXz8AwH43xkcDmDyd8Tmf8zkf7UM4j/P4PRnnFM95nMdvMr7t274NEeFd73oXX/3VX81jjz12ilx/+qd/mle96lW84AUv4OLighe84AV87dd+Lb/wC7/wwHv8l//lf4mI8La3vY3Xv/71POtZz+KZz3wmr3jFK/ilX/ql3/IYvvd7v5daK2984xs/4mtKKQ+Ak2388//8Pw/AL/7iLz7w/AZOfifjAx/4AN/wDd/Ap33ap3H79m2e85zn8KVf+qX8r//r//rA637+538eEeE7v/M7+Q/+g/+AT/mUT2G/3/N5n/d5/PiP//gDr93O87vf/W5e8YpX8PDDD/PII4/wdV/3dXzgAx944LVbGuxHfuRH+JzP+Rz2+z3f/u3fDsDP/MzP8Cf/5J/kscceY7/f89mf/dn8V//Vf3X63X/0j/4RDz/8MK985SsfeM+3vvWtlFL4lm/5ltNzvzHFs32fN7/5zbzpTW86XfcXv/jF/MN/+A/pvfOGN7yB5z3veTzyyCN85Vd+Jb/6q7/6wOf88A//MH/sj/0xPvETP5GLi4tTGu7evXun17zmNa/he77newAQkdPj53/+50/f/zemeN73vvfxdV/3dTznOc9ht9vxqZ/6qfzFv/gXMbMnHf9/+B/+h3zXd30XL3zhC7l9+zYvetGL+Lt/9+8+6Tqfx3l8tMeZQTmP83ga4xWveAWvetWreN3rXnfaTH7+53+eP/gH/yCvetWreMYznsH73/9+vu/7vo/P//zP5z3veQ/PetazHniP1772tbz85S/nv/6v/2t+8Rd/kT/7Z/8sX/d1X8db3/rWp/xMd+fP/tk/y3d/93fzV/7KX/kd6Q629/70T//03/bvfqTx67/+6wC88Y1v5BM+4RO4e/cu//1//9/z4he/mB//8R9/km7jL/2lv8Tzn/983vKWt2BmfOd3ficve9nL+Mmf/Ele9KIXPfDar/zKr+RrvuZreN3rXsf/+X/+n3zLt3wL73nPe3j7299Oa+30une96138g3/wD/j3//1/nxe+8IXcunWLn/3Zn+ULv/ALec5znsN3f/d388xnPpMf/MEf5DWveQ2/8iu/wr/9b//b/HP/3D/HX/7Lf5lXvepVfPd3fzf/5r/5b/LLv/zLvPrVr+aLvuiLPqLu4/7xPd/zPXzmZ34m3/M938OHP/xh/q1/69/iK77iK/iCL/gCWmv8F//Ff8Ev/MIv8M3f/M289rWv5X/8H//H0+/+o3/0j/jyL/9yvvEbv5Fbt27xf/1f/xdvetObeMc73nG6Vt/yLd/CvXv3+Gt/7a/xUz/1U6ff/cRP/MSnPJ4PfOADfOEXfiHruvLn/tyf4wUveAE/+qM/yjd/8zfz//w//w/f+73f+6Tj/0N/6A/xlre85fR5X/7lX8573/teHnnkkd/y+5/HefyeDT+P8ziPjzje+MY3OuDf+q3f+lu+dozhd+/e9Vu3bvl//B//x6fnv//7v98B/4Zv+IYHXv+d3/mdDvj73//+03PPf/7z/eUvf7lfXV35V33VV/kjjzzi//P//D//jo79H//jf+zPfe5z/fM+7/N8zvkRX/fpn/7p/sVf/MW/o89wj+/de/eXvOQl/pVf+ZWn59/73vc64M973vP8+vr69PwTTzzhz3jGM/yP/tE/enpuO89/5s/8mQfe+4d+6Icc8B/8wR88Pff85z/fSyn+sz/7sw+89lWvepXvdjt/3/ve98DzL3vZy/zy8tI//OEPn557/etf78uy+E/91E/5l37pl/pznvMc/6Vf+qUHfu+Lv/iLHzgv2/f5rM/6rAfO51ve8hYH/E/8iT/xwO9/4zd+owP++OOPP+V5MzPvvftP/uRPOuB//+///dO//Rv/xr/hH2l5fv7zn+9f//Vff/r5DW94gwP+9re//YHXvf71r3cROZ2n7fj/8B/+wz7GOL3uHe94hwP+V//qX33KzzuP8/hojXOK5zzO42mMr/qqr3rSc3fv3uXf+Xf+Hf7Zf/afpdZKrZXbt29z7949/sE/+AdPev2f+BN/4oGfP/MzPxPgSSmhD37wg3zpl34p73jHO/jf/rf/jZe85CW/7eP99V//db78y78cd+eHf/iH/1+ldJ5q/Cf/yX/C537u57Lf76m10lrjx3/8x5/ye7/iFa9gv9+ffn7ooYf4iq/4Cv6X/+V/Yc75wGv/lX/lX3ng56/5mq+h1srb3va2B57/zM/8TP7AH/gDDzz31re+lZe85CX8vt/3+x54/jWveQ1XV1cPsBH/0X/0H/Hpn/7pfMmXfAk/8RM/wQ/+4A9+RIbiN44v//Ivf+B8fuqnfioAL3/5yx943fb8+973vtNzP/dzP8erX/1qPuETPoFSCq01vviLvxjgKc/d0xlvfetb+bRP+7RTOm8br3nNa3D3JzF0L3/5yymlnH7+SPPwPM7joz3OAOU8zuNpjKfavF796lfzl/7SX+K1r30tf/tv/23e8Y538M53vpNnP/vZXF9fP+n1v1EjstvtAJ702n/4D/8hb3/723nZy172OxKwfuhDH+KlL30p/+Sf/BN+7Md+jN//+3//b/s9frPxXd/1Xbz+9a/nC77gC/jrf/2v83f/7t/lne98J1/2ZV/2lN/7Ez7hE57yuXVduXv37m/62lorz3zmM/ngBz/4wPNPdT0++MEPPuXzz3ve807/vo3dbserX/1qDocDn/3Zn81LX/rS3+QbPzie8YxnPPDzsiy/6fOHwwEIQPtFX/RFvP3tb+fP//k/z0/8xE/wzne+kx/5kR8BnjwPnu747XxvePrz8DzO46M9zhqU8ziPpzFE5IGfH3/8cX70R3+UN77xjbzhDW84PX88Hk8ajd/peNGLXsQrX/lK/vV//V8H4Pu+7/ueNgPyoQ99iD/6R/8o733ve/nxH//xU3T8uzl+8Ad/kBe/+MV83/d93wPP37lz5ylf/8u//MtP+dyyLNy+fftJz3/SJ33S6ecxBh/84AeftKn+xusBsfG+//3vf9LzmxD5fk3Qz/zMz/Ct3/qtfP7nfz7vfOc7+a7v+i6+6Zu+6SmP/3drvPWtb+WXfumX+Imf+IkTawI8pU/Nb2f8dr73eZzHx9M4MyjncR6/gyEiuPsp+tzGX/krf+VJaYvfyfj6r/96/pv/5r/h+7//+/nX/rV/7Wm95wZOfu7nfo7/6X/6n/5/Vo4qIk/63v/7//6/P5BCuX/8yI/8yIlFgAAyf+Nv/A2+6Iu+6IFUA8AP/dAPPfDzf/vf/reMMZ6WYdpLXvKSEwi4f/zAD/wAl5eX/Av/wr8AwL1793jlK1/JC17wAt72trfxp//0n+YNb3gDb3/723/Lz/h/MzZQ9RvP3X/6n/6nT3rtb4fVeMlLXsJ73vMe3vWudz3w/A/8wA8gInzJl3zJ7/SQz+M8PqrjzKCcx3n8DsbDDz/Mv/gv/ou8+c1v5lnPehYveMEL+Mmf/En+8//8P+fRRx/9XfmMr/7qr+by8pKv/uqv5vr6mr/6V//qKW3wG8f19TX/0r/0L/Hud7+bt7zlLYwxHigdffazn/2AsddP//RPn8pWn3jiCdydv/bX/hoAn//5n8/zn//8j3hcf/yP/3H+3J/7c7zxjW/ki7/4i/nZn/1ZvuM7voMXvvCFjDGe9PpSCi996Uv5pm/6JsyMN73pTTzxxBOn0uD7x4/8yI9Qa+WlL33pqYrnsz7rs/iar/ma3/J8vfGNb+RHf/RH+ZIv+RK+9Vu/lWc84xn80A/9EH/zb/5NvvM7v/NUofK6172O973vfbzjHe/g1q1b/MW/+Bf5qZ/6KV71qlfx7ne/+3ft+v3G8YVf+IU89thjvO51r+ONb3wjrTV+6Id+iL//9//+k177h//wHwbgTW96Ey972csopfCZn/mZT3n9/8yf+TP8wA/8AC9/+cv5ju/4Dp7//OfzN//m3+R7v/d7ef3rX/8krc55nMfHzfjoanTP4zw+tsdWXfKBD3zgSf/2j//xP/av+qqv8scee8wfeugh/7Iv+zL/mZ/5mSdVWWxVPO985zsf+P23ve1tDvjb3va203NbFc9vfN3t27f9y77sy/zq6uopj3Or0PhIj/uPx93967/+6z/ia7//+7//Nz0nx+PRv/mbv9k/6ZM+yff7vX/u536u/w//w//gX//1X+/Pf/7zn3RMb3rTm/zbv/3b/ZM/+ZN9WRb/nM/5HP/bf/tvP/Ce23n+e3/v7/lXfMVX+O3bt/2hhx7yr/3ar/Vf+ZVfeeC1T3WOtvF//B//h3/FV3yFP/LII74si3/WZ33WA9/nL//lv/yU3/H//r//b3/44Yf9T/2pP3V67iNV8bz5zW9+4He36/jf/Xf/3QPPP9V1/zt/5+/4i170Ir+8vPRnP/vZ/trXvtbf9a53PemYjsejv/a1r/VnP/vZLiIO+Hvf+97T9/+N1/MXfuEX/NWvfrU/85nP9Naa/8E/+Af9zW9+8wPVRh/p+N3dAX/jG9/4FGf0PM7jozfOVvfncR7n8f+T8fM///O88IUv5M1vfjPf/M3f/Ju+9tu+7dv49m//dj7wgQ+cNRPncR7nAZw1KOdxHudxHudxHufxMTjOAOU8zuM8zuM8zuM8PubGOcVzHudxHudxHudxHh9z48ygnMd5nMd5nMd5nMfH3PioApTv/d7v5YUvfCH7/Z4/8kf+yJO6oZ7HeZzHeZzHeZzHP53jowZQfviHf5hv/MZv5N/79/493v3ud/NFX/RFvOxlL3ugb8V5nMd5nMd5nMd5/NM5PmoalC/4gi/gcz/3cx+wy/7UT/1U/tSf+lP8hb/wFx547fF45Hg8nn42M37913+dZz7zmU9peX0e53Ee53Ee53EeH3vD3blz5w7Pe97zfssWHh8VJ9l1Xfl7f+/vPdDDBOCP/bE/xt/5O3/nSa//C3/hLzyl6+R5nMd5nMd5nMd5fPyNX/zFX+STP/mTf9PXfFQAyq/92q8x5+S5z33uA88/97nPfcrGYv/uv/vvPtDI6/HHH+dTPuVTeOUr/z/saqVdgFRFasVrA80/BcApDUqD3YVyefuC3X7hoUcf4XJ/wW7Zc1kuqKJoKSCGuKCuyFTcYPaODEenUR3cJmN2xoc+zLh3zeHXHqffucu4voJ5TWmge0Vu7TBVDgb3ro5cH1Z+9VfezxNP3OHxx5/g3oc/DOukHIULF6oIuhekgRZYZFL6oF53Do8fGauxTqNTMBRBqRQajT2VWoSlgVZFxfGxokQerxRBBRSnFUfUqReCiiAIbSrijjqIRt+QWguqiggIAiI4Qp7YHAL57DY8f3B38Ak4iNGtM31y3QdjTuYYTIPp0B1mN2w6bo654A6KISKoFErdIbVQdg3ZK9qEeiHIrqBLhbbHVJm1MpaJVUeWQRGjiCO7gtRKKQu7eota9rTLZ7DbP0Rb9uwvbrPUxq7tKFZQd8QHKgfcB9dj5Qkz7przwV5Y5+TYO/3uXeZxZb2+QobDMNY7V9y9c4cPP/5hPvihJziug2PvzGlMM47rhFKhVZaLhX1VbjVhr45iTOtMN6Ybx26MIfkomMMww8zAoLpSVFFVZp3EhRYoiovgKEzAPc6pFIo0Fik0FS73ytIarVR2tVI05spedXsb0LyOJa7XcLhajath3OmTx6dxnJPDiOvqc6LuaBFKUR5++CFqqQiVKgVFqQ7FDTWDPrA+6evEpzExrmvHxDAxho+YG8OpLqgL6jDWiY3J6J2Os+JAxYCBAz1nZWW5dcHuYuGxhy9YVFgEhjjDnHVCHxKfcb3iVyt2PNC5ZgDjvtle7vv7HmjAAjxTlctWeObFjguBqrCvQqFSWGKeC1wDHzgeeKJ3Png8ootSd8oLP/khPvHZD/Mpn/gYn/L7HuXicqHudxyHcTwOfvlXH+eXf+0JfuUDj/PLH7jLsTtHK9y57hy7cVyFOY1hhi8LUhSphbZCc7g9nIdr4bIVnvHoBcv+gmV3wfLIQ+z2jVu3d9x+ZM+yFGTXWKeymvDr9wZ3ro98+M4dPuRXdJlYBa17RBvmO1xypZkOBhgccQwoatQiFIRLVnYMLhhUwM05XMOdD69c3en8+q/ew3qHOaCsuHSmHFhKvMet2rjcX3J5ccHtR29RaqEshXv3Vq6PnV+7c497hx5rzBGKKkup7C8rUgR0Mr2DDdQmTaGp0HBww+fEHdxhaoVScFXcnMnCYEcpjSJK08qFwoUKz36scPmwsH9Y4GHDm9MrHAWGO3MaDWgoD7WFWhq1LGALNoVxNPr1Eesr61XH146tR9YpTCtcW+XDT6xcHVY++PiBMTpzdI79ij6N43Tk6ogMp1rMUeV0KeI6AEWEVhf84hLqQlkWSmuUVqgCwgQfDJ2YOkMF81jjdwwk8y37faWUwtIqk4JJYa0XGIVB5XiYMI3SJxfFKDZp19fMeaT3Iz/3T36Nhx566CMghJvxUe3F8xvTM+7+lCmb3W73pAZbANy5izdl9lg4rQpDClOVUfY4gougu0JdCktfOHhhPwRrg2HGpUFZBG+NnSyUmhexFIqBGFiPvxeLE2ZmrL1z6INVCvOYk1oKPjVWrAvFb11gWpgThnR6ObLevuY4hUM31nVAM9q+MhFEhdlAqiAKLgM9Doqv3Lu+y+qdwxx0BAMEI5b8wYUKTZW9COIdd+MwrhE3BGeZQhVo4iwGtUDrsciKCGol/u6grjH5iBtRJRYXUUUlKDklQIMS7xFAByR+ABxxx13BHcEo0xkGPibTBXPN14A5AUpiZgTkSUClEp9bRBBRJE4OuFBcUIuHzHifyaSrB0AyRyXOAa5og9KURZQqyjKhDqPo5KJ3diJcFKVihMP4wOY1Yx453r0Lx46tk3EU+jTWPuhX95hr53g4IBZgoF8d6HfvMu7cw+9dQ5/4cKbHGj6HgBv4oBejTGGY4EVAHPGZAjGnTMemI1OQARiYG3Ma5o45FAJszj5xFSgCpYAqSEXcEctzqdCKshPYqXJLhL1CK7CvsbFWEXZFT1jHxXExLDf0YdDnoMyJjImPgU/DZvwZ15wAIuLsFJrGotmI+6gRQAOEPqFPYFi8D8bAT5/rNpBpxARSDMFFmT4wAtB0nE6cC2eDzrotNmhRtBbq0lhU2BWh5ffRdVLEMQWGYotgVqAL26z8SLnw7TvtC9wq8FCBS4VFYK9xPEWETgCUJnBvwDDnrhoqTlO4VeHhnfLY7YVnPbzn4tYO3e+4Xo2rZfD4nSO7dh0AzwQ1R82Q2ZEx47hnAldVnIKIYq6YEcHAdKY4NhzvhpeJjIFaYadwUZRlaehuTzWlTGG3rqx90mqhecAzE1AqQmPIguc1sbh9Y65YXEeZzowFi6mCacGrIBpzsthEqwd4mNdYX/G143IAmaAdXYRSlSKVxZ0LEW6XQms1jqtOljm5VmG4McZgHCeI4jqgLFAFr4Z5x5nMEfeKb2mGjKemWQAUH7HoqyImuE5Qj4BNt7XIMwIUSLCkF4ItwE6YanGfj06BOGNtoZVG1QWfFR9xj4nDEKF3xV1xK0xTVpSjVa7Gyt3VuXvozN7xORjHHsHKBB2OWK7pmo+IDWNdL0rRQlsaszW8Vcq+UVqjtkpVQWzCVMw65s4YgiVgEw+oIzi1RGcMq2BFsKKwFJyW640ifVLc49TgVJF8n6fe/59qfFQAyrOe9SxKKU9iS371V3/1SazKbzbuPfEEoyq6c7zAVKeLMkXp5QKPmYTuKmVX2fWFac66jkD+XbAVyh56G4xlUptQirArJSM1YHQwkNxA3Q1sYD4xn7hPHIuFVMnZJqdZ4pIrszped1AXqAvSFkSFKntqqdSiyAJeFYoiGLpOdDco9S517SzHlZKfJ9NQlOJK1YqKgMLwwbTBtXd8TnBj0QQoGgtpLbBoTDZxT+YIgg1xisNCobjfABT3hA6CiMS/BbcS0XLeZIrEjYGDzZjdGGN25pwc5805a8SpKiJoOf0ACX0KSpF81IpoyY03wacJOhUZIDbx3GRkgqnjJY9LAQQdQp3QzChtUOVIMUXHRKYja4elgzQcB+vYegdbr5l3n2AeO6NP5hobzJjGvLpm9sE8ruAlAMTxiK1HpB8po1OmUWdsmOLCdIkF0Q0dBskYmQoixPXdQN90xAQx8lxyuha6XT/AXYC4jqeNeVsRtkVKPLk3C3AHlNzsxIJB01xU9L7r69v7SFBePhybwV7Y7NjosSHNiZvHbi4xDzCQOREkAGfOIVxxi0jL5mDOybSJmTNJNg3Difdle62X6CYdCCSRQyx2Ttx/J55ve5GCiMcDR0TRPEcbw2Yy43fEYwMqQhmKuzGTDbgfpGx/F3J/kmBBK1Dd409zqjgFj40bMqhwKk7ZgJzbDduJUKRQpKBaUBFUHKTgKOZyAhs2La7BmNgAy/PnYwYTjMdly/NgBmMa62qIDEQ6dV2ZTbBRA1g6+bkawLfEvVlKzJUILAgw7op4XFH37RHBAGbJ2jkuYOLMEiCyW8xzcGbABcw7Nq+ZY435JGtMHh1Uic8ZOplmmNvp3KvGml2LUItT1FCZiHcwxc3wEWfXJaJOPwVGkkFN3F/megL+w2/WxuJK0MvxcA3gPN0ZAqsZixcGMQdcY36KxPcU2a6vouqIRuwAcd9TBFPJ/SP2DBNlEmzlaa0ZE+sD7xMfE+8ZlWUwfQo4q6CaACD/XUtFSkVay4sZDJHUCrXFnLcMizyZbNsuozNNYh5JBFgqYJXcZwW8IFoRafHlioDa6W7xBLD225C9flQAyrIs/JE/8kf4sR/7Mb7yK7/y9PyP/diP8Sf/5J982u/zy//4/Sw1whQTZ7oxHEyEXm+dAEK5qNRdY3d74fbDt9lfXnC8t3J1+4rLi0v6/pK2NHa7hbIvJ4Cyk0JFKWOyoCwIFwq4M30yj3eZ64E5rnC7Bo6oDlSVqrG0FwomjaEVq5X9cpt117nYH6j9FkUXLi6ewa3L27TW0MuCLQveIlVVu9COcHsecO9gB3ReoXZErg8xeUzwaTGhxuDu9ZF+XFk/+GHG2rE+OCYIWIrSi1CLsV8GYh3xwRwzZ2JER6K5sIo/sNh73lCx2SRocQ+qnlhgK6AWz4lZIG+PtIXZZLixBR6XJRbBooqWSDdpaVACjDSJ6LOJspOGqCIlGCeToC6ZcXPqGKcFUapiGje91IJWRY41orDmLLuV0ibtOJF6N26sdoGXHaPuMN2DOd47fudXmIc72L3HYwNwywg+Y+vDQLoh68SlAoKsR+p6j2VccemdxWFxmC5MhFU03scMH5MyYv27v2uflphH0yUiVBemJAoUpWouPJKLgPuG63C3ANKJDzUBdpEWAE2hCtTqiOpNWq7E691iM7HYsSM69oiM+4jHeuz00YNu7gemTeacuAcEQgPkOQbrIahygSktYIpJLLJzcjxO+nTWEQGnkZuvDdwGcxxPGx4YIgWpkoBKUYSBUTBqqyDJMo0J4mhzSh0UUcRGbhyFSkXcMAc8In7E8SJYLczecJuod26WWh5IdGqmc5aiNBWqQ7VJw2kiNDWaGpqbkquyxzhitIh44v5xi3lsQrFCtYpaS0CnmOyYNLoX1gHH7qx90g+DvgZo7hiDjNgrFC+0usRxodic9DG5d9Xp3ejHiasj1hl7xcctRIS2a0ABF5a+spiw67AflWJOnwX3hllFRoX7NvqYMY7OmNDqY9s5WU1zmXG6GwJMd1Zb6XZFP36IsXbmmPS4GjgwBixVMSnUsWNnRhcoRfFW0YtBKUrrTh2DOjsqR8QEZoGuCAU00ucgmFbIgFZN85NiD5lmDBN0BqgvG+CWuDe8GGMGw2IT7nWNNQ9hl2lzRFAG1Scy15gLoiy6o6mz1FhFKZFGqbOyYlyvwXaZOX2dDHJTnwOZgzpWfA3K0dc4QzcpHKitUC92aKs4I+6j6ZSyC5DS9lB3oXtoO2g7ZGmI1ggCZAU7RBBp4NOD1RwT8YlgGIrNEuudNaQ2SrtAdA+6oywTpIMf8NGDkZEjw5V1W2yexviopXi+6Zu+iX/1X/1X+bzP+zxe9KIX8Z/9Z/8Z73vf+3jd6173tN/jA7/2fpo09HKJyFoVpKSAo+ci5DAV6YrSUFmRsQNW7PgE82LPcXdBXwqHpSQnW5DaqHqBSqOasEPYiXJZIppxnH68y+xHVr9myoppqEOqClKCBhOJRbMVYxZjp5OFlcUPMA8UIpe57B5hubjF8lCCpFYoUilWadYoe5DqlN1A/C7YATlc46aYFcbqjHVyvDpw66qzHgbPeNYd7Bi5ffFIAWybfVFnWQbKmpFG5g48oxMhUimSVJ5PzIxpjtlMFmnilhTmDI2Cu2OWOZvpqM8EMSOiKh8UZkTSbifQY5KRGYqWipcQ4jihV5hERLHBPp+RCvCeG7E7rCvYRKYxJDZXl4ouDZZGWRRXxVQZlw1riu81WDNVqDtmaaA7kNuYKXM15t07zOM9rg5XHHA6zigREYoYdXV8OjIMkR5anbnSfKUWY3ehjOHMI/gQzIRuEXlNhC4FkYimS0aw00IrApUimQdXRSoRvWkyQ0AhGD33GWAlIxSzjBKngJV4SEOIKMdoDC10rYguIJWCRtoIY86ZLE6wCI7hakwbmBvCpMikyWAnHWEGIEmmomkNZswl0qUCU1IOk1u8S6ZqagBjEwmAkixAsDLOapWt4LBpo5RKW5aIrCXSfS4DlUnd7zB35hiUFfCJFmNh0uaReqxocSglPtOEuQpjRvoNakSxteBlAsEA3UCTSHNE9K4nyt8pmAljKmMq6pMCSBGkKLPF9Z6iTC9MK0wDn4LPwnFUjqNyvRYOq1IWpS0Z0Rt479hxZV4f6PeOrMfBsTvXR6fP0MlY8H7AxKfDwdBdodRGrYWqFneUbOlRR8dE+4DjivaVMho7GZTiFFUuLicD4zCFeqiMLsxe6GNhjsoYGTAQ6WndztC0ACl57VWFWlps1Ml2wESa0PYH2sWRtm8BAAZk+IGz6Z48GYXQsw1f6S5UhFkjwae7Qd1N2jBKI9YTL6ED8kIRwXMGukowRZrp40TyXYTpnixPMsQ03CvDG1YKplBknubBmB4aunXCWoII1rju5gWdkeosmdYSmTB7cHgWqe6NyWtVcFOwwlKC2VWdjGrUOrE2E3RwAnC+nS0X6qgwgy3BJT7PDNeGeWP4wpxL8Ne2R3yP2BIpOxsRyJxUXM702O+KGCLBd20c4PA9wh6RhcJDFL2glV3cX3okdt0j6oKUBdUVlU0X9luPjxpA+Zf/5X+ZD37wg3zHd3wH73//+/mMz/gM/tbf+ls8//nPf9rvcefqDpVGtT1aCloWijakOIWeoN1CruCK1xWvE7eVqca0a8a6cNzvkaawKPOQkVPdI+U2IgvVlB3KToRbrVAyZWCHK7yvjHnEbMW9UyMLR9yikxs9RVxwYaB01FfUO8pAVdC6UNoFbXfBbqcsO6GlBLb6jvZIpeyEcgvwS/Br5HiFWcGssR6hHwflzhXlykIXc/kIvs54uJ5YD3WliFOXiUpH6BTpQFKfjNNm4AQAmD6ZM8WtcwRIsTUofTd8jtQ5xKKkuTipzdTBTPBjRFM6A3J4vOakFfBgvEwWXBuuBbySyS48U25qEkyJsSXWcZvY8YjMiY7BdEtdUIPdRNrEamyIJoofF3QR7CKAnxbBa8O04bpgdOYs9C6Zwjmwrv0kmIwculFkpi7EKcNQtZgb1iMqVmhLYZYNMEQ83N0j3yywli3qtBu6FovoikolIj0yBUjxAKu6gc5IRWEBEjZWy4Zh5owR+Wy8ZlItFheoeCnMUjGtmBZMhRPtwk2KJ052JqNT/KzJsFVxGoZL6BucyNNXkZN+SDK1FTNBIwIjGJVNMxOyIsEnybw4bgHoppdcjAXVJajquqOUgmrMbNOOy6TuF6ZZ6kcmmFBkxLd2o86BegvmREJ3YB2mRSTrGex4MbyUBOAbZyLcLJupQ8i0rovGRmGRwpvbn0RgYCedRmxahjKR1Gkpwyp9lnwIfQo6A7BFJDvxObDRmX0w+qT32By7ZfqZm7yXeIB1sYmYIpkuKnCaO3E/WWoPJjI6OjvFk9IrQmuTthh1caQXfAhjVtZe6KMweoix0UizZBbgpMfykToOdYpHuraVQime66SFUHNpkY7vxjwaapqpTpIZlEwVGZOZ+qMIXCgDfCJ1otXioTe/J64UlIpmujJEMeU0RzmlrlWUeUqLbUxIYyTINw39jCmoegRXFikRTwW5lIiVxRXFI0jYUjoGLltafYBpMk2W0rHQQFKdVvop5t5X8AoX1RgFpt5oV04ABQlm0jTSWx7HZCaIFyTn2rTYl6ZVyixYKfiJPi0UD8ZJMgVnOEUqN0n+WD+MitLAM8fgC8JykjSoVqoMJNOTcRU2mflvPT6qItlv+IZv4Bu+4Rt+x7//OAcqB/aHe9RSqMslte4C7Y4VkRD1jAOsU+hWsHUJ5fGdhfWisttVDvsdNMEb9EUZtXBoe7pfMlmQUWgIVZSLZYk0QS2UOQKZ9hXWEKotwG4ULnxw4UbREDwd++TYB3fWJ7g373HwA0OPVFGK3eFg93CrNF8oGHuEnUyUgeik0YI5MGUkJW0iyQgUjhSGVlaHclFoLlw+97HQFsxY6Mm8sY/YdkQFLY4W2C2eKndBJSOM1ADADUCJypuB+8B8TTbFcRuhvJ+GHzuMCetEZ2yYiuHSQQytkwBvA+srlpUtke8UfISewpygEVOvIXOi0yljotdHZIVi8Z70Sacj3oMCHZ537AG/LkwRQkmQ6ZPdLbQV6iXcWoxdc7SVOAeiHMdCn5XjXJibONRh9djcd3MXi6cHEBGfIeTUgYgxFYZW+nKJLUtsWgv4cWBjchj9JJqc+12kZdSZI3Ls4zhwaTiNxQuzKLMoFusC0pxaQwRZVCNVZ/2kSVFzrEdK7dhC7WMSAMWSw4JY+MpOqNVpxShVbjYsDx1MkRJaLBTRFtBChCGKS2F6ZeiO6puWI1ZnLRcgBZFC0V1Ek0UxKhON31cHzzmRrMlco4JpSGfKZEpUroV6Jaq5Smvofk8tGhUiqpS60IqhtTDmRI6FIYANGp09IdbdaYAaleR8PAhEt+T2SsWKYWr05Rh6mBEMTqi2GppKHmkV0dhspiYLpBIpZ4n0nG0AsBZmEUYRem2s7vQ2sFoopXLUHUcWjlZZDXbm7NwRN4pPqnU0gaEVmEXpFPrYKpYanKDfiBQTDvOA6wyGowlVhX0VWmrSaguRuPgK/RqODtexoemiFF8RXzHvHMcFV2vhzpVydRT6EIYLWpXSChetUBXUJ3OdmK304xVV4tpfXt5mVyq39rvY3MmU4cWeNgf1kduYXkc6+gCYBbBZglEqtwvsjbkcodxDSkelU3Sl+korR2rplBLpFx8QCiALvcn0EMn6jConD0BQLOoiqyqtLpgozUoIelUxGu7CmBGYiBq1CkWdmpoSDFiBgyRbLBEAOPRR8RKi0tJDP4REykRNYBBVojiXS2UWGMsCUxgt2BPvOwrGuGqs01jHPG31W6VOwIcBfeAb65R6GpUZbGYkASOVKSt08KOholQxCp0FgvWAZKMdKREkTDwCmY25zA+X46RYp0ylFAndWe+UPpA+mcOpA8p4+v6wH1WA8rsxIoVrEXX1Y2x0mnr+jOasg3SljsranVYH625ysVb2u8r1almmXBhLYRTnqq0cTRjeYQbNXkXZ7Z1SK3VxCqGvsAHaQ5i5d2OZcDlXLntEuWKRK1774M71gau1c22GJPwd88C63gVVdofGWhpLrSGYysi0HScyBD86066ZtuJ2yM1mYfXKNGf0HhS4Kr1JlMqa4alBUDwiGovKGy8SAuNlE/IKRbOix0KM6Vs6ZoyIUDzSCbCEAM09xY4TxsR1DfFWGSHwJCJtMqqou1TwlwB3UZEybwRZI9iRCNQ1wYpHhGeT2id6PCJrD6AyOt4H/XAPeoj+/BBVMz499Rsw15gf0ya6VGRRvMGxCVSntIyGBa7G4OiTqzmi1C7DuO5Rxsk0bmKCmdq5TFxoRPxFlFocr/sQ34kw62TOSMkUdwoEcyOGE1ohmfm9T3ofRzOlM0mwltVLohsFrajUUym5Kpk2C4ZrSgn2CLBMBDiOFqMtsFRoqpEXt9AOFbMb1i3yZSnrksjtZzIB2V4VwlohIuotgg26mxRFRlQ6ieg9iJoQ37l7CugCwBa5ESWW+/QIOmdokcbYlFBB5ZtRNESokqkUqQUcdiLsVdirststkT4TxWZEiFICZIqHMHASUbqJBYgqHmyEC87IL5bpHSE2rRL3j6jmvRPfKwS3pEiAFGrFMcosaClIK7gKU5yOsZqzWlTcjdQueWnQFmS3R/bHSF8PRVJJaVbY1GHBlEZgIJtuyS0+XAWpHuxSlni4kN94MH0wbJ7YK3W971FRL6dKjK04gJLvWeO7CqA9Z+aM9EkItCONqVnVQ1ahbbpq19CWbVBQNMrUay0RFNaK1hL6rFqoRVlqAOVCZVcqSyksqlRGVtd38J40lOI+ToBFbMb1MweR/NSYmOp2cw9KpD422YAqtCpR8aZCrUrNKpkqNcTFmRolVwmX+FbTK9OUoYWW4neZHu9vIN5yBhOLgUxcJq4LlInrDpOOyZOF2+QM2O5T8BMDt6Xwt3kOBmvBbWCzBrOsKSUoFuxMyauc58hSZG6Z3sJXMImCDVEKA7WOqIIdkfWA9hX6QHpHelT9Pd3xcQ1Q7pfauFtG4xPRgtFzQjidoG2lL1yv0GphPU4u18Z+N9l3p5SKtoXRIsK5KoMrE3rqLYqWKNHqhdIkdCJJC5oJOpQynf00dn1yuRq3jkErqxm9D/oYPHF9zWHtrCMEdOD0cUQOdzAPAfFSL2h1YW1bPNSpVlJPM5njgNkR8yMmhSmVVVuCNccWo+WNnPJGME9yOhgKLBhcLYl2WwmxZAp8FUI45hvFvy3GktUPhtBSsR+iCZkTysS84TJwGSH6I8CQLgVtheWyoU3QBm4Dt0jRzI0mHflnApRN+e02EJuUMdDjEe0DPRzx0WF01uM96INyWPF7K74atjrDouphvXsXH0GR260d2hTdO71apAWXDaA413NycOOJddI9ak9Ea2hubFJtnojO2IctNwNywy2UTZVfFkwqo1bGEt4mTvh/FHNcCuaT6cfQdgjYiMWRXLjnthFyE7WIyqlCQ1KfUzQW0AJoSdZIZoBRkRMwAeJ5VVqDpUDTQisaKTmzXDSJv0vQ0EGBc7MxSwIoto3Mg+7nPoCikYbaNDOh7Q0/k5g+cgKhxraRTkooYMGdmrBqYsiMKh5GlJyLyw09r0JzEqBIVsMFa7JvlX0t7PcNCIau99jEtc5MhViA7kgiYDJxNaTmecjrQQKcAKQgJTdnuQ/E+bZZxOMETqLkB1B0CWYhRN0EQHHjaMZixuLB3A0EqyFqlN0FXKyghnQCwYhFGgFNYFIiZeAzNyoytbEdQ2xQ7rHpmMCUERDFZzBQVnBLEXLS/sULJZRKwdaJITqRIgEcWujvFIFdoFKZKSB9QAycn+seujbfuNqcoZliVgngXGtFa411eisXL4WlFna1EDwJXJTGQTurDKoE2DUc8Z5lsiU2fIxJpu8sri2qp7UtKM0QLUtaFsTcTY2NCK1ogBPlBpyUSpPQuijb/Sap59v4jUhzVK+nqifZPstBrGb1keA+k/mduKyYBlBxDZCQ2e4n7YlbFdpWvRVxQFzzYG0m7gMIvZxpiXRmDT8lLanLSbBp2+8SB7lp3dw8WC5GVv51dLaoXLWOjOvQN/WoPqJ3pA+e7vi4BigbrXXNVj3iqA3EJ2WNqR7UfA1/CWDL0S0IK1HdoECplTIvGL6jl8qhLRx1x1obVi6QEkplvdgHrbuU1GpEekI0qKx9v8durFzOI7c50Oag9APj2Olj8LgNjuPIsXcak+rOzp6gPu60eoc7Hz5w55ELbj20w3bODMUKNUtB6zqQfoTZkTJO9HGvS9SiF6Vd7Ci7Sr3dTvSzpGCvQohXLQ19SkzG1mvkMZ0UjMkJoER6xfA+sRH6kyhPtry5uO/m8gAqW9mqRBpCNWl4Key8UfI/rVu5bCoMHMpJ+RCCRCfStKSfSfVJmXGTyZg3VUJzRc2ofSJXA++GrUYfUaJ3ee+KOTpjrPgS6ZxajaaTqsZ+l4JLAbnXKdeD4xNHRh+MMZl94FcDrid2dU3xbSPuIc4sA9WMnTTeX0v83UTpWjmGMAotGudnOgyLqMOcJnH+VBsiJaniAKpTwoTOVUIDU8nIdfMrCfpeRCgKrrGpVx1shbK+VcJk2bAKIeTVSVWnlZIalgje0rQFhuTOrHnTOFWMJkbT2ItKgWqRJ0dBF0+mzLldA8iYk6JPzbRegJJp88RuCYaqYLtGEbAhaN+qp6Bap06jdqNIlJgKOUlGlEqqO2XOiPhUqLXRlh3LslBvLeADn51Ox2xQykohyvI3/w5lgoQWQ1psUNOcMUZuGIJZj/RpkagEU43UqZDb0KZzIMtLY35pUSLmb5hqpBuYIXYePdJzXfF1DXO/MRlemLpj1Et6G3SbdDdmDRH7SRxNgHIRyzJmw13o0+nTqUowJG5UH+GfMZzjWDn2lbIWlnVQS6UItFnYubGjcKmOlUFfgqGuBr2ONPuySJcUjXur7EOsuVda79QxKSIRZB2PzJKeLMm6KYWijSKF6ZrpCGheaN5Qr4hF5VWVyk4X9tK4lAWVGsCqOqMKVoV7tdNbBD67NsJAcxfAeYriFnBEfFCyuqc0D3bYA6RIltZu5dqx3sW1K7bPCjjNVFDDpSX4CBFyVGILRXfMLCXuKUgXrWESN6GOESn0bvRjp0eWhvUqzR1nrAFIQZcdug/wuRyV2Sd1BO+IguwEdkB1tq8SXyf5lqSsAnPMEAqXGt9JC+oFzYpJFQn20DIIJQTwsZ4M3AXxKLZozKw8q5GqtwFjjb24T+R6Ra5XOKxPe4//uAYoMZSZmxiJ6tU9BGUSyHEShj0MooySzDmXqKryKXipwB7KLaQ19OICbZdo2eH1AuqC14W5X8KnpILNNV1lHfEV9ZXJoJsx5xGfgzZX6vHIOKyMMbhyOEzj0P0k2ut9pcgVVTu2go0963HBLoJMPpqgA3Q69TjRfkTmQJtBaXhp9LZEFVMtlFsLuqvUUSOyK4bYQAmTKBmB1uuUULBroW4MTKZ+Njfd8DkICs/HOFVWpGw1JjsRZW10e0RwmYZIXw8p4b2hNliLUvqkNI18tUSp7CnA03wvychPJYWUEcEbmikPQTQU80E27G9Km/cTUlW/lcnJ5S50Q3NAq7FxFViqUdXZ7/VkwDSvBhw6h8tr+vU1dlxZ710xxhXzMOOamYTZmA5UJ5VJyTTWVhlQMqLfKPbAexHd5y2O2o1XBCUWhY0tESTKxzfNQ9GsMIk5uEXjG4OiCVCkSKQmJNiPsAmbyMg0lMc5U5FYJJOqXkp+brIliN+c3y0lYyE6XCwqfpoZVgoFD6flGsxFqXG8qsq+ZjXWVKYFHN1kQpuTMO4xt7aQUDQ3/BTaet7fmXIUv0+E7pugVrES+XfmDDAV+YsEe5uBmaXeKqLB8IWZoZhNjx4klmGX0Bh4SSMytQRr22Iv8djSTeJp4nUi6tP0L/++MT6RmMM3OJ6mioKdjkk8/F98ztRqeQhv82G+fX+4MYaRk/FhFtOBO0OMWZVRgrWI8mpPgWeIuGMzDEAUQneLKhPb2INYbYus1CxDl5r3t2qaIm7i4Si517ZsmbqovPOoBJslTltU+GiwDxlwzayOOulckZsUSM6/zRsoWFqhTKVapViheNnuGEwyRVriYSXXuClR9ZfMp6T4lRmALoUa+elb2sdxi2tm80Z0303pJnQLAarkI2YreApMw4yhoZK6JNfgBsUD9BrYOrERInfW9OAi3ZNFKaVGQN0qdVGaxF4SkSTBjklW3eWJly0nB3BK8XACgTXZ4IKf9GaR+stKTmX7hATmG9NlybBnccXGgFqkz6KqMtOjybIL/5SkeOIkLsCSxQ89+YaJerq7EqIe8agFMd3WlFBhuwC7grBDykPo/lHKxSXtsUeZlw8h7YK1XuJ1h7ddlKaKMbwz1ytsDOYKyAE4sEqnunGc1/QRNev1cI1dr4w+uSuV62EcOog7dRoXa0dHp7hypXe4+0Tj4lbFLyarO4cJ82jQjXqclLWjNqk7RUtD6oK1XdDZrcCtsIIvjxa0GVpCLZ4+f7FJTdA1BIyqhUUvTv4XEeQp4RQZee0yQ3exGb9FUaVvSy6qDdUaNuqlJE24iU6JvPc6EIF2daCoUAosNaPNmOVxf5WSzIsEsCwpYlg2H4PNcIuIPEt8lrYdRWARpzRDRoCqAIyG9f3JiEzrgmphVyu7Bq3BxeWW3y6Ug7E7rPChe9jjTyBX97jzq7/K1Woc7h7geKB0o7lSazhhFoxSY0FdSqWVAITukS4xiY1hiLBSM6Il/FuYoBOvmiZ4Fc3vaGPiCMULs7QoOa4lbCqUSBGQDruBOrIs2cMqXnsKjXtE8dtGXzzEiKosGh4eS9FTJYPOZMFmpAjdI525Svh+zFNKy6lWiEKhdMMtQtnXU3R2uyyIK6Mrwzzt+re6Ng9GI6+TWwQWViIJHgVMQQu7bSAlaOWtssMx5pTI7VNjczbH1JAiTPUQHmoIHTfn47KxQBL1WdNnVPqI0cXpmnl+T71WTmfZLN1nbAqiRKWM5Oac6dDY3mJz2zbpiMwzFbOl64S8Lllqqk4Ti2qaObAx6GOljxEeNOlFM8bWHoKtjCPOU+xrjPh0pjjYZFWlArPGfWBEgGZTTiZuYwzGOtAajKCbRlp4gtpAfVLlmqaOK+iypblijd3s+ML2QRHbxwYnzvQjPTdIlwg8RAutNWQaF7s9sqx4MoV6P0MbXyhQjWtUzEwPC2KXkGusBekFGQWZma4UIkgrhlRDS6Y7kl3C541xmmZA44FVLavuTujcLFKyVuhNsvKlQCvUodQh7Hu0PjAVRkvtWQrTJ0rRhVIqs7TQiQ2Le4dIdfsxNHXeJ3qcp/Ry+JwotTZ8N0Amu7XhXRjNOKTBHBK+ymIWFWIQqbZkvSP4CM1LlbCdaGrs0kJDM8VmXhAtaToXK70RZOoYAU7MZ2YNnepZRZjpqQAmuX6MifZgvZV/SlI87BvUPcg+JtssyIiN1HKRi0fQdjqOIVYcUc635oJRF2MWmDvFdM9YbrFePsZ4+DHm/ha9XGK1YaXh1TEfDDsyRDDtgXh0mxgKOOqD1Y7YvMZG2Dfb0ejsGMOYPelus9i4jx2ZYWK2rpV7VwXbT7rDtUE/hGtgPay09MtoSoCCUpGyhH9Lq8zLgu0EeRykhQfEliOsgI6MHo41KSWlkv4DqVWJxbUiUhE0U9bprEiWkZILKxopsBIgpbaaZd8lGJ4sMYsa++hnVLMkcd8KRaMfxhatb31lttRQKB8VXyrbl/DNg71WtMWjLAu1CLsCZU1QMPtJyV4yD149UitFCxfT2VFoKPemhn2/VI4yOUrhjgp3mNyxwa+PlTvzyPU8InaguLNQaFikFNxP7p9LjVLBpRRuJ80vInTdPFrChdLcmYTo2KyHbkKjwK8SX3GqnSItI6J3n7IFy4yxFf9ZsgMRxU8l3C7VMtJJwLEJFotvTvjxnh5iYJH0i/FYrCxZGRxMtnLeoMDVheJKyyPwFMgipFahoB4mh+JQLPpyzOmZKYo51WenzI7ONTZBCdfS2CVi477Rz0QEZq5hpiWhp9nYmamb504yUVGbmoaGEjbvmgyRVqQYtRSklmwdEEwAEpoXch+UTJvEIm4hKbF8zCjXRSZm6esj4bgRR29BeyfDUixaGNQR6TIn9VYWOhBL/YuJpXg1U0/p1mvZu8h7sByhm9GsBk+2js0mr4NHmwWbgs0SzHHAQLISF1KgGl41Odtyg49UoLBUY7hxsYS1QHFjqKYWIilpNE/YlqaNTX4CBzfUnDWPV1Ga6EadUkpFskVDj4vMdKOM2Agdh8WRBZ5Yw6AThQXFJ6wG3ZXhsQ0OD03PapM6oY40V5Qwtwxb+8nqIUAfw06MWEDhqCKMTTvvEVOcBekL0zWuWzKGpQkXi2CqBOrIEmICAAo5F2WLyvK7p0YlEX9cPwu2QYnKuJJrYymFWVt4TC0h+K4y0GPPogVLIyVO6dpNOyO5dYZFACwuGZxo6Nc2M0W4T9xyc29vfbi6pV/RJO5PdZTBlJLu4GG8WfP74qBNKenk/XTHxzdAKZINPkoCFM1UQ6YGkoENDBm0sG5lXSZRHz6D4hQPpXzQi43ZdszdBWN/wagXTG1YreGN4GGwNMeK+YbOA22GKVNYQ0evjLBe3sSq6pb9M3JRsc3YrCNzMEYPka8rc05WCLHuccAw2nGNPDyxP2nqOrT0ACijsnph9ozc60RqABSVoPJ0KjIV1hq9g0wpVvA0xRI8bhhKABTR0FtslBTOpvk7RYyaGp1SqUsLgFIr4SYak5sZqL5ODxdTFfZLpRRoZaPGkyrOTbEWiQWrFmwXAMVrMgRFoDU0PRTqbuYiKpTup7RUaPY5OYC0FOoVUWZ1uleqFWpTNETzrCP67Nybg6vRuTc6d8fK3Tm4smDoGmkcxVYAS6YMnF6EpQhD9cYCXaJKI/w+bkzt0hbt5ITsFuV+LtFOIDa52Cw9VrmTNohcTGTLmXvQ10hWQ2SzvY3yVUsrr0ypmeZ7KwGy8VOPlJMWhVNyIkoXDbp5akii9EqnbvtiCOdEUt8VFVzFPCLgNPojwVn4cIRfjvr9DilQtlIu0nSPFNGy7X3xnQM726kiaPudGwaD07mRzHk4G0i5L420VeCwiZJ92yvuKzHOc0xG93DDjJiDpjuw2onetxSjIrEgBdviJ5G0EWXs7qmz8c3gfxOw2olON0uDwky3RvpyxvfagIlnuuD0X5rMOfnv0fzON1M/jzs0jvVBoeoW5ulWraLB7tQSWrBp0TUpPHZmMqwFF4tKDraPznRIrgbT/aTtOKWE4ZRidQ1mzTPtpzMBihi1K3VVrnsNz5BZsExzDbZ5LycoOz3KekU92kqQ7M2M62HuaXKXvYOSWt9gf+Q3txVcApS4RglwAg86rAPWEZ40xSLFFj2yOJXsnk6yxme72uk8+2ki+eke3X6WDN62NTJY0hJMU95XIf7NAgPJYPO+ObqNAMlxDxV8i/9S1B/nj9O9FAL2qGaKtOJIjx+zDXSFEHh67guaKTnLc1fj3pcaBRmlC093fHwDFBlQemhGEOpMVmHEtbVB1MHPFNFqpBRKRu+tRN27prDNNZpZzaqsrXLcNfp+4ao2RikMVbTFrRTgZw1xHCPEQV7Yr5WLpXFrv+PhfkHrTtMe7309qEfjag7u+eAqzc1qMajRP6L5oMwBqzBmpyOshD204rRF2BGb7ZYaqThVgyc2m+FaClGBUKIKIbQInNiQsIZPO/Fp6LoGWJrRywOPG0w26/ZTxcUmaouF5aRO14bWcC9cdguaJYFo3ZjR8IuZQfWl5QrLUtKYSFJjkhoUjY12lwBFWoFlSTal4EXjUROcLI2230XZYVNK+FWH2DAoIS6qUt1pNtER+eldqbSlUmrBb+3jvWuJhmN95Xh9j8c/9CHu3rvHr9y5w92raw69sxdjl1ViI7TJp+8kCsdSqLXQSgUpLBJC0i0dcYpO3JlqjGkc52D1WFyrEs3aJG78qGwWzI9AaDLCoExic06Dt83YTpNPCaH4xDRKd50QjrpYilmVtUmy8UopoetA4nojG9OwaZGcfjgyjitjXbFu2HEgXW+o95oLqFe8hHrWazAZ0h0Z47660i0DGF2nW77NVhmVEtrQT2ieMyX65JToExNBaHzrIkKtW2Jlq6DZLOiNapPSCVfkAkhCS0l9j3uW+yqDsAeYWLjMpkRFZ/SQq56Vw0mgYo6NiPinTmYyKFM0vXQUNAKlMidlTErv0VDOHOvCGIOjhc17x5lC+B1JBBw+epTLXx8Yx8HoRPdo8wAGtkGMaClqhD5hqzwJ5VMwT5VNNDnxqYw56WbULfUjW8rVae7smrPPVOVhBsDCJjZH9P/yEYuvZgCowQ7YVjYoyXzm/iTmlBlGCdXDEwQhuugKHBIEM7MqqAwYM+4XMS4ua1Y3VW7VSEZH/y1OLOsUoZugXZlZraMltWDpvozNMF0rUOpk86u2E7Ql3KezcV/3ZOK60bsxVYI1UKVW5XghRLcFSadjTuBy4kyJQHn6ZAhZWLDivmLSw724ZBagRt5OimdJdNB1VpzhwrEU1hItIlbvTBPItS36KqSBn2/zKB6tBCBZMs291Iq3FiwSyrBM7Xn2khPBR5RmTw+35OhnVHJeabCRtUENAbBsrGNzpE2qLWAtxLNPUyf7cQ1QHn7sIXa3H2K5uB3uhNap6wGdPW7kPhnrxHtoUJR2qo4QLWhG/Nqir4c0D8YhJ4iXiZXJaJOpgXZt2WyuFXqwDMWNZspC4VHbc9sGj/ngUZssfaFdCL5fGNcryxMrd9TZ2Tj1XmktUjMyYWmZg89coaYvyW5XWYryWFMuVVlEcAuVfrTXjgh2NUkTHc/mYXGTWkJmQaga9QNa93kmPYAMljReIHE7ifkyIs8o0raoy7bSHQUfKYwNTcTJtl2zM+h05vGI9x6lZkS0oNeamEPSkfOG6RRgv4nvaoGWAKVo9nURfCs/bAmMilKroCNQkfUe2pyi3FoqzUOYHL1vhKWUpJUrfb/gtWBV41rbYPYDd594guvra+48ccX19cpxDYBVM4WypaGjFIA4V6Q40ZyjbKW3fiNi3UoL3TKXawxzumfJpzlTwvnTNnbP4nrG7MtyQJI9mBZ2+14iWvMELvjJy8PFTsZSrgF6KCHRjGovPYnptkDvlJyPbovRRuBwZK49r2VWUo2MmDKdEm1coiX7ZvPuSIKoNLvP+SgShoFF4/u1rZST3HCcFB7H3BMNMXCtG+sBUyQW0qLs68agehqYwWKdxaCNSV01BJrFA12MgVqILFwmaDlZlshGw6bHj5jRLDbsxk1n5kpmeX0rkc8oNtmy7Xtsu0WkBMNrpmx6uenM4Yxx0++oDzs1BYzmcCM6/a4rrAPfmmRu9FXMvO3qZWwb4KTmOkeJ82rb4WhU04SFfDCcPb+nEYxPSWZyKSEILRr6NYg+OdPi90UHaAhuNUN3J1ppiM0TuJQSZdUiydgI6agd5ncslVkLY1P5umVEbhzTmv96HVGBuE6aBbgtDlUsyuZLoYtxBGa66HUzVGcyjzMBip2E0LUMWtlK5MMPKkCsYRJr6cDjfh0ra57tIYPWjN31ZL2s9FKxnaEj7tFim24qnGcnSpdCFzJ13hGdUKHsQs9VK3hNPY9UKhF0ll5Cn+ZOwLtM35lGJ/F0krWTLi3v6Y1ZLYrWzbFWw8+lSvg9ERqtw2ajb7DJWLa4Ki5JPKlbql0k7hgNpCc1BePmN80u94L2ErTtPw0A5dFnPMJDjz7GrdsPU1WpNk8AZa4r63GlH3sITMPikc1qfCbiQ0v2lwfKjBtMJiIDZOA6mDqihFczOpTMJbaSNeVKnYWdVx6SHY8xebYaj/lgNyrL4ngt9KsDZk61ia7COsAQ6hKKAzWoZTL6ZPRIWYlEzvHiYsfF0njGrR2304horsG2FAuHVTPn0I1j3tPrBJtBX84NoIjGzC+NXd3hRFrC5xqb7dwcXSNS2tIFZMnctCSMczGONENUSmj6k8pMxYB4KuJj0Z3HY5ZPHhMMJV0P2b+IPLc3tOZFMipaahy3ajgaZiRgmZPVGkI7LYqWpPLNsDFOzQLX/UIlOxmnk3dVRaTiWji0KNWeVdElCWI7cn3viuPhyL27B47XnbEaE8FKbPQnsYhuEXsqQlIPsCZ1q0Sa5+Qjs51D0gfCPVqn48zUH2w2/8lGB0BJ4Fgk3snN0gbdKGmiJSY3Lr/K6WHV05slGDJ3Y2sHcVL+n1IMCQJLic3fA6DMNe4vHRMdho5JmZnCSYAilkxR3jfDszopUxVx4TM96JESLduxbn4qxknUTomUijnRXTdZ0I1tC7O1QLgXaa8Z5zOgVvPJMp3mmh2KQz/j7pBailP1DqEZCmYkgficp/L55s5CCKAXjz+37s+S1R+e6TL3YGZtS3OwpcwSpJxEv3HT2jTG8GjkdwIoKYQdAZJI3x/GCNEomz4j/n4DTmJs1V2lKZpGavMEUDaRMeE4agFOhvlJI9UkBO3NlaU43cKUTCWs0G1md2XzCO6MTFVFAOOysiVMipKsmp6wrCW7EktyeCXJEs1V5wwAGXmieKwWHcAPfVLqZLdO9sTe2IoEQFFnUWWVEnfbjA21zxBGI47pzNRgMDWq4EUoS0FKaI22Dtge2CiPORvT2mDN9XDq5Lg6x2M0YBx1Yt3RHqXm1bOoQKIKKABKNDzEQ79R1ZECZV+xEQDc6tampNI89otSR87L0KZYrh+kvT3Tsew5Vk5JzgwkVUIKUNMWINMuWoPKdIsptc7QmrjmdJKtzHpL+dwIwckgY+M9tzxPEtfxrAjaBF8k20Y8vfFxDVA+//M/m0/8xE/isWc8O4zJJsjxCGvn+t4VV/euuLp7j3t37tLXleP1gavDSh+T6zFZpzMsJpdwQO0O3vdwBK4uYV9wHZEi2WxQcSRN21ji9BWgSWPXJs+6fYvn1srvWxaeibIb17QnwG8L/a4ifuBSlN0szCmxvuwE17SXb4X1WjlK5dj3+NJYLnY885mP8eitHb//0UseroW9CP3qAGs85vGKdQyuDp21w+zOh+9ODnNyNEtRaRqRPbSj7i659dizo4P9MI5Xd5mbE+zhkIZkBtmnAg9RmU5n9hmVBT5PYKLAzYI7/OQ8KUKkjnpEf/QZEdWWfkgiNehXyVspFtmTZ+dGISYVj6R5GyG820oEi2yL3kZuE1UZu0pthevLGlGrpyjZDHVhjOiz8YQtjFKYtVD2oDopcsQOR+YYrNdk9QWURakVWhOWlhFmqbQWItnZU0swJ53IqdMq+32kfqLTRYDlwQin3qnYWJkWredHOle6tlRmyKmhr1v4LGzC183R1yipm8iSXcLr5qb9eRrzFY0oMUHClkufKUo0DxrdUOYMXw138GGMNQSabRMes4FVx+eNnqB1S8JL6OuklCjrLjVyIq5b2aUimZoqngDVQUe6t0hqBBKkbUFb6NI98XGI/IpKABQPrUvoGLK7sCg1Tcd0JpCYpFHgYPPZjRLc1BH0yTom6wy9RQaC7DWASQMWhX2BVqIvUZStyoldnBlhbjb4XjZmVGjJtuVkZa7G4bpz584xjm1o9FPqjq/AcIpFujC+wkyoLwxha+WUIx1W94XWhN0+058pNI/yc0H2DZYA6QOhOxzNowM3yuWyoyHsapgMtjrSDfUAdA7rSK2C42kjvxkrQjhKF92Y0Bomda1hydysOFqy/PvigtKdtjpyNZCy4hxPWgzUmKKsTgCUMljqykMegULcg7CXwtVFQ02YXbk+CmYhls1pz6zpMG2w9mi0uRRjJyFGvWjtVJFoCqs1dO7QMehZml3SVBKL0uCxDvp1uMT6slCWaFUhKowCQ4RrLM5zUkjLtoYtlbZTdvt96rIMWXsEJbNgbcJxsrdKP6ysdGpdmaPTSmfVvqGBQB/Z/0g2czwlKx7D+yg6mQ9MOt0KRx8cLRtWjhoAReIeFt28ooOdLaqoRKVZS0Y66/qYbDq4AMfRrysa5vpilOk83fFxDVAeubzk2Y88wrOf8WyWto9NsQ+8d67v3ePunbvcvbjHnd3jHA8Hru7do9y74rD2KOU6DnxEfxmXgR+usXtXoUbf3YV2EdbOegtbMuraFYpWmqQJ2mmzCbOvS91xuwqP7uAxuWY3BtUKPqPN9O29c1ycq2bsSjpTCpBdImdWVqhEaqeUxm7Z8+zbD/HMhy755Gc8xMOtsldhvXfAjgfscI/DVeGwrgjX7IHFZ7SWJ+jmMByIRaDVPbv9LR567FmhSp/G1b0dY/Qwobp3LxoCzs4mOfZpqY6cRGdiiyx5agjcN6QuYJWtw5WIJNUdFQ5SLGyuPe6ledLKbwZtsAnzBM+eELFpuWw0dlilnwoWJLUxGelESiv9B7JMRTRKpkUy55wr03Qn2HLjymFmbyMdIDopekD6ikyjWRgrVa1c7gsXzdktxq5mPlcqrS6o1mQ90quCYD5CXCrpNZMW5halsdM0KVo5eVJEtC1IlVM07MlSbDbqW7Y8zmLmQsjIVDamYhOCBhtiRSONBZlSK1GWS0TNM9L+jDzP0yKPn5IDxhAsHX6LKTXTVJ7RaEnR41ShWEDLOSOCrJtgVjx8SxIE9S3GVrlPlwIiaSaXugaShUpCOUW88XzJ1FAkLjOy9TiPm4nr1qsoDMBSCuSZRsr/3AMotYwUO85BClNDILvHWdI7prixqLAoNJEszNesmpBsyHdTTRR9kjh5TzRijkBILLQbfhjYVQ89gNQAnGkWowOqCc2VhqbzRACUInGsI4lNlWjMtwG3kvoPl+iv0okNcxDgUwzmiK68c50BsoedvJGqKIvClMKFFHYoi0dlltoMhlq3GiSSKfONHLnvosb12cqrt7SxiyK1oq1Rlz217bERvi0ntzHrwdRNh24E7TxRdYooO4lN2ER4aLcwu3JowUgPj/sdtmrE6F0U9cmbQL/SlsZut3Drck9tlVIUL85xNurcUY7HqELqHsz0SOm2JWM9jDkkWlpkN4FShKy+x93C3TpFXgYxn9KjS4tmupMwy5xxFrWG10tZKi0B5G63sDlLr0vb7JbC18Q59dWS9CsJozU9deeexaIkmGSFLUBxpNWSVUmxvOt2p+mJWdINhxOC92KpzzLPEua4j8JnJWvwnj6B8nEOUPYXPPvWwzzv0eew292i6D7Q2Zxc3bvLE7ef4M6tOzy+/xDXV1fc2T1BqU+wHI64HjC7wsaR2TvMI9YnZgvzYLhdIL5H10Ipj8K+Mb1Q95WqjYXooOwywjSnQG3CrTJ5pBWedSE8iyt2Yw1jaFeOwMOXk8O9yb1lspQICacbQjTz6RJuixVhL4V9bTx8ccGnPPwYz330Yf7Acx/jod3CTpXj3SPjcI9+fZcnnmjcvb4GCpdM7jFYyjWHmeWnWZWDNnb7W9x+6DGe8QmflBVDzp27v07vR/pYkccfp/cjox+yOsGi182x48eoa582wI+nwp5INSRg0BapM8Ly2IUQftUsT07NHB7eIdE+Lk3kkAcU53tyE07s49sCS6rpZYt7OZkmBSgpkXIpldIabaksTVHvCMLU6P0zbLLOUN8fCTMsmJEj1YGWI9UGDbjUwkVr7JcdDz8s7JtzqzmLRsles0LThSIF8xDwdeCY2p3VIiebFYDMCXMKR1O6lRCmzZLlpLGsCxF5brVomxmkuFI3diuBKO6oLieth81YOKVEiosEJlajIeYpCSCRQpoko2jCNKN7NFbvRGfdsDMIdsgnpyqjKOOeafg1T/b/LSsXxCPqV0LMHT1+0uMl9VFzS/dQsp9QprUzPdYkQOBW0rydkaimCWCx/X3JtXW6Z7lkzh2/SXvUBMin6pc0/9rYn60LcQNWEQ6i9Ezb7LHswyKIDZoKOxV2kuXhBpXs2+pBs0sqfyXpkpadkxcPsaG6UzuUgyH3OnbnGIJbCydmN5BDCHzrFHZe2HoqhVYonIkOcVbJgvOsHtvIMz+VkFqmHCrBFLUJ0p26BnM2DoOxDEaN1KFovNc+S4JvSeGux9yuySjgCbY30JNJpIKc9A+S6SRPkbSzgel0UGmNujjLzll2t7BZmQfw0SMwShfr4o4cZoC+ZAUXhQuJ9JMAh32kxdbj4LhGOfHIayvi0cDScwPfdE1LZX+x5/JyzyOP3Ga3q9SlgDrHWbkajeVauO7BZpgEAunZ32z2SM+tXejD08cyGm4WiYo280ijXTsMF4YIO1UWUVo68ZKArZdtzjqlKuZC20XgNlW5desifaOUcVjpHiCzeYAE8WglYtnGQWZJpnri1aKlQc76DaCI1WDBIbQ5JS+a3KRyTmCHG+C/GTUuBjsLwL4XZUfqJH3T6zz9Pf7jGqBUEXatcrm/4GJ/m6XdplEQcy6WC5ayROM8N66Wiupg2pFSjD6O9IPRZeU4r5lJJ3dzel+5ZmFd9nRV+u3HTi6fY+yCJq9Z0iWh8DaPtt9SG2Vx2s7YSWU3KmVUfI0S4P2uslsKrZbQHtrGO9RMePS8eYRFLri1XPKMi4d49sOP8txHH+HZz3gWl7tKU2VdrunXC+uuMj36KeyOnd2Y7KxzuVuYEqKlVQpSK7XtefjyER59+Bk8+zmfhJaGC1zeucU6jqzrkbZcsB6vOR6v2Dr4zcORta6seqT0iNJ6OWBzgmc1g3Cy9d5K4U6TWyX8NsTD88QiNTG7n6LhUqJE96TEck5I/ZTM3HQRHkyLmQQTAZnJv6lAQCLfbumq6ir47GAr08Kyf/YRpZux7HFKhnsJCYpFnxwTKNpopbFfGssltMWpS7jQVo9yx+ahpZhzpsg4WQmPdAFSKF0QN2Y3xphcHSZ9OMcurCPYlOGxaEhGwafFPdM2KpaW6nKzkbuhJaKUcJ3Mv2/0eimo1iiH15rlwBsGiPScZf8Vm5t/QnyfsZUJz+TEp51Kcsm0gmVVkyTQtM3fQuJXICpgVGJDJoWHhoBG07YiyUAYKbxN7YvHIohshZ8b+NnAiSZLEud8mw3kOUAsjRn1RD2fLMxzvqgGw1GykscsosaWwKfnnFvw2Eg0mMOS4GmLJrEUk5OZG04qgGAsge3EiGyo28PyZTjzaPSrwepK004pJW6JHvb8YiOBfVbT5eavJQzXcGUwk+n3LSsKJ01ZnL9UvlFdqaa0CaUbRQeyduS4huNyH2gTSikBeFRYJNqFNINqRnGh+GQwt5CCbWsV0vhPNtFmsAhJsISIu4YWZmvEWpcZHatbmBcGixAsik1jYPTurGocV6fvle4V0xl9vlQjpTVgOTrlQPrUpCg7q73co08QhGB0v1RuXe546Paexx655OJiYdnVZFAK99Zwb931jl11ug9MJ/MQlXLDnWNgF1aPY2pEMYZnoUUfg4M5d6eFb4sI+1pYLJqL7ksy0iowbtKnWoXqwtIU8wqi3N7volLI4LhbwiKhZPsPi4XxVK1vQIkVcmiwSCcBbALXYHVjzRePppw4ca9vTOypksGTeY37CI2/FYnU5U6FvQiLRwAn6Vlw6jrzdPb4p//Sj70R5kGFpVV2S6RCmtRMCUzG6PS+sh4vcCZr37M/LEwbLIvSKiFMipUhysDkwPRCr1f062vG7hCK+baEPmPMaMWe9fOe1NeUKE30FHFqCROioOsEy74sUkJEGaFvRhAzNhkTSUo66MYqjV1pXLSFW7uFW/sdF/s9+6VG1UsPC3vmQm0tOn0WTUvncHQtxaimURGSVtK7ZeFid8Ht2w+hbYnoSzprP54epUbedLPZHln3zwCrRygd0wCDJL0XlDZbLJsTOYR0COFDIBm9pip/JnVbgFbTat49gVEI9E76K4mSt4ihMuVmIZ50AigiQWX7prdYlLYT2qLUlqpzCxYBt/Rd2LaLqGLKrYTTBcrtsGhhaYXdrrDsYVmiE3A2Q6YOoUxBp2Bzez9O/iYTYGRDPzNGD0HkcXgII6cwZ9q1J2OCSDYs2w5rW/Rjwz5NpbzpS7l5WTwk+4xkhKia+WMNEEcugASNvKXNSl6CqDgJYOEpzNtYh/AB2WKp03qIetwPet+/eYbLoe1I7YxsoCZTOduGlq8zl5PHSIg587o4pz+3Y5bTd84qGjYJNieQtD1Owr5T7BgRfmimQpi8pZlairHn6X5NwWMCFDPLlgs3H7WZx4QXR14Y2TRXfgLXv/HwNg2PjclcjVmiCpEU/ZJRsOInbU/JtQfJAre8dp7HFIyFbxYpp9LhqJ7yBFRxfJslOV3wdWDriD/HuPkulmmqBK51q0ZyksnKPl3bfZSAIOMV5HQswcJBpH/tVJacr1XJPlYpOt9o1axUcrMIMLYUqSdvJISguoQouDaPaq8SFUS+educLhY3Hmmav1eV1qJy8uKisdtVqFBHFFb02XF1dsNYmtFnAKVIZyeG3/xCyMBVSqSjgtwMA7k8BypREDq8hDFgbuaSKTC5b95GvKnUAs1gaRUzp7dKrSUE/qpxHeFGs5b3jEdpIVOjgtCiPj6YbtIJZvM2QnPSxHnKzhkRWN+3PLrL6byewNT2IBtEZgnQ5q30dMfHNUCRIixL4WLfuLzccbEP1kRFWXawWTy6rNSd4iXcXaUK6zhyPFxxPCpFJsMG3gdzXNNXWMcT9OUhpizw2BVZJI8fLzCpzBpiOgemknSqMrRiYmwOrBLhWvaTSQX4fWi1T1inpUI86P6tlLTVhf2y4/bFjkcu9zx8uef2fh/eISLIbsCsWI+yLkp8hmqo7ksV6kxaXMLpcGmFW5cLDz90wbOe9Sh1F4xQu4BjP3I8Hpg+ub6+ou5qmkFNul6H/bpV7CraZpvuYnF0i6ZoGWlqxGWILFHSLaDFqCXM8y9LiQjQJrNegU/UjbbUWJjc0/Bp3ucyKZkuUoZo1Opnrj/a0W8AJc6DZB+YdrFwsavsd8plFRgVPyiHKvR1ILpm3wuoWBo2bav2BgaiM/HlvvHQrcYjDy889ChRVrgYzUJXo6ugqyA93EohqPQ+w6nyaEGBqgSDNHqAlOs1AO8chAbFsx5K4rXucrNYJQPR0nshzOFiczIPF13PFGFPPr2oRAFUClRrCSBj3CwYm0lY8cmwybDoaRTiZQ/AZVGarGlHf0rDEAzJ8KCsA5ptEGoDPQm8Z6b1XCOCy408qpJiAbYNoGwgQgIYBHsSO+1mZR+59UgnbHN/q6AJg7Sbg3QVvKRQM8FPmSNWb8kKLNsAcuTSQ8AoUCMydBz1EPyKApttfk5TkpUKe3DYpFlhzGdZcZHHGw1uTuGtm2BjMI6d9WoNzx4NG3VEwvrco9nfrmmk5CJmiGue60p8ZjIlZatmCjBcjJNjKBLH4BJpHE/HYR/h2zJEWRHWywPsDGmORSkf1TqLjSjfnivdlSpRTTg3i3vNtg1ao1BSSdQbGisbp3wl0wqjRLXeZjAWFjqxls0NXGz3pke1Yej60zgMx0totkottL2HD9XOokqlGFOitHhjIcNOIdjzIh5rR1PKTtlfFC5vVS4vFrTC2oO9gEKtxjqVdQ39x+g3vkFbWnT18E1pKEspweQK2Ig16zgjNeQC12LcMqW7xk2OhMBVcxJZBFxs63tVmhuX+yVsZ+Zkt6vREqHE6zcB8A0GjXtHDI5MutqpgsvZAp24FzQDJM17Cy+IzQSZCexl0/LcP4+IHI4GkonmqYbM2F99JnP2NMfHNUBZMdb7JmVdlGWpESWWxmTB2OFyi3YhlMVwHewvG6oGDIoa1u9xOKxcHTtiO0QWeqq3hyhTC1MrVhpIZJclL2CUZQYlv6aYcLgyM+UTm2o69BWJaEEGk840Y0zn2CP0NCEqboYgQ9jpyvSG09OfwaEWpC7RVn7p2GyMHuxJqSVt4jP+9iw59DC7whVhngzrbl2EuRm10O2CdoyN7N7dHTCjGWKJDsa0wWyDWQdFCzMrAHA95fYjpbGVcm9OEjWjk2gBX1QptYRNs41o0pglsXYKZTLCNLICIveYXPTRiMo2oaF6wokUL6g6ZVFKK+xvLVzsK/ulsl8aMia2X9nVhX7sXNcjTSbt2pjHznEaq3kyXQRVLHBRlIcvlEculUcvC7cvoTaltUmJpH56nYRAz2c2AzRj7c7BjOs+kEzAWs8OtT36qpARaNnqk/I73zSzS8YkS7mrRHQf1RGcHEhbsaBeJcq+3TP1VpxSApyoOkVjYd4Ykq2wWHRE88MIb6PKzEmfioiALcFGK9sdkAAp0yYk62Bls3wPkfC2wdhWv7QxI0CxNEvLppNbs7bonZTiQrjZ9LcUUT65ecXIyfo+XWe36HMzHcr3EOHkYpsWtxEtbilG2C5AgqdMEUposDRslIPp2gCBE0xfkfguW25FMuEhwRrd8O3G1mQmpzWbs2qxaMcgI9OemowF0FRZip5A4cbSVzdULdyS8RO1Vj0ca6MkDtBM+0iUmCPjVB4fjnPKXJWxdvqx0o9rlq6HN49bdI0v2beouaUnjNK4f/eJ97wR6SZDmgyXJtiMPi5CNaFuhoI6uWgeoKilMJtwLw3QGhPSNTUvonSJsuKlVKQ1bBF8r3ChsJvR62kNYAvpM+JECwQnjAtjic/9BJZF2O2UUiMF6A6HFk0VL6qxL5NeJ8dqmZXW8ADSWP/j28TUCHJHtvCNSrJRcPJEUp+Z7E8gINEId2yssUgWHNjJGK7O8H6qJTICmmyd+1YPmQDlxOcZzO3+O90W1JJNKjVLrDNRGS6yyXrLJiW/4U43FlfkRhsmyZaQxoFbCd6JgX2a4+MaoHS3k7EVGirn2pRWwttiNyp9NKbv0ea4dPq8pFZnjgP9cIH1A9d3djcpll4xCk0DXAStFjoOT3MikZLsyA2VOV2y90NQe1uXUU/6eGNQguo13FMDMSOSNo3FfDWLvKMJwzrTR2jiN9pYS6aQCrU15mihNK9bk76Cysx93k/VFSCnv0duWtktjWVfkVo5HJdcrIzd0pijsi41hacwa6WWwtBM/cg2Pe9H6HL6M5FECPzIJlRSb7QQdsOvblU+m1cLEmBnMwAKgMPpZ8+7QCT61aQ+LyPodL7chb/MxWXlYt/Y70LcyjC8VooLa+2hYRhRr3K0WArMZxqDQamwF+WiKJeLcGtRbu2UWzuhNKOWSBN5Cl7nDLGl1yhrnAoDY/hknXaiW+c6GBtImaENaLJ1aY7vp1vQJLGIbTb60cDY0no8SgnDR8USoGhu4vF54RkSDFYpFr4H6QERtKtkNB12qVIyQmVLPSTJkBfbU2xZ9ebaB0DhgRYs2Q4n5g83fJSj6UIcPiEnvj03dUVzD08HVGBzzbl/QQ2pUhyce4h4BZKL9rT4T4Drp7uR3EYSYFjkxt1O/7bVT92kKLZ5JYlB7pubKQQ+fWk8aIsEaegWyGwYxvPn/JztVuKEpU5gYGu2JiXFiL7hn7jurTjN9HQyKjk/NMqyw4Mko90EY3E9U3uzVWJMywojokcXIS61PtPssmdVoaQlf6TF1S2FtgGIWv4d375bHrcEO7aZFJL3bMlNTOGk3So50VydfXGoMBr0HuLtkf1rtnO+CeNHgpShStcs9W/gp1rwAr1gNe5R8GiVk5faXTipiWuAFK1CaUJtcgIzszpLyYdGWfKiRiue3bmTJUFO4OR+gBLzOdjmrX1IgFJNgOJs/a2dCFo2zdI2e0/c7rY+3Mc0lQzQtkYHEZqmNuw+UDHckflgqquk6Ew92KRtvYnS9W2+ZApUtmuw7cbJKG6TeFs0tqPdWjDcr1R/GuPjGqDcsckTc3Iw55KICkrdHCYLu1EZoyIsLM1YdE+xPdd10sYePe4oY+H4REU1GnJ1jYWuEu6Pwe4qo8TNMdMav2hJOi8ER1ODPTki0ayKm64iskWRAlv/VmFQfKDTsDX6MA+Ew7Y4AWs50mdjzpXpYZ1ttaK7PbXWnESGW2e3u2RZOq3to6+CGNFvKEsHM/FnNcBPFeXWboma+1ZZ111McHH2u4bNRu/tFAFHm/ZoABVBoDMt7Jo3LxPLG23bhTedgQgomhuqUCowAzxN8j185gYTEbAlmHpQDBkiLJFscidRyrZtItTQ++wq7C9CK/LQQ439xY7drrFf9vhwxtq4KsrxuFLVKX6klRCz1m5on7h6ipWNWwi3tfCIOo9W4bEa6aKgjSUoapxjiZ42U52uwlBjlImVES0EGKcS4j4mY4ZLaDRNk5NbZ1FHSqj+VaG0GzGnWrRzuKjCvkWqRoqcjMB2+4yERekjxJWijVpqPGroo6QW5pgJUAgGyIReSD2M00Yadw1YZqR3RuHklKo1ra8BxOjmp54pG0Xh+feIwuI8nZZa21BP6Dqi1DT9jD1ARdjJh+ZjW1y3RdWStckyFrbVcmN4NukzZKWPh+9Nc4tN3qO4UrO7bnp2noADcAOG01ofQrjsul2Rm03DNrBV0jpNyFL/mNebf8/wqI7ayuFNScGyBiM5wXts0t6jDFsVJFM0DdgnaneBnozPbmMy4QEjw5mMkmvc3yLQEPYIO6LqqVmKf8eM8x0lZpFyGj20GdkV2h2Y0fSvmrP4fdb4Hu69nXQqJjRB1UIzEZrL+KzwvAx2art6jbALmNWRvXL0wtILB6t0dY7eQrSORX+uUuhaWbVxkMYVFZWGaaPXwmgT3xVkN9DhyLFGkCKOtwAFbsnwNKEsEehqBc10aC1OKx7XtRhLmQFMShrClXBnDld+Z3WnmnE1jXtjIl0pI9NnGg0id8PYp7liI1mLUZASLRCCAdHsyO4Z/DhjRrn0ZoQndIoMqkwWdUZ68WzmbZ37LTHj/5p/3cC+bETjTTadvUZpv2qmzyEFTvkGGuuNZcBh4liJPXMmACo+0zo/Kz+zie8mmH864+MaoKw4q5PWw9uiZEzCrn3bPGO5iIbXlUHLR/VBpSPWwXqyGluKYmZUZRSJKEty0xLsppHZKS8eN+7mqDhnRHAW7lfM7JwZgUXk+KqULEEk1f03JFwI9you6SkiBZeS/h6xKYeITDOfvEUWGdWlb8WcHhVKEhBijjg2T1Jm82qQoieaV7PhoZRo+ObGjUdaRjckSbLRh9vC7onCN3Zbs0GNEP12mkKr+XuWlHfeQOac7P/D5TTBB2TUp3m8SZtrVLhsVSpSS3ZIhltLYbcUHtkX9jtl2SmtCVYI8LiPSpYxKrYO8MJ+aPqEJDgl6PJLES6rcLkol024bHB5n9jZXRgaGuJObN6WRmmeAjGViDZjzd4YkWDWRJRWU+zdoGrkzJtmeqaVJAIsqGGBW03ZtUrZtEdEhLLf79LzpNBHpHg4AZRCTfZNSmHO7IljBnPgpvRmjKGMOTj26BEUYt6YB5v2AwANwfLwEO71abS58RByKgcfbPdoCoXlPqbitKdvqawtHRLplK0vjymnTrtIUM6Wm7xr3FNbZsZUTjxI3EtbqmjTSd2sIZvAesutu4AVbgK/XLF1E17HbwU4yHm5BYWbbaFtwUCyBVtgSb7tplEYZApZYEqwscOj7Pc4He2GrmHFpiqsPXRKzPguMRfklJLa5S4j7nEORDENLZLhTN2i4vDdWMjSVrkxnQvvjABDPsIHZXZjqFGKp2klMG+aHe62OzgZkYnTPc6DA/PUbycJpdSYLbalLjntlmUTdUJWzpGFByHuDpF8MNaSa8Tm07OasE7hOAWZYdsUkiA/VRlWyblFlMVuH72xGxubtTGdfgq2Yu0r4mTvUloVWtNoXlhCxzLSDbgP49gnh2606uzHZmAY4GwHXBDXPbsPZFplS4FkimTMEw2zlWaLb2ngm9YVrThLhZF9zaaG182T6Qo/wfabZ2KMjcEidWuajIxngJ09tigxr+LUbFkCp8umOttsBaATxysbQEmQ9XTHxzVA6cDqWca50VkenVHHDLHftInZABuId4p1iq9UWym2UuaK2Aq2YrOHUM0Vl+wy6JOCpWDJiXyxn7QC201J0lcnlDs8/ARsUoZltGwheCRsoqsolahmOd0Qufm6KmhD8uEaYGWK5sIXG/XW/XObGje8OliCkzGi/t99MoqlKDTLRoETz6w3j3AdhM22fPtZEkGf7NOT8rVkPu7jMU+RiJSgdluJhbGqnNqb5H5z34KQm1sG2CeVYdKwHvanEZmKRl+hkvnt1mhFuGhwq1UuN4ByUVgWpZS431dgekGLMWbFe5Cu6yxIdWTEhipuVIdbKtwuhVv7SPNcNOFWDQDnGn4so3hEeHjkuucW5YSlXFDhZBdXTilAFLRWWi3s9pX9ko6kVVg0BJHaal4Wz0gJbrXCskSvG69Jy+Psd7sAIFoYwzKybbQS7sdLKQFgNoCSJcPYwOeg9/A6GbNwWAezG30dWDpm+qY5cjAtTKA7tB5dXK9H+Kls5YcbQOnCqdz6BE/cTotb2XQYbJu53DTJg9BwaRhjWaZ0hmgCWU5AAQ8wsy2cW4VSITZf90zOenzK3PiN3Lg29iZSZJzui61/DGwMS1Lc5qe5OkU282WMbF7n90WoCayGE03nBIaUbEXheWNFcHHswYX4aixZbbbmuuLzplqnxdEj4uxIAKaBBCwZmoMEg9pzg1U8yoRF8yGZojGKJSc0DE/DtrFORCZFDWoASE1X6erOzrci/dCjTBe6BEifxDGHYZifKnnEjJ2nfkHD0dUzQNnAioiEJUE6IavqqYmjJuD1FMr2KaxDOA6hjlin5kwJhJNupp4AJa5PfJafAN5p7vlNkOEZeG5zMw4nWPrWCq1NllZohRCWO8xh9DI5rpPjarRqXI7oAl0k2iNMiSajXbcy9byO3BzTtrHLjY9CnpdMvUiksz1NzXdVmE1YKvQEozc8yc14KnjgxLysHvdBkTQe1GBITYSRDVo3jVVUzHHffnSTogyzxvCBwhwZN/tO/6dFg2IWmo+ZVQ+GMEL1xNE6q3W6hQGa6EyRYDyKGkUmKpNQjwVMFbGYzE3Cw3oX5WbsG36547qmSGn0XGDjJqUbJZ0NPUVersnCuKDSKLpnabdYMvqtGjd90UFonaGKo6WGg+ytR1lu3abdegy5fCa+f5TZLpMhijtNtvSAZWfQPtHjihyP+PGArQfGuoa0ck5WV47XR46HleNhwG6iovTtHjgBDKHUXOQRSoPSwoyuLIIu0VtBTZCsZAhxstKSsdjthWWvaa+s7CUqT9SNdUzMB+vorH1wHJMyJ+H7IWm3vjEysViFUG1Si2JlpqYiHWtLCev3KihGW4zFjEsd7EvctFqEmQ2ydNnRR5QQHnZ7jofOxe0dxxHW5qYhWF188JAPLgUe2y/cvixcXMDt6pnuqkwprDi9ONfaI/Unk0FYg29mUPSBH26iUktGpVKptbGrF9y6rOxaYb+vcdxF0FbTJl7YV1iKcGupLEv0HvKyJdOd3W4XbJIUxpi5SSSQ06gm0GRYbIZwUObE58A9GqBNG8w5OR47c0z6OvA0orofCAwp4TjrYTs+zDiYpYkeDFeGB927HoNBnHOEB41H5dzM9IClw+6WBjIiAiwSPXxomt3GI5K0fN+5CWo944n8t6jS0UwTgk4/7UBeAuhu3bBPKZ1cYN3vLwLe2DoJszscbIbWJh+ntJ3fpLW2hVos9R0WG7gTKeTVYZhzMD9VoZWtNNWFuzPA7kEGpUc1R+8jbPe7sY5gCMJLJCL8SjCUNc+ZE2ujeFSnBUsVmpRdKewkH4QLUxU9VdnMHtdKu1Lrgbl3vIPugs2r4Q9P7YNLc5bULE2PFE0nArQp4fMRfUgCPGVSgEXT96bWYMI8GN2o9DDqnLRpkICfEd2DNVfr1SIA631wqJXik3t3Q/1hQ8FDR6MzQN7AuMDTzRX2CT4SAdO8UK2gpsgMTxnzEvyLRFWNFqO0Fr5Hi7MszjKi3cWYfjJKc5zZnHlwrISaOXsgIlXyvBvHRGS7CksNk7marHJx2BEiYojnpyi1CVYToE1haAS6677CKFzvlPUo9L5N640x0dP/w+v3/iGg0e7AMzCwDEK3e8OyQzQl9TUethinRp1SETVUI/VeEYYJ2IpkSbUnw/R0x8c3QMnIZZO3RR44TcQsyyVTJY4kC7AJtbYVBMd9nh5R+XLfn5uIbvt9YkVyGxt/GP+ePUEkxUdY0qnbTScly+2WEzARGamkjwVFJTbFUhZqW2i729TdbcruNrpcIMs+UMJGk0IgaiRFcLkgZv2dzxmupJE0DlHuyMeMMumZhfJJKp4mp0hGjaly3MRYctMO58YAyjkJWUOwxWlDjWZUAVCWFLX6tNNGEE23jHXOE805RU/N81xygRdwoi8ESUVG87ig3h1hU0nKmOhWXq0RubTikVf2iITNC2XmubPwOBk+KGPSxoSiCVAmt21l7xZdkksc09Y3JqpRUh2TEcV2XreHxw4GW1O/084SIwSHiopRS9DG+6WwbwFQSqsRsVXhsilLzc7MSws3Y90ACuyWdgNQ+giA4sEwFVV2GgBF9b4Uz5y4lWDYpmBWmXNGQ8ox6aWcAMpGq7vHYjki2GZXJ8OcvYWeKlI/kg3ojKOEb0WkjwKQdNtM7DxKRUWibJSbgHFr+0D2Q0HBsnqnn+79AOtbWsfTeCsaLcqJ4dwEtSTLEYvy/RM4ATo39wObUF4yPwCRZ0raxFVPgOYmNZUHT9BFkqndktS9GaeGfBuAm5Yl1x5rx3FmurrPzT4jdUszuh3nPBu2lVOHfUF1OX10rA1+A5bglOLZ2IDTUpinw2emqsUQmTiDcYiWF0OzdaXGPWxj4GMiM31QiGaVthGxmW6PAoQ83WUTfRutEPPSwxvHNoBo4ehcZrgOb2yNzkh/6AlVBOjxaSE6rxoW/ceZVYaGjwgO1GZ2jraT3kkzZbK1j9Bkrzy6YUR2ZYY4Nzbjm9Tzyd/mvtnCxsjMSINbpsh8bCxlrBEtbvobdlC2Sp4N7WaZsYf5nSVbFp5SgGR1HDAp+JzZFiVT/tv7Jiy5Adty3/HKA/+yCY5dEnxIaAotmZot3Yp6subknnvTdHJj7KJ/VtYAyXYPpi2Aed6fT298XAMU91QYy6aajnb1Ys7RJgebrGm9HX0WtnbQmUaBUyQ3ZsdmD9SMYHrEbMXninkuuQJ4dIi1mc3gBEDDWXNkH50ZObgqIUZrKFMbopOl7mkpvhJWYrWMHH4RATHqsqMtey4uH2V/6yHa7cfQy0fQiwAqeAcfsQAlAIoCnFTkj4GM6DNkZmxboZsx+4iUz4jmZzOjiJNF/EkWHtU2giGek79KNpq7D6gk46LiaRCXFGiBVpRdLVFhVAt7Alh0Nho8zIpWmxxTdKeSfSjy2kYNsZwM3qYIdcb5oii7ekPjikSkKj7QIRRTdhrRya6BNsG0MKgUWZgGS23U0jgsg6nG0gdjjjC6E2fPZN+VZtEyfpYR/U8sFxAELJvPjZuU2joi2u1zhqtsrHTInHGdyMoniAUUpeikVlgW5WK/cLkou5q9N5qya4Vbu8quKZdLy+7NG0CJc7Bbarp2SgCUGRuhaqTFdqoUKagUbJbIsc8A3ObG9JrVZZO1lohQ28g27pwqtNxDyzMToPRhJ4HgKuUEUCzB2rEObA5mP9KHMOdgnRIbtUep/ZZ+W32zSicX3GA7pm5egVk15wFmT5vFfYx2TMvc9PJ4F7vZ4CTni0vBCc3GJui2rH4xiTJPIdM8Gou6i4RRmNipyi33uLyXYFvBbXP0NKg+E0DBmuD1OAOgmxManNyUKkYdgo4oJwUiZWfGtBRYe5xbyyBsyeN02UCah8N1VlBEU53MWlXPwMvTXTS/94h1bcLJrKm3Q/S9yZ1LFKo78xhmbqw977vU6oiezttIbsdy0yyVLHOPdgGlaAhMnYjCpzGzP5r2ifSJDEPGjMCjR+QvODrHSQBqNVte3FsD6Hr6mgxD1kHpgzoGbaQXB0IZdprL/v8l729Crdu2q2C49T7GmHOuvZ99zknevLm5QQmpxIIpKoEgJgoGLRoRLaZmIaaSmgYhgUjQglizGJNCwIqiIChYiCJiJRUlogSMYuUKr2+Sc8/z7LXmHKP3r9B6H3Pu50Zz7vclfByyzp1372fvtdeaa87x03rrrbfucX+HYHTgOByPw/A4aKRYusKG4whtS49Gs32c6fsxBtnRHg1QDwLMcSisD3rmDKCJTdCcLSIAB0bqrh7kxV1QQnawGCso06l7SJg5OuDF6f4bC/IJXhDVPMiVZk6Tt4+kzSWAv+PIAoUY466AKb+HSJjRRdo2Xpt7sGBEkNlzHruGCzUgw8Ms7ss9vtIAZamKtdAmeK0FrVSUUuM+EBqINFJnWtBUoLdXVAf2p/e43Z6wbjc2hzoMTwfgXqCu2IU16dmGTSLt4ZJo+rRY79EhlW2xWeJWtEBKBVAodHWaqvlScFTFqzh+yw2/7Yb/Vx22sEZMa4Osz6jrE+SzT4HPPoF9+h0Yn3yK8fKC8fyE/fEKHFFVEQOKef9ocR753jJYqVARfhYAF01jxJZgTgPEJBuVq1gp4QhrgsR2olFdIKGEnxiabETWLlU4mjhWTcCiWIJlMDO4MjXygGBHRicOiEGkRPTKV80TP4xsVQ3R1hA2zKJNu6N0Lvo7OoYtcChTJ23Bti5Y1hXQCtOKHQV9AA8HNwEzPAobbJkASzM0cdxSEH0YQYcZ/Bh477RzLhAcXnA3we+8Or55P/DF/cDro2M/Bo6DOgJqOACAbqU1otsK4KkCT03wrik+WQqeloLP1oqnVbEuyvHZ2Cbhk9uCpRY8rQtKbRAtQDSUgwOtlWAIBf3YMQZBUlZHLZpC4yi3NIcXiY0M51cDmhaMDvSisBDJSvSsgVP/kWZQVmymXbpqpCHBe22OuyvGUIxScPSKMSgETSbhVRz7AB4deEDRAbwCDLklPVX8ZPecIDE5Aup5mLeHs4y5hB7CPU3lOL4gY2qouvSIEvUU4MJDeB6bOXIzD7I8yvEJsUc4BbO0N+L6ORd7NKY0YxftRDHDqFXqvc8ggcKtAriymk8EMigMRaQ+CAQYZdNNtU+AIhA8lKaMapjXZfeTXW7GtEoH0MTRZKBaBhrGzTs2HdEB7cDjsaOJY5nCd1Y5Yh/wfeC43wPAOooc8Cz3jU3LpU3/mtJkCmg8Ni8IZcNwJSsT1UN47JCjo+xs34EYKxbB5TCKnCGOcjjK7ii7oT6M3XOFgWQ5DOthsMMiZUQGpYb/EIW2ZDVHGdhfD9xV8c0vHmit0v5hlKi+M7x/dNyPgW8eA+8HA+EDUZAhBtF0rWWvniE0vqNfCyBiGOjofuAxdhzGar6OjseouHnh2uIagY0w6B0yx+EsnzeNdhA6GXBTwGlMA92vZG0Kyf0tSGF9OQDBEM6/V2N7D4xgD51j1YNB6cYU5TFAXYoqu38LotEo58PhrD7CcMgYKOanyP5LPL7SAKVJVIVk+WqkSTwqPEQZKdZCY6OlCsZ6g4+Bdb1hWTe0dUVdFiyHYTuAYQo3bqYQIlCywaR7XZjzZjMxn2kmCvfDRAgf9S1A5j2Um4EChzjuGHiF4y5gxcxSoMsCWRbItkK2DbJtwLbB1xW2LPDWMPqO3mPhCSSblBuS0o0cZnonyOW6eSyYw3mQog7fhliVRUgXKgrEbKZptJy+EFHNCjgiRYXpeVCUzeyqFoLDUtGcAOUoBtEyTZay+uGkpmMSIk88olGEuVD0vimRQrAQtTEyCoEqAEe0HagssV3aAqHFLopXqskP4FHpH1JiAXYHbhVoCjyJ0ETPWDXW3eDDsR+MVEpsAK9DcD8cj07jtaPThG8QeZ2W0zk2o5Tc1bE0wVrJkGyt4LZUPK0Vt7VgbTQf3JaKp23By7ZgrRXbukBLg2rkyJNNqzpTmAeMHYUvl7KpXNKJiAUtIlgPa26jCBWmFFU6DafcwMXSaaiWAlXT3HcjXZMmVRaRvClacwwtMBQcWt4AlCPElrtidj89Ik3gEq+lysgs6GNYNhK4VL9pACiVsNqW6dQtHiAjAcYENozBJ/CJsufcA9IgLmYOyKB4gHKON4OhO7U3p/9F9PaK342wg5/jO4CbZZNFJ2Byc5gW7JGmYmlyzMvuM0Whzg3VLYTYznPtTjGseAIURrKcW7x2RRiksKNxmDoK4G5Recb1gH2TBHawIeJSBXqwG3MDID10If0IWoH6PRemg3qwW5I5qryokY60MPwpqnE9FGM/JuPo+wH0Ae2sFqpOZ18HA6kWd8Wc1T9l+Hn0EAQPZwfowZLo3CCJxyzGeSykMNgx0PeOvRXc7wc+3A+UWgHl3x2Dhov3PvAYY0oJ3AOcyOkXIgGGgRKjIZs5WLD/BLCHGQ6EGNaBux4wCaDpZHnUshZpwIVpWheO98jBcEwLZmk8SjJac+gGu/YRizIJlNDOuGH3SEmZRxm4YFhUBUoEJXHZ3FnCz8RdwPZkVoO1lAia06Lgyz6+0gDluRpuOrDoQNOoJY9Wqtpp2oaVDqKrAptQsFiWFfej4+n1A573B54/+wTSFizLgeU9sPUC7wteW8VRSwiH6CYrKMGicPMhhSbMww5D03B7jE1aYzCJF4xWoDUmLA6YPSJFVbGsFXXb8PR0Q6s3LG3BsjTUpaG0Brn4r0i4uPpgslTA5oKtCIGYOlYNIyFh50tu2A5BxzSJcy6e6gYEoBMtKKWi1YaiK9QqvBQc6wZbO2w5sK4LxrJgXRr1C2pYVNFKQSsF27JhW1bclhuelhtaa2jripbR4zHQdkepB1kmvQq2Am3lghaVUixLCo0JIpWjGgZTgtn4bQyYHKQfReF1A+oNWDbo9g6lNZS2oEDRu8Fxx4fjlY3pSoGiQxXYNrJzT1Xgi6DvB141GpWZYYexCmkIXrvhdQi+uAMfdse9S3QnTsO+yOWWyEU5o3ItrA57fql4ed7wyac3fPLZC55vGz59d8O2CtZFsTQN0NLw6W1BqxVLq9BSIcKIG1mCWGyCPQU9WYqkTRM3sTR7Y18Ynzl2S5DtGi1PojzdQ3A4sqKBLCNd2nPBydx8ABEJ47RICzEaLEATdGPH5j0s9Q9zfHgYHgN4PQy7KA4At6jaGaLYRYKlcGinQaN09jia+0tsgBol9MW4yNI6HVwkg0rPHb3zBEm5Zy8YDa9o0VkCO1K/gvjMEYVbakHcsEOD2dOoXnI8nMD2CBMucS7W6ueJ54ZhxvLQYTKFwky78T21GxZnieoihFhXQ73uQAlrhFMO6TNkEZC8EOeUY/m7zN5FQ0Iz4RwtZQjK6LiVgTYONG+o4Bq7iKIegByOcT/Ys+MYUO8sBS7RLFIVax0UyqvAiibMY2CnimOQKZIBHB/uoZujlb3H5tYQKbmiU7sxTLE7K0bo6aJYTNAGsAzWOCRbcndguKH6CF0YYt6AlZvDYEqW5LWSUdGlAirow3E/KKZmWu7AbgP7sWP0B9w6KsJ+Il1YhVVR1Xs4FleyHRGkpRGfd6ZTD2efJdSBB7gWFykopqiWbR0GDIAKmThXghOPvKLENZIi0KYoo2DZ6kXcrlFpyoojQ8yZabypcV0NH/rALtRzNqH1hPUONgTsEzSfjUwpnjZnNtAH9VHjYIpNdlazLpkL/ZKPrzRAEbGgBlPkSvzGPhCYjZ+WtWEtiq0IfOzQKnjs7/HyxTt8uD/j5dMblqo46sG0xKHoj4ayVDwqc39DaS+oaFFOyxQHee/LOSEzE6foyCFTEe1qMB0w7TDt8TOFVFqzL+uKpg2tVGRTM0dEgkMgprE5sG12irtKgJda2Cm5VQ4q7R9nH8MwCHG94shmbZIsiCqKsLzV3dFKwVEKaq2ohW69rSqsELC1BCjJlpSGpVR2lK4LlrqFtTOw40BrO2pjmkLLAMpBWA6ZokQBF+rcQHKBbXCsQt+HTRWbCr/iFAA2bWg1qqaWJyzLDdv2gtoI+gYcx9Ex9o5a6HQL7xDPcvRgjaTCa3iwrAJ0Tr5kRMZwvD+A1w582IHHznJHMwIHCY2RqNPNuEbFhTpq5fHJJwte3m347NMbPvvkGc/bhpd3T9gWVgesVbE1xdNS8bwuqLWgNXYlRuSqkeKzqCIxgGND5ByesQczwKJmaNKtGWFBpujXVeF6KR+XqKoCqSaZSjkP9i1hEcdl3jMufVwIKV1lvyooO8kyqh1MH4qjQNAE0GJBj5OVOyKFBBVUY0VKN58pKTefnihiHEPJriTGdZD2l0hnDGEPH4pm+Zi23aE2TPkG8+8n23iKyqNVvZybsis3fVP6dHTJkucsyY0y0IheyUTxNYZisqMJIuneOrkUMrXBdI543e4JQ/MuZDcwmffgyFeYtH/4NYF+KxZoqQLRxws4Hk5Le3XUChQTLMrScu1OoB+pTImWBiM6F6o6uivZi5JVdgjuiuvBAALgOB6vZ06iROfLqgVaFQ0Oqcl4xeu6oLjjVrgOLAhXWgtX24j0a/APaQAIpxeLm1AY3Dl3zIHjld0Z71/c8aFVAGzFAZD1OBD2FeOAjgPV2H6CjS8NFdSZVeus8BmO2neUUVAGW5EUjwRc3Ff3S28hG9PIr0WK0s3hwWAQtANdnUL03tHHCGDJlHqJNRrtZFc9vbEQBoGkvi/M1rmRGXwylsmgKNglmW7PwbgLIEHVa6B5ytqMYuFI7aiR+QM4b7/s4/cdoPzCL/wC/vE//sf4z//5P+N2u+GHf/iH8Xf+zt/BH/tjf2w+5yd+4ifwS7/0S2/+7od+6Ifw7//9v/+23ktlAN4nOMmBG9kYqs2LoC1tRp2wHVoc+/6Md5884/39CS+f3LAWwSgF6ob6ENzR4I2mVg+tOKTCUKFSJw1Mui0W5EhFnGDgXLwsg1AF6XQZGNLh2qPk0QP1FrS1oaKEAyVfyVzYRG4AMhRqBeJK2s+5/FTVACcVLcrVSupG3ly16Fg5rYcDoCRpgXNx1hC7uflM1fB9NMRtdJeFYKZzSpiBVa2opaGVhqYLlrKwjNGBBYrWHuwfVCigZfc6j/t6bqwZ7GbKqkg4VwuwipzgRBWbj1leSYC0YmlPWNo7rMsT1u0TtKWiLRXmHYfu2OudNgtiEKdfjtoR0S7bGqBys9MF3KDFYUdEC52syYcOvO70YTi6woZEQz36UUixCQBFgKUBS3OsC/DyyYJP32349OWGT9/d8LTd8PL8TE+UCqwF2KrithTc1oYa10zCE0ZCQORm08vDwE0vvQmSVZ0VHIhKhhgVHgshF2MJgM02BDPAivlFDxBFlqTyuTknrqPtBD/UcshsICcRzbFqy9CrxuZPl9ehgJYRRma8/tVozAgJ4a8MHOlOKZigMXvIi53VBB5IgxIt+ktA2dXVAAoM3c+gQDJtldcnRc3hz4JzYTfkPNfoB1UIFN1hqjA1DIuBDMxUkwMzRQqPNUIEpgReY963ZG8Mx2TCzjk6otLDPeEPrzUVcdHzJX7GOF9O8AO2YQg1TfAtFNw2A6oBx87NvirQGtmwpQpaZyrl6NR3+H4Zg8UZdCng4ObUXJmucYKUEddawbDbd8Pr/eBcV2CVMu0LpAQXVHuctaGbRjdlx6ZhOgfqyEqAFDirdfJnGqBgXrCR4l+LNBMwHoRxj+WB16VdxobDQV2JgcJyHR3VxlyrHUzDiTvKUKwDaN1Qe0HtFWWwEkdTF4ULE+bRHmMMZBfklA+4GWxQR8Q0aswb1ynSxQWg1CIYVSBNQ9yOWSDUXbALR4OfkzvGYQQake6ZLrQSa6RQZzh7TSnbc0iYdw7P4gcGAmNYMIYUdUeV8pd+/L4DlH/9r/81fvInfxJ/8k/+SfTe8TM/8zP4sR/7Mfyn//Sf8Pz8PJ/35//8n8cv/uIvzn8vy/Jtv9fDHB/GwIfuWIdjGY7NEQ6BvMgqYCOlRSFLxWoNVRt8b/jwXLE/V3zns1DMYwK9A2qObxaWRnYYjkCfYyitox1R6RPeoCUWFaUxzQHmgrsBh7JDrHvHQMeQA0N3DH0AdWdDk1IhhRHGUgq0A9oHxv2B8WFFf91xfDho23wXyK6ovaBZAYydMNay4KgrtmXFsixoa4MsBX70qeiO5RFduKADOKt/AEaWY4R3AyMOiUU/2pvE5CYwZGF7j8jVg0LUxBmx1AXzJI3tAQA0d7RSsZSKtRaMojiqoAc1v2oYr0GQgbmYoQpL9G4CvIjiSQs+LQ23UrCVilu879CKT+qGl+UZn2yf4d3tBU9P7/Dy8inaQuGpjVc8SsHj/XtsRSgY9A7YAe07ym5Q1DAmYuXBUhPYGfwBHN3xxQP4rQ+OD4fidx6K++7Yh8AtNxBAWiWoUbZiKFVwWwW3FXhaBV//dMGnzzf8X5+8w3e8POO2bni+PWFpbGjGnh+KrSqeWo2KqiyhYnqRHiBnRcmIKTCEi2EEL8TSnuXvWUJIpkAQlRBgkiAXTw8nVSthBy+Fbr4z8hO6SxqBziz7HwjtB5CISWJfyHMQkL1bPHL26migpXqtUXosggaJFvXAXQRjsFHoAZbEDji6CoZKjMUEWGxPMQbgYTsgQgasuLAVQbBK0OB3FOxfpNQ55XrqAXQs8v8uQg8aI8tYtLCCRcvMs/dMBXlUxviZbhOAPakictUY8xCmayim5eYUroUz+GFVUbhIRyqH1gFMFamTiXIkKGUw0+MeH8A0t+wRtHgQ9yU+b56jdXrSWOEfWpyHdYf0qMCKw5Dl0tQ4lcL7s5hiMQNKAgVh9ZkoFBVmB8ZwfLFTC9aKoEqFFkVTRS3hJdMN7rRMcOksEoBjda4rq4XWZARDFaR6RRrTVQwNsfPInSKbqwpdeo/42w8D1jo6DnSTYOwHoPTPat4h+4FlGMqhEFomY98NUEHxjufFsMGw3gqaGioqbCGa9jRJHATMbhT+794RlyZUpwY7gG5K11ynKPeQgh2Ftga9s9M1yCp7BJIjLV3dCXBA4eoRoKSX0DgJJsIXF/qFCdDC0ZoNZgdSVTn3VyUjJCpwZfl7VgExPUlvMQ22ZoTu6Ms+ft8Byr/4F//izb9/8Rd/Ed/93d+NX/u1X8Of/tN/ev58XVd8z/d8z/9P73VAcDgveBocmXORSYwCz5giRHLqkDBra8VnsyeoQZV2+ApEbnKwJt+yvM+iWVbSWzGFVcLpUmZjNHo5+Jm7jhtmczGIPpMOzAZKhlkyjOHwY8D6IH2aR0+/lWQWGBUVKWH7zioimSXVEuK7Gc8mKx8R1xlZnlSiB20fyDt1BvHVjUJRD6GfG5csi/btRPlJUSeY46RRILQ0GnbKcaS42WnyU8CouUMZOUXuVoXNtqqwud6qirUUbKVgjXMe6liieodgbUNdN9RtQ1sUdRHYPjBGJ4NTyhRZA/5GK4Aot1M4mmD2OAHCi2M49u4hjEWIYiN6FaAWpf9K9MxpKzuQPt0UT6vgeRV8x8uCT24bPr2teNka1qXhtlS0hX1AFlHqiyot8Uuh+d0k7uIacX2NtJKnCDHYkPPJSMrfL1/n7xzIRpjcoZi+qSKARr8i5VjzmG8sbWQURcFcYiGKgSGYLE/qhwg6QVDgHpE2X0fBfkQoPgGKOzdzEbIis7EkcC6akwLU6H3FsnWHRWUN4n1jjA87yzDNp4upIvr/AOdiHEzGXFaQuq7EFxfQIXlMifxUg8y5lNd7op+8K5yXJcqTxXH6twCzR3i+ZjJTfK3UIeCc7Mh7fv7NOWLO7wm9PBrZgQwKzg1CQOdVCh75NRX6FnYF0daUlTlzraAPjoLXo7vBPS0VeM6mvJ8HWGZe4vIYbWapvxOudKpyEncBdCU1HUahPPUkLHdFgjs77y3v74TfE/bNa2UMUtlN2iCHAXsAaHCfQLRP8Z1Ao067ZApyYWTK9DBoFWA3eDNYSTEpz9N7rKXh4WTi6D5whDu2OqsobQSr5oLD2EIiDdI838947aozzeV+jt9c85OVKzlvnPchhncAVK51VQlOWuGxFF4xtXMmUIbtOUtOhmqOWT8HYI6k/38yKB8/fud3fgcA8J3f+Z1vfv6rv/qr+O7v/m589tln+JEf+RH87b/9t/Hd3/3dv+trPB4PPB6P+e/PP/8cALB7wcMUuysO07OLcHKzHgPUR9C+A5AOkYGqA007FulYpQM4cIT+QAZgXTGOHf3YcfQDR6c/RpdwPcy1XwGvgHWWbR7CfPMBIskCplEk0CTBDiMA8WgnOTd80CpzOJuElQF/sJSPB0EKYpFIVgMQFGiAlDJByrVq6FywguJFLpiYDEhSch4uruopBPRZ+WO5AAyCJ+tseGUKmCsrg4aHcDDypXoCFBeBhq9KDVq2x8GzY4F4CVhwSCzQ0JmDr1A0KVg0mJNScasNq3HKDBVsS8O2LVhvG5anDcvzDe3dDXVR1AoMHSg+KJitldqaoDsZ2VqU8BmKa0yqvG7s/YGwHt8Pw+MQ9MPp7+dAibL2pQmWVVGqoq0F661iWQrePVW8WwXPq+J7Xha8Wxd89rzh3W1FawuWraFVR6ks167KSrS1VnaFLSeogASDNZRLX+g/WPYeYCYqbnIRIo0RXYOF1zZqBAI+B1AQ6gis8PshYA8pLRzHsGgn4TMTQQob3CmjGkA8hap+smLiM9VTE7iYn+CiAj0YITFGyrmgdgFiFyB7Ar6fCGCSZlXMd1sIAIePoLkdNQKF4YPgQGOhF5828gVhex8gPZmhZKeumYKk1xMIlPhdAooa1zwrzoL7mrCG1LnPdGY3C30OU1L5qOQkEbUAE6RkCwEBpkfobDDp100ZwZOEXfxlg0G8boHgCYoW5z6DMaH/iQ72i5LcWEMfweJZYAK6UO/2kefC6D+WrOmnpCXYZ2Gz1HYBLj57ebFJ6BzLwAwc3YzavvB3wpGAPdM5YZgYQKkEMMn5E6vLvAYJeMphKPuA1gHVMRkUFsEbWeSDvirFCgflIRgHx5FAIHsEsHeCkyGD5fig2H7sFmtoQuXosl48ekdSd2gjHNNd0ENHMiJoSMFtCXC0xF4iRgYvQfGIqhxYeEqB4FrANdaNoHwRYBP2+FnDQn9RQRDBZIMtxfinp4tn0BzX77reCFJbeMEqX+LxBwpQ3B0//dM/jT/1p/4UfvAHf3D+/C/8hb+Av/yX/zK+7/u+D7/5m7+Jv/W3/hb+7J/9s/i1X/s1rOv6La/zC7/wC/i5n/u5b/m5oaBncz8KPEK0IJBDIAdgB5XEVi5pCRCklGKo1VDVcASLArVZ6z2M4qM5CdwhStfRpZFKNjU8FFO8apDofKw4KpvZUdwaFT9Gwy4djuZC1XkHyoMRNp4qRnhOlKOgHwrbBeMBjJ3GPy6EGInoM7oSkXAU5Aaime+/jghB0Hi58obvQUzibnSYTRO6jIavEaJENMtDIwUU4l1EmauSF/SA3rKx6qRAUHdDaw1ra1hrhZUKK9EQEYbqOhMM2QbaBlNwdJJlo8VFK55rw/O64HlpaKZwMXQdePfuhud3N2wvN6wvN7R3G/S5AlUwioW5GHA0wKrDi8GViyx84L7TeXIA2LyiKD0kuFAC91awN6Atjtbox7IZOIbM0XRgWYB1FdyeC9pScHta8PS0YF0bXp4XPC+K50Xxfz+veFoa3q0rtnVFKQ21VZTmKMWjjwhz8VouzqYZBWfYXBzwghQZCmpE2DbDfrlsHLARLBnV+HTX5MIlcIq53SkojU62ZkDViiIaTrAInYrNiHlWuwgXXYv0FgK0cHORaKrHGBbRO6TKOfYslrLuYNWJAdrpB+FDUE3Dv0IDVAcLl9fjootxZdXHiFx5B1DNIn4WyAC0B2CI6g+EvoXOos6tXDJdys+apfrDo/QXMtmDTGkVz4U2Oj9f2Q0B3a3Be8BmmcHGxu899D6MbpnDX8I4TlUmQdBdkpcFoJMJWoSbckNWWoWRl+BM7KSWLYKDWy2hzeKy6vGPEnO/donye+o+XDQAYaQew7FbnWLUZFJdC2QR1KeCelNopffLEYLVUWn2aItDNkBatBhwhQ+ylI/d8XDDF8oqxAOGZXRUAT7cdxQbKIeihiGauuERgeaH48DDLCrMiCIJPnO00XNEQ31xlPCBOoKBF3a/pm5vUHuT5cpR1r73EZVGDrlznljteAyg7YDcaDNxABh3wA7ADw4MA9ArBexSub8AUS0Wpf3H4Fx1GEGMMaD11w7sA+XVUO4D9RiwfTAtbR57FEHM6rxNFRLiXkAG0zpbYa+xpSluGy0QWhGUJeINE7LFCXKCpTfhOHcIVpcILE/Gr0Fwg6CcTeB+z8cfKED563/9r+M//If/gH/7b//tm5//lb/yV+b3P/iDP4g/8Sf+BL7v+74P//yf/3P8+I//+Le8zt/4G38DP/3TPz3//fnnn+OP/tE/So8EnJHhFFsIESU6VcTWB7wLfGiwKYSXIjaNU5nKjUg0AIrBT81BhEyscBFILUChmU1XB6L7r4OmUqOwpM7AQUXxZi5aPCqig6jFAtwFPsrs7dGHYHTBOIBxOMZBlsOjXDUt+M9lWGYpMkucddK+BCbxrIz4wtTNc5GNiOS0mef1PlMAZ3VNdhUmhQ4qu+Xi/xJutFILpBXIUqBaGZV7R61kUJoW9DCX6kEYlvgs3FBlRv9x2lzMwbQDq7MKnmpBddrqHSUYlKVhWRvqUlGWSsFY4WWgWDncQJmMAzDCl2Lw/jhLmZdw0C2DGzhtv0u0YgdqMbTiWEtsduJsw14tqm8E6yZ4vhU8Pzdsa8PL04LnpeCpKT69rVhrpTtsCGC1KErhQpU9VFLAmTHImaJ7m3ZIIytLCljL9F2ZYyGQZi7KSLAQgteADVyohWXsYlyMSmiEcu7NjLJhvk6KOvN1oAhjtYjIA2jmmYsy0i15KuB1ZmFSsi/gZmGgLfk8EGXmkd7NlNObzxrp/GvY7MFECuBDuPObcO2IC5wpT5vXOFna2NiSRZnx7xmZ59trpCyzBsckU2iCFBum4DUvXQ2BMm+N8Wo4tWJF2UQvu3gz+hUURDNFJOghc3ECFEUiWo4Pn+mznGsFvL9b1bkujshZeQmvKdCanik+Q0XhmBFHCdOujIquaRgAkGg5UVbFcivQUuFSUB4KOYT4OigiWZRHLbH5C/pDsbuwJF3ps9GFQKXYQB0d5TCoSTSgJEPUB4PNuxuN0WIsJZC0QI0Kh/qADgKqsneI7PwcAkAMGusD/LSxTw8pB12CM/2nu2F4gd87urAqR0Gw38VhD4IT3zEXcqvAqEDvDpQQHTvC80mwH6czsCrnnYXIGLsBO7VB2pmiQqTlM0ApJnPjL2EvQLaJ7NUGNkhNm4Wl0sJCS84hBurDo93EZQ/KZGG7MHpM7/G1cyx+2ccfGED5qZ/6Kfyzf/bP8G/+zb/BH/kjf+T/+Nyvf/3r+L7v+z78xm/8xu/6+3Vdf1dmxUs9RWQhNEpLZnkM+KPDHwP90dHVYQuA3qMxGssaS2H7bFTA2kdHYamVxdIvwsVBq0LXCq0GE1YQjc6F010wqqKXgl4bBhoUFeiR3jDW7VewVHaLAVGHogwFrM4b74fisQvur8Dj1fBYDcdB3xFEjl7YR5552lroOdIqWmsopQaTEvQ5wzVqOYbxWvQDdghFV/3A3o8wHjr7CM2FNL1YJN1yK2rhJsTKksZUSVtQlgVlXVFuK+rTiva8oWlDhUBlYAl31FstQKXXiqtimKNlZRTSeRaAnzn/4kATxSYFL6Xi01bwyVqhxmj9KBWfbis+ua142sKMb20oTQEZGD7Q/UDHju53DH+F2SvGeEUfdxzHA71Ta+GD1UK1Cn1uQMBgWrFXxbYIbgunZYOhjI7q9KBZV8NtG/jkHXDbCj75pOGTdyu2bcHL04ZbGLN9sq28fqWiaANX8DIByiwvlUvJbOT+szwR4EbZPeSOAhwWgtW5eXNjB04QgAQ/hKERXSeYYa+TIqSbTRzwcBiWKK01mZVJPMg8QAyaCo+s/ClChgcBLMD54rmBxQYwIgXSwTFoxuhOkkUxtjEoAV4sqtA0NleJ6I0MQwAc5VtbeIwM+DT/gnNzxUyFRmCjTM+6Zxfm8HcJe3z3YCEEU4fimqBQGbWqonpokJwpT88kjIAtFSKgqNDJcNFkziPVybJotTOgqkv0VJKC1JANy/RtzFeQCaiSG4Re0sLhsyJG4BhAjzo2QVsL71cafQUrosG4qZeIoJn+q1LQdEAWOv/CBaMT7FvvIa4G2upYnxVPny54evfERoHeouVFR9mo2ZJNUV4qyho+UBDYcOze8L4MfIGO3z7Ytfc4HG0cUBvQ3aFDoueanRW0YUK3R+qZoCwS3YIp7BcA1ToUA3UM7A4se0crnSBbIqXidODmBsQO5CiAF8FjHAx3BvA6qENr3bC8DrStYnteCYYL0O/AOAR259xSAXoj5eaVbIoLtY/dKJred8yBV7UxcBiAHTvG0SEP43VgU7rQCloEJPT4uc0Zr3MsCwwLgJsqPqtss/G8MECrhUHFIdEV2wkO1SnsTdF4hWNxwZIRUwTiCqCq4KYfK37+z4/fd4Di7vipn/op/JN/8k/wq7/6q/j+7//+3/Nv/tf/+l/4H//jf+DrX//6t/VeA4Wq9dRFdAt/EYHvAxYpkbF3jMqBIIMAxdI7JcUc6qSwWRgDKxRbmhKEMNIOp0Blfq4kreVZPhqhWkauUmI7C5LLT1cCQQQaEY3OniOis4cCjP03+hFHt5wP0QcnqFSlw2sp1Dqk62vJI0rBPASNWXuPfsB75cINwzjYvdbS7po7VkToZ9m0p55Ew5obziYb4dKKWiE1vrYGaQsPrdxISpnN68iihI+KaJiIhRFdbKosy8w4XSCiKKBT7SLCcmNE1gKASpQda2GDwohgS9CisAEZB9B5SKefgUa/HArtCARkCEoPat2MzRzh0YDMobFRZq5+KYoKx604tkVxWws+2SqebgXfcWv45GnBbV3w7mmle2xVPK0tym9TTatAKTQe1GTdMkJL9uQ0CrOgmA1sQheJP1LLsXjlZl64K01RXZaXT1bAyHSQQk5xLfP//IyxVylC5IqUghAoA2daUH2agNGfRZL2CaYg3idreiHnG4AamGQNQt9OXA5umsmY5H9ZYg6N5yY76kBRsiUeKaQkOkj0pJAyNrQQOPJDWA47eDAZyZYQ1MTuLzLnZDYkFVUU9RC9Al4YhnPGMGDQkinZACiRJdKLHkZKnBMwW05UJZBIQAZh1D19X9LYRSTM+TgPUgCu5jPNk4BCTOZ6UdnJLz5fCLIlRJUOGquFUr9paDtEoC22FKfYcwDoQvOyouyGTi3WgttTg5aGMQqWpVDA3hSlCcqq0K2gLBW6NF6UYRhbRe8Fj6PgURWHK3UtTjAmGLweca85fE/mjm0YHJkEDfnoXOvEqc9QOCroddKNrtJk4ZIyi+KL/BuzmKPAw3p0+6WIvihLnxcHmjlGqSiVvc36DowDsD21NSz2IBHJ9c/jfbvRZO3YIw87Ip1pZDfHYKWOZ1fNiyya0ypmjGRajntPAhQVRRNWSd4E2BR4DuajRKAu8AhedTIzDmYdqNe7MJ6xz1RYpG/pXfXtPH7fAcpP/uRP4ld+5VfwT//pP8XLywu+8Y1vAAA+/fRT3G43fPHFF/jZn/1Z/KW/9Jfw9a9/Hf/tv/03/M2/+TfxXd/1XfiLf/EvflvvZaCLYwpPPVXRKvzaWfViw+mQOAVdPiHzBBYiM5fmKc4K2hJnLQqV2RLVwQlQsn2nTOhB4CPMAl8005cjnh8LGRs9aaStoq+HcVD2YThGpGA8F0cJg6kTpCTDkV9VWQ7KSMunZ4sC0fGYDQVRlCZNYTGdkblHfjtTCLlBzu8vobPnrhWOtCjsRSSlhN08PUUYTJ/58yI8anyFIKpp+F4yr2luzkwwJW3eLiAFIYgUYdfetVBMW8JYqODckCRKqn10iPFgHd4IQTA/p0xpUthmSxjzWwc8PA3itaHM8y+i2KrjtiieFsW7RfG8kuX5dG24bQ3PK3tELUWxLNTfWIBZj11IMwqMKz4BA7ippzkZLRBiwxkpcpVZ4pp+fCUWvZQuSXCzKpmyYPrCgkrOlMTUvMSOrrEBI0FKgpMkQZLeTfHuNHM40z2ZykAwBTGkkOTZJFRwgqjrkpt57TPdeALauSlrWNUnUJEkoDO482AsZIopU9hLQMDznmRTQJMLxgoAJ3MNkRh/3AzwxoytGjf6ETl/CKagnW0lZH4mU1qD11ij8tpofK2R3qka1TUAPVcy7R0bTwILiXlVkm2KpqizNQhvGKvOCivNGHAIRMoJUC4Ad6Z1lC6i6uDfgaw2GS+ymhRbs8y+NsWyFqwrfZB6p6avZUBVAa0FpZVo/xG9uYbCl4rRCnqlxu8woROtEnRJlit6VPFogC+RqPArobvJOcW1dMSglUFgwZKKFP+SDUmgkOaGudcKgOrKdc2ARxQZDEujs+jZJYoGhS7sf1RN0Q8GzmM/x/sQjoFcd1PfMYzu5b0b0B0yJBQNFNJmgHFWcFyCyqwSy1RizOuadgGRumsBIng4VmFFjyJbu7CHW4K02YTS7CzrdmqfJFyNa4bpEp2cLzPq93r8vgOUf/AP/gEA4Ed/9Eff/PwXf/EX8RM/8RMopeA//sf/iF/+5V/Gb//2b+PrX/86/syf+TP4R//oH+Hl5eXbei8xwI8D2HfIvkPXnZugKLQrdFSINehYodZQfAkhm0L1gVZe0Mp7LPqOBmTCJk0NhtUcqzt2GOQYqJ3UYOX2iFVJwZsIBgy7NEANzalwr1pR9QkVA1WfUbTDxFD1BpUNkA0U3TWIPsHlBscNB1Y8dOAeteUKYDPHFzbw3g33AjyqYm8KGQXiFTIaRl1g9YCVFa4NLpUsAxTNaLqUG452Osz64bDuQBkYMPTsvBsl0eKKErI7F3pNOjrM4zAebqQhJ1WMARW2HqiF7pO1+ayK6MrXc7a3RIqHZgPCKE1wMO88JCsToiJDC0phN9+tLXhqDe+WRpqzCPrS8PL8jE+e3uFpe4YuT9C2oUiB2YGjO46jAHsA2dGBccD9gKFjSKdBXaQ31Abp0v6AhYLfZMBRIVpRGzeGZoonBTYVvGuCp5vg+UnwXc+Kd88V3/lJw2cvG263DdvTE8ecCqSwuP0whfsClwIpK9M76nA7Ts2DhCofNgHFsDGNt3Y7BYmHSwjrClrmmu2s6OEC4jOidzi60CenKxkDiQ67qkAinWnuZAT1gCAzJFVDGzV8tlfX3OSD9aESNKJ+YyoFliwk34abLilvA824skdfCVsBc+bBZ1pEwpgtNnFXbrg9wNERrOAwaomK0cyrQKFDT5BwSHTrlpMVEkC8IO3PPJXGGb84IBZ1L1YDAEYlWFTxcU2nUVlAOBRUVBQaHcalIVgqMyKdYBJZtsy/m/Mb3IdREB3JBdbCEydFNsKAqhjPRbtMyZ6niMAUpVD/VLc2ozASKdxklf4JBFhu/IbKdbgYliWGxgAeRr8VmEOrozbB0yZ4dxN88iT45BYOwXC8quEhAzcdKIWAZVsatnXBtqysnBoOrQ1eGoYe6FLp6QSK/D1UmxlEHcJA06rMsnyCuNj0LeaRhK9KoOJyJFMHMElPH4+pA5khAyZ715yBDKvNxmzI2gYdhaQDbQiWw3FIxVIdaysYjwE/Bsbr4DwTQVmBUQW1CZTdUGE60J2tIfa9I5dOkQZFQYmV2qFMl6cRJ6ECpjVGMCgVLOBYUZFmVyp06d7csRmwDe49JWr03e0s5e4MjIZz/koA0BoSBslx5obqvH4l2JiUI3+Zxx9Iiuf/9LjdbviX//Jf/r68lxlb29s4N0qk70LEVmfMdUY3GabNzHy6tuaiiIjXU9AakVSyLaqn0+n5d2dUlY8z2jube6nx5iEZnpEKa2RRTRyZV86F1THU4JGb9ApYFfYdqQBKsD+x1jDiikhOmAAXj7q+ZEK4awDnT2aMfqpA+JwrdxJ1l5gKQctNx+b10tj4yI4E/YtYfGMzNPhs9pfFH9cA4LL2x3LOM03GpUlBE6aGaqSeTBVS2RiwtQW1Nvas0YISIkExhx8dOA7YscOPAz4OiJ0mdemiK5LVRQ4zVilRQJ3pBGFTyqLQUqZfwLYObDfF7VaxPVF3sq2s4GH1UqOeKQCXOCscLO9RKZBwaHRPfxnL7EeM5zOKAxK4nBG+BbPig9dXYkFxB12JQzhrs5YWvBdAMHWeWsdzzjnp7xQWZqrpHPunKDsBR44vsg2XyAuMaqPoKOZtDL7QqFCcmNeJb6LBAqV/Rv4+9SD0UgnmpMTvXGLxDEZMkvScfOYEOpG5OFNVMv9vDn/M2XCye3OM+jlFxM/nnHVwOCNaj7Vo0vo5CU6aJj1kIOe0y9+pAwZWlkk0h0Oh86qKsSNtLHlFgwkM4JgVRVM/I2fD1RKoTIJVKcF2JpPWQ4Q5c09CQBdkCzIrSxJZIBXQSg+itgiWRdiOQ1gEwLHip8i+Fkgl86qVZngFFmwwz4OaZt7IGqk8xOWziPpNYp1P9ljO+yqSaqtIdV1afrxNkMT8iv/PNemEJzL9RSRYhpSHe8ylZG0hhvsRnlgusN3h3eEH5pq5s9iQxoiDN5nl/HbpnxYzTfLseB4e67zoIDgOq+KLRH6eeaZOBZFKTSzrINAbEcAGFh9R4TkGTflGVLGhRCBTbPqwpLdOMijUIDHg+zYIlK92L57RB3o/0Edn90s/P/wlM42kYWcawnX+e3bwBTDzivmTmGmZy7xgHeTu4JeBy788V4+5UXsov63zax/w3jGOATv0BCrsTw+kqMllDsguxhLJCngDvAnscEgFvMvkvD0FSzit6lVrbHRBjovMc04Jv8aRH5NZqzCvyo8rJ3DL8zzz9zIB3fRdEE60PPLScfG+OGzmgUymvQV8ea6B/1EkUzthby1RQglGSFoaltoIUArLm6GVnVYdkN6BY4ftD9h+hx8P4NjDRZdeG+kro4UEJSu6Kqlhd1ZoiRJc1OiaLQ3LIlgrsN0ct5vi6bng9rzhtm3Ybiu2ZcG6LFhru6ROFBZl8iasaqC7G3dTT+8IB1OHeU80KljGBcrFHPD4kVukOJ07UXYTtZHjPenYEH06ZmQUEGKCRYC0t4ZolwtU6EwuwBhyEc4qzsKeZH8SpEiUIAf4h+GM9gKpsmVPCHmDUYQzZQkng1NAw8YEKCOxTEm/CKYwm4UNevx+gpSctsZIcCYTryBLHGlbBL+MSznBiGe12XXgxuI/t4Z4HmKFwOVwPz0lTmSeNLrPCF80AGQAII2TLCFEliLQ6qTtc+NPgJKBVkT7iM8QO/aZckUAP1W0WmfllkiUhx8j4rzYspNC0/MaoZzjUJpCF0FdFW1lWrM1QsM9xFBT0xPpYa0NWhtKbfQlQWc1nYYJolD3M5S9gQj4Lm7Icqa+GWjEAIn1zzw4JLk0ygQ7MlP7dNrR4/L1Gi7lbpHeMik+F/gF3PB+9UHvnftO76BuoLdVd+AIkzyh/qgrHXE11tpktS1K2j3WV58nxYGRY1l1QNW439mpl5nzNG78qRXBrJSDhStxV/RZXk09TR69h/zAPZqe0i+GrRVAH6kYz/U6n95cx9/78ZUGKGoHdNyhdof4DvZS4U2hNwoj0mGCbjS4yUj9MMHDBQ9X3F3xcEUX2mJ7AQVtjmmYo0GfqrI/D+v3I6SDzc0mfQqaOFYxrG5Y7YAOdr6UxwN+f2B8eMXx4cDxoeN4rCjlQCmdIiePTUso6roXxdEq+lpht4ZxU/QFgFUYWFrXC1vUP9CxO7tj2lwlM97nLkAD/w7HDkSnjgJa8quPoObI6mTIxo2OfSJ67+hHR98PHDub0tABtsAkfF66ow6gGdBMsAwOzBR1soutYTe29j7cZgsBCgZYv1AKxa1VCpoDmxQ8lyWOhidV3ESwzohFYNqw1RVbWbGWBaU0aK0ohYZ78Dvq8U3U/XPI43Ng/wLY36P0A3VQf9KkoaIBVvEYii6G5hVVmFO+Q9ipNlIHhrDnXhaKAD8p2J4Kbu8qtk+fsK4rlucntNsNra2QtmEKLqAQF9Qh1KFI9HQRD1DN5e4EeCFYi3QGoyYuBiwXBxfqDkRpT2yMPoWzI9MSCRxjV40eX9S1CBeWoZgUb/fBsQGPck2LvjF8QQISj/0qSpThk3XIbi9psZ+CRYGnVpPW+QA9dtQoMtUTEIgFHg+E0YAAKFF1p0xTVeHmNVyho0R1GiNDxMaunuxmJwgwBWtcJawDzugebrOXjwlH21mgzs+Q0uIzDXf+rGew4XTdEGAaZJnY3IgI3ng+JdXBSCYtQqhpZ1+wgOCEYsYAXmYQGRDpWApF5UswLBKgdeJZp/ZNUFFrQ6kF29bYF6w1rNsStgUCP4B+GF5tx30w8HKn1gjRHwZgxG9CAzU0h65AvRUszxXLU8XyXFAWds32OgA9IHpAi5P1ahWyNOiyQNeFrF0veLqteLd3HH3QViCCvfXo0XsHTP2Ba/vIRq/aOM96gBQHPalkQGQAfkCyo/DBSWB7P5uCmqKDFSy9TzkuEPwAHc4Msg60QqBD3x62oRhWYFLgWvEqjocNyGHwYwDdIJ3jtSjXFHZ+C7CkBpUDs7WEcr9BpF7JgFAuQCYsVn7RnMgE84iSZclO446jRwNAC+M+5XzUznvpezT3E2AcA4/hOAbQO5cVszgHNbbxiD1Qe485tQO5ZkW54fg9sizXx1caoMgYFHpaD9Fixt9+YUh0NgwbfiYxurAvxRH+G+PKsGgg+Qzl5XJBr8KjiMwoTAuDMpzUO/kKDjRx2uZTnDqAToGmmcJGh4xO0WZEWypsmGZK47dRFTZLckHL5FKiPLcEmUYHyhFiV7dxVit5Rmxptp8VTEaBmZ+NnDRQ9rXzZ9LPnr4wfpaveeQlPRgVyQZRZijDUQa/Oi5gxzEdQDtCG6ARQQcIhAh0sErGbWBxwVoK1lJ5KFM8BWCkEVGmRpVPGl9lPrnGp1c/oLZDxg4dD1bw2JgWz1DFEm6pAuVEdIFLgamjquAINcowC/aOobSIQEuFLgvKWlG2Blk2YGmw2uBaYUqGRCZAiUoMJ0NEFiGEfJ4Zb45B0tZnRMKg1aN/Sn4FEEDkNOqI1I6RnUg2QFQmNc3/pQgbmI0RZeoiGTEFy5CM1xxbklMlaBNVTNM4iXNxTJEiWamgwGOMJXlgyBSITKYnaTWJtAIrLS6spzMEVITeQMDUW0R6rQiWITgUU4TL4D+uT/4noEi+KNOpb65Jft6PjjfRLH/K0w1wgQvtHwt0doA2j35GCAG2ELCIRrbez79L7xJzPrcMoMccaKqRTnVUM6jQhBIQVlGohv4lQCevWkT/CkhFXSpqq1hvC9aNrSLWbZ36nLE7jjJwHA7dY8MPIZArgaoEQPFgRqQ6SlOUrNJZWMHiJUFeD30bm3GJApLtHGqke0ANw7LSIfppHyjuXEttYOud2gfnOj8geKBgSAKUBXCFdIWMAChOw07VAfZ5HhAb8IPr2Xh0mhEa3XDZZ81xHCyvHyZwD4BSAV0HyjpQWwnm3OlDYsDRS3jQMvhwgLqXVI6oT+1UTyZKPQTeFGVJ9sqJjtIFqZtigwIRdl6WzOeqQ3o5Wbkgflyo3fLUlURwo2CKJjJRdKEdIYoH4N2wU50wzTw9ygQ5JTsnuoNWHtZP9heAG4F5Pzmc3/Px1QYofQf6Az52mB1wjyVTnBFoCdpc2RG1SyJJwS6ChxbsWrBrRdeonigMz+biEJzZXNydRktHKOY7CnYFLHxB3DqyfjPBSfNBdsc7spyRrb47y1n7Hq27O9kLJXPQHRiL4NGCQWnc5KwKrABeG1AGULhMmzl6PzCOHeN4YBw7rO8YY2efInBh7zjQ5aC7bnNoA5ozwTOMTIAZpmkWx3Uo5M3AHkUdPg5GMJEfR2fZsfaOcgy0Y6DtA60O1HtndOuADW4YB4BdHLsAu7KbNFSBZSHNK4WTXDuqCJ7geFcKPtlueFk2vFsWrEqDNrb0HkyAOjuuaphu6aDnRbGBYh3aH5D9FXJ8gPY7ythRvWNTQasFjoqmG0QaTAqdJwUU5taCUgx7f+BwQ+8H7NG52EEhuEFKg6zPkNsCuS2wdUFvBXtZcNcKkYpFauQ/YqfIDdN5nWcrhGxQhkw1nFoG5pz596SjbQLV4YZirOrp0SvFYj0PdBjROFMnqbHK8S4AwjEPpsBxkJ3oyN5EPBeTEikCuSyABoBdfLNbdnqxWyxu2acq2yhkRY0kmWEZbyRtfgIIBFgu7gAGU6g+IIjxqcFiCDBUw2xMsfXOc9IxA4yOEaXY4f6poMB0KbC10nYA4bQ8PDa/4EQE59dL4CKIuQMP7xiDOR2KPdFh3DcL5hCG+RlUaJcAeFRC8ffdKPw8BNhD4EmRM90t1kojsObAho5FB9Zy4Cn0rlulUaJEae4YNJR0j4aeZUF72tC2hpdPNzw/bbhtK7Z1I5h2wf3DwOPecbig9TuqPyDGqN7UMOTgPYgUnhQ2fWxbIXNya6hrgVZgyECH42EPdH/A/JhpHimFLtStQJYaYnXF0/MGg6CVCn/Z4vMbbm6zh8+AYkDxkIohdKoGFogr9CBAYYaQ4ETLQC1H/FXqGh2PR8djDOzD8OhsXbK7od+FrU3uArMCc4UVQ1kHynZgWzub64kAnT5F/VA8RjS4few4jo7jMWClx/xNJgLw5hjNIdUwFoErCw5KpM/FFBUFDQVLi65JvsGwwKHs9N0BHQL1HpWdAoweBpyCvsecnO0jw3PHBdoVy2BZ+NYt0n6A9AELgfoRaXn3EaKogTQu7A7Y0cP0spOBQXgTgU0/v+zjKw5Q7nDbKJB15tx0cXA8slSuHQVlVUhjvtot89TZH6bAa+WmohWlCGoZKEWgsjAaVuoCPOr8TLLnDmm/Lj77zOxw7M5qim47hu8w3wE/MLyTJVChUr4UtMJKDj64gkvhgDLlJD1axWgVXnmOKiQWF61RLaSoiPz6MVB6R+0ddewoo6OYnU2hRKhaF0MvAqsF3mqIQwvUC7RqaDG4DbIzbwpuZZYyc4ONjTM2TYYGThblGJC9A+WAv+4wZR+jPsJ2XCq6VvTa0GuHrxXiCtlWeqYoKxSsdngR3MTxVCuebhtuN4pOSyW9asLoS5WAy5UsUT8O+F5gd6D3B+6vr/ji8/f44vP3+PDNDzg+PGBHh5hhafRx0aWhlQZDxcMK9ogQrTWMCqA46oPsnSpdZAWOdw34dK14vq14fn7B7XnF+rxB1gIP876HLoDUoORZAp1pkeyrQUaKGxosIlEEwxeCjpRFeWxiivQbQETr9qZb7SFkq0SToXCYKLwovMlMEFOLEmXHJazdFehSIR2QQbETGbagc12p9Aco9iVZPL2DuIgN9pvqBCXDjUtjgJOr02V4sDOzEToammkRJCWjxFRKNt08eRlEibhBYUJzNYWjacdtWogLhha8amHO/TCmVUtBXxp8XTDWSsp7sGfPiETWmNee1+kU1gY/G+zh2aMko1RWNRRkmasHy8l7pjLoexPOBCLUk1BAL0AnK9aH4x4sJEIrwXJqASpQiqO1gbUMPNeBl1Vwa8C7G0tBxYG9ebSPiPx1qcCyoD6vaGvD82cbXp5veH7a8Lw9Aa5wU9w/dNxfD4xqeOA9Gdxkj8LAjy1HMl0G6FKxfbLi9smKT582PC0LVlVuVGOgH6HHGyOElPQ40otGIqQYAMgU+VKhN2pjagU20dAT6WS0HzNdWlDRoC6oXaODNIG06ICUjlL3qESxqNYB9mG4DyNAGUyP7u4Yd2GvhLsAh8b9MZTaUeqBbRtoBViLTD1SH4p7Nzz6wDe/eI/H6wOPDw67xYT0wmtXBLYtXIOrQheOiyoaJpFg9ZZWFCmoyxOABrcF7g3mgqM79t0gB1B9Z7duoRM52e9cAwydhhYxminWV1EUoxYmfaQUgPZkfAsOMM1FsoY84asPxjSOy7x2aoDAvVfIs3zpx1caoMDJmlgsTlNbuJCyLEIjMG0CqVHlEnR0EM+MeNK/Q0pYebCbqoLix1SBT7+UyON1iS7Kcsqp2OnHcfhA947hB8wJoJgOYhpJApy0MCuziLyQ6FIBrwKvCqsKD7dVkaAPxdAkyhMlXDUDGDClMlCto/hpnhOxIBDlvJYgrbDtOIrSgCnKBiUo06vfyVTZS6DyqXzK8PsEKRiRY6109bVK9sksRGxQmBYepcKrs0y8NUT7X2gLbYJz0rda0JaKtlS6aVYBhBuHpP65gsp3MXQ74L3AdoEfO14/PPDh/R0f3j/w+n7H8SALBEcY2xUUqWi1YnilQ7AGa7HwfrgCpRdosegyTPOwd03wshbc1gVP24Z1u6GtG8rCa+VFMbSha8GRHjUBUOKihQlCrJCk7TjUQxQqgWWJCUNkixCFJtcVQmmL+9wlC8wx++I4QHZAnZqrcAxlQU+8TmFPGIiE1oDVSpnXkMvtnzJQV6YhIGAChshldr2O/jZZsjnLp80Ce8k0kJu0dF4dwdzMJRgjZMrEY0xnqggSCzE3Kyh7CLkOeBkYWtBrwS55TjGACpk8LwWjtKieGpGO8ujLxet7pq08nJqDAhKQbQxQgglOfB6QE5hNsFJIh6cDriggNXZ/4/32Tlfb7kw9mLPJY4nqMQ8A1ppjLQNbG3haBLdF8LwwnQvQQduMqQpEKgVbhT4X1LVifVexvau4PTc83VaIK6vYaoU2xYf+wPZacHTB6ERsmk5+BvYf8wJRQV0LtqcF223Bu6VhrTRQtGg2aEeYQw5G2CxpDtfbYNFms9KwblcVtFZQqqAthU7Mqm8ASmr5IIpFKoozxacxzsjWDGoLK1nz1BoaaKxWh+NhhmYEKA9z+AOQLtA7UHZhuW83qB4oWrGtA62yh01QjRgmuB8Dj96xlo69OR7aYY0BIKSG+aWgr+sUO3sNgALBItGTS+g6raVClg2OChsNPiqdnQ+m/60U6M5ydYleR2Z0OM7y7CNAd84yAWZFmbqgRn+eAqbbc82yWVJBNtzdo7UAQciYc/c0UwT+kAEUKQesDvQKjEUhTxX6bkFZF6g65ADKIcGKkLWw6ICXKu0qNAjqwm7IDRWLOJYiqN6gUqHIyooSYIY5zg72tSS70uFS8XDBqzveu+HVDyy+o2GHo+OAYTSFLA3LuuJ5FXivOPYVe6kES0a5HaTClwasC3xdgbZC2grVhUZgAJ5kQZED6oJlGFofaPuBth9YjgPr2LHawOqcbKTVO/Uw7thNUZ3qDBewN0SkurjmRxirCkgJVqOGAVsclQZ50DIdZi0Q9BiGfgzsOlD0QG+KrsA+FN0qhizwssKLw2qIkUX5mUVn1CgwwAtNaltB3Qrqxlw2GvUhhzNwqytQnwBbB3o98GG8Avce1/k93n/zt/Bb/89v4f/9xm/j/uGbeP/hgf6gkE1bQ60NS2PufXiB7RQFFosxpizpvB0FbXEsm9PKWivePW94/o4nrJ8+Y/2Oz7A8P2F5eoLUqDooglYVpQi8VgorBVimbspnGYq4RK5ckb4BHiUxgqjcCE8fUUXmJ0p2OQ6xJcTQ1dDAVvbtFEqQzSuK0QpGWprn3wFc5ERxxBIztLMSodPMr4gnzJxRvrvgITKFo2xzrewl1cGu3AlKJLQ25hMUMbQI9gBAGm0NA7orOhOVc/6mm+mIoPYImvqA4mGCrhUeRn2qHUshdZ2tKPbKKN6wM6pWxR6iSpcWoErYjO3otA7vdgKzcUTaJgFG9MIJHRYb0lF7VnowYmYhrA6WK4wRdXEyB1pQV97L0rjkuwH6cMidVR99DPQR3jbKVIoujnV1PDXHZ1vHS+v4dDnwnZthawPvVsx03p76NwewOKsCbwq/sdpmeQaWd4LlWfD8wv7ibgXtydBeFQ98wP5g4LNhoCr7tXiwX26CIhWqBetNsb5bsbys+PS2okT1Tu8d8ug4Xg/014H+cHY6N0UbCn2EYmEI9oPC2C+++AK9s13FghVVKrUdJY0pG5lBsBRawN46izBV0crpTDxQMIQFA7vdg0FRlEgxa6mXnjVRPhvpk2LAuguW3VEPoN4HdBSoKWox1CpY1xL9v2iBsI+BfRz4bBvoHxTHE9gvThRWGj1atGBfVsxKI8k0ZseqdBDelgXS6NS9LxvMFL0L7AGMbni9d+BDg70ayl6j4CG6jo+wzVf6Ud3NTi3Z7ILGtYTtJRwtGBQ5JNy/Awy6Q3zgcJau38WCLQG8Uvhf0lsH7GUGo1j8yz6+0gBlNOCoIECpwhBiycZ0NEzTEqWU4bzIG38aZGuU4gEp+smozqKdPEWmzA1nGSJiIT3dHy3qfA2K7orDCWAGEm1SKV9KiNBaw605Rqt4Wiq0UBSrWWoI5gpTeJt6AQdZDJWCkikC0TclkbSLD2tpCcbYMQV+ST3b8LNSeORGAaROh9tUFF2mABjhJ5M1msrBTBfeMx/PplKXw0NdHwZblvJOyUNCGBZMV+gpBoKWBG2z2QAvgFNxJvvBc4YKJGyyZeH3pkHPd8fr6x1fvL/j8y9e8fn7Ox6vd9wfB1X0xjHiGvWYlVFEcZrciQh6shcuFOkugmcp2KxgKQ3Pz0+4vWxY3m1o24K6LKh1mf4UrdB8qRRBrcoNNgVsmHmDWQNLy24NOvpk/eZzL/cn/5tMl9IR1IX29mdH3fNhhYzTqAQrk2dxzgdXsoMCsmzd6BralXNF850l/DeM97XH/Zbw8iFdIjN1k6JXiXt7UszJDPE5LEs+HSUcPrU0SV5M+h8UMXbwvuU59Cl05wuLShhi6fRPoUeDTgbKjBVQLuEaejj8oODRo8RpMlIj01inO6kA7HV1ERLOLs95rz2Fs4jy0TC28/DZiHk0mcncVWNNIEjlfSyFniLbqni+OV5Wx3c8C16a4NMF+HQ1rAW4LX36mCzWQz8hwGrw5ugbMFZQ8FkooIdwDVUhAF1W6tOWxbEujr4Y2ur0/qkKDJntEhSAKkHTsjhadbyLqkgXYAFT1TlO3Lim5rpWPJxrh6PvA499x+v7O/bR0Y0GauWoqL2jLB2qBSLLHEmjcy0tcKBShygqs7TcvODwju4dO+4B8graBmgtvCaQ67A9p6pFRbQ42XYZEDvgx8F0YZHo1aNkwUphwYINBsYKSFOyvaIY0dHdVFFaQxKIw22yik3ZSmNrC+3/W0VZFtoCFLA2U5lCZx+v0xBzINxtcyaFANdtcrcc/1EufjK1F4bWBTXW7+q5ByJ6ZzHYFwHXuwA1xZxu4hBotKSR03nz93x8pQGKLWym1CvQq8CbTpBCipT+H2KG2S00NsNJJUr0s5DLQpEAxdMArgM+iLDDt+FNDxAHEacXiuhccLhiOAHKtC0T9t1otWJZGm6Lw46CRyN7cijAO1eDHQtQ8KZ4nYNGcdJtCOvxiRmYsTpLDmN901jI6WPirOQYBCpnHwcgBY+O6/vKLKWe/h3BJjHyDBCl4WAJuRysT8hi56RfMy2WKTNinWj/7QQpHR5VSCPATpTRZQVS0XP/KQJZCFDKQt2RFfYEOcbA633HFx8e+Ob7O775/o7H/YHjOKjdAABExZfy7+CMlFrJqB7IOH+pDU+l4qUBz0rjtXfPT1hfbmjPK8q2QFuYxIV9eKuC0pT9VKqcZY0WaRBxzN1XQXCSJYNIUSZ/n4RpplsQ4MQvADLBgwsBiuXT4rNYpMRGIUAZ+VL5euExIlC4EpyMUqBRJp4W6ipppKYY0dJdgNnOni+uUXERkEowR8Rc+SWZE88cDz+/n9U+zJ3Pp8/xydQqheUi/No9yqkTuCeYkjD7QvZ64r8tgLkNx+jp8ZLqVId0zxKGiQ8nQMHF9AsE/BJrCd6AEz5mZZCfxl6CKPH2vN9MiZ63ROY10qgEEQdaFbSmuK2Cd0+CT26O73jRCVBemqEVYKtjpgS7jQgaFLJSlNk3x14j7RdGKR5iINFIEy9AG0BrhqUN9DYgq2GrBU8NkME8usfnVwlw0hy1Gt6psSloApTLrUZo3ViXUggkTSZA2e8dHz488OgHDuso3qGtohwLtB00TJSDa4qT9VJnolGXglGEjV4nQKnYrWO3joe9AgUoS8G6O0qrkDVYPpGZtjTOBs4+51hWOCSLBvYdfbDQwXphlVNVSCsY0agUNiACtBoWgaoolSkZkwJtZQ6XHoBPrEw5wFobtDVIY8+z4SwJLkZ12HGEN4lQ/2VgmnL4OE0VM8Dr5xKf0x7qUcGXK2vOv/Pw2EfU5+qEIWy8q0VQavQsdodoAhRODuv2hwOg7EXxEMMuA11oJW9Ot7uKK+LlhVY2g4B7g7YFum7QfQPWDba84qiKXgd6MYzS0Y891OUPKB5QeUB9R/ECtpziTRrDMXqP5nMjNhqBWIViRbEN7nfADywo2LTgVhS30Jc8KpkCVYoZZQ4OJ2IYbFo1xoFhRwwkPidLo6UqpFXobUHZFpTHirpuKA9HKYPBUICVCaqODt87vB6wvpMxMlovZ8m2RPSnCS8E0x0ShSWAs6SUNY4zf5obpRb21ZBa4VrJEhU9WxVFSZ3FYD/8mPdxHwYbB6w/ooFVxWM0dK9cLGojvawFqgNtKViXim1tWLaGY1koLOzGnkbHwP0+8OEx8Hiwx1ETdnwd0WxyqGBAoV4go6D2wUgAoVUqFU/PK97Vgk9bxUttWEvF03bD8vyMsq2QBZBqrECqDaU6WivsOhaOm0EBAFICaOiZ/oAGY6cEy6BzY+ovuHpx87QjRLNOMEJfmxA/CiJ64nDSjHKiWiIN+diXxRlR59CLdBD9Abmwa6lIx2CCWTZJK4VoRyAonVVTOvtfDWg0FcviOggvRR9JmOR5gbqNAKYMGrL6B9OnxT2YJVeYGYYJdokUj1Cj0QF06wQgKkCIUBlJjqhQVZbIJziB0IRqDKY8R4cYhefaO8FJiAIDLiJJInefIFougETinpjq/Dwjzs9UQgPm4Q6tGKWgR9PIsxQd8DqgzVGHYFktrlnFbam4bRWfvav4v14E3/UMfO2zgXcNeKkDmw6mGDUZO8w+TQMGbI5RMcFJF8feB/bHAZWC/X5HLR0Fhb5mtkNsh6JTC9fY9fZlLWhQMkdpPOk9CElHdcOT3EJfp3gsitErnlqlV0tEANRZAK1QW1KjnHD4wL0feH+/474/4EcBKjd0hCWAWEG2l7bdwl5A8NgabrXgvpZJug4reIyOx+i4jzsgQGmCbV1RW0FZ61xjqeUS7KpoyrTHUQSr0VBN7h326Oj3A8feIRAWP0QfAm0afd4cMlgi3dxpp+CIvj9kNkzGlJ/1I3rMHZ2FE0XRXFH2AW0FVsOgNPxbZAxg7/D9gbE/0B93HPcd++uO/XFqnOjtpahSuYchGFQFpAGyxGScNAvN2ZCKlRQwJ1gTQS0FaBUSPZSKgH4uWpheG6A3U1fg/uX2+K80QPFgPViXOKIMNmmCXDBrbKwSItgGLwNaV2hZIHWBlAWuLCk1hMo5vT3QgViksoMtTauyKynTMhkpJeZkQ7vKnhlaZ+dftrdwRtHF4zC+fva9ubA4zL9Er5gopzZnQemIjUvcpo+IxSC2IvBSQ+iIUxgZkRfLOvP17RT/hS16RqixNJ7oWq7X/5y815/nsPXkoZUpB4ISeifMp6fAkZ3vyGBYD1tldnC2TgB1QOam4YPlbQXU97VoatZKRQsn2bUukNowOj1LJIW74eLbj44+OiMNDQYjOZJxsEzcaOntDtQBoEqYXq0EQtuCbWlYa8W6bmjbirJUuApBAAxV2adCmjInrcIoZQTacyOHYxHFu8a1O/0vuK9Qt5A1KtO4yc8WA9RSXqMfjX48ZCBOa1eZEX/SMFm9kz+a750aGRjSaRUyExQ8L+Uimf1f6JNDEbtbevEQ+GaSNX13coTJjE6z2iD0MOaYRiwXw5HZ3BDUhGUKUJBPT17CgpEIT5dcJnKOZVQpHLtmAWDc4BZzf/Q49/QMvd6T09MlsB0jxwQoIDBMrSsZxfNjpZu1R8dnAjKmFsQkAFwCxuh5orHKiGCJrthbY5rntgmengputWCrOnvJlNQ4Od0J5t1PcbnEzDWnIeM+sEtn7xcFIASj3judugIxZrxSNbr+GgJQDyD0CTKoqVLvUBS4OFo8P9rk5JU7WULNAoYY8U5jscfe8XrvGH1EOpa5SjbNE8AkdEMezqaCehs4lgJfK99PyE48xiBAOe6AOEoVHOtAqwV1qSd1CkdXxVGU6RRl4YW50CBuD3DyOLDfSUsoZFZkaYjrUQKsCd1vC8vgMFTD3gJwC4bZgWMf8DFgR2fKtSgrP81QjF3XAc4977FndT7fjjTU5NfRWUqvIHggSImUXASfJPqpaTppQiAbfmbq31zPQClkDyXMpmQR6EJb+xwXRWLMFYHlpP8Sj682QFHAvANjh9gRamVQYY1KxXJEYyLslRK911H8Fbo8Q5c7UJ/g5QOGtKjdplre9g7zAzgOyNGhY0CHR387ZQ4fFAqdfiGkKasUtLKiyoo6VqA2aC1ozVGaozSDNINUgdQB7QcEB+AjtiH6jcg4gOMBO+6wY4X1O8ao6CbYwz4fFu6xMPRCO5JRFT26fvYawTbolGshwMqw1CM3yK7QQTn7mePORTd1AJZbk5wL7FQSRAVJ0jXTeruRbfHUy+AKkEYY+zBtwGzAQB8Dx2NgHAfG/sBeBbs39McBPwaksznjKoot/MuX2rDVDU/LE9Z2Q2krU3XiKMPZZuBxwB4PjMcde7/DlHnko1f0o+DYB0Y1LKhQLChD6asCRlh1LXjSG27LiqeXG55uDUstuC0Lat2gZSGMiEW9FkCbAKsyX1SEi3304DAr8CGsRotNL8uBJao9zEd0sx6x+dmZ+koPEDdmhSJNVcL6uqMwTz1L/nLbDpCZmzUSnHoAFJnVK26xtUqHy4BLx0C/pAJYsWEQjN4xYBi+h2fOwLXoOTfsApk0pyPhFCbwGmZTqIfOVKc64AjANTVezL+PGDui1FalCy2jYOW1AQ0aeT0shKKJLGLxHUaBtznc6I8x03GeICKuV7K2yHvH98jk/vlZea2ZiooqHAHOFsW8AAbBGMA4TjCRaRkPgzGVAORgevrWlMeqeL4VvHtWvHupeKodWylsr5FkXQRw0nEaV1YGMUAEKGY4dsDHgdEV9+WAFcOirBgcjw57HPDHARypslNUcbRodjSMn9TSzPGgq6z2g2yqGJainA7qgLCMm5WOTiO5QoYEkT4eDjwOw4d7x+dfPHDMCkPFtMAaPvVOdrD6pIpiPG/Y1or7rcX7kUXa+8A+Ol73V4jQhPFpaWhV0Vo5ZXagl05vBa0qahGMVnBHaBD3A/tjx+O+4/7KknqxM3iT1LUpsCzKZoitoFQWGAxxlFqhxaAbV113wXF0WO+wfuARgZi7YW0FSysoLUFwONYOx9gJSgiWdjzivPZO4Qw7SwuD5EWmRxErIB1ajYy8clG3wfEt6W800zqIix72Bs2BBdANqKujqqOpoSmNBGtwCdi//B7/lQYoMAU6WOJ1jDhodFSEYZJbCFvdsyCAi2AROrJS1xUVAPQv2UfHfhw4DkO3wj4tfYccO7wPeI2mfwIAIYKLRZWLLIVeVRsaFizagFIxVLGIo0l2eH2z3SP1BhkgSw8vkceAPA7IY4fvB0YHelXso0M6HWi5QDu60N67q4TwqsJqJQCBBpNDkFBg00yuxwCkpwZPggr4HIxnlI4pJEbQ/LEyx9fEJ5nvL6ooSgGYZr8I89kw0Q6WGnpE10McY3SM0dF3RgPYd7YsEMCOg1Hc6NDweCmxwpdwgK1aUEvF0IqmjqOU6FjN8vMyJc5Bx5vAEU6Y3jGGsEunKtN0oiw/Xha0bcXy8ozl5Yb66RN0qwS/pYZPDalwj146Uo0zLVJg0JPdQIxJagHL3LDz59wEdVa5nPmXy2WPxSwLb3n9dZYmsyQ1RZgna5Ilu9BIN0CmtTdv0YhRcGoppgZE0q4ewRblBxGmAZzmUp7+JA5W4CqjKAhLaR0nSJpNAcFxFbwHRJwCZo8AAKFZcgeGUjgbOqZZ/qsWngyO7LSK64wzaq4wfHrKpIC2CIWV3Fw7N2AxVgY6ZhmmA6xcc7JPw8575ELwpcmQCCPVDm60ZHtwNvhTmffYBgGMKSPktBoXN+oRHKGbYzTdKje8tQrWplgXnaW3quGcGtNTskgw2gkIQm8AOwOGAfjhGMF69PsDtZbwxVFgPyDHDgzOwWwU6rAYcyHM9E4WKoIPuMNwsDJSxjQAK7FWSIwjacIU6aqQJewdGihYKeFvZAN7zzEs1AcZhcysfmP5bq55j66AGruqK9fuYYbDBg5jICrJpKW4NcD8vHilAF5gQzFUsB8FR6Sl9v3A/bHj9XHg/qEToAyJ8Y8ZsEFZFt1qwbpWlMLKFxcaWpZSUJ9C3wXBcUTafRxYFGxX4IAtBd4LNtMYH6EpNIcfA7bzGJfDwn2zDA2xMKtbTUKMHM1JRcMtOu4LdeGOoUy7hnMi16B4niq1UGsTbJW+O02BTSgLVaGez0s8+Us+vtoAxdnLASFek8FDB1MnmSqZue1kBC4VKK4hitRr5YmHhTktpTHCznyMACPX3eGko5Me51gMqZfQYZaRUtiyx6KLXBwiChWx2Z5FQOW2jJh0B3OMPgZsVDqEDo/upHYuvBLFEiIsF04r/JLVOLO5CCRoX5Vsyg0g/p2PpPEYdMTnvuyOkj8C5r/zL69AZR6Q6XFxtcjPgxMtJyW/wrI8E/DLvyWqHtRPZ1NqLMICWlkWR3CRFVsXgXHUYAliIyN3yU0bA4DGZAVKlFnX2ghSbjfU24bytEHXGk3JSsRTAcIuOGQeE2Ocg9IDTMwEYexz/uZ5+YIfP/K+hjkaGLFnnYnDQtxHnUkgAgD00QASeCRbkrdYphjOJdiBTD3ifBkKoznuYhs8FzmN1KfHz3Jc5BhXzIaHSPChoGNzzlVJFgLUKHAEweJ1TAnOdKRInJ+NWpcTfFBnE3NuskSeH4LgCHw9NTZQzOZs1wo+Cm0vY14SygcQwbk0vL1LmXaKfkFxvyU+3CyrjnMbqfGBX4aAf7TGIMY4AUspJ+lQisxOzp5M1bwDES3n9c2qjQwygtJ3xPwcPUBMVAxG2isah8014RwZCUotGD4yfuzNFNq2DIAShF4vlCIAPSDRFkkiVQIN0B4aNeIeifWfuicYpmEgBFE9SBagR0pPIhix8IUS4T1WAUqUNhRETzJEyl8YmGqUIUXBO9yBez/w2js+HB333mkWHKaEybplSrwejtaApQtKZSpYBFiaoBagxRomEPTLWugF8KrYj4Em0QuoWowfjmWZZZlcT+3Cjrt7NIj0OadOMX3qC2OcX/bLvC9F8g7HvRYAlkUZ7Chdaf6LpsASKbwapLFGAUTx6wv/nx9faYDiVmCHwh4Ovxv8MSCVkVuNpiRcvD0Wr9RSCIRwFL4U2FJhS0VvFUeh70N3YRM0o6jJ+4AfHR7CxKj+4qI9B4DhJKvZRViloSirOUpRLEF7FWWjKohRfa6DUVrR2VK8DIccDtkdeFgcdATsFdADKJ25PeazZZqvjVLgS4MvC7BG3x3nTJfKypIijiqORSjOGk5xY9eofvBZZxNdbOOwtFwGNxaLao74Wfa/Ec/vHWVuQiCwCFBJfwkyKWzexfI3jA4fnSrKMeJ9ADVanFe3OKjSr2CJMP0YlIuzSpAWMqneAkV1RfOKBjYErJGjFxIeXB+D6WoKtFJRyoLanrE+v8P68ozts+/A8smG9tkNpUm0cGIOXAaCDo3VP5Owc9ZPpAxEOmaoYEiIkYU+G7kIXJVNMjUYkhCQEVhsQK50SdWSJdpKgOLp2gpMIe6IDU8896WZ+yZuCZAjZwVRMjEZuTKlR6AfUwvaHcUMRdmDyiKKdCXtPXVJotMpND+PsJ6Vi2WkJhR0sywBTDzM/jp4vQuCBg0w7JFqys2eP3f2fApNjXtU4xhhKl2ig9xSIDU+YwyIWAD5WMgR4mJQ9wWSBnOv5hbN1Ye3y0NrGBb/CVASRCkp95Do0Egr051DAmxz/Ur9kYAbQ1GWlJbKKpnWDG0B2uKo4fnhFh9KBEqqjGuhsEpIoqSd4zZBloShosO6xarGc9KxQ+1giwGEH46kHokKm6weGaA+jhV6GYzFBcu1tDO15OZT/yDRPkcWXkfU0EWEXibZvmH8fGwCyNfREwoT+BWl6WUR9v8pPF8FdRwwMmwFjkWBWzUsxbFVmUHQEKe5n2JWpcAtqjaBx+j40Du+6AP3bvRv6rx22Xk6q4AgNO6ttFuhJEANawNaNayDkgQRjQaXZLd6BdbmWKuiiWERgRqN1ES4Dpp4+J58dATQkhi3BLRKnVuMWUUMk9DCxKlOoNKU8x44AbYr/Z1qEWyL4mlRPC2CpypoyutZa8oFBOahxfmSj684QImF9WBZoHWfOU9chH3wQN3iF+qxY1ineU0IMod59C5xKvyNNGGW3UpEeVlkPOMk4aQhug8xnJ46jVygoBERVKBUgcZRKpXmJjSTKxobaUT41RXVFGUodAikK7wL8/KDGz4y+h+njuSMcudHODWGl2g0UzGxcs3ozHPziNeeK+/8t4dBl8/IS5IZycghvrdE8xAuRnEk3y3jQjjEBloCEFlc5gpgEaDFUXPPzzsxQ21w4mluBH45dUbcwaOgoETah9FDMpBLZRlgWwpKbailoS0blqcb1qdntNsz2m1F3VaUGiIw81MArDaZDWgDtGKGgEASF7PEmj1txglgUsiaRnlQqIcratwXL/TuUCvwEGpr8RAXRniTqcjARp7R7gWoTIAQEbRMpuXKBCQASN+d2FSd5zDLvYWCQDWW1AP8jDlOmQY4WYcznj7vf8bUPt8zPGqEtgAeAEEMBEbJpMSiajGyIcnE8PtT4sqfSbxebmKoNBpUEYgViDlGrKYaTBri+VNvIoi0mUx0wuAlwSXm+HNJ0fEJmjJaPRmeCDbivl2F29CTbUgGNse8KKCVQCUPVTIU+RqCqB5DbPIxf5DSPAh0OifjYjV/EoBV+Y9aiLtrgKxkYs81MW6chg6wKKAFDppljtBL9M6DtjEErZCTZQNinFrooMwyGz5FcB43XpBUUK5phe7QtaDWglrZrLAVi7SIcq00wAfXgVUdz61irYJbDb2Ws72AqaLXGikZgrjDHIcBdRjTNUkh5/3VcEiOddOQjA7dZaMYEuZpV4FZcQkBeuw/4oIl7r5EM9VaC5aFVU5ZFejd0Hp4Ll3Y4ypMIQqoh8r0Wo5R+HnLkGxezEh1YTsLhBUETmbOYx2mR4vMNFQrgqY8Son7CqaY9dtAHV9pgIIRFS89AMq4bI6RLgCyKkbCb+AEJ30MjDEwLL4OQ5+eIB5R0TVq5UNy0ct/xE31ELnMihnBjJSSTpCo4JGoF9fCG1icosZSclApisXAcEWxguJhRW+Szlpzsk7zNbsc6euSpNxcsHMZkRiMEh/jBCxvHpO5TSAyZ9r8NylinxMR/nYTtCih8yuAScGeOXOgoQa/dibmOs+zrcJUdJPsSeHzd7h8nlN0eAKT3AjT6yIXNKbhPGhyn/4xrTiV/I0l0qU0tG3Bsm5Ytg1121CXBWVZKWwDIlKJz68Wm2SGJAxLfK4InOhcZ1NMx0heEDvCfK1YfJ2LRZ67awCUEanOAGPcFwjEcnxe4PS8qbkwzbMJAA5PcMo/P23JcrxrsDyK/MDpIMlf0/dFSwmhr0zzQbhfALMgEwOWC2S8V26p520Nz59wCWWFhM/eVqdgO1/Dz5RLzFd+trz//gacS9IRGsaKw6lDGLnhYWokIHTRZLonNkyVpE3OKyyYny/ZVr9cSl7OBB1x1gFy7HL9Je9VPF8TmOS1CfSg2eojKjFUcerGQosjkYuz0OVkB920xVCdVwoz+5wgRZhCK8ncKIWQVQLYB+Can1GFIj91YN67cK8doNfMyGAQc7xOn6XLWkXNUK4ZMUBzIAVDdAI/foJSCkolQOFXndH+9L4KN11Riny3InhaKpaqeGonQKEGo2CkaBfUHGmIuOuuYRSXVV6xT2i4CStmkDciyODyJ1M3NsCEc88hEiQTQLCY7CFifpVa0BoBilYwOBWg7fyMVfg5ySBjvs9MRF/3glw236STZa45ZzKcv7NAUOZZlRSANVI9Lb/PtPusHo258iUfX2mA4p2h9xjRadRywBuOQU14h6H7iDSIwPCK7ne8//AFPnz+Tbz//Jv48DvfxOvnX+D182/i9Zt33L+g+rnvDQODyvBYvImeNRJvACAMJ0YIqKzAlPbibNDGhkyUIY6wpQYbGbaCpQqWUtCNr5u9dRrYU0KlYNGCRSIl4RXqDQWK4hXF2eCJjdgMtneMx4H+OND3A8e+49gf2HePAV5xHAf60XEMRi5pLkdp2yniS2ABj2sb15dsyKDledp3CxjR+6mHGQArK+LIyTg72A4PzVA0V4sotToFbBiGaoPnANr1NzgauCgmU0hSmTNsqMIaFxIrBb0ouvI4nB1JezBmHv1RCgh+atWgzIHWBK1V1LWirQtqW7DdVmwvG27vNmy3Dcu2oC4rqrIBnHYnIzRzXDFO6hpcbjvHro/Zdh0BPhCdVcW5weSMVpD+R1xZ8djMJDbSaOpn7pOeVT2jfNL4gISIm31n5Nx1rlqHXJjkBHMaaah0M44Yigu1c/tM2lsc8BJizspI1aKEHIi8eFQrsWIO0dU4mImgIOgpEqLW3LQ0wUEstkKQXzwu74Q0Z1IsP1OCU3OZmyE3EYITDzM9lELRrynE6auRaeLsPeWqwezFxq/K3SY2Id6lCzhxzBTQNGKLHWyyRY4A7pfNGAL4gBWNHkkWLA4BwUQtSgZIW7CyTbghE8Pxely0IjxGVOrpjPqrcEMo7tAR4yzLyeJ7lqUWNukTZ7d2GbEZ6olJVOIA1EPoCrr0ilEIfJigD2Gmx6mpqBexOUMQDWZY6CYRWjxhWeJkjz0CmWSHJTQ5VYXenSo8Co88V1eOB5WCpsCtCt7dFqxN8bSUiHUitamKUSsBHlgFdD8M5TAsj7gGs9Q5rhk4Hx1kmcxijIaL86zRLhI3gHMtHz3uWYFPl+vSCtpSsGwV662i1mAlBrWK92PQQyYAAkGDhHkeUIOZZnLhNBrMwPuqYQ2MRTdqy7WBDRcdFKqrEMgi9YSDVhcOP/vfWQQixoz9l318pQEKgDcR8pjfy4lOnQs3ukMUGKD3xfHoOO4H+v3AePTz2DvG0UNcNGASOfQQGWU0xMg3mQkg1XizIgMzezFFYohNEeCN53gMyg2s1y/gIFdM0uWNxvIS3yDtugX0AEhWI+24nbWUIXRz0G7fopTQT3rTcS6UGQZnXHddRCOynQtj/sPj5OJvs7IjRcjZBMtnVH9GjrmpXL8meWCRfkjnxpm9Od9qnqfFxMl+Fq46S6rzfvSZyrs4BsfrqFJYWIKSJDVcmd5pDW2h8duyVCxLpRdBoSV32qUjIsh547iDzugx7yAjvaClgx1RBft/WOFQ0owSQ9gW/XaSzZNkR0KNz469ERFnJISM/jXOLaKjSDZLLBzUu1zu65sAx6//wJmYyU2Pnyc9P3Cedn7SyMFfjhRgQmealsCEdP1kxXKzQX4ojfGIN78/uWmczF28u3vqZ6Z2cAbheV4zFennhnfldzItlm/s18/4Zt9/yxrOz5WMzgQqWbGT318Pj/PMT3luHFmRNOeoJrsxYSWmfX+MAcZQct7WuBZnqghzbhGzxky3K5jJea2zIilfj20CEALTSFl5aCEiKtf5XJnXD45pujdC0zQZgkwjgiCRO2mM+4vGTS9LTywrExDMOa2nPwuPSDsI03apJdT4/RLNP5cqWNqpnSjm9JOqnNcGbtgJfFvJtiJnWnqyV3m7JJgneKRuww9LMVn1uUzE2HE551bGO9mjqbRonVF5DOX1LFUnQMzxIHLaC+SYfUNGxQ0VmTNz3vtzPl+nnUzCPMd+9l87htAzypjiUlKMhMWOMHz7co+vOECRiAU8XBYu9up+fs2o390wPADK64Eex7h3jAQqAVBGH6zikagmCUV/pksQGm6LQZRiuBOceLhZhnLcaMaWUZdKNCoUQYOgQsEeB5GXjJzkpF5zcMUCQeOzGHi5w+QIYLvT8PrOf4dQUZTCrW5xXS6Lw4XCyw3BY7af0XMesch5LA5JyyZ3GFEpq4j4fdZ5zwUkFjUN2noGFOAiH1W6c3IUYFbizM7SOI26RApMK7w2jGhH3kWm70SfZYU04TJPUIEouWOKjbnqilIXlLZiWXlstxW3W8O6Viy1RH3/WZkVNBtObjwAihb4XH0Q4d658ZaYvLAK9RGRq800mCggYLv7NCfI9IQHu6EQOv4GY6AB/whYdG5sM6UgTqYgAYenrPO8uycS8MsXiyZ48TfxkYOWicUsDOQmWxKs26VaizjA3gb1gvNmx3lPtKo60ytkH/JaJ1Cbp4Psi2O5yIPBhE2WFQHSTzAhSo2D58ielXlnhR5ZIyDTj9dGh56XI+dTgB6+XECCYAkoo+BdMks9G1kFFqjF68ZFkdigVWxmNURx6fpMkJI0fP5H4Bw7o2P6coicwPzcbPLvM8UaKcrcpBKgBJPGj3UGEDmHMzl3NvjguJuBRYKTWCOHsRoxWhdNgAIpEa5ppBsl0sESehke51A9gUDqo4rKBCVLAdYCrCUBis92AQ6yRq0Aa3WsFVgbAqB4pIJoRuiVm60B04fFPbQXQvG+erR08LnkQSJ1DA92LRb2rLwqlel+qWA6ZC4nsUbB2AyxAmUBahOKbJezv5f1wpRLYaNJFQqsJSoaZxUlGLhLiIxHgOpsN1LUp5BYnHNhBksiE9RC4n6Cc6kPw9ENejBgG9FRXk0icFMMB44/LAAl9UjceIx+D5DoZpmdGUF6EFyUxjD0PtDfd/T3HeN9h78aq4DuBrsP2IMbODs/Go2nBgW1I3rz+DjQhbbQ5h0GSvCHG2v0zehSKAN7pEJkjPTEgUBZJSKKioqGApOKBkWd4CTo66DkJCO+2AQlFyolmzKraAYgQ1C8xFGhMFDQWCAe6SjPiKUwYhc2sNNRKQ6OwUgRJL0+pFCgdR6sINGq0FpofR+H10Lr7qoYhTPUDcyPF1YZtMiOjdTjKM2I1ArUHHtx+KAHyxotzJda0WpFKXVu/gMK0YpRGkZd0LVChGmd3Q0P67iPA/tgH4/hZMdEHCW8JNalki1pDdu6Yl1W3J7e4en5Bet6w8vLDdttxbJV5lg9XDIhiNKCGJggJ5phXC66niZH8gaklOgeLbUG05YGg3EwSX6yKMa/Y+VMpD5ikzuFnIzOBTIBCgJEO2KBnJOon26Szs0oI9HJJrjH7wdYbtJ5rhndOWETo7NwjpWkjy9MxBv6QWd1QW7TMw+eaazcQbQEE6TRrj3Qu+opnsC4GA2yYgeRNjKc2rLsOeVzU0QYfAXTKYK5wyCZUwsMx0k3WSE7wUoCl6Qlp6+JzyCTG3PQ45kis/ApSXCSdiS89KwUybLWWWWUOqBxMlkSzNr1SLiaStcTqGZQwWuqoXk78bVF+iuurSq8Vpa6hhWrSmYmQoeiAMRmwFZTvAsJy/pkwNjQbu+Ox2F4dMNuhsOBqgwyIBXT4tZAg68OyGDwViFRvcLXN5XYyDOlQXfdtSqemuB5VWyL4nlVuteKoIixEGJwCLUK3Fbg+SZYF35PrUqAXXV4dMkzCLoLaqXe44svCu5N8F4dj6hcAgTOqApahYAsxrkp4JUAo1RFC52MlkKbeeM0k5pAR1AXQVsV661gfS5Ynyu258IUTxFIB1AEy2unNqVFsFULaq3Tp0djbTAH9gAp5hIBYJQFe8rJJUC3R0rwEhcAU2dlAA4zSB/0FnOmALsYtEtYD/C9/hABlFyII5q5LATzq0vQqkShow8eVwObw84jxLYzitEzUsqoxqbFOJ0nPCJQLsLRNTKt2oWuihL9SLLkLBdjzTghSmCLpCgJbxT0QY7OCDHLQyfpkVGu5WIVP/KMqaIrrWuOqkkrn0gn0Hq6jboBFhtcsCKZs5/pJQ3aVYWMjqbgUKboEIWCTonqgKQ7+SsuKEVP8V3NX8ZC404hWlOWEJcsxc6FU7JcUqf3iwm7l57dlOOevGHC8jwkmJOC1irTOcuKtqxoy4a2BIuyLGGypKcG5iqMdJn3Nmki15mQOscjLoLUBAMzhaHIro4zPSC5K+n8G06A/PXccTI7F//n55Py7+Q814nw53Mu42n+uZ8gJROofh7nZ4/I3M/XmcvQfJ85KOd4zk9myQrF1/xcXARjXMU1VctUlr/5eG/fJQHCeebJbpxplnOtyDTPeXnzXOP7vJQ+Z+F5zBe5vL/Py/Lm55ZA7s3B85kv5ZGWjr/RPGcYGYwLc5KXN8dQQpI3N3LeEpkfgz8+xxzX0gtAuQyDN0B7gqPLPL4cnq+dvw/wrHqmpFOLRpaZWo4R4M31PKepzbocyRKxySsIZGP58hj/qsp1pQor8SobdS6NbQEIUKjjobBUAqDwOWuL5y4SZeBypgqDCjJQWzOcoLLV8DBJpiTGUFaZaTnvynC+ppVwcy2hHYpqnKlN8+uN4AavlOic6Z1M8ZRgkgeYni4y18iSonU92VePMZdpzwycS84rWKTkLunKjCsuLEqycUg2zKgrJLtL2wQFAzlEmfIfmhRPLv0e4OE07mEJG0GLYRwD7Ep8hED0wOP9jj2O43VHf+1M9Tw6QUuPcl1k6fI1j27Bphhpv7CnB1LbQBblGB0HOvbe4Z1W+UkJA4jyr/xKX1emDM7SLg0VdS6CjAzTODzNj67RaWhdQqQVgpCI6Djps4fJsDxrYEr5hRETAUoBSlLgZYIPTRV5DH6IUylfWPWirUBrhbYSHTfJrEj4OZRQ0rciWIvAC3tM1MoFbamKww3FHUfwuALD1gq2VrEGg1JrhUQS10ShWqP/UINpxZCCkSkegK0AwrCJnZBpbd2aYGnK1M2yYFlv2LZ3WJYN2+0dbk/vsG0rnp43LGtDW0r43SWIy9rNvN4Ad4QEftwMczFDsgYKZKpGpvC6zJT7pSQINJOK56Ue/7pL5NvhohOKTRg403NzXwsA4MnOZK4OmOk60dBwXMa2pHEZIrXpKVjNsmpMkCS5gUDmZpWbWCYwcv/k+0aaYL5A/pKLbV7LEQZs87NHvSwZkbd6l/mZI4Ch90uCFExfB5YAnZGN4NRUZF6eZ31ew+sy+2ZDvwI9P5/La5VBgca9UmRTxqsOJa9rpgQQ18bdAZVIreQaeEntZH1ujkWkrscmLHyLXeKvp+YjRpD7CXZjXHqpkZpgulI1y2TPAGMIh2cGH5l6orMz7+G0/PcUyFLkPlTgpQAlTA8vuq080wJFE8WihU1dPbRmBTOFyRJXxbqwF9GtKZ62gttS8LQyNUtzyjHF+gUFrQG3reB2U6xrwbZSaKtZfShcqyCcAYefKddtqWR3C9NKEsFICmBLY/80OhSzCHNEaqdUYSuQwoAv+mDOcnWBz+rPUiO908io1IWMcwlWywxoTVFLVixl9ZKiR74pdfEMpGeDbmYvNbGVX0cM/PL/ghOMimCyq4PmRJFelWhYbFAbnEuF5/eHBqAUDOYhvTPN4obhtEE+TGEgi3EP2/Qx2Piq7x1f3Du+eB344nXgwx14fQD3HXgcBY9DcAzFGAsGNohtGNgwcIPJiqErhjYMNQxhjwloD3gr4U6L8EJx/p4yZ6RjYRqkDQFWUKsCDCwYoY7HJTKO6CtAifvggmrRNC+M5OzotMLfB+wYtMTvgmOQUu2xB1EI7ziif88B2uRDQMM25eC1FH3CT0FwLst+bnuATzG6BuA6F60QnSogmjThgEi2d0v7ojCBikUm1SWp7VBEl1M9TYbSEZgiXOUCWhu8rbDaIKViiEb/E0e3jm6dHaHtAKxDZTANBkGRBVU31HJDK+9Qy4Za36G2J9RGPUqJ1JIqKw2EbYtnNEoOPoBebqAX5yOmPy6bDSLPGyXKuQRw47JgvIhYJm3vGmmgMlcyCl45Xk6Q4jhTDScwiLeIDc3AOqEAPW8OAy73ex7mZ9gFfyPSNKduSI20eW7MJQZxdcwKmHypeJkAQjLP8Vwer6wD5zVnC+MzE58aqo/BQ+A0JOCRSGmixD2yGQrOa5+f3MTPI6/hZR5MNhWZREo+NVnWAG+BxK7i/QQRSbVLBB+8HjJLUV0cPRhV5BXwM411ZY8NWY2nJz7BW4l7/uzyasGgJDcReb0pxlaIFIhEZY06XCtTwwE8S+ioirLhRDZlFEEYRzKNSYv7Ag19CXFQaKugAWQqqlA/drK+ngsg6EjLipiKU89GHxyCWwY/mAereM5KnirZyM4ICDUsDArZk7VpMCgaIta4/xoMjyoMBW4VOhQyANcDrmRuTZQeTFCgahjFRVVLznmZXNCbA6LTdsDkMn4lM20yS6ZLU2hTptdLQNTonjyJ8rdYdd71yfAZ1w0fFNpLaDeT4b0qEzHijrigpP+Rc1+xuD9urNTq4WCYn5AtQ2gWeUwB+O/9+EoDFEVSTJFyiShvOCPltEM+hoWAp2M/Bo5j4HXncd8N993xOBz7AeyHoHfFGIJhFUMqxCuGVxgqTBpMKgwlDLYQ4rEz3RD7x8zPzdkVC37mbgt8gpEWCxt5lIiOrmLQGCUzHz4hdoops1qHB0WwmKLAMZIpiZ+FZqcHG5MABUggdJ771C3MKz93lKkw571gEmJSvhFVZR08ZQLfej1mVQjOCHRGcX4CFL7u6WFwXpuYXFOYW2HB9sz2BcF6Eciyyy7C0pqvy147qg1FV5SyotQVWlaUskDLAi3t1N5oLNxaAKnIFMy8PqxdxCnLz+g4WqnHYiXAlNKn3mJSqZdQ9/ofnACGNJmGkC3DrivAyGtbzntGZBn4SS5VW3nuiI1cZmR/RuQ+047X/Mis+hA5STjk9odZvQGcqv9L5giA41yz+Muz/oHvf60emSkbIMTbOkXcjuvrnpfwBCmYr8PvCYFFzie/ATcxC64S4vnzCQDtDWvjE7TkJeK1Oy9bvI/I3CjyvlsAlnnt/fysiohLPMT5F6DH87lcmwl2I8jw89NdRe2ncPJMoc1Lk/9lGkjC0W1W85yXc4rXAzDm5+Ob0i5BMzUcrxmqJqTXFOe4vnneZVHKC0T2yH1W2CCCGo8BV2aGOXxa1KepXBVqI3INBsnlMBsLUFOZ7qG2AzOz5ZeASEAzQjk0QFvKgiMVFOuSRAUjSs7XHIx57fVy7QsSSPtFy4OYqxKVOUwJ6TykBvtiAjniHOfeFOMgx/w5sOdrTymZ8zMSMCcovtznWJPEw305fq/Xl42xazYTwsg0Nvceaq2+7OMrDVCkKCSFkkoAMVAwnL4iw7k5P3bDcXQ2dHrdcTwe+OKbd3zxzQfef/OBD1888Pp+x/3Djsd94LEDxyEU3gpz08WyMMZnhc5hhq600PZYqLMEnseMVwH4RRB4brRFZJrbDCBs2zmRFGe0ERImTu65OucbOQW9fWAcA/0YOPrAcXR+7T3KFjlIhw0cZtiH4RhEtBZzRzTywU6xntrEQVPLk4N5Lno+Y7FZVqgSpXxy/kw8UyIjOihHhVT2OSqx0ZiDXXDJFoldS5CDbYkTYqRKC2VoRmyIXiaDzFHfeRx3HMcDY+xwdKhYUKYFdSloW8OyLVhuK5bbRufY24q6LWhrQ1lp2qZNIdknvlbQhEDJ22Y4EU3Z5t6cC4BhapncIv+di1CAzOyjwT5FAWRiIE0Nil9eWjWAnE6vDgDBqIDAOSIebmHnAkkpf7I3px5mCm/dMuF+sjdzc4unOC7aFwJTc6ZlPO4ZQkxdhgDlFIFOMDbx1RnlWwKjt7OevinA3Mgn+ECCgfOav9mo4/qpkG6fpdcZKU4NxznAHZe0kSQgSfbitB+YoDSCBYmy5WRoxMu5FsQ3p+PyOTYuOdfLE0+AY2DwQ5ugrEqK7svxdYzwerlcPn6+vI8OCyM3n/oIAr1kQWfAodHPKozBRAdSKSmxy3OTPHUQIkRRPuJzAZNEJAaKE8vo3SPCrkBZmCKWqnN80IjTMA4GXjlHdHjoHPKaEagUT7NLTBPGKiPW20FDxmBQ0pxiKRb6E8WyOJbVsWyRzSoEjtM2QcIJdoRuRM+leGR6LpZbz+uUANsTNMTGHYFUps4xq20uIDFASamKshS0taKtFXWrKGtlikjjmpfzPKj7Tk+q5CdxMjOXWZVgIwFGDl2mOnOuC6QKmznWAB0jgBESkCbnwrmfYCfZwlzPvuzjKw5QKqtFopLDRTHLTh20VDbg6IZ9NzzuHY/7gf3ecf/Q8fjAr/t9YL8PHI+BYzf0A+jRJXXEgjP8St/6HABZSx5n9JHHQmzo5ri0fsWMKAQoWsI0SGZDPqY4YnDOtMc12oloI2hRcTlLDs1j8w/Pj0GtTOwyAEb83Djpw+Qu+yMIcuG8gpHcRRAB7ozlMfUF85A3zAl1B+dncAn60P3s5fPmkLDYlvnvc8hfSidzQ7pcb3GZ6/sILQ4bP3aMcaCPA2McGIPpQIHT4KqyeqcuC9q6oK0r2pYi2QVtqShLRWk1ohWyZaKaqzjovCSs3onrBJyBi8fJzk0pwCzTwlmhFT45Wdpq0Z/ILbfrE5XEgpELnWvhDqeZFBOc5e8Z3flcppJ9krlr6JR8zJJEpW7J4GHMpHANWhzxuROcpEZkMi28ttkd2yUWOsppmAcPnYPktUGCeo95nMtmXkQOkkxvnM+9RIqRD7/OPQ+YdFZLXpBLzLkZnQsmo3WO+3zNPMPUiSSLYpfvrwdOFHbdDi7fhnYQ8TKhHbuucv7mO584KNI69jbdc64755RFrh/wyRhcbntU4qXwHGFbz6heVVGCNeRGGqDusvlKgpyS5e3Ovjd6Bm7ZQDKG7RzG85Fjo7IyUErmbvLa+ATsVyZP457M3dd9FhiwKWgwpMouxux9cwryM6IsJSpyGjVprfKrvgEoiD5PvBmKE6DMOzTHF855MNcCmRs+52wIWQs7sKfoPwXgeZ1m0FDImJRWUJZCK4SWfccSBGZ6J9aYOUccV+w+zxXnfMk1ac5Lv+AqTuJgg+QtKYtLIOBzmsbtIJuSl5rx6R8SgIJSIKUSoITDq0FhrhgBTsYAjsOx7wOPe8f9tWN/PXD/cEyQ8ngdAVIMx244etaHM12ErMzxEN1mJchlQZhRUG6YKdrNxTKiBeZ8mRogYNaz7TguqmdcadNzoOSAnQBlqvAxo7fsczNBiqWFHQeGjYE+BnofBCndGBiHliAXvetk8znhrucgk8rnZzhLD0+GiJoRVZm0/ltAgglGPvZxkABf05hJLr/P6x0b/ggNx+mD44ANpnfGgT529E72xOwgEBBnE8dWCU6WFS2s7JeN1TttW1CXhrpUsiclgMmsaogjr4QD0/1pzsNcsGQi2rlgyLmYzPvnBmSpbow/uc76BCUR/bty18n8+NzIZh5bJ+XsAXKRlVlwRm0X/YoEsMz0Rd5t83AX1dAshFyBm0vQ08lGACxVBfUx3KBS6BsfAZgpwplK8XNBNVyv31zxZpBwTW9cXyPHbYrkE+ycLOA5nuc9yh9OtsgvYCeOBEMJJnF6pJyo4HyDs5Iuz/+KVi+Aw3EyLtcx89Ejp/ic6gnULD1n8vUuIGUuHLx+kp8vAUo01XTX0ImkOPhSAaKnrUBMRJ5dLkQJTkpoakDm1ZSpGIec69fUl10uPRCsTLIxZQIUTief5pIM9s6xIwArRJz3lx812WoLJtcnIEmn6FkFFCCrFmFZbtMQoPJ7rVFxE29K4offFI91LemmLGaIc8x5f9Vx5JrO+RvMVIAULew0P4OWeM+Z3on2EaVxzSLbpPMcpBiBQ+oJ4ZdUkb8p3OOpfjy2ZS5DJzCKI+c6G/nwiAHsl3En+fnj7+1ykwUEJ+MPC0BhwyVMzxHW0juah+zPNbQi9BgZNGamjgQrXDZAb1B9gugDqjeIHOfGEdUukgvAbF/NVArp1rixQyBDSEc6U0Oj8BxtFJjRol6wQtCh6Kg4YBAsKNjB2KxaR5ERQtIOuML9gI0HRbu2hxW2zAVWUszmmf7x0/nW36aZAIf5gI2O0cko2OiUlMPnRJM3G+y59eSIlSs9CZ8b9dy89YwSrlSzf3S8eYdJBerlYMTOz6lQL1DTi2DU5wKG/Bqf38KQrY8Hjji6PWB2gMuMoOiCWm+o7RltfUHb4ri9kD3ZNlKqi0JLPelai3rDoZeQMH6X3HkCE1IEJztGRSum90dcDRGDKQ39XAyQ0xuZnfFsXsfsXO0piMxyeAQ9i1yAcApIrxddrl+ujIpgNhsMXYtmtJwVHldJqvOTMdTMHasTXqRyDsbozvxSLnx2+DkPCRY8/y5D0+TFIjqfjAUuJf+pObOzAeiw8ETi3GJTOISrss/FlW8RYyYAll2AzKTukz0xCbO5NGoLkHKxqY1bHM60/EdS93NMKOCR60rGMhdybuAxLi6zN0714gRteOv98q3p5bOGK8Bwbjgac7hUwBvEGzsJq0O1Q7RBtCFpBJcCwzhTwPkeMt+IXwRzfMxDfI4diok7Bhw9GrcSVOnlE6d/tMe9HTAbl/Us5o4Hp5VoVvxMr6bwV6LiMDb3qsIUT1aDmaDO6hhWB9aSpbngNfFTB5WmiSX1MsEqXRnuqdDI9flyV/ldMFRSUOK4qjkkx4wHSMFpvKaFFZMU65eYen5aLolz7RAWIAB2rjvzNOwNuJ+PBPYxEDXnJXjNEK9D/U9oKiOcME9Bc3gQxWcviCXRI/A3fOmH/t5P+fYeP/uzP4s3AiwRfM/3fM/8vbvjZ3/2Z/G93/u9uN1u+NEf/VH8+q//+v9X75UpjGN0HIMOsWfzv0tX30Dep5/JJeDxpOcZBfvkBGRGS9l4b0ZkEUGdVtm4LDKYjpLTxjvVW05Nc/qPFs+OuuxcnEqTa+MtNp/K5BI9c6epf7zhm2hw5rXj4FW/XDWeYKYPZtM+P1Fvrjczyr38IhH1SeecG9u37DhTKSmX5/vlDfLcfvdocZ5R7MrTgCr/y7zm/LjndT4vSS5uPY7QrRjm/RBpUA0hbApk86gLRbK6QLXlHcIpkwfeILD83JnzunjzS97XjxZvfPw1rtO0zZcgauW8HB9/z43ifNU5fj++xNeI5nLOCVTePDJ6S9Ai58/wvznScXQKhGdePQBseGHksgeRNy/xLWNwfv92DPv8UJniOdmUy9Z5PisjvW8Zadfn4FuecH2Xa8TJKePzda8vkszJHO4ZWV7f6HJcGZgrKJHLWchHn+dMIwdAmrn9t699So3Pk/roLiP5WETNBSQrd84NPtPn5/uf1+DtNbte/7e/O9eRiOgTrExfIp9w7M09wfnZzvt+AtpzxX5zw+LfyQomINC3QtwJMjLtXuLnZY7VFLK+dZTK0uy3i97JWMU1nX4uuV7I24FlcY5+ssLJXJ7s3Ml+n8tu7q/6ETiKQffRPX/78Hltz2F5CT3i3p5Zg2sa8ZwLc3GJ7/M1p8wBl+9P7H5uS1/i8QfCoPzxP/7H8a/+1b+a/8626wDwd//u38Xf+3t/D//wH/5D/MAP/AB+/ud/Hn/uz/05/Jf/8l/w8vLybb3P6B1DBPf9jsdxx+N4YD8eaLIE3cgIg+ZsBC827DxCa5H6kLnZIS9uApJxMfmK1zSbSmV3BwaiBfjbNWjiT5cY1gUa7q7FB6oDDWwOOKBoEDShPXONzU7UAGHDQUefSDUH8Vz8JgUaQrJ5Em8HbLYupziVYEW8UOyk5yR8u4mcG9S5qVxWu4y6zxKeyxE/c8RqYpeLdS7Sb043AMdUmCNZovM4AUL+HR1yg+fkJbH0rDlLzW0YCQkI4BWCBSIrVG8o5YZSn1DrE2pbUes6PQV4VZIZyAUozmFGkRfglpccEeGA3U+hvAdzcfXkPRzpe5DgY3pwxOo1K0dyC05BZT4vF/jL6vN2GHi8cM6iRAWCN0nnuOd57c8c/+W4wKo3sCIXaOW8F+ctYUPIWNijkUp40uHUXZ1r+NuNT+YPJviIjW5em6Szc7ubG+EF+SDGrSO6j+eniM/jPAF+CcCFM0HqsSnPwOcjgDH3hIu+agKXvFJ+3juXvEfnyj03mvi0Ep/9uqdZ5PJPFiUCp6nRCDWeGzT1VvM6+QTM57vlphybX5a+SiLsaHvhgqyUtEsQdtUDvRkjc+5egpRwnjMxsKWrxeall8soSM2PZXDmDMxynGhcndm1GjNDd2GVE07MsBDZO0tlIArgw/peUZQWAjrLgBm2WiQcyY2cQSbfhwN8GvzPKicFpFIfSdN/TG1Z3t7J6sXgEnAcZ7mLj7iOMf49dTwyQdbbYDZBytspeUYX/vb2OPU156fLQksOXoEDRiPMikuriBSMT71izAs9v/dg9B2RBbez88qXffyBAJRa6xvWJB/ujr//9/8+fuZnfgY//uM/DgD4pV/6JXzta1/Dr/zKr+Cv/bW/9m29jyM6rnr6FDC1U1XRSuEFFMFSC7wVjENhTYDBRlBHE/SGKYqqJYx5PCezwLPqJPUAE9QgtASxkceEOFtUKkQqRApUKYKqSkFv1cKuxbE0DokuxtBpN5wULFL9XgCtglJphtaqYtGK0hu0Vixa0LRE9c9HUcVlcc9/idC7oIqiauGknHnkQpbJDBoCSyvZRO8svcMUvsVOc+lseBXhTSYhQNRZi0qg4glWYrNxQXgBIIogohngJcrT+Z9gTA8HLqoa152TksumebpneERUJe7NgqLLG9ak1hW13VDritZW1BqCOhGcPulyAqTzos735GISs9PifY35/dxsUkCXFRbZVRaC6UFDAe0l+sxXv+SVz7JGTL8xNkkM7cXcaJkSQiy+7HfCtIvbqQ+ZaytOgEQafQ58zI0OsdkHgmHqiakq02Ad5z3lec9F7NzS3gzRqWKRKFD2S2pkjuvLdcl7EAvrBaLMe/F2z8xIN8abB2iwzPlfNnecaTmmFxjIfCyMTW3Et2zObzbqjzbw2Kw/Fsa+PW+//PxMfM2NPCq+8OYQgt43mxmmjiDZt0QpV4B5gr8AqMGIzXLumMJpf47AZOLXMzwB27xXEvqLIidAlGRQBtPx7vOcsskd5ITBkDPdlQ0wgQt7QCp/VwABAABJREFUO88jg6zQ0WSJ86yYEd5TzXU79B0hWp0+TpLkr5ykxOXuqM+3jTEX6UCwPxxwCqAl9ikHUxx5d8fgGmoWYnI932G+U2KLixaF2hWa36V3VBFDUcUZTMrbIx3aYg68nc0nFI5E6tRhwWl9X6Dfwn7MWMzzXzj3Yw89ixtgiqFZXPLlEcrve4oHAH7jN34D3/u934vv//7vx1/9q38V//W//lcAwG/+5m/iG9/4Bn7sx35sPnddV/zIj/wI/t2/+3f/29d7PB74/PPP3xwA4QiQ6I+PWfEhaR6kYaUOlBJKbrWLqjuU3QXQyL+e0X0cAVBwES26pxdJTNLJwMy8BhDTJO3hSTHKPMr8/tQd6ZxrcR6TbYghpJjCNQ5QAp4SoEfjPd4wHperEzOe/5rjVubk1Bjg16Z8+hHgyAX7TEFcJ9LlZ3OSXN5acsE6F53LCv7mkZPmupietKtcIsD8bCc1e77IW7rUERNdyjRb09ICoMUR35fM9Sqp3ysVfob5l2t8vfUJzOKaXMWB89eeDArmYnANfK77yAQnscm/uUYJPuTtfmgJCt5c/BOByEzF5LW9vtd5D3PDfptuSrRwZSoCbF7uv380HnyO7euHvC7C+fXM218z+AKfG++8AB+PmcSHfl3q3yQeLn94ecZHgtf04Mkqn/lqH7Emb9bbj4fxZWjnHv4Gt/jv+tSPzvQEKt8yW+JFPKrWznD2etlzvswJGPcmXkPkDdY+v+YNAc4BmJ/Z58nP6Zl/nWzRdUx/NPxwuaYzIz3v8rnJnse5xkic07Vx3SXB8ebzTg+m/JqEbkrHLuvarIbR8z2vzTUJ0c6WtNecfvpTXatmrmLuWWV11TZNCcC8HJf9JNMp8Ym+JaWjFwYliynOeXI+Pp738ubeX0uD34zLPP/LSJzANhYx+eiYdQIxlgx+pnhwftYvD0/+ABiUH/qhH8Iv//Iv4wd+4AfwP//n/8TP//zP44d/+Ifx67/+6/jGN74BAPja17725m++9rWv4b//9//+v33NX/iFX8DP/dzPfcvPRRuAM+JHVg2ExyQyEpIOlQ7BAeDBQ3YeekC0Q8qAFIfrgMuYE8f8AMYO6zvG8YD1HdYbrA9YoSgxg7FYPnk+XuCgNwtQyaaEXXwp58G+eoJqjmoDKgdEdgCFUdmo8D7g/QEfG2hxTevoJgtKOaC1okVDqFpzkz3dS3lcN7WZUJhTKTcfblS50VCo6aF5mTqY+L0lxR6r4VtqPQd0ghC+83UzSxA4dRffcoPPxZEirbcALDPAc4ON6wsRpIGd+QEP/YnD+bzSUJaC0hra7Rnt9oT2/6Hub15125L0PvQXY4w537XWPicz6yNTlTKlkqgr7gVLXAQGSQ0jbLBxYQz+QBi7I6GmWqIQAgkMZbBk+w9wUxQyblgd4Y4bstWwewLjlg1uCK4tWxfLkiozz957rfedc44RcRsRMeZcJ9OqU9dV3Hvewzxr7b3Xej/mHDPGE0888cTzy2XeTnMnyUVYm1tMTxZIYte/bq4kqM33kjtSRp7z9JeIit5Nk+dFzw0ai3Pys/Kb2KguAcxfu0TmVYJuj6slTCdPtciAzUg/B1fiC2l8YfFekpGRK1AX56ItBbuJtCxOt+i7c+L3nYawTi/j5W0SS1f9RtUzUEopU4bLfKkQyZpT7idIyZV8Da5yBvjLa5118HM9pvASC+Gf5LOdOq93Yy4SCGoCIHu/weRb+ulv/fxLXrdzbb8DBBcgcrkR3j3b/Pn8wGrIUOgDjgEH2JFbpXjbStxjPiTSvF28mIv8c6ijJcfo9+/sTkkUjblubXRsdH/HklXcYAfznJyvHtm9s5By+Sgu9o/1EOUQiQGk3r4buxuRGGacEN75/Zyhw65Y97Q8qOLza5pR2ojKs1GlE/OlqYtSFqiLUtugVD21/sUw7fNedHw1nEEfEgMod2840O7lZMXXvQpl+Iy3CTdHRMpy6ufm+tFILFSCWQvAVhqlNWprtLbQWiRQEiJddCY92KmD8vOTOrJCslASJSOplx3C5lnMT+necYsgLRimVahPQl280qBdKF18YnEarABp+zAun63g8Wj8zGD/sx+/6wDl137t1+b3f/SP/lH+5J/8k/zqr/4qf+Nv/A3+xJ/4E8CJgPNhZj/1d9fHX/7Lf5lf//Vfn3/++PEjv/zLv4zUJWqbWQcJhfGl9GBBqydwEQZifhATiPOrZUC6tBCrVhgHY+xxHNMyXbVGwAqjLAXTcPDTUPuX7EqRy8bydRJXcX1JBd1RKkOFzgHqPrN9f6LvN/qxM/rKGBU1pYz0yrDLwszAeWaQl7M9f3aq47MIGim3huOqafeOkunAOubvnK3WftNe5wPpfO5rd0G0HH4t+3y/s1w388ud+zMfl88YceydkG9S797No+qkqws4m/uV1AVZVqQtSI1uhUp0MQxK6e5aWyRMHgun4Uy+x9i4tcTmlkHTvnYbBoiSGk6UsZXOlCJAob07Ie/Ow9yePP3yAPkuwMnlc/NTQu18qQmmxYPXuSlfWAazKL1d2K7z4syPNL8NYOJByOFFEQuOOzbGwjyfht8jxcwnn9Z4L1bCa8LDZnYKVTkBwbsOokup5fyccfavWpuv00txHt95mVzXFWen0BVM2dfO0U8tz9QK8PWlK5xgxH//Xb57AS12woRznX19NdmZMeek86Lqrd1DvNAfLJ4p0+eIiFcTZGYCkSD0ugouAPw852f8LNEdMjXh833rvFaG30+1OEjJ5zovQX7KZJrDb+WkWkhG5qcZxlgDQLarIxeG8sKWOIBSioz5Zyk5ZmNMOtOqRpVe5pr1c+QAxZkTAfRcb2qo7ph1jzWhqQGjWMesMt2DYZYSs1mBaFiQXKai897NidRZ57/ORDvLVUQCF3EnkbgZs8Eg4o/rq+xrIns7GTQLGBZLTi5JjlWwBtrMvyYDhuuhBg5IuvpudiF6AWGIXCHeN3r8nrcZf/jwgT/6R/8of+/v/T3+9X/9XwfgH/7Df8gPf/jD+TP/6B/9o59iVa6P2+3G7Xb7qb+f9sCTugpgItFyhZ/0U6tp746TxvPrX2YxLQKWCiY9MvAw+dKOhtBSNdOMa7C7BMmYM5EThI2L6Xeuhvl6A7MDbymufttYAauIdPp+px9PjGNn9I6O5jdCBKWfUci+rLT8lwx0sRnN0kdssvN9ny6u6ceh8Wed359eMEL6vaQfw3vjqDywbMu8ZqRXwJLvNzefPJ82/+lnbN+51U+tRZ4A/3m9HERGGAPJanOQW31uT7bXpmdHKYNSM41iFpSvJRYXV3jA8Y3A30NI4n4GSKm+4Zc4/2IQwSmp7wlfr+gjr1+ciHNjPX9sgpPrebuwFBMky+X95HPP5Cd+J0DLe+I339/1HsxvbH7NzSwp8iJnRp7z1bJ0N8z3RZ9iHyLMEGrPbdmI8+mvfsLQPBf6zt9k3oN5fbh8f/kozmb4ZpoDzxA4reqD4P76Onx3Hc7TI3ZqOC6nlVOJQXx9vy7Ermf3Z53ln/WQy38XVkm93i/XVorrtc+rM3d5m2W4vEdsnqoLSEmGNWKFJ3t5nUl5KCmX9UGmNjfcGokjMjHPCaCnWca1DCWxn573gsxPfZ7bPGPJnCRYKZKl/ni6YheQQrQGK5Kt/BOMJJss89zIBaD4/dHn9ZnDHTXmwUWaZvMdalztHHER6waZguYzBueystAWncnEOW5AJnt0ln0uK+xnxYzLmnFNW5y5r4EUYq3aZW8yzlKxVrxqEF+T4Irc3BNRNZ8irydTU+ItJINyxujf/vF7DlC2beN/+p/+J/75f/6f5w/9oT/EL/3SL/Ff/9f/NX/sj/0xAPZ957/9b/9b/uP/+D/+nT/30dl0576/8Tje6LoDg1rh6bY6/SWAHhzPNz48r+xfPLNvDz68PPH66UveXl+prXF7enbA0xaW+84ud550sCsMGWftcRYRYU7EQqCLj/LsfiGqCs0aa1m4lRu39sSqD6gLvTQWKezmzEM1pZqP/K66h+mZU86DQrfGrpV9CId9dDt/DJXhJarqn3mJ6ZVL8eNG4YnKE5Vt3jSFasIKvBT4ovqxlFMotpUaW3p1sFJcNKYidPEuo2ZQzX1oBKAb1g2thnXFen5VH5fZ9QIyIm8RnzR8COwRECs+COwhxl6MTXxeUTEfaKgRPJzVEB9THhNBl1rjaCzrAjdh0S2GagntJiy3gt4KtRvrUn3yZ6tRInPR2VJhbUqrCiVMFYx3NvYaZRUKSGyQOtO2yNDSByRVcVkTgTOQzDalaznngrmFCQjFLKZyD3o/Jiadte2RxmQRY0eMOQ/PDIkW+5nx6rnRF/yXzM5gVyKOuHU5JHi5bp8TGEWAUzkZyNMNN7JOxU+SpambTf1NmUXxEl0FCSb8PBWyfm8hAI39cvoSdfqh9G70mERuZl6WwzeSdGVeSkDqLH8ly0SIITUb+zmtCqIEMjeQvGSzhiS+iRozIEOKvE/mxwWCYwImsXrR0OWdYfm2Y5uQ+Be7PK8PGh0Yh52H+6CcoEOKhkFeLCo7t07/v2ur3CuqzkyZaoiP8g0woejoWLox68GwTrHoZtThG1R2Bo4xSxRuKDloRbEyXBtvipp7Eo2+M47I1N927OmAo/t9bgEkijrjUfQEG9Wf32I9u3+HulRei/fVSGj7wi7eHW+JRPbsnmP+ecRatemthBjoEVdDfcr8gKIxbR6jVB+bUVdoaxJUgjQJd15fBWqXNSMFG4cDheb3hwhuwT86Mg4qyqJGG53WD+pRKftBPRrlqJRbpUosRouxqHKgcZh00p5i6knEfAo0ARgKZ4yzC+oIxNTDtqNJoVb34LLq/15kUMWwIqz11LH1QC2G+Zy0AELzgnzDx+86QPmLf/Ev8q/9a/8af+AP/AH+0T/6R/wH/8F/wMePH/kzf+bPICL8hb/wF/hrf+2v8Yf/8B/mD//hP8xf+2t/jZeXF/7df/ff/R2/1tBBH+r+JylkDfbEW0MrVYTnpxutQm3K2oxjrYgdXodswv3tS45j5/X1lbdtZ1C4bYN1P1i1clQXo9Za0OyfDxrS4syn0julsULMsChhxFN8Cq6UqBtCNLJYWLuHKlxi87iIKnOBWdbywyxl2h/X04661hYdQ4WlRMuySLRz+u3YigfptfrxVAtL889XqiBaGFIZ0YanpmiAnlYuBkWhCZl84AnHpzo+5zDMOijqN2bxPHjM41S8G0IXOHAAA64IyMzYqcczgyjhVFtFYhiYzzeyGtcgpn+2pbEuC7au1AJrW6NLZ6HWhVrdoMmvm3d0EbbvV2LZd0e/0plsXIh/zh8/sz/gLMtMr5pLm3h8pmyfETNfY2qhBYnyDe9zonxPEtkq+bIIacyU52lmXZzy0/eljzNwJH56RyrauTlfmYP8eLM4ksZh6Tlj3saeSf0gxOTxXHPjvajw3ufJ77PB91fjck7i/ejlfZ5r0/8tM20uvz8/op2vkGo2PxdnuWXCs2xFtnxem+fymtknJPVcOl/vcgUnLZiQwa9luTzLyWOd5+I9cOE0bzOb2v55nS6f2EsSceDxS01iLEh8H+fMYtPyEmlBh4SX0AibBX+BHHCYrc+nceJ5Teb1Sq3KLKdnd2SwCMdA+kDG8J7GZLyTBU9X6iKUWbfK0oGBCiWE8u88T6IcQjCkyPuzWDiB+WSfhp4lnuHvObVzosW1P3nt0801E6c869cyUb7kLLUwmT67rJu0JCCAarjTUM3LeSVmPYmpm1ampi+vx7wTr1HpXLtZlpk7zPWG0sv3c42eC93Fz24yOT0rI7ZozfUYlnPyPlZd1+w3ffyuA5R/8A/+Af/Ov/Pv8E/+yT/h+9//Pn/iT/wJ/u7f/bv8yq/8CgB/6S/9Je73O3/+z/95fvzjH/PH//gf57/6r/6r37EHCsAxhs/ZCbM2tYGIUouxNt90W63AE2MUn6/zXOnHjWWB9Va5PTX27Y5q57E9eBw7WirPu/LUC1svlHVlWRptaVjzo9aK1urzFMz9MfKGyHavViutNhYWmi40W6A23+CtZJdtZLpQNDppyBY39cFgRbxls6hfsVYorfqmrJV6NDcUays1BFStNtYm3GrhJtDMJcKGg5NbFZ6XwstSeV4qT0uLGRhCobkGRj0TGyjaKkdzhqJFq3QJJ0TDmH4J2R2SinOE2ck0yys+N2mU4nQgQo9FW/B75EA4BI641n3mluCbbwI5t622Ig7IisRUUoFWWKgsS2VZGrfbijzdKM/PlKNwazfW9YV1fWZdbixtodVGq5UlwI0r+yLcZA8v4GlmbBqz1KLvOqiyZIOlOlPIAU46MiOPzoAsMZbT/Ek0RGxzkqNNitTkYjWfgwDNfRB8H8u5KJzZWm4MAUws2nevm6CazBAymX05xaWn2ZIDptMTMAKfxIgH80niFhsW6htZNy9dzvIUdiZtM3BdurBmxLTzS5xf10O/71yweJ8TYMUJmDGWM/5a/kKWwgh6u1wAS4KWn/X1+p4v35866cxY/Wez5JHeL1k+mmxSfOft8/bu2qTwOT/nBCU4qEiicoSVeHo8pfbIZSbiJWc1/4oP1sB8uGAf8Rzqz1uCBdMxGB1KNUbv9N7pY0wPDFViYrq/trOnuBGy+WytTFISTPtqCw2gJss4nDnpHRmdag3weF6KRegIpreFupMA3nm9pc8OR+/Ey+68eoKUqbvxr7mtFmIOWLCNcSL8dhkBTPC6i4Whh+l5zSmZMJ5g0wKc5BqYryY51ER4pw+DYBT9+4rQ4pggRR2klGBIJT9LsIY5p2p28Ukkp9dcxPIqeBA580xj6pPmw+I6+uu705QPtRWnfKgiERP9M+0SzjERF666y7Mu/Ns/ftcByn/+n//n/9R/FxF+4zd+g9/4jd/4v/xaRgp4nNkYwuwSQUZsYkqVASUW2BhQBou41fzCwWI7jYNqnWIjjpDphfrZxUkVagvtQoUWgiUrp3rcmtN6Tebgq2IXejEzAtJEKcBJsA3FxM3bDNZL3uRGyOI9/USGAO82fwcEDhxaEZYqrA1uDZ6OKMngjMnzUnleV55vKy+3lad1nQBFGHQV+nDKdJiitbKX6n4rkoZy5yj4cCDxr1Jo4kHCWYlGq0vexTNoiPd2zzlK13kx7xxJKS7+K8mWcH5fC1bdht67mKp3RVXBmrBIY7mtrE83np5fqDu0R6EelVtbeXn5Ls/PX/L09OJap7WxLBVp4ur1JXROVt45DIn6JlrzrgtRqozIuwu8tyxmZiG5IeYmY4TQUZNFiScIvYqUimlkaBlSqgZBIwjVRWpSkMssc+1eCvCOl1M4Ov0UMsBTyPkg7zP5zKM11lkFee+XUiIbm5tslt+sUKqbcTEMWvPg3sFseKlOL8DG8jSGlwowslaSyWG8lssQOTd/kfk119ipFhEHmBb0c37Ff75IioWvECGBhUBoFqTEpiW41mSeuxSWxp8nWXGBFjEButh7/UkCkPO1L1k0CaRitg0J2/InAmBYoQdAObqyd2Xvg21XFvwo4rpwMZnsCp0QgXrZRXWgvWO9YMNB8Xn0KHmA9izxDM6pzYYFyPHnjxUTHShuYe9GZu/hZCQ0wfwu1uZk9xoxkiirT7CcJcj4fp6RAMxurR5sam7qeX+RppZp+DYo5v4hfrt7TGvCZC7OQaf11GaENsTnnQ1GlBWHEt1ydQrQTbxMZtGZNvDpGD6GJT9hgPjQv0hofcRs+rJk2T5Z7JZzkqI5RB0veSNX93lyRzfGEMbAu4IiV0rAISbvrkgCaJ1r30NfiXj60oTn5l9farD8Jgzx/XexSsP9vUYRRmjOaiTuLXvxzjD62z6+1bN4srJ7ZnVXg6YkVCGRbx7leqTgy/TUmfw0RxqPq8BMzhLPPMr8/vz7+M38Nr7mn5POPW9Av5mqxS1tOdfg3NhmZJ5pYzwx/rozw4wwVsWP1KI18W6KdlnsrdZo7fO/z6A6IlVN35YcbBidqZPCnsr5AFJe77+Uw6L9V0wdSJWryOsijuNrsky5bHzvjjzlDiBLzs6Iz1EiKKQXTqmV2hrWFlhWmjSWdmNZn2jL6tOMW6O2Sq0plpUJkObmfRX0zYVoMzjOwDkTtPz53Ir8y5lRMW/auVnZuWhyIKC7umYB4AzyXlo8GaVrdmJxjbxA7yyT6dfOOf6LotfrkE9j85owS0OXcp3YydDMzVnO9zDd3iyuP8y+Rot2ZrOzi2Au7ZP2vkojTxZH3rE574+TactrAgkj8rm4AIzzfM17yCJAxxWxhGvxV1fp8AkY+NpzncBDLs/N5U/nypDL38jlJ/0nklW8ApvzJ2QyUEPT6dOC0fBDh1/HmSWn3IlYeJOOyUAaQMDik5riJpSnpmgKPHO9zjCZJ+k8byetHwv/AgJ9uSQQiFZWslSej/Ns+x+vhYJT9xOyh+kDeW68cabmokoofOpQPAGMyccJSuCygX/tqqT+SznZqmSsznc27980DkjYeh750WIFxXnPmyFmM15i78Xz5KRpAWapzefd2CSmUkrzbjuLU5prNCH9dZ0hOWDRAcpahbUJa4UlBi6ifo7UPClxTZdMmUmkNrNk+f4O+e0f32qA4pOFC12VroMjLc2/PoDKuh/aI608XINiO8WOeYj5v9vs1BloB+sD7W6Z7zb5xhUnODUW9dxcjHYCp4wHngn5yijiQMEkp3+q1xa7uuDKOkWOqLMaehwhBDznDOV+mfbBSb1ngPGWwE7RTtUzSDeMBWMtJzJf04GwuBBWikBuWnyNZoyjAe6GcI6cSZBSSXOkcgEqAuYAwId3ybuaskQQfQfyYNL4+bMlaF6Joy4VWZoP91sXlmWhtQo1QFj1Y2n+c2VdWdrKrd14ennm9vzM+nRjWRfa4s9HCgTlEuamuh8vY10DXgR5byHMuzNArl4iwzVyxmOuJS4oBc4FlpumcXY+jDOUXBnTcxPzc6gQ9frAtGZkO2dp0V1mFTEftRCLhxMU2gwwirxjWvKtSjAbpmcV7KxxZ2mpxDXVWcmfpaEE3xkk4/dHnraInFlK2Idnirsau8Khxq7GocbhMobYgwJYSWyWuTnKuUHa5dxqfP/uXo5SmNoJBGaJS0HfBYIAI/a16/C1jfosrF037CtIgZm4xMbm/3KWviTcsYxTP7J3Yz+M/cAPgVvxc1WFEJUy9Q6FTFrOTTHLC2nOngbuqZ0a4xQil+Hd+tflmveu3ybhWExhdjVegGR2DUIYT5K+Hu9LpJm4XTFK3nvzVsq4l2XzKNOUYDu8FfuMixmR3a/nBAFNeAeQEqRMMEgCIA+6vmUYo1swFcz1IghDXTxjKhcfnlwHlytvFsmbl23yPi/iLK0zS+HknVocyXXl69itcIyj+7HH1z787zMcZTJ0LYPmvZylJQlNzRJDFJcmfLgJL6vwchNeVn9vpkIfwjDh0LhV1d9zXuufSqwvWrff7vGtBii1NqqI029U1ApDy5yY2IfTer3H5N5jZ2wPxvFgv985Hg+O7R5/tzG6H9r3MCMaTkOPEcc1g9AZkCQtuSORyFkVw5RubrGu02clwEkR1lYornxiEeMwpWoPSrKCDdeAKPSt03cHKJqC4LiLTtvzgNzh9qljxHhrLug9uyvOjQEu937W43/GwSWIZXbltKCdjAaQrdvv3Gjnxj7VDvFaQWcmkZ3ahikkjQAzsyx5FzwEB3lShLoUapTVQKKLwE7uczhTVkVZFljWwu2psj41lqeFti6UxSlnKQ0v7TSP7Babh5wiWHsXMQW3S49zrBYtn3rWsvMiXHLmn7U9TamIXTLZ3BRTeBy17xRjZPmHfK75Jg2r4v4O0cLjjFOjNs+KdffJp5mq5+eaYsZ4vvM6eunt1FAkYM/SVZmeN3NDjOtfReZb1wj5qV25rsV3pysvY97XalNz0S0O0nLrBD9nFM7rk+c5X5WL4Zr/vMWLzTq+XnQ2mk95agZsgkh/jfcrIhKGCAwmMv88M2g5N3DIcplbI2Y5aJ6D2EbyvzxZ3vlr9EM4DuIQehFGcwAjcN6DwfQRTOFZFktNRLzilF/FDi4hro2J0ORSiPJ1DeI1J5gnCZVjG/IEJ9uQQE/ETStLqSxrc71fc7BilFNor/neMxufF+y8X1QRdeOwYsEgB7TzshHz3CVb0sQcANQ8PDch400yj3EthjATFzNDQ3+jPTRXOVk9rq+ZBXvJCQhx3UcreANHyQli16JhaGPEaMVoLQBDy5EjcV3s1E9plOb7sEhkTzFzvm3hbNt3vdV5D+cre5eU8eSEM+sqfOdFeH4SPrwIz6u/tA6b2qXtiPOj3nmpcgL2ywbztbvkn/74VgMUF5QG3k11eiDUoR70FHxY4DE49oOx74x9p29+jH138NJ3dBx+6IFZx1XmApeNxqbnSFaGY7FJbpa+d3itPL1Xdf6XrW+twBpzbaxAy4wl2o6Lir+euJFVP5R+KKOfg8E86J/V9ne24pzj4FXfB/u5qXCunfw0xPfXbo2rv8bJExrnYntPWv6sjRcuOUhEqDk2IN9Fvoa+fxnhzGpqbHIZNzNbI9uka5STyLd42dk0TKbEqM1nMK23QludNSkBbqQ2TFq+IuT4AsnN2q6JeNz1eXdnEPYgJUlxzezB5mf6+vk5b+TLeY7LeZ5yuVzMCNSSQjdhgp9knXJjDLWce7y4yLA2B8FCOB+LoqPE9p0r4QRDubl7+VBOQ11xDdV0f7DcRs/yRD7r+6zxXIUZtIz36/LqCHvFe+Na4iEYRM5Tk5deJtF0Flver9zz3J4gJUAT9vXl/g6Y2OV35u9zAs13YTgDBAlS5pViLqZ47SxOG8m4/p+E9PmezFmUAb1L6A+gV89u1Yxq5+vngpNY3g7m5SytxTJzUTuT3USSCfHr0PB/K0k2BhPqIMVOrc/lDadexa9pgqeTEV2WGmVWH+qns7Qab2o+mVwuAGAxADSTqBNuJYfjWsCMKXKuz0IAhWAp3C/Fr1kpCcyJjs3zd/1l/TPMEV1JZ9t8WxO/XtdMYr53M1Xn2jljSX6OWu10HU89YzBNKTuYJZ4o6+UwyTRr9Hjl16XmvVrs3evl9z4aBp4arCvcbvDhCV6emQBF8L3l6EIfvp6GGr37+RxidJIpyruOd4zvb/f4VgOUFeEQQYahh9F3o+8wdmN07xiQAseu9L2z33f6Y2fsG9vbxhF/1uPwfnQ7ogTUSafEat7jL2kjPTxKlkC2FsZw3vbl6FmrcVTjKP51AKO6rTRFqc24rdBu0G+wrMa2u+PpOjqLFhYpyOHttbso293Y78bY/AZwbUkmNrlhWvT3AxLZpk3T7ouwUE7znRJH6ADAg39X8wnOw0tKo2swMlcGKe3ADbEB6ockENBZBIdQ/evo3glwdI6jc/QxS2dCuDPirzcO9Q4nPMNZJQ8XtDUi4IhgtbA8NdqtUZcFtKBHvP97Z9wPeGyUY6fYzvPSeHk6+PBBeX42bqvRFqE0H+ioVkEL0guWqvwEFlOxGAEzzlstmTLaWXvLFP9UYv40WImBYc68RG08Io3pcCYm1h1d3ftjVxc0l0Itl0ANZFnDgZq5oDvp9GEOTpaFWt1IkCglaq8QKq5Zugg64oj10FWZHTzJPpizdabuf5G7tSRQyx0twH2unzmB13KIGDGvO1rPI+Bm26p2zwy12/z7czedHz3Yowy619Pi2brUEuDYgYFP8HYwp9FSOjsPNBjH4dfGwYmcoCa1GBaFLsu3coFAlvemO06LXoAk11TnPOWcyyph6Ls/JUgawxi7cmC8vVU+35RPrfL5xWhm3Ao8PXtp9qK09TJEidZQdeb5QNhxXyILkbm04qaG0bUno5xCWnwTq4tQWrAOwaKopMbpjDGx/ELQC/sO/XANR12Etgq3p8ptLSzNdW+meFfQYejhlvFz47WfFhwXNBIYmdq7IkrJQo3GtTHvDKrVs/21+HFrzmhk454EreE2B8HOdabZoCpoF8Ym6A4cUCcgCDAnWSYMYE0YyVWlNWNpsLZgUMw7GLNtuxSjNePpBs8vxvOLX8/bk7A8iYv4454cFud1M47N98NkdcSMGg0GBd/4jQCSGdw0QZYDlNaEL56N5w/C87PwS98VvvhQ+OKLwtPNmwE0tsXehdc7fFy8rHg84G7inVwSQLad7Pg3fXyrAYq7J453JZjsWKgSg96q0JYbmJsIoQORwjoO16gIPL288rQfPL28sj7dWA9lbQdLCf8c09NGOjaM7EN3NXR8HwF32rtLKpwrFl0/XGZN0IAKWk/VepnljiwRCRuw985+dI7eYzPIUeH5mS1o3PMA3mV28yGJZDVEYnlEyJwC4bRc1hmsCefNk473sJo1U80S2EhA490B2rsHrtDPjMumNOzcEIUziAWL7C+lNgcmV5PIhk6hWGp6WolsPamsITPF9jlGSivG2pTbYjytxhoTrVuTqXPOT6e5SeElm5Y7w4xgcUpT1zA1KyHQvO44/pPOegUtMgXZOUk3SyqRzcjlZ/K8+rn161Xg3DjxzdQDTm55THo92xHLpW3TxLCKgx2NwKu5dK65z7st90xcOb+xBBOcdHFQmkx9zaQgOAUrlyeUSCpmx8Y7gGNTbOX/xqWMdgGGWR5Uu1i8M1kBHz8RmojUOk0G7BQu+lu7lK/y+wAkKby5lnycO7J3J2Zm3LOjajqszGuo5HvILDbLxymIjLWTzxvEQtwa6CA0KE61bwdsCxzD5qmZTEwAh+yUU5EZq4ZEl0k1zBWSzEWeDEFXGCcpNGVJcdJy1EVR5yiul9tvxSjRjUEfXrIukRR6cpONChNNnXGV87BkQcQBV6KUr69R1xSdWPYdhReHlPO+OA3coutnxsRZQDzXdZa7MjaJMzGZuJzlTOa7ssu7K8FmVDHvCJSzm0aSYanQAji1GHhbLonovP/U5nyjFO6iud4sumnO5BZgDvsTvzg+DNucUWrG8wIvi/G8KN+5FT7clC9vytPN44mqOoPS/f3rIYwdniqMCtupNp7Gevo7oFC+3QAlWrFs9HA5dHVcEdentBiiZ7fhXR3iGcM4VqclW6WuC/d942HKy37n+as3tg639WCtG2tQpNkXL129lXRoGPr4Jp8ZoulARX3zJW76UtG6YHXxdsvqAkWpIM2DQRXvw0e9DRopjMhcNzPuR+dxHOzHQe/uJurrXEnDIGdsL+Ipk/c36vUhdoITiZkUMzjHrhqAhMmYXDQp+bzzXg1jrpFHgJOjM+pgtA5FIgv3AHWYH91mrIdyMj/dPKvI18nSQfnaIYSgKwBlBYZJpHJM2jU7mpaqPMdN97w6e7L6pYmo4DyC73Hu54GF90C8Jw/cuYnnOeXCXwbAyE3FOIvM85EgJWzD7VKftRAu4gDFQiFqY6DBOpXUxWg/r4dqBOEol03dSFy/cOHMIAeeRXlw5hL0AmQIwbgFbL5uAjLfKsm6aGpY8mcCLCS9/FO71RR1X/YMTiGiO5U6KGMY0s0ZJwvhY5TvLBmmFBBnZ8U836n58Kg/gUY5xY+zBTPfqn3ts+Xaj/edgCyJnNyU8tqemqBgWQOYFtHpheKlsSiZlfP3cvOfYsjYjE//mHMhTfFwAJPHAY8OW8edsC06ny6RINv6VdyTY0ihS3HdSgFrFvRIiJvN458d4RI9FHLdXOJA2rTr0AnQJ6DAy97djGPY6V81OqW4c2oZBzK6g5R4Uo85p2+QEjqQksCPEwkEGJsgJUBCAlEvS8oEeJ7d53GJiUEnSHblXCfZxzgBB8ycoBmiJdhfWPL1JGbTEPdkvDuR0zm7wTTndPsYXysShpFtgaUZSzNq0WnbnxHex4y4v1L64Ojs+45SkWiw7jbnnrro1u99C6A7xC/70hycfFiUl0X4zmp8uQpf3JTnpwQoRu9+PZuB7jA2b0fuDe75QlEKBBd0f9PHtxugYIh2TA8HKdohgn0p4o6qrWHrzenuUtHWsL6zLMU7Pp5uHMfOYcrr/uDDT97Yh/D8cef5VdkUNMAN5n4DuSDPeQljijDp7vo6VBkqYSncUGloWWZf/NmxkjMisvbp0VoxurnV/mPAfd9523cex87eD45+MIYhIfz0Rxi9xaY0iRC+dphhOrDoWMrppPMmVmejVHO2znm8H3T4vm4dgP2ifVGGKmX4+fDFqZPqHPmzcyNQUHHtUAT+OSOF2LDUW6/PwzeACix4d1KNgOyK/VNkV8XbqVdpPK2Vl1vj+Va5rdU7gXLcanwm8UV2ecTuiZw7eZQ7ssV9ikFnehvlGf8AnHoVjSA8qOgs002AE9n+HC2fgWgyVTbpJouOLssIExnjfM3Z5GdTu5OZFFFvn2PmSzAA6kDtp5gG8I3B3OXWSIbmTOdyUw/ERG6n13bSRCKux4juBcsgHSXHBK74xpbsUotFPezCslw6H/L8JIDw8xEbewA/JUqfchJcFpT8aWJ1XdPXtWpniWfeU36VfHlcOjQkGZTQCyR7GUsrXUMNP/cKE4x4a3/ez+d7SXZqymVjpx3qnRTbgG2IdziZhIgYNO4Di115UB2c4Een0EWcdCzV/aXE71mJa6m9Mw6fRZZM7Lw7NNtbY30OX3Pjcr4PjMNgM+XQwTEGY/hgThsdPQ5nXEd35hnv+sqxEi74LqeWI+6VZONMdZYHTwa7oLWgKSdLwa84OM/nng0GloKSjmkAuT5Q/MhmCYbOjqFKOHRXJjATM0aADrVxsoJkMmlheHZaSnhcyHagFFAluz7ckyZGDmhvbvgW5XfLMmv8roMST35FLLxTzhJPFffKym5KVUPFWfsSCd9zgedivFT4shpftsGXTXha/F5Vg14coHAIWxPuNcahkGyQzKaJKcX6ho9vNUDJORMqA5XOiP80ZakyjYmnc59SMKkugiwNKQtSlosTq7sPnodSgwZNmV2JbCy7KUrW92PcdHZbDHOAotcjbaZVgr7OzWdE0O6k6Ff18HLIgB6TlIdepwp7wCoBGibXOpP2/PzvAYrGTZ9dRt2UmiUbI/Qnnunk9+NdWSYAS2ZGkV1KUrDxc/m1BmDxGrQFSIkpw5kZpQsq4pnKeeUu/gQJ5jLwe0CRSdNeCYzIoBNUBYiTEqZyNezvm48IKDItneZ1zo18euuIXVPyfKEJ2jxifu1nrm1189/jRM9s+cKcTGCRufz513F2zufKI3/m3e9IvmBum3hbqsYacTFxbuDns8vld5nv3XJzu3RRzFNyYUHm17gGk0WXs2uiOK/tm4zkc8arm2d0FmCFWFOlKBq0tpRkUPI6fU2cLdePFGBtRsYA1WaRGZ/nSy7f+WeRedg8B/buHNu7qxS/LdFUbOfLzlszg/T1cl+WSxEJjcLJDl7NtPzKfO1VAzANPVtK+zi/z3Ztm+fDy38m76Xt3jpdLp0m11fP63v5DWFuPLkgknxNlinfdBKaFp/vWsb9WZKEvEVSBJ3snYnMTqEzWSDmu3hCYjV0YzW/v6pQ857IayMZzS9gL95D4gOxs4OLBL7nkXmLi/hz8fmXFndsJbuKTinQnFpiDrrFsrgX97md57m8O7IbKU8UE3wn4+Sv77ElrZz8NHgi3Agzu+rGeKV4tB2py0ICQEXpHAcseawxozdPEQF2luKjRtxX5gLWSBFwruJv9vhWAxSWDqUz6s4hOxsbOzub7WzWEauYFQ5V+nCXRcuhdh36Uei9MrSh1rDSIKbb1rbQlsYyjNp8loOK0IIONasUbdgo3hI8ciNqwAh9pNK1cmjlGJWjF5ajwCHYIUjHh+lplFnSD8QG2IH1h/fYD1z0O24M21DrpHJfAxhNB86gaEc1xsVz4gpUOsrO4G7KXZU1BJDpF3EfLi7tfdBHp4/OXTuP0XnoYIvj0M6hg3OImge5bmMCn35xpDSga2cbB3s/2MfBGDuqO9iOsBDVeEQ6Ip0m47w56mCpSitKDXCKKCZ6FoCrawwcSPn7H+PwIXt0BzQVWtjfr8uClBVkAVvIkFWK39gqDvPGzKczNJxB+RRDGmI14tM1FAUoyfoINjVMHoj0sqtnNGf+bL5csh/nluKbx3STBAceMtUp/ouStvwWm5RroqzWCPgVlRYb3zgZhGQLVLAu7gl0nLAnWQQxo/jga0q/gDVO9qGGcFJr3CFxajQAjgPcYG9KUNLDsGqzrOqdGLEpGhSNKgTxVYWqUGLwmpd4og8iZrJIKMvFxM3pyJEANk+3l5di1oudgtrcMC8s/QmLAhHJ/FrO6ySnJ5DhYsUsIcYsPoyzNl+szPJlDXmnECWaANu+MViSFBDdE8eu7Jvy2IxtUfYj4oelW7OX+QybYya8C0UYXdDu19qxf6WYv4McYDphfJQJa3NxeOIF0RLJv83zIQ0kXJm1ustox8Kt2l/fCLfu6mpbk3NGVzfoEsMRqzNBJrhoV3zTRcTFoFUpS6EsFbktyK0ha0Na8+QkyiJCCS0boWcrPtdGw7vFzMs4yRwOO4GcOlGpV5Cinri2YL0I8KNUX1/KmeiY0RRWg5sat2LcApEZxp5rg9CoFGKIaWGtFzdZOdfG1LsZEDrGIn59EhC3JXykBBZzz5d1CYAiMe4AglosbmtvRjN32M0RIksTlmZIjfJk8WaCtQlLLf5zCM2EGt1hmHfcSgDMb/r4VgOUW1l5pvFUnngqKyuNBbfbrSZuIT8MeseOHd0fjO2B9Z2xv9K3N479zv74zP7wP/ftTt/v9H3z9uNhvsH1Hds3+rGjx472De2KxbQEb3M7BV5FT1t9iBJQH1gfs105UfnkCmzGGl/8w8GHKFQaMdXH58vgnT4tgkA6DLrpWZ03uw81ZNb23Vp6RdptbsxGw6ySSnPtHqx6d5X9iKP3+L7HEf3/mO+9A78ZxmFubHcY41BqGYw6sGI+1PFws7uzHe+SqU1K2+f8xFxEN3erMS8oAxL+FFkDnwK8MejWOWzQo41cxxFn2ZmWtMmXmqZsNQDEyQZ49hasERZW5XLe8RBXbzBtt40AB8y/8z/kIRG8sqMjL0xsfDGUzMeUZFeU/VTmPlkZj9Ck9wwaWYoIsxbwtSzfAcQJhOyy+aqejqQaImkNAJss2gnKzme2uZIvgO1dqcNLbmWWL064l4xBJtw1dm33n/CLkVn/iQzk/HgzP7Nzw7IpN54ZbV6f0zQqz/vlD7mJCJHBcoIOkkU44WkSYvPczqd+z3Ncr8QFir6/LvHelBDPSGomyvkLdpZVTgCZdgq4zf0hPHa4J1DZheWAMWS+h5mwCLMc6wJ2XwMVQ0JUWUvcg1wM3OTSlhtgfpqNWbq0xnPMYX3htaLG6NB7zO4xwpunho+Rj/IwCya3D0b3JFPTcExBi4UgPiKIgNRzOvnSfFNvpUzmITfuuYEXO0sPs8QpMxa5p0vAfTPU3HTNOI3RRnyOUBjM+DEZQ8qFm9V4rYgDhbCT9wvsy70g1d17k+Vd1sp6a3EsrOvCsi6ILJTwxDKKs/YqqJaYeXWOfcjkhQDNDpz1/Ow2cfaMkS3tGNbCevP5deutsKweRz0e+CcraSInMkeRSNaUMvkunlh808e3GqAsVNbSWMvCIguNSjUfxCehsrehWO8u1tx3+vZA++YgZLtzbHf27cGxP9j3jSNASO9ZUoExRohwe5RdjpjqWYKKlgmjU+z4LuJj0+71nGTrYeoduyHpPivvhHi+ffukm5bfSXkniD0pZKLGGhOD3XEogm7QuzkDRyrhzOI3nvnPjXCmvNpljzDhza7h65EApRTmcLhUt1v041tXp2bTJnucdfxJd8+N4Mxsq4hPFg7QkoMIz63qdMM89QIezIZ1xuhhbBdnOTfyNKgqJ+DJGkk8nT+3RkIRO0/S4nDSsLNcY8wuDVLAet2SrgClRNfMiYl4R89eDAFr7npwAhOuTymzE2UatCU+uQKby9uNf7qUbmLJ6ikIzUz43d/FBmlc9v0roTSDIVNL8TVsdjkS7Lz/LMyfy/JUchERau1qG345vUmtcwK26UY83+L1wzPP97v3fvkM+ddfBxM/+5GvYD/13nI5fO0V/Dfm5bV36xkCgMj1PcbznRiKFO66LUC4iB42nWV7JBtjCBIt6fMUaAp/81BMhTQMmbPDJOdtcZYq5gacW9R78JqnZI6MiPsrw+LsPEe+Nq4iMm14L/wc55o0jXNX8vqc4LSG42pN5+lyNXe0AMqnEPkaO538CAZSLECVINWcXUlNSr63BPOXzhm5bMAiZ2lj6pHsfF1S9hbXRYQ5kyuBTKlekm4BVtpyAjmoAQB0JrmhEZ+M9hk+yvvrcr0ZsXdXLs9FKd5u3KqDldaE1gq16YwxReXilSPz3p/XPj7s3J8uCcNv9/hWA5QnVqiNmzzxIiurNsooSIe+KzI6WgZvrw+27c7n10/sb58Yx4Pj8Ylje+XY3vj443/Mx88/5idf/YivPv6Yj5/eeH37zH3beXRhG3esP7Bx5xgbOjZU93B7bBcEau8lB+ob9LD0ExkcQ2Mjygyp0EuhFzhEOCRRcEFHcQaFQisLa1lYZeEmjRUf2ldyhXNmRgPoIhziA/722tzHQpzmPerCUVZ2FnYaD22M0Ty8KNx7oR/ixy6MQ9j2PGDbhT0cK3uMSM4uIsVpYs8mxIFKd2rfJLK9w2ZnTVpTF/O6ZcKxFgEia56tuttkzewKmYBE8Ba3bnCYIarsdrDr4UBTd8wOrAzfAjIldHcmB2xpeBBPagG6uhmH2ey48CAtMSTQo+1shc3oK8IZKUJwB5zR6Gv3qJssTFGxmSHjHEX/brZPnCF/XEBWxv9cewlKCRBCZoCx94QN/CyFhLnTBJjhQGn2daF0aH+IuBYAOQf2zWCEC7YT+aTdfs5/tLiCFkX8hPfTs0cmN+WHyjkULzPr0DAMHHgbqYvIYHi+zwQACUqcms97MaFuLOS5w1h8jigHZfqnl2tpGdinKsDvw0AfCbHscn9MYbkQmrhC2qOnA7WhmIhT7hAC2hTupiYGsrNEAVNh68rjUN42eG5wvwmPvbDuhd6jo6sytWJqkTwMDXY3P6tRrVBxl+tWxAepR8dJsiieOJyb/7VFdl4DsfO8JDDJ0o45OKlLo91W2tNKXXwg6+h+Cx3d6Id3i4yet1QkelEqLFooBk2UVQpr8ant7peUmo8Q1ovOVttzfEaMzmg1Pk/cTFFuqt1jGUOdYTbX6u1d2Q5l25VjV44jBsAiwWrEOjC8rJjJTICSUnSW9lOzNU/WBcjUJtSl0lYvTbelUZeGanG2VUaMfSkcQziGl8/6ZBrz6kRiYBGPExRLlGCjeyhZlNYkDC2F5Sa0W6HdCmXxN6lDgmXyFnV/Hg8ycp0efdUHXgHsb/P4VgOUJt6RcZPCEmUd1ANt78PRrMDbtvO4b3x+u/N4e6PvD477K/vDAcqnz298er3z6fXO2/3B/f5g2zb23jlG4fCBPKDdBbgSAty4mFryGsikEqRYLO7MLWQGYN4tmBKTH11lriUMlN5l6pyug3HTSy4ucUq4i9HFvx7iczg2ETaEB65o11h1B4UdYUfYTFhxpb/rDoy75dh1m4Ondj3nnZxW4/7vGN5idhGNnUjta5qNjN6xsUt05eQMkETzNW6chtEkJoxKOsjGhnLJhK9M1LB878pIIW5KeuMG8pvxEkmTxkicEW9zJNZI4bNjRm81zg+UbFlucJC1khOgzLvzcqfO1w6hsSpjJEA52xpVOEtIczVdNtVcJJdHnhryFGXWrL6RnToKOZmE2U4VJ2D+3dX7Jih5ye07xKaXbOyajZYAR6X4a9aYSQKX02KXrV0InxKblukJvBN8DzM6Xi9/Z0IYS+7rdPU8CZmi5pnLzz3PYaLA97uE2WU5G2c3E/n9efh5j0Ql/pxsYKofHKQkcIyrKeVde2wag1XzslpRjw2TmLVzQ5uRIu7JQ41jCPsIR9nO1HrkJvmuyhUn+N0cmxJxh68NqsMBieOCk+GSOH0pOr2uB7v8l8vKLp87bUul+UGtoSNjjjRwJvtkBqIWMhf27I6R6Hi5HNMzp8TJ+7oG4h19Upj2w/K1I/xN8hrnYMacTdSH3795P3r5L9m0YKryhOc95sYjzlpZxgHODko9uyfPjX3eMPO5g5Q+GxqiHBsYHGAmJ3nbE1/TEXreS8bsLEs2JP2DJhMW6ztj6RCmZiitp6YwOu/uy3v+po9vNUBZca3FTQorQlVDIgs8Dp3j2u+Pnfu28fp48Pb2cN3J253j4SWeT68PPr8+eLtv3O8bj21n3w+OPuhaYrS4GwnNng6xMwsq0VYKjsJL3AzZVvIOpMAZUk4fAq3qArAanT4ZAyV+OkCJzFGdvuFmt5JLQM0BCsYBbMCGg5QBpAXqIcIuwib+M4uF30jcv/fMTPWkY3fDB7HFkUEjK1gaVupnJM/AFZmnFJxOES5RlnPWTLTZRcBJ/5NZ+5ZTxe6PvOHPkprOp00XXD2N4yzPF956KLG5XJ3ZjCl4ywxehejGClbFPHAu8QtnmecSCbBME+ME6SylzMiSN3netEGzawAU0qk3NrsTcWQJKYLoz1KcWZZCnKk7OxASf+SOy7tj/tvcRWwGTX9OI/kCs/woJ59z3ZQcC/sbLwal+vso1YWsGJgb105mCDKoxfPr5R6b1yPEkvY1cJLHfG0ijhuXt8r78Hg9Af7P5yU6VSTzXs9/D5AiURJNRiRPQu6BOuFJxIYJUgrpC1KSPXnHjvjPO9i2uSkmBr6Ci6tJo9kJUPZxsbwfrpe4AtNzHZCVz58+OL2GpsZNTuDigCAF2eOyBmQyJ8lKzbhpaXWWrJtg5WQvaNF5UwqKvt90jdBXZHISJVsyQSR8WUJcHOyj2OUEXvKEvCYSO/GMU4nOkvaKD3wyEeEro+fMm9493oyRJWQSql3vGjLIeDzI2OQL/HRlxj2k0m05y3ABePIeP2NghFQ9QYqDnNPC4eur/Xr7X8jU9/eSnclHOWtVsxsr74/JfgpxSLiTnz93gtXLZ/gGj281QPmeDkYXbmx8eTz4sN+57W+07Qm53YmJT+ixM/aDvh9ur34Mjq5OHXbo6l05QmOhcaPxIgtfBHJsxPm1s31Wzdjxi18tFffwAeE7InxRCh9q5bk2L8nUhaU2SlmwsmDS8PKQuiCqBf043E22DKhlp41oCbM3ij6DvqHjTh9P7AMX/Padh3UeDPcXEPOjwFGgn7u632jFO3y6dXb8KKKBiGEvNpuSNBZkdghZWhuWSqkNax4AWluozc3x3h21+jThUk4fCbhkFCdYIdtthwuMZQzqUC+pKKeb73CxsdWOdXERdHejPh3DbfT7zj42jv1O394Y2xt63MPbIVqlZyaSEUiYhkdFGcGSpSeTAxfPGEwyX468Pgzz5u2dACWBSwA0jyuuXZIYC5BinmkXb9n1lCEjEQpkTeY6xNG7OzJw2tyAPJlL8zQ/hlqMpr8yUHrSX/HnFDta/J1xvuZ1o/ct2GLulPuVnPKeE9S4t3Z0dZhvdhVI/Uv62fj+ZiEyjPbiLLsUn03lB86wpHY29xWTOdvR96QzbbvWv8/EOIC0nBu2d9LFe9LYcHLVRtAWY2Jx5bw6cYvFVUtg4oG6SHTNiEyA4uAjSz4JOM8wPmLQzbs5OXkf2UWQbAajsHWjHcZ9V+6L8djdwK13v8RTL2AFsamOSG6etEr4GnoOsTJhmKcXDxD8edSvy7AyR2XkgL2umXzEPZWbGReQmcxxiTEc2OwEPDSGroZR2wQl87AJA3NAYLKM888BuuZOjt9jWMKwyzWWc+t1kSln3Od05s2ZN6MTejvfI2Ymdc4iiVsrvEbMy0VaxMtYuKVD3svemHEKiBMY5VtM6wTUwlk6fKti5pxPvM+xJAmPTq5r+m4VfKJ5sanlSfncaQF30TiWFL+mqNd/ruazN8EaWCX8avzzGzbHg4hcPss3eHyrAcqHfYPSaXrwQmV9+0R7/egq8Po8z6K8fkTud+T1M+XtlbI/KPc36uOO7Q+W7WAcg6duvORNHBHvSYSHgahSNCYJx9dtdLQIVcacoPmig++ifLcMvuidD3SeZXAbgzXcMG144EzjJJdDeK13Kcoig6UoN3ZuGE8G69hY+oNyPLC+MY6d46hYOMseoW85b+S0N3aZRdayKUZFqTZg7Fjf0X5A7cyx8sk4TOfESykBD+quzK9Y9ZqrjxVo0WlTqaX6z9RTxW/qnP6V9synlcsNeI5+j44oKxdjtpPW8esgFHVn3fRWQTu97/T+oO8P9HjA8UD23bt2JAJqgoXZDhxAIOoO6btSoytkOnpmGnkNeLnJz/OUW/f7UpJvSuemIqbvz8clh5F3z3UG5LNM4VmfzNoyc8M3ZEpf0qfl1B3kGolgR2a4J9OU35/Qxl9gbtYzxpzsglqUJghjsUkFB5gw/0rN7/NUSFDYnlWKXIBKnoeppI7vow1oMiVRd5izbiRKoub32rl6L+ceB0FfL5Ods3nEywSWzN2Zref1v0CE+fwJKQtZDstd5lqcu2bX/m9XwJQnO0GY5rPbZRe5XDlwENFVOYayD2E/jK1Hdt9llnFK6hIC92WXe5ZZc6henrX0EVLk1H6ozvJsUmAe0wpqyggBhlw6xNI996dZr5NJSS2Toe73pCPKtKHHctUOJumNJLEGnBLx7L6c94sQLFDeH7GmMp7EGjirFzLLdt7O7OxWR+gi55yoODQbGTT3+RTz5/XLKdHg23kyO9ka7EcyHclYT02/nuxQ/s6cRp2xMuoyU+g8JyrnbZMJQQlGOsTOEc/eVeHzyIoAAtGckLEvhycC4T7tf59r1QHeqUubE70va/+bPr7VAOUXXj/6iTvgZdt4efrA0gr1eHgdorjwUT59otzv1E+faG+v2L7B/ZV67LRjxx5vtH2jbZ1yOD36XRrfwdgQdjXqGNTjgGPHjg09Htx3UNNQd/vCufWdL8rgF3Tw/bbx8+PBd2Tjed9Z9oOxx8CrLrOEUsS4iXIU46kOnovyIsaXvJGDyr44Ci/7Sn18xu5v9PszWxF02zi2jftxsPXO3sO11ZQqPgDrqRp3TrpupbPqjmx32O7o9gSSDYSCZX9xn73EzlxYji0v7tJbG0V96bVlYVncO6a182u9gBXF0ya/n+xCOMTNYAFTgikp0cFSTb2n3jIguguuxuA4eoNxYHow9EDHxrG/sR9vHPdP6P0z3D9TtjdKW1wX0RU6qFWKNKDNmikZUoqyVIJuLqDhPSDeJTIdJzWGSHafoCbgWS8CpdJnAM5afbaij0l5J0w4b+ELUJE4L4lz4psE0SI1KNrYJgOQEAyKT8X27WzYoCgMPdy/h4FamBzaxS0zB0HO93B2PyU8muUOO8tr45p5FZk6EG3OGinFaXoL/40IzJbvNTbGnOBSMERikRWbZJfY2bEk4AmCBR9gAVBEKDGlbrwrcyWMUg+04udM8zNJmVMJBoalL8m5F8cZOJmQBBB+mc6Si6FgZQp2/Wff0+Pz92KzLdRgjUBryWogU/CVNbsJbxJInH5P9x3eqnJ/DPbdxe4chjRvC9Z5jr2MkPdbiUSrpKDTlGEjulfwsmlYJpRhzmwmyMT9VjoxHzOwpObEXw2NQpYiJiuBM5uluBZPLMDJwdCdrrt3TVrAg7gP5hTgmmyQg53U/omczLZvyqH6M6OqRlwpLv6N56KmqadPkU+Tzy42nXYPEQ7gIJwSAthVExqeuDFbbP1VE9V6wlXnPDGxikVbsFmUtC6t1KKu22pazg7V6CYqWnzswxxK6rV3m+pxCzNDByiNwkKSOxJ29wmkIvlI5DPbo7xNukgNDWQmnL5yK0GoawBpiRJPALtMDlJInuD0mz6+1QDlF3/0Yyqg9866PvMyCrdjY/n4Y5bvfkLE7e5efvKRer8jHz/y9PbGOHbG9nDbZh08+sHRHxz7G6+fPtMfB+Mx2LYe+9gn2vJjWnumfvEd2N7Q/c795UZfFqQ+Y+a88tJ3nmXw3dr55eeN77SNX5R/wnr8iHJ8ZP/RV/TPd/rnO8f9jm4HZT946oMxjA9qbPhU1++z84zybMaH4873HnduHz/DV5/o68q9K2Pf2B93Hm8726PTD6UMYzXhu7VgS2G16uY/sWhuAt8Zgy9e7zx/euWprJQeDrsUuD/QfqDbju3BsOzDp4kOWImfrc29TxCWZfUWuLY4IJGcHhopwVAPMjGSwBggGhMuw/ck6NB00TQKraqXiFrOLxKsGJ3h116hmouYh3ZE3eBuf3xif3zmePsJ+vqR8vaZ5fHK2laWo1Duirzgk1mX6sxKy/fr/jLeqm0staDiPtlFsosoOCmJzTyHSKY6Myy2e6ncs8MEYxmDakqJeSNcyoYzM531mXi+IK1nRpYbdWxctXhw9qq9b5qiLrTF9J3Fi47OKEYfAtU/78AZti5uW+0CVZJo8I+jvsmW2TR5rYm7umeIcqDzWkorU3vIWh3AVHWL9UJkoA5uRL202ZR4o4oVnczTJuf1OLtCMkvz96slwFJtIAk2JHDP+5Jigohkx04WC6jnp1xCw3SIAxRVN6Xz+nq0YBN1/ARYdoZkn1kTASs6tJyYjPOXzIycQ9yKuah9OqZO1UaW4TQJnAmQksEZY3AcytsDbhifivH2KjxWGI8VianDDQcIYl4y1TGoOlgCoPim6K3wY7iYtQDHsdOPA45OHbAMTxzMbJZsuglHwJ/TbM5BhIV9QXYA9sN9RPoIW341F5t2pYftw7ZtHIf7GaEjSuqcIKAVhlXf+EQZYa+Q6pjZdWQWxmODKp3VlNXcVKwGAFeJ+4DCLiXAijCkellcfOLzhn/tDkHdTFI8IbHWXEfTBJXqFg5xZxYTqgmL4Wtd/Rr3DJMWpZ3u9/BtGE/qLPoNWHE7ywWXHpgadRh1KHIotue8JGAIddTJnizWaOZxQiI7VI1UwEKrNEKUHcyqJ0aZCJGUycmBGO4+rELvrnvaBxzqHUU5kVyQ8GWxs+z6DR7faoDy8vbm7aWvG0vbaesLZWnIccAACQal/uQr2tsb61dfIfc74zjQ7TEV0hWjj52jP6iPO2Pr6G4cR/c6I3eWt1eW20eWzz+BsJp/6zfGskB9dvbBCvU4eJLBl7XznX3jy7rxUj7S+kfk+Ix9viNvD3g80GNHurueNVUWE1aMG/AsxpfFW+IQ41mV59Fp247cN8bbxlGq62q2nWPr9N1BjpjQEJ5rpccU5UOSWi0sInwwuG0H6+NguW2UcoPivihzHsbhg+l81oPNxpQF8WxntuQR4KRFqcdZBqcl88jJoDmg0CL7OQGKm8plYPObutRCaYUSAIXq5klaomTBhfbFMy/Tzjg2Rhjz8Xgg20Z7bNQGhQPxQSWunoeZmZNlHDuzf5ndWHXSnXN6amxU4MHeH/5nK+GaWTwjq6bU4Te/6KklSStyNZ81RGyKmZ8nZf2+LeV8286oWH53+rHMWru7FPsmrbOdtQQKudLusw1WLq+UrAVBp+e7iCB3lomi3JDZf7mwKDWCE5ElF/OutWTS8DfgGzUO8HDBo9uPl/kaKXZOnsk1C0EnB2ChJJvkW7lTzf7bweVNOj8VDZL0SLkwM3Ixew8qHwWKMQXIMq/41DmcwO3k7rMachU8JgDMszoxlZygcv6rfK3kdllt+VBTxhD2DtthbDvsm9J3NxJjuIElcT6I8o1n9jkPxuOHd8BE2VRczDkCzDjLeZYbEmzlGopxexAAJc+iqYTkytlP15FnqUSi88RZY+2d0Xu4QbuR3Fma82snqYsLFOgT6s8mgywsZCF0speE1g+3oPdGBP8Fd9j1FCQ/j4MvL/EcODDpFjyn+XWvyRyUGnq9XLfRExNaxemCHLeKL48rm+jfiCag8hljzbyrscA5hyzu82wOIfxi8sYQC6Bm4ZabLCMXHUvGgHkdNF4lrmCWgnJxXkNQlvDSO0udARoxMmFqaAKAmcgZc7/B41sNUJ6/+oqlK9tXb9TSkG2gb6+ML76A7/zEqSiA3/ox5fWV9pOfwP1O6wd6HDOg1aXFXJqD9atX9FDkqOg2/KLfd9Zh3PpgXSry8gG++IK3l5XeGtQnVBbfwI7BivIsnZ+/7bzUnQ/lJ8j4Cvor4/MnLxPtO+P+5jbeh7H2whiFZ13oBWRR7FZ4FeNZfIG+9MH6+oCPr/S68OiD4+js28bj88721uk71FG5sfBzy42bCF/WOlu/BkKpC88Uvvy88fJ0Z5WVqgsW5m1LP1xwtTtIGX1Qe9C5CI+20JZOe7p5OUmEZV1dENsqt3Xh1iprcUqxke2Sg8qgFmVpsKzC+lyxDqKVWtyxwCdUCzLcz2BtleXWqM8r5XnB1oo2occgC4nseYgP2hpj53i8crx9on/6BK+vyNud+vpGbUrZV3jt2AdFD6OsHilkIXl5VxdH6BcqIg3Ez48VQU1hlBB+pX7gsnmEuLbXwt58c7Y+aDawfngZLTaqHjpZO6BGKmW9u4BaYOBlHKYXhnDZ7S7aBS4li9AZzSFlRJAYkRU7TYwRNfZgUUqGdN/IcvOUGvGpJfUfn1Odhza8Bd9nYTkVnEPIpBTXnSB0qfRWHSTpiOAWlHaiq2QgcrO3s619VzhUmax2HEOGA5XinydRzykmDqWG+iaVjraWk42H0ZFgAmRe09lVeQUnSWTEyyRIgmRRznKdwbxOqjaveUL1FNwKp9jQAYozViMaSrykpbNPVMbPpspV4VDjvnvG/SZwf1MeT8rYgGdBBtRafB0EW6c6qNrdLsCYJVWxZIlc2Lnv3uHYd8VGjTchM/kZ2OzkyPKBEFP6tGKjxKiREodgHQcu5veVDk8c+7bRt81fr/coXdt0KbVWoFVYGkp1sDeCKY6146XUczMvGEV9PGIbStWcAO8slpcoiIGG+bmIwa/nGtzV2M19kgYOmKoIVkskhVHymPPXcOZuuM19E2dQ8t686k8Y+XPGTZUn8+OGspjHkGp+vcrRkaNj28HYOn0b9N0YXbBopclhlcUqOU7CYlyKddAcfXCUKC8JFI89tVjMLasx9Tg0eLmsFWz4tRx7YezGONwHa3phqbo+pUdb8vjme/y3GqCMXpBD2e4HRQalfkak0LeDZdfpILj/1o/on1/ZfvxjxmOfqmeazyM5np6d9hZjN6+TUcXVyKYUfVCPj9hdkc+FMp6Q/sT6aLRakHKbAEUPR7rFBqwdLZ1RXpHxCmPDHvcoBwzq1ind6bibO7HzQQ4q8ITxVJS3MvhkSulvPD2ML3/8v7OsB2X/Mfb64rvb3pG3B/V+p336ig/bK8ux8SQHR+0cceMpfuOZHqz7g1/48W/xzOD2eGV5+wiluWYipg+PfTB6R7vy2He2x53t8eC27ezH4BGtf4gPu6pR233uBy/Hgw+PxosYtVVardxs42ns7I9X2vZg6Z1XPf1Z0oBtALu4N8x3KnxZCx9q4anATWARpQXFqVo9AKliozP6ztjvjO2N8Xhj3F/hcUceD/q2OaiQnW3bWfadox+I+cwf2qWPjjbBiiQvXussOXjNtYA0ShmpYmNuG+KZSxpZmXnmXrXHsUfpIf5dBiY9AocLA1MhZ1anOM1qaEVah6pIHVh9nIZI7cC7ig6s3J2lkTo30j4OhjRGVWqwIdoH27BoIY/AZpHhkdVowdL6NiKqmLNEmCv21bysVUoNxqmhk3+os1vhoM4ZKwkcsiSS5wTOlsUh2RoPu7jPzzCfj3QaS40p3ssOH+wCLhLYXRgZghEzDC0uxBwYo7TM94EaWXcU2PV9N80EpBfRKuSsnCu7IdFhFS2gl3/Lz2/xNDKZIGKDP3UEmckW0tQuy1MJeeJ1XSvu83mO89CYs1Kqz9Et1HmNfJMNYThpEOgmk2aeGT/6g23s7MBd4KkId7GILT7V1gF3YagbIHZZELthuqKHYPuAe0ceHXkM2A07Bnoc3m05fPZO3w765n83gsWtyXYU3C+lVWxZUKuX3MI4ikSpBnr4VpkMiBlfwqDIiPlCQqW7XkPDscYMGa4fMpiu2WOUGPMRQuM4b60Gi2MFq47ms7PN9Sw5ojVZUV+jVgvaKtKKP3+sh8nYBZC++l95QhDaMet0HewaTJOOmbSUUqg1DPXCjK4EoymhjB6cyYHZ+VpLNdZmPDXjFsdazacUi8cyNYNR0EOxY2CHwQHlMJr6LJ6Fs0FDMun4GgP4T3t8qwGKljUGT1UYRt0P6mNz45hSqSHo2z99on/6zPbxI+NxOCsCsCzQGkdZGVUYVdgtCgbFJ2KaCU0P6rjTD0MfDbGVMhbqHg6E4lVBk0Y/nH5DldGUUQZdNmQ8YARzA56x9+FCpg6tu0L+2cE3N4wbyospTwzoO8s2ePn4j1mWjhyf4P7kn+UYyNYp2057e+Vle/DUD76UwYgpsCoe0I6o8dZj43ufv+KpKOtx52l/iw24kjbn/VBGiG63Y7DtO9u+0/advXcHKEFdVnOQUARu/eDpKLxshSdRaq20Kiy2s46d/XGnHDutd27GLNBk5t4xBygifFnhiyoBUISbnHRnVc/mS1Kcvbt25hB0ezC2O2PbvHunH4wjDPda5zgOenRANRtYDmsUgGibyF09vRGKd834DuDMgJVkN/BNcq7OACi4kEzx0k4NZkN0zBJDETzLIIJYCBPNNMpHQUWHr4hWRduAopRqWNnd7ErA6uEgR3cou3c3UcON1ejDByb2ntqVgnXlGMYxoIe7pwfm7A+KkCKhp8i2j6tYs1Ssgg73JqKcjJNn2CE8nGLDaGU3L4TMhlc5AYDGGhgpUizQgylzPZXOc+RsUwKU6JaRErK8pLVz+84SnuCk+anPUgyVerIW0Y57Htfg+tOdVvn99V+SE58t4Px0iL52NjhQyTKFzGconJ0+RUL8i8yNLxarL087fTqO0Ab0yI7NHJzN1Tm7NM6uppJyZ/Our5w7s+nBbt3BYoGtwBagsFt4cKQpXMwpU1aUFVjQPrAD2AeyD+QY0HHbgOHxRs1LLLprlJm95Dm1Q5JgPZKGWjGrUVJw/ytnVCVi3xWgjACzI1alOBhzntLb1A1KsB3zYg03GBxD/PMNmbdBQajF595gNUqYAGMKyAfZFRf3dJYX58Rlj7vTewQmgzfdbuXCkIph4kzTsDEdiDVmj6R3jZbzORKo+JN7CX2yeRN1+xpYCqzlAk6asRSjFQd0EpSPu0+7uy47yGFIh6qFZj7NOXjFuAO/OTiBbzlAKf/s/5NqUH70lQfi1hhPK71VZGkejPvB676xodwfb+xqjO4TW93ivHEMF0ONIjxKCNSkuiBvKLXtvNTKS2180Err0GSgYcpTZIAcIJVjyJzeO8rgJoO7HZRjQ0ZnbMN9NIoLkmQYcjhoOBBG88CwmFHelHa4r4H0QevKFz/+LWp/o3xc4LZ6LXMYpSulK207WLyZhFsTpCxQHHwNdRO3XQ4w5cPjM0/lYD1WnvavfPPNBWXnMK9hxj4sBpF1bvvO0ZVdR9gzFaqOEML5xOdFDm5y8GQPainUAl0Puh4sj1e+s2+8jcGd1A94wDU80O24ev6lCs+18KUIvziU73Tly62zxKyNruJMwjLQj969Ne4b/asH4+1gbEYZDSlPHDdB24quCweDQ3dG36AflKH+wlnPTvOTbmedw407QEAkAk0RZ17M/KvGz5hR1SfyPqOo+U27yOJBorVZP/AhA4fX5DkY4f0wrDtroQst9DelFmQAxwKc9XaLf2PpHm4HHMU3roFxjGg/7R0199/xq11gCEdX+nDxrFm058NJ05esbQwH18miZLa5dJ84vA9aqVQpLOtTBOKCpSIwBgFKK1A703fjaK5rGMG4qGtvrFT32iFusWIhIu7IMWYyIKrUSC56GiOGjiUsduj+bqN0ob65lBrBM7sWLISM5oJCzfZYjwkiDjQy7A68Wj+SAckjwYX5mDhS6yKGFgENI4kQ/05wHJvU0OHXtZ29QsV8qnBphVYrQ0FUYkCdEQMiqLFchynHGLzthdet8rYVHiOGjRZBpTFkodeFXhaGNBTX16XGBCtIiTEYog5CG+hzYbwsjJfGaN6B4sm7a3PEiNJeg+UGbUFKI8cI+B7tzy1Lpay3ONa5RqztaOtYa8jqsa6Z+lya6iDAdTwjbzmkGMsiLAssT1BvUFZF2kBKgBKJAX61nfO9FO9+2Y7JGjb1z+FrTNBu3kywGbYZbIZ0pQylxS+Jub+UDueCZ2cUAyuK1QCpwZxYW7DWfPpyKUgfyNqjg1GpXzRaHi8ry8vK8nSjLi26hdS7DKV4VUBd57bgDKQUdasJMRZpHsKkTmYn9W5qih5nGWxdB09NeVmFlxu83OC2Ckv19aUaDN1m7K/K/gbHV4p+AnkVll24jcqTrBxFXY8mBe8X/OaPbzVAefmDv8raGvLVZ6wPisC6eLYupj7BeHvweGzcET6+3XlT6Ef3yZ7SsFLp5CRfYbMS/iSRe0mhFuUuhYcJj2E0URohQhTXWHjNTunOlVHMUHU9ym5KHVBiCjBJ74VbUenhzorwmtIHA7HKEM8SCoJEydeGizzFhmc2am48F86DJUZb+9BEyF77JKHTn6KIItq95nn4spmZpUEbhNdBVBt0UExRO+h4x4aKC64azJY2GULrynoYtzKcaizmXTw6qHpws8GzGI/AASdt7ufhEBeOPQk8VeGlwIsZT6rROZD0pzi9uHXG64YN5diE4/Od47G5jiYyYS3p1VLZMG7mDpXRGOEbfyoTI0Oix9YzYi8JLcaMYpmEKn7n+g7mm7e6N3cZUWAIW2uhTjW80/WhL6D48LFu9KPT7UBR6jpAffOZnhEikVV61uq7bAkDLHMAFllbMTh0BEjxBSjRF+y0a2TVc2eNHW56Hni25XN4+jTfnUAFw6q3pEsdSLYlthUIH5jSSZFtM/Xha1Ln8Dch6uUlTq6mgDlKZtm3qh7sbEhk6xqGVApWQ6zIFB1nYd8ByYjOqWzDceHn7ATKwJJiTHXRcg1BozsaS+hBouV+Miph4Edko3GNzvPp9ff5IrmIpsglSgYzi46yjTmoEVxUXkuhlUqjUsw3zQbTD0PiPnJdkbJTuKtwH42HVg6rdHzYqJWKlQq6OJCQSprgeeeJsyslAIqUEZ0zgqwNWRdkbdMRuJhPCDZJcz0vS8TQHv+5OB2OyxyYFWmU2iithdahuj6qLlAaItWBTA1ha3greSAlNmb/3KXE/K4qtCYuiq+cDtxRXlFktjareLcJipd14tZu0Us44ybQrTj7GT78MrwjJoeEiiQtqKiFO54KYmFBUGKt12CAWkWaf3a3ki/U3rxcjtFeGvWlUZ/juC3U20ppCyLV54tJCf3P2factRorISqP60L6meSaNaXroA+XGhRyVtGgibGWwtqM2+Jyn+pSOE8AzF0ojt3YH7Dd/euxOXjxNXF2xOV5Leed9ts+vtUA5cv/+z/Ly8sHnj6/McJJtBQnlMf+oN/f6K+fue87H0vlt+5vfGWwP3Z6d223WeXAW4RFXYNi6ic0TXgKjWfggwkvfXh2NaDWGNktw2+qUtHZ8gl3G6wYzyGMKuriIb85Bbr3sXNoGAHBJ5OZtTVWLOjKsjSsKKP5orLu3RnZN38ffQ5Sayx+U6kB1WuX5vW/omeGRQEjHFiPg9QV1AvVmQKuaj5KYDEPfSPoeg82hZWz48KGUUqnHZ21LEFPGmn9/jR2dgZ7UbbKxbSOGNAX2a7AIoW1CrcqfEB5UmjdnRCz3cFKh3JwfLxjj42tGPunz+zHncMOpPrPW2lIrdTWuAE3VXqUs2zI9M+wZFCGYodvghb0pt/7ghsKgDRxQRzigSjTA03DF/dfSGLFoUqdmz/iwUtQTIvP9TiGj1rQHWVQb09Ia+6ZE1SyidBjE92HssSm2MFZMhvs5nXqqsIxOr0Pjh4AIspiggcR3zfE10uE5eysKsX1J2Lm7Ev1TSraCYJpPByg7H0C5FrWGYo0xtpXAYqLE7XZnFJrJdinsDB2l/8ADk5/OIocHpCHiduMH4qNbJsMNUU9OyKczRyUEZNCLA9/LUuGpwQTZf46Mvx3y3CQ0mxi0TnwEBy8QGzEIuR0ZA1+3ihZH2NCIKem8hfPQ73Mq+oaAzA/H/E7ZXHmYK2VVhe3fBeNcQxE2cHX6BDv3NtQ3obwOiqvo/Gw6qaWxduxTRZoC4wFyhLr36XO1ZtzqXVFiropYhX3Urk1ytMNeVqgdoSOqGtYwFU4JUW9qeeLrxLCcm9HhyqNuizuPL00qiyINagPpBxQAsDU0MdIiK9Nz9b84eisLuLDAmthWRykuPbewYmCu9WS3TbFy4gRt+qhcX2FpRSq+JVIXdBhxdfSiBJ9gpR51zi9YDawcYCewtS5cIrHDJ+C2pBloayLa79Gp+ni5ZFitC8W2pcr7YuV9nKjvtyozzdK2B5Y0WixHzFMM3QlnmOj1bMvidKSlfQP8uWlI71zBnZ44t2KBUCBtcHTYjwtzky16uWiMVz434exb8LjYdxf4fEG2x3GYRFDKjU4QDHQmdR8s8e3GqC8/PAP8N3vfpeXx8EYg74fqBljDN7ePjE+f2RbfsJPfusn/Oh15/+9PPGP+czdhG04w6HqtHcRpcrg2DbP6NSrkl6b6zwX4bkIt821La24hKVUWIpveqU0pHmDXkV4wlgxPpixDBeQmqqPAs96eQErhZ3KIcIncOGWwXO7zW6I5qCbpbnfhIki4izPKMbnY/MpqKI0bTQT3vqBGxspVuvM7ga+yaw0VnWx6SNaE0SHtxiK095Zcy8SRHMI6aQoLTQXVYynwmzfHDqc+hRlqVkzTvGwcRPoVehS2ItNgJIJ72E53NDLFm51UBxkAFsYVhmwazYaw/bxM1phs4NPrz9iGw96Hd6d06BXRUp1+/xutA67Vrq5V0HJSASgLlo7jlOwWlSQtSBrCd7/dNtNRuK0hNTzz24EEGZtzXUrmQHirBUK2o2+KfvW2R87u24og+X5oK2r14e9kOb138PZnb5pTB+QsN5Wjt1BjuqgFnEL7O7tm1KFYr4R+LFSo3ZfRkgtRViXRqvCWosLy80o2n1uSi1oEyQAShsbpgPbD1arLFRWWSaT4Z0OA5EeGpeBdWH0gzG8ddMxXQlvBjv1JgWmOyVwjMJ+CNvdGJvBCDfjEvX6ALsWeisdAx0HJocLkK1He2zxexxDY/pT6i4cQwhSC0UrtXXqIbnPnZtsQrsoj1qSPuV0EJ6GvFnot3gCZJJVRoKqbKLOI5JhE/cdacZahbZWn0+Dn5uuMUAxuoQGPsn2ocLHLtyOyk/2ws934cOAp/wcImHC1bwTMkzxRhSvhMpaGkM9C6+4jsFqpbaF2lZnd8STQ6sG1a8Z5Yg24AOV6sAn1sIpMIVaKktx4LW2yiKNMm6IuG6laKVYCz1R3p9MA0kzpY3Y9xGeRuNm0GSlStwvNty3hkIXQApHtdCwhC2CGK6QgibC0lqIvYubdYpgWnmUQRMvwZQwa3QVi7vNHtadsew7pnWy18TYAsJziQayFMpSqGsLWZcgLDSMtSjrh8b6odFeGu1loT2vtKebmyyO4lr+AiaDzjlnLUedbMGGHDhjrQgLZXYkbd3HImzHwDZlLUZr3ulUDVYxnovyXDUAm0SMh30I91349BC+ei386JPx8TN8eoOjp5dPwcumOFMv4Qb+DR/faoBSn59ZXr5AWkeHItvhVFW4n+p20JcHW115KwufpPETK7wpPGIPGeraiiqDhU7vh3tQqNCjzGM6eCuuWF/xjbIWWNTX2lIrZQxq7chYfBORAChmvBjcFKoa1g+aFRaUGu1nGu9nT4CiRjPhg4hP8o3qcgFaVwY9hiaX+Rle9/AdKMJqbrR0y7JE8L7BIEdZptB74zAH8/sIBlRdqe2Wzae0sIoEbVm8jBWBOdUKmYEXi84eVW8/G0F7xiL1nwunziiTZHud58DBXkmJAO/n0jthvM/+EKfBVXweko7wa9kOtBibeZfOoTt9sclU7OJahaaeMeyRPQwNRbqEnD07O6IE1IfrgnQMarpRxVA/zVJJgC/3wojoH5uRjw1wgKKSFLJM1bwFcDX1wWOjpzjZK7Y6LnN6LqDHhr/v3o027PSXCJDSu4vmrIg/X3RCSAwTiarSLJVlEVCCVaAGg1LdRdTUTdgkgroPxvQNCanIgNIUseZdL9KiVGkeRXFQfeo90l/GLcDj1aPcGh+TZCWC4UrvkREmx92C12bO+0Bie1eihTnt/cOpxcJqHM+psxPm2t6cJKPrb5htxxLMiWMLyypdHBZ3A/FJkh2xs+Pnuja+9jj/5f2/+22SRm5GK9FwhsehHFRqQpjV+b9pLNVtwNbh0Y29+8akwajmz0q8kGO7i3mgnV1cJbs8uE44LlP3kqMJytd7sme5yqb23DVCEl1L2UEkMb4m3JoDjhdJ88ZyOVc2SynOkLlOvJlQqe8GjM4SmjhzIvgsoB7PO8QlwcyV6PdAKyVigceDUYSlyHRhPWf+kNUmsk/HRasWCcwlCM+k1ONBMiqeNBRMXGNT8DJWbUJp8e81R4dUJIxBHRz72vSYFWZv0aGT3tDVnC3O2UQ+6d0HHPahHN0tNWrE1XQNbyhNlCVKmtn6r+qxpnfYdnjscN+M++Z/7hqfkVgws+FgLrpv9PhdByh/8A/+Qf7+3//7P/X3f/7P/3n+k//kP+HP/tk/y9/4G3/j3b/98T/+x/m7f/fv/o5fq9wa9WlF2s2V3tKxQ72Toz7o5c4uC2/W+GSNH43KPxmF11F49LxAxtEHlc5NnInBXBjV44L3oHjX4cP8Mu4sPW6KerivQKlIbTPYr6YsZryYcTOhqdOC61K4LYUVD7THZrxpY7PCx1j8jcIXrc2sotJ8g++Drh21Qa1lqvVfN+9Tbotxk8JC4cmCqYlpobksTArSK3VUd1kUF1Fl9FgrMyjUCMBrPTcw7X6b1wA3tQhNq9+wZhwjRMhYUPoeoG5WWPD3k/XgIlFmEMiZMdmdkIPTs3vXy5qeKeZc6a0oWgZWOm3bHLTYxmPfOPQI0OaZyyaGjEEbB/dj52nb2PeNMXZU9+hisrnBpTdOHweCMYZ4I0uMejZV+uHiWhnKohdwMnc4SF8MNS+/SBGqlVlGG8Pox8E4Dno/6H3nOHaOsaEy6PvGWBfvAGvFOx768DZwNY5Hp1ZnyvrmjMqxDfbHQLVTCxOg9EMxq5SyM2yBCtrqNOLzkrmXVoYVimS5gjPbj+Fi6RkxZpkkunmsoFZj42dqjZ29i1OsrlXyXlBxj4QOowtjePmmH2nm5TqeotCGIOGd4Z4LhvU45+myGwWSbhYgzUGKD6rzEkoajA05+YrJnGQAFS9tmRhSjBICXe+4uoAJAwdfs5pDTvMlS1RO6VwACpyDhK6gJWGF/0zKnBqwMFhKY63mkhGveCHiomiZiUO2X/t6u/fB58P4/Kjc98K2V0YPQF1dO+FeJ+5kc9DZ9aCFU6xEmSut7V2PI9yQ7M0J7QJzwCZfPywBv6+Fw/x+zqGkMxFCwpfEY1crwhJgQWsCqbzHwhLOhscxwwXAeJJVozzpLE4AODzR0QLHBbwUSb5Kw6QOluIMkoXuyEToeHeKDy9lztk7AZB3+mQbvY8z8aYIwwE5IqE3CUBZ8JKpBRNXJcaJFOpSqK1QanbyRDwfDuTTdTsHgGoAo64+l22PfvNig3103DZPGTroo7PvB/ujs+0HdA+BJikxgEUserBGOAv7/aeH0XfYHsbbm/L6anx6VT6/wevdaUSp4TFlBsWQwUwQvunjdx2g/Hf/3X/nm3w8/sf/8X/kX/qX/iX+9J/+0/Pv/pV/5V/hN3/zN+ef13X9/+q1tkN57EfQ8S4APMbg6J1dB7u5mc4mjb2u7MsHjvU79LHSa0ylVGO0jtiB2oGVzQV16gY/3knZXatA6BHwG6vgMaZ2fDZB0N1+s7kuY8EnHK/m9KMMn7tzK7CaZ7TbMD71zkOFr8A3MCm8lMYilUV9XgNqyH5EbXOwNOcvzOBxbIgYNwo3URqVG+oZTinkWHZ/hPhxdC+7AIUUdA3WVuJmKHNuw1q9XlwwbLhmwhewGw59wOasnD4ig4pZEF6Lx0FaMD9E2Sc/gIRY0sx8M0u6PN+xWPTfe24YuTBHWN9TjFvQQEO9fECAm9lWmXVvZFqrF/ONpVQhqCNne3p3U7ndByqiGiN3DKxFFlbppYV6X7Aaw9aKOzZaCNO6xYwNi7bYAViPOSbOaPR9ox939HhgfaeMw42Y6FQ9KOOg6EHRCjaoGrN8hrrZRe/Qh3cB9Cix9eFsYjGizxQ5LLIz98AoVSm4mZTvJWe5QiT8JloJxqe44LA6u+KeJw4ymyxutkelWvW5IdRgahQboaFRYi3KPP9Dw947Wu5Hj533OJBu1O4bpTsaK8sY9OG6ktE71offn9WD98B1GZ0oF4bofVAn8MwuEossObN4jNArRMmlGFqNXgtao1vFmM1HITOa358cyiW75cqKBFDxhR+bUvy0MJlGi2dY4mh4KaRUnyJOrQ7ha425QcnUJZfj16+KeYfjMI5eGaMxRokWD7KJKNhMYdTCqC6kHaHPwLyVv47BqiOMzpSXOJ4vJbFeihsmxj0rUa7Oz+5t5sZRjFHdTdhFwP68dQxKGRQLjxJxtijLd85OxPlJUX4ABhHceCzZtWibHySIjmuM66G2SljSF2pjsjlDUgh6uUbmYvKi4qL3ASWaCLzjLITJxc3q3NG2E0I/Z8oDIFvxzktJdi/YUCM6akY2XKRBoR9HN45u9F0pCtYFOaJ7sw9KxAGfWxSToIefEDFjH4NC967T0APKSBdhX5E+RJDprOAMq4beZ3hjh8E43J342I19N7bdJ2nvKhzmT1Qq3rBSSjyXdw6Wb45PfvcByve///13f/6P/qP/iF/91V/lT/2pPzX/7na78Uu/9Ev/l1+rD3dSxYo7Qaob1XTtPqobryhqXdH2DLcvKM87RZ5c3GaeEduy07TTdIe+uQ5jeKvYUEW6u+5hXj5K14Feo80435AZGkOrhMIhPp/BiCwA37c3gRVY1TPghypfKdwVPmZyUAtPdtBs0KyEkNP8/Y3DSxUhaMTg0J2K8SSVVaBKZUXcCdCYCzCDowBl9AkqXEDoN8hidSL11MrcrDplWrykkuyJG/cIH5CpMdGoNUqNIWnFA/RqMeMms3GJDToYK6KE0QmqOTKXDLlLsC2VUxzYDaQopSjlcG+QYSNo5Jxh4wxK0qPpMJxGVHlDehSMwBo3ZK3dRbim/spWUopJOim4Fb13NFVqGF15tqDmVPIwNykb2aWhg6quSypD3WCub+5foq4dqjYw8Tp3sY5o9w6C6KYq8VwejRWGz1WR4c8pcfhm7wCFY0Qk9gklNPUuAHN3V9MS4tSCanN9UDBCEqXBa+dJAs1aKkKAFgtyPmaQFCQ8a3JDSRG2BPD2oF8GMfxM3WG5D0qUcJaRc3t0OmmW9JOx4eLSkCObDu/MEHJmGlAm69YtUwgXGxNUe+hcSVtY72aJIXelTHsAU8miBZE3xJ9lwpCTE0jwkelB3oizmOlrUSS6a72sYualhiUY1Sqc9H4I8YnSXJYyfLRCQUPoDilIzBlAzpTYpfribdvMz5vmYUY9wVtoeopG9yI2vZqeQlPmnywN7YMZIkGv/3ECuuIzn0Y1F83iLM68nnlniYPfeBuI2ExMMCb484YGV8x4uTg8SyyPNIO8Hl6yGVE60eoAYiAMOY3ek1Hz8xbINMq87gFyVi9UojSdnialvmuKsyATNBKBOSoh2A+/Rs7wOTvknjLOKIrnIDG7SIe6H2PcL2XotLcw825OP0a4J0dZRxQtacLn1zLXF4WzufBSLjXwEmneFyb0PlzQ332GT1e/r7r4eI/sUirNE9sMw5hcCnW//eP3VIOy7zv/2X/2n/Hrv/7rp3IY+G/+m/+GH/zgB3zve9/jT/2pP8Vf/at/lR/84Af/p8+zbT4wKh8fP34E4Pj8YOc1BFjmXQrp9wAcdUFvz6zf+wEf5AO/yHeo37uzHYMeDoqqwnjsLNq5aaf2nRZzb4r6pv2IDG0Y7hdhxmbKg+7ZWFhFmymHdF+URVha8U0cqO7yQ3/7BLq7J8j9I9123pYHn0R5KLyRm7PyWR7O/3Vh8u+lc9LCLugqkYFVg9voVOmUUritTz5ZONCsexUcaN+jNjo8A8h6tGbNuc3rlRTi0s9a8OidosISgKOJ8FILLctTYtQi1BqzPTJ76S4c3bq3G+tI4zKj2WW6r1jUZ90syD0v4SbFKd8AEhTBlkJbD9rt4DvWKU2gKn1Z0LogN6E+V+pT5cMXK3XxNr2n28KtSVzjyFdLdSQnA5aDUgdPpUN1tT5lZzQPZIc1uiqb2bz2mHq2EEJWVTdQ2qZQs9NtRJa009Rtq5t27NgZ/RW1N5BOq51aHAA3OSjsoA8XxilU8XbTQnFg2AeyH5SjU49O7Uo9BnZ06Bu6+ZC3/XEwakWXT/TlCakL8vTCzsKgcOAusJTK8nih3VZuL08srUX2qVMkO2qJruwoJZqgGqyJKabReqydqsPBU+9Y944fOzrs3cHTNpBukRF26uis232WnupwX5nKYKsbZdnRW+ehzpgeQ2Obw9eWRAspkVCYi0aHFY7urIUPzbNzI8wMu8gsRxzupeglieK/L1FqyHq/JqgAQKKTL27KAHelEOLg3Eydjax6IFLc1bSVAHDNSyoIi5Qw2MIntdfqm/3R/Tx3H0AHzgJG6EGnX42yrIN1EZYazFs3N0uzaI1twSQW89bh2qjWKLeKrAWri4uQq/DUfLjmTQZfFuULBk8K3aq7EB9gh+uoinngkV7c8dUqR4V9UbZbQV8K1LB+r+agcz/8c1QQNqTsWDnmoXZqYkYpzmbWAqqhIyk0a1Rd2IczeZ3CUpZg/lzgL2LIKrBWZK2UNTZfLRwWa2baxwr9GGzbwuNeeX0Yrw94fQivu3HvymaFvQq9RatAdQF5iQGrMiyvOCWE6U1u3q2k4U4bbfPH5gxKK8pjE7ZH4XGv3D/DasZrSddbOO4H/eET+soRSYz5HuF6uACAhiegNlA6rQq1Vp6p1FVY1X1UFlFaNXTxMR2bNO69cNsL46ETsNzvxuNhbIePiBi1oh8qujZGX7B2o9QbLE+z21Vkdyau//+JSPa/+C/+C37yk5/wZ//sn51/92u/9mv86T/9p/mVX/kV/uf/+X/m3/v3/j3+xX/xX+S//+//e2632898nv/wP/wP+ff//X//p/7+44+/Qh8HvThyHqp0dT+Qr/ad+33n7f7gsSm9CyJPrIs7JnZpzDkJdJopqzlz0oK6XB3CsA33N/EA51n7ZnDXAzWn2FzE2NltDwMvWBYXgzZTz15HZ5cbHA/keNA3hbrRpLCyQWx03VyFbyNzPjd1m1FQU30Uy1DUWRL8R9J+vrZKWxbasnjrpboro1Pq3vueJiQ5Sh4DyTKWQc4sKf0UY/WhUaN0gFIRnnr1bE+EtQq1Fg+uGjVXBOuGdeVt98nDw/y8V7LDJ7qAsJl5PAleUwZexMHQWurprWBudLaIYWuhSUGaoLViTSjVWKqwNkHWhdKaZ6IAanPekHZPZUwVpIPsUAayKKxRJkGhDL8e3c/DOLo/RwAQK+HMWerM4noKZdXbfk0V67t7I9CxsaNjo+udYd65Y8U9O5yD8M6TPg7aOMIfxKgxr6Xi2S1Hp/RB6d6lVA5nlca2o4+Nse/s9w0RYa+V0h5QG3Z7sMuCK7HCG6NUlr7Tnm7cRud2W70mLuZmcaW4MUKCzxjMWUzis2r4wMSEafX1r9uO7hvandUZR3e6eAvBcrfo7DmwbSen/xK6H1QRdmrptKYsq3ot/7Ao3Wh0wbh+QMRCR+OXz4JST1FhubAMWeMXcV8kNByVh7e9D/Ehh0J174sLXwLJksgsz/g/WybQAfBSM2DTs8W/18lWlpLasAShZ3utJDJK/6LuJTsRb6lN8uKIkoEwQugo7j+jfg+OfeCD5KIxXQumfjeX4vduq66DSLFvsqqWM85UYXSPQQNUC3pUn68zxM0uRwl9kWfWrkFxDUiWAYrAUiwSOaMUXzumXq4Y6uthjCOsE1y4kUP1kskScAfwNOq71OCCL6OW6sLiYmfnUG0sLdgfHZP56kVC3B6zeRQecdwV3oZxV+NtKHeNxDhs9kcpWGvAcM+fw9xGX10MW5Gwbrho2qKE2Xcv7VIG/THoD2U8vGOtN2V/DF+nBntXF/trippPqsq7vH2vcH2gowszdcZQShhACtUqqr5WinhLlLfzN7qKg/rDvVwUeOzGdsA+jMNce8TqAnrR5p+9LmFIGV4sDGSEceE3fPyeApS//tf/Or/2a7/G7//9v3/+3b/9b//b8/s/8kf+CP/cP/fP8Su/8iv8l//lf8m/+W/+mz/zef7yX/7L/Pqv//r888ePH/nlX/5lfvxbP2a73dmFUCx78OlmfBzK9jh4PDr3e+fYBWx1JN2gysLQoDHxLH4RH8W9iFvOP1WlifE0lIPCYQUrjWHCjvDUD4YqrRvWOzY6e7+7SKyaL3rxUoodB3YcPHTBtjeMN7Z6gDUWKTyFyVEzZR/CrhK1RM/adOhU3OcNmnegb1IxBdYyLgrLsrI+3VjWG1KFPg5sN/bugWLL4O9vNxYvIF7COobxU4+4WQVoDBe0IdzQmOxReFobDdetVC0zcI9j0A/l9XHQ8aMyqBgrZ+VnihaBDzgDdZvfC2tykjU+pxhrMaxXltpopaHVgUotI0RoIEtDWg1NDjDU53wcw10kFWdP5IC6AYo1HKSI4eIR34DG4cLTvh+M7ZiiM/WEyDUaZuEwmizV8Dqudi/j2AHW0fFgjI0+3hi2+8+Lz0NBvOWza6frTu+rU+jmG1moa5ze7YManTptGK0rtg/G40Afuw9ee71HxxJQGlorIwBKl8qQGiWxSjt22vMTT6o89yeWVlnTdrsWb62PjotSFtd0iA98M1NED0QP/6xq0DuyH+h9c1Hw3tFDwyLArdS9i8k3I922WT5xij2ADzsig7Z4idSK6xps/kwyjIT/DaCSTR9Oj4uXV5oXDEj79FIiy45dbxzeLnkQIsgAn0KygymM9qw+CxbxF5PsnFNkQxhbArj4RFt/joa4xqQJt5p2Bo10660jQvvQC4NiSElQ4S6CUmAbweolQKFQ8XKAdaXvikS7daG7Tkv9bi4CtXrrb4tyXoIUyVZZwwF3d+H6UKH3gvYrQHHxiB3CaEIP5+cRCRjF8FzDWAVWIQwfHYA5QDkYozPG7mL2AdE3dNEc+9gECTYv71EnNSWugevPFimuaanGWgtrzUYEZ4jRhazJdCkhHjYOYMfY7ApSjDdVP8agS6GPxhEt5lprAMowCuxnabOq0FSm2zRdse7diGPz3huTTt+UsSnjgYOUavSbxuwtt1zYVTk0O68CMgfATrPOEp1rRFOFhV6rxkR6E2Fo8XKyRjlGfJ5WV98LpJ+i922Hx2E8untv9YJfQAuZc2turteaawRNMevIEcrgb/j4PQMof//v/33+zt/5O/ytv/W3/qk/98Mf/pBf+ZVf4e/9vb/3f/ozt9vtZ7Ir/6//45lbe2a3w71BSiA8Ee5S3QviGLxtTxzdM6taXdVdzPUbQ12prxibmSvYQ5z0XHzuy9DuEyxNEFkwCsMK+3BtSrPqpkQyqPKg4HdOtZzpMTDbMHaMG0NfGf0T931n1zfeSuGOZ84rnRqeKw03pNpN+NQKO8ZBKKbChVaboSnwUqDD7WXl9uEDv/R/+3/wxZc/x8uHL6EI+/Hg9f6Zr370f/D2+okf/+j/mG3VtzCrM4DaONTYtodvAOYA0Pk9wfpAtHC4wg1B+BwmRFILbfEhiksIa91bQukcDAaPqQbIfDLFr75wXWLtNVif5AwrwlNbaaW6P0GIWaUoN4Qng+8NuA3jaXgmVoex7htfLB44v6Mf0C7OgOlO0wdvX71x/PyOvgz0yVAZqB1o3SLLAvYjrH69HnyosI8aDr5jDq47xDjMGKL0qv5cdJZ1UMtgFaN236Ske9DADnS8ov3B0V85xvAMX6tnlAk+Qjxs1Q3QntoC6uWkp3VxD56YgTOWjS4Lr4eyWeX14aJq7QPZBO2DfQx2Dnop7Etnr80BSlwNK0J7bCwvz7zo4DvjhafF/XNqdbFmvT1TamUtlRs1rD0KPbMl8ewc2xEt9PAqOraNbT/YtiOEr4aNGjYhFmK84VNuo/vj0MFDB48xuIuyV6OvPh15jEJvlaGNro3jOEjtUVdnSY8CujugNfNhhWog6s7QKRUwBCvKHknIY25OEgH7vcZhtswC6UataimaiOzVf6ZGZ1v6cmAxOC7R+DCqKFIGtQqrBCDERe45bYABtnnb++gDqwqtUldPdhCwfoSwHx5VeAxhp9JlRcuNQne7A63U7gxOO3ZuJizSWBbhVuFWhbX6/TtqDqkbXr7sQo9q696FrXv3WO+K9uGzo4LttRArb2o8hvIYB0ffGcNYEU88pNHkhkl1PxGFrStvx8HrfrDth5vBhfruUKK8pgFwTiM7LQujtEsLsSeAawzBaw2ebsJthXWFlzW7mQYWK1gpfu8NjURi4TiUx/7GfTt4fTz4vA0+78rn4dOWvfNPZt29xl6Q08qte2yje0mb0rFF6aNw9EGP7rwq6uUvKywsPNUbT+2Jp+WJZXmCGpPNdwfQXQfbEB7deHRjUzeV69Zmy/AuCx3XiPXi+kQkzPeKO9GqmjvKNmFZCs9r41a99FNLmWv+PozPXfnJ4frJj8DrUthq5SgLcluR+oQsH4CBmRtFLtsxGapv8vg9Ayi/+Zu/yQ9+8AP+1X/1X/2n/txv/dZv8b/9b/8bP/zhD3/Hr7GNFZEbGz5cykIDgAhaGhbOkUUOqihr0TkAsGulWLauep7rmV9BxRFpcyga9Wuf1Jnmx5oCPxPEKiW+L9ZQNNB91ItjkJXrGFdUN3Q0ei8cKj55M4a0mSU5INyKy8WqFbaQ5h6zAWDWeMA8DqTyellvPL98wc///O/juz/3fb788udAhG2/8/ntIwvC5+WJsb1xHBs6Os/hWQGC1cYxnJnp4RHS4TRTq9VfUNtkbJCsuwo0H4CllVOday7OsuLtZ25eVObn8DJ6ma2A2YI5xEWWXYS9NEapjNq8jCZO0XtpATZ14FbG8OGLQLXDjb/UGQwP8AUd3bsV9jvad1S7b4wSg/rIzNgzEYssZ8TQtT6a06o6iEsfnyG9NrzUkWsrt7FCjn7Hn1dDeD1ckzN0eM06hJyGU8BDzd0uJQcUNtcqSKWuPueklALdZ4lIHyxLQw/PhCuFahKzWwQ9MvPxVsS9uKi0k621grYDanOWqI/pwCkz/uZYhRRqyiT2phXGhUzIkodrN87W43RuTlmpk/ExnC9+IM38erSgDymMgnedENmjNKy0GJiWKr8A0eGg6d2dIXKdrKFNcWXGgWGFoacj7buHXQ+ZtLrmbTk/bFDqAX/m6bDT4M2yRGSuZyEYlcAh4UsSYs2UtWBTECk63E9ET+1TuZSzhml0f8AxBA0/XPcZyd9wt1PvWLxSqRYlPMLkLFhqQngaAmIl2QojPYHSF8ivQHEjxNgcUw8RLxhlrfT5qDGsMa6fSTBjfg9mU4CLTT02qboxnMa/ZWzJAY+EQNtn4nijrWvlZOqO8rxynvk49x53FQcfQ711vQeYcB8l39hV0s8oLlyJ0pMxY7sFI3iKlsdkepIBSbBcBZYi4aRduDVnepZWfbYN4nEANz/0zqV0ZxYHRePyyWKMh5ZkzKNVGWdBvXgd3ZVFvAunhddO8e7EHHip5sl9V0/YDguBsLfuuDvuslCXFaPHpS7unj6tzH/7x+8JQFFVfvM3f5M/82f+DK2dL/H582d+4zd+g3/r3/q3+OEPf8j/8r/8L/yVv/JX+MVf/EX+jX/j3/idv1D9AmsvnuOIQQZucffDaj7avrQ9VMhRW1NxN0rVyHqz+8dFWKAMGfRSoHgd+hido5/Oga6Ej3xToEQgle4CJxX8YiFem+2F0Su9F8ZRGDvsj8Gug60qeyziJjIX5RelolLYKOziota3Y5z3Ecz7SV0OwFLh5eVLfu67P+AP/P5f5fu/+M/wve/9ABFh2+58/PQj/kn7wMfnf8y6bez7G9p3vpAclAFWK8fofNWqDwQ0Y8M3yG5e9/TZLS3U5x7AXP3t+pN0dJbUbqg6CJDBTfyGtFGiLZLwKvD6sXdBun/ETTTqtQWRFaQ4QInrkB0Kqso4hhsUbUYtQfW3HXqhDKXo7vRwjzY5GRzbJ/rxhvYHpk8o7jHj2bWAeQ2dgTu9HoPH4bqkNEKyGl4J4p0XLVgA1IFHutC5h4oLPhnu8WHh99GjhfDoFgDFN+UqJXxW3IRqlEppC1ZvIAtIRdbVzdOkgA2kipcq31a077TavEVVYsbJ8NJFH8YhLgTt1QKgZEgGavcupt0FrW4H7wjSisyN5TrKneb3l2jADfUNbgRHpsE+Dit0K1NWtYgLs4sJFg7Fg8OBIhqlTvGREPh046PEgR9mDaKW7uyST9N1rwoNJ+Kg74kOsEANajLHwvcRXh2hfRE1WrRqWAIZYwJNsdNYLq3u526UeogLQKmcG0PutjZvEy9nbXFeirjGyjXhIebF0CgXil06c8I+LKoK7vGkymNT7mth6+Jlbda4P9M07zaTsG5eMitm2azCEN/8e7IWCgV3YB5WI7b6mp7AJDqJFoSbVRfMamO1wy0XLOzPJCqKzcsNtS0IDTMJ76fmwEI9xnoscOYrTEa81FQjHKw57FFoVqlavDQ23FTQXWn9Z4qVaIcvnpyg3rZePOmI6DKPEUnq3pX9UI5DvcTlzYPhIuyMi89h8mTCO+GiC0wiyQv5dsd/0Q0wnf2X4q3VaxNeVuHDTfjiJnxxK3y4VV7WwiFumFnDLsC0uA4rfJBGFyfpYoaVibM3fp7MreoFlEJR7w5L7+DI7JBmtBXaYtRm1OW0I3AzPy/9dC30UVGrIA2p3ohQlxvt9uT2HUMY5oJp6v+PSzx/5+/8Hf7X//V/5c/9uT/37u9rrfwP/8P/wH/6n/6n/OQnP+GHP/wh/8K/8C/wN//m3+TLL7/8Hb9OfVpYnm4gbuNOqdSyUPAJUf0YjPVgLwvjGOgtaqbD2HaDcsDuG5ta9JCP7kpnG8juFCajs4/BoWFpbnmR3ENDGxBCNamLj1woIOvidVuLltulUseLb2t6YG/PkRUYRQ+MRpGV21Pji1vj5z88uQ2+FJp1PveD/vkT936nH/08EeqD/Zq4u+136sIv3J75Z37+F/jhD34fv/ALv4QgbNsbH19WvqMPPq7C+vgtju0NHTvfLQ0vYAu0xt4PfvL67AIs826Vwzxz2oYDFNNzRPjUNUSvZg6Rm6ZTNtA95rVomVlG1xS5iXdjSfgWRFi44YJcz7y8PixSvEvBBmUYLaynZabm7gTsQ926i9+c7A7xo9IPN6Ta3j6yb584js+McWOY17tNDkYp9FacHdPijINZAJh0wixIW3yDbkKrziI0c/bp6Irs4UmyO0uC+obf94N+eIda33f2rdN334zBN+Tiim5KF5bhG0yxsCaXNc7Z4oGhFKgHVENbR9uCVqe5NTZFVbdMOQ5jP5QuQh8DbRI+DdHOK2Ct4/MAfHKwVZ/47Z2akdmWMEUjRdTVG43EG7GteEZ8WGEbhdddeN2Mx2bcH26yZsO4hdi3AsfDXXC3LbSxxLkPbwsbzmqlDqRAtL82oGAaWTOxSYjrHKjVS7Lr4hYEYkiLScLE2g2WqUaXRJPiE3xxUKYjy23JaqXHjYMEzXsh76XLUDt/BEgqAWaCqfBqkF8jz0zxoZsFiO647A6UZtS1urZq99hCc+Dq+hj8M3aQHtdHhWN3c61xCNqd1RgxHHUfsB8+w8liHfg4Ah9ep1057vB4NHRbMIxHqTTzMvQYeracDs+sywDp/noWGf9yFNZReLLCzVzP5uADihaqBZA2YaVyk+JH8GsNgmViDoocvbOGEP7WvcT7pMKzeun3Zt7OL+ExMoozapY9AsH+JBNWzBspltKwaj4zquLTj0ujSHNbg+Jfm7hg3ZmsYOTwpC11cs6QuEWBFvFDuFhASAjshafbyrpUnlbl+Ysnnj888fThxvpyY31ZWZ5WfNAOtEUprUGKg0vxWJCGcExZjt9dEf90hJHfUHepHW5IWPFzleX6Eiy4ilK0Erp3xi6MTRgPYTzADgecrRilwQ231niqxZkdgUOVFp1K3/TxewJQ/uV/+V8+M4nL4/n5mb/9t//2794LFa/TZcCU4l0cLtyrVDO6VViq1+nEEeToRrVOGe4smjUy1cNdaNVrrL2EWZgOt0NXI72kBbxd7aL0BglZOmHP6huu04WxEtcGfYGnFW4r0r3LoejNs6raWJ5uPH+48eX3PkAt9FKQcbAcG5/N0DdFt9ORT0RcrxCZyVNpvCwr3/3wgZ/78gO/8N0vHaA8KisHvH7BqnceX37Bcaswdr5b1ylylFbZ+sHahG14i/VDvbuomyu3NQDKUGcwhvP0pD+EMxtO71gAFGsN1MKI2m/cQ206jKpUVJzqTFOzJQCKpzRpSVVcaGru+dHoVBlBgZfzvxLtzgWv7dMRcACqPtG6Hw9Gf9DHhqqXenQcDoCK0ak+oyff4+T2/XqLFEp18S2hrzPMxaHDW0B07+fX4bN9dNs5dgcm22NjHDt9774Bh1ZBg66vsTGHt5KDo+y2kYZJjWvn4larDWsL2pofxcXgc3Irha4S3SlB25tGeSaEcBh2uMiWfYR7bT5HAEodDK0xpVlDZEiwCW6+p9EJ8+jG4zBeN+Xz3Tyrv5/i5FFccN1M6KFjeGwa7Isbrh16ASgW97y5z09Lehrf3ENffGKDAJPBWyMhLpeYQJ1X1LAwkwuGRAgXUBc+jlLo6m2tItCyDKXCKGGUpjD9NkoulytIAaQ4aLYy/T3S1YNgaVTia0l9DFCcbZQWypbhzGNuKM6kCXWpuJdvOPKYd56NngJvL5ehvoEcCscRwzPFMA6KFhiFZYAeg+OubA9B94JI4VEKbZZ64nlGcUZu+MBFunAcEiUYByy1C224UFSzGyo8Pc55Le6r1MyF8UsAu3YpxizmrbmuI4IWZflm/m8t2MzqtBcE09PVnEVUb13P8pGXznJdubGmMxpGKz4B2h1eK1UqrTRaGdTqzI5KjBsZZxxMhtC9czKp8ZK1lXMmW4k9rBDPvQrLDZanhXZr1LVS10JpFYmkSWB6xHjfhK85OY1j4itnjTBOnkbQPQ4/f6JGqeH9LFEOjS4r8tfMP4f7eXpnlnZvLaczS4tVfcSLawddwF7MBfASwxW/6eNbPYvndf8tbNlBfEZIlRvKDZGFUhZMfSqjtIEUdVvvYFBMOjo2Rt/YubOPnf3wTUOHbybDmO1+noEWdDg9JQK1uRq6l+7tVdleVgRdBFl8hLaWqAt2RXXB2ootT5TxQtmM9lDYXeG63gpf/uDn+IXvf5ff//t/nrY44HnbNz7f79z+wT/kH+j/zo/kx2yvn9wOulYWdWfOagdftJXvPj3x/V/4kt/3/e/wg9/3pbekPQrfee4828/x+XmwHD9ADzem+157joVdYSls/eBHn75i684cPfrgiJv7CD2EmgsfVW0CFcNito3rKcyynuubmGCsbSHn42zDrZkPVdcQ4NnYGA4SBY16On7uLWverhmRcaPpQdPOosZSC+utcnsuLDfl5dl4ee68PClLcz52lCO0JnDfP/M4PrGNj3S9MbpxHJ2+G1DZqkyCfqnqQxLroHFjyEppN9rTM6VVp6/Gjo2dse2Ux4Pydmf/tDOOzvE4ZjfCcf/M8Xjj2N44Hp8cbKGeI4ozgL7xgBxGO4x+KP3wDMWkeGmpNrS2GLNQgVvof4Tx/yHv/32tW7b8LvgzRlXNudbez3POufc27nZLRiIwEQghMhII+CFLQAASARkicIRkYRJEAhIywgHiH0ACgRAhEqFJIHBmiQACXlmyLMzrpt3d955znr3XmrOqxniDMWru59hW+/qVkbjyPnfd5/fea89Zs2qM7/j+OD6Fa+fbG+McITHfbowuHALHjHs5hkUqswDoNbYzeiBl2zvWlDka/VawVphVqaWhdaB1Qgs1Ca1GscPEZxRg/Th5e1Pe3zq//IODX/7RMywAvhwpR4aXNtI11Znnkzknh52xA2s0F33lhpAj/qoRCCsRDKszC6QeRREE4dQJXodrFHVeFcVoTChRctp1hjmlj5R4EyqWEhv9lCioUeMcErlfogyLoiaWujNX6BQeBYrlT+XDWCz6lg+kMYCSVaAITE0+nOCZHO0x52HJ9aTPPARLKEaKoluM8/b7DavKHBLqERH6IRxvzrMaDyqnxtoeOjnNee9nhDZKjO162sx32Zjd6c/JD78EG8qtFLgrzyZsKlmIKo8Thk36gNqV2uDAkeZ4m/Tu2OnUd6E9icNNJmPvdD0Y9ZnrWGjHyT4GL0An9+IcC1ksi8s3bZMwjVxrqGFs3pNobuBH7FV9RvFjQjlC+yiuhMPqiFGgc0nOLXlIiDFEOUR4KZXR4PWm9DnDRXzCYeGPdZ4zEJMsLl0IfyQJs8iZfim9KXWTJKSGtb6qcNOd+w6vd2ifNsprxW8wd2duQVY20jhOOyYnQ86ILWhC2YJEXASu6jaLGMlibXSY3Xl7jvSGUfbN0GpoE7atsO2FuilSsuEYRFHShXk4doA9DE5BBmwlEDudzstwWpnso1/n6ng78Pcn873/2mf8b3SB8qtf/i36+Z4s5ULhTpUbhY1WtyRzOYfPzH/wZOAb53nwPN85zoPjfKf3ztEPRj+iW+wjOgAXVCtOAY9Z33XDAwgNu3EJg6t5QekahKkAukPL7x3nYMrBKEcUVzaQc6b0tbHtd14+f8c3v/gF3/32n6C1ghR4fR7cv7zxw/cnP7680d9P2hjp2lkS9jTEC0VvtHrn/nrn/vnGyzc31J22GSJ3jrc7Pl94fXnF5obY5HN7RdLjgKpso9PdacPoc1J7jwPCnO5fcQJGJEKvwD338KKZNqPI8NDkLB8REdj37TLEanOmC6ERjihJ9kqb9qVycCMUV4uomwUKQyiWXKNpIZ3bK2UT6jZp+2TbO1sb1Jpz2WJQPYuUweBg+jOUVh73cxxxaC2UTnMm62IgOfeXKJp8RjERHhPp2vp8Io8H8nyHx4mfg/E4OceTOU+Oxxv9+c44HszjgWARBaQe8HOpFz9nqSYsi7YIALTw964W348qaOI7SvB5bgXvhbkVbCvMVphF6VI4XDksNtjhMd9XXVk1ZODYZEhnvB2MWw03W28xHqjKWRpSNygTbxZFVa1BsmVidtLPznl0vrwX3r50/uiHkz/6Vef9bfD2JUzrcOfTHq7LuzjzDITrxMLwViUL3+jCXASS81LSRjWUYkB20dODywEzYRCPok4Ul4qkViwyWDyJugQ6ah5W6zhN43D3kj9KZvKsHJiLYRK/VwLbSnJ0Ij2eJE1WM5qtZo5HF36zSMKLp3JRRUWuZjjyjuLcGZJ2/mYUgrRZSjBdbPo1bsAcGzCexvluUaBoJF2BBBfLjOcMDhcCdiFLMbaYp3M8Jm8/hPHYqMGn6lvYmbsHwvfsOeKZSp1KHUoHtMVafXTj7M58Ov4I1MTFGM9OrydHewQ3RoT5eOLPA+khny8zM6czoFA07ou5UqvQmlBLJCsj41oP4VA9Yj/pFs2VCaN6kK1FQSeiM1C1hM4kUUAs+BvLmnY5JVepyRcMxCBcjIUNS35TcIIszRtJpaMXcnQU1ySMrufF5yoVanVKFcicsSkngycdoyaSOMwZdtDt4JgHw9M4lA8A7ydASkriPZ+h6U4/Y2/OvjTRt8xAKvF8LXJ2eHt6SMgXohthXIgppSwyvrJNiSyn9NyZ54DnwJ4Te35FT/h7fPxGFyhffvUHzPMtIdlK9ReKvFCksdVbzvmcQ31lkoU5mxvzfPI83znPJ2d/0Hun94DaPXNAdAaU5qWBh2oCT/vi4kiOFYIQGSRF1xIzWdO03JYrdG4VKCYHUw+8dhgd1ejEiiitvXB//YZP3/6Mz7/4BdtWKQrn+4NWdr59+ZFPtz/isb1TtiMZbCWg79wUi2zUurPdb+yvO7dPWxDMquG2c3+5MY4b+/2Oj4q4cd9ekezapQmld+6Z61LHBD0pFqz1hqUSQxgj5XVzJqPeGTYZpsyp2CxBoFWuB+F226IgU6HM8YGgLCv5kWjTnJeKwrJAMdbcOA6x8DMaqI1w1VShbI2yEQXKNqhNqU3j+5cY8UlMmYKq5h3zE+dk2U/PHvdwigXxLgm7iMUBvNQoKHWm14YG/yUcUg/kfKLnEzlPOEa6ub7Tx8nxeGc8H4zjgZ0nRaL70ZrKBQk3VJBENOwiervH+1hEtmj5Ym7s4qEuE8GbYpsG+tHyxxwZdlcOi8Okz9j0NBVXZkGAG8zgqDxPxqOiEkikzSxQakPKxEps/K41HEMlZtbmJ+c5OJ6DL4/Cl8fgh7fBr36cvH0ZfPkhvhcRZ5xCU9jFsR4yz6ERzikq1/ty81g3EEZXLIfjWCQmi4T6d3I8ApyQSEQjN+zsmIMcH9wR8XQ4JgzOVrqzazQboQhKKHwVJ4v0SfjXrD9ZBYpaOMLGh1zFzTWmhYtPI1dhQjo5J3ye4EpYsq/EWkJpRyRgU2egPfZxvZhpFXA458M4qvHUzO31gOCHG8ccYT2vRBhhSoisQ88C5f1LWKiPGu+3D6g1Ps+ccPR4TudMlKIKA6d0R6px9OBl2eH4EaMVE2c+B72cnOWRI3rBHgd+nOgyIJwedg5qIEpRrutcW3ytUhzVSShbllrG8Rl6Tcsiwoswa1xDx670PylrzEMUkEkK9pGk9hxJSgZpVhGqhIeWaXDTms+4Ua64B59mcRRRCZpB8QjTU0OVHEXPdOA2SiULFMNkFSg11KSWijaDbgd9nhyzMyz24FVQCEuoEMD4SpsWjzgS87DOR0Mp6DXQQkVjpKXLJiIfjYVkJ1roGdq5VFJLzFBdqAZtOmVaulxP/BjMYzLO+Wuf8b/RBcqv/s+/zuO2M7ulS9+NojdUGtu+Q4264dwsDG4KSVpz/HjS3x+M58nxfmJr3t7zQehGG5VmhSoNpzA9FEJkwFW1kemeLYoXasCtFnPGOQMeHGXSRxgOYW+4PzB5R+uT1jqlTrBKlca39xe++/TCd9++8M23L7StIio0Kdjp3Nude7lxKxsmNUiNszBnSA1tOtMb5hVpim6C7tEhizuygTXoxXmw3CadZ6a1enFKiep8lqRRaGjtLTfHDwZGzovFY/4Z+3sUCTMfkSzlJbsGCsgeTqSqQrV6sf7da8w4CyHZS8O4Re6cLH5EICjBFxHExhWcV1WpW6HejbIN9Lahu1C2grYeCoU5whnX476Gu2gERsoMjxI5SvBmiuG7IEXwTbPzgHPOMJCyM9C7JujWkXHAeEbAn8wwUtyUTmaalAiXdIvcnkrDMYpa/t3kkdQoKKiF262y3yr7VmhVaVVoBVpLs8YkroJnzp1fAYpxqPkVejcLDAlHnu4fLzMLYigLrk+lS4FxKqOfaDfoHtyBGbN4dMS4tAQhllqiQ1RnlvAhipfRz8H5HDzfB8+3yeMtlBMiUJhsClaCOGuAtTjYL+TBwOeKVIjRwl4jkr6qJ9w/6aXQiQykyyMoV2ygA7FuiwYxNwU6l9GbFr8SvktL6XRZajUuD5WPfBZPzspi70QYYYyFLZQkZtcIJwqXKJyCe7JQk3g/VZ1WYj1sTVLiSUYERRPwnOEg+jSjz4jSOM4Rqq/pnI+TPjo2OyUijzGc/sV4Mvkyx+WqG87V0UTpBlqErcX8xA38OemH83gY7++DYZPWOrML2ybUbRUoztHn5Z0UIx6lT40CohC28MPopzGeIdedKEcbNDrv9kz0yDnPN+bxwJ8ncmaEg2TUQAnDNdE0ZNyDn7HtNSIBlGjxRxbvjGwuYp2gwpglErFPCbS7xiE95Co7M/xOeJ7K25vw9nAezzAq612Z3bAOMqF4obmwUVN6X6NYJLx31kchigUTY5NA6naLUWV10OTKBdH1xEWjqUXzPukluT/pHAwOmylHUJRKTY7LrHpxSTZIp2W/5NlKjEXVhTKhmqbLTCA+RjRqYjEKm10YXWJENMIzRewr2qVYxJYs/l3vQZc4R6asG8fxNRnrj//4jS5Qzh//FnZujGMk7LQF/0Qqbd+gglcYex62LeSQAHI+GY+D+Tzpz1zIIxaazLAgrt6oHoeIpaZetOSmFOmbMh0ZG5lKQ5GKaRxilnM/zPDRE5l54uOA+QQ7EOsUBqrCVgovu/CyKy975Xar1BYMbWuT2hqlrLCwZIXbmpMG1Bnm6CkHBfg40kn2BpF0OXnmBqbmPGdPyDegum6DbpPuM4IXfcboZplLEd3LSgNz+XrRJUzqsXGvOsUTbvyatBVSx/VvYycOde/y1JD0GVkRYtEHTbEk1a7xlmSBkgTBGiOTIMhGV1CS0KceJGrlo6iM4k6Wcjn4Mi4B+5K+FW4X+Tu+7bSZz8JAzWFmwrB9EJhLJuFK6NFxiUN9LTjNYLCo5aKwSM81aBIIUFVqK7Qar1rj97SW9EJYTDnPbtyoUqgZkrjycyS7JMliMSYjca1NiO/zar/ivXje38QXkiwXULFYdOziM/l4ucryvhdfse1hZ76VcP3txWkli10NWbjmiIuS44eSxD2RrwovrgO7FqFVoVSlashAxcJgCgExYVZybcbzEF4tlhLpWBviMWMnlRxiWfDlaGeptaK48PDWwGIk47BW8BJP5mWNDjzvha41RHDZVnHiwYJYdy/9ZD4660hJJ0n4ifTk+13ZWSTCdhncieAj/HXcliFcIJNjOOdwjh6eHXPmc40xGFEclEAIIgMJ7DkDQTmNs5+heJTJ2ROpK5qyZjhHupn6IoiEa7XMQCqCX2aXAiecWpcaJ4pYS5J8P4/gBPYe38+IcdDVGJXlaxOJ7ZqBlXh4gMweyJDaR0KweQQhiArnFEp3SleeHqhRaZKNUDSXh6fNfRfeH5FBcxyhAh2DRFX8OqQrSqPkWE7XKmEFHC4+0kL4mkVKezW7/K/UZkqrPUiTM1zKbYQx32SGOeEMYvMyeLM0FtJEFl3CZVvkMt5ODyNlSkipG/FoqHwEv5Yor8CCczlNya6RPuQKT58ji3Rfe3kifrrWceyNfDUK5frx1/v4jS5Qju//L3qrPB9nGGj1fPhFaXtjJfXNHbwK3oTaggcu/cSeJ3YOvBMzNC8UrwFTWaX5RvNKI7I5Zjal4bsxkD5iXi2NahtqDdcGCjPn+eEP4jk0nPgx8dnxeeL9gcxOwWgVbk35dHM+3ZXPL4XXe0Vbw7QwH0Zt4XfhufDPKWnIk8ZxP9HbQzwJFp1EBkXhYZve5+C9H8zewY1bragF0bKJ0sfgOU+OGdlGpw2mT4bN3Os/Hjz76gCL8bpfhcvq4kWXARBfLU+5NvdYwIsyngeCwPKRMA+ipONh/Y4FxK0J1xPcoqphLlRLyI+bepLnMlF3hmFT8YayIezgNZxMhyRsaaEmIIzeLgOsvPeem5EkltrWw2+x+TIXtwIgSGZSk6TdJ5MYKVk6eAgTLll2jiyKQSUJaxqktVbZtsbWKnttlNrQ2kA3EraIrychNW2lMUoLH5Ra0FbQRNWkCWErk9+zcnm5kJujLJlk8fWpr/soxKFDcjGKWTo0JyZXgscghErFwgaDlwavO9Bh3vIZwdm3uHdNAyp3HGuOLlnzCluRNaOPV8tCrejKrna2vaAVNJU1lgWOSjJPkmcQBYBcBmViH2tTcg3akm9KeLasDVYXryTHIDHa+TDXK/mJ3P1CRqJACdkz/nWBEn9W10GiUEpwE6SEpCjrEMivG2ou1kkXT+IcF4nfl2THIysHj8O0Dzi682iRHTX7oFuO1BgBz5dAY8M/JHqpfsbBfPYjD/kZI4ii+KyYBXcsFH6JEgXkmkqbHK/Or7lUUTi4eBYok5MzG79BPx+c/ck4zkAqRo4pJPg+qlEIlK/8ryAajQkcHsaQXie1ZGtzjUGExw18V3xzpAcSp03SvDOk2acTryk8H/D2xXh/GM9H8DfGaVh3xIO3oSLsUphZCHge1DMd2GJtJBTnsC3kQrJA9TWyDl6HZDVg52AenYFS6mBYoU94HiP8tM6JLYRzQnNBUmIvEohgI55v0ygKUdizeVR1dlU2VaoUxAo+K3MU+ixRSE4Ji/tTOLvThzFzfChZnBQNRLcmQi5ZpMi1znNf+TU/fqMLlNn/79DwP0/O03h/N/oZKaTSajw8KnhVpBakVVrbwhcjZZ/WA46tUtlLYyuNusLSdKNqzc0pRySk4+iMRGLBkZJunq3R2hbBfErk34hk9xISq3mEz4aNg+P5h+CDhrPdX6j3V16+/Y7Xb5yXz437pxvUjU5BXsDfT+ZWONR5s8n3hwVBaUbXEx2oRkpnJaywe4+wOJuM40wycOf9PPjh/UE/T3CLBNASBcrWKsMmb8dMYqxxZqdl+aBFpSyxgRvBLwHw2Lyjc4QVMCiiiXIQZj0Sqie+qmUkERdZ4V4lfDU8IddzdVYWgl9J9qzkkF4kOm81Q84ji7+lDonQxjEcPYXGRik39nqnyB3xGz72QMcwah1ROLUgfIqBPxwfA7pxK4q2QqmVdotArDklAivPQX8PyXpkNBnHefL92xvff/me5/MLx/sP+HnA2Sn9o6Ov+4bWjf0+I9V3DIamOR0jO+v4PiWIOVfBiIYslJR8FFZar61SMki+xZBtwmY5+ilB5FOBsgVa4UHvpim2N7w1aPHewjCMy/ytkIQ6VWoteMBWWA2n2lEKZ4FHEe5jcpfJ27vyw1tJp2IL7kAAyswhcWBKZ+3qPiUN0oLETY0xkuVrKTtmFfQlDtc4BOZlzFUvlCgLkRw/moYUVSz8KQapwEg5KizvHcOGp+lf+EU4KwYiuQxuaBYPF7fFs7by4K3F8QdrWFoIOXwtmXO0DPEkpKvkc7WgeFwWd5uGh+LIDekPwPBSYR6Yj8vHuBOGlAeTQ42nSsjt9QxyJc5gYpRAiy3HwuaYD0YSpik9nr1GJB9vhIRmShSoCao6QmlOqRNtHeoMqbuNUHmNOLmlxMFeq1PKYHqn9ziMn48vnGfn/b1zpjKrKjT5aHqiCJXYf2xSxslU4QQGljldUDWCX7G4IiqgN+hb5dyV/oyiVqrQCe7bIGIOOp7RH/D+7vz4FmOK5+GcZwRcBiem0kpD9sr0KBIqYcbW53KcjuJEXWMNdYvnM32VRB0bR5gZUuhfIiX5eD14n8LcjLMK3QqnCb/61cEP3z95++WD44cn/cuBPDuFharOmAoUp2oN/owIu8bewG1xneClhXt5A+iF+VTOtxgnqYVT93HC43C+HIP3M4N0JbidVRpVN7ays29bmO6l4o8q3JpTtuCl/Lofv9EFSrCsc9FZGPacpzGmwxhXV2gaeQOlVbyF3wfDgncyAn71UmMs0AzRwqwlyFs+makicCwJlQObJzY64hbSYmswG8U3vIQbrJeAhY0S8NtwOAY+TuZ80h9PhIE0cN3RzWm3Qt0LdYvDjxpxelKDvEpzvExMY/wiFGoB3b5igN8KZS8xLvHwuxCLCJ8gVoUj4nNM+gjzsMc2g4PghLGXOaetBOdw71xba5yH0aln+c0KTBMP+3eRclXKkqOctSWLl8AkMsiKLP7UM25ekqBFKqgkKIWWqIQRXjeWo5vwo4k9XBbKsVIQs4sTJzX7gp2SBl0FlRjNQcFWbojEAasCGnh3fPJBMK2nUbVRWqXtlbIneOlxWPg0xjlzPh1E0LMbz9N4Po3nY9KfHtrJLjBLdnWxCZcWRUXR8OiZm2Gbh4w1RxXuHiNDmRcicH14ImeLJLrIgtO/Io7KdUAHlBDrRWtbXyHuR1Ok1Jg3aUFLRdNUTbVSJfRzWynUUtiKfhQoCiaR+7EJNHf4VPGxcdsDGeoW0mFZq8sj2n66M9BlXxF8khxlxohqzQ3lK9+Y5JvU8MDBEoYmER9NvstFOF6On0uFk1fXZQGeSeLlIk3aNGSGlFKNVPwkl+QnxfZPQcTFo0kMhYWXwZrdk+nUy64+0JivbyuriF8zf+L6shCtrwpRJImx+XUmUbvOGkXcrDmeIX1U8LiOJQrMcMHOwqsm1rO8NwCpxNpoJV5FYIQL6lql2gSpgmyLwG2BpJlgARPF91hK/LmGf8qweF7eT+c8nUcPAzhzaETqslvFZmFZ+8fYJgqRFZzaLdFTCWduzbVKFihCYVq8jPweakYwRFtCDmJjzHM6j6dwnMJ5OqMHeu2TcMKVIJcmDSgT2mMPDSVycD8EyQLXU7co4e66rndGbpg6470waqf/eHJaEElmq5xWOEx4//Hg8ePJ8dYZz4EdM3J+JJ2TLf2hLFLIl8lofqvhaCCx3m4qbJIRLwO8E3YLuYbP6Zw9ELhzOOeMzDrLQlrSlbeIRA5bicb5VDB1bkFRi9H1r/nxG12gtPoLlMnUA2TwYEY2xYzNZ/pMzsQTVaNVR7dMXZ2kFM8p0tBSiPTMGkqHqRy+Y7UyhDjhZaZ6ZDLHiR1HOkdBaY3SGm3u1JJELq2RIuqFOqJ7P06DEXLm4+0RXeBrwVtD73e2b76lvr4i+w0teSi4os3RfdJeOmU/0O2JtYOmG1trfHpptCZsG3z6rVfu373CvjPKxkHDvXI6PLzzsMr7VN56zFLNnG0E9Kjm7BqkroMW7qLqzFozJyYWvmgJc7KUieracd1SYj2Y9ID5NDahZfZdpSVDPNw6c6iTB4RQtFC1UFQppWGExf4cIwpR0RCt5LavxUIJlbaQ0X30KMiyuBoI5znop/N8DLYtHiZJIpsj9BlSctPAPlWEVgOFwwSfBRkDnZPt0wvt1tg+NXxbpmUJtY9Jfx+Mo9PPjqtwdOf9vfD+48bxfMGPEofcdKDhNhljMI4ZHICzUrpgu3MCmwhjD2XUnMI4Z1j3F6dsLU6rIgR77YR+MMcZKqtujMMYxwyDvy7ILOjcshNvlGUQVW9f5ZOENLvUQik3ijRquYW1vQitNKooTZWXrYUHTausZOBwYNUY42xO34TPFb65F5598OU5OPoMqHiMUCjNSe8lfFBGZ/RQhzwPGKb07DRVI/eKWZKnFLC1O9QakPSchnS7whZFPbrU2YPANyIQLmvrLDzAz1S8JILI+npCnIQnSDd0OjmBQWLpR8GdDeJk8RLyMCCLFbmoCLGPSaz3Ki2ve4YDuiRUn3/TViJtPC9FIrhx1viCpVashRLPW8NHjlQgULj7hr007LUwXyICQKakLDvGRloWf6J88LH2iYyTcj7Z+jt4qEzq652yb8je0qwuCvQocFcTEM9SNHvQVeglQwtnHMxSGr7d6LVxjJPnhPcufDkmZy88R/DOQKi2sY3GJi2CN7PgnhiI0cixu3kqp6JouO+NVoRbU2pxisITpc5KGY06apKIDE8FUKypWFfDjGMIjwPe3wqjK/1wfBTEhFqVXSt7NrZBGrbIdTV4eOaNQqqRCN6JhXJxjlDTmYd3jz1D2XRiPJ+TdytwN9rW0G1yunJM4Ze/evL248mXXz44vu+Mt0E5LeXWRhvRIDlObQISDsJ7TT6mkh5iQSxWItZBDgsxxVuEXwgREPjsztvTeX86jyO4OaYxdpQRJm0NZy8zRu1VoA5ancgW5+356094frMLFGEgNqg62IqxN5hbauhJC+pkqhcNnXfLuVjkyiXI6iEdsxEqgHDLU5Bwoi0SHZloMCDMRhQoYyAzUkZKbmBlBLyuHlHli2Ghlhe7xOfumqMfcUwaut2pt0+0129o+ye2dudeb4gWNgdaeFl83govrbDXwt4qe9v4dL/z+fNOa8q2wefPL7x+urPfduq2IXWLrkoNSkN1o5SdbbuBVBzn9ukzpVa0Vm77DghbD8Ka48w5r5dKZMS0UoJrwdqkQwVxPJ/0MehnD2KmKqWV6FQF2rUJEpr86VHoEZt4fO5AUdB6JWhyerQmEvLvIpKOivGAkAXndMu48xzxacEUnumc+DhitEEhvTXS3dVHdMoFNAukWluU/K7Qg4jsDG45/qvSWMFZ0hU/YhQ03wfnMTiOgTXleRpf3pwf3+B4gPRwTa0I2nYQxzSUP3EOJmnDKmOsLk8XszMOf40LrzknWwRb9/xRSd+MbOXzCotIkgqjW68eCdGtVm77FllKKiHdL7Dvhdu2s2+Nfd8pJdC6vbT0Syi0vdJqjAd1YTCpwrq4WGaYhlFVGRW2QUuVTz/DlXKOsA0f05JgGJ1x8djI3ZN4KKvzLjkFCoL3B5qwqoZYk26JWqjg3bBh8WO4aIEsF5LFe8li00IG7XCR08O8LRELt8v5eBqBMkge1J4EQpKTQaxLNBDKJS+S0tBaA72SeD+e6I6NxXVJQr5Ex900utZShFnive+3DbbGLJXX4sjTmW8nNpNYvIFsjmyO7gQZ0oO3oUlqDZqpRHZKXlVqdskIrunCq4LVxiwNK1sgI3nPyWbDJPOdNJCDSey5poHMlS0QVNXKLA2XwgPhifBAeWqlK5z6IcempmtzkYvr5cM4U6UTnLFomIorRQrNG8OFTSvWlC0D8HyDUUsU4F/paTV5U7GGLMbT9kGGb1PQJNSKBcp135RWQ1k3ZmaDYRQJQv+s8yLVU0sQfLVc158FelpKgCV4jOd7qq5Kx55K3YxyW87Kwvnjk/5+Mo8D8UHVyW1zmoSkoI+RIYROmRFjIEQhUUQQqeji2CXBVnA8c33Od7uQnXdzHqfzfjjvT3gcwUdBg4C/VcU3hU0pGdPQ1NhmcPqWukv/YSlQIKShlYGJ04pQS9xo9ZzRS2wwBb9IaCH3SwdJFgOe/LWF+6tLckmCNFtIspOHO+qY0e3JXI6Tk6qCzYFSolhZ8DApZ5QPyDuKl4SoRSl1o+w32u2Ftt/Z2o297BFxbcETOIpyqzHvr/k5Wivst8rtZWPblH2D28vGfosRhNTlShoHNVqREpvh1m6heRVh//SJUiulNm63G4Iw54zRAISkdgTBLQoU+ShQPKcFeRiU1uh9cJw9FCSqSU6Oh6PVksQpGD04Gj4Gq6esGl15yesfFhfxsNt0CjMLSMXndRzG//JQiA51HT5BFhupMji6UxvURvq5+IdzbUaPy5px14KUlkVn8hLc2bRkFkfNwizkyX448zk53zrH0XmendEK733yw9vghx8Gz0enzBHQcxYK4YlRw8rbYM6CjYIVZQz5sLq/1lGOkzwwCs1S4ENVlRQMleTjyU94F6Ih1VwZuHWNaFqj1IBn1aMQae3jz2tpIYeuEgVaSRXNLYi4tbWPAOs8lMSjUMImU2BXkDHiYD0VPRWRydSUPc4kE5ZQhCjxNZwoUPBUf2lJKSYfYyu4ZikXGS9HfrKUJUZwSxZPhbwWeUgFWjKDL7LQFecaP15KQAtYOzYPiRBIlURviCLF1htas4/c0HO1iwhSC1orpXygeYZd0vqS61pCMJXeFpn9QqAjIrDdK2wRcXDzyfTB8QySqgrQwJvjjWB2Sz47UlJmKpnKHiqhkc+GlxwFmQSim0TuVaBI2dYkFdM11l2DJWOIX43iJBFJLWjNsNCVUo5yAgfCIUKXQtfwDCELFGsVq6GKizTjkEgfhAig+Lj2mSpKFZhSKIUYvW8Vao4aGlgteC1YqbFjLLIroaSK9RVf31J5hqQR3iQVM8Itc7iqKmcGCI4RxqAzYwvUY2QUzsDRSK/17Pxtk9kRDch4OgfGowx8lAju67IixzjfnoxnZ54n4hH5oTW4L+oCEntDKNxC4BCk8cyxWiNF1zgzc5xp3Zmn05+ePCbnYfDswUE5Tjg7jOQSlRWqOgJJ0SkUdaoaNRVbLcMd5e/jhP+NLlCK/0i1DmNQhqMjGNGRm/PMOfHXHT7pMmj4+SGxcyJ+3LUyXbIRE2TLjUjr1bWeM0hP5xyMc8Aw9pwtujuvW4nK0YmOTwhPj3xsloeDUNhNmRJSs9et8O1L4+c/+8QvvvuWX3z7C37++lsI0PvA+8GzfKFgWD84n288n18oFUwaZS+0W+V2U/YXp92jszoRHh6GYkMLoza43amvn3j92c94KSC18PPf/h1q29DW2NseXZSlU657Fihhl16+QlCuEY9KMPVt8vbljeM4eR7ndeDX1oLFLdHJ5C7IcZxY6uUjHyUSmbeq1BJ27jEDdl6OJ2fvPB8Pnu+Vfp70owT6YTF6wQJVYyiYUyxzK4ZzvA+OZODf72Epb1I4uvH+HJT3k7J55GBETRJdjm6oFG4oG0ZVh71FrlJTZA5kDsb7ky+//MKvfv97/ubf+EO+vB98eZ48Gnz/mPz133vn9/+/f4vHl3canZet8rpX/sRv/SzkwwXuBbYivLaC7Ipu4X+DC21rvL69YcToUrQiOmnWWEBP0RlcCReGaGz8tTJqYZTKrDX4LDtkyl9wdGo4SG73Qm2FUkK2HYXTpPcIXZw3iwLOPwruQEXi4LaiV51klkhWEsa1FratwCa0qegubEcoAwQ4mVg/wZ+Q2VhL1bTtofGqkkF6yTMo2fXaTHt9nwkyOUWcUVM9MIXSGlIatcDQwWBwjjioay0h6RdFNdJXx4Ay4hkoVbltMZpsEmtumoXJmQVxu87KMKe5U5d8dy6hqQSZVWMss8YgKnBrG1ut1LIzLXKSnnNeDsoZVHNxWarCdmspWxf6OHGc7aborUCtTN1QmYxj4ymdUoV5F45b4XGr7C83al4nQVPs53AGV6kP4xDjlBh1rEptK40qwq4V2V6xtmN1jzC47PqRyL5S66hPztDcYe6cqgwKXSunxgEuyX8ynDeZPGTwkMmzJrG01jQwU26vO/tW2VrBjs7sk370HM9PdJ5IpjwvVLC1nfJ6R7aGv2ypMANroHXD64ZqjNcKsGuE3t1qeEKpRuM6PZy013xOc/wmBAE/Nvvgqixk1nJs8xwnx5yc03gcgz6CX9OnhQL18JAQz0mDLGyU9wnj3ZlfOm2PRGHdjxg9uXEcJ30Ozt6pnJQauUE1C9rWB50oNsPewDCdlFxPxUM9qRJnZaCC0B/KYyh/1PP5wvlelNPgGMrzDEWYSKFl8/Iiyn3CvTv7c9AGtMPpPx7Y8aQ+npR5UsY/JFb34WMVFXlEdoRpWLlmh776lkBAnNRlw9Jkx4eHO2Ummy62nK5OU1aPLolGOLM0euJyimOZodJKZS+FW1mm1x8pl5OA78Z02pjUmaz/YTQ6W5nc74X7feOW4xmS6BZplTDm4Oxn2PKPwTiPTCQu+FxS0xPoTBtMG6mUyH4m5lFICUt4qUrdGreXF0rbKLWytf3aUAOY8OQyBIpSpFAkfFs8GdnlqwLlPGf09IlCiWqgMxqHzV63C+0waVGglChQVJytCHt6f3ipTKC5Qals/UzkyVGNK8/o4UVQggAnlw6YDySkEKmvISAKhZBmBzqCjX8eRs1RWNGR02jQcK/Ct4boFhbWt5Cxuzijn5zHk/fHg7fHkx8fJ98/Bm/H4Ms5eDP41bPzR+8nf/g4eT5PdiYTgVp45jV2oHqw7rv0MLMTpXelj53RT0YfjD7RnuQ3BU0ybfHIlsEcH6E4WZbnIfjxjCHwdDe27JI/ot+npOpHQ7lGet+UEe370Q0rYQKlMUtB1ohrRvr3Iluby0WgqxoEyqJC1YCCtjTOQp3zCDRslMi4MvdAagzcA5KPkYHRB3H/kWuMYlmcCJYE63hmtqYBlqhEAV5aUHVcOS3svkGoJVAiVMObooUHUen1Wt9FNdG9+HnYDqTXj8UorViMAUShmDA1942csqkEMrRyeYrAVp2t5O+r4/Pj+1pwkCxSecqj18EZY8o4BEFjTm0Sh830kIJPv/hAU0ogE6WliCBGRmh0+ZIbjmcDIWa49zjRB5eZhkiDbcfLxpBKxzndIqsokeqafhzxnIXD8JQSHh6uDA0y9OKROLE3zhn8QRPDa+y/ba+0Vnn59s7LbeO2tRzVTUYfPFO2rOP4KFBKIHqtbWz3O7VV9r2lBUGY4NW20drOVrfgYRCZMlX52wqUdMpOkvJSGy4Wt2b8hztUkxhppVeQmbH1k8d58jw64/s3xiPyunr3yDnqRu/xd4PsHGTbU2LtFGC4o8PQ5OQYzhzB7XGL0ZwobJpp3CpYK/n5YtxmibBakvndI1BSyPTpBPvkjERq8zVZgB81SLF9hh/KTLQHJwIHp0Gf+NHpD00xodPfB/2c9OfAPfafX/fjN7xAESqFqaF4EDGKRhUfHIVlLvXBei/BMAv4Lsc6YYwlGcwXJY0TB2DRD8jfnbDz1nA7HQouk+oWPBKt7HXjXgsvVfOrLX+ScFqc0+l9cpwJefmg9ChQ9jJ4fVHuL43bfafuW44UDFdNW+vB0Q+O4xly1npwPgXrireKT8XtidmBzXCvDaJcdCgmwZanaqZkhqnd7fUeY6ZaqSWycsSX6gN0dEYZSJ9UKUk+ixGPeJhmYWEO1bZ+ub/GhOWjQCla2LZbXheYHFmghE5Ixdmrsm+FrUWBYgSMW9rGeZ5xNxO1mTbSYdNiNk0+3La4FqQPiYT3R1O0ZuFUYvwxRhQnR5uBpunENPKE1CbedpAKe8W3dIRsW+Th0On9yfP5zpf3L/z4ePLD4+D7Y/J2Gm/d+dEnv+qDPzoGv+yDZx+84ugWUtGzhMpMywexe4x5Fcd9FMbYGaMzx2CMgZ7jo/jSOJzdZ5IVw5vhek2YWRiPGZLHYZaRBNBNAmlyZfhM2N8T+bPMPBpMhK1bQuwxnnAVmEoNJnkkgOdYZvlheJKqKYFEeJmBmksJeajC+Sz4FHpLtRXClgodJx7emUTYI8e4kmYgPgmPH2IsU0vykwDfKlOdaUqtO1oaVaGnzLMn96mWKIhFC92Fug1qb5Q6cq2RBUq4+BoBawsWa80UNEZSxYLzMVJBt9BVn+lQWzwt9OMg34uz1XCw7RaETzVLfwn9KFE8uXDFKUWyQAnpsngUfT6TtzMsfJeGxfWxKFCGFLo2Tm142g5JFlDIGjnl85J8AbEzideSXCcNVLnuuG6MKZxmPN05UkpXxNkkEGPN0EuQNBgThitdP4jlEreSPkLVNW2mG7KgrdJeK7fbzudfvPLp5cbrbQ87g/RPOSwOXe1nIKhZoJSFoOw7paTJocbIa9uUtm3U7cZt2wMVVqWlweOeFKcgNY+riSipCpThWJrhuc1w20ZoX43ffAS6dxxP6vuT+v7gMSbHMKYFIjxOpx8ZAeAeVTmS1zFGfuLBG9EO0qM8MffkXwVNQKVQJPKjCiGu8LE4VUb3Dx+gkftFWDClAsdi9ORamAplCscgR47CW+HiA55DLk4JeQ8ZsRcP91TuxEjr+RjhIv0eGWK/vsj4N7xAqZ7mWyOgSTknxYTmjiOXccxFkm1K21PSVsDGxKcjtXDbG6+3O0iJinHMiLquBdVCZKE4UhvSjL4rtQX83XBu+8b91vh0f+W1Ka9FP7o7C5fEpasf7pzmvCCEDZjzooXXtvH502deX+7c7zu1KWM6MtMoakWRpYEUgJtho2NjYN0ZpzPPE+sjFUZ++ZCQJnYLWihaAvGpjXu7UWtDS6XWdiEo7kR3lppFV08X1vhvjdhlEQ1VKFopZQZzW/zyTNGacu8tUotDX2/pVxMz0CJQW6FuldJiNiwEv2WThpQzpG0pnzv7k2EdeqAv6ELL0pOhEmqCqujtRnEo0/BaGALP3pH3J9NDbeVjoLbRrIQnQi3U+4zP8/kWh7c5HB07noznF/7wb/0tfvzxC3/wR3/Ar95/5MdxcjRlaMP3gmiPDfFT4eVLperGN1vhZ9/c+e6bF37xJ3/GbRP2YtzmQbPONg68RMrw/XPl9trY7o26NWpt1LojWlGplNLCk4RAM9x0TQXCYdn0chnuBn065whvm3NGqnHwVoy9b0yU5oJbuB/bmEw/GZpJubaxzS1MEEfFMkitFsNb3EMlRptLQ+seMk43OOdg2kwHzDTrWiRIiftVpNKkfPA+tnJxxvYzHH0luSQ+Y0Ps7gyMrSXigbB5YwzoMzbwGBnZ5VhbdaSvYPAPIIz+9q3GiMpG7BEeh0VwX+RCZtVHqiAmTTX2CI/CsVis/yDQBg/AiUmArrDDOBMS0R35/QrOQRgbaMYaOuIzSJRAnX6Rkc85sBkFbfERPIMjozumh6FZ2dD6AvqCy53uGz6DiiMzxljhPpxy3L2ySbrfDsVGIFFLfttpDG8whLdj8Jid93Hy6Ad4HJK3WtiqwKsnvy1PewzXyZjPkJT3IGu6C+d7FOFqxtbCOG1/qXz73Y2X1xf+xJ/4Gd9+/sTn1xf2tl20o06JZupc+15wAksNJExqXTgU6jOcU5vQto1t23m5hfoynJezyPN5EX+nhX1bmEaEnwgjuHlmkz4GI1EKaokmUDS4JNPxx0H/4Y2zvTH+8Eee8uDHcfJ2PhmnhTurx/XthGpvU0UaYXhYIgJhOQIEcOHBFxMN9F4bVYj4B2mAwqtRhqF9wjkvlLsfnXNAP7OwTYI0UqN5FUfUKEsYgnEK6VAe+8gKblUzxAeHPfEzmpTjkXb/LjyOJ32cPI4nW0ZH/Npn/K//V//f91Ekbcz9w1Lb85CEGoFlqWrQAnXTK9vGSs5LJ7BFhsPt3qJA8QiLa61SkuQZzVqk5XoJxKAkAbtKupe2Qmv1yktRD/XAnIRtsVqofZRY6OIRG65KKZVSN2rb0yE05YJmabNdwltEG1JqdKTyFd0oGeA+lo30TFniVx4P0YpFR5rw8So0YmwTXJwqa0ZOivsWaTBhxOi5yDnN9RYuzVLKVOOVvEAWWL0IdLkJBDEo0IKEJTXVRForrou85lHAuFNbo7ZKmzVCrRKalpQaSlrFy8cXxEWR0pAyoJYgKzswJuU8ES2M7WBWuUZlV3KyaEo3M7dHDB8n/fnkePvC29sX3t+/cBxP+owuQrZGscqGcSJs07ndKvd7o8rk063y6dONz5/jdd+UvRi7hfSxnmA6ocLtHqTnfW+0Fq/aajDwtYblvX5YTftHQ5zXJceU8oFoBKVW0gE4oNywT89D0CSQu1hYHwGC/aT0KDSn1nBnFWVqHPJDkkQohItnyDku4zRDLq+Lnmt1ml9QMom2qIdEcY1ZaysXNK0QvBnLMZ1Cs5WbAq0ua+/gvUyBIjlu9YC5PTs81a/WsIcqp0gJG/0WqiTTgMODj/QxAo5DTC8egqx1ahkcKDFSjlRluQwHfRFlNZ+y7LZl4eWAe0pdc0wWI6IP0nq3GJeChGrEoRksl1Wfns1JcDdKLZQWzsOiFZcSz/bFrY4C0XVxr0JlUlWYEs+gm0XekINTQ1HlIY89x+Tog8fjADyIu9uOu3KzLDI1m40JQqIOY9CPLJDRLFjjGpSS8t2tcLttvNx3Xl/vfHp94ZvPn7jdbkEwL4EMuYOfIV7AI/ZCq1JrjfFujiLUw8y+FQ1n5r3xetspWaCQ98VnxHxMHLVw3I59u0YxO7hccaWPwBnckRa0A1GJwm445ko5JvrswasTOG1y2Mwkd6Hn3VcNdLcUYTZNpVZcD1+jgNxBS8vzTpRWnKoSUn+tCAWGh9R+TMbzxMdkjo5b8KhOyGiCVBgRhX+fqUSbHwaPPRtb0dgL8qGJAtyFwbjEgjZGNIkuPPtBn51n5i751+fW3+PjN7pA2WvMmrsoLsZdC00LkzAXWzyUIJ8LZVPavUSXPWOjPW0iW+XTrfHNywZSwxjqUGqpOYsn7JMNvEaKZS+OFcPLjMjtJuybsO2FrYaUTTPbI9CTYLSXVtFhSDW0er6vgu43yv5C2V/Q7YbXGuTD3CBcGuhOqa+U9kJpN+DHWKRSUUrApN2wMySUMkd2C2H5vGwt07IgWPmuqBeqV9K1JaKucvMLTphlDMBkehx2Mcq0oKsjQW5Z3SNcSh8lfi+uRc7U3LLzWZBxDFmjQFFKq8GHaRXTGp+X6MwR2MaG9Q2xzrMqXZziA/WByIwQuDysr6GqB9mVMvHaw2DejLM/8adiPnlplVYFGxVhRyS/fgnlk9UaibFjML584f3LD3z//R/yyz/6Q97f33l/vIUKuim3zy800sBovoMWvvt8oseNeQg/f9n4+bev/OzbV/7kz1+57YVbEzY70dnhUZky8OK8fnrl8zevfPr8wuvLnXa/Ufc9NnwpsQHnyEDxhH4nRWaQRZP7sTxpXNKcq0TX6Yl+OXCZ3LlwJe5Kjo1wxnlQIh4qChSPLnxgeBEKFS/xjCwImhmqgbA6F445I9tpBBLiiS4EGidoqZe0OMiRYeqW8ht6SZ6FKzoVpjNEeU44Q0mfhEela4wUnkMjP2Tms1AcmtB6BGOKhy2XAk0LtOBZkejnHJOVpyPJw4h1H89BGKxBtpTh8ZHGcFh8jzblaqA8GxD4UJ3hfgUQmkVKeDyx6Qlq6ThsAjOKOFR4pBtbq4FQ6eIYSIxq2t5o9539fqftW7hel5aSfLLwiGfakyyjebhTIr19itIlQg/VBbHCGIFYPefgcXYex8mXL++4O5tW/EWZvvFCoZSGbDsCGaQ58D6ZR+fxPnCN8erzjDFvUQ3Z+tZ4ue98ernz+fWV7z5/w8+++5Zvv/mGT59fgyfUKrOG3D9GmjMI8hoIQ6lpOmcOyxrCFw+lsm+V11tL+XxaEzj0s19RH916EJWZ1NKiMDW5OCb17HSbnDawKtl0KWMoczpC5Tgm9TkwLXSEhw0ePhjuoMrIkag0RTal3Ar22rAiwfuqicxViVUhzt40yfKNWwt7htvWEG2ghWZCH0bvk/n2jp4n9nzi3hkEYXda9OmrGBCE9ZtugxVIYcmLKWVZ6BPNoMc+cdjAZhCJi2e8xBQedDqDJyelt1Au/Zofv9kFyqcNutN6xxQ2QvoYXoItZoZ5PkmVUGfcwjfhGJV9dPqc6N74Zn/hu9dXoGDTOXRBZ8FRMAkPDNkKdRKpqi0W1GtRPt8rn182Xu8b96bcUlfsNhk9OnsrQvEw9vFu0ALC15ed8vqKvn5CtjtTa2QXml1OmqSksdadVnaabvGwozQqjUb1YGVHeqqyI9xEeVGla8lZqlKyk7AxmWcPtcdxRqBXKZRG2tDHBjbdGSN4EWPM3AADURpJkl3QtrvxnDO75CQMSnSHTlhna45+EKFkBKDgmePgVzBeaZUplZkHprvhAV8hraKjhoxZCLKapetG8eAJqXKKcBCW7GPbwiNldp6SHemY0OPwO84bW2/MeQs5dtvQvaVqxZnHQX97ML+888Pf+L94+/FX/PJXf8Af/eqXHMdBPwdD7ojs3O/3+BxaqKNy0x094NkURucX39z42ec7331+4bd//g170zASnB1mZ74LnYGJ8fL6ysunF26vL2z3G+22xyFDyGyLLKJhXAMfJ7M/sf7E+gP6AaNHrkcia8yQ3UbqarnkxiyVggXPQUpgZm4ju+2OD8W6QhsgDtMyUE8wazESTVJsdFxrGJGHeqrktJaUrkrImz1IppLEVfGawYBBmMUH7oGSBFimF5Y3a7iwFkuyu6QHRqkMi+f48BE8HR2UEuPLUtLgbaTBo4dHTyVUSbMqg3DNdIuNehjXqNQskI5VlEuc8pREsYpG+Jy6fORjQRbmRFGSRFEneScehaamG2wgKTnOTTS0nIvQD32EtHYVe0b4XwybTMmglxbRDFpLyKRlucN6WgXEmM1LFKtaK2XbkNbCGXlMqB0daYQ2BfzDFNPGZJyD83HEOqyVfWuYBQLQNmHbY4xj03EtDA9V5OOM/duZnGNQNVKyzDRNH8OvpVAp0ii6UctO2+60rdH2irUtBjA9R4ZmKRWOrx/IgCGlxEgCo3qY+pUr3ywn2elj8jg7zzE4x6TbiALFB7VaWEks9MwXN+MDTSaXiNRc9SucU0nLB48sMfFI117oHoGa+KbIXmivja0pe4Fb5SL3JjOLrSYfSHa2Fmnn274jbUNKo6HUYdQxGJvA0RjvILMHwf9cRF3oHo7aINfY1ekX9+bavzOUbhG2J85JNPB1GtUCjSkeHt1PRhSyRF/w06v0x3/8Rhco9VaR6pRnyQviqAR8iW8fM4VCZD5sStvj4aSE0qMMpbTGy7bxsm04Jeysx/z4QhZyN0vYuYgwIugEHF5q4XWrvGyN297Yq9JKaNzN5mVYVWSi1tAe1vVaAz2pt416u1H3G9riQAwl2yL5LvMppZQtvCi05Uw17JtLmjgvWK240Ijwp22NhNTpKXNWT4b56ExVrI8wrbLVUadEOjdIn2kglKFfngfinIGgaJpYufsKho7S44LCYwSlEmqSCHeLjXipUQpccsJSg+AWJknZqZZAQq7goZJIz9r4cyTh7tF1iNKBk+imLVEQ25I3kXbn2+xUFcbojBmdK8snpMaBpW7M4+B8e+f4/gd+9Qd/xJcff8kvf/UHfP/jj/Q+AJB9Q1tsEqU0VBvShUaBT5NRQH3yW9/e+PbTjW9fd37x+RYeCsXxGSFdnUH1zhRjv+1s+4223yhbSMHDkl6zyFCWgYLPiY/BHP162RjhMzMnzInMcFwOICF8NjR5GFHoxY2XkhyJVO0ECSQTcmdkUuWsKCWxK0kblmHHh+mZX2ORwA1i7EYCI3XZ6DfLfMlw+V3JviWdgt0suCwQKE++L1Gh5edcJnSFyEdRE7pF+qxKug7n2LekWZ8RLsUhU275CvMp3Bgl1E6+iOPrybSsKPiYuC7gTnO0tsZU+afX2BHJZfuTIuWrz7Fmsevw82WZIPREMkLZF8jKB18MRo4nhsRYOeIH4nkRJD9fjvSS6KnMeEY8B7LL6wcPhDZRFiHXGsGZCK5OEOStx7oobvjs4IWiNawXqjA9CoJILQ8E5rQZ4zdxRhZ7MY4TlnRXMq1SJZoN0bi3tVRabYE4I2G+OSyLrkUQXWjgknpngWx+jT2nR4abE6nYY07ej86jd44xGHMgPhCfqcLKfTcpBu5fOZcv9Hmmx5J7FIsWf26r4GT5FeWC8bzxJbLjtCntXtm2wl6FvXhYMLSPtVFVQRouLe0BCnrb0O2G1BBuMIPAWiwCHtUH8ngGqXXTeH9OjrVDcj5XwZroSa7ERMT9KsyiAfVA1j3dcd0zPCRyfTqWrxW98A/JiOebf+QbmINeDH+cHD+SD1eBubEst6WWkNU2pVRwjOIWSIhG+uRdCy8pJzUxtKYywiZOFBmuwr3ERS4qHE0QKXy33/it11d+8ekzP//8XXha1FDcTJv080DOE/pkvzd2VW5uvBTDb5X7L77lu198w7fffeJlr2w1MyVquNR6I8ZTe2V/eeF+e+Vlf2GXSls2xRPK9ITVwoL7Vjde9zvf3F7oWnlqx/uMAkrB5zM8JebJ+f4FTxVPcw/XTJWLn+Az3YcSzsvWLoi0a6ddD9rKr8ldM0YHCz4G0nemqrLV2PDNPqy7b7cb2+1GaRszibQ6g/zn7mGcVmP0YkVzahRmb5F17KG41Px9C5i2tI2hziiD/v6MbsvPcIZU4Tk72zw55sEsk9Zgu4WJGP3kfPyS7//vP+TH//sP+f/+f/4qX378Fd//+EseaWffXl+4376j3XdevvmOrd7YdON8PJj7wT9S7yjf0Yrxi+92Xnflvil3Xa6VzvTKnMZZ4PSQOu8vr9w+fWZ7+Uy9fYrOtrQoJJyMWY+DZhyDfhrP98Hj/eR4nJzvT8bjwB4HHAdynOhx0kaoT8TCIK66IMfMkQQUbZmv00K5g2EzPGZMJNJzNTrOiFoqTKlBhk6ZeMlZepmS6EAcHCsjJs7fQD69SMhKr4N9g3TExDvhRZGE39zkyTGSVqXMQhWnlELR4FShjeGaEfVn/DsxrEI12IcDk7MfjG64p+tzu4c1+F6QEmPOp8ywL1/PADFGhgV3Z7j8Gre5U0pC/OZISYVUyvzDlC0LJI+/w2pKFiJpHoZfyUcJg68cWWbRMmYaq3qaOprx3i2syVFahjoOLwwLZRF94OeIINHnAzGjMhi3jbZtSNsiykCdIYWB0kUutRBjcI4RTqV94L3DOWKfsxF/p1d0OjcpvBTj3oRBDTXTrTGb0Ivz1A/HabQE+TtjPjztClZae7gJ5z5ghtqkzYUm6dUUuWhkd00CvbZAz2yel69LH5ALONQ2WZz0Meh98P2PX3g+D87emb0jFn5HqjUMzqRcqb1FP6pvT7sKKRL8jGk83zpffnjn7Yd3no/OeWYopi/eXqJ+msTd+8b9087Pfv4NL/fG66bcqtM0ChSfwdUJn5XG9B0pGuT/+51yf0H3Hdk21IwyJ7UV5uNBqYKME8GwZ2Wq0QuYFWxKxEuQ5x7zQmuuIi8LPZmRnGwEUjIQKmmKilIRNoSOMYhGkWuF/3ofv9EFyvbNHbXO3k+sCn3CNMVnQWdk7qhIhlkFvFkKUXiMDiVSSW8qUTRo2GcbAXGGhXkkEZsILoWb7mEMRsyt8cnNd+7cuMudm75kcJoyJSDWUhoiB6KDTQpNT2rZqLpBadzanU0bTSJe22cEHk6S6SkGK2l4K9yacq9wE2PzSbGOjHS7Kj2JWwZURBpaNlZ4X0SSJ9LRe8p0leeXH5ltC97NmLHYNTgU06HPyTlOznGmiiGKoTkCQZk+UqItnONIZ1a7SFNuEvC6OE/kcoMszGv2biI4lT5PfIQT4eHCtHDuHT2yZc7Rg5hnML0wqRgbsMWD4/HAQ0QXdA/CKiJBeCyNIUccuDYY3i5l1TlTCOBxCOyyUaaATZ6PA//xe84f/oj+9gPzGWaAe92RWtlfPvP66RO3z68RPSCNRmWMirkx9z3zbpxvbo29GJtMdDwBz401nHNVW4wDBUrZUd2+IjcWJCltcqEaOWKfzjngsIiIP2cQ3mYiYGS+oFoWsomkiQcBb57JIzLCfK3GWiEDJ30YkwkeUQYxdotDpLghWw1564ITPNxJbaavio/cxz+KXDdHRvoypOIO5GoqIZR4qSRO2Wx0qB+MYEkpfcqL+RpK9lz7UYgWaq4Rp2oJbxAUz6ypMc+sbhWrLQpoSfNZCS+ZrLhDSi9czdAaE+T/XWuxkAogSMQrR2LLyTbhykUmL1bAnDmUmQ6ctoxPtDJEQkNnncvtyctXI6F5ecy4pOzVgzw/xwCHeZ7M58F4PJE56BYjz7FNRDbaENrpTI3nY0xDzg5zwOzYPPEZZmzVnN2cPSXNRWAzZzPjDrxIvEYiBm8SsnbIEU4p6fsjgaZpKLhWAb6cqd+eD9qjUDZo1Ri9RiG0wg+lXN4/Y354l4zRI9F9noHw+Yec3URCgeNB3h5np/fODz/+yPE8GD2SyWVGwniMVIL0W1uMzFqL/DVVgluUqJklcnK8dd6/PHl8OXh7e3AcI0WWmss3RQVF2TflZVdeb8q3r43Xl8anvbLXMJDbKtgwZjfOYzKs0GeJ7FEP2wDN9aZFMQ0/nmMrnLPQtxIo8l7xvaUjrzOthuGeRf4a1ygz8HyxVajk2r7+xHNQH4agJUUJLuHds1Cj5Uz2D43MeP98R72wHc+w0D6d2UOFoWPLKleCr5AFSpD3JlaPgL2KcVO5ipRaNEi1tYQbpxmjGCaxMey6YzLT22AgTHbfufnOjRs3ubNpzQLFmTIDZtMK0tkUmm5U2WJMoxt7FigVRXq4tc48fCVha9F4/1sr3KrwUoWbRubCKlBiQw/J4ZxGKH+CQCUIIaEObxYzGGfHx8EAHm9fmLVRa0CCUkKttLT9Y07OedJnj4dPskDJEU/1HmMXhLP33CSi4naXpEeEnb2aYbVgRcKVNWfhqooxKaMxC4hMnj8pUEKCePYzuzdLM6EkEbMRD44AWZDQw3PBg2fhOqHU6A3cmD7SsMzoBqc5x4z0VDz4PbsRAYCPB/72I+PL94zHO/STKoVtu6P7jdunb/n8+TP3b1755tNOo1JnYZ411svcU60VzsGFE2Uw+xEFjASC4FIQaQQdQNAS/h1RoCzJuSbnxyE7TMtRRqRVw7mULTNs/pOiE2CXxZQzfESc9JRnnn6NbUYt6cQcBQozNkb3gRk/LVCye9I+kJIZrR6BbaaS2K4Fl0VC5SIEwoU5MkI9xKUmiI914Htai6/ixNf3c3Vlcl2XpVJKIf41Jg1lSu4JCfi1Upk6USm4ncwxcTtSnaOR7O1cVu6TsAlYDspmH4q1eP6WuZVfPiaRuBtFCvnz5QNkOcbwhMhxCS7OLHEgzOB7TAfL4gSpsVZ8pPomnkHxkmMRhzRGC2QnGh13w2xicwSMf3b6cdIfz5DXzx72CtsENloX2u543QM0MUdHWKrHtQoH1+IWRooON9e4Jha/t2HcBO4KL+IRBi6w52haEhFTFNJfqWhJ2Txggg1n9Mlxnrw93ynvIHVStdO3gp/lw7hOS/L2nLOn269Z+I3MydHP5BMKs4eYYgKHGcPDQXeeB+M8+fHLj/TnETbySa6VMYNYopHyXbZKqcp2r1dExNIsxiitY3NwvHee753j/eTt7cHz2eOZ5EPZpXn+3Fogq6+3wjevlU8vjU+3xl6cWqJAGedknsa7C+eInKrDYj/sxjX+X2aWpsJRlbMqZ1NsK+GEvcV+H8VriQJ8zkVF+ShQnMXk/skZvLaUQqiwLJ2WtQQ/zrxcqirxTPX527g6f9zHb3SBUl+/Q/1Jew+fhn7sjEPwUWjt25hXqoZKpkiGoHnIwnCKFMZ5cKvOve3sGcKHKXezdGGNB39qxUvl01bjYD0r5VS8G/dm3Jpza879Vtn2jbZvGAG5BrfkHT0PXo6Dt9HYjo02In/n9eWF+9a4FQny0hwhTZSCaKEUp22N/bbx+XXnu29e+Nk3L3x+3VGMWkKkFgS0IMidczLM42GdOZ9O58WovifncdCfb2CT77c/YGsbrVaO4wlFMV2ohjBs0ueg21gZZyiSCAohjS6xEfY8bII8GF3QNKJzM+ORbpxbUbYSh0dwApRSCo/+HqnTtXBkETTnZPb4sZ89bO7PzvM44+t5FnJCyLBrQ4pcaaJjQBs5Vx0TO07G+WQcD06plFL4MgL2tufJd8eg3SyQpwUnPwZyTmQY+8sr+6fPlP3G7fPPaS8v3H7xHZ9+/i23Ty98c7uhHfQ0RqnY2ZnPFgWSGrrHvejdeBxnuLuKUm+Kloa2MJYqpdBuO3W/x1w5lWWiEqRVSXlwnGWX30ZoUjLJ2cNDRwgPliZQxZOJvzr5KFJmlyRbhoxeLBJoS3Z6RsDL+OA4T4YpdSrNlGlG2VKKa5NihanRFZonQmFnwDeS992S2zSXVJfkQEXHNX3dP8GnYrMSCqNEYYJpGsohtyiSdPE+gLTu1jLRZskZ0JA+G9y3LUiOZ2ccI6SjI2h/5oKXmp3gx/tjchEx3VL1IVG9GNHFLgTHckwaJM+Q7xdPnxri2cTi/fhMoquDephdrKvuDlMaJD/GBPAScLoKmwq1bIF6IlR3NjycffcWYZ1qGJNhcSj33jnPk+fzyewd7yftHJR6sh9Obc+wPdhvlwJslyiqhREKjzlpSTqu1ekVpgLqbMVoxdiqsJfIqxki9CLsKjRRKknQljB122qjSaVKTZ8bGE94++FkDGHwS77/8s79+40/er3x0gqftkLVEWZ6tVycqOcxwu9nTN6eB8fovB0Hgyj4Zg+31GHO+whS/5gTzifWO4/3L/h54L1T5kRnJFhHs6p4behe0abcPjXqcr/O0WvcuidzDp7vZ5ixHc77l87zGDy6M2ZJjowmn6byet/4/LLz7aed7z7d+Pwav24lYja25oxzMg5DvKOnMqjM5+AYwtshyBabdKkJMjocnvuBVOq+cZ+Tbz7d2GsYh45Z6KfxEOdMP6VSJPhFNj/OkTx/VylWiQiK2x6KqH2rkR4tyiYaZ45ZuJF7cI741a95xv//XR38v+BDpVKkRmiZOrUQvAlVmmyhkddYNFpCnqUS8F+vFe9RwOxKOAhK9OAisbGMZeneKrNEgdK2ioky9kndGi5CaSX4LU0pe6HcKuXWUKkhr61gMvDqbDLYTqVtGWPfSjDRt0KtsYGJc0W/i8cmJjMg+cqHiU9hyX39mhOGB4V8QNJkiigfM9YUBV3doJtxWr/UGzLPgLeTdxNzcgtTojm/Ik1JSPogXD1LmuAt+ajDBQhOsN5jZkqOfmUlsYa0tZTlWzHQMxiMp2cy6JwZVmjMHjPiMHk68Sw4RVPTkV4Vl4uvhZtqcDXAA6tHwvs5ER5hpoHZcYanw5hR8a/PFw1+8I7a/U5pjdunT7x+mwXKd9/w+vmV28uNeyuoRucx94oJkYmhM/Iw2mB6YQzNMVYUFczoILVsEfRYC9J2pG4hv5UlAYfrxPzgEv5EWr/WgS0iXo4wNQnIGVMV6jS37IFy/bmQ5guIxyaKRhT86n9yQhMb2NoFPTM9XK/sGP3qGiogJRigkhyO4KIs4lyQBNf9M4uwd8ujGgmfCF8IzLUaDS8l1wGXC/SatqimbTmgphdJtdWGmbNtWzggW8hUVVMpYaFWuB4vlonXcllefyYXahKb+LpKehFmc2gRKbL5xiQNYIREyzyl+RrX3AkZZ1y+dTXX7OtDrbRk5C5BLtWq6elCSu6dtRukM1KMOGUymMwMQJ2E2aV52DCU4rS5PEmEWs4o+iTcWuErg0SFWhUsjcqK4EWiSFNJX5h1LcLeQCkUCQPAUmoYY4bU5eKmjWmcj0DtpirPs/P2qIzHyb0qj1ZptYfaq2WxZ87jMTj65NknX94PnmPw4/GkxzbHHMqYEbr33jMCYkxkHPjs9Oc79I7MEfJqC48bWyhmKchW0Fa4n426hVMtlvuQg/sTm53394PziDT1I388LVA0RWgpN1VZzVs2cFXYEjlvS9HW/EI0tCoyYz1Pi2yf0ye0dFYvkfKMTKxbmg4KNw0zTF42zjI562TMwqGD2guPpvh0ai3M5Lt4Db7UXGtWInNyLyFvfn1t3G9hWPpyaxELgWIz5cdd6TY5pvzDUaBUrxQqm7foXCQIS16UXVoWKGFmEw9YegSYx3xdA8K9K9wFduDmnmmsSlehq/IUiQKlVdp+w6phQzj7gfUe3ib3it4Leq+Ul0a971BauFSeCpuhB7zUJ7ep7IeiT6VuhT3Th7ct/SzMoRty2GUI5MdEzkkdk+bQEEpC4jKXGZsGzqkBtY0Sfi1dY3zRU9Y2VeJVCl3jEHj6uKpjt7CTNzwUNJDmb1GgZOURR4SFbXmwdKMgDHMfLm6A5MNk/Yxwr2msyXkvXGQ/rXF41bOGB4MK3cPTIdx452VGN0dmdhwnPjpKcBfiOffrvJu2kj8tXB49ChQdSpmKzYJaBSuMDudhaBkcz5PzTBltyj2mJcxeKts3n7ndb3z7s+/49LM/wX5/Yf/8yst9Y99KuJV6kO/YG6Mozxp8ooEx9aDPyimFh5d4n1YQK2xe2eoO2watotsWr7oFkXBJPDQP6BIcjXnd35AujhId9MzDQmqhbJU6nbrBUjkg2SV5ILp5CVFriFXEN0pKU4cTnBe3j0Lpq48VQNbcaWSirBa8pHyxTEqx5IRkGuoM4zSWx85Fzk5eiUeGSxSg4XKJpkQ2S5woHGMNSK4j1RjPYE4xu1RiMoMcrFPYtyDTjxnOtirK8BO85NqNcY4gqS4icRDJx8Av/5BLnZGzek+UqGhIkFeKsSZi5SnpvtD0RBKKCEgLSqIKTSbmFiMiXRVpLgHR8LmpUZRY+rGopTrLHGWGdwmdGP0k90Ei72bKpDPpNhk20RFj2lBQDfY+2Tbltgtb60gxZKFgHiqvvLhx6BnMIvhWsFoYRRkiTAkCsqTKMJyXWoy7y0atW3A6PBatTYMRRYONA6kdnj1CNHflyy1iRT61SisnpVioNPMefHnrPA/j8Rz86v3k2Ts/HA86aZMwC3MGafj9TIXiNIrlGKs/ozjMseMqDxc4MpcAoyr3942tRV5Qcb1EWsaTaZ0f354cHXqH6VuMPjzGtBVhM7nu/1YiD2iv0IrQqrA1Tcl9+GfVfBPaPJA7Fc5pHKfz9I5woiPiHEQMdODHCMftAfdaUGl8/nyj74PRjdGFRxV+GJMfR3B5WmshQ1bBCVuJ3mf67UCryksiJ99+d+fT687ry8bryxZOvqIRMjtnSJpn59EV/s9f84z/9f7a/zs/tuNA5aAdnXkO9uEULyDKSw1DJVGPAqV6JL5qHFByKm0o05SXLdJjP23CboFAO+F+GISqTNXVwlk3DKdvwrnfMNWY7e2Vvil2K/i9Ip8aWrd4boej+6AekxcVXk64vxutTmpztr2w7zHC2doW8uBh1GdIXkeH/uXg/PJkvB3056CfzvGc1+bjJE9FNTrtEqGGlgfWJFJlTcFrgbYh+x2xDqOg9x1pDW0VqVtuyF/D7hbqJSQ37HhoPR/GFX4mOH35pKx/SygaFlQ4xggSr8VhDRZR4NUiyO/UkALqB8ITM9K0OE80xAxGn/Hnc+I+cGDYRM50ZzzCaMiI7BvxGQ3FWdG5UedExgbSmCZ0T9vmt5Pz9aSb0dqGoIy2I5kE/ak6L683fv7zb3n99jNtv7FttzgoFD5maznPJVJcD48ox6dDF+EU5dAafgiu7F4wKUipeK3QWth0lxIji8SvFxkSwGXGywfOCZyIdkRORE5UB1pmPAObUE1pniTbGQX9dW25wIXs+RuQD46GakutB2p1udcG9a1gVJ9sXtjc2IhckloK7FtULy7UYpEpIyt7xTkjbpXgaGQNPEN66uLUlpwWd5qnY6cFGdQ8OFtmYYe/bAW0xohPZ/x5k2j6B1GUCYW2hWR9dw+DqVY5tIZE1D4cdi0lxuIhzSav04c6zWLT9shMsWSHlyXZFSjJt1KVy6QOz7FTFiPhR1Oghh6iIOHKaTPI70Rx6DNaiCLhSB0eR0F4D2DsjOZh5KvUcN5FE4WqlOaUDbRF0TY1+CNikiM3Qxlxj32pY3qgoyW4LRG7kWR6EUxL5LFURbVxaOGdwk0Km2RH7R4o5gjEUDz9TUrES/j0kOTO9Ck6DuYI+GV0xRp4FeZt51krfduo9aBWZ7sJi3T/5Uvn/Tl5e0x++ePJ4+z8+HzPgtZjXyeUQVeAnUdwZsR8rJCB+AheUyK+xPPnI+zj57swU20ZJN9wWw4L/3i2IweLD/k0gfR4oltik+rCJsqmRst7G6+U+OKhRiKKklkiN2cI9DHpx6SfHqKALmFtn8injgFzoMP4VIS9VbTszFvFhtGf8AVhex/UUhg4TSunhlOs7BaFfIkCUIty2yqfXgM1+cXPP/H5087r687LvUXzA18VKMqwyuP49cuO3+gCpc6O6qDMfNkiSEY6aPKu0AzXqsUTBg2res9NrNVIPW1V2TJsy7PqH3nCXmMTDchyaGEspCIRCUuZJFWRVsNMS8jY+lDUbA9ha5Fg2tIyf6vKtkX13VqLTR2CTDpjs5h9pQlbhA5aQJOKU41LSy851lpJvQv6Xz+/TEdiYAulhfKlZl5FizyeUBXYFRoYnhMLXeIqUCBHAklAJKHoNVoivzaeXbk7sjbbOa/NgAz4wgK10ZTeziRprgIFB53EyObiAnjyMJKElSQ5M4kodo9BQJlkQedIbo5YwUdssNH5GiqDfvQYIRlZMAheG2zBG9KbcPt04/7pzu11p7adWlsc4uRhq/kq0X2YCSONxk4Lz4fhXAx4y0IzFu4HGhbS0hwuuCVnLeczeciFNfoA7/lavg0jfi6RkqoZA6B5iAtc6axYciz4+NSWr7meLFnryvNCr/dApMheL72SfkXS8E0dCBv5KEATstEoIH0pWvJTqsc60DwQ1T0jLYJvovZhky+kWRyaBQpXGKQTmVyFq9EnyDs5YwdKq9StBVqzOT3NfC6rF/vwP9E8X5ab5iUkytUe7yILlCVjW5yYfAQ9y2aWJksklXbpa5M3SdCwnJxO85kj2qWHiGdkFXsu9jHy8ggQFB+oaSIo2QxIVlK5zHKiQoJNwf1w8pD2UA0X8CFQIzQPlas5WUoYu37MBGkRZpQ4sZcuhUfOJN2v+WPed0VkeYOEvXoEYIZqEouA1pmj216CazNEgWhEwkAuCpQ+On1Mzj45zh6v47wQ4I8Z6cJF1m7l1whx/a2v//7VtK1CZ3qw0DWt5SuXk3ForfSCXdy++lLrefbYRAOpcarEq2iibyljlo/O4fJPMVl3NVFUC36h9gjm8+5I8QhetHweHTZVburU2kJhVyangbfJoyjvqkEpyPNiLEdqjOJxdpai3PfC6155uTU+3xuf7o3Xe4x6RHPknM9R1xIW+eW6AH/Pj9/oAuXOE/WDt/kFG4MxwX1HxNh15FA0ZMZaHK2epB/QFp0DXmi3ynbbuL9u7B1kgKtdHA2xkEmd2WUawlPgSUx1G2Flb2IRdLY12m2n3e5xwFtllHDDfHlUXnbl06582oS6K5/ujU8vNz6/3vn8cudWdjYpVIFJsMvPOTjG5DSnU+hSOYiNR5O/4MlPuA4zuDb9IB4GuuRaMpW5RYGCo3WntEZtG0X3mHRPu+BnZGJSMI2E3xVdiH/lormcLTNfZWaX7+YMsUwdhm4z5M2zhxzSDbHwMGE6pstd1kgtafzDdBn1Kczg29LHh89KfI2UhGZI1/F2UqZR3ZhbjYeemaoDx0bIi+00XDq1wejw/uXg/b3z6LDdwx9Gbp+onzqbCrdPhW8+7Xz7s1fK62cogcJcDL2eu34krGESEPo54TDnuYi/9sHpkVRrLQdaNLKIRGvyDzw8G7AMS8zNeBjWO352/HzAOJD+gPMdzndkPOOCLJ0uMZ9eUEkUsYFEXMqgXNsmgo5GSze3MTtmHbdO0xmjGbMcxRS8cR0ss1ZUQ1Je1jpZRnzqF89DJIm5RJEmxDNa8r2IBBIRIltnJzdzt1C8mtDFrkJUshKRTYLLpeCDHPUkuidJHE5r8+aNNuLwndMZGlLL2VPyn6iIQxYoa72noeEi61qitFm8FE3OTZH83uKBEvM8dO2CwmO8plGo1PABKZEBQVFneA9VYRYpmp9fk5uwnGiXBYL6oPj8QFk0R2PiH+fyKuI8VDqh6EonVkvytY54GoswS9oCaNoWeHxD5qv4joyrboHKFBMOlC6NWTfcGpSByLik4j48imRSppvjMi2G14mWSKnxdC61JHYXrdRaqVu4q5YazR+xJKkblBlNaHRW9lVxAh/DGuPrj1WAZNze9eu4ZDlizPe4Plu1SbXYZ3YJy/xaPhRKzUP6n0S2n3xtwalZgG6SFhJNIp9rK+xbZVvfGLE/cqFWmlETRLxLol+WHDv1Gl9DJHlNjnhhq0SYYykhyhiTajCexlbDX8vFKK4ZpGo0iUKplhjr1aq8vjS+eQ0H9W9eG68vG/f7RmsVxyOfJxsUNPyWXL++B3/8x290gbKntGwTY8qg4asfQS8rqLXEYFlGm8dBtuBjr2Fhr3taa9foECtOtQyXykUVpFENWFwlUytjsxKVMGlrldY29rav8E60NyiVqoVNK3spvGTw271t3NrObbtxv9/ZaLQ0YvKvSKJjznDEFGGophcC4dAnwZBX1esBvrpfi8cgxi6rv1vm5rFRh0NjhM+VDGsT/ShQxMPq39BIR81KX746eJZbpuhM9UUYCblEJP0oGgqoTLVd3a3wcZsurqSvXnCy9lPwrzaL6NoXkc6cVB1lhzk8VEtHDwjWQyUTAEV2axb5LO6ToR13KC2Kq/f3g8fj5PEc3D8prVXYd/TlTtXB9qrUW4zEKB/f+7VjJaIF4Z1huaFdrpuWqJQUammpQsrAyLpRSuYAaaEsBCW9MmLIHwWGJ0ciXGKD0CdzBKyfjrHL+ZGvCsoA0zzfsl2jEi6kILdtVfroCRNHqqtZIDRzcn3uKRb8l94ZSVbWc3nzCMyWd29m07g6/cWf+jg7nI9rd92yJnmeOtVjpFQzhE5m9LuLoLoKlJX6Kp5gmcfXbXgWX9HAX0DXUvrVQH8UiwLTAzEIN1PPWHq/oHqXr9awJbdELAuUGlbzJTx44GPs6Wq4Bk8nRqQ1CMmUy8hNSQWUKzX5QnG94zCvqtSanXb667s7RQW7soxi3BwcprA8cCm41LwSBWck8rgQlA+3UMlxCP7hGxL/PqAqoVx5TMOFYWGxMLwEEdwLkzDxQ2ugjBoyVPlKkqtIcqIiEDLMwDNzSYOnVHZhVsWr8un1xuu28839hb1VSjX2WxY4ZphUtE28TJ4jEKPn+WBM/2md8tWHEOZiBWgstRnX+y2ECWcUKDGqdjxEDi0iOmrTCB6sadWPBiouoGLpfbO+3tqN/crNClfpGI3WUlJ9GuqgQIgNi0gwxnDmjFiAhK+DpxafCNkqUjwS3b0nJ0WhgZcI0zUvUYxLeO24pm8OH8IAd809Q1MOHWGarZXre4+RjqdiJxKQu40Yj1okeiOSiNev9/Hr/838+F/+l/+Ff/Vf/Vf53d/9XUSE/+F/+B9+8ufuzn/0H/1H/O7v/i73+51//p//5/nf//f//Sd/5zgO/t1/99/lt37rt3h9feVf+9f+Nf7G3/gbf79vJQhE6aVRxQN+knhpsstTy8HaEtd/kFDiIhCWzKrIV9nqx69LwLOe7qj+9UskiZmrO4xF1fLHWipNC1XDdbCiNAl3x1ut7LWxp11zq429bWw1fFRCXhi8jZmvYR7VsshVOQ/i975WbJj8FKIPFF4+5p/ZqQqxOYaxT9pIZ6rxcktUyaIk/QlKqR+vGq9a209+Xq/vX/OahHNsLXopDsqSg4pc6pRo6r/qMNbBujwdYpVdr+CnJL/FP+zQfWaq6Yg5to3lvEh0GabhGTAJCPgYPI/OcXSO58nx7Dyfnec56AaGIltD941y30O6uVWkxlhrwb2+VB2rwLrg/NXh+vp2AgbWCPurrdHaRm1xHbVEzpAuXtGSUCf3QvLGxo92vcQmMi1yR8zi7/6kKJGva6d8Zu16fXA60rrbwuZ7zhGz5Jwn27Um7Sq6zCZzjpATjn5FB8Sv52UgaIlIep6Igl8Osx9PJ7HZZvG/VHhlRUSsH5dTba6pNRUrkYQQB3Tu10U8agVWLMq6Nn4lQQeHK1R/UsJ8K5oP8sdwgdUSXg+x5ku8LoVUuTJeSo31ryu+4au/U1r8+/Xry6tpkc1FLsl00RgDlURNVjFVq2Ygnl6iAM0Ofj2rmi8pjWSiR3FB/OhZAF2zqqshWI2A5735aHAMTTVLiZGOyxXSGs1JPGPT9GpsnOCskFEEP0F7r31ArvtXq9A2Zd+V/Va43Qr3l3a9Xl43Xj/tfPp0i2TwTzc+vf709fp64/V1537fud8arcX+83f7WEXShrKjwb4SqCrXnt6qRsr1Vtg2ZWsRFFub5v0MsnIpuWYvp1m97uUHHrOey8hdWtP3jzWt17N/cfw8CpTLemGO4OrEnDMapfLVQ1Ar0nJ8XzXoBzWUrpYikRi/RYM7VwHKx8u++vl1aqgGSlSzgCqxDxphZHiu0Vo6Dp/ZXHdPDtiv+fH3jaC8vb3xT/1T/xT/9r/9b/Nv/Bv/xt/x53/xL/5F/vP//D/nv/qv/iv+8X/8H+c/+U/+E/7Ff/Ff5P/4P/4PPn/+DMCf+3N/jv/xf/wf+e//+/+eX/ziF/z5P//n+Vf+lX+Fv/JX/krkNPy6b36/U7Ww316wWcK8xm/AhtaWN0qyaicPubXhxebDzEIjn3wh4UD3YJRajG08uR9FolP3whVNftH7JRZaJeDBzWJG7CM2ac6BHxNOR7uwW6NYQU6BQ7CuCCFc92mM82RmOuecJ2OePOfJ6YNTjK6LMGk88WvJd4g8nDGZfUTOjhA5GZnLItNyng9Ez5as/2h4o+Zay5F4coJskofHV0eJgK1cHKKzvHwGPbe1LAALhTbq9TCJTdwLZiMfjCSAisT3ph+dNnx0/YZnPnQiYh4jnfWeNAmBrdQY5yO07RZfM82Ipk8e3ZB5It4xiw5oG40ffviR1083fvjVj3zz7SM+z6aRsNsq0sIu/bCJnmEbLTYuIhtz4HOExbo6XiI9ddfErHwLx8nW8LSt99m43z6ztY19v+FbRWphb9G1tRLESFySCyRfFT8JQGeBaRQ2wsCuy4bpxHTSBIZIWNuLJVXmwrFyQ1pIVvyuZcf2gXLIRV5YALkR7rvDhTNHBbbWnyp+dooFZwAP0VfN5LALSfFAieLea26ES92w5LKrowefCWkjV6imfwWafjTJuY4tH4w+r2p+zki1thHBnAbRQRaieNKPIkHTyl6qEHRxSxQsv0ySB93sWqeSFv4UYsLmHocxgYaJWsqJSaJHyS5j5rOU3Co3VCIGVSRC7rQEf67V2OpakYuHYDPHEICUO6obSOyNeEU8oxLMcau4RUL0Qkw0G75lqAfhnTJSYos2nIq44qmEuQJFzcJ/ZST/4HSsh/oODc6ZyIwiMhVXEosPZjR6VZV6C0L3foPS4nAdt8LMg/bnnz7xut/47v7KfetBkt24kMpST263wdY6c0QzexxP3h4P+hiYBNdOXfAe21tB2LcYr4d54UIlahzIorRtcW+U4ekq3hpSG14Ls8a5YCWezeFgqkiJ9PoVUfF167IM7GY2mKtYi33Zg+MyZ6Rcj844jH4Y82n4WZGRtCKJs41EmbwVrBpSnDni/ro4T3fmiCZhnINxDvrDeJyDt2kcRPNrvvbZCANclgwli88+hWf3QAMfPRSCZ3ABzY3hg/WdukRY47CPJ/Pv9fH3XaD8mT/zZ/gzf+bP/F3/zN35L/6L/4L/8D/8D/nX//V/HYD/+r/+r/nt3/5t/rv/7r/jz/7ZP8v333/Pf/lf/pf8N//Nf8O/8C/8CwD8t//tf8uf+lN/iv/pf/qf+Jf/5X/5134voi0IsG0LRnqbuMWDEzivZquo2YzHhmJ5oaPp9Jgxz5StWkjhzCLgacxgLq8fi02mhXFZHIwf3aNfnWxA68y8OWNgmecwz4GdM8hLM/kuZxCbrFs6rgJLOUDAxailKmeNp+z6OUA3u4Kapsc4IXbshPklioHrvdki0X2oCb5+Lav4rE6IQuQDzg4I0K/fD27LWgf5Y64JIImLheKV0to1hmIWzGfKmSUgZ1tFzvy4BuT9S5LZQoYWudQswOrVAspShKSfxMpkivc16R739xgDGWQtJREvoMZxPDiOJ+fxiFgEH8FjarEJUHIGbKS6I/kxyVOIM1aiY7EgFLdWuYlRZnAwcP0w+jLFR2Xfd2prQbhNGCCQqCS2UonY9/xWLR0tJNQ/yy04/qsUr4SH6YKSc3zhM0nLfIx/+Cg2/OOuXwd91J95r3GWxXpe8eisvTBds9gI34jh4Y2CyVrKubT8Ukx/+Plcu8l18As5QlyNp2VhJl/5vCDXj6lpu0Y+a03G4+BpqR8xBzZz7cxEjYIGdV2D1ezK9cWJAxr/IIl+wA188HryeiZHxVmBbIsErBfCdhUscerlaHe9gzCMnJbxFZJdd5LSA9X8QIoCjdJAktWTR1KyCSioFdwSNZnJAZkSr+RIrK/viyTrJDrijEVudYn4AwEfQWBf+2AowkiHvZhFSMwjIr2dRdYOAufixcTXi4upIrQSiOsG1K1AFfRWIn+rCFsr7FsJFWRzWnVak9yTnb2FAnJvxt7SS6TEyHQGJPYxOtUPPg26eDkfeG3S637yPKwxiOe/MQ0Sr6SqLdCOHM17cod+wj+RvMOZGk+svfU8iawB2CrK8z3m3N7XYp0z3L+d+F6WT0uSaK8mc60tgzPPiTkn5zE5j8F4GscxeQ4Lu/t8r4uYPZaRoIGMuG9nd/RItFUHZcQ5jMR9mIzrOTYJOfz4KeXnj/34B8pB+Wt/7a/xe7/3e/xL/9K/dP3evu/8c//cP8df/st/mT/7Z/8sf+Wv/BV67z/5O7/7u7/LP/FP/BP85b/8l/+uBcpxHBzHcf36hx9+AEDKRqlQ9506hLINfG6YtyhQZMFSYcQb1V+oO/KeMmbYG/cxowNYBco0xhz0LEz6GPQ50dFDMpaeAW6RTbJUKV+PFuLkc+w8mMfBOA7GszOOyTwMGSAd/JjMfPlcxQUhjhVDdYb3QDFM18uZJfgXDpxmkVZpykgY/SpOLBZJFCYhNRMb+WdJRLWvCpSvkJGPE0MWO/BScoBfyiBPiA+4CI/5q6sLUWvhGGnOlZSaRNExSxSPy7F0FSySPBwsR1X+UcC4Z3jczGIz3nscUDWOqhKwvKY1tRObaZ8BQz7OjozFvYDmFZfB83jn+XznfLxj/YnYHW0xm1ZdMHcQAzU74w/Pi1SKlNgsVAQpxo1QlG3TGAbuFfeJbS0Pi8LWIgW5be2CY1utlKAwxfW0lF5YkkIl5u0uFrJGsShOvn55MA0KQXjTRGG+Hv8s/GldRVmb7zp4iYM6yNiexdBaLQn7U5jEuOAqOswpc8aBkNcHD/xFv5o1fUXtzrr4Q0uxrORFwFQuf54LRZM1foi/u/bA5afiLh9W+T2LE4/5/TBnDmOM2ISH5eb9VaGxljIJeUfzY6xD5sLuZBFmP76nVUyvjVk8PVSyiLavDpCPQ2Rclc+YI9Nwg9dCWX4peo2komkOfxUTo6wkaCIyw63gU/GZ0h0TQvQlgXKMdPOdOX6TdUAZ5tktm1M8yb55/cUdXQ7Va/+zbBXGgFGRPuI1OlokBPdlotnZkwTfKCxiH1El+HwSqGPdC9KUsmt4cqiw7zVJpIXbBq04NbOjphm3OpnNOVvhVgvPqjF615qZQOVaccnSDeBcomBZPLm1p0HwRMyvWjJk3SFVSz6TY0u/aOCzM+fgyBHHXJXyVe5YoiySij5yfeWeKWHIqfjl9iwh2YnCZKkeza4CKwQRIfv+eowWgZSg5jzNUDeex+R4Do5nZz6N89l59MGZo3MXC32Ux7jY1yuxHy1RnNQBT+tomyE+EUlV2UzUOoq+0oRpH8/H3+vjH2iB8nu/93sA/PZv//ZPfv+3f/u3+et//a9ff2fbNn72s5/9HX9n/fu//eM//U//U/7j//g//jt+f2vKXgv71pjDqTv4KAmVfpCG3DWkujNaNVveIqczOtRz0NtknjMOPHPmOTjPzHx59LCPH0bZO0ZhHJNxTrwbUyxUIOdEj0nZJuUYqEnwIZ4Pxts74+2N/uXB+PLA3g/KaZR64F++wI9f4O2NcvaMtAlyUxHYVdi3xrZtlLZT2g3dbmi7BXN7jpj1Tg0nUhOqCc2UzYXN4jAwM9o02py0Oam+NtXFNakZYZ4md8j1I+5XdyQsGV18iEBt9SpovPeUDkfh46tDroHy1K1nIRfmb3NO+uiMeSSP4czvaXLOfiWCThlJfvMcszkmwY0YDCRh7RgHNHDNzjsUTFIqNgfDnGcXnge8PT2M7iw2qCkDKQR68ninv32hnk9us7O1nVYqbW4woJigI1Ag0Guui4K0AslJkRpdu5ZCG3ENmukF7/rMAmukzb2UrHI8Jikld0QVloFYXOgorMzqhzmYbVlnzoDuPd+bkPLUgUnHOTFGHETiDBkMMU4+Nsl0FaF6oEAqkkVRdI8qMTorApgyZzib6hS0BMlwM2PP7qrVOCAlstipISoL/kgWQ3UdCNmkr8Ofi9CbpGgLZc3IHxdqaB6Xa7kwzxlQ9pgSr0F2++G1cXbnmM7zNB6ncU7nYZPTje7O0cMUsPfYK8zyuqeSQ+SjqPqgHyUXSaLEiyA2v7xPvu5o/RoRSUI3kRLrZglOShYn8SyJBnF2I3JrmijNNca1C+3wLF6yjrLw/Gd4BPRFgZTmhxYHaCA08xrrxpgvGpBRo9AP9FQprtSZBa4Z9PQruSzRQ+mjc1BmZxudNjvb7FQKsxg0Z1ZnVuNgZkTHZPYoEqqC11Dg1Ka0e3ACZU9vKhXuLxv328bLa+OlFWpxiiqeiNhxJJn0dF72ynE09laDeKqO5/HnpJmhr/WoqHgW2jGmL+nmuxDhpTi6CuYmaYaYqB6R9eU+mYyQlEs0N/MnsFuicSKYKFMKVmpYGqSbtJQkNWuJtaWNCC1Y9gLRBIRyPLOeNO344yENdDE5azqc3ic2Bj++PXl7e/J4P5iHMc/JeIzM5HKaRrHn5tSeyOM0NoNmE5MRDV6Z+HPkODPR8bQ2WCRfUaVueiFTv87H/yMqnr/dYTKkgn/8m/rj/s5/8B/8B/x7/96/d/36hx9+4E/9qT+VjbmHP0c2BkvS7gtnX1BvdjJIECWjEiRt0HNmvjgMF9Eyclt8LpJlWAVHV0+gCbnJkPNz+QrGliXZGxPvAzvj5T0KmzIdHYacA86OnCc6Z4Z7rULAqRoZDCs8ThLalZKyYfkKwrYFBSak76uvJR4yvn6lpwNfzdllkQIXiU0T2gdZev7VdOTPLxlZHiipFVz/iNVaimi43yJZ/Rs2lDlHdNbDsKnpaBAPmkEqUWbC9bHJ6xr9qKf80DErgCdRsrJMqVhwrmbnuA6MRM9kJsFUI16g26T3Qe+dcZwRpOYzyHKiNErA24BYzGQTXM/RVGIAKwgxL5qUNLczUL/i8sI/x8J981I2SBIz5eOVV/2rVxKpr58vQ/Wvfp7S8gVnr0/0cdx/dK/TZ8zLPVECDxPAIMPm1za/PCrm9AUqMPK7Pjvpf+JYn9d1L2eYaRQPLxOZglXHFiF1yahFEF1F0AcSdyEUefivlNoouhYHhqsYduL5myl4srxP8SJHPEThO0JOvCTFw9PtNzvxab4mt1c8QBQn6yHg44t6FlS5/n2hfhJF1Yd8JO+Dy/U9rucWzwJlPWwrBMU/7nRQXH96t9Xj68XqyJJPfoqGxTXk43191RVfFRbxnLGKRIkDbhDcJcnx+OrmZeUS+Uyy+jKPydHDNDSJ22uI6BK8hVDdRVinm1Omh+LKEjFT+SBFt+RVpOyqtkLd4tWaEObTYdEuWIxG1Whpxd6S2LkEALLGbOt+SBQKkWeUSEpyo4rk/Vlk1Sw2FotAlhQs/61DypA/5MiSRf0a+a01Irl+fI298/VhF/FRtX/sMetc+/q+5TjnJ5+H676HuMwzzsEYffI4Ju/PwfujM4/gCdmIe7FGr0v9RnLLVu85hYvHYjP208AGUjgijsqk1hoOuKWGvcPfhzbnH2iB8ju/8ztAoCR/8k/+yev3f//3f/9CVX7nd36H8zz55S9/+RMU5fd///f5Z//Zf/bv+nn3fWff97/j9yNNeCCa4xSNhW8Jz62157aMsOI3FlXkJw/oSnS9CpSUyOYOF6Q/z+ovV6VGWnBMaCtCRb1QvKAW0L+bI33iZ8eOznwO7GnI4bQpaHfKY6BvB/J+UPsZC6zGpq8YVYyqg6ITFYsDuChaw8chiH5+ObWKRVScyqDIoEgHlCJnJOh6R71T1MJZ1uMBk58oF7joO3ERPw6169dfNQGu8YDFgZvXWEjzMSA3NtypRYN/Y4J1Y87gfYgUAuFVopeLkZsnjKr5EIsmRLpMvHzlv4QJuapSaliYX3isrIPT0pNkhLfMGbNx3JECnjG/78+Dx/uT97cH84wAR6pQSSSm59ZmhIEVBBGyrC47C3UB0dgwtSbR2EAoH4gTnoel5NgnJIUqS13yVYHiqyqM4gRio+bj4C0AAQAASURBVF2ScVtycWkUbRSZFN1QDXvypN0RWSdr5Pnh3Dksx9oe5DwnC2Mr4Ylifkn0JTs2E0Wy2I92FBjQPDrzmYTPWZXIXxCsgFTwGhKbUvW6TyFDTSSK3Gz52NQ9uV/LDDCyh/KVm/WSyM75UVjMKdiMUU8oumKTHt0ZpzHOLFoDW6JjYYw4lq+O5Eg1Rlyx1oIPc92ejyolH5BEWzz2kJ98yMdBs04QseVi2i8DxFA6hVNvQageRo6FsEK4CO7rHGORehPl+NqNzXLGZv4x8prkwWN8HIlXpRPcpnyLIysWNWBk0dHjGYoojB4dtxCoyphwTugD6cHLczdcBq4D087M4EGbigxl0ygiRTOiZFPqruimsK3iXdj2wrbXiAlpEZqoHq7IZRhbGYwKWw1vj62mbFcjiiLo6lEgiWapsJBKFn9D496tW5aoWUQMBFLoSjh3h90rY3ksXcU0rCBTTZK+rwKWZeVwDVSvImNxUDS7T/d1NmWBMP3jLLNcb7669I9GaRWlczoyDOmTfgb35Mt758cvJ29fTqzH3qQz/II0UVTLQnuR/q76E8KlfMY49CkjjPTSiwqBIkZrlqNI2Eb5e4IVX3/8Ay1Q/rF/7B/jd37nd/hLf+kv8U//0/80AOd58j//z/8z/9l/9p8B8M/8M/8MrTX+0l/6S/yb/+a/CcDf/Jt/k//tf/vf+It/8S/+/X3BhPoW5D9JAulVF+dVyko4up54qebmr3w8zCop5/RLUquLbCYjP1VQzxWQuoF5eIakTLDWGtLi0mhF8yZWGoWKUg02F3ZPOFwKuyn7hH04N1ucC6eng6Kn3HhxRAqRHrm6J1ty02T3rcJrSUHNZm7elqTTD8fJ6/8zht2GMsvS1XPZFYejZBxiiaWEIWAqo8aCS4VgyNuHZDWKe7nUF8tlTWxeEupunWE9Za3HJW3tNrKLTf8Q/4DSIdEs9eCaZIEiWr7KrJkfKE80SaS9yCUdNxIxw/Hh+Anvz86XR+ft/eR5dHof3D2za0pwQhwgu3TznP2u7X29yWsODKppL6/59xbzjuhEXcAs40fxC9FSrVyfOk6yXP8aRdqCclN66kviXStzyb6rUSeUmuqJC3WM+xlPT3jXjCxQVuekw6BE2mxxEkEJvkLJQmkSz9hIzpAYoJp8HGGUgnqJ2sXirY/pFCsZbJcIVxoHxSb91bN+cWW+grM9AdOLCLh4KvlzX+okvwq4ZSb/9eclD521N5AE7cVfWWTsD6dbvbZ/WIfLhXd89fsfu5CS5Op17mcnfnFl5OPffy2zFyL2IeVWKafmKl6DFJtPQx5YF5UsDy3NglZlwczr2EkJsMvHi1VYr+ux3k8cuqFsySIwjz/xFAnkqHIdYL7COC1I4JbGbEFInj95rsUzvmAh0XnNLol3xpbIytnSbKZqCdfuFntiFOmGYbEX1/kTa4No7D+u72IurYLzJ6jlKhpkrZr1X8m19PGc+0UeXnf8J3c+Cofr716YRjQuuTZULF9+vUSisSiqmOaIcEEbV0kT9Peoi+N9WL4nzV9/PEzy0/+cn1xzIZ7XmiP8VjXWUxHq9OvbWQGBW1WGhuLH1/NzretAwudX1yGK+/8HEZQvX77wV//qX71+/df+2l/jf/1f/1d+/vOf84/+o/8of+7P/Tn+wl/4C/zpP/2n+dN/+k/zF/7CX+Dl5YV/69/6twD49ttv+Xf+nX+HP//n/zy/+MUv+PnPf86//+//+/yT/+Q/eal6fu2Pr++9rI5+HV1rNvzR21ybEZnaeqFyX3UcEjdtFSsfHhQLMlVIXoYsO2rPCvFi1StFNOfAekGxxclZMTTPrc6FzaFNqBFHk/vA2nhyp1lz7dyoC2SGB/kPPr5FzyJlFQnTZqAZlkQ0/4pNvqr8LBZsdTKSSolM5jT3y8uCtSH7WpSCybwQlT6DPGw++f+R9z+htm7LWTj8VI3xzrX2OTcmv5gPYuAKNmypRINow84NtqJoRwlBwWAjHVuioqYhBjs2RQK200lfxJaiQdshKKidKAEb4scHX7z3nr3WnO87RtXXeKpqjLnPifdc+GwcnIf3rL3XXmvO988YVU9VPfXU9HSmQBJJfSY5l0Qv6rsMDDs/ASv8vm+6GZUh5zvxv8KhCQbasjKQshMSiYelacF/zuyaBZtRp+FxTR5nTE6mTHFFTxJlGTSCGkAqRZunWGyDtHyaXSuWXioiZAItDQOTkruZEma5LZfy3NZ03AmVIqJxzUqtx9Y0NGsmtBmaMt3aWmTjaLGBIJJXyWQ7l2HUGkMAPIv7aRGaSawtQXSFxLqSBkw1zDZjivUmze2pVBv1cU13TSJtodD4TE8EkK8K8Ld9LgBK32etEz4D29aHYHXlyPqpMrCOnKa7IlBf2Q7B+oSsqezPY4Mq+6do/fs6P326LH86tiw9HY3K+p6gskTIaNyfS1G5xdP1JEBDWMCCfL4d6WMTPNf62MDX5uBlO7LDowIIB8HJ1vmTlaQn3hBibMZ2+cE7LYCQ9QaPLCoCpKC0aTLjoOVwqVicNlw2sJWG8hmkQNIn8PnVx9Yz438L6ErZz32+zg5cV1Eu795X3bskjG/AJEBTfS/K2OoJTPP5ZIYx3slllTPzEmXtl1yBz1e01lhlbYT8x9aYycSkgFyWzV9C0+qlaYHlaIaEgd387gm8gwguDOJ8O5Mf9PqhAcpv/uZv4md/9mfr78kN+cVf/EX82q/9Gv7u3/27eH9/x9/4G38Dv/u7v4s//af/NP7Vv/pXpYECAP/kn/wT9N7x8z//83h/f8ef/bN/Fr/2a7/2Q2mgAKAQUXdyMVoLZcYg4SiRSy4i7pwBjn4MuW9suqoS3IV4+C2N++wc065Esxoy8fz3BmuN0u9CIaUuJKh1JYHNQQR5OHCY47gGbtfAyxi4iUCn4RjGiaHXRIsc+2woQuKU2NhkXzHNK8J5PU6SZ5ahfCLaJh3ndeE8LzzOE66dfx+DHUvTgmDImvEYV4BsAoEEKJmO43tyFhCw6uAO+t42WwGUMUal4Ver9LZFk/AXgmo5qfi6SI49rweuQfKszRmGz7YGo43rkYhFNNpw6aSfYtnYxC1TZgk4RQFlNDlB7oFNwNXxdhreHgMf7xfeH5zjgclMgocwkRiA7mjT2PmVznYLpDzSxSIZQQfoTAucKfwZvBon2x4JnleaD6lDUzeiLAsBCQUHhYTV0Mjw2XD0jqNPTHMcxw23AVyH4xpM3/fZoNPDuBuvi2cJEbZejyCdt/g+nAP4IJH5dU7eHgiV3ACCUxWjkedhcGpDzMhKCAW9ejnTNObBqtieYxKt+MwTnO45ikShzvtlKMeKXLEhOCih8pq/VpkCiSnLlZrXIuQyrZ4cjyhxCWPEVeuP9V2OJ55tAHPN8hO82uCtcii5lpcLg4AdO+HYGVRR0bMCC6bv4plMZFXlmo4BxucSXJEWblWFWYbdQZWDSyelHA/CLbLEKlvaS6QuTfAqwEzK0/kHUMgb7ZKdb4h5VDxGBG4JairTYBakX4+BqPxZnm3OP1NYD7VeATI7pu5FYk1tImaZQ/5hjPDbAVDcYg1oXIeUdECuwhK0BINOcYrScTsI918A7OQAeuvUZGqkCoiSe8MsoOcjrqwmXZmEz4m4hnprSKg5Qo2b5FOA2ke6lX+Y1fXoSCXYjWaFBKvOo22HRcalqVBFXYFbZ/QvKrgNlsLUgNfg9NwOxZXgJJ6buXMKvSAqGj2ASSgP/5/MoHznO99ZTuErXiKCX/mVX8Gv/Mqv/J4/8/r6il/91V/Fr/7qr/6wH//8WQiiWGYslIvWjUxqwQ7lk3gWTnMr3mW/fxpA/loi4yCAmVWdlgwxWqRU9EzeSpFrs13PJlvwxoCPC35dwLjYcqeADkW7Tsh5AucZ+sWTfaozHVG8t2+ttrzZoJGr8uCKisDaPAWHg8CWk1DzJwUBRJ7JWYge+u2hVnRZJDFkeh1l0NK8SkYgyKhiRSQAGPHAwLqGQsCZLqqNnB20LbrYoXjWblcEm7GARjSxDK4/GTt4Pu7sAomyjIXYl1GICuKQycmg55h4XFRCHJOkyeXVONfCK5mZxg741NgvcTshMAPAYm8ADxe6kglY6DF4hcYrIlurXup+VOpwSw+xlh5mNbI02vIrqHCZhwt6F7TB7gy1ShjDnUb5+T8k/RJ14bHuohEqIjcSjmep9y6yqukqnaQcmKFVptLjWkrAzDPOra0Wv+/PejjApoKJpPsESfETEnOcI/Yj9/HT97fsJT8gInms8DqySJAn9xw3ZkXMW20yd0o9z+f18ww+wwSQ15aPujKsy8YliKcdyntnkQ6zeFup/VLvlWAY8bwjo0xCPoIAqlu0vtbivgv37OG+J8jy2LJzgpVt1C3zKFLEaM+Llu3eRtrb48RNhCKATUrZmxx8apJUPJOPAWE75yrp7hlq5DM1X/c4niH/qUZ5InIJ+XgCFuUezG07w5ZGYKEMfhYfPABQ/FrSDHbF4jX8NdGWLjLtnn/L5z4R/mf5o7oLJJdFm3Ks95g668PIeoVEE8YKhLNkeihi6CQVdg+NCeHxCRx3tDYrfSgoemhxulY362u9vtGzeLLM0WTJpmssZJeMvcKpeTwwpCT6kkbPvGOy7YG0V5+ClBRj4yORNGbJbp6bYNGcdIAzuR0XpcKvC36dkIvtxKoKvR6Q6wFcD+C64LcDPhtbcREcC7OI5DZ+jayUbIGTcNTcwAQp5hbGY4GT3PhUc836/4LsHESHlQrXiGJ0ryjmZwGqHYh3VwEioQ/JcFwZnVADg3VVIoYBkckadSjyqkwsfr2UicutUIFxbvIAUAjwhEh9ez1/qQ1jMyTvDUF61NB5CPUCIW66puG6Bs7zwjVH8YFYCsg6UX7CGmiY+ixFuBOhYmz8pKQ587x3UfqBsK14hkFOHsbmoV02a4DtKyoPSGixgRMaHFmKqCoRpVE0qXkQEQOstCllQzyev+6H88yAPTpeWMl8i6TMGbDmoRK6NVL5S8uYXHoZ3YxZny41wOkTGPnSQRBiSKVPq+pnaqFY7m34+u8TO0CQkhe1gEuRBLMMtfL/T475KwFKpO2fH53H9X7yu4k5Y5MVVtUtvyTbHgzw49EOSkyVwYGS/JrdfdgAiay7nZo05YAj8OBSz/po7cBad/VaWGt7bgueWASGFiUa068CJ/HMZbtn4lHGCVukK5gqUKJrLppb2v+dybMeRXZw+QxfEJxFsnIJPheaSSAYdqZ2WuX4ohU/eBZBYKFD9/o76vp0ga5wVIrs1sTapy3BScxk0u0wq4WRJcfqwppWhGe2r9EvSQal2XVliGySxe8YR4JMXkPREqIiIKDdOBKnglzlLoiBttwaRY3JppME7Omz0oSvpOEPfH2zAYqQ2X6AF3IEUXCAqS0adxpFtoIeyPJAWmnOJ1iL2sLHGyjmNOe15OKviXkOwJgipRBRgJJpGMNK9O0ck8h+Dpw2cPnA8AF3mmZVw00nVAa6PdDGAxoABWPAeyOwCdIhMzATcyx0nBXR1WgY7PJI/0lvwNHgt5g/7w16KNrBGR63owcGd9xePsNxu+F23HDcblEmwUopAyXGlBuqb4CoHR05Tfa8rtBYoOy1g0aOpGNmC2DG1uHrgs2Bq19QOTi0zzrgJwQD0zm9l8nwuTJdASY5lNciU8GVT5DCc6a9IbSYBsyLmjU2GG0gMyguNZFWYLjmwCOO00Fhp8hEaOZkzQMltyCO4imaS/0Vqho7Vu3EABsoi6paEZxGSLbEvjaDacDq+wyOhDvc2xa4dEwYpvSYPh1KtQogJnprM2gz9DbQ3dCnoXfD4YajRWQZ/piZSaZ7uwDNCVQ8sh0KnlMK1yHAKUDpe8rfK67Q4BjWMIwrd4pgWsMIhVMLgKk5hDCE0Hjpi7/wnPSQAii7h0ySaIF6T+Lv+nl2J8Q07XREFuWBOJovyzsDgKPKIyhwXI9LMq8QuYUIIoR/WQuzfnixABIUuvkTr46fQ4IoHQcJiinSxjXuQUbkLxxRazSX4D4tXoOkowk112wYCIps3D8CCZnMMooIMEkSF2cw3mppSkX3lK2PIEIcLkmInbGXmX2SaC/PTJ7WoWjd0A7HcRPOu4lWYrk1WG+c3I5AaPEZjrjWyA6YVSgW+2I9dyYSsjvFn0BJlXScXMFl6xBCh4YOC/K3xqV7xRwJgsxB8b9oX5+DYN1JuApwDyQCXfIRWjOetHeUQqNqDZekJRwBujNIZhaI4CO6q7LH3leJS83QQsuk2YTOCY0Bo21yxMDNBa+iuKnig4YEoxte2spqv6rRJqgVMDnc0I0DdpslQLHK/Kkpuy2z3exrvL7RACUz5FwsZB+XhLpmiSEFvgUcSc4HlZ0ePGT1sQeK9kB/2T2ztyRTC8K3FZlf5DngQm6ObbOEDeE5O/vDMSE+SoIeO7G0IGemnpHBRQY161UBXVwPp4oRiEmg8hbDq2J4HyVPJTo9bujHDf14CUcZfA4RggIlQMlUcAOQJYTWe214l4ZpnKabZTMJ8rCKQqk5DrHJ9L42RrfdABNcOimklBHSViNGZSEYL3vujuUT6sX4kfeFnTpeMue7/kOWzMr3Cwmc01nzLq59acPIuvkSi/DT8DZ/BpELyLVSLMbUQI3sSkTaq9KWUdgWA1ZIuF+oBDgK+XkJmWvdj9gPTaITAtURsToHeEgQZ5l+jtITNPIdJBuyhTCcsmdcya/ZVr4mh4dDsMomY8wAKDELx5oUGZvbaota5fnS97A4M4bZXYM4H4/Id5Vq6vZWRiWzJ08p/i0CZFdJcNTCmVHCPMpHeeQyQJZsYk/kCtxBicTz8uR2xVoK7+bCrFRmyryufP16gos1HFGe1gW/SEwzDm5BZSCeluXqDJN1qqnB6/l+Dog1ZOeIWe68WL21NKXSOgn0EilaltGjrFIZnLyGzDrIyvQ15UTf1hVHJx9QmuDSnP8kVfpZ+8OLp7cLYtfakLQeq8z3qQFNcJWAjp1i+eyj4wZs904CKxusVm9klpGosZOHl2kXF7CHapXE6inHPUAAlszWZkY2y/GOzAYutF6q0J+i+A2ESR1xk6pZwYBIIqkbOY7i6JpcGUOrzqIYuilU1s1uOnUrDaQ6hDaP2a/8zP9rAIpGZwJ5KL0p3Ngzo5apbgW8RZdEpsAlOhsa3LS0P6o2lr9aFi1ATWEFbrxqm0XUtp/a9aSQ/j4zZAUbgh7EKPGFYhFOHfCYbbO21DK6PLUa5peRQxhmon6BtA7pBwcnikDNoL2jd04XvrUWRFfF7faK4/aC2wsPZk6YBZAEKCFlnUzvJmEkCqAw8kI7S1dDLJCUNg7cE4H6LCdt2jEHdVpsAvCG3g05cZifPyE6I+qgE80/VykEa5PTZtG4tnA4qa4KSzluGswZHUIGpio9vEBKT18umEIQVYB2t/RKAtxy/BH1VkoYiy+QowZsgJKZsSh6B2FlOC7ZWkiBsLZ74TZcovhGa4gUd5C4XTu8dUZfkSkUk0joMIsioY2iMtFksrQmq7+j8nIuy1ADUMn6fWBXAB7CcwK21ieJdhig03FNOtY+8pkwQu1Zni1SYOyz7HiKDIOIrGtNp1NQIf8qtWcz5Z21eWSLevxYghP38RxRTIGYxawiRptwistxWTkzPRlohPN7gozLcyJ/0OvPePp+2qhMADLw2RzXFtkLUiVZqPkR5OjMoEhwkaQJvBRjQXGzLtVaTx3Fne+QAIZ2jbjCqpQiNpF8h9YqSbFASqEbXTwDQdzfLHlT66SuQ3kNXZMPk9yY4D80trjeDmZQ2tE4LLC1CMQS3ISrzjUR6t17hCj5TCJ4ZSfZGoewILYESGM5Ox26wjlGRCRGRkyOvBBZUycikwPP0qZhXAPjujBPDlH0cAIS52VxHVvxGglaU3m1eGUSgVIQjQucwGLdR0k9gJMhn2Wi8wVcdnDiSUeYM7LRgEIDoJBnIm5QMxziSCJ5AhTq8GTWKUC9GWSigiuJEreLUmX4/5YMSqZPsjzXlGnjKr8CK0WKNBMpfpX95llRj2Wi673TIZHF7jTuPXRQhN/3xqmmUvPd28paNAGQljeittQhkdDihgA+1iyf5LUI1sLKpRvRlkc0n9EyJZKVA70gq17ZKJOM3pmOnxaj1zn2vStnUbgoWjvQ+gFtN2i7bY6BYZbA4U6+RtWvw5lLgCF1blQ1r1hDImqRxnoqhxYCGV3tER0knccO/r/MPchuhwJugeytyLnpvrx+FuDGnGbM7EQWhYz3GF+OSQwhwCmGx2V4nIbHAC4LnkcBkzDGzSDGWnI+YwUNVF2E0tgxjTAAuwKgpLdIQ1QL9ZPYKo9tY2sAU4mnI+y+kd7BrEeHDooHymwQj6NHWbMp2wfm5l0D4Obnke+06txQljM8rb5OrkUXdvHkLrJJYz1WRmj0GYYvxPWEQKUp95V2bofsbCCv0CtBxfUX55KZKVH+TN6vBOjONyCYWVHk/h9iL6YwmnjoGUF4DqHTIzYZ+EU63bb1lcjk2dxu4KR+KsFnFlRj31QkRKND385I3XyVSpJv0uB1pAp0clCYTUwYEdmJIDRKl5jrpNScaSzbamM5WNOGSpS3tui+Vp3s1ybbNYdNEl0E5djHBDL+ieaJF5ClomtDiwncyYPLDJ+2rZsy9H0kuucqkxDO+2nH5COvO7PrZzOAnAkCfb8qFCDJ+8qhf1GCCaBObl2012rQAiRtmhevw6ctBXIzUBUzgXZk5ZCZl1izmQ3G88Xk7zgMM4UKnbxIlj7nWtnxP9+O9CFZvn2+WXmt9C4JTG4tdPFobghWAkD1yHK1FsEqIqtnyQtd9os0eNlYco6v+/pmAxSEkUKKMDmSk7HoXvnnxPvPmyzcMBK5lqDXxp7WEMNirTZT+qwFuyoNQXnaHQ5tRC1/3jgRAyC8GlLNtkoOiXafsPVaIGxn2xA2kr6VS3EJX5VsfaVUo1kuN7foaqHbIpmMVAAp0um6Z5sZljTB23PJO5wgpK66gHVsmE8MxPYz+159/p31+WnyDQvopKGpElBu3XBI2DqyGEFEK2l2ZxhFxMZ0jBGzXp7IydvXTMlCIj0aROEqGUTKuIrTmU7NMp6UgXiKsBHfqz/yhuQciwR+DkSmLe5IE5RiaJLtWgCSnQhdkZnV++Qn1jq1NHjGcpsrvIgHBKxcvLIZPgvtGwtjOyGquMaECKXHNcAOCbpKXZYu5EN4GjCBWmjDxJYj4OS1bvxcxBLGCqQ3ULIZ+PUVT8Z725SxzvZnhvUcUY/8eY3nnfv08W2v2iE7Gk+b4bJ9K2P59f4sMURkLSvjkBWagG9bxklrTyoknr+ELYj16ru9W1YwrWatiFybFSztNmhthbo7ZQMTBkZmObhevi3pFAd7BnTLFj9pU+Xtyn23L4BcDx62LzIleT71kYIvkWcJfNfDX7ZttRd/yarnuWhmO4AUc5u5nmqfJy1g+9BPn3/d9AyK9/JO+pHtfu5+5Uv/53VsVq/sbMUe+dsbVqlbIEk/WBkuBgv8M6LluOXzQXaWrdLdvk+q2l3PHD/U65sNUGaDXAodHToAnQ06X2DzgM7XYE2zxMOIucGlRfrzFYIRi1Ah8grgBpHGBdcHeu84DsPLAdwuw4sabkE4o7Q290lHTLkNA40gIRkAC6LUdQHXJbhmx7QbK/rKTAzsAK4OPwX2MPjJ4VtOFicUHOx3OHC44wbBTRUvrePWOu7KSBlocO8QbwE2khLBzWbCB95dcLjiMA52cxG0AbTm0OFobU2uzJ51cQqY+Zwks0m29oIGPZwzzCHjjHLViFZphLMk2UvNi8il02MaMB0gZ78I66EGSEwUX1HPBsDi/8zsWGRtgBQ/AwA1DtVSd4w5oWNScvucsJgqbTOikkBEPoHLDOc5cX+MEmtbu/g541ERqbIG7qlLAZSz02TOUaaVR4W7UpOP8z0tIrbkY0AAWAwgAzNbq4Nrma/Z1v2yruxS6g0+GryxVGXaMIVTh83lqQy9HzbpyFUMM8oADRpdYYj2XVugAVHetFnZCZLmAMOJ43RcJ4dfHiI4FRjXxPXSMa1FZxEje20CnY0ARoKYnKAs1ESrAyOMowcwKZAfoD+JsnSSz7N5SukUiDLVAn6AxLMLUCxbICLpDPNBJ/8DoGsI55vPDuAz46KozGSRQyoYSB8vBVhEJCLUIC1Lq+wD07qgjRNUSVYiO6ouJFv2znk2IVqWWQzGvlzPO+ggPzkAvmU3niMBuUoEhO5PjihuRVxzB+SA+wvgBzA7MALMjix3kpiR7f8JMERScDDKfwFQxSeyO6k+rMC2ADHHzHVGWm5kaigCkJgGX8TYysuG854RVGW5JwO2xZVRbRTk7C2mpQcvKcBJuyb0mpBzLqGXucG/yERKkJxbc7QXRfvwivbyinZ7hd5eoMcN0AOczRYRmwrQDNAePMq2ZXMDQEBqWQEeJedcjAveOFbwVeZIAG2UHjiC/yOukAn0yHKJWSjNhiaMxzDFBPbYgtId3cWd3uOuH/T6RgMUOqVNwt1jOocrvUwQergQJ+AXHBfcL8DvgD945BAVv5APzlMzJNqL4QQMntopPINVsqlzCYa4WzgKOr/hhhHKqjPTzYHyCbi95oMsLQZeJ53/dmwoVyUNoa9y4/ZVsNZ1dPFWZKAZeeTmw3o/rqdc0Gl54u8uWF4zYfhzSnGVZ+g6OTPH6mejYFJG/dN814rkJESa9hgvuBoeJSgxZoPiZtG4hJPEyposDkhI8Huo7SYPJZjnIoIpa5jgGIYR4+g5m0nCi4Pvvd/0yB6Ir2KAWACmpzYUJLqIYrSkJ4x7mWsro7x8+z0dvJubfELLeS6dCWb6kujhoYCMJNHKKl3tkRnJyUC158Kjfh/zeBBSh3VJCQBi3KPn8xWc1yQAFXKYTOh42kUw0ichtkvaWU6lzevM0KuuU+O2y/rmUxbP45F/crs9HVqhhvXzHsBi1RSDiI3Nznrce9/W/tMT2N4z//olg1xFWwTqQsqkbxW2FXXW1W2WPvZXXlyWM11XWQ5xPzOj8Gk+9sk9f7o0ZT+XPfMUfLuM6uPn907sGduAt1CC/yXbFkjAmMB4fWh2Wu2fXYravn/m83pAgAl/ukVbOQ+bnTbaZzhLGoisp2jeA98AR95swbKFHg4/wdQqx2E/ttLgimaknkuea04c5jw0QFrygzQIsysmos1DZW++lLiHPJ3CvhirfJ7P3b06moYv7aP6vcTiGzjnZ+V5yZPd2vcpPPatO59/bpdYA1/39c0GKEjhsgAnBVIUS5vCQfrjhOME/AL8hCPAiT8A7yDd50KSzegc5va+oYPiE/AQJcvuHl8taylIlKk+i5rhLHBC1dIyArIMfDnJNAjx2ptUNhy+opYybM8gBb6AN98nEe4qguWPrvffE/7AsnTLgnmAlOxkyuFXaThy2mwCL6Rj01BLjaeX7nW/pv0613XHbhZF6RXkpoloyhMwBcAgaSzPO8lbMRnNUop/yf4nYEEYlGkUGRsjyjyhn+K7JS62YN7kuHfOtrwFA/H8UJBfnjxn3Or1DX/+h1ojufqzGJLfKSeS4CRT3VHW8dJTkA2Y6CfOK5/hMtTrWaLmnDDJRdCRvCBmT8g5cDdIy0yHoncLIBkqxcKW5T4n2lDcMtMmXNguBmT3iArJ1ghgnBkPzVu5IwJ52gdf6XiBxSXKX8nHsWVg8he3cvq2JSLA8OUG0iDz52SBpw2hpJvLTce3knrv9TG7e0nHIDs+qZOpvR+2xzXASjrDvMYN0NZK22zP05wrX/++fviTe4n1s2X/PLdEABn/BABFjLJmBnmBmSzRrAnP/qUPrnMTrtNlLLZ7uIGUL/3+Bv5R3TTP96JKiR4gBfEM08tuD7NA5GZjv7Totuf9dH5p+Ng2VCW6RV6OR57ZEMZiAU7W9ytzFUtpv3P7awUvqOdi4SnNM/iIU82yX9jYJ4ASJa3UpYHL01qr+/f0lfdjjXD5eq9vOEBhqZ3cI4fLJMiAw/HAIvA5pg9Mu8Nxwv2C2xcw/wjzB8yPSP8eML2h5nB47aIQaduyKsrsiGMNxZuYQWDKB0Fi2LBZx2UD5kwjZvXfAQx3tmCGQbRAtZYoI1YVu4mWTkO2JnMwoCzNgSB+5tA9F8Gof8vZNxzE5xDoeEQXCNOgEIFNW6lo9yB+TTRrEGEGJ42DBLgy91BeHbhCVt8BDgb0zkGE7pEW9Dj3geEzsky2/Zlfc3LtqGxVsMmD9sZuFupUoAwwn1sq6VIkivd8Cr8/3HDFMcwwppXDEAdJsttogHTUW0F8M4yfWIaImp7t5BZFPVkYbJFHRnnseDDsEvhCkARyECAZLYdTNQ5tszngc1TXldnzMe15WNuI4zLDZRPXdJzRJqlGg9OICyCI9S1eke6O01ge4v0WdzQophh08DlA2B0y4p7oUEifOGaQLMNptXT+GYF6PNk09Nt9ltgfHsavyLSf+Ik8z5yAPMOh7v9eBhZ70CHrZxzwp2zOclr+9DWi8G0ByJbZ2F9LsiAd/spxlA+rY1t7uaTinNJmESQozz8dR1zgyl5YPf8Z4pLTyA+SvBcBaoq6F1O6PT8PCSxW5iRbyt2pOzMRpFRwuEhOyqatWtyUrJdTk2iBF3ZfCVBlXIn3RQWD1d4bfPOMyjyn28d/FSDGc88gpsqxAFI/UiRECQMDLSAXYxrCFlsAJZLDPwXGax0uoJoLwFGDawVr1k6SvmuYp0Oij5dckFwIUqDT6uvKinlc3Rr8KHWtS9AQdS0FIivTE/cgQIj6BlBy2deVPO+vp/gNvGfJEH0OJn7w6xsNUPaOnVRNdWwlnyDjWRh884HMimR/fkbOvv15Nz2r7hzfSMAQf/f4+y4LtDIufFKrq2ulNdMYucgWjNPBJ9If7mUMbZ3A6jvHIrSJZ2mIG7CMjzmGsQQyzMMJhXO2mHcDANcjeDXRYQSmXgUVppaGiFpoqcT9J8pulQE6r5OTiAcPAhSB+0AzGk5ydgiw6DQHzhCzO33i9IHLJy4nxBie/AsHZKI0KuJ+p8Ph97TKC9RiC0nsTRY7p17nGihDVxmUMGYxeTV5FfWqNRFZiTBz/gQ8tmMtqK8+4ikXIPaw8rHmllnbnDQyY4P6PXiqVNBklHJyAp8A2E8OKgAK/xxg2ZlFImmVbdecyxMlHixD9ylxbzU88jSn0zGJOZqR0Q8BLlCxt0+CwyRyizmgwW8IZKCbZy/CtGeZ8DlCyy2a92vHjL7ts7Vjt9LAjj3zL75lo/L51gNFRaV5ch7/lNBFnn4Wq3mv3mV9fkaXu6aFaJBd86NjHa2heSCoBrbU+9NHrosr57kyRXvGs6zfkx+R9f5IPqfUU1+r88n9royNbGsknJenDcyQf1svv5cL8/oPARwj8wNsmbHkI21vJuuanq9N4Zlp3S61aia5Lz2B557tzrJ1XM8OS7cFJwFkFvrMx5PcHV+6NpLl+2z1TxdPzsq2Wp/e7/m+o+53Apj9GaVn4/dzZcSNycxMAprM5JhU1ubpAxfi2a4Z+aGxPn2t1Thz+T2f8Jdf32iAQvqoU6dCEhGyRW8SBkdUFwDFBgwDiLLNSu/nBl3GrIhRushauwFbGyDAiex4/lnYzXMeyVx1cQRaTUNf3BVbYGkgsiyFkhcLoyHUDdN4x65nW5+v7IBNXMaW6tMmTjecNqmSOs4Y7Oewx0d0u9DtwrCDzv0pgwKYsXWu9bbuCcCFPRvfxxxXApQZGRR3iiwF6bELAUoDODDQDNMunPPCZRfuduJhFy6/MDB5TeBcoQSAzKCwDdCRwIxusSE2ZQLXxhKQd7aFW5OnyGr9l6nqzGhRyyXnKIVQCyBlSfgwnjgkHpszZskkwAXW77ms+lytq/QcyXMiSFxp5cy1LfBcxgsVv2wrKoTgqvwZGcDJLMucE3PwGNPIt6mD+iWXAy1ElXoYmAaWdAjwcmbTah7kPdfI/AFJZhxhrIetrKG6o09FH4JrEtRJDD30GQRn4dWmgSMui1KloQz3XpJJGPlktLEgG0X4Ys/v4ECCvFhBSThVDShcz07XM0gjjNom9XePfy4/ErekPm//HfBa8kmnOd8aPAIwaXCHct2EY1+59+1Yv5dLLAFK0bLsE3Cyn2+eoy+XonH5KXkuHkt1a7krFxrr30AphCS68zPL769ryCMi7v27Do9gzmufrj8HQEgwstWLF9djB5hpxPci937N+fyzpLxgpmNl+cws5kolHlml0UwjsI09EJmvjAnHtJD4XF3/GuKdWABFEJpPDmyN0kjNkZ3nl6sHktyzsA3pp/Z1idxP6VPynuvq9kzV7Cr3xG3YNpQDK32WnJtcCCKlzYTQkdrYu1/r9Y0GKBMdUxwmHVNmpPGic8E6qt5mMe59Ri3eFfAO9yN26w2wA2YNqUkhAJnazdG6o7URmgEI6QItvZmalongOHjoKwAc8ziUWulD4+/IVgu+gWG1vNqAG0tFV2w6gdDJxrTa1gSH8uiaE5QFGdMYSBxP6f3zmlBVnMNwDsNjGh5z4pwD1/UgQHhXtNHRrwPt5LIYwQvIBZf9/Nqji6DlQgSkaWAkwxhXTD7moD2HQxTovZG1rtvspLCWNieu68J1DbzP9wAohGgsJ0S5a8UAKIgn+TNWqcR0DBatRq6A3MBRAl0jDcVsUQqeJZcVCNXT6bjGxHXecT3uGOcdNhpgwapv+SFxE5IGn0ZCtk2N/JoQcyNqpkHDhI8szVzIbp2VI47FIgC7Nfh09u4EbTTZFunipqmXsRn8yIVTIt8wrWF6Z+YNUf6Ch4ouz/mSDoFiSCuiLITzcdMxpgknl4A5aYt1mQB8xr7wcL7XHJxqO+n1xCTDUzTLUl6QagFAYowFAtsFKCynEKAjfNIGOniarsuZFWE2v7SAWjM6F9wK7qaMu/sGOPNxJxLILFr+Pz6jHv/aLun5F7ip34wsYS5EIh7e5+QOKQMy2jfO0En3lOAgZ94gMDDCRqQkQWa5FuFVFh9JwCnKSd7sHdIatCuODvTu6AfbxMW4F838KcpHRuBNSnfHm9YVMkOZJWyCMzrgFP1aha2lheSxRhcMz/O2GKInLTgTzj9rW6JnFIFrEO1Ao1YQn/NEg4WMFVvfm2iITHpxMNgBldN4ZYERf9r2S0xPUCDBylAQXGeAyXk2acudOkHgGBBJUn8AcrUJtYnmc3XN7P9tmbOFVx0ZsNSTlrwe2mCOs+AoktZa6H61NawQQSuQzOSgpjkLALWciBwCb8pZPt4A6+wikyDpS0sH+vVe32iAUnI6Eu3DBZkV8JYl7BDJEQKBTDXVz/T4mgXMxJLxIFVrEixrcqhNv7LzG0JGpqX54ZyNIJApwJSY/7Ih7I1fwveItrsoZ1ikQNmRkSJpUiWW7Ecvg5wbJ0CPhVgQFJHJyRq0UxhuhkjceYdYh80BTJKAx5xIKACPDIo5F2+AjMzQStPKoMxxRoTOAYkJUNA5tp3trgQqCqICN8McF2xOzHnC7IL5LAOwTG+cDFZMk2W2naPw9JOVsnS2O1c4ubMOeM8yQsigYEzDdQ5c54lxXsymGKOqJHDWK72mZ9TxVcGCbGcfoMHjXHxu3JERUXuUDMHohIJo6b8yoxBFF6/YEotpsTvwiHDyMIHHsERGt0oH4FpZK3dCqeGsQ4/ssshbuGwiiiyOldFYJYRQB9aJvM2Lj5DcKM7vaYU1vNYyYtZRpqOT/J3tsJVOj5KUxz4xyZq+LNG3J1ChqEGTutZPgpvMiKVKK5dTrNl6pLJA6Kd4YwWTBTrk6fd8+/EMSxOgyDo2xqRLTc0JG8Hfzu6q5BU4VtQscd65H8pEbVB/Lw2wfTXvm1YmeR80qcHVWLz1DaCsD620i2gOuJPF19gYtDtLget65xJt/I4AmAhwwmcoqxQWaRPdpwFLHlv5AloAS+BlW5NrkeM+6vnt0UbZbFlrBvy9JoIZX0lSZ2dwWpp1jTuQZmknJfY3BgdWBiuzJ/siC3+WNu/TLNH2nhLAseyhrPZpDtzN56yrS0hlAbRC1h4BD/dFQwAUKIUExTlqQRlMS2vrGeia7fZ1Xt9ogCLS6fhaB3TA0WLxN8CPZSym0+iPFfG4Nbj1KMMcgBGosOWYD4F95k5dBt0WkICD48CNIz55hJYrYhGJKVtShwJDIUOY2rgsxrtGHCCObIMlgXcwqyDRsgfqVyBUbXvjsLCuDV01etJL0SCSAw48JuQ+gPug0u01IacBl0Eug1wD8jgh46SyqUaU0xoNX5RngIjtZmQpWodqphHjWSgIfNw5uXkO2BiY4+Q9UoNHBsUPjhlAqu/GB8gYkDGh1wM6J1oApCebjXQQ+WtetiILHs3Wz5st205lyogcwE4bMav0NuZaWw5moO73gfeP73j74g33tzs+fHaDv94gtwjjm5SD5N4VwKSi2h0qLcMiK7LOk3TK34/zgTkmrscZrcANctwwoRgQjDl4PxQFTFmiJFEb84TNiyAv/kyV4uDTDKc8zRCMOhTXUIypbKmekT2aBACZR3BlRsPM4JrKq7kvuBdIzJ6wCArS6U4RSDOMQDUk3PrGQVG2HQdIymoZB+d5aPIg/AOf/yp9JH8oOThcl62wosBj4OGMNWDKEQaqQXhsWOl4daoSFAiUBcQkIWYesj3TfNSZc8zom++i5Z6efzf/NuP8CczTBwp3tmRrOB2MR/aEZGS+S2ZdBzimgc0D68QzxU6AI1VaXqM5NOaZKbz1yD5IDK6j7sdxCI5D0G9C+2YON4lE1LIVxFchFNh7HAdrQ9Oi4z+kFVZLT3DpJPC6s+luGLw7z4ubLq6rQaXRHvVQNnWp1tx+tChHR9ZD1viOFKukSoE/VVzr0LAztmFQUSziI31L2qTMVHHGmcObUnwQvqQMkNmUZ0AhOdBxA3lZ6s9M0ZcJHwFZJItCycfhBewjDEp5WBCAk7PRUoytN40RKMyiiLbIGGmd18ppCXrsC4XgJbJwH0QxNAI7MHslTaGdAMWlofUtc/w1Xt9ogKJYmY1yWru3yhjDsUooQj55RZXAclD5K5s1qrkaGRF7RHGy6neVWs6oyitLjRx7vmc1OD01h8Xto7cypRfRr6cRiXRsbqxtgSmkAIkOR5uOfk30x4X2/kB7e0d/fefcoTFwe7/jdn/g9jjxcl5ojxN2PdDOM7IyFA8yOCQAyromZki44Ii4K0ILB5UAxaLEI+NC6pHowRRfu3W0HkdrFbGMYeiTE45bcCOqcMCdF49l1TEdeV6g8JZH5BzdAC1pIxEJDBfOgDGWEHQjLH/6MnPcz4GP7w988fGOj293fLi/4uWzC7d20WlAgWxpT+dVe9DzjbDaG7kepwcB1ZzA1AZsXBgP8oLGeQLaYdqBY2AKz/08L8AdUxZAcV+dZLge7Iq6Tlzng7NArhEHp2GPYZjTnw7i48ysWbVV5566JLu9HKbMeGnwNbRkXEPWfMS5hBNg6Q1wawQAGbmpY8RxXZx03RrLqio8L4l9o2oLcARhz8zRNO6yZ4k1ZMgN1e0GoITOOIE1ygKiOJUgAuoxXDo0jIKVlFnazBAkGCjUvGc4ohSXKsZUF90yAliAOhc1M1wSy2eRo1dwHu8tLQImSXy2AFw4PpLKpQCKA0vpGnnKGzcuM6xBmub7KMuikSUlH4El3RaK0xKllE+j9wImhi3zKaHzQYBFAvuE5kyayibbdgTPYxpN4fTIRCO6Sajq3SHo0tCl41DgaFIzo9yXFHtOz5W4/jrbjCEyyFoPqXxBQolgGhaggyPIr/FWmcFRimhyggXBNcxDHM/L1mRjhFdWA+lmCrRwblDgNS2sFHy8ZAuwI+6SxR4o0FIpw3gugVBKBE/kCZAxiyLrOX/yn7qUGFsP/6Zhy+CC1zgXi/NiJjOCNcms5nZ/v8brGw1Q9oe5IG4aDtSN2NswPVf6xmgok7GCoXo9EdriH+VLP/xJSjuX9W7HXDYntdLxXN3Bpdj+TdwAabUoa3BXpCqp5LgAylJmNbQxeTwe0PsJvd+hraONgf440c8LxzVwXANyDvh1PS1SpmI/ASiQigISETeNTRf35xmgxADE6+Q1iUEHAUq3A9oN7TBGZ5lSTccYmZRmnioicF8cCpVIi8S9Ke2FYEfmppn5qPNpJTgBvzZ4idd91cvccI2B+3nh/XHi/rhCVXbiOCYD22IJhkfJNZilO2RulyeYqXeDZ8oH4pzDNK/BAWNjYIyLZbkGtDkwRYNXxJq0iSMmKa1IyydQ4JDltXkNAoaYCUKHFGTsDFz9q7/uHTEz2k9HcH1cPDJRAkuVUTdyj2Z0w+WDEGBOPsk5gSSgWjyjObEyPJMkbzUSy2e8z6w9yrKnEFNESyjWvvMY3OiouDPr51kS7cIMSo59yEm9KzBO4vxma4DKfWy1hrAgCU7Wv0k8m5rjAtQYhCfH6IjWaK63NBgBdeKHIvrXLPPkiW3kfo92cadzmBHQbB3Mm1ELO5TgJtYlnWcQgoOMK+nQqjyy2V1lucY+ASi73SvSJGsmK7BzFOjg4WXD1vBTqw0ulnwXZTbAUc+UWeQgnQogTlBUtyvPGdszKsv/ibcU+eR+LX5ahpOW29s231FZlhiBIo6uiqFKPpgEsMmAGVjk2gJMXoHx4hIFUJW8z6uAmwdBSrRy+zZ8MEtMkj4Lq9wpiV28soJFHxDdSLPP4CTZc207ZtzSFwdOAJcIbmEOB5bHTB5ZNW59jdc3GqBALIILZ/1YQhODaY20XNgXY9Xq991Rdft8tMn/sO1ILJ2Gg49qR8NWG3zblLWpg4chXF5JqBVofQ+YwByMMBDpPslFKpvRWKxobnaHDIpg6Zjo54nj/Y72/S/QX7/L9F3rkDlh5wMvb2+43t/x2XlhXhfsMWKgE52HBkCZIwZQOQAEg94N0hntFkk2XsU3SF5LdPEkGNPOZ9VdoYdAJ9COFX2MSe0WvSaOwbbXJlqGM3kANJZ8vpV/8tBTwMqUTBecOUIay/jeRfEiihcobsJOqK/aM2bUdHl7nPjifscXb+/4/P4BH+4veD1OqDWWzixqQ6pf3n2O9PaL14FUGyYhDuMkqLhOXBeBxbgGu1kgaJY6MAQobiQTJkOIY+xDo+c64ZOltXlesOuCD5Z42CaeEX7c98zKNYVOrTQ5o08Nu5lhFla07MEbivcBOOjSJvVVPBxICjMlL2WpatZWizKBF3DiwEYSKdOgi5EIPYHVJp4OKQy3R0u6NF/bHuXi0YWO62iNj6Q512TqqIyJ6vKRUCfPjEHus8qWBvL1BAwJTNbnCYJiG+vL4nlVW6ov451ARZ7szLInBCmtIm2PbkUmHbhX7jYwLLInRyTgk9CT2VtQhyY1jbyGlAb3DRmUbQHR5q4Q/KW9C6eaOHYTWs/3uaCVDrBhOcHUdErCfCEeI0AR4yR6eA5L5D8f4MiEmwhuCrxwidIubIClonZ3pNgmg9VCUcyebcuSP77zraIMFjZHXCL7ynsrDQF4G9AIqLwJrkbAnYrXCXMrw17VrXUua9UusJi8owk+35y0fiEOz4N8sVw3y/rl3g3QUp+yZfxq3WIRjQ1PfC81R7PsIHV0py0QOF4Rqv4Arrgv2b3He0lgabVAfvDrGw1QCiZEqookyZwIPFBCUilWNecq8Wi29K7NRrS/6nlM9DYQN8d2ijCr/nPdIs+MjZ1dFaIkrWmk6DSJa4HIhd0JTAUOOKhwq7gAH9FCnPYvgJQ4W9tUYa3DmsZ+ZjupmqFdJ/r5jvbFd6GvHa0xU4E5YdeJ29t3cXv/Hl4eb5j3N9j5QLNZSSjlPHbMObeltFr8dKwST1qjzKDQxowgu04c80JmhHT2yKA42jBop4DXAigTcxraeRKsJEABohYf9zyjyYgS06DYZBkCDgynIN45BtBaODXAp+HVHC8OvIBG7XBuhOfqbtzz8YCd75iPO+bjAT8He3DLuWwmwPcjwHE44ae0utE5VMZssHvHrgk/w2GMdCYOn5uHi+6vzBiQA2ULiA/W7TEAGcJjCjtTrEG9Qd2gaPxPgK6GLg2HOg7N9kkeeZ1dhCUSQeyL7CLKRIDWPmGU5LU3GWlxqmmDRLQroH5zTDU2Q4suBbEBsRgq5M41v7WxzshUSYCUMsDwyOz4jqQQ8DbshfDz4txWej04Vapr39Y623ugnPYDlU/ZrFF8Xq1VpAzEWh/xe+s3w3X7ep8ikpajiUKRtyeHQ+ci5eBmDrZMkrbw2afNsm2d6gaIivYAKdC6iKVpW+MX8556PnesffnJjuDMrZUZgRsjcXhlsxrk2X5HO2yGlHlnxVf7AiN4yRXM/9KJIrlIuu7ldmzogwAlL14Rz1+KXqIZHCJKirL8A1wiOygEuIMApcWz92gnlrxtlemKexY+w0xgU6LzVGEmmNbizy3+zmOYkB9mKCmAKtNalmrpzxbwZxDumZ0TYF/L5JdYBNDM9rUAkDwyT88pxyqCphRubLKCme789w7Bga1DCWudzG3tft3XNxqgJDkvO1mARMipexIqsjMEySabKF1IhrOw6zn/gdF45hKwwEaYWEGL1qpKfG1RRQKepa9BldNwMuoBSrwilCkSLcsGkwsmJwx3ND+hGMUtYVY3MxEBUFojQNFo+3RGreITbTzQHm/QL34X7XAoHmzxdYNfA7cvfhe3j9/Hy/0LzPsb/PGA2lWRnobOg1WbMSCilSnSliUe3Z7F2oSlWBqdPB6ZgjYmRBuOYdBrQvtE6xOIdPs12M1xBEAxt+A3RNrV02CuSZ/QVpHmNBomt5x7NHHNwQm8TXEp4NfEYxo+mOPhAEdEMjWZKdOKYXxCxjvsfIPd3zDvd9h5ASPS0BDEgAwUH+EJpCSu9I30Ry6UzxHcFAMudgfZOeDX4KDIMeDe4LAqk4gDMgOwWGYjPIBO/PniRcgQyCUxTFMhkxmSBCgEJ41GRB2HciDgoaACp09+BaOpbGfvEjyFLVSmwQ2nCC/jl+CEpUO2UPIwdAA3QRgzR/OBZgK1QTAlBpkaZC4ESOFzyc42RIQcVhepRySajmCPSr0EDotMHmCXoWHyUkLbQpiab9J4XZ7dXxa/nbXDBVvypMpV72sh/q2gSZRxVsH42b1b2BVLoLKJeyxyPiP1oN4EQInSpiBEtqI70RW+B1cBTPboGQn+Nz5FCXRJ/Ex6WK9HsB0LQADJjQNkLt2OBLAFMkQiy5EE0bA5+70OcOL5/KIE0qBo3tC8QS1LFsZ75fYE8urUEyjEf/H4gicjFcgAAUgiG6MJFJOQ6lLZNEhkUEygFmtRsusloFZmCXMFGGBT4JMSEmaKORUzv86GOYO4PgOgTAKTa6L+/MQlM/LIsuVeAqCIZJdfAEtZB5EfH1Q0WwXfqKFB0QECFLF4Vgtc9gD7XbjEDgOOCPhuzpLT8eUtsP/tB76+0QAFiLkeQUaipsWMOv8VSBfIAVFzhgOKGq6FAUBIe5/DcV4k48nDcD0ebC19DOC8oOeAnBMceOaQiFKdCQ/YcMyRnRKOJf8OGGIWSqOOhopDjwPtaEAXaJsQvWB2wsASjzcQ2Kin7FZsXzKiRUKjwSzacgXWAHv/AvP7N5z/n/+Jx/kRj4+fATc68mkG/973IR/fcLx/AX2/wx8n5LoqKlKNDehrKUkw4MkC9wAorZ5EGk2AnRziEzInJHSvxR2tM+tyTLLrW+9oN5aLRIGbMRLol+Skcj6LOgumSLVsdcp5Z8DgdPoGnKDOwsMimwUADhzm3EguPETRxIqLsiN8d2Behsf7A28f3/DFF3e8vV94Pw3fQvyuNmDPYEDWG0Wo5NFGe8XBbN4ZnVwT9rjDriDInmzRvuaFeTi6GdrrC1O7Bpz3k9mVsYYgSrUXOwGOEeBc54MgMYAPLpKWm184fOAmA6YTr21idL7HmCSo5rCyhBtdlmNBTJRNUOzYJiinBYSH9oFsnScJGvL+eGWF5jXpOLP13AQnhI5LCXCiyhTaKqiauBRIiQjcWgCO4HU4ihjYRNB7Kz7BAT6GpkAzZSlBlQ7HjcA+3OqEQaZQ4TnBj/CkRNZlFecENPiJ/FP9eJHiMwmvcX8Y1VNIjraqmUR5QSHaOV4i2MI2hcGXT45rgFFiKUmQKrywcPbuM5wqALsA42wydwZtSz2sxaym9N5SiYa6rtyXAR5dgRmkVA++CFtO7elQWX1MJhHMOcUDSZxtK9PkmcnOtRb9WlFqK4C1fGxeKmAsQTBzl0A1MwkB6CsrJwz08tolyyPMmOcE6a43HHrD0Q9mAd2qs9GCvCutRwG/kUOlRq0uKKYgstDG52fC5zsVl4WEvysMDQMNw+MwxTDBHIo5FHYpfAgwCIjUF+jOcmdmolhSnNAKcAMA+oQ51dXNLh644H7AkeMSUDOTdDrtzrRMOFU2MgUgD3McHkGHOQ4RNFPApNrf4fOpxPSDXt9wgJLJ0h2jWf2bIPko6Xh2RM2Fn7W91A6YWWeeFuTCAQw6WjWHmkGnQ2ZsCAfrhxHVWqRbN6mT3G9I58WqhVRdnzorNFrTKMKzR6deV1pwAVnqIGyI2jXrWcA4gfOO+fYRs4FziG5t3Zf7G/RxRxsXdAz4GITjkZ7WTyaiMrKKkhQE0jhOu+ly6XRcEZVsfAKNtxVn+k9VcKjGpucUWzolX53X2+ZomvHPAg+aXIaIqgugALUx1QUjwgTO7+D7dRfWriHoUByi6KjEbfJWEW8FODCuifMcuD8G7ufEYxjOvDnBMcrzkwQo2aIYkT3l+NdMEGrKkHM0rgt2XpjnRUBsXAeqE6ahZovgG2Qp6DLInAFQ5lohYzBLEyRZlosGMDnFWX0ygyITXY1lnea4da7ZWwey7OFBgnRhtCoIvo57dWCwDO8rSs0oHF56CisSl7pfO3ExxwtYdJXMOSGiJM8K95mrl2P0WPMaNe1apQEUZg9ul4Y9YAqS+8VBsUCEP3aWEdWxpL3z/DQFBZnqxuT9yKTZ9tCJMTL03mv8RCzPZPvcELGGslS1ki6CGVc5gLjzdJQ57JGOx2Cq5EXQX5X6jUYUL4nqMjvh8fnVKTjhmQ2rTAKKYLn3IK31LetaAKToV4qceWw2YlMP/RlfEfon6wGbTkcOSchyz4J9KNBf4wDy7DIzEAEB9rLnJ0eNIMkfxXo+DmbOyldI8gxbLC6FhFBbfm4ONuTd5dp3oaimaYsMTGbnA8AH6POYQzSTS5QmPDI0htQoCp2iLAelnlZ2N9Ue2AKktIXIAC8BcYKyBdrWqnNUpiyWiTmz+FmezmywhF1mJ6LFbDVmRmlfjR2TAUdzrphhvf/XeX2jAQoN/4pYn5QM82ZXSUajoibI1kGoc5HEjZsRwQvzpdTzuBix6pzo5ujDScoNspCRuRRaKyFUVu8TNcb4TI+NmTLV3pglkR7nIoYxB9QM3b26CojAV0pYYqM0bVHHxbZYBvS8A/ePmP/rdzGuO8b9huPGVLWroD1O9PuF1/OEnSdwDvjjWiSM2IzL+vK8WZenFUzGdwIvTcOH1fPveX+CcNWcPfY33WrH0ZKnyp+dzlRhlt9alrjqTEKIK54xW/BW3Tht8AOCy6kVkwo17PhTPNDxioYP0vCqHTczHO7BOOeRQEUcOM+J9/eB731x4vtvFz5/H/h8GObBz+/CqL8Jr3WRsy1AG6mX5hMTI4ZKXux2Oi+c93fMx4DdTwIMI5ARzl4n0AAI+s4T85zwyIqIheJkGCMKyU1gcEikGYmQiGxWw0CXwZJOqM5+FneTXVmCY4KHKbK9XWJ0sFStG5DBWU8JYJntZleMCtCbojVBT0XPWDPJa8jJxgC7hGDOcsCwigITMOwZlEpK2Ky2R4ksnKqgHaGaKfEkRbhnhed3eCPYaCxpjRFZ00uBGQBAGR0enaXMLmyPhRh0LmciW0qBhjjKQdj+rcBYrgsUSOG341wVUV4SjBQgi2KIRZux9YajMSwxOK7ROVJCJ66EGgEEWuhQVCo/pQ3cQVGoGPsRZe+8uZk92WfoIPdDclsk/myhK9MUrTX03qK8gCXq1nz7s8bfQ1W6BQcFHqXHubUz+77xa/8DyZ1JUrGV4BqNTs4Usciopkq3hRo2UCxVBDDZAIE7y09TM2zJMn90N0nwDgPsGDz0qhh9euukErSGqVrqWKEGvy7ImRnR5JP4Jl4Y50LxxBbdbgHaU4licj9moLw7/iL8ZrYv/NqiziakWior3Lehy5WAbrJshOHUo5kJclFAsgVwuXlk+sVxhQW9HDC0CB4VI4juX/f1jQYonDcDahaIfxJJx/+UioLNYvN4LJ4uNY2SXT1hMFZYgBxVLw1ovaEfKBEbEUWriCW2TnJZdvY3gJIEBvG4sQCJOQYjjNYg18S8Jq5zog8+8CapMRGktdagvZcU8Tp0BUfCRQm3mGp7wYaSd9M0mNkTCkbQ1jxEhWKF24YGsIorSaCSSh1OLvO4th2YC7jBWYelLLx6SkUrahBWsOm5aWMoX8yNQRW1yvMR6Gzpc4hA1YA0qPCtHZvELQUBygAjHhPBXQQvKrip4GhAn1Ip0uwQyD+LAGMA76fje98/8d3v3fHhe2/4kY9vcDizX9HL3HTzRhq1/9CrgSujdZMIXCyyG8ycWEjcC1D8nqMf6EfH7ehwBLfgZWKqwOIEs/3S4+bP4XyGM9p3TaqWPc0gHTgupdjWAZzD2QF2NtzGhB7Kcud0PGwZ7iSd+pxMM0/HpRqDBh3dIgpsWtHy7WiMqjuBgAbf4JBFlK2ZN1HbZ+4jMhWRqRFB6L6giJVUjI12+AA+ectdAxD1eB/wHFIPw8ODewMO0Gh2C0eqObyN6//oKYgYJwFFu7CIiHn+aTMqa8Z/1tyTAiyBtIjcg/cmEcHnIMaBrRPDhGVPI6/m8IjUw/9exmd1TceZYBFpbIIE2XhN2pDVNzo1ppAiOPIAuR5Tv8miy+sKf7pAjCTh35OPikrwxL/X7JjUQQKBYG+CI8UmW8MRILa3bS5NY6mZgIalVNcGmARoKyNF22cWADG61aJjzWcESpl52Huig+SKaGSYYDCISaDXGuCDG0nV0ZpiyEBQ86CYpZczI6zRevL8EKpAzwCCKzOOBD7GILmy8L5o0et2B3/KI4sPL6J3crwYLEapEKs8V5Qhl/rMtO2CBTZZDYwW4wo8w6BHacxTbM5ZOs0p35nVOgSRzROM+LirEfMPJXABNsmAr/H6RgMUjs4mvuVmWRtn3WAp0lfTFkTL4KwkHv8U0oUxydQfWe0NrSHY7UlnS2IbisiWxKzY2QvKYosAItXINH8QpUKS3i7W8wQr2ky5aQklWdlT5y2cIbBtjSCrJnHXDGZMs4bkKwAvg+LqJZC473tGLfGXLGVvKKS49nmt25e48/F7kcOKKBf1nLjIJcm1ITaWOYf8OWD7zO3z14wVjxkrqJPswh9OkTB1OmymIKNNTijLvCeyP7l8OMAp0Jfh/T7w/n7i/e3E436iHw2v46AAcZbtAkjlO2VKPDk8WS+36G5IWXtEV08aDVUJxWBGzC7MAPmto0VZMgGlulTnQ2uCbNWcU+CmmDbRp2JMgyvQOlVb0QRtcN15E+hQmAJthIjdDF6Jaxh2hw/HEMVUzj0aptDJkp8rYHMDKDE3qkf6v8iRKklLWWn+io1RfCHz3C8IYCz1nGlqeb8VzDxUxiJ6S4V1DhS3pfHzmrEk0qfSMbqUqLGq1/m7xFwWpdbGbFQpzgxQbfHYFwlOEqiIeEXMeW37sa+xZGaY59yiBDGePqI6VSK5VADlMgKUcpxPezm6SRTVpQzQbpTO4HoEq/kp/5/lj6fNscCMJEk0ryefawUhMQcmQYr4WgMqNSQvqTWLsiTbETL58YBr6N+6PRsXOv6QZYkopVQlw9a93/2kVzcUqgQ0YVHW4HgGkxwya0t4bVsHy17FE03ORwSM8vTk82ekzhfJp4m3U8kyJEoUjQUn3+7XIiZz6W0WbPOBT1/zXLfvVoZvN4BP9ylWhPu6xUjSQQQJSMl87qkURcygn5opVb/4Wq9vNEC53EhYWzKD0d4bKzFrhcrovTcOSBOA4jlQuHMwWk00BpAzcicxP51sE+ihlT2pOL4GD3ZYzvQJYpAAgHlwVxwyPebyIJrFLTItDmsnxvHAuN+BMaEQ9N5xtE5G9U3ZmvvSIQezOuiUprcmQRx0XJKH4RTghON0D54FjeZUZ+bkFps4U9SWSPt5gacjKLWYNMQJThwkrcWqL0l3TydNkIdGFdxJajg1GjJzBZLJHI6p8ZmINrUASjx/tlhrD4AWCk0SB5zliIZwqE3q/g8bOGSg4YLogLQJNAvHurp40pZNsK///hj4+Hbie999w3f/v1/gw+sHvP2/fgTdDeNQ+EtfoV/WdQ2MuE0AbxAH22xtRMTnsDGh1wCui4RiOHrjpOh+a3h56bi9Hvjs9Va17Js2pqkvA8aIoZSzHIgF0FGbQZxmJm1E2/fjvHCNgeu68H4/cU3Dy2l4PS/cr4nb48I1Dec03C+v1LLHDCe/gHE5xgDOxtLMNRVjRmQ1Vynm6HT8XdPh0MB2TRwhZQ/LrAcXBUIQt0dyqQbcmlZJLedTtaalBo9D+aGHcr+Be7e3nKgK7sXpuEExxXCbwNEcXQlao6KFHiWVQxU2yAVoTUquI537Yr7Fgo29gjTom1Nwz6xrbKTIlgwDxdYmcE3C9yaG0QxNWQOYSu0PmMOG4zonHg+K+z2GceibaHyeU8C1A+0QtEOooQSga4NeDe0m1IIJXyqSPJDYl7rADfLPCmR5ADKZQdx+T8OWig2ondB5QuYDMk6I3aodOAXyJAZbFrjJ+xp2SRobDLw18jGi5DWlYYpG5kmiapOAhODcU4rVlX8vwZMNjQltnwmzlB6dMLM7uVsz1ItUAR9Pc4lMIwvWCfi0MlGRMQIBb1fueQEb7XLFU0uEWjANtNOHgNouAtzguMHxkmsLgpsoXlRxacOlDTOyUa05S7GREmFWOYnsssAmgncJjyCfJaqlWivVco0IPIDt34AgOFPPiV1zcXbKfdnBwOTIrCVQHM4f5vWNBijYFrK0FZ0nJEzCovhGzLIdMUbmJVNYniSeZ+qtpxUKzQ3wV5/Q5NMAtkTz++kg0S5i4bDcEvpy3BlJWPUgoWYJB8oSS9MqwO9MbYu/KxD8F6bdx2BkdU3+WeO6sxbKeYlxzhS4CHXEOPcwcni6F0CJbckWmUQgIPu1e/0TNQU069wC4aSxLcG0i+JFezZ8gUysyILXulKh2GriiKzF9ARUyTCyxVrHhCnTut4DTyrTrJ9GueYcGDjGwONx4XG/8LifuB4X5jk4r+jIFs6M3BCKRQYMg48gDQ8PAuukKNg14rhIKnQ64SyFMHJnRILQ5/DDgyOQBjPb2QGow6KlU91g1pAt9z00ZvTo6ONCvxqkN5xjwg+Dd4UOlj7PMdGmQU6LRiOBXQQoJhYEZ+Yx5owygvC6J9Zck6NlhBzgAgSvFSVjD9Yii5a1cpPowAkj6cnXwIpUpeiUXCdFmpYtA5pfF0CmCikdR5tB8NumbDclAPEoMWj+XojZrch+7Y1Pg84C95JWJs81bk6E3bnX7Onw0hyqdnIjNyFbpeF0DsOc6zPmLKHH21sGD44VJCzZ8RqVUfNWZO2juqrdRvJiPDq34Mm5eTKIEZx4BWefckGQs6884+8t4y15pgu01j2MWzYloJFokU+Tu2EAO57SFuexpwu+6rWnQJ7g8sqQZwmxN5aosu2ec3Ac3rRI1pu7qEy3KonmqJI27dfKGnkJy3UhUO4aWiL5VRbnrYtyarCQH9Uik5LZirqz5aCQN7gub7Vcbzbvk73jlaVeQCUvsNxDvv+GMMUzS5qZ440K4P+7h/H8+kYDlDRStbE0QEp6MsQSKweGTzZgPEbfgUoVjAqc5IPL3NSnsvbPIAWVVVi7d3EnRNaMgkz5y7aRqY8RTW5lQBqzDZo1xiyCrM+fiBRaGK5pVsDkGpx3QmzgG0DhjvgSQKnTzgh2M8GeXzRwOIoPKojgxLefC6/iYnCd0Q4u6+ATAJD6MUT1CcAoFR5pfCx6V7YF81H7es6xGfK9PCrEKQVvnlo4HiRlkiV9MmJ/AidxzGkYl+EMgHLe2W0zQ7ME1lEiMRFak1gWhM/SPiHRLEt5Nihvb1eI2YmAveV0fiw5BECJyaxuLe4hkHUFTdStzGBIghbXACiNMvI2IV3RRkM/QstmGrwNWBPINcgRnZNgRSf1FYbANIAWNP7j+w9JhE0SdWa5RGjIm3KyKSLDJy7VmVWEPd8NaYAU8GtsH6SSc5b0Vq9FrsXolggitwYoKQAsEaC0HaAAbU40I+enhkkK77sHb4rgRWt43gp2dqMSkdAOuTzh9OYDsf7ita82rkCuuwDY9Y3Y41RelQAoLD/OueYriUTCYFvIu+tdE9oXOMm5LOndFmzCdsJSDi+PbEpYQDP+vtddwrYtDSCPMstmZROc1FFGeoNJEcHXc84/5/0iEVUClJAfsa6cIOVToPKV0PLL9022EpRm2ZIcRIWuwCJTh1jXUZPnm1QpPDkYOcCPySlboFlzZhQ1ivoGXloBlAApkjOSQjsowNj+nJY3i8tLu7utueXrZAMpqExM3YR1cfytSIiIfVKScw9fF0MZga0t/P8SgEJnA7jE2NVUzPOtPlpIuJIPSB5IpuM9tSnCgUms5Skk+JjHKrI0N9Ge54shziPKRMExydWai5Xpr0CnAU5yI7CFZcLPCzIH1JwtsNVKrHFeoXDra5wZI64oURhgA7BLYA+JlFyQw3oDvNEAO9C8w7M2mrXuykcjAAL/mBwHkyiXxnJO2eIyapsRECBq8QQOzaPEhSQZpoGJ0k5Ei9Ot+ESQVpFBcllMg7k+neDNo00UdBo6BdM9nkkM4psTdl2wefF74dSlAdKVLXuD100wRNobRDCn47om3j8+ONn4+2843+64Prthnhf85WBtoTwLh+Y5R7ZSpj2yMPMaGI8L1+PE+XbH4+0dj49vEDh6dGWJIJxSFLaim0dFSdwrB9QYtUYqnkae677B4N4BN0wf0Ea2veqF1gfauOByg84JawOzn5BrwFpDGwNtTki7MELTZ3Zqr1iUG4aSTqzTqQcEqlhO9eJOHT0AygamuB5sxRCWPtjLock0tl4G8IFEeyYVs0LVNta2pWBgg4TBr2FpSnFBkQDj4ZgR+8EUVMCEoF0TvTe0PqE9iIJQtFto9qiijU6ZgcikqHqcWxrsjGD5AGtP1L8thOLbfimngM3dC+r7qQAblNNyvsNQ2ZMR+kstdh41mjhAVAaNjM+1FynYF4dFl5Z7Yk3kkCNmVBmKiLAtNttbs/U7d79jc1K8zGqqSaEyRCasJFf2rERjGb7HnK/MOBetI0qjOc5kb0ufyEwyNVWWYOfOw8sBmDsUjPu9R5bVoiyAWK2rvV06/TfPTQqLwZ2ZzOA55kRpOvkYzZJZfPgWYCFIxIZDedxa/pnZyKEOU4vsCjWlVFrZxQwwk3uY4y0SNBIb7kyYCBzi2qQFhSF4lgyIbQFGTd/FNe0OuCJsFKDSK6NzgITZo6Z5cq9NSGRfv97rh+GrAAD+/b//9/gLf+Ev4Kd+6qcgIvjn//yf179d14W/9/f+Hv7YH/tj+Pzzz/FTP/VT+Gt/7a/hf/yP//H0Ht/5znc2tMXjF37hF37YU2EpINQ4bQMLXKDZ6uqVJl2Zj1yDHgsr24PX3B1L3YoNgaaZqP5Zs6U/UhFDbKINwa7XHsvgCanzF2cpjKrT0CeremkGpHmzxaQH1sCu2DAcuKWANchslDk3LaPE/7RkjbuwO6JDih2eA/WyNvqlr+4hV+7RB59y5v4kklSHr+93p5CSuhcJjLLKkpq9S265lA2pfppTPNZ/Kci8BJqbL+yexNScbpuRy8q6pbT3PiFklQjdDPMauB4nrvuJ6/7AdZ6cY5RzbmwBvNQ8Sf2TvYRYQyunxYBAZmPGeXHy8GBmpUqOBRqfoxySBSNdKHGHhU+GfesHD+kQOSDSIdohekD1QGsHWus8ekffjqN3HK2RpNsVvYfj6GwLJcERFXknqZcGPLIMTSrz0FpmA/dW4/Lby5nV/fHQgkkJ7xwiaHGwtDHtuTWzOui2SHBj44YuS+N03hgrn11w7MbaMq3Bm9EWXYBtEz+T5628J1GA3KYBSvLHEpsU2E57kF92UILVhQEESElwElL8+W+OUrBOkudTO+PG0+Q9jugLuoKJ/UigiOcIOw1WijEuu5ZftyBQnq9bnm7ZamlNYJ2Z76WRst+vPLd1Xk9/3wLNssuBFjxVxvZ9FyWmJwOM9b7lD3K/xn52pO/IINhQRFxbfiTuzlffWmSAu/3dn+9vLoe1pvz563ZbZPtvxdyf+LpcG8DTb+7nsj8s0e3DsdYgf17qDD895wTgyfdse+ZxKyOK+NNv/6DXD51B+fjxI376p38af/2v/3X8pb/0l57+7e3tDb/1W7+Ff/AP/gF++qd/Gr/7u7+Lv/k3/yb+4l/8i/jN3/zNp5/9pV/6Jfyjf/SP6u8fPnz4YU8FFmlNDqfjMefFWuyc0NiE7kx90/AlNyH+XAZwHZDJhIZRVCtLN/xQ7njBXEqeaQQSnAR6NaXaZxkQQs86PAwCDTSjbQ+FUUbB4XozfRdpZPJOLIzXBk4AVMEQCvEGtQ71Thlxb+je4RJkruQ15O9ElgSOsJdef4YjsjerBg4skEfGepyQxy9tv5vlJUZEy/AqMpbZiFuSXBugSy8nWJo2KhAh0lc5yukkn12N0TRr0lnzmwRE8KWpoaubQJmkCK41DV6qXs45cJ0n7m933D++4f7xFef7O677C+Z5wuYrI5XIovGesLUQnjN3+H3LTFuUd8Z54bo/ADi8N/SjQ1QYFVoK3oFCfr4AStbV8xbzFQQ2MFUMKM8jMowCizEGXHutAyaTirrG+3WzyUcnjmEtulo4JdcEwCRZ1KeiqbObJ5j6GstIW5IINTIokW+LbAHv61pnDGAjcAC7m7glPJYPR1bUQxODupaTtPifBkcjywCr/JtlDYKSWs9O9dhmYUTLMXoZU21LgKx1gV4ByjZzXThjwxv5TCSBEuST9972SaG05YGSzOhbEGfCVltPQOoaSbsljMilK9hqHxvoY7sqs7d542OfprDLhgH2i1uONnOnq3S166LQGVnqyW1dOcEZC9uzg7rUr9EEvukft4CycJM5ktwmsU8l5NxTKl9s23eZRZ1zlZg2l1vXGJ8zPe8jbb8GyGGWXVfWHOD9j6z5jHsLR5XZ9sNjne6ApO5pAQs8vRZQ8ZV9K+T2yfMrtJp4LUFKolbbF2U9vRqu+wTmsco6UpCyroHXESQDX9wwEUotuOpGktXyf83iIz690P/N64cGKD/3cz+Hn/u5n/vKf/vRH/1R/Ot//a+fvverv/qr+FN/6k/hv//3/44/+Af/YH3/s88+w0/+5E9+rc98PB54PB719+9973sAWH6ZojDt8GawfmC2A0OZ3lbwAI5w6AqfDY4B1wGbD5h2zMsx2w1DDkzpEGmxDRuar/kRHQitI7LO5wTaJNHuZRpu09DnRJsTPch3Yh57irkBTSOjEdUCWAjH4WMGh4BpvK7CK9BoTpBoizRFx8oqWEZg2iJ36sBxwQ8J1S2BHA1y3ErGu0kDZuPmmGTiQ9ZGKYJURAQ5OCuBlqNFlOLwKVWPRLzVAjpCmf9QWUSLlHayxNPc5QYvRLORKcVDpnurida9I8zxSSlvmRR92h2AQHFAcbjG7I4OtQkYyyRe2y/Ph9mzCWBcA5cqHvcHHveTPJSH4bwc12QbrkV7gymBxdimVitGAJYLsAd83uHzDhvvsOsd47rXGaaTQYItaSuDljXgnQxOFBbEY7DdFrJAZIDrZnToTdh+rE4iKKCYLrjlnw2VSXITDDVMdXSwvDOcQKCJYmJAmgGN82+SSkWAEiRZYcaM4qISmSWsSBwJ3PIJzEDdIQAVzt0CRAt4f1qslZbucrfbCeESd0c3i0RmxwPKNhccbWI0x9E6ejtwNMPRjgDRDS/9wO3ouPWGeR2w6TiOQWE5UUA6uFtJGC7eQzgHB61yOvAkwNeahsJq3g84f0gCxLsC1uHWId5h0uFywFsH+gD6DWhxdN6Lftxw3A4exw2939BbJylWWDphJ1yA+oxwNcCkhvmARfbRKwOpnplNROZ1z4RRQ6a1W5A1DE1blWClHCk/vylw9I5b73jpHS+t4VDF0Vga7F3QD0U7GtrRgaPDdeVYUx+K3Tn11ty/OyrIRZFrYZcerlfaG6/1k++XDQ1ZZi3DtIvCCLDanbSCVYTAGQaHoiJBTJyTQjnLxoHmioaO5h1NOpocaHJApSOVayvoy402J+tnBoK0lFSQaDKQyrnF83RUS/KGiwWLY5PEfJbaJACHFGAGgOT4WGQx3YGcayWR8T4UsCa4NaGysAN9kjD/w5RtfugSzw/7+u53vwsRwY/92I89ff/Xf/3X8RM/8RP4I3/kj+Dv/J2/g+9///u/53v843/8j/GjP/qjdXz7298G8GnWIFFeknzwzEhOpSLNxZYOc6//on63Hp4sQRz2pDu6e0xfNU7mdcr8qrF7guqW+0EXuZOI9gUtlW6VlY6Nn1fJro7ID+TXTw6pu5XRjYMKkeNLx66PXKWj53Dn+e8VDum+krevOWdIUPoTnx55nz859qnOVCHcDnzVUT05QahdEUyV6Sw1ZpKUlxvaQ4FRqCQawk1eC2lbVbL+as6M2BwT44pjzFJU9eLsyDJs9Z+Vo3KfNUjRJpVkZx5z8JwzI/UV/2WUsqLO56OWlGB1FGgYjixjlWPiLCfV56Pl0favWeIgh6NVm6Wsv++dLlXS0ZK7rz3qFehVeWaUHWfp5jLHmI7LOBtoWD7fLdDforDa/XsafL9XggIsT0Q+2YmiWUqMEQzhzHsKhcX9qOvMtHVdo9Z7Qj79szx9b/+3L32/XMj6Wtknp/QZRe3S5TCbAsTvR4q9SldPKXZUGn517Sgqy1QOy1d2Ytt5iw0DbEUclPfHJ9deDg0ofaj87bjPbItOMmlq0eR6lnXkGt7P+en9UeXtjHXq3J4Cmjqt3YN86Uef10rtwLUb4/1kt5ey3jWIejHN2aO8XHepnrD4ygyXfZdck9yjqXJS91z2O78XXvIaPnmWtT+2Emb9/vazeyYs3wfPryr71VepIwOj3T0sgq9X5vT/aInnh3nd73f8/b//9/FX/spfwe/7fb+vvv9X/+pfxR/6Q38IP/mTP4n/9J/+E375l38Z//E//scvZV/y9cu//Mv4W3/rb9Xfv/e97+Hb3/42kdk0ymPbRMuDYx0hMgNp00nk0CTzC/ALgnXw1SG4GLU2YOgAZKwSg0aFx7OV88HDTogfUB9RA2WKUdCQst+LBa4LLElorAThEN5gqZ2BnPtAEhTb0IKDEQu4Za0vWjjhLGXNJI7ZFZ2ujmkCsQ4xRmxJrE2Dn7uLkXosIBUgI9EwIsFTBAKPuzAdWiQ7B68pOg/4Wl0CDlQL8HTg8tVPn4ve4lqgiFkk0aUTPyBgJCQaZZhoS8UUqAF98lm7pZLuiTkvnO8nrlDrHQ9j5uzM9l9fRiVdQ96KmIExT8N4TFx3El3H44JdI4BQXmps6bLPwReK6c5jcPbOeV44HyfOx4nr8YBqQ4/Bg5wwK9ubpHMXZGtr/TOef+TZAOf5pBHh7zJrYUDvzHw5OF8JDpktQHarmTXewPujXJo7EKDjX8wYnlbwpgKQAFL0gBEkvsya2CRxcY6Vw8oOgma28a+4ZZpEdCoI9/zlVswSs4prXWY2I+NwD+kgIyWd2YEbJCRsmKI+tKG3tmrqwduqrGzFpitjVy7SI6uSgKAWB7OVFYl7ZFAic6FxR20vu8QSnaHnMUIqnROM1/7Ngx1IybUh0Cp+h9bS2MBd0mHT2fsqbwdvJXkLaTeyfdSQLcA1+QPDYvqu8RiGWiXJRVrBX8yMz1bvLK1l23etgzzp7QISWay7jgRL9XNhhFer7PbKbK1G67Ayw3jTcNZxDswopMptBIYznltu0bSBzlIlj8z+Pjvm5wRPBKLKDqECxkkYVl/tytv9KU5XdZYt8MvyYNStwxdJoJgiS/NfAkREILwBOMfi47CMuoILdZLX85YqVlaUa8JxQKi2647uwU/8IbRQ/o8BlOu68Au/8AswM/yzf/bPnv7tl37pl+rPf/SP/lH84T/8h/En/+SfxG/91m/hZ37mZ770Xi8vL3h5efnS96kpAU5pvQZkTMgYnKBrBlULpj1/voACsCZpCgenke9h6JhUGcWE+YnhJ9PjYPQyAVpIcbwEyDEMHD7RkMPYJtRi6rE7JAa0ZenGgPA3gSXTAEzhnAVjQUn1BtUebZEgcIpyU85VSClp3pAw/FEfnKmRohbiO7HClCcQzQ9cTq5ldZ7nG8Vb0z9uqHqVeNzCREVAoqvqAiRCF4WHSIOTTVlRSJ474l6kaqgoAI8lKrJgu2CxzW8vHBXQQgbbYpPaBfEBv6je5VdoyWiSjjsEM0AgIEJ+xmIXSEjT04n4BMaYwRk5cb4/cN0vXI+JOWy1KEt0aGXL4U6qBO91Jl6nS7SIToo+WdzDiBIzMn8K7Z6eTT5Lr6wfMUH8TLpoxQKPJgtQRMmnwdGtwWA4+prOPFpO8kWUeghQmwTPJY6FdLlQMmLOi3ZoEA+FuirxM9OcHWcpy+9rlowIU8Qbx5VTaQXRycH1kNeh2EHScuqVMYhJtdI74Ac0nFg3jpZo+jxAUAJ8H8qukr4FA8mpSHebsERBR8odyk3gsZY9HEB15tSzXIiBwUxMXA6PJ7LN8hKWhk0PmAxMHBjonJxbAQODn9wTEuBE2hY9K6ojukCmbwRyzy6rLXuHdb6LAyWxHKWyoLZlRqcIj7CdFiVekcU14fao/HXYtWhLFWzZkwjWRAgldWWvij8Uu8tzaGMalMxk7hkTPP+I5AEp6YcCFraBjQogPDJFeX5xczUCtYSZe9Zima+1WeEEp/WdACFP7cPxO59kgUR8ZU4FgOZz1urI4cXkD+U9Xhde3VWGdV35b0jCcIgnGpXbFbnlneM6yj6Hthf4Ud0RdISoOEyD5oyGr/n6PwJQruvCz//8z+N3fud38G//7b99yp581etnfuZncBwHfvu3f/srAcrv+ZoGDCcwmZzuKjEUDeHAP+3VVynTEaRNrxpdHh1A84HpF8QuNCqawdEY6YO9nhc4N2ZilployDIPp8xynghrhbI9mBUYSe0bn+D8LoteFj2g2ik7jrmBkzTKxcxFkdZsFRc4lyQcVAKTlbiBOyMFpiSlQMWibsgTQEnnJ3FHPTFz7rzc5FJ7YTO+Clfq2bLMIGGs4qO27IhVGhpQ7xFdoMhVAtDwaoPebkDrFLFzAhS1BvgFt1H1f3VA+2RLZROIDkAHUuCLdj2xvwZAiekw2RgwDCOJrY/svIlSTyipLssqi3uA5++75DQiKfVViY4f5I/pXg5M04WyaXyfCmMX4C0cs31wpqTKKbGtVI2Kyc2jdON0xN6outlVl05PXMuUpbejns956yLJ9VxrZK0pi0h/RjZnRvTPcnqqFDuHaoY/3DPoEEBiICfEF+uw7iY24xu3KiNvVYLY1iE4gIweR5SvJFyKIwZU8qSZnZGte2kDeHWV4dhina3IHgF08jziO+HUC0wiSxZr/kqTxOwb50qCICvko1jwX7LDJ5D7c90vdOTlE6BcyyMezgIqcc/96cex/pYLLGyC12+ipsPL+sqDomqev5v3Ki8rOzuq1urPn7yVzwhQVllOdXVg8bwz8JHtvVZk/wxP0rhhAdr97wZmRKpMHEAlS/cJ9oAISPL8BNWeu925PCVZH/fJHd6KOfJ8IOZ9YX/P/f4FBinQW2sg/o7USclrzGA0OIT7Rl0bmNAusp2SZVZZwKUIwyLhc7HKWeFfMtCTbDCxrwCJv8fr/+8AJcHJb//2b+M3fuM38Pt//+//gb/zn//zf8Z1XfgDf+AP/FCf1QenC9s5oeeAnBf8vGCnwTFIJvMJtJSxF2yPqBxqSqG36Tim4TDHcZ3Q6w67TtycDbgcNJjj5IADAw+ZeBPDt8TxLXF8gOPFDd0GmoMk0uuEn2cMhWPEPafDGiNREkSZt7bh4CS4A72/4mgdL0YHOPREB6A2IfOEj5MljDkw45lPcQQDDfrZC/rnNxwfOm6H4zgO3F5fY0qnYZwTcwh8CHBIkb3L5G4ABXXVkXYGMyIeo11LOiudFvjVsx6tDdAbXDtaf4G3Dm8NN12dCIXENTMsiua9jKm7LRsZoERvrxQxay26FBTd2L1iPuGPN9j9DXZ/xzi+wPk4cXt/kKzVHDIOGr5B4jOdRWO2y0hwBQbg7BabjxPX+x2Pj2+4f7zj8X7hegyMl2g3bk69m+R/RPTq1qDd0Y4XtAm0l8/QjndIfwmnkxeWRicsuGLzJoKVow4vojSiHtZy6uaQA8RkhouD1KKUFuhCtpKIAxhpxCUpvkzZizEzNqajsF2QR3wANgJwAJUtUE1jKiGpLVHiIbGYfCHOCmKb8MJSmXUjR0voHEAVTp8cZzFNtjZsWSgaWJFtc66T3oHbDXh5gcgLMmvQB8mALOdFkHNdaPG7N7dQ9pSSwa+74oOQIryF1FdfNt7zGYIETfPCEVValeQ15LNYmb2o/jD70A54u8H7C7PHbcDbwZKtsEBl2mCtYcZhrcECnOyZJQ/b5HPG0EoGdtnAL+nsQb4eSe2RnYkOunylZH2eq2twz7vAjwa5tSDoh8MEsIbLkJ814y2mCRWQc7SChz0KgKlT0KLRoHcKDvbeYnxC8P1cwp97rPsoufssK/YEuEDzawAGBCOccb9mZU1u54XujiGO0Q5IB/RoZbOKh9Qo2mjqUZNUeCqszXDeSAwk61ySO2PZ7fZ8jivzugJDwZaFEo/AM4itnUrR0jkhugunc/PITNOkTQsNHcvp5yHd4aLFv+N4jRkASzCihNXmiOcvmI3XrJLl/pCAiLESMjgyYM6vP8/4hwYoX3zxBf7rf/2v9fff+Z3fwX/4D/8BP/7jP46f+qmfwl/+y38Zv/Vbv4V/+S//Jeac+J//838CAH78x38ct9sN/+2//Tf8+q//Ov7cn/tz+Imf+An8l//yX/C3//bfxp/4E38Cf+bP/Jkf6lzUAA1ZVJ2BdCf5BBaP04LglTxJs5i3EpigFA6DrScW5J7gkboDL0gCk7JU4hIZARo3qOJDU7w2xaExqTUhOPxJwn1Ng9wIf9mzr1QgTcOliOFLstQDKyXqeQFJxeSSrpHeKlygR4MeDe1AMOJpJMy1uLIJnjMzXQAjuS3gD2R7cEugjRW1s39RVvakHlLWgJUdRtogR4+sR2dk+emDba1SuxoAhS8r54keRM9bz6Jw8H8y26WAKRwH4AfgA7gdEGOnlLUGa7rS0hl9QCsa5r6jKTGgSLhzTFyPifPkMS5jmWdahWClpol838goZBZFk6DN6LcyWbIAwor4tv9H9Jrhm8PDN2u910o5843Y7r6e4wRbKEtZN41SslAzWozoUaP7wByph/jEZia/REsIKrs2zBOgeHASJI7V8ZNS+plByVsWVSlOlAaDCAamXuWiivoiLJXcG9jeCHkb4r4Lu8e0Mi9h+n277sigNA2OC5aKZ/F9t32RXxdd0Z8evcfXpK8bvEjg2xVUxJrfMXDy64w/r2zSmoqcRy6J9Glr7oqvW7Q9U5b7Ir2faSwL0ODrdxIgJDtlP9c44cicedmiUi/Na4/7kp1biHUuMW15canWvcx1I7I9W1lB047fNdM9n9zztQ/ja0KC+tkNZKWEwf4+cRsk73PyprbjqaEijjp738n967wzRV33JT+rDq8jz2Nfz/xtefpeXlZg5HVgVZmZSPe11j18pfkmphdZ+e05PD3urOTnPZjGcp5mlsVCVXbd98xAlYjc18cnPzxA+c3f/E387M/+bP09yau/+Iu/iF/5lV/Bv/gX/wIA8Mf/+B9/+r3f+I3fwHe+8x3cbjf8m3/zb/BP/+k/xRdffIFvf/vb+PN//s/jH/7Df0iNgh/ipZNZD5lAmwKZBBxMt6/uCQF1QWe0RSWJy4bDBxUy0SjlrZN1vcNZPwMEHySFwhSWpDYRIKbNois+aw0fWsNNOSApUS3F3ugQZtTwEqRU73t2mIiHXguAQNoNwCHAkBxRn0Y4zUUKuvNvc6/jdyU4uXW0wxltHKkDYczXx8rzfEup5R/OeRFwgSSAYRmvfWdK/fT2kKQyIpYU/R6ckUa0zbdL4xHRUtaYg4NCI8H4wRT1+zhadBBpLPzF8XAHWzitA3YAt4OO+GqwJpgqHDQmEoPffCs5pSNKTk9Mz56G65p4nBPng8c42dljYy4DZ8s4rpdsX7J7LAXGntwa/yyFbcroIe9RcgE8ZptoC4CS4ESRwgyWBiMeGtfixMiOolLcnQvFm8VwS18R0O4RA6TkYDbLzIhoABQO1vMAepcJLgPOCYwZHTyTpZ0Zk3h3Ry4Q9AgWFEDLDDfY0dNsS9fvUSTkyc/Jds9WHwrvbds4LDluQmaMtFd259XkayA6LPa4++lpPYGRBAY1ccZzbwXY/QTQGBY4ybS6wzARw0yR3IeKI8JprkBHd8+0bgESSJTZkPWLGZz5dJbJZRF4PbJzFi5xMWsCbNSBZ3HKuN7MiBUh2oJQH+WsJw4F0pas4vETpygCmUzAMDHlqzyU57xdat4B2d+rEIo+PcXslszySmUu4o3qXs8MVFJTZvtAj4AvfHw+mxngTrc9vEOxPWBdnI8sm3rcS1+dSpB6p0+s7dP3897xapNjFCClQIOlZExoOeWHbLY/l5BtzzXugw0OnxUXzgFrEu+PFay61C+6kRD/dV8/NED5zne+g73F79PX/+7fAODb3/42/t2/+3c/7Md+9WddBlyyKaUeEOu8eznV0SI1Wct4m2iZUeCUSquIkaD0oh1oN2hTfKYHDuk4pEd7PaFD64rHwYzA66F47VID0qSlqWEpZ6pgNk7iNW0xsTWWrDt8cktep2GcA3adwHhAYGgQ3NxwAczQNEXvDbeXjn470I4Ddp+AOwbI7CdrfmLaYPq8UH9YhO05ebWrrB2W2142I7o3kBRAqiyOIQmmsixBEHMVUIvhXhPDALJzW/AxYipmfF4BFFFqQMSHekyxcHWCk9bYkRW9+sMs+L+N2Msdft4h1wM+HrBxwgbbe8fkBNhrDIyRThpAJLndZ5XjRnCJriE4z4HzMfD2duHt7cTbxxP39wsvLxeuczBr3ZwdXYPsT4/DBufuzPPEeDwwHifVac8L6Kmj4RUGbcyAhIxBsOb9cRVQLGpWBmU6waAqSXEORjiq5OdABVMUQ/g1OffJfqCDF6hrlD+JkmrmSLEkiiJbU5+HC4Y0dG8FECXq3G/D8RiOt9NwDoL1MQwj5cp95YuyhH6z0FERxc0dR2iYvEwJ+Ro6Yw3yamYbiQy2Q5SqvWPA2wWos1QKTldtWeI1UBsFii4Nh3Z8CEVdaYpby26eDtHJbZSkrgLa5VLD+WTehHd3uUuNDEr8PUtU1XYae9MjA2uGaQM6eczJdTsmBzq6McOa4DDBiHqqNQuFsjLJN8DSbh2gnp+EhhAMMcOADgy0HaWcmhG30y6wezA4RvH1moBcjvPhuB5G23ZZaNE4aqZRoBQR5ZiBrmilYEyRPAhNuoKBHIGlFb+Pa90LuHnsIdmCHXnqyQfvVdzn4hl1VJazt+D2GErRWmOa/VPbtmRGChQPHVSenteMEQQW2YXYD1glG5G0v4KdN5Ike5Kscx/zz1WalWwyl9iNmSXBcweReHUkqnOdi3HN2NSKSdL2sasnO3pW9yYJnBWJhldY0gjACk56PLDujd07ppBp8Jn6S1/v9Y2excOZBnwsig6VDpWD9WP00nbgDHam0cUbl4Zn9L7NuoEsTQR0SDugTXCTBCgtWgv5dEakUY9sQcsIK56hS9hIxZqYqyvN7BXpEDC5R5ZnrwtLiK971KezdTBkyVvv0NbJNwCCMLehcUTLrTuNYKRxi7Eu0dKYZY5iwPvT/yPuXPi/cpshClQxwRbBZSRZpa4oujkAY83cM0pxLycsFVYpKh8o630YyjUq9bnHaHCCCpZRwlm4wa8H/DyB8wFcJ4/JIX9Vf58zUpt5xYn2I1qKe28W7dtzULztHDjPHBw4Ma90WuF2iliWzjJqGoPtzx7Tq+ecaBqfXaQ4HsVNSceXf9TolpFwgE8Zgu3nPAxhcSWimwINkImcdyQyay9xRVgx8lFPZguaI1LOSwumDjI4qiAsourTHI/puE/HGcBkDMcI+focBgigxh5gkqRq2d3igNly8kvPJHVXtqjtKbLN58maO/+JRlYj06XhaPOzuygOVdyENX2Ewc6+pkVe/oTEHOs/y0/7vtl7NTYrVqmXKjPUf2s5luR6jvKYM67H1vrKDoDIaGQKYwEeifdbYIigg46H2oKZMrAwWpuSdkXCiOAvz40gxibT9zOWuWhkycb6apaXnE5tnQ7n1iSYWARRjX/f796eIeHNQ9mdAjyp97ODk62jhWq6vspF6cjjQ5it5l+WmF1kWhR4KjmBxO/KSuyHr2vNEu0OUEyT35MEfuHXTB8GWBFNLJyqu1qgfKnmbCssPvSpPOYZcvKmLsCMbe9/8l7x+whQpiLRzuyx/zwwS4DMDHTy3VyCWCwV037d1zcaoCBIOAgjcrSB4xi4HQb3D9B+g/Yb/PjA9mCbNWjO58C0A6oDsx0xe6SjxdfenKRGH7h5x00abmiYctXumLEx3gXP5ZdA+yU21gDrukhrLRZsOR8STs1Jkr3GwHU+4Ccl0FUU3Z2S5NpxOw683G54fX3Fy+srjpdXiLwTzUY/0XTB8IlpSgVP90jHz1qEHR0SEbZpGEARGiVkNiwhSmRIBAVy3AAXDt6znKQJRJo47W4aN8XAgLnC7EQRIMPosclobY3699kLsGci3MRRonv9ToegghLIEEEy1O06IQ8e+PiAPAbkfkEeD+BB8rJfE9Umm4oMoUQ5PbepYfjAHNQ/ub/f8f72hvsXH/F4u+N87RiPF27xA1D1imDcIn0+BmSckEHA5OcDdj2YWYnqZoqpSQJrYZYpMxaWFqNIiovPYCDHo0BOgIjk1rSwxK4cuOgKiE4aRiG5VzGinFAwJQCyPDtKJ7+LJQjDacDpgiFAt+RNAQiH+nFM3K+J718Tj2vGkLsFUCr3IFR4bc5HcCgK/HddcWIKd6XWB/cueSMFUiqDAiCGRTJDZ3ClzlAz8s10smykDhyieGmK186yrUa26gZywRQZQa/xCqlcgoIWW2kn/kVj/xgSFMVVOwgQImNFVVHe8+xeU0/CzgWMxkzgNTAHSY4yvPRqfDjsovKvTwO8gy2gDVReJTCx2cBJ1w02lRm2zOGDjrBSEgFIZAawA8EiMu0/eIzhGJfjGlwrIo7rcowTmJeQlA+hCrhRG2U6YMLMtYfQCAX/otU+gcdXZOcLzIXjhPI+tg60fkD7RDtukH6wxbylSKdXuYcZBosWbw7DFHf0JhRzBIfeUROHf86W8+xYIpEbvN8ReDAQsVJSrawyQmZABNIFrQsQZGK9dehLHLfG4wCkOfSmUFe0m6PfGo7TcGutFMbJk9IFCvL+5F5BKMlGCdhFoxtsxHX0CFYShocKNKKEqjn1TNBazIpzAjtW72PCmzS0AD7NNWau8Zx846Z9ndc3GqB06eh6gzQHesPtZni9cZw9/LMNoLxiwCEROc/pcLkwvWN6h/WGo3eywTullZsI9GRXCGe7KFGHZMEuR5LZqoNuY+9Lmc0UfvDAEWl5pflKprQ7m5sNUtoYWQ7gwDMumOaceNvbgd6PGO7GPzfpiBGj1fopob0iMZlX6nuB+NHAYXJAMvEdKyNiAVDSyVXroWQpwmvf7eQv6JfYFOTXwIJvcRW6TgPHSdABWLZyA2ZwUCQyIvl+scmk9TISyb+BCGZMmy6Acg7Yxwt2GfycsPsD9jjhjzM6BghuigfgRzl2qXR81oENNi/M68J1PjDOE+O8YNeEdwVSvyM2pfl2721C5oCMCzIvpux9QtHK2WoQiOUrlY99pYARAHCF2fz3yHCxBZA3mMwCjegtxj0KI1Y+1BlPiyXQJKEumkGm0BOWzCJ+T5+Y7gTF0YLvUYfOKbLXNJxmeJjhYc5JvOmcAthqRIIpTmh5PtjuQQz6K1Xb1unIegupdha/M/uQtXCfBr+YPYEarHV2VwSxPshhkRKXEEJspXsSyz0yLvHeAT6QIHyLDDPh55Z7C8gs6fa4okLq1UFXyYDcV4Sl5G4EOIEqOwOvk9c0mG11p+2za2JeitkU8zLYgQU2Mz1ggDtLqB7Cb7wOljplTvhkpoDqfLYyM8sEEpwYwcm8HOOK6crgGAkdFmKIyVvgGqwWeycfT4GwdZlJaJsGyFb+i+e6mLDphhHAnBIGaAJtN7Rm0DbWfpLFPdm5KQpbJZCw6V3Id4Nvwmi6jr2ULZ4ZFHZGobKyvuxinKNDilmgkV33JqE2qNHYoNBbQ7sp2gH05mgvHL3SboZ+NMybczK5gvcKtP/uixsGpJxh3p+s8VH1x3KUa4i5pYQGIqPIyeMRFkiIxInGuwrjxAR7MQ5AMqjLZ2RY3MX1FL/W6xsNUNKIiJOo0zQdtgF+C4BywHsHwBax7hmN5gqR6qVvTdiSGHVRaQ2iXpu3QnkGSIt4mLnh3bKoBsPPgaGbNHyw69W3PZZliZhS6g6zUdwFfpZEi9qSQS6VSI0oLw18bFjxTPqHnkVEbskl0bX0lvPLi/P6Uy0nyW9Ex05abU/mf/zAYtHzWjJqLLizfoCOwfNrcIM8ejdc4XOkbQ+AwvfKWhq1VYLoGudqApgNdqhcJ/RxQc4BPydwOeTyEPWjl8zuhiLqItOguh1AeSCPbp45McaFcQ3MMQksJyi0pyuhny/xpZFDUEIJK4rE5bwYDZEl2VLSsr7iK/a5bCAi+ENiK9MBM5JX65kkiVjjvWYAE0Eqzu4CTpUK8CTTxiiBeP8aZe9UYNUg5Rpk/Zvt4wg8AM3CBxolyjW4Mp5BtqmXDsZz9iQ5DE8DNesVa8s2xyFYzhmLLJgEvhx+ViMmQGBuvv8sNqJDPlv+vcxDmYaNzJt7Jh1AgJMQlligp7qftj0LX3yLuWyD1zwWEgt8xv2eEzZblM8i6YkVvbIMvMqCFuU8PurI8GZG0oPC66i1se7jAivZ1TEtOpU8zyWEDC1Bb0bS2c3lQEMIWKc9SlsrtecSeK8bjA3QbWWxKP2tEQ4dKq0yu/V+zgfH37f1PuLI4YOri0hWIJbBXHXcRcBmYIBXHXG2zhuO1CbaydQU0pRgYaN0qhAlHunK9uEegysj46J9jZ+gachr22xrXZFuQXTetLzPrXyP10ksEL3WH5ZWUFIZFNSfQt4jzRXL9/FF7K3H5bJO72u8vtEAJVtRmWR2pjS7AbeIXg+m0OQIstiYEAyoXjAZoTZ6QQ+DHg45HGgT3ph+I4hwDJlEyEKdCyiN1Twiy+AAbgLcFLh14HYALzdYJxl2OuC3B/zlhN9yCqmwxAvSYLlmuPAcxhTu452dFdpZoxyT6UttAcRuOHKY2XFg+sQxSZaj2Jxth7A7YXK1iCBUceNeBp8GQPAbdkZ+hoOJQbKuuvFbsLg5aWASTORXi/+nsq5GN4ZkpBkZFLHYPC6MGON9sztiCo0rSaLksSxHlkb2AbcR5NgLeg3oBbSpuM2GF9M4Ol584Ab/ZOOsqi7zDYauk5wmabgGcL8Mb/eBj4+B22Pg88dkR3NnJ1czdoKwo8fQxHE0AAfwcnO83IDHi+N4cbQboDdAbkJNmiZVJiynYezroL8wZEvDnLaIlDOJtOTMOAKQZqnIEKUV3lCPtP0cTkLwNWLe0MAMGX9Mg50DMwi+8zxh52AH3EV9BLs4AdxFAT9CSE8D5Bja5eiXoQ/HER1Bakwfs0MmAw5Bbw1dBbfulJlXSs73aOPP+S0F3BAcqohOiycxyyrGuiBgQgPMQ8fniqzDmHX4ZGqH+yXKJ25sQbqi6y+zLhmsgJ1Gjtgjm/MOrF0ZtYxnalsZuRsyUVnKjXpA55LCj3PQ+Y4kzE5MJwOI2j+KYcDDCLBVDK2xXHHEEEcHcIfjIY6HAKdQP0l95eM6kovBk3V1eHPaQAmuV25KeK3PGSW9CepvsBxnhTVMmI28PG7nYFdHchzcaR/dozNsGsYcyFYfGQSj3hra5Dy0nI92RNziASgP52DV7vuQQ4cKVb7bFojBAjAYYDYjCBnxZ16TqYc26Kw9doLU/RGAnzO+xtIUKcJxpPIygyUE41LiJAL0CW8T1gymPCBGvyAMoK0JtKdfUwKYmvVAAOeBPzilvRHUtCidzkl5jtZCSyqO7lFSjkBlpv33Ov2yiILgyoB2lw6EAo9K6YZhggGszlnLbqYk5H+91zcaoNA0yertBhe6KLMDTP1StIa1MtbwPAcwGTtJ2tHQemYjIioL4+2xSZJ8yqRB5SiQaeeSl9Z1aCimttGCnR6pu5FzFmLjiHI6avADJDppqE8x+KC94bLJP4tiasNUfrXoaJFGoqm2OPo6pEuRrBCOXgBqEUSWoxZaXqNvOZTwlLvGie+bO6MXgNchgdx3ddQIH2j3hJ89kUCfAZKH4/H10fmH5LRAvDK1OZtGAiClcXfJtLAFoLIVwaggx4wXkRkB2JCfh3hfRDRPQEmwEHyAa8CvC3Ze4bBH3Cfdoq5VH+8q8EMhs+G6ddxuDbdbw3EojoOdC0mSy0gruxOQAMWDg5PPBCinYGYIDiivLwh6CnKMVDTUiif8muFoJ3wMlhQHO13mdWFe7HJKfYwZs4SYKSK5mAq6G2nTGRGakSvjGVmGeAKJt2vEHe8vy3I5LK5LzjyRNc1bo76O7N5YvTJpRFfb/lZuNV8YxpxWkncMQDjauV3XyM6tidmZERvGTp+JlTWzygplOTSzArFy8g9JUsw/1vdziT1nAdLRVyQQpQE69+CtwLcsXA7gqMInFkfI17Hl8fK+rfdY0u1Im4AEjLSZuf4VyRmLU2caJoBWBD6+3me/2IqbE1fu/56dgHUD12/kbXp+37QV+0d4bGas7FakKZ6eTWVBcnMDvt0/ZKDiHllB/uI0w5gUMhxzVjPEhGNIYOFAYTWotLqvvJ6/GZsrMjGZp1vSF76wb3JzTKSaLEwVUxxTBUN4zHofjhZgu38EnBrZefUo1eUdlMJLlRERfHI/135j6cuDkJt9rBQuVKRGECkPISqFDFtzPZZZfY4E/7evbzRASVSc8wEUgRqjJqehMCqdLY8qDc2JEg1V/CM4ySPTxZmOtCCdiYeiZm6tBCe6gZOOfTIsWoO7oHUNAMSv1hU+s5Urho+ZBwoNgAKD2WC7HhjhXOa4AAzRBVKawlqSyyiFT4ACaAdkAylJZ0ikIbHxU7Y5nWISV6VSzUxDFvEwWIhlLPZ1D6nyC0SiHklCVSp+qgSfxcJSGaPHbLUkUTdORvmeshusMAR5zq3S6Mug0+khnPky+qHjFmMAsLrMnV0o+S55LRIXp0IDURyPIMEh1Iv9PAlQZivHVPdAVgSEztryy0vHy43H7WjoTynbvO44n7DEBhJKy4xmlmpL6+fQPcCZfUOImqnDVEMANQBKtlsEQJlJvLwCpIwgGxiNMkHKiPLBjLb11VlinsBIQ0MDyBwaDV0Is2/GihQHrw64AiQqRZBNAuAquAUU9d0pR4kmU9k7QRaotD1fXHCrFBLXNIJ0OhOc8CBAkfq+zbmuWxMEWOAJOsZ0eJmRWCtrc4Sx/6p6kaWU/O0oczHmjAGIntPSS+1n7Ywsw7kXsNw3zdrv2NqP+Z65xnbfndRfBCE4AYpkWm/iGYzF5+8AskTwgqeQfLf6inXN8Geo8HS/HNt1ri229Fi24Ck8/15e8N1QxcGgLJHFl7Hj3ADKmBPDna30Y1QmYcI5b6gq5VKBwQ5kZ+AwEQIa0zx/CVAia7K38ev0lXVgoxWVoqcSiCQ4GZKqz0uNmWVvjnDwIIVzjcp2G2RTol3gFbm+PEpdlffYgUmwWyQKQ1UqC4q4oQDKPqUda0t+rdc3GqC8tBte5QZTRtQ3bThaw+iAIIdlKbyz1t5UQ7EznK0Crr5GQ0OiFIIax+mDyqGIdszma/MWma41tCCuHo1Hbx3WSGq6tOGlNYyj4XFr8NHgM9vVhKQw5XvhhRLXZgNjPDDFcOnEkI7HBE5jWvEE8IDjEsdQAB2c5AtDb0zrsobJqN1bImkgWBw0Bs5hhyZewX/Jvm0pX92NUMD7jNzcPdprY6UHakfwg7I0k5GkmkLN2KUQ6tNUo9YAKdFFY5myT6NfQVER1DRKT7CNLqqASEbJBmlOUPLS4N7h1mHXYHdTB8YFnA5c2AxjPBvtDdo8wIlF2W9iXneM9484v/8F3r/7fbx0xfv3P8dxE7RDMF6OWChUjEUTdCiO1wPeHP16BR6vkPMVb1/coC8HXl8ajpuiHUzbSnM+1IjS2QEVyqKORWm4Fmi4LhpEgHyRaqFtMcfFnEDmnFF+mZDzgt3fYdcD4/5GnZbzgTkSsgmmj0h55xEZkyBwpmvhtTr5cj1AsDl6B27meOnUIKFgZQrkRU1dlSTwCBRuR5LygAOOmwpuDSE5T1l2+IxMJ7vJIFYdMirGSd8RaMBGBAEG64LpijlOXNeJcT0w85gDAx1DDENIMp8QXD7ZycX5rCE5YItSFSU3ZFbSC0sHbgkAkW44kMBq00xC+yygQ02aBkxBmxeHFjYlopeJoZPlADeWYoRl12mKYdEtNWKvGte2wKHngD54NKNWrSCpk8Bhgm4NjS2IEOlQ65xlleAwtKPMLTJrY3G/gCJUz7hjE9TyEEGMWrBY3/x8EwZg62CpeoYjhIJ8QUSmGeHsNuAVKc/gd2g49QZvPNA5MFIPr+wr4FGeYOZhBni5fFHkmjnEJ5oL5IwyiRuuDHB6Y0OF5wBVQyqzmluplwtQGk1JPDZXnG64m+E+De/T8D4n3mziHnvKBLiL4CGCNxG8Q3GH4c0Fdxeczv47Sl9EsNoic384tE/IyKz5QE6SThFCmhpqp2CEfrE6IDnfLg4wOF333DMu5LVGmVWM2aYJFAcJU0v48eu+vtEApYcgzIyF/FS3zQimOm6ihmsxm8E4m0EjQkq+gFhkBpI0F8Q+gcPSKMYrhXeqOTb8Cac3Aqkmqr6lVJGRXNZzjaAhdLQ548KZMh/s4vEWjtmwevM2xU91Qw/D00u8JyIS38htSIJbpt2C9OickeCK0CkoZiSvE/jyn4sgXHcDqcDoCcl1j08CXTsNTBOl5oQ4CmMgAYpW5iGJdVvwFM4gPsKBbJmogNEAb4v1IuDCMGF9mxmvKHllW2o91Vg3jaBLe2SidF27i4VQ1oXzfOBxv+Nxf8V5f+C6bhjjyOo7LFpUVysq83796DjqIJDW7ZxSXyb/4xU6pk+Yp/w5HW8CFB8D17nN0piD3BeAYwWa0qEk18JAgzQH3C74vAC74HaBY8JZ9KKGhJcDfKqpV8wboDccCTRACpgpa93RTNBbAIZoYc0yW2aPatS8aokesrwTW0RRaq5Z9spUeopaFTLYyhu5/md8T3UpPFtyDJydSZ4zIIJ7Ac1W7v15xM/sGTokkXLbKxpZkMjslMhYOkfJ9YtFzNTIcCAjXH7OrpyaBE7RWKvg++SU9uG0a9ek+vGUVKeNJzZS0ndFyCtzAjpbKFowsCTaT7nxUFlWPgMU7ccyasYqX5iyVJGRvygqE5BamRDU3KfS1IFH1mI5tL15J4OVimECDfI9F9iovyfxPBWtddm1mjAtsWfNa2yIhaMlg5HdguUbhMFLlfOIAECV3GjACA5aBlVr+KPUs888GMs9vq4dCRr52QPCLI5nlsUj04J4iijbCUn9FouvDAh3zZTKiMBXhjzBlQcIz9qT5d6SymJlBssBeEttlyDpx/VUm3XwDXeawA96faMBymFE+mqCaWzDJSGU0Yjb4ICmSYEwmVfoUFzAdUEvimW1OdBmQxsWM31C8W46MCODAir3Ze5dQAKdJpnO1sBBnYY2sklykqA5J9qcAZi4BCst1xypDkqCqrHF+DxRIMvI19DHhF4T7eT79jFx2MQt0uev4rjB0N3D+QSzH8IylRhEZtRlJ2xeLCVFd9nM+RiyAkKWala0keUcuidUujRFxUxoCOiY66eopSGCLo3ENkRpK27rVE7RhTcKAbls7a5Bpg0DmIZdbTkI9RmlaMfUbIaN6FSECr7ocDQy45ujtwR1+WSZIdFu0O7oN9TPZGrdAVz2wOPqeHt/wxcf39BfD3x8e8PL/QXHZzdc8PKm3hU6A3xqh6rj9nLD7eWG15cbXm4HvFOxlKLHUc7BAJzt8A6qxI45MM0xPDsjDP64ikNyPgamTfgcBVC6AN47I28418OYARgdahOYd8BOwB6An4Bf4RjJi9HmK6OTB5mfgITKJRDTs50Zvdtq923GDOVtkOiXuh/JK9LGjrwuoWmigh5lyexviy5M5BTySEiwBDtnKW0mUKpiF7EQhiVAAcQmmlElePhkq7RNmI9Fho/w0hsIZiSyAJiw0P5JDgokuHACaJZ9Ar9IbhZJ/swCKMkzgnr9XnenQpEvOoUJQlU3fi6GXWp3SCcocgBTeT7TBD4ndEzcTra9HtpIIoXDzgm7okzpLCTQWWXpvKGjo8kBlxsgByAHaj4XkWfsPItSQ/AiQICRGZnZBLMLZlNcrUEUuNQxmmA0xQxCuAtwiuMBx8OBe0To3Q0vYXfYrRego3gZiNEV/FADh9kNFQwVXCIYqhEs6OrQzI41IMALyPHQRmVq98gUOoZoXJvg8vA1xu5Rc2fgEYAAnU7azNGPiQ7q0lB6QrE682RDhAmyvMDHAMtBTQgoEpyczuzOZY4rgYoBORCXtjsAfxDOCfRDTBQre8JmisygRBPFpJW12NcWNScfAUZlaw0PXpwCJHqHDxAU0ysALEuDmTT7uq9vNECRt3eIGnxQLVTe3nC8P2AXoPJODY3WADsoVz4ewOMdczxg1xnkwIljOD40x8uMCZbi8MthD2plzPcTR8QXGrdMRWDjAbeLQKAfgB6wt4/RSgmM3jBh8OsOvT/QzhPH9cAcd4zxxim8amj6CpEDLo7LDPN+4vziHY/vfh92HBitY8wOm4LjBD58ccfn9ws/dl4458Tpjg8qkNbwoQE/qh2fuUA/nnBQm+BsQvUiNWYERACQgyA2IUpoq7FhaGgzkxEse971XHksy2T5Jf7ZgUUItAVq2L3D/ZhdRhyAiErNpp4JEGDNlEYnAErPWL0cG1jz9cyXpWMwTn92ikT5CeBi6tNU0UXxAYJvieBHO/C9xs11z+sQoOuFpo6uDsWFZgO3cUFBkvXDAJ0P9Osd333/AvjY8Pn3v8Dxo69ojxs+mAGdmQLv5EYJBGqNFqUfkH4AnVOdTRTDDNdI4u0DikYcEES/6YL3+wNjTDzGtTpOHmfxJ97uV6ndZov2S1e8vNxw3EgCz8iXnCuKLjHCM8hlIVrFuSyinAR8tQltDXgTYAgrDOD0X6bor+BMOhBaFO3oFM+C4IAD3WHaA3xGqj6csIBS4g0NXTp/v/mK7N1XdtSNyqWnY/gEmuCItYAGiiGGF7VYt1MEJ2j04YA5nchsDWdrOFVxqeBSgYVmkdw0nmEQZGN+EYmyLJF5IwpJ0JHtyQANuUKziRtJuXKNCByMwFke5f2R6Ly4rZwwgANTOvR2QI8WnRsMvJjCj7WdPKEo10AvaL/w2k5oB64Ggk0BLrsIzqIDcnE/Qsvi5QPk9QX68gK73Wg7+oHsRXbj81cxqEWmRwGdJ3Qo9Dqpcv1yQD/cIK834MML7OUF3oELDdfxgnE8YP0Ikj8FBE1ZqjidDq0ZgYS64wKHXToMl7DEfTbBQy1I7CwvDTjuPnD3gYdNXMbOtcyoVUtzZF5GZDdEBFM6oBNjswcWektZMiL/K9+ToE5ah95eCOKmod8uHKqw84I/3guUsL+JnBMJ/tWrUAiweTj96aHAK1TgBWCnwR4Tdj9h9wG/X/FnhZ0OnBMyBU079MWgw3EbhptP3HziGIZjstvpcMENgg/SMKOp4xUNBxrUFOaGAeCCwy+BsFMjjG6sc4R6hksJbQZyZfBUIcJq+25xvbi+no//ZgOU94sQfVDGXO8P9McJG0DTAA6zcXHb5CyW+4kxTvi4mBaP8s5tGo4Z49bh8BGtvtcFnGc9AEZPXKg+T7iHjvN5wvuDoEYapjS2GcPhg9madg30eaHbhWYn026uaDKh0uEAxjTYeeF6v+P8/hv86BjtwLwazBQ6FbfHhQ/XwLd84u6GOxxd2S//KooPorgZgLeB6Y4xJq7WMoxFP4KMmQxji6xKaLmkjLOqcCfnn+OVYk2krtcSjEiShsSdUR6xSkaOTGErlqR08+QpMApIcCORTvQtlZxdG9RYiHJCZg9BA1m/F3XgeTnsik0mAELv5kUUH1Twra74EbXQyMmrAY4wI4co4ANiE7dpVAsWYoxrDjzGiffHA7f7A+/3Bx6PC49rMMUOdlNZB2BBaQyDht5qnhAaeSrmOTOJgm6UMp9QHciBfNf5wHUNnI8H5kWAjfMskuv7+0VC62DZRwWwWw/DfaAfLQI38jsQmiuCSAdfUk42VW31iGgak11oXVj6ckbzGkS6LEs0mWjS0BtCtVJwRNnF3aBOwqWiIYejwWMvgABSEF1enpS/ACcJaD00N+CACUabaC26TARAtJYiIsqBAChMr0BAOftZh9SRoll6MHtEnncOcQuOTz3IAFCCKsk02RxhfH7sHBThOv6+T/MVINRQNfIXiikNzQ92HsZayU4vVZSAGII3Z5Z7QglgxyAh2pPnQaL39MwG7aRUnrFLDynWg0D6OGqtZkYMTjAFJw+MucmOfkvBSEHrLGW2IxRRewN6B7JkHfVT2ZRjW4sBglKsJpYx6jxjtweXh1lhNhGw8mA1AXpiRgkvylueJXdUdS6XS42ICANYUvwZMEVDRLazm0jZIpZKg0Za09pZAtVr0neMM5YB112YriiggSrFcWQVlTOPgj83UTME5GIHIbITbzhkKLWdTKixlNn9mSV/Qw+1ZCYHyYm7qeIlskuHKDoicDCETk4YV9u6ybIMKRu1wUNLeVPeJj0lszphTzyJ0V/v9Y0GKPq734c+OnA9oOPE7f0jPn9ceJ2Cfrxx8avCtWPYwO18oL99gTFOmJ0wIY3HbOAzaXi5Bpo8mKC6Bvz+Brs/MD6+IUvOA0FIaA3T32F+ATajXdVxff+78PNCOwdm7yxH2In2eMPL4w3zfIdeHyHzC7TW8SrAZ+2CGqXuz/sD1//6Pj5CcL6dHIjXOvxkArYfr/iRxxfA9cCUic+b4Vsd+OLo8AYceuD/kYnPT4f9v7/Aowu+aAI7GjVTbq94/czQbwdeX/sSFJKBHEDFDIpCO1Bk0ZQjEZKeKOE8y/hmtpKBSZQ3WgunxDbV7DpoklwcL0MhPAWUGEG02fjFVEmoVlSWJAcxT0mjBXYviRTPYg7DfJ8Y7w47heTKA/jsteH/kQPHcYN99gpc7/h8Gj6ey1C/YtJwuJSz9zuCgGy45sQ1BO/3ho9ffISq4rv/61v48GPfwvGtD3jMmKN0AM7JkTDpzH1fBhwv8NsNfrvBjheaXeGQPYuIxCILpZPqnjaMwPX+wPsXX2CcMc/nuijBf1344u3CNSau68I01p4/+9YHDHF8UJB42hT9UMhnN7SjMbNyNcyrw/oFvRra1aB6QFtHP27AewPugtv9FrwWg8nEnMBDDS8YYJnN8QEdr2r4/CDJWJqidYLv60XRcJDdoCEkFtEiXCFGoiEAmM+gu3i041M+XyKLZ+64hmEK0H3Aj45pjen4TrfZgwhzAXh3wZUl4a4QdFi74WyGUw9c2jF7h3ZB++yG/tkN/UMLHB5pQ6OTgCUwkQLzDalAq0FJcDq2jQSLiZCzZ8uphCN0FUogBIn/JjcIGkxC7RoN3np0C8ZQRKX2hDZlt9895xqR19ZM0XCiyYl2IN6PaagRmZZsWU+OlMsNrge8vwDHK+R4AY4jSJca4xvA65AokyrjxO7AITeMQ3A1R+sHbrcbPrx2vL4ceHm94bjdYCqY1nC0F9z6Da/HDUdXHE3xrZvg8xvw+QG8KHAonWtKiXUQXLkPIM5/quNqUd6zGVwtg/nFnwuuYTNq8Bwj1V6jRCQUGAQAjz9nhwuziKiyowaoTxc7ZvBtGiDWIHJAb6/kAfUOGwC8Qc4TLTqwWrjoEVXEVwd+RIDP4fgAQzdDm8xmykmHrg1o50R/DPTHA/0xMIPkrKeinYLjHLiZ4JABuU1omzgejqNP3Npg6d9YPryBwPzzfkCOiWMAn/UDN+3o6KGEy0qAzNBQUUEXR2/AcTgOFdxU0S30fWaDTcGcLC+akQtlqjAJ3RUAwdb+Wq9vNECx//WGeXbYOIF5ot/f4ecFM8Fx+4ia1yId15yw84759hFtnJjzgmnUkjHQXSDaKQ8swuyLBYl00z6YfgEQuCom7uSnm2PqAyIHzo8fYddEPyfbf8VJOjzfINc7+v1Euwb5LjohjSUWjIuaDHfDXQXXHGgf3xlxdDoQlQPHh89xm3d8mHf86LxI+BXgRQXmCpWOl+loNuDnhaGOUx3SO64+MV4AuzpuN4dcTlKkX4CczEhEylNEIN0KoFhvVS+dY1SLZnbUVAlIAFdj5N0sUIuzjBTx2oxoLqMiZAalAMoExZoU55WRKNAk406r2vwU1udnEI2HG+Y84dcFXOxQkQuQS9D0wiENrwb8iDQ0veHqr7j6xEsH3uYV2gHAZzF341UFlzJ4OeNc3YG36dBr4JAH2tsD2m7wLx7wjyfs7WSpxAVdD+DW0DGZPhUHfDBdftwgtxf011d2KhwvOF559NcX+PEC9Btu7YUARQ3jdkGmw/oNYwqmN7g3DG+ANXRRAgcoRfQgMDng7QV+vAIvB+RolNP+/AM1gF465OqQ60LHBTm53pp2tNZxHC+waGP/7PPPQoRJIZiAX7ABPC52mE1t+NbtBR9uL/jWyyujZlU0oQT6KZODONHQpHEWT2Pq3i06EFyR8u8iLN00VzRNNXCBuMFMypEspkqLc+P7Z7h+uuMcwHkZBRrlhn5wPQ1wDVlkTtqHjv7Zgf45u6t8OmREyUsShKwIu0AKkqAfCwVYnBP4yqREyiIj6vV/FMo/4ocmDFcQo4dzwom6AoO8NnXDIelYQxPDBTYNxzXxqhc+3C7coDj6ZEYZEmR+oLvgiDNMkNGcXLo+Dc0YlXMOS6O9cYKzlnddBl58YmDiFKckgjJ71hX4Fhyfu+ODTXwYAy5AnxM/EiXKO8DzU8Xva4rPRPEtEXwAHeNhwDGYTdMxY6SFo58X2nlBrhGZqEhLTINE9qCb45iGF3O8muND8JC6sU41bZFpIcwc9CBUR3wGVcFrkLZvwa91WVmZrGZPI9C2QVLtNReuVUvBOM7LcQGsOXpXvByCbx2Kzzrtzc0Nx5zoY6JfA4c0dANuoXo9PEI9aTik4SaCFxW8Ks/h5hOcPTCgs1GYLkGeB4UseCNdmUXxmDXUla3JAiQ1iutbqeMlIkCfUfpEgM2c45RZYE41n4rQRNLq6uT6X9n4H/T6RgOU+cUdY3SYnfB5Qc8HjuuEm6DPtw2gNGBMtk9+fOccFLsw1ZhG1pjk2i44GjwGK+UsBfMZQCVEd4Agap0wmTATTD0h8sD1/k51zXMydQ9nlmXcIdcD+rigg4geXYvEinHBh2DcLwKFcUFe7tES19Guhq4H+jA0OfGCC5/bIN8CjgbFCMniwwTtAvDOwW8XDNIn5mGwSyF+wl/i4ceUL5ELuSpNsp7vsTgDrCjT3WN+ClCkZtcxI6rQ5vBMCcMDdFBXYzqTy6l7gEi72wDcCA6ptqt4XHxjTglgiQhuoRtHwSJTwWRISaLjuODjBK5B4zUEMhRNJ4428WKGz0Bth7PdcLYLR3N86IMJSQU+b4JbE3zWBJdxWsEbIgGCTDoZul8Enf0C3i74+wW/X8Bgbb4JZ+s0MXQIgVpDdBJ1yHFAX24QB9pxQ7/xuL0c8H6D9xt6u7GrTBzzuEGGw/qFZoopk7keb3Aj0dZsYohCZISFPYB+g/Qb5LhxAt+tQV5ukFuHvh5ci0dDmw/KbHe2/LZ24OV4KX7Q62cfMAYjK0qsK+YF3C/gmg7Ths+PV3y43fD57SUAikAwcanhwP+Puv95tbXb9rvQT2u99+cZY8y11vvuvU9OzhYP5woXLhcSUlAIWNFoSDxgQQ2JRZX8A2JSSSAQCxLQQgoBLUn8EYiWLIgFMQWxEFLwgKC1eIngvTeHk+x99vu+a80xxtN7b+0WWuvPnPvkxLwHDNc9NnOvd801f4zxjP703tq3fX9EaJ2gqBS6CXM6FDtHp5Y+G0swgL8ddrUkevAufuIskHMjnDlAmqdTkjNM6atAGU4pg60HH2vlAbkCVSh7pVwa9dLQrWLdAp7O4iQ+PEdO2dDIW3Hyc3XIewmasAah/G5btJx/LrTQ4lAzZ/pSgcWITDLvpSzyej6PKdEGTHPqnOxjchmDqpU2o+gzieIkCpQYL3jsgDRChbiKkzpncEwsiOSyxPge3xvhin0NVBiEYqjnXlLFueFczbjOyaWHdL3MwcsY2DQenkbcKJ8kCpQXhN2TwGlL5uvQ00pfnHIM9BgRY7GIpk7aIKRT9YzRxjad3ZwrgVxoviXmJAqTUzuPkYjj1FV8AnvRvEU8rRgWwpnvdSJiM0ffRjgze0qT1AJha8CW43IXoRXYi3CtyqVIoEZuVJvUMShjBG/DhZZync3SN0ViHFpFaCJsAkOcLfdYbMSYRwxlxhrN8fkqPqIml+TmyRKTAm/mbSKB7kUEhweCVCKnaCHZQhKD10cWJ76s9FP6vCZ03/fxC12gfP7pt7Q9lPJ4x/or1h+xmTcJaF0VpMF0pA/0/qCMcVoXo9HxzyE8vaKzIun4OihMDT+TkHMF0VZSNmayZqQSfiLzyYNvYzPQ7JZx3Gd4SMyJP4MX0r0wKAyE+ggr9tmN++uDOR74oyFbQ2ul7o02KyaNbTxxCTFePV7ZHwcvfeLTGRasb0llUTHOiKApS//SUX1gY1DGE+YRC5nnSSxfMuFZ8nARgVYz6DD8IIII/ObOWpYvgZCKjOAELCVfzO3D+nnaiOfi/raZu6QcTRALWypz4Z7UfJU3qDf6xIR0F5O/KF5jLDBmkqZH3OiS8Piuk10muw2GO2LK8B2vwm3bOErBZSIy+dgKew2OSpdQAnzXnLvAU2PjZEKZ8OEJt+ZcXift80H57kn5MihXp/aaYY5BmMQf2VYFqVlbo92uMY+ulXbd2C6N/bLjbYMsUMQEtuA07PuFVhvziDFWP4x+DPrRkdo5jkF7Pnn2JyZGuzTadqVsO5ocgBPaVmFogRLjSNn3GJMVTR5Jo20XXBtSdj7cO5ONWR/sdbK3Ti0HpU3GBLRy+7CzXzZuH69E9pSz6UEfk6f0IFcnWlIchtj5roa+LeS/+HE6z1YNiXKrATOLE4UMMdarNVyjpZQ3pUd2c24hVumPSX907PFEZoaNXpQ+RpJtgU3Rlw29bchtx1rJLjv15loprVGSMOiaviCs4sPOw8qSO2XJlXCVHI8muRnP4i3/M+0MxJ3ND9QDFe0z0SU/wm+pVMrzEarEmZ4WNT12ZvhwjOdAxaneuY4jyNBzxy3g9rosEDCqRCMVyo5QCu0+2KbSplNGj7VgJZg8kioii5He7svQb2LWMZ90sSQJG1/1wafHg5cvX/hQgko5bdAfr1z6M1Agi1Tpj1O5DuHagzR65sC44Qx4zgyZVPT6GsWACPMo4fVEyURnw790uA/Ko7OPydWcTxKO4Ud1mJr0iuXUGoXaSK6JJlcJd/ZSQp1cogCbeYgHd4zYAzF0zmhQ3GAEJ7JkLMQuzq7ODpkhJdSmbJvw0hp7KTQR9Hkg9wqt4N8ll7EWeHS0G3pIEJGnnELwJs6uhhXjas4gYlbKCC8uDf+IGCcOw0cHG8FNyX20qlE10pwpfoqO4pXGWlyk4WkzRq+eJGk3yiCMOQWslWybg29WVNFWsvh9Yzz9ox6/0AXK6+cnW+9ozdNihkMmbkx5AFG9SZnhu5awmvlCQDS5nhomMkORISz9/7QaC1j3yMJxxU8Ji7yTNAZFDBdG74jOlPMF4fbNjyQ2GqyGKmMUtFf6oZRhzJEulceB2UTtgFYxqbHxSME4Yr6K4ccdHnd0DErOrue7g1u2WE1r7uzF8TLpGh1PNYmE1DkokiQuifHVGnNJFivunmZvQnfLjAVnpeEu8mhYlvubAkbk7fWnP8dI1Md95dhG5+PLDy/RAnPlkUogdafm9SyLOHkWKBo5TEcWYXOenCGNATJeSkRNVMNKx4fn6AkaimujsLMMsK453rkVYcwWkUA6qEBDGBbQbnHn5TCuj8nl3mlfntTPd/TzHblucLsgtaS3SXQvbmvdaJIQr/F6ir6LSlCW4Yfo8qgQ6haIwDY3ZokCJVDA8KnYR0F0sOSGhr3xI5JICQSBuI3gY0jEwmPgQ/FZYFY8LhhOzZGdUtsN3R2dMWaY3rjMRscYOSa93rLIuu6JyBnbCL+gCJOzU/r7Rlh8M31auTNYj/fIScQlcl2iw7M390pZxLt8/z2hZTNsBqJgw5jHZDwH9nrQpdLbHdd2jiwRifegVbxVrGpIPfFY80TXiyaLIPb8QN0WqfJUXMU+w4yDOojdmu69Fk1UvBP5mtc1WND6TJO2GURHI3gUPileKfNAl4y8hCz4um/IjNH0mPGzik/22SlD0dHDJBKiwMqTtUhkfRVJlx6N7KNGjnwMillYOmQRZhKyfjHj4vMMUozcQmG4kpZL7H3Sngf1/ggis4D4ZO8HwwYX8bex0giVR9EoxkONLXnPGPa0AH1d6N/dkek8EeiVUqNTjwLFeb4+6K+dcT/w40DHjJFIaWiJPS5LyihO1rg4RzCap7G4s6mma4AwJEZvoVzSvKUK6kKxsKVQD4m3pIsqslTrQkXOCIFFVg1UTKHDvB+MqhwFng28FVxL0BeGMe7GfDp2EEi7eZh0eqe5sblkvlbwUzS9cliWDdNhHDBDSJLAYdgtiFFkgM4wOnxHLl7KyYU0kU1q9Pkaa0WIAMGahPEVUCEahG6LZvb7Pn6hC5TvvntFnlAuJdQEPsPEzI3Cg2Ckh4LctTBKoTeYRRlD6YSb5HBnWmX2dN+zQrVKOIUXXCdeWnI1spInibEimGxIbuRjBHlLmFTvJ6S7jILddiLi3LEuDIkCxUaQBS2LFO8xy5SpWaCAocyjhg+GeYS5HTHGUK9BVBLDiqcXxXvITUAc1QnlyVTSAyNy0AtHwpmCe815bLDXXcKbxUdAgVGghM9T8FbkDHyL5lsp4lGNZ5jUsn52LPgGWaSstFf3QH7wKEbCpEy4J56q5lSbZzCYprSTIuGkKRJumtnJaRNESsL2LQjTNWyfpzxznAQyokARVaoKyzT6qp4EZrBiTBdKGewWzo2MOJB0wqd7kERv3z3Yv/lCvVTkp98ircBlD1Z/FVA7DygDvFS8bsjlJZRUCssVbgUfhoR15oghXGZjRrTFyG5YGjEVVKKo1pKBctnpIDEq0AlyGIglUtGRzTksfW7csEPiEBuBDphXfNaAeUulbS/YLhSriA9c0yO0ZaFfKpdrpW2F7RYx7uaTvb8VKH2O0+zqJEnzZhi2xo7M4xyZqLQsgPU0LsuKIOXHydxEUwUl2BzpUwEji5Nx74zPd9ThqQXXSxRMM0aYKgXdgzc0Wzh8dhuRg+Vhax7k77if1ggnjvq3tTyTxHsiJXiQoC08aNzf7p2lSjqNH53wi8h7ocyZnJBCsUqZhdqPKFjwdLAufGg1/Cym0bshYyBzsPVn/KzyDEdVh21ManJQLmUD9YzdSHVdyvGXs3adsM1QbQV6Gai1jMll2pvyZEa0wpASYymD6zHZ7s8QTtvI32Fs/cmYgwsEGdwNfUZHLquCnWkjoIFgj9fB6BbCSb4Lme3RGY8NaaGiieRqp3/3pL92ji+JmvXJRsXKzmwz06SjQAk/m5R+lxiwKQIz7o2W5GRZCB9KJ0ZZJjBjgBt7mA3EM58qaQKgQTAl7BUCdyuhWvNCmRW6Yk/oXx48fdLs4Isc9KqBcvZQ9RwP6EG7jIa8G2U6bR7YNC4OOgYjh46aZpTB6wObjj8fMPq5hkSEKvaWeVWC31RIF1iLIo5JEGGXze5cwoeYx3mNMaxeBClR7DrxHqoIZTplGVR/j8cvdIHymz9zvq1KvbWozqSCBZFLa8B1jkALu3urlWFR2Y8Rh+z0UBeoTvQIHouUQS0FkichJjRT9hkz7ZXi6DUQGis7URsr1UYYLZnRbKC56bpUXComykOUVw174mJK72k45nBvlRWuFAdujDy2qdQpfOnCsydk3RvTCtM2HlIZUniyYaWiOmnbhaHGkXDrgviCreFsBioDSYlgHAQSMkOJRfUGC5bTkXGYhJvpfPOZUN7JznTlDEWOChIqgUmNay/Lrn11cVHA6LTsHuPGcoTHCnUxo81BcacRBUoYOAY8O1WYo+eMXig1uiSvFeoGpXHoFgSxYTyHMQbce0CXQQYOYzS8M2fnwPkywUoUOv3lFl9LSCttKnRl1sagcDyMxzcHqq98+//+ljEK5o3pStmVsgXsy+yZ46KUrXG9XfG0kq4GOhyOES1dcbwYy4G2pNxPa3Qmpho3vYcwVWyyl8GuwkONOTvTDyqGzvD0X5k6j+Ogt0K/729OuXNExMM0BkppMf4M1RoJ84YEtZTC1gzfwyPFEkHZNqW2lFh7HOwtx6EdONIorhscw+jTOUZK4t0ZsweXyEbiIhL4u8Wm6LrK/ckSl9UZKeRucaAKRCr5CCnzfAzGl4P++eD53QPrhg1n9yBGH8cD85F2tcb0QT8OxlM4Xiev33Qer8bxCJTAF09mvnGpFkpqwxmTkIxngRIdaCojVmihhEFd3gA5Bo2efkxLUzlHxoyR7SjobECNBOmg3eAEAbFuSpNQCNV+wOHoc7JhqA80VS2OhM9P7dR9MtKJNlCL+O8qFkp49TTyEtpUVGI8O3yG0GAOdMwoJFIKI3nvSwLb9mqM8eR5nzxe+9nRu/dAgGagq2IKMrEKswpykYhL2CRM8czhS0eOiQyDV4f9id2ezJcdaTHK9RmF4fz8xB8DvXeuX2LUUobF/kXm1KxC9xQIrFiLRMIkCs1SE4VWUp4d+1ic3RLvqacyyJcrcWexZL3YiaAEVTR24WqFNgrXo7C9CjqcYxyU60Q+D+TzoJXCrkqxgpjQu3JMOKbz2id9GP2YaO80M27mVOvMI3xlSo7viumJUMvzFekdHZ1qyWP0dHtWTfuAiE4JQ0gyLy2OxTmzGO1G0ZR51yhQZAOuhqezYvqMpt19NFTf9/ELXaD8pBtfzGnV0RIhY5KsHc2skNjcYiOxRGXjcI0CJaIHekDImtV7KVQtJ9lYMZo7zTjZytnunhB4rN7Fjs8CZc7wjgDO1kThQDgodBQ1waamq6FySMl5c8xaLW/82oUyoD2M4/AgKo7VASjPrLIPCSXD8rIIyO7N7wDA3BAX6vRgeVvEBgRcLu/GOm+UPlNSOROjnbXg1s+MEiTnxfpmTZ5Iathbp65+JJFvFSiLKKtTEpaOn+kCz4QlMaGN+B2N92SucKKcDnPGDViB5iVyMWQD3ZDSKJECg5jzTKfv5zorSOKc5YjJA9481FPpFc9/JB/lmYRkMeUh0YXpmMj9wFph/+YVu+zIyw39eKVaQOsaGHj8Tg0Z7tZaQNNGdI6ZGrYIwWdoVxCETtfb5cdg6kkSFPaaHZAVxCpjOMNmMvOjsPRc94zkfqil9wSnhNRnuhVIGP2td1fQQHi0QESb4DU8VNyDeFwz3p0ciEK8J3N1Z3mYz4SIR8oRo0AxDltGaAE/z4XgmaSVe3TxkuskaVBxFiinDbmPNe4B6zOLEmMcE2QgtSPPDSm5eSqnv4jnHuEH9GPSn8boHhuzR/BazgfiHvA3lHDO+LpQddjJKwk6Q5hwBakwFx5RaMfkMq9NqlUmniNLj/clC3ez5dyR9wdR7FSVgNqbIjMksm0hjmoZHJcxCjV8U0qVLFDkHDVVWR8rfTpGPpJRAJIoqCdqGT492fpo3rxOSlWjGNURXlMlXZxHyffShbdcH8/rl8Z3M5oeJ56rPWa64E6mCSTpWaZHgaKJTk9jfH5iz4E9O/IY1GFcLL1Lcn909+TKxFqPAiVVXQ7Ln0wXCXf9G56obSCxff2HEWuXifs4fXwcP/mAsgi/OG0GuLr1GIurWeawGUePbJ7lglu9Iq6MqTwNDoOnBzVgjqA4qBnNgveo5L7ky/tF34DHHl+/OF6SHL/lWlv07cha2KCXPBMsC7e8Nuac/j9LrCMBFUGTMwrBM9V3nSrf5/ELXaD8bbujJrQjqr4mjtgBPuB4rNM7wvKqwtbeGNhmK3YgLJ8jEAetF0QqKlvAhVqi+PHQp1vO8KUE3HyKC/OGnIcFcW0M9nlQfLJJkKu0GFs1kBKHm9Rgdw9lWCbHiOA28Cm8unNM4TDgOZHD4XNnHtH9MRVU8VKYl8Ks0NHsMOHlsFNZsA4K93Q/TChZuwdhcObXupzmWrHxxg5qS+Ir5KZEEh3PT8aIibBUFlaQIiHPXOZMAjPhVDtPyjVuWghKFEouwiElIUZDx0DdaZIwqQpsYZ0+qzJ7kC43hEuvFAnevEnDtUUxNI15dHqfzB5+R0pA2zWJY4wO4xlFQfUMCAw1l1XFqjA2gVRUXAlC4fXxoH0z2Y4nn182vjbnh1qQ28blw87Vk4Sbo69aa9rbl9hIB/jwKLIJOaAUecsCyg0jrGresjtcJNOrw2zOFHZxuk7mUI7Bm6utpr27KW45955h+y3ZQa+NOnKolDkDFRMRmha8hv+7z9joNzXEIytBPZATJGITIoF75ak4Q5zX0DjQ3TnMOMx4zjC3OzCe88DmREaYIm6i9JSZ4lGkqIQbJkQxHOuFd3lSMNOIcJozjjTtO5zj6eHa6wN2Q7cY8ZUaZNNa4iCYA4775Hg1HvdJf8I4lrQ7iqaQk8WeECZ74c0yRljrj7EM7IAsxN0TYVjxFqyxUMpeJ/Qj7o/hTrcsVvKeNfKQk0ACak6Rqhb2ouxCSMmnwAieFMWwZtgWH+6xJqRJjhSzyJwzmgRzmkeOU5lOUUuuxBqFxExnpuzYzJkj4xyI12YjG5Ix6HTuAkdGOrSmjD3S2F1LcJ9GoNkUwetk8zCVbASnZ5jzvE/GszOPgT5GmMFtB+0+kJS0R5FoHF8eeI7BdcYhffWT9Xnyh9wnqnbeUVPjnhruHB4cpNNQb3lD5YfNQJUfOdKzmapIjzG/Tk7eGbYK1FTUKGxDqOliXo5QlRlPelNsE8Y1Gu+mmtZ9hemFJ/AU4VGIJmYadRhqsHuMyyaJ1mXThSfeKAIeY6iymnhdSsnwnqlluQNnc+rCwIK36c5R4swa6Q2jJQwOZxGsCt4kxuybxrr2RF0se/vv+fiFLlD+X3QcYTseFAl40+3IKWEqRJwgpanDM7sYcj7sa3rgbwuqSsiOi0Y+jQZqEs58k350XAwKlJZujqrnDHY+D7ADmQd73uA7UGVSBV5KT3txoaWjq3bjOWKWX3XG/GZOvvjgUYXXfdKfndkn/X4k8hOdh1sBr7H5eiwgZ6Iyuc0najNcdGXVUELP7WWKZLa3UWfPKluomqmV2d5FER3kNniDgWWNgIjXLrkBl5ywCvImVS5BcAzv6sHS38l86zAjB8mDPZ+//pk3xHRPYmtW6+RIyRrWCmaVOSbVnKvBB/GEpANqnV7w2bFjYMeTY0i+dKV4Bhd6XvsxmPMJeEx8JK7Xoc7Yg8+jVNSVOuFmoTi4HOE/Uyf84MuT33d/8jw6t+wsNyuQHUswVjXJc5EtMjSQhNgAIwelaEXScFA00Yvki8RPhVblHYejhr8PGmmsOiil4k2TByNh2T4mpiXGInuNYL/sJD05GXOMUJnUQmnJAakF04CszRzEEBL+9zBBW0vnyMGUIgyJBqBLSbfK7IslGFudweHwdOeenkM6Z0oU4agxyojggUDZJnH/Vkiu2RqjRhNgGuaHM1VBnkXZnMpUZc7CZItGQwu1ehyIlwu6NaRW7H6E0K1EF2sa0vYVW0+idridazYAv3htg4yo9yjUIZ60y3kXZUcOB4u07zGGsCC9Hx7FTveYmUiiLIvMr0yqa8pv4x6XAd4dnoNuUVQ/mzP3ULxNF/o0ullyx0IcEIGRM2SuHgVvmUG0ribh/yLGU53P5jzM0WjGmcNjHS0ElCTFH0cqhuBaK61U9hnrehEolzyk5xoqJuwoWyJ2Q8J6/VVidx8+I3eN8IEx6WFDoMLwSZfJqz7DBkImLcdUdRUMHmMJy0DOyFGKAsU0CqsuSlcLWXIhErebJFk7miSTeO1dI6tpFc9KjsZypbOymzCQjqbbcpNQURUJ40IVQb3H7umKDz8LpjAqUIYVHhQeojxa7AdlGt6XejN/j1sGy/oCd6Lx1BJ7n4eHSY4amCVR1ppFjL5JiafDo8LA6K68VqF7ND+iQWB/ceXihYtVrrNF6KcVugvdgusW7M3yvc/4X+gC5beIzWCbnImnWagyeZcMEO/Mm4yW2BRXgeJ5HMcWuiq8gPNNJMY6JjCEoyevpcRYREsYeklwERnP/FoTNgqVkJU1hCbKR1W2orRWuGhEdIsrjxFmTE0NnYoM57Mpd3M+q/Pok6MP7v04Y6wB3AvuE58t0ZcNZ6BMrs+OzoHaOJM6XSQjwiN3xEeUtmXMDMMTmpSzQMmaBNF39vR5rcLGOzvAubDuIPaFPC+hW42YbU0Jr9qBEBW82nwrUAZvCez55j30nHgEKTff8/M56CRYKQHfV4PbhE9qbCbU6kydTCn4fGK9Y/3gaem+aSWzJATNrp0xGBaeKJ6/cwKvBUaNereZxrx2OC/T2RwuJC/CncfjwJ6d1ge/YpGB8WIxEhIULD0FVE6TKdFAIZwg+KrWs0BBw4cghxmkJjKud5FQNnnwb5w4kMQ8IhdU8a2EfXvVgL/rZKrGwXtZvKrk9SRHxEt440hJY7eEcMR7rLsao0K18DeJgyWeU9brOKFUKP72obk2ojmIsVM6dtMNngnRF7PwZtDYTJeio+T9C0tVEndvEIs1cngkpeosGDq4RsEXSAdWD5+GyA4Km/VaCq012FrMr+qEYsvYOMPpFi9Ks4HJfWYVKLIKrzWOSsQr4XJy/a5vcnxtL2+Jvrk3rf/uQPcYq0CMadchuLnRkrgePihy+m8wCHIvcE+XzznjGg2vdE+SJCnvtyDmVTOax/fqCPv54hGu6RKBfl/MeRhgoWob5rxPW44R0KSPmEULcDfYClxcKZufIwFNdCgBPCTBVfMo4IfENXgSqU8DOxUxRmQCxdgGukSB8pCZPkGDHaGmUy/J9ztWWnjKoUk1mLmc2U2dsG6oGiOwmn4ohZTpk9J4DcRwjTHfwkezVUsExtbdITlOLDODOEl/pDAhXHNLx84QwLBlUMZ0DnEOKRxTQlRgqzjxVA6FpQNrX7YsGCXumMgEDCn+srEPa/v8yJEx6vF3z4BCh6M49yIcU3gWSUJ+nAjLYFNdMS8017y3I9hw5s//vo9f6ALlM7+CoBztJUctEjb2Pug8kOxeWo4bVOt55K5xAxAyWw0ozbY9ZKnbzlhdk8RB7mIMu+N4qD7qHt1p2WLuNp05H6Ex9wPzJyXwDFpttNIo29eMtrNtO3Zp0b0oPPo9Iu91UnogC2YDr45d4FU+8yp3fvr6U54cdGY6sa7Vl7aFPgh55kT6EQoAC0hx5UiM9MAI//FcxKfaQE5k5IRMJEYwi/jaVGJEgZ5fYxow75KkxQiINAwSkJKZQyll8+iHS3opCLAU3HlWAgRXhPh4cu6562lRngMZDs+Jj+j6LjifjsJeCvs05lGwTaiEqoHeeU5hTOWYQc4TE3xE5g7WzwIQyFkufDPhcYSjbBkHOgr6arz4webOlUnZnHoov/TtZ3727c7j2xtfffuZQ2AvhRdVVDa0tmTXO5TJ9IJtYUEuImHg1jJQsEWB8raL5eJdrbcm36LnxSsGOhFtiE3Ue4Tf1fALCX+EGZ1Zgbnp6Xu2lDYUy47fz0yeqI0EdMPVMwHWY2xk0SnOJJYbRBzATDv6I8Ys42kxNjkGRzeO4RzTOI7J4ZPuk3FMbBo6Y3xnCfHjjts470lRjbUgucFXQWosf0iumUm4AE94DngM4ZEkg1VgqxZqKewVtla4tpbKq8KonVk1DheJqeosWXwr8TwJxQOZSSQlDwV3TEIuPFkIisS4c/miSBKDPfxgTD2ymypnCuw0ZTgcLgzntBBHQprrszOm8MneLP3nLGAVZAdRZmk8ZWN6w6wFEjWVPmPfU0nFhSvig43whlEz5gjkWaZTqmfSb+GbWbhb8OHu03jNAMUoFiNAZjlGr8dug83CsG0rk2qVC40yQ2XmR0GkIrVyLcbFlUclXJRt8s00ugtTIqW3amHTimsomaoqh3cOF155pnHcjCJDhJ5cLoeUjlsWe0vMMKOIM+EhiUKKsLmzIewShatrzESOXN+v1iNVeARfsSbxorIKkRpJyWJnaOMsBW8lPGy2yC3SIrQplAJelZYVf6D+MVoco54+WrNUIk15crRYhzNzgXCgZR3sq5yPssmm5rYvZ9dnBawJvgnkdMB1NfxwKBwSH49eOdR4MOMekqBRjKb08pbts1N5+qSb8TBjkKjN93z8QhcoP/zqV2mlUfdrzDzNGONgzkG34yQl7RLywapp1QunwZhDFigEJLU10IK1Er4pOeclXfz8egBEMmPbKVpppcVM2Bx7PhPv7Kh1FA+3v9aopXHdP1LbRm0bbasJQDjy/IJZZxOjhBUHMidFHZpzyM8w/UJ7CGPemXYwGGv8ncykPGUWQS3Z8RY52NmtZdWsymmn+HOPLHpE3tq8RLMXM7WUd4elZDM5g6dyEl+dnFR7ord+8mGKaUoo4yxNTCo4KWs0l49OwNwGmfYSN8vCvCYad1bekCM3RLHKUwrbrFiiXhsl3qfReDh0D7KyZ2dlWVwJlbiV3sbODjxIbtkRTZiM6PpcjKaTIcJWYFPnPg++PO989+Uz33z+zLUqj+vOdd+RWil7CYVCdVyOIDiKYSNevVbN1NoIaXMt2e2/pdxKorjTwpdhxrAZL84sFv4JbgEZ19gUaxVIF2BLrgmVdIqN93tmomwxPzvfN+dNyVl2GCS6GFaUw4iOOQsUd2PYYPSDox88np3H0Xkeg6MPjmPQe6pVQkqHuFFS1YGl/bmEBXcsoZkEjJJoYBweIsLUUJyE70qsKUtuhCURtwNdldEq2iJxOch9YQJXVEJea05JzsvWPdxn+8qfWsPjwIgsO9XzAz9r+0XePf9vkYj87TYNNk6SYbOrLiJIrcldSAm5exQ4c4bcNnlfw5z7GGgpvHq0K0OFsTdQR5tQa4T+6fWGXC9hAChBotWpWaCkzL5XxIy20E2b2P1+ojyiM4vgQJZFIvvm8CevPe6atx3F3/1/XIZOuNU+MXYPy/ljGjqJAmVMtBglD89uJRABotj8QmNoZRZHSxSWW2mIXGheqA7dDvo8eNgzPaMmsgrqEiMkQbKhSuKnrJ0vTPWi9g+eorsgPhFqNGatnUGIcwZyW1IdatNgEqg7IbUVCPfmonjx4GhUZdaCbeHfMrdCaxFVobPG9S3g6ucVXURkK1E5qCd6D1STqCZyf8SD0B6eQqtAiYGTEQj9anD8LFCiwJ+bMlqIJfxcp4DMU0RRZ8WbxWs513YUXKMpfe03RdNeQt72Er7/4xe6QPn9P/qnuG477XoBgTknvWeB0sfpJXDREhyVZb0uwkqQBXBLp8VSwmdCY8Obp6FYkghNQqkhQtWK1j0KFa15Sjs+wvxG5sxFTTir1oaWQtuvaG1I3dA03XKf1MdnpvUIQ5sFncpl5k0sk0N+CuVbvnsa8/gOH3e6hSupuxNMygUsykmx9iRLpfECnEvE39Um74sUf/uSoguRBrJLVYEWxYlLLJ8V3re4MStO3lKGd55wCdGrBV9Bct68GO1hg2I/93zG+QTeP0c5QVSjLew9/03pGE6leaFZhQwcvEC8j1O5E5DjM4sc84CpV2p14F5vSaMQCI4ldL7GgwB3NY5ieJkhsyvCMZ/cn6989+U7vvn2W25VuX+88WnfoVbK9ZKyPD+fE2K0WBKUUpBaUqoX19skNHwiEXTni/dkkymWhUV0sdayfXJHPaSdqslXyYrSUwIpMk/3VZcktYm/yT99FR2e0nwFr4iMyKQqQXSNuf1yFTVsHIx+0J9P7s+DZx/cjyhUjj7oxzwLFB8B/hY3toTgL1LYpbCppjIpYLlIVM33X2JGbjHdQZcSg/TdsTg0xjS6CEdR5h7W/l40kdNoTmpJg7LhIcsesD2N9rSwU19FSglMzdNSXLI4kdWKvgMgRTjX/XJlFiQPHk65/cQ5yaoSasCZUuW1JrUoHB2bnUnGXEzjPiZSBndiBHWo0C8N2QuVnetlj1ThywVtlyh+RGlWGbNSVePgVY14CEsEwAyfg95K5jpFOSXigTpRqdV4aLgI3x+dJ6ebzdu+8bYr0Qm32kbkI1UznjPGSItJWXGarhGsxNgp79EvbEyNMEjJQmErDefChlLdGXZnmvKY91gDPpCSHjYayK8QDRz2ti96jh3z3cDXW+mC+qBIo6qwbRt1a+jewhl4TJqlmdyYmQievCNiz5Q9RqxShdkEq4pvlb43SlXGlo6xEqadSb2JhiOvXeTBgY3YO6uzvBxRJDNv4vov7ZOSY1gALzFe8ShQJPzoz71MljSyaYyUV9OSxRvq4W1SJQQpw2DXc5SrKdiwUphbuFTPlP47C4Xn98BA+QUvUP7v/4//Jx/3C61GdTZnp/fOGAElx8KC3WNu3VjkS4Fa4w0RCddW1ShQyqoYjTnDEh/PkYYUNghyU6kBoScT34iDOpz5YjZ8sr2T4ChF8b1hWvFSGaWkNHHweHxhzhGFxgx1RT2MPgb346DKzkvZscfP+I7OncGlPzlcOMQSfY9xz4oYD8FRLNSyZqFkvgVOE2OqpXRTz/l2sLI1unyRgNDdg9BbCm0LYzrRxvJ+GGMy52RaZmV4OIaOmaJQlSQIpSfECl9cPignjvI7P9YjSaXxCnhjDCVs7o5mioZReEqlS/AitBsyUnFAFG1P8XN0tOo3HEwaphskt0f8wBMY3YiZ9CS/UR3qDBVBndxq4UXhosJ+hI/B8yedb37rwtUOfnbb+Hjd2G6Nj5cKm0Y7aSCjhDT3KWHwlO+neIwADE9pX25HUmJkl0muMX4IkuDquUoJYmv1LRRSOKVIrk8PtZJNxJ4nF8ulYMWZYowx4v2dkzF6SFvds/tKQm3qybtM+ujcxwPpQYL240l/PhiPJ89HEMGPI1CVOQaeh6GsYLpsCJqHSdZVK61Wag1+yEqmjajBKCw0Z6QRz2Cc7SIQZm+p3LLOkMmsDtfKmnCGDN9pVWg1DunSjdIJBOHzgX9+Mr486c+DYURCehKVzcItFA/X5GRzBFCiTkl9qnhkG619IHqjuLZRdzlFSyA4pcRoZMa1cdF0Ag7uy+gdlRhd2TQO7WgR7lE3Mpoyrxu1KLIVtq9euGyN27bRSg1Sf6kR92FGqzVGtwjeU97tsS/OOdk+74wxmDPGhdFQFMrT2A7D74OHKHV0jr6Go1k5+lmh5X0eNgOe67SY0DNgLxKGB5sWLslLuhs8UwjgKHdNozWNlGUpgWR03akiVBm47Bh3njqgNEQrpXmMAPdKrSW4Tf2ZZmrZddjE5oH7wNzYZqg23eF6dS5X5fah8fGHL9TLhXK78BxOH5P79ZXnVnjqRKXQLBqiPf2C5LpxVOUoCsXoVemtwLWF03QrJ9lUDliKIiNJ9QQvyzwQ0jP4TzwKoFQyusR4JYY8cQ4tR15LtGh6WDb4DHPTxdu0PK+cICtnz52FUvC2wt5euG6BOF/nXMEjTLK4FiIEV0ClUHwgMhEJ0n0tb+vhH/X4hS5QPn71Qz5tlwhfcmPMweihIR/1rXHfQnRDfXex14JABbNxFiha1iE/mb3nBgRNC60oewY0taWuSNjWcu6+ioGCpP34ClnSYJjvoSAwLRxowtCTUkJm6KWBFcQK22H0Z6eWJ8/+Ddgr320NPxSdYH1SJNjsSAw+3EfIwTCeJ1WR5H/Haw9bY2GXCMEzj0qXlE6WGuTfmumVkuL5KFDi87ps0E9FQbK9TRgz4FggCV5+Qqgkuzw2+MWiWQvW3r27v9sifv91AbNn75Mfdn5d3NaRiSIeaZ4L+nCMnsocF33jckCgUBqWSvEUo4gkPoPn71noiaizN2OvcGtwQ7gIXNypQ5Gn0u9fOO47x/HgmGHvbek9EoNeorvWULfEM3wz6zOz6Bo9RzLLVCqRKtccrbBUAnF5pIYZVXFNErdnZ8RJrBNIkty6krG5RSGvMZN3D7VVWCuTkyQWGTIiByx4AjJiI/IZ3IjR6aMzpjNmjFpWTMI8RzApwyQVYh5jlyYx4ikaCrDV4aqnZXgiDpJjmkDwo8gJHdliVQdaFB4gHmqms61fryEL80QvonAC74Z1Y/aIFbAkWYaShvQuYfkNBgnz5wDJny+4gzApJ1nfz87dE5aPEY+J4DmFrRJP1iT8f05flVwfw2DMGQV3Tl+9BTFaLo36cWffGy97Y8tGS2oNl2BztixQNgTrI91PU+01J52dOUpYp6d0yqlhF6AWJpI5qgjkeN3R8f+rzXgPJoWHiIAFoXfMQIPELAukuJbVNB2tSzQe7Jhe8bJjZUNrOIQjWxQoHJAygsEW5H53rHrkLF0KdavRGzw9ipOZNhMu+Ej0z8M51xIQ3Jty2Qq3vfLhlonjL1eOaYxuXIbxOJ48HhU9lGrGVZStlMi/ulSeNVC6pxAO2M3xMLmmtBgxBmiisUci57pajdWJeq4CJBZ/FjnRCHoRVop2XduFS/JlY6+rKumUru8KlPx3lygYc/9euwN5vwfQEl/nJXhn7qHQWahhTXVSXQitxsiQHNd+38fvuUD5H/6H/4H/4D/4D/iN3/gN/u7f/bv8V//Vf8W/8q/8K+e//5v/5r/Jf/qf/qc/9z1/+A//Yf7W3/pb59+fzyd/9s/+Wf76X//r3O93/sV/8V/kP/wP/0P+yX/yn/w9PZePX/9+PrULe2BQzDHDIXY4c3vbFuqMDbm6rfE90uoZdmzWswoNp0RIePo4Anq2IDjutXApIWfetJybjYmlZA3IDbVKjfRYKfFzE4s7douDXOBusQCnOdtWAnmoF9RD7345YDwO7t/dcfsZm7zy/LJRutKGodI5mHQsZ/KxOU+fDOKgWKjIdqI5sT8XFS5akrVtAX8SxUapJf0F2mnv7G6oRhjbtm1BmtSWfjLhTdJVmHNyiEVwXFDHkzTvWTbZ24GRBco/9PG7TXfOR/AQisdBtIqT9yWKe8pubIAZx8lieVcI5bTr/B2yxWirFEiFic04OLfYlnHiphQcKZOPG1ya8vUGH1y4ABuDfRj1aczXbzleK/f7tzz6R57WMG6BQklQS1fRFQVKmggSJ+BgMhEGGrELCGg6a6qjGhEMokmUloBrSwvkr5lABx8JN6fcRHKUgpe38RslNiFAJMZfbsCc+PJ3mEkyzYLJM8PddDJ0IMSHzeACHOPgGEJfhFhzukG3JfVm2eEkLhbFx0ahSg0CHum/4ZNKwPTbu5HIJmFKqGIhZ49XGAXPYjDpwGvOfZMhL0Kas8W1KhK8DB1Ad+zpjGMhP8lMyqJEFjfdV8ebXCaT030T13SdlRPYEWIvcH83FrUskkjyrmYxJhGUGGVjGqd5FBGeY7rR4SiTjgeqVB25KHItlJfG5YcbL/vG13vlsgq7urMIBvtZoMDsYZduRNHT54SyMboyj8VdALMNUUOL82oH22sLpGtYFjjBSXvPO5C8p11gqpyAF9M4ZrgbMwdTGxj0qZRZOGYFaTiVzhXXG16vWIt7VVvh8HrKeiVTz02v4bAshX1ztl2oL5XLpbArXDdyjpbeJaaRQj4tG944qG3Cdi3s18rttvP1xxvb7Up7uUUz1o2nOff+4PGsSC9Ud64qtBqEX79tvBbhVYWnRX6WV8dauJ5vLcYm4TUTzFTzULVF0T5xDSdgdEaUCGFxQSnhlr5HsUKVGC95ml7m+lsGm2KwdQ3Ss/vyACTrImw6fdrZPOiaPPhMCXX4nsT7qef+PtbqltgrdyZXRrhCMzAdSCn0Jb74Ho/fc4Hy5csX/tAf+kP8W//Wv8Wf+BN/4nf9mn/pX/qX+Kt/9a+ef9+27ef+/d/+t/9t/uv/+r/mv/gv/gt+9KMf8Wf+zJ/hX/6X/2V+4zd+g1K+/4SqfNjQdg20whydE9J4TJpwzoQTknazlHMSsskSDouYnwVKUcAtpHUlWfrTg0BbwzciUmB1nb8MEaaE1MxLTV5KQ+sGGmjDqkCP1iG7426h7e8Kz6VIKJVKOXMwxqwcrTL2Rp+Nx6VxfxReu/LlyE2eJFMmeVCkoV4pl8oq01qtZ+emZIhfixUpbpEtkwciJf0xtGXh4zGrlJByiux5uNbYDDwQC00TaMniw1JiZkmatYx7D27MqgrmP/jGng1n9lzvCwgC0lficCrGaRC3cJV45Ilnkh43duIt8TF/7sviofmaClZamn7VkA6ac3Gj+qAyqLdBuUC5wYePhcumfNoqFxOaAcMoTWkXkGrMMnmVwc+8wzzYx5OrDnYUHQdlGKVbBILNcFIN5V50WW5A0YBKCXJiXJcMT0yOwBmrTqiWlJTJz3iPWY60CP4MUzo5+tnpeyKI7sZ8BgISh/PA5ojDf6Zc2sPcD3XCT9lPQvE6fBePoLu+yRQpqQZwungW99HxlfXckoQtEiikavCCnFBqtBJyfc2iu2l0oCJB9luUK5uSeUzn0km36VA0WIl/l/z+qjErn8kBeU44ppz26JLo6MLsltA5VnKUQ8PlJL6+55awQiCT2xXS+/h5JHJySvc11r6I0EoQ4Is7vSrPKtgUDg+1iQi0JPq2AluF0pytwt6cfRO2HS4XuCJhh1/X6EkiqVeCG3Jo/MwoxByfzjYLpTu2Oa2X9HyqIcuuzt2cL9fGh2tjeKcvE8waBOK6dNiEB0d6lpL6SpanTHT+AltD9oZsBWlh8hj+MELnDYG2ErwOqoYrNwTJVBO1YKPm4Tkvjm2ExnmL4NAiFZnJLUzUTEelWdgFiOtZoLRLY782rtfKDy/Ktiv7JiGaROhNuTfltSreVoGilFahVuZW2DSiP76MEsZwiYSqwlZCHVklCuXTfdWXx5Eg6Y4uBJobishcTzU6zzB0zDFL8iY9kZGQgMfvayVQkGILe837xOIcmMpKlsjcM8mzJb5PEwkJQDGK5x4bDyLCrs6GcqWEE66FcZ+qcPwuW/4/7PF7LlB+/dd/nV//9V//P/yafd/5lV/5ld/137755hv+4//4P+Y//8//c/7oH/2jAPy1v/bX+NVf/VX+xt/4G/zxP/7Hv/dz0aJoLVGFJ/9CLAoTaQtSzQ3Xwn46kl8l0h0TTYl3LaEyXTJbBS/5ZlvMnQORZCSMtYYToctP46hF1tP8WblproNzJPQmKXEL2azQTxTDzgVmImn+84a6DBW6Bu+zE38OX9CaJIE30J2yx7QeKdRazzC/01RKOdGMxZRyHNdMBV3Lw31dJNbRp3l4+OKo4OflXBWFu2Xcvf/cx5v06P1DeNdicl60hYUn2zZIhnpat6+bLu/1d4+sPDIK/j1t73d7ZD99RgScBOosLlXDofGCsItwuQnl6tQPzsvHwr4VPrYazpAGoxtaC7oVtEXB18V5uHN358s0ZIaUr6bMW2deoySnniWXRTu0YH0xDw+VfN71RJoitGvBrIUZ3ZhLFJiWSpFsY32MMJcZ8200YXG/mFuOSwd9TPqIWX0RY7n1h2LFWfbomh8/Z4Loa6Nbh7Ys/vZyNz/n38oCNjQ2wyxCJd8XT5fSkpbuLdEg1TeprKig4pkRFRum58KXVDysiiKWdV6svG9Xcxe2jUGkjnt7rYmFZuSxIatYietsZ/GSl1OWaWH+8IVg5dNb96xmcSL5fNZkKOwR1nWAtg4yDaSmJhpTssA6vYoEygnH55/vUKKaI13xaMqKcJqVyfv7cF2XEnyR6nmYu7INZ0xnr8JeNTg8JfdJz8bdhaqe70HkcbkroWkNz4y4r8uJZkmtMYKveiJ+q+CMKM/0IDlfbDzJ4P2EaEFLQ6xFsemGVcNqFEGu6fNRNDaO6Wm+pmHp7xrohEjaJ0iEX26FvRUuVdkLXPLscInQwJJr0SQSii8SY3G0MESDpE2moSM0PMeTSUcrmWHm4bUT90aOWATiBQRat0q88CbKAiXX+dql5XwTVzEd760SX75OyCVLcM3Fr0G29uhFVkJLFjmrQMmiEgiRdngokWfeLs4mYbSnKDZDPaSqv3Oj/j98/GPhoPz3//1/zy//8i/z9ddf88/9c/8c/96/9+/xy7/8ywD8xm/8Br13/tgf+2Pn1/8T/8Q/wR/4A3+Av/k3/+bvWqA8n0+ez+f592+//RYAPQ5EOqPHjjnGETCWwZxZnEhwPHyGAZckgtKoKU2UfNM01DgWW4sm5B2mR+GGODxmaHGIaSQMu4dBT4k32LYgZSGDYNqVrDbj51o5KBpQrK/N2R0fIRmuMoLD4mT7NvD+xPu32PGZ8XhlPA967xxj0m3SPVA+KUHgXf4s10tDS0O1sbXGckqcc+A2meOJzR7M8JJqoFXsSfiwRDEVS9wXXOtxfcIOQk5jqrXzVzemTXQMOI4gornhHPw8YnLOVeIm04X5cn5e16FS/DywNA+DeOSo43fWH2lctlxT4p8XOvf2xSIhklk3odaJls4hSVStxkttvJTC79t3XtrOtTq3T5O6T+p1cHuJjv6lVMohyBCODtSGbBvXD5/Ybx+RdqOz8Toq3z00RyuFqwMW0L342zhjrRnNQ0uQkwMaVKrIWilST5Orsl5fFjBnpbCUOIlm4XD0I6zAn/0sKlQ1yJE2eTyfsc6OgzkO8EnL3Brz8JRYb99KaZY1s5kB9ZuvV7N4R8EzCKVbOHiuenUVh6szXIduLRLqOhTxwrUpWyvctjhUwsOjIHUiJe7X6YUpIeMX1ZCurgLO1qgvL6ZEwScliJQgJ/JzlCA2jqLxdkkeiJ7FRQm76eBiSUpN83BOn5iTyF1yL1ibtHhKaldnm0WWZzef16XmtRk4mwqXKoyZ42VXtAnbVqJA0TyQRgS5zacxHhE30FU5NCTr08u5ZmwEiio2eD57cIVQ+gzvkdfP4WwtM8YfBaGUxYGI1PKqRpO3kYGjlHBgo6bqDy1wSCS1P8O0WTybuVopJcisddsprQXXrUR69SrOVwr6xMMwr1SkNqxu8d7XDZ8VrCFbEMCxwiydUSI49eHRNC3rfsmCp2QB6WnZUBSkxvtQ90a5VMpW0BovRdPVNw2fGBO2KdjIYk6Jka2FIeLJeZqgJbOOiD/3Egq7UoIi4O5ZFEdTXUu+X4GdxPNejcA712QcPBOgl9TY1zgTT7wPtqV2O4sMToNSVPBKjkI9o0sAtbNAkVxncX9HjtaBn3ETTWKU2NIaYSoR8aElTAS/5+P/9ALl13/91/mTf/JP8mu/9mv8nb/zd/gLf+Ev8C/8C/8Cv/Ebv8G+7/zmb/4m27bxgx/84Oe+7/f//t/Pb/7mb/6uP/Mv/aW/xL/77/67/8Dnnz/5LXR/jUGdBY94VWcumrJYTq+CN28LSY/X2DhCtbJgtzNdJ2fDxtMGoz8Zz2cQFeFtZOEeSphlC1xr2nPXzPLRUE7kXFTLTBg23mRzp7txPKNQaHWnmdPMKI9OPyb3x8Hnzz/h9f4Nj8+feT4PjuERaS4RvBf5QTV/b8VLS71+Q0ultgDf3Y3ZQyFwzDSio8Tii5SvlKrF5rEgxexnWSiGSpJGxfFEGdcMs8i6F9+koW/y4YXGcP65IEM0uvJl4w/p7CucvxfPDjbfhFWcOJyafeB3jG5WM/hGyN2I57wlJF5LIk8lNsUjrysIX90KL9vG7/v0wm1TLk253gZaBqUcXHalFeGiLQ7KWdiuG+wberly+/r3sX14ge0jz9ngKfzsux7+LHvA7RF3LmibaIFqlrtgiTm7hpnaGigoiaLkeo3L67kpJTyxrHdTJWHT0+grrlufnWnjDOZzoka0TDu+H0/GHPTZcUvsY8H3TpqnxVvqY0CfaLcwjRtv/iDmlnEFpFQy0RwjELbzx0hyFT1f4VsBUVt4GRUJvs9WC9etnEiaikIWEE9bjpVh6T5dmFYYQxjd6c9BkVCyRFDhpM/BmJ5WAxtzC/fSsRGpsE1OLsm5xyhpsW9vz9/BUxq6uv4UWZ5Bc+8bSF/F5xoD8XaQrLWaw6goEjIETjNluLVC2WtIX0sJJMCBvp7TwfjuybPD62yMEihHKbE23ILQGKmpnfvjGdJvC3v9OSf3154FdIzjqkBrxrNnZMI4wCLDJ7w64tCklPABqYaUGAnPESgbY8ZButrw3CdrKdS60drG3iqlBPors6AWxmiLyxZoS4lYgn0P6Xi1wBesIvvArEb37geTyVNGmM+5UUbYHKgFD7Am+tdUg7teV4EJvkdchJUw3zMGzlp/IZueaao3h2YhF8WNG4w1gddoPmtyfjYN+4trq2nUFt4uCz0xjfe6Fovx89rJLFDvYZayf01IUmBKjK6yUHxbbLk/mEfSRp5va6UFOVc4q5Zz3+QNHUnUD1mzidgHlCAcu8QaKCcSPaN5ST5WbPK/s5v8hz/+Ty9Q/vV//V8///sP/IE/wD/zz/wz/Nqv/Rr/zX/z3/Cv/Wv/2j/0+9z9vEF/5+PP/bk/x7/z7/w759+//fZbfvVXf5XXn/495vYF73khS+bjFInRDwnfLpWBz3Psgra4gVQprcQNX0KqusivnmqDp3Wex5PH/ZX7GLGpzYmN7BB1hrOmOENLWiCn3EtTzqiRVtmKszXh0pRSo1sec9CfHZ+w6Uabkzom+jgYY/Loky9fvuP1/oXnly8cfRAJ5xXLKpcSboqrOJFaqVuj1EppldIKuOeBoBgWh7AoLiGHXOqNBaL4u0IhSwnIMuVctBJ7W9HFxZIzi2J1F6d6J4uUN0445+FSNVAUz4JtVRzlfELxLBbkzzlG8HPBnwWK8FYLcaLprDGP41w0YNVrhesWEtOtlVBeaaHnBkFxvvrYeLlt/NIPblwujX0vbHWidMQe7C3CKnfZElquWHtBLlf0duP61Q+p1wu0G4dV5sPBO/RAW663GhLjokhtMWK0mV3n4iwsFGUBtvY2KlDebvq8bqfNtTkMIiE2yak2I0ytz5COjuWl43EIWRIWn+MIdYiNBawH3yhl7JbVqxh4j3GRDo+OPBGUZV423U/1jp0fvJM356w8/zSR3CcDDaq1hPO8wt4iFO+ypZ9OFs8mkWUjmRZoIgwPF9ZhhdGFccBxH3GYbxr3shljhtIo7Nxb7vPCbDArkU8y4jpHARXPm3PEs8jg7/a0XI/+9rbExxqZ+nrdq0jhHK8s0rdCdsvwFkKXUH0JY7m2tSxQ9I3HEomg0QB9OTiG8mqTowZ3pBTL6x9SU7eJ98799aCPEe/TDGnr434g5CixOluB4WGBcIzBnEfYMRB7gZnk3tdCwVgJ52Sp6NNiwDE4CzBPwE9dKbpRy0atjW2LMM2tVuhhLFcdpsT61yVsaC0Yr7VAc5yCUwOVnhUfyhyFYYNjPMGyGJ0RV6ETzI2a63qrGutJSwaFEnlfNUwMZw7nw4ZAE7UUGsrMtGEZUfhoImqkx6Lm+L9oKCt3Ebai3FqlbDWaybkKFPDiiFqgvLq0mJEpZWY8bQbPZOq7qXau1ZN/kvviCrY0UAtLDJ/z3CiDKiQhLjgBxrfRfez3sVbXjxJi/xU3qs1zh9ccbbrMRG0DYfRsSL7v4x+7zPjHP/4xv/Zrv8bf/tt/G4Bf+ZVf4TgOfvu3f/vnUJTf+q3f4p/9Z//Z3/Vn7PvOvu//wOf/P//fv41qzBpbrXz6cOXjx43rpXG7XmmXRr0E2cq0MGlxWJfCZbvQStojV00zKqN3Yc6w5T4+P3m9P/l7337Ht89v+fbbb/jJNz/j/jj4cr9jM9n0HBgTc+OQ6N5GQsFahcuubJuwVfjQlG2Lj9qIA3wczEeH6TTbqMMo05Gj5/ki3J/hI/F4HngplP2Fl+12ohuy7SzztHiNymWP7BVtmfhrmYWnQewdyR4UKbTyNqduEhCz9By5eED/tca1Ki0SniXtRUX8hOzR0JuIdWQ8CXuzUEZBnKeFt41ZhNhkSiSsOE5dkdMO0xIzcE8ZbszR5e10A/LLk7KR/MLYVFnzWKGK0zRmx19f4FLhthU+3Xaue+NyvVF0Q7RlarVDda5fX7m8XPjql36EXm7Ivoed9NGxxz3k6VqRslP0Qi0726evqbcb7Xajvtxi1Oid19cvjP7KT/vP+Hzbeb1duPy+T+it8fKhwb6Hb8PPyVND9nwSppQ0s/H479U5IQFjWYxZIvU6vGgiNI9wVJ3BKRnpV9NTxiuu6Jxp/z1jzKWWyFZ0Yt1nIpJhhMhCEme8/+2ddba8kz4Ps0g2trR1RzCpZ55JyKflRIqcOASTSsa2wd4qe618rMquykspoa73eN2HGYfDfETA3qvAl+E8JrzehS+fjS+vg+8+39n2Df9QeBwRvxBFQ+VqFbaNqcKoytgdO4BNkEHEWVhnOQ8jcqIGCxmSE9JzgskSY9DJDD7E9EBMcl1bFtma36c2kTnX/DdGBDjPo/PsRidytKYoUja2lxe2fWdrjaIZTjeIbKk+OLhjzXk+NqyWcFOVSOsdRoRozsE8Dj5//sI4Iq9qRWCMRw+VTy388Bqk28uLMf3BsM6X54PneIbqZBiHRS5N3SvUjXKptLZTyob0Az2ehM5wGSI4ehRkFOp+Ydsrl7Lx1e3ClpyPL0/nMaA/DdSwYtAqsu+U6415+4C3wizRMKpOkB3sgc47/fEF+gGvn5HnA53wGAdlOjqNfXSaHez2ZM7KrZXYqWLDiuK6d+Z85f6q+OjUbVLZIjQ0Tc5cSiD6j4E8n5k11JHHoOxK3ZT9EqOS4spL2bm0nY/XD5QtzTyzPzOAaiATlUEtloTVsKQwm3zpnWeP0MYFopqFx4nPHK0KmERhsriYjJmikhzj45TmuJQwa/T4XrFOluI0NL2X9OSSLTUZ0+JnZTU0tebKn2c4rSUy1f//OeL5nY+f/OQn/O//+//Oj3/8YwD+6X/6n6a1xn/33/13/Kk/9acA+Lt/9+/yv/wv/wv//r//7/+efvaDA8GoxdEGenH2q3C9KR8+Nbbrxnbb0WvFNUhVpYVxzmW/UmuLuacQHcQ8eB7Qu+H3Htb1bhytcy9PPsudn/Vv+Xzc+fb1MzZ6mvw8AvJzSyGrMkUhxwWPUbkMYauhG69NqE3R6uATH0/sMWA41RplQjGJLjRRjj5r2KyrQy2UKui15LiKQFAWdarUnBHGSWHO6T/Rp5+NdaARBSHD3pKTU+Dk6iz953uzudU1vivIw9MCf+MZ+ER9QdJ+KmxWw2/y1jWTz3TdlWs2HjNOOeFysezY14jj7F0TZDlJa2/85y1BNDTGantxXir84Fq5VOW2N766Xbhedi7XF0ppFG3JPHakGNunK+3lwsuHF+z6AdtuDKvY0TF90FK5pe1CqRdK29m++gHteqFeLshWMRvMx+Tx7Dzvd56vn+HYkX7w+VrY5MLHXaibvnUqP9eOny0NixB+vtiFOL27hlggGXNa+HdIOMGs8Y4tB0mSfJoX2d3OH5tElxNRxCWpLG98pBWmGL87M6+yIHz/v7NiXAUpIQldnzY8Rq2qyTuKrixImmEwV6uEHXiRTICNa7ToRu65T/ZwKT3EOKZE3s8wenfmCE8Tq28us3PCcRhHi3Hv1o1Zkvju6W+kqZBYI8vkMUQDKXlN4xosfPDEgxMJsuw2p8VBs/7xRFiQJBZ7KmU83kdWtpHHGEFLeqCVMCurke20rvQ6JJZXzTwCyeoapFYvgdQMg8OiwJzD6M/J5y+DfnTsONA50THxY1BV2GvhmpwavSjGYCbJXiVNAGXd39nUpC3Btu20uqO7IM/J0FCqhP4jol2LK9XT/6YWLntj35RLDX2gq9MsnHJLkTDbrJVSGl4bXgquQU6XDOHTlbPlM/NkyrmXaHKmdBq9T9qMYMONKEQ3qRHkN3nLt6LTtyhsukkmW5cFJ5xopk/Dj4Fz4CWl/+mQpS1+nMffwvhTAz0pJdQ+rNu/GZL5W03fkqenTOZU+nRcIjxx+vt4h0Arh/uZrG15/5rFfavDYTjq78zgNDiVg3e+Kx57jlkUL0GAzt03aX6SSO15H0o2HawzUbASa2/+4yxQPn/+zP/6v/6v59//zt/5O/xP/9P/xA9/+EN++MMf8hf/4l/kT/yJP8GPf/xj/rf/7X/jz//5P88v/dIv8a/+q/8qAF999RV/+k//af7Mn/kz/OhHP+KHP/whf/bP/ln+4B/8g6eq5/s+nnvAX9pAduHyVeHDDzY+vex8/aMr+8uV/eVC+xB6eatZoNTKfrnFja2RymXjYB53Xh+T53Pin1NCyeS4Hjz2B5/bF37qP+Wb/pmfPL6B40kkk73yFmkXW29YhIZL4H1uXIey10zeLB6hZho2zN4fKfl0ygyXh+KV5VJLqzi3+LmtIpdAgurLRiUM6Nxj5j6o4dQo4DbCRhzn0IxsH5bS33WYBKKxSYkCJWeqi2AcuzJBDk7DuVVcWG6m5tkVJ2PeLVwZxUbmyf7cJJSSN+Aa6Z96lfyP9zzZVZysv0gSHYNBtPqvtxHfEmU0jcW9K6QzHfsFbk34anN+cN25tMZ1v/Dp5cbtLFA2ammUkd1KmeiHC3K9UD99Rb9+Rd8/ctgFOya23amlRYGyXajbhbbtXH7wNXXbaFtj+uA47hz3z3y+3/ny7Td897OfclwvHK8XfrQr1Qefrsp+jeDJwIYXhGpvY6scWcb18LeC5B0fZOkDo0CZjOEZBhjzOM+Y2KUgYXn6eBTMa16nJdkTomcBOUcQ8M4D1ZY8PZC8IlGcn3wllkFg/HotQm0lEL1aKZbclKVe05JFsiHzCOJqcUoVai1srdBU0+dBolia0RV2i1DAx+E83LircR/OczhH8iWCMzHw2RKhCydQzLiXKIjb3bA6GRpZNxN/U7Ok6oOzKIoFHF2r5FV5p/PJomx1sTE2nufrFfREYma+yeKOpg27TU/0BY4BXZSpLRogrWjb46O2t7WQY7c1U5qHZxaRcTSYJQ65uF5O787ozvEwvv086I8De96pc1LnpPTBVoSxFT5UCy7QECgDlxnkxxJmZq0kN0nCnXfblNt143K5sLULWxdqH1gr+LEKQKNiNJwdZdfCpdX4vl25VnAdcDi7hxqm574obaO2BqWF7Fgs9oEaCI56o1jBbWLmPKXQDXw4s0d6uYzJdgza6OxHp07DamXzFuP5AkiaSrrxlIJuk6PDaMLQGknJREFtGG4Dfz7BZkirfRIYRKMmn8VdKVKpUqm6UZLDdlFOnofsDolFNLEsADUDEAejO8iIMEmb+Ixxbp9RjB72lrm1wgbnjDiHEt+EZhNZXZkq9GJ0iYiUMxUZZ6iznGpdIgMbI1Lop1CObGAsAmk9y/JJcss8BBbD3nde/8eP33OB8j/+j/8jf+SP/JHz74sb8m/8G/8G/9F/9B/xP//P/zP/2X/2n/Gzn/2MH//4x/yRP/JH+C//y/+Sjx8/nt/zl//yX6bWyp/6U3/qNGr7T/6T/+T35IECcP2VK7VufHW58eFy4Zd+8Ikffrrx8bbz6esX9tuF/Xph/7BH518lOBml0C6XIJSKpsdDYbaKVKFtgurG03esTb4eV0a9cbQXfjp2+uXBdwL9SyggeD55Ox1mHCDqhATe2BtsWuJi9x4bgjjPtJKe/YkH6QH1sN5WdUrdwmXQHa1O0eBK+EbMWktCxBawccD4M1I1zRj2yMVpHBrplWNGd6YIu9SUN0Ih/lsk5rEp6Xg7DDOwzqQw7K3jnjlXnGnsE8jKxIuhbVCPgZ4k2TwQa8HhlKRGxxew9qrm1wFXz5M5zMOqhGfApp5pwJwCgbo81nKM0xRuG9DCOXPfg/vzYS98vHyk1Y1tu3K97tHlXW60utHqxu5LHeL47QLbjn34Abp/RLcbm9zCNfO5U0tYbvvqZFujfAgFyZTB4/nK4/mZbz7/lJ/87O/x7W//lG9+8vd5vVz48nLjq70y52DfG6Upt0vA2mfoT5pJn9CSS3xu5um3fN7c0zAi3DE1A990IVsk2kKgY6aSAXAnOSKUEJ7us2isBZLYmgqcVZD4TJ7C8Ldck+zQZnbmnnNtLTGrX5148fhYvJQxV5np1KrhfDwFbYJWhRp+ElYrnTBCs+nBrZkxWriPyeswvhudhwt3cR5jckwPHo10WpnsTbi0UMOU9HhIjigqwuurMUukCz8ek9EDbVqSTpVEVZyTB3UWK0hw21gZKJZgoGSFk0SBVbVI3GMOeZBF0b9+uFmYQIYPiOGLd5EKltI2tAURPqqmHKNqjb3EHfcgio4eBoMLwTGT+PwhYfb2NPq9czwO5v2eCr/B7hOvQSpuAlsp3NoWCLAKgwjpqyZ8d63cu3NICUO0a+VHL43LdWPbGo8x+TIbfK7I58roMKbQVqL0Fv4i+ybsu7JvytZg80JXpw6hEvlMXiX2ScLl2CeIWHAQnZBEe8h2maFq6o/B896x+xO7P6E/8X7Qngd1HOzHQWmV0Zw2B3uLPVfOQnwydNJHoVtkUGlximWLqk5Xw2WCDMpSTnpihhKeWlZK+kxVjMrwkF2H3f2bUkaJZTJntHhBHNe4x0egQGoZrZLIyXMaj2H0YTySF2ILQcm13oaj3fGe54FHcKOpMaoRlOKJWYzhAF4tiiYXz5zYuL7aV4Fi5x4wVrfp4+SW0QwpJe/17/f4PRco//w//8/j/g//Bf/tf/vf/iN/xuVy4a/8lb/CX/krf+X3+ut/7lGv0VHtt8rlUtk/NLZbo10b9VJoe3zse4t02KLhB1IKbWuYhJOqeCQeqGtYowNzVq7HxvDJh48XHvPKY9748M2F7nduj8J9hrnaHGunyi5RHS3OZTNqUfbqVPWUECbE7k4fscH2TpCcPBVGGlLamn4jJW9eL4q2KLRQR2VG3k4qJdxy4p8Qvo0jMAaJoKzpQdgqEuTgVtJqSgT1cqIPMbvk57p1l9SxI2fXuMLjPH9uEKBi07UYvgYK5AELy9LHqpwuppE4ndr8JGkuE6IgqsV7LR7qgaqwF2WrQToOQjRoFbZLmioW4VKikLldknhaG9um7LVw2xu3/SXk2O3Cdgmko+4XaouPJvWUuvq+421j7Dds26FtlFJRU0qB2kJaPkvAzJRCqeCkn8h4cPQ7j8cXXr98x+fP3/Hdd99C78ic/Oy7z1z3xnevB5+e1wxiU95cUBOvWA6p641aQ4R5fkkyNWNzEPwkLC9C4vrCpZMJC7v3Q4aAb0UlfXly5JDjn8XVYh3KSaRcYyV8ESU5SbDia0wU6Fl9R4YfMwh7vCuiSnpahFpFUpar4c+jJUMl4/n0BDQOc14zOO85JwcSXCubDAuoWsQoxdmqnNk7p/8IAq6YCb1HId8JZGFkHstS2oi8vSfniMcX2vT23qx7K1IfFsFZzuHPGp0tj5M3hjrxesXeSI6558b+kiOOUii1Bv9JyxtKlYV1QSnm6WmkKSWeqMyI6fCUNGfmj4Q/A8yB9wOfR7gHS7hIF3dagb041zLRLBCGgU7Fd3jZooCrUrhslctW+bg3LnulbRXdFduE+w7H422WWJbaUYl7//yIayppB7E8l4IfnvLofF0xRvFIRlaJwxtDzbD0+5l9MI/J7BN9Rh6U9cF8DOqY2DG5T6FO4dkmYpGAPgtZbAp+JFG6Eh+5nFcMRUQqGIiFH48IizEbQYtBbrZS8n0rvPfPOcdFyKqAU8mclg+ayFp6SoUk3c+7O9zEje4WY0FWgZJyBU+uVK5ddZDFo5JA2w4PpdNYRHdJ0UC+xhWEWJCkI/Cm/vHFOIy9KLb/hMwB/8eJoPxf6VGvTmvOdoPtIrSLortAE7w51BillFpordFq+IHE37foSgy0WHqgNirOKBZ5FQKXS4PiXG+V20tlzG/58AJVv/CT2nn9YnwpjXkMfFi4NxbhluSuWmIjRCq44j3292kOxwxb6VlZuIEiuAQPQtpHvEWirWyRwDobIAM0fCUkP0iXQXeNhE2z8DnxBNpy8xOPELkmlcu7kYj6qgSCr7LSuxd+YazfE889ZKK5+ad0dJ1IxeWEAmepUT27Qwmp9VL1qBtiMRDbRGgeo5st9t5UVnEeVlsJB8RLg60ppQplE8oW5LPLTalVcm4dpL7r5RIFSqlULZQShL22f0RqzK5135Ba0f2GblfK/kJpHyhSKUsZJZrS9YBobnvkxOwo234FrXSpHB6Wz1Zinn0cB8/Xn/H6+Wd887O/x2//5Lf47Z/8hN/+rb/P43LlcXvh68sVMeHl8pHr9QNjbPitsWkYoylx3YqAmpGOVKwDkvfmdydXJZj/hdi0zS2veiAgkVkT4LEn1ypInYHgrZHEzM3d0juHMVlJyNYDPbHDw70wa5c+hWNKcKZmeHXExhzS9KZhIlYlCLxjTJjHiUK0mMjR1NN8LLrPyBgu9LUiHQ6P0eV9Tl5H5/XofLZnEEkpdIsAS8TY2oQCm9RwBb00tlbDC8kdkYZ74XnA042nO/dnxDaYRaOgBUqq+FYBGnhKvB9BiM0wQA84Puk7QaQkuBmcBmVvpOCSOUmY51yB4MYlmqJYNCpV2UuFslES8au1UMqkabjqXjSLffPwhPFAbwqD6YIsa3gviDs9ic8X7+h8cvRXynxS/KApUdhr5aut8NW18aNbp9YolGZzXgu8qPD6orx24SEbtw8Xrh+u/MqnD+yXnVobP3s+4AFf9snzEje/dDll86oZLOdBvPQZrt0zE6lHtxOhZYTXlPUnU8PWoUggyRGqPcGfuD3x1zvz9c54fTLuB/Pe4fVgPA/G84k+DurotMNodWDNeWHADtKE3S1dji15IY5uhEyZUBvWAladWiazzJy9z2gmt0ZpRmnQmoa3wdbQtkGNAFlDczo7cRPEZ0rzZwR3plKqFklic8fn4EwJVsl8ryiKp4dqL0wSJYmvyWnytG6TEk2AOFZqmuE5xxwRdTCS2O3wKBVVQ0VoLewkmkThoQ6+/L5W9eLRfCz03LHTxv97n/G/x5rg/1IP8SOq/lGw4fS+8TxAxWgH6TRb2UckTFZJ3bxV1OtZnVav4ThIBLhVHGmKO7RScZvUJJC+/uxrNhv4l2+Rx+AzSh2DoZHQeq0REHWtlUuJTa2ULYK5XBmq0d0YqPc0CiprUh9cCmmo7ki5giYxSWIDHD4CrpgDLJEIA12eF+jZyQZqEVV5SV6Kepj+lJLwdtpQm7/Fbof81E51AaS9WqIiw+UsSuac6W0RN4rg1Hx+PiNszFdHPxcS0E/+SvXF2An3wUqoa2oRSoW9pJOzhP9FK8p1q7Q9FEV6KdS9Ui+V64dKawktl0iPvex7RA1oCVJmCVJh2V+gNGZr+LbhrSH7B2S/IfsH2D/h2jDZsBFVv40eZaQ7V6lcqvCyKdvlBSmVTuU+J4cZTw8vkD4tOrTn4Hh2Ho+D+/3gcT/QqRQrfPftF77db3z77Z3vPndUNlptWNFwS/XVScb1Uo29b8mOwwMIFkgSpGANczuJ9bzkveQWteTfp9GUvS94c7SUAW5jTGyGn4GPmSnUE+uEIdgwZIQhlKfLrM2UPnqYqwWaYBlsGQZRgUQkydJGTp+E6vXkVlULr4roJt4V9zkaOjyQjodPHjbDs8gGUzTlu5F7EpzKEim9CtvlwrbvEXInyW1KxG9YEFKf0zhG8kuQTCYmFDZi5zhm3W4LGUkayFn8i2aBsmrKkuRCstZcwIkEfCIaXyxJSH27r4IA76VS0y2saHqfEHYBFAnXV83RsFs278FmLCVsEFCjEs6w6KToBJ10tTyE0krd4SJwK8ZLnXzanK934Qd7p7VAPWaN4NHq8GlXSlGaVD7cNm4vV75+eaHtG6UWHt99ppVAXkQ90Zlcx+F5F8WxOWMET8fMeTwHz2PyfEyOUhllw8cRvkWjcWiHEmhxkVRYMTE/0PnAnk/m88k8nviIg91HICnjGMiRycUTHm40F45udDUa4R21erilbhILIrd6HNo1O8AuMT6lBArpKmcooJYcCRWwqoEAp3FU+Oc40ztrCuIWe+0YM92libPAVxMRBoKxyZPKvhwDLAD8XJ+czaGk63D4ShWU8NQxAfFJn7kePRe0R8MisSRRixH7UkYWYKvRiMgCS5ywXFhj4URO39Dcf/TjF7tAsYiLt6ExXzw2jhIW389DwnSpVPoRabZNHM9Iaqa+s+dWkuGQ1WcA4GgQ88yDV+JufPPpI/Qnzw+feHx+IgPs0elSGL1zrYVWChctmXGhqG5MK0xTTKMwUNaHxQyVWAvxuUKRkK6i4Ry4YHZzi8PfR0BlRpLq4mcsl9VQbYZT3Rn2RCyOoppkWFufPDdac2fMGeqPkCXEKGc9O9EoUNzCYTcLEJvh2Bp7cEDFbsEsd1/SyzfljZ+vNwsUhwS/uGpYGtQi3Jqf1t7XrQQqsm/UPbxd9Naol416bdw+7mx74XJttNy899pQSUMljw3eyobuN7xUZq3M/YK1huwfKfsNvXxArl+huiFs8DQYE/F70JDF2LVxrYWXvbFfb0hpHF6Q3ilz4CNklLLm39MZ3UItchjHMakMntq530PO/no/uD8G+248u0R3W2ITlDxofTrVM9X2vQpqFSfk5xbshKBqqdpaBWe+D6sAzTDFNxQmRzkW7/FSA7lFkRkIXXJPRvypM8cdSRb1c/Cd95ms8Z+fzzt1RThRuMRTE6pbJNNK7rmsjdbP0aJ7dIIr76aTkLaFTDroIH6OPUTDiK9KwUTZ9hjrlRoFCm6J1Giq3pJQPuO+EGK8JOvnZjESzyWu8/rs+a/ntEfS8TeLFQ2H6lA9yblh+1KA+PJhygIv3yu1guaeVqSC1Fzb4agbjrhyRnkIhlpyBiDGXDoxeTNmFLHgC4gxdNIy8dnE3+5NhU2dvUxuzXlpyodtsjWjFmGWirrgIwp2F0VL5eWy8XLZ+HC9ULeGljDYq1ER5kiEt2ouresXKDhmFDDmwtEnxzHpvUcBSjRAMsMlfNrInsyzm4o8Y/cOs4firveMdxhIFig+JtaDYb1UWX0S470Rai7TNB/UHOPMhRa/jZhKDu8gECxLC35RwYtgVUJVVAJJ1EI0iUUyQs3PamL6yHXAuffPNdIRzvG4J1KNED+jeBSXmpeTt8sbnPu336EabbH42zi1biW+Zi4ybjoM5RgpD5ikWIZnUCHoC1VjpC4pJZ6rKpoZd+L5fueo6vs+fqELlP31ZxQ1nq+Ktw19fku/3LjsF47+A563jzxvH5mHsm03rhfhdmu0Tdm3NRUG0wZS8NLC/ChJqk0mV5/U+0Z53dHrhdfjSds/MGzjMT9Q22eq/DbH88HsnbICzHLuOwllwByJUsgrqsamxlUnmwdkGXGzAeFJjqbcP2Mz/EvwwVSDmlCfB0S/gvBWWnGRRGNU0RIkLKFEtby6Z2IWeozOmnvGRhxd9uNxMC0s8VenbX72hekgGgenz5hRBnlHTp08niwHqdnNgHAgzPPQUeAjcAW+Al4Ih9ervI1zPqXr7l4LL9ed1hrb9QqXHbbGeHlBb1fKy42XH32iXTb2l2t27ivjJDdbKyANNAixWipeCmO7YHVDLzfqvtOuF/bbJWMCdvpBuO++PlAzqjsv1xu3PQzc9msgXXU6Lg+0H5g9mbpxSKHIPVAjeWFyY/hr5HzKxtSdQwtPhFc3Xt3ZHG7SIiBPSTOyiXrI2o2YSWtZ7r5r0uMssamIQonDf6qeB/d0TxXPcng1Zj8YFoZK0czFezuPA+ud+TyyQInNa87kOR0Gw5Hu4UKcrpzlgNph6xIjR4/2LgjbGuNJjQLjcOOwOFQtN7W9enhuAbVGIN2lTLaitBp+Q9NiLAsx8zeLbngWg5oFSQ3Zqlmog7ZaKVIwnbRtp9VrjCkk7yN5h5C4p3mZx2hWCl5bbDzZRrovJCTuvYgkiNtkZcgIhkRoCmXZlctM3lCMBsLwLUnLJPdHAC/40LciqIebqNJorqCNqjutNGoRtMw4DIvGdWCtHzubn5ldukk4axuKlwOzjpcRxPuqIV8mvG7ylqFdnMttcr3By+3BLRFNXNk0nF4/XsIkspULX7288OHDB3748VOE5qnyk/0bpG0cpfIohaMEA61qo2pDyxWRDaZy9Nj7vBj3Y/Lond6fGBUpDZGB6Ayybk3kQIGVojwOdB7o6Eg/kOPA+4MyHth4ouPAj4Nx9CB55300CZeBcWQBbMkp0VCNMjoyNLyePLg9lQIyaSqhKGo7vju9GlaE0WI8b8XY6qRUo25O2SalDbb6iLWCYeMeMuEJ4lsg5fMNSW3vGrxp5UTLt+S/7BpFZzQ1mXvlMLBQhMnkWjScqzc51Zt1U+Z0nr3QjxrjNY9RUwwvhUo0kTd1tuJcWpDOa4m8olVkDrfw7xkhoIhiK/aNxaX7Po9f6AKF44nRg6haW/iBzMEYB9Jq9mdA2dmGRfKvFrY5GR4BUaphZobGW1ByZkzOzHGoWtg0UJGXtnNsFz7sVz5uN2wLqenhQs/wvKU5H3Dit9Nz+i/RQVE0ch0spFznUaOKh/UsXiaGZOZNQOMqArWehQUesWZVcw4q6aCLUtLgS0STKEmiJWlBPicrRu9IIqCZM3LEM3POvki4i+a30JzQ+7+5kGZKYnSvfpZC+WZl+U3yEIhI7q9QXhB+oIUPamzq3Fp4xrQGX7WADrdWedl36tbYLhfssmP7Rr9ekdsNfXnh9vKBdrmwf7hi9pZBEWMZUFuZII2WBYqURm17KHD2W6Ax+86+b0iJ0LFSFNvASj0Z82W7IVvFt4q3LTsNoxSjWjz/UaE347LduG5PbvsLL9cPPG9P7MOT22Xn5Xrl5ePXXD58ol1fqPuFsm0poYzuKu7u1YUkMBEU0tWi8zZbfkfGTOJm2L2TpLd5ysDd13guRzgW3VeskyRN5jjl5IWuAuidReoCNyDHHbm+Fj4sWfSQ3JblV2N4JEVrjD9WwN+WzrxNYlxQa8z3V3jt8OVN8u4jC4Mz0LbTAADav0lEQVTYq0/o4rwWoUiKnnDmOjczfCqehoOIvcP3EkWaywdC0sSK07p/SeyDwKonehKPtfoziTYhzJDvx3N9PwbyuPXPT3rGYEjC+aG0gBWu5x6oTCQYS9rEx88QDVl5NDBvz2mpLqLhWMxqyzGLxftQFK81cqQYlDmpZUQhVzUKx6JsCltx9hKv/6icgYEbhVkbe2tcto3L1tBac7QU4+oR5U8YWsrbGzlcGLYyLFdWTCa/W4wcveTaOpHCkPF5KYn0Btqt2TiJzRjH4Ik8BhISDV385nkW+pLTxJBh9+kMDS+hyFzL/16qRXMwC78Vj2t8LCSORb7m/IgpXFwHqYXWKrpVWqsphY7E76VOE0uky96aEfN4EZ4/e12GqsIswqbCKHK6+A6L11TyvZ+Sa0Y0SMQiSbyOA69Mp2oJz0dNY00PvlDVGDvXIqQeIGXdMbpkWUjY2pPSrTwvwUzBxvd9/EIXKP68Y35wTKOX4JTYHBz9wFphkBbbstG2zj7C3n3fL3Q3Wm1ULTTZADnpG+pJfCLmsJW46S4UXsrGqDtf2pVP2xXfBr5dOQwOhANPZUHovY3YsOc65E8uqtBYlsLpuSEeIwhZCqNELdYcMyWGlDX6EZwglLUaBUoTOT0QzIOpHwA1kJ33mJPpM7JYPPxMjhlGU+ZO7z0RFDsLlBP+RxLaDJjvza88updA6TXn85Ib6gK9o3jaMC4YN5wfUfgoyo+08rEZewlp8NbioPq0vRUot8tO3Tbq7cq8XJjbxvP2Ai835OUD15ePtOuF9vGFMZNwZn6eXzo1kDIptMstlDil4e2C10a53Kj7Rt0bba9p+LRhWw24ffdUPghNd7SWyOeokXiMzSxQlIsXbBPmhNvlznEMPr585KsPn/BnKAZu1ysfXm589cNf4uPXX3H9+Il2u1EuF3TbkJbQrYMkQ97zwDFJZYsoKrFZxsiDU52xSoSJn4z8KFAGzI6k5DTIdvMMATzFWxZFShTRnGtp6X/Ok28VKaSnSRYoEvNH4hCUcz6tWRCohCmUqQfxz0FE2VuhFqUJ4dKbRUorMfrzFA2dNW9mhKTtB6yRB3IeGjG6yYJtGjonbQzmjHtQ1PPwlnxt+dpnkAQhi0KRND00hkeOT1RdsKIHzv72VFO9FUrraQeKuaD9+F6LqXKMOUqOgDTBScv8lDzkxP0sULYq4RNThMy5iwiMfGPiaSVcnyPhyM6xrIfCaK2qsNWKVkO3PT6vRmsWaFSttGpxPxbJuIh4/r3G/dqK0gjLhn3b2Ledy7ZBKTF50RixdYSBnsaWlojUYVBmFAbHCN2gFYvgwhncp7d4i5htSKl4bZiWkMW6hTJl2jkGqp77QM4+VsJ1zyLFzufhiaAox4SuTpcY94yS99Gc8VzmEgd4jjyiTK2+RoWJJK8iNt+/yIEqeKvBzdkabdsYo+NT6M8IqhyZcL7s5qvEHm/ZDJHig5UfVzXQ670qXkvyHKMgj7gHx1yZsvKG4nkGHyVdnD3Ry+UgHa6deCKVVYVaQvxRc91JFSiCldWPh39y3PlR7AV5PPOt5Ps7tf1CFyi3bUNdeEzHS4mRRimYKt2d5+zoeGLPzxTrFOu86mDrF17mnb1utNLYbUdLLPRa2+lo2TQ20fGEeTh0p3lho3EpG9fSOFrlqBVpFfGAn0eSRx/Wg30+QspmcyI+UGJx1C15ER6OtqKC7JcMnRLUjCbKRSuS1Wn4uexBlnMwDz6KLiKgkIeN0UdnyU7fyJATRg/i1WEMDxj19SQ/WiTc2rtNdn3v+YjCxX2NjAAcsRoohc+3rvpdYVOIEc5HCp8QvkL5v9XGV6Xyy1vlYzUuxfmwE3EAVfiwQy3RaezXS2yctyv9emXsO4+PH/GXD/DhI9uHH1CuF8rLC4dH19DRQMpi147DVZRtu1K00eqWBiqVerlQtkq9NNoewYGUCrIjUmlS8IyIHyMKryNVMWprdNZik9ZGoVKl0XtHgPvjM8eXV172nfvHD3x4+cDLhw/88o9/P58+vvBLP/yaTz/8ipfrznbb2aqxFUfYER9gCVlniSCpFhE0pYJxqLr52eG7LHfI8GaIceKSIHsCDcqQ8ECoqiGvFqC1KCmDE8iqR6dmztQkRwUxZzbPaPsSnaW2KFDPfKYcfVRNMh1vvjUxQowE3A+3Ky279Uj/LVz2jdoKrRa899PB1M/O1E/CeKHiHu9VoECxfI8cK40+MKKT3UqNg139dEm2LEyaGW0M1HKsOYNbMHwwxmCOwehHHP0ShZQIRE5LVhLeCYmvMsWy2OTMPYk6Ktt4Izpr3njubwLx2O7jSImcpkW23FJNoxJE/+5Of8f3ah6tQUOy45/4fKazqARSkuMAqjJaCem8bOg0Ls25bMpeK5fauRThVoRbMfbiGIOjhCli1UHxyNBprbG1nb3teCl0j466A3cLe/YjuUpLkk1PdAPHN0ctXH+fwzhGyoXrRNMJeRUpSCM0gIk02mQOQ+fAe0eso94pMkAHogOXuH/Vg8m0FG4DpUMiKGE3ZDONxzz0CWOkxUJ6EBWLLJ5CoVKiOLGAOwMwyORtrdTW8MsG1wvtw41yDQ6dPQ/GcfB4No456J7qHAnnZLQEKrJXFgalJeE4NAvzwbUbOqMBrhKFyTCjj3SYRc4CfqS8eJCIYnCp36I2Uv4tIgxGSqSzGE4BxkgSeQTpJpdxGExHpp1xJaJhkvc4vv8Z/wtdoJRWo0oUw3K8EjOzcNDTOZDRmf0RTGt3Rq1sPrACh3W20pjFQtljLbw4RFOnHofq6CFvm93wsSS2RPXqq05chNLwXJgWCEVU2z3GJTbPg6GoIFpQd8RCOqilIPv17HLUJlUKm9YTIg4YPEx9pkfXt/hLsZ4SGo5VknB+wNXrxg2FjYVE1CRzJuabC+wc51jhLPvXSRDP4uyj1+eyR43nseB/fl5RFgWUcEF4QfkIfFUrP6iFH7TKpzrZi/OhwaUqW1NeWkDLpQYMqi3g52dr9NaQtuHbjm87rV3QuqN1iy4DicJVKioRsLXkwqVdKNqoZQvL7FKo2c3UrVG39CjIjB2VylYa5oqbYIcnCXgic6DvL08iVippY10qrQbcfb1eGP1Kwfnw4SMfPnzi5eMnbh9euFxf2LZrpFC3jVJTUaGGpGV3eOfN9D2IN15dEj14R0A2P+Wra6+JiVccnHEmxveV5A5JFghVwm6+lsiDscwAcYepYaA2BWadvI0bJFEeR6YE8dzPwSI1SZGR9ZTp3qQjrXs4g0r8/q0WWq3UCpKePXXJxEWD2eVhNx/FxztoyQk+jOSm7WGY5iLJsU1U1Zfd/yLBvs2IFndzEQGjPvcYBdkqGvJ/boFMyBq6LlJzXuuzyH93CyXCRb72JUleyMpCCNa1eSPirnGRJhIl52i3ZDzAfHdI+NoUfI174hrEz0vfpJjH5pgnRkSlRHZXyEclCfVrtJcYmr+FyJFS+MDqluza87oEahmcHYtuPg/Mke/DKjBdgpjc1dOUzdJHJg7W1eusI/k9MqQeZOHp5SwMltom9r+Z44wYaaHxfuqpZPR3SGCWgw7L4+acrb6H6s4P3q7PO2Qzrkq6DK3ZpqRKSxVf1Xn6obgoU3LEZVFker6fyEnvwE6EMJqu+L0lXNUzDXlGZHKs7WmxDGY0IWLx7hhRoFqu5UBf48UrfirPQr6ciF6Og84pKnI2Lz3vJTfHRyJL0xOBjBHYtH/MVvf/V3qUrVEoaLeszJWIkTf6M7wQDo/cAykNr092n2x95+6dvW7stXLzWyZo7tQastQqYblcHOw5OO4Hx6PzfA6O56D3Th9Pxngy5pM5D8Y8MuVzcozOvT/oM77WRpAQtQpFK60UtEWWjs5KrRteK3r7cBJfq0+aFHZpgYpMw54jXWMnYw7MB+Y9pKcKpSluI7Jf+iMVGjlvTmjXe0jqxjM6gT5hjMGp5Qz2DEuTE4+fJzYpQWJMoPUsUBQwD25LhMLB6uU2hasKH0X5CvihwC/vlR+0yq/sjY8q7MX4uCuXrbA15XqRUy5e9g3fGrY32r5x7Dt6vWKXG375QGk3pO1IvWKiIS+uG1IiSXV6FihaKGWnaqWVDRpIkZArb5W6RaESG0qllCuqEVTnHoSzTo/gxekRPJzoVMy7jZIHgRAFQCvKtlWutwvTB9tW+fjhKz5+/IpPX/2Al9uV2+2FfX+hbYHklZoBYQXUB+JhMS42kISyyd9x1kY5Vplpireku5JjghB7hLdIOm2cn3M8CoGUx6spRTriEqMg4kCbNpmzYuZomUidzCBnoN0pFCTBp7Nu8xneEeJspFuyT2oia1ZmFI5auGiLuIGW+U+iQQTVEESqz0xijaXtiwU4s2tL2W2YLy5jtPjTJIqsdYYZcS1c18GfRN/EqYq8fe9Cg1zemWqtooToduNXrWrD8/6IIsVPLlGMCd+P4uX8+izcUprpqd4461EJI7Qo2pVag6iq2RMsQ72RI63lIFpO8lJUK9PWOC7iN5DlXh1LaNZEeTxfo1s6Vk98kId+MswSyQpOzsC8YOmdYRaNQaDCztGNY8xACOZkhEVu/iyj0jkcmku4UJP8wEScovAPFM7zoC5S6F7ASq6BQPdkhPOxWAyTlEHRiRQLSXIBrY5W0mgs7hU/2y95K1As10YWwOIlPwIdCwQjigTXimtl5ph+Osw1xkoE19fYXjQDMzO8cUYo7DEGR+9YTE8wKeeIdWQRu8j/pChDNONKSqFVkLxnRbMqyDG+4gzW6yJH4UCxdN6NOBFRR6vRaolx0FyFYY4nif1l5kjnkDQINQ+lVFxmLN02RcN53Abf+/ELXaAc9YK4ce89klKnBwJikyKdbmEWVQaxW5aDw52tHzhO3zZ6a5g4tQ6qGWWMeLNd2KRGlN6jc9xfOV4/893n7/j8+h3f3L/ju+dnvjs+89q/8OxP+uw8zWOBHYPj+WTMkRr22I1UG6UuIuYHVAoyla1eqLVRX24UO+h2UGYnRMI1iyHjce+5CRBW1Dk1bS04E7S2WrEMhYrNOxWeuUEGtVt6QHBqlst+FSjvi5K3o+8dmEglxjU///nYZMz9JJ2tw9MRdneuDi+l8qLKBxVe9sJLK9z2yrU4uyr7Rdm3yrYVtmtmANWKXnd82+iXDblsyL4H4rRfYb+hW+QrIS0OHRSVHWQ7PU3QQGC07hHOVWuGeU2ohJ2/hikYXnBLorEvQ63FyXngHp4b3p8xFns+8aPDtAgDm5M5B7PfYT6pauFsbBtt27h+/Mjl4ycuHz+y7xfqdkU0xkkRxq7JA0g5oBPKBXHER9hvx859vuci4ZiqzEQsnHRxik22RMZT0fCeEQtW/9RQB50Bmhqye9EDd6GsKHWXcxQ4zRhzoDYDlTADnckbADLLBxGa9yzWnJ2Q1quFlLhiWI0NXDJgrpYSBnvyBo0vGGiaMqbQBxECODxGADPSkrW862S1gHkgRGnPLWWRuRXXehIWpayRmSBjJgOwZnGQREwRvDiUGR4cORKrGoUdmqWL5tp/xxGI0yJeQ8nRYyl1ofO4hJLIJMmsHl4m6x6KMU6Oh1uj1Ba8kFKCd2KVmXvD9GXRFwcQLnQvrIlSUMOy+9foblWNMkKVU7c0JUGi+EbCMGwO+hS6Ry5QUcG8pBFYjn5ZGGJIoQctTMNmOPPOIxqtiD2OWAVd5O45Ex3IcKVE3bDo9gslgyL1bI6Kw2bZ3U/BIusjfpZ1ZB6oHRR6GMEVg+p4XU/Rg2cVIBA6YVE8F7Fu8YjWuHg5EK+xZ8/iwVToJdKmuwYJ2CQKgtWwnbtmSqsXOh4It+OLEtAHpjEGNFGGBjJ+TEG9Iz4pGdRYS1m15zLnjXk/chbNYlG4qTly5m9FcxWfCzFFcQ/PoeRkbi08gGQVGhLEWBJ19bwOa50s1GdtS5awTJDBJdng3+/xC12gPLOCfcwRi98j4KgALReaprmU5LlS+hFR6qMzEqoaY7AcScKCULDpNKkogt0PjvsXjtfPfL5/5sv9M5+fr3zpd+7jwX0edO907xwm0RmMgY3wEwkbFclqPwuUuodigwpWqTXSlVu7xFxzRDceviaa2SPGHJNFDzHL3B+RGGOUSm0X3CumlTJ6viZLomh0QiUr8Foi4FBkUlfH9g5efsNH4m9r3adjzM8tnvVv62stq3t79+/r+7bi7OpBttuUbSu0Sw0EqDj1Uih7o2wVvWqQVWtFrhfYtvjzcoXtguwXZL/Bfo0CZYvMluLkAdXyYwPdoTS0Bgm1lEqpBZOOy0iORnYqyVchCwPEKVnAORMb9+Qg9MhSOgb2fGJ9wJxpIpmhYXYg3inqbFtlsmNe2F9e2G83tsuFmoFvouvKlvNaOoKI4evQCcz4jXz3czOCQN9E3sYynhCtpGFdTMqhorFxxYJDHYrWyHEpJSIb1NEyiC06xirLnr2UZPCaB0IywTIIMwoTPbep4jEWrAI70dGrenZxga4ZUUgFgS/Ha+/hbE9oOpH7Yc5IQmW3CKwMtWggKMsiPyRcsdErpHHfGxTvEjlTK3vqrbPV02eCLHhDPZE/dxVPWTQUjevhzCUiwr2cnhJnRIjEO7DCEd9mJYS5HFk4JMnxHA9JOX9PeDwl0pUOtBEOEYRttTSqI8cUSPifsGrZWDeSEvZAMJIoqaGeWkWt2pswytzfhjlSmKKp1GANMwJvStKlZFDW4qv5JDxFergSy9TFc453LV83JtFcDQnDQQ+SsFqMElcBJxYHbsk5t3uMn9yDF3Z+ZLp6EY+JkwXgkk7zSMki0p3TkuTd61nX7Q07c+BNqj8S4koKRyhLJdCFRQBYA7AFh8m7EY7l3mtLXTnTvZlch7mjGhYZORiLirpK0ZkGiL5IwKs5WbtzWW2k4SXvzUSE3ngCSQ5P86HQbQTHqVjuF2/Tqjwh4v0Q4+SWpWPGiUKBrHkgb453/+jHL3SB8vc/K27Gl++ezDkQdV5eKrtWqn5gqzuXtrFvNfxNCuyt0WrlppUmlUqlecWH0Efn8bxz9IPPr3cgwrvm806/f+a4f8fr/c79fuebb37GT778lNfHnbvfmRIytDFjFtcH+KGUqVQvVG0UrWz7C23f2S7XQFC0ARutXqha2IshxyslE0XVJYqMxysyOpv0PGgUkRZBYdvG9cPXtP3C7eUlbggzbo/7mYkScreQNPsYzD748OUzdjyY4+Dz45XRD2aPsdUijLn16NItMNBVuqw9dWEsJ5RP3IhrYPR+MKTEPXK5TC5b4bI16qcLZbugt1u4tVXBX3Z837G9MW8NrxWpDb3eskC5ofuNsl2oH36AX7+Cl69oH3+EtIJUoYwjujYKUytTKrQbUi+U9sLW9hgZ1ALziVnHxhObwujBgjeiMNTxQNxp0hE7wJ7c7z/hmD2K00fHx4THiJvbw6wpjzKUg1YHL7eClY/cJlCv3F4+cXv5yO3lFnHrxIbfiQ2yOrEZz7h2YoaOgcyOjIPcXTLPI3brEi1SEClXl1Zq+GNYC6l0cqyUkqzXA6XH9mrxrM0l3WDDgMtmcKuCt5FjipQ+VhHURxR6vAbfRKNoZsHaSRasQpIJ47Wtgvi2SRih1cZ+DW6RtWusN+f0Jgl13GTY5JiTx5w8p/E6hYcLh4ZRomqllA3ZahKK0+8BiJyreP1mJYLavMSs3I1hg+GTjjPzSq6NdkXWL4KmJrpTShS8SChHgmsApAdRjPCzwEPTiDEQFJc82GYojIbNVDfHZh6wukT6OjU/Loi3QPmSg2S0GOd5IAlO/t4V1VDjKBM4SbpxyHuQObMhEimUegmeSYGLP7nscL0KrcV1dA2y9NQayhAG+KD4oMlEi7Nvhculsb1cA6F4VpoqdRrl9Yk8DmQWigQBWqvSaqPohsiOzJpFR/j/uBnyIIpEdfw1ygGvg7LPcNB1Y2XihBWQU9wo06hu7Aplq1AEfQrPUdl6pc9obiNHKJoRrYTrd3FKGUiZuBxME6YN+hAeIxDbpkLrRj0mjz7oI5U+lSwlQh7fp2FjwNHhiP1WS3C0nv3g6Af9OBjHg3Ec6B6EVEoLyLqBX3KM4hJkcAklzuixQw91Zl05W5rjzBghTbVQ0tTYa2Z726MtKQD0I/yNclf34hHMWDTRvlD0RNEbjbeibK7MIViH8ZixprwmvSeaRaWg/Q2V/0c9fqELlO++e4I5/R6BVtu+cd0/8OHDJ37wg1/met25XnZeLo1aha3C5Xqhtsa2v0RnpuGLcYzJ69F5fP6OL6+f+a2//5OzI7PxpD9fGc9XHs/O8+h8+fLKN8/OYxpPLUwqJtnxzJmbZECnhcZWw7Wy7he0bnGoJME1CtnoP7BOGQf0jvb+/yPvf35sy7K7XvQzxpxzrf0j4vzIrCrbcG0E96HXQbIw9OjYTUMHQQMhNxBC9h8AouGWBR0kEA3+ABCWsGREA9FANBANoAsIJEBCgGjc+64fYLsqM0/E3mvNOcd4jTHWjiyK90g/ydItOVJRWefk+RGx91prjvH9SZXIFrhcGiqZfNlOaNIUZVmppxOn54/UZaWdLliWHm7bFl0olhbLjKQP8n5Av+H9ho2Nl9dP9P3Ovt/Zt1fmHPS5x7AyeyAFo8fPpwtIbLxF3T8m5jcly9fJIgG8CbIWlo/vI2r8dKI8v0fWE365MBdhtoK9u2CnE7YszMuKlQqlxoDSFvx8wZcT0lb0/B5Oz3B+Rp8+orXGWzo3zMI1MUWZqngLCkXLSs0mZzfBegTpje3onbAIrwLGNOy+wxxUmQETe+d1/026DzbvjH1Gwmu3sHknBqolkYsq4IWTL/giDC+UdmE9XVhPa0SGEwLm4aTAb1LSDVIcxMOJUEZHZqTVairpReWBpB3NxCr6oPQk01NVLDIIVHALp4Fjb/84GeEdQHTfOzbCsTLGiDC0OR6HomWppIjHAGHxtR0290LJ+G7y8E9HkRCHyGHhFI9coFqoS2VZwxEz6jEYGXPuaV92pkWa6JhRJRAWVJiEg88zE4MSicwJqgSj4Y5MpeRBPkcgHq6EeJzJ6Buzz4jwJzZ7SSSluKM2KGmvnzlshAsvh4VHXjuPzBfXmAUfk/wBzByallxqxjD23rO9VgMP0XCUlbJC0n/uC+YFpj7oY09sP+ikN3G71+gg8lJ4CF8mj0TSoyTQ+4BhyXZWSmkUnZx14XxyzhcJbViNWgC8YKZZzxT6A5W4bkUnS50sq0eJpwW0vy6ZcSRGTVF99UkhclhKLRRtaImOGi/ZveOWlLVgw7BtYltHaqf0HW89Kg3KTLEoiX4WZBTUowy2SqFJUlANltKiNuBooRfLighHW2bvFNDFQAbmG90FnYP7ELTHk+6mhdmhDmcfM5DuGWLcsO37Q+wxdsP2wbx3xq1TiNb2bTf2bimlSkWfBOoptVJapS6FsihmhSj8C5t8ZApJIjWkGDqug7c06KDZ9ml0mZjGMnlkdx32dbXMjfJjMcpW7fL2MI9ne3ifDpRS0gZdRANtMUW8JXIkmMb3VA+F+Df4+OEeUD5tAb/3QStCPTUup2eenz7y+Wc/xuV85nI+8e7SWJtwXoT1dED7p4eubhsGduN13Ng+fcVXX3yX//Z//b+4z8lww3wkunB/47y3yac+2M3ZpGLRbsdqUHSyHHB6alnWtlBbRZcVK4UphXE4AvQI7TbcdnQOdAyWGfkmSxXO5zPL2rg8P1PPV8pyoixX2ulMO19Ynj+gdUXaOSL1TRjbiIj9qXQju3MGKiHZWnSDecPmxuunL9i3G9v9xu31K3rfuW8v7PuNMXa2+41929j2jdvtFsPK2GC7YyMOcohn7/+Injzon0XRa2P57CPrJeiN8vSM5oDia8XXCu+f8dMJW1fmOYr4/HA4tQU5n6GdslPnCdYrcrpSLh+ic0eh2PZwME0huNx2RlgRVo4cMZvG7M7YnP01Qv766HiJQ7WPwf76gvdOw2k6KTJ5te/Rmew6mCOCtFaT2KJLyTjrQlnk4SgSEYo13Cu1XWlL5LqIEtxzt3RSgU1JwXHA1+ojPsdAbdBs0spRYCgJ5wekGzkoCdvaIaDLrVNjKENCuBgDymDGiBSUlEes/ejHgDLpPSDnPqLtUigZJJZ4uEXehMyem1N0Th3/WA5+E2J7jfObLiGu8ypIU9oardOS1sYQc84QortlwmYMxnPOyKcYzpjyFmB1JEiV0C8daMbhhpFhgUpZvP+xCXoiQCF+j+2EECbnUEfC8CUt+bhn43VBtaBS0sXwNX1BZq+8lWR+7VPIgTIOkzGcfZ9sW2eOFoiTBrKgVIqvhGgiYg7xRLpi8orl6LjWwnoEh9uJgPxjzhIePLHHQOojmn1l+GNAaaXSZOG8rJxX43KGtX1tQEEx0wwuC/1EiIUNLRGFvzRjWZ3pIUReV428FCUHFKekzbmIU0pkhEhpUBdcJ+aBZR2uGhuO79mh0zrad9R6CPfLzEpJ50ga8xD4IBbUWpOof6A4rVSqtnx2Wb5vM87cdtAboC1ozGk9pDFzsA1Bh+Ni4fAbShvQczjxR32EpFszNDejG2OfjGNAEaFJje6fQS4OBZdKdIel3mhZKC0GFMmgOLEKuXhOzyxaP5664TSMDi1jDKObcR+RNDs9gtM4XHw5rKqFhq5YuC6xWEAspwUnWIKD8D7EukvJoFMcWrzeQn2oG4eGJKP675gB5XusolxaodUTl/MHnt99iw8fvsN3vv17uF4vXM5nPnu+cFoKT+fKstZ4aJXKNgbb6HzxxffYZmfa4PX2ypff+x6/9n/+H7y8buxjhPAy3+g5D5a/0iEGjXqU+SlnP+LajxsVFoW1OW1xvHR26WwOw7YQmFlhllOUlbXC8u6Jdr3wsRQulxPv3r/j88/fc7leePfZR/R0RpaVulwoLS5cX864FoY0fEjoXu49rMTduQ9/hEvVptSmPD1V3LYYUL74Te73G7fXFz69fMW23fn0+on7/YW9b7y+vvD6+srt9YWvvvySfd/Y7q/w+oruHb/d46Gd0/qhk3jUEZdC/fAZ62fv+fD7/p98/uEd33l+5vPrhevSeHc+0ZbCsjbeffwQuox1hfUp4Umw1sISfDpT6oqWRl3SudNOmLaAzz1hUYnNxBOSFiS6Y3bjfr8xeqdvd/rLjXnf2D59yXa/sW03xtyZY2e73dg+fYn1wXVdWM8L7dT4tHZ6FXp+f1WFVZS6rKxt4XRdKKdCWUuGHYWdUayiXlhKlhiKsGdM+7AZlkAX5owgK3X5PoTtQP1UKq2Ei0ProYkgjVd5+KTVD9VHANhRvBf9JYGqTfHobDFldk1ELH5OUPAajqF8WMWDP+gdSaulDXnQY+rpotHDaincxwiuHkdbQ1SYotyH0rtQtHCWhpQW9JMQlNLc8b6z324ZNAfbblEc9zrpe1TKW0+kQQtSVqRGqZ5qVk+0FPMZqMxweEwL+oB0tVnHvNP7Th1RI3/SlrqOSrfYjvd9B4ssDiMcD02cQsTvR4OrPwYDiUkTZiebFMFjiPIS4XjThX0O9tHZ9h2z0LbIGmGB1IVyekLrEgistIwttxxOjWZ7vF8POimrDFJ4ahM8xdc+JvSB9B3213Bd7J3q8ZqtJTJiWnFOy4l1nSwno7YrtYLKJSjAXNb2Hu3RVmaIfMtE66C0Tm0jrgcx6rVSrw29LpT7Hs7GMnHu0eu1e1SieUPLCrUwpeHFmUMCyVWYGHshDsJVaGehrUJtR3VBvOaWQ//IvijzN7u4zHQYTeXWPRZGydnWhSGByElJZDLdT4wBCn0fMRDJxFeBWhAp+GnFpwUKXgdo9NW4Bk0ySkSvTmoMIh5Dp1SheGN9hjInzS0W06VyOi2c1hpJva1gifD5LJjt2D7xXfChiK8xEKujdkeGwd6ZPVyHW4dt3+k425xpRweV1KY5XCl57yTyk/pOSwfczWPY2d0z5dm4LC1YKFfqLCFoVmX3Rz0SM7OavunHD/WAMucMz7w3qlSmLrieoJzQdqa0C3W50NYry1pZzo1lDWEktcSFNnaWbafd72kxbggVHzDunb53tMbF6dMzXTWEZJK6uoI9YqqrpYBUMr/DodVCW6OBV9aaVfOxHZkUTCvn08LSFq6nK6sUVql8tp64Xi88f3jP55+953w5cX3/HD0ZtVDaGvbbJZIUY0CpFIvEyLZ1fBjWna1HvH83oyyF2grX5yUHlJ1znWz3hdtl4XxpbNvG+Xbmdruw952X1xfOLzGgLMuJfd+432+sr6/s+8795TVhzUnbeiYtTryEWLHUyvn5I5d3n/P0rd/F04f3PH14x/V85rJUTqeVuiitVdqH99TTSmkrvl7jYDZ/ZAZwOkOJcDXaGUrDS3vkv4jF4Iho0Dt28KtRGjbvO/f7J0bf6NuNcb9j2862fWLb7jm83Bl9Z7u90m8vsbFU4mGiIMtCaRVfl9g4XWii2fHSqK2htaBNQzgqoGKoRaty1WjNIR0eXgjHTVhlHpkPKad77CkmYYBFDvxV3qgdyT/ogIceteeJ1xZH6td0RM4j5t30yERQZIZAV7zka9+QCsJAinN4DB8ZQIcI0yOHwvxhCOVQw3SCgx8kDYowXdnzc/HygLWP55cRjcXTUgQ7CbeeRZChZc9PsEeJHmhBtAbNkwLUSGAu6c6LgwkNl0cUYh5qqhLDmShTcqDNlzVQokzH9ZnC4owJlyNfIzI0I0E3voewPL9pUJCZvybfXx/Hvh9cf5Fo57MK2pB1Qdc1RN2nHE5KDE3B4IVdloMK0lD9VClxHc2Zfyfh1vA3d8UbopPXUUnXk8RwN3Pu7bqgMth8cufEgrL6JdwebmwWhoUuhVkEk6iJcD0cHm9/UwyQDW0rlA3UQtjpYYNlV4o1zM85yCUlKem8ClAkhpRaYmGpocWTWhnFk74DbGaNw4G4ZfpvhhmO6Ym++SMV1uVrItdEp2YKVSN/JPRNUg6zQ4Q9LsvCQmOxQl8X5pj4tsc9pxbDR1M8lzBZF1hXZDmhy4llOaNq1DrRUsLW787pvNBq4bQU1qaPJNcxIqxwBn8axYfTk+7LZ5Q7Ij2vtyN1KK4Vt3hPLFvrHR6BbC6xwMd1O5MutEc+l4g8BNxqb4GAUbGT6GE+fw//+7GvHmDeN/344R5QgjTnlu0uZ05scmLXM7Oe8XZBliu6XtHTgp5WyrlRqqJLgznQOdjH5D4Gp08vnNZ3LO0TjRXtr3CL7oc0OsRkLCDVMnE+rLrklH1Co+SsEHCcCG1ZWK5rwNfPFTRCibyuIAWThfP5PW298PTu25yXJ87LlY/P7zlfrzy9f8e7d08sSyScmkzI5Ec5NugaQ9NaKicpNBcuNpEe2+K9jwz/MWiRwbJel+CyZ2c/Gft2Yr+fud2vbL3z6fXO7X7LAeXG7fbK7fXGp6++Yu87933j08sr+75x+/RK3zu9D15fXtj22AQ9D89SGx8+/118/M53+Ox3/e989vlnfPz4gffnlVMrnNcam0srtOcntC1Ia9CucRDOTjgsFJYV0xYQaF3i50QZ2w2GU7o8aI9NoJMx7/snbHtl3r9i375gjo2x37B7lOL1+53tvrPdNrZ7DCj9doO+B9SpZ3QplNOJ9fmELSu2ntGZW4c757KylkpNsa4UyYdUFH0d8dMiIVgMYUNFbIZz4qBY8BxgDudINo1K9P5MiWRSVUfT6hcPhLdWEcQeDptYGQ3qeDxQ1HNw0zi0jBB82jwOhRI8iMRmKGWG8PWAjaeBa+pRCiaVkWmekU6b9lPgRjgaBqGScFcmyu6V7oZ6iFWHKWOGzb/jjzTP3cjYAAmnnEvqhbJkUDL4sNRMBla8arTyamy3qiWksZKai6EpCo4tO2A6iTbZPFKnhOFU3RIfCTHoEeAdrpoZ9lVA8/+beESIa3kEW5EWcDTeN0n0w8VCb9BIzcGCcg6N2flCWU9BB14u6UAKy3VknFk05/okMnuSjUKpUynT0Tzn6zGn5sTkmq27NegXKwWR0LkMbViQL5hMdhv0PnieZ8asmF2pDNQnwyo3Jnc1etuYskBdmVKZaCSNBgsYwv6yUtoZqR2fneGKz0i99j4oVfF5QvZzWO4PClMkxN4qYUtvSzr5zozlhLfKRr6H5sgY2L7j+4b0aDDubogP1I2xSSBxfWKjZ3p2JKN2V/pQesnrUsKUQFlZ2kpZFtbTE+fTmeu68nS5skqjeWFeX2MY7z2GQJ1IE+qpIqeF89OZ9nxheX5Cn9+h5zPt+hRR9OYZHxGY6brUbAp22pGk4rCLsPvOHAPvk7n3LLYUVBpH8aWWHmGPciSxpG7NQ4sYGTuBLCkeC2UpeXaB+oTZ8QnFMudKYDUNPZbHI6JIJhZnCrvjMegXeesCswOA/R1C8dBf6AKbFXYrrJfO6zbZdmOMmc2JJGZXsbbgrUFTZFUailrlaX6g2+Td/c713Ueun25c333G7XVio2CzPCydMvcU201KTomLp1UO4aRCaVE/XRahlsL5euLy/Mx6PvP88R2thNNgqUtM47pwenpPW8+cnz5wWiJR9Hr9SDufWZ+vrOc1ew8M2IFJUZBa0FYpNW2Vqlyk0pJukjFhGuveGWbs0/CqSFHKuiC02DQURg8x7N47fQxe73du9429d15vN+73O/f7ndvrjT46t955vb2wbTuvnz6xbTv7vvPlF1+w3e+83l6DtgBKrXzr8w98/vkHPnz2Ge8/+xbvPn7kclpZW2FtKW6tilzOeClYKXg9B3WklZIcsUsjWnJh7OORCjrun6AbeodJY7jyanCfO/exs92/C/MV7Z8QuUWWyOxZux4hSZZ5HyYl+N8V2rLQinB6urBcGstJkBaW2tD+hW22RBhAqDrMAzZwMDm49vg7xCO87cjqMC2HHCB+zmPbcY7D/xA8GjJSx5FC3DlhEUsgxalfF/4cKuWwh3yNXrCHik48XA5krsQRJXksOpZ/lYWiMwKyPLbyaMa1RHxi2zQ78oQPfUTKOcyjRwXyMJL4OsaOjv2xHc9d6TYQVTapEYg4Qzzc8yWdEq6EaBjMrzkLOKPeKhw/kX+S0Wcj3CeaB3XYLuNfbwOI46aUmWmjYqnvSPQ0uXTXqKBXnCZhwWwlhj4Ti4TdFC5ryaBBVbzVgLe9JOIlmJaHlbqsSmvAsuLlmVLC7dfW2NTrWh7vyoG+QXRLQQ00VyUONAZmO3MK+xQmb43Gka6rmLRAOUoUJpo5LhUheoGyVZHXAU2V1SrnfuFeF/Z+YZWdSkdQdnE2dUbZMFnR8o7JlWkXej+FG3JMfFbECnoIrU0fOZJ4FvxNR7qhfWS6reOzYzYiz6REI3WthldDatCYJso+C0xhdkfHgLnDvONsIEHnTeJAjiTbHE4fZmDAF7CCzxAju7RYDLRSUE7rmet55d31Pe+uZ67rwvundzSDOoxZhF2hS1rnM7WwLmf8cmZ99w778Ix/9pHy+bcp5wv16WsDiveHZqsVKGJUHxlQ6HgPKmxqUKBhSe6URJlKzRRtHJ+ZmFiNfRswnbGHLklNobUc8omAUlXaYcPHo7k8XXtFlrjNBErNJVsNbYIWoa7x9yPCmG/LyZ4RAIO8LcvvkAGlMLHpdNsR3el9MPqhoB7xICVFenIk3ilHVDQpMGynE/V0pp3PITo9XVhOV9ryCS0j4u2PRJ4jVjttbCoRUV8so9yJTZlCWgM1uhYuZ5brlcu7zzi1xrlWzmWhlkqpS7TZrieWyxNLO1OXM+v1mbqeqJczZakBr2vn2LwjRyoGlFaz9EmFFWURZfEIp/IpmEROBdOZqc8I4kCSglkoWmi10dpkzEmpC62FDqctK6d1YzvtXC4bfQ7uo/N6e2Xfdl4uV+73jW3bKLVyu73SXloITiE6Vp6uXK9Xztcrp8uV5fJEO62RXNoifVSL4m2JB44qJjU2TLFMUiQ0DxYPlz5Du9HnYL6+Qp/I3dlH9D58GoOXfue233m9/wbFbjR/ZWmDokbDv1bEV1K4qLGJy6H6nyxVqGuibxqiVbESKZVeI7+BhyQ0DjYDRqT+Rs6Ew8yANRL+V4XaeIgbgSOf4rElW1ApnklMDgwJ4TOSIMdxVRz/PwcU8UOLYnk4vg0nB3kUm3xQGsc5/wjHdNAi2NQYtvRI10zRqaUA+TFwZSrDEeIkPCD+oBliGIAI/tKE4QXH58Bmj0ZaLXQhLLdmTMuOj+PvFjIy/MjyOH5MBkaR0HJs1DbD9hj//cgNeStIwwk0xBPC9xk9J5bhWeIPk73nCxz/EkoOPpLUW0nNUeQTERurCGikkcakkKjAwQ2LpBg2HRD1FEjDulCWJUIYqzyw8uPrD+owyjmlLDmkxLPI3bESaNG0EPw/cgE0UCrX4zqzEFFzHG4x0ARILQwP1O5lrjBWdKx0hUWEisd7pYSLSoJqNxrTKyMXvHm8B2Q3ViJ/M7NHjjvgIAiPbqnIRcngNYJKOyJu4jl+lLJGOecY4MMpqTMSe4vgP9xUkren5+9/UF2keyWF5pEWWxFJyoNJLQutrizLmXU5sS4rS1to0yg+qHI0i5MWW+KG0gploawnWM/4+Uq7PFMuF+r1Ocv8QhdlHstSyciAYh2dkaA8fTLKoGjPvcWziTyt9Mcci2CLUqkYoZOyYTQxxpRAPy2orKiryPDAvF7dY685nhSFTNMVqCXhuCpo87B4N0Jsnk+j46iMVz//nMMp9Q0/fqgHlLMEH/y63xnemPcbfrtht1fs/gL7AnNlzJ37UGZv7KVSXTMWPt/M0xm5PFGuz+jTB+rznfXDt6jfe0VfO9vrawwp07Ftz6m10+YJXRqLnahNKVWgWorHHW8V1gJPJ8qHdyzPH3n3oz/B83rmeTnxvkbvyGldWa8XSotSQG0r2k7I9R1SQxg6mAkxRxaHMMOxUgq1BARYsjBwxbP5skCJAwD2uNoy1XYazJfIwyiitBJWyVphOQW3v2bcch+TfQ9UZYzxENtuPrknBfT68sItUZbf/I1f5+XTV3z66gvu93sgWSp86zvf4fNvfYt37z9yefeR8/NH2rqmcj+dJiLh0edw5dU4uEbUDgB4n9zHpM/Jy7az7Rv7fme8foXvA78NXu+D+z754v6JL16/4tPtE59u/41FO9dl8PH9ynlpvDtfWOpK0QUtF6qEvkfXzIjAWXXSJArTihjs99TEbGgdaDmhGn1KVmBqUCIZ6YnvA7LnyGcILIfNx+EVB1AEyEmJiH3JA9Dd4/07HBnGW7ZBJnoeKJW406YmjO8Ui9j2egwmzO8bsDlsg49tPBqEg5IIWyBu+Aw3zJyhtbI58SnRGG3OnAUdNWKyW9Aekdza4oCf9sj7qHPmFh9BWpEb4+icIJ2xCVIGJspN5qPafszQoExz3BPBkEi4tISmD3cv3vEZyZeeB7mNGWJgNby0GGyyct7dkOnxMHRYCIRDJfqwfFrkXjAZDI5AshhGJAeC3MDFqMWTkjhoeMncosxe9rQWAweZ5yJoW6haUV2gvUfLQqs1h+Jj2ItBNfIneATJiSvKgtZYUpaSE2bqBIaNtC+HUFg8kBMtmsFmQfdFCaPh1pmmzKnM2aIMzyqn/T13XbjfKtelcCqdc1lDyK6CLXsgnPXK8MY+hNs9XhsbMbiLFGpbcgkwzGck6yI0FprW+L6J6HW3RIIPqCUpuzfdlYcZYDrj5ozdKbtRbxPdJmWMsNEX8KJB/0ywYnhIbr7vo6GsrrQhVCsUq6jViID3ylJWTu3MeQ2K53RaWNcTuu+B+swZ6M3ew35/6KBmQ2RFlyf0/B69fuT87tuU65X2/J5hGXFApoXbRInEWB07MiMEcpaOD48yRL7iqNnQomGLXpKixXFquDRGZd01aK/N0R4o7+qZ9+SBfMoxAKdt3B7jhbFoeVzvywJajdIEaTOyUepkuESHEIJNohYjkaGHGvfIpPgGHz/UA0pdzhGoMyJwt3in2p0279R5R21DrefNVvDZ8VkYahSrCc9Gc6utFc5XOAcMJ9czcymMYrzOl1BM98ncvsBsZ9jG6X6lzSVhyQq14I3gR6uiskA5U9ZnlvMH1utHzk+fcTlduJxOrCVse5fzwvl6olTFrEMreFO4Oq4DO7IZbOLe0bkjbhHdLiM3v1Cvq8QUPnKcMZvhTtrv9BE9GGOCDaFvUKVRtXBe1qi2r5XSwnYnGTJVS8EXRWujmoeQTFIMvN/D9bBeqK+vtHtYsUVrwIjlFhSFwHK6UNsZ18pA2Qx05gGVmQwuREaAZSiXx/brfafmQe0+ue8b++h8ur2EsHW7M18+YdvOfL3z8nrjvm987+ULvvfyBV/ePvHp9l3Oi/DxaUHHt7DrlTNXyim+Z9EayZ5SEhGITXQRDWWFT2Y3BllfoIYXR5ujNbNwijG15c0e+iQZ4w29mKlhmMH/iEDTiYolilSPBPIH5RLiNEEowYyQr1VuKdMyIdQdxkQ9LNJqMYc0C0rpsADmLMKb88eQFDSS6cvycGIR/7OPgOhr2jynIDPeG52D4eBlsDhEPGdsjNMMHYbYGkPDnNFaS9Su6yAzE0JLg+kjfXNI2FfDLZ6rqPHQzzRStiESv1fiIAixo+c2F6+XWdAvQwqlWaQTa6KSHu3F5dDpaLzWiERLM4PRneGTYYP5KP3Ml/AQZ6eyuQTPBAhHm61abqWpEJrHUGD+ZoOXEtkjdUFbi06Vw4VEuPCmR8XA401MpESQbF0WtIAl0hBJt0t0qaQW+AjRUwt68QB8YhgO5Dk0RgrzLc59TGe7h0DYiZ/bl/qwqE9g8xTFjs7r/TWQmmWNOcKMPd1ccjRaSwzOB0VeJFuN1SPZOSHDqPcwTAumDStBvTgVMcV6Zj29gm9gXbB7oewFm42hlaqOlZkJy4ZJR8qktEg/jmsRThgnn6yz00alzoKOEkuhz4et9kjmjnLYgee1YTawOaAnfUksLRF04wlPZpigVlppLKXEUpB27OgzmoHc2ERLRaL8Cxkbte5U3RMdhDmzSFQ9KXHhYbmXEIurCjpGPNN0UKazkNQsmt2KngLdLNLUiZdEOJvHElAcVqIiYOHhcnLhrfPreB6lMzEQ5kTnfqfYjNt6pfmg9k4tQtNJk0Fjp1in+EA8brhDze2zRymWRfRzy0XDloKvJ/y0hrr6vOKLMqqz2T0uvDmZ4wWzjcEOI4q2TtooRMQyWvPiqEg9ocuFenrHcn7P6fKB8/UDp/OZ0+nMopN1Uc7XhfN1oRSY3bFWsCrMcwRoMY3Zb5jPzPYY2R1R8TmRkVwtoUMw25keEevDOsMHL9udPid7N0YGk/VXqLLQtCGXp2zRddpBPSRsL8mz53UeluGkk3RfaGOEFbIsaH3ldrvHA63PmMxn7JytnSl1CfGdw31GfboecGQ+tCeRuDjN2C0V6n2nznhA2Nwz8Xfjq9evuN9v3O+vzE+v2LYxPn3iq5evuG83vnj9Lt/99D2+fP2KT9snns4r/v4d1+WC2sK7JdAj07BfHtB9kYBMWxEWCUGYj5l2VAtLZMLMRsDAs1g80IsA9TF46Yw26XB/hP0TGwgRR18dyiHeVECzaZSHVDarEuLQDLo+SJNceIDYgGXugVi5p9L+4EOSyjvIFiWvVcJ6lu8zR82CJn9EbKmtFGRMhjg6PIS0IwYUGYU6AjWYxvcNKGMYIgOZLQv53gYU9RFi/xmUQqQdR4bPUUBmOah+jZUiHu/RJdQyjlszd8RFAuPw0KocIkCfsQ2KBJLi2rKplxiHxCjpxPl6l89uEak/BUa2lJtb/j55dLIcD2X1GATJ90WIxF1JKtXzfT3eODMyJh5Ih0ipjdoiZK6qZLZaIGlugShNkcigISgt8dBBGUGDhTbKUxNw9DqRdAbhpsk02/gOEkGZx9etb51FHhocc2ffDTxEwF4KM92MR9bNZhJv0ujc7q9x/bYFlaB5YkAJRDVeYkvxpj5QlGPwc8k05Pju4x+JNGTThkmLK8EU7+lC28DvhOV2V3xU3CpTS/7+t0A2lxGC5SPu3kKftGCsCItH3lCZA7Uaw5TbDwwn0QhfIgTTRgwrM5YQ7UHDWO0xoGSMQLzm0c5dJOodhEDUjvvfXMOZ5YbMikgHGXh3VCO4000yvC6cTajn9VByYI/+KErSM1pQN6pJXu+HA0+iLsacfRxDszO/1vrsNQYU6tt2IEtorOSgtOAxqEMgO5LUYsln6zcneH7IB5TPv/W/8W44l9evaFX59sczn78vvH8STmtYtkQHpgYSgT9jemxOBtUWqhcWgU0rs51gOaPnM8vzE+3pRL1U/DQx2ZkymHu0efoQ5Nwo68qynji3lVNbWS4XymmlXK+cP37O+fkd3/6x/43PvvNjvHv/kR/59o9wWU9c1pUmnWURzs+N61Wp1fFRmeIMhbFumM8IzLIbsxveS2glqNgMeNrnHRKIE4x9fGLOO33/it2ixPBT3+hzsu0zYNuh9FelykrVlX3baMuJZT2xzAtaonzw0BoY4KXgGkgKRSlakxIZTKsMC6hwOb2y7s52moyuYTcGRE+4L7zeO6av3Gbw9EYmFWZ30dY7fXRGOqx8DGzvlB43vvWNbfuKfb/x6eWLyC653Zhf3hi3V/avvsvL7bts/ZXX7Qu+uH3Fp/srN4Onpw9s3/pdLPpt9tfBYsJ2c5Zl4LpzmAyL32lVuJwa5fSE1IaZ0qXQa0l6xLNVN4S1cw9xrbpQzRCL7IXVJaLVq4TKnQoTmhhNjcspXAF6WkJ/k4FfR7+JZty5EltrLCYz+mw8ytY8swqqpwD1a1G+7gFtu/M/0Do5cZby1tkhWXEg4EeKZSl4C6FtaRWbPSD3vj/g7ClrPIzLxiEQcJQyJqXvFM7x+0eKas3pNvI6a2HfPxBgO4SMkW7rgJcjzj2GkeqZLyJpOdYWB2pR+h7DzRBlmzMTNEfA7Vim6IZOoq4RKKfkcOiRLG0ZATD2DiKMbY+hSSQ6r1JQuLQWokHywexv+o+jZ0W9hF5Jo//bxXHLsLcpjyGilmhTX5Y1LKUitMTS3I0Xi1b0Pg1LO6hQU9cTr9N86JJa9CmVBmUJlMXW2Mbd4jrMHiERTZO1I8UDNdIIdRxDI1l4ggzD7nf6rAyvTL2weWU3TYRjct9iGG/S6X3S2ie+ur2iZUGk8tXtxj4nZWksp4J5UCerNZpn/chSkVWwFlu61NT+WMF1xeqK1RPOgliDUdEpyIRyF2RT6AX2FbcTNi9MHQwRhu3h6Bkdtx1kUqo8OlYXgTNwwmkyKDpQTR2cRgnqKBEwuNlO2TvTg5ySfcAtWuxt3LD5Stmj40rLwPcV72eYmQptgzJ36rhTRknKDkrJUsoU6j90JuxxhvnELbQ9t825bXC7K9WgDCLxeokCTJdAuKYUZm2YDHClzg3RDHv0sBrfU7MzPYf2zFCSWmLhWWJZseLYCtIUWx8PlAi9TCTNSiJ7hTQPSJQ8av0tDR0/1APKx/fvcYPrKQSjH55XrufCukhAXRjdJr73EFAZoWruBRGjulNHIAbba2e7dWyfSHeqCQvCqSjnJYaGWQT0XYqS4Pr+I+t64Xl94tpiSLk8PdFOZ5anJ84fP+N8feazz7/Dhw8feXp+x9N55bwsnNaFqoXWYFmFthAV2UuLbU2h18m0eH7ZniI9gyNl0E3ROWCOh00MAUbY93rv7LOzW3Y8zOyHmAEFm5ao3RZhYw8ukoL7eBT75QLzEEqRM7Bk1kBWk9GksEjUjJ9qw9rCWFbknKmKIlzPV86nC60ulNJQrSGIzAd59AZ5qNL7wEaHMRJB6cx9hONoZPfNzIctThOCx0+Bl2hsgNqU1gtLq3SLw8Wk0F3Zp/C6O36b1C5MNtxjBdP5JbXC9bIwfbCuF7ReAloujba25KQTTtWAU1UKuH6NlgEpNdCmtYbuSZ3iG02MRY3z0mLoqyeGlgCQLaCCsATy2M41Y8UPQe2RGnuUmykt4HQBtMV75P6Afym5v8QfeKw8b/ywH5uhPaLwRTQz3+L6iKEhdEp22Iwz6dN8kNNNDBSJfpDvi4o+WpgjYyIQB5PYvI+8VQ5RseZAJplcKQ6H+FYDXj40HpqNxMXjuuoiSUcKzJrDYfDmVElqi5TgpJA10zg9DUKT3CaThiEzVfSosqgl7wp/CCIDCUoazi3X87QHCzxEgof+pYQ9WktDa0WOgVECSlAc99BgFWZYRkUebiksKhFGgmOeWRmUzAgp8XubT9QHbkbR+BqM2I6NRGBRpoLrwhhGHR6ZJRL5F6200I5oCKKdxiDLAt2iHdonLsbwSBbe+z0oXA3qTauynlcuT2dUhS6VOhvFg3aSdYGlwlKggdboBCoOKgtlaXiNOgQpGj1r5FCoSdNhQcXN0BchwbCaWUYvTLxbBDdO8Kh3xokAwUl01+xu3G3SLMSvQ+CW9/19DnTEzbSIoT26sh6o3cMV5Il+D7BOVEJEIrSMDmPHes3rK7RBBwUbxuIcPl2ZJtwGvHbnpU8+jc5tDO7TWUaEBq6DbL6OP29KuGmO7CD3EGMrb4WFKRgJClUkh7JQyYsqmrTcEWkvB4KYz6HHoyPfh3hmHYWxcW8VlEp5PGq+yccP9YDync8/pwrsN0F0cj5Vnq+V9RQPmGFR3CT3DevGKAMrgleFsVO3SV1OVKmMrbN/umMvHblPlgFnFy6qvDstzFZCKf0cim6tK+d3n7GuF94tZ56WM5e28v75Hev5wvnpmcv7zzhdrrz/7DOe3r/jfDlzvSysbWFdFmp1ao3tfWmD1pxWG0NLNi2/Mk2pA+oeD2Us7IFmjX3nURwX2RnBM0bceGeMyT4H9zkCWs3wtEmUPNEcz+l6K51ZlKkFlyUL3/I+cd4cNJC12xkVZYQLhtjoVAvXuqDLipzPrBKaANHCu6coxzuvF+pyotQltDQej0cPTWZmigXxrRYBSjNv+ji4soyvFFgajUgo3Trs4jA3ZunoLKF/qELdKtKFdn6C5cTUyo7y2p3NB6LGPl9xe8HnV9D/O7Ua16dGL8aFD5zbmlHTZ06XJxqwHOJTMqFSw/Y5TB6HVW01Pq9nlkujNmHRwYqxiHEtISqdaNQkJSVRku5RwnERCHNoHwaTI2VeLRuYHQqNtHZwHP8VibweNagJq0jq6iUGEkgKJR0BfnDREmjNDCMQWIkN25Q+LcoEp2QQljNGiTcQcEk6Ig/Q+HoVtQkT5nSKkcFuSWlJcN/+0CfEkDHNGOL0uADhoOPSQaQlghE1awYmgQi4CsWMAhQv8dBcCC1NyxAtTZJDYypx9yyaDOfL9GyJzcO/NOHRDF3rg2o5kO0oRzye1jGgiMSw8BhQVNJO4jFIlBrZPymK96KPXiFySC1SKDqpfWLCg5bBLAeUEM8WEWqLqHit66MTrGIROmaTUno+MyYRw58HiJRcUgpjCtOUdrJwgg1Y1hNSC7NKiHm1Rc8VwhRDliVD7MK9NzH2sedzxKFAWxvX5yvb/syyNLa2I6MhszIHocBcG36qaANdoM4KLlQ/QYsSyCgGjRwoz2vaq+Fl4jrYPRa1sPXE4GISAwpjwO7MnBl8pqMFZRCFnZsbt+wcExsRrlmcUzawXudEuuHTWWzQBtTdviZET+qLHN48JQazB/0zR2hUesG2yKGhJGJJDbrSYkAxf8sB+tSdL/fBF/fOd/fOvQfSvIqkUydj53P6jlblvD6MWKAeC44HQj0HNuK+Eiol4/+1KGqRGxOPlSPSIH7lsePkfkR+s0EtG0lRB41Y8h/75hKUH+4B5fruxKUpvgeeLUXQ08IohU99crvvFH9F9oCrI7WVeOgvldK+pJRI9LR9Yttg/vp30S+/4nTvvNOGnp64fud3Z9hYoZ7foe1MPT2zPr2LaPO6cGkL57by8frEeVm5ns+cz1fa0rhcTiyrUlunyqCwpxOnghtz2xky0Cms12eaLBStgGFlYKVRn05oh1KVOU7YrLzedmw3zLOkDYLTLNHUe9fCGOFiWsqG2aSZBX+cUDWsuLYo3qtLwIIrUHJz8TxvxuFCAR8bhwqAGbCg9k7bN2RuXNVoq7KwMM/xgC2l8fzuI+fzM88f3lOWhdKW0AtYinl7lBGOvWL7hvUe0fnTsqzucKMMzDbcIuvB5mCOwe0lcljutxdu40a3nWEv7PdX9u3Ob94GXlZkufLx3Xc4tQuX9kz3PAD7HRu5cQxDGXQLEetsTrlUzqeVdTnz7vzMSQpnFMlcGgjFeuhr4rBwhXUJKrBcn9HnE7pU2qI0jEoeMDO+/6g/sEe+iqrG0GkJZh2dLiIcabJFymOIKX5CfCKy5GgyEG+IdmCA5NdqEFylBTf+WNMI59EMS+JwYRA0irtQrDBHuCb69hbYNjand+h7iBvD0ukpGJwwLDqFJthwGMbokz5mFJil5mQmcmHAXgqdSI/95NAtAttSTBFW1aR5tChWgkJbyhKDiFuG4wX3XiTcMLp4+HFkpHbCmaLZgeTc9z1i7c3ZhjNGlCdqZLxHfEpmINmx7R62YcBMHm7uyJ2uFInCy3B0eNRbmOMtELZSosGZGr1eew5bVhs131+aoMOoPXQU5mE5tVni/vEZoYUl9HTUhpSFCtnqS/R0PZw6O2YdkRgwVJNSyCKa0YRBYbwTSF3TcnpCSmGIQX69copGXZd0EoXBOChIOd6nClJCmLlE5ci6FrZt5/6yM/aoPHjdRiyApVIujdKEZVVa1hzorEFVNEWaIc3QFhS8T/DTxrQ7026If8LnJ3x/oemdKhvKiOj3Cd5L3A7d8B6i/iGFG9ln44M5hfsw9j4o5lRzZNvZi7CcKjbjmj1Po5iGYWMq7jFk9BoLQH/QVUYtk6Uaa3NqcUSj42cwMUuh/DRMKzu5UDrct86+73yxbfzm/c53t1d+fb+xjY3hk6sUTjlo4oUyAxU6KiYihyaeNb7H8jes08fOGJ0+wbWitdLqQlUBWSg2QhidPVwwYU/B7JSwDkNoa2aI3tsIGteSucAUmTXEuPs3V6H8UA8o2gr13JCyxkEvYKXRpWATtBuFjsyNY+M6ona1CFYadrSdDo8kvpdXZNtYzLi0hlyunM9RB16Xhfb0GWU9007vaJen6MKplXNbWOvC+/OVc1u4rmuiJMq6FGqNzolc0ULX4Usc8L4zh8XXchSteaF6cNOo0lpLQV7Bx8IcJfMJBsN2LOG6ECBGCmD9GqxmLo88ETt6IWrLzIKK1RXJTY7D0pjivJiOgzP3kZOxS3D5WYplY+Jjh9FjB1GjVqHUiohS28K6VpalRPiQknkinvkLzizxd07PG1wsECM7aKk8RSWEb84Mx4EFMrScOnsfrPsz69yY1jG5Me83xr6xvnaGVKyceXf9yFJWFjmzzUm3ie3B8c/e6XpBdVLOBT2d0fVEPZ0itG1prKWySqT2qkjA2h5WVDVLW3hIP5NFCDEaEVfvSW8pHlkfCN3Dpmf5+oZoN4SKQKBH6uk8kRTEQSVKuNQ1KZ6M5I5j582eSdIjmauSeGwMJBY/9sxzCx3vjH87eKJmOMjwcCOMQFo8i+KO3+iHG+bQT+CP3AmDB6w8zCK63o09rdPTk8MWpauwexYKYuwEguKu6U7RhyX6EUaiEuFjqXMJFiTRP310U8S7cRzUHE6VI8kz0EY3D+2FGQUJ6F2SdiNFxUcia1IynnRH0FuJcBAIimpJKjDoSFeL+/1o61ZNd4s+Bh7Tt54v90IU2YUFOqi44/VIYXQGoYTtWjPn5DHLHnfzW5mdDUgIPgY6fTMIJXXG0jLiHJZLA1XU5yPwkSXpHvEYlrOb6JDfSsqanaDegxoS5hzU1qi6sO1K7cJoO3g85yKAMpyWpIC5WeR0BKd5OIAGU3q8D3UgJT4rHSdMEtVmFBLij0vTPKgLnYJm8SJakhJxuihdos9rd6d4HPb3MVhG4TYnqzjVhQ60h6Mm6JTh+jhvRj7zSuheww5cBW1ACWrqgcXa4Ci27HaUJwjdJrsZu1vcD/nvLuGqnGn1nqJMj3ygQIUOVDY/R4byHbUgX8txhKCSI/UlKi+KBvI5UsguLjHo5L0qaan34/mAU8PekegcMbxYIsT9m5/xP9QDii0Vzid0CW5xTJi6YqzQBbWJ7jtV7O0WSSdF8XwgOyFacw0Z9PZK6Rvn4si7Z56vC/W0sJxXTpcz7f23qMuFul4p6/oQk4ZVrPFuObPWwrkWqnhAYnTEY3M16Zjv9LExWFARpk5qbnhzSLg6CpxMKUWpi6LLGpzsaQkB2IAqN3oT9gr7/RaT8ZyILQjGUtaInZZO9QUTC9i9EJvWGnHUJoVRl7fgMDKldXo6Tgzv0WNj+8B68KwMj6hlz4ChtKeN0ePBXP2Nr28FaQ6lY/MVZQMrAQUSeRiVPOBkQOlARit78q8a07pLxbxxRJzHASOUPbqG1tk5zw1joCUoMHrnw23QvTBk4Xp6pkqjzMI2epa0nRjjidmf6P2MFmM5Vz779o9wvT7z4d1nnPXESRZOIpxEWTW0DWCYFfA9NDyeIUoCzIGPQt92Zi0h1M6HWsW5jRjwRrd0H8c2K14QFJWSjmCnNIsBpfLggSuRQYJHDfwBZ8eK0yMsLoeOCLvKIWGW2PR7NDIfNMzhmLE9sxAe0G/EaB9lJWWMoOgyr0FloCWcMp76kfjLJAYcT1eARE37HeMeyh/u8HhAmxamCr1UdnO6Oy9IUDwKQs2ANKW2iJIvtYSGiYCl3SwLiT1HxbRB5kbvPoNamvLmbpkeqbsp/i1mLF6ZHgmtpTUcD0TgAW3HkHK0JwedHy4by6EnBpSClXT4VQ1KwT11NDVSStNto2lklUSKzOUB83vSYRHOl0C9fG0O06C9jMOmH8LOQ0QbA+VkjgjF80ReY9ZSWguHiBR9dKvYUhNUUdpTQ1Ww6fl3gZxyoCIQrCJKLYoe7iHP98Zg9IHUEVSWKqcx6WfjPpR9gL9ueLeIDI6dkoLEc9uMZRLVEe7Y3A+xHtLCwUTZoXaonVYGSNQSLBjNQ6smmhOYljAkxInBVIWy5DDtTBNmEUYRZg5JntqTMpRPs0cFhgtPBmUKdSjb5owd9pkWcYVZlaWlJm4R2llpF6FcBFslyhBtMsyY844TCN0+gjI0qZEpwmSqYcXxCl4LbgVY8KXhNZrfTSJensP2TQwrWCwhfmygriGizQtaJXLCigciG/UQaXESQjMl80HbBoOZ19yRnoyjJRbPqDfIYWUqls3x3/Tjh3pA+XTfA5IyD3gOxa3BrNSqVItMgFbjwjxpQOpKQp4WEqTwnR/q7MZYhXYunOcVw2jnldPlxPlypj1/iJKoslBq9myUQtUajax1pRZlqYKGgiptVnkQ65HCGfXXUdO+gp5AFvBzSKBNqNZQ0zgU1uxXUIVF8ApNGrqeKEv0As0+6Pctbm5zzlKoVFYa3UtAfTbp7pgqQ5YI49Kw+ElGtmsGf7nmhWjG3Dbm3pl7j36LEULWMUZCzZk74bD5DLeqCCQ8XXUwdmOxV/b5KfnuIxgoDl8SsYmxP0Z6ObZbwEpshJ4bTqBCCh5YwevQPDujB8aJjaWW2MiWOVOQuXBZV6pU1IRlBiy/r1fGbMx5wvyZWpXzZeH9h4+czmfO6ymKyAy2OR4oU8uumiFK9xBnTj8QFKIR1YG9x4a9Dfoera9DBDHL7V0Q4gFZSolCp1pic89pWsoM+zLktiuol4gHtzxgPZNEsjxszo55e4jhbCo+NPUjM0MIx+P1jo8U9uV7oxJscpGZHLTTMgTQZSI+KJKIxKHJkNDdzSmMmhoTM7pMhkxuMrnLZMPYMijK5CgYVLq16OJJCmZqIA+aiZdaldJKBlTpYxV80ER2JHp6du0AMuP1SqF3o+T3o0mNhbW8iOImjBkUVyezHhIROPRQ+CEajKHC5Yi18syo8eTrc5iRkogC+TWQIuejXlGpoqlFSNSX2HbnMGafzD7isJHg5FQCOa1a0z4cdvKQNM8YcAvZaROvh81IB7YZiIdkMna4RQzRmfoJZ4hFOemi+Bo2eunyyDGpLYcfiedI0UIrCyLh3FGvqWFyzG4x6rpRW433kRh2VMPq6hJ6uoigT+1ZUo8yIqCSEtSi5edewtlkQv5bmZqUXhaWqmjc826IKeIa2TJjsOTc7cVzMCQRGQ0HWcnwyCR0K8INZaVQRdlj5aKZc5+DMQPtqJq5QxLIKRLXaimF0iraWmhqaknqKZG/hDJLD5JQM9/EfbKosxbh1AprdjONIlFaWCu1LlRK2t3jmiwcYu8J6jjtYWFupVFahEAGMqj5HoFMcgFUzGpqaeLPPWRbhRjEtOoBYlICPkx0tYe1f0rco7+dItl/9s/+GX/tr/01/uW//Jf82q/9Gn//7/99/vgf/+OP/368uf/jx1/9q3+Vv/gX/yIAP/3TP80//af/9Pv++5/6U3+KX/3VX/0tfS23Ww9OPUWWJuWRpBiTNyDpbVc4qbBmFsTByaob1CiE2r1QqjBpKCcWD63G8rUBZbk+BT+KUvUtzVIlHBwtVeURBRFDSUydQe1EEmfycxadGNSKsCKy4N6i2w1HRsBiaA2LT0koTQPeV8ISiS6YR//HHAMbcaCs1Pj6ghhi+Iz+BYxhwhDNuO04lrSQbaeZwiFxSDGN3juz78zeQx8yBnPvjNlDv0EUq5nA7pkbcQwoHhkfxqTPgvVC9eTy7Q2ClpLXjiRdYIE0OOGi8FJjQFENKsSBfBS7KzeL5txZYnMGT3bjiGn2zBuRCOlL+UANcQe1NIYJ0yrolVYL1+uZ58sz67rQqmJj4D7YPfQLmDwohyFC1xIBeZR0sHg6HoBp4SgbiUpoieh48iGAxINLNKzwWt+yKB64dBTZvV13Gl9DpCzFAWiC+wQvDzeOueJ21MtnhHUOMD5rnuhHJk18HP0tPJCH4yCLRNaSGRbuEVoHk9bSphxf7WPmjGTtIyzN6GLsTDYxNona9qN7aCYV1j3ycqb7w1kD6dBK1ERzQImtOBC/KWRQ2xvJZCkkdWIgjEMd0K8JBuNPj3Rl4s8QPzJCIjcpRrh4XT1Rw7fM9fgItOOI5k9nksRwJTmkwOHEsgcaEwDIUTAYdFQEzx3fw0wx4+ChNNTj/YBVysM2fBCKxWcEMOaXyfHaJMVhOaxpDlSWv+8I9jecmcOLFA3th8Y9FV+zZ1p/LBLxrImlSnVBpFG8IcegU3osbLqn5gXEDjcYLEXxKnjIlvJrCBusWKQPH4PhUXI3PZ418fzJlF5Jqi+RLc1ndCkVNQu30IRWlVqVUjJ87nCpkIhVIgMmGs9Fh6P0shOalZHLyZxB7Q7P1uQU9L+FBCT6JZHgXTX0JtTQfRzovlg+EdwolrlJnjlRZjSMJtED1UgKUKBpoZb4LOnUiQjTwxQUFuKwTAcyE7eNUTwWpMOKI6nfxvNKcsEspAJHdw9Jd8afE1kuB4In+KM3SGrGMVTCOfXbOaC8vLzwkz/5k/zZP/tn+ZN/8k/+wH//tV/7te/78T/6R/+IP/fn/twP/Nqf//mf5y//5b/8+PH5fP6tfil879f/O18tC1MEtNHalXVxlmqUa4MFqiqnUrksyru1cFkqTYUqWeingi4LG8rNC3ePC2+TtxbOqlGRfVoXaq3JW3bqDHdAcwvluoPpFkhMA689ufi4KRVYtRIMhsHolKospdJsocwF6TFxDuvMbYvMhX1SyxVZYkg52P1ZFasNPwkUQe4lDiZAurGgNHemGEWCUsCd3qPFcr8Net7UZQlFvBdFMgtj5nBlZmx7DCfxGaLUMXb66Ew3Nrd4SBAb7+AITUyLWVEWjWHgTLhdq3sOKHk0ZJgQcqjejeNqdpKrl4Bmx0MbkQFNDveZnHtVjI5LtHgWiRIy6QNBKVLRyxY3skgMmsm5K4pppdSVtqysy5VTObFQ8LkzxmDvd173nSrKqo0zV7Q0plaGEFtXW/LrJlA+J0rotp4V5aRbo+BLCw1CXah1odRKbY3WKqWW5N/DcWE10ItI5kueZzr0oMRS3Xc09MEwrBs+LPnfDOnreSiYJzUV44Q+UCxnagb1qT9ixUU8PFMyEOnIQbrTURvx8EsXzJw57PrEfWfapNO5S2eTwYsO7mZsGJnNGu89MVD1YRzSFlJvIqrUWiiqtFZiC88BxXIAmqmDMbV0BVmIdbOSXkzweiBUSwhX82ks4uhSc7BybDN05uBuPBJ9j7hfSQ+48Hi2x0DiiYrN6MN5CJszI0ZJ/YMfv9FiKa2KLI1yikZmkyiL9Dmx+860jTl2JIuYIvm5UkS5aAgbi0bwXfhRjFXDEm0egdeMHLZSt+A6mRpDiGX8fWmwubNh3MTR6rQmtFawDOZSmxSPg1KIa0VnUDvFGkVWhEqjMTJAbJQdY4TzT0PPgDjqk2LOOlMbdQwGwBRFDQZBT3k1rAKrwlrx88I8rQyJa8DHArPj64oQ12kpStXJUhrFGjIHIpOB0XxQZn9Eu5Po7PTQR1WL3qsj/LBPaKZMr1BWpAV6rrLHwFlnBJIcoXAQjb8mVFNWr5xonGSh1DNWT0Hh0yky6d7DHi0pfDbABtUiz2fvnfuY3MakbQPrE53GaYFTEc5aHuyqvvGsbBbop0kuLwRSK3nfz+ysmjNypw6x/LCgu/rQHGxjYTy63zxRv0B9UwOliZboRh/lsbx2n/Txzc/43/KA8rM/+7P87M/+7P/X//6jP/qj3/fjf/AP/gE/8zM/w+/7fb/v+37+crn8wK/9rX6c14q2QjeBnB5bBihVcao4TZ0iMx8E8pbvkA95qYou7WGBqgnDuTQkPfLFA60Q0yxeC56aHEokUQB32BVmccZ07LhIeYPlqWfKlOArLT6bgcywlvbe8bFhc2fcdkQ6Wi2SW08VudSw1Ui6ao6D3DLER6NfAlOml4C7C5jOFMdaihHDGRMMLZiX4MVrIZHl0HskxHpsd5QQYhaN3gcdQR3hTiGQi6NfRcyOHTy6YSA/o3G1umaSZe4ZR/bDQY1k1srx4I97zZPnjBfcMpMmhSoxsLhGmiOTbj0PSYN9R4ihFdvzoMshVUO/NKUypaFWWXxAGYgMWpngG1t/Zd9foN+pqoyyxObYFqhLHIrqaT2VFK9KWqdjn5F0l4R1WyOQSQp8DaInqa2A3A8eLGi0kdRJBIwB88h0iIEkM6vzmnL68VRJ66MF9RyHcIpMQwR7zIN5YLo8uOo8j4/HN/61jg5kYjJD40QMCNHRk+F7I681m0wfmLzVBLg5ZBLpY7vX3N8T8eBrFInLkXMjeZ8eJfKAZKeT5+FtcVjHYXdc0wbydfGm57BxoAbGQ7AR7w5HweFjmCAposPnnYObS2a3pJ02v6iwDJeCt5IZJ6GhkTkpJqlD0aDzasVqZdQYUKYIU0KeaFXhQGfNc/APwX8tNRqPc0CRMgJlKkJborphFpARCaZiCWvNg3pI11Ul0SnYEHYKsyjeGmVZ8XYOqshLqh0daS2VMyU1KJVaoqldpabdNa6nSgxHxVsMx1JwG/nMMGpLvdVBhYtjGtqnnvoTWyq2FuapxjPxVOhrvKNzKt4E7wGdlxmlgaV6ClRjiBIpcf0pWYkwmE5qKyJsETOGKbsKDdCwMDKGMUdcN0c9QS1K9UmbQs3BuDBzGRFkeswrFpoc9UqlUmTB9EQrK6NkhkypiMwYouob0mnMEL+a492Y+4gAwd5xM2REqWTBUzye6M2hZSKjCvRN11T0wA9JF1rc84FEHZLqRLnznlEec/ajPVvlKHUMtNDQB8r1qGoUidf6YDi/wcdvqwblv/7X/8o//If/kF/+5V/+gf/2K7/yK/ydv/N3+JEf+RF+9md/ll/6pV/i+fn5f/rnbFu05B4fX375JQBPlxWtlfsQXBq1Liw1aJZFo0CvqVMOymI6c0q6XSJ611PgJlpRaeH/lkgs9N2w4cje44KdEoLH2fE9St9inNQHHNrV2IuzDWOk0BPiwC6iaKusHnXjlehJqQ6YYXOyu9H7Rt837i9bbJUl+H3dG6WslBpCRJ37I29BepZpyUgEWeiZWTFVmHVmdHhmW2CMvqWILvYttxRc1ejgobzRLyopPpQIkjI3plWqRXmguiVqEjXnwyYlm4bBw/4pThUe0GSlBMz5cETEqemE2NZSJ3BAuSQlFeNSHI/TPGHyaMYFYbpis2Nz0scWIl+bzO2GSjyo3G6UGuVXmkjB1AtWVqaekFlpQ+jsTINWBOzGvn2i71+h/ZVWCrMtIEK1UzzA8o5KeetbyFqMuA/tSJyvFaTiUkErLsdwoo/hxHIbfwwEecAOCY2BADKzxmHM8OImhyMjeXpLAikHzawCiUPSAYnOGT8Gdwie+RhO7KDTCFFsImsuM7fEGbSWv3XF2DRGDzfMGDORthm6lhxQpHhGxHuSHQcVErC+H8lnBwUTX84jjI+Eno+khTzZ0tEiD1fPUUKZOl0gaRHJ6MEUah+fCULGe5fX9tcHlMgOSRxTQldGCYozhsAcWiwPh1JCzLhUvDSktNBEWKHMnu+HQCtYK1Absy64augG8nCxWqCVdJ0c2tyMP6glGsmP8sIqj2bbtmZFQgGdJV4fYjjxcShmAmk9wuukCl2VLjBLg7aGdXk5x33qe4q4DV3WpHYKdRwDyopK6OZKUk7uUA/BJxHTLjLBNFvBJ3VxdAol3wMX8KKUYvQpSIWxNOZasUthrAU9F2ZLOnAqtodGj+phy66TUjyHuaDAZHrq2WJAmR79X31A8ZqOE2PPYbgd1LdPep/p8opOo1oarQqLdVqJhGhPqudwT8WtG5S95vO/0Kiy4roy9UzTgZeJ1RrZKzJjQEmydVo4ozCYYzL2Sb/vjJ7IzTghVvIZl+//AVATCIaYQA23kZO0nxOuzDxf/UCwjtoC8lkR+HIM+Bq6mMgU/Nrzxd7oXZ/2SEw+7m1Tj2T3b/jx2zqg/PIv/zLPz8/8iT/xJ77v53/u536O3/t7fy8/+qM/yr/9t/+WX/zFX+Tf/Jt/wz/+x//4f/rn/JW/8lf4S3/pL/3Az/8//vefoC4ntg3MFPPgPEWiX2WpSqtK8YGZ87rt3Pd7btHOuhRaq9S9M8vCKCtWTpg0ZoG+G3MYsu0xTSYaIzaofUMyHM0yHW+q8+LR8nubg86eGo6OmoVA8wTXskJZOS0LCMzZGfdXrAubDe63G7f7xpdf3ONgEKV+b6GclPU3lbV0mk6K7XG4IBSN3o6TFionKI3XUpkKs4WF12ZhNg3IeY9OFZ0jeHvCyeReUQ+Ffc1tXhCa1HQOeGQ6CGmTjIOpJ6w/zNj6Th8j/PWpmRDgVIKnvJTIjlnKwtKWFLDlw1w8HRbzjXvNrXwkRz4M5ogbdvYZDctj8Nr3SH80YduE0Qf3GVv7nBY9RIysP7ijGiK/PmG60P2K6RmrF2a7IaWxLCvX8xrXkm3I/Xvo9iXreGFtle18ZvTBcjqxnq/UFuLNKoWQKIcNvZbCspyoSw24uSVaolFjH22w+hgiu028x8PNsi7ePCFfyIEit3XLfAI3vG9pHw1tvvik+EB9UBg0DQu4Vg/qyzyaS0eKGA/NBGEhxBMonKEFcYt8FJ8zkbMMCZv2eI3nGIGabBH+FPUF0SjrGeKmCk1h1jfNAESCZ/yaN0ok6LFAUkLom0LPI0RLUzCLUxAWrSE6LWDVcUkkotVAUJEHLKeeA4r7A5FkxPAhHvRtMT+UTkyMoUGDijhSY1LwWlI3mB0qXpiu4JVSTmg5I+s5NQcLZSZiYCMGMYFRK1YXdm0MlqRhJKzFTMoZaqmUWmmzBwqkhVLXSGZeLumogNImGqAM0ipObPBFIihwrCUCuvrMYL4QScZB4kgBqwUpjdP5idpWTuuZy+V9IJB1R32jMFiWyGpprlRLrYeuSA7cRcjiSsd7CxpIK1Xi+Tq0o60zbFL7iLj2AWo9LoFSGLYyfPA6dnqtjNbYLoXZhHmCTWdoUSyWSndnLh1sh3HnrMYCLCIxXIoz8jqwGYf9GJOI+vCk4DwrE6CPkYO00U+d0QY+g7avhKZtkWiSn1+z7+ohAGkBW7pnQ7QV5oymZLcKlg4ucbQuccPVjBucIYwe0tlduVP5NJ3vbTtfbHdshFO1zxNzKqTYW4s+WGAw2gxNS3GYc6ZOamZTuKe8LezUIYxPNE0DVdFEfAWoZcZwUgxhpJFivlUwaIvz0ToyDJ1xvohnWeo3/PhtHVD+1t/6W/zcz/0cp9Pp+37+53/+5x///w/8gT/A7//9v58//If/MP/qX/0rfuqnfuoH/pxf/MVf5M//+T//+PGXX37Jj//4j/P+s89ZTxf65pgp0ypGBoMRaaNVoWTFvaQlVtzTWSPR7TJGbowpVNKEJA9hnUczsJoxJdpb3Q6wm9i+JeDvuzvbNO5idIvKbB87Oo3iQmOLfoIKi1fKDKHo2DYGxut25/XlE68vr3zxvRvDY/Ks50ZZlcs74VwnixqNjmjBS6GtK0tt+OnMklqOm85IjhRCjOnJ66YhX0tsYmbH9hhbjnnkAuCRL3loM0Jwe8DmgJZwsrrEzWwe5WZe8rDIMKrc9E+qNC2camFtlaU22hJNqyIH5+ARl25xHJBc8MjD8DgkkWP75iESXGTGBD/BZvDbIx1yaAhQPamSo3/CbbJ3p0/YbcOKYkMZVpAyuc8Qc9Yi1H6jvHyB3r7HpX9ibZV+ueAurOczNgdtabQWHShCo4jjtuKtwCJIrUit6OHKEklRXNAcUbce12iIhI8tJIaTaVFrcDSPxhDXEx0xZt8fw0pJF0dlUtJafwBjcuhLhHivH5uU5eCTuIUfsK/HLZHtwj7DLZGkRlQnHPz0wShZXEvhAIgh7EBsNMsYoy4gHnt2ZL/E4zGFifH3P8T3yTU5niWUSZmhcU2Ql2ZewyIldFBKCLVT+B51FRaoKG8ykHAe2HEpxkMaSXotLlGTcGY8tLGZhaLlkCWSIXkFYUH1hJYFXZZAausSIiw3sMJDkKoH3RIP+aMzVwjKsGijlkltFg64fPaUGsFm1JKizkTJNOm8BKKmg2c8f+Et62jmw0vGfKMCPbb1GKZbZP8sC2ut4TKq8boLQilB41SPpUaPEsKMLFABN6WYUi00D5EofOjjCmqV6oYvEx1O7UaZcRgWLUFXe0WHsKvSi1I1N3IGa+z2YcGtjlWnN8G7YwVWjCZkEWoMui4H5ZxS+wCQko63HErf7ou86jI1+WgujvJIcw1L+aFTyuH3APaOHjPX0OkNC+pVxoQxmWVEc7fF3/UgVUqkH2Oa6cLCENjd2Gyyf41qHTbpFs7Kh64qFz+ReM5bxkYE5WYpfo2kbpsHCgIPGCTvPZEohYxZ+tDseYrkA8F2G/nbJKIQiFgP9Twncd6eGN/s47dtQPnn//yf8x/+w3/g7/7dv/u//LU/9VM/RWuN//gf/+P/dEBZ15V1XX/g57/1u36C8/UpUu0sHpIznQDR0zJjJ9vv0U+z74weWSE6d5qEvsTnCLjS4oU2VWCGK1Eiu2FKQNrmA2FSPaK3VcJ2NyQunE82Qlxmkz4ja8C2De35Ro3CXjp7GewLqNxxqbzOzjY6X37xXV6++5u8fvkF3/3uV3SbdJnUtVAX5fld49rgVOBcnbI0dF05Pb/nfL7Q33/kfHa0GZ+WqCZ3zYuceLBaqttLLZjHRTXTZeR5wB8tCmh0saiWGE6QjFwCDt1APpSnxsEpKtEujTIOwtGNVYUmsBZhKUJrSm1v4VSH2qIc0LiHAh3nTdDpb+oHzzmJrG5vUpMqsxiaRLAZ702IPxec0PAYPZJop9P7YOvONvZ4CFRhWIkU3zr4yva4M1++oHzvv1O//A2e7l+wtsrlcuHl0yun65X3H95xvpxY1wVbVkxPoJ2yhkvGTuewDC8NP60Bpbozth6buUcmQ7iDnDln0De9Z9x8p88QJfdpsS1abClxkDrzkfZoMZyLs+ikMamJN7cMOTMNykYL4Q5yi2TRpNU0X3+BdFJY9Fkdn0XS/xFk0yF0dT/4ZyXnQWBNTFlQza/voB3FGTMG6JkDc4xXqdUgLK3Hc80sloHhEa/vAlpjECcdfGJCtZLUT8D5Qc/EIR3hgiMkZYke+Ey3z7AHH19qDM7F41WQvM6RgL01uE9cCzMP6iaK6hJ5PXJCdEHKSmmnRM1auAcJceiRITTdwxKMZkFkHPAHSr9ooxZPB1w4gRyJTJHSsNoOs0gOJomOZZ7R9LgvRCt1CcGxFmWMyRwSw2++wTqhtVg4zmssEsu6cG1B2bgU8AYeouXm0V1WM/Mlkxh59C/NQGyLNaY4LZEJs1hsRtqzHUOHUfZJ2e8xwAq5UBjn3tjc2NMNZt7xqYkypsahGLPBtihjFEZXisWw2TQXFKIeYS0SWtvjUHEopKGBtwHmeN6ZG2PGfbjPnd06u1V2K3QzxoxrCY+hmLR3y9LwVpm1sAHFjNo7Y7uDCsMn3d+0IaRzqsQDLtyXJc6aLsbdJzcf3I+pSpy7dbQrr/cbbSZy21LgroLNA2kdTAJBGQZ9WGQwjXAQlUOfZHE/S04mUjV/vyfVbIl2RxjeHB1/3KQz75Gku3NQLuQz+xt+/LYNKH/zb/5N/tAf+kP85E/+5P/y1/67f/fv6L3zYz/2Y7+lv+P589/N5ek9bQb8hjqmWSg/Ev71Adsd7x3PLA8fA+mdks4aawsuK8glK8QL97ZQzdnMuN87ZsEp3veO+4C+Ec54mDroHvT/p77lRbvT5x0bHbvfYO+IGaf2yiKVRRqrrjFYDefT7YX77cZ3/9uv8fob/53X7/4GX37ve+y2s8kOKtRWeH6+cl0WTrVyPTfW85nT05V33/4Rnt+950e/fePdx516ubI93dF1RdtCmSG6onekd6x3xr7R+8aYHdMZdJFGfotnvouWyCqQ0iLgSvTBUUreuZJw+CGOLcBjdcjNOJJn02UxJ11HlGTpsWJEdkg8VAdigYYY4Qrq7nyak+5Gz4e7ENvOsSKaHqFtTqlxZNqMZo0ik1YVZEFKo4/QzpjG+1llslRB2oK0FVsvWCmMUrhXZZ+Dlznw2wZf3Ni/+sRaCvfzYHjjfI9ETptxwDUvaOkZuHZjmMPS6CrRxTG2B7Ru2xZIVNVHImnkpmzQB/N+D1v36HTrTIuOpW3m92Dh0ioijNlz2wt4v6iw1tg2qzh7CStnb5HVU1FO+WqGqHhmXkWgEOIhinMJTUggOJlgij5C9Eb28xgaGqBE1CIzQUBaIgMlC/6c5iGUZabWK+mjSU9xbkm9SVBCx/s88j22Meg+AlVTMM3QQYs2eCP1RQ5YpkKIIKE8DGzCwybf+4xsmgw7PALHJLNmBBISD2fHMTgVz8A1D6qXUihloeiK6wLlBNpwaRRdjnU6vj88fpwpemKTKoFGntJVI4cMwMmM4IrytddAIKPMwGYiuo6NqDPw6WwjkVxmJDnXQlsahYpJhOwNVwZ7DDNzUga0YpwavEOpCBXnbHsOw2kXTRq4CSxkIJzEQidFkiqOIQ7NYXaG5XhoWITNJTvA4kSWMSi9U3tYglsKJsydsjUWG+w2smBSE+keHCLqKcqsC6/rhW7GPifMO8JExR6C01FiiF9UOOVl6gT9X4FTImYiUHU+wCVjMHyn28bwnUENl4oGCkZrYbxYl5jhasEvC/Pc6EvhJrEU+7bRXj4hczB7xMB7LlOlBHpValy3sbPFcGUYJjNW6KjMwV249xhA1CatLCGcbisPMYon3e4TMucmzKSTMexhX9e8z8JVl8o5yXoDDlFDWKLV0/qeVSW4Ie7U0gMh1YDzItHaIyhy/jZqUD59+sR/+k//6fHj//Jf/gv/+l//az777DN+4id+AggK5u/9vb/HX//rf/0Hfv9//s//mV/5lV/hj/7RP8q3vvUt/v2///f8hb/wF/iDf/AP8kf+yB/5LX0t7fTMcnnH2Xtyd3GBOBLQ2cxc3aVGK+62MLcdGxPpewS1uTNqA1aQ2HCnFqS15LiNwZYc+2D2yIcwm4j12IDF2Sb06XzaN7oNdtsZY2POzrzf8W2HMbiVlxCTeRYnTadvg0+fvuL2+sp3/9//F6+//t+4fe83efnqC3aPASUO3crz9YnLcuLUFp6vJ87XC5d3T+xe6dvkVM9QVlZzRhGqd6qvAVvPifQOfeDjyDXZGXPgOaCgMCPEhVGMUhzXULUHp5yqdD9u3sRmvk4PvN3JB3MUCILwSG6MhMfILiCHnjlDA6Aj4uLF7GFb3h3uc+T/j7wOkUMbEE8WE83DM0SMKtnaWpLS04pIVtBbQd2YUli0IyWEdNoaZVlgaZgW9pJBTVjohfKhv/d4DWp39m7U7vThj8ZQiEPI3Blz4nNQ+sbYCmID20toHmzi+55ushLX6nGo9g3fd+b9Fta/MQJBsREt1bNnGZ9TNbIVem4xLqSjIwKWDroTS6g/H+RNCD4gmxr71+iZ4ofPJe2exHt30FAcP+9vFI/nFjhNGJboiWfEPwWI6gPSCnv86WKWlMF4u3Zc3pAK/HFaC8ef64ksxWE5NIa0iNCURDiSxjIenIx4yaFCH2Fqfcb2ayP1GOlcilbYBPT8LXsDOdwPsQ8aPIZtKRVokaSqFUsh9GFPPu4X4EFhuUtamCV1DQmGHFwTxxgSf8dEH9vqgWceeiAh3hSbjg3nvkXgIsxAQvVIJxbEEnVghqg70THBIgrADmQkEq6rzxz0PGkoyYC2MB1g6fhKMTeariPCmuy1Yg/3Uzx/pwuqUTtCPTJLoGnkuNQZxZjmEcLoo+NDH9ODqEQIGHFdj6IMr8zlhMyZvz4OaKVnezHxjFB9vCZFow24SsQh1CPPIwfkgwY0CaH48BSHSzi/XCPQTWpFWjhMrQGt4EsJcWoRBlnvMDre95hRJdqDXYSW1l0oaImlSw9Zgs+354ZndYrEgDxHhMNtM7RXU40x5EFBBoIehhHRbJweJII2Y0BJCcQBf3ixuG7VohQyJQ/KTIo97hkzw/a8h93wOimarrrM/Um7KA/F/Tf4+C0PKP/iX/wLfuZnfubx40Mb8mf+zJ/hb//tvw3Ar/7qr+Lu/Ok//ad/4Pcvy8I/+Sf/hL/xN/4Gnz594sd//Mf5Y3/sj/FLv/RL4aP+LXyU5UJrJ65tiUiDFgdeICiEs8EGLGdkTtjjQI7DOhsa3UOpLQvCCWkVq8raGnVO1jmQV+G+bcjeuA3HhzPYsruls48Xtn2yDeNl6wHXEXzgHJ399RPj9oL1O4yX2NKS9xt9sr1uvHx64f5648tf/w22r75ke3lhZ2RUd9yLRQbbNliXM0tb+WrrXLfOUx/MutDH4LSuUITLuFF5QfcV1uXBrVsfmY0x2V5vbL3T5+BrEwemkQY5tVKyrn20mRbuQAZEI4bjzcKWi6BH/sWckzFzMs+HuqQ9eJSdWgel7Gi7xwPbCHpixoBScpIf5HBizvdGDCgdC0W+wpJheSpKR5PfjWwDeTxMhVYKxVLT4BIZHZECxkoINilKXSt1XShtzbRd4VTgVcDXE9v1ibF1allppUQ/z4cP1KcL7d0HlucnlsuF5XKhSliMh2dn0u0r7PYJ80iiJUOYqkBbK8vTmXpeg/IC/H7Ht43xesdmPECmp1XXdqxv+ToDpUEpDBuP831KPOzHXB6q/rtGONXSQyDeVDipozMeIHPyCBJsHgFO1T0piMnuEUPnRBpnVBtYbt4Cs4RAujv7NnLwKbyaJsKVrb4efPxIqH5nMGxEXcXxwLORlmLyQRf0oWfYYHWowQmFYFfiOhzmj21aE4UQT5tpdhR5Dk77DCr2vnfGPvBIsAu9lcwYUjToALNIpJ0+SaULXvKZm+4FXCnaHg4tsRj20dS95JATA0PEq8fPxzNNPZCuk3gE4R2zY3L/4UYq7MykrvK2xRDbIIfT6RKp/d15uQVKJOLUGt+PZ1p16CWMKAhKQsMCIWMqYkrNXrDILpqRzqxJp0uJ0SYH5DmODKX4/gqe336EDkppkZg8I7E6KkomwyJN19MqrlKpa9DJ1SeSaF29TUbfKT3E0Q+Nx4hnqgkhPJ0RLaHtjLYLtr3ic8fGK3O/M21n6h0rE28ObUdsQ8Y9vxdhqQeN5oiGG86nM4qmwyn1fLVQ1hY6tSLMp3PYjD0E6VYEaYJW0BKaMZsbo99ge0HouIeWEAkBfQg+KsWiJoB9xPPgfoNbft5v6H7HukW7OBbDokZYZckQv4chTw80UjPl3Nj3MBgcYmmEEFof3VZmoAMXoXO0mn8NAXFn7jMG+z2eFRXnvDitGFJDOyUSN4rvPTObvtnHb3lA+emf/unYkv9/fPzCL/wCv/ALv/A//W8//uM//gMpsv//fsjYKePO0iot0/kGx5AWygj3QuBgevjykLQ4vglDJ05DZKGuYaMtS2GZYbE8+yl85Qi9dnqDvQ6sRNsltsdBMSZlBh8XQU0T7xN6x/cN2+7Y/lVEj8+ApkcfbC+v3F9e2O4b2/6JbXZ24nA+XulWhKU1rk/vOZ0vLMvK87srl/PK9Xrm9P7K+nymPa3Uc0UXQRj4CEhSDnHUkZPhEQQkGkNauGZiC5m5vSpxUBWiW0ESCjkoHfVjqz3EkASSMf1BdcQ2SyRyPk4LAdPHBhdZJ28TdnXJDTJuqLBAOu0hr8qNzUM1n0cF4qHkFxcWaag0rLRw67hTBhH9btCy3G9aFBy6zdisVSOxNpMtpxlT4/XRfac4eG2U0zXKzM4nyvlKPZ+p65myXCjtTKkniqQ2xyyHMGfsgXrs+5GA7NBqcLV9BJJSJB0PG9535tgjqGvG5hY2X39QRBzoVbwKIYr2Y7uPAwTikBvY2yoYqTWPeGrRsKQHtBtpm5GWmgcjMQSahB1ZJaicQfR5HEdlN6VP2ELggbhxN7KHR5EZB4u7MiyCoLZEMMac7HMy5qBnnYApqJcMhjrkiwe1lwmj/gaBw5vOwPwtzfPIuLVD5espdszPQ/AYguPj3jOOkDiIAULt0AnE84Ssi4iEZ8X1yFIKBMhSrKqHONMsCzKD+QiCPlGQLPkzDQTIE56PLVpwCZ2AzoDoI69P0jZtSaMRqdoeg6eWZP3FeWTH5P3qScVZolwuNWYVF7yueDtBO0XWSSuUNaojamrEjlA9LTXalzVM0RplYXHO6qFQIqhiL+AVzfdCesd7Nu1KbvnF0VqDJhACvXVB60C3Suk9NqSDmplxD5PVHD4VbI1L0gnNzNjj+7Ma7p5aoMZcZnXHRmWWMDyoCrMU8BHDuAyGZBouhZHyc7ShZQkhsSqLCGNtSK8huBdL/YWlUN1ZCQ3OypsNOATS+X7HRA7USAwYxtg7/bbTbxv9ZaN/utO/vNG/usVz1gpel+g+W1pmoDh4j8EA5xFeUmuihDPqSzJ4E4/BREtSOyKPR4ULjDkzK4YD1Aut3O7xNWxHXhZ4kbx33jQrQfPb9w84/4uPH+ouHuk7ZWw01+A/ebNefr0MKef4gJZLpmYW8iHmuB3NVAWW9uj4aAl3nmwJdb4pvd3pw6ktot5nSU6SOIubB2yp+WCXhI8jgn7Htxs+d+YM/fXsO2P7xNxfmPvOtB6FUJKwbx7Ap1Y4nRaePrznfH1iPZ94fvfE+Rw22POHZ07PV5Z3Z9qlUU8pbPIRfGdGx2MZpewxdAR1IymMDe4xj9NQoadj5gExGg+lt3wN8PIjycsJm9/0yOWIoRzQtyFFNX+tZCEZARfmcNE8rHv6CBEyphgthbSCU0WoAqtEnoVqPPijQ6KwSsT8u8QDrgCqgzkmfYRgdMpBKfR4sOERejYmNoOPn32PYi43tA8KAnWh6UpbFur5RLtcaacTdT1T24laT9S6piDMgu+1EKH1vTP3Qd/u8X1L7uJVmWOgI69bs3igzh0/Ui6TynD8a0tCHqQS8LZrXOvuxMNYY8u1RMhmPhADzYqfG4fYE8FKwrF5pKtl8YHHaDok25iFGFCIhM9AVQLZ6KZ0E/qMa87N2Izo0ikF8RQNQ0SCT2O3EP0OM3oODGNsIPEQHxKUKNmxZHm4PtiCnJUlN/Z4ZfJJ6sShT16LOTThoTmxebikspaCbNmGGORzUBY93EHygOPlqKfVcFkcA4ofAhIhD55w13CwVw/Bbr55SZseTcSWU6OKxq/JqPWDPpU5AjU5BpR8Pz1RUJWgsXRatgHnl5Nb+sNCnhSLEfog10C3EIG2Ql3j362iTahLyQEFsEAHxYLW0NbQGQefIni1aCzXfA1JTQ8VYckh1aDCEEd60ntHjsyaKcGlpJZLiEJKRfeKl5o0hOOjgGVG1ZxR7zuyJMgE8RqaICtRMFi20MgU8Op43bFasCJB4Uhcq26K+0DFk9qBmQO5H+GKGZLXSlKmS8VbZCyFtjueHzXRyIVYmZt4ZnFFb9BjqNXwQDrKnM4YRt8HY+uMe2e87oyXjflyZ3y6wzCEip8UmqItKXiPpc08hkYPCCe1QClwzeLIOeab6FuiauOhbCWWoGmeCApxr+f9F+gpMJO+VM1zQ+JilwMh9HQ8/Q4ZUOptY6mFRT1gsWHpGBDMAkqcUyO0Kg/W4waWcjxEItwH4qCjDaRoxOVjrO6ctDCK04tzGWfGqdJPjfGy0LeNTy8Lr/c7931n60u8CWbsA3rvvCyVexP2e+GuN8YsjFmZMukdXh1ODPbWuTRnu6/sW2X/4gVVoy3GZ9/6Dtd37/n27/5xLh8+sD49c/3wLZZ1YT0tnJ4Xztczn33+Gc/nK61WbASHq0eIWZLfklz1KlDNadPY+j3dDP61SO8cJkSwagyiyyELbh4Py6Pa/o1aTjg7tQAQeQ0uEVVv3/eAzA1eyS3wrQyuaMbSQ94I4awyDn1FhPHlwsoJmB6ZCVUOdYCzaKj3db/Rx+C278xzUHhsHb9FwJlbA10xXbHhzLHTtw5lUtV5v1yQckGfhHW5sJxWLtcT795fOK+N99czT23hXEq0YXv4jYYHTz3moFsgIrNv6QBRTFpGtI/YjN3BBmKZGSBZsKWAato/haoRl14zmr+0BZUayAElYHWJ7TZjHoGBJwTcS7o9JLljcVwarh3xgfpG5OJbxKObMn19ywTSQiaDMH2PADbrbNLpPtmO68DCEhn0awHbY4vPISaGxhGoou1Mv+PekRkdx7FrFMxDqomuRAElb3HwTmor5NEpVZyI4udrSIVompxmRnnnNS9xEAYVEwMh05mzpnSlHJYKqnronUTxNYLLTAtWVtAFr1HERtq4IyclawvIlTQttNSAv4+gOnKYGSWsw1IbeohgJ6HVyciCyLsIFBQOpCsOTi8LuFNscrrEUlYKrOtCbZVSKi4jKAEruNfoEVuiVLK2yunpmfXpieXpmbUJa3Mup0LTcIcNV4Yruy+02lhqI1J3J+IdSujAmuwcjqTo7664R/6R4eiS1+joGZERKIqdVmaREM7Go4s5sleKideWDKJF+aGVTFMGqVDGQvWCWQsBvk7cV8RWXDYYje6NkzfOe0XahtRXmu9BszXFbcNtR9jQOWEMSqssrUYDfcRNZg451GIPm/fI+yrQ4UkdgzoGxQZFouBVloIsldlanFvpgovLz+gjbMPbvkWu1AjEw/aBbxNuPXq4xNC6xkCY74H6BNvCMeYWw+aDfozBXRaCUp5O0Yq2hXY6ocsJyUGG9E3OrJ6I4SQ1LWZ4r7GQbjFQNODUjFaMWkZoWHLJkcwF+8Zn/DcfB/7v95Fgd6SVTvChDKLVeGaD5vSwxpLq6BCZBQ9H6lWi8Chh4YR4MTLIK7bb2gp1gp9PzFqZbWHUSt93ylJZ9i30HH2LOylTCXsffDpduJ0X9vuV2wpjboy5Mxj0fud1rdzPC71v3Ddju1W2m3KjIDppi/Otzz/n6f1HfuRHf5TLZx85PT1z+fBt2rLQ1sZ6bZzOKx8+vOO6nKlasR4XULhr5mOYkBRXSXWaOd2Mti05oCQ1kwLHY8sOOiYGkrAtOvgRtZ+hWX7IBt+4YeCxsUepicU2KbnNejpvUmvwEFQm0qIaD+cCtHRiHKiI4lS1PAtCf6ReEFupHrJMEWetsBSodaXPiiyNcTLqmPi94zqQzZi9AiFoDNeKgUS9fCtEi7WHo2E9XVjWhfNl5XpaOK2NU4stSlUCkXlkA0Sok41EsjwGscPmeUT8ByVBPDiOjVMrWuSxVUZxYG7DNasESo3hpC4Uib5uPzZV0RgOj+A725HkpgGOrqWY/I73PnHcnpRgj+a2470+0IEiNSnT430ZcR3UgrSC1tACOEZB4jDBMucmNB2BVkXwWzQqdyI1br4NwnKwOZI0ZHLlGdB2CGpTk5nIIKj5w9KoX4NaDhTqQRFBbOWaf8dMOgJPW3BFSouYeQnhrBxW7eUEWe5nuoCG5TcuykBaUnwQ4sl8zV3jK9OSeThoLFAcCIskeJk5FKTAN11NRQviPEox46sN6gQJPUnoDQqtxWBUq0SDbjnopwy2ePytgbyIOEtbaS2sqqqgJYbicjxHhXgNKBQvjyyjcoh0xXmTRhsPzU7m6hzbtwJVlFYPVC7u64JFT8zxbCbBFYQiJQv8apJ2EiJkBSmVQ7hL0wgmmyFoNR2P79RqoRLFklOEm0HZFspSKHanYCw1IEdPGlrGwDrRlbUEFUtefsO+P0X50BlG7sLXnsMWNE/BM48oxNWiBwIdZ5ARb4vPEMQiGV9fDtosXqxjyaaUvO+yeDCfGaqHjcCQGsWE0uKadCQCG6ciVmJAqS30NEuK2ZPiPIIiPZ/XoeUjkMhEzFnJSg9Ysky0aDlus/j+RjwbvunHD/WAMgSmCptHvXVEzRemFKYvD0+5iqY6O/IyIDb2o3G0kJskHtkYJGQqoZPQoswWt1uRKzYdujMuUR532p7Y+qCPGRZmjwfkGMrok08vX3F7+Yzt/iWvX14ZIwcU32NAefnIdvuC0Tf61tleYHtxvqwriFEW+M6P/RjvPvucH/09v4fr559xfn7H+f23qa1Rl0Y7KcvaeLqeWctKkcrcSt6NHptkQtgQMcp1CdvucOO+3bCZIUR7TOU+Eq/wVD5MCzGay+NgizKr5JLzn3iIfW0olEBHXCYHHOKkxdDyoJZ4yIfuJPz+qkorAX0WUZaEosl9Mx5kk6MqvklEk6lV1EYoMMQ4NeHUlLVUusEyneLCfRjyeofaKTdje43QqmkSccwFpJ5oLSKnz+uJRZVFlPN6oi2F5dI4n2OjWpZC8fjabPSkZo7PFCjPQLJKKcH31uxn0djIj5RTJaBeITJtDvW7qh6nMI8m6uOhVOvDDYAUJC2+Ye2MYWmON25YPIK55rBwueV77jYCLt97OCC2PTOC/E2wqsG/B4d+QOLKxKhri2tmbfgQfEzaDHQjMk8ifyYsBBnLPwMZkDECtUmbeUKiD/eAHdugCFqDwpWkcuPVS1rBw4mhOdvFCTM5NBpHncIR9lfKW42C9UJ0y4CWFa0NrSdYIgiteaInWpjtlK9F0CMuFdP1OMHjswQNoHV5CHY9eXgtOUSi4RRMC9URNCjwCNXL9SrErlpygIl7MzKDBKMRIpLYyCMUMoaamv8WgfFAN5Nm8YDjlWhTXtvC0jJ08KBRy9vvh7chTY9B2NL55dk3I8qhGIqxIwL7YkqwpBNy4Mu05V7i9VHCYQPRt3VojWpS9iqhAwlNUUTOx/PGAlEqgQwPjebsXsIFZ02xRfHZsNXRtaCnymiVfd+53VeYr6hPTuowCz4rYpXSd9jj9VmWSmmCa2CI+wwBeZ/jUahqPZYCkRj4NT+rO82ddoic1Rn64P4C4UtaiAwFLQqlKXUqpWmgTq3wKOYrFVlXdF2QdX0sIZpnGQLWWghxW304rSoxVJongqKF2rIUVyLOnuzYKocLjq9di25v4OxOonxOzSwmJM8NC5Sd2WD/v0mS7G/3x3ZauV8u4PfgjPtIvlbypo0BpWR5U6QHWFLDaSHDQ+0sUVLmMuIGmvEADt40RXOScKQDC+gCZRZkFlYLjk5dKC6R1DgKYxi324377SP79sLt5SNjdqZ1Bp0xdu6vL4z9JTQq/c7tq43bpzu//vG/YWZoVX7kd/8e3n32Ob/79/1+3n38yPnpmfPzZzHN10ZdiGbktVCkgVds1IhEN4k0Urd0Nu0gg1b3dIUYl3Z5bLJ9vwfcPjpuUUTVrUfxW5moanZXxDPfzI4GeURiwwmBqIZsU8jDKaxt9mhLDguzaKEUzYwKxVJwJxptzRHkVuLPPbj6Y8MeqSPCc3MMbtSs4x7WYaGiqtTziVIWqp5YSmOf0F7vLJeN20vn9tVg3529R2eTT8NmpyxOa8q768qpOKs4a3G0Ql2dem5oqbRW4yE0DN0j58X7Fl0ZFv0djNw/aqO0hi6Vuq7B39eVWqIHqbhRJHVAJVEqJ2Ng44GuJYYbXVvQDyVKvo7N/chUsinM3rGe35PPGN4H4ei6W4oUD73SAJ/MPfQ4vkevkggR5S8lMj3qmh2HoXXwCVI6zoIUx/uK7wXrnXWEBnoWwKOjSfY7MmZA56lrwjKbiAg7OyRLRy5JyUGWo2AxEaPhGrSCpVvMkt5MUXBspTNzfDTuh5muHQxp4X5wNGzukg93GsgS+oW2RM6JtkBdVRM2L5hEl5eJJs32WIhj8E40UA/xqx2LUnZRPVCFtFJ1Qiw6RkSKqwXa5tnMXSKKXa08uk7MK+419QvRKaa1UpclEZCgLecc7J45KZ6Bdzbp0xPRyCE0NWxjv0UqtFT6DCE1KniLgW0eWoM5wg12IIAW79FMNCmUlpY9UQNIofwiLFWyZT4GfHHNazWG5xQ+UOYC1Aey6haxDzGUG4WMQhCjNcu8lUmvW0TMD2cOwsW0TeQOegNOyt4XtnvBNwXrNB/48LA0z8K+C6oTRFmWSq1Bc0wztjHZLMI27X5n3u6M1y1pOJABcxmU1VIIFnHw2hZkWahtZY6stBiJTDjgMchprZyq49U4PS+s14XlslBOS3RttRW9XiinE3q5ZLq2U2ogL1FGGcPMkbUE0DIPRciFnFgMazqZSkl0R0tUHyQFfwy3oc0k7t3NsW7M3bG9M13pbtjegxaWpOvq7xAEZRZhlMI+FCE2eU1oMTziySNIDBeI58XrAZUeDoADRpbj9xGQykzuDB4WwXxfUpymUKBaRjJ7BDcVIvbZZ2FOC2dGc9reKM1DCOuD4Z0xOsv5yux3fHTor5yWT6zthe1T6EIohad373l+/sDz03uen0Ioe7k8U2omBi7BvdcmwdNT8NpCne88Ar3mmJgVhEHLQcPMInBKJ6aT6s7UrMiegtmAmYJaAnmK9W0GfHi8JoluHBqS+MfeXCKSCEjQ6UBYmkUP/j9SKKWE5U40SsAOdEWkJKzooR8g4fqDevLsl5gW/UfM3IoDbZC2xiZcLxE9brB5Zd8Lbju2xwrgTFQFL4qb0lZlWZTny8pJnVVn1AwUQ6rlIZqDrlkcLEkVujnFwqJYEtoX0YBSl0ZdFuoSA4q09U1H4ZYi27hGjzAwMvxK6wHlFnStUOVRfgZxFkyLbWyKweN2SN2QJa0yjNlnDihHL0taYQ/h2zwQCkJHpA3KEpx3E0r1yGWYEtuWJeVw6pjumCo1Q55EIpjQnIS9v6aPOgT//pDoPq6doocmSSly2CXzez7wjhlXYKCmR2ql4JKt149+J33kSLgnXSQS9sqAt1ALOF2z3I/SkLIQPt0Ymj3fR5ca12iG0YWOgPh+nQNC5BEZrvL2HJFEDdHstsrUGUu3nOVh7zwWpRDHCp7oUSAwBGzvj+D2QNG0oqVF6FcJ6gHCYQhv5E7syJ6aGd7QEgy85wYsgRx5/N1UfwxhZpaNvZ76hPzM8MTHN3y4CEdatfPwPX6Px4sSDp+81+0h7I8hR4ivAztcWqG5An1Qv6qRKKtHvktaZGedeV8ItCV6yYozVKi7UqtjzWBmkWP3QAHz2h7WcTSb0LPkNJ+JliiBD3t8igXahyaNOom/29/cOiLHsy/G2iNLKmUiKW6OvrXildIKpRW0FaRGISmtosvbZzkGlJYVDEXzGXGE+wU1FK4hf4j1Hzk8GUvQGrEhKEiTNyGtH0h2JH+rQQT0xcDYXQn7f96Xkr++BOX8TT9+qAeUIcYuoaoW8yjx0zwQ2R5TYgQgeMDh+rbVk+KiYseFERTHceCJZRy46MMCaanML0L8eRLlb+QedAwpMaCEbqMV8AV0LMi5Ygyi+K0z5qDd73gPu6tun1jLb9BEef3ie4wJXirn6zOnyzOn9ZlTe+ZUr5zrNXsyFtpyVK8nkpAaB5ODI03AYRijK/+f9t4u1rbsqA4eVTXnWvuce7sbWwZ3NwbLShQQmFiK+YkRJMhRLCw5AfFCeDKKhOQII1nhJT8P5g0rEkhIJEQiURQkJOchOIpE/hxhGxBCAmKEQyJkCRObfG4cTHffn3P2XmvOqu9h1Fz7XP9eGuS+F6+yt273PafP2XuuteasGjXGKERDCSYf0Ts3VeOh1QQcYJgttO509Gxom7tmd0Vzcnm8O+3L83QsSgUNB24RsbKBWkkQEgcAUDUimt4Yyt592ARYYduj1nyQdduokX3ZyOolGj9Dz0Sg98A2MKtO6LOiY0JMT0CmC1i9BZMC6Y5pEcwTqxafyIGIvlDincqWeVbMk+LWRcWFOmYoZKWjqjeSQ3uqw9iqYAUPkKdRc0qsG6fOhhXY4YAyz6jTjGmaqS4rU26m45DOaSybc+u4l0lmHB41OtGPg+PRh5g20NoKT88fYAVihfbjZvrma0OsDf10ZDvPnZwZT++aLjzwdIKmlwemCTrfgs0XKLcuUCZBmQSIQyZ5V2jzEf20wGRGP53QTwva9YlcAO/ofmILoxuURDEM6TqAnA/Cfx+zn6as6oomOqe833kAAus4BIUtOhVu6CqBcMWKTKLAe8STIEsYWiCp3IMKDAVaFdYNNt+CTBWYD8BhZg+/zMkFUl43sWzPFQCDDMgKOCIglh4gCQeJDl4JUSFOvZacfkzfozEPSLOVqcYZYezw8dkmXFxI0A1wvUNzSOE4/PRGckejM7ZzBo+MED6yNSIKEkyrotTgMLjwpO8o1Rqp3qIQKhBpZxBrEOIfCVeSSprwIEMAsqRhZKPHjZrBklvGU5I3gYhy9MB2EObPkByuGQLtsbkeuyUvqpRMagOh9NJptaFMZEIRU5uoNForptOM6XiAXZ+wLiuW62v044RoK7Qt6MuBSr51gRwnyoHdqdgpBSWnRxMBU8Apo5fGlzrXFF0hXShlywGB4dQ4R4w/maB6W8/UoLxXSsnCRRw6F8hUNoKtBKC1oMwV9TBhOkw0ndPAlMNLrSjVThI5cFRzvdnGoUKNv1QjUCxgJqiT5LkJaOVzJRB6swQAFyYzSSVowTxMMgnrAVgYz0IFpBVI+TJp8ch6QixH+LqmNXpDoDPjkxUDQYmorDuE02JDcJYR4vxceCgVKKP1ncOTIjormn7um2pyU6DGHvVABxor3Z7tJZeAV0Fo3TZBDUeg0+W1r9A6I5YFWBcAgbXeQzGFpb24Q8hnaAtaGkr12tHXDtOS2bbloeZb8SLDSG089y2Jo06YNYJ2xYAnvJ2VHpIYh3RG9Q5RDgUrTrifLZ7CpM05sXb8Yh0oABKlAs+2HLpNcAokp5VETLRUiIwJvzU3cs1DZqAKrLFEPCu/ABKq75ng8ZBNroEqmgLrOsFax6kD1pFqoUBvwZYLW9Yo6qja4bpA4Zvkb5oN0xSolV4GGjSL6n1BiyO8EgGyubPCz41FraBIgSs9H8QCPnGoW7m4QJ1mlGnGVCceeFY2FIpwf7o6pnFWBFtiMDodS6lnQyVkchK+EdrYBUs+TGPiBV8hnS/1lohh3w4pCOicG1QXAXwWirKlVOcJZb5EmQ+YLi5RJoFNwmfMV3g5AHqE1gXRDFpP0HJExTVh/dZgTWAuKFohSqt8OqDy0CShm1Vp0kczOaFt+qjuVAPQREcHwgTJj0GVjyKrxqDfCk+zbCkl8RA5PBOlQDRt3aPAokCnC6BWxDzD68SBfGViFSisTFWImvahu/c8zLOqJgE3DciySDoTXim/12BlbTkR2JM0K+Dn1JyeDAzuRz7bOVhCxRB22FrM0mLb2Ko6W1ZBbkBEoCRmwsSEPBUtBlIU2K4sZtyHNM7us6nECxhbx+MkzbUfHIUxCHOgzxiIEhLJttF6YD2VVWUWMeSuuXgmKuekXSCcxhsAZFgGOj1JZKRGuRNx8ehwqyThFs1WMxy65nU3QxdFKQWmdKKNtQHLEU3pPN2tooagrh3uDVUFtVauVTG2RNzAgQAVGGLiLdMY5PuSqr0KR2U7Xgr3vCRwu/SBJeU+kioxTdWZls1/R9Kfy4qiVr7mymumEpgqZ65pTYQOnXv6+A0qOXqCaNnoKpie+YOjEaHAtgdjS1ACmiTibez5uK+2w5V8KiojLA+mh4vHOkHRzkM9VlZ9GiuljrixqsJqzMXQBrN+bPajLM1CIvmg298NVQ8vBGFXAFsWSflmEgbzSrq0cVQwOZGg7Aw5Z2FM1IUDWDmXJSWLEIWfrjGsnjn3kge/+7rxQnpr6d6Z3hg31kTSgGkzrcrBZmyGOyANkJVVj9OsDKmTF8mk3XgsDD2qiKBEsIJzg1jjuHBXmPZt7sr2HlLVIZ+ZoMRYFz5UCqoRoJzIys3PaBWekLjpAMDT7hyeyWSc4d/eIG0F1mMmk50HebC6bL1jbY61E10xJQnPGx0QpbNKNHEUaeiyYrgnonC8vRWBWmfFn62y1lasbaEpVEnUysh3kUysLAxVK1UkFohDhVRDOTBBqRMlmlBlFZgbfYx7LiWKEbw3XQkHwyauU0K0MThXcSZ/DzXB5qjsQyXDMfQSnS/pgMa2oWyKmTxIFYZSJla704w6X6BMB9T5AlYVNmnyHxrbITKh6wnlgiooSIE1QeiKwAK1Rk6F1E32P44a1uZ5v4ZDksekicIVSQVXVskQzzae85YdFbcQfVG1bP0OzxtsBFUgNvO3uNFqLFJRUFGkQuqB9uy10uAqlRBbOzIJrJLrBBDJgvMaqPC5kaHUyNeWnIjmzCM+dxHknCWTl/5DSaTkUsmA10Y5kBC8UZIckod3z1splW5Cu/See1MBeXkBPytJSk4vLpbJCb08CNqNNmuSb7PVg1GXZOuF8H2SehPAHkZhkhX6aM+pCc8qy4ubiTbXFHnlASuWCJtsn4+WEdxf+9aiPyc452SO/w2Gn4zRKwjwlNGyBbU6PyPXXBC25s8bVu0GawGrK7QvnG2V7XXOy0kkQgwCFlsU3FJoMKzrIaMFl3Lr/Oft4JbI783p2UJemYgmjyP9V5JrJukVpckXKTmE1YTXvJZEUEy3YleR4y4Atr6BRFBy/5bkyeX1G5dRtv4xOE8nEZTNbsI7xlyp7SzY7tnRDsuz5SHjsU5Q7Oo+ihS6kSIgslDmNiYPgxfA/QJqZOJr9mt1JCEBAOfWQCR2VbLqUiERaxvPjtgMsQAD3UcphfOgQ6j72crenZNnhxkSM2XJzJeTk6MEYu1wrFj7glM74Xo54qrd53RMrTiuV6jrfRzXa0xtgbaGKRMLQ6fD6Ui2vLGSXune2UEptreGvp6wnk4cJraswFZV+rl6z4yNBlbsq/pIOYTkKc66MXD4FjZnTABJosIDVQ/7xIRmPdEmkyEvzkREmQzxT/6EDdoNtvDgTq+Q3hIZOKEt1/DTNeJ4BxENjoaol4BNaBCsa4MsjqvrDl1XiF3BOgldx6trLKcjRyCsV0C/C/U7MFxlXloR/Ra8HdDXjtUN3hWnJbAugXUl8VVrEDFRokBlvsSsEyabaW4kQDdHTKykyzxhmibUOqFY5eahTsJfMvndWYWjxUZ47ZKKkZKeHcL+/5gR07Nq773TtbYt8OM1fD3B1wW9X8F9QfiRyYAiDTlHC00zwQeGZ4LaDKuX+QzN5M3UCfX2BawotGpKEB3RV1g9os8nIA6Q6QpSr2C9IE4nuJxgS6B3hVX281mN92w1DlO6Bu8nRGdCpiD5mggKOWSWd1wEyZGRBxWnVydZ20oKoARrp9pvuO9CkZWlJnmP/iBzuUTVGSWJsW4FrRT0OvxOJkCJtkSihXnk8f10bL5A4X7uuw/Dny1JAQ+Y0K2l57CcdOxbqxmp9giVdDomigYQ/bFSaRZ2mLcxWO20ZHE1fEgAdQGkwbSfixTp3H8UcEnTsVoxzTPmuWCqimkS1FpwmCcUOQAg+ZF4NdfcjGtdtfLAFGz3hEdO0U3EqqiiqsFqtr6mCjfyiTTn45gJTdLcqXRrA+QziCP3asCTayHjMyQSA8imyopQcomyTTE2f6kBsQUoC7oesNYFojNKWdg2LkecyhE48XsaCqwLol2xmJmMIypmA91qDNYLUC8RpUPLAu0dgo5ADt0LuptHGNwL1CsTGtSN/+OZXGa6xvZfV7hHuiwrehMq4bKVrNFRNTAV4GJKBRqC/k85MmE4UDuC3kyR6JYO8LRjuCirCsRJU4h0A2/rmRflq/Ps6CxOxSPdrrNYDe4nRJQzewy2/OFfJglKaQ3W1qxcHIIVw9iqxUJiOcD+ulXAOKAO46Jvx1/PfirhKxVgygmwKgA2CCszABEEag4M7HQvzEM92pJthjNcxgp9gI9ZdSH7fqDRGHsMATFlxTZVxDRRZWAVMucAqqI50yL9MzRYLYUzz0CgxQkeDW1paOho0dG8ofcOXxesy3BbzP5/ALHJhLNXHuyDjz51H0TNXIahDpKgfGdk2ZDRpxyw4KhoDT0S+h2ZeKJcAsnH94yW5DJj/MLR6pBc87H2Pf9EZ7ISw9jMcty9RzogMpkQXyHqsJUeHP1EO/loC8RXaDQYGgRLVhjOahqGomypmRboPMOULTwpQc5CmWB1gk0Tbe/LhGIzER9ktV8IqZY8DFml5uA36emyGLmU5wMqGarY+GkRqUDhn9u1cULQva1oC9uC/XSCtxNnkeQr+kKoHQKx9MzYrgQrHthMa/JygNVb3OTLDCtTknoP53sxGa6iDUABpMLmhUiMAzadMCZal1rhvaGUgpF59eRCsJWdhGdfk2MQGLN8h02AJJGQW122h7J4M0RyUFilI5D+EbrZ7J/bAbZB5moFZjUr44piFV4qlWZWNoLyQFuIZOn4cVnhI4Vk49qd0cKx24zXFuMHaCILyVUJONHybCtvTsFW6Fo72imV7Ter2SqKfBMeiA6URB2507G1a9FSscj2LQEbg9gEqxW1TERRimEq9CmZSkXRiUllHyTjAGQM3Kswm/KzspXG+TjZQkQwyTWj+rBSah820IEUMGhQPisAxBBVx5vPTH9414yFB7RG+hbd3F7GVEBsieFQJyH3XykCcYMWhUaBdQWiILQhQlFCNvS7dEdZG1wdJp2OrYX3jkPgRdCKwuuMXhf0WsEBkSMBRKIY2JLmGF/YGlMpYc9qzxOlkp5cwpYk855k4+6JEg2UMVvs4NkyWkwjWeVeKsnZPAs/uNZk0kfea2cibGyIJvJMi9VTueXQdiNByVZrlyTsa0BaEESg6cxQSDxUPNYJivWG0haoVj4AsSL6ER4rmh/RIrACaLrAZULXlVXOBgOTRKboo22WGb4gJoXndEsqGMYmwwcyAHgn0YuZ+tCtM0HZNlAHrDuyG47YbJ/zABo8uwIO0KoKmSZgPiAuLngga4EeZtghjYRqbkYle/Hi2a7hRr+0K7R+wqldY/UFqy9YcgKm9462kpUv+cBzgumw9DaI1aymBYOdOdARGvXws5GNjsyWceOQy7USJGKViRm3SrLzkYVOIGW16aGwJY/5S/MwRiS5zinD1LQo194hQx7bTohYCV2XA6vDJNH1DqxL+rCgobQONHq+eEtuRiYnIQ2GFZEeAEVWTFJQbfTiK0pTYC2AEdpVE1rfz0QY7PICpcwodUZ4JDLitJzX0e+n/NRU4ejZtspN/8aib3B1rqmDyBzSiybaulXO7pSSt3Xh6IS2oC8nPhd9RW+nRFAWVk6ieSim7wFG68KAcoCUGVovYPU2xKazL4gVSJ3OCUrkxYwOTWmuHlbK7UNQDrT2hzvqNCF6Q5/qtumtyTths8rTdr5tn2vra0tsbUPJ1kjicfmj8u9G140dMMrYxyElaXan9PCAFaBUmHE4Zp2mLUFpmaBASw5dEwy7cFYYtj3LA5X1vKch+X7G/yIwOq+DEExENpMXFfKjMpFi0XlWHYYQwYEVKgOFh6cUmnRZVQy1l4RS6SaO6gFNIUDPGVQWK2i52jEch6EFkkn2VCbUUjAZE5SpGOZSYYXTr3xt8E4LAoim3cHEViAoT0YX9MakNZCfo06wYijTjDIRVaJAhv5RY08kOkhzvw3bVUD6UGQ6pMu2Z1shAonYTAdoNTE4IGpUaUk5J7km9EwqDToZTFoqHFnMRvoSRbbfewC1ORMUNGiNND9TDmcsirUKfJrRpwVtmiFRoGNEhfDepiR8dEOYpAwTwkik3bPf3jIv4DYYWNeAr5GOudwPqUjlmI/BjeQ+zMxmtNeGtJ0Sv/Rb2dSQ7DxQzWYcz5DFxdiHvKU3kUcWt4A05ytNF8ljFBJyFdjUS5lkgTnxQ8djnaCUeol5vsBwyuxtRV+A6B2n1rB0tleuY8UahiXuYc3esI85CmIo0tMBL1CLoZqgTYpZPVEUuuxRQQBu3tGYwUeF9OuNM2TebqAzrHK65lAtyYmuJhxSVSw3sQtKwGYarB1FcZxmXCThs5jhya94NZ64eBJPvOKVuH3rNi4OMy5mw1SASTqkkX/R0XF1/SKOp2vcu/s8jss1Tu2IxR2jCeMEDokE5ETT3vumvJEy5SFVtsoLwHbzEVvFDcY+M3fLrNlyc2GbNPurAHDD4C31E3TvzGxFNdGX7NGPUnPMlLCeBmKdsyPYgkqzUxesPRUgQgg0JOHzvDh9XSHGB9rCk0QmKGZsZWGC9wO8diZWwnbVVC4wlQOeuLiAzreB6RLzkxz0uJ5uUS6rSIlfhdYCuTjw4DNJHwe2zHqiRhpAi3FwNLg3rG1Bd0LzQ2K4Me2zSh2GZUTDVmgnMia5sZl3qgCWE3w5EjFZaRoXsaabJUASqVG6aHMmHxWmE5MVrcB0CZSJyqdyC6ITRPP7zGBTzUOVyTeTSica0QuAFb1Yzhm6Qq2CXhwWEybrMK+o1rEsndyIyOp5tKn1XN3dxDsx5JweGJXnpnQKJBkV+bPy780RBXkYJAnbFEVmwAp04qgAs8pJ5oVW81FK8n7oWkpVXKJ8Mq7RQAGRaCTf49jMaT0eMOlMkEYbIvlxYkjivmxJe+Tz5SPbEUFXklRdKz0tEmH0tFagwce5HbhhmK6bRb563wjSkA7RQBWFaoHpDJlvQcuMebqFaSQoqphUMSu9aRzCAZoAREaCQvfRUo2qn06rdpqmZWtcwcIvEeKefhgtk3JKn1cEgC6Gk5Nv0m9yuH1wkvIQlExCbPjfDDQxBo2HSJPiBgci10aN6CcmFAlIaRA7QMo17dgnEmDbVNDXgnkqmM3QjgqNFQdrkKroJriOIBoHhd++4LN+usZB2U6WbENJcTSh3/nwvJFEQnoiws0dWx4wVGZACgJWiDfU6JjhOAjv90Mx1EQAYRPGDusYSb2fb1YYunMPjYZEPeJ8bxauOzk+wJC2+9LyfgbFBTkRXlZmUv3coEgzHXZz+hqZjAV8cbaHHvaMf+jvfARDskcuxqEiG8bhkmT9QGuB1RsWp5HO0h09An1UDErLY8sEpZWCboI5FKIkuKoW1PRCYOWVN01fAHj2dsmK1qArQxEabgHISZU5g8aUKgkDokiiMUQuXBt6M9TFUbqgPnmF8I6qinr5FSiHW7B6YOUtAo2Ww/YcsVzDo6GjY7m+h+PxPq7uPI/r0xWOyxFrDFVKkgHVUMsMSy8F7ynLFSqZkH3LATxiJCdgJk8vkqxWBRtrn5zNbN2kkgbgzc7Dla6mI13yhFNcAbckUsV5EizyAVHvSe6kI6p7o7mU+/bK4blnD5DuEKPypucgMQE5NGwhEflQwVapkWU/ZbJE9cpBZ0x1xmWdIYcZOBwgHmhrh04FaGk4boaYCrwYWjEqArIF10HX3Y70rwCleS2rbBKgG9VQMRjwyBHpmhss14JyRKJ13hslm5nlSXRoXyFtgfSVh1ZPFdqQi0IBFJiUTFAmSJmgygpZtUKtAvMFZ8VMB1iZ+LxJ3SbXajGcJbNZtwayWq2QPkGiQXFAmSf0aJBe0aeC6IZas8ftSNVBpq2Jb8eN6pUku+zju58lrgMLj5RGRxCOjEGxHMqI4HPniiiVPCcziB7YdphY/VsOfiuJErXCIoZDCgfsYVvSMA6Pm111zXUYQNgoJLWfpdTILkxCkITCB/rD8p9JbVa9IWMMQpIX8/mQgUwEB5R68AAZTdcYGV7+vNgmOfuGeFqq5UqhMkxrRbFRkBmMuBrHSIymrSilvJJE1C0JyG3Cz58t8v1joED5ksywojsl356meXA+jz3Rz1EMOdeRj4bkfQFASHofyMkZQ5Ht/WEjJcuNN5nPoVDMIzYs+4PigCIwDfQi8FVRrMBEsRqAWDFhZWtJOfRyybXy+QA/NPjhAOsHsg60c/p5UfSBiqWKUtN0ktO0+ybgIAjvWwIsiYIPjyUTcB6XGoolqqlEBIctvYSBk6Q1bzquQw/K8dNMOu9VFnSQnIgu5Kuo8Pd5zrpzD7ZrHPSHaQF0unDHtuY8GCIir2MkLeAGkvMQ8VgnKCETRA+JpzYgHVQRJU3SaOO9toa1d5x6x6mt6OFoIpsiooYPCghKqVhNUVdDKFBVYKWi1xm1dJTRex79PUtzoE11UlGkYEJOtswHwa3AVdHM4EURVeApAw5Vtkt7ALjGHJeY7UlM6wR4wyRAvbiFUiegXPAm6A2+dA6Zk4Y43oX3FWusuLrzJ7h3dRcvfuqTuDrew/F0xAqwl14mlOkCpUzABQmKGoLunkgI3xs0DeaQCUrg/GBvCEpsX5dBFkxfChsbkgHIg2bMF+m9bVCnAMmrYH/YsyIfCUooE0cLZxvGO/q64NRWrG3FdV9w3RqOrWNdR1so0BvxRLMVrZ0QrUJXhTmJgJKITzFjdR1p1+4F7pc0thLFbBNuo+JQKp44PAm59QTi1iUm7VhWx/WxwY80gVogaJZOjcqNqEmHxgnuRPU6cU+4VoQb3BRFwNbb0tKbg1NOYdz0N+KJELalRf0KtGtIW6liQ263QdWOthOkrfRA6W2zqjfJdptUVJ2ZoJQZUuckSF7Qkt0mxOGSUuYpeSdCpZXmdFnVYTqWcDKQKhr6gYheQIsgisBOl1ALOBb4UiFR4KecVuggv0c6qLTJPvYg0KJCZCY8D8OYPu0tCB3nht7TURUi6UzMxJiS9mBxEJU/z7KdUS7IO5lHW8cwJ+FTrGAdHjCiqULJTX8kz8LUhB5IiSokmuMxrN+RMl9kIkJ/JfIFneqwoGBYsj2sSUCM7iTSK/liQ3lIwzokQT5QhAaL4YlEoWDkOUiofsw7it6g4VAoTAsmqyiFfjwyz9AyYUrpbJH0dnIq+CIPMBXPGWeeudpInPqAkIjuuKBHDmaFoqFCwtBc8rM4Ym1EdfoKkZ4TryMRJBYbJBNSYqxj8cOyDS0bsXigBIEgWp37q6csl35BuecK1TcWijmo9oreiYJ6g/gCXw6I9YTIwaHL5Qmn420iGf0aVdi/OPYG74K1C/z2ykJs7YB2TO0ahhVyeQE5TFgrOLjQG7lvzSAddBjPttkwS9w4IiHQ3mjm2RsUnOg+TxVaJszzBcp0AZ0O8DKTc5iJj2bhwrEOAg3F0pXjDvpA3Hzj6HBK+XD75p+CQCyewtBBC9CtZRPNsbYzz4bZJNuaPacdhwM9lacPG491guIx2MipdoACOkEtUKpjkgZIQ1NN5ccKVUKPq4KMeOWMF01UQCVy/gCrg60QcG6GdFvsWwUnEBTx9OpIkE/z4RhacjNagqfhDUogCtL0TRFCHwwPx2pAsc5XvU2JaDQcVwCtoZzu46SBWQOXxVHVUcVh6xVbPNJxvH8fp6srtPtX6Mcj/HRKUylApsjDpcJwQBU6Irr0FBcIx5irkZyLGwnKaN2klwI0yXfCDXMrKmNUriQ7BrDB76xt1pQc+0jqM+um5HL0YSN7IRYU5IU3iHe0vmLpK5beceoDHfONX6TBMeWAk+ymJ1Z/PVCtAFOFm6blswGxsMqQnpw6gcgEVR5gVQqmYqhlgkwFmBXNAl6AIgVrMMH0nhywyErPHZAGXVdEI2mZ6jylHN2IqBVKHtBXkEwmyZfIktTDtop0JBy+nhDrkUZxbeWBOKrxzg1/EIo1yZr0meHPVSko00zexTRBJ8qWrR7Y4rMJMV9wwF0lH+Pc9gqodPKzsq0XN7kzgyeiyY/oRCjCV8hCEnG0FWWqHMfQDcWE0k2MREt5AIFtp2IzihVUo+lTREtHzNjcgz24oQ47gKJKvkbevyrKvaFwU7d6QC2X5J3MSYxVxWSyoYwahb39rEcUAg8SW/hsDNYV0QDJ+z4SjXShZT5NtmJrMwxrkKRwsAWkICKVUl8Rycm4TNy9SKp5AkXY5iig7LoEtSDbdiXpiRwklg+/IHIVArVwMFwpE6bpkDO9Zhp/mUIs20YYqjChs3Cq8Dicr8MGUnWT/B6DVzEs/xNjEkNghodxKjGcqM7qsNah7tlq4X8jnUmd5GDJIVd2VbrFC4gIj2R+kzbntdj06Lrdp6O1jMjrhJQ9S2zIVIlCPxkoUDm3B72xpXtYcDrNbJ22QybLDb6uWDvRgv5ko+IqOurU4esBBUfErQn9ckYclJoNbaixQt1gDnSscG3wYboY54KLK9v4+2KBYoWp0+ekFsxTRS1s2QKSDuKJGCaqL55DMOV8TfiZiRqNYkMBItURKZ7IWrzd6L7ivO7u5EKNmVwugKfILAHx7Z4k3esm3viF47FOUCKNelqMLG/A4cnGDx5yNdsbLbHTDm4WrEwEE5LANiRbiR6OHsPIT/q4YTzOfWYIRHruMilDBMW/PnwSzIf8nZt6XuUz0sXeZYdCo0FhhN9l4pYXgWWhDb/0BQsaJulYrKEq58JM/cQ+oQWW4wltYWUtq0M7jXcgAnVFiYKKCUVmFGWlFNo3FngUyzkjY8vLkHzgkeWh9oSJkz0O8GHyIUrG2CuYoef6U86WROKxpwHgDFM+WDnHNjclXgVPr2jP+UE9nBJqpPtmJjkkLANjzHm0BpETN7tSUODwyTIBMkhOuaL+XzGMk9RmmF0Q6i6jqhZex5I+G0U4WyIGsMQWYvPY0I6SQyR7W5mghCCkQ1wBz2FfLog2Bq8JvQ6GPM/zYMoKD508E+/rZuDneVATXk+EZTDcZGwowZao8vOZHdLjhQe2FE5FpqX7xFbIpm7RTZ2laQKlSd7lht+z/TSue5z5KUazq7CKSIt+TRWTFZqBDQM2y7bDpudKK3DVmtwYS4dQQCRxuHAOnmQNsb2HkFTbiAC5NhoCszmVSRco0yXXYBptDc1BxIkMuZ2JrZ5cANHt8B66HLnxpOjWmnIMIy3NPUcw2g2CrZGV73fsOxLCYZLbPsXvN8v7QGKzDTEMVAFs1xLDyckGiVBkayByYCjP7AKzCVZmlDqRQ1IrolAdKDraVJHkzdhseSKVLez4erbSslW9JSmaKzE8O5J8jcoEfavCWX1LDpkbNBHpss14kUAiKANNCAz/nA1dUAXhtDz8kow+qibZEulzA0jHP8lNJDhdW0MyweU9AG+w0rkHVIX3CW1VJiresNoJkYh9v1i497SGRVZgLegwxIXBLwowKacIi6NFg0VDcUWAyHJkrhdxbgnyJOv5apB0/i3pElvLaE/JVgyeLUkE2UXEKBH5//GMZRopQ3OZ/KngcMOxnOb5bMoZIRdVuGULVbAljpFZDSXLY39Hjo944FT5gvFYJyhQR9eGY1DVoHDUTFBUJhQ1oBtmDWhaDTejKdSKnioN2mjLIB+6pr12geadEmGb3AuJHkSaPknqzMdAuy623ejIjaCwWcgcRsi0FhHCuMnk8jT01AUoDagdqKgI71hPHffv3oEfj8C9K9h6H9aPOMgJh6q4qIYnq2KqijoXXPeG1hsmGGo9wG1GDJ7BdIl6+RWw6RLT/BTmkpuyMokxEi8QRjIbbyVCprLxV5A71TjUM29BwpI9JycPy/Tg7A+hCTI0Ah66SdJyp04jqLTlHwkGf31WwczqmOJkC8UN3Ss8HBIXhDSDKBFnonT0hVbuokegVlSf0KWyEjaDyJoPvEFlQqjBpkvUcon58BRmM8wmsImbXkSDYM0DgFDzlsR6oIN9/ggOZowjXW59WXNNstZWQVPJ2Rach0DiqqRpVJYjLVsE0oHhCpu+Jt4W9HVBR07nVcl17du6Sm5cKkJVjlaIzdDpkMPkcoaHGWQ6pCS/JpKSxl0DDWTqncZnuiWUHEaZCXvyjlRy8GMBbL7kIddWYDqi9IDN1yi9Ye2Otd4Dlo4mijXRzC4FRdmKquWAkkT1poCooRs4PVY61uiJX0huvorJKqxOeUAZihRACordhpQDrF6i1AuYWbqIao5k8LGnp7SVijdJ7lJkIjQSMsriRwtoJCUsWDRkI7/qIGypjrx9SygEyd+CQiyde91ZAUuirclbCztPai7QwRFFDXIgVAItAkuQmL2sC/pKDySAbtjTfECpbAtMhwotBp0qJb8KCBoT7lGYOVVB3lN2m1dfxTmVVywrcX6yENkmXVcVcn60QHXsKc4xFT0QK+e5SNAYDl4AV5Q2WnfcbyIAtZy39kAFlIkdPgNBGfJpxblNgXw+cm8Yhyin1ydROdtnxQpVONmKst5R1g5tF+h9xdoOWNYToq8p5W9ESrvA5xlRK3A5obQTCu6jzoEyAdNlgU4C047qJ+73zSHaIBIw0y3xLUICuub5FK1DdYVah5XAfKCR5DQXqr8EHMvSnB5a/Zzwmw+k6CwHplFb/raBpESHOQti7X1Y2KDGjaR4ZNOJZnk4EtLcksjxL4os3hotNexPkXU81gmKFiBszMjxDaYb8jtIpD7/3I81oZLEYsUYIDinVDAi0IWby6yGEuxPBmSrPFXSgTFoYiZZAWlk4uGEYN3Jyg4RwFvOYMjKR4UtgcbdTnBE9ELOzPEacToBywLrK9AWtNMVru4+j9P9ezj+yfOIqxeB0xVmHHExFdw6zHjVrQtczBWXtw6IhIenOsMmcilgMw+c6QLl8AQPqjJjKgXFFDVdJE0FkuZVXsv2vA91hKhmBsyHdiQohA35EHna30fkfJwkqUo0CDrMjZ3NRB1GC0jT2VFSnu254RuAKkDJkQOuBrMG644ihqK0qlbhhNcxJC79cdFDU3HQN4idHAGFe4cqn0AREq6lVJT5gFovMF1coKqiGADLBGNpCfEKsOg2TGyojYgQpaNt9pM3kmKWNwHZDgD3gdPliAFRSlsHURiBB/yC88DqSTrs6ZtAnix9F5CEY82Kd+OK6ARYjuLWCZsj6hgzsE0JTiJ2HjQmeSxFekBs2keWS3qD2LqRODX5GhawMiFqg5cZKDN64YgHm2aUvuJUJnhpWNRwUh7yHYbJCiYjSX1A2GGF6+gF3YigrZ5lG6sAcgzMkvwr6VjMdlEUJihSDxx4mC21ccCxLUnBcz9/RIzDcCB0koiq5wHCr50/OyKRq8gfks9KbKdrbD9z3AHbINOtZSGpYsINdZskYik3NCnng1UFCG9MENDRvaH5iu4NxSi5nnKCbqkH1JJD54plJRyj9N7eFxNw1u8joRLg/B7kwU9D4TevR1WqhCR5S5GonkvcQKe573raEZC85tveQlSKM2JGFb51dIJiOckDd2Ajo5Jnu4T3pub3eL7hz1j9LD6HboVyXecPTpGBUI2jRLdMFN7ZEgpdybWbWYiFB5oEolXuRaWhV3KKFAFtDeuycH9Th5lDNTCpbuNCLBM6ySGmAY6nCHAyvBZJp1gSU3lv0qPGt7brQEF827OT4kQvKwDD2kGEjGQZwzS7pyHcSN6Yq0aM72UbcbRXU6+V6p9c1wERbnfSjb3si8TjnaAYEBbo3njgZRY8btJ8PmBiGE9RKIcymQsbA+I4SMkqPdCE2eukhuIkkLIVkGZO282bk0cjNrWLQm6w77NCkJ49c8Gw5VYAIoK2pI4diugTE5Tra8RyhKwLtK2Q9YS+XOHq3vO4f+dFvPj//gjri59Gv76L0q9x6zDjyctLxFc8hduXB/R2G9PlJeo0YZ4PmMqEqdBsS8pEc63pFmATus2YzFCLYZ5oGFZMIVUBU3jKoJGwoWRv3srYFjNB4Z6ZSYejNQ7S672jR87q8QZJ74XiZWvBDEmkByv9AJGlngqGGAkKBBWEqbuSUd8zQanCdpoaZdE1sRoHiZPS+SdS9ji4JkxQMpENHgBajCqGKQf5HQ6csyEBCGV+HitCToiuiKVk8qmEqCPnHeVcCkLr+QE3Xxk+tD4ys8hDSdIvQSW9NwScNdPPG6kMYEWyRcl2XIxDUEsi4bmJJqdHEuZmUkIEBTrhpkIGw/9Ez9XwcEml+VkmKNFTNZFb0E15rMiNSjZRQytAmdiaKhOkTuhtpqFdm9Hagota4VZwMsUpeQOrRPpwGKoZVRRJeKQRmMGto0E5HHdUgpmgwAq0VoRyJIOWA8JmYLrFz19mrsV4z3lpaAOeUk8ktyk/T2CQULFxBDQTljNkxQvFScPZIhpkNkESa7PyT7RmC54WyE0i31vC4+O0zqRA8xNHknchLB4o93do4zPao6EHJ6hXKTAzTNOcCcoMq5qtSwHQsq3TeShjDJhgcjLcci2XhMjQjQ8wbm/wc6oEqg6/nySqChM/ZDKUhvsc5JdE6KHIZOuB9yEkYBYcQ1POqC0Cm8SbDaeBb2VyMv4MbNda87594I3nBYgbLwcP5vEdRJcik3cWVdaNCEcKBGSeUhQAqvZ65eNvC9xWdKVaS3uHneh+XqWjFH42FN0MHOtou4Q/mHhkgkK3jJGw8UaLOLf0IukPIZ4mkLyKPQULVPrkPRUgKk5JDhAOz5EqRGLsxkQCok7kyJFK64ODMtYKyCQ1r/X424fPTx7vBKVOgJnTCC2cN5Jmdu+FTMUwRBkjnJJsFI7W03UUHXNCriopactHxETJuIcm6YDOlwTxJR9ip2EZclPf2kKZyXrKrDrnMbg3PhghWK5Xtk39ipttD5yOV1jagt5XYD3BT3ewXD2Puy88hzt/8sf41Cc/jnt//Ec43b0DWY944vISX/HEk/Dj0/iKJ27Dw/FUykWni9u4dbiFi8MFSj1AbIKUGVFmhBQsMEyloJaCw2HaEhSt7L1GuSH3BTZOgdpQMeRNipGgJCeoreiZlJDETDRJYs2b/0wA854W7YQ48oBIWVoe3greqBZEJKSuQHeYO7A21HnFtDTo2mEhKNBNIrf2xvfTG3pbYMr5FCgcUdBlbESCAoMKPUCKcX6F5sbtIBDmvcNjRUdDBFuI6Cn7C0cNGr7xlUnKWCA1bBlZPuSj0hoOvprrq6Xk7s8W2Zh+K8hk2tMrRZJWmuuEOmUSDSD0TJYbD42kNF8mDhw0yQ3Ociw7J0mLpQRZgaqJ/IEb/ICMRzISN5IZDjNEtgGxkRR1PnB7WlfY4cjWXzvCw9HgaIcLyNLQpwm9NJKiYbisikM1HKqhGk3tIjg4DUgkUxytn5MwKwZMJP/agZOi3QNSbzFRn5+ie6wWrHkAw2WTPI/70cNp9LhVjdzQHWAWI0RRxgGw8VCEycLg0CATce4dmdTJWZKJ9H4J5WyZgS6MHzXQsYGo3CDJgcwELnWHJrqokNZSOt+x+oLWF9C7aUKdKi4uLlHKJayk0koDYUQAOQlg4CFpey7jt515ehaU92p+btraDw4EDyPy05DzGB1SeJCt0rGk8qZxNDxVTyhQYUIzOgY02EuH70qUwYwmmkQtHdqJiHTP+z1iU5RETloXAB405zxPfeIveYC2mWcor1nONhrcsVCIFCg4q0hQYFIRIWhiHLPgIFqSXC/pK1WluIbjiLV3HjTrAlmuoWVBnQsKxz0hDopaDbUW1Ly27h3rsmA58bWeVqw5qkSyUI7eAWm8r9qaU98jdTgO9xMLC+loXaik6jyLJGRDxgUtJc1U3PSWrTgMRFVRo2+iiJ5mcF7SJXdLEZNLx1uefyvYzoyHicc6QZFwaFZ0hFtTrw/CnQwHBywh+6ICIKf3ugHRUXX0iAmkRW72KqNG0U0mBzln14qhHgJyJCc4n0c3T4PBVmLF7pvcyrtgPS6UFvcT4JytsJxOaMOS/Poa/fou2tWLWO4/j+P953F1709w7+4LON65Q4mpB0wLrpcFc+tYAvD0obD5AuXiEvVwiVov6E1RJoRNNKoL5UNQCuphZovHEiExoW/ERhZOBYKSwLcVlRv7nZ/PxybsPXuSyY0Igw4S3412x9DIS49zDTMSlBTob1W8d4Q6DIqibPdMg0QpHWopF0dC1XCUvqI1RWuGnp4nW/KRnyePAkQUSuecEHn4gu4n9Jzq60P+51ktOQ+0cGfSmcP4JKgeG+VkaML8RTffGmVPbDt8FGWzAR+Tb5kRBDbjPzkD67DR6mBLbFwlKfOWOJQYLS7BuE1ja+dUklVVaIxqtr1G22erEpFnIpB3/UhQ814fny+reIzKNqt/KH9+lIKoFVErpE3QOsGnCdJm1DqhThPNwYrBI1DhZ/KsJsFOQSZe8P7smi+RhN2Z4EX+PrquFrYNy8SWjtEd1mWw987JAtEpRRdWmR3MRW5WhaMSHBOYs6GA80UYJNjcwcHkY/DNeB2SHwHZ+BSRz1Ik4TCArVVE6gqTvYGg3KTmZrqWB0QS+52FUe+UnCoiC4zywKA7McnkiEWUiNOnRHmvaT7sokg8iXfBGcXBeQXG55VxQCXSkqRqEa6FaFAp5IAUrr27UAquSQbO9SPRGkxMCiXOqoNSD4gTKYQP9JyH8mg/nxERbIi4ZuK3oVq4sZA4k+wj0a8BfI7CKrb113wi8ozQgrCOHrLNCmSRt+ae0rbZNtGcDrot95QORBGsKWkXCLr5VpD0xldbO9bV0VZHd3oIcWp5h0RjgtlW+suM+XEI7ksgiuye6puNpJNIa949Oq7l5jXj+XyfFyty/+e9u/0Y/nuiVRu8Th4Er7t+mah4Su8oTTG1Tq28RxLSBh+ED9jwkpCEiIFA7wZOeO2bcsAANAzeQM59TD5LCJU2zAQNkJq20QFKhfNipqaK8w6YpGxkUQdicZ7dDVjun+C9wdeGMYywrXQUXduCdu8O1qsXcXrxUzg+/0e4fv6Pce+FP8LdF/4E13fvI9LIqJQJ91fHwYEVhigzZL6AXj6BcusJ1MtbmOoFjXxsQmjhROFQTLWiFMN8OMCMbHjjnPoHbrhRUMnYMDboDsgPnEZRzoo6qFKRzN8tHIrKrWJsJk6/kj4SlEj43Fn1RFZymwoi+6IFbNOpO2Ad1RxT6dDG61+gyRNyrL6itYreF7SVt7tCqCwZSECM+RgV7kqp4HpCE2BdFEs9sNfcevqJkDgdoant79mSWoC+cJNIM78xwZqEKYHm9GgbFroBuAsEBpVKRU2lCRqUSRbVI7nYmq68WohrZwNm9OlRZ4wRDhIDotYz5wdDGVM5f0SFioKci0LkhtbnqrIdKuPny5a0CFwLK8o0ntuQoq3nzH+XALQm+jjNkOlA+LldwL1BvWM6XKAtK+bDjPnqhEBgDuQcGOR0+RjMUB5oQRfP5oJVuc6W6FOUiigVqBNl8w5yXnKW0GBYjJbNkLWT22M01oNgjfPXh+NmZMER4AE9joDhB8INW88cktyxtyGF2PKi5MsMeF429UPoANrOs650WOyr5NxkgA0HXtsWlBsbWKB7p9txWzkBnUkGDdlqnVBrhZWyJUe0nCf/7MzkIrcrtkOGaJ4JhzVabDkJBu8jb5ZEs3H2gREmJaEOtTEfSCjdb0CEoiPnDBkwSnQ1xRjcXUok4OQokLzV0p4ASMTDt20pkj/CJAbncQT5mcfFOHepRqpJEv/ITKMP9cu5RSGJPIiTqwgU8jIKbSfo0K2gvJp2EYEGT+JpeABrY8Kwdvgq6FUwQ4BeABd07VuCsi6OZXGcTo7l1HE6kQivcPSlQ22FWKThZyNq74Ex30uFY0BEg/ucC7oPqJN+N4Ic75IQqJowcYpRAGSxpNja+1sFU3iPRMJ+QyXJrD/IshVh7faQ8VgnKHHnPofqLcckNykwrNXTW2JsJqIKrQ4rhXmvg62ZjfmefU4MEzHngLBkKofk2OtSAc0KLQ2ZJImEAjBDlDOBiPf0mWzkpxV9DfTVsV6dKD1tp+wZMgterq+xXF/h9On/h+P9F3B1549w/7n/D1cvPI/r55/H8f4JpxM3pcUVixT0+QC/uAXcehJ6+yno7adgt56E3roNu7yV02iJrHQM7wYAtbLdMVdyGjYI+SzHG+XDRgyUrFxulB4jIfBwtIQVe6RnAs4vICChWTEQOhwwpQ/GrGcSE5EHdz4YyjTdTIDorKLC0S3Qp9gUE5yeyf7r2hf0XtB9Ql/7Da4Gx8bDhZbPPYDOA9zD0XFFSbc2qDSYltwMBCo03evOdtTa0no/DZ0Qnf4ftUAr5/Nw8rNBgiqjarpxEXomKuE0CqSNPLkxgKD3wp8JwXayqm+Nd7Fy5kDVA5MTISdGIXm9z2TEUel5KrK8AD1bPNjIuYkA+tiUAEiy97ljYji7KtIDJxJbiGwFDAJ1om5SK3ymG29IB/wAj4YuziS6N0ynI6bjCb4AcxdMk3IcQQ2o8YBTkXQA1kyCFWgKYuQ1zeUOVClVjhzQDojOEKkIZ7LRnGoXKlg9UQ1BUxKPW9ecUnBuOTqwTY8GkEycgSLKVmByvxg8CdwoYLIyHwiTRbZOB5EZLHhGRS66PTlUC3Fb0e6JUAh0oJbB9rG7Ut21nODHI3zh/kK3XEWptKQvVdhS2G4rgQoTbylI5Q09c7g2xmnBAhQJlMCmevEBp5SCoVDjTQdI6+c+j0YebgazrO0dHAi4+WmwOCJ6AiAnHJe0adAItjgTpWFrLxHHTJTHSI2xpSBHelgw6Y6hBALX00IyWcWZWJuI1Gg7j2R2zFoTQuGAd9q3h3DgoBKJiNo4QE84Yd19gbcK72ztR8/9UIYxm8A7cB1AW4G+Koo3qiwROB0DxyNwvA5cHYHrIx/VAFDMIbIm4V8grUOTXiDZShPtfLxzAkeA7d2bfDPNpHNL/gTo1RHGSclDuW1De6/IgY9C89F8Jpozudacbu0OmDWgAUXWhz7jH+8E5XgiiWc9nqsgq3BhH/ZmgqJmeWMmCuCeB2FuEGNTJ+jK2jqZ50xQ+Du1TNtwMbY0kH15kuWEE/hIjs0kZau4PBUuvSf5aOEAt34i9Bd5aC9HxPEK/e4dtPsvYr17F+u9e1jv3Uc7ntDXTg4T0m1TFFEnYJqB6QCZD9DDBf+cD9tmLTmV9exVAMLuxRCFA6I2R0jIRrAahcOWPIzNdVRM+cPY3nFu5sjiQwSjn50MoFwLbIaTo0qR/D03/xyVO308cn/WgVKRd2TsymAYvVm2W8Ipg+4icDd08a29FqUSCXGhK6+kFfwwg2orujhaU6yeIw5gD0L3EgikRXVviHXlZuzkPqkq7a1tppeIFmhC7XOxrLA1iXSB3ntKjJP7kmsno5yOAAfdxRnJEl6fLeE0O9/L+TUVzQMsr+Oo7I3Xelz3hMi26nPkQt2xfV3DthYEZCS66dexJaADUMd2YJuSeI1iPMQ6UQ6pFdpor66VU5JtMlgUmESiejKERXzrY7BmSPJmRhuAyh1NEzKxdIy1klVf0n15xrBgQGwk2NheuhGokzqSB0geqHGjpcNH5fzfY6wVzlyggT5sJOnzM4NET5igjO+VLTmBFQzjQ3XBMLdQz4cjK12ufGxFk6drrKfzqIAqx8FxMhutvciW4HhrfLbUlOumwzSQyVDPz1ZAabBGHlKJmtAFOpPv3C8QkcmJnO+dRJzIZWZSRak2EHCMycZj7T7TzmDrWUK2IhJjaUPO6sDxuTa1mYy/3fYjgLn+aEu5jr0qkxYE+vbPmYAnvYDnyDhLEvESISpioGt4CNAKQsaw1Gwjx6hBss3d+H5WBahv71hK5NBaYG1Aa4GlBdYWWBuXxzTQW7AdpIl05gA/HYaV4dAykDghGVdH0sh2HusdTVd13Uw4iYoHphopksuxFMLWoJaRoOi2nUsnsiVSuR6ehFkF7MtlWGB/8UW4FSzHa7RwsqPTXMpq2domEYCZoc4zYj5ws+x5AEKgk25Z/2bZowKp8zZ3xMPprzFfciOdDtBs3UQe1uRXLMm2bhwzHp0VeTTKsXyl3bQ3RL9mmymOrCiTbyHtCFzfh7/wabS7L+B053msz9/Beuc++v2FA5M7EFoQUtnSubwFubwNu/0Eyu0n8/UE7NZt2EUiKEqVhnc+4O4dXgu6KVrRG4kJQPJvbsYk0KQaxbdHl0VjJh2gKDOCYjg+1LFVNRhVI0a/laSuWM/TNrGtYQLuQV6QSLpsJp5Y3DYGukfyQUTJNUC29paVzpkucCmIcPSEK7sCqGkY1QPS1zOJNwcS9lhYxbZA+ERyrWhO/TXA8v13okbeG2RZIWuH9ACcg+csDqj1CdiYlhsOQ+BQdeN8NCh6a1iPR9Awjgfv+eAIwDXJ2FkjUp7GDS5VAQC4Bplwa+/JceG6IejIeXOMgMvgq5BrYGPfT7RAx3MRKcUVg+RsjnEyD0Rf8oCkQZ3TnCMr3I23FBUxVURUYJ2APvMZmA/AskAPB8g8g0oJbn4k8Sa4YyTpFQWKGmo3NBSU1WA1Z+rUOafl8p/FSiZhFRAbRS96BxoSGT1TyMjv2RDBJM524DztZXz0M3dlyLiBDfjKYmjkgzfK9ch1EiYITMJi48nR4ZpDCrVOGO6v2oKnlNN1dbSE2MADECmfd0l/HA6MlH4CFCjlQNRkUmiVtLsh+uKRM/0yCyx1ykTPEmkIQIPzW4KHDYf3CRHlkSJbTQ8fSwPCgMuSyIsC6olO8Mg3Ad1aMykcs4LC15FtYBiWyUBww4Ho23sNMbhl4qmODo4yaX0UQ2xnS6ShpKTB5EgIVVDyeesBNMspxqHnvcyD3ktZSUkEzHP4ojuiBYabeFGl7YWOmUcNvR0RWtBR4GFbojrk6egcx+ABHN2xdkHp/I3FgGqCZQGOK3BcHNdL4GrZKEkEwpX3lAGwFrC0N2BC7VtrtpQcPFoMOudk7OHZ44B2QfHh4QMS0iNQL3qqIAOQjpCgu/FktDWYLAnKgnUFAOX5BE6CltqYSI029UPEY52gLMt9wCqWq/vonYoRFPbSmaB0OOn4MDPENFNNoIU9SShUDH55CUkEwjsyWSmswCoPJ3UOHdDJoNVgU4F2Opm6jE40DcmYGA2IfBzmQytCkpKqwyp40Pkg1QHaBHYVsNIgcQT8CLQTtK+w4Fyeg5E7Aau4rBW3phkXhwMuLi5wuLiF6XCJOl9C6wVQLhHlAlFn6u+zKt+ShBgVRhI9QQWDhG8kq8hebGSlACAPEOQTAtxIPxI5QW5a/Op20EYywhuvjY++vICHAoYigjArTLNqThgcTJY0bS0jckM3Yy8bkgnCmPnQMFKfDmMSCwGmC4QqLbzbCvcG6UcgKY/kInDTCEEalRk8zb6gCfMqsp3HakpaZ6tIwFKoVagfIFFBY/LcHE1hRW5ItoFeKmHfrXJM5EOzqsyEgEMNx4EGSDGMAY5RJiYso1UXQQRwKHoyQRlJXSTBbxAih5skRPJZAIdCgr1kzyQ+FEgG9Y0YqopE1pynwKZWkYCboZt91p9rGa+CVi0N+AytECEZhnb0R+HEauRn1whordlSY5IidaLMr7ByJZ+Kip0ujhWB1WkrMBLBwYMfa+MwjDEa7jmyYZTxW4ISKWvOzwgwuZOBTmXVP67J9hyM+xsp3x/ff0ZOyDNigiLBA4+FDNeaD65ieJaE940vgDbm2zQUccAUtSqs2kaMJSqV1yuJ1AN9q0YStdTkVaSEdcxukUjEJyStG3igwyYizyhcnx4kGSdKp9xIIKEo+eibFnQzdBG0vgJ9QUTLrDB3lZH1DfWWpNfGkOSDZomrC9ZwtHAO4uRKoUTSWiKH34H27xgIX34v5EwTjRByOBzoruAoViRa4sBwxPYO7Y4iVJlJErAFwtELEmgw9LB0+zVAqI7STPBpJxCJpgjSBxTHwlZah2JxxSkUx1AcnX9qD0gHph6Yx2fLwnvsAeO+pXBNyDerBVENdlFhhe1dc4F0QFdBWRXqfH/Dr6bMK13RNd1uFfAiwFT4HNZC4m1PqXsoHPSAUQd6IdpnD5+fPJ4Jyuj/vnj3BUArru/cQ+sN3dc80BRajAmKU9ZqapjqhOVwSKhdYcJq2G4/AZlmyOGCFYIYUGYSzqaOokiFRmO102aUToO4HkDXAbA6ume7pi/QzofM+xHrssLXFX7kBNpolI31aGhY4NkO0i44tmsc12sclyuclmssC7kq0emHUSQ4+ddoU59jD2gM1B3r2nBaVty/XhA4onfFcYptFtC60m1wWU4ohRbaZQJ/SgCarS+knwlRD6ScIYH/rQIZxGGM1IQEtPxzM3ILR8SKiA6sTH68+TatFZrJAAIRfSDdKMax91qN739U571h897WVGw41TbSHXF1jTguWI4LBkO9e0ELQw82jUI5tOx0XNFPDbGegFgAnNDtCrECghWGgjJ1XMKx6IpZKrp1LG3B9XLEvXt30Y8L9N415NSBBqAKpClKL+h2AZ060YBwmAC+KN0kC0Upbek4XVO9RV6JbpUpJeppWd7ZuurriSanQpKhJuwsJTCIrOErES1RrDC0ECzdyQvKQ1gBnMI4FE4EpdoGfEtH9u0VRUkwnytnRZk6e8/g5uctFQNjWq5E4veEkIsKaNy3ot2/Dz9dc1bU6Rr9eML19YLjacXVsuLu2nBcO65axySCGoCfFnJtbEywDlx74HptWNaGU6OrqUpHaIesHdNpRZMFIo5TG0meojcCEcsaOEo6pxZAOy1a3Sasp8bX1ZEOoT3HpwnQdLS4hPe8Cj2SEiWhZTtbbQUg+VhHi2nwdCgOLhapUuJJ6WJwGBVpxqnmGp1cq9YQxxNiWaCt8T1Ywal3eABrKfQIgqDfv4/j1RWW4zWWfoKEYW0rlnXB9XLCdLxGbYqSp3i4oDdAnFyp7gJpBdqMiYkGoB19ja1Fy12HvjTdFc01EZWCQEF0JsRLu94OTH2Av5FJR6lYC1V2S1+B9chBmAsJ5XBHq4ZqgrXkXhydIxm0ICyRsQAWd6xtResr2nHBkGFZGEqAg1d1BTRygGAifKVkUipYxGgq34FlBZbuOHXJ0RoN8BMkOop31NZgvUOPHVUqTCZopUS6i2Nd+X6W6yOW44nKzdOatgBpZYHYJOb8H63stQS6G6wU1FKxtgWn44q7p477q+NqDUh0RBhKaRw6qvx5Oq4FhIWf+Mbb8hYIcyo1s8ugQqRQu9BAtDnbqImuQZCz585lqCM2HqdEwDJ59Qb0lSoyzoMaXL1AWx3r2h84x79QSDzMdz1i8Yd/+If4mq/5mpf7beyxxx577LHHHi8hPvGJT+A1r3nNF/yexzJBcXf83u/9Hr7hG74Bn/jEJ/Dkk0++3G/psYo7d+7ga77ma/a1e4mxr99Lj33tXnrsa/fSY1+7P1v8ea5fRODu3bt49tlnc8jj54/HssWjqvjqr/5qAMCTTz6533AvMfa1+7PFvn4vPfa1e+mxr91Lj33t/mzx57V+Tz311EN93xdOX/bYY4899thjjz1ehtgTlD322GOPPfbY45GLxzZBmecZ7373uzHP88v9Vh672Nfuzxb7+r302Nfupce+di899rX7s8XLtX6PJUl2jz322GOPPfb4ix2PLYKyxx577LHHHnv8xY09Qdljjz322GOPPR652BOUPfbYY4899tjjkYs9Qdljjz322GOPPR652BOUPfbYY4899tjjkYvHNkH5F//iX+B1r3sdDocD3vjGN+JXfuVXXu639MjFj/3Yj0Fyiuh4Pf3009vXIwI/9mM/hmeffRYXFxf4ru/6Lvzu7/7uy/iOX7745V/+Zfydv/N38Oyzz0JE8B/+w3944OsPs1an0wk/8iM/gle96lW4desW/u7f/bv4wz/8wy/hp3h54out3Q/+4A9+1n341//6X3/ge75c1+7Hf/zH8S3f8i144okn8FVf9VX43u/9Xvze7/3eA9+z33ufOx5m7fZ773PHz/zMz+Cv/tW/ujnDvulNb8J//s//efv6o3LPPZYJyr/7d/8O73rXu/BP/+k/xYc//GF853d+J9761rfi4x//+Mv91h65+MZv/EZ88pOf3F4f+chHtq/9s3/2z/CTP/mT+Omf/mn8xm/8Bp5++mn87b/9t3H37t2X8R2/PHH//n284Q1vwE//9E9/zq8/zFq9613vwvve9z68973vxa/+6q/i3r17eNvb3obe+5fqY7ws8cXWDgC++7u/+4H78D/9p//0wNe/XNfuQx/6EH74h38Yv/7rv473v//9aK3hLW95C+7fv799z37vfe54mLUD9nvvc8VrXvMavOc978Fv/uZv4jd/8zfx5je/Gd/zPd+zJSGPzD0Xj2F867d+a7zjHe944O++/uu/Pv7RP/pHL9M7ejTj3e9+d7zhDW/4nF9z93j66afjPe95z/Z3x+MxnnrqqfiX//Jffone4aMZAOJ973vf9u8Ps1YvvPBC1Frjve997/Y9//f//t9Q1fgv/+W/fMne+8sdn7l2ERFvf/vb43u+53s+73+zr905PvWpTwWA+NCHPhQR+733p4nPXLuI/d7708QrXvGK+Ff/6l89UvfcY4egLMuC3/qt38Jb3vKWB/7+LW95C37t137tZXpXj2589KMfxbPPPovXve51+Ht/7+/h93//9wEAH/vYx/Dcc889sI7zPONv/s2/ua/jZ8TDrNVv/dZvYV3XB77n2Wefxetf//p9PQF88IMfxFd91Vfhr/yVv4If+qEfwqc+9anta/vanePFF18EALzyla8EsN97f5r4zLUbsd97Xzh673jve9+L+/fv401vetMjdc89dgnKH//xH6P3jle/+tUP/P2rX/1qPPfccy/Tu3o049u+7dvwcz/3c/iv//W/4md/9mfx3HPP4du//dvx6U9/elurfR2/eDzMWj333HOYpgmveMUrPu/3fLnGW9/6Vvz8z/88fumXfgk/8RM/gd/4jd/Am9/8ZpxOJwD72o2ICPzDf/gP8R3f8R14/etfD2C/9x42PtfaAfu994XiIx/5CG7fvo15nvGOd7wD73vf+/AN3/ANj9Q9V/7cftKXOETkgX+PiM/6uy/3eOtb37r98zd90zfhTW96E/7SX/pL+Lf/9t9uRLF9HR8+Xspa7esJfP/3f//2z69//evxzd/8zXjta1+LX/zFX8T3fd/3fd7/7stt7d75znfid37nd/Crv/qrn/W1/d77wvH51m6/9z5/fN3XfR1++7d/Gy+88AL+/b//93j729+OD33oQ9vXH4V77rFDUF71qlfBzD4rS/vUpz71WRnfHg/GrVu38E3f9E346Ec/uql59nX84vEwa/X0009jWRY8//zzn/d79mA888wzeO1rX4uPfvSjAPa1A4Af+ZEfwX/8j/8RH/jAB/Ca17xm+/v93vvi8fnW7nPFfu+dY5om/OW//Jfxzd/8zfjxH/9xvOENb8BP/dRPPVL33GOXoEzThDe+8Y14//vf/8Dfv//978e3f/u3v0zv6vGI0+mE//2//zeeeeYZvO51r8PTTz/9wDouy4IPfehD+zp+RjzMWr3xjW9ErfWB7/nkJz+J//k//+e+np8Rn/70p/GJT3wCzzzzDIAv77WLCLzzne/EL/zCL+CXfumX8LrXve6Br+/33uePL7Z2nyv2e+/zR0TgdDo9Wvfcnxvd9ksY733ve6PWGv/6X//r+F//63/Fu971rrh161b8wR/8wcv91h6p+NEf/dH44Ac/GL//+78fv/7rvx5ve9vb4oknntjW6T3veU889dRT8Qu/8AvxkY98JH7gB34gnnnmmbhz587L/M6/9HH37t348Ic/HB/+8IcDQPzkT/5kfPjDH47/83/+T0Q83Fq94x3viNe85jXx3//7f4//8T/+R7z5zW+ON7zhDdFae7k+1pckvtDa3b17N370R380fu3Xfi0+9rGPxQc+8IF405veFF/91V+9r11E/IN/8A/iqaeeig9+8IPxyU9+cntdXV1t37Pfe587vtja7ffe549//I//cfzyL/9yfOxjH4vf+Z3fiX/yT/5JqGr8t//23yLi0bnnHssEJSLin//zfx6vfe1rY5qm+Gt/7a89IC3bg/H93//98cwzz0StNZ599tn4vu/7vvjd3/3d7evuHu9+97vj6aefjnme42/8jb8RH/nIR17Gd/zyxQc+8IEA8Fmvt7/97RHxcGt1fX0d73znO+OVr3xlXFxcxNve9rb4+Mc//jJ8mi9tfKG1u7q6ire85S3xlV/5lVFrja/92q+Nt7/97Z+1Ll+ua/e51g1A/Jt/82+279nvvc8dX2zt9nvv88ff//t/fzs/v/IrvzL+1t/6W1tyEvHo3HMSEfHnh8fssccee+yxxx57/NnjseOg7LHHHnvssccef/FjT1D22GOPPfbYY49HLvYEZY899thjjz32eORiT1D22GOPPfbYY49HLvYEZY899thjjz32eORiT1D22GOPPfbYY49HLvYEZY899thjjz32eORiT1D22GOPPfbYY49HLvYEZY899thjjz32eORiT1D22GOPPfbYY49HLvYEZY899thjjz32eOTi/wfgqY+wC8ahRgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAF5CAYAAAC1N9FKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f9Tt21XXh7/mXGt9Pns/zznn/kxCfkBuUKsg8kuUhjEogRgliajhlyHGklEzRpPocESMbTpaCKAdjhCllCHQVioVQYtW6mhRByIJYIeYRJPaUhR/EJIoSQhJ7r3nnOfZn89aa87vH3N99nNO7iVcKOUmX/bM2Dn37LOfZ+/9+bHWnO/5fr+nuLtzilOc4hSnOMUpTvFxFPpkf4BTnOIUpzjFKU5xio+OU4JyilOc4hSnOMUpPu7ilKCc4hSnOMUpTnGKj7s4JSinOMUpTnGKU5zi4y5OCcopTnGKU5ziFKf4uItTgnKKU5ziFKc4xSk+7uKUoJziFKc4xSlOcYqPuzglKKc4xSlOcYpTnOLjLk4JyilOcYpTnOIUp/i4i1OCcopTfBzFQw89xO///b//V/xzvXe+9Vu/lS/90i/lWc96FmdnZ3zap30ar3/963n44Ycf92fe/e5385/8J/8Jz3jGM5jnmWc+85m85CUv+X/5Df7/J573vOfxvOc970l577/39/4e3/iN3/i4//bQQw/xile84tf185ziFE9GyMnq/hSn+PiJhx56iM/4jM/gh37oh35FP3fr1i2e8Yxn8DVf8zW84AUv4MEHH+Qd73gHf+7P/Tme/vSn80//6T9lv98fX/9TP/VTPO95z+NTP/VTee1rX8uznvUs3ve+9/HDP/zD/JW/8ld+rb/WJ2T89E//NACf/umf/uv+3n/iT/wJvuM7voPHW57f+c53cuPGDX7Tb/pNv+6f6xSn+PWM/GR/gFOc4hMtLi4uODs7e7I/xl2x3+9517vexQMPPHB87nnPex6f8imfwld91Vfxt//23+blL385AO7OH/2jf5RP/uRP5h/9o3/EPM/Hn/nDf/gP/7p/9l+LuLy8vCsB+7WIJyMxeSLxOZ/zOU/2RzjFKX5d4tTiOcUpPkZ84zd+IyLCO97xDr7yK7+S++6771i5/tN/+k956UtfykMPPcR+v+ehhx7ia77ma3j3u9991+/4n/6n/wkR4S1veQuvfvWrefDBB3nggQf48i//cn7+53/+l/0M3/md30nOmTe84Q2/5GtSSnclJ1v87t/9uwF473vfe3zuJ37iJ/g//8//k9e+9rV3JSdPND74wQ/ymte8hk//9E/n2rVrPPWpT+VLvuRL+Ef/6B/d9bqf+7mfQ0T4lm/5Fv7r//q/5lM+5VPY7XZ83ud9Hj/6oz9612u34/zOd76TL//yL+fGjRvcc889vPzlL+eDH/zgXa/d2mA/+IM/yOd8zuew2+34pm/6JiCQoT/4B/8g9913H7vdjs/+7M/mr/7Vv3r82X/9r/81N27c4Ku+6qvu+p1vfvObSSnx9V//9cfnPrrFs32fN73pTbzxjW88nvfnPe95/Kt/9a+otfL617+eZzzjGdxzzz285CUv4Rd+4Rfuep8f+IEf4Pf+3t/L05/+dPb7/bENd/v27eNrXvGKV/Ad3/EdAIjI8fFzP/dzx+//0S2e97znPbz85S/nqU99KvM882mf9mn8xb/4FzGzx3z+v/AX/gLf+q3fynOe8xyuXbvGc5/7XP7JP/knjznPpzjFkx0nBOUUp3gC8eVf/uW89KUv5VWvetVxM/m5n/s5futv/a289KUv5f777+d973sf3/Vd38Xv+l2/i5/+6Z/mwQcfvOt3vPKVr+TFL34xf/2v/3Xe+9738mf+zJ/h5S9/OW9+85sf9z3dnT/zZ/4M3/7t3853f/d3/6p4B9vv/u2//bcfn/uJn/gJAK5fv86LXvQi3vzmN5Nz5nnPex5/4S/8BX7bb/ttH/N3fvjDHwbgDW94A5/0SZ/ErVu3+F//1/+V5z3vefzoj/7oY3gbf+kv/SWe/exn823f9m2YGd/yLd/CC1/4Qn78x3+c5z73uXe99iUveQlf/dVfzate9Sr+n//n/+Hrv/7r+emf/mne+ta3Uko5vu4d73gH/+Jf/Av+q//qv+I5z3kO5+fn/MzP/Axf8AVfwFOf+lS+/du/nQceeIDv+77v4xWveAUf+MAH+M/+s/+M3/Jbfgt/+S//ZV760pfy7d/+7fzJP/knef/738/LXvYyvvALv/CX5H3cGd/xHd/BZ37mZ/Id3/EdPPzww/zpP/2n+bIv+zI+//M/n1IKf+Wv/BXe/e5387rXvY5XvvKV/G//2/92/Nl//a//NS960Yt47Wtfy/n5Of/yX/5L3vjGN/K2t73teK6+/uu/ntu3b/O//C//Cz/5kz95/NmnP/3pj/t5PvjBD/IFX/AFrOvKn/2zf5aHHnqIH/qhH+J1r3sd//bf/lu+8zu/8zGf/7f9tt/Gt33btx3f70UvehHvete7uOeee37Z73+KU/y6hZ/iFKf4JeMNb3iDA/4N3/ANv+xrW2t+69YtPz8/9//2v/1vj89/z/d8jwP+mte85q7Xf8u3fIsD/r73ve/43LOf/Wx/8Ytf7BcXF/4VX/EVfs899/g//If/8Ff12f/dv/t3/rSnPc0/7/M+z3vvx+f/0//0P3XAb9y44X/sj/0x/4f/8B/6X/trf82f/exn+4MPPug///M//yt6n9aa11r9+c9/vr/kJS85Pv+ud73LAX/GM57hl5eXx+cfffRRv//++/33/J7fc3xuO85/6k/9qbt+9/d///c74N/3fd93fO7Zz362p5T8Z37mZ+567Utf+lKf59nf85733PX8C1/4Qj87O/OHH374+NyrX/1qn6bJf/Inf9K/5Eu+xJ/61Kc+5nt/0Rd9kX/RF33RY77PZ33WZ911PL/t277NAf8Df+AP3PXzr33tax3wRx555HGPm5l5rdV//Md/3AH/5//8nx//7Y//8T/uv9Ty/OxnP9u/9mu/9vj317/+9Q74W9/61rte9+pXv9pF5Hicts//O37H7/DW2vF1b3vb2xzwv/E3/sbjvt8pTvFkxanFc4pTPIH4iq/4isc8d+vWLf7z//w/5zf/5t9MzpmcM9euXeP27dv8i3/xLx7z+j/wB/7AXX//zM/8TIDHtIQ+9KEP8SVf8iW87W1v4//4P/4Pnv/85/+KP++HP/xhXvSiF+Hu/MAP/ACqV7f6Bvs/97nP5bu/+7t5/vOfz8tf/nL+zt/5O/ziL/7isb3wseK/++/+Oz73cz+X3W5HzplSCj/6oz/6uN/7y7/8y9ntdse/X79+nS/7si/jJ37iJ+i93/XaP/JH/shdf//qr/5qcs685S1vuev5z/zMz+Q/+A/+g7uee/Ob38zzn/98PvmTP/mu51/xildwcXFxFxrx3/w3/w2//bf/dr74i7+YH/uxH+P7vu/7fkmE4qPjRS960V3H89M+7dMAePGLX3zX67bn3/Oe9xyf+9mf/Vle9rKX8Umf9EmklCil8EVf9EUAj3vsnki8+c1v5tM//dOP7bwtXvGKV+Duj0HoXvziF5NSOv79l7oOT3GKJztOCcopTvEE4vE2r5e97GX8pb/0l3jlK1/JD//wD/O2t72Nt7/97TzlKU/h8vLyMa//aI7Ixv/46Nf+q3/1r3jrW9/KC1/4Qj7jMz7jV/xZP/KRj/CCF7yAf//v/z0/8iM/wqd+6qc+7uf4fb/v9931/Gd/9mfz9Kc/nXe84x0f8/d/67d+K69+9av5/M//fP723/7b/JN/8k94+9vfzpd+6Zc+7vf+pE/6pMd9bl1Xbt269TFfm3PmgQce4EMf+tBdzz/e+fjQhz70uM8/4xnPOP77FvM887KXvYzD4cBnf/Zn84IXvOBjfOO74/7777/r79M0fcznD4cDEAntF37hF/LWt76VP/fn/hw/9mM/xtvf/nZ+8Ad/EHjsdfBE41fyveGJX4enOMWTHScOyilO8QRCRO76+yOPPMIP/dAP8YY3vIHXv/71x+eXZTlyNH618dznPpev+qqv4o/9sT8GwHd913fdVbF/rPjIRz7C7/k9v4d3vetd/OiP/uixOr4zHu+5Ldz9l32v7/u+7+N5z3se3/Vd33XX8zdv3nzc17///e9/3OemaeLatWuPef6Zz3zm8e+tNT70oQ89ZlP96PMBsfG+733ve8zzGxH5Tk7QT/3UT/EN3/AN/K7f9bt4+9vfzrd+67fydV/3dY/7+X+t4s1vfjM///M/z4/92I8dURPgl/SpeaLxK/nepzjFJ1KcEJRTnOJXESKCuz9GBfPd3/3dj2lb/Gria7/2a/mf/+f/me/5nu/hP/6P/+Mn9Du35ORnf/Zn+Qf/4B/8knLUF77whZydnfH3//7fv+v5d7zjHbz//e/nP/wP/8OP+T4i8pjv/X/9X//XXS2UO+MHf/AHjygCRCLzv//v/ztf+IVfeFerAeD7v//77/r73/ybf5PW2hMyTHv+859/TALujO/93u/l7Ozs+L1u377NV33VV/HQQw/xlre8hT/xJ/4Er3/963nrW9/6y77H/5vYkqqPPnb//X//3z/mtb8SVOP5z38+P/3TP/0Y5Ot7v/d7ERG++Iu/+Ff7kU9xiic1TgjKKU7xq4gbN27wH/1H/xFvetObePDBB3nooYf48R//cf7H//F/5N577/01eY+v/Mqv5OzsjK/8yq/k8vKSv/E3/saxbfDRcXl5ye/7fb+Pd77znXzbt30brbW7pKNPecpTjvLoe++9l2/+5m/mda97Ha94xSv4mq/5Gt7//vfz9V//9XzKp3wKr3nNaz7m5/r9v//382f/7J/lDW94A1/0RV/Ez/zMz/DN3/zNPOc5z6G19pjXp5R4wQtewNd93ddhZrzxjW/k0UcfPUqD74wf/MEfJOfMC17wgqOK57M+67P46q/+6l/2eL3hDW/gh37oh/jiL/5ivuEbvoH777+f7//+7+fv/t2/y7d8y7ccFSqvetWreM973sPb3vY2zs/P+Yt/8S/ykz/5k7z0pS/lne9856/Z+fvo+IIv+ALuu+8+XvWqV/GGN7yBUgrf//3fzz//5//8Ma/9Hb/jdwDwxje+kRe+8IWklPjMz/zMxz3/f+pP/Sm+93u/lxe/+MV88zd/M89+9rP5u3/37/Kd3/mdvPrVr34MV+cUp/iEiSeXo3uKU3x8x6Yu+eAHP/iYf/t3/+7f+Vd8xVf4fffd59evX/cv/dIv9Z/6qZ96jMpiU/G8/e1vv+vn3/KWtzjgb3nLW47PbSqej37dtWvX/Eu/9Ev94uLicT/nptD4pR53fp4t/vJf/sv+GZ/xGT5Nkz/wwAP+R/7IH/H3vve9v+wxWZbFX/e61/kzn/lM3+12/rmf+7n+d/7O3/Gv/dqv9Wc/+9mP+UxvfOMb/Zu+6Zv8Wc96lk/T5J/zOZ/jP/zDP3zX79yO8z/7Z//Mv+zLvsyvXbvm169f96/5mq/xD3zgA3e99vGO0Rb/9//9f/uXfdmX+T333OPTNPlnfdZn+fd8z/fc9Z2Bu55zd/83/+bf+I0bN/wP/aE/dHzul1LxvOlNb7rrZ7fz+Lf+1t+66/nHO+//+B//Y3/uc5/rZ2dn/pSnPMVf+cpX+jve8Y7HfKZlWfyVr3ylP+UpT3ERccDf9a53Hb//R5/Pd7/73f6yl73MH3jgAS+l+G/9rb/V3/SmN92lNvqlPr+7O+BveMMbHueInuIUT16crO5PcYpT/H8SP/dzP8dznvMc3vSmN/G6173uY772G7/xG/mmb/omPvjBD544E6c4xSmAEwflFKc4xSlOcYpTfBzGKUE5xSlOcYpTnOIUH3dxavGc4hSnOMUpTnGKj7s4ISinOMUpTnGKU5zi4y6e1ATlO7/zO3nOc57Dbrfjd/7O3/mYaainOMUpTnGKU5ziN2Y8aQnKD/zAD/Da176W//K//C955zvfyRd+4Rfywhe+8K65Fac4xSlOcYpTnOI3ZjxpHJTP//zP53M/93Pvssv+tE/7NP7QH/pD/Pk//+fveu2yLCzLcvy7mfHhD3+YBx544HEtr09xilOc4hSnOMXHX7g7N2/e5BnPeMYvO1bjSXGSXdeVf/bP/tldM0wAfu/v/b3843/8jx/z+j//5//847pOnuIUpzjFKU5xik+8eO9738uznvWsj/maJyVB+cVf/EV67zztaU+76/mnPe1pjztY7L/4L/6LuwZ5PfLII3zKp3wKX/uaVzOVgvcKKtiuYLsJpoyW8+PrtS8kc2aM8/0Z+93MPffew/m852zasd/tyJJIJNqy4ubgCW+OmbHWFRdBVMjZwTvWLlk/8mHazdu0D/4ifvMmfnlBUiftd+Qb56QHH8TKxIUlHn3kkts3b/Pv/82/5CMf+EU+/IFf5Ob7PwRLZzLljEYRQ3crfSfYLCBKrsp8SNgK5sIqia6KqZBcKQIzcA5M7szeyeKIQi+KiCBJmMRRAcUo3RGP7+GSQRVICCBI/IxA0fh5FQETRBREcEmIEK8f/yeqMJ5DbBx5BzMY77X2ld4rl7VjZvTWcQcDGo4jR+tTc8fccTqqiuZM2u+QKcM84bNCBlHHxXEBdjPkAmVHV3BxVJ1SG7k1klc0CZoT8/k18rxjun4/0/0PkG9cZ3f/A0y7M+azHRMg3vFe8b5i1lh757J2Dt24vH2gHi6otx7h0UcOXF42PvLoSru8xOpCP1xw83Dg0WXhkUOl9k5rHe0dMcNaQ1RRFTTPiM/Q90gTMDA6zoJJo3vHgY5gFEyULoqZgTm5VZJEv9aSHM9RQzAzqlVoDazhvYHHecpJmYtyz/XCbr+jTBPzbkIFEjCjZFFyUiQpLgIk0ISj3ForF2vj0UPlkcuFQ60c1oXaOt0McJI6WZzr13eUnCiiFM0klOwJjZfhq9OqUddGrcZqxiNeqThNYI0LC4hrOWNkaXTrca10p5tgJnENIphEtQaQ1Dk7z8y7zI1re0qayFLi+sFpZpgr7kDr2FJph8atmxfUXjnYyjYNSe947IAy/nxgypxPiQfOZvYqTCrMqqjMCBOtrlTrHOh84PKSm7XyC0tFzzPlrPCbPvUBnv7UG3zys+7nmZ98D7uzmbTfsVRjXTofeO+H+cD7PsL73/8R3veLB5YVDj1x6+YltXagx/HAybOjGXJxZsuUrlxbC+ddmUncMxXSnMlTZvfU+5iuX+PGU+/nxj03yLsJMly2yuVa+fkP3uLhRy/54Idu85EitHE/TvNMmiZ8f35EsrUbbo5V53JtWHeSCKkkclbOUmdWY6+dZIbXyuHDj3Lzwze5uHmbhz9yCbUjreNSMYxGZTpLlDlz/b5zrt1zzvV7rnH9vjNSUhS4+cGPcHnrNr/wCx/m1uXKYWmYZ8pU2M2Z+XwCdZqvtF5xayTrFElMqswygSleobeEW8LSjq4JQ3CErjt6PqfsICWnaOc8dc4yPPVG4fwa7M8FP69YdlqBSxEq0A2mlJk1c30qqDliTm1K79AOTrs8YGvFqsG6wmGlL0ZtzrLAhx695PZS+cjtSnelOyy106pxWBxaQzASho5P3Yn11YBCpqSZaX+OlRlSQrKTpkTKSikFcbDuVO80d9Zu9GpY75xN61g/M9fuPWOa4rh6Ujwp/fycTqF54uLhil9WuHXJTpzcK+nmTdrFTepy4GcfucX169d/2VzhSZ3F89HtGXd/3JbNPM+PGbAFwIcfxkvC2oqp0yZlnTM9F3y6jmtsqAJkgSkpTTIriXToKIaKU7KiKVPSRMkKOCklxBzcWFtCkiI5kyfBrdPqjtvuaJ6gNrokLBfA8P2MnV/Dr92gl5nmieoTK5n1nhsshwOHywvW2xfI3Ek9Yxgmhuwavkv4pKCKLUoTZdVK7calOy3eBXGjOBScRWBy2JsjVNyMSwdUkC7MAlmcSWA2I7mhXnFNkYxJgi05QUnEQpZFURkbqSiqKTZWERKRtOlIUPSYoIC4Ix4Jj5sDgiJ0SSCOAYiTGAkJznbmBeJvY4NREZJKwIEimDjmhpuAG7HFADoSIhptJDuCkdeG1kaioTmhszJPTk7O3IzU4t93vbPzzs6dWQAcG4lVa5X1sOBrx5aGPXyLfvtR1oc/xPrwbZbLyuH2GptzN3pdWZaF9bBQD50WuQQukQy6K2KOiaO1ImbQG8kS6qDiIJVER6xhEluiiyCScAWzjlnH1wPdHXWnZ8FVcFG6CB2nWUc8likVJwkkgSnBnIR9Us5SZkqZXUokILuzEyVpIqWMJ8FFGPkE7s5qndUa2ldoC9IatIpYfBYRISNkhTllppQoqsyayZIoJDDHOyzd6AamkVh0cbqN84whboThu8SxwTBp8e/ukQO7Yq5xnaggKcV1IYAaFEWLkKZETplJC1kFx+ktNlM3IEErQiOz1I6vQlo6TiSKbMdgPJRYSHdJOUuJazlxTWES2MnVPbUmpUZezc2kVBMmjZ+fBM6ScG3K3LubeOB8x+58Rvc7LlfjMjce3c+U3YSWgqSGZNC4w6JoMsPMMQxvPm5EJS4WpZvQDDIe14sZuKF0Ju3sk3M2CdOkMCW0RgGymxLzpEyTM5WEalwXU85oKnjaxf3q4BrnRlJH1MA67oZbbHzmjiVwTUgSxIw0KZod1Oh2wHpFasNH2WJ0tMzklMie2GnhLBdulImclCROmjKlZG5PSl2cJp21Gawd94InkOQ4K1jFvdF6fPcmShGFrvQGde2R7KpFgiIJEcVTwq3jWePcJ6ULI4mOopGkpCLIBD5FIuPiuDkpZ1LKlDKRHFJz8hrJXDWLZMUTqyvWwZPQxWhRqnDZF25XuLV2uhvuQl8rvTm9c0xKYtUdRaQ3tsReygQlEtMoYkB1rAdJyBrnMInQTRBzuhltnIfaZRSwMDWQJOQxestFwBXZ9osEnhxNTvFOppMsEsPW18fd/x8vnpQE5cEHHySl9Bi05Bd+4Rceg6p8rLj1kYcpJWF9pYtTi1BLoudMnyqo4mNzzarMOUODtu9MUtAKrEZqQsuFlhriDRFIORZqwem9oTKqva7gHcyi+neJbBalk1CJDdVFEBfMhTb+3SRhecLLBNOEnM2kyckyk1UoCnnv9F3G5oJoJq3KdJmQZSX1Dr3RvWHeEeuoO5nYEHCPCspWOp3bPm4OYE5QJBbCOhKUZCMhFKe7IT5qT3FUnCpCAhSPZARHHcQF9dh8YjMFNR2oiqMEQqNmSLc4Vma0XjEbC4fFQ0YCmcTj4gdU9JjpiDuaxkapCqJxzE1GYhPpTFTKHbrERj82U3HQ5qQWKZKaxIZSjOSdlBfk4jIQoN3++LksKVin14V+uEmrK+3yQF87fem0h2/Sbt+iPvIo9eHb1KVSbzeaQ3Ow3uhLxQ8LsnhcOwiSCiKCoRy3e2u4dWgdXHFknIMOYrGRiEcSd0SqHOmGWFwT7jYQp5FIiAaCALh3RsqHSGxqsZbGZn71SKgoyQNt2xAzRIHjL4v3MqfXSq8VqzUqv9biv8e5Uc1xPYiQDNTiuorENa4R75G5xeZqV8iZeyA9FsmJehs/tz0cESO5D+xNMN+uiDRQvau1IpC+eK1LoGuooClFgiMOtCiSRlbjosdjJON+9mOKcsfvJu6BJBIPg+ROFkjSUTVUDCPeJ8c+RhIZSIyPGj0S+w3PzHHFjtfEWuaiA0ETmht9bCJmRjOnd8Pc4vz59lsjSXGLSr66s1ok82Kd3hq9NbxXxBsqGVIimZBSIGg5CTkJRWJjSaNAUZexDsZaiIGYICaojaLTeySiAxdsIlSPdQZ1uoKp4dLotmDWIuGij+IjkuxsHfNIeLj6ZiQRckqUlOKzahxXesddImGrxnFBGImum2ASa3QHGMen9UhQeq9YMkw6STJ4DVSnZQShJ6eOpH9xZ3JhEsiiV6juEb+w8Wnj3k5IXFtCFCmj8Khi1AFPuzhdjI7Rxz5jJpG8WNwj3jrex70yrk1JkaAj454dV6mXBCXhOWEeCYqMvSoesYZjEii4bD+skSjahpp7JEUp0BVxCZR8ja8oonENjH1COkj3UYz4KFifWDwpCco0TfzO3/k7+ZEf+RFe8pKXHJ//kR/5Ef7gH/yDT/j3vOfd76FkpYtjAk2MniSy3t0NkMjoUsrklJlL4XD9Omf7PXZzYTm/xuX+jPXsNiXHa0Q9EpopMZVEVo0NWhNZCymPDdE6flmxQ6MvRquONfC03ZSGtqi6xBOpKckzRc+Zpmvszy5IDzSyJs7P7+X62RnTVJjPMna2x3c7pJyRe2G3TPS24r3S6gXSb0M/QF+Oi7q3ilunt8qtemCtlcuLhWodMycnKAqTCDuPrLa0C7RV6I22tLiAxqKiBDSvIwWAWPBisWmox0IsZncsrLFoJCL5Sd3Q1qA7WMd6LC59tI1U4CwpSSN7zzJaSikF/ChKYSapUFQpqUQlg9I69E4sYaa4G7I0RDqeKqtkTBQnDzwoIWpx35mQrJNKJA/Uit++hS+NdrZnPd/TyxTH83CgPvIh2uEiINiRgfijt+mHS+rFI9Sbl7SlY5eG6RQtMAxdKvlyYbfEIQDQEkmKaYrK0p3el7hx20io2Fow4zghNAmsKRaWTjJFoyxFbD2iCNjVmmTj9yRAU3TycsokjcWxlEIpmVRmpMyQJ0g5EhCMqgnVRNcyfn9AvdY6vXaWiwPrslIPC+3iglo769pGOpvRLAEJJ0hLXA+SbVSGinTDW6e3Tq2xwVqPRFscsgnSY4MT1mNykhkbkyt6TFeUSwKZK6MlhUaLi3E/ivvYIDtZHZKgqcTuqiDW8d5Jq5HGBls0WqqaNHYv91GjXiEootvmrRQTUnWStbgPBFJJpJxiLZCocYpC1khURByhR5LqBt1JXcgWCXV2JXkCzXTNrKoswIJTW2epK3VtNMu00Za2KkyZQCfSREKRBq3FPXgrGbM4TZ18OFCmhB0uwM9QzeTdDssFT4n9XFjmwrVdonuikkDSSJ0Eaxw3+EhShGzCZGNDHQgYyFUr14U2vrvtoBWj5Uq12/H5gcqGroJYww2mvrJYpVqjuwXCmxJlmph2jd00M+XKnBrVop3q1vES51tSHtdMChSXkfARqEIXp7nRLFocbg1USRqJr7Dgi9F7JH+WjYbwKIaokpKwy3FNBJJcUWvkupK9kb1QysREZtJMSilOeXaWDEtPtJzAGmZRAHQzPBnCYfyukaCYIzWOUqQ/EkXGrqBThqyI16tcI094LvQ503qcK9dRNGnBc0zKFkBqNJRFLBgAJlAD/aaDHSIx7hiaAjFRNI5vKpTmeBekN7Q5UhNUwRtYfeLClietxfN1X/d1/NE/+kf5vM/7PJ773OfyP/wP/wPvec97eNWrXvWEf8cHPvABciow76IFU0BTtBukxWXoTlyAKVo/67qgux03rWKXt1h2M3U3xUHW6OFLTuh+Zt7tKKWQSRSUgnKmUV0asNy8pF2utMNCXxq2drQ4uTtihvaGSEKbRIuhGqVBaU6xDgnynNjdM7O7/16m/Z7d9Zm02yO7HTrfIDMz9T0ZQ72j7YC0RxG7RO3yWHt1i/7zUisXrVO7sV62YwIjSa4qs2aodVK7RNcD1BW/XHEzvEem7AYyMnXcop3QR5XbHbohNRb0KJ/6sd/vjBuoO14j8ZFu0BfwTtQrjotR1WNRQEbLTQdKILhCMSU5ZHPmtZJUkKZsjR0bCRXupF4DcRAGipWQvEPThGrGNBIFx0E6KRl1apTLTj5b4ULgbMLPJ9qcg7+xrNSbH6EdLqkXlWVxltW5uHnJoR64rLeoS8Oqkw4JyUpJGVdDLZM8MWs/Jg+pW3BbRLDRI25SsCL4NHg+OOYNJcff/eqGdg20yZPHsXIhzTu8N6y32EANvMV+uoF+mguaMzIXRONzTvOOMmXk+ozMO8gFS4p7R7zHz4mQBBiol9EDsWwVb2u0dNYVWRvS+0gVDKGR+47sQjKJBQowMapHKbY2GxVgHwmckDTF4o4fK1EbVTBjS0kpoZqZcqFIQgMSIXujYOS54BjmPYoGi0Q5ayQ9eV7RqSBAF8E7tNVpS8dbJ7erTTQQHCc5qAeeCFFT6viMCSGh0KN11zvUFudZ1Clzg6ljWbBE8IckYdIHKCV0U2pX1haPZkrvSupK6kbqjrYOtWLLynp5YL3sHA6dw1KpNSB/szhOzUCrUXunp4RJDuQDi0IlK6UkyhQFmFjD6oK3FbdCUmMqUVXvzzJrK+wPM7cv43OtlnGJShy3+D4e14t4InkkWL0L5m1U3tFeK5My7QvTrAidno15uaD3hf21TFs6fR0JsQ8gYHZsMnpqNF9Y2yW1FpIUspZoLY02cJJI6MQLTqJbwX2HuJLdMa84hudAiFJKZBQccnZUEr1bbOKacFVynjBmuiQ8CxIg3fj5DQ2J+1eJtokKSM9RSNWV4h68mxxXc3dBqkIDaY5YIo1i2LPgrpGMeMebcZ4Lmlvco8Sad0EAF3ZceS3umfHXbkSr1DwQRBncFxQTAS1ImpBU6DoN9DtaRcFDI76zCkUKIoFe5VFEmAviGbyQ6oT4TLA9Cy4ZFyN5IO3OjLPi0sen/uXjSUtQ/vAf/sN86EMf4pu/+Zt53/vex2d8xmfw9/7e3+PZz372E/4djz56k5wntDlaggiWk8QFIwN26oahkBI1FyodaQuXGWgH2jLBkgMOVqclhZLResbUzsjTzESmmDCZcKkWpFER2kUgKLZUrDa8GapGaYb3Hj15F6waXjveamzsFo+UIBUh7RPp2kw631NunJF3e/K0I+1vkGTH5HtmheRGsRVpBekXqF+CKK5K9+hjHurKZEo30GWgKxsXhYHcNYPekXpAlwNSFzisoxXj9B7JhdVAisyM3iu9N3oLSNhbx9eKtdHuai14J3EYSeZod7T2wa9w6AfcG+oVJDJ0p42tZ7SPRt/cR3uuW0IRMmAEpJ+NgHk9bjwZrQfqirIlQPF7pDgUx9MgmbrTWsDNSYWUR6vkUKEJfpmwy4TPKY5pbay3b9KXlXbRaAenHpz11kq1le4NmiNdKD0IpEgCFRKJpBnLI9EbC5d4cFs6wSdqJWNJ8BKEZQN6X4A8ILnx/XBce+Qr2Qe6p+QSVaw3RwJWIngV8aM9CZIzMkVr0ZNCTuTdTJ4yOs/IVJCUQQOydws+gcvW9ot7zvHBKWjHFsF2Pav5qKl98DIE9TSQt/gebo6JBCKzJcCDo7ShETpQS1VHPBocZmmcU8dTgVzI856JFOiAAV4RGjonzDqt2XGhlu7kZmQVUuuk5IiBd8F6XBO1OV63dmF84S35ZVybsvXzR2mw8bOESCStj6Swjf69OpqMlA1nEC5Hiy9aNuN7O8ER6fHofRB+B5KjRhCsW4PasLXS1kZbjNaM1m3cT+M68SCadzO6NboCKQXnQIWclZyVlAcOMu5hbyv0KY6jZHIWpkkiqZgTug4+SxMag6uwtZJFghMSC06cdyOKF9nObZBlpylT5ji3wkzZz0xnM9OujKM82ldb66sABUw73SutL9F+VcMSgAX6LUIaPAgh4Z4wEu5lvNfWuejRztRESsHkUaKbKQQBXRuYavBl8gxkelQIEBRB9IiCjUd0rQJhdjAbXMYuA2E2rEVRpu5IZ7TCxvUlkTRtrdq0NsyjqJyngpfGmvSIaFZg0EDYysNYGy2ux1FQmo2Wmli0sARcEl0CXzbSSLnHdY2Mln+gnS4wSRq3RazD6o67DI5TQruOtrCS0SgqJEehRSdIU3mczCcWTypJ9jWveQ2vec1rftU//3BfSH1h0pXcMztmikZbJvsBeiQK5h6tnlJoNVCR5fAwu7OJeS5c7DKSgOS0KWOl0PfnUPaghdQyuTm5w04ZqpKC9uiv+dJhDaVEbkbxxl4a+xbcFevK5WIclsat9REu7YI1NTw5kp0qKwepmHSyKMWD8JrbimpwEbRvG9uALMeNEL1KoedCw+k5MaU9qplrlFgktuV0VPF9ddwM6w3tDe3GxChViAre3bEBBwfnoNFbjb5s66Nir1gPfom3RqzOFtV2DyY+rQdpEjCP3jLeiH5/o7cDZp3eO1Y7PtQ9Zj6SiY2s7BzairpRzNFekd7RFuRJsdjstHVyW+kB3CC6BLSZJg7Nad1pFXLeRZsjO36heBHqRz6MT50+9SAlIyyW6Uy4J9qSWQ/GenC8ZZIqu1yYNhb7IGaSFE+dnpw+gehI/FbDW6BQS19jcRHBz3cwFWS3o2vG3FmXCTONRw8lT/eGHdVJjMotkWRGeoYWhFXphvRB/HShpQLTDsqMzTk+a07IlEklM+fEpEIWJ4/OvgO4B9fIdVzr0W9uHiTkSRM9Febi7EpHpUfyywRSKAPZ1KTovEcScVwYm6cYpICNk/gR/enWaUS13GWodDxvHXZsv8OnGT07J0sKIq6BUinS0ezUunK47LTeQCGrMqkwIey9BBm5C+axwS8Ho66C9eA6+bgHFnOqBcox2CbYoHbHxplh8Aga0eoIfshGKh+cBJdQPw0FXs+JbolegoCMRNuyVaEtQj8IniX4V2sjL41yWOKxHtDDBbLa4MRFVevbZ0LRO2rqagcEpZbCXBKpZHZnQi5CnjSUTG70daXdvqAlsF2GaQrxQDHKzklnih0ytQu3q3FYOjXIRmhxdCrsdtGu9UHu7N5ZDgdSglyF6aywU+X6biJNgmOsdOzaNawZ0733wsUBv1yYemJLPFKGlAWlYvU29fZKL4b3GfE9yaFoY5qcMgulKnph9K74uI/Uc5REI3nTkRiLRPkjIpSklGkChNY87seUcC1UT5hFkqcKJRtT7pRkJFvQlqEa9Dx6kBpqIINmCRej9w51oajRxJnp0cZNhs8NLc4sQvZEZ6IlIa+dXIJfJFmp623aZaUvDZfgvB3YWmFOujiQZkNTovaGDTTbipB6j32kFDxleipBou+VNviM2UM8EEm/0EeylHM6coIwGz32Htwi7/R1iX2qefAnLTREWUFU6aWQbRf3+pWt2ceMJzVB+X8bR25Ej4rZloClXS2g/x7wcbU+qulG7U7JNRbBPlPXgrWCpoTkRKuZnp21dqqsGB1piWSQO0w5BcQ8DQa9x34rLbLhyZyJxt6ds7UHktNgqc5SO7cOl1y2ldUCidHOqMgr2Eploe2EthOsGWgAyH0Q0sTA6iXeV8QvA2nQ6FuG0NBIWcnJSOojQRmb9XhYG0mF9VDzSBBRR/kQLTJ3KCO1cRDPSMtIK/joAfmRoe/QW1ywZlgd/93agMgZqJMHQUw5/re1dbSPBjLTQ4LrozUVDDpis2wrakY2Q1pFekPaUKi40y9vIbWRl5W2tGgzIZimgGqXQLmsGn3KkISUnJadqsainWah6LnoK6sJt3sOIh1AddZDo60NmEiSSDrjucT1lyw2YSVQgpQwL2iO5LBPBCGxG9JXMk4Tx/cZSsamTHWlGSQdFEkBQ1F31FMQX8UDXh7qAk0p2loam+7Gt0i9RG9aE54Vkge8nAgOhjjqndydLI3sQTR0lyPJQny0pXpAw2Kj142EsivJkChGD9/EQj2nQpotVMkKmho6FDPZBzqwyXoHrBx99WjNePTDAkkxJ7lFzxyO14O5HRVLxwpdAkXFLXr5RSHBhLLLiTkn9tN5KBqSUD2kmaF2MJCgZpqHUqJRMWnRQtiIiQyyrAioI+qjOh3PCUOhEgmKJDnyjEW2TTGe1wGSRZLQ6dao3ViaszQoDdYOtQudNCT+aXC4ZBxbuQNujzUxUMcg5GqKW9uThAIly2iddawZpsEVOSKktdNboI4M8nTKmVwSecqkDpodqbFRmXXERiW9tejEkaKoJ1LNobQBkimpC9oiOTHG/dg9OsUm9O70tQcqK1F0JxVSD/RX1BDtpO4kEwop1rqUmKfMPCvLGpYQ4h0zIXmLe2gkA6H+u0IijuRpZai/4gaQocJioB9XaWq0WlUs0nlzcA30mEBxkgSa7+JIT4O8HqhQ8Bo9uDEWFZY0kC5jvZXR2h2yA/U4d0WxnOnaqXBEUDbe2bYvJsa9gEayTyAeak7qHoomteCx+dgPRlJ7/PnxFx0fRVUG6RiOzOhuiG4tvPUOoUSJT5cq2sc6kBPaBp/rCcYndIKyeREEkS4WtjaYyb15oCfWWVqNhax21uaUnGND7I1WJ6zPpDyhJdG7UJNyuToHazSLPrm6oBZwpxZB5yAPxeY/bjpTdtaZe2dfG+cXB7JHq2NtRu3O7eWSZa0s1plEkAb1wtBcsbow94X1DHIzmC/H5qgU15GgKLaugxR7iatgqtRcBhPbA5JNHcvBCYjdcRBYBaxvEGAPNYFKwG6SgsOhsQBu1RiAuI4FVUe7IRZbH+iGbNm0dWytAeu2EPuKbJtZQlUoU4mebZKAlUey02s7ojEbYdAtjZaDDQlrKJCkrfGerR6TpXp5C5ZKuqykyzUImOZR0QJcLlBbeILshnQ2Od0ajc5KjRaRNy5q47LBzdVpGiiSdsOWA76u5NTRdEaSCUnzaDhXXLdNjtiZZUKLBjehCbWFd4eY0rzTxGEqsejkRG+DEyBBZnUHpYd81v0oJIyFY0i+UyTNyX2olDaeVChHdKh6YgGOz+caLgnqSu5GkZBwZi0MWi14SA2lE9ePcZWwooNAFwnKNKUhFlF6VjyBzv24gafUQoky7iOzgXqNpMNttJZ6tI98VM7iNkjXgd64R0shkgWLRHC0F4K7KeRB9M0p4SW4BVNK7PPMnCd2u3NI0YPvvSM0RCoqPSTs4lSLZKF5xcQgxeKNSaiijvuHbJg+d4qeNom9HmX6MHqYsXkrSAqvEtdoZxmhzqu9sVRjqc7UR4JiVwkKmoeHTnDLJA2Ffd9wHQYt3MliaI4kxrPENa8algYerShLOrgKE70ZvQXpX7MMnkYm5U4qmTxnskG67NFax8a9KuP7ZkQl2i1TsN5SLWQzMpC6RiugMsiwndYa1iwKchN6dfoS96lI4EFJg+ujNdRbokFkzi5kEqS4Luc5M02JaVJKGkgiTvIaTQwdrQecPs6Fuw21o+JDKhyy6TuSUTYlnI0Efev0RGsNE8TyWGPH59XY1NUAyzihyusSS4Nt143HWipbgttGV3EknVti7qpYSlhKNFWqCOvxk12F+PgMkrCh4jTfWu9EojfW7a04YHCXZJDyI8GJQsgkyLRwhSTK1kbqHXKNz6/LIHyPYyINtMW24o4P8rroJwBJ9tciAjGI/na3RPYh25M4CRYih+D3jX1VNNody2qRSWOIQraJzHVaOadK4eAzlzJRU6IfN++EzgWy4hMYK4PNQDYjdeP88jZzXTi7vOB6u6D0RlpWWjNqNx6RzqEtLHWlSPiz7PSC8rCQywWX+1ucnxf2Z5m6q1SBFaF4EC6LTchaoXfU1yuTnFKCka1Q5h25ZMo8jQTFoNvI2iV4AxhJbJC8lFLmUVEQF9Ed/g0A0qHXhrU+5JxR9W1NfjWO3idqgywpjmYdm6igOVogUymkVMgpkcro/YqjfUhKZdw4EEZyABKERSX8XELZYVeLizq2Lkg1yqHDYUtQKtWD6XJ+WAZ/psEU1WfBKOtC7pW5L4HK9Ea+XJkWp18It5eZtQnr7Vu01mh2m9wqGZims1CVqKDJsWS4BAIQ6EKi5EGebAm6ImY0lM1GSVPGNODWrgm1IKYebeu6BARv/aipcohjmxWdSixICMnXwa2RI/KzYrTewjOlt+NiFqqSTnZjsljQJuzI6qdF+8C838UVCblsQPklKbMrPitThupGy8RxmGv0pFXZIaglrGrIYnsodOzIlRjJrcUmjYKWRFHBu6G9sqkZiznZOtkWMimuaZfguERmGAvwyClEhVQmynTGbtqz21/HpdO80uyAUcksUWe6DSShUXsdhnOxwSfdEMjRK5WRFYxCJYj2ceyzSBDrJVM8SJhtk5cSLafiSsmKaVS0aiu0Fa8rXhu2Nmxp9Npoa6c1pVum+0S1QnWhug/C7VVLx9kSUr/iconSEFaPDfNQO9l7wPCecZxpLhwuK5o65dIoKa6x4sIkjbkk9nPwWtZdRdwo6nQrSM7oMOBTSUgu5LMz2O3QUsi1kVsPO8gqtEOlabS1zQzpkWhkSrS+VvBK+PYwKnobhFKP90itkPvE5EHuzMnYT5393FlXY5qWIVE3SmnkydF9JuUgKtemQ25vZIGcoUyDF3RHIhyWEhabu0URIBo/YDK4ZCY0d3rAZKiEtUUfvlpFd3QL356WFHIUui3HdZuVoyqmXjbWJtQGy60aHoumGA2SoXMi1UTqynRb6O6Doxf5TZ6UVAJJNIs13XUcw1FMZg/puXiPZFaNSY2CkHwrTkf+neJ4kHRIvDXQFnGgIkrwrIqQJAjy4TUTWizx2HzDEcHpzZ7wHv8JnaBsYFQfBB+xLTOLlco3bwWuXCK3jNSG62TYMChOgbSHcg2ZZmR3huoelUL3gmvCNeMlBxM/G90uAyYlkWontwaHSvOGNUfWSm4L5XCg1U415yILS2scmo3sv9N8pSyQdUFuH2iXmcNZos4rK84B0J5Q17gZ14Z0Q2lIkkiY0khQEuR5JpXMtJ/u2OT6RyUoTtYwpEspM037qGadqERlqKEGNi2d8LlofTDrfRAno420VRVhEeSDQCZD3htQLw7SLZQ5ycmaKaThIUEs9kOauWXvUfGPG0ZGy0PjfQSLlkcCkgQvoRuyM+Sw4q1hfSXqtA7rTB4OjjrpSFBgriu5NSZb4tj0jl9UZDGWW06/yPjSWRwOh9ssmpC2kltlXhfmHERN1TUSJg3INiWnpM3jZUDIhGKv+SAZjkWDzc9jLCSS9ViNoIoZgaD4KNMhXpMFKXlUTEr2QdwrKUzPIEydmiAtqkE5qq02WThkD++OjUq4uQkHLB0LXHz+8I8gKdnDa8VwoNCzUbxTM1gCmwIfFhEmonI2U5qOXMeH/NqHgpdh5DWOEarHtmRWPZaJyZ3sRrJ+Bxw+1EsI5inahL1jHild/L4N3tCA1I8VcaiW1DvqoXBT70c1A6OdNQrOcV4iSYlCUtjw8O24qYaiQwjESDdPCAkCpQ6mSEKPLcpoh3bUAjFK23fsfVzLfZjXDc75uF/9KuM8RkDxcqSEOXFPNfWwY+gcK+few+irdQ/C7WjzpGYhEZWtbSFkNXJqlFQpycCcrhtxVAeiED0lySmUa8VRD48V95AL99bDY0TDwyZpJqeJKc90LTRJV+qfTrR6t1bH4JW4yahS/diHUKIFJhpE9UBztraQkJLFxS5xXDbkIhQ48d9OEEzdO76Jx+wqSXcPJKo3xTy+w9KEpUVrrja/QsdSXHeug7/hgyStSk+K5YEQ97E+uNNrx6qHg+va8R6Uc4j2u+YU7q8tRSLSInGKllRsi8KGiDDavzLUjY76UJi5kKyRTUMWfoe3zVjZY10d/y3I2CPiuorjFET2uJSCrqvY0eU6UAKO7SBah9p5ovEJnqBkkOloRyxOZLs4ZnX0ODth/qzH5chc6a60LqSuwfBOe2S6B732AOnsnHLjXmy6jqQdLhOmGU+JnhWjs/pCXW/Se8O7kpYVXRbaxcoiNch1dSHXC8rhNlY7vTu35pnFjMs2qobu7NZOsguywwFhd5aY9kqdDixu3DKnV0dMKJbR1tHuZLUgSiYdCoxYe3We0Ckx7SeGYhcfCUoWrtQ2mki5oCmzn64BcYMcb+yscbOLDMVDD47IuBHSYOkKwZlQ1cEBSEHuy4qWAuPzObHhJWpsppKYJcfCJ8DgA+TBjpdtk1JFUkJTHj4psO1cPY2bNyWkzKTslNyDU9Qb1oWVIF2K7ymizFJIU7hQ7lJm1zqTdzJroPXmTJeN3aGjNxvyiKG3Vx4R5dZyySOXt6iXB4ov7LjJNRp5VpK00ToJ+WFRmGVsThZy2WoW59+d6uHjkuiBMElHNMexkxwGXwjWlKH2xiV62UicH5IgpYw2ggaKOOz8JQ3HB4uWTkiWRy/aN3szSB7VfnJl8uhbKyGbdPW47mUQpyWcO1sDVwnkMCXmEgREE6Nmow9uDwOJu8aMdKUDq1tczxIjDoJ4GwlatyAPmgo9hXxXiY1RbGwmHiaA2nv0twnOySaR72kQhGul05EUpmZt+KBs7rQ+qutICIYrbzeyhdOqjYSDTfo+sgHVzVfF4I61VsrQ+UigNiKjLTuuASFUTeqJ5InsRnal+VBOdIt2mzmzG7N1Sm8c6gp1pdVKa53WQ0bcRrKyMRWuMpWhJHKhoZgF38F6IxPtudpTJHU9VHHdoHdnrY28VNqhkqZGykHMVB+oUGqUtDLlA70M8jvp2Gpm/H4kQwqeT3znBfEVG59fmtGlxzqUS/DmpsTZ7hzmBcu3Wdc1kumueNNQ5IjjOeNTpleiHbSOhAK2agUnD26SRStOe3CUUoccqHntFogCfkwmQxTQRrXfsR6bMb1FEtEtits0lC+ph7hCBCkdnTrzZRiruYRrbjSUwnelMxA3TVgO93Fz8CFtN3NsWWlLD9n7weM75eHenRJ5njAzMka5nOhrY1qDa+lC3AsefSIZPKWo4Xy0gYOHomJMGuNSijglrvg4lsMUUHKcWzTas92Vbk6rQy3UHVokJSgk7yihvhQXUhe8KVRHakOWiiz1V7LDfwKHePRISjj7Bd3ecO8YdbRfhvDOLZQnrdJxVjwWHe2UOioIT3jZ0XdnrNfvoe3vp09nNNmF3CwFA7/R6HagX2asVmhOl8uoCrPiyUAqyS/JdkHvN/EaypSWjObDCdUUG34isixoC5RlWRLlQmlp4WDGrbFwuDm5W1SP7hQJOVgUL9HbkyRBAB1Z9mYoGK6tm3vlWDQlpKUqmTntjoQxNkJfjkpk60tufBM/ZuUcW0GqObgrquQyNtkh2UZDNsxAuNRLqC8kscsl4G6VY4KSkh2L3bT1LVNGUmF8iQFfgw/5rM4TKc8knEJHaxjQeb1kleB65JSZJLHTqA5zSuyzsXOYgJTiOlKElcQijVs4j1jn0d75xW58CPiIJCpCwdj5woUZUxem3sEyQkZloqgwDxJn1kj2VqCZUE2o3qkmaK9ob6TFMG3RSmQ62mQ3WwNZGNb4R7JDi943PioriTZCVOwW1xcSDqM1ZOOpxesVAuIFlDRgqSBcdxvHeOOFeBruqzK4F8aGP0DwLMjBnXEF0agqi9qQXwp7Cfloy05KkSyo2nDeDXMxIe5f9YGMeT86GetAGdx9zByRMOXz8BZxD9+KbtDL5gcSqJsMwnLPSktCDe1rXO+D06Gag7yt4Z8TzJdt9SC+5yDyKn2jnQTsT0hNdVSMZja8TsLEK9uY9SMZ1+13RUKYuwDx/b0FSbUNTxvrFWtpqOXqIKX3uPaH9Dm+Y3AOEN0U0dFqGGdXvaEWDrNrgeRp+A4N2fu4h7cNtHmj2kq2SreKykRSmLOwz44Vo02B7KxA64muhFv2SOLERldcZLShBVNYvKO9sa7DJTnHSI0QKUCad+hQnHU5xPEcpNpQlRiqHcnKo0vFUoKpMpFxFVZRWkpYSfQUZnAVY7KQ32uLE+cK3sPryN1YxcJQcLQ+3IOs6wERBjncBO3D28XGvTLay+5OmaDMzuUSJ0VTQkfLKPLHoYDxrbAb/CQf96AmXHqgax6FZBp8Jc9ClhQFwjyTzOjuyG5CVSli9OUwVJ6x3odT7HD4HoIJGMjpSPBzFQpOcSP1dHQq9jzWWgXJseBbTwGCiLMOR1sbtgaSjL56zLQTDRWPJBI51icGIR+j+G+YFg8bnTpIWjogu6GnvVpagCOUt9GeovpoAy7d2O9BRMq0MtN3O/q8x3RPHxWCp5DLxnq54imF3K81aDlUA1XipG4eG6mDthgQRY8eKhKmYR6mXPQV6y1Y6pIwU7osrOas3Tm0Oha/8GJ08eNGYwyi6+iV1JaxpOiy2c8DHgSoJLGhiCiqBSQjJCZZo09onaMaIQVywSCqgR+LtPHPxwo5Kv9YaModCYqXbe6DHuFStRzOvJLYlUhQcpLoXRLqI9WosEvWYSyWIZWRGYWJGyJ4KaR5QueZUjpJCKnpUPnYeknV8KMoZWKSxCqxSSZNrMVYkOi95q11pDGwrhoXrXGrrdxqKzdb5aYZt4AqwV/pg01SXehuUSl7cBFMgnQ3x5ZGSuFX07fNwAdC3WPzC8k2ID2keATrv1mPnzMfOZ5FVT+Y/j5OiIpiW2vNJSpPGW3M2odPSvjNxMUed0dwFuJCaTU22nBgHQurcUSGIBKKauG2uZlAuW4XGldeECaDSC4U3dofPky1Ns1A3K9FPVRGg4gb/iA+Fu+rezZcboc/SLjcjcW/D18VibbgQPn0yFqNpM40yMNbS+3q3+Kx3S+iw/PE7dja2XgJW3Jy5yPQ29ECsLg/TYZOxa9azD6O+yaNT9v6I0MKOswQex+zdfxK6j8WnePj6B5850I3/ttGawqCyKoeCWAnPDgCEeNINNjko92dTh+y9mErL2Poo0JRZxqtyzBZDCt486sEk6HG8uOHuzoeIUmNNlps+jFPTBlIVbD2QwEnm9wbbAw4NQuUKbdAoVMzptaDDC1jvMMwKHGRI0G+Wlz7pXnMCNLRVhkePk0E9XAmCnqxjPXq2NscDx2nQfAuY4SJxbpbhbUKrcXDeiSiAfaOFtW4nnwkC5vL60aqPnL/5AqJU42WUpBXI6mTkoYlcUA00nqsjcOM2CzW0OC0+rjTNsQtrp3g5/Qw7RyjSrZ2zuZGH2lu/P+GynWXzbeR3gcp1oY3b5KhpotfcCSOj4I2SVxHTzQ+wROUDr4iGtB/9oBEk23mXxu8NhacWYfuf1ipl4SnFIOeBJr2kCinsB1us9J3iSVnuowis1xlxKSK1ERaG5pWNBXmpbArM+dlx/XpjLIapVS4WLDaycChdS6rc/CQ8Zbc8dIQaSQZkyibIL3CgHFjqJcxq7NTKBL93uSjghvD3OKGjD5hr1erl3tgwduFIhrTbAMV6UMvb0c7eoMBjV4t7pFMDXM0GbDydvVJyLQ1JaZpCvJtHp4gMng/bbjOtg3BUXLOaAqypeuoqsYOpwK7PAYUpozkEnbSus1aEbRMlHlmmmfmaRczQ9TDxdc6thxoybEklP1MJrgTW5JYcmZmKATyMANDqDXIicvlJY88fMGt2wfed+thHlkO3PSQYE7qtBzjDGYDb1CshKuoBuG1DSOkMiR/nUhkTCMxaQLWgjCqLQakIYJqjUmtqqzDdrua0X2QXEWH+ipUGVGZwW44Wh7RrQHZ2tg48ybflq0jIHeYsUkMLtQGUtlElR49PJBIFpbDBXVdqC08Fsx8SEtHa3BUfWXz8VBhKpvSo+Pag6CuQYDcJPCtCy2l4fZLLLgDtese86L60GCIazhUjhu8uh8NzZIPDshA/8jRdoykw0ISP/gjnWgbhGNox1JwN0LVorQaKrNjD32McEiEu2whFtE83pvudCJ5C4KnUT02KtNoD4TsNFRhucWGjQTKVZtzqMbaGmtrzD3HJjracmF6aNEyrn20esJWITaVbcXzYVmoKC22XIGmRtPgAXUhVEkag0pX7yzjp86kM9Ho1OE109klY6+RaFxoqGmcTuuVRiLq4w5WCZFzrLvmFfcQxfrGvDJDeyA/kcyMLXCgBV6UpkLXaI8y2sudiq1OV2e3VFpOeO1cmxM5BfeJDFJCUt0liMGpxqabxEg1vHGsjfEC1ml4FFfZo0UtgaTgftygj4wld9wVr+F3E0kKLIsyL0pbg1silsdaE0TwNvK3LrGx9xoFoTvBy9iEDEnJRWke8mlXhaKhuGqgqxM5ttLnfGz/9mV4dBtHxRtHZCwo+QzEbBsvogF+knWodYiivdkVJy4S9uEkYU7rsDYJV4k2WtgKk268xTCoDBO8NIbKgjdhapGoPUEj2U/sBGV37zXms3POrl2LKanNmJaKtkazld47bYwfj159VOExij4R7j8pescZyD003VIRCdTDU6PnSlehJ8YkyFggtQc8nBWSFbIXblzfc21Xue9s4ca1hWmdKOeK3L6kL5XdCheHzq3Lxs1BjMrDCEi6kmro+2Uw4bLG/JypTJQs3DspZzlRhkQ39eih68h61x6s/oPH3I3u4Z5qR/aUhlyQRC7TkE0GdyAq5SDLRTJyx8H2rUAM1viVH/6WoASJU3vI9VJSUpSGATlbkL+8h/fC2BuHu2X4BaADUpd+JOGeKVcJSrriWoxu/3E66DRNzNMcv0stiIXWsWXBskAW5rM9CT3aWisS3g6DwGgpDal2SCC9d6yu3L61cHG5cvPygtt14WAhz9Zx89uxMh7oiYXzqQ+UbBWO8tXNhjqkscMEb5AVrbdRZQuiDe3hc1LxSFA8TKY2eWtUPYOuuVXURzLcVpWBkAKq9iuvURG5IuwdK2hBJKafOgwlSCBBQ1aE0lnWhboeAt7dyJ13VH7ROti4UUPW2qPFgw3+BsZmhyBAcRkDC4NHArHIMlp5LcERMBnvk1RG5c2QokJXZc6BsHWJ16OQMSar5D48VRifY/ALNpJsOAwnNiZDDPkbUtoepoOTG3m0R6Y7khTZkJaxuPt2vn14q3An2OHH+0V9XBujIq3dqBZFQ+0xwsJ8KLB6G47Um+8QA1lhXBhXCcoR0hqViRYZ6IRGYoxgekdh4071IOdWG2und1SMLM4M7JLQRkGh42djQ4vk0aUe31pZY2OTOryqWnBAxEcrbRwjt+0H0KJoSTDlGPpqofDaMKHOIHiacuiN1Dtza8wtOD8pRbtjVphUqZIRd3pPNItE1lpkxH0IKdxCIZfU8Byu5KRouQTivrUzo2Ua/KS4X5ce14eKkC8r05RYL5RJDCuO7mI6efKwL8BbXJdNaNqpPdo5qcW9hAh5Cu+lIhoclqGKMsIrJ+XgIUoyukSbqXsofbopMZok+CK6oVBbMQlDSs0R5U4pVJZGFJLVYbW4bkWDlyI2+DGDr9QQbExVl3FsNr3VhoRpuuK/KCAFbFKkP3EI5RM6QTm79wb33Hcv9924waSJXXfK2pDWqG2h1oV1EOVcCeY1MQ33YDEgKmyMBUmOaAepY5GuhK9FxVKhJ2hJkGnMXEDRGk6HCShTZrLC9fMd91jjQVu5d12Ya6bsDdkn+mFFbq1hW2+dvkTikEJ2AX2Y2NRgOrvECZqSUs4Kuznz4PnM2RTupX0kY9tAvtadw9q57AHBtR7VcvPoD2/kypIS5EB6Yi1zoB4VCQFJb0jJFXR/tIofGTt2B4QoA+5WQBq5p9D5D+Sld6Ot7WjIFgu2h/uqRovKB1YePhPBclhGghJJSkEItUp4coQhUkmFKRemMh09GLCh4lhXfMhxd+dnRz8FGblVKjGQTRzqcPm0LZfDkd44XK4sS+P24YJDW4fxnwz0V44IcJAgo1r2PlAsg6rDryMd14jhuxBJirkRE7I71v2YvKmEy1llbB74cYAaEtXnNrLcBsdAdBOGb2x9GX3g0Vsf5J7NdMlRul6pZ46mVRDNK9VobfZIFrYEpdX1OKdGfXCGxv/y+IxHpCsp3VdEhr/pUMdEMhM/Z5tybGsFOkGwi7yKpGFIlWD01rd2ZSRTKjHF1kSYc6g9tlECLkFELtbCXMuC2XpU5VgoZ5yQ3vtIfjYjLggXX7EgVRYG9Y2rx3A/R646MEEa9rietgRlnP3RBvOQrXq0njc7imZOHQaT1cIwzmxLklo8rI9J1iMJ/Sj0hDvfCw3yfB4tW90k6FeW6j4+Y/VQENVjiyeKhTzO75zCJyrrNuX5Tqm4gcR8hUg84pqxVMdQUUfSwOVGwutEyy0m6TpSFJnC5dhzoveYj8TWghpETqVzsE7ujaU3Wo9CbyJRxJkTzCmxaMgjrKfx/WKujUgUZTYSlNo6XSJBKU4Y0ZVYm1SHRdt2rwl0D15R7YFuKlCWxnK5sh6ElgybQdY0Jj/HvHsI4m0Xo0qnaaybuYcWVVTIU8Ek0aXTU+wwkqZAWyyIsppyFHSSxnUWCYoPnl+IRkIr5qOHtHnkxD0pozDUofDZCphAUBYLHpj00bbWoYK1DQRPA2EPhRcDqfU7WnVBSh4sDEBTFIqShScan9AJyu/+gs/lmc98Bk+7/ynMeWLqIff11rl9+SgXl7e5fXGb2xePsK4Ll8sFty8PLLVzc+0cmrN26NpwLtF2Ez2cRXa5P4dSIhvFsJLw45yVYYOkg/SmCc2dPDn35Rs8NSU+OSv3W2duhXKrIzeVfnFJ+aDxSDL2lpCDUm38Hkp4MNQ1PAKo9B5cjv0uc99T7+XGtTMeeuAG16fCrIn11iW+rPjlwnp5ybJUbl0sXB6g9s6jS2PxzoqN7DYuFS+ZlPec3ffAuHCNdnlBH+Z19XA4Vou6WWAS7SDvIMMp1o7N+bHYHiWS8XNpOFb5cJfVFle3DQrfaOkeE6cj+dWGw40bpgLSI5GUWJzcJaSHHnBjQ2girJJxIdQx3oYbaB1mWYnpfA5uiwYMDWFG1ZvRunPboKeQ/6VSoioi+BvWnMPS6F7BWxDqUiGVPXmn5OxMxZh1ovTEehmLaZfO5RhiWaZMKTqcPYOGmd1ivg5B7vYW4wNCAhk3chutoipCZSyQxE0/itGrBCMD+JVCBWFmQiwcOCRl8uD1qMXC6yJD3RKTXM0DDq7EglTFYwqtO3hlrZXa22bSGovIVsX3GIaZDHZWj66adR5uxTnFWAlluMAOxMojkdWx2Ks7Ox8JSnJsupLWbppnHQRhiPNmKTKZeY62TfOYUeM42EBczCmasIE8uoUiSKh4CkSrSfBwsjuqla6dJjbuAtgD04DFizM2QyjJRyfMr07MSHibeHwPdXyMJFEb8PoGgGA0axzaws31gCxAEdziebcYFaE0puSBKo236jKOzV2wpwI5PJGysJuVMvwxfBRZSXKM7UjREuuEt0q1QH1chLlMIwHLGFEQVIPeM+KVujaW6ggV4xBJ7+a/IY5r2CHoxn9DQINQ6xIkVh3oh+x2pLNGPm+wP0Qbowqb6xUaFg9r6iw0slUu20pbOy6JaTeRE8xT4tF5whdlzYm1Boq7tkCYRX2MGwggallqyGMTnGkgtfNuivs1xznMPSN1xtZorVmP4+3NaNWoS2VNxnqr0TzTSyXtZwoJCtQxHPXCLOY+uTFJxkVC3q8xZmE+34VLbzV87Zgp+ARqiHR2IlRJrCjZd2OtqwjT8cw7GbYkgk38MGwjkg6DztG6kUh+DyYsriwGh1FAigs5jQGGIvi491KKzEp9k8SPtpMNNHcgNirE/CsXpnF/pt8oTrL33Tjnqfffy9Of8hR2Zc/kMylYh9w6PMqtW7e4desmj9485/JwQbl1E/Q2uqysvtCsxeCk5vjaMD3AzQusZzzfQvWM1AtJ96G7R0izhrOiZqDhIqgaKTVybpzJxPXcuG9eud8LU4t2Ch6b6PmjzlqMy9TJInEZHKtpjxtwIBKiMXF0vy88eOM699+4xrMefIDr0xTVwe5AvzxgF5fczjc5lANqcNaNyy4UYUgYjU1xIQLTNLE723Pj/gcGdO8sFzdpvVJbxW/fCpSjBdcfGCN0LOz3bau0K9swNdm4CiK4D3/zFDNLovppI8/ZRlLF5nasJseCuYWPhbdsnhFH86CBUIwX2WD6mW9tFBk+ETL8beJGFd0ssoa523Aibe7UtdO6c7mpL1RitohGpSxjYnMRmFVIUtgXZc4TZ2XPPAtzhpw6WQpJEnnsE1ubJzYPCc+YWLk3esVRbRN0xk0iOg4Cg2x73B4Ftk2crZWz+Zswnr2qNt2FHiJiBMVkmMJpOSaJNq5DI5KfNmDskEEHh6IN6a172K63Hu64SeJ63ca/e3Om7uTx97CBcLp0dAzo26zX47YYbaZjOwK2qTtbAuwSFXd2jX/zQZId3x8GgV0F1/BziDGU0ZM3l804ORIbD8LlhgCZ2+YyQRAtgxvUBIpKuHYq4Y5rsEcoScbCa0wKs0IZCW0c6Ss0bZOwbnmLWBBtswt5/OkMK/ceg0X7UmlZaVO0KLxZDKVsHtwNv3ocz7oL26hM2BAtpYiEnFT1mNS62bGmD1ffzUogyLphdx+usmZOSvG7sqRooUhmkspEHIPk4e3jvs1OimvXx+eK9WGQVzfUZlyB3YI7IowZZ3milJmcZywPUrXXcT/1MTjRQ1DQYoBi6jFFfvYg0k+euFYyNQsXwwzPhsKqaSBhMW1Xcem4ROtes8aA2N3E+fkZZQ67BFdnaplUCyyVNfpFNI+1tUcXCutxzHqP4xaiABmJehj1uYflRLNQYjpxfgLcGmZ/CjnFBr+53SYBUwmkKGXmbOzmGe2KVmEtBfUY9hoDNCWup0GI3WpNcUVyrMFdfSjTbHjs+OAlbqT44XuiwB2JhUigUKHMkfAmUqeM62xSZRIdZoUaiON2r8tvlATl+hmfdO8NnvHgU9nP15jTNQoZ3Ll9eZNHbz7Ko48+yv7Dv8jti1tM+WGQR0jpQG23afWSZjEV01vF1wus38QvHK87pO9JS6boDTgrYEqZCykXcp4RwKShuZGtM2FczzvunYwHd5UHKUw9fD5MhFXh2kcah6kxaSNvm5Iz+BfhQro5qaYkzFPm2vmOZ953L0+77z5+89OfxvV5z5wyy6OXtIsL6q3bPFwKt27fRrvz4V5ZTLipjI0mth+RgN3Oznbcc88NHnzGM9ESOvfbFx+Jllhb4ZGPUNeVuh7GDuZhGLQ0ZAmTOKxhfgiZ9OA6DK+kMCWS8CIQvUJFHBkth61ryXCdjcm3YdA2Ep3x2j3DzIrhUCmKjJk0sZn6BuLEJjWOKR7XgbqTp0wpiWnOuDTcV9qAr5s31ga1GoejK5PQa/AnejKyN7I451rYlcycC7u5UPLMlPfMO2FKMawsD/tt+uBQoLSRLHULIkVyEAuSrHWhWxoS4gCwO1ERbyRW2bw0B+FO42nK1iLRaFF1nCSZYe82/D6gsRm5CZYKTRM1XY1O39j5NoiozY0GrKOdFxX14BEZtB6Opk46ytZbH1NT2/DvsPg9W2p1iQXfoluopWKvugNFuZovY+JhHLft6IRR2zbPJfvmtnvVIiJFv97TaPW40GyQs52YFOwyBjoCo70yDWVMeJ4M3xgBGy2i25pYVTmkIKKKCjuCg5GSINbD7yZFkhLzZqBYDC1NnkgevjJ2R1KVLY55cR2oUCQoaTU4VOxyCa7CIBkGmcmQ6mgVikGxUJonIslMKMs4ozY0HxlhFmEWRjIR/LZOcEaaGG3w3bQ7Xj3IvGunL422a/Rm4TaahCTRQtlJYcfKpcs414w1IaaAt5Esx/04ZkaNFqpsicsgc3aEJpvj9ETOjWnaM03neI3zGioFwX0kI+IxRE+jMCyTMWdn7x7DHrNy7zRhU+cwdeqhs5pRzY4SXpUJH2MsSI4kSFNiPj/j7HzHPffeYNon8hRE4qUldmsiXx44rA25DGfYII5Hq8ab06rRWrTIgxiu5LFJZ8C7hTrTwUlUUeYc5yrp4DdpfMdEH8XMMPYTj/Z+iQnNN/Y7DpLIrvRlZhFYDk7yMeF73bhW/ShW0xzrgiWow4tGZJCtXdgqlSuCfaDbIlszZxDhJY51lh4DBpMzZY2xEpqYVNlJYh5re5IgLTf9DdLiyQnmXWF/tuN8f87ZdA9znlGU3bKn7GbyXHA6ZUp4r6x1ATcuLg9kcdQbXg/Br1gOwTtbVpoXmPaYpvBESY4VaLWybRo+jBfctoo8Zj3knJmmwiyFucc0ZGsF7ZlpTpQpkUoYacWArWnACTEXxlNFSqNk2J/vuHHjGg/c9wAPPnAfDz7wFM7nmSkllnybNhdqVrxeIt65uJU5m5yzZlyfCzRITVkkOBxp2nPf9Rvcd98DPOWTnkXaT0hSbt6+wVoX1vVA3u1ZDpccLi+O368dKvVyYU0rSw9GuiyHuAnxKzWRR5UpElXZpl1zk2ONHIqj6D1Lj01SCaKsDOWG9yseypiIFn3rgb64XfWCbbBUY1aJYGPxdcKHI0u0uGwkJTGuPQYUtjGo0O7S5kdLAGLjDFks5FKYy8S+FKYpkZNSilP2QgiWhLQ6qQ1PC0ZV68PevUVfPklUf3012uosC7EIeMatYC6s3sI11hM6ko5IZoN0sImr0jDV87HRbmqukEEyhvuF020WDXZ9ymiaiFHcYd50bKkx+AkDeQuvDz9Oh/ahZIn2nwyO0qZ6iQQlWaA52eTIu+jm4cWgkAYHQHSTJwuSIonKm/IGYXXYlEEbyUMUhlZ4nKr4+fABIoiWA4dKbG2ZWKQjAWQstNHSSBbXlA31kcIwDfSB9sGqMdOmKWDC5EIe6iS3mAKdBmgoAYmNBDF4HnCF7mxKiejVj+++3RnDW6I3o9bgRdTWA3no457Y3GaFo1cQRIEwydWmX9loi4NDYCMB8iHjxykS/kO5D05Ng1zDAFKWFhPa1zV8Z+7wOUopxjdkTRRVsgx0YFg4BL+I0f6WaOuVUPmJRObt3djE4wPYwgcnosyFMk/kuVBrgxwDLD0IK5gNTltbqdVZq4YXiwVJV1PMKppnYZqFuUgMze5bI20gkDl4Gihk1xjbsCucne24dm3PffdeY3deKLtoZxyqcLEo6Vbicq2QLsMx3KDXWMd6D1uImJ+k0eqhhHJUKg7U7lw243brVDdWVeYyUI+sbOPO3H0wUmWovuKemogiUDOs847iidSEZZ5wc9o6MLRBat3EDWoEJ8g92pgDwd2SDRtqORvHGbiyqYCrESjjGRloZlSUo90z1pkNRdmpMtlQ2BG9zA31e0J7/BN/6cdfJBVy1phgORV2u5m57IP7kI3aK2tb2Z/t6b1y2O/Y7WZqa8xTZsqxuCiDnOiCrQe6J2q5gMtLfHdJqws2kozeO6LBbDfb+vJ+RYKT4aY6fD6ybyZEimYdvd5YmLZFLMwwBxfAdRBah+lZLszTzNlu5my/Y7/fsZvmsP6eK9oqLIWcc8jj9EpClpNSTMlqQbTSRE6J3TRxtttx/fo10tkOcsJSp9SFvM4c1gXNw7F0qG7UF+iCN6HnBVKma2K4J6HbTT9aNXL0lYiWQwzCigs8l9H6EQteioekuJTxeht28Raj6lW24xb/7oxqyuImkQ2W1E2+PDbo0YLIRSlFKCWWT7HYWBAJOfdAAWQkPxAfb1sUPUxXyDkxTZndVJjnOL65CNMUyXIWIQ0ipY5hbFv7aavgZfAqpIYbY6tOrXEdQLRN3AN1ibZiyGkHbjJQmUgAYqDXRhSN59OGSAxo9q7hXwwehsqRrLstPoHWbC6zNnrLQdzUfiXhVdsg4FjgZKBd7kOJ6xtpclvjYkOywd8UH71tiffZlERh8jbqbQ0UqW0JCgz0L5KAfoSfR/sHuHvN2zxC7n5Wjo+hdGJs8tt1O94rbxcAziSxOfU0jtVAyJJeHffwARoLPRwTD9jua44tLB8b5PEiO362LZEPlUmvPSrxtQfpe/wb7htdi0ED2FKC48iCQQfYsMSxkQBuo5oekuWYYjemVI9HD4sDah/zgGqYW2rYbvjovcZnCERLxvU4tF/jG21VypCqHpNZjnYuZn5ssXVNJLUghm+HcCTf6DHtGdfqRii2mF9jPVQsCC4WNvM6Zuvk+FOPsuj4zjZaJ9vaJLLVQXGfl5Kj+N0Xpn0QhlINlG1tFcQ5rIlDUVqO9XY7w9sIleZX63mSWNPBxprv1O5jvIKzJok5VhtDHL/jeo2kF8KrJOb8CL45OHenlhazzVK6w/X4zjXs2DEOKXzfpiDb8Xi7R0ofPkGDtLy18Mc9L9v17ndet8p2xQ2HiJDhj4dy5eM+WG880fiETlBKUnalcLabOD+bOd/vmefzqBLrNsnRaW2J4Wm+svaVlKHWA22ZsEVpl+EB4NVp/QKrTu0TNl/DJVPvG1yNnFiXOirbTutRkdvgwxfxIYGMoVfxv3BqbaMCcYmefcOoJiwdahsQNXDooXXHBEoml8J+N3H9fMeN8z3n53vmPIWC4xAW2L3ko98IW6IAx2xXBwMhSWS159PEjf2eB++7h3T9DKZM2itLPXBYDqxWyZczlBKThWtnTQeEApbohwq101PIlBmw6Rg7Ee+mGdES3ig4IpmsmZSUs12JBQOj1sOwDXfKFMRU2RAU6xQdWXsKpVP8VBo3P2izI4pytOUHtgK1ZGE/KfNIUsyN2hKHRWi1cVjCaVO8k3uNnvy2NJhgFXwKn53dNHHjfMc9ZxPnZyMJVEXnWADD1XeQcFtICDGld6gefgwmgwfQoK9OW53DOjZ1lZhW7VENjhKUzQ01OA3B6cgCE2kkKZAGn2BOV8PhqoQMdeNGZJycLWBk3abQ3mH17gY2FBcWxm7JIDVHusRAX4fkkciVQe40uVoAh81NQMYjcQnTK99y0hiuKBtvIr5mEsZmH/uGCYMgTSA0osdzs9XeoQyJ8x2i7vHfIsdNbJu+GkTszcI/rkn1ICnftdgKZD/qHY6ESs8anhROcEBSbBbW5E6roMjXj6Z0eixGnEEW3z7bHSZoW4/Su2NrDIs73KpjMnVizoH49BrE9Yww5RQGZOJUCYShGLBdI9t3EieaKDLUUXES4nw1zBK9Krpda0TV3pNSS2JJwuXt2zHpmMKiSh2uv+pG8k7qLVDTwd52El3H95JBzh7oVMz0MvoaowhwwyQ4Od4Nz5k+VEoJP87lcuWo7op707Hu9B5y7DBABMsdpkTKyryHeYH9Lrym1trosuLjeBSpgwc22J0SybtOSpoT+7PC+bWZ/b6gyVhXmJMgvjIno9dEnRWvSst69BcyhObKasoyEIVJyyAmj+PjnaWHB465cNuMvSsFAY0ZU6o+3I2j5WiRIaA5Wm2os99PcX90Y5onajdSysc5VGZXaQHE5aYtFIFd42Le0ti4VPNoBY12JEPKPgixAsGrGskIfoWMyziPaob0Nu61jfjewuD0ypHlCcUndIKydGPtHhK1FGzrVKKynSWzmwt1P3Hj+rXIpJOh0rl2NgWxTYzz7BRWDkvjYulc+MSiBc9KEwkugCqmCdNhvD0qahlSzXD7tMiAGTWEb3VrjgVRB5KiAB3zSuvGugqHdVgMIxyq4T3cDSeB1ieOGvYkx5JARclToZd8bBcFBLcRkOIzHaVwxPfI20weFc7mmTzv8LlwaEskASLM8w4zo9aKp4xrw6thpWOlsSalpw1jHggfHAmPLkGQ9ZLi84ogydCR4ed9QQmo2qxGsTWkqpvz6BEC3xCBkHZEgiJX2XzaNjSIao3Ru82JlJTdrrDfJXa7QD7cYhjaxWGh1sbFxcIhNZaLhl8uLM1ZzRGu5v5M0tkrXMtwz06577xw43oYwiU8SAdwRRIeE0zbqqQq+CGq4rXGrSnmeK202mm1s9YxLyQ7aTiPmW+U2FGxQixOPmTtElOd88ilxKNtUsYi1jdkQZwkffSAhaTxHiIhwhXCGM8llrG8LeAe7Z/uMhKK6B3rSEKcYPdvCXdlgAYp2gUhN98q3uGN5vEXHwZRaSTVGwfFR5VpqiOBiV1WNkTGRo1ujIrOjjydQH7kKBk/Zkvb8dFoebFVzsJoJW1Vvx8XW/fj/8VC7TJg9+HAqUNWvSFX4z228x/+LcMPQob5n2/nyUeLzI4k3Q3VSRaSd63gSyBKlqO1LBKZX7LEJIVdKpFcpCBe4mFXniWGAbbj/eNjttVou8gVKT+sH2MtiuF7OmRBCa+NtlbWZeGwHIKXokYrOXyQxjTxSBTj2I9UJK7dIwN8/JvdYQ9gROu4x3ERjUIj/HE62jsJY07gGfokVIvZN93zSLhgs2Vvg9+3iFCT0LKik8Iuk/aQ907exTwh74MOrmDpjuvDhrKqhF9MmoQyC/Ok7OZESjII885aggy+z8Y+G60YyyQD2RuW9ZrpkmnEFOlMJKzJE5NkihpFe5z/2PVDpZN83FeBeNYSLShP4WXko20apN8oaNQELaAldAkpcWzTDPz6iMZse4NvpHcLcUaggH0grsP/ZZhlGjY6nj0uKTgO5t3mY92JeKmOrWHI9FXHudWOpI5sCoInEJ/QCUq1UGHYWOQ0yRieJ+CJqWTmKdPPdgEfsmL1OnMGqQu+XpD6Qr2Yua3huBizVJTljurNRrsihmFtV/QVTG4a2Wi3MICyUbVtOnTZyJ06KpSgJWK9RXW9xo3WXViqjz6zs06Z5uGDEK2+gPUkx2fMOdNGgqJp8yXQq+rPh9TShrB3QKIQhKUpF0qZYCpM0xyLlhulTLTWKGXCpQVxM6+0selvVeGRHTu+UdwMHPvtgbNurq9jCmdKpJJRD2XMFSl2VFxsCz8DHh/JmTASNR+zL+J9hQ0tin9XCc7JNCVyVs6uZc7OMrtd4Ww3D4WCkafMstY4br2SvFNrbHoxFyaNnDBMn2ZxzhKcFeXanLl+Fu+TrB1B+zr2IdNwRU0OOtiu3mOo2ebo2keC0mtIDkmjgh8jMLbjOi7B8T3DLyNpqEvKVmEFUBMeHWMDTgEYxGYhHpJghaw90B5x0IowrO81ZC4uDaQh0o+JTpDaotUkvsHt8fs2onIZfWwUdEDsWxm/5Qq+9X3GLBRT7jjPm93+kMCOTGHTdm1zRGKMTmyKV2aCPpyBx7XQRsIxsjw55tKbeieOTdyJfnx+lLeRiIx7aJs/pBI243aEucd58rgP4pYPKf42YPAIqxwz+PF/WwK0JUHHDSRM/qQLVPDk+BL3saogwzo9S2xyXS0cdMfvmQiCZZNIPbd7584WhmxtjXG/+SBhbq3q4PdIDMVr4aZcW0XamENzpP/cpStDGQiqDx7a8fuNvdflmEDqII9uD/FA6lSCRI1HAjUlwbPQsiBFaSj0dPz8xwQFocqYu6PhV5WSIgVkSqTZ0UnQJpA3Cez4YGPtkSTxyFd/phyy7KkEL0TMsRQeKy1tlv9GGdb/4uEUjY71nEF4H5ciQ820mUUmGQnaMWkOdGsb3O0pWk7bej6EgPTkR8WdBzQa/iKRG6FbjXpcQ64QwS3MxrpxfF8hjSJFJRQ5Vy3VwduR0aYRBmH/as3eigA5Llhb8rf1dkMAgm6txScWn9AJymXvXDS70uyPDFRzpOVlCuWG2sQuG3s9o7Q9l7mzr5dM6xn7dkm/OTFLEOm8RQV2yfAsGJi0jIfpFUFRGcQtCb+LKv3o9tk9hXTNh/Bwg+lpJG8kr2SPqcS9BqO7m3BYt80ZUs/srXPAWUWoKdFKQaY5OC6to1ZhndnNhcOUmUpmypmiYZluHrMoGnGTJI8mkKbE2W5HOTtDdhOXvQbxT4RHdzvcOm1dBumUME1KUUVvPdHeY7BZID6RlKRtcR6LUxq7w2YKlLOGiqNvFdaYImsNJAbdCXKEKKMaVTYiViz6aSBFQX7zsdDYMNeaFM52wjwJ1+7JnJ1P7PcT5/s90gVfnNvLyrKs3MrCriUuqVhrpENDCHa+SIyWvyHGNRXuT869Wbk+Zc6LkzFyq6FeAC4lUVOnYpA6PkgC2TvZgjx7NTXWgoPSo5JVUUpKpEnR1AdvZLTmUooNwEPdUsQ5L/H9UtKQ6w7W8G4fowGQwtoH7JziOOUhX9yGSrawE0W3FdSgVh8yyUjYolceww3NleabY2RIFY3giuSB1C0+/ESS42kztIokJ/wR7AhijDZ5nEffFC93kEaxUDYQsudJNttujsmTjXtQJDgYOkjb2+DLWC+j+s0eSZ5LjIPQJBTvo3J39LiBbHAH2EB5ZMD/svmMDPTk6AUkDI5PVLBtHKOoRkeCJVcozMa9QcOCII5qRj0hXZB1bFw5+EmeBG9Kshiud6Ylpl2PAgTv7DbHWhnttWGy11MkO+hIAojHRCBuWUJmHZJnI5sGl2qYhHhteFGsbbufjJECcW4KMiTdwbdoQ17NGLSnBqUT866Gfbx5CmT5uLEFClY8DNR6dtglDmS0ZQ7JWVdlEXCr0VrPQkvKqomDCJeSuJRoqYgqPStShDRDmTO5dVIJo84jG3osKchmEJfwEiogz4LkUC+VFOhLTzAlY01G1h6DTZMhiYFKCIvHxODbzbhdDVZDa0BHKs7UnKkZUwuUG409oOdOl45Jx12xDq33sJY3Y3UNE7WxxxhQtVNTo+cWs9+GCS4aRdEV5+MKtdgS80jw+/F6TtpJhJvzfHSYVaqPtnf2K+v7jeNice58JIdxeQQnycxHu7Wj1jDbZjz9BklQNtZxEPN8VGo++npG92ERTScm5VaUStoevqK+IlYRq8T8bh9ZbUM8bruMHauQLlcDB2FLUmV8nmEmZeMhMbVYLP60QVffpLYxnyVIahhjAScQIVXWlKh6x4NEc6WPfvHmsBoGP2kM4NtY9Rvxcyyk41NuMlZjqww5WpZsfybdCGNR7ctW3QjHIVDbJX9HoXT13BXINHT8kVmHd0QkLRtKshUyPXKeqz6tB5zpBAGRUYEdSZPANlALjRtEU4rRAMmPxOn9rrDfZXZzYlfG6y0W/UT0j2WnaFMOZzGh1MbGqghFjBtZuDEpN3aF/ZyZp8SUjOzCQGCHtNKo3Y4TaXsP2Dy5B//jCK2PUIEhQU05UebENEfrI4lQRO5KUDLORMhZr5XEPFCi4N5FH32/n8N1VzJrHzOVUiin0kclKLXFHBRpwfnxYSBlTektHf1h1uYhLfbg/zCSFElpJCjChFC7cNCA2bvCMFqOlkLargWOZfdRjCMBbweC0q+WUvHj9dTVr9Cccc310ZEIZZQcUTwIRGPjv2xcFwgX2E1cFu+98bSGM++49o6V4Bg6x1D5hCdFXLnBnxnQ/khQjE0iPuai4DEziEBegqI5BkYOBMBHJeuiQxYdvhqtObUGRwMjzsMgmGYZfi+i5AHR7zRcQ93DBdgG6lvV2Qzx0kZwdWESZSJ8UoKnNAjAFpLj8IbvsLZItvOQu4sidQzq62GBf1wVPBge+Q5SkjYj0yOhGeiM9xZJkGyOx3E/F4/j08TpQ/rbsmBJIQc3xiUFkjWSxO4aE8K7sjahNiGnMX/KR+IoHB/beRE2Ls62ZYdnSPetNR6I87G1RyBQIYdWUkmkKZMqSHGkAR16DwXWunaWtVPGHJ2UhhiASNYmuGNd3owIt7XQg1jfg0xbLZDKZsNUcSscN3f5DKkExSFlwWtcU1easa3RE/fIhvtuhG3xcB5Pg5B9FM5pJNNd2FzsB0k2bl5j62DAOlBL69ECMyXOtxlp+Pv42ofi6YnFJ3SC4nClGBgwVCcgz2ZttEc6RsV8BV+RkZSoLaitaF+QvuBtwXsNQySIgWmDPJmw6KUlp+pQIDDmecDVhupyTE5aHwvoMOyI5+O/o0pLIfETOSYoG3RiovSUqClTU6alQpUcD0/DdVPDtn1LTkblkDX8F/JQGSBbxhwL5J1EQ2TrHw7550hSdEwT1jsIWltbQI7Q3R0JCUc08Yhmb5DfkUCokaBsSQqDYLlJ3bZdw0fistnub28mI5uSkahsap3jd1QgZXISpgzzlNnNORKUeSQoeYPlY3nKKDIruo/K9NBzQKVTGJMJxuTGvRnumRL37CfOdyExnjIUE8pQdXScxR16p7dOrWEAaD2Skw4UruhhvjVzIfhERZnnzG6n5ORkVSaJjUhTDvoRsNfEToXrU2I3ZVIezrQejIL9bocOQnYdCUofbU8d6q5NGVFbDKLzFkMizTq1ylCsNdalUpuzVIvprB6rlI8EGU1jYRUO2lmbc5GEgyqrOJcb0mtj5o1x5Ysjg0y7XT9Dm27j4cIgHepASzzuJxkJz6jY+shmNhu+bUEL4764lramZ/iF+EgINu5LuJuqM/r+4/OMHs5RWjmu5y0j93EDxNTn2AKqyJDYB06URkKSuZpHEpydMG1sonQd9zMbJ0RjY2pjrVnjWZKwtEDc3CKZKoMXE2ifster9m4MsIv3WMc97NumI4E0ZtkInJuZlgYpGpBqSO2wdnypUQSkhHuOdaPFoMNixp6tjRDS7o4wbTsuwXdKLsGDMYYZXKd4rKtJAkkVl3GPGF0DhdMMLSs9h6qtJcUkjll82UD2ao/HWpW1RpHlwzxtA0uyxp/dN56gX51Pf2xysvZwIu4D5YDRKksS7epSSFOoe1IOTpH3MGnTKixrY1k6U07RViYKhQlhkpCFt3FtmcsxOWlj7Yt9xGndqBYt5CgS2OYYxrkYwxHTpKRJyTlGRxxbMnfsU2z7FT52sG0vDTQnWzynMgpVCYRahDDT02jXpzHVmWOiw7GdtZrTW9AekgQanltDl44vnbr+BiHJmtsYWxPZcxs3tntnrQeWdslqB2CNfntqpNRJqaOpIVoRqcCKsA6EJbTcRTuWws0vZ8WnCZ93HFIYm3Fk/wtZQqkTM0/CGr8xEBSNDcZ1Bq3kdG1s1IkkNaYXa49Fw6NI8ZIhF3R/H7K7gUwPYPl+ut5Dtz3WEnHPJLJkpjyxyxNLLuxLYs6BIqTUx3yhxubHUGms1lh6Z1krsi4kdXqrWI92RRDgGio9CIHDByKrh5xWOcosk4zWDqNCT0qZlDIr0yxM8zY0SthpEDuTG601+lpZLldqjcmtmjIyZMW2jWvf4F81ShmzZjTgeZXNcnkkLxN4DA0J4h4wFWcaxyNLjx5tcVJK9KKcJzjkwuFaJ12fOXTn0DwqUzd2XnkajesK9+335GsTeZ+5thMmN6Y8kZtSu3FxMGjhbbLWREwEcNSiWpRu9CVQiiDMxs1dsqKeKT5xljJzEfZzyOCLClpKKNZy4kYZf86FecrkFJBsSIOd/W4/rP2VtbWYACyBLiW9Y6qvKHWgJt49/GAsvCWsh7R0XVZqMw7V6F2Gx8aROBJ12UAM13WmmnHROrdFOCDcRmk+CORLeHikMYCueyjnOj4W5UBoqoeHR/dQPl3d64FUbH19w2PjHUtvYqiKhjBm2+zNh6rNoGclJ8VKIJSeEuJzvMExX9zcOyOr3qSxm28LOOS+0UfuSqb7+DHwo5Im9dics4fiK4oqZ/WQnS+DRBmqpUSXkHpeVKN6I9uK15gPtPQW901zmgXaEgq4MMwraT5uKiMfpDISM3dk+J0kCatzJZMoTB6txDz4Ie6dXmOWlS+VVRR2M7rv+L4HgtAdvVwpa+VsDYPCySUSLoa1f2OgUJFAbajq1n4rSiTNspUggSp3GquMxEZizED1bajfYA1piuvXHeudWoTFYdnB0gWdg7vuTcY8szDTm9Io0FyinTRGOzg2eHEdW2NtWpeVthb6lGOisDO4dIVkQtlBWTOTN6a107XSvbLWFZpji+GHjueGNg8+S1Ku72akCZYFaQnHyFnQPCGpQAlTRjUh1U7uRu6hUuxotKkGelR7R3MgZ+tlwa2z7pS2wlF2F1c1V5g6cEwrrsJHW8YsihXrUQxs4zCMCSH4bdsNIwNhibai0t0Gj8qQHl5GaTW8dfKtiqyV+HBPLD6hExRna+tcsfzbgMeqtUBRrEUFMlCC48qhG67QcW/4mDQZ56wSEzNDzbAx7V02y+rRR95OvqR4BAuN42RXHZdFj9aBakFlQqWi2kYlZtzFUVEn5QJlIpVzUjlD8hmiO0RnoMSNciQQRqsnp1h80zCQSoMQtyEe7j4utvHYWmE9JKVhA719r7iwtxbN6KyMv2+VC8dLXfyYI8RmsBEyk1AG0UuTHmHkTSXhtvFYOmvrqA/1hsixZYcFkpOc8BZRCZKsjcF37kf2+FaF0z1mz7gPKfDwKNl+TxbUU3AkzMMSOjX2EtB2MkATGWdvmWu9coZTShqJ0bB1dphySDTNCBJyC+lwrVBHxbttqWzS0k3hcFw8bMhex0YmmSkpuyyULKQpMZXEvmSuz4V9TtzYFaZS7kpQkju73Q6VkMDG/JEgkqcUqErZkkCNpCos6qNqNDNaT1grWK+sKVObUarR+7b5byoZjhwMM6dmpZr//8j7e1jrtuQqGB5Vc8611t7nPM+93W377UYgiwQCHIKQEAKDBIIQECJ1bpw4A4RkJJAFASmhgQCJBAQSEkgEBhGQOAGBQAQgEXwEL+C+9z7nnL3WnFVfMKrmWqfboq/fz/5eXfW5Wvec5/zsvX7mz6hRo0ZhMWOlAtUX6MZOzL0eJ0CJfPTDOn/maWyVehiOqx5kHZzpIDZeRKToolfQXAtwlj0GG+IxjuDUZaSSUwpTMx5ieuKt0FYlY5d+/HECLsaoNWa9xzrjqsHW4NSZpM4jrq26z+g401Pp0rs7I0+LRZ+Ah2ZfFLkfnJuieMR9s0EtU/qJ5DH0wvbMklAP51ReStVIdyD64qTPEDCrazLIEqfwf3x6oHfaIXgPwbsB9tiBg5FxQWhMNLx7AhySjfIpNpZsCAqnlXsAN/4nqBLVfW5hoR++QuazzxftFBBltAT6/iBosbeofEJ4b3QPzyCfvi1pFCYe/i1++lmxqzgBWj86jmOwK3w9U/eZMHHJih2PhSUpB5/A38aA90I9SKyTrQgWKFZXtEHtjlzGhkdqJlntAabkZjpS9QTgoJGilgGNSk4aAp4ZhVjNJ5OYrOUP76chkRhcl1XAsvA5l7hOOc6974dfQwI05toAjMMhh6M8ImXYf1xSPKE1sYjiugM6uBC89QOP3rGPjooBEaN4iLOTIZV0ODrMdpjtcNvp+wGH4RV2PGAHvycjBJupd7Ex8810Oa0Qa1DpBBlloFSmEZoX6NHgZUEttyjztDnByGQvUKUzqSwLyrJgWT9DWz6its+g9QNEnyCyURtjpESpP2mohWZtrRbUKijFIZTThybEZ3nhCHAyzOjl0jW64aaADwRBggm2EoAkPskJNY18MgoSakyqMp2zVPayKEWxQlEc3MQdNBg6DPsx8OgGHeycWorM6gwIhY81kBLXAJusDEznhqvSeQ4KiA0Ur9PRcFXFmqwPBJCFdLMWlHqg9IKX5mjmWB3QuqC64G6Gj48HtmieCDjMOioMTR2rMHrunQ6g+5vh9cXw8sqGa/sYWKzDMAA5BZklxrAgolpYCBMLqik2XXBrgmVR1I0l80/rgm/dV9xaxcdtxdJq6FXISikc67qQYYLjsYNi124oukC1opUWG1KhQDeeX49uyMdY4YOC4UcLBqWnCy43sexlM1OrFiXtDry4YPWKVyvYvEyd2HHsUBuozm7WZgNv/cBuYzIvj26ou81+M52rNZmAERVDsTEPsClkVoDVoMktxJscsAXmLKu1ELvrClZ3CIJqCPtuZXJn8jESyX14VMOMqDrKBT80oJrrT6R9kBvMiMqygWJ0Wm6e61YCFMebh5OqR6sCMxQ4qrFXl/SOobQIf5jNjcHTfKZ79FIBKhSLRFk4Yi4buElbzKMSAKWe/jolxgvg8N7B8u2OsbNkfneBLx2+DtjWAc15zHSm9CM0PILW6ApVXEK/AcBbpNaigCFMk7QyRd2khs6KHkEwarhksCkp+oCMAekD2nt0ylXY0fkexoozHwrcqDn0rhR1mqEMD4E5Qbx6gO3hYVzHg6aUA/1xYG8Vb68PvG0L3lpFi/G1d489lgxYd1YXUVMUCQ8f0ZdqwI4O6wof7PKsUrCo4IBgNWXVXVT22TAMJYDX8HQqhbopR5gCCIGRocCc1hQ2KHCFkumhySE7Ux/wmeShWeMJsn+DHRVmjr0P7P2YSUcH+LrWaYKqpw+KTyoxBzdO0sBoLzDemKocLwM64nl9zY9vNEBpWtBEsWrFWhpWYWM+caBYQTFF9YK1suqlVUV5PNAAHE+fsN6f0G5fQZaGegwsh2HtCjPFEkvRCG8BRlw6RXNdLp1lhRU7VRtcO9F0JDwdkZtrEkfBoyo+qeB/Afh1Af63KrA0oFaUW4NsK8q6Yf3sW1g+/4D62eeQD8+Qpyf4tmEfb3gZgzlP48DdRXGI4lDFCN+W04kl8sqIaAGMkLK9ukUPhmSiksJXVWiJ8DXpkZyEISpIk6NUc4sycmREBazCssiiFQvoo/EQh8uBA8CrGx7ueACRWiL7wbPlsqlglFARkZQ4mrMyZUX4bhiiqgGAOIotaKJ4bhXPy4L71rBVDd0KADT4AAaO2ZdkLbT5Xt2xLIYFwG0Ybn2HjgN773BUqBU8CmnVAcfjzfHycPzfnxz/68Xxv1+BLx4Ut/XhWM1YudO5uYkCSw3DLmGbp1t1fCjA59Vxq45vLcBtVayrYrlV3NaG5/uK7zzdsS0EK61WFGXkKc6Isa6Nmy8cpSj66Kz2UrJ8rVCtoaLQnpGjoUaEX4bAhmIMZfVPF5ROUOmRNygGdhIGDdgsqheGA3co7l6xe8GrxbbnbJCJqNSxUTDGwKMX7Daw28CnfeBxGF7U8HIYHgP4KsrJPdia2P6Z5nGN1EVACheOiRDMcizqmX9XhUenaqnBiKCzkyvIgkZKPYylGEQ4yEI649wTrCS7gzFBWBrTsUKCbNmwnUJkY5+kZIS6kU4/hl3EvFy4BY5PNqLiSCdAYQqJQYBCwvl1wAdZhl4qmjM40NBUmAMWLQ+KRT8eZTWNhJarBCfgzo7J7Jtl0M7X2d4O1CGoo8DNoMrKHYwBjIH92M9S1Mq2DMMlms8xleTBLGGh8FUqyF6VApEVMgirCHgH3Ab07UDdO5becRsDxQ0txGtkhwzdyL7Ww1hR8+BrC/hZ3VEG9TK1O9oAxmA1TO0EenR+ZW8myEBvB3Yp+PTlA1/UBoHisEbWbjhe+sBbN3zVB16MPbw6Y6VYjDC1eyZhyimOQxxNDEOZWnLQBbd3MkYvAOCOl2WPFgIKlUGvIwjUB1kzTT9cwMM0bUDQJHyUqsEaMBrrPhKMeAQUbqf25Ac/BgwP63gzmr+1KIoQV1gfgB8E0x49gnq2KpAIaslUaRRX+AH0wxlNdFYhUm7w9UDKNxqgsFqFduhNNMoyNQZvOqiyL0ATig593YBxYN02LNuKtq4oE6A4lkMwBhs3Gc592UUwIs+RpbcpDLIQa3qqQYNqZVKbFSZeCHC8KIYKDmFL61c43hQ0FmsNddsgawCUbcOybajbirIs0KVBauWEgmAPRGEOLtpRFZCUXNK9MV/IdLwThHmYLgWi9rM2iZFVYbRRLHqdnFb9me4RkFJJdkUjIkvBbisFtVT2J4oKpm4DInQ8zRJoDlefvHW+LvHGWalFdXlw1ogIWgllyggmZ9iM6JZasbaGrTVsSyW7EJGzRVqhGM2hZpNGMdyKYxHgLlG8oI7hPSKdgdErFyUIXg/HVzvwaXe8dMHrAN6GUCh9ZneYfgRZqVoyoeDYKrBVxS2Op1bw1CpuS8G6sJXDfW34sDZ82BasS8N9XVBLDTZEZhqy1DJB5LB63kMllV9S9OmKElUMZAbjs9KFFqKoVmbKQoRlizCgjii5DQaDglaOwQKFOlvBLzZravBQVv8UUM9ipnh0wW6KfRRU6XhTQ8NAEwIUlciJR4ok2T12W45FEymEJWBJ+//Z8kDO9cKR2gx+RULUTjYkfjkrKyYZ7hb5j2AtziU/Xi3s2nGWQRsM5gNHpCvcUgxKoGXG6yHzwpclVCBofFikgCXnNdcfpm/D+Mucjr8jgTmBQ3VB9j1JgCeRPqTVwKlGYAEVr8MiWPGoCKOtjeI4Bgo6Kg62+VBWEGkESf3Yg8k2lEGA0j3SIQ4UaQHsOH9j4LOpKCpMFTIc6ooxRjAvBhwd0geKUawuSGM7PoM+mbxwPB6ADoGQrKQBoXPuaehci5/SDB2IKsUoyXWDq2HsA712PN52vL4daG2HlKguMsfLMDyG4zHIko5In0PTsOxMr+d/FmkzS5Abc1/MmFYKNvtQ4BgHdy7VKEwAAI3g0ifblgLsgWBh0xcp2lx7+KPkJDideBGR6A9/pFB4t8HUvp1tQGyE02Esuu5RKQVKG3RaUHBfcraqYxPKyBRghgxf7+MbDVAWBRYYFvVw1iRogcRkZMYO96VhacBWb2jSsawVYzzw1csnvBxveP6/P1CIuByo1bEeBaOveFsbjlqmeA2oIRKUEPcZ7bg9dh5PeUsWLmqAltCoFBqqiYQQzWm1DCmo64K23fD8fEdtFaUu+Hxp+Hyp+LhU3ApFpmuhIyMcGOE66xZli6osxyuMfmc6RnD6Thh1Jz0a5eno8B6DTgQSbEerjQJeH7BecGwbxj5g+8C6Noy1oa8NGhTroopaCUa224rttuH+dMf96Y7WKtq6oGVL98eBx3CUo1MUlrXZ+WHGfDXjuqCcuQDmIifgvSxKV9UmisVJp2NEL9dS0bYb2tMN7b5iuW+s7Vfl5nYY0N4goCLdY6MvbljFsGrBVipkbOjKqB9iED0i8qY3xfcfjq/eHF88BJ9M8SoNjyKs+R8HxhgEKOZzoS7hTaIKPD+x/cBntxs+/+wzPN02fOuzJ9xugnUVbFvFfVvwfFvx2dONBoRtCVYkmoA5uOjUZP5oiDSNrjUGQeFAFXiky7nYzF4s2bFUohxeabDk3uFisB6zynAxahpRtk0NgopiiZL4HINvYVjHNiFMJx42sI+BYwxsjwOPY+BlH3jq1KTcQ8ND2pmbuQ3DIzaFPTd491kdx8xNpgI56C1EK+OgyypA3Y6ocA6Di7eBmghHTKHrDg8L9jRSpRPUh5bKjVR/0PDdg10zxxHXqCnptTNFmgv3zN0Hi2mdwGcAGBihtWGqs6liLTptxW1wyX87znLaKqFBEUCMW0yRZBA95hfnlkR6b4wDo3d46O4YDBgWPFD6QBlMkZQi2IqiDQYF9vZgVG7GnjMBUFLAvGiflXwabrKA4/ACKQPDFMUGZAj624MaOYngyZiaEaG/0aKG0wGY5Q1FFBsKFlRUV/q4DIlzYfDSQBFviw1YDNDeY/2kKR2UG+5RWBD+5Rc0pqRGqrPyDI6HM7B5G46jdwyj+WHTAa0GKUYgKQOKg8/adlYvGVtLVDcsYDdtpoQ63XWVDCOkknUOd29zCu5ZrTqYXgpISwsDWh7U4ijVoQvBWjGdgEKGBHCw9wKuM4QFIHA3vI2OwzODoAzqxs5qQR046XSFaHSrDhAFd/Ru1AIeRn3hsLBJkMt7/eiPbzRAORMoXPQFWTbLxYkmYezXsy6KbVOoP1ALcOwf8PzZM17envH82R21Kra2UwD5UDweC3Sp2GtBV5b4ehopARC3CLCCgQhmIoEKo9IAKbiwK7nASXAHgR60sIneulY0oXbiBrC1O4QmU04DJPUC8TKrBwwIz4NCa/pS4EVnyaYhdJlCxD6iky/9CCJiQgrGSB8XoTeHxIJNfUvFUQtKLaiNXZltKHyApc3xO21pWJaGZVmwbitaa2SrAqAcomj7jvrWoLVCxgCOYz7XnC5chnJDjUyqM9/eQIbjVhRbocbkptFPAsC9NDy1DR+2Z3y4sX367cN9+oGw62fHGB36EmLIwR4SYh1lLzRgqjKrsaw4RAZUBoYAwxSHCb46gC8PwctQ7MbohrbtpK+GDEAoXuO4BNYlmpk14LMPFc/ris/vT/j2Zx9w3274/OMztg1YV2BbFbel4um24L6tBIKVWhKBIB+wq8MkopwY+4ySTxrNoxLl7AMT+y8H9QXRpkYhYp5Y7BlAxeuZzZJhmxg9U2gxF+PlMviSGKsqOYfJdIwRXXedLQS6OWrl59OLhX4sNQBKAwV95ozWLM4t3X/0clnubDfQgzVAEWgheMmo1+MaJa7JJdiFDD4E03vjvC+SdMu8PlEJp02jT0qkgwkI8O7c+HfhqSLBhDpwxOpmMwbnPSUxcum35YohfN0D0YcnNuQpCtXLfcgly/J8Ih1lLI9lD6jQNCXY2SNVIuzaXV3w8IJ1AGUYbLfpo0MRZXrA8MauMqKJKeDhmKyFzDMiCJFOOvPx6cG1PIT1CsGqCi8E00eZZhzootFBWrBoQZOI9gP4wTJ1ZQifukh3c73WLiFmzXVQAO/w1gkyXx94WxbqQeL5mhiOSLe5sUqrGUuIqXViKkfgZAONPZJ0HGBBZTQydJYZb3yIcKHxI+fAYBVPVJRKjAM4dXAeiNo9FLR9QPtAdepVFhUshUZ1Xk+aUyRSsmAVE8uEeS+5OOR4jPGfM1osJMxsMaDO9S2o6wj6HKVi0pQWLQUODPTQXNbYEhXydTM8v/UA5Zd/+Zfxj/7RP8J/+k//CbfbDX/oD/0h/M2/+Tfxe3/v752/83M/93P4e3/v7737uz/4B/8g/u2//be/qfdyjRgjBkSuyyJpec7FYqm0vN+2FgDFcRxPeP54x6fXO54+bKgK9KKkS6vgVSo8W4RrDBUv0SgJ8TAHzn9EasJjow/2BuGPklUFGUJ5iCYhrD7RsFZeW8USTaM2FyweDpiWNGWWiymNzOL10/TJSoWH37GppJljLExcmSwoxakuHhbC0lhAJbwhhNPDHLSoL2zCVavEwUlgCprEBXhp7T1IacuCddvQyKNjdaAtD/oItAI9TjgCRJqIa9fUU8RsggCzF82igpsqbkVxKwUbbPaAeSoLnuuGD+sTnm9PuN/vuD8ToGgBbHT2GXl7hc7SZArxpHdoOcKRuE6DsFE8TPsGLDaS16H46iBIee2C3Uq0X4gqIwFMG7IjHj1OHNvGLsjrIvjsw4IP24pvPd3xrc+ecVtv+OzDB2ybY12AbXGsreK2VtzWhYLCUhE1rYy8RjZMjA7BCL+TqBDwyFW64qSKJeNyRu+IDfg8snsqFRIREOdDCXASKU8JkWhiIwQ0j6+HhP5G5HzSWuZLDi20GTc65XY4qjkOcwwD3g6nN8gwFFMMOBoMfTANNAJ8DEikNM4KlhTtjQ7ALCpWQqchznsSa4hfUU0AOMScRqbCAl1Npkku1y30TqGmK6LfSM+Q4uYJ1cvf54tZbHxdBLvEMzlXOwDRgdbY+yhTrB1Z2ULNjTqwZFQt0a+JlzGriczzulKDNsj0RbDS4nWKA9pjYxLFUgTVFYcI9gHUYbDDwtsk0iSIHmbCTbZHKXEtoGW+CrVOkRc2AAh29uVlj07Egm1b+bWQLQUMu3Zkt+49gK4oXYabatiVBPCK1BUB4dldtyYzNphe8Zg/AP9Gdr5Hfz2wLwdU95myd3WYnqnDMgyLkVVMauwR3FG1gcWAOhylH9AukM40bPUwXYzUkFkaQUj0aGJVY5mBIytiGESFjsQtRNAsMKhuDNxUsBS5ABQk+uUY8+AaOQljHRHM9KXH+IfE3hqFCQhDPTjYcwj0RCmOUoBWQ+w7g3Dqb1wMoo7OvDsrQf/fAij/6l/9K/z8z/88/sAf+APoveOv/JW/gj/5J/8k/uN//I94enqav/en/tSfwq/8yq/Mfy/L8pt+r10crxjY3bDDg46yQOuEzKrAGpsm1gWLryg60PcVT08rnp4anp4KGujQur8augFV44GYMZc2gN5prTzi/hJFMj/tYjBJ0ahPyjy7pqa3iMgByA7HG1QeKFKg6Ciw6FCrWIaj9cGJsRywl4HxYhiLY+wUMZqxVp5ppGBOagVKBSrFZ0MZ+XdNQ6vQoBhXKe3gpFGBFAcrrZ24yxA5RZkRZObHB+hlYejowqqnLlzAipBZYqkx0yxkVlgVI+Zo3QhiWsFSC46meFSBDS6KW+FrQYSVE1EhIYPAcynAvRY81YJvtYp7LbiXgrt3ZD+Y79YV31nu+B3bRzzdPmJ7esLThyc2BCuGx/GK16p4++oTlqpoKliMBlTlGGg6UE0AHegycEgHSjRaBKs2Hn3gy4fhf70CX74CX70BjxGGfML8PWoDQrTYMPC8CG4V+HhX3DfFfRN89/OFDMrtCR+fn7EuG56f7thWYFkcW2WJ89Iq6rJwsdaa+yWss/TUh8M9mA5HVKgYQbKkeJOCaFYteIg6GVm9S2cgW6QDQJSPekRAyu66Zkr76jCVIihiOlOF1uUJQAo7GYSwL/iw1M1AsEilaVehZsvguPkgg2LAmzgOBfYUHYNeQ8dgKeyuwJsIdg3HZuN4EWVKwR0UI4IW7lqZo/ewKRc4V0NRWONCnm3lJejxBGxeMvXoqCVKXc1RpMCVbSR2GA4BrFZWMxjQowrHhd10RTG7CDsYELhj3vfJmszQNtiH2MoMClc2y5u/kUFSgKw0SgQQ3dOZfulHMpKAObsHe4K3+T4hxqTACOiOddAuwMIIsHZBNB8mi4W0bOOeKKCQfVGwpHahHrDVAtRGQbw09HHgOAa+eBiaCm5O7VXVgrUUblRC4za6hDuWCyPdYKiRKumxQPtkXqldqQC2MBobxQEr875GG88oFSOIag+gvDDF2TEg0UemRJPBKiyrd2NRBt3UDG8Hn5nawNOD6eLldUet1M9psCXuAzczaIiCHdFX6bFHZU/ooQyw3WEdGENwHIphBcMVaoUeKcfA86C+aI/mtE0Nj+xblsAU0XZCCg44upYZcMCclaGWDBywht6oqaAUmwF5FwlzTEVtbHC4tWD0h+Otcw6PqdFhjOmF7DyrIn70x285QPnn//yfv/v3r/zKr+Cnfuqn8Gu/9mv4I3/kj8zvr+uK7373u/8/vVfHNSJI2xkHLgK5rDicTKwScadjKgtz6GiYHV0dUSJlzC/2MAjqRgX26VuAGVWyhDeaBSKrI3JnD+ASGWWk/X5mabMfiFPsJvmrB8s7ebCSIjRV5yZ0CbJmRIcYc3I9v/N3UjMjfv0F/vzcp4J+dXlXNpZlpcMtDH1s9lxIZobI3ufpeYSXbGToFH/FUVTCq0QwhgTzlQ6xQUtKUimJ5iVyrszFb6XwcFZfQAlg7q3iqTXcloZtWRiRFUCKwYRt2rVWgqhw4GVVA626NSLM6bSr1Da1YCWyTPpxOB4HcHSw464LyyhFA/zR6femFR82xVMTfOup4mkTPG2Kn3he8LQs+LBteN4WLEu63wKtEaDUWqhNapUVKaoh8uTz9CSCPVxRnVVYDqYDpzPq5VlHqHQhRSSAaN7r2PgkFpUArAW8nnxNS5ETmMrU9P/xyzPTZBDiOx5v6qe3Q3WkqxjSx+KIlJhblM07RYYjNC9irKjzZLnSpSw26DxHD2bFnewMWbrTrEqKIPuLaE6UYOPmPHp/2+a3kiXKdT7JcAfFrEVOK/5ZJZcvmykj5N96VNwFo4MzY684HWkFF3/QnNs+Z9vM1qU1EOJ78BQrJts74cR8bwXTytdzcFzv4Xmc68JZNMCVMJisuKYwignzvRhHwnEsAbIOCB7x8wZBCldUKM4HnP40M8UR+h3zaeLWjRbeIzbIdAsZUcqrTgblfJzJ6Mn5LyeTV7tDu0MOp2HN7DicrU/Y3NCdOhnfHd7ZAgAIBu9g+p6uvAavBq8RAfqAHIOdnPuYQluTjjGEDUeV52JHlOyaUItCHTMZ9UH/piUC6dVA07xIz59CaczWENVPdj0XhEw9KuiX00TQihJcKlnzc00PpiRHhvBv/RyV57SJ/ceCaZXrXPoRH7/tGpTvf//7AIBvf/vb777/q7/6q/ipn/opfP755/ijf/SP4m/8jb+Bn/qpn/oNX+PxeODxOCHXF198AYDOdYefVSAOD6o19CdzrTqV3x6MhwrzYqkp0GQF7GCH4T7Q+4GjHzjCT2W3A91LqOqREpNJB5ukMyEPj1IytzSDY4t7lvMlKAHbWNug1wot+Vi+pQ47nC2CunOABpVPh8y4rlS4IxuBxWlN57SYDz9wX2X+x1hplhpjyhouwr3wTgkTn/RA6J1aFjbkZbMwNpujGHcCnhz+gtk7qGphqbgWLKroQoDWJm2eYmOLKyKgK6Koqli14FYqbiVYFCMViTLwvFR8WCqet4ZtW7HeVtzuW5h0GboM1DFQ2opaF7S6YCkNUjpU+sxVC+ikW8DuqqsXLK7sNdEH9r3j7WF47MBxnLl3Uad7a6U4uhXFx6b4zr3h41bwE88LPmyC51Xxf31ouLWG+7Jiu62obcWyNayLozU6YJZIn0mj14HrdK6Ijc4xhGJXQ+gfrPL7HoyHIPoZXSCIACxVjKhPOC7GBPmMJj0M6lSUvhVS0K2zGsp6eMTE5hNaII0N3x2hy4iBdwXYkhVjzHKXuHcG9mMpKS4O7ZHErmgOdKd+JOd6Fzaz9CgVcQt2MBZq89ykxqTTkXn+wfJXFbIK9IyQCfSvAcHUxM/VPzZhnLgmdKCosdlWyGQxbTJLcsEXAQgccU6chYnZUj+RsIQlz/GcwACpJEBxlnNWCceDGCXDgRKpAsnN25kmz82pxoxbkBJ1wicD0zYZ4KTINyM1MnFpDJb6mRPEkXESNPCZqzIVpoXC/q6KXRRv8fsLwO7xYT5GttjhpczInJVCBCYyBj1c+oG9cB2onmkdimBtjGloSDB3KUOf/6cWgyJaQA+H7BdQokavK3EUDPgYoGanwjtBRNnDLr4A8og59jZgldoWghAjc/XWgd4JYIT9qHoHjuoojaBcXKJxIEuiew+rf48S8QHuGYNarBs7FJCBMUyvLQTGCkugqRuDEITWYNAKBIvSQO/WFKtGH7UWqdLQW7Jy9GTiNKeDh04FmOt47sUW4+vrfvy2AhR3xy/+4i/iD//hP4yf+Zmfmd//03/6T+PP//k/j5/+6Z/Gf/2v/xV/9a/+VfzxP/7H8Wu/9mtY1/WHXueXf/mX8df+2l/74dcX5npz3RNwAS6eJVAagh26A6od8HRjFAIVKewzI0EVEnjE17ApJpwAoIRldVWM6jRq0ohEnY3TDgAPCHYgypRDMOQ04fFgTJagzxa/oPVeYlMXFvZ5RfdKK/8O9J5mTYFcfUBGRxk9BFsDDR7HpQ+IAFniyAgsItLwo6Lp1Ck05BG+gRc2Q+SMjtXZw8ZcaG8cjRG5yMbUF+EiUwtUKhRKT5O2orUVS10xqqGXznM0p/JcLjG8CU79MRuOLShYpeCpRvnt2nAbnRqMMvB8X/H0vGJ73rA8LyjPDf5U6EgKwWGK41A2IqsSTbciTYeB/UhnW+ZbS2EufBPH6o5dYhNzoMhAEUerIcATh9eOWvm9thbcWsG3biu++7zi41bxk88rnteC50Xxk08thNwL6rrRSntdsSykThf1WebtUSXBmNcjJRD3WR3wXHQFXirkog+ZEMIQK1VYtkOn/sgM6GATNxsjID3/X5Q/r1JQJAR6wiqYHkJx82h+KQiQHo6oCEt7l2h4R1O1ayieAuiMul3IwrsI6mBAYEpAxUtgzK9xhl2itYRyER3zTjFQ6OHZ4oqw9KaJl8NRB1C6kIEqkqssLAUb7ojs5SwR9vDhGGNQ5AsDVE4G0WLhdoKUzP/32A4zrJ3ROMgEFWFzPA9RecWpn5igtMYapbzOFLamdGYNMNAAVGb5WDUiwKAIJ4IZm2yqBiulIqgl56DjIXSpHU3RCkWRm9BKQIvDamEGqLPiw0IgnnqgjC+sOLAAsgnqU8HyVFFqhUvD7nS09sa5aAuAm0AWhTRl6nKws/Zjdzzc8JUM7GLYwR4y0jvkcTB9eShUw/RODLI/4L2jP47JQMjwMGlLfghc5wfXnQKhASfIZkjs7hXsz1a8U+Bvhio9/FSAx35wrqmGAFxhWrF3oD0M9aigLKCjvzLQs526NojiaAPSBF65PgFRxROeLceRDL1hieBTDoO/DuAxIK8D+jYgu7GX0nQJD1AzOBYUrPrJlbU62cqmgnsraK3gaavYssnrohRwD+BlAIdTC5XepzVeypzjjr2vGHyY089n06iO+5ofv60A5S/+xb+If/fv/h3+zb/5N+++/xf+wl+YX//Mz/wMfv/v//346Z/+afyzf/bP8Gf/7J/9odf5S3/pL+EXf/EX57+/+OIL/K7f9bswBVaTcwQSumtMbhhZhzJYXpWCsAk8QlALZU4tqohPW+uc8cHMpJeEl8JUgQJHlPRhvj2jDTYEYy6PFBd5uWzsVgVh/57soQBeQlSLWbbYPbqbWjhW6hk1U2MQRlBu0TCN+dYip3ugIgPWjJ3jZgWtmP8ZzgqG6SFxAScSaQKNsjIVvnL2f9GZyonP0z9F2cTOZQpua6H1+qH82gPKaaaXMMmpOJkEWIxImyg2Vdxqwb1WrAqIGKwoBbopwg2xsxdqWswDkAkjGQ+wGm3KAB843FBGgQ4OCHGmlRiZCjoQKSAK2ao6WgFStA31cNI1bAtwWwSf3yo+vzd8vC34/GnF81LwtCg+bAuWVrAsbXrd6FLQqrFsED7vfZZuip8RvFw+S0wHjg+NMVviWco0suOgyBCKoCZpYM9NVgE4wUrRM21QtITfSXoOKRd6xHOa9HuyiR5pWJnge/oizDDuSgvzGxqY6+ykHS7FosFUpZdLNAqM1J8rAJOZhhXJbf30VOlg+g7Gn5uBvhiCi4DPgwXl349536mf8WByEgJJ/k1eVoxZjRRZCc2ERRqW+9EV+BMoUHtFTqYIpgNqgc1GitFUmv+O56/DY26SAanC5nuptEi2Jbs5Ky6BS6w/JZiz0krolvg7QwWj0r+nRGBVlDojKyUic/a4yuCmR0p4IECYCqQBugjKVrDcCFBMKuqjQxcKpVEBNEBWCfFK6HSGYzzobPs2gFdlY7pdeW/UBQgHVFat2LS4r52OtDbOtg2ws41JHhrjQgdQ0IHjgAib4+W8rkaAUr0TFLljiKXaBXvvZI9UoTtNBb0e6ACaO5YIDkUM/ZXtMewRyUYx9GaQ6kBzWCUPZXBYAJT9CMDsdNQWYyrJHgQ6aYom3dMRMATDLAMWI3hVCdflmHPVWMa+iOBeBWtVPC+KNVqWSGUT1V0QPkTcQubc9Fyzuf/YZay5UBS9AuE39fU+ftsAyi/8wi/gn/7Tf4p//a//NX7n7/yd/8ff/d73voef/umfxn/5L//lN/z5uq6/IbOCwg0te+mIRRIuVgg3xxiOfgy6Ch6OcXRGPB5kpEaOsAqsKhH8AqAJPLpCugLRdgGtFZQopfUCDFG82AEg7J2dudRdFLvSsbNqLkwOwUCVgUUM9+ro1fFWEK3OFYKFkSDVeNChWA/gdTe87eyy6UpNhJYYhGBelc6twCqCVULclAAIOEswA327H6DOmk2ehnd2fxa+hysZEYhEjx+Nnj+s0S+loil1N0zVVFSt/Hmp7MJbKw3oloam7NBiBizLiqUt2NoCbx1eD7wp0X4VLqkGNlCkvkiTgEVDwSYFdy34UCs+bw2frRXNAIijF8fTuuC2LWhtgdYKFKblRjBZ3Q70sWPYA7BXiL3A7AXd3jDsDd4dZRQsEs9cCsV+sX6yjJQU+qoCK4ba/Ewd6sCyGNbV8fF5w9NW8JMfF3z34w0ftwXffr7h3hT3Kvi4LqyAWgprj0sBmkZJNO3Pqdsgk2SS4sVslpaW4vm9uefPiqxM/BYIshT/ClAc3GlpiRNlhDK4UbqhQrkpSxj4iaIjuiWj0PwqHSpjfJkddFg1gxujKA+azonYp1ZLoyxXgy723CgiTVEkgJMCcPaCAUl2OARVcnHlRnO4YwzOEQVZUohjBDD1ea9CKxKN7Xh/yLCoeXjABHwPoOqm8fc0jWOK+ZIikFA+CCBaaMonZCS65bMgn6WFXhsJYjTYjOxyXlzRxmCZr/fJdGKNXUE0qlHCy8Ypom2uEdlGV/IMkhL8QU4TsCxDNc5xUYEuJVKJgrRJsoIAMGwzKEHHuilG6Rg1xm+Apn0M9GHYR4dWlqEuT4r1Y8P9Wxs+fLih1Aazij4M3QfaraBWQG8C/VCha2NaUwrGcDxw4FPp+FIE/3sHdgX2w1EGO8/bEWOtg8EOOHYWpzhaUgboZMGue2WClGKd6cYwwJNjQN962IlQd1LcUK3TrM4NNXvgqOB19AAbgreDFgzLYaivDW2tuD0tqAVoxTHeBsYx0N8GRvCHj8XQq+Golnk90PiPY25/5Poj6PUgiB9A33cKwV8NOC76mdDoZPpWoaiRaFEvyJxrdUcFy7o/tIJtLfiwFayVDIqrYx+C11g3HhYap7hv1ZEUPNcqnKw3gpXf9Kq4+tEfv+UAxd3xC7/wC/jH//gf41d/9Vfxu3/37/6Rf/M//+f/xH//7/8d3/ve935z7wUJ98MOGwfGOGCjBdocU0HczaBDQsMxZtXDpG4vEzhTHl5JSZoarBhcBxD9bbKPmGs8mKCLNRRwzMdSKZ3kLJkFRLvzcP0rLL1jVIJZImtC0RhiA3yQucNhIQiO8Gc2yYvXpUFTLEqgJoSmVVHJcIlPPe+bdYgl0BtwH/MactMDEIxILIgiYfzFk2a66GRLppd1mtvlIRUCVnkUpdPsUgtGLWypXth4rRY+EAOv3+CwKK+mcFyne/AiwnI9YKJ2RPRYorTOuzOq2DupbTugjwNl51H7gWrsZI1gkFKDoUIFe1MKz9jHw7EfhmNn59PSB02r5FTplwKsVXBbFN/aCp7vFT/xtOBbTys+3DZ8fLphK4KtCNalolSFNjoNoygseg1JgghPJVUOVA/A4icL4XkDfKZyJgMVC0k25JUI/T1mEgzvn/kUXCZ7KO/GQY69TAvUEuCXDUnmWuAZvQVomcpef/9+5hdFQJblx6nl+E5H5hyRUXcx/UmyCR7HC1ixFT/X4azCsJPvoM5KMYxrhJgxnRmpJvq95PVk2SoiI3XajVtEhxr3xEP8CeOcrlCIhBDVOL8sAEqpnAuqSnF4pGEbIhINSl7NIFaizBXT/kA0TbS4OKTvJy0RONuv65sG41qDDUtxs4A3uQTbWVqZrT2WWG9ccXEuJsPiw+Et2FNVSDsrY3B4FB84tAG6AG0rWLaK9Ua9VakVPgpe1oJ1KViWwsK3VQlOVpoFmRT2fNoX7H3gMTrelhIpHmH5vweQ8rCvj7BGhZVLE+jGEEqGLYemxO2g5sehGCijM50dzLqJQ1LLghHlwI4yJDpkCx7Wp+6ua5jrgQCgDTJorSiWAvgbtYXHW65dYIuBCvSCjIZYJRoA5bF76BcZRBdn2fYYfC0zanZYpqwnGx7eRgqlDidW53SSVufbrSK4KdemexEshV46BgYvRzKasZu4O60OskzPUn/Ghef0XWd6XDyv9Ed//JYDlJ//+Z/HP/gH/wD/5J/8E3z48AH/43/8DwDAZ599htvthq+++gq/9Eu/hD/35/4cvve97+G//bf/hr/8l/8yfuInfgJ/5s/8md/Ue3EwWvSP6KEv6REhnXTu8BAKBXq+3K+ZrpBYjLj4YnY+ptcKGQWKa2OiRmlQegUwS5CzPpd2lgCfavSkewNQqESnX5mLjQutxlk6yJTCQUDMqDCue46QADX55fXbWT2Q4Ci7rSL0Ah7lbVlldB5z2wraHpc0Dy7CpwQtmU6IAxklnp4tbOge0sNIA5WgiemOKTiiCmNW8DiiXFXmK6Wgsij/vgnLHpdJXzONMyl1RxROkW0SiX4+x+DRqd0pQfcCHukfbpIiQs8VYepMPAScw9GHwY4eTfB481tUhtUCbFVwb4LPtoLnreKzW8PH+4rnbcX9tmFVsi+tKrSSxfPKMSDZpRj5zE55ZG7c14MtDIB0cnSGXfwwmYtv0rJZeitAqKv8kiV9h0zjOU9FUAhHZQJV8Xhm4ftCDHIiEE+fCJ4M5iSBBFARXCWZF3x00u/KeeaKmSKadu2QOe4LMLUqEvNUPdIRQno5m2bSP+hcJ9R4g8Tfh9Vy2cgw2RRc7leAR0mmROdzyg7l7NDNBzJ1IwCqXgCKxnqCAEkBUFRAF1CJ9GtxOlLn34b00IvHnBMyKjFO6McTqWHnLl5DhxRx0KziKrEe1apk8kqZQVA6wXLh1Vm2am45TKDRagFZzi5MtUkFSgPaoljWAClbQy0V1gVrY6+0pRVoA0pTyEJROFoDtJARXxr6cmB/VOzRyHC3mN+po4otsTuvKSulMlzKXOWIZ5qpLPgJUBirRjrHuCcQjDp8sKlBieYG1KuEQMsUu4/5ei70o5liaQOkFKzFWa7+YCFEf2C6z6dAt4Sw4+pebO7Yd0c6J2NQc1lcprW8GdGkRAqeaVIEQGE7iubZLy1eB+fYW3Gy8GsEZ0VZJp96KP7NCUIcDC6nI7XPHTBnB1OPsfd83Y/fcoDyd/7O3wEA/OzP/uy77//Kr/wKfu7nfg6lFPz7f//v8ff//t/Hr//6r+N73/se/tgf+2P4h//wH+LDhw+/yXdzWD+i4/AOHzvcqMDg4lFgXoGxQUZDHY25aW8AOjb9Cpu+4aYfMKTgwCtuEOzecbeBFzd0pXlXHYbmjiMeDsssg2J2RXfSLhUe6NQhskJkh8qGIhsgB6reUOWGIjeIdIhWeL3D6x2mN+x6wxuANwFECnqpEFF8AcddHI9qOKqjV0A6oIORN2qD1AbRFdAFopWbO7IaJeGGn6XCRloXIVi0SIud+16WmTLyoiKGDaNgcYwjZlaIjs2BLJuGhycNFz4piF1xgF7LB8QPKHjwew6PTp6YW+K5bQLgYl4qlkpx6a0tuLdIuRUAi2J5uqE93yC3G7DegLaiyALO4or9eIHuFXoItDN/724YYjiUiwfJIEOTBxZ3SH9BH4J9KF4O4NEHDAeaGkFWbdgqo6O1Oe6b4Omm+L+eKj48NXzn44rPPt5wu92x3Z9DM0EQJurQ5gE4FV5agD2ELigA9nwqI0AxaNzkXBTIVhDIRD4EYjpTJxKbH+CQEEEDwsZmSEFssiUXmmN4UgdIy/eQVCAIL1gwSGnUZGHuRKM3D5AV6Aga+q7rdJYQZAdIVHYTZmTn0fMqWUimQWssf8XZ7kJSL6NMv6qWADaOoQYoreMRQDs9WQ4TuEWn604mpYAAH0idDe+VDz17BFlh6acDYly+IQXUTtJ/o7gj29Snlb46qaGGihpgOlOxCg9gHhVKSHDakHi1yIIiigVKB1I4hbUBkIbUxObcCMXZRydYtRKiY+qNchuhmF2KQtcKrUw/LWkFIEwJuAn6IXgkUBfAlIL50qLyyQiWu7C3lSyCsgo+3AXPd8XnT4qPd5b2jzfBI1JJTwJIUZSlYllXLOuK1hYMKbT0b6yGOcqOXQsOKRhQFB90as1dHqE1UzJhHumponWCsg6ZY37Mcc40UMq0GgYDkyh9Z19yu66OE8yoMy03LoD/NcZuee2oXVF3YB8VS1gj4OHw7uz46wTyxzIYuFZh01mJVGM0pnzrfTKau68xduhn4iqwUmChVisjaqv8BPOsgBQ0BzbRAFkaY55tQzYHNmfJch1kV2w4hIY+nCMjW4Rw1JrQsVfimtUNFaxIU4SDNk53pa/z8duS4vk/fdxuN/yLf/Evfkvea5jhGJ1KemPHihGLAQW0YfUeqvKT4ioR1Z8NBnUuSOnDkZEiMLfrDBIlyxCRuilS58CJLJEDjkY8JfQxGggTw88ysMnBsWtph+CI+6gGPAIYHTBGSZWHZMpJqY/RIC4YLctkL8RDGRrEpQcFmhHgdbhkJJQLocYP87qzhkTy5EOgy0g6dAN+qcaIzSTBEi7R9SzD9tPQ2+Bhxy6nWBdnVM9oObwllPqeGjS3Q8lu1QppBGyuld4J+cQsXCOPARwd3g+W+fVo7W7BIM00Bkt06eVAfGPd2fAO/HlZGLVureFeWRZ8Xwbut4rn+4LPnxY83Rc83xbcVvqc1FqnR4YC8RwtwjeKsPNB+Ai6L2mFZBZC5I0EAMmFCE7x34U1ub7ExB4Il9cArRYlvT88j+MpJB8OCTfLELvmmCnBZPllLIFf5DlzGPiMZB2YdI4jNpTclPMFwhxLwotFnboS1WwSSIo58A08cvwAOQUrgqPQ4jtHfN4fj/OdjTM9qAGnpiPnlGPefs4hz3QuZg+dvKz8t15EiPLuP343mcGS1wQPB9wz8vR4UGYnoybjZJaYxsD0x8m2CobQm+lFyJhaT/Mp6hyIiRaspfgJzooq1lqo7ykCcZ3dkffBeTsQFgsSabR8jiXumQq0CcoiWFbFugq7dLcoZc+scJQeEyQ1aG2Q0lBKJXjyEIvHAyvBKADZLA8x9lJMjnmNNMRMki9AIiikFfh00KUOKaXoHrwvYgWKtW+uVufMkPgNdQmG7vyZ5d+bwfvA6xHmhkPghyN88oLBiK8R+xjzJUB01jZ37JbFHTLLeR0407BRsODC8/fQj+XIp57pHHeAnPfEce5P3TAOWl+Y0q2ZaST2tXJzghThKILOnDE09wH3KTmosQr/vwpQ/v/5sfeBxxFeJaOju7HDJXAqz9OzJNIKcjGcyi28BHJUMPrKA8CM5jwozkwDpXgPCVAQi79cwIkPFO8odqAOsg1qI8S8tIi2npsC3y5Fdwckmqg6FnPsbuiSAAWQ5pDq0Ep3xdSwzP4nkBBS0aiLuxHTTWZyNiWLwYNc3COyhKSXBRfETEtpUOD0o4i8vfu0Dp8Lq2NOgCxDk1y5gDnFE5SYZ2rFp/IbwA+AFJDNSXASAmSmewjuWDFUubjVBi/UwghqCAlBHvQ44PsO33fg2KnWH3wuTNXFAw/RIIAJUMYRi8u0r6cuZltWPBcKX5+XgaeniufnBd/6cMP9vuHD84JtW1CXhlraO68NapsGWSaR6KUUkW0ReJqKuUxwSIASJcER1akasivv3IidGxoSTOTGmpuzRLdoY5kwwg05o8RcAqemBIMgYlbr+CRtZAouz3kql+d5An7+vsd9zQ/3SK8h2YAALkTHMbcDpHaKSH2QRheJ3jPx+p1u3GQRquAYWfV3grNs+peN6SC8fxzTCE1Ihh1yASQ+GwyaR8V13Au5gDxPpD+fBpBhzBWgcHPivMoezbmUz/kRJ68S4HC+1pmaTt2Iis57m5WKTYFiufFliiN0Q4EOMwgrBjRnxdTWGlnBwgc2BmDDIJ0C+e5hUBm5ZYlFcRSJZymQVaCrYrnxWFdBW5h+6+GD4EUgKbRtDVIXaCNQYRAYolVnmjbw53Q8pcbkZMXUshcZV6LsXcWUTwKV6DEsYZyp3A8kNC0slz1B5vtwaY5kJExx+DtAmyJcA1PqBoEeA8cAHgrY7gyYxmkJ0YdPgEI2yifb6HAcfjJtwqwS2cUYC0XJmhZx1KiyjMiQcMWT84ixw6gAoZmgJf5hDJarRw8yUHc3DL0b7HCYaWgWU0DceVcFEEtrfJsyCCoQdaY3v87HNxqgPMaBR3/DYQ8cfmB3lpUNJ4p8heBNBDewuZyBHUVzd1ajlwecwKWoYmkVbVHURaAoQCuQpigpYKwKrYqlFFRj4qOZwq3AvEDQI89LfxLxA+V4Qz1egeMFcjyA/QF/vKHvjmN3vB07tB3QwQqMjsJ+Dy4YpaJrgS0FWCvqvaHcBdocOip0FEhQuMMG9r5j3zv2x8D+cOxvVH3vxgojiOBtN7wdA4ezewlkMJKIY9LRCOYA4TAZDAk8tCtjwNkMhdcsEQpFmRu6M9LrQkv92HwAbjgmYcNfGOGOAjqEtlwkBNWI0AG6H65FsbWCW+WxapkVS0eAiqELoCtcV3RrqN6gYDsDAeDeUfortL9Ajq+A4wV+vMD7zmsKx+BuVKq/9eir4wvezPDqjtcxsHfHYUAtBVoK7suCz5YVn7WKb90Fz88FHz6r+M53nrHcNqzPN+iyQirTcIzCAwBWAO1ScaHBVTlghe0EEIs0jfkGREd87iz3dMNAhzj7wIjpye6FBmvYBZx45Ooluvo66L0x/UQtMjzRYNIGrFND4TJoDJWgByemc+PXNdS5fBedxn/UL8hcvCyoieysnCSHhhA8QU0CVaSe5CgomZIUppeyZLwo04ijG6zQCt0tNAPDkyDBw0AG1rmRVylMyQjTGlo0yiLDwROCPjSclB2HGA43PNwwQFrb3LD7wHDjhhkwvEdf4hEOLbOkNcAmfIRAG3BlFN+FDRMHGLEWoQmb90FbfbCTrDitCMwLTB0PSTM79mZp4ljk1BBYaEQcEg1HFS5slyFasS4E1bdtxWdPG9YmuFXBsI6jD/x6eeCBjocb9qj+G06PkGTHvHL8lOpoT4r1ueD+seL+oeL2VNAagzA8BqQOSDVo+H9IsKDaFpTWuPaUgae14m2pOJaKct/go0JtxX0MNE9NBdPWjy7orjiswKThtLEMdiXGi8O4FoYXi9CyFePo7GUEshrdDbspHgcB/YGUNJ7aLC2CupUJymusjQwKBcMdL74zTTg6xiEEkbBp6NdGqvUG10GJ6sBQuHckwyIx5nDJBwCrKGohkK/jmGDrZEUNYxBC7YPrCcGTRe8jQDs9duQYKDGfj71jH8Y5tTubK052d9APLAIJlXg9jIwEwicL74KXH/XxjQYofRiOQSv6bs498fLzQ9Jllig55doeEwjBQc+qhOnYSboUYE4vA1LJG42o1MiFdApEz06bpFGNqH8YyuCGnvRZlkFbVBAwOiDAMiW17AEoLHKLjObpv0JfEZ3VM0klsmrJcQzH0dls7TCPxYibXHfDEf1MTIz9c9xnyuCa4kkaPBXbM72TR/pcX3ntvL0RSU/7fo1INKNXiXPGGQVYOaNAQKAjrLicZdi1KNr0UCH1rJk+yEeKYMpCfQPn5K2xahgM4h1iB8Q7uOuyCmuKnmMRG8Z+LzCHDAry2MCuzzg3GaalKO51wVNbwsW24MOt4LatqOuC2kroBHJMRQRTInosMu/9hbe4RGpkTKiC56Y347h0dJTzLyaRzWE/QUoW1UwPDzm/hmcqBhzP4FhEsDcEMRyjM4qM4AueaTGO1ZLj1nNDwPRFkcjXe44NOBB9hDxAm0baEAl84ootKlmmk7NHFBizQEL3UGNRNziMsQaasSSYw1S4QEu40oKsxNAL65omjOedRlYJZWIyDfNHCIDP71ikq+I3/fRaPWfXmDQSo1He/JGpMAW60qrdJjvrrJqI5+LCNGQ3+sOYB0CJrynUTSaFY/zs+sybK+GjoLWhtIa2rthuN9zvNzw/37BVwVaB3h94HB0v+0B5FUAd3TttCnKNjbwZK4icFg9NUBfBsjC1U6tASqQtZGDIgMlgercgqwioh6llrttLVWy14NYqyrYC3lBgeHb2j9kkav1csHfFEQCly0IQ5meVkWXqRA3duVOoD2B0+BgY+zE1haM7ug3sNvD2FsHLcPTQHxkcpQX58yQTXJfoDj06mZFhjp5i1mEYKgFWMaGTFEQDVmcH9PiB6sm8JRDwyka2LjwQK4Oo8b3Dx8kHpr6QI5Pl2MgUezw/dUEzQRkO68bmhpHm7D0YlHQJt6wi5OywpL4F0DAhIyDn/ByDTKH9uACUl2546YaHgRuH80GPEOntURI1MKIvwTgXD3LF3NxjcyhNUJeCOgTSSGEN5aavwyHd2Fa8nLiZ+oFCzYMbIB2itOBWdxQbaH1gOQzeHdKVg2ZI7O8EKHCjBXfhxicQ6OAgZOUmH36RGrn3gVoY7UgpGEXRVfBww8Mcj+F4OZz3yFMyxQVtHwMPY6O/poPRms+xFTwDvSUK+GcDaY3N1JVk4jQAStJ6YjY7L5eg9NR4sMr0zKsb+Hy6sNNlL0HvR4mjCvUFXgSuhuaCViqWla6rS2uopQTbEpuTh4kYKhddp8qoomJRhduD9sx2QGyH+BHX4WiupPpBsymFoA/Di0d/FAOO7tjHwPCdz6mw02otgrtWfFZv+HZ9xk9uG57uBU/PBetdIWvBaIXplIjmFWT6SmXeHa1iluFah7sh/3MZcGF60Gc/p/xZbpQG6CCWAACUoMOV7c87F9pkDzJdkWPcYzyToaAhITyaQ6KT6RgeglpukI4wRJtMR9LpAKyy/FE7YIo+oslfaBgQC9bsqeLCDcRrrr8Eb5FCGmLoMBoYiqAr56c5zRhzk6diYaCEZ6sJgCJYa6QbIu1grni1zlYNIwS0qtiLBgB2VlTFfHCRCAIwvWjSfdokhbBkt1RGgEYAGLEJ9Pg8orIu1E0ePazQEQ8g2EAClKN4NFyLeWMUKSowDRAhiuGNjq8iOApCVuJQJZCXmrqDZMoiCWslAp8Fy33Duq54+tZHfPzsGZ89P+E7H+5YCz0sHq+f8Pr2hk9HR3kR+MPwsD08caIXTnxUURQFDQcXYN0Et5tGJ+/glAaw244dD+y6o+ugnq4qpAlkUdSVvjelGJ6WgnFrkL7Bbyuqgm0kaqHBWKR7FUr3bS/YveIIgGKeNTpBLRaHFMPQAyIDRQZs0G18f+z0RDFDPwaOYdj7wOuL43gAby+OfRcCDgyUm6Pege2jQBtmd26Y49gNj/3AsXd8+vTAY3e87sa1zQA1nRYU6dzpBUAL7aPSioIanBg7ItDWAAnfcKFuTd1QjWC8+oPrsAl6j1Qu2FrIYixOoTDCd6c79n2gmeEFBJNFBeM4YGYYwxngGsKt3eCuGM75prG2ZG8nh7LTuAs6dFazfZ2PbzRA6cfAcTj6KDBUQINaUwfQoUJTNA5XUmUe5XamAGrU7ddCtXQVSCus6qgCHdzkxJT2x4cAfcBLp6mZGKwAttCEyrTS6r4AB+jF4mPAj0FR0S7oo8F9AXxBUaMrp7LzsCkwpDOiSUARpceCArUCHYLa2ShvQYEo6/dSc4G2QNpCwKQIEVg6RgBAmaIZk2wLLxc7ZL/c4UDEuVKeIhWkiBQam12WV0r4MxRWA0Rb42CiuLGNyFkPkIKe9Tvxe9JoVuaiTMNBUJzdhVstWGrF0iqWpaLUgpCXQNxQqkEXQVuA1gSl8llKUQxhFPS2P/Dl4xVfvr3i5fHAfhhGB6pXbFA0Abw0uNIZ5egHutPDwkKj8rRIlAMXbKXhXhq+s6349u0Z394+w2effcT2sWD7UODrAavRO8ok6Hpjw8Qi0KpALZBSQxhgpE+TBQkPDXohhO4nn5edFQh+5m5YqWEIZqiE7XqmXLjQZQsD1fgaKaSkSVytBR7gfGTeJYHAZBWSwfEoQwXTpgLIWOBloFiBHWQLdDDNSgGpz+ojahSpG/CI+usI2BmAoAPsEjwMZoquYE8TsJWF+QjbAWqE7NDIkwtECloRGDq9SmL5/CQ7eyr1DotAxSp7+uwQ7D3M25yvOSKo8AubUcLpVY0tD9SB6j30PA6JlGj2bZnpUAAj6PXsp5VincFIARryMUCAqrDubBfQyfb4sGiAKZCm02iptoFSHLUMfFgGbkXxvBSs6qhQHN2xoODwhoECaIWUFcvThnVbcf/OhqfPNzx/3PDhwxNWVZbafyGQl4LbvmP76ktsb45bOUKjx5LqXDtaAvel4mkteFoqPjbFvSluhd3Auzn6ONjNeOwwRNsIVYIPJfOFGPPaB5oBNxSUtaC2gmWteN5WrKXiVgot+CFkN6DoUHhZuEahTF2IiMCrAXWglwdEB2qJueaG/aCVvVwAyqMP7C+CsQPHJ8V4CGwIzAfKaijbwPIR9H1pHNNujr4bHo8d+2PHl99/xf4YeH0b6D2YchcU4bhnabdScF55T2sIXlWuqRqBt5WpOWlszeHAOgztcJTD0J27H4xW+d0dhzseym7g+xhzLU5jzCqCx+GowwlyikIVsJ7UNwHOcOC4ehtZVDJFijk7qTD9ymdRhEUrX/fjGw1QzIL6TDM0LfQ9EEY2VY1UF+y0100iISXdRS8K0Jjohbln8fDsAJg/G0Jq1YyZ5BTQNkZ+LgOjU/R1IDv+0qjKOmIgV5hXiDT2cImmeS6Zex9TWW4p6pWLn8gQFEsRW0illA3pUCpQKvtHXP0LJjkdVH1sKBT4JW2P2SFz8vYSIj+ckr1rX54TrGB6QHgISxETDEVmSiO7X5rncQoOx3zti0pZSljIRPWVWmye4bJaNDxkwE1c2VupVqchawUrnUKIMdxxWMfrsePT44FP+4633nF02l+rU6dC18QKE8EONiOzwShYIg201axMKNg0XG3Xhg/3Dc+3O25PH7HcC9qt4GivcA3bd7BM0yPF4HJS2aLCGyJJ5KZoEpcuoCEtnqzDeeDyWcLVieLlcwyIXoqIhZ4VGuZnLqc/TynUXcENQxXlEL5+5watniJNiu6As8KKlTYKLxXuTEWOoLfPcROpG2R1REzOyBCo0IAq01FurJrpkcK0EKhO9ijXAud5jCGwoTCLGoJSoeI0lBNeu0mhvbcIqhtL1INOt4j4jsFzKD6LvOApIpYUARKk5H1W9dkM1Nwhxuag58Vwofecf3PiGYOhiHL5cDAFwgggORzYQ8/AzCkLAKqWtC5BWx2tGNY2cF8c92q4NcFaQrRutGBvYIoAwkBtuVe0rWL5ULB+qFg+VKwfG1YtXG/GgQHDsjUsi2CpwKYDooLaNAA1L3GJkvt7UzxVxb0qngr7sSzCjRJmGL1jDHaO94ius7qN5akh3u6svJPuXP+k0G5gWdC2G0qrKKXR8wak1rLiT0qjgJ5OKAQpAVC8dhxlkAmtTtYOjs7eImTYOgHKMgaOF4XtAnspwEPhXciAt4GydNSPNo3p4Jzrxz6wvxGgbEWxPzoer4PG5x7BTuTSTSvXgiJMjwmr1GblKDDXj16XOZbFBGpA2w36GGTWHwp0ppCHMrXUHTjUsQN4G4a0B8tUU3PABu9xdbbwUKUGS+PedZzpeVZAMR2rrlPbmevD3HWE1gBjBss/+uMbDVDUw6paFqCsWJYFa6toRZjaJcOPmwqWMEMKM23mr8McS2ODM4zYFAVayFYUpJNjqN2NG00Xo/OpCnppGBUYh+PtreBVFC8CvLlhdcOaDn+HomMF9IZS77gtHc+m+DgWvJbKjcA74l3hpaKUBa2sWGRB84YyCmqni2obBe4VhgZIhWuFlwVSG0qrWKtjVccKMhSs9DhQhOmFPgr6USAPhY3BPGsXjM4U0xDScy7hNyCV7rhS4Ep7QRqLOYYWjFJgtcJagS8KbwpritEERw0hbyD4Axzk3X1+RuhJtHAT4wYUeX/PEmYCzlIcpbCKCRXwwp+X1bA+Oda7YbkPlPWAtx2HKvZ+4NPbl/hfX/w6/j/f/3V8+uILfP+rN9pM7wL19VzQ6oIhDrUDr/aKMXb4CAoUivtTxXKv2D6uuMmKu274XrvjJz58xGdP38L92z8JvTfoveKBL2F+ALajpdeHV/bcqRVrqygBUtLSkvolNvBSUXRT9FEAKxFR5/Q/UyRwB4YizdpOP56BUchw1MjlZXmnC8EI04hpCy/QAtRGJF+6k8ItSlbmYGOoq7lfpitEG5BAtdYJXqwzzeNKBtLnRsZqIAgiIGBKrqiitYIeAAa9w0b0pJo6Mm4M4tR3jW5sPVIUYwj2QzCMVVwqnCNFBw2wtMCl4i4FchwhTqdIVV1hg+yJHOFA6ikYdpjRkRjiEO/QYag2pqGgiKDGZjuitNTHQDp2CkAWV8htjtgEXZyNNOWsyKN1C+eDazTls4JPPtBhbNZmBVUrnpeGZXXcFsO3n4H7YnheOz4ujrUInpuhhgPt0CiTph8/g4tSoJtCF8H22UD7rKN+6GjfivYGqKjY0NSwfqp42gT7MuBtx9oKbtuCBJkGMh+1APdFsS2KWwW+rWzLUWzgcThkHzjeDuxvB/ZHhw0GYW0U1O4ofUCOjv7pgf3TAy//6yu8vXbsj+jxBOdaAwKWvbQpsDfvM3C51eiNpSMqgQC3iqEdQw5AGER4FZSN1gTqdQZuCfjdDHUvkKOgPlbUo6B0RRlGsbocwG2PnkMgqARTkMfjQN8PPJ5usGPA93GWuRdNuQi6tmheynUNUTlZIz2XmjyD4C1YXnPA9gE/DPbScXwaOF4Hxl6wW8GjF7wcY7KQjwCIn4xzZjiodwGfz2NEm4BOUK8C9KEzrvcgAZjqJTBPB4zizABQGeWsKlMWQkAVXZwb0tf4+EYDlFLAKD8EVRqiyarR0VhJnVNMWaAlC7lKWESz+kKjjNR8hBo98nN2wHAwd4xxpogQzIkKRlGMqhjGPiNDNToaMzKxqAJPEZMW9qZpy4K1AdtQPB2shzzEoWZIQYihoIRTSxaRzVw9kqYmSMoOxJbIuwit9PUsX5PIkbP8i/X31IiynbcN/hsmE8TNUtTI5aco1OP683dorEWUzu/zXFLga7khmpxmvpKMYegn5PT18Bj41N2yCzSVXiwBpAGYBVnj7MwMllzXBWgr0BYAjW0KhnQcxwOfHm/48uUFX7684tPrG14fO6wbYILmNIhjE8QKEUPDwAFDqksrFE0KntaG7dbw9LzhrhtuuuG53bB93NDuK/S+AmuDlQK3FUBQz5Ian2S8CqqUkHBk+iTvkJ9kH+gYemqJ5ioxKeLwggdyZMT9dD0XufSpUD3TnUXD2h1RqRX9qbQEU1Bo3c/OBQQJXJxSkBu58fgv1VkDGjtBLGTJ42iMxEgPWniOT0da5OWc5boWj8B7MEcC5ulHHMGqZCuuYay2MSOb565TREgvFsaifJ6KFWw8aO5BZZPxOQ7D8HQcj5HqI8YpwRls0MAqSFoXPR2azQk+Rt4pAJBoWc85wK4bfI5lUNBYB+lyE8ymp1mAPETQpbCJKECfn1bQtoL7zfFhVfzEx47n1fBxFTw1w1Icax3QcIMbFHfx3MPUzQTRh8xR64BKBxHaIBsGAIuw2V8Dlua4NYevjvsCPN04d8hogUGEGrZqWMvAKop76NjgrEZSNsii4HIIJATtRSrUC8SpXTsOw+PR8fpy4O31wOOtM0U+DlTpaFJQlgNtOZjQF4F3djcvYuhbwVroTFuidNx7Q9cDXQ+8ySukOMoqWHqDFgLY7LrNwMqwu0N6+HskvVGBTAsNM9iDNIV2mf49lJVxHJSsslnoHgwB9VSFz4AAhRoU01gHnBVKBQy2E6A00alTG8UwiuDowNiZh+lqOKLj8w7q/Q7h3LMYAi5B4Gky3Mbg1HPMkpXcA1wXnIGRBcvLWathpEjWn95igDadjJCnqPHT19vjv/EARULN7yooldFgU6Ca8hfGQAudh2iFRq9fghP2nZDwW2CFQY+HP2B2wH2PXbsDOliWJuwqOlTj4GbsSvpqiEYn4rS6rwAqXNhEr0azwXUx3IbgqbGsuIDUMDcOQE4bOUikczIDAw+AEqmVBAKuOgFKLacDZMnILSGTW1jASxgFscLDw7/agYiuuHAmOJkVG5f7zoU2OgXncQUxeW4SOpQQGzoQYIQb2Gk6Fq4eHl1wjfoC0uSA+EA6lKo4myaGOL80R1vosVAbYNXRC8tvX48HXt7e8OXLK758ecPL6xte9wOlC3QANcBk2kELstt0AAczVG1YtOC+LrjfFnx8vuGpbNjKhud6w/aBAEXuFV4qrFS4LZDIvzYNSh5hxlajQRucVRx5IIsXwcg8FlVMKEGQIsyd8WHEx7SZFqr5RzlL/TSYlAlQxGNhQj702QNIgiVQZ1flQa9w9NBHn66dPpkDRKuGkXbv8cLuIbOezE0AX4sigLgWiYjTBeyFNSIVOJwguuOERQUBUAI/DlYKmOCiF9FzsAaNLhEAeMywFudVjONy74i0HnDsEuZScT9TUpiNjpxl6dkx1sEKHIlGjlmpZyNAPALcObVII1JJs7IqSzEHQouDmdenIDnuL2pUJzr1S61g2Qqe7sDHm+MnPyv4sA58tgpuFajqKGVEDSkwKgCnvkJjDg4HfS/U4TogQntI1wHXAZMaHkxArY61ObbmaAvwvAk+3qn9ILiLRqziWNTQysCiiluMa3OwzxCnFteiEO4qCgoqAzPXcK41PPaB19cDry8PvL11iHRoryg4OEeWBXU5ZjCH3qFiqDJge8W9FZRlQROmIKx3HOg4ZMervwLFUVdBPwZKrexW71kebOhw7HCUoaE7quHvxLnnxj5v/egB8oHZ9EjYB84DQZd0cw3NUC8ydYhdazSpdQwaGAFGgFJFsJWKTLk34V7l7jicHlqvDXgUhxc63x5ieIAgpUf4MzSm+1UOEmXMHun3CD3Q4/z3YETYHiwDj0sQJeFHlBkIhK5miQrFwiB2Ivmv8fGNBii1AMCB4Q+Yv8H94GLl7K7KcsUI/aRSCCYNRQcqVrRlw7LyqG2hMFOzNv4Au682ON7gssPLAQS6Za6Qg4qLWYcfBxXgMD4IWSC6QssGKTu0DFR9oIW511KBpTg2oW+CjgEfwFEkBhv7Pah1mB8YfmA4ew2ZAlYEPth1tBR2WV5aw7JULGvBti1Y1oK2APVgAzwPuk0BeOc5QxXeD/jgzuOdXs+mhESepcQpzhIgwnDqJ5Jujxx+CgjpNXPqKMjjh29DGKDxwPTQYHTL6DM3pmE7bOww73CrLBH2AQWFgFpYxuhQaCsoS0VZGsrS4JVaku6Ot8eBl9cdX331wMunHa8vBx6vHfWgOJMVKwZzxTL79nSsQa96Lbi1Fbf1jm996yOeP1/x+XfuuGlD0xWrPkOeGvomGC2SE24RxQGbVqZxBEgTuGn/C9Ye9p56BUMxnA7FBuaYR0Q7Tk0UGTDeb3FBDyCTpnp8bQvmiekzmSUyBISqHqwcyJ5JSF89kSpZAWQEGnlzC4TB7rtk+dwVj2hc1g9WdLizb9EwAitWk0QZcpRwW+hWxKOnhxujPWeZ/FsfeHTD0R09FmcfiI4LTtAUBoRZuUM3VZ9sh6hH2THFtOyyTHfnGhujBa2xd0a8/Yj9U/xihHhuOrlRJN/FxTrBZN4+OhxbYMls9DAiyLGaHjGMMKmj43sMQYjkCWiHKEwVYg3FaSy53Vfc7g0fPzR854PgJ56A3/kdx8dF8PliWBJYabQ0UIJNmsoZVH3qe3ZxdDG82QE/FP1VsL++wCrTFzoOdHvAcUB1YKmOeqv4eG/4/LlhiRIO6x1jVicyrVzdsPrO9LWu2Jpi64Klht2/yQQtzAbQVsGUm+QBx46BVzvw2h8Yr4gSNAUeD2rvtDGYcwGOENyKYX9acV8qHuuKJmRq+lFxeMfuB17HV4DSh2W5NZRaoLWeXjHu6OrYgyGoUrHphobGZpAm8H7AjgPH8UZxOZxVdTFectysSqt7bxWjsfKGxZ3BOtcRwZ+jo9OUbxBAVhFI6XN80cxxwKUD+wAO9gc7jgP7seNl3/HpsePTvuOlD87ZWUHG6pxcvvl9Bi+l6TmOI6DsFwE+YwpGoRpjX7WhVB51qdR2qaEsFNkiK8u+Pj75ZgMUrrEDkn1hbEAs2x9V4j1RQBZAF0hpAJZY/FdoXXiUBaILKGbwCMWctK11mvdgQGSEJpSitOy46mbRHTmiqIwItUC8QksNh0RhlUk1aLPwMwFEHYXLJuvKg3p3ifLOyDabH/E1PRE61YOzmgPRqXVG3wwaT7YDyWwECIvOxUlPzq8lbnBS6bycGJXxo0sVSP6OX48fqChJURqJ9fOFEusg/ybuJ21WGEF777Ae56oOGeEkaazR50QAU2KaQrkG1QYR9is3d4yjo+8H+lvHeHTYo8OOA6NzJzhGPFPLBoeO6oY6KCp0EzQpaFrR2oa1bdjaHWtd0HRBLVt0XxWYMlJyC5GbCKQqK8dUckWIygKZ1SfXyIWZR52W8iftlNgiBKYWFKv4vJ+0uw75qdjpEZNVlsFwnWml2FATlAgi1ornEKyBT+aM4yiFu5Jv4EERh5g19THdWPlmwQ7N8ZRgKMYAUxrB7ITGwPysUBLP0cPqnLnr5wsI3r02IuA4Wztzig93DB+w0JS9++OoJfZhTC0lG8h35T2Le++CKfb2gChyGfPp6YLLqaaPykCmRgOchEA6pvVkMdNiIJnLzA4qCGbWRbE2xdoE26q4b8DTreCpFdybxkoYzJKCpe7K+eaaItQYqzh9Vmw3DKUfiBrHLRkACoALDEUdrco8lhJjAPSpcjPIGCiO0/48GDA2M531CZMxzLE509ZTXAkcxlLft71zfHUAXeE7ooqzAB6A4SBb3JTC0d4q5Oazyuc4CnbvOOzAa3+Di0EasG49/LBY9s81jWmPowBFyMj3QkZVQYdqOzrGseN4sPMfHalz3eL1iQq2VrG1hrEaWitkUIQaDVeFN4s1mx4zZtQoNRCgoJbJWNLQ0QDpGDtN1EYPUW83HH3gGAN7p/eVO9jrKJliYcBE+UKyHwQuswweXGugF61bLPTkQ2KAp+C/KbAoY7DCdGAWM7gI0u7n63x8owFKAUWM0l+h/QHtI/oTVBTwwZk6gUldgHqLO6pQeUM57tD2Cq1PEP0EYAugAwhrsCDWoaNDrYeqhOBEwsHRAYwoP6UYzoGCYAnYw1JbhQ66PdZ1oK4dZe3QtdNltSm76nqnHiLKSQd2OBTFK4ZvGK4Y/sBwjXIxRoDeD4zRYb1HDX+nQExpU2wFUavP6KnLCDfL0G+/q3A6F0OT8EG5fOSiQbCTlT0+yRWAYCnBBaLLKJmAc7E9Y0xwIw9hJzUAg6xUd9jDYPsB38dMQ8jhKF1QuqA5G6ZtAnQ0NFnZkLHcUMuGIY2bSTf0x4H+uqO/vGG8vGG8vmE83oAd8C7oXXGAugSTghaL52KARlPF1QpWqVjLDWt9wtY+4LYsqGVBa8/QbYU0JdsT7EAVgaoCS4Usgtl6N4Q47vRn6B66DTBl5ZZVHiM2aZn3KVcIiQWfmyYXGpVIXRZSslTXR4Qf/uAeYIJbxZgLjqeLkufzTcq3g6mNAdMBEzZWVIkNRwh0DAPdOw4zvFmfKY5hdKMdY4cVjw1fL0UtvO4JgtyB6Aqb4Izlu9ylDQI4G8ixQSL/XsPNUtJxj7suUCxAPwWB3R27GW3a3aKKgT1LfHiIxseldQY3U0P0S4n7Mp2V8l46ayGiMvydcHY2ZHSfVHsCH0ajAegSLwXwMg1NReWmhTpQV6qRWhHcV+C2AvfV8XQTPD8JPjwVPDdWzmiIfXL+WzAzlgJnULxeeuynZhg7GJwNRX86oE3YWqN7AI4Omjs4q3Uq0z5LxQSp4gYLLY66QM1QzNlJG9xsi56ps7xwF/A8i2IUVpodAHZ3PMzwuh/49PrAw43griisHLGuBHtiAn9Ex14R2FPHbW143NnYU8CAZB8d++h4Oz4RcBfHsjUaQtZ6VkG6YSjQi5Ct1oKl7VClFYWZY+wH+uPA8bpz3eueT3kyxKrA7dawbQ1P9xW1VYgQoEgtTM9vZQKUwzrcB8YwNHE0ETxaYepZlfYSwg2LbcXoYbLvhn0feMvj6Ng7EUVRoDib0BatkBgbUERpM1AXierJ0EsN0CE8Akef24ZMNsW1wJvClwLcFFId0oBSlZWByt/X8fUplG80QOEaZkDfgf4AxnGapGmJPLiBOYDYFOIjPRuKICJa0tNmkVboBusJPsJt1I+pfBdTruviGLuh7wP+4KbqAF8Y4TBb2OVTzVFrj54rI5Zz5jezr4mYhu+K0oG2D9TeUUZHsbCmj1ijm4EWhQf82OHHDns8MB4PjP2IvL1QMGg+xYtmEr4Tg+xNcXglASOK6LhKSltjchbxuIVZGZJMEintq8iT4sAQEMZB91Mif43/Zyju+dmip4fREM8GgZ9FC4BkZmYvmkghpdWzSAWkwqLayKBRFkqGKEu+Ye/aREJimzYfM3otCFBRycrUUqFasT3dcPtww/b8hPXpCW19RllWaK3wdePkrMLmgxg0jlNW66BqNE0KnjOYim4XEyNlFY4KfQPcMn1AY7RrJchU00/KIBiCqUtSSm7Dd4ZRuSdPFrb3CQzjUY00YDtZAYKU0Dx5OFeqACWZDoRXP8+D/jisHnJJRg9kId0mYEK8Rz4BScbDImYVUt2IFF5V+tkoKEqXoVG9BXgtaBI6phKlz0p/ElrfBx40pp66GcYwWLfJ0EjsIK3YbKYpFnqwmkwIb3oKBEcwKENserkACjHuwiWidRVuONQyECSNnEfBQsGSQaRoFvFsU9PL+cGPUmiDvlZgbdSDLNWwVsNa6flSlfdKIZFKjLVxAqm5AoHi+UFGmu1VOI9hwN4j2qZDr+sDRXeU0qGVlSik7wkuxZK58qhWwmRzQwoU4yF7wsT8DasIKUoxZRV4TXdpn6ZqkMGUdzcyUONkczm1yKDgIDNlUBy1QN2nN4sIcAzBYQOHDfTRkSaSZfCGqw5k80bYOEX+nTqgfjyQwuW9cw84Hh3jbZwAJSvO3Oa6ua0Ny7bgdltRF5Y/u2iklRS6lmAbEKwj19JFBa0AYylYi2KpinXFTGH2Hu7hj4G+52E4dkM/HGNgpnCY8mW/HurNSPkxkytoNVx8VenUro7WLLSKOX4IaLOxZGuCpbHP0nZjmfm28DyrEuADgtp/TABKLhRuHT7oCOkVsU5HXTmAzLklU5CILy03NJBiCCjepRfMkxGIerMZvEY4hVjUO9M8/F1ODM7KpM0Q+WWDsi94RGHcfHIAe3C+aQVOZ9bo15G/E6dwLX9DCLC8d3iPzT3zp6K4ypmm3sCz2iOlECyl1kgHcbJz08u6oXcMOhI/+1xwyIpkOP7+mGmGH3iGXNQzlMR5v6c5y/nc8tDL+531I7n66fzNk3DwiFARGYbrf+c5z6oRl2AF2HywqKC2BcttjWNDW29oy4bSltlBGUsJmTujRuLjyhxsAGHuSnamNXDS2I6kVslgzHJrnPdJ4neSVlVJclwA2AQojrNZmjnV/giQYk4RaTa3y4aVPvvryBR0egIfz+RhevaQxiXQujh0BmUsGqU3FxgSf52POjYnpgTm/p/pB/gUWkvEGLHTk8JHlC6aoKTfjgJBF8Hgs4+OqqXVSIDeiO6ntiruu9C4zrJCTTzE5x7PLeZ2jCnXaBZo4VibQynnRj4nRGoF15QQfzkbfCZozexoTok5XyyZJ95blfCrUXo+0T5Io5IxNTMZgHGO8x0J7InAotLLksmIw2K9HLG+2Ij5a1Dp3Lw1quhKMFZzgvs8HJjNP3WmNvP+YK4LFL9fVodzkiMb5SUDkWk796z0S/CY94vruJhEcUE8cwun29Ba8FlcU93XHsjXNc9ptuesOvLYK4YPOqSa4PUYOPaB4zEwHhY9yDxeP9E/78neDUt3PAZQm7OtiipqKyhFUXuJOSTo3mMuGEalmLYZ2CzWHLVY2GSw07CNFGV76Pfi30lQxdqOCDBVI4iPdV4pNUMpoVdTjTFnCDKLa5HFs5NothugpjUWKLQmaA1oi2Bp2Rk71jBNmP2jP77RAMWg6MYmRsfRMY4Oq0z6S4tG0m40McvZCQAQoApqVSytoLWG2qhFAVjOaoNeCG6Ad+YAbXRYJo5H0N8wjL1j7AO29+iZAQpshaVq0ijBgwtKZXM3wQGzA8M0pCPZyKzQYVSEUdKIwwbdKuP8zcPddoCUWVjx49Fh+4AdBCSmBVZq2IoKoBXZ3EGCGanqdNB0Cn+bp9jQYyxly+wor0PaxoVAKrQlybAkizIXNovILFE3A6won5Qf0hFIbJp5aACUCKqiMolH2AWEQVj0KlIKz5JyD2qAjE4yKF5QpWJI40aqDtdoGIbMlXPilWVBbQvW+w1P3/oMHz7/iM++82083e94uj0DtZJmvjVgBctydQB7rNOSCLCcACU3dgdsFHawjp8HtDgrN4Jtmnc9DPxco0pGr5tasCeIw50l704NjRvZkh7mc3D2ivKgqJL0YuVCLPzhPMzS4kzTxb323FjO+cau4Iai7HEkMiAofK9g6SLofg9tJRdEsjjWMcsg832KK4oVjNz1LAIRD+dNpYFcMW7Qc3ODwTsJx/EYZEapqCdulBLkFhfTCrqYipElGUqtCACk8MQ93J+j3HfEz7KHlojPyp0EkQMU/rIDMMI2jGPEhcHNoAERf1Li2kOYj2joWWWQmS3GQw21GFphuqVVQyv0VCkRgXjL5++QIw264vpj3aohtNZgX8QF7PDNJoBaBrweqK2jNENZ6JsjFbHGzIk92bchiJYiFPQDZJ+tO7yTgbYdsD3Gg/M6Z6dLoeGmFENpob8pBEYeTEBuspy3RuYoGJXJhuY9VpvzT8VQp4ZLoJGmqtWxLvS/UaMb9xDgUAYMhsGMh7E31+s+8HgY9jeDvQowHDqiGsyZ6sk7Ut8GystA+2Soy5jVpEutqLWgrWEQKvz7BJF79jEaDlkLygrIGuce1zO7aEcwxrg6gpEYZ7lOotDXZOJJNTY7bILWWOUqqrSjAFCjKS3TwwIog9lWFK0onu4F96eK273g/qRYmmNdFWtUKmr8XTnehaj/x49vNkBxKpvHYI+RMdJh8oxOiOLH/A7SWN073FKvwRxfHx40GRcy69FtdshE+JmaEFduIsgcM6YyeopHVSLskxPRp5+EZsybNGdg9XADpL9QGDcZF7KKSI94OVNBptElkiGBx6T3HnoOnATFJRZ7DwJyp5w/vrIJnPjZXj4PRPQ96ZxcWN6/QkC4sGj3AZt5fgCXg9FOAB0/mY3cEwTh6VIEdTrJJjOWvxRRcLiy5iTPyDyLi9z8wp5w4khxPtP4/aaOVgvqUqHrCllWtPsd29MT7h+ecH+6Y9vuqOsNEHa67kVZxludXaaHhFkPU09Txj7v9+XkwLFG8TV7W1iwIxF+cmFx9tcRyQhYsuiJzJOmsFCnm0r22fF4jiOaa9oIQaSlqJMiVItUktr1/ObAQWo8vHhoT/mkUoekRVGk0BQsz6ETOKVPhseYyRLajJ7z/7kGXjUa2bVXQyOV7q7FAasJZk6AUKFkPiCAKz1egtQRxzlvYwMvjQZxbEppqNG7qEt0fA79lbC8jewTDBrd0FX81KlPZilj82CukHqVy0yRE6ZFvc28PzBS8urCiBVMcbpeGCZeXvSwAUoNE8NiNGUsdFj2higPD3AQTJYS4TMdZYpiOucViaI8Z4IGCd8hggQQFJQQTCcLFGygiUbfIipWLD0IOo0tx2Hoh6F3pii8JNEQiNsIIjGMR4j5eXpRZyLhFpz3UviTKkzhciwqalWUKqgVUZiQoB1wVX6vAuutoFXFtgqvLXofEajmvHI8nOmgMhz7AOx475KqAN3AkSlSQpSeAUMwHBpBogYrp4Zg1QgsgAD1zkkh0Ser1YJtqZNVEmX7jD6ca6RkIpvplVxKqkQlZ2hxLOZhsia1UDOisS5p7F0ldysJsAy6VLeiaE2xLoptVdziqM2xLoalRmNbAfe3KbL60R/fcIAS+V8DhoVnBuJBIoV7/g5VEpyw6meMA70fId4b7NbYHT16s+TcOE09AFyW0IxpRc6HOUWmGbVcAEqG+2mWxXjhfB1HRK0BTq5BRPEwEItcbZpySbj2JU2K7me6KTemuRwGKErEHCUj78u+/CJ6PUFKCl/9UpkxkaCf7zKB4QWeJEiRKQLMg68x23Aj7a0zBXUCFAdmVe6cXAFA5jtKovqMQE6gk6moS86H90JyooJurnF/Ghy1FpRWIcsCWVeU2w3LfcN2v2G7sTy9tBUUMso0NyP1XUKNVrh7Svqoz7eem7Bcvsj0DG9MpFI0NnENYBwghSYSsVNfn128TjYAG3HdE6Qk7RsgtVhsCDk25meZ5ykBClzzCXtEw3lbc4slG6EyJkAZsWGpENDPgeLn/c5xOLF0vm7ersv8SnCR48FjY87qUjOCK0btcb4WV0PBCJLmrxKbcVE+b1UscKiyKec+G/5hPh8Ihc0eWhpzD2vv+F3PoEDO88/Z4PzqRCip6ZL5b4ekHIXPLVKy1O7YfM6Ycy6uJ0FKATQAiopBKwGF1wDCuGBjUHeQe86k9i8Ti+k/gub8xaw+1PD7YGbVY6nzOR+5nIX7dKSXZ/Y2A8sAJ2PESUTgw+ajGojqciQSzrQ8Cu89H3AwjMKGl0IjxFLL2SIjSWSAYlqLdaAQvGxLRWuK2xag1h04xul9JQT9JSqUtDteH4au0VPsohObZekuiDIFspAe98BolJg/VSf4Sa1ZatbztgDgdSk7ui+toBThPRKBiGE/FFVT9yFT4A0Plju+l/cg51xW79CGgkeCEPX3jCfnItfiEqCmNTI8y8KjVqDV6FydZqiC6Vn1dT6+4QCFEfmYfTiSmg4KO/qwsjNs6hNf4fbA8fYFPn3xBb768vv439//Ar/+/S/x/e9/iS+//4Yvv6IZ0P5W0aVCwwtYXaFBgagWKpPBDrteKqwO6CAVCbUwTWPpqgUqRpRmFgUWFRwiWGPhO2Ih0neaDY8BVcLddIEgjb8aVBoEFWmw4IfB9w7fo6qnH7De4T3COgWynbj1EaWUNtulG4J+DucrMUYufWSUY3NRyXI2mENUZrPBd/oBkUlzZzSd+dGkeJ2KQaToVpINuB7x98R9Pj0tMoIcyUiUgtIatLK8W0uln0jUdfowjH5gRMWTj05wonRL1SHQWrACbEh4X9DuNyzbDdvHZx4f7ljuN9S2AWUDLKhkpX8qm77hTOiytWmGm3GkQIARuQqgxjJJiio9ersgNDNEhCJlAky+h0UDP95zmVoJrkg5hnLcZbpBExyLooiFeRyfgXkIbO3CMIShFNMW7Kw8jAk9ev5ddD/CygAtgxu56QTl9EqJVFs8d7KTERnns50pQplMBAAyTCYRMXIjNjDqHEE/z1J/CWDFV471gcAsX4u2/gopjLJZoRGlkAVomZ93LrIGViukqrgEkzhBu0a+H6TDky2R2JRSMhayl2CP8t6FZsOD9WLdMcfvAEqkdxJUUCckyHRbaSALtCi0ydQmsFcHrzeruiTSFvwexcVaTsDP6huBo2MMowGeeVxXap7IiqqMmJdMtzl471wFM6s6g0mmPlx9Bpa904F1uLEcX+mRU+LaATIu3j20JBeg7RECzfjxDHIkWIAShmgsg5YwrePvJELmRgssi+K2VSxLwdONtaDiDnSDhTGnCaueHmb4tA+8HgP9zQHt0QiUc0IcwYDGWuB83hbneS3ZZ/DKeeap1bgA1bQSUKHWY1sK7lvB860RoKijHYZHBNdr3dlwEcp0ODTkvEzh5x5DEe+19J8NB3UGLU5bh+4oKW9Iyi7Q91ynLmEqRf18/WEpyKY/0qP/mDAoGWTYPGROoPm9uEkyHPvuEOlwY++H17cdL28H3t4OvD0OPB4HHo+Ofe/oRw9XygEZI0oZz9A3WYlM7STtPBkUSaFiqDICibufQkGWjTka2I/Gkcr+MzrKi/S5wCWFrdys5NQkcK755ZjygeQP5o3Lfi3JKlxJ53O4nf/OX5/HBBG80Sn4JE44BYeu5/1497rzhXCuXpfXeC9U/j8MggzIHZhpgFJZ4h16FEZ/EuKx6Hxr9MCYfWBEoueERkdPpTZpaVjWBcu6Yt02LOuCtizQymqDbH7HvUnmfZ+udcmccKcPmiCEGD8AUGh2VhH1OzPtAuUNFiNIoBjCAM2xMNezS3BzCvwU1yhb5sLpRSNnf0bTQKQNg/7NyDx/mm8xubnY9KdvvePcmN+NGb989ssYyPEYjzPGbigV5hjMTT6HiCTcvQpMcXmfzAbE+KDX4OW85utyE8gIdYIYJDaSd2NVkJvz+3Mn0MBkg5CM7dw5z3F6zkMyAFMA7fLD9ys1WHkRl4g8U2MzWRnrkGSZTO4hWTV2uZ85dy43dF5SnjtLkHXet9lYNAoJEm0FcRm+PdeXj3Uox2JuinPsyEwfTTFpSrQ0r4djXfKWXwe6vBvw765xAlQ9icywIWIxnfDO50MrcFQF1uLYimOpjrWEcDgGPk3uGHQNAGpMVwqArSoeRfAmjt3PtVsk1l/J8YMZaZ1ejcHiKkLfH9eWKdYY38mQ1UJWojWKUmu97DmgtrLM+xcBiYZ8IB+589lZlNkn+yfArP4jtooAKCbHZFZFLlPgkjoe9F4pBwEk3FAqL8zBlOxx/LgAlJjXSWVzYOZ0iInkQgdLH9jF4H7AxoG31x2fXg58etnxmiDl7cDb247Ho+PoHaMLTOmB4nYFKckQ8OsszlBlqgICVk/kEbSmBBsAYyO3RYBDAEpz+XpdzwlN3JkLK+J1FLl8azRAFNW5OOXCfoJyRiLXyTzXkRmlXZatSTWfn3mVIWS8gpUzJfx+VcC8IZizLjbkpD89gYmfC1e+A2YaCGGkleeLCa5yok98AyDdTrW16OicqZUR67vNdB4PujRKNMOqpczc7aIFrQUwuW1Ybzfc7jestw1tXWi+p2XeE0DiOvREa3IVxiYgie9rXgB9FVwV1bggiJfoV5KhWPx9RlZJbU/AIxPUnkDjTI9pzItk0DyX1QRUkuce5xSgSebCj/d7QOiSPASAKfLO50o33rOSwILKToGmJRiVEyPnBpSACgiNwLyiTDvIHJ3zkDmcuVhGU7dk3hwSFQ0RfV/Av8Ue5Tk/Iw01U8aeJdgBNhKFBNp4lyZ1cFMJQywPdiXv2xyrJmdAkMAktVkBTsjC8EXStC3fSMQDDCcw4rMi86bQCFhyvL0Dr/E612k+01YxoaiToXGgiF3OC9RsDJnlpm7BeOEMrM6WFWcwdgUqyLU617XcKCOKFxV2LRdutO5pS3C5kEzjzsHpMU58XqeEiLOUk0Fp0f6jKBNDcbUoMLQCrEWwVcdaHbdqUdkENhJUpYePck2vTsapiOBTU+xF8CqOB0ak8kIfFYNU9BJsKYCSaWHEZwlL+Ms8H4Ec9SRk63KmUdaVLV5EhfklESyv5dSRKBmkIgmmZK6xLP5MkHL2YtCQAWuAEDOnnUecfOInjpszdXkMmujpAfjDUNUxiqFE90uPefXYf0wASm61TPFYDApBVkzEkozomk1jn9iYXj51fPXpwFdfdby8GF5fDY/Xgbe3jre3jmMf6F3QdUB6j5TACD3GgI+OoQ6ToDmj+gM46ccR4HMMsMd1j8XciWoXBXqhtX0P4HFEbteFDgVZINyNIt5oJEtWX2KiRq+hLDFsRbEoVeFrbVjbgs0t4vKCVitqKSzdzIkBnfbaZRQgcsSM1kqwEXFfw5zohEIebE74GOQR1VPZK0gRLFMuXHKCqApBkRLu+QJXg0kucLxptfDaSqkohe+FcPQ1SICSBm3s6MyOtWRORjccx47ed/T+wBhsSwAfKFKwFMFtbWilopUFW13QlhX3p2fcPnyO7XbDh48fcL/fsG0LN4AMiWdJZoy9iHAniIg+Sr8R+IMwxVDdqaz3Ct58jjMITsrXokuwBMgQjaoEef8WsaZd2YjUpUjKVMUBhOdKOH7O8w6FvhhfKKu26XmSjW9O0E7wEf4pHqlXtws4idsEn9htRpiOCUgkADa3DdrDMycflUwBfEcgC5JzJ2DJRTffl3opvvoYyaKcgFwymInNfoyTSczqh8kUDooQT9bL31WZmUfFW5R0plHbCS7O4ZLwkeeewmk+3wluECkjOKZSEuMk4kxCOJtBBzd0DVY1I2oG4Qmg5QJC496FkMdD/J8aPovnKZH2TYbaUkcyMIOL6NWKohxzNlPZ1KcUZ5Rfow8Qu5obDhPsY+DRO71IxNCqQKrSDyQYTaYET4DE1FxhYOEMwOyih5LQodWqaKVgqYpto4jzvirLaIUmc2SC2FKkVcFtFXzYDOsquG9nJtbNgRCGQ7mFHy7Y9oK3h2P/NDA+dewVONQiRcdWKK6AlEj+enSWL6yq0kVoZLZE49rCvkpIlsp1rpV1ESyrYrspbk8F9zhqZaqyHkCphte3gaUpy34r1/vWbC457IbM+9kvpcg51gGH2QiAcv15BDNCHYwrpgxxeKRuHoMaaBMUNSyabumsOrQB7MfXt5L9hgOUWIsz4n73XczPHN9Eib3zeDw63h4Dj71jPwb2feA4DEcoyudDkTQd83fHjCIv/EKuQFP1nlRxLGSwE0Fz0Pm0ei7KEsr0LEj/iaTPWLF0LvjmudjHgikXSg8IEzqWd/HISPRkW2b0mUF5DL4UZU6oPA/OVkGmcHTm+Gd/nRnB5c8vu2ZunJenlNRwiramSGu+Tom/GfyeUiCmegIUkHegbbOWkzkJb46kyn2avjHFky6aGjlp1vFXLLVhaRuWZcW63bBuG9bthmVb0ZaGGg6THFwREWaVhcVNvTJKmf7Lj/xZbnaSm3SGJhp5artsbvmQCEoEMkHH9cihn1bxEtoTzxfKzQmYzAlzzTznZCxO0WaMiczBZCg9I+EYozjvw4Wj+IH5GJuiv3/t9CrJgCL/qkS8nWMOec0Aztnuc3hdo3ICpfOaLlmac7zH5UiMyzO1chW35piNZ4zzbxG3hanUTLkkMLze87xbJyOUJz2v2s/fAc40VHItPv+HKSY+51LOyTPdmx82f07wKfHaJ6ybM/EcA9d1Tmw+zZOdPpnQXENOixOfJ0ggFcxyHDkU0u7fzEP/FmMoWYR3Ivg422AsRJI9BtxZOJCdeIHzvbSQXaiRCmmV/hxkZ8AmoEa8XSR6ozVgvRwaxKV5PKYgRQ2COgsUHFsN8zQFaly/w+diLIXgOyvrRFminukd1fQdiZuZ+0TeMsEUQCfYS1EqRaisDBpDwowuGJQis4xZx/u5fW1mOU7sjTJS18NBPL3A5sA5X0OE1wPnvtSHQw+OgaoGyIhyZd6/YcD+45LimfG7UeiZ4jR4lHERE6CnK6mzgVI/dnz56Q1ffXrDl1898OnlwMvbwVTP48BjHziOgTGilbWl0ouTna8bOVNc+0skUDkBRfdoSjaMQqvsqwJHFaNlsbAkboRoj8+eoqLMEQ6L9u+DTZu6hzhwAguZEWgqX9jrQlG10OsEAkOJSIvvwYuyuT6xTp73VyJCu4IPSf+Lq/4FPoHDPApV85mG0gmikt0MvwlVNGWJbi0RCRQFqsNNUEvnsmPGRohtQWvZlKoGSxMLvxYKY+s6+/CIF8AoehzHiHYAB9zp9KoyyMxUxboJ1qVhWzZs6zOW5Ybb00fcPnyG7bbh6cMzblvBspYLgzI1qkA8D+63coIQ8N7SJyPiZz9/lHR4EW4i/JUzysmNwHPVR2IcD/v2ACeRv/bc7SYwCdo9vjc1CypRGRIbkPGk0n9l5s1zsfWEuJexjgDxEhuwJBCIsYN4Pzl1BaebD8eOyblp5k8yYodk+i7+TmRWKp04wecn/4EDnhqwU6uWuFHznN9tzGdKcwLyBHR5A/F+a58wI4DozNELYq7LvKbc6DHBe1Jf+fpptBfnM8EvqPeIrJ6iTAYpg4G0XWfFVRD1AYapO9LZkgipZ0I+j1g1pi6EPkoCvfQQCgYlfi9B5UwllEhlI25d6ixAlkAr3zMbJ2aFWXeDicGLsZFk1WmPnv4xmmM2K1hqRTMCwyHKvxfAnWtKUUFbWOWytIJ1LdiWgm2t9OgRRYPDTeGDHd+XBtw3wdMW5bKbTBNyy2daJFK7iu4FTRVNHF8tB16a4ssiWAoF7sP59yhkSgwsVTdzjFgIZ9VVjdROsqF2An2CcFZkleJoFayWaYK1Rfl0YXWnu9FPpQSjXgpL5kuFhUFaEVaLutNddrBPKbJlFav+oioqq8bOmISpxBD9ppDbnRYdBIpkkIqwTEVLoqvYw35cAErFYG8cJ1WPcAU0dLINbhg28Bgdx+joveNtH9iPgS/eBr54HfjydeDXH44vHo6vduDTrng7HI/R0MeCISvUFgzfYLjBZIXpCtMFQ9mPxAuAUiF1AFDe1TSMyzyixCADc5+LOFbl73SxaKttWHSgBYiIwC5SPB50XJhMGa81c+0zJzzsbE0/hIeFQDQWyQROBzo6OgbGWQEhAhPmg01ozuQzisoFM9B0sEJziYvBW0QoMhVFlSh5i3yliYNToMNxAOhw5wGpmCtwIPgrLzaZJs1yODJOnhFaKZBaoW0FWkN0qcK09x8DNg7YeADjAYwdqh3FlcZcsqCVDUt7wrJ8xLLc0NoHLO2G1jaUukKqBihawHRMhUqZ0e7JrHAT4qZaz01nCjsdcBol5eaYu+pkNWaki7lZwAtSW3WyAqzb416Y44b3WaaVebxRnCMDuyxuP5sFZnQ/S88T2CD0SpnOGWOmeDyN3qABCDkWUkyZ5fEAAowEIAlhbfYC4cZ5zm+Wn8f3Yy7NcuZJT8ysOq9u6iUk7oue9z6c/tL4jxgqah4zJXIBE/Q/9LmWTK+NHzimtiIeiIfo8ORX+X5nmiQ4DUlIphH0BOM6F37Mv8sK3LQcoGBVL59LKCnY4sHlvO4rgOM4SSYnKAEvvFde4NFywkOrky63BJP0SXAvMFdgUHNXXFCgqChc6jLVHdb6uPhu0Dzvoidyop8MWmoEKlVLaOqi6oViQ3gCoAS951Sb4FiKByNBfxZu6o5WgCVZWrBHT65nTR1rAbZq2JoHgyJTQmaZrk3zMqkQX9C9oAy+p+sB1wdcO7UqEPhU5jZMqm9EqkQlqjALBFGNKTrL99nMMQwmA+AXJYNCtpfgpDYClOqK2hEd03O9SWb1BJTJ9P0gcs9xYTH/c0xPbWAPRkbIQrkT1mY1GUvHT0fs5H+1xjpSmEY9flys7lXCyjpp9lhE2cQrm4DZ7ID56CwJ2/eBT4+Brx4DXz0Mn3bDy+54PRxvHXh0QR+CbgXDKopVmFU4GlwaPHq9DOHDdBm4SLKJImPjxDk2AES8IgQpLZaxFscAWZWCEGdNKu5SXWCpeJd5remiPG32g7acxI+df++Swj+f9yfLizMCprGSxbYV93ZGc3HzJ2vAz0k761zKZLIkBWdKKSEXnV3jOFuuxW+cNP41UhdJ7wuZ0VnyklykCFK0UieTjrnM5zqsjygtPuDG/koaoJGTrqBqY+O/uqG2jcCkrSg1Spc1wp7o+wNpwSIJo445OmMDiLRTirnzhnG7y8hEApCE9sS5aGTVFxCYDdeNBUBoimKZiHtb5gMRyfsXZlHzvHLupH7oCmrid3Jjm+DE5zP/wVRnRlHXPEoKODXGb0IhnU+T7zNZiEuaaYKUeI0J0hxJ58zzvMCqyaAgWBB+S+e4hjg3nGkJCyR7wUNyH5xmXMl6xBVeIIefbzhzR3mS57/PdNd53Vfh70yXQGJUnCApXyTF8gRg4WTqWTYt58aC00F4slkAsuWHx/2M7+LC/czP87w8B935u0QB9GBy03g9zPk+K24iyLAYuGf6OVM3wfykhsZ5Jqd1P4+ZuoqN1K/jixBvppdsrrEebK3PknUN2/+iTq2MyEyvwwFXApRagDYPAhoJ3Uw200Pav0PhXlBKDYagAlrfAUPPEqJUt05Qdr3/hbohJCNdTm1ZpHgTYCQLmX4utYTxXNH5PS3JzOHdGMj3zhXhmi6MN+HPDWD/r1PcDTnnM593GuRhAkiJccpqydj3nEyN5TRzBtn9x6VZIJao1CgcHIxUK1xKLDJ04nschsej4+Vtx6e3Bx6PB379izd8/4s3fPnFG77/1QNffNrx1cuOl5cD++547IrDDB0G7Ua32nFGVMMdh3nUxOc0zg0+FkSN5UgvmyySaaDDX4VggaKBIqriKRrV2VoPflk4cpv3y0YekWqqskf6lYzOwzrLayEEHyOcc/vpwDvgCD3hrHaw6ESMoACjMek0WvLrZoIEJ2dJP1NXtKcv4MYm5uwVFEcffVbVlBKbhQu62xQ/p4nYLLi/1HNO0JTCTpUwNDN6PfQOHDt83zEeb9FI8QEf0cxPwUZ0i6JtFeu9Yr0v2O4b2rJhuW9o94a6NuhW2I2Yfvu80mBRuItdbkwAClwWCYt7AAQLAQdEWLFjjqC9+PcDVENHU8QTO/D5m8h8iwTDXlLwyIV8vpdkUuaEBYK8Tx6Lx4iUToITLlRcwS1O3s4LiYjVhMNzaqsibUBvmEDnCkBHBOyhNWAiHumKe5Yex21DvvjlXqb+ZII6zM1vOgpHCijBTv7+BDeQ0GikNkfm3puah8y9+wTqCcJ4Hmxuyd95V9af/bLMkU0RGYFyrk5WKsFLiBJpzJXMCd7/UvxsArDwWRnJXg7DEUcKHlmBFHo18bP8V/j3YpgFYa7KiDu0HCmBkNSRCC4VglcAEyeVTEWNapIwxHOjAZkbTpv+EoyMntfD6D1TVGA/muhJIwi02A1+GOwwjJ76MbK7PE3a0dNgMrxiQpsmEbiojvh8duBWpY21iKFVCkvXxbAtFq6onNpQoCd+K3w9d4Ga4jg0sMf7YHJCy7hHMkU6MVcBsDBBI21FUzkRehCdEDgCPmG6ptWCZSlY14Z1rViXOkWyx1CoEsqac4wc5lGf4dFmNtKnIjHnLtHzBZyancxgyemnQmuFKtAW1xAVRwIhmEtR5WSnhOLveLVhgtHxtT++0QBFC/vcTJSainTRYK0cA4LeDXuAlLfX8D95OeLoeH0deHsbeDwGHrvhOBy9kxgflhb6yTogar5jEYjBMBEoZib5GmfxwxElgVwMimukF5RVLAD1LJJxX+7Fc3e6LLIXUVyuQDE7bFh0A7bp+zGMVUGO7NA8MA62lLfoCjqXRDsPMZzpHM9ruOAEnNHPeWQ6BjOPXOR8iZNeBN734ZGYjhnZxfXKmX+eVHEyJ3ndE7BJBCksN7URhnXHjvHYMfYd1g+4sTcQ1f4FdWloa0PbFiy3hQZty4rl1tDWBXWtKEslaRK5Yl592APnJmqAX1EbIlUV5+SxY+aGTJMxCfBmYecdYttZAnPNewRoyDy1xo2eIO6SG3afupIUeOY4knmvHYFQJljJ8cVTDVCjOEGFBmhOQCnAdJwyjeXumoY5KW1ojKm8H3jPziXopd27nuZg/j5hMqNpnOd3ZSqvv30KZ698Rv6p58nMOZrA5mQtMEFfzrN8//z8DqggHJni37lZJViZQCXBdb4hLucQsOZ8YnEexnNJF2Cb+ju7+Lz4D2Dk89nPeyTno0vXVYWGKNSnPoYasqzOy8ojuQCpq9DzHJ8lqH5Vv4hbz+cj1+EY/1bN6p0ETXGvp7GjTbGmxAM872cWLViMxfn0TiIziIySa1TMITGEBX40uYumd7VFMBJzwvWiE4lKpqnTfzcuMnpLRZVP1kjjniBnXpHJGKU7NkQiFY6TwZj3ORyPa0FtNZgT/YFnkOPf3435d+TZOSrfH5592OLZ4kyjeYCtCUIAsjsWacvrM403tOygGVGaRVD8dT++0QBFWoG2Gm6dOkcLy1p9UqHHcOwHS4hfXw+8vh749OnAp08dn64A5c3weBh6B45B87ShTlZiLgBMfYwAKXaJHhWZ0otF8RwmF3o1aL04CgoBirNBWfEQ3co7ouC6Vs1BLNmfJWeII/QBZ7fWeUwGBRh9YHQ2VxyHzbbliEUh/Q1g+Tne/zQcOVEzUiB4VgdNnUgAk2zCJgjCJYAP/KR5s8+R4OrhkAkj4+QuuVjqpIq5KMiFuAi62x0yWO46jgNjP9AfD4x9xzgO+Aj3TFWUWmnItrFb8XrfsN43tGXFuq1o2wlQsu9FfMFDyvl83C4rQU7q6yLArc8mc8BFQa5W3ilEsKCuYBOr+WW1SCEqHYtjudYyAVvu9h5aDy7eQL6YBjBJAJibmczdhHczXTEBRB+aAniszvFaEtT/+ewMFH3Exk6lIbIp3nU854br4OVDI69tl1TSO8bsAg7AaH+y53nPPfUcNu9xJjLfTagLiCJWeZ9e5F2LMuJ8pj8ATn6jI104E0TJFYzkJ8EEkOevZohzme/vTzGGCRlCu4CUtKO/rjuIx339fLK5YdIXWhhG8Kk7SVH8WTFHF+0YK3GjU1SfItnMtXikVd6JZuVy5CXFbRJQUFpqIUhJHUayTMOm6zUu5+95fyZYdUDoWUKGEjHPOVxLkTRFZi+vCJCy0qc2ZbO80Hh4AbzEO+XmHIDfJDQZypOYgCADA02QynuuMX8pHOYVFA39SDk9rVwygZX3JoPASOXUitoK2aZazsrHCwuY8yoH1g+OhbkWXe5bAvH3IMVhhexfdgsnW3thcOP2z4xdLj8G3t9kKZ3syY8NQHHQ0n4fHY/RsY+Owx0NwFSfK+BaYVphUmGywKQDskJkg8gNWp5Qyg4tn6C6R842Fn8DbNgFpFg45g36oOTTyIkUaYkepVtdBObkSIAGkRUqC4qsaLGZDRc0M3QfaONAjQSPoAC9wPeDm+yxYwx2QE5/BwBnNBRpjRgFIXbLRSzz6Qbrg+BkP2BHhx2DVG+smulQeU7+XCRjoM1ccgAk+CyPm6WE12Mul3OFnCWL1w0xX+80JtMJxBjdRYWQlAmGCMpCJBzPwJ2pLh8DfRj2xxseb6843l7R395g+8EOrSqo0tDqHcvyjHb7yOP+EcvTB7RlQ1vvWNYFpVWU1nCqAUqiBUQjIUwkF5FsUsJeL9EQPDbqk1yVs7RiCo+RDIpTn0OSQmJBYJrBJRr0GYECnXsDoGR6RKJp4WUlyagzjbUQ4Nk9nm1yIMlQaZmVPUxbpmezRjrDkfoFWAl1aeikJASjNMSYAMwTEEz2C+/SPKm3mj4iYsgyak+ReAjFr0Zf5lc2IT15EUaOTANAbK7LtMUPD5N5m2TeYwpQjbn0ADMmNsszsyrPrpHzBZRM8Sz8UoJMRg2m7Kzr+UzPTUTyC5zPKzeCHBripwVBBkRXCDbLfWNzVPgEIJgsBED9Q4VoixTPgMoO0YqiFSrB77rOFG+K8tmiIjUseeJ59tldOEdHbnnUCHYDunX00fnMEKnxef+DrY6Aa4wTbCKrBy/3hGPKuHZY3Dch61DKRVAaGpQaTKBYRa2OUhW1NOpKpp8T91e6zpa5LrkrN9+5xp27UprSTWYNiAqvk2HO4XayziU0POc8zfGdK/dkYYqGZ8pZtZXAN+8wkCURTHlpgPhTU+Jz7p4Mfcy94VNc7cBMy2myOhLxWQJ3SSDPNceES5iEqV8GD2J+9lz6mh/6o3/lN/fxS7/0S7hanYsIvvvd786fuzt+6Zd+Cb/jd/wO3G43/OzP/iz+w3/4D/+P3ovOoIbe6fzaQ3Nho8+UzOlJcq79/DpzyamcSPXEOdo8FtAsKT4PRivTZfJKq8738rmMn2LGEEPFkdUN1KJQOFvE5+eZCwaAtCSOSqWsFMCcCEkrMw8OP7Ub84rypfK+xCJ/Qt4rJ3JuVPki7yMgOYFR/l8uvwyZc+3dPcW5Cc2I53Ju559f3vsCkuZS6Bl1RoQQm9kpkDyvMc35RqfexYex14ox8hdpEFmguqHUDaXeUBq/rnVFqQtKafF7DY4Kt6ym8fM5TCAWACyOJFnkgr2udPf7O/QDD2veo3j93ES5up33KkDf+e9LmPobvLpcPueeIpdvSrzOLDv/ofe7XMg8NAUMZHUuF5yANqbDfE2JMX6mHn6DMTG/laginvmk0n0+7xktwAOMvL9n+b0JRjJlka8yX/4iYs2f5/z+obXF52m9Y69y3E4QeLn/fr0Ov1zHu0f6g7PwHUg5X+KyNiG3lfcgafZVeTeeTijB/9J8MdeoXBvjoQVocEewW5fHAXn3ipfJf77HfMb549jYAlwlQLtoZ0/germ+eb6Sn+MML/dYcj3zfO9LWvziy5Jp8pMlOp14r/vC9X7oD3x+d1GIeYDrMbmq+e/3FyjICiXMa73q2a7AN8fHeT1ktS4g8d3Hu4eAzPS+HztAPg0+B8y9bfjFg2s+6/N1ZQ5KhJA5tJDGMTIu+kUbmOm6r/vx28Kg/L7f9/vwL//lv5z/LuVsX/i3/tbfwt/+238bf/fv/l38nt/ze/DX//pfx5/4E38C//k//2d8+PDhN/U+vXc4Bt72Nzzi2Pc3LGVhdIEUhJ4H9RikDEewHG7RgCyiyFzizohsgI0J45jRWugFE4VeFhx+qVHGWLgROqEIC/KY2nEw2G15qKEWKsoVkfcUcOi4wbzH+TogFIvhAkqm06eftQBX2o8fSUNmFVDkied/ChVGNIn8f2AK/tD+J9dd7t1KNNU0lz0mtvHLRvOOHp3AMHLtOTFTRZ4CyVwgM8qm6g+CtKBPEEvGqB8dYx8Yh8EPPneMBvEVKjeU8oRSnlGX/y95/xNq27ad96G/1nsfY6619znnSor158qxb4yQeTyiQt4LyAkEEUNMhDHYDiaJKzauBFwKIgScEJDBsZNaKikGIRNCUgmppJK4EFeCIaTkGMMT2JZtniVZ0j1n/1lzjjF6by2F1lofY+17JR29WITDm+eOu9Zea645xxyj//na1772hWu5KAABAABJREFUtc9o6+e09UZbbyxLo7TqPhOabsK5mCplgqJ0M/Z7KgU3nWoCeDWBmW+K09TruhnPRC+vl5pIwwRCi8/qgy9TSB6S2fcij+8Dgs6c+GtwYrxmwIKgOjcDtVNd+foP58IHRI6eqEaI86sVsbhWc306N89Ts8Hl95wg5fr9p6BkHhcAn2MufWN84DC9XQzXy1wrfuaYul4pH78alVYGZ+opSq7JRXumQFM0ewElMfhPBkXO809IMQGNvIoc8zbOfSDeapiL6q+p54zNvWWCXxNRT5F+b+BybvfnRgzeRDArS+rchC20HV6y7xuODM7N9hzN83UnKytM5tXHsKGSFYRRRxjpvxNQ5lZonH6258ZcxGa60D9xZF/VvDBhXstkKcosXfa7eno7OYNRKWWhBIPt3eLP+egrcqoFs8QhK+TCzkC81NuBsEcmZ/iZY8lO3NHjvhaQYtGDz4L5zirHM0D2QZpzMkS25LKrXNtBZIrLAohbLCETFGYAB2TFpsRI03ieYKFDhGKngamn7uyVFMBEJiPpGWqDDgRrV0SiMOOq0fvtH78nAKW19oo1yYeZ8V/8F/8F//F//B/zp//0nwbgF3/xF/nRH/1R/pv/5r/h3/v3/r3f5TudinJXb3sZWSvC0qLTQinclkZfKutSWJeCdmFtxY/4mdeUe0fLoTbdLX1wXEpi4710qOfiJG7S7E0hLl7MwR9lZGlgZmFMtpSCZkqkiNfoG7RitGqU5mIunT0aXEBWa5gULZWFxtLc9n2pwlKgisVA1blhTZHmedmghEArXs/aEhbT1cHYOGlIM8Oal7TVJmd79cxXZ+R7FcxIbm3x/yYnsJFYytIZKNMbl799lc+cQUDGLangKVwSU75gBCAkwR+ZdnMdjpmR0aLfl5VWbrSazIkf7fZMW10oW1ul1EhiawGLPj7EuWd7eq8fP3eUKsGcxKKieBosEIxkKDxl/+LcqRoUxct0s2MtiQJ9LhH7aC5IARxs8vaxOcdCKQkWJLT8maabdyg24KyyEOKE493Syen0/Dy1JHn/QxycLFJWwKjTVbEh+X+zpDY3V0sBelyH+JofJ3GRFpcBGBcBn12wmZ1aAM35G1uIhb9P6niEZAROFiRBxgSBOV8kFvxAEq9LrZk/j/Dz1TTIS3QFZvMfF+aEZAgu73uV6+QVLvMpsctphqid2To8ghZPsSTESEbBOP//ehoZ1TuzfGqsUgtWyAhuetlcL9DlVc/eO6lPqVNfIqV4eivM1TTvWQDeOTaL+NxJauRVdHRB2POtE8ZlmBVfr/o4kekOW6YESyJlUmZq59rPSASylP4V/s+9wNwNt5v7S6VxArhhm8VUijZNp6loyAdU3LuKBOglNDehLSpF57X2pTvSVglQigNB30rSxfu8Rq/YFmyuGVfH5CtkdZm3zXEbmt7rCh2vcwW5MfTjJ13P1g/JuFshqkP52o9/5ikegF/6pV/ix3/8x/lDf+gP8e/8O/8Of+/v/T0A/v7f//v8yq/8Cn/sj/2x+dzb7cbP/MzP8L/+r//rb/l627bx7t27VwdAiruutNPcJ9LiPerDXbgZqZNiURNvs4dEFgKdi3PcCrsClMx7J/MQqvLvQ3fOoZS0Ygykq9HY9AkJA55aontm1O97PaBPzhw605l1OrcWWpUYrJIM+5xIc3GV6/fnJibpAnlRktf5HjKPV2uCODg5F4fkK64g5fVDXv0rn5e/s09+/+kf+xuV2Fjz6/U/ny2Rppt1jMQCcoqcfaIXinhuvZSFWldqWSg1D2dMam3U5j2F3D03BojJ6S0TExl5fUhJYBITOcblmSW5sECfXKSMNl9fFDm/fKKcnlHTdcG+MlmZZuFcrM6S7Ovf2Pd8n43f8rAEkN/ntM4tNKHhJI0/+e/6u+/3+9cj6PpxMlosn16eOcg5QUpMyDM9kOfv5zrbSVicSzIwen7/Gh78Fq/7ivm7PP3rPK6A5/J3r7f76xlcfhZ/MJmREFlPLZqdLEJu2nzyuq+uuV2vfYyZuVGX8+/jgyY4ua4J8urVCYAQIGCK+mXernM0XDRpOVEyK3K59lxe+RzzF5Ry3l6uJejpYp1ZyAlQXh2Z9mGyzlMrNr8/U+lwMQe1k133787U1dQJpclh7hmaOisjfV6uacNTJH69mhfAMd29r+vhOXZePfcCVuZ1ezXSTqhxjrPw3JHz3rxaalMVcVI4cwVQUop2rpWJ3fXrzg1+DxiUn/7pn+av//W/zh/+w3+YX/3VX+Wv/JW/wr/6r/6r/J2/83f4lV/5FQB+9Ed/9NXf/OiP/ii//Mu//Fu+5l/7a3+Nv/yX//L3/LzIEhRuOaOGEAVN7xHTEH11hB1hOw/ZEdkptVOqUqohxf/eFy5QG9g46CObzO2MvjBqd6O2IqBGUXNEauUSSJ1ixpnbLN5Ns9XCqBUaaPVOts2MKoNCBzvcjGm4AHOMDRsHmEXdfKOVlVZ3Wm1eKnuxl8/S4+9Z1PCtI42ojIya7aTAJb0EPGqW8ArIf9snB+Bf5VzuciO7bgbnCpzDP6GcvF5McqLlwmbyvVb6AfhysrnCvGG1oiIMU9BOz3s3dtQURKh1gbWyLAu358+4Pb3l9uxi2HVtLGthWWBZjbrYhRWRGcJeeyVlCkbEf/5aAMtcAzzyd32GWUZwwVJcAU6M21chOBnP5C54qRQpgoQrbVah+L0kgEhBzLvlOjfrq7NcGhvOlMVFCCez412MGktAEacSbFARzp+HN5DfloGgIANKOAdOZk/nZxVgqvfyKDKbFYLzYQlqyny3Gcudmh8urOoFAiVTY9PkUNzW+2oANlNpypAkt3QyPGgkUaY84MKgcKaHP/06xygS9zW39u/3yM2Y83U5oV+5zOUpQtVBGYL0A1863DfEmc9M0QpuGBjzVECLoeHVdLJdkYKYQLbMzb0IXp6vAxkd73hLBDB55VN55+wBGLWIB1E1o32/x6lRmKJXaZS6uNlilcniGQ4AzMZrsCyXzXsCO5nMYzqetiq0Cq0ZreoMBGvtMf+UukBdfL6XpmFqrWdKynrcMIlbVEI+4FUpvd/pfaPrztDDCUfcRr+IoSME1yLhwhz7Q6ZMzBkHw1MjIw5TwlerICWaodbm6ebSYr08YwpinM5GoeaMS7YVgQBnhvvXlELJSrf5SiVns4+BKkjDq6uehPLsX0UMhrcxcMbHy4qHeW9cifXuhLYl0l//N6Z4fvZnf3Z+/1M/9VP8K//Kv8JP/MRP8Iu/+Iv8kT/yR4D40JeH17V//+kK8Jf+0l/i537u5+a/3717xx/4A3/AVed4KdxEhDPt4INYNP/tfVeEjljHk2NjHjmxyEXYwuuEjoxO777RpfFZ18Ew70lxlg/HDTa5aFrkdcB7wuH48LEcTabmYIxKN+EYAy2dMozj8cKxPXHsG72vjF68lfUsMcw38HOY1HXkC89Vk9lscOprctGJ0jjVPg+JrrWvSpY/8V2QywaQufCrW62nWYL2D/ZpRmFJBce5vQri8xpNkH/GlQkgDYtFNZ00Q7tufk01WgNkBYCXwjYoRqkrpa3uEFtbGBEZUpVSu2/gpYSgs8ZJ+SarySaQUY5+uiu9OvWsTpDiIUeq+/0xLg19rsK4oO/zBa87Xxq6vYqwOAfa9TWwy0tEJHW5wq/EoBbAIcfTFTRdDsvUXv5azhiMaCufGaYCs0SzRvrARLCRnYCjejNEzjlvvItzvGRuSMT7XKLM6bCsTPAxb4XMMwzAmGkOf4Jd5s6M0C19lK4g5AJGyuU+xBVJMeaJ3oTvFdScv5NPvsJZxXMVzV7/2i6vcCZgou8WRjE3LCtDzlSV+lrk5mDZDdtQGWcadYLtACgJ7WYbAItR4ho3UV9DJQPCuQnpq6PImHOmxjElx2aREtfQkDmAyk7oyYLa5XrMZeM6zskbbSd2yXROOZ2nT5ssdWdZ8dRJqOXjYopXVZVBVo2dAYa7i83KNmqMn0hb6I7a4UxKrotiiPW4lR0vu5cAyT7WT9Ds+jUyY5frdiY5wqk2aqVPa42cZHFNpmGgJji5SHU9VzXhwgwCA0i+5i/Pf7lqQdAK2sCa+RFzckSFaDeji9KtcFhqV7KKy/fJszP513v8npcZv337lp/6qZ/il37pl/iTf/JPAvArv/IrfPvb357P+bVf+7XvYVWuj9vtxu12+56fe2QYJZYRXboA0NKv6mJznKkfo4abYJVI8wjnAM6FNiItbxQYoGQc6AQnLhZzvaDEWiTzSKAS4d2rTffcGjJCNKa4TzvKwTDxUuAyKGoc+51jfzCOjdGfGKN67jLo6LkQXqm713vKXFSvAr8EFcXcuMzpxqS6XQl3TXH588clsnQxrkdfCXrO0suzE6aeke2FcgcuG/o1HPokNLo8TgF8sFwSuU+52HzHonWCqVgUxEGCAFIdmPhRo4uqR07uPNnJUudcBLytgZeramzgeR7n9cXZoItyVCKKJsu5rxuX5usnqLiAC/PNYt5Xg5T8zw6jc7O0wBT+95Nwzfe6iD8vCo45Gv3ZRjXftLL65ERS14F0Drdc6ACubr8inGLF4u9pYeaWzF2Wy9acFBpbmF70NGQXnGQWLgAlwMmIBV0zMp3j4yrcfE2BG5+OxXx9fQV0r5S834+c63a97JfLkmtRbAVXGu3yjPOZl+9fgZPcir/3b5Nn9E0omBRzJncKdNWv5wR8vKbq7Xokw5RzNO9z3t+8/zoQi4BmVg4mcwIQKabUwAAi6mttBo3J5F3HcG5j11TqHPPnlbiOw/Naxc8C9AfWeG0cWRzkOkA5v/f31ssfjXNAT2bUgAuDAhhj3n9fu70B6RS1xh0sU7eVwgs5ga1deEHTwL3yqjJUcs2SDJbCMC+r5eJcp7bIrtffXgOU7zMHrkPrCkteARWBUUCrue9XNTRcgQ1zzYz577zy3JvZpiwtPfdST/c7JPRfPX7PAcq2bfzdv/t3+df+tX+NP/SH/hA/9mM/xv/8P//P/Ev/0r8EwL7v/M2/+Tf5z//z//x3/dp939m78Xj6yGP7SO8PzDoixtoWt0sWGF98izfryptl5f7ZW7bHnS+e3/D+/Ts+fPjA57cbXz6/4U2pPNWFjx835N2dFwaHwriIA9MGfqQvhEkEvwlSfKIUVarBgrBK4ak0lrogrTFqZS+VQ2JvQqkyqFZYRFlEuclgkY6YVx7Z8Q49KmN8xdAaec6Blg0thzcn9I533tAqzHUyIODCqlUzGnCrwnMpvCmVpbSZhnqU5gOtuAbGilJD1NuLsAI7/nYaSlbpBlWxom6o1AfWFeuKVvVoKefmzIn6hNDY7AeR15Wkn9WPTGCSC1BoY6p3SE1NDrW6A2UtyFqxNSDrCrYo9Sast4o9LciAdV14Wlduy8raVlpprr8RqJIR4IgEagHt2G5oj34SxQXD3lHYd3K3p4mvNbVE5bK4SSKB85hr7AWYpLZegp3JlIIEEBx9ijHnuFO9EIm5mUbkHEBG0kgrgmyuQDLe13Kxz9cCJKrDTPsshxTDK9jkAlCALvkalwg1FlJvRlnQWdEUY4C8LHJiqhxbENF7gI1IauvA2zoM4+jKsSvHoRw9WLvi9waJKpwa9zZ9c8yp/hGq2MR6Os52FuMYs0FnslYaiMQiAvZ74Oed3aETFkUN0QQbGuDS0UhudnFPuKZIInUavz9Hv00gmccwb73ZLethClKMkqmNSPdNvY9ZgPrkXvJwPsYDPPdAqVIRLy2JZqTZEdxF53T1BnHDr5vqCBfrEdWBTuw3UZZcS9RdaTL16hYRwiiVfu/053C3bs3vXaZUxSioM0WmE/A4IxTgB6OaxRpnURnpnSmW6Fru1yO0LgZCoVXXIxb/oD43ohzWmYAjcH3cS62znLab0etAF8VuIE+x7lqhLL4Wl+r3PseyV/Gps1Eq0R8qwJQZzrgcFFEWvBVK007RjowD6wfWGzYk2Fx1BocDZcfkADkQ8X5jOa7O9H4sPRE0odfxeM5GzOjDd79WhdI7rRdW9SAfGx7sYzSpkWb1zEUyeD4RAlaXSqmWhNTv+PhnDlD+g//gP+BP/Ik/wR/8g3+QX/u1X+Ov/JW/wrt37/hzf+7PISL8+//+v89f/at/lZ/8yZ/kJ3/yJ/mrf/Wv8ubNG/7sn/2zv+v30h59Z0b3RcQ8bVNEp86jFOH5dgt/EWVtsK8Nsc5SYK2Fsb0gx8Hx8sJxfyBSeDmUtR+sWjiaiyY9whZOJWocdoqDLsBzRjreOM+7+hJaijTmSZdUIVlwiR42whL3NjuEnvoavQhpeSXwSm2BXESzJ3r2ExT8fZbs7dAqt7a4K2ItoI0hMJLsNUNrZa+VZXYbPYW5wCVFd2GQXh2hiC8WqZMzAjBJFuRMNmSzwrlzcI3KbB4SkZKkVXTxyCeLeSRa5bAUyq3Rnlbs6YnShXVdvWNxe6KVG1UWF85SXkeNc7Ke355oKzfoiGauKuWkXu3yVS0qwXWK40SdbcmUUuwmQDh7DiOhhr+lTu3KNSq6VCn7z0ohG0QmjT8k2Zjy6rReHSWZBeYTpgGanlS74w6JKNqve4Ibm88Pls1KVDt4flo/ec9sKpZLuOFjIs34JitscYnnvS6xg8zbwTQt0zMCtPgc1xE5o3ILqj5uqRtNnWWYGeXPON5sMihp1PhpNidv/eSo5MwMyXylc2zY5fsE4a9H3wlmkrGb5Bnnubrvj06MK2HlLukOlmkw9c3J2wn4nM1eW2ZxX+1kpuMET6b3wsw5Do0UW3RSt5Enn/qVtCxIMGsXiHWZV95Cepbx+4Vj+jYW8fV0mH/NOedSLb/Rn2rVmpwFAGchQaRvYvxmnVKOi9Mryll4t3UI1kacPR866CbR58YYQrSeiNc2OVNHcy3I/zv3j1djQZj6ET8v5rmVYMyC2iONQZ2lvBiJhi2hSY4OO+dmjp3JpnmKSEoM/Hl+ORLzW5lrs1xmaUEdRMj55xrPvfzx+RqxVn/dxz9zgPKP//E/5t/9d/9dfv3Xf50f/uEf5o/8kT/C3/pbf4vvfOc7APyH/+F/yP1+5y/+xb/Id7/7XX76p3+a/+l/+p9+1x4oAHp0+qEcfXCMjoa2RGR4R8rm7oH25omntXKslf7cOPYnnprwdl347Gml9I3FFN0fjGOntMbLYbzRjb0X5GlluS3UpaGzV0TkyCcTcB5w7k9TpFS8hbiUSovqG3cBDIo2JnGrhbVUVqmspmCej50pqEqUHUsg85NNkFqhNq86qWUCHW8ncfFAFRfqroszCM9x1PhcBWOMyiiu4FYBWxrHUtlbgpTqQt9SIhINGlImYmLStuGnQAjkpGUetWCX99AAAZ7NvjZpO3OrRZWiZ5RUAS3ZBTUXH4WiSPOKG9aC3CrtzRNyDNqulF64LTeen77gaf2c2/IZS3miyRoONWVuEuc8jYUlBJa+mMR26qjPP3embCLyi90gGiUCh7kXi9q8dgU/fxY5n1+gjNSGDF+/bMQGFpuZuALA4VwJAZpv3r6UmF/n1CGYBZiKIxjA2fbnsknK3Hk5+zqpujLfMvoExIWA58IeC6WNWDSH558Nb14WKZmZzQrQ4ozECaetODIpuHidmFNSI7VRfF6I+n2Jfc9BBRFV453GLT6UV1pe4HqkGVRtNmBUQgNw/d0EbCc4cbxpcV+M7LZ5ZvlPQGTx05wVajE28r4l0Inf18srXJIn8fUK7vy6DnN3696r36duoaGoXhlowXaOACcmmBa0FGREpUUH7YZ2kPCIKTOfqg5mLn5Qc7PL1FrYmNvwcV40oVY2xHObhRTPJkTxcROBXncG1tlAy4vh97wITbypastZID7+NDZkoYd1vLPCrTRaqbTiAaLrUi7soEQQKWdBCgFOhp60sw6DTO9SnTnpwjGEQ43DlC4wijhdM4JVq86mZhrtuk/MBMxcK8/fpC7P8U0Eg7EmSQY6YbQ5zMf50OHyA/VS/rwmdgUnExa6V9Q0kgwZgk3Lg5ww8yJNUOcpxRFmoj5oZ280CT8aPnmZ+HtPcX/9xz9zgPLf/rf/7W/7exHh53/+5/n5n//5/8vvNZFgKX7EauDIbnj1hxaat4bFSlQTlM5SOk0OGjvNdhoHlUFFnRIT8xLcWpCWm36Kk2oIlk4mIO+GaENKdMkNxFgsc6I+Fj0fe/5sDkLcX3ZBeEJ4gkix4Cr4IpwuhzUWxVxAzq8pWlsEVoFbgZtAMWEg3Grl1hpPtwAnt5W3t5sv+BXElF6hdwcJQ5TeGmtrrK2y1sIS1UgjFvWzXDoWgvA9aK3RFu91o6WADsqyUFpDWnSirh1qDQFfuU7RGR0JREv36KUR16xUfy9rjdYWf78qtFagCUup3vDvzcrti7dBazfaUVmXG28+/wGe33zB89MbbsuNW22sYaN9UXjCdeOEmR++msfl5KRk1BwLTmw+NoCINH2zj8g8mLCadGuCIB9RcZ8JEWnxxSkjQV9eKVZ8wYqosIjrp2zm1tUjl1kxcfZwOh1D1b+fFEmefm6kRDTmE22yEQEKJXL5DiAcIEoZvtlpc/v7YYwi7kwpM77zijiIMRBLWDkX7Nl9NXCAVVzQPOxSuppHYeqyLN9DKHphJyzh5rUK4syPn/4pEWEGwJ4YNfYuuxAMEmyqP/QSj2dlyfzzCaZsLmTnGjLBFhnfX1lQf9IUBpundrrCfsB+dPYd9oeyqrd6KIt5dXxNk7AAERZCFYu0zNGxXn1zDR8L17QkGh+YHHiPd6/sIwF4iHEvuQPm5ju9iSp2/SQx3ktrNGuILCylRPfzTGylFivupyoyFOnq9/6y3ZkJ07zs4n1SkJNJSn1GVibGGS0i05+qVaKi09NkDvaTeYj7Fmaf/TCOQ9l7pw91sB9s8UyflAjENJxZYYLhZDnIVq4GJaksdHq3LNWZ7qVmgBstP4qn5Kbz67DZ2foYkZ7JZrd6Mpe5ppZY64r4yB9AHwGGhdm5uDXhzQJPi/CmwXNMB1FoxbV/zeq00BgFhre0P+0rapkp/q/7+Gb34kmqlRS0MSfgmc8HbHASyFmxMxzEkJU9g9Tun66wnAs1WRmQ4r3LgvhpQT0pMzpvRIokL/USkaY4F59MqRYNMZdpIOYQlM1zklfHuZ/MpW++5mmyn1uMb/AtJmSraRwXpX3Fje4wn1gjAFh2Jc4JXyWMscXBxOnQiAM7SQ+VSDlF+bOKl7ZJzb47QfvJjNlffY78mhvhab4kE5V79U2l1OrAKCYExRugleYt3Nva0NsCt0GrjbXdWG83lmWlLQ5u5t9e7twZxsUGzQwqpvYgT3fS91ECKcLUipzHJRonNgw5422ZkUukL0TOzdPO65HXKc3q9AIcQgrjm1tEOFYcsE8PFIm5I1lKKrHI5zjNDdW3SK+GK5yuw5cRHtz9TO9JoO+Zmwkdg0QPodAN+Ge6sBdyfrp4YYCQGEpEfzIX5FdSnotI3ZkFmS+VU1k0xo0l8E2EMWFK3JNPU5UBLy444hyr8e/5/HhdSyAiJzAxzhcQZlrqBCfXkZ/3N9Of+dO8K/k5CT2El6b2LFPtxhDX4uRlzY321Yf4nhxfbmCnOibBwqw6uYqnXl+QC0i7/rWcLEmiujlpfJ2Y68hlnbT53hG2XNZlsfNVrqmoHJ3OADHZgQQAaUcBUVAB88g+PaeDgZyvH4GoxRrsy7JFestm+nNeuQQpkgn6VBm9vuW5W5CfNe7DWZHEbAj4ah0uuW76e2aJ+Jii8dOiPgyP5xvntnadaa8BtEAUm3jAB2uDWxPWJqwlWHOcNRr4fB9x1MwszG0y97/YIr/m4xsNUDSiUac2PdXTu/pxDB90ptGb58Bsx2wH2xBLP5SdYgeFA7EOemB6eDXN6OioU/SlXadpo4/DWIQtvpbopEzmar1qIS2O56AUXFgUxnHVjDLSkrqHeZp5wz/xZmX92OnHEZ8x8rylzNpztWhtbSeNPMVkOmiWJLOy4MxKMixLcRfa3PSXmJzGqa9IKYebNschzmoYkcMVXk2eBCKpbbEqVC3Udm0RHr4tM6pPWJWxjeT/8FRRmcxUdnNOALKsC21daMtKaws0oRGdP9fKcivYXpGnhTZWbsuNpzdP3J5X1qeVZW20xRG/JGuiBaThbU0JZk1DHOoAsoQYkKLhWZDXxGlYSZdIDf8TTgX8yZETM/fcEOcmOdcsI3sOWQr4IMQNcQ5mIbTzaFHxxc1qXtcwdgpG0KIhITZI2UAO67ldS5Rlxrj1+3HZXTMqDwrbgYM4EAn9XYnPExTdpJ4hGKRcrUsu2J5mSSNRFwb7QrsdHh1uw9i6sXf174exDziialsvr0mAklnnYblZl3l9NXUwFkDIrh2VYz4TC37etky8W0DFS/ooafrcMnMLcsDBGWxctlhenbLMnwpniseXnjJTda6HgKPHcZgfAl3SABIkSqUyC+sV3/YKOU09hkQAJZEojHsw+og1aHi61YzpPyMwGzrGq/lGngfZheNSccX8fLVkxxuL978CoRgreQHmNb8cAUrTHzE/mq+FoZOaAGsgMeI98ClRmmzzs2MheE62w06QVdQPhly7izBbm+WY0pOj0+vvJ4CZKHbOpQxeNdfY4gChLUJdhBrVxlLFnwCoFmc/TDi6sV8YlB5i3ut5zTyhnvc9r1klYu4qLIuxrLAswtub8XyDNzfhefX7xBC6FIZ6+klVGOIrzaxt+J77d0Hjv8PjGw1QanUqz9MCnr8+j7Ss9549vR/sx4Ox3en7g8f9zva4sz9eZglvPx70Y2McO9oP3IUHzrtsfsy7HHgz9Bdu8OZrTjqsdDyKiW4TpJq6FliLxJ5kPMw4VKl9TOdW7QeDwlFg3zv70b1CwQKLO+Sf0XBuIJ4jjNmQXUe5RES5ws4SZZ2LMJY0cJYa59dYkT+NtGJhS4pQIi8501dZbioJj2KgWsYNGXXEGaYmwmQOcIlFNenDFMO+IrKKeOvx9DSZgC3uWVeseyWG2KA1Y1mF9bmwPBWWW6GthbpUynJJ5ckCsgI1Vroe3465+GVoYhrRfewjQeZSNRdHzqhPIkoVC8o5N/wzEsx7dGX05qZlkcuVYKgmQChkVicFcDUtu6sh3Saoc4BikdJ0Xc5QmfdRcuE0m/8umfYyQl8TC5xYrHUaVR/noufXyZfcilt0X7sK+5y5VMfEJdUL+Mlu1WNAD5aga1bbMCsT7JOvcyNLDFRS83Cuz586W6bY8jprrqSqJmuZz8UnvZ2qJRII+HUI3kNikyPLSx0pJPNyLt8WpNzJYp3qhetD5gfVIfRDOA7hOAp7N44i9OqVhDlHzm7VDlo1QUt2x47N2IWTJ2bO9NUphI26n2KvbDkwpplzVuz6h/IL6ELe3Kz9nhY8SqcW1sVTGa36OFE0Sqb9/SXnTnFNl8+JMDmzACJhnFnwkvmZDobJUgdindf4laO45PzJhq3J7NkEujH5/H6quOanW5b1xPgpc4zPMTPHVbA3hWmFkWFZYoec975feAsUz4q7OVqJFhvJSKn5/D0G9J6pHm+oO3Jtic9TiKCo6Bx3nnry37tPFNwWY12NdYUv3gjPT8Kbt8KbNSD1MI4u9A5193k88MoxvV63OVvmzPxaj288QKnRJtZwYGJhnjbMo0inPQe9Hxz7Tt82+r5xbBvH9nDjs2On94MxDkZ8tdE9uhyCjICgQ88VzS6LRaZ6OHUIQ3B6VaIKXryCIqPnIl7+RtzEZkZTDe1MQWRgh+uxuwj9GPQjDMcS9Wa6fqY7UtMSA2ECkU8jjSvIODeBBLsTnOTmcAEpVxHVSf1ybmrzfc5NLY3zZr41WIOzTUAecT2TtjYiYrHJykyQIqf8BwlB6WRmQu6WOYBu0cE4/BsY1Ga0iA7aTairUBbvd1RagpMzd+7WkgZRPVUCVOTn9cUqRGixMyZFfe6Al7RfLIC+icdP817EfZjjTK/U9nnMJo6ZbzIQK+d1x9ksD4cCmEaKrbSG1BYMSsP75YANv3e+luW4UKZjs1w/M6/wVN67cy+VGZwnsCqSGilnKHKLP1MYsXzPj+4bjmRZ8ZDolMpZaZOLuu9hvm9f0i1+fhMJnfv65Tyvm798n+/O15HXt+ET3OCNIJ1VOF/7BDvIVedymZVJ1ZvNdMAEwK+AyfegqWB1jR4bxXG4gLNXB3SKM53XtJ6YzCopyx146iJIVPnKjgS4sB/xiYRgSJm9bUy5pEbsdVBidkpK4sA8tSLFtWNeJRjOyOaAQF4hSYk1b04EZvomxko2nhROnV8CxevdTcCT7U9KCa17jCWfS5J45PL2OdBOkGIKqTjPYrnssZN3TnNyi/g6Uk6Q4gHLGRxY3gaJliw10i1VqPV7UzwWAHKE7mSMSPXkKcj5mWegcck5Zq8gwZe+Uo1bg9sCTyu8fYI3z8Lb58LzLViSQQAUgeof/1AHU6O6tuwc7SFktk/G8G/z+EYDlGUVmgrpKDl63JxLXlaBfR/sW+fl485x3xj7xsuHB4+Xje2+cewHo4dFcfcac9FBG8oyBNs7ZR+UTZE+KMOrSbKE8xzkYAVGhaPCvsDe4MBvWtXTrGiJgbkUWIqx49UOt95ZxHUiuimHwQPlcVe2zejdB1QtxtIKSzTv8yaJUfMvfmOv+e5c7AyZE+7qkOkVNL7CDHXU3ftgxJGps9Gj6d442Rd/k4FZxSy5o1xmR/wuHWgdLO7dGaG9D/buwMtt9T26ProfaEYQwlqEW/VjrS7SLVHWV1rh9lRZnxrLuvii0RU9DH0M7KVj9w22DXRnaY3bU+P57eD2bCxPRguQEvwmEM0By7kIZHRxm9SskLojzLARi7dGZGcXNZJf9DOCwlfzYhpR3QWEKGS9pqRoToeDZVW0K6UIVt3zYkbYGZxkntfwtFhsHnRcWLy4J49FWlEZUNzjRWND12nt7pUKXiL8Wj8zI+PwxfCSf047+Kg0sIi2pBul+/tId4YpPVwyjZUKgTHkXPB7XNuR5xgLegkI2aCqByU1LPJFL2CPAEmTwYA0wLtgOGcuLjXQKvE6s5InGRi5pH7kBEEXCCNRpSOh3yFLfQNAzb0qr2Y5r20+nQCaGXr73+VmHexblKl/eBHe34y3FT68MZoaT2I8v/Edui0XUIXPHa3iaa4ijFJc3FjAGtAEWfLi+OJmXdBd0MPPsRZYF2ixBpn5MqIBCtCzrFzNWa9jwD7EU3VHsDELtCY8LYVbK6xFqIpXvW2K7Qp75ipCP1JOEOIGf35/zgq/sxjBB794QBTrtWBQ3EyuFWGpxtqM1jx9a2KZK6XUM9kkJ3rxSqhu6AF2gHS/7r7/JwMmc2pm8OqpYmcpWjOWdqakDJmimAQnt9XTK883eLoJt1W43bxKdQxDRkGHA9Ntg8cG22bsu3sEjeH3SCTSRjUHX4xTwZmgCAIEozb47GY8PxvPT8KPfSF89pnw2efCm2e/DqYajA18eMCX7+Hpg//75Q4f4zNJ8fSUmQOnr/v4RgMUjwVOC/YRBkCA+4xET4e23FBVlvWg6GBIcRCCUUXY73eOo/P2zZ3n5yf2w1jb8EofhKHmG0PXmdCTmfIQwrKRdO/IBuJdJPr1FLRWrFZs2jm7aZQFYi9YWBTrHKk6nAE6zDiOQT+6d9HNjYtcAMPc6RzXwCsCZe55wOvw78J1z8oFzeA9GRSbqZ5LAvOE47E4n5bNDraGnfdl6MBEZtM+L408Salr1uy0ybczj2xXIRtkr40JGuRMAUluACoXF9BQ7BejFeO2GE+L8bTiLMoiUyQ8gYRGqbN6b1IZUHT4PUoX8My5x6Kf6tT0MoBYG+PXXL7NjckBSvwrS4wvrFKZP4/NPkp+z7RBGHBhmI4pXJ7k7WQV/GRO2YMlvXGmdIQ4j3PM2CfHhQ84/xVPTI2MD49zw85o+uwRYieAtvNUSuhAMty0GMBu/udzwk3WYsy9KgM+Dx/TzJSOpMAxaDfPGJQZyWY5TolrpHYJMOMkT3fkACNzjsQ1MJtR6itQOr8EqzhnogvgM2hALkmei8AynjmB0yTTLLK4eHB2HMZ+wOMw9n5qcSzudeqehPzZKebUEC+rOCanVS/TL2HgFqLQLEV2wi3GTIzvBJhzzo1CpoV8LZI574+h8xhdkTJywYsjJn5qrq5Ma4LjyRzmtZqnMoFLXsJrg8I5zi9prJLFmcXBSYJLT90lKMpBHvfhUuprGZBEkIj5WpRgTXNNicniWjo7+wKVE6BUcrEzSnP9yRJHa8n0JAD2x+mo7MHlFO1eRDFCOR11Y8yVkBmI+HXWIvS4rK3Cc4M3Fd404/NV+WxVPr8pb26ukzRTjlHow6tTtQva4asF7BCOoKOc4fbLV6+U3O/w+EYDlBKpAtUePXLcfhhwJ8S60FphXZ9xCswcLCw3liLclsa+ruhxYAaPfeOzLz/SD3heD25FWcRbR9sw6AOLQybPLJ5sTadNG7P19gB6EUaUwdpo0/8jSyNnqsKcFvQ7rc5kDKMrHKquQdldS+MuoiMWfI+uryAl6X21UwvzOj+fi/jJs7pbaYl9weZGkyLB7Lr5qTX468VbowWAf3UjI3c/rNqxUuM5Nk27Usx44qVThKgW91iYm1r6ysymgpITQC6tChygKFeg5c6HrXi08pQRyRPcVmFZ3ZU2myyiFg63So9xVYbRbNBQaImc/BJYRFNRxcv0bcEveux7k2LOGB4LvVDkqNOZt8R5vwaRnqZKN89Z36HVRafmAEULIRh0NmKqGwSymeFMt0kuyLwCMqmDmHc46f8cYzEH4/bEPzhvJBndxtg0uxwBRjSxsUXFhd/7GfDmxhR5/fTomBuhEAtxLMoTUKd2KsCS5Kn5B9SsIkqxjkqoQhIMRNrIkuVK0KxRJXGuQac9fOpuzk3wCtDydROk5b99n70s2CXPtZxlqnG9i+LGXHqOFyP2dYH9MB6H8Thw8XDs97mZJ+OgcT9T0O2C5jOYsurjx2kpL/jVACjjMPQw11tkCogcyic40TTXCaFx7pMe57neLtnTPgZlDKx36D3GuDqjdFmDstUACQjLHNRkemqOQy7gZFYN+P1+VZwVvz979VyZL52Bh2gAFIkOxlmcEMZ4mM+hFuJS8LV9lAROOXsSjXsjQteWuGajxLypEsCihu5kcQ3IshjL4j8r06jTX9P9iYL5Hqfj+WwQaiebVAu0OD8X3PramQxK5wQobxq8bcabBl8sDlI+X5U3t9AcoRGze1WoDdBDeLsKesBjuazPi0fko57A6nd6fKMBCqZRYXN4l+FxMKK5nW9jlSKNpT3hVlgFqwuMHV0a/enGsT0h3W/Jdux89eULYxS+enfwdIObGr3UKG2UaMxqs0mfjyNDIr9ko2My5kDpA0b0iFEaFpqZdD79tJLxFLHFojiCEt0Ptn1n33eOY6f3ndErkhVH5tF+zlcVV3EfZux4msk1627oNKIyaUTaxqMYpuBLxwlKZoTKuQf5+caIjyjNJHgkubBI5p+8Brc90HjenK6xT8akpMzN5dVGZ0wtQvYZmRsdvhC5IZ3FAl7mwmDxpNoKTSq3Bs/PC8/PC2+eF9qtUZcAj5GtTuZphBCTrMYh3zjv29zR/fpmxCy5ucWqjJtx5VY02TLL1TQYsPiTZBNms8k55lNoeL6uqs5rbxpsjMhsx3BlOhwAZCR9gSEzavxkIZ2swKkpOh03Tx1Alg4jGVlBkXNRL9L85SIFKRG5ZcdvUa+rOKeCpzxij8uR8gnQsyT/POgeFumlGLsj0iZxn8TxXJRfMoHyCU3yQsncEHMenCxAgKhgDpQTMPkWKefGN8HHRdyZt3u+mZ4LQD6JWAM8nzj1E3l9k1W57ruYheW/sXdjG8Kuwm7ldUvUACQqwhA3WlQrdMJ0QYp7GxUJb6kS2SSfA7luaDIchEg0r1EwXGMYdfjaMFTiKF5losau5gZnIeJMI8B+dG8vMNzKXvG1bBqKlaAaTEIXFaAzBCs6PyMnCxVp4CknkwxsCJNLT3smmzAZk8lMigemKCaKWT8dbyc4GbSiLBXqElMK1yGCucZrMhkuFne3cG9t0kKf6P5Kbn+hpJ+WUqtSi//c7ED1YIzmPdu6eYA+erQYyD48bvef7JnLCoQqxhKlwK2d9QCmfr59eMCwlGBPKryt8HkzPq/K523wJiqJIKz+VbAhbE24V+EmyiMuuQ/lqI4Ulzp83cc3G6AUxcpA6Qw63TrDOj189NJ+WKWgUlEJR1OyVfVCKSu1rrS6UNsaZl9p+FUDrZ5y9pJxkBVKWARmbltmFMyFIYivego/NdMP1/t0ctxkygjtEUEKOnY/9CAb95mVs7AmJqMF6HE1tUYHodcsypjgIdJH5qlW1BfzrmeFRI/DP0cwJJwt6K/OoWmC9Oq5Fsg+zJyGpiXz2ULdsl/LDHVlnq0rBk4sVK7rOGf+NNfzFJcZHvFm00MHrRp6g3CeDZO3kg3KQgQ6dTq5F5gGhayToUsAdIFsvviEHiFTUjI/T0Z6TEAGZ5Ttr6Txs3xkw78EFZeH2Yyi54tysgRnpUh+rjhXiYU9L2ZqbGYEegEmV0gaA1suQsUJnOIzTm8RZbJdSY9Viai9RDsFM6xaMD3Objmp5wJys2CZQtegEd36ZT+BzJXNuV67k9J3SW7eTAvTrNQivLqql8+T0/H1Jbimcz59xwBsATQkfyV5vpmKlAlUjIlHroN6gpsE3udTzs/9GrOaM4bqAK1HUHMM6FGC7LchC3fdj8g38iwucEZgij3zfs539PcvwYKlvqJIBlXnMLHA8fMkcwJXv/8qmd61syhywtKoJop1dq4CcS8dOEXlypyggtS4ntNlO7yW8vtZ+efpFQm9m8y7luv4Ob3OnLhv3gnkyXUvU26qM2ZxH5UYA1aosZ6MCAyEE1SmBL8RhKydM1ZxfZGXP1/YD7lY3V2u9zxm2GeTPSrxmbzIgLNlgLgpXZD6vgKLYeKf5zw/iW4hch7V9TOIecm1+M/TvbyaeAVVRK5uVHjyx1/38Y0GKLocqBwc9cFeHmw84r+NOx2joVZc4BdqYzmK86FHQXthHBXVhrFAaUhZIj3kDqhLN5ZWPdKQMDSTBWFBtSKjUInX9OQtipcX78BusKmxD6V1ox1gh2BdoucEQAi+ahjJWfeNYHz0CpTDsAOs37DxwBVZA+997WBJxfUtViujCb0avRwORHgNUI4y2EvnRYw7xhqRJABm3HVMb5kUyj6GH9sY7KOzj07Xg649QMAMOuij+98Pp3BpAzmGgyYd7MfOfuwcfWOMB6obpjtCQ0r168HwqESUJrDUwjJV7EzFvUWJrM8oSYGKa2C00/tG7xujbwHu1MVntQYQXaEsIAthu+ppnpq9Q4Qi3kLdhjNz5/LC5apGhVZs1s0k7MLzeYJEi3aCjXqlTTEfNdcN0St3Mvd93aTkfA4gUsIW3k6wIZU0hiol2Au18L6oziTWAmVgPV18E0A5jM1UoKnN1KYdPUD+ZZGJdVtUKKOEbkRYNE3VvARcBUfCizKKBYMSQHLqK2IbNaOOeM6Icwr9TAkfIhfEeimpl4j6AlxbmcyLUElzOMmVuDrYTEIiUzMJIj395D4Xfj/P6zAt7yNgObmorKhIVGLzwmQqMpsVFi2e/jM4u2XLBVznVu3s7DTEmpu4zb1TOcHUMSLNs8N9h8cubLvbsS8qwWMKKuoVhlQ/rKKjooecYk/ifhrhcO1sWTOhxebVSlaTMM3Vgr6Na+pzsSyCrIKsBVpBhxvl92S9rIA0qCvSblAXrDaGVHexJuw1Cy7qxXfrrGIpCa47mLgnUl0q5dYo64Ks4QR+OU+xSg12qljekxJeRRFsjgRAIOMc6GaKDYnD5hJQza34JbyxiggqLVymvaLFzNmNZn5Pbgq3YTwFKFdgF6YGKsFJK4VF0lRTWCTeKylbMjhOJtqDt1I9IBE16nJqUFr0KFqbzLmjGD01W+ZVpU2FBX+/tXjvurUV1kUpzdz8cfi8X2qcI7BooQ1o3V3epRaqBlC8Ir/f4fGNBihPZeFojaU88yRPrDRWGguVZuKTW81TL8fB2DZse8H6ju0fGftHxnbncf/I4/GRfbuz73f2/UHftyg5xr/2nXFs89C+ob2hYavs7MFwczRVF1OOjkhHrIeXipu9WVh+kzKWWVZbggrNyStuO2yCLxPeXbSJd7dcRKb9e8cHbCtCk+o9KGqllkFj0MgUD9TSKHWhyAI0sIZpjSjaGF38vT0lzDig5xElZfFx6CFYTIWXCKEVOI+xG6OcAEWjEmiKHY1zEZ9HCaFzRA61UGqjVBcYuyGexAT1Bdw1J/4ehyqHHfR9Q7unwTI9M03eanExYJo4XBmOTC3IVdMQLI/AWT5wMgyzVPqanoJLWH9+nZGpCaTxX6Rv/P1TJ2TR3TRf4BJP57UqJbQA7kCcv8u/kXjtSaJw2T8nEGKm89w3QaNfji943ldnBIMmc9PMszIuYCNfOPQ5ZwTOLPnMauR8hcgURgM4AdMQeOZ1LidgisXY2azrtfDxV8SbLGbH3jQ0+xTc8epe5SNTWeENI681N6fS4fo3178ORgOb6b75zPz59Yd2XsNZPWUwBZqhZ/Dt3s4/uDzX9U7C6LAfg30vPDbhsSiPzdh3YV19TluKRtQFnClAzQo7DW1FiWuQG2RgugmciviUSVCYhm7JoiagnE7PIfJIQ8keXh09Mh+Is5mtuRt0ETc11GFusRCVhOe6EdCw5PUL/VgrXt24lOjFltV+nMLXCCguBMwrjUp2bxbJfjXnfXXRfJQnJMDq6s2Hp+DPexgV8eBVpUS/6Py1ngxfAQsaRdKDCJmMj1fcFZa1st5aHAvLbWFZF0QXhmlU8sW1zZSaJTuWo67MyZ/ALlkWT38GsC4SDSZdo9IWHz/r6t3gb2thXUGiwqmHyaYz0jJN3iTKhdzpOxgtITo3f73HNxqgrLJwK0aThVUaDUfF9UI1M9yga/SD49jR3cGFbXf6dqfvdx7bnW17sO8P9n3jOHaOfkROD3S6yh5+6OE/M3OBYqk+KcneDiEGzEqfsBC0FC7Nzed1HU5Gm8MkxOxnWgjxNEQlDskuyTIrWjyuFaYra6lzI8m9QsGriOT0hDUqGukqxXxwRwt1Byt8n0Oms6cvJE7Bz46oSuiG4/MOpw5V03QrN/TrNnX5TzI6iqgzHGezF1H8waz4SPHf7OpKn+Jp1X6mkQS847NclXF+pMNaRoKcaQfV1Gyc+ox89qlWvHz/KkXC+bq52c1d7wRFTEBgs4oHO4ti81IJ10eCOSBy9gmAZnooQMK1P41/hKDKZ8ks876cVQB+ZGpvBO3sG/lV3/LpfzBbQnxy0jkecz2UeV0SHUqMZGO2jriIQk86+6wP8uuQAEWm4VRe2okp40DhqnM6n3kOKLmAkzPdd0LE699kdiY/Z4IQy6EUEOO3wDXn87kAHPz+uPvvFehcX99i6OW8jeqYMGvbw122D3xjLZdrGFKtXGSmS7HZedvkBJVXbxMHm9niIn5mFuvgBZzneIyxkF4duXY4HncAU2rxysuY41Nwqw5K0jl8snryek7kffJURjmr+so1UfVJ4HD9w8lkxQ+1zBsr0biSEAsnW3Fqb+LaRc+f+fISYIVcm+O1PwVG+X2eYj4tdDcJVOpS3Rm7NWqNRrIDv15xfccMeiOFl4zF9JhPVu8yrq/XgfO8SrBktRZq9OSZbraRrvMuy2H5kCAvgWlNHVC+j+SC9LUe32iA8iw3qIXGM2/KE0+2sIxC7WD7oI8DK52XDy/cH3c+fHjH/vKOcTzoj3cc20f69pH3X/467z58yW989Zv85ldf8u7dRz58/MDL4+BxCNvxQPsdPe708WCMG0M3hvkmP8oCRIOr3FiRWclhdhGB9UyHFLCCWX0lYutWOLRwjMLRq2tBEJCFUhZaWZwhCSalzo2cGUUiBYuUjxZBaywGSPx8QctKZ+WwhWN4hVFGwfejeKfOXRg7jEN4bMK2eY39tsO+wxasii/aZxRrPejRrFkcMqMOGyez4s6LASQvOUrDwZeKLzCtiDfHCtt8CbLD8+mnyDEdRbsqhx4cuqPjwMyFy14dJe5a35xuDvejc/Imz5rgBJySDi1FGFqSFRhYvGm8eW70w5RquRLD3GFyx8vEsD8ZF3y7lbhpjJuMey5z+lUkPxcxX2XSNwNAQniaZaRzpwx7btFoK5AL6uDcpMYlnRGR9dnK/YQgabomBDiMa2NINPaV+RnN8znnGI3dO2LSWXGWJZka88HBukwtRVa2DfNqAw2gktc1Nyi/1slGXDZQR/th/MWJdua+YVAyrRabmRE9fCJK13MjE52vni8wYWnKX9W8rPMMYTKMAZm7U9rr+6bn5xTRe2yOFsGKBzJxXeO/aiBD3Pb/UF524c0G9w22o3A7Cn3E3RLx4EE473cYGVrcyKTiiyhNLCzo5dLyL5xahdO9mgB1c2w60Mt1RS3MwwZodFDOBn+tLSzLyroutGWhlOrs7Qjr/n4eI8CBMMjeaEXLbMra5Ez5lVwbOcdc7sHJYkiUtkgrSKtMaXm8thGANyoddXjKaSiMbtFaxRsHjq5k86N01y7iWoxs25Dj32Z+Cc9XxhozwbecIt/SCnVxj6dlXViWxrI0tDvLLJIGpc5OHQP6EHqAJnDQUnIVkcs9Agd7El/DV0kqlGa0RdxzbBXarbCshdqCtQl6yQpo9co4LYZVw6ozgBbgK8Hx+J6d/Ld+fKMByioFK41mlRsl8v7AINrZd7oIL4+Nl/uDdy8v3F9e6Pud/f6R4/GBY3vhwwc/vvz4wruPd96/PLhvW1jLV7p2VMNsLChsjRs81e7g913LGe0XZzEIC+lsVZjRoMRCpZI3tjigUO8S0cV8Q4hF6tURFHai3zEPmcchhaMUepHQoXg+sFf/2SGwY2y4EDYXErfdD6FsRAd7KO/36HeyZ5+HyBvV6uv6FP+a4JVT/jUFxASlnGxSRm+zQkd4Felm5HEVyOYWkFHM3BG4BMROp0CaOs26oQA2sQlehYmX1SF+lu/m4GqYlw0OOSeO5YwbOFsXG/uISgCxEZFlClWTZo33SwpIzTeI7tVhkqkSfIzNU5zC2fxsZ9jle3KefIancUHzuuR1vYggNcWQl7yLi31PkJaXdLIj5AZs+W5zA7UMT4uvTGLmrJcYxYqnXQ20qpdmm8ZaeUFhllF3gtEEpKfw/IQQl4jsFVC/XOfzAp4/svOvJT9LLtISC60GQCjx4S7vMcNwSZiW8DFf0TU4CU6mwH7KIIH5s7irluDDX8dLsJO9Ozm87DaL2bwHYkI3ODT0KJ3ph9Ijqi6REr0Oc8doF2QVc+uVqFNyLtpkvU7G6tx0rxH5ZbZhuCjeNS86xa/+BtGzq6V3leccnLFLa5QAppx6uhJMSqBAD3LknCOnqZ4HDhko2DzfuP55TT65l/mcXNtjWZuvOfsJjTyc5RHLvSH++tOLTUySWWmmUQ1ks6w6y5ezgjJVGzmySgCgc+zmeZ0eUsPO6rP5+3M2zFe8piJzRszgL0BMpoJOtidTXxYVYbHH5D5U/NDiz5FgNc3s/58AiqcqKiUASgQ/EYmmE+Zj23nZNt7fH3x8uXPsdx4vL96HZ3vh48cXPr48ePey8eH+4OWxsW3RmG+Yly5HktFzy3bmxgXPb5cQ15VKqUapOqtD5NovKAEKIcQKpKwljzJvsiYQIgZxLJT5/prLmkTrK5H5tZc4pHBIoRcHKJRClwQoxoGx59JnJ0Dx0rHQJFgCFDdzzAUvDzFmBcBZzZEb4AlS3G8FriZCfjhjcAITO8FJLIaXefFqg7l6hVy7pU6VvVrkxXPayevJB5+Ak6CNJ+MRm0Y8LRfINme8TNBFN7JFwMB7/ijDHTFFLyvDGcGI5HtGCnCM1wAlx9erze9izDb/S3BxIorpG5EVK6/SO7FhTnBymVhxYWZFA5zvExt4Xo88q5PNyo+YAMVfz+eHC7oToFQjyjYlwEle1PhSzjdIYJTvM9mI2ITmycTmE3jofK3rU+bUvUCECUY5A4IAJzOHn6d35cYlA43zapzXK87v1QbwmkGBclbg5YzOvTTmSsk1gDlEv2fDArLllHsnjTxcJNuHM1GUk6WcO/WcCJfxwwmKJ0jhet0uybVM/Vzn0wUcWqQHhTA+fDWWzlRAqd5qIqORWMpntc8wo38yFhx7B2gyOYFuBCZn6jLu6/zIMq/luWnLvJjXKxJDeH719+Z83Qs4GcMmeJu9quaaZef0zDTVJf1NAKlMg3tVlp0+MDEA5hqZY/e81K/W17RIsGCNEtCfH84un/0aBGSzwmRgfZ2aZnjBYCPB5omTiv1yeJWYzeBCYr/yyrHXEOm3e3yjAcoP9MEwVxF/Xh+83R7cHnfa7Y7c7hAtvEc0AOz94OjZdG9wdOXoRlfv4VOoLNK4SeWNNA7BhU5yLj0jWI0BPPABsSA0XL38mRQ+l8JnpfCmVJ5r4yYLa11Y2wJlweqClQWkTZFUaUkDGtWUqtDKTgvhbbWVos+gH1G908czezekH1jv3FW5q7GZVw7thlcR5YDJWSKgonSUbgc7nZ0DkdUHjxm7GF0MLXEIaJb3RVMIqd6Ur7ZQpc/S7Obf1/i+1BDreqQ/Ungwl5lzMZlJ8QQVmt2YZV4br27S8Jwp2AFcDJ60u+PufhzsY2PfHvT7g/G4o/vDWSosojl9vRJdwA4KVtzUS0syCX7/e1FWORNSZJRrg6Ku+pOI8yy6BJ+i2IieMIoNwpoTtGMjvz9Fhn5e1xU/rp3Zhea/bIp5SSEqTiTs9k+aPT/i+XkzeruAxfR3CA3V2Z/pFMHG8gXiNT8qfn0Qm8K7uRTVBHw1qmc8Qi0qE6C4uBLATQuLuOi3FE81aAg3X90zJyN8ES2+SZWYsMlaaKKOa3ifWoP8APkVm2WsJhbhZxxxcSVAhwOTuP6XcFvIhpHnvUlQ4Iu5+OKdt9cyeg92rTirpAJa3ZtEZI6oc4EP4DTivuswtg73w3jZjefFeNmMLZxlhzo4dFlPMLsW3Lt6Z3Ri6J1z4hNAEv49PjejPaKltsSFmT2MKk0NioN1713lc25MkJmblm9+Wr1SxztgK90GPSsKdZy2AXFq1w36crJk76+EgWcnYy73Mz6HuSj2wmG9WpdUynm+k50gBLLiGr0uaFZmBghEyoVdzw73kaZTbyqpUtCwVOkxH5P5cG8TQhPGGXQZMwhyV2nxooOujCMP97VKViax9akDlnnU9IYpsR6M1+M2Ab/7xSSQjO9jOfMQtGCtoC1SPdU/v+YakBQ4Mjswf53HNxqgvHnsaOmUfvCslfXDe+qHr5BSMbl5OaUIfHyP3F8oLx+oLx+o+0a9v9C2B2wb696xPlA13ho0Cq1USjGeTXgjICglvDvUOl07Dy2oCosO7/2gwpsx+BaDL3rn7XHwxjo36dz6YEkaz3xwumeJ37hWlabQqnlPiKK84WC3zmbK03hw6w/q8YB9Q4+NvhfYD3TvbH2wJ+AaNkVoibjLZAaMooqMjvXDOyaPw/8tKcrVOQmSQs6owNO1Qimuukerp1Cjk3AN8VatzdmkYJGKlJkWYzJQl80sQ/KMT0JpW0KUWTlFeKemZ4RyviPhdZLC2H5sHH2jb3fGfsf2B3Ls0WagRjgRC8ms+Jf5voZH0IhGGaN5dib47rxWjrV8Ey+x0Z+xsYR4jZnLhrwnzpjMdIcl6X8ulMy/OGtHcvE4F5Hkl+J5ARwsRHLXv8qoU3NryMUudCYOUPwrlgu4H8UysuLV+c3Xj+hUhRAgE46a/u7prgl2qdAOsGoytSF+/fxvarG5YbkVkU1mJKuQzpzg9Xt5BVhE8NSjnEBugspXVzSOACvCNbWY4MSf9EnWLMr0Je67pZwAm9csQNP8+et7ClfiYZY/uZwxo359fe7XM/Bh6Fbnx1AeXcJVVr3nTbQJsPALeZ11CCYydDmebo2Ldf2UufnHluub//nrTGG7dui8hnb5lH7+iYvje2Ru5lpKaJkizZF+STG/s0LouiZJLExe/eLjroQRWc7sqf+Ym/U566c9Y74W05c7UsFh/pZ6FOOsvAwGRQZelq1RsZSseR4XFvNkmFOYITPFlgxIVleJelbA09zlldgYE9L121kX79Gll/4hxZF0+J54jzcvXc/kcHKzchkUvhhLzOVX4KRkWblfyGs9zgRuU6Ark6maQUEinq/5+EYDlC++fOcf+oDn286tfU4tFXk8GI8OAVDkwwfK487y8T3rywfKvlHuH1j2nXHs1McLt33jdnSqwYFw1MZLhV2EXaDYoOkOY0PHxugPHj06FEtBtCIm3I6dz/rBD/WNH5I7P9Be+EzuPO+PeD8XySppK13obbBWuKlyq4PnanxWBj/InYrbxP/AUfl8v7He31PuH7CXJw5At43+8uB+P7hvB/d9sB8uxqWHPftQFk4WpfVOPQ5se6DbnbE9UepCGiShvuGLpoW/vhLFteolfH2pVFkowLourCHcastKbYuXMpc2DzDf3C9amszjuK1Ervw+68WGs0mWIr2wmR7DgVVRhlRKr1j3DtRjHGh/sG0vbPtHHvd39Jf32P0DZbtT2oJIC9KgYLIgsgAr7l4zImoZWKjRW4jtMKLJcarXc0Y6QKmaThNAAhIpHGTvF/FFmShJTzv2XJiwGf2dGoVPHz65c0tzY6vqIjQLatWYkTpmJ2gholmEQadQsATdY0TVWvfIK3oOeYuBZPFm4uJyfnE+AU5GcWdOKXjrgHzO4jujifnilWBhRrYpKmeKLculF0Jv56WWYKFOD4gyOzW7kPWSfkACTGR6NTdGndoOCEYKic/hQKeYl9Dq8E0stMwnOOIEls6YeOIlSTJPm3rFRAlcNs/jCosyNZEXkoIGU5SW9BNimr9C+T6jQ005+mCrwocN1mq8vQ9e7pU3Ty7ibDUzbyfMnenQ4SIP6SA1BcWRfigJ+hQpSmXMZnygiW3oGkJ/nM4vga5miiSD+jMGARG0NrQ1RiuMkoLhHi7h3W0CtE+Gslh2AY5rV71MRKpQwgelhV/IgrCYm6FViw26GIvhB7i5WOQGNTSFXU/tYC/u1zKECcDcCsLHhxxQu9C0UmgemJSCluZO4qEXwYxq7glSLX2ScnUNzU1USDKcYawmNKrbLszqSy8hdot7F+cme6KRgy9qtAAgVYSbFPyv3YelWOEVd5RANQKrUpRaC6155VBtJTq+S9jcu8ZF4r72mVZ0Z1m1qCwKwI9Et8JXKcXf/vGNBiif/ZNfpwnYNritz9w2aPcX5PNvIV98Of0tnj9+pGwP6st73t4/errn/oJ2twZ+9IOjb+zHCy8vHxjbwTg62xhuVb99YHn5kuXdE/W7X8DxET3u3B83xrJg7dnNjrRQ9wdP7HwhD759e88X5c4P1n/K2r9LHR85vnrPeNkZ207XHbUOdrCKcRPhuTS+KKBVeLTCt0z4FvB2HPzAtvHZV+9ZvvsVtMbx2Onbwf7y4P7uhceHjf3RsR5sDsK3wqBqN6Zz5Ap8ocab+87Ty85626jcTrHvdjB6R7eOHZ42ka4z4nmSWBCWisZmcFvdw2BpdS4aqDmiL4qWiISGgwApg1IHdXG6PCPkKOkh+7bUaqRNCWJB/Xb2QZi/VWpviEbLg76h+0e2+3d5PN6zffwNxsuXyP0dy7HR2hOVGxyC9ka3lcKKyM0rTaT7/Bm+ES4CzSkoF70tBWkN93Rw4bQEA1VzJxNx1XCYefVY0MxwbxwTb+mBoFo4RosNE2rYUpl1MutvURXg1RvuNaI6HBFYVh/5JpYVDkPdz0SCMcn88sD9PY70YigWouosRrKZyol3dKttsSi1DBB54XsyZTEEDgn/tyq0pc6otCxeJWZd/B43X9RLRNTLZTFOqsFM2c03wXGoi3ktGnWqYFZPQWBGkWYuBg8RU/YBNLL80k7wRVbXhFV7Vv3M6g+bbEw3ohcOyFBPR4hHu159lDRH6kYCoIwzGl2C0cwSUEs9QYCVIjIbxgk2BYquIThZk7NLrh/j8v0xBuzG+7v759zMePdOeW6D/a6ssUtLYQYcoFQbVO204em1ZVSaFoq6WFVDK2J0hE6VEZ3YvY+Rhi5pxHjvQtKtbpxWfYOVUbDDGBvo5h5LQyudhaOs7OFhtYSO0M0eOxqlW7VnysaQRrC6UY1XCtaEsjbqUlmrsArczFhUaBjNlCpeYbeqsZqwmI87CT1QL57W2U0ubGkJPYynng5TditeQDE8OFlMnJcpS1RQFkZpDArdujPaam5gVmGpEm7k1dtSmFf/WQDzMuBJjWfgTSk8lcpao5qxlMlkCB7QjdEZ3VsFpFlilUKRcHjFAYpXlnr65TjEA2aBYw9bCU3GJEqbb5V6a5RVKC1wRriZc4Aejb4X9o/K/hH2j9B3GB00OotTmAGbXGmX3+HxjQYotw8faAb66CzLTq1PPmK3Dd1tmnrVjx9Z9gf68oFy/8g4DnS7e4dUU9pQuu7s486y3dHdB93Rh5sbHQ/Wx0fWl3e0j1+G+NF46I2+LGh7ZlhlaIFt42Y7b+3O5+t73pY7t/pdVv2Koi/YhzuydWSPqIBOobsNmwiLwK0U3lT4Viss5o5/N4zPxmB9bJSXO/bhxaOV/eC4b/QAK6NH/t6Ep1J5G+6yB0nButvfG4P1UJajs+ydsvSIdDynWfsI4ZfThrOJH7CGHkVbYUhFwFF2mCzV9Csho+M4Jj2rlGg1XpoP3PRTyKKTjKbTy6CmEEgyDzxm6W822XLR3GCMjX486PsLY3vB9jtyPCjHQbGGVHXXySGoVbBogRBNfiyqjsSg6ClutavhlJxRh6vk8kMWxxV1Zny9VDYi1aKEeWDqRYTuJVxRcXguOB5dl2BAgqmwFMwNByd5fhmhzujUc9STN85rN8Vql0o0SR8eZsQzo/u47KV4lF2LX2mnwSOij802NQXOQgvULD0XpNWpe7EW7FK8UQp2fdd1WbWJYRVGLdRhvvnEn6R4z23aczycnkGfpk9yM8/fi36SIiAvkwMFF1v679JgaxJ8er6YpyEsCSDyjdLDRuJ++aXP8uHzPM4zPM/hmhSx+TybR17aYufUymdAgNOhPA7lUeBeje2h7Fth7C7IdDG/v2lCzTRZqzFHq0l02Q6xKUp6argk3wGum33laJE51R0715gz5zjAfEO07iyBDQeaXs1Y/ZVNTqHnOFtmWDInGmnUEHiLTFRMesJLOb2hqgZrYpnqCQM6ZTJbU1EmYcWPa/dygER1fugP1dkUy3YfOpuYNnHWRMMh2JNhEhkXZ6WKBvtjEWBEq4FsWWA6lyK3mCecY4vvEVk67ft8pKRNgwWNPmsxwGT+F5/RYLZkiZvlzGv6WwVIF07xcjAnUoOd9B4WDnQU3x+OMOTcYezMzuPX5WcO41ysvsbjGw1Q1t/4imUM+stGrQv2stPfv2N/85by+W9EnxXBPnxEtjvt5QPyePGumcdOdmhdSqGHWPTp4x07DDmEsSk2oB6dVQdPY2NtQnn+DN5/i/ublbEs9PbEYQvdKv2xs+jOTe98q77nTbnzXL9L4z3Yg7GPucCNvmPaqXQWqazSeKqe3a2lUT575nE0Ph6VWoQ3Zjx9eKF89z1G4bjv7Pvg8TjYPrywf9zpu1Gscas3vnV7w1IKb5clqoI8uinrjee68Nk2eH45eGoblS02AWE5nFkau4uvtAfqN6cKt+b1+O1pdedTgbYs1Or6k9uysDb3ack+DtVisRdlqd5ReF2F9ali3ZDwaLCQfas4zbgAS620pVGbIBW0aPQJ8nRKEZ3COqzT+51je8fxeMdxfwePj5T9Tt0GpTWwzthg7ELvhVrc/k6yvW4JgGCK9LmCISlCKS0Ws5yByVUzo0aaLzxq1Vk4VeeE9wGjU/rwBd0Km1ZEKzVAiutCOmaeFLgKH2ZvoXEAvqBKNA0EyAZmaUuPABopIImNRpQu2UtD0FrmMWpKC8/+IrPmJKURZliInDRWb41Iso+O1UKthAeCBwm0SPGg6IiNzs5KCkIrUjVt4AytMpmrIUYXZWdwoJ5GsMphzIqzYSNM+uJE88XznM0iRRPsiXjliJNFGjoB/68U31o8neAaHC54T0cyU1kCKjO3fgo5Ezb4gl6jFNb0BIOQm6N4ywyMbA+YoudcziX1WhasBZePGc9RhV2N+6YsCm8UPn40Hk9Gfyj0YGmKMLKiJ5jJRsfjfWPBqPFfNrpTNXrvHL37vKfOzVsLs4Iwy04rdYKTSe3Hzq9dXOSuAA2VBZUW1fp+ZXt0qO/az2oUZILGmPzOlDfvXifhCSJSHJgoNPXGhVPHhiEyKGoBXpjaaS3QizdX3UaCQgmmypuf7jqi2WGNPmXOfrVSQRZGW6BKpKrqtGowb01PVfP+O1UoWhGr2AVgMyTYRLjhjPVTEW4l+t2Awx5vHYzZgdpOH24wevQR82FC2pgDIeDSEpopcyCBBYOi53wsglSjLVBvzqKUxSjNAYpEixMOwXZlbMp4gf4C427YVuEwb7Ca4vdE5Rdw/js9vtEApY+CdWXfo2dLfUeRwdju1EN94xGhv/vAeDzoHz+g++Y9VYaSrRz3ZaEXYy/QtWKiSBOPQEUp9oIcSnnZaF8pZXuG7S1PHxdGc6O2SqNbY3soZRzY2Om8cMjOXj8w5EHhcOFirUgttKGUrpTReVKXl30ujafS+JzGF6vwQPhozr+tm/LFb/4TbnWjPD6D52fk6MjWKY8H9bGzfHzPZ/uDNnaeysHeBkdRRnGa+qCgcrCOBz/0/ru8bfB0PLjdX6bhVw/nRleD74zR2Y8H2+OF7fHC87ax94NHTAIQj0ZCUHrrB0/7xpvtI09VaIdX+Bw82HXjeHmhPDba0bkpIeZ0S2bV6MKsnsr4HOEzjLcYT6bcdLCO7sBHvHdGM/PFRw8Ygh47Y/9A397T9w9If0HHg82Mrje6DZ76YBmDfRirFcBz1mIFqmDVPAwIlZpkzTP4BmPRBJHhgRsCVGQawPlqJypRaCIzz2+HJ69dP4K3S6jiCywuPFYrU2im9VoxNBilo3JE6Z+BbM4AFRBxrmyS7SmICO2Ljs0B1jCkNAfKo3No59BBtyzBPo3zCs6UzXyyhribABg4tZ1mgxm3DS1nRYyFRkI7+3BxtvY+WRV3lMI38Kj4smKE6AlbCBFv8WqnyBRVnBVoNYS9AV4n0zQSoID1TNGIR/eEb1BRehkcNhjYNMYTs7iHLcBJn0D0hDKXh10ByaeP01xt2FWWm5JEgheK6ye++ZcStvOYb7yhV/EKGj/Hnsjp8hjDtXSbwLYZj4eybwPtDhJSIEmwREOi948EUOSyCVr3MS/CoTuHdfYCexX2WtnFhbGHuTfS6ALDDSGN6oyCPCM8OWPSFdmVckA5gi3NyrzjcK2RGGPv3t14pIAb6mA6sxoVxCsKtTpAGaJhtwCHKYfBYcYaV1rEjRUQT6W6CDpYoEt1od+q4mMdB1NjVPpos2RbU8skGi05CpWKLQ0tAkVDb2UXFmiED4yLgbWVuWaoBugNlFAsE7PRbyzmtevkOu463jmss5kXVHS6M5vC2QJDUkzsMzOrxbx4K1kvr17DHLivtXBrxnMrPC/C8yI8VWUtxoLr51RH3M+BHQXdDaLXXFFn4SreoiLZNoq8Yg9/p8c3GqCM9gS6c8iGYmyjs+wPwKjl5qkGE4537xn3B8eH9+i++2C3giwrLAvHU6U346jCETVX3vQ44pze0fGCbRu8GPQVOW7UR41BUDEWsMaxET13Dg57UOgs8qCVw0sl64I5feC6C1Wkez4UVd7YNin4zypsFT5WGNtO23bevjPWulO2J3h6gj6Qo1OOg7oP2n3j+RisY/C5HIw6GMUcoAB7bBJ1bHzr41e8rfDcd97s9/BrYebkx6H0cTDGYB872/Zg2x8sx8HeB5tFvxScQkWd5G2jc+sbT3vjqQi1NVprdHtw6MbxuCP7TjkGTWFYNEBTn5y7eZdlNfgc+EzgLcazKk/qn22RwjIMtLmI1hzV08EOZex3+nFnHHcYWyB+X3S7mUdBfXAMDXYn2gP46o+lqFdG7lanZN3iXNW8JWWyK7RJMV89MgQ7fb7UzlJpwReFKCGYTfjSrVLD2K/MYBHwtJtFbyMXIfagXuN7GUG290gvZKMQxcaGFvf3kbKA4aWc4RY7LE3sos0AWXUWAAU5/RCmGt/z2Z72VhfeWZRXTvratRmHDo5sQTD6DP/LOEs+Z7WTBEBRgQwYxkCaA8YSG20VY+kR2YVeQ4fNCgdS2HqhtE0lGB535xgCvUhY+TvgtVlpAWIViYLx7w9AfrtVN8FcUPiT6z7/xl49+9xESimRJLAJKgShoYGHMrHyydoYZo9HF3d+Poy+K+Mo2EjDtuQHrqmAa0ogkmU25j0c1l2DIbgJZJg+eqmshH9HUBHTSmHB5MkrK9VcnNAF6a7Fck2yecpg9ADmREXKCJNM/1zXShxH5JGeLdVFqcEGOFjOdIwF8FSsuOYPGVGyLpy5H2eT8oZY7uK+NKPqIGWmQjRZnRiPEvxXdE9GosLGV7fQdg2yp4/G/LfqJbrWTzCfFZQWYMMuOZJZ7q/ZH2vQGfPeGBrrCadgfIIUH1vpZeLMc1SdFTyginTSWoRbLdxa4bZ4s8BFjCZZheiLmqUMIMAJ3ShWJ+DNflglxNJfP8HzDQcoT//v/xcVQz98cOFbA1m9f7TV1UVW+8HHYmzvjJfthf0QsjggU/2ju99Fl0ZnBZEoj1VKU27bxhuMt2a82StlAMdAS480UaFLp0vjMfCFdxzs+mC1gxfbWU3dIlqMskBZQtjl3GFEfQORB210RAu3x2DpndoPdHtQGTx/9aD2F3jXHOgMpYxBHU4dLt2ooyJWeFMExD1X9gAomxqPqJL5/PEVb8vG83Hj88fqG6ABVNSgD50b167K1g+2Y+dpf3i1wBhhwy+uE4gRL7vSGKyi3Ni9CVgt3h5gHCwvL3z22PnWbnzUFjb8eDWJKocNjtAhfKsV3tbCF6XxY1b4lhZ+aMASkc9QoXQoh8HH3VNT26C/P+h35dgL2IpQ2Guhtifa0tjtoI8NO+60vrGUxWnjkM+XqgFIyuyQDOLA4tjYrLulfik8PT1F8DVzIE5XhT6lFZCqaDMX2XoLMbL3eV1ds9NolN58wpfGgUfb1Iiki1B0cabqWJ2zKd4yvTS37F+WwxeA3MzNaVYZHUbH9gfaF19Yu288Y8ebsQ2jUzHxCNAlIrnIjviqE6gVK7H4CaX7GCzHHoLnArJ4CsjA1Knubs40RhxI9geaVuXmwj4RBz0s/rmbwLoqugyswehK2dVLkaNHS6/CGIXD3IL8UBfyDbVprY55B+RSvE18wgQtsWgjMSGj8iZKQBcprMXFzJpl2Nhswvlbu2OG2APhau44+z7JJe0QkaaPudAAhKRplsn6K7FGZVY1V7G5fFUvYKMyzJ1kH5twvwv3e2F/NPqtuDi9Ls5ujAUdDbUWAmwHGWbeTLTK4pukqW901ZBbRZ6qfy0uXE4mpASmrxRvzdGeqG2ltBVrB7YAi2GrwCgUabS1ekO8pdFSbFzKdMXWJrAU6k1mB2sLZwABUoUuJSz5iyBNoIEuhjZFq/q5E/aRzVOPVr06x0yR3rF6ScCZBgPpniNDF45jcOxKzxT4CAQsUc5TagCDQaXRBEbxwgAt6im1YoziaUxphbLUGQhZc6BkZtitYEuBWiil0qR5O1xrlOH5KOsF7dVx1+FdwJu6+FfUKyEbyjLc9gHz61kqWAtAaeaFAeIamcWUm8GzCM9iPAsBUKBGhU5mrY8j2hFsSj88uBJxmcIiTy7Mr4VaVvcysq/vJfuNBihf/OQfZm2V5eNH0MEiylMTluLXWx8b+vJg2w8+ivDVxzsvfbi7qgpavBW7mldKmHrvAhCaOZ1arLAyeFHljvJ8hMixD6xk5BI9b4qxUybCVVNW8yZeq3mbcom8aFVCDS1gNZTvxl1wsDU8793FW2DTYhESUB2Uw/1Mhqor3VV9T1RfoKp4rlICJVP87x2XGRSllMPp0jHcIwSCBXFy34LVKVFTT+9INN87TFnMNQiC0Gy4d0JQ7rXD0uF2GGV44y7TnaHO9qx9cDPjmSw5jdJC8bLuUTzH/jmF51L4rFQ+Q3g2Yc3rN87cru6Dft8Zo7A/OseHnWM/6D0WfamMEhSsFLqqly+O0IRMg7UIs2tGT9X/nTvZML8/qSKobdpv+E41nEoYFkp3/Hm5qaWOoGUjM/e+yX1rGNjwNNc+egCUziINE68ekurUto+xM8WbDFieTEZr3nH1YPSDfnRAsNbcD8Y8xTbLlaM8MkoEAKLc1JsmmWV0FhupxEZaOzJGeDUQvFELRs6vnVPPFSnNRbclIkv1NJprM0qkN1Ks6CySNqaA0PYS1TOeBkwxsIusvY8Tov536pumDAcbCjNl4rkVB5WStDgE4+IibYlUSiXkRZl2UWdE0tLlezkRX0em+Vq8+EwLZS+mCApkvgoZb8d49MUszyNTEo3wlzClWcCbUDde+Y8B7Cpso7Afjd4bY1RvqyAt7nk7jxnvE1qeYCiAWRIPnqZuDVma33uckfADYJxpkxJsVcU33xrTKkr2RbxqpFahteKVJ8rpjSJ4V+cmvg6qp7iygA2F0l3xWqpQW/S9CbEsNc6hxJS2MnUzs71I3JuizjSKuB9W3hFE6QBWI90kQUpGdVUMHJEBHHGtepjaiSdAiwMkTKCen8+1MzXutyHNgURhUG7Vj8V9pkpt1Lp4RVTcH99vyhSK22UQ2mRvxhxuLvR3aVrED75kpQhGU3flqetFlFUUN/lN64BIkZpwaOXohf2I1gpRCaTmwVjuJ5Ki/u8l/H7LxzcaoPxzP/VTPL95w5v7HR0D0YO1OP107HeODx/p795z3w/eS+XX33/kq2OwycGmguNKz/eLCmUURveqBPe+8D4ibVTemAvOnncXWJnk0okLLKtBXeitkBLsXYwF2BBWc9FWOfxrG06g+JCp9FoYxfgQTaNENfZIoxehmFv6txqjL9wcLVT7mw4O3Iei0hwJi8ZgFLRmtYGxREhWSneqbiQdr7GRetRXQrvgkZsDmarufuq20z7ZBOEWz2F42qeitDJYZUQeHRje0+jp2NnGYFPlIelPkaZIyiFh9S/wRiq3Iryplc8pvDHhFuDE8OZhug+4H+zvH4wmfn8/PNiPnS7qC1spHM27XZuIp3f6wI6BjOHpIR3nBl8JwW5woZk4Df2SFI22Bs0tugEOz5WL4gA2HGEl4+sZgWbe23HAElpY1Knj3o1tH2zDKVtpN6REiWDxDZ5S0e5jZahHhalbAEWtM6y7GZwJfd/px0E/DkCoizf7EglaOUJ1Q6Jks0XjNKLqpQc9PybzkwsdRWapdSmNogG8pcSG5gJWAxBfYCV4ax0DkxD+4qkh3yyJVg3essEZF1+ARy30rhwh1nXDO1dyFIQa6ShBc+WlDIvfOUCJ3Z3sWJtVH0BoT2xuPoJRxcGI5n3Dx0e9JNTHeRuZ4KTGLiq4n8j8XX47aUtnmqIqJHtMOavpf+dmW7i/R42PMDxS5gJUHWbXKYrfVHiMyuNYOI7G6BWG9zGjRp2IuD9QpjQdpjgoLtKCSYtqPog62QVZF6T6hlaLUWUgGCre/ctEJzjRBtoMawZNHQ+1+Fyt0JrQlhDXqjPMaWZp4RnF6mu1+94E+FOlDs8VlaVQo+NuKZ6qlyrOipTTcE2lMCrRQbnQ8eoe6+rASdwbhXl3sjlmBYsy3ph/WKRQIvAz2wN4H8hYqFoYuJ7NYl2RWuK6OONPXaZOpN4aVQdFKu250Z6b/ywaKbZlDX3lddR10s03ewuRovgp53YgVUoN0BZ7gnlgPjIFqorooJh7xKwoa1FvwshFk5bao1HZeuG+G9su7N0rE9UyBRcxk7pI18ZrGP/bPb7RAOVb3/kO3/riB/hsc53E6J5rV+18fPkux5dfcaxf8u5Xfp1ff/fCP6qNX1PjpQ9eOnTTMN3ZaBiLGGPriMHi6iIApO88YTybcUuLXyyq2oRFVmpzczK5Nd+AivEsncWMtwqr1ug4ajQzFhs0NY8Ui3BEKfCH0WOAGGtdPcCrRlufqAhPwTQY5puteSS6HbsbSVdYdKGZcIzNJ3OBw0pQ0YVDnJbveHplN+iZqx8Ze8GE1zj4UC0hnfAKh0Y6EgrPUdInZvShHm12X0xL5I5qdNdaFJ6AXgq7cPpC4FHAEdSuIrRSWCIfWopzQJs6QFSE+2GMraBV2N81RoG77Xz8+I5t3NnXDotgTdi6+4yMdvCyHTxvB/3Q6ZzqLAFnJU5UFE0BZ5FwXXVqFFKlHhvDocih0a0tN5oedSd6quOLzMoBiY106KD3wbEp+6Zsj8Gj7wzrLG2lFQEaJRYGMfGO0BjH7pFZKcA+sK2jj43+8FJ6auU4uqdxekSZ2oAbUtz9txVfocyKC0hb866y4tUPuh9epXMcSA1wEl4gFKMdG9Y7SqVapeApKw3mxOzFIYZVTKq7/srmvg2jM7R79YcKQxoK7DY4lLMBngq7Co/umorHY6CPgUR6KTsDS76OCUewjKN3CCGoVBcBW+wIUog0Umy+JcqixZkY6a5LaeppIlGbxn1NUr4g1Ni8Xccj0yU641j7HnVg7EjILG/NEHgM3+iTlQSoVVhaY6le2eaiSk6AYiW6TsdrBzR+GcKHLrzrhZde+awXnoenGE29n5mU5iaGiwAjTBB9+5NMcUS3Xh3xHtEx3YprLmo1arNYg0HZwKDrOvVXux0cHKioM9Dho9IYLJEWrsQmSkEieMxr1Ks7fEuymQb0QenBHA/3B5FkQAlLAAGV4YJVBBGlF5vO0r5GBWdkRhOZ7seGcEjM1FG4V/NqmjK807MMpDowHGIcuNN4Hzt0RYb4+AwmSMXTsVKzOWKjLov77BRhva1UYBHh9uaJ9fnG+hRdjNeVdXnyAgGEVi06N495P9x/xeJcBsU6aoODYNhKwWJN6sPYe+dxDHRXFhssNmB4lVOzwWqVW7ApgoPowwq7Fe4qvD8qX+2FLzfl3Q4fDlzqYIRBpafJrA+UA40KxK/z+EYDlPXtG26fv8VuyujKcXRMB310RHfsdjDWB1tduZfGewpfKnxU46NGQzxzA6cF5WaDcXQ3KkoxkYD1gxvGzWD1GYuSgaSwYizDXAci6ux4NZ5ksGDcDVb1BU6OwVI8PbIUj3hHKexUdoH3HK4dGMbaaggVoVGpJqxWQzRm1Gh2YmZsh2/YYl6VsphPJgnhU3fVg0eiaSDWneo8iB4qsUe3DPAkPRw8clN1IHFYRLr4wCux0TpAj8UjfDgsS1HNc5teFBMllZcIxV08w7AKm5FOKdUnoHAidnC/B4MtUjWjd2w/GGI81NM7x+iM8DUxhG5efltGp3evENAefjTmEd/cNIqrPufGEpuQxSY1XRdnxQje5E+dwcMuvTuiB0kUsHqEKxd1gsYGEG6QPY7RO8OOMxWlSja4ccNdf1/vu2Hz0KHo0f2IcuB+DHpXRlhgeu480hrpnBR6KitB99dG9sxxPeHwNHkN6rwUp/GLIuqbSak1BKUVWMi6xexabClsBN8YXY4bFLWPMReuumZqdi4ODGkR6TnTpGHg5Z/fHWgdfCdb7UFu9iDy/L8DymCNctGWlNZYGKTJrECiipfBl4gEJbf/OObf+jg3SEPYmdZJkzVL/j0FxgFa40/JH1oyPJE+yJer4qLs7DckIXht5inmyGFkXIGJuamYFrZh3uhzpNTKgxsS0OR8lABZc4zrFENmg7uS1UR4OiUvRpFw1ZW52pyiThvTOySknFNrIWRbC9fppV9HZokkx2c5Te5mPsNwRtnChl0tvJFyLssEpOnxowEI098kV4nsrF2Dbcvkq4lro6o4+J5pCxGyU3dWuWkKc80i+HGQKfMcUkQbALbg/6ZQKNRaqLj9QW3FHVxTgyZCLeVS0eV/U6bqlUg+pyZc5/UfkZL0kmY/Nx0awf1gDL8HbjFg0RfO6/OqDXdLjzmoIYc4hrB14XHgR4etQx+xdqbJpVk4qIeG62s+/pkDlH/hX/gX+OVf/uXv+flf/It/kf/yv/wv+fN//s/zi7/4i69+99M//dP8rb/1t37X77U+NW7PN2jiWoPN9RjaD6x9ZNQHR1m5S+MDlS+18BsRTXzsCVA8wlpRnm2gIxiU4iZehlc5xHJLGUmoBbuNcWNjqYNWO3XsThdXuOEA5Y3BqoWmUI7OrYoro2PidIR7qWwI7+xwjYPB003d+GwptLEiWqi9MGKhaDMHa2yb54DbajxTWSl8Zp7XLaUwep2EQEaJZXNw5bE0J0Cp5x4tEZcuxSttnJYHt78vVPCSXyvOCuCeFAhI934qhKBvGeEUqj7sxMy7AhNixWjKV9TdTZPa9bl8tulWDW2OGi+q9D4Yx8G2bajANnbuj4PdRqSN/J5tOmjlQPaNfXth317o+0d03MFa0J4lP7jfZ9P4vE6lu9AzXEtd/oUijKgimqki1Olt0QApod8Ikz8LoV8FTEqAk8Gxd46ts2+do+8M2xn7xqgV7atv8N3cG6776xz7oLVBKw5wdHegfewuGu5SOAKgbN2ttq2sKIs7Q66VQ/16dkKpJA4mHUdGWa5FNFRk5tCjgXUUVLipk2hErlZ8oY6oPvUyEv3YNUo3R1eOXhx0jLPscWOknCf8M4zSCfdKo4ettw2n3NPASjB6D9vtADSZajKi3JMARK72iM02yPyoUtJS47yNxNNZ2v1ph+MZayeYCL2D1Ey9uF7mRCEJCBKmwhRJppsy81J7DxUxmihL8ah54CldzM0AqRYOuf5aJcbfPuDRjY97475Xtl3ohyESLi7igYSRVS/KYQeHehdkRgtvne7pMnUAsRqsCi2AlPmtITkjD2ASoPrRw0IgKlLp4NdFs7XF8KqlMI1LI7UKU5CfGVeJGMk5Dg3Y4CCpCLMthUzxENOKhdD2SaiPlxJtS9DpM7PE/fEUKHQqSzKEplHh5UIOK+mk6w0zOhY6+dTtiDOHYaUvtcR6o1DdX8SXB9fhFCq1KLV5gUENDzoP1mJVDo1kVaEOYMj0jHShs++HqSN0ZlujNH+getB3X3P2fWBH/K5ogBNvBbCqsmqnDg9mDGEchWN3AfbLAz7c4f1d+bDByx7roXizz+xOr2WEX9L/jQzK//a//W+Mcap0/4//4//g3/g3/g3+zJ/5M/Nn/+a/+W/yC7/wC/Pf67r+//Re921wezk4nJFi2wdHN/aj87IpL4fx0oWdhaM+Ybe3lOcvaNx4Ups9FUYfLKo8WUfb7roLotRVjT36hGzkpuQTKyModys0qnW3BI/N3WvG4a0JN7z/gahyE+EWSmkFNjM+mPAA3uuU0XGr3q+hUdyebwhlL153rspS60zFHPsDEeOG8MRgoXBDg/IsnoMVnzDp/FgFminNjIbGyDaW5lUUNXQ4FWGtdUbTOrIU05mmRYy3w6lRQRlDQ2jodK3Xvhu37D8x/4vgMSIlTzFERVMwJpY5f/FUVAmRaR94OgfX1WhR1odTuMdQz4Nyycla6hP8M1cdfr8YlKLuQte4lEuMCBzH7IvRq80eKUtrtOi10XDDdNf6+KgopYQHSfHoe5ZpOlA5+vDzMFdL9D7YHp3H/YV92xnbho0dYXcB89Io4/BeUzbc+yVKna17s8tkWbzLqWLRXwdwzUakeDgqY9uQ0ly/IZlik1fRtKgGg1WgOSApmC/6lRAXZqmzMzddFLOKu2PWKMdWRm3uHKrR8Kx42qzHMQoO4DQcRG142se8Qsd99A32AGD7cBC3Hc6Kqc3xWkTpMW93CippBeBU0LAx3XNDeooE2K4xnnxieXm+Gp7yKBrtanSWYneJHj4W4zW+5msKeV3j2l5YEoxLafRlY5/PmU8LVsZNyUrzwxSqetqsmYMnb47onikFpRYQFDM3PYt9jCF+dgSoohAlrz5nNMzk0pND1Fs6NPU0esV4MuMJYzWmjqkUf/85jAg2Q+3CgBldo6M6EVWbRqPPASWaAoqzKVOYHIxWgt3gNEGNGmxitshInxhnnQK4iqS8LvpGnfGIhYg2Lfs1gGRurlWNph5kteHpa+m+FrofEgzxPkKDGqXNfuO8yzPTvXkI064/AxfVZJpC3I77peTQUfEqLfd20aSB6MNZUYvmqX7EGmDebDGFqSO8SzTSliaejpbD/00Ph2/xdHFo8d3AUqJxoxp0iaod43gI2x32h7DtxnEIffg5y7xvSRYZLYLQr/v4Zw5QfviHf/jVv/+z/+w/4yd+4if4mZ/5mfmz2+3Gj/3Yj/1ffq/tPngsu1uJD9h2Ze/Kfgy3eu6wa2XUGyzP1Defs37W0bY5JYoP+GPvLDq42cD2LRbKQVX1yLLuk+5UcyMcnTDCQmAV9u4z0oKbOOtCKXRzkaOZ8qjGrUAN2u1FlfcKD4UPSuT1YR1HUI0S0Ys4Muqe4Fsss4LQx04R46m7LX6TSsMC7SeQ8ajmFP55D4li5pK6iHIWTUrRbfYLws2aR6hFsKGRdhJW8RLQFzwHXwKg5Bo/m4XhKTJnWWpsDZ4ISLTu9u+nUZifdJROikVVkkezQ3zz2CZTMejN++gMHQ5axaNkX7Rdz9KksISuwpXqXp1CmIL5AubXyctCNehkp4W9j4mL+igO09L+3KujYmEL8SkjomM7F2e18HtQpZnfj34M9m3n2O/048D6hoyIMfvh3hGjI9VLh2tsrTaFouPsSBz0vNPMvlD1EW3ru7NEUhtWKkWVKsVTgFYcfqt7tVh1BtF1AkxKOhq1hkso/o/a0IjOTu8Tdwodw91RTarrkHPcNg3aWKllMNS1ARCfQbOniC+K4q5b3h8qWsr3w7VnolBlBKDSaSXQcUGke785eBxRfZaRLRfAnIzhWcmSrQHCNC8i8Gz4d9ZzxW3OtEAuAqQTjpwLVzw5hZUJkzLguXAs8beJGz3yKWH06BuJ0/vurxJVXZGHkgDk+Qo2PwunNb/f3jMlFWyDzW7rMcacJ3RDRDlZ1yXTBpPDCPYpXs7TW3FhglDx1Fv0MAq2Lg3KVJOTzHkf1ykuZ8p4plFgTNczrDsvvYMTTjO2IjOdhmRVz+VnMSbcF8TnqbcHkyifLpRhSHftmfUA0xHsZoNOw80+ZzqXKP6L65THmeLOFEimi22eQw6EWJEY5ik7LmBPVc/U7khDuBiVlrsU87WNRHhhQaCefneAdzKAEgDlTFsVMK9g6t1Zyr4b/RCOXbz3zsDnf/F9S0JzV0po5CJQ+7qP31MNyr7v/Nf/9X/Nz/3cz0VZoj/+l//lf+FHfuRH+IEf+AF+5md+hv/0P/1P+ZEf+ZHf8nW2bWPbtvnvd+/eAfDVP3mPvvMFd+A05qO7RfFXm3G/N+7jmfbFj/O5fMHvX3+Ib337hX4MzyOql6wdj05RFwjJ2EEH1ju7KocqH/vwSA+hj1z81cVeYVgzI0U7iPpEluIpjBtGU6ctt8cHzA4Xi728Y+8HH/bOu6OzibK1WCwA6YMyoO7QbQ8dZ0ZY7h2Bf4uaG46tGxTxNJM0d7gt0miZPByHHzYoma+6HurAw/cit6ovUlhHlP9JQXunqLBYYcX7QzyV4oJBcebE01yF2pm07DLce2LYkTwki/oisJiFZfsZxFOEpeglEnIWp5ToDlo8W1RWV7nf9h6KfbBFwmwNd0VcCp9/vrIsjdtt4alVliIeWZqG4VqLiMXTHYbvvUs9fMGsB2VtyNrgefUbdRBuuwfaN6RYtHovaORi++ab9EhfGfM0pDdoc7vqfdt4+fie7eML4+hwdMQ6VRTZF2iV0VaGLD7BqztoevmjsZvb32+ibMV4VOFezEWiY2Pvrsu5PwayNdr9hdreUepCXd8wqKhVulXPb5fK09s3rLcVffvE0lps8u6y7BR1melMiZBLi5t1mRplHF7xVgaj4XboIvP+FgqHNbr4Il+rUsqg7IPCmMLcoYZubjQmmyHbhuw7HIc3/oz0Ve41peo8H2sNi/UhqxkeuxvEFTOWMc4+KrHBFsrceLYoZT+6kfpnJTUMwhEsaMBSUsdTImyUgB9GskY+ydLTpJh6fyaKV43MdJrP7RrgSgrIWrysdylZAe4lterwplGQqsjw3kSCMwdtMdpSaKsgq2BLoVcXS5fYhPz01atginf/rWuFpTKWuLBDWJ8KSOMJ5bkJN4FqleG1wIwhHN0DxYJrKG5h4aBWGFroJnSTSIE5d2XFf74P3Ga/jKiU86jeU1zMayqknsOwMujNgwKeK/LUKM+NZSmsTXiqwlJLVFqWEEUbywJrraylsEbAgjpYGqJsuL5HFHRX+mMwXoz+sXN87Nzvg8dDeexK7xXN6jcUF6wW92CpXoSg0XNoqTdaW1ja6t3grXq6U9X9elJP5WgTzL2JdhMeanzsoe0bsI2DRx8O1I/O6B6skIzFWiN95v5bLjdzSwixSlNYTaA0rAzWMmh1UFaDmzBula1V7lIYg2gHAS934/7ReHwwbw74KOhwY75SGyw3ynKj3G60YGVaOcAqrX992PF7ClD+h//hf+DLL7/kz//5Pz9/9rM/+7P8mT/zZ/jOd77D3//7f5//5D/5T/ijf/SP8r//7/87t9vt+77OX/trf42//Jf/8vf8/J/+k9/k/nzHqqvVt+ELyj6M98fBY995bBv3DboulOUz1jcrrSvVvFOnqHCE82ZFKbaDeZnVLaLQ1TRa+hWGtInUD9udQhuGDu9fs/cH2Qm2FY90V3Nhpo1OXZ+wsWHj4Rs9O6XvNAputC3TCluOZDeimCxQtlzSJP4QP/f4lwYtuZRCqe7i2mpxFkBDLKqem9YLhZzftFkGlnldpZVgVZAQU3n1QIso7SlSQUWyuV9Q5rnoilG7r+5H79HLpYcLrC9KbiuTIkOPam5yNmtr4qLhWuo0vbJmNB00HTw3oS65OfjmKTaIzjm0Wmglojx1enY/OnsfLMM9J5J96ANkBFMhHSnDXYNbRdJk7/C8/HjcGX1nH49ZtijS3KNGHaSM2OjS3TSjJVVDe+fYH2z3D2yPjz4uIo2GCOM4OI6D/Thoa487Il52mYJSVRh99gbpiNt8q9L7znZs7PvB/bE7dyUPiqxeFrzcGSxhvhQbqxS2+xtuTzf6/pan59U9KqpRujso69KiVLIgi69+mVoA7+0i4WTSRYOm9tSNaeoOeqQCncXzcTzcj2KmrsIFdVf6poxjww735BFVsrOqWSf78Ig0FzS2SDeB0+bq0k3MWZolzCCcHXRzsSrejwWCLskqs5grKY5M4AxZ/eNA4XS1Sa8Sfw3BzR8xd5EQQoZA9F4pKVYGKyHWzK61BR9bJZQWUSLh08BhVavBCov76MzfxGcrccJpve49nQYirg3I8tQiUX0X7MvwfK1X3NdwbTWv6OvhHKtW6GHTMEJ4aQFqjg7U0GcclvHR7DcjxcFVlTLFt05eRqQfwm5i/ZjUj+V99POzKrBY9IzxQoUidgpvI83jnYC9EmcplVUKazzPSp1CaENm9ZEOi3RKFGR0ddCawuPue5BK+GupYKxYdb8s7/3pmpVSGrU0Wmme8g5hjAUA0DC0sqJYNxdRafzO3MgyMm8c5v2BXNSc+FdSaEgJ76SCkv5CLvwX0IIMpQUHpoUAEzqFT1oancKRAka/HGy7se3Gvpnf06yiKpXWGtYqtdVYj1Pv5Bh9blRf4/F7ClD+q//qv+Jnf/Zn+fEf//H5s3/73/635/f/4r/4L/Iv/8v/Mt/5znf4H//H/5E//af/9Pd9nb/0l/4SP/dzPzf//e7dO/7AH/gD/Or/9zf4cLuh1cKQSNlVOBQ+DtiH25m/HI5waW9oT08wjKqVMlwfULx20BG79AlWJKjPBehS6aVBuyERyR+6Y6YUHejhRliP+4tPfFMvQcOoemB9x/oO7Qntd8bxQr8/qFpppbIgmA2KSAislLLvUyQWLhJRZ5LabX84O5uxWo4jYWlelrasXqZq46Cj6CFeutmzUoIUmgNRMWNOH2bJcQkDJhFnkTzFE7INYMWV50UKa/OKowbT9d0Q5HBtxLbvqB6oHTPvv3KO2ytl/swpkltorqSvseoLSFeWMVi089kqNBrr2qKniHhb9Vh4W/HoUAKcjD7YtoP9GKzd/UKUWA+irXsClFK6g5Jwg3WPD4VjZzzuHMfmZd1ro7SGVAdyR4CU7M6qQaVOulu9Adu+bzweH9gf79HRaeq9hiiV4zgoR6cenaW7AZanm5ovzCIMwvoaIu1QYl1X9n6wHzvbvnF/bEFeCaIePpf2xLAFxV0giTH29PKG25sn+tjQ/syyNpYFam2UWjFtvmE1t7WWYHXEHJQsAeuFQRUXIWZvl6GpmfGVucSc8yBhULQjhwMU7YOxKcemHNtg7DvaXZAs5noF73Hi/YdMvA8IxVlAQTzTpmCqHgZkZYr592LFdQuheZgWA5kgMWZKmGAVdc65TBuUCU5MQuFhGQVDNgEU8YBCjEiLRvWGlcwKQViU19D7lBLjNzbxwIDOqoqDkLVUTzGYcreRU4TZdTjSlxYAxfNtAU7UK9SEEulQp+Xd8M5npKdEHKCoFro6s1TU+y4Ndf2BAxQcQEc6QItry44kcPvUh5Kd3FuCKYuCcY0y/hGaqh7570AQDvJDtxEpWmeYzI+Sa5YLoAsW6YYo2a7F2RMprDMV5sFPVhQmEBjBqPWe6VKlD+UYLvwdffZ4RqsDWii+cAVoNK2glRLeMlWaSwNUsBC86zD0iASiBCiL/FAGNEM1xiPeOJPoP6X4fZx6J/FKOfHuzZToGm1Moyk3kQttoZin9IUQFhestpB/SajVHaDsO2wbPDbjOPzzSzCHtTjzVlY/vPWGV16Z4IDsaz5+zwDKL//yL/M3/sbf4L//7//73/Z53/72t/nOd77DL/3SL/2Wz7ndbt+XXfn//JMbz8szxj7r27u5KG6T6iIs894rMwNbARGOIWTfg0NCpDUUY0fMPT5addV0F6/7HlopPFNLZSmVYp2CcSsFaketU8uLC5+miNVAOofeOWRj8Jsc4wP9eM/H44WtN17sAy886OHGSJEQn0qYEhVvAWXGCK2BRk2L+6S4DbHrOOD22Y2nz97yz//E/4PPPv9B3rz9nLUKfd94vLzn3W/8U14+vuc3vvur3PvOMYbrBWJxlVIYauz3zZ1MLddrn3RmAzFhm9oWYmErUIRWm6eHrPgCE9eeY2BDOUbS4o6K4iMQ/Ua9g0wsGE3GZGZaXalSPdUTJYmLHtyG8XwY3zqM52p8rnBToSnc6O4FooMFRbovmPf7A47Kl1+84+lbG+vzYH2TefxBt4OqUR6qocI2gbLFqrVhj53x/oXt3Uf2frBxUOxGEWU0YYjSraMWKTUGS0l6usA4MD3Q4wOyf0AfH+nH7nlk3IdD1ZDuXh9Fh2t+2kJdF9abI+iypJ9CYSkLq2wsA6S+sEnnrm7dadYo3VMi+zG82aYUaEo3Z1BGx3Paajwdned+MJZKWYSnSIIwum9U8hTiR0Nw/x9pDvirGTe8bLFa9/RopLOOsaGje7faEPUt+IbYmiJHZ6OzjTErde6Pg5dt8GEffOjdhdAYRxF6LewmzN7ZYm6C2MBqc38V88oF6wkgZJoBqjDnPwi0CEikcJRKF7xcXaIEWX2jFJHoPh0LvJUM6s+UDxmORz7eobr/O5PxFiAo04piLHgOf6VOF9uniPYXKZ5aigo2AyiVZXWQmVq5Y/j6J6JUrbyI0NsCy0pbCzUATy3m98bMWScpHv1WoRbD6Ji5r8e2H9jua916eDq0injvqAGPPtj6YOudFlbudcTmrnDvg0fv7MfuKdHhUfdiyiKwiINfbyxnmAyG7ey6c7eDXmqkmmVWhRnGTeAmwiqNXRZWWdllYZHCLuLFC8UiZeTr+tKMpal/rUbhQNSF6WD0uJam3jah9wXZ1XuybR32w1s8qLN/3lbBy3Xz3DzHbUivwVoIVsMOQJVjuK+QlhKsliK7hayrsNaVW3vizfrEm9sb3jzdeH56nmJhb71c2BeFsOw/gF3gENiD1fRUtZt9ejWOq2MO7SFaF6xGs82mlLXQboXbrbI0pVWvGk3Pql3hPpR3h/JVN96pcS9wFGGUQnmusC7ImyfUfPxo36jdNXNf9/F7BlB+4Rd+gR/5kR/hj//xP/7bPu83fuM3+Ef/6B/x7W9/+3f9Hvt4opbnaGTmXh6zQVlxi3KJ6MxCkGZkLb3rGFIMlU2XNMLbgXoO0VIg5HnThg/09A/waMj5y6JugCVRVilxec16tEYRRr+5ZqEv9F7pQyIn6yxJwe3CSz279YoWig13eR2vb25SyCnOLQWe3j7z+be+xY/+2O/nB37wh/n8ix9ircKxPXj58CXP68qHd7/J0BfW7cHeD2b3KIDS6GNQzSdSCtDS6VOjyyfWLoInIU3IPLKPTVgiaWMwXynBTjYJnC/hcU4Xrw4BV71nPcSIhamKV8WUENqlyv4YyjJ06oE8+vH7mRVIXvKoXtVSGsd9Y+wHOoaHJJKrXlh1hzAnfRd0dOwwTDu674xj4+jd6V8gPbRHlCQPtTDec82NZ65cj+RAYMz0oHusuLMxVC8dLeKLe6QbNaj20ipFPflVWz3p/zqQOrDYzGJEeXoyWS5z+20bzDJht413ulqHR3K1K627HscjyEgfRimr+72UuETm1+4ssfAEwxwffikt5puDQGc9TN0LpUa0m/1tikmYhHl0P5LtToF7qa5DshK2+S2M4AYJiye5gYW42B0xLUBKsh6eSYji2OEdcbuIbzKRMg1+gZlajZ/7B3Pa0SAozLgezLzQZAVPoWQ8L14rsxeSjGak2mL/oIpEmWn23QnmiARJHv0Wc7AzVDnGcF1ShyO0KVA9DVsyHRqRdcw3wyKFdQo6NewFejcsjOuG+jUTiCICYu7Y/FzzulkUx5Gy0bDFL0KpRq1Gq0KrYexYfA2UtGOPkmmkxNoQ9ysAcpr8ecsSZypMG7M9gpVgs9KCNxNgCVjtXCsiRR8DFiwArLoeyvVkXuovMUbLTPkFM2X4HItzlRSezykSbGoYwVrx8Y2lBtDvz9Iqy+I9itZ2Hma+Lhy1UevwSs0Mw83NJId6sEEhWC4fkxb6K0JLmZ4qJjZF4M5IXVJlRf09lMkMqoU1wSuix60hnG1uSAvNnBqq5RRkf83H7wlAUVV+4Rd+gT/35/4crZ1v8eHDB37+53+ef+vf+rf49re/zT/4B/+A/+g/+o/4fb/v9/Gn/tSf+l2/T1k+pyyfeWdX0orYF+VWJMoU3fI7RowDEysc6skQNcPGgY0D1d0jCTxfXsIPQ80rLnR4/hsJlAiTXpWgIetxllFpzK7eC/th7Af0baFvjeNR6DuuhO4aQs1BlRGTtfK03hAKapXW3XiL7ZMa8mBNuAmlecfJH/jBH+T3/ejv5yd/4v/JD//IP88P/eCPsNTC/vjIh3e/yT/9/Af46jd/ldU2Xl7es+0P6vCR48ZUjePofCWNrn6NOuabLsK2KKbF/RFioJtlyZ7QgvL3KhONPHE0fzMHiUTlwZiLBWhN904v3zQ8OnNm2kd1TvDsDuxOuvh60rsr7HcJQZhQxC2jS1SdEGzK2Fz4vH/84CW9R/dFRLxaoUif5Z+52Joqx96dsu6FsXeOY+Oh6r0naJSxYGNB+8I4oO8Hsod1tHasRJm3Hmg/Ql/SvTBLWwBAC0I6GnmFtfdinp4o4vS51AXBe3TU6hGxWKdqp9RKLw7ozCpqDUVZzEsgu1pc0xLsmesKVHEvkmH0UenqwsaRTsTmAAsz2pUDt6Dfo6TRzPPxEpSzilcIuUeEcqAcwQZiwaDgm9MSYKpZmymAfFEjStBL8b1mKOmmjC0UaahtJ4DS4OnUU0dmwwFZKZ7mEm99oOZ6Hf8sY7Ir1r0vVg0rfaHQYoMx3MhKLSt7wi04N+gEL+fWBXj6QF4BFv9Nqsgcl3oPHE+pRPQfDtW1KFU6A9fwOD4K3ZVIAAZPRWyHtyC4tcr26GgXxBqt1umRpLZiBQ6GswZ4ijDri4ZWLyHv7n2hm88lB4v+CTIzFa5AVLzSZwFuEXUXw00txWhFKS3KWVdoq7Cswm1xnRfSaEultRrlroaUMdd4TGbaRw9DR3FwshVvGNsacixekdQy5ogxE/fALOuFXMtRzJAxqAGgvPTdn+9CdNjUHan3LozhQVoRaLVNXyD3Uon5FdGXZMuMSCN3y8ggfmY+T4Uoi66Fugq3p4Xn54Xnp4U3TwtvbitvlsXB+oDeBkc9KBVgYOqmlb2LAynrUUbu2hikePARYOwwB05SMqUVMoFiUJW6+FGaOispEgGUBaPPBGyqROVXcev+tiDt5uuLCjYqmqaQX/PxewJQ/sbf+Bv8w3/4D/kLf+EvvPp5rZW//bf/Nn/9r/91vvzyS7797W/zr//r/zr/3X/33/H555//rt/n7efPvHl6i5agXkvGOB6JDT0Y46Drgdeae+O+ofCQEOx0b1WtdpZzqmmYQw16BWN43X408Ct4n5AiIbpsLdqAC8NaRD8F6o2s1S9aaTRuT59RRCkyaI8vGIewNOXWDpoVlrbx2dONz55u/NDTF4hUOoV3+87LtvFP5Su2x8MrPfJhrmUYw9NcS1l5s7zlR7/1w3z7h77N7/vnvk2rwv74yPvlidt254sCfPhV7vcbx/7gjTaIBUlqY++dL9++C6twYzd1mt5gO8wXg9FcV5HiXTlFaL6v+2KfIEWPHdMxhYVGGKEZeGmx21KnBkdRFsYJwoLlEcp0bF0MbsVYi9+XZEiw1M74RPRQxbeRioNRuqHbR9jvsG/YsWMcGBvYHcAFb4SJlSpbd7q5j0qaROrzDaHSpFLXG6W1WNwHal7WKpq+HhH5Hht9v3Psd+6PB9veGdrmUm/i7zvEaCy4M1ruaoKHlg2RFqI7N3Si7M6grCtLW9G2Ummgh3c9PWDsxr4pjyO8PluPNEfh6B4pq8I4jLG7QHU/PIKqYvQCtQiobzASTKKEV4XglzyrNRheQr8dyvuXg3cfN7Z95/HYsO4i86eyuA5Dhe3jwb51tvvwzNoQGpVVjJsYo3ppe42UyaJuCFjxnP5x+Eiu6gJQQ9zHw8wDimUNJ8zoaAsOogk6/1KGTLxPXarrKKqiZYT5nAOzBMxmFsZjJ4NwlrDGbUOm74hMgHfZNCXST9WbOfbavDIn1zgkmJUZ+zu7UMzLwWthQVhriliD2Ophy/Bx8Pio7GtzQ7BaQlNgHA/3fjKE2hRr/yd5f9Nq25bldaO/1nrvY4y51t77nBMRmZHmc73ckiXBj6AFTUlQC/oJLGVJECxaURAEC+IXEBRFLAqWBEsWspaVCxaEyxV5NG++RcQ5Z6+15hyj997aLbQ2xtqhD8+NBO+DQc5gxtpn7/Uy15h99N7av/1fCpRMeujKfBTGUfHeGGqMvQQFWuzyOPEuIQkPekt4N41EVkVZvLBIZSmVpkHMPU0wm8eBJMnzKS5XgdoslXWJbmLg+2Ce8RIq0BxZQHr+zLRl8EGQTSWI+FVO26NAqasKVSZCqnDSywXVCBScBNLZFkZZ6TrpOjhE2XF2hwdKNzjUeZyoghP7pAT6aye5nXeLiyzL47zQ2EMbjbYW1g2WbWVZVpa2sNaVra40XQKNwQlpQuwNYid/J0wzzTPtPVE1mblepl1Bi8a7hJscYTonbyeLpURN3VKZeDj7AY8DHt3Zkyzs5zhRnaUJrRXWpYRycSp2nKq2X/zx/5cC5Td+4ze4LJ2/eNxuN/7dv/t3/9N+TluhrWEuFKeRXhBs0ZOsFZyHmRDXHEnkKsYQQsZJSDrFBsyAnKd52Poq4bFhkVsgFgGBMyG4UQpqgzOzcXjCopd+L6p2ahxZdVlwXzBfKctGkU4ZD5qsVDfWBp+envnq+Ykff/whaKWjrPuDl/uD+x6v75FmPECiPHmoSPBBqlaet2c+Pn3gq+ePFIVDBe074/kDenzg5eNHnipYX/kYPrlZWDWO3rkV5ZjGMGM3u0y19hFwnVm9XG3N3uH0sGPPF5SJurhj8wAbAeFmy9Vzoz/zS4wwM4txm1HIzWj6FwQwhfQPqQaLGE38kruGpDNTdUvydAQgxjaqQeLEO4wj/EUsfEacSGs2H4g4s5DeIuHd0Oegj86eKgkolKWh2kIRU2p0KRaH2PRACrBJGQPLsaPvO33f6ceDx+OgH6EwCQ+FWDtGkNs8bFs5vSQ4YXNVVEpYYmulqCZptV6hYrMuqDaEYCa6KXNKOK0eiWhMvSSbc2jaykvkrgxj9sE4Bj0Lk5Ikw5ox8xot+wUfh3cJnFbaNib36dz3ybcvnW8/76Gue9uTKOvc1IMs6cp464xjcH/MQO0SLleCl7WcvibZjfVEvjSVeZ5zP/GJWNLK7TwahFYqU4Pb5QXAUwYr14gnvCS4TMIkx0lqwoImrD2pnge4ExbrxPeLNyl3+bNCkfMjP7dN+4nQZVN9ptx6yadKjrC+qFHP8YScwH4ewHLytYQ6I8dKRiBw8zD6wzjenGPzME/WMJ4bnVBIZYfv09FhaIVpineYD2EeBRux5mY/jcm+ANF6dOg+9XoyUkIkQcxWLxSpZHTnJeXVJMWKxzgnPDqikcyGHvE8YE3QHDf58JAQa6y7ywQn1S/kmNVnjFols3xOE7bAtwJNO8PtUCJz6tzUigSfKZ9T081aLDmKcBBmkj33yVMM6eeZwHkLx3+ZxLgutl2/AiuLZnBiFUopeZ/neDbPmWt66FxjrnOlvecH80UkAeHXRI7tcy3G3XEqnbj25Wg05V1ZlVOvk47Xh3MM55jv4x3E3yXcRWglCuU4oOS9abX3tf//6/FLncUj5WfoMmLhq7xLC0VppYXMcxraQzbah6RENyDhKZ3pB8odbMf7jo+OzzCAuqx2JC3OLSR0Z/ElOfd/Wz0IZ0WDH1G+SHA8z9MmUArVC7QFlo3NntHDYD9YjgeC8nF75n/71V/lT/3oV/h//Nr/htRGF+Xz2xvfvbzydPvf+c//7b/xRz/9Gfvb95yrzyxtvUek4YoLz7eNj883Pn26IThHNdSf8fsnVt3x+4+x/hVik1/RW96gCjUKlG+//xmPOTnm5G2MVKQYh8XoYc7CmGeeQx5OnLwLv6SknNfBI9GztZIGPtBtprX2zBvZw8Qsn/iZ/xE3xhUqmE6JYj0cWQmUoiiwKro1yuq0zambURag9LB6bh1vg6oKnpj13PFxMK3TR2eOB+Dsdab9e3R6Y/bwEzkEKeG/snx4oi4L2hbmMZh9cH955djv7I9XHo83rHdkP5DRYXTG6wt9f2M83uj9FSiILrikWcHpyaJRdAkFNUHDaDNkmaVSSmWpC6XWiGzXQWkV2oINQ8rK692QveC7Mjno03n0yetjcJizk/4jopzW3SCMu7CLcW9Q1ej7wrG954MgB61FtyQzPTjqCFWDGcc4OI6d/dh5fRQ+vz74wz/6KX/4k+94fbvz8vnBmXP01DYWCgsSme0WzJnaKqVEcSAG7czqUWHVkp1pwMwnd0ZmIhwdzqAYNw/vFimUZUkOk+CSXqYW33Oea9YG7lDrEgdGiYLXzGCfHL3Th4WaKmc8JTk4Z7aLCzGu8Nh3QFL2Gh/lLObIsbDCacSmrYWZXmuBjiT3aGiggpaybdK1FJ8MPygiVK08lUqpzuJBxlwNxmfj9Sed72zn+VCWYjRVDKNPOI5QhDiFWQNB8CJoyRiGx+DxuWJjgeI8XChHBOSFQg3uu8YeMQs2G3M2Wm2wtEAgDsV2TffSiY7squ6G18FoB6ozEMTXA3kMdDi1C0sXytWsRGEyZ+x7WgKXcBuYdebUKxl8dGeWA/WJ6XgfrfWWgX014z0E1yXkvSpo+voEaNOx1pi1MVtlLDAWj9BKc97m5HCSPOqXUo7kvl1uqhhIj3WpYYtQqn/BI4ObFrYF1i2+1t2ZaUg4D6WXwjGzQNgP9j3sNHxGREorNdxcDaaXdwVT8qmsG+HTAoeHmkw9UGhKUAiXurDWxlrWMPyc0TyNLuwHvB3O/XDuAzrCTGPPsgh1VW6Lsi7CVkOptovxiEOYefwvQJL9v+Lx+vn3MXvh9AEQaWF8o4WlPGUOiLOPkHr2IbiVmK/vg+PxiC52vzP2nXE8GD2SkUefOacLg7BL1je+MGYqgpYw+ypFg/Veasg3abkINRv+DtZRuzP9wfAHrh20o9IDuKDw3Da+ef4Bv/rNj/n1X/u/oW2ha+HzywvP33/Pt9+/8bPvPvN47GAHniyrkYXTTP4CpbA8r6wfFtZPS3QLbTBZWd9uDHtie/oIY6O48VV5CvRBYmR19Mi+XHqoKfTYg8luk27BKQlTppmZD3ZJaMdJUp0BC56+ES6hsFjX9kWBMr4oULIlGBMfQVw9YXdLuDreBn13S7SWjrCGjRHd/SKUrVAWp90GbZvUzQL+texlluggLMd70wdOOJf6hBFBrNic9BLv4VYlZZyK9UAzXGbmXUzUJ916+I7sLxz7nWN/ZX88sGPg9w79yALlQX88GPsevifFqWuBOrlmlEnivBxH07siCLyGlpzjV88ZvaWbVYlr2Ra8rVhZmKUxtTIoHBQeUy9Tw90tzJnkRACiP9+PmE3vd6WtitvAfUFr5IXspWHd8OrMPQiPUoTuk+HGY/aQNu87L2+V7z/v/NFP7vz+H955eXnw+fvHxa19XpVVC6soOoLY3upkWZRWhVIlLfCj4DidjlstiSBaOssa9yQoRfET1PPwkJCYxSej3DUOpcAcuTrSsBhIdZnG7F1rynTNw000YB24QHuSjJ9qOuIeOYnEkgTs4DXFDwqO0UnGzE5WCQO1GjlapYbKJozZYtjYHabJle58TKP4ZD86jRJmhcOR4WhMNZHh2D45XgePOnjTwdCQ2bpb2g5Y8MTEkeqhLJFQbIweUQz3F8em4FVZPcY5h3I1EPddEjkUilfKjLRgumJVeXRlP5SxF+woWGaGzLsxdLDr40oynm8H823AYeiAMoVmCqk4dBVGCZlsqVBroKPQcSdC8C7ZczQn1ifT47rMRpCChURfPQnjsTf4jBHJ8OBljbNJJYGaQnjD6LsHidgpJwcuB6eTeBDX1nVSVKg6WIpStVAzB0wVmhpVoRYB77gdzPlgjsIYEz2MbhIeLGPnyOewCCU97+Bc0tffWK4zy1GZmXPM0wgzxqahgNNMzW40rVQq6sacClG7M0fGjeSYW1SoRWlNqU1Zkw+5JKF72EBGZ2aI6S/6+KUuUD6//AHDnkKKS0FZKNpQaaynBb6Heds04ZgKXgOKPDr9cafvD/rxSj+iQJm9h0xs9Ii/dqFqi3mmxSzzetOrZ3ioYi28AKovQAXNDJckO5IFSvU7ZncGO8iByKAQyEIV4VZvfHr6xA8+/ZBf+eGP0XVhlMpt+55WV775+BM+PX3g8/rCcbwFymAz0YUkDGYHXreF9rywPC8xty0L01aWp5V+bLTtGZmTas6tPQdLWwStlTYOjjGg9xhNaKXOzrDBcvJGDHofoRYYaVXtnsVKmDXljhffWwuisG5LwuZCs54FyriUMjom1ksgKTnbn/bu0zSzQAkX35HBXc7oPRKmG5RVqYvTtk7dhLrOIM5mFxFBu5J5qyHb9vP6hRo2wiTN2BdAwoAOIQ68KakeiNRhqaEeGPOgz51j3On9jdHvEdq3T2zvcBxY74y3g7F35h5jxdKgtCAYkhwmUQ34V3ImHnOTOPRkJmLxDm/7CXFroHVeavgYlMrUwtCUzrqyT+ExA6y4m0fatkb8QTw8jALVOR7CsYefgatTpjKnctQdz8TDqeHe6uoMmQyMu3fue3CnPr80vv+88+13Oz/96c7nl53vvzuSUC48tspajFsplGlUMdbN2NxYTFlOeNqA7HbPA1xLwOddnINwcHZJd+fM/AkJb8iAtWZnWwJSP0mKMUYKJESSd6TlfIKUKHrC8MyuAuV96HLynmLNGpLupCkpPsfeklyKk6SffKlTxVSEbHayUJFAXIJgGWt0eBQnfUaBohYZZK6T4iWCJJMHoslDmbtx3CePOnjoxDIgD48xzTDHa45HW5B+J5qT0Mnj0aNAcfAWLtLMgPIt0dvHzpXjU6ygI2esXfEmPIZwdA0k5YhxkCDMhzF0csie3jXKeHTsMaBbyFMnkWeGXAVKEaWqIy2KlBjfhq9LWL8ngTPHq5OQBVsV7IgiFSVCLoun6adf3O+ZXJIzBXpMS5v+5AtFvRQFpgXiUS6iQWAX5zhOrhGKhRhCB00LVaGpg5Y0yYsCJYz7Bu4HZnsEa05j9Hj/4/UcjHlwzONSoUpylPIujo/CReA2J5G+cJo+FWJGjCS1xGiplkLVGoMlP4nJcZTMLE6iQBEoUJvQajQUi4b1RZMontUmPkcYW44/IQXKH/3uf6atWwi/zyJFwqlvWT5cWRIHcah1wuFTXKB3jnsgKPf7a0Dz+4H13IRGbMTVlCZLwuuprZA4dyUPj1jjJfuwFfPKtBbseJc8TNPzYn6PzQc27uA7hR2lI8AihQ9t4+P6xKfnZz5+/ICuG702fEI/Js/bjadl4dYa91Jj1jnPGWEwunw23FuYFi0F3TRdtpV6FKQWTJU9ZRnFnHs7fzehqtMFughDJbwmIFUcntK5JFdpRq5V5xyylhKb/SkPFWLslepZZE2XV5GQyqYfzaW60JzXapiNWc6L8VBWRGjYia7oBVGWUSnq3BpsN9gWY3ta2bbKtlr4hswRXfjimMX47EDoljLD6dDB97MwckbL19IU7RVpeQDZxB4Hx6tio1PHhL6j/WBlUIvRFpBFYrY/z99L6KMyZWGKQxdKLbS2wFKJ3UmQEmPDbQmy2bIWaovpjzbQBaSliomAamceeO7G7sEderizCxwa/gi7O49p4bpscKQvgn/x3uJh/V0UZg+jQRvgI7pKpnBIYepg0FFp1+zeWhpz1UC1fBjeZ/hnPAbzbTBf42nEPWQysApWBbX4erMohIacCEdwkJSA9BeFZYnDHBH25MOsLYIa1cJfwgjC5PAcvZBxBBVa0WssM82QYrSWZEERllMNlhSgWIPnNQ5U6zRThLNfDgPEaEzG5Yj6zhIgEZSff2gSRmtxapnJQxhXHx5E1OAQPLpwDOU+hGPE2Oexh05Ki/K4v49JheDUjUPY3yZvMvjsnUaQRfPWwtSRNRRgtlTMhGKC3QvHbtwfk89vg+mTRxvMHd4WYVlibdsIh1GzINrqqpSmPDphnd4m9xwZz8Owh2E9mp1dBrUf2COIq8WFOd5gf1DfOm03pHtEYmQeVmsprRWJGICiIcMtmuO2GcnfJeIWmLEOpzhSCOfbQ5g9bOi1SjQuciptnIcJD4O3Q7m/wP7mjAfMQ2AoZRTaFNYZYbDThSIhU5+iOR7mvUJIfkcVoUnmGYmzcJJM41BvCkuBqoOiA9EOEqi2n9lLApbaq2kzv72kV5RSFGoSrLU4RRRm3OPzang8jEUlkJ8Ccf1PRawFeT6UfB6ZtQeRmt5P76Ag0NfFaMtkbYNFBzV9ZbAdt505OscY7P1PyIjn83d/SFtXfPd3kYaAiLKsz1kdxwFrokytaGlxYPZBf+yM/WDfH3gfeJ8wA47VqdRZQlnDSkl4OSa2sbkE0SqZ0xnKN30PNYZV3FvMIXFsdnwOxnjFx46NB94fMA5kHhQfVCpNySq0UFpFW8Nqo7SG1nb5XYTcLjk17qjXgO1QlCSgSRgx1SRMxcSaWJTTOI6Oj466c9d25as0qYzZOWywz8Fhg+6TaeFd4VjySuTddVHPCp34vzBACMQhyapnt3J1HULM58lO1nKcIWQeSXyD88w0LN9fUuZpIOnPmW9IFWepzlI8rqUKiwZZsOKpqgkpnEthUhguCZsnr9c8mY95c6dCISd2SBFqIzZlz8J1GNonMtLzBJJfH8aBU4xOoAtOdLouM8iAJwg755UPFQVc2ESHu7igVcOUrQUH5PxvpESHYxpYtRPKDvJQjalPZOjUGEuq5kfP0vqMMpD0iTDL0VLOztODQ7ObF4giceb1JO47TVcxldjoFlWsFHoR9ircqvK8KLYoc010UYSnBZbi3FoEl4Vpm+d4I1AITz4SJQpWwa8IevREHeL+wWKcYkWZROcndr73hOpHo5g+qw8Px29Kza5QA23R7EiTB55rPNftF6YOp+dFvpwL/ZOc87+LceObvJcokghKxEYEIJaOuukue/7c01wyPIl4v8GIIshmHDzTwtvJcmBRICXeiQgksf20EXBx7DzIvGASY/EyhflQ+m48HuF4HLYNg0c9FUeBKNpU9lNuCtSRTsw6g3djHplV1uHcb0ck5M5jMnRSvHP50vQD6wdyjMwlyw0+g4iKnqiEQKlR0GtQSdU0xvF5GE93eiJjQyyu9QweDF2oHmNEFjgIT6PhcLdTgebsr0a/C3N37AAZSUSesNnp4BxrYnoYTp7r4Byv4DFOKZL2/oRaSS1GRZFbamlGR95rgRuHX5ehOUIzl1TIhDlccHPyTCLXkmoa1GWB4pbXLxHCXKvh1u3XGjwZ2ydyHcnJERA4h2MjRj0nEzh4Nqmm03c0ViUECcJMR9kv9rtf4PFLXaB897P/RmmVeTe8O7NHxosDbVlDT1YEa2EJ661R6hLGNGMy9848BuM4ItFxQrFG8UL1RrPG4oVN2mXoNmTgSVALNrWgphQriFa6LXQKbgWfNVUnCTGOie8PvHf86Njjjow75XhQJJz6FoWlhESr1Iq0itaGLAu6tHQNzU3zPMxMLpcFASoLLYzhqS5UD6KSeJAMZTrWJ4/7g9nDOfd7iJTUqizeGGPw1nfus9PH5JgHw5K4msRDFUnjsJQaX90hseqnX4WI15RJ5uejKcCWswjRlPZ5uuNKzuvP6W2EeMlJDkwejJzmbUSXu6ixVWfRwarhLrlqYROoNsPjo4N7BWkMaXRXDosZs2VKqfccJmmYlVEL1aJDlyqsW6Z3DsKWfkCVkyNiFCRlhTEaOSSGBsM75juTR5C05UB9IFOwgyDrEciFZEddFErmDJWlUNcg55aloq2itAvSk0kUQO6hBFFBakDYpSm1lSTmRRHsONMjxyUklyW6/Wkph9frIK9FI3RN0mQrM0FmmJAGNJ+dqBDE0uKE7fwi+Fp5uzX258bikyXsEAG4rcJSYK3pyyCONKcQ3JjUQWfHBxgXgH5ac5caHf+ylAshMQ0pbDGnDwkugXpIS0u4dXpWcj5jnZUcraEEkfqCuKP854ssrDNPXCRciAOJikIX4mO4HhsnvuJXu3ByV+J7NeT0wqXYDPXKFM6EbD8r+8tU8d02Luzvs0iRKDxGeiudHtFpOkpXYXdQC9fe6SPu42KUMimuLFS0gw6YbzAO4/GYPPqOMzEZaA0VzxgtbQdidGh5PevwSOuWGKvoHFGgzA7zQI6ec9uCtcmQjvRwIS7mzH5njh3uWaTMiRdyr4i8oFPaTmmIhsv0qTrxI8jTY8LRYywz5unyAv6YjAX6BnZAaYo0oV8FinM3YzeJINqHsL/AeDP84WgX2tCQUjvR9KA0wmOpe6StD0IiTe7QZzBlPfPLPKaF4TqeXKQsvk83GicKzmEFpjE8owb6jOcxmcMjQsCTlyNQL/m/51oWpBrowN1oeWYUJ9zTs3iSLIAjkyysB44wz424giPJtsPfERoN9K9Vp5b38M+igyIj08YzpPYXfPxSFyjff/5vaFPGqzGPyfG507sxswM9LRh9W9HW0NtKa1sYsA3Hjiga7JhR0Yqw6UKTwpYYukqlaUuZn1HlSAZ97MpiQhlCOV0sLQLUhilDMlRNBOtBvPWXcCC1fef4/FNkPljszvO24vpEKYXSFkrbkLaiLRUatwJPBW5hSWw+GEcYholX1pwDigtPdWUrjWaT0g/0cUdtovuOHjv22DnuOy/fBffGbVC6UWoUKOsSCqiX+86exNijhyW5WUCskQ2SEm8usCSRpYAj/EwQUsFrEgY55WZRw1uqf6721KPEEhWkhXeOEUqBM3kY61GIJhHmfO+Kh5PswqTYgY5I5lyqsFaBYzD2wf11MMqC1EJtjUNjPHDMmYZ7gJVATPpEHoaYU/QI+VwTnn5ww4Ywd5g94aMehFvzzuiD+ejMt4P+Etf78+cXXh4/Y+93jnGPdXB06tugmFHdIsyyFZbtht5WyrZQxgfEn2lLGk1V8BIFGx4ozHn4TaKz6tM5Zg/PFg68dKgTqR6EwiZJMI3r3dLorZWCjYBu1eMQkrpQWqMulXUrV0ffTjIqRjEyh6nR1kpdC8uHmlyk4PG8bQsfivKDDytvj4PXxx4ERg9IWyW6LxsdM+OYg3mEGde4J5dgBi1VpDD2yaxxH3qN7tKBujZKg8WVmQTGw6D08HnxnnbnKcv10xirBPehSLmQp8vrxELBYxE2Ew2Nn3wDOC9KoJjpyJnFWwIzVxPxfqecnWsgbRVFZzpF2AjySLOEVBKGJGTsUqBY8D985L01HRuxJroHH2fPIs4K9JtgHwr+XPG14ofHIZ5cqiETa85UwUmjwiQbD49RnmsPpKh6jIHWiq0FZhbDGvQczCjaQ5FD8FK8C9Y7nixLHQdlxjUsZug05ujMYXAYY78zevjlBAEUdE2ScQ20TuFyvD7HbUmrCem+OrMEcqQO0nPSIrAvxtaEbRFeny1DBp1gUIVCa3ehexCS9x3uD2F/mfQD2AslchCoGmRg0cI6J0PgMOdBpzPZLb6fa+xpTZWmSrVwwRYMO0ekGu+DDWHOSR+TxzF5fXS6QdFC9yAvf37Z+fx55+XzztvLzuNt59g7gxLuv+kZY5KIkwJVEQ9uyCLnNYTFhGbR0JKK1eOYGV46o0jrwTPq+2ScSFIisYtXVmls2nhuNc6TFvlFMoy9TY51ss8/IQjKHKGXn2MyjhmSqyPj2c9PUsH7QJdGHZ25jiAfTrA+owrsFoetKrV4FBVlYNVwrbhMrpXPcUFWl/bcBfGCeLmixyPHIqLeVQQ9ZoTlHRPbjxgtPe6o7YgcGAsUDQlkW/C2RFR8KRG61WI+Ks2SoDdzZpkBfSVcJAvKba2sS4kK/Gznzjn4yauYxt5nEOts8jZm5uE4Uwtmxh77xAVXJtskpdeafh1nT3hW/6F8eZ/tnCWJXJ3neZhmqXKB3hdYLjnGQqm1kGo9hgnYTB+BeUHn54jo5CcwU/mThNfTz312p6dJma+ZHisFF734NeF7EExbcU3p7cxCtF75Ja1teIku6zCPTBlL63GbzD4Z+2TcB/MxGQ/juBv3u7EPC85LBw7Fj3KlwLodWCsRYunBuB9tZS4ziI+QEHh48jDnpQo5eQ2W0tIwEzNC+5Ejq+QOXanQDkYEVpai1FIvMqE4kcxcCqrxLKWk91jMupFwoC3px1JLZSmFVgtbjX/z4iwWRlz0jarG46i8HZU+Ap7WhH5F0pNjTt7202vCsZ0gPkogdeFMGbyHOO5PXkiSC/VEGCbTA0ydM6TEIfFNxrVl+WAkl0ng+jlcagc3y+TpwLxPj46499+5JxJVyik3ux7yxZMvhjt6FieiZ9JRFD+kR4dY3JfuyaLNu7CEL0ipSu1yETTP2841uELha+JMEbxlaNeqyQPTHA9G44A4XtN3xbL5mFH8mYfcNpwI0hBtLbAUfKlxHUsUTmSBcv3C9XT+AJN5jchJG39JsyIXTd4Mea+Gd+be9QyVRglViVPCNNP9GsuGx1GgH0oGrkp09i1RWp2R9yUAs9BH4RiFw0twu+p5jwUn5/Q0Ge5XQN7xMEaPtccANUE0fEqKhmv1cE+ydR74zsWnC0SbMBj09IHxWBeIxzUqjlUY98JYOsdb5yEF64F092xC7q8Hj7eD/a3TH4NxTHxkhACKWowSBeL9CfCb0zZmOwsUYHGheawrkuvU0+REJiFrHuGBco56fJzjdUGnUiwy2FqOhEWdVR1T41YSWfljVB2/1AXKwtcRS+8d8ck+d/CeG2yy0M3xx0S70UbH+xFqA5Nkujs64gQsRZg1jMR6KXQZlDTfkiRanUnFPiLETNKPg1IibXQJkhZVkV4Z5whiTOow9h1s79h+cL/fEQa2Tj6sDXl+onz1Q/zjV4ynZ/ZtpSyNWTJn4maUW6euD0q7I+VOrStrazwtWZWXwg9/sPHV1yvLVtEaHAgXoUuhS+VA2RHuLjzQzADSK/p788jm2GVjas4+a8Ukfv+iHsVUPTc3T5Jg3InWBZkDuuaGlvQrTyMikgckEneD5Zw+eSuiGnHkotTaMMn5+Tydfk9L/IIwrrnpKUGd7kk7Fo5eOGalT2UcB29vwuuL0qbCVpBbw71gKN3jEJZF4bYGIqMDrxMpQvGnGJtJ5dYWKJPJAfYICPkYzDkYvbO/POifD/r3B/YwHg/h/tK435/YR8H0CR2gPWbZ3g+O/QWfD2aJkaUek7KFGVgRYV1rSDObMI+JjwNRp5R2VXc20i8hZdoz59JhaBUHq1p0fC2vtUgL63MtLK1halgx3DttUWqtlNLiPalLFL4CRaKIoxYqC1UKa6usrdCqcJP3dF7foFfhYzV+8BUcc+ExOscRHeIc81K2HEfjGJPvXw4ezdkfgcj1TqAEkChow/eCjbiXLdNrm57IEJl1EgVb5Yx87zBDluy9xfbtjnbCk6MH32WmQeFp6R5+GI49gnyp5jBIhVXA6p4bvE1OkITEPS4irXA6igYxsUmlSayrmIJGwGJxWI1Ep2LI6YnempbI0pFCSb1rXQrelFkUlgY91gPMiB1YFvSpUT4UylbQAdIVYUVx8Bn5N4AMjWKlSji0jo7uO9XeQCd1FcqHG2VbkbWGqi2YxnE/nyMNAWt6Oc0e90of4Vw7U0QgumLLjV4ruwlHFv33rvTROH4OcVpz/F5pY0SExBhEU34aO0ZxF4K44Fctpabi5+RkwNsstKNQa6UeJQpXnaFaIQjTcY5Es3N0uB/O2z1GhbODzGikttx7G8oQMDG6GzvQTXiZTrdQSsUYLZ1sLXNwRqoC3bB7Z7zB8SY8fPD2NngZwnwetNbQpdMdujvffvfGy/c7n3965/65c7wOpFuMV9XTFsNxMaprcv3CEFFd+ZAFcBFhGdAKrEFSYhyWDX8UwG9deBzO/QgydD9iNIYqOpTShFZgac7qoVTSMjGZ1IyuthpctF/08UtdoLQaM+rWjOqOPRf0kRWez8gPcWP6QMVpGC3JSu9mYmdgYEDjkx4kPyaPKQG3WXARwggo4t/HPvAjRgLNLYiYRSljwZO8WIYkKTQitZuFJO6E2l5O35HWaM831k/P3L56Znve2LaFD2ulLIWpkZfSt8LT1ljXhdYWSltY6sLTtvJha7QSN8nzc+NpW1hqo2hDaGnfPzGvuFSkNNq24smEf/7qU2S61MK2beCkF0p04XPmOGym14gqrYaHwslOTxYfj/uD4xgce8+uSiitcYZqtVavg6tnwjEjDLPI/qZqbCZaKpMgPNbuZCIfkkhKkDEDrp8EqasTJFgh0m67VnYV9gn39P5Qgxo/Lkhpc4ajrDuihboYRZy1VKStiBa0bHEYzWTxe8zdVVpkP8lExh0/JsfbwfG2s987swv3bnze4dvXgElRp1jIJp+kUU6fjbaGfHgBb5WplSkrxoLLO4ws6eXxzkSIsabn5isirMlBeQgcLnSL7m0BViHcVAEkoudLKazrAolG4DU8DbZKbRu1LTEiLcErbVKz/1cWaVQtrLXQVqE2oTTJJRHrQ7HgwYhiJbktBIE9kKdAjESCGFtrqKAA5qzB9ZlBRlQJR9jSykVcfp8zBpl2mmeRNlN1IPiAkK+FZ0kvgffHqotfzIrQp9IJI7uTU6EEgtCqoowwA5OQuKeIOdxQIdnWJy02ODnn2j6xw3RvSo5PoIWnPFS1JrcmD8skBIgaIoO1hJqoVaGtQWxeN4VWsFp4soI/Bv2VS3oaY+oQ1iMWo1rJX4o43iF4dadxnVcQiSpJilKkIhKHkawLLA2va+TQlHj/gPR/SeQuuZk2wZfwFFJVSokRuWqDEjktXZxdnAfOmwpDlT7TH0ChamGIhMJmpPa3j1Thnc1q4owuKIVCZVvXKJovh1bnaGA1CrpeaxL0JVyp1dAyr33N3UNSr6AMygwVnVoEUK41+GM1khqZ6rgM3MMfacqkCAwhz5fgZimVKD25Qk7HY8Yox4TXCnJAs8rx5NRlUNbIihruvL68cX89OO4PmINCcPBUk6jv4/IPqjJi3/AQDRQtyCljJ9SbVQJZ8UOZu3K8xZ4qLrylvf3bw3l9CG+7cu/hmq5eaeP9OZMCfDrfKhqNw4Vu/mKPX+oCpRaj+owO152xgI+E/pKhHhtBzGErXCFJkXwZsG34IHhyHQJuG2IcVvIAC4RAJZnxY9CPju0DmR4Sr1JwVVbknb9g2foUzTm0JPIcN38B7Ewu3laWpy2Lk5VtadxaobTC1KjCtxZhWjUPE9VAMdpaWW+NpcSoZ10r6xqIjmZa67QISZwkrKuVurQg3BXh6eMHaqtorWzbDQHWMaJrc2fO0K/bDISpaBxqp92+nAeDG6U06jEorSNV02Hw5wuUeDjHkUm+PW5mksDW8gCTUsLq3I2ugXaJh1vomSNR8nA4h00zybPT4/qOlPs9prNPo09n9fO4IEdgqdNPUzStwXqvTSltRbQisuA+Yt2ME86PkUdk0Bx4mgDubzuP+8HjfjBm5fVhfPc2+NlL5753RCdNhCYKLWLhW1loVbFicThIDACGF2aGXLq8Ey1DGRLw/5kecKl2UsE0NezhY+0nvEzmkWhC2cR8uiY5W1Id4aZBPK0l7PKlobpEgVLiEC0SR0ArlXqmry6SAW9RnCTIFs7LNW27LcZCp405Q7JJDhRFJAh2tUYhuN6CjK6u0dGJ0CTyZELu7hdJEc8Rb6KbYbk/8REnhM4AvaMzJoncekUwzJJW9jkmCCWOXDbyWgLWFgnF1kwCveZIIUIPA8GN8U+ShznTrPXaw5QoTkqNe1ry/T3VbLFhpDmfJ+9NjaKW/hNCX+J3XtZg2XtRtqEMEx73ADVi30mLhFN5l1BYoGgxAon0XzlDuTGNEUlIQsgCWUMRtlSoDS9LuvAmZ4dAlcw6cRXSj4QoCE4FnUhcV5EKUjAnbOMxdpxDiGJENGX3RBWQtqwxgovb97BIyFbrieoS42/CdTmsIYS6FGiOF6KALorXipRAr1TC0RWZSI33E0lV1QhFXVOlWDQqJe+rtaRqJpEenYRizkIhZCVcUTqkSOA9NdnPCW1GQ7hPBtBdeLzEnrewMx9CWwJVNYWJ83jb2e8H/dHBxlUsFTkhv0AChzllBLLoEiTxQqoBeffaOUeLEYYqHPc0HjR4DOG+O/ddeBzCPoRQDFfUCmPW8GqxglGS1M2ldA0PGy6b/V/ojP+FP/N/wccmD4p3zA8kIbOWzpsu4X4SJL4Z6oad1I9LBKDZpJuTAiuqVE7+jroE/zo3+8gqiXnkYc7rPuhvO96D3PhUC7da+abWOBA0ZIImglfnPEE6J1sfvvfgdzQqn25PfPPpI7/6w6/48Q8+8eOvP/Kj5w0pwuEDG/DQeKVzjMgyeexohtnVRVlaYWuwbQGzYYMxOvse9ubHGHR3rBZ0XXj66hltQl0rv/rjX6MuQYZclhVBLpdLd2fMkXbL8yJU1ixQrn3UDbPJy+cXHo+Dx+OIjUyV0upVqbeM4DZz7o8eY4k+Lo5EUViq0tKZ14g00ce+x/jk/uDx9srYD/p+Bxu4jQjnmkHAm4minQFXvTuf3zr3+8HbfnD7SEpvnTEfPB4vvNWSRcKSpnKNoWGFraXR0HAR9UG4vlWoa3iBHDv7/MzPvn/l25/9lN/933+ft887r587uxW+e5v8v3/3zu/+3h/x8vZK0cHTojyvlT/1zTd8WAsfN+Xr1dmqcCsVb9ERzymIFpZt5fHaiZ6tppuqIYsFY74YZ6aIaqO0hdqWtIvX2ECFyMhoSh8zCqo50iJdWNeU1pb8d5xhg8d+4O60ZaGumjLIUAiUktWOZgdfgsTrloZ+Hi6VXgq6rrQJ4hMbFZGB6mQeE+uDfhzM8WCMSHvWVAM9P61XA9FnVGGnwgnivjyxCaWEZFYk1lUezKWtuNYYB9rEfPJItE1roS7hcNzHxOXB9B36jCJYlbUVqihtLYy00+/mdA93ZbXB8EDndExGRkCUU/bpM4vZaHyEKAy31lhqpWbya3hOhFY3h5bvxYnEc72k4oWHRhGgq1KWeA8+UcEqx0PYp1AWwdrCURceZeXebjQlxl4a+b3dNJKBDYZPhgQSUKSjZVCaUZczObvC8oyUDZONbs5ucQALYZZXvaI+GT5C6ivO7preQ5UjyccxqopidtfBQzpvMrirYTVI4TWbte3DyrJUWivYvmJjMPYeo30bkRpsOeZJW4lSVuR2g1bxpwVrUTzPBlIXKCs11Z1FoDWnFdiah9JLuQ76Pk9CbsrhzfLPBjOKu36QPkmBPpsZj3HwGGH3/vKImITjMMY4MvfKw5V7RHwHU/Cu+GHcq3H/zthuRzRMawk0TGDv6S1yHOgYLOpsi14GgXoWefErgIbK67QWqNlkhALPY8w1jeO18toV3ZPH6M63rhxTkosjjJHfo23UunIrG4ssNFvQHsnMMif6ZujDqHsoIvUX58j+chcopzTy6AGDXjewntbg2ekkX0tzdo5wVYtB+EyJb0npoQTJquRTs4Nyz8CoCrNNuhquIxCYUpFaaUtjbZWlFaZWXMIULcfc0XFN4xgT9YFNQ3ajzskC3G6N9dZoWwsSGwQLOyWwcwx6P+h95+idtXfmOFBfUCxkYgzUBz4PbOzYOJJI1nGPUYqIB8FurSxbY30KCL+0SmtRoISzalD6dAxmCSVSKyUVH18UKCpgUaC0x4hNdsaJqMlXKRoLem3rxaObcjDHpNQOJGGrKFsrtBqw99nlt2On906tr4gqR32EPLLv2LAIVksZqBE33LSQyPnw2Hy7hXmVzcs6fow4GPejw6IxztESYLinpFIVrRXxJXbMFiiTu2V44IPXxxufX9/4/vs7331+8PY2eDsmD4Xv5uBnY/DTfvBydJpOZqlgziMPinUOjmOERbkqPgqMwlLhOBbGmMwRZM85MyNEPVRdue49x4aersBhVuhJ9jw9E2YiYj328ulYonrm4d5gIpiEmsbNKR0C8erpUBuQsCR3M5J+I+Xbhcv3I4iRUfwofmXTFJswKqqDUibziAJ1juAzaBZAJnEQ5+g8+E/iQYh2EjkjPEMkLPJrKXgiQj5D7lgU3FfcK3oYY0QkwRikiieIvZrIpM+Jz8koldPpVXO0VCT/SyVHYYLbpBmXoSAq4VcxE0VJLkkUO1zfr2gUi0tValVmuG8ld+QkbZ9jI0m06F11VBLNxE/KeR6eeW3OP4uHkDkHfBhLoMYSwykj10oSZWSJoEX1mchoGBN6DeJ/uATeMBaG1VCs2IxsFwn0aUnkuZ7jHxEGMaLpLhzd8/ummsojPHTkOHpiqQxS6lZZt8bz10/ctpVtbTBnOJP2zm5HFChzu6T+ojUQv7pQ143aKsvawnG2SHgitoVaV1rdAkUUZatRxG8tPkaBMrPY8CRUR+TBJUAYloGT6a4Kl5mfubH0g7YPyt7Zv31hvO2MfueYAxvO7JkZNENmfXKUhNNp2JgMalfKsEtpfsqox9DLtLKcnD8Rasv7BQ9vqVhA8V66IxLGdSdyIkL6JMXU3XqsIXfnRYVhKdWfpCghuIvVJRRoHXx3+suMgFw1+ktnPDrzZaCZofQLn/F/3KLgf6XHkpX8kLDOjXlnuASeJAchzW+ENJuSeOOUK+xSNWa5l/IFp/g8Uc2YHnuiLzVJlQvMGqm+agNqRZbGelvYWmWrFdeKERbvbjMOAjP6mJQ+UBuoT+QxKGPQMLan9wLFtST/Izw3Rjd6Hxx9Z+87e+9s/WD2B2ILxUvKFjvqHcaOn0+XzFJJsxyNgKplqazrwnrbqK0lD2XJAiVvEXekjDDakRmESonO9mTrV9ULSq/1oE1hJDPw7PRqbqpt2zjth4YoZUys1nCWzRHQtkSRV0tNONdZ+kE/OiU8rZFSOGyE7Ns7VoKrIxrzbCHloVOCSNlDheGZnYMF6Xf0g/2Ip2iJDU2CHDdsUukhQd1uyBnmV3IjHDvH28F93Pn89plvP7/ys+/f+Pbzwf0w7sPZm/AdxncMvrXBiw1uEvLSVpTelF6dg85x3BFCUWVLFCjrqvR+CzJpzvLnjHWMR0aNeHCpRKOsNn1PmjWPMaRlURLPkbEOsclF2BcBy+fhP/yITXk6HHFArfsaMud6Kt7SX0KIgDWNe0rSUCzjTfEavINaFPVQiemc1DrodTKyQBnHjo0ShFdKkPok4P2iMZ6IiAPCB8hjNCQWSEwRp5WGSInRgSttGL0JruHyLHtnHEJ/ZAaUxJhlSWlks4JMQ6bRj5HqrBzdeBYYVXNfyBFxnlOnqSA1vFfGDCI95mj33IP8QqCKCEsVlvSpCQpDSF3dLdb5ueGd77mGkuPM/9IeP5+UBTPtGnOL5f5ninpDWAm36yW5XfZ+cKGkZAiVSfFTrRg/24fjpeFaEdlwbrg3+lR2i8TqR+ZELWpMnEqG0NUYH00NZ+BuwkGOxmYUMRAJ0SOTwE2iotNWaE+N7Wnl0w8+8uH5xvPTFr5Dc+Dj4DgLlHFkgRIIipSG1iW5XQWtkVUkKixNkle1srQtMnFE2Wr4Aq315Gp4eP7k/8JnxZEZfkk+LUja5IDynLeqXIq69ejUtx192/lswt3geLlz753RDTvCo8UMWjKFTqBhejRCwy1s6GfqLSXWvpkyrLwXGOkHc7rtIhZGfGhImSULjFxnEaCroQTL4teA/YBHihgc516y6XANPyk7RQ/h/FsmsMd72mUE2Z7J/taZe2e89his2p+QAmUVRUy59xJusoelE1/eZ+lvEDyw8H1Ylppz19gw6pyUpfBhrXy1rfG55sgY3FpjyQRiM2GOQBwmSt0MfXREnAZst4Xn28Knj8/cWuVWW87ESVdEYRyTQcyG24Alu5tqzirKViofPtzYnhfKrdI1DtduwhjKHAWbifucu1ayzzS5G5Ly0zD78pA7tzQNmxFwfmaQFBWaFBatbLpQykLRQtEWRUGSh91O6+84tMWDzCenlb0IohWwoENpC4Ozau9xAGm9fM7bT/5HrRrW05lCrVJY1oVlWWitBpQs0UmU2qj1SAntiJtmf6V3CVK0TCiWNtfB07AimNaQKNYnSnW0DpzCnLA/DvTlwfRCY0VMY9QnJar/Mlgk3Hz52EAaUGCfWL/T377l25/9Pt99/z1/+NM/4qefX/j2fnBH6UuFraALtCpsL4UPb5WyND6ulW8+PvHNxxs//rUf8FScZ3vwfCy02VnGwWwCTVmeG8tTY7kttGWhLRvLcotDTgutLjGG0oJKzTUXyg5P7opZKMEOc/Y5eYzBY3T6hN1mIEw6aT3ImepwzCP5NhPrlVmWlH1HN1mm4S28f8wMLYXR6kXaDXVb3oMWRm+VEsWSGSODJv3S+MZ9ehlc1ByFiFBbvUiwYYgZsLrmnHsZIUeeYrRGRsVXFlfGdI4hTCrTFbzTXZAptBFjqEIP8yycWgttDcNC640+J33YKQKOsMGLtzFjxp4zfU6CpkVonowk489M5SZQLy16cVokieSing65E+MRZNbEWvRqGECmUC3E44UIQ50WVgkiMxDjMVCbVBwphbUu3Noziz5R5An3JWXoEzd5v7Ynz2YpVBlBXO3O7BKGfLaiVsG3JHgqr33wOjufx8593BE3VnVuGuZ7t6cwQdMa5Gg3x3RwzJ1xDHzP1w487g9GD3SzNdBaWZ4KX32z8fHjM7/2az/g668+8unTM7eloGKID7olN+zo0YC453WtSFuYpWAiwUsjWtdWhdYay9K4bRtVQm5ftWQeUDa4xLg8rBQs5PUuyAyrC5vOODwTvSxH+rGWpwnTHB6D/nLn+HzHfvbG42XnOzM+jyP8sUYWIsCqYXO/NqApsxBjyvq+n5/0+CpZmFgN8q8KbYnAXETwZ0eGocMy2NWZbtzfBscxGUdPM9EYjaoE0l09crg0hSGOMWuQtjVl6HByiCMTbRw7jIPxUPbX5G7a5Li/McfBuN9Zi7yfXb/A45e6QClSkiRZciofh6VJnNtTc0wjAcfWVlivAsVAjTKdsijbVni6nZbhBges9cvFGntPSTv1sPM1LJnPtWYB1ErkQbTU9ntkfIyZjXfOzmM/DmKVanAt4gCuyXkIsluwx09ia/AiTiUHfPFOJ9HKpl9Bfh4ne8KBGoRXleTTnCBz6uXDHD8XqeatGT8hXHPf3TMlX//7zz7/I6XDkt4ZJU29JEY7kjJQyS8Oglwm6Mr79YgcCb3Mj+LXsPDb0EBiainUmkRaPdtW46pQa+JnYW8ITZF1RawjcwkLdIFuk9oHunf6MZh1YG2Gd0ONtTQJ4y0/5XFuMHbm/sbj9YX7yyv31zf2xxGBa6qUbQMJhE/KZB3OrRWe10Kxyqdb49OHha8+bHz1YeOpws0LT12o46AelVkdr8J2W1lvC8vWWFrM32st6T2ShOlT0WOBDMr0DE+CbJuujJFJZMUMkeQGkFLz0/yNi7DqeU0jxl5io+mhnplFw2dC4nt6CaMsP0m2YohpZH8EqwnE42A0C15TkszDryXIm2RToZ5zbIS2lFw3HqoSI2z6PWDtKZqpJE4r6cIpjtSQfUqabYl5ktOjay/qWQTFOOMkDLYCNFiaJkQOp0z+UiIkgiX5DIeg8LY474ipoQ48C3w//02SnHreo5wjAbu4XOYzSLwSaohQyMQ9NqbliheGhZ1CSfQFoqsPFCHSacuil/OwlIprCTL55L3wgcvWX4tAqcHjsRxfFIkC3SvuUeyZwTEnex/sY3B/7DGqU5Ba8RbmX2ErECTg2AeCvDxnHJIzkaLe07adbGaasqyV7da4Pa08P298+PDEx48feH5qiUYFumAW5ps+YnyhRZFakFYZmevVp1/bVVOhLZWlNZ5vazZniT6QXjB+BogOTgflopnnNiXNA8P1WBJxogaqLCWKYJkRSFoO0Oa4NqYoh8PhzvAkL8fqvtKsa1NsiwwzK2AZWskZdkmcHX6OWWrsicvSLqWfDK4Chf1g2oQx8CRRH/1dxVpEL2pDPaXiHqi7n3yhkvb56fEiAiX9qIYFn0YhxCYW6shjP7Bx0PvELJSFv+jjl7pAWVrA/0uZeFFGTXISoTc/DYFmdim1FdZbRUoEpB1D6HNQlsrHtfL104J4WH3PfQRbmygSZs50Iw9msnAwpWMy0p6ehGpreEFkDHwoYM6MAi6CaSFsrVFF14puG7rd0GVDW0NK3FiisUGHzf1CW2+UtlJqI/n+gDATdjsM9h5EwkFukFUzOl2ZQxkaypZgWhfwgN3VahQAXtKILWahp9VXYSZGkg1XKiRiTB744kk4VK+xcDkLFIkxkWYoYTIASyp38MzHQC51S5PwcDmpgqeYoBVhzQJuLcIhIWFVCdWRlCgEVRS2CrcF1kqxD5QmFJ3MtXIUCYh43zFXnupOpzF1YC1msi5weCA4Jo76EW6zLz9j//57vv3JT/n+D37Gy+ud/nagpbA8P/FxecYJ29dHv6ND+cHyhj8tHMX4+uPKD7668YNPT/zaNx94aoWn6qy2U2ZH7q8Bkxbnw8ePfPzqAx8+3rg9LaxbuLoWjY7ntLDmlKKOiewT3Q09HJlhxeSS60BzDbTCUA+5bAl1iuXG4yS5Wc7cqbCnnuPB6IVyaHBWrGDTgkOiylwCkaQKVqOwFC8RyDYE6TMtAAIFO03QhvWwXFePgEsvrK1cRevaIjxAmIyRayfVQOJgh2dmFJRy8suMpQbnoZhEnkp3Widg7VJpTTI7aUQlb0aphIJDhdssaBfYT7MxuVyqhYT6c7Sj53zHz5ydWIORuZT7UY6eXbPQOXv0dOSNkdoMvpEN8JBci0iqoRQRpdYZzZXCo8fXlQaB3liaJVqYj90ChWsfGvrUkFtltBpuz6K4hQ1jSUKRFOI9KKH2MzRkq+KcsnKxxsiu/M123sbO677z+eUVzDhU8W1jzsr6FM1PLZUqBbOwPXebzN653/dobBz2oyfJW2mtsKyVp+eVDx9vfPx046uvnvnq6w98/fUnvvr0RK1KbRHMZ06khmeoVhQoirTCIPbhOCQDRmkSZ8jSShY7UeyH+aAwehBXI519IEyUSakt2kxLPy0jCK+Z9o6O9H8i/JcG4IN9gVINk8rwyC3aPQRsUuL1A+hSKGtlbhX/EHwviiOJSJ/KGxFhaSV4jjTWFg3utgaiCpr8FKP3yf1+Z4zOsYNQMC080nTNPPN6NEaYJ/fIRr+KNIanmWN+zsl/0ihwsJFjxewTLZLp+9iZNug+OLzxx4FQfqkLlNstyI/9HldkeroRiGC2kJo+vGiQ4JYSVt3q9Nk4eg8Fw1L4uG78cHsG17DmZo+NCBh2Bq855VZhCjdv8Ki4Os8qfNwqn7aA7rdWubX4t+CQpB9HdZYRGRXymLB7SNFuBX1a0acbUm+4rEwP1xYL1ihSFrSulGWj1JWiS450YrNN+0QsuyefEfxUS9zo5Jijj5FyyrixxjR6N0Zmz0S9EdJNh5RQei5y4+iDUqLSjvCqgKFH8lXMnUfv9N7pfbwXMyJImZkJEXwTAaqfnXtqU0TZsgBppTCShxNOoYkqad5F5QtX0HnGeJ+k3UBShhhdQqIsa40irC/hrJkHo5QDRTn6oE8Lx9qyRg7SIngpTBGOGbEI9jh4+70/4PNPfsJPf/f/w09+/494exy82cS2jdpWnp+fUBbUVh73IPjx0flBqZh1fviDJ775+MTXH5/5tY+fgrBXRvAE5sF8NXpmpDw9P/H8fON2u7FsK21t1PU0SJfkHiRGPAU/OvP+Fs/Hndl3xhgMN7o7Hc/gQmVoMF5mBq1N5BoTluJZXNZAQ1zAM4BodpjtnAzEOtRYF5rBbedoL+zPJc/uIPS6gpeSJEOhbI1Wwmsi3muwWYOgjtME8IEYDEqMeDxUCuJB0vWEIkpJdT+K1ka1iPicexwg1XYgWKu1EAjRmMjwKFKKXt33Mhum4bMxghkYfA9JHsAMMqsmASDyuSDvomscZB5NwQmtnGW+JzIySRfiyzDE3kmWWBBxT1jG474pbuHwOaPAxz34FxDZX3OCE7yLpaBriUyk5M+5BJKFzzQpy+KsFMpSQhKuytAlxhZ15hoQ3AvzmEx1xkMYEkjxsQ+wGWqoWmntVEgV2rpEavCMO36YsE/n7Yg9xJM4W4vQSkGtYd5wr8CC6Ia0J3R9Qrcn9PZEXZS2hKrM3JlLGBK62aUykxJW+qZOY3AauVUP7lyVQp1pmOaOpfvwYx/sfcRoZEaeuzIobUkJc4330SXVaslrO12KayAw8KX/THIAPUjIYsEXklM2jcR+XwvaCtvTwtqEtThbNWpxlpbjRRWWFgk65gtrW6JA2bbwndLC9BJ7/BjwUujHgb8JZRyoDewtPMGGEiNGDX7i6Uw40zoiGsrgmRSfGRwa99pqRhNhVUln3MhSUnPqNLodsTYItMX/pKh41kWhOvtKOv15jDAoiK/JGBKkliC/LYVlDVi6j4B4xwxk5bmtfFjWMGtLA6AES5MjkbPwpcAUll4jhBDnVoSnpcVzbWytsbaQghnGyPm1qLJsQt2FshAdTxXaVmnbQl0XSl1Bwsr57Lbih9eUzS3xTJ7IVUl40lE84V2zSxHT6gnpenbdp6NgauSzY0Mi3G2mnfnJnzEPdrmdvjEEYUw8uguEkHAk2jJPkpvZ+4YsibikCvBMxq05brK0kK9Fws+lhqrCc1MPfwW9ihSuDjShcXuP/g7eSxx0w+xSBqBRqJYangsRwOVBGi2VaSNSYMkxQ43kYNHgEvUx6ftBf33w7U+/5eWPfsp3f/AHvPzhT9l7p2eWUVkW6tqorFTfqFNoU5HnybEoopMf/eiZr59vfHra+OF2o6ghckQXPWHYQvEgq60nJ2dZgsjcWiiKiNFCaAj92hh9DqwHrBofRyh4zNK4MIybjFDJeCJfRkjLLUmSmsrhouXdywSPTTgICZw5BGkXgVhgbpoowZfTEBJXOGX78QUxQpEaaTSNJcY8LvisKeM0ip9kPbsk/5LUlQulk6CuhPVQqm1KCV7RDGSlyKRq2rxKWG9DQPBiE7wEnF8aopWyxMimHOHKexbLZxFyXhjN/cHOv5aQexd1zAtTgvnAOSY9+Sd5f5j7dbjFgfB+/50jGON9PDrkJCPHiOA0J4sP5/2asQCncU0Jk7SpMX4ztzxUR6I/RvEcNQj5NSXWFJ4FVBSGZsJUSwlrrKeZKkOf4Ug7ckylpYVisBXMaprjhX19xO7E+NaBkQVQkSR7e4kgQgouFdeGlwa1Qgt3NG16rUEwvESD9nPoLTN9ahQpqW6aGTJqhEOxO27RbI1p3B8H+zE4RjhExwhnUNqMYlwCwRQ0A/XCS+lclOLBeRkWKc7TenDnEp2QfIb6NNHwHP1pUUorrFtjW5StOms1WnGWRc9FT61ZoNhCrY1WG+22UJYVLWHKOcwoY9Jlwi4MBuWlog/Fi0TY6wkDcr7XsX+e6HmupCBfz1gnqh42c+YMSW+vLJzjYyi0uk8mzhE7eBZtv9jjl7pA+eEPtripx50Szs4B9VFRu4UxVFF0aVmgKK0CPuER1W5xY9HCh9L4WG+pLJl4n3QPu+LhkaJJU9q2BDlwTmpfkVH5pi38yseP/MrzB3789Tdh9b0Upkwmkz4e9F05jsG+VEaZHLLzUQ+sVbYffuLrb77i60+fuK0by7JESJvmjEEkZKOloesHyvKRsnyIWbJoEm894sjtwOYOdlCKsraF23oLvTsdqxbohDg+D/oeBj/74x4usaWGqdwFP+cmOcLx9ZIep3zObMbrs2Dcn0v8VE1pjnIiBygt87xRRFmLZgR4LOSiYav+4cMHlnWjtAWQNBqamFVsVJgDbw+8HzGysPA5OQ7DZSbRMYrLt31EsTUnW3GKK1tZwmjPJjZ7jMAMur9xyMKuG74O9Kmx3IIPhMHb5zvf//Qz3//kO/7w//VfuP/BH/D2u/+V+/cvGI5+emL98EwryvPzBxZ9YpEneu3MW6ffnimlUxv86FeeeF6Ep6qsPRJeD3N2L0xt9O1Gs/DR2bZn1u2ZZftAWZ/RdUXWlvwSuLLP5ezCO8MejPkWz/5G7w96Pxi9M3vPwkVwS1m2RwEz7mFP7WrUrdJaZSmNqYFazOkxGujzIk+DR6da5Z3rsEbuSzn9OlJG6uJpDEZUE1EBo23hqojwVBRUJCXh3nvMr6dgQyO4sp8HM4AyvAQSl5IfaYXSwoywqbBODyvzo7+nzfoM12N25mEMBJcaJnJFkWULAu1w+uzRVc6TSxXDyrN5EY2QwSmEqaM7aKhGfAa/QiAjHEoWfkGgtQv9sJz5xz0xzMO7KO/JIJoLvaTEeoYc98x98SwWjmkcBl0KsNB9YZ+VNtPrZHTmozMeB94fqBtNJ09bkEYdpVr4Fz280t15UCLCwkLhdPRB74NHZnrNXFs+eyJOYbK41IVtUZ7WxrCFaYIug6nOoZM3BlqX2M/WUAlRG1bC8GvMcPY9THlQ2BEewC0LszIt0e4gZDtR9DKjkNTp0GOvknGkkanjMxrUQVi4G4Q9fZ8cY/D96yv3/eDoHRsjRxg9EClNO4ISHiIVTTQ7GqnToNMkmp79MXh9efD6+uDYX5j9DnMPtMkgMpZCfNCWyrotPD0t/OCbTzzdCh9WZalGrVGgzNMp2QSblTm2IMnXii436tMTdVup65rjVMNvlXq/QxNuL3eO/aBVDeuCYeHEncXZ8Mzx0kCjoihPqwA8wh0tVFoHqUhEMiUpeSzAgtADO+KAq9j9RR+/1AXKx49PiA8e9weiwjGV7gvmjeJbBp2F8qaUcAWtmh4KPRxc5xQ2FW5VeUpiay+FOQcPswzuCva5aKHqU+Z6CNMH4oPGxqZP3MozH9oH1qYsVSIV0ycdj3wJCq9aedSVra1sy4otC0+3r7gtH1jbDS0F04BMO+BmYd0/LUPVwgK+ZdYCZLKxjZghS8z4u2fAV/SUkC6Rp524zcnoD+jGHIXHy/fMtoQXxOyXu+TJQelzcvTOMXsw1LNCHjPsoIdZ+kJA349QfoyZxcnJDYqD7KEFWkDIIgFJuzlGqKXMJtNHyNk8SIDDJn1OxjDGdLop3QrDG0NWhmxJkYwRT8lx0zEP9iOcDtclmOWVMHWKA36G3NsUs51hD7o/MIlx1K00KoIP4/72meNnf8TLH/0Rn7/9KeNxh7Lw9PHrmJl/9cT64SuW20c+rBtNF5rG/NsWsDrT0tz5alNWnSzSEXvDrcM4ONlyQo2YAlVKWdGyEISCWKMpfs87ITkNrlBGzKsbSBOkJ0HTwmDq4hFbECSZJFkxvuUhiqTpm6unDw6nmWmgiz7wqfSlI82DpN6CK0JJlGEKdoS/SlEJsiwwxekmScw90a8YIdoMr5pzZFRnMktNriwXtyiqzOSKsI/hojO8Rod/bZGSXaBhapRVaVKQpdFHqBvqQ4OjloXwNNjvO2KKTvDWUt5t16EwLUXyEhJthAgZlJmIZh6M7lfStqnQNH5OVc0w0cyPkhi3cHJO3CgeSLC70y0LFDQ79yTPY4l+2MVpOz8PyRGb5thqCrY7vcWFnBjjPuj3ztx3xCbNOrY11qXBUWlbIL1DM0dmGDqPYGHPwTw61gfSO6UPWh+0VGadnXTDeCrKcxWeWvho2CGcIACJ2Egp6GUoGF40CEyMY07ux0G53/nu5Xt0NbwewBNrU26toHoWijXSjI3gY3kUwPM4IvZgHJxIlvVzNCN0D3XLMY396By9893LK8e+0/uBzR7F8hxISTfbmgVKjqNP1M6TwxewWqBIx6PzeDu4vz243184+j0UVDnu5Hz9RVgWZ12d2wYfnpUPt8qHrbJWC+BoEcaIIL/94YyZoZwzsO1jEMimJ/qbzUGQRwpeSqaTr7T1KZFVT7QKxgzk2S9eYfLbYhtASGPAa3AVA8sDTYP7MCJtiaXOIB4wOB2cAfZf6Iz/pS5QPn16Rmzn7WXFUR5HZc+5ZbUoULQqdS2UEnwMlWCkS4kqeKqwFWEryq0poi14CGO54ifVcthWKlVvmBgVZ/iOeKGyscgTW3nmuT6zVWWpYKnN72IRfe6FZy28lZVbXVnbii8b2/aJbXlmabfoAFQYKgyPYmJMS6KWo/5eoGiOMswiL2hoIAgdy8DwmOvGaOSL4sRCSTHGzpwdPYTH6/dYW7BaYPbcIOSSSh9mHKOn70hcf/VI8QWYc8ZNCRyPI8ZM067RgE9nYNFcKMjIuXiJAynWfypKrCMzuAvHWaDMIOT1MYIzMwjDIG9MFqZszCQjhpIrFEJzKsehlBk3WhGjSeOwOz6jaz0LlDl3xtw55gNjIOJsWmnmMAb7y2f6tz/h9Se/z+vn75BjsrSN5+eNpTWWr25sH79hffrI83qjlkYrIRf3KeH4KkopxtMiVJ+o7XR7gdnxMXBfYoOjhWlYKWiNAkWS+Abp/0FcsxPuzRMvIOwKWgPViAscBYZYFAvqcQDLjPdmSqAhB2HzX9PBM6lFQT0xj0wbG9gUjrWjHjyf1lL6rtl5jZClmob6I18CU4yehe/wmNGb5/edYeKkHkIsP1Fn5+cLFC/xNf7uFYF4zsvPAiV7PbdUwhi6CK1WynDkmPhjUpMwLsRh1YexH3uoL4ajW7y+MTMl3YhiLkuBaUEWBNBz3PnFWLNIGqBlYSJElk8pMZKKGswv9Es91BM15dNOZv2YExqj014yCkHxGd2qxOEofqI6yf3xUEMxFTtg7tExdJv0+6S/dfrbgcxOGQe+Dnrr0BvtptRVIpzS4+Aq80jUOpx+fQz06NQ+aHPSchQc5ZVRBZ5qIIXPLfKgRg2+ghI3viFh87/U8GGSlFWbXc3R/diRR+Xbz99B65jcMbuz1cJTK+GkrFBLRGpgRHxG7kPj6Mw56L1Hge8S9gQG04THnPQ00Hw8AjX5/vNn+rEz+47PjsyJjA6lxntaa4wmq0a0SAlkLOD2TKCRAT459s7xONjvB29vL+zHIw5ujVriGqdWWBbY1ng+35SPT5VPt4VWPRCUVTh249gN2w0omCtH+pXYsGtOp0EAizVTYqTjqpTWaG1hWW851gabyhjGnEeMHJ2LxxlvleSOE2voFMEP/Pxts0AphG2oBBk3B0Xxvyii/kQUKLePnyh25+n1wErnMQ0dC3M2VvnqQlBaK5xq04Jh1imjUyxoT7elclsXtrVSS83ObFJnkHzexLFS8RIptoYhdWClJRu8smhlLY3bunJblG0RsILNQZfIJ1vovKpwXxuft42tD3h64uMPvuL5q2eePt5oq1KWgtQaBkPuiHaqKkspPC2ND7ct/FJuS+QkKAyNYIhehHuBuwaEPaLZibnq8PA0GOFBcfSD43jDbfL9dz9hTcvt/bEhpWSuSxYd7hxz0m0wIM9FYY4RsHW6ywoSpltpAV1yJm4zYGcD3u6VrSq3WnhuKd10KLVQW2Eed3RpSK28WsxwR3pRjDHZ985jf7DvO/uxM8wCDk6vDG+ZSEwcpsPDopqZjY8I2gPu9XngLSR8j8cbthTG2ng53thGBuOlG618PrCf7fSf7eA31o8rP/jqa371R1+z3TbW541l/UhtN7a2hg29GKMfMZs+Svgp+KTowHrwX+4zHCUfNhlSoTTKFiMuaQvL8xPtw426LSFBlKw2Tncwv2Y9CB2VTi2TUgMJEWItqlUqG1UCnQnORs6bbWLi9P6e1XOMhktFRs3cqpAGu01kOlvbYQ7UIwV5luBR2BE9VrfItSmZimsEGXQQeUlxOGQY5TgPk8j+KLkxBk8jChpEwy6/aZq2kRhJelWMKCBENXkuxhw96gWfYX4qGqTLRyBLt3sLk7sxc3MezL0zB/h9ULtBuvGGdj8cRM2TyJsj2PAUT9WgOxc7XCsqAXdHDEekLSty1jhRiLikC238RdGQl44TfXRneqjj3BvWk1w5hUqlaWHRBSN4P+uiSbMRKBuVBocz6owD2Y3jYRx3Z3/t2PFAHm/cm7LUytubUbc9CanPmc8krP4WgXwz/UbMWOZBsYNCp+u8Dt6lGK1N1gbb6tzWQFX2MVm2SW2GNkerUNZKXRfWdaV4GH9ZH5g7+4DvP+/ch/Nw49tvF56eFz59uLG1ytPSqNUoRVjbGrJvg7n39PCZ7PuDMQePfsRIE+hdIqpgOm+901MufewPxnHw+vaC9z1Sw2ePPW2M5MKUcIJeokjZngvLGqN9KDEOcY2BlA2O+8E4BmOfvH3eeTw692F0Ml9LK7UtLEvlw23hw9PCpw8bX3984tPzxldPW0QTFKdtcLTOXibzfrBbwWdlHwfdDLsbsxmHOLOGWACMfhgjgrzZ1op+XJjzxtPDeOzO3oW3R0deO6/3aGJLKVH4X51AQuJfPFIjGGPUtNlYa2URZaVG45Eo6STML+mvv9AZ/0tdoCxtpdhkWRaWriyrY9qw2djk9AuRC20oEtwI89C619SCFdWQuGbHIwJr6ubNhbVUphZMK1UrrsbQlpuIxTgkXQpLK9SlUtcgbflUlCAVugiLGkvauKtGWu+6bqzbyrK0+DuPbkxHGGgxg7QrM7slPbsxyRZTcpGT1X1Izy6akwdfgHmyzD1JlUmmm4M+DlSivg3v8pJ+FtH9jRznDJup2AlYe86Zs9d5wcqX1TSe7Mhohc1njmt6RNpf4XHxfpYa/h4w0aVCKbxasMzntDxAcvZ99MhrmTHW0QJaAxbWktdW8rAy4OLO8M47jiuYHbpjfTIeuZk8OvY0Lo8WCI8FOwbsRq0r29MHPvzoh3z8tR9ye9pYtoWqG0UbiyjnDEVazLu9ehBaTZAcjaXANcaAJLmyCHVt6LKiy0LZVsq6UJZAVZJxGi8r0ZNTAusJmds1ngv7dM9RiZyeNxKy2PAxifEb13dJCJx3o7e4aGTQW1wzOzv7LF5O1cn5avRCQOT6+vAN0Xf79XMEODXdYd85JZ6/F2ndH3+U4FukS7HlKR++FwWbTmn1akl9nnbj6fqThN/455Ahe2vMZYYE1YmU3BkxB1GpBLn0HJiGWigQnAvJylHC9WcnCPri19edfXWB9889Zcr5jp61jpZ053Sl+gxSrIXhnc9Eca4CJN7XUN9JqiuU6h5eJ5oZKwR5PrhkMfKztOO3EUqm4h5Imx6oFXQIxeI+DfXeTmEgswch2px63us4i0r469R09NZzLXLa8ZzmwpklFWaD4W9UqaXk+FHinkkZ+kGPMaAb/V65v1SO1531LFDajAJl2S4Epd8jRmMek8eXBQrhTdMHdINuzv3o1xh79J3ZO4/HG96PWAOpuDkl6SbKLAVqSJm3o7FuEdyqGsTZglA8ivj9vtP3wTiM/R5j+8PDVTfOoPA/KSUyyNYqrC1dhouwlkItYVexqMfaLk7TwiTEDSfRt/uA+8RkRjK6RAL2eARvixmFRHtacHf2m3Eczr7D8iqBjB3CILxRpgehGQk1nL0vb0qKGlpRntaFbVnY1sbWapiAul5mdn0Et+WYE/7oFzvjf6kLlLWtFDfW5Ubvg9sGWipzVp505Youl5SjEjeqidJRZm6llQgzKzg1O6NbEp2EwqaE3LW06FKKMauhtcWG3KKr01YoW6NslbYVlAKWiawqyH5we+ysew2uhxRKqdy2G1s+qxZ0OroP1I7Ijnl0bN/x46B4cE2K5umWh9KZMhoayyWLlJS3ec/ZfYd5pPtl9J0zR0jH3AMK1OAPhNxGrzygYVwBaREimD97ztya4hAJd83I+tFU6oDn9+3MOel7yPg6YEXPHMUwXquFo69oiu3fLKXO05jDkz8TQY9jTmweiMyARlcSSo9I9ZM7pDiYJtCYGhONIkasBiRrgj0mQzoiO/N1x7NACYDHGfuBPwZ6ONv2xPPX3/DNr/8pvvm//yrb00atBe1E6unohGvHeZ0Ktgsc4GNg+xEJsAJdhEOVQ8L9stSK3lb0dqMsG/XpRr3dqNsazpgaB+SVCqrBy3APFcR0ZUphSLmci6P5T1M+SQ8DCcVOFbuO3pr/Fsql4HLELDt+Dyn1Irk5XFbell1+rIQwbnJSBizJ4YJYU55Owi709NKJ0VMGryVkjOg1TvREIhSnLPF3i4ck1HB8Tmw2bGoEwCULt1vPUUj87kIEDgaH0bk1o5IWa+KUVjh8R3fj6AE/up8FQB70Eoew53sgZJM646B+J+6eMutojFoWxlVSLeXAnFkOxvuoBKm4pUmaA4sq1g3fo0DhCO7L9T5sMVZwSTWLhELxRMZEZsQAEIesT0ur9jxw856ewzgmOWY9oAu0RJJbYVkKpbxRU/F0NudL8tEUWEsE1fUKkv5Lh0f2TjeukDspEkWJVmqxUJ/UKFCEtNVPtHf2QX8MUOH1+1fqIrRF+f75xtoC/S6tUyqs60oowOBx74FaHJP7/qDPyWPsxMg7PUos0OXH3qMBmwOfPSIwjkeKAzzfzfN5KjwJPl4RtvvCcmusW4tg1OReVQ/09PXlTn9M+uHMGSMZp+LnHlkklE5V2KqztXguxVkLrFWpEplSVZKUXoSVCHo8AB8TGxHIOIkpwRwlChTiOsxh0IWndaHeKs8fFsYIdP3xZnz+rlDHQbkXukPVGmM5DK8lUKbkP5Ui3G7K07awrpWvv/rAh9vK023htixhgZ/cpTmdow+OaTzG+JNRoGTSCErc9KtGF+1F+VCFyzsgxxGcmyVKrwWrBbGSiEahFaWmiY8keuIuLB4k02Ga8+9QCs0MAhwKXaEXo1dlLhW7NUqpISPblLoI81FZZNLehCphYlOmx3iorax1ZfHGcjh1HrQzO2bvzPsr8/GGjUcoT8Zk9BH22gpFWiZTQpOVKo0iYV6mcmTffFBlUNNdUsuKlh5+EW1Fl4osFakZVCjvBUqdAT2EoVOMdYqQap+QdVaNzdU9CzKNTtCdQH/siITnfecYObKBa1MvLYyS2tGQcALi8UWnHpOMeB3jlMyOA6xT6CwyorL3iQ5F3NDRcwN29uG4pneDFGZpTJt0r8gozIMI4uqD47tBv41ooIUkLscB9rQtPH36xNe/8g3f/OoPeP7hN7RtjULosSP9gD0yXIY7gxojDZmJSpB2/c5w4ZCFLsrQQa0l1CdbRbcFWRfKulKWBa0tOieIccOJHkjAtmM487BMRhX2A47DI+sjEhODUKlG03BcPd1dT+SjNKhNkBoH9hSPZOB6klEjjwZANDM+TGItqmBHj05PlFJqIFstIu1P7x2xMMKyWujTYvZPjgXNKJIqmaJZgETJUrKoWEtwr0SCZxVeQwkQWsFlSUdo5bCwDRjpnsmUcNoNLjHrAkXDt8OLUtdOL0K9D3QfHN0uorjkL6655t+vxUnHTQfTII8kUmSXZLMRhVKxiQ/LkcFMtE8uG3FVRZb2RUiiUnVShqUCZ0SRS7w3VmEU2OfktFpxO2KcaAOpHkVKDQNIirAIYfxVPVJ9TfBWEi0LjkZwosIV1ix8d0aLRibCCE/DMNLXSFJ6C1KCM9Ndee3K0oXSBa2R1uxhhIOkoWMxRU3DAbkbHIbvR/BIjoPTZXiUyVEErWD7g2NpzG1F606pzmNd0jzNeX3r9MPY98Hr44hQz37kmSBM04unZ32kQnG+l9/T3r1nuKZxJyUjHtmryYPk4BWKhKx6KYFqGSHz3+dk74ZZcMlcBCXl/G5UJqsIN4WbDm46WKTTpLEw4nPdAl33GMO2onQNdI5h2DHpHab3UKsd5UJQ/EQ5TVifF26rIC3EBD5hf5vcijJf7sxvK8eEJoWD4JlILQwN7xovSlmV28eFr77aeHpe+NUffeLjh43n28balmiC08xvmLEf4TP12Dv8P3+xM/6XvECxL55BIaup525KjjF4z5qA7D7lcsHznJGfwVuF4EOIBMQ1JBjJI7kUfoGZYYNucgY7JRVIJfImaoUWB4CWyA0pQLmfDH5JG/4wJYoOYqFJpSG0aVQJlADraTXeg/mdEJvPJNgZ79D9malA2sxnrR+TgBPuIzuttM/3GqThctrs1yxQwssh/DYslSK5CafF+Ylwn8mqZ9cXmPbZicd7EimZwZkwGznD9mscVDwY8d1HFCgiHOd7GLSghMPl3csjr4145BG5ezrcSox1Zo8UaHcOPb0cLDYlD2nqSJMmGwEni0/626A/goxbWzjaWnoTLGujfrjx9OGJ2/MT9fZEWZf4PTyZpyZhmjYzC0dI7kUUXCdzfnqw4CPIS9OkKcytpAYXSWq5SN3Ae2ecBYpl7ssY0QXPEcZ759NGcAXyp7yPdjSuVzmdIrEkXgcOMvPzJ/Ma1bmcnI8Yr5zk6zmUWZTZR8DNZ5CdRLYPKQN1yQOYKPYLQvVQpIV3yHt6saucjjtBpNRMHa+k62Xqts7irATC5lmcBGdFUDvdWnOAZRoIAukcmj1xy8N4GSP8czw4Cud9D+90k/Bi8XPaFiOvL3aH8y9P12Qn7pfz704PDPEZ2WGiF+dGNbhzmojkrEGcHZLqm+TunEem5z0y3VKyGusjngOREfd5sYz4yJGTntbl4Y2Cxl4Zu4WnvNTQoZhGxozVkQVXeuhwzUuvXfm8KJ4ZUN2EbspwpXriY34+JdAzDz8Syf3A07BObKI5xg3DupHUK8F6CdO/qrgcsf+e3n8TRu8cffLok8e+c/TB43hcnJ+rGENgvPO4yGgTyeKTL97RaynDVbyIO2qgk/BW8SCLVikXpwgPafyYkmszZ12hZaN4SHarOIucDUT4ntTiAYxfI9gQJFxeOrmuTmn6HBYcJTG8OGdEhF4+J3He1UWpW7xGszBgO7aDbams6TXV0slbCRuIgaAueI198bZWnp8aH54bnz6tfPyw8vy0spTgT84+AqmaRukR0aDrz5V4/6ePX+oCBQbIgdsdbFAsxwssNBmcWTiWShQP7V9A3A10hmSvbI16C4Ob1jUCvlwyh89pYnQ8Znwz3FanBwEz7LoJm263uGlrxdcFWSOzQK1RtTBrob29si6VW1GeitJq4cO68bw983R75nm9sbjTPLN+yqSU/D2lB0SqQaqyXCyxV2l2bPEMx8cLPkrxh1ydYpg21cj2ccL8rS5oa2Gjf90AcQO7OFUmUyfhYBqHxdlCFA3ZdkiTLaStYYaCebg6tirMAiqDYcEhGZkZglvMnlVhpE+GBPya9Q1iku6hmrI46NaZ+T/3cd1sfQbs3/fXcGvEYYTMvJb3WfvoMHvM0f2YEdvThM/fPvj44eD14aylBpS7rSyfbnxgcvvxV3z1K1/x8etvKM9fQ1vAR8BKS4E2kcPQw+AQjMExhWM6c0z6OPAR8sVjWgSFSU1Tq4VSF6gLUsOYT9K5NMygjNkPROLa+xSOfcaM+/XOHJ3eD/aXneN1Z2QWhs8O3uP9hrAbF6NIUFcdy8ZRszSpTAxi1A7iDI8AQTygW0kSTfGJjMEhim6BAqnGyEqtUKzFpuqZP0Xsz4OIZNhzRIUTOTC5j48s6PjCA2SrsWnXkuMrV45T/WqOW4lRyBRKje+h6hfKMmawQqpWpgiUSRVLsikss9IZNISHzdwHTmVYQOt6HcRfSn5jKSuedviR+3Pl8OSYTCWVDB6NVeRx+TWmDSfeiqtSRdHi9AJWBod6SvN7Crey6McYPnK8ZEwLKb35CKSrOt5AmgcCYooalKHBFSlg6u/vwdkB2dmIlLReDbHoTMPHoWkal2Ovyfk+xPUfU9hnoVtlslC15b5yRHEygeGRGTPzvXeQNNRzHVAOzjZQSg/XYBWW2tha4Zaml6U4rVkU7AX6iD3iyKLN3JjHfK82iPeDLLfPR1qvccafnvTzQIqcpQiaHB7P7XVl0txYgC2Lk0Xj8O84ZUYuDv3stqIIVLEccTmrVzZRnqrw3OB5FW6rclsL21q4pGw4M6paLCMlrMS4eBCCBr24XjUKGvXM7ErUdG2UtdBuCycfEZ8st86yLrSqWAlvE8+MnlZiPNoAcsz2/FT5+sPCh48rX39aeH5eebqF07lZjLTEiMysEegle/mFT/hf6gJF9YQVJ+IjNl5LN4C0p8clq+/4/wAcBi7Bt6DYF66hNcYdChA5Bss0lkU5DIo5pQb7X2sQx9zl4lpEyFYgEKWuwUtRD8lsM2RYmPtojJRuS6O1xlrP58LWVpoNytn55NNlEBoIYmeXGofWtbjidz05E2SXd3bmriWe5fxzIiQaFb/m6yoaCcKXTXlCt56LXj2KOs1uVrIAKslbECULtQzYk/SIMA9badWYj6tklktU6HAC5VEYnk6w766DccMBl5rCPQrGgGXPTB8PPkkPq+95jATona41uC8uVIkcjT6CW1PN8aNT1ViH8Pr24OW+83IfyO0pHHifnlmOgLhvH1fWW5CaGXJxgWPGRCo/cjw1CGi+G7Mn0mFJ2hVNFCus2WvbKG1Dywq6hK9DEiBzNgRZpJw/0Cbx+/aOHWGWNY+IOJ/HeE93lZOcGPygUoIcq/l97YS303fDCGJ3mTMripSVJ6Q1LTtgnJ4d8F4PVDLjKQgtQSCfPRA713QRTiQhD2c0kS2JLKUTTTkPADln+iWSoYsaLe30zSSQEtIYMNeTApSw3XYN35MgKEeT4mcjm99fk5e01EKvhbEU6oj3b543lSpiQb5XT+prFigifmXqkK+/aA30IRHTOHwLJVi7YS9fSoZpBqKpUhDJMQBCaMbjgPACVv30bwzeVounlGxKEgFGg5IrrWRsQyjjRGpYLcxA66RoFFR6VlJJH8/GQD1Soy/SuwrU3EcyFdyKMTV4fZMQGIgpZpXhhUlEd0BFxBLlTXSW8+fkMhOH4ugSb6KeSKzA2iozZn18/Wnjabvx8fmZVgulOLXVq1DV2liPSb3PSw7e+8HslqGKvCMZuc0osNQa/jXpuhwZSiWRR1harLNzBAaECeiitCS1Vo1MsVPuXl1SgmvJS4uffyJpmoVtkbD6D7v/CEUt6bWScViXJ8+YHqhsIv1WAr23qnhmEPlSr/dXtAeSzWTW8PsKVVvwoToSFgAlvp4ae6QH9McVlEmgo60W1tou1++iaSfgEQI556DPzkh+2iR5c/rHOON/8U+Nx3/4D/+Bv/pX/yq//uu/jojwb/7Nv/m5f3d3/t7f+3v8+q//Orfbjb/wF/4C//E//sef+5x93/lbf+tv8aMf/Yjn52f+2l/7a/zX//pf/7gvJTe32CBVLG4k/DLnOduBU7cdNtkzP+ZTPVInzyIlbfFrq9QWstdWY2O8mOfli2dyLc5nwLPRAWkNVEJqy78LBYamcmipIclqyWAvpSRRTLNjNZCEZfOQjWPphAffAWW/4MjzxjtrlrxJUglxFieeRkLvkLq+b5KiWZycds6R03Ky7UupVG3Juq+00qiZxFxLCy+DEk/Vs6AJRniVKA7KFz/jywvoRGjWNC7i5ak6OouS09zrcuG0cPaNnSm+2GaMNjwP85MP0h0OE3aT+DicR5+8HYP73nnk8/44eHsc3PeAKE0aum3U543l48b61KhLjNGYUXzYyDiALNDCq8LfPWFGyK0vdXDe8KqVUhq1rhkEmVlLUlEqV/S7876u7YvnTGXGmPkcYW/fZ3CYcjMWPUcI8oWNfXbv8g4FW77u8YUx2Uz/HD8/+jthORRWk9En/Rj0Pul9RP7PHCH1HSMs5HOEpsywnZdJk0nTSVOjqoUlfYm491ICNSkliM/XKDbHpDXNser1zEBJ8XgWaMVpGqMsTeWJ+GmFnjcLp/18FtG1XKnRWvV9j0iDLqnlC5+akiO5GsVA/reWkm7W57gun+dec37tqWYr7/eg5v+Kx1FeU+mRdkyUJgHRL0ppgrY4tCXkWZxZLSLv+5F88Zqu11VKHl7xNSegEOdIuq74eb2iQDnXredhaCWynKbEYXman5mXSwUWiFxKcFHeEdpTM3aOb7mK59ZOTxANMuZz4flD5cOHxvPHhY8fNz593Pjq442vPz7x9ccbX3+48fWHja+eb3z6sPHxeePD88rzbWXbFlorF0KXkAgp94vrLWG6FoduqFNaKTmGrywtw2BbZV00TDlbJA/XPCcyJiyeRIOmvD+/OC3JedM15lYcFQllqep78XoW7JCRI+mu7SNk3RI8OS9yvS+zKraUfFZsUawp3oSpYQZ6OOwG+3QO8xAu6NXJpG9KGkF+MYI9E+VbKbmfx4HjqQrrY9DH4Lj2gRRY+BfeRb/A44+NoLy+vvLn/tyf42/+zb/J3/gbf+N/+Pd/9I/+Ef/4H/9j/tk/+2f8mT/zZ/gH/+Af8Jf+0l/iP/2n/8THjx8B+Nt/+2/zb//tv+Vf/+t/zQ9/+EP+zt/5O/yVv/JX+J3f+Z2cCf+CD2lIsdjQq1Cq43NBaIEwkHNdPeHZs1vzQDdm2iKf3YNKJHkStcG1ia+K9pjdyhIaexmKLpEPcTKq44z1SyURkPbJEcjAvWMwx4zRkRaqAKMzjx3rB2ThNJmRzppR9NONYSGxndPSWt5zoY7MkUlpqKYLKIlKiIJkHkcWBaJKqbHpY5IBa/LlpTi/mqvaiYtOCCU9uo4zTMQL2SDGAX1+9JxlTw+DMCq1LDE3thJdZypBXM5J/2mpL0ne/KIIy83yNJuLzJFwa7yGwp5wsSlFFiIEC6jLWabS58COzv0+0N6RMZA+WIqxGXz7+sLt8wvfff+Z56+/oi6N+vwBSqc8Q9sWtMI43uijYFKYMkDvIDtqB7MHa96HwAwL/kULpTTa+ox4joWWgbkypbLdPtGWlaU9QVkQrSxSaRLRZJIFp0hBzrmzj+s6n4+RY60CtFKw1sCdYw2pYARghmkcInTxS05oxKESKanxdL/ehWCEiAP1Kv2nKd2EPTBmhjh2GItMXCZokGdFg+iqKV3WvCe9TEwyB6lGyF6CDADZDMTXhkQo18zI7KkknQbRduZUMzhpnoiNECMLm6cHY+TJvOfIhBpKvdLEmUVZWnAbhjvDs9CnXShe9tKB/alenKrz4dqCyKp2KYtPFVPk3ETn43oe06Gaim4574d0AI7JblgMaB5crVba0ihFWVrJyj5b7dO4TtZ8LuFOLDVesTqlDM5MmbNogFA0ioTXinqEBLqFZB3JMZRG8m+4Agc/Ia5TvATPp03PANOZPVeQPU9prRRyXBmWBUWN2ogGCGWhUBfQJow1R9S18qOPX/G8PfHV0we2ekRifAkb+GHOuh287JPbfYBFsXHsBy+y0/vAzkIJCc+iuPq0WqgaqjISFRAtUQgrLK1kIoMm6udBaq4VmuAlCoZhYaI5LAjNCMGtG+/30iQbpxFj6W7B+DjN4/XUmJklveBsBJx+OGNEorj7Eqht0asYYRFsy8I119+Zj/M6Bsdjwt4ZfTL7YD6M+8udz72zqzNqLPPRYtw6s4GJfTnWrnehP5xdJi9157FMautMl0gwHvtlFzAlruPRf27G9n/6+GMXKL/5m7/Jb/7mb/4f/pu780/+yT/h7/7dv8tf/+t/HYB//s//OT/+8Y/5V//qX/Fbv/VbfPfdd/zTf/pP+Rf/4l/wF//iXwTgX/7Lf8mf/tN/mn//7/89f/kv/+U/xqsJMqiWimp0XObp5OeaFr1fjA4I2P39v7MBnXbJZy0+Ac38gnlGw/uMTtJndAli1wjDT7TiHEl4dGnMwDxs5ALoPT6mHXRsSY6PzhwHYx4BACb5bnJ2K3JtHG7xMy6PEybDY/48PJJpLee15Hjmy/+ds8/rKpxWnXnUXEPon6v0+aLjOAmDkr/x+Xl61TCOJvQpiTgHUz7GW41SFqwqzcpVZGHzun5yrV9Pu/4gokXSa5xPNs8sILu6+3NjPn0Qckf4goNTshgaaVZnPI5gu8scyBhxiGjhcew8jjv7/oaNgbhRSsWWFiqRNLKbNpl+YBQGEykzB/jZlauEo6tJ2PtLjZGMDaCCD7xkgUJlWTZqW6hlgTwETslikGRTMquaUvHTr5FrdObyRQeXxXJ0ZCWKA5ULOVE/yZjlkga7S2rjUmZM8F8uvE5m/vkdgI2fW8IfIkmQxZMzFIh9KLVOhCYppSfBT8p7Bxnji/MuPZdeeIqEbXf6tpwoTmYEnQgPV9heaGtyAQXBV/LecaJxOInKM55jRkNxZhSRo40IdTvVJ+cNASeKea178SxE/BqPnvL2eRX62UhIvF8XeuEkWfR9tCnpNTTnjDUuOY4qhVJKSFoTdS2lIOdYTjPY0w23gs3IMTp9ds5U4kA6TmJp/iHvOSxzWJJHFtdKLi5pXFqPLJf5/l6YpYt1fn2GvSDWU0YeajJVR9Mr5XpvcgSgOUKoKKsKddUoztYYQaCFZVkSyWhsFao6+kWBsnVn5hh3a5U9ZcxFlaEn0yTHYXa+h/FaQt5u16+quV7PNR+jR732f1QjeV6cTpwZ4U4dKGJPw0jLffEazxI02W5hETDy3nOi+AtEuyS69X5HuJ/eQ6S7sv/8+SbX8r0atDlPxMbYh12jsL73aJwfxv724HFEllJ4n1i6TGfKe3JvdJwNt7HfR4zl9aAsE20919VkzCPH3dF0aLHgI/+Cj/+pHJT//J//M7/3e7/Hb/zGb1x/t64rf/7P/3l++7d/m9/6rd/id37nd+i9/9zn/Pqv/zp/9s/+WX77t3/7/7BA2fedfX+3xv3+++/zT+H6X0oL2LMYeMUsCKTnjfZlgXKi4u/j/HS4G6GBDwlc3GTdLPJffNJtcpghNpiuDCxsqjlJVCfLPDkRNmFobMVHZ+4HYz8Ye2f0kcm7gDtzHMz+CIMggrgoGkQzk/exCyIXvH6OqaIbdrodVIeGM8Uw+XnuxklQPKsp8exEJcdHft6K/x0Al2ioazauZ6cnsSFfCEuqEIKb+4XaJA+8kCw3tAi1ZbckE0k+hsyQ4nm6Fl4iBYkRhV2ktCz88u/OlOU57fQgj8l2kkrlRLgUIiV6Yi4cPdCs++NAehQoajMLFOF+3HnsbxyPV3zsqN3QpWJEgcKZmeQzUkoTapXkOcWhn+OJBohTvdJ6SDbNifaSmVEFwvRCW26UulDrkgaAATFHp/m+QRYr6R8CiGRxctpZ61XUlP+uOKnJHSqnQZt4ch4s3j+L98t/rkCpV4EQXBsJiIryXpxLeF6YVGZaiYd0VNKxOe7AKanHkLhv9ELZszgWx1QTpZELCcmJJucI6n3E5Njw9MiJtRLyY5LDco548ytlXjN3kzNtNizue7eri50z+VF2oiJwdiR2Stfguh6xz+j1u133mQTBcnpIys9HIDFZ5EmUf3gQCm16JivHrzzmO0R+hi1qjZFwrTVHq0G4RzRI1CW6c3HHZ8GHYj0Tns8i9ASdJnH9gpGcPL3IBAoUVBHTUDbNOIh9fMEj6uHEG01eNF+xvLMwmR2ZB2oHxY3JQHVGzEWJ6tU19qzTcFJreME0hbVU2qpoU8YSe6KLsrbIDdpa5dZOVdJ7kN5+hKfT6HBrlUertJJBkOK5xsniNfbic5guhLHk+dafXjhxbgSCch66ns1beCGGUhDiFrHRGWPwsB55Pz/X/MUKCGV1qJ2GawTeSgGpqIbx28WVkeCAnIGSZ8Ma4+88j0QzpZyIvSjxO3Ii73Oye8avHIP9cXA8OrZP+tsRVv8z3kdErvOkGImGG/Q4f8o9rB2OI2ICtCnSNNtdw7yns3NQDLTWIFD/go//qQXK7/3e7wHw4x//+Of+/sc//jH/5b/8l+tzlmXhm2+++R8+5/z6//7xD//hP+Tv//2//z/8vZoHaU4iT6OoYBl/bSeMSiyuODjj8JsmjDBnjeC5Mek95JkGYI7PwdF7WB8/Do4+6d2pTyNgb0vWvuUySy6AjIn2SdlHQrMTu9+ZL6/M1xfG2yu+vyH9zoqh9kAe38Hbd3D/SLE9iJc1SFWYI1Z5qRuP0qlslHKjlCe0PmH2CC+PAW0YY2ZxZI5MCaXSSCgzKfcSwbdhGJvmbsEZaZEf05aUggbqcWIvll2S+DvLnTxgai1ZoHhshj6j4zQNno84sqzBBygf8GFpvmb5+kc4w9pkjMgwMpscs18FyJAZUKfY1Z1VCnMEpHhOOGJOGiTDmaZGEPJSmwPrxvEQHg/h7QHao+hRieLO5+S+37m/vbF/fqHsndWctW3s2tkLKY2sWJhEZFFkybkOHgNJxA6eSnINRs1NPP+dUw4KNpValtiUkg8g/kXndrH/c2NNn55pM5AzMUxLPEvYy9PC6+DqeGvydWpPHD5+58Gk++Q4N0k8uENTA13Ijl8sEoMBdg//jiLEzNsKYkrvIe0d6pkJNfEyaDVef/iEhMLm4sOcpOiAL3FgkdMnlkTu4ne2LEptWsDTYzL7O5JWyjsB90RHD5yuRteJlXlxae4djuHcD+dtd+U8gQgAAQAASURBVI7/L3l/E6pru6UHodcY9/28c629k1TOrhzYqUMF0qiWhphEImingq0o2lGKEMEgko6tkAS1GmJhI0E7Egpsp5O+iC0LDbFdFBGinUQK5ByVYLJrf9+31pzv89z3GKdxXeO+n7n2TtW3wXD8ju/H88215przfZ+f++ca17jGNWbiOZPtESLxdrEaZAz5ySS4AVlpWPZmU/b3ddQ+FElgxoo1LLYE63r4+1APFVd/JI1a9QEimmjNFxjprekr9QrH4lSBdEekKXhx2DTEAKaYBoDeM2dceMaFcw6cY7DUF6za85pL3dl4stnWtIVJCpUYp/RVwfs2ZUJnOdFy4gUTLxisdHFXaglAI1NxKUAaSmUnWG7LhqKG4wCODx2t0wwztFm/fPyAx4cPePneCz48DukEfY2Nc7DkfA7g+48D5zHwoTe8NUcMdoEv6DoIaWGWmAK2bArJn/Cc5DVSdggJlbpTgE2Gll454antIBBxKngZYoZUIi6W7f5KU0FD68h2IFXFh34geyNgAjD7ZANHJC4MVbpxLLFCr/Qj1CdB5nh5yTn4CrzOC3MMfP3pic+f3vD66cR8BuIcmK8n4plAGA6X+tHILjJVl3iAlY/DJuzJRrHRnRnKVaYXMJtLi2i9oT/yi6v+3V//VKp49qTlKzN/4ntfvn63n/nVX/1V/OW//JfX37/66iv84i/+4s45Z5kj5UaSxaQZ6/rLS6FQa8rEjRmZLb6EIrnInfPjBhJboCmqeRmZmUKl+shkFGJT7z0mUlUWKcGgBW3rPSaNvc432Mm+DWRMqi0Y0MHIR/Iy/uf12S5WoChuOXMqVVLnUuJhi3wnEvRFM/tPHrdKHkZzvIMl+lokt2Gp7E3UNqPKzbYAzDenAT0b0DjQo9PrpViOmNzoZ7WaQaiCogJZW1ITAwiAbB8AJMold5wVhlpt8lz858zlE4IRrOxwwGeiR7Ll+jVwPk82RAuW6XU7EP6gZXRF10JGFGpzc6aBl/RNjePDiqIPwOJAWgBoyBzIMHooYLNldQc5QfDuum+lWtrATRoql8nd/rN3glM+181GVNyfGu+MPKGUpiEx4SZAoOdoIQYDBHTpIlQ4qXCJAfAE7AqYT9q2jwGA4G1YwmA4quJT7ExdqKUiaZS/LWctwQFXY6Z1aEpX6ZkpVs0s1lhcfjmoNEKJl0OeEYkxgOtKnFfiHIlnsLydujEZwA3huVA1oDCGVxDOfAcqfZRCKEzDoZj1tf4U6C/QBWBZ/Ze9O39QqRJGQioQMxwSUfJrrQ+5IvkSs4bJ7j5NwvPNkcb9uet+IDRrzGTvj/WM36XHtW4ioV4rAo2RS4NWc4NVQMFNPtvinLmohCAsoz3PKihOwI2g/jA0tRHJvoX11burPzr6I8gMNvqNTA8cveHRA4/WJHZl4OAmYzyxVuv57CeJYtsJ0jj5TGtoOR1XELFLwXgshq/2EelUGMzZGjtcmmqO63NNmkGnbpA6SjHSeqYphuTm3FKSKDE9ujaRLvUcQ/tjzMQ8afT59vnE508nPn96Yj4DuCbymuxbxhVsBwm3/XVGwmY1+eS5XTbLgJxBqSfcJ3pPFkv0xGPaup5v8/o/FaD88Ic/BECW5A//4T+8vv8P/+E/XKzKD3/4Q5zniR/96EfvWJR/+A//If7Ff/Ff/Knv+/LyQgvjL145LsBo355zKCpqTI3MB1APWltrGMFE0V/vJ5voEKvVNmiONsthMBb9b850iR8HF2qEmvup0sUai+jSGSmPRF6T6PQc6quTeMDgEfDXJ+zTJ9jnb9DGK9xfwHaynLA9kxYEKcM3k3NrcwyXwdicug6nSDDnWhiaovCmv1tOeEw0TwRFCtRJVDWB+gQBqMwN/6xIr1ij2jC5GMai+5lzV+SIiiZNzRtZQofg4h0j0Sb9MnAZ5tTmqo2hgamd0OJQ+LtYdAudIxOmXACqasG4WHFD1+9mIOdgtck58PY8YYMupt65KGMAn98GPn0+8fmbV8zzhM0B9IaGFzwSGNLMxExgMrfO9HlbKTWOFVLYZol8NNigb0coZ5aWAKjazAtwWe/TaI4sIYENmYUqI10LY4m7q7qsN3g2tNnRH0x39seBPpmP9zaY+7eJqgzKG81/DYKTmQRrNlVC3Ni/p2ViGj1TLFMMCEFYTAemROQGim6TahM06nXMaGsfzeANyIOremv34EQpnqV94Viy2mDV22MOipDnYuJYKm2wVaBBwGXyzTMunsZgIyZz6OcFnG+J57kByky2WBgFfkYiTp5HFu42MGoF1ti/g5SFKmuD2phjA8yK4muXUZSKQU8fk1jTMmTsSK3Rw8mglKbCTT1+zLQ5NKZxnTCP1TS22R3N4ylAyVRZLEBVrrlohl1dp47KQXuF0qzENRcjOoK25mlQcDeAIY3XHAL1VM8ysJqYyZ9LNUOcCkRY5cRKpePlYK+tXpb+juPlgeNx4PHS8fICdFVV5uSzfXulE/R1BD70jhe5hZehJEdZ3ZC1mL0DxAt3KJ3VkgFaUyVm6TyYq+S7jAUEakzWPaVXlJQAArECgZUOL1RR2q931Zos9phmS68yQg1hAwg9F1TvrHpz/ZH9lwIYE9fbhefbiU9fveKbr17xzddviJNrbEva6Vd/uqApzgI4mfv8I+dKXb0GWZ3lPt0S3gKPYzDF3DtePnBsftvX/6kA5Y/+0T+KH/7wh/iN3/gN/Ik/8ScAAOd54u/8nb+D//Q//U8BAH/qT/0pHMeB3/iN38Cv/MqvAAD+t//tf8Pf+3t/D//Zf/af/UyfV8+iHF1LB5JFQtttHeBvrIW9olSYvYssTartcnRs5uyPo4jMpZRuZvCjIzPgGHSjVbO73ll626whYZh+yCG2oYfhSMcLqtS24ZGGl5l4jMBLVhY0cNVAv5d3zilbZPZNaULplkGHzHw3xZBFsQPYsUmuKKuiOObvB2I4pgvMIald4Qxam4HJb6VpMTYzjFAnYSTOobRMTMwo62jeUz6GkOgwEXOwP0+Qbmbt/BOj+vbMa5WyVs+X1exQEVg5j7l8MdyZTgEo0qzXer46akGZWqNMGBUz8emc+PS88PntxPN84hpPvGBygUGHHc6USk7R74qK09TQrTYuk5PqTgn4Uq8VuzRIE2fCRgeCzrM0/ALc+0pT7XhGY9fIGOUCKY4WXAxaP9COgd4f6J3gr3ea0fUWEsoWGyDAJcZhBMdRWqCpX0y3itiYf67UlsMAuRrb2Guig/OmuWE8HA2JKW2VT6Pzq8CaZwnB7TYv9/i0vB0BgiNtFhT13spVsRmK6qFj1uA+F6tkc29IJUqny3JqpchbuawtXZUUvO8CZ6BglOYDdMIQC2bFfOxFydewtL2W6Xma3qfOqzmkH/NVflr2+OUkYlnzeEfTWyujSpUVE/vSGa0y4DDM0FXYukwsBCvhvw0CbobWm40t5jbEfCa0iU351Cy9S5WtxxY2F0Ao5pm8wa0kXmtzgwCTjuYq6+5o/QZQLBE20XtDa2wiyAJGDSCtjViji993rRFuWOPa6o6lazw7GhSAYqc7877OKEzjMGiLKUHu0QLcBOBQ5aflTdhesUewAKSZAk06Qa+xdwO6NZAidc/T1rjce+A+y+r6vFn1Al+sVqLnEB2fEYbeUzco8cFY+n50tocZuVy6dD8IgMNMmhOuixFl/vntXj8zQPnmm2/wD/7BP1h//+3f/m383b/7d/GDH/wAf+SP/BH8pb/0l/DX/tpfwy/90i/hl37pl/DX/tpfw/e+9z38+T//5wEAP/dzP4d/99/9d/FX/spfwc///M/jBz/4Af7qX/2r+GN/7I+tqp5v+6J6mimKMFO3zFyR6ftnkmuhuwOVlZqpVcSAqjl3q4VALIk2bCxvD3qKVMplV0vw6EatSrdtS9QC6AH0kDFUGh4JHJE4ItgLKO9oleddwl4EF+aaqyt1k0VDvr/iDdhMwCQW1b1/MJFRYk0a7DBNk2vTKFO0OQNQZcaKDIyK7YoiLwEUgpSxYxOv6TLXolfvecXAmCdmTJzzxJwXRctzrPfiYrYjjxWt6lnSE8dV4q2NJCs2svcARf9OKpd0LoITljoEtoV/Xhf1MXNwkTYwfVQ+/8EcdCZkWma129yDMt3HXPfVS9OhHYHai4BqLlGpMlo0lIpfz2q9LbdDc6cmxrfZmK9xWPqi1HHo61RFz5T4ta1KisiKLAkERkgToFMIw2a0xKY5dc9YGU/QPn02QwwyWeE7XcRsAiMtOjwXYJPwWmO51vQNTm4bWRYIsbWx3QhubKiif1Ngsv0+av7nLZjR5lJDLLX5ZGoTqgNFRdQSsj5xzUPbETK3kHpi795lsSpxe5OS9bvGqJs2Sb/Zm9s+j6w5GlAlTZ17Aan7nREoyprbULXcqtPCYpLvJ1kL0W3Ps9s/luV+FkBR/qHu4UqrK+gqMByK2tfl35bnElETXABL0Op7Jzf51HhT2kXPr9Zk3rN61ClGvBhVnrAhN/Bcz8i0vmrs4JZi139lkpn3gZrQ0wY3dCRKDL3u7+JLsrYdFFeyAW3eSNICMSCbswbRPjc+ywLsvLQiwjbdXfPlBug1tyilMfmwUB/WGrVv5jQFNAvYBF5MZnTNeG5hOLWOTs3NGn9ZInIB/S935t/t9TMDlN/8zd/En/kzf2b9vbQhf+Ev/AX8zb/5N/Hv//v/Pl5fX/Hv/Xv/Hn70ox/hX/gX/gX8N//Nf7M8UADgP//P/3P03vErv/IreH19xb/8L//L+Jt/82/+bB4oAE2PDoAqqkR2sDwQhpV4UwRA1fOF9Cl19lwDVdsc31OLlxtdVWmoRz8FshaVA2zocmftOeUUuM3I6msae/r0THYFvSaOc+LlmjJLShwj8DIGHmPgiIGMA6wI4+ZJMtRWCXQD2K8HTPvM6lmRVXpK8HCp4+8VA+HAlXMJ0cohcSr6GePiQE9Qw2JsIrVQuoSqc7LPjEEMihbA1lXRkaw6YO5VDErWBqD8q8BJpgzVYmKMies8MebA83yTDT7b3acEyFmzLqS7SNvPzSuvzI05XJPCV6gBNENGR7SOdKrkgU577qpqmKSIX6+Bz9eFT+cTb9cT58WmgzXP3Z3VB0GPAZT2xLaGpFaAFe00uWYIWGGdGxexnEmPjAkAKsN0o8GfayxHLXFr5dE+K1ANrd2ADMwch3dEA7IbHj0QBzAP0CvBAq8x0MPQrRGIy3cjQRH19I6h9y+4y35CWM/croTLFK8W25aGbtQDxMWKoWwCyxU5V1QbEPjX0i7Awiut551fsPHaRgRslvBMEVppBnC7ZVzTnUyJdgJTvnyxKGsDr80Hy96kAgZbZcupc6jz5AZYn88P0Eaj8mduTBocBYQiwWZTValT6cqGpvncEBx3Bs6fIMiD0oGRQT+NSBlvgQ1OO9mPtQGBqa53QN62vgHGtXUb+QnowsGim2rfCGyDPxZS1/3h8xJTeNOjVYfvC2yWTHt86uuaAKitN1A1kNLy5rQQKbZpNsg1tW+QAv4ebJDlXps33zMj1PW3AiqV/mpgkeGUPi+r9J1rHXU+aj8AltHDmAq0OmXzJfp2GHJ2leDGDWXnSteK/FWHelXYOcW05RHj3dCPDWsPL0fuRv8qdzHGZKtHBXORTA/KY4Z6zTpPrRkocJRie00VfxAAkd9vTrz0CtACH53GiEcDznCWJZsvpn8GbhoZepKlsXSaq9O3e/3MAOWXf/mXdwT7U15mhl/7tV/Dr/3ar/0Tf+bDhw/49V//dfz6r//6z/rxX3yYbnLR2/XnW3NAgBtiSlOywEpVu6RKrwr9r8j3BncJ/1QZw8HlSPoVBKpSl2WwQ46ic7J+XE6a67hO5HXBros+Ea3BrxN2nuzaeQ5kY6lxVu6BF3GHUdiNomxFNnUdO8VD4n4uJub2HrfNsyLXFVGWd8gtqoDuK3/UVpqnBMLuDcVmUIxbv5/7WZUjYoHC1MRBwH1gNTJEQ5XO4Qa6bEWxuULrAlDca+6LUWoBUryib/N+SB8Bk05CpYkSOfhMVnCdJ57PkxVebJbDhYicL1RnrrWtZv6+p4t9XWOR575gVYVKSbDjLYHJNF1E3iL6DUbW8r826wI8FftV1LJ/baUrvZpiqhKkNcyAXDIbrsjVxJJD2pZHiivV50lejiyHxHsgsLuDgDQK6WjwK43DxKL70yV2zopVbd8zDUV4Df9ct7cAy0qE2hbBV4UJB9stoq/xH9IzVRri9m8UmccWzK97fgc6xRhhiR7ra8GO3ANCm/Smvd8xnJl7YKyL2xvlio6dN8GNDEmV9lJftvFdIuWYTIkHfYIojC3RPMAUlnuxM/uoqHzNb/NlQFkOtxTm1zLB3zFt0kUavmcJ+Fq2DjVW6ln9xKFGBbcBXIyC1X32+pxc+qvV9bDyZoGlPVyHtABZDNNU3zTs579AZj2nvH0+sEBZKUSYCqpUc+oadiC2CK56zut0bkClhoGjKohl+imQvo5al1P3ST46NR+Klap+cTOW2Lraka6iEomXM6baZvCIaYoLHM1oVnc4wbyn4/DNsjyM1WDy+VTCrNYlMVR2Hwc1z99tzb/n6zvdi2ehP1M0IJBStrxYi5vSCRGAFXsy1/ehxQsrItwbT2rzrzJizFC0RVqbKBUUt41ceok5SJ2H0gNDZmxxncjrBK6LKNwdfj6B8w14PpHnheyTbrAVZRZYuC2bRTgWct8beoGUUumr/BG5LqOW34q6OQGEbpfjrEn4aevj3Sc36XQxKAIJBrTWVnXHFOW8gKIeknnZtmOd61T3jszGXGsYDJci2TtCNG6M2lSg91iQxPYUYJol1x0rQMbHVJUqBCmBxk7AkQgjezCcAOU8TzzPE9c1MQZwZ+UKfNQthwBZLaTvqmWspiYEnLhMr03IOMt5++VMunrt6ObfNurNne7vbRr9/cZLjFm5fJc9vKvXBwHa0VPW1Y7eBBkFHtwczfrSO7AcmOdmqoqq0yPLoD43hpVumFGpBw3PdwGEvT9qZXesNOR7yF0CbG50FZFHbS7a7NZ8yX3sBTy3qViW23FundcdI9zAyb0EpjoZL4BSmyxqfPLcbT+mQlua06ar2s/TsPVaa4AV2wMxIAaUv29tlIDmeJWrr8MFDkLl6rGASBrE0AmkCHhwLyQwqkrBErff7fDNSy9SgMHegZR1aXpuVYK9weRut7HzL6YApOBx7M1eNAbJsVwsCstp2wYoYuUqNX1PubIBrGkMBMqLJqD13wtg1kMQkMv3loXylqOAH7GCCMlo34OTWifeHbVO5P0xC5xo7Si//PIQMVutSgI0RAwJDwI1v1RFNX1pgnIuYd0CJqvyUCAl51ATUnF7ymB3YxrHzdDS8HAZLyLxkIj2MAV9pnmCW7Vr3sDZfUjj27++0wClI9iFtNIvDgqnkk3xDDWZuJB6dOb9A3JidKCrLbwaUtUEZAQ42UdgDIxrMA1xDVg2siNjkC6MiZCtOfuQTJxj0t46Jq4cGBg0YcMEjH1IHjb4wMcT/nzCnm/I1xPRLkzvFKWC1PiUL0gsFqFyq7bYfws2RmupBnCmAV3gw8daeLoZDm/w/kBm4nj5Hh7HA4/jgePxgqWVsJ25Zm+bWNCo1f01pniK+m/XuYSvrUSyRo+P5o15Yi3K87oQk+kdtwPXdVI0aU8MXEgba6IlJtIZ6a7kdiS1G7VDAu8nSCq1oHk5z4k4J9mpOwYAN7mJhGXgHAPPa+DtGvQGARdC68mOsElhGUsWXToKaGYD1u8gRTNTeQKWgI8ld7C1ymvBTkNa29H42uGghdYXAKv1VG8Fyqcn0jrCaMHPrtKFPRPeJtwnmg/ainug33rhzFAkmFyMuwFdKcsOGrvRulsAZcMv3keUp4xjGKsNrmAK7JqOg6fDf5vqNxJi14p5Uzpk5dRTpmr6OsHOrQNYnXR3OWYqwBCUWgzKjV2YxZjMd2W9LCOtihjQHdQVJQqc3gW5XlH7PSZa1BkEQBUQuKLzVLQJW9H5BldYm299b4EdJKn3Zji6iAONl4hYjFOC6d9wVXi4ehu1XKAEVmLLCriYUqwniJgIXdMMzl/zxIC66aznzoiefWDUIFKDshjMez+nbdrYNjNTa8wC0raus3ejELPTR2M0VRSB4zkFZKtysPR4cZvXdvv/CtoUkKwwRqwvGV4+l6ZxUD11CFISHSEJjLHhrN5npQHDCcyviXmG7AzkdjzfpykDm0RFaeRWr6QO8861wI37iSXbasBVbad7K38STKZ1MANWR1ZAzePIMrecaHPC54QPWh10Ax7o+NAaHh342IHyf3mRv1CzxEeYKsoqEEocFugINI2tGtxuTXtVyiDyxir+Hq/vNEB515RJk7Ws4ReLYtwkGLSQiOJaxsZZOV3iwp2PXfQbRFfdPVAqGsP771X0ePdUofp/p1VS71uCp1b0agb9UCaP4p/fJWXeodK9ZAG34EwbtivfzOhL3KFVNFaRMHOp1hoywWZ/xwP9eMFxCKCAomBtnezKOicMrkhui/U2QCF1anOCSWJ6iMIdR3+geSfvI6anWcOc9MiYk4Ladp6IFovxrjwxNTih3zekKX4oZ8IVyWDfnUWDQSxZRRA8TAvtfXNYTEuqfA+qanIHPCTYK9El6XB4yhWzIkLsYz0lrIoHUu657l+lS2pSMwKrMCzfvwcUPaLGaukcaIutBDbFtU3n3Qw28V5rYcVBVCxGC3sSP6piSJAxS/3dxCpUZPjFhfIMqxcT5NRKoW2TlfwQK3cYq4XahJgzLJCwGJRayAO7TBZA6Y/WXLB1o3XLNoNUNP6+j2vWrHFocuW1+vzkdZR6ooSKebv+9ZG3jy62TJBk/dD6//1n9V/a7ZlajePa4NdAXu9DczwdzgFrbtt+wKiHm0kNEtRYsVI5a+gYdqpGn2tCvWRkTQyM9Gh5q33JrQNbN2PnQsRG57r3qXG/rtx2irrAid2+T4GmnJCVloQTzIYqkPa9yvpAPee4j4yfeOXtqL/f9tN1n+tSGACmwOtuyUCijwGQrbFk8oRR1eNQmwJp6O7+MffgYkNQ7DVhjT67rft2YxBv47zyaHnT8BQYFqPO879di36vmBUK7dXW0UoPk2p4SI0My6ylmcE+XGdGJ+16znseEUmW9vD9XP3dXt9pgEKaGjgcOCpf1ihgstTG7CybzXS0AAITFo7WTkTrQGOJsDdfKnADuECuibrz0qEJcB8cpUiPzNveZ5I+VkSUe1FwumgejTQrcsDnBR8XbIiKQ0VReXuPCvor71mLNah/mUwNlNDMqpdD64DdOxNTZHV4EwtieHl8ZJO6lw94PF5uue8bQFGusr7XdK/Yb6YvY6JsB3wO+GD32oTBvOE4XuQTAxQXPfuJKYFuWSs/zouLrqLlsE33ZgTCZ4WzWtgFDHW/a91ai04IaI4s+2DYrIm5N0GKnzlsGK0rYjcB3rKb9wIRVcHFtA01t2RBVplwDdYFIMv164Ktk70p/u0GfnKDLKtrSyBXhYCtDYxstwGt0/umT/jxgCM4tpJN9EimKYp2+ZKwYbuOWsxKZ+SKLBMLttSCrM9e7M8CLRJspsbjNDwp7Ud3RmMxSXytaoQB0dyBpfRNpZGMAGml0kocrc2xgpIlNNJCvVokFEipf9PXpHDslhMRgzNN24CCB5Q5Fx9k1rgHFpAvDQK0dlQ6cJVOQ2mHOu26eUaNFQSAVtnqAnw7wWUKGNxsucc25yqTqYaDRub4hV7sLOtsDuvc8F2iYH50vgPSK6WaEIMitix0fwMsB09XMU+JUiWudcda9NbZJ/KeUq+NXZWQzapc2hX4uMS5sZxyj97RWBsvgAJkSiNjCVj18SogtXWFNXeWEeBipu54VeAoN1v8bv1IAbnykMJAlRybB9xi3beYhjmNzteXmPeL3b6zaLh9avwduwGOhXz19Vb9xOo6Ak8K+9WPJwyZE2XO6TdQWF2oF6hKMewRBOXVImROmCpLG6ZaYiRTPKCXVrdE9VDqUKrRbM0PW/YRsddj57ml+ltlxJ4n3+L1nQYoRQnuniPJQDSwc9EaE8svQA/eVyT0BZ6uUthqld4bvAN+BE2zOvOdHJyalEsopolaKj+zBTK4gJEOZCi7qdUl2p1KPSS0EYSiinyXl1wtsDXZ6JckQeJM5ORF2629OVRdYlZOio7unSY85ujHC/rxAb2/oB33FI8XhgeHqhYUK02atD+9aVNwNn5jkhsQIU7ztENptFy7rU2sMOXu9Jlglc+KvmrSradf9+kWJd0jzaxJyXuN+yQqAIgbmRJM75TPyjmB85l4vgXNy2bq2UG9827RcTF13VaCmgsyFyyvUDhStqQTmYPPaInhcNutoRz/Znh4wgUS+JklNGWCM5A2gX4wqolAP14AJNsGJFko70xtWit/idqUKvVUkRj3bhp0aYwa01xZ1SZOYHJPRSUYBKRN2EgxeIHzHCxFhMEnEE2p1mI6lWZFqwUV/J5BYuxCYeBCavd/i/XsTWwIhY6x75tob7Y/EqCdNO2rAWDpWJICVO5+R4PFNJSfz4YetzFZ0U0NsPvPVslp3phcbUK8f86IPFMVJMuEeP38l+mGtliKAvFgOXKteQraTCDFdRjUJ6pVWkVEW0gIehPNrtJ1pVm83TxYFvC+OTrXfxr2i41MyEysltoOt45mx/qzWYcZ9Xtl5UDfl80KrseKtd/r8wpwpXyxsNmGKDuBfbz3LlHAUyBFz7nATW3ylUhdKKbk2kohZhpyGIslrkQMpXVWSrmCotsatMZQzcUbwJ5lxWCybahDvY/UyZz9vWKltfPG8K8ATP9fq+hNIFNlx9QcG45ueHTDy0Ol1ZF4HASPNid63rQ4zgos96pk5NiCA+igh4tkjiJzv/XrOw1QqqzUzVfagv4S+2viZsqeXCyLjjD4DTVvRSM3jdw50pbvRLhwLn0L6AJrXHGRfo98c1GlFbDfEPIOOcmCKE1Ub7ZEl+uwBTTsC3EZyZ1Nve4UhK1oztfB+wYk010FXBTZVKO1mqy1UW46Vtdtt0iyIg3cArPcgW2t3zccgZVK0POsP9+F7q77ZrUd3P68NgnbP5OoLYKUbFWd/KTgcd/vFCWNxYiBHY8nwckUOFi0xtqZbvfDjYZrep9M6PP83TOGNlCat9m+gBINamNbd9neBaV149a/WWKBG+peKoftsGiwVofGjMZyvnsYGwRCm04mkzUxRd46FuAO34Bk/Ty4OE6jkVvOlTPBdU14MvXgneDHQyZkZvDD9vOGALqireoLoxujyBIbuGfJxfV9/VgUaMr9PFDPelHi2BMXeh4192pTuj3yeiq1pHz5WPbf7pvfHuv1y3Z/Az1/u/+mbQCz5+AuI+ecq/fOJdqt73sxYFn6un24WJ/t93TTquKnHPXeGqLwnZLxBOKeHq81dN0kxe5rPTTd3tsdtbo3tQ4TAJAhqa/3RfA+Cfi9StGinpxtSPHuSI10fYXO8P2Lb7QKBH7yQe6vtW0scCFGYxVVFDL74iTu71nvc5clrHUdu7z9NlxvuGPN3vu53f9t/UTNgXcXsX9ujZ0K+Cs1iCo/tsWgkegUeCngjvuYve9Z+9gbwLd7facByjE7jkj0edCHJA2Jj0C+IPF9VCnWlDouJmnYDIPFQ+2/A1w2X2D5gnK/RBvo/cBxBF4G8GgND584rBYvWhpn5rIjL1EShppnJRDDMC/DuBqus2GMjpgHyE58oMASTlerkcB5AuOJnAdNrMDB3yxIq6Whgz1hentBU3O5JQNHDSih1Qb0ztERTWkxNxxmOLAXiz4TPQJtJpo6LWfMtZRapoRXE97au0EIYwUC2Ylgd+AxVpdgANwg4wXVPryEvT4MbXAjzdng0TAnm9SNQbo05UBIDYrMkdarOmemygYNcGBCYk/dvwl6rtR54RzI50C+DeQQW6OJHJYYwcaL5zVwzWSrcWtY4Zs2OM8UCwCgmZ5Zgib/QhaLQakoXmpNpY1IJYDv7wd/tBltMTD3JqSqkwQBZkqguUz6bovd2kiUkmIFgKuZIDumTqvEDjBQ4tP99xErmYQGuo66CfItgYQWS2mvZgZGUhBugy6eR3fM+YaX3nD1C28OHJ54a8DzY8eHlwPnONAqwn8wSm8vDc0DzVnyWBdXiRD6hUgToN2dWYRyNS1n00SMWHbsDAQYVW/YIYeQ2ly/2EDvmxGKFa1Nzu5JmP1aaYMCJRJzZ4EsaAKFUPgC3kBWENI6XA63lqFqm72BbVDrQAuYmNIGx6ESeusOO9i3p8PkAG2rRHldvTl1cUmtgSldwpto0noJnLga5kHu2l5ARx27zGF2wOyx1lbEA6ku3BFi5WR3HxjwoAS1AjM6qPK64FNgvMZd7Xr0M0qvzwWY8jFMY60TAQtBXJgsHGwqAONsrVGgiYql2+OHbnZIc5QqXoM19qvyVHYyEj4m/AoYTWmAQaa4AldNWgXBYrJeGtrLgfbygB9sEmj94LWhCaU0XTvluwYWPyyWrJcA21cAku9G5P5oDVCyL5pRXiakzdF6R+8NRzelh5M+SQqQD5ECLRs6poTDtguygJuAh4CxDBrfAbTf4/WdBih3MStUDmE2YT5hPmAmt86cQF7IfCJziBZ70/EUHd+ROJHZlZSoFIMmUuwDNkgTqrqkLJu1/zDdIsovZIo2Q+ZoUZ0+axKL8sxUadjO1b671PthG+lyMORC1aUkR0VP6fDgIubpMnPzhYoVrK9mhCWx0Lu+++y8L8G5F+aa1ihkn4X4SxvCNFVG0bBajFORsdD3KmUFVl4zcyvdrZaTNQO0+YY2LkV1dGi99Dt5y+HQ0M6W5iDfiZrr/Blti0qV022p5FMdq3HtDW+xSoYdja8I3XBPEyxCWukb+ujkup9r4b1vYtjnFBIaFjipu18gZu2lGh/lgVJ+JqVLwjqSC7qZNDh5qyRR+SKY77YAZjDlEyo5L1BXTNRQ1doEx3EPVhr0xhJYD7JMwxLZc5Vi+2HoSfOrpgUfvbbOEiICVpvHbS647kf5tPF28R6vEuI73V1UgJXD8tZ6lXkhG97FirZr9O1pucPYHaW+X5og8LLnTz2x96F4/eh94a7xVIJRM0h3VR+tz757t0Qo7VfXU0/nPobwfq3ILcEpZikz1XqhzusGtG9DfF3/LQXLe8efreqrJajVcwnUs8HW7wVB+TrftYaUwFLjH7EY6ZvWFDX/iwu4nR5W6HE7z9SH1Bq3f27/7Jc/sS67bkWxHPcnXOvelzRHPfP7QKi/rzqGG2PkBAK1BuRtzNyZ8c2i1VXUSr2fPsva79fx/r9lvmi1PtvtdAu6FVDXV1fomuvx7BS96RlBuhkt+RTN5xcB5u/++v8DgALekBo60niY0UuE4q4LAAFKYCBjIOMpwPIkjZ0HMi+p1G1NiF3FcwMpZZSj3jDL6yFvQlnmG5ZwdCq6LI3D3vr52hVBpXTOd/9eg/pLkFJ72PvSWkPVRVowikN9rcEmIFCB4jJtQk3vAiS3133i3aJIoFJZX55HzdH84t9uC/Ht67sj68+5Eb9+8H5OKZBiIU8Y00SfeqdaqbY5xEqxvFtIiva323Nb+d4NQI1lKYsJiQj42jC/eF5r54kvvlkL2W0jWzfjiwe7nkQtNsVuBdM169drRN21ErXo+bvjfXVXpULL8GyfZZXT7rJMAu1QB1oscWD5hyTmnBgxMavDdtL47RwENC0n4PRNQMQq8e9jIpDooMaqGeCzrcqT91FX7nt1v+taWCtIrZz8nnOad3cAeLuFNU4JTgRu7P3nrk+7Ax7U9oV3P/sO1Njem+zLH7uPgfulmN02LoEdWx/4PggovZaCgH2tCxqsjTdqCK7psNeu0j3tsalNSFd+BydrTqPOZQMfJN6Bk3dHbu1X/sRh69rqm6lxz+odfc1lkYZK6eyVy24bJPYYeAdO3t/zfX773i2Yl7gVLNw+87Zi3a9h36Q9K98/3/tifhuHjp9IZ9VncczvtXtDh5+8lvsFFUu0ntkaqQIn2juLbdlnvtegDYRubOIaqFjC6HSOvyr51rKKCgPuY+/bvr7TACUcyKUaS8ADaYMP1p57UOWJyCdifsIUQJnxDeZ8xYwnZrzIUfRFk1RVAzlvhjdz96KxoDnU6jcTPwWkJLuvhurfFY0PGjEsIV9a9S8ggJmKiCKCFmZOhIovBn7hakbVtJQfAVzTlJ4IlnSOwBiMOsfIW3v6wJgXNzw3jOuNKNuAztbAKv/VhAiwiifYYbly1zW5HPtenPKOuebANQYSFP2FG5pKhku+C/X/KQt+fuUGV6kCuQyoeDWxnBFl4RtgxDdvkRr9ae9xAtbmlc6JOW1igB1Y655l0l3YAnheiec1cI2Ja9DgjTnY2yauCLfug60dstQwP/1V1Zn8WrtBrSpY0aIvxoWtA0LPBAamdsDzUVtaRAzkvPYR1zJimuvY4+OaiVNf68/nNJwBXNIXV2+N8lebTtANle2jNsZIXHPiTD61Yr4aDP3imLYwhLG3T7SANTbwadfEgcR0p9urUg2uTTMywKoprDkAK+4DawG8Qbk1r+49X1a0LvC0e9DY8joJ03yszQlfHrfx9NM2nver1NYy5G2rSmCXcd03RM6pFcjW5nBjYvheuUBSYgNFrinS7qytgWUjbE+QSyQ8Ri52cDUCFS3RwIfnBRpKM3wHJWsD3+sfnYP5c0t+kRU9l1FiimnGdr5t9/ihxpMsBGIuB+JhbD7HCjs2qRvG1KTXRm/cG0Ji2Wnv1+WfOh9rPhfQ0APb309VUaoxpaZs1P1YLN1NmJsbCixUdB8IBpjnMsJtZZznN03Qu+d/Sxf+BDy5sUZfjFnss9j/ttgO6snC+D1UhRc29uCx2RrTGC0Z+p43u5NxJOTyDPnpGKYbZkWf3/L1HQcopnYPynHpJq+uxho8EWMduRiUL91kY//5/vBv6p6FibWu3HFyvhsStVgY6glx37NVC+/vWIb7BAoxLiHQhBUNpD50DxosxqP+K7OxAU1eJIbGw5WpI3BFqGfOBCbwvN4W1TdzApYCKBR4WhqN4mbAW9x8Yzj4PJqAWuAcJwHKuHDNCwlWFoQlf86bytMMLpX6iAtnDHY1zsE/Z+Wnpb1QVUX5n2jpEHzJpdZASidhwDTDdP4dy6cEYt1iv7+OBJBaQHfXVaVWVuZN40P9eKgV4PvaTYBdG+h63Wd9maEtXcMeN9CmUyV7/Pc7AY01ztZmVZ0vshoxToEtsn4Rc+X+qc2ItTmNST8SLvi4HQJj6Rg62Q4XPCwQtudK2D6rnW/mT9TmNEKVa0YB8zUD15wYUzqcCfgkaGaDQaWdvJ61rZtp2uS3jkCxZs0t7E1jL9z36o6CBQasjSBrBf4i+rdVFUj9h0bLnWPf6OH9M7/9sSDJGqr3fcZ++q+vj7ixal9G8NC/b23K+tZewhJl1bGddOvIdyNqr3krvVNH3j9xD9n7qKyhjNrcvywS2D+Xda5ZK2zuN7q/7IvUELC+7vXx/evdJm37+f1uL3v3M/XE6qlxbr9nfPbmngIx76BBsVK3v693s20Wu+yK3oETYPnUoL7e7tNtbON+yvchwVv3k/fW3o+NlfW8fV0+NWnvnvf751PvnHfZFrIuUheyRMz2k8/pd3t9pwHKFCoLd0Sz1WWVG9rUZOBGG3Mg5oXABiYL+S60XqmVEhttMyGGu1gT791LoyAV0S/b+QInYbQRHkAMsG/T3BO2Fssp9iDU1O9KTm5g9xsxbRrl5CoNErA26cSFxGX8embiKb72BHAi8YzAMybe5okYFy/q7RPGvNDnhTYf677dJybNhgLeL0azt3ICb20xSudFb5MxLpxDAMUdLS946+iuZuVm6mcUmOPCc5644sRzXnjGhREXZo4F4DInCpSsDV10Nu8fH0YxE2nAaBwfWc/hmizTNrIoBVDWxqUFZG3SIaOlUWwauOk6nTWtC6CUCj/2eOD5Kb1TK7L8OlL0PVeCxCpZTAkpo5ZcjbZ7WVOy5HttyKstl5gluiQAAuNkVebq0TEnmzOOwRLqzZxQ03clcIXh0l4dMDQVFQ40TPJgWIRz5aUBwF3R5A3PwQROgKFrCgTMA30E+qDzcmpBMyo0MSc9JhyGMIrwwhzuKxF7+wRG8hS974n6HpjUHBGDomtbPirlEOAmckjahxs4yXpmmfxLua+uG1DP8j0yWRgkbwt5/YMbmYv9Q+/2GU4xgai13pTLTmkVAsszRjYHtQmWvpjLhC2t3Cx2dwVHvB++dilfc59DbzNaFADvjbI23jugW7Vzq7S3QH+lz/ZtWptw7rX3/ROumV+NU7Ge325Kt29hrvv0/tmuPxuEDmv8AKuvW7GivqcvoMs0R2lgLARO6r8CKjdd5L4ejdGaJiadbaMfVlcBA50kdgsCux8gqF/P4EaXZF1wgQrYF2DphgxrznoBINza/myjvFX1qdm2gNYXoFQEnT7iPp+UQl69hGw/l2/5+m4DFG8IN0xvOvJmAdz2wjQbYvBYjysOmfkYqC4/kNPJDYITsslIqHuToZCvyR76O6eqBk5NGfWR4aQ22HRgOPJy5AnkBfhI5Ehkqw1WlvmyxJ8IXIpWkeyeTGU/3aQPS1bjqIdKa4YmtX4e7PQ5PDAscCllc1ngNIKX0wJnTMxxAjGRn7+hm2x/gx8HEolrjH2zBVAiEt6PBVASmtjNpEMIXNeJOQfmPHFdFxIpr5QHvHW6yRobUjkAJFmU8/mGcZ34PD7hnG8YceLu4rs45joWZsxFMdaGmaItadLXFMmArn7duPIsA6lN3YaQ/nRgmNim6w3n+Rnj+UR/6PdBvxcHFi0Kh4TRW7BZqRwAiiSqq+datfaGN4dwRSLnicwBGsU0LLBTm5fRNMnAa0kd1WWXG7sWOdQtEyuQrMiJbHvTto55KyYbDbg8yZwlu9maO4a7WI0Gt4aSsaJ6Ry3hqa8Uz32DKhEqkGLxAtc0XJOaGpuNBRsOjMHUoaURFjlLGgkQbe09BU7u+iLXuHRsIbjRqRFl4BYCmq6GeC3VMiOw0kUD/Ixp2tjAZ2aii96LJWuT3itwbZpZz1jnyxPKFfhkBUDBTa7C4jtLwz4s/Os0VdItXGOs1KoxrPFmTp8KE/tVtouzANZCXQ5WxBCc0LeoxNW7e29LbhqtNjE9ZO4/unoNONO9WZ5NtoPIWTofpE6DkKb8V/ydRqp+Vyk5/TlXjxpNMrPFMlRn3nq2q+ze27YgR0ftruX/QddaYRh3OOYyFLwHq4tTMGyDvATcE60B0bg+m+fqxLEOnW7TWr7c0C1VpFCOtWWgyC7jTYF1y8mO0plYNhk3EPbeJ0uJmAqagX2vvMZH9Vvcc6EMAQlMXMBox0gtt7N0A3AAOIwNBQ8YjjQM55iix82tSq5EYt/i9Z0GKLuJUltCv4WHyzo8sxKSZDGMCzT7zzdFxU2CFkbZKwe8osM7kuT7V77TgB1JIHA3flsbQyXiplI9BU7knMoZtSPoojGZv9Xit8SNtqpTiw5sXqZbBAo7bNpVSDDbKZL6fsgcbgxEe8OcAzYG/47EGOe6hVDV0k8FKMA7gDJGAZQLY5zILIBywL0j/ICrR1AzwyoLvZ5sqDhOsl3qPl0R2rrPt/G9ooTEfvrS0uy/Y29qxfooDKh8elHFqd2MiygwI5iqup4Y14k5DvTZUA+fHhN74uc6nR2dFZBaYKQi1HVuOpeY6oadiHHCMckcJBZI4/OUvkBjdFWaLeXNBnW7ikW38layzUq0MrqvY4vcpq1bu9KGNLPb+p61Z+dmsspdmcNGadh1PkxvVjqtBLgpETLPc6dCM6BeSmJd6v7FBiiwlFtwRfe8L8sF2XJ5+9wXcvqoOHsqNbprujQBzDhZZZ3WPC1wWOPObs/W9KArEaU4ds9xDYF7FGlrDGuc2IY5BCeaYSYErJ+f2HqcErNOw2YXilLHZoHbGne2jzsvD/17la2qWaDVvcNO6NFzKglObsuYYc/HdYF6UNVMsQTIxWJxWlcIXvBun1v9805w1rkWUJWrLHBjQbDYkD3v99fFECVuLIXd3qfAL24Bxv0v+2UaHyRDTWOILr9VtVgGBYnSZLy7Ne8qGOuqF+DbXJQM/HZX5dKl8LANCm1/yOa29jUsPySzdTuqoeiqEMJ+5jUUS4O3P1+AFbKuMPba6tj3eAf3CmZ+yj38J72+2wClNaA7snWkD8AqJQEYVDMeCcyOHB15NamVDZmH/ChMDEpXjb4erhYosij30ld+RBnYJBKWE5YDpkaAVk09CnGGy10QiDORJ0tU5zW5uHTfqabcaJfupkYgBi4U1WHyaGRPjubobupEa2hqgugGltTOCz5OWAu0ONFiEIHHhI+JfLLDMq6xfDKy0bZ+ClwUnccW7gFvx2ryxbWRkzuln4l5Ka126T2oWMh+ILzB2wOtdWRTxzMTyBsnbAz4+Rl+XfA5bpXkuSa0ha3gb6attExqY/DURgruyqTAQTFwzTaJlXPGSojE5HOHG6ZRNPp2Bb55/YRvPn2Fz69fo798H4/jA31dvNI0YuJW1GsrTErIfhu1Oamvj2FFe0haTWNMzCdtscfzScGyA94/EDBIN8RzDDRVLiHUoTsmclyISZHyOQbOMXGOwHkxnUNBLHBOI3MRJqsGNvUbEbgicUbgKcFCkzETky2GtAtps+Q8qN5KGSFx9CSNbwT9BsM0Gh6GwJ/VJjVlBDeTMUOIxYwGTMaRlsCUV4wZO6uaS4Bba13WM40FELs1jhEAaYHemB7wUJPOyf4iaEBm4AhSIqMEhEhuDSl2xLBTwNpuFjtj0tygKP13NR7cFG76A6BSHJtvqXRBlP7IuJmX94R5E1gE2VSN4+JuBqQjApmwSG5Cu8VFdU2Rl1AW6Llt+GX52TsZBNOmdaf8y9ARkE+K3GgNKwWxxryYjnrPVTEW1Xl3A9TqUZNhoN+RgOpS2hZAsnU9zRt6VyduK8aNDGHrje63RVHcEYfJCTwNlmRuSKyop5HuOzS2FxKv4Vb/SzIC7k2MHfDozt5qHbi6YYghvqeitEmtMbJPsQBlAWjSN+bbdJKhREqAvp3BzRWILs8jpvpcrEXo2VX3Z2tttXihX1bX/tGwnNfTYUGripZMRXqy31MF7S8CRN93NtGFNWQAlztOPaMaS20B5G/3+k4DlIXwdVSsR2CQWD7ISsvnauEiJF4IfQHMXO9dGx5wu50bygvr1rcr5qxF60bo3RbQLIW6eubkDE7eyiVWF8pgRFiCrYhaSPyGdG+usIrcENy820j0a6K9vqG9fkb7/ImNEcfA4+0zXt7e8PI88fI2MF8vxPNE82sNIGuNm/641oKcxaBkwltfaHvdI+Miz5TaxcqiecEWQEnSxt5oLtc79Si9r8nY58CcE7hOtIt/XlGZUPuKgrUFTNu3DpFavCgQjmSjOkYxu5T2gKGHDPawSS4yWHwfgIDs7Rz4+vNn/PjTN/jm0zd4eXF8eDT0F1+VY4qxgaQqiGvgHgPlaMq+RDfgmoZSD0ZOxAhcz4vg4nxDN2dX7oPU/hWJ8xoU8WIoigUyq9P1BM7S/5x4OwfOc+DtOfA8b8c18bwCzytwjrLyl2A2pg5WNiGY4unyNvA0pJFLactwzwDRz3MMXIPjBNoQzdjPyNMxKiIDbdrnBOYwzIsbRDZIT2Y0OUwgg9oHCuI1xhW5q+WN9GQlDGYVHn2A9GhMPaiS1RLdAtMJAJEER20mpgfM5orobS/VK6o1Cbapd9GWqcU6CxRrTngqBZy7gmSVLt/XnNuXWHOO3czbbVMFbjG1dHNFWFyWrIKDYUIgGNsLp3yhct0vvHOvJgize1iPlWJR0iEEHMLaWt5q+apxvWiRYsCAxQGUOMzClq4bs76d0rnZllHNZN+s6cBK/xBIsP+a4eHG1ELdokaQ457MWrVkEHG3oxBU5DPdl1spw0pdrksJgj6dEtejSGlUOLbLNC99Kq2kVItPuIUCJmxUUmPEy6tIbq3VWmBnueBuakuSuHdv3hrmG2MJMu5xsxEgCNqpsWLGNgvFz23q8eTY88f0vHzaMqPrtwBBtwDfd1PfJgL7p+09qh69W0H3b/f6bgOUxSIVJSVEn4bqSFqdHjmJuB3lDmPWH/L215rA9fuLgtSfi6NZ2KOAyV1XgDuTVZH1ZklyeaJI3FafJwMxC022UI5VS6Rjp51uPj78naLhZsBHwM8n/PkGf3tF6wQox/mG4zxxnBce18Q8J+I5wO6cQtvNuSGMgdXfARB6DoILY363rs1MC2vuqqkWgwBFgk9vE+wizfdo/UCbY1GyLYYEqRdM5bAuDn1Fo0Z75QpsVqOthQcZWYxg9HktIQTZlpEmSlItdbCXq71LbIByXhOfn098envF57fP+P3nB8xroD8ORq7GDYkvftCubtpvV+mH9wNNA1FC4bgujPOJMQbG+SRDmA1d0deMxBhD6Q5Ts0ZG0RGT1VcX2at5TZzXVIl06OuU5qMqd/i1jASj0n63Xh+8OY6pRXsGkDbXmC+5ahkMzjlUzaXn5cn+K6FW8eE3XQbBOqNobpbbMEyMlubrRELWpVD7KL5PEJCm5k6m8g1aWCtsKTa0NrfpjuZ0ZvUEWpQT6qbU926y57GtQCT093r3XAGMpVgPVP8nW9EyGdfbMFifsZnKSpXBcrODRiZkba+qXImwlf64FjDfIuyaM9t9FjvdlzdwUiBDQ3NXX2CB+92zlmClrjtr0dTl2H2sJ27XVYyEbX3eup0CTEv9anLn1tdMpRhYhpuav93UvVmyEpF2iNrc15qsxXHp2N6/Fi6rH70xW5n7iW/vlts3Bb5NLHe6wTxoSOiBWemjBUL13oaVSnGUxoX72UrZ30BKETrAHZjcjxoLpflxdpbXkwqN/brYe0qohMGLwdH+5gInJrByP5pSV12f/8Ggkm/HqfUibvNH5HTFf9/q9d0GKLU8WuXr5k0sN9cg588WXgZguR96klQtgzeK/IBAYOTEyKnqmlw1/Vxc7+KvJXNZqQfovd0CzUnVuVrcL9VDruVdjE8Ak6KqnqSyJ7iprlzxDe7vaIgTO0fCRsLPifb6hH31NfzDR7g7em/AnHg8n3j59A0+fv6M770NzLeBeJtMU1XE1RyRiT5V7QRFdiVA7LR3bu2uSwfWIpsDKdHvGFMsDLvamidaM9hMUuzRFtgKbW7tGngMeqqY0P8CKWaMLJIQvmrtk49fa+uNQalI0WjfDjO8WcOLNbyY48CdvX0/cyISz3Pim9dX/PjTN/jxN1/j933vA77/4QWPl4MAkqIirRArY7sWkwQkSOQqfReaMfTgWM1x4TqfuJ5v0ry8Af0A8sCYk5K5SFxjUgeUu3U67zUrkvJkxdoCKNeu1LmCZea0tK+anxsDYGVVLdM+q/EZawFnmiM0Q3RjscEBq+dCc87xro9LIbYKJopqh/RfyfROhiPCCYZAbRNSjIslsnO+IZIbESB9iz67NWV6fAesbhLzBR4tF7odTbosaVoMYJk/Kk1Y6Tijl08mkFP3vUTZe3fX1MdtGdDQ4n1fmhZFOndQwCUgl6dIQhUvociztbXJlxZohC1flxNTKU+gqWVHayWMvlW+pOwMbp5LX1Yx3iICptmUVBha6Fr4Al9J4leeJXsaZTltR6VxsJitJtGthzZugRYCJonMhQgYtXOJlsE74CXMVMGAGduQaC2GExxb7aYoVBYLod2xS6UqVxYotTJLq2Va+6uhqJcQfmKl6b1REJpNLFt3nA0S586lw6rmlgUcSktSWpRmNzZFRobWDbiY2g6Bc2qOIMaMwUMFa9X5uJQtTHlWEcAtzVJgUWO1YQOR1dv2dngkG0paoAXQ3cQmJj4mmTIkhfYOBlWotbjA6TvQ/7u/vtMAhRtc0N4iExYTmEN6j5MLXZr8H+5Ivv5ntwNcOJ0Pj3m8qrpgyGbK7Zkxp5rWmOszrCqSQFUyVNHv3P0fXEdLINkbJxwwC9SSCLXNbpnoEgZOMJo1mWOlJWYDZmuYzkqfEfz5HAl7XvC3N9hXvwN7OCwvWG/scHueOL7+EY5vvsLj7TPm2yvi7QnPUfAN7lxW5yxzNG0USuH49BtA0a0DIwMkEDmwDOSUJjIEzKdoRPXzmR1t+ooU5uRGe1wXLi1s5dJaz6uoSFN+NVS5UBE0knnooc1qxIX0QFhjbv6a+DgnPmbimcAHAA8AA4AKrjdMiQDOC/PtM8bbNxivnxDnH2RHXOt76OTAzhPWFpJ7jNViVnl21ltuXeBM5JjI84l4viLnCVxPVLm6DbZ8ZkWYQHfU/daiV4N7GjArb9xIQ+dkLjkdlo1/X/08khUaaGAnFMeRsUBMIpWX11cQnEt5sp5+uABGytE3uTmuJmO3g7quEnhXpcht4bqnPLHR3DKWqssMroL1eeV/ZAZkbNF8iUUpgJxwG2tjqPNflSKgXmZCZoxWoU0hTt7ne9iT+HLR5TuvNJ6i2sWY2Z118DVGeJncoIPojBqdxoq0StMABAeZBlteN/SqIVjROuYdFjyQDUFlxV7zdG53h+kNrFQJZrmE5SYtRP06K0i2zoiMla/7SqO90HhTVUoavy/gwbXb31XIrCqdognCOJ6zqom4S7ONhy3hpkGMj853xXXYafdid+5P6w6i+VhS0b4z+LSC6TfuTN5WixZoaiXhbT+bxRVi62kS2lP2tfFEHRENmY3VddEwo2GGC3TaSi+NLCuAJAM6y3AvMYckCwIUC6FrvC5uJOv57WVsMSMgO9uleWRDTmodPa0ud0GfpvnX03DE/joEIgnogPCq8Pq/CUBpM8g2hNqES7+QwxDXqYdtiGmiMXeVBUVrFRlowWVCEIAjPBBWvUkS6WzMBIETc4qM4I5wW66FZQMeYNQbWurSJ7JNZAtkAwBjrl0uuKTNB5CDaZRMPOTlMiVedI28aMBshtkcw1zoWZ4GA8DzhH3+DPzOPwLsgl2f4EcDItGugfY7P0b/+hu8fP6E+fqZACVOoIhcAZSyL+d4prgxUV2eDb00KJrAEB0dcQco3LwNieYD5o7eOrw7fEjE5sWgkDV5uYZSD1hCNT43riJuG6Dkor1pJMe/uPxkAtccElEHTgPiGngbE9+LxInERwM+JMFJqUneAZTnE/H6Dcbnj5ivnxDnSTSDY0XWwMnf1vNJKEW23gc7Hx/Mqfsg2xTJFSeuiXg+kc9PiHESpFR68ZooAy6jDltpS0WFAiqGRIYr2glYNm0SjXqJoqHBEuECJlxkGnomejoO2JIAQHe/g6mxbqs2ip8rVsTQCEQtWS2XqQiQOe1W1Z3NBXiUamttbbyLYQGwxAt6ukvfZGQUzOmrouyJOMmJVKmmRtzamsjUCCDhZHpPaYMCkmwuKsBvbJrI/k6lQ9HSKtRT90Ec6G1lujFp0EYLgNt+ate86eCKReLOJ4CSQMqDZ0pQm4pxvZOdhcFBF+mMxJwboLh3mHfaJ2RH5IFA1zXWWd7ASdrasJhuiMVsugsF6iulFlWwnBIy++r1VTOyCaB4TngOfoXDk9F3Cyw2xbX+FiAosMjgIwmso4FtELkWtxBACYHBAiSGd+w27/OeL1URAxTzvsEJBIDXtC2AUueFmrfgOEeBN56Tt06mBFPg0fbPi9nI9PsbijXs3K+iYUbnMRvmpHNupaeXR1GoD+FyC09M+WyJ5NvYnhOKl1dAUOm1YnMLTN9WCM5Rr/5tms9wVbtV4Yhch5O6PoITw5E0feyagTRL2Pf7276+0wAl52CklGVIRXOvMSUgAwdDku+DaVGGlq6pUrlWDzKxyhnjGjifJ57PgesMzOtSWW5ItLdnQ1GyY/VuYQ7fQ5u1DZhP+mY8arS31bXVmzQzMzCvRJ+cuGujiETPRGnwC0jRF4Hg5XkN4Jp4SeDtx1/htTV89f/5f+Pj199H//5HfDg26BhfvSI/vcG//oT8/ISdFzCfiwUoEWq7M05aoyqScnkGoL6nhQSZNMWLUBURBYeWid7p13I8KmJv6O5rUSwK+oLLnhprY+aeoGh1hTqmjQnIFC0eAHIsTUW/LvabsAZ3w3gOfDgDLxN4pOHhDR6kKL98RSTOtwtff3rFj7/5hN/59Ak//xx4BlSBJBqgPOA99OeEKXzJlN264rImOnRVEM3AeL7hen7G6+ev8fb6Y8x5YswT8TIRj8DxeMO0AwMN59vFlgNTlT9VYqyqkzmNY3RSIHuNgbdx4TlOnOPCmBdmXIi4gLiAnGgY6BiYNvAwjtcsJCTNT+X4u9WmUXEpq5IEj5DTYTb4vJtEd3rud2O/e8onNcaHuoHbGCsCrVbuDVMaATYadM3h8nlhEMqN/MAh0OusDEpFuAKObXT0TDzCcEzubAmgN8eIps7b0KIsrxdzjCRkq6It/oXz2Ursokh+lY06FiOAWVufRm0NubQlfJxJoetTHk0ppu1IwwdvqqDjJhhuGDkw0HDNiWsW38loF97gfjCyN0MWT5uJMTUW5sXUIAJQhHuvRK4gf03SbuyO3E0MRiKVjohKJWt8u6zbW8vllOoCQ1lZeNntm/JflmWFT8HsHIYY/DmuP9rpbbMh0JwqDEVwFOhtohuPltTEeU753fAZalQs0NwEvAhmD7RwAAPNGw7reLSOo3V04/o4gqmb2YKmJqE12RzDgMsunBa4zHExBEWAwJj2/aUBKuBKNgXhpAmHju4kaoep6o33D5Osqtd0DazzR4EnS2ziS/NlpiwN1OZgBIPoWYEB9horlBdhatHC3+fYTdgV8Jk4wvBQKvOD9t8TrtSYvQ/+vuXrOw1QWFoJVMKy3GEjhJAVGdmqw3YEywCkLNbCoVf5YBArVCdbRjC4CbXslkut+VKCs93vgznxLB7QcuVErWFrWNqN2uS8Vi5X9Dhu1XGZN1GTr99jfltCxzEQ5xPz7RXn11/hxIVzvKEdKhEFgM8n7PVCOy/YGIgx2XgFnCjLxj5vFLn0CQz4iKZb7ntn2KkGi4CXpbpCB8vEAdKHj3A0HT1UrmiQjoCJh3L02Ou+reNOp2fdN9spCaQKBJIUcmSyTDUdj0i8pOGA44Cju5N9u33Wmp96j+c18foc+PwceL0GzrkIY1HuezEofRPUDTYFTHafGLEs6vOEOTGuC9d54Xw+cT1PzPlE5MD0C835fFJamxglJB7AGALik+9sIEAJljVeQ46x6tU0y5huaa6oiWqe6J4ITxzqo5GZqEp9t11W2Op+py0fiwUYwRTAMpYqE0E3mayRLi4xYP29AELkTYNh3LhC+jL2JaK+KEANzlR5qCFVLaFNbpZRHbZw3SEdCYF1NEPXkWAfp9ZYqbD0OJ7UABirGrL88iwXa3K79M2auIh0Xd8C15qrd91WrjB3KdMWjQ8AZ2JVInWV9zIwkCllc0bZZhoFqJNUIFG+FvVpZKMCKk2vtdNigZOlNbrN7gJivM8C5kpZ1XV6I1BhZ2lpKqqI4V3lYcXpeu9aQ3XqdWdWdJTF9NSfge09lSgWkadjKCHMWjGKwogUs7iZsxV0qfLLlm6pBo0Dpuo8q72k1iDqHek1FDdBc6WGJsLq2dRZ6QlpwN9snrCbqNq7a1+00jttDm57EosqliG17Wd4f9ntida93qLk272+P/d1rhCYqsdexSOsOvWgweEBgpGXJGvyAOeyAcsLxr44r9/t9Z0HKFF3D9JoRCg3u0nZIrO7deZhjYI7OgWq/Au4gZPEHBPjGhjXxbRJxCor8zD0MDkr0sb7TuGzimGKzpO2xCfQAtY1CkK+D42RXooKvi7gMQwIucPCVtO0Unq7PBHcKYQDtnnWHNJMfHI8//H/gbfnC54fDvSjrfI1eybaM/DyHIjnYHrhJNORGct50kQHk0HRAqvNtxlr5/mqxYM3cAnutNnUgnAof/zS2vYwiMp7JwCn4O4m6LO9zFCAVQDttmgWUzrSUamWABBuOIEVNT6T+f03NHy0jlc78KEdOCLQ51aj3+dPAPj8nPjq84V//M0TX71e+PRkJQ1fpcjTLlVGeWvHLR2RwF9Wj53JJn7XwPn6hrfXV7x9esXz+YoInnWzB5o9ENe16OV5nphjYl70r8lgKqu0GSPlqTMnrsGKnvM6cRVzgmJH2FOJTILOzZjVao7lrQPIaMl3uW0ZvY0Z6n/kgg+8Bb0RiH7o5cxJbx4rTw4vbQqUqnMsp9lkvx4+h7kWVdaO1EJXIHjCSyNVXHMH8jHRzXG0FU6qJQH9HdpRrSrJONqkxqMPR2u5tTJpOA4GNs0IXi5wKmdFpJWjF3o3gHoJlF5qX0EJ8Dk0+Ab8wjTy1DEAPJNjfooBnuAz6K0hjg5kYFrgnA1nc1zJNhYAKMRXkxdvbZk3kmUrcMJ4PjCkM4tVJYUb61ObciGXdKdTaeMaBQAm99HeHcfRON9noL8TevJcWutyLm3rvprSb8Ug3DCfML/tr8axYBm3uaRya6sg82ZGuUrCtDfM2lCLGZJ+RToLJFOVAQNaQ3GfZY22zy4JTmLI08VhSd1SeqObuTcyKWBqpt6JyMBA361bNFUb0P2603ZH+mnL7LPKr9vS8VDzo0Tlbe3UgKv3FeC/2+TXUY/fbN/7e3o6Z63nQU2U9jGbbK76EhDbSR2mG20gLjMdu7Hjt319pwHKzIlLG0BFkJUjzLzn3BqaG3qbmLrk1nljw5zaBb0YFaU2Y6WGmqG1QD8ObqzlileBBDYYKsV8rndTUV7RkNq0SO8Pbp69wye7i15XkLlPTtx05WLVSYoGYTK+ab4mfk6xNA1iagKwwZU7AZRQUl1VmiWORrFtTEjkyHtXe6zZZlByCc8ICCmKq3igUEzeohsuck01gQYwn+nG+6FQMZyD3zy5aYObazm8chXRZ9yidNeiZsaIB2ZoWvQZPbC09dAiP5OGY2M6PrrjxQwv8lHosFV2vGMMTg6HYYzE23Piq6/e8NWPX/HVjz/h06dXfETHw12LIPZiTi4bJWJ128wJS1oBn4E5JnANxHXRc2YO3huj8v9x9HWkdzQ0iuGaYfpEeKdeoUp4jeWySCCnoXcyKt4T/QDG4Ebaj4l2OHpPXCPQr4nH6RhjoD8nzmF4TuCaBI1ldW4wgU5SzNes3DgV+gyoGg7bAKUrxWPeUL4ah1N814pNUSMQCs6rhBU3gWkuEaRDmTVpHVptFraZjcUeNOcirE3SaCiCeNhiVB+ZwCBg6I1dljvUbdkTh1iBZs6SERjasF2t6vZ+rmRpUni+kWXvjs2CZVVPJUoUugS6up9X7R+TlXnh3Ix6UoSojDCeETin+ikpiGkKJKxh9VcBK9Y5RhJo02CHsTpE/5YzJSg3io3ha9YVDaXAXexZao3b68Xq6bLKtQnGGWmHBJYymTwa+uE4utYxd4Gaat3R0LqhHfwzeoNF6ZX2il0ApO5/Bo0wY+ZKhcyqdlJPLrJ1+9pCQQ+7MUvBlBOX/JjgAvQWOEICebBnd6ziB5YWwzZ7A6WgVhPPtcJobAo7bTO6SuNjdzbW1HFV1zUkumEdk1iKa2tWILmFxsWG1zPkOXIuFhNfXjk04KxbSwBTVh0RKcdmCdYBRIS0Rljv04yayDTgrCwAgLcVhn7713cboKhErqpLYEVh8t8XYbYWLNnbW9BkrFgW5ZRL8JmwpXdARRGufiS3h7oER0V/1p/14WtrLbCUe9BmykXT1F6+OswOpUVQAEkLnxZ3u7k6Vp7d3N6JwwiDK6HAFADeLSba5FtysGp3Lvru3qV4qaz8NsYXGKx7/P6G1y0o0LYQeaWOdK8DzHeaC7ihSvEC96l8/8qPr/OriMDWc9tpMN2LlLlQAnMmW/Fg98Dweh+8P7C+GuZMXGfg7fXE6+cnXj89cb49cTwSj9khv9H12/nuXQCDq2TXBVaLlo3lIItJF1RTfr3SIr019NaQrcHQ8XhMGkYZdSdkM2IVAzT5YmA2tGmY4cBItCGAYiBgaNR49DnRTkdviWsA8I42Em0mTpqeUMOgKJYLviGc927c2MrUht21gD46K3n6EiCYQKt8Hlaa0peosXoiQbnsxeTHfk5pqsC5jwNt+LVRwvZYQ6UXhLx7d4EfR+/BVGBTHxTP20ZQ46Q0Fqaqu30ue57cpkGtIXr+JbYsW4AaG1kTyu6yTazNcypCbdq4rtowAGmb1NwxyDpRlIhljFUpG+r+maIqoyzvBdpw05zoDJZyOPd4XmubrU1rVY/dZig/+pZaycm0SrDayMXUkaV6/5WtO/bf2bpDTrAFYnMDOt3EnR7Jutm5UyG3U1zBY+EG5UAKNFpIUiZ9xUR1/Z6UklthCkE3y53KvWV6S3Vqa9XagCVv9wq1V637uRcet7yBvbUVcP6uwzRmGSxTyFfjaT0qLeH3Z0jtGNY90DqNHWhDP7X0Zrf7nPVvt+dvkFhWf2PZN8djdRNrul33VNPv9frOA5Q5d98RTtqQ+2TAXRuHFsOW3IkTLHmtQsPy5SsWxgRQGEmotLgZ7NiVO3tnK4jbeVjjgg6mZpApw9EqrSNlh6LMZIM8/IL3ixqE4CaUrfE8Enzv1m8W66n6eId1By4tjM2QHcgONk90Ermzxp2bLMXB+togSEkxGSH2pxT1tRCkF6hYw5bR7qIJrbCLcuaiTnWP3Qzo1COgJawnvGElTpeXhCWjudrybzX7tfF7MUtOgXGJdEKf11I/nQQvPnmv25yy+lcbRptwL6vw96lYgAvRBHA+L7x9esU3P/oaX/2jr/Dj7/8Yn37nG3T/gA8fXmBtkgHShoKZFLQpb8yWZA6zuSdpBHJO2BjAuIA5YFEMSuLRHS+Phg8vHR9eDqA/EP5Ae3R1JX4gr2sZoJXL6gwuE5YhQezEOd7YwHFceD5PnNfE83nh7XPHNSbOc+D57Liugc9P4BwN57jwvChWXaUMCQLpYZjDcI5QZYFhGsWBmQRJDYGHq0Nru3U0rQjZSpCovL+q4Qz0rjHQwG318NGm4WAKyY3NyTr2htfKNbQ1WO+woy9NVXt09JdDvZMaxtngz4kzSIiPCXRFyA1MfSX4GaWliUaBYrGna5kt0H4fpwufStNT48oKYNgqf64tPVIR/EyMS+kCsPrvsEAbwGzAoRLXMRLPa+I8GdiMkUBTC4omzUwHvJMtwdFgLamJsI5+NvgrBa82wVI2JFbEX/hpiRuwUwNT0UzsoGIdlV6Jiz4h88ljPGHxUDBSM+2uz9tMwG0XBpojGi0dZjqmXFJZDu70p5K20yRaN6FCpkd2dFWOuJVST60VI9YyhqFr83R6EM3SbXGS0WbfluFfAsCjwQ+Hdz5gnnqsBoCHm5rY8nMKiCk+Xt+HkWFq3dC7kdVr1Ih1p5tt746jNzx6w2gNw6sRIoCma6uU/HqIhsWICUyT3MmdAUtb3kgSTehraiSut9qBqd2t2LTuw1TVxaaCrRxoTXff3//G7/b6TgMUTh5FYgs0aKO2vLNaHKhm+2bWbopCg3ti4Yayl3ZIT7ZYiR05rEeFL+PvTfRW+Vb9n/T0wqvJGUYXz0uaAiBb9c0A0qe6lNo6z7JTfzfdbQURbG8/FV1NZiURakJoXMCyc6JGrUsKz9KowF+Lqm0BXsqIK+wWuaybVNoRoXdFEqGoIDy2EK9+8XYv+XabwfK1DRSMgAStpU7ZzzOVT14xigy3ipJmm/dB7ZLFYo+yifaNgl6ledG9lCj1ep54vj7x9nrifJ4YV0fOrvSUTkL54bxy+UJB1CgmU3sxJuwamNfAvC7McSGU4oGFSkhxizRN6T1HR2c6TjoBCKCg8XsTXcAwVa440AZwXI4xGlp3HNdEPxqaA9c1cByk0q/LgTbQB9AH0K7aq3hdGUlwIvAOs+VDMcR+ZAIeXJy6FtvujqjOlv5FW5TbZp4puW9o0TM5qSZL6O32nCtiTDN5N1A4WsFFOWkmQswmF/F2GNpsyOyIGWhdRmAtVkXddtMsJksi34rqS0291pEan/pTXU+NQ9vDA3ljXvRDBbxr3K2IGlg9a0ZwgygLcgIa7GqXGascudxldVPrBBWfcPI1b8tPaLPCvk/8vr5lKEJJaSZ0IJRK31xtRdahIDHLNLOqzmLWzoi8Md8LpNw8SapQkloY3qcBjr8qB1/9bRQbeK1DN2aPS/f7tbmYgXqtX8OKk/isstKKtrRZh1jBbq42JIC1Tk1gMfPF2nmV2Uuvk6X30rwWMKuN30zxrpildjsq5bN7Bu3ijyr6WGOonn1uzUmBE/vi30ucu9gSYJVoBxa2I0uUAjsmAgli4G7jt1ojZG1IuvPmWNVx3/b13QYogJ6o3b5CA742SCxm0qSh5GuPwhJS5eIF/d2E2w+ptt2KGPL9Bn17SPVY3sOTgiicYFxsNG00kSOG0DqKm5UTqq9B887/AreJdTsCDHJGZRCU9mFWhZsvaV/bBos3ZA1T+gf7fq53VwmZWZCB2Q/jy4fD99GlhAwLigauxY+fm1qsNVEkiXRsUFmfwzK91AS5ARhtKqQt+aCraSABSrCSBWWcl3u3dFdFjK/P5n2k4+YUQDkFUq7zwrwGYk54z5UJy9LWjCy9Lhd1CflSDyQHQU+BlBgDGaoTVLnn2ii1kWRr6GCkXZtzRkggakADZnZtRMAMmj/ZSEZkQ2zAMZjmQeIYHa1fsAb0y5A+mOIZCT/FYtCehwDFcatKcHlQcMEKcHNkczJX8MvN3Zr8N4rWr41DDzZVflBMqIEguarjhkTJNZdVyIJMW74nhtIR1ULpazxB5+CNTeQyJmI2eJ9okbBeAOS2UfgtL9+qP0qldgsw7aCohvwOWziub8vDu5mStUDVOaL+DFSqOjLlRAzpqDYQJHOQC5ysNgG5j/V5ibUSwUz+Mzzeda7NPd/evZF0CJhcN3MmqqfQZrArraxrXrXEamRZf07c4QzyS3BySzktkAJ+LX+erXCx1fWdWgl9XbtqQZR1Y9+tk+tSrcYNf7A27boXJHUEUsSodadPSQKAfLFWA0LH1naYtHggkx7F7Lrh3rOrtrAFQlr9ead7VmpHwKe6dN/zjjslU+tSriX8PueQNfnW8ovaw9aP3MB1PYsFptK2wLhu4h0g1afV3M2Etbzph37v13caoBScgBa+BU4EK1YMXLbGcmMtBoT0ljpNhiNiYKo7aBgX4ygVvtIqpC4nMuSKUx1UQ5P21nyLLzE8rMeBqwRzDZ41IQPAQMwnkBcMajgF9bvQU2UZM8tGY7E+WswKQYvvz9E0ysmJm0yePFXz71ocQDdRLirVbFFDbd3P/d+yMq9FIcFBqNH8LpepyWhpaHGpARX1E3CW/9Zi/A6cmAvExYp+Kl9ajJm504+m+VL2lqaozinu+p5J+/0of2rde2tOh9YFHzmYaqrlnJjXxNunJ16//ozPX33C85vPeP4+x7w6egcgKVg5388ZAn4CwBHsNHydwHki395wfn7F8/NnvH3+hHG94hon/JDYYqkc+8q/w1WSXUJYF6vUnHS+GyzZfJFn0xA2kDA09FW23MdAawOwjjEG2nHBj47ruoAO9NHQr4Z2OO/fSOQVyJmY18BwCvPSQinLfbfCTa6ftB9nFY9htiZQFSuO4DTU+Fp6AU0KAHYb22PmWhjD5IGrMDukJ2lZZf63aC4lFgSWcLYfDZkPRBj6oJ6nDcCPgXaKRUln4d3R0LuOo2FkhzdWDwWdBGvhWevST0JqzfPShpRgqH6iQMpCRtqlmLNYgDnuR+4U95TgOmau97OZRaGCDS0duBIUPAMtm0z62jJYK1HyoiSUds1CPkb2j2X7Bm97O6pVQjN0A0+lsrku8iGTEEy0nmgd6HUchkenuLv1YhJypZiWLDcJfsguyc7AyDRZgfYRy7OqgoTNotYSsaJVxFp5BKwY/msPyR0DexVHFMiWTEABZLU7yQAZardVYMBpvdmMe3k5mSSy4t2V1ulA77xPvediUdoCKs6qOI2tWoZDXlwZk2jO5ru5dMNuHCuqsrLqcizBy3s9yh7iSwOZyTEjqwxPytYbmnRotCeYmAjQe2YkZOT37V4/i6AWAPDf//f/Pf61f+1fwy/8wi/AzPBf/pf/5fq367rwH/wH/wH+2B/7Y/j+97+PX/iFX8C//W//2/hf/9f/9d17/PIv/zLuIlMzw5/7c3/uZz0VUYhVzz/fDdplgHMzwlmMh4BJ9Q9JTcK4/X35meDGECjsySprK4ps/XELiuL2c6u/xXobw4aRt8Usg8AnY0WDjgWM149uQvW+qRfivUUOZT0edGGkzXm5MbJ8tGyNq4qlHEP5Z1U0JOgyCglM6/vg99vt+PLvDV/8PdmaoOcuj2upz1eESBN2nmW3snRr6Gjv/qtkGScptT9ccHnUEqLCoyVOrXtaC02Vie7GXes3YZBgcQSutxPX6xPn6yuu5xPzvBAj3lUIVtRb/U6+9ECp3icx2QZgXBfGeWJcJ8Z1YQ6yMuXi+06/UONl0dUCMRAAXvqnDjM6iZp1uP7sdsCdR2u3o3f01vlVf+7158529q2OcoZd9PVW7hdt/Y55qD83f3+f75dhFWzsTYQ+RLH/XH9f30vMqGyDLTvwKkbews66ZbYAirem62mbGWmqDKmqnBojS8hZ576n7p6Xtw3o9oju0MXu37td+7tgcjGV+03IBFXwQe1FljFeRcpKA4U2Y6zxjptoNDdwz9pFFVD8BAWbK7je1FAtU8Uaa+17PzLfE9nvrr1SDLkCH7IlKRmfypFv46NO4V0q4kuKqMqHFSQupqeOzJ/cC7A4nnXUvE1sY8W9/hc7dNsvsuZyeV69//m4sT935mGDkfds06YwdE73+1T39/1gwQYPWv/vTNYXx3qm66be3mYN2Bsbg52yXF9XCun9cKk32k1s9/yn3mxnD2581rd6/cwMyqdPn/DH//gfx7/z7/w7+Df+jX/j3b99/vwZv/Vbv4X/6D/6j/DH//gfx49+9CP8pb/0l/Cv/+v/On7zN3/z3c/+xb/4F/Gf/Cf/yfr7x48ff9ZToZPsMPpJSMw0x8QcSadN30i4UPcaoHEbYHNP8JCAazUIDG0064nEu0mR2kGqwdUeuDS5d3WaLaCy17BiBGrgafLNAYsJR8oO3N510KiBHUjc9YvlBcJGUDqiqR9Lg0/mnVsUmwIkJsxc9vzkzCsHfl9g7yh/Q6N6D/37WjRu2hvTQmigg2cyevMVJLMtfK2jqNyl6iPTGpqp2NdK1KazEqNg3lFC5dSVt8W4QCCNz4/dmOvuFIskfUFLuNNDJwXwXI8lRmKcE8/Pb3j79Blv33zC8/UzzucD4xp4zAPlXl1dqmd5Te+Bg2o0h5iIOTAGuxefz1eM8Yoxnry31jDng60LbpsL9TWVO9/urUBbu17i2BtmMD2EYM47nT402WhY2Bu1BRmJ2XmPRj9QeqyIQaG4OXU7CLE1CTRDk3Mp+3Ns0OSm9NuteiZb5aZ3MsNgt/0m19Qi+yjAvhiUqXWTC2BmxVYm23pDr32p0nTaLU3iXG8N7WiC4EDMZCnrzHcAZG0QhnX+yw23mLo7GFmT+D19bbfvbRoeWw932zT2hpzSz23mNjT7p3xDihEqNjNKz1HVK5UTCay+Tagq1/JtF0ix2D+LyH2PV8i8I+ma6wsBpVJdudcKjrOtb3VV5qxMquUN6OneNEbldX9dlUUFDCITXs7gUUKGUHUQQYoFmUfbedUViKIC1rmDyS+g4eJSZlIHhRQLobQ/s7QuTKQ2JsaWBBP0BErRgGZ5a32Su8x8rZ7F11RKs+oAv9j671VVWt/fB7YG0vy52drAWjOq7xfHU7wDJjtornFpyzTxDi9XurvwHjaDV/O27iVTWlxdm1eXaccIoJvaHvzEnf/dXz8zQPmzf/bP4s/+2T/7U//t537u5/Abv/Eb777367/+6/jTf/pP43/5X/4X/JE/8kfW97/3ve/hhz/84bf6zOfziefzuf7+1VdfAaDofMAQ1hE+Mf3A8AdOC7gix+Yd3h+8ye3gg0RnFOKOHI649Lt2YNoB00Mx46LYsuPQZMLkdD0sEQM4pPH4GMCHSDxG4JiBY04cmTCFeWQHRMk1MLXSmgJgW8LembHAB+25lR4pYVQa2nT06ejR0LOhS5lOPyVnH7uewONCHoF8DODhVPE/APcOpCG8LXYJ01dp3nI09FoMQM1GrWvKqyWc/iu5J0CJVK2qgVDroe63OTdzVfCYdAYFdgwSxLmiKwALBknvklXvl0kAotkbmkU+E2xMFqVbh2ujPQ04kOhZxnudoCFLrZJITCnrExOD/jRmOF8vPF9PiWQHrpPW8qgeq+aa7/QykcEBXEya5YWIJ3K+Icdn5PUZcX3GOF9xzSdmDCBJuQO7ImxtiE4Wiu6oCocDyBZyV9tC4mYSUyaBXniy7NidugM0zA6YDY734NiMCLFrNDWr9FhgIlrgsotW6VTnMHsQqqwybqYlhDsgcV8zwBsX6wLpSsXUXZ9ii0pTycV+rkB51Obphsgmh2D+W+d+tbqNF8Biu4FQqW1jKXEjaM1o6D3pjdSSrJF3dJ/o3ulg68BLO3D0juPomI8HZgDHQa0S9UIHwUS6IvCKEjVmc2rxB+jZk4BPpDp7o54PfBuYoUtMach5ANGRKZNJP2DtAPqA9w7vB7zTuM2s43joeDno29QfYF8eX8FyOg3zrDVkZ5OkZV/gAhG5jwry3Ka4y808wowBhQXgHdYOrUOTf1eAkfDaYVENJKsS5eXoOI6Gozcch+E4DP0wtBdHe2loj8aKLGtKi98ClpD1uzWRPew5VhWEfmOMNwi9B1coXL325Vq3ijziP1cao9SETAOaqlh2YafuF3NwwAjYNeFjqtRa4Z0ZGV93VfU5GW5o37IDzR9wP+h7Zez1U7YRdCufEv1DsJ89u5qzQjFtwCzRbODAxGGTTLgxtV7Jw3LRdtxNGm25QGMSB8EKUG3AEpOtCMDYdJW1H0bd46NRs5ZJJp5NBr/962dO8fysrx//+McwM/zBP/gH333/b/2tv4U/9If+EP6Zf+afwV/9q38VX3/99T/xPf76X//r+Lmf+7l1/OIv/iKAorYohtOs2Op9s72hmr3P71a0Wcedtio0qUFMVLisQtjjIQItJrqOFoE2g5bpXxxli2/qxOllelWqeds5P0b9WzxWo6Yu713uc02Uos5ukZwBFJipSaFNwAdgcrS1WO/Nw/4JB/bMk8jw7kmw1Fz3r36rqKpc+lIe+rrn7/LpMudaqiHDrka6xRxFo87cf+ZExaL9xzvKVbRtYoEvqH/FOu4t4rO4nPqquCe5ac4RGNfEdV40cBqVitHdv1GkHDs1QlWwnNQuZQzEvDDHiTmemONU/6LcS4W1fcB32GH7drq9u7VrgaxbXnT5UvrLvdd/2tEa3AnoW1Oapx1M/dwP75u6XTSurT8vxmFVvdyt1nVn9QxnVt8q9rEaEbgicAX7ylxz8vtiM8diSPYYEdl1D/pu8T6f434Gueb0si3Xed/bYXCequvyqsJo+/D9e15CxaqGWePA3z8s7HXF1+e/T3exckgJRhPo1XhYPcVgK42bW00K2C3FVq6971Jq+3OKJcG7r6j/3b7idg/v928zwatq477G/sTaapuZFHzjeCwG07a+QtWDZDS1pCz6BWvHqhLtYjuRpb2zWsgXVLynLepy12vdgy/Tj/tZEZzc1u3Sqd2e4b6HWMETbgDPK72ctz2hLiT3feEIuH2ObU3cPU9kN4JlMy66JK0DZgUNfxKIrJFzv866ni/GTL3v2iMXk2vrz/sa9tq0toYvHt/P0jDwn6pI9u3tDf/hf/gf4s//+T+PP/AH/sD6/r/1b/1b+KN/9I/ihz/8If7e3/t7+NVf/VX8D//D//AT7Eu9fvVXfxV/+S//5fX3r776SiCFE9iTnibNyl+BHijVrMoxtElNWJzIvJB2IuMJ5An2taWqyfKCW0PzQPOJbhdS5rxmkNXvgGPAx2f49cZjdNh1wOZgg7woPoA6iWbUADTromgZ8ewBQSFbTG5gQHlrgDkRN1Uh9HW8WywBotiZSxDKIzG7YYTJ4rmt2v0IFyCaKAtk+KZAl8pctC0W2OO/A46cjnQ6y8ILjEELhL5q4S1R1lDKJYN9sGrTqZlQ7GMadpUTsAVva5akWu6ShZlJz5k5tXRFsNz3nMhz4nodOAc9JsaZmGcizgRGwmaJ10xRhyZW2KoYihEqNf6M10+f8Pb6fTXv+x4yO8yqw/H7TcBEwc85MMaJeTGt8/b8hNe3T3g+P5NWbo7DDlh7gbePsPYB8AdIiZWjlpiqmvGBvQCbrb4ttWLW4pPmKFM7swKbWnTT2HAsDd7JnqR1tOy6kEmxUOZavIrVod4g37FV9J6oheymK8nAiGsByDkoYp7y9IigGDYmmSBXChKqxnFXusEqCsfqp3McjqPTHbmV2Zr4GS7ovlKzlnLPbA5vQ2uFLSzRPNEbN4De2QCv1XwTkCsztxTd9z63bis8X/bsAiAAEEofbonm3t+q4qN5U3ltQ3jdA+lsSMxhDnUwV/m6JUHEUuFYwizgLW+l/fWqSVb6ippoG9pVvxvxYnxvK7aTDNg98bPwv44R9BcZAemFNmCrvj3NgYZAw0SH09l5gZYpg7JicjkuKv21ARCZBWi9uVn37jtbwGnlGHK9J5yGgqWX6NZhFjhaA1QV19WuobWG1ruYLtcU17qJ92uT5bbVd0kBTGmRVUThSnoWoLCdFlvjvfBHJixSK+8t1i6gVlFKcq2osHXBHgEWBjRtBRpVldQ6gxD3xnGgAK+kDxa3YBGC/qWJqqC00nSao2WIyaywrZYt3/b1Tw2gXNeFP/fn/hwiAv/Ff/FfvPu3v/gX/+L68z/7z/6z+KVf+iX88//8P4/f+q3fwp/8k3/yJ97r5eUFLy8vP/H9RRtGbTB4h0454QEv6j4HPAeAAfbMHci80HChpcEx0XfGF0dcyDhpGx6seZ+RMJtoCIx4wuIJiwtHDPSYizlpyvtTBmOsbAjfG3jlQlMDSpttjEHNCoJPFaZNCNpsJP7MXbJc4MTu+fzMZd613GW167JvSMIbTaAyJrKXyIzvwUF8o0Nlj8ySYC7KzPMXr75TPHtiAKhtS+xJLYBrlq2HWRO1FpJaUfuizQv0ASZaugGPB7KJpq6JHAZLdettHYYTyBN2ulqFkwK9R/cmxA/d5zSTyJcAGAnMCxhvJ87Pn/D8/A2er78f1zkxpyOyUy/jIRM9tcZaWpaAeSCN6ZKJgZEXRjxxzTckDO4vMDtg/gHWvgdrH2DtZVViFQvBDZCL9j2IzvUAQguVnpVvxg2WatqlzrOWyGyIzu8eR9dCqXy7TUxcGJNVbgGm+iKhXih6/iXaNi8+eDNXhpXGmaN6VdUGGzQmG8FNbCamfDzcQ8+H19N0fXtDzQ3ev2CN1saB0lVoPLM0BOyGHOh9YPQQE2Kb6tZtPZxuvkffPYXKqM3qWZjtiNiwPn/nCPbmU+cdmpI1FwybiKTXRgfCMLzKWUTxW535BitVZLOM6Q3c+JYKPdSPR1zxPfpepcCxtzMxvovNqei4xpPWJPYWEugCccEiJ0Fqf5hhotFcDWJYYfKdAcGTDX1usQzFJHHMu3eE69wVfdezrGCt0qrc0PN2fbXYbHJFShEtdPvfAT27+m8BA02p/IK59iagkLsEXQ/1RuqvkuM7cWDAGsecOYSshthAxdYT2UCSIpi6gn36VshG981lMFqrZ41RU9BXv2P7hO7MCXR+VQU55XZtqZ5dVntNBayci9UQd90XQC0pALbGIuD9tq9/KgDlui78yq/8Cn77t38b/91/99+9Y09+2utP/sk/ieM48Pf//t//qQDln/hKgG6dQpYrnWK3CB68IUmandoEfvUciPoeqBXwDDp/xsSRFzIusLa+IdMxpXtolhhxQr3A2XAuVcVSKZ4SkFUpZuxBz4Em8CCuOoNRegbz+7XW3KnZe33JjfzbU2yFP1g8m8kjA+pHYtq8PEIARWJf52ZT84hlhFgRc6XLFp2KJm0K6Y6qBqhIccFERe1FSd+ByEqlpYABTGmiWviPvREsrYrLTtRhAijZuKGyjLnBks8mvSHzlezYG2Ax+Bxag019huvznaCywhM6ogI2AGQiJlh183zD9cZKnuuaYqK4tZEpUqrHbZdrBy+yBGthgciBmRdmnMyv4wXUnRwwf4H5gwDrbs6hO7CA3G3RJqBTRFvKRbEttcm4tBIeSs9INNuaI7Nhtr5GVzSWtHtwYRsGNBuqVlA/pgVqJfwrERKKQeGzC4TYkpSrP8HKmAQp41J1zmRn4YSwhwevf+miqpFk3Utev/kGIqgvWgBqDhULybaV3BpaL1akZhUk6ObCXqWS98qlWsDrI+oaTfPAbbMpZSoXBVDWZeRKJhYPQFamjLmqYqfxWKnSAinFqGwy8d1i4bqBu5Mc7jsk51xudLM29ZqTtsZz/W237OB9zRrTGm/v0rGGtbK+Ey3XvJfHB9NFU2tHolIepvWFjFksRLX9ZyDdjKwTfBI0JrBYxrrcGzD4siipBiqZmb3tV7HATtdgCdVtASgnQ283Bm4BlD0m3x1inXb9zvv/A8V+1Xqv86lUdYHzrOTZfuxLEF5AsNZXjUc3gax1A++DATdwUnk0nldV0dlUx2ZpJmvsUYNYEzYXEF4r4tIzaczl/w8BSoGTv//3/z7+9t/+2/j5n//53/N3/sf/8X/EdV34w3/4D/9Mn+XhaDORV8BGABcQl2MOrMmWHaDYjh08Z15IXEzz5AXkRYvxaGgT6CNwIGHXQD5PHM8nPAzIA5YHMhjRtQReMHFi4s0Mf8Adv98bPnKbwRFBA6mZNOW6AvOaGJViCKJlD8PqahmJ+ZyrH48r7dKdpmKXqeFemvQteZ+7GnOuzqId/eMHPL7X8fjQ8OEAG8+9fECaIyJw+WeYXTAfmOWGGhL6GQf7Wmxv4KJ8JxIHoMZ+EBgDvthLtbmaO9IOwBqaPwBn6Wt425i6ZngXQHGH5bGed6ndw0GjhO5kUJz+GzMBz4aXPABI6/H2DfDpE/D5M6x9hev5RH++wW3A2gAGqUmbqWgutyYhHO2yJdvBSMRzYLx+g+fnr/D8/AM83wLn6eiPhn7s6+/lJWCAyY6gh2E+6E/TXhr8xWA9kHahYinmyTpgL0ijMLA2N0blvsFnNSCzrJCLQmFnZArsKogFZOZWXLkWmK7qKEtDrPLtDgKLiZlNwM/pJaOoyoexu+pIjKTTaWiho9BWw9IISmZW0zbf1QZzKoBXJV2SXYGxwmt1K1daCADmnHB3pY0SrcBvbX7VTFMg0TvQDoc/DtjjAfgLfATMB6l7/WxR6G1O+uJY4gPkiNsMr00dmFeUEXtj2VicU2UBFn2/GIAS764Nl6DOEPAx0IztDoophW9xedm9Z/Plr3HX2cH2v89umB0YPWCNFCwjWj5rD1NLhom8pPSPoDYkTYLNag1iGgv1WZuHWGAUgbSJsKmChUA0Q3anyclqEQJef04if7uQ+cTMAYuGGIkYhryM5oAzufYipKvROG6G4+g4jgOPx4MCUDA4jOS4KoxWDHN9YToiV+USjBq2FAtwJauCzmvAcsAwMC5K56cBsyX8SLYQMOpp+qpAYm8sCxGJbR+L2atKUgsUBzUTBPF5B3ocTClIc0+t1MVQ0yEwacmA1BpczRW9RXFR9L8C0+D0RaGf1pjBI9T/CskeX5ZsuzIm5jWAcxCAO918O5QCEkMYnWpZN93bAmRpDApnImOyGOBbvn5mgPLNN9/gH/yDf7D+/tu//dv4u3/37+IHP/gBfuEXfgH/5r/5b+K3fuu38F//1/815pz43//3/x0A8IMf/ACPxwP/8//8P+Nv/a2/hX/lX/lX8If+0B/C//Q//U/4K3/lr+BP/Ik/gX/pX/qXfqZzYW5Pg1CquVSfClaGSN6PBD1SJunlUkKHzLtmaGIkbGqDCeCRtrw5HLtSwZwlqjDDoaqI73nDR294uOOwKruEqDlsk6AScFYpmOUyd0NZVq/yti8iq0K5wFoTa5FYYB9E3eYO7x3tONCPjn4kuib0BCfJGMnFq5rUaX98t6guNqTeGRp8hexdfH8IoNgt7VAbJzf88CbFf4f5QXto61iSu4pOe5P5j0MIEwDvoQOAG6sPegMeXSmsingagRNYmZJ4gU0Z6r09uKnEhWiO2UxmfCovX5EOFyrm9LekLFWSPq6J83nhPC+cAp1TRlQFNBc9rGe0c/W5FnlGmlUzVMyVPm+FY9zAVsQlBqtYKQZ6lQN0Mht6/wpK7445VQZdHkC7dIbPf7F9CVYWBNkW/pndZJGO6k7IFgEyDgOBIp2SGXengNBIk2+YYdLqB2PsPoljltA5aLRm0rug9nKBqiWA1v2yem4pQL0DwxWNrmixomTcfqjSHjp0HypXzsaStjKkN439es96n4rOw4Cqp0qAnhiC4dxoSgiPWyRdE+uWytiB+zt2Yvtb3My3ss6HJ7c3tPotR4k2Vypca07qWC6x63ZrrGGvAeuqcgO05WisvxcgprD9RkLonEsbY65+aR63Gxq3FP2tM8wSnG8WZekwoLlQ923zCqhUzeLH7nTGu3Gwf20/UR6O2rRFNgU05jUP96xd57iebDFlViuo3ttuaTFgt+TAfXxvHyQuK1pFbqLamgLvLmHhl2Iy3vtjE+OF1sLQmnBTl1TqK2/Puvar3KtZQEGjUeM0c48L3M7ztvys/e/bvn5mgPKbv/mb+DN/5s+sv5d49S/8hb+AX/u1X8N/9V/9VwCAf+6f++fe/d7f/tt/G7/8y7+Mx+OB//a//W/xN/7G38A333yDX/zFX8S/+q/+q/iP/+P/GK01/Cwvaj2ADEYEHlw4YxruZRtUkAst6mEE5Io4yGzMNmlPPknzd4ULkYYHKBxsaEjl6UrZf7aJ3jq+3zo+to4Xd3SnWNeUnwvIVCoqirwxqxWNRFD4JoASyaZlBCYcBNXOZM+tTXeuMZC5qNR2dPTjwPE4KCA8OvrBEsY5g43VPGBtatPDbVOFNDC5pjqQa7Iv5TZ5yx29Aiw8UZSfTUxCqyhXGUmGtWAZon6vRF7qtgtz2AIoyr9qNbDeGJ0d1Ytc91PqApZ+GgIP2LhgcyIfDzJpszPCdIl0obnk4EJoCUigudJUoC5ijsR1Dbw9L7w+B96ebNb2ct0W+UhRmViL1d6KtPDomQbouQNjarFofKbPfHteCHBY3XOwXBuoDdcFUEoEh7UNhu1NuAwEI8ppc5/zlyUyLo+F8tOxCCCaRAYCgMFoaxZAseqUtBQRCFAoeU3DOYE5OP7HIEieIQ1KCfJEGTPtoshQi5pXz6QFUICqXKq8vQkgsDN0rLG7Nk/fgJEYI98ZeRGU0bujzAnLjK7Z3hjqtfZyfYoj1YLk/TMv2LCABmr+18Zfa1au9y1wMm8HN7Eb47TMPepKC9AEpoXScRO9UjkLnOR2eZ17E6LOZw2szT7UNWkMofxXXGL7Wlsz91CCNqUyUyun6lshQ9ncw1jK7FblvIFqnsl/c7gCzhL117S9rVBrvtZD2ck7TYydP6mF9AY6NyAr4FjPYDELKyvGz6h0xgInBSALbKznW2tlAVcZveozWNl2K7n/4iigkrdncgcn9arRXnOgqgk994EbQNnmpkvEuEe20OoS9hbQNIGTSETjXY8SnKHWqRov1IoyHuJ8/7avnxmg/PIv/zKWT8ZPef1u/wYAv/iLv4i/83f+zs/6sT/9NRM2uYk5Es0PuHW4M7K/56QrOCLVbIh0xHDEsBXFMQqmodOjGXp/gT0MH7LhQMeBg5uQIqkDhhMNbonvwfAhd7q3FpcJw4BjmGMUg+BUd1cVTmuG8m6Y84k5n8j5RMOFQEfTZn+5mlTJdvs4DrSDbpglWroiVaIZSz2/BnkBIyOiR3N2Q8YW2m79UoIWySVRjbWLF3VNNF+DOnakWoPTCswo45+kP6d+z2LArK+PXRHOBJZpVhzrfEpOxiaHnSxKPMiGuNFYCQ3THrofgakqKxtPzDlkd0+maogNYRUET4LsiTq5hoEGZUw3XADersCn18A/+uoNj68+4w/++BP+H59fcTw6Pr4YPAYsJ298tTKbk2aC48J1XXieT7y+8fj8duLzeaG3juOlw48X9OMD2uMDvD9g/aCOxtYWq02bY2Lli4vuBwDjTxWDYlqYrfQ2lvqzwzLFarW1ULsWb25ItfynnuUgNbw2IzIfI5ON3FAl9A3jtsV+cyXOa+L17cL15L2/rsCYbC8x57xFcqSR+wx06UMO5xjt2mO8Me1ydMdxNLwcVQECOAYsnN2iYzAGPx3X800qVCigqYgPKxXGtZNlw907XuSq673j0Q8cLdD7geYDZvFOV7WX9ZtmYG1z9bzquEcCArPJnH1zW2uDWSuaQKBkYs6BHIMVf2MKGGsjV9o3R1DPNubePmUSmOYEJWcir0RciRzJqTx0S5xzEMFUlVs5SasUOLGBkdJzZMIMM9h1eEzHmEambLBCawZN8Zh6c7SDR5Uc9+riewC9s6tvK6bznlq7AeyIrXkhCOf6voIVtDXGt73DrauuY2mRWnNEJ2dCDxCmJxoa95bWKbReUZhOaU7kMOAylsZfNGKc1Q15FluRq/Myg5Rlpo+qvFlEXohdNABe2i0TmGRQbhDmUTDEqyYQZOB+odlAx0SXTrJNSBdSCaNYgM8F9lkRS31Nc0NKu2jSKCG3JjF0E4b2P8DQK7VfOiKYxgn+6QKU/yu9KrKn1XmgedlzA5EqB2xshkWWMDiwMgE0CV81gJNdKKEFlu6iB6wlHul4oOOBRnpKAqWhhe2IpBuloi+sCE8ttiuyFENQm4M7xYkUWKWER9WZbYClm5Vjx2JtXEdNKvNaJMsC/It00kLktWhCqaoqNW0odX8xfO/vcd7W0xB9v10WKzNaUUxtallVN5WiMBNjUIteADaxgjV9ommB5MeNxUIU9W3TANn3J1SN40awhIa0saKXPJ+I8w32fCKuC3kNodHAe1oLmx0GUAIN3i9umgHgysBzAJ/eTnz6/MSnT694vj1xPV8QowEZaGWJer+hkVpMJ8HRmLjqmCnipNF86zhkwtV3AzK73yOBBcN67ivlBhSyQAnFl+BRC1DIq8Ybaf/URrgXKT02EKzE2oRdrFS5SW6L+RmJAUaBlSZbiYYMvF0Tz2vi8/PC+WRa7LwmRqivlBbvhCJld6AHn61Oxl3loKtEleWRx2reBjEc4hCS49XC1JH6wrxOGDosG+9P7XkLq4ipUin2EtG27Ymy/CLWeMcCGInbYNZE2oynnoZSwJG3X8itl/DyX0kyse7qHr3SULGOaqdhStsVC8K0NVPXxeJG1hyq5oK53yr3KYdSfcqsaJu/NaqrFHbWE9af01TpWGk/HmvNSY0h2xuySq9QbRDulvfvWwzUoFzIuYJ7rBRx/ZO0R+WPVXLNmx/3Wtugny8Gpcpj4SxDR0gMW+uu9E2LiNGZLNfWGcvVPOetAGEPsHU/aoVYmr9K265Vd1dpBbCTAgo6qPUq/5KFYxdo4T6lmSudiGnttX0H9v1Y90L3HhK51nNoxWzZ0paU6P+d5w2Y4n3n07Onye9JYtxf33GAYqzbDmB2w8tL4MOHCzM6Ah8FUDoyDWNO4GwYCQAUpZZhjPkJ+AFYh/sBbwd6N9igWO1DGl7C8ZIstUz5Dsw5gRF4vSb8HMDzQp4D0SZmz0XhXWYYzTG7nBtzwi3osdAcvWnctYmZJzJO2DzRMQHr6G6w7rh6w+Nx8Hh54PHywPE40I8mgJqMTIeqIsZcKaPyIZgRSrs4Wn8QPISzBoxJRbIslS9eiXVg0SYWm+7zEsmGJp+tZnYwiNE1wBumDQw4Jug1A/XQ4bPcUSRqgzMDZtuTzlSQ52JQ3JGPF5TRHRdgY9pIICGeF+zzE3g7Ed88kdcFv07Y8wKeA/mcsEGvAooSATSAvZ2wNBxT1Pw5Jz5fwD/+6g3Hj77Bz/0fP8L/63e+wsfuGN9rOEysSe6+q1y4UulEsjbPc+BNx/MKCu6OA8eHD3h8/ID+4QXt8QI/XlTRVJt97pVRrAfvdS2V+rqq2JhwqbRP5qDtfOf9DoH3GVrGS7+ViemgFkQLf4JY7srEmYkLRm1JGs6RuDJxQeyMsa8wG3Be+PoceDtPfPPpFa/PgTECz1OasHLXBK+jN2XuAmhK6/Wj4XE0vDwcLw/Hh0fDh8Px4Wj4cDR8fBx4scBhuSo6SPoJXF4XxtsbMhP94XB7wOyoHWJR3TMToVIaPzr6C51ZW+94NGfZsTmq05OkS++WYRXD7XUqb7o1QA0ylZKoDSvISjQ4Dk88OmHBQMNQd7iGhAcFvDnnDWhrM0ymrOOaGG+s2Li8MV3tjJpzct2bMzEvYA7bHiUKqCwoDEfn71CHAzzc8aKKL3OTKeKqgUSGYw5XvyRHK0F0FZt6Q9ih5WQi0BHWd+Am0OyN7EqxFQ4BNNgCHHS54ZFmq7UQDCDd0oDWWaXodOFlHtjWM18+NtpLTPPExUy2Jt1Vgjq+1uWJI3M/3+g2ZiJPMYpz0C7iYnFETjLmBYap12LjPOYCJWyVN4krxYtsO6UEoKqbKmjt3tC9rcaBBJFqoKplgdopSRIENOlvc6sBrfR8GRWu86BEOo4GTIcdDT1N1gvG9NHEWo+iTCXB96i2K+w2cksL/d8FoDSj2yWyIY+OD4/E9z5cnKj2URbPHZGGcU1kCqBMkc+rDO8Ba4xW0Rusi315DD6kCZacTnCjUImoBylkjAs5LuR1UdcyU5PKMR1U3/eGPBqsbxFiGcmZY+WGEhOZLF32rIiFqv3lZNk7mjqstia9CxTBjVidPC1CpdOVj5RQDkrqtAc3n2xwnyvROVc+fioXnUs8y6CUEVLajgG0G6zBD2BFC4A2AC0ImUOMkq0FIu6J1or0ANjoAifFYaS0LfKG6A+p8sUGAAi4vDYC8zmA1xP2NjA/X9u6/fVCvA3EcyxNA2ACJ2DPmYrOyiMNBJ2XAZ/OgW8+v+Hrr77G52++wfN7D8zzI/rq8JiMMDhzeXuK1apy25EYA5jhBKLHCx4fXvD4+ILj5YF2cGMkANtKBD2CW868ZHxYviMVmFNBz+XIwEWEZZFcgDmRktUiMkRLgSFgqtIgllZm5sTMiaE0zwAr0sacTC8GVD5K0BExMGLgvCae58TbeeH1vHCNwHlOTOXqfS2Qak1vMs1qDUfreDk6Ho+Gl0fDh0fHy+F4ORpeesdLb3jpDQ8zdCMVthhBRbdxTcy3k0VPcag/UF/VRHOy5HkEU5DhrECxo3Gz9HLmwKoOsQInJdiImyBXCGXFjkaQktokVyFMYOk/EFvQ2RpBUAeL1Uq07RE0grwBlBRIiWC1xWyOyzn+3IObjPaiJlHq0sHdGDHAqInIhAUds7lSpBp3mkqt61kB6SEmxZDT9mklVrVXRioNIA3airbbjUkpBsVvR1tl3eWuCgMypU7Jm1hzTwOm8cJVOcRKOLJ/rqWKNJEBoh0c24MlqzE6A8NG5pGNJYtBMa0H2Avc3CxVBAsu4trs7Fom8640EvMUN28VY+m0+635pwK2Zg3pgfDEbGxV0ftgJ+4lKK90nq2MwGaqsMbpl7LeBdRruEpw3gzIDlg3eGfBSIc0nxUYpYw/ZbWA5Nxdaeb6T7q7bw9PvuMAxYT2zB2tAb2zn8PjAMIPmBOBR/DG9RHwSb0KUhucjJvSfVeDSKiJruoFrMdI1BxL/iU1tHK71ZQKHHz04CiAIs1EeZFEjZtcA56Dvjg9+rJExvLncPtyApfV9o1srjB3plD7jXir9JQGlpuuP4msJfTnoqcSuKydTtclUQPfL7iZraaMt0m4wcx9gIY2P72Ux6wwkgs1N/LyXMhBBsUhloYPHlDJJWvK5YmixYKLpdIGzwG8XsjnQDz5fIw2lzq2CNjADZ6bTG0wejY65TCKa58z8HYOvL6+4fl24nxemNeUQBnvQAIkqisAxsmc+1Ylb35rTRVXHa1zgWYfjmJFYr1nAFgVXfre7ly6183FSulq1jVpQzAhnTrvRErwOJU+ICiisJydwwlUeJSge5UfB1SBxRx9xFzphjkmxu24Kq2TQDZGhgy6lGY1U18Qx9EaHk39WprhaNt1tJcw3VVGq/HOoaoxMcksABfCBrKr4kTpjd01WUJUB7Ld1gPYbROr+6o5dfu3dZfr4RatLrCI3M+kiEdb44P/boCiVyxfFOJOucXK+2mXyCjdYwQrMQLjAlOGI3HMPW3SyIpsTfSWcXO68vpblnpGAsu7ENn5ZgbS/MvHKe8piRJk31U4m/YXLEVRH/dKmzU+BY9qlNfP3NOZ9/lWk6HYwvIPepfakfaCFXrQ58d6fnu9LGJBKZSbN9N6K8s154rlWADlJjx+l965DY01P9dnAduLZK9K9afVykBf22KcsF2/BXoWnaSbYe7vvJg00bBDl9txu6dlfrgcYkOwxrBQYaVs1JUIBLpqpghbDRPXta9F6/d+facBChRjMPsNwALWA/5IgfUS9rB23SIoYBys1x85cYH9PuYRmD0wfGC4Y7ijWQDOiHEa9zM8BsInF+uDuUY85MTakumT1pHHC+bxkSVkfiAGQYx97DAbMLvgPVfU0KIhLeEz4eOCn0+08xUJwFtgZgcw4R1weTq04xCb0tHNFZM02HDgNNgZ8CvQhprQZzVQIwthHWvSMaeMNekzSs+wF5ntfMjc4wQNx8osC7fpBDiZFmzsQlp3ADZgCLiJclwQRms68yp8yykRrwkcWkUeDRkNGAMp8RsXI/B65kX/mfMCzoE8B9oFHOF4yYYPYfiQjhc0vIDeNY5g5BF7oWgwvPSGQwFZGhsHfpWG40z8o68u/M6PTnz/5cSnnw8tZqSP6zpKVoTgQt8a0F4MXkd3+GHoD0d/cfQHoxV35nwRjmrSNSungNi5+Sj9QWCMAYA+BQy8qSkp87hQd+1Y+fFYXcDHGBjXBVwDeQ3M51Mpg8C8TszzwnW+4bqeuMaFOQJzDMxzIN70szPhB0vIzR05B9oYaM9AOyf8OeDXJLsXsRbqLvDd+07ffP/F8H39+fd1x8fu+NgcH93xcOABwyGWodW9MG32azBxNZwRiOeAXYCPgXiZyEil3CjYPa+Jc0w8g07RjxZ0YzXNnUm/JRsBn0H3apQE3CQQ3ABFBTHaI4o1MbisVl3siQ1+38KX11UzsjUdpNlTiKZF0M9CJcZtiZXJvI55rSqrcxpGdDZD7KDwX4H0lYnPnnhTIFIxPRuwQnZEQbFsD/jRKGh9mfBGhslmMh0UBrt44btElgycYbAyR0xxpiPDcAUwL8e4gDwT6Nz8rBs1ZsMQFxmaOAcylc4MVXpqzUkhPHetJxYsQvDbWpdJn6MZ6DHQY+DIgQYgpzHF7V3B1G6AGlFBz40ZQeDK8i9JXJi4cpZFCJmdsou4gs93VjC3A536UzM5Gnug2YSbAoMKDiI4VvSzsKQPSzfYw4CHs8VaNwKVpF9RdgO6sZhCKdOezAY4glIGU1EJOpoFyI3ICNCAauba/Nbfq/C63J4DvtCWLX0OGW2yzYmrcbxdnXYD18+AUL7bAEUCrHs0UWyBr6oFR6Bx4h8dHh3Nk+khdKSxU+hdDLfU3bk9Air7sF4VgRYj0vW17IbVgM1AJz0/OuzRYEeDTZeTpyjTEmmBtJnPpPHcmEAjzT4zSPA7aIDUDLM5ojnCy6VV6Zu1MNoNmePGomi2bFwBGkbp0sCI2tK3DsVj6T1NQIUlbOD3HSvHauWRIY+U0rHYbRPZgUisZ5jaXEQoQM1oGRkUQIEVSF/Up6bJKm1jwCIBb1ZMGNQWKLKOlphMrZJI4VIq2phRIYsYVOFkicMT3RhRNCSrkM4n5tsb5tsTcZ7I75EChqzFeVHM9zY09Nbx6B0vjwdeDh5HP3C0zg7CayzcIi/5D6xKLJ2PoBoZrwjknDgHY22mI3ItbGUbn3Mg4sIcF4HJDMR18TgvxHlSTHwOjOcpK/pATDY0zHkh50BO6UcEeFghRQbC08UCNC64NuEItJxoOdExCUclrgO4gLZmBCgHj0cvpsR537OOVJpU1EMKwEmMjUq5ZN0JVHgrdpBzKl2VLtdEXkOGigRvkewYO5Xastu1Rol6o3xA6vNyl+LWeRRorlNNKH0qtq6+H6CnTJIJixsoMctbOonDPyRSvEe+iRoyuTQtBdiLr1/rgIUUHNWic4+nO5FM9naDrGKb71tthcV2ez6OVCuEymPlXm9SczVqjicwsRitlOOfyTvfJ0h4e6VCdnegql6x8lfZb7qfSVYF4FKYfrGPaHL5uoH8PU24iGRaJemoGmOi0tkzxC6Gr/HH5uipFNcuqyWTabjEMGDtVj/lSD5jaC1cEppGjBYCiUWWVDNG3gHeH5jT48mB2bh2GBIYeJde/4n7gS1095LtmPrahRFU2Y1lql2jbO4FbEgE6XmUaVnbTOO3eX3nAcoWPb1PaQDMk5qrPAxAexxocSAs0dER6Eh0RHa0o+9cs1UUn3JbjFVOVUp9gyLcAifdBVKclRetyYjMOGyOBj8a/NGQw4FhN++GLVnyABG3AEq2SVt0U418M0SzBUxCIIVuk9wQ18S9jaBSbu+NDxJD1mDFOwaiaFTT4q8So/K945pXi2iZHuzgfi1CFutpLHV4maFuykaaF1dEI9BTLEqxiQUci3bdWCUBTPiapCieB8t1wkJAjlHebDxGS1xpONNwQVZGyXy6TG2VXkpMpziNACXoOHo+ka9vmK9viOsEgm651h3LWpWjBc0cj9aRxwMfHg88Xx54Pl7w0g8c3tX4sYL+ApLBfDq4qc2iz6fGqEF+FtTWnBfB5wYobK/etDkRYLCaJSv9cg6BkwvzPNefx3lKYJ0CNBciLkSwX1RksEQ4CVZYkUNpp1L7sJxwnytSbJRGkpWoTpBmOBrLS4/u+KDjpZuifjJZDZB7ssZhVa1keX3wmafoe7Y0sDXWssz0EAhTH6prIsaUoyrLd6v6opw9pzbAGbsJZ13/Kn3HFwEMsBf+G9asAq9bllgAXaxlpV9Q+XrdK5OHheaRrQaFO0XDvT6l59J7QzuIcka1hTnIErV8L5AouFPPbz3HjViwharFrO61eAGp2iozvkhHcU1YIFPrHc8/V5qwNOb8d2keIC1KSo+C959VnimJcuvd5mNlareiN9cN0+q0H1I9slxAz2RLMMMwbWJerGbzTKU4izXSbZBtQY7qLZVK0fFMB3ba6T2oqMqnW+qt1nAH0IWlBFAYYNlKn1TVVIBtEmBkMSoQm4UOq0FhjY0apHoKS/+nqr/yYGqq8CNWqtoorJ9lQKyxaqFquIA5e/gUs+W7o+nv+fpOA5RuHd063GiqdRjV5t2EIDWkszVSphno0REe6GislU9DDP0eQBGaUTCatXCPSSt1dzQpqRuA2RsiEsfLRH9p6I+Oo3ccraO3B9rxgmb0L3mMA3N2XI+GvAzzghZBKuH5yBw2HXgm8DqQn09kkuGZ3dhyvgVGbaweGA5MOklxQ51gL6A1Yco8CwIZ0C5nQE6ks+ooGwdUVMWIE2XEF5G8hQbx5CLgHktMunUwBRzX8CWzARqPYQm6sBaviCBwC+grdTpwCeFq5YMmhSlSi4mWLPGeqhhiSSbFwemBOHQ6BxufzaCr6WWB8zXwBsPrAK6bdwJj78TwBNpAdMOHB/DiHYc3PDzR5xP59Vd4/Uf/GJ8Pw+vv/D58/P5HHN9/wdFfOGFDTdLS0dDxoX+g0/D3fz/87UR7DowfP/Hx8YKX5uieaD5huMAVyYXj+CxGAtNojBbKn+U5ENdADApRKzJvEUpVTLQu7cC4kONEnCeQBDXznEznXBfm508Y54n5PDEuicklbGaLiCdkyaaFa2LmwJAJ4rRE9oS/JI4X0Ar/YmWHTcPohsNZrh9afM0cj+PBSpnHgQ8fH3h0x+9/MTxax+GOBxxHGnpyjvpiH0zVN87N0CgMB1ht0KwBZgiwqqKYoTYPDJyYg4AsnxfyOoHr5BbSAnYAeYhti8DQfxODqU0nCuBlaPwrxWfTFmNQES6BiVyHhQsst6Ax07fXSQ7e5dxzofmkSF6+HmEsAjBVxBGoOStyFKy1TAzhinST7iXhc8KvgXbJt0fiawJIY/iWTBnsTImYi7yVwKq3UnWmXn4fACIHZgDXuHBdg401r4A3JcUUVGLSPXhk4nkmHgdwDVYEZSPQb8w14WgPBB5If6howGgxYayMNDVJzExu5H0f2UE/jypUGNqk87Z2cQHjfJPGCpPdls2ADoLeFobWQB1WrXnGcYBLY3NwjVdiGwQkVUtTf4/VZJEtbBNnMiUywIB0NlapXhM4E3g2w1sD3hy43MDscROodaR1ygx6Qx6JODqik/VzC36Q1nmUhrIQVQ4grrU2G1iwYTE4ZrT/VfCVMyqWJXuyYCTvIj1WpoBKwm2gaax9qz3+W//k/wVfCwxnqeoVZZTVn3w24E36EynhRT36/YjyMeHiloGtkh+TLMWNlmSuT0pnL5fJrY1uWnQMN6105U2Ru/TXHLE2eRA4jEScXEzRJ6xNqrnvAq/QkVFWRABy5axlArto5UrDUMGtGxexuhlHMt9MWnH/MoHTjg/f0c4VBQO3Cb5BSjEnYjYVmd0EcMWwBJiXT4ILk36lQoNETeUU0LHF4tyfKSpQw53KZo+d7dXAHHgeSXOqRmYlLJiS2qMLRVveu0KbfDjcA4iBeT3xfP2Mt08f8fr6GedoGNEw/QFPlkzuKglXm/YDH44XnI8XnMcDH9qBozXRpmV8rV5CquCq6HhmYCQwih0KcIO9Lsxr4O0tNHYTLQYaArNPHAcX1FVxdj7JNsgzA5W+iUssCxkWbriNOX3l9cumnCZvTHMs4awBJZ5oD4NNR3rieEvMw/DorjYoucWnRrO13hsej44PD3YPfulsJVEllK45v0VNqTw9yGgY58OqyBL44ZB0eaEkzCZmn6owKQdN0hqWc5tVdSiFK2biC0ZupXY01orVM194XtX34nDEWhberxB5yTJr6u0fRlX7oda21Lvdcrcl8M8w3n9NGstUfxX+HnFGfT6v2SLq0wGsnqI7rbM4ivJ1JXtBPxMCoohAvcs+FAulTPwyt4u2F8S1InrEVlCbMiZdh8duEaTS2c3gmKppqkilNoF0XZ9DbSzEMrh6eL0TP3tRFCj3bcZWdc13XmETxREiNVYOTQDVqqUHK4aWzGCV/e6Sa9S6KqlAmZgUmx3Gc083GlMWcz6NppQCNRWE1irMyM0kM5DgqJStNefKMOXG3Wygwj+n5llp226qas6v1Z6F7AmU4rfgfak5bkabyzuzYlXs8C1e32mAApmjtZRD4ZzwOeAjAFy7cgKMrnwOmA6fF3wOtDnQxqSvwZiwi4qkyIBdE35NzGuyCVWDqmMAnwQhPdXxFBK0RdC0bVJIxwrRqWMAOekNMS9cE3BjY6+ldB+GeCbi8wReL8AvOuSm+oGMgX4N9MHo55gDjwi8JCOSjwAeCfSo1UDUdi3onmDvC4Dl2APTB/II6luqosigKJmnVRVAtbIuozXf1GYh6TuBV+CEX/gfy6LZgI6ma0yhOVzly30BFC4OVTtf2pf95p4ppoDCS6RiWhcF7Ek9TQOjzHDENOSVwEiJm1kXaaox5nxziu4oKUL1emnd5W46kHnhevuMT199ha9fOr7++it8/9nwyIZH/8jfTcOlBb3BcbSDfg8vHzAeHzFfPuLj8WDTOgCGicSFiKc2HYLnKehyxYULwDnp+xIzEa+vmM8LcQ58fiUrklegzQvNAh+OgePFcRzGvkTjAs7nKk1kKvOCxQXME5CTMcNtOh03SGjdgw3ImhYyY3XPyMlNyIzW1w/D8T1XxRQwnonMho8vfVHN3gnaDIajPdAPMSgfDmpROiNnA11fXeNwmSFOdUgegTkpEicyiGUkVnmKsOSGdyZmTnif6FPAXIJEC3Y6b544DuB4ONqD4zoyKI63iWmDKSKxjIYA5BvBoUekYXL6JHA2gSAwnSmg4lg4ZYNu1BgUS5j00eipe8DdkU0DG1s+RDZpawhvM7ddQA8GG0cGutIwGbtU2fS+gIx2HeitDNmUKkDDlG+Rye8i5A5EhRcZ5nC7tT4QK5DAFYYzgFOB3bQ6HBPSEk6gjcRjAqeOPoEz6NqdtlDjOlGrfgQNK5Cgx4hhtDogJoKp8SqNyrndYNlWgmMtKD4ja24EXLvnPcFqZbYLV/bVWbkh8qBOJgN9DoGzEMgr6bPmgAOuoMd0blFVpc2Aw4HDkB10Pu+G4YZpSgEu4kcnIt2lNwdao1XSVrYSSNiGnaXjYqBHFiVzLD1UGBkkNuMNpILGGCZpidL86pptFqx89Z3icwuB/tLC/d8EoFzffIWznYj5xHU9MT99DfvmM/xMOF5hPviQHhMDAcSJ+faKNk70+VxWxOdIfA+JD1einaKsIhHPC/l24rouuTsSwboi/z7JPhzXhPuA2Yn4/IqZD8BecM1kCgZP5PMTcH4CzlfgekWMzxhh6N4ZEVjC0jGvhvM18Pr1hdcfv6o/TyJbg2fiw3Xh9316wx/8fOL/qfTTzMBH5Yc/ouH/S96/vFr2ZXu96Ke13vsYc861In6//OU23enRs7m3di+KBQXBik/UDRZ8oBY94j8gakVB0IIIWrAgaEl8glqyIBZEC2JBLLhB0Mq9etGDnON2752PX0SsNecYvffWbqG1MVak7qOZcOWSOJOV8VsRsVbMNWd/tPZt38c3VHkS0K1jL8oQox+a/uJobSf6EJBQkAOPrkP1rRM8SK0ntnDsCA94/cRbjvZWjiMrywk5NDqAz+BEqCaJLuHCHM6rpwOl6Um0PdM1s0vPb3SmyBf3NCrKQiLHRSTMPJNxb5K5O2HeQFNhrfC0wG2f7DrT+bYgDAoNdajuMDrFjVZgKYWlhhmYzzAb+/DhE7VVvve9r3l+Xbn0hedyhJwJ45zDC01D3aJ1iY+ygBQsofBtPPCeCNCcoJ02Rh70zsu+hcR5TMYIwt58fTAfO2PrvLxY5NrsIwpwdZ6fhOtz43KtVPGEawdrqUFMzSKEIdRJzsuheKSi1suCT8W7ULZC9UnFKB4Hknk44u7DmRqcJRFnWWMkqqawB5cEH+FIqVCbnrdzlYDsw4SwJXTvp/rJp52oxBzE+zujuBhjgkqE5tYM+iyE92Ku1e7wmLB3Pw3LCjCKhomianb1kUy7tMp1rSwt1qcNO/1f+uxMj+JG0y/gKGDf+FFyFixHN/5WwctnPF7/bK8dPhxK9WAQmRWoDS8NXZLblLwasVRy7IEEWA/+DTMUX4dRWO0DSqBXU+Ly8DqYbeKLkZVxXJaLhgJrWZClQav4EuMCWyqztvCLyjG6ayKPRx5a39FdQqmlgrSKLwu2NLwuzNKwUpjqjNaYrTHbErwZJ2JBXBgOnRx5kIRL5VRVBeHSYmxThVnjdXc8C6McrRwIjr1Z8E/XVOiUJJcGuiHEOPwYQ6eHWo7Ps706iTn5PAjyeSkWCstasaUwZ8VGmO7NsTMfjoselO1AnByaCAvCKkKDiDn1E79Fzm4xujKfwJE+PSbYnlDR0ZDGXEusgik6iQIhbe2KJ1cnCdJV4t+ckqnd+SO7BWdl4icXqFqcr+qWAbrBRSkSBW478aEYryMxYi4SnjKtHj/j5y3sf/vxY12gjNcHoxnYFqS/+wN5bJQdhI4Uj6rWAg0w2+iPR6InO8U7ZpMyjRWnFY+NJUmm6wP6CBLhAf3NKNUFRc0oZtRhSQCa2NaZuuHtwVQlaBUbZB6MjB3GBmMLyE8dkQVNnoh1oT+Mx2vn8fIASVgx/7yOyfXRed4nX86QvG2EDT4FVi88q3JRQfaOb9FBjBIZQ1qVagGP6tFxkvbMiXj64VRUOFq6qMw/g4JPdCrZ2p4seP8MeZE8fAEcO+Hp8KTLQ/YYf09Fx/HfJO5LSDCJb3MgqodHypHMyvE5x+WaqhdSXiqHq+9hGBXeGYsql6JcdbJJHG2HbDQ2amwos6j6lyEs5ix5QOqAOYztdeO+Pnj9dOex7exjnjYEyIE85U8hqRLTepKpDwL2yCjyYQO1Pba7R48+3dnN2bc7+5g8ts7oI9yCXx70x05/dF4+Tfo+6VtHbFKKY97wdsHrylKDi1WUGPvUMP5L9TdlVApBfEXiz5Zb2PhbFepaqWPQhlCGxVjKY1xmI7lLWTQuVYPX5WBruE/6WCktyOXLojmmgUJLH5hGW2J9vgXP5fuW7/ecufayCC1maC1YE2o6kinBzSoea3J6dORbRhpUiwtwqsaFmR20E55KSw1zuFaP0UkMI45wvsPj41h4b1blx0WZpHqJyyj4KUEkPIqUnMOcC1zw01RPKRRXptRwQtVADUIxGGtKpkexV0LpcoxKLGcch//MoUR0DkuAuOiPy52S27wALfO5lgqtZXFUA6053UHjfHDNYqk6aoUyjbpk0KVlLMcR11BqGqel71TMrvJneovaePMdkc/quUR+y6EQseAI5e/FTRkt1Om7cpB24RxTHR2Yn4RkOflzpyT8QGk/G/B8niavx2j7HJEcSIhHPlQNdNhzDKyjpsKox9ss/ibw87cwyuD9ZIFwcGI8ChQ9yKeJfjGDA6hzxvfGSV/jRBgjLyskPxKFi9iJmKj4IQfIn+szA8I8to7XcR6Ici71qNdSeuw5EkyUucqB+hH/jh3k5Xh2VY+cqc9H6f/tx491gbJ957s89kb1LRQUH1+pLwPtStF7OvIp0jYmgzYfyOOFMTtDRhg2MemPzqXAxWq48omESdrrAx4b9tjOms/HEi93aVQJ4/Z1d8wiEK5/fGWMYJqPuTMrDHng+9ewfaTcP1K2j5T+Ea2NQhAqfS7IEPoGn77esPUj/daozwvl3YLNqPIvUvnq61fW+85qxlcifFWV760LrtCs8W6BaxXk5ZU+O/f7RlsqvTbG4iyXWCSLOj6DGDXZT8jQ9cjAiMwJRML0iWPxHnNJi3k7nlwNTzJebCqTSB+1JGOpZb4InHLDZHjFuKXHZWWDPECiWz5n/RxSwnkWSibRjZuQ/I6oTCwVJcMmU4Ib0ZkRZmeNq1Tel8ZPLI2tOE1mkLl8UuiECF1ZKIz0SmgifOHOs05GGeGj8Qqvr6/oVvjut77PN777Bc8/+RyQvhx8oOBpqChSa87LG740fInDzMTZbbAnzFp8MG3H3GlE+nSfxvb6ice28/rpTt86Yx+MlwfbfWO773z8urNtg8frhvmkNuUx3zHXb2CXgl9WWqlhnf7lE8vSeLq2IMiODreCvjyQ1w3VRl0a16cbS99Ytgevc6Oqs4hFwfSAZo7sFh9SaLuwTuVdW1jS6XjpzmjGU11ZL5XWlMuqoaCZAR0HshRS/OnOS58MG9Es5qjLsrid5IW+TaSEG29bCm2BUSq+hqfKwQXbTbgP56WnYmwGv4VliWDNtjC1gQ6urfL+euWr5xvvr5WeEQWHm+9I9AQ4eQei4VoaCdhhrqf4Gx9GBbSkHDr4G3giJ7zx09SEOYXq4ZBt1sI1uWgUFM2QGohtzbOHDYbF2TGmpRuuRsVRB7LNGE3aiKJBBRbQiyK3QrlHE6cFdM1WuoZLM+UShUmiqjaJUWq6yIlAE6UUD2drr8x9smujeBgPtlbTYK/SDlsGcZYmLIuwLgXPkcFzqzwthedVuF6Eywrr4qyrIYsxaijEusK6GEtz2qI0qVR3ZldkTmQaqymLF1YqzReKN2RU2Aq+HeqlPFlmEDnVLEmi4UmiKde+oKzqrBovTfiCBFosAloGpTZKC7SbKcGH2SpI8KSUKA5a0RwbOet0LhOu07mYs8wY5VXLokUyUFagZNFah2eESUj2i2ggODqIqaPiM5oOG5pqs4GWlPvrJLy4ZiA4KTluIlFkxCGPp0pPsxAPU0SnCSx4KOtcTs5SzYNd8EB2o0VES6XKm7liO2w8fojHj3WB4l9/Ys6G2xZz9dcH9TXUIEVfwmW2KFqV6QPmnXmPS7vKwDWwq7FPWnHaKJTmGY4EZPfBmFlNwuzQRcOoqfQYP8yAw4wJjwcQPI7Jlun0D2z/iG+f4L7hj+ALBHBQMp1Umd3oD+Pl00f2Kmy3TntdWO8LOsNHYy1XLh/v6OsGNqPqLoVra2HO5ZWlzlCD9AESh/tuHmx2izloLQpMbGyBLPl+im8kO0I7QrxEYlSWM9qwwA/URT4ruz3t+mfOUoPcOZNDMvEZuUgzWWDByzqgDhg9JIZj5J95EOUOlOYgaMIIOJzITelnZd4wnN0m2+jsFm6lMSkn9QlC9crTALfCVyx0nVxKdBiaZ+8i0FS4LAEJO7EJn0S5ArtnIu/u1LlTdaN//5X96zvb1wHpopGCutaFQ/ooTaF4OBqvlbI26rUGoaxFzILUSmkNl4pIjUDIosgwLm1BjCC+jhhR9HLE1sMuceD2RAcDSYrZvS4rermGnL4Wyrt31EtLhCSkxytgdcHqhmplWRauzzfKvqPbyu31lTYtVAZ9YJvwWJ1Pi/FwZ0rlfb3yrl55ardAUUSQizHVGLJwudTgmKzCHCHzHTN4SF4jmdrc2fbJnkRPtxjrSY4BET8lrQr4yI5cgzJuFrN+J9Ky3S1Moszos9Ns8LBJTS6EaaATpRaeLivPlwvvrlcuywoMVHeylAgJ52G8dlhAn1bQR2+avbj76YQgn6ElIP/Ffktb8VjuLDM6T/cZUQwi0aSUCl5Q38EHK5bO7soshUHyPmaIBdocvBuDSxeeR2XNkd6RsL5JGN9ZdtMVp/hksUEbk2oj1BeW6sD0uogCRd8KMSYug6GDqRZW+xbk/WcznubkOjqXviEp173NjW6dZ4zDFfyLUnhflS+q8K44qzoXcRY3NPl7VcK36DoHlzlZR1y01QTtiu1O6XAZSp/K5sIN4UrkqS2JbsWui9d82swMoihwik+aOCVodqzirBJeSIHMx/l2WjQE9AEcfjkhSfcRIzfFaSmkqCWK5inQUkq/FI0xSCLbyltMSUmSc/VQdTUpWKqV9jLCdboVSh2JTs8gu5viI+XgamfxcCYZ23xDQZAf9BlKdN1TRi3EASgEn0+lnGKQQ/t4dI1mGVibxOiYdAdfsxiU+T9LgfLphWlLSB/HhPuGPhyGUstrWoWHU6fYwMad9nhFZ2dKWDm6OrU7tQht1nDa0yhqIuOC800yj+wUJOE7ZviTWMgoDcO2Ld9MMNlwdabs2P6Cb3f8Ebbrvs9wrC0zggzHYHRlbIPx8olHcR7f7axb49YXllloNNY2aI9O2XpIffOQbLWmvv7o0MOngx6krk7m52RnNVURBt53bOwM3+I1TTjxhHCPmXoNOaNIEDfDznkm+TQ3bO5ma28nrnE4I4ZqQixi2El1keU4x1Oq6EeB4lGg9CxQgph++Bt0hJC0jhLvlxSltjhouw/20elZoJxemTaAQmVwmeBT2L2yS6GVQFBi08FF4+C4NcVmCT6MwkVgFdjc2c3YhiH7oGqEEfaPO/vHHbsbLNFh11rzNbUgvGkeyE3RtVAvNaDUqiccrrVSJKB9LSXI4KpclhaeeW3SpzB9sDcLV+ACewnW/64d8/nW4ZcaiN2yoC1QCr1eKdeF+nzB+472FgRslEqhaKUtK8vTLfgItXC5PVG3nWUM+qPQH/C6GO8XZ3GYVJ7blad65VqvLC0OXltGhOSpsS5vBUo4N0/2MdIAVRgSB9zusOVhd9wk5QDVEyI/+HZ+qL5mGolZieLEM27iMF4zZ5uDfQ62GYl4UyQVWulkuy5cLyu39cJSK2P6m3KFNEXMPXL6ghyVepJzT8zvGDkcA9IcDZxiuYPvJYc655jnW3KwIvHZRBiHDKZU1AbqodKq+fzJAmUK4YbrRrPB8xhchvI8w/a+iNBN2V1YRbmIYul5UTwQv2VOmg+qV5h2BjdKBonFegtPoKqSUuWQX08xevpnFHduZlzn5DI7l31HKkyZXMZOn50nIsG6AO+L8K4IzwVuAk08xu9uiE0uTIqGqeI6J8uYUUhRQ7m4C9oF68IyhdXgasKF+FhzbDsJLsTx7kz35NHEv6MepozFw4F1Aao49XNVXwkE1w4VSxYWkWYcv57jGOKybQhLqvJmjjtaeYtsCGGSvyk2zZBUymiqmSIXqTCFt2C/I2TRDB0zG8KOW03EMMfxHOj1oWQ9vudbgfK55T9J6DbinokDMkZwoWQ9vibXde7LANijEMPz74vGOPaHVxn/mBco3/vEuC/gO2IT9o48Mu2zHl2RZvDbROfG8niEzffhHywwZwYhLTVMgWpaXFkcPFNKbkBnsFMsLqiQDAu71ZDbOZSHIKMh4wW24JiEB8MD2zfsZTB2ZxtpBexOqQPdJtadfZ/0+8aUFygLl5eF/rpy84WLNC71EVX5mJTxYO2dZ4/Zdhzu4aDhbjR3WnZiUw45JtgIOfIYjyDtjp1hW4xyjsOOnKtnLkqtDTRQlOkxo5zTEq7N+XWOeawe57aAj0CZ0hRMLaWn2VbaISXOguV4jocz4n5sTs2gs1S5+BFkJ9ldqqJtRkHI5DH2hLud07xudmJCLNzMadMpo9H0wn2J5FPNQ+iqhVWVd6UiveJT2T0tn93ZZ6U7wV0p8bq1bTK/v/H4+TuP72y058Z6K+hlBRx0JOkmNn9tynIpXN5f6NMwrbgGcqK64LUhWmhtQRGKK2tZGdfB0/rEfITCrF8fbE87j/vO06Vzf2x8+PSJl/6KF+f27srtemFdFlqtUUxCjsCiy3FRTAtSF7QZuhIGh8tCWa5QFlwWLs+PgI6lotZpslPtSrXO3oVJ491PPHH74sK7p+dQg6jj44HVCW3SShDOq0qoLjTUAoPg2dxt8jomHx47fe9YnzTLYu+QgiIn8nA4Mhct1GPMkmiKEWOVoyJwHfS58dgLL/cVlguzRzFXKtS18PR04Xq9sKwXkEDlulW6F7pXXJaTWGrUmI0cRMY8/E8TNx8HnQoxzYo8xwt6NASc40Ag+nvbKamTHR6WBDEiarg1qg10DIrNGMe2yiKEZYDN4NrppMrO+/lg7fC0rQHhm7ANp26G7pM1LxL14LKoOwtRdBfJ8ko9LpaUrJb5Rgpem8a41wyZYeTXAxNEmNzG4Mvtwbt745aF9JTJu/srsj3Y5sjQEuFLgRvwbHAZ6RerIPeJdmGRIH22Yqz1lbaBdsG1BfF0J89Ho7xutPtg3Ts3GzxjvG+RKv8YlTLTCRgLd249hj5RRzYOdAEWrdRDpaPKLNBreBKZSHC6cJiZYDwM3XZa32EMCs5FhLXE62XADkh1lkWpS0VKGEn2faNvd/aXyvaxQhNmMfp9Y+wT2525C9aV0QujSzTOSWBtbjA3bExkL4ECGenN46FW2ycyJtWchZT6O5TQTMSa9GgcD6XxLge9NpqB6p6+W5xo5vF/gxaeSDjqBUxZZmE1WMfxKv/3Hz/WBcp8bHQPK23sjTQUFJyNg/ojh2ZfciGiZ+d1mvR4SY8MDcXCVMxr8CB85LVmOJ3DYdLdMRG6lDSdMsw6ahPt/VTAwMQz4yRIWgW3xhzCUKUPoc5wgBQZgSj0ib1szNkYdsG8YdKYbZyOmHNG0YOFNPINRo6BhoiRa4OhMSJRHLcR8Nt4ID2Iu9P7iZbYcfLzpu0fRq7ykpL4MJx6CzqMAzoKFD8vDkmoxNzDedX0JMBGJ5wFigOf/zeHvC8KAk+i8wE9HkfLkPBgmGJn3sVpaObBTQhyWXQXMHCJWqFMZxnGBUU0lApRzwq3KqyqPB3GWAp9d2SAbEZ3ZQxhU2c2w+sMie6nV+Z3P7L//Ee6Kb1UlvWwv1fwGWtvBK+ntIV6uwaZ0ZOia2905OP1LRJdk7pSNK20apiPdYSa6dYmC/XRoIFuUZguS6MRs2vZE+USZ7xs9OnsEjJ8m2GkZSOWkEmM3Ob0yCuhoroi9UJpg/XSGL3y9Fx4Pyf7EKY0bl/cWJ8W6rIGmU4iyyU3XPKYgl8USlehj8zrcGMbg70P9kdwbHwYBT2h9JAwRpcXyRIHkTHHD+e1c6CGhzeh4zqZvtPng227s27BgxGzVA4V6lrRUgGlj1D+7N3pA6YJLuX0IYylmnjJ4RvkcPqlnIo2yW40IUM5lvtBuIzH4S0UCG0SDD0l3kM5PCtkTnQEQT84CDGqEY8zcMyOYjSfPO+dlcKtRkFDVUqfzLszHzHads8u3KNTr6IxWtAotg4EX0qgVkH0jOe19nK2zdqD9zBMU1oN12msfdD2Dd1iROBq1N6pZiyQao/w9i4W+8z3bFYkT4OS+TQCrs7gQb+EuRulRiM2gRHk4P1lY38M5n2H/kBtZymwtlC6lBnnpHt6jYinICaIrS1uDopLOj0XylGMcpDujyiFGF/H4k4/HYJE7gXUI/AyuDiaJaon3y/vqGwe+2Nje1UeTbivzqxCU6M/etAA7s7YUzL/MrAHcFfKPqjDMhxyZ9oEVzT9fDyrDjeHPpHpGcgZxJqq6Tc0D5tTP0ULPsPg8kAIB3IKJcwSWDl8jbLxgCh28eAkBkoWUvcf9vFjXaD0+86j71j+FBE+F8TNpezZ2UQnBUcTFQwnncGKPrwSTFoUJBY6fx0lZr6mHBZHQjj1qc9wlPS4MofWgJXVqWynR0oJZDc275Ge6wV8wU0Z3VCp9K5xUpujJYiavj/CJnlr2LZiNEwKvX46x02TGW6fs4cfQMlCzBMhKjGnNDWmBtwPnRAdGWXc0RGdmPk4VQimb3N0IUcE5riGY+V0yYuLk20fWT5+clEkA6bKOcuMmbhkYfdf1tAOHObdiXlHN0Eu/lQt6FHwJDQ7OMzLHNvtHOgPhZnPVe1NzizSQTr0KFJaF64qVI0RhpYIrXtqwqUIz0WpONJh7BPZgV2ZVEafdIG+GLMNNnsgX39k/OfC4//4BRZ32lppTwu+lGjJOoSGUnPkcqG9execpD4xV+ZMGerxUuiBEhSqBFmy1iNDZtJVWdbKemnICuu2U54K5bWEIqgYi0tI6EsPi3qf7KbIpfPoMUIDZ24T2yPoTCQKnLFnYWoFkQtab+gC66VjvjJZmRenmzK0sVyWUPusSxCPmeiyZ5ul+G5gHm6+A/YBW3f69JBQb51HH2yve4wR3bHaAkZPdE7Fo6hQS/7Rm7LDJLOXyG1FFENGeJkM7uxdedwXLq2km+kMUi1CvSxIrUyUbTO2zXjsxj7CQMyzYPUs1E8IkJRCp617yOwPPDt5VZZkWyHNwd58hKIh8DyyBnmkoGPG3ukSDPI5kJ6FhEEtlVaU5yYp/zZ8PCijU2fnedtZhnDxjuxhm73sE71P5NW57S12ulUOx8+ioRASN7rHiygmiBVEYuyhY6LTuOT56+6oaXqw1HBPdWHpxrrvtIegZUaRWRztnTomTQ656gw/owns4YzKSHOyPc4UGaFQcZR9+wTLhl83eiugUYgeqqV539m3yfbo+PaK2sba4LbWGN+kQZ97FO3ungLCeHMrEmeOC2tZgtOYd4mQyOPx7lqmAksUahGGatQKkqP3pZbzI1aFYUoGvZYoArqxvbzykMGL71z8HmF/GLZPbEDvSt+VsQvzxfAd5BXqNlimcXFHZ5yB1uWzfLlDueTIY6DD8zyJ4m4pJcI3R4zmxB2dwbGMjN23eyFjdU65fkGgxSQiuzwE0jA0VFLFoaIxvvwhHz/WBcp3Py28qGK15qb2tL132pEYIAI9Y9NEMlnS0W6n4dMkmVBjhBmbKKLjLRBszNNrI2Ra4Zhgwun0J0kYOyS0ZULzw1wqrNWnKbsqr6XwOiv7nFGcbCWUEO6MJuxMdjcem7ENYR8LD1FWKXzS8AiIp16YJpiVM+xuR+nuiFSsvs0zfcZWcue0KZZ9QXsLVr6OKA8k2tTAYd7kbm6JMMlngWYJ1hwuivGIJ6eprikHsTZfB5w0P4LP/g/InBsOc6goNDbkdAiuOeOVszuNjnvPRNFpoe6pAt5a/hyVQkW9UGZilj6gR8RANwmPiUziPGbA2GTi3NWREseWrIZaiWJHlrDPXjklvF5W+svg8XMvfPjffyH8IdYL+v5GK41aDbUwRBOb4QuyNt69f8eyTcrLQKyiu8JDTlmhiCTZu6DSQoEjhAtwM5SCtkFZJqyw9EHbnqivN3p/MLYXGsC+MeadMQd73xmfPrC0xni6UPIQM5uMORhzICijLvDYkLJiLsxtD5IDC1qFZS3cKHCNrso05KWRKxQKMfNB9TvTO9M6+x4weB/KNp1tOC/7oE9jn5OXR2frnbH1mISIIDUJiaphrBeUi1O6qFWQCl5jXU6MPgdzC8Lt/kir9X0y7+E3I/tHlhHFzhw7yECaMJbOnVfYhJdX+PTS+fj9zuPjpL86MlIthr+50DJzlBTFuB25OsMOSJAInjNsZvStSPhW5HqPNig2aKeHn7CCS8jfy66JZAi+pzRdFb3E69IaLKrR+e+FsnfqZjz5oJmyjIFrxybUx51lu3MbD0xBtFCaINRU7Y5wsNZ4HcPP6EgNV9RinCLdYrybKOcR6SzpDeMm2AO6G4/eqXu+TyXPpAl1kxMdtTmYj+CWnQZsB28LoEdxC9BvA28FuxT2lRQmEEaF07H7YPbB3Abr6867vfOTtvGlGrMRI7RsUkueSeZhyXA6esxYT8uypimcMrVjMullRpGSJktHU+qeYZMyGDWKEKuFpqFkUilMnB1iHYvyZMJlNyqT+Z1XtpeN16/v1O9WFiU5ONEwD2/0Ueij8HgI++74w1j64TQsEYMikR92SIlXShBVRWmvMLtiUqlJh7iUaICakZEu5HgmUBI0f3Vhm6Fu6pZ7sIQaqyyZN7fUEyGMwETYhwUKecR+/xCPH+sC5XsjSFTm0ckXP+Rf4UB4XH52znP0DBQsw5F0Wp0S3AXyIo9o+jDuOhItj2C/Q+qqEvkRh/+HmAURyII4VAxajlQKaQ7kYY+zITxEg9BmhTI1ulkJlCKgbuc+okvagS7RgK8Sjp0xYiIdKR0rkcmw52gDidl+aPbfYFrnkPGCD0VnuHRGZEkY0IVPgZwT8ej+9Oz0TnWCeRYSILwtOiH+3eAFHAWKvL0f+kYizMrlLCyiQEjowIX9QD7OAiWTHhJO7z4j6M8l3ISJzkfT2REKahW1gs7JYakdMeswPGypnRKbMmWF7rCrsxNsdw6XUY8ZfpjdBu+nL0Gg3SEybICvv/sB3t8oH++s+8DWOAyDkR8dh2ihlMq6XnAfjEeQ+/SYA8/g6+hM22zTkxMUTZ5EodYsC/AZ5Oc6oRamOH0v7D5oYlQP6FvmRPqIC3NMhoDX5G2IYT6Sy5AdtCilZWc5DfK5a3FKC6Opw/cj0p+PkjRkmDNl0+6RpOyjM7qzd03HUGfrM8ZNM/KE9j6ZwwhfPX0rniU9NCTKZ5U3x9PTMdMC8wwuU4xOx2fJsnMY2GC3zr7soapgos0DhSzOwNhn57EJj22yb87sx97R/Pc5x5Xg6Uh7BMjpCZweXj2HPbhbIojHvtFjNBkPJ7J/Jp8FBoYcK6I3bGJ7NAVWsjAgRl21BAm0VkGn0MRpuXeKezrnTtTGmSxNupiWGkijEHs3eGVHQyBxLpaE8S0yfw6zxqjTgpMXrXM0FnHeCF1zb0oUNFITUDbJ0VWcAYYHSHQQcRVYgv8MngdcWLL3YXgTbCuUywwFoZCZQM68xwjUAqKjzMnVBlUiFb5Izug8lE2enf6ghFLLGx1jugf/JLtU03g+VS3tH2IEogeClCN2J56PazR7NRVPku+t+kQQijmXodQ9zmJjMjZlvyuPV8mcHk+7f2WyslulW2XfSqgft4nOICKswnlHDX4glS5RnoIMUFNUCqTQoIhSCRTxIEeEFq3k3guE3Ca4BBo+iDOwavhsWS3UVmCpSRWIIt3MGRIryY8F+0M8fqwLlP9334hbt6MqNHdKmWnoU89dPy1XCZmi6WnIllk2oS7QnC3X2KRe8BhMxnWpMfu2I6UsO1gkYLCDbzLT1U+msdigEvIyMtQrzDMPW+VC8cI+l3OUVIsyrNNn58PDw++vpD6didp+zrfjaWSR0MJsargyLSSIt7sjHvb6w+YJz3ULa+xJeBUomaJL/ByacGAso4Pn7ryZSr2Nag7jqZixkxWQpblQsPyjm5LTYt8qn3mbEAWKBNwYs0pLTovQyffAAw8J2DBGTxByw+7CcGGOcDdd3GkeB3Yw0cNnY/aB2WD4IJ33CGpN8EJq/0wkaiOH7QPxB/hA90HxC8VXqg+8DGYdwQVRpY8d+dSpn5zX6+Sbq/P65YXyv36Tp6awNIopxQqLNKQKqoW1rojs+Kb0fQ9b8z5RbagoVRrFG4WG1MbBYDssz6USCqRi6NIY5rRh1GVhbBubgPYNnT3yTtzZfCB7xjHQQ9VTBZpTmLjP8NPok35MMCSUEkUErTXQjaq0pXIpSV61Q1ppjLGH59DcmWNDR2T8WN8Zu7Ftyn0K2xTum7FPZ5/G673Tx2DMHt4aRNdXpMS+Pufb8/RiUK9xrGrKKiXk7D7jwup7cEj6EB67IT7YHjtL6Sxpab9cC7pUaCWKtmG8PJzXu3G/h+fL2A/UI84Bmekk6IdvRPjVBMIp7ONQOzgyPNBI16R4ZTHngcQOP9hjREGVl6OZRec6LEMhHeuR+UIr1PSRUZxFlKvCcihsRFhJPYBAmtJTGDSJoFBda6zFRbEZL27RGb4o4tRhUZxAWK8HY4RNRxAhTcJpd8y4zA5b5zxB9hk/2zZC9VY0nIuHxBgt7r1AiWwURp65OY2nLpqBlcp4hN+Uz854cUqDskBZO1IMU2dMY06nZ4HiPWS/DlwllEuWI4gD3Kp5zpgJM8nVkxXV2AeltDSyO3hOBvSMW4B9D36hmJ5qQ9Uo5iF4gGIGw5kzxqwLk1qEWpTVJrUXigr+9U7XKFxnmRSCgFs06AdWV3ZWOo3NLrkeJirh3VSKZnHi9LOCip/SRbECh1asKJQ0IWxUqivNI3g37r2KEjlbaErepzMZwZmZTi1KqcpoC22ptKWgl4WsjBhjhGChzNMY8Id9/FgXKP+v/R7hcr5TVGgHEXI6bj07DsGOnT8D3TjGEHKszuOSV0WlIVIoLEkqOkhQsSh7UqNcLWfhoVI4WLf7TORlTJqHT8kCmbZZuJVC9UKhslqhqFPtgFEnNdUuY8D3H3GZdJk4dxzDfItDRjyLgGPEsuBamFqZFqqm6yPyRfAZB11MRtlitMsmBeXI4ujET5udhZAmUwd14E01UT7T0yNvG/10l00CRRRt2XGLoof7Y83DHTuLExELVIH8eTR+7VmWnGiLn9QMAEw0uiYcn5PqYXy0zpAjqgQp2UzY9y2cWhmEjinxLYkRUJtvmv45QikEkyId3BhzYh4yhKVENWZ6mDvN8FJ/HZTpvL4fbC8D2Tu/BGMVMCn4nCGn7lEEyzEm1CBmlhKFZ9VKKRUtjVLDcl5S9yjnmo3XXGuMOdAo3qqFqkBnZbjR1iulLJRpCHHx9yWzdoqil5b+LOCLR2avD7YRYx6VhVKvKIVSQCwScCceiJtF537gYpbrQa2ELbYVpresK4zNJ9MlOQ0CmUhs0xnD2LvRx6TP6DAVjdC5QNIDOcBzHBGLsgSxIUcQdhbjZkHuS7A0gYxoWEwKQ1ZUCl6MWhVfCnK5QFlxGp4F6OlGpVkYZJEUSrVc736eJiQLjE7M6GuiPPHnSSKXeN8OL40pOaLwz0L0slGY7vT0loigP6FYJBg3Mh3a9FTA9UFQrTZjH8l7OYIVizB6YxsLjznRGX47jMaMmUX6dQR8z8hxo4QCxIkC6qVP9h4S4WHGcItmDTmLIXNjHx5IYFEuZtQki3L4JUmk36o4BAuF7soihZoy+0hphrtYxgwMlswWaghr5r3g4XvUmbwwwu4+GR/Rq0iehekwnVdDUTk5ieaOi4UiUsK/Z6mKNgkXZC1RuHlNZDqIsMfYuaiH4lAM9eNU8wyFdWay0MNhNhu4XM+CEqnCsbeHjRj1uVPSB8qmsKPsCA/LiI4RJZWKISbJQzzQ3/zZxYJHWIk9LiOeU7rMDg9U0ETOgtQIxNtcGclnNIl8pGkwJND3IpxGc2066wjenEo0BXMK2wiX/vk/iw/Kz5oxSYjXI8ZdnKja8FRLOL5nQTKSB0FOFvhsiCEkOYzMkpJ0fEyL7oRvd5N8A8ORMfKcch6N8ZiWFtNC8yBYLhyugPCuCovE5rtJo1DQWdhmLNGlKTYqcwgfhrF5YUPDBdUHO0fcvVNqjldE0Ok4NcOyYiRx7TPgfJ9J/opJ7wOji/AodvJCAm4MKk45TlriRBdITkksuKa8IRpZgPgxHjP77NUVDg8IOd0Okyx7OLdmgaIJmUuSDvUoUKQcmqTPxlpvhYzrYVGeF6U5twnrjEuhquahJOz7PXwlmLjGwMgl2PyKhtETkS3R+54XwaRpcO7v0+N9kMk68grJDlOxkO49JmU4fp+UbfC0hyHY1bMLNg0e1Ch5SZEdp4XfiZZ4vVMxoOX4kM9Cv97eHiFg59Mi3DIDBsFboDXaljg0LbqlOQejrIE0FEUuNbxrimBLFDHig7nvgKI0tFwC/BU/E6hlHKRkj8IlicxJ7cKs5KUYDqPuFv683kPRcliOZyc2Z4xi+ggUYs6YoZeSowIS+s+fr3iQDQtvhtqR8nQUKJxmUedz+mwfKGElb1oimbaEmoHWQDM1JGZ6HGm3HDyYw7ckgQI5D5IEEbNQmwmrH+PRE208v50c08wzimFCFC0exPPj94IQfoxpNPapw+ozoPYkrw+RsFoIChDS43lZunK5C3NWNms8fKKZ34LV8GTy8ABZUKorMpKPkPvTMbrBfRqPTH/vFuNQscgyU4vq2d3YZiCWYsrFoVlh8RbcMIJLVESOlzLOixQgLBIOpyYwzHngJzF+Ekob+2wsIRKj7g5shCFBx482Mwm8QW4ekiMh8vzLszAIzmFkFyrBWAMlA/xqSeGA12gAzeLizveGVEy6xDj3FHPmqN3LyNG8RYGmKUA4U4djvUXzHWfwNIscpSyCdjF2LOwuklfpYida5ySzNQNUcdKrhzTrjOBLkyywyGRqOSQhURxPIb1eoJeYRhjOo0SzsHOMk+J1Xjzcced0qscZHEVJEMznjGbhh338WBcod35JbPay5my+5IaObiPDdt/Y8CqBzHpcnEepUsTQNGmyWlEt9BqqGZfgX0SHF/K9OGyEopWSmS6ax8gYPVNPBzZ7bCbRsHnWSlue8brgdaWUFpd+gW284gzk4tAd747KiI2lyr3feYw7X3dhsAfEJjMXVJjGhZJmMiTIbRd/mz+CnAfzhhw8WVJaEIs5Hz+ALOWvkgZBRYRFjwNBTomkW8CAx8bz87Dt8Uq7UkdcntWTO6CaXQHRXR5x38e9J06XVGPEy8LMuf6JqOibSZZMo7qzzskNpYmylHLC7dg456hT0x2YWA8yo/OO5M3J6HGJqsFaAYEPBq/e2dzDQyHiPFm3EV3yK+g+qA7f/dD59P0743sf+CXf+5quUKVw6YU2kxOjYVmOdqgW1vcXwEDXJVxmlwpL+vlUfSNZiZwHT4SGxSkgHjwrnVAsCgqfF4plEV/IBO8eBV8RfC0R5Z7ERPUZHxIjIfEKugQs7LHa3JWhcYAeJmMhB+9ve2XAGDPGNV3po7B15b4L9w1eHsbDnMeEex9sI0IQtzHCY+cH0LLwFJkWoy0hHFNHAEd5kL0d5i4TmYM+hTGcR+88xuQxnS3l3BqVIHKEJlbJfdqoJe3qSo9phQTZcWogHcelYxYjE+wN1heNyy5A1c/QHNXT0OrglLsGnjeJbjSkp5xdr+fwY4izC3SxMDoQEJTGSFSo8c5vTIvguWGpFuRKkQrSMG9g4bVjUtlU2bxQJHZz6CtiJLyKMDwQ3bHLiaaqxcU73fnanLsFX+fVO5/YcZtgio6C+CBcoPp5tiz7RtPCWkuovapyWcLfpBCcp4AjlFVgFeNdTkrM4aOHyaYpgbCIcpHC0EpToYizeWe3wUe506XTD9TXU6WYBWN3O4tXTdSCJDibCA/2s1i8utBYWKXgtWFaQRtdO71MPs2duQdis/qkuXMRO89NbZLrRwgBeHAdvdbIplkaVhtVlDAZDGRNfCFZ3zghVDBt7L6we2VYDQ7JnJnrFnLtQ49USKmDJ7YpcXx45vX4Oa5KOw0t7Crpb5WJxqT7VAlPnj6FuwjdQoEXnZKxMFgcFnOuU2leWaQyeiIoPZV79j8JgvKtb/wvaC3QlnizNdUnEtCqROFLnYQTp31uKnMKWpGsjksNW3FUsFICKQHME0L1OJCiC4o8HpW4CCOoaTLnll3jQLxzpPfWEiZS1+VGLQutLixlOYOgyvaC++C2aBA4B+jS2R1WBLYPlP7K/VVwu2PsdN2jEvaBeOMMwkruzcMPVjdZjsXmjKoYct7FMfI6BrJHp4fyNqQVjvkPVo+y583bYkqMkSaOzVQwcLiVACiDgnqJYDFJtCbZ+SIONhK1SN+HhPQPfmDPp/km74vCJ3s7cI3kUmI0VFxYLPNPMArldEg0T9MhKSfZOHuIIEBz8F0iuh2ElyQ4d6JjAfCU86k46oNICBVWBrf9wfuPH/mF73xNE+XLeqWVK4uW9EaZGbE+4zVtgi0aBUpK9iRHCwcn55TOS3krUDRbcE1EIqFkWUqMIZ3wT/FwrlSLy9vSwEBakHxNI2JePfhZc/YQm+RIEgImFmkxopNjMwUR1W0GS38EIXWfMwqUPth2ow/n0eE+4HWSxYmzmUd0QLqQUqPoKcRsuxYJhMoGMgz15DRldRyeC571SSoNJPOxcnw0bEZ2kAX34SjyNOu+pSgrysUL65CQ0UrkDGkqb+ZRhEuQk8Xj+4qFJbkL6YUhb8WVe14OeeJorFvPPegJrUeRchRf0WzZsb8ku+vmTO9xsRJd+hSneIcpvGRxM0SYy6HGUYosqDZKu8JyhdKw6WAFsUJridLVivUeHiCyxuXmFmGKdnT/xw8WfInaZzhp78a275EaTyJ7HLjycc7AzqR4IJ2rRbjj1UrI4LMKERyVwuaDxYOHp4QPzr0qUxesNkYLQuZIxKumz8buO52duzvDIx25ptljNHx5qHgUREf4KMT6mwTqFqhUIAjNoylzaVArVPDWmFUjtHMGojMtibnuOWrMcaCWWGjVsfTNmiqR8FwLksGMqKY/S47JPM8aI8n8gqW8ST1UOVEfaKwR0bDBzzNR5bzlQn1INjdDPiN4h63BQfqfVegliPmBOIbXlCunY7NWp0yhjXn6VqlKWFtUZ9Y4R12I8FkIwED8R6Gg/HgXKL/8W/8rbVnwEimbk3KqZUacm0EFsjD/qWZB8vOAFI9ZaTiVFrQsaEm4VclZ5VsdGpBbXs5SMT34KodB0sTtEf9Njy4u4e+qhVIKrV2QsqClhekVIGb0xws+B7cWhFlMuT3tdIsuUx7fo24feXXH5yfM7jivmHXM9jil7XjiChYwbDzksw/yoiMLlHyhsvuMCy8hjM/HCXjmTUhsUAm9DKR/wMyI8xkHbnBSDnAakuIb/7zXgCJjPSf86biVRFBGlFLiZ7fjWXgcd/L5s3DkcMbnMX8uPBLyby6Q46tGsE7UCZWFhKoqTBjDgk/FQmSdHXJ1mF4QlAeFLmm9ZcRCMWUcDHciyKwQBcp1v/P84QM/9/Pfp1H41uU9T88rcikslxUpIxAR2yM9+CApGplaG+ga4p/5ZpQ47LSdHV9WeCCCaRTSjp2HotaKehzyWkqQmC0yQ4Q040ood0qkdKtZWGUn1BaGeunrIQWRFgVKEpHnmMxp3EeMaeY09hFIVN93tn3Qx+TRnZchvE64m7OZvRUoBMlRalwmjUJrSm0SwW1uoT7wQC5VyrEykyIWazgoGhHFYKmq6Tbok7NAEYnirWhkLq0anfjFC5c9lrhKOjHPiY/BnDPQmaJAKOm6vWWmHKMcsmM95PExVo7DyJNz8KaGs8gb8vAHKRzptRXx4MuIeKT2LjFG2D1iA+JbGljHTPhENmdFYF0orbFcr+hyoZVKXVakLaAFc6FaZ7HG0iqqGkZ/vYPF6AQDN6e3gltnzg5lJg8twhlteERTfBrsu7DheI5tf9Dv6Hhl0kzTjMVi3LPP5E15FCglx3oLoUjas+gXEfZ6jGaVvS2UUmltwXQ9C5TOg+4PXm3EfUAYORYNpWCc/UGE1ylRYGLpX5MSYQIlGllcmmfBKIYuBVkKvio2NJyIZ8jpbRA+P8lNkSTKSiF4XhGllG60ii0rWiqyNKSEW3edic6RxUeOecwOtVzoa5RQ0MUGUGbxPJKym5Qc6xx3nR/npCAPgluU3CycyE4rwqyRaB2EcxLN8VNGL6aUQfCKRrxn7lH8aaQaYtWS35JvvZB7AUz/2/f6548f6wLl//l//39wXdcwJyOMZOaMqO+R5Pq4ZCZqk2Ijak+RkI0dXZiHk2gpayRUSsCWZjMJUxKHUlGarIgEFt4l/FUCVo/xRPU9DIfSyUYEtEJJDoG0BStR3ExaXHTDGPd7hMGVS1TKLkh/0Mfgvu/cXhpfvy7Y/Jqv74OXfaBdgiE/FfUYR9lIhorFxjzYfBHmHZd4Ec9xu4XTkwc/5zjpJTv2UstZB7iTRVxlXZYglkqLcY47fXT6LIw56L3E5TA0uvBjhcZ34oC93/i0gQC4HUVUbKTPIf4oMI4U0MMzQs73OB6hMPAc4DmhSjzsEPv5ikgcIFlYDM8uz2d2N5VSJkrwakxuqMboT33H6HifZ/ehIzKJdDF0ia516CuvD+e7Pz/4P//3d+h98EvKjdu3G0up0cm2Fjfk3s5CGgSbnv4nOXpLWasdZIeDvH3Mufw4uCRQK4nRjZTKAd5LOupS6pmdYWMgNim2ZVEjmBZKdvVIICbTJ3P0JATOGJVZlI4iETM/5mB45zEfdBsMG2zzld7vYdu9OWM49268jsndgiy7YYmeRHSB6mTR4AzcpHFZC0tV1hImjMWNi8dl1iRJwR6FqPrhbZQhcCLYtCyWOvuwzNJqufeDk1PFWFW4iLIi1C1s1cGZ943+ePB4vLL1jT4J1CuRPpvxayCxwkHqJRHclsRLIVRIx97y7I7HFEaOpYpIBDTSSEwWd7gEfxlbje4j4H4BMpDuPoM4+ZJwkDWlLWsY+7XK87tnLkvjemlIIsQuhSMj69IaRSMjZvRQpoiXnBo65WOL129uIHsq7grXzdmH8/EBfTU++gPbDwwlzPHwQK+PxuJ0UHVjWozibYQSUk1wm9SaCcnZTC4eacUqyQ8qK1JXvFzOjKlXLkmyH0x/YfqdR5nAhsjGtXq4yC7CpQUfkPGAGU7FRxDhPne69Rhv+WRYnFa3m7Fe4fZUef7qiXJZ0aeFtXf23rksC6N9YgJXG6wmPOGsrVFrRZ8W9kXpFZBBV+hFkXVFamVpC62USC/uubftKPKSKn04+sqMMzxRocOM1GpydUpJlSRZ7CZ6Z5xihvZaoYeA5DiHPQlB3jQyvdJEMGudOJ9TUdlmizNgCDKDn+meiIAYpVoqhAaiA58TrSHEKD8CCeXHukB5/+6bPK1XXAJmGkOYs2BTmT0vL4GSqoNiI9/YuHyPN89d4sLVBXTiEoFzNmPk4BKHkrTCIguSx37MEhNezyyKJpUikeciCdFrlSARFsGXEg6nWujeQvnSnakFprPKNZQICHWu7L2zPB7s3EAefP+l0UcsrEeiNnEwxzU+JVAC8yCTvQ1YshaWgDuDS8IJk4e3SCyyI3yqtDcwzs4CRVlaSSZ7zkRz/i76Nls3yQAut/M5RDHy5q7pecEesLgzjlaYo/w4iu346RySEHdAyPEdPifmcv7Ex+epjWBmgXKMu97gzc8QJPE8/cv5vS3RqdD85M+UrxUICzkOaAF9anHWOigW0uHt05379ZX7y5192xhjj5+VHG25gERQoJZw84xwr8Md4o3kedQkb+VZjqzyvT7fcZHTfM4PBysPgudbuahpvZmf+2FPFX+hQqpGJtM67gfxLsjQ4keRwnnZTe/RSTIw38NW3vYgyY0wa9ptxodbpAt7yhgJREY1yHVrKay10qqyqCWH0JNwLjTV9NqR7LBjfR1qDk+jRfM0SDvkumfRHp205vunEqCiz8yOwkMiOQZjJHqSz8EP2MY+e9VPkuU5+Yp96QfETvAgznfu7cLwKeczUj065ByDpsqn6UEm/Wy9zrhA55EwnSBqTQmyro32fmVdG5drDR6eKq41mhF3rq1SVVkURi9RdFnJ98y460oZQhmxLoJIXtHF0d3ZxGn3Sm1KeBp6FNQa7bnouSnjaScKYITCqgvIzMLSJk00JMYGasr0QvdU28kCekH0gpUVSkVKo/uSmKkwtWE62HWJRGV1luLhwLwq66IsxZFuMAqMmQWKsszIpxouLB7k34lwXQrrWrmujefbhXpd0aeV1hu9d9Zt0B+dsTy4tspqk2eBdWmUWpHLwtaEreToPae0kqPc1iRyqyDQ5URGLfe65rlzUrzzrC2F8HsqglXBVSj1OBUOEDxWU3jwBG+2zYPKkFb/iWx4kUgUT9TW/CiCgJFncr6Xb+NIzrvjOLRLjfXaNIxQfViitfIGqv8Qjx+5QPln/+yf8Rf+wl/gZ37mZ/hP/+k/8ff//t/nd/2u33X++f/2v/1v/I2/8Td+4Gt+3a/7dfyLf/Evzs+3beOP//E/zt/5O3+H+/3Ob/ktv4W//Jf/Mr/8l//yH+m5vH//y3lerjHr8sz2GAGTzy3KPhE4TLbUR3AeNLJLjnG+TQsZrFQoMQ3uFvHzPsPrpFSltsIqNaByl+REHAZNcfg0XaiqtKJoa2GA1MIESSvM1ZgSrpt3K3FgdmEuDQYsXNOJU7jIYN93Xu53pH1gWe58uldsd2Qf7PZgt8GwCV4xwg/EZGJMNvp5LgT2EAdfzY+rLhEdLtHIH5duqTEKaEtLPkoEy4lGJPpyqaiGNDEOfaUMpwyoM1RVQ2Oko9kpxmI/QtT2U8pnP2Dak9hmPukDXMGP8uP4CT4f6xyIzGQGxpBlSM2/o6S//Pk9Tw+//xrYiQ5BHE2I3TxGFoohajTfqcdlnV/+pEqrwvVaKKtRqiPSuQjUHfqHF7Z25f71Jx5fvbDdGnOGe2tUcoApUhZqA7eZ0sj4Gc0l2fNyBjUe3CDBMzbezv/FuhdKrTHSEWFqJlBL/tAikVvnHmRGOy5RS2G30ULwidkG884R0uPz4DrNkySND9x7GLGFtSDGnWl3xnzQh9J75KY8+s59GK8zxi49O2nNrjBi5wu3VlmXFvklhOeITmHVStPCUmtKycOmmxLy/y7JekgJps0Z45lhzOGIp2Ow6GdFzVEehJ+OEwTKrXe2PbrkOcO8Tj1GHz7jYj1M6c5CZIb/Cmm2d+RNUTgPaSNee5+Oj/ggR4mSZNqgMVj6A8E4vJ6mR9c6PZb2jL3UU+o7xfFFkFXQp8LyjcbluvB0q5SjKalLOF678NQaVYNc2/seyexTGTPM0Pq6sA9hn2mY546w0B7OtjmbdJbXSmuK7sd+DFdv0ygAjzFCsHujzDQLVLc7zD5Dgu+TxTVMJkdYyxerVGsIDeWK+BXhytBLql9KKoJi3bpVfFamLFR1GnCpzroI61V5ulauNfamjBm8JpuYdYYJ0wvmk90n+zSGw3K5sF4vXJ6ufPnuiXa7UJ5W9jEY+2TrsG+Tfu+sj52LT54LrMuF0hr+tPJa4C7h9bOJRU5Vc0pz2pLxAom8eb6n4d9iBMS9E/j4DOVTgbpE+nl4tLQcr3w2QzmbsMgpMsuexCq1khlgxJ8Xzty2Axl/k0KD6BtqTCo69SCbH0V73qm1OYsKV4WhaZJYLRrbH2HG8yMXKC8vL/zqX/2r+UN/6A/xe3/v7/1F/87v+B2/g7/21/7a+fmyLD/w53/kj/wR/sE/+Af83b/7d/nmN7/JH/tjf4zf+Tt/Jz/zMz8TJNUf9nFbkEsEkuGEnG5XZOhx40ajPGMo4B66b1XwppkZAz7iMnAJwyJBKQZUObMzSlG0Ck4LRQia3RlnZ+XE/G8UZVaJWPsiaBYoKKGWIBZE+FkJQwpdFFdhsSsNpYkgrbOJcLfB41bZqLw+FV5ehU8bvBSnO3SXUDB5XByl1LxkGwcZsNUlpaiEPLpImFIl3m9HIeGWjonhqXIADSbhd+CqiF4QLYi2N6mwSaBMTKQOcA3I0f0sQqbNlEgeG+ANxYiHHDDL24cEJGyJNea7c14mh50cvNUcb2WIJcE0yKABzmhatfvbx9sXhhPwUFxaECwdcKUK3HSwaKEVCzUMIeN9ulSWVbh9pejVYQmDpOolTY+CV/PYdz7uO+u+8b3twc0LlynoY4v1yQTbORJpI0E7ikA/uCUzeTqaYyADmSOTZCfVR7xyKTumTNCCzOOwOwpVjeyiYYwtIFohk4fNw4BqG9joMWPvO24D1ShQbMZY85DK6vAMYIy1bQc6qQWXwvQaEUSWaxajq8bnOFMCvtCSJNmiwdMqUWSpH0GRdtr+11bP9SyHAVQFsihwF4ZapiUThcmEMiULEs6OT44iRULC2jmSlQe7R/FLFvIxkcwU28ONNH/vIKkfh34UIm/oiEhEJWj+fvEZUt709NDcE+kShBMunQf/61GUR6oRD+foQMBCkrtoIKOrKktVWiuUS0FvSn1Ox08RtFWKKdULl6oER3tCj+JnzIRihlCkUZNZ33wEj0sK9RXq5tzn5PpSuN4K21DGjGKaIonI9hQaKJb28mc4oShCSJwNx21AXZF2QVtDa6WWOBsjmJX0DYKuhOlYS/6DKKoNqUuQx+xCHRH8Opphi4QibilohYUR+U11UixiFdxGjFZj29OHMsypi7JclfUGX11gXZ22JG/Lhd6ER1O2FutyceWpQlvDXNFrZRGnifE6lUYkoZeTm5ivBwUnfJsiLiGUeEVrPKF01ynF0OK0Fg7KUuRsNiNuIC0nU8pvBKfKNP+kKU3BNEUCSMRESHid9Gnn/aYSzbed3QiJNOeUPCFXV8I0sgrL6ixFuZXC3ktwE3sg72X88Ff8j1yg/PRP/zQ//dM//d/8O+u68pM/+ZO/6J99/fXX/NW/+lf5W3/rb/Fbf+tvBeBv/+2/za/4Fb+Cf/JP/gm//bf/9h/+ydSAMUU9u1+PTeXCcW4clZ0nfO8abxIlyKue+QLHYaWHWiKdXg/H0eOinifjO4VcngZox12rsZlQORWhKnGYCOkUntjuzGp2uCcaI2/PNWG9XYxNjV48rNeLs0t+YHQJC+Ewgco8mVKQAtWX6Ma0sLR2mq2FQiZCpPwIVhNyUGA59tE3FQFx2B5y3jgtwxQrLqgDgQoDoyhegMOh13JUwvE2fVYUHBAPny3+83M5QY74q/KL/L3/8ivOZ8yxg6SEmZC54gcGTipQPvua2NtBqA7/sRwRSTjtrrVwbYVLM65L2IQ1r9zWynIRrk+KPAENHjaRoZQZ6aUqYcXfp7GNyWMMmjoLimaqKhJjEvcZSjBP27gSfhKn8ZKQnJLj9fNUi3jEFpDhfzOrskLwCuwQf+d0YgT06uMoUOLt9ZkFSg/i6xiBQLhHmJtbEG2xVLSInAFtzNhncsJf6Sd0DCbcyUFZ/l503AEV++nYfASziWRLBmEelRwO0SDk6WEgqIrrG3r0Vncea+iNH6JmoWw6auD80CxSXI4RaSISHp+fxZicNQdF8jLOPfP5ivLjSZzr6yhSkqNCZE8V4rw5cUF/42eJx6hHJDg3ixISYPnMKiF6nyCJ5nMK8VecQUfhJi1fN4nxbbHgrmmRU5HlM83EPJUs6qFmTOLlMXoqKpQWCslS0tStEO8JMbaVbDhENUfIJdatSSz3gxtBZqZJ8t/KYVoYI2VVScv4GIweXh1do1ixRHZFovE6m6Y1RA82Ha8Tb2BFQ6GpjpeK5LxBT2m4ZI6Uo3nejgllVZZFuTThqQqXKqyFKACK0GvhkR9SCs2Fm4Y4QrQw0TivXWloktJjFKclikktJe0WIkZgZoErAqV42j/Eni5qaDFqzcZQEw0kXsNj/HycYeLCkWaM+ikCPLhnjkDN11YiFsF5I7+KeJBvPz+7EwiR/L6WxYnWGHcvRWiZoSXzuBP1TDr+YR7/Qzgo//Sf/lO+9a1v8eWXX/IbfsNv4M/+2T/Lt771LQB+5md+ht47v+23/bbz7/+yX/bL+JW/8lfyz//5P/9FC5Rt29i27fz8w4cPAEFMnU7vMRPv+2DshnXH9+ygCQfQ6WF0FswrqFLDmEsFmVCkUKWi6dWhnoftdOaI8DTPkC8lXuiD4Y2+yR6tJgltKDr0tH0+6pzBMfMWZh5uE8Kl1AR8x6bRzbnPzjZ3Pu2vfHz9Pi+vX3P/9MLj9cH+2Bl9Mi0KJG2Foo1aVq7XldoqVktIp2vjsrS8wC0Ij3MwtgdjBNGvz0z19Dj2xI7xSy5qh6Ix9LQaXWzIKeND02ejoDRxPDvXoMwFgdjn4ZMAbyf3UYLEYX2USfGXcheffzd+zyE3W/7eZzwXOJpoz4reqS2ySSw1+ePgmhCs/krO+meQJsMWz6I7KsK1Xbi0yreeF97dhKdL5f17IvyLyqIRuLVcFb8oXpWHgU9FRuGL23ueL080bSFL3p3t1bhYYS5CTd8H0Fxyg+kdJKTuUsLMSdKxOGB2i6tNiIs8pbWHMCtelx6XezlQqzDxczcwZeuxpmW8Bd0pMTqY03nsse63MbAZM4vmR0ED/TCBQnj0jb13+oggtZljz7j5NZEsqCXcJqd7WIinVNYlIO6qEn0HkgaJ0UkOkRMZCr8WQddD8SJnIQ5CcQMP8rparM3q4dPgJKdMkrtSlFol1khzSs2YhcOSx8ASXdIihJX7afsVXLYkKbtrFOicPQ5HFSnEz38YEEYR5dQaNnPxsxdU8/Q+R0TBY1eLwuOKclNNxEkiDK4Il6rB19EaSCeO+aTbYJ+dNpR9VNCKa8VKY5gEx+NQIlmMs8YM99etR8r01x96yGcts2w0Ove9O3t3Zt+xGW7LETYZgd0zVSPRHIbS8rwVBznuJfOG4gWrRWitsayVugraoCzGRuQ6dRsxzBVn5nlEXbFyQ7VgxdGyQN1QMbAH4hWTQVfj3pwiJDE+3i9VYxWneny0EvympURhMCbopdLWyrpWbq1wqYWrNrQ40oy5dO7LyuuyMGulzMkFR2c0c/SSI0VDaVFAVUdaCzQruSpFldrqIRBMsnsUf+IN8QGjojKIeAuPkZlGsGGMNAnlnRFocR6nJQtZXDh09PaZ67IuUZRMC3J0CvcCMUOj0cuSUuqbN44ffJVi2btGoVg0z2KNfWNY7tHPqvb/zuP/5wXKT//0T/P7ft/v46d+6qf49//+3/On/tSf4jf/5t/Mz/zMz7CuKz/7sz/Lsix84xvf+IGv+6W/9Jfysz/7s7/o9/xzf+7P8Wf+zJ/5r37/4/e/iy1bXOyWvgcJTekMUy4Ro9tM2HZGZe/C9MrMyWXRHJFoEFidKDjMYlM89o2x7YxtY4zgoYscXAeC3JioiR/YsR6VbayKbBow95PYJzUPEjG2PpjTEVr4VORMf5+d+9j49PHn+fT6NZ++/5HtvtO7xUiqOCpKXdb0V1lZLldaGnzVVqm1sraGkF4VWxR120MYJowZpkW53o7JWKhJ+Hzgklr3czTj56VxhLZB6PBLdgan/NXks2V5jGXe+s0Dm8kp8vln8V/H/x+0xuOr4CDIOkk8IzvjY2QTr2hOqEs41qpRSvTxEcAYhcrqAbEWIh3aJPb37apc18ov/fLK823ldjXefSEpa1QqjSLKUguyNCiVXpaQilJ5ur7nermyXJ8wCttufPi4ocORyxKE5Jzpkg6VWhN+E4GWAYESBWZ03lmwIOE9cLBoId9nD7SFSA6eENwnD9jWTehZeMicZ3GqBAE7lC+RpTNncG7Eg+UTCE8UtofR1TZ2+oysI+NAgfxcTJ75VaLxusdlEJ1dTNyyM3columyTrifigeZMInEshRkUcqav5fvc8xfcnlZFAw2JT6sxnM2Y/QZydmz5ojWGTboHgdxqe0MhAvJ7IGwpPpGPNm0gRhY/lsHYCInQ9ajsghoNZpfOVa15OuhSYot1M8anclhYOgZQhdk5TKdxUKW21xpGhf6ZblwKcHNKShugzkG++68vq5RDFFYSjm5D1GATYqPWCuzR+MzJ9vo7Dvs3fjw4XGqNJ4xWnGW1ehjhMrw/mDfB2M6+yACIBE8QqIyBDTQsOBYRAbUoT7zfK2CG1hprbK0yroG0lOXmrEIcA8vfyy5EZSKtIYsK6LBxQh0saLLiIwmLxg7g8ndI4Rgc8NN05Qw0LKGsZJFcqI3BY+3rjVqK5Gdo04TuEhwpao6XlaWslLLyibRDC5myAhF5igHKhORH1ocqaBtQZdCvSy0VilaWK2E50gW4lHYp3Ghazqih7WFy8wmV7NZdfyw0k2OFImCvJ2/nuBHZEcdv18s95w5oyeaZlmckC7r5JGeR7BJ7FEXw3TEjWAgXhDSsDTVsGZRbNn/P63u/8Af+APnf//KX/kr+bW/9tfyUz/1U/zDf/gP+T2/5/f8X37dW/Dcf/34E3/iT/BH/+gfPT//8OEDv+JX/Ao+ff0dRrtjsySaH5bpilEkHCC1EB0dqWrRo6NbovNMWM0lZvXujXDKrJhMBoPH2Nnud7aXO9v+yMp/cuDDpR7Q85v/zTGDlbxnAs9x8GBrtxq5DsH/GGy9M83BFR8d5ggPiZS+3V8+cL+/8Prhlf3Ro5jRGjBuUdq6UuvCUq8s1wutVXQNYm+thbUFaz9SfEfwQZDT2a9nB36E/ylhm31QUcsBw+YYCgjIUUi4PGFCkexMAsp2NMcTR5lzvuM/8B5rbpof/F3/gc9PNdDnW83flErkOK1IdJ4QniSVEmFgkh1usZCtCqzAVWFV4So1ogcoAevnjPv2XLheK9/6xoXbDa434emL+BmLC2oNpdBoIVUvC1yewsivLVyuN1prtOvCdGXbjY8ftkBsTLg8rTRRmhaQ2NgqAaq4gNQjzTfvPVKpkj7a7nGYHYjF4VnCDNXKJMaAQc6eQZabzp6qibDDDotzcYIkOSLN12xgfvBhjuKkB0/mkIpOQpqZfzfGVIcsMvozx8/L/ihQmh3FaawbJRLJw9ApTKLQ+DpdNNOWC9o0eF1rHJ0HNB+qJ02VUaaHp712FFQh4Z4jPUcsDOamG32mpwnBPvQcEx2FxnFseJ4jR1V9SIuxo1jOtX3EX8iBQuYIRWLMloOQGLlkwGHJmXDslAN5yaLUgTnR6VSXKOKIEcFaFy51ZamhxlGJn3cOo++T++sDHCore1nioqmWzUkWstax3tnuO2NM9uHsezQynz5u8fQRTC3kupd5hpo+7hvbPqLRmbBN6AhejjFwoFuq4Z7sWHBN/PgpHUoM/IqWyOppletSqE1ZloL3YyhmuQ7fSPtaGywrUlsqhqLg07XHSA/BrTDn4NF3xoBmoZYpBuqRILwkGntJfpGm5B4BrSV4iBo2DRWnIdyk0FTQslDKEh5XKeEuaRdgidRrTWVWrVEkFpDWKEuhrhG0V0vh4sdBRhYoFpyTzwuU5IAN28NI0nJc6lGg2KELyHMwS8FzTekBtdqbpKZMzd8SpHumQqdXEhoJECdiGct6ysFb8WxMJLd93hWMk3AbfW2Mun/Yx/9wmfG3v/1tfuqnfop/+2//LQA/+ZM/yb7vfO973/sBFOXnfu7n+PW//tf/ot9jXVfWdf2vfv8//Of/D0Ua2IVWK++eLjzflHURrjdlWaP6prUkWCksDa2F5brS2pLW1sG4EJ9sW02zHef+sfP6svGf96/59OkjH7/7ke99/QvsfWPv97QDJ1QbGjPSzdO22gnlTpGIn9a4sCuFWpXaoCyes99w25wzDj/bg5i4P0aanRm+RZDaY9vxWljWG5fLc45wKu36FIFwNcY7pQhad0oJ4mEpI1QchwTULB3SC+ERlR2bKlVTCHkWKEKVfN5VqUVjbl0gKsMg1omlG4ePSAOeO953bExsTtxjxxxlyttwJ22uJbZQ8cOgLUqjE6ME4rg+HDYBP3ahc+hqKoUqHqoqhzIjC6aVCBQrzXhaiINWC1+sjWsrvFvDFrxIy84OvDnr84XlsvDVF19QLwtlXSjvrpxaQVbEK2UsrFxYdOX25Ze060p9WinXgjOY/ZXt9QOPjy98+O6D16cr93c36k9+g9tl5ekaaJdIjG6GxqbWzP5QsmI6ZgU1ERYt4QIrUdX4jASYrfe4pPo8jd4GfqozTl2THK92SIdn5g2ZbiCToj2twNMDRXfCZzP5CuLMEmO24hKTpeHoPBLDc915FlwE0bl4FM0x8ZvhD+hRiDmwW6AHBYvRRVtCHXAprE1ZsrPGgUG6xkZy8T7Dxv1lD6+O+1Z57cqjw6fHRqNBKzz2cV6apoULhedLcAZifUYAW2R0WeQ6HSZLHvC6EQTwecBJWYy5Ol7exmBDjyLvkGceaOuBhB344ESiTU4lRzQLj23Q95mIkIAUam1cr+95ul65tSUzm2BYKBDnNrh/qIw77J9uQRhPZPlhcJ+Zrjt2xr7zeLkz+kbvnTkmo0+2jwNxpUrlm21waXC5NQZ3pu+87q98eu1sHe67sUd+RIxfdIlMqLaw1AraGWz0R0T5BZ7R88KtlOXCopXLsvDF08K6FC5rpd4Hy27cMwPLsAjTbAtluWLXG5QaIwldUJ2UVim6ofqKjVf2vjNeXrFXQfedzTVdlo2rdS628TQ23CpPScI+xxhT0H0w/c64r8wZY9JarlxoLKWhNQixhsZauHewEkXq7uhagmzbIp25V6GtK8ulcX1+YmmVVpR3EkovKbwFq3pPfpJTZ4U+8DF4bMo2LZRgkxD7DJDdsT2KjOOsfTs0Y2Ts/CD/UlyjT+kwXx0bk9H3KDYQnq41yLgaDYIreA3ExVNyf2SozK5x34ydLoHe9lKhahTFP+Tjf3iB8p3vfIf/+B//I9/+9rcB+DW/5tfQWuMf/+N/zO///b8fgP/0n/4T/+bf/Bv+/J//8z/S937VyLqtpQQB7OK0J+VyKTy9q6yXhXZplKVGnLkWWCpaK8vtQksnwiLEbG929KGM3Rn3MESyaey1cy8bL/LK98cHHtsrr/ePhFh4Uk7/fGfzg4Ev1BrR10sLJYKoBimyBJHoXHwSLptmHp4QPeyS98fg9GkYjUhglXAGXZR2a2GhXyt1TUdCbckPyXkkwS+IbtIZfcblZJaeDIkqSDkVEarh2YBmk04ULpoE3JQ7nCVDOjEnxdY5QvbEjo9xduBwjHIgKwzgIHDFpweZkPOn/3xBR0lzKC4OohbEvV010qObRNHVaib7lsjUaQUWFZ7XEvbmpfHFZeG2VJ7XC1UaRVv8+wpUqLeVti48P92Q5QLLBb2+w2sNwb9egEbpjeYriy5c339Bu63UpwVWY8yN/rLxGJ3t/sr+6SM2NmzufPF+wcWoS8nuSk6Sdagy3zRL57xB3oZf8VLFwREvl4dTpURw2kxPBc/35iDBQo4rShiunZ8f8iBN4q2/cVsSmY8PPZADjwLcodQYq8SBd3ztQQImxoGaOUxFTyn3m4XCgbTlRY2nZFqoLcI0awsL/KLlJFwfxcnMDKA+Q+Gyd2cbYbM/ZvBehk2KRXzFNKNP0N2oS8z8W48RwpgesLnn63v0+/ZGND7UQkcRccDpb4tZTqm+pfLBjiiHz35WSSWdkMgkh8+OZ0Ix9BnOppP0tpFwCS4lvTaOJ3UQ8S3ky2PLcVzyCvIf4T7h1ZzeA20Z++T102Dsg9E3bEx8TMbLoLjSdLJdJmqB/s60MzgCQmO6HT9XrIlQW63rwmVdWdsCsjMMpD4iQ8rDmTmcpTxGVqq0qlyWymVVrouyzYixaFvs8fCzCgSllsrUcnq7aAlUua5XqgqlOOzpDlsKPSvglo7J6ukjMw3vkyuKTuXmb+9Q6Y5OC0PC+06fQrfGbCXeV8smSuJX9xlI+FA8Ze8i4dgb5GTNbLPg9tWitFLC80f8RP+1HeeiJoISQY5YIDPDZ3CJpiHDYXiYdebUboy3Afnx7oAgxYDP9mruTZ8wRmTszA6jB0EcoC5h9hj9UZ7PdpzdEvrkKcGzywJljkBvTQRrAQnbcXH8EI8fuUD59OkT/+7f/bvz83//7/89/+pf/Su++uorvvrqK/70n/7T/N7f+3v59re/zX/4D/+BP/kn/yQ/8RM/we/+3b8bgC+++II//If/MH/sj/0xvvnNb/LVV1/xx//4H+dX/apfdap6ftjH4xKkvmt11hXWb1Sevlh5d2t84xtXLteV9bKyXCsUxVTCUrhVltuV0lakVILA2bGxUV6dfZs8PjwomcjZr53H+uClvvI9+x6f+kc+3L+H8wAGyn6A2IxkUwiFpSRkt6zhJqjKap7zRcdKkPaQGWRVC57MHI4NY+wWBmCqLDxTdGFdntC1Ua6N69OVlgtba1hYu5bkBTiM8VmoYBYow+jbYKYPfsyGhSIzL45jwXqCIyk/LZqs+vg37FBoeCz+4988MlmwiVhHbEeP8QAEXCqhkJnHDJpUCJ0cCsmpZ8QXvGEt+acSCEnRzzadhA1AE1iJoK4qztpAS2Te3FZnrcLTUnm3rrTaWNuF95eF29J4WhZqaTStb66flVADtIXl+o7Rnpjthj9/FRlQy4KsId3R0VissEjl+uV72rVRnypdN+b2if3xfT7uDz59/MDHX/h57q8X7vcb7943JoO2tjB7K3qOBg9lyTkcC5YbWRlwqCBECA6G5pgwC8hJKs8sxwY+k/xtqB5X7lnjcCBiIfmNAqVA+HnY4fiRXCs/5nucEkdFmGNmAm4UJ8WP9GrC16KE5HShZgGQ82mH8KGJE9h1pOOxszThslTWtbAuhaXEWp3Tc24e/iV9KNsQHjOC7O77ZB/GlgZx3cNWvhG3fp8T7UEo5RG4UH0EVD0zWXla8p+O98EOZSCfFSfh4hyHf7ymfiBd+FnAx17JzCfeFD0Qo7ijSz5K8sM/ZBrsw+kmTC2YTlwLUhulhRz7CNr0qILSbRb2zZHu3HdO9Qg4d4OX6Wy7MbqxP4yXj4O+D2bfkdlDwv4YNFEupdJl0lDmELyEqaV6cDLWorSE/YeAVqWujaenK0/XW7h+t41dQB+v8NIj/ZqZXC6PnKpaWFvhdm1cV+W6CLtNJsJl83A1UgmljzaqLqjW8ERxR0uhVGdZMwOtFESCB7HrCw+PQl3nONPeH91Yh9G3yToitfhipPN4JtZrqIO28qA0Y9thX51aG2WWMCmUGQikdaxvMSrxGqo8abH+Z6OaUjzOsaakfYGyaOFSLDhpFUqL3WnmqE3UQ61lqkkanow50T6QPgP96NA7jA59xEjRcJCa522QxxHDZiaUk/lkU+i7s+0SYZ89CO1A+MVokO51JgJoiYG7ULqHSnIIe69RFA9nptLKPNi+03/4CuVHLlD+5b/8l/ym3/Sbzs8Pbsgf/IN/kL/yV/4K//pf/2v+5t/8m3z/+9/n29/+Nr/pN/0m/t7f+3u8e/fu/Jq/+Bf/IrVWfv/v//2nUdtf/+t//UfzQAHaNy+spfGN2413lwvf+sYzP/HuxvNl5f0Xl6ja14X1VoOBX0BqQWqhXC54aZgWxpixtyf44iy70Rbo5Ybe4MWeKdcdvWx84op82Niq8nidzN4Ztp/PKZZTShq9RNy9DcQacpDXPBJ5t55ulWYnwem8TPyYIEjkN6hAKchakEtBWtgZTzPEJr53XISpmlH1E79/xD1mgFMi5npMzmdYkzWOl9MMKhIs31QxRwdBqXgtzFowCbWEZ0Fill9zwKEE0Vil0GogMw4nocWlxnjpoCkgmBRUoqNSZl68GUjnx3fNnBtx1uLUYmidlOpoEy4tHEgX4FqdVuAW4AZSYb0oy9K4Xgq35ZlaFkq9cquVtRQuWmilsZSFRVsedBXWK9QFrzcoK5QVu76DpSGXlfb0jJZG8UKzyPzxq9Nbp5fBvb/wun3k5z9+zf/5ne/y9Xd+ge/97M/y7nbhi3c3yvPKT05DLzeWy4K0wnoEUEIUFHmhvtnJ8oam+PnCplthjNmKhH+KlCw0PRQhtUT+DCIR66BHlxar90iaHkXDBCy7oriEI2pg5mE2pmPh7MQxw3GLtWYjzLeY4XYcXhVOqcf4w994IOMwhhJKyZwcmbRrpV2EL99V1rWxro2rHo6bpEtsKC0e3Xn0yevobNN5TOGx7+xzsg1n2IaxUdQoatQC7hZ+RB18E7rH5RRojPPpAdsQhkTRGPbr+fPNUExkkDTTUnaf/JLgmCRHSkhCXBSAni+3nP/tZyGkfvj8REEZU95EVNRTjh1Ng6wFXRVa8IDUg0zqhxuyCGNWTEpIhsvAVSnqzKxWfDdsN8Zjsr8O9m1nbg+qDwqTiw8uVXm+GF+8mzxflef3YQrmFMaj8diU56psL437hE0X1ncX1qcLv+QbT9xuT6zrhf5SedRJ3S8UH+xdWeakaKPUxu3SuK6Fyyqsq8bHApdR6A5riTTdGX0dZYZxXTHDs4AoGhlWTUIJpkPwh2N3Y7x0+uuG3R+8vjxiDG2d+zZYxmDbJ60pvSnNjEsRmkbcQJMgKt91QBNaV2oXRq10lG175XXcefUH0zfMHxEiyYjoFA8TOZ1OscLqzurG4kZ1o5pFVlAKKTItJc7ZmXsr0UbfwbuFu+uM1HWfEdT56MZ9On06jzlPhNI+kx8c+oWZHBzBAzm0+B7biDU9juNGwrMrwNW84YZCPaTjhm5+qs+mH0R9w1Rjv2vQCOx/ZIHyG3/jbzwvol/s8Y/+0T/6736Py+XCX/pLf4m/9Jf+0o/6z//Ao6wRkb48CZeLcn2qXK6Ny6WypCxsWeJQi2TYIDtJLei6MLUwUx1hE0SdRbLj9oWnHjk/X77eMHsw550vPlwxufO6VXwqO0Lf+YHXJJJYDy8CT6LWIUFMeJhAHKZnuJpnlorH16pIXO4l4FQtLUixaf6GpAFaXgyhOIKpyj5mXA73RyibjgIlD1Yp0cUuS8wdBQljOKJAGTY5gr7kgKlVsdTbu+i5UczePsiuMhDPN7XN4asiOS9yOTw8/LMB6FEM+UmYFQki6+GrUYlD51qEtTqtQl0kPlbCm0QCRblUYanO7aqwVKRVyqXEergsrO2ZUla0XEL5kHBxKUF0rXWN8V9dkOWGl4WhmUGkFWoLieDSWC4LpbYYW0wLD4HmzHTKvfcHL9udj/dXvv/ywvc+fuK7Hz6xjcFuxs9//cJyufITj51tOovBcgwKjq74KAA+I5idALTE4XUu5CSoqnikuBYCfU70ruQUAEnPunwr3pCUwLBOszDPOfPMA8zjIy7ngIWPk8/tbdxxcG+xN3kieWmHpioCIUXC7fUohoPj5KEWWWBZhNsSl9WyRHp4sTiYj83kdnBrJn32GIdYcDHmaVIXTrihTo34CeTYi8IwhamBNGQOzWPCsAxoyzGWJvH4+HcPMyxPRFHQuBQwTp/3LP7R44A/3sE3P5N4D6LQ1PiL8fWSKrXTJyZ8SLwo2gqa4W4zZzvqh1sJgaZ5egNbkPudESMrL0nyTv+caUi0zXgPlmVhsNTJRZVbc54vk3fXwrunecZaTBHuGgjI+0VpU9hKnsW3hS/fXbheV9Zl4WEd2SrbEkXAgf5pnkn1SK8+faTeRgqqSUr39CKbeTmnclNMQilDFLByKn48irBt5sdgbjHKsjGxMRhbOA3TjZdp1Dm5V0sfAqHOQIqmw9gnw5Uug13HGT67zxA1DA9bi5C0RyCRH6xSDgZWpKNVhOpCzWJEk8eHBdQc+89zW/tJkrdMDHeP91xyATmevlrG5sGJNMu7Jotm88hDFon9eUzKj0JmuLP74QX0drSIHShrKiU1v3bGmtY9/k48/TgQflCT+Wa2+MM+fqyzeKTsSHPa2lgujWWdtGbUzEMpxSMToDVqS0VLi85YloVOzOjxSHGdM41lzBilsFTh/fPKbTG+el/56n2l+Ee+8x1h0Ve+UwavL8LXH4JDMqeFOkDhUoTVLeHBkJVpiZDCpP8ngx5GckCEWKirFtZSuF3XmEEu4BrscC0x8nAZ9B4OooxATAxnSsyqbU64v8kDx8l/l/AXqIV6KeG9IEKjZoGRLPBjY8N5kUmOF6ZZbhpj5OFvI4eeZuj09NLIi4zjMk2V0Jsc5ZQoVxHqDOi7YacUu5V5dsuXHHc9NeeyCksTlpuyXAvrrXBb43CLkYBTq3C9NVhqRKOvDW0rut5o9T2iDdclCsI81qSuaLsiyzukrJR2ReoFiADEankbt3L6FzzdFtoSa8znSMvuiCnYto2vP3yPD19/zc995xf4P37uO3zn577Dz//sd7ldL7x73lif3zNpfOOLr4KIWxdqbVSZKGGYdlQGRzR81HXH4EfzohXMBliMPhc1vGbFOLO7OVGu+PLhoMnLOGTBDphEIrgb9O7MHkZs3t8s1W3IiSAc7qlMZexK7xqeM0OYI2fXfhxyQdyuGrN/wTDZwWN9rFVoFa4LXK7Ceil841JZ1vhgkhbx80Qy5pj03rlvG/u4s5vTDabtTD8g7olWC6fmtYQUv4ak0wy6N+ao9LswRnSgr3sULyYRWigah+YYI1VM+Rw8UKVQUQXvwJIrchjQlRJ5KPF2xY4Icril2uc42MKfhdPqIAq6Vj3UWkVZwk+celmol3BcnVio+iTM34IOIUyrTC9MBugGYrQcka0oRZw9Yw26b8h8sPdXVjoLgy/a5N1S+erW+F++Ybx/Lnzx1UpJxdF8EV7vwodF6S+V+1D2tvL0jRvX90/8km+9Y71cqHXh+2zUXXisRr86WqFaSQ5codXwHtGjkcvxnSeIKMPQtKb3vSNlh33D9wZeozuZBCHcg6jP2PAPD+brg/Fhwz7t2KOzv3TGvjP6DvdOnZ1HH7QV5uJcZGOuBWvRwBxGiL0MqgWncddxhrzvszPmjs0d9x5npHYQO52OQ8UWkwIV5UoNLyUvERPixPlBbFnXw+BxJh8wctQ8E7aHGyYWXP0SB/VMU89NjTsp5vHwf3IfmDuNOPfxKGjVQ4GKGy6TrqnSc0teWsadpEJQZxCtg1MTr0vp2dDiyEJ6vmR4qdhpidHk/xrg+C8fP9YFis8t3yjFOsztQldlZ1IuSTRSZZkLkVYcmnj1Cl7fJJteQ0pJzPckjYgawqiF1TpXcS44j+9+yWoDe/mA3jsfXfEO962zj4G2AxIUFrdAUsqC1JiThvAlMIJqYRpVJH7vqEYXrVy0cW1P0IRZ0wo8Z8dmA7cRXXUSHuecebEcWQtEH3HIhs+vB6k1rcRBNVJUk9IQM3IbTAsHzSBWxr9/EPOmBwRu6TJqFuZvIVM1ypz47HiPws09acPm50RizoD2g7UQkHMljLsW9bPQeK4xtqkI16IsqrxbG5dVaU1ZnwuXp8bl1ni6tTTdisCsUoTLWvEW46neFqyt+HKj1CfQxtQGcsh3Jl2GAADozElEQVQhG9Iu0G5weY+XFas3xCN12rY7zI1iAy01+CrtwvMSo5ml6WmCd+89NAoDxmOwPzr3151P942P952Pj53hwbH57vdf+fLplQ8f7txfOtcyWEvDJTotGxYCmrzMlejYJH0zIJ1vCQdIOczCShaDx5uLn7LDYy25x2EvadQnCaNoki3t4GGMKFBkhnfCsMnsks8r1i+Jqswh2NCQ/6e6K6gqcfHkgDCJuRFDMdNqXFEak1WEq8CFGNld3FncaZbE1RkEPDnMqWxGkvYcTB8pa5TgDXgWCCkhpyrLutIuK2WJosMnUHIUMiMvZR+TxzF/14zCEIKQmIe7HRwaSDfUN47qMdo5UI+qx2srHLLdivwAL+SgMWqVgM5R1ALBalIiKqNE902p1FoomUcznbSFT6qxA1POi6gywpupCK3kM5RQGmmdWB08ajjDqcTo4SKTJ528K8KXTfnmZfLFzfnyqYfXEcGNfCkx2vzORVmnsrfKu6eF2/OFb76/0ZYVLYXto3KvEEldRjln2SlfzTVrHkXi4QOzb5O+Dfq+MaYyqPjckblEHMMcsQRVj28H1vGx4/sG9w2778zHHiaefeK7MfdJ3yb+iNRrzxDWxYTtMlijP8RqomLZjNlRbFqSplUimNChJYKMcNrye0lpr1raYQiikV7cJJGsHO/POQI4dWcS7+uYx/6Jsw2P9TaLBBdJifDD4L6e8vzDINREUvsUjJSaqlJxkqAcoo4w24MyDtbU28OStB3L2JKqFg1k0TDEDCWoRA5UuotbdrlSYsR7Ip8/xOPHukCR2WEMbIepTt8udFF2N8olLZ9V6X0Nia86XmNcIabnof2Z71IgCtnpL0WwVlh8BNHPBl9/+R76xuvX77l/fMAUts2BHdFByQJlEaf5jOtXG3KMaAB3pbpSkjaXuba5roxGoUkL51GVXGifBcLNjtvApqVWPTZJeE1kB+eSBcqb+ZPGP5NW9InPSY5wIOE/z64wlD6e3WeMQKMjnHlgBoIykwzVE76DagZzBtF3HlCfI3Yc2KFYIqHFIuEcuohTgVVDbdMqvMtUzEWFW1HWWnheK5e10pbC8rRweVq5Pq88P6+h8FjC6l9UWFpcSF6Ura5YXZntSqlPuFZmXkquJeSJ7YIuN+T6BVJWpDwhU/ERh4dqjDHCFO/Cpd64thtrW1iXyFUa2hkTdnp0c8OZu9G7se3GfZ/ce8C/Ugaf7jsvrzuvrzuPx2BbjX2VMPnD48LPQiA8UKIeKOIc7rtvr3JsfhVJaXtWHMeYKC/CeBzvSxCw3NKl9hj7zHCNnSMVINNRi4M8vFIOt0qCy+BRsMSHkFaY0XEhyUyKRPG4y3PjJXKGpPWD+jmqCwBRaAbVwj/lGGvOg6xqfhZNw2Z4sQiEDC1+5CjQA72UUsPYsLU0xAtUhzRpDKTf2C0cnYNEnueGH69PEobzOQCnEu08fg+wUNLWQuN1Ej2mm3J232dUBp8d8hrIlOQbXkRP9VN1oAYJXzUybeJCVE5Wtb99vyA7T0RnKFyKJRnXaRrJw1WNVoypwV1a3Gg4qxrXYjxV490y+WJ1vriMtCOIhqWYYB2eV0FGoFPvLo2n68L724XaGmhhzdyfN3p2jickDesO8r2FmkQlzo3eJ3sf9N4ZtLRKGGFp4DMDU/UclYWx3cB7fLCP4OntA+nhnsyw5N9M5h5nqdgRJTLZ+2QUiSynkWNtszPWIdBp4zDpU48Cpea4Pnxj4sMLgaIfBYrGzxzp1HKSo8U9QyljfY9Y6gw745iSoB5vbJBPY60lp+CNpyTOGfR37vtsCqSgGrYAQUcIfy53SYQzR472dr4cq16In1UlGvCaTXZV0n5C0EXSQLrEHsk9KID9CDKeH+sC5d3H71HKpN+VT23hO58+0S/vuCxXbo/33G7P3G7v2Dus64XrzbjOmuOehBAlxi5FKl5gXUoQiCLrG/fJdqv4bcGuK9/YBnZ7xye58MI7uH1itA+sjzAr8nLwTGbMc3PxHJCu+ggmtksEtblTxdIjxJHiNA3ugGXEe98nu46wAydnjwY2AvZ3m9RTenswOBQpK4ErllPVYQeUbMbjsYVfihJZCUlYfGwbcwY7/DDZOWLmQIPVbZ6hcsf4YZxojaPJV5CzX446fSTCEgtPgGfgCrx3CZKqGJcGaxOWCt9soQ5Ya+X5cmGpjcvlgqwrLBV7vlGfn1jeP3H58j1lXdDrGhubmKUeYYGq4bar9cJlfQofhVIYWjBVpDbq0mjrQrs8UcqFWp/R2fDpbNcbfW5M77TyjsvyxPP1S75xfWZdlFoGu93ZfQMeCOFU+sord9mpcgO54nLFygWrDasxarxP4+O28/WjU9eJrkKvoYqwMc9O7cjEi4MnJN/lKD6dQAmPm/G4zOUggwRcHN4kUZTYnPQt03rNMg8mDk25hxzA7tmhHmshixXphhrojIgD0hiNITCgmCJWEBes1OR+zIh4z6K7D6W3w302Cii/BFrvVbAS4WXmIwog0zy4nYc7DyabTB7S2SVToEsU5KVEei8ORRuqKyoVunNZG0td33go4ogWzCUdOsfJu0EUd2VK5QgAnIkBTNejPstcIk8oP2zNBX9Lnq0lGqFsDNQDQXEJAzRLroKnCzWQgZsBtY9R8lJTViPsEpaV0hakKOYjrPOjEorCSQ/FUKDDXoG8MCOJfDDqCNS0daw6NMIML83gSoXajLYOrtfB9SY8X+8sGs9llBVB6VO5Xis2G2VZeX6+8e75iW8+P6O14SJ8pzZEKpvDi0N3EDkasgtarkBhTuW+wZajhE+PwX3vPObG0IrXBm0izWBxWIP3JZkKrGqhbLEeniE9jOis78yx4WODvmHbxriHV5N7OC7vPTxitvuMMeHwU60oPmHpUCS9feL9wZSaiLnQgn9SnNliHc9FmRWsOmtzrDm2gi4TbfH9olk1fL7kiBHMLlnkhzcSGmspXYvoXk5bC2ciYjRxrqlyXI4CyyMxfHqMZ69JlK9ZnBRVpAZa00fBSjQXlkpWyYusIDQVFkn3bY1oAM0K3IrgRfBGIrmKzOQNSRRWxY7R9H//8WNdoMh2x6Wz7Y61hY9e8G5s605v4ZI6XKAt7DbD5bUUms/gh2hA+6W2RKizkn0rJ6KapFCk0LRyWS7c1ieeLs88XZ8ZG2y3GVk+pTMkOrhhIxZNIhAHUxpPwqAHjFuOtz4ZZ0LJBFcFm4gbNQP9XEFKHAruYSmPxYinJtwahXJ2s545ECcol3JHjw5g7jOUTRIdryfzesto+QiIi+dsb9hhknMJRCQ7b2zmvP1IYTX+yzr5oEpWhAY0nG+I8qSFb9TCVYWmzjULlLUKXy3OWgtrrTxdL5HTcb1iy4ovjX67UW5X6uXG5fZMuazI7RpERo/iLcIMHZGGaqPUlXW9JAm2MkvmhLRGWRbqslDXa5JlL1RbwKBVpXtn+KSUd6z1yro8s7SVpuG7YuGuxLUsgdYsV57XG9u68f7yxBe3Zx5PD/q7O5fLyu124d37L7k+vaMuK6SEe8YoPcLotHASOCBjexQvJRA2DjDQo4POlRRHanydp4pgJk8ocqwyCLAHqdrMEtnINTkmMiY6LTpSyLwlzrSDw9X2nD0fswXhgC5+EMGjUFSjQMlwPxehLOMsUMpSY8ShQCbZHnJpTbVLN2d3Y8/k4S5xuE8S6VMFrSSwAFIRrYmS9Lic5wyk5+hIj6ctiewRnXjAYCHrDITF3sL08lcjv0iEw0Pm85HNG0mYH/g8iLPhccGBgKZJl3s8CTv3c6oDJdK1Sym0UqklRrZGdrCf+eGg50mWgYohQU/Bc5xHYkjmIC1VoBasFpoVqs/PQhmTqCqShHXCELHIaeJYapyVpYbpYKuNtVakxEWKRxBiDz4qux2WAlGo1cyXkPTi0Fh07DM+psX6l7wQj2TrowoMw8LJoYCKYjxsDiLN9y0QEoGdkMJLKhcPKvVwZx9GL1Fvz6KYRPSJzZnEa89Qx0yIzv95Fq5mGkVn9gkQY5VaClYrlhw2XRraGpaKrY5G2vdJivdcw3KGQR5t8PFXzON7qyhLKamQE6of+V4R7BhrVlk1kq0DlZEMkYznaCrUY4/KyQxgigapV8KrpoqcXCZVYR5Qisqb98uJvhw7IYr7H/bxY12gsL1ivjEY9NLwIYx9sq47exW6R5S7tco6OzsTK8pqHTcLnxKtEWcueZk7cdAf90HaaBcrNArXemVbOu8uz7y7PuOb06+dKkorGw8f7DbCYpswSAuXzNgEpp55heGxceTXHPCm6HLOZPE9YMOUFTqSeRMLaA0FRSp4qkSBUg4Y0hyzchYrkLJgh24zZ/adVAwzcgTg5iEzzNySUOscV2AoftzfDLz81Aob4XyZDoN+hP59Pm8MSHgR4erODeNbWnhXKt9sjVt1FnVui0SB0uCrBZYaaczX2zWKh+uVsazM1thuN+R2Q283lqdn9HpBnp7Q4QxzxhwZfxCF5qHUWdc1iKitxTxZFbIb1WWhtBulrJRyYZEV9YL7JdOjHZEnmiysutIaETLoyWGSzARpE1mN7frM2AdfPr/nm+++wPaBzsn1euX2dOOrr77J+y/esVxvSKt4UWJCEnyD8IiJy9ZzbEGRzwoU57D8j8Ihhz3n4WapLDD6IUOewTsZczLHYPZA60ThyO2QGcVJyVDAKKTTsVYiaOwYjwjJZ0iEwDWIe0GRycstET7RKGTsUHUp1JmunSrUNZyQj0vI9e2QVYN+FChmbG7sxMcgnZhPl6u3AkWSa+Sub+Og0akj/G4OHFzyEqhENEA1iz08B5auoH1Oull6qlg0IgfHSzwt/XPtu3FqajxJhlkCnmm+EigCYmeBQk6gDz6LpTueZBdbPPJiliwEpJR4/w+L9JhFQkL4mkixpTprzJnnXBQoRUOWv9ZCaQVbKm1Omk2qzjifNLKsokBRGvE6odFVt1Ko1SjyVpwstbGUKA5HzsKmw57FyT7j1ZhIeKdMwhxaQXdHaqyPLRGF4MUl/6rqqcqkBs/MlFAzOajFN1OfHPlIhwfVESPRJNVkvHEuIsrG2cekq7PjjCIMCZflMULxM+wg8IacOQIvSpClXWM8YtFYHvbvglJLw1rD1iWcqS8Luq7YHNgYbBKS6t0s/YuSp3gU83r4RylnXudR/GhlKQOtBFqSHJbphKOrxb0YDW0WyXqMgaJYrCI00eSxZBGdp3/RyCCr+Z7XlHSjAam4ypk7BzFGPM4OJYrTeTgX/hCPH+sC5cvLAigPM7xUtNWA06rRpbP5A50F2Rs7Oxs7u0wu+4V+eXApC2upTLsmjlmwUaM7lWP26/Rtsj0m+255DwtFSzr/FZamjMMJ3AKl0HmYZBk20/rdZ5BSSRfB/P5TnZaEIl0WDs9VsUpT5aqKL3FY0wrUNRJJpyQfYGbBAMVg9h4BhB4+FKc643R4jeTR6TMyFATuc6anhOG9czh0HpIwz4P2+G91o5Iz2PjNSKqUErLGz/06AIjFvIjwvghfuPMlwv+tFb5shf8vef/zY9u25XeBnzHmnGutvSPinPvrvZdpk5bsKlepSkgWtnt07GZCB0EDITcQQvYfYMsNtyzTQcJyw3+AEZawZEQD0UA0EA3sLiCQAAkBolRUVdpZmfnuPedE7L3WnHOMaoyxdtwkjfJlSdl4cqQi7zu/I/Zea80xvj9/uhSesiPneRG2pqxN+LDmdtYK7amgS4Fr41gXelu4PV+xp2d4fkafX2Db4OmZkujZ4dmsmQ/VM+Nju1yzRHHFM+COZYvyrragKWpWbbS6UbRSW2WqMkUZvSDTqcPAo0zPLNxYtQh1XR5Y0b0Ppgs/vb3y9rM3nteNn7x85Pr0zNPzCz/92Xd89XLlu2+fuH71keW6Ui4btTpVcwv3KJCMbIpwh50PlnLC+UEah6jZ58MifELHk0l/RNbPsBuf75+eLd15mBGHVYhlSzgACCqjGExXhh8PdxFuIaIzR8pAzShNIj7bc3DOA7yW1HxkQ7NM57AYylWVy9MWYV3Fqan/0HWJDKNScOtMmewYR+AhTJlxgEhSMmiiDnHSu2vei0bfOz6N4rBIBuOVLFBTobjTErWcZtHuao7NQLe6D/oM2quP/UG3lURBzccDMRXrcd94lrll6Z1mlsQ4IZv8tz2348xojYE46cpww2nkK0mlykLRhaoNVcW8MwiEafI+JKnmMKQlkp2d1K9FkaLQwzFWBVlqfM/rQknXWl0stDqlRmdOtv2u6jRx1CdLUVoJWqF4INWlRMptS8G3pbNqN3g1eDXlMIjWaafMydDONpzLCDeKVMeqcRwRPtanxGBCwaXgpWClMrViUpk+qR5Lm46OjIMy7xS7o9wR2RHZQXdcJpPO4QcjqmQfz95TmNpHNGnPEcnMU2AMpc9Ct8rwillDpVEpNFE6az5LO4/cEgoqC7VEsKNvT9j1hfb8gXJdqZeGHQd+dI7bwa6DQwZVUthdCqWG0lrXBgQSiEoOQop6oEdlONMHJhaDVepZDmLx6VYf19yw+TBYqJ/Ck9CmxJToyTQIh1uWwmoiakRCewKQdw9dYujw80zCUosWGq5hcB//lGhQWmuoROKjpY7AEurt1inzoIxKOW45TYLUuAGrCJQZceUKUipiUQGFxCGkCf0ex+Dog71He+eYgzlHikkjNTBcNSMSAy2dLXMyZsDqYjP2BLFHL0oopU7rYSjxdWmPA78SrpW1tAxrC8W8cU7o6WAIn2NAaBZnhs0QW4WYa/7o8Jr4HA9ee0p2B9lIxCSzjk/lHyc++S4GPCfjB6yfPythHYptj/ft7wS1q2pQOEV4Bj4gfN2Ur5vybROei7AVeGnC1oS1Kc8t4tNLy3LFJlgT7k05lgpLYy4LvqzQlkh3bQ2zRHukUs6MhQc8LrTLRi2NpS34mULZNqRGwZ+W7MQpJTJOaqUtC0VjSInvO5IoPYWZ7zyBPFT6kXYZjp+1LTxtF8a1U1Genj7w/PKBjy9f8/x8Ybs+US/PlLWhy4KWSclwI/WJWKG5hI6H2Ajj1ZX43+m8Cf1BHnaJeJjIozAzaMY47hx+FH8uWcCWxX0lSs/qDCIyNEw8XDkRwnZeJnHwFg3NhTkUTweKh7voVDFVycFE8xq0QAnJYaHWkyJ4F7qXmnURRWGMd4g7YflHzYL4AzE83w7P69Fnun9mlpvZ+689tknev84zxdeIpeQhhvVTHJn3CyfEn+8DWewmqQ7wuF58xvuiRooPw4FxXjN52+MEUjAJrc2Zw3xSpEG1lEQ0ygN91RP9PRE194cUKeiAUwRviZBK3qvvAWctKRMtQVcUOQ+ioLFOMW8gYumUtBBM/u+fB6d9KeTRQXfPk97xWCBmXoDioY8ofaQ2p1B6hPtZbv4/RpGE8+/Opm+C9oZwochJ4WXue2j/BkWie0l0MjNtukreT4/n1UnOhXrHPFJQkzDFKPlz8fPxa5UTrXQqLiG+PwMsz3Qnz/XUk3KM3KUaScASd+g0iZC0SSAQ4olI86NXOAeIXKTDCVkia6oUSgm0/AxHHFhQhzl4mJyJXAb5d6dOPa/9RDYfFE4gj/GY8AeaY4nKG4HCn/dh3AMnkhvygLjX8z3/BT9+qQeU9bKhZBMpwlDhwFA7sK5MjUCljlDaQT06hxnbusOc9NpYa6PbEQdJXShzwbUw0IBdkRhQbjvH7c7r/cbb/cZtv3Hb37gdr9z3L9yPG30/glbIgrZ9P+gzBhjNcjVdwYpSC9BahGeJ4KUipdEul+T4ha0Il1J5KiuTHtPucWcMZ8zOfY9BaYz+qMVuUvERg9J97I+BSU8axi3oHY+ch0E8COfsPCwYj1MnFYYPsDk+8tag/ei9eL9wjSnGdKFLmGID/laWYlyL86HB18B34vzKVvmmFn5lLTyLs6nzcREui7JW5bLJI4jKF7AF+iK0tbAvFblszMuFeXnClgvWVqwstFojxr9ulCWC1KqUhLqVdVkCQSkNlxrUVF3DbVWWfOjHhiDLgtRKuazRtorifQ/3lHemHRGIh0VAkTjFlS6eJloFKbTauG4XbBqXtvH8/JHnl6/45sNPuD5fuL5cWZ4ulDXQwFp65MCIxAPWOnVqYOBnINv5yPJ8EzyE2RGwFxTQVGPooKsw8uuTpINQx/JpJOLZ7aJBVflJLWYTOMFDmxfMMlp9akROpvVckqYoRdESImEzcpCL669K2Fglu1yMSSX+XLA6NfullKqRctxqDbu5KioDxB4PxngVQvUUMdpns+v7S+QSQ3sEXMU9GAdaSeg66VYBmNlPRVAJnkhQWC8edE5kl0SR3gmNkw/oE4SHcDzIiTCF5/NxyAZ9mkd6/rIDw5OysrNGIu6yGEZLFINmxLtKXKuW37BbDELnaTNPvYVbOvCMw05tCyAjkN3qsaFbJFWLhMAxhpOgPQZBcbr6I9dDznSuROb8pARdH5/mMKawDzgyAK9bZO3Ea2IIA/yOV0eHIEtDPd1JLjhnN3noXCw1cZqokrnmchZb2hyD0js+dtR2qh806VTtSBmM4uzFWaozptD9fOrF4OMag8SMVq8YUORsvK+YV4YVuinDK4OMItEl7jdppHqQ4YXpBTfNqIuCeFiMA0/XfAmdfkz6MRnHSFQvJAE2I49qzqTTY1R8oMKiqT2pNdk9oQuhIcOj8NAVcWOko2bwo2H7FLVKhBiqJmhfI6Bz9tST+HmtxbA0Z5YBZmaPYwgTJO/EMwEXZWQeyy/68Us9oMxyxcTpTA4z7jPK+8SMofs7kjCi2VfrYA7nWDs6hb4urK1Fbkpp1BrTtkkkxIrmgLJ3jrdX9tcvfPr0c14/febnn3/Oz99+zue3z3y+/UDfd8bRGSb07ozDmPcDy3wJ19yol3i4tGVl255iyx/GllztZb2EgM8nrSpFK5SFcTf2OXi9H+yH04ezHz0oHp+oxMFSlgZNMRuYHWlBOw+lfGaZoJYJkqcQ1s7BJNxE8fG7/3sOJoW4cJb8lcffm6taDCiKGA+aQcTZbHIR48mVq8KTwlOFpyZcq3Il8mMuRdhKYU36TIoiTbFSA84tNarV64IuF3y74pcnZL2E2Ewj+KloRZcNWTekxfBRUlRY20LLorFwG8VmhES+4wMfcn+Igec8OGPlfbxhfWf0O+PYM1zJGRJWcJkw98m4Te73nX4ciBlLLVzWBW8rz88vvDx/4OX5I9vTxnp5QrcVXUq4KLRTdIbuzOKaZfZAqmYEssUJLI8zjh4HlBq5YUb+gUgJi2nNzIQSB6obUGLbxIlB4OwvqQK9MEsefLn/xYAS1CU6QQcy8/sWx8uZ01IeW3oZiVaYB5LFeV0aiHGXiCMTIQveCtoaeqIEpTyYEJPYbCchhO8ze2oy3lvOniDeU21dHGb8c0VqOqCiG0RaInQlLJZzGqiEnkHj7/DUtJwiWCkjQqr0dDYoSwpJz8A0CGT0HEcsNSgi4XrSs6tHYhM+UXXPjVhPiBwyubNSJXVzLTp4aq2Umn0qM7QpZplEm9eFaGorMsNoktomzZEni+iKFVhT6Nxb5Gv0EEtOCS3Gfc6oEEBYstV8uiaKHwdnDC0ldTWNIY3hodk5xo+C/1Ljp9nerU50/1BwaQkF52WSGqGSFEPlHG7S/j/fNXE+I6tkHp3ZD2zsMHfEDwqDqhEaZiVZqybUM3bCJZA/yQU1bpZERc7rVfP708RMlC5ZpFqdo1WOWuklakGizkSZppjJj8oCC5WKUh7vgUxH+oQeab6uJ3r9rjecw0NxJdF6XUXj2rXUfBSPluHYWPK+CS1lXBKxPLhE8m7JxSHs6qlzVUuUL0oCtSjzyCwYz4XIA1lM7DC/B3sgXTHQaQrX4yIeUh7dPr/Ixy/3gKIrYBzeowjMxgOWLUl92JhMGcH9zoOjLkDhvnY4Ya5aKBbcus0opbo7SHYDHfvB/vrK/vqZL19+4PXtM59vn/hy/8Lr8cqtv4XuY4xIbZyOj8AyAw4PSFarUqlUWallpS5XVBRfnFYbrYQYdIwjGmhrFBwGMhSiwKNPejfGMEafCbyD1kKp4T4RwrY8NUoQ3eYDglXiAJvTmWqUEY4dm+Mx5eLvvvdcschf+T2f5+/LZRxOeBkLoeH5uzzyUZoYjeD+myqtRJNnbVGeVdSjJr01tNXY5KrGQbIsSFti2Ggrcg4f6wVdr7Be8VrQFre+aaW0GAZ8WZG6pUMqo+lziDml8HHfnM6n9+9lWrxmY54TF8z9S6RQ7jd879EH49B1xsZqkbpq3eg9wtsEp9WCrREceH26cr1e2LaNdblQlw2t6yO3JVSlI501TrTRJed8rtU/WsDjpoiBSqdz5mHoqXqScNBIPpjOAC+YYTP3sK5G83YJ3YtYWIUfmiJBzwCxUvJhFV0cEHqEksNMVY1hIh9YASHLY/wTog5girEQtEsEmkXeh5YaVIbkOpfvh51W33TQTCNj7YWRB4yg51MxvuzsESkOLrGBh5g5op+1ht0+OFLSweCYBHfufg4TkkLf3FzPAzOdDyIxhOh5UyR5JBIW7/iZcOKJ5Ioq+p6h8ngvg67QdDw4hMBbKyo1wxZjyDotzYgmieBxjUhiOK4nlvOO6+jZG5SHTJoBtIY13FoNF+CZjguJgoRYtXv0Ew2V9zCyROYeQWT5vpmWgPaTfplGtGknBKYlnyceglVNAf5JI8vjFYD3L5qHAFNyiVDPstJheNZ92JwRbOmRmaIyQ5OTQzolHFNSg45Uyzj9FEw/XjPJVuIclPjR1+QSg+wUZajGICjK1Ixc8HPAIDVI8lgST2D7RE9sxtfuI6h4J1/fKFeIQ9/PH8+gdNSREmeNQzjALOnCM59Ic7ciIboQgsU9YKEpVI3rJ67hWCpd0m1a9VEzYKctKeG+c0Qp7tkbRWadnJoqx9JZZx4D7y/68Us9oHzpC2bO969Bf7hMnp4qS608by8RntUatSwgBZOAB4XC4RWzyj4rRy/I4WAHr/udY3S+7DekxbZ0HDf21y/sr5+5ffqet7c3fv799/zm5+95u90Y/RbRvw5qod4uVrhSYytkQST8/02zgVMaS31KvlfYlggwqn6jj4iaPkzCiVAWen/FxkH3AyRCdeplobTQRjy/fM26Xnl6/gqtigscYw9Onpz83cAHPjqzd/ZPr4z9jbHvvL690o+DcRwcI2OaU+AbNNHgTEM5L6/B7w4mfR9SgpePC3c+3i+dlsmFHtB0K/i2YMtKv24MdXoRjusG68pcGsd1QWt0jpTLBZYVeXqmXF6o65X68Tvk+SPz+SvWl49oiz4PtwAaR7vQ28JsC94uFF1ourFQYlPy8njIuc2gdT2qElwCyerjjvcZOTcjXr/b7/wW434wbnfmHvkf0yu9ObM6JEytBzDu4INtFaQ+hXtgvfL89JGn60eeL0+UZYPlipQFU2WIBDVJwXxG4eQE6Yb0GZ/5wqtqPqwt7BHTo0hNiHCvEimVVSOVWDwbkms8PGfrydcbmofKaZWcRDDf6JHWanMis0CWB0ZQm8F+x/vBvL09DkOpWyIJ0LB0i4xwhTBxH9iMzpfnSrxmm7IuSlkq1JXkUqIAM5/mxxwcmdNzTGOfxj4koHYq4oGQqEZJKHIePEEKmCraGrWm8LamEyEJz+EHQwZD7UEFicUgQELjJY/ORYKGWsvCmnqSkU3R4sQAkc6aOe2xdUZbdmTvmIQmoE9/jxcnwiRbwuiIonVFpIE0rFyiVZwSuhbisDlrI5jvlKNpQPSUimSOyhkAiYQ2RkwCYWrxPdQZriLUqPOW86HSD9h3eDtgWUK0WUrkuLiOCKtk4sXDdtwqrGsMsIkYiRvSO+wjDupSwrKM0GplqeHcK0osWyngnxa01/kRxaqGzrgfFCizM0fHx2COuEa6zxSNzh9l1BRYwbtiXfNaDn1QNaEh0ZguYaN3jQF6yiSM7YJyRFqqCq5hdoAofzVLa77kgjYj28WG0AdwOHKfLG89UpbNeH3r3G5Rj3H0O30cSIn3qCQ6I1UpNZvcFepSqSXs4XZEinNPlGwg4XgjDQMt2sOHgi8t3G4zPHvFPa4Rn4wxIrL/1JBIqGekxe34oEITXRKpIBEeGAGOxn5IyltKVk0IszSGKcc/LQjK51vEY+970BLLtnC9PvP8fOWbb76LNuO20koFFJdC3a5oWyjX53dxpArjOOj7ne+//8Tb2yu/8/3vQImGzD53+v3GcX9jf3vlvu98/vLGl+PgPg3XUFhX0TgARWkeKnOxgrJCWaAUtAU36LNgR2zasmigPUzGvNHHG8fxyq6KtIWiwrIVynJlfXqhSqNQae3Csi1s28qHD9+wLBcu1w/hdJDoonBO21emws4RXRGjM16/MPYbY7/z+fNnjmPnuN+53Xf6jC6Z2ffQuRw7Y/T4+TECIZgj0JcU0Z4UUILbcG5r589pxMKW5+ew1m0r9vLCXFf69cLRBGmV4+WKbytzWZDLFltdKSzXC7ou+NMztj3DckGev0IvL3B9oT5/oNbK0mpw4S6M0uilMkrFy4pSUW9ISjjGNGyQaaRpVNVJsYExOGxn32/MGeNYdO10Xr//beZx0O8Hcy9hQbWGrxFSVC6xsmhR6hYaj8bCAogW1u2J63bhslbWGrbc6ZlJYg5VuGXuQpWBzkGZAxkDtRmNpyVEv1JyK8qCsRN+JRcdcYnuDZxJfdB9Tm4zGiicJ6IyLTJTQj+VeqUzQfYI+kqmhvQk1JexrfbO6Htw9qKguXEi2BwxlDA4c1IsBYCo03IIbUtla7HVDie+lukc4+AUlZyJor0Peo+E3siyKw9h81nqWDUGUDWoY2bCaNhSRUsISC0Tj71jPujziEwYJ+2WJ4IjkcViab0GZuYjtVIpGqJiSQ/riYpI2sKz5Op8U3jo5FPMPGdoTvoYkd/kGmhQiaWqyBrUh1ZcWuChKRApaQ3VtFW7DSYTY2BSHoLMSPPUx6phPjNaPQ4WMpqgSKZf+8IijaU4iyhlKjIE69m5JKEvCUDE8lqaqA60zGgcbyGYrqLURaOOQpzqg2lQ5QjbqihrqbSqtBZ2Zyr5fQRmYBrdZS5xv4gP1AZu0XlTPK4z1JASVJp45Byd3UieAYdUoBSmFjqpskuqTQhdUhpn0s9gGIPJkRlLlQe05MujcsHmwOegWDTxOYFGzNgduE9j9kG/HZTXPa+nyn4bHLtxTA+Eihh+LfNrJJ08pSWCp2QjPZRMA3YJndjEGIl4jRGSgJ7txD0RDifur4RBQmefCFe4UmMYnxhh0Azk6eSB3jN7AlUsqlHcOPKsMYEZQmEh+qwClXrXM/5+H7/UA8qn+05x5dhHuoQ3rtePfPj4ke9+8s9w2TbWZWV9pGsqumxQG7ZeOTyEUXMc9MO4H5NP33/m0w8/5x/9o/8PJgcukyGd0QNd6P1O75O3vfN2DI7pqFS8VNDCOpf3fgVdiJC3DTSinq0NukQIzzxSUCYlEjMfA8qd3ndGSUeFrlzWjWtd+Oryga1eWOrGdnnhcll5errw8eVr2rKxLE8RWiRZDigBs48M6Rqz47PD7LAngnLc+eGHH9jvO/fbjc+vb+zHztvtjeN+Y/SD/X5jv9+57ztyv8eUfexM32NqTjInHuMPVQpnIJUDVgssjfrha+rTlXq5wIdnbF2Y1ytjreja6B9f8G1jrgtsl3hAF8WeUvD69IyvV2hbDCfrFdYn6tMLrVa21nJAcYaEuHKIJK9d4qZJh9M4LISTZoxxYOy47JR5YHT2ceP1yyuj97joLLb+L19+HtdE74x9hVlQX9Gp6KpBT9WaBZESB2YJd1AplevlibWtEWJlafm2weyKTw37p8TWV6VH/48NypyoTRoem+CZMW0W0HM59ShBA50QvopSpEYaalJu8cC21FqF3XxmomZQWjMdHynWnM7RZxxSP0JQon8nWmF777mZhyUVja/LLQ5L1Yihdw1KLRJYI42yNmVbC1sNSPruMfj4mBzHnpZ25zg6xxFlmf1IsfcMOB2VcORp6la8xWFj0e9UzLBZM0OmxEE+jSH+0G312QOKR2gS1nnREm4e8+gpsUBMLRGUWsLq6zbxM08paYJH8NqcD+vvSYUkKIMQA9uYk70PzGr8Ho33TUpFJeMFpMWAIilytdjwG9ErpBIOEPdI4DXCZtzKqf+RRz3A9JGLRvTQyAzkRlVjoGFhlcpSjEWF6hWdgveSA0osQGOGIQExRA0pk1ImpVp0x+QA1ValtfhaSgbFFTuoRIBZK06r8kBfTIPSiL4jf1wv8cSZiE806ZuQ0QaNE7RHunwsBhOTHFBOXVAxvAQFdaS0WVI7gRD6opJOlkwIj4h9UoN1Zp04+JoOXYthyWKpiOyicMEMj1K9MY29T273A3+7Z72JM/bB2C0RkPi6vNQ0UMT1rCUiFwK5UVpdEImix3MvOfVZ0yWkAPl5pCj5sEzHVYvFS0gbujxCwceU6HFyYVjk5JQlLOYi78F6JunyKUKrGireItgo+JQUE4f1eJI02h/gjP+lHlB+48tvsmhhQdjKim5X1pefcP36p3z82f+Z6+XKZbvw3FqI2IpSWkNqYbSF2xjcx+Dzp5/zwxi8GuHU+f4Tv/n//H9zHLdw4CwtN61oCTYXJo1CoXFSqRqNwVIRjYS9ilPEKKXH9FmEXu/4HIwxmEfFZ9S8iytWhaVU1u1rlu1rLk8XLs8vfPzmW371m295uT7x7VffsbRoBt22K+tSWNdwiMRBc4bIR6RTWOGEPifDjG4z6hrEWYszxk7vO99//zvcb3fe3t749PkLt/3O58+fuN/e6MfO2+srb69vj18/9p399sbr7cY4On2/B6pi/l5cmECooMGff/iG9auPfPMn/6/85ONHfvrhhW+frjytjQ+XlXWrLGvj6euXKHJbF+b6FNulgG0Nbw2/XvBlQ0pjXa6JTq202lJE2CJjJrnhMzho9gjyO0bn6PccvO7JVQ9mvzPGjTHfcHlljJ372ytvn3dmdy6XC8sSD1izzsQ4BLo4UpxNJpeLsm2F64c14Ne1hQtHodT5CAe8rluI0Vw47gOGI3tA3y6RuTB0IjLx0jHpoe0okk6igONLkcicdom8gVJ5T2ZKezkkbx7aHM6upKQPpFSshACu0wMaN1ACul1LQcrKtInL8e4aCVYgRJS+MMw45hF6q1JYtKb0xLP9d9BlgkTyaWQyTPo0WqksWnmqjUuJJEqxjh87dnTG2+3xbd27cT8G99fB3p1jhv7ENNATWZawyZZAUUKUKjAKNgzrCU2rPhwqxwxNV8QDBAWzSKW1LQb+WTj65PBJOXq8tnNmj8m5SIRg1D3tuP5QoDyyR3wOZPSwgnqityWeHbt19tm59wOzC6olFpsa2iu9XPHM5pl1iWvawi7rHplLKvFeHxrL15GZOJGJdwQN4gbHQMcdH3dk7JF340phi+wfDWt9sY3NryxlcFkGW7uwVWXRK0wYeyT63rsHbV4DodIAqYgMtRiQXRrrtrJeN9p1ZbkdDAn60iYcM4TVbg3YELuE/kczCsIjZs6qMIsxVoWtoNdKW2ukfc9IwC2mcAh2CN4lkrJHHMwnVShpWpwD9iM3fs9OMA3kQFCqGKtMqk/KHKFv6YPZHTsM0yOQci2BblRDqj0Q+KBhJ6VEoV6rnZGCaveF6BAKAb8scH35GLSIw+WyslRla8plKbSqbEt9XFNqLXKBukdWzBT6XFPwHw7OOWIRO0zpDjeD+35n+GTf7w/SvrblscgsrBHeZ+MR6oiBpW5nP+KZ3DFKm9Ti+BZNxdVh48zeUQ6Pweie4Yo++i98xv9SDyivx42uyiwNscrhhc7K4ILrM5QntF5o6xqW1SbUpaG1YK2xjM6WYT7ztvO6XljbRisrYso8jNENzYiL2BajUEy1RIiWnDY+eSyuZ72064GJoMUoy0SqsiyeEHkkL7pGEuKWMe7btlF1oZbGhw9Xnp6f+fjNN/z0m294ulz48OEramkUrbS1UZvQWuRHnFCxEoFkjfIQSR3DMiJ8RpmTCusizHEwRkcV7vc7l+uFdVu57zvbZeV+e+M4dl5fn7i+vvH2emPdrhzHwf1245Lalf3tFi2fM7bdmcVtcOY2VLaXD1y/+pYPP/mjfPj6az589ZHnpyuX1tguSxz+S6F99RIV8suCLE+ZA2HRStwKbCvUJcP1YlBBa/ZiBFQeNssQTU6SsjgGfe/cbzu3/TP9ODj2G3Mc2OzYcWOMO/24MeyN0Q/ub3f214mbUnVjKUJplbVd0RYQgNSCmLCKsG0Ll61xaRtlSZi6aPbQRJpn1YLW5aEb8bMZVSJAL7a4U8AaqrMzByGus8w20YC8H9HySuoeQjSHztzu4hcFYMbDOht9Hno/kVMgR4g2kTjECV1KkQo6oyAuRXJuhmqNyPq6RH1CXUNnoCWj5VOWqSXuHympx4ok2imBQiAVkSWQJj97W1OimP+WWcR0zymYlQhOy8hxt6BUo3eq5sFWHr08pO6CGi6jeBU97TEpZpQamg1mapNOSBr8xzbaOSJPyE/Hyo+SY7F33RfvQd/Au+bjRyhAEBgeZmsZoXHQEBVSCp5ZP9IasmQOjMop9koH2pkq+p4IKrQUfRKJv5lseg6MST7xuzBP4fH9gOAeCMa0K6McDO10NQ4tHGx4IgLTBruFhTSEmLHxS2a1vGsVPHI/NJx0YeWPr2bEC4SMyMgp3fFJ0DSpicJjuPIMBCTt+2jQt4GKJUcxLX49xafnde9Tsm9JMqhOM10hXUVIZkMJ02feB4CcOVYzHTyZAVOMokap89G6XlaBLvgSqSiI401gmcg6aevENsc2gUtBt8ZyWSNddhpzVs6I/Mu2UKuyFrJoUVlqiQDOGU6bOWB0Y3Z7f/YRgaPkPeg5xJ4i5VhWjX2cOS1OY1JTNKy5BC35fAg9iUOiUaFzPXlkg0oIdXP5Fc8rS+MajVXVH1EBv+jHL/WA8vn+hapwLFdGaaxD+NJXLuPKfT6x+DMmT+iy0RZluyjb2ihN0aU+6tlXd3TA/a3z8cO33L/c2ZYn9teD0UG85UXuMFOAVyua2oGe/F+8I4aLMXSCx8GvrcK2UJZKuy5cqOFxaU/xYNaV7foVbX3h6eWP8LQ9c12vfPfxwtPzlQ9ffeDjywttadS25EPP0Rp2OakWJV8ZJbuUSDS8EAenTOjjvcOEzBVpaw1aYQ6WRQMVud+5357Zj4Mvr19xu79xHAevb3fubzfub3dev7xyHCHmen19DTroSxz4ox+8voae5X7c03oqlFr56qff8e1P/ig/+WN/kp989x0/+fpbvr5eWFvlsjZqdUoTlpewC0st6PIEHsjVUMGLYEt76AJKiS1fRBlHij2HPXQ4h0iIHq1zu31h3+/c3m7c718CPTresHHD5o4cbzFs7Tv7fjC6sd8GdjSKLlzW0BNd6sp6faJr5V5W7j2s7VfvvCwrl9rYlhaisuaMEtu6lhoZC3JmQwRXOxRmCaREfI8D2UE9ExsRztwPJ3p5InI8PJglo9pdiIyRM8vmtCKbpgsnkZZZIi5lBvkmiYhApAG7TEzaI9NFxKkyooW61hikpGd2Qhxqvl5xIt1YyZmoNh6CmNowr0wUL2tGsxuzLJju6QRZEDbEs7LwDOXKh6S5ME0YXpkWDiK3kW3eaRum4BpCYw1/dggca2oPXGBEP4vmAO0e6cfhJi/Y0LRHE6+Bz6REOtN6UEFJN4lKOCkkB5PYPjhj1eP1PC2//vDpu4IVxzUKDrs4QzuzetIZDcqCX1ZkW5HWKE81nVmO6IjQLYNOJObOoY8W5GrXCIccHZkJ/0/FSoZQFnBvnA26kRQdA1tA94rZCrYwFZoeTLnxRcOR2ORKs+ixsXGwz8FB1EbAitQFKQuiDadxtlpXWWi60ErLsDnDvAQC5sI84s2uYjCIHqBSUI9i1TY9kAGdqClQEdnwlu3kWpjnsughSrXDsYN8X0O06eZYL1hXfOjJiQEe6GVSG0NC/BpOrkwDryUWw0RT2wLLOllcqVNZn5TuytE1pWEObWJXRS+D7WXSXuDysVC+ulAuT7SnD5lRA6djB2Bbl2h7V39vVXOh73f63Bl9MvrkuAflOR2cmiglUEfQLiOHFPxB741p9Jk2/Bw4zuyjpVVWEVbXBwJlHpotn7H0QVBd1Ywyg7KrJQBdtTNHKKgdSwdQqUr9cYDW7/PxSz2gzC+f6Th7HewXYVl3vvkyebrC/WZcVzCLTYRWkbVRLo3WCm0RnIZbRF47wq13fvj+W/Zj5+O330aSn94QK7HxnMIfJLjaAhCdBFYML0bVjnrHrWPW0SKUa2F9aWzXKy/f/ITWFpbaWNenDFu6sj19S1tfuL78Ck/LxrUtfPW0sF0Wrk8XlmUNSBrJgChD63youHz14PxrZ9UYUDZL/HoKpWdi5zS8xlZf1oaEJ4xFNfQU/aAfkenydrtzu985evzv/Xaw3wMt6WNwPw7eXr+w7ztfvnwKncp+54cffs7t/srb2xd6ihtLKXz79QvffvOBb779mq+//Y6P337H0+UaN0NrUUdeBLku0cFSCpQt8lp0xsUaatvgUIEhM9I8zRn7PRp2j3iYDTdu8+Deb+zjzuf9h7Bwjx2sIz7AOmZvYAf0gzGCcthNmF6YulAvG0tZWC8rayssBRAJi3LdAsb1SbGZIsW0Cqale6ik3bIxM4V1h8fhPdUyjbafptjccGsMMsYJ3+FjRrhSbtDTg0r0PBCrp+JejKIzbKeeDgpCRIuHsK2cS7/bw2ZdzyAzgzN/S6YzJ0hoo+PrsJHpudE1orUgXvG+hsAU8oGW2oGzv/3UdHgMC2JnJ0isd3N0uhkuIcAcPgNp+FG2yakuDfomNrYIuoqtOAMyAs30cM64zOQbItZeZmRnnMiCZT6JSEUokSlhmTdxhhsmTXqiS6RV+8xDgdDWlGLvX2rxB73LEnHQ7jUcPEKIHzNxthB2Za8F9ILWjWXbaEs8s3TxFB7HJuqiQcPR4v3qsf1WCfjf58RKpx0h+o3izBS9aAt9AyuwBuU3j0eszpR5AkaIK7VUDln5wRo2G4yNVSdFIuG4++RgYFpxWdHyjJQrlCsml7jMfCbhS4iMbWLTIi4+o+tDX1OBGErUCAfQHDA7y3F/XEcyOoyBpCA+nJorkwOhZom3wehhmcfCoWYl6Emx90TVUyFK/PWBxIaqBQ09WTGnUtiWlW1debq8cL1ULlvkVy0m1AF7NVRj2OtnRkyr6Lbg15X1wxPy8QW+/Zrlu+8ol2fq01cMl9RQp2PSI5agyFloSArSI3DPh3HMTh+TY4YoGj31MoFBNq/44vgC6/2AMRn7oI+49hbZsk+I9z6lUihnlP2pm0ZRr6mrAs0C0skIfYrA5gHaqsS5a7k0jRQHnwGFRc8Yh9//45d6QKGHFWoMRdk47p1+n4xjMvuIREH3h9rY8tDzUpCSBUyubJeN7X5hu17Zns7PJ9r2RjkM3wnx15kb4THlqmmWkZVHJoiQ8K0EBylVYBXKtdGeN56++optu3BZN56Wa9pen1ifvqOtL1yevuWpLVxa5eXSWJfKujWkRHrEMM9AJChVckCpUaNeJlKNlnHu5QFPJ9pP3of58DQ8+PMitGWllEprjbU15jqodWFZVo7eWZYLfeshULzuKeY7eHt7Yt93rtcLt/sb9/sNLcLy1ihVOY47ZwjQ89OVp+cr1+cnLs/xGi/XpwgHay3jz+NBHoVp+SCVzNrIF9hNQtxoxrTxsL+Oe9iBuY/Y6ObgdX/jbf/C7Xjj0/497h3orDVTEtXAd9zjIWacQEOInrUtVF1pdaGm5kOJEi8Tp0zysDhjMgJ1CJdTgPcuwb2YCjYtggRPBwsRqiQSxWYnoiqZg4EnRO2e1QZxjQ2U8qgyJQvJ/HENqgT0XxIBUYI64kRLzs/TnhwnSGRR5OcJ4b5/TSl3IXJuZtIVhchJUC8hDk47OZoJkp4CXjmplSQYkpmKGHlLN82MwC3RCHXKdMoMZsiv46QkMlArlDQxpDgPVIAMtwJ4L07Mv+a8Ye1x0z6GuMjfiHLPiB/PmvoUDL9HwmSWSOqdSOGrZskaIpn2Lo848kcmyUktyXs6p2jJpvIGdUXrSllatjtrIC8Sp4Dk61kkdS6Wdvn8t2oe4o4GmEZs14mZxTWpKbJVBSKBOPugA7X003QU2zPeuLPRaNxsxWQQOavCwBhSw7oqK+gKOWxYiobjO1Ue0V6ZZBtvVSS4iJ7Dm8KZhWIezdpzojP6zNQiYMwtrMaWz+WT5jWLAdTtrPrIASXPAs48DnlcVj/6OL+2QNdOK220opdHdUVtWThaKqUspDk/tOFnNgtxbZlofG+1oeuKbht6ubJlZEJ7+kD3JHTPyhS3oFyIfCEsruMhE60HaEkBuyWdHtd67EOBhNWlpNXcaRjWnepBRcVwVlI3pZEApWQqbSKjxDMn2hpqDuSZoZTXbxGjiL8ni5/XDBmAaenYM9JF9ot//FIPKE/TeZuDt36j94X+9MZ4fWO+vjLvN+ZxwawzfHC4cPe4sOc0mOEdr0VYrxuXPrneD65ffcX1duPpu29ZvtzRY7Lvb0SmgDHtiM2kHyzeol7c1+jKMRhlBJfMRAosTdmuG/rxA8tX3/Dxn/ljfHh64cPTEx/ryqIrS3lm276itQutXtlaYW2F61ZDSa6wT49G2jmAESLC8v5wFHdkOvh4WH3nIxzIufcRkN4wZsLOtleWDIhbNcSlsjjlcsXNuF47+9GjvbWPR4unzcgkOGxyv4UG5fOXT7y+vfL29sb/9zc/8vnTD3z6/ufcbq+4BXz83Xc/4dvvvuXjt1/x8u1XPH3zVZT2lYg2Px/qdnZWPXh8mLmBuztzRCbJ0Tv3/ZV+7PTjzv52Yx6Dftv58vbG/bjzww+/xacv3/Pl7Qc+7b9Dbc71onz71QvXbeGr5wspYYktqYQQt9WnhMBXrrWyFmVbQDVC1/jimHQoTl0VqlNa9MMHzH+Gm0XwlBOTxexHhAGOzkM9sKRbYAmKRdEMWU0tQyZqxmZXEXG6xBAwZwzDkaeXsGpq5otD8cnqg8WNlpbguGDSjyqhgzjp5EATAz4xfU8fzlvmoX/xEgmkk9BLWHV0hPBVZmgTCg4zkj1D0xGDXcnv2y1eGyNcVMeY6H5waPwbb1qZOYie7txzVol8KsnQs9g0o6k2locYUuJAdw+HTmQ+EMgHOUTkd+g56IkRYeoZxOYajqruzuGDnrbrnLaSXstJJ7l+SYQNzSLCswk4N8c4jPMwskRoMLQ0RCuqG7J+QMtCW1rY7FWYZTz0K1U9nRxE9YIp2BqUiAoNQhNQBgVlzs4+7nGtSNB6pE5I1QPNkIVpe7xW6bwITU5NMfTKmz4DDZ+ViwxaMZYyMQkk0NoOukB7DsTQY6nKSwGhUmSh6gW8Bd3g8frEghSFelprXPMjh/MjriOZEtlRlNSSeKI/A6dEZUfv2DGovUM/kH5EWatMtMVAjAocQSGV+rsPzZCSF2RGJIGyxn/dKdapulLLRqlXpDYoFfMWOrZu+N3wm2FvM2iVAt4KYguiF9ryQt0+sjx9zfXDd7TrB9rLN+EodaLbbU5s9gjY9KAkye61o3b2PpCjcxjs3dj3Sa2xbNaiOdAqXgW1RpkrvijlqJGn8qb0DltrTI+YBCwHjRLX8JkgbDG50qQ94u+rxsBXxJN2iml2EoLYIfqItwhKLWP2gWqTX/Tjl3pA2ZZnZg+IqyIU3yn+heKfUX9D5YrIwckPRy/ImXYXO2otQhVYt8rlemV7vrA+b9TnFVvhKINP83PmhwxGv2G9Y/vO5hu1VZaZWR1VmC0e7LNAqStWVsr2FevTt1w/fMvzx+8i4vzpmYsWFmms9cJ122il0fDgNJvQ1vOgMowjcjKyWD7G2hKZGMw4CJi47xwZUOE5WQ+bvO6dMY1jOJbRzcjCum4sbeVlXalFKSWSW6N8Kqx/IhOVSa2W4T1nx5Gz7iu9H5TLQn29UF9feTsOTCp9CMiKZRfEsr3QlitSC1Zg6OSQgymT7v1RHR6t0CneskAdrJ8/Nkbv3G5v7MedL6+fOe437vcbt9db6GheP/P58ydutze+/53f5IdPP+fL6yfejs88XRe++eqZy1Dqi0JrEZxXClaiY0NoFF8RjwfVpTmLhn1xmPE2DTk6zmQy4lRcQlMwpTIokZaam3m0ekaMuiVS4TOdBFiU4Yk+OkZENNpuJYrWzn4MkaT31CO2PvMZ9IGIxIaaysDUuUym7Uwz1LLELr8GyD+XWRzxkA5LoejEy/n1R5CZTsGqYFZTIxMPGhdHu7D0QZHILcFigxx9IiPyQjw3QMkclqlnroLSzy6VGde8IRl/H9vYdD3xj8fQdGb+WlI+wQzEQYmS1tK4puYMK6bMWBze26YS1idGYRVHU+qhKF0rYziHdXaf9BlloXIGdGVbs9l46Hj0VJuGXD0jwEO4fn4/IYK0jEYJQF7LAmWhtkBOtDZqLY8lZLqGvZUQ/BaNdM/4SyxrDiJ9Omi0CIyMYjoYGtk+Mfae47FkboxG38sgxMUWgWtCqCqVeGaOKRxDuB2C0WjAof4oR725ByU+jdf9BvdGuX2KV3pGLsf0ArLi3kLLY5nIeybwEnN0Hx5hbHMyjqANBitDNqZemBKp4DiMMXHryLEjPehaOWYEG2Yux/kcU0mNlg5qGSwlyyrzugrpmFBNKCboDEqfDHOLJFcY7uzTYEzaUVkOaLvSD2F0IjOIgRawZYQAeChiDfUFYX2kirfSHsO3iGJkiJ1YXFMYrrEkM8G1MWncunA/4H43liq0ClqclqJ8Sj01yjEoag0UvvdIb6ZiHjH8QWlZWKNLKmFOCkyhFo9nhVoUmUpQWZo2SUs9i3ncX/ZYMi1f1/J4Dv6iH7/UA8p1ecYkLKNNK1UmlTuFN5Q7wg6ZZRIRwSdMHnz7GZSkCksrrNvKsi20y0K9Ltgi9DJ4tTemHUzrjPkFGwd27IxyZWHB6FSvYRuUgmc1udSVslxZLl8HdfP8HU8vX/P8/MLT0zObQ9PC1lYuS3TDNHNq83DOLhJbdHeMzqRjOaAER9mo2ZRczHCPqXseGa42O4cNDht83vdAULoHz0sFNi7bYF0G9TmEUa2Rro0EzQXOvpA8r5ASNsoqUNdKHx2vBasVr5XL5zf6gO02sVkjfdShLU/UtgbdJs5gcDiIhSAy4HPPIdKyEp7s1pjp2Jj0feft7ZX7/canT9+H6PXtjS+vN/b7G29ffs6nH37O/fWVn//2P+aHH77n9csnjn7n48sz5f4d325fc5ELvBR02VBbmF5xKQE1ZypnE1jKZEnR85jCMIkHnw3E75G+KQVfS26SkWIrP4KzReLenkm9wDsVUS3i2QsZ7U7A9OcRHG9BajUCP8ZlRqGXxK+dYtaTfvST0vF0nNgM2DsDmk44GHifcDz+SSFgW7KL40QDmFkC6KGNCdg8aY3qtArCCFTHwtJJJpZWckAZ763PlmmYLkKM2cpIPtyA4+T0CKHdTNjY83s9HSuqQJVAwYogjEeyp0s+KM0QOqfn3DJNVB6GAkNTxKotA/BUcClMJl0jAXN4ZMMUjWODRGg8ubczuyTEvQ+TfWaLCGeU/fBsU57kgaeorKgulLpSW83cizPqPMKzzDUO7QxyC/AmxSIjDntP+3Q2/lCpIIRmJ51h57DnpEsmM0IED+o6KWBxeyTNCiEF6QpygOUwftQIKJtzcLcRI+SY3PYb1EJ9+4RIwywSgc0UZIlnkEfIpvg5oHi+3zHMCIEMjymYhWNzsjFly+dYifdzzHBMHj0WyD6wbugI1C6JrRjsiWJUk0HRSauRD5PeORqBQJ3R9+qS1837gGKJDO0z9F9NHOvC7EIfMaBYt0ALzaNfZ3joMDwC8JQFlRY9alqZ7hSPa3rmrvEePe+htfMIobPMNNoH3A/ndgdvcba1BVqLxaKWWHAAlsVxlDZCu2hmOQyF9mU/Mn/l4TRLoTgSlF87oUvDa2bNSIKwJmHrVrLW4KR1QjQukh1u8t6p9Yt8/FIPKL/6s/8T+3Q+vX6mVOHDN098/Aqennfa8obWV1w3TJ6JToQWSvy8Sczfk06LwrYol1W5bJXtaaVsgq2Tt/pGZ2fKga9fQIJmWZ8vsMCywqUWtrpwubxQ1gvl+sL68RuuLx/4lT/6a/yRX/1Vvv7mG376s59xvVy4rhe8h8tnWZVtFRaF1Y8oBSojtDOhhkLmDZVOKT0f4MIQS471iHjACbM791tkm7zun7nPnfvc+bzfc0Axouavgl9Z1ifaujE+3FjWlXVbuFyfqKWwZDIm7hkTrSnCCpxPSialjoVGYfFCp7I876yjsdwb01+ZMw5LXT9i9cKt7+jbJ6YeESkfigZ6j4f/OAZzjPDvjxF9Sj0SbOcY3Ped1y9fuN9u/PD997y93nh7vfHD51fub194/fSbvH36gf3+xucfvuftyxv3t52Cc//4Ddve+OFyp43B6yLMvVK2xqsKnc7hN7zfaGo8r872JNQmiFaGPmH1wvXaaHNn618QOj4LR7+EJV0F05qx8YWoe4kgo1LCIttriFsrodSnFmxZMu6O1D9ENLm0sBdWVWrNvVfObAuJmz53Yp36GEjmiWR0xWcErYXYLvmimYOSwtnbA8k7u4V1XRVqlBfiThuKs4bFNFM7C8ZyCHMoS50cFtHa+yHoMWAvcEQgmMz+viTIpHg0TPuULLJTDgvNx2Ejue4YXKZnGicR192bPAKpWNJZUSUoIVFGVfD4scxB6wfq2Q6lDS8bZc301RqJpwKUUjCNz3uP2oh5PxhEfLiUyLsopVBbDR2InIeJ5GF3kkdZzCka14M7iHHEOcMxJPA2rdTykdoabYkMEi3hEDq30TkFMhzstO+6atQgmKFjcJbqpQYZ14j8j8wmCYraZuo1QvehWpImjn4W9xGdK8cMq+39Foczjf1tYXZn36H0hrSKndE6wxi7IExaf+V1drbP3/Pl9glNTcrnz2/svaN1oS4bdThyDJaiEYgm0f9kBY6kFFEYqkwpzPbEbM+M9oLrhrOARdMuTHTv1D5ofVK7oEnTVK2BnPjA7UBmR2xQZbIUZ1sEOyKA8CLCJvE8bhK0p3ja0Eug4lMX7l7oQ9gNmMpxCOsOY0TK8rDITdFp6CFon+iA4hsqF5QrRmNS6FjsAwqLZi5Rbe+5i0DPSAjrg+6F21R+2I23m/P25lwarA2kRBR+RSLULasOvBSkVeYirMsOTEoN88fwyZs4hzuHw6wxc8xkmEEYS7Rem0YAXywGBZ+xfPQSx1D3+C82s+dnUCw0KqsWRvmnxGb89Tc/w9x5vl5BjctL5XpZaUuIvsY8OI47+/0tD3Jj1speSiAN1jh6QQXe9oP77c7cD/wYIX40p5mzSFjdTBpyvaBbbL0vH75mWy+8rBeelo1L23i5fMWyPrFcP7J9/AmXpw/89Cd/hJ9+/R0fPnzgZX1hqytbWbEZfvo4qKKGvhbHS/CWZie33amlIzrClZHStDFKcpOEZTShSJ0NmYMxlD6Eo8M8PEsMDTLYWVxSVzC4HcrUjukGTUP93Rrv9WKnmi3jtR0gttA4wxqtLqxtcrlcGd04ulFqxSwe3E9ff+D64Ym2LnnjCJxNWfn+nNyr9ei9Cb3GiJj90cNlMw6GHUyP2HTR6M4RDbeEaI3ixGa0yxOrKSKNas6ybkitmApdnNuYjL3DFD775Jg7x7xj+/c0nRwXKGOjbwvr9gTLRCss14WLF57SzeWq9LalC6TSJPNASqG0iKVvS7o0cLbZHgPKuixMqRzUsIIawIwkzNRCSAaBqcaWi51HILiX83+B7w9n75nlQeo/zs1PzVN6ctIbfnIc+XZISvfTDytni+m7yBKJmPQT7o7ivh+lfULku2SQnMyQtp5aFM8MlChZi7Cz8++BgOTdPW2Tzj4ijr5bbIHT4SgwUnEji+BL9Oq0uWASg8Q8v1cvLNMpFpvl1IqJBlIoHmWBcg5roeuJwWDG90l+8ypRLFfP2PHyGE4eM57oOz5hqZXxFMkm8qNiae8WVFvkg9TloUNxCaXOgy5yif4VO4WjpzVcokfHY+M9y+xmS6dWCVRJEepstE40T2fuuliIeknEVCQsweqR0CIMZi3xbDFF0yNtU/BxUh0pTrX49wUBDxE9PnlToZQjUJQRVOl2qVyfNkSco+xUDQosLD6xqafhCy0almwXZlVo+l4gWvJTAoVtOM2d6lFHIB60Jqceb8AZBuKppzuF1Gh8j5KlkOFAsXD1TUvnTyxhlcawRhQ0aqJBnuhnLG9SUpuRWgzxoNYkEVrJduwQYQ/mGRdwlkCmbfFEPANxFnacmxm3OXntg7cxuPezsTxTfSfYjBgMN5L5PTVgUUYq1dEaaebiFtoUi3Jbk8BdNP9/ihnjWc2ZcxKDNzVpL/VT5YumCkGmI5Wgq8j+Kf+nZED5yc/+CFWF4/UTTkc25+npwrosYQvsB/f7jfL5E8dyp+933kqhFuV+33jbn1iXvEmOnbfbK8eXG3Y7KLvTurNO56qKSYNWKdeVVoKW+fDxW7bLlafLEy/Llet64dvrt2zLC5fL11w//Izt+sI33/2Urz5+4Om6sSzKUhtLwqMQUc3Ndpoarcb2YApmnfBDdpYajqWlKIPG9Mbd9NFW7FORWVBbqNbT4bLQx6D3gvUg3iXVhsIIEeOYTNm5dWfoxtCOdVhkgbpQJR6SEZilYBH+lhhw0kBCLc7aVnx1np6e4klfCttzWAxVC199eOL56cL2vLGsjVbDHhm13vYoYFMnkBuLTpzIH4j/GpmBUKMGfNsaJFe+z4ASfUyqttTGXLleb4x7WJCfr1fa0wXblF7h1Tt+3zEmPxw7x/7Kvn9m3v4RtQy+PIGPb3l5eubDx8ZSB2s1Ll9deFbhAy/ojEN7EDbSgN7r44Aui6FNaJcoSIwDY9IkNrRaFvosfNkr4xbOlxhQQg8R5WDxkuqPQqr8ERQb67JCrD7kWZr5HngiYXg6EwQxC3fQCeOnS8bdYSrMGtkikjbchPxPF4q7M2ZA5eLR4zLm5LDJkEBCpkYo2hngIJYlefBAAQ2JYdEkkTRDfHAW2VvGc9971EocMzMpEiHpJQ5mXQRfFFqlWQm2SlK/ZIJIY52FagYzGmeHFFQshaX+oM+GnKnLpHNnxDaYdFoRoSxRSllbzcHEUy8gj+oAcY/MlbPBVlOkKxJQORaDUWlQVkpbQxxaKlPyeJB840XCQXa6+JCHJuu05ZmUzJMR5lrQJthC/BsIy1S4F0o3xtFDU9VHao7SmFoyIE8KXTK5tfXkJ5WiDZXGNE3KCfa8b53MLBFn4OyjY7NTx6CUHdWKj0IrxvPLwse3C60K90qGhYUlNQYTR6pTarzWpz5jFEFWQRcNarVFJpWXoLsWjcCx4jOEsTazGTkoGhuODUem4Ydj3eMgJ+m3EqiUI6GzM2Mfg1sf9CLUWrkTGpLNI9AzSkcbxeMZZiVoflnOJcIeSgxJO7RIRUuInUyMKCCM97qWxikcsbSbGc7hB3cTXt15nZPPvfP5OLgdnaPbwz7fZ4S3zRKCdBPPtOF4dhSXQMOJP8PpdCpJmVrQ+UYMM2qaN2xSuomuBu0cQtxTf3UKzXUn2mSFEMdaDGZI/TG5/Pt+/FIPKNs3X3FtlfrhgvukS4dL9HDc75PJjf2A/e2g1mj9JVX1bWks7UKtMczY6Mzj4Iff+m0+f/qEvw2eaHyzPtO+/tX88432tLBsK0/XJ56/+pplu7Jen7luV67LhW/Xr7jUK8/1hcv2Ncuy8XS9si6NKor3gzImokqdYWOU2XHv8XUsMe6GkHDiJUR9q6wZqb1hvjGt8eYWPUGEWl6sUOvGWhrrPHjbLuj+SjtujP0tueqgp1QmVYxRhKmKXSOyWJYB9YgtppFCTUFm2M0YwphHpHWWHpu1OT4nZQxWNz5slbVsXC7C5Cn6RFrjw9OV67by9cuVVqPZeY6w1NkcjBaFdKPu2HLgY+RB0dnHwTZGKMIzuM1DScfsg9EPfvhyo++T/TUpIjO6DOZ+Zx4Hx9tr5ES0wvNPPrKsF2p7Zj80tDljYBz4vDP6K2aDt0P5PBxMWaRFcVjptGthXZ+4tBdqL+gUyrR48FnEr09xRjG8jKx2r8gWQYFLi/ycolC8YUehWKU8UqCd2galGboMROJasS6PbXCmlVaQoEoQmp2aFUGlJSLQQ5Qpjmf/ieQBF/blGe6OIDiiudda9Gl4PNxmEPmICJbdPPc+Mrxsz1LJztFH6E5UY+AwD9dPbrGWwYEesRbYcHx6QsFhp2yMiD2phWMAwzm6cR/GfWYqZyFC+5J29Cr0GgnPTddY32YMT0HbNKoWGkr1ynCje/RsQeSWDI/r78vYOUYggHYLB0m1yVZLUCoCtcXA0GpJAXNqgIQfIU5pIZ5x8ETaM6AaqabuSC2UulLqii4Nkl46TnpQI3FVRVliJQdJJx2Tzoh7kRK20USs5lNDFkFWoFogOEfkzyhKsRCVqsSzJ5CyRi0bKgXRBWPDCjTnsVlv2xNIoecyMHVSWxgESonvReNVpppTc5s+l5zL6lHoebmyLc7tfvD6ZeM+OvuYvN0HSjwrl02pS2W9NroNDgvB61wMazNiFXKI9xIHY9SQWejFxh0ZBzZ6lBZCJBmPEoP8oViH2S3ofhGohSkl6Dyb3M3QPkCPCBlDabtjBa69sdXCUgoXqVzV2JpwWyp9KYw1kFpcmI9EaUWb0tbCdm3UreCrMErk/ThKJ++hommzh+mTL2LcmXyenc9j57XfuduNzo7VEWnDDaSGsHXMgIwmZOFnoJxjkudAoIOHzWgHjzE7qjmcRMszs8QFO3oMMKL4LMyqHFPxFbw6FoBQCP4T+TRXQomjHLbQUfZuv/AZ/0s9oOjaaOsS+Uc2wBszWxbHNPwYmO9hnyqF3o6A0TSsarXeKFqzfdJgDN4+f+H+dodprHXh5fLE0grLsrKtF9YPF5bLytPzM08fvqJtF5brM5flyrZsfLO8cNULT/Uah1dpLK2FfAOjz1T7P5xWcTORvvcp5zSaE30WwlXV6JkpT5itIT5tk+6KekDdYoU6F1CnWOFaHYpQasFKCS2LDZwDYVJ0cCSff7SCpk3ttEvaIy+QSOvMw3eaAgXT8SO3TQ4Nc1LdApIVxUpA7XVZ2NbGckLiRuzPqZOIXIN8votiUkJEKaEBiAM2tmyPLxE8/kyIaQdt25mHM15It4Mzq+P9wPvB7fVzfE9iLB+vlLagbHB3ZDcus1N8odpK9Q0pg/VSaduVuj5R1/gzJYPuvNQoLPRGFWg+UhRmZHpGoBNmAYnbO0TvUrCzj4Mo94rNImB/ICmrFH7+KHfgkeXASbtouknSOuopXJWQaLpEy6+r4Z5i1eS7Y0aRhx4r4PmU/WfarZm/Z0ZAXAczEixPl1jvQcf1MQNytyghDArolB9GeFOwhR5pnR4ISVwG/k6lIKDlkSl01scPDxQIgu46dVGU+LunE1kcHvRMCOI9X7u4bkVbHNCew1MSV+YwzTnG4OihidIRQvWKR/R8yXC2+uPMiLxnH+6EzDdxC0TjTPBNDilEr0mWeUFbgxqDiJ+q/UeLoD7yXlRLbsnxmr3LSZM6KvGs8BqDyiwpoND4z1l6/f4Re7255/sV1MxZDcBZF1DrO6S/BJ0yR4iKXTxbJ4TSCqWG80Qo1OkR3KX2EISXEpSALMqcG20tlArl6JQxMk25Ub2xbJXaCutSA/m1AOPI8LvIpkqnEefDI64hJ9JSJekLP1+vFBe7nQJjfSBQZ3eMPGiqeO5MN7q/W927RSaOpb0lhMjpRDqzpyRFpqcm6Lxns1jvQQ+26GBzPVEky66gCa70dHylRzM+z9gCLBKlC8iilEXCWFHk8cwc7o97+HSwBqUVTibzeP/PHJl34jiu45DmB9LaXcORGJMphjJLILmm6VDM2+B9ASpZrhglqG6w918cQ/mlHlB8g3Jt1KnRTDsG43wTO+js6GH0+x48ftGILia22wgDitCvTImn3+7MoyPufHh55nqplFZ5ujzxdH1h++qZZVu5PD1xeXqmLivt8szWLqx15UO9sGnjqlFTrghYaChsduZ8w90YWPC1GhY3z8yFUTKkKCHbSKAstGWj6cKqL8zRwo45O70e9LbSj3BdFCuowfTKN1Se+kLvF9jvMTXbYPoRinDp3OZkd0OWCAPR0uJQs7DuIY4a+L0ze5Rk9W5JSYYA0fPizjDN2AOCIoZSozgsaQ0fcLxaiHxdstc74MOop/dIfZz5KUFrFISlpJgvD2wVpWrNoC+4PIfNUmbBCdhatxJQ7xzcXj9zzMExO2wLoMxeOO6dcQz608bYL/T9yhwNKcayNT58/Stcrh/48PwVyxIq+eGVwys7jSotaKzUAtnM4Dh3OjNcBdUZPqJwbFQmaRNVjfdkF47d8BEOGUl7aSC9SamReg6JR0c8RDP6zApqQvFK+JCIAcWyFVVqnp9OJJREdkU4v/QxaEqKJtUjKdXMmRaJsTENaQTQjUCu+uzs1um9R2bJmBSLtMhSTmtwwWXB1CKsLnUnN1d2txDV+fkQji13ijJ0je4XCe9al/iULPpTLY9hUc5NdTodgeTgR1pMnUzYVKhFQeyhDfEcUnxGu+vY41r3YZShFBOaCL5GfUIMGpbOhDPnRB56ArMo7nMkqublTEWuaYfOAc4JXr6tSFnQWojEYTmZwkzpjNyWeqI0JZ4NllsuudTUWpglhxNJbU6wTBSDZYAPf2gvzCw0NiPvMxn5YI102kg39lhuJN5T3QIx0hGFekWN9VpzQAGp9XHAqyk6oR4W97JNRI0zX7K0Sh+T9fnC2jv3Plm+7MhUymhBaRWlrhUbzpyCzBkvY3VMBnhH5kH0AQtk4J9bHM6Sz448zoNG8fKg5FTCYagStv5actjwpOxysJhnvhFRiHnMxrCIGFBRijqa6bhjDPoIIXTNI980EDepQlmUsgplU0KJq5hamjdgjiM0IXhE0afkzCyoKM3i20srPG0lAvIWeLo0tlqpLTQegwhePIMF7RSnm4NMXKIcE4t8sHYOzfgZqhvvY5TzPJZqccEtCk3n0KBxBVw9A+rievNsE7Ue711E1Bhv9/ELn/G/1APK50+fKd1oLhFaleFCnrqJgP+cVkocBqUSdvZo4AyEPASceGysZQudQL0sXD6swGTZNp4vT7xcnlk/PNGWyrKuXJaNWhvLcqGVhaqVrTSalqgm14DTbRwgB64dZST8Gw9rLbGV1KeVsla4NM7sCyUEYlobpTaKxvanGnxqM0VnpQ6ntRkox4gwo2LKR2mMArMEknEGhHWrCQ+Hyry6saZjQ0vaXB3oESDl5syMvx/HoO8Hc0Q5VZ/jkWCqKfqzkwcvEhUDWqjtzl4iEnxJO11czCmkMIvtUVJnZTH1d49W0enRChqLXRwKKkrThdPM2acgYpEQnMK/xAQQUVppKUo8bY5xk61LwYthrTHnlTk/Al9TKlwulacPH+M9Xi4x/IrxfV+4Awd3Pvpgm9Bn3JzucHOh52fkXsDYYzDW7syRglfNu3uA9MjhKOpo83CKtBaHW267lMj40JL6hOS1PfVFKkum7kYLaTzZZv5cUBSmlgFSYQ81Kcw5E92JLdDd8TLSop8laUAImQIeVgZFIg9hlgw+c4kUYxeqZe074WqaxGDeR2QyvEpYibvEPRk6gBqvlxScLQYBnZQWqb9egv8utUSCZwoN40vz6ByJIJ0QbZpmIqpzl8mQFPiJ57Glj+vELTdrK1QXCs4qScNJIDrngRXjVPD5SbI97JhnsaFFREbQOxLRA1Fw+Z62q15AWmgSCHSiaoSHhSTBOEslJSmjVK+EGFneheprXfBKaHqIA8kGYameMI/QZ/k8n30KWhNFC3hg2gH5fkdK82BKdFvRCrIkAlri36QI7VLyOaWJ+EQ5qHpksbTGYznCjriO3WirhuZGG9IndUxUG4yCppYqXoOgDNQGimDRE89MJI85GDpxzu6bSG6d+bpXEYbGdS1eKCWSv0tzqg3qiOEVN6J2IA5pwzANge6sjmsgFzudxTs7ky7QRRgo3eK1vffJfhhHj9dVNA98f0cXRAoqFWFBqIQUZKSmSFNgOkPITJxnbThM2BCupTBq4alVBoY15botrLWylCiKPBlHJf7t6T30Sz5yUEtbc3wFj1wcQx5CdyHo1HxhHxEABplRJdAlM3fiLStO6PJsgik6o22ZbthhzOMPkeL5B//gH/A3/+bf5L/6r/4rfuM3foP/6D/6j/iX/qV/6fHrJzz9v//4d/6df4e/+lf/KgB/7s/9Of6L/+K/+F2//q/+q/8qf//v//0/0Nfy9uULdTo1jX3xnAnHQ6ux7YgRNdxaaLUFby1ZcpV6BhXNLANCHe5pC8RQFbbtyvPlyofLE+vTRqmVVipbbTStLHWJ7UJKJr86lPmQRk3Z83PEA4e4GSgBTcsi6NrQteHLFoeJSQqRKipL8MKxOgfMq1AWYtvQiooHL62Wsnq4kFSJVKY0xhB6YN8BHz56R2a6GX4E6Rk/yo0xRh/Z1dPp+x7Omn1wjB4PQlKvIhobnip2Wts07Jihi3CaG+oWHTHngOIktB2w6ExIciAJQWYLs4QNVNK2OXU+Hu7TA6L1FlOChAw/47B/BGN6qPXDei7JEsQBYqxMn0h9ZqnC9Vp5erpQlwi2u02jT+feS9ANslOlM13jZsxsikPibejp3ggKDPwgI7jJzb+kkCycB00jY0NrHFKRgxGIkLuBznhg5YCiovFeaTysxaODJCQjFTCCpCfQFoeA9WfG45dw33g8ktWAEySXCLPyM7DrJAh04jIy9Cpg5rOgNDp+MtPCAZLieMT9w1DnUGcXzwEln9wpEoS4ZiNM0OKAKuFyc49yxFKURVveF3H/mgXNhMy8pDywdpPULgWkXRNhilyflOMm1eVG5IB45GK0dDMUyAE6MkYiWyXwIfL7fES352UdpbrhvrKovo3PUkn+IBGwcyHRBzJYzlCszFnB3t+BOIDj+wsWODJWWo1gHCunoDmYAiG33xHIZyBKpGCgZFFKuDnMzxReJzph5oOekFoeqbaq9eG0aS0Xm3KGChZUWx7ASqvg1nkvdoyhonho7VyIPqqatMmoyGw5BMZLq2PGvf+7rhMeGTTzHBklBjLXGFBcIyfHE+FSspLBQ3yuQ/NeOpmeGNSc05FmodFTkvYeDO90H49kqox9YxCL1pj5OTL4j3dKGo8fRwpyQajgjXLSrElNB/0UIXVBPyllOD6hemS1LBqfki6n1rJHpxR05t9BCrORfJ8zviI4pXgd8v5MFi1e10cGUdKRKTc4yaXhSTJNHg6qCJYLDCbEsvJI+iVF+YHg/SFSPK+vr/ypP/Wn+Df+jX+Df+Vf+Vd+z6//xm/8xu/68X/6n/6n/Jv/5r/5e37vX/yLf5F/69/6tx4/vlwuf9AvhX/0v/0/+L6tEYhWKuvS2OpCq5Xr0zPbttFKZWkXLtvK09OVtkbXw3wI2oKK6Bh75IImjFseD4u1rVzLwlNd4mZ0UHMurtShtDFwC8Hoq0QAlVWAMyTrwD0kSNtyicbREpBoWYR6EfRaKOuCbxdkhJBQjwx46iW+LiXesUJA1MsI8Wp1pDkzI/hnj8l7nYJLxxgcHEwZmB3sNtmBL64cHhkTUciXVtbkWucZmGaTcYzHkBL/Rgwqo0dCbbcIJ3PRsH66ZGxz3lylUEvYgReJ7Aw5Ex3zIDltklOitfZ0WZ86gjN+vGYrrSA5nCUv7nFA6ko2xcbALB6fdpaKoSzyhFJwJGrMqyJ1w2rDyoYsFVuUcilsF6NVZ0zjNgt9Cq+3wV0P9rYjK1ykcMwLlRWVlkiFYlZpGVZWxJhHoCo7GYFdFFmVpRiXOtnWQa1CXQa6LEipDGrAsmcRj4QItmqJGDc7o9lmUpbKnIpaqualpA022WSZD/g/DvISD/cpGAPJviIvO2cwVCV7RXBs9EADdVAlkieVsEePAdoJCmOMx9YYnTYDk4OuB10Hh3YOnQyfsVgAgVtU3Gukx6bEZLksFA8gv0gsHYsuqNT8nsNJNMeIYyN1LKe+xixcR0OCuqlnnLlu8XtsRg3EgOaRP1ElKIwYfk4NQticzXIoOrUPOcZNg2M4x3DGdIaBN0UkrO/aKtSgu9zCdRGDcromVAPBXePwN/GHZXR4j23ezzTWEFpLCWpiPa37IohbwOpDqVbQaZTjCBqByVQPjQ+Kd8XnCF0QkVYahYcBA0lpaKvUbaVdt/g3Zo01WZ22Lqg2RFpE0Uuh6UKtLXq+iuA+mT4YuzKPztjvpxkNrUrVQH99KtIqsKSo25MSF9DO8yiMujA1Fp5ZBW8gW1KZteK0oBS3FhZuKkszFlGaKjoKOkekoDIR79hxMDN/R90jrt0shjuiOTxQyTv3sVBH4Tbv3L1xl8KuEshiPm8f4Yikm2sOGAMdnTombRrLhGIL5hvqFeWgMBnWYVpgjzOajd3jPdQxqd3QPpE+mX0y5sBkJq3ogfAlKqilcT40xD3E6T5CAG9CfT8GH1oX0/w3Ec5ma/cIn/Nc7M1TeG9AD5THEMapo8oqDJ+OzR7BvU7mdP8h2ox//dd/nV//9V//P/z1X/mVX/ldP/6P/+P/mD//5/88f+JP/Inf9fPX6/X3/N4/6Md1LbSkL4pmbH0RWt6wrWjSOykyPO1+IhmuJFmUVyIQR86eGnmU8wnCSmGRQkXREQ9fxohoXw+4epox3fmik6FOL8akPwYUxcL2SKHVwlKjcbgSqucTrvcZbZV+OH6zx1RSamwCrU20zkhE9IPT0XEqssf5cBYnunEnRjSNxufkoLObc5/CGM48RYAqWWqWM3cQnw9hVNESfTVLCxj65L2ncUx7hGZJIhY+08WQIjxVj0bQEhqVIpqqtxSW5bSuRHiWn1ChEkJaeffee65WYSE8NRIzhI4SXTWToDAiARK6Bfcpolx0p0hYRHsNLYO0pxhQlgURjcbhAloGa52MYXy5Ca934e21o6Uzts7qwiwVk8hhUEZkKXjgpLEZk8MCWWiWFmAqEfYwkZqfSePAKUA+t3IB13gwaKQ25qz6SG+1KZA6HPVIDj37giPgzYkW3nhwaubPYEnneQyN7pMpKfrNDgJxKJ5pqpllkvtS4G45AJlZhAYeFkOqQ9eDIUEsmvVHE3LiHCc2Q14Ijw0WiSGznVHsRG1AkfKoBgjVtDC1ZPoqD8GsaApwJSiTCAS1B0ytmeUSgtpA3oo51cmHt3Han2M4kXMRDmQjkzXRswHJGeqR74LGf1tlLhVbKtSGtBai/Hh4cCICXhWrymwVfaS4B+o01R90i3FSEYGkSVFKicwdyWddI9KJzZUmJd9vexQwhkswM47E41nWjVlGDveJ+qBoWyjLRt026nYNMe/sIANRZ11yQCFRUgpLWTINN0IOzUeGEA4QjV4eiWtbXNMOa7QJ4tmMnQMKRP+WSNhney2MquiqWH6WNXtj3CNRdRijhvZFNRJji+YSdqKa+X1OEQZxXZ85QDXpOe2B4kgZD9q09kFdBruNhzZqiNMk7gmVmYPPzORe3nkRI7uqCG1TDuTokgF8I5eokc8OeTglmYGOe4+Fcb8P9tvBYQeuk9mWQI1qLtmieC35PNdo8ib0ZY6GCN8lc4LIa9EgnxXx6E5UPJOV5fF9/ej+t0RmZ5wZkRSuicKl7icXi6n2aP7+RT7+UDUo//gf/2P+k//kP+Hv/t2/+3t+7e/9vb/Hv//v//v87Gc/49d//df563/9r/Py8vJP/Hv2fWff98ePP336BMCH64qWSs+I8LVVtlpjAGg1PmvoTyKuOC2Nbpm2F5HuS22RA6CC1WixldKSN3SWEQ2QUf0d8KTtkUh71l+PVHp/0cleJrcy6R7ICXNQxWmiiKxcl4UiwuZn67A+Bg0bxjwm8z443noonz1ESgGndlo7KKVT6ED8upQgHUMzkHbG04XBDL6UyS6D3Qe7h23TRlAPnANKORtiJbeHuLyKRjiVB26P1XhtRx/hfJiZG+EJx45ASEZqfQoRB101slxKSUtg/ZFDhdh2J9Hp4B43saSwKxUXiOt7Qd4p3sRwj/yXMZ3dotitH0fA7dO5j8hzKCoc5U7Vmnx/pmm2ji8XfF5wr7RZGK4IO2sJG/qXV3h9g7cvB9oGRx8spTFbw2ulilGkUiyhZKvUElA3WpL7J7e8CtSAwougdSB1PAYUxx7XrE0hKpaCgpsSIXsBF7+r9MkBhRlOLnUjCDBS+OdJmziF2PLObe9B/aRfwOapQTF8pM7LPDqhPFuG8UQ/TpFoDCie/UlBczhH6UyNocd85L9jeQCR+o3TLxD/3+IJjRKQ9jkAxdUZhXHqp+tJ0VIxj4wcI5DAkgOKc8a552ubrowYxk50LVwfalA9LLJgj/A4HgPKuwvndDe5ph0UmCVJMUs+v1VsafjSsNaQtkTkvzlSEvVCsabQSui2lrjfjQhYjIJOz/K+yLeI/CGJnBPV0LZowOwtnV14hC6KxVcnWmOoT61FfAhzJMpxDlw10FBRoaxbpL5ertTtiSKKjIFoR3SyrUvSORUdQjkHlCWSk7VlVUEuUaCMGaiipFZCxaiag7BFjlDEMp9UVaOmUPMolV6VspUYUDaJASXfK+sRwtbrhPw6aw4opQYdAfou2pawmHcLWsZMo35ixFPJPHRQp3i/9kEdg7sFxdNxhsR7Qw4nyoyuqodoQ/LeDPpDZ8jJGpoLSgtLMiXMA540CRqCWctJP2s/+j7Y7we32063A8pkrCtTC7YSekKNAeWhRGkFEUOpcY8ZeS7yI+ovBt+0KMVz60dOMnKRLhqDjOag7Bbzk0t+yyWeU2eNA8RwWFI/94t+/KEOKH/37/5dXl5e+Jf/5X/5d/38X/gLf4E//sf/OL/yK7/Cf/ff/Xf8tb/21/hv/9v/lv/sP/vP/ol/z7/9b//b/I2/8Td+z8//3/7v/xdqW+gjOLVzoypS0KR6WqmZ3TB4e3vFbwCO66A2pbbCclyxUpllQduaSaSEQGk64zgeJWti+VA/DoaNCM5yUiwFn4tzH5NXGRzzFsKn0SOVVhWxDdsmZThPJeRJiHDYxMrB7jv31zf2txuv379GuZYBZaGosDVjbQdNJ5Ujt/JG2SqlKeulUiS2mR3JXhg4PDURTTKhdqIedmqZYYmNno8QE6sWir7Dg4tUJCvX60Ue3K/NUPr36YkkOffjoI/Qp4wxcxNw1gqtCNvSqC0/1/YQ17oH5TJT/xLbbEAp9qNG34DcT9h9YBZZDke/c7hxd6f0zjEG9wlH9hT1GU4TdGD2ljqEOETNIrOF5Qlfnpnr12itrEvh49NgLR05bvTPO+O1M+4DXQvtZUV44rJNxqXQSopEEaqvNC4UCWtyWzbqWiM1szREs702Kaa1TbR0XIIekBGCtjEk4XroI4eRmAQAp/jgBGhtxEPRzVkkoOnVJ9UPqu+0Mihq1DKRU0cSVwpRJTeTVY8HlDnYcEaolWE680i9oxHXh4Ttckzjvlv0oByDufcztJMb9xAZZmlZoGMRAy8/6jcJCipok7D0plTCTyA6dSPJoZOhZVpC+1DaEvozl/waO1YmbSpHbQw1vB2oRZCXjxh0JWEqd0fmQE/kUNP7IfFpBFqW5yZSBdLaex73cwY6FomhjdI2ZNngskFt0FbKDHdRmZnG68LQwqyNURu9RojXQxehjtApo1PGQZ2TQjjBpAYV6HXNzRmWkvivQPHItrEe7596iffeJ2qDkbSHa33XXVRB0wq7Pj2zLlcu2wuX7SuKVKwPRO6oDK5LSQVN5gGJspQFrUFlU4Xhg2GT2UBYcQaz2OM+rjVyi2at6ASZMQAKsRxdizDG5NKUQ5RDlX1TrAl2EY7WiTrIzhwHcx7clzs2bli5schkEaFJRUoMxiOt4OYzDQQz7rGsQWko+5nT4yMWW4eyO2UJ1Hj4OWaHvLRg1Bzyp2dIHApeUa9gFRvy6BhTDxl5pIiHfkalPYZg1x5fG1Fd0cXifNkPPt3ufHm9Y35Q6mRuV1yze6gorjVs4iciXjXpt0app7ZJmcPjk6DC1UN/4uZRckkiaZqasEQmRQxVgxkGjd0s0cpAOUMA6mhNLRCpZZl/iCLZP8jHv/vv/rv8hb/wF9i27Xf9/F/8i3/x8b//2X/2n+VP/sk/yZ/9s3+W//q//q/503/6T/+ev+ev/bW/xl/+y3/58eNPnz7xa7/2a3z73U9Ztwu9kxC0pp9DQNK5I/LYPvrwDL7JA2/G1Ou95xQZ9ssTpoyncxzC05x+2mHnwMbB8JGZE0onchp2c3axmKxHWMf8sLj5xLjVTnOlmXKpyhhC6Xf6bTCAt+PO2+dP3D5/4YfvP9Mt+hFEYkC5rnCpg1WjwE5KQ8rK8nxhWRs+L7Ql9Kahlc3NLhfr0ENJ1rTnr3saPC3gZk8BHrmZnmFtCkmPxUTspGMnleolt2XwoNoURokUU8FZStgL1xai2bpU6tIejhz3ktoXHods8VMAmXkcHpqUMwgrhGXxY9GCWAxgm8fBQi0Pe23zGrN8fPm4h4W29wgvMtsjfnFWpt+QWuOwkYOmHb99ZvxwY3y+M28HdW0s40Jtk37d0AlL02zIVhbAqFQZNGps9CWcC6W1sMuKZrhRaHVCj5DfT2anzD6YQxiD7CsKPYzn1v9oncWZ45ziwHRSz26T/L/c6QMJS3Hqo3iPeJ3eCZcT2eKRAeE5hAbrI5z6oWFR7mbnr/uplQhKK+NuHuCxex6+50Mr7bKn4+n89z3/qz/+ufiDsdnGmMAZM3cGdJ/wuKS4vIjT0LSOgugAi83+RGzCknnakuPYkaSYTpbeSNgqX6ITeUUj8BCP+H4yrKzoQmlrZO7UJWy4pRHik8gucUudDJodQLlVZ4bGGQKX4bKBKvmI71ckhNZaQkz9uMff02c8kR7TeK0EDbrW/KET8PxaflyhoNlmHmh05Dm1EohfqDNmoDhnG7cnPSsn5SSP10etpEOt4upYLRQPHY7ZZNYSOqJSgwIZ8QwQnHLazkscjtWJJaB45i1NlhRtdpkMnfF7izGrM4uxqGVyc1Ab7iGoPS3cpzU/0N74PDuVzmeSAFhe6z+6zs87xvP3nr4uTQ2jnA4urbhUDM37JdKXZQ7mPEMvgZP+FH9Q7pJsv0tozaaH9mR6IKA1ldnRwTUfz2xPUT1CnEX5DH3cdvkMCLrmRFBioTvBn8RfYkhOYXhemkiCPWeAIOczROJ+ETFOFtYRvAjzFwdQ/vAGlH/4D/8h/+P/+D/yH/wH/8Hv+3v/9J/+07TW+J/+p//pnzigrOvKuq6/5+f/6B/7E1yvLxGK55b17wnFDufsD9j3iAK+7ZNb7zHJz+ANcWeOkZ79GYFvFTxbZCM4J9qDhxtmRzZ3HuGhB9AapktRbuYcxFDRe2ya8x5cszo0u2N3YywTPya17kjdudngPg6+/+G3+Pw7v82Xn/+c3/r+M3efvGEIlabKx63yXJ2tONcmtHWlbVeev/ma6/Mz89tvuD45Zd0Y1R8x4/a4kAioVAubKgOyLCpbSC04T5EZHTpZSqYSiYLx/eb/OB+a6doQydwGagZFKWNGIFYIzSZFYngplYB/qz5uwpP/UHmcZvFeej5gTx2A+OPRqwTyomZoqbEZD4uo7goLjXtV2ihYi34RV8OPjo8ZAsQ+mT0OfRkTnR24M2sIYu92w9jZf/ht+m99Yvz8C/Z6o66N7eMT+/4dz89P9I9fs10KbVFaa6wyuajAvLCuStnWSGlshbrWhG/Ja8MjsyTlqNM9aOjhzL0zutO7sR8hSt5H2EA9y7g0HzjWZ9oLlVmcphNqlKIVndDi4NWkugQJ+jDjzh9vA/FGh0ZBk1o4H8pk8ubppAhnU9QrRNCUeTqwCFfWsICVxcNFF8VoFk62fATGA1FyYA6UJFIt5YFgPgZjctk4ZylOs7nEBm6CzkAo41UNmhH33FAHJoUjAwklxdhYFKedw49oTWH2u/2SH3HoWgTP8kz0bAEv0barDdMLUmM4aSl6pjTO6oHilnlCIShHNZ89URSZUXvI43APpMM9SkMnHvSK1uRMycMnWoLdQzx/DuPnQNNaoATlYcWIzA3JpGLJIWApynVpYUBojVaDWouuliUSbgskXvQQrEsNoWQ8K8LBpRSqKFriO/Ry3t8ztU+hh5IZVnyfhfPVmCPuz6olRP5mbMVxGXHdzHd3yaGdXia1QR/QF2FzY1HYynw/VEvEkCwKW36pB7BIDCeLK++W40SNKRwG3ZxhM69V+99py4LuKiXclaKKLGtQe7VxUKgGt2GwHyH2daNDBjYaaBzupcaUYAZaA1V1OZ1EPRCTRPqwWJz7focx8VIpI2hSAWwekDSm5KXi+fz3dLmR1Q5xzQBE+nCgeBpfm4dTDgm0zSWTqHU+BlzPa/ZEUQizIWOERusX/fhDG1D+zt/5O/yZP/Nn+FN/6k/9vr/3v//v/3t67/zqr/7qH+jf+OlPf43r88fIFGBSyo5kdDUjIDSzye022A/j9W7c9k6fg7138shDm1Ck0mQBCbuctpa0x+Qga8Jn5243hh8cc8+bCnSW2BJNeBt5k7gzZzTxjvvO2ANOfvt8ZxFlkcq1xQ2ITb7cP3O7f+G3f/P/xfe/9dt8+p3v+a0f3nj1wRcGeGwqXz8tPC+FSy28XBeuT088vzzzk5/9Kh8/fsXtV/4ZvvrmO9anJ3i+UtdKWRSxIwK2jo73Ge2yXzq299CR0DlH46kW25NG/oGKYiXQhyKCl/nY5GJzOFXjcR0XlQR884hLSoZ8xYdH8qsplPHYw1NKksPJjJ+YxMAUFMKIGd95iAFF4FSRili4I0qn+YwBMi3H6o6yJK9eOGwwZTJtsq4wqmDeKMtKWzb0uuLFOergi+7cp/ODD96Ozv31wD69sjTo/QtbGfjthWUI4+XCcllYr4rphDJQbkxxyq54g0rA3acdWI7gx8cCXjOjxB07On5M5q1HCGEf7OOgz8k+RzQ9p8C1nIdoj52noAwVqjpHG5Qy0BKle2t1jgFtCTSsemN6aAQOn5GNYv4I43OJ78XUo3UV4v0uaZ/2tB0+3uMIXDtEcAlB3shEYFEhwxeinGzmQDFLpApPj/Zqg+kRPFiQWMqIDXpKDEJ9jqBGPQaeItHaq9ZRlOrhYjrtv82EAjRrTC9MV4btURg3DO8DGz2KKE/kRAINKyTV6BZBhyQa5ApnHHiNXJa1rFjdoCx4ucZAoi0pU4XMZnF35HSkeWI/olRRmpZH70+4QGIYn0SezN1Gvs4z7LomFLPM6iA0NTPQ370HfeI2WZZKa4WmNTuW4n72Ga4s9RDtqBm1wjLhYkKdULqHw0smikTYGiVacyVanE3LQ4vjqU+oEoF2Z/GhaQwzoVcI27EQwl1VglqvDqMhHqV/swZyMeWCzk6xzjytIZqap0S5d+Aoim0bXQZdOospDWNJisHzoGzqLAKXnKeKw5ID7Zbfi+VzZkrKQCScZ91TtKxxeFMqrgtSV7QN6tojVqIqXFfkGs6iveSGd0yO2z16scYew4kEUqIBuJBMXzyXz0OfHBA0QuvEIs9k7gfHdDjASouzrC0h2A/4h1CEOLXm4JVlrNEYHyF30yJkzkgmIs8AlwzVPJ+t+feF+ieqF8J1BTIDGdYMRnXATXL4OX7hM/4PPKB8+fKF//l//p8fP/5f/9f/lf/mv/lv+Oabb/hjf+yPAUHB/If/4X/I3/pbf+v3/Pn/5X/5X/h7f+/v8S/8C/8C3333Hf/D//A/8Ff+yl/hn/vn/jn++X/+n/8DfS3r0zOXpxeKhXK61gp6IGLQ3xM9SzPa4chilD10EevI7hscKUbUkS9JeCvSWjRMmjJm5G1MFY4R9M3ukzkDWZGpwaVOuB2p9YD8OePYO/12YL1z0AMKNWGR0LTYcefL68+53b7wW//of+P73/45n77/xO98ufPmoWdxc1pRvjwtPC2NS6t8fL7w/PzEh7cXUGX0wbU9U3RhDKOos/iSIrkjuMJj4MfEjondIstkjBGOjdwsVB3VEMRGS3Aow0vagNUt4ypiuz637cTsyZEFeJ/SHwOInxkbCVl2z609tld3R2dii+YMiP4Id/a0ck88Qs4kA/ny71XJR7afQWJ2mlYxgU0UpCISZVwTixyVEoeCyRLVCetGWxumk704XZSRYrFIOY1D12zi2eE0jp1+DNowypQEjTWNGqF/OfqOHiUQq2EBl06n9ElRwUZkuJyBULbv+NEZtwMbgzEHfYb2aYzOMTP3YzpVFRONIjSPKkgTYWgEGGqJTzOLB71DI9C0RfwRLHZk+JKfgn4naRfJ0DV/sABpjAvFiv2IBsq3b548OhmulVk753B7QsGRPBp2Ts/ukXjd8nqSPIc4iRbiOpgBcw+PQrSSnzqdEnhJ3Ms54BQLGJ90Q2EVtyNA1+EZ4f+ePCsSG+35f3BqFcOGKecqfjrW9BSW1hhGtMWhJfEpGbnpp64bST1N0FaS90+Igt9phhMViXEfXGL0N7eHWyK6U878FzIszpjTOfqIZ50btZakvxSynrPgqJTMforXSt2z0V2oLlSTGCB1BiogYTx45CeliNLzPTvRTkkUNL6FcF+palJrOaC4Pg47LQ8SMP5es0BFiSGsMbF54LNST8xBsraA9yI88cq6rigD9YM6iBRnDwuwJUIR7kTJ+z8omzA0xOfIr9s1XtjAgsMxNLFwDsXmBpkFo6VBbeGgKRK89qJ4U2hBcQw3jjmh96CcRB8xC6XFYY6FrjJCSIlB9bxRfRK1BO+UbsRLCD6OWHK0IoeTATJJ54Z93mYUQc4RzxYbI6UQuWBbRNmjkRkWOVGZxYSFYJh0a54LjZ+p4Ge4HO+IXj5HQhj2KBz7fT/+wAPKf/lf/pf8+T//5x8/PrUh//q//q/z7/17/x4Af//v/33cnX/tX/vXfs+fX5aF//w//8/523/7b/Plyxd+7dd+jX/xX/wX+et//a9TSvkDfS2zFXwRmobwcGkeHmwcRs0b1GARlg7r4RxHbJ0hJjx3kNy4yEhfDavfMUd05yyV29jxfiesrIW5e+YmTGy80Y846G+HJ91TojHVJvv9lf31M+N+g7efp4Bw4n1ix858+8Tr5x+439749Fvf82U/eOsHd06XQxz2XYVPs3IslbdWObxzt073g9YKdnQuuiJmXG8vXOzGuC4sa3aPzPw3d2Puxtv3nXvv9Dlx7Y8ZI6DJEv8tYd1srWY0e9AzZ9vo2Rnioo/DDPOAXKdH7kJyuM7APe3GoVWlHMmRe9JrZpS04YlDx+lE8u+rdYZbRDiXbFH2tA26JIwYoW41/7yNODmrQx3nA9E5emhcbFhsyFXQpbFsG+t2ZWkVY7BiDFnR6tyu39C+vnLla+T5EwsHW7nx8vzEdr2yXC+s1w9cnp55fn6mSQtRnjuTg/vd6MedOFyCV1ZzFoNShWWtyBryAxg5oBzMew9nDIMhI9wQdmDjyOwbxzVK5saUx4GnqR9SC1hdi7HIpBVY0l5fi3BpmsjVjJybMbEp4aAi3vOUbHGQvHXeKqfWZOQDlbOIz+DIED5x6LNingnAWkNYWiR6PGa8b+4BXwcaafRjBIqCQLpTNKm+6ZFkfPLwM15M0Bkpx1IwWTLPSyLG3SMzat95HI59GKMbxxGZEjYjwj5qBuLQCDSA1N8Yd+uc+qxSCmfIYwS5VTSzcJCKujIpmEWqqnsMQuFui8P0sdfGGUDBWdzCSSRxfyCpzcmE1MDoc4r0EYeVRdYSynt4mAn7tLQWT2bSEeIFTMJ141AJEb+pMzXsueFkEuosDySnlEGthVZAJMT0kRpZgmaaGYhHIHFBN3om5ha0LBgF9Wwyn4aNI1E7C+roPFPrmhTPpGjDREM8bgfFOkh0iuEHdj+wOalzoma0aVit9OOJY3+G4w0ZBxw3jHuk5EpYpVUGqh3VA2TP6yz0zJwiWE1hrTtTA325KxwVRhNYo3qhUpHLgtkBRxSqenG8DqR2KB1kx/3O7G/0vSLewM8eJonnrlWKC80knqPdYB/43pn7YOwHY9+Zx4H3gXfBdKBJobsayMR1ZG1CDCmqQq1K8wPxTt/fsB5DCp7PkVKZusYzPSMGIMM3/XTX+cOqbiM6r2SM1PIYrbwPekHhp9yhD5b+hxh1/+f+3J9LTcH/8cdf+kt/ib/0l/7SP/HXfu3Xfu33pMj+//vRxxd6Fy5t4Yyr9+S6bRbMNO2QefMXZ1lCeCg1xEBgdIvdTKnxwClhNy6j0EaNh3VpFF2Yd6fNnboudF8YHOz2hsnO4MD8iCwEH3Rxug32+co+PkVD7u175t6Z947vk7kfjC8/8Pr5C8f94L5PjikRzsXBKXRbtdKWysvXz1wuK+u68PLhmefrxsvThaevPnJ5zqTbJeyGcxz0u8HoqIWt0cfEdseOyBawGQ+S6eMhnvLkNB0eN6tY6A0ERWbuxRLiWAj1eUoEcjiJ4TC6es5N9EyZlMxBSfjSI/wKSK7dqRncVcWpHlN8N0klfSSXZg7jY7seFoehU8GDvVcN7hYlByZiIPPI4jD26IFxocwd6TuiA+sN88k+3jjYGT7Qu7J6oy7QyocQv5Yry9NC3TZ0XSjrRlk2lnahqdJEcqMIe+7YRx7KnhpVx0SoUzDXKExUD6xi3/HesWMk1xuhfMFRT5CA210mrg1TZ2Rg3VlkJpIlk5LprpRYvlxSyxAZI0pAtwHURp6NeUpIDdzSHozHZOmWRXih2o/00hBEd4WuMUwGDR2uJHPQWnGWKBLUdwF0+BRyOPHoxOm9o+aZZyKZ0pxhfh7owIl4SHnP9TittqoeYtjYgR/hgRZ+bfDJzHTkMSY2A/5pGpROOBiSjpLYlkP/RDy8tcSmnMOh1Sz9qy0zSRRJ/ZeRMw2nrVXeKS9JaF8cKYFQxeAXgiBP1Mk10EMXwCKNGTkDFuNw8xKiVCmazh+jzBYUkgq1hTZCqJno6tHj5EHbaODyCIVSFkrdqO0SIXNaWdZGq9GsfBr/kbMXqcbB6MRWLaez5axJAIonNRuiWp/xjO49BwGX1NA4Uuq7NbVGj5FNo0zlMA2xMRNYGC0Ga50DmUaZxtASYvSyMMsWpaF+w+yG2YGXe1SAFGfWTu/KkeJi0wA+LK9PTUQotFVK9+h8mqphqa1xmC4OY3Hm7nixRKYdqBSiPXrRTtNOK51aJtQSBY+SD9wzg0Gjl8umM7rRD+O4W+SfvHXurzu3Tzf8mOgo2BLLo6/n8zldUgKmoXHTEsJxswNm59g7s3dsRImtFlCtj/fIT22WB5qUoOpDr6Yei2haIXOYDvdgEaOohYuMWJqmGy2lEb/Ixy91F08/boyueLF8M2NLM4c5Y9qblhuKxNYfSJenFDFuoH0GzIiUgECLYsm7TZ34VIo2iiyMxWi20taFwypddmSGILSbIBrQGxgmE+Ng+J1hb/T5yuxfmPvB3P9/7b1rrO3bWdf/eZ4xxu8351p779Meejk9FEijfzUINhG8lHgLxkYSFMMb9FWNiQlGSIi88fIC3kFMJDHBS6LGaGJSXwjGxCsGWiSEBLCGioY/CVWKtP9S2nP23mutOX/j8vxfPM/4rX2gpcdCes6hc8A63Wevdfaec8zxG+MZ3+d7qdhdp5/PbDePOT+9Y9sarWo0JwSheq8X4yoVjuuBN7/5TVw/uGI9rjx67hHH48r11ZGHDx5wdfWAw4Mj5bCQih8Wo9Zgio+AogdWzf1PxtghuxGMejdFm0WzM+tNXKo4kRD3UPDbLBYoN9PxcJqGDXqf7obRGpIFl16mYLgzgV4mk0vwvvCU6g51TwqxwbnfFygpLKTL8M9RQ/nTo52gkgFXEqTkngOthXEe7u+BuLNpH9U3/uHzJBX6WOh9cD7dUcOlMTUlWUEX5ZAXVN1xczkm8pLRdSWVlVwOlHygqFF0RMaGz3nbmpNym2/aCpDcuGoYlOHIhFjzDbVVRnXOj6UoV90HO4hqHp8QrNcoLtwF0yF2Y8xbrjgp2lEuQXtG8Q12gtfeSya4Py6jN8FveOaOsw4xuBndGBJGYs4V6smo6vk6nTqFQrThREO1TJbFuReS7kl2hISX4HmMTqubG20NP4TN3RgxDXv+bvvm6aZT8Uyrhgmjk71nREQfHoewNUcbdDRGrR7bEERSBeeA4JyKaRU2xKJAIUzfvEAZOTM00TW7/DgVNOW9QAGC4O3cLIsDowvRRtL7MEgNsqV4ITJbClHZREyHf1+SkyOT4M7Ugfig4jfmlKPQHeTuhagmJ2/n7BEXGF6gmCGW3FkmPN9V/HBP5UAqR1J2BHVZMiUpqwhjuBHcUPViomTSmDJ333/FnAg85eAk2wnZHgEBjBTeOrarRkzwUMXkhNu8uAP46MONwYZEgoMjSClVf6ZqvS9QUM/2kYWNA10rra+MvjD6mZGzZxflQU9nehZqCv8SMVogfCbe0rD9KfHno8t9pIdkV4plDCmG5sFIE00aQENpZKksUslayamR8oBsjDwLVUfVLPk6H0Pd26kNts2RvvN5cL6rnG83zjcnxtnQlpFjpqxKKt7udpPCe3K74l5AarhzcKucm/Pbemve6lKliEu7xcuy+DwJxVIkWEVMATZckDa8rzsVZ2pRoFh3lDsuoB0jc6/T+1zjDV2gcLpDisDojLTQyhWVzMCh7s6sgEPzby38DDzRNAeHwWqOyR8sidjwCZa4cn1cOLfMqRSuEOpVoz1onE8PqbXy+PaGm/Mtt9sdN+eXHT2xylkHtW08fQp3pXJejLvtzts/JKDRxDifE+UgVFWuUuGuFe6acjdgofGAxlvf8mYePv8cb/+dX8bD59/M8eFDHj7/VtbDgfVw4Pq4cnU48vyjN3G1XpOyk+kmKcCDOKOtEQqWdKjk0WjWuO13TD2/7xqTsDXiAPKb6Ewwlik5CzfB8CF19MqIQyaka+I3ziRHkIUhxW+HIS3yg1q9gFHbN8qsDqF3iKxSTwhujDAIMnRuWOYeB00KlaMXVuYPzCqDhUG9ueF03hinM0OyE1Xb6r4Jo2Mc6Hqg6gHblN4b502AwqLK1XLkcA1rhkfPHZw8llw2KUlIS+K4PuSwHHhTWkl6JnGipUqTwdYGY5ypvTG6bwhOSna+RG+2yxmVBr16/8OffL+RJ7cPz5qQtDCGk0A1uVIEyd6Ksc4Y7hyZ9ejtJtKeMzNMGanQVVySiRONGyfq2GiyMcbZ0SpriHmIXJeMiN8EnRDp6Fvt1YMAh3ECKu5JMfkRZ/MCqWhmRDwB4EW0NYyNwYZxYnBLt0ptd9hWoXe6CDlajZIPmCjNCM4HkZ7tztJO6hOHlyOhVzSxkWBMWS3RVgzDP03eekRZ02AxtwHvfdCSO2OOlEOqH+zFXOjLNT0KlFaOWFoinTi4NbZ/oI4aGRGB4Ju9luL+FCmKvripd83Y/nmH5HgEN6G7Bb+OOC4CgiciFkiKLQWGoalzLB5leCjGMa0sUpBaHLMabvUuw51bVY1hjZwyh6vnOBwfsR4fUVRIMrgqwpLAY1TdLbeWlbwUdFlAhptZtgTNE4xz30KBJYzUGSk50X7qTynOv8je9prS17EuoMLICsX5cIQ3Rza/hBGtQdFOagPVE6W5SlNHYZNO0c4tjZoavd/BuMU4kQ4voz2TeiY/gJzvKFrI/USmUxagbdCNBSfgqhmpJA4lU1JxlCktbqsgsDLoqdJSxdjA3ELfmpL6mdzPqJwhNUYZ9EWxJXlQaSjjVGeisrB1T0e+HZ2TGXcGZ9c4ULdBPTX6ZtAFXZ3DlfGcMzFzMYKXGZA8iFYTHptAoxfoovTs/BlbFtJxpZTVkZbmBPIxjAVwA7jkDu0MkngIpIXxojNXjMUaGfeEyWGoqN33uKV+kSAoc/PbIWLpdHH0YQxl8vz8h+PiNz0fJtt9UrKi1ztsuHlUEKhQQXJ4HSSXf/Zl0A6DZV2otSHrSqlXHOqJq211S2qq2yD3jaeHhduknNcjNz3R7jba9cY4NfrpxHldOF/d0Gqjtsztptxs8PgpFCrX2njz82/muS95M29969t57i3Pc/XoEQ+ffzvL6gXK1WHhuC489/Ahh3IkaQrfFouwPMJzYHiB0hv96uwHy2ik5kXaCPM138ElKCZhCDUIU62Q/o6485oFguLtHg+j8hbG5Pj55+U3CRtxCw1Q3tn9zmVRnOU/VOnxMMxogoUcpNdJ1DI85MGLHYeuF5B1dwZVjDUNVjEW86BHcmERd/7N2xm2E6k3xiiolB1VmIS3JaSZ67pwWGBdhOuj/1mayz2JMYmbIFkEsIUBnuGW8daG82yseYElEonGtrfWhkXg1vS3mIdc8gJFU4akAZikICAqmhc0FVQzHWO14bJVSySOZFzhMgkVYhoohhfxE/6axoDzixGyxIm0EWRpjfRd9Vuu5jC9M5d7i3aQ7KgAxOv39WQ2034HrW20Vul9o4eRXh/edvTwuhHI2MAFHn6vg5gPHB3ytk4QNoOgJxOhi+c+49yZkqJtFdJpsCgQgoTKXtdHG8PnSpKTSHMCcsZycQM2zT4f6YClEujFXPUhM9XkbQpwZKffFygpS/y8P3OzaDKTndclortcVPFYD5NoaY548mQSX/0LIZyhhSzGWowiBbUIYxRvCY0+MNzcTlBUMjkv5FTIyWXWoq74UgLAY+xzrkl3yN/32AjCU2+upeGtKIMgRM97uOPEKQllyd7e8qfPC7B8jwi5h8t07n3Grj5gJm9JDFJanNRJZ2SdmJxfUqXRe0ioNfl6i53ryiq6ZMhCbolsjaUMaIq0RKEi1v3PWRN5Se5KG+059/yZAbThzBzMcZEgww9XJGULEYHEuSOyn1VTSNDD+dd6uHEHEVenv0w8T94S8s9eS0KX5P+rFij3cBWeQFoSqSRyca7UUHdo1uwOvDlpmGcujrKJx8hY1p3wLOqqniVpIEbzTSR6ON5KoM06zQ9DtYaJ5/zIF0mB4iBU8gdsNOcV6FwwAYfyzMa1f7FvzGa2+2ZO9ECDmJdTcalfViYHj5J3H4itNlofrLXxoG3U3uj1aZDWWkTLbzx9+jI31484PX3C0+XN1NOZdt4YEZp1fvqY7eaWURttGE/uOk/vGr/yfxSlciidt73wdt701i/hS1/8Mt70trdy/dxzPHz+bSzrkWU9cH3MrKXw4OrAklb3AelTKupvcAb/jbp5umg/0Ual9crtdorvD+p23ls0MlU3FkqFbvQWCcNT8RBujLFT+KEl92b5QCgUvEAZAZeO4ciJaGJodoa/+IHjYXvJ+6HqKoFVhd1Cy7wAGVHwmEBOixMjZaGPDTPIMjikxCFBKtcc2+DQvAVRx+DmdKKcbrnbNs4VzBKY0oPUyLoEOThxdVxZVlgWuDoupFxIZd0rsGGgZBhKOzsykKgMNue7tAG9IgSHJrkVeMr4gjRf1YZgQSZ9llfhmSs5YO+0HwYTyZGUOE5pJBaOvIqMFbEwsWvm0uFJLmY6aVZGqIN6q7Tm3AwbDWtOqIOBpI6p25nnvPjBXzy3SpOnHNdaSH34gexVjttbJwmTrMboUFul1s1D/NrZpdRt8//tfY87QGwvJoxgPwci4XWu8ysk2n5+QHoL8t6PbrirpQz3wzG3kK84aVvDME9wUmKDKA68FSWpkIpLN9cw3rJUaMsx1qjnqQz13/eujJOBNMjmeYnIA+MeQYlAPVX8c+mNPprnYEWBP9eXqjpah6E5EMjw//B5yv6Fk5XBlUglrxSFJbsjr4xQZIlfArwV607FFnLgkldKXjymQfB9UwWZUvJ4Xd5CDXVWqHU01rHrp7zYmO2RoJggw52MEc/Byincf3Hyr0j3vRyjmV9AnzXj011BJbF5S/DXFLJv1kIjhXoNrZTiBmZLVnpdGGWga0IOmb4K6/nEclvQbUVH5Zgq1DPSN7JVdGxYO6OlsBwTqUhYLQyP1eiD2rtLdpsTrhmRe9WN3Aa5D/Lw1hcCbfKPiAsKw9svEhfAEXurQioaRYaQihck5MndS6SrKC4OxdveEmot/wVpyZ6Svia0rX4hW9z91cyFB45SFnLJ8ZlqtFFhZL+o5pxYkl8aC4qM7JebMQM7B3Zu+4U4jK5R8STz14UPyhdilOM1+fohtW5xo29hPmVx0PnToOF8OsJ4Z5hPkkujzPvBEgtmDOb8JfX4cpMRPeixL4hhwgjZZlrgOBYOVii2oOKWx2auMrh78JCb60ec7265ffg2TwVunTH8MNhu77Czy4AZlZdvbnnp6Q0ffetzjFFJOvjSL/ty3vz8l/Dl7/p/eNNbnuf60UMevOlLWMqBtaxcr4mSlfWQUCm+EfZ7N88ZaNh6i4OnI7Z53sroPDhvTmzrnfP5jtY7rTYnR45OHc2toHunVnHCZ6h1vGr2Wzki5N3cyqvoeevrYYrVcMJnx43gVL0XTPKDmSyMlOhx8CZNZE2su2TUaHHTPtvm3IABor6ZilVsnMCacxDUSYHL8YpFF466ommlD7g5nXhye8PtduLmbgsEQbBenMxaO0selAwPrxfnsygsqZCyoosXDCbCZkrdHMY8n06kfiINP9x7FFRELzilTMkLpRSWZWE6rc3zSMXcpMzvonFDdJM3DYO7FDlTy7I45yFpbOq+4bUoTltLjOob53nU4GMYrTs8e95uXG7YK72fGb3RR6W2E71Vej25QkSMnIVSDiyykGWNgE7QrIxeUTV6SzCSe1FE/9qdazvDzrSzr8W708kLod7uzRPbYKvC6MkdSBc3u1qTsSRhzYlSllg3zmWRkGiqVdRaIA3egnTtc7jCZrxQEMPYaOakdsMcWVNfw6NFbEM3LHtmkunCKAfImRLyYTQjeQ2kK4MWBn7oT/wEdYO1lBMlbqWevO0Fiuh9mKl1d5QVhRyolY7qfGhScL2CtBuXJr8GxBwjofl2gzoR92U55IWiwiKDXs+03rnbpteM5+K0BudIpc1ZIp1YEDqjnemR/1ynFDUJqkEIzt6uG72FOy2kMMkTgHSPMo7emLlREi33lBNr9md9GpX589Tj0KvUECYnuZ/DMYLTMzxL6L5Y8f3eVJHcydpYpYX6UGmH4tlDV1fkKyh3Qr4Stu3M6XZlnA5IqxSrjHaKAn3D6i11wy8Di2LieWunVnhyzqy9stSOnBp21xi3rkp0elGHu4HcGbKBNvUwT3XxBWlBzF2i+xZW+T6pfhaJsiTFSuK4Jg5LYl3ckVsSaF5Yrw8cjgfW42G/vOQsgXA6Z8d/FtZ+j87NsXcYomW9q9n8G+QicaHyNl8ScwJ+d0Vi24Incx6cqLRu0dZugcB4REH7v1DrvqELFEluG91b293w5Bl+gswNf/dZUJAJLwJxG7//QUdROngAm7mhs5lX8S2KmTG/IpJcdGYWCCvqKb/R0+89k8xIZpxzoVh2i+PhkdW9NerpjGweKpjGmfzkMXooPL55TGsN1Lh67k1cPXoTVw+e4+r6Oa6uHnA8PmAtK2tZuVoSJQtlITYGQTI78WwLAx5tEknBCRnq0uPRyVLcwr87m7/1RtUaN+uONAkvEEcxHJHx4K8hQVLFN0xV9xXJom4iBTukCf7Azudiqg4sBwlSgwiZHFUZ2QsY5wgkR2TMdhheRCGcSyeLfFiHaaQnwysKCLvxI5KvyfngyJIsDIv8i35LbZ2tD9Diry0N1tJZClxf5R2BS6aungjlhanzOlp3WHaYQ8I6olWGF8cpuZ39UhZKWVhKuCSHJbgF/OsFSooCxVnwKrLnm6Si5JzdinxxzgMpSHbin4S7u7qzcetGC3OlOV99NKxv9Hqit7Pf3vvGCMVOHUEgHg0ZPUjRhURi6AL5EDlC4mTDnkEiL8iMtBZfLwH9++tyOWlvjbo5ajLJ1H3MYDx3VRWcm5EUSsbXd1KWCHdM0TrxAkWDCO7qEZitCEJ2bR6YJ5MU6tJcQlEggQaIhbx42qFrxrRgaYG8ILmQ8gqaMEn0vJDi1yZhjh6S+9ku0jBd0yCy6nTgxdevBtpoIR32MmEWWQTfy4nQu7/Q3k5xsqLboE/NHy4tVyWRKRQy7l/UrIV/jPMKukXAXhQNKuHJEhEBTn2JvKCwuPcC2D16kXsjPZt5BoHSTGK2iSuRhkTeUgSu+uTcE5OTqndrfRcP/xP2fpvZPDB9AmQXY/l+5Iet7h+8pCBsinM6vCXiz80Ygi2rs+ezYQnq2RVKrSi0jdQrvWZG27BxpidI0gJVT4EGetun9Wld7zb9c2npiLUf3mpu7MQ9Ih+XjxS+TBFbju3vuTuCnDI5ObUnpyn0Cdm++AWhLJlSMmVZot0mlJIcNckaakb/0uRIsYRa0rcNi+LQDfBcqBbcNxE3dgzRQU6DhFBEyF3RAQ1v7zA6LROIl/lc4ErNkWDMw+JVjDd0gTK5C+6u2HABmMOD7nQ3e6TTNrpEHzWKlB7tgcmdQJx4N4wah1syVzWce2frjZ5ddzIEKu6umRRUEhllIZGJlMrRGQpqi8Omy4GyXO3GY31uFueK1Ib2Tq43yJKQ1PnUSwe25ryaw4NHrNePWA6PyMtDUnlASlfktLDkhbUoORaORiGBuosjQLJO65CqUDVhQ2FkpnOrSXNocTSSJlqrVPXQrT5a+Fc0xJ9S1LWQ9CQh6R47ES5rJuPy1TQ5ggKCIxqmOZw6cVlmSqTsZDO/la2eMaQJy4vbe0frZ+8NTUOo4Sql1hrDzgzr9F4xC0+IlLCUoSTSek1ZHlDWRxRdo0VVGN1VSr02znZGunssoN67XZfBUuCwDg9aM4Vz5DDZAMlYSgH3brhzyx1JwomXo8PWOoI/ohxWLyzX5cC6HjF159cWtw33fyi+rkKmJ7D3oNOilDILlOUZW/H7421rndY61u8Y0mFsjH7rEt7WqPXkKq/TDaM5qmbD8dj7to8XDxrFAPkAyyNkfUC+uqYsmXVV1O6wsVG3W1huSHd3VKCdo515rtiInnR15LCe/Tbfe8eQqVSkt0DEcEO+nIVlTaxZWZPftr3tpuHDkZyh0jvWvRdu83IRiVO9u0oLMyf9tgatOjKkGqpOV4qIybQWgfUhLCtyuEIOK5IzqRzjKur+Hy0kmU5FxRNizfcTM2/BJU2B+ugr0lwnZ0YQd9qUmccUahjBAz0B6X3nLWgUoaq6Nz6chKtgbu6l5ufvYjMuQBkNWhvUunk7wQbDNicq24B4nSl7wKVksNQZSel5GnApXR0xSrifijV3Z9VBtA69LYa60scLHKF3xXrFjavNnwf8s8xJ8dyoe2NAG0GxGG4Ml80LUoBWRxQnYy/KQycbe05ynuIISbP5enA7esNa4nheOJ0OXN1dU88bp7sT292dhyHWyradaO1Mbyc4PaHdZhiNkiAnI1ERO+/utNZgNM/zoucwOTN05HBLFqQK0nCSc1xIXJUYaqG6sffm1dexZiANShmkPHY0RHJCDXJJrKVwKAtXy+qFhypLcGW8HeVqqsGIMykxc9lUBff46vRRfeEo5CXmU4Vl8SgTVdutHbIJRTwkMmdcBTkybXVUvA08YbkNN6IcDWv36/9zjTd0gSLnDTtvjG0LUp37NIgZKhvM/p4OEGUou+pEzNsMbjYD4Fkg09ESvFBxUyiLzdvdP53Mad7tUSEVT1DOKGlIuDoym7FILn4PzoNSDjuiMkZl9EErDTlXpG6oNU+7ZaB2RqwDmdE339RbpzajVqM36Orr2B0cJ/nK8ybCTSmMmfw9O+HRCVzWgxw5vKVgyW9xuWTn24mbpvXhaZSpJFLPpJHpo1FGccQguCvTCdOtwf2GlWZfGhDpJAaaghQmEihYIuVCVid5anIIH1X3nxH1lGrcLGpaLauIv5/uD7UFamKj7v3q1jM1NVLqtOb96BSmZ04e7iRzx9migyGNwRY3WsVSWIMXNzhi4MS1dobRveiq7hpppSO9ksz/viUllrBfR4E0kJLQrByWhXVZWZeVpbgqpaqGdTtBs/BiKBl+s8fhWknef5aSsZDE+60yiIRBHNzNr3pj9IqNmKNWoW1IO3tyb9+Yab5xsmIkksBI7q/i6cuZsh5YD49Y1gesx2uXna6OHdqoUFYW8XbI2g093SGnEz1564jWSK2T+iCFDwpm8+LtEtopo6ajEshZ8sM4RYHn3h/hwxOEY7+N+mYoKJIM4u8w8HUxBjoaOjxpVkMCpKJB7k3IYQmFmWLlGsqCrUesFA/7ywckRUZVknBY1h35mGQLi0MxJS9K9tctEwXwfSzFR2dxw7eU4nOI0mMGLQVRGAjiqiOWpMQkShN/Jy04ONJIWp1jg5MmvQRyMfmgo9qxbOSSgmOQSXn1FuIkZGaX+4pk94CRcDeZH1X8vYIrniRaMeAOsEFXfqYVrI4SqiNEaGS5CIGfDHSMaCNMFDyca2MOZg5T8PnDkMw3m8knYpLO58wlCdm8YU3uEQISNQwqs2RGa9hW0VyodaHVwjChto6MM4saS3Y0b1UJWTqhklNsJEbYlvly8DagkZnxD4NJApZ7BFVDxRTcPyHeW8AcFkgpYbwm6nJxL/AyS84cct6l52vJzlnJ6vOLMqwxfaIcnfG1RIQfCurpDeotMWKt6URbzEI5iX+Ws6VgY+cZWXBBXXUWl0vcc2boF0mBQm2eKVOdR2HWGSlKDJH7Scr4A8Rk6btO22wCT244JfcrwfeHMbM3pprAb+5zc0mxuFMKDwE0Ah3vWxCT8EhyOWQKK2cxw3pm9DjkzD9Azim+32CcmTkzY9wrHPpUWtwTxQMJmn/zZH0D+ByMaOV4BeuFESG3BImIbT8ZNVoFKZQeMly/7lRwRYbSzSWrKfwj7BnHwRy3wmmiFsR7DL9NODIh0YOfCIrbg3tPvsQO40oaR73injk9L4Td6EzcopBRz24mNrbYRDXIfyPaas6kH727zLZPVY0HTSY6iUYyl8dawNNOEPT2zoj57b1irSK9omO47BQhBUpUMqyqrLqQKLGhGLqoFyhr8QKlLJS8upeCKITzLrEexATtcVBZHEbR87DsUtQRCgb/MIPuvcP2vnbml5OjvVChn6E3xHqodGJTj40oaXKsUTRQrUxejpTlIctyTV6vXc2wJoSCWYXshXpJmbJtYTjl6a2j+iGedNvbHmlWY+Dt0nni7Xg4cWv3nBb/LPzw9SXiGLrI/EmJ2+D9e5l5L2PgrZLmfjc6W4TBaXBFUvZCxdxonnJ0FK+sjJx2ebEjDV5wDJkut3F0jtlW8kNbowCaPKJY2sRpHK/jfmNPqozhRYq/rXkkT6zE9yy/JfshpXGx2P/eQIm95mleiJmnOXuR0gNldLt0B4NcoZFyIaXiRVUSJBmaNYI9PevX8LbaiDXKLBY0ErjE+VCCOC8G7gsUotWlwz+rWVzLREJma8a/8uzcDAmfFt9c92INmUK+qPaiuzT/0mg3iXqhZRrfqP6MWRjGqTgaJJbcTVm2WBuO2vQ+WLYN6ULRwZKMoomsGmGU0+9jZiPHl9g+Z8g8+WO/l/tig1moxFqYrSybe3iYFNp+tt0/q168qTuq5xSfu7DmScSPVhuD0eN9E8hfFICoWzZ4Oy6ys6JlPFfgrECk3xenNs/KEYIKvOVNtOQ8vtjw8LX7lvurGW/oAqXf3tF1cTMnhkcWjUZV8YyEWLTaPOlTivsjSECfs0ftlbZiQ2nj/hbZhyeG1vGM4c5cUwoakerzuTIGdfOQLnrkipgT7qpFVsoOyRo2ghjXYdSGbWfazQ13N0+5e/oy282nnBWeFtr2PK0dqXZmw81vKt7CqWKchpNWmzXP3bGOZULkOqh7INRG3WpkuEycQfcNU0QY09uk11DpeEN9hpeRUiA8ZV+UUen45jkPOO4335lb4puJP6SuGIiDKjZHEb9xgv93Iznk7oCOV2MWvVqhOwm1nWG7oZ8eexFnDUku/xzqvVfpxrYNoEK/oalnNZ1OZ7a7W+p2op8fM05PGXePsXH2DTgdsf4I2w5sHAMSH2zdSc2yDZZ4n8tqrEXQnLjKB9Z85JCvHV0QmE6hkmBZ/HazlEzOmRYlLn326e/RBUnzoGbP+7Bc3MVS/B4cVc29umk06nZHr2dO56ds5xvadsd5u6HVM227c0RjjFi/GlLSHKV2QqSAZiwv6HLtqbzLkXI4OpLy8MrRpUXxkM7OsBN2vCXVO3pKbHc31NunQKKdznTOlOLFwrIs1DB8s9aD2zSADbOKjDMyCjLyfaKxSKCE4sRbdYTUBEdUQgosFje+FBJJMrVvUA07u6uyDIJMP+3aM1IWdLlyubkWJB0wzYy80LMjjJYOaBg6Th6S4UUT4PysecrMXmZ87eDqvAyoTFqAIwAmrgSSmVXDfRvAuh99IvfIpHhBoTmzrIufGQajVrCOUEm5BzKcHT2ik84VxuZE1SyguJJOD67eWa8oa6KsSl47Zcksh0JKRzC3nO9hlNeHEyC9oClx6MV7NUNa90PNIrIm+6Guyc3EZHHlzRALlDvebwpMyvy5EHNbfht+sUqxZyWU4TmvWNb97NfZ7hqERB9S/BwYbEZOnZwaqo26VVLayIvvlWPbyHe31POZ7bwiZKwnqAtFKuvS/KJREssQionHaeQVcmXkxW+OMtz7Rp6JNQiYR4LwrovvqaJeOHkhEjYA4oWu715KNaEOT1SufYQHlLddsgjHrGR1F+5VHWlO0whiV606V892iwF2W4Y0OZuGh+7GD3hsiV+uW/V2Xusu+xecz9QGVPP5TuKvyyyRErSUXN133sudzzne0AWK9UjhjNv/sMglEXPJMeHI2DSkmdkXRSz0/VY+CxTL3hrYD1R/GPaiBbsvfJM4nNe9zeCHA3ueDD1QhUFIzSZ2E8Qh7heGFz3xuqNqVnXpHSJYTv4QLOr5KcW/NMKoTI0aB+foDatnxqhUa9ThZky1NSdvNrc2tgm/hALCnxcnXcl0Ft0hf7fdNpv3cwLOntJMf/2z0tZ4PwqhqvLCx8zvGJ6u5Te6SQDN4nRQf5gk/jybzbb9AWJGs1tz/oB1JH49+tmRotgU/CO83xD6MFprqBHKn+6y1n6i9/OOLDi6cHd/y2lXfrsbEhwCwY4FWkaTUbJ7oqQlk9ZBKsJ1tG4O5ciw4ofGcGRAIkV1V8CkkB2+gjsWc4A5SsBcdxNxGJHPY870n9405jLu3mo4LZ85n+7YzifadmbbNnrbaDVM4AKm3QmnWlDJJCmoHpxHkA/oeu0oyrKS1wN5WdByQMs99O/MgUxxqJD16s4/TzPaeiYNoTWhlQ3rg7UUlBmsOYJKYEAwDK06mDLwzxiH4udjsz88zp68/73gSaoQREYvCgkC6AiEY3p4eNHnyInmQloWki6IFlDnQKGZkQKqV5fBy0RG5X6V7SMe/flMyKwcFP+sxj1qMj/bHQmaxUwsCZmsjHjNNn/PcXcvypLbIYz4u3xP85/T5HNnAyI6mojhRKyRJKRpksm5kLOjejknz20pnVJSFNPFD9fNQ5TcZcR5KSllUi77rZtIVHZCDxB8nJyUUtzpFzXPqhHbw/r2/WRf87q/HybIMrg3w1NBs0X7w7eWiVKLOXriHCqi3RYrKMHInTEypTUgM4aCuuJtqEaR5/NovdNXl9JnSaRSvdWXIyx2KL0IYyn0daEuGboGahyIELavkqCBO1qtEm1LR5fm6p4I94h1O3lao0/bh2it69x7Qwqs4TKMm8vJiP0k5nd6M4zh+7bF7xl2j8aLr9l5Se3a93UslSD6CtMNfCqPBveoSzjyIIECKXb/2b6K8YYuUMbojN7QeOhlhFzRGq3feUVnAzvhG0mO1WsxcZIdvptTaTk2HHG1xXAUpI+xe6iIROVuyUlPqtB6MOhxAliYdIUhRdzURmw+usNgI0hS3pIKiDjMuFJ2jkIaHSmF48G/1jWzrJm8ZlJJvsEqroYY3cmtpztaO3O33bG1ytYqrfqGYsOLFIbbEFsYpFn0MzW5odTMy/H907ffCQveqwXklSzwHV2yvUhJaULbCUb2VlaLZrG5yscPMb8J+T3PNwQsfMUIaHLMVl4NFYarS7xQqdgMHTPPXXJSf4pWjUO0QoPeUW3YcJ+a3qJAGf7FXqCEEVl3HwKNm4AWI5eD9/k3pejB5asHJR+NvAgPDkeWcmBZDrRIu661O4TMIOtwcnXwKGSEw0sQCmPH8INIY1eeB64EohdGZr050jdRvz4qrW3U8y2tnjjf3Tqashcolb7V2CwcL5mHsOaVpAtJFnK+RlIgCocHSHaX1LQUL8aWJTgxgmhoL3ShpITkwrGdyOKtvv70RB1KbUJfNqQbvZx3sl3vzZ8BZlKqu9dOOopY87bL7HMb7DvpXpzMNWk7yimJZwqUaJcHjO23vAzZCZ2a/Ssvizvzqrseu8w4x8mvWKwLmwm2exl8X2EaToKcBYP/5jNFaFRQzp+YXDnfCOQZqfgzd5i42BAHikQhkPbnNmVFLNQTgRSDkdRx+C6AhozEWsxp88uBOEk45YWcV0pZKDmTs4bMXpyIvyy+PgdOfHSPBieD5+xeLyLAcOL66FGg+LtIScmLsKwFjcKk02i4ErPHTqMiYTQtcWF6Zh5jhiUQLDMhFYu2ti8YL1DmBOpOTs4puEtz/tNgZGNZOp7blNDkasaRxZV4+LokCoMhjSSZVM7uZJ7DcbgkmgljXWjrRl0L0pLTCdT29tqMgJ0Fxdx/Z9aUhLO0L1h2VKz34bzDxp53Zr2DOd9qts80Jbe6EG9de/ds4vbe1nk2NXw+SkhcsuMy6n+vBWL1TF7bAKrsBYrHSdjOIXJkyC/5SY1safca01eoaD/3eEMXKP1qhaviC24M2hbZM61z6psTSnun980POAvfDpyAmOLWRNzMxLLLsVQpRWMDNMyEnByKT3F7YrhPg3TDWlShImhvzjYnKuHoFxIkuib3KEQNGCwld120pZDDlMhK4dw3jE7Omeff8U4ePPclfMlbnud4/cBTd9dMSkbWQetnzxWpZ5489WTkl5++zOl04rxttOaLYi6QhLGoRQ9esGTBC/AMDk2eS7RLIKOvvDPQiFvaXrTdcwNGOKOqElCmFwgzmIwqjqKY+oEcfVjNylQay5QhjChQbCDh2UJ3PgWjPtPScF7O6G7B7SeD31EGwjA3BrPRMBVy9rh1D9ciesAZ0QOiHTE335J0TdJHlPKABw+eY7lWylEgNawJbAnpEa51GOgKqQj54CRDzWC1uYHRdMzDH14FR076xtaFum205gVKsuSHvgw0e56MW543RwG6Z/XQu6fBBvegDXdm3bY7ztsdvW6c7+5okVjammFdGZQwGEtelBQ3nivLkZxWcjqQiqMmabkiLVeurMoLGiZRac2kMBmTQK1Uuvfl84K2SpNCk4xcnalS2CyTWmcTJffGWYXz2Ribo3Hd5t3el1nBKLjVeMEo4u0sCeRIRkdUd+niCA7ZfhOVYA1Jp6lRVag53HhzJiVX5uhhIR2OpGVhOaxIcgSlSaHhRcnMC/I2jO/FFs+CEgf1vrP7mpweQb7WvdB0SXC8weQSbQ0pp1vp2047sUACTKDF4eKEkeBGBfkVm4GM/jX3NH0GqbXhAaGevRIZR4grD9NCWQ7k5YpUDhwOR1eJ5cQi3sZczUikKKg6ltzCvFsmR7tyWVJ8NjifSjwEMu437nK4gB28PWkWh273/KVOZwQxujb/PHu0h+aBrglHMVNMpOHZRBIigLjWzE9m2rOreABkij8Lp3LtxWHunZQ3ls0J3dYHVRotD1oZbEU5ZKWeDWyjaMGWwZaMG61hpKfYg4PHP9QDx9OJ1ANhzwNLnSqNZA1rA60GzUjV3Kq/R8v1WQk1sW2YIZv/bOnGasZBnHtySJmSHcEiZ4YMGs45dJ6eh5KOaBlVnBLQLZAYeWZS0L1I8QLThRA1KA9m4rwS8yJFxN1rREMSLUKyBrHHaTWsi4uItops26s+49/QBcrIimXdDzImry5MwDzxNCLkh/tT9O6wtorSs5MyEVdLiLmroSb1XqPNdkyCHHf54EgI5mz7gcOYQfbKZtE6igbSr4FulXuT56jL46YnkDNSB8dW6QMevekp0MlFefjweY7Xz7Euq+eNiCHmSMiwRt1ugl9y5ub0hJu7G15+8hJ3pxPn85nW41BUIcfXiGJMRH0jVU8SHjgsD+yokVlyImYUNDI3jWiHSRLmdVgCNiSxt4389BHHKJtLKhn3BcrQaVLlNxym/bvec1wsChJXNE1r9CAP70VK3FqH53MQZMCBk2cH3gueTYIpsbOkaMnoKCQ7sBtd5SuyOBqyrkcOh8R6VKw0rIXMukWuTBlQ8GTSnGgxJ5VGs0GNlp9/8kLtcRjZcB+FEZBrkBx3ieIkhEoscsMRuuYkV6u+cXSTMFvbaNuJvm3UKNh7D3t5C0BWxM3GUobirRvNBV2PaHYjO13i1+VAWqb0O3uBkp9xs/U6AIgLlGbAKGX1dNnSWJcDUgeWGzW5LLtPYzlx36DKcGVNbIJKEP9Eyeo5O1n1fj2Et4lD+T4ljjDofbq2P7XOBSMi2zTaOaWg+eBtnXUhLY4O5VyQXEALXQoBTAepPk6z2cZg1+4wV9Xs68vkuQ3/OcYz/1n0fUL84F5C4vfq6Lj6fzwltMY9RImApv22Gm8y/iAcrYjiXCzFzdjcb6Z3eg9JMd7mzpGtspZoU5ZECXfXPNWJGMmYJU/c9lM426bIzRKyBpxvXvPPl70TO9VjLKZfzz6vcRib+R4yW3HDfF+YvNb9/eOo7I5ExGftYaIhRJiW4XG5UtGdUKte7WB44ripoN2L3a44B6x3snWawsjiBUBKnMrAenje5E7XzqnjvBpVbF0ZtVEPK2orufnr0iCsdgnRxQwnbQbdixPthoYDuEzvlFgKMgyphjZzrikSZ4G7v3r0hj9bcxlYnDiyo9E+n14XRdp8/B/hMSPzgmf+ugjeibURIKBnss2Wm8Zi92fXPz+VuQYJUpS4bH9SC17leEMXKJt6yFFOthP/pfmtxVFId6zs1TfxUc/0WsHMGebZb5AmflAyNFAVpS3Zi34RRAujLO4aG9V9z4G9pXp/GxLhmDIaaoCkXqaoEjLJSMCUxEDYLHnmTNa4SQ9WPZLyFcv6JnK6QqSTs3D16AHlcGAtR+/p1TO9n+lU4MTN05fY6sZ5u+NXHn+aJzdP+fSnPsnd3YnTafNbiCZyWTguK2spIFcUmxbWgXgEm95jz6OvLgGTi0aRIuEv4LCzzJug4rHehOJCwXraNwrtw4uSGnvpCPLXDuXim9jkWYgbKE1csQ/nV9S2UeuZWivndmLrG7VXaht+EDOwdCaJkcylfcMEt5HIqC5xAIbRUQ6DLFkZkuhpjX51oeQrFp5jzVdcPXjEg4cLx+uM5ROtdk6puXusQStGL7KbziUZ6Oic2oleB20ztLsiaWgijyBrS6cNoXbZb7+hk9hJkUTLbPTqvhi1ItsJqquJQpTlrqyt0s531K258VwduxTdCFfPJO7vkTOyrMi6eoF2uELL6lLa9dozfsrBZacaSdTTLC6F8AAAjVuu7YqntF7RDdIwxnrtBlbnuiMYI9pV0Mm9kntzBHIAJiRJLFpY08JVWVlKoZRC69NGm8i08bUyZks3eWJTUm/J9OFGhdsQzihbOlDKQjoc0PWKVArlsFLWQipBNk0FUqFKQQKdwsLrZ0Rhtjc6Y1M3P2x1DHch7js9yK/p89kZ+CEchYfJ8IMk2f7ROPHWwryLifb7fiIp5pi9eN1JL+HkKpICLRDcHK9Tt8a2bWz1TBsjAjkzay6sy8LxsJIO3uZaFj/QkyaKGcWIVNqMKZQ0sOzqnz6UnN3HpAT/Y9ZKSIRhqmJJ6eF11CXtbVzrQDOkeTtBEu5f1GcLYvJugDC2S+EXM4tCRb0ImIq3Cdmoxn8zM4kk5lcgJxKJQqJI8rtT7/Ra4jJU6IeFsW3YtlG3xvmucnM6RjTDU5Az1SpP2pnWha0r9sBRoNYGIxlLdUdpO6zIkqhiLNaxraHnRsqNUTK5dnpr5M0J3KMbrc2i39H6tBm6GdrdLHJZCjktHK4OlOOBdFiwZXE/pdGjre7cvRFI3BA4RXEyM8tmCpJG0nzqscd3vwDYMKSNHVnpNgJNDPsKHD1NGnt2XMYVCdM6wXoKROeLJIvnbI270aKKdxY4GkSssuKGRZncDcMleIPk7YIkbls/2dXD1TShOnTy1jwY4t+HWGRRuOmZCxfE2dCzxVMWyGWn8qkm/2uyH8AFxWPV/eEaKoySvRXSoW3CaHhuyoOK0ZA0GChbNfrjG9/gzICGSMU4c3f3lNY3zn3jyd0Tbk63nO5u2E6h2hFvB42UnW+QFtJ67YFg4buSgmeTg9uSct4vaG7/ItEz5X7xykQiZP+1l9mTMX5fLafRkeGtnhEFSjevspv4jWlyV+ahc28qg/vcWPBsIrOl1i163fMmHV+9BWpzZtREy4Mzg24LFv4aQx3y7W2757cMALc2t7QgyzWqjiSkNZMPheVQ6Nr8krENunqcQA8uARBOwR5dcL5t9K3T7tw0SlGaDrcUTwSvxE26NLkqJMk9ATCulIxm9Nq8VXM6084neq1sdQsFlzPta29s57MXbMM9RjxPxj1YCEltOUxyrx/OpRTK4eDvNS/osjgno2RKhM4p/plItAf3w7uFT5B1V5gko5gTn5HCklzZsKXiTp4BSXuybYqcJaFNNkccwodcOC4L14cDy1IoJYcVvtIqu1Kud2NmQnngomElxO5xuI/wQmJZkMOBdHUkHx+QS6GsiyfyJiUtGQuURy37MhyQLCTgQ2PTD7mvTQl8oCfDFXoaygvnbN2jLhIPlc1/RptCZ8s0CQ7cTJ8Q/++GgGT3rcj5/vNwSS5xIPgfKcETkSjk+hhsW6N153qkJZFTYSkLy/FAWRbKcUGWjGT1ynnKDAy/wAXhVBQPOVSHrbSHGV0KOXW8JZXiCq2wPnXPo9XVcSNQ6BGkZaeUxVz6Zx/nHAObgCpqXhbOZqm3LQJ1BSylnXuze4xIsINCeu+djAn9TSmzP4vews9BooZREqMuWPD46rFSTonazpxroo47R2a3TO1w1wR7aIyUaEAp0OsJHXeMQ6YfF9Yibl9gHa2VXCtSdVdNOkbon/nUK3irrqGjIq2SrJN1cFg94fvqqrCsLp4Q9X3VW9sae6LiV7do9Zm3wqf77izqhPCwkuBHTp4XE83yixDiSEyXQKuQcA93gXWOKU6wy7qVQc5Gmu6hr2K8oQuUNjrVwnBpKk4Cc06avZJLoKk4hJgnwW5AwnuYM0p9QNsbnTzzv44HWsC5zndQhB6kNtx7I1CUrs4zaUnjYZobjzPu05QXaCBkSRglHA4VLAdTPq+s6xXDGl08r6S3xrjdHNLvHWwDrYhUzvWWZp1K47yd2Oahaz02MXY5b86FXFbyeqSkQtEUHiBeaORo/aScmcSpYSEfDmtlsdlCme0HAue3e+maT1n8w69KEs0t2b89b0dCC3gf7j1qdrM7wMyLCA+X8822jxFwdUCKs++Jez2INWxs9Bb9e8xtpTUIu6ZRnEwiX1SouiJpRfMxTKsWz8HJTkjcycWznQj35DLzAm70AdWl5/3c6ZtF338w1NFOzYLqiLXInvU2DzKJd28h5+6tMWqj140WhNdWN9oYkbcUUH5rTqQb92sYcVdlNDvCFwVKXhby6s6hKYoSzdmljyl5SJnOeXWEbRoc3kv0R8DBI/gR5hboYQGfc6Gn6a+RSROKTglLyqL+7NQo1IYZosqSkt/wS2HJXtwwBs18vTXATQfHzr/oDCdJx2EnODLofkTi6qP1SDpck4+OoKSyOIKkGgd08kLeNGTYvslrkD0JbsC+ZUShPXv0wyZJdRLLlV3dIuw+Fy6Z9wLlHoiVSFcmig+H3nvIqCUJOQpGiedFokCRONhkytS7pxW3PmjVC3kTQ3PywmxZ/fNf/P1LiVNFZxCoHy0WXLwdM1Inewd4upspTrWikJzDpU6gdW92z55BJLYF2efLgggiwz93NQ25q90jVcb98xBFylRzT08Qxty4bd+/56XBVZZTNIsX2vE9nes5zg9HAkvEcCjWM712csqMbKSWYBvQoPXk+34zP1eOji60PtisYtWdVlkVWxN32eMbFhss3YUeqedANAJlE1eMarx4DRTZ7R06SifpCGWnshyUXDwKY3Lsp6LG2/Gyk3MtCu0Ra1nm/xKCh0Bv1Z5RppknF4/Yi3tsyvt/aXN/kN0FZn4SIar29eKP1qseb+gCZYyN2otXnTZIvbvk1/wQEnHVheXF2zjqkl2zwVBjRIYK6hLU3RdEFClh3rR/hTjYnL3kiELzp8ZabIJOcmtibB1MjWRhuCS+SWa9J3mJDoY6VOqejkJXj72WnBnrA7Z+pjbjpZdf5u72lseffol684S2nbBxR8qDtJgHmRZBD4m7aG2ty8KhLP7gxyFb1iuurt/Euh55eP0m1ihQVnEEJQmUHA6DOTE7lLNAcTfMKFDGTDC2uAi6rn70SCwOFMHMJeAlvCxChe1fUaDb3HyCyDziZuyW5fG94VbMbXSaeQz50Cg0c6asSxRuERqZAKr/eVulWUXGgU6n2wLq6Z0MT2320MIMLMj6gLIcOV49ZF0OLDmja3bkzYzWOzUUUrVbkFTjlmxCG8PJsafK9nhjbB3bLDZW9eJOicOgIzmRDksoqKL4meVcMPb78Nymvm3U0x317GF+p71AGX6rGYG0WNzck7vOerHhBYiUhXI8RoFSdkJkLsuecZUWt9IvWVniZuTIgXtsmOXoLSuj9dBAestPjQiNdDTF1ocwhLpV2naL0sn1SLbKYo2+FvIYaE2k7jbnIy0cy8pxOXC1XPnrSynakOqUpu7unqetsw0PGejJD85+8EBBn4OKHhJ5Tej6iPV4xeH6AeV4HTkniWk638XiKIijUbyoTEyI3K35sXvL72lvH30NXD7qN/IRHBYJU6D9wBTftCdBUcJ6XEQpmmJrkVlbOlIcRn15iTA/I8weLfJs/LX4djaozTidG+e2cbudaNIwhcP1kcN6xXG9Zl2yu8iuxduTMhjUMA1MiHmbqw5BQoFnyfczTbGE1flB2asuRsjozQZ5Eec6aSLnHAeWB4e6/bxCOM862LJ4UrbBnl4+eQsTcJpf8Zk44cXVaDbDAsO2weWtcTkNRNEpdoqG6/YsTlJccNyPSTz4Bm/vj9bJa8dqobQN3Qq0A9I2tu2OXju9Djor/bDRlhVdF3I7o/0p59JZiqFXC23x8Edap2yNdKo0dS8gmzJ2cRt5L4CNfvYWcC6dUoyywPFBYlkyVw8zywopD8xczdp6p0/ZdlyuiYvf6K4ClGfs9oUo1HSgw93O84xciD9jMBOYB21Wdz1aPBG0OxOvXb0ZReeINpHdo+6vZryhC5S5YY5o9LrkNIhzI/TfFh+461ZiAXsgkoTNqUOovnmMKEi0eD/OyVWZSIzYIS9hogRB6otTdFqQzdAkMEYLv6ZhjEhDRvz3bFjc/pL/3DjvXIthUPvg9rzx6Zcf8/Tll/jkL3+Mu8efYru7YdhtVM+Jw4OFfCwcHh2x1V0/j4crimayFlI5uIRwObBePaKUA8fjFYtmiirHKE6yShQoflNz90Eij+UZrT52X6AQ8rTYTnpvYbHePcV3GGN0MvF5RPU+k5ZnNS+htx9d6PEZ2kRcYvOX4ZueX5Ti8NWQiaJRbLQ9At6S0FIkzIrsXgQzkMtsIjQhO08Lmg6kMCM7HlfWyLwR8YP/PBq37cypbZx7dY+YeVcfcVfwJ9kVXn1K9aYHwnD+jS8fTIe75XZ41mmTQOBmP38PdyM8b+b87QdpSMUDvZDAkVJeiKCmvUDRsjopNBKjNTm3SiTv697J1JBl7O0DtXAjDumoeYXo6Nl0+I2bq/vkJDQtpPVAHo10WMnnFbMzui3oWNCxsR4Ko3faOdFr3P6CH3HIgZ4k92upmpzrJHkvnmd91C2UCjZRy7LfyJelkLSQjw9ZDkfWwzWyHpBpHDiieO5uJNfFibUj1mxgJBMmiZbW3Gwl1mbIW2PzlvABGrNdFzf9WaS4P4QfpvMOKxL+QcMCqYibvs7n0kmpEG3VWDMpJQ8FdHzXC3OMrTa2WqlbhcVdYZd1ZTkcKIfjbsWPaPARLPyc/Hnz+fRMHffTiNe/+7/sPqkw52hHgtSt6sNSPc0TJ3gNO/qRpluGIKVEPMh8QMb+/AShB5vYqxDP9GyJPiNFl93Q4ZnXJTsyOQvH+dfMXzg3SNg/WmQvdFBzzxyc2F1UsFQoogxtDG1Qw9belG4g1X2QRCukzl1yRVE20Nop2shJGckvzkraW6g5e0CqWdwL1AtVU7cfSEXIi1AKpGyoTFm3CwSmU7AwvIVNeNPst8TgAZnBcFdq1DN0LHiRc58czfYWT9dYY0Z43Qzok+pguzLN71duVtraoDejty+SAsXbtFNaF0WJkxuCQR/HQbRXTKI4MaNbRWSmEbvTnqg4rCsSaZVRoJDdo2OXEc4D2QJJDJUOnmSsjiU6hh+H0iButuZTbuIfsIlgww+53qH1zTfE2Hhr79ydz7z88st8+pOf5OO//Es8/tQnON28TB93rIfM8Xrlubc85PDgyMP0iDUpS85cHa44lgOHspKXY/AJDpSDy0fLcmARL1CuQ/LsBYpnn5DuYcHBCOlmoD9m9wZ18c+5ufXghLgtf/h1jIGnd4zIOJpwfPzvgBnm1rsTwkZEDeyeBh10TCRLkRFhYCkydiQhY6A0wuOOvrci8M9Vos3mZAKcdB7FCxnVQioreV1Z1pXjcaHk5C2OuEVt2+BUz5xGY+vNb8ekYNrjDzzOJXLA7b6Ynf90K/pJljdQo+xQqx/sc08dOMFtztn+6+i/G44CShChRXHCMd6KGnl14mhKO68klcWLFQ3Dv1jrbus9w/gk4HsjRW/cU74b/uYAC8+GgKRlh/8n7yJ5rt6yotZI24F8XrCxMtYF7V6krGth1EbLyTk9QE+JNWWWXFhC4q8qe0jg9ITpDC9OhgcOWiLmJAzYwgq+5JVSVtZrR8fKcqSnxX92CL06z2zrI1SAjgTMMbkjzLUee85938a5QvPgnIFte/vhmVbb/LO8URIoChMWD05JtJDlmb9f4r0nDZzc4rAiWrjq0RCY36AHRm2NrTZqrc4vU2U5rJTDgbIe9haSt3OjtdO9pcUYToAPyjZD9stYUGN25ZUXZs+2UPzPLUGYd+TY58/XcKxvlfCfCn5UzhEdMWd27OichVTfb/3hv7G/lviFObo1rd2JttMsgPbPK5xdZyv+2X8C4Q3ib3JEkWmiTlDG/X2KKKaVgtCkgjaPHFbv1Q4zRsvIMJqcQTZOaRJRQbZBoZOlYsUgGTl5kaLqqC4TKVO3cBjiviqIzc4Znss4vF1sQUSdae4WjJ09wbvtydM2FUOGIyoxfY5eTcQpisM2kW/31PFnxMKVPIqZKLZHd5UXKnERNfoXW4FyVGXFrXUZEgWEk9a8WvZWhZWo7+OhNgzr1bkj5r08Ef+a0JpDrTNXIqOm0Q+MG7wZ3YX8DugGwTGpq3cSDo9Jj4TKMeia2IYiPUPvbGpx+FRfyMM4bZ3RlNGV2yo8vnvCrz75NB//lV/mUx//GB/9X/8vn/6VX+bm6Uu0duLq6sDDRw94ob+dh/UR+SqxXj9ilcJzV494eHzA1eGaZT2gqbhsNNQb5MULFFEe5OKHtwpL9t7xVBoY/lDM2/GedfIMAoHZ/bz07n3v0XZ7ZI9y96RczEMYnUTbvXALxMUssnLGLFC8IBQDicTd3KoveOIgG+a1YG2IDTLub4JA7e6FU4drIFJKLLlgTYJIKDj5w/NkVMM2fNGwozdK9pC2XjfquWO1cdc2qg56Dh4JQnaoyd9i8CKsW+QvCSPpXqxYFDFmMHODhESa7rqa42DyIs3iCqfJEYtRChpKl6J533OZTp6I3+IkMXRxXocoFJcieoFS9viCnJQkStGyp+8u6gV3IQqUQLlkRJH5DNSuq9/oNfx+OvgGmMS5H8cjmow8TpR2jWpn9GuGdkYy2t0NdKPfVewUkmAVSi7h75ADFcPlzQYjQZNOk0EdQg8JtQTXRldX6ljKrBh6dY0ejxwfvBnVBZXC3XCVjxtAG80G59Fo4cshe1F+b98+2w7TcmsC5LOQIFABEUHyLEi4/4yeQVJk31O8up0OzBEl5+zc6G5oSPZn8KA/dsFhwbwgy1GQGVgVOqF6285QGwuFQ154sF5zXK85rNeRquu5VGpOih19oiN2L8ud63t/K2NHiy0Rs6E7IjrisMoBkKRkaPaZa2NQpbtfR5+FBV5Z54SV8BSJv5bZjohMMYY34Xw4AulmUlMO7mgj+I1+5oEL4c4trqZEnEi7s73iuVQsYG9AJAJjJ+nUA0BFCqILmQ6WaVKpaSPZQi/NvWWkeBRHT8i4YYwTpwGjeqzKqVVSNvJSkQWkGMdVScVN7yzH2TK80DzXyqlWts3FD36WOToyeo3L0cACUpwKG2xg7RSXQIf0bcCo3hZ2M1GJwjo8d3AK4AgLB2mTM2QulY69abSxu9p6HKF5grLCyJlm0Ax69TPT+v6kfM7xhi5QynB7khFwlA52fw5g3xT8BpMgFUSd6JOb0EfykDhxGCypk5vi//HixLcLN0SKG1GoKuYB4wTU6QSYmIml3hby12RhGdxq2w/zM91JsP3sLZ1hnLZB34S+CTe3xtObxzx5+imePv4UTx5/iicvf4onj1/m5uljD6wzI5dCq91VSJYoqbCWlcPhiuPxmuvjNUsgKJoWpBQnAeZMkRQ+CCVuzG5Kd1+gzBtRn5eOvfe9X4Fi0do8xBh06f5Qyn2B4gmnk0jrC1ysoe4Dj4S7q+jY+5YyZZPmkKeN7sXEvNGLGwDpMFAnBGdGkAzNvQ1aR5vriVLcMt0LZW5L9wFoAbojkfjp/uZB+QrnxtHHfjLfKzL8JiFteL7SlO8Zu+Pl/TyBjLy3c0zMWy3ikWMzknXvsSNM915PeR5hzQ6GkxOZn0tZdh4DkTMzwmxsiCsqNCzJNTnfJYuEh0MU2CEvdbdlJoMizlSNZ8D2G+gkFs5nbUTSKTJv0ho3yuI9+cOKjAN2OLgCYjSWw4G+NZalULNvvF1tJ5aOfU+L25s4T6UhVBNvxeCHmqr4/ISfiWRXhOTDSjqslHXx+++uTLkvtCzkq74py30TQEZ8DveF83i2LYBzUeaBtj8sE2bYURTYA6pik/Lm2WAnuIaCYqIw7D8a+4rKfp4z/855soSRm68dL7JGGByqGUUSh+RFyhrIlFdo4t4cFhqSaDm5dfokkca6jw9jWvwDe/tliG8Lnfu6CSwugIaqF3ficKhX6nvCsARPELca2FuFBGLq6rHZMnWSu89bijl3BdiI9sx8NmdbJ9o2Nsurebma78V/rXaPAkmgLz1AcadxBCnUJGTcyiLLfXszQzOBAqlEESUbNF+lvQ+qO/LRRyc18YyagaMqMtx9WYTS3AlYxmDrna31SLQftDqcL9UDnajd589gBIptzxYodcaE9NijxAtRvyXF504UbXMnnFLvKFJjWv1cu19+Y6KCNuvYuFAFH8qXx16h82rHG7tAabCo7TCUGHvK4mSTI+ZJsSn7ZpWyL76cSN2tmBPdrYE18k32W/uUU8wOvCCa7yFbdfa5yr1NcU5BjVDcTTY+HIfzzU2S6mCkxnlU+tjo9cZ5J2NwHkY9G3UzXn5p46XHL/OpT32cT33yl/n0Jz/Oy5/6/3j5pU9zd3MbRN3Msm707pV9SQeulmuuDw94cP2IB9cPeXj1gHU9unNojuJElZHcpCmLsuZllxmn2R+ZTywTKo3pmCdPIEgAsydvASdKuAzJGPsCdWKow9GzJdRGdXOy7oZHrpIajEj1nYiDGkh3BEXU85cG7mczPUC0jOgN30PJtXVSbU5As7EXk30oNmLzG+5061JKfBfqZw+wax2TFdBngjD8juUksKns6vTa4SwBhZoToBU3TxIczYv3I+Y9ajeq8+RgTTkOzsSwDIwgLMZdVhSi/+3FeEJ1eO9Zg8C8LNEGCE4BiknBef/uzyKRWKsBNReJ/1YiT2X+Wu7LtqkY8Zt7jvPQQ/bGM4fiQHcZue91/qwkzaBuglfqFVk61q/9/SXodzdYG9TbM/V2c/RLhht7iVC5P0AqwoZwFuGMcAa2XQLrKJnkFSkHdDlAzmQVlsORfDyyHJYg9s6VGDyo2JBNEgGDuUIIogXjl5sexcmUgk70ZGIL/r5jTnY1Tmxak7+h9//uj1XydYH5sxN/knND/EedL6T7BcgfQXXp/v564nMXb8v2Xultg1bJBsdUuM4rD5aVZVk8AVnMTSzHwLl60TYJNDknt2kXiUToiVRPryKJ5z+KSnd/3ScEDRc/L8Cin7Cnb5sTc6OgMKJAKYM9a0MmOg7aNa7jRor37URl36N7KKhGTPF9CRUFTHzPZtER+5eyHxfOWDG8+Ig9L/zKvFvS59+rZFN0qCPxIjRRB4EskYZgBZ9T8fbKpBeMkagGai6uTwlSg7z4a3XPR6W0vvORzrVzap1T7Zw3/zI1ajLa5n+Oigs5WuuR1TXbO8NjWMzVjaOHtUZI4ol6cFdfh0qxC9FGnq19YqYnl1Bolhwt2wvAyRx04vm8aEmcHfet0s893tAFij0+0cugT97GlOQhjGQ7UmGhivGe3vDb6LNJjjL77wA9YGxDdwJm2q9YOiVzucSilTC3CbJWEJK8X4+/hu6kxjaGO33i8PC5nSK47Zbe3Q11s8HdzZnTzYlPfvxTfPrxS3zi0/8fn/rlj/DSr/wqT19+idN5Y/MLFiYZTVesxzdxuHqe66u38ODqS3hw/Saurx9yffWAq6trDusx+AmZEQuvhe5fVbEcyomdwGf7/BgW0GfsOOF2Gv0JdhQl+Bc9Fm4f+symb3vJ7fuZty3G9EEIeH6Y0hmxwdozfAZBtCBjkNRbOXMjnaaGHkwlFGbhYNTaaKnTS6dPYixG0+TGZQajzT6shAnaxjj5JtKkkm24O6q5B4RkQbUEB8Jo2+asstuKngfSQDSTlgSLW6gHA9l76GaeAROtpS7iffxu5JR2roWjPESEPTF3AhQke/qpZT9S5s06LWsUKPcbs03TLgnfgpTCbyV8b+LAmzbV4PCvNYLnYvfPh4TnhDlfaxYgFjdnCX6PyFQEiAdrqnr7TK7I9Tok+g1LysgZTifvZpwr/eR22FvvSBZMPZFbiE1TxR18kzAyjDZdkSNL57CQDw/j64Gb0SHkckVKB6QHIX3zVNY2KQ6ijCTI6uojE0NaC55J8AoheFNeZfjGG1t2fF6KOCdozlncc+5Rk3iWJMCl+fuzNQ1MJ+qkGgd5SIvVb/jSW4A/3n6YK4PAJ0bf6PVEqzeMfgd0lpI5rgtXhwPXSyEXT/qe9udiCZNyv85TitiPxEyRHuZHv8hE1qLwnl8pXHdVHBWdrV91su0sMsUc9TCFXLxwiLI/SNbDW8KxHuf0JR2gDptPwzXZI0f9AO3Bj5vPGnF739EAi30j1Cb7xZ6onULNxfxZ2Pf62Q4Rgxx1VjJhaSnIwn4At9TQrPQlM6RGK3swOjRcaWTTawBXzRT1PxOFZRhlgOTF84MwzlvjtFVuz427c+e0Be9LYCvmbrQifimMAiVukhP6cRROE8lS7KlBEGLKhL1I8Qy1WKuxly4BCPr79EJ2mG99Tp51tCTucE7YT8XbnWakyCLL+YvEqM1O1T/wugXRDGe5q6D5vkAZXRAbpOSQNaoeKufNUr/pTLTkHjhlVzRoQtzoBM2Lb3ilkMaED6NAwXxXD1jNuxmu5tk/zO7S226Nvp3ovdK26oRSG1Tr1LtbzjdPuXn5k9w+/jQ3L32S2ycvcXfzhO18dtgWwmfCnVFzuaKUa5bygHW5Yl2uWOKW5A6cTohE3UAIzAmkvkPu2SITFAV2/gewq28cKWECK3HrY2J4UVUHqYz7WCj/Uf/TJYofs2d5JvebyLO5sDZbaxNClBFbd9B35b5IKerBdyUMajzsMSHRxuujB3Q/QNxdduzk3Mlu9VPIqvNuehFGL+i8HYirm5gPMGPfaKz6lzRXSshwVUzJqxcnWRwBArKG6Ym4h4IXRs3f285RAO/d6P0mKuIbtBqkIAvKfYEiuUQxIEw78/tPNtQk84+WZ7+z1488W3C+QtLpJwS84vOY37NnPudgZQheYM4vcZRPyuIW/eWANQ9my2UlL4cwTMuk6d+jGijKfla5Pb6KtwaS7M69kvy51LKGd40r1yRnP/x0QSkw1C8NwTvZLdUFRzwshYV+d6vxWNRTeTML4r39EEVaNGmYpobI/eveOSjz42AWcVNG7BM513/07FylZiEBDQ8itTj4xVt/+swlYsK1NhpjVA/BtApiEQSYWLIb77kU32Z178nsQTzTJGiOgL08P++d9+/vye6XKPEZWZCCd5TZXME3i6D5Wudu4EvK584PMr9czFbwNALcQ0m5RwXmjdzt631yNfYfVxnO1bhvJvcXqvsd5n6/f+YRc7RHZn0Te1rs9zbjGALZHeJoDoaKI1Ii8yRXV8ekM8iCSQ0FHpEQH5/4MHfOVcjVnNyunWVr9OSf+9Y6WxvR5hm05heAnKBVQgY/0CHuzDvsFe8PJMzToi0s6nEtk8YwURTCIDA+ZIv9einT5dhdbKc+KiGhF9K9OPFoFfU0dPHCJWnztSWVVzve0AXK9uSGngun88nll4oT6FTQZd7S3VBNSiZ3j4pHlRZkRjGBsrgCBKWbqyESGpLT7NWkCjKEvF6hpZDXNSpUXkFobK2690dkDnjbY3NHT3Hi6Oib997PNy7JbS3aFEa3znZ3y+nxp3nyK7/Ey48/zcuf/hWefvqT3D6+YTu3PXNEKCQ9kJeHrMc3c7x6nuvj81wf38T14RHHwxXHwxWHw4F1PQTsnIK4a1SrzBycNtUKRqiQLAq42IgM59HMog54loPhz7xX6YZv4u7OoHF4GYMwQ7PmHgujM1rbbynzFjUmLwBwb4ggB1K8XzpmnoPfDkwNkrhPhihlFD/4msOaWQxLg26dPtzgTTS7sqqD2MagkayGHf8sXhM1C6k0LBRa86DVUp5BqrtfIzYjbZ1cB2oLqWSSHFjKQ2RJ9CwMq8BwZ9bkhmlNEqNV+t0p3HnFNw2NTVGJrSDjEsruKJ4EPhXtLAS0rHGQuTrM4iAw8BuUzULCIY+xz7ft0sZ5FEgPFEYMknq7yq/M/nuTObnLOQlezdiLJs9WmjfLhOSFkQ9YMWypWLSD8vqAsjbyekU+PGWmrFjk9fR5tVNlWGJ3ee6OJEnNaMjol8M15fiAcnjAsl65d4gJKgfUClaFsQl9C/WPhOQ/BWGyeFCjSkI2v0XPntXkAtkkqeKvyyTtz4JzJWTnn8xLqu6PikVh6YiAK28EMw0PlphjVZfcmpfs2UB7R3sPxYSA5og2cZWZdC9Mez3T6h11u2FwQlQphwesh4V1XVhyivrYL3am8dmN4gX0kkllutY+YxZX/ebvcH7sE9ONW4WeEibJZf3R2x3N9rl49jKj5geQf76z2LJdgSJ7OzQKXOAeDRgQh+xUoO0bUffWqPUx/ypmhX/favPaYbbbkt4jMBIKHBkKUcA6YOyihtkkIniPqUNqgombbaaU6GmwiSO+TRtjNNDGoNPMydjNHEnHjBRKtNT8Wd8CQSGV8P+Bbauc68bttnFXO3d17MTWkr3tm8X5eNq9cHIkaEAgJ5qEEsnTPSVkWfz50BRtY+ftpdj4hTB7xDgczRV9GsUQE830z7trDiWd0GpcU9LkdIHU7mjl6YukQGn1jI1Ovb11xYg1SOKyxmzhJeLabM2JcjzQDwdE1Ss8wtvkeAWlIOsaVsjutyAaevwUH7pAKYouibKksNObG3V8SYSyTRZ+QIhJnDOx9/iCowAwyHFD96rX0qDLxjaecu5PObUbKncM3UgLLB2yKQctPFhWHixHHq4Pebg84kF5juv0iCt9wCIHkixxsLsRkpHwdMp+//qxaMH4DWOYFyaj294q1iD6julHAEz8et465u/5fiD7v8u8jmMY7uxq8RrGzGUQMIkEGnlmPkOfKDntzpLaNYoUg3D0tRybKkoaiX7XohAbz9xyJ0MFdD14DlIXmimdirQg75k7sjoyIiyxMfllyFOsW07OSB844XV00hDSiJC/4T3y3BcWO8LIsadpFBi6EzhVvKc9khcvjgwNz2wSoWvZERRlgPhVSzwMCclKfLLkfAi5KR54iUsN1ULx1G2CMnD/8d8XMN6o8Y1t3PMzepAZx1S17BWk31Y1eBnzFm8YbUdr5v+5p9DQwtBG14WRVkZqbGnlnFbOZeG0FE6js5kxcnLjQlUk+Vqo5mZRXcCW7OuxFkdPlhU9HJD1COWIlYMTkjrAAiMHtwhat/izoAc32fOkhNH9S+KqHOL2KB7mQyxMsrBNRM38MN9RlVDlzKDOfcrN3XY9vNNvtMGLZYpaHAnLRNkeKhYnU0ogOiLDW5WIH0pRHFK7X2N7Q9WVZMuhsKyFshRS8gLYND5Ew9dFIBI5Jy9QMq5iEy9Wmurevu0EYqqJbuKpz1r8GcGDVBlusB6lm++j82CPG7tlFxaMJEj3fcnGYLS2t5MtaYh07p8PR9eI9pK/jYrRxKMPuo4dnXV/ogkT378e4rPYVVgi0aoLur2NUBmKX3BwFChNkvTwS4q2qQhyF5oeLJghfp4MW/xruE294QRXUgOMIX1Pgd+GJzw3MeQ8yEPIRakDzgNuDW4G3AaHrjc8ZDA5pLOYt7pVwpsp9OoaBWcpGVkWRs6k47pn0snw+ZfmlvrY2Dv5CCwHD5PNalHAQNdEL17s1FRoXZGu2HlOu+yoU84OryT7bU6SnQfkkycvozlz8+SG3ip1VIcs1fxmEAXKwFUS5XAgrSuSkm8+4sqJ9cED8rK6JNH893NeWAbkxWXIabizXklG6gutV2YSmHME/AnZWg1UpKKtwfA05XNkx5y3DRsbjDPtfEsbg20oDXdtvRtn7s533J5uuDk95fb8lNt6Sx2bF2AapLABS0oU9bRXHYo0YWzQ7jp16dzdnKHD2Bp56cxgxK259PbcTxHMBQQ5C5yQRUCOzNvZRFD63KT90Jcpy77HUfciZeyFhh/8zW4Zdsb6GevNCajTIVKEJpmB0sxPUMFRBs1e8ReRcOFuSPO2jI0RrH9IIwqUnhg3d4xz43S7MQnOUxbXR/fDIzbWet7o5w3OZ7CKWaPrQEpCh8fFlyWxiDLygaELt9nlkXWD/uQGuTvTn95StjtSb0gyclfyWBn5DKVRC2x2YkijbBL26osT0bYz7e7WE4rFsLzSxP1LN5OwMvACiNEZdaNHeyuVxLQizNUPwoxgdsYLlEbDN+tTH/vt3ALWPY95LLl78NSV6G7n7s9PEqWsHsKnMhjZXVebuM3+COjM01PNUR71xGT3c3XkYNzcYtuJenPCzmfGaeN0u3F3rjw9d15qnbvWedwHmUbGWM4Vj3NPtO630LsxuGuNU+9s079j+LOqbXC7DVqqiPqGrypOEKyVc23cbY2n4Gm1SbAlBYqS6WcPiJPTXRyaFkGfwnlCIhKcERUn4msQ9YeBZieY4jf1ot7XRxwpJBw1Pd03O+Tu5bHXUuoFSu5RnOBuwmlrHhTZK4gyUqb3IH+muhO3725uON3ccD7dUduZgaO3W/Pspru7k3OMtuCcdqgb6PAgvk4nd0jF6Nk9kFISWvXCvA6NPBc8GM9wZcoA08Qg7fvI6Hck87lYhrcz0k5DEFpJ9CUxEtAbo25YPWP1zIQvJDsE5T4fXjRmKe6Hkwvha0hn0Fqlt0Y7V8wjrJE+W5P+OaEhgRecuxiEcRXB1BFTa4XeOqMbWxe6DRqVNBppuPlYb0LpoCeYXMZWBl0GlUZt7mW13W3Uu+pf50ZlsGG0GVksw5U8YmyjklJHU2cbgQwviVrPnM9nHt9Vnm6dp5tf+qp1d0q25HleCHl4uGNXt+1H7J7vFLWrd6W8M6Ah0ZbwEOshW5oSesT3g4R3AnJcZPq8+ODk9amqq0ioN/1aagM3a+vGFgj8ftH9DYbYq/mp19n4pV/6Jb7sy77stX4Zl3EZl3EZl3EZl/F5jI9+9KO8853v/A1/5g1ZoIwx+Lmf+zm+8iu/ko9+9KM8evTotX5Jb6jx+PFjvuzLvuwyd5/nuMzf5z8uc/f5j8vcff7jMne/ufFbOX9mxpMnT3jxxRd3w8HPNt6QLR5V5Uu/9EsBePTo0WXBfZ7jMne/uXGZv89/XObu8x+Xufv8x2XufnPjt2r+nnvuuVf1c6+erXIZl3EZl3EZl3EZl/EFGpcC5TIu4zIu4zIu4zJed+MNW6Cs68p3fdd3sa7ra/1S3nDjMne/uXGZv89/XObu8x+Xufv8x2XufnPjtZq/NyRJ9jIu4zIu4zIu4zJ+e483LIJyGZdxGZdxGZdxGb99x6VAuYzLuIzLuIzLuIzX3bgUKJdxGZdxGZdxGZfxuhuXAuUyLuMyLuMyLuMyXnfjUqBcxmVcxmVcxmVcxutuvGELlL//9/8+73rXuzgcDnzN13wN/+W//JfX+iW97sZ3f/d3R3jY/dcLL7ywf9/M+O7v/m5efPFFjscjf+JP/Al+9md/9jV8xa/d+NEf/VH+zJ/5M7z44ouICP/6X//rV3z/1czV+Xzm27/923nLW97C9fU1f/bP/ll+6Zd+6Qv4Ll6b8bnm7i/+xb/469bhH/7Df/gVP/PFOnff8z3fwx/4A3+Ahw8f8ra3vY0/9+f+HD/3cz/3ip+5rL3PPF7N3F3W3mce/+Af/AN+3+/7fbsz7Hve8x7+/b//9/v3Xy9r7g1ZoPzLf/kv+Y7v+A7+1t/6W3zoQx/ij/7RP8o3fMM38Iu/+Iuv9Ut73Y3f+3t/Lx/72Mf2rw9/+MP79/723/7bfN/3fR/f//3fz0/+5E/ywgsv8Kf+1J/iyZMnr+Erfm3Gzc0N7373u/n+7//+z/j9VzNX3/Ed38EP/uAP8v73v58f+7Ef4+nTp3zjN34jvffP+Gf+dhmfa+4A/vSf/tOvWIf/7t/9u1d8/4t17j74wQ/yV//qX+UnfuIn+KEf+iFaa7z3ve/l5uZm/5nL2vvM49XMHVzW3mca73znO/ne7/1efuqnfoqf+qmf4uu//uv5pm/6pr0Ied2sOXsDjj/4B/+gfeu3fusrfu/3/J7fY3/9r//11+gVvT7Hd33Xd9m73/3uz/i9MYa98MIL9r3f+737751OJ3vuuefsH/7Df/gFeoWvzwHYD/7gD+7//mrm6qWXXrJSir3//e/ff+b//J//Y6pq/+E//Icv2Gt/rcevnTszs/e97332Td/0TZ/1v7nM3f34xCc+YYB98IMfNLPL2vu/Gb927swua+//Zrz5zW+2f/yP//Hras294RCUbdv46Z/+ad773ve+4vff+9738uM//uOv0at6/Y6f//mf58UXX+Rd73oXf/7P/3l+4Rd+AYCPfOQjfPzjH3/FPK7ryh//43/8Mo+/Zryaufrpn/5paq2v+JkXX3yRr/qqr7rMJ/CBD3yAt73tbfyu3/W7+Mt/+S/ziU98Yv/eZe7ux8svvwzA888/D1zW3v/N+LVzN8dl7f3Go/fO+9//fm5ubnjPe97zulpzb7gC5ZOf/CS9d97+9re/4vff/va38/GPf/w1elWvz/GH/tAf4p//83/Of/yP/5F/9I/+ER//+Mf5uq/7On71V391n6vLPH7u8Wrm6uMf/zjLsvDmN7/5s/7MF+v4hm/4Bv7Fv/gX/PAP/zB/5+/8HX7yJ3+Sr//6r+d8PgOXuZvDzPhrf+2v8Uf+yB/hq77qq4DL2nu14zPNHVzW3m80PvzhD/PgwQPWdeVbv/Vb+cEf/EG+8iu/8nW15vJv2Z/0BR4i8op/N7Nf93tf7OMbvuEb9l9/9Vd/Ne95z3v4Hb/jd/DP/tk/24lil3l89ePzmavLfMK3fMu37L/+qq/6Kr72a7+Wr/iKr+Df/tt/yzd/8zd/1v/ui23uvu3bvo2f+Zmf4cd+7Md+3fcua+83Hp9t7i5r77OP3/27fzf/7b/9N1566SX+1b/6V7zvfe/jgx/84P7918Oae8MhKG95y1tIKf26Ku0Tn/jEr6v4LuOV4/r6mq/+6q/m53/+53c1z2UeP/d4NXP1wgsvsG0bn/70pz/rz1yGj3e84x18xVd8BT//8z8PXOYO4Nu//dv5N//m3/AjP/IjvPOd79x//7L2Pvf4bHP3mcZl7d2PZVn4nb/zd/K1X/u1fM/3fA/vfve7+bt/9+++rtbcG65AWZaFr/mar+GHfuiHXvH7P/RDP8TXfd3XvUav6o0xzucz//N//k/e8Y538K53vYsXXnjhFfO4bRsf/OAHL/P4a8armauv+ZqvoZTyip/52Mc+xn//7//9Mp+/Zvzqr/4qH/3oR3nHO94BfHHPnZnxbd/2bfzAD/wAP/zDP8y73vWuV3z/svY++/hcc/eZxmXtffZhZpzP59fXmvsto9t+Acf73/9+K6XYP/kn/8T+x//4H/Yd3/Eddn19bf/rf/2v1/qlva7Gd37nd9oHPvAB+4Vf+AX7iZ/4CfvGb/xGe/jw4T5P3/u932vPPfec/cAP/IB9+MMftr/wF/6CveMd77DHjx+/xq/8Cz+ePHliH/rQh+xDH/qQAfZ93/d99qEPfcj+9//+32b26ubqW7/1W+2d73yn/ef//J/tv/7X/2pf//Vfb+9+97uttfZava0vyPiN5u7Jkyf2nd/5nfbjP/7j9pGPfMR+5Ed+xN7znvfYl37pl17mzsz+yl/5K/bcc8/ZBz7wAfvYxz62f93e3u4/c1l7n3l8rrm7rL3PPv7G3/gb9qM/+qP2kY98xH7mZ37G/ubf/Jumqvaf/tN/MrPXz5p7QxYoZmZ/7+/9PfuKr/gKW5bFfv/v//2vkJZdho9v+ZZvsXe84x1WSrEXX3zRvvmbv9l+9md/dv/+GMO+67u+y1544QVb19X+2B/7Y/bhD3/4NXzFr934kR/5EQN+3df73vc+M3t1c3V3d2ff9m3fZs8//7wdj0f7xm/8RvvFX/zF1+DdfGHHbzR3t7e39t73vtfe+ta3WinFvvzLv9ze9773/bp5+WKdu880b4D903/6T/efuay9zzw+19xd1t5nH3/pL/2l/fx861vfan/yT/7JvTgxe/2sOTEz+63DYy7jMi7jMi7jMi7jMn7z4w3HQbmMy7iMy7iMy7iM3/7jUqBcxmVcxmVcxmVcxutuXAqUy7iMy7iMy7iMy3jdjUuBchmXcRmXcRmXcRmvu3EpUC7jMi7jMi7jMi7jdTcuBcplXMZlXMZlXMZlvO7GpUC5jMu4jMu4jMu4jNfduBQol3EZl3EZl3EZl/G6G5cC5TIu4zIu4zIu4zJed+NSoFzGZVzGZVzGZVzG625cCpTLuIzLuIzLuIzLeN2N/x/MzoO8SDnSRgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = figure()\n", + "# @manipulate for k=slider(1:40,value=1)\n", + "for k in 1:5:26\n", + " display(\n", + " withfig(fig) do\n", + " title(\"rank $k approximation\")\n", + " p̂r = clip01.(Ur[:,1:k]*Diagonal(σr[1:k])*Vr[:,1:k]')\n", + " p̂g = clip01.(Ug[:,1:k]*Diagonal(σg[1:k])*Vg[:,1:k]')\n", + " p̂b = clip01.(Ub[:,1:k]*Diagonal(σb[1:k])*Vb[:,1:k]')\n", + " imshow(cat(p̂r,p̂g,p̂b, dims=3))\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGrCAIAAADfLLEcAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAABfpJREFUeAHtwTEBgAAAAjAOapnEMJpFY1jOFlzbmvMLALDVAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1/t4AgBs9TreAABbDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcw0AMNcAAHMNADDXAABzDQAw1wAAcz9q9gqB9WxiaAAAAABJRU5ErkJggg==", + "text/plain": [ + "427×640 Array{RGB{N0f8},2} with eltype RGB{N0f8}:\n", + " RGB{N0f8}(0.0,0.357,0.733) … RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) … RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) … RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " RGB{N0f8}(0.0,0.357,0.733) RGB{N0f8}(0.0,0.357,0.733)\n", + " ⋮ ⋱ \n", + " RGB{N0f8}(1.0,0.835,0.0) … RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) … RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) … RGB{N0f8}(1.0,0.835,0.0)\n", + " RGB{N0f8}(1.0,0.835,0.0) RGB{N0f8}(1.0,0.835,0.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFRCAIAAABrJYtjAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAIABJREFUeAHswQdYFHfiP+DPDrPL0gQBC4oFFZE6K4qIwM4Yc+rlf8bc79BLNBGN0agpV/RiqixqLrHFI4klzROMmrhIYomCYhSx0gRBmkhXARHpbGFn/s+zz8PzyAPoejhLjN/3pUOC3wZBPK3euX0BBEEQfYEGQRAEQRBmR4MgCIIgCLOjQRAEQRCE2dEgCIIgCMLsaBAEQRAEYXY0CIIgCIIwOxq9Y2FBGQw8+ghFSQDwvIA+YmFBGQw8+o6FBWUw8OgjFCUBwPMC+oiFBWUw8CAIgngC0egFipK8+OIze/cmoo/4+o4SBOHq1WL0kXnzp+39PpHnBfQFipK8+OIze/cmoo/4+o4SBOHq1WL0kXnzp+39PpHnBRAEQTxpaPSCt7fbX8KU+/adEgQBfYHlGEEQrl4tRl+QSCQvvBBy5UpRTnYJ+oK3t9tfwpT79p0SBAF9geUYQRCuXi1GX5BIJC+8EHLlSlFOdgkIgiCeNDR6geOYAQPsPT2H5+aWwewkEolS6UdJJF9+8bMgCDA7L68RAwc6cCyTk12CvsBxzIAB9p6ew3Nzy2B2EolEqfSjJJIvv/hZEASYnZfXiIEDHTiWyckuAUEQxJOGRi+EKn0BcByTm1sGsxvnOXzQoP4Axo0blpdXDrNjOQYAyzLbth0SBAFmF6r0BcBxTG5uGcxunOfwQYP6Axg3blheXjnMjuUYACzLbNt2SBAEEARBPFFo/K/GjRvu4uIEgJuq2L79MMyOYxkYsRyTl1cOs1Mq/QAMdnEcO9a1oKAC5jVu3HAXFycA3FTF9u2HYXYcy8CI5Zi8vHKYnVLpB2Cwi+PYsa4FBRUgCIJ4otD4X7EcAyMXFyf3sa7XCythXkqWgdHUqeN37jgC8xo71nXoUGcYsRxTUFAB82I5BkYuLk7uY12vF1bCvJQsA6OpU8fv3HEE5jV2rOvQoc4wYjmmoKACBEEQTxQaDyOTSS0tpeiCZf3Q4dlp/lW369BFS4uG53n0jo2NnKIodDZi5CBXV2cYDRni5OPrVlZajc54nm9p0aB3KIqysZGji2nT/NGB45j9+35FF1qtXqfTo3dkMqmlpRRdsKwfOjw7zb/qdh26aGnR8DyP3rGxkVMUhc5GjBzk6uoMoyFDnHx83cpKq9EZz/MtLRr0DkVRNjZydDFtmj86cByzf9+v6EKr1et0ehAEQfwm0XgYqYxeuWrutGnj0bN586fNmz8N92lvN+yJObl7dzx6bfjwgWsiwl1dndGzHTv+js6qqurWRu7Jzi5G7wiCMHNmwPIVz0ulNHowbNjAY8c/QWfJydkbPt2v0+nRO1IZvXLV3GnTxqNn8+ZPmzd/Gu7T3m7YE3Ny9+549Nrw4QPXRIS7ujqjZzt2/B2dVVXVrY3ck51djN4RBGHmzIDlK56XSmn0YNiwgceOf4LOkpOzN3y6X6fTgyAI4jeJxsO0NLepInZfunht5aq5crkMJqioqFFFRBcWVuJxyMsrf23xpn+unDN9+kSYJulM1oYNPzQ1taLXBEFQq5PS0wsjVOGjRrnABDqdfueOI7GxZwVBQK+1NLepInZfunht5aq5crkMJqioqFFFRBcWVuJxyMsrf23xpn+unDN9+kSYJulM1oYNPzQ1taLXBEFQq5PS0wsjVOGjRrnABDqdfueOI7GxZwVBAEEQxG8VDdPEx6fm5ZdHRi4cPXoIHighIXXLZnVbmxaPT0uLZt3aPakp+f9cOcfKyhI902r1X+08olYn4bEqLr69dMmWZctmhc1h8UBlpdUqVXRR0U08VvHxqXn55ZGRC0ePHoIHSkhI3bJZ3damxePT0qJZt3ZPakr+P1fOsbKyRM+0Wv1XO4+o1Ul4rIqLby9dsmXZsllhc1g8UFlptUoVXVR0EwRBEL9tNExWVlq9dMlny5fPCpvDojutrdotWw6cSEiDOOLjU3Nzy1SqcPexruhOSUmVKmJ3cfFtiECr1UdFxWVdLX7nnb/a2VmjOwkJqZs3HdBodBBBWWn10iWfLV8+K2wOi+60tmq3bDlwIiEN4oiPT83NLVOpwt3HuqI7JSVVqojdxcW3IQKtVh8VFZd1tfidd/5qZ2eN7iQkpG7edECj0YEgCOI3j8aj0On0UVFxNG3xwp9D0MV7736TkXEdYiovr3n99a0H1Gucne3RWW1tw+JXN+n17RDTmdOZjQ0tUZ+/iS5+/uncli1qiEmn00dFxdG0xQt/DkEX7737TUbGdYipvLzm9de3HlCvcXa2R2e1tQ2LX92k17dDTGdOZzY2tER9/ia6+Pmnc1u2qEEQBPGEoPHovLxHojueniMyMq5DZM7O9s7O9ujC2dl+4ECHmzdrITIvrxHojqfXCJiFl/dIdMfTc0RGxnWIzNnZ3tnZHl04O9sPHOhw82YtROblNQLd8fQaAYIgiCcHjUc02MXR3X0ousNyzN69iRDZ1GcU6IGSZfbvOwWRsRyD7nh4DBsyxOnWrbsQ02AXR3f3oegOyzF79yZCZFOfUaAHSpbZv+8URMZyDLrj4TFsyBCnW7fugiAI4klA4xGxLCORSGB08WLu4cMX/vGPsIEDHQCMGzds0KD+1dX3ICaWZWDU3m747ttjABa/9hxNWwDgOGb/vlMQ06BB/T08hsGopqZ+69bY55+fEhTkBaNQpd+PP5yGmFiWkUgkMLp4Mffw4Qv/+EfYwIEOAMaNGzZoUP/q6nsQE8syMGpvN3z37TEAi197jqYtAHAcs3/fKYhp0KD+Hh7DYFRTU791a+zzz08JCvKCUajS78cfToMgCOJJQOMRcZwCQHu7YU/Myd2743leuHKl6F+r5k571l8ikbAsc+DAGYhmwEAHT8/hAKqq6tZG7snOLgaQllYYoQp3dXX29Bw+aFD/6up7EA3LMRKJBEBycvann+xrbGw9fy4nLEy5fMXzUinNscyPP5yGmDhOAaC93bAn5uTu3fE8L1y5UvSvVXOnPesvkUhYljlw4AxEM2Cgg6fncABVVXVrI/dkZxcDSEsrjFCFu7o6e3oOHzSof3X1PYiG5RiJRAIgOTn700/2NTa2nj+XExamXL7ieamU5ljmxx9OgyAI4klA41EMGGDv5TWivLxGpYq+XlgJo5bmNpUq+tKl3JWr5rIcc+DAGYiGYxmJRHLmdObGjT82NbXCKD+/fPGrG1eunDt9xsRQpV+sOgmi4ThGp9Pv3HFErU6CkSAIanVSWlqBKnKht8/IAQMd7tTUQxwDBth7eY0oL69RqaKvF1bCqKW5TaWKvnQpd+WquSzHHDhwBqLhWEYikZw5nblx449NTa0wys8vX/zqxpUr506fMTFU6RerToJoOI7R6fQ7dxxRq5NgJAiCWp2Ullagilzo7TNywECHOzX1IAiC+M2j8SiULHPyZNqWzeq2Ni06i49Pzcsvj1izwNnZvra2AaaRSCSCIMBkkyd7fR4Vp1YnobPWVu26dXtSU/OfmeYfq06CySQSiSAIMI2jYz8bG6ulSz67ceMWOispqVq6ZMuyZbNCQ3zj4pIhDiXLnDyZtmWzuq1Ni87i41Pz8ssj1ixwdravrW2AaSQSiSAIMNnkyV6fR8Wp1UnorLVVu27dntTU/Gem+ceqk2AyiUQiCAJM4+jYz8bGaumSz27cuIXOSkqqli7ZsmzZrNAQ37i4ZJhM1t8BBEEQfYHGo0i5nH8w9ix6UFZavXz5f+ztbWCyPz436dgvl2EaiqK2blVXVtaiB/HxqTk5JRRF8TwP08yYMTE+PhWmoWlq6ZItWq0e3dFq9VFRccOGDYTJ3Me6QhCuX78J06Rczj8YexY9KCutXr78P/b2NjDZH5+bdOyXyzANRVFbt6orK2vRg/j41JycEoqieJ6HaWbMmBgfnwrT0DS1dMkWrVaP7mi1+qiouGHDBuJRzEg7CYIgiL5A41FUVNTggbRafU1NPUw2b960gvyKGzduwQQ8z1dW1uKBKitrYbIxY4YuCJ8eH58K09TU1ONhKipqYDKOZQQI16/fhGkqKmrwQFqtvqamHiabN29aQX7FjRu3YAKe5ysra/FAlZW1MNmYMUMXhE+Pj0+FaWpq6vEwFRU1IAiCeBLQ6DujRrmMGDGI45gbN26hL7AcM2zYQDe3wSUlVegLLMtIKMm33xxDXxg1ymXEiEEcx9y4cQt9geWYYcMGurkNLimpAkEQxFOGRt9hOQYAyym+++44+gLHMQBYTlFSEg+zGzly8IiRgwCMGDmorLQaZsdyDACWU3z33XH0BY5jALCcoqQkHgRBEE8ZGn2HYxkAbm6DR4wYVFZWDfMaNmzgyJGDAXAcs/u/8TA7jmNgxLGK6NIEmB3HMgDc3AaPGDGorKwa5jVs2MCRIwcD4Dhm93/jQRAE8ZSh0UdcXQeMGj0ERkrWb0/MSZjX1GcUMBo9esjw4QPLy2tgXizHwIjlmOjoBJiXq+uAUaOHwEjJ+u2JOQnzmvqMAkajRw8ZPnxgeXkNCIIgniY0+sjUqQp04DjFnpiTMC+OZdBBqfT7/vtEmNGQIU5jxgyFkbv7UFdX58rKWpjR1KkKdOA4xZ6YkzAvjmXQQan0+/77RBAEQTxNaIjMwoJa/NpzL7wQjM7kckt0GDvW9djxT9DZ9cLK9R/vvVNTj94ZMNDhww/mu491RWd2dtbo8Ori5+bNn4bOfv75/HffHjMYePTO5MleK1fNsbGR4z40bYH77PrvO+3tBtynpUWzZbP60qVc9I6FBbX4tedeeCEYncnllugwdqzrseOfoLPrhZXrP957p6YevTNgoMOHH8x3H+uKzuzsrNHh1cXPzZs/DZ39/PP57749ZjDwIAiC+D2iITKDgf/6q6N5uWWr333J3t4GPbCzs0YHQRAOxp7dvv2wXt+OXrtTU79y5c4FC6aHL5xBURJ0Ryq1kEqt0aGluW3Tph9PnbqCx+HSpdy33vxiTcQrvr6j0AMrK0vcJy+vfG1kdGVlLXrNYOC//upoXm7Z6ndfsre3QQ/s7KzRQRCEg7Fnt28/rNe3o9fu1NSvXLlzwYLp4QtnUJQE3ZFKLaRSa3RoaW7btOnHU6eugCAI4veLhlkkJ2cXFFSsWbOAUYzGA9XXN3/y730XLlzD49Pebti16/jVq8UffvSyk1M/PNC1a6WRqpjbt+/i8amqqnvrzS/Cw2eEL5xOURR6JgjCwdiz27cf0usNeHySk7MLCirWrFnAKEbjgerrmz/5974LF67h8WlvN+zadfzq1eIPP3rZyakfHujatdJIVczt23dBEATxu0bDXGpq6t9++8uXXnrmtSXP0bQFupORXrhu3fe1tQ0QQVpawaKFG9//YN7kyV7oDs/z+/f/+u03x9rbDXjcDAZ+167jmZlFH370yoAB9uhOXV3Tvz/ee/lyHkRQU1P/9ttfvvTSM68teY6mLdCdjPTCdeu+r61tgAjS0goWLdz4/gfzJk/2Qnd4nt+//9dvvznW3m4AQRDE7x0NM+J5fu/exMrKO+s/fhVdnDyZvn7dHp4XIJp795pWv/P1hx+98oc/TEAXaz7anZSUBTFlZFx/ddHG6JjVjo790FldXWP4gg319c0QDc/ze/cmVlbeWf/xq+ji5Mn09ev28LwA0dy717T6na8//OiVP/xhArpY89HupKQsEARBPB1omJ2zcz90Z8AAe54XIDKeFwYOcEB3nJz6QXwURTk42KILBwc7mraA+Jyd+6E7AwbY87wAkfG8MHCAA7rj5NQPBEEQTw0aZsdyCnTHz2+0o2O/urpGiMnR0c7Xzw3dYTkmLi4ZImNZP4qi0AVFSUJCfX/+6RxExnIKdMfPb7SjY7+6ukaIydHRztfPDd1hOSYuLhkEQRBPBxrm5eBgyzCjYNTWpv3vrviZf5w0apQLAIqShIT4HD58AWIKCfGlKApGxcW344+nLHp1ppWVJQCFYrSDg219fTPExLIMOvzyyyUA/+//TYYRxzI//3QOYnJwsGWYUTBqa9P+d1f8zD9OGjXKBQBFSUJCfA4fvgAxhYT4UhQFo+Li2/HHUxa9OtPKyhKAQjHawcG2vr4ZBEEQTwEa5hWq9KUoCkBhYaUqIrqioubgweTly2f9JUwpkUhYjjl8+ALExE1VwCghIXXzpgMaje70mUyVKtzbeyRFUSGhvkePXIRo7O1tFOPHAGhp0WzZfODkyXQAFy/krn73RTs76/H+YxwcbOvrmyGaUKUvRVEACgsrVRHRFRU1Bw8mL18+6y9hSolEwnLM4cMXICZuqgJGCQmpmzcd0Gh0p89kqlTh3t4jKYoKCfU9euQiCIIgngI0zItjFYIgHIw9u337Yb2+HYBOp4+KikvPuP7uuy/5+7v362fd2NgKcdjaWikUY1qa2zZt+vHUqSswqrpd98aKqPDwGeELZ3Acc/TIRYgmNNTXwoLKyyuPVEXfvFkLo6SkrPz88jURC/z8RgUH+/zyyyWIhmMVgiAcjD27ffthvb4dgE6nj4qKS8+4/u67L/n7u/frZ93Y2Apx2NpaKRRjWprbNm368dSpKzCqul33xoqo8PAZ4QtncBxz9MhFEARBPAVomJGtrZXbKJfVq7+5eOEaOjuXnL2ooGLNmleCQ3yPH7sMcShZv8LCikhVzO3bd3Efg4Hftev41avF7773kp2ddVNTK8ShVPrFqpO2bTvU3m7Afaqr77391hfh4TNClb6//HIJ4rC1tXIb5bJ69TcXL1xDZ+eSsxcVVKxZ80pwiO/xY5chDiXrV1hYEamKuX37Lu5jMPC7dh2/erX43fdesrOzbmpqBUEQxO8djd4JDPS8fDkPpunf3+61xZvr6hrRnTs19X97e5u390iYzNXVGUBlZS1MU1F+Z8XyKJ7n0Z20tIKlSz5zcLBtamqFaQIDPS9fzoNpKIrasycxO7sY3TEY+F27jvv6jqIoiud5mCYw0PPy5TyYpn9/u9cWb66ra0R37tTU/+3tbd7eI2EyV1dnAJWVtTBNRfmdFcujeJ5Hd9LSCpYu+czBwbapqRWmCQz0vHw5DwRBEE8gGr3g4uK0+LXnLl/Og2kqKmrwQDzPZ2cXw2QsqxAg7Nt7CqbJzi7GA9XVNdbVNcJkry15rrLyzs2btTABz/PZ2cV4oOzsYpjMxcVp8WvPXb6cB9NUVNTggXiez84uhslYViFA2Lf3FEyTnV2MB6qra6yra4TJXlvyXGXlnZs3a0EQBPGkodEL3FSFp+fwIUOcbt26i77AcgwEYd/eU+gLg10cPTyGKZV++/f/ir7ATVV4eg4fMsTp1q276Assx0AQ9u09hb4w2MXRw2OYUum3f/+vIAiCeNLQ6AWOYwCEKv1+/OE0zG7gQIdx44YBGDzYsaqqDmbHsYxEImE5Zv/+X9EXOI4BEKr0+/GH0zC7gQMdxo0bBmDwYMeqqjqYHccyEomE5Zj9+38FQRDEk4bG/2rAQAdPz+EAOJb58YfTMDtuqkIikQBQKv0OHDgDs2M5BQAvrxGDBvWvrr4H8xow0MHTczgAjmV+/OE0zI6bqpBIJACUSr8DB87A7FhOAcDLa8SgQf2rq++BIAjiiULjf8WxjEQiAeDtM3LAQIc7NfUwL45jYMRyzIEDZ2BeAwbYe3mNACCRSEKVfrHqJJgXxzISiQSAt8/IAQMd7tTUw7w4joERyzEHDpyBeQ0YYO/lNQKARCIJVfrFqpNAEATxRKHxv2I5BkYSiSQ0xDcuLhlm5OjYz9vbDUY+Pm7Ozva1tQ0wI6XSj6IkMOJYJladBPNiOQZGEokkNMQ3Li4ZZuTo2M/b2w1GPj5uzs72tbUNMCOl0o+iJDDiWCZWnQSCIIgnCo2HcXCwfePNF5yd+6EzX183dFgQPj1U6YvOUlMLftj/K88L6B2GGf3Kgj9YWFC4j729LUVJYERRko2bXm9oaMZ9DAZ+T8zJrKwb6B2Kkrz40jMBAR7ozM3NBR18/dy2/mcFOqutbdz25c/19c3oHQcH2zfefMHZuR868/V1Q4cF4dNDlb7oLDW14If9v/K8gN5hmNGvLPiDhQWF+9jb21KUBEYUJdm46fWGhmbcx2Dg98SczMq6gd6hKMmLLz0TEOCBztzcXNDB189t639WoLPa2sZtX/5cX9+MB2ouLgNBEERfoPEw9fXNX37x03vvzwsO9kEPnJz6OTn1QweDgY+JPvHD/l95XkCvZWXd0H3XrlKFDxnihB64uw/FfWpq6tdGxmRl3UCv8bywf9+vel378hWzpVILdIeiqIkTPXCflJT8HdsP19c3o9fq65u//OKn996fFxzsgx44OfVzcuqHDgYDHxN94of9v/K8gF7Lyrqh+65dpQofMsQJPXB3H4r71NTUr42Mycq6gV7jeWH/vl/1uvblK2ZLpRboDkVREyd64D4pKfk7th+ur2/Gw5z+QxgIgiD6Ag0TNDS0vPfut7NmBb319p/lchkeqKqqLjIyJie7BI9PXm7Zq4s2rvrX3GefnYCHOXv26oZP9zc2tuIxEQRBrU7Kzi6JUIW7ujrjgfT69u++Pb5//ymeF/CYNDS0vPfut7NmBb319p/lchkeqKqqLjIyJie7BI9PXm7Zq4s2rvrX3GefnYCHOXv26oZP9zc2tuIxEQRBrU7Kzi6JUIW7ujrjgfT69u++Pb5//ymeF0AQBPEbRsM0giAcPnwhO7tYpQofNXoIenDmdOaGDT80N7fhcWtp0USqYi5fylu5aq5cLkN3dDr9zh1H1OokiCA/v3zxqxtXrpw7fcZE9KC8vEalir5eWInHTRCEw4cvZGcXq1Tho0YPQQ/OnM7csOGH5uY2PG4tLZpIVczlS3krV82Vy2Xojk6n37njiFqdBBHk55cvfnXjypVzp8+YiB6Ul9eoVNHXCytBEATxm0fjUZSUVL3++ta16xYFBXmhi62fxcbFJUNM8fGp+fkVX3z5loODLTqrr29+680vSkurIJrWVu26dXuuXSv9xz/D0MXFi7lrPvqvRqODaEpKql5/fevadYuCgrzQxdbPYuPikiGm+PjU/PyKL758y8HBFp3V1ze/9eYXpaVVEE1rq3bduj3XrpX+459h6OLixdw1H/1Xo9GBIAjiSUDjEWk0OvSgtVUD8dXWNtjYWKELW1uru3cbIb62Ni26JQgajQ4i02h06EFrqwbiq61tsLGxQhe2tlZ37zZCfG1tWnRLEDQaHQiCIJ4QNB6RtbXlhAnu6A7LKeLjUyGy4GAfqdQCXdC0RdAUrxMJaRAZyzHozsQADxtbq5bmNojJ2tpywgR3dIflFPHxqRBZcLCPVGqBLmjaImiK14mENIiM5Rh0Z2KAh42tVUtzGwiCIJ4ENB5RcLCPTCaF0b17TcnJ2X/6UxBFSQBMmuRhbW3Z2qqFmFiOQYfMzCIACsUYGHGc4kRCGsRkbW0ZEOABI54Xjh69GBrq27+/HQCplJ4S5HXyZDrEFBzsI5NJYXTvXlNycvaf/hREURIAkyZ5WFtbtrZqISaWY9AhM7MIgEIxBkYcpziRkAYxWVtbBgR4wIjnhaNHL4aG+vbvbwdAKqWnBHmdPJkOgiCIJwGNR8RNVcAoPa1w/frva2sbEk+mf7RmwYAB9jKZNGiK96nEDIjGyspy0qRxAAwGPib6xO7dCYIghIUpV7wxm6YtAgPHWVtbtrZqIZopU3xkMimAurqmjz/+PuVy/rffHHvv/XlBQV4AWI45eTIdYuKmKmCUnla4fv33tbUNiSfTP1qzYMAAe5lMGjTF+1RiBkRjZWU5adI4AAYDHxN9YvfuBEEQwsKUK96YTdMWgYHjrK0tW1u1EM2UKT4ymRRAXV3Txx9/n3I5/9tvjr33/rygIC8ALMecPJkOgiCIJwGNRyGXyyZNGmcw8DHRJ3bvjud5AcCVK0WLFm547/15wcE+HMucSsyAaKZM8bK0lFZX31u3dk9W1g0YqdVJOddKVarwIUOcJk/2+vXXKxANxzEAUlLyP16/t66uEcC9e02r3/k6LEy5fMXswEBPuVym0eggDrlcNmnSOIOBj4k+sXt3PM8LAK5cKVq0cMN7788LDvbhWOZUYgZEM2WKl6WltLr63rq1e7KybsBIrU7KuVaqUoUPGeI0ebLXr79egWg4jgGQkpL/8fq9dXWNAO7da1r9ztdhYcrlK2YHBnrK5TKNRgeCIIjfPBqPYnKQV/295si1MTnZJbhPQ0PLu6u/mTkz4M23/iyXyzQaHcTBcoqzZ69u+HR/Y2Mr7pOXW/bqoo2r/jWX5Zhff70CccjlMsX4MZ9HxcXGnhUEAR0EQVCrk7KzSyJUCwIneyadyYI4Jgd51d9rjlwbk5Ndgvs0NLS8u/qbmTMD3nzrz3K5TKPRQRwspzh79uqGT/c3NrbiPnm5Za8u2rjqX3NZjvn11ysQh1wuU4wf83lUXGzsWUEQ0EEQBLU6KTu7JEK1IHCyZ9KZLBAEQfzm0XgU7fr28PBPW1u16E58fGpR0a0hQ52Lb9yCaTw8hhUUVMA0FEWdTbqamJiO7rS0aCJVMc8+O4GiKJ7nYRoPj2EFBRUwzZChzn//27aiopvoTn5++eJXN/n7u8Nkzs72AGprG2Cadn17ePinra1adCc+PrWo6NaQoc7FN27BNB4ewwoKKmAaiqLOJl1NTExHd1paNJGqmGefnUBRFM/zMI2Hx7CCggqYZshQ57//bVtR0U10Jz+/fPGrm/z93UEQBPEkoPEozp3LwQMVFd3Eo1jxxuy1kTF37zbCBDzPJyam44ESE9NhMkdHu+XLn//737fBNMU3buGBWlu1587lwGRKpZ8gCD/9dA6mOXcuBw9UVHQTj2LFG7PXRsbcvdsIE/A8n5iYjgdKTEyHyRwd7ZYvf/7vf98G0xTfuIUHam3VnjuXA4IgiCcBjb7j6GinUIwODfX9+efz6AtKlhnv7+7o2K+urhF9geUYCMJPP51DX3B0tFPG1cPjAAAgAElEQVQoRoeG+v7883n0BSXLjPd3d3TsV1fXCIIgiKcMjb4TGupHURTLMT//fB59gWMZipKEhPgcPnwBZmdvb8MwoyUS9O9vd+9eE8wuNNSPoiiWY37++Tz6AscyFCUJCfE5fPgCCIIgnjI0+g7LMQD8/d0dHGzr65thXvb2NorxYwCwHHP48AWYnZL1s7CgAASH+Bw9chFmx3IMAH9/dwcH2/r6ZpiXvb2NYvwYACzHHD58AQRBEE8ZGn3E1tZKoRgDgKKo4GCfX365BPMKDfW1sKAA+Pu79+tn3djYCvPiWAWMOI45euQizMvW1kqhGAOAoqjgYJ9ffrkE8woN9bWwoAD4+7v362fd2NgKgiCIpwmNPhKq9JNKLWDEcswvv1yCebEcAyOatggO9jl+PAVmZGtrNd7fHUYTJoy1s7NuamqFGYUq/aRSCxixHPPLL5dgXizHwIimLYKDfY4fTwFBEMTThIbIKEoSFsaOGDkInTF+o9Fh4sSx/3rnr+hMo9Ht/T6xrq4JvePoaDf/5Wflchk6mzBhLDrMn/+sj68bOisrrY6NTeJ5Ab2jUIz5w/QJ6GyAs71UagEjmrb46KOX79Q2oLOTJ9IzM4vQOxQlCQtjR4wchM4Yv9HoMHHi2H+981d0ptHo9n6fWFfXhN5xdLSb//KzcrkMnU2YMBYd5s9/1sfXDZ2VlVbHxibxvACCIIjfIxoi43nh0KHzy5bNCpvDogdSKf3881Nwn9LSqoiI6Lq6JvRaXV3T4UMXIlTh7u5D0YMRIweNGDkI90lISD18+ALPC+i1zMyi/v1t31n9oq2tFXoQNMUb92lt1X62RZ2ZWYRe43nh0KHzy5bNCpvDogdSKf3881Nwn9LSqoiI6Lq6JvRaXV3T4UMXIlTh7u5D0YMRIweNGDkI90lISD18+ALPCyAIgvidoiE+rVYfFRWXmXnjndUv9utnjYdJSEjdvOmARqPDY1JWVv360s9WrHj+L2FKiUSCB2pp0WzedCAxMR2Pz+nTmXn55RER4T4+I/EwBQUVqojoyso7eEy0Wn1UVFxm5o13Vr/Yr581HiYhIXXzpgMajQ6PSVlZ9etLP1ux4vm/hCklEgkeqKVFs3nTgcTEdBAEQfyu0TCXpKSs/PzyNREL/PxGoQcNDS2ffrLv3LkcPG56fXtUVNzFi7kffPiyo6MdepCXWxYZGXPzZi0et6rbdW++ERUePiN84QyKkqA7giAcjD27ffshvd6Axy0pKSs/v3xNxAI/v1HoQUNDy6ef7Dt3LgePm17fHhUVd/Fi7gcfvuzoaIce5OWWRUbG3LxZC4IgiN87GmZUXX3v7be+WLr0T/PmT0MX166VfvThrjt3GiCalJT81xZvWrf+VW/vkehi395TX3991GDgIQ6Dgd+163jOtZK1kQttbK3QWUtz25qI3SmX8yGa6up7b7/1xdKlf5o3fxq6uHat9KMPd9250wDRpKTkv7Z407r1r3p7j0QX+/ae+vrrowYDD4IgiKcADfMyGPjcvDJ0p+p23Z07DRDZnTsNVVX3vL1Hoovc3DKDgYfIsjJvWNAW6MKCtriaVQyRGQx8bl4ZulN1u+7OnQaI7M6dhqqqe97eI9FFbm6ZwcCDIAji6UDD7DiOQXemBHtbWkq1Wj3EJJNJg4K80B2WY5KSsiCywEBPuVyGLuRyWUCAR3JyNkTGcQy6MyXY29JSqtXqISaZTBoU5IXusByTlJQFgiCIpwMN85JK6aAgb3TIyLju4zNSJpMCsLKyDAjwOHcuB2KaNMnD2toSRjqdPien1N/fHUZTpnhLpbRe3w4xsSyDDpWVdwC4ug6AEccpkpOzISaplA4K8kaHjIzrPj4jZTIpACsry4AAj3PnciCmSZM8rK0tYaTT6XNySv393WE0ZYq3VErr9e0gCIJ4CtAwr0mTxtnYyAFotfqvdh5Rq5NGjhwcGRk+avQQACynOHcuB2LipipgVFZWHamKvn795syZAStXzZXLZTY28oAAjwsXrkE0UikdHOwNo9OnMzdu+IHn+TfefOH556cACAn1lcmkOp0eopk0aZyNjRyAVqv/aucRtTpp5MjBkZHho0YPAcByinPnciAmbqoCRmVl1ZGq6OvXb86cGbBy1Vy5XGZjIw8I8Lhw4RrMyHECA4IgiL5Aw7xYjgFQUlKlUkUX37gFoLS0asmSz5YvnxU2hw0J8ZFKLfR6A8RB0xZTpngDSEhI3bzpgEajAxAfn5qXVx6hCnd3H8pxzIUL1yCaiQEeNrZWra3az7aoExJSYbRp449pqQXvrH7R1tZqwgT3ixdzIRqWYwCUlFSpVNHFN24BKC2tWrLks+XLZ4XNYUNCfKRSC73eAHHQtMWUKd4AEhJSN286oNHoAMTHp+bllUeowt3dh3Icc+HCNZhR8IFvQRAE0RdomBFNWwQH+yQkpG7edECj0aGDTqePioq7cqVo9bsvjfd3T7mcD3FMmDCWoqhIVUxiYjruU1ZW/frSz1aseH7GzACp1EKvN0AcHMvk55dHqmIqK+/gPqdPZ+bll0esWcByzMWLuRAHTVsEB/skJKRu3nRAo9Ghg06nj4qKu3KlaPW7L433d0+5nA9xTJgwlqKoSFVMYmI67lNWVv360s9WrHh+xswAqdRCrzeAIAji945G77i4ON2+fRemGTXK5d8f7z1/PgfdOXv2amFh5Xh/d5jMzs4aQFNTK0zj6NRvYfiGqqo6dKHXt0dFxaWlFbq5uRQWVsI0Li5Ot2/fhWkoiiovr9m06cf2dgO6qLpd99ZbX/z1r1MpiuJ5HqZxcXG6ffsuTDNqlMu/P957/nwOunP27NXCwsrx/u4wmZ2dNYCmplaYxtGp38LwDVVVdehCr2+PiopLSyt0c3MpLKyEaVxcnG7fvguCIIgnEI1esLW1euPN2R9+sAumKSysLCysRM+qquqOH7sMk4WE+AiCEB+fCtMcP3YZD3T+fA4exZtvvfDpJ/ubmlphAp7n9+5NRM/a2w179ybCZLa2Vm+8OfvDD3bBNIWFlYWFlehZVVXd8WOXYbKQEB9BEOLjU2Ga48cu44HOn8/Bo3jzrRc+/WR/U1MrCIIgnjQ0eiE42GfKFG8bG3lLiwZ9geUYQUB8fCr6grW15eTJnkFTvE4kpKEvBAf7TJnibWMjb2nRoC+wHCMIiI9PRV+wtracPNkzaIrXiYQ0EARBPGlo9ALHMVIpHRTknZiYDrOzsrIMCPCQSCQ2NvKWFg3MLjjYRyaTcpziREIa+gLHMVIpHRTknZiYDrOzsrIMCPCQSCQ2NvKWFg3MLjjYRyaTcpziREIaCIIgnjQ0/ldWVpYBk8YB4DgmMTEdZhcc7COTSQFMDvI6lZgBs2M5BkBg4Dhra8vWVi3My8rKMmDSOAAcxyQmpsPsgoN9ZDIpgMlBXqcSM2B2LMcACAwcZ21t2dqqBUEQxBOFxv8qKMjL0lIKIHCyp1wu02h0MC+OY2DEscypxAyYl1wuCwz0BCCTSQMDPU+fzoR5BQV5WVpKAQRO9pTLZRqNDubFcQyMOJY5lZgB85LLZYGBngBkMmlgoOfp05kgCIJ4otD4X7EcAyO5XBY42TPpTBbMSC6XBU72hNHkIC+5XKbR6GBGk4O85HIZjFhOcfp0JsyL5RgYyeWywMmeSWeyYEZyuSxwsieMJgd5yeUyjUYHM5oc5CWXy2DEcorTpzNBEATxRKHxME5O/WbMDJBAgs6CgrzQ4cW/TnUdOgCdNTQ0HzuWwvM8ekehGOPtPRKduQxxlMtlMJLLZW++9cLtW3Xo7Nq10szMIvQORVHPPTfJ3t4WnYWE+KDDlCle8+c/i84ECAnxqXfvNqJ3nJz6zZgZIIEEnQUFeaHDi3+d6jp0ADpraGg+diyF53n0jkIxxtt7JDpzGeIol8tgJJfL3nzrhdu36tDZtWulmZlF6B2Kop57bpK9vS06CwnxQYcpU7zmz38WnQkQEuJT795tBEEQxG8SjYe5e7exIL/iw49edna2Rw98fN18fN1wnytXitatjeF5Hr2WnV3s7+8evnA6RVHowezZwbiPIAgHY8/m5JSg13iev3Dh2gcfvDwpcBx6YGVluWz5LNzn3r2mT/697+7dRvTa3buNBfkVH370srOzPXrg4+vm4+uG+1y5UrRubQzP8+i17Oxif3/38IXTKYpCD2bPDsZ9BEE4GHs2J6cEvcbz/IUL1z744OVJgePQAysry2XLZ+E+9+41ffLvfXfvNoIgCOK3ioYJ0tMLFy3c+P7784KmeONhDAY+JvrE7t0JPM/jcTAY+F27jmdkXF+z5pUBAx3wMHV1TR+v/z4lJR+PSV1d06pVO8PClCvemE3TFniYtLSC9eu+v3u3EY9JenrhooUb339/XtAUbzyMwcDHRJ/YvTuB53k8DgYDv2vX8YyM62vWvDJgoAMepq6u6eP136ek5OMxqatrWrVqZ1iYcsUbs2naAg+Tllawft33d+82giAI4jeMhmnq65tXr/4mLEy5fMVsqdQCPaiuvrc2Mubq1WI8bpmZRa8s+PSdd/76zDPj0bNzydmffrq/oaEFj5UgCGp1Us610oiIBUOHOqMHBgMfE31i9+54nhfwWNXXN69e/U1YmHL5itlSqQV6UF19b21kzNWrxXjcMjOLXlnw6Tvv/PWZZ8ajZ+eSsz/9dH9DQwseK0EQ1OqknGulERELhg51Rg8MBj4m+sTu3fE8L4AgCOK3jYbJBEFQq5Oys0siVOGurs7o4vTpzI0bfmhuboM4WprbVBHRWZk33nhztkwmRWc6nX7bl4d++umcIAgQR15u2WuLN7+z+sWpUxXoorKyNlIVnZ9fDnEIgqBWJ2Vnl0Sowl1dndHF6dOZGzf80NzcBnG0NLepIqKzMm+88eZsmUyKznQ6/bYvD/300zlBECCOvNyy1xZvfmf1i1OnKtBFZWVtpCo6P78cBEEQTwIajyg/vzwzs8jV1RldHD1ysbm5DWISBOHQofOvLv6jTCZFZ21tukOHzguCADE1N7cdPXpx6lQFusi8cj0/vxwiy88vz8wscnV1RhdHj1xsbm6DmARBOHTo/KuL/yiTSdFZW5vu0KHzgiBATM3NbUePXpw6VYEuMq9cz88vB0EQxBOCxiOiKCokxAfdYTkmJSUfIvP3d7e3t0EX9vY248e7p6UVQGQcq0B3QpV+mzcfMBh4iImiqJAQH3SH5ZiUlHyIzN/f3d7eBl3Y29uMH++ellYAkXGsAt0JVfpt3nzAYOBBEATxJKDxiBTjxzg42MJIEITqqnuDXRxhFBrqu2Wzmud5iEnJMujQ1NQKwM7OGkYsx6SlFUBMFEWFhPqgQ9XtukGD+0skEgD29jaMYkxGeiHEpBg/xsHBFkaCIFRX3Rvs4gij0FDfLZvVPM9DTEqWQYemplYAdnbWMGI5Ji2tAGKiKCok1Acdqm7XDRrcXyKRALC3t2EUYzLSC0EQBPEkoPGIOI6BUUNDyyf/3nfpUm54+IzwhTMoStK/v52f36jMzCKIhqIkoaG+MMrNLYtURbe3G9ZELGCY0QCUSr+tn8XyPA/RMMyo/v3tAAiCcDD27Pbth8aPd//gw/mOjv0AsKxfRnohxMRxDIwaGlo++fe+S5dyw8NnhC+cQVGS/v3t/PxGZWYWQTQUJQkN9YVRbm5ZpCq6vd2wJmIBw4wGoFT6bf0slud5iIZhRvXvbwdAEISDsWe3bz80frz7Bx/Od3TsB4Bl/TLSC0EQBPEkoPEoKEqiVPoByMi4vn7dnjt3GgDs2nU8M+vGRx+97Oxsz3FMZmYRROPnN9rJqR/PC3EHz27bdqi93QDg7be+XLhwRvjC6Y6Odr5+blmZNyAallMAuHev6d8f77t0KRdASkr+ooUbP/jg5UmB4ziOifrPQZ4XIA6KkiiVfgAyMq6vX7fnzp0GALt2Hc/MuvHRRy87O9tzHJOZWQTR+PmNdnLqx/NC3MGz27Ydam83AHj7rS8XLpwRvnC6o6Odr59bVuYNiIblFADu3Wv698f7Ll3KBZCSkr9o4cYPPnh5UuA4jmOi/nOQ5wUQBEH85tF4FD4+bg4Otv/dFb97dwLP8+iQkV64aOHG99+fp2SZzz+P43kB4uA45k5N/dq1ezIzi9CB5/ldu45fvpwXoVrAsUxW5g2IQyKRKEN909IK1q/7/u7dRnSoq2tatWpnWJhyxRuzvb3dsrOLIQ4fHzcHB9v/7orfvTuB53l0yEgvXLRw4/vvz1OyzOefx/G8AHFwHHOnpn7t2j2ZmUXowPP8rl3HL1/Oi1At4FgmK/MGxCGRSJShvmlpBevXfX/3biM61NU1rVq1MyxMueKN2d7ebtnZxSAIgvjNo/EoxnkOf/utL65eLUYX9fXNq1d/ExamdHd3LSiogGns7W0aGlpgGolEAolk0aKNDQ0t6OLatdJFizYtWjhDIpEIggDT2NvbNDS0wDTjPIcfPXpp9+54nhfQmSAIanVSTk6Jp+eI7OximEYulwHQaHQwzTjP4W+/9cXVq8Xoor6+efXqb8LClO7urgUFFTCNvb1NQ0MLTCORSCCRLFq0saGhBV1cu1a6aNGmRQtnSCQSQRBgGnt7m4aGFphmnOfwo0cv7d4dz/MCOhMEQa1Oyskp8fQckZ1dDIIgiN88Go8iVp3E8wJ6IAiCWp1EURKYbMWK2Vu3xmo0OpjmP1tj0bOW5rYvv/xZIpHANJaW0mXLZm3Y8ANMU5Bfnpdbhp7l5ZUXFFTAZIGTPSEgKSkLpolVJ/G8gB4IgqBWJ1GUBCZbsWL21q2xGo0OpvnP1lj0rKW57csvf5ZIJDCNpaV02bJZGzb8ANMU5Jfn5ZahZ3l55QUFFSAIgngS0HgUPC/gYXhegGmkUprlmHPnspOTs2ECQRBgAkEQYJrAQM9pz/pv3XpQp9PDBDwv4GF4XoDJOI4RBCQlZcE0PC/gYXhegGmkUprlmHPnspOTs2ECQRBgAkEQYJrAQM9pz/pv3XpQp9PDBDwv4GF4XgBBEMSTgEbfCQwcZ2Mj5zhFcnI2+gLLMVZWlgEBHufP58DspFI6KMhbIpHIZFKdTg+zCwwcZ2Mj5zhFcnI2+gLLMVZWlgEBHufP54AgCOIpQ6PvsJwCQHCwt1RqodcbYF40bREU5AWA5Zjz53NgdpMmjbOxkQOYOHHshQvXYHYspwAQHOwtlVro9QaYF01bBAV5AWA55vz5HBAEQTxlaPQRmrYIDvYGYGNrNWGCx6VLuTCvgAAPOztrAKGhvlKphV5vgHmxHAMjjmMuXLgG86Jpi+BgbwA2tlYTJnhcupQL8woI8LCzswYQGuorlVro9Qb0harEsyAIgugLNPrIhAlj7eysYcRyzKVLuTAvlmNgZGtrNd7fPeVyPsyIpi2Cg31gFKr0k276Ua83wIwmTBhrZ2cNI5ZjLl3KhXmxHAMjW1ur8f7uKZfz0RdSX18JgiCIvkBDZBYWVNAUbyltgc5mzAxAh9BQ35TLeegiO7uktrYBvePsbO/r64YuQkJ80eH//i/UxlqOzvTthosXrhkMPHrH02vE4EH90ZnrsAH9+lnDyNbW6sWXnqmsuIPOqqrv5eWWoXcsLKigKd5S2gKdzZgZgA6hob4pl/PQRXZ2SW1tA3rH2dne19cNXYSE+KLD//1fqI21HJ3p2w0XL1wzGHgQBEH8HtEQmcHA11TfU0WGDxs2ED2wt7dZu24R7qPT6XfuOHL3biN6rba2wdJSunLVXLlchh4EB/sEB/vgPrdv341UxRgMPHqtvKw6LEw5ffpE9Gzp0j+hs6QzWRs2/IBeMxj4mup7qsjwYcMGogf29jZr1y3CfXQ6/c4dR+7ebUSv1dY2WFpKV66aK5fL0IPgYJ/gYB/c5/btu5GqGIOBB0EQxO8UDfEVFlYuWrhx2bJZYXNYmKCstFqlii4quonHJD4+NS+/PDJy4ejRQ2CChITULZvVbW1aPA4tLZp1a/ekpuT/c+UcKytLPIxWq/9q5xG1OgmPSWFh5aKFG5ctmxU2h4UJykqrVarooqKbeEzi41Pz8ssjIxeOHj0EJkhISN2yWd3WpgVBEMTvFw2z0Gr1UVFxWVeLV69+0dbWCj1LSEjdvOmARqPDY1VWWr10yWfLl88Km8OiZ62t2i1bDpxISMPjFh+fmptbplKFu491Rc9KSqpUEbuLi2/jsdJq9VFRcVlXi1evftHW1go9S0hI3bzpgEajw2NVVlq9dMlny5fPCpvDometrdotWw6cSEgDQRDE7x0NMzpzOjM/rzwiYoGPrxu6aGlu27T5wKnEDIhDp9NHRcVlZFx/9715/fpZo4v8/PJIVXRlZS3EUV5es3TpZwsWTA9fOIOiJOhMEISDsWe3bz+s17dDHGdOZ+bnlUdELPDxdUMXLc1tmzYfOJWYAXHodPqoqLiMjOvvvjevXz9rdJGfXx6piq6srAVBEMRTgIZ5VVXV7dhxeNv2v6GL48dTTiVmQGTJydn+/qlhc1h08cXnP1VW1kJM7e2G//43ftbzQc7O9ujs7t3Gzz//SRAEiKmqqm7HjsPbtv8NXRw/nnIqMQMiS07O9vdPDZvDoosvPv+psrIWBEEQTwcaZseyDLrDssznn/8kCALEJJFIQpV+6I5S6Xf1ajFE5u09wtnZHl04O9t7eY24dq0UImNZBt1hWebzz38SBAFikkgkoUo/dEep9Lt6tRgEQRBPBxrmJZFIlEo/dNBq9ZaWUhgNGOgwznN4Xm4ZxDTOc/igQf3RQavVW1pKYcSyzLZthwRBgJiULIMO7e0GADRtASOWY65dK4WYJBKJUumHDlqt3tJSCqMBAx3GeQ7Pyy2DmMZ5Dh80qD86aLV6S0spjFiW2bbtkCAIIAiCeArQMC8Pj2GDXRxhlJycveHT/dOnT1y+4nmplAbAsn55uWUQE8cyMGpvN+yJOalWJ61cNXfatPEABrs4jh3rWlBQATGxLAOjqqq6tZF72tvb10SEu7o6A5jKKXZsPywIAkTj4TFssIsjjJKTszd8un/69InLVzwvldIAWNYvL7cMYuJYBkbt7YY9MSfV6qSVq+ZOmzYewGAXx7FjXQsKKkAQBPEUoGFeLMcA0On0O3cciY09KwiCWp2Unl4YoQofNcrlmWfG79xxBGJiOQZARUWNKiK6sLASgCpi96WL11aumiuXy1iOKSiogGg8PIYNGeIEIOlM1oYNPzQ1tQJ4bfGmf66cM336xMEuju7uQwsLKyEalmMA6HT6nTuOxMaeFQRBrU5KTy+MUIWPGuXyzDPjd+44AjGxHAOgoqJGFRFdWFgJQBWx+9LFaytXzZXLZSzHFBRUgCAI4ilAw7yUSr+y0mqVKrqo6CY6FBffXrpky7Jls8LmsGPGDC0quglxuLsPHTrUOSEhdctmdVubFh3i41Pz8ssjIxdOnar4+qujEA3LMVqt/qudR9TqJHRoadGsW7snNSX/nyvncJyisLASolEq/cpKq1Wq6KKim+hQXHx76ZIty5bNCpvDjhkztKjoJsTh7j506FDnhITULZvVbW1adIiPT83LL4+MXDh1quLrr46CIAjiKUCjd+RymUajg2lGjx6Sl1e2edMBjUaHzrRafVRUXNbVYv8J7kVFN2EamrYA0N5ugGkCJo1bt27PiYQ0dFFWWr10yWfLl88aNXpI8Y1bMI1cLtNodDDZ8GEDly7ZUlx8G13Ex6fm5pa9uvg5PAq5XKbR6GCa0aOH5OWVbd50QKPRoTOtVh8VFZd1tdh/gntR0U2YhqYtALS3G2CagEnj1q3bcyIhDV2UlVYvXfLZ8uWzRo0eUnzjFkwjl8s0Gh0IgiCeQDR6wcKCCl8446udR2Cayso769d9j56dOZ1paSmFyfwnuENASko+THMw9qxWq0cPdDp9VFScpaUUJlu0aObXXx81GHiYgKKoyMgYvb4dPSgvr/l4/fcURfE8DxNYWFDhC2d8tfMITFNZeWf9uu/RszOnMy0tpTCZ/wR3CEhJyYdpDsae1Wr16IFOp4+KirO0lMJkixbN/PrrowYDD4IgiCcNjV7w93efNSvo229+MRh4mECr1eNhtFo9TMaxCgFCSko+TKPV6vEwWq0epqEo6rn/F5iaWpCW9v/bgxOorOqEf+Df53LdQZBNQTYRl/4sl5xJp9TnXsp/zFSO581lWkyomaZsyubfpjYloNWMW0W9Q9ObEqCmgjqvtiCmuWSZoQiRIgoIuAESi4ACj8+9/3OeczxHDmCP4f2Z0/fzKYYTdAdclc12CU4bM2bE5Mm3r/jgU7tdhxPa2mz4MW1tNjhNU6MNGN9+exTOaWuz4ce0tdngHEmS7rl3XG5u8YEDxSAiutnI6AFVU9zdByjK8Ly84xBOkqQJEyMkSXpzeZbdrkO46FvDPDxcVU05cKAYN4KqKe7uAxRleF7ecQgnSdKEiRGSJL25PMtu1yFc9K1hHh6uqqYcOFAMIqKbjYyfSpIsEyZEAlA1JS/vOISLjh4+aJAbgKio0EOHSiCcpikArNaot97coOs6xJIky4QJkQBUTcnLOw7hoqOHDxrkBiAqKvTQoRIIp2kKAKs16q03N+i6DiKim4qMnyoyKtTLayAATVOS396o6wbEUjUFDqoWfehQCcSSJIvVGgXA09MtMnJYQUEpxIqMCvXyGghA05TktzfqugGxVE2Bg6pFHzpUArEkyWK1RgHw9HSLjBxWUFAKIqKbioyfSlMVOHh6DgwPH1ZYWAaBLBbLxAmRcLBao95J3qjrBgSKiBjm5TUQDqqmFBSUQixNVeDg6TkwPHxYYWEZBLJYLBMnRMLBao16J3mjrhsQKCJimJfXQDiomlJQUAoiopuKjB/j4eE6ePAgdGJVFVx2332/aW+3oZOSktN2u46eCQz07d+/DzoKCvL18fWAg4+P+113jamsrEFHFy5EjIIAACAASURBVC60nTxZg55xcZHCwoaik3vv/Q0uU1UlZ2suOqmurm9oaEbPeHi4Dh48CJ1YVQWX3Xffb9rbbeikpOS03a6jZwIDffv374OOgoJ8fXw94ODj437XXWMqK2vQ0YULbSdP1qBnXFyksLCh6OTee3+Dy1RVydmai06qq+sbGppBRPSzJOPHNDdfvP/+iXHxsZJkQTfuuXfcPfeOwxVami8uXZZZXHwSPWazXXr2rw9GRoaiewsSZqGjoqLKhUnp6DG7Xff19Zg3/6GBA/ujG76+HitWvoArGIaxccOelJQt6LHm5ov33z8xLj5Wkizoxj33jrvn3nG4QkvzxaXLMouLT6LHbLZLz/71wcjIUHRvQcIsdFRUVLkwKR09Zrfrvr4e8+Y/NHBgf3TD19djxcoXcAXDMDZu2JOSsgVERD9XMn7MpUv21NTswsKyV16d6ek5EE44cqQiMSH97NkfcD1UVdU98/S7cXGxcfGxkmTBjzEMY+OGPSkpm202O66HL78sLC5evGDBLCV6OJzQ2Njyxutrvv76MK6HS5fsqanZhYVlr7w609NzIJxw5EhFYkL62bM/4Hqoqqp75ul34+Ji4+JjJcmCH2MYxsYNe1JSNttsdlwPX35ZWFy8eMGCWUr0cDihsbHljdfXfP31YRAR/YzJcE5ubnF83JK/vfLwuHG3oHu6rq9d+8WKDz67dMmO68du11NTs/PzS15d8Ii3tzu6V1/f9Ppra/bvL8J1VVPTMGfOfz/44J1/evweWXZB9/Lyji9auKq2thHXVW5ucXzckr+98vC4cbege7qur137xYoPPrt0yY7rx27XU1Oz8/NLXl3wiLe3O7pXX9/0+mtr9u8vwnVVU9MwZ85/P/jgnX96/B5ZdkH38vKOL1q4qra2EUREP28ynFZf3/TiC+9Pm2ad/dSUXr1c0ElNTcPChRkF+aUwR17e8fi4xS//7eE77ghHV3Jzi19btLqu7jxMoOv6mjXb8/NLEhJn+fl5oRO7Xc9I35aWtlXXDZigvr7pxRfenzbNOvupKb16uaCTmpqGhQszCvJLYY68vOPxcYtf/tvDd9wRjq7k5ha/tmh1Xd15mEDX9TVrtufnlyQkzvLz80Indruekb4tLW2rrhsgIvrZk3EtDMPIytrt5+81fbqKThIT0gsLy2CmxsaWeXM/2LgpycfHHR2dO9f4/HPvGYYBMx0+XL5o4eqU955FJ5s2fZmamg0zGYaRlbXbz99r+nQVnSQmpBcWlsFMjY0t8+Z+sHFTko+POzo6d67x+efeMwwDZjp8uHzRwtUp7z2LTjZt+jI1NRtERDcJGddu7G2j0ZWxY0cVFpbBZMNC/Xx83NGJj4/7sGFDysrOwmRjx41GV8aNuwVCjL1tNLoyduyowsIymGxYqJ+Pjzs68fFxHzZsSFnZWZhs7LjR6Mq4cbfg2gVN/z2IiG4EGdcoJGRIcMhgdEXVoleuzIbJVDUK3VA1pazsLEymqgq6EhTkGxIypLy8CmYKCRkSHDIYXVG16JUrs2EyVY1CN1RNKSs7C5OpqoKuBAX5hoQMKS+vwrVQ/vEqiIhuBBnXSIuJxmU5OblrVm+fO+/B8PAQAMOGDQkOHlxRUQ0zaVo0HFpaWt9cntXWbps79wE3t/4ANFX5MHUrzBQY6Dts2BA4HDt26o3X19x332+mTrNaLBYAmqakpVXBTFpMNC7Lyclds3r73HkPhoeHABg2bEhw8OCKimqYSdOi4dDS0vrm8qy2dtvcuQ+4ufUHoKnKh6lbYabAQN9hw4bA4dixU2+8vua++34zdZrVYrEA0DQlLa0KREQ3AxnXSNMUAC3NF5cuXb9jxyEAT//lnVmz7o6Lj5Uki6opGenbYJrAQN/QUD8ARUWVSYnpp0/XAjhaVJmQOCsyMjR0uH9w8OCKimqY5s47bwVgGMbGDXtSUrbYbJeSkzcdzDs+b96D7u4DVE1JS8uBmTRNAdDSfHHp0vU7dhwC8PRf3pk16+64+FhJsqiakpG+DaYJDPQNDfUDUFRUmZSYfvp0LYCjRZUJibMiI0NDh/sHBw+uqKiGae6881YAhmFs3LAnJWWLzXYpOXnTwbzj8+Y96O4+QNWUtLQcEBHdDGRcC39/r+HD/Q8fLk9KzDh79gc4XLpkT03N/u67sldenampSkb6NphGi1EMw9i4YU9KymabzQ6H6ur6Z55+Ny4uNi7+bqs1atWqz2EaVVMaGprfeOOjfV8fxmV7vyx8tPhkwoJZSvTwgADvU6dqYQ5/f6/hw/0PHy5PSsw4e/YHOFy6ZE9Nzf7uu7JXXp2pqUpG+jaYRotRDMPYuGFPSspmm80Oh+rq+meefjcuLjYu/m6rNWrVqs9hGlVTGhqa33jjo31fH8Zle78sfLT4ZMKCWUr08IAA71OnakFE9LMn41qoqvJh6ta0tBxd19HRgQPFj8Yvmf/yQ0OHep8+XQvnSJKk6zqcFhUV+uIL7+/fX4SO7HY9NTU7P79k+gwN10KSJF3X4Rw/P6/zjS0vvfh+bW0jOjpX0zBnzrtTp1rvGB+RuX4XnCNJFgC6bsA5qqp8mLo1LS1H13V0dOBA8aPxS+a//NDQod6nT9fCOZIk6boOp0VFhb74wvv79xehI7tdT03Nzs8vmT5Dw7WQJEnXdTjHz8/rfGPLSy++X1vbiI7O1TTMmfPu1KnWO8ZHZK7fBSKinz0Z1yInJ7eurgndqK9vmjf3fwYOHACn/eGBmHVrvzAMA06QJOm1RasbG1vQjby846WlZyRJ0nUdTrBYLNNnqOvX7YRzLl5se+65FF030BVdN7Kydnt6usFp4eHDDBjfF56Ac3JycuvqmtCN+vqmeXP/Z+DAAXDaHx6IWbf2C8Mw4ARJkl5btLqxsQXdyMs7Xlp6RpIkXdfhBIvFMn2Gun7dTjjn4sW2555L0XUDXdF1Iytrt6enG4iIbgYyrkVdXROuSteNhoZmOMdisUydOvG7gtLDh8vhBF3XGxtbcFWNjS1wWnh48B9maJnrdxmGASc0NDTjx9TVNcFpmqYYhvF94Qk4p66uCVel60ZDQzOcY7FYpk6d+F1B6eHD5XCCruuNjS24qsbGFjgtPDz4DzO0zPW7DMOAExoamvFj6uqaQER0M5Bx44y+JWjw4EGqphw+XI4bQdWifXw9Ro8OLCqqxI0w0RppgeWf/9xsGAaEG31L0ODBg1RNOXy4HDeCqkX7+HqMHh1YVFQJIqJfGBk3jqYqAGK06PdSthiGAeGs1igAqqYUFVVCuNGjg/z8vACMHBlQXHwSwmmqAiBGi34vZYthGBDOao0CoGpKUVEliIh+YWTcOFZVATDEzzNsxNDjx05BrJEjA/z9vQDExNz6r/c+hnCqpsBB1ZTi4pMQzqoqAIb4eYaNGHr82CmINXJkgL+/F4CYmFv/9d7HICL6hZFxg4wYMTQgwBsOmqocP3YKYmlaNBz8/b3CwoaWlJyGWFZrFBxiYqL/5/1PINaIEUMDArzhoKnK8WOnIJamRcPB398rLGxoSclpEBH9ksgwmSRJAwb0RSd33jUGl6masm7dTnTS3m5ra7OhZ/r06dW7dy90YlWjcNldk8ZUV9ejk5aWVl3X0TMDBvSVJAkdBQX5BgX5wiEgwCc8PKSysgYd6bre0tKKnpEkacCAvujkzrvG4DJVU9at24lO2tttbW029EyfPr169+6FTqxqFC67a9KY6up6dNLS0qrrOoiI/hPJMJlhGL/97W2zn5rSq5cLuhEcPPiz7L+jo9zc4tcWrW5rs6Fn+vbtPf/lh8aPj0D3Zs6cNHPmJFzBbtcz0relpW1FjwUHD05IjPP390L3/vX+/0NHNTUNCxdmFOSXomcMw/jtb2+b/dSUXr1c0I3g4MGfZf8dHeXmFr+2aHVbmw0907dv7/kvPzR+fAS6N3PmpJkzJ+EKdruekb4tLW0riIj+Q8kwmWEYWVm7CwtPJCTGBQR4wwk226WVK7LXrt2h6wZ6rLGxZf68FZMn3z7n2fv79OkFJ1RV1SUlZXxfeALXw5EjFY89tvTFF2bcNWkMnLNnz3eL/7H2/PkL6DHDMLKydhcWnkhIjAsI8IYTbLZLK1dkr127Q9cN9FhjY8v8eSsmT759zrP39+nTC06oqqpLSsr4vvAEiIj+c8kQ4ujRyj8+tuT552fcHftrXFVlZU1iYvrxY6dw/RiGsWXL14WFZYlJ8aGhfriqXTvzFy9e19x8EddPS/PFxMT0b7458vwLM/r27Y3utbfb/vXex1lZu3FdHT1a+cfHljz//Iy7Y3+Nq6qsrElMTD9+7BSuH8Mwtmz5urCwLDEpPjTUD1e1a2f+4sXrmpsvgojoP5oMUS5caFu0aFVu7tHnnp/er18fdCUnJ3f5sqyLF9tgghMnqv78+PInn5w8bbqKrrS12d7/18dZWbthjq1bc4uKKhOT4sLChqIr5eVViQnppaVnYIILF9oWLVqVm3v0ueen9+vXB13Jycldvizr4sU2mODEiao/P778yScnT5uuoittbbb3//VxVtZuEBH9AsgQa+vW3Nra82+9/RQ62bz5q2VLM2GmtjZbcvKmXr3lKVPGo5N5cz84cKAYZqqoqH7yibfWrX/V29sdHdXWNv7pj8va2mww09atubW15996+yl0snnzV8uWZsJMbW225ORNvXrLU6aMRyfz5n5w4EAxiIh+GWQIN3JUALoycmQghBg1KhBdGTEy4MCBYphskKebl9dAdOLt7e7lNfDMmR9gspGjAtCVkSMDIcSoUYHoyoiRAQcOFIOI6JdBhnCaqqAro0cHDhniWVVVBzP5+nqMGhWIrmiasvajHTBZjBZtsVjQFas1at26nTCZpiroyujRgUOGeFZV1cFMvr4eo0YFoiuapqz9aAeIiH4ZZIjl4+sx+pYgONTWNr6TvGny7++47bZRACwWi9UalZm5C2bStGiLxQKH3Nzij7d8PefZ+7293QHcckuQj6/HuZoGmMmqKnCw2/W0tBwA8fGxLi4SAFWLXrduJ8zk4+sx+pYgONTWNr6TvGny7++47bZRACwWi9UalZm5C2bStGiLxQKH3Nzij7d8PefZ+7293QHcckuQj6/HuZoGEBH9AsgQS1MVi8UC4Ntvj77+2pq6uvO7dhVMm2ad/dSUXr1cVE3JzNwFM2kxCgC7Xc9I35aWtlXXjby84/Nffmj8+AiLxaKqyoas3TCNj497eHgwgJqahoVJGQUFpQD27y9KTIzz9/cKDw/29fWoqWmAaTRVsVgsAL799ujrr62pqzu/a1fBtGnW2U9N6dXLRdWUzMxdMJMWowCw2/WM9G1paVt13cjLOz7/5YfGj4+wWCyqqmzI2g0iol8AGWKpmmKzXVq5Invt2h26bgAwDCMra3dh4YmExLiIiGHe3u61tY0wh6fnwPDwYVVVdUlJGd8XnoBDY2PL/HkrJk++/Zk5/6Wpyoas3TCNVVUsFsuePd8t/sfa8+cvwKHoSMVjjy554cUZkyb9auLEyI0bv4RpVE2x2S6tXJG9du0OXTcAGIaRlbW7sPBEQmJcRMQwb2/32tpGmMPTc2B4+LCqqrqkpIzvC0/AobGxZf68FZMn3/7MnP/SVGVD1m4QEf0CyBDI09PN3X3AE0+8dfzYKXR09GjlHx9b8vzzMyZOjPz3v/fCHJqm7NldsHjxuubmi7iCYRhbtnxdWFi2IGGWl9fAH344D3PccXv4O8mbsrJ2o6OWltakxIz93xTdeeetGzd+CXN4erq5uw944om3jh87hY6OHq3842NLnn9+xsSJkf/+916YQ9OUPbsLFi9e19x8EVcwDGPLlq8LC8sWJMzy8hr4ww/nQUT0n05Gz9wd++ttOQfgnN69ez3+p+Wtre3oyoULbYsWrQoJGQKnhYUNNQyjtPQMnJOXd3zTpi/RjRMnqmY/+baHhyuc9rvfjc3O/hbOkSQpOXljZWUNurF1a+6RIxWSJOm6DufcHfvrbTkH4JzevXs9/qflra3t6MqFC22LFq0KCRkCp4WFDTUMo7T0DJyTl3d806Yv0Y0TJ6pmP/m2h4crnPa7343Nzv4WREQ3IRk9EDrcPy4udlvOATinqqoOP6a8vApOUzUFhlFaegbOKS+vwlW1trZXVdXBaQ8/PKm4+GRZ2Vk4Qdf1ysoaXFVlZQ2cFjrcPy4udlvOATinqqoOP6a8vApOUzUFhlFaegbOKS+vwlW1trZXVdXBaQ8/PKm4+GRZ2VkQEd1sZPSApipBQb7BIYMryqtxI2iaYhhYuTIbN0JIyJDgkMGqppSVncWNoKlKUJBvcMjgivJq3AiaphgGVq7Mxo0QEjIkOGSwqillZWfxU5V+sApERDeCjB5QNQWApkanl+dAuMBA35CQIQCCgwdXVFRDOE1TAGiq8mHqVtwIqqYA0NTo9PIcCBcY6BsSMgRAcPDgiopqCKdpCgBNVT5M3Yqf6sg/3gER0Y0g46cKCPAJDfUDoGpKenoOhIu5MxoOVjVqVcbnEE7VFAChw/2DgnwrK2sgVkCAT2ioHwBVU9LTcyBczJ3RcLCqUasyPodwqqYACB3uHxTkW1lZAyKim4qMnyomJhoOI0YMDQjwPnWqFmJpqgIHTYtelfE5xPL39woLGwoHqzVq9ertECsmJhoOI0YMDQjwPnWqFmJpqgIHTYtelfE5xPL39woLGwoHqzVq9ertICK6qcj4qVRNwWVWVflozQ4I5OfnNWJkABxGjgwYOtT79OlaCBQTcysuUzVl9ertEEvVFFxmVZWP1uyAQH5+XiNGBsBh5MiAoUO9T5+uhUAxMbfiMlVTVq/eDiKim4qMHzNokNuLL/1h+HB/dOTn54nL4uNjp0wZj44++WTfmtXbdd1Az0RHhz371/v79++LK/Tt2xtXSHnvr62t7bjChQutyW9vys8vQc9IkuXhmZPuu+92dDRokCsuGzUqcH3mAnRUWnpm6ZL19fVN6JlBg9xefOkPw4f7oyM/P09cFh8fO2XKeHT0ySf71qzerusGeiY6OuzZv97fv39fXKFv3964Qsp7f21tbccVLlxoTX57U35+CXpGkiwPz5x03323o6NBg1xx2ahRgeszF6Cj0tIzS5esr69vAhHRz5KMH1Nf35SYkD579uSp06wWiwVd6devT79+fXBZS0vr8mWZn39+ENdDfn7J/PkrEhLiIiJC0A1PTzdcobj4ZGJC+qlT59Bjum6syvi8sqJm7rwH3Nz6oysWi8Xf3wtXyMnJXbY0s7W1HT1WX9+UmJA+e/bkqdOsFosFXenXr0+/fn1wWUtL6/JlmZ9/fhDXQ35+yfz5KxIS4iIiQtANT083XKG4+GRiQvqpU+fQY7purMr4vLKiZu68B9zc+qMrFovF398LV8jJyV22NLO1tR1ERD9XMpzQ3m5LTt508OCxefMfcncfgKsqOlKRlJRx+nQtrp+qs3VP/yU5Li42Lj5WkizonmEYGzfsSUnZbLPZcf3s3l1w9GjlgoRZUVGhuKrm5otLl6z/4otDuH7a223JyZsOHjw2b/5D7u4DcFVFRyqSkjJOn67F9VN1tu7pvyTHxcXGxcdKkgXdMwxj44Y9KSmbbTY7rp/duwuOHq1ckDArKioUV9XcfHHpkvVffHEIREQ/bzKctnfv97Me+fvfXpk5duxodMUwjI0b9vzzn5svXbLjerPb9dTU7IKC0lcXPOLlNRBdaWhofuP1Nfv2HYEJqqvr5zzzblxcbFz83ZIkoSuHDpUsWrTqXE0DTLB37/ezHvn7316ZOXbsaHTFMIyNG/b885+bL12y43qz2/XU1OyCgtJXFzzi5TUQXWloaH7j9TX79h2BCaqr6+c8825cXGxc/N2SJKErhw6VLFq06lxNA4iIfvZkXIu6uqYXX3h/wYJH7po0Bp0kLEjbuTMfZjp48Nhjjy75MO0lT8+B6Kiu7vyj8Uvq6ppgGrtdT03NPnHi7MJFj6KTHdvzFi5cpes6TFNX1/TiC+8vWPDIXZPGoJOEBWk7d+bDTAcPHnvs0SUfpr3k6TkQHdXVnX80fkldXRNMY7frqanZJ06cXbjoUXSyY3vewoWrdF0HEdHNQMY10nXd02sguuLu4QohPDxc0YmHh5vFYoH5PDxc0ZVBnm66rsNkuq57eg1EV9w9XCGEh4crOvHwcLNYLDCfh4crujLI003XdRAR3SRkXCN39wFRUaHoiqYq//vvvTCZ1RolSRI6kSTLhAmRmzd/BZNpmoKuREcPHzTIrb6+CWZydx8QFRWKrmiq8r//3guTWa1RkiShE0myTJgQuXnzVzCZpinoSnT08EGD3Orrm0BEdDOQcY0mWqNcXCQ4VJRX5+Tkzoq7u2/f3gCibw1zdx/Q2NgCM1lVBZfl5OQCiI29DQ6qpmze/BXM5O4+QIkOg0Nra3tG+rbY2NuCQwYDkCRp/ISITz7eBzNNtEa5uEhwqCivzsnJnRV3d9++vQFE3xrm7j6gsbEFZrKqCi7LyckFEBt7GxxUTdm8+SuYyd19gBIdBofW1vaM9G2xsbcFhwwGIEnS+AkRn3y8D0RENwMZ1yhGi4ZDTk7usqWZra3te/Z8l5AYN2LEUBcXacKEyE8//QamcXcfMGbMCAAXLrS9uTwrJycXwFd7v39p7gOurv3GjBnh7j6gsbEFppk4MdLFRQJQXl6VkJBeVnomM3PXk09OnjZdBaBpyicf74OZYrRoOOTk5C5bmtna2r5nz3cJiXEjRgx1cZEmTIj89NNvYBp39wFjxowAcOFC25vLs3JycgF8tff7l+Y+4Orab8yYEe7uAxobW2CaiRMjXVwkAOXlVQkJ6WWlZzIzdz355ORp01UAmqZ88vE+EBHdDGRcC1fXfreOGdHS0rpsaeb27QfhUFFR/cSf33zqqd9PnWZVNeXTT7+BacZPiHBxkYqLTyYmpJ86dQ4OO3fmFx2tTEiIi4gIuWN8RPZn+2EaVVMA5OTkLlua2draDqCtzZacvCk/v/SluQ/86lcj3dz6NzVdgDlcXfvdOmZES0vrsqWZ27cfhENFRfUTf37zqad+P3WaVdWUTz/9BqYZPyHCxUUqLj6ZmJB+6tQ5OOzcmV90tDIhIS4iIuSO8RHZn+2HaVRNAZCTk7tsaWZrazuAtjZbcvKm/PzSl+Y+8KtfjXRz69/UdAFERD97Mq7FxImRJcdPJSVlnD5diyvYbJeSkzft23dk7rwH3dz6NzVdgDlUVdmQtTslZbPNZscVqs7WPf2X5Li4WKs1Kvuz/TCHq2u/sLCh8+d9sHfv9+ho9+6Co0crFyTMGj8+fOvWXJhj4sTIkuOnkpIyTp+uxRVstkvJyZv27Tsyd96Dbm79m5ouwByqqmzI2p2Sstlms+MKVWfrnv5LclxcrNUalf3ZfpjD1bVfWNjQ+fM+2Lv3e3S0e3fB0aOVCxJmjR8fvnVrLoiIfvZkXIszZ3+YPfttu11HV7799uiTT7w5aJBrU9MFmECSpLUffZGfX4Ku2O16amp2dHSYJEm6rsMEnp5uf358+blzjehKdXX9nGfejYgcBtOcOfvD7Nlv2+06uvLtt0effOLNQYNcm5ouwASSJK396Iv8/BJ0xW7XU1Ozo6PDJEnSdR0m8PR0+/Pjy8+da0RXqqvr5zzzbkTkMBAR3QxkXIuC/FJc1blzjTCNruv5+SW4qvz8EpimsrIGV2W36wX5pTBNQX4prurcuUaYRtf1/PwSXFV+fglMU1lZg6uy2/WC/FIQEd0MZBAREZFwMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuHkGb8KANEv1f+JmAMiohtBfib5RRAREZFYMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuFkEBERkXAyiIiISDgZREREJJwMIiIiEk4GERERCSeDiIiIhJNBREREwskgIiIi4WQQERGRcDKIiIhIOBlEREQknAwiIiISTgYREREJJ4OIiIiEk0FERETCySAiIiLhZBAREZFwcsG8RSAiIiKx5MqsLSAiIiKxZBAREZFwMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuFkEBERkXAyiIiISDgZREREJJwMIiIiEk4GERERCSeDiIiIhJNBREREwskgIiIi4WQQERGRcDKIiIhIOBlEREQknAwiIiISTgYREREJJ4OIiIiEk0FERETCySAiIiLh5NveXw4iIiISSx4yyQoiIiISSwYREREJJ4OIiIiEk0FERETCySAiIiLhZBAREZFwMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuFkEBERkXAyiIiISDgZREREJJwMIiIiEk4GERERCSeDiIiIhJNBREREwskgIiIi4WQQERGRcDKIiIhIOBlEREQknAwiIiISTv5qxp9AREREYsl1BwtAREREYskgIiIi4WQQERGRcDKIiIhIOBlEREQknAwiIiISTgYREREJJ4OIiIiEk0FERETCySAiIiLhZBAREZFwMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuFkEBERkXAyiIiISDgZREREJJwMIiIiEk4GERERCSeDiIiIhJNBREREwskxn28AERERiSW7hgaDiIiIxJJBREREwskgIiIi4WQQERGRcDKIiIhIOBlEREQknAwiIiISTgYREREJJ4OIiIiEk0FERETCySAiIiLhZBAREZFwMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuFkEBERkXAyiIiISDgZREREJJwMIiIiEk4GERERCSeDiIiIhJNzfv1/QURERGLJ7fUNICIiIrFkEBERkXAyiIiISDgZ7gVQogAAAIZJREFUREREJJwMIiIiEk4GERERCSeDiIiIhJNBREREwskgIiIi4WQQERGRcDKIiIhIOBlEREQknAwiIiISTgYREREJJ4OIiIiEk0FERETCySAiIiLhZBAREZFwMoiIiEg4GURERCScDCIiIhJOBhEREQkng4iIiISTQURERMLJICIiIuH+PwpfJMB0z4VvAAAAAElFTkSuQmCC", + "text/plain": [ + "337×640 Array{RGB{N0f8},2} with eltype RGB{N0f8}:\n", + " RGB{N0f8}(0.235,0.231,0.431) … RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) … RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) … RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.235,0.231,0.431) RGB{N0f8}(0.698,0.133,0.204)\n", + " ⋮ ⋱ \n", + " RGB{N0f8}(0.698,0.133,0.204) … RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) … RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) … RGB{N0f8}(0.698,0.133,0.204)\n", + " RGB{N0f8}(0.698,0.133,0.204) RGB{N0f8}(0.698,0.133,0.204)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pics = Dict{String,Array}()\n", + "pics[\"Ukraine\"] = load(download(\"https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Flag_of_Ukraine.svg/640px-Flag_of_Ukraine.svg.png\"))\n", + "pics[\"USA\"] = load(download(\"https://upload.wikimedia.org/wikipedia/en/thumb/a/a4/Flag_of_the_United_States.svg/640px-Flag_of_the_United_States.svg.png\"))\n", + "# pics[\"Klingon\"] = load(download(\"https://images-na.ssl-images-amazon.com/images/I/51ibu5dAb9L._SY550_.jpg\"))\n", + "display(pics[\"Ukraine\"])\n", + "display(pics[\"USA\"])\n", + "# display(pics[\"Klingon\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2NklEQVR4nOy9e7xlRXUn/l2r9t7n3G4a5NkNgrzERAGNj4T4iKAgSDQOQcXEjGKiie8MQaND/PnAODBios7EaOIEQSWK0ZHE16gYkcSABkmMwRijGTQ60iEh2G03956zq2r9/qjn3mefc+9FoG9Lffkc+p596vGtVfuctXbVWqtIRAQFBQUFBQUFBRsIvKcJFBQUFBQUFBT0UQyUgoKCgoKCgg2HYqAUFBQUFBQUbDgUA6WgoKCgoKBgw6EYKAUFBQUFBQUbDsVAKSgoKCgoKNhwKAZKQUFBQUFBwYZDMVAKCgoKCgoKNhyKgVJQUFBQUFCw4VAMlIIfaRx11FF48pOffKfrf+xjH8Ozn/1snHjiiajrGkR0F7L70cDrXve6PSaXf/iHf8DrXvc6fOtb35r57DnPeQ6OOuqoe5zTevAf//Ef+IVf+AUccsghICKcddZZc8suupe/9KUvgYhw+eWXd65/6lOfwumnn47DDjsMo9EIhx12GE455RT89//+3+f2c/bZZ4OI8JKXvGRdY/nWt76FJz3pSTjggANARDjvvPPwrW99a5BXQcFaUAyUgoIFuOqqq/CFL3wBD3rQg/CQhzxkT9PZkHje856H66+/fo/0/Q//8A+48MILBw2UV7/61bjqqqvueVLrwG//9m/jqquuwlve8hZcf/31uOSSS+6ytv/gD/4AT3ziE7HvvvvibW97Gz71qU/hjW98Ix74wAfiQx/60GCdW2+9FR/72McAAH/8x3+MlZWVNff3G7/xG/jiF7+Id73rXbj++uvxG7/xG3fJOAruvaj2NIGCgjvuuAObNm3a0zQG8b/+1/8Cs7PjX/KSl+DGG2/cw4x+ONwdsj788MNx+OGH36Vt3hU49thj9zSFVXHTTTfh2GOPxS/90i/d5W1ffPHFeOxjHztjjDzrWc+CtXawznve8x60bYsnPelJ+PjHP44Pf/jDeOYzn7mm/m666Sb81E/9VGcVaMhwLChYK8oKSsE9irAd8Dd/8zd42tOehv333z8qki996Uv4hV/4BRx11FFYWlrCUUcdhV/8xV/Et7/97U4bl19+OYgI11xzDV74whfioIMOwoEHHoizzz4b3/ve91bl8Pa3vx1VVeG1r33tqmWDcXJnceGFF+Kkk07CAQccgH333RcPe9jDcOmll6J/RmdYvr/qqqvw4Ac/GOPxGMcccwz+5//8n51yn/vc50BEuOKKK3D++edj27ZtWFpawsknn4y//du/7ZR9znOeg3322Qd///d/j9NPPx1btmzBqaeeCsBtLbzoRS/Cfe97XzRNg2OOOQavetWrMJlMAAArKyt46EMfivvf//7YsWNHbHP79u3Ytm0bTjnlFBhjAAxv8YTxfOxjH8NDH/pQLC0t4YEPfGB8Or/88svxwAc+EJs3b8ZP/dRP4Utf+lKn/lruhcsvvxxPf/rTAQCPe9zjQESd7YShLZ6VlRVccMEFOProo9E0De573/vixS9+Mb7//e8P8v/kJz+Jhz3sYVhaWsKP//iP413vetfsJA9gNfmGrY/PfOYz+NrXvha5f+5zn1tT+2vBbbfdhkMPPXTws3n39bve9S5s3boV7373u7G0tLSm8YZ78pvf/Cb+z//5P3Es84yTb37zm/jlX/5lHHfccdi0aRPue9/74ud+7ufw93//9zNlv/rVr+L000/Hpk2bcPDBB+PFL34xPv7xj9/lsirYoJCCgnsQr33tawWAHHnkkfLKV75Srr76avnTP/1TERH54Ac/KK95zWvkqquukmuvvVauvPJKOfnkk+Xggw+Wf/u3f4ttXHbZZQJAjjnmGHnpS18qn/rUp+SP/uiPZP/995fHPe5xnf6OPPJIedKTniQiItZaednLXiZ1Xctll122bu4vfvGLZb1fmec85zly6aWXytVXXy1XX321/PZv/7YsLS3JhRdeOMPzvve9r9zvfveTd73rXfKJT3xCfumXfkkAyJve9KZY7pprrhEAcsQRR8h/+k//ST760Y/KFVdcIfe///1l3333lX/+53+OZc8991yp61qOOuooufjii+XP//zP5VOf+pQsLy/Lgx/8YNm8ebP8zu/8jnz605+WV7/61VJVlfzsz/5srP9P//RPsmXLFjn77LNFRMQYI49//OPlkEMOke9973uxXJjT/ngOP/xwOeGEE+T973+/fOITn5CTTjpJ6rqW17zmNfLoRz9aPvzhD8tVV10lD3jAA2Tr1q1yxx13xPpruRduvfVWueiiiwSA/P7v/75cf/31cv3118utt94ax3/kkUfGNq21csYZZ0hVVfLqV79aPv3pT8vv/M7vyObNm+WhD32orKyszPB/0IMeJO95z3vkU5/6lDz96U8XAHLttdcunPO1yHdlZUWuv/56eehDHyrHHHNM5L5jx4657eb3ch833HCDAOjc16eddppUVSWvfe1r5ctf/rJorRfy/qu/+isBIL/5m78pIiL/+T//ZyEi+b//9/8urLdjxw65/vrrZdu2bfLoRz86jmVlZUVuvvnmGV7XXnutvOxlL5MPfehDcu2118pVV10lZ511liwtLck//uM/xnLf+9735MADD5T73e9+cvnll8snPvEJedazniVHHXWUAJBrrrlmIa+CvR/FQCm4RxGU2Wte85pVy2qtZdeuXbJ582b5H//jf8TrwUB50Yte1Cl/ySWXCAC55ZZb4rXwo37HHXfIU5/6VNlvv/3kM5/5zJ3ifmcMlBzGGGnbVl7/+tfLgQceKNbaDk8iki9/+cudOk94whNk3333ld27d4tIMlAe9rCHdep/61vfkrqu5XnPe168du655woAede73tVp8w/+4A8EgPzJn/xJ5/ob3/hGASCf/vSn47UPfOADAkDe+ta3ymte8xph5s7nIvMNlKWlJfnud78br335y18WAHLooYfG8YiI/Omf/qkAkI985CNzZTfvXvjgBz84V1n1DZRPfvKTAkAuueSSTrkwxne+850d/uPxWL797W/Ha8vLy3LAAQfI85///Lk8RdYn35NPPlmOP/74he3lnNZjoHzzm9+UE044QQAIAFlaWpJTTz1V3va2t8l0Op1p41d+5VcEgHzta18TkXSvvfrVr77T/IYMlD601jKdTuW4446T3/iN34jXf/M3f1OISL761a92yp9xxhnFQLmXoGzxFOwRPPWpT525tmvXLrzyla/E/e9/f1RVhaqqsM8++2D37t342te+NlP+KU95Suf9gx/8YACY2RK67bbb8PjHPx5//dd/jc9//vNxmyPAGAOtdXzN25+/M/jsZz+L0047Dfvttx+UUqjrGq95zWtw22234dZbb+2UPf7442cccZ/5zGdi586d+Ju/+ZuZ6/m2ypFHHolHPepRuOaaa2Y49GX92c9+Fps3b8bTnva0zvXnPOc5AIA///M/j9fOOeccvPCFL8Rv/uZv4g1veAN+67d+C094whPWNPaf+ImfwH3ve9/4/oEPfCAA4JRTTun4wYTr+byt915YCz772c92xhnw9Kc/HZs3b+6MO/C/3/3uF9+Px2M84AEPmLm/hvpZq3zvThx77LH4u7/7O1x77bW48MILcdppp+GGG27AS17yEjzykY/sOMDu2rULf/Inf4JHPepR+PEf/3EAwMknn4xjjz0Wl19++V36ndBa46KLLsKDHvQgNE2DqqrQNA2+8Y1vdOb22muvxQknnIAHPehBnfq/+Iu/eJdxKdjYKAZKwR7B0N74M5/5TLztbW/D8573PHzqU5/CX//1X+OGG27AwQcfjOXl5ZnyBx54YOf9aDQCgJmy//RP/4QvfvGLOPPMM3HCCSfMtHPqqaeiruv4+pVf+ZUfZmgRf/3Xf43TTz8dgHO2/au/+ivccMMNeNWrXjXIc9u2bTNthGu33Xbbmsr2y23atAn77rtv59ptt92Gbdu2zfiNHHLIIaiqaqaNX/mVX0HbtqiqCr/+678+d7x9HHDAAZ33TdMsvJ4rzPXeC2vBbbfdhqqqcPDBB3euE9Gg7Pr3F+DusdX6X69814qqqqLfTx9aawBAXded68yMxz72sXjNa16Dj3zkI/je976HZzzjGbjxxhs7/iUf+MAHsGvXLpxzzjn4/ve/j+9///vYsWMHzjnnHHznO9/B1Vdffac4D+H888/Hq1/9apx11ln46Ec/ii9+8Yu44YYb8JCHPKQj29tuuw1bt26dqT90reBHEyWKp2CPoP/jvWPHDnzsYx/Da1/7WvzX//pf4/XJZIL/+I//+KH6euQjH4mnP/3peO5znwsAeMc73tFxEvzDP/xD/OAHP4jvDzrooB+qv4Arr7wSdV3jYx/7GMbjcbz+p3/6p4Plt2/fPvdaX1nOK9svN5Sf5MADD8QXv/hFiEjn81tvvRVa6874d+/ejWc961l4wAMegH/913/F8573PPzZn/3ZIP+7CnfXvXDggQdCa41/+7d/6xgpIoLt27fjJ3/yJ38o3nk/a5XverB161b8v//3/wY/C9dXU96bN2/GBRdcgA984AO46aab4vVLL70UAHDeeefhvPPOm6l36aWX4owzzrhTvPu44oor8OxnPxsXXXRR5/q///u/4z73uU98f+CBB+Jf//VfZ+oP3fsFP5ooKygFGwJEBBGJqyABf/RHfzT3qXE9OPfcc3HllVfisssuw7Of/exOmz/2Yz+GRzziEfF1VyX3IiJUVQWlVLy2vLyM9773vYPlv/rVr+Lv/u7vOtfe9773YcuWLXjYwx7Wuf7+97+/Ewn07W9/G9dddx1OOeWUVXmdeuqp2LVr14yh9J73vCd+HvCCF7wA//Iv/4IPf/jDuPTSS/GRj3wEb3nLW1bt44fBeu6FeatmQwjjuuKKKzrX//f//t/YvXv3zNbfncV65LsenHbaabjpppvwD//wDzOf/cmf/An22WcfnHTSSfHaLbfcMthO2EY57LDD4vvrr78eT33qU3HNNdfMvE499VT82Z/92Z1e+emDiGbm9uMf//iM8XXyyScPjvfKK6+8S3gUbHyUFZSCDYF9990Xj33sY/GmN70JBx10EI466ihce+21uPTSSztPVT8Mnva0p2HTpk142tOehuXlZbz//e+P2wvz8O1vfxs33HADAOCf//mfASDmlTjqqKPwiEc8Ym7dJz3pSXjzm9+MZz7zmfi1X/s13Hbbbfid3/mdmR/ngMMOOwxPecpT8LrXvQ6HHnoorrjiClx99dV44xvfOJO75NZbb8XP//zP41d/9VexY8cOvPa1r8V4PMYFF1ywqhye/exn4/d///dx7rnn4lvf+hZOPPFEfP7zn8dFF12En/3Zn8Vpp50GwBkEV1xxBS677DIcf/zxOP744/GSl7wEr3zlK/HoRz8aP/VTP7VqX3cG67kXwpbdO9/5TmzZsgXj8RhHH3304PbME57wBJxxxhl45StfiZ07d+LRj340vvKVr+C1r30tHvrQh+JZz3rWXcJ/rfJdL/7Lf/kveM973oNTTjkFv/Vbv4UTTzwRt99+Oz7wgQ/gQx/6EN785jdjy5Ytsfzxxx+PU089FWeeeSaOPfZYrKys4Itf/CJ+93d/F1u3bo0rimH15BWveMXgnP7gBz/An//5n+OKK67Af/kv/+VOcc/x5Cc/GZdffjl+/Md/HA9+8INx44034k1vetNMLp3zzjsP73rXu3DmmWfi9a9/PbZu3Yr3ve99+Md//EcAP3wKgIK9AHvSQ7fg3ocQ8ZGHDQd897vflac+9amy//77y5YtW+SJT3yi3HTTTXLkkUfKueeeG8uFKJ4bbrihUz9EHeTe/UORBddcc43ss88+8sQnPrET2jqE0NfQK+c0D+9617vkx37sx2Q0GskxxxwjF198sVx66aUCQG6++eYZnh/60Ifk+OOPl6Zp5KijjpI3v/nNg2N873vfK7/+678uBx98sIxGI/mZn/kZ+dKXvtQpe+6558rmzZsHed12223yghe8QA499FCpqkqOPPJIueCCC2Ko7Ve+8hVZWlqaGePKyoo8/OEPl6OOOkpuv/12EZkfxTMUcQJAXvziF3euhUiPPJx6rfeCiMhb3/pWOfroo0Up1YkY6UfxiLhInFe+8pVy5JFHSl3Xcuihh8oLX/jCOJbV+J988sly8sknz1zvYzX55u2tNYpHRGT79u3ywhe+UO53v/tJVVWyZcsWecxjHiMf/OAHZ8r+4R/+oZx99tlyzDHHyKZNm6RpGjn22GPlBS94gXznO98REZHpdCqHHHKI/MRP/MTcPrXWcvjhh8uJJ564kNtao3huv/12ee5znyuHHHKIbNq0SR7zmMfIX/7lXw7K9qabbpLTTjtNxuOxHHDAAfLc5z5X3v3udwsA+bu/+7tVpFWwt4NEehmjCgoK7nEcddRROOGEE2Iis3n43Oc+h8c97nH44Ac/OBMlUlBwb8Cv/dqv4f3vfz9uu+22VVdAC/ZulC2egoKCgoINide//vU47LDDcMwxx2DXrl342Mc+hj/6oz/C//f//X/FOLkXoBgoBQUFBQUbEnVd401vehO++93vQmuN4447Dm9+85vvEl+Ygo2PssVTUFBQUFBQsOGwR92g3/72t+Poo4/GeDzGwx/+cPzlX/7lnqRTUFBQUFBQsEGwxwyUD3zgAzjvvPPwqle9Cn/7t3+Ln/mZn8GZZ56Jf/mXf9lTlAoKCgoKCgo2CPbYFs9JJ52Ehz3sYXjHO94Rrz3wgQ/EWWedhYsvvnhPUCooKCgoKCjYINgjTrLT6RQ33nhjJ401AJx++um47rrrZspPJhNMJpP43lqL//iP/8CBBx44mMq7oKCgoKCgYONBRPCDH/wAhx122KrJ9vaIgfLv//7vMMbMnBuxdevWwXMWLr74Ylx44YX3FL2CgoKCgoKCuxHf+c53ZrIH97FHw4z7qx/SO1wr4IILLsD5558f3+/YsQP3u9/98Iv3/Sk0PH8IRACDwESoiNEwg0BQcO+1WBgIBIKptdBiYUVgIQgbX0QEBqCIUTFDEYF8fQDQYiEQWBG0YmGshQCwvgEigDyHmhg1M9hzUESwItCeQ2st2gUcmAg1q/kcAGhroK1ETh0OIFRMaFg5ucBxMmKh4cpOrck4IJ73knOoWKEiBnm5sOdgF3GIbcxyqIhgBdBu1NAiaK2BWZUDAb4+gyIHAVJ9SRzg60YOpPx7oCKGCNDCHSvfip3DwclSEUExoyZ2HPwcdzlYGC9LyeYzcujMJ1ATu3pi47xOPYf8nlqE+42XcGBTr1quoKCgYE9gxWj813/8TOdYhnnYIwbKQQcdBKXUzGrJrbfeOnga52g0Gjy/pOFqzQZKnRso3mBRYv2Pv4BgwasYKHVuoPilKSUW4pUgiYXBfAOlyQ0USgaK8hwYFrSKgdLkBkqfA/x4Md9AqXPjgJKBoqIhQRmHYeOgzg0UdgaKyuoMckAyUPocgoGivKGlRECghQZKnRso7NpV0RhAqr/AQBkFA4WSgcLeOGCxczgkA6XKDRRyY+lyWN1AaXIDhZ2BwtbGeYXnsFYDZawqLKlioBQUFGxsrMU9Y49E8TRNg4c//OG4+uqrO9evvvpqPOpRj9oTlAoKCgoKCgo2EPbYFs/555+PZz3rWXjEIx6BRz7ykXjnO9+Jf/mXf8ELXvCCPUXphwMB2Ogp7/akP/Ee7JsIELmrKBSn7IKCgoJ7AnvMQHnGM56B2267Da9//etxyy234IQTTsAnPvEJHHnkkWtvhLCKviCnncKf7n9uaSm8h4CE3DUBQAQSQMhtMxAQ1vVBRGlZisJ2CCC+btjGCL40cbOBPM2MQ+QBRA6ub9/XAAfHmzpLY9SpE/pz2wmDHEKLGSd3zZUMHMi3J4QZDtQVq7cAUp25HBDqUSYPPwZv3ZEESy9rj6jbl+cAvzVCoA5v8VtEcVLEC7TTb5oH1xf5rT5vZ0rglTiEz4lCr/n94GUT+ghjlWAgOQ6UcUjjQGzL3TuBA0UO3XtqwR1Pqf+CgoKCjYb1/D7tUSfZF73oRXjRi150p+t3DIahz5F+4IkIxOlvJor+EkIAWer8uCcVlPqJLzg/gqDYGMG2yZSw5BwyLl4pMXGsGw2GHgeOLcxyAODH48aVG0ihz0EO7DlTkoMAsL5XzsaYXuvgQM7IWMiBCETsbY1MpvlcsDP+XC+Zf0zWPw9woMAB5NqZuR+67XCUV2bsBDmEcQ/dU305DBoo2edr5MAZB2LEMaz1S01EYC4mSkFBwcYEy9p/n/bqwwLXZqD0lAq6SjEqg+yaq5sp5wEDJT5FMwOSnqyHFVrWDnsl1FfM4RqHVYSwjjCgzPJxZCpxzYo5M9QG5ZAZB4vkEMozuT6j3HgVDjwgB2+YAABn9ddqHDARbFanP59DcmDq/5sZBDMcwgpM1j8nDuz/zse9yEDhofuKkqEaZUmzHBaBM04FBQUFGw3r+X269xooTCA7ZKBk2xEYVoruyZ87yoTjysGQQhvmEFYvAof01L42DtFY6Su0qJhnOcwYOMEYsdm1WGsVQy1bAQkrUms1DvrGYjBWkPfl25NOG8MGStfYWiOHsPLSa2uIw0wb2dhBsxz692fH8A3z3JNfNHpJuuOA628tPk5uBWWPHrFVUFBQMBcsa/99ulcYKJwpgKQUGMwW1mZKjsn7c0haQSBKT7vhKTmsAvjP4apkRo/rHZCOIoo8gNSWZE/MTCDLYAgsCTgLM6ZBDi7Ul4lgA4eOkuxx6KwcAAwGEYNg00qQ50BwvhA0s3WUK3f/xB6vOyONSWDXaKAwuS0JKwTiIPfcgMGwHDyH/D6Ihpt4Jc8EFvjMJr3VCyY/9qDUHQcnBpnhgAUcOgaRN/iiD0u2/daXAzN35tNxAJgZIpJWmLDauknvO1G2eAoKCjYo6N6yxdM0DUZqQR4UJKOgYcaIFQgp6ZoWC+UTq5E1IGtj3ozcsZPJJeWKOSsIqFkBAFRWh6yBtiFxGxCMg5D3ombGSDkOledgxKL1eS/YczCRQxhHMrJGSkF5/40qjMem3ClkDIz1SdNmODjeI6U6+USMWM8bIGtBWZKzIQ6NUqj9U3rl87q0NuX7IGPAnYR1TpaJA3sOLp+I4yBQ1qQ8IGvgEHKxVMxgmuWgrIVdxIFdHpTAwfoEcYEDWQO9gEPNTg5E7p5STNDGxrwlZAyUGFjpc4DPxcIYs8ra88nibMgHYyHGxPvL3SWLl1GWlkbYNGoWlikoKCjYY9D3khWU0XiE0YKkVM4YCQaKSsYBewPFJsWsrAFHZQCn7JFWUBQTRqqC8isGtXJCbo1TJkYErE3MRisxWReiEhziYKygikrRgE1I7gWf8i0l9mJ2BkrlE85V7BxttTHeIBGwcUbSEIdgqI1V5WTDLnGcseKy0YqArQUbs5BDMFDcOJyCrWxSpOQ5SKbc+xxGqnIJ3jwHK4KpMQCcwUWBA1KCMvarD4q5YyTVAxxyOQxxqIkxrjIjSTkDpfK8lbVgnxHXJc1zbUQO5DmoZKgpYrSegwjARq/KwRmcyejKObRivSy7HBZh06YxNi+N1/L1KSgoKLjHQe10zWX3agPFaA2zYLmIQJCwtcIpQynYAj7VfTBQdK7QvDJAtkUklqF8SDERAdYp6KCIjYhrI2aWBcLqhZCLTkkcABADzK6eN1C0tdAmpFeXmL3UZkaSdsscjoM3VHSmmLX1KyhzOGhW0BJk47Z2jIhfxZE1cTAibnvE779EI8nXMWaYgyVnMGpWUNb57Qhx5KDXyEHYgj0HACDV5xDm03Q4xNULv8WnxXGwRCAb5OcNTmu9LCUafx0O5DlY9ntgDGGOHKTDAd64mOWgRCDE3kHXjTVw0FagrZ7hsAhtq9FW7Rq/QQUFBQX3LFq99t+nvdpA0dpALXC4yZ9WmRnK+jwXzJBwFo83UFo7+8QNeAUGgjCDrUD8Cgr803tUaMFA6Z/F0+Eg4B6HfHtFB6U4lwOBrb8AAH6Lp+1xiKsfAxyIBK11/g02GknWG1Y9DsjT7ftoI3bKPIxfWIEprSTZzFBLijlxEM9BqS6HYFwJ3Bk0wUBJ22WJAxOBPQcCAGvdOTjZ/IXVsf5KkpB35mVGKwLl2yNO5ynB/5sbSYMcRJzvDgAQwzJ3jCJth1ezLIUwb2+g5BzgjEUR6cgh57AIbasxVWr1ggUFBQV7AFNt1lx2rzZQrBVYsnM/d86NbsXDwil595+FJcCKhfWH2okViE3nqFi/0hGUiVi36WNjC4FDUsw239YICslzQMaB4Rw3+xystbGN3MgBEcipMVhYn7OE4l+Bg4gbh13Ewa8YOM/esIWyOgcXpeM4CKwfP/m/KJODn5c+hzAhHQ7ug7CNEzlI4mCHOBDDkjPq8hwuNvO9CeMY4uBCkp0jsrsmsCDP2QKSZGL9NlPc4vEc3DgoycHfh6lPd8+kcUjMZhsMNUvWOxPzAAeJMslX9VazUay1sGb+d6KgoKBgT2I9v097tYGyehRPiLLpRo6kv93TvFPW8IYAnJMlQoRI7Cy247Z+UgRJ3hdJyPjpr+X9Ubden0N3PF0OwbSaaSPjEIhQrNmVw0w4bodDV6aOe+IQ2+3IYZZDjP4BOixWl0OQNcXMvvM4gLJ5jfLpRrwMhxlnPAkDckCK4kKKtqH8jsjksCjUWXwn8V7IbrP8Xoqy78g9u38yWUYjawFW+04UFBQU7Ems5/dprzZQRJJ/whCIKH4ufrsB8ZoA/olUROD/AGJ5n3Lcp0+HryPiFZZfYZGsjdRMKIvYn2QcKF7r1gltOAJIXLwSk/Cfz7eSjye6WeRtDXEg/xlRkoEA6dk855Q4BO0aZBVWA5C1FcSX113EgWK9tDoQ6mMOh+hyJN0yQvkUpja7HJDS70viHutAkhwkdjGXQz5fQtk9kN9LkUOYL2+s+HkNfVDGIb8HE4fUziKs9p0oKCgo2JNYz+/TXm2gWGNgFjxTWrjtGXifBa2UfwJ3qxY6+F4g+V70t3jcE7D3/xA4x1KQcw4FspBegcmcKtO2glNoQgRjBYYVLAE+ZWz0/4Bvy1gTw1RzDhYu2sQIgJwDIXNIdb4XZiaSKHFgKzDstliCP4gRG/09tLWpPUhve8Vx0Mo7h2YcdLa14cawmIPm5CQL8tzFOcmazH+kzyE6PiuJjsrEDEvJB0UA56gr2XYLvEHp55NYopOsy4uinINvdFB1csgddSVyCM694l4A4KN4jO056mZO00McjHgnWQDEKvYtEHe/WDPDYRG0NmiVXtf3qKCgoOCegtZr/33aqw0UYRc5MR9hrx+wpLwy9L4DzLDWrZC4FQX/ZE/OMBDyCgmuPBFFx9bYN5z/RDAm3Pvkk5I4uKdlywrW5+xwvi3s+6dOW9GPhZJy54w3ZxyCb0taBQDEurHk0SuJA3c4ODkQrCSfjjCewAEIxh55w8aNA0Bqy3OI/hI2rJSE1RmfTM5zcLL0HIjd2oX1ffuVhWjg9DiI5xDnwHMQUJIdz+cAULx3grHg2gq5RryskFYk7BAHZggrd594Iyn4zCSfIMDO4eDmQkUD1GYcwr0UDZOMwyKENgsKCgo2IizfS3xQDj3rP2E8Wpr7OZFLsKaY0TQ1xqPG5ctQCnVduZBMbSAQTKYtJpOpWz3wzpEEctlImVFVCqNxg0o5hVI3NYgI0+kUYt2T98rKFLrVycnUb2MoZjAzRk2NcdOAiFBVjoPRBtNWAxCsTFtMplMYY6PTLeByjzAzlGKMxyNUVZdDO21h/RP/ZGUKrbV3Ep3l0NQVlkYjMFOUi9YGrdYQASbTKVamrVsJsH0OBKWcHOq6BgGomgrMjHbSxj5XJhMvh+Q47LK1umRmTR3mglEpRt3UMMaibVuICKatxspk6la0IgdnBEQOowZ1XQFEqOsKrNjJwctusjJF27aDHJgok4OTa9PUsMZi2rYQAaZtixU/F+GeACRyYFYYjWs0TQ2AUFcVVKXQTlsYH2o8mUzRTjVyx+OQtVYRo6orLI3cPcXkOYjFdOo4tFpjeTJx94O1MDaYj/Nx/2O34rCDt9w1X7CCgoKCuxi77tgNnPPhNZXdqw2U0QEHYDTeNPdz8gpRKeUMlPHIKfaqQt1UUFMNpbXbE5tMISvTqOjFWrc1FAyUusJoPEJVVyACGp+tk71iNsZClidQmVKESDRwFDNGowaj0cgZSbVCXdcw2oCnrXu6nkyByTQqJGudz0I0UCqF0dIYVe22qppRDWIGT7yRZAywPIFqdWwDQSmqZKiNxmMwO0OtGdXQrYHyihmTKSRTijbIIbRRKYzGI6+YgXpUO27BuDMCWVmBmmpnLPQNFMXOQFkagcm154wDLwcR0LSFrEygAod8iyfKYYS6rqKhxoqhJsk4wPIEHAyWvoHCjKapMBqPoYJcRg2sseDp1K1zeA7GmGgwuvlkPxfs5DBqnKFWV6jqCjyZxj6xMon3hzUDHOoK46URlFKJg7XgiZMD6xZ2eZLyytjknzIPS4cejE3b7nMXfLsKCgoK7nrYXbvWXHavNlDyaJI5H4f/zUax9KMwQtRGFiGCwfLdSInhz6TXbr8MZup02wpjk4E2QvRJt11xB/Gk6JbBdmfH0OUgA5/F8J5huXX6zMYeQ1B6kTLhhV7fvTY7/QWlPMh/qO0ur8BhuP68cfV4iMzvvx/VM6f9vhxn/0ZsM5/3WA6C+OHce94Z1QUFBQUbEev5fdqrDZSogOZ9jiGFMvvetZUrJBfdEU2MOYo+rzfbhw9N7SjjAaUVFVL/s0wZ9RW2b3Pm2sz4vAdKzmHI2MmUeN9Iyq+j89mQ8ZX1gWSsiB9DbjD0FfKQ0RM4dK/P+zfvX2bGKAPzR9GOCuX8OCWrn41R8vnOxz5wn6En2zCX6bMBQyxroyMHpD5W80LpGEMFBQUFGwzr+X3auw0ULP4xnmcUdJWBb2mB8gLNKqBhpTlrwOSKeaGh0i9LKZyVgpGwilKc/czH1vbapXnvZ2SWrQQFeQxyWPSSKF90Flbmy6FfX3IOM2MYMBL9ahiy66E+OmUonSY802aSb7hRaIZbNjfcXxHJ7p2OkYvZ+p2/+wbKrBG58DuR308FBQUFGwz3GgOlqivnKDkHROR9DJy/R13XIALqukLtfShA5ENjnRMi5z4owTlUOR+UuqlRVcnvgQBAXLZPNgyjQzZR6fh/KGawYtSNa4PJOXbWdR2XuxwH52xLzMn/A9451Pt/5ByaxvmgiHUZRJktjE8jPOOD4v0/EgdGVXF0tHVycGGvgQPP41DXfvze/4MZEHF9KuePA0H055nhUNdovHNtVSk0TQNjTIx0EQDazOHAfQ5A3TRg5ThwcCjVLnW/5WEflLpx9RWz91HyHBCiqJwMiajDgbw/EVfcuaequkZVK0AA1uxkaazL7DvAQTGjris0de3uUe8sLDbLC0PufCEi54PCdnXv96apMRrNP0CzoKCgYE9iOl272bFXGyjB6XQeyEeqKKUwHjXeMZNQ1RWapnbOiZVOYcagWefQzEAZj8feSZbQjBsQ+fDSTCEqxTCm6yQbDJTRaITx2EXQOEfdGlprsFLOUZfdk7c21kejdBVzVSuMxmPvHOocdSmE+QYnWRG0rLzDao+Dd9Qdj8fOebhy0TBtpaFUG7diBIQqOIdaC1CPw9LYGUeeA8ccIEERA0wcnYf7jrqjUY3x0ti1pxSakTMOmJ1iZ2ZYgeMwx0AZLTlHXQKhHtXR0dQY4yNu/NyYnoNq5iw8Dk6yfm6sMXEuyIcwK51xEG+gqMRh5J1k66aGql00jjNMbEwKFx11bd9Z2DnJVkq5uRk3sNb3LQJWLazIDIdFWNo0xubN8yPbCgoKCvYkrL2X5EEx/uTe4V9tAof0ovCJu4xxviVMMIbTNRFYY1O0hI/aIAAiId+H+zxsCRjjUsQZ7aJGQlvRwDEur0jOwYb+rI+K6XGI9fPIEaQcJ463AbNb+jfGgMLKhbWxvrEmKWbApW/vySHsH5kq8Q5P/XEsMbw25QMhJlhjYI2Ti1EGoqQju1DfZgaLW9Xzye2MW+mRkOwuys6tohhjoqyGOIB8G8adwsNGZWOz0TAKXPoc3GqPk31IGWsq36cPOw/t9zlwyBRDibfjwAAj1glRVda3E1dQEPKhCIw3qMiPzZWXTn2T1Z9/r2ffCW2g13EYV0FBQcE9ifX8Pu3dBoq2MAuy0ll2p8UC/pRfbeJBeUwMo000MLTWXQMjrKCIdUYKAVpX0SfAtC5JmtYGIhbat2V0rpjFc3BtaKVgtPaJ39wKT6gnIr6+disoWZix+PpEgNHan4RL0Mr4bR0dlbIx2nHohddCMUTc6oHR2iUZE0C1xis17bKYBjnkT+1wmXRF+ayx2j3xgwDWGiwcc68E4yMo55yDsDMwFBO0qcAhfFi5PrWXg9YmzlfHQPEc3NxraHY+GezHprUzMqwV93nIB2O6HBR740C7FSewQGu32hKyHDo5ZveEDzMW5g4Ho1xGXWLnMxTqOA5mmIMIoASaCVpXbluIBao1fjVOO6PX3w/ByDJm9TwoWhu0bckkW1BQsDGxnt+nvdpAcb4e83+wOZy1S4gnyxJROuk2NyRCQi+bjAMigQWDIOm0Y8vuujdgXH0b64eTeONWB2xsI7TLlPxUciUek6sFDiIgASwYgMTxRm7WAkKxXvffjAO7/nIOwKwsBPkpwBkHCKwQYAFrOfZBvjwoq5f3L4mDM+wsxFKqLy7lvlvtSQnVJMyDhIR3wbcnOZ8GOQkocpAOBzdn3YR1jkN+2rH3Z822YYIc0mnCkZMj0eEQErhZa0EDMshPmBY/b4j3pC/nncY6Mgz3g6Q5d4bq4u+EiSstBQUFBRsP6/l92qsNFIpROKuVieEbnQgPxJiIELWTR2KEJPMI4SvxlSJgvKKRbvRFivpIyihEmyD7O3LxhfKoESLy+T9C9EivjcgtcJHBSJPwxB3GQdkYQrQJfJ0YXhtlknPoR81kZWKUSor86V6XWD6OH3lbA/LzfeYrBp3om2zeUtnwkjROhLlEp2w+dkRZxAmNMkv3l5vPPEqoMyR/HdlY0nhy+SfZZGx6cxbKd+ce2VjmIRYtKCgo2IBYz+/TooNsfnQQzqSJ56F0PgB61xY+pebJPPvlJC+UXV79CJXYrgQO/UbzPgf6dTtZkg91cKSJ0+rbBTO1Mw45z8GWelU616X/SeZjkl0bEu+M6CUvm9VeMDSZ1/pQpW5Hs+MN48zGJDMfDjTX6SIwmkN6UGYFBQUFP9rYq1dQggPiPHB4ghXAGOUcEonAbME6OSAmB9Xkd+G2UQDxbpHExoedGjARjDbRUTVE0ETn1E40S3oijg6U5J1kmaOPg3PU7TpVJudQp77IUM9Rl72TrIHkjqE29/8IqyNOFIkDuza8v0hyDs0cdfsOqhkHpZ0PDmvnJGszn5W+LBIH8fOWxkwAjFKxX/SdhXMHVe8HYii0wdFJVrKxWSvRydZxSFs84tuwwUk2ykUl2UhyuDU2zUfOwc29ze4pA8Pk/X+C43SYj9wHJUyoxPmP96iyfh67TtNJrqsvjQZfnoKCgoKNCG3uJU6y1jplMA/CfrkfKYKGiWA6xkFQBkmRdM7iCQotRNCQc4Zkr5iMdr4SedRHngdFmNyTcYjS0BbCBCYLNsY5+nYUkkkcxDmoOi3KMOQUFrPzgzBGgWyK+siVcicPCoc2XPSKNRYggUEwDjwHJKXbdxaOUT+UDDsQoAxHw8b6PC79aKawdQQJkT/sx8wgUHJuzebC2jyiyilmEWcswrhwcDYGBAKb3LgKETDJvyd3UA2rEUFOYWUiOOQmY9HGaKJoLIpkHEIbLoKIfaK2aBTJQDST9c443ihSWRRQvD86HEzksNazeLS2xUApKCjYsAj5wtaCvdxASU+2Q0ieCZRydJBPvBUUibEQSPzb+hN0g4ESdszC54adUlSm5xzqn/hzJ0mIuBBfJEdMYw1YGIaNCzP2Kw2CrnNrcNh03p++DescQo11HELukKgQw5N21kbkIBkHYyDsVlBspoRFkrNo/gJcFA8o52DjqhADyZiIsuhxCCtJlGQJAQwRlG/P2O5KUqcNAOQ3JCnI3XhHX7+yEOtIkmXKSZI4hHsnJJSjnH9YQcnqp9Usyd1WenNhQZxWkER68+mNjuBXAgAmlCfnrRQikCIH05vPNUTxhNWpgoKCgo2I9fw+7dUGymLkHqm5O2zvj7C4EMs4Z8ikirrNddKoRw9TRAfI6KQZ/p8ppLxObjz1fEETrczJsvsZdf4FASSpn667aODW5dCVQ28cnc4yp80ev/yP4CgaHWeDzykwK8tevZxz7DP3fs44RGfmeaQIyP1I04LFHNesmcuugSjDXJjInFZj6WR4pT59KHG/H8nG25MzxYthlSU/cDLxWtUNJThaFxQUFGxArOf36S53kn3d617XiUggImzbti1+LiJ43eteh8MOOwxLS0s45ZRT8NWvfvVO9TXvPJehs01mX24FgfNrPFQ/vbjfBg9dR4wImdv3wPkvM22v8mJeXBdrbovXxnGAM7Hvm1cpF+TANPjv3LHzvPbmc5svR8yW7ddba3+L5qUvm/XU6dXvfrba/V5e5VVe5bV3vNaKu2UF5fjjj8dnPvOZ+F4pFf++5JJL8OY3vxmXX345HvCAB+ANb3gDnvCEJ+DrX/86tmzZsq5+Fg52kYHRV5QY/vHHXAFn5ZkA22s7OIWGVYS8bl+Ze0XmHHF7/filneH6/fKzYwBRlBPmccjeY0gOQxx6fc4q0W47g+32X37LCTSk2DG/Dc+N+7LojbFTf8gw6bQ51BcAyCCHoXst8HL3w5xyvX6ZCDb8O5fDYrCvX1BQULARsZ7fp7vFQKmqqrNqEiAieOtb34pXvepVOPvsswEA7373u7F161a8733vw/Of//x19ROUwJwPB5V2rgyCImRgcHVkvmImf8hfUDwueVtfcQOY6XOeUpyn5FY1Drj7Pj55M7nkaugbEd0x5oYVfNRRrlQHOYSVBmSGADNIrG+PVx8b9VYtghLHUFm/SdMz7tyN3pWri06ys3Mp6X7pyyLwYMmMxTnGwaK5iGOxmYGSy4ExeL1TN8r9zhkooZ2CgoKCjYj1/D7dLQbKN77xDRx22GEYjUY46aSTcNFFF+GYY47BzTffjO3bt+P000+PZUejEU4++WRcd911cw2UyWSCyWQS3+/cuROAOxeF52zKk9/vVyJQYv2/zreg8tes+Ayf/jMlFvAv8nlCWBgcP3dlCARlBSBBJeKiTLI2KatPQKzPvgyDoazjBF9Hsj6A4Nw6xMEmDmLB4tL5U+TgM6/69wIBC2bGwOAoB/EcIEArNpYlJA7k+8lfBEBZAZOXi38psTC+fwzIYegFP0eCNEbxMqCQOE0ELBYslMkqydb6dsh/ZkNuk/Ai+LJ2kANFecDLSFJYsY8kIoT6hM79IOFeSBw4a5f8ZwRAwYIFnb5ZBMomDiyA9RxUxmE1FxQlFtUqkT4FBQUFewpqHb9Pd7mBctJJJ+E973kPHvCAB+Bf//Vf8YY3vAGPetSj8NWvfhXbt28HAGzdurVTZ+vWrfj2t789t82LL74YF1544cz1nX/9RUzr+acZs19JUMRoqgordeVOM2aFqlLu3BLrIi4mWmPSahhJKcbzJ+xKMVaaGhUrEAF15c7lmbY6Rn1M2taFzGaGT1ipYWaMqgqTugLBtVcrBW0tWp+DZKINJrqFCWn3g/Oub0MpxqSuUamcA6Ft/dktgUOIBhGJ0SvKc2iUwrSpXXvMqKsKxhi0PnJkonXkYCTkg6EOh1Fdo/YcqsrJtNXa92mxMtXQRs9wCH02SmFS17G9RikYK2iNk+XUaKy02kX2+PqAWxFjcucJTZoKtXK3b125s4ESB8GkbdGGc5H6HIhQVwrTuvGcCE1VwYpgqudzcCctu3OcmAmjukZTOQ5VpVB5DqbPQfJcLBT7rFlh0tSo/InUfQ6tMVhuWxfFk91Ti/AfN++P8X02LyxTUFBQsKewe2VlzWXvcgPlzDPPjH+feOKJeOQjH4ljjz0W7373u/HTP/3TANL2R0A/BLSPCy64AOeff358v3PnThxxxBHY+U//hImqB+v4jQmwV2oNM0ZKuRUUZlTE0GKh/RkrU2Mwscad0yIpq6fbAvJKTFWovLKu2CUJa30IqxHB1Bho/+QfTiJOHAgNq8SBGBUzjFjXBoCpNZgapxDncVhWChW5gwMrVh0OVgSTkD8ktpE4KCLUzFhRlXuSJ0YdObjViIm1mBqzkEPNCjVnHIicUeRXLabGdDiFGck5jLjy7wMHccaiH88kcEBuoDgOTIRGOQ4AvLE0y0FncggIBmNNjBWl4vuGFayInwvB1MtB9zkgbQ/mHCp2hlPrOQiAiTHQNhisiLFhOYeRUs54JCdXyTj05RDaXYR//3+boZbmG+0FBQUFexJ36Omay97tYcabN2/GiSeeiG984xs466yzAADbt2/HoYceGsvceuutM6sqOUajEUaj2R9dozWMzDdskjKxYGa3hA64E2m9gWK8cdDaoEx6BopvQ5jA1p1mSwDAzvFXWwMLV0d7pSgYMFBAICXgHodgoIS2tB0wUJA5UGYchN32QujTeA7GWq/QALe94pLLCZyvSGtd+JYlAljBZIbaWjiQEpBXzMLuKMTW9ykiaDtycByCgWJBADNYCRjkObCTX+Rgoe2AkZQZBywChLmwjoO2FsZzCHNhBzhwkIM4DorI5TARRCMpcNALOFDGQYhhmTpGUZBlMFD6HODvSYl+KJ6DuNUsLdbNp29v9Q0ed1LoVN07TrAoKCjY+zDVG+g048lkgq997Wv4mZ/5GRx99NHYtm0brr76ajz0oQ8FAEynU1x77bV44xvfuO62jRE482AY5B0eQQQjgAnRNeJPAxYLY6WbJE0kGhzBURHknBctKPq2GK8rTGYcGNPd3pGMgxBB+XoMgvEcwpaSwGdhDU/cAxxABJNxsN7x03ilasVnQA1+LZB4krCAXJI6AAbG51gJchHvM5JOw7ViZziI52B9PQBgcWOzxkRjoHNKdMYheC5beEPFv2dvFBoJq1Epg6wFOiso4jxzYUHeCHTyEKIku2wc8zgYmc8B3v+jv7UiQHSiFWIoPweOmwDCsU5I1LaIgxXAhP79vWGRtveM52B6HBZ/J8y6MjUWFBQU3JPYo5lkX/7yl+Pnfu7ncL/73Q+33nor3vCGN2Dnzp0499xzQUQ477zzcNFFF+G4447Dcccdh4suugibNm3CM5/5zHX3FfT2nE+7Bob/O2z9OEOFnDctyO8J+caGtpy8QvdNZxEncKcZh75EokEQavSjYQI78t267lM0yDwOOUXkdHy/Ud9KxoskRY5kY096krwzrBcHUVKiPQ6xy4x3/McNOkXcwCea81xCmc6Ikt3l3gqiMRg6IJGUsC7OaiKSiSH+RVmiNSHqTDGyeetzoGjsICZV67QTquQyQndseXn4ORUEDjmR7p9BSCHzcLwlZzgsNlHWGu1TUFBQsCewnt+nu9xA+e53v4tf/MVfxL//+7/j4IMPxk//9E/jC1/4Ao488kgAwCte8QosLy/jRS96EW6//XacdNJJ+PSnP73uHCgOXfW0atH1f7QGYXptttq1QWOqX264s0VG2Oq8qHftLgL1/l1zL8GK6l5bTfGuhc6MORcMt7sb8wbsrAqkOQ5GzqzhOVBxzqVifRQUFNw7QLJaWMAGxM6dO7Hffvvh1+7/ODRqvo1FSA6JDTEaH4FTEUN5/w/tw0qn1mAafRbSUjr7p2BFLtpE+SfljoOqrzO1JvpRJB8UzwHBOVTF9ipyWz2BQysW047vxWoc/GF7Ge+pNS6KBNk201wOhIpUlAMA5xw6wCE52jqn1uAkXPkEa7nvxWocKmaMfOSK4+B8UFq/vdKKdc6+4rZFgu9FZz7ZRc3Ac2AQdBayPbU2yiXnQFEOhBGrjlysAFqSo+7Uhu2yYQ7RWRhOLoq9L47vb5r5wQxxqDwHlXOA8wMKfjCTAQ6LcOzmTTh41KxarqCgoGBP4A7d4tdu+FPs2LED++6778Kye/VZPMYamAVPlO6h0/lOaBYoCcvxFghOsl5xGJs7lybFbL1ihvcXCSfWEbsSRoK/gHjHTjujVKP/hwi0+M0fz8F6AwVwisl4R88hDkI+L0c4NY9dW9o7VbpQ41mnypwDWYHyDqrOOVOiD0pQik6uKfLEteEdbT0HCs4XLNFACb4Wxke/SI+DG4fjYFhgo1+Lr2dnOXRlGTh4HxjvcEy+regzEv15Ml8chFWWIAeCYkQjibwvUsdRV4aNJCGCgMAKYC8HYYFY6vS5Fg6GgeDXQ9zjILYTBbQWA0VrDc3FSbagoGBjwpgN5CR7d8IYs2oUT3BQZRHoeEAxeYPDekUKGOlGvwTFHBS5Kw+Ek+jIO4+6Ot5BNT715wqpy8HMcMgcVGXYOAgcxJenDofkJGt6BsoQB/LjsAQorxRzA8VE4wA9A2MOB58nxWQrSdHJ1htZ4j1yGG7chpyhFjLBEksy1HLnUPSNnBCNxDDKzQVlHPLVCmNzZ+EuBycHhpFkbAQOXTkkg3WWg3OsZW+oOo9lin3OGkmJQ/Qn8YaW+BWUkGxuNQ6LoLVBy2bVcgUFBQV7Aq1Z++/TXm2g+F/9+QhOiaGs94AMVSTWl+Sq4N+HQs6P1rXjDA/vhChZ975y5++4N+LqhGaTF2ZGIhgjYdVkLod0OXAIBlO+UdcfSodDYC2U3CMkG38wi7yBExuj7tgCBy8ZL0OJfeR/DXOINDqyl5x9Rx6Z7Cjw9W1SOC9ZsrlIAgkcxHMgkSi3yC287dxP2Zjy+fROvHmUVOhRZH5bgQMhCq47R9kc9znMXl+AtZYrKCgouKexjt+nvdpAiWeczP0cAHrnmYT38cwUSWXQjwpBiu6gFCGR95vcHlPG1fCkDCSfg7RqQp1rhPVwoBkOoV23DuD/9lozt8/y810wKAcA4Qmf1sMh45KP1yvxIQ7Iy1MW6UJJZikqJjUwNJ/5fRDbD+MM45kjhz4HRA59OXQ5uC26XP59DmE+Ee+RZMgMcUhyDJ1Qj0N+Ty3Cat+JgoKCgj2J9fw+7dUGyowWHSjgFDIGlGJSDkAuNPIP6pIUR0ch9ZRjboggKR8gPFPn/c5RkBmH+HdcHekqz66BkMaFvP/MSIrbCn0DI+dDWcn8sDqgUz9xCIbOrHEwZKitiQMk9RHa6E1vdy7SnPU5SLgmFOdxeBzducjvgyEOkhsN+X0wIAdkHDDAIZ/5mXnMvsBDHBYhGJ0FBQUFGxG0wC2jj73aQFl1BaWjFPvGQc8goKCc07NqXHEYNA68YrLzlIkEBnMUM/nTa7M2OvXTVlR6yu5yyI0mZHyTkpzlMGuoIa6idMdAMZ9KkmX24q5x0OG+Coch4yDJGkneQDQWBznMMVByI6lj4OQcBvigYyTNcoiSoa5xt9BAoXz9JckntdMfTy+PTibXtayilBWUgoKCjYx7zQpKpSpUawkzhgttDaHBil1oK8SCrDsP2VoDa2kmiie0oYhRKReeTIAPcSXAO6iSuEiScJJtXp/IOWdWPjSW4EJMK2K3HRNCkz0H8hy4Pw4iqF54LWUcgqMurM+Mmj1tuzNsEOUQzrSpeJaD8hxoDodqIMRXMifZtXIgUDybx2QcRGx0OO5zIHJ1FCuoEOpMLmQZuUOp59CPfgkcFDGUUlAIIcPsQ5RTJlllDbCAQ0cOgYPkmWTd3AQn6hk5EKPyHMjPhXgOzj/KwrhUus6Bdu6dnlDVFZp6r/5aFxQU/AhD0+JV4Bx79S9ZM2owmnNYIOAeVOPhcvGwwGQcuDBO59BJ1oKyw+aCPiFKBkqjVDf/ByiehmxEwCEPimR5UHocGqXioXsVsQ9PdsqdrQUbk8KM18KByJ1EDBf9QsagslnUh3Q51F4OnBkH2nMAALYGnEcCDXCoFaP2ZxHVnkNlTDQG2GTnGkUnWXT6zDlU3jgIOWWUtaAFHOJBfcSAr89E0Fl6fM4PC+xxYAJqVhizynKaOA6qIwcXCWTmcWCFWjk5VP08KCIgY6DmciDURBipKjss0BkoVTgfys9nzIMiq3+xNy2NsWlc8qAUFBRsUOi1p0HYqw0UySMc+vDOCGG7yweruFo+gkUEWZRGFh6cr4CEqB+SWAadtkIIqWsLsc3ZSBXxJKRfP17L+s8iWhyH/LPAIYWLxGiQ0L8PUZIZDpI4AJ2xhzZDGWQckHEIfVDGIfCN4wl1fV950ExnzPn7TDYS/xji4JxOXRRSPh4ZaG+IAyHJOp8730pHjpjDoXv/iY8EyvvGHA7h3hKiWTnEdvO2sntqFRslvz8KCgoKNhrW8/u0VxsoRlsYNT+mmuCVABGYBZp9pAszEFdQ0im+eaKvIENL6eRZZsQThEOitvz0YpegrLeCknHQIlCiIgcKuVj8U3vMQTKHg7CFEgBsfRuurTyTrB544u7IwQq0hGvskqZlpzrP4xD8IsAud0w8SXgOhyE5WEpJ0ZQg5iQBq3j6L+DzoJj5HITcqgZ5DtTLqBvzoGTZbQPc6gfA1q0chdUMYgWRkNXX/Rs4mEEO5OQY7iliCHOUnUj3nsqNXiYf4m0ZFYublwEOXTmsbQWl1RptWxK1FRQUbEy0+l6SB0WshaUFpxkDwZsxnl5L8Kcas8Bad6KxAO703IFMstHpUwALgIRjG4Dz2RCEJGn+FF8MGAcgKAGMOAXpTlb2pxnHxFymo1T7HCAEAxM5uNxglE7MlewE3TkcmN0Juky+fwiMN1LceLJTnedwUEL+JOXEIa9jB+QAICZmY/b+FH5ugq+KzYykhRyI/GnG/rq4trscjJ/PnmL3DlqG/WnGnlPYjjI2yaFzknDGQYY4MIBwD/jVjv491edgOZ1mnHOwHWMxbDGtzQfFGgtjymnGBQUFGxPr+X3aqw2U9SB3HPYxFOisl6dQieGKFP8XyyalnU7PHew7byYvRGEfKpSbE6MRolXyEhmfSDv2QTPLaPM4uMieOVsHuTwoLz9noAs4hCoUeSfueT99OXba6Xww+Ge3j2xupFOuJ+c4906+cWvNv+tzmOlvkAd17qnZW6vXSrinJFVyAUKekR/LWrBoegoKCgr2JNbz+7R3GyiKQd5JcQghRDMsn7NSXlGz2xawFuxXL9gQmNxqSEg5HhREcIokpcDEzlHSO4myNdFHgAyB2foIHPHJuVK4KLNy/RKBicFMEGGwf2Ima0DGKaTAAYF/eHkOAMC+LTcO95QdVhJoLgd2sgjtsQKL7XKwLu061sCBvINq4ADM58AZB844MDMgknGwkYMViVl0OxyCLDMObK3jDAGRG0fKwCuRg7sfkhw44xCS1pF31CVxUU6hnTwkOIwjn4vAQSBg48cbVj/8PcXxnmKw6nKw4uYAgQPNclgEritwieIpKCjYoOB7SxTPfX7iJzBqRnM/J7gffcWEpqowrusYzllXFVqtoY3zIZm0GhPdxm0fp5iD4iAopTCqa1TKKaK6qgAC2lZHn4fJtIU2BtYm50jHwUfg1BVGde1CjpVCVSkYY9FqA4FgqjUmrc7OsnHjiCHGijFqmsihqioXxdO2noNg0rbQ2m1vDHGoK4Vx0/iQZUZTVc5nxLhopEmHg5MFMiNNKUZT16grBRChrpyx0modt1gm09a9F4HYLgcmRlMpjOvat6dQVwrWWky149Bqg5W2nfEhCQaKUuzmonIGZ11VYJ7loLVxcpzhQKhVhaWmBvvom7quYK2g1RoiwNRoJ0uTc5BoXCpmNE2FpqoAEKpKQSlG22YcWg3d6lkO3hiplcK4qaG8gdVUlYtm0u6eao2TQ5/DIhx82AHYdp/NP/yXq6CgoOBuwO6VZeCvPrimsnu1gbLfQx+G8dKmuZ8zEVg5ZTIaNVgaj7xxoVA3NdqpjspgZWWClck0+T/Ek3IZSjFUpTBeGqOqFYgIzahxBsrK1DnIaoOV5YlTSMEHw/tGsG9jNGowHjnjoKor1HUNozWmbQsRYDKZYmUy9UZOlwMrRlUpjJdGqOoKBEIzqkHMmE6mzmfCWEyWJ2jbNvo/hNUL5dsYNTWWxiMwuxwczaiGbnU0tFY8B2O8P0yHgzOKRuMGdVODQKhHNTjjYI3FyvIE7bSNYxC/eqGYwEqhqWtsWho5A6VSaJoG1hhMps7Qmk5bLK9MPAfnkwHAGRcc5mLkOQB104AVo522MN4omSxPMZ22sJnBGDkwo/FyUMrlU2lGDaw1mE5aCIDJdIqVlSm0dnIQv7qTcxiNR24OQKiaClWlMJ20MMZArLun2ok3tIz1HOCNZkbt5aCUAjNjNKphrWA6mTo5aI3l5Uk0OINvyiIc/MBDse3Q+9wVX6+CgoKCuxy7du0CXre2snu1gRIU4iDIOzPCO3MaA2MMmAiGCGx8hIRfOYiGiUkGCghgH/hJTM7x0rineGMMCATjn25DfRMMg5B0LPiZwEX5WGMh7Pq3bGC8U6OI+L9N4hBWDkJ9cg5GzBZEgDEKJBIVYhijNbZroLDbNnIc2MlMBAaujdBvdFA1Nv7b5cAw5DgrL3dlXO6O0F8y8JI8nZHkWgEAq9j1xwwylHF222VRlpmxCAAhZtzVcTljCAQ2bgXKGTROFq5NM8hBxMkx3jtehmH+ooOrMcnZtscBkbff4jHuvsrnL85nMC7CSdbSvScpclDJydnL1HgO0VBbxUIJfRYUFBRsRKzn92mvNlCyTB7DH5H/I/MBjaWjb0L6wF0KLpJdt8pQJeaiEMQU7DFfR7YEL1kfkrUjkCyvSeLXY5fqU5dDZBiPIqZuno4ZyYTxdznE9/m2QRhXR2CewypijjlBpJfPJC+VT0LsK+cU+pZUOTQEH4mUj7U/Rb02kyB7HChKsVs4XJAOxY4sAoc0Mn/OzmCn0ruUCEvvo8690LmfslIzhAcg0uNSUFBQsHGwnt+nvdpAWfUsntypsv/i9C/CKgOFOkAIZx2qy6H+3D4k8or9rMIFkrfl/vZeusN10K3P1uXmWPWsmkE5cFZ2tvw8DnnbTARhcucZ8Ro4cCbL7N95Ml11HKFNO9zG3PoD8zM4Xm9czJ2LmXaGOSy8p4hBbOffOxwM0wXfCXZ+NgUFBQUbEev5fbp3GCjcVwSrKS8MGyjcr4/U/oxixkC7ybgJTqe2YxwMcRhuo89tVvFhrmKOUUlDinmOwh5SrEA3siYaKT0FPcRhyDhg8mbAEIehNnjAOGAC2azvwfqL+fTHFYyQ1EbXMAtOxHfWQJmpGyKK5sj8h/lOFBQUFOxJrOf3ae82ULBGA6WvBLLVEyZyCdiIfNjvfAMlPuXmysevXtgZRTPLISgfCu1w4iAzZQOHBSsHMWQ5GDp9pbYah1nFHFZT+gbKXIPGyy1dT5xknpE0ZJh0OFBaDfF/d673DIecA/dkxkywMsCBUkRPnIPQl3QNEKG+gdIdb+wvtpNWQuYaKANGWG54AnNkvgpC+HpBQUHBRsS9ZgWFKwVVhSHM+ozEKB7FUFWF2oflVlWFuq7i5r8VQWUMtK4AsiBrYa03RHzEReX7qioXxVP7XBPWVBBrATLQVQWxKRtrjOJRoY1Uv6oVKh+iGkJxK2tRGa/YPAfAR44oX9/Xc+Nw0R/inTLdNRMjVjpRPIo6HJhcJIobB8UzXCoT2jcwlkDzONQKgItGYmbY2jmdkrWoqgpiBUQW1lJ0Y1FZNFJVVWAm314FMgRrnByMCJQyAAY4+Aia0AaRDzNWDGvcidLWCqpaQ6yF8U7NHQ5RDlXiVFfOcdk7olo/jrB6xP7U6xkOQQ5VBVVVkNrlLrHCbi6MwFjT4cDZPVVVFSqlIoc8k6+IoKq0M4Csc25ebfu2qhXqev4BmgUFBQV7EtU68jTt1QbK0tIYS0vjuZ8HZVIphdGowaalUTQumqbGtNYxhwgrBWKVolesC7lwOVCc8hhvGkcjpxk3IAKqagqx7vwZJkZb6SyCxkX/KB9mPB6NfIiv41A3LsR3WlcZB46RPVZCeK1XqnWFpU1j1LXn4MOMK1X5qBEDIkY1rbLolS6HUdNg09LYGwdOLm2rMZ3WADI5GBMjkkBdDuOlEF4L1KMmGi4h+oeJMVVzOPiQ3k1Lo6ikm6aBMcbJUgBVTUHE7lwhr7BzOahKOTn4MONm7DjU1dTJzlovl2kWVeXDjJVrY9TU2LQ0dsarvz+Mtagmfi6qCmCOYcaRAzmDJoQ6j3y4ed3UqOoK06ryoc7i5aBmOASDtalrbNo0QqWUD0MfRcNIfC4XIYphxmYNUTz77LMJ++47P/S+oKCgYE+CaO1RPPfyU8Vmf+1pzt/rwt22wt6L6hjqZy19r1KP8j/u6rHcA7sPd76LTL70w1Jdi6v64jJlo6agoODejL16BUVrDa313M/dE7cLWVWK0WoFznwJdMz0KbGtmAPEb5kQE8RvMejW9cUEcOv8BUJiNmOsa093V1CYCcIMsQytFLRWHX+EmCQNgrbV7oldp0MD3TisS8XuxxyUJ/mMsq1u3SqONoMcKOOgmKFb7f1txGVgbTW0TxantUte111BoS6HSsV9RGJ2JwO3OpaPsuwkKCOIchyYGLpSsMzxM2NcPcnmIq2geDmQBSuOsqLg+9ESlFWOt3aJ2YIcQr6TyEHY3xfkM88yrLXOV8XamLBOty4bbkqSJlFeLI63rtzWTIgaErh6M3Lw91RcQbEMUQwmf09ZgbWOV86hDXLocVgEtxrWrv/LVFBQUHAPYD2/T3u1gWKMLDwZMfhVEHwSL21gvdGhDXdSvBttfOIsmzKoEsDCPgzZJ9UigiWAq5CoLSX4Conf8iRpIhRTjRhtoLWJzpnM1E0W5zmGLK5RGYmL6jB+uT84wBptQExRKYe2+hxYKPrb6IwDAGcE+H4FSP17WYhPWCdCkYMxBlo7Hx1tDNgbFUGJhjZmk6S5XB75mAmAUewNlDQXcRyZgSLeCACFNpzzKivu1OvKYpaDK8sw2gDKCSaUTXPRT7Qm8cylkIdFGwOljTOUtLMatfZyE9vpPxkoiLlnDHNMWqREYCoTk7PF+yGrH+ZzEZyRWhK1FRQUbEys5/dprzZQCjYO1hAAu8cZ3GtQRFFQULBRsY7fp73aQPFRmauW8f/rhqaiF6ZM/n8xRDWLCoptIG0rZE4KnRDS0Ix7VO7ypBg5nPqJXXfDi912RO4TQbEd14bnGsclqb1OWKp0h0fdMeT9h2WGXDYhWy6BIgdkHJJ4s/5yOftr1JFvbDESC7yzScvYBTkGztRrj7pjIsn6yDlQ51pHluFaajbjlMaQ+ujef/3wbpHMgac35wj3TzbvuWDDLR1LpVttbfd7sVAKCgo2LNb++7RXGyhhGX4IBKT8GYA7z8Rv0TAR2HBnq8Eto5tsOT0oOX9+DPul9ngOjgGI/Hk1Np7d0okCksTBbW34s16IQJy2AMJ2TlrSN3FLIJ9L4301mC0IgDIKQtLd1rDd83xEunHn+dk/hO5ZPBDEvo3tb/F0ORjjOLBxPiFpSyc7E8i/FxGf0Cz0GfpjgNL5NWkuwvkzxrXno5ni9opxbbhQZPLnCKVtHeu3aNKcpsMCw16XMZzuHb/tlJ/Fk7Z40rlCkFkOQQ7h3sp9d/JtrijzbItHWY5n8YT5jxzu5BZPOYunoKBgI+NuPYvnL/7iL/CmN70JN954I2655RZcddVVOOuss+LnIoILL7wQ73znO3H77bfjpJNOwu///u/j+OOPj2Umkwle/vKX4/3vfz+Wl5dx6qmn4u1vfzsOP/zwdXEJinAe2BJEBSdZ73sRnoCZnA+K93vQwUfFdg0UsQJRAmJAmyo+RWvlfA+0Pz03+FCY6NDojYOMg/P10LA+rb5mik6Qfd+LaKAAsCxg5X0vdHIOZa1dOK42PueHTX4YuR+MJQgLoLxi1hrCzreGlY5jFyQ5zJ5mLMn/QxsYdgnKWHM8zTnILvi1OA7OOLBEUMKAgvP/8MYIgOiLYbK50Jk/SQjxJU6rSkZraH/cgFbs/WAyH5SOH0tmoIiThfEhxCJufpV3TNZGO2dho1P9IEs4f57EwUArHe8nwIcERyMpu6c6jroCJQJNzg+GBBAWaOXm0XGQKEedGTqrxQYFp+uCgoKCjQit70YDZffu3XjIQx6CX/7lX8ZTn/rUmc8vueQSvPnNb8bll1+OBzzgAXjDG96AJzzhCfj617+OLVu2AADOO+88fPSjH8WVV16JAw88EC972cvw5Cc/GTfeeCOUUmvmYux8A4WQOVVK9nTt18tZO+dS0zMOOgYKnOIQvz1gtInL/qyMU9ZGzzqoZhEXErZqlOtDVwYcMqRq7hgHeRu5gULR2Tc9qTsjyUUp5cZBrhRnOMA5h2pjwNa5eirtDBZtjJNTVOzBsdMOctDeQVWzNw4yRW6ioSYpkihsIUkyDhRbAOJOAg5OsuhyiKsXAMhHz8CvYLF31OWZOew5yXY4BIdahjEaEAWIQCsfbaP9icqBQ2ZwAoAEDgiOuuwMFO0y5+aGVm4sGpsbKE4W7OXgDEWB0joaVx2DNTd6V/lOFCfZgoKCjYy71Un2zDPPxJlnnjn4mYjgrW99K171qlfh7LPPBgC8+93vxtatW/G+970Pz3/+87Fjxw5ceumleO9734vTTjsNAHDFFVfgiCOOwGc+8xmcccYZa+YSonQWlrECIXH/xu0KgRW3dSASom1svJ63G/4eup5/Pvc1VCbwitccBztQ33cyeF0kGQAi0mtzgEP+OVy/tje2odcsB9uR5cK++3w7/SHOS6yP1Tj05RnmjuIcpn+HOXTbsLDisvkGbkPyHuQQ7ynpvF9dDgP3hO1ynzsnq3wnwn1dUFBQsBGxnt+nu9QH5eabb8b27dtx+umnx2uj0Qgnn3wyrrvuOjz/+c/HjTfeiLZtO2UOO+wwnHDCCbjuuusGDZTJZILJZBLf79y5E0ByTJyH2XNTMmfKjiNp71pwgnQf9BxUu86smNMm5c6iwTkzd5Ls1YscoqMkxYNrZ/ub/+p+7h19Bz9bTQ7ebzZe749/zrh7/QenTaK+QysGxpLK9secOCTn2cG5o9QXMs6hHFblPNtm4CnoyiA5vc62KbG/TP69+tSRR29+5o1rFay1XEFBQcGewHp+n+5SA2X79u0AgK1bt3aub926Fd/+9rdjmaZpsP/++8+UCfX7uPjii3HhhRfOXPc6aBgDCjkqEvSVyWzkiVcxiLpuniEAAijVDx3FSVikkEOchu/P6+eMQz6UwGXIOMg/R7ftGH0SqXX7zxRikhmikZSGkSn+fhRMR2nPjhEkXY6LjAPptxWcW4fmAEl+lMu6P74UydQ3LoY4SZRhGp+E9zPGVt/wCHW7cic3FXFe5vUd56DHIfxBsngNpRgoBQUFGxl7zECZRyDu/y/AojIXXHABzj///Ph+586dOOKII/CDf/onTJvhs3jCDzwT+XNPKkyaBgSgUgp1VaE13kEVwGTaYtK2MYOrFUlt+DNjJk0NpdJhgQSXudOKwFiLyWQaz2GJfhMUkrIxRnWFSV2DiVApd9icMRat1o5DGzikrRtkHJRiTEYNKqVAAOq6BjGhnbaxz8m09UnTJDl2ZhyaqsK0cRyUUmiqCtoYtN7/w3HQ0adliEPT1Gj8IY11XYGY0bZt7LPLQaIPT5iLulKYNo3nwKirCtYKpm0LATDVGpNp66OJBjgwoxnV7lwkIB5YqFsdy08mU7TBd0OC/4w/W4kIdVVhOmqgglxqz0FrQNy/Kws4hPN8wn1QVZXLVuxlZ8WdpZO/Dz48zAxF7oDBaVPHAwwDh9Zn1G2NwfJkmu7JNfig/Mfuf8P4gH1WKVVQUFCwZ7B7+Y41l71LDZRt27YBcKskhx56aLx+6623xlWVbdu2YTqd4vbbb++sotx666141KMeNdjuaDTCaDSauf7vn7sWjZo/BCICg6AIqFmhYefQWBGhYoa2Ftr7PUytRWsNjACCYKC4J1wmr9RYQfkn84pdivM28xmYWgsjQRkhKWYQmIAm46CIUBHDiOMAz2EalBGkoxQJBMWEps+BAB2NKmBqzUIONTFGSkUOtZeD8f4NU2s6HHJDLXCoWaEmF37d5yAApsZAS3ofjE+Gk2VNjIZVlGtFDAtBa53TbGsFE2vmyoGJ0CiFao4ccg4iAjvAoSLGyHNwclGwEGhvBLTWelkGDk6WnHGomVGH+WSCIob2dYIstV0jB7h7VLwcBIAWi4nJOazug7Lv5k2YNs0qpQoKCgr2DJbNHkp1f/TRR2Pbtm24+uqr8dCHPhQAMJ1Oce211+KNb3wjAODhD3846rrG1VdfjXPOOQcAcMstt+Cmm27CJZdcsq7+RuMRRmr+0fJE8IqZ0HBSzBU75aDFQvsnfGUt2JiolMNKOnkFpoi9UnTKsArGjvVRH2LB1rj2vELxO0cdDo1S3mhyitVIUIoC9hzMOjm0gQPE1c8MjD6H2suBcwPFcwAAtgYcFHOHQzDUGLVSqP25PEFBa2tgBbCegx7gkBtFo9xAYReqXHnFrKwBBUXvnYdzDs5AqVD7vY9KMRjU6TPnIN7ACByCHMbRQHHvrQQjCe5+iMbeHA6sULMCCKiIoZjQmtTnEAfkc0GEkarcKo7nIJkcWmu9HLocFmFp0xI2j4uBUlBQsDFBeu2Ruus2UHbt2oVvfvOb8f3NN9+ML3/5yzjggANwv/vdD+eddx4uuugiHHfccTjuuONw0UUXYdOmTXjmM58JANhvv/3w3Oc+Fy972ctw4IEH4oADDsDLX/5ynHjiiTGqZ62Ie/vDn0aFNOsTkfso5OUpuJP0+hj2GXCfez+P6FsQQoODn8IQB8z8jfzaXA7p3+4YAofM5wGunfkcZvmE1RYvpQUcZjlDvN8FgiNMlwMyDsh4oMcBOQfyK0Do+3lkMggc4nxjZmyBQuKLVH9gXrr3VprfPgd05iKfE896FQ6IXNK/oRPKuSKT7SprKJ12CgoKCjYY7lYflC996Ut43OMeF98H35Bzzz0Xl19+OV7xildgeXkZL3rRi2Kitk9/+tMxBwoAvOUtb0FVVTjnnHNiorbLL798XTlQAEAbC4UFidpALkEYEbQIfK4zgBlE4ldQ3NOqsabjf2Kj0eEjWdhtg8Bv7YCdH4jOVi/i6bvZlkB4YmcAzApK4Jb7SWKbgYO22cqDf+oGnIISci8lAPwKCvnVi9BnSA6mF3AgZlSRA4FYRTnAy2E1DiwAcUjglnHwcot5XOC2nQIHd2YhgZihlcRVHPKrF2kufCbbAQ5hPo3AGYMEkHWJ4HSPQ9ziGeQgqNjJgCMHN/7AQfc4SO+eYga0Cs7NDMUWOltBSfcU4rU+By2AkPUc3JwFDlp80rseh4XfCW1KoraCgoINi3YdidpIZA3rxhsMO3fuxH777YfnH/f4xT4oyJfjnd8DwS3HJx8U6/0FnM9B8ntwbbB/mlW+vvJPxdEHJfgYiCSfA2RbAhmHsLVBcNs1bovHLvR76HDwWzzKP1lXpDq+FxaCaabQBjlEHxTXntvi8Y6gmRxM5jcBBH8eX0dx2mYiBvWMg6nJfXEkrh4QJZ8Tt8UDv8Wj/PaKu3FbazHJfDlsj0PyQXFz4HxQaL4fTI8Dg1AzZT4ozq8mGUni58KPA70tHqQ6tb8PlHd8bXMOmbE3xKHyHLpbPP6egkCLeB+ULodFOHbzJhwyKls8BQUFGxN36BbP++ursGPHDuy7774Ly+7VZ/GsB/lvu2BooVyG/5SQgbTXWNA2vuHhNnvNh1dY4QrtxCLZE/IAB8kbECDsn/TrDNmcErrr7Df4/mQO947Q3L6T9OXUX63zDUoml5kmKVWWeHFe+VkOed99kWajQu+frNwAcc8hH194J/2bp1+19298N3BLzeUgeRX//86qydqfI/a6J46CgoJ7Ddbz+/SjbaAEfwIEP4Xgn+BVA3lfEaTtHPiyzijI/Rl8+cxHIZaFBDeLTl2njENBX9d3HH0P0OdACG4cIhJ9N4J/A4IfRyTheef+CwMcvMtDGgdS3eDDkfRwklG+gjKPQ/LP6PrXLOIQ2wnyFX8tGiHzOaRXNj9Z+eD/E1w2uvOZ+g7c+xwi33jPeKNHuhz6/h4dnxPJ+p+5p5BxTnMOIpfnxBvEM+2t5avd41RQUFCwkXC3+qBsJFi/hD8E95AusF5xWVj3tzcELPn6/kyaeHYNJC7RO/tAorKyIFj2fQcO2ZaOtRI5pVUN8ef/uH8tnFK14trK81uk81YSB4iPjCHn+xDaCBwI1OEg/nTlENrqKHhtSe6aRVLQFsMcbM7BlwkcJOfglXlXDumgwpC5Y4hDUNCmz0HcGUBDHCifCzAIknFIodHDHMLNIW7+o3HgOEiPQ8hfMsQhyi4aZwySJLuYvj74oHQ4uHsq5+DGFLYLw9EHsxxWM1GsP/24oKCgYCNiPb9Pe7eBYi3sAidZ5xzq/mIR51gJAJZBLDBWYKTnJIvkVAk4fwPxCkkJwfhTjo11SsZkTrLWhNBYiQqJ4HwmAOfYGTg4hSYwItH/wx1SGMKM+xwAIYYRAvlzcMj6Qwxjrg3nmBkUde73gA4Ht7XiHF67HJxCDH4siQN1OCBxIIHMcOgpas9BZuTgVyJsqidwIdsmDzPOOLBfaVAC2HCYIicOMX/LAg4CApP4O8fNL9ng2Oq+PNb75VjpGhg5ByMAW4RlG38/JAM1JHmb4RD6JHdPBgOYMw5JDrMcFiEculhQUFCwETHvgN8h7N0Gil8tmIeoFIlchEZUigKyzkHVSFIKYfUjd1AVcgZCUEhx6d+vUhkZUszZtgSCUgTYc2AAhgRkyRkHkowDs5CDMxpMWEXwuw1948D0OKDDQXwyOh+RYxHlgFB/gIPbdXAcQgQNEcF4AyU+6QPOyOo5CwPBUIM3zJwcXESSq5cif6RjbMxyIGeoxZDuroESDc7sEMY+B8McVz+CsRCMCsAZbXbAYTlwCNFM7P2AiIcMlMUcrDc4Qc7oMT0Odg6HRTDGFAOloKBgw0LfWwyUzimzQ3D61C+Ndx03w/vBE3Q7yiA4hlInk2d0XRxoI1wPHCDeUBIB4lJ9csAUwZo4xPJ+EMJucJ2Tbgc4xK69H0TigB7vRRziUPxnrlFh6tXBzN+duqGebyOOK7a7mAM6ZfP7YKDf7Fqnbodj4NDlu3YOoXy/3TVwoKxs757oz0XnnlqAcJpyQUFBwUbEen6f9moDJU+YNvx55kQZHQ79v0wg23WMDe6eNNgGuu2E1YDgg5DxkayNwfqxLIPic/xaOAy9ALbBtwU9buhxw+pyyN4v5MC9cWV1hjik8c3KIa6sUE+Wa5AD8vZ689l3fh7m4GXofUryeV0rh5lXp69VODB15Ag4LuEeSu1Jr5VhEC/+ThQUFBTsSdxrnGR/KAPFK0abt7WaccBZG+zLWoorNamPZKIsNFCYQEIgT2JNxgH3x5EZH5LahaxmJPkEZdFI8WXXo5hB4JA0LhhLczik+RqSg/PHyftdEwfO2sgMNgQOmfHY4YCuHIgQOTCTd45eoxyigTGfA/l6YclnrpHEbisyl13H4MHqIHIHIhYUFBRsRLAUA8V/Pvy021HMfn2dFxkHnfrcURzxyTtcY+ebYGc4zK7AJGPHGxfrNA5yBe3iWVKa+FDPKco5HJD+ZfbP6FbWxIH9YYEdIyGflx4HzOHA+ZgzxZyvIqwmB/bJ0uJ8ZjKxa+DQNYi8wWkXz0VI8JbfD0wMZgGEYEnAQj5aKWujx4E7HNwsOg4EsvZOGShUDJSCgoINCrq3GCjMDFY89/Og6NgrMeWzuDIRFDPEAio6NHqnTSQfjU4bxD5bqFsxUP6wPPYrF4CAEd1MEB6XCSnzKDO7F1xGVcUMCLlwVLiIkMUc/DgCB5/F1VLq00DAa+TAAxwUBGoVDsq34cbPPvzYycGFRAvYznLIFbtSXQ4kAmtdaRYLDh4ZCzgot88UOYgl1w4EigQSBZM5qMI5pDLxXA4AYMk5wOY+O7NzoeJ9oDwHdt7JILgoIfYc8hR3OQf2GWjD3HTk4DlApONkuwhKqXUfGVFQUFBwT0EtCGzpY682UMZL4/mnGVNSJorcybMjVlGx18xofcSKCFBZgyqkuvfRKLlSVZzSqwNA7ZWANibmEqmMhrHdc1NyI6lRCiOflj2k2zch3b4A9QAHAH6VwfEeKacUCUDtxxPS7RsRVHNO8Q0camaMVRXTzNesuin/jUEVI3lSaGvOoclOM67YKeY85X/VOQ9oVg6OgwIRRQ4h1b0I0IpFZcyqHMJxA4GDtjaGeU+NcWnnF3AY+WMDGIRaddPtT62Fyo8NiIZWOlm6VuzmIHJgf6qzl4M17mwepJOhiZKxWHk5DHEQuCMMZjisYqds2bIJ+41Ha/4OFRQUFNyTqPV0zWX3agOFsyf5IUTFHFYOlD83JTy5IkVfMMQ9tYs4XwSv0eLTblh58KsXYVshKg0RsDAE1q1IDBgHzJ5HtiIj5FZOcg7ZMowbJ7ItBOVXDoA4Hrdy47izuJUczDFQ3DioKxfPAXBhyAQ3FseBZjlkcleK/XYK4mpD5BAjUYY4cDQemV1f7I06tm4VRXoc+itJYQ5YcTwMEV6RM9bOgXscwnhZBCJ+cnocKKxmhZUk/7cN8+c5kG8HAwbKEIewAiRw24SJg9+nWsVAWW1VsaCgoGBPgmXtv097tYGitYZasJ8VFFI4OZatUxjCDCHOTjN2h8S51ZBw0J6rb72BIsQukVY8zditsYSnfguB7q+g9BWSZSjlT7RlAohhxB1MBwCtNZ0ncJsZSeQ5KMk4WOfhoG1axdHzVlCQTu3VIvFUXrB0DizUHQ4+f0ePA4ukU52tX70w6+PQdjjYzmnG2lpoq2OyuLC9EbaSHAcgnOocOLTZScKBQ8gP0+cAZih/CrI7UXmIQ28VR9y2iw0GhRWQP81YiGG5u4qTn249tIICZmjPgTMObeAQTzPucliEttVoi4FSUFCwQdHqds1l92oDxRgLszCTrM/9QSljqjMuGKDuKb46O3k2T23O3kgR9qsq3jAhdiVyBWSiQuqeZhw4GBHoENlCHI2DPJNsyKCacxAKzpsWOnIAyG8vBCPLBKXoFdpMBlWvVLX4FQLyGXU7BorjEDOyehKWQrI4Cy0CCitXrMAZhyiHVTgY70gsRKB4krDpGAfzOAjZrpHkfWqMtTDeGNEhM7DIDAcLOENNCRSox8ElSdNi/TjmcSAY5VdH/HwKc8e4y++pnIP1qzjEFpoFipyhxoGDT/6nRWCMjidLr8UPRWuNti0+KAUFBRsTrb6X+KBsOuIIjOr5R8tz3OJxPgvjugLB7f1XSnWesmujMdFBuTjlmqIznFPnqKrclgYIdeWMg1anFY9J27r2bDIwEgdCoyqMKu//wQq1Yr9y45T7RBvUOqwc2LjLEzkwY1RnHLwfR6u1M1CsYKI1jDHxbCBBWklS5OqMqzr61dSqgrEGrecw1QaTbCXIeqMu59DUFWrFQM7BaH8WkaDWGq0xbvViIQfnbFwpBWvF1YH7t9LZalQw9uJWCGFU184HhYBKVXEVJ2TVnWjtVnUkW70A4vZWze5+CM6tTeU4TH2Ww6kxTpbZioibz8ShqSp/H7h7Sil294M3UqetdnLpc/D1a1YYV5VzOiZ3T4m4OXCrQNbLYdZwnoctB++L++yz6U5/pwoKCgruTtTTCXD92sru1QbKtieegaWl4R/joFSVctE7o1GNpfEIRIS6rlDXNdq2RdtqiAhWJlOsrExiqnjxj8xhT7+qK4yXRqiqCkSEZlSDiDBdmbpzW4zFyh0raFsdDx6ESPJVUIzxqMF4NHLKqapQNxW0NphO28RhMvUrMQLxWz/BV0HVCktLY1R1BSKgGTUg9hysW7lYWZ5AT3U8k6fPYdTUWBqPwUyolEIzatxT97SFAFEO2th4ng3gVhyU5zAej1A3NYiAuqnBitGutDHV/8ryCtpJ6wwMa2c4NHWNTUsjsDdOmlENYywmkylEgGnbYnl5ZZADM6OqGKOlMZrGGZz1yHOYtM44s4KV5QnaaQvj2wj7K8r74DRNjU3jsbs/FGM0amCMjXMxmbZODtrEcSUOBFU5OTSjxjnJNhWqusJ0ZQpjLEQsVpYnmE5adySDN5wSB2fobVoaucgbdhystZh4Dk4OXQ6rGSjHPugwHHHofX7Ib1ZBQUHB3YMf7PoB8Ef/fU1l92oDBczuNQDnd0LO30QxwApQyj/K+7+NdZnF4Pw6hJV3ayQIXA4KcR6y/qUAxa4NpdyWhVKAdcm9RCn4A3sAWK8TCVCuDcnqi/LvGX7LRhwnl5DE1feOmaLcOBDG4lcvhJXLeaEUYqY1pSAqnXcclCIUdzkwO75KAVYgypUNcoi+v8E5lCnK0XFQsT8ohigDkK/DgYPjETkEOcaxOw7Cyq0WKeWcSY3nNsChOwblfEc9Byjv0EoSxxg0ungjqTuXKr4XVm7e2HiPZePvnbBq4fOyxPtBxbkQ+PshtAlALPkxGj+GxEH6clDK9+XuKbBbfQKryAHel2p1L1kFVGWLp6CgYINiHWkQ9moDxRqz4GREgrUE5ZOCaOUOUcuTgmmtoY2GCGC0ST4k3tkylAsKQhvtwpeJwMqACDBaJ78L34b1bQicv4ES10ZlNLRWKQqEeJBDWjlwykjE+cAQXJmY5MxoWMvQflvBGAujNUzYZrDBSIJT/EqgtJMDR7k4DsZvK0Q5BFnkHMSf5KwVDGsABFLOadboJDujzSCHGGnEDGOMi06BQDPB+lN4JbSl53MAOTlo74OilQGLuHF42Rlt3BaPmeWgRGC0G7cohogCK7fypeP2iklzOsTBz4VWJt4nANxqhzEQv6I1jwNEoDXF+1exhVYMa13f0cnWBFmGk5YXGyit1mhbfSe+TQUFBQV3P1q99t+nvdpAMdbCzHO48YZECPk02kBr7Y0DgDQ7BeB9SKJSDsZBiByJipmccQBnHGil3b9BqRrTUUgh8Znj4NowysBUBpZSJtvAISgkp+C6HHLFHI0sArRiEDmjxGYK0eRKEUkOIgLNGsZUbvtIFFiZ2G+umKNiHeCgtHEhsQSwZojYZCRZG2WRG2q5YjbGGQfsVzicweLGIYKuLOcYB1obl54eACkNJd5Q8+OOc5sbSYAzNkWgvZGUDDefk8asYiRZiqsqShso5QyM4DRsgpEkydjrGCiAO+RRubT6WnsOzGBlIHbYUIsGyioLKFqbYqAUFBRsWOj2XnKasVPicwwUQXYAnCsrVmD93/lLJLsm/uVDki0YRBIVpfXpx8VaFxEivt3QlnX+B8G503FwKcxDfSaay8GtMtjYLjwHwIVJi9jIIf2b+EUucziEz12Ibo8DnN9LGIeV5AeziAOIO+PvjM1zcCtXPiLGipevhe3IwoUId2Rp+xysW9WyyQgU69rJ+w6OyqGvyMEKLBJPF1HVnQ+IRO5BpqEvH9YV7wEnBzd3ZNNciG9D7CwHiAVZpHlzsdLZmEPfNhtDGu+q3wm7di/5goKCgnsS6/l92qsNlNXO4kFYqQjlCPEslfwsGoGksuE/Sn2kvrI+s/LeIzdedz349fysb8Rw4W5f8Mo7P3WFQJDIITbrPgtc8r+pyzkYBIkDEofeWNJ4qTMOgjifiDkcgjw7c9GTOUXZxuaztvp1AEh/ziR2EjlnDQUDoz/f2bTEsaUh9sfZrRtWnUL9OL9hZrJBUJ+b/zeuXFH6DHEKZuct9p1xyjl0uP4w34mCgoKCPYj1/D7t3QaKf839fI4SyN93lEH+kqRYZ5Vvt3w8pC9rS3wbSTHTwlfYBukq93wcQ8ZWzqtbLhobkUPe7qwcOoZY3qfP3rGQA/f773ER6fU59Ao3bjIWEbmG+R6ogzmc8uveuTSXzez9kMuua8RE46ln8M3ILa8DiQap+0x89dmxrYUDKKy+LF5DKQZKQUHBRsa9x0BZ5ce4o0SGlBH3lcG8J/thZdpX+MlokBnFtVob/bKIxsECA4WHDZZF7ebjni+HTMGLX4oYMDBm+5RY3wuytxqwmpGSr0Zkyj1sbKQPZmSfj0kG5h0DHOL8duTRHWu6B2RmdWehjPtj7a20rUUOQ/JdbJIXA6WgoGBjoxgowMyPe0iwFRWSP7Qv+am4qBohgMnCcnjS7rYR/w6fs0thLyQ+MyuBxPl3DBoNQRmyL+sTh0nP4HC8ZjmkMmn1Ip4mzHn7ybiYqwijHJxfR3jCZyZYobQFBXetW89/wil9vduNsfF0YX9GQDIY+oZR4M8EEY4GgTvvyGW5JRDIhvNuwjxy7BfZ3Do5MuDHE+UYxgbqyCi/JxwHcv361ZbUprseVjH6coj3YhiLdXLjbB4o50DZZz05QNI9yf606vRyfkCLEM57KigoKNiIWM/v015toIzGI4yXxnM/J3ZJsZRSGI2abqK2pkZbVTFRGykG+WiS6GhI6YC/qq4w3jR2mUOJ0IwbEBGUUi7ywrgU+FVVdZKDBQ7MjPF4hKVxAybXXlP7RG1V5TiwAhF3E5TlHCqF8dIYdR2SxflEbaxiFA+B0Crd5UAuYR0zY9Q0WNo0dqfpVj5RW6sxbSunQDnIIUUTRSNAOQ6jpbFLVAf4JGkKSk1ciLF15wMppVIUz1CyuKWxm5tKYdS4RG1KKQgEXLl8IB0OSEnzlFIYL43QNDUAQjN2HCo1jREvRATF8zk0dY2lTZ5DSNRmLarK5WThSgE+yiZE5bj5ZJ/cTWG0NMJo1AAE1E2FqqowVQpGOydlIgYr5aJ4BjjUdeUS7ykFVilRm/L3w7RtIYSUqM2EjCrzsWnzEvbZsnSXfccKCgoK7koI7iVhxqwWndyalGo4aZaVcunVffZQG5SoCBQrMHP6+fdL/ZwppPBvMEzg27JEUPB/G47Vg6NkbINdVltiim2JCJRipxSV46hCA351iJnSZ0qBPYc4NqVA5KJwWCmwT9TmOASl6PizH3uQjVIMsQxlnHGglJdDSKs+yMHVgzdEgtFAfktHKYbJ5iUo5mAshjaCXNgn7glyUGzdSc9DHLyRwkEOcMcGsO/Tlbe+DzPIIbaRzS37JH7s54SVArMCs+cQMwvnHPwJ2YRsXC7BHAnF+e4ni4uZgX35NC/h3nKh72wDhzCbq+dBUcpl5y0oKCjYiFjP79NebaCEPBHzYNmd/gvl83toneUg8UnSYg4S3c2D4lcORCxEGCBA6yr6U7B2GWG1NnEFJSTp6q+gQBgQhq4UtNFgm7aXtE+clvJe6JkVlJgkDe4wuLC9YxTDsoXWejZRW5ZenYgAJRBxRpLLB+MMiJDAThsNCHyyMzOzgiI25+AMAgKgldvi0lrHFRSdJ2rLVg5EuVBbxQStK5dED4Bit+KTcrHolKQsW0FJWVV9vhG/zcZKg4W7OUP83A5xCInaYh4UbyR2crFo7Q7qy/OghEy7KiVqM0o7v5KYqE3H3DraOLn2V1BCHhStXbJAiAKLQOXJ4kQ6HFyOGVnVSbbkQSkoKNjIWM/v07oNlL/4i7/Am970Jtx444245ZZbcNVVV+Gss86Knz/nOc/Bu9/97k6dk046CV/4whfi+8lkgpe//OV4//vfj+XlZZx66ql4+9vfjsMPP3xdXIxxStkhOBCGH3B3gnFM1OYVXvIh4XgtT6qVDBQX/SLikolZdkqXg3GgDeD/FXEJ42J7eWIuoZCvPWVY9b4MOm4h5MnebEpy5k8slDxZnDHRH0QbAxZKCszYVL+TvdTLJSRB08YpSQBKpWylgpQkLcnCc6AUrWR8tliCW/URJdEgCf13ErVl2WyhXKI2Y0xcldDZXIj0stnmHMTlSYHnqY07NNEYdllwTWagzOEggQM7gwYhcZsy0TgI7cc5jQbKLAdj3EoSuxujZyS5eQjz0eEAl6jNbcshJvKz1nbqBw4pUdvqBkoYQ0FBQcFGw3p+n9ZtoOzevRsPechD8Mu//Mt46lOfOljmiU98Ii677LL4vmm6Jw6fd955+OhHP4orr7wSBx54IF72spfhyU9+Mm688Ua3RL5GiIQf+3gl/UmSPvevVFZi2nWJnyH72yshASiWC/VSfcdBosLJ2wzbEyToXQeIZH49SNa+eOOGknKMD9GSvc//Te2k/pKRk5dFj28u01gO4sZAOQdfntDrH/HMmZm+yMfiSFaH8jFnshyYL4gXQxybIzvbXz5foTz8fFKnn46sZuYUWT95XwPzicS7MxfxepJLEFq8Psg9ME5jze/Txd+JXG4FBQUFGwvr+X1at4Fy5pln4swzz1xYZjQaYdu2bYOf7dixA5deeine+9734rTTTgMAXHHFFTjiiCPwmc98BmecccaauVCIZl1QgGKhPOSUfD33XmJbWVhp0Oy+agq1zUNY3d8ic8JYvUJK3VPkG/sLkTLhc2S80mJQoJ9evTFQjDDp8ghGW59DGmven6S24dsMY8Msh648MnEFGfo2Yv28jTBSos7f+cRS8uQJUsnaHZqPMMh0X7jSmQzydnpz0Ok/iD0jHsfWqZ/kh167YVyeUuLVu3/6r+wGjhxS+4u/3EkOBQUFBRsQ6/h9ult8UD73uc/hkEMOwX3ucx+cfPLJ+G//7b/hkEMOAQDceOONaNsWp59+eix/2GGH4YQTTsB11123LgNl1adF65/SfZrxkOo+T0UftkHC592VlbCAEa5ZWOucIq34lQWxnTo2ezkLw0J8GHLol5H359PaC2b6j0/01nFInP32kxWAUyr1mJZ9sI20YmFFACtgDm3amTpW0pgBijKymZyciF1bgdf8FYE0X6lcV37uvJs0V4OrO1YgnHEQ+C2gfJ7tIJecQxgLhaMLJKWo77xsXl8gwp3P3FykcnaA+yAHm15uy0/8fTBcL3DrrBIOfSd8SvyCgoKCjQiZdzzNAO5yA+XMM8/E05/+dBx55JG4+eab8epXvxqPf/zjceONN2I0GmH79u1omgb7779/p97WrVuxffv2wTYnkwkmk0l8v3PnTgDw+/vzB8sc1+ejTwITwTCBM58TEen4fpjcBwXOmdSy64vJRB8UIqTTc6OvQfeAOuZkLRpjYY2BEIPJpEPyIgcTyxh/jgs8B7fKE/ol7wuiQL6eeF+Lrg+KU25MOQfHESQwBO8samd8UByHcPYQnGIOHIw/pJEApXs+KLbviyN+ZcZtEREAq6z3N/E+JCr1meSQfDmik6w3DuDlzj6smo2Z8UEJjqnG9JyF/T6N84NJh+/l/j8i2XsbTrfODNmMQ/BrYjYAk/c7SQdQ2uz+CBzCdk3wgyJ4Tj5kfYZD8Isyq5/FEw5+LCgoKNiImHvA7wDucgPlGc94Rvz7hBNOwCMe8QgceeSR+PjHP46zzz57br2oQAZw8cUX48ILL5y5bq1XtnPbZED8oX/BCZMyJ9meg2pQJJ0cJF6ZkHdojIm9TDJUrPh6xnaVqqQnbgTFqy2IndHA2Wm1XcXcP1HZ1w+KmZ3RYLQBMXmjKFPQwegJKwLszxsKilnb6CRrlEockIyopJg9B2/sOQ7eOZQAY9gbSTYZd14W/QiaZCxyHDMB0Jqj7Jxi7rWVywEMMn4ujE+IZrgjPxl0kk0cRDgZal62WpmOIZGcW3unGYcDkkww9pSXj9taiUaJ9JyFvcHpjCTu3JPk7//8HpzLQRabKEbbYqAUFBRsWNytTrLrxaGHHoojjzwS3/jGNwAA27Ztw3Q6xe23395ZRbn11lvxqEc9arCNCy64AOeff358v3PnThxxxBFpK2UABADWwhKDwqm64TRjCU/Vtrv9Y8NJxDYaFQJO20Sd04wlbtuE027z04hDfVjbacOKBVtKJ9VKMCTQ2VbJTxIWMCwGThIWC7acTsW1+XZAdpqxzVwuPQdYBnEwhFIiMslllXHonmbs2iBxp/dyPO25f5pxvtXlt2cCh+w0Ywkc4udJoUvOgRmw/jTjIHffnpOvzeYxbRvFsQEgKxBO5QjOATiejmyzk4jDdlR2ojKY0z0g6X6w1m0Xdfrv3FsSDbJ4mnHgR2ErMN1L8zistoISo78KCgoKNiDW8/t0txsot912G77zne/g0EMPBQA8/OEPR13XuPrqq3HOOecAAG655RbcdNNNuOSSSwbbGI1GGI1GM9cn27eDRvOzZsYkacywTQ00DYiAqqqgqwqt1tA+78XKdIrJtHVPqkEpkk/25jOe2lGDymeS1T6baztt/XK+xWQygW5NVLaQbmIu29SQpgYRoVYKbV3BaIPWc5i0LSbTqdsm8UoJhJhKXimGjEeOAwDt2+pymMa8KEMcTF0BowZMLsmaqWtordH6HCSTaevlYDoc8oRzdtS48QcOTGinOhomk8kUbas7K0mJA8FUNWTUgJlQKQVdV7DGusypAky1xspkCmNNMjDifPrsvZ4DAOi6BiuCnuq40uA4tB0OIJ+ojSjKISRu000Nay2mUw1AMGk1JtNpykkjzt8lpKRXrGBHNUzjMupWdQWlFFp/D4l4DplcxHNgn13YVI5DFeemhhXrZCeC1suhy2Hxl/uOJYNdu3cs/lIWFBQU7CHsvmP3msuu20DZtWsXvvnNb8b3N998M7785S/jgAMOwAEHHIDXve51eOpTn4pDDz0U3/rWt/Bbv/VbOOigg/DzP//zAID99tsPz33uc/Gyl70MBx54IA444AC8/OUvx4knnhijetaKf7vmc2hUPfdz8sqdiVCzwihkHiVGxeySiol7Kp0ag6k1cVVGfPBIOFNFMaFRCsqfj1KxW6Zvw1OuCKbGQIf3IUw5cIAzSkasQJRxEOvqeA6tNTCBQxgHCEzubJZR5TnAZeQjEFpr1syhYsZYVYMcEOVgYcTChvBW6nJolIrjr3z2U22S7CIHSFLswcgBoWbGSCknV8/BirhxANDWYmJM4hCicAY4wHNgEHSYPwhaY5xizzggn4uMQ7g/rEjk3Q5xyGVJjFop1IFDMHS8HNx8amibVrLCPcX+nqo8B7UKh+h4Hby2F2CffTdjeWnWmC8oKCjYCLhDT9dcdt0Gype+9CU87nGPi+/D1su5556Ld7zjHfj7v/97vOc978H3v/99HHrooXjc4x6HD3zgA9iyZUus85a3vAVVVeGcc86Jidouv/zydeVAAYD2BztBPDyEGDxKBEUAkUvhTgAsMYQZ2itigTM0tBhYQVRqIZyVQS4DrVLuXxDEK6ZcEbd+1cGG/BleKzqlCBAzmFXGgWCiQgK0WLRh6yfm5aAYlqvIpWKPHMhFFGmbFHEbfDdC/gxIUuwggBlth0MwUJx/SLsGDsQK4g8LFG+wJQ6AtrmBMsyBWYEBGHKyDNznyyGF7oYVpTAH4g8n1Nm4W2uc8Smrc3AHG7Lj7uu03mgz0p3PnAOYAX9P3XkODJu1l3PQItDBYM3mcxGmusW0l3eooKCgYKOgNe2ay67bQDnllFOiwhjCpz71qVXbGI/H+L3f+z383u/93nq772A2b0T2GWbzXYS/8xNsrU+CFvNbxLpZTg/0TvMN7SLl7ohlQ84LBPOk37+vxwR3cq6dOek29N0ZJ6jXBqUThbM6Lo0/IU+XMciBenlF/EG5d45DqsO9eaEBDpzJIZ7YC3KnF6+BA/dkyZxxkW7ZQQ6dcfT7cxNIts8hGGpDcshku04OTL02A4fO/dflsAiBQ0FBQcFGRMittRbs1WfxjMdjjNawxaPQ3eKpmFERQ2fbK5U1mBoTVwGspKRlbivCb/H4J+aa3WpP2JawIlBGuxUUkZgBNN9eaVhhpFxorePgVlBav70ysQYqbjP5HCP+aZs8h1HGoWK/epFtZVR+e2Ueh5oZY781pPy2gunJQUXH2WEOnS0e79PRZhzUPA4IWxl+eyVy6K6gtNZC2bS9ElxD2St31d9myjn4Pitj4irMEIeKGWNWcW7nc+hur3A0chkNu22esG2omOKqi0jiEFbYhjiMOG3xNH4FJW51iQul7nNYhH322YR9x2WLp6CgYGOiuju3eDYSqrpCpRZv8QSfhToqE0LF3ofEWhfVAYFYgmXqbfGkJ37lfQ6Uf1qv/Wm+COfAiMAyuUgOyRw7IwdnDNS5kcQMti7SBxBYyxDD2ZJ+5hzqFWmlKlSeQzBQiE3kHDhEXxqErZk+B+dXU3sOFLYiLLuw1gUc6mgcUDQOoDL/HSYXvdThgI4xUKsKDEAxR+NAjJODywVCoCEOoOhcG/w/am9oJA6A9RzsAAfucAhjYp90zkVUwRpYS2ArMHM4OFmylyW77S9rwT5nios6SpzcFk/GIdxTxGACaqU8hxSaXrMLdc/HsQhNU6MZzTfaCwoKCvYkNG+gKJ67E0YbGOG5n4enVUUW2p9sTCC4E//CCoozULT1eSs6PgeuqKVQXiD+qZ2sM1B05qCqrc9XEVYe0H1iZpaMgwWIMx8U969ewEGIwYLo9wBvJGhrYIGYe0OHVZygmAmQsDXCzreBQC4nDHPHD8ZY4xw9g8EjmSwjBwG8Hwu8geKcQ51xp41xETheKYeVA4l9CpQN7dkOB8Adiqczh+U+B2XdyhORO1GaWNJKklhY+IRlAysojgNArKA9B0sEspw5qCY/GiN2kANbN58kTg7ifYryFRTTc1j2i1Gw3lAjsu6sQrJubnwocu6TpKOjbuKwCG2r0ar534mCgoKCPYlW340+KBsJ2hioOXvyYQVFvFIiVlBeQYAYYGechCgep9CCopfojBgdGMmCRaJjam4ciDdIkoGS6hMINhgprKBCsi5yTpFmQCmmp+UuByELJQJQZqBQiF5JHDpKEdkqDpxBoj2HIQMljMH0OASDRsiCRQEkPQ7JqVX3I4l8C8EhlZihfLI6oeAcGgwU5/RrOtFMuSxdHRYgOHtQj4NA0inEIgjZZIBkLBILdEiY5zl1jANvJM3joIigWUDWyUGYIUSdbSUdOKC3goI0bmegDHMwGYd8Pheh1RptWwyUgoKCjYl2IyVquzsREnQNfgZnAyA8OUvKbWLhztTpJPuS7AXELR5QyH/q2/B+ABL+8/VD7pR+O0QAC/xJvBZWnHK1jJjjo5NwLLQxh4O14rO6+hBggU9wlp/v0/WDcSc7UzwNOJ0HhGylJLVlfUK4Pgd3Kk92Hk7gAH8GjO+vK4OweuHUc+TpfTIshVWW9LIxgZ7t9OGICATsOThGaTwpYiaFi/dXUJIcJZx47Tnkchg8EwduNQsiLgKKsuvWwjLP1Olz6NxPgUO8tyhuaQWjd7ad1b4TJVFbQUHBxsWGStR2d2JRFA+QR9akCBLq1CO402EprWoA8GsusQ//hy+XIjDyz1PERao7y6FbL5b3FkB3PLMc8rGkiJLweVLiMXZEwvu8v1QPOQchSH4iMrpjoawd5KLK2wJiHSJ/SvQqHDqRMBLaoWwcYd0hjS0TbPgnrphRr68hDggyzOtH/kmWUQaUzQZl/cS56N1nkWw23xkH5GX7ssksa4r/SRoLFmO170RBQUHBnsR6fp/2agMlPyF2bhm4J/+8bP9EXLdSMLv6EernfbmThbOVg/zpNq6GJB+U0IbM4xCe2jHw1N7n4J+43UKQwIpXp52n9PltuFe6PrtyNPTe1bdwIcQprbzbL3Pv+xzmyzL0m5yILUSos0LQOQ044zAjy3A+DqSzOjTTRl+WAggjHn3QkWG+mpVzCiTiiotfbfIGjIXb7okrWFmbQ6sfNuMgfnXK9jnIHA4LEI5PKCgoKNiIWM/v015toFhjYBY8UzrnRfdMr1mg2F9jAayFFueQ6fb7c3+BXKH5p2QrMArpqduHGesszNiYkJgrhcbO4wDPwWQcnIPlbCbZyIFctFBwkiV2T9l5sriQoj5mUO1xIBZU4hSiyh1UxZ3sayT3/0iJwYI/D0jAIr5vx8GCOrLTnYR1Ep/8LbmQb/LOwrnTbO6gmnPoytJvUxHBiOvb3QjSSZJmvUxTwrouBwaBxbUxw6Ejh5RRd2Y+vR8Mx+0ngZDLTBxCivN7KucQHZQtQankwMzsZG7E+TXpORwWQbcGmsthgQUFBRsT5t7ig+KibhYYKJQUEFuBZr96bkMEjTNSRCQqpJS9FN7vwjmYglz0i0QHVaegnQLKnGRzA0USBxs5+AiaPIonKkXTcTaNqxfkHEyFLFgpdypuj4NT7M5A0QMcgqMtBQ7eYAE7oydk1O046mYckiwtiFUyDjwH7eUgCzgkxWyhQw4SzBoHOjeSBjkQNKe+idxKiM6MotzBNeYPoeCgCpBlKE75YQKHJIfMSRZp9aJzTzGioQayUP6eCr4sybjo+qBEDsTOSOpxCI7bHSdZdFfl5kFrjZaLk2xBQcHGRGv0msvu3QaKXW0FJUXxMIt76obfA2OJ0Sr5U3tQRjb6ADgFAhIXBRQiR6xb2s8NFJtFXIStDOdB4BShocQB1imksIICz8FaA5NxALKoDyIYUI8DeQMltWWjUkwcGHD1cw5EIMkMFAkcbMz9McTBPeUPc7Br4sBx9SJwCMZBZ/ViDgcBQXkOwUAJHIKBYjvGQeIAP59E6KygcMZBMg5pRS2sgCQOLABJMFCc06zpr+IMcJDIQdbFYS0rKMaYdR1nXlBQUHBPQpt7yQpKdEiYB/IOA8Hv0XsqRj+ErKHkY+BVUdje8AoUoGyZ3rUpoQ0RX8//jTzyxG9lpJ6SovT1wvW8DckICjlFmD7LOSR/hTQWpPZzDhL+TorSyTDz84h9S/q8x0H82Cm7HmQo8zhAnGKP85BNYeg/21LCAg4gZLLwzr2S6kR5xiGlaxIdUdOqSpz/VD2TZfD/QJKlr5fklBxr87no3prpniKiNKbQlmT1BjgMNDiIeE8WFBQUbECs5/eprAUXFBQUFBQUbDgUA6WgoKCgoKBgw6EYKAUFBQUFBQUbDsVAKSgoKCgoKNhwKAZKQUFBQUFBwYbDXh3Fs+nA/TFS84+Wp5AAiwgNM0aqAhGgiFEx+0PpXPDmxBpMTTpBN8bKkD9BlxiNUqh8jola+URtJh0wODU6HZLno0r6HBqlQCBU7Di4XBeOw9RzMEMcQFA8y4EAtL5P4znEfC4DHGpmjJTK3ivHwYe2djjECJIuh1op1J5D5U8zbuO4BdNw8KKE3B0p/b0iN/axl4Nix8GKoPUHL7bWYmK0DwHPEs6FJGtMaFSFyiesCxzyk4Sn+WnGkiKXiFxem5oVRkpBednUapbD1HYP+4OPwAkcalZo/H2gmKGY/anOuRy6HBDnAqiIMVYVFLuA9qbHQYtFbWY5LMJ+++6D/ZdG6/kaFRQUFNxjGLVT4KtrK7tXGygP/aVnYmlp0/CHwbBghlKM8ajBpvHIKaNKoWlqTKctWq1hBVhemWB5MoUxPveEz3PCzGBm1LXCeGmMunbKvRk1IAImK1NY67LILi9P0LYaxrhcIoKMAwcODYgITV2hrmtorTGdthAAy5Mpllem8RTcEF7qOBCqqsLSphHqugKBMBrVICZMJq3L+2Gs4zBt3RiMMzqYE4dRU2Pz0gjMjEoxRqMGbasxbTVExHGYTF0SPGNTrhFmKM9hvNRg1NQACM2oBjNjOpnGPpeXJ5hOAyennJnJ81AYNRU2j8dOyfu5MMZiMm0hIphMW9yxMvFycDlNAIDCOJTC0qYRmroGEdA0NVgpTKdTGO1ysCwvTzCdaJdXxqegJyIo5doY1TU2LY1Q+fZGoxrGWkwnjsPKtMUdkym09gZCPp/K1RkvNRiNGhCAuqlRVQrTSQttDMQKlpcnmExbWH8/hHsq3JNNXWHz0hiVUmAmjEcNrBVMJlNn4LQau1cmXQ6rxOideOzBuO/BW+6aL1hBQUHBXYwf7NoFXP3eNZXdqw2UAx/449i8eZ+5n7NXBJVSWFoaYZ9NS844aCqMxg0mK1NMp04x715ewR13rLhEV16hEFFso25qbNpnCXVTgYkwWhoBRJgsT2CNhdYGd+xadkrSBONAXH3fxqalMTZvcoq5aWo0owZt22KyMoUIcMfyCu5YnkBr7Q0lZxywYrBi1HWFTVuW0DQ1yHNgJkzumLhVEM+hnbTRwBARMLFXqozxeIQtm5cyo2uE6bSNinn38gR33LHilKI3lAgEVgRWCnVdYWnzGKNx44ykpQasFCbLK46zsbhj17Iz3DocCEopz6HBPpuXoJhR1RXG4wZaG6wsTyEQrKxMsXv3MtqgmI0zDpTnUFUKm/ZZcsYBAc3SCEopTJeTMl/e7TgYbWGMgUgwUFQ0zPbZvIRKMarKycFoi5WViTPUVqa4444VTP1cOA6S7ikvh/HSCASgGTWomgoTz8FawR27lzFZnrj62q2skDdwKuUMs302L6GuKijFWFoawViLleVJNJJ27VpO94PnsAgH/dhWHHTofnfp96ygoKDgrkKzc+eayxYflIKCgoKCgoINh2KgFBQUFBQUFGw4FAOloKCgoKCgYMOhGCgFBQUFBQUFGw7FQCkoKCgoKCjYcCgGSkFBQUFBQcGGQzFQCgoKCgoKCjYcioFSUFBQUFBQsOFQDJSCgoKCgoKCDYd1GSgXX3wxfvInfxJbtmzBIYccgrPOOgtf//rXO2VEBK973etw2GGHYWlpCaeccgq++tVu4v3JZIKXvvSlOOigg7B582Y85SlPwXe/+90ffjQFBQUFBQUFPxJYl4Fy7bXX4sUvfjG+8IUv4Oqrr4bWGqeffjp2794dy1xyySV485vfjLe97W244YYbsG3bNjzhCU/AD37wg1jmvPPOw1VXXYUrr7wSn//857Fr1y48+clPhjHmrhtZQUFBQUFBwV6LdZ3F88lPfrLz/rLLLsMhhxyCG2+8EY997GMhInjrW9+KV73qVTj77LMBAO9+97uxdetWvO9978Pzn/987NixA5deeine+9734rTTTgMAXHHFFTjiiCPwmc98BmecccZdNLSCgoKCgoKCvRU/lA/Kjh07AAAHHHAAAODmm2/G9u3bcfrpp8cyo9EIJ598Mq677joAwI033oi2bTtlDjvsMJxwwgmxTB+TyQQ7d+7svAoKCgoKCgp+dHGnDRQRwfnnn4/HPOYxOOGEEwAA27dvBwBs3bq1U3br1q3xs+3bt6NpGuy///5zy/Rx8cUXY7/99ouvI4444s7SLigoKCgoKNgLcKcNlJe85CX4yle+gve///0znxFR53046n4RFpW54IILsGPHjvj6zne+c2dpFxQUFBQUFOwFuFMGyktf+lJ85CMfwTXXXIPDDz88Xt+2bRsAzKyE3HrrrXFVZdu2bZhOp7j99tvnluljNBph33337bwKCgoKCgoKfnSxLgNFRPCSl7wEH/7wh/HZz34WRx99dOfzo48+Gtu2bcPVV18dr02nU1x77bV41KMeBQB4+MMfjrquO2VuueUW3HTTTbFMQUFBQUFBwb0b64riefGLX4z3ve99+LM/+zNs2bIlrpTst99+WFpaAhHhvPPOw0UXXYTjjjsOxx13HC666CJs2rQJz3zmM2PZ5z73uXjZy16GAw88EAcccABe/vKX48QTT4xRPWuFTCawVT2/ABNIKVilYElgmMBEMLaCEQszmcJMW4gI7MoEdrICYyyssbDWAkQAE6AUWAxMRWBbQYhgSEAEmOUJrBUYY2AmK7CTFta6NkTEcWAFUgzDgGFAmGCsca9Ww0ymEAHMxHPQxvGw1o1DMaAYxlawtavLRDCwEGaYlYnrUxvYycSNyyQOQk4OpNjJoSKAGMYoGAjstJ2Rg+1xkIyDUYCFBUAwZCGKYZYnMNbCGOvlMMsBit18QGAUAcxg7ebCagO7MnWfrUxdG9rA+jajHJhh6wqmIhixIPJcKuXqhTorE9eeMZEDEfl5YFixsIpgFIMqJwdjDMzK1MlhknEwJnFgdm0YDaPg7gPAcbGV61cbWCuwK04OQZYdDophxcBWBKsrJ1sSJ7+VieMwbTv3w1rC8O3KBHZ5eV3fo4KCgoJ7Cuv5fVqXgfKOd7wDAHDKKad0rl922WV4znOeAwB4xStegeXlZbzoRS/C7bffjpNOOgmf/vSnsWXLllj+LW95C6qqwjnnnIPl5WWceuqpuPzyy6GUWg8dfPPtb8W4auZ+zuQMEsWEkVJYqiowgIoZtVJojUFrLQTAijZY0RpGBNa/iAhEgCJCxYxRXaFmBgGoKwUCYaoNrAiMCFZaDW1trC8iiQMRRpXCkqpABNSeg7YWU2MgACbaYMVoGOvasxAQyNtJjsO4qlApx6FRCkTk6ovAWMGK1mhNlwP5/hURGqWwqaqc3cWMxnNoPYcVY7CijTM2cjkAYPZyqCo0yi2+BQ6t8XJYhQMTYaTYzYUfU6MYxkqSgzFYzjlA3HyCwExQxBjXCjUrJ0ulwJ6Dsa78pHUczBwOjeegsrlxHCwEgomXgxbrjA2gO5/MGFUKTaXc/cAKSqX7wYpgRRu02sxwCPdDzYxNdYUqcKoURAQT7ThMrcVyqx0HEVhxHBZh6eB9MdlnvK7vUUFBQcE9hR9MJ2suS7LaL94GxM6dO7Hffvvhv259IMY8bNSQfzERFICGGGMmEAgVEWoitCLQIk4hWcFELAzglEGvjYoII2JU3pG3IQIIaL3ysiJYkaRQrQACt4fGRGAAI2KMmMCeQwWCgaCdw0GysUQjx3MgALU3oFrryhpx9bUkTn0ODRHGzGB4uTBDi+MAABOxWLFufcTM5UCoyRkoNRGYgGngAMHEznLozgVhTBzf18SwEEx92dZzMPM4gNCwm0MCRQ6tFRi48hNr0S7gUHsOKsrFcWh92alYrPj2hjgwgBEzanLGYuVl04qFFTgjaRUOFRGWFnBoRbBsrVvl8u2s9mV90KjBofW6njsKCgoK7jHsNgZP/L83YseOHav6k5azeAoKCgoKCgo2HIqBUlBQUFBQULDhUAyUgoKCgoKCgg2HYqAUFBQUFBQUbDgUA6WgoKCgoKBgw6EYKAUFBQUFBQUbDsVAKSgoKCgoKNhwKAZKQUFBQUFBwYZDMVAKCgoKCgoKNhyKgVJQUFBQUFCw4VAMlIKCgoKCgoINh2KgFBQUFBQUFGw4FAOloKCgoKCgYMOhGCgFBQUFBQUFGw7FQCkoKCgoKCjYcCgGSkFBQUFBQcGGQzFQCgoKCgoKCjYcioFSUFBQUFBQsOFQ7WkCPwyOee4LsGm8NPdzIoJiRqUY47rGpnEDAqGuFJq6wlRrtK2GALhjMsXytIUxFlYsrBUAADODmVDXFZbGDWqlQERoRjUIwGTawlqBMRbLKxO02sBYX18kclBMGDcNNo1qMBHqqkJTV2i1wbRtIQCWpy2WJ1Noa2HtLIeqUlgaj9BUnkNTgZgxnbSw1kJbi+WVKdpWw1oLM8BhVNfYPG7A5OQyamrHQWtApMPBdDgQmBlVpTAeNRg1FQDHQTFj4jkYz2E6wIGZUDFj5OdCEaFSCk1TwRiLyVRDIJi0GnesTDwHgbW2w0EphaVxg6auQACapoZSjOm0hTYWVsTJYdrGMUjGQTFjVFXYPB5BMUF5OVgrmExbiAhWWo3lyRStMR0O5OsrxRiPGoybGiCgritUlcJ0Eu4hx2E6bWN9EQGIXJ/MaKoKm8cNKlZubkZdDhOtcceK42CtwHgOi3Di/Q/BUQdvubNfqYKCgoK7FTt37wbOesqayu7VBsqBj3oMNm/eZ+7n7BVJpRSWlkbYZ9MYRIymqTAaNZhMnAKxIrhjeYI77liBMcYpOWu9QnNt1E2NTfssoW4qEBHGSyOACJM7VmCtQGuDO3bd4RSSsbDGKSRmjgpt09IYmzeNwUxomhrNqEY71ZhMphAB7lhewR3LE2itYYxT9gQCKwYrRl1X2LRlCU1Tg4gwWmrAzJjcMYGx1nNYRjtpYYyBCRyIoJRySnU8wpbNS2Bm1LXCeDzCtG0xnTiluNvLQWvj2ogcCKyUM9Q2jzHyxt5oqQErxmR54jgbizt2LWOyMoWdy6HBPpuW3NxUFcZLDbQ2WFmeOuNgMsXu3cve2DOwRiAAWHmDs66waZ8ljEYNiIBmPIKqGNPlqeNtLZZ3Ow5GJw6Ucxg12GfzEirlja6lEYy2WFmZQLxxsfuOFbR+LqyxEEi6p7wcxksjZySNGlRNhcnyBFobWGtxx64VTFa8XLTJOLA3zGrss3kJdVVBKcbS0gjGWqwsT7wcWuzavZzuB89hEbb82FaMtu17137RCgoKCu4ijHbuXHPZvdpAWT9o4E/Kr663FYAIiErjTrS0sMpq7a21vwXl1kv5rmqEev/ObSrJlwAv76E68zjMXr8LpLa22r3bbbFpcdcRoCEZFRQUFGwArOf3qfigFBQUFBQUFGw4FAOloKCgoKCgYMOhGCgFBQUFBQUFGw7FQCkoKCgoKCjYcCgGSkFBQUFBQcGGQzFQCgoKCgoKCjYcioFSUFBQUFBQsOGwLgPl4osvxk/+5E9iy5YtOOSQQ3DWWWfh61//eqfMc57zHBBR5/XTP/3TnTKTyQQvfelLcdBBB2Hz5s14ylOegu9+97s//GgKCgoKCgoKfiSwLgPl2muvxYtf/GJ84QtfwNVXXw2tNU4//XTs3r27U+6JT3wibrnllvj6xCc+0fn8vPPOw1VXXYUrr7wSn//857Fr1y48+clPhjHmhx9RQUFBQUFBwV6PdWWS/eQnP9l5f9lll+GQQw7BjTfeiMc+9rHx+mg0wrZt2wbb2LFjBy699FK8973vxWmnnQYAuOKKK3DEEUfgM5/5DM4444z1jqGgoKCgoKDgRww/lA/Kjh07AAAHHHBA5/rnPvc5HHLIIXjAAx6AX/3VX8Wtt94aP7vxxhvRti1OP/30eO2www7DCSecgOuuu26wn8lkgp07d3ZeBQUFBQUFBT+6uNMGiojg/PPPx2Me8xiccMIJ8fqZZ56JP/7jP8ZnP/tZ/O7v/i5uuOEGPP7xj8dkMgEAbN++HU3TYP/99++0t3XrVmzfvn2wr4svvhj77bdffB1xxBF3lnZBQUFBQUHBXoA7fVjgS17yEnzlK1/B5z//+c71ZzzjGfHvE044AY94xCNw5JFH4uMf/zjOPvvsue2Fk16HcMEFF+D888+P73fu3FmMlIKCgoKCgh9h3KkVlJe+9KX4yEc+gmuuuQaHH374wrKHHnoojjzySHzjG98AAGzbtg3T6RS33357p9ytt96KrVv///buPcaOsu4D+Pf3PHM5Z7ftSql0uxSxSgFrL2Kr2ErkUsAgFxUj3oVI3qRIkUaISvmjzZtAG/MKImqNSLgEyfoHVPFVLiVAkRBECg3bYiqGIoW09hWh3XbPOTPzPL/3j5kz3e1e2i3Ini3fT3LSnjPPzPnOb+bs89vZc3anDrmNOI4xadKkATciIiI6fI2qQVFVLF26FPfeey8eeeQRzJgx44DrvP7669i2bRumTZsGAJg/fz7CMMS6devKMdu3b8emTZuwaNGiUcYnIiKiw9GofsRz+eWX4+6778bvfvc7TJw4sXzPSEdHB6rVKvbs2YOVK1fiC1/4AqZNm4aXX34Zy5cvx5QpU/D5z3++HHvppZfiqquuwpFHHonJkyfj6quvxpw5c8pP9RAREdG726galDVr1gAATjvttAGP33bbbbjkkktgrUVPTw/uvPNOvPnmm5g2bRpOP/10/OY3v8HEiRPL8TfeeCOCIMBFF12EWq2GxYsX4/bbb4e19q3vEREREY17oqo61iFGa/fu3ejo6MDN/3UNqlFl2HFGBEYMAiOIwxBtUQgRILQWURAgyTKkzkEVqKUp6kkKpwrnPbwqBAIxAiuCILCoRCFCayEiiMIAIkCSZPCqyLxHvZEizfL73isUWmawRlAJA1SjEAaCMLAIA4vMeSRZBlWgnqaopRmc93Be4YtDY0RgjCCwBtU4KjKgyCBI0gze57lrSYo0c/DelxlEBLbIEAcB2uIQRgSBMYjDEKlzSDMHVUUtzVBPU2TDZrCoREH+3MgzGDFopGmeQRX1RoJkyAwCawyiIEBbFOZ1tQZRGMA5j0ZRh0aWoZYMn8Eag2ocIgoCQIAoCGCNQZJlcC4/drUkRVrU0qvmb8KGwJr8eMShRVsUwRbbi8MA3isaaQZF/m8tTZG64TNUohBxlNchCCwCa5Gk+zLUkzS/7xVefZmhuX5kLdqiEIE1sFJk0CKDKhLn0JckSIvtOa8ARn65zpn2HkzvaHvLrzEiov+E3loNJ37vO9i1a9cB3096yJ/iaQXb//i/qJjhr7qICAwAK4JYBBVjIBAEIghFkKoi03wCrXtFQ4uJAPn7bQCBERTbMIiNQSACARCa/N/UKzwUToGG98g0v+8VQDExGwAWgsgIKmIgxfMHInCqSIsMjSKDU4UHBk6Kzf0oM+TbEBGk3pfjG+rLTKoom4NmhtAIqmJgRGABRMYgKzPk+3CgDJExCMXkdRiQId/vg8lQKTIEAEJj4FWRFHVIvKI+TAbpV4dQBCjqYESQ9VunPBbF/bI5EOQNogiqxsAWuaJ+GdCvDtl+GWS/OkRFHYKiAUvVwxX73PAe6QEyVIrjuX8GBZCqR90PzjCS91RjuDA84DgiorGw12UHPXZcNyg+y+DN0F+0mx9YVhEoAC8G3uQTu5fiVkweCoV6haovJxJfbMMDQDEBqphyeyoCFcD7fZNP87tkLSfmvLlRkXxMkcE0M0CKST1fxxffaTcno+aeNTOISL4fxUTtRSBFBi3W2Zdh3zYGZhB4YwAU2ygmxebkp+rhvR+w/v4ZtFmLIoPpnwGar79fBmmuX9bOlJm8mH51yDPoMBmMCBQCb6Sog+x3LIptFFdO/AgZfNEsol8G7ZehefWnf4bmOeUBqDH5NspjIUX999VhpAy+qIMfNkNRy/6PDXm27+MTAzf+LooS0bvEaP6kDf+aMREREbUcNihERETUctigEBERUcthg0JEREQthw0KERERtRw2KERERNRy2KAQERFRy2GDQkRERC2HDQoRERG1HDYoRERE1HLYoBAREVHLYYNCRERELYcNChEREbUcNihERETUctigEBERUcthg0JEREQthw0KERERtZxgrAO8FUcu/CSqYTTkMgEgIrAisGIQBxbVMIBAEFqD0FqkziF1HgpFPctQTx2cejhVeFUIBEYExggCY1AJAwTWQgSIAguBIMkyeFU4r6inKVLn4X2+PlBsw+Q5KkGAShDAyL4MmfdIMldkcKhnGZzPM6gq0MwgAmsNqs0MKDKIIMlckcGjnmbInIMrMigUpl+G2FpUwzCvizGIgjxD6hxUkdchy5B5hVdf7IdABLBiYG1eh8haoJnBCNKidl4V9SRD4vJM3g/OEFmLtjCEEUFgBFEQwPWrQ8M51NL9M+THM1/HII5CRNbkxzOwMEaQZg7OFxnSLL/fL4NAYE2+jTxDkO+TEcTNDEUdGs7ltfS+2C/kx7N5LIrzIQoCCIDQGlhrkWQZnM+PXT1Ny2PjvcI3MxTn1OAMFt7n+68KJM6hlqbIvJbnpEJHfE1M7XwPpk2qvj0vMCKit1lvow78z4aDGjuuG5T3f/0StLVNLO7lE2lJUE7qgbWoVmO0t1XyySkMEMURkkaKJE3hvaKvVkdfrQHn8knOOYUIYIyBDQzCMER1QgVRGEBEEFdjiAgatQa898gyh749NSRJCu88nPNQ7MtgrUFbJUZbWwVGDKIoQByHSNMMjXoKD0Wt1kBfrYGsaFJ8PivmGaxBEAZom1BFFBUZKjHEChp9/TLsrSNtpPl+OA9V5I1BkaESR5jQXoU1BkFgUanESNMUjUYKVZR1yJwraqGQIoOxBmEYoNpeQRxHeaNWiWCtQaOWlM/Zt7eW75PzcN5BfZGh2I9KJUJ7W54hDC3iOIJzDvV6kk/sjQR7++p5g+E8vPdFHQTGWgSBzesQhxAI4koEGwzMUOuro1FP4JrHwivEAIGxsNYgjkNMaK/m9wODSiWGcx6NegOqQK3IkGUZsiKDolnLPEO1rYJKNcqbpDhEEAVo1BpwmcvPqb11NOqNfB+KxlUE5TkZRXmGMLB5w1ON4Z1HvZHkjUqSYM/eenk+NI/nSD4wqxPTuzre5lcaEdHbY/fu3cD/XHdQY8d1g2IqVdhqZfjlxYRorYWtxgiq1fyqShQgqERwNoFNQhjV/LtYGMA5qPOA9/l3y81tRCGCahU2yq+ABNUYEIEVC3EemjlYJ7A2AZwHnIeq5us3t1GtIKhW8isyUQgbR/BpCmsSGAUs8gyaZfk2ms2BzZsDGwawbVXYKMz3oxrDGIGDhfNFBi/wJgCc25dBTNmg2EpeB2MMgtAiqMbwSYrAptB+ddDM5dvwPr8KZPPmwIYBbLUCW8kn5qAa5Y+LLffbeoGVBDIgQz6x5xkiBEWDYsP8WCBzsBJAobAmyPcjK56/aPZsM0NgYatVBEWTZKtx3jRIABTrWM2PDTKfH1Mtrn40M8QRbLWaNwtBXgfJPDJj8zoYi0AFPstgXTOD7jsfwgC2rQJbjSEAgjhCEAVwYoHMQbwWGQzgPCRzkCJDeU5GYZ4hCPIc1RjOe1hjYVSRBXkdyvOhyDASiWIgjN/W1xkR0dtmFF+f+B4UIiIiajlsUIiIiKjlsEEhIiKilsMGhYiIiFoOGxQiIiJqOWxQiIiIqOWMqkFZs2YN5s6di0mTJmHSpElYuHAh7r///nK5qmLlypXo6upCtVrFaaedhs2bNw/YRqPRwBVXXIEpU6agvb0dF1xwAV599dW3Z2+IiIjosDCqBmX69OlYvXo1nnnmGTzzzDM444wz8NnPfrZsQn74wx/ihhtuwE9/+lP85S9/QWdnJ8466yz09vaW21i2bBnWrl2L7u5uPPHEE9izZw/OO+88OOfe3j0jIiKicWtUDcr555+Pz3zmMzj++ONx/PHH47rrrsOECRPw1FNPQVXx4x//GNdeey0uvPBCzJ49G3fccQf6+vpw9913AwB27dqFW2+9FT/60Y9w5pln4qSTTsJdd92Fnp4ePPzww/+RHSQiIqLx55Dfg+KcQ3d3N/bu3YuFCxdi69at2LFjB84+++xyTBzHOPXUU/Hkk08CADZs2IA0TQeM6erqwuzZs8sxQ2k0Gti9e/eAGxERER2+Rt2g9PT0YMKECYjjGEuWLMHatWsxa9Ys7NixAwAwderUAeOnTp1aLtuxYweiKMIRRxwx7JihrFq1Ch0dHeXtmGOOGW1sIiIiGkdG3aCccMIJ2LhxI5566ilcdtlluPjii/HCCy+Uy0VkwPjm30AZyYHGXHPNNdi1a1d527Zt22hjExER0Tgy6gYliiIcd9xxWLBgAVatWoV58+bhpptuQmdnJwAMuhKyc+fO8qpKZ2cnkiTBG2+8MeyYocRxXH5yqHkjIiKiw9db/j0oqopGo4EZM2ags7MT69atK5clSYL169dj0aJFAID58+cjDMMBY7Zv345NmzaVY4iIiIiC0Qxevnw5zjnnHBxzzDHo7e1Fd3c3HnvsMTzwwAMQESxbtgzXX389Zs6ciZkzZ+L6669HW1sbvvrVrwIAOjo6cOmll+Kqq67CkUceicmTJ+Pqq6/GnDlzcOaZZ/5HdpCIiIjGn1E1KP/85z/xjW98A9u3b0dHRwfmzp2LBx54AGeddRYA4Hvf+x5qtRq+/e1v44033sDJJ5+Mhx56CBMnTiy3ceONNyIIAlx00UWo1WpYvHgxbr/9dlhr3949IyIionFrVA3KrbfeOuJyEcHKlSuxcuXKYcdUKhXcfPPNuPnmm0fz1ERERPQuMqoGpdXUtr0CqbYPvVAAIwJrDQJr4OMIqFQgIojCAEkcIGlkSNIUqkBfvYG+egPOezjn4VUhAIwxMNYgDAP4thhhGMCIIK1EAIBGPYH3isw51PrqSJMMznt456EoMhgDaw00jqDVGEYEYRggjkKkaYZGkkIB1OoN9NUTZM6VGQDAFhmCwELbKkiiAAaCtBLCGFNk8Mgyh1qtgSRJ8/WLDFJkCKyBi0JIWwXGGATWIq3kGZIkg6qir56gVm8gcw6Z9/A+z2BMUcsggK/GyOIQgCCNQxibZ3DOw3uPvr76vgzeQ7WZQRBYCxeFQDXOMwUWaRzBZQ71JIWqop6k6Our53XwHq5/BmNgizqkUQgRIIojWGuQNFJkmYP3HrVaA41GCuccvNfik2J5La0xyIo65MfGIq1EcM6j0Uj2Zag1kGbNDH5QBleNkVUiCIAoChGEQVGH/Dn7+upIGnkdnPd5BgDW5hnSKIRUKwishbUGWSWCdx71IkMjzdDXVx+YQUd+Tey1e7F314S38rIiIvqP2btnz0GPHdcNyl9X/TcqZvgfDYkABgIrQCwGFWMgAAIRhGKQqkemCgVQ9x4N9fAKOCiK3gCm3IYgNgaBCESAUPJtpf3WaXiPzCs8FMWcmjc5AlgIIpNnMEWGQAycKlLNG4lGkcEpBmxjyAwAQtPMoPCaP2/De6RFBtV8PuufITQG1SKDFUEkBtkoM0TGIHxLGQQVY2GLDKEYeFUkRYZEFXXvhswgzeNp7KAMmSqcKjyAhnfImpn2y2CKDNUigynq4KFIikakocXx1P2OZ79zKjIGUXEeBCavTerzDM1a5ufHMBlEUDUGVqTIIPAAUt+/DoMzjESrMf4dhQceSEQ0Bva67KDHjusGxTXqcMM0KFLcUExiTgycEQgEUkwITpuTicJ7hVcPBxQTbb6+AlDJ1/Fi4Ivf12JFAAGcz8d6VbjmZIR9E5IpMgCALzJokUEgcNiXwfl8G80MzfmomQEicGKKdfOJVYoMChT748v8zW30z2BF4IxB/r084Iwp6wAgr4H38MX2hsrgi1qgyGD6Z4Dm6++XQZrrFxm8mDKTKZqD5vN5za+8DJXBNOtmpPx//wwOxTa8L5uVoTL4opYQyXMXGXy/DK5osvpnaJ5TAOCNyY8Hit//I1LUP2+s3AEyuGEy7KtDUUtoWc8D9SgOHlmWHmAUEdHYyEbxd/fe8seMiYiIiN5ubFCIiIio5bBBISIiopbDBoWIiIhaDhsUIiIiajlsUIiIiKjlsEEhIiKilsMGhYiIiFoOGxQiIiJqOWxQiIiIqOWwQSEiIqKWwwaFiIiIWg4bFCIiImo5bFCIiIio5bBBISIiopbDBoWIiIhaDhsUIiIiajnBWAc4FKoKAGh4N+wYKW5GBBaAF4VCIBAEIshEkKoiU4VCkXhFQz0cAK8Kv982AhGoKKwIAMCJAAKkPh+rqqirh1OFh8IroMg7QCMCA0BF4SEwRYYAAgdFOkwG7bcvRgS2XwYBkIlAigxarNNQj6zI39xG/wxeBAqFQV4Xh7wGaVHTRD3q3sMDcMNmEGSSL8lEYARImhmgaPjBGQYei3w/mvczyWuWFGOzIoMbLgMEHvkxlOJfU9TBoXlueKQjZHD9amkAuCJDWoxN1aNebG+oDAaAQpGJQgAERW1S9cWx1wNmCESAETJkqkUdtDwnmzmG0+cd9jo5wCgiorGxt5i3m/P4SMZlg9Lb2wsAuPH//jbGSYiIiGi0ent70dHRMeIY0YNpY1qM9x5btmzBrFmzsG3bNkyaNGmsI40Lu3fvxjHHHMOajRLrNnqs2aFh3UaPNTs0Y1U3VUVvby+6urpgzMjvMhmXV1CMMTj66KMBAJMmTeJJOUqs2aFh3UaPNTs0rNvosWaHZizqdqArJ018kywRERG1HDYoRERE1HLGbYMSxzFWrFiBOI7HOsq4wZodGtZt9FizQ8O6jR5rdmjGQ93G5ZtkiYiI6PA2bq+gEBER0eGLDQoRERG1HDYoRERE1HLYoBAREVHLGZcNys9//nPMmDEDlUoF8+fPx5/+9KexjjRmHn/8cZx//vno6uqCiOC3v/3tgOWqipUrV6KrqwvVahWnnXYaNm/ePGBMo9HAFVdcgSlTpqC9vR0XXHABXn311XdwL95Zq1atwsc+9jFMnDgRRx11FD73uc9hy5YtA8awboOtWbMGc+fOLX+x08KFC3H//feXy1mzA1u1ahVEBMuWLSsfY90GW7lyJURkwK2zs7NczpoN7bXXXsPXv/51HHnkkWhra8NHPvIRbNiwoVw+7uqm40x3d7eGYai33HKLvvDCC3rllVdqe3u7/uMf/xjraGPij3/8o1577bV6zz33KABdu3btgOWrV6/WiRMn6j333KM9PT36pS99SadNm6a7d+8uxyxZskSPPvpoXbdunT777LN6+umn67x58zTLsnd4b94Zn/70p/W2227TTZs26caNG/Xcc8/V973vfbpnz55yDOs22H333ad/+MMfdMuWLbplyxZdvny5hmGomzZtUlXW7ECefvppff/7369z587VK6+8snycdRtsxYoV+uEPf1i3b99e3nbu3FkuZ80G+/e//63HHnusXnLJJfrnP/9Zt27dqg8//LD+/e9/L8eMt7qNuwbl4x//uC5ZsmTAYyeeeKL+4Ac/GKNErWP/BsV7r52dnbp69erysXq9rh0dHfqLX/xCVVXffPNNDcNQu7u7yzGvvfaaGmP0gQceeMeyj6WdO3cqAF2/fr2qsm6jccQRR+ivfvUr1uwAent7debMmbpu3To99dRTywaFdRvaihUrdN68eUMuY82G9v3vf19POeWUYZePx7qNqx/xJEmCDRs24Oyzzx7w+Nlnn40nn3xyjFK1rq1bt2LHjh0D6hXHMU499dSyXhs2bECapgPGdHV1Yfbs2e+amu7atQsAMHnyZACs28FwzqG7uxt79+7FwoULWbMDuPzyy3HuuefizDPPHPA46za8F198EV1dXZgxYwa+/OUv46WXXgLAmg3nvvvuw4IFC/DFL34RRx11FE466STccsst5fLxWLdx1aD861//gnMOU6dOHfD41KlTsWPHjjFK1bqaNRmpXjt27EAURTjiiCOGHXM4U1V897vfxSmnnILZs2cDYN1G0tPTgwkTJiCOYyxZsgRr167FrFmzWLMRdHd349lnn8WqVasGLWPdhnbyySfjzjvvxIMPPohbbrkFO3bswKJFi/D666+zZsN46aWXsGbNGsycORMPPvgglixZgu985zu48847AYzPc21c/jVjERlwX1UHPUb7HEq93i01Xbp0KZ5//nk88cQTg5axboOdcMIJ2LhxI958803cc889uPjii7F+/fpyOWs20LZt23DllVfioYceQqVSGXYc6zbQOeecU/5/zpw5WLhwIT74wQ/ijjvuwCc+8QkArNn+vPdYsGABrr/+egDASSedhM2bN2PNmjX45je/WY4bT3UbV1dQpkyZAmvtoE5u586dg7pCQvmu95Hq1dnZiSRJ8MYbbww75nB1xRVX4L777sOjjz6K6dOnl4+zbsOLogjHHXccFixYgFWrVmHevHm46aabWLNhbNiwATt37sT8+fMRBAGCIMD69evxk5/8BEEQlPvNuo2svb0dc+bMwYsvvshzbRjTpk3DrFmzBjz2oQ99CK+88gqA8fl1bVw1KFEUYf78+Vi3bt2Ax9etW4dFixaNUarWNWPGDHR2dg6oV5IkWL9+fVmv+fPnIwzDAWO2b9+OTZs2HbY1VVUsXboU9957Lx555BHMmDFjwHLW7eCpKhqNBms2jMWLF6OnpwcbN24sbwsWLMDXvvY1bNy4ER/4wAdYt4PQaDTw17/+FdOmTeO5NoxPfvKTg35dwt/+9jcce+yxAMbp17V3/G25b1HzY8a33nqrvvDCC7ps2TJtb2/Xl19+eayjjYne3l597rnn9LnnnlMAesMNN+hzzz1Xfux69erV2tHRoffee6/29PToV77ylSE/VjZ9+nR9+OGH9dlnn9UzzjjjsP443mWXXaYdHR362GOPDfgYY19fXzmGdRvsmmuu0ccff1y3bt2qzz//vC5fvlyNMfrQQw+pKmt2sPp/ikeVdRvKVVddpY899pi+9NJL+tRTT+l5552nEydOLL/Os2aDPf300xoEgV533XX64osv6q9//Wtta2vTu+66qxwz3uo27hoUVdWf/exneuyxx2oURfrRj360/Hjou9Gjjz6qAAbdLr74YlXNP1q2YsUK7ezs1DiO9VOf+pT29PQM2EatVtOlS5fq5MmTtVqt6nnnnaevvPLKGOzNO2OoegHQ2267rRzDug32rW99q3zdvfe979XFixeXzYkqa3aw9m9QWLfBmr+fIwxD7erq0gsvvFA3b95cLmfNhvb73/9eZ8+erXEc64knnqi//OUvBywfb3UTVdV3/roNERER0fDG1XtQiIiI6N2BDQoRERG1HDYoRERE1HLYoBAREVHLYYNCRERELYcNChEREbUcNihERETUctigEBERUcthg0JEREQthw0KERERtRw2KERERNRy2KAQERFRy/l/Q8pHQjg+klcAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADdJklEQVR4nOy9e7wsWVXn+V1778jMc869p6gqoIpnFSC0WKCCtrT4KJCXNLRDA9ItPYgPxgc6NuKDoRkeZTPFAA4y81G7m7GwQEZAHbEVnYYSsaZbGQRUFLVb7eHlSFlaFHXvOZnx2Huv+WPtiIw8j/tAoO6F+NUn656TGRnxixVxcv9yPUVVlQkTJkyYMGHChAsI7s4mMGHChAkTJkyYcBCTQJkwYcKECRMmXHCYBMqECRMmTJgw4YLDJFAmTJgwYcKECRccJoEyYcKECRMmTLjgMAmUCRMmTJgwYcIFh0mgTJgwYcKECRMuOEwCZcKECRMmTJhwwWESKBMmTJgwYcKECw6TQJnweY2rr76aJz/5yZ/We0+dOsX/9D/9TzzqUY/iyiuv5MSJEzz0oQ/lla98JXVdf4aZXrx42ctehojcKcf+0z/9U172spfxkY985NBr3/Zt38bVV1/9Oed0PvjkJz/JP//n/5y73/3uiAhPecpTjt32TPfy+9//fkSEG2+8ceP5d7zjHTz+8Y/nnve8J/P5nHve85486lGP4n/+n//nY4/z1Kc+FRHh+7//+8/rXD7ykY/wpCc9icsuuwwR4XnPex4f+chHjuQ1YcK5YBIoEyYcg4997GO89rWv5eEPfzive93r+NVf/VWe/vSn87KXvYwnP/nJTFMiDM95znN4z3vec6cc+0//9E+57rrrjhQoL37xi3nb2972uSd1HvjX//pf87a3vY2f+Imf4D3veQ+vetWrPmP7/rf/9t/yjd/4jezu7vKTP/mTvOMd7+CVr3wlD37wg/mlX/qlI99z66238va3vx2A/+P/+D/OS4j/4A/+IO9973t5/etfz3ve8x5+8Ad/8DNyHhO+cBHubAITJiyXS7a3t+9sGodwv/vdj4985CPs7OwMz33DN3wDOzs7/MiP/Ai/8zu/w9d+7dfeiQzPH58NW9/73vfm3ve+92d0n58JPOABD7izKZwVH/rQh3jAAx7Av/gX/+Izvu9XvOIVfP3Xf/0hMfKsZz2LnPOR73njG99I13U86UlP4td//df55V/+ZZ75zGee0/E+9KEP8VVf9VUbXqCjhOOECeeKyYMy4XOKPhzw+7//+zz96U/n0ksvHRaS97///fzzf/7Pufrqq9na2uLqq6/mW77lW/joRz+6sY8bb7wREeHd73433/u938td73pXLr/8cp761Kfy13/912fl8NM//dOEEHjpS196xu12dnY2xEmPr/qqrwLg4x//+FmPdd111/GIRzyCyy67jN3dXR7+8Idzww03HPK+9O77t73tbXzpl34pi8WC+9///vxv/9v/trHdb//2byMivOlNb+L5z38+V155JVtbW1x77bX8wR/8wca23/Zt38aJEyf44z/+Yx7/+Mdz8uRJHvOYxwAWWnjuc5/Lve51L2azGfe///150YteRNM0ANR1zcMe9jC+6Iu+iDvuuGPY5y233MKVV17Jox71KFJKwNEhnv583v72t/Owhz2Mra0tHvzgBw/fzm+88UYe/OAHs7Ozw1d91Vfx/ve/f+P953Iv3HjjjXzzN38zAI9+9KMRkY1wwlEhnrqueeELX8j97nc/ZrMZ97rXvfi+7/s+PvWpTx3J/z/8h//Awx/+cLa2tvjiL/5iXv/61x++yEfgbPbtQx+/+Zu/yZ/92Z8N3H/7t3/7nPZ/Lrjtttu4xz3uceRrzh390f/617+eK664gje84Q1sbW2d0/n29+Rf/uVf8n/9X//XcC7HiZO//Mu/5Nu//dt54AMfyPb2Nve61734J//kn/DHf/zHh7b9kz/5Ex7/+Mezvb3N3e52N77v+76PX//1X/+M22rCBQqdMOFziJe+9KUK6FVXXaUveMEL9KabbtJf+ZVfUVXVX/zFX9SXvOQl+ra3vU1vvvlmfctb3qLXXnut3u1ud9O//du/Hfbxsz/7swro/e9/f/3v//v/Xt/xjnfoz/zMz+ill16qj370ozeOd9VVV+mTnvQkVVXNOesP/dAPaVVV+rM/+7N/73P44Ac/eNZtv+3bvk1vuOEGvemmm/Smm27Sf/2v/7VubW3pddddd4jnve51L73vfe+rr3/96/U3fuM39F/8i3+hgL761a8etnv3u9+tgN7nPvfR/+a/+W/0137t1/RNb3qTftEXfZHu7u7qf/2v/3XY9tnPfrZWVaVXX321vuIVr9B3vetd+o53vENXq5V+6Zd+qe7s7OiP//iP6zvf+U598YtfrCEE/cf/+B8P7//zP/9zPXnypD71qU9VVdWUkn7DN3yD3v3ud9e//uu/PmSPg+dz73vfWx/ykIfom9/8Zv2N3/gNfcQjHqFVVelLXvIS/Zqv+Rr95V/+ZX3b296mD3rQg/SKK67Q5XI5vP9c7oVbb71Vr7/+egX0p37qp/Q973mPvuc979Fbb711OP+rrrpq2GfOWZ/whCdoCEFf/OIX6zvf+U798R//cd3Z2dGHPexhWtf1If5f8iVfom984xv1He94h37zN3+zAnrzzTef8Zqfi33rutb3vOc9+rCHPUzvf//7D9zvuOOOY/c7vpcP4n3ve58CG/f1Yx/7WA0h6Etf+lL9wz/8Q40xnpH37/zO7yigP/IjP6Kqqv/tf/vfqojo//v//r9nfN8dd9yh73nPe/TKK6/Ur/marxnOpa5r/fCHP3yI180336w/9EM/pL/0S7+kN998s77tbW/TpzzlKbq1taX/+T//52G7v/7rv9bLL79c73vf++qNN96ov/Ebv6HPetaz9Oqrr1ZA3/3ud5+R14SLH5NAmfA5Rb+YveQlLznrtjFG3dvb052dHf1f/9f/dXi+FyjPfe5zN7Z/1atepYB+4hOfGJ7rP9SXy6U+7WlP00suuUR/8zd/89Pm/8EPflC3trb0n/7Tf3re700padd1+mM/9mN6+eWXa855g6eI6B/+4R9uvOdxj3uc7u7u6v7+vqquBcrDH/7wjfd/5CMf0aqq9DnPec7w3LOf/WwF9PWvf/3GPv/tv/23Cugv/MIvbDz/yle+UgF95zvfOTz31re+VQF97Wtfqy95yUvUObfxuurxAmVra0v/6q/+anjuD//wDxXQe9zjHsP5qKr+yq/8igL6q7/6q8fa7rh74Rd/8RePXawOCpT/8B/+gwL6qle9amO7/hxf97rXbfBfLBb60Y9+dHhutVrpZZddpt/93d99LE/V87Pvtddeq9dcc80Z9zfmdD4C5S//8i/1IQ95iAIK6NbWlj7mMY/Rn/zJn9S2bQ/t4zu+4zsU0D/7sz9T1fW99uIXv/jT5neUQDmIGKO2basPfOAD9Qd/8AeH53/kR35ERUT/5E/+ZGP7JzzhCZNA+QLBFOKZcKfgaU972qHn9vb2eMELXsAXfdEXEUIghMCJEyfY39/nz/7szw5t/03f9E0bv3/pl34pwKGQ0G233cY3fMM38Hu/93v8p//0n4YwR4+UEjHG4XFcfP4jH/kIT37yk7nPfe7Dz/zMz5zTef7Wb/0Wj33sY7nkkkvw3lNVFS95yUu47bbbuPXWWze2veaaa/iyL/uyjeee+cxncurUKX7/93//0PPjsMpVV13FIx/5SN797ncf4nDQ1r/1W7/Fzs4OT3/60zee/7Zv+zYA3vWudw3PPeMZz+B7v/d7+ZEf+RFe/vKX86/+1b/icY973Dmd+5d/+Zdzr3vda/j9wQ9+MACPetSjNvJg+ufH1+1874VzwW/91m9tnGePb/7mb2ZnZ2fjvHv+973vfYffF4sFD3rQgw7dX0cd51zt+9nEAx7wAD74wQ9y8803c9111/HYxz6W973vfXz/938/X/3VX72RALu3t8cv/MIv8MhHPpIv/uIvBuDaa6/lAQ94ADfeeOOxfxOfDmKMXH/99XzJl3wJs9mMEAKz2Yy/+Iu/2Li2N998Mw95yEP4ki/5ko33f8u3fMtnjMuECxuTQJlwp+Co2Pgzn/lMfvInf5LnPOc5vOMd7+D3fu/3eN/73sfd7nY3VqvVoe0vv/zyjd/n8znAoW3//M//nPe+97088YlP5CEPecih/TzmMY+hqqrh8R3f8R2HtvnoRz/Kox/9aEIIvOtd7+Kyyy476zn+3u/9Ho9//OMB+N//9/+d3/md3+F973sfL3rRi47keeWVVx7aR//cbbfddk7bHtxue3ub3d3djeduu+02rrzyykN5I3e/+90JIRzax3d8x3fQdR0hBH7gB37g2PM9iIM2ms1mZ3x+vGCe771wLrjtttsIIXC3u91t43kROdJ2B+8vsHvsbMc/X/ueK0IIQ97PQcQYAaiqauN55xxf//Vfz0te8hJ+9Vd/lb/+67/mn/2zf8YHPvCBjfySt771rezt7fGMZzyDT33qU3zqU5/ijjvu4BnPeAYf//jHuemmmz4tzkfh+c9/Pi9+8Yt5ylOewq/92q/x3ve+l/e973182Zd92YZtb7vtNq644opD7z/quQmfn5iqeCbcKTj44X3HHXfw9re/nZe+9KX8D//D/zA83zQNn/zkJ/9ex/rqr/5qvvmbv5nv/M7vBODf/Jt/s5Ek+O/+3b/j9OnTw+93vetdN97/0Y9+lEc96lGoKr/92799zhUrb3nLW6iqire//e0sFovh+V/5lV85cvtbbrnl2OcOLpbHbXtwu6P6k1x++eW8973vRVU3Xr/11luJMW6c//7+Ps961rN40IMexN/8zd/wnOc8h3//7//9kfw/U/hs3QuXX345MUb+9m//dkOkqCq33HIL//Af/sO/F+/xcc7VvueDK664gv/v//v/jnytf/5si/fOzg4vfOELeetb38qHPvSh4fkbbrgBgOc973k873nPO/S+G264gSc84QmfFu+DeNOb3sS3fuu3cv311288/3d/93fc5S53GX6//PLL+Zu/+ZtD7z/q3p/w+YnJgzLhgoCIoKqDF6THz/zMzxz7rfF88OxnP5u3vOUt/OzP/izf+q3furHPf/AP/gFf+ZVfOTzGlR8f+9jHhoqV3/qt3+Kqq646r3MKIeC9H55brVb83M/93JHb/8mf/Akf/OAHN577+Z//eU6ePMnDH/7wjeff/OY3b1QCffSjH+V3f/d3edSjHnVWXo95zGPY29s7JJTe+MY3Dq/3+J7v+R4+9rGP8cu//MvccMMN/Oqv/io/8RM/cdZj/H1wPvfCcV6zo9Cf15ve9KaN5//P//P/ZH9//1Do79PF+dj3fPDYxz6WD33oQ/zpn/7podd+4Rd+gRMnTvCIRzxieO4Tn/jEkfvpwyj3vOc9h9/f85738LSnPY13v/vdhx6Pecxj+Pf//t9/2p6fgxCRQ9f213/91w+Jr2uvvfbI833LW97yGeEx4cLH5EGZcEFgd3eXr//6r+fVr341d73rXbn66qu5+eabueGGGza+Vf198PSnP53t7W2e/vSns1qtePOb3zyEF47CrbfeyqMf/Wg+8YlPcMMNN3Drrbdu5I2crf/Hk570JF7zmtfwzGc+k+/6ru/itttu48d//McPfTj3uOc978k3fdM38bKXvYx73OMevOlNb+Kmm27ila985aHeJbfeeiv/9J/+U/67/+6/44477uClL30pi8WCF77whWe1w7d+67fyUz/1Uzz72c/mIx/5CA996EP5T//pP3H99dfzj//xP+axj30sYILgTW96Ez/7sz/LNddcwzXXXMP3f//384IXvICv+ZqvGcqtP9M4n3uhD9m97nWv4+TJkywWC+53v/sdGZ553OMexxOe8ARe8IIXcOrUKb7ma76GP/qjP+KlL30pD3vYw3jWs571GeF/rvY9X/zLf/kveeMb38ijHvUo/tW/+lc89KEP5fbbb+etb30rv/RLv8RrXvMaTp48OWx/zTXX8JjHPIYnPvGJPOABD6Cua9773vfyv/wv/wtXXHHF4FHsvSc/+qM/euQ1PX36NO9617t405vexL/8l//y0+I+xpOf/GRuvPFGvviLv5gv/dIv5QMf+ACvfvWrD/0tPe95z+P1r389T3ziE/mxH/sxrrjiCn7+53+e//yf/zNwfKn0hM8j3IkJuhO+ANFXfIzLhnv81V/9lT7taU/TSy+9VE+ePKnf+I3fqB/60If0qquu0mc/+9nDdn0Vz/ve976N9/dVB+Ps/qMqC9797nfriRMn9Bu/8Rs3SlsPot/fcY+XvvSlZz3f17/+9foP/sE/0Pl8rve///31Fa94hd5www0K6Ic//OFDPH/pl35Jr7nmGp3NZnr11Vfra17zmiM5/dzP/Zz+wA/8gN7tbnfT+XyuX/d1X6fvf//7N7Z99rOfrTs7O0fyuu222/R7vud79B73uIeGEPSqq67SF77whUOp7R/90R/p1tbWht1VrTz2K77iK/Tqq6/W22+/XVWPr+I5quIE0O/7vu/beK6v9BiXU5/rvaCq+trXvlbvd7/7qfd+o2LkYBWPqlXivOAFL9CrrrpKq6rSe9zjHvq93/u9w7mcjf+1116r11577aHnD+Js9h3v71yreFRVb7nlFv3e7/1eve9976shBD158qR+7dd+rf7iL/7ioW3/3b/7d/rUpz5V73//++v29rbOZjN9wAMeoN/zPd+jH//4x1VVtW1bvfvd765f/uVffuwxY4x673vfWx/60Ieekdu5VvHcfvvt+p3f+Z1697vfXbe3t/Vrv/Zr9T/+x/94pG0/9KEP6WMf+1hdLBZ62WWX6Xd+53fqG97whnMu859wcUNUp37dEybc2bj66qt5yEMeMjQyOw6//du/zaMf/Wh+8Rd/8VCVyIQJXwj4ru/6Lt785jdz2223ndEDOuHixxTimTBhwoQJFyR+7Md+jHve857c//73Z29vj7e//e38zM/8DP/j//g/TuLkCwCTQJkwYcKECRckqqri1a9+NX/1V39FjJEHPvCBvOY1r/mM5MJMuPAxhXgmTJgwYcKECRcc7tQ06J/+6Z/mfve7H4vFgq/4iq/gP/7H/3hn0pkwYcKECRMmXCC40wTKW9/6Vp73vOfxohe9iD/4gz/g677u63jiE5/Ixz72sTuL0oQJEyZMmDDhAsGdFuJ5xCMewcMf/nD+zb/5N8NzD37wg3nKU57CK17xijuD0oQJEyZMmDDhAsGdkiTbti0f+MAHNtpYAzz+8Y/nd3/3dw9t3zQNTdMMv+ec+eQnP8nll19+ZCvvCRMmTJgwYcKFB1Xl9OnT3POe9zxrs707RaD83d/9HSmlQ3MjrrjiiiPnLLziFa/guuuu+1zRmzBhwoQJEyZ8FvHxj3/8rHPN7tQy44PeDz0wXKvHC1/4Qp7//OcPv99xxx3c97735UFf/i14f3wtvCA45wkusO0CO2GBOMcWwrbCUmCFojmzTDX7KZJyIudEJiOAQ3AIM+AkwkwcDuGEKoKyJ44IJM2cItMCCSWj6IiDd37g4MSxJY4thUZgX23rVWzYTx1xxAHAFw4VsFs4SOHgUPYLh6iZ02SaM3DYcoETYYFznjnCCYVaYImiqixjfSQHh+ALhxMIi8JhRxU/4pAKh/ooDuLwLrDwnpNhgRPPXBw7Cp3AHkrWTBNbTqfWOGgi65gDBISTCPORHTzKUhwtkDWzVzjEIzg451m4wG6xQyWOkwoR2BMlq1LHhv3U0mqxw8ABPI4A7CBsFw5bqsyLHcYcVsUOaeAATrzZ3wV2wxzvKiqBkyobHJrUshcbWs3kHAcOZ8I3nf44X9beftbtJkyYMOHOwDInnvOxP9oYy3Ac7hSBcte73hXv/SFvya233nrkNM75fH7k/BLvZ2cWKNIvzIHgKqowR5yjQpiVRTEWgRJE8eIgJyQnRItAERMHAVsYqyJQqmwCpXIOAUQzgYyNMlNEy4Ika3HQc3DiqMQxU8gCVREoHeBF0BEHynMHOUjh4FHawoHCIZ4LB+cHOySBqgiUgB7JwYkJlEMcVAm65tDbwR/FoQiU4AMhzPHiBztQOGTNJKRwiIgmJI85UHgc5tA5h2LioOegR3BwxQ4hzPFuzUGAqoiDWOzuNZodBg4mUPwRdpgVOxzkAAoDh7VA6TmEIlBmKhscUn++mpDsBg5nwtwHtp0/63YTJkyYcGfiXNIz7pQqntlsxld8xVdw0003bTx/00038chHPvLOoDRhwoQJEyZMuIBwp4V4nv/85/OsZz2Lr/zKr+Srv/qred3rXsfHPvYxvud7vuezelw55uc7FYKNn/scH/Jzvi+Rz8CB5bx2cfS257AH4XN3XUZ0Dn2pGDhcMHfrhAkTJnxOcKcJlH/2z/4Zt912Gz/2Yz/GJz7xCR7ykIfwG7/xG1x11VXnvA8RQdzxS5CIwzmHOEG8IN4hxSUvWtztKFlA1CEqDP8Vd7uU8IqUPJDh/WT71zkciqhgwR/FAaoHOaz/FddntqzXQVTteXXDvp3K+jzH/5Uwk5CNpyvHLRxcyXfoC8idCM6V7YZ/13ZwAlLCEOIcTh0iipAHDm6DA2s75LUdBC38zTWnKFpCRP21krENDtlBcQri3drW2fJsjuLgcCAybCPicKKoHtyn5aEYB2f78c4ezpXrNtq+Pw+119YDjNccjDn2kwiiarYQKb9zPIdyT/TXxLnRPVeuhb2n55BHezrrH8W5/OlMmDBhwgWPOzVJ9rnPfS7Pfe5zP+33++AJwR/5oT2IA29Jst4FfBUsDwLBKzgHThXRjJeAdxkySAaX1wuzR4ZEVY8tcC6VRdKbHPAqOBTPerGnXzSd5Rx4v+bgxOGVklNhC7mXiHceLRz0CA6+cBARXBacgnMOL5A14QsHzsLBi7cci9znVaidhwS8S2iG5EBzGji4Izj47HCqeOdQwc4DGeWgmH36PJiBQwh4580WIztkMj5mvBiHnCFncyNscgCHL3bQgUMS4BCHInJGOUneeXxlPx/moHhJeEnkrEgGOYqDghdf7FBe8x4vgMo5cDA7OF9ZnpGWRGDJiCpe7J7I5X6QLEV6Hg8TOxMmTJhwYeJ8Pp8u6mGBIXh8OD4hsBcofliYPeK8iY0M3pWFOSc8Hi9+EChHigMtSZZiSZwCeO9AlayCF8UL9m1atSzMPYeA994EinMmdPpFUTKa3VokJUhZz84hlUXSm4/BFm0tC+RRHPywMDsXDttB1ezggomkZALhKA5eikhKGaeK896ETr8w9xzKfk2gFBs4s4P33hJOFRLgpBeLCS8ezYokEFM+x4oDlxWX82FxcCQHv74eVbD7onDIAwc1sSjBxMExHJxawuuag+C9LyKpJBWX+yGNOIjzB+wQzCOjFN69QElrDllNJJ2lr6J5eKbxWhMmTLgwcT6fTxe1QHHBHS9QxATKIAyKOBDnbYHZECiCJxBcQjLkpOQsJQQka29HWZj7wMQgUDCBEkRJAqlfFEfeC+MQijhYL8zmvcgmDsQTxINTJNk+oZQZSxEnY3EgMogDj61dQZR4aGEei6TixXFhsINzIy8OYfBeiID0YSKkVLWsRZKU51xWfO/J0rLdUeKgcAi9F6cIFKfgZcwh4SWiqeewFgf+gEBBBJ/Ka8FbUXThcJQ4cD5YBY33GwJlLRaLUBOzQ05q4a4xh8EORSTRi1PBBV+8aGWbPt53lEgq94NxsP0pgtsQKNE4ZJCczipQxMnnPJ9pwoQJE84Z5/H5dFELlBACoTr6FAQsvt8viiEQZhUijoAbBEogk9URJBJiQrKQnXWr7cuMvQhBhaAQhgUpmUAJpZhVcxEo9g08l4VEnHkOnC/ltbOqeHFMoAQxDqqZQEUoHpTsLFyClvCKlOOrjDhkvCrBe0QUVSFIHhbmjKL9+/0mB+f8YIfg1iIpSCS4VDhsenGO5JAyPiu+siARaiXAoYTPUuEwCJSeQ2V8Bu/FYAclSKKKARxkX8JMug4zhV6gYDlFXjI+O3xwJZ9ICDiCW4dW8oiD88HCfrPKxFIRE4oJPMXsUEkCDymtOci43FqFQBFJOeOSWMhRhKSZQCI4E3mOvMHBFw6hcAg9B4HQh7pcopIAHnLxZp1tMIWTKcQzYcKECxdfMCGe+9zrMqrZ4tjXnXO4UOFDxTzM2d46gXhPpcIiQhOEVjI5Jep6n1VXk2NHjpGcU0lLNI9FUNhKQlUW5kUbEeDELJBRoiZWTukc5NLPQykiKVT4EFiEBVuLHSR4ZuqZJ6VzQuMymhN1vWTV1aTYkbtug4MrHLYTVBIQEeZtwuXMzjyQgVQ4tAOHkRenCnjf22EHFypCsUPnew55sEOKndkiHeawlWB2gMOJeUUSJeXMyuWjOYSADxWzMGN7cQIXAhWORYLohLpwaJoVq3ZJ7K9FSoCuvVnAdoSZeBDHvEv4lDkxC6QiLnsOaYOD4EKFC4F54eDDDC/CVjQOu85EUlMvWbYrYrJroclarY09alsJ5uIRccy6TIiJE/NA7DlIpvVHcPABVxU7zHcIszkeuxa52CGr0jUr9pulcYgdGvt2b8fjxB1z+NTkQpkwYcIFivMY/3dRC5T7X3V35outY161Sg03m+GqGbPZFrMTu7ZIZofvlDQTomQ0Rtr907Ttktx25K5FoyWHDg3GEswieAkIQlh1oBC3KxQlaaQLEL15PgYPine4qsLNCoedXaQKePWETklBiC5DSgOH1Lbk9jAHl2HWFS+OOPwqIikbBwc5J1qfSUHIqkPnUXEONzMOVbVgfmIXV81w6gitkiohFXHQ7p2ibZbkriO1zRk5II4wcJihTs/AQeyY8xmhWjDfOYmrZtaVtYPshegzmhLdcp+m2Se3LblryTEO3gsLawmzFvNeOEeoExITaasie7ND55UYMGEwiEXBVRXS22Fn1+4PHFVn4iAGEyjd/mnaeknqGuNxBIeqVSoCOIdvEr6JxJ0Z2Vuju9YlYiUbHCgc7FrMmW+fxC+2EBXj0NshZ+JqSbM6Teq6wqE76x/3yY8uIE8CZcKECRcozuPz6aIWKLedWjJrjj9ZcQ4/63ChZT6LLBoQH6jUMYtKG4ROMpoizXKPuluZ56IbeQ7ESneDwiKuQxuzOiKqNLEXKInaK523lv0bHpSqwlcd8yqxqEFCRaWOKirRC23xoDTLPZp2ReraIzl4hUVce1BmdUSy0saKLGsO8SgvTlXhq5ZZiGw1goSKgGPeKl1V7JCz2aFdmgel7cgpHuIwj8WDglC1CRczbezIzjwojct0RRxsepJa/GxGFTq2anCVcZh1kIoXh5xpV/us2uXaDtF647qeAzDvoMIjzjFrjEMX1x6U2mU6f7QnyVUds6pwKN6LeQfJCa03gdKu9qibFTGuxeLYg+IKh3kRSVWbCW2kTR3JCzknGkm0QQ5wKAKl6swOK/DzbuCQe2+WKl29ZFXvmSep69AuntWDcq82TpXGEyZMuGBxPp9PF7VA+eSn9qlm6ZhXxUI8VYMPFYvQsbVlCaUzFeZHhnhWpBjXoY3S88KLUGXYymKLoghbrSUs1m0J8eTE0pcQzzj/w1low1UVi9CyvZ+QEJiphTZaD7XYwrzqwytdCa/kXPq12Lf2SmE7ljCTCIs24bJSN8HCK5pZ9uGVgYOOwkwV89Cys8wW4kHY6qANQiPjEM+KGOM6zHSAw1YSZsUO8zbhc6Zuq5IgnFhJpvFC1nyAQxg4NPsZV1UW4okHQzwlvFLCTJrShvciqLCV1MSBOBZdxqdE01ZEMVG0lEzrLRfkIAcXKuZhxs5CB5G0Fa2seuW0hHj2WRUOqXDQvoqnhLoWCRYUsRgzVZeo20B0Qh7bgUzSUcJyWId4duaZMGvwSOHQh3gybVOzbPZLmCmSU0TP4kGpuzj1QpkwYcKFi/P4fLqoBUrTdGQ9Q5mxc7ikhAASHJ4G56zGwiVovdBQvBd1Q93nXZQcFGDom5IVfBZUsiVqtpYX0Za+GVETbZ//oaNvzM7hUrZKkyB4rXA+IThcgs5BK1bq3DYtTdeRUmsLUs5Y7w2rHMpASMZBEHxnAqUlD+KgcUorBzwHxQ4+KgQItHhv4xBDgs6ZUFPNNHVL3XWktM5BMTuY9yIruAwUD4rrrFdIC4NIaiTT+AN2EIcLig9AEIJWuC6jWPgsut6TlGmalqZrD+egFA4J8AmEbF6yzqptWqyCKWumlUxzKAfFOLhgJTtBG3yngx1ify1Q2tquRZfW+UDrMmPj4JIlv4o4JGaIiVbWHJojOZTS7KSohyoHcizzhVLx4pQclLZpaNqWLq1F89lCPDmdfV7PhAkTJlwMuKgFSl8+fCT6MuMwfnjEe7xax1Hvy1C6ZNU4fuhwka2sEwYPilfBJ6zEF8F5K6H13pVSWvBO8Y4yaLAfDlcqibz1bPHB2zdoteZqyfd9UASfjBt428eIw1BmDOsy46w4UVwptTYOGe/kAIdSOVJsYBxKia8orrdDFnxwBHUghYMc5jC2g89qJbahjHXSUr59FIfRdXCVt2ZtZb/OWZOxtR2sZZqQkVLr7MYcGPcgMaHgvUel51BKfLHeKms7ODv3/npUfl3G7cx+qlY27dWRKd1ck53HJgcdSp2dWtWS9w51gmQrtfZWb32Ag5UZh2BcXOXLfkFd6fqranbI3iZrq7f+AWcJ357LAK4JEyZMuBhwUQsUzfaN+ygIgANNikq2R7KW4arWGUwxb8Swn9T/rGVb+8BXcfZc8aCADMfVbAuPlonEw89Dn3mg7F/7/ZdwQakiXnNIeb1tVvu5hDYQt36PlLbnWde8SwfVvi27biSHurJftW1TsnPigB10bYueK6kkd4qACKpyJIcNO+jazuPkUE15uBbGOaE465CGMGoda9umtU2sglnsUTiAoK5ci55DsYNqfy3UfFymDob7YPjXrTmolu1VN69Hb4sjOCjW3t44qNmjP2/JZidVOMCh59vv32yJ7bfnP3DQtV3OIlD07BpmwoQJE+40nM/n00UtUFZ7K7rqeJd2H+8PPpB9ROYW7sg4SLDylBBPZtkuWcaGnCzWn4sA6RuUVWrfimM/BydabkZdeRJK1MyyD6/0eQ89h9LaXX0H84xz3jhkaB2sSh+UVbNiGRsLrxzg4AYOkMRbv4vOuriuWk/CQjxLURp3kIOVtnofyGGGrCwXJ5UwU+OhxhbVVbtk2TXEwQ7pEAcyaPEcEK0PSt16okDKiZUo9cFE3RGHFDpklfE+EHFIhk5gKcahaWuWseTBHMEhINbltnhQJGZiNjtEsSTZ5UZ4ZZOD84HkW9w8473loLgMUWBVQjx1s2IZ63V45QgOJLODiFhzv2g5KF2x/4pE7WSTA8WDEiqir5CZEkJj55SFNHDING3DslsZh/I4G7ouolMnlAkTJlygOJ/Pp4taoOydXhLC8UmyfdfOUBYkqSLOObR0Dq2liIOcWXY1e6kl5VSSEe1bbd+9dGa/Mes7yZZGbqvWDQJln0yDLcypLzMuHLwPZN9CFXHiyeJM4AgsMe/GMtbsx5aUI2mUEDmIpPJzEgsJSFa8KnXriAc4HMq9KG3uk2+RWbKfS1XOwEGVZWccYjZhsBZJFtapim21VDO5wmFVOKTCoT4Dh+hbpDIOszIHp+uvhSqrrmEvNkdycCJUlHGNhYOoErLZoSu2X5JZoYfzP5y1+Y++wlUJ7wNVaZIWMXGQVanL/dClSM6jfKC+H8wBO6DmPam7jhYTKPskVgftgFiY0QU6H5AQqUrCslcxkVS2b2LDXqzpUtrgcCYk53E72+f/xzRhwoQJnwO4c/ii1eOiFiif3FN8OD7EIwo+t1QZ8MI2t0PO+Flge7uiWXbkJpKdsBLhjpSJIiRvHUnBchmCE7bnFYvdBbPgEIGtS7YQJyxvX6JZiVnZP1WzX0dizjZLZ+DQEXJGvGMBaMr4mWdre0ZqInnVoU6oC4fuKA4iLGaBxV22mJV8j8UlC6rgWX1qCTGTMiz3avZWHV0yDhlwmgsHJXthi08hKeMqz/bJGXHZkZuECoWDeYKSF3LJafAiBK8sZoHZyQVbM8t7me8umM08q9uNQ1ZY7jWc2m9J2USTquXl9BxOOmFLeg6O7Z0ZqzZxetWRRWjGHJyQ3ZqDd8K88swvWTCfeUSV+e6C+TzQfGpF2yUysDzdcGrZEtOYA/gc8bkuHLAJxN6xfWJG3WVOLzsy0DjhVFYTWgfs4J0yrzyzk3O2FgFQZjtzdnZmNLevoI0osNpvObXX0JX7Q1Wtq6xGQqo54WBLTOwG59g6OaPtMnuFQ1s4NJgdkjv7FIv7fNe38zVf9yXn+Zc0YcKECZ8bnNo7DV/58HPa9qIWKFnLnJZj4NSGzVl+hAxxfOfUEmVjh3QJ8YI6T05qC4FY0y4TOULGoSJI8EhlAsVvzazx116Ly4pkRZ2ztE4VUskFcGqv5WRue9GMROMQeg4xok7AefQ4DiX3oefgAL+Y4Wce2W8RyZscEBL9GJieg9lB1HJARDJePS5FpC9P9WaH7IQsjtRzEDsvFQfBIzNvC/6iIiwCbq9FxMqB1TmUPrRhFVBOFTK4lFEVIJtAEYfPaw4iAt6hCbIUDv01LmXfKgIluVRUjcNWhVt2uGIv9bFwYOAghQOFg6BIsvEGPnt8SkjszAHpA5p04JB7cVA4ZKTYIdigwkVF2J7j9lsbFomAi+V+YHiI2o2bk7XfRzISkyUqZ4/PYw422Toh9jiHBNjFlXdn90EP+LT+niZMmDDhs45Tp85504taoDjncM4d+Zot7Ir3ZSCfsyoJLwxVFPawshPv3FCFgXclMXX9rd15NxzPST9jx+G8Vda4vu+KK83EpMygUS0VHlal4hScB+edDS70GefsW7zrObgRB8r7DnIAO3b/u7dJxsPvasP3enHgtIRpXD+Nt9hhGFyXyaXKxZeSXvVuqFkfOLj1MUUZHd+VcA/D72VKkfVRUbX9ogMHBxvXwXmbDui9N85OUOfsAtJX5ozO2Tmz7+j33jb9dl6tlFkUq7oqD7tOhY93hQNWhi52fWwytNg0xQMc/HAtSuO2Axy0vx+8XVNniTvlmHa9vFDEstp23iPJ8oO0tw2Kx0Qbzp3VgyIlmXnChAkTLkh8ofRB8c6ExXFw6DDC3nnK9OCy0JdHL0icOLxXsnO2KEqZZlwWZd8vus6VhWW8IKotiuV17f9TygJTJuX6Mo2YfmF2w8KkXgYO3mpuBw7DojgWAwfEge+PVWySdS0O1hxkLWRgww7Ol3JZd2BhPoLDwEN7odXboti758BIJPViQMv0ZDkDB+/wakLG6rbLkD4R8zT0HLxDsiU+S28XZ8LIObu2CTtWziZQnBoHv2GH/p4oZeNFoPiSc6KFg0pfEr0WH34kkqSISN8LlPJz9ooKpWy8iKTBDr1gLdt7j/OpCJRyLjAItbMlmFlzwQkTJky4MPEFMyzQ9wLjGLjiQfGl54mjNMnyvdfAW9Mu5/BiC1Iui6JsLMxuEB/Omwdl8GYM33KLOPC+lJcWgaL2DdjEgeDJ9v7Q90XJ+JDJIw7rhblwELGeLX7Eg7VA8c6RnImBXnRlWHOg55BtP4OgGtnBZ8QJ3nl8Gn1rLwueeQ2K56Ac46AHxWcl6Vp0lO4sg0gahJIv3hwYXQvF+7TmoIe9F27svejtLzryZvTibe3h8Fo4yFocmChhEI4ulOsYGHrK+OG6MtwPykioDfeDP+zF8ZZI3d8362qqkUDxg1PEbOPXHPrePt67wU4UIXg2D4qbvCcTJkz4PMFFLVDuepcdQnWGacYKPmcqVS7xjsuEMnk3sHtiji4afEmSdQiuy3QlGTGPFubgHVuLikvvssVW5fHA7u42zjliBzErTVKyehbzlpiVVPqH9BxCVu4SHJeOOezMcKsOVh3ZFRETM60c5uCdYzEPXHrJNtszj0fZ3d0hVJ4YoYuZJitZAotZY8mhpW/GwEGVk95xmQOfMluVZ/eSBW67RWpLUHU9B4TkLe9BMHEQCofL7rLFyXlAUHZ3t5nNA7GDNma6DFkC81AR85qDKHhVQs7sFg4hZbYrz+7JObMmkrZbsgiVCHqAA/21cMJ8Frjskm1OLAKiyu7uFvNFRU7CoklEQF1gFmbrZOGSoOpV8Slz0guXeaFKmXlw7J5cMO8SeaslA1UpX64LhzwSKMEJs8rscMlWhahy8uSCnRNzUhQWTSQqqKuofEVMVgY95hByZscZh3nKzLzjkt0FbZdIWy0JmDtBo1LrOln4bAJlMbuo/6QnTJgwYcBF/Wl23ysvZTY7bppxKc9VpQJOVJ67eMGpsj0LnNyZs7XfsFsEysmk7Ha2uCWxAW9SvB7BORaLirvsbrGoPE5g9y7bNoumWhBzpk3K9taK1aol9VU8qgMHr7A781zirTR3ex44uT3jRB3ZWbWoCLvZOHQjDrD+xj6fBS69yzZbM48Au7tb+Mozr+bEVDhsr1iV6pWU8yYH4ERwXBoshDIPnrucXLCzatmprfJkV5Xdds0hHcHhkt0tdhYBAU7ublFVnlm1oIuJmJXt7ZrlstngIIVDAHZ6DllZVJ7dnTlNF9latmSEpSonBg5Q5ikPXpxZFbjLJdtsF5F08uQWs3lgMVvQtImkrDnEvBZJMFyLneC4tHIEVWbecZcTC9qY2No3gbKvcLKLNNrbwdB7UKoqcMklW5zcqhCF7RNztrZnzKoFbRuNw4ma/ZMNMWVSsvb1MroW2944zFSpCocuJhaFwwrYaRON6sgOZ8aJrfkU4pkwYcIFiy+YEM/p/ZaqOybEI8VzoEqloJUjOBMHOg+EnFjut+wVgXI6K6e6bM3GREpzUykeFKHLiVA5UnTWi2PuESfsL2tiVtqUOb2sWa46EyjJ8lD6FuhBQVpnyZtZ0caqRpZ1x34prz2tyukuW3ntwMFyOoIT2hioZo4cPQ4IM0eInv2VLcRtVvaWDfvLtiyKpbSV8q1dQYOj8taiPlWeuSjLZct+3ZERTiuciom2/9Z+BAdfCeQKQQmVEFNguaxpS8O0vWXD3n6zLrfOPQcIquQDHCpN1G1ib9+E2h5wqjMO2RVxIH1uizCrImHm0BwQhRAcSRP7q4amTURV9pY1e/vN4EHRwXthtsheqIKjykoXHHMyTVc4AKcRTnXJBEqpqoJNDr4SXGnnL95cVctlQ1MEyt6y4fR+UzwoeXQtsHMvHGbZRNKMTNdl9vcbErA8yOEc/ia6aRbPhAkTPk9wUQuUO5Y1oTv+daeKz0qligZHEIpA8YQ0Z2+v4XSTyE44pXBHLD1IjgjxtDERghArGx5YzSxZcm9/NYR4Tu2t2F91tjD3s1sKh6BqAwt7DjNPSB17qzj0/zgFfOrYEI+w6CqqypE6y00IlRAqz/7+agjx3LG3GgSK9d7Y5JC9o3K2QMbKMdPI/rLb4HDHiMNmiMc4eC8QowmUIMxiYG9/VUI8yh37NXt7zUaIp68kCjmTvSM4CFlJlaNKc+o2cnq/Q0U4LXBHt8kBNkM8VeXQ6ItAgZgr9vdX1CXEc2q/5vReL1DyUGbsS7grFTtUWZkHxzzHQaBk4LQId/ThlSNDPB4fBMnJSsmtVIm9/RVNayGeU3s1p/bWAqUvM+5DPLHcW/OcmXlhrpG2S5zetxDPcszhHEM8bXfuTZAmTJgw4ULGRS1Q7Jvq8QrFAT5Z7L9NQlvyPzoCXeVom462iWTnaIGmy3TOFXFQKkeckJINkmvbiqDWQC12EXFC10W64kFpukjTdtagbAjxGIeUM01yxiFlOg10ldA1HW1j4qAVoRlEkiNJGVZYvDjOQdt1VJgHpesioLRtpCshnraNtkAOAmXEQZW5NztYXoynazxt0x7g0DdJW3NwznIxjEOg9SY4uq5DnHHpukSnGIfOOPT5Hw4TZjkrjROb+txzqBxdG2kb86AMHIDkD3BwYufcdbROEVW6rsJ5oW0jbWfioGk7m0YcRzkomDDzqdjBWY8ciY5u5ui6ZHYAmsKhKRyyUASKW3NoO7pgoqPrOrrO03WdhXgQ2i7SdJ3lAw0hnuI9yWoeKQ+SrMy8a/zAIR3gkIsdziZQUj7bFhMmTJhwceCiFih9ueexrys4l9cluVJ6UBzoWUGfJFsm6lqjk+I56Etv+54XzpW5eVZyav+y0QtDbdIOqlL6eTAcV3oOXobyXHEWNhqm+koZgjfyXtjrB0qbnZR+LILLPf/CUx2OXDgctAMbVUCDHfrzcdnKa0cc/EEOUs5l6AVi5yOlf0lvN+37f/QcKCW1UvqgFP69LfJghzWHw71YDvZBOdCjZThPh3OsOVAqmjTbMX2xr3cb++hHHPR8ew465lvOt7eDjO4PV0qspb93sh0PLcfD+qIMx1RKqfT6eir9PZWtiqe/J87yNzEV8UyYMOHzBRe1QDEc/ZEto3/l0HZ64CHD6+v36eg3Hb1/83jj9UB03aVC9Khtdc1l9Pr66JYn0e9kk8N4f2daptbHsP3q+CWOt0P/nvE5ywYH2XgPB87lMGTYbrT9YPKDbxpvK6NjCWw8d5C3bp7Cxn50k4OuuVAoGKejuKzPeW3PNYf187a5DGOER/unPD+yx/i+2NQSh414WGucg3fk+MsxYcKECXc6zufz6aIWKE3TktLhj/EeDoYwwyIIDYrLyixbiKJdNTR1InuhwdzpVmbsNkM8TvCiNE3AZ+vv0bYVToSmaYck2bppqetSZnwgvBJzpg5Cg4V4ZinS+UyzijYTyNkMmjoq7YgDYjkP0VmD9bauCNlyUNomkHMJ0ZQk2abnMArxSOEQcmbuhUaszNjPHG0F7aqjWVn+RyNCk5QWIfo1B5vFYxyaxjO3Zu+0jfWLbZqWNia6bNelaY7gkJWQLN+iEUgpEypn16JJNMsWHdtBZAjxjDmQPU0dmGHt/dutgDgtoapIBOrCoYuHOfiUqQqHXGbxtBU0nXGwWTyOJmkpMy4c+nCbEzR7msbTuIwotHOhah1t09I0kaR2b9RNa3kwaTPMFFMmOKHxQMrgxa5F4ZCAeoPDubW6T3lKkp0wYcLnBy5qgVLXLT6cQaCoLcSxLMw1GZ+UWfS0LtPsN9QlB2XlHKuoloNSkiJlVL0iojS1xyePF2jrCueEprZhcE1W6rpldVCgqOW9hJTZ8kKNFoFii1uz6qiXNoun59C6fliggEAQK/FFM3UTbHYNJphy9jR1Q1uSZI1D3wdlLFDyIA5qTCj4ztEGaJYt9SqiUjgkEwdxxMHEQeFQe2aaCwcP5IFDq1DXzRk5VIVDlTK+cjReaZq1UKsP2GEzSdaRk6duAhUZUbsuIsahbhNR7d5YrUwcHOTQC5RalBQzBKEJStsl6iJQau9Z9eIgHOQg5Byoa89CLA+mmQlV5WhqEygRWPX3Q8rEDYFiHIIItVM0ZtSLXYuxQBlz8H3uy5kRYxqmYE+YMGHChYbz+Xy6qAXKqunw6Uyt7sHHRMpK7aHJGZczMw20ldhiUkeyd7Yopl6guJFAsUXROWjagNdkHpRuZgKl7UygJKVuO+qm26xewZIyQ0rUXqg142OmyZ42FO9F3ZGdcaiT0hzJwcItTdMRNOEU2rZDNdO03VqgNMahSwcTdU0czB00KDElfHK0c0ezamlKFY8tipj3oizMYztIEUZtWZjbtkPEuDRdESgjDhtJsilTpcyscEg9h0pom0hdtwOHOimNuLU4GESSoBpomo6ZZFxW2jbgfEmMbSIRMQ5tR9sn6uZNgTJzUKPklMyDMhOaNtHU1oul57ASISVfhjUWDk7ImqnbQOMpdvC0rS8cOiJ2b5gdSqO2vCnUgoNGFGICb9eibc0OCaEp16IWSN6fm0ApDQInTJgw4ULEF0yIR11JojwCQ75Dn1hoGa+gJQl29BgSMceP4X3rpFntX+ufHx5l/xuJjA5UUZXS+t5hQ3ldn727Ps5oXyoHjlmOZe8fcz3IwZ4bbDJKV1G1OTIqlh2rAFnWbeSdrPn02wzbl2yO0e89Zxk4sH6tt/n4WIUDTtBsz9NzkBEHWfPQ/lz6/cJom/E1GT0/XJ9Nu9o26/uBLGjhoNmtz9+yVYdj2dRlGa7rwMEV3gfvh/E5FJtt3CMjDqqja+j0wHVww/09XMfe7mf8iyh0J4UyYcKECxTn8/n0GRcoL3vZy7juuus2nrviiiu45ZZbAHPvXHfddbzuda/j9ttv5xGPeAQ/9VM/xTXXXHPexwplns1xcFrm2OQyg0Yzzmd8FXBVwFUJl7BpxuLw7sAsHvoZNK7MzfE2twUpk4AFHzw5q82ECZ4QPJoVxiEeWXdB9Zrt555DVHylaJmp4916Fk8/zbj3XvjQzw9yZeBdz8kbp6wDTxVrkDY0KCvf/PtZPN4JrvLFDhkf+5wbZx4fEQibHLxzNkOoHFfQwqfwQPCZ4XfNBzhkGaZDe9FiB2+2yOBnGZG1HYIIMgptDHNwQpnfEwKSy2ylfrZRwoYUFo5Z5Cwcyr1RBbwKbpbLsby9bu6jQSSNOQy2V7V/++sRy8yh4PHVmoOMOITCwfV28GLXQgU/5uDG04zP7kFxMg0LnDBhwoWL8/l8+qx4UK655hp+8zd/c/i9H34G8KpXvYrXvOY13HjjjTzoQQ/i5S9/OY973OP4L//lv3Dy5MnzOo4/R4EStCwA6vA5l0U54KuEz1bi6cUWrFxGzA7DAsXZAtYvgL5sG7yVkQZvwkBG4uCAQPFOCEkIQfDqcD7jZsEWxaj4WREoIgRR0pgDa3EQBg6WgzJeFD1iQ/56kTQSKD0Hn/uFmUEcmB0yLjLk3Hi3XpjTiEMoHHoxIGVh7sWAVyG5tXDs7bAO8RShVdbasUjyGXyVB5EUnFpoxx0UByOx6L0NBOxt0g/bG90bWWTgYOGVdbKt2SGZ6OzFQZXL+bq1OAhHDAschj2aHbxfc/BBN+7PzEiggCVau4wv04y9S1bqXESSr3qB4vBpPCzwHMqMnTDV8UyYMOHCxZ2cgxJC4Morrzz0vKry2te+lhe96EU89alPBeANb3gDV1xxBT//8z/Pd3/3d5/ncc4iUCgLijqCF0Kp4vEz+9buZwmfrR+Gx8SBOvvW3vex6PM/fOWHb8TDFN6yUGlWYi9QKo+mkUDBFqTgMj4U70VSEwezYAtQsnBAKCIpjDj0VTz+AAeHbiySHjGvQzDPgko+zCFnW5ixSbm+csUOmZAg95UyTi3/pfR86Vv+9wtzb3eBwYvQcwgZfAiEKkHOkNQ6rVIW3GzVK0EOcFDwnQ4297F4UJwJNYpYDH5THLgiDgahlktDtcoTKm/Xc5z/4dzaa+LAJ7f2oCCELpsHxjlCVALFi1OiPX2ycKg2BYob2yHpxv2pvUjKo2qmcl+FwiGMOPjOBEoYOFA4nIsH5ficrAkTJky4mPBZESh/8Rd/wT3veU/m8zmPeMQjuP7667n//e/Phz/8YW655RYe//jHD9vO53OuvfZafvd3f/dYgdI0DU3TDL+fOnUKgLvd9eSZpxljc08qVS4JnkvLoL4T88Du9gxdtvjGKmh8VkKXiCLDYDbpF2zv2JoHLtvdYquypmq7u1uIE1J2pZOsor5iu7ZZPBsJqmozaC4JNrDQZ+XEzLO7PcM3EUqJr1fFd8k6yYqFKvrSVu+FRZniu11ZmfHu7hYheGJ2dKXMmDBja7s91MW153AyOC7zjpDVphmfmONWHa6xWTxelRAzrep6Fs8BDpee3OLEPOBQdk9uUc08MRmHThWtKhaL+TCL5yCHE95xWRhx2JkxaxN5aUmyMxTpDnPo2+3PKs/ll2yxM7dZPLsnF8zmwaZJd4mkZofFotmYZuwwr9qYQ9/qfvfE3KYZlyqeCsF3iXqDgzWA6zlcurvF7sJmEp3cmbO9PSMlYdEmEqCzhtl8NkyWHrw4hcNO4TAvs3h2T8zpYiIvOxLKAoGuDAt0NovnbN89ZmTi6f2zbDVhwoQJdw7O5/PpMy5QHvGIR/DGN76RBz3oQfzN3/wNL3/5y3nkIx/Jn/zJnwx5KFdcccXGe6644go++tGPHrvPV7ziFYfyWgCuecDdmS+On2YsTvAh4ENgMZuzvbWNOE8ljjk2IO4umsk5cdfVilVbk2Iip0hO5uoXJ/bNXRxbzlM5C+0sMpBgfsklZFViTlx+yTad2kKUc5lFXDg4H9iazdna2kK8ZyaeGY5tlF2NaFbuWq+o25rYxYED9J1kHUGEbQlU3jjMM7gI1YldMpBy4vLdbdqeg5YpviMO82rGzvY2zgeCOBY4Fign1cpT77pasmprYozkOOIg1hU1iLAlnpkPaw4dzE5eQlIl5cRlJ4/gUMJhPgTmlV0LFzyVeOY4dlB2NFlVUl1zZVMTY0eOiZzSsRwQYa6C75TZzi6JTNbMZSejCRzNR3KYBbODDwEvjgWeNHBQ6npVOERSjOScQNccvAgL8SyKHSoVqlqptk8StyFr5tIT3Vk4VGxvbROqme0PTxZlOycbz9A03L1eEpNdi5TSWRXK8l3v4o/f/rYzbzRhwoQJdxL22ubsGxV8xgXKE5/4xOHnhz70oXz1V381D3jAA3jDG97AP/pH/whgSLzsoaqHnhvjhS98Ic9//vOH30+dOsV97nMfmrY29/kRkOKad6o4hOwyOQkijpAcdVS6yhEFNClNzNQxkWNHbjs0RduLWNvzkIUcIYhHENo6gkK3VZHJJE00XoneSlCzlk6mviRRAhorUhKceBocVQcxCJ14NCeamGliIsWO3HVoWZB6Dj4L2nMQR1NHXMq0WxXZmUBpfF5zKOUz4tzAIYtHU1lks6Pp1Dg4BzlTDxwiuW2P4AA5Cq2YSGrqtMEh50TjMl3Y5IBzOK3wCEkSmsA5j8fRRBuG13qHJmiTUqeDHBQR8155FXKntBJAHG0TcTHTbVWkc+DggCQejZaI6hDanoOz6qs1h47U3w/lPnXicIVDFBMooc34NhoHL2jO1C4ZB0yoDRxysCaCeDRZqMs4WJJ26z2aM11SVimRukjuWnKMZ+0hcNvvf5DFf/3zM24zYcKECXcWlvlc5rIbPutlxjs7Ozz0oQ/lL/7iL3jKU54CwC233MI97nGPYZtbb731kFdljPl8znw+P/T8Jz+1pJod0zlTsAWtqvChYlG1bG1l816oYx6hCdBKRlOirveLB6Ujxw4tHTkdtjBXWdhKUJWFedHYolm3gYx5DpYeOsd6UaTnEHChYlF1bO0nXAjGIdn2tctoytT1PnVXE2NrAiXn9bf2kuy7FWFWOMzbhMuFg0DMiZXP1g13WJjNg+KqChcq5qFle6m4UFGpsIjQeWic2qK62mPVmR1S16F5LVD6hONFgjkjDmnNIeXEymVaf5iDhICvZsxDw/Z+Ng6YHZLDmpblRFOvWLbL4VrkAyLpkB260lumCcQiUMYcFB3KnF0I+FAxCy3bWxlfzQg4FnHEQZWm3mfVrsyL07VHclgkZYF5cWZdpuoSdRssJKSZlSQavxYoAwcf8FXFLDRs7yf8rMbj2IqQnbByGdVM26xYNsvCoSOneFYPStNO04wnTJjw+YHPukBpmoY/+7M/4+u+7uu43/3ux5VXXslNN93Ewx72MADatuXmm2/mla985Xnve3/VUJ2p1b04XEj4kMhBkeQR58nqIEHjoZGM5sSyrm1hTtEWxZxL64oiUBRIQiqLorTJOojmREKJmlg5tSm9quQyBafn4EJCA0h0iA82TjBB66CWjObMqjEO8RiRFBQkCblwoE04VeqcyGJ5DiuXaR2kEQcRwYeMC4nsMy55nO9IOCQqrRfjoMqqHnOIJlAwj5QvHEiC9hy6hE9Ko4koJg6WLlsX2CJQeg7OJ3yVST4j0eNCJBY7RAerYoemXbFsa2IqHNKaQy8OJLG2Q2eNz+qcNgRK46SEfDY5uJBIIeOix1eJgEMSJCliUZW6WbEsdkixO5KDJgVJ1iclZjQms4MTcjaBUheBYkJpZIeQiMHsEKqMR3BJCgcTNG1bs2zWdsgpnjUHJca87s0yYcKECRcazuPz6TMuUH74h3+Yf/JP/gn3ve99ufXWW3n5y1/OqVOnePazn42I8LznPY/rr7+eBz7wgTzwgQ/k+uuvZ3t7m2c+85nnfaz19NljXhex8s3yEFd+VpsGLL40G6NM5fXOGmg566i1FihlQq6WkA+lukTLRFu0TC3W8laF4kOxnIUy1bafYOwdos6G1fV9uYTRVF/jkI/kQCmBdojTYVKuIuX4ZYLviINtK8M5jjk4b3ZwApr799vrZCGXAXky4iADh55Htv0LhYez/mtYa/yeg00NHv3rnE12Ln3rnCt99EbXCedQ7dNky5RhFaR4lhCHc4pob2cAt95f3zCPEp4Z3Qvi+0ol22fur4WO7OAc6hxa9uFGHPr7oZ9s3E81FldCjLK+P1XdmsNwnV2ZqmwhHjsHcM68Ts6JTX5WNzQZPGuZ8aRNJkyY8HmCz7hA+au/+iu+5Vu+hb/7u7/jbne7G//oH/0j/p//5//hqquuAuBHf/RHWa1WPPe5zx0atb3zne887x4oYFU6ZyqqlL5ZZ/+Q8b8y/I4ceE3W++17kYzfx6HnDjR2BRMvaHlOhve6A8cZONCHDxha3Dusp8X6/YV3LxrK/w7x6H8fcXCjY21wGAkQRDfOX0d2cHJg3/1/G7wKV5S+HYf2z5drdaSthJFtRzzLsXOxgys2OWg3jry+DE1aYT0Pub9n3IHrMj4P+tf6fVCa3irDddngX86RAzbqm6b159KLi43rIbK2S9l4vY+RjXtO05ydCRMmfIHgMy5Q3vKWt5zxdRHhZS97GS972cv+3sda7tdU7dEf2PYB73Chw/sKQsQ1IM6Ri0u/9tBgYYW6XbLqGgvxpHVoo/deRAWXhSSlk2wsg+q6sBniEdZJkSMOzgcICakV5719F8/QSgnxaGbVrFjFxsIrR3AICj5bgqcTh3QJn5W682QwDmJhpoSW0Iaa58MHXOhQH3GNdcKdYY3AGm9zaVQzdbM0DumoEI9xkAyIt2djxmeliR0RSJqpJdOMOJQklNKrpEJ9xDfgfCDhcBm6wQ5K3a4szDRwyPRSx4uUcAhDmEmiTQuuO29hpsKhdpTwSs/B8j+cD+QQcTX4UBFw+AxRoBazWd3Y/RBTCfGMODgR64+SzA4igkZFU6Lp+jyYzGrEoQ/7SeHgfUfyETdXQpgRkHJ/GYdMpm0bVm2p4kmRnFIJmB2Prksck5U1YcKECXc6zufz6aKexbM8vSSE4zOCpSzMwQey72CWcc6RS3hlJev8j2W7Yj+1JlByKguzeTQ8jhkgWZiVShKJ9r1+GRxZTRwsRWlkvSCZS78szD6gvoMq4ZwnlUE1jcCSIlC6mv3YDBxyWRSdCB5HwETSTEoL+pjxqqwaTxKImlmSaWRToAwcXCD5FpllvPdEHC5B3ed/qLJsVyxjQ8yl3PqASKrAQj+FgyQTKKvGxEHSzD6Z+ig7OLND8i3MEt4FO5ciUJaS0azU0ewwLMy9HcbiIFsOCiKQlJAzdfB0Bzhs2kFwLuC8NztUGe8DlZg4iAJLsSTZuluxHxu6M3Agr0WSJistXxUOuVyL1ZEcvJV8+xapEpWv8LIWKEsxgdt0LftxVTikci3OIlBiOraybcKECRPubJzP59NFLVD295qhrfhR6BeD4EygSLBZL1lsgVs5WGHVK/uxNoGSbSHIupkkO1fzIiRx9i06K4Kyco6EiYNhYT6QoOqcxzuPughVxomzBV6hAZbFe7GMNfupI+Y4cKBw8CVR1x/g4FVZeePQjRfmMQekCBRPchWuUpzzzLGy4Xq0MO93ZofDHKyTa1XsoIWDZCUUDh0HxMFBDsUOyVdIyHjniSWvpUNYivULqWPLXmyO4WDiwGkRScUOPYcWEwc9h3gEB+c8yXe4oHhnAsUrdMBKTEysYsNeauh6oTbi4ESosDyY3pOkaqMFVs5tiKRVsUMaOFA4BKLrcFUmuIqqJCDHwQ5KE1v2Um0cchrE4pnQdZNAmTBhwoWLLxiBklIu8YajISKoOkSzVZRIQkTJOFStE3sujb1SyqX7arYmawfEQcK6iaaSC5FzRnTtJUhkEjp8Wx4LFLXRvIVDRp25uVQttyFj3ouUjEfK9ug5aEnMcEBSIfW5KtnCTBmrQMmaC4/DVTyKQBaSNw5WPONGHOxbex5xyDkPC7NxyJaPoTLkyZit1OxTvvnnnsPgOSiiRgW0VNZIBjWbZqV07zWhls7AoR8CnFUtL0TciIOdS9L1tTiKg6pVGCVJiAoZ84LlngNqdojlvkmHOTi0XAu1eyr35eX9tdByDNtn2uBg19ZezzifzH4qA4fc3w89h2KLs6EXQRMmTJhwIeJ8Pp8uaoHSV1kc+7rIRlWKc75U3fRVIAzVEz47vPbVO0rWPqG05DwwqqbBKlSkcFDK1GKsXNSyQ/sy4wMcvENKczBRQcTCBqoZpx5nWRlwgIPDZug4xCpfimBxqrZfKBz6hMw1Bxlx8CNbrO0gOLJVkWiprBFHUWBDwuZBDpYw6mwWjZdyHuPk5aM59Lbom6Q5lXItrFeIV4f35mU6yMEf4mDnLn3ljZjwsywfxZ+JgysDBg9xsH15b5OqKflC5ScLxwwc+mZ+4DIDB9SO318LHXMQOz87hhtxGF8LxWH3ZC7eOjlrBso60XbChAkTLkicx+fTRS1QfFlwj0NfVurLYjOU2Palrf2ClCmLvEPF6mgtEXQd4rHFfyxQbMHoBYpXmzrbL06CrlubDxxGJbaFgx8WRRNJTh0eW5il5HY6KYtiCfG4PlGXIlDcWqB4bJ9Hc/AbZb5+ww5WmuyKULM5vlbVc5BDbwcpdhhz6AVKz4ExB7demPtJxO4Qh7VI8kdwcCUvyARFL1M2hZoWsehESrn1JodefAzXoxcoMLxnQ6jhyAMHE2V+g4OUgYhu4ICaODrODhticcxB7Bpn1XJ9PK6/EUTP2qjNSV+XNWHChAkXHs7n8+miFijO24J3HA6KAx98+ca9XhQ9QnaCV4/HmzBA0WJDN/rW7tXhxa2/5aKld4oOXoOSkVAWpQMLs/d474sHZZODajYvDg4tnoMSVdjg4NSqaWT4Fl++7ctIHACgyAHPgR8WZj94UNaeA1uYzQ4m1KQksB62Q1mYRXCSbaKw86ho8V6ciYNfiwNnEsTOqbdD4aB+SK4dc3AjOxgHVwSL4l2ZOlyEnEeP5LD2ZhVbbIiDXASn2SH3fpIDHFyxgy9Jsi6rbV2uhWgRbnLYmyXOF3HtBw5+41r0CbnePCjiTKjls5cYS18PPmHChAkXIr5QPCiX7CwI1eEW+D2kX5BdYCvM2ZltISU5dCtbI6wKGxYYWodPoZRzxqGTbN/ivVJhR0sFDcJ2Mjc8wZa0qBkRpS1JlkPeg7PKEe8DW2HGTmXDAuc4trIQRO0bcs74zuNjGEqdbX7L2nsRVDihpcU7wlayKh6CL6XOGZFM2yeobnRQNQ4LX3FiZsMCK4SdDEEEX6p4QusI0R+ooNnksKMwP5IDJE04yczHSbKDF8fjfcXCV+zMtnA+2MDELHQCUsqtq87jOm9lxn1y6MiDEjAOi5KgupUzISsSPPOBgzIr+SgHObhih51qmxAq21+p4nHFDlUX8J2ny3FdzXSAw7bCVrHDPCuzlJFRFY+QmDkZcpQOcpi7ihOzLUKY4RG2MyQRpCTJzrsG17lDHM6E2V6YBMqECRM+L3BRC5Sr7nEZs9ni2NfFOVywWTzzas5icQLxnkqFWYLWC91oFk/T1aQD7dVdyRkIGRZZyqA+Yda3up+vZ/HUTq0HxjAssOdgs3jm1YLFfBsXApU6qmwt3tu+xXu9pO5qUmyP4GBD8hYJqjKgbtYlJCvtzA9zcGqn63lAR3CYhRlbixO4sjDPI3S9HTRTr4odxnNwDnCYJ5hJP4OmDAucV2RRUs7ULhcOlvQ6CDUfcNWscNgpHByzZIP6mmKHtllSt6tDHNZ5ML0dzCM2cJgFkqMM6jMOacxBZLBDVezgqwpPmQck0JZZPO2BuUi9OJADdpiLB3FUMRNiGjjknKkl0XlZT3UuHKTMA6rCjK35Dn42GzhkEZoyi6dralbtfpksfW6zeE6eXiCnJoUyYcKECxNnGgx8EBe1QGlTgnR06aWVwIKTRMbhJBFiQnIpN00QVYjYLJ4YE11MpJTJMR2Yg6MlR4TS6VPw5bgxWmOspJmoSpd1qOwBKzKyQEHGk4g+I5osPFRm0MSyMHc9h7jJYTz/JWQQSRbaSBmXMzHJwKHLNiwwj2bQWPjBlQTcTIzJ2qcj+GKHrvRiiTHRxkRKiRzzkRx8sSsi+GTbxJQGkRQPcAAgW1jMi9VDhS7j1fp6WJM0MTtoJkazRUyJnGyQ4phDRgipLPaiuJTxuVRiKWhOdNmEWhpzKKE5C6FkqphKKq0SsgmUWBq1dTGbHaLt9ygOPlnZM6K4pEhfCaYmUKJkOpVSlZOHkJXDqq0gEXxCxbw8PtmwwFg8KF1MtDGTol2LnPq6rOORc8nZmTBhwoQLEOfz+XRRC5Q79hqq6vjXLcQT8KFj4RNdjYVX1LHI1qCsHxa4alYsY22u9Hh0iKfLQlVyL2LpJLuqSognZ5buqBCPG0IbWyHRNopzFtpY5DIssIiDulmyjM3gxRmHeNzAYT3FdxEt/6Nu+0ZtiSV5PbBwHGbyHd4H5j7SlS6uFY6UlGbwXiirdlm6uEZy6shpHeLpObS6nmYcSyfZVeGQCoemTPTdDK/YtZiHSJwpzldUCDEL0fWN2jJNW7PsVqMwU9qwQyh2mJdGbYuUCUmpq75ZXGKFWjfbIzi40DH3HbEB7yuCCClZiGdVhgU2rQ0L7PprcQSHNluYSUSYJWWWEqsuDN1slyQbWKhaSslHIZ5QMfcV3QxC6AYOubeDKm1bs9+VRm2xO6cQT9ud3csyYcKECXcazuPz6aIWKHXTEvPxcszazGdCzODBZUsO7ctGm14c5ETdNqxSO7QUzzmNSlsdEUpzMMs58NFeb3Jet7oXtUZhQ++NvotrwHuFYBzE2Td3p9ZJthcoq7ZlFdt1Dkpeh1d6Dl4FlVy8QAmXlSatO8nWlByUQxwU7zPqIWjAuWRegAyNk8JBzQ6x3RQH9LkXxkFUgGyLbfFeNBpKvw/jUG+IpJ5DxsdM9uBTwPlMLsmhUcrYAc3UXcOqaw93kh3lfzgVlLUnKedMk9f5H6sjO+oKzmdczKhXfA54n6mwkE3EBGtGqcu1WIuDwxxEsZRdcdZUJ2WanNft9s/UzTYo2Ss+eVJQYuGQih0yStu1rNp2nYOSzt5JNqU8CZQJEyZcuPhCESiInDGe1Q9bs7hM2bZs3//YD/+j39aeHPY7DGvTdfmm9Zqwspni4Wc9wE+HHMV+ou1wrGHfJY+x9EEZxvXJevuDHPrQEutoxcBt4Kz9MbQ/67Lf9fFl/cv63AY76fD6mvcBO/QL87jfhhTLiAydwmx7PcBhfB36S9F3ZO13OLbDyB70fGXEYX1uwznJsGX5ecyhf2X0+4hDv5+1SUf2OYYDo9f6e45h2962xmN8zMF842uhrO/V8XUePdZGP+6mP/smEyZMmHCn4QslxDMsuMfA3PGld0VxzYv0eSWUnxUdthNrwyulUyrrvhI2SbYvbbUKIEEshFNKSscLTz+9diwM+mP0C5xzvWeib+rGMM3YHeBQGsvjXH8eDvF9HxTrbppxSOn2WnTChp1kOH+G6cS9jcZCwjiM3mevDLZwbnRO3lnbfyelpNYN+++l15rD+JqU90M5p7HNNgXSpkjq7W77sMXc4USH/Wjuua6F45jD+lr0ti0coOQb9fxK+XW5HnoMh3XJtxvsgBovGc5LRhzWj56HwPBeh3UaHvY9Uihn+/LhQsDNzhD3nDBhwoQ7ES6du0K5qAXKssmEM7T/7hNTg0S8j2z5xhaS4KkqT9MlS0YFuhxZxljmpljLcsGSIL0TcvBszQN4jwhUc6ukkbpDVcnZ0TYtqy7bPnIRHYVHkEjwHQvfmEDyxiGmTO7iwGEVI90wu8WWI1c4zL1ja1GB9yBQzed4J0gdIduwurbpWHWZqPkIDh3OdzaXCBDvqGaBLmb0CA4ZexzkMJ9XzCu7dcIsUHlhVUc0WzJo23Ss2kTUTM7Wir/n4CUivmPLt7bIe0dVBUsA7eJ6KnPXHcth5hyLRYUGC7eFeWDmhaaJaMqoOtomsuqijQ3QdVdeT8ZTOKw6ky/O7KA5o12yBFVN1DHSlhDeQQ6Vc8zmFcyC9V2ZeWaVp647SCXRtumo20jMFvra4CARXMdW6PBF6FazgGS1a6FWNl7HboPD2QTKpV/3SO5/r93z/EuaMGHChM8N9lYreMF7z2nbi1qg7NUJH48foOZU8SlTqRK8sKNW9cI8UJ2cw+mGVEeyd9Ti2I9K54Tk3TBrxosQvA2mOzEP5Mo6qPrLt81z8Xf7VrGRYLVq2WsSKSsxl2/iqvhsSZxVELY141LhcGJGvepIy47sHLVz7MVM61zhACAEZ4tiWsjAwQH+0i2qmTcOMZOyo2469tpETPlIDs4LJ0TRmJjPPNUlC2S/Ja0iKkLjHPtJacXskAoH74xHWghbs0Cee+Nwly3CIsDf7pFjIqmjbuIhDqKKz0pIGedhR0BjQitP2J3TNZG416LO0Tq7Fq0TknMkt8lhPoPtypMXtqD7SxeERQWf3Cc3kQTUbWS/SXTJhJqJA8Unuyek2EFSRr0QLlkQ20Taa8lA6z37SamBFPwhO8xnsHXCkxfezm13TnVyAX+3VzgIdVvsEC2JeswhZOvfv+OwPB4vhN0FuRtzcOwnjIN3JHf2+M2l134dD/zGf/j3/MuaMGHChM8OTp06BS/4gXPa9qIWKMu6xYejP7AtzKL4mIk5s/BCXcTBLCVaD82ypm7SIA6WSYmDODC/eygLkohSNwGXrFNo21Q456ibhi5Dk5RV3bKqO2Iu3othYc6EdIBDjjReaVYd9aojO6F2nlXSkUBZc/BOgExdV6UlPjRtIGugaVramGlyz6HdFAfYohxSZlY4+JTx0dHOhGbZUq86VITaG4dGhBT8wKEXasYhWBVP4YBkmqal6RKtcgYOSkjWvKxGqVLCR0cTlKZJNKuWLMLqLBxy9tRNRYVVMTVNQJzSNC11E4lAXbesmpYuHubgU6JyQi1KigmCo6mg6RL1qiWztkNdOKQxB9dzCNTOqrkWjaeaeeNQF4HSmB26pGXw4aZI8g7qIhbVO9rCoVm19n7vWCWMg3ck587qQUnnUIo8YcKECXcWzufz6aIWKBnlTFH5vv2FTQG2qbmoGchCBwyTh/vXk2JTcVFEhVTc8rm83od+tGyjajNshv2Vf63ewlrgi47e33Po31fCD/bQwkEPcyjHtgohW+i0P5fxfmA4/sBh9P7Un8P4mIWzMj52P2XYOCA262d8jsbBbjfbz+j4ZT89B0v6NHv04Yre5r0tk2K5NP25lJ9TyelANu2g5VharnUeuJRrOFzL3pb0N8DA0Y/ep8M1LlOQi73SQQ69fcs5O+352DUZX6f+Hkva368G6c+f9TGHn3X9/sT6nkzn8IetqkOC7YQJEyZcaDifz6eLWqD44PHBH/u6DeMTfBa8tzJO5xyu8rgq4KuET5aL4cXhnZKdA++GKg7vynuDxwWb5+OhDLsTXPC4XL4VFz6a1R6qaw5lP04d3iVcFewRFVepJds64+CP4uDE5saUYzjUju194ST4vOaQRQ5zKHawYXcJP/P4KuCrjI+WnOuds3MRgeCHipyBQ398v8nB9RyUDTuQTTyJYsfvbSGKl4yvnF2LDL5Sm4vU20EEvCsTGI/gEDySdTi+Cx6Xyiygso0XgWzzeIxDOXdnM428ZHwQuxYq+Mr633jvC0fjIM7qgcbXwod+tpKWYZTFDqnk/vTXArsWolrymrTYofzc3xtVsHu0sowX771dU8Z2ODPkHLaZMGHChIsBXxACJagrAiVbP5DKFmZXJXzGGrqJw4uizhI3U6n26MMKw4LXC5RgAsUHT842T+dYgeIEnxw+GAfvpBw/4KPiZ4oOHDLBOWSUgzKIpMqvRYoeWBSxgXVjgdKLA0fhkN1aHDgZhJorAkWKQAlOLaTh3aZA6e1QFmfRItR8L5qsr4oPnlAFSHkQBw7MBi6XhRn7uXJmiwx+pgOHtUDpq3gOCJSeQz4g1Eovs/71MBIoxqGIA18mSbtcbFsEyqwIFOfxTu0PJPihxNf1HKr1/SB6gEM0gbIhFtNIoLgiSoqJ/REcwKZ1h2R/pDKIpDPDqpcmF8qECRMuTJzP59NFLVBCCPhw/Ck4zBvhNRO8w5NtEe89B7OEz4J4a7wVikDBl6JeKQu7c2VBCvjg7Bu67wVKIGclFIEyXphVC4fsCM6+qQe8JUXOPH4W8AlCtBbnQYQgJRnyAIcweA7WHNwgmgIZG5jngycEb+XS2QRSb4eQM8ELAVv8/MwVO1ibdSnH9y4TxCpLhvLgMYcq2MLMyFMRAp5EziMPihNIFqqwqctKyGU/I4Ey9qA413tZ1JqhebfO/ygcQvCDQJCRKPMhDAIlVLZNdtZELff5QG7tsfAOQso2WbkK5gFqTaAE7/ExD96LLFbK3QvWMFwLE2qDRyV4fKUoQgiREAIqGdwoByXrkNvkHZaPUgRKzwGwCdxx7UGRcykznjwoEyZM+DzBRS1QLrlki1Btld/GnT8MriwGlSqXBMeu2FyaE/PA9ok53bxBm4g6y/NIXSY6IYk97NuuELxjexHY3d1mq7Ik2Z2TO4gTTnQQyyTbRoVqZkmycUOgKCErl1SOkwK+cNjZnqF1R9zuUCeoQoqZDiE564MC64V5MQ/sXrLNdmUVNDsnt6mCp+mgjZlZVlocvqpsJkxeiwOflaDKrnecdELIma3Ks727IG+15LojYzNmUsy0cDyH3S1OzgMC7JzcYjYLnGiVWcx0qrTicSEcwQGCZk56x27hsF15dk7M8W2k3WpL9ZTQdYl2sAOMPSjzmWd3d5sT84CosnNyi/m8oo0Q2khUaPGID+sE1REHnzMng3GocmYRHDsn54Qu0y6sggYRYpdpgDiyQy/U5pVnd3eLE1szHMrOiTnbO3OaVvHzRAJa8eADsSRqD1U8xQ47zrHrhXnOzLxjZ3dOVTgkTAy1MdOoXYskjLJYjsasClMOyoQJEy5YfMHkoHzxF92L2Xzr2NedWD5CJcKJmeeSyuMUtmaBE9szLl22LFvrvXEqZk61kajr5MjBg+Idi1nFJbtbzIs42D25hThh97IVKWfapFx+esWqbkllUbSGXyUnAtidBXbL+7dngZ1FRd1GTtcdCpyOmdNt3welJNSOvDizWeAuu1ssZgEHnDyxwAfPyctWxJTpUubyvXqooEnpAAeBE1XgLpWFqeaVZ3dnzqru2Ks7VIzDqTbS5U0OtjAbh92TC3bmFQKcOLEgBM/uZSsb8JeVy/dqlsvWepCkIg5KA7IgsBM8d5kFPLAInpPbM9oucenKxMEyKXdruyM5eOeYVZ5LdrfYnlUIyokTC6oqcMnlNW0XSUrh0BSRZN6LnoMHdirjEICZd1yyM6eLmUtXDaqwl5VTTUeT10nDdk/Z/VBVnt0TC05szRBge2vG1taM3UtXNF0kK1y+X7O/36yFWhnk57E/vK3gucs8MAOqEYe7rFqyKqus3K2JNDmvE6/P8sd9l93ts280YcKECXcWzuPz6aIWKFngDKN4hrblWbBERezbuIr9rGLfjDOleqRsN1R9DJ1UpbxWKkakdJyldHAVKZVB9nMWHZ7rObjhNcsR6Hnksq9+vwc52GkYjzwca/1eV7j3j55nz+UQh/K8VSKt7dBzMHvIaD/9zSSDvc2O1o59sMdgFzbfL7JxHnlkB1euTX/8PHDQYznIYB97XcbnQP+abhzHttUD94Qc4L2+N+w6a3n/uhJneL+Mz9ss2f+83kd/DjLYIJcKoLUdGN7Tbzdcy5G9+3s0q6JnieBYodIkUCZMmHCB4gtFoNz2qT2q2XGN2qxtuFelAtrKo97a0nfzgG7PObVs2GsiWYRTKfOpLtEBqSxyMlTfOLbmFZozi8pZToAmnAh33LEkZqVJmdtPrVjW3fCN2UI84FGCQjfzJO/wqrSzgG7PWDYdd5QeJKey8qk2WniliJRxHsx8FiBnmpklpGqOhOC541NLumRenNtPr1iu1r03VG3AnVdL+KyDR4MjqLKoPLJasL9qOdVYJ9k7svKpNtFhibK9J6n3oMxngZwSXW3eC82RWeW5444lbcx0Wbn9dM3esrGGdWnNwRUOzYjDVuVhe07TRT61tBDPflY+ObJDsstZkluFeRXImuhmFmbSFJnPAnecWtF0iag9h7Unad3F1UqL6+DQylOpMg8OWS5oYzIOwJ4qt7eJRnW4FgpD/sqsCsSUiFszRJXYdcRuzqk7ltSteXFu36vZ229Ks7g+B6XcD8C2Nw5zVSrvcCcWdDFxe+GwVOW2NpkXZySczoSm7fqhPRMmTJhw4eE8Pp8uaoGyt9cQZsefrKMIFAVXOWbOFkmZBWZdx3K/Zb/koOxl5XSX6Mo32QSjBFVH6iJzB7nyeIF5ZV6N5f6KLittUvb2avZXbekkm9cCRS3/w1feEiOzInNP1c1Y1pH9VTfikOkEEwdsCpRuFlgEQVuPE5h5qCpvHIpA2duv2V/2TdIOcgCCY+6FoGrt+1NkuepY1t0gDvZipu3zHihN70ouTjcLzBy4GBGFykOqAsu9FW0ygbK3ZwIlbuR/WEfbSkGCMPOOkJVceebRWuPvL61J2h5wujR9S07W4ZWeQ+WZe0HmwfbpIMfAcn9F3SaSwn7h0MU+D6ZU0KjiVcE75sFRqZK8YytGmpjY329RYA9hr0vUIw69QAklzFQ5CDlZ8q0ojlw4mEDZ3685vWchnpg2OQSF7IV5cERVZt6xlSJtTCz3LQdlf8Qhl2txtu8e3Rk6K0+YMGHCxQR3ZxO4sGBiR4947gsGR53ucSaQM/0sR7zw6eFzErAY0fzMHe/TPPcvsFtuwoQJE47CRe1B6XtSHPu6lOZlWFmt8+ZBcd76jDjv8N6Rndg03L4p1ihXwDub2Nv/63yZLOxsyqxzDo/iNBsf71AyHmehDSy8YlOHrR+LEx36hzifNzj4bCGFIddARr03XJlm7PsJvGV6rrPW907XJbQZGTiIWI8Uh1rp6hF2cN7ZsbLinCVyjjmsG5QVGziHYOe0fqxLmp0rxycjWmw5soPzZQKxd9akzpefkXW/EhjpnNH5l/3bBOLxc9Y/RdGBo/egkhGVtQcl93awcFvPQbyVC1sYxiq+vJYYV7kpvJj9rUy52EH1AC9nnqvi+cpqAwIlH7BDb/uNn623jKque9sUDn2+y5lwpuneEyZMmHAx4aIWKM2qIcezhHiytVVvgqMtZcbtPNBppN1raZpIdkKj0HSZKLIOK4xCPD5VtFXphyLQzW0xape1hXiy0iwbmlVr02tLeGVw6Wfj0Djj1LaeNkXauqMpIZ62cGiP4JCcQ2KinXtCtKW/mzk0etpVTRfzmsOyHfIexhzSwMFKfH3l6STRLjua2vJgGoVmKDN2aw5i82AkJdogtCkhKF3lkBRpl7XloKjSLGuaZUNK61DXmMMsCK0TcrawV6eRrk20+5aD0orZoaEPr6zFgfcOqkgzc1Q5WU5RJThNtKuapoR4zA7r8IqOQzxZbfqxd+SckeDoSHRdotm3MFOzwcHRB056ocYs2D2lln7deWgdtKuGtgwsNA413TEcKi+03iGawTvaDQ7QiKw5lNL3syHFdNZE2gkTJky4s3A+n0/nLVD+7//7/+bVr341H/jAB/jEJz7B2972Np7ylKesD67Kddddx+te9zpuv/12HvGIR/BTP/VTXHPNNcM2TdPwwz/8w7z5zW9mtVrxmMc8hp/+6Z/m3ve+93lx2T+1IlT52Nftm/h6mvGi95LMA4tuxmqvYVknshOWIjbNWITshbTRJM2hbcWWU6gcXoStyjw0q70lXVKarCxPr9hftcR0IAelTBKeBWEupTHX3DNvGlZ1ZLk0gbIvwl7hkI7gkOaB7QBSphlvBWtItjptSbJNUvZPW2LmwfwPn0sjNy9siTUoY+ao04LVsmO1shyU3g69SEpymMNCFN9Z/sfCQ54HVntL2i7TqrI8XbO/15hQS+tuti4rVc64MYfKUXdzVk1i2SfJFjsMQk1MoDixJmmxCmx78K01SZt7RWNFfXrJqk1EheUpK/HtUh44CJSeNObt2nJQ5Uz2jp3YUneJZZkkvCxTnWtlGNw4NGpzQpwF5qLMUoWoUpHxJFanl8PAwuXphv3TRaD0ZcYjDlI4pJyJXtiJC9ousdqzHJQxh1wa1p01B6VLZ+2VMmHChAl3Fs7n8+m8Bcr+/j5f9mVfxrd/+7fztKc97dDrr3rVq3jNa17DjTfeyIMe9CBe/vKX87jHPY7/8l/+CydPngTgec97Hr/2a7/GW97yFi6//HJ+6Id+iCc/+cl84AMfwPvjW9cf4rK3woczCRSbZjzLSuVhodnc+3PPIs5ZnW5Y1pHsHfvi2EtKN5okvF6YBY0V24EiUGB7bmGe5SBQYP/00ipHsq4btel6mvHMC3NVXEprkbTqTKAUDvujacbpAIfUBnYqWQuUmVBV3sRBzIXDiv39dlgUh2ZxyUSS97CNTRWm8qxyZLXfsr+KqAj7zuxwiEMRB6kNLDyEaOJgUQk5BlZ7q2Ga8f7pmr295lCjNpeUKmWcgy2xn6kc26lj1USW+y1Z3LAwN+JIYZODd0KcebYrwXUep8pWBaTIcm/FqjRq298zkdTGNYfxJGHnYLtwyF5Y5Y66tQTVDOx7z35SVqwnKq+TZIVu5ll4mOUOUWUmmSCZ1d6SVWPTjPdP1+ydrumKYN3oJBszONgSSCkRvbDKkbYdJcl6z16CmiJQzmGacRtTKYGfMGHChAsP5/P5dN4C5YlPfCJPfOITjz6wKq997Wt50YtexFOf+lQA3vCGN3DFFVfw8z//83z3d383d9xxBzfccAM/93M/x2Mf+1gA3vSmN3Gf+9yH3/zN3+QJT3jCOXNpu4TXeOzrTk2gkDOdF7qcyTkTyaSZo2s6uiaRvaNzjnYsUNy6k6x6R+sdXReJOFQgdgnnhNglYlIL83SJtktFoOS1QElKTonWC51mXMxElDiTwiGiXuicpx2LgxGHXFrAd12kw1rdx5iQwiWWEt+uS7RdLIviaB5QyuSU6Tx0mtGY6XImNZ7YdMRSbt35M3BIJhC6LtJ5O7cYI96X57psXVy7SNc3e+vnASm4lNGUaR10ZIiZmB1x5uiaSFdbuK0dc8ibHLyz8vGui0SnpcQ3EoOzf7tI1NKJtk1r78UwLDATYs9BISXzyjSe2Ca6uiMLdN4qs1oROwe3FijZiYXYukjsxDjEZI8uGQfOzCHHTOegE8XHhPNi16JwSAKdz3QZ66gbPNnlswqUvhnchAkTJlyIOJ/Pp89oFc+HP/xhbrnlFh7/+McPz83nc6699lp+93d/F4APfOADdF23sc0973lPHvKQhwzbHETTNJw6dWrjAWwkRx776JMP3fhfjwxJqqPnnbMZNQe3Hz3kmJ/HCZJ9cuTh5w9yGnE4grc/9NzR5yvHcjiQUNr/PjpnGWyxfm58/oc4jI4jzuFk85ibCasH+IwSkzfO+5hrsbmfo/Z5tI3FH3yuJMyOr8vGfTE69nBdDp+/H3M5wFOO4HHUdsfeW95vJCw758ujP+453OvO4SZ1MmHChM8TfEaTZG+55RYArrjiio3nr7jiCj760Y8O28xmMy699NJD2/TvP4hXvOIVXHfddYee7xeM4+BKUy6H4DzlZzYXIxsnixOrxsnOoc4NHUP7yhHvZb1gCevqGecsfNEPJnTmhlfs27JTHVrdW/WMWIXIgQVJx/sacVi3uj8gehgJtL76o7y3rxwZONBzMDs4Lf+WhbkXDJSqJIfixcGIg5N15crAQzmw0PbTmwsnMg5nVTy9jdR260XX7x9fi14E9Bz8JgfnN+0gOqok6gVWbxvvcGoVVWMOzttu3cBBii3WVTx2fjq0tt+ww9juzjrqHhIk9FyF7J1VEmXre+vVHWGHNQfnPdrfp2L3rPb3xFlQaE6YMGHCBYnz+Xz6rFTxHCx17Etdz4QzbfPCF76Q5z//+cPvp06d4j73uQ+zoPhwvNPbIXjnbXqv96hY+WeqHK2vSFsVhGQLj2aqlBAgibVbF/qpu+aWZ9WRgy0SnSytZfmyJWcgZ3zOVM5c7E5MIJgg8Xj1RQRY6W8KnrYKRJ2hzioveg7Qtzi3ITQDB1WoWzR6MtB9coV6R95vyVmNQ0rGAZu9k9GyWHqCUhZbjyrk4GhDRVxUhzho//7CwUmZwKsKTUfOlvvT3b6C4Ej7LdrP/kmJSooQ2OAgBC2i0hmH5B1tCEQyyrxU8ypVjMdzQJHCQVTpZIXst6T9lhwL95ioBMSX6zni4EccKA3T2lDRSSYzK2MnlSolsupwP0CZayQjDiX5NuqKpo7GoSscOuOAsyTh7Mo9VTiEkR2yW3PQM3A4W4jnjj/4Iz5e/+1ZtpowYcKEOwenl8tz3vYzKlCuvPJKwLwk97jHPYbnb7311sGrcuWVV9K2LbfffvuGF+XWW2/lkY985JH7nc/nzOfzQ8/fZcsRwvFJtSKC8wHvA1t+RphtIeJRrJxWT1J6mCS22pqcGlKK5JzQsgA7ETxChVKtGpx4BKG9o0FQ8FbyGzSzLZkwdyR0mN3Sc3DOsxXmhGqBcx7F0aoJkYC1g190K3ZjS0yRnOMGBzdwaAcO3R0NSRWCeVSCZrbJ+Jkjo/baQQ7FDs4FQGgypBMMvVwW3YqTsSXlSEojDljflwplVre4Zs1BVSH44h0wDm5uHLLaoioiJXQSWPiKUG3hfYBihySCJ6OamXcNu7Em5khOcRBDPYcAhYNDcMTTLWS1UQYCaGaLjMyEhBs4WC+VNYfqEAezg6IsupqTsWGRug0OJvyccWg6XJsARzzV2FA/7wsHZUGCQxzAObsn5y5Qzbbwfmb3VLGDK5Oj5l3DyVizSL0dzt4l9m/e9mt88A1HeyInTJgw4c7G8hw+x3p8RgXK/e53P6688kpuuukmHvawhwHQti0333wzr3zlKwH4iq/4Cqqq4qabbuIZz3gGAJ/4xCf40Ic+xKte9arzOt7V97ic2WxxzKslRyIEfKiYhzlbixOI91QqzBK0QejIaE7U9T51V5NjJMfy7ZyysIoQsrDIUIlHRJi15m1pZrakxZypndK5sij3C/PAITAPCxaLHZz3VDhmCToHrWQ0Z5p6SR1rUuzI3dpL4QoHr8JWGnHoMi5nmlkgC6ScqJ0lX2btxYEWDhXeB2ZhztZiBxcqAsI8QueFVjJoNju0NSl1Zovi0VlzgEUSZmflIGTNmwIlBFyomIfZiIPZITmhKXZomxWrbml2OMgBE4yLsR1ixqdMOwvmaciJ2imtY8RBEXGFQ7HDfAdfVXgc82RisXF27ZpmSd2uiKlci4EDOGwe0zzBXCw0VkUlxMQls0Aqx62xxGi7FvkQh8rP2F7s4Kv5sL8sQuNMsLbtilWzNA4xkmPkbI3aTu4vkL0pyDNhwoQLE3IejVDOW6Ds7e3xl3/5l8PvH/7wh/nDP/xDLrvsMu573/vyvOc9j+uvv54HPvCBPPCBD+T6669ne3ubZz7zmQBccsklfOd3fic/9EM/xOWXX85ll13GD//wD/PQhz50qOo5V/Rx/+OwkSdSchzEOey/0v2zd/+X7dQ7RO11yjd2e9g3eBFXvAE6cLDwAThn/TXQvu+GDhw2k2s9UvIinLeJvAKWk5IduU/0BEAtEVWkdItdcxCnth/nSu6BIg57qFW4SC9QxsmjJfdE1JUOrnZ+mhlspepKnMpuJrOBO4JDP6vHqpvMrj0Hy+MYFuaBhzcbOPOAuNI51zk7nPMOl0rOhXNl+qXlg5Q+vsZjuBZYjsmGHayUGLX3H+TQn6c4Ezk9BxGbujNso4UDCtpPuC7XThndD3btxTnEMcoJoow+doWDrO9Lv74v+nNSZzZFD3IocT49s0BxJXdqwoQJEy5EnM/n03kLlPe///08+tGPHn7vc0Oe/exnc+ONN/KjP/qjrFYrnvvc5w6N2t75zncOPVAAfuInfoIQAs94xjOGRm033njjefVAAfjUfk3VHveBXYRFiHjfsQiJrrEFZKaORYZ65L1YNUtWXW0hnuLSF0ahDYVWhUpsknCMCVFYtb6EUzJLybRF8PSeA+PQ4XzFVsi0jSVBzsq39s5BPeYQG/McjMIrlgtjoY0urznMY8apUneWkxI1sZQybBA94DnoLKzgI10LzgcqHClZB9RaFDSzqpesYm1hprEnacShzWKeA4RFzHjNrLpAAnLh0GzYoXDwAR864zAH7wNBHDFBdLCSjGalaVcsu1XhENHiEpQhxCN0mcGLs4iW/1O3gSjGYVU4HLKDDzgfmIdI14APLb7YIQrUxYNSN8UOsSMVDtrnsZQQT5uFOcZhnjJVyqy6ziYPa2ZJonEM4bY1B4/z0TjMIFQdHiEla0y3Egt1tW3NflvskMyLc7YslLaLn6PhRRMmTJjwaeA8Pp9E9SxfyS5AnDp1iksuuYTHPun5VNXh3JQeIg4fAt4FtsKM7dk2znlmCFsZaifUZFQTq2bFss9BGQkUGXJQhJ0szMo35u1o37RXwZNKiGffKS2QGYc2bEHyPrAV5myX/I85wkKtrfuq5F6s2hXL2Fh4ZZx7UTgEhBOjhXmrCJRl8GQxgbKP0gokDoRXSi7Ows/YmW/jXaBC2M7QDHZQVu2SZWzKorjOexhz2M6w6MVBsg61y+CLOMjsk6kHgZIPcZj7GSdmW4NI2lYhCiyLHequZr+rD3MYCZSdbOEVEWErWWfWVfB0Iw5rgbLJoc9B2Zlt431FELu2EViKhWLqci26PrxyBIftDFslxLNIyiznY+2Qxhyct1CXr9iptqjCDI+wU3JQlmQyStvV7LU1XS73Qzp77PYb/vpPefCnPvFp/mVNmDBhwmcXy5R4xn/9AHfccQe7u7tn3PainsVDyfU4FtLngujgGbftpXjsS0FwKclVLT/rejuheOjLd1eF4b0lF7InY+8X1vtAC4fRPsu/ipTQw7DDcvzx9hau0BJ+6N83cGB87PKeUumxwQE5wKHnKvQbr89/bDMdcaAcu68vGQwz5Nswei893w0OOjp+b7t+myOuQf9fv52AqpRnZbhGY97ra6xrmx3BYcyF/joOF3R0nYb3Mrq+PYf+PpBN+/XbHsmB9esb12K034PvGeyxccMd8zfR36QTJkyYcAHiPD6fLmqB0vf8OA6HG5jJkIMiJefBAeRRDopm0H6m7mZiplMpeRBScl8sj0UBpw4vihcdLRLleH6zf4fllzgkl6TLkv8x9FFRKRwsuDJwEMFl6/EhCC7bFk5K/oeq5dc4ynkUDjJq1DZuFNYfwdnZqpaputnhsdwLQTc59PkfZb+iUo4pg2joJwxziMNmPlDPwWVZ20HBp2IvLE9G9DgOJf9j4FCuq5b5Qw5Qm6asSKniWd8TfmQHh5AHDuvpxF4FUavCsd445fgjDojg1CGu3EdF1VpvnF6x5oHDRiM/v8lBBZxk0NG9298PliRzxr8JmRqhTJgw4ULGZzMH5UJC7CLWAu1oiHO4rGiGmB2ddDiXLd6fIbp1FU9sO7oSUtgorxUTBqJCVMs/EISYrAdHVLUQj2Y6UTqxnIdcvvmLE1yZgdMFRyctLoXCQYjlPZozXdfRxW4dZioLfJ+oiwpRrcFYz8GrEllziCUHZYNDETY+Q8xCR4f3to/eDrGEeGLbEWM3Cq9sVhKhQqfWYEwQUsowcICk6QwcFJ8tjybS4bw1covZQjyx5F50XWft4lNHzsnCKyM7aLGDF0s6jSlDNg4Ry0GxawFJ8waHnHXNQzrrYYNscMha2tjH9T0x5pBHHGLp0RKz4lIuz1mIJ5LonJBULWgzskPO4DJ0BMgm7mK2EE/PIXYdsevo8iaHMyHlbD1xJkyYMOECRD6bF3iEi1qgrJqGcIawvIjD+4D3CXzGR0GcJXe6DI2DBkVzYtU11KkhpTQsijL61p6AoIIWgRKyfTNvoiNh+R+1qCWH6sHEzIR3CfFqHMQatrkMjVDKa5W6q6lT3wclFXGg5jnBbXIQwSfFqY44ZOo+OfQYDvhMiJYsmhHCwEEt/6NtWKWGmNNIoJSOqoWDH1XxuKSEwiFigqAWy704xMF5vM9o4eCdJ4srYsESdS0HpWEVmwN9UHTUD0YIKjCyQy4cOiwHqOYoDoJzAecT6jI+OoKLJHGEXJJkS1iw7mpWsVmLAzUh1nMIQyWR5aBIVkiZNq3zYGrN1M44pBICWveDSWSXCZWQQiIgVEUk1UXktrFh1RUOg1A78x93jOmsUaAJEyZMuLNwPp9PF7VAqesOH473F/ULc3ABcUqo1gLFlyqeGvNe1LFhmaxB2VGN2lJZlLKYO34QKN4as3WaWXGMQHEe7xPieoHiTDwpNDAkqK45JFKOQ5im5xALh14k+ax4VWq/FigrRgJlWBQLh7FAcZGMUBWB0i/Mq24kUPpFkU0OniIOCoesSuPXAmU1FgcHFmbvkgmUzn7P4ggKHSOBEtu1QMnpkDjo7UAJrwwcnBu8JjWZ1ZEcEs4F1GVCFIILVOKoFCIjgRLNDl06mkNFGVlQqnhcVkQzdRwJlBGHsUAR5/Euoy5TRSG4TBCo1M6tlv5+aI1DLxYLhzPBBMqkUCZMmHBh4nw+ny5qgdJPJz4OUnqXqGY6zUSXkQwJR7IvvEQyWbNNnO2nzmYLNYDg0CJKtIR4bJ+pVPlEGIVX1L7B94siOnDIiG3jygRisJAIDOGVNYdMynm4kMbB8lGiWut7JzZlF9WyD9uPhZpGC/MBDoFMlFTyb4odpNgBJaZ++q7ZNh/DIQnl5zJReLDFiAMHhJpmMrlwyGUMgJKQgb/Z4SCH4kEpHq2eQxQLmaRsnqQxh06zhWzGHPo8Ii0ckjWnk4McYLBDl20K9NEcIJacpKhWSdTvJxcOvR3SAQ5ZE14dnUugDooItmtpIaENDsO9fuY/7r71/oQJEyZciDifz6eLWqD44PFnbHXfew483ntcFey5IeEVayuuGU/EicdnkKyWqArr5FTtE1XdOkFVramYoniVMuCOktRZ6l4OcgjWcv4gB9WMF28hCGsoUkTSmoPHuskOHCQPA/e8vaVsy7oaBWvm5nzh4MwOzvl1smnfXl0VR7Bv9xlI1gBtg0Oxgxt5UJwq3jsyVoky5rCuuelDG2VKb+XxLgx28AK+lEZ7SXhJaFYk9Z0H1+JgzdsXO6w5JAAt24jNL1rX3PSt7o2Dr4LZ++C1oNhBEjmXAXzHcPDShwz7xFpfzn3NYagq6hOOnZWde+fxwcqe/YiDJyM4vGS8ROOQFcl9TdnxmKYZT5gw4fMFXxgCpfQh8RsChbLoF3GALd5kkHRYoPh+waF0dU1W+eKtVIRcvAG9QBkW5oGD9QDxYSwO1guScQh4yeCUdBSH/j2Fg09SFmaPik1r7jlwFIcyA8YXgeL65NneDihePF68iQMx0XOQg9miVK8k68Xigrd05WKnwxws/6MXar6y/jReBJ/NIzOIxTGH/7+9vw+W7Kruu/HP2nuf033vvCGhSKMBRVFisEMExJYIhlDmXZgYE4zLkDgvkFD5BRsp1gOUE6DyQP4wopyysWPHSoVQAoyxXBWjGP9sY0QBcih+xPaAHiTIQ3AhYvBPEz0m0szc293nZe/1/LH3Od33dWYkg+6I9Sm15t7u06e/Z52+vb+9z15rOcaBedUc5GNdXl5xKWUTJvtoQJbmpMRhVUMazgWKJ6/ZSZFcsXcPDcMlHp8UlwTvfZ5dKhqC5KTsLTMoxST5YpK8D+VclPeDZLOYDUrIGs7ToIiTYpANwzAOHhfy+XSRG5T9mgXKluJg3gd8nQ2KJy/M9G6rOQguIRGSY8calABl9sJnYyJ5BiUbJEU1EiRfbtm1UZ9fDszZoOQ1KH7VoEgg9DkjRbZpcEVDKDMo2aTkLB4fcmF+1XwJJ64MiuMsThmYg/f4OmsIJQ5ujIMSCARJkCA6cKmYJMmXhJZxyJclfLl044PPQ6fm9SG+aNhaLC7PEIXBHKzMHHjJTROHGZQgERKkCGkvDSXNeNUcpF3MwXCJB3Fjs8Dg/U4NZHOgQJCe0HvUKSnqDg0ecnfoFYPio2TTXGZcRpNEvgyWNcjYLNBvi4PXnGac21kmvCSCFA2JUqjtXDMoe6fdG4ZhXExc1AZlbToh7FVJVoZFsnlAXAs103qKOM8UR52U6AQtacapUlIvpOiXlWRlWeK9VmG6Ukm27vLahb7yRM1dfHunubfPalqpc1s6Kk8n01JJ1lHnchdl24S2kHohRperl64ukpWcuTJdqSQ7lLrvgycI9CkSJfd/iTs0+LGS7LSe4nygRoqGEgdVUpvj0EefY7GSXruqYbLSqC+kHIdQFqj2JGS7hsEshkFD7iRcI0zKzMGQZiwtxJ5dNbhdNEyKhlj5Ev9E3KJhZZHsSiXZ6WSK9xVV0eAHDSi0EDshxK5oWFkku6JhWrJ46qjUMdKHgHNLDZTGjXEXDRNfMa2nhFATyrnwIsSSZiydo++UsCXVeX+DEoKzNSiGYRxYvmPWoDzlu5/AZLK25+PiHa6q8VVFXU2ZHjqC+EBQR9UpXZVrTmjsaWYbNO0898FpO3RLF9880zDpIUhARKgWPaJKO61QUWKKNEHpx07CaUVDhatqJtWUyfphJFRU6gg9RA+dS2iMNPOioWuzhpWBWYqG6XYNSenWlp2EG6/0fpsGN2gocVg/gqsqvDrqTumDZA0plTjMcgffrs3f2geDsRKHatDQRKRPdOsVSZRUNHRFg66apCrgqpqqmjBdP5I7Cauj6iF5oS0a2vkmTTPLcehymfctGhQmXe5mjDiqJuL6lOPgIKVE49MuGmSMQxWKhnqCQ6g7ITlofTYi7WyDxXgu2l011D3UFA1txLeRbq0ieskdsl2kD7Is+V80SKjwdUUIE9bWDuMn06IBkhNaX2rSzGfMFxvL7tZ9d846KJec+Rr8uV3iMQzjgHIBdZouaoMymdZMpvWej4tzuLrG13lQrNenSMgGJXSKVHmhqcZS4iskYudIXrYYFCHXyah7IZRvzNVQ4XRakVC8RjTkgmw7zEFdZ3NQZw2DOQgduABSDArSZQ2t7NRQzEHdZYOCCBUOiQqTCnXZJOGLBrZrqEZzUB9aaqjaHAcp5gA68JFUOVIrpL7P+yi1WLxmDdWooUd8gkmdZ4NSj3rFhWIOhh40g0kq52KyPs2a1FP1SvICRYNIBB+JnRQNbqcGD0E8Io4gEddFZFrlWbGU06ldicNQdl5kiENFKO8HP8kGpSoGBT+k8vaoj8QAyUPq86U8KQuE3TaDElxe2Mu0wnvJqeou4kJeAbNai0WqCl/XKxqmRUOezaIYFOciyXXEvpyL7tzfPbx3tgbFMIwDy3fMGpQ/f2iTerJXpbZS1r1q8aFiUnWszUG8p1LHpFeaIHSSzcFivsG8necOvl3uHCtlHYuXXNBsGnMnYUGYNPkbddOGsuYksvBK53In26F6qXMOVzW4qmZa9UxnCVdmUOpe6YaZgxhZzDdZdHNimb3QlFa+tefLCms9o4a6jbiYaNoqz6BoZO4SnV/VoIhz+KrKDeqqlrW54kJFUMe0U9qQNZDSGIfhW7tumUFZxqHerqFrRw0Ll2h30eBCVWazWtZmig8VAcekh94LzTCDspgxb2b0fburBq/CWq9UBMQJkzbh+kjbVUQp3YxLHOIODXkWpw4t6zPwdW7UN+0gOqEp5qCZbzJvZ8SuI3Zt0aArMyjCtFcmZKNWd4nQRZouEL2QUmIhkTbIsmHhFg0VdWhZ20yESVP2t1VDu5gxazZXZlD6c9YQuLrtrdS9YRgHl++UUvdnzs6omr0/sMWVbsahYlr19ItsUCYq9BEaL7mKa4zMF5vM+kVe+9F3pLjSzVhyQbM+LQ1KbPOAtehCqXMRmTmlHS/x6HLmIAR86GhDTzdXnPfUeKZRad1QmCuyWMyYdYs8IPVdWfewXHtRKfQr5mDaRVxS5l1HklyLZebSLhokm4MQmISefiG4EKhUiD20K+ZgvthkPnQSLkYNtmroouT1HysaFl1HLAZlJonGbzVq4soalKrKGubgQ+5m3Mdcbn8+XGZq5szaeS5133W7rkHpY569ECf0XcLHRNN1pUhaZF40xF00uNAxCR1xAT7UBMlxiIMGVRaLGfNuTjcYtZQrtK5q6KLmUvVlHUzVRxZdoC8mdSaxaNi2FieEbBZDRz9RQtXlYoBxq4a2mbPZzrKGvh8vM+1H2/Xn7NdjGIbxqHEBn08XtUHpouRKZ7shuXle0rIINnXAonwD9lQidL0iKZbFoR19F3Mvk5gvkwmleVwZlKg9UmqYhGmuZdqUpnAxOWLs6ZOW8up5LJGygFZTT0oOWIBzOPF5YERzqooqqW1zD5oVDUApzFYyNCqP+GwOwjTgiwZFkZRIaTcNZA0xUsUSB+dw4qjEEaNCWQSa49DnBbdRl2nGMujYqsFPAwFoNV9OIeXLG31KJJWSXktujKh5jUqIHegCvB81QD4XqKJdiUOMxNK3ZlWDiKCVQ1xeBxMm+Y3clXOhKqSYNcQdGhI+9YQkQAO+R7ZoyMXQtN1DA6UJoQhaecSHEgeoShwEzQ0GI0UDxOFcsKIhZg3SxzEOAvk9SYlD29PH3F8nnrtOG4ee/F1c/uQT5/03ZBiG8e1ko23hT/+v89r2ojYo0dc4v/caFCUX8tCU8NqxliJOlUN14Nh6jZ+10PQkJzRRoUskEaLkRadCdgbOO9wkMDm6xlrImSKPO7aWB8rTM/qk+KhsnpmjizzzEaOWgl95YJSoeO2YpohPyuE6cHS9YrPpSfMOFaHVooGtGsSVWx2YHFtnvWSrHDu6RggOHprRxUQbldnZBSxaNCZi0tJdeFVDz1Q3CaqsBc8lhydsLDp00aGsaFAhuVBSlksciob66Brrk2zQjh2ZUlcBHtqkLZV452cXMGtzHIoGAUjkxonaM9UZISlrleeSQzWLNhLnbam4q9DFrEEC0QErGqh8jkMdEDRrqAPuzJxFG+mB+dkFOmtyFdhSCn/QkOMQmeiMSpWJd1xyeELTRdKsI5GrudLGMQ7JFW/gXD4Xlac6ssb6WoWocuTQhPX1CXJ6RtP2RIX5RgObg4a01KDgOpDUM2HORJXKOx53eELXpRyHYqrocrG4KJ7k/Ln8CX/5x1/N9z3zex7R35VhGMa3ijNnzsCvv+e8tr2oDUrfdHkF4x44SudEhT44egcuKbEPJEn0s5a+GJQ+QddHOoTohESeiUrOoU4IKH0b6DXhBWJf5TLrbZ7x6KPSNx1d09JH3WIOkiopKV3v6R1oUvroiZKIi45+3qEul07vuq0aEAjOkZzkzsVdR0/CAbELOHy+r8/moGs7ukU3lu3fokGVLjj6nItLX3mSV+K8oy8GpQe6LtGRLzfEosGLoN7hhziIjhqiQOx6Yh/zMbQdXdONcRkMSl40q3Te0fulhugSfRvpN1uS7K0hFQ2SEl3b0Usps98FvJPcibmLxKKhbzq6mMpM0FJDSiUOPjf588ERvRK7SD9ryUuFhb5PdLqigZxlk7zDpUQ/CfQ+z5j0nSf2nth29G1PZIhDmzWk/Lqrceido+/yeXXeEZ3S95G42ebnS758tV3DvjiPm04v7A/JMAzj24Rr2/Pe9qI2KJtn54Swdy+enJSRqMo31KkoLil+Eph2NfONhvkikpywibDZJzonROeKQRG8E4IXUlex5hSqXIhrLeRZjfnGJl1UmqRsnp2zOV8xKGiuWJsUnxJ1KBqi4ieeSdMwX/TMZx3JCbOioV3RMBgU74Q4CawHkMrjUKYBYuWZn80zKE2ZQdncbJcGpWhwKfeKCcGxLjkuVI5FnDKfdcznHUmETSkaEOJQOl7IcXCONAlMRfFdwClMvKJdYH52k7YM6LOzczY32mxQkuaKsOQ4hJTwXlhzueEiwTHvJiyantksa5itanAuV2Zd0dBXnnUPvg2IKlOv0FcsNmbM22ySZmcWbG42S3OgWi51KT4mXNFQp0Tyjnnf0rSR+WY2KDPn2OyVBWyNgwjBZw1TUeqYZ1AqTXgi840ZiyYblNnZhs2zi2WPpxUNISYoGmJK9F441E9pu8hssyXqNg1OiOdx7bbrImprUAzDOKBcyOfTRW1QNs7OCGHv75VOwcdElRLBC1PNJdH9xDPtJszPNmw2xaCI42zM32qjd7kiKUIYDEpbsb5qUOp8uWF2dkaXlCZmg7Ixa/MakOHSRtEQUqL2wmTQUHsmbc183rNZZlA2xLERlXYXDYNBObRiUNYqyQZlY0bbZ4OyeWbBxmz5rX27Bu+FNcoAWTnmsWe+2TCb99mguKyhESEGP2rI5iBrmDoldMUcBCVNKuYbM5ou0SpZw8aCPuk4iyPFqIWYcA7WZKlhvW+ZNz2zzW6nBp9nj1Y1dLVnLYBrA06VtQDa98zOFoMCbJ5dsLHRlKaDWzX4omFdcoPG6B2L2LJoI5vFoGx6z0avLIqGuE3DpPJMvVINBkVy5df52RnzYlA2zzZsnFnsNElFAw7WBWKM9F6Yx462LQYF2HSejaQsWNWwP60ZFMMwDjDfMQZlsejxYe/S3q58W44xZ3Q0KeFSYhI9nYd21tAsIsk7GudYDAYlOKJI/tbvhMo7HNA0gZAiXqBrapwT2qYbZ1AWi47FoisDc87ayBqUECMLLzSa8H2i7T2dV5pZRzPrUS80zrMYDMo2DcEJgtI0HVWKOKBtO1QT7aLLBiUpi6ZjsWjpyixOUh2NWoiJqYdGc0xC5ehqoZ21NMWgND5raJwj+kh0u2kINKVBX9t2iEDTdDTlcsSiaVfisFPDxEHDUkProW16mjKDstiiYTAoWYN3gqZA03RMSoPDtsnVW9umo217ehWalThs0ZBy/GsHjSipjzgvtBW0baQpl3gaH1gkZU4xak7QlTho9DSLQOvyQuiu8XS1zxqajh6hWXQsmo6u3zaDkhKhT1QOFqLQR/BCVwltlzVEyOcikQ1K8KXy8f7ElCzN2DCMg8t3SppxzmzZ+2iHZnjiSgXPUmhLnBtvziUoi1CdlsWo4nAlW8Q5Wf47PA+WC1dFEJdna5yTkoaas12UUhpdE05d3oeW5nPj6+f707D4cpsGymuP+x50DPt2y0W0QyM7J7lPT5J8mcsJucmgFr1SGho6h8gyFvlYsgYnkkvgi0C5f9Agw78lRkN9kuH4nJRjIWcQlaSXfGya4yW4EouV1x+Oey8NsjMOLulW7eKWupxDNK/XQbOWIb7OlYya8rr5X81ZSsKucRiPc9j3cP5h+frj+WGMk3O5sSSlM3J+L+R+S3lfunye6Ph850qMRJa3c/xNnM82hmEYjxbfMaXunXc4v98MCjhfGvI5GQ2N877cco8avCtN7xTvXM4jLdkrzgne5wHMl4HMCaOxcM7h0HxzWY8TxUlZoKosb650wPVFu/M4n3A+r0fw4vMaCSfgXUkXXzEoo6HJr7nV5OQU2yEmuaHhcubA6ZAim5vi5di4lVikvObGe3wxP+ocrFzacENGU3lNWT3mQUPZr3fZoA1VVJ2Sm/EVDY60omGpI/eqydVinVvVMMyguC0anOjWuHjdoiGVFGxWNSg4L+W85W3Fl+f63KV5iINnp4b8XnDjsUvapsGV+A8/l/RnRMefHbnrdI6ZZj1Fg3elU7R3JWb5/cB5zKAMxtowDOMgciGfTxe1QfFloNgLRxmQZMUciOBXB8WgpS5JzlDJg1ExKLIcmP2w/TaD4r0jSRlwtg3MQwbNODD7PMvhJXe9dcGVmy/ftrMGv4sGP2gog6JX3fY746A4DMxDF91VDW7QMFTaLbfcCbjch+JFwPudGobB2edv925loHYpD/7euTEufruGYg580TDG1euowQ/HNxq1PIPiRfJzy2t6l8u6jzHwDu+0XIopGgAVzSYC8rH7fC58MSg+ZEPiQu5OLRSDg5bts4ahHo4vRm043yI6mqbhnPhhH9s0CNk4ekpdF1di5otxDuBKZ2i3YpJw52dQzJwYhvFY4aI2KFXw+LB/mnEuU+8IXgia16D4Kre5D1UkpJxKHMRRScp1LvzyEs+w5iAET/CeEFyekQk+G5TgSVEJouVxDykPRoNBcSIEEUJwBE3FoOTOviEoocrGqBJHkJQv9/jlJZ5hkWwIftThIH/L9/n3pEIQxm0QGTXIEAfn8rGIElwkVL7EIRH6nMYbnKMSzZc0VjTk7JUVDcEjml/P+3weggpJBw0BYkJkVYMjuERwZK0u4itPqAIhQagSSVzWKfln50v2yi4afPA41aUGH/Aht9IZtlEERFFXNDgt53TQkBcO+yoQVPBVriAcnCeIUgGurAeCZSZRVc6DDz4X4/N+eT5Cfq3x/VDOxZBm7FM2gNWgQWSLhjBqcPlxQHy+pHQu9rvkaRiGcTFxURuUv/aEv0RV713zwZFTOitVjlaexznBpcShSeDooQmHNhsuKXVQLklwaRfpJQ+IQx2UYeZibVpxybE1ppXHA8cuWUdEWJscok+5SNqRw3PmY5pxWSRbNHhVjm3XsF6zueg4Ugq1XaJZQ7ubBueYTAKXPm6dtToblGPH1giVZ216iL5PtClx9MiipDrnRajbNRwJjku9w6fEtPJccnTK0VnLsUVPgqxhW/0PKTNQoWh43LE1DpdCbUePrlFNAmuTddo+0ic4emTOxmZDHBYLp7IWRpWgyuHguMQ7QkqsVZ5jhyc0bc+hUgdlE3hcF2lVttZiGeJQeS553DqHpjmT6OjRNepJxfr0EE3X0yscPbNgY7PJcdieZqzKYe+4NDiqkv59yZGc4ntos0WBs8AlXaJRHVO+dUVDXXked2yNI2sVonD48IT1QxPWJus0bdZw5FjD2ZJmPNZBkZJmnJT1oqFOSuWFS49O6YqGCMyAY6MGIXHuGZSjh60GimEYjw0uaoMyndbU9d6VZEeDAkwrz9QJTpXJJFCvT3JPHt+jIjRJWQs5RXU3czCdVEwmNdNSxbWucxbPZNLjU0KisjbJ/VrirgYFppVjUi5fTOpAvVbTO89UfK4km5Q2RPw2DYM5qOvAdJo1CFBPakLwWYNPSEpMp4mUKIPiNg3ANGQNQZVJ5anXpvQ4WulGDWtdJBQNo0Ep9T8mk8B0UjMpBqWe1FS1ZzKpER/xCabTWGKg9MUkSdEQgDXvmIalhsnaBHzPVF2u5KvK1C/jMCSSD2axrjzTadGgymRSU01C7mztHEFhOs0F2gajNrQu8GjWGJYaau+YrE2QkJhqjnunsBYiTpfnQkcNQl3lOEwnFQJMJjX1pKaedLm7MTDtEn2X9tEgTIOnLnV66qJhoi4XlENYC/0ODfsRnLdFsoZhHFi+YxbJPrQ5p2r3/sjOhdryDEoKZVFrSsRJwPUdGxsNZ5sedY7TSXmoT+MMSi7xXqb0vWOt7/Ee+mJQfJXXppzdzKXu26g8tDFnNm+XMwdlcerwjTn3jxF8SqQ64Lo8g3KmzKCcBh7qEt0wg1LO5NIkBUIlWQPgA4TKs7GxLHV/emPB5qwdDUrSZRyCKjHkxb7D7EWVejZmLWfnPUkYNbQwFknLGSXZJE3bgDhIfchrUDzUfeDs5py2y0XSTm/My+yF7qqh9/nSTUiJrvL4vqNpe86UGZQNhIe6WDQIqVy2WBo1jw9CLLVYnIdJrNjYmOVS9wqnN5Z1ULZr8Enpg8N7oUqJSXBUqaftYtYAWUMfWehuGrJBySV6e0QVJZEksbE5pyl1UE5vNJzdWIxVfodqtkMcOif44JikRO2zhq6LnB1nULKGRpeF2s5lUJq+fzh/SoZhGAeOCzYof/AHf8C//bf/lpMnT3L//fdzxx138IpXvGJ8/LWvfS3vf//7tzznmc98Jp/97GfH35um4c1vfjO//uu/znw+54UvfCG/8iu/whOf+MQL0rIxWxCq3R8bUlx9UmrN5cxrciVZ1wYmRGZnW2blEs8mwtku0btSZn61QJkXYopMaof2eV3GdJoXts5mDf1QqG2+YHOWS7xvKZKWskHxwVGXarZu4qk0Mpt3zObdqGGjT/kSz3YNTuhjYDr10OcskXrqqKJnNm/oSh2UjVk2KKvFwYZqtkEV8cLUCT4mtHKsOWW+2bK5KEXSEM72xaCsFItb1VDXgksVglJPhJgqZrNFqSSrbMwazm42O+NQjBpemDghFA1TIvOmFEmTXM12o080u2jwTpj0nunEISkblLp2uXvwvGFRLq9szBacnTVbSv4vK8kqhByHKiZicKxLYlGKpCVgQxxni4Z+RcNgUCZVT1ULVanF4n02a/P5gkVTisXNFmzMFnS9luaJZU1SeT+oEyZe6GOiC441SbRdjkMu1FY0aDGL7twzKF1/XgXxDcMwDjwXbFA2Nzd5+tOfzj/5J/+EH/3RH911mx/8wR/ktttuG3/ffhnm5ptv5rd/+7e5/fbbefzjH8+b3vQmXvayl3Hy5Em833vR63ZizDVFdiMnxyrE3Nk3ihIBTYkYJTdwi5EYI0lzKfOYNHe/Jd9ElJJsnL+Fp5Q7yiKklJDybyrrC2L5th7HKq5FQ1k0m9J2DXHUoIOGqOWyRl5zwKhBSqflRPR5oMqvne/Pj+ny9UeDUtJsi4aIEBWIiegYXz/GhAJRXH6u5EbRSYoGHTRo7m2T8oqIfOxp5aajnlUNbpuGpORjceTLHyUWuVnj3hpAiFHGy2hu++tHJZXYxGKQhssrgwaS5n1obl6YRMv7oVyKAZLLRc8iKxpKp2RRIXoZj1V0JQ4rs0axNI0cz0/K50KHOGg+x/k1d9GgOTZRs4ao555B0XNtYBiGcZFwwQblpS99KS996Uv33WYymXD8+PFdHzt9+jTvfe97+dVf/VVe9KIXAfDBD36Qq666io9//OO85CUvOW8t3uXLH3uR02nLjIWTnG4spe6FW6bYUmpVeJe7GWtJXc5rUFbqn4x1T7YW+BpregzbqFtJM5aSKprGFGVfnr+a5qsy7Dcta5CsaHC7aRBXCpsNNUjSMgW3GBPZokFzOuugYTUOzqFlrYnXnCaLX2pYff0h9VqGwnDjY+W13JBuvdSQbV5Jxy6F0nImktsSizGdOOVsqbGi2qBtrEFSCtI5XSlklwvvDecnp1snvLptGtLW2jGlSNpYB6XE1g8aVzT4IU19PBeloJsbir3ln3Xl/eBVSsJy1uBL+rXzJYUdlnVQUk4fzxpKSjUsC9adA0viMQzjscK3ZA3Kpz71KS6//HIe97jH8dznPpef+Zmf4fLLLwfg5MmTdF3HDTfcMG5/4sQJrr32Wj7zmc9ckEGJURG3d7PAYebAJ83fzMmzF8nn2YvYR1IfSS5/644xb5fQMoMCqCK45Tdbl+czYow4LfsZZhViXH4LLjMoW2YvJL8OKZGi5NceNSQSkmcAioY8g1I0qJBi+bZdZvFTiqTE+LpZx3JGJO0xg5KGWQspz+0jKfb59aXMTgBxiwbJCzejG2dHHMOsQdpdQyqzAmX2YjmLlGcvpMySDBpin/vIRFc0CETVMoOSK7NGSkZLTKQUUV2ZeUj5uPNMVCo6VtbBaKlFkjTHd5jFwS3j0Mf8XnA6zmSsakByReLkGF9XBg0pjvGIrJyXuJxBEQDNi6qTCtEPsyRuSxwiuXNyHGaEygLic8+g6Dm3MQzDeLS4kM+nv3CD8tKXvpQf+7Ef4+qrr+a+++7jX//rf80LXvACTp48yWQy4dSpU9R1zSWXXLLleVdccQWnTp3adZ9N09A0zfj7mTNn8v1tQ7+3Pxn7v0RVJl5oSqO+OgZar7SzhkXTk5xjIcKizwsXh3UPsrIGxZFoFh4f8zf73P9FaJpm2YunaZkvdutmnAhRaYKwIPcHqmOglZT7tcxys8CFOOa95m7GuzQLRFPpB5QXybZNICVPs2hKN2NYLFoWTelmHHdqqL2wKI36fOVpK2hmLU1Zg7KQ3JOoRUo/oKxhWIOCJpqFoyZnuLSNBxJN09J2kVaLhsVKN+NtzQIrLzSSDYCvPK1XmqbPfXBKHBa95rU4q3VQigZNkabxVOQ1KO00IE5pF+2Y4tssmtKLZ/dGfZUXFpIb9REcbYCmiyxmOc146M00Nuob6sEMGqJnsfBMXekHVAtVLbSLhqbp6ZHyfmh2djNOpbO0CI0DYkS9o6nY0otnMWooHZUHk7QPfblUZxiGcRB5VA3Kq1/96vHna6+9luuvv56rr76a3/md3+GVr3zlns9T1T2rYN5yyy38m3/zb3bcP5u3+LD7c4Y1KL5P1CkblEUp1FZHT+MTi1nDojQLnIswi+RFsmUwGNKMq1LWfbHwuNGgVIgTmtKQbpGU+bzNdVDSMs1YVMeBeeqFNU15gOw9jUSaeT8alLlzzLd0M5ax/sdgDhaLkE0S0CwGg9LSxtzNeLFomc+b0ixwJXulNOqrvLAg/+yqPCg2s4ZFaRaYNUAzmiQZL20EP2jw1GVxaLMoBmXRlGaBymLRlIF5WBy6TUNpkjdq8ImmyXFIIiwGDZJN0nYNKQbma4FKY9bQeEQSi0VD0/Z0CPNFNgd5gaqOC1R9LPF3LA2KdzRBadrIYrMlCcy9Zx5zo75+mwbvhFQMysLlpolN7ahqVwxiRxw1tGNH5TRUsy3NAn3RoDHmZpGV0rbZJEVWNUD059cssO/zrJJhGMZB5EI+n77lacZXXnklV199NV/5ylcAOH78OG3b8uCDD26ZRXnggQd49rOfves+3vKWt/DGN75x/P3MmTNcddVVtH3Es3fWwtDNWFOiTUKrCRcTrSh95+nanNaZktCKp41K59w4pS9lQEo+ETqh7SOVKEmg63ucc7R9TxeVLkHb9/n3pOMlHqeKK9P8gwYfE51Tus7RdR1dlzOJWudpotI6XV5WAIITUqm/0fWRriz47fsecVlL1ye6lNNM2z6Og+JoksrliEFDiolKHX15/bZd0ZDy7EWvftTgnRBT1tD2ka7P61b7PuL6oqvPMyhtH2m6uDKDsjRqsY+0TmglkfpBQz4XSw2OJpJnkjQPzKsaRHK2SutzfLs+4qPL9/U5zbjte5pulzgkxfeR1gstCn3EB8kaupjPBeRZnQQNOzUElxse5jhI7mbcR/o+lnMR6RHarrwf+qVRE3IWUYyJWqAVRfqIeKEv78e2zWnK3RYNuWDcuUj5mp5hGMbB5AI+n77lBuWb3/wmX//617nyyisBuO6666iqijvvvJNXvepVANx///3ce++9/OzP/uyu+5hMJkwmkx33B58HzL1wJS3U69BUUCApWnv6UJGmDnUR3PIbvkoefFJZg+JKGXInec2ESo5vLLMe2qUxMyQv+hQ0X5EoWTxDmfpcvj5rSGjtiVVFSgHVfouGsKJh9Vu7E6CPSw3zHukS2iU0KqQ0NgQcnruqwYe8uBMpcQiOPtSkiQdy/QyRMssgwMp+fCm5P8ahy3GP8y6v1WgjGhMUU+Z9CcKqBtV8uWzQUA0aKtIkQAql989WDbIjDgIxQS95Dcq8z4awi9Bv1aBDHMidjH253w29baKiXnIcSOha7oMjklOxAzk1e7sGLyApxx6FuOjppUHbiJbrjq70E0q5CVRZgyI4N8RB8iLgoiFWNUkSrJVMtpIOHlTHzsnnYv6nX+ehz1k1WcMwDiZnNzbOe9sLNigbGxv8yZ/8yfj7fffdx913382ll17KpZdeyjve8Q5+9Ed/lCuvvJKvfe1rvPWtb+Wyyy7jR37kRwA4duwYr3vd63jTm97E4x//eC699FLe/OY389SnPnXM6jlf1mrFh70WoZQsExcIzuN8IIYpKo6m1Npoqjz1nzTh+oZJ7AgpkjSSyjTU0NQtxJ50ZkYvjoQwe2iOAB1lEaUmQkpMnBJc3u+YpOw83nm8r0hhAuJoxLEpwqKGdDhPy0vfMoktfg8NVYro2Tm9OFzR4IEW6BWiJkKK1E7xo4a8yHfU4AKpmhLF05Y4LCroD6e8XqVvqPsWpzEv+iwacgNBt9TgstmaPTSn3abBp8jEKdHlInk5DowaggukMCU6R1vi0E4gHkqoJiR2TPqmaEgkTVs1EOHsjN55BGF2ekG3TYNLkYkoIeTZKC0ZNM55nHiCD2iYkJynKxo6hbie4yB9Sx1bSEMctmoIRNiY08+yhsXpOUCum6KQSLhYzoXsrqHyHg1T4jYN/XpOOyZ21H2zTcP+Xz/+///5t7j7P29e0N+RYRjGt4vNvjvvbS/YoPzxH/8xz3/+88ffh0svr3nNa7j11lu55557+MAHPsBDDz3ElVdeyfOf/3x+4zd+gyNHjozPefe7300IgVe96lVjobb3ve99F1QDBcjN9/ZpFiiSO+UGHwi+xlWTnAqKQxOIA0eClPCdEqIiMX/T1VQGJMlddwOSU4mL8cmrcxXxpfstOf00lFTa0aCI4HzIjexGDT5r0GGSISGaCJ0SekWSEONuGtihQVWR4Ev6bJ7BqUo67Q4NzhN8ja9XNKzEQVXxXaLyWUOKuZ7IbhpkNQ7bNTihcrmtwFYN2SB5X+GrGucDQqk+JqsahOATpFIrpnhQJ7kT83Au8jqjMpuStHQ+zjNRudGeIuQ1IqOGYla9r3DVBPEh70OlvEY2Er6FEBWNJQ45Z3pFA3jNP1M0aEqIz5WGVcvMmUh+f2jaoSH4gKtqnK9yErKWbUVBE77PcdDynkznUeu+f+BBZmf+1wX8FRmGYXz7mKe9l2Vs54INyvOe97x9F7n8/u///jn3MZ1O+aVf+iV+6Zd+6UJffgs+eHy1u0HJSReuDEaly2wdEOdynY9U6qhI7mHjyd/sxUGKuSAXFOMhkrvMquAl2wMnee1B7qactw9SCsJpHhhhaZKcK12Aq4A4jyfXKvECQfLg5gkEiRC1dAFeasj1SaQ8x48a/A4Njl5y7ZGYE4xLrRK/jEUV8s8IPq8RJYiimjV4ibmYmChuFw1hRYOXbERWNfhSy0Q0Ecc4COKyUQs+4OuQZ7fE4VKOgxctcegJEiBBdDBkko8aEEJa0RDzZRPvPUlySrYXJUhed1LmI4BikkoHaF8VLds1qOb3Q+9RpzkNPQ3vq/J+QPJ7SDwg+ORwMebu1uXYA3n9kJS+Oqk8f9DgXSBUuau1R/BpuIyUz1+QSKBoiFoKve2PODlXoo9hGMajxoV8Pl3UvXj++nedoJ7sfb1dnMNVFT7UTKoJ0/UjiPdU6qh7pQ1CJwmNkcV8g6ZbELuO1HdozC4vf2PODegmvVCJR0SoFz2C0kyrXDclRRZe6R2lxkZaaggVrqqYVFOma4dxIVCpo4rQO2hdyqmz800W7YLYt6RuqwYpGqY9RYOjbnok5TTbJIwaun001GHC2vphXKgIOCad0oW8aJWUWMw3ioaO1LWjhmyIShwi1HgQR93GvPB4WpGkxMEpnd+mQRxSBfygYe0wrqoJCHUvRAeNKwuaFzMW7Yy+60oc+hUN2aBMu5U4DBomIZeDT4mFS3S+1HLRwV0IrqpwoaIONWtrR/B1jUeY9Ln/UuvzLE4+F/N8LtqOtIuGSQ+TEoeqi4Qu0k6rXKE3JRYu0nkZ46CDhhDwVU0VatbWDuPrybi/5CTHQZV2MWPezMb3QzqPPjuP2/hT+N+2StYwjANKOkBZPN9KLr30MJPp2p6Pi/O4usbVFXW1xuTwUcQHgjpCp/SV0LuE9j3tZqBp56QuD0h5UMwLE135tlz3QijfmKt5D6pM1/PiyqSRNii9F1RTWbuhRUOFq2rqeo360JE8QKkn9Er0RUOKtJsVbTsntk3REPM+ypoTr0LdaZ5dEEc175GY6NYrVCBqZM2nXIadVQ0ux6GqqKopk0NHcXWNV0fVljhIyjVONkLW0LWktkX7YfHsoAGqDioJIEJYRFxfNLhcPK71iT4ISbdqkKrC13XRcARX1XgcoYPkhc5ns9jNa5pFVTR0RUNZSyOCG+JAnhELix7XJ/q1iuSzhjWf6LfFAXHjuaiqCdMSB4ej6rI56ItBaWcVbVMTu5bYtCsaSsVaFapOqQnghNAkXNvTr1e5EGCKrLkSh9EkFQ1Vhatrqqpmsn4EP1nDIVRdrhjbhWzUuvmE9XlVTFJL6rKG/ZhOKqt3bxjGweUgpRl/K/nmmTl1s/vBCsMMSouvaiZVZNrIvjMoi3ZO6rstsxcikgfRBNMIQfLajUmTDUrTdyhK1Mh8rxmUqsJVLZOqZ7pQXKiKBuj8ygzKbJNFV8zBNg1utxmURY9LStOXGRTdOXuhlJLrVZdnDqqetUZ2zKB05TLTEIfY7TOD0kO9MovjotL0FckNMyhpx8yBiMNVAV91WcOC/WdQmk364Vz022YvVJgWDYijbiI+Jto+lNmLHId2WxxkmEGpWurQsbZgZfYiN2dsBoMy3xxnL+IeGsYZFJdncXwXafuK6MsMikS6IOMszqghVLi6zbM4C/B1lzUUozbMoHSLGbPF5jiblfr+nJd4rmp7K3dvGMaB5UI+ny5qg/LQmU3qeu8FN8OlDR9apqFjfZ5nNGoc0z5Xdm2KQZkvNpl35dJG36NlIY8rA3OlsB7LJR6Eru0RhUUbcvl1jcyc0jpyZhDLSxv58kpgLfS0U8X5QI1jEqFzsJBsUBbNjHm3yJc2+m6HhqCwHqGWvLBz2kVcSszbbFB6jcyLhlgWyY4zMCHgQsU0dHRzxstMfa+0w6CY0hiH0RykpUHxRcNahEnRMOmyOVi0VVl/k5i5tKsGCQEfWiahpZ0qPgQqHNNSIG9eNDTNnFk7yxr6fjmTtD0OeMQ5pu2gIdALJE3MXaIZzWJe+MoYh8AkdHRzxYeGgNDHfIln7nIWT7OYMWvn9DHHIe2iYS3CtFzimfSJqo8supBNakrMJNH47RrKguWqovY17VQJVYtHWI8Qhzio0jZzNpvZDg370Xa9NeQxDOPgcgGfTxe1Qem6CLJPoTZRXBJSEnzy9L5DXMKpo4/km+QeKrloW5+7G/d96dY7mIO8OrGLucOxiBD7XMW0LwNxrzEXXxsNyrBANS80dQoh9VSuQ7zmGZGyBqUvsxeDhr7vi0kaUluzBlXoY6lFIkLfRZwqvROS5GJgnUt0rqQ+M2SvpJxxonkxZ+87XMyXTPo+X5bqpHxr36IhbjEoqWioYqkDIkLo86Le3ks2BykWDUIsl1cGDS5B0twIsHddWXi6Mw5929G1PX3sVwzKMHuRUBX6mGMr4uj7BDHRO6F3uT/QfhpcIsdBejTls9xHiEK+3KZK13ZjHOIeGkLMC3GRhO8Tro/5OFzuct1LpEult9PqDEoSogoSHL3rQR26YpJ6l2dcurZfiUPul3SuGZR0Add3DcMwDjIXtUHx3hFK59eh1sYqeQbF44PDB5+zabzPWTyiuJDXl0gqGUGay7aL5lRR2JZBQ+kgTM4aESgF4HKlUu8U74a0YV1q8EsdbtBB7myc64UJmgTf5wwjVYeoHzJfd9cgkrvvDt1vpWShOClNiBVZWaCauwX7fJwrGoauul5y0TMfPD45FI9oQmXIfynZOSornZSFXOcu4XzpPiy60mVaVjTkAdl7t9QQSjaTgLpcBE2T4GN+XEv69dD+bnWBqqNk0Ihk01HeD1pqwA1xEGTbAtWVczD8XI5NhdKJWLOG5FGNiLqVPKClhi3nQslds72nlIjBSS4KJ+QePKOGIQZ++d70Zb9Ifh+JSm5pEBwq+Vzko94fmzwxDOOxwkVtUFIfiW7/GRRUcidg7Um+R5PmzrBRSanMCsRI6npi15eOsssZlFyJVEha6mGUmYMUI6LkrrZljUEaUlK3zF4M6cJC0kDyPaTSnTaV55eZg9T1yw7Le2iIkXH2IvURVEll/URMkehS7varacsMipZ6HVEd0fdoAIcj9StxSErq+uXr97lA2FhvpAzEKcpKHBISS4foMoOSBg1bZi/yDI7gxnOBSungXPSXSzyx74uOcj7i8lLX9nOBCKkvHZVd7tQ8aEg7ZlBKvROVHP+uz3pWNKQyg5K6rCGWDsMac8L0Vg26jENfOjr3uS1Bjn/M222bQWF8Pzhi15PtznBMkuOgSuoiqYvEMoMyaNj3b8K6GRuGcYC5kM+ni9qgzM/O6aq92xnn2YtceyOFDpknxHkSDhLMHXkNSkrMmhmzvsmDQVy5vFK+LVcIkmSs4ur6CAqL1pdLPImZlPUfY/bKoMHjfIWGHuYJt6KhdTAnV1Cdt3NmfZPXXmzT4EYNECV/65c+4VSZt7kjUdTIXJRG2GkOQq59knyHW+R1MFFdXmTrpKyDUWbtShz6njSsg1nRQAIt2Uz0uRT7ovP0RcNMNK//0G2LQ31e/xF9h8wV7wN9iWvnYF7ORdMt2OwW47lIcauGUOKQynogKf12Fq2nE0iDBmHnAlWf4xB9h5so3lcEEVzMl6jmkm3dol0w6xZ0MZ+LlOK2Qm3LOAi5ZH6KkUUbiobEXCIL2bpIlqFgna9yHOpECG0uPpeKhmJQmrZhs5vnSzyxJ6X+nH/dXRdzewLDMIwDyIV8Pl3UBuXs2Rkh7DeDMlRQDSTfQh1x4nOAikFZoHlA6xZs9i0xlW/tWtaglAGpBlChHsxBTAjKzC8NyqYkGpaLQ5dF0gLOe9TXaBVxzhFLBdWFwIxcjXXWLdiMTR6QUtzFoICo0BcNxIRXZR5cbi6niQ3SysC8U0N0LVJHnBvMASwczMmF2pYaIiltXweTNaCyxRx4VWbB05eZgk0SC6HMHGyt4up9yBqqiPN5wbIodAKzomHRN2z0Qxx2aghFQ8Qh4iAlQlJm3o3mYNAwxCGtaHDe07sKqSLe54W6TnM3olmpJDvvFmz2DV3qiStmcVmoLVeLVRyIyzM/SZkXDVGVTSLzPTR45+l8BVVP5etSoVfoRZiV0nJN17DZL+iG92Q69wxK18Xx0qBhGMZB40I+ny5qgzLbbPBh749skWUvHnU9rsqLKrUMSHNZzl7M+obN2BJX+p4sF8kKw0R8Iq858OXyy7x0P+5IbKI06BZzsByQAriIhDyLM2hYjBqUzX7BZuzoU7+l/8uwPqEml1eP4rPpSMWgOEeUbFBmJBawh4YcBx8U5zyxpC6vahjisF3DsE6jLj8rPpeVT5pnUJzPXZaLhvluGiRrSL7HBcU7TySva+mKUVNVFrFhs99bQyDXY1HJBsWlRKXKwjlaoWhQ5uVcjCaJYlCcJ5X3QyhGLWzRAPPYsBkb2pQXp+7UkM2iSF70Iok8C+ZWDIouDcpWDS4bxHIuOt8RioZesllMmljEjs1+QTv0RTqPEtFdH20himEYB5fvlCyepIrsk7WQ45BIOJRcLlyclssfeQ1DQvPai5RISZc3zas2yiKQvM6EvE7BqaClOYsCCfKagZJcnLYMzJBXkeRHU9Lcl0VYaigLQXfoGC4TjRryDL+SSEWDkkuz54bKWnTupaE8nsa9bI2DDq+/UwNCXnNTjjdJKmt7lg0X9VwaJC/0TJJfQ1RQcfl1JUczaSrrg5avP2amjKXry9qVshBYRw05DqvnIm7XkHLB+YTmyzKaSEWDAiplP7HoKJfrlhq0LJplPEYpx626PBdazmnS7XEoAS+zJCmVtUJlrVKO7XDcaSUG6fwydKxIm2EYjxHOnRZgGIZhGIbxbcYMimEYhmEYBw4zKIZhGIZhHDjMoBiGYRiGceAwg2IYhmEYxoHjos7iueLwhBDqPR8XcXhxeOdZ9xWHqwoRx1Qc6wiHUBaa04w3O+VwFGJKJB3SjGVMM65FOOwctTicCIfICT5r5JTSXhNrKdHqappxadRXNBzyFYdCnTW4rKFBmemQ6pw19GOqc87IGNKMKxGOrGhYB/yoIacZr6eYU511RQPLNOM1FzhSVTjnqREOi2OBMtch1TntqiGXlndUIhxyjrVS4n2N/CZaA3rNKb7rKbI4h4bDVY0XTy3Cujg6lPWiYdHnZoB98jl7ZUzxzeXwgzgOO2EqHilxCMA60GnOj1lPkYUq/S4anHOjhuA8ocShX9Ewj8rhXuiSL++JnEM1phmLcEgca86PcahLHDpyHNaKhqhDmrGOacbeeSYucCTUBB9GDXE1DhEO9UqXIjGFUcN+PO7w5Rzi0MP4azIMw/g20Hfwtc+f16YXtUH56df+IIfW9/4wFufG/jchVATvEYY+LY5Yimsp0MdYuudGYkxoTDmt1bk8oIRANalwzuX6Hz735Ikx5vTapHRNO5aoTznXFHGC9x4JjlDVVH7o5ZM1pKTElKuM9inSlxLvowZAfNbgvKea1HhfNLhsEmJcptr2TZdLxcecyjtoGHrPhFBRhTAWoQveEYsGioZuKHPfR9KgwS37+VSTGh9c3sc2DapKt6eG5bmogl/2tfE5zbePg4ZEV85FLrefmzUuNTiqusYHD1DikcvuD+m+XdsTu26rhqEXj/f4KmtwSG56uIuGoWlj3K6h6AiTmhD8lnMxnHuFHIeuy/fFrIFyvC54fBWofMDJNg3ltaImupX3Q4rxnJVkn3D5MS45uvYw/6IMwzC+tZzZ2IDn/n/Pa9uL2qA847nfx9EjR/d83HmHqwKuDlBVIPtc0VKFrkW7ntgO/V/yoCreIaFCJhWsNCcESp8a0Khom5+vMVeBVdVRg1QeqSfnKFKjaNdB2xG7SOrTeBziHeIDTCc4L6UeSr6NR5UUbTq077KGYhrEOXwdcJWHqs4dCveLQ+zQtie22aiAZJM0aJjUWY8sa7O4IQ6q6GLQkPscjRoqj9QBqSpwfp84AH2Ltj2p7Yn9YJKy0ZLgYTJBwvJcbNGQFG17tBvisE1DFZBJPRRn2fNc0Od9pDb3xFF0bF0gwUM9QUI2F0M9nC1xaFY15FkyEcFXIcehPkccVCH1YxwGDfvhD6/jppP9Y2sYhvEo4c+cOe9tbQ2KYRiGYRgHDjMohmEYhmEcOMygGIZhGIZx4DCDYhiGYRjGgcMMimEYhmEYBw4zKIZhGIZhHDjMoBiGYRiGceAwg2IYhmEYxoHDDIphGIZhGAeOCzIot9xyC894xjM4cuQIl19+Oa94xSv48pe/vGUbVeUd73gHJ06cYG1tjec973l88Ytf3LJN0zTcdNNNXHbZZRw6dIiXv/zlfOMb33jkR2MYhmEYxmOCCzIod911F294wxv47Gc/y5133knf99xwww1sbm6O2/zsz/4sP//zP88v//Iv80d/9EccP36cF7/4xZw9e3bc5uabb+aOO+7g9ttv59Of/jQbGxu87GUvI8b4F3dkhmEYhmFctFxQL56PfvSjW36/7bbbuPzyyzl58iQ/8AM/gKryC7/wC7ztbW/jla98JQDvf//7ueKKK/jQhz7EP//n/5zTp0/z3ve+l1/91V/lRS96EQAf/OAHueqqq/j4xz/OS17ykr+gQzMMwzAM42LlEa1BOX36NACXXnopAPfddx+nTp3ihhtuGLeZTCY897nP5TOf+QwAJ0+epOu6LducOHGCa6+9dtxmO03TcObMmS03wzAMwzAeuzxsg6KqvPGNb+Q5z3kO1157LQCnTp0C4Iorrtiy7RVXXDE+durUKeq65pJLLtlzm+3ccsstHDt2bLxdddVVD1e2YRiGYRgXAQ/boNx444184Qtf4Nd//dd3PCaytYW9qu64bzv7bfOWt7yF06dPj7evf/3rD1e2YRiGYRgXAQ/LoNx000185CMf4ZOf/CRPfOITx/uPHz8OsGMm5IEHHhhnVY4fP07btjz44IN7brOdyWTC0aNHt9wMwzAMw3jsckEGRVW58cYb+fCHP8wnPvEJrrnmmi2PX3PNNRw/fpw777xzvK9tW+666y6e/exnA3DddddRVdWWbe6//37uvffecRvDMAzDML6zuaAsnje84Q186EMf4rd+67c4cuTIOFNy7Ngx1tbWEBFuvvlm3vnOd/KkJz2JJz3pSbzzne9kfX2dH//xHx+3fd3rXseb3vQmHv/4x3PppZfy5je/mac+9aljVs/5EucNMSz2fFy9Q2MgxYD0EUSA3S4jaf6va9GuJ3WRVLZX5xDvkNBDioiT4RmwsjdNQNuifY/GSIoJVEne4fuA9B6JWp6wj4a+g7YjdmUfQHIO5x34gKRE8ksNwy3foWjTo32HxojGlC+deQfRk/oAfSrHsI+G2EHbE9t+jIM4Qb0fNcheGgBtOrTr8uvHmDU4B71HYoA+5t/30sAQh57Y9aQ+gYL4rEG8h5iQ4JYaBFSXu9C2z+dzNw29h5TKJcW9Lj0q2vfQdSUO+XyKdyUOHtlPA5RzsaIhaY5jDLjocxz8XnEoGmIPbUfqIrGLW19gN7xDU9p/G8MwjEeJOJuf97YXZFBuvfVWAJ73vOdtuf+2227jta99LQA//dM/zXw+5yd/8id58MEHeeYzn8nHPvYxjhw5Mm7/7ne/mxACr3rVq5jP57zwhS/kfe97H977C5HD3f/nOzlU1Xs+LiJ45xDncMET6iqbFOdQcYgmJOVBPHY9sevQpKSUSKqAIAIiDnGC+FAGVkiSBxanCVA05UGIsr/8/LyuxjmHc4ILAV9V2SCsaCDlwS8Pxj0pphUN+TjyLZsU57dqEE3IqgZNaFJUFd2uwXt8XeOcoCKo80sNQGy7rCElUlSSpl00eFw5Vzs1lEF1Vw1Fh/f4usqxHDUokrKRiH0kdV3WUM7HbhrEeURWNJAQLa8Z+3wuLkADRQOQz8UWDcvzuUWD9wig4kiS3w87NGiJy6BBBOeLhqrKJmVFg0sRBVLf5/OxLQ774UPZn2EYxgFks23Pe1tRPddXsoPHmTNnOHbsGB+86qmsu71NjSA4oQwKLpsVEZQ8OItqHlRViSmhmk1BUtDyTV6KSclmxY0LeVP515XwqSo6mJVtz99NAwhpm4akS2NyPhpUBH1EGvLgPmhAIWosGiCVgX2nhjJA76ahGKWdGlgOzvtoGMxdSvGRaVDNJmlFA1Bev9ycx+0WByCmfC5UlTjsbz8NCCqUfZyfhmyg99CgEHWpIaGjYd0P59yoyTAM46AxS5G//7XPc/r06XOuJ7VPMsMwDMMwDhxmUAzDMAzDOHCYQTEMwzAM48BhBsUwDMMwjAOHGRTDMAzDMA4cZlAMwzAMwzhwmEExDMMwDOPAYQbFMAzDMIwDhxkUwzAMwzAOHGZQDMMwDMM4cJhBMQzDMAzjwGEGxTAMwzCMA4cZFMMwDMMwDhxmUAzDMAzDOHCYQTEMwzAM48BhBsUwDMMwjAOHGRTDMAzDMA4cZlAMwzAMwzhwhEdbwCPh2re+kSNr63s+7pzggs+3SU1Ym4ATcJ7kAi5FJPVoUvp5Q2paUh9JfSKlhADiHOIceIdUNRI8IKjzKILTHlTRmNC2hRjRlFBNqK5o8A43meDXJogT8B51HtEEfd5HXLTEpiV1PSkmUkzlOFx+jvNIvZuGCJqyhm5FQ8oaxAnee1xwuLrGr09xPj8/uZCfH2PWMG+ITYv2kdjHUYM4wTmXNVQVUoWlBhFcyhpIidR2EPuiQVFVRAQfXI5FXeHXpoh3K3FQJHZoIsdg0ZCKBo0J3U1DCIgIaYcGRdsW3UWDCw7vPVJXhPWiwTnUB1BFYjkXTUta5HOxuwaHhAqpKhBBnUPF5feU5tdMXQt9fn/lc7FdQyCsTZHKgyw1uNijqqS2I84XpC6SYn5f6jn+Jvx0gquqR/7HZRiG8S3g7GwG/+jHzmvbi9qgPOElz+fokaN7Pu68w1UBqQNUFSD777BroeuJbR4QQHDeIb4MRpMqGxwYB4pxj4k8KHY9OpoUXWqoPNSTcx9U30Hb7a7BB5hMEM+oQVmZBlPQpkP7LmuIZVB0Dl8XDVUNco44xA7antj2pD5rkGK0soYa8cs4bNEA6GLQkLKOQUPll+dCzjF5t0VDAvI+nPfZoE0me2tQ0LZHu3abBsEP52Iy4Zzvh9hD22XD2CV0VYMvGsI+cWh6tBvORVwatdX3pDtHHFLR0EZiF+EcFsUfXsdN6v33aRiG8Shx5syZ8972ojYo58s4DO03MGv+4D/XN9Td9iGAnvuZWce+5mBlLzL+b8dORGT3V9P9NTyiOOx4jiCydTsB9BwaRh3nMklFw3Kr3WKxx7nQHfZx2++yEt69dJQ47HMeljJ2mtadcRC2R1Vk92NYShjOheyxhz04j9gahmE8KlzA55OtQTEMwzAM48BhBsUwDMMwjAOHGRTDMAzDMA4cZlAMwzAMwzhwmEExDMMwDOPAYQbFMAzDMIwDhxkUwzAMwzAOHBdkUG655Rae8YxncOTIES6//HJe8YpX8OUvf3nLNq997WsRkS237//+79+yTdM03HTTTVx22WUcOnSIl7/85XzjG9945EdjGIZhGMZjggsyKHfddRdveMMb+OxnP8udd95J3/fccMMNbG5ubtnuB3/wB7n//vvH2+/+7u9uefzmm2/mjjvu4Pbbb+fTn/40GxsbvOxlLyPG+MiPyDAMwzCMi54LqiT70Y9+dMvvt912G5dffjknT57kB37gB8b7J5MJx48f33Ufp0+f5r3vfS+/+qu/yote9CIAPvjBD3LVVVfx8Y9/nJe85CUXegyGYRiGYTzGeERrUE6fPg3ApZdeuuX+T33qU1x++eU8+clP5p/9s3/GAw88MD528uRJuq7jhhtuGO87ceIE1157LZ/5zGd2fZ2maThz5syWm2EYhmEYj10etkFRVd74xjfynOc8h2uvvXa8/6UvfSm/9mu/xic+8Ql+7ud+jj/6oz/iBS94AU3TAHDq1CnquuaSSy7Zsr8rrriCU6dO7fpat9xyC8eOHRtvV1111cOVbRiGYRjGRcDDbhZ444038oUvfIFPf/rTW+5/9atfPf587bXXcv3113P11VfzO7/zO7zyla/cc39Dp9fdeMtb3sIb3/jG8fczZ86YSTEMwzCMxzAPawblpptu4iMf+Qif/OQneeITn7jvtldeeSVXX301X/nKVwA4fvw4bdvy4IMPbtnugQce4Iorrth1H5PJhKNHj265GYZhGIbx2OWCDIqqcuONN/LhD3+YT3ziE1xzzTXnfM43v/lNvv71r3PllVcCcN1111FVFXfeeee4zf3338+9997Ls5/97AuUbxiGYRjGY5ELusTzhje8gQ996EP81m/9FkeOHBnXjBw7doy1tTU2NjZ4xzvewY/+6I9y5ZVX8rWvfY23vvWtXHbZZfzIj/zIuO3rXvc63vSmN/H4xz+eSy+9lDe/+c089alPHbN6DMMwDMP4zuaCDMqtt94KwPOe97wt999222289rWvxXvPPffcwwc+8AEeeughrrzySp7//OfzG7/xGxw5cmTc/t3vfjchBF71qlcxn8954QtfyPve9z6894/8iAzDMAzDuOgRVdVHW8SFcubMGY4dO8b/723v5PB0uud24gTvHRI8zgdc8CACCCqCoKD5lmIkdT0aU/45KQiICM45cA4JAXH5qliS/K8r+1BVtOshRTQpSRPoigbvkFDhg6fseKkhKaCkmNC+I8VE6iOpnBoRQZzLt1AhTvbW0PcQI6pKSksNzjucz8fgQigLkneLQyL1XYlDvg1xWGo4RxxWNGhK6KDBOVwoGnzRILtoSAnt+nweYtpyHCIrGnx+bRWH5qNBRg2xnIuEJh0XYe8aB8n7WGqAlCLa9/k87KpBIFS4UYOgyFIDrLwf9tLgswa3PA4B0LSMwy4a9sNPaiQ87LXvhmEY31I2FnOe8db/g9OnT59zPelF/Ul236//Z9bd3rMuIoJjaTK888WfCAlZGVQhloEkoSTN622GfUj+IQ9MJdMosTIwUwbFMrAoW5+/qwaEVPYtmgfxlBJJh9u5NWgeDs9DAzjknBoAYhxeX0llsD+nBhGcrmpQ0LRVwxCDUYMbTdIODSmVWDxcDazEYfl8IL++CE5cNo7n0KCqxFUNyBi7waysahDNZ+X8NAjOe9x5aBhicS6cc6MmwzCMg8Ys9ue97UVtUFLXkVza83FBxm//iENcRMo3XRXJ32jL4JEHgmFQBGWXAWnVoAwp0WXQGM3BMDitPH83DeOAtKpBVwfmc2vI39ofiYY8AzJoyJM5sWggm4NdNawMzNs1kGdNdmoYXn/Q4HbVMA7GKT4yDYNJWtGQdyLLWxzMwbY4UMziYA7Yw6DIdoNC2cf5aVARiKnM6u12LrZqOB+DghkUwzAOMCmdf0sb+yQzDMMwDOPAYQbFMAzDMIwDhxkUwzAMwzAOHGZQDMMwDMM4cJhBMQzDMAzjwGEGxTAMwzCMA4cZFMMwDMMwDhxmUAzDMAzDOHCYQTEMwzAM48BhBsUwDMMwjAOHGRTDMAzDMA4cZlAMwzAMwzhwmEExDMMwDOPAYQbFMAzDMIwDhxkUwzAMwzAOHGZQDMMwDMM4cJhBMQzDMAzjwBEebQGPhCtf/HwO15M9HxcnOCc473EhECYVIoI6jzqHpISkiKrStx2p69CoxJTQpOM+RARxDnxAvEeA5Hx+PMX8YimhfY+W/akqKIgIzgvOOVxV4esK51Y0aEJiRBVi0ZBi2l2DOAhbNSjgUkJQdNSQUE0rGsB5lzWEgJ/URYNDnc8aUt4+th2p7UgpkWIiDRpEig4HwSM+ZA3iUBGcJkTPocG5rCME/KTKMR01KBJ7FIhtT2rb/TV4n+MgsruGWDSk3TVI8IRJjXNujAOq+XyqErs+xyHGrGHlfA7nAx+QsEccVNG+Q1OCpCRNOzX4osE7VBzqswZX3kOp6/P5iLHEQs/5N+HqCuf9w/hrMgzD+Naz0TTwK58/r21FVc/9qXfAOHPmDMeOHeP+e/5vjh45sud2zjtc7XFVQOoaqUIeIURAHGgCVVBF+4g2Ddr1xC6S+lQ2ywOJhIBMasQ7kDwgAbgy8GjS/Py+R2NCi+lwXnBVwFUemU6QcA4NbYu2fR4gY8qv4RziXX7uZIIbNOBQAadaBmZFmzYPjCsaxAt+0FDXSF1t06BZB6Bdj3ZFQ7uLBh9gUuOC36LBD8egRUM3aMgGQZzgK4+rh3NRgVvRgELKsdCY0LZB257URVIfsxEbNfgch5AH4mwOVuKgijZdjkMfi1FZ0VCVY9hLAyzPRdeR2qJBQfzSXFBPcFWOgyIkkR0a6LPB0LiLhrrC1RU4tzwfsNQQl++H1OVYnOuv1R9ew03qh/FXZRiG8a3nzJkzXPaEE5w+fZqjR4/uu+1FPYMSDk0Jh9b2fNx5l81BHaCqyiC0yso3zUoheLTrkTaSYgSkDEYOCRUyqcAXY1KeJuWmUdHyfI1x/OY+aJDKI/VkOQjtpqFWtApQdUgxScNxjOZgOsF5yQM2jP8CkBQNoRiUuGIOHL7OBoWqzgPinkGtoA5o1SNVT+pzHJYDcx7cxTtEIK1oEMgDsw/bTFLRUHmkDsWc7PItf/WuyqNVT2p7YomDlNkwCdmgSFieiy0akqKhKiYp7tRQZbOZz4XsrqFSqEI2KFXM5oC8j1FDPUFCnk1Rciy2xKFocOO5SIhksyh1yEZxvziEoqHEYdCwH/7QOm6696yiYRjGo0kYrjqcB7YGxTAMwzCMA4cZFMMwDMMwDhxmUAzDMAzDOHCYQTEMwzAM48BhBsUwDMMwjAOHGRTDMAzDMA4cF2RQbr31Vp72tKdx9OhRjh49yrOe9Sx+7/d+b3xcVXnHO97BiRMnWFtb43nPex5f/OIXt+yjaRpuuukmLrvsMg4dOsTLX/5yvvGNb/zFHI1hGIZhGI8JLsigPPGJT+Rd73oXf/zHf8wf//Ef84IXvIC/+3f/7mhCfvZnf5af//mf55d/+Zf5oz/6I44fP86LX/xizp49O+7j5ptv5o477uD222/n05/+NBsbG7zsZS8jxvPPjTYMwzAM47HNBRmUH/7hH+bv/J2/w5Of/GSe/OQn8zM/8zMcPnyYz372s6gqv/ALv8Db3vY2XvnKV3Lttdfy/ve/n9lsxoc+9CEATp8+zXvf+15+7ud+jhe96EV87/d+Lx/84Ae55557+PjHP/4tOUDDMAzDMC4+HvYalBgjt99+O5ubmzzrWc/ivvvu49SpU9xwww3jNpPJhOc+97l85jOfAeDkyZN0XbdlmxMnTnDttdeO2+xG0zScOXNmy80wDMMwjMcuF2xQ7rnnHg4fPsxkMuH1r389d9xxB095ylM4deoUAFdcccWW7a+44orxsVOnTlHXNZdccsme2+zGLbfcwrFjx8bbVVdddaGyDcMwDMO4iLhgg/Ld3/3d3H333Xz2s5/lJ37iJ3jNa17Dl770pfFx2dZrRlV33Ledc23zlre8hdOnT4+3r3/96xcq2zAMwzCMi4gLNih1XfNd3/VdXH/99dxyyy08/elP5xd/8Rc5fvw4wI6ZkAceeGCcVTl+/Dht2/Lggw/uuc1uTCaTMXNouBmGYRiG8djlEddBUVWapuGaa67h+PHj3HnnneNjbdty11138exnPxuA6667jqqqtmxz//33c++9947bGIZhGIZhhAvZ+K1vfSsvfelLueqqqzh79iy33347n/rUp/joRz+KiHDzzTfzzne+kyc96Uk86UlP4p3vfCfr6+v8+I//OADHjh3jda97HW9605t4/OMfz6WXXsqb3/xmnvrUp/KiF73oW3KAhmEYhmFcfFyQQflf/+t/8Y/+0T/i/vvv59ixYzztaU/jox/9KC9+8YsB+Omf/mnm8zk/+ZM/yYMPPsgzn/lMPvaxj3HkyJFxH+9+97sJIfCqV72K+XzOC1/4Qt73vvfhvf+LPTLDMAzDMC5aRFX10RZxoZw5c4Zjx47x/3z1axw9svd6FOcdrgq4OkBVgexzRUsVuhbtemIbSTECgvMO8Q4JFTKpwOd9DEGTctOoaJufrzGiKaGqowapPFJPYN8Fw4p2HbQdsYukPo3HId4hPsB0gvOCFg3KynW6pGjToX2XNcSsQZzD1wFXeahqcOeIQ+zQtie2PanPcRDvio4AkzrrEUgrGoR8yU8Xg4aUdQwaKo/UAakqcOcwpH2Ltj2p7YklDuIE5z0SPEwmSFieiy0akqJtj3ZDHLZpqAIyqcu52Ot8KPR5H6mNpC6i5H2MGuoJEgSRfD7S9jg0qxoSqgkRwVchx6E+RxxUIfVjHAYN++EPr+Omk/1jaxiG8Shx5swZHnfsGKdPnz7netILmkE5aJz9k/vg0OHdHxTBOcFVHlcFCAFZMSiKICsf9qoKfYd2kdhncyAC4gZz4MuAstOgANkcdB3a99mcxJQHTSe44EdzsJqtlDUs95Y19Nkk9XlQg6LBZQ1MasQtn7XFoGgZmPseTcOgyEocPIQKcdvjsE1DLBq6VQ2COJ811BXid5qD4Q5tux0axAl+RQPOjbHbqYFskro8KKctGkoc6nofDZqNYr9iFlPREHw2i9X5aOiLhp5UzqfIYFrL+QzLWKZVDSjaxqVRSwlNijjwobwnqwDO768h9cs49Nlo7Yc/tIarq323MQzDeLQ4s7Fx3tte1Ablv73hp1n3ex+CAE4k35xbXkYSQXEIqYwCufBcSomkSlLdYkBEJA8dzo0GQ8vciZAHT1UFzTMWuu35qxqc8+WL+6AhP+/halAEdwEaxDn8vhoSKeWBMKmWPW/XIKPZUwQVwWmxCapo0cC252/VUI5DZDkwDxpSIsVzaCj7OR8Ng4EZNEjR4b3fogFAioaUEjHlWY98PrZrAMTtowFUi6FQ0DL3MTzfbddQnn8+GvbDOYfbb6bQMAzjUWQW+/Pe9qI2KHGxIO4zRS4IKpBEcOLQMigOg4loHuJVdcdAMAzvgpSrMnlQHsxBKv86Xc48qOYLHrrt+asaxoEZIW3TkDStGJRza9ByaUEvUMOqyUniRg0oRB1MEsUk7aZhxaBs14CiaTcNw+vvr2E0JSk+Mg2jWVtqgKVJUhHUedxucaCYpHKZLg7720/DEGPNVudcGlTy+d9Tg0LUpYZEjsu5UOdIZlAMwzig9On8++7ZJ5lhGIZhGAcOMyiGYRiGYRw4zKAYhmEYhnHgMINiGIZhGMaBwwyKYRiGYRgHDjMohmEYhmEcOMygGIZhGIZx4DCDYhiGYRjGgcMMimEYhmEYBw4zKIZhGIZhHDjMoBiGYRiGceAwg2IYhmEYxoHDDIphGIZhGAcOMyiGYRiGYRw4zKAYhmEYhnHgMINiGIZhGMaBwwyKYRiGYRgHjvBoC3g4qCoAsxT33U4QnICI4ERxKAL5/yKgiqAokFJCNZFUSUq5N+9DpPwkiuRfSOVfV7SoKqoJUHTb83fTAIJu06CaSOn8NagI+og0gIobNQCkUQMk1T00ZB27akDRtJuG4fX316DlOFKKj0yDKmjaogEor19uRdfucdDynlDisL/9NCCogOjwHju3BhHBn6eGhJJ0uY+9cOioyTAM46AxjNt6Hp9nF6VBOXv2LAD/nz/70qOsxDAMwzCMC+Xs2bMcO3Zs321Ez8fGHDBSSnz5y1/mKU95Cl//+tc5evTooy3pouDMmTNcddVVFrMLxOJ24VjMHh4WtwvHYvbweLTipqqcPXuWEydO4Nz+q0wuyhkU5xxPeMITADh69Ki9KS8Qi9nDw+J24VjMHh4WtwvHYvbweDTidq6ZkwFbJGsYhmEYxoHDDIphGIZhGAeOi9agTCYT3v72tzOZTB5tKRcNFrOHh8XtwrGYPTwsbheOxezhcTHE7aJcJGsYhmEYxmObi3YGxTAMwzCMxy5mUAzDMAzDOHCYQTEMwzAM48BhBsUwDMMwjAPHRWlQfuVXfoVrrrmG6XTKddddx3/9r//10Zb0qPEHf/AH/PAP/zAnTpxARPgv/+W/bHlcVXnHO97BiRMnWFtb43nPex5f/OIXt2zTNA033XQTl112GYcOHeLlL3853/jGN76NR/Ht5ZZbbuEZz3gGR44c4fLLL+cVr3gFX/7yl7dsY3Hbya233srTnva0sbDTs571LH7v935vfNxidm5uueUWRISbb755vM/itpN3vOMdpdfV8nb8+PHxcYvZ7vzZn/0Z//Af/kMe//jHs76+zt/8m3+TkydPjo9fdHHTi4zbb79dq6rS97znPfqlL31Jf+qnfkoPHTqk//N//s9HW9qjwu/+7u/q2972Nv3N3/xNBfSOO+7Y8vi73vUuPXLkiP7mb/6m3nPPPfrqV79ar7zySj1z5sy4zetf/3p9whOeoHfeead+7nOf0+c///n69Kc/Xfu+/zYfzbeHl7zkJXrbbbfpvffeq3fffbf+0A/9kP7lv/yXdWNjY9zG4raTj3zkI/o7v/M7+uUvf1m//OUv61vf+latqkrvvfdeVbWYnYs//MM/1L/yV/6KPu1pT9Of+qmfGu+3uO3k7W9/u/6Nv/E39P777x9vDzzwwPi4xWwn//t//2+9+uqr9bWvfa3+t//23/S+++7Tj3/84/onf/In4zYXW9wuOoPyt/7W39LXv/71W+77nu/5Hv1X/+pfPUqKDg7bDUpKSY8fP67vete7xvsWi4UeO3ZM/8N/+A+qqvrQQw9pVVV6++23j9v82Z/9mTrn9KMf/ei3TfujyQMPPKCA3nXXXapqcbsQLrnkEv1P/+k/WczOwdmzZ/VJT3qS3nnnnfrc5z53NCgWt915+9vfrk9/+tN3fcxitjv/8l/+S33Oc56z5+MXY9wuqks8bdty8uRJbrjhhi3333DDDXzmM595lFQdXO677z5OnTq1JV6TyYTnPve5Y7xOnjxJ13Vbtjlx4gTXXnvtd0xMT58+DcCll14KWNzOhxgjt99+O5ubmzzrWc+ymJ2DN7zhDfzQD/0QL3rRi7bcb3Hbm6985SucOHGCa665hr/39/4eX/3qVwGL2V585CMf4frrr+fHfuzHuPzyy/ne7/1e3vOe94yPX4xxu6gMyp//+Z8TY+SKK67Ycv8VV1zBqVOnHiVVB5chJvvF69SpU9R1zSWXXLLnNo9lVJU3vvGNPOc5z+Haa68FLG77cc8993D48GEmkwmvf/3rueOOO3jKU55iMduH22+/nc997nPccsstOx6zuO3OM5/5TD7wgQ/w+7//+7znPe/h1KlTPPvZz+ab3/ymxWwPvvrVr3LrrbfypCc9id///d/n9a9/Pf/iX/wLPvCBDwAX53vtouxmLCJbflfVHfcZSx5OvL5TYnrjjTfyhS98gU9/+tM7HrO47eS7v/u7ufvuu3nooYf4zd/8TV7zmtdw1113jY9bzLby9a9/nZ/6qZ/iYx/7GNPpdM/tLG5beelLXzr+/NSnPpVnPetZ/LW/9td4//vfz/d///cDFrPtpJS4/vrreec73wnA937v9/LFL36RW2+9lX/8j//xuN3FFLeLagblsssuw3u/w8k98MADO1yhwbjqfb94HT9+nLZtefDBB/fc5rHKTTfdxEc+8hE++clP8sQnPnG83+K2N3Vd813f9V1cf/313HLLLTz96U/nF3/xFy1me3Dy5EkeeOABrrvuOkIIhBC46667+Hf/7t8RQhiP2+K2P4cOHeKpT30qX/nKV+y9tgdXXnklT3nKU7bc99f/+l/nT//0T4GL83PtojIodV1z3XXXceedd265/8477+TZz372o6Tq4HLNNddw/PjxLfFq25a77rprjNd1111HVVVbtrn//vu59957H7MxVVVuvPFGPvzhD/OJT3yCa665ZsvjFrfzR1VpmsZitgcvfOELueeee7j77rvH2/XXX88/+Af/gLvvvpu/+lf/qsXtPGiahv/+3/87V155pb3X9uBv/+2/vaNcwv/4H/+Dq6++GrhIP9e+7ctyHyFDmvF73/te/dKXvqQ333yzHjp0SL/2ta892tIeFc6ePauf//zn9fOf/7wC+vM///P6+c9/fky7fte73qXHjh3TD3/4w3rPPffo3//7f3/XtLInPvGJ+vGPf1w/97nP6Qte8ILHdDreT/zET+ixY8f0U5/61JY0xtlsNm5jcdvJW97yFv2DP/gDve+++/QLX/iCvvWtb1XnnH7sYx9TVYvZ+bKaxaNqcduNN73pTfqpT31Kv/rVr+pnP/tZfdnLXqZHjhwZP+ctZjv5wz/8Qw0h6M/8zM/oV77yFf21X/s1XV9f1w9+8IPjNhdb3C46g6Kq+u///b/Xq6++Wuu61u/7vu8b00O/E/nkJz+pwI7ba17zGlXNqWVvf/vb9fjx4zqZTPQHfuAH9J577tmyj/l8rjfeeKNeeumlura2pi972cv0T//0Tx+Fo/n2sFu8AL3tttvGbSxuO/mn//Sfjn93f+kv/SV94QtfOJoTVYvZ+bLdoFjcdjLU56iqSk+cOKGvfOUr9Ytf/OL4uMVsd377t39br732Wp1MJvo93/M9+h//43/c8vjFFjdRVf32z9sYhmEYhmHszUW1BsUwDMMwjO8MzKAYhmEYhnHgMINiGIZhGMaBwwyKYRiGYRgHDjMohmEYhmEcOMygGIZhGIZx4DCDYhiGYRjGgcMMimEYhmEYBw4zKIZhGIZhHDjMoBiGYRiGceAwg2IYhmEYxoHDDIphGIZhGAeO/xca5Y8Fou/1cgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/W0lEQVR4nOy9ebQsWVXn/zlDROR431j1asAaoQALUBAtgVZAJhG1aQYVFKGVVkBbEQca+THKglZotHuJAwoUSAsILYpIC6VgLRUawYlRAZlqfu/OOcRwhv3740TmvfeNVYjUK4jvWlmvbt7IjG/sEzfPN8/Ze3+ViAgdOnTo0KFDhw5nEfTtTaBDhw4dOnTo0OF4dAKlQ4cOHTp06HDWoRMoHTp06NChQ4ezDp1A6dChQ4cOHTqcdegESocOHTp06NDhrEMnUDp06NChQ4cOZx06gdKhQ4cOHTp0OOvQCZQOHTp06NChw1mHTqB06NChQ4cOHc46dAKlw1c1LrnkEr77u7/7S379c5/7XO5973tz8OBBer0el112GT/2Yz/GF77whS8jyzs2XvjCF6KUul3O/YlPfIIXvvCFfP7znz/hd095ylO45JJLvuKcbgvW19f5gR/4Ac4991yUUjz60Y8+5bGnu5c//OEPo5Ti6quv3vP8u9/9bh7+8IdzwQUXUBQFF1xwAQ960IP47//9v5/yPI95zGNQSvGTP/mTt+laPv/5z/OoRz2KgwcPopTimc98Jp///OdPyqtDh1sDe3sT6NDhbMbm5iZPeMITuPvd7854POYTn/gEL3nJS3jHO97Bxz/+cQ4dOnR7U7zd8dSnPpXv/M7vvF3O/YlPfIIXvehFPOhBDzpBjDzvec/jp3/6p28XXrcWv/RLv8Tb3/52Xvva13L55Zdz8ODBL9t7/9Zv/RZPf/rTeexjH8uv//qvc/DgQa677jre//7387a3vY3/9t/+2wmvOXr0KO985zsB+N//+3/zile8gl6vd6vO9zM/8zN88IMf5LWvfS3nnXce559/Pp2TSod/CzqB0uF2x3w+ZzAY3N40TopXvepVe35+0IMexKWXXsp3fdd38cd//Mf8yI/8yO3E7EvDv0es73SnO3GnO93py/qeXw5cfvnltzeFM+JjH/sYl19+OT/4gz/4ZX/vl73sZXz7t387b3vb2/Y8/6QnPYkY40lf84Y3vAHnHI961KP40z/9U/7wD/+QJz7xibfqfB/72Mf4lm/5lj2rQCdb2erQ4dai2+Lp8BXFYjvg7//+73nc4x7HgQMHlhPJhz/8YX7gB36ASy65hH6/zyWXXMITnvCEE7ZTrr76apRSvO997+PpT386hw8f5tChQzzmMY/hxhtvPCOH3/iN38Baywte8IIv6RrOOeccAKw9s75/0YtexFVXXcXBgwdZWVnhPve5D695zWtO+Ga5WL5/+9vfzr3uda/ldtL/+l//a89xf/mXf4lSije+8Y0861nP4rzzzqPf7/PABz6Qf/iHf9hz7FOe8hRGoxEf/ehHefjDH854POYhD3kIkLYWnvGMZ3DhhReS5zmXXXYZz33uc6nrGoCqqrj3ve/Nne98Z7a2tpbvefPNN3PeeefxoAc9iBACcPItnsX1vPOd7+Te9743/X6fu9/97stv51dffTV3v/vdGQ6HfMu3fAsf/vCH97z+1twLV199NY9//OMBePCDH4xSas92wsm2eKqq4jnPeQ6XXnopeZ5z4YUX8hM/8RNsbm6elP+f/dmfcZ/73Id+v8/d7nY3Xvva1544yCfBmeK72Pr48z//cz75yU8uuf/lX/7lrXr/W4O1tTXOP//8k/5O65N/9L/2ta/lyJEjvP71r6ff79+q613ck5/5zGf4v//3/y6v5VTi5DOf+Qz/+T//Z+5yl7swGAy48MIL+Z7v+R4++tGPnnDsxz/+cR7+8IczGAw455xz+Imf+An+9E//9Mseqw5nKaRDh68gXvCCFwggF198sTz72c+Wa665Rv7oj/5IRETe+ta3yvOf/3x5+9vfLtdee628+c1vlgc+8IFyzjnnyLFjx5bv8brXvU4Aueyyy+S//tf/Ku9+97vld3/3d+XAgQPy4Ac/eM/5Lr74YnnUox4lIiIxRvnZn/1ZybJMXve6190m3s45mc/n8vd///fygAc8QK644gqZTCZnfN1TnvIUec1rXiPXXHONXHPNNfJLv/RL0u/35UUvetEJPC+88EK56KKL5LWvfa28613vkh/8wR8UQF7+8pcvj3vf+94ngHzd132d/Mf/+B/lT/7kT+SNb3yj3PnOd5aVlRX513/91+WxT37ykyXLMrnkkkvkZS97mfzFX/yFvPvd75ayLOVe97qXDIdDecUrXiHvec975HnPe55Ya+W7vuu7lq//1Kc+JePxWB7zmMeIiEgIQb7jO75Dzj33XLnxxhuXxy3G9PjrudOd7iT3uMc95E1vepO8613vkquuukqyLJPnP//58oAHPED+8A//UN7+9rfLFVdcIUeOHJH5fL58/a25F44ePSovfelLBZBXvepV8oEPfEA+8IEPyNGjR5fXf/HFFy/fM8Yoj3jEI8RaK8973vPkPe95j7ziFa+Q4XAo9773vaWqqhP4f/3Xf7284Q1vkHe/+93y+Mc/XgC59tprTzvmtya+VVXJBz7wAbn3ve8tl1122ZL71tbWKd939718PD70oQ8JsOe+fuhDHyrWWnnBC14g//iP/yje+9Py/pu/+RsB5Od//udFROSHfuiHRCkln/3sZ0/7uq2tLfnABz4g5513njzgAQ9YXktVVfK5z33uBF7XXnut/OzP/qy87W1vk2uvvVbe/va3y6Mf/Wjp9/vyz//8z8vjbrzxRjl06JBcdNFFcvXVV8u73vUuedKTniSXXHKJAPK+973vtLw63PHRCZQOX1EsJrPnP//5ZzzWey/T6VSGw6H8z//5P5fPLwTKM57xjD3H/8qv/IoActNNNy2fW3yoz+dzeexjHyv79u2TP//zP79NnG+66SYBlo+rrrpKbrjhhtv0HiJpgnfOyYtf/GI5dOiQxBj38FRKyT/+4z/uec3DHvYwWVlZkdlsJiI7AuU+97nPntd//vOflyzL5KlPferyuSc/+ckCyGtf+9o97/lbv/VbAsgf/MEf7Hn+l3/5lwWQ97znPcvn3vKWtwggv/ZrvybPf/7zRWu95/cipxYo/X5frr/++uVz//iP/yiAnH/++cvrERH5oz/6IwHkHe94xyljd6p74a1vfespJ6vjBcqf/dmfCSC/8iu/sue4xTW++tWv3sO/1+vJF77wheVzZVnKwYMH5cd//MdPyVPktsX3gQ98oFx55ZWnfb/dnG6LQPnMZz4j97jHPZb3bb/fl4c85CHy67/+69I0zQnv8SM/8iMCyCc/+UkR2bnXnve8533J/E4mUI6H916appG73OUu8jM/8zPL53/+539elFLy8Y9/fM/xj3jEIzqB8jWCbounw+2Cxz72sSc8N51Oefazn82d73xnrLVYaxmNRsxmMz75yU+ecPz3fu/37vn5Xve6F8AJW0Jra2t8x3d8B3/7t3/LX//1Xy+3ORYIIeC9Xz6O358/fPgwH/rQh/jrv/5rfud3fof19XUe/OAHc9NNN53xOt/73vfy0Ic+lH379mGMIcsynv/857O2tsbRo0f3HHvllVfyDd/wDXuee+ITn8j29jZ///d/f8Lzu7dVLr74Yu5///vzvve97wQOx8f6ve99L8PhkMc97nF7nn/KU54CwF/8xV8sn/u+7/s+nv70p/PzP//zvOQlL+EXf/EXedjDHnbG6wb4xm/8Ri688MLlz3e/+92BlMezOw9m8fzucbut98KtwXvf+94917nA4x//eIbD4Z7rXvC/6KKLlj/3ej2uuOKKM1Zw3Zb4/nvi8ssv55/+6Z+49tpredGLXsRDH/pQPvShD/GTP/mT3O9+96OqquWx0+mUP/iDP+D+978/d7vb3QB44AMfyOWXX87VV199ypyVLwXee1760pfy9V//9eR5jrWWPM/59Kc/vWdsr732Wu5xj3vw9V//9Xte/4QnPOHLxqXD2Y1OoHS4XXCyvfEnPvGJ/Pqv/zpPfepTefe7383f/u3f8qEPfYhzzjmHsixPOP74CpqiKABOOPZTn/oUH/zgB3nkIx/JPe5xjxPe5yEPeQhZli0fxye+Wmu5733vywMe8ACe+tSn8t73vpfPfvazpy3VBPjbv/1bHv7whwPwO7/zO/zN3/wNH/rQh3juc597Up7nnXfeCe+xeG5tbe1WHXv8cYPBgJWVlT3Pra2tcd55552QN3LuuedirT3hPX7kR34E5xzWWn7qp37qlNd7PI6vSMnz/LTP754wb+u9cGuwtraGtXaZQ7SAUuqksTtZhVZRFGc8/22N762FtXaZ93M8vPcAZFm253mtNd/+7d/O85//fN7xjndw44038v3f//383d/93Z78kre85S1Mp1O+7/u+j83NTTY3N9na2uL7vu/7uO6667jmmmu+JM4nw7Oe9Sye97zn8ehHP5o/+ZM/4YMf/CAf+tCH+IZv+IY9sV1bW+PIkSMnvP5kz3X46kRXxdPhdsHxH95bW1u8853v5AUveMGe8se6rllfX/83net+97sfj3/84/nRH/1RAH7zN39zT5Lgb//2bzOZTJY/Hz58+LTvd6c73YkLLriAT33qU6c97s1vfjNZlvHOd75zT6nmH/3RH530+JtvvvmUzx0/WZ7q2OOPO1l/kkOHDvHBD34QEdnz+6NHj+K933P9s9mMJz3pSVxxxRXccsstPPWpT+WP//iPT8r/y4V/r3vh0KFDeO85duzYHpEiItx888188zd/87+J9+7z3Nr43hYcOXKEG2644aS/Wzx/psl7OBzynOc8h7e85S187GMfWz7/mte8BoBnPvOZPPOZzzzhda95zWt4xCMe8SXxPh5vfOMb+eEf/mFe+tKX7nl+dXWV/fv3L38+dOgQt9xyywmvP9m93+GrE90KSoezAkopRGS5CrLA7/7u757yW+NtwZOf/GTe/OY387rXvY4f/uEf3vOed73rXbnvfe+7fJypuddnPvMZrr/+eu585zuf9jilFNZajDHL58qy5Pd+7/dOevzHP/5x/umf/mnPc7//+7/PeDzmPve5z57n3/SmN+2pBPrCF77A+9//fh70oAedlhOkFaPpdHqCUHrDG96w/P0CT3va0/jiF7/IH/7hH/Ka17yGd7zjHfzqr/7qGc/xb8FtuRdOtWp2Miyu641vfOOe5//P//k/zGazE7b+vlTclvjeFjz0oQ/lYx/7GJ/4xCdO+N0f/MEfMBqNuOqqq5bPnWoLcrGNcsEFFyx//sAHPsBjH/tY3ve+953weMhDHsIf//Eff8krP8dDKXXC2P7pn/7pCeLrgQ984Emv981vfvOXhUeHsx/dCkqHswIrKyt8+7d/Oy9/+cs5fPgwl1xyCddeey2vec1r9nyr+rfgcY97HIPBgMc97nGUZcmb3vSm5fbCyfCRj3yEn/mZn+Fxj3scl112GVprPvrRj/Krv/qrHDp0iJ/7uZ877fke9ahH8cpXvpInPvGJ/NiP/Rhra2u84hWvOOHDeYELLriA7/3e7+WFL3wh559/Pm984xu55ppr+OVf/uUTepccPXqU//Sf/hP/5b/8F7a2tnjBC15Ar9fjOc95zhnj8MM//MO86lWv4slPfjKf//znuec978lf//Vf89KXvpTv+q7v4qEPfSiQBMEb3/hGXve613HllVdy5ZVX8pM/+ZM8+9nP5gEPeADf8i3fcsZzfSm4LffCYsvu1a9+NePxmF6vx6WXXnrS7ZmHPexhPOIRj+DZz34229vbPOABD+AjH/kIL3jBC7j3ve/Nk570pC8L/1sb39uKn/7pn+YNb3gDD3rQg/jFX/xF7nnPe7KxscFb3vIW3va2t/HKV76S8Xi8PP7KK6/kIQ95CI985CO5/PLLqaqKD37wg/yP//E/OHLkyHJFcbF68gu/8AsnHdPJZMJf/MVf8MY3vvHL0vjuu7/7u7n66qu5293uxr3udS/+7u/+jpe//OUn9NJ55jOfyWtf+1oe+chH8uIXv5gjR47w+7//+/zzP/8zcOpS6Q5fRbg9M3Q7fO1hUfGxu2x4geuvv14e+9jHyoEDB2Q8Hst3fud3ysc+9jG5+OKL5clPfvLyuEUVz4c+9KE9r19UHezO7j9ZZcH73vc+GY1G8p3f+Z17SluPx8033yw/9EM/JJdffrkMBgPJ81wuu+wyedrTniZf/OIXb9X1vva1r5W73vWuUhSFXHbZZfKyl71MXvOa1wggn/vc507g+ba3vU2uvPJKyfNcLrnkEnnlK1950mv8vd/7Pfmpn/opOeecc6QoCvm2b/s2+fCHP7zn2Cc/+ckyHA5PymttbU2e9rSnyfnnny/WWrn44ovlOc95zrLU9iMf+Yj0+/09cRdJ5bHf9E3fJJdccolsbGyIyKmreE5WcQLIT/zET+x5blHpsbuc+tbeCyIiv/ZrvyaXXnqpGGP2VIwcX8Ujkipxnv3sZ8vFF18sWZbJ+eefL09/+tOX13Im/g984APlgQ984AnPH48zxXf3+93aKh6RdE8+/elPl4suukistTIej+U//If/IG9961tPOPa3f/u35TGPeYxcdtlly/v38ssvl6c97Wly3XXXiYhI0zRy7rnnyjd+4zee8pzee7nTne4k97znPU/L7dZW8WxsbMiP/uiPyrnnniuDwUD+w3/4D/JXf/VXJ43txz72MXnoQx8qvV5PDh48KD/6oz8qr3/96wWQf/qnfzpDtDrc0aFEul7EHTrc3rjkkku4xz3usWxkdir85V/+JQ9+8IN561vfekKVSIcOXwv4sR/7Md70pjextrZ22hXQDnd8dFs8HTp06NDhrMSLX/xiLrjgAi677DKm0ynvfOc7+d3f/V3+v//v/+vEydcAOoHSoUOHDh3OSmRZxstf/nKuv/56vPfc5S534ZWvfOVZbwLZ4cuDbounQ4cOHTp06HDW4XZNg/6N3/gNLr30Unq9Ht/0Td/EX/3VX92edDp06NChQ4cOZwluN4Hylre8hWc+85k897nP5R/+4R/4tm/7Nh75yEfyxS9+8fai1KFDhw4dOnQ4S3C7bfFcddVV3Oc+9+E3f/M3l8/d/e5359GPfjQve9nLbg9KHTp06NChQ4ezBLdLkmzTNPzd3/3dnjbWAA9/+MN5//vff8LxdV1T1/Xy5xgj6+vrHDp06KStvDt06NChQ4cOZx9EhMlkwgUXXHDGZnu3i0BZXV0lhHCCb8SRI0dO6rPwspe9jBe96EVfKXodOnTo0KFDh39HXHfddSd0Dz4et2uZ8fGrH3KcudYCz3nOc3jWs561/Hlra4uLLrqIK77xiRhzilp4BRqFUhqjNH2lGSqTfCBEMRSYKyiVgAhzCcwlEiQiEokICoVWGqs0udKsKE2uMzSKkUSUwFRrAoKLnm0J1O17BInIrvfQSjNQmkHLoSeKgUClYN5yKFsOvuUgCLSvN0qTodinDUXLYSiCEWGqNb7lMGk5+OW1pJgmDoqeMoyUQStFJoqxQNnGQQRK8afgoDDKkKFYUZq+yVEoBiJYEWZa4xB8DEzEU7bnjxKJSw6JR7GLQy6KkUCjYKYEEaGWyFRCy0EQYuKAwmiNRbccMhSaYcthrjUNQpDAJHpKEbyExGE5FumeSHFI42JFsSLgFEyVgEAlgVkbh7iMg6DRSw5jpRm0HAYi5BKZaUODECUyiY65SHs/hBPikKMZaYNVGnMcBxFoJDA9jsOZdmS/d3od31D928wVO3To0OHfC/MYeOp1H9ljy3Aq3C4C5fDhwxhjTlgtOXr06EndOIuiOKl/iTE5xt46gWKVwbbiIBNFJpApcK04sBIwEqCdmNUucWFakWKVIWvFQd4KlExrNALRYMXjJUL7OF6gpPewezgEBfY4DnIKgWJRWG13cUgCJdMadRwHWXA4TqCkONilQMkEfBsHEbBiTsEhCRRLeo+sFSh5Kw4arQFBxYAVjWnPrySijpuYT8ZB2jhIO6Eb8S2HkwuUxCGJg0yETASnNYKgJWCjxoggEhKH4wTK4n7QSi85oCBbxmFnLNQpBMrxHHKJNNogrUCxUWFE2vshnBgHNFbbdF8cxyEKxJNwOJNAKYxloM1pj+nQoUOH2xu3Jj3jdqniyfOcb/qmb+Kaa67Z8/w111zD/e9//9uDUocOHTp06NDhLMLttsXzrGc9iyc96Unc97735X73ux+vfvWr+eIXv8jTnva0W/8m6rh/bwN2v/QrV8akTvrTvysHdcofQIGSk4fx38Tp+BeeeNpT/m73EydwOP5YOdnrbxsUcIKQb0/8ZU+/PuE86oTfqd0/yyn+v0OHDh2+BnC7CZTv//7vZ21tjRe/+MXcdNNN3OMe9+Bd73oXF1988a1+D4U69TKRSr/XOi3JG52W47VOeQ85ab8/IEQRrAcdBYkQBVSMKKWWc4NIOi5IRJTCx7TFE4AgQhDZM5kueGkUWquWgyYzNuUfKEXevt6lxXsaDzqmRxTS1gBqz5wU424Oiy2RnesQFnNZGxshbSksOChDZi1Ga3IUeUzbTK7dXrEBTIDlzoTEFOddLKIIIURoOSgR/JJD3Dk/CpRKIkgplNZobXY47IoDQL7Y4glggrQcYtr/WQxq2sxKx8WIUhCioHdx2D0WJ+NgVDsWNtvDQS05gA+gg6AFiGnLRYRWVCQOKQ6CUhEfBSuRIIqgaHNv9t6LSw5KL+/LzFgybbAtB91yiAIxKEyQ9n3af2+NauxETIcOHc5W3IbPp9s1SfYZz3gGz3jGM77k12uTPuhPdcFaaaxJk2HPZoz6PbQ29FEMAa3AiBBjwFea2ilc8ITArtWF9OZRwMcI4lEoslag1EYTEQKRaARZTEAIomTJwRpDkeUMez2MaRNmJQ2AJibhUVU0roGgCMETY5oUj+egWg42phyU2ugklIhELaAVSoFGI/o4DjZj2O+n/1cpQdUAuhUXoaqoG5JqCQEi7WrCbg5CvYtD2MUhLjkASu3ioDDGkBmbOPR6WGPoKc0IaAAQYoxIU1M1KiXHhECMChFBtxyk5dBIOqNZcNAap0BaDrKbg5Ik0ozBGktuLYNej9xaMjRjwLUcRASpa+qmRoIneCC2+Ty7OIQYacQDCh2Toqu1nMiBhShJ12CMwVpLbhKHIrNkKEYoQsshiKCahqoGQsAHICxyYU7zN6FUp086dOhw1uK2fD7doc0CtdZoc/I0GtX+3maWPLMURc5wNMBakyp60jyOlkjwgQqhVHExS9F+aUVJWoUQAe+TkFACVYwooAmaqEiTkQJMu3Kh0rdlozXWGrIso1fkDEd9Mmvoa8MQyAAlgRAitRIqJYhbMkgCZReHECISBAXYkFYOapM4yIJDu3qiFMgeDpYizxmOeuRZRqEUY1HYNg4xJg4lgni1TAyVxXZHVEsOTcvBhDSZNkYTFIgSYkZKSd3FQSuNtXbJYTDqU2SWQmtGqBR2iYQYCTPFnEhs72RPW+G14MAOB1oOseXgFKCEkJ0Yh6VgXcRh2KfIM/KWg285RBHcDHIi0aehaCOBkl0cotD4JCl0FIiR2gh+EQdLWr3RuzkozGIssozBsEe/l5MpzbjlIBIJIsS5YiaB6GkTZDmjQFGdQOnQocNZjK8ZgbLYNjnl743ZEQe9nOE4iYOBNgxoV1BCwPnALDjyGNql+7Z6pF1Sl5C+VfsQwQtKFDakiak2phUmEFuxpHZNSstvy7ml6LXiIM8YGMNAkkAhBkIIzIMnl7CzVZJmpHarI20D+RDBpeQL4yMaoYmaqNQJHNAqXeMukVQUGcNRmpgLbRhBEigxEkJkFjx5CETVrmbs5qBaDjESWg46pMm0jiYJCgNiT+Sgd4ukImM46tErcnoLgaJAQiSEQB0DeXAEJJV8twORdrwEYlq92M0hilBHTUhLR4hJ51b6eA52yWEw6tHvFRQ6iQNHEgcxRqoYyINPYxFTmTKy4ADEtMUkrq3VCmlfrjGCT8q3HQt16jj0cgbDHqNBj6yNQ1AKYsDHiCOSe0dot77irdjj6RoXdujQ4asFd2iBoo3CnGIFBRTWmHb1JKPXLxivDJI40JoBaeXAhIBrHJO6pvCeiBBDSBOyCBIkrU60E3N0aWtHh1S62sS0aqHRgE5lpFqh2pUUawxZbsjzjH7LoShyBtYwEEWtQHmP94Fp45gGT4ixFQe7OLRXFUIkuPST9hEjQmOTONAoRBSgd3FIIinbFYfRyoB+r1iKg1yBDkkkTZqaqXdtHBZCrc3NiREEQhDEJTGnfcSL0NgUJy0KyVUqCl7Eos1/yawhX3AYDxj0C3rGLAUKIeB9oAyewrm0ihAliTNJMViUPocgRJ/GSfnYruIYggZtFSI2rV4sOSRxkGUth17OaDxgOOhRGLMUKCoGQozM/Q6H0Ao1iQsOSSjEKPiWA61AqaMmLGKf61NwsORFRtHLGY37jEcDcp36qgSVOPgQaWKkqOs2DnFHMJ4GnT7p0KHDVwvu0ALl/MP7ybIT+6MkKPLcMhoPWBkPOe/wfq647EKKIqNoE0QbJdQh0jjPZz57IzccW2cymTObllRVQxTBu0DTBHzlKN2cqk4Nt5z3KAGn0mTUt5rhsEfWz8hyQ5YZtNbkuWU46jMeDzn/8H7ufMn59Ac9ekaTi8IpoQqRpnF87ou3cP3Rdba3Z0wnc+q6IUbBuYBrAr72lE4o63o5OWoRXLtK0DOG4bCH7efkxYKDIstSHEajAeccWOHr7/J19PsFudYUrTioQ5qYP/O5m7j+ljW2p3Om23PKqkbac6U4eKpYMi19ykfxAR0FpxQYlVZlWg5JmCUONrMMh31WVoacc2CFKy69gNG4T64NPRReQdkKlOtuOMbKjcfYnqQ4lOXieiOu8bg6cahqTxBwPmCitNs7Om3ZDAqyYU6W2xQHo8hsGovRaMDh/WPuetmF7Ns3xGpNn5TcWsa03fbFG46x78ZjbG3PmCw5RLxrOTSBZrtke55yhRof0r2kLNIm3o4HBXawiIPFmLS9Mxz2GY8HHNyXOBzYP8JqRY+0VVe2YuT6G9cYXXdzGovJnNm8SknDp8FgmsP0y/6n1qFDhw5fcdyhBcqdjhygKPon/Z1Sin6/4ODhFQ4d3s8lF53Ht3zz3ej3c3T7NXPxXbQsGw783ac4+Lkb2FjfZn1ti+m0JAahrB3zec10u2K2XTF1nhAisXRt4qZgrSYf5IxGPUYrAwaDnEE/wxhNv19w4OAKhw7v45KLzuc+974L+/YP23qUhAiU85qPfPSzHPrXGzh2bIP1tW1ms5IQIlXlmJUN82nNfJI4+CDEsknNvxC0Udi+ZTjsMdo3YDjIGfRzjNH0+jkHD+3j4MEVLrzgHO5/v3uwspLituAggA+RQ3/3KQ5+5nrW1rdYP7bFZDInxEhde2bzmtm0op43TL0nRCFULm1vELHWoArDYNhjvG/AoJ8zGORYqymKnP0Hxhw+Zz93uvAc7nufu3Lo0HhPpRRA03g+8YkvsO+fP8/q6ibra9tMtueEEKhqz7xsmE0rmrlj5gMuxB0OkmFzwyjX9AcFK/uHDAcF/X62XL05cHCFgwdXOP/8Q3zLfe/OuUf2nzAWMQQ+9vEvsP+fv8Dq6iarxzZTHEKkrh2zecN8XrNWeWZ+gg8pDtqn5nYmMwxMzrmDgvH+IYNBznCQk1lDltsUh8P7Oe/IQe5737txwXkH0krLrrEIUfiXf7mO8Uf7rK1tsb62xebmlBhOL1BGtxScaRuoQ4cOHW4/3PrPpzu0QFnfLsnzk1+sUtBrPNEaRFtGowlrG1PGYcAgz8ja1Yt545hO5qyub7O6MWVjY8r65pzZLAmUqhUo80nFdLtkNknPU7mUk+ADxmoyrdja7uGAynnKphUodSBoQzSG0WjC+uYU0YphkZOh8AizumE+q1hdn3BsY8rq5oyNrRmzWUUMkbJylGVDOauZbpfMJyW+5aAlbXVoo8kUbG2XOKB2nrLxSaDUnqgtQWmKXo/V9W1EkZJU0XgF86ahrt2Sw/rGjPWtGdNJmZJn24m5nNVMFnGIiYOKQvQebQ1aIlvbc3wbh8p5jNUUuSMoDdbS6/dY25hgMkO/yClUWjmY1g1lWXNsfZtjG1PWNmZsbM52iYMkUBKHObNJifcRqRx6wSEzqBDY2i4JWlE7T7/JsTatYgStCVqTFQVrGxPyfk4vy+jpVIU0dw7nPKvrE1Y3pqxuTlnbmjGZlCk/pvaU84ZynuIwn1T4EJHaY0IkOIvKNOJCioNWyzgsBEpQGjEWm+esrm0zGKZqop42iE4c6tqztuCwMWVjc8bW1vyMAqVuQpck26FDh7MWXzNJspuTkiw7xQf2QqAohY9Q5DnXffEoo1GfUZFRkPI/plXDbFZy880bHF3dYnNzxtbWjPm8IkahqT1V2VDNa1zjEB+QIJg2B8X7lBPhGsdsXhN0u9zvHNpoytrjAS/Qzwuuv+4o29tzxr2CnlI0ImzXNeW85qab1jm6usX6+oTNzVnaVmgn5qpyNPOGpk4caDloFrkYgm8887ImGIWLgcp7jNYUtSMohRPBGsv1XzzKdFrSzzIGKm3xTOokUBYcNjenbG7OklCLQtN4qtJRLzi4gMSWgwjRp/4nvkkTeDSaJgTqVqDkmcUDAZU4XHeMsqwZFjkDbfDAVl1TVU3icGyL9Y0JW5szprOSGCJN46krR7WbQxB0SLk4OxwCZVkjmcbFSOUD1uhWHKT7wSjD9dcfwzWefpEx1AYvwsQ5Gue56cY1bmk5bGzOmE1LQoy4JqQ4lE3agnMBiTFxCJHo0/0YjKcsG8QaXAg03rfJsabt15JKj2+4/hgiQpFZRtoQlWLSNNSN54YbV7nl2Cbrm1O2NmdMtmdtouyp0TjfCZQOHTqctfiaESjOeYRT+I4oUFpRVo6irJlNSzY3JrjG0eQ5fZJR37ROy/XTacl8nibIunY0jV/mmvgQkZh6YNjW78VanfqkGI3SqXxUYqqyMT7QOIVum71VtaNsz7G5MSWEiC92CZSmoSobJpM583lNWTXUTcshRpz3BB+IMaIV2Nb/x1iNEcCYtkpEpX4qIeJ8QDtFaPvEVFVDvojD5hQRocoyGtUKtcbRtKtJiUNN1aTJOkbB+YAPiYMCrEm9RYwxyW/GaNAao9Wy4mkRBxM1Amk1qqyZzUq2NqdorWjynFrrJFCahrpq0upIG4clh/aafIg7HFoPImMNJrYczA6HEGLKkXGKGNO4VZUjy5Mo3d6ckltLmVuaXQLF+dCORZXGok4cQhS888s4ICkOGtBGyBRgNGI0VqtlpY/3Aec1sW32ly3jULG1NaPfLyiswWtDUIptl8Zist2ORVlT181yLE6HEBdlRh06dOhwNuLWfz7doQWK1m2jtpNAKTDaYG3qhZLlln6/oD8o6Oc5PVRaATGKKEKeW2xm06Rv0kNFISi9LN1clHrGECGkSdLHiFYaibLsfaL1rs6tRmONxmZpi6HXzxOHVqAYEZxJ718UGTZLpdFGa7RpK3JUEkGQGqWFmKpYUuOuVNkDqi3HTdeeuse2HUuNwdidcuder+WQZfSURishmNRTJi8yspaDXTTCQ9AqHheHSIykBmYxvR6V+sQsGq6qXTEwetE0b6fEtt8v6Bc5/VagNG3lU7HkkGJntE4dcfWCg9oVh4i0AjLo9PrYTtJqVwVNeui0HZft4jDI6eUZfZ1WNpzTGBfI84wss2kslnGIRK2XHFI1UbrmGCMqCF7HtgxaLzvx73DYuR8ym/rz9IoUhyJLWzxRtRysbu+HBQezHIvToSsz7tChw1cL7tACJTnUnuYDW9LkFX1otx6qNGHkgYiiBsom5RO4xqetkkX71raUtG1hgTGKLDMUuSVGwbZJjSa3KJ1+Z9oVhLZP2/J9YkzN4FzjqeY1mTEYF4loGoSyXUFpapdWSkLikDrZylJwGJNKdRccjGq7wGYGTNpGSaKinZwX8ZGIxBQH5zxVWTPPLJKllrmNhnm7grKbg7R9N07gkBmKPCOKYJTCREHnLYfcYo3CtH0/dpqotHEIAe88dVlTziqUC6BSHkzZ5sE0dbOXQ5sIrNg1FlZTFJYQdjiYzIDd4aBbDjtTtiDtWHgXqMuG+bRC8oBWSSSV7QpKUzd479uS853+I3vuB2soijQWWiuyENGZRYymyJPA0u3K1kLSpF4qO3GoqhSHYA263eIpnaNxjrpqCN635d5xORZnwpmauXXo0KHD7YXb8vl0hxYoddMQ5OTfGBWpGgPAO49qPFkQiiKjbwx9UVQKZsHT1I4bbl5jbWtCWVWUZU3jPLReK1pBnhmycZ9hnoNA4QIKobJpe8VmGp1rUKmPSuNi+22+zQ9xAeMi1kf6vZyBtfTbPihT73HOc8MticNsnjg455adW5USMqvYN+4xyDIQyF3AtBxEKWyuk1BQIDHQNBGlFWFXHKT2/AuaQb+g0IZhm4szDx7vI9ffvMrq5jbzsqYsK5omcYi7ONhhQU/bxKEt8a0yg2iFsQqTW1Cpb4pzDh8WHFK+DI2nCDAc9ugZy6AtM54Ej3OBm1c3WF3fYjavqKqaunGpB0lMk3RmNNmwR19bYsvBRqG2hmhUKuctLOjUdM85hwqKEFKzfO8CUns+jeLm0YDCpDh4BdMQCDFw49HEYVpWlPNqF4ckVqxRjAY5xaEVRMD6SB4jlTWENg42t6AVIgHnBB8U3qdVkBAisXb0BFZv3CA3mhGpD8o0puaBR9e2WF3dYFbubPOcqQ9KCIHTp9F26NChw+2H2/L5dIcWKFXdYMOpl7S11jRNSCskk4pms0yVNSo1apsDZdtmfn02Z6upabzHe99um7Bsd2+1ojfIMb00yQ1i+jY70zo171KRyoCLghNPa6pCozV145nPa/ykot6cL9vtD9pVnFnLYWNeslXX1N6dyAGFUYp+P8cU6fv4IAqm5RBaDrUBJ4L3HgmLOCgalzg02xVhUpFZm7x4UFTAvO2guj6fs1mlODjvTsqh18uxeeLQj4IVYWYWHITaCI1IWqlo29FrrWialDhaTyrcVkVu97a6n7QctsuS9aqidmksfCuwFhy0hn4vw+b5Hg5zk1ZBOAUHpRSuCSkOk4o4qcjzjFztdJKdtp1rt+YlG1VF7VNVzwkcFPSKjBWbOBQiFFGY6512+7URmrapnI9hyaFxO3EI2zX9IsO2HMIiDiJMyoq1ck7tfcqFatvqnw7RWEx/cMbjOnTo0OH2gAn+Vh97hxYoW9OAMae+WK0UGocFmsLi8ykKGBeWA8OczVnDduURBVtNYLOtuIkkp9rUPV6RAcPcMBrkDDUYhEP7+iitWNsocSJUGMp5Q10HHOBb75QFBwO4vNzFwXBgmDOpPJtzhyjYdoHNyuMWHNptDYPCAv1MMxwWjDRoEQ7u65NlmtWNEhciFYZjpaMuPY0s3IVbTyA8BqgzQ9yeoQUGuSGOCyalY7N0CC2H2tNEksfQrjgsOPQHOfuMQotwYKVHnlvWNubUIeKU4mjpqUuHlxSHBQeNxwJVZojFDAMMck0YFZR1YH3eEIGZj6xXbodD64FjVOLQM4r+qGDFKFQUDq4UFEXGxuac0kWcVqy2HNxJOBiBKiuJvXl6P6uJKwW1C6xNdzhsVJ46SvIYasfTthwKo+gNCw5YhRJh3zBnOCxY35hTNgGvFcfqQDNvcJIsnlIsWw7UlLYk9mZkKAqrkXFB7QNrs4YoUIbIWuWp227GYWEKdBpc/GP/mQd8+5Vf6p9Uhw4dOvy7Yns6gfve+1Yde4cWKKI0ok7txZMMZtO2QOM8ZfAoEWy09DNhXtbMKw9K4SI4H4lKIVot31ep1s/GGnr9jKFRGGC8MkBrRd1EmtZAMGsiyrWGcpJa4KcUipRI6dpOpSq2HKxQlo556UApmpZDUArRGmkTHhccrElJtkMDRmBlpUeWWeo6UofUgj/zgnaCatvDS9sFze/mUMVUYRQMdZEa1c3nx3Fgbxxoc1CsSUm2w0yjRVhZ6VMUlroJZC5SKcg86CY5Ie/mENr8CweUEtESwRsGGZSVZz5vEKVo5CQc2m5qqjXbKxYcYmRl3KfXz3AuohtPozRZANNE/HFxWLSNdyqtwOkYiVZTFVA1gXlZI0AtOlUNHcdBFhzahOJhYdAijMc9xuMeTRPQ1uOUJosN2qSS8HQ/pAwSiW0cRKgQvESC1ZQ5NC6t8ESBBo1zES/JW2gZh9Ogd965rFxx+b/hr6pDhw4d/h2xvX2rD71DCxTTVqicCgpJ2xytr00qF440TtG4kFrI+wBaE9tKGdVWvshCFGhFphV5nlEUBf1MY4HBoEBrTb/vMW1uQl4FsiDLXIVFkqsEUMRlt1aJkcZD4wyNX3BQiDKtyWCqqJHWiddqRaYUWZ5cmfuZxgD9fi9VJw08unVazptI5neqS07OIUCIWAW1CzsclCJqs1P9YswOB5XikBUth8KgWw5FYRn0PToLKS+lEbImXadEISw4tNtiolqzvxBolNA4S9PyuFUcckNR5PSKVF7cH/To9TL6g4AYj0alOORxGYcAqNZPZ7EM4UNEhZAMF51P94QPCIqo1Y6Pzsk4ZEkk9XoWI0K/36M/6NEfOMR4DIrcC1kTiEGWZcmtPXXqntvGIYaAkuSM3DiP8ymJO2gFut1SMqcX48t7vuXZoUOHDmcjbsvn0x1aoFibymdPjrQcvugKsXACjiHgjMI53+ZZBJQBMQtzO42yGqV0Kw40WfttudfL6eWWTKWJWWtNf+AwIb13ljsyn8qQY4jt6kmbs9z+62NEfKDRqanWQiQprYm25WAWHFrDQa3JjFoazPVym7ZbBmkFJQmUQAhCXnkyFwk+7pQCI7sSkxJX8UkcuF0TM7qdBLVKpc17OKgUhzxrS4QztLQCpZc40DZvy6tAnqcqnBAjquUgIS4rYhYcrJJ2UvY7cVDJZE9rvewzs5dDWyLcy5bioNfP6JdJoCgR8jqQNakHSYxxZ1VrYYCoWhPA1s+ocaGNQxJxMVv0t9nhQMvBth5LRZHKlI0kkZTK2B2iPRqSSKoCQYeUoNuKo2UclBCigE8CZWcsdnFQCw6mLTU//V+31p066dChw1cH7tACxbT9Ok4FiTF9axZJ3V5DIC7FgVlOzBoQY1HthGisSf+vSBUj1pDnOb1+waDIsAr6gz5aKwaD1OLc+UBROHKfuolGHZZbTLF1vhUVk0jyAadpVw3SxKwNiE29Q3RrKodWaBTWajKTHJF7vYJBL8MoGAz6ZJlZrqB4F8gLlwSKSom3sb3+RRyAJQfLYmL2OB9RWhBrlyJJG4MyicMyDq1I6g+KlEMyTCso/YFHtV1V89KT1ckdObZOw0s34ti6Ecckogy7xUFAGQGT4q+NRttWIKDa/iGGvNjp5WJEGAySQBksBEoUitKT1x6vVapA2uWIHFvDveATByV7OYgCrAWVetFoq9v7oRVIrWBNcehhBAaDXvsIiE4WBEXlyQtPcJqgwx4OaSUntkItlZXv5aBQVhIH3YpWs9OT51ToBEqHDh2+WnCHFihHzt1HlvVO8du0zdGUDb5ukLphPp0v29VrYDJvKH0kK2A4tmS9Altk5L3k3aK1pp9Zhr2cA+M+dz7/IEdWBlitOXBggNKac9an1D6yPq9QN64x3pozbxzz2rXbGJGmcriqQTUN83lFU3ui82gRprVn7gI2EwbjAeNegS1y8l6OyQxaKfp5xrDI2DfscZcLD3HeypBMK/YfGGKs5vD6jMYHNuY1+qZ1xlszplXDvHGE0JY9Vw5XN6jGMS9L6srhtSIzism8YeYjxhhG4yHjfg+TW4p+gc3SdkuvjcP+YY9LzzvA1x0cY5Ri//4BWW45Z31G2Xi26wZ14zqjjSmzNg6p86rQ1A5X1tA4qqqmqh2+STdh5TzzOmAyw3DQZzzoYxZjkVm0ThwGRcbKoMfl5x/gwoNjMqU4sH9IVljO3Zgzqx2zxqFvWmewMWVaNZS1w7UdaF3taKoUh2qjpqwdDUKuhNpHZrVHac1wOGA06GPyjLy/w6HILMMiY9wvuPjIfi47dz8WxXilT3+YcXh9ngwmnUfduM5gfZI41U3KcdrFgcZRbyV+VkGuoPaBWeVRRjPs9xiN+ujckvdysjw7o0Dp9/Jb1SulQ4cOHW4P3JbPpzu0QLn8siOndDNGaFu3l8wmcybrE47esMp8VjERoZw3TNpJuh+Fg4OC8aF9DMd9huM+vV5yAh71e+wbDzj34ApXXn4BFx05RG4No30DRGvKzRlV47l5fYvxZ67nltUttmcl29MSHwJN45lN5kwnJdP1Cas3rzOdlugQmc8bSudpSM7L+3s5K4dXGK0MGK0MKIoMYwzjQY+VUZ9D+0bc48534tILDpMbw3D/ALSi2iqpneeW9W3Gn7mOm1e32JrM2Z6VuLY52yIO5daM1ZvW2J5W6JjE06x2NECWZxy4MGffOWMGoz6jlQG9XoExmmG/YP94wKF9I+56yXnc9aLzsEYzXBmgMkOzVVLWjtXtKeNPfZEbj22yPS3ZmpapRNYFZtMytbHfnLJ5bIPNaYUKqQy89pFaoOhlrJxrOXB4zGA8YDTup5USnXq37BsNOLhvyN0vvYA7f9255Maysj9xqLZLyqphczpn36ev5/qjG2xOZmxPSxqXynRn05Lpdkk5mbG1usnmtIQQqcsmVUK1Dd/GRw5w8NCYwbjPeGVAr9/GoVewMu5zYGXIXS46wj0uu5DMGIbjPrpncdupPf72vGL8L1/g+ls22JqWbE3n1E1qgjebVUy358y359y4sc3mpIQoiYMPlFGwmWV4aF/isHTJ7i07Cp8KKytdiXGHDh2+OnCHFijbk4q8OfkHdjLw88xm1dLfxrV9NRQQoybEgI/gvKWsHGpeE7QiKEXtIsZovBckQqYNG+tTxiYjtwbtA1orNjZmlM6zsZEM/ja35mzPSybzCu8jznlms5r5bIeD8wEbY+IQAl4UznuqqsHMa8QYotbkTcAYTfBCDIJGsbkxYT3PyY1GeY+1mo2NGZULbGzucNiaJg4LgTKbVsxnNXXZtJO1TwZ7MRBjwAsoryjrBjNv8EoTtab2EaNTNYlEWg5T1ofbyQvHebLMsr45o2wcG5M5G4s4zKqlSPLeM59VS4+dpkkcdIxI1IlDFLRP3kXTeZ1coLWmCYI2Oq1ABNCi2NiYstHvkVuDCYnD1vacadmwOSvZ2JyyuTVjc1oymVWpv40LzGc1s3lNUyZDPu8DaskhppUWkm9QMn/UyIKDVjiX8npUVGyOp2ysbZNpgzSOQT9jc7NkVjVslxUbmzM2tpJQ3J6V1I0nhJDiMKupyzpxCO32T1TEkPq2iIKqcczKGq+Sp5KLZ25l37gz90rp0KFDhzsC7tACZWNrTpafui+d955yVlHPa1ztWn+eVIVRZJrMJU8XhdA0jjirUs+KIGS5w2idWtCXDlzg5l6OqRy50TTTIVopjq3PKL1ndTLn6NFNjm1MmZY106rGh4j3qb19NavwtYO2PXxmNUWm8VHjQ6rqaBqPzGs8CheFLLdoralb99xQe27u98iaQNZysFZzbH1G5fZy2J5XzMoaF1Jr93JeUc1rQuUASXEgxaEJGhcErdRS1Lko+Ah55dFaUeUNrnLE2rM/zxi2fUmaA0PyzHBsI23xbMyqxGF9wqSsmZY1zqd8lKqsqaYVrmpA0oRvlSbPNBGh8cnfyLnAbN4s45BX7VgUDXXpCLXjQC+nH4Vca5rJgCK3rG3OmVaO7apOHFa32Z5XiUMIBB8pyzQWoWxA4rJ9f55pRIEVQevUbXY2r1NPG4G8TnEoC7fcslvJLfuNIdOa+Uqf0SBndWPOrGqY1i5xOLbFpKyZlBWNSwm7VdvmP5RNckJWCmMgt6nLbNXyCr5tKhcTh6oJZxYojfsy/oV16NChw+2HO7RAqeuGEE9dehl82mLxbXWJNZpoDYVRFLmlcKkENTPJ7M/7gGo82mhCFIxOlRcmwtRoJtszNhXkWpOpiNZpNaHyga1ZyXRaphWbuqGsG0IrDpomVetIjG2ipyZv8xlcBKfS8yJCcOl4bR0+JjGjo6CjkCvF9vaMTa3ItCYjYK1ms11B2d7FoSxryrrBhzYPpvF45yHGVBVkDbmCIrfUQXAqYqwGEbyP0HKIkoQLQTACuVIpDnmWhBaBPLdsLnJQquTaPJtWlHVDWTUpByVEmjrFIYZWIFlDjlDkNvUeQaWkZ9kZC2UcUdrkz0UcSBy2MrOMQ1FYNjdmTCvHpG639mYl8zKNhWureZo6dYYlRLROY2GBIk9JyfXCoRppxy7sxEHrFIcoWIHJ9pyt/gSrFSo4fF2wuTFjVqU8mOlkznxWMa8aqqqh8YtcHI9vUkyMUuRWY9qxUEqRS2g5gPcRcR5dO4QzlxAvO/926NChwx0cd2iBolvX4ZNh0RBL653Kh9j2JwltAm2IkRDZ5QK84zqrzcIJWLdOwAabWfIsW5bbaq3I8oygNVnj0jFWY3xy4E2VrWmlQOmUGhQXjsiLSpbYuuEuPFYW59fpPbRWu9yIkwtvnu9wsDb9G5Uma/zShXjhyLwocT4Zh7Dow9FyULuciHV7br3k0MYhM607dJZ6guQZeZ5ckgOQhbA3Dka33VdYclBtA7sYI4G2J0o7NsnrhmXJ92KMd3MwdodDptP1Jw4ZeYRcZFmCvojDIr7LOCiVKmpECK3n0rJ3jEpdY9VuF2STSs/33g8mxaHtk7N4NBEyaN2xW1doozEiKOKuOKj2PhBY9IZpH1qpxEHtxMK0bs+nQ+dm3KFDh68W3KEFiuwqnT3FEckJd+HEu5jkNNjW9t6SGr7tOM7uvI7F+0vqW5H6eqTGXiEERJIJXgjp2/miMdnS/Xbhipzmn1NyMCKt+69CL87PzmsX15k60qbzLTgoJUsOIaZv6DvH07oyJ6jUijVx0BrbcjBGY2PKuUlxUHscgBcNxkQWTehie+60DRGMSoKvFX0S487Y7H608VUtB6vTyoHVGmME066saK2W46BkbxxYxiFx0CL4ELB+wWH3eOzmwHEc2OFAWl0LqcJ5KcoW94NaxEC15497Oaj2PvCLcdjNob13OGEsWg6qvQdIYxGiYLW0DQN3xmLB4dY4gXY1PB06dDhbcVs+n+7QAqWcVLjs1JcbY8S3Jb1Wwf5Rn1BkDDLN/mGOzRtmLmJyS6bb7rKqSSsvxqGVwmeGMLdQN9ysIm6zR6YV5fYQrRXH1qbUIbJVOdaObbI5qSidp3S+XRGI+CZxyJRi36DHwBoGVrN/kNGvPEUTlt+0vQ/4ylEJaOOSCKga/NwSy5qbjSJsTbEK5ltDrDWJg49s1Y61Y1tsbJfMG0flwnKFJjSO2CQvnH3DHsN2q+vQuEdRNEyagNZ6ycG1zrmuTmXG3jb4eY2UNSMiZjbHALMDKf/j2FrKg5m6wOqxTTa25pSNp2w5SBS888QmJeeOBwV9rciN4uAwp2wCeenRVmONSXGoUxyaxqexsA1+XhHmFbdo0LPk5zPfGtIrkh/QrHLMfWD12DabWzNmtafyPvUbEcE3ntB4siiM+wU9INOKQ6Oc2kWy1nYgs5YQYuJA4qAUeGvwZU0oc4ZK6FU1RsFk3GM0KlhdmzGrHVWIrB7bYmNjxrxJ98OSg/OExmGiMOrnFDLAasXhUU7tAlnpQSuyzCbh0yRDR+fCmTrdp+2rTqF06NDhbMVt+Hy6QwuU2bTE2NPsuYsgPvnOFFoxHPSQEBj1LAdGBdrUZHXqOdGgCO0k0jSp9bwCaq2ojcbPK3quYZ4brKIVKJpjq1OaKExDZHVjztaspo5CE1Mn2UX3UkKgpxWDQYHkllFhODAqyEuHnrvEQSlqF3AhNe1acGi0ojIaV2QMoqPKTZqYtwdkmU0cfGQWIqtbJZvTmirEEzioEMk1DPoFZJZ+Zji0r0eWZ5iy9SRq3XaDjzgXT4zDLCP3DWHDooHZ1oCisBw7lnJxygirW3M2JjV1iNQn4WA1DHs5Yk3iMC4oa4+yDWiNN5qm7YzrXOpwu+BQGY3LLf3o8RsWLcJ8c0Cvn7G2NmNee2rg2GbJ+rSi8skrKSxWX0KEEMk0DIscMZrCag6tFFQugm1Sx1+jmbmA97LssssiDlrT5IbcO9TWNlpgstJjNC5YXZ0yr5NZ47HtivXtMsUh7HAgpuZsRsGgyFBGkRvNwZUejfNgk3FjsIapC/i2CR/mzAmwzoVOn3To0OGsxdfMCspsVmPMqS9XKdCS8gFUzzDo52iEcT9j/0qRWqqXKfnQNwHvIoFIVL51v4UaqABfVuSuZq4kOROXc5RWrLYCpVKa9UnDpHUj9rDMIdCSHJBVYRn08mQu18/YN87R1hK0QVAEFwmNx0nLob0OS7oGl2mK0FApSe3ZyyFZZjh2bEoTYuIwc2y3Lr7uJBzIDYNejkEY5Jb9+3ooYxDtiMB2y6GRSHQpDqi2mRrgcoN1Nc4kR+V6NqDoZRw7Nkm9TJRmfe7YmrllHOJxHPq5od9LLeIHhWXfvoK8SgZ7EcXM7+bAnjhYoLGa3Dc0htTLZTag189ZW50ybwJOa9bnns15QyMnctAi9PJk/mix9DLDvn09ijrg0IjAxKfrb+KJHCqgthrrHZIpVIzMJ8kscPVYEihea9arwOa03uVmvDcOkhl6RUZeWHJr2L/SSwKVmiBQBiGWjiYKUQVax4DTohMoHTp0OJvxNSNQYtvC/VTQqB3n2TxjtNLDACuDjJV9Pby2xCxViZTTGuPqZQ5H3J03IEKthPkckJT/URQpV2IymeNEURtD3SQDwqCS2Zzs5qBb99tRgdUqcRgXqLzBmYwoQj1rMK71qZFF8u7ON+8aoSxriAEjQp4nA8HJtMSFmDjUEeeSC+/JOGR5xnDcI1OKYc+ysr+P2JpgG6KQOHhBLTnEpQswIjQIZQVWkn9MlikK75hM5tRe8NZQ12nlI/Xv2OHALg6DYUFuNMOeZd++HlnlqZUlAqF0GLeLQ9wbhyZGykphSGZ/mVU03jOZlpRNwFtDteBA6msjqjXdaxNOs9ymNv1G088N+/b3yWtPoy0hCq50GA/ahzahN3HwuzhUlWJap1UhoyKihO3pnLIOBGOoPS0HCErv5aA0WZY49NuS85X9fWoXqFXiIJXHODmBw+khZ9wG6tChQ4fbC7fl8+nLLlBe+MIX8qIXvWjPc0eOHOHmm28GUqLji170Il796lezsbHBVVddxate9SquvPLK23yuRbXLqWDanIrManr9nOGoj9WK8TBntK/AYQimwUdhEpITsIT20brPKmKbmJk8bOoQMBKpm9QXo3apyZlfJHFC64Kr20RMvTT7K3o5w3GfzGjGg4zxSgFZlibmKMyiIm9SeWvikCYkFRccknhpfEDHxCGS8iOaIPgs9XVJFNIkKG1FzsJor+ilOORGM+pZRvv6RGNx2hIFphGyJhLasujFdKiigIRU9RIiTUgNzurGgYa6CTQhEkgc5AQOamm8WBSJQ5GZlkMPU3hK0QQRKjR5FQgupO0QFnFYJCynctomepRPHJRV1E0y2wtAFLXDoa3a0ar189GavOXQywyD3DDa18fWgQpDiEKlKvI64pRCgpDqrlKZM5LiEmLiQIjUjSFrfBoLlwRFiG0V1XEcjNkxoByMegxzSy83jPf1yV2gEoOPgtM1eZ2E3m4Op4NKZT+3+W+pQ4cOHb4iuA2fT/8uKyhXXnklf/7nf7782ZgdQ79f+ZVf4ZWvfCVXX301V1xxBS95yUt42MMexr/8y78wHo9v03kW34ZPBbMwl8ssRa9gNO5jjWY8yhmv9HAYvLG4EOlVnqz0BJes7hfL6Usn3lYcaOcJItSNR2mV+ougCEoT01fk5aRIOxlZa8it2REH1jAe5YxWCsQ6agw+RHpNJCvTFlFUCvFpQlKy4MCSg9olUGrncUHSt/RdE/OilNVonUpiraEosh1x0M8Yr/QRbXEqTYq9OiWrelKFzlLwSPKFXnBoXDLlq9t8ncYlkRSVRiSN9wkcbFo1KHoZg1Gffm4YtxxM4SmjxkdhHiCfORyK6AORlFyaxOLCmVpofAAfqF3qmVI7T+MiUWli2x9nUTIt7b1irUlN8oqMwbDHsJfRLyzjlT5Z04qkEJl6IZ+nXJK08cceDgiEBYcQqJ0hcwsOASEJEmhXTZYcVMvBUBQ5g2GPUT+nlyf7hLwJKQ4hUsUUh0YgqrjkcDrsrcDq0KFDh7MLt+sKCoC1lvPOO++E50WEX/u1X+O5z30uj3nMYwB4/etfz5EjR/j93/99fvzHf/w2ned0KyhKJWFkM5vcb/s5o/GAPNOMRwXjlR5eGYK2OB/pTRvymSOgCPjUu2OxxaPY+dbuAkoitUsCpXaegEK0QUQDrTjRGtoeJtYasnzBoU+RW8ajgpWVApU5GnQSSaWjmDU4gUBYJpemfY50XT4IuHb1wnmiIrkRB0kt8rG7yol1+te2Iim3FL3EoV9YRv2c8f4+YjOctvgQ6c8cedHgRBGE4zgoaPt2NO3qRu08ondEkrTt6dMYtBwWZc3W7uEw6GVJoOzvYytPFVMcJnUgL+pWHEDYzYHUvyTEtJUl3lM3HkwSi42P0IqBxCE5Ee8Ri5lZrmaN+zmDnmW8f0BWJw4+CNtNpJg21FHaFZlFmTPAwpG5jUMI1I0na3xaSXIBlCaa3UItcdAthyxPQm046jMeFkkk7RvQuEApqa3/zAvFdp1yUAipV8yZBEq3etKhQ4evEvy7CJRPf/rTXHDBBRRFwVVXXcVLX/pSLrvsMj73uc9x88038/CHP3x5bFEUPPCBD+T973//KQVKXdfUdb38eXt7G4BD+0fYrDgljzyzjAYFK8OCO523n7tfcT69ImNlVDAe9ZjOarYmFVXtoHczFBtM5zWzeUPVuNTzoy0J1RIQ31DHCDGmslylqEL6xm61opfl5GhMnqFzi9KaPLMM+zmjQcFF5+/nbpcfYTgo2DfuMRoWlJVjfXNO4zx2cBSVb7A9Te3Z69q13WUTBxUDKrjEIUSmTcAKlCE1nLMoekVGVmh0bjF5hmq7xo4GBaNBwfmHx9ztbhcyGhYMBzn7V3rMS8fmdonzEd2/GYqi5ZA6oIrsxIEYUdEt4zBrPI2C0sfURwQoigybK3SWYYodDoN+znhQcP45K9z1Luexb9xP4zNO1SvnbMxpXKB/3Sohy9malMzK5PYrMRJ9IDQO8R4tgaZtODd1HmcU8xBT910gLzJMoROHNg7WaoaDgmE/57yDY+561/M5sG/AsJ+zb6WPc4Fzt+Z4Hyi+sIpkORvbJdOypqpcKhv3bRxCwEigKSMxRLQLSO0pQ8CFmLruFhk6V2hrMUWOavveDNr74dwDI6644jzOOTiiV2Qc2NfH+8i5W3OaJjC+cR1vMjbbOMzL5owCJZOAn85u/R9rhw4dOnwFcVs+n77sAuWqq67iDW94A1dccQW33HILL3nJS7j//e/Pxz/+8WUeypEjR/a85siRI3zhC1845Xu+7GUvOyGvBeCKSw6R572TvkYBvX7BwYNjDh1c4ZKLj/CtV92N4SDHWos2Gomtmd+84eCHP8WRz93ExvqEjY0Js1lFiJG6cpRlMvtbP7bFRg0xwtrNcyBtxRgDK33F4f1D+oMiPVo35F4/Z//+MQcPjrnskvP4pnvfmf37h+S5RWmTODSOedlwzj99lnP/9QZWV7fY2Jgwn9WEEKmqhrJsqMrEYb2B4GH1ljJ5trQ5HuOe4px9A/qDgsGgoNfPMSZVihw4OObAgTF3uvAwD/jWr2f//gHWGrQxyx4lLkQOf+hTnPuZ61lbn7C+vs10WhKDUDeO+bymmtdsrk9YX8ShrFBAIHX2HeWKc8cD+sOCfr+g388x7dbS/v0jDh1a4U4XHuZb7nsFhw+tLDu+iiRzx7p2fOwTX+DgJ7/IWhuHybQkhEhdO6qyoZzXbK5ts1EL3sPasRqtGgKCtpphpjhn1Gcw6jMY5PT6xbLj7v79Iw4cGHPh+Ye46pvvynlH9mOtQRkDpD4p3gc+8vEvcPiTX2R1bYu1tW0mkzmx5bAYi+2NGcdqCAHWygaz4fAiKKPpWzhv2GMw6tHrFwz6eep+mxn27x9x8OAK5593kG/+piu48IKD7SqXTVtozuFD5JP/fB37Dn+W1bVtNjYmbG3Nlp12T4XJNX/BR//inac9pkOHDh1uL0x3LTacCV92gfLIRz5y+f/3vOc9ud/97sfll1/O61//er71W78VOHEZWkROuzT9nOc8h2c961nLn7e3t/m6r/s6qqYmnmJHS6HAQOV6VN5ROZ8acUWVqlp8EhdNVNQ+UrlA5X17bEPZpIqeqnHM64ZZWbO9XbG5VRNihNKl5f5+ljxs0PTHNWI1mFRLao0GA7VrqL1PHHykiWBFo4MQUTSiqIO0v0+Pqmk5hEjZOMqmYV41OxxCREqHFpBeK7jQDMY1YjTKKNAkblqonEvv7TyVDzRRoaSNgyZxcJHKpcZmtXdUTUPVNMQQqWpPWadv8XviUKV8mFhkmEwTomKwUu3EwYCNGlGRyuVU3iUOLlJH0Gh0IPVgEVIcmpBi4B2Vc1RN3QoUz7xu4zBJHHyIxNKhlxwM3kF/XENm2rEAGwwRoW7jUDlP5QJ1BIXGxlT/4kTRRKiaFId0/hSHEFJC7rz1GNqelGxuVYQgxNqhfSQWFp0ZmiYy2ldBZhCtUCatbgSxVM1eDi4qEIUJIAqcpD4wVRPasdjhEePpvXbWP/FP3HjT507/R9qhQ4cOtxPm8dY7rv+7lxkPh0Puec978ulPf5pHP/rRANx8882cf/75y2OOHj16wqrKbhRFQVGcuJWzsT0ny079gd2rHUGlFua9ouC6644yGg8YFTkFihphWjfMpiU33bLO0dUtNjenbG7MmM8rYkyTYlU2VNM6OQo3jhAE4wKIpDLaoKgry3Ra4duckLLJ0gpKnRJOnSj6vYLrb1hlOqsY9woKFA3Cdl1TzmpuvnmdW1a3WVvbZmtzxnxe73xrrxz1vGldjRMH7QIgxAai0TSlYzqr8BqaECidxxhNUbnWGRissVx//SqzWc0gz+ijcBomdUNTO25qOWxsTNjcnDGbLVZQ2jjM0+pBqNOWh2qTZaNSSNQ0tmE2qwk6lf5WLYc8tymvBUVmM264/hhV1TDs5QyUwStSHMqGm25e45ZjW6ytT9janKZVnJjMBqvKJXfoeYNv46Cch5YDMdJoxWxWEY2iCYHKZW2CboYHnIDWhhtuWE15N3nGUBs8wqRJZoI33bTOLcc2WduYsLE5Zdau4jSNp2rdpat5cpgOMaa8oBCJKnlAOZX69ESjl6IzeSkZvEBoK71uuOEYCigyy9BYooJJ01A3jptuSnFY35iwuTllsn3mFZTa+S5JtkOHDmctbvck2d2o65pPfvKTfNu3fRuXXnop5513Htdccw33vve9AWiahmuvvZZf/uVfvs3vXVUOH06dJCtANq+wmWVzc8qxo5vMZxWzdmKuFEzrhvm8YnNzyvakZDqrmFfJCViiLMtGQ0hrNVZrtAiZ1SDgWiM7TUqidW3yrCgwJpnB2VkyjdvcnLJ6dJOmapgXBX2VRNJ2nSb9jY0p25M5s3nFvHUjjm1nW+c8wSdBsuBgrUYLOK1Ba7SCGFLyqDYO2q2fIIKd1xhr2erNWD26iatdmphRNAomjaNpHBsbUyaTeYpDWVNWjtgmpDYtByUpDlEJ1hi0jmiTOBhUOt4HVJNWL5I7dMRkFVlu2dqcsXpsixAiwzxjoA0e2Gpq6sqxsT5JcWg5VHWTepM0nsb55LaMkGmNEklmijq5E9P6+yw46MaDAuNT8qudW4y1DIqc1dUtFJwoUHxgfX073Q/Tso1DQ4yyjIP3ARFJTsYkLyGrSFtFRmOUSmPRxkFphfEBFwzGWmxe0ssz1la3yaylsIaxNgSlmDhH3TjW11IcprOK+XyHw+ngQ6q26tChQ4ezE7djmfHP/dzP8T3f8z1cdNFFHD16lJe85CVsb2/z5Cc/GaUUz3zmM3npS1/KXe5yF+5yl7vw0pe+lMFgwBOf+MTbfC7dGsudCmrhRKt3Kiey1vU2QxGUkEkkcxZrTOuaq9tGWorYlgwvdp8EWToPh5iaxMXWiVYWjoDt8VqpZR+QhRuuNcmNOMtT99AMhSDkEgk+uQCbtjJpwQOt0G2Dr5bEkkNMpSVE0bAwCVxc+4LHwoRw6QasyTLTxsGSkfqUZAhCcgFe8NVapxi2jd6WFn5tIzuJkhq5xTYeun1+D4d0ftVW8hidONgsVRUtHIk1kJN8g2zrQqxb8Zfeg6Wh4zIOks6vJKZVnKWZYHt+2HP+HXfmdH2LscjyjLzlkCGgVXIiXjgpt2MoEpfuwgvERVO/mHqkpHio3b6AO3FYjsWCQyo3znNLbi2ZNhgNmUodT2xmMMbsmBdqjeb0WzxdFU+HDh2+WvBlFyjXX389T3jCE1hdXeWcc87hW7/1W/l//+//cfHFFwPwC7/wC5RlyTOe8Yxlo7b3vOc9t7kHCux88J/0d4BmxzUWIU3iiweCtMvxi94SyXGYpUBh1//rxQRrNEpJ+leEaDTaqD3CJk0mC5GSzr9gmRyB00QstAWruxyQF8cuX7d7ctM7QkMpQbdOyNGkUl5t9I4b8GJiPn5yl0XF7iIOcScO8UQOWqVcHb2bQztxRyXooDGLeLTPmyXXXUKNVugtA7ETe4mSeny0poJLrceOwBAlJ8RBty7ARicO0WjYPR4LcacW/7b3xM5gtOeMbe+bHT6ILDksX7u8H9gzFihBG0kpN0YjRrUcdokStUssLe+JnfOlpngqPeJykNIzau9YnAm3xvG4Q4cOHW4P3JbPpy+7QHnzm9982t8rpXjhC1/IC1/4wn/zuVzTIHKKD2wFIjF18IyRLAifNm1zLGvoS9rimXlPXTfcfMMqGxvbzOcVZVXRNK5tsx7RCvJMszLq0bMWopC3Wx11ZpLzbGHIcoPSaaL1zhNaDlOVOOQR+krTHxQMbUaf5PUz9Y6m8dx04zHWN7aYzkqqssI1vl0piSiVtpVWRj16xiIRMu8xLQdRiqzQOxwk4r1DhXRurWfEEDA+8q95zmDQo2cNQ1HUCmYhbVvcdP0xNta3mM0ryvkiDkIMOxzGw4Ki9azJXGq7X9uUDGpzTb47DksOAT0FRLBe+Ky2HB316VvLQCk8MAke5zw33LzO+lqKQzmvaZpUXhtDu7VjFeNhQa40MUK+m4NRKd8kt2ns2zjEmLZcZjptQRkf+WyWsXbzBoWxDFsO05AMI2+4aZX11U0ms5J5WdG07s4hNWXBGp0qwg6OEQHrA1mI1JkhaI21iqKwoBVCxHtPjIEYdPIdFEG5wOdtxtbqJHX2RactntiOxdF11le3mCzGouVwOoQQO3nSoUOHsxa35fPpDu3FUzUNNp76G6Uz6YO+Khv8tMZtV1hr6CvNQBRzDWUM+BBYm8zYKEsal5IkfWgzjQWQ1CK9PyzQvVTW3PcpJ6W07aK7FhqT8j188Ph2Jd55j3OBqqrx05pmu0oeLFrTF0UNzCTluKxNp2yWFZVzuMYRQmv81nIwWtEfFOii5RAiWoTSGIJKHJxNE20IntByMG4nDm5aE2dN6q6rNKNWqM0lEmJkbTJloyypnaNxDu/3xsFoRb+fo9v+M70QsSLMT8ohECS9XjuN84GqcjTTmjCtyfOMntIMaAWKRGIMbE7nrJZz6mYxFh5Z2NBIWr3o93PGWY6g6AfBSqQ0KdkWldr+O3UcB63wIVBWDW5WI7OGXpGTKc0YhQOmEokS2ZjOWZ/PqVzKzfEh7DRqk7Q61CsyxiYDFHkUihCZ290cwCmIIdDEsMwJ8j5QV45mWiGzhkGvIFOaEYoATEljsTUrWZ3N0v3gUm7MGQVKjJzhkA4dOnS43XBbPp/u2AKlchh7mhwUpSi1wypNrUvmq1OUUvRQDCNJoLTL7LPgmEZPlEiMMRkRqrYMVmmM0hSZpSgsGsUwxpQsajQBwUePI6QJMaRJLjkJK7R2GKVpdMV8bYpWmh6KgSRn3LlKHObBMxVPiGHJAcCoxCFTiiIzFHmGUophFIzIkoOLAS9+FwdZlnDrOnGodEm1PkMrTY5iHEkCpeUwi55Z9PiYxMKCwyIGGYrMGvrZDgfbcvAIPgaCpMqWIIs4tBwqh9F14rA2SwaKKEYCDTBtOVTRp1WEmF6/MCxccLAqcehlFqU0wyhkImRG0yBECUyiJ8aIP4GDR2tNrSrq9XkyL0QxluQ4PFVpAbIMjmkMuBiO46AwyiQORjPIMpTS9EUoYsRqk0SJBCYxJRgHSQ9Z3FPKoXVDqSrqjTlWG2zLIQCTlkMdPNvRJXfruMPhdPAhdHaBHTp0OGtxWz6f7tAC5Uz1CqrdFogISiIxeABqAb8QKG1iRmOgUTvGdAIoSYm2qk1qLExG3+ZJoEjyyIlG4UVovGYemuSbE6U1q5Mlh4CgJRKjA1HUkspdkzhIfJ0WGp34LjkA0rZKN1qTm4y+LdC7BErUSRzo4Ci9oIXkhispt2M3ByURogdR5JKarZXLOEDTcgjHcUDRJroacm3pZwUKxUCSQAktBxc8pV+cR5Zd+lWb0JqSiyNqF4ewEChtQZY/DQd2c7AFSmkGkgSKaI0hrWCVHpQE1Ek4EHfioESRtS393S4OaSyE5Ha0dyxS4rImW8RBaQYChUSi1jSAj57SxZPEoXXhjgHaOChR2JaDB2a6bfF/Eg63Bl2ebIcOHc5W3JbPpzu0QLFWY2zqAHpSCClHRUBi++1SQEfIotDo1ANEKZC2YkW1GaKLxESjDZmx5NpQZDn9rEArTT+mBEavdeoe6pMTsY8KgoK42BKQpBgFJKQyUImJg43QaJYc4q7k1sQhTYvWJA6ZNhQ2p5cXmJaDEcGbBQdN7gQfNBIVhIA+gYNackCgCSkOjU4TcMzThZ/AQRsyu8Ohn6eJud+uoASjcQjGO/Im0sSACkDgJBzYyyFCo1IcUK0IOAWHRSwKkyUO2iSRFNuEZRFccOSN0CzGItCuBEkyUxQgqpSvkYyiaWISKK71tYzZIkla7+FgtF6ORW4zekUv3Q8CvRgIxrQiyTDXkTx61Ek4tBnS+BghLDgIHkVj2jvaKjDHczg9uiqeDh06fLXgDi1QtNVtF9eTQ1phIlGQkNyIYxR0bCdm0woUrVBZ67zbVuAsKmgyY5NAsZZeXtDLexit6YdWoBiNlwgN5CrigkL8YkKKeznQcgiCimCj4JTCmZaDTQm3qq2ASfOzwtqWg7EUeUG/aDksBEq7ekGjyFVIHAKgWG4LxJYDiiUH2jg43XJQoMSi9GKVgBSLViRZa8lNK9R6PVTLIWsFihVBOU2OJw+pZEaO5yCSxGKMRB8Thyg0izgolXqJKIUyJ3LIbBuHLE/iwJglh6g1GsE4Ta4CeVCIJ1UAnZSDEH0ktkLNKXALR2prQOmdsdDAbg46cej3C7Q2SaCEgG8FivOOHE/W3g+ik8Eh7UrJoloptHFYcPBtR11U21PlBA5n+JvQnZtxhw4dzl7cls+nO7RAsTY5BZ8KIqQ25AiiQjsxR1QQbGi/NbcloRaTtnKW5aGgVOvAazNym1H0cga9JA4GMW3xBKNxEhANOZ7Gg+i0fxPbb+sLDhDxIRJCBC87KyjSlqwWJq2g7CpRVW2+Rdby6BU5g34PrQ2DKBiJBGNwEhEDOY7G70zMcdGTY8EhtBx8Wj1ofNrecpLOZWlFglYYs8PBGkuetRzynP6gh9aaQQQrEW8MViKqUeTi0sTs9nJQcVEFs4hDQAJkQdIKiqTzWkkOxCfjkNmM3FqKoqDf72GMWXIIxmAkYpymwFN7RVRJlKXkUdnhoJJg8D4Q4/ECRWFz04qlHQ6wGIusFayLOJi0xRMiwZqUF+QNhTTUXiEaxKVtnWUcSHtbIexwcEHwitT6Xitspnc46HRfnAmncvfu0KFDhzsa7tAC5cCBEdmp3IzbPIymCbgmEKSh9BXeBZyLRCeUVuHz5LRbZJZikJPlqZGZbRuV5XlOvygY5QXnj1c4MFrBGsOoreKZWo2Lgclsit7eYtLUVHWdfIJCyrlwLtA0gUBDtZ3apbsmEn27ipOnRnIjq+kNilSynC0axymKPG3rDPOcC0YrHFzZjzGGcRB0jEyzJFAmsxlma4Nt11DWFXXdpITbIDQu4FwgzD3VVkXTeLSP0Ai1VbgsibPC9MgGBTY35JnB2MQhz1IchnnOkeGYc/YdwBjDKAgmRqaZxUlgNp+jN9cZuCbFoa4JIaQurL6Ng3JMJzV149EuIk5wGpoiXXM+KigGBVme4mBt6jGT5xm9vGBQFJw3GHF4336szRhFwYbILDPUMVJWJWZrg35dUbZjEULc1RE3EkvPdFJTNR7lBVzEa6hzg9KK8SinGOTY3JK346OUIs8yekXBIM85tz/k/AOH0NYwjIrce2a5pRahriv0Rk5vcT/UNT74thtt4hFKz2zaJA4h7TN5BXWResqMBhm9Qb4cC5uZM+7fFhu2W0Hp0KHDWYuvmRWUO192hKLon/R3IuCcZzprmM5qNm+ZcNN1G5RlQ5w78jrSFBo1yOj3M84dFBw4MmY4KBgOC4rCpm/n/T7j8ZD9wxGXnnuE8889N02KLqJEmBaWxjvW1lb515tuYn0+YzqdMZvO8cHjmsBsXicOR6ccvXGL6bQizhxZHfGZRo0yer2MQ/39HDx3hdGox2iQUxQZ2miGgwGj0ZCVwYDLzjmXC84/nyzLGDpBh8CssLgYWFtf519vvIH1+YzJZMZsNsO3Zc7Tec1s1jBZm3P0+g22pxVSefIy4DINQ0uWWQ73cw6ds8JwVDAaFvRaDoN+j/F4xMpgyEWHDnPxhRdirGXowYTAvJfRRM/mxiafvv561to4TKdTnPd4F5iXDZNpzfbajLWbJ2xNa0LpyMqAtwpGOUVh2XdkhcOHx4zGPYaDnH4vR2tNv99LcRgOufjQYb7ugvPJ8oJRAOMDZZGlCqDtLT5zww2sTqdMplOm01kqV/btWMwbphsl6zdvszmriFVge+4JViHDDJsZ9p+3wqHDKQ7jYUGvl+LQ76U4jAcD7rT/AJddfBFZljOIiqx2lP2MSiKz6YRPfeGLHJtNmc5SLJqmwfvIvEz35HSzZPPolM1pRWxaDloRhxlZbhgfGi05DAc5g35+2s7JAPuOfRp1rKsz7tChw9kJdXs2avtKwoWIXjT7OA4i6fdNCDQ+0HhP3TiqxiGNR+pAg0ZZ0EZRe0/jI1kI5D6grSZKSij1IbVyTy3ml00+254YbSfUmFZsfJvr4tqtFBcCTYg0PtI4T92kR2wcsYl40amERUPtQlrp8GF5baa9zsXW0CJ/YZFgyi4+0rac90HwcTeHiPNxVxxSLKTxSBNwoiFLLdsb52l8IPMB5yPGLjgIrt2SiG1VyjIGcSffJ8Z26yTEloMseTQLDi4sxyLFIaTk4iZ1jG1cWB6b+4gJESNgF3Fox2KR4LrDoa1cWo5Fe+27xqPxyR9n91iExhMbTwgKycBLpHbJgykLaSxMOxa7xzYcz2HXWCw5tA8X9o7HMg7OtfeDJ9aeYBQxg0C6XxqXxiJvX6dP1ZiwRVyWPHXo0KHDWYivlSqeja05eX5qgeJdYFY2lPOGqnLL9uVGQ2YVwbRaToS6ckymVZpUXSAv0wpKWQWqOuLmnkGwSKPIrGXsUwnxJDM0wbO+scHRY1usl8kBeF7O8T7gfWBeOuZl4iASWw6KzCgwyfMHgbp2TGc1kbQdkucWrXXiUAXqvmMYM5Q3WJulLZ4QmOaWJgY2Njc5enST9XLOdDZnNi8JweNc+tZeto/YctAtBzHJZRiSa/F0VqeGcz5SVIlDv/TUdaTpOwpvyCXHWMsopO2VaW6pY2Bre5ujR7dYK+fM5nNmsznOe0KIlJVjNluY3sW2SkqR2ZRzEVQqBW5ccmWOCN4HitqhtaZXeao6UpeBntPYmJHlOeOYOrnOcksVA5PJhKO3bLI6nzGZzZjPy7SK4wNl5ZaxiDGikOX9oLTCpxxZXOOZzWuCEoKPFFWWGsT1PFUj1DNH3igGZoDNMkZRkTeOWa9dQZnNuOXoBqvzObOyZDqb4ZxbxmE+byjLetmhV7dx2MPBpRWf0Mahqj1nSjFpms7NuEOHDmcvvma2eOazGudOfbneB6rK0zSeGCLW6JRXEaGnImSa0OabxBhxTZoAlKQJQWtN8IIEUE7YUAU2JmPBOqQk2UmmaYJnc3uLra0pkyq1Ri+rlHvhfaSqHU3tEgetyaxG55aeimir8daQGY20jr2VSZUYzodkWhggBoU0kQ1VkJFhbUYTBB0ik8zgJLC5vc3W5oztqmTe8lg0bauq1E4/+MQhzwxaFH1RKKvxba6HtHFQRqUqpZA4BN8muzaRsWQMdEpQrSOYEJnmhjoGJtMpW5tTtus2DmWFbznUtW85hNTTxRrIoCcpEdUtkp6XcdBAEkqpA6sQPeCEzWjpqwKbZdSRZQ5KJYHZbJbcqaskDuZlhW9FUl17mtolDkolDqLoRYU3iqbN/UFYxmHhVK11G4egiE1kGA1r2QbGZlSSWu7PckslkbKc7x2LeYXzKQelqh11nba99IIDil4Er1oONl37cixUWjU6Uw6K86Frdd+hQ4ezFrfl8+kOLVBOZxa483uWki3tyMhJH+kF6T+L911Us6hdjsC6ddk17WqM1hojO86/e167NIbb4bnsli6LbZL2X3Y47PRiUXvec7dBndGp54eGxCnKjvvwcTzYHSe1aytEFltWJ8ZB7YrvgsOOEeJOHDRgFnFgFwell8equLe/zCIQyz4xCw7s5rA7druM9vSuWCzGQrUcdsXh+BjsxIIliXS+XWOwe+uqdSxUex478Vi6Ei8cj6PC6GTgqIWlE3MyB9x9b8ie+3LBYdGrR/RibNobdnFuduJw+r+J0/66Q4cOHe4wuGMLlHYCPClkZ0LRC9FB+qDnuH+XEw+73WZ3O9EuxIFeuhpr024XGU1At27G+hST43ETHTvz5PL/2T0J7nJR3iVMtGpFQVsObUh9QoxWBLVTIr17Eo+i0HGXuzEsr/V4Dm00lg7E6jgOC+FhdHIsNgtRotpJWklbkntysaYX510Eoj0/iwl4Vwx2u//uLrneIxR1W36r0iqHMRqj4i43Y73n9SJ7OahWibW6dHmPACdw3yMSd4vFxT2hFLoVqgvBtozZIhZaoWRvfNWSADtElmLkRJF4yvu9hbYWnee3/o+oQ4cOHb6C0G1H91uDO7RAmW432OzUH9gxpJLe0HgscGBU4AtDIQUja5j6QA3Y3JIBvvJUAYITjE3L73UeaGae2HeMo0LVNZnW+F6GVrBROZoQ2SpLNta22JxXVE1D1bjUhCukLRPXeKzA/mHO0CryUcHIaMoYKQFjDblShMpTR0V0YGxAKUUzj9SFwxc1KwKmcdiWg1WwUXuaENguKzbWttmcl8zrXRxixDUB33h03OGQCaxYwzwEyvZbf64Vvkr9ScQLdcuhzlIcQr9hEIQipi0SV2TkWrFRe+oQmFY1m+tbbM5KysZR1k3LQfBtHHQU9g8y+gqsCGOjaaIwE0FbTc9oQhWooyO65FKstKKwgWbu8UXDyCdHadPGIdeKrSYwd56yadhY22RjthMHH0LaQnOJg/KRlX5GQUrAXTEa13JAK3pGE+tALamnTG1juh+yxMEVDX0XGQJGa5o8o281m7Wn9IHKNWysb7M5nTNv47DDIeAah3KJQx6LPRymIiitGGQmcYgQndBk8YwrJPsfcD8uP/KQL98fWYcOHTp8GTGtSnj2h27VsXdogbK1WWHsqXe0RARxARUiPQUHRwUxZIxyw4FxzsakYdp4lDEEgdnM0ZiIsj41ClOQ65qe1bh+Ts81uM0NrAJ/cIjWimOrU5ooTH1kdX3K5qyhbit3lhU3ISA+MNBwYFgQC8MwNxwY5kwqz1bpUFoTlGI+9zS17HAAclNTGE3dyxgER9jaShUlBwfYzLC6OqX2MXHYmLE5q6l8pN5lGCg+QIj0lCw59K3h8L6C7Zlju/JtoqqinDsanRJzFxwyo+mZkrqXkTcNarKdqnsODMgLy+qxKZUPzIOwujFjfVJRheM4hAg+UCDs6+fEzNCzmkPjnLL2rM9THKLRzEpPU0cqG1AmZYbmRlOYkiq39JxDWg5+/4Cin7G+NmNWeyoRVjfmrE0qKh+oQyS0ezcxRMQHegj7Bjkx0xRGcXiloGoCG3OXioKsoWwTg2ub4oCCTCcBVRaWrG6w8xlGhGqlx2jcY3V1yrz2NAKrm3NWt8vEwe/lgA/kCONextikZOXDKwVNE1hvOYg1zJccIkr7M2aY7f+2B3DnR9z3y/L31aFDhw5fbmxvb8Ozn3mrjr1DC5TptMKYk1fxQFoi11GwgM4Nw36BEmHctxwYF4gy6NIhSrHtBd8EggtElap7lEoBKpXCFZasqZlrMAj1bITSitVWoJQo1iY1k9LjRHCkXAYFKCHlrBSGQS9DiWXcs+wfF5jMEXVq7T5pOfiTcMiUoskNhW8odfK3qWZDsswkkeRj4jBt2C5d6+uSyk6XHBB6mWbQy9GSMcgNB1Z6aNOATZPigoMjEBu/5GCAquVgmxpnFVqEcjqgKCzHjiWRVCvF6tSxNWuWcVhyAEwUilzT72VosQxyw/6VHkXt8apBFMyDEKq9HCBZ02RKUVtN7hsaq9AxUk0G9PoZa2sz5nXAacXqzLE5a2jiiRx0FIpM0yssJrf0Ms3+lR5VEwiqJgKzAKH2NBKQJtn1LThUCiprsK5GNjUqCtOVHuNxj9XVCfOq5TD3bEzr1udHTuCQWUWvl5HlltxqDqz0qJuAVzVBoBIIlaeJAdE7HE4H57ok2Q4dOpy9+JpJknW+taA/BUy7X6+MJssto1GBBvYNMlb2FXhtkcwRgGpao5rU/j1I6ieigEhKJjUxMFGBIBGDYE1aht/YmOIEamMo5yFNcih8KzCMTrkiSiuyzDIc5RgF+wY5+8Y5Knd4kxER6rlDO1n2M4ltRm1ECCKoEJhoIUoyATQ6kuWWzY0JTRBqbZjXkaryeNJqSCTls1iVcnastQxHBVYphj3DyoE+kmUE2xAF6nmD9sm7KEZpv/VDaOOgQmCqIkrFlJCqAkUvY6Pl4IyhrFPlUuKgT8phMCzItGJUGPbt75FVnlrZ5OJbObSrT+CwGAucYmpSu3oVAloFenXOxsaUsol4uxMHBydwQCmsNQyGBYXW9HLDvgM9ijrQaEOM4CuH9gI+9Ts5noO4wNQIdi6oGJHg8MEnDnUyDZw7oaocHvC7OKTqcoWxlsGgoGc0RaZZ2d9PPWC0xUeB2qNdyp5dcJAz/HWL3BYz8w4dOnT4yuJrpsx4kQh5UrSJptZoMqMpejnDUR+jFaNhxnilh8MQrCNEYRogc2kbQmIkee+mUmLaqgofIk3wafWi8WitqJ3Hi8KLWgoKFkmZpH+t0WRaLTlYrRgNc0YrBWIdjbKEKMxiRdYsfHLabl9Ca3SXJsaw4BBTz5JIavDmQsTbVAmSrr9N0CQlklqtyYyi6GUMR30yoxn1LOOVPlFnOG2JAjNRZE4ILrQN4RIH3XIQSQ3QmhhQEqmbtDXUOE/thZAtDPl2VUC1HMweDj1yqxn1MkYrPUzhqcQQRKiVJq8jwQXYxWFh+Ccko78mepQP1I1HGU3deBoXCTuh26m6YSepNdOKvMgYDPv0M0M/N4xW+tgmUGJSKbCuyBvB4ZdxEEkl6EhapQhBaMSjQqRuDHnb+K1xIXGQts+O2vHy0VphtSLTmqLIGAx7DHJLLzOM9/Wpm0ApJjV4m9XkdcTjU+xDPKNAUXtKpTp06NDhLMNt+Hy6gwsUdUqBolRKXsysJstsEgfjNDGPhzmjfT2cMnjT4EOkVwfyyhNdJIaAtO1RVYyA2pmYXVq9qFuB0jQBDwT0cvJQbQkqKk2I1ia/n14rUDKrGY8KxuMCsQ21MoQQ2XaRvPJ4QsuBlsOyJnXJQcXU7TSq1JzLRcGjl5PigoOQeoxYa5LnUBuHwhqGfcto34BoLE4bQhS2mtByUES/m0PqyyHSehw5v+QgWlE3gSYIUWmi6OUgLOKQhFrLocgZjPppUu5njPf1sZWjjBofhXmAbO5xqOT0C0mgRICAtELN+QCtQMHotPrgIhG1l4PSiGqFmjVkVlMUOcNRj0GRMSiSOMjqQCWaECLTAPk85ZLEEFP/FWF5PyyciBsfIARqZ8icT0LNBQRF6j27qBRLFUVGK0x7PyxE0rifUeSG0b4+eRMoReNDpBZFPnNLDmFZAn1q7K5E6tChQ4ezDV8zKyhGp/LWU/7eaGxmyXNLr18wWhmQW83KqGC80sMrQ9CWJkR6M0c+dwQ8gbZl+GJFhPTN1fsILq2g1K4VKK6dzHVIk+KyLLQVKEYnJ+Lc0Ou34iC3LYcCsowGgw+RfuXJ5w4nEBenbzmo1g/ZhwguoGKgahLX2nlcEEQZYtpQOoGDXXDo5QzHg7Rq0M8Y7xsgxuK0TRzmjnzmcKIIQFjEgYhqVyXCbpHUtAJlwUFrYquQtVLIHg4mjUUr1Ia9rOXQx/Z8OzEL0yZQTJs2Dj65UbcqRUWF0K4kOQ8+xYHFCoqPoDURvZeD3hEoeWaWq1mjfs6gZxnvG5A1nqrlMGgi+bQhEwhNWPaL2c0htkKNEKgbQ7ZcQYmgUrIv7JSs05ZnZ9buiOZRL3n9FJbxvj5NE6jE4HxgHiDfrskFogu3aovnTH1SOnTo0OGOgju0QBkP+1h7CjdjBXlmGPRyxoOC889d4ZJLj9DLLftXCvav9DiwXbGxnVx1GwyNMkzLhnnVpG/lUYjeExuNIUL0NDGiYqR0AaUVdQgEpTEo8syiM4XOMlRmUTp9Ux70ckb9nPOOrHDxpecw6OUcWOmxf6XHdNawsjmncQFvkljZntXMqoam8alpl/NEp9M2C4EmGb1QupDcb0PAR9AIWWZS59EsQ+cWpZI786CXMeznHDk04uJLzmPUzxkNcw4f6DOZNezfKnE+4nRGjaE3r5lVjrp2iYMPxKZBiwAeFyMSAqUPeKepfcALaCDLLGhQmUXnGUprrNHLOBw5POLiS85lPOwxHuYc2t+nqj2j9TnOBVRRMI+aYlYzrxqqPRwcKgZQEReFGCOlD0QfqELARUGLYHNDz9jEIcva3Jc0FoNexpEDQy66+Aj7V/oM+hnnHBhQN4Hx+jyJwN4alWjyacWsTKXKEndziCgd2zhE/n/2/jVWtuys70Z/4zYvVbUu+9Lduxu3jTmYBDDhJISXI04UIICJJRQRUByJ84FEfEAKIFnYikRQJCMltmIkQDIhOpE4MS8cIB9OfJKcREmMkoCQhRT6fXkT8waCQ2Ps7r17r3td5mVcz4cxqtZau/fFTXDYbebfXd5rVc2q+a9nzFXjqTGe5/8ffEA6z1D8n2TSaK1pBAitShyySu12LJ45nPHi257j1uGcttY8c2uGc5mDdQFz75yNh3o90A2ObrQ8puQKAGMUb6wMbcKECRP+Z+Jz/3x6UycoX/LiM1RV89DHBNA2FTcO59y8seBL3/4sX/u176CpK6oqf5O3NmCtx1rHc//bf+eZ373L2fmG84sNm24kxogdLGM/YK2lW6/puzwpeusQUtCHgFAwN4rD/TnGVNRtTdU2KCVpmorDgxk3D+d86Zc8x5/7v34Ji70ZdaUwRuF9ll8fBssLv/Vpfvt3XuX4dM3ZxYauG/NKwTAy9gPOOfrNhs06EmPAW4ci0YdASoK5VhwezNHGULcNdVsjlaKpDTcO5tw4nPO2t9zi//71f5rZrMEYRV1rnMvbJDFE7vzm7/Hs77zKydma0/MN601PDAk3WoZuwDtL33VcrNclDlljpgt5W2OmJAcHM7Qy1G1N3TZZ46XSHOzPuHVjwdtevM2f/5ov5caNBZVRVJUihCwB753nt3/7s9z8rc9wfLLi/GLDaj3ksRgtYz/meAw9F90mGxM6jyljkRI0SrK3P8NciYNSeSXt8GDGjYM5b3nhJl/3v7yD27f20VpS1zrXngwOHyK//duf5fZv/QFHJ6sch3Wft5VGx9APOGsZh4Hz9Spv9ThPZz2d98SUqIXgcH+WV67qmmbWoIymMoqD/Rk3Dxe88Pwh/7evfQfPPHNYrpXCYcxj8bufepWD33yZ45N8PSxXHSE+/o97f95M+cmECROeXryBz6c3dYISQyKEh79bIfL2RCpbHboy7O23zOctUumsL9ImUvRs1iO60giVaxVCykWYsTjxWhcYR0/XW1brnugDjixZ3q8HpFKIqkY3LQmFrCIqxvJaudxWyLzdtNhvuXE4Q+oKIfLuSeMdVa8xlUEqRRIiF+UW195cd5JF57p+zBO299gUUZWmXw+QBJgKM/NUSSJNRIWEEmkXB6REGc1s0XDzxgJk3g6qWmiDx3tPVZldHGKCUByK/daB13q64TIONoXCoQcESRuquceYwiHmriSVuBaH+aLm8MYMdSUO7dwzDhbTGKTKW0Ox1LyErUt0Saa6wbJeD3hrqYJHO8+w6kkIglCYmSNdiQMi7cYCKVBGZQ4350ipd4VbdeuJIVA1eSwQsoxF5uGucOgHy2ozEKzDOI1NiW7d5y4gJM3oqKJAqIiOCUIiqFw8i8xdPM2s5sbNOUIqhJAkoJkFvPfUTZU5yNyNtb0mH4cnbQFNmDBhwpsFb+oE5XS5QZvw0MeEEDSj27WFHhw0vPrqCXuLhoODlqZtscPA2fmG9Xrk3mvn3D9ecnq+4eyiY9MNWQV2sIzdgLMjw2bE9Y4YPFWlEELgBwtS0XcjQg/0JlD7SGWzEWA75i6hECOHBy13757Qdz03bsxp2gY7Wk5P13S95d5rZ7x2fMHR6Zqz8w2b4nZr+5GxG/DOMW5GXG+J3qO1yMaGvSUiGHrLajWgTKAOidpFpJI0jSWWIt/5zPDqq8cM/cDeXs1sPsfakYuzjmF03Lt/xmvHS05O15xebFiX1Qs3WIaux1uH7bZxCGiV9VDc4EhJoKqcQCnl6X2k9hGlFXVl8gRLYjavuHv3lOAd+3st88WMGDzHxyv6wXLv3hmvHS05Ol1xdtFdWb0oYzHkVRTbW4K1KAlKgBtslvbXhvV6oDeR2uc4bFdxQik0bhrN3bunkCKLec1ib473nvOzNdb6zOH4gvtlBWW1KdfDaBk2Pd5a3JDHIliHJBErhR8cISSk1KzXA1IHKhfpQ0SV2hNX4lBVilfvnmAUtLOK/f0FMQbOTtcMo+Pua6f5eigrKBfLnhgfv8czWj818UyYMOGpxRv5fHpTJyibwaL9o96twMdY/FkEJydL7r16zGpW069bDg9aLi56Ts97Np3l5OSCs/MNy1XPejPQ9SMpJvxosaMj+YBICS0ESUhqJbMEvCiFsQm8zy3HUTpc6WDZuuBKQeFwQrfqGDcdBwe5BuXoeEM/WI6PM4eLZceqG+h7m7dRBou1juRzu6kWgigEtcq1HVZKQsribd57fIQoJZ7sWeNDRBVF2JNTw71XTxg2PfuLmlu3OtbrkePTDms9x0cXnJ+vuVh1rEocYoz40eFGR/S57TbHIXMwSjKKrLsiyS7SPkCUrngEyezMLAVKwulJxWv3TvDjyGa/4eaNGePguHe0Zhw9R0cXnJ2vuVjm5GRdttu8zRyC86QY0aUguZJ5PKyUpRYHgg+E5EhFoVdqhS0cBInFqebe3VOSdyzmNc/c6hhGz/3jNc4Fjo7OM4cSh02Xk0VvizN14aDKCl1VFGZHKRExIkWOAwGiEAQpUTpgSnG1kjCrNa/dO0WTmLUGfzvX4Lx2vMlxuF84LHOCtOkH4hO2eHx4eMI+YcKECW82PLoF5gsJV0zY8k+lFXObyl3/5xrSlX/zLd+zdd/d3XOlwyJdfeKDPLYyFQ+aBj548oc9P13yuEpqx+khT3nw/FudjGvvn0tOj+sBS1d+uozHFU67Xx7N5PK8lyZ5ogRh53j8pPdxhcWD43MZkyv/vp4BW0O+q4O/Ned79Pkeckd5v5euxOkRBz8EW5NEcRmDHAfeUBwmTJgw4QsRb+oVlK3lfUbi8iM9Ia6Ig+20SIzCGI02Cm00RuffjQtolTsslLx8XiTuXGspqqwgdvPStQlEXHHc3brsFiG5bTu0UgqjdTl3/lebiNYKrTVaFw5KFldgAcidg26Uu9Rq944fnAd3wmQ7x93yfCV2PLQu77/Ew5iAMZoYuRIHWd7DAxweyKaunX+XgIldPOSVOEhZ2o1V7m7atttqrTEmdyCFkLdjdImDLFwEeSVCysKBJ3O4HocyruqSg9bq8prQmhBzF0xK5BgpdT0OSZC2InzbOGwTi+14iMJnG4fC4fr1cIWDyRy24wG5CyrEVOJweV3ma/3xWzxCiKkOZcKECU8t3sjn05s6QfHeA+6hjwkBdkx0UqCJnLym+PR/f5W2NpyVFt/z5cDZcmAYPcf3z1herNl0I+Nocd7tVEylSCgtaec1M+YQI/uHbXbYRRKFRM0bolEEgBTxISBTRIhE14FKkZP7hj/4vbvMZxXn+y0H+w2bznJ82jE6z9G9U5YXK7rNyDhYvPOkFAsHUFrQzivaNCf5wP5hizaKGpkntHl7yYFI8J4YI5JIvxGolDitJZ/5vbucz2sW84rzGzPWG8vpeY/zgfv3Tlmer9lshkdzkBXtjTkpRPb2a0xtqJIgRFCzllQpfISUCocUEUSGDlYicVIrPvP791ieZA2Q89JmfP9kg3WB+3dPuDhfsVlnDs7lNuMUYzYu1BKjK5o4JznPYq+maitqJC4kdNtkDkkAiRBCUflN9J1ApciZEXz291+jO1sxaw3Lm7nN+Oh0g/OR11494eJsxWbdMwwj3jliTMQYEFCSLEN9OCd5z2xWMdtvqJPA+ohqakSlcPFBDoG+By0SZ1rwyqdfw642tLVmdWuet5dOO0YbeO3VU87PVqxXPUNvdxwehyfVqEyYMGHCmwVvOEH51V/9VX7sx36Ml156ibt37/Kxj32M7/iO79g9nlLiR3/0R/nH//gfc3Z2xtd93dfxD//hP+Qrv/Ird8eM48j73/9+fvEXf5G+7/nmb/5mfvqnf5q3vOUtb4iLHS0hPGIhXOQEJjiHGwaUd2hnMUpysMg6JOfLgfO1xYXIK0dLTk47ehewPuBC2CnJClJWf20bdC2RKXF4c4YUgkYoAoJYGVZeEH2ejLxNIATeZQ62GzDRoe2YW03nFTf2alad43Q54EPklZM1x6cbutEz7jiQdT+IWQW3bTAm1zkc3mjRRtMIlQsvTcU6SgYXM4cSCO8lwXlsPyDdSBs9tclCbbdvtKzWltPVSIiRzx6tMgfrGXzIaq07BdVUJPJrKiMQMXJw2FLVmqYkB6kyrJMi2KzIGxzgBd5lDm4YEdZSe0tbZ6G2WwcN/eg5Pu/xIfHa2Yaj49VlHHxuHxYxQorZKqCuqMwCfODgoKVuDTOpGF0kVYZNVDtV4GABIXBO5O6nfkBYS5sC88ZkDZIbLYMNHJ/3hJi4d7rm6HjNenQMLuB8zD43Ww4K5pWh1gsIkb1FxXy/pUUx2ABGsxGKMEZijATrdhxyHCxpHGmT535b0VSKZ27OcDZwdN7jQ+Toouf4/pJ1iYN1/onfPnyIU5fxhAkTnlq8kc+nN5ygbDYbvvqrv5q/+Tf/Jt/1Xd/1usc//OEP8+M//uN89KMf5cu+7Mv4e3/v7/Gt3/qt/M7v/A57e3sAvPe97+Vf/st/yS/90i9x69Yt3ve+9/Ht3/7tvPTSSyilPmcu/WhRj0pQAClgQNBLQeoHwmqFAvZbw839htPVwEXniMBp5zjdZPVSz9Z5NrfHahJCKZoqu+8qErf2ZggpiDbiIlip2ASXdTliIvi80SQFDL2gEyDGAb9cZw4zc5mgrEdSgtPBcbLZOhFnDgA6JRQJhKSpDHOTk6SbezNMpUhjKGaBkq4PuesmJoIPOw4jmUPse9h0aJGLNM9vtFysLeebbBZ42jtOOssYUlGSzSRUSujCoTaa/bpBxMTNvZa6MaQhMIaEk5JuyJOyjwlf9FEEMApBLyD0PWnTYQTMG83pfklQlgMRWI6ek/WjOWglsjR83SBD5OZ+S9NWYGM2C1SSoXBwMSdrsXCwg6UDQj9A31FJQWtUXsWxnuPlSEyJizFwvLEMPmYrgyscFAmlBMaoEofIwV52M05DoB89QSkGm4jJ4/x1Dts4+E4h+p5GCWqjuDhsGZ3n+GIkpKyoe7zOHALgP4e1UR8mN+MJEyY8vfi8Jijvfve7efe73/3wE6fET/7kT/IjP/IjfOd3ficAP/uzP8tzzz3HL/zCL/B93/d9XFxc8DM/8zP83M/9HN/yLd8CwM///M/z4osv8su//Mt827d92+fMxcVEDA9f0t5WKfiYCCRM9MhxQKSEbTTRjpwuB5Z9lmpf+URn80SQpLysMRG5hVUIQWUMrcpBmzU1Ugq6Onul5Lk7kMhL+T7mIk5BnlhcTKxSQIwjIiZsp4lDzbJ3nG0sSQjWIdGNeULccoC8XZVLQQSV1rQqT5TztsYYRdc4VIiQBHJMWcMkPoRDSugY0M4hU2RWKaS3XGws5xtHErAO0I0B9wCHXRxk9jZqS4vzvKmpG8OmsUgfc82HdSTI5oYRtt/pQ4mDCgHtLDIm+lqBHelGz/FqJCHo41UOgp0/7zYOIkv3t1ogY2LW1LRNRd84kAEnJNLZK3FI1ziImFDRc+4dKkUaLZHeMljPySonal3KHGyC+CAHQAiJVtloUKbIvK2ZNzVd40AonJRI79j5OBWzxy0HHxPSe86DR6dIXTiM1nNcOAxXOZSuqSf9cac0FddOmDDh6cUb+Xz6I61Befnll7l37x7vete7dvfVdc03fMM38IlPfILv+77v46WXXsI5d+2YF154gXe+85184hOfeGiCMo4j4zjufl8ul5m8ysZrj0QCISJEdm7ExIj12UPH+rydQzHVEyIXNCYldx0WWoCWkqrK3imtlihgNmsQUtDOPComYoRqjBhfOny2k2LZmhDkycOHLFNvXfavsS6732b/mEdzMFJc55ASbZvVYNuZR/rsF1S5hPFZ4O0qB2IsZnv5W7aIESso58+xQJA9bIr778M4mEpT13lLQqZEO2uoa0M7c8icEVE5MC47MseYXaFLxnLNU0iEiJWXHJwPOamgGAxeiQNX42DUjoOKkVnb0LQV7cyTVECKEgcXiSEnBmLraVR8hUDgQyTEgCTtTP5s2U6KcuurRBFsu87BFA5to3Mc2oZ21mQO0qOEoPJgbNhx2K7C5KWxmLcAQyTF3MK+vRa2HMJVDsVP6EnYFnRPmDBhwlOJPy4343v37gHw3HPPXbv/ueee49Of/vTumKqquHHjxuuO2T7/QXzoQx/iR3/0R193v9IKpR+zJZQgeXaTotslB2F3cyEgEiSZFTuFzJ0j20laS4FRElMb6qaiMQotoG0bpBS0bU5QQohUvS/JQZ4Y88ScSIFrE3PyAevEFQ4RkRJJ6tdxEFsOUmAqs5uYNZmDqRRtmxOUECPVEMrEHHNyUCbmBzkQIlqQz+9KrUlJCERp+X2Qg77CoW0Mkjwx17WmbR2i1GlUY8RUYcchbE0XQ65jQUAIiRQi1nMZB58n7ahyB86OQ5mktZTXkqS20TlRmzU0jaFtPUl5RMrJYmUjQZYakCscUkokAT5G8BGZ0rU4JNh1Kz2Mg95yaCqattolam3bZA7SoRDULmLGQChjszOfFLG0JmdH5OhjSVC2cSgcuMohX59P+vohhChJ2IQJEyY8fXgjn0+fly6eB7UkUkpPdFl93DE//MM/zA/90A/tfl8ul7z44ovUtXz8CkpMRCVJAYiRccjGbiImdIRu9AwhIVUk1QptJCiJ1HLXolopRa2y+21lakxTZYEwKkQC3cxJMWKco2o8DSC8R2y7NmIiBogeSIlxTESfEMmjI2xcYPBZ8TXVoExpry0cBIJKFw6VwVQVpqlRCKSoEFGi6xnRRIzzVHWgSSk7HodASHlVI/pU4pCwYyL6SAqJJSNrmzkIKUBnDlKJ6xyUpNb6CocGeYWDaWYEH/HBU9WeJkRECAh/hUOA5HNMrI0EVzgky+ADgysclLrkoOQuWTFKUmtFbQqHukEBUta7OBgZCCFQ1VlNN3mPLBxS4ZDjn3BjIrhI8LBcWsYQGWy2KBAqx0HIK3HYclCKpjIYYzBNi0SgpAGv0VWLERUxRqrK07QRyvXg45U4SBAp4mwiuoj3sFpa7BUOUl7lsHWnfvzf3sVv/h98Znjt8QdNmDBhwh8TVl33OR/7R5qg3LlzB8irJM8///zu/vv37+9WVe7cuYO1lrOzs2urKPfv3+frv/7rH/q6dV1T1693Lb5xUKPNI9yMyR4yzgeCi8TO061sNudziTE4eiVwRqA1zBaK2dxkvRSdVzCklFTG0FQVi6riYLbHwWIPLSVtSIgEB89IXAyobkOnJcZZBmux1uZvxzHhfcS7QOw8/cbi7CWHUYKtJErBbCaZLSq0ucJBCKqqoq4qZtpwMM8clNLMQkTGxP7tA1xKOw7a1gx2ZCwcUkw4H/E+kPpAtxlxNtL7hDt3DBJsSQjmc0m7qFBaYkqytK2/aaqamTEczOYc7B8ipWQWEjom9m4d0qRI1fdslETt1QzWMtpseJhSjoNzkdh7hs5hbcqdQucOJ2GosuZJ20rahUEZ9ToOdVUxMxWH7ZyDvX2U1swimBDZu6moUqQeejotkYurcQi7sXAuksbA0DlGG5EhES48TsJYEoK2FTRzg6oURudEWAiB0ZqmrmmN4bCZcXBwA6kU8wh1COzdOKAiMtqRjRIwrxmdZRjHXMCattdDJI6BsfcMNiFDxF94goC+ypoxbZM5yMJBPy4Z3/4d/fN/xX/+f73yxOMmTJgw4Y8DXfzc1a7/SBOUt7/97dy5c4ePf/zj/Nk/+2cBsNbyK7/yK/yDf/APAPiar/kajDF8/OMf5z3veQ8Ad+/e5ZOf/CQf/vCH39D53vGld6jr9pGPO+fZdJbNxrI8WnN094Khd6TeUY0RW0toDW1juLVoOHx2L+tZzCrqSqOUpG1bFos5h7M5X/zMszz3zDMYrZm7iEiwqRQ2OE5OTnn5/j3ONh3rzYau6/A+bxt0vWXTZQ5n91esNyOxyxy8kbAw1LXmxuyQG8/uM1/UzNuKqtYoKZnNWubzGfvtjLc/8wzPP/ccWhsWPiF8ZNMoXIycnZ7ye/fuctp3rNcbNpsuS9/7wKazdJ1lfdZzem/Jaj2SRs+qDzgjSbMsFHbzhRvceHaf2bxiPqtoaoOUkrZtWCzm7LczXrx5ixdfeAGtNXOfUD6yaTQ2Bi4uzvnvr7zCSd+x2XRsNhucyxy63rHpRlanHcvjDcvNQBg81RDwSpAWhqrS7D+7x61nD5gvamZtRVPr4vbbsJjP2ZvPeOuNW7zlzh1MXbMIoFygazRj9KyWK37v7qscb9asdnFweB93Y7E57/mD4w0Xm5E4BladJ2hBnBuUluw9u8ftZ/aZLbJezDYOTZPjsDdr+aKDQ97+lhfRVZWTpNHTN4aRyGa95nc/8wccdxs2XR4Pax0hRPrBst5YNhcDr5x2XGwGki0cpCDOs5jg/OacZ57Zpy3XQ9uaJ65EHl78HpxMWzwTJkx4WvF53OJZr9d86lOf2v3+8ssv85u/+ZvcvHmTt771rbz3ve/lgx/8IO94xzt4xzvewQc/+EFmsxnf/d3fDcDBwQHf+73fy/ve9z5u3brFzZs3ef/7389XfdVX7bp6Plcoo1DmETUoqbSGSpnrDVJiGB3dYIm9ww0BGxVS5JoIH3JdAjJvKyijUEqhK01VV9RNxWzWsNibYbRh4fI2gagV1jn6oaduakxwGGdQVpPEloMoNQ+Jvjjxxt7hxoj3AqFzMauPkSTYbSuooix7lUM7ywmTqSrmLubOmZIcjHagbmuq6DBWo60iiZRLQndOzYnBOvrBEgeP7z3OS5CRKurMgW0cco2PVNmBeFuH084aFnvzawmKbA1j8HhvCwePdRY1amKRpBcqF8GGmDl0oyP0DtcHvBagc72K22p5iO1Y5ERNV1sONe2sYb43p7qSoKhGY6InRJ85eIuxFm01iUQklG2S7JI82nI9DB7XB4IWJJXQWu3qQMSDcSgcqrqi2cahqphHMJVHtQaTIhBpylhY7/J7SLnG5pJDYnTlerAB03uChKQiOmqsD1k3VgpEuR7EEwplpZBTjeyECROeWnxezQJ/4zd+g2/6pm/a/b6tDfme7/kePvrRj/K3//bfpu97/tbf+ls7obZ/9+/+3U4DBeAnfuIn0Frznve8ZyfU9tGPfvQNaaAAnJ33VPWjsrGEc2XlYGN3xnuJhBS5A8iL3IYbU2QYLav1gI95K6QaDEpK+iEwjgnfBRaphqAwSrNX6hhWlcJ6x8nZGfePLjjrNqw3HV3X40PAOU/X59WLfrDEEKBwUBKiZKeSOgyO1XogkremqrKKM4yRYYyMnWORKlQ0aGPY8wkZAusqJyin52fcv3+RV1A2+Zu79+HaCkrXly0XEkIktBQEmVuBU4oMo2O1GfBEgo/0g0aqEgebsK2nCZpaNmilWYSEDpF1rRlj4OLigvtHF5x0HZuurKAUDn1Zveh6W7Z9stKukuySuRQj4+hYbUaCyDoq/ehQUtIMgWFM2D7QekVFjakq9iJoH9hUmj4G1qsl9++fc7zZsCpxcM4TQigxcLs4kBKijAUlkU0pYq1n3Y0EkYuK+9EgpaApcRg7T+0kC32MNoZFEhjr2NSGMUU2mzX3719w3G1Y931eQXFlBWUXhzEbCqZcUH2NQ4xYt+WQ8D4Up+LH/3WPzk9txhMmTHhq8XltM/7Gb/xG0uPM4ITgAx/4AB/4wAceeUzTNHzkIx/hIx/5yBs9/TWs1z3GPpqL94F+cIyjI4SAVpJKK1SVaIQEIwhaYZQk+Dw5IyDFhLEeKSXORbxLpDGwSBq8QCtN53Pr8MpIrPecLS84O11x1vd0fU8/DFnN1QeG0TMMjuACqnAQhYPSAl+8Z2LIk7OQIk9QViOlwLmEs4nQB46jQUWdOYSEjJG1UdgUOF8uOTtdcj4MbPqOvh/wIZRtBcc4OLy7jIOM0KSI2HFQxBCxJQ7EhHWZg7U5DmHwzIOioUIqxV4AHWNO1GJgtVpzdrLkfBzoSiy8zxxyHCzeB5SESiuooE0RpwTO5LFIMXMQMo+FdQEpthwiYQzMg6RKOVHrIugQ2RhFHwObzYbTkyVnfb+LgwueECLj4OlHh7M+tyMbBQnaKPBKYE1etUoxMY6utPYmnMvXwzYOfvC0TjBXLVpr1klQO8+60owp0vUdp6dLzoaers/j4bwn7uLgcDa/r0orQGQOAqzRufg7pTwWJYn1PjwxQXHOT0JtEyZMeGrxeRVqe5qQUnpssrQzlt0KqbGVsxAIkaXYrlnOpcvX3N7i9uetrkiMRBF3+h4xiEvNkRhf9/y0e818lu35ROGw9Zq7ziQfn/U7RD73lkO6zoEYifEKhyvnjVd4bNtaucpDPOB3J8rZ09akd/v8LQd254gxgpDFnyaSgtzdH69wTVdiunN8TjsZvCvvv8RAXIlBGbxUuO/Go+irxBjLTZR/C58UHxr/7c8PcVi8wuEyDvm/B17nylhc45DElZ+3j10dE3YxvB6HB8dBXBkLrvFOVwfwCdf8hAkTJrzZ8aZOULbOv49CSumaG/F2gmM7uVxJQATF/XbnPJy7eLKbrLp0AK4MRmmMvDSuS4HsTKw1unRbZF55UlHFyRdxOVlvJ7Ao2XHZOuCqooOycxUuXSTayOL8q9HaUIXc/WEqBTEUDiofr65wgF1H0JZDTFlR9SoHGUvStnX/La8hrnLYuhBXBqUUVQAVIqbSxJj1QXTRp1HFiTelPEZSXTo+pyuTdoiJKNhN5GwF67bjcc0JWRUX4jIWxmAiaC8xlSJEgXVmNxbb97A1C8zdWWK3ErHdXgsx1+ps43ItDnJ7PWRhwEsOispolDFUUWDIYnoxRYzPRcfKqx2PGCVCXOEgxWUCtI0DXOrXwOs4PGn/Vk4FKBMmTPgCwZs6QRlHR4yPSFAShBAJ1pOKKNm8ramUQplI6xK1EfhKZrt7KSDEbKonIIaAFJJiBoNykbOkER60Ulk3BFhpiQuB5WbFarlmMw70Rfk2xFzH4V0ghYAWgnlToYVE6UDjE1YJXJ0nMSMlxMzBkUi+FEUGIICwgfOkUVGilMoaLjGy1gqXIsvNmtXFmo0d6YdLDjFEvA2kEFGQOSCRVWRmI6MWuCpPgEYKRIhEF3CCrBsjBfiECAIxBs6ipEKjpKKPCR0ja5PrYNbdhtXFho0dGMaRYRhzi28ocfCFQ22QEaQxtC7ipMDWuRC00jInT1sOMSKlIIWU4+Ai51FiokIbwxBBh8DGKIYY6fuO5cWK9TjQD8OuxTfGhLee6EMWV6sMzBKiisyqiJeCsS7t5dc4OFLM2zEp5DhgA+deMJM1Smu6CLX3rI1mJDEMfXaFtvl6GIYRH3zhEEg+IBPMKkOaNQgfmZmIFzDWuSC31ipz8AFn2dXLPA65lfmP8q9swoQJE/7o8EY+n97UCcpm2aHNo3uqU0xFsTShheBg3hCbhAmJWUh0SmCVQCmBFqIkM4Fg3U6obdSWwYyMukcsR9Yna5SULELenlkriUuBbug57jdsvMd6h3UubzVEspJpSMUksMHXkcon2pAYpWDUAqmyUmt0ARsjwV6qqY7a0uuRQWvU0rI57ZBSsYgRFRNrLXEp0Y8DR92aTXCM7gqHBDHkWMiUOYQqomNi7hND4SAkGCXzhJgiwV2ueIwqx2HQBpYD4/mAlJJ5zDoo2yRpsJnD2mcOzmcDxQc5LNqsJaJCYuYTTgoGnd+zUSrHIeU4SJXF4ozWDMYyaIO4GBjOeqRSLGKug9lohU2R0Y0cdWuWzmG9xTpPiKEkrYVDTOy1Na3WyJDj4CX0Oq9SaK1IJQ7R+R0HrS2DsfRKk6oevxpRUjFLUIWQOQDWWY7WS5beMZbr4SqHGLIz8rypqKW65CCgN3nFzxh9jYNV9ol/E86Wzp8JEyZMeArxRj6f3twJynpA6Ue/XVGqCiSCOgkWbRZ1qxNZWEvCUL6RWnIxZnK5YCUVD14lR7TS9EISdMeFrpBCsghxl6CEFBm94zxY+hjw5bbdOtpyaZKkaStSgibBLObz92URyInceeRex0Gi1UAvFFF1LM0KKSTzGFEpsZYKT8IGx7kf6WPAxZBXLlK6wkBQJ8m8rSCBSbAXoX+Aw2ADUTyEg1T0UuFVx8ZskELkBCUl1krhUsIVDptyfv8QDlWSzJqsxGvKWDgBm8LBy0TvAtG/noOSik4qgtqw1uuSJIFJkY1UWBI+OM69ZXNlLGKKV6teqJOkrQ2iMugEiwheQCVzlYeXicEFwjUOIKVCy5FKSrzUDKc9QgpmEeoYWavMIUTPmRvYxIhPIa/gXOEgEJgkaSuNMA/nEEocrnJ4Eqzzl8aGEyZMmPCU4Y18Pr2pE5Rx9KjwiC0ekffjlVQImWsi5m2VRccQzBPZ+I1S6OgcKeRv+yHGMpnk5Ebi8UhIlo1QSARDMQBcS0kg4VNgLSIjiUgs2h8pu/vKvIWktGJmcoLTisyhFqBLTcjaWwi5FTWvOsTyViQKj0NAGunEgETQx4QisZYSTyKkyFoERhJhyyEVDipzkFIya2qUlNQI9hJU2zikxNpZBu/yt/wysW85yMIhpZFRDAgE3S5BueSwEYH+wTggdjU9UkpmdYWWikoIFiknKLLw7ZyjL3F4GAeLQCTJIEZEiYNOiY2SuNI2vhaB4YE4bOt7lFQIJWnrCiMVRgj2EzhAinzspqx85NWvsFuJkiIgkVgEKUmcsICgTYkmRtZSYQWkFFnj6UXWuAnEh3AQNFVFpTWmjIUXoMh6MIP3DD63x2dV4idv3+Ti7QkTJkx4OvF5bTN+miBlrhd43OOqFHXWpmI+m2VlViGZARJQKX/4u75ntAnnBQSf6z4AEKSUu2RcuFwV0TEryY5K5glIJKJK5HpQsevMkbIUlipNXVXM2xalFDMhmCEwZE+WGCO+h9FCEplDCFsGhUPaOjL7vKJQVlBGpQgk4sM4lGLTbWFnjkOLVopaCBYINCApsvy9YBghBY/f+vcUDlzhMF7hEB7gEFTKwb0WB1GKjfNYzNqWSusdh1xikRPDOEj6MZF8Hoq08xgUpdOquCFHDwhUTJgUGaXCiZTF6R4SByFykqiVpjaGedtQGZOTJAQOgNyFE/qBYYToy59T8fq7yiGUOIDIBcYpMsqIE4IkIlEmUpH2kUJkj5/CwRQOs7ahMRVGCPYQ+HKykBIMI92QMofg2RZdPw5TjeyECRO+UPAFnaAote16MTRNxWLRorWilZJ5AiVAlm/IfQoYspJrujoRlBblRMJvawfIuhsCsFESgaQSUZZmWSF2ip+ZQ+46qZuK+aLFGMWs1C0YQS6MDYGBmFcexOVy/rZF+urEHH3moErR6xhyF0ySj+AgJdqoPBlXhvkiT8y1lOyVlSRRWmQHAlWKJMeuvZcHOIQQSVc4+JSwKhEKhyRF3pS5wkFKsRuLus4c6srQSMW8rKBQVgq8gE0KREFpj06vi8OWA4AKeeXGqoQTIGS6dCOWD3LIY1FVhtmipakrKpkTFE/mEFPCikRHzHElkfwVDmVcQoxYF9klKDEyKoUXgEjEKid1FA5iy0EpTFU4zFtmTY0pSZIXgpQCISaChCqWOFxpd34cxG5TccKECROePvyJWUFRSjy2zVip0gpaa5q2ZrE/u0wOyAmKCtkvZ+0cm1I3cqlnAsRLDQ4fIrisj6FKgjIqSRQgkyAVwS0hKQWuhYPOk1HTViz2WqraFA6CioSIgeADXfC5dqOsZlzjULYNQshCYSSQIaJIWKUIAoQWpPKVfTsxZw45UauqEoe9GXVd0UjJgpwkqbKttPGOKuQalEs9kescfEjg8tKKCLnYdtQ5QZFKELUEdZmgCJGTSaPVjsN8MaNtKhql8uqFAEJ2Ih5joAour8hsdVWu6IckEj4v5ZCSQIaQV3FCLnSVCuJ2LB7gsI3DNlmczeqcqJG3hyiJWh8DtfeEa9dD0UEJmUuI2Q05x6Go4KrMQUjy9bCNg8jXxdUkacthb95ghGRPCIIQiBjwIeKI1M7l1blUVlWekKE8SchtwoQJE94seFMnKFVl0No89LHciaFp25pZW3OwP+eZZw9zcqAUbRIMIrEJATs6+hgYRUSrbHPvrC+dJ5EgckIQk89JSkpIFxEkbFIkKdBF20JqmX10ysSkjaJpatq24WB/we1nD2mairnWtAhGEq3PkvhjyjUsUuUOIudE5uBzF1DmEHAh5i0PH/IWT8rbQkpmrROtVPHyyasIWivatqZtag4WM24/c0g7q/PqBTAKwSZkQ78h5toNNcgixy8uO3B8LKtJobSzCoQP+JQYKRyEQEqd9WO0ROoSB61omopZ27C/mHH7mQPm84ZWKeZC4oAmeLzzeAldilkLRghGKXPiGFIWqCOSUsD7XBcifECnxKggqsKhbKVc5aCUpG1qmrbmYD7j1jMH7C1aaqXYKxzaojjrBAwpIrRESlBj9s7ZcthWlviQOSSf25jHBFEKpBa7uqPd9VC0XJqmom0b9mctt27vc7i/wKicJAUBbcwKxElLNsEje4kqXWWPEyYEHpuwT5gwYcKbCW/qBOXL3vYcVdU88vGmqTg43OPwxh5vef42f+Yr305dG7QQKET2WYnZd+WT//X3+fRn73NxsWZ5vqbrhjzh2CxLPmxGzsKK9dgTU6LzPk/WSqKAvUpz8+Ye7aKmqbM7sVKSuqk4OJhzcLjHi88/w1f86bfmbZ4tB8AXD5z/9ruf5fc/+xpnp0suztf0xS/GWs8wOobOcRaXrIYuc3AekRJJZQO6RaW4eXNBs2hoGrNzAa4qw8HhgoPDBXeeucmf++ovZTarUUKgr8Qhxshv/dc/4Pc/c4/z8zXnZys2XU+MKXMYMoeL4xWr3hOJdD5k3ZSSnM2N5saNBe1eQ1NrmsYUDpq9/Tk3buxz57mbvPPLv5iD/TlaZg5RgCs+SP/95bv87suvcHa64uJizWbdE2PE2lDiYLlgzWbMCePGB2SIxBqkUsy05ubhgnZ/G4dLDvsHcw4OFzx7+wZ/5ivfzo0beyiRRdYi5PbqEPnvL9/lUy+/ytnZMsdh0+excIFhcIy9Y3m65qhbZQ+hEFA+EmReqWmU5tbhnHavpW4MbZMF7LRW7O/PObyxxzO3D/mqr/gSbt3a241F2o5FSrz86df47d/9DGfnKy7O16xWG1J8fIJy0P0BLCchlAkTJjyt+Nw/n97UCcr2A/9hEEJQVYa2rVksWg5v7PHCi8+yWDSoK6vggdyu/Nl7J5ycr3DWMXQjzvpcD+FzjUGIid46Vt2QtVV6m1cxgt+pvIaiQLrdStBaUhlD02QOBzcWvPDiMxze2ENf4eAT9N3A0emSk4sVwzDS9yPeBaS85BBTdmRed0Ouh+kdMhem7L6l+5AHf1ucu01QtnE4OFxw54tuc/PmgiuK6oQEzgVevX/O8fkSax19N2CtI8ZUWl19duC1ntVmyCsKvctPDgGls1JqKG7EQsqdCq8xhrapmV/h8OwzB1kgryACw+A4W3bsHZ8xDpZhGLFj6WwKqcQBRutZdwPOJ0JvESGB16hKkUgchEiTLuOgtcQYTdPUzOct+wdz7rxwizvP30KJ63EIIXC+6njt5JzRWvoucxAiEgII4YkJrAusuxEfImHwSB9I3iCNyoXXPtJQuslKHKoq10NtOTx75wYvvngbKS5rR2ICFyKrbmTv3gnWOsZ+ZOh1thh4DKScalAmTJjw9OJPTA3K6UWHqR79gd2OniAlQQjatuHevVMW+zMWdUWVBFbAehxZrzruH11w/2TJ2dmK8/M1m81AjNlcrust/WqgWw+Mm5EQEmJ0iFKfILWkU5LlsselxGA9jXVlOd/hhSAIyWzWcu+1Mwbr2WtqqlL3sBoGum7ktfvnvHa85OR0zdnZhq4bisGdo+8tQzey2QwMVzjIUqwplKRTguWqx5EYnKcfK5SW1IMjCIlHYEzFvXunWOdpK0ODxEtYj5ZhsNw/Ouf+8ZLTszWn5xs2644QEnb0dP3IsBnZrAfGbiTEhBg8onRCSS3RgsxB5CSitz4napXBIwhSUlUVr907JcbIrKlpRd7aWJbE7LWjyzicn21YrbpspGg9fW/pNyPrdY6D8xFGn7uJYkA6hYqJ1aonSBh9oLcOrXL9iy9xUNpw77UzkLndeCZyF9LKWpzzvHY/x+H4ZMXp2Zr1ussrKGO+HobOsl5lDj4UDiGvvggjkSEWDiKPhfMYk2tPXIIgFVJp7r12iqlKV5FSRCFYWcs4Wl67f8b9kyUnpyvOzjcsLzbZf+kxGO3kZjxhwoSnF39iEpTVZkQ/QlxTCLA+gpIkBLO65rOfPWI+b1jUFU0SjCKxGi3dZuD+/XNOztZcXGxYrnr6fsxbG6NnHByjdTupeAHo0iXiyzffFBOjdTDktmMXs3Ox9QGkJInM4ZXPHLNaduw1NQ0CS2I5Wvp+zBxOV5xdbLhYdVkmPuTtlXFwuNHvOFA4SEHWR4HsPmwdDIpI3iqQUlI7D0oRBVRK88pnj9ise9rKMENiRWJt83t87bUzjsvWynLVlUQt4coWjxuzI+82DkoKZCxFroAo20EMlkjCp5gl9K3P3T1SUhvDK68cMwyWWV0xKwnKRUmSXrt3WuJwlUPe4hkHhx1dtiJIoCn1JkLgEIgEImUOYnBlyyQUDpqkcteVUYpXXznB2UBbaRZS4YGltTgfuPfaKcenS87O81hsOTgbShwcwQdUAkobtU4CW5z+RMqie/3ocrVKirui7SRyHJSU3H3lBBLUWrMoY7S0Dmsd9+6dcXyyzHFYdqzWwxMTFOcDb+wjYMKECRP+Z+JPiFCbDwnkoz+wlUo4mycV7zzBOYJTRC0RWhF9yPd5j/ceZwPORZxPOJ+N9HwpDk0xGw9qmbtI6janCWNKCAlKkWXMfcL7hFRZ+EyqlF/TBoL3BO8IzhGNAq1IIeCdI7hcIOpswNmI9wnnc3Gq93mLJV7hIElUbS4iFSl32BRvQIIv3T6Fh/QUDrnGI3iPd44oBaLSpBALB0dwAb+Ng0t4z5U4ZA5CsouDaSRayLw/I1OOA5dxUL4YE4qEd6mMReFgHVEJRGWyYZ+1BOfwPuzi4NyVsfB5LGLIcTAqa8hUtUBLjYi5zXnLIe5iUDRMBPn1bPYFCs4TnCVKoBaZg8uJx2UcAq68lxC5HItQ4qASkoiuBJXUWS9FJrY7j9FHvE4oX2wbRbrOwXuCzR1L6NK+7NzumnCuxMHn9xKfUCS7+LIv5dn6rf9Df1efEwRvZCt5Ovd07unc07kBWFsLv/+/f07HvskTFJV7Sh8CIQQhKmJUECVGKRYzw6LV3DisONhvWC4HIgGRApVSEAQp5OeEkPf7gw/ErJGFMVDr7Nez2G+yvsZ5D1JiTD4mukjQgqAVifI6QZFC5jBvNYtWc3iQOWw6i08ejaY2ChEFMUhCVISQ3XmjD0SXICaMEdQ6G97N92p0peG8IyYwpgEE0SeCE3itkEhUVKSQ35+Wknlr2Gs1e3uGWzdmrDeWeBYYFVRGZUG2wsFHRYoiJwaFgy4cUgjMFjWm1qTTDRFBZSqEEESXiFrgg0KhCEoTg4QgM4dGs9dqDvYrbt5oGQaPSx4tE81D4hCjzBw82VvJCCodUNExm1dUrYGzjpCgMhVSQHSJoCBoSRIKGVXhIFBCMitjsTc33L41YxwD4SRgraCuFCJKYpDEoPBR546uokOTQkJrSW0CAU/TGGZ7DZxu8CFRGY2UeSyig2AyByF1NrgMAoWkbTSLmWLWGp65Nce5zKHSiaZSyChJVzk8oQblrf+P9/DnvunP/JH/rU2YMGHCHwWWyyX8v/+fn9Oxb+oEJcZADI8yCxTZnXYY6bRgeb7m/qsnrBrDsGzoD1rOlwNnFz394Fierek2PeNQCmRDIMW4c5A1SlLNKkxoETGwd9gihERFSEJiZjVJS5IUUJRhE+C9YBwt/SZzOLp7Sr/cMK5auv2GzcZydNoxWsf56YrNunBwmcNWD0UKkEpStRVmryWFwN5BgzYaFRIxgZ5XCCOLGVMqk1nCO8E4WDolWF9sOLp7wrDasJ7X2PWM9Xrk9LzHusDF6Ypu3TP2hYMPRQMkXnJozI7DYr/B1BrpEyGBmdcIIwlFt2Q7Pt5n9+m+G1idbzi6d4bvBjZ7NeNqxjB67h+vGV3g/GSZ49CPOOt2caB4+mglUbVB7zVEq1ns1VStQUdwIWFmNcLkeg6xjUPIMvJ2dPRKsF52HN87JY2W1czgNnNG6zk62eB8LBw6hn7ElVWVWOwHBFmDp2o0atGSvKedVcz2G6TPqx26rVGVIiRRrtXMIVA4dAPrpeHktXN0CLSNwXcbnA3cP+2w1nN2vOWQi5XzWDzBakspZFP/j/9xTZgwYcLnAdJ+7p9Pb+oEZRwtIYiHrkQJBCF4oveEYcRETxM9lVYcLCpu7DecLwfO1xbrA6/cPefkZE1vPYP1eS8/ASEgSBgjmTcN0khkihzemCGlYCYVAUGqazZRYouHjbUWxCUHN4xUKVB5R1NpDhY1h/s1643jZNnjfeSz95ecHK1Yj47BhcIhd8hAQivBoq6ROiu/Hhy2mErTSoWPkKqKDsXoc2IQCwfvAyl43DCgguN3ZMp1F63h9o2W5dpytsqdQZ+9d87x8ZrN6Bisx7p8bkIsHCSzusZoIEYODlqqWtMKhQ+JVFf0QjG44uXjAO/xXuaxGEeUd7QE5o1hMTPcOmjpR8/RWY8PkbvHK46PlqwHx2g94y4OEchaNfO2RmsgeA72W+rWcK40o4uIuqJH0/tLnyW8wDtJCgE3jEjv+JSM3GsrZo3hmRstgw0cn2cOrx6tOLq/ZNVbBpfjkLYcUkRLwayqqOReThYXFfO9lplQjDZAZRiUprdZs8UVDk5KYgj40YKzfEpGjl+paSrNMzdn2MLBhchrp2uO7l+w7i2DC4zOP3GLJ5TEeMKECROeRryRz6c3dYIyDDaLkT0CUgpGIRikIPYDYblGCdifVdzcrzlbjlx0lpDgeD1ysrG4mPBFJVQAMiU0Cakks8bQ1gqV4NbhPCuU+iwua6Vi6H3e4nG5DiRd4dALgRh6wnKFEoL9meHmXs2qc5yuRiJwsrEcb8asiFo4AKiUTQGNFrSNYVYrZIzcPJxhKo0oNTNWKcYhf8v23u/afaUQ2CFziH2P2HRoCfNa88w2QVnnotaTjeV4bRmLhP2OAwmVEkZnF+C9WiFS5MbBjLrRCJewPuKUxo2RGB0hpWscRmkZhCD0PWmzwUjBvNHcPmjoB8/RciAmuOgdx6uR4REclBS0lWZeSUSM3DxsaVqD8mT3X6VwYyI5X+IQdtL742jpgND3iL6nVoLGKE4OS4KyzO3TZ4VD7zMHn4p6L9mYUElBYzT7tUSEyMFew2K/QbpEbz1BKbyjCMoVQbfiC2QHySDBdxrZ9zRaUhcO1gWOLgZCSqwGz/FyeB2Hx8GHKUGZMGHC04s/MQnKGAKq2Ks9iNJLgY0JS0J6B32PSImu0bh1zclyZNnn7pKVi6zHgAeSzKJdshjpZfVwgdGaVmo0iXlTI5Wgbxy26J8whGymFyOOXBQpAJtKkuEdqSscWoNdVSx7x9k6d5usfGI1hvxcebkyZNgKdcjCIb/eoq0xRtPXjlFnrRQxZpEvn8ClQCxOwjblyV04iRxHZErMK0XsGy42lrONIwGrkFiPAVcUUbcc9I4DaKVotUYUDnWt6RqHchEpBViXfYNS2nEQCGRK2JTASeRQONQKv6npRs/xypKALsJq8JmDyOJl1zgUP5tWa2SMzJuatjEMjQcZcFIgnMv2BIVHUWbBpYSMCeEcehxRKdEYSeybnKCsRmLacgiMKb0uDkLk8VFK0lYaGRPztmbR1vSNBSHxUiK8vzIWiZIm4ZJnTIlkHcpaDIlaZw7WBo4Khz7CagyMMe3i8KQ/7lhctidMmDDhacSfmDZjVYTAHoWy+5+LV2PCOQ8xS6IPVuXtA+dBCkLKE4AQsni35PZhJbJkuak0TV3R6py0zGY1Qgra1qFi9oipxoj2ZAGzmIjklldK/URMeaUjm8rBaOU1DjHlCXjLIV3hYCTZv6VwUCnRtg3GKNqZQxbZ98omtM+rDjGl3HYLZXskT3CuqL9qsmbLaD3WeZIocSiJgCzt0Q/j0FQSWTjUtaZtHVJHBILKgnbZT+gahxh3rsDOB0SMaJEYy1jY0oqcN9UAIZDqOgctwRiV41BJZEzZEbg1tDNPUgElBJUDbSOh1PBsZ3YRt3L94EJe2RCUcbCB0XrS1rSvJKbbOLDlIK5wqFWJQ51vM0eSHicEVRAYG7I8/oMc4taAstQ6RVliELDOE1P25XkwDk+CKO3vEyZMmPBU4g18Pr25ExStUI9QkoWcHCTyhJAnpAgxYp0o7aP5JlTpsBDZTwet8qQAOTkpaqx1U9EahRLQtg1SCtrWo2JOCEwfMNu6h5gn5svaiTw/+RBJIWBdViLd8hBKEkU57xUOonDQUmZBr6aiMQpNSVAqRdt6pM/nrMaIKa24KUZCen0cfIgQAtZnrQ7rQtZrEYKkNKL4vqBUduK9yqHOHNpaI8kTc12bnKCYPPlXNuaJOeZY7DgIEMUx2sdLDtapHIsQIAqiUgiREwOULBxE4SAu41DrnKjNsqR92+YERe44lK6bkpRsOZAKhxIHScKWOhPn82NR6TwWQjycg9FUdZW3lkqilm+eJD0KqFzCmECQD3IQkBuLcyLpQ9ZuKRxs2R6MSr2Ow5O+f0xKshMmTHia8SdmBUU/IUEhXa5i5G+rkRgCVsLoFNblYlhBdp4VUiCURCoJMpvlGSmptKSqDU1b01YaLaCdtblIdh5QIcvR17XLCUoIxBCJ6ZJDsePFx0D0AasoE1LhkBLJ5JUTeYWD2HJQhUNTM6s1CpjN2pygzAPSRUIIVEOgcpHoIzHEvIKz5VB0OLyPRBdQJMYrHJCSKFNJ1CRCS8SDHIpU+2xWIVPmUDeaWeeRLpBioho8lQ2v45ACxewulXbdgCblSblMzkJJosyJUeagHsKhJElthUqJWUlQZkMgaY+IiXoMVDYSXO6+EXHLQewKTUPMHGSKWKdLghJygiK3SZIoHEqComRJWHWOw7zOcZg3zGYNs3kA5VAJ6jFS1dmpOoa4W0lLIZY4xJwk+QBXOZTVrCTkbjVNKolQkicnKJNZ4IQJE74w8KZOUKpKo/Sj30KKkdyDkrdVfMi6JlZw5RtzQAoQxiClRGqFNDonCUJQqVzA2LY1s1nDoq3QQrC3l7t4+jFiQiI6T9M7mgD4kN1tU9pxyEv8VzhIGJ1n3HIAMLmNF61QhYMQUClFrRVNWzGbFw4IFnszjFF0Y8S4SHKedgj0JQFJIeQtjpgyB65zULvkoKziyJTjUCbDh3Fo24rZrGG+aFEkFnvzXIMyJLQLCB9oB0/tIqnEYbvNEp0gbOPgIsHH7MZ8dSzSJQeURBmFVOp6HGqTx2LeoIDF3oymMQwORJUl55sx0LhIVP4BDoGQEiLFnfCbiJRtrssERZqEVAqU2nEAqJSk0Sqv2OziAIu9lsWiph8j0nh0jLQ2UNuQx8J75JaD33KgiPcFUhRZMXjHQaCMQSqBlvmafGwyXiDltH4yYcKELwy8qROUP/1lL1DV7UMfSynhfaDfDAybgXHVcXSxZuhHepE1OVa9wyao24pnn2m5sT+nmdW0swZTGZQSzJuavVnD7YM5f+ptz/FFtw5yq+1+g5DQX4yMznO03HDn9+9x/2zFuhtZDyPe526aoRvpNwN21XH8SkfXjXQdjL2ms4EhJqrGcPvWATcOFjTzhtm8wVQaJSWzpmJv1nBjb8aXf/FzvOWZQ4xUtAc1Ukq65YB3gePVhv/z91/j/tmK1aZn3WefGO8CfTcwdANuM3D/Dzq6zciGRHCe9eAZYkIbxbO3D7lxuKBqa2bzhqo2qOJXszdvuLk340tffIYvuXMLKQXzvdx63S+zfszZpue3Xr7LvZMV635g1Y2liyVcxmHTc/LKwHozsk4ROzpGF+hCwlSaWzf2ObyxRz1vaGcNdZOTx1ltWMwaDhctX/bWZ/ni525ilGK236CMZFyNDINn2Q/8n5++x93jJcsSB+fzSkbfZw6+Gzl5ZWC5GZAx4a3H+sjGZ2n+2zf2Oby5n+OwaKlrk7f06orFrOZw0fIlX3SbP/WWZ9FS0uzVmErRry12cKxHyydfvsvdowtW3cCqG7A+EELM1+B6wHUDp3dPuNjkguGw4xCQSnF7f8GzzxxStTXtvKFpqiwO+BgcHsx5eOP9hAkTJvzx4418Pr2pE5T5oqGqm4c/mMhOvCHinWcQgm60dP2ITonkA6txa+QniEKgTd46mM1r6rpCKcli1nCwmHHj5h7PPneT55+7idGK/YM5QsBqr2OwHtFe8NqqwwLSaNAS7/PWRSoFuqMU9Nax7iwqRqLT9C5ggYasFq+Nom4M7aymbgxKKfZmDfvzlhuHc5557ibP37lNpRX7BzNQks1Fx+g88mzJvVWPJSF01qN3Pm8ZxNJ67HqZOfRj7maJkc3osQlMpYmA2nKY1zRNjVKSeVNzuDfjxuGCZ569wfNf9CxaSfb2W5RRdBc9/eiolmvurjqGlJBrRVIS5z3eZS0T7zy2FwzWs+lHRNniGF1gSFDFyGFKlxxmNe2syolaW3OwaLlxsOD2szd4/oueoVKaw8MZwij65cBmGGnXPa9tevoQsya/lljnsx4MOXENo2Nwnk1vs9ZNyLUffUworbhR/q0aQzuraNsaWeKwv2g53J9z+5kcB6Mki70WXRuGVU83WJbdwN1VRx9ithPQkrGIrWXxPI+3ktF5Np2FGBE+1wL1MaGM5iBGlFFUdeYwmzVPTFCMefIqy4QJEya8GfCmTlDOLjpM9fBsLJG/FW82A/16YBxsUSSNuUNFXHbWhBDoe0vaDFnTJCbq2qGkZBw9bgyImHhtMaPyiUpLYtcjheDobEPvPPcv1tw/WnJ8tmS5GcrqRS6C7TY93XrA9nk1IcaIIiJFKkqnmcMwWMRmwAuBS1ANBqUk4+Cxgye6wP29M5qYt55CN0crydHZhqGs4hwdX3B8suJi07Pqh7yK40ocNgPuCgeZEtlKMdfLxBgzh/WIi1nfpR48SkmG2uHKdsXNtmFfabSU+M2M2iiOzjp66zhddxwdXXB8vGJZVg6cz8lB343ZEbob8d7v4pAz6u1YZA6rzYhH4CL01iOlpB/yWAQbuTVr2ZOKSilCN6euFCcXPevectH13D8qcVjnOFiXV1C6bqBb97huxG3rU1IeByGyYm6MgmG0rDYDFvAIehuQUjDUDms93gYOm5p7TY2Rkhv7LfO24uS8YzNYVoPl6OiCo+Mlyy6v1NiiDtx3I91qwG7yyk7mEBFXrgcRIqN1rNYDtozF4GLu0nkMRvvwtvsJEyZMeLPhDScov/qrv8qP/diP8dJLL3H37l0+9rGP8R3f8R27x//G3/gb/OzP/uy153zd130dv/7rv777fRxH3v/+9/OLv/iL9H3PN3/zN/PTP/3TvOUtb3lDXC6W/SMTFADvA0M3YHuLdx4lJZVW1BKaWjOGSIpZttx7T99bAoKQYBjz8Xb0+NEjQ+B+W6FHRyUlvuuQUnD/dMPgAsfrjpOTC07PN6z7kc1o8/aKD4z9yNDbXJgqBUZLailpKk0gG9BpJQkh0veOKCQhCbTxKClwo8ePjuQ89+cNlQuYwkFrydFpTlBONj0nx0tOztas+oHNYHf1JkM/MvaWaH3hoKgEtLXGxUQICaVkPnawBCAIwWhDFnqrHcF6cJ77TcWiiJX5zZyq0hydZhXe837k+PiCk9N1jsNgcSEQQmDsLUM/EqxHihwHjaStNchsaGiU3CVKUQgCMJQExQ4OPzii9Ry1FfOYSpK0oa4NJ2cb1oNjNVqOjy44OVmx6gfWQ3YojmV7ZegtybpcBK0kSoncleQDllyQGmNiHFxu9RWC0XqkFNjK4UdPHD1HteGuVmghGFYti1nF8VnHerBsrOP46ILT0xWrfmTdj9iSjFzGwWWVYi1RZPE5KQVWhNxWHBPj6AhkXR7rwxMTFOumBGXChAlfGHjDJf+bzYav/uqv5qd+6qceecxf/st/mbt37+5u//pf/+trj7/3ve/lYx/7GL/0S7/Er/3ar7Fer/n2b/92wiN9dR6OUApfH3orNQe5zbSogJaujKyfkn+W2zbOsoKwNYTzPuxurrjK2tExjvbKzTEOFjtarHU46/OxV54bQti1um49dZQU+abE7mcpxM7zJsRYnpdrN/y2Hdl5rM3nHAf7Oi52LN/uy3aG96UgdmtyF/KqkRQCJbYcSixKbBJZMybEXEC6rR/Jccg3a11571ficYWTc1c4hG0c4m4sts7CUlyNg0SJXJC71a0JMe2eF8L18bDWP/D+r9/ymOVx214HPuTYxpDdqQW5qFRe5bBtsS4rOjFccvAlHtttM7cdi6vXw2jzOIwud0e5vL21HQvvr8QhFgG70rG05bC9JsVuLC7H8JHXe7mlONWfTJgw4QsDb3gF5d3vfjfvfve7H3tMXdfcuXPnoY9dXFzwMz/zM/zcz/0c3/It3wLAz//8z/Piiy/yy7/8y3zbt33b58wlf6g/Iscqra1S5jZNxKWAWiCvGGyFxGJMRSDtymSlFErltlKtFVorqsrkm8oiXUII6tqQpKSyDm307ljlVRY8KxykEEQEMWbti5AghDIJx4QqE8tW/yMnDrndV+vCwWiMMVS1yS23lUHr/G8UEuM8xuTza6XQOpAClxxkrrWJKWUZ+l0CkIgpIqIscd3G4ZKDUuV1jSoaICYLolWGqsqaIEFIqhgx+mocsnmh8OTX2iqiJi55hDIJp4hIhYO4OnFn7lpLlFaYKxxyHKodhypClRLG6BwLl8dia7GnpNwJr22TMcEVDjGWBCUnUeIKByHEZRy0Rm85CEldVVR1vj5cBEsWtdvFQUs0uZtKlveTOaTXcYgxgdwmcvn8sozFk0SOnrTCMmHChAlvFnxealD+43/8jzz77LMcHh7yDd/wDfz9v//3efbZZwF46aWXcM7xrne9a3f8Cy+8wDvf+U4+8YlPvKEEJTiPeITU/VZrIxX9CSUETVWEvZRg3la4CCIkTJlss/tuLIWMghQEFrBCMBjNZt2xkgIjBbVKSClYXqwZfGDdDQz9sFtR8dbhY9ZESSEXiCoBTaURwdAowbw1ICXJRXSVazpEghSyfgeAFDJPdggGLdlsOlZaogsHrSXL5YbRBdb9kLdyhvwt3lm/035JIUCMSKAxGlEbKgmztiIgwEWkVmgpIWatjuBDWemQOGAUMGhJt+lZLg0aQS0jVaVZXqzpXWA9WPorcdhxKJojxLyCUxtFqg2VgHlbIZUkyIjSCq3kTi8k+oAvqxougUUwKEG36VnVGi0yh7o2LC82bAbH2ma34KEfCwf3AIcsB19rRawNunDQLuBFQEiJKWNBzHHwQiCkwG2vBynoNz2r5RotBApPCDXLZebQOU/fXb8enI+kwiGFPBa11sTaoEQei2sctMz6ONs4WP/EBCXGNPXwTJgw4anFH6sXz7vf/W7+2l/7a7ztbW/j5Zdf5u/+3b/LX/pLf4mXXnqJuq65d+8eVVVx48aNa8977rnnuHfv3kNfcxxHxnHc/b5cLgHYrHq0ebT9fIq5dTN5T4XgcN4SasO8UtyYV+jKsrEBqbMo1+ACKdksLla+7VslcUYTh5F58oynWQelW86RUnB0vGYMiaX1HB8tOVsPDD4w7HRQcitvdJ5aCPZnNd4o5kZyOK9oB081+Kz1IXNXhwNCiEWDROCUxGqF73ruEfFnF5nD+QxtFEcna6yPLK3n6HjF2Wqgc9kFOFzhkFygSon9eUMwikZLbu/X1BtHPfosiCYF1hcvnph2HKySOK0I3cAseliuUMD6POugHB2vGVxg4wPHxytOlz2D9wz+Uosl+kC0HpMSe7OamZLUWnJzUdGPHt37rL+iFIMPuCF3Yckh66BYrbB6wHeGOZFUOGzOsw7KyemGbvR0IXB0subsoitxiPiyxRZdIDhPFRN7bU0rBZUU3NqrGV1A9S6rt2p1LQ62aLE4pXBmwG0Ms+jRXYcClvtZB+X4ZE03eIYYOTpZc3rRZYdsH65xiM6jY2LRVDQkjBTc3nLoHEiBMprRB3zKbfN29E+UYXTOv7FPgAkTJkz4n4k38Pn0R56g/PW//td3P7/zne/kz//5P8/b3vY2/tW/+ld853d+5yOfl1J65PL0hz70IX70R3/0dfdvVh1KP75uRYSETJFGSxazGqJh0Whu7tUIpdGDBynpkyDYXLOQykQghMCUb8t+o6nGgU5LlIB+ld2Mj4/X2JDYJDg+71n22TzQpuIBA4jSldEaybytoS4cFhVV7xDaIaSgQxBcyE7IVziMQtBLsJWm8TZzILG5mGMqxdHRGhsiXYTj5cBFZxlDwpUupR2HGKm1YNFWiErTVoqbhw1aW2Sfz9cj6a3Hi0Cylxy0gEEKbKUxdsQVD5rNxYy6NhwdrRh9ZACOliPn6xGbEja+nkOlBPOmQhjNrFLc2qvpRw/KkqTAIulK3UayskzK2QuoF4KxUtTOYiuFSpHuoiQoJxs6m9u2j1YjZ+uRMW45AKSsKFs4zBqDKInarYMmJ6gqGxaOQuYkyUWSCzsOunAYjMK4kXh+gUyJ5V7D3n7D8dGabvRYIThajZyuB2zIHMIDcdBS0NYGZbJC7s2DBusCKJuLYoWkLxxwYWea+Dg453l0yj5hwoQJf7x4I59Pn/c24+eff563ve1t/O7v/i4Ad+7cwVrL2dnZtVWU+/fv8/Vf//UPfY0f/uEf5od+6Id2vy+XS1588UX60aP8o+t8pRCoBEbm+od5a5Ak9meGw/2GKBXJOCIC2zviGIrrbMh1E4BNiRGIo6T2joGIIhHcgJSS4+MVLsIgFRcbx3r0+K3ZHLkKWYpsMKikYNZWKAH7reFgr0YYh5cjCXIr8RhyV42Iu4ldp5TrF4yijZ6RrMAa3IAxefXC+sgoJRd9YNXnVZgth53RHiCMYjYzaGBeaw4PWoTSRO2IgBs80Uacj9c4qJSwQDCSKjiCzJO9t0NeQTlaM/qIlZKLIbDs3LU4XOOgZd7OEJnDwUFDNTisyLUiKxt2HCKxuNbksdCAV4ImepxMyBDx40DTGk6ON/Qu4KTkfAgs++yIHITYjacq1wRK0rYVRkBrFAeHDbUNOKGyp6ENJGd3Ra3hgTg4JaiiJymQMTJ2NV3fcnx/RWcDQUoubGS1cbiUx+IaBwqHpqKWUBvF4WHDaANWKEKEtdtyCNc4PA4hbM8yYcKECU8jniKzwJOTEz7zmc/w/PPPA/A1X/M1GGP4+Mc/znve8x4A7t69yyc/+Uk+/OEPP/Q16rqmruvX3S+zXc1Dse2O0FLkotamol00OUloDE1b0UaF044QEx0CExOE/O02xJzniVLRGWJiGD2krB9SL0eEFKx7j0/gVC5wTGLbobLlmOtFjJRUhYOWklmjaWYVXhpGoYkp0YmRKkLysXAASIVDLq4drUcUbxmzHDHas+kcLiaclPiQrnHIc/FVDoZ2PsMowaxSNG2DRTNKS0zQMVCFRHyAg0y5yyjGhLWBTcr6IWY5UlWedeewIRFU5sADcRAimw1WasuhxSjJrFY0bQ2qYkaOg+0slU8kH3HF+XfLYatdM9qASiUOq5HRBtadY/BxxyGRSpFpGYvCwUhJ3WjaeUOtFI3JHIQOzJLOLca9pQqJoMLOfZh0ySGlbBPQ2cxBilwAveocg4tEJXGxrGYKHsqhajTNvKE1ilpLmrZBmswhxIQfchwyh7zyk56QpHSf/izn/9v/8dhjJkyYMOGPC6v1+nM+9g0nKOv1mk996lO7319++WV+8zd/k5s3b3Lz5k0+8IEP8F3f9V08//zz/P7v/z5/5+/8HW7fvs1f/at/FYCDgwO+93u/l/e9733cunWLmzdv8v73v5+v+qqv2nX1fK5oKoHSj87GVHGdrY2mbmrq+Sx3tyhFigJTaxqdW2HrmJiJVIzzEj6IrbdeThBioh8Ctqz2h35AAGvy3BVVICnQlSIJ0MV4NmuOaCqjqdvMwWiNUQqSQFWGWlbEGKkTzERCOodzuasjIRARSAKREn1/hcMw5joQyF47MhI1KCOREoyAVIxwjVZUxtDUFfW8pdIaoyQpSnSlaVRFiIk6QisSspgIhhAyhwTEPDkPY8CXcgjfj+grHNKOg3qAg8idUEbT1DXVrKWuDEZJQCJNolkYQozUSNqU46D9VgH2koNIiXEMhCzKih8sBssGcAAyEq5woHCQQuQOIK2p64pqNqOuDJUsHHSiXpSxQNCmCM7jnHsoBzsGlqVG2w6OzaljXTgkEQkGpJGYBzno3IXUVBX1rKWpK4yUkCRSQbOoCDEySkUbI2LbMu1j7gx7DF79//x/+c2PdW/o72jChAkT/mdh493nfOwbTlB+4zd+g2/6pm/a/b7devme7/ke/tE/+kf8l//yX/hf/9f/lfPzc55//nm+6Zu+iX/6T/8pe3t7u+f8xE/8BFpr3vOe9+yE2j760Y+i1BuT6dYqtwQ/HLlFuKo0dZVXTOZ7c4xRzKRitj0qZm2PtffUKavMXvZBJFIEQr7H+Yhz2eRNhKyA2quckKCzA27+tiwQKnNQSlJVirq4Ic/3ZlTGMFOKOeSl/pj1PTYh0KVILCq3ubEor4gQIYW04wCAz9tNvVJEkV8sKYVQuT1WlIlRKYWpdHbgbSvmi1w30kjFLJVVjhgJMbDxnjoFkoREzBlaKnEgc/A+4m3hEPJ205aDUBCVAlXiIAGRx6ky2zhUzPdmNHVFoyRzBBUQY97KGFOiCZ4ks8Is5BWLLQdCFuHzLuvbECK6cPACpIIoJUKLa3GQUlIZtXNkni9aZm1NJTMHR9HCiZEhReoYclxTfCiHEAKhxCGVFuFOSUI5Z1QP52Aqla/JpmK2aFnMGoyQzIXAI4gp4EPECqi9I3d/JxJPXkFxp+d0m/uPPWbChAkT/rjQx89d7+wNJyjf+I3f+NgPyX/7b//tE1+jaRo+8pGP8JGPfOSNnv4apBKP1kFBZM2Mol/StDWLvZaq0syUYpYESoAKWfTrYhiovNtpYaSyjJ9SKgsHRTPER0QC6UOuUYmQJEVoTSEQRTtD5G0NVfRLKr2bFJu6YqYVMwQGIGQxr+U4UjmL34q7XeVAKts8kegjqXBQZGn+KAQSkckgd5ouotTfmDIx103FfK+lbSoaqVggMAJkEYW76DOHUNprY3Hg3ep17Di4vKIgfch1GbpwSJmDuMYhj5M2+pLDomHWNjRKsRA5OUghr5Z0zlHZEb8VKNuORxFPyzlJJLocB1GOsToRZOFQZc2QHQcBsmiYmErvOMxnLbVS7BUOhECIkY2z1NbiY8SHQExZBC1C/pm85RZ9IJUkiRixUWUOCrZVrVfHIuvaFA61YTZv2FvMsp8PkiDICWuIDMFTDwM+5TioGJ6YoEwyKBMmTPhCwZvai+f/8pZnqapHmAUKqKuK/YM5BwcLXnjuJu/88rczm+dvzBrwgI2Rvhv5rd/+NJ+9e8xyuWG13ND3IzElnA2Mo2fsLKuTNb3L948hZMVTJZAiO+0e3FxQzyqqWlMX2fK6Nuztz9nfn/PCc7f4ij/1Nvb2Z9RKosjbQ0OIjIPlt//bZ/jM3SPOz1csl5ssjx8j1gZG67G9Y3W8ZmmHwiHXwwSVJ+BZZTi4kTnUtaGqVZb3ry45PHv7kK/+yi9h/2CGkRJD3pqxMeJc4Lf+66f5g1fvc7HcsLxY03VDMTsMDGPmsDnbcD52uVYjRGTMtSdCQltpDg8X1PMShzo7MptKs9ibcXCw4LnbN/jKP/U2btzco1ICvZVyT1le/lO/9yq/9wd3Ob9Ys1pu6LqBGDK/HAfP+nTDhe1yXU4IyFL/IoSgMZLDgzn1oqZuylgoiTGavb0Z+/tznrl5wDu//Iu5dfsAI3O3VgLGok78u596hd/7g3ucX6y4OM9xiCUO4+ixg6M77zgbNgQSQ4jokDVbEJJaK24ezKkXzS4OW9G/xd6M/YMFt2/u8xVf9jbu3LmBkoKquBLZlHA+8PLL9/hvL3+Wi4sNy+WG9bp7olLs/vDZvN82YcKECW9yvKkTlIO92SMTFCGgaWtu3Trg1u0D3vbWO3zln/kSFvPq2i5+AjabkW60RCJNrTFSsDaKGBLD4BBiJNiADZHVMGbl1d7mGpWY1VxVrVBK0tSG2aymbQxKS9q25saNfW7e3ueL33qHL//Kt3HzxiKrlJKVRFOCrhsZgyeISGUUWgo2ZijmeQ4pLMknXLzOQSQg5HPJSnFTSeq6Yj6rcseQkjRNxc1b+9y4tc8XPf8MX/HOL+bGjfnr4uB8orcWT6ApAmaVUnnLY3QIYUvhamLV27yCMLjsSBwrlJagxY7DrK2YzSq0ltSV4fDmHrdvH/KWL3qGL3/nF/PM7X2KyC/bzZxhcCQJY3DUlc5FtcWnaBg9UuY4+JSyx842DiGSgkEbRRIVN0pyOG8zj60S8I2be9y4tc8Ld27zp7/irTx/5+a1VYcEBB+JJGxwNEUMrtIq+wmNHiUsxMQ6wWrIqyxx8AgfSN6gKkXAcEtK6krTtjXzWZVrTyrN4eEet24fcOfOLf70V7yVF7/o9utWPnzMjs6bcaCpDZXKhc4xPL5JrzL6DdmZT5gwYcL/TLyRz6c3dYJyuuww1cM/sAXQ2kBSmqgU88WK4+NzBjtjXldUCJyA9TCyXvUcny45Pltzdr7h7KJjs+nzt/PB0XWWbt2zXg90q/xNmsEhUlaKVVpipOBi1eCAwQVam52ImzEQhCQqyd5ixfHpkkBi0TRUCDyJ1TCy2Qwcn6w4Pl1zfL7h7Lyj6y4TlL639JuR9Sq7M/uQEIPLKyg+IFXWKrlYZg7We3rrUVrSjJ6oFEEqmrrh6OSCSKKtDBWSIGEzWobB7jicnmeRsfW6J4bIOHq6btxx6NYlDqNDFMVcqbM2ynLZ4wWMzjM4v5PjD1KSlKZpG46OL0BmPZRa5Dqe5TDS9yPHJ0uOT1ccn685P9+wWnWEELHW03XbOGSHaB8iaXDIst0ijULEyHLVE1QWneutzwlKrYlSEqSkqmqOTpbo2tDWFY1QRBJra7HOFw5rjs/WnFxsWK/6XYLS95a+s6xWfRmLrFujtuq7owQfMgeZBQBH59EmFwkHIUlaoauKo+ML2llDbTStUiQhWNvs63N8kq/Jk/MNZxcblhfdrrvsUbDWT03GEyZMeGrxRj6f3tQJysV6wJiHZ2NC5EQhyewFM6sqPvOZ+8wXLYuqokEwisRqtHTrgddeO+PoZMXFxZqL5Ya+G0tLrWfoszFecAEZU5bOJwfaxYQobbnD4EhK4mPEBo9SksEFosw+PLO65pXPHLFaduw1NY0Q2JRYjpa+H3nttVOOTpacna25WHb0/ZhrK0afjfkGS/A+t7UWDgqK75Aghcg4OlInCSlhfXbFHawnSUlIYJTilc8csVn3tMYwExIrEuvRMVrHvddOOT5ZcnaROWw2fd7aKHGwgyU4v4uDTJmDy8UZ1zj4GHEh5BqYymUfICGptOGVzx4x9COzumImJQG4GEeGwXLv3vU4bDY5SbI27OLg3WUcdhxSFkHbcqCzOQ6FQzVqkpB4QEvFq589xjlPWxnmUhESLF02GrxbOJycrTm/2MYh4mwocXA4l1u+Zcq9NUbkeiBigi2HfsSniI9h5yMUyJ5ISihefeUYEtRGs5C50Hjpstng3bunHB1f5LG4yIlafMIWj/WTm/GECRO+MPCmTlCyV8zDK4KFAKUC1nlG6+kHy2Y95G2ZyhMQDCKvHHTdQD9YRlscaH3AhUCKKResxuvutyTQIgt9xGLCl5s9Lp1nvc9FrlJ5nPWM1jEMls1myMZzPhIQjCTWo2XoR/p+y8HhvMeFQLziwrutP5B5fwhdCkJj4ZKbcYohYgj4IJEpy9Vv4zAOjs1mQBtFMJ6EwApYW4e17pJDcWb2Pne17JyAr3KQWw7kzhUhkLDTS8nuu4FIQniBveLG3G2GbLRocxLpIa8cDDlZG8erHLJc/nYsrnJIorgQp7iLwyWHS2fqrVKx3TkhO7puYLMaiJUHqfAkNtbhfGDoLcOYY+JKq3OM6Uoc4s4he9tGrcjuzOnK9XAZh7jTRNm6MQ+jpetGNusepxVCKYIQbKxjdI6+G6+MRdhxeBzy49MayoQJE55WPEVCbZ9PbN12H/m4lGi17eTJXTRNW9GUFRREwsvcEVIZjSkuwEpKlJREElLIXUKw7WTZuvBSJsEkZG5NFpcuvGrrgitldrIt2hd1U1G3VdYjEUVPo3QJVVXmkJ2U83NFAiljtgEQIrsAbzmUDpuQJCLmhKgchhDy0pFYSrSSO/2Nusktro0x1EIiRVZGlVJQVVcceNU2+cpGfmIXhyvO0IVDjAlxRXlWiK0rstzFU1/toqkLh7qiKQnKWFTtq8rkOOw4SCASZC6CFaVoJW6l/GPMYnopIpIosvaXHTxbB2Ol5KU7dXEizteD2XFwSqBcwJSx0LpcDypzkKUzaFs0snPDjllZN5SfL8dCXF4T6iHXQ527mmqjqcsKilMCoQRVrbMzdLnOlZQI8aQunm1Fz4QJEyY8jfgTUoOSYnaHfShE1tXw3mPH/G10eb7GW483mma7gmLzN+m+G7HW4b3PSUeKRYskISVolQseQ1sRYyoCY+CMRihBXRn0bkLftgdnfsEFnHUM/cjqfJ2dgmtLW1ZQVjbXf/SbATu6bC4Y8nNTynorUgi0EtSVZlY4aCWRgDMKZC7Q3XHY6ZdEUtFZsTsOG0QEazRuu4Li8jf1LQfvslHfVjVVpEsV1NqoSw5aIWPCVoVDo9H6clWJEocYI8H7yzhcbFBS4iqDLdsuS5tXb7pNXzj47MSccptxjkNeragqxazJ4nJKKVRMOQ5aUtcaoyVqu5KR8mpHjIHg81iM/cj6oqPWmtFoXFlBWRVRtm7dZxfia2ORS3llWb2qjKItcVAuoEPEGE0q2jc5uSm5zG4sxHUOyw0XTUWtNEFKghCsfF7J61aZg7sahyesoJAmN+MJEyY8vXgjn09v6gRltJbwCAe1LCeRl9W99QjrMT5RVVkkrU3QC+hCnrhffe2E0+Wafsh1EM653WqFIGG05GDRMDcVAI3LW0ujViQJ2kgwCkReVXHOITxlYkk455E2omzMAl1a0yZycuA9zntevX/GyXLFph8Z+hHn/W6bQJATkv1Fw8yYXLfgAhIYdC4yVSZ38iTBjgOCogYL3nkYPf8tCdq2pikCZaOATdFB+exrJ5xcrOiGzMFaf7lCQkJryWJe00pNAmqf63IGozMHLZBmyyFkYTuft+MSuaCX0VP5xGyWdVDmpWB5FXJC+drJBcdnF2z6gWGwWOsyh5ATBK0le7PCIUHlIypGRq2IRbxPVpokLzn4AD5ISOB8NoT8VBLcm2cdlAUibzPF7Dp87+iM4/Mlm36g73PyGlMiFQ5KCeZtRX1TkhIYH6lipNeKKEXW6KkUSQpSinmrKoD3cheHODjqCMevnu10UKIQrKLHh8jRyQXHJ+dshpFhGBlG+0QdFB/jZBY4YcKEpxZPlVng5xPDaNHh0ftZUubCz249MF709CcblJK0SGYJOgE9uU7hfOhZWosLnuDDpRdP+Z+WgnZWo1qJRDALEQFsVN4KikR6lR2EnfckX+okpGAcPZvNgFv29CdrlFK0InMYBHTkFYaLfuDCWZx3pe7iOgclya3DjUQUDjIlOqUIInMYCgfvs2T/loO1nm4zMFx02LMOrRU1ksU1DmkXBxs83vtiPnedQ9tUmDpLo7ZFxXVTOCQSg8pqsD5EXMhFm1IIRptXsoZlz3DaZcl5IZin0lFVOKzHgbNxvORQ6j1E4aGEoG0Mum4AwSxGdMxx8FsOMmILh1Q4CFHi0I2MFz3uvM+S/0KwSAK/5ZBgNQyc2wFbksfrHPK2WFtrqqoGBHVM1EVJ1glBIjLKyzg8yKHvLMOyx573NJVBI9jbcUjEFNmMltOxx/qADx5ftHceBx+yeN2ECRMmPI14I59Pb+oEpR8s6jHvINcLOJSQODFgZZ+FvIB5hE5CT94C6GJgnTyhbCfEFLPhoJAoUVRRhaaSuSalKUWpTgoCWZ8khIj1kZhifp2tWZ1wSCHxYmQsHFpETlCAThQtlOTZxEBI+TVi6Q7ZcqiEQKCoSi1GIwSKhC9dMK4Ux9py/odxcELhLwakkFTAXoRBCDYirwx0MXPwr+OQu04qkTX1zRUOOiW8kjggxJzUOAqHWDiQ61GkkFihcHJACkGNYJHAIliLvJ00pMA6+h2H7aqBFHk8jJC0VzjUMhs9BiWzR1EMeQUpxgfex1UOEr8cUEJgEOyl7KGzLrVGfQxsksfFSw6J7ES85QDZ9A8haCTUUeClRAgIKdHHrBmTOYRLDiLXxIxC4uWAFgoNbBJ4BCuRlYNtDKyix6WrHB7/1x18YCqSnTBhwtOLPyFFsrEUJj4UpVZQiFxHEkUipIAQgpAEIXeC4kutRiiTWNzWTOxs2RKyTLGJ7IuT58viA7PdYkpcytJvX4dcu1EcB4kiT9rXOIhLDjFdSW5KcpHKGxEkYqJ45OSX3J43U7mUxb/GoRRrZg6RIER+fZF2HLwgr34kdonN6zmw47A7+dXQl5ikEoer598WjBKz19Elh+txCCLtksNLDtmDZludK2R5j2L7xsUlj3QZkPw6l4W0u/EsjtNRCEIKJCERr+NA4XB9LCERk7zCgTLG24siE0kp7a6H+MB45NrauP2vXA/sOGzHIu7G4jqHJ23xTIsnEyZM+ELBo1tgJkyYMGHChAkT/pgwJSgTJkyYMGHChKcOU4IyYcKECRMmTHjqMCUoEyZMmDBhwoSnDlOCMmHChAkTJkx46vCm7uJ5bq/G6PqRjwuy5LuSklYoZkojyK2xLYKexFC6I/rg6VLx3bnSzqm2Lb5Ssqc0tdRIIZiX12/JLaUuaprgGEtrbUjxGgcpJDOpaKUq7bmSGYKBxCJlQbkhBrqYW51jvOQgr3DYl5paZQ4zcptxC/gELnrawsFv22Mf4NBKyUzq0mYsmIusZttv4xB14ZAeaPG95LCQilYZhBDMyBdRi8CnhE+B1iv6VNqlY9x1lmxtAxqpmJc4GgRzIXEkZoWDjYF5VA/hIFAit/buSZ05IJgJgSYxQ+BK908bFH283up8lUNdOCgh0AgWQuKvcBhjYHGl3fpBDlpIFkoxV1VpXRfUJFoELiViCrRB0j2GQyUVC6nz68HrONgYmT+k3fpxOJw/w5zZ5/DXM2HChAl/DPAOPv2/f06HvqkTlL/9N/8y89n8kY8LIZBKIpVEa4PS6lJXRApCTLtJPISItzZPqMWQLvvJSKRWKJ19UaTMWhuqaG5sTeBiSjjnCD5Lo8cQdwZ1svjJKGPQSuXXLRyyp84lh+AcMWQdj7g1KFQSqRRSK4wx2ZNly0EIQgi7llrvPcH5fN8TOWSfmi0Hyvt5GAehJOpz4JCKUN1Wpv4aBymQKsdSa73zqtFXOCRy+7i3tnDIyrzs4iDzWFzlICVCCkKIu7Ze5z3BZ9G913GQEmkM5qEccrtwiPHae9hxkBKpcyz0Npbb+x/kEEKJZcxKuunKNSUl0mi0NsgrHFJK+B2HVCwHrnN4HL7omX1u7LV/mD+nCRMmTPi8Y7lewzf8/z6nY9/UCcr/8g1fw/7+/iMfF1Igi0usqAxI9egXS4k0jqQQiD47GSNAaoXUGoxGPE4VDkgxgHNEH4guZC8fmZMDoRWiqh7PIUaScyTvH8JBgTEIqXZGdQ9/jZCf7/xjOGQV2EfGwdr8GiGSQtYukUohjUIYA0o9+vkUDyDnSO7yfQghkLpwMIbHKuyROeA90edkD3Ic8vM1QpvHPL/E0r+eg9A52dtdD4+KZUpwZSy2HISWSK0zB6UfPxZpO56B6PzleJZET1RPiGWJI74kSv7JCYqatXmMJ0yYMOEphFouP+djpxqUCRMmTJgwYcJThylBmTBhwoQJEyY8dZgSlAkTJkyYMGHCU4cpQZkwYcKECRMmPHWYEpQJEyZMmDBhwlOHKUGZMGHChAkTJjx1mBKUCRMmTJgwYcJThylBmTBhwoQJEyY8dZgSlAkTJkyYMGHCU4c3lKB86EMf4mu/9mvZ29vj2Wef5Tu+4zv4nd/5nWvHpJT4wAc+wAsvvEDbtnzjN34jv/Vbv3XtmHEc+cEf/EFu377NfD7nr/yVv8JnP/vZ//F3M2HChAkTJkz4gsAbSlB+5Vd+he///u/n13/91/n4xz+O9553vetdbDab3TEf/vCH+fEf/3F+6qd+iv/0n/4Td+7c4Vu/9VtZrVa7Y9773vfysY99jF/6pV/i137t11iv13z7t387IYQ/unc2YcKECRMmTHjT4g158fybf/Nvrv3+T/7JP+HZZ5/lpZde4i/+xb9ISomf/Mmf5Ed+5Ef4zu/8TgB+9md/lueee45f+IVf4Pu+7/u4uLjgZ37mZ/i5n/s5vuVbvgWAn//5n+fFF1/kl3/5l/m2b/u2P6K3NmHChAkTJkx4s+J/qAbl4uICgJs3bwLw8ssvc+/ePd71rnftjqnrmm/4hm/gE5/4BAAvvfQSzrlrx7zwwgu8853v3B3zIMZxZLlcXrtNmDBhwoQJE75w8YdOUFJK/NAP/RB/4S/8Bd75zncCcO/ePQCee+65a8c+99xzu8fu3btHVVXcuHHjkcc8iA996EMcHBzsbi+++OIflvaECRMmTJgw4U2AP3SC8gM/8AP85//8n/nFX/zF1z0mHrCgTym97r4H8bhjfviHf5iLi4vd7TOf+cwflvaECRMmTJgw4U2AP1SC8oM/+IP8i3/xL/gP/+E/8Ja3vGV3/507dwBetxJy//793arKnTt3sNZydnb2yGMeRF3X7O/vX7tNmDBhwoQJE75w8YYSlJQSP/ADP8A/+2f/jH//7/89b3/72689/va3v507d+7w8Y9/fHeftZZf+ZVf4eu//usB+Jqv+RqMMdeOuXv3Lp/85Cd3x0yYMGHChAkT/mTjDXXxfP/3fz+/8Au/wD//5/+cvb293UrJwcEBbdsihOC9730vH/zgB3nHO97BO97xDj74wQ8ym8347u/+7t2x3/u938v73vc+bt26xc2bN3n/+9/PV33VV+26ej5XhGEkmOGRjwspSFohlIIQQEiEgJQfBVL+/wSQYLSkEIghkEICAUkrklbgDSiF2D03v872pwQQAzhP9IHoA8SUOSiJ0ApCfDQHgJjAWZJ/FAcPUpN3wh7FIfL/b+/+g6Mqz76Bf6/7nN0IIckDUkgiPJRW1NIAtWAV6igKYq1orZ1qf8vU6TuoUHnVsRWfd+AfDdMZtXba0ql1UKtOOu8oLR0VgVGwjEPVCGOADqWvWNEhzdRiEiQme859vX/cZ092N7ubLLTmLH4/M6uw5z5nv/d1NntfOewmyGROPkMYwgYWGlpAAOt5MIEHGSYD4BpZZAZgM4MZYATGMzC+BwQhYLzSGRRRHQKXwVoAgPUMjO9DAh/wAgz+i6AMzWAtEASwmQAahFDraml8D+oZl8ErnmFwDhl3LoIwziCegfo+JPAAL1W+DlaBIDpGJogzaNkM2dlEz8vMABA9H2xoswNLUgEMP65PRAkV9vWNeGxFDcr69esBAAsXLsy7f8OGDVi2bBkA4M4770RfXx9uvvlmHD16FOeffz62bNmCurq6ePwDDzwA3/dx3XXXoa+vD4sWLcIjjzwCz/MqiYM9/3MPalPp0gMEMGIgRiDGg/E8QAQQAysGRi2gFlCFtSE0dAuZqrsBrskxxkBMtDh6HkQEVtzFJ6PWjQ8tbJCBWgu1Cqs2XrGMGIgIxCvMIBBViFoA6h4/DGGLZRCXQVI+TEEGUQtRhbU2WgjDIhkEIgbiGRjPjzIIrHjR/m4BdhkCqGqcY0gG34fxPQgE1gzWASecwUCgEDt8BhEDYyTK4Lu2wnjuIeI6qDsXYakM0fPBHy5DCFWbn0Fk8Dnh+TApHwKBGoHCxLVUVYSZDDS08TGiTtjljzKI70HE5GQAxLoGQ23omquCDOUY34cY/oBoIkqmDwYGRjxWdCSvegnT09ODhoYGPD51Fsaa0k2NiEDgFiXALSrRlsHmIP5u1cZNgUX0pl1ItH4JJNpfomNp9O27qAKI9rMWimxz4a5pxBngFsLyGTTO4TK4kSYngxgTz6dohpx5FGZw86k0g1vZRdwcRAabBPe9vgCSmwGwGg5mKKxlNoOY6ILByOtQWQY7eE5HnAEQ2IIMgI2OOTRDtpbRdZNoHkMzIH5eFGaQ6GrWcBkUChtfXirNGAPhb7AgooQ6bkN88++70d3dPez7SflKRkRERInDBoWIiIgShw0KERERJQ4bFCIiIkocNihERESUOGxQiIiIKHHYoBAREVHisEEhIiKixGGDQkRERInDBoWIiIgShw0KERERJQ4bFCIiIkocNihERESUOGxQiIiIKHHYoBAREVHisEEhIiKixGGDQkRERInDBoWIiIgSxx/tACdj1v/cjroxY0tuFxEYz0A8A/FTMKkUIAI1Bmp8iA0hNgRUYYMMNJOBhhbWWqhVQABjDMT3YDwPUlMDk/IhIrDGlc5oCLUWGoSw/f3QIIANLWwYApqTwRhIqjCDB1ELCUMACpsJoJmB4hk8z+XIy+ABEIiGgEYZPszNYAFViAjEMzBGXB3SaUAEMAbW+BANowyAzUR1sCFsOJhBjHE18D2YdBomnRqSQax7TNvfD81khmYwUS38FCSdgoiJMngQVUgYAFA3j4GB/AyAm4PnamFqaopmgLWuftlzEYTQ0EJ1sJYugw9JpSHGACKwnu8y2ABQuH0zA9CwTIZ0GqYmDRGBGg8WAqMhRNXN/cMPoUGQf4zcDJ4PSZfJEAauDmEIte6YwzE1aRi/qr+siegU1nv8OPDd60Y0tqpfyc64/BLU19eX2BotiL4H8TwgnQJkmAtG/f1uMQnCwcXE99wLfsoHjFd+f7VAJgObCWEDt8gMLsoekE6Xz6AKZAbcAp3NgChDygNSqZFnCELYTBg3B8YfYQYoMJCJmxyNFsWKMkCBgfx5xBmy52K4Y2QGoJnANRtxhmxj4QPeME9dtUAQQDPB0PPpGVeHshkUyARA1ORkM4hnXIM4kgxQIJNxdcgEgxk8D8aPaukNXwdEdXQZtOxwb+xYSDo1TC4iotHR09Mz4rFV3aAAEt1GNhJSZqzqMC/97mpIOZo9gGT/k3/EkWUo2F4wxeGPAWjh9iH7F9xZuH/hfZXsHx1gSIacAww7B7hzIVK0gu5Pw5wLqAyZh8T7D/6pZA7N+1+xCCf9nJL43JbKkPN8GAxc5oiVjCEiGg0jf33ie1CIiIgocdigEBERUeKwQSEiIqLEYYNCREREicMGhYiIiBKHDQoRERElDhsUIiIiSpyKGpTW1lacd955qKurw6RJk3DNNdfgwIEDeWOWLVvmfmpozu2CCy7IG9Pf34+VK1di4sSJqK2txdVXX4133nnn5GdDREREp4SKGpQdO3bglltuwa5du7B161YEQYAlS5bggw8+yBv3pS99CUeOHIlvzz77bN72VatWYePGjWhra8POnTtx7NgxLF26FGH049aJiIjo462inyS7efPmvL9v2LABkyZNQnt7Oy666KL4/pqaGjQ2NhY9Rnd3Nx5++GH89re/xeLFiwEAjz/+OKZOnYpt27bh8ssvr3QOREREdIo5qfegdHd3AwAmTJiQd//27dsxadIknHXWWfjBD36Arq6ueFt7ezsymQyWLFkS39fc3IyWlha8/PLLRR+nv78fPT09eTciIiI6dZ1wg6KquO2223DhhReipaUlvv+KK67AE088gRdeeAH33XcfXn31VVx66aXo7+8HAHR2diKdTmP8+PF5x5s8eTI6OzuLPlZraysaGhri29SpU080NhEREVWBE/5lgStWrMAbb7yBnTt35t1//fXXx39uaWnBvHnzMG3aNDzzzDO49tprSx5Po9+6W8xdd92F2267Lf57T08PmxQiIqJT2AldQVm5ciU2bdqEF198EVOmTCk7tqmpCdOmTcPBgwcBAI2NjRgYGMDRo0fzxnV1dWHy5MlFj1FTU4P6+vq8GxEREZ26KmpQVBUrVqzA008/jRdeeAHTp08fdp/33nsPhw8fRlNTEwBg7ty5SKVS2Lp1azzmyJEj2Lt3LxYsWFBhfCIiIjoVVfRPPLfccguefPJJ/OEPf0BdXV38npGGhgaMGTMGx44dw9q1a/G1r30NTU1NeOutt7B69WpMnDgRX/3qV+OxN954I26//XacfvrpmDBhAu644w7MmjUr/lQPERERfbxV1KCsX78eALBw4cK8+zds2IBly5bB8zx0dHTgsccew/vvv4+mpiZccskl+N3vfoe6urp4/AMPPADf93Hdddehr68PixYtwiOPPALP805+RkRERFT1RFV1tENUqqenBw0NDdj1f1ox7rTTSo4TEYgRGGMA34cYDyKAQqAiEFUIFKoKtRYIAlhrodbdBwHEGBhjIJ7nbsYAIlC4N/QKFNDoGGEADUNoaGGtBRSACExeBgOJHj/OoAoFoDYEwgBqLWwYZQAgXjaDgXh+nCF69BFkgNs/dx7RHPLrkM0QugxRLYCoDl5hBgAwRTKELoe1sGGZDIV1iDJALTQIimSQKINXNgNUYcPQ5YgzaE4GcfvHGQAVA3EPDowkg/HieRTNAMAGwTAZonmIO48qJmcOpTOUY9IpiHfC730nIvqPOvZhH85b/b/R3d097PtJq/qV7M0n/i/GlrnqIhAIACMCiIExblEHBFYEJl6QooVVLRQKq4BC4/2zP7LfGAMR97YdjRoEUev+rgprw+g4UcORc4w4g0jcXNichRnQqDHKzwAITE4GMQZGDASALZch23AUm4dkGxzARguzywCotUUzZOfgjuEapvw6RHNQdYtpdIzKMww2jPkZXIrCDBJl0H9rBrh9rYUCsFE9S2VwG8plQHxOCjOImPjTa+UyqCosRtCgyOBzlIgoaY6HwYjHVnWDYjMZ951pCSJuMcg2BMguJlFzoIWLQdRcWEQfe4bA9RPRsmKyi4lECzOGLkjZBTa7KGYzIGpMCjLkL0ga53AZ4qFxhryrJ8Uy5MyjMIObT6UZogbFFTJeVGGyV3DE5YszAFYLGrXcWmYzSPbqx8jrUFkGO3hOR5wBENiCDIDNXtkZkiFbS3cesleChmZA/LwozOAalOEzZJs1DNekGBO1tEREyWPtyH+lDV/JiIiIKHHYoBAREVHisEEhIiKixGGDQkRERInDBoWIiIgShw0KERERJQ4bFCIiIkocNihERESUOGxQiIiIKHHYoBAREVHisEEhIiKixGGDQkRERInDBoWIiIgShw0KERERJQ4bFCIiIkocNihERESUOGxQiIiIKHH80Q5wMpouvwTj0jUltwsExgjEGIjnwfg+AIEaAxUDUQuxFoDCBiE0DKDWwqpCVSEQiBEYY9wxUikY34OIwIoHADAaQlWhoYXNZKBhCGst1CoUOjSD5wMigDGwFWQQY1yOIhlELUQVNgyHz2CiOogAIrDGy8kAaBjABoGbU5RDIBARiOfqYHwfJpWCCGDFuEpnM1gLOzAADUOodX/PyyASnYtUQQaF2BCAq6UGGVcDa6Gqbp5iXC08A+OnYHwfItH5jDNYWKtRHQJoWDqD+D5ETH4GDQGFy589F1EGBWCyGUyUIe1DoueUhcBEdVBrEUbnIvcY8XNqJBlsCA2yGRSqFjrM14TnpyCedzJfVkRE/zHH+vuBX+4e0VjR7Kt/Fenp6UFDQwM69x9AfV1dyXFixC3mvgdJpSG+B0Cg0cIIVYgq4kWxv98t7qGFhhYQgfHdgiwpH0ilIMbECysAQNXdrEKDDDSTgQ1C2CAErLoMngfxDSSdhkQNSvEMITAw4PYPLTRqGozvuXmkUuUzqEIzGWgQwGYCaOCahFIZ4hxxBsQZNAwQBjkZPA8mFWXwUxAvN4MAagczBIHLkQlc0xVnMNG5iI5RNINCrQID/dCojjYng/geTMoHUukTz+B5kHRuBkDFAOqaPcA1BxiIapmTwTVHfpQhagay84iaJEABi/j5oEHozodV1xz5xs0lez6j86imMIN15yIIXPMZWgzXoXhjx7i5ERElUE9PDyae0Yzu7m7U19eXHVvVV1D8sWPg144tuT1uULILkinznaUq1PdcgxItaJBsc+ADKd8t7GWoTQHZBiUTukU3d2FOp8tnsBaaSsEEQZEMXtSceIONSTHpVNyglM7grnqUrEPKhwYBJG7UChoUzyu9PxTQ9NDmIGr24galbC0VmvKAIIANrFuYgZxm04f4wyzC1kYNQn6GuDnIPh9K1VIVSOU0KFEGyWlY40av5DRSQxqUuJZ+lKFcLaNzgWyDEtjyc0a2QUkPO46IaDT4YTjisXwPChERESUOGxQiIiJKHDYoRERElDhsUIiIiChx2KAQERFR4rBBISIiosSpqEFZv349Zs+ejfr6etTX12P+/Pl47rnn4u2qirVr16K5uRljxozBwoULsW/fvrxj9Pf3Y+XKlZg4cSJqa2tx9dVX45133vn3zIaIiIhOCRU1KFOmTMG6devw2muv4bXXXsOll16Kr3zlK3ET8pOf/AT3338/fv7zn+PVV19FY2MjLrvsMvT29sbHWLVqFTZu3Ii2tjbs3LkTx44dw9KlSxFW8NloIiIiOrVV1KBcddVV+PKXv4yzzjoLZ511Fu655x6MGzcOu3btgqripz/9Ke6++25ce+21aGlpwaOPPorjx4/jySefBAB0d3fj4Ycfxn333YfFixfj3HPPxeOPP46Ojg5s27btPzJBIiIiqj4n/B6UMAzR1taGDz74APPnz8ehQ4fQ2dmJJUuWxGNqampw8cUX4+WXXwYAtLe3I5PJ5I1pbm5GS0tLPKaY/v5+9PT05N2IiIjo1FVxg9LR0YFx48ahpqYGy5cvx8aNGzFz5kx0dnYCACZPnpw3fvLkyfG2zs5OpNNpjB8/vuSYYlpbW9HQ0BDfpk6dWmlsIiIiqiIVNyhnn3029uzZg127duGmm27CDTfcgP3798fbpeB3k6jqkPsKDTfmrrvuQnd3d3w7fPhwpbGJiIioilTcoKTTaZx55pmYN28eWltbMWfOHDz44INobGwEgCFXQrq6uuKrKo2NjRgYGMDRo0dLjimmpqYm/uRQ9kZERESnrpP+OSiqiv7+fkyfPh2NjY3YunVrvG1gYAA7duzAggULAABz585FKpXKG3PkyBHs3bs3HkNERERU7nfeD7F69WpcccUVmDp1Knp7e9HW1obt27dj8+bNEBGsWrUK9957L2bMmIEZM2bg3nvvxdixY/Gtb30LANDQ0IAbb7wRt99+O04//XRMmDABd9xxB2bNmoXFixf/RyZIRERE1aeiBuUf//gHvvvd7+LIkSNoaGjA7NmzsXnzZlx22WUAgDvvvBN9fX24+eabcfToUZx//vnYsmUL6urq4mM88MAD8H0f1113Hfr6+rBo0SI88sgj8Dzv3zszIiIiqlqiqjraISrV09ODhoYG/POtt8u+H0WMwPgexPMg6RRgyjRBqtD+fmgYwgYh1CoggPE9GN8HUj7EK9/PqQ2BTAY2CGEzIaDqMngG4nuQdLp8BmuhmQw0CIpk8IBUCmI8oNybjm3o9s8EZTIYACWOoQodGHDHCC00tC6D58GkPEgqBXhe6f2h7hiZDDQzOA8RgfGjDKkUULaWLgOCADawsKEF4Org9vchfqrM/lEtg6EZxDcwuc+HUrVUBXLORTaD+AbG910Gzy9/LjR7PkPYTDB4Pj13PiU9TC2jOiIIYMMQNrDl5wzAGzvGnWMiogTq6enBf/1XA7q7u4d9P2lFV1CSpvf/HQJqx5XcHi/MXrQoSvSWm9z1QAf/oAMDrkEJ7dDFxPejBa3EgykADQebiyCEam4GA0mly2fQaFENimUwgO9DjF+QQQYPMCSDjT8hFWdI52TIzRFnUJehsFHzjGuSfL9Ik5STITuPTAYaWHeMwgypgmaxMAOiBicMoWFOg5JtsnwP4qVK1wGIGpQgqmW2QXG1dBl8wPj5uxdmCDJAdC7iBiWqg8tQ2KAUyRBGGYLBDOJFTZLv5zdqI8xQjnfaaZB0VX9ZE9EprOfYsRGPrepXsj8vvwNjy30nLoCBuO+cRSBiICJQCFQEogqBQlWhaqP/KxSK7HWlwX0FxhiYaHHX6DhG3aJhVWGtu2Jho+OUzoAog4kyWNdb2JwcJ5hBrWsIimdA9PjZOiAnQ/SYI8kgBsYUZMheOVFFmFsHaLzgun1zMxTWIfuYCrWlMmT/78EY41qCIhlsVAdVddUtmWGwDlB1xwBg1ZbPAIEYA2O84hmgrsmMajniDFAYVQBR/eIMwEgudooxMMN8rJ+IaLQcD4MRj63qBiX48EMEZf7JRERggegFW+JFFRDYnAYFQF6DYhH9bBbkLIgQqDGw0bE0WgRstJi4RdEOLrAKKHQwAwSQ4TJozoKGeFE0ORlsvACVyJDbaBVkEAw2OSPPoG7PnEbLioExUQYIILkZAKuDzUF2Yc3W0mKwyXFXDEZeB8lr9gy0bIbB5mDkGQALW5ABsHkNSn7DqTn/XKYiJTIgfl4UZsg2asNlUCisAnlXaIowxsDyl5QTUUIFduS/d4+vZERERJQ4bFCIiIgocdigEBERUeKwQSEiIqLEYYNCREREicMGhYiIiBKHDQoRERElDhsUIiIiShw2KERERJQ4bFCIiIgocdigEBERUeKwQSEiIqLEYYNCREREicMGhYiIiBKHDQoRERElDhuUCuhoByAiIvqYYINCREREieOPdoAToequZRy3YdlxIgIBYEQACEx8DURgBRAFJLpP1UJVoaqw0WMIBCLZ4wgEGh0LUEh0pOz+CmstFBodB1DoYAYIIMNl0DiHy+BGmkoy5MyjMIObT6UZ1O0pbg4iAhF18ymaAbAaDmYorGU2g3vQiupQWQY7eE5PKgNgoSUy5NbS5SieAfHzojCDiEJGkEGhsOoepRwDjfcnIkqa7LqdXcfLqcoGpbe3FwDwv97dP8pJiIiIqFK9vb1oaGgoO0Z0JG1MwlhrceDAAcycOROHDx9GfX39aEeqCj09PZg6dSprViHWrXKs2Ylh3SrHmp2Y0aqbqqK3txfNzc0wpvy7TKryCooxBmeccQYAoL6+nk/KCrFmJ4Z1qxxrdmJYt8qxZidmNOo23JWTLL5JloiIiBKHDQoRERElTtU2KDU1NVizZg1qampGO0rVYM1ODOtWOdbsxLBulWPNTkw11K0q3yRLREREp7aqvYJCREREpy42KERERJQ4bFCIiIgocdigEBERUeJUZYPyy1/+EtOnT8dpp52GuXPn4k9/+tNoRxo1L730Eq666io0NzdDRPD73/8+b7uqYu3atWhubsaYMWOwcOFC7Nu3L29Mf38/Vq5ciYkTJ6K2thZXX3013nnnnY9wFh+t1tZWnHfeeairq8OkSZNwzTXX4MCBA3ljWLeh1q9fj9mzZ8c/2Gn+/Pl47rnn4u2s2fBaW1shIli1alV8H+s21Nq1a+Pfd5W9NTY2xttZs+LeffddfOc738Hpp5+OsWPH4nOf+xza29vj7VVXN60ybW1tmkql9KGHHtL9+/frrbfeqrW1tfr3v/99tKONimeffVbvvvtufeqppxSAbty4MW/7unXrtK6uTp966int6OjQ66+/XpuamrSnpyces3z5cj3jjDN069at+vrrr+sll1yic+bM0SAIPuLZfDQuv/xy3bBhg+7du1f37NmjV155pf73f/+3Hjt2LB7Dug21adMmfeaZZ/TAgQN64MABXb16taZSKd27d6+qsmbDeeWVV/STn/ykzp49W2+99db4ftZtqDVr1uhnP/tZPXLkSHzr6uqKt7NmQ/3rX//SadOm6bJly/TPf/6zHjp0SLdt26Z/+9vf4jHVVreqa1C+8IUv6PLly/PuO+ecc/THP/7xKCVKjsIGxVqrjY2Num7duvi+Dz/8UBsaGvRXv/qVqqq+//77mkqltK2tLR7z7rvvqjFGN2/e/JFlH01dXV0KQHfs2KGqrFslxo8fr7/5zW9Ys2H09vbqjBkzdOvWrXrxxRfHDQrrVtyaNWt0zpw5RbexZsX96Ec/0gsvvLDk9mqsW1X9E8/AwADa29uxZMmSvPuXLFmCl19+eZRSJdehQ4fQ2dmZV6+amhpcfPHFcb3a29uRyWTyxjQ3N6OlpeVjU9Pu7m4AwIQJEwCwbiMRhiHa2trwwQcfYP78+azZMG655RZceeWVWLx4cd79rFtpBw8eRHNzM6ZPn45vfOMbePPNNwGwZqVs2rQJ8+bNw9e//nVMmjQJ5557Lh566KF4ezXWraoalH/+858IwxCTJ0/Ou3/y5Mno7OwcpVTJla1JuXp1dnYinU5j/PjxJcecylQVt912Gy688EK0tLQAYN3K6ejowLhx41BTU4Ply5dj48aNmDlzJmtWRltbG15//XW0trYO2ca6FXf++efjsccew/PPP4+HHnoInZ2dWLBgAd577z3WrIQ333wT69evx4wZM/D8889j+fLl+OEPf4jHHnsMQHU+16rytxmLSN7fVXXIfTToROr1canpihUr8MYbb2Dnzp1DtrFuQ5199tnYs2cP3n//fTz11FO44YYbsGPHjng7a5bv8OHDuPXWW7FlyxacdtppJcexbvmuuOKK+M+zZs3C/Pnz8elPfxqPPvooLrjgAgCsWSFrLebNm4d7770XAHDuuedi3759WL9+Pb73ve/F46qpblV1BWXixInwPG9IJ9fV1TWkKyTE73ovV6/GxkYMDAzg6NGjJcecqlauXIlNmzbhxRdfxJQpU+L7WbfS0uk0zjzzTMybNw+tra2YM2cOHnzwQdashPb2dnR1dWHu3LnwfR++72PHjh342c9+Bt/343mzbuXV1tZi1qxZOHjwIJ9rJTQ1NWHmzJl5933mM5/B22+/DaA6X9eqqkFJp9OYO3cutm7dmnf/1q1bsWDBglFKlVzTp09HY2NjXr0GBgawY8eOuF5z585FKpXKG3PkyBHs3bv3lK2pqmLFihV4+umn8cILL2D69Ol521m3kVNV9Pf3s2YlLFq0CB0dHdizZ098mzdvHr797W9jz549+NSnPsW6jUB/fz/+8pe/oKmpic+1Er74xS8O+XEJf/3rXzFt2jQAVfq69pG/LfckZT9m/PDDD+v+/ft11apVWltbq2+99dZoRxsVvb29unv3bt29e7cC0Pvvv193794df+x63bp12tDQoE8//bR2dHToN7/5zaIfK5syZYpu27ZNX3/9db300ktP6Y/j3XTTTdrQ0KDbt2/P+xjj8ePH4zGs21B33XWXvvTSS3ro0CF94403dPXq1WqM0S1btqgqazZSuZ/iUWXdirn99tt1+/bt+uabb+quXbt06dKlWldXF7/Os2ZDvfLKK+r7vt5zzz168OBBfeKJJ3Ts2LH6+OOPx2OqrW5V16Coqv7iF7/QadOmaTqd1s9//vPxx0M/jl588UUFMOR2ww03qKr7aNmaNWu0sbFRa2pq9KKLLtKOjo68Y/T19emKFSt0woQJOmbMGF26dKm+/fbbozCbj0axegHQDRs2xGNYt6G+//3vx193n/jEJ3TRokVxc6LKmo1UYYPCug2V/fkcqVRKm5ub9dprr9V9+/bF21mz4v74xz9qS0uL1tTU6DnnnKO//vWv87ZXW91EVfWjv25DREREVFpVvQeFiIiIPh7YoBAREVHisEEhIiKixGGDQkRERInDBoWIiIgShw0KERERJQ4bFCIiIkocNihERESUOGxQiIiIKHHYoBAREVHisEEhIiKixGGDQkRERInz/wHakrBlPNV34QAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5kUlEQVR4nOy9ebhlWVnf/1nDHs54h6rq6gF6pJm6QRliCw6NMolmIOCIQQiaBNAYJDFI+DGpDwQ0aBKnGEFAFFAjxqARUFseB8IkoAzK2FN1V935nmlPa/j9sdY5996qW1Xd2NBduL/Pc+vW3Wefvb/7Xfuc9e53ve/7Fd57T4sWLVq0aNGixX0I8t4m0KJFixYtWrRocTpaB6VFixYtWrRocZ9D66C0aNGiRYsWLe5zaB2UFi1atGjRosV9Dq2D0qJFixYtWrS4z6F1UFq0aNGiRYsW9zm0DkqLFi1atGjR4j6H1kFp0aJFixYtWtzn0DooLVq0aNGiRYv7HFoHpcVXNK688kr+8T/+x/fIsYqi4IEPfCBCCH76p3/6HjnmVwJe8YpXIIS4V879yU9+kle84hXcfPPNZ7z27Gc/myuvvPLLzunuYGtri+/+7u/moosuQgjBU5/61LPue657+UMf+hBCCN74xjce2P6ud72LJz3pSVx66aVkWcall17K4x73OP7zf/7PZz3P0572NIQQ/NAP/dDdupabb76Zb/u2b2N1dRUhBC94wQu4+eabD+XVosVdQeugtGhxF/HSl76U6XR6b9O4z+EHfuAHeN/73nevnPuTn/wkr3zlKw91UF760pfyjne848tP6m7gJ37iJ3jHO97Bz/zMz/C+972P1772tffYsX/pl36Jb/mWb2E4HPJzP/dzvOtd7+I1r3kND3nIQ/jt3/7tQ9+ztrbGO9/5TgB+/dd/nbIs7/L5fuRHfoT3v//9vOENb+B973sfP/IjP3KPXEeLf7jQ9zaBFi1msxndbvfepnFOfOADH+C///f/zq//+q/zHd/xHfc2nS8aXwpb3+9+9+N+97vfPXrMewLXXHPNvU3hvPj4xz/ONddcw/d+7/fe48d+9atfzTd+4zee4Yw885nPxDl36Hve/OY30zQN3/Zt38bv//7v8zu/8zs84xnPuEvn+/jHP87XfM3XHIgCHeY4tmhxV9FGUFp8WTFfDvirv/orvv3bv52VlZXFRPKhD32I7/7u7+bKK6+k0+lw5ZVX8j3f8z3ccsstB47xxje+ESEEN910E8973vM4evQoR44c4WlPexp33HHHeTn8wi/8AlprXv7yl98lznVd85znPIcf/MEf5NGPfvTdut5XvvKV3HDDDayurjIcDnnkIx/J61//ek7X6JyH79/xjnfw8Ic/nDzPufrqq/lv/+2/HdjvT//0TxFC8Ja3vIUXvvCFXHzxxXQ6HW688UY+8pGPHNj32c9+Nv1+n7/5m7/hSU96EoPBgMc//vFAWFp4/vOfz2WXXUaaplx99dW85CUvoaoqAMqy5BGPeAQPeMAD2N3dXRzz5MmTXHzxxTzucY/DWgscvsQzv553vvOdPOIRj6DT6fCQhzxk8XT+xje+kYc85CH0ej2+5mu+hg996EMH3n9X7oU3vvGNC2fxm77pmxBCHFhOOGyJpyxLXvziF3PVVVeRpimXXXYZP/iDP8jOzs6h/P/wD/+QRz7ykXQ6HR784Afzhje84cxBPgTns+986eOP/uiP+NSnPrXg/qd/+qd36fh3BZubm1xyySWHvibl4V/9b3jDGzh+/DhvetOb6HQ6d+l65/fkZz/7Wf7v//2/i2s5m3Py2c9+ln/5L/8l1157Ld1ul8suu4x/8k/+CX/zN39zxr6f+MQneNKTnkS32+XYsWP84A/+IL//+79/j9uqxX0UvkWLLyNe/vKXe8BfccUV/kUvepF/z3ve43/3d3/Xe+/9b/3Wb/mXvexl/h3veId/73vf69/2trf5G2+80R87dsyvr68vjvGrv/qrHvBXX321/7f/9t/6d73rXf5XfuVX/MrKiv+mb/qmA+e74oor/Ld927d57713zvl//+//vU+SxP/qr/7qXeb8kpe8xF955ZV+Mpn4L3zhCx7wP/VTP3WX3vvsZz/bv/71r/fvec97/Hve8x7/Ez/xE77T6fhXvvKVZ/C87LLL/OWXX+7f8IY3+D/4gz/w3/u933vGuW666SYP+Pvf//7+n/2zf+b/z//5P/4tb3mLf8ADHuCHw6H/3Oc+t9j3Wc96lk+SxF955ZX+1a9+tf/jP/5j/653vcsXReEf/vCH+16v53/6p3/av/vd7/YvfelLvdbaf+u3fuvi/Z/+9Kf9YDDwT3va07z33ltr/Td/8zf7iy66yN9xxx2L/eZjevr13O9+9/PXX3+9f+tb3+r/4A/+wN9www0+SRL/spe9zH/d132d/53f+R3/jne8wz/wgQ/0x48f97PZbPH+u3IvrK2t+Ve96lUe8D//8z/v3/e+9/n3ve99fm1tbXH9V1xxxeKYzjn/5Cc/2Wut/Utf+lL/7ne/2//0T/+07/V6/hGPeIQvy/IM/g996EP9m9/8Zv+ud73Lf8d3fIcH/Hvf+95zjvldsW9Zlv5973uff8QjHuGvvvrqBffd3d2zHnf/vXw6PvjBD3rgwH39hCc8wWut/ctf/nL/0Y9+1Btjzsn7L/7iLzzgf/RHf9R77/2/+Bf/wgsh/Oc///lzvm93d9e/733v8xdffLH/uq/7usW1lGW5+Lzs5/Xe977X//t//+/9b//2b/v3vve9/h3veId/6lOf6judjv/bv/3bxX533HGHP3LkiL/88sv9G9/4Rv8Hf/AH/pnPfKa/8sorPeBvuummc/JqceGjdVBafFkxn8xe9rKXnXdfY4yfTCa+1+v5//pf/+ti+9xBef7zn39g/9e+9rUe8Hfeeedi2/xLfTab+ac//el+aWnJ/9Ef/dFd5vuRj3zEJ0ni//AP/9B77++2g7If1lrfNI3/8R//cX/kyBHvnDvAUwjhP/rRjx54zxOf+EQ/HA79dDr13u85KI985CMPvP/mm2/2SZL4H/iBH1hse9aznuUB/4Y3vOHAMX/pl37JA/43f/M3D2x/zWte4wH/7ne/e7Ht7W9/uwf8z/7sz/qXvexlXkp54HXvz+6gdDodf/vtty+2ffSjH/WAv+SSSxbX4733v/u7v+sB/3u/93tntd3Z7oXf+q3fOutkdbqD8od/+Ice8K997WsP7De/xl/+5V8+wD/Pc3/LLbcsthVF4VdXV/2/+Tf/5qw8vb979r3xxhv9ddddd87j7ed0dxyUz372s/7666/3gAd8p9Pxj3/84/3P/dzP+bquzzjGc57zHA/4T33qU977vXvtpS996RfN7zAH5XQYY3xd1/7aa6/1P/IjP7LY/qM/+qNeCOE/8YlPHNj/yU9+cuug/ANBu8TT4l7B05/+9DO2TSYTXvSiF/GABzwArTVaa/r9PtPplE996lNn7P9P/+k/PfD3wx/+cIAzloQ2Nzf55m/+Zj7wgQ/w53/+54tljjmstRhjFj/z9XljDM95znP4ru/6Lp785Cd/Udf5J3/yJzzhCU9gaWkJpRRJkvCyl72Mzc1N1tbWDux73XXX8VVf9VUHtj3jGc9gNBrxV3/1V2ds37+scsUVV/DYxz6Wm2666QwOp9v6T/7kT+j1enz7t3/7ge3PfvazAfjjP/7jxbbv/M7v5HnPex4/+qM/yk/+5E/yn/7Tf+KJT3ziXbr2r/7qr+ayyy5b/P2QhzwEgMc97nEH8mDm2/eP2929F+4K/uRP/uTAdc7xHd/xHfR6vQPXPed/+eWXL/7O85wHPvCBZ9xfh53nrtr3S4lrrrmGj33sY7z3ve/lla98JU94whP44Ac/yA/90A/xmMc85kAC7GQy4Td/8zd57GMfy4Mf/GAAbrzxRq655hre+MY3njVn5YuBMYZXvepVPPShDyVNU7TWpGnKZz7zmQNj+973vpfrr7+ehz70oQfe/z3f8z33GJcW9220DkqLewWHrY0/4xnP4Od+7uf4gR/4Ad71rnfxgQ98gA9+8IMcO3aMoijO2P/IkSMH/s6yDOCMfT/96U/z/ve/n6c85Slcf/31Zxzn8Y9/PEmSLH6e85znAPCzP/uzfP7zn+flL385Ozs77OzsMBqNgJDLsLOzs8jDOAwf+MAHeNKTngTA//yf/5O/+Iu/4IMf/CAveclLDuV58cUXn3GM+bbNzc27tO/p+3W7XYbD4YFtm5ubXHzxxWfkjVx00UVorc84xnOe8xyapkFrzQ//8A+f9XpPx+rq6oG/0zQ95/b9E+bdvRfuCjY3N9Fac+zYsQPbhRCH2u70+wvCPXa+899d+95VaK3Per8ZYwBIkuTAdikl3/iN38jLXvYyfu/3fo877riD7/qu7+LDH/7wgfySt7/97UwmE77zO79zca/v7u7ynd/5ndx222285z3v+aI4H4YXvvCFvPSlL+WpT30q/+f//B/e//7388EPfpCv+qqvOmDbzc1Njh8/fsb7D9vW4isTbRVPi3sFp3957+7u8s53vpOXv/zl/NiP/dhie1VVbG1t/b3O9ZjHPIbv+I7v4Pu///sB+MVf/MUDSYL/43/8D8bj8eLvo0ePAqEqYXd3l2uvvfaMY770pS/lpS99KR/5yEf46q/+6kPP+7a3vY0kSXjnO99JnueL7b/7u7976P4nT54867bTJ8uz7Xv6fof1Jzly5Ajvf//78d4feH1tbQ1jzOL6AabTKc985jN54AMfyKlTp/iBH/gB/vf//t+H8r+n8KW6F44cOYIxhvX19QNOiveekydP8o/+0T/6e/Hef567at+7g+PHj3PixIlDX5tvP9/k3ev1ePGLX8zb3/52Pv7xjy+2v/71rwfgBS94AS94wQvOeN/rX//6LzqKeDre8pa38H3f93286lWvOrB9Y2OD5eXlxd9Hjhzh1KlTZ7z/sHu/xVcm2ghKi/sEhBB47xdRkDl+5Vd+5ZxRiruKZz3rWbztbW/jV3/1V/m+7/u+A8d80IMexKMf/ejFz7zy48d+7Me46aabDvy89a1vBeC5z30uN910Ew94wAPOeU1aa5RSi21FUfBrv/Zrh+7/iU98go997GMHtv3Gb/wGg8GARz7ykQe2v/Wtbz1QCXTLLbfwl3/5lzzucY87ry0e//jHM5lMznCU3vzmNy9en+O5z30ut956K7/zO7/D61//en7v936Pn/mZnznvOf4+uDv3wtmiZodhfl1vectbDmz/X//rfzGdTs9Y+vticXfse3fwhCc8gY9//ON88pOfPOO13/zN36Tf73PDDTcstt15552HHme+jHLppZcu/n7f+97H05/+9DPu95tuuonHP/7x/O///b+/6MjP6RBCnDG2v//7v3+G83XjjTceer1ve9vb7hEeLe77aCMoLe4TGA6HfOM3fiM/9VM/xdGjR7nyyit573vfy+tf//oDT1V/H3z7t3873W6Xb//2b6coCt761rculhcOw4Mf/ODFevwc89LJa6655rzOwLd927fxute9jmc84xn863/9r9nc3OSnf/qnz/hynuPSSy/ln/7Tf8orXvEKLrnkEt7ylrfwnve8h9e85jVn9C5ZW1vjn//zf86/+lf/it3dXV7+8peT5zkvfvGLz2uH7/u+7+Pnf/7nedaznsXNN9/Mwx72MP78z/+cV73qVXzrt34rT3jCE4DgELzlLW/hV3/1V7nuuuu47rrr+KEf+iFe9KIX8XVf93V8zdd8zXnP9cXg7twL8yW7X/7lX2YwGJDnOVddddWhyzNPfOITefKTn8yLXvQiRqMRX/d1X8df//Vf8/KXv5xHPOIRPPOZz7xH+N9V+95d/Lt/9+9485vfzOMe9zj+03/6TzzsYQ9je3ubt7/97fz2b/82r3vd6xgMBov9r7vuOh7/+MfzlKc8hWuuuYayLHn/+9/Pf/kv/4Xjx48vIorz6Ml//I//8dAxHY/H/PEf/zFvectb+Hf/7t99Udz34x//43/MG9/4Rh784Afz8Ic/nA9/+MP81E/91Bm9dF7wghfwhje8gac85Sn8+I//OMePH+c3fuM3+Nu//Vvg7KXSLb6CcG9m6Lb4h4d5xcf+suE5br/9dv/0pz/dr6ys+MFg4L/lW77Ff/zjH/dXXHGFf9aznrXYb17F88EPfvDA++dVB/uz+w+rLLjpppt8v9/33/It33KgtPWu4O5W8bzhDW/wD3rQg3yWZf7qq6/2r371q/3rX/96D/gvfOELZ/D87d/+bX/dddf5NE39lVde6V/3utcdeo2/9mu/5n/4h3/YHzt2zGdZ5r/hG77Bf+hDHzqw77Oe9Szf6/UO5bW5uemf+9zn+ksuucRrrf0VV1zhX/ziFy9Kbf/6r//adzqdA3b3PpTHPupRj/JXXnml397e9t6fvYrnsIoTwP/gD/7ggW2H2fSu3gvee/+zP/uz/qqrrvJKqQMVI6dX8XgfKnFe9KIX+SuuuMInSeIvueQS/7znPW9xLefjf+ONN/obb7zxjO2n43z23X+8u1rF4733J0+e9M973vP85Zdf7rXWfjAY+K//+q/3v/Vbv3XGvv/jf/wP/7SnPc1fffXVvtvt+jRN/TXXXOOf+9zn+ttuu817731d1/6iiy7yX/3VX33Wcxpj/P3udz//sIc97Jzc7moVz/b2tv/+7/9+f9FFF/lut+u//uu/3v/Zn/3Zobb9+Mc/7p/whCf4PM/96uqq//7v/37/pje9yQP+Yx/72Hms1eJCh/D+tI5RLVq0+LLjyiuv5Prrr180Mjsb/vRP/5Rv+qZv4rd+67fOqBJp0eIfAv71v/7XvPWtb2Vzc/OcEdAWFz7aJZ4WLVq0aHGfxI//+I9z6aWXcvXVVzOZTHjnO9/Jr/zKr/D//X//X+uc/ANA66C0aNGiRYv7JJIk4ad+6qe4/fbbMcZw7bXX8rrXve4eyYVpcd9Hu8TTokWLFi1atLjP4V5Ng/6FX/gFrrrqKvI851GPehR/9md/dm/SadGiRYsWLVrcR3CvOShvf/vbecELXsBLXvISPvKRj/AN3/ANPOUpT+HWW2+9tyi1aNGiRYsWLe4juNeWeG644QYe+chH8ou/+IuLbQ95yEN46lOfyqtf/ep7g1KLFi1atGjR4j6CeyVJtq5rPvzhDx9oYw3wpCc9ib/8y788Y/+qqqiqavG3c46trS2OHDlyaCvvFi1atGjRosV9D957xuMxl1566Xmb7d0rDsrGxgbW2jN0I44fP36ozsKrX/1qXvnKV3656LVo0aJFixYtvoS47bbbzugefDru1TLj06Mf/jRxrTle/OIX88IXvnDx9+7uLpdffjmPfNSzUerstfACgRDhPAmCwjsaYOjhqIcNASMRjNATigoH3oMHh18cxcd9FFACAjjiQOLZkAIHZIADTHyduHI25+CFII8cKmAQOewK2I7H7wiJwQeNFQ8ej9/HQQFJ5OCBVQ+pDxwMMLdEcwaHua0FmZAU3lIDXQ8Xe9iJHCTQE5IGj/MecYgdFIFrFTmseMi9Z30fBwHU5+CQCEHjPSWejoeLPMwErMfjn87hdDvIeJ4q2nzOYVMK6mgjeQ4OHkEWORR4smiHQoR7gsjBAtZ7hPfn5TD0MIx2qKKN5nYSEI9xph1M5JBGDqWAjUj27BzOjieNPs/15T2jmdKiRYsW9zRmzvL9t/71AVmGs+FecVCOHj2KUuqMaMna2tqhapxZlh2qX6JUitbnc1DCj0agvcPh0R4SD1qAEoTXhMIuHBR/2sQsFg6KJkwyifNIPFqGSUQTJqr4jtMclPkxAgdzVg4SFg7K6ZOiWJxfE5yDxHsSHzh49gbTn8EBhJAQz6G9xR7CQQJaKPzCOTjTDnMO9hwcRLRFcA7cIRyCGJzCncFBRY77OZxuB7mPgwX0Pg7zsZDn4ODPwsFEDkQ7zB0L4d05ObjTOJh942Tn5/Vun4OyZwdO42Cjk4Y4F4ezI1cJXanOs1eLFi1a3Lu4K+kZ90oVT5qmPOpRj+I973nPge3vec97eOxjH3tvUGrRokWLFi1a3Idwry3xvPCFL+SZz3wmj370o3nMYx7DL//yL3Prrbfy3Oc+996idM/hPI+5Z/Mbv1zpvmc/j1j8Fud9Vr/nIU77697gcBiTu4ovlq2I/wi/f8Pfh0mLFi1aXPi41xyU7/qu72Jzc5Mf//Ef58477+T666/nD/7gD7jiiivu8jFEXAI46+uEMJIUAiUVqdII4UkRZB4yAVlc6tAWGheWVzx7x50f3RNyTZwIU6cVHu8FDoHD4/bT8POJxS84iH0cvPBkCFJC7kqGRyNQxmOdw3mHj8tN4gwOHhsSa7DeL5YYHOD8vgntAIeYiyMFSggSneAFZEKQOUijHSQCbT3OOixh+eF0O4TFI4+LuRyWOYc9O4QFGhHG51AOErTECR84+JA3k+LDEpIFax0ucvBnsYMTAndeOxzCQQiUDBwy4UkjBxvHgmgHbFhWCatlfnFMH482t4NFxOWmgzxCBX9k7oPlTucglcBKQSYg9eF9mfD4eE8a65CHcDjrPd/2hW7RosVXCO7VJNnnP//5PP/5z//iD+A82HM4KBKUECglyRJNNsixWjIUgoEXVALwDmkcalLR1CHvwVmwc49DgBchWdQLgY1lUY0XSOExIkzO1rm9REi/L/9DhpwCKSVpqsn6GblWDKVg6AUIsN4hrUNOKnzVYLzDOXAuTFRzDj46J1aG2EKDQABGxAnSO6Q7FwdBGu1gEkU32sEKcN4hnEeNK1xVg3U4v8++++wAYHTIOWl8yMcwAgwC5R3axbyRfQ6OkGE9UUUOqpeTpYqeDByUgNo7pPWoWY0rK4yJeSj77QAggiNgVLjuRgiUD78NoLyDaIfgoEQHQYCUczsoZD8nSzVZ5KAjB+9ATSuqssafxsFHD8Hv4+BESI5uvMBEDtJ5VLTDfg4IkMIjlSBJFEkvJ832OKQCKu/wzqNnDWVR4k24Fj+3wzlxfiemRYsWLe4t3J3vpwtbLNA5EO6sLwshQzKjlGRZQrbUw2eaoVQMYlKkdBZRW+rGoY3BCBsmZheO62OkwAmBkDHxUgiMCE/DIZIQt++bmBdP7kIiBCglwmQ47OHyhKFSDIkJpdYiGkttPI2xOBudExue1fdzQIBTgBSYGClwQiwiBxzGAYlQoKQkSTSdYQ/fCcmUgzjpeufAWJrGURuDdyGJdGGHmBzqRLgmH21j4+S8sIOP3OPE7GPkACQyckgTTXfYxXdTukoyRJAAxjloLMZNqJsGb21wCtzc2QocfIxIufh/QxjLw8biAAcpF05Skmi6gy6+l5FHDmnk4K3DOI9tDNaKcOp9HJwIURCHwOnwtwEa4fdx8DgX3blF9MODFAhk4KAVvX4HBjmZDBxqETiECNIUUzdY57DG7+NwDrQRlBYtWnyF4IJ2ULzz+HPEtL0IE7RSgjTVLC31kJ2MvlYM49OsNhZX1oxGM1QpsU1cVohP4B6PFxKExwsVMo+lwHkZQvZS4r0LS0POhUoe75HziSQ6MkpKkjRhOOwiezmDRDMkRDaEMfiqYTQpKYoKOV/aiBOcj04KQuCUjFVBEicd1hEmvfiAflYOYj4xK4bDLqrfoRvtIAVIa/GNYXdcUBQVpgnhioN2iBxkCEeIWGIdOMhFtGQ+Mbt9HHx8sldSkKSKwaCDGnbpJoohoezXG4OrDNOiZjYrMGKfHfzpHIIdhBR4F6pfDtohVCDJuEQUOLgFB60V/X6HZLlHphVDIcgBby3OOCazinJW0jQc4DCPpHmxt1Sz4MDedmIEzMEBDiL+zMei389JVwekSrGEoJYCZy22MRRlQzGRNEZgPQsO5/5QtB5KixYtvjJwQTsozofw+2FYpHtKgVKKLE9YXRmQ9HJ6qabnIJGCvG5opiXV2i5aFxgZMxb8fGIOE5tHIPFIGSfI6HhIIeJCS3yPJzgs8fye4ABoJcnyhJXlPumwSy9L6HlBLiCtG0xRUW+O0RNFfSiHMPdICTJO0vOIRsiziTaZOxT7ynNl7C+jlCJNE1aW+uTLPfJE0/eQSUHWNNjKUK+NGOsCKcUiEnMGB+H3cQh5OTL+H/Y5NX5/YWwI9yglSdOEpaUendUBnTShj6ARoJsGUza43Sl6V4Vz7D8e+/JQvA8laPs4zO0gECGPxx+0g4gElZIkqWZp2KV3ZEiWagZIjADdGGxjcNsTxrtTpJIhauUPjgcenAxjG5xWsE4gZVjyEmcZC+FFdJpDNGs47DJYHZImmqEIS0TaGGxt2BwV7G6reM/tcTgXWv+kRYsWXym4oB2Uiy5aIUnO7I8CgBBkaUJ/2GW41OOSi4/wkK+6mryfk2pFEnMWamOoZxV/m6XcfmKD8WjKZDyjLGu89xjraKzDGEtVG2zd4ISgrA14sJkmPLwL8n4HrRVaSRIpETJEbvqDLoNhj0svOcIDr7+S3lKXLNEkXmAElI2hLio+28m5/fZ1dnfGjEczqrLGRQ7G+cCharDNnINFeo9LFcQeJXm/g0oUiZRoJZECkjRhMOjSH3a56OgyD3vUtXSXuiRKhWUNIahMmJj/LksZ3rbGaDRlvDulLCqc91jraCKHujbYpsELQdlYpHWYTAcHAej0c1Si0VKSKIkUIVrQ63cYLve56NgyD77+KoZHBiSJJiU4WqUxmKrhC8Me/UGX3d0Jk9GMoihxzmOdD2NhLXVlKI3BW0HVWBrrsKmOURRPp5ujEx3GQgVHUieafr9Df9jj6JEhD3341SxftESi9zhUMXrxhX6XLwy77O4ER6UoKpwL49DYsARTVw1FY3BCUJtwj1gbOOA9nd6cg1jYQcdlncFSnyOrQx76sCtZvXglONFC4gWU1mIby63LA7q9nN3dKZPRlNm0xLmzL2kCdE6ehN17+IPWokWLFvcCLmgH5eLLjpKm+eEvCkGnk3Hk2BLHji1z9dWX8g1ffx15fmZjt6Zu6OUZg8/ezub6LlubIybjAuccVWMoy5pZUWG2xrg4YRezBu89mU1RUiCzlF6/Q7eXk6cJWZaglKTTyVg9MuTosSWuvvpSvvZrHszScu8MDkVRsTrsMfy7Pmunttnc2GU6KbHOUdUNVdVQlDVmc4SbFYFD0eCdJ+skKCUQaUq3nwcOWUqeJSgpyPOM1aNDjhxd4v73v4gnPv6r6XTPtJv3nqVuh8Fyj42NXTbWdpiMZ1jnqaMdiqJmd2eMG5c4PHXZ4IwntQlaSUSi6fT69Po5WZrQyZIw+WYJK6sDjh1f4fLLL+Kxj3koR44Mz+BgjeVjR5fp9jusrwU7jEczrA1jEexQsbs1oZiUeGBW1DjjSTqaRCuE1nSGOb3BPjsoSZYmrBwJdrjssqN8w9dfz0UXLZ/JwVo+fmSZ7rDL+to266d2GI+mwSlpDGXVUFY1o+0Js9EE7z2zymAbS9pJ0FqiVMj16fU7ZFlCJ0vROizzrawMOHrRMpdccoQbv+F6jl20fGjTok9cvErWSdlY32VzY5ed7fH5HZRRDjttGKVFixb3UdyNMO8F7aDcdvsGiT48giIEdDoZs6Kiqhq6nQxTN/gsCS/CIom0KmpOntzixO3rrK/tRuegwDmPsRZjLU1jMY2hkyYxB0HhvaebJ0hChGF7e8x0UqCUItEhNJ93MibTkrKq6XQyyqJiuNTdIxl5NLVh7dQ2J25f5+TJLTbWd5lNg4NijA1RFGNpqiZwkAKkwlpPp6NRgLOene0J02mJVgo955CnTIuSoqxRSjKbFHQ6wW5+HwdvHWtr29x++zob6zusr+0wHs9C9MI6GmMDh7qhkwUOQiqM9XQ7Go3AWsfOzoTZrEQridYqJMZmCeNpQVU3aK0oZyV+dbBnhzgWTd2wvr7NiRPrnIp2GI9mIXph57aw1FVDliaIaAdjHN1ck0iBNY7d0YSirMJSilZIIUkzzWRWUpRBeHIynnHs2NIZY+GcZ2M9jMWpk1vBDqMZ1tpDOGiElEitqWpLt5MsOOzsTCmKeo9DrOQaTwrKKkToRjsTjl20HOy/jwPes7W5y4kT66yd2mFjfZfdnTH2HFVrANdMi7v+AWrRokWL+zAuaAdlfW37rFo8QkCWp1RNQ2MMvW7G1qltEikgS5l66AHUDdsbO5w4sc6JExtsxAjKbFYuchjmyBJNt5uDkpCECpN+qhDOMZ6WzKYls33nFyI4B1VVYyKHnY0dlnsZ5BmFCH1QZFkz2RpFDuucOrUdOEwr/L48G+89qdYMeh2EVogkLDX0M43ynsm0ZDotEDOxxwFBlidUdUNdNyglWT+5Tb+bIZKEiRB0BYjaMBtNOXF74LC5vstGjOKcziHRisGwi1AKmVga6xccprOSybSgOI1DmiWUZY0xliTVrN+5xZFhF9HJKUXQz1F1w3h7wh0nNsLEfHKbza0R03FwFvfnGykpWRp20FojU0dtgh2098yKismsopgFR0QQxiJJNWVVU9cNCMHmqS0uO7qEyFMKGZbIkrqhnlV7HE5ts7G+u4ioLexAKGFfWeohtUKlDplaepkmEVAWNbuTgrI8jUOiKcqKxhgATt65yf0uWUWmCTMpSWMOSjkpuPPEBidObLC+tsPmxi6j3SnOndtBKYp6z9lq0aJFi/sa7sb30wXtoDSNwbnDu/ULQu+RqqwpZhXTScHW9oQkSxG9nKmDWgn8ZMb29oTJeEYxK6nKmqZuMLVZVK/MG60hCEmTSqJdeG2eRCkQoXpl0VgsJEM2UlBVgcNkUrC9PWEw6KIGjpkPzeKYzNjanjCJFTRVWVNXDU1j9hrHiVD/IQRIpRBSolU4r1ShgkYIEatX3L6mXiFxsypriqJiNi3Y2ZmwtTVGdjtMPJRKIKYl0/E02qGiLMNE3jTNwlETMTEWCM6JkuiYMbrHQcakVh96q0Q7CAFVVVMWFbNJwfbOhM2tMbpvKYQklQIxnTHamTAe7XFoqoamNri5HQhVM1pKpJQIJdEIvD/EDt7jvVvYAaCumsBhWrCzM40cOsykDHpLRUk1KxnH+6Esa+qqpmma2Jdmzw5KyRA9URItBIkDpRXSE6q7FnaIJcaxaVu1j8PuzjSMRSejUJpUClRRUk4KxqMZs2lJWVSL++F8DsqitLlFixYt7oO4O99PF7SDsnAcDn0xVPDIuMyQJJpeN6PfzaCX4x30lADnmHYy0jQJSyIqTIBhIvaLyg9gUcYi2KvoEPPtzMtIxeL8waEIE6nSoWqj28nod3NkLwcEOUEIrioq0lSjVFgKELGMNtT67nHwBziEslfhY2O2QzgIwrVIJVFKoRNNt5PS7+aIXob1gp4Kya1Yu88OEiH2cQgHW9hBnM6BeRfTaBcRq2YWdhALO+h9dlC9HKQklwLpHbZqyLJ9HELZEsJFO8xXQebN1+JYuPnf++7+QF0s7CCkQMhoB63p5Cn9Xobu5XipSPAkMkRz0ixBabVwQsK9dtAOsTMLglC95fY1x1t8DMWck1g4NlIG50YnmjwPYyG7GUJpUiVIJCjngx2S0zkcfru3aNGixVcaLmgHRaYaqQ6/BCEEMtEIpUIjLeuYjmaMswRRNUwdoAR+WjAdTWmsDY3QlEImGpXZvcgBYU7SQqCcQ1hIrA1hfgs4h44VGqFJF4vJRKQatApNzaxjNpkx3h6jGsOM0OCLacF0d0pjbMhD0IGDTO2+iEzkIAMHaSGxDukcygqk90FBV6vY8ZWF8ybTYAcvJdZ5puOC8fYYWdbMvMArgZiVTCdFaBQXmqYgE4VMk3Ny0NaBcygTyrDnHJCx0Vu0g0w0Qiu8CBxmk8BB14aZkDRSIGcFk90pdW1CLxclEYlCpTpEDvb1EtFSop1DWYu2obmatgKFR3uP1jK0mw83Q7DDnIOUIcl4WgYOVcNUqrDMVFZUMWLhEKG/S6KRaQLOHXo/KBta46fWoq3cx0HFDsD7OYQkXi8l1kM5CxxkUVEoRS0luiwppyVV5OCVQsSx4DxJssJIMG0MpUWLFvdR/ENJku30c/TZkmQJDoNQirqxbG6M+Iv/9ym6vZQs0SgnsBKqpqGY1Wysjahqi5CStJOFPJN5DooH4UIL96puEEKgGxsSbK0KSz0C8k6Gl3HJJ07MWmukUlTGsbU55v0f+jSfHNxGnmqUj+W1TUNZNJy8c5uiakBI0k6KUHLhHMTOZyTOUsUcCmUs2nnqGNYXhKRcr/Y4IILDILWiMZbRzowPfPjT/O1nbiPVGu0FTkJlDE1tOHnnFmXV4IUkzTOQcw7EcIkniZVFgYNDO7fggIduJ8OdziE6frV17O5M+auPfo4v3HInaZKQEHqZFI2hrhpuv22doowcsjQkJbt9HLxHx4oarEUZR+4cjbPUInR+zfMzOSilUFrTOMdkXPLRv/48t51YJ000CaHpXGUNprHceus6RVHjYv5M6LZ7CIfagLEo6+gYR+MdtQx8O50Up9RBDlKiUo2xnsm44G8+fjNra9torUhjmXFlLE1juPm2jcDBQ5IldPY1fDsbdK2hugc/ZC1atGhxL+GCdlC6aYLWyVlfV1IinKcuarbMiL8cT7EShkJwxAu2hGfXe6QDUcWJ33kyJdFpOK7zQZdHOIerG0bGgvcsu5DbsBurL7pKkSYJXskQwo+heCkl0nuasmF7Y8QHxjOM2uMwEp6tyIHKUjUGnCNTCp0RGoItOHh8DSMTclOWnSMBdhqDEdBRiizVOBWqd2J/rwMcJnbCBz72eayCnhBc5AW7wrMdnSBZRefDWFIVJtPT7eAbwyjmxyw5T+Y9O0QOMnAwSqGEIPprYXnHgykbdu2Ev5rdjIkcjnnBTMC6dwgPsnbBUTMuckhiom5YRvHOI+qGcWOw1jO0no73jIBaQC4VWaKxWkYOInIIibCmMkztlI998laMhhzBcQSF8GxEZ0zWjrJucAs7JAtHzUYOsjGM6wZrPH3nGXjPqIFaQiYlnTTFnM4h9qsxtWG6O+Pjf3cbH/3c7WSRQxXt4D2oxlOWNc5aEiEX0axzIe1kaN/9e3yqWrRo0eJLB23NXd/3S8jjS46qbrBnSZKFmH/ha6T31FqyaxyldRxLFaqfcsuk5lRtyZVkRUumxs3LLRYdUL2LlSsyPEnXQiCd5+hyByUE050CA6RZWIaoqwYpBUbucRAxEtNoydg6JsZxLFHQSzhZGm4vDbmSLGlJZVzUuxFzBgsOWgrSPKGuBN45Voc5nUQx255RusBB4DFVE/MtzuRgtGRsPRNjWdGSdJhxYtZwojQoKTiSKCrrsISn/kXKpQ+dUfXcDgQOK4OcfqaZbk0pnSfNNFIITNXg5F7kYJ4s652nUpLSe0aNZVlLZD9lq7LcXDRoKVhN1MIOgUMkEDlIoBPHQhjHylLGME8od2Y440jTwKGuzCEcQrKrUZLCe3YbS18J9CBjt7HcPA2RoZU0lHAb7xct/Q9wEEFbKQGkdSx1Uy7qZxRbM5yxJIlGaUFVmXAdch+HKvSvqZWkxrNbW7pSoIcZ48byhWlogrd6Ng7nwNXP+5d8/WMfcvc+SC1atGjxZcJoMoZHP+Iu7XtBOyimceDtWV8XgLcuJJUaSe2htp5aCirnqY2jri1SOyoLdeMWiZTzfEzBfHlA0+1l6J5Aelg52kNJya7UNB4yCcW0pDYWbz3O7iXReudx1qF14NAYTy2hcmHJo4ndWCsLlXEhbyNyAII2D6FCpNvLUV0QDlaOdOmkmh2pqYwnVYT8iSbkZJzOwTuHNpIaQWMcFVA5T2UddWNRUlA5G52DkNR6gIMAJRV5J0N3O+A9qytdeplmR2gKY8mUoClrRG3wllBRdBoHqSQ1wQ5zDnXk4COHesFBLPqDzDlItcfBWsfKSpdhJ2GsEpLaLDhUTRyL0zgsxiLaoXYycvDUJtxPtXdY44IysTqNA6C0JO+k6F4HZ4OzuDLssCM1ujKkSuLqGlHbcE63x4H4t5SCWsogVKkOcvBzDtZh/EEO50J20VEGD7zmLnx6WrRo0eLLDz8a3eV9L2gHZZ4LcM6Xw7oATjgQc6E9QSP2VGnx4KzDOYdAIoVj4Z7IuQpwcA46SYISguFKHyUFywZq55E2NHLTxuJsFPGL1R3eObyL20RY8/BRd8XFSccTGq0560DOtXViia4MzoLWik43I08SJILhSo9Oqlg2gtJYpLP46HRZ67DRPnMOzoaohF9wCO3+3bzChLCMM1cj9odwSCIHmWUIYLjSpZdrlo0gMxblHVPr0MrgnMO6gxx8jM54GcI7XgQ1ZLuvIstFJyKoOEuYR4IOcEgRWYb3sLTSZdBJWHISVRu0d0ydR9cm2OF0Ds7hLIt8obkiso2RqxAlcQunwoszOWityPKUbreDd57hUofBIGPZgKoMCk8x8ujSYLGLEuW9sfDYeeF0zLrdz0HMOVgXE573OJz7M7HIx23RokWL+xzuzvfTBe2ghCfyc4S845c8zmNdqEwR+yYkL8RCkM46F4/lFhN4qAqVC2G3bi8n6XbRUrC00kdKwbIV1NbiyopyWlAqs3cc5/c5Px7r5s6HiA4KIUogghNg3Z6T5IVfLDeJ2HMjSRTdbk7S66KEYGm1R5YolqMeja0q6lmFqiTOOzB79nE28LHWgZYxGhHtIMM5BMExmDsHwu3jALE0VtHpZHSW+ghgabVHJ4sOSmPwdUMdu8ga76MK73y5LDg/Trg92+9z1OJKTHQOgoMkYt2wmHOIKsB5JyMf9gHB0mqXXp6w4iRJ2eCNoSlrdFHHfijscw4CBzvnEMuP9zgEj3U+XsGnDGVRcwdqroac5ym95T4Ay8MOw0HGspXossFbgy0rtA5q184dtIN30VGbl3JHO9hDOHjCfXLXPtdtBU+LFi2+MnBhOyicK4DiF23LvXNYK5EqdP8kTkhIEXR0CBOBdX4xcQspFss8QYFX0+t1GKz00UqxfCQ4KIUX1I2lmCh2tydoVeNseBwOFR9hsg1PwwJkSB4VQmDiuZQMZcLziVkwX+aZx3HmUZzgJA1X+ygpWTnSJ9WSwguqOnCY7EzQSmGNnZtgYQfnHEYEMT0VxQxNdJaUCA/oi8iBEAi3j4MQexy6GSurA6QQrKz2yFNN4SRFbahnReCgVXCG8Ps4uGBnBELt2cEKgZciJJMSlsesc4tx2N/bRM6dxW7O8kofISUrq326maZCkRU1TVUxG00jh7BkM8/jmV+fDetVwQ6RgxOBA/scNRcdtb18npDwm0RHbXWljxCSlaUOw37Gqo8c6prZ7oREK6yJS5E+9G+ZOx4SFmMhZbRD5ODZF0ERAhEjgJzPTWn9kxYtWnyF4IJ2UJaXe2ctMwZwUS/FNBbhQ5ty7YMg3aQ2WGNDLw0BUmvyJITuF026pKTTSen3OxxZHfDAB9+f45ccRSnJ0iBHCMFl4xJjLJsbOyRSsrGxy2RaMJtVmDjJ1bEzrfAutFOPuQXTxtLEUmGFR2lFpjU60YFDrMbpdjN63Zzl5R4PesjlXHr/i1BSMuznKCW4dFxijGNna0SqJd3Ymn06qzDW7nFoDDI+kWvn8FYwqQ2NsSjvkd4jdaiAkSrYQSch4TTPUwb9DsvLPa55wGVcftUlSCkZ9jMSrbh0UlI3lvHOmFRJOr0dppOS6awMvVWco6kNTd0gnMPi0T5wmDaWugl2kLErbaYUKo6Fjjo2eZ7S6+UsL/V4wLWXcf8rL0YpxXAQFKovm5ZUtWEympEnmk43YzwumM5KTBM41HUopxYuOC7aObAwrS21sSgXcpakkqQqlGfPOQgpyLOUfi9nuNTjqqsu5gEPuhwpBf1uRp5pLp1UVLWhnJV8Qks6nZzJpGAyLambEF1r6tAdF2ex+zjMakNtQm8b4X3Q7skDhyTVJIk+b3w0vQuVPi1atGhxb+HufD9d0A7KRcdXz65m7IMC72xaUBQ1dVHhyhrpoW48GwWIxpA4i0Cg8oRuNyPPM7q9fNHNdGnY49jRIZdedpTHPuahXH3NpUh5ZjLALbecopunQWhvc8T29oS6CZPhbFaGFvZFhS9CVVFTe7bwCGNJYsmyyhM6eUreyej1OmFiVJLl5T5HVgccP77C1z7moVx33ZWHXK5n/dQ2eZ5w+23rrG/ssrU9CRNytENZ1FRlhZtVCBdyIDYKEexgHQKPzBKyTkaWZ/R6OXmeopRkOOxy7OgSx4+v8KhHP5CHPexqlDrTDmuRw223rrGxMWJza0xVNxhjmU1LillFVVb4oiJ1DtN4tgoQxsWxAJkqOt085Hj0cvI8CxwGXY6sDrj44sDhqx5+DUqrMzhsbOwy6OV84Qt3sra+y9b2mKpsaIxlNispYwt7P6tIrcV4z1ZZI2xo/CbxqFSTnmYHGTkcPTLk2LElHv7wq3nMY687tJvxbFqQ5wk3f+EkGxsjNjZHFGWNtYFDMQ12qIsKYS3We7bLJjacCxxkosiiHTrdnG4nD8tN50Cne3aHvUWLFi0uJFzQDsrG+i5JUp719aYxFLOSum5wxpBrjdIKkWiaTKOFIK0F1togcFc1JGnFbFYtWr43lQllrZ2MSVQ4FiLqvezzBItZxdb2mM2NERunOQdlUVFVNdYYcqVItIZEY1IVlI9p8NYymxbMypp0VjEratJUo5XCNCY0SEsUk0kRchniPLXg4WE6LdnenrC1OQqih1tjqtpgjF3YwTQNuVKkicZoRZMlYelGhKZns1kZ7JBUFEVFlgUHpaoaJJAkitFottdddp7kG21RFBVbW5OFHTY2x1RVg7E22KEMdkilJNGhs2uTaaR2JGVIIC2KiqI2JEnCbLbHoS5rcI400YxGM4yxQQtpvx0IejvbO2M299mhrIJQYVFU1GVNYwypEKRaI7WizhKkdaQIsI6yrJjF+2FuB6mCthPeo6RgdzQNYyE5g0NZ1GxvRw4bu6xv7FIUNTYeuyormuYwDp6EEGUqy3phh3xWMc3Ls0s7RJRlfXc/Ri1atGhxn8QF7aBsb4/R+uxtM42xiwlRCegOE7TWkGpklqAQqJibUJc11tcorSnLmiTRIYfBGAShv8fJk1vc/9KjZHlK2s1CYmNRU8xKTp3aYu3UDuvrOyGCsjOlaYJzEJaZDFJ4Ov0uWilEqpG5RtUWZT3W+yDOZ2sKXVNWDTrRaCWxJpSqSiVYO7XF5voOnU5K0gkcmqIKXWBPbrF2apv1tR02NnbZ3plS1w3WOqoyKCoL7+gMemHJIk0QWahKUi6UJDeTGbWrUSpwCPpAkqYODopUklMnt9jdGpGmCVkvByGwdUM1q1hf22FtbXthh62tSehXY10U3Yv27HaCHZIwFsI4tPW4Jjh1dVEjVU1Z1SRJEjjE5nAqctja2A3RjX5nwaGcVqyd2j7NDhPKssE6S10GJ817FzhoHaQAsgRhHdoBwtAUlrKpkEVNWTakaYKUIixRRf/w1KltNta26XQy0m6GkBJbNzRlzamT8X5Yi3aIERTnPFUVBCnxjqSbBw6Jihw82nkw0bFsaqQMdkjT+rwZ8FXV3IOfsBYtWrS493BBOyjGWPw5+qBYG8ptnfMoFRJS/bzduJqX6bCIRjjnwVqMCcmI3gfl2aKomU5KdnYmrK3vhKWHIwOEFBSbE4pZyfb2mOm0CEsYUXm2aWzkEPIfpCJyCP09UikJ0rcscgucc2AFJvbjcE5S1Q1lWTObluzsTFlb2yHvpPSODPBCUG5Pqcuara3AYVYEDkGN2IbE1JiLooTf4yAEqRKEdq9iYQfvPBaHMTYkkNrQXTaoIZfs7k5ZW9sNicNHBohEUW1PKaclW1sjppOQg1OWTVjmivkf85wcFXM953aQSoZWtfME5TgWPnJACJyTUYm4ZjYLHNbXd5lOS/rOIbSi2p1RjAs2N0dMIoeqqkMkyxicdRhrY4KqX1R0CSFIorQBBNsseqYQbNcYgRSBQ1FWzGYlo9GMtbUdOp2M7kofmWnq3YJyWrCxOWIymUU71AfsYGNOjlwICkYOUjBXWtzjECqJjHEIaThfLY87j1ZPixYtWlwouKAdlP3OxbngYyWJ8KHRliPMh4IQnRcckrgz7wEiBEqFstI0Teh0MvI8pdPJQoVJp0F4T5YmQW9GzRWA9034cx4eRFT+DYXIcw5xMopVN34fCUFwJIICriJNgxpx3snodDK8FMjKoAWLvBmlZChd3le6y2kcZDz/fjv4ua0ix/3LSDKWOu/nkGYJeScLgn6lQTpPlqV7HORejw/O4MCZHAQLO5xuBcS8B8meHTqdlG60A4lCNRZhLHl+uh04cD3ss/FhHJjfD36PxtyHnFczKaVC2Xc8f6eTITKNbkKSaydP0Vrv2WHR70ScweHM+2HvvvGwqGISiDNseSbaJigtWrT4ysAF7aBIqZDqzCTJgLBkIa0F1EITBh/0ZFT0BkRUp1VK4kToUip1cDRklLkHgfMe2xjqokJ6jypShBChc2tRYRqDm6v3yvBe6WVUPHYxbyFOdFF0TzkPsWJDEPIalFZ7HLRExnLgeft9ayx1WSMBXQQhvXpWxqULE6JAEPqtKIlwKkx6UWlZhrZs8dqjHeYc/F50SSgZeQQbiBhl2c8B59BFijCKqgh5FaZugh1ifxGhFFIFCQFpFT5WTQkxHwuP8m7xf0FYypJOBQ46/lb7OYA1jrqoSYQgKSpEo6hnJVVZ01TNPjtIhJIIrZBWIHVUJPZuwUG68DfOIeZVPFLGaw/jIZSK17PHwVm3GAuVa4RLaGYldVEFDj5EM4QI7xNKIYULYxs5SCEW9+Hinoz9c1R0xsScy8L5PTvOtwTUokWLFhcKLmgHReea5CxigfNSWqUk3loSARYwjSGXMEgl47qhaCwS6HVzKh8cFJVopJKo2AulqBp2diZ89jMnmOzOSLTiyGoPISVbm2Oq2rKxPWJ7e8ysqHGxCgQt0c4tcllSERpzFcaS14KBFswaw7SZJ+LmKOcROnKI/TG8EJRVw2g04/Ofu4NqWpEoyepqH6UlW1sT6tqyuT0OyzxFjfWEShQlcU6htQoaMSKIG5aNJQWWMsW0Mcwag/CebidDeUDKUGKsVWgsJwVF5HDLzScRJth2ZaVHmmq2NieUVcPOeMr25ohpUWGcRyWKJKr7Kq1wjUYLj5DBDqmAoZFUtWXSGMDTyTNk4kFFDio4akhB1Rh2RzNuveUkGEuiFKurfdJMs7M9ZVrUjCcFG+u7TGYVxrlQrizmHCS20SSxnLk0Fo1nyUjqJnDw3oeqnTTByz0OIjqfVWMYj2ecuG2dv/zLT4S+OEsdOr2Una0Zs6JmOivZXN9lMitprEMmKoy/Dxxco0NpeeSgvGc5C4rT48bgvSPLUkg8XkhUEsquz+ugHFJZ1aJFixYXIi5oByVNFEmMDJyOEC1RWCnBOhIB49qECUlC3yp2GsO4sWSJZCkPE/Pe03pYm/DeU5Q1bHs+/ZkTfPpzd6KA+x0Jre5v3ZjQxP4du+MwOTnnSJREKwFe4ZTEGkUuYNJYprUNSbtWMo0cUi0ZZimKc3Bwns997k4+94VTSOCylR55qrh1Y0JpQk7DeBL6nzgX9F2U3OPgIodxY5k1lgGevtULDkoKVvIM7UN3WRl7f8zb3Zdlza73fOELJ7n19k3wnkuXQ6v7W9YjB+GZTgom09M5EDio4CyWxjKpLX08XatojGHUWLQSLMcEZg5wCEsdVdWw66bccvMpbrt9E+c8l8ZW97dvTpnUJog4TgMHa+1imQUPiZJYZckFFMYxrg0d77jEaqyxjJuQd7OcJyQIbIxq7S/vraLY34nb1zm5tot3nouGOUcGObduTJhUBimgmJVMJiXGutCML1ELDk4HB7GyjlFl6DhHx2pcExwUhGAlT9CEBm5KK4Q6f3hEHVIC36JFixYXIi5oB8U0BvzZlniisJsLSziJkqg0QQpLlmkGeUpaO4QXSC1JlKQ2oS2+w+Is4KHxoV18NVNMJwXTKuRaVNs9lBR8fn2CAXq5xhpH1VjkvgRcuVhOAa0lKuaVpJmmn6eMHQgbxOcSLbHGLZIznQ2uV+NC8mOlKsqiZFwacI7ZSpdupvn8+oTSenq5BucpGhOWDuRpHCA4DCJwSBLFIE/ZMR7pQodUrWRILPbzbqo+2iEkbFZFRTErmVYGbwOHfq753NqE0jq6WYLCBzvJPQ5BUTlykBKVCIQPHPp5QoVANiGiMLeD8x5nLD7Qjxw8hYCmrJhWNvRXWe4w7CbcvD5lYiy9LEHiKWoTIg6ncSBy0Klc2KSfJxgpUU1IRgldaH3QJrIOH4UXiS3rSwmmrJhUIQl6Z5Bx8bDD59bGjGpLJ9OkSjAtm0VH3AMcPCG3SWqk3+PgIge/n4P3OGtDN9zzfCbaJNkWLVp8peCCdlBsbRHOnH2HmNwphSBJNIN+SuphqZMwXMpZTjOKWUMqIa1rClPH9uJhUgAW+jVOWaxTzGqLcJ5J1aCkYFo3QW1WeDCOxtjF0sy8UkVFzZc0UfT7GdLBcidhaZgxmzYsTarIoaG2VdCAOYSDlxLvPbPa4K1nWhscMK0bKuuRIuRTNE1wDuQ+Mbx5W3mtJf08R3lYTjXD1Q7LecV42iCFJ2sazCzawYWKl4N2kHgXOLhoBwRMq4bShcqYxHvqyqDUHge5fyy0ROUZwguWM81wKceUhqWsRAGZNTTTKlSwxA7Anj0dnXky66wODsqk1kgVxmLWhKZ3Gk9dH7TDggPBIeh1MjyCQaIYLnfwtWEprcISjzWUs7BM5Y1daOIENWSPifmqgYNjmiomtWFaG2Z1kAH0UlBXTTinOp2DCE5SN8cj6GnFcKWDjByc93ScpZiWgYPd0+U5F86pTdWiRYsWFxDucQflFa94Ba985SsPbDt+/DgnT54Ewhr8K1/5Sn75l3+Z7e1tbrjhBn7+53+e66677u6fLCoVnxUyTAhaSbJUky31aKRiqZsyXMpY0hlFXpF4h9r16MrE0uV43Bg98c7jRRC+c7EaYy4u58ReVRBROyW2DtvT04mVQGmakA67pJHDYJgx6zQspyXae9R4QlkbvLcLFeb9HBwxqkDIjTEiCA4GHRmwkYOPPU3Yr+kjBFoK0kSTDbtkSgfnYLXDJKsZZxXCe5LRmKoyWB80jBYcIg8ngkqyi+cMHA7awUb9o7Dw5aIYHkgVOCSJJhl2SZRmOU8YLufY0rCcpEjvSCYzyjIk287PG3SFYiRDRNVlgoieQZw5HnM7eM7gMNfSSQYdtE4YZJrhSgcqy7IOjfCS6QxTG8xc5HF+n8VrC6XP+zgIQcPeWDj2BCi9mAsf7nGYix5m/Q5JmtBLAgfZWJZ1iXOOrChoqoYm6iid816fY1/zvBYtWrS4r+HufD99SSIo1113HX/0R3+0+Fvtq7R57Wtfy+te9zre+MY38sAHPpCf/Mmf5IlPfCJ/93d/x2AwuFvn8c7h7VlC2gIQQb1YSUmaJXSW+litWelnDJYyVnRFnVVIY6jLEjWVQeU2Lmfg95Rn3bz+NU4yc2G3Rd8OT5y8wiQOEiE8HomUkUOqyYc9bJKwMsgZDjKqTs1Up0hrqOsKrSqssXsOwj4OHhnbhQiQgYMRe8tJcyE658LSlUMS6m4kQu4THBz2cGnKSidhsNphOauZJSU4R1NXqGmFtGfhIEIUh1i+O5+cfRT1c/g952ChDO1DNQ1hGSlNNf1Bl26WsdJNGS7n+NKyqhKwFmcNk0kRepZEZ3HhILngbLjFWAic3MdBzoX2wtKMiEnGIPBSItSeGnF/0KXbyelnCcPVDqKyrKgEZy3WGYpJgRQi2iFwcP5MDkIS1akDh0WVT9w33CPht4/LXnLOod+h2+vQSwMH3QQ7WGPxOGajGSo6XXMO5/5Q3K2PUIsWLVrcZ/ElcVC01lx88cVnbPfe87M/+7O85CUv4WlPexoAb3rTmzh+/Di/8Ru/wb/5N//mbp0nOANn+UYW4IVHIBZqxCvLPUSWcWSQs7SUMUsrbFbiq5qdnV2UkgjDQv13TwU4tLeXxJ5mPkx6odFYnLAXE/Ne5CA0Qws5DXMOy0s9RCfnyLDD8iDDzmoqneDrht3RJHCI1R6LSXE+MUcbShke0b0MEQMpJTIuxTjvokMVHAiPQMqw9CLjU/vyUg/Z7bDcTVla7dDkNXWS4Yxhd3cUOYhDOHiECFEcIYLTczoHAfv4ikUztHlTMhUjKEvDLrLfY7mXsbyco0rLVGqcMUxns9BlVpiQXOvcgkOISBDb7M+rnGS8XhnszXwydzgXOosEX8YRSs6DHYbDLnrQp99JWV7toCvLVCU4YxjPCkZaIaTBLzjEKE5smjK3gxTBDjYuo80Vkp3di765BYfgO8/tMBh0SFaG9LKE5dUuWeOYqBTTNMyqip3IAeMXHM75mWg9lBYtWnyF4EvioHzmM5/h0ksvJcsybrjhBl71qldx9dVX84UvfIGTJ0/ypCc9abFvlmXceOON/OVf/uVZHZSqqqiqvZb2o9EIgKVzqRmLkPPR6+YM+jmXXbrK1dddSdrNWRl0WOmlHJ/VbI4KmqLkFuEgSZhOS6aziqoOlRrGOIwx4YlYCERcAqqqJjydGxMiA0qTdlJ8FvRq5uq3aaLpdoLg3P0vW+XKh1xO1u+xutRlpZcyLhsu2Z5hyopbtUAmmtG4YDYrqarQW8UaS9OEXBsnBaIOS0B11YRlpcYgnEcqRZKlpEloVKYTtci/6XUDh4uPLXHtQy+nM+wz7GUcHeRcWjZcultg6oZbpEdqzXhSMp0GXR6/4BAyh/0BDqE82UcOQimyPIlSAbFEN0YLup2MQS/n+PFlrnnI5XSXhwz7OUcHOWVjObY1wdQNd+YahGQUFZnLsl7YwRgbnEclEY1BGEdTN5TC44xBWIeUQYF4wUHv49DN6HYzjh8dcu2D70//yDK9bsZFww5VY7loZ4ppDCdyjZKCnVFQQ563qXfW0cSeN0JJRG3AekxtKKomjIV1CCmDnpMKDeOSaAelFd1OUEQ+tjrgAQ++P0sXrdLJU44vd6iN49jOjKZqONXPEN6zMwrdgWdFdd4cE+UdzWR6lz+rLVq0aPHlxN35frrHHZQbbriBN7/5zTzwgQ/k1KlT/ORP/iSPfexj+cQnPrHIQzl+/PiB9xw/fpxbbrnlrMd89atffUZeC8D9Lj9+VjVjIQSdTsrq6pAjR4dcfdUlfO1jHxp0U+Jk4b2nqg1VVfP+lQErnz3B1taY7dgyPuimNJRVTVnU7O5O8XWYLDfWqvmJFiWkw+U+eScjz5KFwF2ep6ysDjhyZMDVV13Co//Rgxgu98mS0GXUOkddG4qi4mPHlzny6dtZX99la3PEbFYu2sxXZeCxuzPFN4Hb1noVIh2E6IhIJIOlPnknJc9S8jxBysBhdXXAyuqQ+9/vGDc+7mH0+l2SRKFiBKiKbfk/dHTI6t/dxmbUjxmPC1zkWJZBE2Y8muHrAuc92xsVAoEXobmZ0IL+0pC8k5JlCXmeolWYrJdX+hw9usT9738RN9zwYFaPLpHoWCruPWXd0NSGT/zNUZaOLrO+vsP21pjxuAhaPs2eHcajKX4W1H93NusDHFDQGw7odEPX3zyORZomrKz0WV0dcOmlR3nMYx/KseMrJFqhlcR7qKN+0icuO8rfHF1mY303tK0fzwKHaIeqaphMZlG80THarhjvTMKCmhAgErrDHp1uts8OoQPu0nKfI0eGXHrJER7z2Idy/OLVWL0UlkKrxmCt428/eQuD5UHQE9oas7s7xZ5tSTNi591/wl/f9H/PuU+LFi1a3FuYVGfXzzsd97iD8pSnPGXx/4c97GE85jGP4ZprruFNb3oTX/u1XwucmSSzXxX3MLz4xS/mhS984eLv0WjE/e9/fzY2zq5mLBB0uhnOg9SS8aQgSxPyLFlM6kIIOlmCN5bxtGRnd8rm5ojNjaAn45yjsSFy0ERl4jxLcMCsMuA93TxBQuihMS6oasNUK1KtgnPQSaMOj2Q0KVFC0M2SRRtzKSWdLMHUhums2sdhl+mkwDqPMYbGWOraUFcNeZrgBcxKg3WBgxLgrWM8nlHVDTNdkSRhOSPP0/DELyXDpR46Xjf77ZAKnFdMZxXbO1O2tsasr+8yHs9wzmOMpTEmcChr8lTH5m0GYz29PEXJsLQyGs+o6watFUmiFzlAxjqUUiwt9xfXLZhL4Ag6aYL0UJQ1O7uBw+bGLqPRLEQujA0/jaEsajKtINXMKouxjm6ekEiBczCZlDTGUswqEh2qfNI0CQmvUtDtd8L4xbGY59TkqcZIQRk5bG6P2VjfYTwKDoqZ3w8mcEgTBVJT1ZaqsXTzlEQJvIPxuKAxFh3b4islSRO9qPTq9nKw7sA9CZAnGp9AXZtgh+0xGxu77G5PFlVVZ8Odt/8Ng+3bz7lPixYtWtxbmLmz6+edji95mXGv1+NhD3sYn/nMZ3jqU58KwMmTJ7nkkksW+6ytrZ0RVdmPLMvIsjOXck6e3EKp9ND3CCDvpJRlRV03dDsZo40dkuMrCK0pPWQCsJbdrREnbl/n9tvW9qIX03KRFOl9qAZJtKLfy8LyQmLxHvqZQjjPdFoxHs8QkzDRzbVw8k5KUYQlo04nZXd7zNKwC4nGQGjMZgzT8ZQTt69z221rQal3c8QsNjtz8fzee7SSDPp5WF5IggBfPwtdSafTislkhphGDR8ZOGRZQhGjH0IKNtd36fY7CKkogDzaoZoUwQ63r7GxvhO6sU5CVct+DkoKhoNOaCiXOJoFB5jNKibjGbOpjHnKUZQwTZjNSpqmQSeK7bVtjiz3kImmFgIFSOuYjKbccWKD229b49SpLTY3RkxiFGfOAYJDO+zlqEQhU0dtAgcNQdxxWjCbFbDPDmmqw1hUNR7P1voOlxxfQWhFE8uPpQ1t/O+8I3BYO7XN+vruIoKysAOht83SsIPUCp16ZG3odxISoCobxtOCoghPC3MOSaKYzkrqOrTCP3Vyi0suPYLUigpBIoIdmrLi5B0b3HbbGutrO8FR251iz7PEM5tVbb/7Fi1a3Hdxb1fx7EdVVXzqU5/iG77hG7jqqqu4+OKLec973sMjHvEIAOq65r3vfS+vec1r7vaxy6JCqcO/sOeJptO8JB9P2d0es762G3Rleh2mDnpK4CczNtZ32dkeMx7PmE4KillJWVQL8TwRnY1UK7TWoCSpl3g8Wqug4SIE1tqFMyP2cUhTTT5O2d2esLmxS6+ToQY9ZkAO+MmM7c1R4DCa7qkBF1XsATKPMAXVXa2DNkyKQ0kX8jy8R8omNHpjjwOEBM9sWjDJEkY7EzbWd+n3ckS3w8RDVwnErGQ6mi44TPZxWEzIkYNK9YJDgkMc4CBjg7eYTEvgYa0lSRXjccpu5LCy3Ef3uxRSkkqBmMwY7UzY3hoxihyKWUlZVlHdmIXTk2qN0gqlNYnwICw60aiYROwWzoRf2MEaS5pqsjxhtDNlc2PE5toOutdhJiUa0EVJOSvZ3hozGs2iHUqKYs7BR9G+MBZKBR6pDOXfidZoPI2yZ9ghcFBME01nPGO0O2VzY5fttR1kJ6NQmkQJdFFSjAu2N0fxfpgd4HAuWGvbNNkWLVrcZ3F3vp/ucQflP/yH/8A/+Sf/hMsvv5y1tTV+8id/ktFoxLOe9SyEELzgBS/gVa96Fddeey3XXnstr3rVq+h2uzzjGc+4+ycTp/0+/cXYe0JKGSaRVJNnCWQJjYNcCXyTkKUapaPqrNxXauEPO/hcjXifE+AX/5yDg0BpSZZo8jRBZQkGyACahDQNE91cHFDMZ/bTOMSCocWWxaR9gMPijYvjzDnIWE2UpQkyS6g9ZCok/5o0QUeBwrkK8N6xTrPDaZcrFnv4M/eO3tpiLJQkSffsYKUkkwLZJFRpSPCVUYn4bN72/itdXKuH/UVdYt9+zIdViEXjtDRR5KlGZ6GLbAJoZ8HYYAcVBQ8XhjzTDgt1an96Bc2Z98PcnnNNn3nybJaFsbDRQUmsxWUmJDlHoUaxKAFq3Y8WLVr8w8A97qDcfvvtfM/3fA8bGxscO3aMr/3ar+X//b//xxVXXAHAf/yP/5GiKHj+85+/aNT27ne/+273QAGQWiPV4ZcgRHhdRBVYhMDbWPFSx9JRK/CNwRsbFWf3KwnrA06IIHQvlbHUVlmHA6QT4F0sQZaLtuyLyVCrqMirQs8O60K1SdPgvQhl0o3BWxvOs1ARDhzw7kA0RAlCpMI5pHV7v30sg45icY65nyWiHfYUeb21eGNwTYNzAqcEsjE4YwGxp/6rFTJRB6JCELuh+qAKveDgIgdPFNYjOFILDmqhTCzmY2FMOK+QOCmCHUyoVhJyPwcNbq/Pe1hCC2MhT+fAnEN0Hea8xT476KAQ7J3HNRZXNzipQoO1xuD2c1AKEUUTkZL9db5SigUH5fwejzkHKUHu+RRChGTquR2QMvR4aQxOq1CWrGS4J5tQYh1UkPdsgTu31o5oJJjWiWnRosV9FOfrlbAP97iD8ra3ve2crwsheMUrXsErXvGKv/e5sl521jLjoDWjQSmqxrG1NeZDH/40g35OkiYxQ1XQVDWTScnmxpiysXglSTpZaCtP6GCK9wjnSfDYugl5HcaCB+uCWGEiBXkni426iM25Qs4BWlEbx87WhI9+9LPccvOdpFnK/Bm/qRums4pTa7uhk6yU6Dwjm/dYmXPwntQFDk4K0saReB/awQOKULnk5oJxUeAuSTRCKWrrGI0KPvrRz3HrLadI0gTvQCiBqRuqquHUqR3K2uCEQOcpeeyHcsAOfs8OqXUkbj8H6OYpTu1xEITokUg0tfXs7s74+Me/wNrJTZI0CT1VBNR1Q1nU3HFiK5TszjkQeo7st0PiPN4YjLMkxqFj3xMDSDx5FjjMk4Dn+joy0TTWM5mUfOITt7C1sbPgAGBMqCS6/fZNirLBIdBZQh7zkeYciBycCc6lco6ecUBsg+9cGIvTOSiFTDWNCxw+9be3Mh1NQy6NCNEz0xjquuGWW9YoygaLQKcJeS8PHM4B2Siov5hPU4sWLVrctyD8eVtT3vcwGo1YWlrixm/64bP3QSF2Tk1DP4x+ltIZhATXvhQse9gVMA692akmNaOyomkMpjEYGzKNXUwQxXp83VDG7UMTIh67UU05VxKZJvgoxifjhKRk6AWSJJpBntHpZ3g95yCYCM+OCxN/NakYlzV13WAas8gnCBwIUYS6oTBh+8BaEg+7SmKFIJMSnSa4qN6rDuHQT1O6wxy0pCMFRxxMJOzGpmz1uGZcVtSNoWkajIl28B7n5hwMRewNEzh4dpXCRA7JPg7zpSIpZcjPSCOHQQaJoisFK15QCs9WtHMzqxnNAgcTOfh9HLxziMZQNgYL9K0l856RCsmumRSRgzrIIfaEUdEOvUEOqSKXgiNeUOHZJpyjmdaMi4qqaULL+3i93ntstINoDEUT9JC61tF1jl2tqIUgFYIsTbD6TA7zseimKb1+hsw0qYCjCGoh2PIuVE7NDKNZGTjE+/J8H9YnrH2Kh47u/KI/Wy1atGjxpcTMWb7nlo+yu7vLcDg8574XtlhgYxDnUDN2hKfRUkgqZszWHDWeJe855gXrwrMrBAmCvlCU3kXdGbdoKe5Dk/JQZTJfogAyrZDeM1EKy1wwd67P4hf5CA4WHOpRQbHmKPEMI4cd4dkSkCDpImmYVw2dhYMKyxMCyJwi856xkjgE8/QZ76O43GEcRMGJjW0qPD3vudQLtgRsCY+MdjCLaIFbPLH7aE8Vy7alDOW5cw5zO6i4/GIjB7ePg60NlJKagpMbngJH13uOe8FUwJrwqMihiQmup3OYp5sqJZFij0PHe6ZSYsTcDmJhhwMcGouXNYaStc1dZjhy77nEC4rIAQR9VNjfu0M5iNM4JC5cyyTmi4QlPxFsaedF5XscKllTU7Kx6ZniyOJYlAJOzTkIFRrUnWaHcyF0uW2reFq0aHEfxX2piudLibpscPrsFytgocPSICglNISLzp1nJgUlYADhoMaHpMd9VSvzPASpJHkemm4JIVh2IefDyqDVompDVTVY50Lkw7pFBYkXIR/CEiagSng0gvGCg8cgwIGZT4HzpEsBUqpQ2iwleScjzUMPk2XvSb2nkRLjQTUNddlgnAvqx7Gq6DAOdVyJGjnPNHKQCKRrsPNE11hBdDqHLE1JO+kBDkZKakDXhqasaQ7jQJAHMAgaAWUcurH3zAhRFBU5LGIF+7KCQxM2hZaSPEtJ8wQvJcvehyUYKSm9RxmLKRuMnY+F3adhEzg4BHXk4ICJ9xSRA5GDI2gLSb/ncM5zY3TsFJvEZb2hh4FzNEpSAspYbFEjbFSFtnZfF9g9O5h9HMbOU4nAwZ/GQfg9J+dccNYdnjPeokWLFvcB3J3vpwvaQZnnApz1ZcA7ohZK0GxBhsmgIWjIBLEXHxR4Y1Ks3FcmIwSLaotOL0f3Q/+PYXRQjJRYZ3HTUBJsG4NzLj71+gUHJzwWgVehisMRlIDt/CQ+qN+6eF1zDnM9m9BpVNPpZuhhF6EkS86jvccoSeM8flaBm2IbGxylmC+x3w7WC7wOoRYPGPY4eB9Kkh1R82c/B/bEBjvdjGSpFxq/zR0UpWicwxcVM+cwjcU6H4495+D3OLgYavGA8UEBeM8OMeqxn4MPFTUyLlflnYxkqYtXiiUgcw6nFLlzUNZM/RRTm4VNF9EoH5SYrQ9jMefQeIHdx2ERCdvnpEFMzpWh1DvPU9LlHijFAOhZR6MluQeqmpl1YamuCWOxn4M/hIMRp3Hwfl9ps7+Ln+wLbsW2RYsWLQ7Fhe2gcB4HJX7Jh8iBRyiBFDJOBkF0TsRnexeXAgTz7QACiYgOStD1yVf6KKUWDopXEmMsNYK6rDHO0RixSKY8nQNSLbrmGgjninWq83yX/RzC87yIzoGi283pLPeRWjH0oJ0LHJynkpK6rIOzYuL5DnAIyzT4oNHjgUZEbR1CxMTOc27O4MCiHXunk9Ff6SPUPg46JOE2WtEUNcp7vBV7jlqcoF28HlTgAGAEuLg0FOzgzmKHKLIXOfSW+ohUMwQS60ArKmsxk5KmrKmtx0sb8nfi+eflwJagbixFWC6bcwiU9jiESFqsxJn3gYkc8k7GYLmPTDQ9oGMcPlFUzmFmFWZaUXuPt27PUYu3rJtfUeQwvx+smFc+RQ5uL3ojBed3Ulr/pEWLFl8huKAdlBAVOMfrMZdinjMgODgpIgRKgLDz6EXMcIjJjEQVYB17h/T6HZZWBuhE03NhXy0ljTFMrGUyLqiMxQqzxy9ycPs4qHgSE50DJUC4gxMzMdFWyL0ojk403V7OyuogJHr60HVUaYmxjolzTEdTamMxdXCSvAsT8rxK13iPSPb6nBgbln/UPufA+oN2CBzEIpLU7easrgyQOkzM2jp0omiMZSZgujMhMRYX1Yj3cwiN2j3Cy0XejsVHReTgJM3twILDwjc4EMVZWemjsoS+EGjjSBJFZSyllMxG06BpUwf3xvt9qsyIUA2k5CJfxbroJEnABYdu3lZ+XtYc6SySjvNOGuyQarpCkDahWVzlHFUyY7Y1prQWG0uGF07a3A4+OM0q2tm6PTvgQhRnPwcP577hW7Ro0eIrCBe0g9I7R5mxJ6zHN9aF5RvjEHH5xjkojMMJiY7VsD4+FSsp0Co00VJSkndz+sMuS8MeV111MZddfXEo+bRhAq20pKka1m7r4p0nG02ZjmcUE4W1Frufg3UIQuTFOU9pHR6JVoSnaynQSqHnHGSohOn0cnqDLv1+hyuvPM7l114WS18B46gThbGGtds3wDp2RlMmI81sWmCNjXo+FnOaHbyDwjq8kKg5BxFUf5Wcd0oNHPJORm/YYzjocP/7HePqh16OThIyD8I6mkzRNIbNO7fxtSEbz5iOZky1xEYF4saG1vzeBgdIxmjGwg5ibgeJlmIxFjpyyDoZvUGHwbDH5Zce5coH3Y+0m5ELiWgsTaqoG8PO2g7COtKdCZPRlNlEYRqzx8E5vAmOoIxRjdI6vI+VTz5EbnSiI4cwLnPpgt6gS3/Q4dLjqzzwoZeT5CmZkMjKYHJNbS3jzTG+rEl3p0wmM6ZKLjiYyMHFfiUyOi5zDlKIkP8jxKJZW7LgcO7PhK4U3HUtrhYtWrS4z+KCdlCOX3KENDlczdjjaRrLrKwpa0MxraBpkNYzbRyTwtLrKPpJbNiVJfT6OVmq6WQJWexoOlzuceTYMscvWuHRj7yWBzzofiitQsjfA0pgjeXmz93JcKnLyVPbbG7ssrM1pqkNdWMoqoaqbphOAgdlbeBQWjqZYpAGDj5NyHsZeZrQyZOgeKyDuN6RY0scObLEI7/qGq7/qqtCRZEjNPrSAu88d96+wV/0u5xc32ZjbYftzVEQOTTBDlVtmE0rfF0hLRTWsz0zdPLAAetxaci1yTJNN0vJMo1SisGwy9GLVjh6dMjDr7uShz/iAehEBzs4D1rinOPkiU163YxTaztsbuywtTGirpog3Fc1lFVDMauwVY12lsJ6dgpDmkiWMgXO47Si0w8cOlHgUSnJYKnH6pEljl20zPUPuYKvftQDSNIESWj8hg5t9tdObrE06HLizk3Wox2qqsYYS1E2lHXDbFZjywplLZWHrcKSasFQBG0lpxVZLyfPErpZQpYlKCnpD7uLsXjQAy7jMV9/XWjzj8AZi0gUzjkmu1O6WcKd8X7YXN+lLCqMdUEXqW4oihpTVChrqD1sFwatJUuECjGrJFk/cMhTTSdPFxHAs6FT3AKTdp2nRYsW91HchWrEOS5oB2UyLkiSw9VdPdA0JkxIjaEuG3pakCpF4QVGg0o0qYLGGqZFhcdTJxpTG+q0CU/QiaY/qGmMQWtFr5uhlFokPM7LWZNU0zSWqmqYTaugZFs31I2lqOrwu6jpKUGiFAqJtQKhJakSNM4yLSusd5i0wTQpdRI0b5JU0ys6NHWDUpJ+r7M4734OaaoxxlKVTRDtmxQL52BW7nHoKkiVpBFgtEdqFRR4vWNU1lg8TR3skFd7ref7ZUVTG4SQ9Lo5OvaAmUPgyeYcqnrBoSrrhYNS1YaqbMiEJ5EJtQCnWdjBece4rLEickgNTW1CJEcpOr08cJCCbicjTZMz7NDpZFjnqKIzNJkUlEWNsZairKkaQ1E0ZASbOQROAzpEjQSOcdFgvMfUDaZOyOvgoAgl6fU71HUDwKDfRcr5WCSL/CJbNVh7kEMxK4ODEh3WsmxIvKOTpqH8WIPWkkQLpHUURUMzCRyaNME05rwOStPYu5cm36JFixZfTtyN76cL2kHZ3Byh9eFqxnhorKWqDSaKtg2Wu2itSZUg9YYk02jhsY2jLArqpkFLySzRpEkQBmyMRUiBUopTp7a5+ppLSLOUxsX8lNj5c3Njl7W17ah+u8PW5oimbmiMo2oarA3LLL1hh0QrEi1JkaRJWOJxxlOWBUXVoFXQ7Em0QmuFsXbR/2N9fYfptCDNUpyHxnoyHVror53a5tTaNutr26yv7bC1sRuavhlH1QQ7NE3goLUmQZBaQZJpEuWx3lDNn+6VJNWKNNFoLakaE1rYe8Ha2jZlWZOmGktIhE2lwDvH5taItVPbrK3tBBXe9d0QvbAujkVY9kqjg5OKILw4t4N1hrpqKE7joJSkbgw+5qGsndpmPJ7RH3TxCIz1pNEOW5u7kUMYi82NXcqixlpLGSt76saSdrNgBylJnCRRkiQBsNR1QVPVkYMmSzVSCurGLByhtaNLjEdTOt0MhKBoHJ0kdP9d34gc4v2wsb5DUVRY66maJiw1NZZhJw1OqJSkTpJqSaIDh6YpqauaMiYn52ly3iWeqqxpPZQWLVrcd3HXv58uaAelqhuM2VfmcRqstTTGhqRPDwgJUqC8IIu9LMCFMk/vgxKwCM3anHVo7Ujj0+9oNGVjY5eTp7bIujk27EaSCKppyfr6DqPd6UL9tixrmjgZNo2Njc+iIrCQKCFJlUerKNYiQ+6DdS50KY0cjLHMiorppGCUJ2xujLjzzi3yfo7zElMb0kxh62bBYTze41A3BmsddcwD8VF5WUiBQpIpiY6lzyLmX1jj8M6F5SPnMUai02CHPE/Z3Bxx8uQmaSfDE6qYslxjypr1tR12d6dMxlGBt6ypqwbnXBgLFxWGBaFsWAhSJdEy6vfE0m9r5xzCb6kkSaGDHUYztrZGnDq5zbSsQSqa2pBlmqasWFvbYWcn2GE6LSmLmqqqQz6QCWPhrNvjICWZ8iF6IsBLF+8fNy8Fw3uHkpJZUTGZFmR5wvbWmDtPbtIddBFKUc4aOt0E2zSsndpmZ3fKeDJjNg12CH1yfOhWHJOiBXMOwQ6JkggZOXh/gEPohXLuD3dIqm2XeFq0aHFfxT+QJZ7FdZ7lev3+//iwBDGvTtlrmRW/8mOPDn/6BBCrPOZVLDpGNYjzgNYSqxVq3uFVLI64j0Qs290rTDn9FMT80Mjj4DKdCM1IQofSyCHROvTR8B6tFcK5wEHsczb2n2heOrzfMgs77Hl452oHtrCDnHNQBJlEQaI1aIuK7eVPt4Pf/7/FH2Gf/X8umHgOjNPeDnuqyFoHHkiFd0Frx2u1SOxdVP+cBn/IfXM6h8VOp+0T+tLscUiiHVAapV1YDvMuKFPvkzzYf6i5pc8Y4337HKDt98aljY20aNHiHwouaAdFKrlQ7z0dnqD6K2RoFC9in6u93+GJdLFNisUTvZDhuEJJZKykmf8oEX78vOxVELbF14UUSBUmL6lkKF12Mjz9ziM5xKfhhePEIroSnurj+WVUFo5P+VJKVCxLVnGmcvMS4ViqKvfxEPE9zscOqD4oEC+uH7/3fxH/v+AQj6HEPjvs2WOhN0RwBFTsIxJEevftG8coBLAcoQm8P8hh35gQi8IX4yHl4jrE3K77xwIgNjhTQsQy3bkNZOwELBfyAHvXLxb9TfbuA79Ifl44evLg9YvFvbCnNTS3v1roH0X7qL0xkPEYHrfgIr1b3H+xQctZOczPKQ7zuPZ/JrRGcpZlzxYtWrS4lyGtucv7XtAOisqSs+ageEA6h2gs3jmUDyJvZczxOJZInDGhzNZ7+p2UZt+TuVQKpUKH06JsGI1m3HrzSRSQxooKASHhsWo4cccGuztTiqLGepBpyJsQziGTkHehY/lqUYakz6Na4qyliG3Qe52U2oNUYpGYKqXECUFZNYzHM26/bY0Pv1+RZskBDk1juPPOLXZ3p0xnFdZ5ZKrRUiKdQyYKZ10oqxWCsjQwt4O1lLUF5+l1EhofHBO1iEZIvBQUkcMdJzb48Pv/Fp2oRWVJVRuqumFtbYfd3QnTWYlxDpnoMFk7hzB7HISUlFXgcERLvAscvHV084TaAzKWPOvYzExKqjpwOHnHJh/50KfJ8pReJ0MIqBpDWTZsbo7Y3h4znc45KDRpOK8OHIT3yP0clMR7R1WGZaU8T5DOQ4wWKR2dAyUpa8NkUrC2ts1HPvh3JGlCtxPsUDeWqm7Y2ZmwszNhOi1pjENojc6j05zYUPHjPUqrwEEKjmh1kEOmEYkCKVExWiTOE0M5/vXfyAOuXL5nP2gtWrRocQ9hUhbwYx+8S/te0A5KmiVonZx9B++xOkx6qYBpY6mKhpVMc7yvuHNi2a4MqZYMuhmli0J4em+pxHuYzUqE93zmsye4+dZ1lBBcutpDScHtG5OgO2MsW9tjJtMq5K8kGqX9IqfDWUsmoGgso7JhKVVckqVsFpbNoiFVkl6ekPj4xJ6oRTQDoJhV4Byf//yd3HZiEwlcstojSxQnNiaUxuGsYWt7wmRaYq0Lyr3qIIdcwMw4RmVDP1FcPsxYnxm2ygYlBIM8xcQuq0qrEEHYx0E4x823nOTU2g4Al6x06WSa29cnlCY4g9s7E8bjAmNt6OOh5CKvxxpLClTWMS4beonifv2UUeXYLBqUFAzyBB2yYYNjIOVibaMsG3bchFvkKU6t74L3XLzcpddJuHNzyqQ24FzI/xgXGGPjdYTIjdMKa8JYVNaxVTZ0lOTyYcakcdxZNggBgywhJURkVKIWHIQQVGXNyHlOSMHOzhQ8HB3mrAxyTmxMmFQNeM/u7oTxqKAxNl5HEjhYhW2CHRrn2C4bMiW5PFPMGscdZQMChllCMucQhSrPh8ue/E088MmP/uI+UC1atGjxJcZoNIIfe8Fd2veCdlBCK/DDy4whzGmhI2xodIUD60IVSD8JDdGslHgV8ggaE/u9Oo8LazFYYygd1GXNbFIwqw3CeXaPBAflCxsTGqCXaYxxlLEEdt56NHAAhCDVksKDcaEzbE8rRspFDkFrx1kXBA69X3RTtcZSOk9VVlRFxbQyeOvZXu3SzRSfW59QWU830zjnKGobnIrTOAgZSnlnXmCtR0rBIFHsKIuLyyFposH6oAkTO6/OOVSuoSlrylnFrDbgPFvLHQZ5wufWxhQucBDeMy2bYIeYgzHPSFFSkkhBI/Y4dLWiNB4bl2MSrUNCb0xImY9xHTmUM0FT1cxqizGW+y93WOqk3LwxYWIc3VSD92Gs5om3+zhIEUu7IweUpKsVjQMnQ5WOjhwMp3NwVM5TFfWCgzWOiwcZx5dyPrc2YVxb8lSRSMEkOhsHOPg9O1gnMdaTyXA/WOdx0W5aK5wLLfDn9/v5sCeK2KJFixYXNi5oB6UpDV6f5aky+giSkA+QaE2/k6OdZ6mTsDTMWUoyZkVDJgVJ0yCaEGXwNiwHQahisS40zaq1YRIdlJ08dFvdmZQYwJkEbyy1sXFpZi8/Q4oQmNdKhuUIS+SQMZvW7OY1qYDUWuqixlmLs+zp2EQORoamcKPK4K1jJ5NUjWJ3UlI6jzEa6T1VbUPOgjqTg0oS+sMc6TxLqWZptcM4qxhPG6SAxBoaW+NtjHgcwqExmnFl8M7TTwTWWnamJaX1WKPReIrKhE64h3LQdDsdfA+WUs3yUo4tG4ZZhRKC1BmaosaczsEHzSQhwDvLpLY0jWWgBc45dqYl08ZhssChPIsdAJTUdLsdXBcGiWJ5uQO1YSmt8EDmLFVZ463b0+WZ6xpZRyME3lrG0UnKpSfTsDMtmdSGutHkSlCUBimJuVJR+HFuB63pdjJcN6enFUsrObK2LKUVDsi9pSxO53Duz4Sz53diWrRo0eJCwAXtoBDLUM+GkKAY9HLSVKOHPXIhWeomDIc5S0nKbFqT4EnGU3RtMHPnJB7Xxxb1TgBeYuMk08SETCuCMrGdl6M6Tyjxicmg80RKKUmzhGTQIxGSpW7KYJgx6zQspSUJHj2ZUdYGYml09JIWHDwS64PQHSJEAJI5hxD4WZTlhsf1QzikimTYJZWKpUwzWO0wTGuWsgqJJ51MqRuD8y6UrM4nvH0cXNSM8QQF3mbBwYf8m+jQ+LkdYhn1gkOiUcMuWiqW8oTBUo6pDEtJifKOrCipaov3QZVZOBcm5lgmDSJo5RCShE38sTFZ1gIy7jtPBRYxeVXGkuokUeT9DkppBqlmsNLB15YlXeC9J5sV2FgOPC/9Zh+HoIh8kEPDnENQiJ6XdXsvQnLsPOlV7QkOJoMOSmt6iWKw0kXUliVd4pyjU5aYeq8k2c05nBP+vIm0LVq0aHFv4e58P13QDor388n4MIQSDSkESgnSNCFb6mGVZrmfMVjKWE4yqqxCWoOtK9QsTr7eBUdj/tTsHM4FfZRQ+homobmK3Fyhds7HB8WfA2F9FQUHs2GXbpKw3MsYDjOqTsNEp0hrMKZBz6rQ+8LGPiQxihMmxeiECPDRQTJC4KUIyxD4vQl0nk4pwBN6ayglSBJNPuxik5SVTsJgtcNyVjNLK3AW2zSoWYU0bs/pOoNDKMf2EqwQGBG0jLwLTotzbp9zwKLWV8hQ6ZImmu6gSydLWemkDJdzXGlYVQlYC96hJ2XQMvIeb/dzCP933i/sv+AQx+RMDnMnSS6WmbRW9AZdOnlGP0sYrnYQlWVFJeG93lFOS6RxOB+dxLnjFbywuAwlDo7FYRyEwIvAwcdqKiVDuXq/36HT6dBLFcPVLqqxrOoEaxxi11NMIgf2OJz7Q3EPfLBatGjR4j6AC9tBcT72LjkTgiC+Jwj9S7JMs7LchzTlyCBnaSljllTYrMTXNaPRGKVC07G5U+L9fJKZP43vleHOJyUh5oWzUSnXhbJm4lO7FxKh48ScJiwv9SDPOTLosDzMsLOaUqfQNIymM7SS1IKoehvO6W3g4MS8yVkoPXX7OYg9m7iotOziU7sXYVlkrgS8vNRHdHKWuylLqx3qvKZOSpwxjMeTwEEKMOxxcAc5SCmjmrTAChn7goiFHcJkup9DWIpTSpKkmqVhF9HrstzLWF7OkaVlKhO8MczKMtohOl4+jIV3scGaFOEaRVBl9jJyiOW4EJwo52LpbnQWXbxTlAyO2tKwi+z36HdSllc76MoyUQnOWKZlwUQrZG0Wjomb/3bB/fPeI0WocPLRUZpzEELgbOQQ7R8cFxfLlkMUZzDooJcG9LKE5dUuaWOZqBTTGMqmYqQlshFg9jic8zPR5qC0aNHiKwQXtIPS7Z5dzRgEaaLodjJ6vYzjF69w+dWXoDs5R4YdLhpmDEYVq7szTFlxoqlpHExnFUURhPW891hrMcYtJhgZO3U2JuQ34EKrMikUKgllvSo2c5svJXTzlG43cLj/VZeQ9LocWepwbJizOq0Zbk8xVc2dNiwxpZMiaOfUQf12Pwchg06Ldx5jLbUhdJ51HqFkqJoRYq8sNebfdDqBw7GjQ6666mLSfpelfs6lKx1WJjXLuzNsbThhaozzpJOSWRHa3s8dg8bYRZ8WYUKEJ3TrlcEOzocS6UQDUYk4UQgRSrc7eUqvm3HRsSWuuPJi8qU+S/2ci5c7TCtLb3OCqRvWpQ+t6MdFENarmkX317kDKZVENGH5x5rAzdvAQSi/KMnVKoyHjErRnU5Kp5Ny9MiAK684TmdliX435bLVLkVt6W1NMY3hlHTY2qInBbNZRVk18X6Yc2AfB4+L+UeBQ3CilFZkGYsGfzJKJnTyhG434+hKnysvP07/2ArdPOGyIz2qxtLbnNHUDZuJoKka9LigKGqKsj6vA6KDNPY9+TFr0aJFi3sQd/376YJ2UC6/+lLStMNhFyyEoJOnLC/1OLLS5+qrL+YR/+jBZHlGlmryRFE2Qaunrhr++vgyn/7sHWzvTNjZnTKdVjjnqKpQtVI3hvGkwI5nOOsYizAJNdMCISUq7TFc6ZMmmryTkeUZSknyPGV5qcvKcp8HXH0xD3vEtfQGPfJMkyUqiugZqrLiU5et8nefPsHm5pjt3SmzWYl1nrqsKYvAYTItsKMZzljGwpIkmnoyw3tQSz2WlvskOnDIOylKKbIsYWW5x/JSj8vvf5QbHns9nV6HNFF0Uk1tLEVtcNbxN5cs83d/dzub2xO2d0LJsnM+6NJEO0yLkvF4FOyApUw19XgWIkyDLsPVPonS5J2UvBPEFdMsRCxWVwZccf+jPOLRD2K4PCBNNJ1MY6xjVjYYY/jspy7ibz5+M5ub41AuPC1x1lFXDWVRBSHCsmY6GWFrwwRLXSVUkyI2pcsZrPRJF3bIUFqGCNawy/JSj/tddoRHf82DWT66TKIl3SyJQn4Gayyf+duL+MQnbmZjY8TWTpAwsNZR1024H+qGoqoZj3exjWFqG5yzlONpiJp0MwZHl0iUIstTOt0MpYPG09Iw3A+XXrLKo294MEeOraCVpJOHyqFZaXDO8YXP3MZHjy6xEe0wGs1iK/uzYzDs3R2x0BYtWrT4suLufD9d0A7KZFqS1Ie/JgQY68iyhLoxIARHjwzpdLJFkk4eu7oWswok1I2hKGom05LJJCQq1lVDXQY1Y2ssiRB4JUApfNRPEULirKMsa0xjMc5TGxeWjKwjTTW9XhC6W17qceTIcEGyAwy9ZzotUVpGBebAYTotg5ZPWVOVNcaEipFECrySCKVwc/0WH5ZhirKmkVEDyAYNm46xZFmsGPGe1aUew+U+8wSZPHJw3vNJLamNpSxrprOKcbRDUzVUZYUxlqY2gUPs2eKUJNEydsZ1FEXgYGzgoJQia5JQSdVrcD7Y4dixpZgnE5ZyBn1PXTfckiiMCSrQk1nFeFKECE7dBGXk2gR1aSEWnWrndphr1pRljVVB+6exofV8lprgEHVSrHMMBh0uPro3FhA4GOu4Jaoyl1XDdFYyjjkxTR2cSdMY6ng/qMjBSkGiJd44pCfcDyLcA8aFpmxpGhSqu92guDzo5Vx0dLiQMwDo98Ky5R23nqQxlrLaG4vzOShNc9e7NLZo0aLFfRkXtINyx4mNsy/xxAhKMS2oipLBIGeyNSY5IpGZXjRhc7VhvDPhxIl1brttjY2NEZuxA6h3HmssrjEgIEk1vTwL8/qgE3IKTMiQbZxnd3cKziN1WO4RMnCYTmaUs5LhIGO8M2HY7QQOKmS92rJhNi6448QGt922xqm1HTa3J0xn1aK52X4O3SwLtSn9DiJRZCZU/BgPo9EUrA+dcCOHPE+ZTWcU05I0FWxvjuh08tAMLibY2tpQzcrI4RTr6yM2tsYLR80Zi40cdBLt4COHdB8HIgfjEFqhkgQpBVmWMBnPqMqSLFXsbOyy3O+h8iTYAY+tLbNRwZ13bnLbbWucPLXD1vYkRK6sx1mDbSx4j041nSxFJB7RzxGZxllCBZSAybjAGxs5aGSs5JpOCmbTGUrB9saIi1aXkeleEzRbGZq64eSdGwsO65tjxuMCu98O3qPS0ElXeI/oZoheRmo81BYrYTye4f9/9v481pbsrvNEP2uIiD2c+d68kzOdGDBQJo2LMrSrrFLZ4Kn8ZNEUqG09pHq422rRBVjKti1KptV65qnLbowKdwsa9FpCuMoUGOkJv6p6RdMYUZi23BQ43QabwXhI25l5hzPvOYY1vD/Witj73Hvu5HSS55r1Se28Z58dO+Ibv9hnr1+s9Rsai1AKlQcNWaaZjmeUixIhPPu7R1y8sINsC9oBrrY0Zc2Nawc8HTUcHE0ZjeZ3rYUym5dfvz+wRCKReB55oB2U2WyBUvY2rwpM06AlZEpwsHfM9euHmMYz2FlDDnPcomG2P+Hw8JiDvRFHh+NY/XPGfF531U9xrlsiyPLg3KgiDxkkeRMdGYNpwgMZZjeEEJjGhPoiEvb3jtm9foQWirXzG6hhjisN090Rx8cT9veOOTqacHw8ZTKeM19UXfwHziGVIMs1ea5DNkovR2iFyRuIlWRNYzC1BSkQddDQNE3XM+hgv8eN64dkKqO3NUSvF/jKMN+fMJsugobDpYbZvFwGCVvXleHPslZDhsg1Nm9wxuGdxSwspjZQG4RuEEJS1w0ST6YEh1sDblw/ol/0GG6vk2328MYxvT5iMp6yt3scrsXxlPF4xnRWxSDdqEGG6q6ZVqHOTZEjehpbGpwIZfOtqWgqg68NQoWicVmmY98gz+Fawd6NQ7bW1+hvDsm3+rjGMt+bUC1K9naPOTwcc3w0YTyeMZsFR83b8BBS0NeSrNAhBqmXIYsMW+R4DI13zMoaUzV40YRrISVZppAi2GFtkLN744gL5w7J1/oU20NwjvnehMV00Wno7DBd3NVBaZrb/T0kEonEg8UD7aC06b2nIUTXM3alee9KA7jYeE2KZSfZdp9tO13f9ZBd3cfyEY6zqmel7Wybknzy7SHItK2HETWslrRvT2j16EsNy4OtZpILVl6K2tuWyMs+dMu9dQ0BoxbkyUygdkc+dtxt97GqQdDms4tOxIoVu/MPgSkxRXdVIrFwmxSImILb6enOeNl9ealh9Qdxyz/tw3fvuuktJzTE5pA3P9odttctFkhrbdHu0J845jKl3J84ztJmfqXY2/IMWtvHWi1Sxi7IyxPxrKS8p/iSRCLxt4QH2kEJ8QcqPrvpm1uE+AilVFhy0eGOO9eSLGbjeCkwSpHH15VWSC0RWiGUOjGqCSnCsooLHZJDITeJiPVSBCH11kkPMT4kdDaWSC27/edakStJrkITPydDCfyTGhRShSl/L3yXHhs0hCJkQhCO7VzsUhw78kbni5UuvlKfYgelyKVExYE215ImZh+p7vhRgw8l19qib0K0XXdDd2Tcih18SP8NGsSKhrC/NsMpa20hBdo5vCBo0nKpITZMFEohheucjtbBkj5kUAUNvos/aZ0nKSU+fg5E/Lf9zCztEK5F5kJtF6MlfkVDp0NLsK3fFzXAsvtw1CBcbIbowzU6oUGGY7fXI9hCLjXE91klMdFOUqvu2kmtloXzbkMq0pZIJL5ReKAdlHxQoO4Qg6IzjdeK2jpGozl/8dknWR/2WdscMNzoMZ+UjI/DMsbx8ZTKOLxU6F5OLuIMhLF4a9EiBMRiQvxBr2kQUjKvQ/pppiVFL0dmLjgnWoVuvJkCraitZzxe8Fd/+RWuP3PAxtaQwXpBNW84PpwyX5QcHkwoGxca9UUNfkWDuklDUdcor5lXDdY5dMwaarQLTpJWIEKqr9eKxnqm05LP/eVX2bt6yGCtx9r2gGpWMz6eUVWhE3DZhN48qpeRE+/8rcMbixKQawVNq0GjhA8arENrSa+X0Wi11CAlmVaITFE7z2RS8oW/fprR/oThRp/1rT5NZTjan1KWFbu7x5S1xQmJKvKgwS01SDyFVojYliCvw1Leoq4xTdRQZNQqaCCmW2utEJmm8TCf13zxC88wH83pD3ts7AxoKsPxwYymabhx/YiyNlghkEVG3tbEWdHQyzXChL5IRS3J8/B5MHVoDtgrcmoZzp/sVg2zRc2TX7qGmRt6/ZyNc0NsYzk+mFFXNdeuHlDWBiMEMs/IBm0l3dsjtUpJxolE4sxyP99P9+2g/OEf/iE/93M/xxNPPMG1a9f4yEc+wg/+4A8uD+49P/MzP8P/+r/+rxwdHfGKV7yC/+V/+V/4zu/8zm6bqqp417vexW/8xm+wWCx4zWtewy/90i/x8MMP35eW4bB3hzooofeNEoKmMhzsj/nDP/kcXgjOD3JesNHj6rhkd1Yj8JTjKXVlkELQzzO0Clkpzlissag4zT5ahI6+/SrENYzKGisEg6ygV+QoH7I1VKaCk6QkSkia2nC0P+YTn/oCTkgeGuRc2SjYn9dcHYcy84vJnKqskQQNmVJh9iJqkKEmKqNFibeWvKfJvGdc1dTOMxhEDZnvZkuQAi0lWkpMY5kcz/k/P/V5vJRsFppv2h6wO624Pq0AKCczmrJBeIIdpOz6z9jGIAGFZ7wo8daRFYpMeMZlTe09fV3Q7xVI41DZUoOSkkyFLr6joxl/8mdfwkvFZk/zyGafcdXw1KgMAcfzBdWiRnjo5Rol4yyOdTgTmhRqCZNZhakNupDkEiZlQ2kdPZVTFDlS+xB8GrsydxqMZT6e86nPPIlXT7GWK160PWBaG54alTjvqWcLynkNztPLsk6DNw4bNWRKMJ6UOGPZzgTDQjEtaxaNoxAZ/UGBVC50yI4By1IKcqVwJgQE/+mff5U/++urDDLFi7b7zGvLV0dlKKO/KKmihiLToTjcXf68My1JcyiJROKscj/fT/ftoMxmM172spfxX/6X/yU//MM/fMvr73//+/n5n/95PvjBD/Jt3/Zt/A//w//A6173Oj73uc+xvr4OwOOPP86///f/ng9/+MOcO3eOd77znbzpTW/iiSeeQHVLNnenXWY49TUA42iMw/oGX1Y8ee2QeWO51NNMNnp8YVRyrTL0tGJHS2aNDaXKCZVo8bGjThsjgMfIkGmhVWgWaKTEhDKtIXbAxc7BbSyJcRgTUoVlVfOV68dMGsPFQnO8XnB1XvOVeUNPKza1pGxsKKN/igYVYxNMHCyVkuRaYqWkwYNSKCkx7dJHfL+3LqS6Rg1P7Y2Y1oadTFFu9/nqtOKpuUEpwblMURqHiaXklxp81BBiRxoVHBelFIVSWCVpnKcvJaqNaVnRgLWdBsqaa/sjxrVhO1NMNnsclA1fnNZoJTmXKRaNw3KKhtgLSSqJkZImLpsUSuKkpPHQu8kO0p/U0HjPqGq4cTjhuArNBhdbfY4rw+enNQjBuVxhjKO+yQ4EBcHhUSIsxziPkLLTUMuwXKWkRMiwfatBWI+1nkXVQFWzfzTlqDKsKcF8u88kavACzuX6Vg2JRCLxt4T7dlDe+MY38sY3vvHU17z3/E//0//Ef/ff/Xf80A/9EAD/6l/9Ky5evMiv//qv82M/9mOMRiN+5Vd+hQ996EO89rWvBeDXfu3XeOSRR/i93/s93vCGN9yzlnJeofXtv7QFgI1pwFoytp6F8fQbzaHwjKYlk9LSaIFWgpkJJdGFFF3QaYy1RWc61FDJciSerXNrKCnY9orGe/qZpCobrDE4a2MPnKjBhS68PpNMHEwbR69WHOI4njdM5g21EggtwjLTaRo8qEzR6xdsZRk4z/bOgEGu2XYqzBxoiYkF15y10Ig4pNM1MvRKMvYwaxwqlxxqGE1rJosmNrALGtxt7KC0ougVbGcZ3nm2twes9TTbTnYaXBNs0LibNYRaLUZJSg8T45CZ5Eh6jkvDZFqjlUDfyQ6Ekv1FnrG5pbHWsb01YHOQsY0mqy29LGqo3SnXIi7VKMkCmDTh50MFo9owmdQhnTuToWqsD839Og0x8llLSZYVbG2vBw3rPbY2euw4SVZZ8kzGJSiHsRZjTrGDFNRCMG0cTgmONExqw/iEBo/xoUqwv4dbD2tSFk8ikfjG4Osag/Lkk09y/fp1Xv/613e/K4qCV73qVXziE5/gx37sx3jiiSdomubENleuXOGxxx7jE5/4xKkOSlVVVFXVPR+Px+GHGBh5J0IHWI+z4d4XAU5AQ+hC2w5e1rquz4tAhoyMleyKLNP0B71wZwxsbAcHZdMIGu/IYlO7JpZidzHtw0Nodudc6IPXaQgN7mzM1vAQHYs4BXOzBhniF1oNeNjYHtLPFZtGUFiH9o75dIE2NtQuWUlz8jb0kLFiqcELQUPQ4Fc1xCZ7q3ZodWgdKsQWWRaKq0UHZbMRFMaiBZTTObqxobngih2IKdNtB2AIWm7R0MabiKUdiLMWUoQuwL1+Tp5lOOfZ2B6w3s/YtBJVGzIB5WxB1azaIWbDdBo8Ls6GOQEGui7RRA3OhqaLUqxqCIGvWit6vZxenuM8bG70WFvvsWlAVgYtoJ6X6NqEz9apdhA4KcNnRIgTGvwJDSCFO5kydjt8CpRNJBJnl+etm/H169cBuHjx4onfX7x4ka985SvdNnmes729fcs27ftv5n3vex8/8zM/c+sLy8zZU+m6zzqPFQ6kio3rlp1nRaxian0YmCUhc6bN8RSxUmiWKQbDHqpXoIRgY2cNJQTbVlBbh29CtVddG4y1Iasj5saGbsguJv6saGCpQRAHpJgdpKKGNmulbfTXHxSofg+JYGNnSC9TbFlB2VgwDaZqqFSDWWmW1zYeDH19HKiTdnArGmw72yNCxk6rQXYaFP1BQT4cAILNnQGDQrNtBIvGgjW4ukaXDXZFA23zQ+dxwuFXNNibNLhoL9+mgcvQjlEgumJnvUFBNhgAsLkzYK2XseUkujJIa3FNg9YK07TpueHD0mqwwi+vf7SDbZ/H7WzbyfkWDaJzUIqNNTywudFnfb1g0wpU2SCcY2IMWqmQVmxtl6rdNnR0cdlM3lFDzF6KzRDvzj10PE4kEonnifv5fnpOsnhu9pDatMw7cadt3v3ud/OOd7yjez4ej3nkkUfw3t05q6EdFD0YC1KFIEInBLPa4kQoTS69w9S+614MMV1XiFAcTWvyPGM46DHcWUcpxdpagRSCc1JTG0M5njEbz0PGjHfY2H2WOEg7D431CBk0eCGYN2E2IWjwmCbcaQsX7ppbDUKFbKAs0wwGBWvnNlBKsT4syKRgR6hQnn48Zz6eozMdzsPErI+owXsfNCgVStPLYAcLsVz+UoMHRDujJARS0Wno9wu2zm8ipGB9WFBoyY7QVI2hni5YjOdkWchuEnE2B7/sxmtsiNnIYvDqvHE0ftUOHtvGezgPsSOyBLQO3ZD7vYKNc+tIrdgYFvS0ZEdqepXBLEoW06jBOay10Q6saAAkZDqkgs8bR+M8SguEA2t8dFDamjoupBXHxn95ril6OTvnNpBKsjnI6WeKnfOaXt1gyppqOifLNc6HQn6thvCZ9JhgFrQOzseiCfExSgu4RcOds3daDj/5pzxd7bMMRVs62/cXnnbz9qv74ab9c4fX0rHTsdOx07GXTOaze9726+qgXLp0CQizJJcvX+5+v7u7282qXLp0ibquOTo6OjGLsru7yytf+cpT91sUBUVxa7ZOoRVa3/4UnHMIKePMhEcJgdIC6zyHkxqTSQotwAgsItSnECEeRUqJlIJev2CwPmBjfcDFi9tcfPQCOs/o21D7ZOOKDJ1nrx6EzBOtmE8XSOKykXMI6cNsgvVIAT0tcN5zNKtxSgQN1uOQnQalBEoGHUW/YLDWZ23Y46HzW1z55svoIqPvQFjLxhWFsZaDq4fUiwq0Yj5ZIMUCa8Jg2EgXOwIHDYUOH6jDSY3NJHkcFF0tETpUndUy9pmRgryXM1wfRA2bvPBbL6MyTc+DtI6NK5rGGI5vHFPOyhDjMV2wgK4DsbEOG5fChBCdhuPWDllYa3GIUPej0xCKuRX9nP6wz9p6n/PnNnj4my+R9Qv6CKSxbGTBWZzsj6jnFUjJbLpAzsA0rQaBiHYQQKFlp6HtrYRwuEaEEvWS0KFaBUct7+UM1voMh33ObW/wom++hO7l9IRA1Yb1y5raOWaHE+rJAicF82nJgtAnp9XQ2YH2WoigQS01+E5D+CxoFdcD78Az/59/z6c/tHvHbRKJROL5Yu7uPU7u6+qgvOhFL+LSpUt89KMf5bu/+7sBqOuaj33sY/zsz/4sAC9/+cvJsoyPfvSjvPnNbwbg2rVrfPazn+X973//fR3vBQ+fJ8t6t329aSzzqqGqG8p5jTMN0nrmjWNUWvp9TV+LEMfSy+kPC4pM0ysyilyjtGJjc8jO+U0eOr/Fd7/sm3n0Wy6HQl9xmspJgbOOp758g09/+ovc2D/maH/M6GhC05jQrbhsqBrDYlZFDZaFcYxKR5FL1nKJtx6KjN4gdFvuFxl5plFasrG5xva5Dc7trPNdj72Ib3vJC0Pxrrh842VwePavH/Kf/tNfcWN/xOHeiOOjCU3dYExrB8NiXuPqGmktpfWM5oaiUAzz0GiPIqM3jB2fc01RZCglWVsfcO6hTc7tbPCS73ghf+elLwpFzDxhwFcC5zz714/4T5tDdvdHHB6MOT4cU1cNxjgW8VosFjU2aqisZ7ywZJlkrQgafKbprRX0ck0vzyjypYbtcxucO7/JS779Eb7zu14UUpkJ19CpcC0O9kZ86twGV68fcrA/4vhwQlXWWNtqMMwXNbaskMZSe8/R3KK1YK2nwqxNpskHBb0ifB56sZfO2vqA7fMb7Oxs8OIXXebvveI7gh0gFFFTEuc98+mC/2N9wLW9Y44OxhwdjCkX1QkNi7LGLGqksTRRg9KCtSJ8vpwOy4pFEa5Fv8juOhM5bJ6GRVriSSQSZ5XncIlnOp3yhS98oXv+5JNP8ulPf5qdnR1e+MIX8vjjj/Pe976XF7/4xbz4xS/mve99L4PBgB/5kR8BYHNzk7e97W28853v5Ny5c+zs7PCud72Ll770pV1Wz71S1xbvT+/e6r2nbixVWVM2hrJq6EtPJiULJamkZyAlhQxdj2dVg9QSHyuyAmQxZkMIQZ5rtrbWuHJxJ1RXjduIeKz5eBH6sgiBdY66MdS1oWkMZVVTRw094ckzSSUltfQUSpJLibGWRd2AEhDTY/Ee5VTUEDKJNjeHvODyuRC/cZMGGkNeZCgpQgfiqKFuLGXZUDcNZVVT4MilpkFQiZAem0mBd55Z3eCVwLcVagmZO9Y6BCFIdmNjwOWL2+ibioIJgMYGDSrYsqkNVW0wxlJVNWUd7JD5YIfGC2oZU6alxDnLrDGIMjpM8QBahVkigCxTrK9HDZm+xQ4KEYrmqTB71jSWOmooy5qqMZRljXaOPNO4qEFKQSYlwjtmdYOrwrUQPmQQKSUxMUtGKclwrc/Dl8+FTKNVGwCT8Yyilwc7eN9dC2MdVdVQ1g1l2aCsDRoQNNIhlCRXAmlhWht8VQcNziNj/MudsG3sUyKRSJxF7uP76b4dlE9+8pN83/d9X/e8jQ350R/9UT74wQ/yUz/1UywWC378x3+8K9T2u7/7u10NFIAPfOADaK1585vf3BVq++AHP3hfNVAA9vaO71iorTGWqm5orMM2lsFGH51pciXQ3pAVGi091ngW8zl106CVpMg0eabRWYjtaAuu7e2NeFFVkxdZjJEISyHWGI6OJuzdOGZ39yg0edsfLQfF2mCcxTSW3rBHpjWZEmRYslyiVcieWUxLyqphriRFrsmzUOa8HRTxcHAwpqrqODALjPNkMrx/b3/E7o2j8IgaqqrBWEtZBQ11bemtRQ0IdE+QFZpMgfMhlqasa+ZKUWQ6zCQpSVWbLkhzb29E05hWEt6DlMGpOT6esrt7HDUcsb93HNKvraOsGxpjMcax2c9DbI8WZF6SZxKtw9JHNVlQ1jVaKYpMhWuhFVXd4AnH2ts7ZjYrGa71Q6Ct8+ioYTyesbt7zN6NcC0O9kaUZYUxQYOxjqo2bPVzMq2wUpI5SaYlWSZAWOpJybxqWGjJTC/tUFZNyKbxsPfQMYtFRV5kIAS1c+RSgnccHk46Dbu7x+ztHlPOK4wLx26MpW4s60U4t0xKMntSQzMpmddBQ6YVvfzuMyhlWd9btk8ikUg8HzyXWTyvfvWr7xiFK4TgPe95D+95z3tuu02v1+MXfuEX+IVf+IX7PfwJFosKpW6vxVhHbSzWxbvgGNOhhaCn2264YYbEOYdrPNYInHGYxqBjP5Sil9Pv5ezuHnHjxhHFsBdThkOQZTUvuXHjkMOjCaPjGZPJnNmspGnCHXNjbIg5cL7rlaOFoHAxOFWGoFHvQkE1a8BZi2kUSkl0rsl7OVmm2d095trVA3pr/XDXXVuKXGHrUJ796GjCaLTUUNfBOaijBmfCbEzQIOlloUy/FGGpyDuHcaF6rbcWa0yIQ9GK3ignzzR7u6EzdDEocIQKtb2expQVN24cLrshtxqqBus8dWNC0GfsUyOkQAlJkcUAWelxIgzwpgkanAkOmpKhj05eZPR6OXt7x1y/cch6OQSlqStD0dOYRcX1awdheel4xng8ZzpbBA02zGxZH2fGCEGvSgYNuQozFF6GTJ/GWpwNnwdrLDL2FirGOTrT7O+PuHp1n8HGACEVi0VNf5Dj6obr1w5DN+S2K/SspFxUOOe7z6S1DlFoZKw2XOjWDoCMsUMmaLDGdtfuTnTObCKRSDzgPNC9eFbKfNzm9bhByDCl61IrTmYadT+2NUNY6V4b4zxcl6rrYq2Q8Fobg+LaQmh+2bk3Zrae1LE8ahggxUrYo4/HRnTH7f6N2Sc+pguH+h4ypqKGZSXXvbaioz391TocxIOuHjv+1Opum+Kt2qCzg1+xA8u0YNumz8YslZvfv3KSJ44pTvzUbhXtwOq5tJlWvqsRYp1HsNRjow1ufs9p1+XktbjFIEu53q9cl+V+u+tgHSBw1nd1ZNp05tvquPmD2x7+NnGwPn427qlaW1rjSSQSZ5bnMAblLBFmI27/hS28WPEAwqjU/uh8N1SvZE+F7UUsjBa6EYdMlpBamtEvMopeTmPDG3MtkdZS5GGqXimFlLLbB14snSEROt/KduhtHScRAk1DEMXq8WU36yO1DCm2MYi338sxPrzWKyRWQJ5nsQtvmG1o3y9WNbR28OFnR6thGXsjogMnYu2NtoeMUrETcRaDeHt5mMVpFL2eRnt/ix1kfP/yWohgB0AQ6oq0TpSI16e9MssCce25hPPSWpFnil6R0y8yUBohJP2eRnu3oiF2L5YrNhUipA0vLwkCv/w8eHHSP4gzPW2hOiklSkmUDjVhekVOv5fhpcY76PdyrBQURba0g5KdLTwypAyvOshRR+vMiZv/fsXSFncvciSSf5JIJM4uz2UMyllCZfqOacbCKVAW5z0ypnRaY1FeMLQOZUzo9wL0ihwfU0m1kqHJn1I4IaiNZTYruf7MPn/1F18h7+UIRzC0FtRlzTNP7TGdLagagxOhLL0XIJxH6BCsSUyvNdYh8QysQwuPlUFDkecoGXrdhOOH5QcvBY2xzOcVu9cP+dxffoWiXyBcaGYocoVtDE9/5QbT6YKqNqH6aKbQxFoiUYO3oeiatRZJsENmQ0cA5zy9IseIEOexqgEpqaOGvRtHfO4vvkJW5EgEzlhkoWnqhqe/usd0ugidgAnddbX3SOdBq1ATxXmklHGZxTNwDm08VoUZhiLPQg+dmOas4gCPFDTWMl9U7O0e8/m/+ir9tR5ahPNvNVx75oDxeEZZm1BXRitUkSFcKBCnvCczDqWCBlyrQeAIwcJ5roHQ4E/L4BxKIUBKGutYLGoO98f89V9+hd6gF3r/lA2ql2GtYffGMZPJnDIubwktUbkOjqiSKBdmw5RSWONAhM+DIlSvxXnyPMNnrYbYCfkufxNikTr2JBKJs8v9fD890A5KUWi0zm77uvee3GWdg1J5x6KxZM6zbj1lLRiL0MhtbdDDqvYuma68PMCirDk6mvK5v36a6wcjlFIMXWhUONOSxlhmxzMOD8bMyxrvPFmmYwZHrM4aNTR4qsaivWdooPaWsRRID/1+gbtZQ7xjLsuGkZ/xhS88w/7xFJkp1lzY51SHxniz4xkH+2NmVY1zniwLNTRu1eA6DevWU9WCiQz1Qfr9AhdnPVR0VESchSqrhtFoxpNfus54XiKVYug9ynpmmaJxlsV4zuHBmFlM69WZCjMHPmRFueisOO8ZNxblPQMDxlomKmjo9QpyGcrKKyGWMyBCUNeG49GML3/5OuPZApVnDD1o65hnkto6yumCvd1jposa61yINRJhdiLPQk0a6cB7x9hYZLwWRsLUhRmIopeHgNeooZtFkYKqNkwmc55+apePGYPKNH0gbyzzXFE7TzUr2ds9ZlLWGGs758J7cHkowCYd0GmAgQnLdUFDcFAyFTTI1g53+ZtQSn5d/rYSiUTi+eaBdlDaFYPbv94O8AIlPTNrqL0jA9aEoPJQ4smlZF1lNDIuM7TrPj4U+DK2ol7UzEYzzFO7CATnXAiyPFAS6z2ZdTTWUTsPMQajXSqRItyZZwpmxlB6y5qHYajPRuU9mZAMtcbJsMjRaQBMYzDWUy1qFpM55pl9EIIdF3oA7UuFwaNtCLysfexl43xnIykkDkGuYGoaKu+QPtjBRA1KCDaihq6xXVxvsMYyn5fUUcOT1w8AwbZ3FFFDTbCDs47SRzucokF7KK2hco6eh4GAOUsN66fawWPj7ElVNlTjOV+5doiTgi3n6XvHgVRU+OAIGUvl20q67oQGCWReRA2WPGoogbEPy07rWoOSN9nBY41lsaioy4ZqsuCp3WOcEGx4z7pz7CtJCWjnwVjKGD+EW9Hgw3KP9lBbGzV4BkJQAiMfFrw2stM03OMfRiKRSJxFnsssnrNEtWiw+vYnK0VbiVOilWI4GJBL2ECw6aERIfBQO9C1pTEm9D5xNizJAETnQokQSlnKZb8YARxIiQV6Lg5ghHgSEWMawkyMDDqUYrDWQyvRaUCAwaMcZLWlshZnLc7ZEGS5okEKWACL2OTOOk+GZ19KDFA4H0rFi9M1SKXCrMdan0wJhlGDE2BjXEpWrWoIrQRO01DGJnfG+eCgKEkDFN6jnKcWIG+jQSlFv9dDKcEgatACKjzSQ147ytgVuu1jtKpBCKiAMvauabyn7zwHSlIDufco7zHEGBMf2xfEGJJWR3/QQ2pBL2rIowaihu7z0NriDhoq76mcZ09JKgh1XqIdgoYY+3OTht6gQGhBETUUUYP3kDehls0tGu6Ai9lJiUQicRa5n++nB9pBwbvQlO82CClRgJIhPbW/OcBmkg0hWffQSMA5ZONgNKfxIQvExjteCGG1XoRS+EIuu83WhN4wRoQqrtaHWA9HcBK6nBgR0kaVFKFC7OYAkyk2pGQ9ZqlY55DW4ccL7MJhbDg1H52eVoOLWSZWAkLQiDCYWgSWoIG7aMgzhdoYYgvNUAjWo4PivEfYYAe7cHgnYlO7k3ZY1eCjBgmYFQ2ibXAXA1BPaBCCLFNk6wNsoRlIyQYCDTTegXXISYmdO5q2E/FNdvAIrACjQl+lxnu0aDsSEzTYEAAc7HDSOZCy1dCn18voRQ0ZPsw+OY8YL/Bzt+yGfJMGEFjA6FYD1ASnyADSh6JpDnGrhrhck2lFvtan188opGQdyBFUPsw8yWmJn7qQNeXpNNz5byJFoCQSiW8MHmgHxdt20LiVdmlAAFoF52CwOYQiY11JNrzASZDGQt2wKBtU0+Djsgs2pqSKNrPT44XsOuBaIXAQB8wwdiwH5mWtD2TofaOkDFlAGwPo56xrxYYXsUS6hdpQVpa6bnAm9mqJjQ5XNTgZNLTdb4UPqc5tJoy7WQOACk6EkoIs06xtDqBfMFCSDQ9IAdbijaUsDVXdYK3tBuagIZx/0BAdhWgH4wk1VOI47py/VYN0CBRKCfJMs7Y+gGHBQCvWEWQixKHQWOrGUVZ1qAdzwg5xsUMIrBTRLqETctAgu1TiE3ZoU5tl8N6VlGRas74+QKz3KJRiA0EOWGdx1lE3lqazA7doaD8HSw10HbIRdB2LuzTpOEPlJQhF1xl6ba2H3BxQyOA41yLU73HWYqynLuvQ7JClHRKJROJvAw+2g+Ic7jZdXsO4G6biVSzwtb21hhoUrGWadR/G5bwx2EWFO5qhFxIrQoBiO3Pg4gAo4gxKG9fipFgWf3OxbsfqgBQHShnfq5QgLzRbm2vo9R5rWcZ6XFbQjcGWNUfjObOFQtQNbfdf7/2KhhgsKVqHQGBlG+fSOii3amg1h0ExlMvP1gf0M8WmE2gJmTG42nBwPGc+LzHCxFofsQMvAifaOAoV63UEXe2MTpvxbVc0uOigCCGXzkGu2dwckG0O6WeaTQSVAGEMrmoYTUumM4mpw0l19UQQnbMmaJdsBA6JxcV0XPA2zGq1xydqcJ2GMIOysTGg2F6jiBr6Ijis1liOpyXz6YImfh5u1RCK67UzIl6C8SHLJ8SLuO5arGoIETBLZ3F9fUD/3Aa5UmwJSSMEwhpsY5jMa6bjWdSwtMOd/yiSB5NIJL4xeKAdFK0V+nbl8UWYQi+KnMGgF/rHXNqmWOszyEMn4A0J87qhmpY0h9PQC8cTAkxjHECYzF+umslYscPFKQvp2xoexKwfgSTMWAgBWoeGe/1Bj/WNIZcubNHfGjIocvoeagEbdUMzr3CjOWVVx+DS5QzACQ0CJHSzFTgQcYak1SARKJa/01qFJa5BwdpGn0sXthlsr9HLNEMvqCTMGoOpGuzhlLKsgFB0rNUgictbnR3olnGs8wjFUkO7jIFHxd+pFQ3r6wMuPLTF2vkNennGEEEjBet1TbOoEdOK+aIMszcx4Nj5ZZG5NhaktYP3Pmpoj+dP16Cihn7BcL3PhYc2Wb+wRZFnrCEwAtab4ByIyYJyXgYHo5vBiHVjTrVDXGJbOd4yKHf5u7Yabr9fMFwLGrYu74SZLSFxUrDeNJjacGNeM5vM42fRdQXw7sTd66QkEonEg8ED7aB884sfJs9P72YsRCiWtbW9zvbOBo888hB/9++9mGKQo6VExtgL4xxN1fCnV87z5a9c5/howuh4ymJW4nxsOFiHhn/j0YxqXuKAugzOjOhppBQUWcbm1ga9ft718lEyNK3b3Fpja2edRx6+wEtf9s2sbQzQSoYaIvjQG6as+cuHL/Dkl69xeBC6Ic/nFc6F5YaqMVRVw3g0Yzovsa0G5xH9DCkEeZaxubNOrx+6ERdZ1FZkbG6ts7W9xqVL5/jP/v530F8LtTvUih2ccXzm8nm+9ORVjo+mHB+Omc3K0HDPGMo6aJhO5ozmJR6oKwPWIXoZUgkypdk6FzTkmY5dgAV5nrGxOWT73AZXLp/ju/7ut7C1sx7qnBAW4xpnsY3l83/1FJ/766c7O8xmC6wNZd9bO0zGcyaLEounLoMGehlKCbRSbG2tdZ2hi5jynWWaza01NrfXuHhhh+9++beyc34zFH+L8UDGhUydz3/TZf76r5/i8GDM0eGY2bSMDRgtZWOo64bpZMHxdB4+D7Vh1jjoaaQOjQ83ttfpD5Z2aDWsbwzZ3lnnwoVtvvvvfSvnLmyFrJ4YX2NiYPCX/voqf/EXX+boaMLx0YTJeN7N7N2Ojc/vwu7e1/kvLZFIJL5e3Pss7wPtoJgYXHoaQoQ0TqEkWaFZ2xjwTS+8QL+f35LmVJUVX/rCNfIiQyqF89DEANHGOoy1GBOyKDQe5wnpox56gIqzLmE7h5Th4ZBoD0hJlmesbQx4+Mo5ds5t3KJ3Niu5+swB+bXQhdf6kCHjbHBgjHUYY7HWoWJsTUmI0eh7H5sgh22MtSgjkdKhfNAgpCDLMwZrPR59+DxrG8NbNDjn+epXbpBfjZ2AifEQzkc7LDVo7/Ei2MF6Tw+PjrEajbFoG3rXNFaikCgf1tSyXDNY6/PwC85z4aHNW65FUxv2d48pehlStxpC75z2OhhrsTbUUAl2CBoK79GxyFljLdo6lHUoGWaCpPZhZi3T9IYFL7h0jssvOHfr58pYDvdHoRuxVp3TYGMquYkND40JGmTM6Gm8p0fI4BHOd1pbO3jCbBdCoHNNb1Dwgis7XL5y/taZD+8ZH03J+zlqstTgbvN5767hPcTRJhKJxPPGfXw/PdAOyjNP79++m7EIhc/mi4qyrBn0c6r5gl6RQczGUYR1kvlkwTNX93jqq7vs7R2HYmfTRVw6CAO0taH5zqBXhOAVrfEe1noa6Txl1XB8PEWpRVcJVghBr18wnS0oy4p+L2c+XbC1NUTIEO8iAWEt9aLi2tV9nnpqlxvXD9nfGzGflbHHzVKDd45BLwclETo4C8NehsJTVYbRaMZ0uuhKsksRZnFms5J5WSGkYHw8ZTjsgwzZSZKQDmyrmutXD3jqqRvs7Y7Y3ztmOlms9Nlxp2ow1rHWy1BAXTWMjmfMZgukWGrIi4zJdEFZNSglmY2muJ11hJJLDc5TLSquXzvkqad2uX7tiIP9EZPJPB77ZD+kXhGcGJllNMYyLDRahGJuk/Gc+awMdoiZO3mumU6DHZz3jI4nXLy4FTR018JhG8ONqOHG9SP2do+YjBfhOtg20yv83O8FZ07ljrK2DHuaTAiaxjAez5jPy1ARV6qYPaRjhdka5xyHeyMuXdyB7vMQroVrDHs3jnjqqV32bhyxvzdidDxdpr/fhpfMFveXx5dIJBJ/k9zH99MD7aCMRlOUqk99TQgRW8+Hm/StzSHXrx6GW8xBj5mHNQF+XrJ345jd60fRORlxdDRhMa+6Bm/EGii9IqPIM1ASK1WYQckVwjnq2lAuajz1sr+OEF08h5SCzc0h+zeOGBQZaq3PHEEPYLbg4GDE7vVD9vfCoHx8NGE+L09oACjyjKLIEUriVZjV6BUa6T1NbVlUdZe1Em7KwxJP+EXoFXPj2iGDXo7oFUwRDKRAlBXT8Ywb1w+DHQ5GYWljdquGPNOnalA+LI/MFguaRiyLtBFmTrx3SCkYDgquXz1gY62PXuszR1JIkPOS0dGUG9cP2NuNGo6WyyvdtRBhGSfPNTrTeO3RxtLLdZjhso75ogrBrd31gyzPgm2EJ880u9cPuXBuAz3oMZOSDNBlRTkvo4YjDvaPOTycMJsuTmgA0FJSZANkpkB7hLL0Cx3+qJxnOitp6hBs3GnINM67sByWKa5fO+QFl3aQvZy50uQSdFWzmCxWNIw4PBzf0xJPXRuSh5JIJM4u9/799EA7KG6lENgteOJdd8jKsMZQ14aqMqjcgZI01mOqEE9gjQmPuKRhnY8DXNh/2wAwjm9kmQ5T9r51BsSJVNC2PLz1oQKqaQzO2KChbMh7BV4rjHXYqqGuw/HDEooNd+gr2SNALLcObU6x1gqpZcgmcqsa4ntEaIzX3vGHc7Q0jaEqDUpnQYNzuLKhrqINGos1riuPf6sG0UXIaq0QWoXQVQfth89Zt6KB4LxYhzUWZyxNY6mqBl/kkAmsg6Yy0Q62e7TXos2QwkUNbV8a59FKggrBqN6ufD5O2IFuBshGGwc7NPgsg0IGG1WGuorXIS5ntbVQXOvwuBCEK2KRQOF8yBSTMZPJLR2SLrA1arBuaYfuWlQNSim8UlgvsGX4nWnCNibaodVwJ9a/7Vu48NC33/8fUyKRSPwNMKtr+PL/dU/bPtAOCkqHxykIAULrWLlUUOSKXq7Jlaafa9YKDY1jrlSYlchDxVmpZBj8tAoDiw3Fw8AjJNAYMIJicwBS4I9nKzMFYVAMFclU7IYcqrcqKSly2WkYFjlrucQbz2waAjmLXKGlWNGgQ6l268BaROxe7BuLMI58ow9a4o/noYJonF1wzoZ0V6XCwKh111G3yCVFnpFrRZFr1voZNI5Sa0yrQQUNUitQqq06FoJhfejP09ohX+9BroMGY0MGkxQYs9TQOhRSq1gsTlJEOwyyDDXIwMN8WsbZmbCdVPH9WuGdCBraZoNK4k0I7M3W+2SFxo/mwTaEdGzrHAiJUDL8Gz8PUkryLF4LrennGWv9DG895aLBa00vVyGQuXWGoi1xDkwI9JBKgrF448iGBdmwCHaoDSJqtMYEZ6XTEOwgox16RbBDnmk2BjnCeRZa4zJNr4galETo8JkKH8Lb803/j7fw8je94uv8h5ZIJBJfH8bjMfyb//c9bftAOyhZP0fp/DavClQeepkY55nNK77y5DWO9yesbQ0oNnpUk4rp0ZTxZM5sVtI4j1cSVWQhuNV7vLVgXBhYpUSYMAD2jIHYOM55yGSIszBxUBc6DGgq16AVjffM5jVPfeUGi/GC9b01ivWCet4w3p8wnS8YTxbU1oeOu0WGJta+iBqkgFxJpLEI7ylMhhSKsjE468hixk4TZxSEUiAlOlOgFcbDomx4+qs3qKYlg/U+/e0BzaxmcjSjLCvGk3nQICWyyMja+h/WgbFICble2qEwBimJxd0cOmbsCBE16KBBtRqAeVlz9ek9fG0Zbgzob/exlWG0N2ERl3lq6zoNOvb08dFRkx4KLZHWIqwnNw1KQdWE2R8d403C1I0EHZwkpTVkCgtUleHaMwdoJ+iv9xnuDDC1ZbI/oa4ajo6m1MbipETmGbrvkTH9m3juuVZBg/NkRpJZRdWEmQ8V7RByjZcatFaITGERlLXh+rVDhjonH+SsnVvDGctkf0q5qDg8mNAYixMCmWdk/VBV9k6ofoHs3SYuK5FIJJ5nZH3v308PtIMyGPbIbhckS1wCkZK6thzujfk//vivkFKxs1ZwcaPH7rhkf1rhnOVwb0RdG6SQ9Io8TLnHgdk2pqtjMV1U4Dy9KqTPTsoaKwRFP6fXyzEOZBbukkUMllVS0jSWo4Mx/+enPo9UmnNrORc2ehzNam6MS7yzHB6MqMomxrvEDBLXarAoPErCdFbhreN8qVFOMStrGuc7Dcr6cJeeBQ1KSbRUGGOZHM/4P5/4PFprNvoZL9gecDit2J2ElObD/WPqqgEIQahtddYVDVrCdFbjneNcIcnxHEQNeT+n389R2a0aMq0xjWN8NOOTf/pFVPZVNvs5l7f6TMuGq8chzmN8PKFcBA1FniHaSrlxeSgs6wjmiwrbWHZKSSHgaFFTWUfey+j1cmTmQxCt1sFBiRVkjXHMxgs+9Zkv8Zm/foZhoXlku8+stlw9DsGw46NJiCny0MuDHVx0WF0THMRcCWazCmccm1owzCVHi5qycWQ9HQJo29mrTIX+O1Kc0PBnf/5l/uqL1xnkmkd2+iyiBmMd0/E0zOh4KDINw7vXYWu7JicSicRZ5H6+nx5oByVXwQEIrEQvRhQe11jKxrLfGL5845iFsVwqNN+62eOLo5JrpaGnJZtKsqgMToT3oWSoKAsIr1AA3jP3Ie5EAgpY+NB/JZcSrRU4j1IqtL2P1VWdCRoOjeGpGyOmjeViT/PN6wXX5jVfmTUUWrKhJPPaYOO+kRJEq2FZ7Gvu24HKowmpvpWHTEpyrfDCo3RwjJAnNYwaw9WDCbPGspMpXrLd56lpxVPzBiUl21oybyzGhfTZbMUO0odCdULAglDK/ZwPH6LSeUofeu30tcZ62zlnyFhULWo4bgw3DidMGst2pvi2zR4HZcMXJzVaSba0ZFEbTFvtNzpJTqvQhkAGR630UDvYjhoq75n5UBytrxSOEBsilYxF04KGqrFMjGV/NGNcG9aV5CXbPY4ryxcmFQjBdqZCufu4fJd17QQUxoXroZVgBBjvWfOQA5WHmfcMhaCnQ0yJ1CGbSchYR9Y6alMzMYaj8ZxRbVhTkpds9ZnUhs9PKpwQ7NyiQd41Q0+lQm2JROIbhAfaQVnMSrS+/Vd2G0QpvKdWkpH1LIxD9TQbpmZvVLFfGfpa4pRgZhxIEe7Y253EuhJKS3pFxoZSSO/Z3FlDScGWDV18+5mkqQ2mMVhroT6pwTmP0ZKJ80wbhywUa3XB7rzhYN5QKIHVktI4/CkavPdIpSj6ofAbzrO1M6CfazatpLKOfq6WAabWgmhOaPDOY7Vk7GDWWGym2HUNe9Oa/XmDlgKysC+LQKib7eDJlCLvZWxsBg2b2wPWe5otI1hEDbTBsNZBs6oh1EmplaT0MGosJpNsNTWHlWF/WgdHIJNUxoXy/rHnzolrIQVZL2d9cw1jLFtbAzYHGVtOohtLP1NhxsfGa7GqwYcAXqskC2BUW0ot2bUNo9pyMA0Ois8k1saOyLdo8KFDdi9nY3MNax1b6wWbm322jEBVll4ePifWtgG5nNDgbbBDDRzXllIFDZPasj+tQk+f22m4A8bYu2+USCQSDwAPtIOy7Ph7uw3CoIzzGDzOhwHXArUHG7/wnfexQVsoqypVbAZHCDoVsX5Ff9gjE+EueGM7OCibVtA4TyY8s8kCFbNXfGyY12pw1mHFqgZBE7XExJCoIXQSbjVA238nzND0BwVahMydjZ1h6KdjBZVxZMKzmJXUjV1m36xo8K0dYrl4F+1gWg0EDdY4nAh9Y1Y1iKih1y/ItQbn2dgZsFZkbBpBbhy5gGq+QNVx5uUUDRYfeh4RevzUnKLBOrwA6WXXgE8SMoi0VvR6BZlSOOfZ2B6w3s/ZtBJVG3IpqOYllbGhX9PN1yLawYoVO3QaQu8dGzU4oh24SYMKbRTytSxo2OixvtFjsxHIypApMIsKXZtYu6XVAN47vA3F5ZxcamhWNPgVDdaHEvldJPYd/yi6/PJEIpE4e9zH99MD7aAQnY/b4WNNDLzH2bDUIGLH2abrPCtiSnLYNtypyrYJD3Klyd5g0EMWOVIINnbWkFKwZQW1dQhjaMqGugmpyqtpyu0AZa0/qYHYBDA6Q20BMk7RIFXoftsf9BgWOUIINraH9DLFlhVUxoIx2NpQKROqrbYaCBq8C40HkarTYMQpGlycvRC+09DFkWTRSRr0EcDm9oBBkbFloGgs0llcY9DK4GxIj201+LbYGwKvTmqwp2jwrYZIiCMJPZZ6gwLd7+E9bO4MWetlbDmBrkwIZjUGXTWhK3TnrC2dRbeigRUNsdNf93lwLFPGlxqCHXr9nHxtGDRs9Fhb74UZlLJBesfMhmUug8fbpcO4agcnTtcgVjR4YoNEKe+pCmNyTxKJxFnlb00MStux9w4bhAHSOWz8gpftYAB4IVBx7LFxUBSxslvI5hQrA7NmuNantz5ES8HWueCgzJykNpZmUTKfzNFVCGxtB8blXbsL2cqxiR1xMPLxuYjOlL1Jg7hZw7BHb2OIkpKtnSFFptjxkqoJGsrpAq1lHABv0mAdhuCgyJCLSxPtIKUI1WTbarGtw9BqgE7DYFCwtrOOQIRlpiJjxwsWtcVWFeVsgV5IGhfSs1sNrQPmCJktMh7DthpaO7QDc6wdImKH4BMa+gXD7fUQL7IzZNDLWCDJywbXNNTzkmwRAnmt5aQG54IjcJMG114b316voFU4FzT4kOWr1HImaXN7LWjYHLC5VjDzSw3NokTrMMtjfayH4peOqPUrGmT4TJ7Q4Fc0iFiA5+5/FM/mTyqRSCTODA+0gyLi4HIqPt6tspzFEIAK6zZhoBYCJUJ58bYYl4wL/a1jIOOA2OtlbGwM2Dy3QaYV56KD0ghN3RimI8X4aMKibHDOYaxAuKUT1WlQCk0YeE84SZ5YCMxDp6HNUg137EWRsb7eZ+v8JlpJzp9bI9OSRmiqxjAbKybHUxZlE3vXhON4z4qGGHArZNRwsx3a4mac1KBk7A6dsbY24KHzm0gpOL89pCg0jVAsKkM5mzM5mpDndXDUrMML19aWW2ogBHQKQZjFIdhBQVeQbPXSCkINGN1qWO9z7twGSknO7azR72ms0gwWNdW8ZHo8JZ/raAeHiEtrrYZQ2ibEkshuJqkNMl2ZdVn9eImTGobDHufPbyKl5Nxmn/VhQSODhrqsmI2m5HkVlpRiHZu2ym/boVl4j5bLa3FCg406WOmYfbfp0TR9kkgkvkF4oB2UFz56gSw7vZsxgGkMi0VFVdXYumFRGXCeqvTs46hKgzYWJQT5oMegyMjzPEzd5xlKSdbWemxtrnHhwhYv+7vfwuUr55FC0OtlAJRVg3Oe3RuH/Nmffonr1w8ZjWaMJ4vYVC6UwK/KGlM3lFWDd4a6chwQytNrY4KGfsEgzyiKjF6/IItdeNfX+mxuDjl3boPv+q5v5oXfdCn0+SlCqnNZhWWl0fGUTz3x11y7dsjxcajv0jShEmm5aoeywVuD8Y59CXVlUY0JGTO9nGGRk+UZ/X5BXmiklAyHwQ7nz2/wkpc8you+5QpSyqhBUlbBKRofT/nUpz7P1asHjEYzRuM5TQwcLhc1ZVlh6oaqashM0HA4A9MEO0gBeZExWB+QRzu012I46LGxMeDcuQ0ee+yb+OZvfUGwQy9DSUFVGYx1jEcz/uxPv8jTT+9xfDxlNJ6HCrXWUZZVdy2qssEbE9LMZ2CNQxqD9D40VlwfrNghi2X6e2xuDtneXuPbv/0R/s53flMo/JYrMq0oYxXapmr44z/+S55+ep/RaMbxaEZVNVjnqG6ygzYG7wRHM4G1Kxoy3Wno9XKKXn5XB2VtbXDnWcVEIpF4Hrmf76cH2kGhjSE5lXDn2ZYWr2PnWSUERoRUXSkgj3erjbEIrXA+rPm3d8thWaVga2uNFz7yEN/yrS9AypPVPL339HsZX/3qLpPJnMWiRsoKhO00GBc0SO8pBDQIFjdpMMaGxnUultEXAiFl6AA8KNjYHPKCh8/zd77jkVsGKu89u9cP+dKXrjKZzJkvKuRMIkQo7GX90g7Se/I4c3HCDj7c6WMt0oU0XQgatF5quHLlHN/x7Q+jlLrF6jeuH/KlJ68xGc8pyzpWW42BoFFDY0JxszzOIi18ONc8LvE0xoJSKBc6RxNnynSmGAwKNjeHXL58ju/4todR+qQG7z37+yOeeXqP0WjKfFGhlEKIkN3iVj4PONfZYREnjTIRC+daC1Yu7dAGCWeKfr9gY2PIxYvbvOTvvPBUp2E+XfCFLz7DaDSjrGrUVHbbrdoBu6IhhOIGDXDyWrTBrykANpFI/C3hgXZQ9naPb9/NGGgaQ7moaJoGnGO9X6C1RuQaCk0mJFqE/jOT2YLZokJnml6vJM8ztFZUZYV34W52f3/MCx+5QJbrUKW1i+2wjEcz9naP2b1xxN7+OFQibQyNMVSLmqZu8M6G2YksgyJD5BrVWDIanDFM5iV+XqGzktmsJMs0WivqssYZixCCo8MJpjaoWJkUIfCxX8zB4SRqOGZ375iDwwl1bboZlKYJx1nrFeRZhsw1dS9DK0smGryxjGcL3LwmyzSzWUlRZCilKOcVuNDsb39/hGnCgN85ax6ctYxGM/b2gh1290ccHE5CXxlrqRY1dV3jrGWYh9kqkWnoaaR1ZB68tcwXJfNFjco0vVnZzaAsFhXWWKQU7O2PWCwq+v2iy3DxMbZjNlmwuxftsHvEweGUsqqxxlKWNXXVYK1hmGf08jw0++tlSOvJEWAtk8UCMw+fh9msoohF6xbzEmdCbM3+/oimDDq7LJsYEH08mrLbfh72RuwdjFksaqx1VGVFVTU4a+hnmn5RhLYCvQzpPBkCYS3TxYJZWaO1Ji9yer3FXWdQyvL05pmJRCLxoHHfDsof/uEf8nM/93M88cQTXLt2jY985CP84A/+YPf6W9/6Vv7Vv/pXJ97zile8gj/6oz/qnldVxbve9S5+4zd+g8ViwWte8xp+6Zd+iYcffvi+tExnC5S6Td2HeBdcV6ERoJbhDriNpVC5RjqPiPU2rLEYF5rYWevD1HtsgpcpRb+fc+PGITeuHVL0cvqbQ4SAcrJgMSu5fu0wdkKexiWedmnDUcfBUUkQPYHoNISqn9JYvBM4a6lNuLO2LjTiU0oiBegYC3PjxiFXn9mn38/pbQxACKrJgrpquH7tgP3Yjfn4eMpkMu+yiuoyaBA4RL+HVCpU2s1U6K/TOLwMwam1NZjGYmzo0qxisbZMS/Jcs7t7xI1rB2EpZmOIUIJ6VlHOSm5cP2R/f8Th0YTRaMpkPKeqQ1xOXTWYxiCFhyJHxmBTmWtE45CqTY92VI1FNqFZX12b4AjFeI0iarh+9YDhsMdwaw2UoJlVLKYlV68GOxwejhkdz5hM5mF5JV4LYwzCO8iz4Fio0JdIGIdsbIyT8dS1oTEWYz11Y0IPomgHrSW7u8c888w+/X5Bf72PyBRmXlPOS661djiccDyaMR7P43Jga4cG4T391rnRiiLTCBvs0MbA1LUJy3TtzNNdJlCaxtzX31AikUicVe7ceewUZrMZL3vZy/jFX/zF227zj//xP+batWvd47d/+7dPvP7444/zkY98hA9/+MN8/OMfZzqd8qY3vSlMq98HzvrbP9zy0VZdbVNIRZe9E1M6RXh9NZjVtZk31mFiN+KqapgvKhZlRdk0lMYyn1csFjVlVdM0y27Eq/tYZhu1NSpih982Y6PNUTkRzOq6TBJrXYhrMEHDYlExn1eUjaE0hkVZs5hXlGVD09jOMbKxtksb+Nqt/a2ksirZZhXRVRFrAzhb+9kVOwQNhsUiHHNRNyw6O1SUZd3FvYSOyG55LW7Julq1A60AIAT2utVsmlU7NMHxbDWUdbgWi7IOGqo6FM0zNqRb2+U+Wg3LusPt52GZXdWaYxngHN9rY2fq6ETW9aoGQ2nt8loslp+H0I04ZjBZFztex+7MrQa4RQOthu6z7O78mbd3yWpLJBKJB4j7nkF54xvfyBvf+MY7blMUBZcuXTr1tdFoxK/8yq/woQ99iNe+9rUA/Nqv/RqPPPIIv/d7v8cb3vCGe9YiYsXVU4mxC3Rf9CFTJuRRhNgGSXi0xdLiXruYBxHjUEJaqabIM4b9gqKf0x8UCCERgxqJp1dk6BjUKqVcZhh1DkjUQCiT35ZwCSXsQyl53x6/9Zq6VF/RpbYWecagX9CPGpwQyNKgY7BolqmuB5GUEiFDB+JVWwgfYh1aOwhCGf0TGpYSVjSEfee5ZtDPwwzKoACt0JVBeU+vl4fZoa7E/Kodwq7bJCEBXWyKiNdCsHItYgrRrddiqWEwKOi3GhqLMJZ+EeygYudiIZf7EJ0j1J5p+NfGjJq2mPxyoG8dymADGTtea7XU0O8XDAYFPtdkjUM6R7+/tINq7SBFl0LeGWJVA0s7nPygtx+JO2Stndg4kUgkHnyekxiUP/iDP+DChQtsbW3xqle9in/xL/4FFy5cAOCJJ56gaRpe//rXd9tfuXKFxx57jE984hP35aBIrW4JkmzxgLahIqdTkqy9K3YOaR25CzMCzoYBPM8yhCakAec6NLpTEi8FxnqquuH4aMLVp/dCmut0jpCC6cGUsqw5PBhTljUm1u+QOtQa0Ta4RFIJtGgLcAUNmQvHtyHnlTzTeOkQOmjoevrI0JG5rg2j4ylXn96jlwcNSMH8aEZdNhzsjcIMRqzCKrREoUAKtPdIKVD4UCDNLu3QzrZ432rw0Q5ZsHHUYF1YbpmMZlx9ao8806xN5shMMT+aUS4qDnaPOw0uXiOJByvJiBpEKD7nnENYR9HWBXEuLqGoWGo/2kGHbCWUwPqw3DIZz7n+zD69Xs7GbIHMFIvRnPm0ZH/vmMWiojE2VKNVEpVphHLoeP4yanHOI6ylcKqbpSHGHJk2QLhY1RCaBtaNYTpZcO3pfYpCszaeono55WjOYlayfzhmUdY0JhZ70wrlHMJJtG81OJSUodpxtIOPM1XEJb7MEzpS51k4h7tlGd/OYU8kEokHjK+7g/LGN76R/+K/+C949NFHefLJJ/nv//v/nu///u/niSeeoCgKrl+/Tp7nbG9vn3jfxYsXuX79+qn7rKqKqqq65+PxGIC80Gid3VaLd55MSbx1ZCKWt68tQwHrueSwbpg2Fi1hbdCj8iBUyNToiroBi6rm6GjCX3/uaXZvHKOl5MK5IVIKdvenVMYynS04PJwwX9Q474OT48Lgk2mFM5ZcgPVQNoahgM1MMGmiBgH9foFy0bGIDlJ7x1xWDaPRjC984RkO9ycoKbhwbkimFTcOplSNZTZbcHgwZjavcDFNVarTNVSNpYdnu6cY1Q2zxiCBQb+HjoOiytTKLMhSw5NPXmM2WSBFqIPSKzQ39qeUtWFRVkHDrMQ6F2ypoqOYSWyjyeLkwbSx9PFs5qFJ4rgOacb9XoE6VYOgqg2j0YwvP3md2XiBlIKHtof0ehn7hzNmZU1VNeztjpjNS6z16Cw4aT7Gj7QaAGaNIfOezUJRNpZJHWI4iiJH5eCl6IJgBWEWpKoNk8mcp5/a5f+I8TE7G6EOyu7hlHnZUNUN+7vHTGclxtjQSDKed6ZViIuKK37TxpA5x6ZRVI1lvKJB5qF4m44dsu+GVPe9aptIJBJnkq+7g/KWt7yl+/mxxx7je77ne3j00Uf5D//hP/BDP/RDt32fj3eVp/G+972Pn/mZn7nl91rJlW7GpyBBx8yKXMBRaVhYS98K1rxj3zpm1tGXivVCgwtf8ELJbqbcWsd8XmFjRlBtwjLAozuhmuuX96c03lNkirKsQ60VEVJ3pZJBgxQ4KelLOK4MU+voWcfQOyZRQ09LtvMMGZ2kmzUsogZTG/7SXkU4zyM7A/qZ5sn9KZV15FrSNIZZGTrTSRH21WrwStITguPaMG1McMy8Y2wdc+tQUrCW52G5J84CtRqc8yELpQk1Pj7/pevgPA9vDxgWmif3piyso9ASayzTed3ZQSjZLbk5KclFaFY4MwZtYeAclQt2yLRkGO3gpYg2FJ2GsqwxtcEZwxefvIG1lhdsDdjoZ3z1YMa0sRRaYoxltqi7WJPucyIkVkr6QjBtgh2GxjJwoaDb3DqEEAx7ORlgRehG3E5d+BUN3li+/NQ+1jourve4sNHjyb0Jk8qSZ8ExnsyrqMGvaBA4GdKqS2OZNQ0DHP04gzO3DoRgUGRoESoOr9rhTsi7LgElEonEg8FznmZ8+fJlHn30UT7/+c8DcOnSJeq65ujo6MQsyu7uLq985StP3ce73/1u3vGOd3TPx+MxjzzyCFVZY/Xtv5BlDD6UgMoVvWEPrGOtl7GxWbCGZlI29JRE48BYrLd4Y0PtC08XoFgpwXxWMq0MwnmyukZJwdP7Uwyw3stCBkxjg5Mjw5pSqwHvUVrTG/SwhWOt0GxsFMyyhoGuyaUgE9DUBmtu0uBDdo2WkmpRMS6bsERTVQwKxTN7UyrrGfY0Ms7QtLEXqxqE96hc0xsUuDxjmCs2N/uMVUZfNygZanCY2uB8XHahKwEbZiOUoFyUTEsTlkfKkvV+xtM3JpTOs9bTKGBeGZQKSyQ3a5CZougX9LOgYWOjhykNfVmhpSCTYCqDM7dqcDZUmG2qmmkVsmxEWTLr5zyzP2VqHMNCowSUdci8aTWI+JnwUUOvXzDIMoZasrHZx9eWgQx/EpmCujZdYKtrQ1pd0CAFmLpmUsbA6GkPO+/xzO6USW3oF5qeksyqpqtIvKoB75FahYwwrRlEDSJq8EB+Ow134H4DzROJROKs8pw7KAcHBzz11FNcvnwZgJe//OVkWcZHP/pR3vzmNwNw7do1PvvZz/L+97//1H0URUFR3FrvxBuH5/Qv5BALKUPMg5LkWcbGsEcPwUYvYzDM2dAFZdmQ4cnmJaodEGOqa+ccOI+NnX0NgBAsjEPKUGDLeGhscHBc7D8jXZsZEwZIGQuurQ9CR+SNXsZgkLHeM2z16qBhUVGbEINgfegh5Fc1eGisDSXypaC0DupQ9M0Ij7Ee2TYcdCHGYlWDimXa19cG5EKwmWv66wXrecN2P6S95ouSuh0QnTtFg6QRbQ8fKK1D1pZGgBHQ2GXWi/ACKUNErG+DXGPxu3zYR0nJZq4ZrOU0tWW7qJBAUQU7+NM0xBG6MTZ0/xWChfXoxoaOxAIaFzVYF7pTRw1t4TspQkfkbK2PlIphphiuF9jGspUXeO8pqjpk7XjbNVoMzQbDTI4XhIwpwEpB6TyzutUQOlwrH2KMpBBd+4CbNRRrfYRSDHXQ4I1lqyjwztOrT9dwJ+ZPfpWjT/XvuE0ikUg8X4yn03ve9r4dlOl0yhe+8IXu+ZNPPsmnP/1pdnZ22NnZ4T3veQ8//MM/zOXLl/nyl7/MT//0T3P+/Hn+yT/5JwBsbm7ytre9jXe+852cO3eOnZ0d3vWud/HSl760y+q5V4S1iNs4KCAQyiNVhtYanWcMt9bwuWZDK6SQrPd6uMYgmlB/RNcW45pQFM3aLs9DiBBM6a0Lt9YIZlWI2fC5Dk32rEO01T6dh9ASD2JWj9YKneUMN9dY62VsaoWSkmHfc34tanAeXdswe1GHSqch0yN2QPYeY5Ya5rUNsx2ZQngZAl1dWB7Ae7A+ZIhEB0lphcoy1jaH+F7GMNphrdfj3LoFY2n2gh2ca8K+TJvb0/b1CedKphAIFo3DNhU+W7FDXCZZ1SBWNOgsY7AxYG1QMNQKLSX9vuf8sB9msQ6grAzeNV0AaWuHcElEsINWCK0ojQNTYbVCqNgo0fpb7LCqQemMwfqQ4bCgpxRaSfrec25gQ6DqwSSkKjuPN6Giq/A+5tmAR2CMBa0RWlE5z3hSYuPsmXcea+yp1yJUxdWo2IByuN4Ps3hS0gfOD0OKtj+aUldBAzakr4u7pBF/9Tf/v3z6txb39XeUSCQSf1PMTHPP2963g/LJT36S7/u+7+uet0svP/qjP8ov//Iv85nPfIZ//a//NcfHx1y+fJnv+77v4zd/8zdZX1/v3vOBD3wArTVvfvObu0JtH/zgB08tnX4nnHO4WMr9ZgQCHxviKSXJ84zt7XXUIGdNa9YdeAm5MdhFzfF4jl5UuDighLvVmIrbpqj6mCUhJMY6JCHbRfgwiPmVeiPLVFkf7pZVmEHZ2hqi1nqsZRnrPjQvlI3BVw3Hs5LFosI0UYN1y4aHQoTBUfiYNhuyapoYVCvi9m3dF++X7xXRuWiLvW1tDdFrffpase4FUoIyBtdYjieLUCbfiLAfd7MGOg2saEDLmK0TanWEFZnlHX87tCspyHLNxuaQbCPE0GwgKARgDK4yTBY1s3mJacxt7BBTpWPar7tJg481T9pZl/a/NrVZyRAIvbExINse0tOa9ajBG4szlvGiZjEvkSc0hL14IUIhQNpU95jZY13UIMCH+iurdvAxnVugujYK6+sDeuc3yJVkXUh6IlTTtY1lVpkQjCwN1tNpuBPV/iGz+uC+/o4SiUTib4q5u/dl6Pt2UF796lffsRjU//6//+933Uev1+MXfuEX+IVf+IX7PfwJQrfZ07X4mEYqiEs8hWZ7c0i+1mOQZwzCWEKvbqjzknkRyqkj2uWMdlAUoaOtAKFCL5+QESJCLRUZuhYDXUE059t3htchBMzmRcbWxpBic8CwyOl76AnI6gYzr1jsHnc1M9ollXZQdAKECD8rIfBSgA+/7wqttTYhvLfV4EVwUmR0DjY3hvS3hvQyzZoX5BLyxmCqhkXvqNPATXboNHhxwg5exPOMl8L5WzW0AdAqOkmb6wMGO+shXRpBIwSqaTCLGnM4Wdqh3Z9f2iEsGYU4kJBWK/E+LKUEB0CsFLxbanDxsyJVmMHYWO8z3F6nyDPWETQCVGNCMPLBmLEKSzGtk+Gi4xk0eIQPrwspwBEdWRlSuVftEDyl8LtoJCnDEs/Gep+N7XWyTLEuJFYItDGYusEdz9A6LFN2js5dZlBSnbZEIvGNwgPdi+dF33Lltt2MhRAURcbG1hqbW2u84Mp5/u73fBuD9T5aSpQHK8A6x2y64DMXd/jqU7uMRzPGo1DTwzlPYy11E6qGTmcl80WFIwRx4j2+l4Vme0qxdW6DvMjItSLTId4iLzLWN4adhpf+3W9hc2cNrVRXHK1xlsWs4i+ufImvfHWX46Mx4+MZizJqMJbaWJraMJ2WzKKGaR0Cdl2hEVKQScX6znrQkClyrZBCkBcZG5tDNjbXuHhhm7/3n307WzvrYZCMTo5xjqYx/NnFHb78lRuMRlPGR1Pm8xLnQyPDKmqYz0smi5CdYmqDsB7XCxq0lGxsr5P3gh3yTHVxJ2sbA7a217l4YZvv+u5vYefCVsjEQgSbOkdV1nzuz7/CF794laOjCZPRjPmsDLMkJjT5qxsTA5brYIfKIG20gxJoIVnfWiPv5RQ62kGKMGOxMWRja8hD57d42d/7Vi5c3gnF31Y0WGP5y898mS9+4RmOjieMjqZLDTEQumkMi3nFuKxwAua1pTQWV2QIFSrCbm6tBTtkmlwrlAyO0fr6gM3tNc6f2+SlL/tmLj/yUJhRic5Q40LF3C/85VP81V99ldHxlPFoynSyiDFOt2f9y/twkGZQEonEg88D7aAU/R55fnsHpdcv2Nxe5/xDWzz86EUe+85H6Z/Ssr4qa44PpizqBhELknkRZkREbfCiwcQ4CGlDn5SqbkIwpW7Lk8c+P5kmz0PVWakk/X4eBqOHtnj40Qu85DseYWtnLWjs4hk8i1nFbLxgXjdh4LceL0UoJFcbvAxZM7docJ5CxRkMvezAnBcZRa5RUoZiZlvrnH9ok8sPP8TLHvsm1tYHJ2wQAkA9o4Mps9iF2MZia86FQdnVTbeEJExIp65ilkmuw9IJCoQSSzvEmamiyNnYWuPcQ5tceeQh/s53vJCHHtqMmS3L69E0hqZsmMzKkI4bOxpb6xCNwdfNckbCWARQNyHjJ1egfdQgBFmmyPIsNH6MM1ithktXQlfoS5d3brkW1jjqRc1ktgAVlvMcQYNsDF42XUZNiIPyoax97SgkKB/q6BCdoizPKIqsW+Zb3xyycz5oeOw7H+XS5XMnPpO+zVoyjsPRFBmLwxkXsrnuhNIqTaMkEomzy318Pz3QDsozz+zftpuxENDrF6FvTlUzHBSYqoZeDoT4ARmn3atFxfXrBzz99B77e8cc7I+ZThd45zGxwqkxFm9DGXUvBEiNx4eUVqCuLcdHE6bTeYhxUOGuvdcvmM1LqqphMCgo5yVia4gXcckEEA6aumH3xiHPPL3XNR6cxbv2ttJr6G8TNCAFQmmsC+nFipBVcnw8ZTZbxBLrYQal18uZxR41UkrmkzlrayHTwwoRSsx7sMayu3vIM8/ssbd7zN7ucbhr9zdpsJZBL+80GOMY9jN0pyHMerTBwVKG2azpdEFVN2SZZjEvwW+EyrpiWX6/qRr29o6DHa4HO0zG864fUKejMfSiEyiVpjGWQS8LadKNZTyeM19UMXNJIkVY5pvOShZlmP2ZjueIi9snr0WM9djfO+bpZ/bYvX7E7o1jJpM5zoamfTdrEEqgdEaZWQb9LKRJN47xaMai1aCWmVzT6YKybvAeRkdTLl3aueVaOOs4PBjxzNPhWuzvHXN8PMXZO/9xf/usTNXuE4nE2eU+vp8eaAfl8HCMUvmprwkhKHp5bBDn2FwfsHftEOE8FDlzYCAEVDX7N464dm2fG3FAPDqcMJ+XXcO6ll6e0StyUBKvQpbPIFcI5zFNCC4VZXAQZay+WvRyTJzxWF/vc7B7zLCfI/qhcm0mQJQVRwdjrl074Mb1Q/Z2jzg8HDOfV8vA26ghzzS9IkcoiVcO4xz9XKPwWBOWf6pqqQGg6GVYF1JV80yze/2Qfr9A5BkzD30pEFXNfLLg2tX9zjE42B8xm5a3BP5mWtFb65/QMCg0ynucrVjMS+oq1huJdsjyLJSex9Pv5exePWBrrYfq9ygJNWBk3TA+mnD96j7Xrx+wu3scqtJOF8uGh/HaKilZG/bQmcJrj7aWQa7ReOauYjGvqKo42yPC/Eie665xn9KKveuHXDy3gezllEKiBOi6oZpXXL+6z41rh8E52B91yyurdlBSsj7sITOFzDxSGwa94KiVvmY+nlPHmbZWQ5ZpGmNCwKySXL96wJVLO4g8o4xF7GRjqGaLaIdD9veCHcaj+V2XeKqqJnkoiUTi7HLv308PtINijMX729RBEaAaSd001FVDuaiYzUrmswoQzGJGjp+WzGYl5aKmrpvY3t5gGrvMgllp0hYKoEmUagNxZYxeWAls9R4XFw2UsjR1Q1U1lIua+bxkPi1RUjGLQbLMwu/KRUVVBR1NY4OGGGgpYoO5NvC21QChCJiIg6B3Piw/RA0Q7VAb6qqhKmtms4r5dIEcwMyDVwIxr5jNFsEOVU1dNbEbr+myYVab/rV20K0GudTgXEipdd51dhBC0NQNdd1QljXzeM5KSBZCkkuBnC6Yx0ymqgrbmtgRuA0YbsvNKxmCR0MDwXC+t9jBh3ooQXG4hk1jqOtgh/k8fCY0grmUaECXJdWsZLGol9eiDnZY1YAQKOG7powKH2aslAwzc22gc+wwLFZStZs6dKUOGspwLfqOhdI0SqAXJYtZyWJehWtRL6+Fc3eeQXHu7sXcEolE4vnifr6fHmgH5U7djEV8XcnQ1Vbnmn4vZ9jPoV/gPAykgLhckWW6G2Da+IFlgtDyGCLGP7SzCsLTdUmGZbaKiGVDRSzXrrQiyxW9ImfQz1FRQ1+EOIZFPyfL9bIHj1xmh7QahAC649HpEN4jY+bQyZiO8J6lhtDbpt8LXZnFIMc4wUAJpHf42iw1aNk5IbHl8VJDtINoM2WiHWQciOOmrWsS7RBidJRSZJmi18sZ9At0vwAhKaRAWosp6xAzEpsUCrnsBbR6LdrlmPZ6tJ2h22U7xIktl3ZoOyJnil6RMezn6H6Ol4pMQCY8ynnytkmhkohYEVd4d8KugWj7lWsh2s/JMrkKkLEz9NIOWofPw7BfIPsFXmlyJcjxSGPJiyzUbFEhpkV0zvCd/ijE/X0DJBKJxN8k9/H99EA7KKrIUOr0ZoFCCFSegZZYEUqGH+wdI51H9gvmHkopcPOSg8MxVW1CyTetkLlG23wZrIhHesjiICq8JzdhhkVaEM6jRQiIXNYKCQO0zDNQCgdUteXoYMQgV+jxnIUX5AL8fMHx8ZSybLAeUAqVZ2jrYkBoPCcfSs3LGJiZGYd0DmWCg6ThNhpCMTEnBI1xHO2P2S0yRL9g7gVzKRBlxWy6oCzroEEGOyiThdTWFQ2ZlJ0dbtagAJ3pkIK8okFlGqE1TgjqxnJ8OGb32gF6NKMUklwC85LpZB56H3nwrYYiD85BvBaC0BlaOouwkJlQHK7T4GNzRCHaUFYQBA1ZtIN1jI6m7F49QA8KSqFQAlRZhZmNWRUqCkuJzDSqyBDOnbwWQqBsmKHRzpNbizIhjkThybTGy5MaZCzs5qXAOM/oeMrutX1kkVNKRaYkqqwo5yWzaRntcJOGOyAaSfJQEonE2eVvSZDsYNi7bZAsgNYaIRVNbTnYn/CJP/4r+v0ipJ56aGToW1MuGvb3RtS17WJXpJLd0gYehHNI61jUIXsla8LSUukUbQHZXr/AyfZOORZH0wqpFHXjODqY8Mef+jzDtR69TJN5gRWeeWOoy4Yb146oKhNmFIo8zF50szWAc+gVDdo4cu8pY9YRhIBYt9L9NxRoCxqaxjEZzfnjT32ev/j80yEN2MdS7SYsbV3vNAjyIu/uyO+owS01eO/p92/VoJRCaUVjHKPjOZ/60y/xxS9fp8gUOTKk6hpDXRmeeeaARdmc0LAsggd4jzaWqgnVb1sN1YqGXi8PVV1PaJAorTHWMxuX/OlnnuQrT++SZ4oCiQMW1mCM46tP7VMuGjwrGtoCflGDMpayacAER6VvHbW3wTFyIdbGxUaDrQYpJToLGqaTBZ/9i69wffcQrRQ9EYrAza3FNIanrx6xWNQ4H2J4BsO710HRlYLqjpskEonEA8ED7aD0c43Wtz8FKSTCOapFzUF9zO7RCCNgEzjvBfvCMwK0h8xAaQxYR6EkWmjwYXXDeg/W43zN2Fjwnp1YSXZMKNA1VIo80zglUUKEImIiaJDOUy1qjpoR/+loQi09G1HDCM+hABU1LIwF68iVQAndLV/Y6Bz4umHcGLz3bFuHxjMl9KAZKEWeZTh9uoa6bBg3E/7TeEojYQhc8oLjqEF4yA2hnoe15FKGWSjvQ5qtC46aqxsmUcOmdWjvmQpoBAykopdl2NM0eE9T1owax6fGM2rhGQi44AVzPHutBgtlEzRkQiAzfUKDd2HWYlo3GGDLWnrOMwNqCX2p6MUlOyWXGoQQQUPVMDUz/q/ZV6ilpxftsIgaiBqqmLGUiTAD5Fc0EDVM6gbrHevO0XOeY6CSgp6UDHKNjdlcakWD8kQNjs9MF1QKCuCyhxLYFSHIubCC2pioAUSmudvdh5bLLtiJRCJx5vjbksWzmFfcwT9ZuXuWLBDMnaXGMfNgfBgIRgIyJGtSUeHBu5MVO4XAESqUtg3eBFAohwQyKUPKshBYE9JQDb7rmdJq8EJQI5l7S+kdUw+Nh2MBh1HDQMrQCDAGd56mQRFmZQAK5cnxYVCKGpy1odDXKRoQgipqqLxjGMNWDqMGiWBdapoYZIt3yyymUzT4qKHnPZmSYcmLu2tYIKi9Z+Etg+gETkW4HgrBmlSdHW7W0PbCybwPNT+AXMqgQYaZGEWoH9M4HzTEpbo2BsQjqISk9o65txTRDvOoAQRrQuFEcE6FX8neiRoEkPlQd0QAufcULmiwInTQbjWIUzSAoBQS4x0z7yjiTF0p4IYIC1nrQuEFmKhhNaPsdqRuxolE4huFB9pBsc7fcU1e0DooPgycPrSsb2cknIgPHNYLLLEpnfddSXIIzoVsn4k2K0WGgUcsQ1JdGzAa1kROaPBCYLvMlqDB3aIBbOcctGXulxoEdI6SB4QMMw7yrhqWg6IV3NYOEDrnBp3BubjZDoIw+HbBwFGDaGt4nNAAxMDSVQ1SiLDNKRrC+90JDTfbob0WrR1kawe5fM3fVkMY/K3wnQZ/ih2cCG0oOwflFA2eZSq3iDpaDeImDSL2Rmo1BDt4rPc4XGcHK2JctLiThtsTnJg0hZJIJM4q9/79JO++SSKRSCQSicTfLMlBSSQSiUQiceZIDkoikUgkEokzR3JQEolEIpFInDmSg5JIJBKJROLM8UBn8VxYL8hu182YmC0hJAJBJgQLZ2nwrAPnEUg8fSBDMJCKqi1l7t2yI3TMFFEipNhWMStjJx5DETojF3E701U7jdVXRZvxIsiFpPKO0jvWgXMICjw5oBH0pcLErJXTNEghyIAyvrANZAQv0wB5rNraAPjTNRRCUnpH5R0D4CHCPnNCptMwanAxC2g11flmOwBsEWp4iJs01BDLvq9oCELIhKSJduhHDUNA4lHxWiztsKoh1pEVgjxqcFFDL16LKmqQt7ND1JBHDQvvKKKGRdQAgqEMhdusP11Dey1aDevxIQi1TPJoq/oOGjIhsd4x9448aqg6DTCUKmT3rNjhblk8W4OHGLreXbZKJBKJ5wnTwJf/r3va9IF2UP7bf/YmhoPhbV9vq3e2qb7WOZyzaCkplKIyFuMdUiq0lGEwimmn7YDUpoS26cRtN9lcBceninUnZKxF0tWq8G3n3aVzoITAOId1lkwEDY2z1M6FxntSdc0BT9cQBl67qkEIamNxeJRU96TBeoe1DiUEPa1orKN29iYNxCJxd9aQxcJ0VachJNneSYMUQWPQAIXSWOeonEUIiVZ30UBI57UupIVnSgVnwFqsv4MGiL2blqnO1lok0NMK6324nkKGui6eO9tBLDVoqdBSUFuH9S40EUTEz9TtNIRMcHNCA1TW3FHDnbi00WOjf3r7h0QikXi+GU+n8Kr/3z1t+0A7KC///u9lY33jtmnVbWGwtmaH9x6cjcU74ujgHUgZa3QEQjnzWDsjOh7twOTbuiuxDH1Xa0TEIh5xQPEuODtCiG4fQYMDF7ofo1T42bsw03NiO98da1nkrN1/ezcey5O2fWraonBR06qGU+2AWDmPYIfWGTtNA9Hh83GWqNPAyeftr8JuYxW0rmjeaRpU3Nje1Q7L/YtgS+9Xrmd4Llau7+q1QIjOkbyjHYQIOm5jh5uvddfrYPUz1b3fn7QDoQnkba8FxM/o7TXciXDud90skUgknhfUeHzP26YYlEQikUgkEmeO5KAkEolEIpE4cyQHJZFIJBKJxJkjOSiJRCKRSCTOHMlBSSQSiUQiceZIDkoikUgkEokzR3JQEolEIpFInDmSg5JIJBKJROLMkRyURCKRSCQSZ477clDe97738b3f+72sr69z4cIFfvAHf5DPfe5zJ7bx3vOe97yHK1eu0O/3efWrX82f//mfn9imqire/va3c/78eYbDIT/wAz/A008//ezPJpFIJBKJxDcE9+WgfOxjH+MnfuIn+KM/+iM++tGPYozh9a9/PbPZrNvm/e9/Pz//8z/PL/7iL/Inf/InXLp0ide97nVMJpNum8cff5yPfOQjfPjDH+bjH/840+mUN73pTdjY1yZxtkmV1BOJRCLxXCO8v4cOZLdhb2+PCxcu8LGPfYx/9I/+Ed57rly5wuOPP84//+f/HAizJRcvXuRnf/Zn+bEf+zFGoxEPPfQQH/rQh3jLW94CwNWrV3nkkUf47d/+bd7whjfc9bjj8ZjNzU2ODg9TL57Uiyf14lkh9eJJJBJnmfF4zNbWFqPRiI2NjTtu+6xiUEajEQA7OzsAPPnkk1y/fp3Xv/713TZFUfCqV72KT3ziEwA88cQTNE1zYpsrV67w2GOPddvcTFVVjMfjE49EIpFIJBLfuHzNDor3nne84x38w3/4D3nssccAuH79OgAXL148se3Fixe7165fv06e52xvb992m5t53/vex+bmZvd45JFHvlbZiUQikUgkHgC+ZgflJ3/yJ/mzP/szfuM3fuOW14Q4Ocfsvb/ldzdzp23e/e53MxqNusdTTz31tcpOJBKJRCLxAPA1OShvf/vb+Xf/7t/xH//jf+Thhx/ufn/p0iWAW2ZCdnd3u1mVS5cuUdc1R0dHt93mZoqiYGNj48QjkUgkEonENy735aB47/nJn/xJfuu3fovf//3f50UvetGJ11/0ohdx6dIlPvrRj3a/q+uaj33sY7zyla8E4OUvfzlZlp3Y5tq1a3z2s5/ttkkkEolEIvG3G30/G//ET/wEv/7rv86//bf/lvX19W6mZHNzk36/jxCCxx9/nPe+9728+MUv5sUvfjHvfe97GQwG/MiP/Ei37dve9jbe+c53cu7cOXZ2dnjXu97FS1/6Ul772tfel3gzLzE6P/U1AQgpVrJMADzeuvh7Cc7jvUVIdXI770PWhVhmjqy+FjJCom8Xs30Qq75efL8HVjI2lq85RJc54sJzKU/uw/suG+fuGm56vqIhJLncrAG8sysa/IqGm7U+ew2n2+E0Dfb+7IBfZvHciwYhcPK0a0GXSRTsIG7aByGDxp/+mTqh4ZbnSw1dso+8ed92qQHAWriNhrvl3Mlb9CUSicTZwS7Ke972vhyUX/7lXwbg1a9+9Ynf/+qv/ipvfetbAfipn/opFosFP/7jP87R0RGveMUr+N3f/V3W19e77T/wgQ+gtebNb34zi8WC17zmNXzwgx9EKXU/cvj0u/6fDPPTHRRYpoSG72uJ8xZcN0p0aakIgYwpv56Y0rkyKIas1pW00O55TG3FL9OU29TW1fd3+5D46JCcqkFKurTUu2poB8FTNKzs4xYNUoaBrkuXVjdpUIB79hpusgNChDE3eH0n02Zv0XA3O4T/3bMdVlKg76yhTREm2iGch7sXDaykOrep3aykGcd9fT003Im7xXolEonE88msru9522dVB+X5oq2D8uuP/l0G8vZOjWBlQEHg8ScGzO52VIAkDorEQfHEPtqf6N7j40Ag4rbLgWFlQHqeNYSf7kMDIMXzpaHd8uupYekg3b+G5T7cs9TQOWu3aOAWJ+52Gjwedw9/qck9SSQSZ5m5s/zfv/Lp574OSiKRSCQSicRzQXJQEolEIpFInDmSg5JIJBKJROLMkRyURCKRSCQSZ47koCQSiUQikThzJAclkUgkEonEmSM5KIlEIpFIJM4cyUFJJBKJRCJx5kgOSiKRSCQSiTNHclASiUQikUicOZKDkkgkEolE4syRHJREIpFIJBJnjuSgJBKJRCKROHMkByWRSCQSicSZIzkoiUQikUgkzhzJQUkkEolEInHmSA5KIpFIJBKJM0dyUBKJRCKRSJw59PMt4Nnw0v/Xu1kfDG77upACKQRCCJASZw3euvBcabw14D1CSaTS4Bzee7z3OOcRgrCtAIEAIfDOxp2r8K8Pz4WQIADv8Z64n/B+KVc12LgPgZAavMU7h5ASqTV4h3e+0xH2fQcNQoCzgI8aRNjHCQ0gpTxdg9LgWg0CqbP4fo93SzsgRLBHp8EB/qQG76E9zh01iLBva6IdVDzvm+wQNbR2QAhEZ4+oIR4TIe9DAyAV3rmogXgtfLCLECgd/jT8ietB95l4NhqElEgBSLlih3vXcCeEDDZKJBKJs8hkPod/+uZ72vaBdlAeftPr2NjYOP1FsRzITuBsGEiECAOJd2FwWf1a94SB57R9rAyWpz5vN3Mu/vpmDR6cC8eTMrzfRQ3iJg3+DvvwN2vw4bxOaPBxsIwD6s12uFmDuskOdzuPVQ3EY33NGuLzm+1wVw2rx7yLBiEQ8h7sIMUp+7hXDYTP1NeqAcDa22u4q4Mib76EiUQicWYYj8f3vO0D7aB0X8R3+UJuB0Z/h9vP1cHTe7+yb7HyjzhxN796Oyva//l2DIlPTtv38qBx0DpFw3JHt9n/qj4PXnT7OHmM1VO5gx1WbHin7W467VN3crPvdvd9x3M4zQ630XDiWtwkTKw877YQLB3OO+z7Xuxw8lqceMPJz0S8Nvduh3vYLjkfiUTibwkpBiVx36QxMpFIJBLPNclBSdw3d1llSCQSiUTiWZMclEQikUgkEmeO5KAkEolEIpE4cyQHJZFIJBKJxJkjOSiJRCKRSCTOHMlBSSQSiUQicea4Lwflfe97H9/7vd/L+vo6Fy5c4Ad/8Af53Oc+d2Kbt771rV2lzfbx9//+3z+xTVVVvP3tb+f8+fMMh0N+4Ad+gKeffvrZn03ib4SUZpxIJBKJ55r7clA+9rGP8RM/8RP80R/9ER/96EcxxvD617+e2Wx2Yrt//I//MdeuXesev/3bv33i9ccff5yPfOQjfPjDH+bjH/840+mUN73pTVhrn/0ZJZ5zUppxIpFIJJ5r7quS7O/8zu+ceP6rv/qrXLhwgSeeeIJ/9I/+Uff7oii4dOnSqfsYjUb8yq/8Ch/60Id47WtfC8Cv/dqv8cgjj/B7v/d7vOENb7jfc0gkEolEIvENxrOKQRmNRgDs7Oyc+P0f/MEfcOHCBb7t276N//q//q/Z3d3tXnviiSdomobXv/713e+uXLnCY489xic+8YlTj1NVFePx+MQjkUgkEonENy5fs4Pivecd73gH//Af/kMee+yx7vdvfOMb+Tf/5t/w+7//+/zLf/kv+ZM/+RO+//u/n6qqALh+/Tp5nrO9vX1ifxcvXuT69eunHut973sfm5ub3eORRx75WmUnvg6kGJREIpFIPNd8zc0Cf/Inf5I/+7M/4+Mf//iJ37/lLW/pfn7sscf4nu/5Hh599FH+w3/4D/zQD/3Qbffnvb+1223k3e9+N+94xzu65+PxODkpzyMpBiWRSCQSzzVf0wzK29/+dv7dv/t3/Mf/+B95+OGH77jt5cuXefTRR/n85z8PwKVLl6jrmqOjoxPb7e7ucvHixVP3URQFGxsbJx6JRCKRSCS+cbkvB8V7z0/+5E/yW7/1W/z+7/8+L3rRi+76noODA5566ikuX74MwMtf/nKyLOOjH/1ot821a9f47Gc/yytf+cr7lJ94PkhLPIlEIpF4rrmvJZ6f+Imf4Nd//df5t//237K+vt7FjGxubtLv95lOp7znPe/hh3/4h7l8+TJf/vKX+emf/mnOnz/PP/kn/6Tb9m1vexvvfOc7OXfuHDs7O7zrXe/ipS99aZfVkzjbpCWeRCKRSDzX3JeD8su//MsAvPrVrz7x+1/91V/lrW99K0opPvOZz/Cv//W/5vj4mMuXL/N93/d9/OZv/ibr6+vd9h/4wAfQWvPmN7+ZxWLBa17zGj74wQ+ilHr2Z5RIJBKJROKBR3jvH7gb4vF4zObmJn/8L/4la73+bbfrqtmGJ3jn8N4BEqQE5wAHQiKlBO/xhKWs1iyr7wegNZcQeECsPG9fb/dxew3xPfGY+GejQSC8AzyIuGLnwbPyfgRCrmjwHu9c1KDC8b/uGtp9BEF31vBs7BCOeaqGVke0x71p8CBAChVN6e9NAxIvVjQgl2thN2sQIrz9Zg2d7dyKhmAHvMfdw59q0JcW4RKJxNlkWi74np/+bxmNRneNJ/2as3jOAl/61d9goG5/Cu1XdRhL4mDQLVBIwC23EwJoB5JuWODE172gG5h9/K3o9ifi6ze/v93/7TS0A5xAfi0a4qDo43arGto93LsGkEJ2O3CnnMftNfhuAL4nDSsO1MpIfp8a2v0/VxrCc+efnYZ2i2ejwXtw97C4ltyTRCJxlplbc8/bPtAOimsMzt7+Szs4J+0X9k2DgRArswAg40Dd3bWf2Ef7E8uBOd5Bi7jtMkV66WDcrwa+zhrCT/ehAeJd/POhod3y66lhOZN1/xqW+3DPUkM3G3SLBrpzvJsGHx2lu5Gck0QicZax7t5b2qRuxolEIpFIJM4cyUFJJBKJRCJx5kgOSiKRSCQSiTNHclASiUQikUicOZKDkkgkEolE4syRHJREIpFIJBJnjuSgJBKJRCKROHMkByWRSCQSicSZIzkoiUQikUgkzhzJQUkkEolEInHmSA5KIpFIJBKJM0dyUBKJRCKRSJw5koOSSCQSiUTizJEclEQikUgkEmeO5KAkEolEIpE4cyQHJZFIJBKJxJkjOSiJRCKRSCTOHPr5FvBsuPJ/ey1rRXHb1wUCIQUCAVLgrMN7F58rcBaPRwiJVBKcx+PxPjxAIAQIACEAwu89IKNv5x14EFLE5x4f/iFsKJCrGpzDu1aDBOeiBoGUClaOH/bBTRoEPh4zaBDg7U0aiOexokEIhDhNw6odBFKpcA43a+gOfy8aBHh3qx1aDULgvcc5u7SD9+Ha3MkO8X/iZg1CgJBLDfEY4VqcZoeg27tWA8EOrQaiHW7R4IPee9BAe6530iDkih3upiF+9vB3+pOI+sQdt0kkEonni2lVwS99+p62Fd77O3/jnUHG4zGbm5vsffVpNjY2brudkGI5YAqBdw6cDQOJlGBdcDCURMTBAcA7h3e+G4i6AS++JgAfHRThwkC8HJjjgOR8N2CfqgEBSoFz4SElQq1qCAMVrGogvM85wOOFCrttnRypwonfRQPO4e9Fg/dB7/1oEHLFOQj2Co5MGJjpnAeHt1FDa3tn70+Dd+E4rQbv8P40DT7sTwRn8VQNSoFrNQiE0rdqaG15kwbvffhMCRk1uBMaANxtNXi8NUs74MG2GlTnj6xquBOdvkQikTiDjMdjzr3gCqPR6I7jNzzgMyh6bYAeDuJgcSutY9F+Yft2EFwdPHwcmMVyteuEc9A6InFAagfL9q6/HYC6QStOsHgX7naFEN0+goboDKw6B96Fwe3EdrcZmOPsyPKuvR2o6c7Vrzg5rYZT7bAye9HaIcwaiVM1EO/8u9mAVgMnn7e/CruNd/3x+KdriA6Jt3e1w3L/7eyFX7me4fmpDgqtc3By36faIc6G3M4ON1/r1vE48Znq3h9mP2SroZ3Vu921gPgZvb2GOxHO/a6bJRKJxPOCsuaet00xKIlEIpFIJM4cyUFJJBKJRCJx5kgOSuK+SSsIiUQikXiuSQ5K4r554KKqE4lEIvHAkRyURCKRSCQSZ47koCQSiUQikThz3JeD8su//Mt813d9FxsbG2xsbPAP/sE/4H/73/637nXvPe95z3u4cuUK/X6fV7/61fz5n//5iX1UVcXb3/52zp8/z3A45Ad+4Ad4+umnvz5nk0gkEolE4huC+3JQHn74Yf7H//F/5JOf/CSf/OQn+f7v/37+8//8P++ckPe///38/M//PL/4i7/In/zJn3Dp0iVe97rXMZlMun08/vjjfOQjH+HDH/4wH//4x5lOp7zpTW/CWvv1PbNEIpFIJBIPLM+6kuzOzg4/93M/x3/1X/1XXLlyhccff5x//s//ORBmSy5evMjP/uzP8mM/9mOMRiMeeughPvShD/GWt7wFgKtXr/LII4/w27/927zhDW+4p2O2lWSPDg/ZWN9IhdpSobYzX6jNp0JtiUQiwXg8Zmtr654qyX7NMSjWWj784Q8zm834B//gH/Dkk09y/fp1Xv/613fbFEXBq171Kj7xiU8A8MQTT9A0zYltrly5wmOPPdZtcxpVVTEej088Es8fafxLJBKJxHPNfTson/nMZ1hbW6MoCv6b/+a/4SMf+QgveclLuH79OgAXL148sf3Fixe7165fv06e52xvb992m9N43/vex+bmZvd45JFH7ld24utISjNOJBKJxHPNfTso3/7t386nP/1p/uiP/oh/9s/+GT/6oz/KX/zFX3Sv39yoLDRvu/M99922efe7381oNOoeTz311P3KTiQSiUQi8QBx3w5Knud867d+K9/zPd/D+973Pl72spfxP//P/zOXLl0CuGUmZHd3t5tVuXTpEnVdc3R0dNttTqMoii5zqH0kEolEIpH4xuVZ10Hx3lNVFS960Yu4dOkSH/3oR7vX6rrmYx/7GK985SsBePnLX06WZSe2uXbtGp/97Ge7bRKJRCKRSCT0/Wz80z/907zxjW/kkUceYTKZ8OEPf5g/+IM/4Hd+53cQQvD444/z3ve+lxe/+MW8+MUv5r3vfS+DwYAf+ZEfAWBzc5O3ve1tvPOd7+TcuXPs7Ozwrne9i5e+9KW89rWvfU5OMJFIJBKJxIPHfTkoN27c4J/+03/KtWvX2Nzc5Lu+67v4nd/5HV73utcB8FM/9VMsFgt+/Md/nKOjI17xilfwu7/7u6yvr3f7+MAHPoDWmje/+c0sFgte85rX8MEPfhCl1Nf3zBKJRCKRSDywPOs6KM8HqQ7K81sH5RYNYetUByXVQUkkEok7cj91UO5rBuWsMf7rL8Jw7fQXRfiybgcziINq56DI6Ci0g4mkTaANfkdwItrBqBuGW3+udWj8yuDZbdNu508MymFQjQMxMg6KKw5K5yT5lX1EH0CIUzSIcG5Rw8ltlhoQArmqAb90kqSIHpW9jYbWDl+DBk5xUG7RwNJBcfYmZ/FOdhCdE3nPGlrn4FQNcsUOAiFUt4ebHc6b9985KJ3XEs83Pr+TBvAnnV7oPqMn7NDu4y73E0ImByWRSJxdxtPpPW/7QDso/+mtb2eg7nwKktbBEDjv41d9eL78GaSQ3azAcqvld33YHrjlFb+yBd07V4eRO2lo39Fq6Abl22hg5Rh/kxraoz0bDSI6OqdrCO8JPogMV+dOGsSKk3S/GggOpcMvnZ+bzkt+LRraWZx2jyuv384OHo/7GjTcieSfJBKJs8rcmnve9oF2UMyixMjbx64IwN10137izr/7GSRxYCZOp6/sY3UWpn2PjzMSIm67nCVpB5TnX0P46T40sOKgPAcabp5BOamh3fLrqeGkg3A/GvzKPtyz1NAtNd2ige4c76YhODLcleScJBKJs4xx995371mnGScSiUQikUh8vUkOSiKRSCQSiTNHclASiUQikUicOZKDkkgkEolE4syRHJREIpFIJBJnjuSgJBKJRCKROHMkByWRSCQSicSZIzkoiUQikUgkzhzJQUkkEolEInHmSA5KIpFIJBKJM0dyUBKJRCKRSJw5koOSSCQSiUTizJEclEQikUgkEmeO5KAkEolEIpE4cyQHJZFIJBKJxJkjOSiJRCKRSCTOHMlBSSQSiUQicebQz7eArwXvPQBzZ++4nQCEEIj4zOO79yIEdD+DxAM+/N+Hf5f7aH+ie48Xca9xWxGfg8d7bnr/86Mh/HQfGoD/f3t3FhJV/8YB/DvmOC7ZoJmO02JWUplLpi2aVG+GEVpEEBVFRvwvjDSlLtou9Kb0KigoI4soCryxwmhxIZciSnDB0cIMLU0UaTGnTUuf/8X77/RO47i9f5w59v3AQP5+D/Kcr6fp4XTO6KSxVw8/K/+fPfw6V0bfw6/vMfAve8D/1qx7gHKMw/UgEAz8+jHZpBm+hIjIbn7+uy0y/BuaKgcUs9kMAPhPm8nOnRAREdFomc1m6PX6IWs0MpIxxsEMDAygsbERwcHBaGtrw5QpU+zdkir09PRg5syZzGyUmNvoMbOxYW6jx8zGxl65iQjMZjOMRiOcnIa+y0SVV1CcnJwwffp0AMCUKVN4Uo4SMxsb5jZ6zGxsmNvoMbOxsUduw105+Yk3yRIREZHD4YBCREREDke1A4pOp0NGRgZ0Op29W1ENZjY2zG30mNnYMLfRY2Zjo4bcVHmTLBEREU1sqr2CQkRERBMXBxQiIiJyOBxQiIiIyOFwQCEiIiKHo8oB5dy5cwgMDISrqysiIyPx8OFDe7dkNxUVFdi4cSOMRiM0Gg1u3bplsS8iyMzMhNFohJubG9asWYOGhgaLmt7eXqSmpsLHxwceHh7YtGkT3rx5M45HMb6ysrKwdOlSeHp6wtfXF5s3b0ZjY6NFDXOzlpOTg7CwMOWDnaKjo3Hv3j1ln5kNLysrCxqNBunp6coac7OWmZn59++s+sfLYDAo+8xscO3t7di1axemTp0Kd3d3LF68GFVVVcq+6nITlcnLyxOtViu5ubny7NkzSUtLEw8PD3n9+rW9W7OLu3fvyvHjxyU/P18AyM2bNy32s7OzxdPTU/Lz88VkMsm2bdvE399fenp6lJrk5GSZPn26FBcXS3V1tfz1118SHh4uP378GOejGR/r16+Xy5cvS319vdTW1kpCQoLMmjVLPn36pNQwN2sFBQVy584daWxslMbGRjl27JhotVqpr68XEWY2nMrKSpk9e7aEhYVJWlqass7crGVkZMiiRYuko6NDeXV1dSn7zMza+/fvJSAgQPbs2SNPnz6VlpYWKSkpkZcvXyo1astNdQPKsmXLJDk52WJtwYIFcuTIETt15Dh+H1AGBgbEYDBIdna2svbt2zfR6/Vy/vx5ERHp7u4WrVYreXl5Sk17e7s4OTnJ/fv3x613e+rq6hIAUl5eLiLMbTS8vLzk4sWLzGwYZrNZgoKCpLi4WFavXq0MKMxtcBkZGRIeHj7oHjMb3OHDhyU2NtbmvhpzU9V/8fT19aGqqgrx8fEW6/Hx8Xj8+LGdunJcLS0t6OzstMhLp9Nh9erVSl5VVVX4/v27RY3RaERISMgfk+nHjx8BAN7e3gCY20j09/cjLy8Pnz9/RnR0NDMbxv79+5GQkIB169ZZrDM325qammA0GhEYGIjt27ejubkZADOzpaCgAFFRUdi6dSt8fX0RERGB3NxcZV+NualqQHn79i36+/vh5+dnse7n54fOzk47deW4fmYyVF6dnZ1wcXGBl5eXzZqJTERw8OBBxMbGIiQkBABzG4rJZMLkyZOh0+mQnJyMmzdvIjg4mJkNIS8vD9XV1cjKyrLaY26DW758Oa5evYrCwkLk5uais7MTMTExePfuHTOzobm5GTk5OQgKCkJhYSGSk5Nx4MABXL16FYA6zzVV/jZjjUZj8bWIWK3RL2PJ60/JNCUlBXV1dXj06JHVHnOzNn/+fNTW1qK7uxv5+flISkpCeXm5ss/MLLW1tSEtLQ1FRUVwdXW1WcfcLG3YsEH5c2hoKKKjozF37lxcuXIFK1asAMDMfjcwMICoqCicPHkSABAREYGGhgbk5ORg9+7dSp2aclPVFRQfHx9MmjTJapLr6uqymgoJyl3vQ+VlMBjQ19eHDx8+2KyZqFJTU1FQUIDS0lLMmDFDWWdutrm4uGDevHmIiopCVlYWwsPDcfr0aWZmQ1VVFbq6uhAZGQlnZ2c4OzujvLwcZ86cgbOzs3LczG1oHh4eCA0NRVNTE881G/z9/REcHGyxtnDhQrS2tgJQ5/uaqgYUFxcXREZGori42GK9uLgYMTExdurKcQUGBsJgMFjk1dfXh/LyciWvyMhIaLVai5qOjg7U19dP2ExFBCkpKbhx4wYePHiAwMBAi33mNnIigt7eXmZmQ1xcHEwmE2pra5VXVFQUdu7cidraWsyZM4e5jUBvby+eP38Of39/nms2rFy50urjEl68eIGAgAAAKn1fG/fbcv+ln48ZX7p0SZ49eybp6eni4eEhr169sndrdmE2m6WmpkZqamoEgJw6dUpqamqUx66zs7NFr9fLjRs3xGQyyY4dOwZ9rGzGjBlSUlIi1dXVsnbt2gn9ON6+fftEr9dLWVmZxWOMX758UWqYm7WjR49KRUWFtLS0SF1dnRw7dkycnJykqKhIRJjZSP3zKR4R5jaYQ4cOSVlZmTQ3N8uTJ08kMTFRPD09lfd5ZmatsrJSnJ2d5cSJE9LU1CTXr18Xd3d3uXbtmlKjttxUN6CIiJw9e1YCAgLExcVFlixZojwe+icqLS0VAFavpKQkEfn70bKMjAwxGAyi0+lk1apVYjKZLL7H169fJSUlRby9vcXNzU0SExOltbXVDkczPgbLC4BcvnxZqWFu1vbu3av8vZs2bZrExcUpw4kIMxup3wcU5mbt5+dzaLVaMRqNsmXLFmloaFD2mdngbt++LSEhIaLT6WTBggVy4cIFi3215aYRERn/6zZEREREtqnqHhQiIiL6M3BAISIiIofDAYWIiIgcDgcUIiIicjgcUIiIiMjhcEAhIiIih8MBhYiIiBwOBxQiIiJyOBxQiIiIyOFwQCEiIiKHwwGFiIiIHA4HFCIiInI4/wUsrTlMfVQrxwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebxtV1Xn+51zrm53pz/3NLe/N7npgwEUECUgnYBaSGMpivDUZwH6qpB6FoU8OsuCsime7z3LsnyCYFEKyhO1AIVIE4EECD3pIAlJbnK705/drH7O+f6Ya+9zzm0TjCaB9ctn59yz9tpr/daYa5851hxj/Iaw1lpq1KhRo0aNGjUeQZAPN4EaNWrUqFGjRo3TUTsoNWrUqFGjRo1HHGoHpUaNGjVq1KjxiEPtoNSoUaNGjRo1HnGoHZQaNWrUqFGjxiMOtYNSo0aNGjVq1HjEoXZQatSoUaNGjRqPONQOSo0aNWrUqFHjEYfaQalRo0aNGjVqPOJQOyg1vqNx4MABfuRHfuTb/vxTn/pUhBBnvH74h3/4IWT56Mab3/xmhBAPy7lvvfVW3vzmN3PPPfec8d7LX/5yDhw48M/O6cFgbW2Nn/zJn2TXrl0IIXj+859/zn3Pdy9/4QtfQAjBu971rh3bP/KRj/CsZz2LxcVFwjBkcXGRpz71qfyn//SfznmeF7zgBQgh+OVf/uUHdS333HMPz3ve85iamkIIwatf/Wruueees/KqUeOBwHu4CdSo8UjHoUOH+B//43/s2DYxMfHwkHkE4hd+4RceNoft1ltv5S1veQtPfepTz3BG3vCGN/Bv/s2/eVh4PVD8h//wH/jABz7AO9/5Tg4fPszU1NRDduw/+IM/4JWvfCUvfOEL+b3f+z2mpqa47777uOGGG3j/+9/Pv//3//6MzywtLfHBD34QgP/xP/4Hv/M7v0MURQ/ofL/yK7/C5z73Od75zncyPz/PwsICdSeVGv8Y1A5KjYcdcRzTbDYfbhrnRKPR4IlPfOLDTeMhwT+Frffs2cOePXse0mM+FDh8+PDDTeGCuPnmmzl8+DA//dM//ZAf+21vextPecpTeP/7379j+0tf+lKMMWf9zJ/8yZ9QFAXPe97z+NCHPsRf/uVf8pKXvOQBne/mm2/m+77v+3asAp1tZatGjQeKOsRT458Vw3DAl770JV70ohcxOTk5mki+8IUv8JM/+ZMcOHCARqPBgQMH+Kmf+inuvffeHcd417vehRCCT3ziE7zyla9kZmaG6elpXvCCF3D8+PELcvj93/99PM/jTW960z/JNW7HW97yFp7whCcwNTXF2NgYj33sY3nHO95xxpPlcPn+Ax/4AFdffTVRFHHo0CH+7//7/96x3yc/+UmEELznPe/hNa95DfPz8zQaDa699lq+/OUv79j35S9/Oe12m69//es861nPotPp8PSnPx1woYVXvepV7N69myAIOHToEK9//evJsgyANE255ppruOiii9jc3Bwd8+TJk8zPz/PUpz4VrTVw9hDP8Ho++MEPcs0119BoNLjssstGT+fvete7uOyyy2i1Wnzf930fX/jCF3Z8/oHcC+9617t48YtfDMDTnva0UfhtGE44W4gnTVNe97rXcfDgQYIgYPfu3fzSL/0SGxsbZ+X/d3/3dzz2sY+l0Whw6aWX8s53vvPMQT4LLmTfYejj7//+77nttttG3D/5yU8+oOM/EKyurrKwsHDW96Q8+5/+d77znczNzfHud7+bRqPxgK53eE/eeeed/O3f/u3oWs7lnNx55538L//L/8LFF19Ms9lk9+7d/OiP/ihf//rXz9j3lltu4VnPehbNZpPZ2Vl+6Zd+iQ996EMPua1qPEJha9T4Z8Sb3vQmC9j9+/fb1772tfa6666zf/VXf2WttfYv/uIv7Bvf+Eb7gQ98wF5//fX2ve99r7322mvt7OysXV5eHh3jj//4jy1gDx06ZP+3/+1/sx/5yEfsH/3RH9nJyUn7tKc9bcf59u/fb5/3vOdZa601xth/+2//rfV93/7xH//xA+J77bXX2iiK7OTkpFVK2UOHDtlf+7Vfs3EcP6DPv/zlL7fveMc77HXXXWevu+46+x/+w3+wjUbDvuUtbzmD5+7du+2+ffvsO9/5TvvhD3/Y/vRP/7QF7G//9m+P9vvEJz5hAbt37177L/7Fv7D/83/+T/ue97zHXnTRRXZsbMzeddddo31f9rKXWd/37YEDB+zb3vY2+7GPfcx+5CMfsUmS2Kuvvtq2Wi37O7/zO/ajH/2ofcMb3mA9z7PPfe5zR5//5je/aTudjn3BC15grbVWa21/6Id+yO7atcseP358tN9wTE+/nj179tgrr7zS/tmf/Zn98Ic/bJ/whCdY3/ftG9/4RvvkJz/Z/uVf/qX9wAc+YI8cOWLn5uZ22PSB3AtLS0v2rW99qwXsf/kv/8XeeOON9sYbb7RLS0uj69+/f//omMYY++xnP9t6nmff8IY32I9+9KP2d37nd2yr1bLXXHONTdP0DP6XX365/ZM/+RP7kY98xL74xS+2gL3++uvPO+YPxL5pmtobb7zRXnPNNfbQoUMj7pubm+c87vZ7+XTcdNNNFthxXz/jGc+wnufZN73pTfYrX/mKLcvyvLw/85nPWMD+6q/+qrXW2p/5mZ+xQgj7rW9967yf29zctDfeeKOdn5+3T37yk0fXkqapvfvuu8/gdf3119t/+2//rX3/+99vr7/+evuBD3zAPv/5z7eNRsPefvvto/2OHz9up6en7b59++y73vUu++EPf9i+9KUvtQcOHLCA/cQnPnFeXjUe/agdlBr/rBhOZm984xsvuG9Zlrbf79tWq2X/r//r/xptHzoor3rVq3bs/1u/9VsWsCdOnBhtG/5Rj+PYvvCFL7Tj4+P27//+7x8w39e//vX293//9+3HP/5x+6EPfcj+8i//svU8zz7lKU+xWusHfBxr3QRfFIX99V//dTs9PW2NMTt4CiHsV77ylR2feeYzn2nHxsbsYDCw1m45KI997GN3fP6ee+6xvu/bX/iFXxhte9nLXmYB+853vnPHMf/gD/7AAvbP//zPd2z/zd/8TQvYj370o6Nt73vf+yxgf/d3f9e+8Y1vtFLKHe9be24HpdFo2Pvvv3+07Stf+YoF7MLCwuh6rLX2r/7qryxg/+Zv/uactjvXvfAXf/EX55ysTndQ/u7v/s4C9rd+67d27De8xj/8wz/cwT+KInvvvfeOtiVJYqempuy/+lf/6pw8rX1w9r322mvtFVdccd7jbef0YByUO++801555ZUWsIBtNBr26U9/uv293/s9m+f5Gcf4uZ/7OQvY2267zVq7da+94Q1v+Lb5nc1BOR1lWdo8z+3FF19sf+VXfmW0/Vd/9VetEMLecsstO/Z/9rOfXTso3yWoQzw1Hha88IUvPGNbv9/nta99LRdddBGe5+F5Hu12m8FgwG233XbG/j/2Yz+24/err74a4IyQ0OrqKj/0Qz/E5z//eT796U+PwhxDaK0py3L02h6f/43f+A1e+cpX8rSnPY3nPve5/D//z//Df/pP/4l/+Id/4K//+q8veJ0f//jHecYznsH4+DhKKXzf541vfCOrq6ssLS3t2PeKK67gMY95zI5tL3nJS+h2u3zpS186Y/v2sMr+/fv5/u//fj7xiU+cweF0W3/84x+n1Wrxohe9aMf2l7/85QB87GMfG237iZ/4CV75ylfyq7/6q/zGb/wGv/Zrv8Yzn/nMC143wPd8z/ewe/fu0e+XXXYZ4CqjtufBDLdvH7cHey88EHz84x/fcZ1DvPjFL6bVau247iH/ffv2jX6PoogjR46ccX+d7TwP1L7/lDh8+DBf/epXuf7663nLW97CM57xDG666SZ++Zd/mSc96UmkaTrat9/v8+d//ud8//d/P5deeikA1157LYcPH+Zd73rXOXNWvh2UZclb3/pWLr/8coIgwPM8giDgjjvu2DG2119/PVdeeSWXX375js//1E/91EPGpcYjG7WDUuNhwdli4y95yUv4vd/7PX7hF36Bj3zkI3z+85/npptuYnZ2liRJzth/enp6x+9hGAKcse83v/lNPve5z/Gc5zyHK6+88ozjPP3pT8f3/dHr537u587L/Wd+5mcA+OxnP3ve/T7/+c/zrGc9C4D/9//9f/nMZz7DTTfdxOtf//qz8pyfnz/jGMNtq6urD2jf0/drNpuMjY3t2La6usr8/PwZeSO7du3C87wzjvFzP/dzFEWB53n863/9r895vafj9IqUIAjOu337hPlg74UHgtXVVTzPY3Z2dsd2IcRZbXf6/QXuHrvQ+R+sfR8oPM8b5f2cjrIsAfB9f8d2KSVPecpTeOMb38jf/M3fcPz4cf7lv/yXfPGLX9yRX/K+972Pfr/PT/zET7CxscHGxgabm5v8xE/8BPfddx/XXXfdt8X5bHjNa17DG97wBp7//OfzP//n/+Rzn/scN910E495zGN22HZ1dZW5ubkzPn+2bTW+M1FX8dR4WHD6H+/NzU0++MEP8qY3vWlH+WOWZaytrf2jzvWkJz2JF7/4xfz8z/88AP/1v/7XHUmC/+2//Td6vd7o95mZmQd03HMlGg7x3ve+F9/3+eAHP7ijVPOv/uqvzrr/yZMnz7nt9MnyXPuevt/Z9Emmp6f53Oc+h7V2x/tLS0uUZbnj+geDAS996Us5cuQIp06d4hd+4Rce0MrRPwb/VPfC9PQ0ZVmyvLy8w0mx1nLy5Em+93u/9x/Fe/t5Hqh9Hwzm5uY4duzYWd8bbr/Q5N1qtXjd617H+973Pm6++ebR9ne84x0AvPrVr+bVr371GZ97xzvewbOf/exvi/fpeM973sPP/uzP8ta3vnXH9pWVlR3l+9PT05w6deqMz5/t3q/xnYl6BaXGIwJCCKy1o1WQIf7oj/7onE+NDwYve9nLeO9738sf//Ef87M/+7M7jnnJJZfw+Mc/fvS6kLjXu9/9boALlh4LIfA8D6XUaFuSJPz3//7fz7r/Lbfcwle/+tUd2/70T/+UTqfDYx/72B3b/+zP/mxHJdC9997LDTfcwFOf+tTzcgK3YtTv989wlP7kT/5k9P4Qr3jFKzh69Ch/+Zd/yTve8Q7+5m/+hv/z//w/L3iOfwwezL1wrlWzs2F4Xe95z3t2bP///r//j8FgcEbo79vFg7Hvg8EznvEMbr75Zm699dYz3vvzP/9z2u02T3jCE0bbTpw4cdbjDMMoi4uLo99vvPFGXvjCF/KJT3zijNfTn/50/vqv//rbXvk5HUKIM8b2Qx/60BnO17XXXnvW633ve9/7kPCo8chHvYJS4xGBsbExnvKUp/Dbv/3bzMzMcODAAa6//nre8Y53PGSiaC960YtoNpu86EUvIkkS/uzP/mwUXjgbPvWpT/Ef/+N/5Md//Mc5dOgQaZryt3/7t/zhH/4hP/RDP8SP/uiPnvd8z3ve83j729/OS17yEn7xF3+R1dVVfud3fueMP85DLC4u8mM/9mO8+c1vZmFhgfe85z1cd911/OZv/uYZ2iVLS0v8+I//OP/r//q/srm5yZve9CaiKOJ1r3vdBe3wsz/7s/yX//JfeNnLXsY999zDVVddxac//Wne+ta38tznPpdnPOMZgHMI3vOe9/DHf/zHXHHFFVxxxRX88i//Mq997Wt58pOfzPd93/dd8FzfDh7MvTAM2f3hH/4hnU6HKIo4ePDgWcMzz3zmM3n2s5/Na1/7WrrdLk9+8pP52te+xpve9CauueYaXvrSlz4k/B+ofR8s/s2/+Tf8yZ/8CU996lP5tV/7Na666irW19d53/vex/vf/37e/va30+l0RvtfccUVPP3pT+c5z3kOhw8fJk1TPve5z/Gf//N/Zm5ubrSiOFw9+Xf/7t+ddUx7vR4f+9jHeM973vOQCN/9yI/8CO9617u49NJLufrqq/niF7/Ib//2b5+hpfPqV7+ad77znTznOc/h13/915mbm+NP//RPuf3224ELr2DW+A7Aw5mhW+O7D8OKj+1lw0Pcf//99oUvfKGdnJy0nU7H/vAP/7C9+eab7f79++3LXvay0X7DKp6bbrppx+eHVQfbs/vPVlnwiU98wrbbbfvDP/zD5y0XvuOOO+xzn/tcu3v3bhuGoY2iyF511VX2P/7H/7ijJPV8eOc732kvueQSG4ahPXTokH3b295m3/GOd1jA3n333WfwfP/732+vuOIKGwSBPXDggH37299+1mv87//9v9t//a//tZ2dnbVhGNof/MEftF/4whd27Puyl73Mtlqts/JaXV21r3jFK+zCwoL1PM/u37/fvu51rxtd19e+9jXbaDR22N1aVx77uMc9zh44cMCur69ba89dxXO2ihPA/tIv/dKObcNKj+3l1A/0XrDW2t/93d+1Bw8etEqpHRUjp1fxWOsqcV772tfa/fv3W9/37cLCgn3lK185upYL8b/22mvttddee8b203Eh+24/3gOt4rHW2pMnT9pXvvKVdt++fdbzPNvpdOwP/MAP2L/4i784Y9//9t/+m33BC15gDx06ZJvNpg2CwB4+fNi+4hWvsPfdd5+11to8z+2uXbvs93zP95zznGVZ2j179tirrrrqvNweaBXP+vq6/fmf/3m7a9cu22w27Q/8wA/YT33qU2e17c0332yf8Yxn2CiK7NTUlP35n/95++53v9sC9qtf/eoFrFXj0Q5hba1FXKPGw40DBw5w5ZVXjoTMzoVPfvKTPO1pT+Mv/uIvzqgSqVHjuwG/+Iu/yJ/92Z+xurp63hXQGo9+1CGeGjVq1KjxiMSv//qvs7i4yKFDh+j3+3zwgx/kj/7oj/g//o//o3ZOvgtQOyg1atSoUeMRCd/3+e3f/m3uv/9+yrLk4osv5u1vf/sjvglkjYcGdYinRo0aNWrUqPGIw8OaBv37v//7HDx4kCiKeNzjHsenPvWph5NOjRo1atSoUeMRgofNQXnf+97Hq1/9al7/+tfz5S9/mR/8wR/kOc95DkePHn24KNWoUaNGjRo1HiF42EI8T3jCE3jsYx/Lf/2v/3W07bLLLuP5z38+b3vb2x4OSjVq1KhRo0aNRwgeliTZPM/54he/uEPGGuBZz3oWN9xwwxn7Z1lGlmWj340xrK2tMT09fVYp7xo1atSoUaPGIw/WWnq9HouLixcU23tYHJSVlRW01mf0jZibmztrn4W3ve1tvOUtb/nnolejRo0aNWrU+CfEfffdd4Z68Ol4WMuMT1/9sKc11xrida97Ha95zWtGv29ubrJv3z4e+7iXo9S5a+EFAiFAImgAsbWkWCIhmLSCdWFJrSVE0BaSAdb9Z8HiIl9WCCygEHhYMkAAM8YigWUpMEAAGAQlILCIKnI25CAQNIHUWmIsoRBMWEFfWAYVh6YQZIA+Dwcfy7Dn67SxhMCSdOcd9jEtEBUHAHsaB0FqDQkWTwhmrKBbcfARjAlBchYOIDBipx0ApgxEWJakoKjsIID8PBwioLSWQcVh0kIioFdx6AhBWnHAgjmNg0QQVBwsMGmhYS0r0tnPxyVXnclheM85O5TW0McihWDaCjJh6Vr32THhrqd4gBzGLYwZy5Jy3L3qlZ2Dw9AOxlr6uPt+2kIuYNOCxDIm5Dk4nBvP6n6LK9OHpmdKjRo1ajzUiI3m549+bUdbhnPhYXFQZmZmUEqdsVqytLR01m6cYRietX+JUgGedyEHRSARbsKwBoXFExLfCjxhUdbgIfCEwhs5KPY050CMJmaNm4B9Y5CAJyUaZ0iDqM5rEdbs4CDO4CDwrTyNg6yOf34Ow0HzjcGvOFi2BtOOJkXLlnMw5CDwrD4vB+8sHNzEvNMOjoPFx+JJiak4iMoW5+YAWIvCVBwEheCsHLD2NOdgOJ6OgwF8a/Gt41BWHORZOYAQEio7YA0Kg6rsoIVFWYsCPOFsah8gB89afGPxlHSfr176HByGdjCVHWRlByOoOFg8oc7B4dyIlE9TqgvuV6NGjRoPJx5IesbDUsUTBAGPe9zjuO6663Zsv+666/j+7//+h4NSjRo1atSoUeMRhIctxPOa17yGl770pTz+8Y/nSU96En/4h3/I0aNHecUrXvFPfm73FAunBZj+yc97OouzOZAPlsWZ+z/wpOGtsEvlzdqdxxPfBp8HzmHryG5lxbpB+TZO+MA/cm5eo/theNH2vLufm8m39bkhh+qDwv4jONSoUaPGdwYeNgflX/7Lf8nq6iq//uu/zokTJ7jyyiv58Ic/zP79+x/wMYQQ51wmEmz9bbfWkuUl2hP4oc94p8WuRojJcorNPjoryEqDDRQIkMLllQzPYYV0S03WHctaS2Es0lqMEFghQAikEEio8g3E6Pyi4pAXmlJaVOgzMdZiVyPCy3OyzT46Lci1xnoeSJDCBQTsOTlAYVzoQAsXdhhyH3IQ2Cq4sp1DSSksKvIZazfZ1WygioK86zhkWYENHAdRHctdzvD6hJs/RxwMsuJgHyCHojSUGGTo0ek02dVs0tMlyUYPmxZkeYHxz8IBgZQuTDTkYIBSG3Jr0QisrMJsUm4bCzsajxEHrR33yKPdarCr3WKgS5LugDLJyfIC6ysQ4qwcdtgBKI0h1xYtrLMDrh38lh22/I0tDgY95NCMmG23SKwh3exTJDlZlmMDH8TpdjjPd+IC79eoUaPGowUPa5Lsq171Kl71qld9259XAtR5HBQQGGPR2hD3E2QrZGyqw8GLFrlkYYbW0hqD2+6lO0jp9jPCiRZKymoSrI4jJVZIlABrDFZbtLXERYmwUEqJUNUkplzETBiDNW46ERUHYwz9OMX6iuZYkwOHFzmyOMv9q5t0b72bbpzR62cEnQZKKGQ10dptHKQAuYODprCGUkqsAiEUSrncCWEMGDlyD4yxWGPpD1KML+lMtth7YI6r9y1w30aXwW33sp6us9kb0JhoI4UclYBtcaicFGOxWqOtJSk1pTaUQmA9CUKilMshwViEYcTBWos2hkGcYqSg2WmwZ98cV+1fYG2QsPn1u9hI1un2E8KxJkrIyg5DR01iZZXLUnEwFQetDUUoMFIipERJiRUVh8qRGHIw1hInObkuaXcmWNwzy9UX7WG9nzC4/R5WsnW6vZio3UAF3jk5SGux5dAOBlFqciEwQoJ09vOcN+LuCctpHDJKrWl1JphfnOHKi/YwKEoGt3yL5RNrbPZimuMthKec3atk6fPBrUbVqFGjxiMTD+bv08Mqdf+PxfCP9tleQgjcHO+cg0GSY7G0WxH7D8xz2dWHOHBokU67gbUwSDI3iWNd5c+2Yykp3NNw5QxZC2lpSEs3QQII6fZz+7pzOx6OqzGWJC0ojaHZCNm3f47LrzrIoYsWGWs3AEGc5mht3IQ2TPDdxkFVk6+7KkumNUlp0GaLg5RbfLeuo+JgDXGaU2pDqxGxZ+8uLrv6IIcv2s3EuHPO+nFWcdgK/WxxkCMHbouDcRyqVSMpquuveGx93nGwxpJmBWWpaUQBe/bMcNlVB7nokj2MjzWRcrsd2GkHuZPDMCI05FAaW4VpBFJtjccZHKwlzQuyvCSKAhYXpysOe5mc7OB5kkGSUWgzWnuR246xxcHZ2FrItXHO2jA5WgjUkIM4lx3KEYf5hSkuvfIARy7bx9RUB89TDJKcsqzsIHbeD+e87x/6r1mNGjVqPCz4ju1mLLb931rIyxJPKcbHmuzeM8uhi/ewURaMdxqc8hR5UdWl2J0e3jAvQQpc9Ub1ZmFcZQVQOSPVJGK3zns68lITSkGnFbFnzyyHjuwhV4LxsRZLvqIoNSNh3205MkMOVSTJnaviMHROhpPf8CnbjgIKWz+thawoCWRIpxOxuDjNoYv3UPiKyYkWpwKfrCgxDMM6Z3KQVQLPkENp3KqIxW7ZoApHnC0gYYFCa8JA0W5FLCxMc+ji3TSWW0xOtFgKfIrK8bPbz30aBzGakC1ltUJl2elYbtlhKzwztENRGqywtJsh83OTHLp4D42ldaa/3uZkGFCUBmPMaIy3bgixYwzc9boVrUy7Y6uhfYZhGXEWDpUdhIB2M2Ju1wQHL9pNN06Z/nKH45Gzg7YWb1j9c1aL1qhRo8Z3Jh7dDsowkfAcb4lqMhVSgJS02xEzkx0WF6aY3zPN4kaX6akO7XbEKSURstq3WoYfTtCjCbIKKSkBebXNF9UT8sglqkqVKxLDCUxIgVCSZjNierLNwvwUu/fM0o1TZqY6nGg3EJ5EKDnKqxkdg+083Pm0cNonxlq8itfILbLDHy7ZUsjKsVEuPNFshkxPdFiYd3bo5TkzU2OMjTXd+eUwt0eMjgFby21DO2jhtEKsBa+yw9CBE6OPuUlbVPkpw7FoNEKmJlrMz02yuGcGEShmp8Y40WkgPVWtTrjPjNJILMjK3xI4J0GN7ACKyjk4132y/X5QgigImJpob3HwFbPT40yMtZCeAulssZXM5C5WbOPgwoyggcLa0e/D1bazcRCje1IQBJ6zw64JFnZP00kyds04DspXLnx4OocaNWrU+C7Ao9pBmZzs4Ptn6qOAmwQ8XxE1QqIoJPzeS7jo4t3sPzjHnt0zFIVmcWGKa3/gag7u2cWd3zxOWhRkSU6aZuR5gbUuNFMagy4NaVG6p3vjlvEtTna/LKEEGoFH4KkqBOAma8/zCBshUSMg8n32H5hj74Fd7N83S6k1szPjPOXJV3Jg9yx33nGcJHXnT5OMIi+rvA33hK5LTZrklNs4IATWGMqypLQevu8T+VscBOD7HmEjIIpCrrn6MAcOzXPo8AKHD85TFJqZmXGe/MTL2bswzaH9CySpS9BMk4w8KxyHIY9Sk6U5RVlWITGwYmiHksIqdz7fw5MCJSRCgqcUYRQSNUPCwGfvnhn2H5rn4sOLGGsZG2s5DvPTXHLRXvpxSprmZEnmEne3c9CGPMkoi60QmxVgbcVBVhyCbRwEeJ4ijAKiRojveSwuTnH4yG4uv2Qvxhg67YgnfO8lzM+Ms2/PLgZxSpYVlR1yl0tk3YqN1oYiyykqDtYOx8LZqLCWsLKDkgKvCgcpTxGGAVEzJPA85ucnufjSPRy5dB8IQasZ8X2PP8KuyQ6H9i+w2YvJ0pwszchSx+F8CBMf4ofk61WjRo0aDysetmaB/xh0u13Gx8f5mZ96C0EQnXUfAbRaEYu7Z9izbxdPetIVHDg4j5SCXpxx8tQGcwuTjEVO6O2eb53kMzfczPFjK5w4vkp3c4A2hjQriNOcQZyx2R2QlRqhBLKsxLM8CdbiC8n4WItmK6QZBjSiAE9Jmq2I+YUp9uyZ5fGPv4TLrzyABfKi5L7ja+yaGaPTihDA0XtP8fnP3c4995zk+LEVet0YrQ1JlhOnBUmSsbHZJy21yzfRrorHeBIz5NBp0mxFNKOAZuSjlKLZCFlYnGZx9wyPe+zFXHH1QaSUJEXJ/cdWmZrqMD3WxFrL6kqXT3ziK9x/3xLH7l9mY6OP0S5nI05y4iSj242Ji2Jkh+0cPATjnSatdoNG6NOMAnxPEUUBu+Ym2btvF9dcczFXXX0Q5SnSvOD4qQ06401mOk2EECyf2uDTn/46995zkuPHV1lf76G1G4skzYnTnM2NAUlRgKrsYBwHCygLY+0GrXajsoMbizAKmJ+fYmH3NFdefpAnPvlyhBAYa7n7/hU6rYjZqQ4CWFvtcsNnbuHuu09w/31LrK/10VqT5iVxmpEkOd1uTD/LEFIijEVqi/GrJGVrGW81abcbNCKfZhTi+4og8Ni1a5I9e2e58oqDXPP4i4migFxrjp9YdxynOwghSJOcj37kCxw9eorjx1ZYWd4YhfTOhcd+8yb2nbr7Ify21ahRo8ZDh9hofvKer7C5ucnY2Nh5931Ur6AcP7aC551rBQWarciVcgILu2fYvWeGIPBcCMN3lRFD/+zeY8scPbrE8WMrnDyxSrcbY4ylKEuKQpMXJdpYmpGP9BSFdmv2npKgNXla0N3sk8QpXU8R+C5M0WxG7rPWsmtxmsMX73YcEEhfVfojruT0xKl17j16iqNHlzhxfJVeL8ZoQ166lZui0JSlptkIkJ6qci8soSfBGPLEcUjjlJ6nCHwPKSWNRkBeagptmJge49IrDiCEk3gXnkJJMSobvvf+Ze49eopj9y1z/NgKmxv9yg7a8djBQVIadnJIC7qbA7I0c6smvodUkigKSPMCI2ByZpyDhxdcSEkIZLXqBC6B9cTSOvccXeLofUucPL7KxnofbQxFoZ0dSk1RlEShj/IV2oLexqHICnpdt/IwtIOSgjAMyPOSQmtanRZXJxfRbAQuXOQpV4VlLcbC8lqPe46e4t6jSxy7b+iouXPnFY88L2k0fJSn0IAuDaGvwFjKrKDXHZBn+cgOSkmCwCPNCgyWZqfJpVfuJwx9lwzsKaS3ZYfjJ9e4575T3Hf0FCeOr7K6sonR53dQLhmk1MXGNWrUeOTigf99elQ7KGsbPZTKzvqeEIJ+kpEbwyDLSbVhcW6SfXtmaLYa7F2cxreWtBdz3/FVPvnpm7n7zmOsrW6ysdYjGWQMZe+HiHyPduhjlaSXaQzQDjykUQxKQ5I7LZOMYbmnYBBn5FozyAsyC7tmxjlycJ7mRJt9C1NIIOnGnDi1zvWfuZlvfPM+Vk5tsL7WI4nTke7KEIFSjIU+KEWv0FgMLd9DAXHpqnRyk5NllfKHgDAOyK1lkOV0s5x9e2a59KJFwmbo7IAlG6Ssrff42Ce/yu3fuI/11S5rq13ifrKTg4XAG3KQ9AtDbg3NwMO3EGvr7J4WZOTEVRWOH3pkpSYpSuLChbauvmwvzbEWu+cmkQKyfsLyapd/uOEWbv3GUVaWNthY6zHoJy4JtkpGEQh8KRirnMV+YdDW0PA9AiAxlkGZU2QFeeY4IMAPfHKjifOCzbRgYWGKx199iOZYk73zkwggj1O63YSPf/KrfO3We1ld2mBtZfMMDgCeFIyFzlEblJZCl0S+Ryggw9ItSsdhZAcXbsu0Ji1LNpPchde+9whRM2Jh1wSegCLN2dzo88lPfZ2bb7uXteVN1td69DYHW6G9cyDNim/ru1SjRo0ajzQ8qh0Uu1VIc+Z7WEptiJMMsdEnv+s4t992lADYe3CesBFS5CUnj61w++33cccdx+ht9BnEGaU2ru9JldzpyoYFgafwq947RhuMtYhQ4Un3XllNYLr6aYWlNJo4zZEbA/TdJ7jtlntpSsGRsZZbfQFOHV/lG3cc45t3HGNltceg0scYrmoMOQghCCsOBrClwWiDCF2SauApCt/1b9G6mkwrPkmasdEdMCg0t95yD53AY/eBOZqdJrrQrJ5a5867T3Lb7UdZW+sRD9JRNc0w43hYshsoVfX/Ec4OWiOtV3GQBEMOxmArHRQXosnZ6A4o7j3Frbfew0TD56IjewnbDay1rJxa5467jnP77UdZWe3SH6TkZbktx8OV+Eoh8CsOosrBMVojrFuJ8T2F7ytMpbtiq7IkYwxJVrDZi0m04Zab72ZXp8GhS/fRaLlQ4dJKl3vvPcVttx3l1PIG6SA5g8Ow5NyXEl9WpVVGY0qDMBblSXzlOLg8JbfSZauVniwv2OzGpKXhllvuYc/MGHv27WJ8ZhxrDN3VLnd96wS33HIPS8tdkkFKnhdbHC74vXjURW1r1KjxXYIH8/fpUe6g2PNerACUUoShz8REm9nZccbHW3i+wlqLlJKx8RazM+NMTLbJk5Q0UaNjM3SAKmdDKztSVRVKIu1QI3UreXM4IW2HUpIw9BgfbzO7a5yJyY6rTqm4d8aazMyOMznZobc5II3TisOWYmuV2ICuGgMicBUedktN19jzcJAuvDA23mR2doKJiTa+743s0Ok0mZkZZ2p6jLifkKe5W4izW7YwzltCDytUBM5xkq5MyIotDkM+26tOpJSEgc/YmOMwOdnBD7yRHdqdJtMVh9WVTdI4GwmbDTlo65Ra5ai8x4nICbnVCdsOx6ISRBtVNdnKDr5Hp9NwHCrNkSGHZitienqc6ZkxllY2KNN8FIbbbgcrBHLouw05DCtuqvtnux22blOLFG4s2p0Gs7PjTE12CEO/qhwTFYcxpmfGOX5ilTI7jcN5sFVeXqNGjRqPRHyXhHj0+ZdQMFg3KXeaXHrxbvbsmcUAt958LydOrTM3O87crgl275nlskv2EHcHJJVzoI3dMTEKLKpKqFRCMh75gFvmN0VJUTjRrSGbYamuteD7inarwUUH5zmwfx7P9/jGzfdw4tT6qMx1YWGaSy7eTXejRzJI6IlqMjZma5K1FllVFiklGYsCjDH4SmK1y8vIsmIktT7kYKzF8z3azQYXHVzg4KF5pCf51p3HuO/YKtNTHRbmJpidneDKy/bT3+iTJRkI0NZgjd3BQVQrAkpJOqFPM4BAiYqDdmGG0zgo66poWq2Ig/vnOHRwgSAMuOuOY9x/Yo1OO2L3wjS7dk1y2SV7WTm1ThKn9HuVEq81zumqyq6tMmgT4gtFJ/RdeKfiUJaaLCu22hVsU35VnqTZDNm3Z5ZLLtlL1Ai57+4T3Hv/Cq1myO6FKSanOlxx6T5WljcokoyuEOjK2XHaKO4GM0JijMXzBK3AI1BylAcz5HD6WGxxiNi3Z5YjF+8hbIQcP7bC0WOrRJHP3sVpJqY6XHXFAY4fW6ZIc/pKjjicD9tDUDVq1KjxyMN3yQqK5ymUOkdreeFKWwPPoxX67JudYLMX8+VblvjIBz/LV2+4hcsef4Qf+fEf4PD+OfbPTHBr4BN6Hp6n3CqLcWGiUrswQVZo+nlJKATTgYcUgtW8JCk0aakpjYVK7dTznIaG5zkOUeCxe2qMLC/4wq338MG//DRf/swtHLp8Hz/24mu56OACi5Md2mFA6HkuhOEpjJXYUlNq5yzlpaZXlIRSMB36eAhWC02Sa5LCcbDKlbUqz4UihkmaUeCxf3aCIi/5/Nfv5mMf+QI3XvdFDly2j+f8+JO5/JK9HNg1wc1hwIbv4XsK5Sk36WlTCclBXhr6RUkgBFOhRyAch7jioCsOQztIIfCq0E8j8FmY6IAxfOUbR/n7j3yBGz76RWZ2T/PCn34Glx7ZzcLETjsoXyGMhGosjDEIbegXmkBKpiOf0JOsl5r+cCy0xUin5upVUvGeJwk8V/q7MNEmUJKvfOM+rv/EV/j4X9/I7OIUz33hD3L1VYeYn+ow0YxYrezgecqVnGvhOGgLODv4QjAZ+kx7Huulpldo0kKjtcVUarKecu0LlFKuqsn3WJjoEPmKr37zPj79D1/j439zI63xFj/2k0/lMVcdYmGyzVgUsu5vux8uUMUjhyGnGjVq1Hgk4kH8fXpUOyitZnjOKh4A3/NAG/obMXfdci/fuPs4d55Y5ZZb7mFtaYOv3XYUxr7ERQvTRFlJf3OAKQ1R4I9UO0ttybWBSoK+V2pSaxnTGgVsloas1HieR9N3iaO+cvkJQoDvKYSxDLoJd99+lPtPrvKt5Q2+cvPdrJxaJ/Uk3ie+zOFv3Ecj12yu9dClJgx8FzaxllK7Kh9rDMIY+hWHjtYIoFcaYm3cCkW7gVUKXwo85fr3eMpVlsS9hPvvOMbyWpc7Tq5xy1fvYvXUBrGSiE9+hTvvPM6MUnTXeui8JPQ9bDOq8kkseek4UHFQ1tLSGiWgWxoG2uApSbvdQFcc/G0cpBXEvYT77jrOZrfP3aubfP3Ld3Hq5BrrWc7ffvIr3HHnMaakYmO1iy5KAl/RbkZVPknVYE9bpDHEWpNk0DIGT0BPG3qlQVVhEqMkfvWSwoXaJJAMUk7es8THr/sid6ysc8vX7+HUyTU2s5zrPv117r5/iYUgZH1pgyIrCTxFqxm5sag4GG0RWjMoNcJCZDRNKeiVlm6pkQJa7QZaSTwlCdRQrl+ihCQdZJy89xTXf7zkW2tdbr/1Xk6eWEWs97nu01/nnvuX2dtqsrG8SZEW+EqOOJwPIQ081XjovmQ1atSo8RDC0+UD3vdRrYPyhCe94rwOiqzUTQMpmG6GbBjLyiBDZjmzEpa0xUQh082AGU9yqp85MbDqNcw3MMbiSYnvS5LCILEcnmyipODO1ZjcWpq+cgJipRn140FscVAIZlsBfWApziHJmBKWrhFkoc90M2TKk6zFOYUxWxzYSrL0pCDwPeJCI6zlwESDVqC4Y9UlfTaqEtes0KN+OAiQbPWE2dUM6CM4Ncgwaca8hDVtyYKA8WbAQuix2s/ITuNgK1l9x0ERFwZhLfvHG3RCjztWBwwqDtJaklzvsINAOLVZKZhq+ORScmqQodOcaQx9A3EQMNEMmAs91vquAutsHIQQNANFXDpnZf94xETk8621mG6hafgKYZ0dhv2JKlFal1gLzDQCtKc4PsgokoxZDImFnufTaQQsNny6cU5cyc2fzkEKQaPiYIxlsR0y3wm5Y2XAZq6JfIkvBHFebktyrjhUjR8nowB8xyFPcmaFcVVQvk+7EbCnGbA5yIirZOXyAXxVf+XlT+eZT7789C4HWzh9+/aHGXvaPmx7/2y/n77f6f+uz12fuz53fe7Tjt/t9dj7+Gu+83VQytLgRMbPhAAMoK37OcASG8jyktACvsKUmiwriQX0JaRJjhFgxfausZUaqydptRqElbMxMdtGScGkVWTGEghL3E9dOGh7gmTFQVjLQBhiBFla4lkQvsIUhjx3HEIlSJOCEntWDp6StFoRgZAIa5mcadMMFJNWEZaGQEAap6OePqdzkNYysIaBlGRZgTRAqDDG6bwkCfTLgjQtyKtwlTkLh2YzIpQKrGViukUn8pm0kqAw+BKKJCMrdnIQODl6aS0Do8mVIs1KhLEQKGxlh0TAoCxIk4KiSho14jQOUtBoRgRSYYxhcqrFeDNgUihUpkccirJKlNVbV2GsBmuJraH0FFlaunBNqLDaUhSaROT0jSZJCzJtzm4HKYgaTg3WGsvkeIOJsYhJq5BpiS9BZzlpZYfTOQhriY3B+s4ORhsIFdgqj0fk9K0mSXIyvWWHC7ko4a5ZOpccvsBeNWrUqPHwwHa7D3jfR7WDgrHudRaMttpKjh2LUAohBaW2pKV7OhdV518wo4oZC9jqaXdYpeJ5Hs1miAhDp38x1caTkokSstJAWVJkJXmhXWKrsTs4DH9x1R7SqZIOO/AORcLYSsy1YssJHZYYe56i0QxphiFSwPhUmyjwGC8FQaGhLNBFicrLURn06KF7mx2G12S2c1DScRBuxcZWdh1yEBKkkHieImoEeM0GAsehHXmMF+DlJdJo+mWJkrJK8GWbhsqQA6MVHl26ztDFaRysrTgIO0o0dW18tjioRgTWcRhr+oxrgUgLpDH0tcbLSrTWIw4CtlVn2dFYmNLZITcWhNriYFyCMNbdD9s5qEod1283HYeJBp2xiIlSIJLcOSAbBk8VaK2xxq3GncnB3X9aaDKtybVzDEeVUeZMO5wPw+usUaNGjUciHszfp0e3g2K3JtJz7ADWYqpqGqkEUkiMhUxrt6ogBVIJrMZNBsPVi6GHAigp8H1FoxURdVr4SjI+1XErKCWkhaaIE+JejJISXVV62FGNsjuO2TYhlRZybRyHKjfBGufcWDtcQdnOwU3MjUZINN5GSekcFF8xWUKYl5RJStpPR84Bhso+joPB+XNCSpQSFAVkunJQ/O2OmqlsscVBWoFSQ+cgpDXhVpDGp9q0Qp/JAoKsRGc5WT/BG1adDCf5bRxGE7OSlDg7lAakV4WEcNUq1hg3KQtAMAqVOOn8kOZEGykE49Mdt4qjBSopMHlOHqcolVfOooFqbJ2HZEdjoaRreJhrQ2lBeJUdRk7SkIPYwcFTrqdOp+IwMdFkbJuDYoqSMk5Qyo3FsBpq635wfIbHswhyrStHTaGGzmLFYXj+C62g1KhRo8Z3Ch7VDsqFdFCGuhFCuIlRVg30DFRS9a7axTktJcYYt5QvhisobjlfKaed0W5FjE128D3F5HQHKSU9LVx/FgWbax6ekhi9XbvDjp5qTeUQedJ14C2MwSDxqtUEU8nGO72Rrad2x0Hgex7NVsTEZAfPk0zOdAg8xbQRNLKSuCvprvVctYd2uRNncnArKEpKCgSF0VhACek42K2cF9jGQTgHz/c8mo2QqakOnpRMTrdphD7TRhClOWk/obe2OeLAuTgIxwGBk+y3w/GRGOuaIRpT2UHiOghLRkJszWbI1EQbVY1FK/IZWIkXZ+RxSm+9h+dJdClGzqK1rm8Q1pVw+xUHIarKHKpcHem6OOuhHWS1knQah0YjYGqyjVKKyckm4+2IaSPwBjlFmjFY6+IrF0osT+MgcInHquIghbsnt8bHhfhGY1HZ4QF8KR7Ud6hGjRo1Hql4VDsok5PtcybJWpzaa5GXLpShDUWSIUpDoAS+5xNWoZksdVKjfhQglcT3vVF/mEYU0G43mJrucMml+5hbnMHzFFPjDYQQzO9xSqOrS+sESrKy3GUwSIiTSpFWG8qidLoY1lImOZSWUAkC5bsn+1KTJ24ZX4U+vpJ4voeqSlObjZBWK2J8osWll+1jcd8cnlJMjDXwlGBuMyEvNBurm0RKsry8Sb+fMIgzF+LQhqIoXSdii+NQGAIJge9jCuP0Q1JLLEEGPpGU+MEWh6iyw8REi4su2s2+Q4soJZkYaxB4irluQpqXdNd7hFLQXtqgP0iJhzkxxlAWmrIoKRCY1NkhELjeRMaitaZILYkEFfhVYrJCed6IQ6vp7HDxxbvZe3ABz/OYHGsQ+Ir5XkqSFfS7Axq+4tTJNXq9hEGcVh2grRuLoqQUUCQ5tsrdCUIfaaA0Gp1CrED4HlEo8H0P5SmEkESR7xzVsRYHDs1z8aX7kUoy1o5ohR67Kg7pICVSglZ73Y3FIKUoyh0ctIQ4zbGlxafiUJVSl2mxxSEQeL6HN+zddB4EQ8G3GjVq1HgE4rtGSXZ+Yfqc3YwtkOclvV7MIE7pdmPKJCfwFM12RNSO8Popg35Kv9TEkc/EeItmI6LTbhBFPp6nmKiUZhd3T/P9T7qcAwcXXH7Aabjv6CnGWhH33b/CykqXtfXeSLytP3ATVLcbk8cZgZK0Kg55kjPoJvQHGhn5jHWatFsR7XaDKAzwPMnEeJuZ6Q5zc5M88YmXc+nl+8+8XmtZXVqn04q4775lllY2WFvrk+cFeaHp92MGcUa3F5Ntxo5DM6TRaeLFGXEvJR6UxIHH+HiLZjOk027SaAQo5bokz86OMz83yeMed4TLrzzowhCnYWVpnU4z5OjRJVZWu6yudcmygqLU9PsJ/UFKrxeTdlN8IWm2QhqdBjp3Zd5xrBl4ivHxFq2ms0OjEeIpydhYk5mpDvPzjsNVVx1Cemfq4KyubjLZaXD33SdYWt5kda1HmhWUhd4ai35MvNEnEIJGI6wk/0sG3YQ0Tok9xdhYk1YzotOp7CArDtNj7Jod5+qrD/F9T7z8rE5DOkhpNwLuueckyytdVla7JElOqTWDQUK/n9LrJ8SbMT4QNQJa7QamNPQ3Y7IkJZaS8Qlnh1arQasVIi/goDSbZ/8+1KhRo8ajDY9qB2V5aRPfT8/6nsVVZMRJSpYVlMbQaIaul451De2EtURRgDKGuCzpbQ7Ikpw0yQgCJ9CVpzkYQxh4bG7G1bK8rVRitzzBeJCystJlZWmd5eUuq+s98sJ1/02SjCwvKLQmagSEynXg7ac5QhvCKEAaQ1qW9HsxeVaQxhlB4JykPCuwWqOkpNuLq6RJd94RDwu9fsrKyiYrSxssL2+wutZz3XvLkjjJyLOCTGuiZkggJUYI+mmG0IYg9FGBx6Ao6PVcJ+AsyQkDH+VJstjZy5OSjY3+VrhiKC9f2SKOM1ZWN1lZ3mB5eZOVtS5pVqBL1w8oTXNyrQkjZwcrBIMsR2hLEAbIwJIUBf1e4uyQZEShc5LSJMOWGk9JNjYGFKUmqJyk7eORpwWrq12WlzZZWlp3DkpaUOpqLLKCrCwJo4BIuVWJQZYjjB2tlgzKkn4/ocgKsjQnDAOUFKRxhi0NElhf77uxkJzBIU6yisMGyyubLK84B0Vr15spS3PysiQIPCLPQwgYZMVZOQztMOhf2EFJ0/zb+i7VqFGjxiMNj2oHZXWti6eCs79pnQpsUbgma8MnVAwM0owkz4ikot0ICZWg6PZJ4owsdQ6K5yk8NXQODEopjp9YZc/uGaJGSNgMQUCRFiSDlBMn1jh5YpWTJ9ZZXeuyvjlwYRXtymeNMYQNn3a7gUQwSDKSOCOQik7kOOh+7BrDpTlpPOQgKbICUzgV1xPHV1lZ3qDZjAgaAQjIE9e59/jxVcfj5BrLK5usbwzIC1fJMuTgRx7tduRE09KcwSAjkJJOFBJ5irJvGPRT8sQ5KL7nEjbzJK8SeOHEiVU21nqEoU/YihACyqwkSzJOnVqv7LDGylqX9fU+WV6gh2EmbfBDj1YrwpeKQZIRxxmeEIxFEZGvMLETtsvTnCzJ8DwPpSRZmmMKV1Z+/MQqqyubbqWp3UAI0LkmHiScPLnGiROrzg7LG6xvDMiyAm0MecVF+ZL2WAtfKpI0Z1BxaIcRUaDQSUK/m1CkOWmSu7CfFI6DdjkycydWWV5ad2XXzRAhJWVekCf5iMOpk2vOcV13TpIxxo1JqfF8RavTJFAeSZYTJxnSCjcWgYdNU7qbA4rKWfT99IIhnnTYQ6lGjRo1HoH4rqniKfMCq85+uS7B0OWAIHCKor6iLFz5rSk1xpNVCbEiUIrUWAyWApevYJQlqyavfj9hfb3H0vImUTOkMzuOkIL+8iZxP2VtvUevlxDHqVslyMsq58B12gWnIeL7Hta4JE1daownQEo8X+F7ksS6LsBQ6WcYSZrlxHHKYJCwvtFnaXmDRiNibNcYSMlgrUc6SFlb69GvQlqOQ+GcAmNHHHzpcipslZBptMZYAVUJceAp4sp2ZVlirUVpSZoVxHFWcRiwtLzhqliwSN8jXu2R9BNWV7ujvI80ycnygjwvRw38sFtibwLX+NCUGi0VVOW7gacYDDkULu9Ta0lWTeKDfsLGRp+l5U3iOGNcOE2ZZH3AYHPAymqXbjdmMEhJ0opDNRbDJoJD0TuBS5rWpUYoBaP2BGqUyKpLZzspBFlWkFR22NwcsLS0SaOZ0pnpoKKAdH1A3ItZXunS68X0Kw55Vrh8KGvQlU7NsDpMCumusTRV1ZRwdvC9EYey4nChL/eFpPBr1KhR49GCR7WDwrD882xvVf+vKjpHmiBi+N5W5eio7HSHKJ6olD+39XMJA59GI6DRCGlEgRPwaoSgLWEVjlHKOT2iOsaQiWXIwe7gMPox4rBTnk1QSaQr6aqJAo9mFNJoBkRR6DoIN0KktYShj+cPOVRdjoVACLuNA6NKj6HlRnbYxnHEoDqG6yOzk0MYBTSiAOEpaIYuXBX6o5WfoX6LEAI74mArXZJt5xVi21hUOixbFLYNdVVl46mKgxuLKAoRnkI0SmxeEoU+vj/k4Kp0dtwl1o60UeTwPbHt3hjeL8OS4G2GEqOxcA5EoxHQbIY0ohAZeMhmCKWmEfl4njfqwSOGFzgsixqO99AOYicHse2ePe3G5HwQp+1eo0aNGo8kPJi/T49qB0V6CnmuZoE4RVhpLdYa9yRclAgDgZJI6eMhsdpQWktpzFbnXU9Vx5ZIpUZJsbrUFEmOArIkACHI4ow8zdBl6SYY6cTGpKdcaoIQGDfrjio4FJJQSaTwUUKC1pQ42XYq52bEQcrRTyEERhvyNEMJyOIUpCCPU/I4Qxeux8FwEpWeRFoFRrjy2ko6vig0yrrVlHboo5w6G7ooKbUZcZAVB1Vdk6g42IoD1uDHAcJXZHFKnmzjsN0OxoJxY+HkWZwdfKnwBbRCD2lP51A5Z1XDwqEdhHI9jhyHHF9JsjjdwaHMS7CMNGekUkjfYLVw3aCrsvOiKBEVh3boIxEIY9BliS6d9ohQAqkcByErm1Z9lqwxFGlOLgRZ5CONTz5wY1FmBeC0VkRlB6WN6wSNxWj3RS2LEqXcF7EVeAjrxkqXrvJrxKGywwUbbck6wFOjRo3vDDyqHZSgEZy3F48r8VUY7ZrJxXEGFpqBYlerSXeQM0gyEOAhCKMQqVy4RSrXARclyQpNtxfzrbuOE/cSfE8xNe0EutZW+2R5yep6l83NAUleYqXAj3yk8TDGoAoPUzoJ9jTJsFbQChQzrQaDrKSX5pUYmlsFkVUHXyWdU4CSZKWmN0i591snKBI3MU9Ot/GUZG1tQJ6XrK732NioOAiBFwYI3+zg4Aknh48VRL5kttOknxT0sxybgTCWKPSrsJMrMxZSIDzlOikPUo7ee4objEUpyeRkCz/wWF/rk6YFm70BGxt94qzACIEf+ghPuTLj0kMXrrlgluZkVhB6kvl2gzTXbCbODsK4lRhRcZDD1RhPUWhDb5By331LLqFUKSan2gShx+b6gDjJ6fUTVte6xGmBEeCFHnjSdacuy4qDJU9zcisIlOOQF5rNpCTNCizGNWzcxkEI5yjkxtCPM04cX+WzN9yCpxRj4w2arZCNNcdhELuQ2yDN0Ra80Mcqx0GVCl1qFJYiKyhsiT/kUGo2420cQh+EdPeDd+EyY3mWyqoaNWrUeDTi0e2g+B6ed55L8CxaSSg1vjV0c02mLYEvaSrJqrV085JQwUTgkQo5WjUYLslbC0mas74B37zjGN+86wQK2DPVQknB0dU+hQEpLJvdmDjJMda6cM9QtVRKtJJEWHpZSawNvieJlKRnoVeUBALGQo9CSIRSSP80DlkBmwPuvPsEd95zCmlhcapJ5CvuW+mTaosUll4/dfonxuJ5EmWl46AkplSE1tDLS5LSIGRAU0m6Fnp5iQImQo/Sd06RrFYNhiEOxyHmnntPcfTYKhjL4mSDZuhzdLlPql0X38EgpR9nzjGqwizgnAmj3FgkecmgNCB9IiVJ0fSKEk/ARKCc5sdpHASQ5iWmG3PvvUvcd/+qa9Q30aTd8Dm2OqCflygpGMQpvUGKNqbSchlykGiliawhLjT9oqQZeCwoSVEaekXpegyFisALMNI5ByMOQpDlJdYk3H9shRNLm1hj2dUJme5EHF3p089KpBQkSUZ/4PozKSkRvgvA+J7EFM4Oeanp5iUN3yOUkpJtHAKFH57G4QI4W+l3jRo1ajwa8ah2UIqyxHLuEI8EMC7nwxOiys2AIHIaH2FukLl7oveEcEqhxmBKFwbAQmGdXHyW5gz6Mf20QBpLNuW6GX9rZUApBO3IRxtDWnUSHiZVjDhY8ISbQISQBJXwWc8KRFoicas8ugpJmZJRP56ikqzPlCBNMvqJqyyKJxs0A49vrfRJjaUV+QCkuUbIqux1yEG7xA+PLQ5+FNBpN9nQIPMSaQx+Ff5wibXGVe5s45CrjDRJtzhMNGhHHnctb3GQQjDIilHuxbBrgDBbHDwlEQj80NkhkwqZFEhr8ISoZPJP41CNRSIEZZrTT522yWC8wXjT557VAf3SOA5AkmsXERl1VN7ioIRr+Cc8hVdxKFWBSlxJ94iDPTuHVAjKzHHQpWGjHTA33uBbSz16hSEKPQJPMkhd6E/KM+2gcG0UhKfwqvvBZts4VKrHp3M4H+ok2Ro1anyn4FHtoFhtsMKc412XIGu1xpaafp5jgoBWu8n+QwtccWgOc+8y3W/cT9GP6fcTTBgirER6YIfphkPpdw051i29a8PGwIUdBmmOkZLAc96E1QZrJUi7jYOr3BgUBaWSRM0G+w4tcMXBXUQnN1i95Sh5b8BgkGF9H2EZcbDbOSAoSk2SFZhSszkQ5IVHP8kpcB2XPSEwxiCtwJ7GwWjNIM8plKLRbrJn3xyXX7ab4Pg6m9+4n3izT6+fIKIQlEKKs3AQjkOaF+hCsxkLCu3RTzIKBJ5yIROjDcIKrHRpn4KqqqrUxEVBIQRhs8Hufbu4/MgiJzdilr92N8lmn0GcYv0A4TnnyvUlchzsDg4leV6wGQuM1fTjjNQ4xyNQEmNM5SeKrXvCuLFIypLUWMJ2k4XdM1x+xT6WuzGrN99Ld73HYJAgfR/rKdRpdhhyKLUhzQuKXNOVlkBBL8mJtUFIUMIbcTBbKbiuP1CpSYqCAghbTeYWprjsyn1sDHJWvn4Pm2td+v0YLwwwSqG22+G8X4raQalRo8Z3Bh7y9eA3v/nNo8qN4Wt+fn70vrWWN7/5zSwuLtJoNHjqU5/KLbfc8m2dSwpxzpcS7n2sWw0YVCGHditi/8EFLn/MYQ4cWqTdbmCMZZCkrqkcVZKp2Dr+sD/LUCTLWEtSGpLSlSwPP6OqXjJSDnkMcxpdw7c4zShKTaMRsv/APJc/5jCHL9pNp90AYJA4afpzcqhyMYZN5FJtiEvXc2f0marf0HYOQ962skNZaJqNkD37Zrn8MYc4fGQ342NNhBQuLFKV4m7noCoOsro+cMmuaWlICo02O+3gSRfa2bLD0Emxruy20ERRwO49s1z2mMNcfOlexioOQ4n+0znsGAu5Ff7KtONQWtcFelRpI4d9brbuC1Hdg2lWkGY5YeizsDjN5Y85xMWX7mWy6nM0lMfHslVJtc0OSg0bGzqnIavGotx2D6khByFR265jJ4eCKPSZX5jm0qsOccnl+5ma6jihttiFh6j6SZ3vft9+fad//+pX/apf9euR9HrAc/y35RlcAFdccQUnTpwYvb7+9a+P3vut3/ot3v72t/N7v/d73HTTTczPz/PMZz6TXq/3oM8jzvMarum7NBBLmpeuZ0qnyd59s1x06V727d/FeKfhVErzcvRsOnzmH0YHXLfhncYtjCHXTrhsNAGLoWOw/RiVcwDkhUYIQacVsWfvLBddso99B+YZH2s6xdiidA5PVYrM6RyG56jGN9eGrHIm3D7sdI6GRxg6SViywoUcOu0Gu3fPcNEl+9h/YJ6JiTaB75HmxZbTtY2DOI2DqA5bmIpDtb8UwlXPCIHcbsuKs7WWvNRYLO1myOLiNBddspeDhxaZHG/j+x7Z0A7bRnoUqRmOhayOL7ZxsBZ5mr22OGwrgLGQV715Ws2QhYWpEYfpqQ5h4JMVztkYrlgMr1cMOWwbC4FreJhpV768g+u28dqyg+uunZcabQytZsj83CSHj+zh0EWOQxQ6DnpbWOd89/vWfV+jRo0a3xn4JwnxeJ63Y9VkCGstv/u7v8vrX/96XvCCFwDw7ne/m7m5Of70T/+Uf/Wv/tWDOk81l58VQthhS2KnFYKlEbkOuIuL08wszLB7cZ2piTbLjYAN2PEX3o6chB0yGCghMALKbROREtueXu2WcIbF7vAWjYAo9Jkca7K4MM2e/btY3oyZnmiz0gjZcLNftZRfHcGenYMSoHE8tjsOw+DUcFbb4uBeuqoUmhxvsTg/xfT8NHu6CTOTbZZaESe22/csHMQ2DlpUnaFHttiajEcCIrbiUIWaqD7TCHwmxloszE8xtzhDYQXTk22WmhGrW0tPo2OdwYFqNUO4DsyFOzhqmxO5ncpwVKrdMFg832ei02J+1yR79s1hpGJmqsOJdoPjoxm/Gstt99r2sRja3gJ55Z0otlbbdnKwWw6jcLk+nucxMdZiftcEs/MzNDstZqfHONaKOC522sFus8N5UYd5atSo8UjFw90s8I477mBxcZEwDHnCE57AW9/6Vg4dOsTdd9/NyZMnedaznjXaNwxDrr32Wm644YZzOihZlpFl2ej3brcLQLvdwPfPVWYs8DyJX4mGeYcWOHLFAfYeWGDv7lmklCwuTvGE77uU3XMT3HHrBIWBojSVRL521S9VzoIQuO7ExrgOxAwnjGofYwg8RRD4Tiuj6vHieRJfKTxPEngL7D+0yJ79C+zZM4NFMDMzzvd97yUszk1w5+2TpFlJMexoW2qX7zDkAFuJo5WI11BYbaiaKzyfwBfbOIDnKdch2VMc3D/LoSN7OXB4NwcOziOlZNeuCR7/uCPMzYwzO9agNHbLDqdzEFschoJnLqjhwljaWAIhCIadkD2XkKuUdDkySuKrOfbsn2f/oUUOHVzADzwmJ9s8/nFHmJ8Z4465ceLENRgccagSRV2yaJW8aoaJo3IHB5f3oVxPm0oPRghRcajuB7mL+d2zHD6yj4sv3o2Vks5Yk2sec5ipiRYzE03iOKc0hrI8C4fhtVd2sFjHofq3HioYDzlU4nnbOSh2Mb97mosvO8AlR/Y4m3ktvufqw4x3GuyabBHHObl2Crh5UV6wE6jUmmIQP5CvaY0aNWr8s+PB/H0S9iHuzf63f/u3xHHMkSNHOHXqFL/xG7/B7bffzi233MI3vvENnvzkJ3Ps2DEWFxdHn/nFX/xF7r33Xj7ykY+c9ZhvfvObectb3nLG9p/+qbecs5uxwHV2nZubYGFxmsc/9mKOXL4foSRZUdLvJbTHmoSewhrLnbcd5fNf+AanTq2zdGqDbi/GGEOaFSRJTpJmdHsJcZYjBPjSVaHkxvXIiQKf8U6TRqWuGkUBnpI0miG7ZieYX5jiex5ziCsfcxjpKbSxbGwOaLciJ2luLXfdcT9f+uId3H9shVOn1un3ErQ2JFnuJNsrnZFB1RAuUC6/YhjeCH1vi0MjoBGFKCVpRAG75iaZm5vkqisP8D2PO4Lne+RG090Y0GhGNCMfAdx/zyluuOGWUU+fze4Aoy1ZXhAnGWla0Osn9JLUTcDS5VcMOQSeYqLTImo4OzQbAUopoihgZmaMxYVprrziAI957MX4kU+pDd1eQhj5NMMAARw/eoobP3sbxyo7bG4O0No4mfnU2aLXT+gnGdZax0EKcu1ygnxPMd5u0myElR2CkRLw7Ow4u+YmufTIHp74A1fghwHWWtY2+oSBT7PhGvKdPLbM5z57G/fdt8yJk2tsbgwoq55GcZKRZgX9fsLmIAFcYq4vJVnFwZOSibGWO3/o1Ga9SgF3ZnqM+YVpLjmym8d976W0xpqVHWI8T9FpRQhgc7XLJz7xVe4/tsLSKdfj6UJVOk9vJlwW1A0Da9So8chEP8u49g/+M5ubm4yNjZ1334d8BeU5z3nO6N9XXXUVT3rSkzh8+DDvfve7eeITnwhwRpLM9q64Z8PrXvc6XvOa14x+73a77N27l5XlDfxzCbUJaDUjPF/RbDeIc+1WEiqxr0FeMqYkUeBjrSUuNJvdmNXVHsvLG3Q3BxhjyYuSrCjJ85K8LIkCH+FJtHarKJHynBptXtLdHJClOXE1ESkpabYilJREzZAk1wRVZ96iKEkKTUcKotB3QmYWNntOZGx5aYNe1zlJWVGSVxyyvCSsVmmMccqsUeC5XjfZNg4Dj7Di0GiEKE8SRgH9JB/J0dtSMMhLGi0xskOmDRu9mLV1Z4fNjUHV4E6TFcU2Dh7SU9s4+GAMZVay2R2QZTmJ7zGoOESRcz4azYh+miOVJPI9MqFJC03QCIgCdzsWBrq9hLW1HivLm2ys96oVBO3sUDghs8B3ejHGuFWdMPDAWMq8pNeLyfOCeOAcE6UkUehXZeY+3SQjDEN8X7kcpULjB74TqbMWlGKzn7K20Wd5eYON9b5TEi41Wb7FIfSdHSxQloaw4blGldX9kGcFiZ8y6Pt4VZsALESNkF6c4/me6/sjJWlhaChFWPXgKS1s9hPWN3osr2yyurw5SuQ+F06cvJWx7rHz7lOjRo0aDxdiox/wvv/kZcatVourrrqKO+64g+c///kAnDx5koWFhdE+S0tLzM3NnfMYYRgShmc6Iisrm6hzdTPGTQK5NgzyAuMp9u2bZWaqQyPwmJsZp+l7ZEnGymqXG2+6nW/eeYzlpQ3WVrvE/aRaxrdV/oF7Mm9HASjJoNAYC+1AIYxhoI3r2luUxFVughCCqB+SlSVxXkDgMb8wxb7dMwSNgF0zYzR8jzzJWFntceNN3+C2b97HqRNrrK1sEg9S5wBYM+LgKUkn8hFKMajCMK3QQ1nLQBvStHBltDBK7A2jgExrBllBai2HDi2wd/cMfuiza2acZuiTpzlJkvOpG2/l9m/ez8rSBitLG/T7SRVS2eKgpGQsCs7KITaWOMlITuMQhD5pUZKUJaWAPXtmOXxwHj/0mZ0eI/IVRVaw2R3w+S/dMbLD6som/V5cOUKmCl9alBB0Qh/lewy0oSgNjcDDx5JYS5zkJKUmhVHSrh94pKUmzgqS0rB//xyXXbKXKAqYnR7HrzpHx3HKDZ+7jZtvu5elk2usDFezzFZ4aZij1IkaSE+RaktCSSPw8bFkFnqDlCQ2Ozh4vkdalKRlSVxqFvfMcPXl+wlCn5mpNr6nKIuSLM357Be+yS23H2X51Bqry5t0K2fxfEjSjDpdtkaNGo9cPPC/T//kDkqWZdx222384A/+IAcPHmR+fp7rrruOa665BoA8z7n++uv5zd/8zQd97FKbYeT/TAjIipLNXkwpIM4KLtk/x1WX7mX3gXnGmyFlXnLy6BI3334fX/rKXXTXuvR7MVleuHLRKrNSKYEUktD3CJV0vVy0wVhQwuV3aN8bOTTGWFd2KyxZUdDtJRghSLRh39wUIs256IoDjEXOubr36BK333mcL335TpZOrtHvDkjzglK78NGQgxCS0FOESrlEWm0wpUGFEEiJ8b3RJK6rfBCwiKKk23ccNuKML+yfQ37PYRb3zzHRbqCLkqUTq9x19yk+f9M3WF3eIO7HIw7b7SCQBNs4oA16GwfrK8rS3VbbOVCU9AYJdkUS55rdu25DlSWHqjJray3Hj61wx7dOcNMXvsH9x1fpdwckWe7GuUpAlVXpsKecLYQUkFvHIbAVBw9dlYDrqgeSwUKp6Q8SUIJeVvC5z95GUwgOXrKHTtOFCk/dt8rRe5f43Odv5+j9y8R9F9YrtN7BQQrHIVISpCAtNLo0yNASKInwPXLfwwp2cLBC049TWO3STXPmPnsb44HH7r27GJsewxrD2tIm3/rWSW688VaOHlsm6SXEyTYO58HQiaxRo0aNRyIezN+nh9xB+d//9/+dH/3RH2Xfvn0sLS3xG7/xG3S7XV72spchhODVr341b33rW7n44ou5+OKLeetb30qz2eQlL3nJgz6X3dF59+wQ0nUibjQj2u2GC3dI6Z6ApaDRCGh3GjSaIXFXjTQ+rLWjShhjqDQ3tgo+xbBqp6oNsZVjMkyc3U5rxKE6V7MZ7jhe1HAqos2mCzmMOLC1j3G967YmqKqMVUgx8kfNOThY3IqO57l8lCEHpeQovBZVSqatVsTmxlAa3n14JwfrhOgqDlQcqEqPh4m7bOcwLLMVwk3qkU+703QhOE9t2WEbB2cHl+ezfZxtxWPYHXl43K3uzVSOohmtdIzsYLf0ScIwoNNp0mpFyOp+AAgCn1a7QavVcAmuVdPCkR0sWOmqgLb5sFs1/mzdP6PVt+3dmauqKhdy2rpezx/aQRCGPq12RLvjOGRVg0QewP1+QSG3GjVq1HiU4CF3UO6//35+6qd+ipWVFWZnZ3niE5/IZz/7Wfbv3w/Av/t3/44kSXjVq17F+vo6T3jCE/joRz9Kp9N50Ocy1lZlvedG4Hu02xEH9+9iz55ZgihgZWWTjUHKeCskCAN2757l0IE50l5MEqejYw9VQzVuElLCTZZSSZqBh8VJlVttKUuXHzFiI7YcB99TtJoRe/fMsn/fHK12g9VT62zGGa3QJ/R9FhenOXhgjt5mn2TgElCNqSbYigMWVDVRSiFdSKPqd4NxVT95XmKH9bRD58Val4vTDNm3d5b9++dotCK6G33W+imdRkDkK3bNT3LxRYv0uwOKNKcvtqqEtnMQdpg3tMXBk6Jqxuc4DJ0VpHD746qJms2I3YszHNg/R3usyfpGn81BShT4NH3F3PwUhw8tsLK8QRpnDCqbmyEHO3TUXP6L5wmiQKGUc34wVcVLpWszdJCEcIJqnqdoRCEL85McPrxAZ7xFf3PAej8h9D2agcfM7DgXH15kZWWDIs0RMnbOX2ULbagclSohFkHoe1gEvud6Hw05IHZyMNa1Gmg2HIdDhxYYG2uRDDJOLG8S+h6t0GNmdoIjF+3m+LFlyjRnIKWrGrrQ00ftn9SoUeM7BA+5g/Le9773vO8LIXjzm9/Mm9/85n/0uUQl2HWOEyGkK3cdaza49OACQgq+ettRPvaRm/jKZ2/j8sdezA//yBPZu2eGyw8ucPTO4/QC3z25V0/VunRhAoxFIohLTagkM1XPmc2iJC01aa7JCg1SjBRMHT+XGNlqhFy8ZxeNRsDt95zi7z54I1/+7G0cvnQvz33+k9m/dxcX75vj6F0n2Ai6o89byw4OwkJcaEIpmQ49JNAtNXHp+gBlRQmV2qsn3JO3kILA92hFIZfun6fVirj1rhNc//Evc+PHvszBS/byrB99IhcfXuTKi3Zz9zfvp785cKsoTu8eo61TNa36yMSFJpCSydDDF9AtDXFZklRJrDs4VKsbvu/scGj3DONjTe66b5lPfvzL3PCxLzO7OM2/+IlrOXxogSP75/jGLffQrZJbh+IqRlsXejMWqx2HUEkmQh8f6GlDXLpGhFmhMcKNhVd1IhZC4HuKRhRwcGGaXTPjfOvYCp/51Nf4+Ic+z+z8JD/8L76fyy/fz5EDc9z5jaP01nrbOAiMds7HsPVAUtmhE/rMBoqeMcSZJikqZ7EqL/ZH94PA9zwaUcCBhWnmKw6fveEWPvHhz9Maa/K8F/0gV1x+gEsOzvP1L7fobQyc8yW3VmjO8wWjzkGpUaPGIxePoByUf0q4EMG5dFDc6om0kA1STt1zio+v9/jm/Ut8/rO3cuzr97BSlJStkCN7dyF7KekgQxpLI/SHgRtKbZ1ibKV3sZmXBBbapQYBG4UhLTVSSRqNCKskgRL41aQY+B4KQZZkLB9d4h+ynLtOrfGZG2/l6Nfu5mQ3xo63OLJvF16ck/QSRFUVI3BPzNs5CGPZLEp8a2lqTVg5B4NSI4Wg0YywSuFXHGQ1KXsI8iRn/dgqn/qHr/HN4yvcdONt3P31uzneHVC2Qy659yQTVpD2EtDGVfa03KrB6Ry6RYlnLQ2t8QVslpZBWSKEoNmIMN5ODp6n8IWgSHLWjq9y4w23cPfKBp+/4Rbu+Nq3aB1fwd81ziX3nmTMCJJugtWG0PdoNyOXT1Jx0NqijKFfauIUGlWTw552vCSCqBFilcSXTn9FVmEVT0rKrKB7aoPP33grdyyt8YXPf4PbvnoX7WPj2IkW9xxfZdb3iTcGmNIQ+R6mGWItlMaQl85BkVrTKzQS8LWhKYccnIZOoxlhPHfOYBsHX1Ucljb5wudv41urm3zlS3dy61fvwmtFyNkx7j2xyu5mg3gzxhaa0FO0Kw7ng18oRPFQfstq1KhR46HDg1C6f+h1UP450O12GR8f50lPesU5HRSBS2b0lCvjnGqE9LGsZRnpxoCon5G0QqKJFlNRwJhQLMcppdaUpXbJpjhdVg1I61YvskpFdR4nq35CCApriYyLPZRCoABZKbo6DgrlecxEIam0rGY58caAoJ9RRD7+VIupKKQjJBtJTl6WlKVGDytnRhxAWkNarQbMYYmA4wgyLGGVp6Irifchh+HKgacU042ITMFKmhF3Y6JuQhr5+BMtJhoh08pnLU7JSk1ZliOp9Z0cLFmVf7ILSwM4LgSZtQQGlIDiNDu4/BNX5j0RhWhPsJLlDDZjgm5CESi86Q4TUcCU8lhLMvJCU+qKQxUm0lU+iG8tqXAN9HZhaQKnhCC2lsC6Hg7bxwKqPBylUJ5iMgwQgWIpy+h3E4KNmNJXyKkWY42QWc+nm+bERbllh20chAVvG4dpLBPACQQDLL4F30JeSfKr0+zgeYrxMED6iqU8Y9BL8DdiCiWRU23GmiFzfsBGnJGUJbrUlJXmzvnww+t3cFW89G1+s2rUqFHjnxax0fzkPV9+eHRQ/jlRFhpsec73BVCIkkxIdJyRCMsAi0LgRSEIQRynEGdkVtA3Q4XWbf1PlERKN7FGoU8rdKGdjnUOSiolpTHIvCSrOh1bXfVQqUpRC1EiRA6DjExCv+pt60UBhRLEgwzinMwKYjNM7tzGQUpEpUbbCAKaUYCQkjFrCYxlUgpyQGYFeVY40bTTOJSFW92wcT7igAEvDBFKkCQ5Ni3QFQd9Fg6y4hD5Hs1GgBCCMSAylkklya1F5iVFmju11dM5UJJJgY4zSino4/JKvChAS0ESZ9gkp7SCZMTBbvXDqeygPEnT92hEPlZKxoCGsWRKElqLKhyH0VjonRwQAhtnGCno4dRhvSjASEGaFtisxOLE54pzcPCUpOErGo0QpLND2xgmlCS0IEtNGWfu+rXZan64jYOOM+w2Do0wwAhIs4LNvATiEQdsVYl0AVyoyqdGjRo1Hi14VDsoVcnIud+GqhePASkRSiKMpbSatNSUSiGrHAlKJ5O+ozJIgLBVWavv0WhGeJ0GSinGh86HFBTaoPsJRrtJ1WiX4OpkzytIsMo6DlZSWhcaKoQrlZVSYsvqMxWPEQe2VmIajQhvvOk4YPGNJZeS3BpMP3WCb+Ck7y/EAZc/U0gnyy+VBG2rqpNzc4gaAeFEG6Ek40BoLLmSZMZg4szpklCehYMFJFZV+ihAiXUclISwqh7Sw8TcbRwAId0qiK8UYRQQTLQQnmIcQWQMpZKE2mDTnL62lLZw+SLVfTLiMKrikghAa6r7QULg7hM0Iw7bly2G/XeU5yqBook2wpOMIegYQ64kgbHYNCcuNUVRoivtlHNxkEC5jYMVOGl8c3YOF/hSPMD9atSoUeORjUe1g2KNcc7H+SAEVkgsFikVEkNhIdUGbRXe0DlAnzExu+ROkMqFSJrNkOZkB89TjOFCHVoKikKTWsiSnMIYbCm2JhZ3JGw1MQspkVVFSKYNRkkCKd3ELFyH3e0TsxACoXBOkqdoNENak22U5zEOeMZxyIwhq3JdCm0pYOTs7OAgQY44QKYN2kj8yg5o42xQ2eKsHBohnckOylOMA4GxlEqSae2cpUGKMsYtbm3jYBFILFbakXCZxXEwUuCLikMliGbN0Fl0pbnCVk5SxaE93kYGHuNSEGqLUZKw1BT9mDzOyLXGlq5yZjsHgcEKZ3MlLBTarTpV4bshh2Hl0NAOVa3vyFELI5/xiRbS9xiTkmap0Z4iMoain1D0EzxjsKU+D4fKDqV2+TVs4zAsG99mhwt/KS68S40aNWo8GvDodlAupAthcSW30k3GUgpUlZFQVEmvSgqkFE7XopqQnGAGYNxTvielq0BpNZic7OAHzjkQ1jkxeV7QLTW97gBVlFU5rt3SzQCEcBOerDoRDzkItnGwO1c+tuuHKCnxfVemOzXZwQt8xoVAaeM4aE2vNPQ3+mSFRgtBeToHHAdRcQDIKztIKZBKYAo7Um3dzgFcSbVfhTWmJjsoXzEuBJ5xqzJZWTKwlv5aH690VTQl2zVlnKyesRJPus7DICiq6w0rO1hwOiancxA7OUxOtvGigHEp8bVBKklSliRSMFgfkBYlOi92jIVLfZZo6eyuKv2WoqqQ8oVEKYEt2WkHnH8ihnaoypUnJzt4oU9bSqJSIz1FojWpkvRXu3ilRovyrByMtHhVpZGo7GCla7aoqrLtYVPE0QrKBRLMHoUpZTVq1KhxVjyqHZR26/xVPNpUJaEWcmMReYmQ4EtB6SvXZbbSzSi1RXkKKRRKuklKSknUjGiNNRkfa3Hw4Dx7Di/ghwGNakJLPEGeFZzqNMAYNjYHxL2YZJCitVsRKbXBAIUFUZRV2WnFQToOroTXID2FEgqvKtOVSrpmfp0GnXaDQwfm2HdkD34U0LBAach8SVFqlsaWQWsa3QGDbkw8UOhyGwcLRaUsO+RQ+AqpJMpYTO5WEoSn8IVbXVLKdSOOGgGtsRadToN9e3Zx+Ip9eIFPhEBqQ+Yr8qJk9fgqNi+JujGDXkzcT9BlOVLX1ca6EFSuEUrgCbDeNg6mJCsNokqoHZZsSykIGyHNdpOxsSZ7d89w8NK9hK2IhpDIUpP7ijQv2FjaQJSacKPPoDsg7ieUha66Tlt0pWWS5yUogYfADDlYgykgKzVUHZi3l41HUUCz06TdbrJ7fopLLt+H3wgdh7wkDz3yUtNd2cSmOdHmgEEvIe7FFEWxZQfrNF2yvARPjuyAJ1HWYkpNVpgtDmI4Fuf/Tvi5B3WvwBo1anwH4FHtoCzsnj1nN2Ms5EVJP8kYJDnr6wPEIKfZ8GkFAdrzUcqi04xeUqKVx/R0m0YY0GoERFVDvfGJNjO7JpjbNcnjr7mIQxfvRnpqK/dFCUxpOHr3CaYnO5xcWmdleZP11S5F1eBvkOTEWc7a2gA7iGlGHq0wRHd8lLCYNGeQFpTSY2KyRasR0G6EhIG3xWF2gunpMR77mMNcdtUBpFJOAM3p7WONZen4Cp+ZaHGy6qOzttolzwuKQtNPMuI0Z309Rvf7tBoezTBAd5ooaTF5TpwUZCimpto0GwHtRkAj9FFK0RlvMTs3wcz0OFdffoArv+cQyvdGHIQnMcawdHyV8U6TU8vODmsrm2RZQVlqBknOIMnY2EwoNvo0I49mFKA7DZQEk2fEaUFmJJPTbVqNkFYU0IicHsrYWIvp2XFmZye48rL9XH3NYbzA3+KgJMZolk9tMD3R5tiJVZZPrbO22iVLc4qKQ5zlbGwmZOvODo3QJ+w0EMJCWZCmBZkWjE22aDfDyg4BUkk6Y83RWFxy0W6e8P2XOzsApjRIz+WWDLox482I46fWWKka/SVJhtaGQXVPbnYT0s0BzchxCDoNpAQK17k6LmBiuk27GdKMAlpRcG7dnwrN7D7o16soNWrUeITiQazyPqodlH4vwffPkYNiLVmhGaQ5SV6QFyVt3yPwPbSAtNC0lOuvU5aWONcMBhm6KDFFSVE5KJ6naLcbFHnhFECbIUqprRX3Slrd9z2KoiRNMuJ+Qr8Xuw7IRckgzUlz1xW54bnuuka4p/RIOa2UUluSTBPHGbbU2EKTVw6K53m0Whl5u0BKQbvVcBU5Z+OQl2RJxmDgOGSZc1AGaUaSlyR5QbPiYKVgkGkagSTwPEwA/aRgEKcYrbHb7CCVpN1pkLcLENAcytRvM7nAsjGyQ048SOl1E7LMOQdxmhNnBWle4HuKMPCwQpCXmgBJ6HkY3zJIKztogylKytw5SbLqDp1nTuij2QjxA/8MO/SjgLLUbiwGKf1eQppkzkGpxiJOc9fPx/cQSpIUGk8KGp7C+pZBURDHmcuHKTRFWLoVNylotRpk7QJrLe1204WltnEA0FlBUWrSNCcZpPR6MUmcUWpDnOYkWUGSFUjpOEhZcfCk4xBY+kVBnDgOOnf35fm6fgMUlXptjRo1ajwi8SD+Pj2qHZSVpQ087+zdjC2umWBWlpTGJYa2Og1CX7EZ5/TilEBFri+O8hlsDIgHCdkAEk8ReArPV04NtKrYOXFijf2HFgijgLLSHFHClfAuL21w4vgqJ4+vsby0ztpqjyIvKLQhLzWldamR7XaTKPLpxhn9QYZs+rTbEcLziEsntV/EkHpViENJ8sJVxGitOXlyncEgIQgDLJBrCJVrXnjy5DonTqxy4sQaSyfXRisoZWmcrkmVA9HutIhCn35W0BskSBG4fjCBT780JHFGkWSkShFUobA0zV1uiDacODFNmub4laNlLPhVn6CV1a6zw8lVlk9tsLKySZ7mlMaQFY6DRdDqNGg0A/ppQT9OaYYe7U4D5fvEOnYORZKRKunE7pQky/KqGaLlxNwU3W5Me6yJFZLSWALp+K2sbDoOJ9Y4dXKNtZUuaZqjtSErSkrr+ui0x1wPpqQo6cUxjUDR6TTwg4CBjsnSHJ3lpCpxHKQgTXMXpik1M5Mdet0BUTNCCEFaGiLPJUgvLQ85rLK8tMHy0gZpkqG1re5JF+JptyKarYikKOknMaGvaI81aAUBsY7Jkhyd5qRSEgfeBb/baZpTeyg1atR45OK7REk2zXLUuWVQ0MZQGosVrldKGPgoJZw6a146/RJPEUrXoTdP3eRltUGXGq9UeH5Kt5fQaAxYXt7k5Kl1olbkKmIAJSHtJywtb7C+0afbi+kPUpIkq0pMHQeEwA98wtBHeQptLWVRUmoPqRSBVIS+IkkcryEHpaRbiYhigtBnZWWT4yfWaHSaICRlofF8QZkWnFpaZ2OjT7c7GHHI83KHHXyvsoOvMGlOWZRo7VYRPOk6BMd5gbZOtdVox8HzPXq9mDDwWVnd5MTJNcJmCFKhS0MQKvI428Yhpj9IHIfM5V6UxmCEwPM9osDZwVrHoVSuvDfwBKGvKPMCbYyr8NHGVdx4rrw4agxYXXVj0ckLpOdT5CV+oMjjlFNL66yv99jsDuj3U+IkI89yl/9SVet4ynNhPF+5VZqipJQCqmTkyFcUmXNqrNaOgxAoT9HrJwShz9pal+Mn12iNNZGeT5YWhJGHznJOnlpnfaPH5mZMv+/GIktyN+7aYASobRxsUVIWGlW1JvB9j0bgOydJm6rK7AIVa4DW+qH7gtWoUaPGw4hHtYNyQdiz/nOEYdcSS1URxJm+nRCM+tlI5cpsPV9hqo6+SoI3TLitKkLO1i9lVCRqh+cVZ5xvuyDY6UyHvWSUkvjV6ooV0qmqehLhGZRSCDHsO3N2g5w9+rfF2J72c6ctXC+ZYbmx73tYoRBCu3CP79Rq5WmdfdlxzK3/C3fqkV7Ndg72LExGHYOrMtxhCE5WHZH97Rzk9vHYOtTWOGw77rafOzmczRjVMSsOw7GQvnPUfF8hjBO0k1UZ8XAsdhzGbt+y3VJbLKzdqWNztvuzRo0aNb5T8ah2UKSSTlzsHDDgdD3EsKJHuwoZ4Z7SfSnBWHTpqjuGM+bwuMOXql6uNBbUcDZ1+akoqCp/nNrq6LPGiW6JSgPUVBysdtUroe/61YhhdYlxU5AQlYLt2XhI6c4pwFTOk6TiUVXdbPFQSGWwQiDQVfmu44AWW3ZQLk5jTKX8KkAiRk7Z6XYYcpC4Mm6Ls4HBcZAjDlsvKyyicjv0yA7SdQL2FIGSiEr3Q2szsoOUolLzPQuPyvZDG8jRWIgzzi+VwrX3cxwMUJYGawwKCD3l+idZiylNtWrhRNlGdhBD+6qddqjOL6jGAkZVN1u83X2B3erAbSyUpcYajazuh8BzGjW2NNVqj0AOHSIlL+igSN9HCv/BfpVq1KhR458FUn+XhHi8RoDnDat4zliPQBqLrMpLJZDGGaWSNJVkfLpNYSzxIKXUFl+CqjoZe54cTS5WStK8pN+Pue/oKTwp8APXjRacLHmeFRw7vkKvF5NmBUYKVBSAr1DGIkoXIhA4MTddlERSsn+yhbaWOHa5CQqLH3jISmdjyAElXcLvIOX4sWW++LnbCUJ/B4eyKDl+Ys0lY6aFcxYi3x3HmBEHKkE5U5T4UnBwuk1pLWni8juUtYSBj6gE0bwhB0+RFSWDQcrJE6t86XO34/lOC0RKSLOSPC9YXtqg34+J09yJjoUBflVCLEsnOy+AIs3plxpPCfZNtjDWksQZ2liktQSB5zhU0vZSCPAUeanpD1JOnVzjK1/4JmEU0GyGSCArNFmas7raZXOjT5LkGECGvivbtgZR6KozNBRZTl9rlNzikKcuvIUxrtlkZYdhgiy+4zCIM1ZWNvjyTd8gCHyiRoAUTrQvy4tRqC1OM0pjUYGHL1x+iii1cxKNy1/q95wmy96J5k4OWrskXumUaz2lLpgkO/eUp3DRgYmH7ktWo0aNGg8h+mkC//6mB7Tvo9pBCaIAzzvP06KxaE9jS41nLXGh6WUlU82Q+U7I8c2U9TjHl4KxQJGL6knXV5WKrAvDxEmOpM837zzO3UeXUcDidAspBMdWBxTG5WqsrfUYxBnGOEdDWVeO7JcGXZaEQw55yWQjYLYVsRrnrMc5noCWryiFRHgKNeRQhYKSJANruevuExw9tooEFiabhL7i2OqAtNQYrVnfcPkn2lg830N6Lq7hFxpTagIMcaHp5yWd0GdhKmKpn7GR5EgsHV9RVk6RqiZHgVuqSZIcYeGeo6c4ubSBAOYmmjRDj/tX+qSly5NY3+jT66WU2uD5Cum5UJQpNbrQeNYlDm8kmnboMzsR0k0LTvULFJb2yA4u70QoOeKQZgUbGwOO3rfEqeVNMJb5ySatyOfE2oB+VgKWjY0+vV5CURqU53JssGA81wwytC5pdyPRNAKPXe2QflayMkiwxtIOFJGQWCXdWCi3RiKkJE0LsDHHjq+wvjEACzNjEZPtkGOrfcfBWja7g4qDRvkeQcXB184OvjUUpWEjyWn4HrOTIXFRsjJIMcbQ8SVh4GGkxBtxOD92P/tpHHn24x+Kr1eNGjVqPOTodrvw71/9gPZ9VDsoRluMOHdNtRN3d5NKhHXy9giEJ4kCH+EVaCkJJERKom0lhFX10wGLtq5UNE9zBv2EQVYijWVzqomSgrtXBhRAK/IptCbLtdOqqMJFAlst0UsiZcmMQVsQVamvzDVaSnwJkSdJ7TB8tI1DqUmtJUtzV0KcuqaE65NNmoHirpUBqbE0Qw9rLUlelaOezkEKIiHJtHWrCEoRBT7SKzFSIBFESrrmioidHLQmM5YsLUjilDgrsdqwb6JBO/K5a7lPoi3NyFWa9FNXEr2dw1CFNUS6UJNxQmSh76FKixFO2TVSkgzhWipaN85bHCCNc4osJ85cYuneiYjxRsA9qwP6haEROX2WOC/OsIPAhV9CKauwmsFWpb6pAS0lAkOopFPjrVYshhzyyg5pOuSwjC418+2QufGIu5b79HJNFHp4UtJPC8QorUSMMkyUEATCtT8w2mKVc0ZyC1q6vUIl0VI6DiM7nB+1kmyNGjW+U/CodlB0WSJQ53xfAFYb0AZTFFjPo9WO2LN/jkv2zVDev0r/7pPoOCWOM0rfR1iXhzBKTKx6oVBV1fTiDLRhVTl5+I1e7CY1a7AWilJXiZFiK/FTW4zWJLpEC0mjGbJ73xyX7JsmXOqycedxxyHJMMoDo87gYIx1GbnW0u1nmFKzKi1xoNjoxRQWMCFKCoq8PI2DcDbQmqQs0VLSaEUs7p7hkovm8U5t0vvWCbJ+wiBOsX6AVXKUr+FIuBJelFO87cVbHNLMY70bkwPWBgRSUhanc8DluZSaVJcUQhA1QhZ2z3Dk8DxLmzGrt99PPkicHTwPVGWHbZmrxtiqX42lF+cUecmqMBR5wXo3JjEWY1xY6ax2MAZTGlJTkhtLGEXMzU9xySWLrPQS1r55nLg7cCtWynN2sOoMDkZoUiy9OKMsNIEpUVaz3o2JS0OpA5qBR1k5SUOndQcHXVJgCRsRs7smOHJkN5tJxtrtx+h3B8RJivR9tJTI7RzOg9pBqVGjxncKHtUOihSu0dq5IHDJkFobkjhFtpuMtyL2H5zniqv2E4chR5c22egn9Acp/lglPV+FdqqTYIV1MuOViqe2lqTUSCFcrgBVlQ/C5VqMVg6GHFx/nUGSoQOnCDrkIO8+xV0n11kfJAziDL/pcg0kYmtCkq7JnpJyNNmaioOVLunUCoGQboXCq2TZd3Jwjs4gTinDgPGpkD37dnH59xyGu5e4d6XLyiCh109ojLnwktrOAdfocCj5bis7pKVbMdLWNb8bJnM6OzruQw4W5+wlSY72FM2xDrv37uKKxxxifKnLN46vsTJwTlLQalbN/E7nsJW4Cs4OaanxCunKs61Lrh3ZQTBqolPlNbtVprQgNYb2eIeF3dNc/pjDnFjpctdyl3Tg7oeoGSFl4HoGDauNtnGQVdhn2PhxUGhXzs1WlY86g4MYcUjT3K2+jXWYn5/msqsPsd5LuHOpS1JxaLYlwhdVQvKFPRRRnbtGjRo1Hol4MH+fLhzUfgTDLYQP/zvLvyu1VWMtaeaeZMfaTfbtn+PI5fvZf2CesU4DKQVJXuzoxzY8jhTVZFR1nR0aN9cuXGPtsBRZVI0At5bxt9i4CSnLXW5Cuxmxd98ujly2nwOHFhjrNFFSkuXlqDHcsFx5xKFqpCflVklqbqqOyJWQ3PBJfbjPdjtU7gFJXmIrgbDdu2cqDvNMjrfwPY84K7acrvNwGCqu59qFzowdVtKI0UsIcRoHNxZZ4XrztBohi4vTXHzZfg5dtMjEeAvfU6SVdsvWOFfHETuP70JnrtFfOrTDcCyGdthW+j3kYK0lL0q0NrQaIQvz0xy5bB+HLtrN1GTHhXvywlXRMLTFue4Hx3HIQY/GgnNwcFdkKzuUWtNshMzPT3LRpXs5fGQPU1MdwsAjzQrnfFY3pWT7uJ79VaNGjRrfKXhUr6C4DvTbtT22a2ZYho/erqeeJYoCpiZa7N49w8L+Bfac2mRqvM1KGLBpTl8at6PDjSYA4cp5NThlWFM9rQ8n5GqfETexs7JIW0sj8JkYa7J7cZr9B+dZ7adMT7RZbQRsViqrw9Ld0zkw4iDQwh2vMDsn7u3qIzs5uFdpDM3AY7LisLB/nrVBxvRkh+VmyMkHaIfh+TTWdQKGrQlbbO074mDFaKLVFgLfY3ysweLCFLv3z2OU5zg0QtZ2XPEWh+02GDqEElHZwV2nqrhxuh2wW4NT2U76HuOdBgvzk+w7uAC+z+xUh5OtiJN2+900vNe2asW27gfnlA4bUsLW/bD9KnaMhdjioJTjML9rksV987S7A2anxzjeijjBaRxG13IB1GGeGjVqPFLx3dKLp9EIz9nN2C3zy5FGxsxUm8OX7OPgRXvYvThNEPgszE9xxWX7aAaKb0UeMgiw1o40MqhCEk7J1C3lD2XvnVIHTtPCuKd3vxIPk9Il5jLUwqjmpF0zHRb3zbH/0G52L84QNiN2zU5w+aX/P3t/Gitpdp3ngs8eviHGMw85Z9Y8sEjRlExb1r2SLNsSu9WABoi+dqNhG/ohtH+pJcKAbBgtAbYMy4BlgLaMvoAB2db10APUfT3ctqmBpCiKtlhkkUVWFWvKOc88xPSNe+gf+4s4J7Mys6rQlMik4gVOZZ0T34l4Y+04sVesvdb7TjlEeCEbvZKghOv93RzCRulmPSoOZjtXMMwTD+QghWCp3+LCY2d4/KmLXLywRhRpNjaWePbpCyRaop1FRdHsvq19AAd3ioNoSPhwrRCCSAf9jxMOJ0nc6nKPzbMrXHnyApcurtNuJyyv9Hn26QukStKNFbZJBu7l4F0YlZ6KmE0P40K9JThM+6aSonUYkZ5xmFWXBCx1WVpd4KnnrnDl0gZpO2VpucfTT51HAZG3BDmW8AjGhmqZd26m6BqWwjVJsg9xaP74vDvhIGQzqn0XB1he7LC8usDTzz/GlSub4fUcKZ5+8jzCOmLvaCai7+LwMCj14J6sOeaYY45HCcI/gl11w+GQhYUF/spf+aUHuhkLBK1WzNpKn/W1BT7wwmUuP36OJI1J0qjpRxCzCZ1bV+/w0leusncw5OBwxHicY12YnMmzgrIyjLOC4SgD7+kvBJO4wdEEh6DXbdHvpkGivJXQaiUoJWm1ElaWuqytLvDcsxd4/JmLJGlCu5uGxlohg/dNWXPz6h2+/vXrbO0csX8wYjIpsNYFw7mspKrrxg04wztHv98iihXHRxOs9XS6KQu9NrEOHNJ2wyGNWVnusbrS57mnz/PEc5dptVOSNEI21Zqq0THZvr3Hl198g929AXsHQ4ajHGcdZRmmd6qqZlJUYbzWObr9lDiOOD4cY52n3UlZ6rfRSoU4tBOUVqRJxPJSl/XVBZ5++jxPP3eZtJ0G/RAZVqwoauqyZu/OHl/68lts7xyxfzhiOMqw1lEVNXleUpQVeVlxPMiwtaXbS0jSmMHxBGMcrXbCYq9NHJ3EQTdTU8tLXVaXezzx+CbPf+hJ2t1WiJMIfTxlYairmp3be3ztq1e5vXXI3v6A4SgPXj5lWIuyCqaHB4cjnHW02zGdXsrx4YSqtk21rkvcyPO32yk6UsSRZmmxy/pqn8cf2+TZD1yht9gjTiK0DvWWugqPMzgc8Yf/7RW2tkMcjo8ndx193Q8//dMf43/4vg98U//e5phjjjm+WRgOhywsLjIYDOj3+w+99pGuoAwHGVF0f+8RIcCYlF43BQGrawucP78WvG2KkqPRmIVul6WFTmiaHE8AKMua0ShjMMhwzjUJSkltDJVzQT1UCnQrDp4p4yAuVtU1w6EjUoqqrCnLGqUVdW3ptGI8nqWVPpcvbwKCyloOjgb0ex021xfDY+cFr756k6qsGY/y2cZc5OXMjbdshMWkUuhWHPQ1oopaWExtGQ0zIiUDh6pGKUXdqum0E7z39Bc7XLq0EQwAq5rDwYhOK2VjfTFUHrzlKy9JqsowGuUMjse4U4labSzVjINGpzEqiYjjiLoOGiPDUUYkJFVVU1UGpRVVK6aVRDjv6S90OH9hjTiOqGrDwWBEmiRsrC2EtfMW9fJVqsowHucMjiez5KDIgr9Q5V2oCkWKKI1RrZg4q4DQWzIa50TyJA5aK5IkppVGWNeh3W3x+BNnEU2j8+7BMWkSs7baRwCRkrz22g3q2jCeFAwGE4yxVE2iVtfh9SClQIkph4Q4LvEOnHOMRhmRlCRFmDbSkSaONWmisa5Lu5ty4eIGrXZCbR1HwxFKKlZXek2/VMKXXwyvoUnDIajsPhhVVX+T/rrmmGOOOb61eKQTlO2dowe6GQsRjoCqKmxQ3eUOG2dW6XfbRErR73VIlAqfysuKL738Nm+8fYednWP2D4aMR3nQ6qgNtg4W9nES00rjoC4aRyAl3TTBWUftbEgkrCfLClSkkU0FpawqirKit9zhzIV1VhZ76ETT77VJtKYuDaNJzldfucY33rzN7dv77O0PmUwKnHXB0K8OrohRGtFLg2qpTiKEVrTTGG8slXWUeUlhHZNJiR5phAwVlKo25EVJ3Il5/JlLLHRbKCXp9drEUlGXNVVt+OKX3+Qbb9xme/uQ3b0Bw2GGdx5rDKYKcdDxCQeVxMhY00ljnLLUvuFgHJOsQMc5UkqSNKIoKsrakHQSzl5c58zGCloret0WkVLUlaGsDF//xk2+8cZJHIbDDNeMeds6uEvrRNNJYiSgkxgZR7TTmFRIjA9Vp9JYsqxAjyKEkiSJpqoq8qJCJYrHn7nIuY0VoljT67bQSmFrS1XVfO3Va7z6jZvcurXPzu4xw2FIFm19wkHFml4SIxoORJpWmpAggzpvWVHWlkwphuM8mELGmrKsKKsaEUmuPHWBi2fXkErS7bRCT01tqWrDV752lVffuMWd2wfs7g04Pho3dggPRp5VD/BbmmOOOeb41uP9vD890glKVddYd//ZBdGMpx4cjaitpXCWM6vLPHnpDOcurdFrp9SV4fbVHd68sc3vf+FVtm8fMBxmTLKCsq5Pei0EaK1oxZpEytAX4ULPRSwFUioqL/DWYnyQUrfGImzwvxFHgtpY6i96lhf6PPf4eZ547gLdNAXnuXpti2u3dvn8F17h+o0dBoMJk6ygqOqgwdJwUErSijWpDOZ4xnq88MSiqagoiXcW4z3OOypjQg+F8Bwcj6itYVxVnN1c5YNPXeTMxTV6vRamMuzc2ufm1gGf+b2XuXljl9EwuDKXVdiM7+XQUgrvQ/OxtQ4tgtNvJCTOhXFb5/2Mg8UjBmOsD/ofy0t9PvzsFS49tkm338J7z603t7lxZ4/Pfu5l3r6+zeB4wmQSjlPcNA54tBKkcURLBaVe6xsOgNJBhdY5FxR+pxxs6CE6Gkww1pGZitXVJT76oSe59PgZup3Qy7R1Y5+t7QM+/dmv8sbbWwwHGaNxQVE2E1YNB6UEaaxpRwrveAcHK8B5S91MAtXGgnNY7zgeTrDeM6kqlpb6fN93P8vm2RUW1/o45zi4fcjN2/v87me+yptXtxgeh7UoplNeD8G7HQHNMcccczwqeKTHjB8Gjw9NjZxoX8xGcU9NiEwbN33TAHtyffOfWYtOM27K3fMlp7+/a8rCn3782UzOzI339ESJmHFgRng6eHJ6iub0Y8LJiCtw1/+fCkLTUHrq3ynne35hOgr7jqmRWUR4x/XTgZR3xOX0r9zznGZaImImDXLXc3inA7J/R2PoNJqnwzjjBNwvFLP74nRsT6Zx7sdh6i593xjMvhXveD3cy8HfE4sp/9l6nBpXnr1GZ+NgJ3fyIC/q+9KaY4455njE8UhXUJw/cYa9F6IZS40iRaedcO7cKmfPr9HttUKTZV0hEHR6Lc6eX+X8+VVGhxOKoibjVMLiPFgbKhaxxTViabFWQcRNCpwNn55NbTHWgpezpAMg0op2K+HM5jLnz6+xsNglnxRY71BC0umknDkbOBzuDcjzEpEFrQznmkkRa3HOY4zDxQohwv2iFV4KvAlS8HVtMMbCVNStgY5C0+rm5jIXLqzTX+hgastwMEZ4SNOYzc1lLl1c5/hgSFlUIWEJhaJGkTdw0JHFKYUgmBoS6cChqabUJvSioE7i4PFopWi3YjbWF7lwYZ3F5V7oaRmMkSIch22cCfy2bx+QZxUiK8OEzHSCx4TeE2MsTmrkPRwArPWzOHjZqIdIwINWkjSNWVtd4NKlDZZW+tSVpTITJII40qxtLHHx4jrbdw4oi5qJLHE+VISmHIQAZQxe65O1iILyLMZhnZv15PhpAiIlniD6l6Yxa2sLXLy0wfJyD+9hOJiE4yKtWFtf5PLlDW5e36EsarKsDK+Hd+1pn6coc8wxx3cGHukE5f6f7ZvbRPiKo4iFXpsPPn2BXq/FWzd2+cPPv8zV169z/vI5/uz3fxdnz63wXc9c5NbbO4zHOQiBazZn40LfgTQOrQ1aKJJIsd5OUEqwfZyRW0tRGfKyDq7EUdhkppogUaTpdlOee/wsq6t9bu8d8wf/z0/z1jeusnlugz/7/R/m/IVVnn/yPLfe3mE4yBBC4AAngl+MqS1SWJRWaKlItGS9FRMlmp1BTuYMRWUoSoMxDhmFzXiqihtHmm4n5YUnz7G+vsjN7UO++IVX+MbLr7O2ucZH/4fv4srjm/ypD1zh5lvbTEYFQgoc4RjJOj/jIJUkUZpIK9Zbwcl3Z5AxKQ1FbRp3ZYv0UzfkUOqIIkW3nfLU5U3ObC6zczjixf/8BV75yuv0F/t83w99D5evbPDC0xd469WbDAcZsjlScw0Hayx4j9SKSGoiJdlII1qdhL1RwcjWFCbEoa4NcurI3OjL6EjTaSU8cXGdK5c22Dse8+VPfZGv/Pev01/q8T3f91089fR5PvjMRa6/cYfRIJsp53rC0Z5pOCAFqY6IlGIl0fR7KbvDgpGrKIylKOsgt69Uow4c7kNrRaeV8sTFdR67uM7e8ZivfOkNvvKHXydOYr73Bz7Ck89c4Lueu8RrX73KeJgzUPKhr/fTfxNzzDHHHN8JeN8Jymc/+1n+0T/6R7z44otsbW3xm7/5m/zYj/3Y7HbvPb/0S7/E//w//88cHR3x0Y9+lH/2z/4Zzz///Oyasiz5xCc+wb/9t/+WPM/5oR/6IX7t136N8+fPvy8u7VbywCZZECSxJpICX1mKwxF/+OLrfPX1O3zhd77EzjeusXTlDkcIXnjqHHI4xpYGJQStJGpOd3xo3FQ10gcTt+PKkDjHZlUjlWBQ1Exqg0IQJTHKQxxroliH5tBYE0mJazi89JW3eOXaLp/5r1/kzitvs3RhkyOh+OBT51BZji3rYJgXR00FxVMrQ6XqsPsoyaAyREawXtVoCcOyYliecJCRI4o0cRIhZagKRFLia4sZZLz0lTd5+c1tvvCZl7j50ut0z6yx7+CDuxdZEg5XhuebRhG2FSpJRhvKxo0XpTiuDZG1rJU1kRYMi5pBVSOBJIkRyhHHUw6SKFJESuKNoxxkvPK1q7x6c5/Pf/olrn7pNdLFPkMd8cHdiywKhynCfaWRxrQSnPeYylAphbMOoRXD2iCNYLWqiWLJuKw4rOqgYxJHoBRRrEni0LCstSKWEm8sdlTwjVeu8bXre3zh917mG3/wMu2lPrs13D4YsNnSuMa9ecrBe4+pNaWq8c6hIsWgtqja0i9rkrpmUlYclgaBJ44jkIooUsRJhFLBxiBWKng7jQre+MZNXrt1wB/+wSt84w9eRiQxB0i+63DA5cUWNq8QzpNEmnbD4WGI9FwHZY455vjOwPtOUCaTCR/60If4G3/jb/CTP/mT77j9V37lV/jH//gf8+u//us89dRT/L2/9/f4i3/xL/KNb3yDXq8HwM/+7M/yH/7Df+Df/bt/x8rKCj//8z/Pj/7oj/Liiy++L6GpONZoHT3wdikFWVayXR/yB7//dY6s5+bBiMnxmNXlHsfjPDRkvnqVdS3Z2RlQGgtCEMfBGVipYHUvG5GtURkk0E1ZgRTUNpTw0yRCJBG182itgkBXI4leFBW7u8d88b+9xvgPX+f64Zjh4ZCVpR5ZUfG53/8a1167xlqkuL0/ImumZaJIN/lAwwGB1oJRYTDOURc1lnDs4/EkSYRKYyrr0Fo2VZzAO88r9usBX/ri60y+/BbXDkYMd49ZXe4xqGq+8N9e5dqbt7jYjrm9O2BSmVmMp5/6ldZIAVpNOXjqssbIYJLogFYSEcuYvHZEOvCexqEqDft7A77ypTf40tevce1wzPHuMUv9Dpn3/EHD4UI75lbDwXlPFGu8B60CB7wniVRYCxPiYJSgrgOHNNFE0zgoiWrWTwpBWRkODkd8/eWrvPr2Fm8djDjcPWZpoUMFvPjlN7h1Y5vL/RY7+0OGeYVvOOCDEJpUCkHgMCzC66GuamxeURuL9Z400bR0QlHbu15DUgjq2nBwMOTrX7vK61e3eOtgzNH+gH6vReHgyy+9xe2buzy+0ObO7oBhUeGsm3F4GKT8jm0rm2OOOf6E4X0nKB/72Mf42Mc+dt/bvPf8k3/yT/g7f+fv8BM/8RMA/Mt/+S/Z2Njg3/ybf8PP/MzPMBgM+Bf/4l/wr//1v+Yv/IW/AMBv/MZvcOHCBX7rt36LH/7hH37PXKrK4NyD35AFUHlPBtgs59h5jgtDSwp6i13GmeHwYIgbZ0yU4DCvw9FOc7xy0kgZek5a7Zi4naI8dBe6KClYKj2Vh1QJirzCVuHTdV25WRNp5YPCKXnO2AsOSkOCoLfQpa4sx4cj/CRn3FQiDKc4NDwEEOnQrxK1PMJ5eotd2rFisXAkxpFoGRKGIkz/1E2iM+UwmXJAcFAYtPd0F7rkhQkiZ1lBHUsGuaH2PvTX3MXBEylFu50QtUKfT2+xTSeNWDrFwVY1la3w3lFXfsahbjiYLKcSgv3CoJyju9DFVZaj4wkuK6gaDsYH8bTZoFbDQWlJp50QtRKc9fQX23TaMYuVR1Z2xsHmYS3MaQ4F4Xgmy6mVYreowTh6Cx0mxrM/yrBFhd1XZEVN4e4fB60krVaMbqU4G0Tz2v2UxcIhWoZISYQx1DZM/tzLIfMem+W4KQfr6PY6iNqyP8owRYnf14yLmtLdE4eHwL2LTsocc8wxx6OCb2oPytWrV9ne3uYv/aW/NPtZkiR8//d/P5///Of5mZ/5GV588UXqur7rmrNnz/KBD3yAz3/+8/dNUMqypCzL2ffD4RC4W3b8fphOxkzP7oWUICXGWvLaUXuPaKTQp067HvDC45tpjumnf60VrXZKqjVaCPrLXZSULBoorUc5izWW2tiTBttmcmg2EQQIGQz9jIXc2OAhIyVCNZMjrpn+mXb5zjiEikirlZBEGgn0l7u0Ys2CEcS1RTpL5hy6MeObcmDGIfwrGmdma6Ewlto5EGrmzuu9a3iIU3FgxiFtxbTiBIGnv9yhm0Qs1KBri/aOfORRpbkrDqc54H3DQQYhOmOpnMMLhbiXw2zU5xQHFTikcYz30F/u0GtFLFiBKAyawKGsLG5qF3AXB4/3slkLicVRGEdlPQgxc4L2TVOs9/dwEAKtpsJvCXhYWGzR66csGAFFjcRTjTNUM558Pw6c4mBMiENpHZ6pPP8pDk0c3sscz9zNeI455vh2xft5f/qmJijb29sAbGxs3PXzjY0Nrl+/PrsmjmOWlpbecc309+/FP/gH/4Bf+qVfeucN3gfTmgfAN9c0aQJSBo8aazylDaV4IYNnjHcW5xu/lemm2IwAKxkaPNvtFN1OiaSkv9xDScGigaK2uEblVJUG19z3zMiwyZK8B9n4wzhvKK3HOJA6JCDen/KcaXRcAKQ6nSQl6E4LJSULy13SSLFYQ1JbXFlSFxVK1uDu5jDbHPGN47HEYChM0CwRkWj8YqaeNyFJm26KU2fekKAkpP0uUsDCcpdOErFoIKoMvqoxRYlSMsTBnXBw3jeNotO4O+oaSuuonUc+gMMsDg2HSCvSNCHudRBCsNAkKItOIPMajMGUNaqowbt3cBDTtZjFAUrjqJseH6mCb47z93I4eb1Mp4Fai93AYbFNv5+yaAQir/DWMiwrtAqibbMk5RQH5/2MgxcncRBazDjcLw4Pw7R3ao455pjj2xHv5/3pj2SK594MaWog9zA87Jpf+IVf4Od+7udm3w+HQy5cuADOhUpDuAfuUZ+YaU4IAcaGjT7SkqqCSWnxShLrMOlimsqFm27qAoSQSAVaa+I4ot1O6a0uEEWKXi9FCsEKirIyZMcjxgNNFClq77C2GVFuNiVBEDWbGukVAvLKYpUkasz9bB1Ex+7mIJAiVC6mPj/91YWgwNpLiaRgBUlRWbLBmMlgEnpX3N0cpuaGxnpELNBaYipBVhqslERaopTAWHdfDkJodNRwSBOWV/tBibabkmrFipe0KkM5mpANJkRRTe3D1M3U4A+C8Z2xJ0dWRkJWWYwInJQUjcjbPWuBQKjQ2xPFmrQVs7jSQ0VheqalFctCExcV1aQgH06II03pHM5MK0J+9kqpnUcT1qJW0zgEhWCtZBDbc/4dHKRkxiFJYpZX+iitWOgktBLN0qokKmvqrKQYTJr+GY+zdrYWUxgHkQ9xqGtJXlXUCHSTAFn/ztfDg1VeAg6/+BK3qoOHXjPHHHPM8a3CKMve87Xf1ARlc3MTCFWSM2fOzH6+u7s7q6psbm5SVRVHR0d3VVF2d3f53u/93vveb5IkJMk7XYuTKELrBz8F5050I3LjEMoSSTBSUBqHjDWxAt8c+aAkilDCn35aT1oJ7W6LXq/NmY0lNq9sEMURneYEprMpKKua/Vv7VHmFijT5OKfIgtGfb5ROPZAbj6wtsYRaScrSoLRoODgK40EplPTBZ0YKhJCk7YRWp0WnEzxzzj1+hiiN6HiBsI72pqQ2hoPbB1RZgYw02TijmNyHg/WouomDkhS5Q6SKWAlwjrxyeHmaQ2j2TdKYVq9Ft9NiY22RS4+fQcURHQTKOtqbiqquOdo+ohwXCK3IJzn5RIQkpZlIckDpPNpYtAybcW09IpIkSoB3FHVIHpUUd8UhSWPSTkq312Z9dZELj20StRK6UqKMo7MpKSrDcG9AnRWg1CwO5h4OlQNXGSIlgneR9WHqSgukdxSVw0mJEgJJw0GKYHfQDWuxuhIM/6JWTFsodG1obShKYxkdjihHGShJNsnJxwLTSORPOdQOfG3RShBpQZV50JJ4yqF2OCFROmjJKHmPMt19cOf/9R946Tf2HnrNHHPMMce3Cpm7v3/e/fBNTVCuXLnC5uYmn/rUp/jwhz8MQFVVfOYzn+Ef/sN/CMBHPvIRoijiU5/6FB//+McB2Nra4mtf+xq/8iu/8r4e7/zFNeLo/m7GAFVtmBQVeVEzOM4gK0hSTSfWON1BKY/NS4aFwSvN4lKHVhI8XZJYhyrFQoeVtQXWVxf50Acf4+Jjm0ilUOHsBicFzjpuX9/lpa+8xe7eMYcHQ46PRtSVoTaWSV6Rl3UwIDwekySKThzh+m2k8PiiZFwYnNT0F9q0WzGdNBjwaSXpL3ZZXumzvNzng89f5olnL6KUDDLAruHgPQc7R/z3//4au/sDDvYGHB+OqKp6xqGoao4HOfZoRJpq2nGE63WQyuPLiqysqVEsLnZopRGdNCZtxmO7/TYra4usLPd5/pkLPPX8ZZRu4uA9Tgmc8xzuHPHfl/vs7Ic4HB0MqcoaYy1ZXpOVFcNhTn00IU0UrTgi7beDKFxZkZWG2ksWltq00zj468QapRTdfpvllT6rqws8+9QFnn3hMirSqCYOXgmsdRzuD/jy+iJ3tg852Dvm6HBEVVbUxpEVYS2Go4Lh0Zg0PcUBD3VNPjZUTtBbaNNpxbM4SCXp9tosry6wvNzjyStn+K7veTrEAcA6vJY458nHOb+/0GVr74jDgyGH+0OKosRaR5aHWI9GBcPjCWkiSeOIuNdGSvB1TTE2DAz0l7p0WhGtJKadRu9aiey8fRvy+RHPHHPM8e2KP8IjnvF4zJtvvjn7/urVq7z00kssLy9z8eJFfvZnf5Zf/uVf5sknn+TJJ5/kl3/5l2m32/zVv/pXAVhYWOCnf/qn+fmf/3lWVlZYXl7mE5/4BC+88MJsque9oq4M+Pu7t3rClE9R1ORlTV4b2hJiJXFCUHlPJARKSSoBk9qQljXgUUIgCNUXZ11QGI01y4tdzm4sh56V5nFCE6ynGOXEsUY2CUtdmWBUWFuKsqIoa7LKkACxDP0FtQclRHDdFYKiNkRVjRSgQtsMTiusdTO10oWFDufOLAevoXs4SGNJ4gglBM45qtoE59/aBPXc0pCV9YyDkIKJ9aQyVBGskIwawTkBTRzCiLE1rjmWUfR7bc5uLKG0uuulJgBpLHGiUVKGaabazJKkwKEmrwwST9SIuOUOYkHDQTBuxN4kzL6UCv5GTDn0W5zZWEI3o9in46CbsW/VqNua2lCWQVm2KCqKKsRB+BAHJSWZAy1EeH1IybiJg5IixEEIlJTYlkX4MMXT7bQ4f3blHWsBMBlOSNIoxMEHZduqNBgbBNyKsiJrvJaixiE7tx4hJLGSeCkZ2WBkKRsh3GlF6WFw1r2fv/855phjjj9evI/3p/edoHzxi1/kB3/wB2ffT3tD/tpf+2v8+q//On/rb/0t8jznb/7NvzkTavuv//W/zjRQAH71V38VrTUf//jHZ0Jtv/7rv/6+NFAAdneO0PqdRz9T1MZS1iY0HgKdbosk0YyKmmFWorsJvVYCSpMNMsajjGIiyKOcWCt0pCiLOjQ1Atu7R1x8bJM4ibDNVqQAawwHh0O2tw7ZunPA3u4xh/sDqqrZkGqLafowut2UVitiVBpGk4JeK6LdSuhqTTHIycY5dVaQjxRxpEMCVdWNm69jb++YsqzQUYQHTJNoOefY2T1ma+uAra0DdraPONwfUDa6LUUdtFO883R6LdJWRFZZRlmOaMe0WjFSa8bHGdkkp8oL8rEiaTjkRRUk561j++wKVW2IBHiCJL+UAm8dh0cjtrcO2d46YHfniP29AWVRhWmd2gQDPwe9Tkq7HZNVlnFW0Io1y50EqTXZICebFFR5Sa4Uo1ijlaQoqmCG5z3bm8tMJgWdbgsvBdZ5dJMcDo7HMw47W0cc7A8oijLEoQpxMNaz2ElpdWJKaxmPC5JI0e4kaB0xsRlFVmKLilwH9WClJHle4hpJ/7XlPnlWEqcRCEFlPbEKSdHB4YitWRyO2ds9oshKjHOUtaGygUOvndDuJFTWMR7nJxyiiMxBnhUNB0ka6XetoOR59a7HQHPMMccc3zL8UU7x/MAP/MBDu3CFEPziL/4iv/iLv/jAa9I05ZOf/CSf/OQn3+/D34UsK1HqwVysDY62XoTegTQN8vTWVeHYoRWjdHAHTiYldVVR1R5XG2ql0DqM3sZJRBJHbG8fsbNzRNJtNRszKAXlOGd765D9gyFHR2OGgwnjcUFdmyBTbxsOcUTaStCRwuZ14BApVKRItSLJKoqioqpd4FDVKKWCvH0cjlp2do64s3VIq9sCqagrQxRJTFmxtXXIwV0ccqrqhIMTgkjroN8RKVxpAodYB+n4SJPGFXlWUHuPqwxGBw5CSpIkQivFzs4R29uHJJ0UpMIYRxwr6rxga/uI/f0Bh4cjBlMOZX0XBx1pWmmMjqOGg0FLEWTpI02a12RZQV07nJjGIVSddBwalnd2j9jaPqS31EVGEXVliWNJlRXc2Tpkb8phOGE0zqiKwKFu1kI1OiZRElFkjqo0KMIIdqQ1rbxmNMmpTVgLU8lmwkgEdVwl2d095vadfToLHaTWFHlN2oowZcXtOwen4jBmPM4p8iq4LDdxUErRSqOGQ0ldmTA8piSx1rSS8NxrW2Nrga3MuyYoxrz389055phjjm9nPNpePKe0JR50+xSCEwfdcGP4z8xVt/HemWmnTDU8HDOjODed7HAO7+VsQij8bKqZ0ZjKnf7ipKo19efhLm9acerGE62Mu3lMOYQqhnMefPjXOXfqy8+ag+/lML3vqb7L6ThMH/+u8HAy2TR9XlMO0zjgBd45nBN3cTjN258euT7N4fQ6+RNH5NPUZl7Cp+Nw+nk6D7b5mRWzeEyvd1NdGX+3u/Ts9XD6tTRlJu7hcE8s3an7nq4H0t+zFifP3Xvu+v/ZAsPMXftevZzpiPvJpQ9/rZ9gfr4zxxxzfGfgkU5QpJQPlPb2eIQXoXkSZhuqaiYzlAr/4j3Oeow7tTE0EzxChuu0DqPASaxpJRFpEmN96DuIFIjaBNn9KDTWqqa3QkqB8xJE+FRrm81M6PDYuplUEbNN382Snqmg21R3QzXS9XGsSdOIVhrhCM8/jiQWSOKIqJHZV40Q2tRsD28BEcZWnQMXxquVCj0YwocEyzbxComUnMVCNj4yUw6tJCJJYrxQGGNJE4VyjjSOiCJ1EocmFh6J8G6mAzI9qpH3xsGHcWw/XQshZ1ohIQ4Nh0iTJhGtJELoCCkESaKQzpLGUWM3cLIWQkkEDtGsWzCpbjgQjBW1FMhGsM+cisNUKO8kDs1aRIo0iUjTwME5T5pEWILUvY5C9eskDhKPmwmaOO8bDm5mIaCUDElTc4w0G78/NVH1cJwkuXPMMccc3374Fuug/HFBJdHDvXicAxN0PbzzlFkFiaKtJWd6LeJIUZc1VWXBeXQcNRtF2ISUkqAlxnnyomJn65DXX7lGlMZB0MOD0IKqqNi6vU+elUHaXEpUEuGVRISdEOfCp+gyr5DO0VKSzW6KjiR1VVPVFm99mEoRJ1oYUkqEUhjvKcqavZ0jXn/lOkkrQTiwxiFjia0Nd27uMsnv4SAF0nmEtVgH1nrKvEQ6RyrhTK9FFCtsHVyQnXXoKDT7Rqc56BMOB3vHszgIL3DGoRKFqWpu3dgjy0oqY/FSomKNFiCdDwZ5TWWhKipKPImAjW6K0hIz5WBs45+jT9aiOQKy3lNUNYf7A9587QatbgslJLa2qERRVzVbtw+YjPOGg0DF0QmH5vVgbcNBBD2UjV6KkhJnLHVpwv1phZI6jEPrxktHKyxQVobjoxFvvHqdtJ0GwbeiRrcirDHs7RwHDrXFCYGMNdp7pPcI44LWi/NUZU2pBApY76ShAdvY4Epdm/B6kGLG4V3Tk1Liq2/iH9kcc8wxxzcR70dH8pFOUJI0eoibcSjNR9bhrMeVhrysKL2iE0UspTFjb4MRW2VpKYVINEqFaY1pBQQhyMuao+MJr79xi+2DAUpJ2s1US6YVxlomgwmHxyOyosIJiJIoTLl4T2x9aJItDWVVU3lLJ45ZSGJy7wKH2pJIgYjjwGH6yT9oq1NWhuEo46237rB/PEZpRcs6pHNkkcI6z2SQcXg4YlJUOILRn1KyiUNToSktZWmovKMVhzhk3jEqa2xlSIRAJDFSiSY5CRyEFJR14HD12jbDrEBISdt5lHNkkcY4Rz7KA4eywvpgsifv5VBZ6sowaDj0k5gKx7CssZUlRiCaPo+7OChJVVuGw5zr13cYTnJkpGl70NaSR5rKOcpxwd7+gHFe4bxHxxrZNK8GDh5fWUxVM8CTxJqFOKbGMaxqTGXReOIkRmqJVqKpXoBUiqq2jMY5t27tU5qvI7Ui9RDVljxW1ECVFRwcDJk0jb3RtMHV0/TjeHxtccYwyMvAIYkwwKCqMJVFOU+n4aCaat67QU3mZoFzzDHHdwYe6QTlrp6S+92OIFIKLzzSeSbGUTpPKiBRkqFxlN6jBXSVwmoVjlVmfSJhEshkJVVeMR5MMDd2EcCysUjgoPlEHbmQhFTOQ3N8MT0eEAQXW61hYipK70kJI8+ZbTgAba3w0X041BbjSsq8Ih9m1LeCENeSdcTes68URgQO1oXniJseD5xwUFKgHEwqS+UhIsQhs56ymVTqaRXOre7hYIxjkgUO2TDj7TtBrXTROhLnOdCKWoBuenEKxzs4yIaDdFB4R+E9UROH2tFw8PS0xmuNUPdysFgXRraLUcbVOwc4ETikznOoFWUTB+fCc8Ke+DUJKYgQSOnRHnJnKbxH+sDBOKg8ODw9pRCRwisZRnunHKzF5hVlWVOOcm7sHOEE9J2jZx37WlEKgfahN6Zojs68c7PnokW4T+mhdJa84RBJicXPOHS1REY6VMHkCYeH/k1M/zDmmGOOOb4d8a3y4vnjRl0avH3AaLI41fDqPL6oELGk3U3ZXF/m4kIXPcqotg+oRzllWYFklhzMqlBC4IWkBoT35M2mW9cWgec40nghaDVqp6a5Du+mNEKjqfO4sgYFaSthY3OFi4s9dic5xdY+9ShMu4RKwf05KMImnjmH80GILvKeo0hjZeAg7+XgTxqAvQdTVHgJrXbC+toil5cWaOUF5fYB5SijnFShctRsig/n4CmNJXGew4ZDKgRansTr3jh4D5Q1TniSVsrq2iKXVxYYlDWTO3uUwzBxI6QAez8OYZLFOE/mHdZDWRtS5zmOFLWU9+dwKg7Og2tM/JJOyurqApfXlhlWFcX2Adkgo5yUQbm1SVBmPjgNB4mgxpNZhyUYP06s5VBraiVJhCCWkgqCAJw74UDDgTJMWCXtlOWVPpfWlsito7izz2Q4oRoVaClnSZJ/D+0lzvr3ksfMMcccc3xL8H7enx7pBKXZRx+AMBlhm0bEbFIQqZSFdsqlx87w/MVNojt77I8mHBxPKMYF7aTpVRDB3XhWomnEurx1s4bbrA4joUapJqEIxwBqagDkwm4oZo2pnjwvIdEspPGMw/W9I3ZGEw4HGXlW0IoUWiqkkCcL2XCQQiCcwzuw3s3ckI0KLs2IcBQwG8xxYUcTQsyahPOsgETTbSWcv7jB80+cp7t/zEGWszfKGY5zeolGCUWoeTyYg/M+mA1aR91wEA0Hd5pDEwdHWIuiKPFKsJD0OH9hneefusDeKGNrPGFvmDGeNHG4LwfZVIQc3ob1zY3FWkclJV6GdZPNmuHcXXGYGgDmZUVlDUurPc6cW+X5565wMMrYL0uKcc5oktNWEi2j4Hg9zbBOcZDe45u+msJYRG2ppcRJ0VQ9RBDcc8wykykH5xxlUWGcZXG1x+aZFZ577grjqmavKMjHGcNxQbfpQZlxeJcMZV48mWOOOb5T8EgfWItG4fN+Xye2JU1yUFQIBL1ei4uXNnj6+ctcurxJr9tCCMjKajYGenIkEXx51HRjlmLm7ltaT2lCFeFk0qP5ao4zApfA1TcNps57Ou2ECxfXefoDl7n82Bn6vRZSCoqybpx3Z/lA8+/JhitP3WdpHYW1jaFz87iNMupdHBAzDnlZ45yn2044f36Np5+/zJXHz7K40EFrSZaXd03y3JfDqSpTaT3FNA6ImVOyvJfDqTiUlcFaR7sVc/bcKk89d5nHnzzHYr+DVpK8DMJunkad9hQH1XwJefK86ns5TOPQxEuKd8ahrAx1bWmlMWfOrPD084HD8lKPONLkRRC4m44/S6bGjWLG4/Ra1K5JlFz4hdlaCHny+hF3jxSXdU1dG9ppzObGEk89d4knnr7A8nI/cChPhOk4xeFhX3PMMccc3yl4pCsodwmM3Atx9yW1dcSxZmmhw4ULa1x58hxHZcnyYoftOAqTL6d+b7o7TtsPppu1EgIrgoKr934mSz/dhKUXjXaHn93HFLXzdLRisdfmwvk1HnvyPAWe5YUuO0ncOCq/8wmd5sB0Y0RgfGj4FEw53KPtcQ+HaRw6WrHY73Du3ApXnjxHpQQrSz220yQImT0gnDMO02SIpkJ1isO0X0POYv9ODsY5YhXT77Y5d3aFx548S7rbYmWpy3YrORkzvh+P6XP0YvZ4xgczRGYcxD0aJ9y9FiJwkFKy0GtxZnOZx548R9pvs7bcZ6udnDgZn97zm/uRp+IcEhaPaapkECTzT19zon3CLMGFME6tpKTfa7G5ucyVx88yzArWVvrcbqczV2d/OvGYTxDPMcccf0LwSCcoWgeNkvuj0TGJIIo99XKP8+dWuXBujTObyywudzmzucSFc6sM94ZMhjntToqcbirO0XwUnn1a9x4kQTfDEPYKTdioRVO+l80G7lGAR0gZOPgIu9zl7CkOK6t9NgeBw+hgRDbM6XRbaC0bDtMdUZ5wwDWVnVMcmoRgmkTIJpuacpBSoiJF5CP6i13OnVvh4vlVzjZx2Jw0cTgYsnv7kE43nZkR3peD8yEOQlA3HCKacpw/xWHmWdTEAdBxhDWWtbWFwOHMMksrfQyeC+dWGewPGRyM6PRa7+QgGh2Q6XEJJ4mQ8+HFLJvH4zSHJksQUqJRRIBb6NDtpVw8t8a5s8usrC5gvef8uRWO9o7ZuXVAq9MiTnTzvJrkseEgmoYWyUkZ0nLCYZpSyOZIyAPI4LWjhSKKwZoOvW7KxfNrnDuzzNJKj7SbcuHsCofnV9m5uU+n10JHKjzPWRPPgzGvoswxxxzfKRD+vclTflthOByysLDAX/n4/5U4vr+bsRCQpjFLyz2Wl/tcurTJ5cc2WFjssrDUazRMJMf7A4bHE66/vc3VGzscHY44PhqRZUXQqagNRW0oi4rhMGNShhFeShM2izSIhLW0ZqHfIWnFJJEmiRVKStI0ZmGxy/JyP1RNnjhDf7HL2voSzX7H0cGQ4WDCtbe3uXFzl4P9AUeHI/I8uN9WtaGsLWVZBwn7spxxEM7jU42QDYdeh7QV3JiTKJj2xUnE0nKPxaUe58+u8viTZ1la6bO40kd4kEoyPB4xGmTcvLHHm2/d5uhwxNHhkPE4xzkfzP4qQ1lWjEc5w7wIBYXKIOwJh1RpFvttklZCEunGiVgSx5qFhS7Lq33On13jsSfOsrgcXJql0kgtGDRxuH1jn7eubnGwP+D4aNRwcFR18FYqy5rRMGNUhDj40iCswycaoSSJlCz027TaabMWTRxizcJil6WlHpsbyzz1zHmWV/qsrC0gpUIIGI0mjAYTblzb5dq1bfYPBhzuD5mM8yCVP41DZZiMMo4neYhDbRG1C3FQwQByqdchbScksSaNglVBFCkWFrosrfQ5s7HEY0+cZX1jif5ylzgKo9WT4YTB8Zjd7WNefe1GcIU+GjEcTGZVmgfhI29+kcu7176Zf25zzDHHHN80ZM7yP117icFgQL/ff+i1j3QFpSorvHtABUXQqMAqFhY7PP+Byzz9zAWUkoyykjs7x5w5s8RTT54HoNNpcTgYMR5lwfW28U0pquCsmxcVeREmfbSUkDQCcVriraOsasaTHOssLo7wNjjZKhkE3/r9Nk8/e5EP/6knQAiq2nBj65D1lT5PPHEOvGeh32EyyRkNJtiGg3UujNVWNUVRkxVlGFVVEtIoNGBqMeurGDcbqa0jfOKCMqkI2i69XosnnjrPn/7TTyOVJK8NN24fsLrc4/HHzuK9Z3V1kcOjIdkkx5jQyGlduO+irMiLmiwvgRBfkikHifeOqjKMxgXWeWys8TYOXH2YkOp12zz+5Fk+8t1PE8eaoqq5vXNMf6HNY1fOIIRgbXWR4+GE8SjDWjczGywrQ17VlGXg4PGnOPhZHGoTzP+c89g4wpsIpeVMubbTTbl0ZYM/930fmDWtvn1rn34n5fKlTfCezY1lsqycJUdFWWMb88ngRlwzmYQ4yEa1F+UgkmFaygTzP+c9ttb4xBFphXcaIaDbSbl4eZM//dFnaLdTKmu5tX1EmsRcvLCOuLjB8NKE/YMB2aQIIn9FHVSAHwJnH377HHPMMcejgkc6Qblz5/DBQm2C8MZvLKWx9JZ6nDu/Sq+bEmlFt9ciVhJng3DZ179xk7fe3mJ765DdnSPGoyxInlsXNnzrEELQbSUIrShN6NVItQTryLOSyTgPKq1SoJVCSkGrnVBUNZWxdJe6XLq8wdJCByUEvW6LWCu8tUyyitfevM0bb29x68Yuu9uHs83R2PD4ttl8ut0UqRVlIzrWiiTCBQ7ZJKcsKpRqOAhB2oopTagExe2UZ5+7SK+boqWg222RxBpnHbUxvPzqNd546w7bdw7Y3jpgNMhwPjy2eVcOniIrgyNzWTXaLyEOSRKTV3XoBeqkXLy0webGEkpKOt2UNI6Cwmxd88bVLd58+06Iw84Rw+NxSHhsmBiaeuB0Ogkq1lTOY6wnjSTSeYq8osgK6rJiLOVMBTZOopDo1QYRaZ59/hIba4tIKel2UtIkwluHMZbX397iG2/e5tbNHbZuHzAcTGZrYK1tXhOeTi9FaU3toTKWVqyQ3lPljeliVSPlVA1XEsWavKyprIVI8dTT5zl3NigYd9opSayhGWN/9Y3bvP7WHe7c2mNn65Cjw9G7JiCTrOD9DfLNMcccc/xx4r2/Pz3SCUpWPNjNWIjG02VPkNeWUVFzdm2Rpx8/w8rGMmdW+3hj2b9zwOtvb/Ppz73M7tY+w6Mxo1FGmZez4/4ghyFIIk030jgpKGsXTnimXjaRJfd1o5Higk5K04zphKCwjnFtWF3s8sLTFzhzeYPN5R7g2b25x9s3dvnM732Nmze2OT4MlZyiqJr+i2akWgoSrehGGi8lpTF454mlJFYSETsyFxp0pxwQBEfn/QGFsRyOc85vLvHh5y+zvL7ImdU+GMvx3jG37hzwW7/7FW7d2GE0GDMaZuR5OWvcnXKIlaQTaZCSyhjcjAPIJtnBB+G62oQ4VMbipKByQTl3ZbHL93zwCpvn19hY6oH3HG4fcuPmPr/7ma/y5lu3QxwGgcP0aGM6zRPHik6skUpR28AhEpI0AmU1E2txBGG1unH4razFHwpK5zhqmlG/77ufZuP8KpvLXQCOdgfs7Bzx27/zZV57/Saj4zHD4YS8OfKbchBCkEaSbqQRSjGqLdY2HJQgSjy2tmEs3dqZy7A2Bn8oqL3naFKytNDhB7/3eVbWFlhb6iKcZ3Q04s6dA377d17itTduBQ7Hk9mx48NgjHtfUtJzzDHHHH+c+BMjdf+wIZ7QOOkxxlFVNZNJHjb9rMS70GhqnCfPKkajjGySU5UmfEL3nunnVNGMXogmSREAzt9l6iZgJscemmuDX+60edNaR13VZFnBaJiRTYq7iAcOOZNJRlnWQTHVn7jvzjhASIYITbxKBvE00Vw4HX21pzgEUbBQCaqrmiw/4bBgHTFhEqfMQ2/JeJxRVac4zGIc7k/CrHnVORcqNQ0H4UOMpBQzZ+dpHMJG7ahrQ56XjEYZk0mBMzY8H6Bo1mI8vjsO7hQHcSoOEqCJg9YS6T24k5Fo36zlVLpsas5XV4YiLxkNMyZNlWqKqqwZj3JGjXifMWY2dv0ODrPXgAvVoliFtXBN86xqHJ79yXIHcdvQ25RP12JcsLDYbRp+PfWMw4SyqKlr2zyPdx/i6T39BOsrT73LVXPMMccc3xpMqgquf/k9XftIJyjNnM0DEKY9tFa0WzHnzy1z9twqnU4HU1tqV4DzdDqtZrJmmWKUUeaq6UtopiacAxt6OeJIY2sLQtDpt8KEz3EWNlHvG7M7G0TTmt4P33BIk4izm4ucv7BGr9+lqoImihSCdqfFmTMrnD+/wuh4RJEVgQNNEmYDBykFcaQCB6DTb+G1QgxCr0Zo4gxGd14KUOoUBxk4bCxy/uI6vX4XZz1ZViCcJ01T1jeWuXRxlWw4pspLhLybg7VhNDfSsuEgaPdSfKwQxxmmMeIz1mIrE8ZjtWqmj0A1HDbW+ly4sMbCQj9o1GQFAtEo7C5z8cIqB7tHFNm9HDzWGqwQKC2xxiE8tHopaaIRgxxbWawPxzT1aQ5C4BEoFVyp11d7XLq8zuJSH2c9eVYihCCKItbWl7h0aY2DvUNMUTUcgtDclENwghaBA5B2EpJW3HAwWEJSaMo6cFDBwsCJ0LOSxpr1lR4XGw4CEUT0PEQ6YnVtkStX1tm+s09dlGRSzjg8DJf+Tz/Fd//vP/pN+OuaY4455vjmYzgcwv/yf3tP1z7SCYp9yGdK4YM0eBxrFnptPvjMRVZXF9k5GPLaZ7/M7VvbbGys8fyHnmRldYEPPXeJnVsHTCYFfpoc+OAWbGvTfEpXREIRR5K1ToKUgoNhTlnZ0MBZ1mET1ypUEnzYmKNI0+u2eO6Jc5w9u8IwK/mD//fnuXVzi5XVJZ7/0FMsr/X4wNMX2Lm5z2iYgwyb0fRTv62DvLqODLFUREqx0k7QseJwVFDUtmlkrTFmyqFJkhoO3U6L5586z4XzqxwNM77whVe49vZNlpcXefaDT7BxdpmPvPAYOzf3ySYlDLOmknM3B6kkiYqIlGC5FRO3Ig5HBXl10kRqaotsHKGnyZbWil4n5akrZ7h0cZ1JWfGl336dq2/doNvp8MGPPMPaxiIffPYSN97aCtNCTbI4jYOrLeCRWpLI4Ha83IpJ2jFHk5KsNFTGkpeh8iCnR3AKFB4dKTrtlMcvbvDk4+fIKsNXP/0VXn/tKt1um2dfeJJzF9f40POXuH1tm8m4QDYeOVMFWNtwQApSHRFJyUIS0e6nDQdPZcLEU1VZhJJoKRBIpA/j8Z12wuOXNnjy8bNkVc1XX36bN79xlSiK+MB3Pc25i2t81weu8OarN8nGBcNR3lST3mXMONKoNPmm/p3NMcccc3yzoKr3/v70SCcorSRGqQc1yYaekVhJtIfEOl5/6xYvf+M2n/0vf8iNr73J5pOX+PNZxQtPnyMxLhi2KUUSaWwa452jloJKhJJ+cJqtSb3jjLMoIRlXhkllQllfKXwzzholEVKGT8qxkigPsXFcu77Da9d2+dT/+nmuvfwG65fO8ucnFS88cx5Z1igfTOOSSGOTGOc9tZBUCIT3WA+DyhArx7q1tL3kVm0YlqEfRaogkx9FmjiJQtUl1sRKoYA2cP36Dl97c5vf+60XeeOLX2fp/Cbff5zxoRcu0zIG7SESgUOdxnjvMVJSNhwcMKgNsZWsOkvHK25VhuOqDkcuSuG8IIobDkoSa0WiFcoLEue4c3uP128d8tlPfZFXv/A1OssL/MWs4oPPX6JtapTzszikaYRzHqMMlRA46/BCMKwNyghWraXjHVu15aiqg+aJUsgZB91UfhSxCpoiLe/Z2znk1ev7fO7TL/GVT79Ib3WRP/cjY/7Uhx9nSQsiH4z9kkiHBlrnMbWlpDnCkpJhZdBS0reWvvds15aj0uC9C2uhBTpSxEk0myqLtUYhSD0c7h7zxp0j/uD3Xuarn/kSKk34/qOMD3/4Cc52YyLv0U3/U5pGs56kB+G9OB7PMcccczwKeKQTlLQVo/WDs7FISqrScLA34MUvvMoRgre3j9i7vU+iNXd2Dvmvv/0l3vj626wrwf7egLKqibSi1YrBg4ktUWWRwiOlYFwaXGWoshItBXllKJ2nm0TEcYRxnjhW6MYZOZKSujYcHAz5yhdf5wtfeZu3dods3dolkpLdgwGf+vRLvPnqNdYiyc7WIWVRoVXg4D2YSBNVEVKE3pdRESoUVVYQO0tW1hTW0knCRlpZTxwpdOOMrKXEVIajgxFf+9KbfPGVG7yxfczO9R0Spdg/GPI7n/sqb755k8udhJ2tQ/K8QitJu+FgI00UR03/h2BcBin4KiupcWRlTWkd7UTTSmNK44giRXSKgzWOo6MRX//K27zy5h3e3B1y5/o2SgiGo5zf+b2XeeuNm1xox2zdOSRvJqJaacMhjoiipjE4koxLQ2ksZVZSi2BnUFhHO9b0Yk1l/V0cVJPcDI4nvPHKDW5sHfHazjF3ru+gpWQ8zvncF17h2vVtHl9ocfv2Idk4Dzo3aRIqSbFDR2HSJtaSYWlCtSQrMakiLysKa0kjRS9tU9QOrUPSOuXgrWN4POGNV29wa+uQb+wO2Lq1B96T5RWf+2+vcu3GDk8tdbhzc5/JpEBA4PAuFRSt1HyIZ4455vj2xft4f3qkE5SqMrgH6aAABkGZl4wHgmIw4th5jgpDS0rWN5e4kxnu3Noj2z9mWwsO8joc7QiBJTR9+qbxM44UaRITpQ7lodVpoaRgoW9o+TBuXFc1eWWaT9oGL044DD2Y0YSxh/28JhGC9Y1lDivL9u198v1jliPJIDcY/OyYCXzDASKtabdidBIjnKfVbZHGmoV+TWTCmK2tDa40oepxikOVl4wAOx4z8uG5audY31hmtzDsbR+RH444ThSDvKbyUw5Na2gj8R5pRSuNiNIEvKfdbZGmEf1+jTaONFJ4YzA+VDLu5lAxxlMOxlRCsFfUKOvYWF9iWFt2tw7JD4ccxopBUVP7kzhMJfOlEKhI0m0nRKnHGhc4tGP6fQNVSA6csbjibg4SQV3W4Dx2NKZWip2sBms5v77IxHj294fkwwmjVDMpagp3NwfRxEEpRacdo9MEZx2dbkrSTun1alxsSLRCOIdxVai+NRxEw2HsM8rhGKcDB28t51cXmdR2xmH8AA4Pw7vppMwxxxxzPCp4pBMUbz1ePPgN2097OADr1WyixPhgLme8b1yACdoa1s0SlOm9isaYTitFq52QKI0S0F/uoqRkwQhK64hwjIcOVTfbyGzyI3AQPmweXkgQAmOhsMGNePqzoO9hZ/4rd3EQAq0krVZCrIL8+sJyh1asWTCCuLYoPPkoo6ptmKC5h0OYpPGgQuOs8ac5hJ851/R6NMnBCQdmHNJWQhJFSA/95TbdNGKxhqi2aDzlJEdVNsjDNxwcJzLtzjm8Vqc4OKqGA41wmptxmIra38shJtERznsWljv02hELViBKgxaeYlygKnNXHGYcPFgr8E21wZ7mwD0c3N1xmBoBaiVJkpgkCUdgCwstev0WC7WAokYLqLMcVcmTiabG4jmYGoJTIhgniDDtNeXgGg7T3h9nPUhmr9+H/1FM573mmGOOOb798H7enx7pBAXvwpTNg26GsEk23i1Tl11rLYUNEyeisbLHu2Yjm14PiKkzriCKNO1OimoFgbP+cg8lBYsGSmPxVU2ZV6jK4Kyf+ab4EyJhWLgZw7V4SuMxHoRqONBwOJ0ciBOXYq1DkqTaLZQQ9Je7tCLFooG4svi6whSBgzX2vhymvjhTDoVx1M4hogipghGRn8biNIemOVZrFRKUbhshBAvLHTpJk6BUFkyNK2u0rHE2jAlPE5MwBXw6DhJDENKrrUfoEw7uLg4+rAUCqZqpqDQm6raBwKHXilm0AlHUCGtxlUEXshFV8ydr4JvXBOHYRyoZ+kqMo/ZA8xoB0SQV7q44nOaQpDHpQtBPWVhs0++nLBoQeQ3OMq4NWtWhudU198U0HB7vFUJIhJJ4Yymto3IOIUPPzDRJCesh3rV6EmL87tfMMcccczwKeMQTlPu7/57cHt6whQgbk9TNxuyhskGfQjdy9M7aoFkBYZOe5igEzY0oUnQ6Ka2FHrGWLK70UFKyYoMQXDXOmAwmaCWDOFvDzXuCRghhEkU20vdTDpYgQy+VwNmmkuP9zPVWiODXo6Qg0op2J6W92EMrydJqjzSSLDtBWhmqSU4+zNCFbDRAuIuDnHEIj2mAsrlONnL4nhOl1tMcUKLhoGm3kiZBkyyudOmkmmUnSIqaOi/IhxlKhcoBD+AghERJjwEq57B+qqESOPgZh1DVECIkcqppdm21E3pLPaSULK126bYixl6i8gpblhSjDK3V7MjDezfjACHO0+eMCGthmuRDKgnCvyMOTDmIaaIWs7TUQ0rB0lKHhV7CspOorMRWNdUoQyt5osfSVG/cqdeDbtaiRlBbi3EeocMI80lV7SQO8+LIHHPM8ScFj3aCMpPMehD8TCzMNpuCEkGLwnoPhKZF0ZT5/fQTdvNJWSAa/ZPQf9Lvt1laXSCKFCtrYYPOvaSoakYqmN3ljfqrtUGjY/apfVraF5x6zCmH0B8Rqgu+SarE7EvKMJWTJDG9Xpvl1T6R1qys9YgjSeYVeWkYa8nwYEieV7hGkl0EK99Z9cI2O62SoSpivZvFIYi8+ZPN9BSHYHSnSZKIbq/F2uoCWklWV3u0Ek3uFZOiIhtqhgdD4riERiJ/xoGwKbsmUVEyxKHJY2YcnOOEA42bdOOtFGkVOHRbrK700TqsRSeNKIUmmZQUk5zR4YhsUoZjGuuaY6JpNcljpxya6pBtblUirIdrRnqnCbBoEhnZJKtJrOl0UlZX+2ilWF3qsNhNyNGkWUmRFYwPhsSTAu8c1k5fq3dzULPnHQTcfDiBC3HAvyMOc8wxxxx/UvBIJyiXr2wSR8HNOLyFn8ADxhiyrKQsKkZlRTke4RF0Ek273UJlFWVWMMg8aaLpLHRJkohWOyWKNFpLup0Wi4sd1tcX+eCHHmfz7CqqmSwRArIiaJ/s7Rzx8lffYnv7iMFgwnCUUddB4jzPS4qiYlKUFIcjvIdOHNFupUE/pSgZ5gVJokl7bZI0Dr0mcRhN7XVTFvodVlb6vPChx7hwabOZbglOynnDYXA85ssvvs7W9iHHx2OGw5y6NhhrZ3HIyor8cIj30I403W6HqKgpipJxUVDHirTXJk4i2u10xqHTTlhc7LK60ue55y9x6bGzKCVpNeOzWRGUX0eDMV/+0hvcuXPAYDBhMMyoKhOO1fKKPC8py4riaIzznnak6XTbVHWI07goqCJF0m3TTyNarYSkGdnudEIcphyuPHEOKSWtNEIrQV4YamMZDSe8/JW3uHVrn6OjMcNRUMe11oW1yCuqsmJ4GDi0tKLbb1MbR5ZXZGVJHSnSdko7iWm3m7WQknYnYXGhw9JSj6efPs8zz11GSkmSaGKtgv6KcVRlxRf/+2vcurXH8fGEwWBC2XCYxqGqKsZHwWco1YpOv401jklekZcVRkvSTkonbuKQxkjx8CSl12vPj3nmmGOOb1u8n/enRzpBkfLkU+U73rZ9aCq0zlNZy6SsEdaRKEmkgtJrpCQOT2kd4yoYyCmnw1FAc9wQx5puJ2V5qcflC+s89sTZpl/k1EN5z41WzO2bu0xGOUVRIScSIcPxgnWO2lomlcEbSyIVsQoKp9o6IsIRQ1YaUArdNHVO+1/iOKLTSVlc7HDh/BrPPXMBcc9G5b1nb+eI61e3mIxz8rxCqhJhBdgQh7p5nqc5eBWM7KYcxqUHrVFRE4dTPTjdhsO5s6s8+/SF+2pu7O0ccv3aNuNRRlnUjFURjtVsqGLV1pHVBmMMiVREwegI7f2Mw8T7u9eiqSLFkQ6J0kKHc2dXePap8yit3hGHg/0BW7f3GA4m5HnJJJMIEXp8pnHIakNVG1IliaUALVHeE4tw5JRVHpRC6nAENm2WjqJwxLXQb7O5ucxzz158x1oA5JOcq2/dYTiYUJY140mBqA2IJg7OkVWGurYkUhBJgVASBcRA5TyT5jUptQ6qyY2dwsPwLjfPMcccczwyeKQTlJ3to4fqoNS1oSirYFgnBZ1uCy2CYV0+KdAO0lZKhGeYF4wGGcWkJBsXxLFGa0UxKRolWcnu3jHnL6yjYx16LJryuzWW46MR21sHbG0dsLc/5PBoTF2HT/RlUVEbg5eCbqcVtFGcI88KlIckTYjwjIuSySijzCuycd5UcRRFVgbJdBc2X1MZVKOzIhptD+cc+/sDtrcO2bpzwO7egIOjEVUV5PeLhoMT0DvFoZgEDnEaEwnBqCgCh6wkmxTEkUYrRdbPcY054e7uEaY2QBMHCKO7znF0PJ5x2NsfcnA4Cr461lIWNVVd4xun6UQpjHOM8vIuDrM4ZCX5OJ9VcYJLchgd3tk9Js9LWq0EOVWrdR5nLeNRxvbWIdt3DtjZPebgaExRVKF6UVbUVY3F0+mc4pCVSA9xHBElMb4MztBVEVyJkzhUcbJxjq1qnHXsnD2iLipUHJpapxy8cxwdjdneDhz29gfsNUdv1rpGYbbGAu1WTKo1tonDjEMaQ1UFh+zGpTpN4ndNUPKs/Gb+ic0xxxxzfMvwvhOUz372s/yjf/SPePHFF9na2uI3f/M3+bEf+7HZ7X/9r/91/uW//Jd3/c5HP/pRvvCFL8y+L8uST3ziE/zbf/tvyfOcH/qhH+LXfu3XOH/+/PviMhplKGUeeLu1LuhP4Gl3U9rtBGc8eZZTmJpUadppQqwlpamYFCEZqWuD1gqtVDAWlIIkidjaOmR7+5C0FdNZ7IAQ5INgvHfnzgG7e8cc7A85OhoxHGTBF8cGXxjvHa12QrudgBfkk5yirkiUpt1OUJGktoZxUWFqi6kNWqlQpZiZz0nubB1y+/Y+rXZKZ6ENUpAPQ1Iz5bB/MOUwoaqnHMLIbdIKRxY4KLOCoq6IpaLVjoliTW0No7zhYCxlw8E5i5ISpRRb24dsbx2SpBGdhQ5CScpJQT4u2LpzyO5uE4fDEYPBJPgOOU9dB4XVJA0cFJIqKyjLCt1w0LHCeMswL4NnUm3Rug4cbDB51FqyvR2SoG63RXepi1CSahISm9u3D9jdPWZ/f8DRUcOhNFgXXg/OOaKkibuQ1FlJWZQoqUhbEUkSYXFUeUVZmzDlo2ukFDhrkU1fzs72Ibdu79Nup7T7bWSsqCYlxbjg9tYBuztH7O8PODwcMTieUJRVUMQ1BmdPOGipyJqjL4kgbbdIkggnPUVWBA7GUpXmXSskVW3mfbRzzDHHty3ez/vT+9bFnkwmfOhDH+Kf/tN/+sBrfuRHfoStra3Z13/+z//5rtt/9md/lt/8zd/k3/27f8fnPvc5xuMxP/qjP4q19n1xmTZA3u/LNlWF6XmXao4qhGzcdd1JQ6yUEiVOnH+nWiDWOayxQbW1qcZkeUmeV7OR0LwI/QRFWVNVJiQlxobfnXJoukBlc2wkhDjRCGmaUWUz+judenFNRcI6h7GW2ljqOvi75HkZejmco3SOvKjJ84qiqELFpNnQ7DQezs+er2zM6mZx8KfjEJpnp9NRrnn8kOCEzT1wqBsOFaW1VN6T5yE2gUMdel+MDWO+00ZVf8JB3bMWYVLl1FpMubkQQ9usaYiDbTiExyxNw6GsyPKKvInDtAdoupZuOl3FKQ7NY7m71iJ8zZqLp79r3SzZqxvvo+wUh9J5irIOccgrqvpuDs765r5OOMxcsKevSTdtyhUz9+zAwc84POxr3n4yxxxzfKfgfVdQPvaxj/Gxj33sodckScLm5uZ9bxsMBvyLf/Ev+Nf/+l/zF/7CXwDgN37jN7hw4QK/9Vu/xQ//8A+/Zy5Cynf0g5zAI3wQH5tOTPgwdzvbGKQUQS3WOYw7UZmY9l0IEUZOlZZEOsjId1oJaTshTSKEkLhWDNaRJlE4klEKqeRMu2S66Xnvw4SMc0g/1TYJ/wrCRmwbHZYph9kEjWz6RKIwwdJuJbRaCa0kDle3E5T3QRskUiitZkmIkBLhXWhOaDj4RhdEntqMw0boMc4zU5aZcpBhikdp1UywBA5JGpPGMVIraCUI6xoO4WhKKXmiPYODJv+c6oIo0VSGZpuxb46KTil+nNKikTK4Mkc6TNG0WzGdJhZCSUQrwVeGVhMH3cRhmhQK0Yzp+jC15ZxHNz+SjQy9bCZ3phM1d61Fw0EpFXx9Yk2nFYf1SOPQN9NKELVtOJyOQzON5MTJWkw5SGZxkNO5tCYOM+sdccLjoX8TPMg+c4455pjjW4/38/70R9KD8ulPf5r19XUWFxf5/u//fv7+3//7rK+vA/Diiy9S1zV/6S/9pdn1Z8+e5QMf+ACf//zn31eCoiKN0g9+Cs45vBTNp3BPVVQIL2gpSSdOcdZj6xpjRDDa0yoIokWht0IpiVAKB9TGMDges3VzlySJ6Y4zhBSM90cUecnx4ZC6MlhAKImMddh0ncRLMasg1GUdyvhK0IoTvAVXG6wJ10gdxLt0pFAq8BFaNhwco8GErVt7pElEdxI4TA7HlHnF0f4gyP97HxouY40TAuEcXk5l0AVVEY4SEilotUMcvDFULlQ8lFYgBFqHDfZeDuNRFryEoojeeIKKNJPDMUVWcrh3HKZ2vAclwxoBIoitNFUyQVXWaBEaVJPONA42aKLY4EKMPs1BILXCNXoh41HO9u19WmlMP8tRkSY7npCNcg52jyjLIJCGlKhIoU+9Hqy1CBE4eGGJBKy0k1C9Mo7KV1hjEUqhFOgm0RAicPACjHNkk4KtW/thLUYTdBqRH2fk44L9gwFVWYUxbimQkUbhkc7PXg9CBNl7IR0aWG4nIXm0YQrIVE0clEBpFTyA3gVibhY4xxxzfIfgm56gfOxjH+OnfuqnuHTpElevXuXv/t2/y5//83+eF198kSRJ2N7eJo5jlpaW7vq9jY0Ntre373ufZVlSlifNf8PhEIC4FZ1qkn1nXuadJ9IKZx0aT1ZUOA/9NGK1nXAwLhkUFVJAIiUiTZA6JCjTKR6koKwMx4OMN964zd7OAK0E68tdpBTsHoypjGU8yTk6HpOXNR4R3GsjFThEGltbIuEpigrjAoeVVswwrznMKiSESY4kRjSb0WxqQ0rK2jIc5bz91hZHB2O0FKwud4giFTjUDYejEVkRPIWiOEJqjfeOqNZYY4kIHKyHTqxZbaccZxVHWQ34Ew5KoSI1a0AVSlE1HK5d2yYbF0ghWF1qk8Sa3YMJRTMyPePgQccaoWXTTKywjRx+XdbkDtqxZq2bkJWGvXGJALQMTtXv5CCpTeBw4/pO4CAFa0sd0kSzf5SRFRVFWXOwP2SSlzhAxxEoBT6YB5o6xGHKIY0UG52UorbsjUu8D1WNdhLhpUTHesZBakVlHKNxwe1be3yutkEsrt+i14nZO5yQFTVlVXNwMGKSVRjn0bEOhkp++nowKIJPUOGCd8/mKQ7OeyIB7SQOHCKN1O+efMh5gjLHHHN8h+CbnqD85b/8l2f//4EPfIDv/u7v5tKlS/yn//Sf+Imf+IkH/t5UnOx++Af/4B/wS7/0S+/4uVYK/bA3ZOXRQoC1xN5zVNTk1tP2nlRJau+ZGEtLSRZTTY5EaBU+hTbHAdYFXQpjLEVeUhmH9J5LKx2UEFw7GFN7SCJFUdYhQRGhh0ALNePghKCFZ1DWZNbR8ppYBkXZiXGkEnpxRC0k6FC5Oc0hy0uMMZi6pjS3EdZzYblNK1Zc3RtTOE8SKerKMClrPH52TAUCLQReSlo4jouazLighqokzkNmLVrAQhxRS4mTMhzdNBzcjIOlrireeHsbnOf8YotOorm6NyZvOJjaMM5rvJhyUIAnEhInJLF3TCrDxFqUk8RCMgEy64gE9CNNLRVe3cPBB8fiujY4Y3nj6g7OWs4ttOi3Im4cTBjXjiQOHCZFiIMQNK8TjxYRWkhaeCZVTWYtKEEsJQWWzDqEd6xGEV4qrJTI6G4ORVGFZltruHZzH2scm72EtX7K1b0xo8oSR0FJd5RV93Bg9npI8OS1YWgMXoRR41KIhoOnl2i8VlghQ3LywOPME8i5mNscc8zxHYI/8jHjM2fOcOnSJd544w0ANjc3qaqKo6Oju6oou7u7fO/3fu997+MXfuEX+Lmf+7nZ98PhkAsXLjTTIQ9+0xYA1iGaZk+lgqDW8uoCZzYXGEUDRn6AMgZbW2xjXyysxDWH+VOzuVpJ8qxglAc9FVXmKCG4dZBhhaDXDqZxZfOJWsiwoYV+Aoc3LjgkS0GcxiytLnBmYwF7NOHQHqJN2HStaJRkrb+Lg3OeSobjmWFW4YxF5BntRHN7f0LpPb1WGEMt6mbS5B4OWI/1YeQ6aSUsLvU4c36Z6mDMsT/GVxW2NlilcFOp92lTw4xDRVUohlmFtw6ylG6iubU/pnTQbcdoKchK0/RdyBkH4Xwj++4QApI0DhzOLaHHBXv1AdRhhNe6k+bZezlIAbauGWWhGddPUhZaEbcOJkysp9sKHPLKBi9IKRp14MDBWRd6YoA4iekvdjhzfoV0UrJnDzFl1VgfgJWhsdZN93035SCwtWGYhWTFjBKqccqtvTFj42inEWmkyJrJm3s5eOsw3oH3gUO/zZlzKwyKmj0bjiOdtUFwUDikl7j3IHLi7NzNeI455vjOwB95gnJwcMDNmzc5c+YMAB/5yEeIoohPfepTfPzjHwdga2uLr33ta/zKr/zKfe8jSRKS5J16J8L7mbfKO25rmg2dDxM5w0mOb6V0F1MuPXaGZ584Q311h/2sZHIwZJAXqE4bKTxSBvdhQfDk8acmLabS46OsQgpB7R0IORNWU1I2H7b9zFnWudAMOc4L6kjRWmxz6UrgEN85ZGucMzkYMsoKVJo0yYVHejH79D1t0PQ0kvV4RkVNbULfhhMiHGeIk+kP0UyhyIaDdY7RpKCONK2VDhcub/DM8xdRdw7ZK2qO92oGw4y420Ho0DA65YA4mUKacfCecaMgW1mPFeIuYTU5i8PJVI61jnFRYqUgXUo5d3GdZ56/yOLRmNujgsH+McNRjm6lyEg0/j33cGgeJ8SBUDFyLvgKNZYBQkiUmsahqdAFJ8RQDSoqCudIVhY4e26VZz74GHvHE7bymv3dI4ZHE+JWEhpf5QkHIQg9JdPpn1McjsdQ2pD6TCuCUj6MQ0ntPcnyApvnVnj6hcc4zkq28pq97UOGgzFJpwVaQdNI+26Ggdm1mxx9KX3oNXPMMccc3yoMx+P3fO37TlDG4zFvvvnm7PurV6/y0ksvsby8zPLyMr/4i7/IT/7kT3LmzBmuXbvG3/7bf5vV1VV+/Md/HICFhQV++qd/mp//+Z9nZWWF5eVlPvGJT/DCCy/MpnreK1TzdX+EzcARJjaG45JuGrO40ObilU0uP32JgVS8cWOb8cGAwbhksdMm+Nie3K+QobQuRfhEryKJETAYlwjv8UmM1jL8jpJ4KUNTqvNM3YMBHDDOKqJOQr+bcPHKBo89cwnTSnnl6h2ygyHDSUkvSYiZzn+f8oGZTvw0zbxWwGhSknmPS6Ig3NYkJ1GkQ9Wm4SCax/cehpMK3RFs9FIuXFrnylMXqdspb9zcZXw4YG9YsNxuEzVxEPfj4AMHJ2CUVWTO4eLQcyMkCCGJ4nCdt262FrZ5RpO8RsaK5U7C+YtrPPb0RVoHQ7765m3Gh0OOJiX9NCG6XxymlSHvw4QOMM5rikmJaThMp5OiSDfj3KFSIaDhIMiK0BS83I45d2GVx56+ROdwyKs3dxkdDdkeF/SjiCS6h8M08WkSjymHrKqxWUUdBxVeIcNr4mEcJoXBesdyO+bsuRUuP3mRYV7yyvUdhgcDtsYFS2lCpNVda/Ew3Py//3946f/x3t8A5phjjjn+ODEx9Xu+9n0nKF/84hf5wR/8wdn306OXv/bX/hr//J//c15++WX+1b/6VxwfH3PmzBl+8Ad/kH//7/89vV5v9ju/+qu/itaaj3/84zOhtl//9V9HqQenG/fFyf7/DpyuhjsPZW1ZijRLCx0uXFzn8afOc1zXLC902Y00Zd3MwE6PRJh9ixCNeZvwM5Gu0jQbTutEy0IIgYIw2sw7S+2VcaRKstBvNxwuUEnB8mKXvVhTmXCccPqxZ/+K5lN7o99hnaCyDmEdJHFTWWiqFwL8KYO+WbgEFMayoCSL/Tbnz6/y2JPnqbRidflN9tKYom4qAA/jQNCVsaLhYCw+idDTBKaJV+NMeGqxwn8ra2kJTb/b4ty5VR578gLp4hGryz320ogd407Ga+/lMEuSmmqKF9RTMbw4cJiZLArw1p969JM7qqwFAQu9FmfPrvDYU+dp7R6x9pU+O62Y2tjGzPHksf309XEqUVNSYL3AOI+tDb6Z3gq5lJgltvdy8EBtw1FXv9fizOYyjz15jmFWsP7lBbbau9QmuDzr0xzeJUcpDw6ZZLsPv2iOOeaY41uEzL13vbP3naD8wA/8wEPNfv7Lf/kv73ofaZryyU9+kk9+8pPv9+HvwlRq/oEQzWf3xu+l205ZWeyyubHE6voSm/vHLC926LbTRjXr5HPq6XK8aJwIBScbsyFsMrEIDagnSY2fCZKFIwFxkuUoQauVsLzQYXN9ifWNJQ6HY1YWu3S7raDl0fSN0Py+B+QpDuBRIvAwzZOMRDjakVMW3s/E1mbHEk3y4kXDYbHLxtoiqxuLnMkLVpZ69KccxMM5hDg0sSDkIdHpOPjmeInTHAK36VRS2opZWuiwsbbI+uYSTsLKUpdetxVGrZs4+Ob5nHDws16O4DwsqMMyncRhlk34U+vhZ5mOEAIvBWkSsdTvsLG6wMbGEl7A2nKPhV47NOc2fSPTu/I0j99w4FQcDCIkE0KERO2E/Ekv010cQiKbJCFpXl9dYG1jiU5RsXqKw2n/Hd/cz8P/KB5+8xxzzDHHowLhH0Hr0+FwyMLCAj/1E3+HKLr/ebsQECcRvV6bXr/D6nKf5z5widX1RTbPrZJGMaU1bN/a43B/wNdfvs7u/jHjUcZ4lFMUYdTTGEdlLFVVMx7nTBp9DZ9XYSNuBZfbVqTpNS7AsZZESs2M/rq9Nt1+m/WVBZ5+5gKr64ucvbROO0koTc3WrT0O9wa8/tottnaOGA4njIcZZSONXhtLZS11ZRiPcsZlFcTO8hrhPKIVIZWgFUX0uy2iJCLWirjRD4kiPeOw1O/ywoeusLaxxMbZFdppgvWe7Tv7HO0PeeXla2ztHjEeZYyGGXkexm5ra6lM4JBNCoZ5iI8rarAOWjFKSVKtWOi2idLAIdJqduzU6bbo9TssL/V46qnznDm3zOa5NbrdFtZ5tm7tcngw5M1v3ObWnf0Qh1FGnpVBIt5aKuOoakM2zhkVJdZ7bFEjjIM0HHUlStHvtkha8YyDFIIoUnS60zh0ePbZi2yeW2Hj3AoLvQ7GOnZ3DjncH/DGa7e4eWuf4WgS4pAVDYfweqhrQz4pGGQFFo8rDVQWWhFKS2IV4pCkcRB10wqpBForOp0Qh8V+h6eeOc/5C2usbS6x0O+CFOxuH3CwN+DNb9zm+s1dRqOM8TBjMsmD4u5D8NGrX+bK/o0/ij+7OeaYY47/v5E5y/907csMBgP6/f5Dr32kzQJn0uz3gxAkccTqygLnL67xZ//M8zz19HmEkoyzkq3dYzY3F/nwdz0BwIXz6/z+57/GndsHmNpQVWHjdc5RV4a8kVC3ziOUQMYREES3rHPkZY3WZSiUEBHrYCCXxBHLyz3On1/ju7/7aT704ccBKI3l1tYhayt9vuuD4WeXL5/hC194hevXtrGVmXnXOOepK0NRBBl16wMHnWhwHq+CSV1RVmglaTeVBbRGCkEca1aWe5w5t8qf+vCTfOR7nkJKSV4bbt0+YHm5xwsfuALe89ST5/md3/0yt27uhTiU1WyixlSGoqiY5CWmEVNT8SkO3lGUDq1KOlKgEGFjFpIo0iwudLlwcZ0Pf/gJPvynnkTHmrKqubNzTK/f5oUPXEEIwVNPnOezv/dVrl/bwRlHVdTQxMHUhrIIkvbG2iBIF2mE8ngl8d5RVo4sD9UoCSFBkYJIa5YWO5w5t8rzz13mf/yBDyKlxHnP1Vv79Dopzz1zEYCnn77I7332q1y7usUtY6nKCnB403Ao61kchAqjyEJIvAr3V1aGLCuh6VWJtUIJQaQUCwsdzp9f4/nnL/PRP/MsrXZCZS23t49I05hnnrqAePoiH/rg4/yX/+8fcuPGDnecpyjKpqvqIZiWsOaYY445vi3x3t+fHukE5c6dgwe6GQsE7U4S+hO8Z21zmUtXNkjTGKVl+GSrgj5HXVveur7DtRu7bN/eZ2f7kNEwx/ngQVOb4KfigU4rCKlVNhwfxFrijaPMS0bDjCIrgyx9o8DaaifB7M05VjaWeOLp83TaCUqEUd+pNkZVGW7e2efa9R1u3thle+uQ8SjDOo8xdubH45yn3U6QWlE3I6+xDo25ZV4xHmYUeYlu5NilDEc6lbFU1tFb7PL8C1eCUV4z8hxFCkGQVn/z2jZXr++wdWufrTv7DAaTxuDubg6dezlEEmEbDqOMqihnkvBKCpI0piiDi3BvqctjT55jZbmHlJI4jYmj0H9kjOXm1kGIw80Qh8HxGGcdtbUND4c1jlY7RkUK48CeikNV1EzGOVVZoWVIjqaGj2VtqKwj7aR8aPgkSwttBGHkOWqUWp3z3Nk+5Or1HW7c2OXOrX0Gx+Pgw9PEwDR9L+12gowUxoMxjiRSCO+pi5rxOKMqK5SSTQVFEscRRVVjnSNpJzzz/CXSVhwSySQmjgMH7zw3bu/z9vUdbt/cZfvOAYcHQ6x7eILy3KTk7i6qOeaYY45vJ7z396dHOkEZjXOUun/DjRCCsjZYIcjqmsxYzq4vcfniOv2lLpurfTRwuDvg+s1dPvP7X+PW9W2OD0cMjoNs+7SXZNqSkUSabhLhpaC2Bo+gpRVKSqSxYeMxBmOgKGk0SWosUBhD4Tyryz2eeeIsKxtLbCz3UFJwtDfg5p19Pv17X+PtN29zuD9geDwmv4cDBNXTXhzhlWBYWTyeVCsiFNI4Mhc0UsraUobOVorKYAXktWGQV1w4u8KzT51nYanHxmqfSAiGhyN29wb89qdf4u03b3N8NGJwNCKbFO/gkOgTDqMqNJOmShEphbJB2M42yUTZxCEqawxQuSDStrrc50PPX2J5dYH15R6q4bC1fchnPvcyr03jcDQmmxSNTH+ztkCsJd04QmrJqA6JQ6LCUUrhPBPrQhywlFXoGo/KaLYWw6JifW2RP/3hJ1heCxykEIwHEw4Ohvz2777E1167wfHBkOPD4Ts4AMQqcBBaMqkdlXfESpFIqJqmWWeDfUBV1YAgiiosnso5BnnF8nKfP/enn2ZhscvaYhclBdkwY39/wO98+iu8+vpNjg+HDI7GjEfZOzjci6o2c8PAOeaY49sW7+f96ZFOUNxDdVCCX0pZ1ozHBXe2Drh9a4/lbkqvH3oDTGUYHY24c2uf21sHjMdF+JRvTxxnxSntjUhJtBBYgvmf82EEVUmBbrx7nD9xDg6mc46yqhlPCra3j7h9c4+NhQ4r60vETfVkdDRi+/YBd7YOGI5yirLGWDfTXDnR0wiPo2VQIsV5vA2Ge2rK7x4OMOVgmEwK6t0jbt3c4+xKn063RStpYWvDZDBh+/ZB03eRUxQV9b0cmukYrSRKijDAPBUuA7QMHFTzvKx3d8WhauLA3jG3bu5ycX2BpcUOcRLhvWd8PGb7zgG3bu0zHGYNh1Cxcac4TOM9ndiZcpg2zupTcbDOzRqWrWv6V7ISuz/g5o1dnji/ysJSlzSOAMhGGXvbh9y8tcfxYEJelIGDbzhwYvI45TA1/wscPErIGQc/jYObroWnqg2TrMQcDLh5c5ejKxvBU6iT4p2jmOTsbh1y48Yux8MJeV5R1ycc3h3zDGWOOeb4dsWfkCOe6UDFA24FQGlJmsasNpMaCwtdhICqqhEe+v0OGxtLrK0uUGcFRdaoXjSTI94HoTGHwEo3S1qUkkHMbbY5heMgz3QTOZnsCQq2McsrPTY3l1la6oXrrUMK6PXbrDccxsMxRVbc9fy8dzOxMy0bwTCCw7CD2ZSHdW52FDXlPy2n6YbD0lLgsLgUvISqqkZ66HZbrK0vsrGxRDbOgrHi9H6mHE6NGNNM5kglUU0cvA9HLcbamUje6UiEOEQzDkvLPaSSVFVQW+32WqyvL7G+vsThwYAiKxuBvBMOHoH3jQu1b9yQlUQ5P5N5D7G1TRJ5Kg4+XBsnEQsLHc6cXWF5uR+MAxsOrVbC6mqIw97+AFNWjTDcdDLL4a3AiSAUOB2ukk1iJoVsOIQ4cCoO0IjfSUkcaxYWOmxuLrO83CeKdOAAtFsJq2sLbJ5ZZmv7AFPUCHnC4aF/EzNGc8wxxxzfjvgTcsTzsArKNEmLY02/1+LZJ8+zubnMpKh49Quvcv3GHufPrXDlyiYbm8s899QFhk0pHwiTOrNKRJPsCBrJfM1iGgM0suuGqg5HCb45Vplqo3iCWFevm/LklTOcv7CG8Z4vfuEVbtzYY21tgcceP8va2gLPPHmOo4MBk1EOQsyqF865JlEC2SQBWgkW0gjnghaHM5a6tpSlCRymVRcRNnIdabqdlKceP8PFi+tUxvHVl97irbe3WF9b5LHHNllc6vLCc5c42j+mzEqGMw6NE7ALHHAe61LUjEPwwTvhUM9GtqccFKC1ottJuXJxnUuXNvBC8pWX3uLtq9ss9Ds8+eQ5Fpd7PPf0eXbu7IdJnaGYVQ5mHACvFNYFhdd+EuEifYpDqJw57o6Dw6O1ot1KuHR+jSefOAdK8trXr/H6G7fpdVs88cRZ+gtdnn/mIjvbh1STYhYHd89aWCEw1hEpRTeOaDf9Ns6GvqWyrIMmjiDYHzRrobSi0065fH6NJx8/C0ryxhu3eOON27RaCU89dY5ev8MLz13ixrVtyqxkJMV7qqBMq2ZzzDHHHN+e+BNSQYlijVL3fwqCML0RK02qNWvdFjv7A968vs2n/uN/46t/8ArPfORJ/nc//n08eXmT9W4r9DA0jZ1xrGdjxsaGjbGynlFtSYRkLdZIAXuVIa8MpQky674p/UdKNpMjoS8iVoqVdspgMOZrO0f8x9/8HF/5/Ve48txFfvSn/keeunKGxVZC2lwba0Ud6TDi2zRlhnFfx7CyJEKwGkdEWrBXW/LaUBgXRNakDM2hOkyynOaw0e0wHGZ85c4+v/Nfv8h/+9SXuPTMBX7kx/8czz19gbVui5bWs/HcKNJ4D6bZdL3zGOsZVZYIwWqiSRoOWW0ojA1VDhGOP04maBSx1iRasdxOybOCP7y1y2//ly/yhU99iZWzK/z4//GHePap8ywm8V1xiCI9G/E1zWSVcZ5RZYiFYDWNSbXgwFjGtaE0FutDHFQz2itFw0GdrIWtal585Rqf+Z2X+PR/+ANWz6zwIz/5fXzohcdYSGO6cTMqHZ1wsNaFoy8bRNTGtSUSguUkoqMlB8bNODgv7uYgwxTPlMNyO8UZw4uvXONzv/cyn/5fv0B7oc3/4S//AB/64GMsJBGdSM9GxqNIv2uCIitxt0rhHHPMMce3E97H+9MjnaB02skDp3gAIqVwxjI8HPPql9/ky1+/ytu7R7zxjRuMBxO+/sZt7Ke+yGPrS3SNZ3A0xtaWJI4aOXUwzlPZYLTnnWNsLKXz9OsaJWBoPaV1xJGik0SgJJGUaBU+tUdK4a1neDzh9Zev8vrbd7h2OOCVV64zPB7z+tt3+E+/9SKvbCzTs3C0N8TUhiTWzbGJxzhP3RjMYS0TaykKT68OxxIj68mtI9KKbtzGNRyihoOWEqxjPJjw9ivXuXZrh7f2jnn9leuMj8e8cXUL/ztf5rXXbrChI472h9RlTdxUXXwTh7s4GIv0nq4xqIbDxDoiJel121gtiZqelBkH7xkPMt5+7SZb2wdcOxryja9f5/hwxNha/rff/RKvvXadNaU52D2mLmuiptoQ+lg8VWP2J60jd468quk2TswjByNriZSk023j7+GgGvn5yTjn1pt3+N9GGW8eHPPGa7c4PhyTWcenPvtV3nx7i3Npyv7WIWVeESsdOEx7SJrXgjCWzFpE5UmtpSVg7GBoHUoIer0WVim0EkRSIiUoEWwTsnHOzbe2GA8nvH004s03bnN0MORwkvOp3/sqb17d4lK3w/72EWVeoaWacXgYolIjqm/yH9occ8wxxzcJ7+fj0yMt1PbRP/MzD01QZHPEoISkIyUTbxk7R2QcC9ZzrARGh9t6QjFyjXOtP5Gc943yhAKk8xSEvod175EedqTE4EkJSrQGGj8ffxcHISQ9Kcm9Y+gs2jj61jORgiIKHLpCkXmHdffnIAHtPHnTZ7DuHbH37EhJBSSNau69HATN5nyKw8hZhHWsGM9QCgotaEnJotJMmgrFg+KgvKdofr7qPan3bEtJCaSAFJJKBA7yFIdgIChpS4nBMbCBw6Lx5BIyrWgpwYLQZP7+HKYv1qjh4BCsekfbe3alJAcSQiJQN9NX93IQQtCVCovj2Fm8cSwZTylgHEkSKVmUmtJ7Ku/wzs1k7z1TZ6HAIW/6Sxa9Z7GJQwbEQNTE4X4cpBC0pcLNOHiWjJtxiKVkWWkK904OD8PHjt/khbnU/RxzzPFtisxZ/sqfBKE25/xDxy49AueDu22JpfIOiydupiyk8FhjqXCUwlPfI88OQY48bIyNx8y05bORLT/9s1mLBh4RxjZmHMQ9HCIh0EohhQ99EzhK4TCAfQAHTnFo7vzEdwZmvEIyMe3PCdup967h4Ki8nXFQUw7WUVtPaTz1fTjQHF95TknWNxymMvozDoTG4pOG4RMODk+FxXiPxTUcQlXBWUttRbMWgQPe405xcI2kv4CZL5A4xek0h6kf0QmHaY+GoMJjvMMQqh3TOHgbVHOnHMx9OZysgRQhcZvqo71XDg5BRUi+LC5MJymJEsE/yFhDYR7E4cF4BD9vzDHHHHPcF/JbTWCOOeaYY4455pjjXswTlDnmmGOOOeaY49sO8wRljjnmmGOOOeb4tsM8QZljjjnmmGOOOb7tME9Q5phjjjnmmGOObzs80lM8672E6CFjxkKEkVdJGMHNvaPwnlQIloQkar5PBHSEIm9mVqYKrjSqsF6IMF4LVD5MYqwwHR8FC8SNaqyB2fQMU6NBEXx0WghK78i8JxGCRSFpe0e34dAWihIfxNamqqGnOEggAspmUmO5+R6gbjjwLhzaQlA4R+7DFM+KkKQNh0hATygKwiTSgzjoJg4AS4SxXgFUDYfp/8t7ORAmjlIEdfOYWgiWhCAH2s4RCegKRXmaQ3MfNDEWQhA3HBywCLSatSiBuHmsGsA3w8n3chAC6xwd71EClpvYt7xDETgYwgTNe+HQb74ACiASoBBUD+GQNNNWbRcsD1ZEM6rtHRLoCzWb4rmLw0Ow2F6j69KHXzTHHHPM8S2CMDVc+/J7uvaRTlD+L//nH6XT7jzw9jCCGzYEJQTGOayzKCmJpaI69b2WKsjbz3xf/Ow+ZvcFs7HmWIVh18raoA8i5cwDB+7+/ftyEJJIKYxzGGeRIqjPWs9DOIT7CRw8sQoKqaWxODxKKoAT3ZDZ758kKEoIrA9eNVJIEqWo7+IwjQNhtPXUfUzHnB/GQcoQl4dxkKLxqmkeM1YK6x21vTcOD+DQxMT5oK4byyAxX9ngrHwvB0555ohGgl+JMPYcHlMQK43zjspaBEF1NowDPyQOoomD90G5V0pK67DeIYVsON6fwzQO3kNtLUJAooJSbGXNQzk8DJv9lH4retfr5phjjjm+FRiOx/D9//E9XftIJygf+fPf81ChFyHkTKMDwLsgeCUasS4PeGsRUoKcqYs0HjxB3SJsJsyqCLhGjUJIaPQpwmOJmUSe9zSeMcFQT8iTk7S7OEgJPsimCyER6tR1Mw40fKc3NIZwzaf5YILnGnpi5qzruZsD4sQbCO9nz3v2M2vxDddZvO7hMH0I/IxI8Jpp7lPgQ1xOxyH85y4ONNy8syG+UoXrrA0ePlLdsxbN82g29tlaNAlKeMzwfXgsOSN6mkPw5bknxtYGTs36+wfG4fR6nmjAhFC45vUQHlNMv38AB3E6Dqc4iCbJxQW7gAdxeBjEqfjPMcccc3y7QQ2H7/naeQ/Ke8b8XX+OOeaYY445/rgwT1DeM+YKnXPMMccc/7/27j44qvL8G/j3PrvJmoRkJcRks5LStFItDVCbWIUyggKhPlJq7RRa+yKjT0eUpOYBRwv9A2Z+U4J2qmPHlk6tg/Wt6R9CpSMicYBYhqFqhCFgh9IHrKBJ02rMJhgTsuf6/XFe9px9SXaTsDmr38/MOpxz7r3Pda6Ne1977zlnibKFBQoRERF5DguUtPErHiIiomxhgZI2fsVDRESULSxQ0sYZFCIiomxhgZI2zqAQERFlCwuUtHEGhYiIKFtYoKSNMyhERETZklGB0tzcjGuuuQbFxcUoLy/HLbfcgpMnT7raiAg2b96McDiMgoICLFq0CCdOnHC1GRwcRGNjI8rKylBUVIQVK1bg3Llz4z8aIiIi+kTIqEBpa2vD2rVrcfjwYbS2tmJ4eBj19fU4f/683eahhx7Cww8/jMceewyvv/46QqEQli5dir6+PrtNU1MTdu7ciZaWFhw8eBD9/f1Yvnw5otHoxB3ZhONXPERERNmiRNL4BbIU/vOf/6C8vBxtbW24/vrrISIIh8NoamrCAw88AMCYLamoqMCDDz6Iu+66C729vbjsssvw9NNPY9WqVQCA9957D1VVVdi9ezeWLVs26n4jkQiCwSB6PviAv8XD3+Lhb/E48Ld4iMjLIpEILr30UvT29o44fgPjPAelt7cXAFBaWgoAOHPmDLq6ulBfX2+3CQQCWLhwIQ4dOgQAaG9vx4ULF1xtwuEwampq7DbxBgcHEYlEXI/s47s+ERFRtoy5QBERrFu3DgsWLEBNTQ0AoKurCwBQUVHhaltRUWFv6+rqQn5+PqZOnZqyTbzm5mYEg0H7UVVVNdawx4EnyRIREWXLmAuUhoYGHDt2DH/84x8Ttinlnm0Qa4p/BCO12bBhA3p7e+3H2bNnxxr2OHAGhYiIKFvGVKA0NjZi165d2L9/P6ZPn26vD4VCAJAwE9Ld3W3PqoRCIQwNDaGnpydlm3iBQAAlJSWuR/ZxBoWIiChbMipQRAQNDQ3YsWMH9u3bh+rqatf26upqhEIhtLa22uuGhobQ1taG+fPnAwBqa2uRl5fnatPZ2Ynjx4/bbYiIiOjTzZ9J47Vr1+K5557DCy+8gOLiYnumJBgMoqCgAEopNDU1YcuWLZg5cyZmzpyJLVu2oLCwELfddpvd9s4778T69esxbdo0lJaW4r777sPs2bOxZMmSjIKPDnyMaF5+yu3WlSMWEQF086od8yoc42oWn6sdRGBd3GRcseHcppuda8mXjZXmFReJMUCsq1fMGMxlKM11tY8rhiR9wLpiJtlyXAzOq2fsbdHEPCTEMMpxjCsGKw/KuIIKACQ6fNFj0BPyoNtX8QACRHWIgvE34WxpXc0UH4N1JdeIMSRexePa5riSCIB5RVXqGEaSGB8RkXdEBz5Ou21GBcq2bdsAAIsWLXKt3759O1avXg0AuP/++zEwMIB77rkHPT09uPbaa7F3714UFxfb7R955BH4/X6sXLkSAwMDWLx4MZ588kn4fO435NEcWb8JRfkjFyhKKfsSXF3X7XNdlKYBug7dXNY0LXZ5blxxoGLXGZvrrQHIvLQV5qWtRgvjslLzGtR0YhBr4NI0qEmMQRSgaT4ox6WxExsDzMuEFXTzEmZlDcTWJc3mcso8mMdgBmH0D8dlxkljQOwy4zRiEACaz7jU2dp/qhjsPCTEYBW2RgD6BMYwktHO9SIimkznh4bSbjuu+6BMFus+KM/N+DIKtdRFjYJjQAGgW4MMYM5e6PaZJZo1kwBzQLDaAa6B2brviXX/D2Wlz3GjEmuV1Yc7BmNL4iAXa+eMIXYcmcSAWLGVEIMy82Dt0zzuCYxBWZk0i4OkeXD0oSYlDxcnBuN+MM48AM5CKT4Gq//RYgAE1kTQSFieEJGXfaRH8b1/Hb3490EhIiIiuhhYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOSxQiIiIyHNYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOSxQiIiIyHNYoBAREZHn+Cc7gPGY/T8bUFxYmHSbAgCloCkFpRREKejRKKDrUJoG5fNDosMQXQc0DZrPDyU6RAQiAl0ECoBSCsr4BwAF0aOAANB8xo4kauxPM2s9EYgAImIGYsRgdKZBolGIHYMPokchUR1QGjS/D8rcv/XAaDEoBehRQMSIQSlAdDsGAaCgoGkKUApKadCjUYgehdIUlC/PjCFqxOr3X6QYjBwp8/XQdR0SjRrLfj+g68brM0oMUMbxQCnjtRMBNA1QWgYxwMjDSDH4/FDK3L8urtdTJYtBaUYcZgwwj3X0GAQSHTZi8PkBEejR4ZQxyCj/TyiljL99IiIP6vvoI+CHK9Nqm9MFyvTlS1FSUpJyuzGgOd6uReziwFgvkKhz2WoHiOgAFJQW93bvGKiSLlvNdAEgo8cgYhQL1gDn6kM3utbiJ7rEKA5cMZiDZDoxAMbA7MgDojpEqYR92TEkOY7EPKSOAWZh4joEs0iyn2MWBynzkHAcEisORopBrHZxMVh5cO4zGk2Rh1S5jIvBaHxRYxiJUhpYoRCRV0UikbTb5nSBMjrjndoaEOxPweYWcb6TOz55ilUAOHtxDMTi6MHdxm7ijsIxILlisIok43N1ynbO3ceF5jgSFWuY4pO2UspYP1IekDxfVgBWPWMdvnM/Ku4f4min7G6SvBZKOWYo4H4t4jqJ5TnuOFUsIOVYTve1iOVilDwg/rVwPisumyliSJkHqyc1cjsiok8DnoOSNg4QRERE2cICJW2cNyciIsoWFihp4wwKERFRtrBAISIiIs9hgZI2fsVDRESULSxQ0saveIiIiLKFBUraOINCRESULRkVKM3NzbjmmmtQXFyM8vJy3HLLLTh58qSrzerVq+27hVqP6667ztVmcHAQjY2NKCsrQ1FREVasWIFz586N/2guKs6gEBERZUtGBUpbWxvWrl2Lw4cPo7W1FcPDw6ivr8f58+dd7b7+9a+js7PTfuzevdu1vampCTt37kRLSwsOHjyI/v5+LF++HNFodPxHdNFwBoWIiChbMrqT7J49e1zL27dvR3l5Odrb23H99dfb6wOBAEKhUNI+ent78cQTT+Dpp5/GkiVLAADPPPMMqqqq8Morr2DZsmWZHkOWWHc0JSIioottXOeg9Pb2AgBKS0td6w8cOIDy8nJ84QtfwI9//GN0d3fb29rb23HhwgXU19fb68LhMGpqanDo0KGk+xkcHEQkEnE9iIiI6JNrzAWKiGDdunVYsGABampq7PU33XQTnn32Wezbtw+//OUv8frrr+PGG2/E4OAgAKCrqwv5+fmYOnWqq7+Kigp0dXUl3VdzczOCwaD9qKqqGmvY48DZEyIiomwZ848FNjQ04NixYzh48KBr/apVq+x/19TUoK6uDjNmzMCLL76IW2+9NWV/IpLwK6+WDRs2YN26dfZyJBKZhCKFX/EQERFly5hmUBobG7Fr1y7s378f06dPH7FtZWUlZsyYgVOnTgEAQqEQhoaG0NPT42rX3d2NioqKpH0EAgGUlJS4HtnH4oSIiChbMipQRAQNDQ3YsWMH9u3bh+rq6lGf8/777+Ps2bOorKwEANTW1iIvLw+tra12m87OThw/fhzz58/PMPxs4mXGRERE2ZLRVzxr167Fc889hxdeeAHFxcX2OSPBYBAFBQXo7+/H5s2b8e1vfxuVlZV4++23sXHjRpSVleFb3/qW3fbOO+/E+vXrMW3aNJSWluK+++7D7Nmz7at6vIkzKERERNmSUYGybds2AMCiRYtc67dv347Vq1fD5/Oho6MDTz31FD788ENUVlbihhtuwJ/+9CcUFxfb7R955BH4/X6sXLkSAwMDWLx4MZ588kn4fL7xH9FFw3NQiIiIskWJSM59dxGJRBAMBvHaz3+JKZcUpGxn380WgEBBRAd0HUrTAKUBokN0HdA0KKVBQSAwvsqy0mL1YTPXi7lOWelztDGeD2OvjhgABT1VDEqD0kaIASpWH4kAEIjSACgo0QGI0Z8jThFAHDEYEcRisI4bohu5gYLSfJnFAA1QY4lBAD1qPFfzGX3p0TRicOQ60xigoLS4GCS2T6PtBMUAzZUrVwzKyKMy9yC6bvQ9Qh4gMF63UdivExGRB/V/PIC6jf8Pvb29o55POuareLzg9PY/otCX+hCst2pjLDEHJHOQgFLGwGHOjGjKKGOMgcQaTKxeEDcww7FV7L2ZlRCsFjIBMTiPI3kMCgp6QgxWBNa8jzEwumMAYBYoEtuXVaiNIwbzsC5eDFYcYu3B6t3qc+LyAAF0VwyIRREfg3ngynrl08iDxO0zVQwCQE/jPCgWJ0TkZR9Fh9Num9MFin5hGHo09Zu2URjE3rJ1iQ0y9uyF3ViDNQwZg0ZsLFbOkXnUGRRxDErJYjC2OD+Fi6NPa8yzYogdRyYxwBzoksWQZGBG4gzBeGJQVibtAiNJHhx9qLg8TEQMo+fh4sRgFCjOPADOojM+Bqv/0WIAxPzbGRnLEyLyMl1P/ydt+GvGRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5Dn+yQ5gPML/ZwmmBC4xlwSAcm1XAJSmoKAgSkH0KEQXY53miy0rBc3nA0QgEIgIRMw+FKCgzK4VRHRjV5pZ2+m60U5TdhhGH44YlIIygoGu6xBdd8RgLMOMQWUSg9KMda4YlOM4YrnQksWgFJTPB+g6dNEBjCMGc/nix2D+wxWDMh5WDPZy8higAGXFILrxGvn8gBgxGS+vH0pZ+49/PVPFoAESzSwGEYgedcRgLBsx+MwujOeLs5MUlLKiJCLynv7BQeA3R9NqqySddz2PiUQiCAaD+M/ZcygpKUnZTikVGzBhFSg6lKZBaT5AotCjUSjNZwySIgAEoos9GFgFjvnObxcDYg7MStcBiFmwWAMSjKIjPgalIFEjBk3TADMGiUYBzQelxSa0jBgcfaj4GASifHaBoiBGf4AjBuN4EmLQdUg06siDsSxKQfP5jeOBOTDq6cVg50FpjoE5LgbH80XEjEGZMRjLsAoWKw9JY4CZa914XnwerBjMwsCKAUqZxUFcHqx9mjGIVbBmFINm7FePJsQAAXSjwnDHYGZahodjMZjLI8UwEtdrRETkMZFIBGWXh9Hb2zvi+A3k+AyKv6gQ/qLClNuVVURYg4E9e6FBKWV8SjUHamia/bkzNhgos0CBa2AWwBiAYA46gGPQgmtQNIoDZ+HhiEHTANGhR3UopUH5HO2cg6KmxcYcc4bG/tRuDpJ2jCmKA5gDq5gB2gWKtc4cmK11yWKw0yB2IBAVO+jYwOzIgzkwO2OAGZvosQJFRIBoFNCUUay58mAeh10swj5uEWdRpJv7iitQnMWBFpdjs0CxXn9JmYf4Ys9OgbFfZRaoEChr2RGD5ohBOfPgiEFpmtGfHoUgdQwjUY78ExF5jT86nHZbnoOStpybaCIiIspZLFDSxo+lRERE2cICJW2cQSEiIsoWFihp4wwKERFRtrBASRtnUIiIiLKFBQoRERF5TkYFyrZt2zBnzhyUlJSgpKQE8+bNw0svvWRvFxFs3rwZ4XAYBQUFWLRoEU6cOOHqY3BwEI2NjSgrK0NRURFWrFiBc+fOTczRXFT8ioeIiChbMipQpk+fjq1bt+KNN97AG2+8gRtvvBHf/OY37SLkoYcewsMPP4zHHnsMr7/+OkKhEJYuXYq+vj67j6amJuzcuRMtLS04ePAg+vv7sXz5ckSj0Yk9sgnHr3iIiIiyZdx3ki0tLcUvfvEL3HHHHQiHw2hqasIDDzwAwJgtqaiowIMPPoi77roLvb29uOyyy/D0009j1apVAID33nsPVVVV2L17N5YtW5bWPq07yfZ88MEod5Id/UZtwhu18UZtWbhRm/BGbUREiEQiuPTSS9O6k+yYz0GJRqNoaWnB+fPnMW/ePJw5cwZdXV2or6+32wQCASxcuBCHDh0CALS3t+PChQuuNuFwGDU1NXabZAYHBxGJRFyP7OMMChERUbZkXKB0dHRgypQpCAQCWLNmDXbu3IlZs2ahq6sLAFBRUeFqX1FRYW/r6upCfn4+pk6dmrJNMs3NzQgGg/ajqqoq07AnAD+WEhERZUvGBcqVV16Jo0eP4vDhw7j77rtx++2346233rK3K+UeyMWa3h/BaG02bNiA3t5e+3H27NlMw54AnEEhIiLKlowLlPz8fFxxxRWoq6tDc3Mz5s6di0cffRShUAgAEmZCuru77VmVUCiEoaEh9PT0pGyTTCAQsK8csh5ERET0yTXu+6CICAYHB1FdXY1QKITW1lZ729DQENra2jB//nwAQG1tLfLy8lxtOjs7cfz4cbuNd/ErHiIiomzxZ9J448aNuOmmm1BVVYW+vj60tLTgwIED2LNnD5RSaGpqwpYtWzBz5kzMnDkTW7ZsQWFhIW677TYAQDAYxJ133on169dj2rRpKC0txX333YfZs2djyZIlF+UAJ46ARQoREVF2ZFSg/Pvf/8YPf/hDdHZ2IhgMYs6cOdizZw+WLl0KALj//vsxMDCAe+65Bz09Pbj22muxd+9eFBcX23088sgj8Pv9WLlyJQYGBrB48WI8+eST8Pl8E3tkE47FCRERUbaM+z4ok2Fy7oNi/of3QeF9UHgfFCKiMcnkPigZzaB4TeQf/x+YMiXFVmsgiC2LOAsUzXzTj9rL1pu/PaAAcX3E1hsDEozBCe6rl2LFgVUzWNuSxWAuK81RyEiaMcQKlNQxiGtABBQEzgLFyAP0KERpjgE8MQa7Nsg4BtiForLzYOZemQUKxCySjDyopDEY/4n1oSeNIdYmsxhg5kWUgqb57B7iX8/4/q3Cw4jBLCKUWUxZz7cKFGfR63wtEvJgFijOPligEFGOi/T3p902pwuUv61uRKFv5EPQHJ+4ddGtsSNWHJinlmj2jIgxHFjDQGxYt4fMuC3i2m4PJo4YrKEKyhwURRwxiDkLkGYMylEcxMVgFGVIeH5aMZitJy6Gic+Dtbfs5ME5S5JuDAqAnnkMEOPZcTHYxVSSPkbC+oSIvOqj6HDabXO6QBke+BjDWupzVxQA3fFpV7c+iQPGDIjo9pu+mIOi9WnXeUqsin3HY3+lY321oVwzCYD1qd/4lzlsuWIwtijHc6xBzorVGQPsPjKJAa4CwR2DMvNgDYLmcU9gDPZnfvMrkKR5cPShJiUPFycG46suZx4AeyYoSQz27EqSGFRcH9ZE0EhYnBCRlw3r6f/u3rgvMyYiIiKaaCxQiIiIyHNYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOSxQiIiIyHNYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOf7JDmAsRAQA8JEeHbGdAqCUgjKXdfN5CgCUAKJDzG2aEgACMfsXqx0ApRBbMvsQYyWUuWw2MvoQ61/JYjC2KMdzrOOx2jljiB1HJjEYbSRpDMrMg7VP87gnMAZlZVKQIgZAd/ShJiUPFycGSOy1tZ5v/U0ki8Hqf7QYADH/dkamRm9CRDRprHHbep8bSU4WKH19fQCA/3u2Y5IjISIiokz19fUhGAyO2EZJOmWMx+i6jpMnT2LWrFk4e/YsSkpKJjuknBCJRFBVVcWcZYh5yxxzNjbMW+aYs7GZrLyJCPr6+hAOh6FpI59lkpMzKJqm4fLLLwcAlJSU8I8yQ8zZ2DBvmWPOxoZ5yxxzNjaTkbfRZk4sPEmWiIiIPIcFChEREXlOlVKc0QAAB5ZJREFUzhYogUAAmzZtQiAQmOxQcgZzNjbMW+aYs7Fh3jLHnI1NLuQtJ0+SJSIiok+2nJ1BISIiok8uFihERETkOSxQiIiIyHNYoBAREZHn5GSB8pvf/AbV1dW45JJLUFtbi7/+9a+THdKkefXVV/GNb3wD4XAYSin8+c9/dm0XEWzevBnhcBgFBQVYtGgRTpw44WozODiIxsZGlJWVoaioCCtWrMC5c+eyeBTZ1dzcjGuuuQbFxcUoLy/HLbfcgpMnT7raMG+Jtm3bhjlz5tg3dpo3bx5eeukleztzNrrm5mYopdDU1GSvY94Sbd682fgtKscjFArZ25mz5N5991384Ac/wLRp01BYWIgvf/nLaG9vt7fnXN4kx7S0tEheXp48/vjj8tZbb8m9994rRUVF8q9//WuyQ5sUu3fvlp/97Gfy/PPPCwDZuXOna/vWrVuluLhYnn/+eeno6JBVq1ZJZWWlRCIRu82aNWvk8ssvl9bWVnnzzTflhhtukLlz58rw8HCWjyY7li1bJtu3b5fjx4/L0aNH5eabb5bPfOYz0t/fb7dh3hLt2rVLXnzxRTl58qScPHlSNm7cKHl5eXL8+HERYc5G89prr8lnP/tZmTNnjtx77732euYt0aZNm+RLX/qSdHZ22o/u7m57O3OW6IMPPpAZM2bI6tWr5W9/+5ucOXNGXnnlFfnnP/9pt8m1vOVcgfLVr35V1qxZ41p31VVXyU9/+tNJisg74gsUXdclFArJ1q1b7XUff/yxBINB+e1vfysiIh9++KHk5eVJS0uL3ebdd98VTdNkz549WYt9MnV3dwsAaWtrExHmLRNTp06V3//+98zZKPr6+mTmzJnS2toqCxcutAsU5i25TZs2ydy5c5NuY86Se+CBB2TBggUpt+di3nLqK56hoSG0t7ejvr7etb6+vh6HDh2apKi868yZM+jq6nLlKxAIYOHChXa+2tvbceHCBVebcDiMmpqaT01Oe3t7AQClpaUAmLd0RKNRtLS04Pz585g3bx5zNoq1a9fi5ptvxpIlS1zrmbfUTp06hXA4jOrqanz3u9/F6dOnATBnqezatQt1dXX4zne+g/Lyclx99dV4/PHH7e25mLecKlD++9//IhqNoqKiwrW+oqICXV1dkxSVd1k5GSlfXV1dyM/Px9SpU1O2+SQTEaxbtw4LFixATU0NAOZtJB0dHZgyZQoCgQDWrFmDnTt3YtasWczZCFpaWvDmm2+iubk5YRvzlty1116Lp556Ci+//DIef/xxdHV1Yf78+Xj//feZsxROnz6Nbdu2YebMmXj55ZexZs0a/OQnP8FTTz0FIDf/1nLy14yVUq5lEUlYRzFjydenJacNDQ04duwYDh48mLCNeUt05ZVX4ujRo/jwww/x/PPP4/bbb0dbW5u9nTlzO3v2LO69917s3bsXl1xyScp2zJvbTTfdZP979uzZmDdvHj7/+c/jD3/4A6677joAzFk8XddRV1eHLVu2AACuvvpqnDhxAtu2bcOPfvQju10u5S2nZlDKysrg8/kSKrnu7u6EqpBgn/U+Ur5CoRCGhobQ09OTss0nVWNjI3bt2oX9+/dj+vTp9nrmLbX8/HxcccUVqKurQ3NzM+bOnYtHH32UOUuhvb0d3d3dqK2thd/vh9/vR1tbG371q1/B7/fbx828jayoqAizZ8/GqVOn+LeWQmVlJWbNmuVa98UvfhHvvPMOgNx8X8upAiU/Px+1tbVobW11rW9tbcX8+fMnKSrvqq6uRigUcuVraGgIbW1tdr5qa2uRl5fnatPZ2Ynjx49/YnMqImhoaMCOHTuwb98+VFdXu7Yzb+kTEQwODjJnKSxevBgdHR04evSo/airq8P3v/99HD16FJ/73OeYtzQMDg7i73//OyorK/m3lsLXvva1hNsl/OMf/8CMGTMA5Oj7WtZPyx0n6zLjJ554Qt566y1pamqSoqIiefvttyc7tEnR19cnR44ckSNHjggAefjhh+XIkSP2Zddbt26VYDAoO3bskI6ODvne976X9LKy6dOnyyuvvCJvvvmm3HjjjZ/oy/HuvvtuCQaDcuDAAddljB999JHdhnlLtGHDBnn11VflzJkzcuzYMdm4caNomiZ79+4VEeYsXc6reESYt2TWr18vBw4ckNOnT8vhw4dl+fLlUlxcbL/PM2eJXnvtNfH7/fLzn/9cTp06Jc8++6wUFhbKM888Y7fJtbzlXIEiIvLrX/9aZsyYIfn5+fKVr3zFvjz002j//v0CIOFx++23i4hxadmmTZskFApJIBCQ66+/Xjo6Olx9DAwMSENDg5SWlkpBQYEsX75c3nnnnUk4muxIli8Asn37drsN85bojjvusP+/u+yyy2Tx4sV2cSLCnKUrvkBh3hJZ9+fIy8uTcDgst956q5w4ccLezpwl95e//EVqamokEAjIVVddJb/73e9c23Mtb0pEJPvzNkRERESp5dQ5KERERPTpwAKFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPIcFChEREXkOCxQiIiLynP8FFvKCKe+mjykAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebxlV1nm/11rj2e683yrblXdmjKHMEVASMIccUAGEWyEFloBbUX8KSLNKA2tIG33x7khBKQFhBbFgEBkCEpCRjLPNU+37nzGPa/1+2Ptc+reGhMMpoL70UPq7rOHZ79rn7Pe8673fV6htdYUKFCgQIECBQqcRZCPN4ECBQoUKFCgQIHjUTgoBQoUKFCgQIGzDoWDUqBAgQIFChQ461A4KAUKFChQoECBsw6Fg1KgQIECBQoUOOtQOCgFChQoUKBAgbMOhYNSoECBAgUKFDjrUDgoBQoUKFCgQIGzDoWDUqBAgQIFChQ461A4KAV+pLF582Z+8id/8t90jna7zbvf/W527NiB53kMDw9zxRVX8NBDDz1GLJ/YeO9734sQ4nG59r333st73/te9u7de8J7r3/969m8efO/O6dHg+XlZX7+53+esbExhBC89KUvPeW+p3uWb7nlFoQQXH311eu2f+1rX+OFL3whU1NTeJ7H1NQUl19+Of/jf/yPU17nZS97GUIIfu3Xfu1R3cvevXt5yUtewtDQEEII3vrWt7J3796T8ipQ4JHAfrwJFChwNqPVanHFFVdw+PBhfvd3f5eLLrqIer3O9ddfT6fTebzpnRV44xvfyItf/OLH5dr33nsv73vf+7j88stPcEbe9a538Ru/8RuPC69Hit///d/ni1/8IldddRVbt25laGjoMTv3X/zFX/DmN7+Zl7/85fzJn/wJQ0NDHDhwgOuvv54vfOEL/O7v/u4Jx8zPz3PNNdcA8H//7//lIx/5CL7vP6Lr/eZv/iY33ngjV111FRMTE0xOTlJ0Uinwb0HhoBR43NHpdCiXy483jZPiv/23/8Z9993HnXfeyezsbG/7T//0Tz+OrH5w/DBsvWHDBjZs2PCYnvOxwNatWx9vCmfE3XffzdatW/mFX/iFx/zcH/rQh3jOc57DF77whXXbX/va16KUOukxn/rUp0iShJe85CV8+ctf5u/+7u94zWte84iud/fdd/P0pz99XRToZJGtAgUeKYolngL/ruguB9x222284hWvYHBwsDeR3HLLLfz8z/88mzdvplQqsXnzZl796lezb9++dee4+uqrEULwrW99ize/+c2MjIwwPDzMy172Mg4fPnxGDn/2Z3+Gbdu85z3vOe1+nU6Hj33sY7zyla9c55w8Grzvfe/j0ksvZWhoiL6+Pp785Cfz8Y9//IRflt3w/Re/+EUuuugifN9ndnaW//2///e6/b797W8jhODTn/40b3vb25iYmKBUKnHZZZfx/e9/f92+r3/966lWq9x111288IUvpFar8bznPQ8wSwtvectbmJ6exnVdZmdneec730kURQCEYcgll1zCtm3bqNfrvXPOzc0xMTHB5ZdfTpZlwMmXeLr3c80113DJJZdQKpU499xze7/Or776as4991wqlQpPf/rTueWWW9Yd/0iehauvvppXvvKVAFxxxRUIIdYtJ5xsiScMQ97xjnewZcsWXNdlenqaX/3VX2V1dfWk/L/61a/y5Cc/mVKpxDnnnMNVV1114iCfBGeyb3fp45//+Z+57777ety//e1vP6LzPxIsLS0xOTl50vekPPlX/1VXXcX4+Dif/OQnKZVKj+h+u8/kww8/zD/90z/17uVUzsnDDz/Mf/7P/5nt27dTLpeZnp7mp37qp7jrrrtO2Peee+7hhS98IeVymdHRUX71V3+VL3/5y4+5rQqcpdAFCvw74j3veY8G9KZNm/Tb3/52fe211+q///u/11pr/fnPf16/+93v1l/84hf1ddddpz/72c/qyy67TI+OjuqFhYXeOT7xiU9oQM/Ozur/+l//q/7a176mP/axj+nBwUF9xRVXrLvepk2b9Ete8hKttdZKKf1bv/Vb2nEc/YlPfOKMXL/zne9oQP/3//7f9Zve9CY9MDCgHcfRT3nKU/Q111zziO739a9/vf74xz+ur732Wn3ttdfq3//939elUkm/733vO4Hn9PS0npmZ0VdddZX+yle+on/hF35BA/rDH/5wb79vfetbGtAbN27UP/MzP6P/8R//UX/605/W27Zt0319fXrXrl29fV/3utdpx3H05s2b9Yc+9CH9jW98Q3/ta1/TQRDoiy66SFcqFf2Rj3xEf/3rX9fvete7tG3b+id+4id6xz/44IO6Vqvpl73sZVprrbMs08997nP12NiYPnz4cG+/7pgefz8bNmzQF1xwgf7MZz6jv/KVr+hLL71UO46j3/3ud+tnPetZ+u/+7u/0F7/4Rb1jxw49Pj6uO51O7/hH8izMz8/rD37wgxrQf/qnf6pvuOEGfcMNN+j5+fne/W/atKl3TqWUftGLXqRt29bvete79Ne//nX9kY98RFcqFX3JJZfoMAxP4H/eeefpT33qU/prX/uafuUrX6kBfd111512zB+JfcMw1DfccIO+5JJL9OzsbI97vV4/5XnXPsvH4+abb9bAuuf6+c9/vrZtW7/nPe/Rt99+u07T9LS8v/vd72pA//Zv/7bWWuv/9J/+kxZC6N27d5/2uHq9rm+44QY9MTGhn/WsZ/XuJQxDvWfPnhN4XXfddfq3fuu39Be+8AV93XXX6S9+8Yv6pS99qS6VSvr+++/v7Xf48GE9PDysZ2Zm9NVXX62/8pWv6Ne+9rV68+bNGtDf+ta3TsurwBMfhYNS4N8V3cns3e9+9xn3TdNUt1otXalU9P/6X/+rt73roLzlLW9Zt/8f/uEfakAfOXKkt637pd7pdPTLX/5y3d/fr//5n//5EXH9zGc+owHd19enn/WsZ+kvfelL+pprrtFXXHGFFkLor371q4/wrg2yLNNJkuj3v//9enh4WCul1vEUQujbb7993TEveMELdF9fn26321rrYw7Kk5/85HXH7927VzuOo9/4xjf2tr3uda/TgL7qqqvWnfMv/uIvNKD/9m//dt32P/iDP9CA/vrXv97b9rnPfU4D+o//+I/1u9/9bi2lXPe+1qd2UEqlkj548GBv2+23364BPTk52bsfrbX++7//ew3oL33pS6e03amehc9//vOnnKyOd1C++tWvakD/4R/+4br9uvf4V3/1V+v4+76v9+3b19sWBIEeGhrSv/Irv3JKnlo/Ovtedtll+vzzzz/t+dZyejQOysMPP6wvuOACDWhAl0ol/bznPU//yZ/8iY7j+IRz/NIv/ZIG9H333ae1Pvasvetd7/qB+Z3MQTkeaZrqOI719u3b9W/+5m/2tv/2b/+2FkLoe+65Z93+L3rRiwoH5T8IiiWeAo8LXv7yl5+wrdVq8fa3v51t27Zh2za2bVOtVmm329x3330n7H98HshFF10EcMKS0NLSEs997nO56aab+Nd//dfeMkcXWZaRpmnv1V2f7/7XdV3+6Z/+iZ/6qZ/iJS95Cddccw2Tk5P8/u///hnv85vf/CbPf/7z6e/vx7IsHMfh3e9+N0tLS8zPz6/b9/zzz+fiiy9et+01r3kNjUaD22677YTta5dVNm3axDOf+Uy+9a1vncDheFt/85vfpFKp8IpXvGLd9te//vUAfOMb3+ht+7mf+zne/OY389u//dt84AMf4Pd+7/d4wQtecMb7BnjSk57E9PR07+9zzz0XgMsvv3xdHkx3+9pxe7TPwiPBN7/5zXX32cUrX/lKKpXKuvvu8p+Zmen97fs+O3bsOOH5Otl1Hql9f5jYunUrd9xxB9dddx3ve9/7eP7zn8/NN9/Mr/3ar/GMZzyDMAx7+7ZaLf72b/+WZz7zmZxzzjkAXHbZZWzdupWrr776lDkrPwjSNOWDH/wg5513Hq7rYts2ruvy0EMPrRvb6667jgsuuIDzzjtv3fGvfvWrHzMuBc5uFA5KgccFJ1sbf81rXsOf/Mmf8MY3vpGvfe1r3HTTTdx8882Mjo4SBMEJ+w8PD6/72/M8gBP2ffDBB7nxxhu58sorueCCC044z/Oe9zwcx+m9fumXfmnd+Z/5zGdSq9V6+5fLZS677LITnIbjcdNNN/HCF74QgP/zf/4P3/3ud7n55pt55zvfeVKeExMTJ5yju21paekR7Xv8fuVymb6+vnXblpaWmJiYOCFvZGxsDNu2TzjHL/3SL5EkCbZt8+u//uunvN/jcXxFiuu6p92+dsJ8tM/CI8HS0hK2bTM6OrpuuxDipLY7/vkC84yd6fqP1r6PFLZt9/J+jkeapgA4jrNuu5SS5zznObz73e/mS1/6EocPH+ZVr3oVt95667r8ks997nO0Wi1+7ud+jtXVVVZXV6nX6/zcz/0cBw4c4Nprr/2BOJ8Mb3vb23jXu97FS1/6Uv7xH/+RG2+8kZtvvpmLL754nW2XlpYYHx8/4fiTbSvwo4miiqfA44Ljv7zr9TrXXHMN73nPe9aVP0ZRxPLy8r/pWs94xjN45StfyRve8AYA/vzP/3xdkuBf/uVf0mw2e3+PjIwAxyIyJ4PW+pSJhl189rOfxXEcrrnmmnWlmn//939/0v3n5uZOue34yfJU+x6/38n0SYaHh7nxxhvRWq97f35+njRNe/cPRgPmta99LTt27ODo0aO88Y1v5B/+4R9Oyv+xwg/rWRgeHiZNUxYWFtY5KVpr5ubmeNrTnvZv4r32Oo/Uvo8G4+PjHDp06KTvdbefafKuVCq84x3v4HOf+xx33313b/vHP/5xAN761rfy1re+9YTjPv7xj/OiF73oB+J9PD796U/zi7/4i3zwgx9ct31xcZGBgYHe38PDwxw9evSE40/27Bf40UQRQSlwVkAIgda6FwXp4mMf+9gpfzU+Grzuda/js5/9LJ/4xCf4xV/8xXXn3LlzJ0996lN7r27lx+TkJM94xjP47ne/S6PR6O3f6XS47rrr+LEf+7Ez3pNt21iW1dsWBAF//dd/fdL977nnHu6444512/7mb/6GWq3Gk5/85HXbP/OZz6yrBNq3bx/XX389l19++Wk5gYkYtVqtExylT33qU733u3jTm97E/v37+bu/+zs+/vGP86UvfYn/+T//5xmv8W/Bo3kWThU1Oxm69/XpT3963fb/9//+H+12+4Slvx8Uj8a+jwbPf/7zufvuu7n33ntPeO9v//ZvqVarXHrppb1tR44cOel5ussoU1NTvb9vuOEGXv7yl/Otb33rhNfznvc8/uEf/uEHjvwcDyHECWP75S9/+QTn67LLLjvp/X72s599THgUOPtRRFAKnBXo6+vjOc95Dh/+8IcZGRlh8+bNXHfddXz84x9f96vq34JXvOIVlMtlXvGKVxAEAZ/5zGd6ywunwkc+8hGuuOIKXvSiF/H2t78dIQR/9Ed/xOLi4hlzUF7ykpfw0Y9+lNe85jX88i//MktLS3zkIx854cu5i6mpKX76p3+a9773vUxOTvLpT3+aa6+9lj/4gz84Qbtkfn6en/3Zn+W//Jf/Qr1e5z3veQ++7/OOd7zjjHb4xV/8Rf70T/+U173udezdu5cLL7yQf/3Xf+WDH/wgP/ETP8Hzn/98wDgEn/70p/nEJz7B+eefz/nnn8+v/dqv8fa3v51nPetZPP3pTz/jtX4QPJpnobtk91d/9VfUajV832fLli0nXZ55wQte0BvHRqPBs571LO68807e8573cMkll/Da1772MeH/SO37aPEbv/EbfOpTn+Lyyy/n937v97jwwgtZWVnhc5/7HF/4whf46Ec/um4p8vzzz+d5z3seV155JVu3biUMQ2688Ub+6I/+iPHx8V5EsRs9+Z3f+Z2Tjmmz2eQb3/gGn/70px8T4buf/Mmf5Oqrr+acc87hoosu4tZbb+XDH/7wCVo6b33rW7nqqqu48soref/738/4+Dh/8zd/w/333w+culS6wI8QHscE3QL/AdGt+FhbNtzFwYMH9ctf/nI9ODioa7WafvGLX6zvvvtuvWnTJv26172ut1+3iufmm29ed3y36mBtdv/JKgu+9a1v6Wq1ql/84hevK209Ff7lX/5FX3bZZbpcLutyuayf+9zn6u9+97uP6H6vuuoqvXPnTu15np6dndUf+tCH9Mc//nEN6D179pzA8wtf+II+//zzteu6evPmzfqjH/3oSe/xr//6r/Wv//qv69HRUe15nn72s5+tb7nllnX7vu51r9OVSuWkvJaWlvSb3vQmPTk5qW3b1ps2bdLveMc7eqW2d955py6VSuvsrrUpj33KU56iN2/erFdWVrTWp67iOVnFCaB/9Vd/dd22bqXH2nLqR/osaK31H//xH+stW7Zoy7LWVYwcX8WjtanEefvb3643bdqkHcfRk5OT+s1vfnPvXs7E/7LLLtOXXXbZCduPx5nsu/Z8j7SKR2ut5+bm9Jvf/GY9MzOjbdvWtVpN//iP/7j+/Oc/f8K+f/mXf6lf9rKX6dnZWV0ul7Xrunrr1q36TW96kz5w4IDWWus4jvXY2Jh+0pOedMprpmmqN2zYoC+88MLTcnukVTwrKyv6DW94gx4bG9Plcln/+I//eO8zdrxt7777bv385z9f+76vh4aG9Bve8Ab9yU9+UgP6jjvuOIO1CjzRIbQutIgLFHi8sXnzZi644IKekNmp8O1vf5srrriCz3/+8ydUiRQo8B8Bv/zLv8xnPvMZlpaWzhgBLfDERrHEU6BAgQIFzkq8//3vZ2pqitnZWVqtFtdccw0f+9jH+G//7b8Vzsl/ABQOSoECBQoUOCvhOA4f/vCHOXjwIGmasn37dj760Y+e9U0gCzw2KJZ4ChQoUKBAgQJnHR7XNOg/+7M/Y8uWLfi+z1Oe8hT+5V/+5fGkU6BAgQIFChQ4S/C4OSif+9zneOtb38o73/lOvv/97/PsZz+bK6+8kv379z9elAoUKFCgQIECZwketyWeSy+9lCc/+cn8+Z//eW/bueeey0tf+lI+9KEPPR6UChQoUKBAgQJnCR6XJNk4jrn11lvXyVgDvPCFL+T6668/Yf8oioiiqPe3Uorl5WWGh4dPKuVdoECBAgUKFDj7oLWm2WwyNTV1RrG9x8VBWVxcJMuyE/pGjI+Pn7TPwoc+9CHe9773/XvRK1CgQIECBQr8EHHgwIET1IOPx+NaZnx89EMf11yri3e84x287W1v6/1dr9eZmZnhkqe8Hss6dS28QIAAKQQVDaHWBGhcIRhAsIIm0RofQVlImkKb/iYaNBqRnwUBLuBqaAvIgJoGgaYhBBKoaEgF9OI8WqPXcEAIqlqQaEUbjS0E/QjaaMKcQ0kI2gLUKTg4CEpa0xKQ5td0tGZVCkT+txYQItCsPYc5XuQcYq3ooJFCMKwFDWE4uEBVSHOPp+QAfm6HFChrcHMOAFVz03QQcAoOJW3usZ1zGEAQoGlrjYegIgSd4zisHU8LQUVrOrm9yxr8nIPO7SAEBKewAwgqCLRWtDA7DyKI0LS0xgZqQhIKSIxGKl0Wx3NoC0gAT0Ml56ByTjbQFsdzMM8CCEoIxDoO5n5aGmw0fUISdDmge8/U6fCixm4uCB+bnikFChQo8FijozLesP/OdW0ZToXHxUEZGRnBsqwToiXz8/Mn7cbped5J+5dYlottn8lBEUghsDXYWmGhsYXEQWCjUVphI7CFhd1zUPRxE7PABnOO3H+ytUagsYTEyt8jd14A0GrNhJafQwu0znIOAgeJjcbqcZDYPQflZBwEttbYAnTOwdYaW0pEzkELsHsTs14zMQvTvE4LVM7BEgJHS2zR5UBuBxCPwA7Hc2CNHeyeg3IyDqDysbByOyQnscNaDmvH01pjh/Q4DjrnIE5jBzC21FphoSDnkHGiHYxvoljvoKznoHIOTs5BdW0E2OJ4DoCQPQ5iHQdBBlhaY6PXc0A9IgfFtxzK0jrDXgUKFCjw+OKRpGc8LlU8ruvylKc8hWuvvXbd9muvvZZnPvOZjwelAgUKFChQoMBZhMdtiedtb3sbr33ta3nqU5/KM57xDP7qr/6K/fv386Y3venfjcNxC0yPZKdHeNZT/c7VvT2E+S2+7vTHH/XDSP9dfw3R/f/HHcc4nGi7U/HTp/j3I8cJ1jARlsdNu1DkHHQ3+HR2DE6BAgUKPA543ByUV73qVSwtLfH+97+fI0eOcMEFF/CVr3yFTZs2PeJzyHz55lQQCLQwaxFRnJIKje07DPRXmSj5EEYsrjbJwoRIK/BshBDr5qjesoDWKKVQArSUKCF6rohS2izLSImQ+fwiRM8R0cLkRiRJRoJCujYDA1UmyiWWo5g45xArhXZzDhybPtfeR6YUmQCVc1D5Uos+KYeuI5QfDyRJSqIzLN+hv1ZholrGjmPS1RYqjAnTBO05J7WDFgKxxg5KSnNvXQ5akymN7HLI76HLga4d0gylFNKz6OurMFEp00wzopUGKoyJTsMBIRAaMqVRQqOFsUOXg8o5WKfhoHIOWZoiPJtqrcxEX4V2khHVm2RBTBgnKNdGSLMspTXrxlPofNyFRgljB8VxHIQwx+deRs/fyLmmaYZOU6RnU66WGO+rEihFvNIgDWLCOEZ5bn4fgkfirxT+TIECBX5U8Lgmyb7lLW/hLW95yw98vCXAOoWDIvK8D5XnOzTboZkQB6vMbptm5/QoD88t0bl7N41mQBileG4NSxqnpysPYyY4AUqTZIpUGOcjsyQSYSYplZFkGulKZD6pdielLodMa1pBhBKaStVny9Ypdm4c58DiKs07HqbRCgiDFNcuY9sWUoo1ibaGg9CaNFWkEuOcWJIs56CVIskUtiOQQpqJHG0mVmkm2ExrWp0IJRS1/jIzmye4eHaKA0t1grt3s9IOqTcDSm4fUkpj2+M4oDVpbgeV2yFDoLRGpYaDm3MQCIRYf3ymNZ0wRmUZ5UofG2fGuXB2mqVWh8b3H2S1HdJoh3iOhWVbxzjkeSU9O2QZKaDsNXbQkKUZqVIIhClhEzmHPAFbY8Y2iBLiMKJS6WdqwwgX79zESrND5+7dLHaWaDQ7+ANVLMs+OQdOwyHLSFKFZVlIq5scTH68cXAypQmimDSKqVT6mZwa5qKdm2jFCZ07HmYhWKTe7FB2bKS11g6nj+50ndsCBQoUOBvxaL6fHlep+38ruhGU0726E0M7jFFKUSl7bN48wfkXb2V26yTVso9SmnYQ9yYSmVfmSMS6aEaWKZQyP6W1EChpfqJrpUmVmTxkzqv7639tlCeIEtI0o+S7bMo5bN02Ta1aQmvoRLGZzNccJ6F3LoBE5RwwkRxtvCGUPsZBAFKY42TuxHUTkjpRTJJklH2PjTOjnHfRLFu3T9PfV0EIQasT5ZP5yTloIFWKrMuha4d84s+UQp2Eg5QmmgAmmhWnGb7nML1hhPMummXHORvpr5URQCeIT+Qg1thBmAhKppRJQJWGgxlrTZqZaJI5vstBIKV5IQRRkhJGCb5rMzU5zPkXzbLjnBkGB6pYlqQdxGRK5fdxEg5AmnMAbZyOfCx0N8JzKg75OaI4yx1jh4mJIc69cAvnnLeJocEqlpS0OhFZz5ZnftZl4ZwUKFDgRwhP6G7Gx+dwnPD+mkhGnKb0WWX6a2U2bBxh684NrEYRfbUSliWJ08ycrzcJrjlzXqmR6WOLBd33ZV55obqRhnU5HfkyT74tyTJs16VW9tm4YYStOzYQo+ivlZmzLZI0yx2MY07R2kzn7vIBmEkPjIMg8+UFpTXqBLscyzMRAuI0o+Q41Ko+05PDbN25kdQWDPZXOOLaREl6bElkza/+HgcNmQaE7jkuOudjOJiXOHb1ns2625Isw5aCatljanKYbTs2UD5a7nGIM9WLuvQ4HJelkuVrLjI/f9dWomcH3fO+j3ERvTFKc0eqUvaZnBhk644NlI8uMzxY5bDnEGdZz8EQa9fbTsKh+9x0Iyw9DifYYe19CFKV5Rw8JsYG2Lp9mkY7ZHioxsGcgz62toR4vFJjChQoUOBxwBPaQTktuhO9MEscSEml4jM8WGNqYpjxiUGmF4YZGaxxsFpicbllfuXnTo3Wypwmn4A1XWfALC11ZyMrj6Z0cyB6jkU3FJ9rlEgpwJKUyx5Dg1UmJ4aY3jBMvdlmZLDGoWqJxaUm0jK5E+bi5jrHOBgHRApT5mpoaKycWze/wjqOg8gjQVJKkIJy2WdowHAYGx+gFYSMDNXoq5XBsvJIQ3dC1717NfbgGIc1S0CWEOts1XMnegkkXQ4CISV+yWVwoMrk+CATk4Ng0eNwxLaQUhqb9Sx67Kwaw6EblVhrB5XbQR9jsM65EHlECCnxfJfBgQqTY4NMT48gLcHocD/9fRWkbSGkzJ2zEz2UU3IQoHLPSgkzFiflIA0H13cZGqgyMTbI2MQgtTBmLOdg2TbSypcNT8KhQIECBX6U8YR2UAYH+3CcE/VRwEwCrudQrpXwyz5PfcoOtsyMsWnLODMbR8mUZnp6mMueczGbNo6zZ/8CCk3YCem0AsLALHUkSUYUp3SSkE4nAkdSdm38kocQgrjdIY5isjDFdhx8x8ZzHVzHTPSO51Ku+pQqPpa0mJ4YZNOmMTZtHCNNFWMj/Tzn2ReyaeMYe/bNkyjV4xCFMUppkiQlTlLCIKbdiRCuRcm28PwSUkDSCYmjmDRMqFll/LKN59m4jo2UAtd1KFdLlCo+F120lY2TQ8xunWTb1kmU1oyO9vOsZ57PhskRtu+cIUMTBhGdZkDYiczyUZoRxQlBJyYIIpQlKdsSr+JjW5I055AEMZZlUXFtPMfGdQ0HxzGJoKVqCduymBjpZ9PmMXZsmwYpGRio8qxnXsCGyRHOveAocZoRBiFBKyTshMYOaUYcp4RhTCeIURJ8S+BVS9iWRAURnTghCWJEpYRX8fBdp2cHx7Up5XawLYuRgSpbt01x7jkzZEpRrZa49OnnMDbSz5bZaaIsI45iY4cgQmWKNDPPQxQmNIKYLOfgVnw8yyKLYoIkJepE4HvUKj6ea+O5xtmwbatnB0taDA9U2LF9mnPP24RlWVSrJZ7+tJ0MD9bYtn0jYZoShTFBK6DTDlGZOu1nwus40C4cmQIFCpyleBRVkk9oB2VgoIrr+id9Twio9VXYsHmcmc3jPPXJO5jZMIqUgk6csLDaZnS4j5f+7I8DsO/gIjffcj+H9i9wcP9RVpebZJmi3Q5Jkow4SmjU2zhlF79Wwq2VkFKgOx2CICJshPi+S7VWwvcdatUStm1RrZWZnhljw6YxLnnSdnZumwJMFcnRlRZD/RV++meeBcDBw0vcdvvD7N19hIP7uhwyWq2QLFWkcUp9tY1bcXHLHm7Vx7IkzTAyk3a9g2OZqhTfc3scKlWfDZvGmZ4Z4+KLtnLujg1IKUiU4shig4FaiSuvvBStNUsrLa7/3r0c2HeUA3vnWFpsoDJFuxOSphlpnNKot7F8B7fi4lQ8PNehGcVEUUxrtY1j21T7ynieQ1+tjONYlMo+kxtG2LRlggsvnOXcnRux86W1hXqbWsXjyiufjhCChaUmN91yP/v2zHFw31GWFuqkaUanE5FlHbI0o9logyOxfQen4uG6Du0kIYpi2o0OEkG1VsJ17WMcSh5TG8eYnhnl3PM289Qnbc2XZjSHl5pUfIfnPe/J8DxYWW1z060Psnf3YfbvmWNxYZVsDYdOmtGot8GVWL6DU3LxSj6dlYwoSmg2OohMUxuo4Do2tVoZ13XwfZeJ6WFmtkxwzrmbuOj8zfieQ6oVC8ttXM/m8sufxBVXXEIQxlz3r3ezf+8cB/fPc/TIEll6Bgdl3nkMP2EFChQo8PjhCe2gHDq4gG2fKoIC5UqJKE6IwpihgRqTE4O4jm0iI2lmkk3zJYq9e+d4+IEDHD64yJHDSzTrbZTSxHn0IlOK/uEaXtnDsS2WlhoASCEZHOwjdF0U0Gh0CIOI+moLS0rKFZ8wignDmMH+Kps3juK6tim3zUwehM4rYw4dWuThBw6wb88cRw4t0mx0yJQijtMej4HhGn7Vx3YdlpdbJjFXw8BgFd9xAEGr2SGKYhqrLaQlKZU8ojglCCLKJY8d26aQQqK6dlhTHbJv31Eeuv8Ahw7Mc+jgIvXVFkqpPJKUEKcptYEqfsXDdl1WV9toDRJN/0ANz3YQQKvVIQpjmvU20pL4vksQRMRxQrnkM7NhlL5aqVdum2V50q3WHDmyxEMPHGD/3qMcObTI6opxFpMkM3aIU6r9Fbyyi+O71FfbqC6H/iqe44DSxrmMjbNgSYnnOwRRQhBEOLbNeTs3Ui4ZJeI0y8iUeTa0hoWFVR5+4AB79xzh0IGFnrOYJBlRkpJ0OVQ8HN+h2QxYbQRYaPr6yni2TZZktNshcZTQagZYlsT1HDpBRByn2JbF9tlJPNdGa5ObY2XymB3mlnnogQMc2GfssLRQJztDBGVHOyxqjQsUKHD24lF8Pz2hHZTllSaWFZ38TQFeOyCKYxqNNkGUsGFqmI3TI5R8l+nRflxLEgYRBw4v8e3r7mDX/ftZXmpQr7cJgqiX9iAsie271MoeJccmjhIWFxoopRgd7aNvoEpULdFph2RpRruT0s4nCq8VEIQxjUaHIE4YHxtkx+wEfqXE1Gg/thCEnZAj83Wu+86d3HfXbhYX6qyutgjzapYuB+naDA1UKbk2aZKyuNggSTJGRmr09VWJK2Xa7ZAsTUmCiE47BMB1beOwNNqsNgI2zYxxzrZpXN9haqQfz5bEYcxKvc03vnU79965i5WlBisrLYJOiM41VaQlsVybgf4KFc8hTVKWlppEUcLoSB99fRWSaplmy0Q5kjCi0zF2cBybMIxptQNa7YixsQEuOm8TpYrH5HAflhTEYczCUoPv/Otd3HXHLhbnV6mvtml3QrTShoOUSMeiv9ZPxXfRWcbiYoMwTBgeqtLXVyaplmi3I7IkoRPGZmkOcByLMEpoNTusNNpMTQ3z1CdtxS97TI70I4Xh0GqHfPPbd/D92x5iaXGVlaUmnXyZqctB2JL+sX6qJZcsyVhdadFshYwMmzyarFqm2QrJkoQgiukEEQKwbYswimm3A1bqLUZG+nnmpefi+w5jgzVcSxqnqhlw3Xfu4o7vP8TyYoPVlSatVtCr4DoVwiih8FAKFChw9uKRfz89oR0UzbE+LSe+KcgyRRBErKy2SHcd5r779uMAG2bG8H2XJE45cnCR++8/wEMPHaJRbxEEkRHQ6iaYCmkmRUv2EhZtYXqvKK2xMcmi0jKTVq9/TKZ6wmphaJyDPXvmuPfevfiWYMd5m/AsCWjmDi/xwEOHefChQyyvNOl0OeT/1+UgLPOSUuT9fzQ67x1jdSdvW6KVBNW1jc41NxKsRptg3xz33r2XquswvXGUcrVElqQsHl1h196j3Hf/fpZXmgQdw8HMh4aDyDnI4zhkeYKqJSCTAmlZJhKhTDVNV+QujBIajQ779s9z7z17GSh7bN06iVcpobVm4cgyD+45wv33H2BpqUmnE5GkqTkXGoRESGNraVtYUqCzNb14ME38Mil6dtBa55O6sUMUxTSaHaKDmrvu2sNIX5nZ7RsolU0kZWGpwf7989x73z4WFlcJ2iFJmuZVWnl9U85BWMd0b2y6HHSeOG2eB5lz0Pl4KK3NElArIDq4yD337GXD2ADTG0boH+pDK0VjqcmuvXPcfc9eFpcaBO2AOFnL4QyfiiIFpUCBAmcpHs330xPbQVEafaray9xJk1LiukY9dnR0gP6BKrZtJlBpCfoHqoyODTAwWCVstgmsbogdunrjSmtkXhUk8/reTJmJT2OqhERexqO1Qit1bBA0vSTRvr4Ko2MDDA7V8kohs5PZ3s/gYJXGUp1AhsfuT5t7FF0OedVI1tMC6ZY3C4Q0k5POl2y6jQ9BY3U51MqMjg8yOFjFyZe7pJTU+sqMjA4wPNRHa6VJbMW5HbraKhqRL4mJrq7KOj2StRohuqdsq/Pr654dLGq1Us8Ojuv07FDrKzM6OsDQcI2FI0uEnWPLHTp3MrQ8pvXSFT1TOQfVGwt6xym1xg6WNhxsi2rVZ2x8kKHhPmxb9sarUvEZHh1geLiPo4cXScIYo/FilGOFXGOT3A5d4TVTuoypWMqfk+PHQktznG2bhNjRsQGGhvvwPDePlgkq1RLDo/2MjPZzaN8ccRj3ypj1GSIoel0JVYECBQqcZfiPssSTnsZBESKXG7cklZLHOdum2LRpDC0Ed925m4MHFpicHmHjpjFmZsY4d9s09YVVWq0wFz0za/1CKywhsGyNY0ssy3TMFUohckdESokLPZXVTKneRGJphZQmB2Pb5nG2zk7h+h735BxGRvuZ2TLB9IZRdm6bZmlumWajY/JS8vMLFFoIHClxcw4JAk7CQaDJ8mqTLgeptCnt9Vy2bZ5g+9YpLM/h4YcOsnf3nOGweZyJySEuOHeG5bllgnbYE14zk7dCZ2apybEktmWRdjlkqufouLmDkGaKNDPOGl17CYHvuWzeMMr2bdP4FZ8HHzzE/r1z1PrKbNk2xcTkEOfv2MiRfUdpNzu5MFzuoGhl5Pul6nGIU3OfIjM2F1Li5mW/6zhoEMpEglzPYcPkMOeds5FytcS+PXPsevgw1WqJzbOTjIz2c8G5M8ztnzd2IHeAujlLwnRcdqRxNOI0A6WR6pgdpGVhAVGmcoE/1e2LgBDguQ4bJ4c5d8dGStUSBw8tsufhw/gll9lt0wyPDHDx+ZvZ++BBgnZkdFfWiPSdCkXwpECBAj8qeEI7KLZjYVmnbi1v2Ra2Y+P7LhtHB2g1O9y2/yj/8PnvcOu37+SCZ5zHK17zXHZuHmdmdIDbXAfbsc1xttWVITEOQKax4pRAadqZxnJtLK1pK4WMU1ytkPmyjhASaRtHscvBdR2mBvtIo5jb7pnnb//mm9z8zTvYfvEWfu4XX8C5W6eYGqxR8j1s1zEy786xpE00iExhxymh0rRShXRsPCkItEYmKb4GO1WEWq/jIC2J7dg4rsPM6ABZnHDLnbv58pdu4Dv/+D1mL9zMy17zXC46bxObxwa52XexHdsso6yxAwik0thJSgi0s5wDEGiwkpQS4GSKUButFGxrvR08l4nBGjJT3HHffq750vVc94/fY2zjKL/wX36CC8+ZYbJrB8fpjYXSOp99BSiNk6REQtBOMnAsPFxCwIlTfAF2moHKOViWUXS1LCzHwnEcJgZqlCzJnQ8c4GtfvZmvfu7bjG0Y5WWvfR5PfdJ2pgZr1ColHMfBsm0sO82X73IOWuMmGbGV0E4ylC0pl1wiBK04pWwpnEyBMpEeK+dgWRIrH4vxwRplx+KuB/bzjX++ja9+7joqA1V+7pdexNMuMRyqJQ/btbHzsZBniI+KtFCTLVCgwNmLR/P99IR2UCoV/5RVPAC2bSNtmzBO2fXAQXbtP8pDc0vcdd9+6o029zx4AP+fbuSByWGcKCWMU6RtUS772LZxfLJMkWUamSk6qy1atkViSQaGakgBK0lGUm9RTTOkELiOY/r5WEZ63bZtLMcmSjL27j7C0eU6uxdWuP2evazUWzyw6zBf/trNPDg5jJso2kFsKm/KPnbuoGSZiYpYShGstGjYksQ2fYVcActJRlRvU0szBAI3F/iycg6WZZyDOM04uG+eL//j9Tw4t8wdd+ym3mjz4O4j/NO1t7Drvv0MWRadMAbL2MHKl7xUZqJDtlKEq21atiS2LfoGynhCsJQqltdwcBwLSzrrODiuYzgcWODr/3Qju5fqfP/7u1haadJC80/X3squ+/YxIG1a7RAsiV/ykPJYLkmWKcgUUb1Dy5ZElkW1v0xJCJZTxXKzTSVVSA2ObSGttRwkjuuSKM383Apf/8pNPLS4wh137WV5pUUAXPut29m/+wjjvkejGaCFoFTyTEn5Gg4iU8SNDs2O4VCulujrK7OYKlZaAXGa4Wq9hsMxsTzXc0lzDt/8+i3sXq5z1737WVxusBREXPut2zmwd44NFZNoq4XA871eQ8bTwRMlLKv0WH3EChQoUOAxhZWlj3hfoc/0jXcWotFo0N/fz6XPeNNpHRQpJZaUOFIyUnZYjVMW2xEySRmxJQuJQrk2I2WPYc9hrhP1cipUvjShM02WZbiAIwUdDcK22DwxgCUlu4+skMYJFWkk4CMF0s4TWtdwkEIwVnZppxlH2xE6Thi2BPVMk9g2Q2WXIc9hOUyI82WibnJnl4MD+BJaWqClZNPEAGXXZteRVcIwpiLNL/xA0UvqNar8AtuSSCENhyxjvhWRxQnjjmQ5UcS2xYDvMlHxWOzERPmyRNa1g9JkqeHgSWhrgbYkG0f7qZVcHj6yQhjEVITJsWhnZnlN5M6BEAJLSmwpGfQdUq2Za4ekccqwhFamCW2LgZLLeMllKUjWcMjtoDQqUwilqdiCttKkQrJxrJ/+ssfeo3Va7ZCyNCq6XTscz0EKwUjJRQk43ApNFZI0dmtJSZ/vMFnxqEcpnSRD6ZxDN/E3VUg05dwOmZBMDFcZHyiz60idZjvAR+MKQSvTCMskDq/lYEnJoGeDFBxumVLkEUsQpIqWJan5LtMVn9UwoZOXgpsS49N/XH/z9c/jBc867zH4lBUoUKDAY49Gq8nGp15CvV6nr6/vtPs+oSMoWaYR4jS6ENr0alGYZoGNVkgQplQ9G6/sIZshnXZEPc3waj4qz6XQuYOABq0UWZoRaY2yJX65RP9AjZ07Z3Bsi0DB4lKDpBOQJBkpAgujTdJVJxcAQtCJYurtiE6QUHZt3LKH1UlodCIaaYpX88myvOJDKcMHDJ+8skhL8KoVarUKO3dspFJyCbRkfnGVpN0hiVMy5LH6JgGWFCgEQiqCKKHeCel0EjzHwit7WK2YKIhpJCkVockyc9/qFByUBL9aoVIrs2P7Bgb6SoRI5o6uEHc6qDg1/Xq0ZWTlhUmQlQgUijBOaIcx7U6MZ1u4FR8nSlltRzSSlLLWpKrLQaOybA0HhdCKQAvckk9fpcT2bRsYHiiT2oc5eHiRNAhJopQUsLSFNOtueeNDI0EfJimdMKbdjrCkxO0vkcQpSTuiGSdUhCbVwiQ8r+GAMqq6QivaaNxahVKlxNatU8yMD5BYhzlweJG4HdAJIzIEQue9C3oczDMZJilRnNBu5RwqJdIeh5Q6mpScg17D4TTwxkep7dj6g32gChQoUOCHDN1oPOJ9n9AOitD6WM+bE981fXNyeXGkWa7RudBV1u3AmycxYkkcJGnesVjkVTwq/9VuSk0tqr7L6Gg/23dswHVsDi02aHdClupNkiRDSIklTUVNtzWc3V1usaVJOs0ywEYLE+EgU2SZiYrYUkBqJqRMm6TXbuQgU4pYK8aGHYZH+ti+YwPVssfcSpt2EDJfbxFFCdK2TTWL1F1LGA62RDiWqUDKMrAtsrUcMB2SbUui0wydrOGgdU/qPdaK2oipdNm6bZqRoRpHVzs0WgHtRos4ShCWZUpwtcwZCCzLJJUKS5JpjUozsCy0NL2MUAqVgZIm4kMm0ElGlo+1qeYxHNJEMdRfZXCwxrbt04wN11hpGy2X5XZAEMVI2zY5KFqaKiRhOFiWhXQsssBwsFyRcxAmUtRNhLVtMpEZhyTDRFByDlmWESYJ48Om+mp2dorZmVGWOgkrzTaL7Q7tMMZyHCxMU54eBylNPokjUXFiODgCJc0z0OWgBNiOEXxL82aWZ6zR0722SQUKFChw1uHRfD/JM+9yFkOf7pVXsMi88kZKs2SSV5OovDEgWqG0QkszgZtcgfz4/DxamfyLJFOUyh6jI/1s2TLJ1q1TjI8NUKn4ZJqefkqvrDUvh5XSTIpIo96KMl1ylRS9dr0mOpJPnlY30VHnpcs6z0VRphtx2WNkuI8tWyaZ3TrFxPgg1WoJhelWrPNrdO9hHQerawfDQcu8ZDifeA2HXHel20q4a4e8SilKM0olj5GhPjZvmWB22xSTE0PUaiW0oFdZs9YOoPOxMA5Kzw4ca/AnuqXbQpgJXEqk4Fhyal5mq3I7eJ7L0GCVzZsnmN06zdTUMLVaCaQgzpWCj3Hg2JJbvuyj8rEVeg2H3A5KGC2Vbv5K7/r5MZnShEmK57sMDdbYtGmcrVunmJ4apr9WRliSKE5P4ACmFLrLIVtjB52Xbos8iqeEWRqycr2V0z/vFCU8BQoU+JHCEzqC0nMGToJcjsNMLlL0RM8kx3rTSjBLMdp0oO3VP+jjkhG7miq2RV9fmdGRfjZsGMX3XcZHB0znWcdCR4I1rsWaX7vG6VH5fC/zpSct8kkzvw8lBELm+h7dkxzPQ0qjZTLcx4aNo1QrPuNjAwz0V7BzCX2O49BTo8077Hbt0F1qEPm/e3aQa5003bNJz/Ht6qaM9DE9PcLE+CAT44M5BwdNcKz7cdcO3cl5rR3QSGEmZiG6HEzkwOppqnRp6GMkhIk0VKo+w0M1NmwwHCZzDkd8F82x442fd0zArKefwqk4GLt0OzD3nofufeR+pQKq1ZLhMD3C9MYxJieOMDhYxfM9E/k5jkOXhOhGbDCRFdm1lRC9btQK8+yKri1P87z3oDVn2qVAgQIFHi88mu+nJ7SDMjBQOW2SLJgv9SROUVmGEKa6RGCa9RkJdgshBUEQI6X5d7nsUS57PYE1z3UolT3Gp4bYsX0DWzZNUKqaRnQXXLAZr+QyPT3MwQPzdFohUWz6xfQSbbUmTTKS2ORzOK5JmEySDLTGybvtRqHpBCykpFzyIO+Y7LqmK3Cp5DE2OcjOHRvZtHGMWn8FaUnOOXcGx7MZGxvgwP6jBJ2IKExMD6FsDYc0JU1yDo6FEIIkj7g4tuEUBgmWY0TpSiWPUs7BcSw8zzS7Gxrp44ILZtk4PcLAUB+W77Jz50aQMDE5xP69c3TaJvk0jo/nYOyg8vsWIo88KZ1zgjBMcBxTKu35Lr7v9jh07TA02sfOHRvZMDXKwGANy3XYtn2aMEnZsHGEPbuO0G4GhFF8Aocsywg6Znwcx8aS0qjmKmMHrU3/I6ObJk7Kwfdd+oeqXHD+FjZMjTA6NoCyJLOzE0RxwuTkEA89eJCgHRLmdkjT7BiHNCPLx6c7/mlmcn66QoJxlIKIEYDrOXjemRsBup5DEUopUKDA2YtH/v30hK7iefWr33fKbsZaa4JOxPJinWajTZZmeNUSwrbIkrQXPbBsG60UYaON7dhUamUGh/uo5g7IyEg/GzeMcu65Mzz96edQqZZIM8XiqmlgNznS3yuD/e537+bee/Zx8NAic3MrRFFspPaXGjTrHZI4xquWkI6dc9AoRI9D1OoghKTWV2FwuI9KtYTjWIyNDjA9PcyW2UmufPHTelLy88tNkjRldKgPz7GJ44Q779jFHXfu5sCBBY4cWSaKEsIgYnmxQbPRJo7WcsiQQqMUyNxxCxtthJBUqiWGRvqo9VWwbYvhoT42bhxl27YpnvHM8xkYqKK0ZrnephNGTI4O4ljGDrfe8gB33rmbg4eWOHx4iSAwnY5Xl5vUV5rEcYJb8rA9hzQxKb1KmwiVAKJWBzCKqgNDNfr6K9i2zfBQrWeH5zznIgYHa+icQzuMGR+q4eXKtPfcs5dbb3mQ/QfmOXJkmU4nIooSVpYaNOotoiDCLXvYnkuaZiaKBXnuDIStAK005UqJoeE+av3GDkN5tGTTpjFe8MKnUK2WEUKw0mjTaAWMDvVR9l2UUjz44AFuuvEBDh1a5OChRdM4ME5YXW6yutIkCmKckoPje2RphtBGfVfYFpaURM0OSmnKFZ/+wZpxxKzTr8q+4Q1X8uwfv+Cx/cAVKFCgwGOERqNB/8DAj34Vz8LCKs5pIihhGNOotwmDCNuR1DwHKSXtJCVIUxzLpuTYgKaNJsrLjFXu3DiOjUoVjmXR31+m0exQrvgmqlHyTC6HMPoYKytNjhxaZO7IEkfnllmYXyWKTCflZqNDEIRIKai5DpZj004ygiTFtq0eh6AFcRCh8omq0wmxbRudKSwp8H2Xo/OrTEwMAeCWPWRm9xykMIw5dGiRo4eXOXpkmYWjqyaCECU08gaIQmhqnoNl2QSpIkwSLGnh2zaWJQgEBEHUk9APggTblqRJimNLymWXer1FX18FIcDxXfy8N4/Wps/M4cNLzB1Z5ujcMvNHVwjDmDjvKtxphwgBFdeI12WZqeqRQlJxPCwpCNuCsBOZUmuticIE27FIkxRLCkq+y+JinYGBKrCGQ+4gtdshh7tjccRwCIKcQ72dN/5TVNwKruuglCaMIqSQlD0Xx7YIOyFBzkEL04TPtiRpnGBLgetYHDq0yM6dMyYC5bl4GEG6br7QwYPHnof5oyu02yFpktFstmm3ArRWlJwSnusQKk0QxcY2lofjWMS2JGh0TGRFm4hbt9XCqRAEUSF1X6BAgbMX/1Gk7ldXWth5z5jjoQGVZWRKYbs2ju+YqpJMYSNILYktQGYKbQmcsgdBQpZPcGFoJuY4ionCmHYQ4ldLPOvp51KrlhisGTGsOIhZrbe57c5d3PL9hzhycJGV5RarjTZJkvUqXyzHxvZMKF+mCltAZktsIYwCrSVwSi4mfzXnEMVY0iJNEsIwotHqUOkvc/mPX8hAX4WBiokeRUFEox3y/bv28L2b7mfu4CJLSw1W6x2SJCVTXQ4Wlmuqa2SmsMhVZjF/C2FhlzwcZfIl2p2IKE6xpCSOEpIoodkOsDyHFz//KVTLPn19ZcgjIav1Fvc8cIDv3Xw/Rw4ssLzcZHW1nSeLKtI0PcbBkmYsNCQ5BytTCCFxSm5P5r8TRMRxirQMhziMaHdCnJKL49gM9VepDVSoeQ5ZnLJUb/Lg7sNcf+N9HNgzx9Jig9V6myhKUEqRpBnSsrB9x2iT5BykJbEQWJlGSI3jOzhpZnRlgogkTpFSEsWJcXRaAdq2qFRKDPZVKFdLVNwySZyyWm+zZ/9R/uX6uzm0d57l5QbLKy2iMMntkCFtC2kbpVyRKSxtKs4kYCnT98j2HBzfRWgIwthU8pwhBT6OkiIHpUCBAmct/sPkoJiqmeyk74n8f1zXRtoS6eZLGqnCFgLfdbAThYpTlC1xfRdbSlSWl/TmuRmdTgQ0CNOUyl27GR/qY8umcSp9ZfNrvdFm967D3H7nbvbuPUqr3jZdeLt5DwIc1yi7Ss8221LTgVi4NjKDLE7RtsTxXKSQqDwXIUsVShoOWmuiJOW2O3YxPT7Ets0TTJSNymqrGbB//1HuvGs3u3YfodPomOWEJCFL13MQazhYaDzPwUo1KslMToZnHDmV5iJpaYaSpiv08goESYr0HLZuGmfTxjGqfWUA4ihm3545br9jFw/vPkJQzznEKVme72M7tpmEXRNlSOMEicbP7aCSDJTCcm3K+DkHnfey0XSCCLQmzhTy7j1MTw6zbdM4tYEKQgiiIGL/3jnuunsPDz58iOZyk3YrJIoT0sw8J7ZjIT0H6a3hoA0HoUCnGakyEv7lqo9KjnHIlCIMIlaAOEmJBZyzfZqtM+NsKLk4lkMUxhw6MM9dd+/h/gcOEjQ6tHMhtjS3g2VbOJZj7ACkkeHgudZxHIxCrRkbw+FMn+0z9eopUKBAgScKntBlxuI0LzCeWtad6DNlqlMsI2LW/bIX+fJEdzLOsqxXKdEtz3Uck5jZ31ehVivje8c68HqeS61Wor+/Qqns5QmP8lgVS84hTTOyTJnohZR58zedN5cTj4iD77sM9Ffoq5Up+W6vI7Lr2FSrZfr7K5TLPq5r5+WxJ+GQZvn1TD1T1mv0Z+T5e07JmmaD6+zgu/T3VeirVfA9t1fdalkW1VqJgYEqlbKP69jHSnRzDmqNHQQiz6cQvWU12R2fXAwty7JeojHC9NWxHQvfc+jrq9DXVzbJxJicI9uxqVbNWFTLPp7rnGCHrvNpnKacQ96NWGuNyO1gOBxr9GeqbYzdTMKwS39fmf6+Si6Fb5aXbEtSqZTo769SrZbwXBvbPo5DrqOS5RGRtRxMx2TRW67q2qtrh9M9812nvECBAgV+FPCEjqBgSfM6GfJqjSRK0EpRVj7ukA8KkiBDxynKsrA9ByEFzZUOnVaIkBLHdcykYpnOt9VaiYnxAbZuGqda8Wk0A9pJavrWhQkl32V20xgH9syRRSlxkhFEicmhyBRxnKCzDF8p+oY8pCOJO4ER6bJsLN9BWpJ2PaTdDBBSrOPgeA6VaomR4X52zk5RrfjUmx1acWJKdsMEx7bYvHGMvdPD7E8zojgliBJQRowsiRNUpvBSG2ekhLQFSRBCkqKExCp5WI5Fu96g3TBlwo5r4zg2WBLbdahUfUZH+9kxO0m14ptlqIPzRr8jTnFsm80bR9k4Ncz+OCVOMzphAvkEm0QJWZbhpw7VIQ/HtUg7RvZfCYksu9iORdhs02kGaIxTZLvG6XNcm0qlxPBwH9u3TDDYXyWMEg4eXEAJIM6wbIuNk8PMbBglDZPcDinkIn3diI4TS2qjPo5jkQU5BymRvovr2oStNp1mB63Bdhwc18jSW45NueIzNFTjnG3TDPSVTe7P4UW0FBCbSM30xBCzm8bYHackqerZQWfKRNfSDNu1qPguTsnLOUQoBLLkmL5FnQ6dhunobNs2jueccYmn8FAKFCjwo4IntIMiHQvLPvUtpIFJ2kyCmKoQuBM2gRYk7QA3SYiRpK5N2RLYnYhWI8DxXdNN2HNMgzvfpVzxmRjuZ3Kwyt69R7nrvv3cccdDJGnKhRds5eILtjDaX2JypI/lpQatIMIKY5QUZKFJUo06ESWl8cYHiSybpN3BjlMyV5K6DhVbYIUxnUYH6TlYroN0bSzLws05jAxW2TIxyIEDC9z34EFuvvUBsjRl585NXHTBFqaGa8xMDLG02KTZDrGCGEsIk2gaJURBjJfYeJMjRJZF3Alx45TItklcU0bszCd0Gh2Ea5uOzXkUwvEcSuUSY0N9zE4OceDAPPc9eIjv3/4Q7XbAjh2buOTiWWYmBtg0McTiQp1WEGF3bDIBKk6Ik4yoHeKmGd7oIJnvEncirCQllRaJY+N5Ns5iQrveQTg2ss/Cc2wsW+L4LqWKz0BfhdmJIRbnV3hg1xzfu+leOu2A2dlpnnLJdjaM9bNpYpD5uRWa7RA7iMjQJElK0koJ2iF9tsSfGCIruaa8O05RtkViW/glB3clJax3yCyLar9p+Ch7dvAZ6K9wzswY83MrPLD7CLfc9iD11QabNk/x5Iu3sWXDMNs3jHL0yArtIMb2Qiyt0UlG0gkJmgFVR+KP9KN9hziMsZOMFIhrhoPXyAjqHZRtUa5JfMcoBJ/2M2EVDkqBAgV+NPCEdlBc18G2T6UNkauUJj6ZlFQ8xyQ3ZmY5YcB16WhNI4yxbEnFdaiUfWzfxS95ZpkkD9t32hGLC6vcd9cedh2tc/cDB9jzwH7SLGO5HrKy0uKcDcMsHF2h1QqNtkWuKyIxuRW2kFR9myROaZCRKqi5DnWgGcZYjqRs21TKPtJ3KJVcXNcx1THK5KEsLzV44J69PHBohXsfPsQD9+xBqIyjS22Wlpucv2mMhfkVWq0OWa6n0e3/kpV9bCGpeSbpthGnJEox6DmEGTRDkwdRti2qZR9yvRHXy+XioVcy/dB9+9k9X+e+hw/z0P37SMKIucUWq/U2F86Os3B0hWYzIE0z42C5RnhNlU1ibtW1UGlGI4iIMsWQY9PSgmaUYGmFb1lUKj7C6XIwHaINh5iV5Sa7HtjPodUO9+6a4+47HiKLYg4drdNohpy7aZRmvUWj2SHpcvCMiqwqZ0gENcvkejQ6EUGaMeLaBAhacYKU4ElJteyT2mvsIGVPp6W+0mLvw4c4sNzivl1z3HvPbtJOwIEjdVbrHS7cOkESRDQaHeLEJBq7roNtSVTqIRTULAFK0QwMh2HHpqM0rShBSkFZCMPBsSiXfFzPRojTr8r2FIALFChQ4CzEo/l+ekLroFz6rLecXqhNabLEhPf7LEFoW7Q0DPoum/tL7K0HLAcxFQnVNGM51Ube3DGy9EaEVmAJQc136Cu5zDUC6s2AsmWC6a1EU6uVmBoo0w4T6p0YRd7PpcshzVBJxoAtiC1JQwv6fZeZPp+jnZijrZCKgLLKaCQKbZlKF7GGgwQqnsNoX4lDK21WWyEeCt+RrEaKctljaqBCmimWWyGZXsNBa7IkQ6UZAxJix6apzPm2D5Y51IqYb0d4aPpVRj3RKMvYodeVWYCFoOI5DNV85uodVpshntC4tmA1zKiUfaYGKyilWGiGpgPvGg4q51CVoG2LuhaUXYctAyVWwoSDzQAfcg4KZVnrOeS28B2Lsf4yC82Q5UaApTLKrmQ1zCiVfSYGygitWWqFpHl+i+pySDPSJKM/57CqBa5js32wTCNKOdAMcLSmXyvaiSIWAtu1EflSorWGw8RAhaONgOVmgMwy+nyLpU6K53tMDJTxbclcvWM6ZK/joMiSlKowUcBVBI5lsX2oQjNK2d8MsLVmUCuaiSLJc2+E3dVBPjXe8Tuv4ieufPoP+tEqUKBAgR8qGo0GA/8RdFDymtxTvi0EveTFdhiTOjalapnZrVNcvHUCe+88d99/kLjVppUkSM8kOwpM1EJjmuVlmaKZJITtgNVOTKI0A9UKUgpWl1rU622sJEYjiFKTjIs0aYvdBFMsQRAnxELgVMps2TrJRVvG2T23SvOevcTNDjpOIF9SkT0OoLRJ1mynKVkYsdqOiDNNbaCM69qooEWz0WE+NTohUaLM9bschOlojJQEcUycZrjVCjMz41xy7jTVIysE9x0gqLdoBCHC903SrFjLIU8sTlPSMGKlYzhU+0r4voMKmjSaHazU5MNEcbbeDt2xkJowSUwORrnExplRnrRzmrmVNvU7dhM22jSjCFz3BA6Z1iavJ06YTxJWOjFBkjHYV8IruRC2aHY5WJLwJHYwvXhMRVQcJ9iVMtNTwzzpghkW6x2ad++judKg0QkRrnusD85aOyiFSlLmk4TlTkyYKGpVD79agqBJqxWwkCaUPZswMsm4WGs5CLQliZKELEmxKiUmJ4e46IJN1DsRzTv30liuU28HSN/LeyMJtPFwfsgfqgIFChQ4O/CYV/G8973vReQ9TLqviYmJ3vtaa9773vcyNTVFqVTi8ssv55577vmBriW77etP8rLylxQCraEdRGSZolL22Tw7yQWXbGN26xSVimcm/8DoqXQnkGPnOhaSSvJyVzBN9nReraOUIu1WwxzPKz8XQCc0eRi+57B58wQXXLKNbdunqVVKaKVoh3Eur54395Pd69PrCZNmWS6iZpoLKil6E2dX0EsITrCFyHvNtMOYOEkp+Q4bZ0Y5/5JtbN+xgf68XLjZCVF51921HOSavjRppvKqF1BSorqdoVWXgz4W+TnOFgBhnBDFCZ5rs2HDKBc8aSs7z50xmipo2kFszrGGv1xzT9DlYLRStDActBCoM3HIj4+ShCCMcV2bqalhLnjSNnacO8PgQBVLCNq5SFvPlmueiW7HpVSpvBrMGD0zA2Wqb1TeFVuw5h7WnoM8gTfGc20mJoY47+JZzjl/M0ODVVM+3gnJVPc+ZD4Wp38JOOHzV7yKV/EqXmfT65HihxJBOf/88/nnf/7n3t+WZfX+/Yd/+Id89KMf5eqrr2bHjh184AMf4AUveAEPPPAAtVrtUV1nbUnxCe91J/V8hzBJqUlBX63EzMYxtp8zw1w9oK9aYkVKOnGKhzGeFAKFNt38APJGc1obx0CQN3oTotd4MOuWBfcuKXqlsVoYpnGaYjsW1bLHxo1j7Dh3hk6q6auVWLWMwq2rdT4Bds98jANAmjfNE/nFtDCTd1d9VvWOP8Zh7UMRJSmOY1Gt+GyYHmHHOTO0Mxi49WGWHIuVOKW8xskxK4CGS/e5yvLGeTK/WZ0HKRTm+lqvHZtjdlD5OeJcqKxS8piaGmb7OTM4lTKDfRWWbZtmkuLq7hh2b99w6MYPsvw6Mre5xnAQdO2wdiwMpBAoYRyfJHeyKr7H5MQQ28/ZiF8rM3TLQywcdlhKUjylsdc2HVzzbAGkas0IdZ+HLgdlom9izf5iDQeEIMlMCXG55DExPsj2nRtZWm0zfOMDHD24wFKSUkLnzuEpHvQTIB6dElKBAgUK/HviUXw//VAcFNu210VNutBa88d//Me8853v5GUvexkAn/zkJxkfH+dv/uZv+JVf+ZVHeaWuCsdJ3tGiN0EJYfrulHyPof4q01PDjIwPsWFqmKGBKvMll3o+eYq1p17TfbbbXVbmzka307Al8u68iB4bYQiwdnoUApQQeJ7LYF+FqckhpjeOMb/cZnigykLJZ1U01jhV3a606zno3InquXzadOO1hFhjjfza3Qchd6RE7iS4rsNgf5WpySGGxobYuNphZKjG0bLPHOsn9h4H044Xnd+6EAKZT8Bad1dSjnUJXjMQkNsGccyZcFybgb4yUxNDjE0ME2cwPFhjruyx3PW0T8Zh3Vjkqzf5NkkeMTv+qdCA0Ojc4ew+D5Zt0d9XZnJ8kOmN4yghGR3q43C1xBEpjE8kjj/RsX8puqs3hqvSupejwho7aK0RWpycg2MzUCszMTbIyNgQ5arpVF2rlkCY5UZxCg4nhz7jHgUKFCjweOHRfD/9UByUhx56iKmpKTzP49JLL+WDH/wgs7Oz7Nmzh7m5OV74whf29vU8j8suu4zrr7/+lA5KFEVEUdT7u9FoAFCtlnGcUyfJOo7pAuw4FrOzE2zdNs2mzZNs3DCKbVtMTw1z6dN2MjHaz55dB9HCIkmMjkkcJ6anSmI0RNJcWySNU6MP4uay9cL0SAmBcsn0cXFcBzsvCe1ysG0LW04yNT3KzMw4MxtGQUjGRvt5+lN3GA67D5FkRpwrjjOSxEjEdzlkmSIMY9LY9PBxHcvwEII4zQjRSCmxj+NgOxae6xitlE2jbJwZZ3Z2mi2bJ7Adi/HxQZ5yyTZGBquMjtRAWiSJuX4UpWhtxM2MfkdKGCWGg2Ph2Ka7r9XloBW21eVgY+eVSHa+n+PYyC0TTEwOsWnzFFu3TOL7LsPDNZ765G2MDlXZNT1MnKoeB9MZ2iQbp3FCmqa55HzaE04zVVcClWVEscaS0miHuMd0VCzbyoXTLCw5zvBwH9u2bWTHtmmkJenrq/Cki2fpr/mMDldJUrN0F8fmeVBKo3JtnTTLiKKYJG8FYOxg8odUlhEphW1LbMs2dnKN1o1lmWoe17EQm8YYHuln+46NnLNjGj/XYHnSRbNUyy5jIzWS1MjzJ0lGFCWcKaddqoy03XkUn9YCBQoU+PfDo/l+eswdlEsvvZRPfepT7Nixg6NHj/KBD3yAZz7zmdxzzz3Mzc0BMD4+vu6Y8fFx9u3bd8pzfuhDH+J973vfCdvHRvpP2c1YCKjWykxOjzC9YYQLL9jC1tlJM4EIWG4GjE0O8epXX4FSit17j3L7HbuYO7LM3KFF6qstk5vSDntN7hbn60hHMlDuxy17WJaFcBp0VlskKzFjY4MMDPnUaiWq1RK2bVGplpiYGmZyeoQLzt/MOdunzXGWZKUVMDTSz6tedTlaKfbuX+Cuu/dw8MA8hw8t0VhtkWaKTiug2QxoNNoszK0iXYu+oRpupWSk212LcDUmWolguI+h4X6q1WMcyhWfyelhJqeGOeecGS44b5MpQZaS1VZIua/Mz/7ss0BrDh1Z5tbvP8ThQ0scPrjAylITpRSdTkij0aERxCwerYMt6Ruq4VR8XN9F+g7hapOwFSIUDI0YDrVaGduxKJU8xieHmN4wyjnnbOT8c2ZwXQekYKUd4pY9XvayH0crzZGjK9x2+8McOrDAkcNLLC81yNKMoBPRbHZoNBKW5utkQHWgglvxcUseVqlDtNIgbEeo/grDI/1UKj61Wtko8ZZcxieHmZwaYtv2DTzl4q29FgCr7RC35PKSnzAVMEfnV/j+Hbs5uH+eQwcXWF5skGYZQSem2WzTbAQsruHgVDycsoflO8QrKZ1GQBZXGB0foFL26euv4Dg2nu8wNjHE1IYRtm2d5qILNlOp+CAFnTjFsiRXXvk0tHoqq/U237vpfg4dXODI4UUWjq6aNgWnwdJXruWua7/ci+R13Zm1/z7p5+Uk769dXDz+3yfbV5/kv4/k2qficzz+I1378bT5D/vaj+ezdrY+5/+RPmOtNcGGM+Exd1CuvPLK3r8vvPBCnvGMZ7B161Y++clP8mM/9mMAJyTJ6Dwh8lR4xzvewdve9rbe341Gg40bN7Iwv3LKbsZCCNqtEMuWeL5DJ4iNEJlj045i6u2QUtml7LlorQmCmKXFOvNzpgtvfbWNUoooSgijPLnVd/EqHo7rsFLvmGUOx6bWVyaUkiTNaLUC0iQlaEdYlqRcDZBS4Lo2nU6EX/KwbYs4zWi0Q7z+Cn7JM0qrWcbSUoP5uRXmjyzTqLfJsswklUbm5fkupZqP57vUc5VRYVlU+ypYQpJminbbaJAEndBwKPtGbM2xaU6HlHIOUZZRb4cMOxVqZR+tNXGSsbTYYOHoCkePLLO60kRliihOCaOYME5wPRev6uH5Lo1mQLMdIaQwHJAkmaLdCUnSlDAwdijlkvSe59CcHsVybEpljyhNadYj+qslqmWzT5oplpcazOccVpYbZLkibxia8bBdh3LJxS97NNsRrU6M0sYptYREaejkia5hEGNbEs93EUJg25LRsUH8sofr2Gitaa60qJU8an1l0BohLZaXm8zP5xyWGnk0xdjBdFi2KZc9/LJHJ4jphAlKa8MBk7Db7kR5tMV0Q3Y9B61Nj6jRkQFcz8H3XVKtadU7uYy/hxCC5XqbpeUGCzmHxfkzOyhH5u6lr3HotPsUKFCgwOOFjjp5/7yT4YdeZlypVLjwwgt56KGHeOlLXwrA3Nwck5OTvX3m5+dPiKqshed5eN6JjsjCwiqW5Z70GCEEXr1NEEbU623STLFp4yjDQzVc22KwVsazLKIwZmm5yfU33Mu9d+1hcWGV5eUmQd6gz+ROCCzPZri/gu/ZJEnK8tFVtFIMDVWpDfUR1Sp0OhFxaspXm81OzsGh04loNNqkSjMxPsjG6RFcz2GwVsZ1bOIwZnGpwQ033Mddd+zqTcqd4zgIWzIyNUTJc8jSjOX5VZJUMTRYYWigSlItGQ6ZIm51aLW69nMIgoh6vUW7E7F1doLpySFs13AoOTZxZKpa/vW7d3PX7btYXFhlabFOux2u4yBti6GJQcq+4bCy2CCKU4aHqgwPVElqZVqtkCQ1yyKtVoAUZqmr3QlptQLCKGF6aoitWyZwXIfBatnYNU6oNwNuvuUB7rp9F0fnlllebtBuhb1+OAiBkJLBsQEqJRellOEQJQwMVBgcqFKrlel0ItI0I2kFtFoBApP3EoRmLJrtkJmNo5y7Y4PJC6qWcG2LJE7odCJuuOFebr/tIebnlllaWKV1HAekYHBskErZRWWK+oqx7eBAhYFahVq1TKsdkqUZ7XZIux0aDo5NJ4ho51Gx6alhLjhvE67n0J9zSPPlnJtuvp87bnuIhfkVlhcbNBqdY72JToEgjDj5b6MCBQoUOBvwyL+ffugOShRF3HfffTz72c9my5YtTExMcO2113LJJZcAEMcx1113HX/wB3/wqM+dZgrNyb+whQCRJDQaHTKtCVPFOds2cMG5G5neMMpQrUSapMwdXOCeBw5y2+0PU19YpdUKiKJj3W+FNHkD0rGxPRvXthBphp3m3X8xIluZEFhpiko0mc5Q+S9dkQiaTRPpiNReNm8cgyRl2zkbGaiY5al9e4/ywK7D3Pb9h5k/skSr0TF5HnkJq5TSdEO2Te8g17ZIM4WdKlSa4gKuJdFCYrkZxKkRBsvvIU4ymq0AJaARxNx00/08/ZJtTOV2yJKU+aPL7No3z003P8DCkSU67WAdh54dbAvbtXFsC5kp7Lz5nqPBsSTakliujU5SUq3RWWZGSECrHSIWVwnTjI0bHsDWmi1bJumvmOjN4YMLPLxnjptufpBDhxdpNTsm5ybLemXHVi4gZ3smp0YnYGcZaZrhaI1rSZC5HdBkielOrdGQZLTaIQhBO0q48cb7KdsWm7dO0Z+PxdFDi+w/uMCNN93PgQPzBK2A4CQcpG1hecYOWmvsTGElac5BkAoLy7WNaF9qxNlAQ5rR7oSIpTqtKOZ7N95HX8ljanqY/sEaWimW51fZve8oN3zvPg4eWqTTCuiEJhJzpm7FWmvOkKZSoECBAo8bHs3302PuoPx//9//x0/91E8xMzPD/Pw8H/jAB2g0Grzuda9DCMFb3/pWPvjBD7J9+3a2b9/OBz/4QcrlMq95zWt+gKudvooHjKNiW5JSyaXaV6JcNsJX3WWlUtmjWitTKnm0LHmsKkT3TrSms7Do1YwqrXuTheiWCuUFN91Xl2J3UvN9l1pf2eQcQO+8ftmlWutys9Ysd+WVM2tO2uMgjnHoVtUIkU9OOee11S9CgCXXc+jZQQp836NWK1Gu+Ni21dML6XLUXTvo7rXWc6DLocdc5zyO2VNghNI836FaK1OpmByZnh1KXr79JBx0fidrx0OYShulOcZhTdVLrzRcd58TU55tSYHrOdRyDl0xP8A0h6yWqVRLOI5FJEXvXGhTZN6zbW4HLYzWTtZ1HtaUdR8bOnN9rbscJJ6X26HqH7ODEGb7mhwiKU3h+LHxPDUK56RAgQI/KnjMHZSDBw/y6le/msXFRUZHR/mxH/sxvve977Fp0yYAfud3focgCHjLW97CysoKl156KV//+tcftQYK5BOCOPk3cq/s0zIJmptnxpiZGcMreRw9usrKaovBgQrlis/MzCizm8ZpLTfo5Esa3XC+QIASSKWxcuGyGNBK9RROpZTY+YScZbl4l1JrOEhKvsvM9AibN09Q7SuzMLfCymqLasWnUi2xYcMoWzaNsTK/QqcVoPP7012nJBMgJbYUWFKSYgTiyAXThMwF2TBKp10OAJYyURjfc9g4PcLslgnK1RKrK00Wl5r05Um9k1PDbN86SX1hhbATounqmnTLZAXSUrkdDAetNFrlwmhSYOflzVkupKZ6dpCGg++aTr9bJugbqLC80mR5uUWpZBynyalhts1OcPTgPJ1WABjnoxu9QAmE0thSmN46iHws1nAQAqFZxwFAKp3nAzlMjA6wfds0/YNVmvUWi4tNPM+hr7/M2MQg27dOMndgnqhjlkyUzkX6hDJ15Uph546nSsz7qK7+Sh5lAeJ8LLochDT34XkO46MDbJudpH+wRqcTceDgIp5r099fYWx8kJ3bp9m36xBRYJLKehxOA919+AsUKFDgbMSj+H56zB2Uz372s6d9XwjBe9/7Xt773vf+2y+2VgjjxCuZ3BHHolzyOHfzJI5lcecDB7jmi9/l1uvu5MIfO5eXvuoyZjeMct7mCR68d5/pjizNMoGJAwgypfGUwtWaVGkipfMJSBEqjas0rlZIdSyi0ZVXR5q8Dddz2To9QrXs8dD+ef7uc9/m5uvuZPuFW3j5LzyXbTPj7Ng4xoP37mPJzqMoMo/KIMi0xlYKTxsHJFQKKSWurYm0xss0jgBbaYJ1HEALgZVz2DkzTl+lxP17jvC1L9/Id758E1sv2MzPvOoyztuxkQu3TnP/nXtYddoIIXvRGo1xtoTSazgYh8C1JZEGL9N4EhylCfPJGtnVQBFIS+J5LpsnRxjqq7D70CJf/fKNXPflGxnfOMrP/+cXcc72aXbOjHNH2WfJMWOhe3YwzopWCi//b6gUCMMh1hArjSuMrdQaDl07SMuU/G4aH2JqtJ+9R5b4xrW38tXP/wvjG0b4mVdfwZMumuWczRPc3f8wy8sNI9kvRE93WSmNpTR+Hj0KlUILQcmRJNo8HyWhcJWmkzenXCvK0+MwMcT02AD7Di/y7W/dwde+8B0qA1Ve+Ysv4EkXz3LulklurJZZXWkhctXiM2o/F85JgQIFfkTwhO7FU62UTtss0Mn1J1KlOXpwkX/++i3cd3Ce7950H/sfPEjDltj9Zc7ZOIpqhCRKY7s25fKxkLvKnQ6ZKYKVFm3bhP2rg1UE0FSKuN6immZIpXEco8chpQnzG40Oh0xrFudW+PY3buPho8t858b72PfAAZaSBG+kxnkz4+h2RJwoU6FS8bEdwyHLdG9SDFdaNHMO5cEKDtDQEDfaVNMMoTSuZSEcB8sSvaoVx3NRwOpCnW9/8zbuP7zIDTfcy0MPHmQhTrAHK+x5+BDVLFd6zatspGUcNZVpspxDtNKi7dhEUlDqL/c4JI021VQhM4VjWUjHxrJkL6Lg+YbDymKd737nDnYvrvKv19/DA/cfYP9Sg9q1t/Y4REmGlVfJSCl6Y5FlGqk0cb1Nx7EIpcTrL+MBTQ2LjTbVTKEzhWNJXMdax8H1XbQQNOttbviXO3lwfoXv3Xg/9z1wgINLddyxfg4emGfYsonCBGHZlMo+4iQcknqb1U5IKCVO1aev6rOqYanZoZoprPREDlIKvFLOYbXDTd+9h93LdW6+9SHuvX8/VsWn8o1bOXhwnqmSTxSlCMvCL3lozpxf4qY2InmsPmEFChQo8Nji0fyGekJ3M37GM990SgdFYCYD23VwbJthz6WdxCxFMWErxA8SAt/Gr5UY8lz6XJeFMCZNU9IkRWWZyVpQZqnFSjNkmhI6NsJ3GS97WEJwJIjIghg/TtC2TZbnDEh5jIPlGNG0EdchVBlLYUS7GeAFCbFn49Z8hnyPmuOwEqfESUqaJL3kzi4HmSnsOCFwbfAcxio+noAjQUIcRvhRipCS1LVMYm3+a1tKie042LbFiO8RZSmLYUSnHeK3Y0LXxqn5DHguw77HUpQQpylpLg53PAcrTghzDqNlj5KUHAljoiDCixIsaRHnwmm9QFIunGY7NgOei1YZC1FEuxXhdCIS28LpKzHguwy5HstJktshJUuz3uSslIZM4UQJoWOhPIeRik9FSo5GCUEnwosTpBCkjn3MDsL0s7EdG8uxGXRdhFDMBxGtTojTishsiayV6PNcRn2fepoSxGYszsRhsOwzaEuORKYKyI0SHARxV9DP6PCbvjyOje04DLgOloD5IKTViXBaEYklkDWfft9lrFRiNU4J0pQsSUgTw+F0ePHyQ1zYmX9MP28FChQo8FihozJ+fu/3f/S7GWeJQuhT11RLS6IRqEyz0IlodgICNL7tUK6VSVRGq94mpUNULhFZEqUyVJL29Ca0Nn1f0jTDUppS2ad/uI9t44PYUsD8KiuLdcIoQSWpWQ5RotfGR8qcg1IsBTGtTkBbKTzHplwro1VGu9EhbQSEJZ/Usciyk3PIclXR0kCF6mCNbZND+FIiFussLTUIogZZkppf+1L3OGipIOewHKU02x3aSuHkHDKl6DQDkkaHtFzKOZjqnCzNjuOQHeMwUGXr+BAV10YuNVhYWCWIGiRJis57AKzjoM0y0WqUEHRCWllmtESqJUKtabUMh6Tkk7o2KlNkaUqWZeuWeFTOzauVKA1U2To9Qs2xcVaazB1dIVrJCOPUVPNonXcBBiXNPzKtqccpQTugmaVI26ZcLRNrRbMdkjQDMj9Ee45pCJicyEFnmiROKNVKlAeqbJ4YYsR3sVdbzC2sEiw16QQRwpIolXeTxrQ70HnCaz1OiTohjTRF2hZ9FR8LaHYiFlshmRehfcNBpRlpmp5REekJ+HujQIECBU6KJ7SDsr5cZj0EZrnetiW2YyESeh2HcSAz3e3QmSJFgG3hOJIsgTQ1JaV54QYqFwkTmaLPdxgd7WfHzo04lkVDCIJ2wGqcojEVQyLPjRGY9Ac7L1Mmy7vcZhk4NkoK0AKdKTIEWOYXvhA5h/weVc4hS1LiIKbfcxgZ7mPHjo34tkV712HCMKY+t0IcJ3i2RCB7HASmRNh2bIQyXXh1loFtGztok/SbZQotuxyyvES4W0lkOKRxSpJzGB7uY9v2DfSXPYLdh2l3QupHV0iiBNe2kJY4BQezXKTSDGzLdIVWZlkmUxotjahcJjJQGSo9VsmjMmX0TcKYsmMxOFhl2/YNDJY80v1HabYC2ksN06k4t4PsjgXHypQl0pRipwppmc7QWpmk3yzN0EJgOzZkGWSGQ7cqqcsh6ETUJm0GB2vMbp1isr9CemCBdhjRWmrQDiJKro1lwml5CopJtLYdC6lFziFDWrLXmbrLQflGP4YsI1UKoR+BA1L4JwUKFPgRwRPaQRGnLuLJJwRTbWLZVi+Po/tzWndLQZVGYSYoy7ZAabK8ZFiAeV+ZCQmlKZU8Rkf6mZ2dwnVt9q82mZ9bNo6H0lhKgZB0QwemtNb0otGo3vJAlwPda+QcHFuCkjmHXm0tWmnSTBElKX7JY2Skj9mtU5QcmyPtgIWFFTKtiZMUR2l03jG3y8Fac3/dCIDochCmMkYpw8G2LdCatKth3C3XVZokzQiTlFLJY3i4jy2zEwzVyswFIXNzyxzSJn/E1gqt5DoOUgosW0KmTTfiboXPGg5aKZTI7aC1cdy0RuhjHZuzTBEmKa7rMDRYY3bLJEO1EstpyoFDCxwVwtghU6xriaxzDnkpd5Y7ZsdzUDkHaVtYmOdBdH3hvKopyxRBlBiRt8EqmzdPsHGkn1WlODy3xJyUhJHpiCyFAm2tGQtpOGAaCuosdz6EyfcRussBLMcy1VRCILrPQ4ECBQr8B8AT2kHR6DP8otS58mhXq0Lnv+bNhCQAaQQtUEJgS4ESrNM+6a75K22WjGq1EmOj/aZk2XOY2DfHvr4y0rZI46R3WboRGHJ9kPzcOneqpDDXFEIgMV1uda6S2tNByc/BGi5KCGrVEqPDhkPJdZg4ssT+vgqWY5F1HavuEbl2Ro9DPtFKTBdkw8H8rbRGCVOyLGR+nh6HY9bQAqrVEqPDfWzcOMZwf5XJoyvs7i9jOZap9jmeg+5ykCidl3BrE+XSazhoTc5BImTWs6fuOWvHFE0qlRLDQzU2bhxlpL/KoZUmA/0VHNcmg+4NHLsHjuUFaYThqXWPA107qNwu3WTnUzxrmYZKxWdkqMbGDaPMjA9yuNFmcKCK6zmkPRGY48ZSsIYDazgci/wphbmHbv4Ka/VUTvfIFx5MgQIFfjTwhHZQKmXvtFU8QhrhtSw1kQeROyFCmOWeroibUpo4TrFs4xy4uUqpkALLtrEcCxAMDdZ4ytN2sn3HBgaHati2xY7t02RphqVhfn4V0CbJNjFKs0KaJQaV93HRgGNLBJApoy5qWxYqyzm4ZonHde18P5NUaTkWQkjKJY+nP20ns9umGRruw5GSbdumyFSGyDQH9s8jLUmWJ3aqTPUm2rUc7FyULs1MbohlSVCaOM6wvQyhwXUd7NxhsmwLy7FBCHzP5elP38nmLZMMj/ZT8z22bp0kjCIsLdi3Zw5pS7K8+/ExDqbTbxybJTQ7r2zpJuLaliRVpotxmnY52NiWESqz7GOVQZ7j8JRLjR1GRweo+C6bt0zwlGYH37bZ9dAhkMLkjyRrOFgyj4jpnIOFJQRZrmtjWRJtKZIkJUlSJPQqs+CYHaSUbNo0ztMvPYcts5OMTwxSqZbZtGmMS9rbcC2Liu/heLZJ9E0yVJYZJ20tB6V6YmyZUmgBthRoS5CkGWli7OA4FlbFO2MExQ4teOS9uAoUKFDgrMUTuornVa98F65z8m7GoAnDhHqzQ6ttKlY8z3STTTJNHGW4voUtBUmY0AlTajWfcsmjr1aiXPJwHIvB4X4mpobZNDPOky6eZWJqGCEF9dU2WaYYGulDZ4r6coubb32QffuPMndkicX5VeIoIYxiGs2Adiei1QxxHYlfdkgVxFGG7UhcRxKHKWGYUCp7VCoe/dWSaernWAyN9DM+MczU5DDP+rFzGRkfQNoW9XqHOIwZGu1HAitLDe64Yzd79s1x5NAiC/MrRGFCFBvJ/3YQ0WyEOLbErzgoDWGQ4XgSx5JkSUa7FVOquFTKHn21MpWKh21ZDAzVTGfoqRGedPFWZjaPIy1Js9Eh6ESMTQ6iM02r2eGWmx9kz745jh5ZZn5umTCMieOURqtDqx3SakVYEkoVl0xDHGZYuR3SOKXTTiiVDYdatUS14mPZFgODVcYnh5meHuGSi7Yys2Ucy7HodGLajQ7Do/1IAe1myJ137uahXYc4fGiRhaMrhEFkODQDWp2QZjNEoilXPRQQhRmWLXFdicrt4PqOGYvcDpZlMTBQZXxqmImJYZ52yXY2zU7kHCIayy1GJgexpCBoh9z5/d08sPsQR+eWOXp4iU4nJE0yGs0OzdwOQivKVQ8tzFhIW+I5EpUpWs0IL+dQy7syd9V1T4Wn7bqNzQt7H+NPXIECBQo8NjBVPLf/6FfxtBodHOfkVTxaQxjGNJod2kFMmipqfSU83yFux3SiGNsr4XsOQgtWGyHNZoc0TkEp0iTFcWw83yWOEtDayI9XfBTQDGJUmlH2XBORiVJAE0cJnXZIs9EhimLCMKHR7NAJY6IopVKp4fsuzU5MJ06o2C6e6yAQNJshabNDlqaQaZIkw3EsfN8jjmKUUpRKHtVqydx/GINSlEouthCotIIA4rzhXbMREIURYZRQbxgOYZhQGTYcOmFCJ4qpOB7Vso2yLFbrAWkzMBzyRFbbNnoyUWhKn/tqZaoVH4SgEyaQdO0gTK8iIIlTw6HZIeg5Bx1anYg4Sunvr1DyPdphTBCneNKmVvGwhaTZjGi1DAedmQoW27FwHJsoiMlSY4e+WhmAKNPg2Hh5nyKhTc5NEqcEnYhWM6DTCYnj3A5BTCeIGeiv4PsuYZLSiSM8LKoVF2ybRs5BpSnkVUO2bWHbFgNhbKqIPIdarYQQgjhTKMfCK7n4loXvOkhLkMYpYSei1ezQboXEibFDuxMRhAm1agnfd4mSjCCJcLColl2Ew3o7pJmJ8JxSmNAgTlIKtbYCBQqcvXjk309PaAdlaamBbZ+8mzEakkwRp5lZqvEck5yo6eVeWAIswLIEtu8AykwgjTZBO8R2LOIkJU4yOp2ISrXEM8selYrPUK1sKj+0pt0OueOu3dxxx26OHFlkcX6VlaUmSZKQpoYDAizfMVUka3IvJGBpsITE8h20yki6HDohtiVJkow4SWk2A/pqZa547pOoVDwG+ytUSz5CaYIo5u579nHrbQ8xN7fE/NEVVpYaxLFp+BcnOQfPxbIsc80890YisLTJlbF9B52ZUuJms0MYRFiWJIpNA8VWK8B1HV7U/1TKZd9Em8qm2V8QxNxzz15u/f5DHJ1bZmHedESOw5hMKaK8ZNnyHLNcozUWphRZCrCMZj+W56Cy1HBoBURhbDhEZtmlE0R4rpGlHxis0l/y8F0H25IEQcTDuw5z8y0PcuDgvLHDYoMwjMkyRZymKHSPg4WxgxEeNnYAge056MRUPLVaAXGUIKXIG0kqWq0QKQQj4wNUqz61io9tWTgIwjBi7955vnfT/Rw+bJ6HxYVVwiAiUyaR2XAwS3cWAstc1nDA5MrYno0SRrW31Q5J4pQzBFCIwvgx+WwVKFCgwOONJ7SDEscpWXYa7W8JrmcjHJtEY3Q9lMIRgpLv4AiBihKyTONWfDxhIgY6yYji1ORn5N2QV5sBSMnQUJWts5OMjg2itabV6vDAAwe5/nv3cd/9+wk6Ie1mQBhGZKlCS3A8G8+xibXJA0nDxHDwHFxLouKcQ8nFFphfy7lTkqYC0TQc6s2ARGnGxgfYsWOa4eF+XN9hdbXJwQML3HDjfdx1717iMKbd7BCEMVmSoYXh4NoWFmb5IAsTLAEl38GzJDpOSTON47vYEuhyiFOkFDSbAUoIVhsBnShhZtMomzePMzk5gmdDEETs3nWIG753H3fds48kMhzCICLJnSPbsXEdixTTnC8LE2yg5B3HwXOwpWPKe3M7yFQgWh0UmlYQ0wkTxiYG2Lljmg0bxqhYNlEUs3vXYb530/3cftcewk5Aq9GhE0Skicm9sXIOsZCmnLdrB8/BtQQ6SclyRWHHd5C5Jk2cpCbBOu8K3WyHLNc7bN02yfZtU0xMDlMruXQ6IQcPmK7Qt92+izRJzFgEEUmUogVYtoXj2qTC5P2kYYwU4LsOri0hSUmVRjo2Fc9BrLHDmXJQsm4pfYECBQqchXg0309PaAelV9ZxyreNIJZp6ieOdeFdU6XT7cCrdV7qq9Z2v83bn0iJbUlc18Z1baw1HXhty8J1bJNI2e08e6yqNdcY6TYflL1fyb2Ow10OIt+vV3WSl9vk/LoJnl0Otm3KVnXejNBxcm6WUZHtddPtmkKtOW+XA10OJnJhKnq7XYs1a+qQjqmgWhJ3zbW6EAIc18Z1HSxbkiXHOvp2z6H12usdz2GNHfJy4m4jxC4F8jG0LGmu5dg4tt2zg5Qit4OTJ57KdR2Wu/upbhk2HLNTXs3V42AG7ljn4i6HNXYwrRTsXDcmrxIT6znoLD1xLPKS7bUcNMdsL4TMnyGN0grZG5O1ZylQoECBH208oR0UU4p66ghKphRplKDjBCwbu1bCtiVhGJsqG882MvRCkTUDAmV62VhC9ATXHMehXPYZGe5jZsMo/X0VlFI0Gx2jKqoVtVqJTRtGOHhgnkWticOEwIpyQTJFFqfoJDMiaLUStmsRhbl8ui2Rvo0tNaoZkGRpj4MlTalrtz/Q4ECVLTPjDPRXyTJFs9nJJegzKhWfjVMjTIwPsrS4ShzGBDJCSNXjoJIUJSR2rYztWiRxXm3kWFieBRaoRkCQpmb5RQjTz0ca0bJy2WNwqMbmmTEG+qsIAc1mp9dht1L22Tg9wuTYIEtLdZOP05GILK9ayTkgLSoVH9uzSSIjZa+kQJYcHAt0KyRMktwORjdE5OJmpbLHwECVzRvGGB7uQ1gmuqOVWTcrlz2mJ4aYmhhkbk4TRzFhEEFqRNjSODVREiEpV0rYnk2WGMVcJUCWXCQC3QyIkgSZlwDbXQ62Tank0d9fYXZmnOHBPoQQJl8lt4Pnu0xNDLFhapiFhdVeLoyQGUppI1mfZigh8cs+jueYZZ/jONAKCaPYlIR3OYjTdwuUjo0lTrHsWaBAgQKPM6wsfcT7PqEdFBwbYZ/6FrIwod0OSKOEwYpPaayfzJKknYhylpKmDpnnUnI19tFlllohjmuk1x3XRtoWTsmlWisxMz3MjplRFudXueGm+7nrjodJkowLLtrKzq1TzE4Pc2h6mDCIaAcRMohMCW2U0O6ExFHCgO9QHu1Duw5JJ8JPEjJHkrkOvgB7YZWVehvLtalUS9iug7AsXN+jUi0xOTbAk3ZOs7xY59bvP8xttz1IEsWcc/4Wdm6bZuNYPzu3jHNXFNPudDmAilParQ5JlFB1LMpj/WjXIY4SylmKSi1S18G3LbzFOkeXW0jXMhx8H2FJHN+lUi0xNTHIxTs2sLxY55bvP8yddzxMq9nhnPO2cN7OjWwY7WfnlgnujGI6QYTVDkkxHIJOQBTEVFyb8mAVUfJJwhZemqIlJE4V35J4y01WlhoI26JcLVH2bYRlGQ6VEqPDNS7aMUXYCrj+oUPceusDtBptZnds5MJzNzHSV2bn7ARBEJlE3U5khNCSlKATEgUxvhRUcg5x0sZLTZuCxLYoey7+aouVxQbasqhUfeyKi7AktudQzjVgnnbhZjrNDvc/eIA77tjF0sIqs9s3cP65mxjrr3DRORu4OYpNsnYrRCiFTjPCZkTYifAtSbmvjCx7xPUMLzO9dmLLouK7lJsdlhYbYEtKFR+76hqV4tNg/MefzbYtQ4/xB61AgQIFHhu0wgB+9+ZHtO8T2kFxfeeUSbLdZa4kcrAyTc2xyJSinmQkmWLQd1jOFKtRwoAl6LctmpapVvF8F8dzTQdaMBGRVsDcwXn2zDf4/j17ue+uXaRpyoG5VY5euMI5G4cJmh2TpKhNDkO3S10apZAqao6FUopGlBKlmn7PpqUxHGxJxZY0bAvLcfA8F9dzTTdhAXGUELQDFo4s8dCRFe68/wB33PYAZBl7Di1z5PAy528eI2gFhEGM1tpItefLWonrIDJFf94huR4lhIli2HdY1Zp6ZLzami2p26Ybsue5uL7TWyqJ45SoHbI8v8zee/Zy1wMHufuOhwg7IbsPLHF0boWLtk4QtTuEQWyUdR0bJxdoS/NIUs22EBgOnTSj37XpIFgNEwY8m6ot8WwLXAfPc46NhZQkSUrQCllZWOG+XUe468FD3HLTvcRhyAN75llcaHDepjE6jTZBJ0IphWXbuD5IS+DFLipR9FlgCU0jSmjHhkMkhLGDlJQtQcm2SG1TyeX6rmn6Z0mSOCVshzSX6zywZ467HzrE9297kLDZ4oHd/z97fxor2Zae54HPWmtPMceJOPOQ83Bv1b01sShSFGWyRLWoMtQNmbRKgroBGdYPwvaPlkU22/IAkA1LgqwfMkBLRhsQUDLZltSAmxBkyZJIScUiWUUW763hzmPOmefkmWLe81qrf6wdkSfvkLeuVaWqW4o3cTLzROyIeOPbO2J/+1vf974POXg44hNXtsimMWmcobVB+YqAAFnoqpKkaSqBJ2CcFUwLTTdQJAbHQVUcfIX2vGpfBAvRtvfD9k9/juuf/0PfwU/ZEkssscR3DuPxGP6L//u3te1HOkF5ghUP4Joym606thZQ8xVJnJEaSzP0WW80Safu6jpRgkYjouv7iKqBEcAYwyzOyLOCbJZwcO+I+4MpR6dTIiVB+ty5ecBsNOP2apPxNONkmlBqgzGm4qBotNw4c92XZGlBYnLqgcdavYZNSwZJTqIE9VpAVyqsp/BDrzIetMSzzCVJk5jZYMKd4wlHgymBEIShz/27R8TjmHtv3iHPSx4OYwrtGoItrimz0apRiwIaSpClOam2BJ5kfaWDjnMGaU5cFLRDn26vhVEKL/QAtzSSJBmHeUk2jRkdD7l3OuVoMEUZS7cecnD/mK/EGfffuktZaB4MppTaVGJ0Tgiu3qwRBj4NJSjygiQtCJRkrd1ikGkOs4KkLGkHHp2VFraqWMz7c5Ikczop45hsNOFgnHBwMkUaQ7cWcvxwwFe/+gr33ryL1YaD4YxCG0qtsRaUUtQbEYHv0ZLVKHSqUUKw1msxKQ0HaUGsNR1P0em1KKTErzhQja4fFyXJJEbPYh4MYh4OpuiqSnd6NOQPvvYa+zfuEyrB3eMJhTYUCw6SWj0i8DyaErTWxNMUBfR7Laa5Zj8riSeaUAq6vRaFkHihx9z94ImfCZZiskssscT3Lz7M99NHOkExWmPEe+ugzB1glJJYFElekBtLVI+4eH6DZ86t4t874bWbB2RxiihLlF9VLKrnFkBuSjJjKeKU0emI07ig0Ib1lQZSCg5OphweDiinM4yFpHSKpVTS6XMOwvfIdEGeWvww5MKFTT5+bpVbhyNefPMBeZIgSo30PNwYjfNosThti8xYiiQlGU85nuXkpaHfrVELPKYnM46OR+g4RgpJXGg3tytEJZ9ecbCQlQV5YvBrEed21vjklU2aD0e8/PY+xSxmmuXIIKgk98Fq7XptSkuuc8okZTaacjLLybSh365RD32mJxOOj4boWYyvJNNMI9TjHKRzTiTXJTrJUVHI7s4qn7i8yeEoJn7tHsU0ZlYUSM+HqoI1j4MpITc52QzyWcwgKYhzTa8V0awFxKdTTo5H6DjBl5JZoasu5zNxqDiURlPEGSqK2Nzs8Ynr25xMEpI37hOPZ0yzHKFcM7KLg8VgHAdtyGVGGSecxDlJrmk3QtrtiOnxlNPTMTpOqAcek6x8Dw4SfEVZluRxhowiNja6fOLaDqMkJ3ntHvF4yiTNEH6AkhIpBFZbLObJH4pldrLEEkv8gOAjnaAoIVDvKwzhpjG0cX4n0yRD1gSdWsiFS1s8+4kLpFHE3YMBw/GMaZzhd9yVspLy0SiUWPj+UejK8RecE7GUWNxop5POd7omojohzTkYKzBY4rRAK0mj3eDCxU2e/eRFvBsH3HxwynA6Y5pk+A2FJwRKSOYOPAsOlbaLq4w4119TcTDGcfCUqPzx5hzc/411J8hZmmOUot0N2Du3zjOfuYq8ccDdoxHHU6dwWvN9Ny1zlgOOgz3LwYKVAr3wlXHVClVNMsn3jAOkWYEWUG812N1b55lPX+H+4Yg3751wPKn2RcurGoXPcnDTWOCME+cjtWbOQTh/nbLUKF8s3IPnyaIQAoMEYUjzgqwoabQabO/0efbTV9g/GnPz4Yh04hRvw2YdhXJxEIswOO+g6ngoq74RK4XbFwLXCKs12siKA49xsIDRkOYlpdY0Wg02N3t87FOXGUwSbjwckkxmTGYp9Y6HELJa2vlggaPF6y2xxBJLfB/iw3w/PXkk4Psc4kl/qhPkPBhp7pogW80a58+tc/3jF7hwYYN20ymBJpXR33wU2Y2nzv91J2Zt7KNTpJgLjLkXmC+nVBO5Cw7iDIesKLEWGrWQc+fWuf6x81y8tEW7VUNISZaXlaFhZSIoeIyDex27MD101Ynq+a09c584w0FUcXDPkOUl2loadVe9cBy26bbreEoSp/l8uvlxDrw3BysEVj7OwdjFRO474uD+n1VaI/UoYGe7z/WPnefylR26HcchLYpq3HZRfHhsvwLoahT5PeMwv2+em5yJ4zyBLEpNURrq1cTN9Y+d5/LVHXorTXzPVdzMfMxbuA/KIq7ibBxYcDCLOM858NgxcDYGLDhoalHA5kaPa0+f4+q1XXorLQLfI8mK6n24ffj4vnjvPzDPpJY/y5/lz/Ln+/Xn28NHuoLyRFgWyQLCKYKGYUCv02B3Z5WtvQ32HgxY6TQ4jHzGc7ddWCQkZ4NpAcMjBdj5XVI8uu/xa1wLdn5CdScmbS1R4NFtOw4XLm5xOk7odZocRwFj7GNP8uiVH/+fPHOittaN4tr5lfnZN19xmD+fEILSGhq+x0q7wc52n83dDc5NUlZXWhzWQ+fAO0+yhHNxPntA2cWzOyXeeazezeHdcZhzNkDoKTrtOttbPXbPbWCEot9t8bAWcmrPrJA99u4fYR7vBYcqLvK9OJw5Fubh0ID0JO1Wna3NHucvbiE8j7Vem/1GxMH8Ye+T7dvqOQTzBMrtCwmLqp4+u7Gd7wOwVSqhrUUoRadVZ2ujy/buBq1OzFq/zf16xD6Ptv32YT/M53+JJZZY4t8uPsT300c6QanVgveXukfgeRKl3Pp9r9vgwqVtLl3ZYXdnlSDw2N7q8fGnzxP5itutGkEUoY3BGEtRVTuM1s6duHLZNdqgPPfcUkokUBhDURqkUk5G3lcoTznpeE8tOKz2m2xs9LlwaZudrT5+GLC21uVjT+0R+ZLbrRpSKQzVMkHpdDOM1s6Rdy6TrvVCPE55yul2GENRaiffruTChfkxDlLQbUdsba9x9foe5/bWCAKPrc0eT13fw5cCXwqiWoSpqiFF5QFjz8ahdM68Urn4eo9xqNx/lcTzH3FQSjkHZSno95qsrna4dGWX8+fWqdWczszTFYdWPUAoz6nNnomD1YaydO+/0BqtDQLnzOx5CiUhN4ayBL8SavMqAT0hxSOuQmB6TVrtOteeOs/F8xsEYUCn2+L61R3QGl+6ySOEdHo6pXbLSdr5NBltKHSJ1hqBWOwLJV0cyhJ0YJDS3e753oKDUm67XrdBu9Pg+tPnuXhhk1otIAg8rl/dwRQlvgTleRgLxs6PySd/upVSy/xkiSWW+L7Fh/l++ki7Gf/5P///Igje281YCDeZs77RZXNjhevXd9nbWycKAxrtGlJJ5747jkmznP0Hx7z0yh2OjkYcHQ4Zj2fo0hDHKdPRjMkk5uR0TKkN7U6D89d38TzFzdfuMTqdIISl3+/QatZptus0WjU8T1GvR6ytd1lfc7LsFy5sEkYBnU4D4QmsxhkLpjkPHhzx+hv32T845fDhkMkkdhxmTrJ9Nks4PBxQaEuzVePCU3uEUcDtN+45zQ5j6PVatFsNmu06zVYd5Snq9ZD19S5ra12uXd3m4sUtavWIRjNC+QqMZTZNydKcw8MBL718i4cPhzx8OGA4nGG0IYlTJqMZ02nCycmIrNBOH+bqDo1WjVuv3+P0aIjWhrV+m2bLvX6z3cDzFLVayOpqm43NFa5c3ubypW1qtZBGq4YfKqyB6dj57hwfD3j5lTvs759yeDRiOJiitXbGf+NHHNKsoFYLuXB9l2anwd239znaP8UYw0qnQbvdoNVu0GjXF8aPa2sd1lY7XLq0yfVre9TrEc1KPM9aiM/E4fXX7/Fg/4SDhwOGgyllaUgTdzzMZinHx0OSrKBWj9i9tElvvcvdtx5wuH9KmZesdJt0Og0azTqtTgM/cIaG/dUOGxtdLl7Y4OqVHVqtBrVGSBD5CCCeZqRJxmg041svvM3+wcD5Gp2M0frJTbL/8X/8J/nxH3/mu/CpW2KJJZb4N8d4PKbb7f7guxmPRjN8r3zP3kGBoCxKmo2IslfS77c4d24DpSRJljOaxbQbdba2+1ggSzN0URJPE0ajGaPhFK0NaZIRTxOyvMDzPbxAIJUizgpkaZBSENUCjDUUuROGM1jK0qA8RVFo6vWQstug221w8dIWICiN5mQ8pV2vsbm5AkBZlrz22l2SWcp4NGM0mqGr5CCZpWRZjhd4eLiqSJIVFABCEEZBVe3RzGYpFii145DnJY16SLfToNmMuHhpCyklWVEymM5ohCEbG85bSCp44YUbJHHGeBQzHE4x2pAlGbNpQpblSE9Rq5x907zEpDkgCMMAbVxfRTxLF307nqfIsoIo9OmtNGk1I86dXycIfPKyZDCNiXyfjY0uCIHyBC+9dIskzphU+6IsNVmaE88S0iRDKklUC/F9j7TQ2NRpv0SR41BqQxxnVawNnucR1QLqUUCnVacW+Vy5ulM1EFuOhmOi0CUwAGHk88Ybdx+Lgy4NWeqOhzTNEWc45IV2DtcWwtAZF2rjOMwrIF6VoISBz0qnQRT6nDu/Qa0eUWrNcBrjScnqqlOn7YymfOtbb5HGGZNx7BI18+QEJc/LD7kktMQSSyzxbw8f5vvpI52gHByc4qn3WeIRzhAwmSVMR1PqjYDNzVVarTpSCKIgQM3Fx7KCr3/9TV558SaHRyOOTyfM4tR542iDNQYvUKyuNBHaSdmfPhxigQBBv99B+NKduDI3HTKeJAgpqUU+8SRmOpxSrwds7a7R67ZQnqIW+CjhhL+mccq3Xnibl751g/sPTjg5nTBLMrfEU2qsMUhPsrrVcxySgsHDISiJpy39lRYiUJVSakFeloynCaLSSklmCePBFKXg6vVztBo1hBTOBVg6DnlR8tzzb/DSt25w8HDA0cmY6TTFWLfMZLVBeZL+ZhdpBEWaMzweYU8lfqnp99rIQBEnKVlckBduEkVIQRi4OMzGMzwl2N5dY2uzj5SCmu/he4qyMsR75ZVbj8VhMk1cQ6p2S2xSCXobXaQVlEnB6HiEHUzxCle1kKFHmmTkcU4xfsQhCDziacJ4MMGaksvXdtna6ON5iijw8WXFoSx56eWbvPDNt7l395jD4xGTaYoxxo22azdKvrLexUNQpAXTwZTxLMXLSlbaTVTkkWY52TQjLzXTOFt4Bc2qOOiyqJYc19x+8j2UkOjSLaO98NINXvzW2zy4f8LR6YTRKF7o67wf4jhdLvEsscQS37f4MN9PH+kEJc8LtHqffEwIrDWcnFjyrKDAsLO3yZXzW2xv9+g26xR5yf27x9y4c8DvfvVl7t89ZDJNmaU5WV5CNQmilEAFPmEjRGUakRWUqbtaDnyPWuBha85PxTkmW8rC6V9YY8BYirxAS8va5ipPX9nl8pVtOo06GMutmw+5ff+Qr3z1ZW7dOmA0jpmlOfl8qkeAlAIVeISNCJVpZFY6DgIC5RH5HqIeUBiDzp1IW1mUgKsQnJ6OKbKcpMjYu7jNs9fPs7ndo9uoU+YlD/cH3D885be+/CK3bx0wmSZMk5wsLxYTO2c5eLlB5iVlmqGBQCoi30M2QschO8NBCLc0YV1ccqNZ217lUx+/xLndNdqtOtZa7t8+4u7+CV/+nRe5eXPfxSHJSfMCa85w8D2CeoRfWvJcU8Q5WpQEUlILPEQtRON8d3TVtwJu0koMp5R5QVrkbO6t84c+fZ3z59bp1Gtg4WD/lIPDIV/6rRd48837jMcx0zgjy13/zSMOiqAREWjr1GGzHFOW+EiiukLVQrR0yYvWhqLiUBqDGLmkM8kz1rb6/PiPPsP6epdur4kxhpODEfcfnvKl33qBt99+wHg0j0PuPIeeAP0B9y+xxBJLfFTwkU5QnjSwJCoXWmcC+2gcVJwdyxCPdDIs1bZzJ9+52/GjsZVHmhqIhbvsY1ob7+Am7NwP+JEb7UKj5CyNavzUcahe0J6ZmJkP5cy3xS1hPeZ2XP31ziFTzrz2PB7vHF2mSoAW7sKLx9h3x3gxlVT9t4ovCw7u56wX8lw87JFLtF3ETbwrDvN9xiP34/caTDkzQjznyeK9Pb4f5v/O9+/CUZl37Iszo8CLCJ7h/s44zB/q9sWZ26v4vrOWOY/F2fe1eM0zT/zO42F+DH17AzrLBGWJJZb4wcBHWgfFGPv+P9XJUClJLQrY2e6xu7dOq10nzQpGgwlJnNFq19ndXWN3u08tCvA89ejEMHcjNgZrrNOikNUYq6l0RwAhK5VUazF6vizkOFhrUVIShQGbGyucO7dOt9cinqaMBhOm45hmq8bOziq726s06hFKKcC9vqk4mDmHarrECne1bIzBYBFSOpVUW91WcZifCKWSRKHvOJxfp7PSIi80o8GEeJYS1UK2tvucP7dOoxbieeodMTbVj8Vp1FUidba6HzemraQEy+IxjzhYpJSEoc/6apdz5zbo9dsLDtNxTK0esrW9yrm9NRr1EN/z3InaPuKg9ZyDQFZeR484ANLdLuAxznMeUkrCwGe11+bixU36qx2KXDMaTpmMZgSBz8ZWj/PnNmg1a/h+ZXvwJA6CaurJuOOuOh6EfTx+ZzkEgc9qv8X58xv0V9tYYDScMh3P8AKPjc0eFy/MOahFr8wTj3mzHDFeYoklfnDwka6gmHcXLh6DtpUPTT3iE9f2WOk2uHH/mC//86/xxrfe5MJTF/mpP/WHOb/X51PX93jj5buoaszXaVhUV9DGVUNCISgQlNaiACkshXHSbTUpEMZSViepuay5oUoOooCnL26yud7l4HTCb/5vX+X1b7zOzqUdfur//Ee4eH6VZ67u8ObLdzgZTisO1ZW+tVgNgTHUhCAXUBiLxCIRlI4ikRAo65RtdcUBK1BYpJKEYcDHL22zs9nj/tGQ3/nN53nx919i49wWn/v3f5Rr13b4oY9f4PUXbjEcJ27c+R0cQmOJpEALKC1I6xKW0oBBUBcCzzql13kcQCCtq9JEYcCVc+vsbfc5Hs348r/8Ot/6ygt0Vrv89M/8BFevbPGJ63u8+NxbnA5miyToseqDMdQq3ZXCugqTL6GskpSadBy0fpREuuqSRUiBH/hc2lnl6oVNTicxv/tb3+Jr/+o5uqsr/MS//6M88+wFPvn0OV79xtuOQ5WAmDMcPG2IKhGUsqrMRNIdc9pCXQoCrFtiMsbVjERVDat6ci7urC04/N7vvMTX/vXzhLWIn/q//DjPfOIin/nYBb7+u68wGM6w1VKd+YAOs6ou9H/o87TEEkss8d3Ht//99KETlC9/+cv8zb/5N3n++efZ39/n13/91/nTf/pPL+631vLLv/zL/E//0//EYDDgR37kR/jbf/tv8/GPf3yxTZZl/MIv/AJ//+//fZIk4ad+6qf4O3/n77C7u/uhuDRq0RN0UMD3FX7og5Akoxm//3uv8I03HvCl33ie+y/fYO3eCVkU8KnrOxSDGVY4Y7h6LXR6EpXuhS01sjRkoxnDTDMrNZ1uAyFgMM4oxzP6uYcsNZ5USE8iKx0U31cEYQBSkk4Svv7c67x0+4h/9hvPceeFt1i9cUBWj/j09V3MYIwF/CCgVo+QXsWhNJhSowzkwxmnWcm0KGl2GkS+4nicUkxiKAtkXuIpha8ecfA86TgoSZnkfOO51/nm2wd86Tee58Zzr9LZfcAs8Pmhg2NaeY5F4AU+tVroqjVYbGnQpUYZSzmKGeSaaV7SbNWIQo+jYUI5iUFXHKRCKomca7EoSRCFCKXI44yXvvkWr94/5V/9xnO8/nsvU+t3KNtNfmj/PM2iwFjwAp+oFmKlcMszc/0VC+U4YVwYRmlBvRVRj3xORinlJMGWJeQFSlZ6MJ6ESjcmjAKEUpis5NUXbvDi3RO+9K+/yYu/9Q2a/S6TIODweMia50wSle9Rq4UgpEu4tHb7AoEZJ4wKwzgtCOoR7WbAw2FCMUvAlEhjKg4KWemySOmSVeE5Dm++fItX94f89m+/yEu/9Q1EFBLXazw8GXKuEThHaM93k2LVUuWT4HlqmZ8sscQS37/4EN9PH1oH5X//3/93fvd3f5fPfOYz/OzP/uy7EpS/8Tf+Bn/1r/5VvvjFL3Lt2jX+2//2v+XLX/4yr7/+Oq1WC4D/5D/5T/jH//gf88UvfpF+v8/P//zPc3p6yvPPP18tbzwZcx2UP/zj/xmeF77vdkpJAk9R8z3Or7YYlYY7JxMmJyOaRc5IenTWV9jrt1j1FW8ejsnLkqJ0Y6rgkgNdlAS4q/RBpjFScn6ri5KCmw8G2FLTCxUaQWqcg7H0lBuZlRLfUwSe4uJqi0TA7dMppw8HNLKcxPOor3XZ6zXphz53jifEeUlRlgu/G1NqdKHxsdQknGSaQgj2Njo0Ip+37w8o84KVQCGlINYgK7E4x0Hge96CQyYFN48nDI5GtPOMsZDUVrts95rsNSNuHo6YZSWFdiPD4JKDsuIQSTjNNSWCnfU2rXrIW/dOKSoOnpRMS+sE63zHQUpB4CkCz2N3pQG+4tbplJOjEbUkIRGSaHWFnX6T7UbIraMJcVZQaL1wI7baxUEYQ9OTDLKS1MD2eptuM+Lm/pA0yej6Ck9VcfAe5+B7Ck8pznUb+PWAt48nHB2NqMUxhVSolRabvRbnO3UenEwYJnl1PMw5uONBWktTCU6zkszCWq/JZq/BW/cHJHFG25PUfMWkdNUrGbjlKikFvnLHw3a3TlgLeftkwsnJmNosJrHg9Tps9ltc6ja4ezRmlOaUpV44Ij8J/8Uv/lk+/yd/+AM/Q0ssscQS3wt8V3VQPv/5z/P5z3/+Pe+z1vLf//f/Pf/Vf/Vf8TM/8zMA/L2/9/fY2Njgf/lf/hd+7ud+jtFoxN/9u3+XX/3VX+WP//E/DsCv/dqvsbe3x2/+5m/y0z/90982lyIvseb922i0lOi8pBA5t5KUQZIzzEqavqLf75BOM04OhxSjKZN6wCR3yxLzfgJgMWpcVH0XjUZErR5xYXcNTymS3DKZxhhdVoqnUJZuSchxEOhCkgF3soxRVnCaFNQ9RW+1zWlScHo0ohxNGdcDpoWlnHOwxq0yVWqyQkAuJfVGRBAFXNxbpxH5xLllNJ5hy4Ks1GgDtqTqw5lz0GQC7uYZo9RxCJSkt9qmnOUMT8YU4ylZI2JSGgrzeBww1qmmCsgrETw/DLiws0a7GRHnluFoCmVBro2bJindEhE4zyJdaHKRcy/NSIqS4yQnkJKVXhuVlRyfjikmU+JGyLS0bsmm8tZxmZpbMpHWkltLrR7S8H0u7K6x0qqRa8HR6Rih3ci01m7py8zl+ysOAniQ52RFyWGcO6XhXptZoTkczsgnCXkzJDOQatfjY6r+kbMcUiGo1UOafsD5nVV2VlukpeDwZIxY7AvXnyOdVIzjIDU5sJ/lFFrzcJYhhaC70sIvNIejGXemMcVJRGog026hbe6B9CR80BjyEkssscRHBd/RHpSbN29ycHDAn/gTf2JxWxiG/MRP/ARf+cpX+Lmf+zmef/55iqJ4bJvt7W2eeeYZvvKVr7xngpJlGVmWLX4fj8eAW88X7zvG4zqAPU/iKQXKCZcZrbG+QkuX2JhSU3oCqyS+Lxay5nMPGls1nGZaY4yk2ayzutbh2vVz+L7iZJpR6JLJaUpZlFghqytlN2EjqeTNpUR4Eh1nTtfEU5X7rXAS7lpgpcQLBGizSHZcguI45NZQFpb2ap3Vfoer1/Zo1gNOY1dpGB2n5FkOUi1Gk6uZkkpi3XEoTYbRGpREn+UgwFZaHbZy6p1zMFWilhlDgaXTbNDvtbl8dZf+SoNBUpIVBePTlDIrMEIiBHi24iCdJL1SEqkkOstdHHz5WBx01Vvi+wq0QWuNKV2iNtdj0dpgSktzJaTTbXLl6i5rK01mpSXOcqbDMWmaY6VCVX0iAme2N5fbl76izAt0qZGeV3FwmjfaWowQKF/iCeE4WIOoek2MdtL7k6yks1aju9Lk0uVtLuz0GJeWOC8Yn+YkcQrKyf4j5YKDkgJPKaQv0WWJKTVycTy4Zlpd9Zt4vocWbmRb6/L9j/c5LE9uzFpiiSWW+F7iQ3w/fUcTlIODAwA2NjYeu31jY4Pbt28vtgmCgJWVlXdtM3/8O/HX//pf55d/+Zfffcf8yvp9IKqqh1uXr6oB2s12mvlYrXGTNyiJAtCVZsd8rLOawChLjRVQi0LWVjtcvrJNGPi8feeIk8GYU60pCo3yKu0TK5mP06rKpwUlXGWh0tOw8x2lDUYL1ychqukYrRezsfbMZI42mrUooN9vc/nKNq1GxK0HA04GE06ODFle4gfS6WVUSdacg+cpUHLha4MFs3DwcwmIkS6ZUoCptEvmPIwxlc6LZqPmOFy6vMV6v8PtBwOOTkYMjoekeYnne0grF3PSApcYeJ5CKIGplkuE75Ii50xocKGTKDn3JHqUGFBN45TaUBjNSuCUaS9d2mJjrcP+yZQHD08ZD8ekeYnvV1M285Fx3BLLvCdkHgehrOtzEa7R2eB+V57CwyWIwj4aF7dVNSlLc9YqddyLFza5cnGD/ZMpB4dDxoMxSVYQRnIx4VUdlVVfikR4Cl3FAaXcvqg4WCwGp7fiYbGFfRSHD8KHW7VdYokllvi3hw/x/fRdmeIR78iQnNjYk7OmJ23zV/7KX+Ev/+W/vPh9PB6zt7f35ASlqq7IRdXAXZkqLFJCbhxPJVyVpMBdMc9FyTgreCUEpdMrp9musbnZ49zeBlHks7Xd5/7+CXdtJeu+0AdxJ3ahWJwUS9xJXuJuK+ycg0uESpzDrrQugRHW9aCIajtjLXmpabVqbGx2OX9ug2Y9ZHu7z/2DE+7cEhSlwZ+35Sy0XNx4svQUWropH4W7ks+NG5NWwr2/Ejf5pIylFLY6WbqACuESrLw0NJs11je6nNvbYH21zc7uKrfvH3H3tqAoNV7gPx4HeYYDTjRNWouSUFRX/V4Vh8I6sz9lLWXBu/azBfLSUG84n6Pz5zZYX+uwe++Yt27tc7B/QqENflBpxFSJGtaNBquqWlEaW3GoJnGoXJmNoTTOcdkVwsoFh3kFw1pIc73gcO7cOnu76+zuHXPjzkP2HxyT5Zqw5o7peSyEdZNEjzgYhLUo4abDrBB40iWHhXU2AdJYZKk/MCEHOH3um9xNj564zRJLLLHE9wqTOP62t/2OJiibm5uAq5JsbW0tbj88PFxUVTY3N8nznMFg8FgV5fDwkB/7sR97z+cNw5AwfHczbBQoPO/934Kcu8sKQZY7TYzAkwgpSDKNVILAc9WGJDdENTd54nsSaV1TYyX6QVloms0a167tcvnqNisrTQLf49KVbcbTmMlwxmA4cVWKqkrivG3c9AZSkGYarS2BclfyaWGwAkLPVTXSwlAL3FX/nAMC56or5UJ749q1Xa5c26XfbxN4iguXNhnPYkanEw6CU8LIfwcHueCQFI6DrwRKuTggXBx0aUhyTT3wEcotQ4jAPsahLDVSyIrDDv3VNq1mnfOXtjgZTpkMZzy4f0xUC1xl4AwHJSUIQVZoytLtC6UkWWEwQOg7DmmuURGIal8I4xqnhZIgIlcTMparV3e4en2X1fUurUbEuQsbXDsckMUZwgqC0HNxsC45FbJa5pKCtLQUhSFQEs+TpIWplIElZW4dh5pLJD0lIVBVwimpixoWS6NZ49rVHa5c22Fjs0ejHrF3fp1rx7sks5Q8yWm0alW1yiXCztHYHVd5aSgKg68kvifICtexE3iSwhjS3BBYi1RuiS6sODwJD/7Xf8y3fvXwyRstscQSS3yPEBv9bW/7b+RmLIR4bIrHWsv29jb/+X/+n/OLv/iLAOR5zvr6On/jb/yNRZPs2toav/Zrv8YXvvAFAPb399nd3eWf/tN/+m01yc6neL7wH/7XBP57uxlba8nzksksJU5yZtMUJSGIPIwVlIXBCyQSS56VFKWl1a5Ri3ya9Ygo9PF8j+5Kk7X1Fba3+ly/tsfWbp9aPXSjv8YSRj6zWcrp8ZiXXr7F/f0Tjg8HDI7H5HlBXpRMZxlxmjOdJEgsQeRjhaAsLMpz1Ysi0xSlpd4MadQCxyHyUZ6iu9JitXJE/tQnLrO+uUK9GWG0ocxKgkZIlmQcPRzy+mt3ubd/zOHDAafHI+exU8UhSXMmkxSBcUmMEBS5QfkSJSxlockyQ6Ma2202ImpRgFKKdrfB2kaPjfUu16/tcv7iJrV6CMZ5EzU6dWbThMHphJdevMX9gxOOD4ecHA3Jspyi0MzizP3MMqzWhDUPK+SjOEhLmc85hNSigGY9pBaFeJ6k1WmyutZhY7PHU1d32buwQb3hhO2yOKPWCEmSjNFwxmuv3eXO3YccHgw4OR6RpW4aZzpLq32RYsqSqOaDkhS5M0r0VNVQnGqiRkC9FtKsh9RrAUpJWu0GqxsrrK11+fhT5zh3cYN6PUJKSTJNqXfq5GnOaDjltZfvcOv+IceHQ44P3YRRWWqmccosyZlNM3RRnOFgkEriKYsuDGlaUmu4127UQhr1sBKne3/88I2vc/Ho9of4FC+xxBJL/NtDbDR/7tY3vztTPNPplLfeemvx+82bN/nmN79Jr9fj3Llz/KW/9Jf4a3/tr3H16lWuXr3KX/trf416vc6f//N/HoBOp8Nf/It/kZ//+Z+n3+/T6/X4hV/4BZ599tnFVM+3iywtMPp9vrAtJGnGZDxjGmfkmabfbxLVAqZxzjTNafsR9XqAQDKejLFGU9ZCV9aHSoHUudP2+m2uXtthda2DsXBwPEKXml6vxdpqh9WVFgcPB5yejhE8MiFMkpzJeMYsyUiSgt5Kk1o9dCeoLKcufRrNEClKpidTSl2g83CxLOH7HtZawsCn02ly9coOvbU21loOTiYUhWZjpYXfb9NfaTE4nXAynCCFoMhL0jQnTYsFhzgu6K00qNVDkqxgmuY0VEC9EeJ5hvF4TKlLylrglpYAz/Mw2hIGHivdJh97+jxrlfPw0cmYInMmff2VFrs7qxwdjhiMHnHI0oIsK5iMYyazhDQtabdq1OoRSVYQZxkhHt1WhCc1k+mUclhS1AqEsQhc02zDGHzfo9NucPnSNnsX1gE4mSQUccZGu8Haaod0NWc8nHF8MkJK52qdZTlZVjIZx8zilOksp9OqUauHZKUmzhKCQFGvReB7TKdj8mFBmRcIY6oGW0W9aQh8j3arzqWLW5y7uIEQgtNxzHCSsNFpUOu32dpYYTyYcTQYM1SSonD7oihKppOEyTQhTgoa9ZBaPSIrS5IswwsUtVpE4MNsljMazijzwhk1yqqf5Qlw/VPLJtklllji+xXfxSbZ5557js997nOL3+e9IX/hL/wFvvjFL/KLv/iLJEnCf/qf/qcLobZ/8S/+xUIDBeBv/a2/hed5fOELX1gItX3xi1/8tjRQzuL4aPhEHZSiKEnywvU7BArPU3iV70lZFY48IdGeQgYe2lqSNMNoQzxL8TxFUTg9kqLQrPY7NBoRQeQ7gztcqNM054037/Pyy7e4d/ewumofkuelOzHlJaUxSN/D8xR+xUFX/S4eAuMpZKAw2pCkOdYY4lniOJSastQkScbGWpcf/bGnCUKfdrtOFAVIAXlecuvWQ1548Sb37h1ysH9aVS8K99iscP0OvsL3PbxqwmgeByWEW4YJPIwpSbMCO5ySxinKU+R5gcGSpjntdoM/+u89QxgGNBo1/DAAa8nykps3DnjxxRvcvXfE4cEpR4dDskrHI80LSm0QnsQ7w0Ev9oVAKOU4lC7BG5kZaZK5Kkn1Xoq8pNNu0O01qTciGrVw0XiaZQX37h3xrRducPPmPvv7J5zMqxfakGQ5xZxD4OFJSYlZqNWqygdHBR55XpDlJaPxjCzNkVKS5QXGWJIko14LWd3oEoY+9XrI6moHT0ryvOToaMjXv/kWt28f8PDhgMODU5I4Q2tDmhdOX0YJFwcpKBFoQFl3PIjKmLHMnHGlHccUWfGBvVxpkn+oz9ASSyyxxPcrPnSC8pM/+ZNPnCQQQvBLv/RL/NIv/dL7bhNFEb/yK7/Cr/zKr3zYl38MaZrzpJzGqbL6+J6ktMIty1DgS0Et8gmkwGQFprSEjRqBsNjSjbEmSYZSbqIm14bT4RRtLbW67/xT+h2stcRxyttvP+BLX36Bb71wg9k0ZjqOiWfpYvLHCxS+F1BY6SZh0gJfCGqhTyAlJi9db0otcs2qWrtejOqkiJiQl5rT4Yy8NLQ6NS5f3qLbbdEIPMbjGfv7J3zpyy/w3DfeJEsyJqMps1lCWWgsTjzO9wJyhJsISgs8LLXQJ1QS8pJSW/x6iCcCqMZ7k4qDwUnJnw6mTOOctfUOe3trrK+v0MAnTTNu337Ib/3OSzz39bfIktRVbaYJReGcfJWnqEcBZeWvoysOUegTegpbxcGPApT0oXQcXBycB1KhDZNpyjTJaXfqXLmyxeZmn5ofkecFt27u83tfe53ff+51ZpOYyWjGbBpT5I84eFGAV5nx6bRAQcVBQqEpjcULA/zIRxqDKTRpmi8M/EpjGY5jTgYztnf6XLq0ydraCv1OnSTJ2N8/4Q+ee5Ov/P6r5GnmqjbThDwrANe4XQt9/MpdccEh8FyPVKWfogKfRug5DqXj8EFwgnLLKZ4lllji+xMf5vvpI+3FMzehe1/M3XKFrIpK1UQJZxxkrRvpFHK+7RkX2YX2hqugZFnpTvhnJ3xs1btRXRXPjeQWbrWOyOMuufYdbr7zCRFZTUCZsxzsgkNZatKqinCWg7WWstRkeUlRaKfbYeZuznZh+ysqPRAWtz8eB6x1m8p3c5gbJ7rXKSiK0o0hPwoDZanJs6ISSTsbB7vYF2c5LF5vweHRbVK45mYrwM6nna1rdC61JsvezQFrKbUmr/i5OJjFfphXvFzc5aOpmDMcxHyseh4HZ6qEdUY8i5Fvrc2jOJizcXAjyHlekOfzODwyCnzkPl0dD9V7fsxJeX7szONlK5fq+TTSk7DMTZZYYokfEHykE5RHJ/33hqkaZW1pnLZGLXSjxFlBWWhMoFCBjycMOs7IrJs6kbYq9UvX+1CrhXRXmuxs9+j1Wni+Ip6l7lwgpbtvq8+d24cMrCXPCtJEIoRTptVF6cTWhERFASpw1YKy1BglUIGPEgad5GijFxxkxcHzHId2p8HezmrFwSNJMnduE4JOu8H2Vo/VfpvRcOKWJBKxGE/WRVmJsQlULcQLFGXhlo50IJGehydBxxnaaMR8BPcxDgHtToPd7T79fhs/8IjjdJGMddoNdrb7rK22GQ2n5FlBIrMzHDRWuzhEUYAXeJSFdtoqEmTooaTEJG5Zg4qDnC+7eIooCmm36+xs91ld7RDVQpIkx1rXYNpuN9ja7LG22uEEqn2RLZIMXbr4FsI5THu+R64dByMUwlN4FmzsOMj35BDQatXY3V51HKLQLf1Uiq+tZp2tzR4b6yuMhmPXCxTP4+A4WGPQQhJUzdiFMZRljhIgwgDPAklBlhco4xIpJark7okfiu/gB2yJJZZY4nuIj3SCguch3nfM2KKzklmcURYljTAg6jWRvueWFrIcXfORtYCoNNjDEaMsWyQDXuQhPUVQC2l1GpzfWeP6+U1m05S3bh3w2su3KAvN9WcusLvR48reGvv3jtBak2Y5szhDYNF5SRxnFIWm5ntEnQZePUBnE1SaY3yJqAXUtGVwMmEUpyglqddDwtBDeJKgFtJs19naWOGT13ZJ44yvPf8Gr7x4kyzJuPKx85zbXuXCVo/9i5u8cdOSpBUHCyYvmcUpRaEJpSTqNlC1AD2O8bIcEyhEJyASEnkyYTiNUVVCoqLAjfvWAlrtBrtbfT5xbZd0lvGNe0e8/sptpuOYqx87z/ndNc5v9rh2YZPXb+2TZgWTOEVYt0wSxxl5XhIqRdSs4TUizGiGzAqMBKKACIEcTDmdxCgliKLAmRYqiR8FNNt11te6PHt1B7ThpVdu8/JLt5gMp1y8tsvFcxts9lpcv7TFK2f3hbHYsiSZ5eRFibKC2t4qfjMinSbIrHDOy4FP6CvUMGY4nCKUoFYLnMGfcmaSjVaD9dUun/34eWypefHlW7z++l1O9k+5+NQeF89vstpp8Inru7z4xt1qkitBVMaTSZyT5wUKQX+r5zjMUlReODG4oE7oe/iThNOTiXPDrvpcxAdM8YgPaKJdYokllvio4COdoAShh+f573Ovu6r38gJTCiLcVE5iDLmxREKQW8vUGCJjqVlLjEAphR94BKGPUsr1oVjnYjs5GfH2vUO+9cY9fv9L3yTPCn74Jz/JZz52gb1Ow7ntWut0TAIPIZ2Oq5eX6NIQWcAaZtqQGYsvBKWBqTHUrCW0FoWbFvH9OQe56IWhNKSjGc/tH/PS2/v8zr/8OkWc8sk/8gyffuYil/ptZOmWd6RyHNwaCni5chwAjCU2ltRYIiEpqzjUJUTWoiq108c5KLfEoA3FJOG5r7/Jyzce8NXf+haT0wmf+LFn+OFPXebKehepDUY7YTbf93Aib655tCw0ISCtJTaGxFgC4QR+Z8ZQF4LIggKkfEccPNdwZErH4YUXbvDqnUO+9BvPMTkZ8/Rnr/Ojn73OxdU25CWm0j7xAs/piUg3XVWUhrCqjMTGEGuLL9zyzNQYmkYSWutUZN8Zh8ot2GoDac43v/k2r9455Cu//QIndx5y7bPX+UM/dJ1rWz1UteQnhGsKDqr9UhRVHKxFzeOgDT7CxUEbUJbQ4iop0j3eD/0PHDOWsfzARtolllhiie8VPsz300c6QZFKINX7vFkrCEMfISWmpmkAaZKR5BJPSVY6DQZSEM8yrDbU6xFlI0J5iiCoxNUEpGnB8fEYnWScPDjhYZzy4HRCPksxWvPaK3cYHY3YadQYzlJO45Rs3gwppauCiDpRzdA0liwtiEuNUpJOu85UCpI4A2OoRSHdKHBVE995uAghyLKCk5MxxSwlH064P0vZH0zdlX9R8uYb95gMJtxo1UnSgsNpQpblWOtiFAQ+zZagVjM0jCXLcmLtTPN6nTojKUiTHGstURjQDZ0uRxCoBYc8Lzg5HVMmGfHJiP0442A4JR7NEEXJ22/dJx7PuNFukKY5B1VTqF0kbIJmq04UhdSMpShK4kmCALqtOrEUbsnKQBB4dFda7+JQ5CWngyl5klMOp5xkOfujGdOKw62bB+RpztvNGmWheThNSDM3ESWVwBcejWadINLUS9c7NJskGGvpteqkQjDLckhzQt/pzxhPEvhuAkwINxk2GEzI44zfnsYcpjkHoxnD4xGqNNy59ZA8K7jVbqC0YX8cLyZ/HAdFo1EjCAMi7XqL4orDSqtWcSiwWUFNSrq9NtaT+BWHD17hWSYnSyyxxA8G/o2E2r5XmAu1/eiP/twTx4xBLHoQiTOMAtWqsbvV51y3zb3xlDv3jyknMZ4GWw/n/aSPeacgBJ6xSK2ZCeeS3MSZEY4BaQwNCyhFIR81wp7lYCzINHejxc2Q3Z01znVbHM4Sbt47pJgkqNJCLXjUsPsODspa/FIzFVBKSQPwgRHuBRqVYmsu5XtysICIc0oMqlVjY2OFK/0uD+OEWw+OycYxMi0RjeiDOQClktSBABi5uWka1qKkJFPv5ABUPRikBcZoRCNkY6PHpdUVRnnOm3cfko1jVKahHoJ05nrv5CCtJSgNM6xzd5YQWhgLsNpSrzjk78NBW1BZSVEUiGbE6nqXaxt9xlnO2w+OSEYzRFwg6iEo+b4cwtIwxVJIQSgFDWsZVXYANWMJpSR9QhxEVqIrDr3VDlc3+iRa8+a9Q2ajKXKWI5s17Lvi8P74/PAtno2XSrJLLLHE9yecUNs3vjtCbd9PkEIgn1AuEkK48VhtmMUpfuTTqoVcvLTNxy9uEdw95Hgw4WQwIYmdaJace+M8epbFNEtRakohwBfOjRgq119Dod1JUVR/5heycw7GWOIkx0roBk0uXNzkmUs73Do44XAw5mQ4I4kz6pGPJ+R7csBCXmgKCdZ32ilmMd3ilGj9yjn4vThoY5mlOQhLb7XNuXMbPPvUedqHp5xOYg6HM8bThHY9RL4vB+cHVAowUmCVwlQeOsZo8lIT+D5CvTcHrCXJcqw2tLsNdvfWefbpCxyNpxwMxqTDGZNZSqMWPDEObl84x18rPbcvjEUbTa4Ngedk6d/JwYLTc8lLsiSju9Jge3uVZz95hZPRlJNZQjKKHYfQx/MqR2TmPMSCT1FqCmExQmFFFQfrOBSlwVNP4GCt00NJHYfNrR7PfPIy06zgeBYTj2aMpymteohSHrJ6ig9KUZb1kyWWWOIHBU9e0P4+h3zST5W8zEdak6zAAq1GxPnzGzz1zEUuXtyk1YgW989HPeVjP66i4tov5qOiVCOwj6oMZeU5U00qP/Yc8zW3tBpJrdcCx+HZi1y6vE27WUMISPOSR1PB781h/jrgXsjIRyOo2hoMH8ChEktr1EN299Z4+hnHodOuo5QkTnNXaXnH498ZB1O914UL8OLkXI1tv+dzOA55oSm0phYF7Oys8tQzF7hybZdOu46UgiQvKvPId8dBOukQtHFjzKKKw+MczHxy9xGH6pgQ1TGRlyVZUVILfba3egsOvZUmvufioM+OQb+Tw3xfzMe9ZeUMXWUR2piFEN+jOJzhIAR5ockKTRQGbG72uP6xC1y7vkdvpYXvKeI0d3E+87gnHvPf0U/XEkssscT3Fh/pCsoHQjz617nbeqx0GuztrXH56g6DOGGl0+BB4JMbsziZOJ37R0mAAFeBqO6SZ65T5eKqnMWJXVD9whndC9wJLfJ8Oq06e7trXLm6Q6ZLVjoN9gOf0pjHNDnmFQvO/O6EzMXiJGntoxNwZbiM5HEOTkvDPW+hDVHkOOxu97l0dZtcWPorLfajgFw7wzrOnGzPcjB2Hgfx2FX9/ARpqm0WEToTh/m+KI0h9BTtZo2d7T6XrmwTtSL6Ky0ehIFzjnaZR5V0POIwf8q53ZQ8c9s8CZhXSd7rhD3fx6VxcWk3a2xv9bh8dYdas8Zqr829Wuichc8kOY+0Yx7t+0ccXDwWHOb7yr4jaZhrm8yPB2ug4rC1seKMJ2cJa/02d+sVB97B4T3e0xJLLLHEDyI+0gmK8tRisuOdEIBUikBJAmvp9lrsbK+yt7PK9maPVjW2u7ezyvBoTJqXNJs1JxRmDFroxbnZVCcKU1Uu1OIqWqCYn5QfSaXL6mp+zkEoSSCgWGmxvtquOKzQW2myudZlb2eV0fGEJNM0m5Fz/TXG6WrYM4Jxwlay8BZJdUWPRVVJg7GVrph8xAFwk0lKYgW0V5psrrbZ211jZ6tPq1Vjc2OFve0+w8MhR8cTms0aSgoXh/LxOLj+CRcHV5Vw71MJUXGwGMCTZyovOPVUoSQBgrLbpNuqc25nlZ2tHt2VJqXR7G33GRwOmUxTms2642Ct43AmDgKLrs7cj3GwUFZxMPN9IR8lc2rOQUjKriZUrUUc+itNyqJkb7vPye4aR4djmq2aa3LWFqPdhJa1LvlxFatHHObLQIpH+8Jg38VBSolUkkAKiqJB5Cn2dlfZ3erT6TiPpN3tPoc7qzw8GNJq1fE8iTCP4vAkyHkms8QSSyzxfYlv//vpI90k+3/9c79EELy3mzEC6vWI1Y0V+mtdtjd77O306XQbrG70kJ5CWMvDByeMhlPuPRhw/+CY0+MRJ4dDpuMYY5zU+3SaMhxMOTw4RQaKzmqHjY0VpBQcHg0ZHI0oZjnrmyt0ey2ajYh6LUR5klo9or/Wob/WZXOjx7kddyLa2llF+h5Waw4PThkNZ9x7cMr+4alzAT4cMp3Elex+zmyWMhnH3L9ziIw82r0Wm5s9lJQcn44ZHA3Jphn9fofeWttxqEd4ShLVQvrrXfprHdbXe1zY7bPSa7G2sYLyfYSAk4eOw4P9U+48OOb0eMzxwwGT0QxtnNz8dJoyHs04uH8CvqTdb7G+vkIQeByfjDk9HJKOE1ZXO/TWOzTqEY1GiKcUYRTQW+uwur7C5sYK53ZW6XYbrG32CGuuOfmw2hf7D0fc2z/m5MjFYTycOg+btGAauzjs3zvGCEtzpcnWziqB73E6nHByMCCdpHS7TfrrXZrNiEY9wvMUYejTX+vSW+uwtrbChd1Vev0W6xsrhPUIawzD4xHD4Yz7D064f3DKyfGIo4cDx6FS8p3NUqbThAd3jiiFpbXSZH2zRz0KGYwmHD8cEo9iOq06a1s9GvWQZqOG7yv8wKe32l44Iu9t91lf69Bb61Br1JBKMng4YDCYcnQ84ubdw+qYHDE4HT+unPse+Mwbz3H+4c3vwqduiSWWWOLfHLHR/Lnb3yU34+8npGmG1u/dFiiEwPM8pBS0WjWe/vgFrl/ZRinJLCs4PJ2wsdrm+vU9ANpv3mc8nTE+nSycZ+eePEmSkVX9AL6nkMppqEjr+gI8JSmArFItVdVyiOe50VApBM1GxPWn9vjkMxfcUkupeXAypt9pcPXaHlhL79ZDkq/lDE/GjkOSo7UT9kqSjLTiECg3Bl3gDAcRYmG0mGU5aZwtKjlKSXfVLgT1esiVK9t89tOXkVKSG839hyN6nTqXL+9grWV9/5TxLGEynDlp/SRDG5ckLTgYg1/FtoRqLUOgPAlCkOUuDvMqj++phax7ox5y6fI2n/rEJcLAIy81B6cT2s2Iy5e3EUJw78EJsyRlPJg4DmlOWXnypLHbF1obvMiNYpfWNcginNKrqPRO0iRDSYFC4PnzSpulFgWcO7fGH/3xZ1zTqrXcPRrRrAWcv7jFeWvZ2Vvjt3/3ZZegldrti9IJvyVxRpo4A0Sv5vRRNJAZgxUCz5MLzRUXB1BSUpaqqsI4Dnt76/zID1+jXgspjeHgZEIYepw7v8H5C5uMxjGjWcp0HDsBwOp4eBI+6P4lllhiiY8KPtIJyoP7p3he8N53CqjVQpIkYzpJiMKA3a2eW0IRTsJeAsYYsrzkpRdv8upLNznYP+Xo4YDpNMEa1/xqjAUlWd1YIaoFWAHHB0Mslkbk01/tkDXqlKVTS02TnOHQnaRqtZDZzHEIw4C9nVVWOg0QEPie62ExhjjOePXVO7zy4g3niPxwyGyaVN4zjoO2ltXNFWr1ECsEJw+HaGNoRAG9XptmPXL6ImlOmhWMRjOkEES1gDjNmIxnCARPXd2h2XTNwb7v5OWtsRRlyYsv3uTlF29y8OCEh/unTMYxxjrvGW3c8k1vo0tUD0EIBscjytLQqAX0V9o06zUncZ/kpGnBeOw4hJHPLE6J4xQhBLvbfbY2VhBA4CmkcIJ4RVHy5pv3qzgccfhwwHg0q/xvXAOssZaVtQ61ulN3HRyPKUtNPfLpdVs06xF55hyZ87xkMo6RQhCEPnGcMZnElKXm2tUdNte6CCkIPFXFwVCWhjfevM9LL7zNvTuHHDw4YTx21SwXB8ehu9ah3nAqt5PBlDTXNGo+3U6TRi0iTfKKQ8FkEjvxu8BjNkuJZylFUXL54ia7232gSmirRLMsNa+/cY+XX7jBg8oZejCYfmAFZRanj/XJLLHEEkt8X+FDfD99pBOUOE1R6r2/sAWuSmFxsu/TNGdnu8/1y1v0Vjts9dugDScPB7x544Av/fYLPLx7yHg0YzpNSNMC12Dqega8yKdWC6n7ijwtmEwTjLGEUUBYC/ACn3iWoktNUWryysG3KLVbIslyZnnB2mqHZ5/aY3N3lc1eC6zl6OCUm3cO+a3ffoE7Nx4wHEyZTmKybD7NIpGeRAUetUZEw/coc7fUoAtNEDpuWegzm6WYwvn8OBdhS16Wbqw1zTmdJOztrvGpZy7Q67fZ6rcQxjA4GXF//5R/+a+/yZ0bD5iMZkwmMWmaL5pDlafwQo+wFtEIPHReEM8yyqxwHJohfhQwmSbYoqTUeuFknBcl2liyvGASZ6yudvjhT11mY7PH+koTAZweDbl7/4R//Vvf4s037jEcTJhOkspzyHGQSqF8z8n/hz6mLIkHM8o0x/dbNOoRQegzVRm6KB6LQ1YUGGvJ8pzhJGF9Y4Uf/0NPsb7ZY2OlCcDodMLDoyG/+a++wauv3GYynDIex6RJjrFmwUH6quIQYMqSbBxTTlJ8v029HqLDACsluijQpaEo3PHk5a6Kkhclg0lMr9fmcz/+DL1+m/VuA2FhOpzy4GDAv/zX3+S1V2+7fTGOiePMcXgCyqpnaIklllji+xEf5vvpI52g2HfoXz12n3ANlWWpybKc2TRhOolJYqfB4fkepbUkcc5kmjCrlE/LSirezsM4nyKV1fIBrnnUmehZhHbTP25pQQJlJYrmOiiNtWhtyLOCeJYymcTM4gx4NOmSxDmTieOQpTllUT5yIz5DQkqB8pV7nDHV0oFAVOO2SrlkyhRz6nYRp7nLbxwnTCbuZNfpGgLhhMWypGA6TZhOY/Ispywdh8UwU8XVGeY58TJtLEo4DhiDsBalFFJJtDsfLzgY5i6/JXFcxWGWYkqNH/pYa8kSF4fpNK7i4JI7y2IABiebD8qXrhHZWCQWr4oDlVjdgsM8etWxorWmyEuSOGMyrjhUE1zglumm09QliGlOUThH5Hlj7Hw8am4cKIVbXpIWPCURxjhOvkJ6jsOcv4sDaG0WHMaTmNkso90uXTXNWvKsZDpNmExmZFnunJnPcngCWtevsN5/78bxJZZYYonvNWZ5Dre+8W1t+5FOUJ602i7so9HTyPfY3Vph99w6zXaDojTk0wSBoNFusLO3xrntFWYnY+JqbFjPT8zWQGnxQo8g9BC5RhcaoQTCKsq8JDTg1zyEcI69TgsEwOJV472Bp9hab3Pu/DrdlTZ5VqC1c+BttOrs7K6xt91jcHBKLCUWNxVjLQhrodBIJQkj3ymQ5toprSqFzp1LsB8FyMS55WptXHIhKl8bBIFSbK21OX9hg063hdaW2dTJzdcaEVs7a5zfW2X0cEAqssWorOURB+UpgshDFJU7sRDIwKs4WPyaQimxqJjMOch5HJRko9/i/Pl1VvodjIF4miCkIKrX2NpZ5fzeKod3DomrmW9tH8XBWheHIPSQBorcHQUy8Cq3ZIsXKZQnyIrH4yCpepOkZG2lwcVLm6z0uxhtmc1SpBQEYcDGZo/z59d4eOch2SzFIhaTQS4J0kgpCCMPaZyeibEWFXno0vkQeTWF5yuyiXa3zUeMq0llX0lWVxpcvLBBb7WDEJJ4lrhltzBgY6vPpQsb3HvrPuksgzMcnoTz/7c/w2f/1I/+H/g0LbHEEkt89zEej+H/8//+trb9aCcoTyqhYFFGIpWiUY949voumxsrHA+mfOOfvcLtN2+zfWGHz/74s2xsrPCJp85x6819xkqh7fy53fNYK4iMJVQCLSXaOrM7gUtkhBSESiKtdf0itpIqE+55pJTUooCnL21zbm+NSZbzr/5/z3PrjVusb6/zw3/0k6yvt3nm2i633rjPcBS7isNcGM5a13xpDDUlKSsOwlg8WXGVklApFK5a4pIkVxfQlUldFAZ87PI2F86vM4ozvvWlb/LmS2+xurnKZ/7Is+ztrfFDz1zg1mv3GE8SjIVyHmNrMULgG0MkJVa69ymtxa+4IgShUni4OGj7iIO0brksigKunF/n0oVNkkLz1d98njdeeJNWt8WP/ORn2Nnt88mnzvH6t24yGM5cBco+ioMEPO04SCABsBavqug4DpIEpyBcGrPgIIxbLgsCn4s7qzx9dYfcGL70Wy/w8h+8TKvb5tM/9iyXrmzx6Y+d5+2XbjMcxU4g7x0clLEVh0oh11gCySI5DTyJL85yABAu4RWCMPC5uLPGUxWHr3/1VV5+/hWCMOSz/96nuHRli888e4EXv/Y6o1GCFWc4PAHC91HRk+wfllhiiSW+d1D5t//99JFOUKIoRKn3bpIVsBjr9DxFaAVvvH6Xb7x+n3/+j36XG994nZ2PXWRo4VNP7Tp3W6XwQ58w9J06qbVYbZzZnDboacoo00xKTb1Sf52kJXaWsmJKZGlQQqI8V9kQVTNuEPpITxFYuH3jAS/fPuYf/a9f5s3nXmXryh4DBJ95ehdZlJWbsk8YBk6t1lps6TgoA2aaMEpLJkVJ2IgIfMk4LjCzlBWrUYVGCon0BNJTIAS+J/GDAOkp6kpx+8Y+33r7gH/xT36PV3/nBfoXtniYa374kxfxtXnEIfIrAboqDtqgjMXOEsa5YVxownpI4ElGswITZ0hhUXnFQT3OIQh8lOcRIHlw5yFv7A/4Z//b7/Gt3/omrbUuA6H47LMX8NP8DIegqiQ94iAsEKeMS8soK/BqIVGgXBziFCEMMiurCSIP6UkQziQyCB2HSCmOHpzwyv0TfuOfPccf/PPfp72+woOk4EdHV2npEl8pPN/ti7lwm9WuWiWNXXAYZyUi8mnXA04nGSbJkBJUUSBxHISSCClRylVplO84nB6c8ubhLf7Vv/wGf/Avfh+vFnGQG350dI0NX+Ap5dyYw4BImw9c4lFKLptkl1hiie9ffIjvp4+0DsqP/dH/7IlmgUoqosCjEQVc3+0zsZa3DoYc3H6IP52S1mpsX9zi8uYKfSV58c4xSV6Q5QWl1k6Uq9TovCTAXSGfZJpSSPY2Oygluf1ggDCGfqDQCFJjUb7nekWkQElJGPhEgc9T2ysUvsdbhyPu3HiAGk0p6xEbF7e4vNGl5yvevD9gkmQLSXpr7YKDj6WmBMdZSW4FOxsd6qHHzf0hOi/ph26keaYf5yClJDrDoQx93tgfcP/OIf5wTBIErJ3f5MLmCueaIa/cOWacZGR5SVE6+X1basq8xAdqigWH7fU2zVrAjQcDdF7QC5wo3Li0eL5raJ1zCH2PWhhwab2D3wh583DE3dsPsScjCt9j9eI2l7ZW2KkHvHb3hHGSk+WFa3a21nEoNNIYWp7gNNfE2rK51qbTCLl9MCRLc3qBwpPSxcFTqKDiICRh4BH4HpfXOzS7DV59OOTO7UPs0Sk68OnsbnB+a4WLnQY3HpxyMknIioK80K6KpA1lXqKs43CcaVJj6a802ew1ePv+gDTJ6PiKhqcYlQbpuSTDGTAKQt8nCn0urLZpdRu8fjjk3r1jzOEpGYLu+U3Ob/e4utLkjbvHnM5S8txJ839Qi9n/8//xZ/n8n/zh7+wHbokllljiO4TxeEy32/3B10HJ8xJr3r8hUEtNmRekccrLkxmDNGeQlTSUZGt7jQezjPu3D5k+PGW1FnCa6UoJ1brRYpwZoLEWLcBISaPu44c+exsreEoRJyVJkmKrUVzXp2CwZcVBCMqiJJ6lvDaLGecFJ0lBJCWbO31O0pIHd46YPRzQr/mMC0NpndfNgoN5xKEUgnotpOU7DvXQJ041k1kCRlNUUvX6DAchBDovScScQ8lJkuMLwc7OKoeznMMHJ8yOh5w0Qsa5JjfviMMZDoUQ1OsRLc9jd32FdiNklpZMJgnCaopqaUprgxX6MQ5pnPHmdEZaao7iHE8Itrd6jHPN4YMT4uMhR/WAcWHc88yXj6gMCasplkIIoiggVIrd9RVWWhFZYRgMZ0jMIrnTxmCL0kn1C4EuSmLgRpyQacNhnIOFva0+s8JwdDgkPh0zaIYkpSWdx9Ma12hbcRBAbqEWBdQ8j921LlurLeLUcDKc4llNbgwW60bFH+OgSZOUG7OY8qbh4SxHWNjdWGFWaI6ORsSDCaNmSHyWg/mgDhQ3Nr/EEkss8YOAj3SCMj9hvBeEAGHdxIlSEiMFeakxhcYqiVXOJUWXmqIQmLoT2NLGYrVmPkJjjUFrN8mhjaTeiVhd7XLt+h6+5zFMCvYfnpKMJpSFxgjn1CMrTx2Eq6JIIRYcykJjQ4mVThjdlM6hWNcDlFJYYx7noN0EjLEWXVrq3Q4rvRZXr+3RrAWMco1+cEI8HJNnJVZKFG6SibnJnZJu2kZJN/pcaPzAw0iJFQKjNUVu0Y3QVR20AW1cQlDF2cXBUhaWZq9Gt9viytUdVjoNxrnhzr0jZsMxOi/Rwk3ZWDM3x3My76qKfZEVlIVGBZ7bH8K4OAhLSYDyFKbSHWHBwWBKp0My01BrN2l1Gly5usPqSpPEuMbYZDIjT3O0cFYEQswdnp3kvpQSPEWRF5RFiaeU46BdhaSwBm2dErBX9ZEsuqYrDsYaykzT6HVot5tcurzN+e0eMyPItWY2mpDFGUYqpHJ9SsBi2kpJ6fZFUS44mDMcSmsojYuDwiUe2n7wFM/CEGqJJZZY4vsR/67ooIjKl+U9UU1LKCXxPOXcZo3FGme3Z+a2uMa4q04l8YSEUi9OBnODOKMNuiwxVtGLAtbWOly+sksYetx6cMpwPGN0MqIoNMoDaaXrk6gM65SUKE8iPOkqEtVospmbyBiDMQKkxJMCW85PSO45rLWLBCE3ml7ks9pvc+XKDq1GyN3DEaPxjNHpkDQv8H0fKQXCOts6gRsF9jwFnnRVBe1O+o84WDQGK50qrSe0i9V8RtfYhZibNYZ+5NPvt7l0aZu11Tb3DkecDCaMTkdkeYH0fGxlUug4yMW+kGqeCLp+EiOqvgnjYm2rEd55D44oWTSomiphLApDO/BY6ba4fHmbjdUOR8OYh8dDZuMpaVagfM8lI3OXvUpZVymF9FwztNEGpMQIlyRROTUbIdwyGXrhmmyrJlVT+STlec5K4LOy0uTixS0uX1jn4TDm6GTMZDQlznL8IKyM/mRl+ue8eTzPjSG7oSDHwVYJrbAWo+ccFB5Qlsznuj74c/F/9AO1xBJLLPFdxof5fvpIJyiPCUy8D6R01QMr3HKFm+QAMzeyM+52Oze3m5fILYsKBhZKbREeNJo11te6XLq0RRQFvPjKXR4cnLAvXAleWnlGoKW6ap5zkMIlKNZxsFXJf8FBuF4NWZ0QF5fL1YlRG0tpLI1GjbXVDpcubdFsRmy9tc+DgxPuS0mpDZ5nH/HHye5L6U7OSOkM96xFVnGYc7DzuCjp4iDEIw5VomS0pbSm4tDmwsVNNte7vPbWPnfvHfFAOsfkUD2aegFRvWdRVVDEgoM7d1cVFmuxxiVNSslFYrDYydV7MsYt3dRqIf1+i4sXN9ncWOHWvWPevrnP0eGAQhukZx/tQ3iUIChXvTDWVjoqjoMbRXbJmKmSW2lcgnT2WMC6ZZ681NTqIf1+mwsXNrh8ZZtb9064efshhw8VeaHx/Krq8SiMi4oWSmKwC00bcyZBsdVymrfgoB97L0/6UHzkmsqWWGKJf2fwYb6fPtoJyhPg6iOPcrV5hV5WehgGd/6VVblJ23c+1m0gpcTzFRZLrVljtd9mY73D+sYKtShgY73Lar/N/Vbd6V8oJ5kuquc9W82ar0Y5XZKKAyy8e3RVcZk/RlQJgpISW3nM+NKn32+xsd5lc7NHrR6ysd5lrd/hbqtOGmd4vufcgx8rpVXvs/pNvosDFQfHbxGHMy68nqewgKdc9WR9zXFYX++yubHC2mqHe+0GWZLj+R5KiTNxeMRlrq0ydyK2WJccPCrmvCPLFgjsI7E8KTDSZ6XXYn2tw8ZGj/UNx2F1tc3hUYPJeIbvOa8eKR5/NqpYWzvnIJgPRCscN8MjcThR/eExDs4lu1dx2NzsVYaQK6yvdXj4sMnx0Qjf9yo34/c+Hox1GjVVnafSrXF8Fho0nP3rgz7e4sN9AyyxxBJL/NvEh/h++khP8fzsz/7X+P77uBljKfKS2SwlSzKKoqTQBoMz96uFHmlWUmjt/GCkwAt8oiig1ogIwwBPSVqtGisrLba2+1y+vMXa2grdToN2t4EQgtkk4eR0wunpmDffvMfBvvNMGY1mFKVTLY3jlDTJKPKi4uCujKPAIy80eWkQWHwp8HyPqBZSb0RuLFdJ2u06K90ma2sdrj11jvX1Lt1Ok263gQHiacpoNOPoeMjtmwfcu3fM6emY4WhGUWjKwsUhTTLKvCCvOCgpqUc+WV4+xsH33VhrvRkRhQFSSZrNmjsZr3e5cGGTvb012u0G3V4LIQRpnHFyMuLkdMLNtx9w794xg8GE4WhGnpeUpVNOTeJ0EQdtBUoKaqFHURqyQiMqVVjf9wjDgHojIowClJI0GxHdbpO19S7Xru2ysbFCu92gv9oGIciTnOOTMYPhlJs3HnDv7hGnp45DlhXoUhPHKUk8j4N2mjZCUI98Sm3IcreM4klncujiUCOKAqQUNBs1Vlaa9PttLl/ZZndvnU6rzkqvBVKQpwWDwYTBYMqdOwfcuvlw8XuaFZX5YxWH7L05pHkVBwG+7zsbgXpErR6+I+l8N37u5/4UP/ETn/iOft6WWGKJJb5T+HdmiufxkvejJZX5b0WhmU2cxL21huZKC6kUeZYzSzIQkqgegTFMTscIkVE0a3i+RxD4COHM/tbWuly7usMf/sMfp9Wuo43heDSj0IZz59e5cHETXWp8T1a9CW6ixVo3pjubJpUjbUmz20IFHnlaMEtzhJBEtQCsZTqcYA2UhcbzPHzfcxyikNXVDhcvbvF/+qlPE4QB1lqOhlOKUrOzu8rFi5tkWc7X6xFlqSuDuoTCOl+eudS/LkqaKy2U75HnRRUHZygoBExPx0y1pd6o4fmKMAgQQhCFAav9NpcvbfHjf/RZVlZaAJxOYuI0Z2tnlb29Nay1/F4toCw1ZakZTxKstZSlYTZNmYymlGVJo90gjEJnQ5DmgCCMAqSA6XDCbJJQb9Scamzgg4IwCtxyyvkN/siPfZz+agdrLYNpwizJWN9cYXdvDaMNK526a3gtNJNpAjiJ+XiWMhnNyLOcRrdBPQrJ87LaF4Ig8lFSMhtNmY1jonrk1HMDHymdjkqv1+LcuXX+2Oc+RXfFJWiDacx4lrK+3mVvbw1jDK+83CTPSowxjCcJVOrB8SxlPJxS5AW1Vo16I3KJbJZjLQRhgOc5DtNJQq0eufHkKHCNzh+AZQ/KEkss8f2Kf2d6UA4Ph3he8t53WtwJeJZQFCV+6PQvhBDkQGYMoZIEsproUdJNwEwTjLXMpim+r8izAqMNnpLsnV/nSrSDkIJGs1b1WECRl9y9d8jrr9/l9s0DDh4OODoekWdl5X+TkucFXqDwAw9PKXJcJSPwBL5SburIU+RxxnTmVFxnswTPU5R54Zp0teH1N+5x/fo5PCVpNGtExiCqUeaj4zGvvnqbWzf3efDglKMj17DqKknOa0h6csGhzEtiY/Cl0w1xjbyKIs+YxSkWiOMMz1NkSQ7Gje7u7K3RbNZQSlKrhXihjwDKouRkMOG1V+9w6+YBBwenHB4OSbPCuSzPUrKscNMxgYevJIUQZMYJ3PmVh470FVlWMItTZ3KY5ChPkaU5pnBNunvn1mm2anhKUauFqMC5MpdFyfHJmFdevcPNG/s8eHDC4dHIVbBKTTxLyLICBPiBT6A8SqFJjUFJSU1KfF+R+IoyyUiSDE4nJEmOUpIsybDaJV8vvnSTH/mRj+F5kloUIjwP5UmXEMYpL758i5s39jk4OOXgYECcZM7xuooDErzAJ/CcTH+qXW9STUoCzyP1Pco4I06c7UCel4tpoPdDkmTf4U/ZEkssscT3Bh86Qfnyl7/M3/ybf5Pnn3+e/f19fv3Xf50//af/9OL+/+g/+o/4e3/v7z32mB/5kR/h937v9xa/Z1nGL/zCL/D3//7fJ0kSfuqnfoq/83f+Dru7ux+Ky2z2/m7G4KYulKfcJETkY4xBaosvBDbw8I3A5iXWk4TNCM8rsBY3+llqlJKVwV3BeJYgQw9bGjbWuvQ3VrDWMhvOuLd/wlefe52vf/NtTg6HjMcx01nqnGUr87qo4U7kWIvJSnwBhB6eFZCXGCUI6iFSysW0TDnTrv/EGLKsYDSJkZGPRLC9sUJ3tYPwPcaDCcfHI776/Bv8/nNvMDgaMapcmYt3cFCBt+DgAWFQcSjctEpQDxEVh1LryqNGoktNWRSMpjGlgCjwWV/tsLaxAijSJOfB/SOe+9bb/P5zrzOoJoum05S8KN00jhQLDgLhOFjHQVmgKDFG4tdCQLjJJWOYxc4nx41CF0xmKVo5ZdidjR4bu6vUPEU6S7l//5gXX7vDV3//VY72TxkNZ0xmCUVeVv26grAWIAOncKvzAs9YwsBDWoEoNNpavNCn1qq5EW9jiOMUUY1jl0XJeBKTaE271WBrvcvq+gpRFJDMUg4eDnj5zXv8zlde5vThkNFoxmSSkOXFotA35yClwGQFyliCQCEtyFKjcRzqCw6WWZx+4GeiLJZuxkssscT3Lz7M95P8sE8+m8345Cc/yf/wP/wP77vNn/yTf5L9/f3Fzz/9p//0sfv/0l/6S/z6r/86/+Af/AN+53d+h+l0yp/6U38KrZ9k//dumGr65f1+wE1i+L7nxlar0VZZ9aEoUWlrGIPyVNXYKR977qLQpGnGeBxzeDxiOJySZ8WCQ5EXjEZTDo+GjMYz0sS5zxptFhotUkk87ywH7caPqwZOqw2m8svxfPUYB21MxSFnOk14eDRkMJyQpfliXqPIS8bjmKOjEcPRlCTJyPPCjRO/k4OvKtn4qs+higPaxUGo94qDoSw1aVownsQcHrk4ZGm+iIM2hvGoitFoVnEonXjdnEPVaKs8tZDPF4AnJVJI0G6U2TUmP+JgTTU9VHGYzlKOjkecDqYkZ07aptRMxjFHxyMGwylxXMWh4mCxi6Znz3eJmi3dqLOSTifGVqPOQlUcPOX6Ts/GIcuZzVIOj4YMBhPSOMNWAnJaa6aTmOPjEaeDyWMc7Ds5VE3HRjsnaG+ujzLnUPUkKc8lMvYDjncz925aYokllvgBwIeuoHz+85/n85///BO3CcOQzc3N97xvNBrxd//u3+VXf/VX+eN//I8D8Gu/9mvs7e3xm7/5m/z0T//0t82lmsp8Xxhr0YVBlBpPQhSGSAS6LClLi7TOK0coQZrlFJmroMy1KoQAz1NEUUin02BzfYVer0UQ+hSFk2n1fafFsbnhmmfLtCArSkRWgHFVHF0YhNBYCWEUopDo0jVtCqTzavEEWZ6TZwXOT27OQVQcAlqtOlsbK/R7bedRUxq0MHieotNpsLGxwkq3ic01WVaQZSVamMc4KGGJahHKk5iypNQGYZxXjvAUaTHnYB/joJQijHzarTqbG/M4BBRllVRa6HQbbG6ssLLSxGYleVGSZkU1reyUZdHgiSoOvsQUjoOyID0PlCTT5eMcKqE3pSRh6NNqRovpqXrD9dyAG+fudBpsrHfp9VqUSU6eF8i8hHkctIYSFJagHqF8SVm6RArAVx7SU+S6cBy0rYTmHA+lFGEY0GjW2NxYod9vU6uHVTJbIhC02o5Dv9+GXFMUJWlazKetH3GwFr8+XxaCstRI6zgoT1GY8gwHEJX43ZM/FN/2x2eJJZZY4vsa35UelC996Uusr6/T7Xb5iZ/4Cf7qX/2rrK+vA/D8889TFAV/4k/8icX229vbPPPMM3zlK1/5cAmKUgjvvaXurQVdFKRxhi5KOiYiarecONe4RBY5xguQUUCgBOPTMeNxgvQUUT0k8AOEpwiigFa7zt52n2sXN7Da8vob9zgdzzDW0Gs1Wek2uXp+g3u3DsjTgqzQxKmTUNdFWU3PlLQaIWG7AUKRjgvICozno5oBnhJMR1MmgxliwcFHKIUfBTRbdTbXuzx7fRes5Y237nM8nKCNoduo0+u1uLizyr3zG05SPi+IswKBpTzDoVHziTpNrFBkkxKZFRilkGGNIPSYPpwyGUxBSaJ6SOgHFQefVrvB9maPZ67uICzcvLnPc998k6LUdJt1+iuOw5XzG7yWFmSlZprmCGPRpatEFVlBo+az0qyjfJ9sohFpgZES0agTBIrkOGYynIKURLWQMAoQSuKHLg5ra10+fnWH0Pe4c++Yr794g7zUtOsR/V6bnfUuVy9skscZaV66OBhTccgp8oLIV/RaDbxaQD6JEXGGVRLRclND6UnCdDjFIgjr0YKDF/o0Wk6H5lNPnyfwFHfuHfGNF2+QFgWtWo1+r8Vmv8PHruzwYlKQl5ppkiOMU8tNs4Iiy4l8RbdZI4giimmCiFM37FyLCGsB+SBjOphihSCohUQ17wN7UJYqskssscQPCr7jCcrnP/95/syf+TOcP3+emzdv8t/8N/8Nf+yP/TGef/55wjDk4OCAIAhYWVl57HEbGxscHBy853NmWUaWPWr+G4/Hjnzo4Xn+ez5mrvppbYouSoJCIySkVpAbS91YpsagpKApBWFRmeEpifKcq7GnXDOn53nUAx9VaF58+TbfeOkm3/j66xRFySc+eZXPfuoy59e7NHzPqbD6Ci/0sVJWHFxvgF+UKAGxFGTGEhlLZiyJgJYUBJUpoJOEd26+8yUqz1OEvkddCF5+5Q4vvHqHr/3+K+iy5PrHLvJDn7jM5d0e7SioOHh4gYeVYqEbVxYaX7lKQCydsWHDWGIcB18KwoqDCHzHIXRTLfOlhlrg01CSl1+5zYuv3uX5519jNo259vRF/tBnrnL9/NoZDs4N2CCc7D7CydtXEvKZlGTGEmpLZs9yMI6D77ulqdDFwQs8PF8RKEVDSt5+6z4vvXGf3/3dF0nihIuXd/nRH36KK7t9WqGPp5SLXeDjw6LkVhbOldkHUilIrSU0hkIIEgS+FATaYLMS7Tk1Wj/wqiU4dzwEnqIX+bz5xn1eeuMeX/uDVxkPxpy7uMMP/9A1PnZpk149XCwdeoGHj+vDEUmOLgzSWnwL+ZyDtWQWEtzYe2QMJisxvuecmSsOT8IH3b/EEkss8VHBdzxB+bN/9s8u/v/MM8/w2c9+lvPnz/NP/sk/4Wd+5mfe93G2Uhp9L/z1v/7X+eVf/uV33e55bh3//SAR0KpjAp9mzSdJciba4AnoNGrMcsNklqI8SbMe0hESFfhEtRDPd87ARVEyGE64dUugk5QbD0e8dfuQ0/0jjDE8V8LwdMK17RUOjkacnk7IsgIp3fKRJEAYS+j7tENFlhaMbYEA2vWIU22ZxBnKk9SjgE63iQi8ioO7Yi6KkuFohoflq7/7Eq8/GHDjzhEH9w7xsMSZZng64f5un9E45uRkvODgeQoRAa06UeDT8SV5ljOulp86DWeyN00ypC5phAHdbhPre0T1cDHqrLVmNJpx7+4hX8Pw9sMRN+4ec3j/EMqSb2aGyWjGg3NrVQ/GmCTLF3FQQiBalsBTtH1JmZeMc402ltV6iJ3HoSxpBB6dThN8j7AeEPhOGK0sNeNxzH1ree5rr3HvdMpb9465d+sAaTTTuGQ2y7i70yNPc46ORiRJtliqk0JAs4avFF3llvrGU0NRGlbrETNjGaY50mhanqLbbVIoRdQIXXIgRDUyHKOs4fk/eJ1bxxNu3Dvm/p0DVFkwjgum05T9mw9QpjIfTPPHODSbNXwlaUuB1Zpx1czcr4WI0jLMcqQ1dKSk221SeoqwFuAH3gfqoMhvYwx5iSWWWOKjgO/6mPHW1hbnz5/nzTffBGBzc5M8zxkMBo9VUQ4PD/mxH/ux93yOv/JX/gp/+S//5cXv4/GYvb09ykKDff/GWgEEUYDwFcYasjRHKcXWZo9r623E4Zh7xyOyNMeTglozQki3zl8WTsCtyApm45jpYMLdWweczDKSvGR9tYOUgsNRzKuv3ubo7gFFaZkVJUII5yMz51BVYxCWNM1BKrbWV7iy3ub+cMbNg6HjJgRRIwIlEZJFb0WZFUwnMZPBmOP9Ew4nqePQaxMFiofDhDdev8vp/UMAJplzzrXCueAsOHgKYQ1JkiOUx3q/w7WdFaLTGbcOh+RJTmAttWaEkRIpXcVjziGeJEwGEx4+OOJ4mhFnJb1ug3rgsT+MefONewweHCGFYJgUCPk4B78aBRYY0qzASsVar8W1rS7Hs4w37p+SpzmBhVojwlbGfmVpAEOZFyTTlNHpmOHhgNNZxjQt6HUaNCOfh6OEt950HJQUTNLC7Yd3cJBSonBxsMqj321wbafHIM55Y/+UIi3cGHo9qppnpTMpxI1SJ9OEyemE8fGQ42nGLCtpNSL6zS4PBjE3bzxg9PCEmq8YxPm7OLjkN8KzhjQvsNKy0q5zdafPOC147cEpRZqTaU3UjCgrbyJTmg/sgH8/88wlllhiiY8avusJysnJCXfv3mVrawuAH/qhH8L3fX7jN36DL3zhCwDs7+/z0ksv8d/9d//dez5HGIaEYfiu2+dy7e+FxYWmEBghGM8yCH3qvToXL2/xzNUdzI0DBnHK7GREmRbIVn0hSz4fhhA8Wh6Ji5KsKJ1njZQgXSJSFCVxDELKxRjpXC5fiMqQTwqmcUYpBVG3xYXLWzx7dZva/ROOJgnTk5RJmiPrNdQZaXRrH3HQpWGm3diuAayqTO6koNCaOMnxlFpwkJWVohDOa8YawSTOKJWk3os4d2GDZ549T3jvhNM0Z3Q0YDhJ8NuNRVPouzloYq3J8oqDlGjpPH7mHHxvLhgvHudQJW5xUqCxBN0We+fW+fgz5zkYTDmYJIyOMkazBNWoO88aIRbNpcI6WXyjnT5LlhfO4VepBYeyLImTjMBTCxuguYz8nIORgiR1+zLstdnZWeWZz1zmcDDjKMk5eXjKaJISNGrueJDviANU489zDoCUaCGwUlDmLg5Ce9VxZCs5/TP7QgqSxCkZhysBW1t9PvapK4zilMM053j/hOEkIWjVEUo9FocnIb59l8HX309deYkllljie4vxdPptb/uhE5TpdMpbb721+P3mzZt885vfpNfr0ev1+KVf+iV+9md/lq2tLW7dusV/+V/+l6yurvIf/Af/AQCdToe/+Bf/Ij//8z9Pv9+n1+vxC7/wCzz77LOLqZ5vF0q4n/fC3EsHBcZKxnFOQyk6rYgLF7e48vQFplLy5tv3mTwcMIlzet0mUklU5c1C9RxWCLQ2TshNgPQ9SuOmX1SgMLkly0rXr1GJri14CIGQYJRknBYoT9GvB1y4uMmVj13E1CJefeMek6Mhk7ig06wvOGCdgd+cgzWWJMmdkV3gUVoLRYn0FdY6BVsCgfTezcFIMJ5kkpYoT7DeCDl3fp3LT11A12u8eWufydGA02nKaqflXH/fk4MhTQsMFhV4aAt5rhccssxNskhPId/FQWCUJc6dLko38tk7t8bVj12geTzixdfuMDkaMpzldFsNFwf5Dg5WgHGVKG2tiz+Og/AVwhjyQjt/G997jzg435u4MKRJzkrks7u7ypWnL9I6HvHazX1GR0NOpyndeo3wnXHAJRdUAnLaWqSvMEKQpqV739VoeI5ABt4ZLx0W1TWjYFZoijRnZctne6fP5afOM45TXrmxz/BwwPEkpd9quL6os3F4Au7+w3/EN/+/3/4XwBJLLLHEv03MyuKDN6rwoROU5557js997nOL3+dLL3/hL/wF/sf/8X/kxRdf5H/+n/9nhsMhW1tbfO5zn+Mf/sN/SKvVWjzmb/2tv4XneXzhC19YCLV98YtfRKn37yd5L4jKEfe973SjqaIqZ2SFpuMpVjoNd2K+vscwzVjp1DnwFVmpF+OkYn6Z/MgtDoO7aqY6WcyvjJWUWAFaW5St+jDP0oDF8+ba0Ag92q0a586tc+X6HjmWlW6Dh75HrrWrvlQc5lWDOQcLlMaCqq7q56Z70lWJtDELB+AFB+sM7iwCISxZqWkEAd1Wnb3dVS5f26NQgv5Ki4PQJy009kkcrOMg5CMDQGMtas7BGvTChZjH/hXVX7k2rgejWWN3x3GodRr0V5ocBB65NlW14SyHR8G1ooqDeNRzYar3KUSlH2PtoromqjjMn09UjsvGQqsRsbPd58r1PeqdOmv9Nvu1oPIrmo/3zo+HMxzsIw6q2r/a2EUFzljnPC0rAmc5UL230rjXaDUitjdXuHxtx8nl99vcjwJy7faFfCeHJyA7PWUWHz5xmyWWWGKJ7xVi8+3rnX3oBOUnf/InnygG9c//+T//wOeIoohf+ZVf4Vd+5Vc+7Ms/hvl0yvvci7BikSAgBfVGRK/bZGt9hX7faZf0uy0ajQjk+NEIpz27li8WuYqVztxOzdc7cBUcK8/0nCzsgdzfZ09IQkpqtYhep8nmWpf19S6ngzH9bpNGs4ZQo0dNkNXJyNqzHCxWCNcXIQSiul/hli7cclb1u52/kUcxEtU2tVrISrfJxvoKvdUWW7Meqyst2s266395LEmzi8fbiocRIEXlElzdL4WLzVkOVEsy7rXd+3BxEERRwEqlWbK21sFYQ3+lRatVR3hykWw8zsEuOFghcKtszunYGrcv5stpixRpzsG6KAqqJTzpvG1WOk3W1zqsr3fQRrPaa9Fu1ZFKLRJLF8N3czBzDtLtC2NdMqGqJRxTLS89xqFKcubLTUEY0O002Vjr0O+3abTqjkO7jvS8xT6zPL4vllhiiSV+0PGRdjP+wn/4XxO8n5uxcAZ4nV6LdqdJp9Xg+tVt1je67J3foFavkWYZd2/sc3w04rU39xmOp0xGM0aDCfE0wRhLlhfEccZ4FHNyNARf0e416ffaSCk5GYwZn0wok4LV9S7tToNaLSCqTOeiWkh7pUm726TbaXL5/Abrm13OX9qi2WyQpil3bh5wdDji7RsHnIwmjIdTRqcTklmKrmTukyRnNk05uH+MCBXNbpO11Q5KCE5HbvsizllZadHptajXQmo1xyGMXBxanSbNZo2nr2yzsbnC9rl1Wq0Gpdbcu3XAyfGIl1+95+IwjhmdjplNErRxy0dxnDGdJBw9HGCVoNlt0O93CDzF6XjK8HhMPsvo9dp0ei1qtYB65UQchD7tbtPtj1aDS+fX2drqsXt+g+5Km1KX3H77ASdHI9668ZCj0xHj0YzxYMJ0EmO0IctLktTF4XD/FC0s9U6d9fUVAqUYTmIGxyPyWUan06Dbb1dxqDgE/mJftFoNLu2tsbO7yvbeKv3VLkVR8uDuIcdHI9548wGHp2Om4xnD0wmzcfwoDklGPMs4fHBCKSz1dp3VtQ6R7zOaJgxORqSTlHazRm+9Sy0KqNdCvMoHqdVxcWg261zaW2N3b43NnT791S5CCu7e2uf4cMSbb+3z8HjIZBIzHkyYDGcY8/7WDgA/fOPrXDy8/Z3/0C2xxBJLfAcQG82fu/3NH3w343k5/T0hBGHgs9rvsHd+g8/+0HWuXNpEKkGSlxwNpqz3W3z6M1exFi5cOeBrf/Aa9+8ekSXZQr7caKcQmqU5aZoTqNCV7APPNcVWo6dZlpMmGbV6QFh5zUjpToq9Xou98xt86lNXeebpc25KSBsOBlN6rRqf+tQVAK7eOeS559/g1s198jhzcvbWLlRKFxy8qmE48Kgu4bHWkmUFaZpTzwtM4CEInIaH77Gy0mJ3b51nP3mZTz9zAakEuTHsH01Yadd45tmLYOHa0xf43a+8xL07h+RxRjJLsdb1vxRFuXifXj1w6xa+gsB3/j0VhyTJqOcRoe+BEAsO3W6Tc+c3ePbZS3zi4xfwA0VRGg6HU1qNiGefvQTA9Y8P+b3ff5Xbt/Yps8JxqMaiyzMcZFAtCfoKfB9igbWWPC9JkpxGVqADd4hLIfA9RbfTZGdvjaefvsCP/aHrSOWW6+6fjGlEAU8/fR6ehqc/fpGvfu1Vbt3YJ09z0lnqqijGUhaaPMtJ4gwRVhw8BaGPSNx2RcUhzwqCahReSoGnnOrv3t4aTz11ns9++gpR5KOt5XAwJQg8nrp+DvGU4JOfvsq//vK3uHPrISYviSfJBy7xiKWU7BJLLPEDgo90gnL/3jGe9+7pHnBf1PVGSFqdMDvtBuf2VonkGWG3avmkLEveevs+b752h/37Jzw8OGUyjjHWUJbGGe4J6K11COshUimOD0dYIFCCXr9NWovAWqbTlDTJGQ2nSCmpNUKSNCOJM1rNOpcubNBsvKPqIwR5VnD79kPeeO0Od28/5ODBKdNJjDbOg6bUmsJoeusdokaE9BQnRyOMsYSeZGWlRS0MMdowq9xyR6MZUrolnTQriGcpQeDz9LUd6rUQYd0aiqjiZazh7bcf8Mard3hw/5j9+8eMRrPKvFBXPAzd1faCw+B08hiHehiitSaOU6f5Mp6hquWUOMnIspww8Llwbp1+r8U7YYzh7t3DR3HYP2U0nGK0oahchMvS0O61iOohKlAMT6dobQg8pxtSC0M3bVR5Ek3GMVIKwtAnSXPiOEUKwcefPsdKtzE/EBb7whjD/QfHvPHqHe7cOuDB/WNGA/capdZVLAzt/iMOk1HM6cmU0Jd0Ok1qYUCRlQtfpOkkRlZVnDjJ/v/t3XuQHNV5NvDnnJ7L3ke7Wu0NCSGDDMiSMJEwRqFA5iLCZ4Vguww2iQNlkjI2UlCAMoH8AVVfBWGnDOWUY6VCXCLgi1IpUCyCDBIGhPURbCyk6AIWYAm0uiyLpNXOXmbn0uf9/jine2b2MruzwmhWPL/yGmb6TM/TZ4bpd3r6nMbQUBoKwNyz21FVNc2+HSVfYIgIOg9+gLfePICDB7rRdeQYjh9N2vOgSjh/YIizyRJR5Srj82lKFyh9/Sl42s+P/SygFDCUziDndtiDQ1mc0d6E2bNmoD5Ri5bGesS0wvGjvThw8Ci2vLwTB/Ydxonj/ehLDiAVXAhPKTuDaJWdwK06GrFzo/QkYYygvrkesboaxKviGBwcslOZZ7IYStvHD6UzyOZ8DA6mkcrmMKO5AeeecwaaZiQwY5odoXHiaC86Dx/Dlpd34p3fdeL4sV4kewcxlLZHUIKjEF40gtppVaiJRpDL5jB4NIls1kddcz2qaqsQr4pjYHAIJptDOpNFOsgwlEHOFQ0n+lM4c1Yzzp87Ew3TbD9EtUKypw8fHO/DL1/cjnd+dwC9Pf3oPdFv5woJzpvwNLx4BDVVcdTGo3ZOkGN2Yrra5gZU11ahqjqO/v4hd9XfLNIZmyE6ZPthaCiD/sEMZsyYhoXzZqOpqR4zEnWIeArJnn4c6e7Bll/twptvvIvjR5NIJgcwOJh25z0pKE9BRz3UNdSgNh6F+D6OHbUT01U32nN5qqrjGHCXOEjnbF8AQDTlIecbpFJp9Pal0NrahM9ceA4amxswI1EHrRX6ewdw7HgffvniDuzatQ8njiVx4kQ/UoNpe9FDBShPQ0c91NZXo74qBpPzcaKnH6mBIdQ01aO2vhp+dRx9A/a1yObsFbEBO1lbzrcXHDyRTGH69ASWfOY8JBK1aE7UQGuNwb4UjvX04cWX/he7d+9H7/E+9PYOYMD97FhKJpvj1YyJqGKV8/k0pQsUYwQqf1ZqEQWE52/0D6RwuOsYDh08iqb6atTXV6M6HkMum0PfiX4cPnQUhw4fx0D/ENKuqBGxp3fqYGSP1uGwV6MAbQQwBh7syaHa01CehjLGXiTQ7Uh8Y5BJZzEwkML77/fg0MGjaG2sx/QZCVRFbfcnewfQdeQ4Dh0+hmTfIIbSWeR8P38FXneSr/LyGQSA56527MGOJNGezSG+vSKuGGPnLjH2Z4+BgSHk3u9BZ+cH6GhOoKa2CtW1VfCzOQz0pdB1+Bg6Dx5FX1/KFTUGRsSdFupOBtUaOuLlM4jAMxJm8F0/aGNg3LBk+1oZZLI5DAzaqwB3dnZjVus0TGuoQbw2ChHBQHIA7x85joMHjyKZHLQZcr79mUvsiBqtbB+E/eAreCLQvsugFXwJ+kHB+Cq87EHQD4OpIfjHetHZ2Y1zzpyBhmm1qKq2R+KO96fwQbfto95eW6jmcj5MmMFdvFAraM8LT+bVItDGwIPYYequoFO+cheNhPu5Ln8+jznWiwOd3Tj/7A5UV0XRUFMPMQbJwSG833Uc73V2I5kcRGrIXSHbZSglOBmXiKgilfH5NKULlGDHM/ZywPOCc1Ea0NbeZKeSh0I6baebT0yrQ1t7E2Y0NyCd7EfKXcsk+KZqIFDGDmcOR3UA4ZDecDisG/YbXvbePV7E7thjsSgaG+vR1j4djdMb4Pt2rgytFRoaatHa1ogZzQkkjyWRGhwq2j4DO+eKGB3uHKFsBr8gg3bPJ8bAGFOQQVyGCBob69DRMR3Tmuqhte0HDaCuvhotrY1obZmG/p4k0kPp4j7WcAWPDofqwg1tzhljixhlJ2YD7I5UXB+F/aAUYtEIpiVq0d4+HU3TE/A8jUw6C6UU6hpq0NrWhNaWaTh65GjYD8bkMxjjXg+XQZQtwHKuGLMFBIoeZ8SEI3G0VohGIkg01KCjYzqmNyfsEHCXobqmCi0tjWhrbUT34aPIDGUA5IscMbDP7zJoN0GbEUHOtyN5VOHwZ/d+yGeAm/4/goaGGnS0T8f05gZEoxGXAahxGdrbmnDo3S5kUmk7f8o473fb0QBPQyGiilXG59OULlD8UuOMxX67156H2po4zjv7DJxxRjMGMznsfGUP9r99GGd+og3nzjsTHR3TMW/uGTh25Bj6+lIwYufRAAAYAzH2W3rMfXM3CHZSxs2/oRFXQL8IfN/Ad0dgADc/h6dRXRXD3NltOGt2C4xS+PUre7D/ncNo7ZiO8+fPQWtbE8475wy8f+gokr0D7hu/m9rcAOIbRLVBzLNTr6fdZBxa7HweSmtEYb/Jp42xjw2GQruMVfEY5p7VhjlntSEnwPbt72DvnvfQ1jEd533qLExvTmDh+bPRffADDPQPFWfwAVEGMU8Qc9O/Z+wGFmWIaQUtQNp3xZPLoI0JhxefNWsGzp7TBhX18PqOd/D2m51INNZhwafPxvTmBOadOxMHfn8IyeSgnbU12DH79miSNgYxrRHRHtLwXQZ3hENrRJXNYM8ZyRdqQZEZi0cxq306zvvkTOhoBG/seRd7/ncfGqbVYd6COWhqbsD8887Ewf1HMNCXgsAefTHu/SZGQRmFmFbwPI0c7EnEntj3A5RG1PMQge2HogzGhCdwn9nejHPPOQNeLIq9bx3EG7v2o6YmjvmfPhtN0xO4YN5svPPGexjsT7nZaydyBIWI6PQwpQuUaDQCzxtjExTc1XQjiMWiaKmvwQfdPfjde+/j6Sd/he1bdmLeZ8/Hl776OZx3Vhta6mrcVWejiEQjiJr8N14A0L6BGspgMOKhP2cQqXI/SxgB0hlU+QZezgBQ+dlkXYZo1K6zqbYKyRP92PXWQfznz17Atpd24pyFc/Dlr12FeZ/oQGN1HPFY1F21N4KoCa7IbNeljUAPZTAQ8TCQ86HjUVRFPQyKQKWzqBaB5xsoUfC0B3gIr/0SrLO1oQ59vf3Y8eYxbHz6Vfy/Z36Ns+afhS98ZSkumDcbLfXVNkPUto/4fr4fXAYvncGgkXwGT2FQAJ3OohpAJGcf42nt5lWBu7JwFNFoFE211RjqT2HboQ/wzIb/wcvP/BozZs7ATX91LRaeNwvT4jHEYzF7JeJoBNGoX9QPMAIvnUVKgIFsDohFUKWBIaXQl86gGoCXywEoyAB3cUl3deqm2mqYdBav796P5577LTb958tomdmM62+6AosvPAfTqmKoqYrbqxBHI4gMy6AMEElnkYLCQDYHE/VQW1tlM2SyqMnlEHHXMSrM4AVXRI5G0FhXDWRzeH33Pvzyl9ux6T9fRs20Onz5lmW46MJzkIjHUB2P2qsxu8eMdwRFZzmOh4gqVzmfT1O6QKmrqxpzFA8ARCIR6IiHwaEs3tj9Lnb+7j38vrsHb77ViaF0Fnt/fxg//+//we6WRlQbYHAoC+Vp1NRUIRq113IxRpDLGeicj4GeAfRHNfxoBE1N9dAKOJrOIXNiAHW5HJTnIR6L2Gni3Y7Zi3jQUQ+pTA5v/64T+w+8j33HerFn7wGkhjLY9977eHrjq3ijpQk1UOgbGLITutVUhTskYwQ538DL+Rjs6Ucy4iHnfq6JKeBoJoee5ID7yUgjFo3AixRk8Dx4kQiGsj72//4wDnYdwzsf9OB3bx7AUDqD/Z3d2LjpNfxu5z7MiMXQN5i2E7rVxOFFvBEZUicG0BfxkI1GMC1Rgyqt8EHGx/HkAOqyPiJaIxaLIKI1vEg+QyTmMuzrwgdHe/Hu8V7sefMABgbTyHQdx8bnXsPe//09pkdj6O1PQdw8MtqzQ5iNb49QIWcw1DuI/ohCJhJBQ6IGNVrhaNZHT3IQmayPiPs5SXsaEZdBa41oLIqMb3D44FE8vX4r3jl2Am/uPYjBwTQOdx3Hphdex763OtFeXY2eE/0wUKiqjkN5GhCB7zIo3yCdHERfZAiZSAR19dVIJGrQnfXR059CJptDHPkMnqfdiHA7J0zGNzh08Ch+8fT/YF9PL/a+cxh9/Sn05XxsfmE79r/ViVn1dTiRHIQvQLwqZqe5H6dAiWYjQOZD/g+NiOgUmNITtV382W+ULFCCk1s9rVGvFAb9HPqNgfYFCQP0asD3FOq0Rp0XRa8E526Yom+qIgpREUR8HwPuRNBp7poux91PPXVGYDwPmWAW1oKZZJXWUFqjQSmkfR9J40P5ggYDDGgg6ynUao1aL2J/JhojQ0QEMd9Hv1LIeRoJrRBzGYzLAK2R1tpNrz4sg9Jo0BoZP4ek8SFG0OQDSQ1ktUK11khEIugTQU4E4vtjZDDoV0BOayQ8hTiAoyIQ36DW2J+TUu6q0KNlqNP23JVePwcxgoQPpBQwFFGoURoNEdsPOXceS3Cire1VBW0EVb7BoAIyWqHe06gGcFwA3/dRY+wlCIbG6AcohXrtQYyPE74P3xgkfCCjgEFPoUorTPOiGASQEQO4c3qKMoigOmcw4DLUao16JTgmQNYX1BiDmNIY9IozwJ3oq7RGrbYnVfe4DNN8IF2QodGLYmCMDGO59sQ7WDD4/rjtiIhOhUHj46vvfgwmavNdcTAWBQUYgVEGaQGyYuBDEFEaEc9OkW7n1xCkc0BWuXMdCkauhBdSUbCjNuygDEh4rRZbAGllp4AXuJ8BxF1PxmWAMkiLQlZ8+BBElT1/QbsMOV+QyQmyCvlzHUZksD8feYUZ7FmXYYbgYnLhSZ1uencYgVIGGVHIuAyemzZfK1vg5IxB2rcZ/JL9oMMMxjfw3bkfStv7MU6GtADGvRbe8H6AjJohfD3DfrDPpYb1g3YZVIkMgEIGBiIGPuw5IRFPIwdbEOUMkPaBrAJy7rUMJu0PM8COFNJuOnsxha+Fgqe88FBmcQb7PoEvSMNAFWTwPHeiszvptyiDGwo03reJYDg2EVFlmvjnkx6/CREREdFHiwUKERERVRwWKERERFRxWKAQERFRxWGBQkRERBVnSo/iaa2PI1pimDEUoJSdIKsGCmkxSIkgphQSSiMmBhkRVCmgWnmodSM1gpE8wWgNpRSiAKIAUiLIAaizq0c1bJVXqxRycFNQBCNPgkm93KxttVDIikGd2FE8DUqj1mWqVkCV8pCCwATrGJYhAqAKQK0IsgBqXabg2si1yg5mHSqVQSlkjcGg2FlZm5RGlRgMiSCmgFrlIQXAd7OzjZYhDmDQ9UPNsAw1yk4Ulhotgw2Canfl5DqXYZpSSAlQJwZxl2GwsB/Cdbjr3kChxr0WafcaxF0GcRkwVj/AXienBgoiBjVip6xvVBppALViEIXNkAaQg4zMAAVP2ecddK9F3L0eMdjRTdUKiEBhsEQ/VNk0qDUGGJYhAqBeeRgaLUMJ02pmoM5UlW5ERHSKqFwWeHf7hNpO6QLlb7+5HLU1tWMuVwU75ogCcsHF9bRCVHvIGh++mzMjojVyYocsiwTDNd3cGQguGgg3fbtBRGsACjnj22GqWtuJ3aSgyCnKAESUCq8b4ymFqKeRM4Kc8cMMvuSHKg/PoJSCpxRyxsC4DFopZH2bO+JpCBBeI2jMDGInXdNKIeZ5yLkhxtplOtkMAMJrBIWPd4+FshcVFAGyvl/wnIKc70MrXXYGT9mhvUEGz83B4gczv0owRBjhNZM8nc+gFBDzPBgRZP3x+sEWGKNliGiFTFEGBb/gOkAyvB/c7Cg5316RuzCDUgqxMTKU0tZQhYbq6LjtiIhOhWR/P3D5f0+o7ZQuUBZdcVHJiV7sjiB/gT8xAjG+mzBM2Q9+39jJu7TOz1vhihDAXpjPHkBw6wiProQTbYRHagL2onICuAvoKZ2fHCSYeCyYNySYgCu8bVuFF/0D4PIivw67EHDPqYL5McJtDR6fzxAsE5dZ/MJ+AOD7EHdbFWxrYYagT8OdtRhIsN3BznP4411/jXgtwgwKSnvuWjsuQ+FrMSzDyNci6Afl5itBQT8WZ4BS7iJ+hRkMlM6/fmJ8O2OK64sRr8Xw13PY+2HkazEyw2h9rNx7yE55MjxDcT+UopTmNChEVLG8ZHLCbXkOChEREVUcFihERERUcVigEBERUcVhgUJEREQVhwUKERERVRwWKERERFRxWKAQERFRxWGBQkRERBWHBQoRERFVnLIKlNWrV+Oiiy5CfX09WlpacP3112Pv3r1FbUQEDzzwADo6OlBdXY2lS5diz549RW3S6TRWrlyJ5uZm1NbW4rrrrsPBgwdPfmuIiIjotFBWgbJlyxbcfvvtePXVV7F582bkcjksW7YMAwMDYZvvfve7ePjhh/GDH/wAr732Gtra2nD11Vejr68vbLNq1SqsX78e69atw9atW9Hf34/ly5fD9/0Pb8uIiIhoylIykSuQjeGDDz5AS0sLtmzZgssuuwwigo6ODqxatQr33HMPAHu0pLW1Fd/5znfwjW98A729vZgxYwaeeOIJ3HjjjQCAw4cPY9asWdi4cSOuueaacZ83mUwikUig5/hxXosHvBYPr8WTx2vxEFElSyaTmDZtGnp7e0vuv4GTPAelt7cXANDU1AQA2L9/P7q6urBs2bKwTTwex+WXX45XXnkFALBt2zZks9miNh0dHZg/f37YZrh0Oo1kMln0R0RERKevSRcoIoI777wTl156KebPnw8A6OrqAgC0trYWtW1tbQ2XdXV1IRaLobGxccw2w61evRqJRCL8mzVr1mRjExER0RQw6QJlxYoV2LlzJ372s5+NWBYclg5IcIi/hFJt7r33XvT29oZ/nZ2dk41NREREU8CkCpSVK1diw4YNePHFFzFz5szw/ra2NgAYcSSku7s7PKrS1taGTCaDnp6eMdsMF4/H0dDQUPRHREREp6+yChQRwYoVK/DUU0/hhRdewJw5c4qWz5kzB21tbdi8eXN4XyaTwZYtW7BkyRIAwKJFixCNRovaHDlyBLt37w7bEBER0cdbpJzGt99+O37605/i5z//Oerr68MjJYlEAtXV1VBKYdWqVXjwwQcxd+5czJ07Fw8++CBqampw0003hW1vvfVW3HXXXZg+fTqamppw9913Y8GCBbjqqqvKCu+nhuBHY2MuD0aOBEQEcCNmEIzQ8I0dwVP481Iw6gIoGrERLAOCURvByJHi5wGKR31g+LqNsetVOrxdVgYEI0KCETSlMxSOKAmXuRE0dh2uH5R2z5V/HjsSaJTtQOHolfH7YUQGgRtRpcLtEN8HtCoaEVV+BuT7ZUQGwAxft2/serXtB/gGolTRSKDSGeBGEo2TIRjFAwxbt3stwgywo5lKZChl1HxERBXCTw1NuG1ZBcqaNWsAAEuXLi26f+3atbjlllsAAN/+9reRSqXwrW99Cz09Pbj44ouxadMm1NfXh+0feeQRRCIR3HDDDUilUrjyyivx2GOPwfO8cuJg+133ozZWukBRClBux2mMgYhABzsDY2DcuS9au2IhGFYqUrQOWyAoN/xYkD/45IYjux09xnj88Awq2AEVZFBau2GqJTIo5Xa4Et4OigMV7CRh7OMhrpYansEOo1YKUNoDXCZx/XDSGdztkhkKh9dqL1+onVQ/DCsiXJEXDK2GUtATyCAAtOdBFTx/eRnEDfd1t0VgCjMUZCzKoDz7/hknQynjnetFRHQqDWQyE257UvOgnCrBPCg/nf1p1OixixoFt0Nxt02wkwHyOzC3TAfzTQDhTi143PAjG+5O2yZoO/xIDcLdVnEGt44R83kUtCvMULgdIzJAQVTlZgj6t1QGFDym7AwF6xClRs8Q7OAnmQGw75tyMrgVlMjgiqSCbRwvgwRFzjhYnhBRJRs0Pr763o4//DwoRERERH8ILFCIiIio4rBAISIioorDAoWIiIgqDgsUIiIiqjgsUIiIiKjisEAhIiKiisMChYiIiCoOCxQiIiKqOCxQiIiIqOKwQCEiIqKKwwKFiIiIKg4LFCIiIqo4LFCIiIio4rBAISIioorDAoWIiIgqDgsUIiIiqjgsUIiIiKjiRE51gJOx4P/ei/rqGntDARD3z+AfSkErBaUAURrG9wFjoLSG8jyI70OMAbSG9jwoMRABRAQiYtejFJRSgFIAFMT4gAigXW1nDKAUVHDbPTZ4PBSglQ4ziG8gxofSCkpHIGZ4hvzjR82gFMR3GZS2G2qM/af27HYXrsP1hdbabYKGCTIoBRVxGXy7HToS+RAyKEBMcT8A0DpYh4YxBuK7DF4EEGNfn3EyQCFcRz6DyyXGPVGpfrBtldIwRiB+bvQMXgQKIzPAvZ9Gz6AB8V07bd8TxkAgEJPPoFw/TCZDvjedYKXun0qp4D8BIqKK0zc4CHzthgm1ndIFyszlV6OhoWHM5fnCwhG44kC7+wXim4LbQbuCnaIefpBJ8jtmwO0Uhz0PADECQEbJIBBT8JzDbxetw4yRwT2vyhdFboMnlgGwxUFBP8A3EK1t2480g8qvw/dLZxhlHRPKIMFrpkau2xVJ+YLTh0CN2N4/bAZjm08wQykqKBiJiCpQMpmccNspXaBMVLBDKPw2H3zpLGgUfq7bZvnDMcHRmPyyogfmv9WHjy9uZBeNkiEoUIblBGTE84y1juHbooLCa0ROu0yGbYRtrUa0G+15wnUExRsw8hv98McPazTqa1GwTndHwWsxyv2j5ss/UXmvhQr+Z+8bsR0TeS3yzzfytRi7H8NlKowxoj9LrYOI6HTGc1CIiIio4rBAISIioorDAoWIiIgqDgsUIiIiqjgsUIiIiKjisEAhIiKiisMChYiIiCpOWQXK6tWrcdFFF6G+vh4tLS24/vrrsXfv3qI2t9xySzjraPD32c9+tqhNOp3GypUr0dzcjNraWlx33XU4ePDgyW8NERERnRbKKlC2bNmC22+/Ha+++io2b96MXC6HZcuWYWBgoKjdn/zJn+DIkSPh38aNG4uWr1q1CuvXr8e6deuwdetW9Pf3Y/ny5fB9/+S3iIiIiKa8smaSffbZZ4tur127Fi0tLdi2bRsuu+yy8P54PI62trZR19Hb24sf/ehHeOKJJ3DVVVcBAH784x9j1qxZeP7553HNNdeUuw1ERER0mjmpc1B6e3sBAE1NTUX3v/TSS2hpacEnP/lJ/PVf/zW6u7vDZdu2bUM2m8WyZcvC+zo6OjB//ny88soroz5POp1GMpksKePcTwAAFTRJREFU+iMiIqLT16QLFBHBnXfeiUsvvRTz588P77/22mvxk5/8BC+88AK+973v4bXXXsMVV1yBdDoNAOjq6kIsFkNjY2PR+lpbW9HV1TXqc61evRqJRCL8mzVr1mRjExER0RQw6YsFrlixAjt37sTWrVuL7r/xxhvDf58/fz4WL16M2bNn45lnnsEXv/jFMdcnIiOu8hq49957ceedd4a3k8kkixQiIqLT2KSOoKxcuRIbNmzAiy++iJkzZ5Zs297ejtmzZ+Ptt98GALS1tSGTyaCnp6eoXXd3N1pbW0ddRzweR0NDQ9EfERERnb7KKlBEBCtWrMBTTz2FF154AXPmzBn3MceOHUNnZyfa29sBAIsWLUI0GsXmzZvDNkeOHMHu3buxZMmSMuMTERHR6aisn3huv/12/PSnP8XPf/5z1NfXh+eMJBIJVFdXo7+/Hw888AC+9KUvob29He+++y7uu+8+NDc34wtf+ELY9tZbb8Vdd92F6dOno6mpCXfffTcWLFgQjuohIiKij7eyCpQ1a9YAAJYuXVp0/9q1a3HLLbfA8zzs2rULjz/+OE6cOIH29nZ87nOfw3/8x3+gvr4+bP/II48gEonghhtuQCqVwpVXXonHHnsMnued/BYRERHRlKdERE51iHIlk0kkEgn85h++h7qq6jHbhbPZAhAoiBggOBlXaUAMRARQCkppKAgE9qesoFuCdYREAAjyv44ZAAooaGMfD/usBRkABXPSGRQgZlgGCTa4KKcIIKNmELsO95xhBigoXW4Gt+0ysh+KMiCYWXhYBgBKe66tmXwG9yqX7AcoKB30QqkM9vbk+qEwg8skbh0F/QDlMkAAU5ABAjEjM0DE5h2HfZ1HP9mciOhU6x9KYfF9f4ve3t5xzyed9CieSrBv7c9Q4429CXYXMWyn6HYSwc5E3M5FK7szsTuzYIcGtwa3MgQ7oGCniPy/F9wU9y9SMgNcgVI6Q5BgrAzB/wuQ33FOOgPyRdIkMrgVFCy3jy+VIXjODyuDBK9YQb0yIoPLOZEMEFuClt0PwwqWsfpBhj3nWBkEsMXMOFicEFElG/RzE247pQsUk83B+GN/aCsE3yhd++BbMFBQoASNbavwG3PQDgU7fqDoG7IAUDKsOHCPD9Y1IoNbR5ihsH14tCefoXA7RmSAgqgPN4P6EDME/VsqAwoeU3aGgnWIUqNnKCh0JpMBsO+bcjK4FZTIkC8kgm0cL4OI2LzjYHlCRJXMmIlf0oZXMyYiIqKKwwKFiIiIKg4LFCIiIqo4LFCIiIio4rBAISIioorDAoWIiIgqDgsUIiIiqjgsUIiIiKjisEAhIiKiisMChYiIiCoOCxQiIiKqOCxQiIiIqOKwQCEiIqKKwwKFiIiIKg4LFCIiIqo4LFCIiIio4rBAISIioooTOdUBTkbH/7kKdfH4GEsVFAClFJQCRGmIMRAx9j7tQYwPEQGUgqc9QAwEgIjY+2Efq6AApQAAIgYQhLchArtYh7cFApEgRT4DlIYZlgHGwIgBlILWHlRRBreOwgxKQYxfOgOk4PF2O/RoGaCgvIIMUNCeBxVuQ5kZACit7Uabwn4YJ4PWgEgZGew6xBi37cUZoDXURPpBBGJ8tzoPgMAYl8GtY+IZ7G0Y4zIo+3qIgQjc+2liGcQYCNz7AcP7QcZ4vxe864P+ICKqMP3pNPDDHRNqq0Sk9CdeBUomk0gkEvig8yAaGhrGbGcLg+ADW9kPfuNDaW13BuLD+Mbe9jy3gxOICQoUu8NVdmUAbIGiRCCuGLAFhdvJ2hZ2h+R2VGNl0FoD2u7AwgyF6yiRwT2B3UGWzGC3pyiDchn8wn6wt0VpaM/uJMOdu5FRtmN4BgUlPgBlt2m8DHAFmO9DaVeoudsY3g9j9uVoGWxxN1Y/QNniwFWNto99367Xy2cQpVw/fDgZIICxVQps8VPQDwAklysrQylF2YiIKkwymUTzGR3o7e0tuf8GpvgRlEhtDSK1NWMuDz6sVbAzMJIvUJT9bqpdcZD/1u3auW/zSqthBYqM/NZedPQCBTt2t2PWtjix6zYQU1CQGANjRilQCneKWrunK8xgd4oA3NEGFGzryOIgWCYuc1igBPf5PsTdVoVFREGGoE/DwklMWKgVHmIoerzrrxGvxbACRUTyGQpfi2EZRr4WQT8o++8oLA6KM9ijVAWvhQjEN1A6//qJ8cNir7gvCwqUYesofD+MfC1sG13QbrQ+Vu49JAAwIkNxP5SilAZYnxBRhYr4uQm35TkoREREVHFYoBAREVHFYYFCREREFYcFChEREVUcFihERERUcVigEBERUcUpq0BZs2YNFi5ciIaGBjQ0NOCSSy7BL37xi3C5iOCBBx5AR0cHqqursXTpUuzZs6doHel0GitXrkRzczNqa2tx3XXX4eDBgx/O1hAREdFpoawCZebMmXjooYfw29/+Fr/97W9xxRVX4M/+7M/CIuS73/0uHn74YfzgBz/Aa6+9hra2Nlx99dXo6+sL17Fq1SqsX78e69atw9atW9Hf34/ly5fD9/0Pd8uIiIhoyjrpmWSbmprwj//4j/j617+Ojo4OrFq1Cvfccw8Ae7SktbUV3/nOd/CNb3wDvb29mDFjBp544gnceOONAIDDhw9j1qxZ2LhxI6655poJPWcwk2zP8ePjziQ73kRtwonaOFHbRzBRW2E7TtRGRB9XyWQS06ZNm9BMspM+B8X3faxbtw4DAwO45JJLsH//fnR1dWHZsmVhm3g8jssvvxyvvPIKAGDbtm3IZrNFbTo6OjB//vywzWjS6TSSyWTRHxEREZ2+yi5Qdu3ahbq6OsTjcdx2221Yv3495s2bh66uLgBAa2trUfvW1tZwWVdXF2KxGBobG8dsM5rVq1cjkUiEf7NmzSo3NhEREU0hZRco5557Lnbs2IFXX30V3/zmN3HzzTfjjTfeCJcHh6QDEhzeL2G8Nvfeey96e3vDv87OznJjExER0RRSdoESi8VwzjnnYPHixVi9ejUuuOACfP/730dbWxsAjDgS0t3dHR5VaWtrQyaTQU9Pz5htRhOPx8ORQ8EfERERnb5Oeh4UEUE6ncacOXPQ1taGzZs3h8symQy2bNmCJUuWAAAWLVqEaDRa1ObIkSPYvXt32IaIiIgoUk7j++67D9deey1mzZqFvr4+rFu3Di+99BKeffZZKKWwatUqPPjgg5g7dy7mzp2LBx98EDU1NbjpppsAAIlEArfeeivuuusuTJ8+HU1NTbj77ruxYMECXHXVVX+QDSQiIqKpp6wC5f3338fXvvY1HDlyBIlEAgsXLsSzzz6Lq6++GgDw7W9/G6lUCt/61rfQ09ODiy++GJs2bUJ9fX24jkceeQSRSAQ33HADUqkUrrzySjz22GPwPO/D3TIiIiKask56HpRTgfOgcB6Ukf3AeVDs03IeFCKqXOXMg1LWEZRKk3zr90Bd3ZjLC3cEgMrvDLSyOwMJigUv3BkBdj8yokApWAcwrEABABXsVO0OqqhAmVAG7XaShRkk3A6oYL/zIWQIC7MggwDGQJSC1hPMgFEKNdsQtsdGZrDLxugHFBQoSkOVkyG4c5wMYXEwPIMClPZse2MgCPphtL7Uk8sg+Xb595R7LYyBgi2sbIFiXIEyxnaUwAKFiCpZsr9/wm2ndIHy61tWosYrvQk63JsomOAbNpAvDoJ2Soc7F3E7hKAtoKAUwqMPhUvCHYbb8dnFUrQbCY8HuKMPAnEZlN0Bu9Y63NmPkQGAFO4Eh2dwOYc/vnQGHd4O+8GuYMwMUPmioZwMqujxKNEPo2cYbR0oSlhOhsm9FqOto/wMrifH6YewmBplHaWwPiGiSjXo5ybcdkoXKLnUEHJ67HNXFAATfmMGTPBNHLDf/CX/oS/BoXS4w+nIf9AXzdFS8A1ZkD+kX9hGwkJnlAxuHSN+qihoV5ghyDtqBiiIqtwMQf9KweOHZ0DBY8rOULAOUWr0DHA/0UwyA2DfN+VkcCsskSEs9fJHV0bJUJhVRDD+DzwsToiosuXMxK+7d9LDjImIiIg+bCxQiIiIqOKwQCEiIqKKwwKFiIiIKg4LFCIiIqo4LFCIiIio4rBAISIioorDAoWIiIgqDgsUIiIiqjgsUIiIiKjisEAhIiKiisMChYiIiCoOCxQiIiKqOCxQiIiIqOKwQCEiIqKKwwKFiIiIKg4LFCIiIqo4kVMdYDJEBAAwaPyS7RQApRSUu23c4xQAKAWIQNwyrWwrceuXoJ1bR8GTB3faNkHbgjZBvmAdRRncOsIMBe2DdoUZCrdjRAYoiKrcDEH/lsqAgseUnaFgHaLU6BkgEJl8BsC+b8rJ4FZQIgMQrD3YxvEyiIjNOw41fhMiolMm2G9LuA8Z25QsUPr6+gAAf9W56xQnISIionL19fUhkUiUbKNkImVMhTHGYO/evZg3bx46OzvR0NBwqiNNCclkErNmzWKflYn9Vj722eSw38rHPpucU9VvIoK+vj50dHRA69JnmUzJIyhaa5xxxhkAgIaGBr4py8Q+mxz2W/nYZ5PDfisf+2xyTkW/jXfkJMCTZImIiKjisEAhIiKiijNlC5R4PI77778f8Xj8VEeZMthnk8N+Kx/7bHLYb+Vjn03OVOi3KXmSLBEREZ3epuwRFCIiIjp9sUAhIiKiisMChYiIiCoOCxQiIiKqOFOyQPnhD3+IOXPmoKqqCosWLcKvfvWrUx3plHn55Zfxp3/6p+jo6IBSCv/1X/9VtFxE8MADD6CjowPV1dVYunQp9uzZU9QmnU5j5cqVaG5uRm1tLa677jocPHjwI9yKj9bq1atx0UUXob6+Hi0tLbj++uuxd+/eojbst5HWrFmDhQsXhhM7XXLJJfjFL34RLmefjW/16tVQSmHVqlXhfey3kR544AF7LaqCv7a2tnA5+2x0hw4dwl/8xV9g+vTpqKmpwac//Wls27YtXD7l+k2mmHXr1kk0GpVHH31U3njjDbnjjjuktrZW3nvvvVMd7ZTYuHGj/P3f/708+eSTAkDWr19ftPyhhx6S+vp6efLJJ2XXrl1y4403Snt7uySTybDNbbfdJmeccYZs3rxZXn/9dfnc5z4nF1xwgeRyuY94az4a11xzjaxdu1Z2794tO3bskM9//vNy5plnSn9/f9iG/TbShg0b5JlnnpG9e/fK3r175b777pNoNCq7d+8WEfbZeH7zm9/IWWedJQsXLpQ77rgjvJ/9NtL9998vn/rUp+TIkSPhX3d3d7icfTbS8ePHZfbs2XLLLbfIr3/9a9m/f788//zz8s4774Rtplq/TbkC5TOf+YzcdtttRfedd9558nd/93enKFHlGF6gGGOkra1NHnroofC+oaEhSSQS8i//8i8iInLixAmJRqOybt26sM2hQ4dEay3PPvvsR5b9VOru7hYAsmXLFhFhv5WjsbFR/u3f/o19No6+vj6ZO3eubN68WS6//PKwQGG/je7++++XCy64YNRl7LPR3XPPPXLppZeOuXwq9tuU+oknk8lg27ZtWLZsWdH9y5YtwyuvvHKKUlWu/fv3o6urq6i/4vE4Lr/88rC/tm3bhmw2W9Smo6MD8+fP/9j0aW9vLwCgqakJAPttInzfx7p16zAwMIBLLrmEfTaO22+/HZ///Odx1VVXFd3Pfhvb22+/jY6ODsyZMwdf+cpXsG/fPgDss7Fs2LABixcvxpe//GW0tLTgwgsvxKOPPhoun4r9NqUKlKNHj8L3fbS2thbd39raiq6urlOUqnIFfVKqv7q6uhCLxdDY2Dhmm9OZiODOO+/EpZdeivnz5wNgv5Wya9cu1NXVIR6P47bbbsP69esxb9489lkJ69atw+uvv47Vq1ePWMZ+G93FF1+Mxx9/HM899xweffRRdHV1YcmSJTh27Bj7bAz79u3DmjVrMHfuXDz33HO47bbb8Dd/8zd4/PHHAUzN99qUvJqxUqrotoiMuI/yJtNfH5c+XbFiBXbu3ImtW7eOWMZ+G+ncc8/Fjh07cOLECTz55JO4+eabsWXLlnA5+6xYZ2cn7rjjDmzatAlVVVVjtmO/Fbv22mvDf1+wYAEuueQSnH322fj3f/93fPaznwXAPhvOGIPFixfjwQcfBABceOGF2LNnD9asWYO//Mu/DNtNpX6bUkdQmpub4XneiEquu7t7RFVICM96L9VfbW1tyGQy6OnpGbPN6WrlypXYsGEDXnzxRcycOTO8n/02tlgshnPOOQeLFy/G6tWrccEFF+D73/8++2wM27ZtQ3d3NxYtWoRIJIJIJIItW7bgn/7pnxCJRMLtZr+VVltbiwULFuDtt9/me20M7e3tmDdvXtF9559/Pg4cOABgan6uTakCJRaLYdGiRdi8eXPR/Zs3b8aSJUtOUarKNWfOHLS1tRX1VyaTwZYtW8L+WrRoEaLRaFGbI0eOYPfu3adtn4oIVqxYgaeeegovvPAC5syZU7Sc/TZxIoJ0Os0+G8OVV16JXbt2YceOHeHf4sWL8ed//ufYsWMHPvGJT7DfJiCdTuPNN99Ee3s732tj+OM//uMR0yW89dZbmD17NoAp+rn2kZ+We5KCYcY/+tGP5I033pBVq1ZJbW2tvPvuu6c62inR19cn27dvl+3btwsAefjhh2X79u3hsOuHHnpIEomEPPXUU7Jr1y756le/OuqwspkzZ8rzzz8vr7/+ulxxxRWn9XC8b37zm5JIJOSll14qGsY4ODgYtmG/jXTvvffKyy+/LPv375edO3fKfffdJ1pr2bRpk4iwzyaqcBSPCPttNHfddZe89NJLsm/fPnn11Vdl+fLlUl9fH37Os89G+s1vfiORSET+4R/+Qd5++235yU9+IjU1NfLjH/84bDPV+m3KFSgiIv/8z/8ss2fPllgsJn/0R38UDg/9OHrxxRcFwIi/m2++WUTs0LL7779f2traJB6Py2WXXSa7du0qWkcqlZIVK1ZIU1OTVFdXy/Lly+XAgQOnYGs+GqP1FwBZu3Zt2Ib9NtLXv/718L+7GTNmyJVXXhkWJyLss4kaXqCw30YK5ueIRqPS0dEhX/ziF2XPnj3hcvbZ6J5++mmZP3++xONxOe+88+Rf//Vfi5ZPtX5TIiIf/XEbIiIiorFNqXNQiIiI6OOBBQoRERFVHBYoREREVHFYoBAREVHFYYFCREREFYcFChEREVUcFihERERUcVigEBERUcVhgUJEREQVhwUKERERVRwWKERERFRxWKAQERFRxfn/VGwhTdbdTtUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d9xtV1Xvj7/nXG33/fR+es9JTyAEhARDFUWkqSiigErxKuJVLvql6guuwuV67w/rJTFglFAUpClECJEU0tvJSXJ6r0/bfdU5f3/MtffzPKcHg0lgfXhtTvbaq3zWmGs/c+wxx/gMobXWZMiQIUOGDBkyPI0gn2oCGTJkyJAhQ4YMJyJzUDJkyJAhQ4YMTztkDkqGDBkyZMiQ4WmHzEHJkCFDhgwZMjztkDkoGTJkyJAhQ4anHTIHJUOGDBkyZMjwtEPmoGTIkCFDhgwZnnbIHJQMGTJkyJAhw9MOmYOSIUOGDBkyZHjaIXNQMvxIY+XKlfz0T//0D3Tsnj17EEKc9vWyl73sSWb7zMQHP/hBhBBPybW3bt3KBz/4Qfbs2XPSZ7/6q7/KypUr/8s5PRHMzs7yC7/wC4yMjCCE4FWvetVp9z3Ts3zPPfcghOD6669fsv2b3/wmL3nJS5iYmMDzPCYmJrj66qv5n//zf572Oq9+9asRQvBbv/VbT+he9uzZwyte8QoGBgYQQvCud72r9x06kVeGDOcC+6kmkCHD0xXj4+PccccdJ23/8pe/zJ/+6Z/ycz/3c08Bq6cf3vrWtz5lztrWrVv50Ic+xNVXX32SM/K+972P3/md33lKeJ0r/viP/5gvfelLXHfddaxZs4aBgYEn7dx//dd/zdvf/nZe85rX8MlPfpKBgQH279/P7bffzhe/+EX+x//4Hycdc+zYMb72ta8B8A//8A98/OMfJ5fLndP1fvd3f5c777yT6667jrGxMcbHx8k6qWT4zyBzUDI85Wi32xQKhaeaxknwPI/nPOc5J21/73vfS6FQ4Bd/8RefAlb/OfwwbD01NcXU1NSTes4nA2vWrHmqKZwVW7ZsYc2aNfzSL/3Sk37uj370o7zgBS/gi1/84pLtb3zjG1FKnfKYz3zmM0RRxCte8Qq+/vWv88///M+84Q1vOKfrbdmyhWc/+9lLokCnimxlyHCuyJZ4MvyXorsccN999/Ha176W/v7+3kRyzz338Au/8AusXLmSfD7PypUr+cVf/EX27t275BzXX389Qghuvvlm3v72tzM0NMTg4CCvfvWrOXTo0Fk5/OVf/iW2bfOBD3zgCfPfuXMnt9xyC69//eupVCpn3f9DH/oQV1xxBQMDA1QqFS699FKuvfbak35ZdsP3X/rSl7jwwgvJ5XKsXr2a//t//++S/b773e8ihOCGG27g3e9+N2NjY+Tzea666iruv//+Jfv+6q/+KqVSiYcffpiXvOQllMtlrrnmGsAsLbzjHe9gcnIS13VZvXo1f/RHf0QQBAD4vs8ll1zC2rVrqdVqvXMeOXKEsbExrr76apIkAU69xNO9n6997Wtccskl5PN5Nm3a1Pt1fv3117Np0yaKxSLPfvazueeee5Ycfy7PwvXXX8/rXvc6AF74whf2lt66ywmnWuLxfZ/3vve9rFq1Ctd1mZyc5J3vfCfz8/On5P9v//ZvXHrppeTzeTZu3Mh111138iCfAmezb3fp49///d959NFHe9y/+93vntP5zwUzMzOMj4+f8jMpT/2n/7rrrmN0dJRPf/rT5PP5c7rf7jO5Y8cO/vVf/7V3L6dzTnbs2MGv/dqvsW7dOgqFApOTk/zMz/wMDz/88En7PvLII7zkJS+hUCgwPDzMO9/5Tr7+9a8/6bbK8DSFzpDhvxAf+MAHNKBXrFih3/Oe9+ibbrpJf/nLX9Zaa/2FL3xBv//979df+tKX9C233KJvvPFGfdVVV+nh4WF9/Pjx3jn+7u/+TgN69erV+r/9t/+mv/nNb+pPfepTur+/X7/whS9ccr0VK1boV7ziFVprrZVS+vd+7/e04zj67/7u734g/n/4h3+oAX3rrbee0/6/+qu/qq+99lp900036Ztuukn/8R//sc7n8/pDH/rQSTwnJyf18uXL9XXXXae/8Y1v6F/6pV/SgP7Yxz7W2+/mm2/WgF62bJn+2Z/9Wf3Vr35V33DDDXrt2rW6UqnonTt39vZ905vepB3H0StXrtQf/ehH9be//W39zW9+U3c6HX3hhRfqYrGoP/7xj+tvfetb+n3ve5+2bVv/1E/9VO/4bdu26XK5rF/96ldrrbVOkkT/5E/+pB4ZGdGHDh3q7dcd0xPvZ2pqSp9//vn6s5/9rP7GN76hr7jiCu04jn7/+9+vn/e85+l//ud/1l/60pf0+vXr9ejoqG63273jz+VZOHbsmP7IRz6iAf0Xf/EX+o477tB33HGHPnbsWO/+V6xY0TunUkq/9KUv1bZt6/e97336W9/6lv74xz+ui8WivuSSS7Tv+yfxP++88/RnPvMZ/c1vflO/7nWv04C+5ZZbzjjm52Jf3/f1HXfcoS+55BK9evXqHvdarXba8y5+lk/E3XffrYElz/WLXvQibdu2/sAHPqAfeOABHcfxGXnfdtttGtC///u/r7XW+pd/+Ze1EELv2rXrjMfVajV9xx136LGxMf285z2vdy++7+vdu3efxOuWW27Rv/d7v6e/+MUv6ltuuUV/6Utf0q961at0Pp/Xjz32WG+/Q4cO6cHBQb18+XJ9/fXX62984xv6jW98o165cqUG9M0333xGXhme+cgclAz/pehOZu9///vPum8cx7rZbOpisaj/z//5P73tXQflHe94x5L9/+zP/kwD+vDhw71t3T/q7XZbv+Y1r9HValX/+7//+w/EPY5jPTk5qTdu3PgDHZ8kiY6iSH/4wx/Wg4ODWim1hKcQQj/wwANLjnnxi1+sK5WKbrVaWusFB+XSSy9dcvyePXu04zj6rW99a2/bm970Jg3o6667bsk5//qv/1oD+vOf//yS7X/6p3+qAf2tb32rt+1zn/ucBvSf//mf6/e///1aSrnkc61P76Dk83l94MCB3rYHHnhAA3p8fLx3P1pr/eUvf1kD+itf+cppbXe6Z+ELX/jCaSerEx2Uf/u3f9OA/rM/+7Ml+3Xv8W//9m+X8M/lcnrv3r29bZ1ORw8MDOjf/M3fPC1PrZ+Yfa+66iq9efPmM55vMacn4qDs2LFDn3/++RrQgM7n8/qaa67Rn/zkJ3UYhied481vfrMG9KOPPqq1XnjW3ve+9/3A/E7loJyIOI51GIZ63bp1+nd/93d723//939fCyH0I488smT/l770pZmD8mOCbIknw1OC17zmNSdtazabvOc972Ht2rXYto1t25RKJVqtFo8++uhJ+7/yla9c8v7CCy8EOGlJaGZmhp/8yZ/krrvu4tZbb+0tc3SRJAlxHPdep1uf/7d/+zcOHjzIW97ylnO+z+985zu86EUvolqtYlkWjuPw/ve/n5mZGY4dO7Zk382bN3PRRRct2faGN7yBer3Offfdd9L2xcsqK1as4LnPfS4333zzSRxOtPV3vvMdisUir33ta5ds/9Vf/VUAvv3tb/e2vf71r+ftb387v//7v8+f/Mmf8Id/+Ie8+MUvPqd7v/jii5mcnOy937RpEwBXX331kjyY7vbF4/ZEn4VzwXe+850l99nF6173OorF4pL77vJfvnx5730ul2P9+vUnPV+nus652veHiTVr1vDggw9yyy238KEPfYgXvehF3H333fzWb/0WV155Jb7v9/ZtNpt8/vOf57nPfS4bN24E4KqrrmLNmjVcf/31p/1O/CCI45iPfOQjnHfeebiui23buK7L9u3bl4ztLbfcwvnnn89555235PhnYu5Xhh8MmYOS4SnBqdbG3/CGN/DJT36St771rXzzm9/krrvu4u6772Z4eJhOp3PS/oODg0vee54HcNK+27Zt48477+TlL385559//knnueaaa3Acp/d685vffErO1157LY7j8Cu/8ivndI933XUXL3nJSwD4f//v/3Hbbbdx991380d/9Een5Dk2NnbSObrbZmZmzmnfE/crFAon5crMzMwwNjZ2Ut7IyMgItm2fdI43v/nNRFGEbdv89m//9mnv90ScWJHiuu4Zty+eMJ/os3AumJmZwbZthoeHl2wXQpzSdic+X2CesbNd/4na91xh23Yv7+dExHEMgOM4S7ZLKXnBC17A+9//fr7yla9w6NAhfv7nf5577713SX7J5z73OZrNJq9//euZn59nfn6eWq3G61//evbv389NN930A3E+Fd797nfzvve9j1e96lV89atf5c477+Tuu+/moosuWmLbmZkZRkdHTzr+VNsy/Ggiq+LJ8JTgxD/etVqNr33ta3zgAx9YUv4YBAGzs7P/qWtdeeWVvO51r+tFPv7qr/5qSZLg3/zN39BoNHrvh4aGTjpHt/zyla98JSMjI+d03RtvvBHHcfja1762pFTzy1/+8in3P3LkyGm3nThZnm7fE/c7lT7J4OAgd955J1rrJZ8fO3aMOI6X3H+r1eKNb3wj69ev5+jRo7z1rW/lX/7lX07J/8nCD+tZGBwcJI5jjh8/vsRJ0Vpz5MgRnvWsZ/2neC++zrna94lgdHSUgwcPnvKz7vazTd7FYpH3vve9fO5zn2PLli297ddeey0A73rXu3jXu9510nHXXnstL33pS38g3ifihhtu4Fd+5Vf4yEc+smT79PQ0fX19vfeDg4McPXr0pONP9exn+NFEFkHJ8LSAEAKtdS8K0sWnPvWp0/5qfCJ405vexI033sjf/d3f8Su/8itLzrlhwwYuv/zy3utU4l7d8ssnsrwjhMC2bSzL6m3rdDr8/d///Sn3f+SRR3jwwQeXbPvHf/xHyuUyl1566ZLtn/3sZ5dUAu3du5fbb7+dq6+++qy8rrnmGprN5kmO0mc+85ne51287W1vY9++ffzzP/8z1157LV/5ylf43//7f5/1Gv8ZPJFn4XRRs1Ohe1833HDDku3/9E//RKvVOmnp7wfFE7HvE8GLXvQitmzZwtatW0/67POf/zylUokrrriit+3w4cOnPE93GWViYqL3/o477uA1r3kNN99880mva665hn/5l3/5gSM/J0IIcdLYfv3rXz/J+brqqqtOeb833njjk8Ijw9MfWQQlw9MClUqFF7zgBXzsYx9jaGiIlStXcsstt3Dttdcu+VX1n8FrX/taCoUCr33ta+l0Onz2s5/tLS+cDddeey3Lli17Qr8iX/GKV/CJT3yCN7zhDfzGb/wGMzMzfPzjHz/pj3MXExMTvPKVr+SDH/wg4+Pj3HDDDdx000386Z/+6UnaJceOHePnfu7n+PVf/3VqtRof+MAHyOVyvPe97z0rr1/5lV/hL/7iL3jTm97Enj17uOCCC7j11lv5yEc+wk/91E/xohe9CDAOwQ033MDf/d3fsXnzZjZv3sxv/dZv8Z73vIfnPe95PPvZzz5nWzwRPJFnobtk97d/+7eUy2VyuRyrVq065fLMi1/8Yl760pfynve8h3q9zvOe9zweeughPvCBD3DJJZfwxje+8Unhf672faL4nd/5HT7zmc9w9dVX84d/+IdccMEFzM3N8bnPfY4vfvGLfOITn6BcLvf237x5M9dccw0vf/nLWbNmDb7vc+edd/K//tf/YnR0tOdsd6Mnf/AHf3DKMW00Gnz729/mhhtueFKE7376p3+a66+/no0bN3LhhRdy77338rGPfewkLZ13vetdXHfddbz85S/nwx/+MKOjo/zjP/4jjz32GHD6UukMP0J4KjN0M/z4oVvxsbhsuIsDBw7o17zmNbq/v1+Xy2X9spe9TG/ZskWvWLFCv+lNb+rt163iufvuu5cc3606WJzdf6rKgptvvlmXSiX9spe9bElp6+nQLb88l8qjE3HdddfpDRs2aM/z9OrVq/VHP/pRfe2112pA7969+ySeX/ziF/XmzZu167p65cqV+hOf+MQp7/Hv//7v9W//9m/r4eFh7Xmefv7zn6/vueeeJfu+6U1v0sVi8ZS8ZmZm9Nve9jY9Pj6ubdvWK1as0O9973t7pbYPPfSQzufzS+yutSmPveyyy/TKlSv13Nyc1vr0VTynqjgB9Dvf+c4l27qVHovLqc/1WdBa6z//8z/Xq1at0pZlLakYObGKR2tTifOe97xHr1ixQjuOo8fHx/Xb3/723r2cjf9VV12lr7rqqpO2n4iz2Xfx+c61ikdrrY8cOaLf/va36+XLl2vbtnW5XNY/8RM/ob/whS+ctO/f/M3f6Fe/+tV69erVulAoaNd19Zo1a/Tb3vY2vX//fq211mEY6pGREX3xxRef9ppxHOupqSl9wQUXnJHbuVbxzM3N6be85S16ZGREFwoF/RM/8RP6e9/73iltu2XLFv2iF71I53I5PTAwoN/ylrfoT3/60xrQDz744FmsleGZDqF1pkWcIcNTjZUrV3L++ef3hMxOh+9+97u88IUv5Atf+MJJVSIZMvw44Dd+4zf47Gc/y8zMzDlHQDM8M5Et8WTIkCFDhqclPvzhDzMxMcHq1atpNpt87Wtf41Of+hT/3//3/2XOyY8BMgclQ4YMGTI8LeE4Dh/72Mc4cOAAcRyzbt06PvGJTzztm0BmeHKQLfFkyJAhQ4YMGZ52eErToP/yL/+SVatWkcvluOyyy/je9773VNLJkCFDhgwZMjxN8JQ5KJ/73Od417vexR/90R9x//338/znP5+Xv/zl7Nu376milCFDhgwZMmR4muApW+K54ooruPTSS/mrv/qr3rZNmzbxqle9io9+9KNPBaUMGTJkyJAhw9MET0mSbBiG3HvvvUtkrAFe8pKXcPvtt5+0fxAEBEHQe6+UYnZ2lsHBwVNKeWfIkCFDhgwZnn7QWtNoNJiYmDir2N5T4qBMT0+TJMlJfSNGR0dP2Wfhox/9KB/60If+q+hlyJAhQ4YMGX6I2L9//0nqwSfiKS0zPjH6oU9ortXFe9/7Xt797nf33tdqNZYvX86ll/0alnXmWnidnq4ERBp8ARZQ1VATEAN5Da6AOiAAkS56ifT/BAIHsLWmCShhjpfAnDD7lwAlBKEAtEZr0Is46JSD0tAW5tiqhpaAAMhpcDHv9SIOxk6Ggw14WlMHEgEVDU7KAQ3F1Kb+OXIQQL+GZsrB1ZDHvFeAPAUHB3C1ppFyKKe8ZwXolIMlBJ0zcCik99dKOVQ1dAT458jBAnLpWETC3FNOGzsobc5vC+gIc0Gt9Sk5SL1g7z5tbNAW4KTnaKfPx+k45LWmgSYSggJQ0sYOSfpMeQLaQhgbnIJDHrBO5CCgjeFQTJ+HEzmcCS+p7+R8/8npmZIhQ4YMTzbaKuEt+x5a0pbhdHhKHJShoSEsyzopWnLs2LFTduP0PO+U/Ussy8W2z8VBMZO71hpLgI3A0WYS02hsDbYw+wj0CQ6K6DkHtlbYQCIEtgaJxhICqTU2oIRE9SbmEyckcw6lwRIaC7C1wBYQdzkgepyWOigncyDl4KCx0+ZqNiCExD4rB42dOgfOaTgY50A/IQ4q5WCdAwehwRYascgO1jlysBZxUOm4OdpwSFIOthDYPQdFnZKDTDnolEOCGZvFHDgjB42NSjmIHgcWP1M9B+XUHKwTOZzCDidyOBNylkNBWmffMUOGDBmeQpxLesZTUsXjui6XXXYZN91005LtN910E8997nOfCkoZMmTIkCFDhqcRnrIlnne/+9288Y1v5PLLL+fKK6/kb//2b9m3bx9ve9vbnvRrCVhYZ2Dx0o156e7n3Q84t1+rp8RZD9Uph5TAKfHD5rBwnScjx/g/VwYm0mWTJ5fDOXNKx/0H53Dmo86Jh8ZE6hZx0Od67BNikyFDhgzPHDxlDsrP//zPMzMzw4c//GEOHz7M+eefzze+8Q1WrFhxzufoOhin/VwIkAIhBHEYEyUK6dn09ZcZL+aRbZ/js3WiMMayJLZr002a0CqdHtIliu5LpBeNlTZhd9ts0Fqjle7lvPT4pRy0ECRRQhTH4Nj0DZQYKxWY7QQcma0TBRFCSKSXDolSp+agQUjDI1GaWGu0JRBSmOsrhV7kdSzmQJdDFINnU60WGa8Ucf2AI3MN4k5IhMDKOSa0dgoOCrNMhVxqhy4HlEadkgMgDXEVJyRRgnZkj0Mjijk4XSP2z41D1w4ISJKldkCdbiwMBy0EOlEEYYRyLMrlIuN9JVpRTDhXJ2mHhEojcy6WAHFaO+h0LASJ0kTKcECYhBx1Bg6kHMIwQjsWxVKesb4SHaUIZ+rE7eAEDmZsM2TIkOHHBU9pkuw73vEO3vGOd/zAxwutEadbmxcCSwqkYyOEoNP0CaKYUinHmrWTbF41zmP7j1K7ZxuNWgvtOORLOTPBxgmxSnpJnkprk6goQVgWAgiTpHcdKUFFmlgpVPorWIqlHJCCyA9ptQNyfQ6r1kywefUEe4/MMnvXozRqbZQlyRc9BKBiSFRiHB8NCk2c+kNSphxUQqI02BZSGqcqSUxORNcnAYFlpXaQgtCPaLYDinmX5StGuWzjCvYem6V+7zZma23iRFEu5wGNillqBzSJNsmxXQ6RUsYhsS2sRRwSIbo+EUIIpJBYtoWwJGEY0277uJUCU8tGuHTTCqbrLWZvf4S5eotEQbGUQ3SdGRUvsYPWEAsQ0kIKQRTH6EShLYmUxlmME4XqRme6YyItLNsCS6I7IY1mB6+vyPjEIJdftIaZWov6PY9zvNYmCmPKpRy2lIaDjo3Ts5gDGmHbCAFxoujECmVJLCnRWhHFSW8susm1UoqeHeJ2SLMd4FQKjI4NcOlFa2j4IfW7HuVorUXkR1TLeZPHkiTE0SJH6Uzfix/4G5UhQ4YMP1w8kb9PT6nU/Q8TZkIS2JbEtiVBFBPFCfmcw8qVY1x4yTpWr54gn3eJY0UQxdi2hZVOcmLhBzNam6hAos05hRDEWpvogRBYQqDRJEqZX81aL3AQAltKHMsiihVhnOA6Vo/D2nWTFPMeiTIcrJSvlAvDqNOIjuGgEdJMdLGGSOvUGZEoINEalSanok3Sb5eDbVlESUIYxXiuzdSyYS68ZC1r101RLubQWtMJIsPBsrCEXFhySDkkKQcpBTJNSo2U4WBJicZEVXTKQWiTECtFOhaWRZIogijBti0mp4a44JK1bNi4nHIph1YavxvRsiSWFEuXPZSJTCSqe9+CREOktHEIheGQqKV2AOOw2ZYZi0RDJ4ywbYvx8QEuuHgtGzYtp1otAtAJoh5nw2HReCwei3T8lTbOGulz140unWosrHQsEq3xwwjbloyN9nP+RWs4b/NK+qtFhIC2HyKleR4sKZdwONNznyFDhgw/CnhGdzM+6xIPZhIFQZQkWJakXMoztWyYtRumOFZvUinlOWJJojhBCrMUo7pnTZNTFi9tSMBKSz81pJUzZoJSvTwWepOiWBRJiJVCCEGxkGNqcoh1G6ZoRxGVcsFwCGNTJZL+2l7IRFlY4klSDhLR42RhJt9utOfExJJuREdIQZwoEIJiMcfkxCBrN0zRUQnVahHHsWg1ErMvwlQk9aB7S0xdO0ghiE2hDBKBTDmqhYSe3n8tRFIgUWaPYsFjYnyAdeun8Ioe1UoB27EJOmG6r0Atvhe9YI0EsBBYabWPosvJ7JZojGekFxI7BMa5lFKglDIlyXmP8dF+1m2YIlfKMdBXwvUc6vMtwDgbiznoHgdzDSu1Q4IpL5bC2AHdtQPoRRxIOUohek5OIe8xOtLHmnWTzDfaDPSX8VyHuUT1nDDdu4cMGTJk+PHAj2wEZTHMRC8olvIMDVSYGBugr7/ExNgAQ4MVyuU8WoilDk/3TeowdCdekU7OXUfCEqYEVJGWNPdmY04xmwgKxRyDA2XGx/oZGqoyNtpnOFQKIE3EYnGJsTksTWYVxikR6cTY3SaFQGozcevetbuToug5LIJUJ6To9exQ7SsxMT7IyFCVaqW4yLlZiAIt5cAJHMx1LLFwfs3CtcUiO3T/UyPIFzwG+suMjw4wOFhhbLSf4cEqlUqht4y2yMtb+Ldrh9Rb6jolpEtaXadOL3hFsNgUOuUJeDmXgf4yY6NmLEZG+hgZqtJXLSEt2TPD4qEUizmwmINIx4JFjlrXbr2jFz0JZpnI81wGUw79A2UmxgcMh74FDplTkiFDhh9HPKMjKKVKAdc+WR8FTLSgUi4wPjnEwGCFTiekr1pgYmKQ5VNDWJZkanKQF/zEBaxeMUat0aFUyjEzXePI4VlmZxskSULHj2gHIVEUoy2LfEEigTAN3dtSYAuJn4T4YYTrOrieTSHvYlsWlUqBsfEBhoaqRLHCdSzGxwZYuXwEKQWjI/38xHM3s2r5KLV6m1zeZX6uweFDM8zPN4njhLYf0vEjwjAiEYJ80UMLCNOIiSMFjiVpdMwSjePaOJ5DMe9hW5JSOc/4xBBDw1XCMCbnOUxNDrFm1Ti2LRkdrnLlFZuYHB/kyNF5KpUC9VqTQ4dmmJmukSSKThDR7oSEUUy8hINZcrGFwLUkLaVpByFuzsFxHQp5F8e2KBZzjI4NMDLab/a3LEZH+1i/ZgLXtRkcKPPc5xgOs7MNiuUctbkmR47MMnO8RhQn+EFE2zcchNbkCh7SkkTQ4+BZkrbSZvnGsckt4lAoeIyPDzI80oeQkiROmJwc5LyNy5BS0lct8uzL1zPUX+bw0TmKxRztVodDB2eYnq4RxwmdIOzZAaXJFzyElMSYyFAu5eCHMe0gwvFsPMehUPBwbYtc3mVsbIDRsQFIk6snJwbYvGk5Oc/Bc22effl6+qtFLrpoLZVqkWajzdGjsxw9MkcSJ2f8TjgdG9r/ubqqDBkyZPih4Qm0/3tGOyiFnIfjnNpBkVIwOtbPc67YyCWXrWf58hEcxyboBLieixKCkeE+Xv2q52G7DkIKdu8+zEMP7uLO7z+K74eEYUSz5dNsdGh3AvqqRQp5jyhJmI0TkkTRb1vkPZe5Wou5+SaFvIcli7iVAvmcy+hIH8+6fAOXXLqOtRumsBCEQYiX91DA8FCVV73yShzPBSk4eGCaB+7bzvfv2EoUxQS+4dBqdWi0fCqlPIU0Z2U2bhFGCX1WgWLeo9boMFdrksu5WLKIUymQy7kMD1W5/LL1XHKpyTdxHZswCLEdG51OzD/18mdjOzYIwaHD0zzy0G5uv+0R/HZgklo7Aa1Wh2bLp1jIMZlymK936IQRVatIseDRbAXMzjcpFjxEuUC1XKCQ9xgcrHLxRWt49nM2sWbtJPmcm46FgwKKhRyvePmzsRwb27E5dGiahx/cxZ13PkrQCen45tVu+TTbPq7rMDbah2VJ5utt2mFESeYpFjzanZD5WhvXsZDVAtWysdnAQJmLLlrNpZetY+PmVeRchygITfWWgEq5wDU/eQkvfsnlWJbF8el5tj68m9tu20Lgh/hdDm2fRtM3OTTj/QgpaLR8mkFEqWKuFUYJc7UWnmdTKRkO+bxHX1+J889fxRXP2cS69VOUSnmiIDI5PY6N0JqffOHF/ORPXoLt2ByfrrF1y27uvusx2k2fIIjO+J2wrUykLUOGDD8aeEY7KDMzNezTRVCEII4TXNeh1uhw6eUbuGDzSrycR6QUtXqbatHDzZvjt2zdy513bGXXzkPs2nmI6WPzJpnTD7GloJBz8VybMEmIYlOloqQgTBQyTnAcm2Lew5KSKIiYn2vQtC2iKMZ2bOrNNk0/5MLzV+HlPBKtqbV8ip6Dl8+RKMX2HYe4585HefzRfezceYjp4+ZXu+8HSKDgOeQ8hzBJ0oohgZaSMFH4sUk6NRxEyqGJbVtEQYyX20690WK+0eGKZ2/AzbkkWjNXb1PKu+RyRpF3+87D3Pn9R9i5/SA7dhzkeGqHThCmHNxFHEwuiJaSUCn8KMGyJaVCDtsSJFFMbb5Ju9nB90Mcx8IPIubrbS69ZC2Frh2aHfKuQz7ngYA9+45x+60Ps/3x/ezYfpBjR+eIogQ/CBFA3nVwcy6x0sQ6IcHYIVIaP0qQUlLMuwggDpOUg0+nE/Cgt4tmy2eu0eG5zzmvd9+zLR/PsSl6Lho4cHiGO+94hG2P7Wfb4wdSDjGdIEJoyHsOrusQJQqt6NkhUpogTkAISgXP5JokCfVai047MNVLD9sEYcTMXJMrrzyPYsFDac1808d1JEXXAeDwsXlu/Y+H2LHtADu2H+Do0Tnis0RQ/CA8KQcpQ4YMGZ42eAJ/n4TWTyDe8jRBvV6nWq1y+WVvxTldL5507d91bQrFHOs2LON33/UaxscHkJZFox1QLXrEccKhQ7P8/z75ZbY9updmq0MUxqg0mdSy09JUMPohSiMtSZxWZtiWQCUKjcBxbQSQxIkJxWuNkBIn1blYtWaSX//1n2Ljhils26bph+Q9B5Ti8OFZrr3u33jw/u006i3CMEalJaWWZUp0EWIJh6S7xLOYg2OZpN0kMZOZWuBQKOQYnRji3e9+LRvWTWI7FrWmT6nggda02wGf+N//xP33Pk6r2SEIoh4HaUnsHocErRSWJUi0WMpBg+M6Jhk2USSxKc8VUmDbFoVijqllo7z111/BRReuwnFsWl07aM3MbIO///t/5/ZbH6ZeaxKGMUmiehws20JKQRgucFAYHRLHMtoiCrBt2/CLFUls9u1yyBc8Bof7+fVffwVXXrERx7VpdkIc28KRgmbL5/pPf4tbvvsAjVqLwI9I1FIOQgriKEElCmkJNCYB2bUlWimUAttJOSTK6L6kSdJWutw0ONLHm970Ul7w/AtMgrIf4bo2jhB0/JAb/vE7fPMbd9JstPH90NjhLF/Xn2rs4qJg+j//JcuQIUOGHwLaKuEX9txPrVajUqmccd9ndASlJ0B2GiRK0Wx2aLV8YqXZtu0ApYJH/0CZ/nKeJElo1Frs2nmIrVv3MjdtogWWJZGW7E0mjmujMQ6KihMsKfAsCyFAJYo4ThCWhePYvbxMpY2wVqIUYSui0wmJYsWO7QcZHaowOjZItZgDYOZ4g717j/Loo/s4emT2JA7SsbAdswwVRQkqjrEkeLZt5itlJmGkheXYWJYkjgRKaRRGp6TViuh0AmrNDo8/to+x4Qp9/WX6KwWUUjRqbXbvOcqWLbs5emQOpZSZjBfZwXadNDKlUHGCEBaebaXFTqkjIGTKQUAUG40UTPl1ux3Q6YT4QcyjW/ewbGKA0dF+KmmJc22uwf59x9iyZQ9HjswQR0mPA4vGQkhpolhhgoXEdR20BLQm7HLI2zi2RIjYjAUapaHTCfD9kFq9w6OP7mX9mnGGRwwHgPp8kyOHZ9iyZQ+HDk4bB0RKLNuowklL9jgkiUYFERYSx3GwhUSiCWPjqFl5yziMcWLKz1MOUbpcVG/6PPLIHs4/bzkD/eWeHTrNDgcOHOfhh3Zx6NAMOkkQqX7KWX99CMEz8DdHhgwZfkzwRP4+PaOreIxGyelfpDoVtmNRrRYZHumj2lcyE1y6FFDtKzE82ke1WsROf513z93rhNvT0hC9TrRK67Ri5YRKExaurXsfCWxbUq4UGBntZ2CwAsJodWitqVSLjIz009dXxHHstDR6QYOlp8Xf1WbplRSnPOjRMxUfqQG64mY65WBZFuVS3lxroIJt24RRghCCUrnA8Egf/f1lHGepHXo2WCTA3v0v1dVdSa9vOHQHYdF4LLJDqZRneMTYQdoWcRp5KVXMGA0MlHEd54SxWLifbmUNwlQELXDQi6p2Fu+/8C8ILEtSKOQYGelnYKiCZcuebkqxlGN4uI+BwQqe52BJuYRD954W69B3K7zMWCyyxQkP6QIHUg4ew8N9DA5WcXMuUbp8k+tuH6riunavmudsz3vml2TIkOFHCc9sB6U3CZ38UlqTaDOTOY7D6pVjLF82QqwUDz6wg8/d8O/ce882Eq1ZNjnM2lXjJmk0FR/T3ckmnYwk3e7H3W7AacddbcpJ7bS8dMGp6Qq8Gblzy7FZPjnE8qlhLNvm4Yd28fl/+DZ33PYIidIMD1dZs3IcL+eipVgkuLbgpEjAkWKJBocjRM9JsYTAMrN2zylYwsG2WDY1zNo14wgheHzbfj7/D9/mtlu30PFDRkf72bR+Ci/ngpQmAtPjwCk4aKQAN+WQ6JSDEAt2YGE8NCBtm4mxAdauHsd2bXZsP8g/3Xgz3/3O/YRRzPBghQ1rJ8jlXRALHNRipzPlQJcDhoPWXU7GDt1S5S6PJOUgLIvR4Sob1k7iug779h3jC5/9Dt/+1r00mj6lcoHz1k9RLOZBLjhAxvnQvdJiRxqHtatN48mUA8YZcxY7mulYdDlISzIy3MemDVPYjsXBg9N8+Qv/wTe/cRe1epu+gTLnb1xOoeCZsUid0dM97wuOdOalZMiQ4UcDz+glnjNBAJZl4aV6G+tXjVGfb/LQo3v5++u/yS3fuIsrrrmEt/z6K1i7bJgNq8fY8theqLUI2oHpaaMhiWJCpXGEwBUC37EJACdOEIAvQDoWrhQoPyLURm21G8aSlsTLuVT6SqxZMYqOY+59aCef+tuvc/PX7+TCZ2/gN975KjasGGXV1BCDI/0kgN/lACRRQqA0rpB40ONgxwkOEAjAMfkThBFBqviqF+WPuDmXSrXIxjUTxEHIPQ/u5HM33szXPnsz512+njf/5iu4aNMK1q8c466RfvRMjU7LNxLymLyaQBsOLpqO2+WgkKkdtGNRFBIRRPjdnjxdDlLi5B2q1SKrV4wglOKhR/Zy440389Ubb2Zy9Tj/7fdex4UblrFyYpDBkT4irfFbASpJAE0SJ4RKY8v4BDsscFCORV5IRBgTkEr/q9TBkwIn51Gs5Fm9YpSiZ7Pl0X3885dv48ZPfYPJVWO8+e2v5DmXrWf5+ABj44NEWtNudEjS1gZJrAhVhJIxOQEdxyYEZKwodDnYFjkBMorpBJpEK5PTRKqom3cpVwusXjFKwbF55PH9fPVrd/K5a/+V8mCZt/3Oq7ny8g0sH+tndGyARAg6zc5ZS4y7D/65tDHPkCFDhqcCT+Tv0zM6SfbZl/8Gtn26JNlUiGu4j6GhKuevGqPRDnhs/zEee3Qf9QPTFMb72Xz+KjZMDTNYKXDv9oPMzzaYm67RafsopYmjhDhWuAIqBY+g4NKJEpx2ABrCgkfetcj5EY2mT6CNxoftmmUSL+fSN1ihf7DCBavGiRPF4weP8/BDu5k/cJzCUJVNF3Y5FNm67xjHj80xN12n0/JRShkOicJSmv6SR1DwaMcKqx3gKEUn7+F5NvkgptPo0NYay5JmuUgKXM+hf6hK32CZC1dPoLRm696jPPb4fmZ3H8EbrLB+8wrWTQ2zcnSAB3YeYnq6xuzxGq1mG600cWxybWytqeRdolKOTqyQ7QA7UXQKHjnPphDFtGuLOVhp3oZDdaDM4HCVDctH8WyLxw4cZ+tj+zi+8zB2Oc95F69l/bJhpoaqbNlzlOPT88xN12k12qkd0nwfrenPOcSlHG0Foh3gxAl+3sXNORSiBL/RoZXm8tiOZeTlXZu+gQrVwTKblo9SKeZ4ZO9RHt1+gCOPH8At5Vlz/krWLRtmzcQQ2w4c59DROWaPz9Ost43EfpwQRQlCpRwqeTqJRncC8lFCK+fi5ByKShHV2tTTHBbHsXpcKv1lBoarrF82Ql8pz9a9R3l85yEObzsArs26C1ezftkIG5YN88jeoxw5Ps/8dJ36fPOsvXh+2t/PRdHsD+FblyFDhgz/ebSTmNc9dsc5Jck+sx2U5/zm6cuM04RGy7ZwbIuhvMt8y2e66SOVZsizOB7EKCkZKnoMlvMcbYXEianAUUliQvOJQsUKR4LrWLQRCClZOVTGkpJdx+vEcUJJGGcmUBppWQhbGplyaZJGpWUxUnBpdgKONXx0kjDoWtQiRSgEgwWXgVKe2SAmjBKSOE6rYrThkCgcIOdaNBFoIVk+WKLg2uw6XieIYgpodJzgJ6bKR9iWUViVMq0oSTn4AUfrPipOGM3ZzIYJIYJq3mG8r8hMJ8KPTTJuEqfRIKVIYsPBcyRtIdFCMjVQpOQ57DpepxPGFIVGJIpWbJwDYZtkYiHNWNi2zUDOIYoijtQ7xHHCoGPRjBUdoD/vMlotMOPHhGk1VBInPQ4qVgitKXoWbSQRgmX9JSp5h70zTZp+SCHl0IlNoq+wJEiRJrtaSMs8DypJODTfJohihl2LTqJpak3Zc5joK1KPEtphvMABDYlpJinRFByLtpDECMaqBUYrOXYeb9DohOSFxkkUzVghpETaKQchsRwLy7LozzuQKA7V2oRRzJBr0YkVTQXlnMNkX5H5KKETxiRJ2gGaM39df/fXXsRLnnfek/6dy5AhQ4YnA/Vmg2WXX/KjX8VjSdlLYjwVlFIEbTPRJ02J7u4rTJ4AaZ6CH0Qc7QTMhaZfj2NbyK7sfLcXS5LQavskrsvwSIWLL12H69g07trGwUPTNIKAnOOYqEU6IZoCG03YDojjBN1MnQZMmCtJuQggCGOOT9eohaZyxbFNp14hRY+D0JpGq0PseQwMlLjoknVUih6te7azb/9xWh2fnG2fxEFrTacdmA6/DVMVtIQDJrc0jhOOHZ9nPkxApL/6exwklkgQiaLZ9kk8j76BIudfuIbh/hKde7aza+9RGi2fkuvg2hbStpZwCPyQZuwTWyZxWWvDQXWTa7UgihOOT9eZD2KQEidtlNd1MJRQZiw6IaFlUaqUOP/C1YwOlkke3M1jOw7S6gTkpMSx7VNyiGJF0mjhuTYa3eOgUw5JopierVMPYhIhcbscUil7JQRCKVptn9BxKVdLbDxvBWuXDRE9kHJotilYKQdLmg7KPQ4RcewTNTAcdMqBhWTiOOVQC2ISIXBsCzvlcCYUxkYor1/zhL9LGTJkyPBfAV2vn/O+z2gHRQrRq3g5JfRCRUmchtqlNFmNUTc3QpjJK0rUktYvclFvHi0EUaLo+CH5fI7BwQobzltJPueydc8xjh6bo1kLTcfgbiVQet6uA6K1qdqxdNooDtOBV6e5EbDQBbjHQXY5CLTQqCSh2Qoo5vP095tJsa+cZ9uBGY4cnaM2b0TEPNvu9YYxSb0L1T2x0tgY5ycRKYfUDgBxoo1uiZU23+tyEKCVIFGKVjugkM/T31di/cblTIz2sf3QLAcPzzA3G+IIk+uxhAOLOYBM71spQaRMEuyCHUzUxlxXpL12zL9amUTYdjvALhepVAqs27iMqfEB9s802LP/GLV6CyEVOWepHfQiDolKk1tTvZwoTcaVQqaNHc17IfRCA8cuF2USVhutgFy/S6VSYO26KTZvmGTfTJO9B4/Tmm8goph82VloUNitZkqfySQ9j3nWDAfTcJAlHLqOdJfD2ZCloGTIkOHpiify9+kZXcUjzullrNGrIknLUOO0wqc7MSdpmcqSYxc1m4uVIooVnucwNFhhzbpJ1q6fYmS4j3zOJY4VidKI7v8WOThdrr0KjnSiSU7goLrOyeLjxKImfRqCKMZLe9esWTvJmvVTjI72Uyx4xIk2papiYTLrTWw9DsZZ6nYsjhdxWrADS4/rTtAYJ6vLYaC/zKo146zdsIzxsQEKBY9EaaLkFBwW2aFbjdJt9JekE7d1Kg7GCAt9/1JnI4hiHMeir1pk9ZoJ1m1YxsTEIMWChya1A2IJh8Xn7FbmdKV0loxNl4Ne+iz0HITUwfTDCMex6asWWblqjHUbljE5OUS5mAcNQZQsjCELduhy6VYndR0SRXdsxOk5nO15z7yTDBky/IjgGR1BWdDnOM3nXYdDmCiIxvxyT3/DLu1+y8LE0C2RNXumJ0AgbYtqucDIcJWh4T7K5TyjI31UKwWOO/YSLZBe6WfKQYoFzY7uZMWiSasbZVjMAb0o40CYklbSJogjQxUmJofwPIexkT76qkUOu6lwW2+SWqzh0p1cdS+SYDgt2IGUQzdSoBfZAVIbmtAOlXKB4aEKY2MDjIwNMDbaR3/KQbEQtRCLOHTHArEQURGpzcRpOKQDbc604LWBlJSLOYYGKoyODTA43Mf4aD/91SLTnkPoR2YcehxYYodeREV3uw8bAl2PvbvU0nNtUg6LPEcUUC7lGBosMzk5RKXPdKke6CtxOOfSjqLeWHSXd1KfdMEpTT/sjoVYxKFrh55t9NkyUM7+nciQIUOGpxJP5O/TM9pBqVZLp20WqIEwjGg0OsR+QqIVZcfGcSyCQKW/8k2OA1rT8SNUWm2RL3jkci62JcnlXPKeayTzSzlWrBxj/YZlFEt5vJzHhReuwhKwYc0EzUabIIhM192OSbgNw5hms4MfhMShouzkcWwLpVIO0uQ4CK1pBxGxBtv2DAfPwbIs8jmXXM704XE9h1VrJli9ZpJytQBKc955K9BKsWr5CLU50wG521wvjhPCKKbRMNL1URxTcWwc2045pBL5toUFhoPSWHmPfN4ln/OwLEnOc8jnjR1c12HNuklWrRqnXCmAEGzcuJzAD1m9cpT6nJGoN3YIiOKEOEpotjr4fkScJNiWUYVVShPFMQiBY1lIAZ0gJkwU+bwZh3zexZJykR1cXM9m2YoxVqwYTcXlbNatn+KFV1/MujXjpgNytGCHKIqJ4oRms0MQxERRhG1LHNdFaU3c5eA6WFLQ6gQEUYKX9h7K51M75BzynouXc7j44jWsXjfJ8hVjjIz2IyzJmjUTXPWCC1ixfJhjh2dMxMmPaPum6WIcK2OH0HSntiyJ67noSBMnCUqD60psS9LuBARhgpdzcT2HYjF35iVNwE37+GTIkCHDMx3PaAdlaKiK6+ZO+ZnWmnqjTa3WptnsoJOEvr4StufQCUL8IMLzXDzPIYli6vUWwrbxXJtiMc/gQBnXtRkd6WfFsmHWr5/iokvWki/lUUrT8kNafsBPPP8CrnrBhagk4b67t/HY4/s5cOA4Bw/PGjnzeptGs0O75ROHEZW0w3AnjMwSgetQ9hxUnNBodoiVxnUdioUc/f2Gw/hoP1NTQ6xaOcbzr7oQ23VQ2nBIEsWznr2RK688jziMeHTLHrZu3cu+/cc5cGiaTiek2ezQaHRot32Cjk+1WsTzHIIoph2YZYqSayOBZrNDqDSWY5PP5xgequA4NsNDVVYuH2H16nEue9YGStUiOnWqWn7AJZev51nP2gBas+WBnTzyyB4OHJxm/8Fp2u2AVsun1fZpd3xCP6RQ8PByLn4c0/FjLMui6NpINK2W32t+mMu5DA0aRdXhoSrLUjtc8ZxNVPrLqJRDo+OzafMKLrxgFWjN9sf289BDu9i77xgHDs3Qavm0276R2/cDWo02hbzhECaKThibHjmOjWNJjrfnaXUCqn0CL1dlKLXD0GCV5cuGWbF8hOf9xPmUqkUQgnYQ0vJD1m1YxubNK9FKsXv7QR54YCcHDk6zd/8xGo1OryNypxPQaXXwPIdK1SVSik4nQEhBwcnhOhYzx0PqLZ+qFAy4ZYYGq0b2/wzI51zO7MJkyJAhw1OHJ/L36RntoBw6OH3aMmPQBEFMEsUU8i6WbZFoTdIJAXByLkILAj8EAZX+EklsynnnZup0Wh0c26bd7BAGIdKWrFw7Qb6YAzRhbJrYlfNmKanWaLNz92F2bD/AwUMzHDteIwwjgjAmCiJynosseGgBfidAaHA8F4kgTDmUq0XTJDBJmJ2t02752LZFp+Xjd0wl0MYLVzE20o8AoighTGKKOTeNAoXs3HOE7TsOcuDAcY4eqxEEEWHU5eCQyzloAYEfopXGyTlILQj9CGkJSikHlGZ+rkHQCbBti2a9TRSGJFqxeuMUpUoBgan86YQx5YJ58MIkYeeew+zYcZCDh0zyru+HRFFC4IfkXBMJEpbE7wSQaBzXMfcTREgpKFYK2EEEGmrzTaLARBpajTZBJyBJElaunaDcVzK5GqmDUciZZ6Hth+zed5Tt2w+y/8Bxjh6dMxGtOMbvBLi2jdNfQjoWfidEJwrHc0yiahChbYtCKY+0LSSCeq3V49CstwmDkDAMWblugg3VIkIbDu0gIu+5CK1JlGbXvqNs33GAQwdnOHh4lnZazdVp+7i2hVMtYbs2vh+iYoXt2QgNUWr/fDkHUmIJQbPe5mBs2jOcCa2W/+R8uTJkyJDhKcYz2kE5Pj2PdbpuxpjKCde2KfR5SM/Gb4eowCRX5vIuiR8RtAOka9M/VCXpRERRTKvVod5oY0lBvdlmvt5irtmmb6SPF1y5mULOo1rKGwn3KMEPI+5/aDe33/0YB/YcZX6+QbPhp5VDAte2KFQKWHkH348I2z62Y+PlPVQYE7RDpGtR6Suho4QwiGi3AhqNDlIImq02c7Umx+YbDEwM8tIXXkLOc6iUcsRaI2JNx/d5eOtebv3+VvbvPszsTMNEZGKFFALXMfkzdt7F90PCdoBlS7yChwpiwk6IsCWV/hKEZmnK7wQ0m4ZDvdGi3mwxPd8kVy3yypc9m3zOo1jwjCy9UrT9iC2P7+N739/K/l1HmJtrUE+1TmRaKlstF7BzDkEY47cDLEtSzHvmvlMOpWqRUpQQhTGBH9Jq+QgBjXQsZupNcv1lqtUS1VKBUt4suVhK02kF7Nh9mP+44xF2Pr6fmek6jUbHiKsJcG2baimHk3cJohi/7WNJYZJr44TIN89AsZKnVMwR+dECBwyHWqPFsdk6sphjfHSQfM6h6Lk4ro2jBZ12wL5D09x868Ps3naA2ZkG9XqbMIwRAmOHUh4755joTctHCkGx6KJjReRHxFFMvpSnmM8RpU7m9EwAZ8lC6fjhWfNUMmTIkOGpwhP5+/SMdlASpU2W4ykg0Ehp1Dsdy0JL2etVYguBLWVaSWOWg6Q0SbBKKYgFSiVoJH4QMV9vkRwU3P/ATqYGqkxNDjE8NYTWmkatxp59x7j/vu3s23+Meq1Jx4+IlekiLKVRUrVtCyGlUQLVGkuYXi6JSCtplDYday1JYkmIk14DPD+IEY02sdDce992Vo0OsGJqmMGJAWzLYn62xpFDM9x//w527TlCY75F2w+JE9NNWVjSqJnahkvPDoAjpeGQJrN2OxcniYIIlDY5KkEYU2u0iYD7H9jJ5lUTTIwPMLZsGEcIOk2ffbsO88D9O9i15yjN+SbtTkCiElSPg8C2zZiQ3rNlGTsoaeygUg62baEShYhNYjHaaMXUG22UEDz44E7WTQ6zamqYiTXj5KSk02yxb89RHnhwBzt2HmJu1nCIk+5YLOJgW+goRittbNPjYLRrEALbkihbmW7EaWJXGJmluAR44MGdXLpxJSsmhxidGiLv2rTrbQ4fOM6DW3bz+PaDNGcbtNo+UZyQKIUlzVgYO1iQmHYAlm2eSS1NT6M45eBYEm0pou7zcJYEsyxBNkOGDD8qeEaXGZ+tcVqvA2+3PNQcZCoq0tKZBd2R7ucsNLdLP7OkxPMc+vpK9PWXyee93me5nEtfX4n+gTK5nNvLEVjawM2cWqTlMr2KErGouoNuxYZYOF7pVNrcOFCu49DXX6K/v2yayAmB1rrHrb+/TC5vknvF4kqiRXPWkvN37dC77wWOqanQip68uiUlnmvT11dMOeR61TCWY9HXV2JgoGySWi3jAGrFElv2qqIEvcZ2etHL2OnUYwxGFdd1bap9JfoHKhRL+d5+rmNTrRbpH6hQKOSw7JTD4meiZ4feFSDVZ11gs6i8m5OfKSNdb1OtmvstlXJIaa5jOxbVSpGBgQrFYg7LtozNT3ouU1unV18YI9Fj06146o3FOT3vGTJkyPCjgR/hCAoIZTr5AjiWUYaN0wnfk5I2JlfAwfxSDTGTaaLMS6fano5jdEc2rJtkeLiPdqPN7gNHSRLF2ECV/oEK69dNcf9922jMNhDCcFNKGw7pxOhIiRSCUC28T9L7sFOOSayMPkba8K/rUNi2RbWS57yNyxke6afT9tl1YBdRHDPSV6Gvv8L6dZOM39dPa65pymDT+xDCNMzT6TWkEISp4+JKSQBppMXYQcXdbtCqx0FrbThUi2xcv4zh0X78ZodHt+ymE0aM9Vfo6y+zfv0U46OGQ6vlk6hUH0Z0bQq2NAJ73Y7NjpREmAiD0BJHSrRQC2ORqF7ptm1LyqUc69dOMD4xiI4SHks5DFdL9PVXWLN6nMmJQeaPz9NM7RArjYVOuyODLSWWFGlTQ8MhxnDV0oyNSIX0DA/Vc14tS1IqemzcMMX4xCAqiNj++H5qHZ+RapnBgQqrV4+zYtkwzZk6LSlN/pMyxeQqPa8lBbYUdJRGSZ1G1Eg5mLGQakGzJUkbWJ4JmZOSIUOGHxU8ox0UaUmsVEL8RHR/qYdKY0UJBU/hWJKWAEdpPAE1pQmBnCVwtaYeJYSJQguwuksSlkXOsRnpKzExXGX/0Vlu+97DfPWfbsHvBLziVS/g6hddyuhAidG+EodcB9uyFpIZU5VSESWUlMKVgoYwCq4umlbKwZMCR2vaizjINAphODj0F/OsmRri0PF57r7zUb742X+n0/Z50cuewwtffDn9lQLLRvo4uOsIrmXRsSQWgJREShkOSYJrCZoY2+QFtLUmAApS4mmYj2LC2CztLObgOTZD5SKrpwY5dGyOe+56nH/54neZPjbLNS97Di9++RWMjVRYNtzH/p2He0tKhoNZwvGjhHyi8KSgkY6PiybQGl9DUQo8oJZyUAKkLRGY5S/PcagUcqyeHGSu1uKhh3bxuc98k+PH5nje1Zfwilc+j+GhMstG+tjluUZy35JY6dJRrDV+nFCME3JSUheCQMEgmlhrAm3GwsOMhR8nRp/GsszSnCXxHJtKPsemlaNMzzd56IFdfPkLN7N39yGufMHFvPynn8uKFcOsnRxi19Z9uGmzQmUt5ZCPjR1qqR0cjAMdaHClIC+gGSUEsTKqt5Z1VgckE2rLkCHDjwqe0Q5KpZw/QxUPxIkiCBPqLZ+cNtoblucSaUXkh6axX87FsSSdWotaK0RaEs9zcWwTach7Do5lETQ63Hfno+ydbfHgg7vYteswURjzrf94iGPNNusn+unU2jhSUiqY6gulFHGijQ5JOyCvEyzXxk5LWwM/IlAK4Tk4toXf6FBrhyAFnmeWaqQUFNLeNkkQ8dDdj7HjeIMtj+xl+45DiDjm27c9wvF2wHnLBmnONLBEmngqRC+CEYQLHGzX6SVohn6InyiE6+C6NkGzTa0ZooQg5znYtodEkHNtPNsm8UMefWAn++bbbNm6j8e3HSBotvnObY8wF8acv2qE9mwDC0Ex56E0PQ5hFNPoBDgqxvMc7JxLFCcEQUQQJcYOrk3Y8qk1A5QQeI5NIW9k83OujefYJEHMtod2c+td29jy2AG2Pr6fqNXhe3c+RgvBpuVDzB+dw9JQyHuo9FlQShNECc1OiKsSCnkXJ+cSdDnECu3YOJ5F1AmoNUNCNJ5jk8+bpoc5xybnOOg4YffWfdx+7w4eefwgD23dSzBX59a7Hqep4fy143SOzyE1FDyXuKyWcvBDrCShtIhDmNqhyyHuhNQaPpEG17XJ592zykQ7rp05KRkyZHja4on8fXpGOyg9/fPTwLIsHAdUIkgSTaITLCmo5PMM9xXoWG1qbSNmZimVNpeTWLbsKaEGYcxc1CTyQw4emuFQvUO93mZ4qIIEDh+aptFosauvQNAJqbXDXlInQmBZAltbgDD9eKIEAZRLeYareXQrYKbhkyQJUmuTP2JZvfwJMLLu8XyLsBNQqzU5MN+mVu8wNFAmZ1tMH5vj9lsfZm9fAeKE2YZvpNtTDt3EUCFMwmkSxYZDIcfwYJG44TPTNBzidClHpwm7XQ5RnDBXaxH6ITMzNQ7VO9QaHfoqBXL9RaZn69xx6xb2PVJExgnTjc5SDpbA1jZgukRHUYLQUCp4DPcXsDsRQb2DihNizFKOTrsPd3M1ojihVm/jtwPajRZHmgGz9TbVcoHiQImZeovv376FvVsL2EobOyi1oExrCeyFlCBTzquhmHcZ7i/SCGP8WgeVGMdSWgJbWD0OAuPo1Oqm3Pnb37mfQw2fuXqHvOcwsWKUo60Od9/5KPsf30fJEhydb/c4dO3QlVITAqLIcCjkXIYGijRTDjpRREpjWRY6TRru2uFsyJZ5MmTI8HTFj42SbBIrFvrxLoVp0GaSOgUQ+wHtIMbK51m9ZpJLN07ibT/MAw/vot3yka5NoWA0TrTWqFihMU0G/UQRBSGdMKQTmO7IwnVMImoY4ndCZrSJRnTSbsRIiZALHFwHVBzRbAfguqxaPc4lGybZcWCau+7bQbvVoeBY5PNeL99CJaZpXpwodKIIfUmUxHT8BBUnSM9GOBKChNAPmZ1X6Cim5ccIaTromonZcACBjkKabR+Ry7F8+QjPvnglj++b5t4Hd9GuNY1QWDGfSrCb/A+ttWngFysiPyCMItphQhIn4NrgSHQQEvghs/MaopiGbzRNsKyec+A6Fq5jIaKYVidA2Q5TU8M868KVHJ5uMH/X43TqTaQlyOfzaSLzYg4anSh8AVrFtCJlnC3HAseCMCT0I+bnW4gkodmJzKRumeiHkBLXsUyXZqVoNNokrsOysRGeddlajs02qd+7g/psDSE0uUKeRIhU5yTpNVvUiSIQoFVCK0qIoxjXluDY4BvNmVq9RUcrGi0TERPpWIi0msqxbWQc0+z4JLbDxGQ/l1++hrmmT+Pu7dSm5xFakS8XiaHHIaviyZAhw48LnvQqng9+8IO9apTua2xsrPe51poPfvCDTExMkM/nufrqq3nkkUd+oGuJM700vRwS27YIopgwSsh5DqtWj3HR5etZs3aCnOcSRolpPmdbZhkojRqIRRU9iVIkaQWHTPMIIqXTnjGil9CplSkbNR1rTc8V27JwbIsoUQRhhGNbrFxlOKxbP5U2G0wIwhg7LUm2hOzdR5eDSjmINMm0y4GUg8Z0I1ZpV+Rux5mTOAQxrmOzbPkwF1223kj3F3NG8CwIsWxjM0sucOh28E2UNnYQC4mukUr7DcmUg1LGDj0OpHks5t5ipfBT4bOpqWEuvHQdG89bQanLIZWAP4mDNvZdSP5dyoElHIy9uiXV0B0L4yAorWn7IZaUjI8PctGl69i4eQXVSgGtTeuDbmm2JQVyUTmNTpes4jSBWEpTrh4o1ePA4rFQC2Eb2bODRGkjrmdJwehYPxdcvJbN56/qcWj5oSmTT0uzz/i8L36d8P3LXtkre2Wvp9PrXPFDKTPevHkzhw8f7r0efvjh3md/9md/xic+8Qk++clPcvfddzM2NsaLX/xiGo3Gk85DCjN5SCEI4wQhBKVSjuXLRtiwaQUrVoxSLuYQ0nwupdlfCLEgx5tOjEqbbsKm0VtaWdG9hjCN3brVOt1iVjNZ0DtvnCg0UMi7LF82zMZNK1i5coxyKY+QgihJes7HSWOYXk9p0i7AplldkvKRwiwhmbjPiU0CF2wRxQkKTSHvMTkxxPpNK1i1aoy+SjF15IyomnXCg6TTOuSlXYCNM5Ck17CEKZFV6dJO92UmTpGeV5olD21k2SfGB1m/aTlr1k5QLRewLEkYG4G7kzik9lVakyw65wIH0Wu61xuLJSXWhrMljXMQK0U+5zI+1s+GTStYs2aS/r4Sjm0TxjGk9yREtyzavHoctLnmQhfmLoeUk9ZLCpi7z0SXQ6IVsdLkci5jI32s27icteumGEh7C4VRnJ4/fSbORSQ6C6BkyJDhRwQ/lCUe27aXRE260Frz53/+5/zRH/0Rr371qwH49Kc/zejoKP/4j//Ib/7mbz65RBb9ek60plDIMdBfZnJikEq1xOT4IAP9ZY4fncVvd9L900N7szsmH0WYbV0HpTtpWYskPbqaIqIXN9ALPBAkWuHlXPr7SoyPDTA03M/Y2CCDA2Wmj+ZoNdqg9aknosUTMel1091k+lIsdMBd6OTbMwakCaue5zLQX2JifIBSpcTU5DBDA2WOlPK0m+0e3xMI9PRLFCaiYbHAwRIC0XXkuhN6N+iwZNY00Q/Xs+mvFpkY72dwsEq7EzE0WOZoKc9cEKbRlxM4iJ6BU2dRY7HQGdjCdKvWPTuc4jbS8UiUwnZs+qpFxkf7GRrpp+1HDA9VKJfzNOtNE/mwFswHi3RjenbQqcNoPrPEQuW76j4nJ5LQXQ5GN6WvWmRstJ9qXxkv7zEyaDjU5+o98TxOcHTOhGyZJ0OGDE9XPOU5KNu3b2diYgLP87jiiiv4yEc+wurVq9m9ezdHjhzhJS95SW9fz/O46qqruP3220/roARBQBAEvff1eh2AQsE7bRWPEFAsGoekXC4Qb5yiUMgxOT7E5MQglm0xOTHIJRevYWS4gu8HSMui2egwN980+QmJMpUVSUgUJ1iJwhZWT0lMa4wqrTDRkSg2ERLLlng5D8uWFAo5+vtLlEsFLMsIjQ0P9zM1MYSQgpGhChdfuJrhwTLtjo8lLZpNn7k5I1WfJIrADwlVSKyMoqgtTBIrmF/ydqqnkShlyoO1xrVtcjkXaVkUCl7PDkIsw7ItJsaHWLViFNu2GBmucuEFq6iU88zN18l5nuEw36Rea5nzBiGBnxAlChknONKGdDlF6QV13m6VisaUant515RJ541jVq0W04iSZGioyqoVo3iey9BAhYsuWEW1nKfZbGPbNs2WT22+Sa3WIu6OhTLVMEGc4Fo2ziIORlfEcAhj0xnYSTtSW7ZFLufQ31+mUi7geTZRnDA6MsDa1RNIKahWCpx/3go8x2JmtobnurTbAXMphyROTH+lHocY13ZwpERpo9tiCZMYrdOSapVqt3g5B9u28TynZwfblmg0o8MDrF8zQT5nmleev3kFtiWYWTdJPu8ZO9TazM01jCbMGSCSmLjVPrcvaoYMGTL8F+OJ/H160h2UK664gs985jOsX7+eo0eP8id/8ic897nP5ZFHHuHIkSMAjI6OLjlmdHSUvXv3nvacH/3oR/nQhz500vZKKY/jnNpBkWluwbOevYELL1rD8hUjJLEpL+4frAAwOTnIL7z+KizHwsu77N51mK2P7OW+e7exe/cRwjBmNjTdejt+RJ+GiZF+IkcyU2uRKM1QtUgu53J0ps70XIOc6+C4DoWCR85zGB8f5JJL13LhhatZv3GZ6S/TDhgYqgIwPj7A617zfGzXxsu7HDwwzcMP7uKeex5n796jptlfENH2Q1rtgHKiWTbWTxxbTM8b52GgUqCY9zg+12R6toHrWPQ5Nvm8R85zGRnp4/Jnref8C1axbt0UWmtCP6Kvr4SUgoGBMj/7yisR0jgUR47MsnXLHu6+6zF27DhIGMbMRTFtP6LVCShGCSsmBkkSm5laizCKGawUKRY8Zmstjs3Uybs2FatIf84jn3cZHKxw8cVrufSydaxZN4klJe1mh76+EgDVapFXvfK5IAWFYo7Dh2fYumUP9923nW3bDpiWA3GCH0S02j5eGLN8fBCRc5iZbxJ0YvpKeSqlHHP1NtOzTWxLULWK5HIO+bxx0i69dB0XXLiKzeevQgiB3/ZTx03Q11fi5S+9nJe+9HJyBY/ZmTpbHzF2eHzbAXw/ZH5e0Qkimi0fx3dYPTWM8Bxm6y3qtQ4D5TzlUp5mO+DYdB3XkpRLefr6XIoFj2q1xEUXrebSy9axbv2U6ejc8ikW8ziujdaal73kMq655hLyxRzzcw22btnD/ffv4OGHdxOG0Rm/f0e/+k0euvlfz7hPhgwZMjxVaC4KNpwNT7qD8vKXv7z33xdccAFXXnkla9as4dOf/jTPec5zgJProBfC2KfGe9/7Xt797nf33tfrdZYtW8b8XAPbDk95TDeJc8/uw+QLHsVKgZXLRhDC5ArU/JCi5zA81o8Qgn0Hp9m+/SB7dh/myOFZ5mYbxHGC3wrQie7lAWgBSkqCxCRhKmm2meuZPje+H1Kfb+I7NpYQ7N1zlELBozJQYfXKMURfCY3hkHcsRsYHQAgOHZljx45D7Eo5zM7UiSLT/VYlqndPSgi0lERKp2JmZls3XwFtuhXX51v4jo/Qmr17jpLLeRQrRTaun+otCdU6IXnXZmikDyEER47X2L7tALt2HeLwoRnmZhpEcUK77aOShfyU7jVDpfFjRSIXc5CgIQxC6rUmfsdBJYq9e49SrhbIl/KsXz9FpVJAA3U/xLUthkb7EAiOzzXYsfMQu3Yd5tChaWOHMDa9feIFDjpdbws1J3OQpt9PGEQ0am2CToiKEvbuPZo+D0UuuGAV1UoRBDSCCMeSDAxXEUIwV2sZDjsPcfDgNLPTdcIwot0+kYPhEWnwo4Sky0uAnUbaojCmkZZoR2HM/n3HqFSLeIUcF5y/imq5iELTCCJsS9I/WAUB9abPtu0H2bnrEAcPHE+fh/iM37+jO7ZxqHX0jPtkyJAhw1OFtjp15e2p8EMvMy4Wi1xwwQVs376dV73qVQAcOXKE8fHx3j7Hjh07KaqyGJ7n4XknR0o6fohtneIAACEIDs9Qq7d4ZOtetj66n7e+5eUMD1XQCEI/oug6KKWYnWvyDzd8my0P7qA236TV9AlDkyTpeg5eWvqrlKZeb4M0Am5aQxjGhEGEJSVjI/0IASpdiomihCCaZb7e4rHH97H1sQP88i9fw8rlowhLEgUROSlRQnN8ps4/feEW7r37MWama7SaPlEUGzl618HLuT35+kbKIZcKvEVRQi1qIYCRkX6TtKsUcZIQx7ERSLuzw2OP7eP+B3fyznf8LJOTgwhLEgYRni3RSNp+wBc+/13u/v5W5ufMMleYaoU4jk1/f/kkDp5jY0tJHCfU6i2U0oyN9hlHKl0KidsBQRjRaHbYufMQDz28m1/+5RezYf0k0pJEYWyWSYBGo81Xv3IH3/vuA8xM12g2O4RBZJbTbNPvRwhBojTNlo+UAs+2sPIeOtE9DsNDlR6HRCk6nYAwjGndt50dOw9y7/07+LVfe5lZTrFtojBGOjZaCNp+wNe+9n1u/vZ9zE7XTCfiIDJ9eGxpoj5dOzQ7iFSWvlzIoZTRSVFKMzJcNVVFaUVRp2Ps8MCDO9m95wj33r+DN77xxVx80WosyyLucpCSIIj45r/dzb9+/fvMzdZp1Nv4fnjW9dskPvcvf4YMGTI8nfFDd1CCIODRRx/l+c9/PqtWrWJsbIybbrqJSy65BIAwDLnlllv40z/90yd+clOWcdqPwyimM11jdrbBfL3Dc688j0svXkO1r8RIf4kkUdTrLbZu3cttt25h9vicEW2zZE/i3XFtbNcBDZ22TxxEOK5NwTGm00oRhhHCssgVc0gBcRQThrH5LIrpzATMzzeZr3W45OI1VMt5hkf6GaoWAZidqbFr5yFuv/0R9u0+vIQDUmC7No7jIKSg3exysCg4Ntq20EoRhRFYFrmChyUlcRQThVHPWZqZqTM/1+TQ0XmuvPI8ykWPSrXISH8JrRTNRpvde4/xvf94mP17Dhutl7SVAFJgOzaO64AQ+O2AOAhxHIu8bYNtgTY5IlpI8uU8lpVyCAyHOE6Yn29QqzWZmWuyefMqhgfKjIz0MZiW1Tbmm+zedYTbbn2Ybdv2G6fBkiYa0rWDayOkpNMOSPwQYVvkUzugNWEYoZHkSjlT0ty1Q6KIlWI+zas5fGSOC85fxcRoP4PDVQYrBQAa9RaHj8xy6/e28OjWvagkQYiT7SAtid8JiToBji3JOQ5uWhIdhREKyBXzOI5FnKrEqiQhUZparUW93uLw0XnWrZ1k+dQQ/X0lBlI7+G2f/Qen+d6tD/PYo3tJEmWqpGzrjMKEgInoZEmyGTJkeJriKU2S/e///b/zMz/zMyxfvpxjx47xJ3/yJ9Trdd70pjchhOBd73oXH/nIR1i3bh3r1q3jIx/5CIVCgTe84Q1P+FqLinROu0O3zDeXc6lUCuQLHiIt+bWEyXeoVArk826vxLh7biHSf3vFPaJXR6F7NTJLS0jpbumqqLJQauzlHMqVAqXiQgdeMHLs5XKBfN5DSokQSa9EViycsHeF7mdaL5yj++miPRb2STkIKfBch0q5QLGUx7ItYwcp8FL7FAqGQ7fJ4okcxJIrLLbDghF6uiWLxyn9UAiB69qUy3mKpRxCylTTBPIFj3IlbzoRS0mcLlfp1PJLSqehV1m1UE6sF3E4sVS8txNCmIhQuVKgVM5jSdmzo+c5lMsF04nYstCJOukuT6zL6dqhOxK9W1/iS6TPQ4+DwHVsyuUCpVIe27FJElNe7biGQ6mYR1qmZQILh2bIkCHDjwWedAflwIED/OIv/iLT09MMDw/znOc8h+9///usWLECgD/4gz+g0+nwjne8g7m5Oa644gq+9a1vUS6Xn/C1enofp/tcgxAS13NYPjXE8uUjOK7N4UMz7N51mOUrRpmYHGJycojly4aZPjZn+qVokEu0PHRP7yJJNVDs1IGJ0jnT6mqnaA1K947TqafjOA4TYwMsmxomV/A4emSWPbuPMjrWz9SyYUZH+1mxbJj9e48QJ8lS5yOdmEVaJZKkJa5GQL+rt2E4SGOY1CnQSzjYjs34WD+rVo7heg4z03W2PX6A8YkBli0fYWxsgNWrxti/5wjtTrAgdLaYAxpLQNzlkNoh1un7lIPWRqBM6cUcjGMwOtLH6lVjFEt5Zmfr7NhxiL6+EqvXjDMy3MeqlaM8/uheo9nS4yB6NpGpHSLMNbtidIk6mQPptRULHCzHZmiwwupV4xSKeer1Fo8/up9KtcCq1WP095dZs3qMrVt2Ua8nPSVbw0H3zmsJQSS6HMx4JKkdpBBYi+yw9Hkw0ZDBwQpr1oyTL+RoNNpse/wAxaLH2rWma/a6tRPcc9ejNJudc1KR7T3056KXkiFDhgxPCc7979OT7qDceOONZ/xcCMEHP/hBPvjBDz4p1ztjAEUIHM+mVCly3ropdKLYuu0Af3/9N/n2V7/P8158GW/+9Z9i2Wg/56+b4rFt+4nTxEpTuopZGogSXCFwhcC3JAHgao3QmlCDtiRFKRBRQqgXpNl1ysF2HfLlPOtXjVHKuezce5TrPvWv/PtX7uDi52zkN3/rVUwN97Fh9TgPbdlNECdEKQcAlWjiKMGRgpyEoMtBKWygoyGxJHkpkLEiRJPEyQIHMBxKeTatnaRSzLF912G+8IVb+Jcbvs0FV2zkzb/502xYPcFFG5dz/wM7iLQm9MMeh0Qp4sjkiniL7OBoja01ba1JLEnOEliJItCaJF5qB8u2yZcLrFkxSqWQY//BGW783M18+R++w7K1E/z2f38dG1aNs2n1OHf0l/CjmDAIe9ERpcxYiETjYewQInCUxkHT0ZpYSjwpsJKEKBEkqcPZjcRYjo1XzLFq+YjpTn1omq9+7fvc8NdfY9nqcd76Wz/LReetYNOaCe4YquJHMX4nWOCQjoVINDk0fsrBUpoCUNOaWAoKUuIkmiCJzfOgFsZCOja5Yp5VK0aYHO7jwKEZ/u1bd/MPf/N1qkNV3vHu13DpRWvYtHqcgcEKoVL47eCcQ6NnWQXKkCFDhqcMT+Tv0zO6F49R5Dzd3QqjOTFUZXikD0sIvvaV29m65wh33fUYs3MNvn/vNqy8y6YVo7gIJpaNkJ+pMz9Tp9P20cpUonTaChdBqeDiFTw6saLTDozYVsEj5zjIMKZZaxFojUylzC1pojd9gxUGhirkPIdvffNuth04zq3f38r0TI37H9rFZ274dzatHMOTgollw1iOzdx0Db8doLROORhHoJpyaCeadivA0Yo47+G5LlYY06q36KjFHASO69I/WKF/sEK1UuBfv/F9tu49yl13b2N2rsEDD+/mhs9+h/NWjzNczDO1fAQ35zF7fJ52y0drTRTE+O0QW2sq+dQOiTb5KEnKoeDgxAmt+RYtrbGkxHZSDo5Npb/M0EgfpVKeW//jQbYdnObOux/n6PF5GknCDZ/9DptXjzNQyDE+OYx0bOana7SaHbTSxEGMn4RIrenLObgFj1hrk48SK6Kci1vwsOOETqNDK1FIaZo/SilwXYfqQJm+wQrDQ1Vu/97DbN1/jLvv386x6XlaScKNX7iFLesmmegrMT41TCIls8fnaTXahkMU43dSDp6NV8qhlMbvhIgwJsp7OHkPRyk6jTaNRCHSZo2WZZy0al+ZgeEqg4MV7vr+Vh4/OM19D+3i8NE5jjXa3PjF/+CRB3excrjK5LJhhGvs0Ki1zuqkPBEZ6QwZMmR4OkPoZ2BGXb1ep1qtcsUVv4ltu6fZS+A4FrlCjlzeo991mJ5vMN3yUVFMMdE0pcBybQYLHqMDVabThndBO63i0dp0QVYKS2lyliDKu2jLog+zjDCLhiTB9SOCKCG2zITcTbK1Uw5ezmXQc5mvtzjW7BCFEYVE40sBrs1A3mOkv0w9Tuj4AX7bJwpjdNp3JkkUUmnyEuK8R2JbVIXA1YaDUgrHD4nDhFBKpNXtRmyUfXMFDy/vMZTzmK81OdpsE4YJ5UTRlgIci2rOZWqoj/k4pu2HBC2/V72ilGlaaClNTkBc8EislAMwCyiV9DgE0tih25XZsiW5vEeukKPPc+g0fQ43WoRhTCFOGwB6Nn2ey8RAhZpSdPyQoB2kURQTvUgSBUpTEJDkXWLboiwlOQ1zQKwS3CAiDmJjh25XZmm6W+cKHm7OYyDvEbZ9Dtaa+CmHSEDs2lRch6nBKm00TT/Eb/kncNCgFAU0SdEjtiyKUlLWmhkEkU5wghjtR/hp00i7x0Hi5XN4eY/+vEvcCTkw3yCIYgqRIkw5lF2bZYN9tDA9eYJOQNA5exTl5fM7uaBz7Mn9wmXIkCHDk4S2SvjFPfdTq9WoVCpn3PeZH0ER8rTLPHGcUKs1mZtrMqs0wpJoyyRqKkzTPa019UaHxlyLjmV6udjd3idSYNvCLPUEEc1WB2lJhsYqXLRqAseWPLDnCEcOHidodowzlHNNCCvNYUnihHqtSTIP84lGWAJlmUlLK3ocms0OrfkWvjTb7DSnxURCDAcdJTTmG0hL0t9X4sK1kxQsi4f2H+PQoeM0mz6e6xgOJgkDNKgkoV5vk9RazCUamXKQUqATcz0FtNsBO3cdprOYgzA9fGxbYGvQYUyz3kLakupwkc2rJ6jmXB46cJwD+4/SaHTIe65RsZULdtCJotnoUKu3mVVGeValzosWCw332u2A3fWjPQ7dfBIpJbaV2iFWtGpNtIDyUJXN65fRn3N59PAMu/ceodnycS0LL+cuKvLSabVSh7jeZj4xCryJbcaCdLwF4Ache/YdNU6TMCq9J3IgUTTnGghLUB6ssnH1BOPlAluPzLBn31GazQ4eAq+SS1sjLOSjtJod6o02c0rjiJRDagekaZQQBBF79x2l0+UgRHqeM7fP6nYZyJAhQ4anI57I36dntINipU34Tgel0wRSbRrD2ZbEEoJYQJh2/pOm8x9RotDCTFYiXToy0XIjRx7FCe1OQKWvyMBghU3nr8R1bQ61faaPzNDoBFiuS64rlibS5ExNL1E0UgpHWkgpUEoQqgQlTbdcEykxomu27nLo9tWR5nOtabR8+gdK9PeX2LR5JUXX4VgcMz09R90PAUGhCFJIxCIOQivQJgriSCsVfNOEynxupTNblChTqyPM/ffsICQoTagUzZZPta9If3+J9ZuWM1wtMa0Ux47OMu+HSCHJF7tND7tJsgt2SBKFtExX6ESYcyphHCZSOykhsLSZlM0ynkBIwyHSmlY7IF9wKVcKbNi0nOFKkbolOXR4mmYYoaQyVTBSphVA9CTxSZ8HKWTahA9CZcZfphVAcaJREoTVdU5MXVCXQ6yh0exQLuUoVwqsXT/FqtEB6o9YHDk2Ry2KSRKoVLrHLhQTLbFD2h1bAZFSJEKasQOiRRy6lWBnaxiYOScZMmT4UcEPpZvxfxXEOb66Deo0emECSqsdFneeFZhy1+6vUCEEQqaVMmmPGde1GRqqsHb9FOs3LmdkpA/PcwijpNcnZck5Fr2USjsgp9NMkhZcdJvdJYvLaHulsiI9nxEG84MI17EZGCizdv0U6zYuZ3S0n0LOM+Jwadfm7jEL11+4hqkyMdvjdMmg+75bEdS7//RY46QYgTQ/jHFdm4H+MmvWTrJ+03LGxgco5F3i2PTr6dlgEYcuuhy6nye9Sigzql079K7NQodnkep8+GFkhNsqRVavnWTDphVMTA5SyHskyjiULOZwwpioruMmzJegy6HrsHQd2+7+MuXQbRSp0XT8CNuW9FWLrFozwfpNy5maGqJUNHkpQRilHETvvD0uPQ4Lz1ySVl+dicNZn/csByVDhgw/InhGR1DOhO6yT3eS61VQiIVfs70uwL1Je+H3qSbV8kgnZo35418u5hkZqrJsxSj5vMfocB+VcsHoVcDCLKiWKqQIzDUMBzMpLeagWejAK1OCi7sjI3Sq+wGlYo6RwQrLV4xSzHmMjfZRrRSwbIulOqKLGaQTMWmpbnq/kTaOgRRLOfSWqcTS3+zdfUrFHEODZZYtH2F8pJ/x0X6q5ZRDWtbcPaJr+y4HhVkmsRdxksJMwBrVcxzMKfSisTS21UKgERQLHkMDZZYvH2F8uI+JXQepVgo4jk0UJkvTxbsk0vtT6bjb6bXjRfzo2UH03ndzP7ocuo5UsZBjsL/Msqlhlq0cY2LvEfqrRVzXoenHPQ69keg6HMJ0fe6Wi0tSDuJkDmIRh7M6IM+8lLIMGTJkOCWe0Q5KvpDDOU03Y9JlGRVEqCgiihJcz8aWZoknThS2AFsKIiEIwxjXEgjLxnMdXMdGWqYKx/FcRob7sJhg04Ur2bRxGeVqgZznsn79JI25OiXHIUo0lmsRhRGhH5LERkG1E4REsSKMElzHMtLwGAl2CyvlAFGUYAkQtoXn2TiObSqBcq5RcQUmR/q54PK1nLd5BX39ZWwpWLtmgvpsnZyQNFo+XiG3iENCnCR0/BAVa8IoxnEsbEuidEKsFBZgSYkShqMlTBdg13XwXBspJY7n4noOSmmmxge46PJ1bDhvBf0DZfJFjzVrxrn88vXkpKTZDHCLHnHKIY4SkiShE0SEcUIYxVjS6XFIlEJqk1SrhCCKE6Q0HJxFHFzPwXGNoN7EcB8bzl/O+s0rGBiskCvmWLlqjMsvXUfZdZmZaeAVc8RRyiE2Ea6OHxJFiblP1ySv6sSMhdAmobb77KDN545r4zmOqQTKuT0OA5UCF162lvXnrWBkrB8n57BixQiXXrKWnJQcOjhLqa9olIX9kCgyJcd+EBLGCVEUI23TKkArhVIKqdM+QidycGxyrnNWB8Wun673Q4YMGTI8s/CMdlBGR/pw3dwpP9MaGs027aNzNJsd/HZItZLHy7m0g4h2EOEWXbyci4oVtXqLvPJwnBLlcp6+agnXdRga6WNicohlE0OsWzvBwGgfbt5FKWh1Qp77nPO4/KI1NOdaPPr4AQ4cmubwoWmOHp7F90OarQ6dY6YTcaveoVQcJJdz6UQx7SDCck0yp040jUYHy7NwbItSqUBftYjj2oyM9DM2McT4aD8XnLeCvpEKbs5DAR0/4rLL1nPR+Sup/2yTHdsOsf/QNIcOTXPk0Ay+H9Bq+fhH52h3fOpzbUoFDy/nErR8OkGElbON8yESGo02lmth2yWKJRMdsB2bwUFT8jo+NsiGdROMTAzgei4gqNU7XHLRGs5bP0X7NVfx2NZ97D80zZHDMxw+OE27E9BpB4TH52l3fFp1H2+4Si7nErZ8OmEMqTOYIGg2fYQjsKtFCv0eg/1lXNdhYLDC+MQQExODbFgzwejUIE7OxXJsGo0O521YxtoVo7QbHXbtOMye/cd6dmi1fTqdgCPH5vDrIXNzTdwhwyHxQzphjCcFVcdG2pp2yydCIftKDPSXGBqoYDs2AwMVJqaGGBsdYNO6ScaWD+F6LsK2qdU6rFu/jFXLR+i88nnsfPwguw8c5+iRWQ4eOE6r2cYPIo4en8evtajNtxnsK5HLL3BwBPS5FlILYzOVIPuLVCsF4yRbZ16Vzdc8qGdRlAwZMjxdce5/n57RDsrMTB3XOXXrZq3B90MjLmZbUDATehyZYL50bEAQhzFKa3KFHI4tSaKERr1NEiU4rg0C8nmPwYEK1f4yQ4MVFHBsxnQ7niz3IQs5LCR+EDI322D6eI3p6RqBH+IHEVEYY1uSXMEDIUxHWg3SMb1Vuhy8vIu0TOWP4RDjOCZ64OVcyqU85WqR4aE+tNYcm2vS6YRM9hWw8x6uZbN16z7m5rsc5nscwjDClpJ8MWeuGZkyauHYiPS9SjRewUNKI1DXrHcg0di2hVYmYlUpF6j2lRkarIIQTM82aLYCVvYXKeU8KsUCDz24i/n5JtPTxg6ddkAYxQR+iC2NHYSUaTNEjbQtkIIkikmUwsu7IDQqUbQaHYQyHJTWxg4V0xF5eLgPgNmmT73lM1Huo1zIkXMdtm0/yHwt5XC8RrvtE4YRgR8ihSBf8JC2RRTGJnJhWwgpSOIEpcHJuUidgNK0mj5Cg21ZKKXI5V0KhRy5Qo7hoT7T/bjRYb7ZZtlAgUquTFwqsO2xA6b30EyN6ePztFsdwijB7wRIIcjl3R4HrTTCthCWJIlVj4NIYlCaTstnRtbPoPtj4AcRWapshgwZnr44979Pz2gH5eiRWSzr9DooQhpp9YG+EhHGMdAtH0tKCgUPRwj8tk+sYXC4iiM0cRjTqLep1VpYlqTWaDPfaDNTazIwVKGcRmHyOReVKLRW+J2YrY/v4857HufAgePMHJunPt8kjpNUh8Siv1IkwkzCnaaPZUmK+RyOJOUgqA6UcaUgDiOajTb1egspBfVmh7l6i6PTNfoHK7yor4jrOeQ9x+TNKE0Yx+zYeZjb73qMA/uPcfzYHPW5BlGUIADbsahWCpSqkjg0HKRl7OBakrAdEitNX8ohiWJazQ6NRhspBfP1NrVWm2MzNfLFPC/rL5LLuXiek7a5MQq8j28/yG13PcbBA8eYOTbP/GyDKIx7ze6q5QIqdU7aXQ55D8eCoB0Sa025v4SXcmi3fZrNDlII5htt5uotpuca5Is5hkeqFIs5cq5NUswhhSDwQ/buO8btdz3Grp2HOH50jtpcgzCIEBgOlVKeUqVkOLQWONgSIj8kUZpStYhrCXQc02n7tJodBDBfb1Frdjg6XUPaFhNTQ+RyZhmqVMphIYiCiCNH5/je97eyZ89hpo/XmJ+uEfQ4yJRDkShKDAcpKeRdbCkNh0RTrBTwbIGKEgI/ot2eO2uOSaftP6nfsQwZMmR4qvCMdlCiOEHp07SXF2Bjci08z0mVSENA41gW2pY4UhNFCqUFbsHGMxmzRFFMFMXESqJbPomo0QwiKrc9wvhgmanlI/QNVNBaE7R99u46zB13bOWx7QdpNdu0mx2CKEYlCbZlYVsWnmsjELTDCK0Urm2BLbDRJJGp5vBsD88WCKUMh7Qip9H2iWcEjU7IrbdtYeXEACtXjVLuK1Mp5mjVWxw/Msttt21hy6N7zYTaaBOEMSpOsGwLz5J4jkMkpZHRVwrHkniWxJHC/GpXGte28BxJhCYMY6I4NlUrHR+VcrBsi42rTR+jgZF+KsUcgR9yeN9Rvn/HVrY8upegE6QcIpK0O7Nr2XiuTSyk6facKCNcZklsCSqOUErjeBaeazgs2AF0OyARDfw4Qd6xlVUTg6xZO87g6ABFzyEOIw7vO8o9dz/OQ1t2U6+3aNXbBEFEEscmn0faeI6Nsi3T+bjLwZYmOTWOUYnCciWeZ5MIiMKYODYNHPED1GyDVhARxoqLNi1j9aox+ob6KAxXCToB00dnufOubdz30C78dCz8MCKJYpPP49q4jo2yLKIoQSUKRwpcy8KWQGTK3qVrmjvGmMhfHJ+9H0+iztyfKkOGDBmeSjyl3Yz/K5FKWpwTFncpPs0OdHsVd6t9hV4o++jK1nueg2NbPSNbtoXnuXiei0zzAxaa9PWY9s7T/Xxxe1zTfG6hjHbh3nTvcIHRwehysB27d6xldTk4WJaVVuCYk+hFN73k/Ivue8GgXTssqsDRSz+TMk2e9VxsZ8EOUgg8zyW3mEOXRvd6ultm273Hrl2WWKlXYr3AS6PT90YPJE1czZlk5u65ZG+MXCzb6p2jOxa9e+mW0SB6jf+6xTk6veeFKiJ6EaLUpD1NEse1yXkutmP3hNhk2jHa8xxsW3Yv0+sFpNNOjr3zC1j6UC56RlJbicUcMt8jQ4YMPyZ4RjsoSisjQHYqaFBKGGEuSCsjukJdpnqnK+GONGqhvc63aUVFt+DTdSyjdbFyjNHRAYQQHD40g1Kawf4iQ2l33ge37CZo+3RSzRKlFIlKlUfpip4JlDITkJWKfql01lvM0Ryve5OYbVuUSnnWrJ5gbMxwOHZ0Dt+PGBoo0T9QZvWqcYaGKkRhaNRhu/ciRK+jbo9DqgNiWWb6U2kzO1sa4Re9hIP5zLEtKuU8q1eNMTo2gGNbHE05DA+WDYfVEwwPVTgSmVyPrh2619QapJXqz6ROmCUXOPTGygxHjwPC6NjYlkWx4LFyxRgTEyZBdfp4jVY7YKi/SH9/mZUrRxkd7qPT8mn3xln1tEe0TjseS7HkvVikl2NJozrSs0PXycFI5hcKOVavHGNichDPc5idbTBfazMyWKZcLbJy5RjjYwPsDyM6LdmzA8gFO6QibYk2vKxUkC1O7WCnInldsb+uwNsZYVlY8nTLnhkyZMjw1MJK4nPe95ntoCz6NX4qJAjCRGPHCcWcRWhJWlGMrRR9OYf5doyfKPKOTdGWNNombJ+k5yb99epaFhPDFTatn6DeDrjn7sf5yj/dQqcT8DOvfgHPfd75rF87zuRIldljc2by7elcCMJEYUUJZccmsiT1QGElmj7PohkoOrEi71kUbEEnjAkTbfRK0vMYDpKhSoFLL1xJM4h4+K7H+eKN36bZaPPSn34uz3/BhaxcOcKaZUPMHZvDSjU2lBAkGOVcGSdUPYfQljQCjUwUg3mXhh/RiRWuY1FyJJ0wJogVMaDEghaHa0lG+ktcfP4KWkHEw3c/zr988RaOHZnlpT/9XK7+yUtYtXKEtSmHrgieSo+PlCaIE0qORd6RzPsaESsGcpJOmCzh4IcJQZwQa52OhbGDY0n6SnkuOm8ZSgjuvm8Hn/+Hmzh6eIYXXHMZL37Zsxkf62fdihGOHZqmvogDQhApjR8ZOxQcyVwHiBVDeQs/imnECktKio4kTpSxQ5dDGuNxpKCv4PGsi1cTa7j7vh38yz99j53b9hkOL30Ww8NVzl83yfThGRqpsNtiDkGUUHZtCo7FXFtDrBjMS8JY0YgTLCkouxZRrIwdlDn+bAGU0Rf+BGvXD/+nvlcZMmTI8MNC0+/A/7j7nPZ9RjsopVLhDM0CU/XXWBE2OriJ0SBpJg5+otGJmRCVbeM6FnGrzVwzRAhwPJdc3vzKL+ZccpZEhjF7dhzgtnt3cPddj3H3XY8RBRGqUOBovc2asT5EGOFJSTHnmT48yuR1RIkiaPq4KsG1JcJx8BOFimOCOFng0PGZb4UowPEccnkX0eNg4SjFwT2Huf2+Hdx33w7uuONRVBQSOi7HGh02LBtEBCFueozqyucv4uCpBNeyEI6NrzSoBD9OSGwLx7VRHZ/5pklWdRw77S0kyLsOOcvCThTH9h/jwccPcP/9u7jzjq20ag1Cx2WmE7B59SgyiBY4JIpYKZTWxLGi1vSx4rQ6yXXwlSKJU2fEsii6NtoPmGuGJCkHr8fBJu/YWHHCzKFp/nX/cR7cspfv3fYInVqTphI0Es2GFUMkrQ4O9DhEyQKHejvAUQmea2N5DkGsSOKYKEmIpUXOtSCMqLUCgsRwcHMuAsi7DnnHwdGaxvE5vn7TvTz48B5u+95D1I/O0tKCWpRwwfoJ6Pi4CIqeS1wqECUJWpvcqXo7QCYJec9GphxUnBBECZG08FwLEUXMNwPjZFsWRc85a/771E/9JOtf8Zwn8VuWIUOGDE8e6vU6/I/fOad9n9HdjJ/7E+/EPoNQW6I0QRCTxAkDjkQ7No1Ek7MlE0WPg80AP1GULYEdxxwLFbYt8VzbdJ9F4EiBY1n0FXOUK3n2z7WYmW3ghQECaFsO/YNlVgyW6TR9ZhsdYpVOiF0OYUwUJQw6EuFY1BMTjRgruMz4EY0ooWwJrDhmNkyQtnUSB1taVPIuw0Nlds80mJ5tYvs+OUtQFzaVviIrhyqoMOLYfJsoSVIOoJTqcei3BZbrUE/M0sryco6j7ZBGlFC0BLkkYTpIwJLkXNvkUWCWwBzLopp3GRwosWe2ycxcC9v38QTUkFT6y6wcqSCCiMNzLRKlTJ8dbTiEUUIYxlRsgevaNJSJzkwWPWpBzGwQU7IEOZUwHcSQJhc73c7QUuBIScFzGBsuc7DW4ehsE9Fsk7cEdSSl/jLLBkvYieL4fMsIw/U4GKG6IIqpSkHOs6kp0AimSh6tKGHaj8hLQUEnzAUJsRDkPCMq1+XgphwmRirsm29zfLaJarWp2pLZBArVEsuGy5Sk4OB0gzBWRCpJpew1QRQThjElKSh4NnVl1HUXc8hJQVkrpv2YRApjB9s6q1Dbe/7g53n5y571ZH/lMmTIkOFJQb1ep6+v70e/m7HRj+gqZ3azTrsJoaaxW85zEJ5DEoV02gHSc1m1apwL14yR332Mrdv202r7lFybcjEVfdOaKEpAm0Z2OtH/f/b+O1ay7DzvRn9r7VS78qmTY+cwPT2cGUaZVCBFKtAKn8K1dO3PF7KvL6AP/kuwBNsyYEACHGAZsP+QAz4DBmTLhiQHUcESRVEW03BIDifn0NO5++RQaee11v1j7apzeqanh/NZMjlUPcABzjm1a++n3rWr1ltrve/zEA8j9ns+B2lBnhY0wwAhoD/M6O71uREnZElOnBUIR1I6/SGloOJ7BJ4LWjGMUrTrcfzUEg+cnOfK+j5Pv3iNKEqpeg61qtUpwRiK3HZtZNpglCYaCAZRxF5iOdQqPoHnYPopvYMhN9IUkysGaWEdeh0JCKRTFm76HkIV9KME4/msrs3xgQsrXLq1z3Mv3yAaRAhHUK9VUNgi4TdyiAeS3iDiIFVkaU5Y8cYc+t0BN7IMURT049zGQUqQdjXK96w6rlQFwzilkC7Hjy/wvvPLbO4PeeyZy0TDGOkKatWK3RoyZty9MuIwkIIkTujmiiTOaQYeQeDCwHK4naZIpRkkOaXjIZTFtb7n4rouHpr+MKZwPZZXZnj/xWPsdCMef/4aUXeAlFb/Ro1qU0oOuTZEJYc0STjIFElSUPNcgqqP6CUM+hG3i5zAGLpRZm9LxxnfD77r4LkunlbjOCwsTvPeB47RHaY89twVhgcDHAy1WoWCOzncC7bOZYIJJpjg3Y93dYJS9mEc+Y+541dHCmS5CpEMC9KsoNmsceLkIg994Cyx43L56gbd3hAXCMLQdksohVaUhbYGozVKlYaCZd1LPvZUsZ0tyhxup0hhKOtdcYREujZRyIcZcZpTCQKOn1jgoQ+cxX3lJi+/vk63N0QaTSW0CYpWClOa95hRwa2QKFO62pa1DFLpcvK1NSdKa0xZjCml7U4ZcRAI8jQlSTJqYYWV1Tkeev85ZOMWl69vMez2iXJNo16z/kCjc5Xf/O+IQ+kkXZQOx2ATAANviIPtUJLSyshbUbiMJMnx6h4rKzM89L6zXF/f44XXbrPTHRArQ1it4ghxyIEjHIw1exTlhK/MEQ7Ccii0RittnYBLd2gpSil7IdCZIkoy/IbH4sI0D73/LLc2Dnj12haDvR5RVtCoWjdkozVG3YWDPsoBUq1L00O7ypGPiq2FQEpT+izJsstJoNKCKMnwah7z81O8571n2OsOeeXaFr29HoM0o92s2W4kY1flvqH3xNv59UwwwQQTfJPwTj6f3tUJyr1gkxdRdmNAVupY1KoBa2tzXLh4gvW9IbVqhYPy8aojMcagtDiyFmMnJdtpwdjR1rofHzrcGkZOwIeNtSMXYKe0RE6UnbjDisfa6hwXLh5nmGsatQrdHciVoiqEXf3QYmz8N2pN1cYcua69ijWYE3YyLzloY5DjXunR4xIhBbHSKG0Iw4CVlRnuu3iCQa5pNqrsbErSNKMlRdnxcngjmbKDRJU/UjAugi0Md/w90uIwJYdRe7NjrYAplKHQmkbgsbw0w/mLx/HrVZqNkL1NQZoX1MbdRoe9vqOXdDQOo2Lgwoxe5+FYaAzSHDYs28UUAUKSG0NWKBq+x+JCh/vuP0HY2GKqVWfT3SaJCxrl8bpMcEzZXTNq+R0lrKOxyDXjhOVoHI6+H0ft4lJKcm3IC009cFmYn+L8hWPs7PWZ+tILrDsOUV4cjq0W5TrKu25HdoIJJpjg/xG+bRMUKJOUcpIutCaoBEy166wuzzI9N8Xqygyddp3dLZ8sSQ8nMo568MLIzViXahzOWEfDTsx2Mj+S0NyllFFgJ03Pd2k3a6wsT7O8Os/6Vo/OVJ3dzaBUATV3aoCMTzDiUO4YlJ0tYN1wR3IaY3kVcYfUCqO/CqXxfJepVo3lxWk6s1Osrc0x3WmwWQ3YHcalTsfdOTDiYMom7PI6Ughkqf+iRy03YhSTw0lVYLchXM+l1ayxtNhhfmGaNNfMTDXYqlboHWRvzaE8iTZ29Uwe0rrDGfpe0/ionVg6klazyuLCFMurcxQaZqab1Gshw/6QsfPwkeeOx1iAst3POAjbii1GrsyM43T4qrnzr3LFTTiSVqPKwvwUM3NTVOtVZqeb1GsV+ge9cRy+4bTEvDMhpAkmmGCC/534CyPUZsWw7t7FI4StIWjUQyoVW9hZr4ccO7bA0mIHz3NZWuhw7uwKQeAQD2MqYUicZFbWPLIaHnmWWy0RU05qCMYSYAJcYSeo0coCQuC4VsxMOpJK6aFTqQQszLdwHIelpVmWFjpIKZnpNDl3ZoXAcxj0I4JKQJrmDIYxUZTaDpSMstDTUCiNRGCdhCwcIXCw39gLbTBC4DoOXuAhpSSs+NQbIWEYMDfdwPUc1tYWWFuZxXMd5mfbnD29jDCGnZ19ms06SWI5DAcCrTV5Lsh0jsJQKBsHV4hxgjCKgzaGwthtJ8eReIFnlVp9j3o9pFoNUHNthBQsLk6ztjJLGAbMTDc5e2YZgaHb7ROGIWmaMyyl7rUq1XWNXYUqtEYKiSsOx8IRNhbG2DggQLoS33eRjkMQeDTqNg5CGLIsZ2VlnuNrcziOpNEIOXNqiTzNmJlpUquF5LliOIwZDBOUUtaZuByLXGsc4diEdTQW2LEw5eNGWK2ZEQffd2nUQ6rVCma+jdKa5eU5ThybIwwDgsDjzKklkihherpBq1knzWwc+v0Y9TbbPCOxwAkmmGCCdzve1QlKu13H8+7exSOFYH6hw0MPnuTCfceYmWuBAZVrVlatTsTKyix/5Se/CyOt+Nb21gGvvXqTZ5+/wvXrW+RZwf5+nzhOSQtFy5FMN2pkBiKVYwyEjkMl9OlGMfvdIZ6UtPw69UZIEPjMz03xwAMnOHdulZXVGZTSqEyxdmwOgMWFKX78xz5iazocyf5uj1deuckzz13m5o1t0ixnf69Hktj6lZYjmWnWyYFhnpMbTeg6hGFAL0nY7w1xDLRaNiELAo/ZmRYPvucU586vsrQ0bbdOCsXi8jTSkXQ6TX7khz6EMh9EOoJ+L+bVV27w9DOXuXJlnSwv6B4M6HUHJFlOHZhrNylEzjDP0Jmm4kjC0GeY5ewdDHARNJo1pmoVKmFAZ6rB/fcf4+LFE6yuzoIQZEnO4qIVnZtq1/mRH/oOCm1NGrsHQ1577RbPP3+F1y+vkyYZ3e6AQT8iSlJyYZhrN/GFZJCm5JkmkIJq6BPlOfu9IUJpms0a1WqFMAxoT9V54OIJzp9b5cTJBbsilWvm5tpjDj/wfe/lox99D44rGfQTLr9+m6efef0ODv1+RBSnVLRmcbqNFoJhmhJnBb4U1EKfRGv2upZDo16lNRVQrVZoNmvcf+EYFy8eZ2VlFj9wKTLF9HQT3/cwxvB9H38v3/mdF3E9SZYWvPLKDV544SovvXyDLMvv+Z4IAu/P8B02wQQTTPDNw7s6QRn0Ilz37l48QgoqlYDuwZDhMOHc9CqdThOVK5ASBXi+y6kzy7ieQ38Yc/XyOt3ukO7BkH43Ks3kYtLErhzIMolAWNExbQwVx0U6EulItFJkuSIeJgw8jywoqAQ+3YMBw2FMq22diItcIaW0WiOBz6lTS7i+S68/ZP32Lt3ekN7BkF5vSJZZU700yVBKlYmMdf/NtfURClwQYw4alSviKGHQ88gCKwdvJ/eYVqfOwtwUqrDfxBXg+i4nTizieA5RnPLkxqt0e0O63QG9XhmHQUyaZBRaWw6uA1lBrg0FBt+RSMdBuqpsKdYkUcKg75Nn1genezBkMIgJqwErK7PoQpc1LHbl6cSJBRzfJStytjZfpVeORa87JEtzhoOENElRZW2GdB2U0paDMLjSseqsjlN6L+XEUcrAj8hzhRSC7oFNMPyKz7G1ebQ6jIN0HVZX53B8hyTJeOGFq/RK48g7OMQZRWmAKF2JLmzRbqYNrpAIKQ9XctKcWCYM+z4qtwXHlkNMpepz4vhiWYxtW8IRsLo6a8+L4eknL1kOZRzy7N4qjG/3+AQTTDDBuwXv7gRlkOC6b7HkLSDLcoaDiFdfu8n1W1v8xE98N61GlUJroji3gluOJIpTfue3v8Sjj7zA9k6Pg4MBcZxijBXImmrVkJ7dMukNE1Sa4/kuCGzy0gfHd5ibaaEyBVKQJBlplpOVzsSvXbrFzdvb/PiPfxcz0y0MMIwTKp5nE6RBxB//8df50uefY319j/2DAUmSobU1s2s3awhXEoQBvWFsOXguwpFkSUG3H+EELrMzLVTZXpumOVlWkGU5UZTy2mu3eP3KLf7G3/xBWo0ayhjLoRSKy/KCP/rMY3zufz7N1uYBe/t9oigpCz0F7WYN6Uq8aoX+IKbIClzXGjLmcT7mMD/TpjjKIS9I0pwoSrh6dYPLV27zEz/53aws25WsKE7xHIfAswZ+n/v8U3zmD7/O7fU9DvYHDKOklMuHZr2KkAK/HjKMUoo0x3UlruugkoLuIMbxXWamGxSx5ZDnBUWhSdOM5ImMy5fXefXSTf7P/8/3sbo8aw0Z46Tk4JLnii9/5QX+6A8e4/atXXb3egyHSSnFb2jWQ4Ss4jcqDIYpKs3tVlrgoqKc3iDGCTzmZlrkw/QODkma8WSScf36Fq+8ep2/+tc+zvFjCwgpidIURwiqvk+hFF/56gv8zm9/mY31Pfb2bWI1KtR9K+TFW5hnTjDBBBO8y/CuTlC0bXZ5S0RxRr+/xe1bO+zt9bjvvmPcd3aNZrNKuxqilKZ7MOTVSzf5wz/4GteubJIr6/4rpCwN4Xw8R+J4DrkyJFGEYwz1RoCUksEwI4tTKl5IvVlDZQW50uSFrVOwHGI21nfZ2+9x8uQSDz94mpmZFq1qCMawt9vnyrUNPvNHj/PS89fI8gLHsxyEFPiej+dKXM8hNxBHMVJr6jWbOA2jjCwuqHiSeiNEBR6F0mSlQ3GS5gxu7bBxe5ebt7e5cP8JPvDeszSaIe1qiFaaQS9mfXOPP/gfX+WlF65R5ArhOrZNWwp8z5okOp5DAQz7Q6TS1MIqbuAyiGwcAldSa1ZRfk6hDzmkWc7G+h5bG3tsbe+zdmyBMPDpTDVoVisYY+jtD7m5vsMfffoxnvj6qyRpjjzCwfM8PMfBdSXKkQwHQ8gVtVaIV/EYJjlpnBI4gmo9xPh+ORYKVYq0bWxYDjdvbXHi5CKf+N73MjXVoBWGgKHfi9nd6/FHn36Mr33lRdI0R7h2VcaqDNuk1vUctCMZ7A2hUFTrFYIwYBjlpHGGkYJ6o4J23XIsDjlsbe2zvbnPzZtbLC3P0PyhKo16OI5D1E/Y2u3ymc88zte++hJZVhyuWr1Nh96kPHaCCSb4dsG7OkF5exiMNihssjDSwRDl8vuo5VNIMTYIHJnq2XlAjHUlhBC2ZaOsQD7aaTMuSi67e8Sow8Ycchipqdp229L1uHyiLBORMQdzlEPZplvyeKOd7bjRxRz+w3a/3Nm/Y8r2Y63sSoQsRdwOOZTtseUx2hico9OdOHRbFqN2oTeSsBcax+tOX+TSqE9zyEEejsWIw9jIcDwWRzuAjnA4evkRv/JCNnalj9GRAw2MTRG1svokzojDSODvSBxUGQf5hln/6OszZSfPIZHRsJvxWLxhOEotlUNzxLvFwTk6FmVB8AQTTDDBXyS8uz/1zKHext1/7Id/EPi2lXRlllojZBjFrN/eZtiPqTdClpdnWFycHnfe2FPfea5Ry6kR1p14dH4N5UQo7ER1Fw5CCrzAZX62zcrKDO1Og+EwZmN9h+7BgEazyuJih6WlaSoVvxQ8O3z+UQ4jzQ3b1lxyMHdyGE/sR3gIIfB8l7nZNmtr8zSbVfKsYP32Nr3ugEoYsLg4zerKLJVKgHTkkWuX59TmsO1VlK+9HIdRm/UogbnbeAhpu1mmZ1qsrc4x1WmQZjmb67sc7PYIqxUWFjuWQxiUAne8KQ5jbZGSgzZv5FAK+JWJwB1jKAWe61rX42NzTE03yQvF5voue7tdW1Q812ZtdY5arYLjOIccOHIufScHU/Y26zLVEWWH05izPnwdCIHruUxN1Tl+fJ72VB1jDJsbu+xtd3F9l7mFKY4fm6daDXBcq0J773v98DVOMMEEE3w74F29gvJ2ehcag3AdKmHA/WdXqVcDrt3Y5rf/y+f52hee4sEP3c9P/5+fYGm+zXvOrfLc89dIR99YEWjst1ytbB2IlIKeEBRG4wGSUn7dkQRS4GhDpkarIBzqlrgSr+Jz9uQic50mG9tdfus//wlf+dyTnHvgFH/9//tJ5jp1Lpxe5qknXyfKi3HRpBxxwCCUoeJJDqRAFeAYqAjYM4ai9OzxjCFXh6s2o5UL4Ui8wOf8qUWWF9rc2tjnD37/K/zp//gyp+8/yU//9U9w6sQCD99/nK9//VWSQlEoW88w1jdRBqkNnivoCkFuwDGGCrBrDLmApiPwDGUcj3IApI3DybU5FmZb7O71+f3fe5Q/+f0vs7Ayx8/87I9y6vgcD5xd4UtffJ5hkqOUsgJ5jFaADAhNxXPoCUFmrChdAByUHOrScsiVjZ15AwcncDm2PMOptXl29wd89o8f5/d+83+ysDLLT//MD3LfuRUevG+NR774HIMkJy+KMkEV4xUgpCQUgq4UZEDNGKoCDjTkQFUKArD3gyqTm3IskBI38Di2MsvpYwvs7Q/43Oee5vf/y59Sa9b46/+/H+Y9F4/x4H1rfLpVI8oK8ryw4zhRiZ1gggn+guAdJyhf/OIX+ef//J/zxBNPsL6+zqc+9Sl+7Md+bPy4MYZf/uVf5t/9u3/H/v4+H/rQh/jX//pfc//994+PSdOUX/iFX+A3fuM3iOOYj3/84/ybf/NvWFlZeUdcRvLlb4UgDGi26szOtmjVQ778ped46uWbfO5PnuDmy1e5PcjQvsdD51do1iusHJtnb79P/2BAmuagrVZGWiiU79BoVfGqAVGUEqU5UkDuSMJqgCNg2B0ySHPbzeK5SCkIKh6NVo2pqQadVo2vf+0lXriyxR9+5nGuvXiZG7sDRC3k4fMr+I5k5dg8TuDT6w7IkgxjDFmSkxSK3JV0OnX8asCQjCi1Gi25tHojrhREvYhelNmuHs92tfiBT6NVZ2qqzuL8FF/58gs88+ptPve5p3n92ctc3emjAp/3XTxGTQrWji/gbx3QPRiQxKn1JEpz0lxReJJWu4ZfDciijDizk3cmBF4Y4DkOcW9Ib5Daug1/xMGl3qjSmW4yO9Pixecu89L1Hf7n/3yKl5+6RPXqFn6nxfsuHqOKYXltDul7trU5TsddOVmhSIUg6NTww4DEQJQXyBhSA261guc6JIOY3iBFSIHwbKeV5zvUmzVa7TorKzO89PwVnr+yxee++CzPPnWJxrUtdLXKBx86yXTosXpsHiUdDg76JFGK0ZoiK8iK4pBDNSA1grhQxFFKAsgwwPNd0n5Er5dYL6IjHGr1Ku1Og6WlaV576Rov39zlS19+gWeffA0R+LhTTS6/foqVdpXVY/Pge/QOBkTD5O1FjsZbfBNMMMEE33r4c5W6Hw6HPPjgg/zNv/k3+cmf/Mk3Pf4rv/Ir/It/8S/4tV/7Nc6ePcs/+kf/iO/7vu/jlVdeodFoAPBzP/dz/P7v/z6/+Zu/yfT0ND//8z/PD//wD/PEE0+Ml9S/EThO6a1yNwhwXQcpBVma8+yzr3NjY5+rGwfkScrJY/PsRAl/9OnHeOnJVzi5NE2WFchy+b0oFEaWHjhYgTSlNI6wZm+h7yEFBLmxcutKUyh9KIdfFna6ZZKQF4qXX77BF7/8ApfW94kHMcdX5+gXis9+5nFeefJVji11iCI7qbqug3IduxpTuhIXSlMUCgeB50hC3yH0HPxMW0n2UUGoMTiibD2WtqDTcQRFobh06TaPPvYyr93cIxrGnFybYy9TfP5zT/PKM5e4/8Q8cZyO4+e4ztgPR2FXJYpCIYWD75YcfIcgU7Z2Y8yhlJYvOThlsWtRKC6/fptnn3mdV2/uMhjErC3PMCg0n//c07z67CXOrc0yHCZ2K8R1cBwHLaxQnkZRaENeKKS0Tseh5xAGDkFm60qMPhoHaTk4sjyXRCnNrVs7XL50ixevbdPrxxxbmSHRhq8++gKXX7zC/ScX6A0zDKM4SIwWJQfrN5TnCulaDhVXUA08KqlCSyt1m5UcJGLciu6U59JKc/PmDtcu3+bFq1v0BgnLC1MMc83XvvIil1+6xntOLjAYpmCOcrh3gmLLlCbbPBNMMMG3Jt7J55Mw/wufZkKIO1ZQjDEsLS3xcz/3c/y9v/f3ALtaMj8/zz/7Z/+Mn/3Zn6Xb7TI7O8uv//qv89M//dMA3L59m9XVVf7wD/+QH/iBH3jb6/Z6PVqtFt/xl/4vXPfuQm1gl/QLZSfXtudQSEE/07gYpgPXWtkLQd2T+Bj2UmUnMudwZUYYMErjGI3SmkRIms0a77+wiuc6PPbCDfb2+1S0wnMkeTkZGSnGHFSZvEz5DkYKerlGGEPHd+jlmtRAw5N4GA4yhZAS15GHxbEjDhh0URBLh2ot5P0X1miEPl9/6QZbOz08VRA40rrfOtZFuCzPsAmW1rRdiXEc+rnCaMN86LKXFKRAzXUIJRykBVoIPFeOC1IP42DQWhELSbUW8vC5FTrNkK+/eION7S5ukVP1XFJTFuIe4aC0jUPDtUlDv7DbH9OBwyDXRNpQ9yyH/bQoFXHt1tpRDsIYpFFERuBVAt573xqz7SpPv3qbG+t7eLogkHePg9LWdK/pSDzPoZsrCmWYCRwSpekXhqonqUlBL1UUgrtykBiEUkRI/DDg/lOLHF9s88TLt7m+vovMc6qOIMfqouAc5WAT3pojCDyH3hEOUaEZKEPoShqO4CBVFIDnHnK4F/7+3/+r/OVPfvBt30MTTDDBBN8M9Ho92u023W6XZrN5z2P/TGtQrly5wsbGBt///d8//l8QBHzP93wPjz76KD/7sz/LE088QZ7ndxyztLTExYsXefTRR++aoKRpSpqm4797vR4wMu6710e2QRhbh5ArDcKx3RGlA68tSbDPzwt9WIiKRI46MIxBachzTZykuHW7TXHfxRMEgcfV7T7d3oDhMKVWCZCeiyNtgmLKyklFKX2uFFK45UqD5aAxYxdgm0wZhBh5/hzlYFdI+oMEt1ljaqrOfReP06qHXN8fst8dEg+G4Hu4gW9fl5RlcWcZjTIOo3oaZYytFSljiWDckiukGJvxjThoLVBKMRzEuM06rXadcxeOMT/T5OZBzM7BgKg/wDEG4ftlh5S03TtYMTRTTs6i7FxBmLF0vCyNjfKyfkXI0oH4KAcj0IW2KwthQL1R5dyFNZbm2mzHORu7PZKDGONIGwfxZg5oQ45NRqWQCKHIlb7DKXqU0Jk3cSi7kZShP4iRtSr1Rsjpc6vcd3KBzahga69HbxDZtuRqeGccRNlJZKxlgE1EJQhFpksjxhGHI27IY/+lt8G422uCCSaY4FsQ3zQ3442NDQDm5+fv+P/8/DzXrl0bH+P7PlNTU286ZvT8N+Kf/tN/yi//8i+/6f/3SlAMh0aBYI36nPI5GqsEizh04NVaH5rDiVF9C4CdLJTSpFlO6LlMTzc5c26VMAz4+rNXuXZ9k36WE3guvu+WzweNndBG37yVLlubhXUqLsVcx14uY/dbShPCUWtv2V6rjCFKMqanW3SmGpw5t0q7WeWpl29w9dom3VzhCIFb8cuE406TQ4BCG2v0J0YuwOaORE0d6VgaTXajOCAsxyjJ6XQcOu06p84ss7I0zTOv3OLS5dsc5IrMVVT8o+24dkRGHJQ2OMa2fWshKLQtJh5NwEq/mcPRdm9tDHGaUauFtJpVTp1ZYW15mleubfPiyzcYKI3QGq8SjJ8j3xCHsdtx+XhRJh6jdt5i1C10R6t5eb9oMda4aTVrtJo1Tp5a4tyFNV6+vs3Lr95kf3ufRGm86p21Unr0uowpO5DM+D5WZSeSTVCgUIcdWEfjcC8IJls8E0wwwbcuvulmgW/MkEYfsvfCvY75xV/8Rf7O3/k74797vR6rq6ulfe/dX6yd3EaT4GhiNnZ1wwhyZbUlHDkydrMtyXK8pXGoY0EpS6+UoVELWJifYvXYAtVqwOJSh2Y9ZFsbCgOBlGPxDWFMycFOOoWxXTCjFZZCaxCy1LywHKU8ur1UTpCjVQAgzxX1asDcfJu14ws0GlWWlqZpt6psYGtERMlhPFkZm/A4UqC0xtF21UZKQVZoRMmB8fMFUnIYhyMclCk51EoOx+ZZWZphaWWGdqvKOnY1quIc3R4qOWD1PbS29SSOI9FS2G4hIXDLTC3Xb+ZwqEUjMEKQ54pqxWd2tsXa8XlWl2dYWbUcdtcFWa6olRo3gkNnZykOORTKOho7JQcjBG55fFEW0Ry9H0SZpCEthyTNWQwDZmebrB2bZ3ltnpXVWTpTNTZvSNIkp3HkfhglaaK8H3Rp7jjikCu7quceGQuEGCcs4ht4Y+898Qw3oq23PW6CCSaY4JuBfhR9w8f+mSYoCwsLgF0lWVxcHP9/a2trvKqysLBAlmXs7+/fsYqytbXFhz/84bueNwgCguDNtSaB7+K6b/0SCmW3bZQQpFmB4zq4gUAbQRIr/JqD5zoUaUGSK/yKi+MIvFK+XUqJ47nI0oxvqlXn3LkVTp1ZotGqEYYBJ08vsXF7hyJKEI5LUA0wpeutVgpVTjpKa7JU4UiJ7ztoI0hTjRdIPNdBZQVprpG+tBxKxVRb5Go5qFzhCsn5cyucObvMVKeJ5zkcP7nI+VvbpL2IJFPUW7U7OWjb5KqNIU010tH4voNBksQ5XijxXIkuNEmmcHwHR9r/2ULjkoNja18Cz+H82RXOnFliarpFWKtw/OQC58+vkvYi0kxRa1sOKi9QxSEHZWxyIaSgErgYJUgSjeM7lkOuSTOF9Oyk7bo2PlIIXN9DOrZw2JcOZ88uc+7cCtMzLcKwwtrxec6fX8EkGd1eTL1ds8W9eYEqDkXwlCPIMoNAU/FdkJIoyXE9h4onQRnSXIEjcBxbB+OVBdd2LFybZOWKc2eWOXtuhbmFKbzAY/XYHOfPr5INE7Y2DpiaaR3hUIzF2ZTWZLlCwJhDnFjl3KDkEGcK3EMOvuvyNnk+t/777/NM/+4rkRNMMMEE32xE+hu34/gzTVBOnDjBwsICn/3sZ3n44YcByLKML3zhC/yzf/bPAHjf+96H53l89rOf5ad+6qcAWF9f5/nnn+dXfuVX3tH1Fhdn8P3KXR8zxjAYxmxsHTAYxqTDjHqtQqXik+QRUZrjVj0qFY+k0BwcDKg2AtqtOq1WjVarhu95dKabzC92mJ9ts7o8w/RCm2a7jnAkaVbwnd9xgYvnVunt9Ll6fZvNnQO2NvfZ3tonTTOGg4TNnQOiOGXQjQkXOlTCgKSIiNMc6UkqFY9UG3q9IU7g4k2VHJpVPM9lerbN3PwUs9MtTh2bY2q+TaNVsz48meID7z/H+dNL7P3QX+LG9W02d3tWUn5rnzTJGEYJG1sHRNGQ3kFEdbFDWPEpynbpWuDgBx5aKHq9CCdwmGrXaTQbdNoNXNdhqtNkYXGa2ZkWK8vTLCxP02jVqAQe/UHC+x46zam1OQ5+9CNcv7LJxm6X7c19tjb3SOKUKM7Y2uly0Bsy6CfMdppUKgF5lBCnOYEjaAUeCkW/v4/0JO12jXo9pDPVwPOsuNrcfIe5uTZri9PMrXSoN2uENevLc/99x1ien6L/o0NuXN9mfXufzQ0rKx/FCUmcsbl9QG8Yc7A/ZLbTsA7MqXWKDgQ0/RChYWvjgAJNu11nut2gM1UvxdUazC10mJ1pcWxphvnVaerNGs12nX4/4fz5NRZn23Q/+SFuXNlkfafLzvYBm+u7DIcJaWrj0B1E9A4ippo1pkKfKM2JsxwPQ9MLkS5sbx6QG027XaPdrDE73XzbLrfq8Cr0J1s8E0wwwbcq/hy3eAaDAZcuXRr/feXKFZ5++mk6nQ5ra2v83M/9HP/kn/wTzpw5w5kzZ/gn/+SfUK1W+Wt/7a8B0Gq1+Ft/62/x8z//80xPT9PpdPiFX/gFHnjgAT7xiU+8Iy7DQUzm3d0s0BiI4oQ8K2yBoVcqgpbKYXrUZVMWyzqeCwaKrCCK0nKlIyesBmilqdVDzt23xsxcG2UM23sDikKxNNtifrbNYD5itztkY8tOyMN+TJJmRFFqHWaNsRxkKfRlsIW0Qhzh4CAFFHlBHCU4UuB5LtWa9Q0KKh7nLhyjM9vCGMPW/pAkzlhabDM/3WQ432EwSNjc7ZIkmeWQpMRJRp7lmBEHIcaFmlqW2yalBLzlIFB5YZ2AHQfXdQkqPkopKhWfC/cfZ3a+DUKwuzdgECUcW55mZqqBPmHodSM2dw5I05xBPyaOU9IkI0szjKH0OhLjFQ1dFseacpXF8VwQhiJXNpaui+s5BIFHURT4vsvJM8usnZjHGMP+MKXXj1mcbzEz1SCJ7Gve2D4gTTMGg5gosslBluYYbXBciXCkXdHQo7E4vD+k6yA1aKWI45SB5+C6Dr7vURQK13U4dWaZ1RPzCCE4GMTsd4csr84w3ayh1jRpnLG527WGkYPY3q9ZQXoXDsYYzKi4uhwL6bpIlaOVJolTBoN4bJPwVijyAt62UmWCCSaY4JuFP8ci2ccff5yPfexj479HtSE/8zM/w6/92q/xd//u3yWOY/723/7bY6G2P/7jPx5roAD8y3/5L3Fdl5/6qZ8aC7X92q/92jvSQAG4dXsH1/Hf8vFR8edUq0ZR1p2YYYJEUK1WcIQgGaYUyjA918IDjFJ0Dwb0DgY4rsNBL6I7iOj2Y+YXO7TaNaRrt1/scrudSF+/usHjT73GtasbbG/uc7DbI8+Lsex5q1Gl1rCJQTRIkALCMMCT0nLQhnaniSvBFIpud0ivO0Q6kl4/4qA/ZGevx9xChw+3zuO6rt0S8V1bgFsoNjb3eeyp17h6ZZ3N9T32d3s2MbmDQ23MQQioVit4UpJGKUob2tNNPAFGa/q9iEEvQjqSg96Q/jBhZ79Pq1Pnu9sX8XwX15X4vgdYDtdvbPPYk69y7eoGWxt77O10ydLcDogQtBoh9UYVc4RDGAb47iGH5lQdT9p23kE/ZtiPkVJy0B3S7Ufsd4e0purMLU7h+y5uKaEvhUAVivXNfb7+1CVefeU6G+t77O90rfCesRXLjWqFai0sOcQgBNVqgCsFWZyhtKHeruFKQGmGg5hoENtEpDukN4zZ3u0R1irML3VsHBwrlicxaKXodiO++sSrXHrtJlub++xsHZDGZSfamzgkICCs+NYZOsnQ2lBrVccckihlPUp5OwyHyTt6D00wwQQTfKviHScoH/3oR+9ZhSuE4Jd+6Zf4pV/6pbc8plKp8Ku/+qv86q/+6ju9/B1Ikoy3zGkEuI5DtRoQVHxSDckwRmtjJ1TPwRd2xUQBlWqVijCkaW5XPYoCmUsKINWag0FCGAZ06hUWlqbpNOsIDFmScfvGFo888jzPPH+FXnfIsDckiVO0UriOQxj6VCoBmRDEgxidKzzfA8/FFcbWJxgIqhVCV5ImGXGc2hoFIVBiSKo1+/3Y+gpNN1henWWqUcU0BGkUs7/T5fOff4bHn7rEsB/R7w1JowRVKBzHoVr1qVR8cuEQDSJ0ofA8l4rn4EuBznMKbfBrIVVXkqU5UZ6MORQGMmPY60cgBMeXpplfmKLdadJuQpbm7Gzs8siXnuPxpy4RDSL6vYgkSlF5geNIwopvt5aEJBomqNyuhoSeiyvA5DlKG7xqSM2T5GlOVKSkWQECCgyp1vTjDI1gcabJ8ePztKZb1MMAXRRs3Nrh64+9zGOPv8r+fo9Bd0gyTKzAnRRUKj5hxUM7LoNBycFzqbgujjBQ2LohN6xQC1xUmjGMSg5AgY1Dd5iQZAVnTyywujZLc6pBuDCFyjJ2dno89sRrPPrYywz7EYPekHgYU2QFUkrCijfmMBwmFHmB7zlUPNsGT15QKI1TCahXPIrM3pNpmr9tBfyo7mqCCSaY4FsR3/Qunv9duKcXT/nA0RbRo7D/K89g7BbD0TbOUYPQyFE2LxRplttVEX3YriqMXUFJ05w8V2Mn4LExHIdtwkebRMcibIy6XMSh++34xZnxtoMqVWTtdYrSWKZsK9V3clAjJ+BxGMyR13wYnzfFxpRs7/hfycFYVd2jHLQ+sr12NA6F5TDeuhi/6MNW4Tt5lQqohxQYO0JjTRExttPJdt8osiwnzwq7XTaKIwZV2MeyvBi7ER+a/L3BnZrDtu7R+IzE1EZjMwrEWEum1NU5Ggej9Ph4ZUCV/LKs5HDED2j0gt8YYzG6T8bxPDIWo3HmHvf7BBNMMMG3Gd7VCYouRc3uBgHjiQEOdT5Gbbcje/uyixYpJRh9xH3WoMtze55Ds1FldXWWhYVpgsCj14sAQyXwmJufYm1tjtaLV8mS1GpljM4xchY+wmGUwAgpxy68d3Asj9HGILTl53oOtVqFtWNzLC5O4wUeg35MoQ2h7zAz22ZtbY6pTh1V5ESjWgZt0PLNcRgJl40myVEicRinw8l4NGm6rkO9HrK6OsfC4jSVSsCgH9n6GN9lZrbNsePzTE3V2c0LpEzuiKV19MW2/oqRKzTjZEGXJJ0yObmDgxhxkFSrAcvLMywtz1BvVBkMEgqlCCs+0zMtVlfnmJlukiYp8cAa/BltMMKMx38khjbWiRH2giNxvdHjlBxMWScEVlk2DANWVmZYWpqhWg+JopQkV1R9l06nweraHHOzLTY3CuKhPIwDZfJo7kzWjKH0FhfjpOqN94PRenyvvBXMJIWZYIIJvk3w7k5QjHlrbYhSNyLXGt8YAtchEYKsMLjGUHMlSaHJtMZ1XUJHkuWKvNSmUKVmCYDnuSzOtrj/3CpGCr7+5CU+/XuPksQZn/w/PsyD7znJfedWeOLJV+nu9+3kqw2qVLLNtcEzhkAKUilJ8gLPQNWRpHnJwXGoSIk2mkJrlLEcRsmB77p0WjXe98BJhOvw7PNX+f1PPUK/O+QTf/mDvP99Zzl7aokTK7P0Dwal8Jc9D9pQaE2hrRtyUnJwtKHuO2RKkSk7SVddaaXYy+Pta7CTpOc6zE7VefjicYTr8MLL1/n073+VrY09vu+HPsQHP3ies6eXObE8w2DEoYwlxlgtmTIOvhRE2uBqQ9UTFNqQKjsph65Ea8YcdJlUGGNwHYd2o8qDF9YIaxVeu7zO7/72I2zc2uG7P/4wH/nIRY6tzXHq2Bx7Owf0SsVcRclBG3JjqApB4EiGqUEqQ73kkJRt4ZXS4ykfxcEwXolxXYdWPeT97zlJWA24dHmdP/70Y7z20nW++xPv5SPf+QCryzPcd3qJ7n4fxxHj8TTGisAV2hCWHAba3mt1T6IwDMoEpuqWonHje/Ltl0fNaAlqggkmmOBbEn+ORbLfSqjWKm9bJJtrQ2+Y0nQLPEeSCZdUG/wsJ8agPRdPSophQi8vMFrj+VYRVkpBLQwIPY9ACPY29vjTjT2++virfPq3H7Hts57DVnfAXBgQGAg9l2olQBeHGiiF1vSjFOEqPClIfJdEG7wsJzWWgyslKk7pl9oprufieS5ClBx8j1BKBrtdPvflA5549jK/+9+/RNKL6BnDdj9iuVWjYgwV13JQ5TaH5WDoxykitxxS3/rlhFlOgkF5DqEQ6DilXyiKN3AIw4DQ96lIh3i/z+e//BxPPnuFP/jUI+yu79LVht1hwonZFiEQuC61SkBRzQ+1YIzlYLICFxC+S4rBz4oxh0AKdJKNOUjXoeo6JQefauDjC0naHfLlr73Ec6/e5L//9iPs3tphK0rp5QWrnSZeoQnKOBTVgqJwx1L3gziDXOEJkL5LClSyggwoXIdACEhz+lqTKTXmABBWAqq+T8WRmCjhS199kWdfucEffOrL3HjpGltRykFWcGZ5moo2VByHWhCQhxm555YrNjBIMkyhcAVI3yPDUOSWQ+5IAlcgspy+shyEY1eO3g6edhDfuMzABBNMMMH/VrydltMdx/6vmAV+szAyC/yu7/zbb2kWaLAmfUmuKApF3YBb8YgdidCGpjZ0pcBIQag1Os7pCbuFUPFsV4YUAt/3CAKfqWqFVj1gPU7Z2O3Rv7aFUZrasTnmZ1us1CoMBil7UUqaZqRZbp2QlSYpFHmhqGvwAo/EtUv+DW2IhKCQgoo2mCSjDzhHOAghCDwPP/BpVnwWpmrciGI29wfsX9nEyQuC1VnmZlusNqpkSc72ICZNctIss3Uj2pDmBVmhqGlDEHjEroM2hrYyDGTJwRhEnNHFGv1VPCtkJ4TA91yCwKcVBsy2qtyKE7b2h3SvbWGSFH9llvn5NmvNKkWcszmISdOcNLUcVMkhLRShhtB3STwHVcYhEYKs5CCTnK6xCquB5+CXHDzXpRL41Co+i+0qm1nORnfI7uUNRJziLU4zv9RhuR5CptgaxKRJRpLZVl2lteWgNGGhqQYesedQGHs/ZEKQSEEFkHFGX2tMORa+6yAQeJ5DEATUAo+VTp31NGPzYMjujW1kd4hc7DC72GGlVSMoNLd7EUkZB6UU2hiSXJHlikBra6zou+TG0NKGFEHiCALAS3IOlAJHEngugee87XeP7999lfuHm3+m77cJJphggj8rRFrx/7761DdkFviuTlA+9MGfxXXfegVFSKszgQAzTMmUwqlXWFuZ5fh0i+v7fa5e30INYgLHgVqFshJzXHwJVqDcM+AKQ+wIciOoFgqMISo7UKpaU2hBPq7tLAtApUA4DkaAjHPSLIfQ59ixeY5Nt9jsDbl0bYNikOBLiRh9Sx4ZxZlDDq6BQBiGjiBHUMkVrjEMS+2Sallzko6k8t/AAQEiyUnSDFmrsLg4zdn5Dhv9iMs3Nkl6Eb4GpxHaZ94lDq4BXxiiIxw8Yxh4NomoaoMoE443cyhl39PCttJWPJaWZzg136GbpLx8ZZ20FxEYgahXyqrTN8dBAhUMiRSkQhAUGl9rBqW+SlhyuGscSq0RJ1ckgwRT9Zlb6HB+eYZenPHq9U2igwGu0rj10LpSvwWH0Nj7IRMCt9BUlabvWcfq0BhcZYjfggNSIDJFFiXo0Gdmrs355VmiQvHy1XWG+wO8XOO2qmgBQtv25bcrMflk9xLvibfvfdAEE0wwwTcJ7yRBubfq07c6Dltt3vQjsN4znuvge6795pzm+J7LyZNLvPeD93H6zDKB79pvuGWrp+c6Y18aygJNpTR5KRk/6r7ItK0tEWXHidJQlNszI+NBYCwZ73suudJESYaUguMnFnj4g+c5c36VIPBIs5w0K3A9B69sNxXmzRwKfehLkxtDpmyVrxC2ziFXdtXGjDgYW3R6lEMcZzhSsro2x8MfOs/Z+9aohhXyXBGlGZ7nlhxk2VFUFngqTXGEgxTWXyhVxk7a0hZ45kXJQR3GQQor3+95LkqXcRCC5ZVZHv7Aee67eIJqGIw5uG45Fo4cx2HModz+GXnljOpXwBa/Gqxj8ojDoUv14f1ggGGcIICFxc6YQ6MRUihNFGc4joPnupbDG+KgCkU+chouYz+qX5Glt9IoDvoNHNySg8YwTDIEMD8/xYPvO8vF95yk2ayhlGYQp+Nj3SMc3u6+n2CCCSb4dsC7OkER9/iB0hjOEUgpyQqFMoZqGHDs2Dz3P3iS4ycWqYYBWlvvFceROOXWzrg5qOzs0Ma6zx51ni3KTgzrDDwqgjzsFBHGLhg40p63UHZirQQea2vzXHzPSU6dWqJerWAMpEVhj5WHRntv5KDMyP3WdhoXxpTXEKXnzxs4lB0qIw55ociVIqx4rKzMcn/JodEIEUCSFsjS+2XURWIpHF7/KAdVcpDCJkKGQydg2x7M2D1ZSonrSJtsFQrfd1lemubCAyc4e3aFRj0EsGMhxXib7c7Wb3tudUfsR3EQY3dq9UYOHJr0uY5EGUOaKXzPZXGhw4UHTnDm3ArtVg0pBUlWIKTt2HHEYQPwuLPImHHCOrpmbuyFRl1IxZGusKMcHCmsUaI2ZKUOy/z8FPddPMG5+9aYKjnEaW75jk0sxT3v+UlyMsEEE3w74V1dJHsvXYixTkn5W1G2wk61aqyuznLy1BIbuz2mWjU2Ao8kycftrkcEOO64ljYGCTgCdHmoA+Nk4W5cjk4qhTa4o5bllRlOnlmmHydMtS2HKEqxGwh3KGLcwUGV13SwE7MR4Aq75WCMLcC8WyxG+h+F1jiuQ6tZY2VpmhOnlhhmOdNTdW6FPv1eXLZh333Cs3EoXzcCJew1xxywbbtHN7rGYyFGuzYG6To06yHLS9OcOr2EF3qWQ8UnKRVTR5zvvDrjBMQtx+KQg+V1tziY8ViUKx7agBQ06iFLCx1OnV7Gr/jMdJpUw4CDvcFYD+VuVV2jgtsRB10mSk65/cNRDm94+lgzRdtAN+ohi/NTnDi1SK8fMTvdpFqtsGd6h3F78y15d7zrNmwnmGCCCe6Od3WC4joS9y2kZIWw7cFhxcNxXdqdBlOtGivLMyzOTxFUPBbnp1hZnqG7P2D/YECjViHPChKs2JYxlLUgBq3st3anXA0Qto8Zp2xnHq+wSDFeuRHCFlVWKj6e75JNNfA8yeqK5VCrBsxMt1hZmqG3N2B3r0+jHlrvFaxPkNAGRMmhbLl1DTgSlBDockKU2G/w41UeKZCO5eJ67phD0q7juw6ryzMsL3bwA4/5uTYryzPsbXdRylgOWpdxsNcec1B2BeUODkKUCcsRDqWOiCMtF9d1qAQeXuBRTCna7RorK7MsLXSo1SrMTDdZWZphb6uL4zg0GlWM1qRkqEKN42C1XShbj41NCMoEQVLq35hSx07aOiRHjuLgUKlYDmiD5zisrtg41GoBU1N1VpZn2FyZJcsKGo0QR0qS2PonaSVQotRE0daR2Cu3baQAIwSOsHHQ41UeGwtHynEcgsAWPWtlC5ZXV2ZZWZymWg3wfZeV5RnWl2dI4uxwVUkI68is7r1OIuS9H59gggkmeLfgXV0k+6M//PfwvLt38UgpmJttc/8DJzh1egnf920niu9w+swKzVaN4SDm1VduEMUZhdIURcGV19d58cWr3Ly5Q54XdPsRB72IKEqpVXzmZ1soY9jbH6KNplNO+Nu7PXrDhDD0adZDplo1At9jZrbNfRfWOH16mVo9BAOB73LuvlXa7QbDYcwrL10nijNUqdR69fI6L7xwldu3dsnynP1uRLcfMYwSKp7H0nwbjWHvYEiRazpTNSq+y+7egL3ekErFp9kI6bTq+L7L9HST+y8e5/TpZaq1sJR89zhxYpHpmRZJnHLptZsMhilJKad+4/omzz93levXNsmLgm7fmuFFUYrvOCwvTGEE7HeHZFnB1FSd0HfZPxiyvT+gGvrWibhdpxJ4tNt1zp9f5dx9azSbNZswOJKTpxaZm++QZQUvv3iVfj+2cu0Yrl3d5OWXrnH16gZpWlhPol7EME5xECzNt3FcyX43Ik1zWq0qtYrPQTdi52CA77vlWNSpVDxarRr3XTjGmTPLTHWaaK0JA4+1Y/MsLE6TZTmvX7rFwYF9TQZYv73D889dKTnk9Pox+70hw2GKMIbVpU7pVRQTRSlT7Rq10Kc/SFjf6lIJPWrVCtNTdcKKT6NR5dz5Ve67b41Wu4EUgsB3WFqeZWllBrTh0ms32dsfkKQ5jiO5dXObl1+6zmuv3SQrJfffCh+58Syndm/8ObzrJphgggn+1xFpxV+99vQ3VCT7rl5BieOUIr/7Y1IKsqzAdSRT7Qbn7lujUQ9ReYF0HTKgWgt58MFTSMchKwqefeZ1XNchzxVJlJLlBdEgIRokJFlOtVyFMIUi0wqlDNKxRnVCCpI4w2iNKwSB51qJ/CzHkZJmq8oDD52mHlbQRYH0XDJjCKsVHnjgJI7nkmQ5l169wa0bWxS5ddFN05xoGBMNY+I4I2i5eL5LoTT5SCNDCjzfQ0hBmuQYZTlUPBddeGR1y6HRqPKeh07RbFTRSiOEIAOCSsCFC8cRjiTLC1579SabG3sURVF6AhVEw2TMwa1X8QIXpTSZ0sSFoiMsB+lIkiQDo22ni+dilKYaBgghaDaqXLj/GNOd5uFYGOuyfP+FYwjXwRh4+eXrbNzeRRWaOMrKOJQckoywEuCVWjW5thxaIw6uQ5rmFHmBU46F0ZpK4COAWq3C+fuPM9NpYAqrMVIAru9x9swK0nHIteba1Q32d7uoQpPEGUmSEUX2fojjFN/3bNyF3XKKC0VbgOe7OK5TtporhDFUfRe0wS9ds2u1CufvW2Nurg1lh1BRrrydObOMsXr/vH75Nrs7XbS2cciyt7jhSxSFekc6AxNMMMEE/zvxTj6f3tUJSq8b4bp3/0YpgCwryPKCq9e2ePjmNj/4Ax+gVg3IlGa/HzHVDPFdhywr+PRnHufrX3uR9Vu7bKzv0u9FY+n1Rr1CzVTwfZdBbB13HcdFSEOSKZSy3RbTnQZS2C2WaJDYJCcrSNKc6ze2uHFrlx/4/vfTbtVQ2nAwiGmEARXfJY4zvvDIczz26Atcv7bJxvoe/V6EKieverVCtRLg+R6DKLXbKI6DiyDNlXVpdqTlgE3QomFKEmekWUGhFNeub3Hpygb/r5/8Luq1CsoY9g+GNGsVQs9Ba80XH3meR7/0HLdv7XD71g7dgyFa226YEQfXc+/g4HmQFYp+lIAQzHQa422VKEqtFkmSkeUF6xt7vH51k0/+4AeYn2ujtKHbj6lWPKq+S1EovvLYy3zhT5/ixvUtNtZ3OdgflFssNtEJKwHSkURJjrAvFs/zyJWmP0zAGKbbdcAWpCZxSpbmJEmGelxz6/Yur11e58d+7DtZmGsDcNCLqPgu9YqP0ponn3yNz//pU9y4tsmtmzscHAxQhUYpRS30qVQ8HOkQJZn1Kio1c3Jt6A9TlNbMTDXsFo8Q9vVnNuFTSrO1fcCrl27zoz/6YZaXptFAtxcR+B6NigcGnnrmdT7z6ce4dWOL9du77O327P1wD+RZwaRcdoIJJvjWxV8QJdmRX81boT+I6b96kytXN7h8dZPja/OcO7tMtVahVQ1wEQz6Ea9eus1/+69f4Nb1TdL08BuqEIIg9PHKttQ0yUgGCa7nUK949iBlVzqQkvZUHSGgyBVFXqC0sRwGETdubHHl2hZzs23e+9Bpmq0qrTDAdSWDfszlK+v8zm8/wmsvXydJMkxZLIuAIPRxS0XXJM6Ih4n1xQk8K/evNHGagZC02nWkFBR5QZEXaG0YRgmvv36b69e3ePHlGxxbneP97zszjoPvSOIoYXOry3/7r1/ktZeukWW5PXfJwa/4VH3LIU0OOdR8l6rnIrUmGeRoBO2pBlIK24qbWYfiKE65enWDW7d2uPT6OjOdJh/5yAVazRrNqo8rrcPxzVs7/O6nvswzT75KHKdv4OBR9VyElKRJThIluI6k5rlUXRdpDMkwwQCNVg3HkajCjoVWmjjJxhxefOk6050m3/fx99JoVmlWAxwpiOOUvb0+v/s7j/L1r71ImmSocrUJwDvKIc2Jh4l1anYdgqrEMYYkStAGmu1a2bWkxsaGo2R1fWOXl16+QaNR5Yf+8gep10KaYYDjWDfr3b0+v/d7X+GRLzz9Jg73fE/w9nL4E0wwwQTfLPzFcTMW9uctHy9dfotC0e8NGQ4TtNJIBGHg2oLPQhNHKb3e0G4ZFRrHlUhHjjVOpLTL7VJKcm3da73ARQjIU6sY65R6GZTtrghhzelK51ulNP1eRDRMKPLCJj++Db8qCuI4o9+PiKKEolA4roN0Rq63djVCOpaXyozl4Lm2nTW12zrSL3VDysLMN3EoNMghg2GMKhTGGMLAHWt7xFFCr6wzUWoUh5JDuSIiSg5FWnJwHYSUFKVaq3AdHNdqdug3xEEVClUoBv2I/iCiyBUCCDy7raMLRZJk9HqWQ5YVSEfiuGIcU1kW3Tqu5aDRBJ4LUqDKJGDEwRECLW1yY8quq9FYaGAwiK0ztDH2HEBS2G21Xm/IcJDYAl1H4JRKsqNYOI7EcR2KJMNgO6Nc30XnObrQ4EgbPyHQehSHIxwKhUHQ70eo3I5FELjWq0cbG4fugOGw5CAth7dD89xp5tun/1ffWhNMMMEEfy4YZhlce/obOvbdnaCYsQ7YXaFLrQzPdVhcnGJldZZ6o0aaFWRZjue5NJo1VlZnWV6cYm/rAFWKjo1aVY3WmELheA5u4JLGGUWmCKp2oox7BRqoBC5OuXpi9Ej/YtRqKnCkw/xck9W1WaY6DdI0txxch3qjxvLyNEuLU9y8unkHB45wEBL8iksapRRZQaXqIz2HdJBQKEPoObiOQGX5WKDMjNufBdJxmJttcfz4PK12nTwv6JViYJVqhcWlGdZWp7l1fZMkyQ9ddrEdRaZQOBK8wCUpOQShj+s7JANb3FqpBriOoEjezMFgC2OnpxscOzZHp9OwdTSR3Z4KayGLS9Osrc7w2svXyXM1bmsWlI7EhQLXckgjYceiYus+smFqOYQ+riPQmcIoxVizzjBONKfaNY6fmGd6ulkmj0OklAQVn/n5KdbWZnnp+SsMhwkGUd5LhxyEAD9wSYaWg+97+KHLMLJJrh94eJ6DemMczKjbR9Bu1zh+fJ7OmENkOQQ+8/MdThyf4+nHfYbqCIe3eU8c++t/hfd98gP/T99SE0wwwQR/ruj1evCf/+9v6Nh3d4LC3XU/RlDGIKTAr/jcd3qZuZkmO3s9/uQzX+epr73I/Q+d5Qd/5C8xP9vi/rMrvPTSTdJS0A0OtUWMNjiALwV9QGuDX65q5MaghcCTAsdYc0Ir5GW5aWP1Nlzf4/TxBZYXOwzjjD/8H1/hia88z+nzx/iRn/hu22FyepnnnrlCnBVjDoLRxGaQBgJH0BVWQ8MBAiHoaoMCPClxYewAfAeHst34zPEFjq/OctCL+OLnn+HLf/oEJ86u8oM/8mFWlqd56MJxnn7ydZJ8FAcr9ma0wchDDj0gL/VQKlJwoK1wnScFPodxGI2RHk3MvsfxlVmOr8wSpTlf/NwzPPKnTzC3OM2P//T3sjDX4uK5Vb7y5RcZJvnYyViKMq4aXGOoSEFfCDJjaJYceqV4niMFHoKkbEk2mHEcTKkmu7LQ4dypJZKs4CuPvsBn/8ejzC1M80M//l0cOzbHg/et8dVHXrAcygxHjM6hDUJDxRP0yntAYKiOOZROxQKG4/vhKAeQnsvK4jTnTy8TpzmPf/0V/uQPvkKtXuVH/8pHOX16iYfuP84f/9ETRKk1XByvzt0D0nNxKm9vKjjBBBNM8M2Ak33jn0/v6gTl7dQzK4FHrVFlZrrJ4lybF5+/wjOv3ub3P/UILz/xEs9cWid1JA+dW2ZxtsXC8gz7BwOG/Yg8LzDakBc5udKYzCWsV3BDnzjOSNIcKQSZkPgVD09AMogZJjlIgXEc+y3b96jVQtpTDZbmp7h66Tav3Njht/7rF3nx6y+yeuYauefx8PkVpppVFldnEb7LoB9T5AXGGPI0J1Ma5Tm0WlXc0CcyOUlqtydSIXACD08KskHMIMqsetyIg+dRrYf2G/vaLJdevckLlzf5H7//FZ7+0lPMn1gmRvCBB08y3aqxvDqHs91l0B+SpbndlsgKijhDew6NZogbBkRlAa7Emtw5oYfnSrJBwmCYWk2O0vDQ9xzCaoWpToPlpWlu39zm8uOv8Xu/9yiPf/5JWrMddBjygfccpx54LK7MYlyXQT8iz2zrc5EVFDojl5JOu4pX8Yi1Ic4LnAQSA6Li47kOeZQwHKTWS6fk4LkO1VqFRrPG8WPz7Kzv8dUnX+cPPv11Hvn0V5iam2IoJB9+/1kqrsPK2hy5EPR7Ng7GGFReECeaouTgVjwSA3GuqMYZiTFQ8fF8h2KYMuzFGCHAPeRQqVZpteocW51lb2ufp1+8zmf+5Eke+fRX8aoVUt/nIx84S0PC6tocxnMZ9IakSfb2+7cjudoJJphggm9FvIPPp3d1giIdiXMPobag4lOrhVTCgKtXNvjioy/yyo1tent9Vpam2d3p8l9+83M8tTrD6ZUZKmFArVCooii/rWuKQpNnBUJrgtDD81zyXGFLGwyOK/F9W8cRxylJpnB9F89zrRtv4FOrh1RCn9u3dnjmuSu8eG2b3e0DFuen6Pci/tt//QJPL09zcmUaz3Op1UPbZmxsnUee2yJLUxTUawG+65J72taaGKxvjeeCsbULSZofcpCSIPCo1yuE1Qo7211+/T/+MS9c3mR3t8fSQof+MOF3f/dRnv7ai7znzBJ+4FGrV1CFrekY1bDkWYFRirCMg5vbBEgYGwfPcxHGtn8naY5bugA7roPn29cVVivslHF//somOztd5mZaxErzu7/7ZZ597EUunJi3RcD1EK0Uw9K0cMQhB/LMx3XL1ygMwoDjSFzftZL9SUac5jgjfyXHcqjWQsJahShK+C+/9Tmefm2dze0u87MtMgOf+aOv88KTr/LQ2WWEFHYsyjhorW17d1ZQAFnm4XkeXqGRRlv/J0faVQwhSJLUytW71pHZcazPUq1WoVarMBgm/M6nHuGpV2+zvdtjeqpOrAx//Mdf58WnX+N955ZxXHu8LutWtL53gnKohjzBBBNM8K2Ib/zz6V0t1Pahv/R/4br3Xi5S2k6g7cAhVYZuVuABs6HHVpRTAM3ApeoIdlJbWzDyUhmb1CmNWwY1QhCGFd5zagHXlTzz2jr9YUwVK4OfGZs4IeW4gFeXyqdTvkNhDAdpgQRmApdupoi1oek7hK7kIFWY0q9lBKFHHECgGSLxA58HTi1Qr3g88/om+90hFRSuEOQa6xz8FhwUhoOkAAOLVY/dJCfWUPccmp5kL1OHarBv4OBgkBgiJF7gc/+JOdr1kKcvrbN3MCAwmsCRJMq8OQ7Gbo81PbuacJDaVaqZissgVwyUoeE5NDzJfqrQZYvuKOEecRDG4EsYGJCux/0n55luVnnhyhabuz0CNH45Fm+Kg7HbYy3PKszuJQVKaeZCl7gw9ApN1ZW0AodeqsjKLaM3cpCAh2aAxPFcTq/Osjbb5NnLm2zsdHG1oioFibZqtjhvjkPDlbiOYD8pKLRmruIR54puYah6kqnA4SBVdivtCId74Rf//l/lL//lD779gRNMMMEE3wT0ej3arfa3v1CbUxYbvhW0MZjSoC9Bg2Mdeo3WpIUtwJSOxBhDnBYUuR53ZzijidFYh94iVyRphqiGdDoNLrznBIHvcbsbM7iaMBjEVCs+jmtXTigN5HS5EpMXisRopHuEg9JozNjoL0lz8lzblSHhjBMEUboEa6UZDmNkrUq7XefCAydo1SpsDDN6w5hhLyL0XBzfR0ppt5qOcCgKRawVjm9XVrTSJEpZCf+y2yXOCvJMgZQ43qGzs3BskaYpCvpRgqiFtFo1zl04zvx0k80oozuIGXZjROAhPQ/nDg5gtLJx1ALfsyJryhi7fWXMmEOSFWS5QkiJ9CRS2K4g4ZTnKhSDYYIKfBrtkPMXjrM42+QgN+x0h8SDBC0ljn8nB2NAaYXKFYkSBIGLIwXaCDJla0dG3U9JVpBmCi0FjnTHpoVyFAet6Q1iTBjSnAo5c26Vc8fn2CsMe72I6CCxnTcV/zBRK+uJRmORKEWlFJsTRpApPeYghCDNFFlWWA7CQY7cpe8Bu+052eKZYIIJvjXxTj6f3t1uxkLc+4dDx7tCl8WJZUJz6DxrF5wKbcaFkLJsLxZlS6sQwiY5qe26mZ5ucvb8Mc7ff5y5uTae55BkOYXSIA69cEYcBHY1Rmk9XpmA0vX3yN8jB1772o546pTn0sYQxRmO4zA1Vefs+TXO3X+chYUOlcArhemUXf2Rtltl1KI8uiVU2U0iy2TgjXFRZQfSqL5n1GY9WslQ2hAlGa5rOZw5u8p9F4+zuDhNJfBIs9wmF+Pnjjgc1gvZglEz9jQqyoLeQw5HxgIxdpAeHW+M5SCEoNWscvrsCucvnmB5ZYaw4pEXiqxs5X4j/6Nx0GXRqUCMC4uPvk4z5nDoYj06pzGGYZQhpeVw6vQS9108wcrKLNVqQKEUcZoDYtz2LY5wEOZOZ2ghbBzUkdWSYjQWZffO0evf856fYIIJJvg2wLs7QfmGfuwH9rh7okw+1OhD/8jj4shE/sZvotoYlDZUQ5+52RYnTi1y6vQyC/NT1KsVu3VwRANl9OzDid6635YeduOEg5LD0Xbao8W/R383QF4oqqHP7EyTk6eWOXFqmcWFKRr1sEy0NCPfXu5ynlFnz2jSHcehPFCZN193xH/EOS8U1YrPzHST4ycXOXlmhaXFztjYrtAajm7N3I2DOTzvOA4jDuPG6DeMdzm7GyBXmkrg0Zmqc+LkIqfOLLO8NE2jHo4TShjVYx3ZLhtzGCVFpRs1o7E45Ph2HLKiKDk0OH5ikRNnlllZnqHVrFrNHKXKE4g3j6uwnVm6/F1SdqSJwzelOnLsG/m/1c8EE0wwwbcL3tVbPG8LcTj5mjIJOPpBPvpWP2qFHX3rP5qYSCnBBbcsXp2dbrEw16bZqtNshCzMtZmdabG3vY/rWg8WeWRLATGa3O35TKmMKmGkFWsnpFIrZLTicZgelcJg5UiFtZDZ6SYLs1PMzrVwHYf5uSnmZlpsr9fQhcL13sCBwxUZu81wlMPhBEkZh3Hdx3jFoXQmdsDxXcJqhZmZFguzbaamGjSaVRbmLYetZg20OcJBHFmRKV+bMOOxGLkAS3FYCjWKw3i1Yfy3FUgznkulWmG602Rhts30dJN6ozbmcLDTJR7GOJ7dFjHCxmG8qlMOhsaubI3uD8RhkqSPXPMODqVIG7j4YcDMtOWwMD+FHwQszE8xP9Niu12nu9/Hda1PkxBifEPY11UmOqOxOJLMjRNSc3g/Hk2e3+6efxeWlU0wwQR/QfAXRkl2dW0e36/c/UFjGAwTNjb36XaHoArmFjr4vsdgEBMlOY7nUQ19dF6wvT9AeC7tVp3OdJNWs4rnuUy1a0x3mszNtplfnKLdaTIz06IS+mjgYx97iAsXjnFwMGBrfZftrS67+3329vqkWc5wmLC5fUC3F6GyjLm5KcIwoD+MidMMx3OphhVMUbC3O6QAptoNOp3GEQ51pjsNZqabzC/P0Ok0mZ5uElR8tDZ85CP3c+b0Enu7PXa29tna6rK722On5BBFKZub+/T6ffI4YX6hQxj6DKKUKEmRrm0Blhg2droUBpqtGlNTDdrtOq7r0G7WmJluMjvTZHquzdx8h06nQbNVIysUH/qO+zi2Nsf+Xp+dzX02tw7Y2++zs9uzHTVJxvZ2l14/Ik8zZqabVBtVBsOEOEmRjkM9tBy293pkytBs1Wi160y163ieQ6tZs3GYabG0NE17ukm7Xac5VafQmocfPs3sbItud8j2xh5bWwfs7vbY3esTl35Am9sH9Acx8TBmbqZFrVFjmKTEUYJ0HGq1EM8RbB8MiNOcRqtGc7rJ1FQDz3VoNW3b+nSnwdxih9m5Kaam6szMtlBac/E9J5iebrC/32dv64D1jX329vts7/TG5o9bO10GgwOSKKEz1aDRComSjDi2Xka1uo/vOOx09xgmOY1mjalOndnplq1nuQfq5SrWBBNMMMG7He/qBEUVBYW4u1mgMdY4Lc8K6/AK42+hBig4XM4fFaGaXJHn5XNyhRTCOhE3qhw/Mc8HPnQf9UYVpQ29KCFJMo6fWODkyUWKouBrX36BLM3p9SOU0hRHzqcKNVa2FeIIh5E6qBBosP41eVH+KAQCRwrq9ZCl5Rk+/v3vIwh8jDF0hwmFUiyvzHD82DxpmvHsU5fIs4Jeb4hW1odmdL6iKMbbUKPv4wWHN4EoC3uL0r8mzwqKrLA1EMKaJq6szPIdH7mfVmnG149TBnHG8vIMayuzGGN44rGXybKcwSC27cG5OsJBWcO7I2NxdCtDcMjhcCyK8fjVahUWFzt85Dsv0plpYYyhn2T0o5TZuTZLS9MopXjxuSs8/dQl+v3YFqUeHdujHMbbSgBmvJVloGwpVoccypWgWjVgfn6Kj370IdqdBkIIBnFKP06Znm6ytNBBa80rL14jy14lihKM1ofjmuXkhbJ1LkdW1xQcWa2xK0v2PrK887zA0fdOULTWk62eCSaY4FsW7+Tz6V2doNy4vn3PNmOtbUtqu1nFCdxywkmRCCrVAApNPEyQrmR6rk2R2olwf69HrzvEdSUHB3263SFxnrO4NsfZWmU8Ycty2d4YuLm+x1PPXubVl6+zsbnP3l6fLFNjJ+BmPcTxHTQQDRKkgTAMQJkxh3anYRMC4GCvT787xHEkve6Ag4MB3f6QY2eWuO/s2ngiRQhEqTS7tz/gyWdf5+Xnr7K+vsfObt92gWiNLhTNWogzVUcLiIYJaF3GwZBGKdKVtKYbFKltQe4eDBj0IxxHsr/fY9CP6A1j5tdmebBVG289jDMuDPvdIU8++zovPXeVzc09tnd6pGlRaogoGrUK0qshHMlwmIDSVMIAdMnBkTSnGoSlQFyvOyQaxkgpOdjv0+v26Q8i5lZmeH+7jjPqbClneaNtHJ5+/grPPHeZ27d22dntkZaeSUWhqIcBzUaI9JzSn8mMOWRxRuFI6u0alTDAaEO/F9kVFinY3+/T6w3Z6w6YXurwke+4H9u0JTCjbRhjiOOMJ559nWeeu8zG+h5b212SJENrQ1EU1MMA2QhxfXfMIaj4lkOSoxxFrVnFD+z/okHMrSTj7d7ew0FyT3+qCSaYYIJvJt7J59M7TlC++MUv8s//+T/niSeeYH19nU996lP82I/92Pjxv/E3/gb/4T/8hzue86EPfYivfvWr47/TNOUXfuEX+I3f+A3iOObjH/84/+bf/BtWVlbeEZdBlOA4dxe7F1jRrIrvEQQewneIBgk6LfADF9f3KFRGlhZo4VJrhBg3J80K0iwnTmyHRpYXxElGL0mpT9UJXY/pdo1mpw4G0n7M7l6fL3/tRR5/+hLb63vW9C/O0ErjSEnguwS+h6y4xFFKkeYEvovju+isII1zNA7Vegi+IktzksxeVwhBXiiiJOVgGNP4/DPUfZ/pqQaNVg0jIevF7PQjHv36y3z18VfZWd+l243stZTGkcLGwfdwQo9omKJKHyDX99CmIEsylJbUWlWEp0sO+ZhDmhckWc7+MMatVejUq0y16tQ7dWoVH5Xm7Oz0+Nozl/jq46+wfXtvbPqnCo2UgsBzqVQDZOCSpBl5muOXJnsmV6RxhjKSaiMk9LwxhyS1HLKiIEozelGK1whp16ssTDdpzraohj4qytjc7fPMy9d49Gsvcfv6Ft0Dy6Eo7IpY4LuEoW8VgdOMPM3wHInnB5hCk0UZuVKEzSqh75EnOXGWkwwze++WcTgYxBjfY2m2w+xUncZUnaBdQ8c2Di9cusUXH32BrZvbdLsRw2FSCvxZDrXQtyq0eUEWJXiOJHgDh0ozpOr7ZImNw6B0ar4X8qKY6LRNMMEE37p4B59P77iLZzgc8uCDD/Kv/tW/estjfvAHf5D19fXxzx/+4R/e8fjP/dzP8alPfYrf/M3f5JFHHmEwGPDDP/zDKKXe4ox3hynbcu/2M+oMGbWZjpbtwdzRulqeqGwFlWMdDF2eo1CaNMvpD2K2tg442OuRxhmy3CRRWc7BXp+trQN6/YgkK6Xx78JBSlkWrZqxINzoPJSrMo6QjPxWRq+lUIo0KxgMEzY399nf7ZHFKQKDgyDPCvr7A7Y2D+h2hyRJTlEou2111zjYNl7JiAOHN83oOHknB6V0yWEUhz5JnNpuIEAVmt6B5XDQHZKkmeWg7xaHI3EfcRitwpg7OYz+rUsOWVYwjBK2trvs7XSJB4k9BwJdKMtha5/97pA4yciLYjyW5q4cOMLB/mNU3CyFREg53nYyUHLIGcYpW9sHlsMwwWiDi7Buzd0h25v77B8MiJOcPC/Q+shYcGeMD9vbD1vC7aFH28zL8Nzjnh8ZEk4wwQQTfDvgHa+gfPKTn+STn/zkPY8JgoCFhYW7Ptbtdvn3//7f8+u//ut84hOfAOA//af/xOrqKn/yJ3/CD/zAD3zDXLQ2CHH3T2RRPj6eFMYTrjWPGxVAjLUupEQLNRbSMqU+CFgp+XqtwtLSdFlgGlhfFKzXztz8FMvLMzQaIVEvsi2j2prKaTma2o7UnxyZiEeT76gWxu7X2K2K0f9B4LqSahiwvDzD/EKHarVClhUYDJ7nMDPbZml5hlarRtKP7HVGHMRhHKz4Wyk2NgoUhxPfSGuDclLX2iDKNNZ1JNXwMA7VakBa+uQgYGamxcqK5ZD2Y2JhO3jeyEGULULmLhxg1EVkH9R6VFdhB8xxJGHos7DQYXFxmkazan1ySsG7mZkWy0szTLXrDPb6RELcPQ7iUM9klJCM7g+EGScKjCZ+PWpEduzKXMUbc2g2qyilyGKrRNzpNFlemaUz1SDpRsRSHsYB/QYOb3bl1sbWpowE3EadV0brcfvzW2OSoUwwwQTfHvhzqUH5/Oc/z9zcHO12m+/5nu/hH//jf8zc3BwATzzxBHme8/3f//3j45eWlrh48SKPPvroO0pQ1Bs/2Y9AwFgMyxioOJJICFKtCQxUXUnXGHKtCYWg4kgGxgp0KX34PADPc5mfbXHh3CphtcKly+s8/cxrZHnBw+85zcmzK9x3bpUnHnuJ/a0uCGFF2YxBaF2KgEHVEcRCEJePhY5gQKnpISBwJGmuS8EujRonYAbXdZlqVXnogRPU6iFXr23x+JMvE6cZD9x3grP3HePcmWXWlqc52D4otV7MOEaj32uOJJKWg9KGqistB21wgYorSXNFMYqFMVbe3dhEaHqqznvuP0atHnLz+hZPPf0avf6QBy6c5NyFY5w/t8ra0gwHWwdWZ6U8B/qQQ0VKPCmItMHT9u8ERa4NXskhK3R5/GEcjLHJYrNe5YH71pjqNNna2ufrn/4aB/0h50+vcuGBk5w8YR2bt2/vIKW05ygn+KLUs/GkdaAeGoNTckiFJtcaKSSBI9HK8i2O3A/GGMuhFvLwAydodxpsbOzx9FOvsbGzz/nTq9x/8STHj81z9uQiext79PvijnuqKOMQSoEvJcPyGi1HkitNrm0hc2XEQVtBPaXNPd27gW8ggZlgggkmeHfgzzxB+eQnP8lf+St/hWPHjnHlyhX+4T/8h3zv934vTzzxBEEQsLGxge/7TE1N3fG8+fl5NjY27nrONE1J03T8d6/XA6xbseN4b01GWPlwkoyKK/AcgXYcMm0QhSbRBuU4uI6ENGcQZxRKIV2HwLHbPWHgEXoeDd9D5AVPPHeFR770LH/0O18ijTO+70c/wkc//l7m2iHNwKPiu4SBR54fdork2jBIM6qenZi145BqY+sNlKYYccgKhnFGViiE4xCUKqwV3yf0Peq+TwV48vmrfO1rL/F7v/WnpHHKd33/B/nYMGFlrsVUJSD0PMLAJ8sVSh1y0GlOLXbwpcC4DqkBUVjJ/cKRVFwHmRUMk4w0V9bsUHqWQxmHZuATCsGTz1/lsa+9zKc/9QX2dg74zk98kO+LUk6uTtMJfSquSyXwSbOiVNgVFAaGaU7gSDwBlByMUmRKk0tJxZHI3MYhLazcfRAc4eB71HyXqhS8+OoNnnz6df77f/osBzsHvP87H+STSc7x5SnaFd/GwffIAp/cUTZxNDDMCipxil9ySEoOhdLkQhK6Do5SDOOcOFcIKfB9DwTjONR8j6mKx/MvX+fJp17nf/z3L7B+bZ2HP/wefuCHE86fXmSmFhC6LmHgkwQ5eWmBoA0M0wLfyfCkGMcBpcgLTSYEoevgKsVBlBPnBQiBH9zjXi/hvE0b8gQTTDDBuwV/5gnKT//0T49/v3jxIu9///s5duwYf/AHf8BP/MRPvOXzTNn+ejf803/6T/nlX/7lN/2/3gjfuovHQKEUUZIzjDOqRuMEHm7g2a6WvEADbuDhSkHUixgmOa7rUq34eK6DFIKK54KBva0D/vQzj3Npu8flKxvEUYpRike+9jK3d7ucX5xi+/YeRhkC36PRsN+aC6WJ09zyMBq34uNVfLRSqLxAjTg4kmQQM4it+21Y8fFd6xZcKV2CBwdDPvfHX+fljS5Xrm4yGCS4aB578jU29vvctzLNcK+PypXlUB+tCGmixHIYaIVfDXAD37Y+57b12PFdK9k/iBlEGTgO1YqH77kIAYHrIhD09gd8+fNPc2m7z5VrWxwcDJEGHn/6dXaGMfevzRDt9lGFJvBc6vVwzCFOc+IkZ6gU1WqAVykTudy23DqBi+s6pMOEfpQhHIcw8PB9F1lycIRg0I342hef5Xo35vXr2+zt93GM4dkXr9IrCs4tdygGMXlW4Pse9bpVt1WlXUGc5gxUQb1WwQ880jEHjfRdfN8hi1L6w4xCCKoVH9+394PvWPG3eJDw+Jdf4PL+kMvXt1nf3MeTgudfvk4vLzh/bBY/yy2H0pm50BqtDXGak5QcmrUA7wiH4giHPM7oDxOUkFQCj0rgvuV7ZATfe1c35k0wwQQTjPHn/mm2uLjIsWPHeO211wBYWFggyzL29/fvWEXZ2triwx/+8F3P8Yu/+Iv8nb/zd8Z/93o9VldXyXOFMXcvrB21nlYCDzwXYzRJkiMch8WFDmcX2jibB9zaOCBOMqqOpFatjOtEisKeN89y+v2I3kGfqze32Y0ykiRndraFFLDVG/LKC9fYu7ZBkRYMM/tt18iShYDAd23CgyZOMoyQLM5NcXqhxa29IVdu75IkGRUpqVUDjJDIIxyKrGDQj+ke9Nnc2WdrkJIkOTMzTULPYaOf8PorN+je3AKlGSS5VU+V4k0cHDRxnIFwmJ9pcn51hupun6vr+yRJjiOhVq2gy2LSoxyGg5jeQZ+NzV22o4w4yZmaqhN6Duv9dMzB0ZpulIN8AwfPxXMcHAxxajt2ZqebnFvusDtIePX6Nmma45YcjBBIabVh1BEOB/t99va67MU5/Thjql2nHrhsDlIuv3KTg5tbuMbQj8s4jFqhhZ3ApePgC0OcZCgknXad82sz7A9TXr25Q5pmuBLC0EeVWjiq0GMO0TChu9+nu99lO84ZxjnNeoVOtcntXsK112/T29ilKgX7w/TNHErDSB9DkhYoI5hq1Ti7NkM/yXn5xg5ZkpIKQ7VaocD686hCv22FiZ7s8UwwwQTfJvhzT1B2d3e5ceMGi4uLALzvfe/D8zw++9nP8lM/9VMArK+v8/zzz/Mrv/Irdz1HEAQEwV1WSnRZRXkXGASOK6zUOJAOhsRZQdhqcPLUIg/ffwzz8k229/pE+xEycKnUa/a5SlOooizS1GilEUaPCymlY7eOBALhSITAmuSlBXmhrEGeI0EYHMfB9awkXB4nRFGKW69y4uQiD188Ru3qJrd3ekT7MXgOfr1qExylUVrZbiBlOaAlrlOWzTrS1ioUCsrunCwvULk1DLwXh0GUEjRrrK7N89AHzlC5usXWwZCDQQQYwqkmGuvYqwp9yKGM96gDRspDDqI05MsL68CbF4X9X7mt4TgS6Tp2iyNJrdFeWGFldZaH33ea29s9bu706G7HCAl+M7Bx0BpVHMbBFrtCnNjCU0dKCmNICruFI6TlMDYMPMJBOhLXdfCEwOQ5/WGCrIYsLnV46APn2dztsdEdsj2IGCpF2G7gls7T4zhog1HaaskktitLOnb7Ks4VpuzOKZQiyqw4G0c5yCMcsoxBlCDDCgvzUzz4vrMcDBLWuxFb/SH9oqA+XcG1+vUUefGWNVcjDK9eZ//Jt1BXnmCCCSb4JqM3GHzDx77jBGUwGHDp0qXx31euXOHpp5+m0+nQ6XT4pV/6JX7yJ3+SxcVFrl69yj/4B/+AmZkZfvzHfxyAVqvF3/pbf4uf//mfZ3p6mk6nwy/8wi/wwAMPjLt6vlEIY3/u+pgwOMJ2vwgh6CYFhVLM1AKOn1jk3P0nOSg0zz1/he72AUMDMx3XTkbGug4b2++DEYJCGbKswPFdXOGSpnaysNszwiqOKo0RwnZglE47jgDXccAR9HqKJCuYCTyOn1jg/MWTFJ7LE8+8Tm/ngEhppqccBMJyKGyBq8GuRBTafuN2fBdPuGRZTpEbnMDDc0SpvlpyAGTZnjLiIBxJt6dIkpz2nM/asTnOXThB4Xs89+JV9rf26ccZ9TkHF1B52SJcckDYYs00LZCBi+cf5eDiOpIiVxS5KkXLbG+sFNYQ0XMlwnGs1HyS02nVWF2d5dz9J6lt7PG1J1/lYHOfQVowN223VN7IwZTFv2laIHwXL3Ap0oIoKZC+i+tKdKHfxMG2IjPmEKcZgyhlpl1neXmGcxdP0NjY4+kXrrKzsUc/yqhNSxzXQeVm3G1lzCGHJMmRgYfnu6isYBBlyMCzHJQdK122kh+2M9tuKOk6RElKFGV0mjUWlzqcvXCcg0HMk89fYfv2Dv1BSmvOwZW2hVrz9kWw1//L7/L0fxu+o/fRBBNMMMH/LgyL/Bs+9h0nKI8//jgf+9jHxn+Ptl5+5md+hn/7b/8tzz33HP/xP/5HDg4OWFxc5GMf+xi/9Vu/RaPRGD/nX/7Lf4nruvzUT/3UWKjt137t13Ac5x2yGVkA3g1irC2BEGSFwvMc2s0qa2tznDq7wma3T7tVZdN1ylUHgTECzRFNDhjroihdaodIQVFOVq4UOEKUeh8cus2Z0VPF2EG5UBopJc1GyNraLKfPrTDMMqZaNbY8l6QURbPuuodS8KPXozEoZTm4UpCXnTYjHRGty84mKcerPdaurzRGlIK80AgpaDZCVldmOHl2hUgppqfqrPsew35cmiiKN3WM2GjbjhOnjEOOTVpcIW0cjKF4A4eRxsvotY3cjuv1kJXlaU6dXcavBUxPNVgPXHpxOjb10+KNcWDs2vxGDo4QYw5Kj170UfZirIOiyvFq1CosL3Y4c3aFSq3CzHST6xWP3r7dTpHScrjz6iMOh3EwZfImSw4YPY7D+DYaOSYLe1+OurvqtZDFhQ6nzqzQ7UfMTje5VvHZV3bVTpbnP3qOt0K2s8cw2b7nMRNMMMEE3yxE+hvXO3vHCcpHP/rRe7oRfuYzn3nbc1QqFX71V3+VX/3VX32nl38T3jo9KR8vuRoDtXpo3Wfnp6g3QhbmppjpNLlVD9ndG8BYN6X8sYUsjHyQNdY7Z5Rw2FWasp0ZxlstY0MVDvVFRroiYbXC9FSD+dk2U+06szMtZjoNbjVCkjTHlJN3qdZSvpjDSfqNHIy0k740BlVmAlZm5HAqGwl8Ca1RWlMdOQHPTVGv2+2FmekWzVaV3d0eWhukeIPo1xEOpjzpaKLV4giHUt9lHIcRA7sEgRE2DpXQquHOz7Vpt+skac7MdJNms0a/F1vdETkSjTnkMBpcbQyOKUX3JGghxmOhKeWUxZHnlBE15TaV1lZavnOEQxynzM40abfqbG8ejPVT7sqBIxyMTabUKBkdx0kcWhIcuVft7aDRWuMHHp1Onfm5No1mlUroMzvTot2usbG+ZzkcGYtJhckEE0zwFwXv6pL/mZkWnnf3Lh4pBZ1Ok1Onl1hdm6NS8TEGmvUKJ4/NI6Xg2Noc/8eP/CU++j0PIqQkSVJu39rh8uvrbG7uUxSK/jChP4xJ4oyK51KrV9AGUpOitaEmJa4jiYYpwySjUvGoVys06yGe59LpNDhxcpHV1Tma7Tp5VhBWXM6cWgJgeXGaH/mh7+C7v+s9CEeSpRk3b2xz+fXbbG0dkOeK/iCmHyXEcYYvJTP1CkZAamxnSk0KfM/hIMroRwlBxadeDWg2qniuQ7td59TpJVZW52g0QrQy1GsBF86v4jgOC7NtPvkD7+cD7zs7Vktdv73D65duc/v2LkWhGEQJvUFMHGe4UjBXcshiq3RbLaXse0lOb5hQCX1qYUCrEeL7Hs1mleMnFjh+YoFms4ZWGt93uXjhGJ7rMDvd5C//wPv54PvPAbYDa/32LlevbHDr1g55bpV0+8PEyu9rw2y1gnQledkeHgqfiu/RTwv6UYofuNSqAc16WHZWhXYs1uaZmW2TpTmVwOXC/ceRUjA11eATH3uYixeOozQYNJvre7x+6Ra3bu1aBdkopTeIiZIMtGahXkE4kkGWW3l6IQg9lyhT9IYxQcUnDH1ajSpB4FGrVco4LNJu1zHGUPFdzpxbpVLxCHyXj3/sIc6fXbVdRVKysW7jcO3apq1puQeCzMfEkzRmggkm+NbEvRY43oh3dYKilUbLt5CuMhLfc1lemubBB09x6tQSnueSpxlBxccA7VaN7/rOB3B8G4ZXXrmORLB+a9eKehWKJE4Z9CKiJMdt1wkrPlmhSAubHHRcSRj47DGk34/IMw+JbU11HcthcaHDxQeO88B7TiGFIEtSgjBAG0OrVeUjH74fL/BBCq5cvo0E1m/vYrRBFYo4Thn0I4ZRSqtRoxL6Vnq+UOS5ou1IwkrAgYzpD2KyLEcaLAcp8FyHhfkOF+8/xn0XjhEEPkWW45XaHrV6hQ998DzSdRBCcO36Fs8945QcNEpZn5wRh3otpFLxUUaTKUWcF0xJSVjx6Q8Sev2IPC8Q2pRxcHAdh7nZNvdfOM65+9aoVStkSYofeGhjCAKPD33oPqTj4LgOV69u8Nyzr7OzdWCF5gpNmpQc4pRK4BMEHtKR7OkhUV7QlIKw4jOMUgbDGDd1EMZQ9X3bPSQlszNt7ju/ysPvO0sQeORpjuc5GKBaDXj44dM4roN0HdbXd3n26dfZ3NizK2Cq5DCIGQwTfM8lqPgIITjoxwyzgqaASsUjzQr6w4Q0t6titbJ13ZGSmU6T8+dXue/CMdqtOnmW2yJiKUHCww+d4qGHTuN6Lusbezz/zOvs7/bGHO79pjCHC1cTTDDBBN9ieCefT+/qBOXgYIDrZnd9TCAoyk6Sze0u7/3AOT7yly5QqVbIlOagFzFVDwmqAUppHn3sZb7+6Atcv7bJtaub7O/1UVqjckUl8PA8lyBwidLc1lBIgcAqnkKO6zq0GlVbj6A0/e6QyHFsKzSG7Z0uuwdDPvwdF6hWKyht2B/GNCo+lVqFLFc8/eQlHvvqi7z+2i2uXd1gf39gW2xzReC5uHWHSsUjTvNxrYlwICs0wyTDcSStRnXsstzvRUSOJMsKpCPZ2jlgfbvL933vwwRhgAJ2ehHNamDdfIEnnn6dRx95jutXNrhyeZ293R5K2W6UwHNxGw5B4BFnuS0albbgM1OaYZohpKDdrOGU2zODfkQSJaRpBgIOugPWtw747u96gFazijKG/UFCNfAIwwCtDS+8dJ0vffEZrly6zfVrm+xsdymU7Q7yXRenJvF8j7QoQJVbTK5Drg3DJAMhaDWqpZowDAYxSZySJBnyqdfY2+9xe/OA7/++99FshADsDhIqnkMtDDDG8PJrt3jkC89w+dJtLl++bTkUijS3uibNeojrOiRZYbecjnCIEhubdrM63gYbDmLSJCOOU6QUdPsRt9b3+Pj3Psx0p4EG9gcJvudQD3wALl3Z4E//5AmuXl7n2pUNtre7b+tXlWb5HdtQE0wwwQTfUngHn0/v6gTFKpS+9TfKvf0Bvf5lLl26xWuXbjM/0+L4sXmCik/Vc5FANEy4dn2L3/zP/5Mrr9+yDsClyR0CgtCn5oYYIcjTnGgQI53DSUTnBcM4RQjJ9HTTSswXClUocqXYPxjQ60dcubLBa6+vUw8DLt5/jGo9JHRdXCGIhgnXb2zz3/7rF3jx+SsMB3Gp8WKXwoLQp+qGtpX4Dg4e2jOgFMNBjgE6001bD1FyKJSm24t48cVrXLmyznPPX2Nuusn9F45RCQOqnuWQxhl7+31+6zf+lBeeu0wcpWOTOwC/4hPWQ6tKW+qROI6k6ruErgNKEfVztIHpmZKDsslVrjS9fsTw1Rtcv77FS6/cpFYN+MD7zlCthYSug+cIkjhlc/OAT/32l3j8sZcY9OO7cHDGLdXRMLEcPJeK4yC1JhrEaAPtqYbVDlFlHLRmMIx57bWb3LixxbPPX6UaBnzXRy5Qq1sOriNJk4yDgyG/89uP8JUvP8+wXJEacfB8l7Bm9XLyvCAq4xC6Eq9WQRoz5jA11cBxJVppitwq6g6jhEuv3+bmrR2ee+EqvufyvR97kGpYoeJZDnmW0+1G/N7vPMrn/vQJomFiXbffoqX+KCYyKBNMMMG3C97VCcrRYtS7QWlNFuW2ZuH6Fhub+ywtdqiGAfXQx2hDluZsbx1w7Vq5aqK0XW53bHuy4zq4vovBirbpXONIiedYldeRRolwBG6pugpWOZVSQTXLcrIsx8gtNjf3OX1ygXqjSq1ik5wszdjb63H92ha7Oz2UsjLzzkg7w5X23FKQZYXlIOz1jLR6JaZQIB1c1yk1Nw5ND3XJIU0zhknO7du7nD61SBD41EMfjCHJc3Z3e1y9usnuTg+t9Z0cnJKDEBS5QhUaV9jtIyS2a6VQGCFxXRfHEZBzqF2iDVlmRe4Kbbh1a5f771ujXgupVqyEe5zl7O33uXrNcsjzwjpMl2NhOTgIKckLy8EBPN+zwnjGHOHg2BbzvIxDWaScJRlpmjOIMm7d3CaKUsJqhWo5FoM4pd+PuHp1g+2tAzsWUtgOM8GYg5SSQmm0ysvWYQ/p2C6bXFlTPyd08DyHQljLAWMU2kCeWg5RknHj+hZJlFLxvTGHJMo5OBhw9eoGO9tddKl145Yc3g7vZI93ggkmmOB/J/7C1KDcwytwfIAQAs916Uw1SufZmpV+H+aEoUerXWdhsUOn06S338eYvOx6GZ1i1NljNTXMqAPZmHHbLXC4bDXiNDIbLDm4ZbHqwmKHqU4TpTRZVljjuVaN+fkO09NN1m9vkyZ6fO0y3ylPXHbSiHFTzLjryByhMArMyKnXPlZyaNVYXJxmaqqBNtDvx1QqHrV6yPxCh9nZFhu3tsmyYvxaBIedSIjD62hs18z4kuOEcfTauSuHVqvG0mKHznQTIyAapriupN6sMT8/xdxsmyv+/7+9uw+Sor7zB/7+ds/DPg/7wO7swgqrIoYsEANq4CwhonheOM/L1WmSu5xWrPtJApz7Uyse3B9S9auwJqnTylUSUjEWRqPZ1EWI5ERkPWEN54+IKCVgfoREVFDWFVxm9mF2Hro/vz/6YWd2HnZnEbcH369ylp3ub3d/+jPjfj/T0/1tf9rXGc42rHUpsS8id/Mgo3G6Vw9J2msw+l5RsIqNqqpyNLfUo94+4hSLxa2jMRVlmN44DU2NtQiW+REfsfNo53/09R2tFUwApvtOGH0tVPqbNO1mg4A1cF1VVTmam+tR1xCCpikMDo3A79MRLAuisWkawuFaBIN+xGVMDIX/r8CEqhgioikx8b9PJX1nMfc29Dkepth30dWsm6xd2hbGjOY6jCSS2Lv3EB758TPYs/sgYvEEWprrcNnFzfAFfICmwbSXF7djtgb58mnWpbspsS4v9gHWXX8B+JXVZnT7sNcDwD7aMXvmdLTOaIAhgv/78hH89EfPYNfz+zEYS6ChvhpzLm62zgVxY4DbqYkp0MS6C6/Y29UBBJR1AzwDgE8pq+J0O0O4o59CKeh+H2a3NuLi2U1IpkwceO0YfrZ5O3bueAX90WHU1Vdj3txWlJUHoXRr3JWxcWgCaxRUZeVBg/XcsC8x1jVlj3zqFHEYzacCfH4fZjbXo212E5Sm4eDBP2PLT/8L23/zP4hEh1FXW43LL52B8ooglK7ZMaQVYyJQIgjYtxJIifUmdvMg9gB9UKP7n/aeEAVoPh3NjdNw2SUtgKbhzf/3Ln72k99i269fQt+ZCCrKg5g3dyaqqyusGJztO+83OyEBe3wSwy6agsq6EWAK1nknfqXS65OMGHS/jnBjLebOmQGlFI7+8SSeePQ5/Oev9uCDD8+iqroC7Z+5CJWVZVC67g7Slu/9Pno5+yf9fyER0flR0kdQClEAfD4fyqusMT/aWqfjvZMf4vj7Z/DLJ/8b/7PrVSxatgAjpuCyixpxcet0HJw+DfrZQQwPjsA0DIgpSCUMmCkTAaXg14CRgB8JEfiThjWEvqagB/zwKyA1HEfcKQicAdJ8OsoqgphWV43ZM6cj2j+Ao8d78fOf78Lvdu7HZxfNQUIpzJ3VhJbGaZjeVAdTKcQGY+4Q76mE9XVGQCkENIVYwI+EAHoyBb8dg7JjMEYSGDFHO2UA0H0ayirKEJpWhUvbwjj70QAOHT2BXz/9O+z69Uu47IpLMWgYWDD3IsxqrkdjuA7qtI6hgWEYKcO6iiaZwojhxABodh58KQMQIK5bMQQUYMbiiKUVBgrWVyPBsiBCddW4aGYDhqPD2Lf/KP7z1z3Y+evfoXl2GCm/joVzWxGur8b0cC0MBQwPxJBKpewYDIykBD5NoUwDtKAPcQH0pIGAHQMCPqswiCcwYgKmmKN50DQEy4OoClWgbVYTJJnCKwf+iO3/tQ9bf74LzbOaMGAYuGrhJWisrUZzSwOSIhiKDtvDzFv3RzINgaEplGsKetBv3RXaMKGbghFdQfw++BSAtBhMOwZN0xAsC6B6WiVmX9QIJFPY/9oxPLtzP7Y+vgvVddUYFhNXf34OpocqEW6uh6lpGBoYRjI+gREY045wERF5TTF/n5SU4BfW0WgUoVAIV135v+DzBfK2KysPor5xGuobQrispQEfnIngjyc/xLvv9CFxOgK9thqzLw5jzowGtDbW4fCJD3D2owH0n45gaDAGMQXJpHUprx9AqCqIZGUZhpMGfEMjUKYgUVWGioAPwVgc0egI4gB8Pg3+gA+aplBWHkRtQwi19TWYO6MB0YFhHH3vNP785/cx8mEE/lAlLrq4GZe2NGBm4zS81XcWH354Fh99GMHwUAymaVrD6KcM6KagriqIZFU5hlMmtMEYfKYgXhlEMOhH2UgCQ9EYYmLH4PdB0xWCwQDqpocwrb4Gn2ltxMDAMN58tw/vnOjDyKmPoGoqMHN2GG3Ndbh8VhOOvn8Gp89EcabvLIaiwzDFGjo+kTTgMwXTKgJI1VRYMQyNwJcyMFJZhrIyP8oTSQz1D2MI1pDugYAVQyDox7S6GtQ3TsMlzfVIJZL4w7t9OP7uBxh8/yOgPIBZc2bg4uZ6XDpjOv70wUc4fSaK/g8jGIwOWXeGThru5cu15QGYNeUYNgUYHIE/ZWCkIoiy8gDKEinEIsMYMk3oug5/QIeuW/mobQghVF+DOTMaoIvg8Nu9OP5uH6InT0MrD6B5dhizm+vwmdlhnPxoAKf6zuJMXz8Go8MwDdN9PyjTRG2ZH2aoAjFTYA7HUZZIYbgiiEBZABWGgXj/EAbssUwCAR90+zUJ1dWgbnoIF7fUIwCFQ2+fwjvvnUb0xIcwfDpmXNKM2eF6zL+4GcdPR/DB6Qj6T0cQ7R8c90TZv4r8GQs4kiwRedSwaeArb7+OSCSCmpqagm1Lu0C56q78BYqyPq3qfh98uo4qpTAQG8FAyoBfKUxTCv0iSEJQresIlZchag98ZiTtKyacQ/MA/AIEFTCsK6SgUGOYUAAiugYdggpTkDSBhDOQrEqLwR5Xo0ZpGBqJI5JKQYcVw6AIRiCo0nTUlAcxpKxP6UYqZY15kRaDT4ByJRjSNSShUG2Y8ENw1r5hYYVhHb0ZcUcwtVKhaQqa3wfdp6NG0zEcG0EklYKCQr1SiNoxlCsN9RVlGFRA0jBgJg3rPBBxzruxYihTgpgdQ6VpImAKzvp0QAkqDesrkJg98qyTB2V/xaT7dFQqDcl4AmftQcemKYWYAMMwUaFpqC0vw1CBGDQBKu0Y4nYMQRFENA2iWXmAKYiNyYPSFHSfD5pPR7WuIRVP4qNEEiaAOqUQBzAoJoJKQ315ECOaQtwwYSZTWTHoAlRAEPNpSEChzDRRZQr6dQ2GplBhmtANwVDOGHRoPh+qdA1GIomP4tZ5T7UZMSg0lJch5sRgvyfG+wrnryJ/wvwYCxQi8qZh08BXJ1iglPRXPPa5inlnGoaJlJlA3L6vjSECpdk9ptjD1cO60mRoKIYh2Peucc57hdWhaFDQAUCsIdLF7nA1jJ7bAAC6rkFXyDhB1YrBhCRS0GCdR+BsNyMG08Tw0AiGlXWuQ/pNENNjUFkxWOtxLoPVdT0zBlj360klkmkxSM4YRARDQyMYUs6Q+qNBOPfG8QHQ0mLQoKDbV9CYprW9rBjscycMOwbAOmcDaeezWr9b9zQaHieGXHlw7uJkGlYMPl2z74ljDSsvgDXwXTIJSaasr52sU3PcHDrbgAhiw3EMK/t8kjwxaGJdIWUq5x4/9lvPNK0iRtfgc89DSY8hBUlaJwDrkn5yM9xiDgLEhuNWwTomhkJK7tMGEVEeJX2SLBEREV2YWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPKekr+JprAnA7wsWbCP2FTwVSiFlX07rg0KNUgiKIAVBGRQCSqHCvlJCwfnXGVJdwQ8FH0xUisC0l9cABMQa8L4KCqbSkEgflt0d/Ny6TKPSHnE1BoEOhWqlMCyCuB2D334ueWLwQSEAExUi1qXOCvBDwW9vqxLWFSZxewj+9BicNVYqBVMEw7Cq02n2fschCEChTClUiVjD2KdFn54HPwQVYiIFhWoFBKDgS4tBVxpiOfLgxFDuXCljb6NaKYzYr81EYtChEISgSkwkAFRBIagUAiIwIKiAgl4gD6b9ftAEGLLnhJRCQgTDEPihUK4UYrBGx80XQ5mdhySACihUKSsPKTuGgFKIFXgtypSCLsAwrH0dG0OFUhgeE8N4plVMR5VZNm47IqKpoFJJ4O3XJ9S2pAuUe1avQmVFZf4Gyv0Bn7I6JsM0oSnAr2lImvZN3TSrY0+5t4KVjEtfYRcjyh6bAwL4fToUgETKulzUuZGbc8mxO+y4G4PApzRrmHo7Bp+mwTAFhlg3INRgFVEup2DSrH3Q7DE1koYJiMCv69AUELdj8tk3MDTE2gdxBu0YkwcnBgUgoGtI2TFoSrPuAGyOdqVuDPbNZZwYUoY1QqtzOW/CMKxxUuwb+xluHrJj0O3rag170DG/PpqHicSg7AIkaRgwReDXNehKQ8J+7tM1aPaw85IzDwJdaVkxmCL2a1NcDCJi30BSQzw1GoOuNBgieWKw8qAApMQa7yZnDPZl2ukxFNJUU4aacv+47YiIpkJ0cBBY9l8TalvSBcrnV1xVcKAXqy9Q7r8ZN7yzP9laz627/zpjjzgdiru83aGKAGJaQ9wrXbM7HdNehea2A+yxMMbGAPszsFt4aPbyVgzOGBzOcRenP1IZMQjELi6gWQO0iWkPKZ8Wg1MgiXP8xhnrRGF0tDE3D9Z+QGlIm2I3k4IxKHvwD2u8ExNK08fkQbJigF0kwS4OlKbZ8doxKDV6E8K8MdgxiwnY27TGHzGhlO4WdaOxSeHXwl2vkwenlBldR648uDfaSXstnJhgF3POslkxqLQCzl73RF6LQtJzT0TkNXo0OuG2PAeFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPKeoAqWzsxNXXnklqqur0djYiFtuuQVHjx7NaCMi2LhxI1paWlBeXo7ly5fjyJEjGW3i8TjWrVuHhoYGVFZW4uabb8bJkyfPfW+IiIjoglBUgdLT04M1a9Zg37596O7uRiqVwsqVKzE0NOS2+d73voeHHnoIP/zhD7F//36Ew2HccMMNGBgYcNt0dHRg27Zt6Orqwt69ezE4OIhVq1bBMIyPb8+IiIioZCmZyA0+8vjwww/R2NiInp4eXHvttRARtLS0oKOjA/fffz8A62hJU1MTvvvd7+Kuu+5CJBLB9OnT8cQTT+C2224DALz//vtobW3Fjh07cOONN4673Wg0ilAohP7+ft6Lh/fi4b140vBePETkZdFoFNOmTUMkEinYfwPneA5KJBIBANTV1QEAjh8/jt7eXqxcudJtEwwGsWzZMrz88ssAgAMHDiCZTGa0aWlpQXt7u9tmrHg8jmg0mvEgIiKiC9ekCxQRwT333INrrrkG7e3tAIDe3l4AQFNTU0bbpqYmd15vby8CgQBqa2vzthmrs7MToVDIfbS2tk42bCIiIioBky5Q1q5dizfeeAO//OUvs+aNPcwsIuMeei7UZv369YhEIu7jxIkTkw2biIiISsCkCpR169Zh+/bt2L17N2bOnOlOD4fDAJB1JKSvr889qhIOh5FIJNDf35+3zVjBYBA1NTUZDyIiIrpwFVWgiAjWrl2LrVu34sUXX0RbW1vG/La2NoTDYXR3d7vTEokEenp6sHTpUgDAokWL4Pf7M9qcOnUKhw8fdtsQERHRp5uvmMZr1qzBU089hWeeeQbV1dXukZJQKITy8nIopdDR0YFNmzZhzpw5mDNnDjZt2oSKigp87Wtfc9veeeeduPfee1FfX4+6ujrcd999mD9/Pq6//vqigjeGYzB8/rzzlVJwL9lwfhHT+l3Z12g4V/FYM91/rCtrVPbXVWlX0AAATNO6SkXTM9vZV3fkjwHWdq3LOCYRg9hXiljrE1Og9MwY4Fy9UnQenAAmEoN1tcloDBrSNubGYK2jQB7cGBQyrp+xJ1uhjv3q0LSu9hmbB00D1ERjSM9/nhicZsgRQ1Ye7Cucxr4WEOsKn3FjsPPixgA3jvQrfvKxXmteyUNE3mTERibctqgCZfPmzQCA5cuXZ0zfsmUL7rjjDgDAt7/9bcRiMXzrW99Cf38/rr76auzatQvV1dVu+4cffhg+nw+33norYrEYVqxYgcceewx61h/1wl6/byMqA4G889P/xFuXGQOA1TErpVmXlNoXAyuluR2muFOdv/VWBy0iME0TVh/gXF47epmxlnaZsNj/qrRY3MtrxcxY52gMyu2AnKkAoGXEAJjOpc52pyhinEMM9qXOBfLg5lIVjgECoKgY0i7xFUmLIXce3BgACJT1+tmXVyPtOZQGTSsmBsl4Pd0YnCItZx7sGEzDri0UoDSI6cSgoGnaeYmhEJYmRORlQ4nEhNue0zgoU8UZB+WXsz6HCq1wUaPSfjidgdM5uGOOuGNjjHYG7vJjxs1IHw8DY57naudu3t7O+YwBSkHL0W7CeXDXef5jcJZxY8haZ+4YnKVzxZCey4Ix5N1mgXUWGwMUnKFYJpKHYmIgIipVw6aBr75z8PyPg0JERER0PrBAISIiIs9hgUJERESewwKFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs/xTXUA52L+/1mP6oqK/A2UgrL+AZQGEQFM05qg6YBpACKA0qA0BZgmxF5URAAoKE3ZyyuIAGIY1jp13WpnGBAIlOaz1iGm1c76MRoDAGhjY9Cs3+0YoCkoe/nRGAClaVAKUErBdGMQKE239stIQUSgdB1K02AHAHPcGABovrQ8WDHljkFBKeshApjjxmACgtEYYMWvYL8WEKsNYL0WYgLmBGOwtgzTSAEQaE4MZgpiWjEpPUce7BicnIoAEAMQALputUl7bZSIu21J3wctOwalWfsthhODZr1H7G1L2rpG82CtA2Kk5WH8GApx9o+IyIsGhoeBr986obYlXaDMWLUSNTU1eecrtzpJI6YzA4CMFgcZbcTtr8cuL6bpdvQA3KJGaRNfh9vzqnFicPdjnBjEtIoDTR+zDqtTGz8G2HkZe0BN0ppNNoaJ5qH4GKzO37Q6dmdbpmkXTWOamueSh8wCJWu9yIwhI6aPO4ZxahSlsUAhIu+KRqMTblvaX/GocR7pzdxOQaX9zFyXu9jY5e0jB+kTx6wuo527rbExjN2k80k613OVo22OT8dqTMBZ7cb+mrHBHHmASl/buDHkapuZB5WdB+twUEb7sTs1fgzZ09ObF/1a5JmWS/p6R/OfXXcAhV+LrN3O3lJ2XBN8zxMRlbrSLlCIiIjogsQChYiIiDyHBQoRERF5DgsUIiIi8hwWKEREROQ5LFCIiIjIc1igEBERkecUVaB0dnbiyiuvRHV1NRobG3HLLbfg6NGjGW3uuOOOjDEolFL4whe+kNEmHo9j3bp1aGhoQGVlJW6++WacPHny3PeGiIiILghFFSg9PT1Ys2YN9u3bh+7ubqRSKaxcuRJDQ0MZ7f7yL/8Sp06dch87duzImN/R0YFt27ahq6sLe/fuxeDgIFatWgXDMM59j4iIiKjkFTXU/c6dOzOeb9myBY2NjThw4ACuvfZad3owGEQ4HM65jkgkgkcffRRPPPEErr/+egDAL37xC7S2tuKFF17AjTfeWOw+EBER0QXmnM5BiUQiAIC6urqM6Xv27EFjYyMuu+wy/PM//zP6+vrceQcOHEAymcTKlSvdaS0tLWhvb8fLL7+cczvxeBzRaDTjQURERBeuSRcoIoJ77rkH11xzDdrb293pN910E5588km8+OKL+Pd//3fs378f1113HeLxOACgt7cXgUAAtbW1GetrampCb29vzm11dnYiFAq5j9bW1smGTURERCVg0nczXrt2Ld544w3s3bs3Y/ptt93m/t7e3o7Fixdj1qxZePbZZ/HlL3857/qsu+7mvtvZ+vXrcc8997jPo9EoixQiIqIL2KSOoKxbtw7bt2/H7t27MXPmzIJtm5ubMWvWLBw7dgwAEA6HkUgk0N/fn9Gur68PTU1NOdcRDAZRU1OT8SAiIqILV1EFiohg7dq12Lp1K1588UW0tbWNu8yZM2dw4sQJNDc3AwAWLVoEv9+P7u5ut82pU6dw+PBhLF26tMjwiYiI6EJU1Fc8a9aswVNPPYVnnnkG1dXV7jkjoVAI5eXlGBwcxMaNG/F3f/d3aG5uxttvv40NGzagoaEBf/u3f+u2vfPOO3Hvvfeivr4edXV1uO+++zB//nz3qh4iIiL6dCuqQNm8eTMAYPny5RnTt2zZgjvuuAO6ruPQoUN4/PHHcfbsWTQ3N+OLX/wifvWrX6G6utpt//DDD8Pn8+HWW29FLBbDihUr8Nhjj0HX9XPfIyIiIip5SkRkqoMoVjQaRSgUwivfeQhVZeU52yj7h3varVKw9tSEggKUpAVuEAAAEklJREFUAkQgEAAalALsBhDnh4Ld1lqPABDTtFanWd+OOc+h7HXYRCRtHWNjEDs+OwaR0eXHxgBYJw9PJAZNs+K1FxQRiFibmVgM1si/k4pBTHt/Nftk58IxOPMmH4OyYxA3hsxcZsaQ67UYjcFaBmLvhxODs86JxKCUvQ4zbT+0SeShcAzj/c+qnPcsEZEHDY7EsHjD/0YkEhn3fNJJX8XjBce3PIUKvfAuuH+s3T5PchQoCmn9GdK6Rihnnj3FqedUWucy2s5aiUj2OrJjwGiHNNkY7P0QMd291YqOQTu3PEwmBjjrsWOwf04khoziwN7m6Otpui1LLYb06ePFUBiLEyLyrmEjNeG2JV2gmMkUTKPwH22V9sPql8d8ard/d7qGsZ9SlRrtTgoWKHnauZu3t3M+Y0g/hJMzhvHy4K7z/MfgLKPSlslcZ+4YnKVzxZCey4Ix5N1mgXUWG0Pa4ZqJ5KGYGIiISpVpTvyWNrybMREREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPIcFChEREXkOCxQiIiLyHBYoRERE5DksUIiIiMhzWKAQERGR57BAISIiIs9hgUJERESewwKFiIiIPIcFChEREXmOb6oDOBfNf3UDqoLBvPOV/cP6V4OIACLWNKVBxAQEgFJQSgFiQuxlxf5FKQWlrH9NAcQ0oAAoTbfamYa1Ck2HpmBvAzDtFXzcMYgApmlCQaA0DYCCmCYEAqU0aJrVBiIQEWvVRccgEDuKycVgrxNWPkbXkTsGKM36XUxAaePHAAVBWgxKA5SCiAkR67nSFJQAAskfAwCYVpxKy45JWYmE5ItBKZiGMRqDplnvBzcGax35Y1AQKDcGaOl5UHljKEQ5LzYRkQcNxuPAjw9OqK0SmcifPW+JRqMIhUL48MR7qKmpydvO6VCdJ2L/8Vf2H3/YHVp6pwiMdqru8vY6BIAYdoGi2wWK4RQo2ui2IBBzzDogaR2zCQVld0iFY4ACtLQYANidYloMpgExBUr3jTYTyd6PjDzYBZTdKcqY4mBsDMopXsbGoNnFgWkApgC6njcPUCqtYwZgmtbzvDFYy+aLQQwTgGkVi8oqkmCaOWKAXTQ4MTivBaxiAGKtI18McH+1Cp+iY7BzaUrePGS/FsoqenLEUIhTQBEReVE0GkX9jBZEIpGC/TdQ4kdQfFUV8FVV5J3vdAJuZ5B+5ADK+rNvFwdQgLL/+IvdMbrLOwVK+hEUfbSDs1ahZXZIppl29EJhtLvEmOIgu0ARJ4qMT+1ODAItrWO3DrpYxUh6DM6RHLE+o7sxiF0rZeYB7tGLtCl2MykYg3UExSlmrI46Mw+SFUOujtkp3GAfDVEyXgx2zGIC9jbFNK0YlA6ljSkORAq/Fu56nTxYr52krSNXHtwKKu21cGICrGLBWTYrBrcGGl33RF6LQhSrEyLyMN1ITbgtz0EhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOUUVKJs3b8aCBQtQU1ODmpoaLFmyBM8995w7X0SwceNGtLS0oLy8HMuXL8eRI0cy1hGPx7Fu3To0NDSgsrISN998M06ePPnx7A0RERFdEIoqUGbOnIkHH3wQr776Kl599VVcd911+Ju/+Ru3CPne976Hhx56CD/84Q+xf/9+hMNh3HDDDRgYGHDX0dHRgW3btqGrqwt79+7F4OAgVq1aBcMwPt49IyIiopJ1ziPJ1tXV4fvf/z6+8Y1voKWlBR0dHbj//vsBWEdLmpqa8N3vfhd33XUXIpEIpk+fjieeeAK33XYbAOD9999Ha2srduzYgRtvvHFC23RGku3v7y88kixwQQ7UJh4YqE04UBsHaiMiKlI0GsW0adMmNJLspM9BMQwDXV1dGBoawpIlS3D8+HH09vZi5cqVbptgMIhly5bh5ZdfBgAcOHAAyWQyo01LSwva29vdNrnE43FEo9GMBxEREV24ii5QDh06hKqqKgSDQaxevRrbtm3DvHnz0NvbCwBoamrKaN/U1OTO6+3tRSAQQG1tbd42uXR2diIUCrmP1tbWYsMmIiKiElJ0gTJ37lwcPHgQ+/btwze/+U3cfvvtePPNN935Yw8xWzdpK3zYebw269evRyQScR8nTpwoNmwiIiIqIUUXKIFAAJdeeikWL16Mzs5OLFy4ED/4wQ8QDocBIOtISF9fn3tUJRwOI5FIoL+/P2+bXILBoHvlkPMgIiKiC9c5j4MiIojH42hra0M4HEZ3d7c7L5FIoKenB0uXLgUALFq0CH6/P6PNqVOncPjwYbcNERERka+Yxhs2bMBNN92E1tZWDAwMoKurC3v27MHOnTuhlEJHRwc2bdqEOXPmYM6cOdi0aRMqKirwta99DQAQCoVw55134t5770V9fT3q6upw3333Yf78+bj++uvPyw4SERFR6SmqQPnggw/w9a9/HadOnUIoFMKCBQuwc+dO3HDDDQCAb3/724jFYvjWt76F/v5+XH311di1axeqq6vddTz88MPw+Xy49dZbEYvFsGLFCjz22GPQdf3j3TMiIiIqWec8DspU4DgoHAeF46DkxnFQiMjLihkHpagjKF4TPfpnoKoq73ylMNoxO92N2+tbxUFaQ6dksZtJxvKwuwq3QNGsDkRMwypEnAJj3HUUFwOU3SmmLZ9RoEBB7CJH2c8Lx5DZMcPp0EQmHAMAmHYesmJIy4Oz2vFj0OyNmQDsAmXcPMAucKToGJy9yJsHa2OZMVg/oLSxeTCtaNJicAsWTDaGPHmwYyhEKQU3yUREHhMdHJxw25IuUH5/x1pU6IV3QWX9JmnPJc+89DmZn3bdowFpy4jTzqmB3KnnPwbnE/rHE0P285wxIO2IwscWQ/6YJh0DRvM1uRhGn6dPVRgtAsyMGOwiKe25kwhJi+JcYyiEtQkRedmwkZpw25IuUIzYCAyt8LkrKu2H82nVOczufp3ifjIXt2N1lx/zqT/9UD/GPM/Vzt28vZ3zGQOUci/LyhnDeHlw13n+Y3CWcWPIWmfuGJylc8WQnsuCMeTdZoF1FhsDFJxvmSaSh2JiICIqVSlz4vfdO+fLjImIiIg+bixQiIiIyHNYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOSxQiIiIyHNYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFKIiyFQHQET0KcEChYiIiDzHN9UBTIaI9Tl22DTGbavSfoi1sP1UASLWNKWsaRDnv9Hl3XnWdGfbSqmMWPK1czdvb+d8xgCl3IozZwzj5cFd5/mPwVnGjSFrnbljcJbOFUN6LgvGkHebBdaZtpyaSAxQ0JxJE8hDUTEQEZUop99O/5uYT0kWKAMDAwCAO08cmuJIiIiIqFgDAwMIhUIF2yiZSBnjMaZp4ujRo5g3bx5OnDiBmpqaqQ6pJESjUbS2tjJnRWLeisecTQ7zVjzmbHKmKm8igoGBAbS0tEDTCp9lUpJHUDRNw4wZMwAANTU1fFMWiTmbHOateMzZ5DBvxWPOJmcq8jbekRMHT5IlIiIiz2GBQkRERJ5TsgVKMBjEAw88gGAwONWhlAzmbHKYt+IxZ5PDvBWPOZucUshbSZ4kS0RERBe2kj2CQkRERBcuFihERETkOSxQiIiIyHNYoBAREZHnlGSB8uMf/xhtbW0oKyvDokWL8Lvf/W6qQ5oyL730Ev76r/8aLS0tUErhN7/5TcZ8EcHGjRvR0tKC8vJyLF++HEeOHMloE4/HsW7dOjQ0NKCyshI333wzTp48+QnuxSers7MTV155Jaqrq9HY2IhbbrkFR48ezWjDvGXbvHkzFixY4A7stGTJEjz33HPufOZsfJ2dnVBKoaOjw53GvGXbuHGjdf+vtEc4HHbnM2e5vffee/jHf/xH1NfXo6KiAp/73Odw4MABd37J5U1KTFdXl/j9fnnkkUfkzTfflLvvvlsqKyvlnXfemerQpsSOHTvk3/7t3+Tpp58WALJt27aM+Q8++KBUV1fL008/LYcOHZLbbrtNmpubJRqNum1Wr14tM2bMkO7ubnnttdfki1/8oixcuFBSqdQnvDefjBtvvFG2bNkihw8floMHD8qXvvQlueiii2RwcNBtw7xl2759uzz77LNy9OhROXr0qGzYsEH8fr8cPnxYRJiz8bzyyisye/ZsWbBggdx9993udOYt2wMPPCCf/exn5dSpU+6jr6/Pnc+cZfvoo49k1qxZcscdd8jvf/97OX78uLzwwgvypz/9yW1TankruQLlqquuktWrV2dMu/zyy+Vf//Vfpygi7xhboJimKeFwWB588EF32sjIiIRCIfnJT34iIiJnz54Vv98vXV1dbpv33ntPNE2TnTt3fmKxT6W+vj4BID09PSLCvBWjtrZWfvaznzFn4xgYGJA5c+ZId3e3LFu2zC1QmLfcHnjgAVm4cGHOecxZbvfff79cc801eeeXYt5K6iueRCKBAwcOYOXKlRnTV65ciZdffnmKovKu48ePo7e3NyNfwWAQy5Ytc/N14MABJJPJjDYtLS1ob2//1OQ0EokAAOrq6gAwbxNhGAa6urowNDSEJUuWMGfjWLNmDb70pS/h+uuvz5jOvOV37NgxtLS0oK2tDV/5ylfw1ltvAWDO8tm+fTsWL16Mv//7v0djYyOuuOIKPPLII+78UsxbSRUop0+fhmEYaGpqypje1NSE3t7eKYrKu5ycFMpXb28vAoEAamtr87a5kIkI7rnnHlxzzTVob28HwLwVcujQIVRVVSEYDGL16tXYtm0b5s2bx5wV0NXVhddeew2dnZ1Z85i33K6++mo8/vjjeP755/HII4+gt7cXS5cuxZkzZ5izPN566y1s3rwZc+bMwfPPP4/Vq1fjX/7lX/D4448DKM33WknezVgplfFcRLKm0ajJ5OvTktO1a9fijTfewN69e7PmMW/Z5s6di4MHD+Ls2bN4+umncfvtt6Onp8edz5xlOnHiBO6++27s2rULZWVledsxb5luuukm9/f58+djyZIluOSSS/Dzn/8cX/jCFwAwZ2OZponFixdj06ZNAIArrrgCR44cwebNm/FP//RPbrtSyltJHUFpaGiArutZlVxfX19WVUhwz3ovlK9wOIxEIoH+/v68bS5U69atw/bt27F7927MnDnTnc685RcIBHDppZdi8eLF6OzsxMKFC/GDH/yAOcvjwIED6Ovrw6JFi+Dz+eDz+dDT04P/+I//gM/nc/ebeSussrIS8+fPx7Fjx/hey6O5uRnz5s3LmPaZz3wG7777LoDS/LtWUgVKIBDAokWL0N3dnTG9u7sbS5cunaKovKutrQ3hcDgjX4lEAj09PW6+Fi1aBL/fn9Hm1KlTOHz48AWbUxHB2rVrsXXrVrz44otoa2vLmM+8TZyIIB6PM2d5rFixAocOHcLBgwfdx+LFi/EP//APOHjwIC6++GLmbQLi8Tj+8Ic/oLm5me+1PP7iL/4ia7iEP/7xj5g1axaAEv279omflnuOnMuMH330UXnzzTelo6NDKisr5e23357q0KbEwMCAvP766/L6668LAHnooYfk9ddfdy+7fvDBByUUCsnWrVvl0KFD8tWvfjXnZWUzZ86UF154QV577TW57rrrLujL8b75zW9KKBSSPXv2ZFzGODw87LZh3rKtX79eXnrpJTl+/Li88cYbsmHDBtE0TXbt2iUizNlEpV/FI8K85XLvvffKnj175K233pJ9+/bJqlWrpLq62v07z5xle+WVV8Tn88l3vvMdOXbsmDz55JNSUVEhv/jFL9w2pZa3kitQRER+9KMfyaxZsyQQCMjnP/959/LQT6Pdu3cLgKzH7bffLiLWpWUPPPCAhMNhCQaDcu2118qhQ4cy1hGLxWTt2rVSV1cn5eXlsmrVKnn33XenYG8+GbnyBUC2bNnitmHesn3jG99w/7+bPn26rFixwi1ORJiziRpboDBv2ZzxOfx+v7S0tMiXv/xlOXLkiDufOcvtt7/9rbS3t0swGJTLL79cfvrTn2bML7W8KRGRT/64DREREVF+JXUOChEREX06sEAhIiIiz2GBQkRERJ7DAoWIiIg8hwUKEREReQ4LFCIiIvIcFihERETkOSxQiIiIyHNYoBAREZHnsEAhIiIiz2GBQkRERJ7DAoWIiIg85/8DoBU/UG7iMNQAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wkV3nu/z2nQufuyXl2Z2dzVJYQQkiACAKMMckGLhY2GAP2tQFfX4z5AQJz4RIu9vV1xEgILJONAINACJAESKscd7W7Wm1Os5NnOlc45/fHqe7p2ShhgVa4ns+npe3q6qqn3lPT5633vM/7Cq21JkaMGDFixIgR4wyCfLoJxIgRI0aMGDFiHIvYQYkRI0aMGDFinHGIHZQYMWLEiBEjxhmH2EGJESNGjBgxYpxxiB2UGDFixIgRI8YZh9hBiREjRowYMWKccYgdlBgxYsSIESPGGYfYQYkRI0aMGDFinHGIHZQYMWLEiBEjxhmH2EGJ8WuNkZERXv7yl//C36/X63zqU59iw4YNZDIZent7ufLKK7njjjueQpbPbFx99dUIIZ6Wcz/66KNcffXV7N2797jP3vzmNzMyMvIr5/RkMD09ze/8zu/Q09ODEIJXvvKVJ933VPfyvffeixCC6667btH2m266iRe96EUMDAyQSCQYGBjg8ssv53//7/990vO86lWvQgjBH//xHz+pa9m7dy8ve9nL6OjoQAjBu971Lvbu3XtCXjFiPBHEDkqMGKfAH/zBH/AXf/EXvPKVr+Q//uM/+Pu//3smJia47LLLuPvuu59uemcE3vrWt7J58+an5dyPPvooH/7wh0/ooHzgAx/ghhtu+NWTehL4q7/6K2644Qb++q//ms2bN/PJT37yKTv2P/3TP/GSl7yEfD7P3/3d33HTTTfxiU98grVr1/KNb3zjhN8ZHx/nu9/9LgD/9m//Rq1We8Lne/e7381dd93Ftddey+bNm3n3u9/9lFxHjP+6sJ9uAjFiVCoV0un0003jONTrdb70pS/xhje8gY9+9KPN7ZdccgkDAwP827/9GxdeeOHTyPDJ45dh66GhIYaGhp7SYz4VWL58+dNN4bTYsmULy5cv541vfONTfuyPf/zjPPe5zz3OGXnTm96EUuqE3/niF7+I7/u87GUv43vf+x7f/OY3ecMb3vCEzrdlyxYuvPDCRVGgEzmOMWI8UcQRlBi/UjSWA+6//35e85rX0N7e3pxI7r33Xn7nd36HkZERUqkUIyMjvP71r2ffvn2LjnHdddchhOCWW27hHe94B11dXXR2dvKqV72Kw4cPn5bDP/zDP2DbNh/60IdOuZ+UEiklhUJh0fZ8Po+UkmQyedpzffjDH+aiiy6io6ODfD7PueeeyzXXXMOxPTob4fsbbriBTZs2kUwmGR0d5W//9m8X7XfrrbcihOD666/nPe95D319faRSKS677DIeeOCBRfu++c1vJpvN8sgjj/CiF72IXC7HC17wAsAsLbzzne9kcHAQ13UZHR3l/e9/P/V6HYBarcY555zDihUrmJubax5zbGyMvr4+Lr/8csIwBE68xNO4nu9+97ucc845pFIp1q5d23w6v+6661i7di2ZTIYLL7yQe++9d9H3n8i9cN111/Ha174WgOc973kIIRYtJ5xoiadWq/G+972PZcuW4boug4OD/NEf/RGzs7Mn5P+DH/yAc889l1QqxZo1a7j22muPH+QT4HT2bSx9/OhHP2Lbtm1N7rfeeusTOv4TwdTUFP39/Sf8TMoT//Rfe+219Pb28oUvfIFUKvWErrdxTz7++ON8//vfb17LyZyTxx9/nN/7vd9j5cqVpNNpBgcH+Y3f+A0eeeSR4/bdunUrL3rRi0in03R3d/NHf/RHfO9733vKbRXjDIWOEeNXiA996EMa0EuXLtXvfe979c0336y/9a1vaa21/vrXv64/+MEP6htuuEHfdttt+itf+Yq+7LLLdHd3t56YmGge4/Of/7wG9OjoqP7v//2/65tuukl/7nOf0+3t7fp5z3veovMtXbpUv+xlL9Naa62U0n/2Z3+mHcfRn//8558Q3z/90z/V2WxW33DDDXpubk7v2bNHv/71r9ft7e16586dp/3+m9/8Zn3NNdfom2++Wd988836r/7qr3QqldIf/vCHj+M5ODiolyxZoq+99lp944036je+8Y0a0J/61Kea+91yyy0a0MPDw/o3f/M39X/8x3/o66+/Xq9YsULn83m9a9eu5r5XXXWVdhxHj4yM6I9//OP6xz/+sb7pppt0tVrVmzZt0plMRn/605/WP/zhD/UHPvABbdu2fulLX9r8/mOPPaZzuZx+1atepbXWOgxD/fznP1/39PTow4cPN/drjOmx1zM0NKQ3bNigv/zlL+sbb7xRX3TRRdpxHP3BD35QX3LJJfqb3/ymvuGGG/SqVat0b2+vrlQqze8/kXthfHxcf+xjH9OA/vu//3u9efNmvXnzZj0+Pt68/qVLlzaPqZTSL37xi7Vt2/oDH/iA/uEPf6g//elP60wmo8855xxdq9WO479u3Tr9xS9+Ud900036ta99rQb0bbfddsoxfyL2rdVqevPmzfqcc87Ro6OjTe5zc3MnPW7rvXws7rnnHg0suq+vuOIKbdu2/tCHPqQffPBBHQTBKXnffvvtGtB//ud/rrXW+r/9t/+mhRB69+7dp/ze3Nyc3rx5s+7r69OXXHJJ81pqtZres2fPcbxuu+02/Wd/9mf6G9/4hr7tttv0DTfcoF/5ylfqVCqlt2/f3tzv8OHDurOzUy9ZskRfd911+sYbb9RvetOb9MjIiAb0LbfcckpeMZ75iB2UGL9SNCazD37wg6fdNwgCXSqVdCaT0f/3//7f5vaGg/LOd75z0f6f/OQnNaCPHDnS3Nb4Ua9UKvrVr361LhQK+kc/+tET5quU0h/84Ae1lFIDGtBLlizRDzzwwBM+RgNhGGrf9/VHPvIR3dnZqZVSi3gKIfSDDz646DsvfOELdT6f1+VyWWu94KCce+65i76/d+9e7TiOfutb39rcdtVVV2lAX3vttYuO+U//9E8a0F/72tcWbf/EJz6hAf3DH/6wue2rX/2qBvTf/M3fNO3Q+rnWJ3dQUqmUPnjwYHPbgw8+qAHd39/fvB6ttf7Wt76lAf2d73znpLY72b3w9a9//aST1bEOyg9+8AMN6E9+8pOL9mtc42c/+9lF/JPJpN63b19zW7Va1R0dHfoP//APT8pT6ydn38suu0yvX7/+lMdr5fRkHJTHH39cb9iwoXnfplIp/YIXvED/3d/9nfY877hj/P7v/74G9LZt27TWC/faBz7wgV+Y34kclGMRBIH2PE+vXLlSv/vd725u//M//3MthNBbt25dtP+LX/zi2EH5L4J4iSfG04JXv/rVx20rlUq8973vZcWKFdi2jW3bZLNZyuUy27ZtO27/V7ziFYveb9q0CeC4JaGpqSme//znc/fdd/Pzn/+8uczRQBiGBEHQfLWuz/+v//W/+PSnP83VV1/NLbfcwre//W1Wr17NC1/4wuOWVE6En/zkJ1xxxRUUCgUsy8JxHD74wQ8yNTXF+Pj4on3Xr1/PWWedtWjbG97wBubn57n//vuP2966rLJ06VKe/exnc8sttxzH4Vhb/+QnPyGTyfCa17xm0fY3v/nNAPz4xz9ubnvd617HO97xDv78z/+cj370o/zlX/4lL3zhC0973QBnn302g4ODzfdr164F4PLLL1+UB9PY3jpuT/ZeeCL4yU9+sug6G3jta19LJpNZdN0N/kuWLGm+TyaTrFq16rj760TneaL2/WVi+fLlPPTQQ9x22218+MMf5oorruCee+7hj//4j7n44osXJcCWSiW+9rWv8exnP5s1a9YAcNlll7F8+XKuu+66k+as/CIIgoCPfexjrFu3Dtd1sW0b13XZuXPnorG97bbb2LBhA+vWrVv0/de//vVPGZcYZzZiByXG04ITrY2/4Q1v4O/+7u9461vfyk033cTdd9/NPffcQ3d3N9Vq9bj9Ozs7F71PJBIAx+372GOPcdddd3HllVeyYcOG447zghe8AMdxmq/f//3fB2Dbtm188IMf5MMf/jAf+MAHuPzyy3nFK17B9773Pdra2njPe95zymu8++67edGLXgTAv/zLv3D77bdzzz338P73v/+EPPv6+o47RmPb1NTUE9r32P3S6TT5fH7RtqmpKfr6+o7LG+np6cG27eOO8fu///v4vo9t2/zJn/zJSa/3WHR0dCx677ruKbe3TphP9l54IpiamsK2bbq7uxdtF0Kc0HbH3l9g7rHTnf/J2veJwrbtZt7PsQiCAADHcRZtl1Ly3Oc+lw9+8IN85zvf4fDhw/z2b/82991336L8kq9+9auUSiVe97rXMTs7y+zsLHNzc7zuda/jwIED3Hzzzb8Q5xPhPe95Dx/4wAeayri77rqLe+65h7POOmuRbaempujt7T3u+yfaFuPXE7GKJ8bTgmN/vOfm5vjud7/Lhz70If7iL/6iub1erzM9Pf2fOtfFF1/Ma1/7Wt7ylrcA8I//+I+LkgT/+Z//mWKx2Hzf1dUFwEMPPYTWmgsuuGDR8RzH4ayzzuK222475Xm/8pWv4DgO3/3udxcl1H7rW9864f5jY2Mn3XbsZHmyfY/d70T1STo7O7nrrrvQWi/6fHx8nCAImtcPUC6XedOb3sSqVas4evQob33rW/n2t799Qv5PFX5Z90JnZydBEDAxMbHISdFaMzY2dtw4/2fO80Tt+2TQ29vLoUOHTvhZY/vpJu9MJsP73vc+vvrVr7Jly5bm9muuuQaAd73rXbzrXe867nvXXHMNL37xi38h3sfi+uuv53d/93f52Mc+tmj75OQkbW1tzfednZ0cPXr0uO+f6N6P8euJOIIS44yAEAKtdTMK0sDnPve5kz41PhlcddVVfOUrX+Hzn/88v/u7v7vomKtXr+b8889vvhrKj4GBAQDuvPPORceq1+vcf//9p5XWCiGwbRvLsprbqtUq//qv/3rC/bdu3cpDDz20aNuXvvQlcrkc55577qLtX/7ylxcpgfbt28cdd9zB5ZdffkpOYCJGpVLpOEfpi1/8YvPzBt7+9rezf/9+vvnNb3LNNdfwne98h7/+678+7Tn+M3gy98LJomYnQuO6rr/++kXb//3f/51yuXzc0t8viidj3yeDK664gi1btvDoo48e99nXvvY1stksF110UXPbkSNHTnicxjJK4/7etm0bmzdv5tWvfjW33HLLca8XvOAFfPvb3/6FIz/HQghx3Nh+73vfO875uuyyy054vV/5yleeEh4xznzEEZQYZwTy+TzPfe5z+dSnPkVXVxcjIyPcdtttXHPNNYueqv4zeM1rXkM6neY1r3kN1WqVL3/5y83lhRPhOc95DhdccAFXX301lUqF5z73uczNzfH//t//Y8+ePSd1NBp42ctexmc+8xne8IY38La3vY2pqSk+/elPH/fj3MDAwACveMUruPrqq+nv7+f666/n5ptv5hOf+MRxtUvGx8f5rd/6Lf7gD/6Aubk5PvShD5FMJnnf+953Wjv87u/+Ln//93/PVVddxd69e9m4cSM///nP+djHPsZLX/pSrrjiCsA4BNdffz2f//znWb9+PevXr+eP//iPee9738sll1zyS6sB82TuhcaS3Wc/+1lyuRzJZJJly5adcHnmhS98IS9+8Yt573vfy/z8PJdccgkPP/wwH/rQhzjnnHN405ve9JTwf6L2fbL40z/9U774xS9y+eWX85d/+Zds3LiRmZkZvvrVr/KNb3yDz3zmM+Ryueb+69ev5wUveAFXXnkly5cvp1arcdddd/F//s//obe3txlRbERP/uf//J8nHNNisciPf/xjrr/+ev70T//0F+Leipe//OVcd911rFmzhk2bNnHffffxqU996jiH/13vehfXXnstV155JR/5yEfo7e3lS1/6Etu3bwdOLpWO8WuEpzFBN8Z/QTQUH62y4QYOHjyoX/3qV+v29nady+X0S17yEr1lyxa9dOlSfdVVVzX3a6h47rnnnkXfb6gOWrP7T6QsuOWWW3Q2m9UveclLFklbT4TZ2Vn9/ve/X69du1an02nd09OjL7/8cn3jjTc+oeu99tpr9erVq3UikdCjo6P64x//uL7mmms0oPfs2XMcz2984xt6/fr12nVdPTIyoj/zmc+c8Br/9V//Vf/Jn/yJ7u7u1olEQl966aX63nvvXbTvVVddpTOZzAl5TU1N6be//e26v79f27atly5dqt/3vvc1pbYPP/ywTqVSi+yutZHHnnfeeXpkZETPzMxorU+u4jmR4gTQf/RHf7RoW0Pp0SqnfqL3gtZa/83f/I1etmyZtixrkWLkWBWP1kaJ8973vlcvXbpUO46j+/v79Tve8Y7mtZyO/2WXXaYvu+yy47Yfi9PZt/V4T1TFo7XWY2Nj+h3veIdesmSJtm1b53I5/ZznPEd//etfP27ff/7nf9avetWr9OjoqE6n09p1Xb18+XL99re/XR84cEBrrbXnebqnp0efffbZJz1nEAR6aGhIb9y48ZTcnqiKZ2ZmRr/lLW/RPT09Op1O6+c85zn6Zz/72Qltu2XLFn3FFVfoZDKpOzo69Fve8hb9hS98QQP6oYceOo21YjzTIbQ+pmJUjBgxfuUYGRlhw4YNzUJmJ8Ott97K8573PL7+9a8fpxKJEeO/At72trfx5S9/mampqVNGQGM88xEv8cSIESNGjDMSH/nIRxgYGGB0dJRSqcR3v/tdPve5z/H//X//X+yc/BdA7KDEiBEjRowzEo7j8KlPfYqDBw8SBAErV67kM5/5zFOSCxPjzEe8xBMjRowYMWLEOOPwtKZB/8M//APLli0jmUxy3nnn8bOf/ezppBMjRowYMWLEOEPwtDkoX/3qV3nXu97F+9//fh544AEuvfRSrrzySvbv3/90UYoRI0aMGDFinCF42pZ4LrroIs4991z+8R//sblt7dq1vPKVr+TjH//400EpRowYMWLEiHGG4GlJkvU8j/vuu29RGWuAF73oRdxxxx3H7V+v16nX6833Simmp6fp7Ow8YSnvGDFixIgRI8aZB601xWKRgYGB0xbbe1oclMnJScIwPK5vRG9v7wn7LHz84x/nwx/+8K+KXowYMWLEiBHjl4gDBw6ctl3I0yozPjb6oY9prtXA+973vkWdY+fm5liyZAkXnPd72NbJtfAaCIT5fypayKoJk3iT1zAnQAFJbbaVo89sDQ0WoYAQsz2lwQN8AZlon5IwRkxoc+wAsKJjNDg0jpGKzlONDp7TUIm+0+BQEea4J+IggKyGWsQhpcEB5oU5ZzLi50XvregYp+LQpqEYcUhocy3l6DOnhYOK9hGYa2+c50QcfKB+DAeisQij8zgRBx3ZoSbMMY/lYANSL+ZAxCGIzpPQkMBch4g4BKfjALiR/VV0P3jR/eFG/CoRv5NxyLZcqwtktGZWiCYHFV3jie6pAPMdN7r2MOJQj47nRNdUOoEdToUr5nexrvbU9EyJESNGjKcaFRXylv0PL2rLcDI8LQ5KV1cXlmUdFy0ZHx8/YTfORCJxwv4ltuVi26d2UBACBdhRqo0tRDRhaOyWzyQCSzScC92cTBoOU2O7ArQQzX0sIbBbjteY0Brn0y3HsDVIzH6gsTXYAkBEHMzx5Ek4NHkDKuJgR9fUyi+MOFnRMU7O4Rje0fGsaJJt5aCifWTLeU7GwTiGizlEF7Jwzug7uoVD2PzMjIWgMTHrJoeGTRv2DY/hIFo+W+AA5kwtHE5wXtUYTw02LfcHusVBWXCgG9caNu8BhS1kk0PjeA2HtcFBHHOftPIOEQTiBDZqscOpkLQc0tI67X4xYsSI8XTiiaRnPC0qHtd1Oe+887j55psXbb/55pt59rOf/XRQihEjRowYMWKcQXjalnje85738KY3vYnzzz+fiy++mM9+9rPs37+ft7/97b8aAk9zcq1AIMRC2P+Xe65TfBY9vT8ZHv952VcjrrPA4fgz/OrGR5yQwy//nMdti8YiRowYMWI8jQ7Kb//2bzM1NcVHPvIRjhw5woYNG7jxxhtZunTpEz+I1uZ1EgghsKRASkHohYRBiHBt2jty9GVTWOUaU9Pz+F6IbVvYjoVUGqEApRoBeYSMJo6WZZtGTojZvBC6FwBKm3yaaJuUwoTqA4Xnh2jbor0zR182zXStzvjkPL4fYFkSy7aQ+lgOIKRZOmhVhTdyY6JWsmZfKRCIyDYR21YOocLzAnBs8m1ZBvIZpmoe49Pz+DUPhMBOOqBAKNXkoFs4gG6a/sQc5IK9WjhYQoAUECo8L0TbklxbloFChqIXcHhyznCQEsu1EBqkUhAdt7Fk13AmtDY8VGQLDYgT2kEfx0EoTb3uo22LbCHNQHuesu9zZGqeoOoBYCUcJCBDBVq13FgSIRauGQ0KTaBBm0E6joO5H6KxiO5LlMbzApQlyeTT9LfnqIaKw5NzBNU6QmvspGuW1kJ1ynu9ibgudIwYMX5N8LQmyb7zne/kne985y/8faUUKlQn/dyyLRzbQtgW1apPveaRTbksXzHI+hWDbN87xr13b6NYrZNMJ0klkuCHKC8gCBUgwDKJu0JKMyGGCuRCoqTWGq00ypIISyKVBhQ6clIs28KxLHAs/KBGuVonmU0xunyA9SuH2HdokpnNj1KcL+MmXFJZBxEolOcThhqNBssy0RYp0Wh0YDiEsOAAKI22hOGggUChlTIcLMNBOBZepU6pUidTsFm6pIfzNixj35FpindvY3qujG9Jcvk0hArlqRYOZlKWUqJD0GG4iEPTQRGGg9AaAt3kIC0L25I4ro1XrVOp1XHTSYaHujl34yiTs0VmfvYIM3NlAssik0shQoXyNGFkSyxpnCRLokNzfWCSTv1jOUhp1i8DjVIKoTXSktiWxHZslB9QrNRJZJP093dywbmrmJotUbzrUSbmyngacrkUQmuUWuCgpUTYGA5KoX2FFoaDh0Br4ySpFg4iNHZQWiOlxHYkjmMTeD6lah0nnaC3t53zzl1FsVaneMdWjs6V8EJFoZCJHN6AIAg5XdmihmMcI0aMGGcinszv09Na6v4/C6X0SV+NH2pbShzbwg9D/CAkmXAYGenjrPNWsXy0n2TCxQ8Vfhji2haWZUyilUZpFR3HPLWbRNEoYTN6NSMKRBGUaPVCKeO4ANhS4NoWodZ4fohjW4ws7eXsc1eycuUg6aRLEHFwokkUQOnWazFP3grDQbAQOWjaI+IpowhDwxYNDo5tESrDwXVshoe7OevcVaxcNUQ2k0QpRd0LcGzjTAgESquIw8JSiBbmikVL9MJETMx7mhx0ix00lhQ4lkRrqPshliUZGuzirHNWsGbtUrLpBEopvGDBDlLQMqbmPFIItBDN9xqxYIdG0EYucNCRHY2fJXBtCUJQ83wsKenv62DTuStZs24JhVwaraHmBVhSYluWOZ9efF81OUBzRBZx0K0cWOCASZx1bIkGar45T19PGxvPXs76Dctoy6dBQ7UemMheZIfGMU71ihEjRoxfFzyjuxmfaoVHY9Q2UpgJIQgV0pLksimGh7pYuXqI8ak58tkURy1JECqsaNJpKH9oToi0LK+IRV6dFCaM38iakJhJWjddmWipSUAYapCCdDrB8FA3K1cPU67WyedSjNkWYaiiiQ+InKHGcQW6uaxgMliIzqsXTcSNfZtLImb3iIMgDBUIyGSSDA50snL1EFXfp5DP4Dg2pYrXnHxpLGM0zk/DDhEH0cphIbNEsrDso6L/Ww07SIGKIh/pVIKB/g5WrhoikXIp5DPYtk3NC8w1Ra8mh4ZzAE3rNnbTmkUchG6RSOuFe6JhB601SmtSKZf+3nZWrRoimXJpb8/iujblat3cO5GqZsEOC+PcuPcEka0aHBrj1Mqh5b4kuicbHNIpl96edlasHGR2vkxHxGG+VDURGCEIG3Y4jQ8St/6MESPGrwue0REULcVJX82ZoiUPIZtN0dmZZ6C/k3wuzUBfB11debLZFOiFCVg0/hPNeEJrhDYhekTDKSGSGZt/KK1Bq8Xfb74WIi3pdILOzjx9ve10tmfp7Wmjq6tALpc2+RWNEL0AhGx+XwJCmeWKE3EQUUQBpRcm54ajEz3FC8xSQyqdpLMzT39fB7lcisH+Dnq6C+QLGbNfk0PLNUSO2cntIJocdLSkQguHRlKyiGb6ZCpBR0eO/r4OOjpy9Pa0091lOEgpTsyhkePTiEacyg5aL8hyG9+XokkJpXCTLp0defr62uloz9LTVaCnu422tqypcKiO+f5xHIzbIWXktGq9wAETOZInuI7WXCU34dLRYe6HQiFDf1+H4dCexWoslbEwjqe653XDQ4sRI0aMXwM8oyMo2Xwa2z6+PgqYSaItn2Z4uJue7jYqNY9sNkV/XzvDg51YUjA00Mmlz9nI6OgApXKNbCbJxPgMBw5NMTU9b3IP/AAVhgSemZgd10FKQeCZLBTbtlBC4NcDZKiQtjRh+aSLtCSFfIahgU76etvxQoVlSXp72hhZ0oMQgr6eNi65ZD0jI32UyzXSKZfJyTkOHJpkarpIGKqIgyL0PYJQ4yYcpGUSf5VS2I6DluDXfcJaiBUtC1hJFykl+VyK4aFuw8EPsR2Lgf4Olo/2Y1uS7s48z3rWWgYGu5mcnKOQTzEzXWT/wUkmJucMhyBEBSGBHxCGGifhYElB6Dc4WGhp4dcDwpq3iIMlJZlMkqGBTgb6OwgxSbtdnXlWLB/AsS06O7JcfPFaBga7mJ8rk82mmJma5+DhSY5OzBEEYZOD8nyCQOG4NrYtUX5IqBSWbYMj8b1jOCTMWGTSCYYGu+jva0dYFr4X0N/fwbo1S5BS0lbIcMH5q+noyDM5MUc2m6Q0X2HfwQnGJ+bMtQchYRhx8EOchINtSTM+SmEJC2xJ4Ad4tTq2YyOlxE0nkZYklXIZ7O9kaLATISVhqOjtbWfd2iUkEw4J1+aC81fRVshydHyWtkKa4lyZg4enOTw2TRCEJ7zfG7A9G12LwygxYsQ4M/Fk2v89ox0ULGleJ4CQgraOHBddsJrnXLyO/iU9aCEoR5OfEILu7gKvePmzSGSS2LbF2IFx7rp7Bz/52SNMzZXROkRpjQ5CUBoVRTQsYYpzNZ6YNQIljNKikY+gXRssi0J7lvPOXclzLl7LyKphgkBRKVXI59MAdHcVePmVF+FmkiQTDpOHJ7njzm38+KcPM1OsEurARCzC0CSumvUaLExV08a/Q2FyUKQKEaH5TAoBliRXyHDu2cu55OJ1jCwfQFgWlWKFVDrRnJhfcsV5OOkkji2ZHp/l3vse44e3PMjkbCnKqQjQQYhQCxykiDjAAgcBIlAIYZY1pCvAtsjm02zcsIznX7aR0VXDCNuiOFsimzYOZjqd5CUvPB8r4ZBKJZiZmOWeu7dzy8+3MDlXJtAa7QfoMDTJszpawiNSzrBgEy2EiSQFoeHgmHsllU2xYf0Iz714Las3jiKkpFKqkko6SAH5fJrnPXcTz3/BuaRSLsXpIg8+sJObbnmQqbkyvlKoILJDK4fIBkHEQUccdMRBWzq6HySpTJK1a5bwgss2sWLNMIlUgtJ8BdexcBwbrTXPu3QTl19+DsmUS3muzIP37+SWn2/h6PQ8wen+uEUcQokRI8avB57RDsrM+CzWSUrdCyEQfsh9mSSBH3DeJRtYsayfbD6NQlCsB2QdSSaXBinYfWCCu299iC1b9rL38UNMH50BNLZlkUjYJFyjrgk8H20JAiuq1hmEhIHCcWwSaYvQD6jVfcoV09xQ+AH3J11CP6AqJCtXDJDNpVFCUPEDklKQyafQUrL34CT33f4ID9y/kz07DzF1dIYwVNi2RTJhk0glINQEdQ9tCUJpoQR4oeFgOTaJtIsKQmp1n0qlaJQndZ8HMkkCL6AUKDauW0omlwIhmKv7pG2LVDYFUnJgfIZ7f/YwWx7eze7HDjI1No1SGtuSJBMOTiqBUBEHKVCWhRISP1QEgYneJNIZdGSHynTRmKla56GkiyWg6IesWzdCNp9GICj5Aa6UpDNJsCRHJma5+6cP89CDu9i54wCTR0zkwLYkCdfGzSQR2kSMvBC0ZRHa4CuN8gKkbeHmUhCG1Go+lZkSWmv8So2HH0ygg4BSqDn73JVksimEgFIQYgtBKpNES8H4TIn7Nm/l4QceZ+f2A0wemcKPEnsTrk0ik0RogV/38ELAsggd23DwA5CSVD4DYUi97lOZLaGVpl6qsiXp4kiYr3ucfY7hAJqSF+BYAjedACGYLla5++eP8MiDu9j+6L4mh1PBq3pxA80YMWKcsXgyv09CP5l4yxmC+fl5CoUCF5z3ByctdW9SOASOY5POJFmxapj3vPvVDAyY0HqxUqeQSRKGIYcOT/G3f3sDj23fT6VcxY+WThr1Q6RtoTUEQWjyMCxBEJo0TSeSmyqtsW3LqH3CSP6sNUIKbNsik0kysnyQt73tZaxdM4xlW5SqHqmEg9Caw4en+Nw13+ehBx+nNF/B94KFHAdLIi2JFoLAX+AQRvJX15aR6sjImuVJOKTSSXr7O/mzP3sNq1cNY9sWc+Ua2ZSLAMrlGv/nM9/ggfsfo1Kq4Xl+U8YtLIkVcQh9U3VEWpIgUo+4tmXsoCIOUTKsCiIOQmDZFul0gsElPfzBH7yMs89aju1YlGs+KdcGrZmeLvKFL97MHbc/QnGuchwHaUmEEGapI5IOhwpCpXBtC5QijKTVJ+OQSrt0dLXxtre9nIuftRbHsSjVfBxL4liScrnGtdfdxE9veZDifJl63TdjoU/CQUoU4AcK15FNabKwJJY0YxOGJgqHENi2JJlK0Nndxpvf/GKee+lGHMemXPNwXRtHCmo1n3+9/kf84Pt3US5Wqdd9wjA8bRLsy4q72VSbeAr+ymLEiBHjqUdFhfzO3geYm5sjn8+fct9ndATFTtjYtnPSz1WoKFXqzBcr1Koejz12kHw+TaGQoT2bJFSaUqnKnl2HeeTBx5mdK4EQuK6DlXAW8g2VRgUhOlTIhIO0JAQ+Go1t2aYRX90n1BrbNjkHMpLTKqWoVD3KlRrVisfjOw/S399Bd1eBQiYJwPRMkf37x9n60C4OH5pECIGbcLBcZyFir82TufJDk9dhSQgDhNJmEpQQ1nxC5SOdFg6YpNVKzaNUrjE9OceObftNonA+TXs2idJQLlfZu3eMh+7fyeFDk0gpcVwHu9UOEYcwMLkXlmVBaBwpS9poaRk7eD7StZFCIt0FDiayVKNUqvLolr0sXdJDd3cb+ZQpRjZfrHDwwAQPP7CTwwcnjQPo2tjH2iEICb2gyUGoAHEsh9BHuDZSCKRrRxw0Nc+nUq0xNTHPo1v2sGb1EJ2defLRUlOxWGHs6DQP37+T/fuOIiyB6zjYzik42BYyCNFKYQsLLSUqDAjrPjLhIITAdhZzKFfqzEwV2fLwbjZtXEZbe5Z8OoEGqjWPQ4cmefC+nRzYPx7VTrFwHOe0SbCiLJ/UGm+MGDFi/CrxXycHRekFpcWJoI38VTo2hbYsPT1t5HJphBDUvQDXtcnl0nR3t1Foy1Iq16In5ajwGQtCoEbChY6qghr5rIjUOzpSZ0gaBUF0Q6esjTzYsixyhTQ9Pe20t2WBKCIjJflcmp6eNgrtOdxxs6wTyWHQWjQnRtFQJ0UcNFHORVRR1YhEIuVPk4OZFAWNSE6Knh6jGLEs2bRDOp2ku7uNjs48R8dnogqpx9gBmioUc2kNDg0JbKRYkSfhIMCyJNnoetvas0gp8IMQS0qymRRd3QU6OvM4rh1FKDDVbIVYzEEuHgsVyXZ19HmrcqhRj6ah1LIsi0Taobe3nY6OHLZtEQQhQghjh642OrsKJJKOGQtT2OY4DhzLIXo1lDeiaYcTcZCkUgm6e9pob8/hOLapkeNYJBMOXV15uroLuK7TjN4QRfVOjRN3BI8RI0aMMwFP5vfpme2gnKoQClGxNGGWeUZHehke6iZUiocf2c3D9+1k3VmjnH3OSoYGu1i+rJ+x8RlCz4Tnrah9rSaqS4Ip8gVGUtxIjDQOipHZEiWGohcmqQYHadsMD3UzPNiFlJKHH9nDw/ftZNnKAc4/fzVdnXmWL+tjz74xKpU6SmkzzzeSbqNk3EYXYhU5PrYQkY+mm7VDwkZRtYiDVhotTGXd4aEuVoz2I4Rgx46D3PXzLSxbNci5562ip6eN1asG2bXnCPWa15x8RasdhFhkhwUOOkoaNgnDIVEtkgaHyHmQjk1/Xwejo/04ts3Oxw9z7+ZH6e5r5zmXnUVXZ55VKwbZ8ug+/FLVJCkfw0FHYyEaHFhsByvaRzXsEFVvU1HZfmlJursKrFwxgG1b7N13lDtue5iunjYuevY6Mpkka1YN8eBDuyiWqiYZ9gQcGl2IVXSNjhTN6v6ykTzdcBwjDrrh8NkW3d1trF01hG1bHDo8ye23PkSuLcOzL91EW1uW9WuXcMfmrZQr9UVjceq/iZb6NzFixIhxhuHJ/D49ox0U5QcodfJSLo0n4nxnjtVrljA/V+aRbfv4whd+yK3fv4eLnn82b3vrS1kx3MPadUt4dM8RSjMl/EoN5fkgoiRQ28J2bRKhouYHeKEgIU3p91qgcLQiZdt4tsQPNVKFyCg/QQhBKpUg255l5aohtFLc/9AuPvsv3+MnN97NpgtW8453voJVS3sZXT5A144DTB2dwS/X0J5vJjlbomzL5E9YkpoXUA/BlRLbElRCha0UKccitC3qSiODBQ4gSKVcMm1Z1q4fIfAD7ntgJ1/66q38x1duYf35q3jrH7yMTeuWsmb1Eu55ZA8zk3N4xWqTg7YkoWNhOQscvBCcBocg4mCbZNG6UkbVFASRkyJIJB2y7TmWrxpEAo9s2cOXvnor3/7qrQwt6+NPg5BNa5awbKSP7v5OODqNV6oZ9U7EQUWtC9KWpO4H1P3QVAu2BNVQISMOyrGoK5BBiAhChFZNDql8hhWrh8mmEmx5dB/f/PYdfOma7zM00stb3/4bPOu8VYws7WVgSQ+HDk1Sn6+g/MAUpWvlYFvU6z51FWJJQdK2KDc4WBISNlUFIjRjISIHKZFwSBWyLF81RDqVYNv2/Xz7e3fy5Wt/QL4jzzv/pMazLljN0iU99A33MD42Tb1Yjexwamil4lIoMWLEOGPxZH6fntEOih81WjsZUukEnR05ege7CbXmS9f/iG2PH2Ln7iOks0ke33mIaz53I2uWD9A30MngYBdTUjLp+5SLpnEeTpTsaNmm2V7dj6Sr5tlcBb6JuCQklm3jhb5ZmvDMxJxIJehoz9I90IXl2Pz7N37Ktp2HeHTHARIplwP7x7nu2u+zenSA3v4OBge7kKFi0gsol6rRUouNsCykbeFoTaXmmaWERkJs4Ed5IA7YNkR1QvAC0JpE0qWjPUdnfweZbIqvf/02tu44wGO7j5DOpDh4cJLrv3gzK0d6WbFyiOGhbhwhmPACSnNlMyk6trGDa2FLja55hIDbSIgNA0KlkNJGOja1ukcQhk0ObsKhrZChZ6CTZCrB92+8i0cfO8iOxw9juzaTU/OGw7I+li3rN8nMSjEVTFOcLZkohW0jpMR2JbYQ1Oo+oTJKK2kZDjQ42DZ1PzAcfLPdcW3a8hk6+jvo7C7wg5vu4eFH97Fj1xGchMP0bImvf+1WHrhrG6tXL2FgsIvQDxj3AopzJVMczrZAShxXRsmsnol2WTaWZXJPtFII28J2Hap139SR8SIOjk0+l6a7v4P29hy33vogjzy6j517jyIsSbFc5Rtfv40H797OhvVLGRrqRmjNVKiYna6fvpy9bWPJ1FP2NxYjRowYTyWsMDj9ThGe0Sqeiy542ylVPNKykK6N4zp0ZhLMzVeYnK8i0XSlXCaqZqLvyqXoaMtytFQj9AKU7xNGBbEUEGrTQyYhoeoFYFss7WvHsiR7D08T+AFpx8JHUA8UttBGaUOkfnEdpGPTnU1SKVUZn6ugtKYj6TBfD/C1piObpKOQZarq4Xs+yvNRkWrDcADbskhZUKkHaCkZ7msnlbDZc3gGr+6RckzRuJqvkEITCaGRlsRyHKRr05NLUS5VGZ8tEypNb9pluubjKU1b2qWvq8BkxaNe96Kk3KBZ5j3QAtsSpKSg6gcoIRnsbSObctlzeJpa1SPtSLRlUfFCrFYOUmK5NtJ16EgnCOoeYzNlglDRmXQo+QG1UNOWSdDTkWOq6uPVfZTvmwTlaIko1Cb/JGMLal6IDwz2tJHPJNg3NkulXCPlSJCS6rF2iDgI26Yzl0J5Pkemi9SDkO6kSzUIKQWKfNKhryvPvBdSrXmmceMiDia/xHAICBD0dObpbUuz+8gspXKVZNSZuuyHyKhejuEgkI6D5dq0ZZKIIODIVJF6oOhKOVT8kHKgyCUdBrvyzEQctB8Q+sFpE8ze/ZYX8sLnrP8F/qpixIgR45eP+VKR4fPP+fVX8UhpZMAng1KKWqWOKtcJK7WFH3fRaOxmOsnU6j5Hx2eZrfmmkZtljmv6tkiTX6IU5UqNEEFPV4Gzz11FImFT+vlWDh0cp+T7JDNpEo4VlT1XzeZuXqWOr2roan2hV4wQzcZ6aE29HjAxOcdcPUCC4SDMy5aSMLreYrGCEoL2zixnnbOSfDZJZfM29u8bo1yukUgncV3blHmPOGilqVbrBOUaulJr2kwIU1zNJL5q/CBkfGKW2XoU9ZAyKuNuOvNapu4/pXKNEGjvzLBx0yjdnXlqm7exe/dhiuUamVwa17GxRJRcGuVP1KoeftnwcCzRXAJrFJwDje8HTE7OMVMLEGgcaXrnSGk6GVtRKftKrYYXKLL5DBs2jdLXXUDdu5MdO/ZTrtRJphK4jo0UUaJvZIta1cNXdcJqnYQlmo0YGwXeBBCEIVPTReZrAaFWuE0OrXYQlCtVAqXJFrKsXbeUFSM9BPfsZPuOA5QrNVLppOGAjqTHyjRKrHn4lTp+uUbCtpq5JY37QQBhGDI5XWS2FqC0wpEm/0ic4n4HSPX1kFu1/Bf6e4oRI0aMXzb0/PwT3vcZ7aA0Jt+ToaGokI3ERh0lKyIIaM6JixoLoo3yRAujmrFsgS0tgsB0uHVch/b2HOs3LiOVctm64yCHD01Qq/ukskYpg1KEgYqWZ8wxG83zwCSParHQiTjSu6DEQk+XBgekSQiV0tTeqNY83KRLWyHDug0jtBcyPLZ7zDhJJR83nTSTXgsH3cqhmUxqEOoWThg1TCREiuy7wMGyJEppqnUPx3XI5zOsWbeUwYFOdu49yv59Y8zVvMhBMXZQUf8gzQIHRIstMHbQtDQYbIxFQ8wU7W1JgRXVHKnMm8hONpNkzdqlLBnq4sDYDLt2HaJUqeEmXRINDjrEiLN0U0Vj7g9DRB7DgShqJQSIRRzMODiROqdY9xGWJJtJsnL1MBvXLWH/2Cy7dx+hNBfgJk0+DFoTBsFxY2H665jzNezQ6JDdiJxJgRmDhkLpNPHOhporRowYMc5EPJnfp2d0s0ClWSTvPPbVkFQ0ohaNH39xzL8bSxgSseAssBDpaChGgtDkEHR25Fi+YpCVq4bp6W7DdR2C0CQnWtJEPXTj9HqhAy+AwihfGl2PYWFi1jQ6BB/DIZqYpQAvCHEcm472LCtWDrJ85RC9vW0kky6hMpEKqxlZEk2hUyNI0bhWEV1vw0mK1MtE/sgJ7dBwkvyIQ3tbluXLB1i9Zgl9vR0tHMCOOOhI2dQSvGqOXetYwDETMw3F9gIHhIkiWVLgh6ZqbSGfYfnyflauHmagv5Nk0kVFkSu7JcLWdA4aYyGisYg4NfsCNsdpgR8syIhFCwfPD7Esi0I+zbJlfaxcNczgYBeZqJ5JGPVeaqirWkVnzfM0OInF98NxHE5zrzfv+RgxYsT4NcEzOoJyOpgJXzdWUSL5Z6Prrj6hI9Hyn4UnVm2WCKQlKRQy9HS30dmRI1/I0NvTRlshw/ycKacutCaKFzSdDiMBbh5q4RR6QY4KhkNrb5lFHIhkpkKQz6fp7i4w0N+J41j0RrVVpqbmW+ptLDgjjYduiTGEEi0Oi9bHcRDCLOW0ctBRTReUmTbz+TTdXQW6ugq0t+fo6zUcJiZmF+p2tDzt6+iQsnnMBUfN2GShp82isWhsWzSwhls2m6KrM2+uvz1Hf5/hMDdbaoletdihwSGyfUMCLKO4GtH90cpBtoxFizGM86Y1uVyarq4CgwOdZLIpBqLuzOPjM4ShjiIfLfdDK4foGMYpFU1nulXC3nz/BJ86dMQ9RowYMc5E/Jcp1JZIJ07azRg0oR/i1/0ozG+MYp7Mo9ok0QTRfJpWCqTAdoys2HUcujtz9Ha3kU4n8EIV1adYSi6XJpFwWL92CbWax9T0PEnXoVapMz41x9GJOaMy8QOCut8sRU+0jNOY90z0RDdYgVIIBLZrYTs2tmPR01Wgp6tAPp+hWKrS1V1g9YpBcjmj1lizephSqcLqNUuMgxQqxidnGRufo1rzCIOQoOZFJfklCNl8Sm823ItmR6VBRMXJLMc2lVwdi672HH097WSySap133QiHh2gLZ9BSsGa1YNMP2cDK1YO4tgWoR8yOTXPkfEZKlUPFURjESq0kmhLLvgfgqYD1+SgdJOD7TrYtuHQ012gvZCh4vkU8hmWDHXT0ZHDdW2Wj/ZzySUbWL1m2BwsVExMzTE2MWfyh4IQvxZxiMZCAFZ0D0gBEg3CLCOhlKnU61rYCQfLknS25+jrNkXmiuUqnZ0Flg53091VwLYtRpf1cfGz1rJseT9+zce2JFPT8xw+OkOxVEOFCr/uQaBMTRTLOCeWVugmh4UcJRFxkK6NE1WlPRUs2zrl5zFixIjxTMEz2kGxHBvLOfElaA2+HxLWfWwBMpMk1BpqHtKywLGx6pFSRrpYtoWYrxJgiolZrkM6m2LtuqU8/9KNbNo0SqqQZX6uhNRGwqy15pKL13Hu+avIF7IQhDzy4OP89M5Huf2u7fizJYIgJPACLKWQmaRJxgxN5VQcG+mHRqWScJC2hQxq+KFCuhbSsUmmE6xds4TnXryO8y5YTTKbplSqIlWIY9sIKTj/vBWs37CU9o48XrXO7scOcuvtW/jpndvwpuYJQ9PkUCqNzCRM1dVQYUuxiAOOjXBtRLlmKqvaFtJ1SKRclq8c5IWXbWLTWSsodOYplqrgB+TaMiAE55y1nJWrhsgVsgit2bl1D7ffvYNbbt9CfWKOUCkCL0CGISLpoG0Laj5Sa4RjYynf9Pg5hgOWxHVsEkmX0RUDXP7sdVxw3ioKvR2Uy1WCmkcu6gy9Ye0Shpf0UGjPYQO7HzvAbXds5aebt1EbCwmVJvADpB8ikw7KttE1H0sphGOD9k33YdtCODay6uHVPcPBtnASDktH+njBpRu44ILVtHe3U63V8WseuXwGaUlWrRpiYKCTfHsWQsWB3Ue4894d3Hzbw1S8KZTnE3gBwg9xEraRhdd8ZCRNFhpE4BkHznUQlTphPUBLQSKTNG0WToHTJdHGiBEjxjMFz2gHZX6mhGV7J/1cBSEimgClJQm9oJkU2shtUDpKpJUCYVsoP6BWqeH5AV6lzq6dh8glXbxAcfb5q8jl0qA0XhCiATfl4maS1PyQR+57jAfve4zHth9g4uiMKZ0fhKBMR2JTJyNEaQijdSeFSY60mhxsVOhRq9TxIi67Hj9E2rWp+yEXXrqRbDYFShEoRaggkXBxU0nqns+Wrft4+L7H2L5tPxNj0xSL1WajOsuysCzLNBLUmpCF8vCNhGJXmkJkOlBG8RIqaiWbvbuOcG8mRd0LOf/idRTymYiDJkSTcB3aEg5KCB55cDcP3L2dR7ftZ/zINHPzFdPwLwybHEK9EL0SUX6IipJQnEaDxkDh1XyCsEjNtdm7+wj3JV18X3HBczbQ2Z6FhGucHw2u69CecAiVZuv2Azx4z3Ye3bqPo4cnmZstG2c0CKPmi1ZzmQbEAgdM9EYKgbZMzZN63SOYVVi2xf69Y9yfTeJ5ARdeuomerjxJ10EB9SDEtS0KbVlAsOPxwzxw1za2btvP2OFJ5meKxvZBiNvkYJZydEvmcDO5Wwi0bYMf4tV9wtnSaTPMfM//xf+gYsSIEeMMwjO6DsqFp6iDAkThcBH922xrTMhCCnQYrf838w4a31woK25ZpjdKT18Hr3rtc3nhC84lmXDwoyWbRNTH5We3b+FL//ojxg5PUa3VCRrLCIjm8Y/jIERLvoVoJomeiEPCdWhrz/LK1zyX3/rNZ+M4NoFSBKEi6diEQci9D+zkumt/wKEDE1QqtdNz0CAsEfXqOTUHKSXJhEtbR44Xv/RCXvea55JKJgi0xg9DMgkH3w956JHd/Ms/f5fDByaoVOv4Uf2Q1vH4RewAYEnZtMMLXnw+r3vtZeSyKTSCehCQcmzCULFt+36uvfb77H7sEOWKicSoE3EQmGUWTbO3T2PJSQjR7CN0PAebbC7DJZdt4u1vexmJhIMGqn5AJuqds+/ABH/7f7/J3scPU67U8P3g9BwWjYVZ+jmRHU6Fv/zLN/LSl1102v1ixIgR4+nA/Pw8bW1tv/51UCxbnnLNXUiBQBAGChUECMt0+DXyn6j5myXRoSIMQlPMzDYhdK1MjkC15jE/V2Z2rsx99+xg4/oRkw/SlkVrTbVc4+jELA/cv5Pt2/dTq9SxHZtEynQcFlFSbhgqUy49ig6gNFopk5RpWegwRIUhwrKxHGuBg9bUah7z82Wmpue55+5tnH/uSvp728nm0yRdQblUZW6uzP337WTrlj1Uy3UsxyKZck2334iDChWB70edjq1m0qsmsoPShH5glrgsK5o8DQevHlAsVpicnqfj7m089zkb6Olqo9CWIelYeF7A1OQcDz24iy2P7KFe9ZCWNBzsxRzCIDCqIMuK5FVhNBYNeXRgKrPallHYRPVDPM+nWKwyM1vi3nu2c9EFa1g63E17Zx7XSeBVPSan5tnyyB4eeXg3s1NFLFuSSCYWc1Ca0PdNgqwV/QmEYUOiY+rX+AFCmtL+5jvGW/HrAaVilcmpIm7S4cUvPI/hwU5yhQyFdJJ6zWNursyWR3bz4AM7Kc9XEVKQTJ2IQwBoLDvioExhPhHVRgn9AGlZze81OJwK8RJPjBgxfl3wjJYZN3WbJ3zRVHAsUkC0qDqOQ2O/xvcbMlQpcFzTEbmjPUc6nWw+zTbKyLe3Z02BNCkW9LILgprjztFcaVr0ThzPIfpICGFktW1ZOjpypNKJaDdNImFqs3R05EgkXCMHbhy25albH3OORXZoobDYvizYQggc2yJfyNLRkTd5ONHHtm3R3p6lszNHIuGYiVIcc+zjDG2SczUL5zgWrbVkiFQ3ti3J5zN0dObMklu0n+3atLdnae/IkUomonyNSLLTqvE9hscxpl747Ni5PlLkGJ9Sksun6ezMk8mmkZFjYzsWhUKGzo48qVSipZDgSTiIxRya9tInEe6c8p7XJzJhjBgxYjwj8YyOoJwakTImynWQIqp3EX3kCIEfFeGSwnQjDqMf+SiG0pQfSynJ5TOsXDFANpemXK6xZesefD9g/boROrvbWLFikEIhS7lcb3EMFmpvtEpaI4EKtoiKc0UcpIjKqLdwaBToklKSSiVYs2qIjo4c5VKNLVv2UKvVWbtmKd297axcMUBnV55S1MOnsbzTmmciGxwiiq4QBDrKg6Fhh0YORMOOjWUQSTqTZNWKAXK5FPWaz4MPPk6xWGbNmqX0D3SyfLSfzs4C5XKdRvXWpi2JuhyzuO6HHZ0z1IaDLaJCesdyQCOkiYgsH+2nq7NAqDQP3buDubkyK1YMMjTcw7KRPnp625icnEM1l7kWhiXUpnqsJRr1QzSOWGgpYOwAQTROVmMcGl6MlCQSLitXDNDT24ZX93n00b0cPTrNqpXDDC3pYdloH/39nczNlAnC8BgOOuLQUC+ZXCRHmK7QoTZPDlY0NuhIXfSEVmNjDyVGjBi/HnhGOyhCNeSoJ4bSIb4WhEqTty20EJR8hUSTT9hUojLiOUciHcFMoLF1iCtARpO0HSl6+gc6GejrYGJilh/f8iDXffa7lCt1rvr9l/LSl15IT0eO/sEuZotVgrpnnn6VRguNrwV+xMESgmJU4TXjWhR9hR+EZG2JtC3mAo0VhDhCROXqNbZtIVMJunrbGR3p5ciRaTbfuZ1/+rsbKM2Xee0br+A3X/Fs2gsZlo70MTldwqvWjSJEaZTQBBGHnGVhWYKib6q8FpI2s16AH4SkbUnSsZnxFYEOTYn3yNGxbImTTNDT18mKZf2Mj89y972Pce0/f5fDhyZ47euv4Lde9Rw62rKMLOtjcraEX/NMkvIxdshYElcKSoEi0JqMY1EOFPUgJGNLEsdwkFoj0FiWxHFd2rsKLF/WR6lY4aFH9vL//uYbHD4wzkt/8zm88b+9gIRjMTLSx/6DU9QqNWNHkw2NrzWe0mSkIGFLioHCD81Y1JSiHoakLWOHuWhsEi0cpBQk00na2nOsWzPMxPgsW7bu43Of/S47tu7hJa+4hNe//vn0dhdYvWqIA4cMB6FV0w6BFnhKk5KCpC0pBQov1GQTFlWtqEUcUq7NjKfQwcJYPLEFnHiZJ0aMGGcqnvjv0zPaQQnCEER40s9DpfFCDZbEyaQIgpAwCMCS2K6NqprOwyKRwHUcwtmKWeeXpimelJJCPk1bZ4G+vg62b9vHjT+4h4e37GNyap4gCPne9+/m4KFx1q4YoLe3nWKpxtz0PMW5EmEYNjkoIXDTabRWhDUPhMRybLTvEfghwrFwXQddr+J5IUTVSqUU5PMZCu15Bge72LPrCD+46T62bj/A2NEZhFbc/KP7OXJkig1rhunqyDM83MPM1BzF2aK55hYOTjqN0Jqw6pulGddGeyGBH4AtcZMuul4xEl8JjpQIaYqitXe2MTzczaGDE/zs9q1s3X6AQ4cn8WoeP77lASan5ti0bpie7gLDQz3Mz8wzN1MkCALTk0gZ5ZCVSGJZgqDum2hBOgGhT1D3wXZxkw6qXjUKKAl21BMom0lR6MjT29fBxNFZrrvuJrZuP8D+AxMENY+f376FUrnKulVDZDMphpf0MDM5y/xsyTRgjDgEGuxcCtuWhLUqodJYTgLhBQS+h5YCJ+mCX8ev+4iIgxCCTCbZ5FCcq/DFL/yQR3cc5PHHDxMGIXds3kapVGPjumHyuTRLlvQwOz3P7PS84aA1fmicFCubwHYtwlrNdIK2E6ACglodnXRwkwnwaqZ+jADHkqctE62Vjkvdx4gR44zFk/l9ekY7KNKyTKLlSSAs0NJUTg38kDAMsSxJPpuiqz1HRQnmimYytgA7SqK15ULF2ZoXMDk1T73msf/xgxw+Ost8uU53Rw4hBGNHpijOFdn72EE8DXPFqkl+lAKJZThYZlIMgxClFEJIctkUXe0ZlFUlmCubWiV+gLQElrRbOEDdC5ianqdW85g+Msn+I9PMl2p0tmdJuRaTE7PcubnMgd2HwbKZma8QeL4pCmctcAi1kV4rpZBSkEol6GrP4UuLydmyKSLm+VhSIhyM3Dfi4PshU9Pz1OseE4fGOTg2w3ypRiGXItmRY3K6yJ2bH+Xg7sNI1zHH883E2uDgKG16/iiFr0yPpFQ6QVd7FrtSpxaqiENgSvs7pmS+1eAQhMzMlKhWPYpTs4yNzzI9VyGfTZLpzDFVrHD3Xds4sPswTsJler5K4BlHrJVDI0HZ9xRCCNIpl672LMWaRzUwkSW/HiAFOI7V5IAAP1DMzpap1X0qs/McOjLDbLFKMmHT39HN0bka9927g0N7j5DNZxifLhH4LRww9yTaOBO+FyAEpFPGDomaTy3i4NV9pADbsZpNE0//RyHiSrIxYsQ4Y/FfppKs0Ka0/MkgLQtpS7QU1Oum6JadSjK6fICz1w7jPnaYhx/eRaVSQyddkknXdJ5VJqyutaZerVOq1KlUamQSNp5nmr6p6IkajPMzOT1PxQ+p1QMcYSZWAabmhm1jC4EfmLomwnFYNtrPWWuG2HVgknvve4xquYpKOCQSiQUOoVES1at1/EqdcrlGPe3ie77JK5GSUJhslTAImZ4pUQ+N8sgWUV+giINl24QRh2qlhky4DC/p5fxzlvHYvkkqDz5OZb6MDkPcdAq0xlLK1A5RUK/7+FWPcqVGNengNarjCkEoTan4MAiZmS3hKU2pajjYx3CwhSAMA6qVOtqyGBru5rxNyxibmmf2zu3UimVQCjeZNEsqrXao+wRVj2K5il+rUqsZDlpKwqgefBgoZufKBLq8wCFqPiilxHINB60V88Uy2nbo7+/kvAtWMjFdonjvY8xPzUEYYqeT2ICldGQHjR/6VGoRh2qNelShV1vGvghQoWK+WGG+XGOu4mGhzZJdk4OFLSRahaa6rGUx0NvOOeevZLZUo3j3DuYnZyn6Pm4ug6M1Umt0EJ42D0XEvkmMGDF+TfCUq3iuvvrqppSy8err62t+rrXm6quvZmBggFQqxeWXX87WrVt/oXOZTrkneUXr9bYlcWwLPwzx/JCEY7NstJ9zLljN8hUDJFwH3w/wwxDXsU0UpeXYGprX0UhzFJhkzzB6bxJZBULIhT4q0fcbHFzbFCereQG2JRkZ6eOcC1azctUQyYSLH4R4ocKxLeyoDHxD6mxSXaNaHYKoXsdCkbfIsM36Lg2uuoWDZUlcx3Coez6ObbFkuJuzz1/N6tVDZNJJwjCk5gW4to0TyZO1ijpG66h3jhBosfCUrhDNxFciTsiFuisNDmjjMLmOhdJQ83ykFAwNdnH2+atYu26ETDpBEITU/QDHtnAsy5wvskODg7k+sZCA22qHhipIiEV9dVSjdL40SiSkoFozEYr+/g7OPm8Va9cvJZ9NmY7Nno9tWZEdzDG0aqkLI6KxiGRhGghaZEsa0NI4JaKVg9ZY0twPIIwdBPT2trPp3JVs2DRKWz7d5NCwgxXZ/JT3fIPfMX9/8St+xa/4dSa9nih+KRGU9evX86Mf/aj53mpZhvnkJz/JZz7zGa677jpWrVrFRz/6UV74wheyY8cOcrnckzqPalYCPR4ikolKaXJJgkCBEGQzSZYM97B67VIOjs2SzSSZmRQEUel3pYWpsNpU4LRMMtGr1atrNL9b6DwrmnLURsUtKQRCCurKtBFMpVyWDHezZt1S5st1ctkkM5PSdL8V5ihaGLVPwxGQwkQiFrruGlKtfHSTk3mSbkh4NTSf3qtKobRZUhgc7GT12qXMVzzyuTTjloXn+VhSoLVR0jQ46IiDaD1Pi1xZNG1k3KlWDo15u7FsprRGaUglXQYGOlm9Zgl2wqWQSzFpGWfSkgKhTcVdTaPaqnFOFro/tzYfbClCZwxkxk0t2EE2OEiBF2gCpUgkXPp721mzbimJdJL2tixHHItyxTc2FxEHvZiDEAscRItCrHEPNJxKGRFq5SCi+9LXmlBpkkmXvp42Vq1ewuT0PO1tWQ46FqVavSlTDhVNRdqpoOEJqn1ixIgR42nA073EY9v2oqhJA1pr/uZv/ob3v//9vOpVrwLgC1/4Ar29vXzpS1/iD//wD5/UeXQ0kZ8QoqW0htKESpFKJejoyDE40Ek+n2Gwv5POjhyTE7PU616zjoR5MhZRV2HMdKMbUZkFh0Vg5KhCRE/zUSgeMLwE0THMZ6FSJJIO7W1Z+vs66Oos0N/b3uRQqdRMlIDGJLvQZVdEGtlGw0FLLDgmrRO/8QcWOIiGMcwAEAah4dCeZaCvk2w2zfBgF12decaOpJic9JoSaYRo2qLBQTQiAUI0J3A0UZ5IJKHmGDvQsClmqSJUuAmbtrZs1P03T6VSp7Mzz9iRKebmys1mgZpjxiK6vkaJ+kZzPcMhsllkq8Zyx8I9IpocVKiwHZu2tkxzLCrlOt1deXK5NOVKzXRultJwEAvHWWSHyAGVkX2Ngxk5t+p4DgvHMBws26KtkKWvt51CIUMy6dLdVSCfT1MqViIPMeIuFuxwKsTuSYwYMc5UPJnfp1+Kg7Jz504GBgZIJBJcdNFFfOxjH2N0dJQ9e/YwNjbGi170oua+iUSCyy67jDvuuOOkDkq9Xqderzffz8/PA5DKnrybsRCCbDpJZ0eetkKGMBwikXIZ6OtkcKATy5IMDXRy9tkr6O5pI/B8hJDMFytMzRSZnzeKnsALCL0A5QUE0uRS2EpGuS/aLMdYJvoRej5Cq2YHXmlJMpkkne05Cvk0ti3RQtDVWWB4sAshBN1dBc46azld3QXqNQ9LSubnIw7FKqEKCesBgReg/IDAkkgpzXm1Nn1+oj5CodIoL4DQcHASNsKSZNKGQ1vBdB5GCvr7Olk20ottW3R3Fdi0aRn5Qor5uTKphMtcscrUzDxzc2VCpQi9kMAz3Zl9KSI76MUcLGuhQqpSWE6jC7CpatvZlqO9LYtlm5BDZ0eekaW9JBIOXZ15zto0SqGQoVqpYVsWxWKV6dkis40k4mgstB/iW6Yqr21bpkaIMtEn0ejz4wem949jNccimXTp7MjRls+QSrnUPJ+e7nZWjPYjpaCQT7Nh/QiuazM7WyLhOpTLNSZnIg6BUTuF9WM4RMuCWiksE6oydWbqvuFgGztIW5JIOHS2Gzu4jk2oFV2dbaxcMUgq6ZJIOGxYvxTLEszOFEmnkhRLFWZmS0zNFAnDU1eTFSokKFee1N9rjBgxYvyq8GR+n57yXjzf//73qVQqrFq1iqNHj/LRj36U7du3s3XrVnbs2MEll1zCoUOHGBgYaH7nbW97G/v27eOmm2464TGvvvpqPvzhDx+3/XkvfA+2c2IHRUrB8EAXz714HRddsJrBpb1U6z7VYoWenjYSqQS+H3D0yDROyiWXSXJo7xj3PbiLn9+1ncd3HyEIQvxKjbDmoZRC2Q6JhN18AteYJNBQSjwvQDTKyCcc3HQS27EZHOjk2Res5qJzV7JszTCVqkelWKG/rwM3lSDwfI4cnsJJJchlkkwcnuSe+3byszu3sWvvGJ7n41XqhLU6OlAEjk0i4WAdw0FZkroXgueb6ErCwU2nkI5Ff287lz5rLRecu5LRlYN4oaJSrNLVmSeVSeL7AZNHZxCuTS6bYnp8lvvv38ltmx9l22MHCfwAv1onqNZRgULZFm7SbXJQGMWPktI0Uax5JkHXdXAySWzXoacrz0XnruI5F69lxephAqWZmynS3Zknnc+glebIwQmwLQqFNDNHZ7j/wV3cfvd2tm4/ECXpGg46DAktCyfhYmMUOSrKcdGWxPMVuu6Z6JZrxsJybTo7cjz7/NVceN5K1m1chq80pfkKHW1ZMvk0KlRMHJ0hBAqFNPPTRR55eA+33r6FrTsOUKt5eA0OQUggLdyUiw2GkzZjgZR4oZGT2wKEYzft0F7IcOG5K3nOs9ayavUw0nWYmy1RyKUptGdRWjN1dAZPaQqFDJVilYce2Mntd2/nvod2Uz9NM8DX9AjOO3V7ixgxYsR42lCq17n8n//P09OL58orr2z+e+PGjVx88cUsX76cL3zhCzzrWc8COC5JppHYdzK8733v4z3veU/z/fz8PMPDw0xPzGJZJ24WKITAVpo9uw/T3Zmj0NNGd1cBnU0hbIuqhqRt0d/XgXBsposVdu06wp5dRzh8YJzJozOmdLkQJFzL9HoJjSzUtoxTAiC0ebKXtkUi4RAGAfW6T6XqmaUYpdjbmae7PUvnYBe9PW2051JIx6YeFWHr72tHug6zc2X27jvKnl2HOXxgnImx6WZeStKxcFIJ6goCz8iYlZTNqq9B3fRtcbMpdBBQ8wIqtXmTC+GH7N11hM5Chvb+Tob6O2jLpZFSUNWQsC16etoQjk2xUmf3bmOHQ/vGmRybQSmFJSDh2CSTCTx9PAeJNtssSTKXRochdS+gMl0EQNV99rUfob+nQFtPO8NLesilE0gpjR0E9Pa0IVybcj1g776j7N51OOIwjR+EWAJc2yKRTOFrTE0bI5UylWcxdkBKktkUREm/1ZmiSaSteuzrPEJXW4bO/k5Gl/VRyCQRUuJhcnS6u/Jg21RrHgcOTrJ71yEO7h9n4sg0nm+kxwnbIpFJIRGEkZQaaeFjKgCHfoAWhoMITdJvdaaEBrxyjf3tOXZ3Fyh0t7F8+QDZTBKhNTVtqsl2duaNkwPsfWQ3u3cd5sC+o0yMTeP7wSn//sZ27+FwffKU+8SIESPG04WKOnntsmPxS5cZZzIZNm7cyM6dO3nlK18JwNjYGP39/c19xsfH6e3tPekxEokEicTxkRJbCOxTODZzM0U237Wd7TsPcd+Wfbzl915MV1cBhaZcquFkk2BJpqbmuPa6H7LlgZ3MTBcpFivGMNL0vxGRRFdrhSBSrkQJryLKOUBpQhuwLGzHOAVaa+ZnS9xz72M8vvsID2w7wBvf8HyWLulBaShXamQSDpZtMz4xx9e+8VPuu2sbkxOzFOerWFojRYODZTio0HAQphBdqLWR2BrZDwoJtoWtFziUixXuuf8xHt9zhM0P7uKdb/8Nhga7UFJSLlYRKRfHtqlWPf71X2/m7ju2MjM9z/xcBSvKq2hwUFJA0LBDCwfLcBDKKHmEFTVyjJJsq6UqDz28m/0HJ7j3kT288Q1XsHrVIFoKKuU6qYSN41jMz1e44Tt38NNbHmRyfJbifAWhIpmubSEdw0EHyiThCtOiIFQtHLQmhKjRXpQLozS1So2HHtnDvgMT3PngLq666sVsXL8US0oq5RquY5O0barVOt/6zmZu+fF9TI7PMjdbhlAZDpZEOnaTAxEHpTVhqAksk/cjokRgaVlYGhwdGJlyzWPro/s4NDbFnQ/s4o3/7QrOPmsUy5JUK3VCxyIVNV/8jxvv4vvfvZPpyTnm58qIiMOpIBsZuzFixIhxJuLpVvG0ol6vs23bNi699FKWLVtGX18fN998M+eccw4Anudx22238YlPfOJJH9tNuifNQQHTBXdqusjE5ByT43NcfOEazjt/Ffl8mq5cGqUVxXKNbY/u45Yf3svMrHnad1wHN2WOa3JcNWEtMImVCQfLElA3nWjthIOSAr/uE6gQ2zadgC3LMvm5SjE9V2J6psjExCxnbVhGW5tpJteRTQEwO1ti967D/PTH97Nv/1EQAtd1TDVTGomu2lRe9UOcpMnrEF6ADBW246ClxPN8/NDDcaxFHLRSzMyVmZ4psW/vUS6+YDWFfJpczthBoymXa+zdO8ZPbrqX/QfGTYNE5xg7RByCIMRJOKZbsxcu4uBHSzGOaz5v5TBXqjI9W2JsbIa1q0zF2a6uPO2ZJBpNqVRlz54xbr35PrZv34/S4Lg2TtJZZIfQCwj8ANt1TA6KHxzHIajWsV17MQetmS9VmZsvs2/fUdatHmZooJOOjhzt0ViUylXGxqa59Uf38dBDuxBC4Dgn4eAFxg62RAUKwhDHcdCWTeCZZTEnYRpIugm3yaFUqTFXLHNg/wSjS3sZWdpDIZ9p2qFe9zl4cIJbb76fhyMOtmM1OZwKsibjQm0xYsQ4Y/G0Fmr7H//jf/Abv/EbLFmyhPHxcT760Y8yPz/PVVddhRCCd73rXXzsYx9j5cqVrFy5ko997GOk02ne8IY3PPmTRcqZU36OyUdJplxy+TSplFkS8oMA27ZIpRPkc2lSqQRz8yWUItKP6sVzQUO2o43MRzc2NrSmiAWtbaMWh17gIKQgkXDJ59NkM2YyNFVlBel0glzEwZIyUuNE6o3WyluNp+PouE11SXTGSMQS/WeBQ0PyKqTATTrkcmnSmSRSSnw/wHYsEtH2VLrRgTeKDB1nh0jH3kKx+WqMRdMOLKoTgiaarM25MtkkQgiCMERKSTJlxiKdTiItCx2GLfZt4RFJsRvjf8LzNwetxQiNsYgm/Fw+TTabQkphWhwgSCQW7GNZMpJY6xNziNRbx9phQXp1ag6Oazc5OI5lKhrbEsexIvukIg4nOvgpEEdQYsSIcabiSfw+PeWF2g4ePMjrX/96Vq9ezate9Spc1+XOO+9k6dKlAPzP//k/ede73sU73/lOzj//fA4dOsQPf/jDJ10DBWh27D3pS2kzKScchoa7WTLcg2VbHDo8xebbt3LgwASWlAwMdLJkSTeO65hiaNH3UQuTD1FfHDD1MBpzsIr2lVFxskaXYFQLByFwooaDg4OduAmHsbFpNt++ld27jyClpKe7wJIlPSRSCYSMJkalFnMQpj9PgwORxLnBQQiBaChIaOVgasDYjk1/fyfLRvpwbIuJyVk237GVXbsOA9DX18Hy0X6SqQTCainSdgwH2XRQIg6SYziIk3AA27Hp7Wlj2bI+UkmXqekid9+1jR07DgDQ1ZVn2bI+w6HVDrqVg0mIbdqfhTokSps8kGZRO2gWWNONonW2RVdXgdFl/SRTLnPzFe7c/CjbHt1HGCgK+QzLRwfIZFOmlYLmlByatWqkkVk37g8p5Qk5AFiOTVdXgeWj/SQSDvPzFe69ZztbHtlDECo6O/OsXDFgHEkr6m2t1Gnv+VhjHCNGjF8XPOURlK985Sun/FwIwdVXX83VV1/9nz9ZsKiW6vHQGsd1yBTSrF+7FBWGbNt+gOu+cBM/+s5mnvOi8/mDP3gpwz3trF83wvY9Y+hixUh1g9DkFkQKGcuySAiBFyo8LXCjYl31UGFrTcKSeJYk0CC1QprKWqDNpJzKp1m1cpBsOsGefUf5l3+5kR9+5w7OedZa/uiPX0l/l+l++/COA4STc+hILqwFKClRkZw5FZ3T0wIHoxqphQor4hA0OKhWDqYrczKbYu2aJeSzSXbuOsLXvvFTbrj+ZjZduJa3vf3lrBrtZ+OGEe7fspe52SJhzchktSAqJ296FSUE+KGiHggcYRoKVpscBKFl4WmwjuVgWyRzKUaXD5DLJDl4cJIvf/1W/v36H7NkxQDv/h+vY/VIH2tWDXH7vY8RaBVxUIs4CClJOsJUBw5MAq9jSWqhRmqFKwXKsvBZbAfTldnCTScZGe1noKeNgwcn+fb37uSL//QfLBnt5w//+JVsWruUtauHuP3uDsbGpiPlkJH36mgskJKkK0wF4ECZ5FnLFMITWpMQAhyLugYRcRANZ9aSJDIpRkb7Gexr59DBSb5/83188Z+/S6Erz39/92s476xR1q4aor27jXByjqDqoUN1+j6g+ol2PI4RI0aMXz2ezO/TM7oXj1erE1onfmQUQpBIunR2Fegb7iadS/Hd/9jMo48d5J77d1Ksetxz32PYUrBu1RDpXIplo/1MHp5iamyaaqlmimK5DsIynYbtMKTm1fAx4XkEptmbUthpB+Xa+FGeCJ5vJqqkS3tnnu7BLto689x8831sf/wwt9+1jdlSlYcf2cO1136f9SuHSOfSLBvtJ2FJpo5MUylVzQOxayOki5uwcZRJOPUBy3WwhFHU6FCRTtuIhIPvBfheCHUflMZNOHR25Oga6KRvsIvvf/8etu44wL0P7WK+UueRR/fyhS/8kHUrB+nr72T5igGOHJxg8tAU5WLFcHBsRNLFcW1crakVqwSYSICOlop0EJJOucika2TBEQehNE5UmK13uJuu3nbuuGMrOx4/xN0PPM70fIXq44f54hd+yPqVg3T3dhg72BZTR6Yoz1dMxMgx12c7Di7glQJ8pRDuAgcrCEklXaykg+eHRvVS9xGhwnZt2gsZOvo7WTLSx+Y7t7F1x37ue2g3M/MVvN1H+NKXfszDq4YYHu5h2YoBLCmYODRJaa5sCrM5FiLpYtsOCSnwvAq+MkXfhCUJ/AARhCQTJoeo5gWoIDCdmkOF7Vi0tefoHuxicEkP9963k22PHeSBrXuZnCkyU6nzlS//hEfu38mK0X6Wrxwk4TpMHZlifroYLUWdHGHwxDPkY8SIEeNMxlNeB+VXgfn5eQqFAhec+1bsk8iMEeBEkYtMLk17OsH40Rkm5sporckKSTHq6tuVT9Pf38lEqUqtXKNarODVTb0JbUWqGCFwgpBaqMB16EwnkEIwWa2jah5JKQhdG18BQYgIzUThODapbIpkLkVXNsX05DxHZ4oEoSIjBVWt0ULQmU3R19fBnOdTma9QKVbw66YLrrakUQdZEtcPqIYK7dh0ZJK4QjBRrRPWfRICtGPjaSAMEYGKoicWqVyaVDZFdz7D9MQsYxGHvJSUtEILQSGVYMlQN7N1j3KpSnW+Qr3mGXtKiY76BDl+QD1UKMemPZ0gaUkmqh5+zSOJRrgOVQ0iDBFR9MK2LZKZJOl8mvZsivJsmcNT8/hhSEYIato0HmxLJxjs72Le96mUqlSLVerVerTMZjhIS5IMQupBSGBbtGeSpCzJZM3Hq9ZJAMK1qdMYC7NUZtnSjEU2RVchQ3W+wsHxWepBSFYKPA0+mlzSZclgF1WtKc5XqER20FqfkENoW+TSCQq2xXjNp16r42qN7ThUBRAqRBAaDpYkmU2SyqXpyKfxSjUOHJ3Bi+zQ4JBNuIwMdVHWmlKxSrVYoVapN5eIToaXlXazMZYZx4gR4wxFRYW8fu8DT6gOyjPaQXnW+W/Dtk/ioGCW41W0NJAQJqfCixbpUwiqwuQPJDAVYqtKI5TGisLkQgqkY4NtoYKQ2kwRHJuuwS7OWbMEx7Z4YMcBjuw/iqp5pNtzCMdGhCHKC5qN/lS0TJMUJrGzHpk8iaCOkeW6mPySGhrCFg5CIF3DAa0pj8+C69DR184560dIOzYPPX6IQ/uPEpRrpPIZrJQLgUL5JrKyiIMUoDSeNudNa6gJgULjAraUVCPZtKVaODgWODZaKapT82jbor23nbPWLqWQTvLQrkMc2DOGV6yQbc8hkg4iUGg/aBaUMxwErpBYkR1UZAcfCE/JgeZYaKA+XSQAcl0Fzt24jPZMkkf3HWX344cISjWS2RRWJrGIA0DY4CAlllrMIUATAA5m2aqGyRlZxMG2wbFACKqTc4RCkO8qsH7tEgbbs2zZN87uXYeoz5VJZZLY2RSEGu37RukT2SGUAkdIbG3GIgRSgI/AR+MAbsRBRfekfAJ/qVfO72JjbeKJ/SHFiBEjxq8YFRXyO0/QQXlGL/E0EwNP9jnQkIY2khUjbQpB9KbxXiNMyfSWYwoElpRIx8JXimrdJ2FbtLdn2bBplETC4eD0PEf2H6Va88hKiePYJlGSoNlkzxxLo4U0iZpGCETQ/MyoXZQQkWin5bqiZExpW6amSdUjZVsUChk2bBwlm3IZK1Y4cnCCas0nmScqoR6g/YUkUjDF1DSyRUnSYgfdcOiEKV+vF3OQ0tQ1USFUaz5uWpLPp1m7bik9nXnGKzUO7TtKteqRbTccNAG+z2I7aAHStJhpaIXCaHxOyQGTpGxFDspc3QfbtBJYu36E3o48c6Fi3+4jlOo+biZJqsEhEMdzwDhlizhEbf40jcZ/pvbNiTggBNM1H+naZDJJVq8eZvlwD3NKc2DfUeZqPk4yQdqxUSIk8Bc6QGsd1c+Rrc0fIdACLWk6Ig0OQkfJ0ie904+952PEiBHjmY9ntoPCE3BQzDyANi3mIuWnKe4lGs4LZjKQwnRIXjyRmCf6APCDkIxt0dmRZ9XqYVKpBPc8tAvHtvF9c2zbkgSR0qY5KR7TgVdgDqwi+YlsSmWNk6T1wnelNuogy5JopfD8gKxt0d6WZdXqYXKZJA/tOEDCdQhCU5jNkhItRVN62+AgFnEwxgmjKU222qGx30k41P2AlJ2mrS3LilVDDPZ28MjOgyQSDn7EwbYkYSAX2yFq7tdwDiJazUn6lBxECwcNXhCSdG3yuRQrVg4y1NfBrkMTppqvUiilsaOkWlqOBWJx92fdUCERMTRQETfZygGaHBCCuh+QSTrko8TftSuH2H14knTKNcXjQmXsoBSBOP5+aHJo2kFHTtICh4WO0fo4xfcJ8cwLiMaIESPGCfGMdlBU9DoZzNOxUds0JofGE3Pzx18v/KY3ljOiyhdNB8eUNjES2mw2RU9XgYGhLrKZFL29beTyKabGzRNys5Nw81/m+1JEDgORFBfjoMiWGUc3FBhiwZFovZbGNWSzKbq78gwv6SGVcqNOuGnGLKsppW2pvrHAgRYOLDgHzf0jx0iKBZnwYg5RVKPBoTPP8FA3gwOd9Pd1UMhnOGxbTalvuCgasTDh0zLZGjtENhEn4BAti7VeR2OyTkfNIIeGuhno72Cgr4NCIcOkY9Oo+rtg29axMP+OmjI3x0KIxfeEFNESYYstm86dNt2pM5kknZ15hoe76RvsZKC/k7a2LK7rmDo3x3y3lYOg1f4tEZ2IQ+P+MKpus/HUKbJxBCVGjBi/PnhGOyhuwjl5Doo2hdCIZJ8NbYMVzRgh0WQpovC+0tiNn3fbRtpmuaajI0dnZx7bkiwZ6qGnt53VqwbJ59OkkglWLh9g7OwV9Ha1UWjPEirF9EyRqcl56nVpckCUMiXghXENrOg8SixM3GE0MTc+s2wLaVnYtkV7R56OzhzplEtXW47+wS7WrB6mvS2DkIIVo/2cddZy06U3ncB2LKani0xOzlOreQsctMln0IAV2SMUxiYNp03phfyXVg5t7Vm6uvMkXIe+rjb6BjpZs3qYfCGN7ViMLuvjrLNGyWdT5PJppC2ZmS4xOTFHtVY/IQdJdN4oorDAAazIwbAsacrFW5JCW5bOzjyZTJK+rgJt7TnWrltimh4mXZYu7eGsTaN0FrLYjoWbdJiZKTE5OU+1UkcphQ7DSO5rmhxaLDgiQpj3ISaSZmmz7NSwg5SCQluGzq4C2WySjkKGru421q5dQk93G45jM7K0h40bl5FJuqYIXzbJ7FyZifFZylEeVJND1BbAimzRcORaOcgGBymRtnXaEIpVseIoSowYMc5cPInfp2e0g+IkE6coda9N59maae4nkknzRBsECEuCbWPp0CQu2jbCsaDimeZ8yQROMkEum2T9hhEuffY6Vq8aRktJtVqnUMiQjkrAX/KstaxcPkgy6eLYkt27DrH57h3cdfcOZmbLRgpd87AliFQSpQX4PpaUhLaNFYamp4ttI2yJqNVNRdFkAjvpkkq5rF+/lIsvWsO69SMIKanVfHK5JK5ryqifd84Klgx3k0y4WFJw6OA4t9+1nc13bWdqqohf8wganXXTSZS2DAch8SM76FChLZMIK6o1wiBEJNwmh1Wrh7js0g2sWT2M47pUah6ZdIK2QgYhBGdvGqW/tx3HsUm4NocOHOWue3fy8zseJZicx697BGUfC41IJVAIRBAgtUY4DpZWaC9AR0moombk2sJ1sRMOyaTLylVDPPtZazh74yhOMkGlWieZcCjk0wgh2LBuKR2FLG7CxXUtjh6ZZPNdO9h813aOjM3g1z28moeFQqSSYEvw/CYHqSK1jTTKLeH5hJ4PjoOTdnBdm2XLB3jus9ezceMykukk9bqP61h0tGexLMHqlYPkc5eZujmuzeT4DPc+8Di3/WwLBw9PEXgBXt0zDlgyAZYZC6k1wraNs1j3zHbHRtbr+F4Ato2bMI0NTwVhyTiKEiNGjDMWT+b36RntoBTnylj2SdrPa1B+gFQKx3ZMgqenCJXGsszSgdYQaoVG40SJj2Go8Cp1Ix/1AybHZxk7Mk1fXyejKwZxHBshwA9MZdRCW45cPoPSsHf3YcaOTDNxdIbZmSLz8xXDIVSmJ4ttE/qBcZSkRAlhlhAiDrZl5Kth3cer1Kj7AV7dZWJilqNj0/T2trN2wyiOLU1ip4Z6PaRQyBoOSnNw/1HGxiIO00Xm50oo38iebdfGcmxCL0ApjZSNJQxhohrSyIGlJQm9AL9SxwsUXs1jcmKOo0em6e3pYPWaTvpTLmgItcb3Q1OaPWNK1x/YN87YkRnGG3aYK6GCEBFEHGwLFZocDWFJo+7RCxV8bcvCkhJPmX42XhhSb3KYYaJ/jjUbRunr7wBMw8IgDEmnk4wu70cjGDs8xdExw2Fmap75uZJxeIIAy7GwbItAmSibtoS5HwSoKNJlehmF+EpTr9bxohomUxNzjI1N09fbzrpNy+nPJM3NJgTlWkA6nWRkpB8hYOzINGNHpjk6NsP01DzF2RJhqMAPSEUcQi2ic5pIkkI3o0yWZSI3Wvt4NQ8vqox8Kvh+EBdqixEjxhmLJ/P79IyWGZ93zltOXgcFk09i20Z94mvQocKWZiKo+YqUYyG0JlAKYVk4EsJAEQShkZdakkw2RUdXnoGBLq688iIuvXQDjutQqtRQoaaQSxEEIffcs4Nvf/t2Dh2aMJPRXIUgDI0SyJbYtkWgMYmTJtuSWqBwLYkFBNHk41iSMAgJgzByIiSZXIr2jhzd3QVe8pILedGLzsd1bUpVj3rNp70tjVaaRx7Zw9e+disHD04wNTnH/FzFFA4Tx3AIQmzLrGlUPUXCMRxCpdFS4FoCFSoCf4FDOpOgoytPd3c7l19+Ni9/2UUkkg7lqke9HtDZniEMFdu27edLX/oxhw5NMDU5z/xs2UyaUXKp7ViEGoJQYUfJGLVA4VgSW0AYNjhIVBgaDlFOSiqTpK09S29vB5deuomXv/wiMpkkNT+kXK7TXkiD1uzceYivf/02du0+bDpDz1XwPN+MhWX68IRIgiA0USUpqAYaW4IjheEgBI5tlugCPzB5MghSmQTtHTk6OwtceOFa3viG55NIOtT9kLn5Cl2dOYSGw4enuOaa77N33xGmJ+eZnSlFHIyk3bYtlBAEUSVcKQXVwCTVugKC0Ki6EhEHPwjNkuVp/lpfXt7DWXEdlBgxYpyh+C8jM7YdG9s+8SUIQEiJbZuQd1iuG4mo6yCURgYh0jVPqEFN4fsebjaJ45py7ipUaA3zxQqz82X27x8nnXRZuaKf3v5OcumkkemGivGjM9z+s0fYfMdW6tETrG1ZJtoiJZYtzb7lupkkXcckggYhMnKgwppP4IU4aRfHdRZxKLZ04HUsi/Xrlpok3ZRLJuHgByHzc2Vu/9kj/OxnD+P7psmebVvYrh1JhBscPNAayzWOnQg9pOuaqEY9wK/7uJkEtusgpIUKjc6nXKkzv/co+/aNE/oB5523gt7eDnKZJLk0BGHIzEyRuzY/yk9ve4hAKVAtHISR5woBXs1HhwqZck1iaj1AStMrSIWLOUhpEYYhWkOlUqdYqnL4yDRezWP9uiWMrhggk06SdGxAMzlV5L57d/DT2x6iWKqitYmO2U4LBynwqh4qCJEpFyklsl5HChPV0DqkXvexLddwtyRhYKJc1apH6cAEBw5OMDtT5NkXr2XpSB/pdIJER45QaYqlKvfdu4Of/Ph+6r6PVifmENQ8lB/iplykFMYOQmAlbJQO8WoerpXAck2V2gaHU0FUF+TMMWLEiHGm4WntZvyrRKta5WSfL+g+Fuqi0NTpNHY6Vi+zgKZyQwhc1yaZTOBENUnQUafkpEsiYUdyC908R6MGy8k46uZ/Tki8ZccFBZLrmnwMyzJprkqZJRHDwUEKiW5WWFkQrZ7UTsee/0R8WmTPgqg6btIk4za6+QoR2SHpmDwJpZpWF61nPxGRU92vrSonFvKrbMcmmXRxHWehEaAlSSYdkgkz4euWL568gWZTx3saIi3KqEh549g2yZSxA5jomGVLklHOjGzKzU/HITr6E/i7PV14tKkCihEjRowzEE/m9+kZ7aCcqlCbKbKlm4XKZKQUUVHl0IaMtSEfbpUBNyaUxrEtS5LLpRkZ6aPQliEIFQf2HSUIQkaW9dHWnmVkpI98Ic30dGiqluoFjs0aG41aJE0Zq2juA0ZNoiOOTc+ohUMy6TK6rI+u7gJozZ49Y1TKNUZG+0mnkyxb1kd7R47xyTlUFEXRjZyGJofINtHhF3UmxjhcjToszda9zc8k6XSCkRFzHikE+/YepThfYXTVIJlsynzWnmVqpmh6ErVoa1sdjIb0m0gGDi31UMQCB93KQWukZRyhpUt66O5uQ0rBwUOTzE2XWDLSSy6bYunSHjq7CpSqdUI/XHCiEAvjKxrSb92seQKiOfbN+6HJIXJqtVmicV2bpUt76O9rx5KSw0emGD8yzbIVg+RzKZYu7aWnp51DR6bwddDksHDfmvM1zqPQx9nBWsSBBQ6ngLBspHvyZc8YMWLEeDohw+D0O0V4RjsoMnIsTgUvVCitSdoShOkELLQm79qUQoVWgqQlcIVFxQ+xhDAyW2HknQKBtG26uttYvXKQarXO3fc+xjX/+B3K5Rq/94e/wfMvP4vRZX309LQzO19FK3/Rk6wfKgKtSVoSGXHQWpNxLGpa4weKhCUQ0qIaqEUcDATSssgXsmzcOEKlXOfBR/bwj//vm8zPFHn9m1/CC684l2VLexke7mF6rowfmkomUsgWDizioLQmn7CpRBxcKUg7FpVQIZTAbuEgEAjbNLrbtGGESrnG1u0HuOafvsPBfUd5/e9dyUuvvJBlS3pYsqSH2WI1Ku1uHEDQ+KEi1CbPw5EWNWUcyIxjUQeqQUgi4lAOTJ8km2M4WJJMNs2GdUuRAh56ZA9/9zf/zoG9R/jN1z6PV7/6Urq6Cows7ePw0VlUUItqwABCE4QaH40rBI5jUVdmW9Yx3Y+rQYgrIO1YVENNoNUCh4YDZUnSmRTnnr0czw94dMdBPv+5G9ly/2O84nXP47d+6zn0dhdYvXqIo1PzJjE2yqMBk28UKI0tIBVxCENjB6/BAci4NuVQI1o4iNPEUHqfdwkrlnU8kT+fGDFixPiVo1Srwl/c84T2fUY7KGEYIkV40mdKpTSe0mhpUcglCcOQYtnDsgTJXJLZ+ZoptpVOkEjazMxVkFrjyqi8vDTl3AsdeYaHezgyNs0DD+/mrnt38uj2/XhewL//+885cmiSZUu6GR7uoVL1mJ8pUi6WCcMw4gChEBRySdCaYrkOQuBmE1SqPnXPJ5VySTg2xVINP1RNDkII8rkUufYcQ0PdzM2V+drXbuW+B3fxyJa9KD/g29/ezNGxaVYt72doqIup2RJzU/OU5iMOWuOFmlBICrkkAiiWaqYHTSFNsVSnHvgkkg6pVIL5+RphGOJKsCMO2WySfEeepUt6KVdq/Pu//5T7H9rNgw/tplws853v3MHU5BzrVw2yZEkvU7MVijNFSnMlgoiDHxo7pDMJXCkolWsEGtpySWq1gHrNJ5kyHObmq6hQ4YqIgxRkMgly7Tn6+7vw/IBvfet2Htyyl/sfeJxKscz3v3835XKV1cv76e5pY3ioh5mpWUpzZcIgQIUYZZCGdCZJ0pGUijU8pWnPJfH9gHrVx03YpNIJyuU6XtVf4CAgnU6Qb8/T09eBZVt864af89Aj+7jzru3MT83yg5vupVSqsnHtMP39nQwP9zA3PU9xtmg6PmvwIw5tmQRJx6JcquGFmrZ8Er8eUKv5OAmbdCZBsVjHqxsOTqO62ynQ+4Lnsvo3Ln6K/9JixIgR46nB/Pw8/MWfPqF9n9EOirAkWPKkv9lCmHquQoCOyp9LCUnXIZdOMlcPqdQ8lFIopaKIDAjLTIhCmu419ZrH4UMT3DQ+ze7948zMVejpyCMEPL7zIBNHp1i+tAdfC6pVD6U0QsqW6qmmsLtWpkCYEJCIONSVKdtu8ihUlNwrDAdheGigXveZmpjjB9+7i8f2jDE9W6arLUvStdi/b4ypiRm2L+1BOg7Vcp0wyskQaIQCqRc4KDRSmH45uXSCcqAIKiaqo0LDT0rTd6bBo8FhYnyGH998H4/vGWN6rkw+m6SnPcOhAxN877t3sn1JN24qQbVinD8iDlIbO6hoqUKZOv8kHYtcKoFCUvODJgcZlXUVLS+EwPcCpqfmuO2WB9izf4Lx6SLZdILe9gwT4zPceONdPDrYRSqTpFyuEobGDmiJiDhIZTiE0bUmHNONWNQtKp4ZizA0YyFbOQjDwfMC5maK3Hbrg+zaM8bEdAnXEqwY6WViao4f/vBedmzZTXtHnnKpShAqkDLiAQJl+u2ohfO4kR2EtCj7CxwkUaTQatjgdH8UcZJsjBgxzlz8l0mSlcDJy1YZtYTlChSCWt3H8wLshMvIaD8bV/Th7h5nx44DVKp1tFIkUy4WGqmMs6BDRblUY3a+ytTUPNmkTbnqmUk86RjHpxZQrdTZt+8oZS+k5gU4QmBLIsWGwHJtQgR+GFKv1hGWzciyPtYv72Pv4Wke3rqParWGch3cZMRB66j6qqZcrjFbNBym0g7lqKCccF2wLLT2qNc8DhyYoBYqKjUfJ3rqlwIjMT6Gg3QchoZ7OGfdMLsOTbN1+37qpSoEIYlkwih9WjhUKnXmSjWmpubJpxwq1YiD4yx0GK57HDw0iac0xaqHEz31S2EcHcsxHAIVUqt5ICUDQ12cvXaY8ekS9z60m3q5CqHCTbgIFjigNNVKnflSjfHJeWYyLrW6KebmJg0HEHh1nyNHpvA1lKqmOF3DDkJKLMfGjnJRisUKWlr0D3RwzqYRJmfLVB/ZS3WuRDlU2MmE2V+bewE0tapHsVxncmqe2ckZqjWfMAixok7LxonyOXp0hrGJOebKdaymHSIOtk0oBEopSqUqSkh6+9o4a9MIs+U61Yf2UJktUgxCnHQSy7WxtalA+0QTeWPEiBHjmY5ntIOiQlNU60QQwtTvsC0LpKRWq1P3fPLZFKOj/Zx74Rrq0mbP7sPMFQMs2yKRso36RJtiao38TBHV62gk1YIpRd5sv6dNG0IhGxkCGq0AoZHSwrGkqRxbC6jVfZJZh5GRPs69cA3OtgM8tvMQs8UQISXJVNKUQQ9MMbVFPYSEcbYaPX9CFjoiEyX/CikWkj+jvjy2NKXSLcsiqAVU6z6ZRILh4W7OuXAN1rYD7Nl7lPJsEa0l2VzGTMhhSBDZgQYHKaL+OObSFeI4DkiBbPSOURopNEJY2FJiWZKgFlKr+zipJEOD3Zxz/mr2H5ri0R0HmZorAppUJoVQOuLQYgexwEFHGa3qBHagmZ/UUlLeNg0EpZQQhpRrHsl0iv6+Ds6+YDWHjsywc89RitPzhGFILps2xww0YUuJ/lY7NJJ4FdAsGRi9b3AQrRwsjWUJLMsi9DSVuo+bTNDb085Z561iarbMzt1jFKfmqPimCJ9u2CEwxzkVGr2eYsSIEeNMxJP5fXpGOyin6mZset4YJYSwJEFoljgyqQRLl/SwbuMyxiaLZNJJZqfn8QNFxjJLOiGmgV1DaSHEsd2IF55jZdMliRJqI6lxo/GbFW2TUuIpM9ElEw5LlvSwbsMyKvWAbCbJ7NScKV4mJWhF2KJCaihdGn4BEYeGMqYpf40+EZgE34biQxMtVViSeqgJlSaVdBka7GLdxmWUvZB8LsXkUUndDylI0zHY5K+0SIwX2UE37WDUQK0cWpruRQ5EsxOwlHhRcbysazM40Mm6DSMkMinyuRTT4xI/UOSkOZNSpuWgOiGHxdcuWjmIiINabAchhOk4HYb4QUjetenv62DdhmWks2naCxmOWpJa3Ys6KEcVXo+1gzDOWet5FS0Oast+x3Jo3A8BpgJuzrXp621jzboRJqeKtLc9zBFLUql7WNESn1KnVq017/tWqVSMGDFinGn4r7LEozCl2k8EAeiG+kNrwjAkkXRpb88yNNhFZ2cbQ0NdtLdlmZqYxQ+CZsM2LYyDo0UkK42iJI1uw62pADJKNFHR03yzm3FDtioW+KhQ4bgOhUKGoYFOBge7ODI2Q3t7lsmJGer1IDpGxKHhkGiaTeMaDosUC3oOSzTyRBp8WcShWREmsoPt2LS1ZRgc6KSjo8DS4R46O3KMZRLMzJQQLYU7juUAEYdGvo5o2MFwaDpULdfRsEODiVIK27EpFDIM9HfQ29sRVaPNcTT9/7P358GWHdd5J/rLzD2c+c7zVHMVgCpMJEhqJkWRFGVJTVltqt3dbtnh1lO8dnQ0w2K0nzqiI6SIDissxZNeBz1Eu9ttSjRFirJEiRJJkRA4giABooACqlDzPN66VXc8054y8/2R+5x7b6FQANySiSL3F3GBOvfss/e3V557cp3Mtb4vpNXq5Bx6Ee2NxaauzKviYHvjkrcKY+ktrvXuQeUJhMzHQilFo1FlanKImelRstQwOtqgWivT6cZgDSLvgrIif6/l4yAs+WqGi4NLyGyfj7Uu3v0Eqh8Hse39IJWk0agyOTHM6Ogg1apzqq7WyrTaXeifw732tVYMt6JITwoUKPBWxZv5fLqvE5SwHLymWaAQgnI5pFGrUK2EjA7XKVdDFuYnmJ4awfcVM5PDHDgwR6nkE3VjSuUSnU5Es9WlLSOMNZg0l53PNFq5wllP2v4EqqSTcDfGYJIMYayrffGdp025FFCvV6iUQ8zEIEIKpqZGmZ4aRkrJ6HCD/fvmCEOfTjuiFAZ0o4SNVodOJ8Zog04zdKaxWUaWSYQSeFo6gzlrXbePkmhjnfaIcYJhyvcRUlAuhTTqLg4TYwMIJZmfG2dhdgzfU4yPDbBv3yxCwMryBvV6lW6U0Gx1EC3nFaNzbyKbZnkc3EqEtBZhLJ5wsTHWYtI8DkqiAh8pJWHoU6+XqVXKmIlBrIDJiWFnclgKGB1psG/fLFIKmhttyuUS3Sih1e7SbLmOHsdBYzONzuQmB1wyoLZxcE7WUkk830coQRj4NBoVquUSUgqi2VFmZsbYsTCRa92U2btnhiROuX1rjWq1TJJkbLQ6iHYX3eOQOA5pliGkWxWS4Op28joTC2RJCrrHwanBBoFPo1amVi1jrSUzmumpUXbumKBcDiiFPnt2z9DtxIyNDTDQqBHFLg4bTecVdS8oT93z+QIFChS4X3BfJyjlWgXPv3uCIqVgenKYdzy2l4cP7mR4bMC1ukYp87NjAMzMjPILH/oRpFIEvmL11jrHTl7m8EvnuJALscXNDrqboG0GuYeKNPnifq7pgZJO2yJOXKdI4BFWS/iBx9TEEI8/vJuHH1xgcnaMJMtIo5TdOycBmJ4c4r/4+R9yk5fv0VxpcezEJb575CwXryyRJilRs4uOXFEqnsoN/TY7QTzhNEoyY8mixEn5+yFhJcTzPcbHBnnisT08/OAOJqaHXb1EnDE3O4pUkuGhOj/z0+/A/sw78JSivdHhxMnLPPfiWc6cv06WZsStCN113UFWSXzfQxq7yUECXu6zEyUIbRCVnEPgMzpc59FDO3nbw3uYnh/DAp12xNzMKEIIBgdr/J0PvoPMWsoln+5Gl1dOXubwy+c4ffY6cZISt7qYKEFnmkQJ/MDPExSbxwGEp1xtTpxAppHlkKDsHJGHh2o8/vBuHnlwB/M7J9FYkihlZmIIIQTDA1Xe95OP8aM/dogw9IlaEWfPXuPZF05z6tx14ighbkeOQ6pJlcAPfTyl+nUmvhBYpTAC0ihFpBmiFOQcAgYHqjzy0A7e/sgeZufHkL5H1I0ZHx0gDHyMNbzvJx/lR370IYLAJ4tTTp28wgtHz3P0+CXi5DXMMXMov0hQChQo8P2B+zpBWVneQHl3V82UUhAqxfpqkzROmBgfpN6oErUjgtAHIAx9du+cIqgEZJlh8cotNlZbLN9eZ/n2ujNnS52hXFgKIfTd5JtpROi7rZ0owaQZXjnEq5RIuzFxlBBl2imOSsnaSpO4mzA5NUylUiJuR5RCJ9EeBj67FiYo1d239WO3N1hfa/Y5ZGkGmcYDwnKIKAVkkZt8RdkDXzkOSYYqB5QqJbJOTBwnRKvGfcMXsLbSpNuOGJ8YojFQI+nGePm37SDw2DE/jl8OSFPN8ZfO0VxvOw631tFab3IoBY5DnEKqEeUAfIXtJmhSVDmkXC2TtiOSOCVebSKUQhjD2nKTqBMxOFBldHyQqB31bQOklH0OQkqOPn+ajbUWK3kcksTFQVlLEPrISkgWZ5AnAPgKGyVkieMQVkpknYgkSYnXWqAkNtOsLm/QaXUZHqkzPDJAGiV4+baL5ylmpkcIKiHaWM6dvJLHYYPlW+suOUg1yvQ4lPI4ZKjAw/oeppug0wzpBZRrJdJmlyzNWF9rg+qSJVmfQ6NRZWp2lCROXUGwAIlkZmoEGXhIT3H6+CVaG+08DmvEyb1VGOPo3glMgQIFCtwvuK8TFJFphNV3fc4KWF5a41vfPs65Czc5c+UWv/ChH6ZRr6KtoZOklKQirJaIopg//bNv8a2vH2VpaZWVlQ1skm1qkkgFudGbNa7ItLeRlhnXliwErs00X1kw2mCNYfnWGs8+d5KLl25y/sZt/ov/4kcYHa5jLHSSlFAqSvUyrXbEl588zDe/+hLXrt5iebWJidyKjMhXSPA91z1ijFvJyGshtLGAcYPpKwg8pDZOcl/D2nKT5757kgsXb3Li4g3+u3/wPgYaVYy1tJKUQEqCqhMq++KT3+VrT77IjRvLLC+vY5L0LhxkzsFppwgL2lrQbHLwPaQxGG1BZ2ysNHnhxbNcv77MyYuL/MIv/Agz06MgoJ2keFIS1sokacbXv/YCX/r8cy4OKxv9VSEhQHguKZO530+vw8dxwG2zYBE9Dtrp32A0rbUWR46c5drV2xw/f52//9+8l7npEUBscqiWyLThm88c40uff5Yrl5e4dXudrBu/moMSub6OU+VV1pJZt5qjrEX4Xj8ONufQ2Whz9OgFbt5c45Wz1/il/+rd7FiYwFpopxkKKFVLZFrz7edO8Od/8jTXrtxieWWdrOvicE+Ye28BFShQoMD9gvs6QQkrAZ5Xyh/d2V/j9uuvXl/m8pVbXL92iwP7ZnjooZ1UqyXqoY/Wznn21MnL/Omnv8qVa8sgBUHoU6qGrgtFG3SqyaIEaT08T2EArzcReArhK0yaoePMbTX4CukpEKC15cbNVa5dX+b6tVsszI3x9iceYGiwSj10qz/r623OnbvO5/7km5w4eQUrBGHJJ6y47SubOQ5pnOAJi1IK4YOyBqlBKAWexGpNlmjQZgsHp7dx4+Ya166vcO7sVQ7sm+Vd73qQSsXFwRjnFHzjxjJ/+umvceLkFZCCsBRQ6nHQmxwUrs5GWFDWIrV2gmyewmpDkmRYY9xWlL/JYWl5nRuLK1y+fJPZ6WGq73mMgYEqtdDPXZsjrl1d4s//4zc4/MJZdL5aEpaDPgeTarIkw0r6tR09DkIKlyQaQxI7x2TPU0gnSoO1cGu5yeLNNc6eucrczAg//TPvZKBRpZaPRasdsbK8wef+5Jt8+5njGCAo+QR9Dq7GJksyrHAeSdL3XMdWpkFK8FwnV5LXEElP4oeu3d1ay/Jai5tLa5w7e5Xx0Qa/8Is/TrVaohZ6WAvdyNXA/OWffpOvf/UlDOCHXp/DvVDUoBQoUOD7Bfd1giLEptHcZl/N9rYekyuT9pVilXQdL64RxRU4CoE2Jlf1lL2Ts7XeeKtJ2/bG4vy/lr7Lbf+g/BxbOQjhimphU1FPKomUbhLX2iDU3e+lf407BUW39tra7XZymwZ0Tpm0p57q4rDZ8fUqDrjJdLO3WWy7Blu6iLYz7TUAb/6y3/5r7Zbzb16zx0HlGiU2V1jNBV+569jm+Wivg2fbhbb+Lv+9yDVLrLX5WOv8mi6R3GqW2FsZ0dq4DqCcg+tKussKxpbOnK3onVP0OdA3QTT5PQLb3pOOk3uf9sZsG4fXkxAoNFAKFCjwfYLXFmK9D2C1ufePdYZzQSlgamqEmdkxyuWAVrPDlUuLNDc6lCsB09MjTE+PuroCmc8GuYKqtda1yMreZNoT7HKts6bXfpzLoffaSJ24lgHrEiM/9BmfGGZmepRGvUyr1eXq5ZusrTapVJxQ1/TMKKVy6CbpXPqefBul19+8nYObh/sccs2XXlJhtyjBSiHwA4/x8UHm58epVkrEUcLVy4usrWwQ+IrJyWHm5scplUOXRPVVXM2m/kZP6MxuapO4OLDJQfYSMBeHHgchXGHr6NgAc/PjNOoVut2Ea1eWWL69TljyGBsbYHZ+nFIl58D2OFhcb7PMr9Hn0Pu3sQg2pfEtWzm45Mz3PYaGGywsTDAwUCFNNdeuLHH71hq+7zEy3GB+YYJqrexWJPKxcDzuwsGYLXHotaO7JIM88djGAYHX45A7MGttuH7tFrduriKlYGx0gB07JilXS/mqyKa68b1+Cg2UAgUKfL/gvl5Byb+OvsZzgLEIpQhLIQ8emKNaDrh8+Raf+czX+PZTh3n8Rw7x3/yD9zE12uDgA/McO3MNEyUuuZCuzsRYyKyTSw+kJEKTGkOYfyPuaEugLCUpyaQg1b2OEpdUuHNJvNBn7+4pxkfq3Lq9wSc+8SRPP/ldHnhsH//oV/4Oo40yD+yb5fDRi2QbbXfh/BzGQmrzwl9P0s0MqTH4eARS0smvV1ICYySpdROVZ3oc8mLZwGff3llmJoa5sbjC5/7i23z5z77JvkO7+W/+u/eze8cEjx7ayXMvnqPV6rrQms37yHIOgSeJY0OqLb5PzsHgGUFJCqyUxGh86yT73Xjkq0ehU9GdHBtkZaXJn//Ft/mrz36DqflJfuWffIhdc6McPDDH1585TqJbbnx7HHo1HgKqniRJNKm2KA8CJenmqrWhFFgliVODZy3Syfq6sRAC6XvMzY+xe2GC1bUWX/zSYf70P3yJqbkJ/sF//3c4sGeKQw8u8PWnXyG6vZ5zMH29myxfQepxyIzFl84pupOr94YCtJJEVuNZ7uAAKvSZmx9n785JVtdafOVrL/HZTz5JdaDGP/rVn+PhhxZ4+MEF/mKwRrraBGv6HF73b6JAgQIFvg/wphOUb3zjG/zO7/wOhw8f5saNG3z2s5/lQx/6UP95ay2/+Zu/yb/9t/+W1dVV3vnOd/Kv/tW/4qGHHuofE8cxH/3oR/nUpz5Ft9vlve99L//6X/9rZmdn3xSXpJtg7rHl7oc+gyMNxqZGGJsa5ltPH+PIsUt85WtHuHruKreiDKTk0YMLjE0Ns2PXNKu31mgur5N0YpfjCInxFKoU4IeKdjsiTjXl3O04ybTzWqmX8IQk0hFZpl1xKThhtuE6Q+NDTM2N8/zzp3nl9DW+8KXnuXT6Cjc2uniBz2MHF6gOVNi1Z4bFq0s0lzeIo9jNjUJilMQLA8IwoN2KiVNNUBH4ynHAGLx6CeN5LoHJsj4Hz/cYGa4zMDbEzr0zfPs7x3nplct89Rsvc+70Va6tdcDzeNvDO6k1quzZN8fN67dZv71O3IkA50JslMILfcIwoNuOSdKMoOzjK0WcuVUSrxZifZ926pRaexyUrxgaqDM8OcTswgQnTlzixNkbPPW1lzh5/DJnry1TGajxtod3UCkH7Nozw42rt9hY2SBuR27VSAi0Uni+T1gKiKM2SZrhhR5WKRJtUNqgKgEiCOmkhizT2EQ7Dp5iaLBGfWSAPQfmOXX6CsdOXuOrTx/l5ROXOX99FVku8Y5HdzEyXGfP/jm8wGP91hrRVg5S4YUepXJIHDVJ0swVEHuKxFhkppHlAK8c0kq049DV/W2tgYEag+ND7No7w5lz1zl19jDf/PZxXnrlItL3KQ3UOP/YHmamhth7YI4rl5bYWF6n2+y8rpKsyUwhdV+gQIG3LP5Wpe7b7TaPPPII/+gf/SN+8Rd/8VXP//Zv/za/+7u/y8c//nH27dvH//a//W+8733v49SpU9TrdQA+8pGP8Bd/8Rd8+tOfZmRkhF/7tV/jZ3/2Zzl8+DBKvYkiP0/BaxwvAOl7SClJk5RjL53n8uWbXLi2TJZk7J4f51Y74otffI4TL51l964psiRzBn++h8hcjYLorSJkGqPcVo/vK2qBO3fTV04cTBtspvN2Udfx4jg4wbYszTh9/BLf/MqLnL18i26UsHNujGac8eUvP8/Jo+fYuWOSqBM5iXRfITLVVy7F5hzSDITA9xTVwKMceKz7HsL2OoeAvNZFKFdfIXscM835M1f59jdf5szFm3S6KbvmxlnpJnzta0c4dfQcBx+cJ+7GIATKV67wlS0ctEZnGUiBl3OoBB7rvsrVUV3XDvmWDj0OnodUEp1pLp67ztHDpzl1YZF2J2ZhZoRWnPHVrx7h9LHzHNg7Q7cdOQ5ezsHazfoXnccBZ4RYCTxqgUfT99x2i3GFrORbOj0OwldIpTDGsHj1Nn984hKvnL1OsxWzY3qUbmb49jOvcO7ERQ49ME+rHUP+PhK+cqsfFsBC5gT0wPnqlHMOJV+RZW6rRySZ2+aDLXFwxctGG25cvcWfn7nKsdPXaLYjZieG6CSaZ79zgvMnL/PIg/N0WjH0ipJ7cbgXZOFmXKBAgbcu3sznk7D/Dz7NhBDbVlCstUxPT/ORj3yEf/bP/hngVksmJib4F//iX/Crv/qrrK+vMzY2xic+8Ql+6Zd+CYDr168zNzfHF77wBT7wgQ+87nU3NjYYGBjgh9/5q6+pJOvqEiypdqZ6A4GHxdKMNVLASNnndifFYKkHHp4UrERZ33lW5ZWoFoHuFb9mKamx1Bo1Hj+0A99XHH75Iqsr6/gCZBCgLSjRk8cHgyU1ltTAYOi6PZq5lsVQ6NFMNEnuS+NJwVqUIcUWF+CtHIRApAmJsZSrFR47tIN6JeDwscvcvrXqumt8H424K4fMwECgkFKwEWdYaxmvBKxEGakxVHxFSUlWY8cvuCsHEGmacyjzyIMLDA1UOHzsEks3V5DGEJRDEu1MCrdyyAwufoHCl4JmnGEsDJc8WqkmygzVwHFYiV2b9904ACijiTONHwY8enAHo0M1Xjp5levXbqOsQQWvjoPFjUNiLHVfEXouDqm2jJR9oszQTjUVX1H2FetxhjaWUG2R1BeCLI+DzDJibQhKIQ/sm2VheogXj1/h6rXbiCwjCAPSXApfbeGQ5RwqvqTsKTbilCzn0M0MrZxD1Ves5RwC5e5le2nyq/HPfv3v88Gfeefr/g0VKFCgwPcCGxsbDA4Osr6+TqPRuOexf6M1KBcuXGBxcZH3v//9/d+FYchP/MRP8Mwzz/Crv/qrHD58mDRNtx0zPT3NwYMHeeaZZ+6aoMRxTBzH/ccbGxuAW9gw98ivbF6jIhD9jpDc3o2s1wVic08f2PR/yX8nEU4yXriW5XaUIpRkaKjGwUd2UQoDLl1fZeX2Gp0kpVEKUVLmqxm6XzCJsbl53/Zm6Gzr4/yaIifQWzAg59Dzullfj5G+x0CjwsGHdzHQqHD11gbLt9fodmJqvk/gewhr7srBbOk4sbjalq2PTc9LxthNHx6Ec+DNTQSbzTZCKer1Cg8c3MHk+CDXbje5tbRKpxsTlEuEgUJYV7iprXlVHPr3it0eB3LTvXy1xAI2L+VWuSu0BTobEZkxDAw1eOChHcxMDbPcirhx/TbdKKHieQSh7zjkWiX990OPQz4gAudObfocckfk/D3RH4u86yuQrvi12epggMHhBvsOzPHAvhluNWMWF1dotRKk7xGUQncOrfNi2k3dFui5Yjtk0DdWtDbnYHMOBqwU27rJXgvFFk+BAgXeqvieuRkvLi4CMDExse33ExMTXLp0qX9MEAQMDQ296pje6+/Eb/3Wb/Gbv/mbr/r967m72nwCkoJ+q6ZrC94+MfQmRSnYPjGK3IlYKYyxJGlGJSgxMlznwIEFKpWQ7zx3ivNnFZ125LozlMIajdE9fu4aPQfe3gWFYHMSxE2KNvdG3spBiNyIL29NjpKMaugzOFhl/4F5hoaqHD5yjrOnr9LMNNaC70mMdmZ01pptHKBfc4pAoLdwYGuS1ItvzkH0Wl+NJU4yKlWPwYEqe/fNMjc3xgsvX+DUiUuspxprLb6SYCDtdd/cwcH2ryu2xQHrTPl6zVRuQs+PzDlYC0maIZWiXiuzd98cOxbGOXnmOi8HPu28VsNTMt+NMf1uH2zOQWzeq8gLke+MQ981ud+6nTtb523BcZIRhD71Wpndu2d46NAuTpy5zrGjAasrrk25opyoXaZ5NQfEtveoYTNRg5xfv5V6M4b3Qq+NuUCBAgXeingzn09/K108d2ZIvfbTe+Fex/z6r/86//Sf/tP+442NDebm5py+yL1uNv/gF1L022ClcBNdql0LMgaMsQhhUbk6aW9iFHkmIZVAZO64SqXE+MQQM7Oj1GplpqaGqdbKrK22APA8SZaavPnE9icjKfNVHGOR+QyZ5cqkSoj827zFkyJvb3YcXI+z006xxpKmus9hx44JKpUS09Mj1BsVJ89vzWaLcK7B0p8Q1dY4uHFKc10UlbfkauPMB3s1Hybn0NNvsdYVfVYqJcbHB1lYmGBubpyZmVEajQpLN1cxxuJ5Ep3l58jPJXAaH73r9Dhk2o29J1+bQ29CdysolizTNKolRkcbzC+MMzM7xszsKI2BCqurG84xOeeQh5aeG3XvOr34e8KNhd3ynDY2bzmnz6G3xaOkBAFJktEYqDI6OsDCjgkmJoeZmx1jcLDG0uIKWaadkWTOvZeo9eIALnnqxT/L96+8/nO5EWSPwxv4w15+/ghXoluve1yBAgUKfC/Q7HTe8LF/ownK5KQzwFtcXGRqaqr/+6Wlpf6qyuTkJEmSsLq6um0VZWlpiR/+4R++63nDMCQMX11ropS8Z1GtW0q3CIkTvLIWTwksgiQ1eJ6rbdDGYth8zubf1n3fo1YrUW9UMMZQCX1m5sbYtXuKxkCVaqXEzt1T7N0zjS8lw6MNpCdpNbtsrLexCf1WaCGFk6c3JnfdFWSZyZ2InVS81QZ1BwelFNVaiXq9gue5QteFnZPs3jPN0FAdqSQ7dk6yd88MaEOlVqJcLdFqdrHr+bfufKVJStG/jpQu6dgaB2MtqTZ5EiGwdpNDpVKiMVBxiQowtzDBrj0uDp6n2LFzgj17Z9CZptGoUqoEtFoR62vtPEHZ5ODE0mx/2yrL+XhK3IODpFItUW+UCXwPhWB0fJA9e2cYHR2gVA6YXxhnz54ZJALPV9QaFdqtLuvr7VyLxGzhAJneMhbbOECaGZR0ya21mzo45UpIo1EhDH1MkjE1O8ruPdNMjA/i+x5zC+Ps2TvtnIwtDI7UaXdi1tdaaGO2xwGL1ptJ850ckszgSXdtp7Xz+rJFV//jX/DSJ5Ze97gCBQoU+F6gY+5uT3M3/I0mKDt37mRycpInn3ySxx57DIAkSfj617/Ov/gX/wKAt73tbfi+z5NPPsmHP/xhAG7cuMGxY8f47d/+7Td1vXKtco8iWUvaTUi7EUqADUOXKGiNlJB5Co/cr0Z5Tqo9itAWvJJz4a3Wyhx6cJ53vH0fs/PjZKnbKhgbG6BaLSGF4Ed+6EEW5sbzlmKPpcVlXjhyjsMvnmN9vU0SJaQdx4EwxEqJyFyhrsidkck5WOmKYHVm8MohQblEqRzw8KEdvP2xPSzsmCRNnabJyEidcikAIXj743uZGnfJnvIkaysbPP/CWZ5/4Syray3SKCFpd11gSgFWSYTWKAmpp5AYhDYYpbBKIZIYnRlUGBDWypRKAQ/sn+WH3nGAhYVxpz8HDA7WGByoIaXgsUf3MDJUR2tDGHisrW5w5KULPPv8aZaXN0iTjKTdxWYWQt9dJ8uQWITnOf+cVGOU68wSSYLJNDIMCKslwjDgwP5Znnh8D/v2zzklVmOp18sMDlRRUnLooR1USgEg8JSk1WzzwpFzPP/CWZZurZPGCXGri80MhAHWU5BlKGPRnoe0TjLfCIVVErIMm2aIwCesOHfqvXtneOcT+9mzZ5retlM1X8lRSvLA/jnKH343OnPJRqcT8corF3nm2ZPcWFwlSzLidhebZRAEWKWc67IxCKWQAmSqMVI6G4U0waQa4XuElVJfHO61oNoK2ym2eAoUKPDWxN/qFk+r1eLs2bP9xxcuXODIkSMMDw8zPz/PRz7yEf75P//n7N27l7179/LP//k/p1Kp8F//1/81AAMDA/zjf/yP+bVf+zVGRkYYHh7mox/9KIcOHeKnfuqn3hSXjWYHz3sNd1cLOkkRWYYXBni+R5qkzhtFKlASckM9q5yjLxFkSUaiLbHWGGPpdmOwlrGRBlMzY/2tCYv7ljs5Oczo6ACep7h1c5Vbi8tE3cStojQ76CRDpBleoPB8jyTNMEYjpecmQdvjYPF9H5mlZKkmNhFxrmfS7cRYYxkaqDK3YyrfDgPyVZmJ8UFGRgbwfcXK7XU2VpvEcUKr1aG50XHf5tOUsu/h+b7joA1SSKwnwTgJeiMlXuAh0wSdaWIdkxhLmmR0OjHWGIYG68zOT+T1KAblKYyF0ZEGQ4NVlFJsrLV4ebVJHKf9OJhUY5OUsq+QnteX/xfKCbv14rDJISXONJmOSbQhKWV0OhFaG2qVkF1759w2XL6ykGnD0FCdhx/ehe/7bKw1OXn8Ikmc0mp1aW60ydIMG6eUPOfho01epyMF1ne1IkYbjBIoP0AZQ5pp0syQGIvve3TaESbT1Csldu6ddd5Mue9Qqi0DA1UOHtyBUh6ddpdXjp4nSbKcQwedZZicg+8pjBCYJHVJtCf7wnomb3dXOiPVKUmWkFi3onMvpOkb/3ZSoECBAm9lvOkE5fnnn+c973lP/3GvNuSXf/mX+fjHP87//D//z3S7Xf6H/+F/6Au1ffnLX+5roAD83u/9Hp7n8eEPf7gv1Pbxj3/8zWmgACQpVr/2B7YEvFKA8D2yLNek8CQaQRqneJ5wzrvGkCUZXuDjCUmmNTZO6RrLyeOX2djocPT4Zd7//id45NFdSCnZaEUYaxmsl/E8xfHjl/mrv3qOC+dvcP36Ms31FjZ2KwQq9BGBh86ckZ9QCi0EWZK5IlhfgbHoNEN4Hn4J0G5CT7Th1MkrbKy3eenYRd73vrfzrncdQEpJu5vQjVJGhqr4Es5fWORzn3uGC+evc+3qbTZWWpg4QQIqdHHQmcbm5n5aSrI4RXkC5XkuqYtTpOfhlYDMcYi14dyZa0TdmJdfucRP/MSj/NiPHcTzFK1OTBRnjA5V8TyPy5eX+Oxnn87jcJv1lQ1snAvGBT4icBO6zQxCSYyULg4SlL/JQXkKrxRAZrBpRmIMF85ep9uOOHn6Kj/244/w4z92iCDw6CYZ7XbM0ECFIPC5cuUWX/jCs5w6dYVrV2+xemsNHacIa/ECHxkot92WapdoSadTYwX4nue6nZIMqyReOcSmGptmZFpz6eIiTyYpr5y8zLve9RAf/OATeJ4iTjWr623GRxp4nsfqaovPfOZrnDl9hevXl1leWsPEKQKLH3iowHPbbZl29UlSkKVOONDznK6NjlOUciKBXs7h9b57WF0ItRUoUOCti7/VLp53v/vd91yiEULwG7/xG/zGb/zGax5TKpX42Mc+xsc+9rE3e/lt8Hwfz/Nf83kpRd/dNesmTo+i5Lui2ChF+AHK99BxRtqN8ashgadQWb71A9xe3uD2SpNTp66iM83ExCCjowNUy257Jcs0K8sbfOWpF/jiF5+l203yQljnfdPjIARE3cQ5AJd8F8MoRQZuVcPEKVmc4JUD/HKA3MJheWWD5dUmJ05dIe4mzM+NMTYxSKUUEHiKLM1otSK++tQL/OVffJtulGDyOg4/8DfjIJz6rrXWTf6ASGOk57s4JFviUApQmekb2q2tt1hbb3Hy5BXWVlvs3TvNyEiDSimgFHhobWg1O3zzGy/zuT9/hjhN3TZRzkFI1y4thCCOUowx+KHvtF2SBOErVOBh4owkSvArgeOgDTpzHNY3OqxutDl34QYry03mZkaYW5igFAb4dedqvbra4rlnT/AXn3uGtfU2uhcH33P1M55EKkEUpZjMEJQcN9FJkF7OIdWkUYwqB/ihj/RUn0Oz2WXj1BXOnLnGtSu3efCB+dxDKWC4UcEaQ7MT89yzJ/jTP/kG7W68JQ5bOEjXBaRTjb+Fg/BAhR421cRRjN/nkCe4rwPZLZKTAgUKfH/gvvbiEeLe1iSi52JLz/RPOCO5vDWj15XRK1zcfE3/1/lWhJsY4shtEYnctE8gnAS8scRRShylpJl2RnFS5ufJHWh7Yif0+kZz3ZXec72nt3HIuevcgTfTRFGCzg3nnFCr7BdfJnFKFCWkaZZ3inj5tTc59BVZe+hfdLPFthfcHg8LWA3aaDJtiLpuC8iSu/9K5dyHzSaHLOekpNoShy1uvDbPpMXmNftD2e/5FdvG0DkAaxJLzsGtFrgiU9m/vx6HJM1cQigUQtLnkSvw5X3nbhzZvOQ2l+etHMCZEWbaKed0o7jviiwAT0lsfhNpktHtJqSpxhr7ag69i/Ted1s59Idmaxxsn8O90HNtLlCgQIG3Ir7nbcb/uXBvHZS8rTPX0RA9AbJc6qqfpvQmqbzNtqfKta0l1FPUamVmZ8cYGR1AScntW+sADA7XGRlpMDc/Rq1eQW+03cpHT0tli36FyGf7zXlJbJ2j+pP3Nln3/EnlSYLAZ25unPHxQVcMu9ai044ZGx9gYLDK3Pw4AwNVVtda2ziIOzlskftyE9p2Dpu8t/AApFKUSj6zs6OMTwzhBx4ry67eZWR0gKHhOvPzEwwMVllvdtCpdveb14psHSrRS5byzCjvpN3ktI1D3gmF87IplQOmZ0YYnxgiDH3W1lp0uzHDIw0GB6rMzY0zNFynG6f9RKrnMNwbfXqJgnWCdL2soC/etiVp7HHoRU0qZ3cwMzPK5NQIYejTakWsLm8wPjlErVZmbm6MkdEGt25vuO2j3riy9b4333e214fNpj6O7D9HfxxeV6jtDbT0FyhQoMD3Ct8zobb/3JBsCn+9Gm4SyIxT5PSlS1Ay4ya9spJk1rqyFOF0KVLj9DaEdf83+XQglWJ4pMED+2fBWo4cvcAf/J+fp9OO+G9/5Wd44rG97NszzcjYABudCLTdNlFk1mKs07qQIm8pts59WOPEzFS+EpD29EGs7U+nPQ61eoVHDu5ACMHxk1f4+L/9PGvLG3z4l9/PD73zAPt2TzMzM8p6O8LodJODtXdwyNuNLZS3cJACQiWdPkguU7+pXWoRyqMxUOPhh3ZgtOHk6at88t9/iauXbvJL//AD/MSPHmTPrkmmp0donnMrHFjXRkveWuxE2ETe8uwm5jDXiEnyew9VHgfpTKW3rigIpShXyxw8ME+lHHLpyi3+3f/xl1w+d52f+/C7ef9PPc7szAhzc+PcXG66LSq7ufqgDRiMa0XucTC5A/IdcXDG1GaTg93kUKqUePTQTsLA48Llm3zmD7/Cy8+f4ud/6T28//1vY252lD27pljZ6JA5lTaEcu9BY22+Cuak/I11re6bHNz7L5Q5B2OQeYL2Rv60i/WTAgUKvFXxZj6f7usERWu9RQv11TBWo6UAT1EPfUymidIMISTlwCMyBmM0VaXwQ4+1JEVkGpUnKEJK6rUKA6MNFnZO0mp2+PKXn+eZw2f48pMvEHVjwuEGSzdWGK6WWFiYJNaGjeUNuhttTKb7HGzOAW1opxlWSELfIzGGLNVUlCIIAqcGm2UoYxwHIajXytRHGkxPjWAyzZe/9F2ef/kCX/zS80TNDrJe4fbSGpPDdRYWJtnoJqzdXqez7jhYi3PUVXILB40RgnLg9zmUpSQsh2ykGSbJ8LZwqFRKDIwOMDc7hhTw1FMvcPio43D7xjKyUWV1pcn8+CA7d07TTDI2bm/QXmu5VQwLWmiMJ6n6HspK2qlGC6h5Hpm1JElKRUrnVJxp0sTFQfU5hNSHG0xOjeD7iq9//Qgvn7rKF774HLevL5MGPt1OxMzoADPToyyutFi7tUZ7vYVOs20cKr6Pby2tNCMTUPc9UmOJ04ySkJRKAS1tyKK0zwGgXA5pjAwwNjFIo1bhq0+9yEunrvAXn3+Wy6eukIYB7U7E7tkx5ucnuL7SYn15neZKcwsHkXPw8JWinXOoeR4JljhJKQlJuRzQ1MYVMutNDvdCT4yuQIECBd6KeDOfT/d1gmKFwN5juchaVzMg82/QvaVy35OUQp8o75Kx5FtA+cqGyds5pZQEoUcY+kTdmK/89QucuXST5Y0Og40y1Eu8+MJpLp65wr75CQh9wsB3xyuVK8I6DhiDFJueQL4nKAU+WZq5mga7ZcvBGMchr63wA3derOUrT73AifM3WG52aFRLDFVCXjl2gasXb7B3foKwViYIcs55fYrpcZC2zwHrpOBLgU+SZei4F4e8NuZVHNw5jdZ86+ljnDx3ndvNDiXfY35mlFMnLrN4dYm9s2NUBmuEvkdY8ul6ynHoq9ra/laXU86VlEIPqw1ppLeNRV/VNxcy8/PYYi3fffYEZy/e5OZ6G19J5qZHuHjhBn/4yafYOT1CfbhO4CvC0KerlEvQ2BwPubksg5IuDkJr4lgDNt8StP1tJiNkXvjsOCgpeOHwaU6evcbSehudaXbOj3P18hJ/9EdfY8fkMBOTQ/i+IgwDOt52DpheDRS5cJukFLjunUS74/ocjN0ciyL7KFCgwA8I/h+5GX+v0HMzftfbfgXPC+5+kHArIHi56FY3IU1SVCVkbn6cHWNDXF5e59LFm2SdiCDwoRwgtBNOs9q59RglscoZBobaEGlNKgSl/DJdBL41lJQkVYrUWqQ2SO2cVbZyEElG0o0h9JlfmGBhfIib6y3Onb9B1o7xA4UohwhjXHtt3kFjpcTkhoFlY+hmjkOAyzA7CJQ1lKVEe4rYgtTacbDW+fhs4RB3YmQ5YGpmlL1TIyxutLlwcZG42cVTElUtuQk00/1OIisFRimUFITGEGea5A4O0hoqUmI8RWRx4mOZdrq4QoInnThampF2YvA9p8Q6PcpaN+bU2WskzS6+kohqCWGsa3W+g4OQLg5JZogF+LifHoeydNeJAaENQmuE6Y2FxConkBc3OxD4jE0Ns39ugo1uxJkLi3TW2yjAq5Vd8tCPg3VjkXOoWLfiEguBh6BkLe08uSoJEL5H9CoOIh8LhdCatB1hfY+RiSH2z43TyTJOnbtBZ62FshavUck5GEymt1Tv3h0fbJ7nUCF1X6BAgbcoOkbzX1188Q25Gb++dvZbGMa6zo67/VjtvqH6niIMPBJt6MYpvqfYtWuax9/1AHv2zuD7iih2Kylh4ON7ypnEaSde1vPFAdBs/jvLf8h/Zyz9Dg5r89f2OChJ4Dvdi07kdEl27pzibe96gP375wkDjzhJSTJD4HubHHrCYT03YNEvb8n54FyZXSVq35GX/Fu6Ma6zRljHIfQ9tIVulKCEYG5unLe960H2H5inUgpJkowoyQiCnIMQfQ7W2H6BselxsJscejS0tZscTP6j3cGeUoS+hwW6UQrAzOwYj7/jAR48uJNKKXAcUt2Pg5LbOfRu3rBZTLwZB8fB5BxsXl9i8/dEb9UoDDxEriNjrWVycpjH33mABw/tol4rk2WabpLi+YrAV7lnk8Vou41DbyycI7YlpRcHt+LRK3btrdo4DuBJxwEh6EQJWCe299gT+zn0yB4adcehHaUEvkfgeZscXufnPvy+UaBAgQJ3xX2doPSW3+/2Y/K9eCWd7HmmNcZayqWAhYUJDj6ym507p6iUAnTeOup7EpW3B5stHSQ9Uzub9wH1mj0tvQD2XH+Fe5xPXD1zNyklvpL964SBz8LCOAcf2c2u3VNUyyHGWjKt3QpGzmFrJ41kS6fRFiab7sNbOOT7AP0OFFw7sO+5LZ9Ua0qhz9zsKA89sos9e2ao10ogIE4zPKWcE/AWDr17FUI4Z+gtcTDkpoz5Y/ocNseCLWNhjCXVmsBXzEyP8NDDu9i/f45atYQFkszFwVPSdd7k99G7phQ9v6LevYu+8y85HwT5Ns7mewJACXdei7tX31NMTQ5z8OFd7N8/y0CjknsU6T7fXvdP7zx9Dv3OYMdEb+Fgcw5bC3z7cczP27tX31NMTAzx4KGdHHhgnqGBqtOLSTOUknjKxdPc4/2+reuqQIECBb4PcF/XoBg2v6XeCUFeu4CbWDNt8H2fwYEa83Nj7Nw5yeLNVQYHqywGHpnWrnNH0J/8eucRFkSvhgLR70oBN1GJXPZe2O3JS+8MbkJzsuqe59GoV5ibHWP37mmazQ5DgzUWw4Ak05sTGr1JuNe9YZH9pMd1A/Uu0uPQM0eU2G2xsYJc/8WZJipP0WhUmJ0eZeeOSdrdmOGhOqVSQHe903+9i/FmUtbjYfLZV/aKKMjdht2XfBSv5tCbqiXOFVoqRb1eYXZ6hF27JvEDxchQnWvlgFY72iyk2tKCvJ1DL/59Cn0OvVUNueU9YvM4IHocDEJI6vUyM1PD7No9jR94jI40qFRCWp3InSN/Te888g4ONo//qzhg+4+3cugVuvY4IAS1eoWpiSF27Jik2er2Oaw3O/m1RH8czeskIEV+UqBAge8X3NcJiud5eN5r3IIAP/AplULCks/QYI1a1elTTE4MEQY+UxNDzM2OsbHeodWOqFVKxDLZIsYFyPz7s3ZL6EKKfOvDTQVCOcddYw1S58lIXmeAAD/0KJUDSqWAbFAjBmvMzo0xOT5IOfQZHa4zOzvGxkaH9Y0O9WqJNMmwuRmetTbnAFbrTaE4IbH51o8S0tVnWGeG2NPX6KnoujgElMoBSSNjqFFhbm6c6alhgsBjYmyQ2dkxVpY3EGqF2hYOmXaFqv3VAO3UZXtidb1CYCWlS0t0XitxBwcv8HIOIUYb6tUSc7NjTE+OUKmEjORxWFlucmt5nUa15KTfrXM3tsa+igNCuC2gfIXFxSH31Mm0U2ftcbBbOQRIKZFT5HEYoVLyGWxUmJ0d5ebiCtriVpXMpjibuZNDTyiux8FYlNrkoHMOPWNILHi+olQKKFecyaUvFXNzY8xOj1ApBwSBx+zsKNfnxki1oVEt5Wq+ljRz/lD3wut59RQoUKDA/YL7ukj2pz7wUXz/7m7GUgomxwd5/JHd7N83ixf6KE/hK8n+fXMMDNVot7qceOUi3SRztQs64/Tpaxw5eoFLV5bQmSGJYtIoIUsyjBCUKqHTTIlSrLUEJR+DoNuJkUbj+R5eGBBWQjzPY2J8gEcO7uTB/XOEtTI630p66KEdDA7Vabe6HH/lIp0oddsDmebM2Wu88PJ5rly7TZpkxN2YLHYcUgOVWslxiJ2ybVgOsELQ7STYzNWQeIFPUCmhPMXYaIPHH97FAwfmKFfLWFxtzp4904yODRJ1Yk6dvEwrSshy9dVLFxc5fOQc5y8ukmXauTJ3Y9d1ZKBUK+FJQRanzsG4x6GbYJOUIPRRge/i4HsMD9U59OACDz+0QG2g1l+N2LdnmvGpEdIk49jR8zRbEeC8HM+dvc5Lxy5y9sINkiRzY9FN0GlGog2laglfOS8fnWmCkg9SOhn7JMX3VT8Onq8YHKjxyMEdHHxgnoHhBmm+vbJr1yRT06MkccqZ01dYWWtjjEUB167e4vkj5xyHOCWJEpJu7DhkhnKthKekswlINGHFB6mI45SsGxOEHsr3Cashnu8zUC9z8MEFHjm0k8Gher49JpifG2N2fhxrLKdPXub2aoss53ftyhIvHbvI8VNXSJLXMMfM8Z7rx9i/evVv8K+tQIECBf7m0DGav3/pyBsqkr2vV1DW1pp4XnLX56SU1CohSsDU2AC7DswThAFRq0O5HGKBSqXEwYd24JdDrLWcOXaBC1LQaXdZXWu57hFt8IVzO04RaG2QVoCSiLxiVBuD9BSBcM7AcZQQpRlSSarlAGEtI0M1Dj2xH4EgakdUqu6alUrIgwfmCaolpBRcOnWFixdu0GnHrOaTFJnGExD4HnYLByfv7lYxMmuQnsRTPsJa4jghylcySoEH1jLcqPLgI7spVULiTkwQ+ligVPI5sG/WGeNZy9ULN1i8eotuJ2Z1reW+wWcaD+foC8IVrVoBOQeMRVtnABiUQoQ1JHFCnGnXpqwUVhtGBms8+MhuKrUynVaXcuh8iTxf8cDeGWQY4PmKK+euc+3SElE3Zm2t5SZm7TRqfE9hPc8Vhlrd74zB0l+1CMIAiSFJUuLMQG/lK1+VeNvb9hGUfJJuQuC7VZ4g8Ni9c4q9oY/veSxeXWLl1hpx5DjEcYrVGm8LB20s0mq3F+Q7DibLQAjCcojCkKYp8YaLA9aiU81AtcRDDy4wONIg6sR4KpfUl4LdOyfZtUfhBx5L12+zurRKEid9DvfC6z1foECBAvcL7usEJe3EGHX3BSAh4OZVyzPPHOfGzVXe9kMP8ZPvfoRKvUJmLeudmMFyQKlWJkkyvvLNozz3jZe4dPEmV6/cIml2QQg8TyFKuZleqjFJSqoEWW6sYrXrMFG+c6g1mXNCTrsJYLl5fZlnnz3J0q01Lt1e590/8SgD9TLGWjaihIrvUWlU6MYp33nuJM9+8yhnT1/l6pUlomYHayye7yFC3xkLZhodp6RSoKVCC9fGarRBeB6q5LkW6Sgl6yYYa7m9uMJzz55k6eYqZ64v83MffAfVvCB1pRNTL/mEtTLGWJ5+7iTf/uoRLp6/waWLN4mbXbd94itE6Of3aMniBKRAS4kWAmEMJnOJmir5oDXEKVnktsyWteGFw6dZX2tx9voy733v44wN1zEW1qOUsqcI6xWyTPPci2f5xpOHOXfmGpevLNFd72CMq53xenEwjkMmBFr1OFi3taMUXskHYyBOyOIEYyxr2vDCC2dYWd7g7PVlfuZn38X4kHPZXotSQiUp53F44eh5vvHUC5w7dZULeeuxyet3+mNhII1iUimwUpIKgTTOoRgpUeXAtYzHKTpOMcaynmlefukczWab01dv8cGffgdTE0OOQzch9BXlSglr4dipK/z1F77D+bPXuXTpJp3c/PBeMJkupO4LFCjwlsUPjNR9uRLiqfA1pelSYzhz/gbnL93kxMkrTI8Nsv/AHOVySDVv5W23I06fvsof/F9f4Pr126SpRkpBueqUTnrBTGMn3e55CiklNnOqoCp3qNVpRmIMSkl838PruSgbw/lLN7l87RYnTl2lUSnxtrfvo14rU1YKTwra7Yhz527wqT94kjOnr5CkbpIplcM+ByEgjVOyVOP5CqkkpBqMQeWuyVmqnWy+J/F8r1//YazlwuUlLl+7zQsvnWdipMETT+x3cVAKL9+aWVpa5T/833/F6VNXchM8t6W1nUNGlmmUUiglsJnZ5OBLtx3UjfE85Tgox8Fay5Xry1y/ucKxE5eplkJ+7McP0aiXqSiJJwXdbsyVK7f5o0/8NUeOnCVJ3GpAWAr63jlCQJZmpKlGKenOrzVogww8pO/lW1J353D1+jI3bq7w4svnqYQBH/jA26nlHKQURFHCykqTz/yHp3juuROkabbJAfpmf9s5uM4kk2XI0IfAJbNJJ8b3FcpTlKTsc7h+c5XFW2u8dPQCvpT83M//MNVKibIn8aQkSVKWl5v8xz/8Ct/4xkuv4nAveKmCYhGlQIEC3we4rxMUqSTSe+1Oaa0NaZYSR4a11RbtdoSxFindtkevBbbbiVlbbdJuRwghXP2Eys/b07DQrp+l5+kiEa5VxNq+O63tqdIq6Zbz+xwykiRlfa1Fpx25IlMhCPOtBeeGHLO+1qTVikAKwtB3ScgWDlabvIVEbLY/y7zNJZ+8jTEI7ba4RP56YyxpkpAkKTrNaLe6/WLLUth7C1i63YS1lQ3ara7bqgnuzkGwWYypRF4U3CukFfTjdSeHLE2IY40SLVrNdj8OgZ8fYyFJEtZXm7RabuUmCH2EJ3MvnJ6eiFtF2BwLx0fkWjRbOQgp+/dgrCVLU5JEk0QprWanr+Lb2+ZJEkuSZKyvNWludJyCbf5+yLuWXRGu2erx44bFkzJ3qM57nDON0eJVHHSWEseaLMlo5iszAKHvxkIjiJOUtdUmzWYHIQR+4G1yuAcaB/Yw3tj9OkcVKFCgwPcG7SSBiy++oWPv6wTl3thsFFaex+TkELNzo9SqJeIoJYoiwlJIrVpmdnaUqalhVlZb/fbVnviZybcNEAIv9Fx3RqLxAhe6LM6QvsILPHSSkWW5d4ySfU0MIQRCKcbGBpibH2NosEYcp+5bvu9Tq5WYnh5hamqEK1dv9zuIepobPQ4W8Es+VhuyRKN8hVKKNEqRSqLyb+46M+CBEDLXTsll06VidGyA+YVx6o0KaZLRarYJgoCwFDA9Pczc7ChXry2jjdkWB2ssOnO+Ry4OlixxqzXKV6TdFOFJlO+2uXRmQPU45OcRom+8OD8/ztBglTTVRN0I5XmUKyGTk8PMzo1y6sw14l5BaD4m1lh03tHjlzwwkCUaqQQq8MiiFNR2Dm7xRCIkeULhFIYHBqrs2DHByHCdNNV0Wi2kctsrExODzM2PceyVS9s5bEl8jLH4Jd/VvaSu7sUr+WTdxG3v+BIjBDrVSGWRqM1kEpdADgzW2LFjksHBGtoYNtZbqNyIcGJ8kB07xnn+cECautUsesnPPbDjH/w93v7+t/8n/L0UKFCgwN8+NjY24JP/xxs69v5OUOymquddnzauONIPAg7snWVsZIDbK02+9MXv8vy3XubQ2x/g5z70I0yMD/LgvllOnruBSbJNwatc/CqzbqXAl4JEO0fkMF/qj4zFt5ZACXTuEiwsqLw31xqDFeD5Prt2TjIzOUyrHfEXf/EdnvvmEfY9tIu/+1/+OAONCgf2zvDSK5fI8pWe/jlyDkIIAilJMkNmrJN4l44DEkpSYKQgzZwmi9oysVsByndFoDvnx9lodvnqV17kG196jl0HFvjZX/hR5qaGefjgDl54+SKdbtz3jAHXwqytW6koSUlqNNoYfCHxpaBrrSselYJECLJ8bLx+HHKhNN9nfm6MhbkxulHKV7/2El/7q2eZmBnjl/7b9zExUueh/XM8/Z1TJLrT9+9B9Dg47ZGylGTWoPPaFF8KYmMRwhIISLdywC2tODVcgfAU09Mj7N89TRQlPP3Mcf7qs99gfHqUD/2X72ZhfoxDDyzw9LdOkKw2+4J9m2OxhYPOx0IKSkqybkEYSyAEWkJiLZ4VyPw9Za1xHHzH4cDeGaI45bvPn+Kv/uybVOpVfvHvv5d9u6d45KEdfOFLL7DebG/G4XUgfR9ZuntnW4ECBQp8ryGTN/75dF8nKGmUYO9h8ao8xdBgneGJIeZ3TnL8lQscPXGVP/vcM5w8cppXLi5hgEcenGN+1xSzC5OsL6/TXW+TdmPAOc9qqfBLAWHoEXUT4lRTqoZIIYgyjRBOMyNFEnVi5x+Tuq0Q6bn21sbIADt2TXPxwiKnL9zk03/8dV45fIq5k9ewSvHYQ/OMTQ4zv2uKpevLdNZb6CjB9jgISRD6lEo+3W7sVFBLAZ5SRJkhsJZ6NcQoRaRj0kxj89oFqRSDjSr1kQb7Hpjn7JlrHD9znc99/llefOYok8evkADveHQ3k9OjLOyZ5taNFTrrLdLIdUkZBJmUhLmmSrzWIko1XsnHU4o401hjqFdCrO/RyXJPoyxzcVCSRq1CY3SAHXumWbyxwne+e4Y/+8vv8Nw3X2JwdBBVDnnikV0MDDeY3zXFzeu36ay3XKFtzkFLiQyctkxzveO6pQKPUCkibfCMoVYJwPfpaqfOa3M/IJm7U1eHaux7YIHl5XWee/Ecf/ml5/nGl59jeGyIREh++Il91BoVdu6bQV68SWe1SRrFr+JQroRsrLXdKosKwFPE2jhPorKPVwlpp2YbByEltWqJ+vAAe/bPsbLa5OUTl/mrp17km09+F78UYoKAH33HPirVErv2zXDtyi066y2STvS6QmxFkWyBAgXeyviBKZI19h7KmnlbbrVaolYJuXpliae/8TInz9+g1ewyPzvGyu11PvWHT/H8zgn275ulWgnJohJpNyZJ0y1y9dYZ122RjQ+VM+9TfRVRmzvw9lx73Wq873lUKyG1SsitpVU+8YmzHD9znZXVJrPTw7SbHT7zR1/lhYVx9u6ZoRwGVKsl0m5EmmZ5K63FSnd+kXMQQhAoSagkqifOla/eOBfgfMUD8DxFpVqiVimxsdbmE594kmMnr7K63mZ+dpT1TsSf/enTvPid4zz26G6q5ZBuzXGI48QtVOX6/WLLaoLMOZRyi4BegYTMj+k7QwvwlKJcCalXS6yvtfnMZ77G0RNXWF5tMTUxRDfVfPZPn+bIcyc49NAC5dCnVi2TRTFJ3gHTk5sX5i5xyAtMe3so2znktgdKUqmE1Ktl0iTlM5/5Oi8evcjSSpPpySESA1/8wrMcPXyatz26m9DzqFdLZJ2IJO8EMrnHkNiyoiGkwO/HQWBNXpeSH2PyuPXqVMplF4ckSvjcn3+Lwy9f4PZKi7GRBt1U86UvPscrL5zmicf3UAp9arUyOk6IunF/Jeq14Bb+7jtpowIFCvyA4M18Pt3XQm0/9M5fxfPusVwknImcQTAYuu6O9ThFCcFYJeBWO0FbS73kUfI8lqMUKVzWtik5T3+LRxlDrA2lSomH9s7geYpjp6/SanYIlcBKRWosnhR9kyPLppndUMnDaMN6lCIQjJR91uOMWBsaoUfoe6zGGQKLl9fg9koPMpP76RhNpA1BKeSBvdPUygFHT19nfa1FIEEoRWLAk2zK4edx0BYGS65+ZL2bYIDJashKNyXWhmqgqIU+q7FLjHx5BwcnaotnnZOwFwYc2D3FYL3My6evs7a6gS9ABT5xZlwctnDQ+TnqgYfCsh6lGGsZKQe0koxOZqjlHFYit9Xmi+1jofPdt5KwRKlGeB4H9kwzMlDh+PlFbt9a3x4H0fPkcdBAaqERePgCVrsJmbGMVXy6qaGZaiq+pF4K2Ig1mTGbcciR5fcTWEucaaTvs2thnNmJAY6dXeTW0hoKg+97RDp/78hXx6EWKAIpWOskpMYyVgnoptpx8CQD5YDV2G2leeKNGWf9f3797/PBn3nnGziyQIECBf7zY2Njg8HBwe9/obZenchrwfTk4hGkytUw9D7kU9Mz13OnSLR2RaACrNwUzZJSOll5Y+h0IqyUDA7WOPTobsLQZ3GlycZai3acUWvUCD3XyWGN7svAu1UQSDO5pRMIUtvzcsk7WHIOErvJAYHKu5WEgNZqG5RipF7h0CO7GaiVWVrvsr7Wot2NqdYqzq0Xi9W6v4JgtOOQpE6aXQiBsLbPQeT1m0lmyFINWIx1K0QC4TqmXKUpnY0IKwRDoxUePLSTibEBbjUj1lY3aHciGkHgOoBwXT9Okp++424qBSjRTzwya/vKsj0OriDXYnKBNSFwrc3Cmex1Wq4DZ6hR5cGDO5meHGQj0SzfXqfTjSlXy4SB71yVtOu6sWznIJQ7r8AlLT0OAKk2ZJlLDpTa5CCVIsi7tjobbXQugLf/wDz790yxHmtWljfotLpUpdrkkHf+bIuDcFuAPQ6ZteTlsC4O2sVBG+PGTG7G7F4otngKFCjwVsWb+Xy6r92MTW/yfY2fvPHCfeBvdsK6yQD6E0O+iePadvOV+97rlZT4nuuGiZMMKQTDw3UeeHAHDx3axdjYAFJJ4iRz7aCeRCnR59fLn3qTr4HcfNB9m6fHL7cFvNMN2ea1E37u7tuNUxCCwcEqBx5YcAnCxCC+r0iSrC9jr3KXu60cBOTFpr04CHSPnwsCJl9xEHny1+cg3DaGkpIoThFCMDhQZd/+eQ4+vJupyWG3YhBnWGzfGdoZCNp+kafIiZj+vYttcbiTw6ZTr5OE93LdkSR116lVS+w/MMdDh3YxMz3q4pB71rg45K7MbHGn7nNwrclCbJr59Tnk7w/X/HMnB+Vqf2Jnd1Crldmzd4aDj+xmdnaMMPRI07yI2FP9lvWtDtn9scivJ4R7P1g2/yh7HNy7aXO76vXe8wUKFCjw/YD7egUln1Pv8bzdKhuymaDkE1I/eQFMrm0i8lShv7Egem7BbgIolQPGRwdY2DFJrV5mYnyISiWkudGBfCI37jtz/uM49DtMre13ivZWLsSWY2Wfa9410uMg8w4SbSiXAkZHGuzePU29XmZqcphatcTqygbWuHMYIfrXIE9ItnS59h/34yA2F6R6Dry9Yx1Pt/JitONQKgWMjNTZtWuS+YUJpqcch+XbrmtICYHJ90UsmyfrbbeYrZysS1TkFg5bc+z+GG/Zrsm0oVoqMTxUZ8eOSRYWJpiZGaFWLbOee+lI4RLTLL9e70S9c5tevQpiM5G8Iw5bY7CNg4As01RrZYaHauzcOcn8wiSzM6M06hVu31pzztFSYIzr8NoWhy0chHAJot0SE2DbqlLeiPSGUOQoBQoUeKvizXw+3dcJSi7r+dpPOxURYHM1o7dtYq1LJnqTkbWbE0NPeK3n36KkxFOu0HRsbJCJiSEajTKNRpXJiSHGxwZptyO83jd2uyneJnrph90sDpI5980JKU8m7Gay0Ocg8mLcfFasVEqMjg0wOTHE6EgjN0UcYnx8kLX1Np7nVlqy/IaEEU68zGyuSLjY9Gp78wlSbK769CbJrRyE7HFwRZ5jYwNMjg/RqFcohb6Lw/ggK6tNp+CqZL5K1TvHVg5APjGLXuIoXKLQ4yAhF13L49jbbpMSKaBUDhgZHWBiYpCR4TrVaqkfh1arC7DJId8esdZxkNj+mPdXSdgcC0GvOHr7WDgl25yDdIJ+o6MDTOT3HgQeUxNDjI8PsbLSdIq7W94PQmwZi3yZzFo3EluTx34czGaCnQ/IG/ib4A21IxcoUKDA9wRv4vPpvk5QGkO1exbJxt2YqNkFo7G+cgmHdd+sUQpF5hRBpYcRQJKBEgTlMqVqiUolZO+uKR5+cIGxyeG8FkAyOTZIvV5BKclP/OhDLOyYQGuDpyRrt9c5fvoqr5y6QrPZJYkSombHtR4HCqRE2MypnyqJypxcvRXKpVJZBjgOYSWkVArYv2eah/bPMTk9SqoNQegxNlSnXAkRAt75zv1MTA71xdXaGx2On7zMsROXWW92SKKUaKONzfI4KIkgc9/alULlkvn4CpMroFprCWplSjVXy7F7xwSPHtzBxOQw2oIXeIwMVhkeriOl5B1P7GdouE6SZnhS0ml2OHnmKi8fv8zqWos0Sek2O5g0w3oSPIVMtZu8lUQa43RrxHYOfrVEuVYmCHx27Zjg4IF5FnZMkuVjMVArMTLSQCnJIw/vJCz5aLc/RtyOOHH6CsdOXmF5tUkap3Q3Oug0wyqJ8XyXlBhnciiMRRoDynMccgl9r1KiVCvj+4qdCxM8/OACc3PjaGsJywH1csj42CBKKR56aAeer0hS13adxilnz13jyLGLLN1eJ0syus0OOsk5SIkkA2MRSqCs084RnodREttNwBi8ckC5XnWqvfeAH/h/M39cBQoUKPA9xn2doLQ6EZ73GtmYhSRK0HFCqBRe4JP29Ch8z02QuK0CIQRB4KFthyQ2aCHI8m/OnqeYGBvg0Yd3MTQxRBylCKP7Xju7dk4yuzBJqRLSWW9z5PBpzl1cJIpTWp2INErIopRACrzAI8uVSJVyk7SIU+dnU3Jy5rYNUZKipSDFCZN5SjI+OsDjD+9ieHKYNE0Rme7XNszPjTM1PUqlWqK51uLUKxc5f+EGcZLSakfOwydKCETOAZyxX+4CLIST6ce6Cc4SkSQZuhM5Mz5tEFIwNtLg0Yd3MTY9SqadaWEp94eZmRlhbGKQsBySxilHD5/m0tVbjkMnIssNFH1c27NR0rkyAyiJzIRzbg697RxEjBaCUi6xPzJU44G9M0zvmHBFrHHqXJmtZWpyiMHhOtVambgTc+qVi1y+ukSSZrTajkPSjZ2gnO+hPYlpGydopyRCG2xmsJ4lCDzoJqRJRocILYVzcrbOmfqhA3NMLUwAzjAwLAcIAePjAwwMVChXS8TdhLMnLnFzcSXnEKPTlKSb4Bnn62Q8RdYxKGNBKYTpFTcrgtznqZtkrpBYqb7FwGshzfQ9ny9QoECB+wX3dYJyLzdjAGucy7DwlPt2rg1WSTIhkGnmqkOk69Ax2iB8HyndN9+kHbGRZJx45SJRs8uFK7f4yfe/nR3zEwjhE6UZxkIlDCgLwY2bqzz5V9/lxNELXLqyxNrtdZI4dfUYvkIouemnI8UWDmCVRBjjnvM9FM5TJ+3EmDjl5PHLdJpdzlxY5Kd/7ofYs3MSAp84NwesBj6+FNxa3uCvv/w8x186z4VLi6zcWifJ3YSV7yGkdMWeucKuFhKbOtNDm29FWK3BU6i8+yjtRJg44eypK+go5dzFm7znA0/wwL4Z/Gqpz6Hme5QDn7Vmly994VmOHTnLpctLLC+tknQdB9kzWgSXCEhXJJpleceTp9yWT7aFg7UknRiTpJw7c420m3Dp8i3e84G3c/DBefxamTTTxNpQ8T2qgc/aRoevfeVFXnr+NOcvLnJrcYW4HbltvZyDIb+OFBgrNjnkfjc2M26VLXQrMkknIpOSC+evY9OM8xdu8hPvfxtvf2wPqlom1YZunFLzPSo1j26U8ORTL3Dku6e4dHmJpevLJD0OSiJ9z23paGejYGTOQVus2oyD9bZzeL0KeFMkKAUKFPg+wZtOUL7xjW/wO7/zOxw+fJgbN27w2c9+lg996EP95//hP/yH/P7v//6217zzne/kO9/5Tv9xHMd89KMf5VOf+hTdbpf3vve9/Ot//a+ZnZ19c+Q91V/JuBuE8PvGcWmUuDoK33NbYEkKwrkRYwxJN0b6ijD0XBeHdWZwNxZXWFxc5ZVTV4i15hd/4ccYaFTwAt+1giYZzVaXp556gT/+46+zttJ0NRRK4vtqs/Yg54DY5GBznxcVuG/maeR8XIJK2K9ZsdayeHOVxZurvPzKRaIs47/7b99Ho17BCzyEkKRpRqcb842vv8SnP/1VVm9vuO2oV3HgVRzIHYNV7i2UdmLHIXdStnkXz+3bG9y+tc7R4xdZ2WjzK//9zzDQqOKHPkJItDG0Nrp881vH+MM/fIq15Q0yfXcOWZK52Odjty0O4FR87+RgLcvLG9y+vc7J01dYabap/8MPMD46QLlaIgB0ptnoRDx/+DSf/vRXuXH1NpnWr8HBdUMpT716LICsG4MQ+KUAP38PgWV1pcXqcpNjxy9zbWmV6YkhBgeqhKWAUAqMNrRbMUdfucgnPvEkt26skGZbOLBZD5OlGjLdjwNpBnYLh04MQuJt4WBfp8Ts9baAChQoUOB+wZtuM2632zzyyCP8y3/5L1/zmJ/+6Z/mxo0b/Z8vfOEL257/yEc+wmc/+1k+/elP8/TTT9NqtfjZn/1ZtH5z3/7k1sLJu/0o9zxCOCVS6womXQtrXoAopUsGtMmLMZ0Dr5SutTjLDJ12xMryBjcXV+l2Y3Rm8DzX+mu100e5ubjKyvIG7XbkzN0E27iQJylY+9ocei69OYdecWeWaTqdiLXVFos3Vmi1uhit8ZQk8BVGG5I4ZWlpjdu31mm1uiQ9mfstHIRg04X3VRzywszcMbnnwCtyzZRMGzrd2HFYXKHbTcgyja8koaew1hLHKbdvrXPr1hqtltuiuRsHazedgAViexx6HLiDgxRoY5zj8lqbxcUVWs0uWaqdoq2vENYSRym3cg7NZockcYrA2zjkHVEY0+9O6nPoFSwbt+Ultryml4h1uwnr621u3FhmfaPttGuEIMwdstMkY3l5naWbqzSbXeK8HVnm99N7b/VWs3qJU08pWEhXVOxcm23/fS5e7/2en7dAgQIFvh/wpldQPvjBD/LBD37wnseEYcjk5ORdn1tfX+ff/bt/xyc+8Ql+6qd+CoD/8B/+A3Nzc/z1X/81H/jAB944mV4rxms+v9na2W/n3dJu2mv7hc1W5M2ezlxWHecjU66ETE0NMz4+SCkI6HRisBCGPuPjQ0xPj1Cplkji1DVb9NqDEJvtoWLLdbbdRq//dUvPcU8MpdeWKiVh6DM1PcLk5BClUki3m2CsIfR9RkYHmJkZoV4vOw5s5QA271gSOYmtHLa2v27Ob7mmRs6h52UTlgImJ4eZmBiiFPp0owRjDIHvOlpmZkap1ypksVslsVvGqMdhU9ljy3+3cN1sw7a9/uv+T697Znx8iMnJYRqNClGUoI2Lw+hog+npERqNKs219uY1bL72sJVDr3NmSzA224l7z29y6HdASYHvKSYmhpiaGqFWr5CkGWlXE/oeQ8N1ZmbGGBis0W3npov5/W3n4BKirRz6Y2E326H7z28dqNdC0cFToECB7xP8rQi1fe1rX2N8fJx9+/bxK7/yKywtLfWfO3z4MGma8v73v7//u+npaQ4ePMgzzzzzpq4jXucH64pMM2vxhEAJ0Nb5qZSkEyzTebuxJ5z7re61I+fXsNYilGJwqM6BfbOEgc+58zf4d//HX/KvPvanHDt6AeUp9u+dYWi4gVDqjgnHnTM1FoVTZu1dN5Bucsq2cjCbbrm9e7C4b/KVWplDDy5QKoVcvrTE//1/fZ5/9b//KS8eOYvWhn17ZpiYHEZ6CpsruvSgrSW1oITAF66NVhsXB6zjIHDuyI4D2znkqwm1eoWHHpjH9z2uXL3NJ37/y/z//r9/zHe/e4pMG/btmWZicsjV/eQZQC+Wxtq+XL4vNx2Sg1whdZODzMeix8HmkbQgJaVyyAP7ZxkcrHLr9gaf/MST/O+/+8c8/fRRUm1YmB9nZmYE6Xt5MraZFhlryczmvfacol/FQTgRu8xscui3ZUtJUAo5+OACjXqFm0tr/MfPfI3f+51P841vvEynm7BzYZwdC+Mo39tM1O7kIF7NQeYcAAIpcw52G4d7vucLFChQ4PsEf+NFsh/84Af5e3/v77GwsMCFCxf4X//X/5Wf/Mmf5PDhw4RhyOLiIkEQMDQ0tO11ExMTLC4u3vWccRwTx3H/8cbGBuA6UQyvvS1kgMQ6xdBayXMFl3GGxH0LX0tTjDaUQg/fC2h2E7TWBLk2hhCCciWkVK0wtzCBryTPHz7NV772Mv/xU0+57YZWzE83O5RDj/mFCVqdmG6ri05TbKYxOBn11EK15CMFtKMUEDRKHp1Ek2Q65+DTilJ0kjpPm/w+yqWAsFp2KwO1Es8/f4pvffsEn/z9LxF1utxcabHR7DLcKLNjxyTLq206zTZZsskhsc7/ZSsHY2GoFNDKUpLUEASKUhjQ6qZkcUogNzmUSj5htcz83DhDA1WOHDnDt79zis986q+5dXOVxdtNWp2I6YlBdu2cYnmtQ7fVIYsTTKaxW+IQhh6+FHTiDG0s9bJPlGjiRBOEilLo351D4BNUSkxMDjMyVOeVYxd4/sXz/Pt//yVu31zhwuVl4lQzPlJnfm6Cy9dWaK23yOJk21gk1nnxhJ6kG6UkxtIo+6SZIU41ni+da3SUuVqVLRzCwCeslNyK1dQwLx05ywsvnedTn3yKy+eucv7ybTpRwq6FcXbvmubSlWVaG23nhpxzyHIOtbtwSIwhSjRVX1Iu+bS7mWtJlm/sj9X2xF0KFChQ4K2IN/H59DeeoPzSL/1S/98HDx7k7W9/OwsLC3z+85/n7/7dv/uar7N5TcLd8Fu/9Vv85m/+5qt+r611Wh7uDK9+3li0NiCVK4bMNFYbpKecV0w3RWeu9sTzFbZlyKzT11DKCbRVq2WGRhpUSgHfevoYr5y8wqUrt/GUpFYN+frXXuL8uWs88uA8YeAxMtJgXQo21pp9N+JMG6yQeHk3ke0VjwYeMjUYrQHPFUuahExnrh4jr6Gp1koMDNUZGqzx7HdO8OLRC1y+chuspVEr851vH+fSxUUefWgBKQSjow1WhWV9tUmWS65n2mByDljX6oyULg6xxqQpoPB8DzoJWZohc5c7KSXlSomh4QYDjQovvXiWl165xOWrt0njjOHBGs999yTXr93ikYcW8JRidKTBhhSsrWqSxJkCZpnFiNxbKC8oBfB9D6UtJr43h1IlZHC4zuBAlRPHL/LZP/sW5y8tEUcJw4M1jh49x/LyOg/tnyEshYyONJwp4apxHIwlywwGUOUAqaSr8zCOQ2IzTJRiPYnyFMJm6DQjzTkIIaiWA4aG6owMNzh35hp/9ufPcOHKLdZXm4yPDnD8+CVWVjZ4aP8sQ8MNRkYaeFKwuqJJcnPEtMeh5LvVLhP3OXg2w0aJ4+B7iG6KTjWZBOG9/oLnnVtWBQoUKPCWwltJqG1qaoqFhQXOnDkDwOTkJEmSsLq6um0VZWlpiR/+4R++6zl+/dd/nX/6T/9p//HGxgZzc3NOufUeH9qeEKh8BSWOUrJM43kek5ND7J4eghurXL+xShInCGMISj4K54DbC2Kz2WGt2eXGjdtUfMVas0s3zhhqVJBCsLzR5fLFmzRXNoi0pRulSCwSm3cYCRT56kGS5pOuZGJimD1TQ1xbaXLp6m2SJAVjXKdHoHI34x6HLmvNiBs3Vjh/0mNlvUMnTmk0KpQCxa31Lteu3qK70SJD0OomTpAOi/IkSiiUdZLvSZKiM41SiuHRBrvnxwhub3D5+gppktIxTiPE97dzaLcjNtoxNxZXOFPyWN3o0IkyGrUS5cDj5lqHa1dv091oY6RkvR2j7oyD71YPskyTZRohBCOjDXbPjrLc7HL20hJpktG1Fu8uHDqdmFbnNtdvrHD53FU2mhHNbkKtWqJa8rm13uX6tdt0N1pYqWh2E6R1WitKuaRT+rkxoDF02gkCwfBwjd07xllrRySXb6HjhE47QipFqRI6R+WcQ7eb0L52mxs3V7h64RrrGx1akdODGa6FLK51WLyxQtTq4Ac+q60YYQ0K3FjkcUitS6A77S4gGBqqsmvHOBvdxHGIYtqtLspTlKTMHZVf/w9bFqsnBQoU+D7B33qCsry8zJUrV5iamgLgbW97G77v8+STT/LhD38YgBs3bnDs2DF++7d/+67nCMOQMHy1YqzVBivMXV7hoDxF4HsgJUm7SxTFlBtVdu6e4vFDOxHHL3Pr9gad9S4IQalSRhgDmUZrty1hEGRAnAon6JV3WaR5DUGv8yRJM2JtybTOtwN6BbbKfTOWkiyOaXcTvHLIzl1TPPbwDqoXbrK4tEZ7LcKGENbKCGNzDgaLc/rN8qLObtxbbXJ1GnHW64aBJNVuKyczqLxu404OOk5otSNKtQrz8+M89s4DVM4vcnu1xVq747a8BmtOWTbT6CznYCETAlLoCgvGFaxm1hLlQm4IxyEVmqzfkbWFg+dM9kyS0O3GqDBgdnaMx96xn+tLa1xbWmNjuYs1hrBRdRNyZtBZ1o+Dzrt+unGGsSbnAJE24JqlSDONxrkRSyxej4OUBHkcMIaNdoRXCpmaHuGxdxzg5u0Nbq62uN3qYDJBaSB0dR2ZxujMmfXlY6GxdGO3IiKEMzzsZgYrBBLrkjCLa3POq69lzsH3PZSS2FTT6sSoIGBiYohH3r6ftWaXm6stlpptWomlOjLgJO+1diq8r5OktC5cZvWF8j2PKVCgQIHvFTZarTd87JtOUFqtFmfPnu0/vnDhAkeOHGF4eJjh4WF+4zd+g1/8xV9kamqKixcv8r/8L/8Lo6Oj/MIv/AIAAwMD/ON//I/5tV/7NUZGRhgeHuajH/0ohw4d6nf1vFFobRDcPUERApRU+EoiA4/WuiZJNSOlkJ07p3jg0G42koyXj5xl/bYmSjUjoYdJM7JMY7Rx05py2z9S5UJa1q1KpNqVoSpfgTWkqds68nzPTWiZ6Xe++FIgA4+NbkSUZIwMVNm5c4IHH96N8TxeeP4Ua7fXQUlqgYfNzBYOFpTKV4sUWaqxFpQv0Qas0UhPIax7jfA8vEBB6jhgt3AIcw5xxsCIx/z8OA8c3IXxPY4ePc/yzVXSLGUg8LCZJr0rB+m2SXKtF23AJjrfEsk5+B5+kMchdXEQQuBLDxUoWjFuFapaZm5ujAcO7aJ+fZnnnjvJ6tIaXZNRDzzQhiwzpMa4iVlKlC+RSqEzjdEWpZzoWpLkcTDuNfjKxSEfC4xF+M5PKAg9oiil000YrpaZmR7mwUO7GbixzJGXznHr+jLtOKU+mqsNZ9ptkRkLapNDlpk+BysgijOk52T7dWYQUuH5CjKDzVy9jfBcoXQQeHQyTSdKGaqUmJ4a5sBDO1lrdnjhyFmWrt2m1U0Z9J1OT3+bztw7Qbn0R3/GkT/pvqm/owIFChT4z4V2lr7hY990gvL888/znve8p/+4t/Xyy7/8y/ybf/NvOHr0KH/wB3/A2toaU1NTvOc97+GP/uiPqNfr/df83u/9Hp7n8eEPf7gv1Pbxj38cpV5bdO1u6HWf3vU5C1a4jhEl3CSjPMXgQIWF+XH27Jvh5vI6gwNVbt5YIdMGL1d4teTut71v3sJ1V7jJwU0weQOq09DQom/s1nMItr02XVyxrZL0JePrtTILc+Ps3TdHuxM7Dr7nhM1yQ7l+Z62lf14Bfb8d1TcYdDoZ9Dn03Iw3Y2N7HLbI1jfqFeZmx9i9d4ZOkjI8WONa6NNsdXMn4l4rcK+ryfY59CZJ1dNOyTkILfpGfz3zO5Pfg0L0ORjj6n5q1RKzM6Ps2TtLWAoYHqxxPfDoRInbqui1+trNODjXY9GPg+xrhuQccHGQeceS6Y8lfbNIJZzfjQFqtRIz0yPs3TdLWHYu0ZdLAe1u7LaGctuD3nhsctjUa5G5kV+fQ96ppWzP1Zl+Gu3GgpyDW5mqVktMTQ2ze+8M6xttxkYaXCwFbLS6fdNG/Trv9x7i26u0k9uvc1SBAgUKfG/QMW9c7+xNJyjvfve777nM/KUvfel1z1EqlfjYxz7Gxz72sTd7+W2wQmBfY8+9r6VhwWon296olxkZaTA5PkilEjI5PsjISINavcxGs+uUOvszoej3bgrrtjRM/pyUAvLWz35CYS3C9FYL6POyfUEux6FSceZ242ODDNTLjI00GB1tcL1eYXW9nXvi5GW/wqVIfSrW3sHBTVhK9K4Dwmy2ovZe32+1NQadaco5h8mJQSrlgMnxQUZHBxgYqLLRdNs8tq/hsqmfInDn78VICjdz9+OQK6RaYzblXAT0tGDcc65At1QOGB5pMDHu4hCNNhgdHaAxUKUTuXoce4duiNvKsghrnOid2Ky5uJMD+RYcW17fi4O1rng6DH2GhxtMjA2698ZQjbHRAQYHa6ystTDaIFXe5JyP8yYHN57bOOQJyeaYm/72G733Sc7FxUETbOFQr5YohT5jYwMMDtW4vbLh3g/5/fU43BNFCUqBAgW+T3Bfe/EMjTTw/bu7GQspGB1pcGDfLLt3TBKUQ5JMU6+W2LkwgRSChblxfv7nfoh3/+Rj+J4ijWIuXV7i1Jnr3FhcQWtDEifOZC733ilVQqQQpFmKsBbfV1jlEXUSRJriBR6B7xM0KnieYmS4wb7d0+zaMUF9qE4UpwSeYt8eV5MzMzXM3/k77+LHfvxRgsAjjWIuXlri1JmrLN5cI80ykighS1JnPGgs5UrJbTlFKdYYfD/AKkHcTbBJih94BIFPUK+gPMXQYI0De2fYuWOCaqNKmmkqpYAHDsyjlDND/OkPvJ23P7EfJSXCGi5fXuLE6WtcvX6bLNOkcUoaO/O8zFhKlRJKCbI4xWrTj0McJZhWQhD6+L5HmHMYaFTYu3uafbunGRiqESUZnpIcfGChH6ef/sATPPGOA84EURuuXL3F6bPXuXL1FmmqSeLEGR92E9LMEFZCPE+ikwytXXswyiOJUrJOhOcr/MAnqJVRnqJRr7BvzzS7d04yMj5EFKd4UvDwwZ1IKRgeqvHen3yUBx/agVQKYTTXry9z4tQVrly97cTY4tSNRzchzTRhpdTnkOnNIuc4TknaEWHg4fkelYEqnqeo1crs3jnF/j3TDAzXyYwzgzywf45SyScwHj/57kfZt28OIQShp7hydYkz525w/sIiaa4Q/FoIsgAbFV08BQoUeGvi9erotuK+TlDaUYz3Gp/XUkhGhmF6Yogn3raX+d0zGKCz0aZWc0WEAwMVfvhdDxBUSnie4srZa+hUc+b8DVrdGKMNJkmRxm3/pEiMsSiZy5FbV7CpLaAkngWhDYlNnfiapxgaskyMDfDYw7vYd2gXWhs6zQ6NgQrWWhqNKu964gBBtUQY+Fy/eAOTac6ev0E7ikmTDJNmSK3xpEBLibEWZWwuv64Q2H59hIdbyUnilDSvE2k0KoyPDfDYoZ3seWAB6Sm6rS7lSgkhoFop8cTje/HKIUHgcev6MhI4c36Rdid29TBbOJjcdFAY2y8SljjxMaTE9xTSGNe1hCtWrlZLjAzVePTQTh44tBOUorneol4pYa0lDH2eeHwvMvQplwNuXbvNs88JLl5eohMlxEnqOGQaT4D2ckE847bFtJJIC9o6E0KlJMpax8FapFKUyyHDQ3UOHpjn0Nv2oTxFu9Wlkjsyl8shjxzaxSOPe1QqISuLKxw+7AwHO3FCFDkOIsuc6J/nbXKQeTs0uUR93tItrSVLMzJAego/9BkcqHDwgXkOHNxJuVam1exQ8j0nVy/g0YM7efiR3ZQrJVprTZ799nGuXV/px+FeyAqzwAIFCnyf4P5OUNbaKHX3D2wh4JoxPPfsSZrNLm//sYjHH95NY7CGBtaTjIavqA/U0Nby0vFLfPsrL3L69FUun1+ktdIEwPOdcJjyPddRkqRYJdBCYSXud9q4ttggxKQZSZwSRR2wcEMbnvcVrVaXlSjl8Ud3MzBYwwhopZqyEjQGqqTWcvT4JZ57+iivHLvApfM3aC5vYIxr0w1DHz/wsNo64TEpMEqh86RIZwbpewTlAJNlpFFK0uw6s8FMc/j507Q2OjzWivjhdz5AfaAKwFqcUfMV1YEqCMErZ67xna++yKkTl7l47hrNlWa/MLgUBnh34yAVSY+DpwjKZSdKFjsOWAtJxpEXz5LGKTc3OrzjnQ8wMFjHYmmmmrKS1AYqGARnL93kW0+9wPFXLnH+zDXWlzdcjD1JGPh4oY81lixOSQV9DtJY54ujFEG1DEZjo5S4FWGsxSYpL714lqjdZanV5cd+9BCNRgWAZqoJpKBaL2OF4MKlm3z7Gy9z/OgFzp26yvqtDbLc/ygMHQdsz9hQOJdspUiNdY7CShLWyqDd6lPSjjDGYqKEoy+fR6cZi+ttfuRHDjI4UAXr4hAoSalWBim4cnONr3/pu5w6fpFTp6+yfnudTL921xo4I8bCj6dAgQJvVbyZz6f7OkEphQGeF7zm83GccuzkZc5eXOTl45eo/09/l507pwhCH88YLIooTrl06Sb/57/5HBfP3yDqxmTaUCoFea2H613NUp1Pfs7wzWSuFFZ4CoVz0k17XTu+h6dyA70k4+Tpa1y8cotjJ68g//uf4dChnZQrIcoYhPLoJgmXLy/xiY9/ieOvXKDTjsi0IQh9gL5RXJppdKqd0FluVCiMRfgK5QnHIV818QIPlXPIMsOpM1e5eGWJ7x45RzX0OXhwJ6VSgG8NWEmcalZWmnz8336eV46dJ8rNAMPSdg7ZVg7SCZ1t45AbF6rcvVflqy1aG85dWOTqjWWOvHIJjOUd79hPpVJCGQPKcVhcXOUPf/9Jnv/uCdqtiCzTBLm771YOWep0VKSSrtbDWPBdp5PWbvVGKek6sHIO1sL5i4tcW1zm+ZfOYzPDj//4oT4HISSJNqyttfn0J5/imWdeoduOSNOMIFD4VrkiWCX7Wi49A0BjLSLLwPeQnjNwTKME5Sk8z0MK2a/ruXzlFotLaxx+6TxpnPLen3qccjnAMyZvYTdsrHT4zCf/mq8+9QLdrltJ8wMP/3VWR1Ui4Y0XyRcoUKDAWxb3dYKifIXyXvsWjHEOvM7913Dz5iqzc2OUywHVUuCcZ7OMW0urXDhzjZW1JghBELgVk36iZ923YqdC6zt32Z62hRQYJDZLMZlFermDshNsxRhDN0rodCOyVHPz5ir79s1SrZao5AlIkmasrDS5cO46t5bWHIfQR3ler8a0z8Fk2imQSonN22d7xaFZqtFWI4Xb4sKnX7TajVM6nZiN9TbXr91m3/45wtCnmm9vJHHCysoG585cZWlpzSVagY93Nw5aozwfqQRKu8JZKQQ2b8U2aYYSHkJIVI+DNcRxRqcbE0epE5Z7eCfV2mYcokyzttrk/NlrLN1cwwJ+4OF5Kjc5pK+CazKNH/pI5TRNMAYlPLe61duSEp7r2vFlzsE5LnejhPXVNlevLNGNEsrlsM+h00lptrqcP3udmzeWQQp839XTbIuDNpi0x0FA5rbdlAArJVobxyHv6lG+2uSQpHS6biwuX7xJHCWUQp9yziHONOsbbS6cvcbNxRWEdImW7/uv+zfRd2ouUKBAgbcgfmBqULDG/dz1OdcpIYVA+R7DIw2mpkao1ytkmabdiqjWSjTqFSYnhxkeHaDZ7jpp/LzjxQqxmaTkNSfum/imI25v0hFCuHoM4S5u8/5am3eTKOUxOFRjanKYoaEaWaaJopQg8GjUq0xMDDEyOsDizRWnt2IsiJxDTkFIkde+0O9w6XUQ9SxYhBT5a3IO9FyZBdJXDDSqTE2NMDhQRWvD+lqbSjWkXCkxOTHM2PgQizdXXR3Flji4u3VxEELmHNjCgb77s8hXndjKIe948TxFY8BxGB6qY42l1Y7wfY9atcT4xBDj44Ocv3iDNMn6MUT0eolyDv1VESeeZoVrce718YpemzLufdDjIIRTdK2UQ6anRxgZrgOCditCeZJyOWRsdICJySHCU4Gr6cg7cnoZyiaHXrfOZhzc7dr8GPkqDuSnUZ6iVi0xNT3CcM6hudEhCH3n1jw2yOTkCGGpxyHvjnq91VH75pZQCxQoUOA/J35gtnheTwjFWqe34ZcCdu+aYnpqmChK+M53TvD8M6/wyBP7+dEfO8TU5DB7d09z9cYyOk63TIhOSbbXHurlbbU6T3zAOQKLLZobGvdSkYt39MzbVOCxMDfOzPQImTZ8+9vHef6Z4+x9cJ53/+RjDA/V2bNrijPnr5O1o/7kK7ZyQDgVVJtfVzg5f51fT+XJidnGgX5yoHyPhfkJdu6YIEkzXjxyjm8++QJ7H1rgx9/9CEPDdR48MMfps9foduNtHCwi11YReFLchYPdxuFVccjFSKTvMTMzys4dEyDgxZfO882nXmRqdpSf/pl3MjRYZf/eWY4cvUCadVzLcK/lmU19Fy/XYNF5W7WXa49gbb/tWgOyx4HNpE55ionxIfbunsYCJ05c5q+/+CzjUyO89/1vY2igxgP75zj84hnW1tv9ZDNfPkHnrcJeXiCs7aYDssmvJXscbG482edgXEu0p5iYGGL/nhmshVNnrvCVv/oujcEa7/8772RybJCHHpjn60+/TKsVuQSpz+H1/ywKFChQ4K2IN/P5dF8nKDpOEdlrf2BLJSnXKwyODbBn7yzXrtzi4rXbfPJTX+Fbf/0Cb/uxgySZZt+OCfbsm+XouWs0l5tEzQ46Tp12hacwvocfKELttkpiIygpCQiiTONbSzXwiD2PVGtEppGp+/YvlaRULVEfHWDX3hk21tucuXCDf/8HX+abT77AQ4/tQQN7d0wytzDO5OwYt24sE290nHneFg4qUJSMdd0c2hJ4Ek8J4kyjrKXqe2S+R6wNIsuQWeZUyqSgWitTG6qz/8EF1ldbHDtxmT/+7NN86bPfYv+ju+kmGQ8/MM/OXVNMzo2xvLRGtN7e5KAkJvDxcg7dKCHWBl8pPCWItMYzlqqv0IFPlBmEzlwccg6VSon6SIOde2botCO+850TfOZPvskXPvs00wsTWE/x8P45pmdGmZgbQ1xfJtq4g4PvIT2PkmeJopRYZ3hK4StBrA3KGCqewgQekbGu6ybVzsJACMrVEtXBGnsOzGGN5blnT/LnX3iW//jJp5ieG6ebaZ54ZDeTk8PM7piEy0t01lq5kSH9sXAcIIpid10lKXmKrrZIY6goiSgFdPLtKJFkmxzKIdXhOrv3zQKW7373FJ//8vP8ySefojZUI7KWdz6+l/GJQWZ2TLJ4fZnuWhsdJ6/7N2G1KaRQChQo8JbFm/l8uq8TlDTVmNdQpRMCyoHP8FCNyclhOp2Y3//9L3Hq3HWuL64wNFzn4oVF/q//8/Ps2znFrr0zTE8Oc9vCrSihFSWbyqGeK7RUW7ZWZL79YzO3OiClxFOSJK/RyDKNsJZy4DE0WGdsYghtDJ/+1Fc4ceYqF6/eojFQ5cb1Zf7vf/dF9u6YZOfuKSYnhrBJylKU0u55veQclJR4wm7joIRwnkR5q6unJLF2Pj5ZqhHGEpYDhgZrjE4O4/uKT37yKV45dYWriysMDdVYurnCJ/7gy+ycHePhR3YxPTWMNIalKGGjG7s4WA/hGaT0UGJza0XKXFlXG1cwKzw8JV0XT4+DtYRhwECjysTkMJ6S/PmffYtXTl7m8vVlarUyGxttPvEHX2bX3DgPPLDAxPggNsm4naSsdxMXB6sQSuXXlFib9FVsnTJrtoWDApM5P6MsA20JQp+BRoXRiSEajSqf+9wzHDl2oc+h1erymT/6Ks998yiPPLKb8fEhkm7CzThlI0rQ+SqQUApPupWkrVt8npJgtOPgKfdYm5yDBm0IAo96vcz4xBDVWpkvfel5jhw9z5XFFUqlgCRO+ZPPfJ3nnz7G44/vZWpyGJNm3E4zVrsRWt/7+4cx9+7yKVCgQIH7BcLehxV1GxsbDAwM8K4n/l/37OIRSiJ9D+V7VKWk3e7SSjVKCgalZM0YMmOp+YpGtcy6cROJTTJMzyxQCLQQeEDZWmIgFYIqbmunKQSetZSBSAgScolz6zYlhHReQMJT1JUi6kSsJ654ckBKWtaQaEvVU9SrJdpYdNrjkBv15RwUULWWCEiEoILFt7AhnJFhKecWA/K1OHiKqB2xkWQgBcNSsmEtiTGUpWSoVqaFdZ4/aeaKg7fEQQEVLIl1HMpAYC3rwhUOl3Gmgt27xcFXCN+jqhRZlLAWJyBcHLrW0jWGipQMVku0BC4Oqc45WKxwVgQCqGFJrYt5CShZy4ZwujQlQAtBhNviUdZu44DnUfMVJkpYjRI0MKQUsbW0jaEkBEO1MpEUJOnm+wG7ORZs4RALQZCPzVq+DVjO+XZwW11ej4MQSN9D+B4VT2HjlNUoxgCDd3AYrpbpKEHaG4u0J3j/2vjg+jkOdpf+0/6wChQoUOBvGR2j+fuXjrC+vk6j0bjnsff1CoroFUO+Bqxxbb4myTZrA5R0lQT5crtUAqMNGxsd2gIU+WSST4R9yXrumBq2PBA9afMtj2W+/mKtJUkysiTDWidoJpUEbC7oRb9VttXs0BbO98dxcCWZWzlsv8FtwejXvNg8LsIJ5d+Vg1Ayj5GLg8hrW5rNDq383v0tcUBs+sFsu+4d97217mYrB6wlSXXeaWTxcW3DdutY5BxarYhW3rTj0fMhcv5APQn9Xlot7uDw6jhsyvRv5WC6LrEScsv7IeckLLRbXTp5PY+P8xfizvfbXQdE9OqD+xzkVg44t+U002Q4DlvjYNmMQ7vdpZXXu/h5HF53gVTQL8wtUKBAgbcc3sTnk/xbpFGgQIECBQoUKPCfhCJBKVCgQIECBQq85VAkKAUKFChQoECBtxyKBKVAgQIFChQo8JZDkaAUKFCgQIECBd5yuK+7eMYbIb4XvubzFqfsaoBy/rsIl5XVgVJ+TJj/rpb/32OzV0LnPyo/PsF5sVXyY6r58WF+7ix/rO7gkOWvkflx5Nfr5M+V8vN17sGhd70k/ynhujt65w1zbkl+fbXlHFl+jvIWDhYYyF+f5a/3cl69Dpre601+jMzP0btOj0N5S4xSIL4LB33HdXocavnxyV04KDaz6B4H8jhk+etCILgjDr3n7sXBzzlo3PshyV8T5M91cn7e63BItoxDKX8uzF/bvQeHIP+5k0OU/z7M43Anh3thsDJOzZRe/8ACBQoU+B5AZClcfPENHXtfJyj/0//7Z6lVq6/5fK812FqLEq7RsydL7glBag0gnOgaliz3rBE9X7r8JL0mViUkJvd0UVIAAm2MayvOZc6NzWXwt5zjbhzA4gmJ7ouuueNfj4Mn89fk15EIMmuc184WDkJsP0efA65VtsfBF5LMWiw2j8OrOUDPd2czDpbNe5VCkOktccBizKs5AJi7cOjFwbAZo9493ZWDxbkk9zggkFKQGTeeKm/71nfEofee6L8mj5fNORhr0WwdJ3e+O19v80HZGgeRWwCkWzn0rBD+Ezj0xvZuHO6F8XqJeum+/rMuUKDA9zE2Wi34ib98Q8fe159kj7/3na8r9OKmiU0Pk62TJT2dkFw7o/94y1QghN1MEITcFODYcg6XjWw5hxBYK3oEHAf76uNe63ybnHoknCjc1vu4K4ct98xd7mMrB2HfaFy2/u4O6ZW7veZeHLaORZ/DHej1yPcnZrGpefK6Y7HlHPccT9v/nbuHrfHb/m8XB8Bu/R33iN32x5txYPN4YTepb30/3HndbRwErw7W3bD1bgsUKFDgrQVvY+MNH1vUoBR4y6KYaAsUKFDgBxdFglLgLYv7zoOhQIECBQr8jaFIUAoUKFCgQIECbzkUCUqBtyyKLZ4CBQoU+MFFkaAUeMui2OIpUKBAgR9cFAlKgbcsihWUAgUKFPjBRZGgFHjLolhBKVCgQIEfXBQJSoG3LIoVlAIFChT4wUWRoBR4y6JYQSlQoECBH1y8qQTlt37rt3jiiSeo1+uMj4/zoQ99iFOnTm07xlrLb/zGbzA9PU25XObd7343r7zyyrZj4jjmf/wf/0dGR0epVqv8/M//PFevXv1/fjcFChQoUKBAge8LvKkE5etf/zr/5J/8E77zne/w5JNPkmUZ73//+2m32/1jfvu3f5vf/d3f5V/+y3/Jd7/7XSYnJ3nf+95Hs9nsH/ORj3yEz372s3z605/m6aefptVq8bM/+7Po/397dxsU1X32D/x7eNoAwgZEWFYppQ1NalGbQmqwjhpRrBNj03SqadpEJ04nJELlVidWO/PXF/+Caadx0mlDpzY3VvNAX6gNnRgjjkrqOOYBZQTtGDOaBBO2NCnugpJF4bpfcPawZ3fPPqFylv1+JmvZc67zO9e5dsu59re7h6Ghm3dkFPP4Fg8RUfxSRIz+oElo//nPf5Cbm4vW1lbMmzcPIgK73Y7a2lps2rQJwMhsSV5eHp577jk89dRTcDqdmDJlCvbs2YOVK1cCAD777DMUFBTgwIEDWLJkScj9ulwuWK1WXLni5N/i8c7B65j5t3j4t3iIiMzG5XLBeuedcDpDn7/H9BkUp9MJAMjOzgYAXLp0CQ6HA5WVlVqMxWLB/PnzceLECQBAW1sbrl+/roux2+0oKSnRYny53W64XC7djSY+nmiJiOJX1A2KiGD9+vWYO3cuSkpKAAAOhwMAkJeXp4vNy8vT1jkcDqSkpCArK8swxld9fT2sVqt2KygoiDZtiiH8kCwRUfyKukGprq7GmTNn8Nprr/mtUxT9a18R8VvmK1jM5s2b4XQ6tVtXV1e0aVMM4QwKEVH8iqpBqampQXNzM44ePYpp06Zpy202GwD4zYT09PRosyo2mw2Dg4Po7e01jPFlsViQmZmpu9HExxkUIqL4FVGDIiKorq7Gvn37cOTIERQVFenWFxUVwWazoaWlRVs2ODiI1tZWzJkzBwBQWlqK5ORkXUx3dzc6Ozu1GCIiIopvSZEEr127Fq+++ipef/11ZGRkaDMlVqsVqampUBQFtbW1qKurQ3FxMYqLi1FXV4e0tDQ89thjWuyaNWuwYcMGTJ48GdnZ2di4cSNmzJiBRYsWRZT80MAAhpKTw4j0/ZYG4PtdC/843+2N4ozGNnsO3vdvdg7RjOGzXET90XeMQNt77t+KOoSbg9E2t/LxJCKKLTcGvgw7NqIGpaGhAQCwYMEC3fLGxkasXr0aAPDss89iYGAAzzzzDHp7ezF79mwcOnQIGRkZWvyOHTuQlJSEFStWYGBgABUVFdi1axcSExMjSQen1/8/pKekBI3RfwXU65729c5g8b4rfbcJPF7wr+OGmYNRIr7beN8PloNus2A5jKzz9Aa6XXm2Yg6hc/Aa+1bkQEQUi64ODoYdO6broIwXz3VQXiu8F2kJxk3NyGduPdfOUEYuv+G59oZ6MhhpBtTrU3i9atcuGQKo180Y2Ua7772NZwzxOpmM/KNd1kO79oZBDlDU616IqNsouvPtxMpBHSPcHNSH0ZODth/oj8MoB89xBMwB6jVJ1OuMKOqOos0h1HMqdA6h6xCKEk4QEdE4uDY8hEc/br/110EhIiIiuhXYoBAREZHpsEEhIiIi02GDQkRERKbDBoWIiIhMhw0KERERmQ4bFCIiIjIdNihERERkOmxQiIiIyHTYoBAREZHpsEEhIiIi02GDQkRERKbDBoWIiIhMhw0KERERmQ4bFCIiIjIdNihERERkOmxQiIiIyHTYoBAREZHpJI13AmMx8/9vQUZamnGAAgACiHpHASCirksAZFj9WVFjhkd+huc+AEW8fla8tldG/tf7vufn0Z175SAAEnxy8Bkv0hwCjhEsh0DbRFkH7dh96+oZW12nyyHYsUdSBxnJO+R4Y8jBLy5UHQLVciw5qP8EyiGosIKIiMZF37VrwOMrwoqN6QZl6kOLkZmZGUak5yQRanmwOHitE4Ofo9lXuNsH2+9YcwgVZ+Rm5xBsvHDyi7cciIhii8vlCjs2phsU3StTwwjRvab0tAS6+16vXEfWj46pKAKIOooWF2Cf3mMogMjoK2YFMjqxEXC2wP+oxOdVu/cL99Eoo2Me4Xsc3jkoEm5dPEskQIxiOEbAHLwfCy0H7+NQdLMSiho3Wi7xmhDznS3y2mvIx1OfZ7A5h5E6eP4ZPSLj2ikGdRi9N/JY+Ofqt19dDuHPoLCdISKziuT3Ez+DQqbFNyuIiOIXGxQyLc4EEBHFLzYoZFqcQSEiil9sUIiIiMh02KCQafEtHiKi+MUGhUyLb/EQEcUvNihkWpxBISKKXxE1KPX19bjvvvuQkZGB3NxcPPzwwzh//rwuZvXq1VAURXe7//77dTFutxs1NTXIyclBeno6li9fjsuXL4/9aGhC4QwKEVH8iqhBaW1txdq1a3Hy5Em0tLTgxo0bqKysxNWrV3Vx3//+99Hd3a3dDhw4oFtfW1uL/fv3o6mpCcePH0d/fz+WLVuGoaGhsR8RTRicQSEiil8RXUn24MGDuvuNjY3Izc1FW1sb5s2bpy23WCyw2WwBx3A6nXjppZewZ88eLFq0CADw8ssvo6CgAIcPH8aSJUsiPQaaoHiRdyKi+DWmz6A4nU4AQHZ2tm75sWPHkJubi2984xv4+c9/jp6eHm1dW1sbrl+/jsrKSm2Z3W5HSUkJTpw4EXA/brcbLpdLdyMiIqKJK+oGRUSwfv16zJ07FyUlJdrypUuX4pVXXsGRI0fwu9/9Du+99x4WLlwIt9sNAHA4HEhJSUFWVpZuvLy8PDgcjoD7qq+vh9Vq1W4FBQXRpk0xhLMnRETxK+o/FlhdXY0zZ87g+PHjuuUrV67Ufi4pKUFZWRkKCwvxxhtv4JFHHjEcT0SgKIFPSZs3b8b69eu1+y6Xi01KHOBbPERE8SuqGZSamho0Nzfj6NGjmDZtWtDY/Px8FBYW4sKFCwAAm82GwcFB9Pb26uJ6enqQl5cXcAyLxYLMzEzdjSY+NidERPErogZFRFBdXY19+/bhyJEjKCoqCrnNF198ga6uLuTn5wMASktLkZycjJaWFi2mu7sbnZ2dmDNnToTp00TGrxkTEcWviN7iWbt2LV599VW8/vrryMjI0D4zYrVakZqaiv7+fmzbtg0/+tGPkJ+fj48++ghbtmxBTk4OfvjDH2qxa9aswYYNGzB58mRkZ2dj48aNmDFjhvatHiKAMyhERPEsogaloaEBALBgwQLd8sbGRqxevRqJiYno6OjA7t27ceXKFeTn5+OBBx7A3/72N2RkZGjxO3bsQFJSElasWIGBgQFUVFRg165dSExMHPsR0YTBz6AQEcUvRURibibd5XLBarXivbodmHRHqmHc6MlNIFDU++rhKsrIB3PVSNH+hc9Po9t4j6HfEhBFgSL+WxnlIACUaHJQFChikAMU7d9wcrgZdQAUiILRY9eN5z2m+o+ox67mOhozlhz86z86XvQ5aLVUFGiHF1EO/sfhmwPgU8swcgiGDR0RmVn/lwMo2/I/cDqdIT9PGvW3eMzg4v++irRE40MIfGLWf7bBe5nXKcTnpBjJfd/Tkj4HzzKjHPxPe7cyh9HjvX056LeJpg5Gj6dRDp5lkdfB+H6o51ToHHzr4J2Dd+386xAKmxQiMqtrQzfCjo3pBmX4+g0MDxn/2h751rKo/ymA+kpfPCvVV/qifr1ZEdFe4op6vhgZYnQb7b73Np4xPDMHiro/8eTgGcM4ByjqCUlE3cbrVbsy0XJQxwg3B/Vh9OSg7Qf64zDKwXMcAXOAqI+1mqe6o2hzCPWcCp1D6DqEooQTREQ0DoaHw/+TNvxrxkRERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6SeOdwFjYH1yMSRZLGJECQPH6GRjpzYbVn5UAcb7bG8UFGttojEBxwcaOJAej8ULlYFSHQGOEm0OoMcKtw63MIdgY0Wx/s48jnOcUEVFs6Xe7gRfbw4pVRERCh5mLy+WC1WrF559+hszMTMO40V/xo7/wFe3+yIlZgYLRAggUNU5/WhD1foIaLRBtPFH/VdTxRpd656DfxjcHaOsgAkWJLAdP3qKN5Mkp3Bx8t4m0DgoUDHvVwT8H/Rhh5GBYB88Yo9t4cvB9PEPnoKjbR1qH0eeU73hjy8H3ORU4h1DYyhCRWblcLkyeaofT6Qx6/gZifAYlKT0dSenpQWP8f/l7/6JXT+yKAohAf6JXt1cEEPWEpCSocd7Usb3HUBSIKJ4ERnIQ/zij8UZz8iQhUAS64wiYg9cxI8BxeOegSLh18V6mP0kG3CZYDt6PhZaDD8XTqI2c6KEoWolCPxZeYwR9PAM1SYFnL0bqAEC8lwVqegPXRd9sKFoOWurezwe/htM7BwX+xQrE+2iJiMwlaehG2LH8DAqZVsxN7RER0U3DBoVMizMBRETxiw0KmRZnUIiI4hcbFDItzqAQEcUvNihkWpxBISKKX2xQiIiIyHQialAaGhowc+ZMZGZmIjMzE+Xl5XjzzTe19SKCbdu2wW63IzU1FQsWLMDZs2d1Y7jdbtTU1CAnJwfp6elYvnw5Ll++fHOOhiYUvsVDRBS/ImpQpk2bhu3bt+P999/H+++/j4ULF+IHP/iB1oT85je/wfPPP48//OEPeO+992Cz2bB48WL09fVpY9TW1mL//v1oamrC8ePH0d/fj2XLlmFoaOjmHhnFPL7FQ0QUv8Z8Jdns7Gz89re/xZNPPgm73Y7a2lps2rQJwMhsSV5eHp577jk89dRTcDqdmDJlCvbs2YOVK1cCAD777DMUFBTgwIEDWLJkSVj79FxJ9sqV0Fei44XaRo+DF2rjhdqIiMaTy+WC9c47w7qSbNSfQRkaGkJTUxOuXr2K8vJyXLp0CQ6HA5WVlVqMxWLB/PnzceLECQBAW1sbrl+/roux2+0oKSnRYgJxu91wuVy6G018nEEhIopfETcoHR0dmDRpEiwWC6qqqrB//35Mnz4dDocDAJCXl6eLz8vL09Y5HA6kpKQgKyvLMCaQ+vp6WK1W7VZQUBBp2hSDOBNARBS/Im5Q7r77brS3t+PkyZN4+umnsWrVKpw7d05b7/kDbx7i9UffjISK2bx5M5xOp3br6uqKNG2KQZxBISKKXxE3KCkpKbjrrrtQVlaG+vp6zJo1Cy+88AJsNhsA+M2E9PT0aLMqNpsNg4OD6O3tNYwJsyKC9AAAC0ZJREFUxGKxaN8c8tyIiIho4hrzdVBEBG63G0VFRbDZbGhpadHWDQ4OorW1FXPmzAEAlJaWIjk5WRfT3d2Nzs5OLYbIg2/xEBHFr6RIgrds2YKlS5eioKAAfX19aGpqwrFjx3Dw4EEoioLa2lrU1dWhuLgYxcXFqKurQ1paGh577DEAgNVqxZo1a7BhwwZMnjwZ2dnZ2LhxI2bMmIFFixbdkgOk2GX0nSUiIpr4ImpQ/v3vf+Pxxx9Hd3c3rFYrZs6ciYMHD2Lx4sUAgGeffRYDAwN45pln0Nvbi9mzZ+PQoUPIyMjQxtixYweSkpKwYsUKDAwMoKKiArt27UJiYuLNPTKKeWxOiIji15ivgzIeeB0UXxPzOiiAotZy9Bh4HZRQeB0UIjKvSK6DEtEMitm4PvgQmDQpjEiDE7vI6Akx0P1gsYbLx7ivYDkYju27OLxGJrocjFILt5ZhHkM0j0XYccHq4LUuqucDwj8Oww3DzIGIKMa4+vvDjo3pBuWdJ6qRlhjqEEZfy/rfD7Yu1BjBxjMagzkY73csOQQbL5IcPOtuVg7hjhHN9sHE3KQoEcWJa0M3wo6N6QblxsCXuJFg/NmVkReenrcFlJF3FjxvK6hT6yOz9+rUu4h6HlDfVlDUu17baPe9t/GMoY4HRd2f7oW5BM0BijqlL6Ju4/3WxkTLAfq3eELloD6Mnhy0/UB/HEY5eI4jYA5Q325R30JR1B1Fm0Oo51ToHELXIRQlnCAionEwNBz+390b89eMiYiIiG42NihERERkOmxQiIiIyHTYoBAREZHpsEEhIiIi02GDQkRERKbDBoWIiIhMhw0KERERmQ4bFCIiIjIdNihERERkOmxQiIiIyHTYoBAREZHpsEEhIiIi02GDQkRERKbDBoWIiIhMhw0KERERmQ4bFCIiIjKdpPFOIBoiAgC4NjwUNE5RAEDU/xRAARQRiGelCBQAMhIIRQRQAECBCKBuAnhto9333sYzhjoeFHV/4snBM4ZxDlCUkWUi6jZqDp7jmFA5qGOEm4P6MHpy0PYD/XEY5eA5joA5QNTHWs1T3VG0OYR6ToXOIXQdQlHCCSIiGgee87bnPB5MTDYofX19AIA1XWfGORMiIiKKVF9fH6xWa9AYRcJpY0xmeHgY58+fx/Tp09HV1YXMzMzxTikmuFwuFBQUsGYRYt0ix5pFh3WLHGsWnfGqm4igr68PdrsdCQnBP2USkzMoCQkJmDp1KgAgMzOTT8oIsWbRYd0ix5pFh3WLHGsWnfGoW6iZEw9+SJaIiIhMhw0KERERmU7MNigWiwVbt26FxWIZ71RiBmsWHdYtcqxZdFi3yLFm0YmFusXkh2SJiIhoYovZGRQiIiKauNigEBERkemwQSEiIiLTYYNCREREphOTDcqLL76IoqIi3HHHHSgtLcU///nP8U5p3Lz99tt46KGHYLfboSgK/v73v+vWiwi2bdsGu92O1NRULFiwAGfPntXFuN1u1NTUICcnB+np6Vi+fDkuX758G4/i9qqvr8d9992HjIwM5Obm4uGHH8b58+d1Maybv4aGBsycOVO7sFN5eTnefPNNbT1rFlp9fT0URUFtba22jHXzt23bNiiKorvZbDZtPWsW2Keffoqf/exnmDx5MtLS0vDtb38bbW1t2vqYq5vEmKamJklOTpadO3fKuXPnZN26dZKeni4ff/zxeKc2Lg4cOCC/+tWvZO/evQJA9u/fr1u/fft2ycjIkL1790pHR4esXLlS8vPzxeVyaTFVVVUydepUaWlpkVOnTskDDzwgs2bNkhs3btzmo7k9lixZIo2NjdLZ2Snt7e3y4IMPyle+8hXp7+/XYlg3f83NzfLGG2/I+fPn5fz587JlyxZJTk6Wzs5OEWHNQnn33Xflq1/9qsycOVPWrVunLWfd/G3dulW+9a1vSXd3t3br6enR1rNm/v773/9KYWGhrF69Wt555x25dOmSHD58WD788EMtJtbqFnMNyne/+12pqqrSLbvnnnvkl7/85ThlZB6+Dcrw8LDYbDbZvn27tuzLL78Uq9Uqf/rTn0RE5MqVK5KcnCxNTU1azKeffioJCQly8ODB25b7eOrp6REA0traKiKsWySysrLkL3/5C2sWQl9fnxQXF0tLS4vMnz9fa1BYt8C2bt0qs2bNCriONQts06ZNMnfuXMP1sVi3mHqLZ3BwEG1tbaisrNQtr6ysxIkTJ8YpK/O6dOkSHA6Hrl4WiwXz58/X6tXW1obr16/rYux2O0pKSuKmpk6nEwCQnZ0NgHULx9DQEJqamnD16lWUl5ezZiGsXbsWDz74IBYtWqRbzroZu3DhAux2O4qKivDoo4/i4sWLAFgzI83NzSgrK8OPf/xj5Obm4t5778XOnTu19bFYt5hqUD7//HMMDQ0hLy9PtzwvLw8Oh2OcsjIvT02C1cvhcCAlJQVZWVmGMROZiGD9+vWYO3cuSkpKALBuwXR0dGDSpEmwWCyoqqrC/v37MX36dNYsiKamJpw6dQr19fV+61i3wGbPno3du3fjrbfews6dO+FwODBnzhx88cUXrJmBixcvoqGhAcXFxXjrrbdQVVWFX/ziF9i9ezeA2HyuxeRfM1YURXdfRPyW0aho6hUvNa2ursaZM2dw/Phxv3Wsm7+7774b7e3tuHLlCvbu3YtVq1ahtbVVW8+a6XV1dWHdunU4dOgQ7rjjDsM41k1v6dKl2s8zZsxAeXk5vv71r+Ovf/0r7r//fgCsma/h4WGUlZWhrq4OAHDvvffi7NmzaGhowBNPPKHFxVLdYmoGJScnB4mJiX6dXE9Pj19XSNA+9R6sXjabDYODg+jt7TWMmahqamrQ3NyMo0ePYtq0adpy1s1YSkoK7rrrLpSVlaG+vh6zZs3CCy+8wJoZaGtrQ09PD0pLS5GUlISkpCS0trbi97//PZKSkrTjZt2CS09Px4wZM3DhwgU+1wzk5+dj+vTpumXf/OY38cknnwCIzd9rMdWgpKSkoLS0FC0tLbrlLS0tmDNnzjhlZV5FRUWw2Wy6eg0ODqK1tVWrV2lpKZKTk3Ux3d3d6OzsnLA1FRFUV1dj3759OHLkCIqKinTrWbfwiQjcbjdrZqCiogIdHR1ob2/XbmVlZfjpT3+K9vZ2fO1rX2PdwuB2u/Gvf/0L+fn5fK4Z+N73vud3uYQPPvgAhYWFAGL099pt/1juGHm+ZvzSSy/JuXPnpLa2VtLT0+Wjjz4a79TGRV9fn5w+fVpOnz4tAOT555+X06dPa1+73r59u1itVtm3b590dHTIT37yk4BfK5s2bZocPnxYTp06JQsXLpzQX8d7+umnxWq1yrFjx3RfY7x27ZoWw7r527x5s7z99tty6dIlOXPmjGzZskUSEhLk0KFDIsKahcv7WzwirFsgGzZskGPHjsnFixfl5MmTsmzZMsnIyNB+z7Nm/t59911JSkqSX//613LhwgV55ZVXJC0tTV5++WUtJtbqFnMNiojIH//4RyksLJSUlBT5zne+o309NB4dPXpUAPjdVq1aJSIjXy3bunWr2Gw2sVgsMm/ePOno6NCNMTAwINXV1ZKdnS2pqamybNky+eSTT8bhaG6PQPUCII2NjVoM6+bvySef1P5/N2XKFKmoqNCaExHWLFy+DQrr5s9zfY7k5GSx2+3yyCOPyNmzZ7X1rFlg//jHP6SkpEQsFovcc8898uc//1m3PtbqpoiI3P55GyIiIiJjMfUZFCIiIooPbFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLT+T+IfozogKuDXwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wlV3nm/z3nVLihb+fcMz09eaSZUUZCWUIBhMDGJBtsDGtYDLZ/NsbrZcFLsv2BNXhZ767zIhA5IxEkEAMKKIxyHEkzSpNTz3QO91Y45/z+OHVvd0+UsLAkXM98Supbt27VU2/Vveet97zP+wprrSVHjhw5cuTIkeNFBPlCE8iRI0eOHDly5DgUuYOSI0eOHDly5HjRIXdQcuTIkSNHjhwvOuQOSo4cOXLkyJHjRYfcQcmRI0eOHDlyvOiQOyg5cuTIkSNHjhcdcgclR44cOXLkyPGiQ+6g5MiRI0eOHDledMgdlBw5cuTIkSPHiw65g5LjVxpDQ0O85jWv+YU/H8cxH/nIR1i6dClBELBkyRI++MEPUq1Wn0eWL2187GMfQwjxghz7scce42Mf+xjbtm077L13vOMdDA0N/btzei4YHR3lt37rt+ju7kYIwete97qjbnuse/nee+9FCMHVV1+9YP0NN9zA5ZdfTn9/P2EY0t/fz0UXXcT/+B//46jHef3rX48Qgj/6oz96Tueybds2rrzyStrb2xFC8L73vY9t27YdkVeOHM8GuYOSI8cx8Ja3vIVPf/rTvPvd7+b666/nXe96F5/5zGf4zd/8zRea2osG73rXu9i4ceMLcuzHHnuMj3/840d0UD784Q9zzTXX/PuTeg74q7/6K6655hr+1//6X2zcuJFPfepTz9u+//mf/5lXvepVNDc38/d///fccMMN/M3f/A0nnHAC3/72t4/4meHhYX74wx8C8JWvfIVarfasj/enf/qn3HXXXXzuc59j48aN/Omf/unzch45/uPCe6EJ5MgxOztLqVR6oWkchjvvvJPvfve7/M//+T95//vfD8Cll16K53l86EMfYsOGDVx22WUvMMvnhl+GrRctWsSiRYue130+H1i+fPkLTeG42LRpE8uXL+e3f/u3n/d9f/KTn+SCCy44zBl529vehjHmiJ/54he/SJIkXHnllVx33XV897vf5a1vfeuzOt6mTZs488wzF0SBjuQ45sjxbJFHUHL8u6I+HXD//ffzxje+kba2tsZAcu+99/Jbv/VbDA0NUSwWGRoa4i1veQvbt29fsI+rr74aIQQ33XQT733ve+ns7KSjo4PXv/717Nmz57gc/vEf/xHP8/joRz96zO1uv/12AF796lcvWF8Ps3/nO9857rE+/vGPc9ZZZ9He3k5zczOnnXYaV111FYf26KyH76+55hpOOukkCoUCy5Yt4//8n/+zYLubb74ZIQRf/vKXef/7309vby/FYpELL7yQBx54YMG273jHO2hqauKRRx7h8ssvp1KpcMkllwBuauEP/uAPGBgYIAgCli1bxl/8xV8QRREAtVqNU089lRUrVjAxMdHY5759++jt7eWiiy5Caw0ceYqnfj4//OEPOfXUUykWi5xwwgmNp/Orr76aE044gXK5zJlnnsm999674PPP5l64+uqredOb3gTAxRdfjBBiwXTCkaZ4arUaH/zgBxtTdgMDA/zhH/4h4+PjR+T/4x//mNNOO41isciaNWv43Oc+d/hFPgKOZ9/61MdPf/pTHn/88Qb3m2+++Vnt/9lgZGSEvr6+I74n5ZF/+j/3uc/R09PDF77wBYrF4rM63/o9+dRTT/GjH/2ocS5Hc06eeuop/tN/+k+sXLmSUqnEwMAAr33ta3nkkUcO2/bRRx/l8ssvp1Qq0dXVxR/+4R9y3XXXPe+2yvEihc2R498RH/3oRy1glyxZYj/wgQ/YDRs22GuvvdZaa+23vvUt+5GPfMRec8019pZbbrFf//rX7YUXXmi7urrsgQMHGvv4/Oc/bwG7bNky+//9f/+fveGGG+xnP/tZ29bWZi+++OIFx1uyZIm98sorrbXWGmPsn/3Zn1nf9+3nP//543L9xCc+YQH7zDPPLFi/ZcsWC9izzz77uPt4xzveYa+66iq7YcMGu2HDBvtXf/VXtlgs2o9//OOH8RwYGLCDg4P2c5/7nL3++uvtb//2b1vAfvrTn25sd9NNN1nALl682P76r/+6/cEPfmC//OUv2xUrVtjm5mb79NNPN7Z9+9vfbn3ft0NDQ/aTn/yk/dnPfmZvuOEGW61W7UknnWTL5bL927/9W/uTn/zEfvjDH7ae59lXv/rVjc8/8cQTtlKp2Ne//vXWWmu11vYVr3iF7e7utnv27GlsV7+mh57PokWL7Lp16+zXvvY1e/3119uzzjrL+r5vP/KRj9hzzz3Xfve737XXXHONXbVqle3p6bGzs7ONzz+be2F4eLhxjf7hH/7Bbty40W7cuNEODw83zn/JkiWNfRpj7Ctf+UrreZ798Ic/bH/yk5/Yv/3bv7XlctmeeuqptlarHcb/xBNPtF/84hftDTfcYN/0pjdZwN5yyy3HvObPxr61Ws1u3LjRnnrqqXbZsmUN7hMTE0fd7/x7+VDcc889FlhwX1966aXW8zz70Y9+1D744IM2TdNj8r799tstYP/8z//cWmvt7/zO71ghxGH3/6GYmJiwGzdutL29vfbcc89tnEutVrNbt249jNctt9xi/+zP/sx++9vftrfccou95ppr7Ote9zpbLBbt5s2bG9vt2bPHdnR02MHBQXv11Vfb66+/3r7tbW+zQ0NDFrA33XTTMXnleOkjd1By/LuiPph95CMfOe62aZra6elpWy6X7f/+3/+7sb7uoPzBH/zBgu0/9alPWcDu3bu3sa7+oz47O2vf8IY32JaWFvvTn/70WXG99tprLWC/9KUvLVh/1VVXWcCuWrXqWe2nDq21TZLE/uVf/qXt6OiwxpgFPIUQ9sEHH1zwmcsuu8w2NzfbmZkZa+2cg3Laaact+Py2bdus7/v2Xe96V2Pd29/+dgvYz33ucwv2+c///M8WsN/85jcXrP+bv/kbC9if/OQnjXXf+MY3LGD/7u/+zn7kIx+xUsoF71t7dAelWCzaXbt2NdY9+OCDFrB9fX2N87F2zs7f//73j2q7o90L3/rWt446WB3qoPz4xz+2gP3Upz61YLv6Of7rv/7rAv6FQsFu3769sa5ardr29nb7+7//+0flae1zs++FF15o165de8z9zef0XByUp556yq5bt84CFrDFYtFecskl9u///u9tHMeH7eP3fu/3LGAff/xxa+3cvfbhD3/4F+Z3JAflUKRpauM4titXrrR/+qd/2lj/53/+51YIYR999NEF27/yla/MHZT/IMineHK8IHjDG95w2Lrp6Wk+8IEPsGLFCjzPw/M8mpqamJmZ4fHHHz9s+1/7tV9b8Pqkk04COGxKaGRkhFe84hXcfffd3HbbbY1pjjq01qRp2ljq8/NXXHEFK1as4AMf+AAbNmxgfHycH//4x3zoQx9CKXXUMPl83HjjjVx66aW0tLSglML3fT7ykY8wMjLC8PDwgm3Xrl3LySefvGDdW9/6ViYnJ7n//vsPWz9/WmXJkiWcc8453HTTTYdxONTWN954I+VymTe+8Y0L1r/jHe8A4Gc/+1lj3Zvf/Gbe+9738ud//uf89V//NR/60Ieedd7NKaecwsDAQOP1CSecAMBFF120IA+mvn7+dXuu98KzwY033rjgPOt405veRLlcXnDedf6Dg4ON14VCgVWrVh12fx3pOM/Wvr9MLF++nIceeohbbrmFj3/841x66aXcc889/NEf/RFnn332ggTY6elpvvnNb3LOOeewZs0aAC688EKWL1/O1VdffdSclV8EaZryiU98ghNPPJEgCPA8jyAIePLJJxdc21tuuYV169Zx4oknLvj8W97ylueNS44XN3IHJccLgiPNjb/1rW/l7//+73nXu97FDTfcwN13380999xDV1fXEWW9HR0dC16HYQhw2LZPPPEEd911F1dccQXr1q07bD+XXHIJvu83lt/7vd8DIAgCfvSjHzE4OMjll19OW1sbb3zjG/nQhz5EW1vbgsH3SLj77ru5/PLLAfh//+//cfvtt3PPPffwF3/xF0fk2dvbe9g+6utGRkae1baHblcqlWhubl6wbmRkhN7e3sPyRrq7u/E877B9/N7v/R5JkuB5Hn/8x3981PM9FO3t7QteB0FwzPXzB8znei88G4yMjOB5Hl1dXQvWCyGOaLtD7y9w99jxjv9c7fts4XleI+/nUKRpCoDv+wvWSym54IIL+MhHPsL3v/999uzZw2/+5m9y3333Lcgv+cY3vsH09DRvfvObGR8fZ3x8nImJCd785jezc+dONmzY8AtxPhLe//738+EPf5jXve51/OAHP+Cuu+7innvu4eSTT15g25GREXp6eg77/JHW5fjVRK7iyfGC4NAf74mJCX74wx/y0Y9+lP/23/5bY30URYyOjv6bjnX22Wfzpje9iXe+850A/NM//dOC6Me//Mu/MDU11Xjd2dnZ+HvFihVs3LiR3bt3Mzo6yvLly5mYmOBP/uRPuOCCC4553K9//ev4vs8Pf/hDCoVCY/211157xO337dt31HWHDpZH2/bQ7Y5Un6Sjo4O77roLa+2C94eHh0nTdMH5z8zM8La3vY1Vq1axf/9+3vWud/G9733viPyfL/yy7oWOjg7SNOXAgQMLnBRrLfv27eNlL3vZv4n3/OM8W/s+F/T09LB79+4jvldff7zBu1wu88EPfpBvfOMbbNq0qbH+qquuAuB973sf73vf+w773FVXXcUrX/nKX4j3ofjyl7/M7/7u7/KJT3xiwfqDBw/S2traeN3R0cH+/fsP+/yR7v0cv5rIIyg5XhQQQmCtbURB6vjsZz971KfG54K3v/3tfP3rX+fzn/88v/u7v7tgn6tXr+aMM85oLEcq7jUwMMD69esplUp8+tOfplwuNxyeY52T53kopRrrqtUqX/rSl464/aOPPspDDz20YN1Xv/pVKpUKp5122oL1X/va1xYogbZv384dd9zBRRdddExO4CJG09PThzlKX/ziFxvv1/Ge97yHHTt28N3vfperrrqK73//+/yv//W/jnuMfwuey71wtKjZkVA/ry9/+csL1n/nO99hZmbmsKm/XxTPxb7PBZdeeimbNm3iscceO+y9b37zmzQ1NXHWWWc11u3du/eI+6lPo/T39zdeb9y4kTe84Q3cdNNNhy2XXHIJ3/ve937hyM+hEEIcdm2vu+66w5yvCy+88Ijn+/Wvf/154ZHjxY88gpLjRYHm5mYuuOACPv3pT9PZ2cnQ0BC33HILV1111YKnqn8L3vjGN1IqlXjjG99ItVrla1/7WmN64Wj41Kc+RW9vL4ODg+zfv59vfvObXHvttXzpS1867hTPlVdeyWc+8xne+ta38u53v5uRkRH+9m//9rAf5zr6+/v5tV/7NT72sY/R19fHl7/8ZTZs2MDf/M3fHFa7ZHh4mN/4jd/gP//n/8zExAQf/ehHKRQKfPCDHzyuHX73d3+Xf/iHf+Dtb38727ZtY/369dx222184hOf4NWvfjWXXnop4ByCL3/5y3z+859n7dq1rF27lj/6oz/iAx/4AOeeey5nnnnmcY/1i+C53Av1Kbt//dd/pVKpUCgUWLp06RGnZy677DJe+cpX8oEPfIDJyUnOPfdcHn74YT760Y9y6qmn8ra3ve154f9s7ftc8Sd/8id88Ytf5KKLLuJDH/oQ69evZ2xsjG984xt8+9vf5jOf+QyVSqWx/dq1a7nkkku44oorWL58ObVajbvuuov/+T//Jz09PQ0Hux49+a//9b8e8ZpOTU3xs5/9jC9/+cv8yZ/8yS/EfT5e85rXcPXVV7NmzRpOOukk7rvvPj796U8fVkvnfe97H5/73Oe44oor+Mu//Et6enr46le/yubNm4GjS6Vz/ArhhczQzfEfD3XFx3zZcB27du2yb3jDG2xbW5utVCr2Va96ld20aZNdsmSJffvb397Yrq7iueeeexZ8vq46mJ/dfyRlwU033WSbmprsq171qgXS1iPh4x//uF2+fLkNw9C2trbaV73qVfbnP//5sz7fz33uc3b16tU2DEO7bNky+8lPfrKhAtq6dethPL/97W/btWvX2iAI7NDQkP3MZz5zxHP80pe+ZP/4j//YdnV12TAM7fnnn2/vvffeBdu+/e1vt+Vy+Yi8RkZG7Hve8x7b19dnPc+zS5YssR/84AcbUtuHH37YFovFBXa31sljTz/9dDs0NGTHxsastUdX8RxJcQLYP/zDP1ywrq70mC+nfrb3grXW/t3f/Z1dunSpVUotUIwcquKx1ilxPvCBD9glS5ZY3/dtX1+ffe9739s4l+Pxv/DCC+2FF1542PpDcTz7zt/fs1XxWGvtvn377Hvf+147ODhoPc+zlUrFnnfeefZb3/rWYdv+y7/8i339619vly1bZkulkg2CwC5fvty+5z3vsTt37rTWWhvHse3u7rannHLKUY+ZpqldtGiRXb9+/TG5PVsVz9jYmH3nO99pu7u7balUsuedd5699dZbj2jbTZs22UsvvdQWCgXb3t5u3/nOd9ovfOELFrAPPfTQcayV46UOYe0hFaNy5Mjx746hoSHWrVvXKGR2NNx8881cfPHFfOtb3zpMJZIjx38EvPvd7+ZrX/saIyMjx42A5nhpI5/iyZEjR44cL0r85V/+Jf39/Sxbtozp6Wl++MMf8tnPfpb//t//e+6c/AdA7qDkyJEjR44XJXzf59Of/jS7du0iTVNWrlzJZz7zmeclFybHix/5FE+OHDly5MiR40WHFzQN+h//8R9ZunQphUKB008/nVtvvfWFpJMjR44cOXLkeJHgBXNQvvGNb/C+972Pv/iLv+CBBx7g/PPP54orrmDHjh0vFKUcOXLkyJEjx4sEL9gUz1lnncVpp53GP/3TPzXWnXDCCbzuda/jk5/85AtBKUeOHDly5MjxIsELkiQbxzH33XffgjLWAJdffjl33HHHYdtHUUQURY3XxhhGR0fp6Og4YinvHDly5MiRI8eLD9Zapqam6O/vP26xvRfEQTl48CBa68P6RvT09Byxz8InP/lJPv7xj/970cuRI0eOHDly/BKxc+fOw6oHH4oXVGZ8aPTDHtJcq44PfvCDvP/972+8npiYYHBwkJed/p/w1LG18EaABgILAoiF+3/ZwnR2KD+b5IoEKEBlry2gs897QMlCLdtHk3UJPJNi7r2qgBi3Dy87Xp1DmnGQQCLcvksWagLMs+QggWYLsxmHkoUAmBDuvZJ1x6+JI3PQgA9I6zgYoGJhNvvby/hF2f6OxqGS2SGax2E8+0xTxqGava7vE8BmdvCy9XUOJev2lWZ2kPPO4UgcRGaHKNuuYKGQ2UFk+0vnc8jO+Wgc9LzPxGKOQ5Ttz5s3Caqzz8/nEAln1yZjGZPO4mXrzm3mGBxUdr51DmXrjp9kx/Sy8xOZHZ5NrPDSyac5sfb89EzJkSNHjucbs0bzzh0PL2jLcDS8IA5KZ2cnSqnDoiXDw8NH7MYZhuER+5d4KsDzjuegiGyQsYhDXnuZM+RZCwh0Y1B0I4llzony6p8BtBB41rpBXIi594RoODP149U51I8jASsEtvEZMIiMg9v30TioI3DwMg7198whnOZzENQHSosVInNKHG8zj58WInNQjs0hPQ4HNW+fZOftbGnxLAs46ENs5DXs4BjM51C/frp+rhkHb961ZQEHkNhDOLjt7CGfMUI0tteN9+pWyBrZHcIhzeztG4OXhSwPs0Nm9/kc1BE4GAGWw8/JOSjHTxcrKJ+SVMfdLkeOHDleSDyb9IwXRMUTBAGnn346GzZsWLB+w4YNnHPOOS8EpRw5cuTIkSPHiwgv2BTP+9//ft72trdxxhlncPbZZ/Ov//qv7Nixg/e85z3/LscX2ZNp45n0F8i1fc7yJyHAWrDuTzIOLxQchefO4Fjnfeh74tA3hVtrsdj662dph/nbPCfbz7/Q1k2xHMrp2HZ4noVuDTscziFP+c6RI0cOhxfMQfnN3/xNRkZG+Mu//Ev27t3LunXruP7661myZMnzdgxrneIHKRBKkSYpBkNHRwsDHc3sGZvi4PA4KRCGPqQaa7KQezZgSCFQAjCW1BhQCikFOjVgQfoSkb1npUQpiaznC1g3NWG0ASFQviKNU1Kj6ehsob+jmYOTs+zbP0pqwQ88hLFYbY7IQRhLog14MuNgSaxFeBKBRWuLlQIlRSPfgfq0gjZYAdL30EmK1oaWtiaWdLdxYGqWffvHSLUhDHyEMRhtkEfh0DhXIdDGkliD9Dw3LaItRgiUEo38kToHYzIOnsJoS5qmNLc2MdjdxmQ1Yteeg6TGHsIhG7izRWXORqq14yAFRlsSYxAZBzOfA45zHcYYyOxgEk2qU0qVEkv6O5iuRuzaO0qaaoIg21fqOAtniCNykEJgjSE2FqGck6GNwYK7H47A4VA7lCpFFvd2MJuk7NxzkDTReIF/OIfjIndxcuTI8auBF7SS7B/8wR+wbds2oijivvvu44ILLnhuO8ievo+2WGvRqUZYi/QUSaoxqWHZsj4uvOx0Vq4cwGhNnGpU4COy7a01WYgDlBT4ypkp0gYAX0piY4mynAMhBHH2XqAknpKNAc0ai0k1GIPyPRJtSKKEJUt6uODS01lzwiBWG+JEIz3lckBS7QZSFnKQQlBL3XpfShJjqWmDJwUq46Ctxc84yEPsgLF4gUeSGtIkZaC/kwsuOY0T1w6hgDhOEZ5CCjB1DofYQQiIUrfeU5LUWqqpQT0HDtJTpMaSRAl9ve2c94pTOPnUFQgLUZw4DtQ5zA3sdQ4q42ABT0q0tdRSg6xzMBkHKfHkfA5gtMZqgx94JMYQRQldnc2c/4pTOfm0VQS+IooTkAIlJSbV6OzagsspcRzctbAWPOVyaWZT51B5Urjz046DfxQOylNo6+ze3lbh7AtP4owz1xB6HlGcYpV0HLR2Ti7Hvt/r10rkS77kS768iJdnixfUQfm3wtrjLNlGUrgpBW0tvqcYGurh9DPXsHxZH76n3NOuyIxhbePzAFKIRqJimo0RSoC2bvGyKEPSeE8gBXNTGDh1khSAEKTGDaRLBrs5/WWrWblygMD3MFm0RQoakRebTS00OAhI6gmgUmCwpNn5CSFIs5P26k/5C2yUJatmHJSULBro5PQz17Bq1SIKhQBjLcZaVDYVtcAOuP1KsuNkdjBAah2fOgfL0Tm4G9RFXoQU9Pe1c9oZqznhxCUUQt9FsDI7Og62McEi6hyEcwCsdc6ABRLr+Egh0NbZzjlN8zgwx0FKSWosQkBPdyunnbGaE09cQrlUcM6UdZ9v2IF6svDcuSXzuDoO7lo4Dm4fdecRwbz7AUSmWEut49DV2cKpp61i3UnLaCpnHMwROBznns+RI0eOXxW8pLsZ1we9Y0FK9xSaJhopBZVKkcWLu1m8qIvBxd1UKiWiZMqF1JXEKEn9ib8+qgicczB/oESQ5ZJYhJ1TukhwzkbGzc7joLUGoFQusGhRF8uX9bF39wGam0tEcUqaapSUSCkR9fPDIq1F4vZd5yBxvAzzHKuMV/2zJhvgERkHJV0UA2hqKjAw0MGiRZ0MD/fQ2lJmamqWOE4JfYXMoiV1R0tmx3Hr6naZ84YbSh3meclH4OAp6aY4rKVUCunv72DJYDdJnNDaWmZ6pkaapm6aqnEt6nYAgXP26kooUb9OYo6LWyOccqd+HbL7RGR2MMagtaFULNDX287yZX2YVNPeXuHgwQmSROMrhZrHIdsZAudUWLHwfOf+rl8LQV15s5CDQErpomvaUCqG9Pa0sWhRJ80tJdrbK+wfHidJUgIvQCnVuN+Plw9jj/N+jhw5crxU8JKOoNSf+I+0WCxSSoLQxw884jihWAjp7etgoL+DYsGnv7+Dvr4OSsWQqBYTBD5B4COVbOxHG4sxxg14WfKBzaIMSroQgrUWKZ0TY4zBGIsxNlsv8UOPIPRJk5Qw8Onpaae/r51C6NPV1UpffwflcoE0TvE8RRD6SKUy58Bm+3QhGqmkc0aMO6aSsvGELeflQxhj3ABoLULMcUiihMD36O5pZ2Cgk0Lo09/XQX9/J5VKibgW43mKMPSRnmoMrAs5iEY0QgrhBnE7d75CzuOQ2REh8AOPIPDRqcbzJN1dbQwMdFJpKtLd3UpfxiHJ7BCGPso7xA4uPJJdi7nolLPDHCdZn14zpnEtEeD7zg461UgBXd2tDCzqohD6tLWW6e/vpLW1iTROkVIQFIKMAxiT3Q8ZB5VJiq3J7FB3LI2LjihZ55At8ziEoY/RGkGdQydN5QI92d9tbU0kcYJS7h726hyOcc+bRtgwR44cOV76eElHUAoF/6h1UKQQdHQ2s3zFAO3tFaYmZiiWQoaW9jE42I3RhsWLu3nlFWeybes+qtWI5pYy4+PTbH1mL3v3jmCMJUlSEu0ckoLvoa0lyaItAoiTFAEUAvdeLU6RQuD77um7o6OFZcv76OhopjobIaVk8eIuli3vR6ea3t52Xvkqx2F6qkqlucTU9CzPPL2Xfftcwqbj4PZbDNx0UJxoPCkQQpFojbAQ+goDjgOOg5SStrYKK1YO0NnZwuxMDSlgaGkfa9YMYo2ls7OZSy47naGlvYyMTNLWXmFmpsYzz+xl964DaG1IUk0Spw07mMwOSgo8qUhT54zUOUSxK2cWZHZoaSmzdGk/vX1tRNUYay0Di7s48cQlYC3trU1cdvkZLF/ez/j4NM3NZWarEdu27mPXrgMkiYsw1RJnB8cB4kS7Wii+QmuNteD7bjCvc/A9RRBImisllq3op6enDZ1qarWYwSU9nHLycqwxtLSUuejiU+gf6GT/vlFaWpuI45Stz+x1HOKEZD6HwHFIUt14rbWzg++5qIfjQMZB0dRUZOmyPgYGOknihDhKWLykh9NOW4mnJIHvceFFp9Db28G+vaO0tVeoRTG7dh5g69a9JIk+5ndCzcjjRhVz5MiR44XCc/l9ekk7KMa6p2OHeoDdQQhBe2cLF150Mi87fRWtrWWS1CCz5M04SujubuVNb7qQNE3xfY/x8WkefngrP6huZM+eEbQ2xHGKtQavEOAFPmktwmiDXwiQQhBXI4SUBEUfm6TEceIqrgo3RdHWUeHc89Zz5hmr6OpudYN6lvyYpildXS28/vXnk6Yaz1NMT1d5+JFn+EF1I/uHxzDGkCQpxjiFjV8IqVUjjNb4hcAVDqvFGCAohghtiKKY1LqpBF8IWlrLnHPuWs562Ro6u1rQWiOVwvcUUS2mtbWJK1/zcnSq8T3FzGyNxx7fwfe/fwe7dx90HOIUozWqEOCFPlEtxqQaL/RRSpLWYowFWQwRxhBH2etsaqfSXOaMM1dz0YUn0d3V6iJMwg3caaIplQr82q+dQ5K46El1tsbmLbu4/vq72LP3ICZyzqJONX7g4ZcKRFGCjjVewXf2zI4ZFAKstcRRkkWQ3NRUqanA6Wes5txzTmTx4i6nxJLOgdGJplIpcfnlp3Pxxaegsnvkqaf38P0fbGTvvhFq8zn4Hn7ZcTCJxgs8lO+hozi7P0KkFEQzVbQ2bupHSoqlkFNOWcEll5xKb29bNjUkCAKPOErwfcWll57GhReejKckSZLy5FN72LDhPnbsGG44PEdD7prkyJHjVwUvWDfjfwsmJydpaWnhlFPfiTpKqXshoLlSZtXKfk4/ZQWvfPWZLFrcTVSLUVLiBR4mi06ExZCDo1Nc+82beXjTNp58eg8jI5MI4VQ5Rd8jFYKpWFMQUPAlU6nBWGj1JVFqmDGWSuARYKklmijVGHBP7Ut7OWX9Uq547TkMDfUS1SKUlPjZtE8cJRTLRYaHx7jxJ/dy1z1b2PLkbsbGpjDGEnqSgq+wUjIWpRSFoOhLZlJLbAytgSLVhhltKfqKooAo0dRSjbFQbiqyYlkf69cu4dW/dg7Ll/WTJikCiwp8Z4coISiGTE/Ncv0PN3Lf/U/x+OadHDg4gbXW2SFQGCGZjDWhsBQ9xYx2aqb2jMNUaikFiqIURElKLXFOZKlcYGiwm1NPXsall5/BiWuXksQJGEtQDLDGUputUWgqMjsbcf33buee+55gyxO72X9gHKMNgXJ2kEoyFmt8LGVPUc3UTK2BQmd2CD1FSQnijIO2lmIxZGhJD+tOWMxlV5zJyScvJ4lTMIagGGK0JqrGhKUC09NVfn7zg2zc+BibHtvO8PA4Wht8JSj6HlJJRmNNYC0lXxFby1Ti7GCtZTo1eEpR8QRJoqkmGm0tYSFgcHEXJ68b4hWXnc4pp650CdhxQlAIAUttpuacLOBHP7yTu+/ezONbdrF7z0HSeYqiI+HXp7dySnTg+f7K5ciRI8fzglmj+a3tDzIxMUFzc/Mxt31JOyhnnfn7xyx1b4xLamxqKnDyaav4kz/+DXp721FSEmUDntGafcPj/MM/fI/7797M9Eytkb8iyOpYSEGSGqI4JQw8PE8yG6VYaykXfLQ21KKUIPAIPOVyV7JQf51DuRSy9uTlvPs/X8nKlQOoTGqrhKtRsm//GJ+/+idsvP0RJsanGzklCJxcVzrly2wtIfQVvq+oxSmpNpQL2QAfp3hKEgYKY2lwsFk+TLEYsGzlIv7sv7yJ5Uv78JSkpg2hp7DaMDsb8X//4XvcesuDTE3OYox1OS+ZHZQUpNpSixIC30VgaokmTTXloota1KIUpQSFwMdaSzqPg7GWUiFgxerF/P7vv4Z165bie04uraTAasP4xAxf/dqNbPjxPQ0HrW4HJSVKCYy1zFaTxrRJlGiSRFMqBpBNsynpplysZY5DxiMMfRYNdvPeP/x1zjhtpYvikCW4GsvMbMRXvvozfnz9XYyOTJJqp3o6lMNMNSHwFIGviLWhFiU0FQMEbpoNoFTwsdm1qCcMG20phB4Dgz28691Xcs5ZJ+B5isRYPE+CdvfaN799C9/95i2Mj0+RpqZhh2PhiomnOKmaOyg5cuR4cWLWaH5r2wPPykF5SU/xHAsCN32AFMxUY26/9WEuvvAk2toqlMsFRJQivIA41Ty2aSu33PgAXuDhBR5Yp66w4OqbaCclLQUeqbXEqaGQDRZxasBaSoGHBmpp6pI4D+EQpZq7Nz7GWWesZmBRJ81NJZRxU07VVPPUk7u5/ecPMTldww/8I3KQQlDOOESpIZCSQAhXvM1aF2UBaqlucADwMg6JNty98THuu2szA32dlJsKyEQjPEWcap5+eg8/+8k9zNYSgsBD2axmB26QTzIOdTtE2uBLQeirOQ6ewoo6B9uwg/QUnnR1Uh568Cnu2vgYS5b00N5eQWiNEAoNbNu6jxs33Mfo+DSefwgHY0iMm74rZTk/UaLxhMt1qTsiBSWx9Zox89RGSkmELzHAIw8/w8afP8LqlYtobW1CWpfYmhjDvn2j3PTT+9i7d5RiKSRQqpHwO59Duc4hdRyafM8l0WYRJ3EUDr4v0cBjj27jtpsfYv3aIdraKgidIrPaMrt3H2DDj+5m/4FxCoUAXyl3PzyL54lcyZMjR44XK57L79NL2kE5dtEX4RQcqct1cGqZTgrZk77ObFQIA3r7OujubePgwUms0Y2S442qoYhGNABZr8NhGgXgrHEDOFluyfyiFXUOQgraO5rpz9QabsC1eLLOoZ3unnamZ/aQZAqSury5zoF5HJQULkJiLNJzrojOCqu5p/1DOGg3ALdlHEql0E0tWEsABIHfUNI8s3WvmwLK6qs07CwO4SCcjbWxSF+CyThQV/bQWKwx6MzoLa1NDCzqolIpArhcFVxiaWdXC30DnYyMTWXTUPUqsvM4YEnTuh3kHAfPRb10pjaqRz3qdrAGtHbnVWkusWiwm+bmkouQJdqpvnyPzs4W+ga62L1nZI7DvOtxJA5150Upz9WH0S5yVpcp1wuVWAOJdvGapkqRRYu7qFRKCIGrm4JzKDs6mlk02M227fsP4XC874T7lyNHjhwvRjyX36eXtMyY+mBxxIqabnpFW4tSimXL+hkc7CZNNA8++DRf/8pPuefeLWitWbyok5XLB5BSNCSh8zFXe4RGN1uVva4/0NZrkRib1QnJUOcgpGRw0NVfscCmTVv5+ld+xsaNjxLFCZ0dLaxY3oefTY04Sa9dwMEyF5mxWYREHfIeuOJpDQ5CNOSxCMHg4i5WLh8ALFu27OQbX72RW299hGo1orunjRNPGMTPlEImi4rUbX0Yh+z/ijmfTGZkF9ohk8FqZ4f+vnZWrOhHSslTT+/hm9+4iRt/9gBR5OywZvVigtDPrsU8O2QcjD0Kh0P4HWoHa50E3ALdXa2sXrUIpSTbdwzzja/eyE833MfExAzlcsjaEwYplQsYm5XHzyTCR+MA4NfrxjQ4WBZcxXkcENDd3coJJwyilGTXroNc851buf66O5mcnKW1tYn1a5dSKIZuiqjB4Sj3+7xKsjZf8iVf8uVFvDxbvKQjKPV6F0eCBdLEyUKbmgqc9fITiKKEu+96nG988xYeeuApVq9dwu+85RWc8bLVnHP+eu69/wmmazGekvjF0D2xKokRgjRy+/I9iVCSNHY5KF7oI7QhjTT4npP2WrBaYwzo1Cl7gtDntNNXUS4XuOO2TXz+Cz/hoQeeYmhpL2/7nUt52ZlrOPWM1dx93xNMjE3hKYmXqXSk56YskiR1NUKKAdKTJNUUoQ0y8FyF1zgBpfAC5QZsbbDWSYTjOMGrlDjz5SdSKIXcdusjfPPbt7LxtkcYXNrHm990Aeeeu45zLziJ2+98jH0Ts65se6ngOCiJlYIkTkmS1CmIlCRNNTbVqNBDWsfBZgnASoBNDdYY0kQTRTElv8Ta9ctobilz7z1b+No3buL2WzfR0dXC8IEJzjtvHWecuYYbb36Q8ZEpV+OkGDZUUVYKJ72upXihj/QkaZRxyOygkxST1V1RwuW22KyPUVSLCYoha9cvZdFgN/fd9wTf/s6t/HTDfXR2tvDGXQd4xStO5bQzVnPzrY8wNroDjEuwlXIhh7iW4oeubk6apOhEI3wPT0rSOMZYm9mhzsGQaEtUiwiLISecOMTAoi4efPAprv3e7Wz48b0Umwrs3HWASy45jTPOWsP3friRbeN7MNrglQpIeeynj0akKUeOHDlehHguv08vaQclTQ1w9LoQQgrKpZCuzlY83+Pb37qFn/zkXvYPj9PR2cyTW3byj//wPS657DTWnLCEzs4WdOIG81QbhBX42XSKkXOl5KUQroqoBYVwCanWum0FWOOSZE0WtSiVCnS0VyiVC3zv+3dww4/uZuv2/bS2NrFjxzD//E8/YMuWnaxaM0hXVwuTY9OOg7FIa1zlUc9NJSS4i6aEIAascFJismkrJcBz5WxJs4Z7CEGxFNLRXqG9vcL3v38H1/3gTrbvGqa9o5k9ew5y1WevZ/PjOzj/wpPp7WljZnKWWjUmrTcNzKa2lBSOg7WNMvIGCIRAZBEktx2NxoKOAxQKjkOlqchNNz3I9dfdyZNP7aZSKTE6OsVn/991bNm8g7PPXUdXZwsTo1PUarFrRWCzCqw4O8SAsq7sfJrVa5UCpIXY0ujLI7KE5XrzvkIhpKW1iZ6eNm6++SGu/e6tbH5iJ83NZSYnZ/jSFzew+fEdXHLZ6fT2tLFv90FmZ2poYzBYfAFSKsfBkhXtq9vBXQtBVkFXuOskcEmyWhssTsnT1tpEZ0czd975ON+/9na2PLmLUjGkVov5ypd/yhNbdvKaXzuHvt52Rg9OMDtddRyOl4Pi+ahi8d/wrcqRI0eOXx6UPnaphPl4aat4XvbuY6p4lFJZ4qtPa1OByYkZxiZnAWgrBYzOxCCgrVKkra3CyOSs6/SbFQUD0LjeLoESFCTMxBo8j6HeVpSUPLN3DJMkNPmKCJcU6Ym5EL9SEs/3kL5Pe6XIzEyVkfEZjLG0FH2mo5TUWNoqBVpbm5iYjUmi2HHIpljqHHwlKEuYTjRGKgZ7WikFHk/vGyOuxZQ9iZaSauKa1qnDOHi0N5eYna5xcHwabQyd5QLj1ZjUGCqlAt1dLYzP1EiihDRz1LAWg3Adl5WgJGEm47C4u4WmQsDTe8eoVSOafIlViulYo+ZxkNJxUIFHS7lIEsUcGJsi1YbWYsBMrIm1pqVcoLO9mfHZiDROGtfCZhx05qg0e4LZWBMDi7pbaSkFbNs/wcxsjbInsVK65n0czkH6itZKCR0nDI9MEaeatlJALXVy4KZCQHdXCzNRSq0aHZGDlIJKxiFB0NNRobe1xFN7x5meqVJSAuV5TCX6CBwUyvdpbipgU83wyCRRqmkrBlQTTS1xqqjerhamopSoGqHTlDTRx02S/dN3XsZl5639t3/JcuTIkeOXgMnpKRafcep/ABXPsSa0XM1xTJIyE6dMT8wghasymmrLbJQilMRXkpnZiMnpmlOauMdft1/hBiKEk/nGtRpxamhva+a0M1YRBj6jtzzCvl3DREajSkUUwilCskRNrOtmHCWaXVNu2sT3XKO6apyCFISeolqNmZ4dBSnxswiIsPVePo6D8iTRbJUoNTS3lzn19JW0NBWZuPVRdmzfR6RT/FIR5SuEsQhrXHgj66gcp5qdU1VUxgEjmI0TDBAGHkmSsH3nAYSn8LNElzoHIQVKOIltXIuIE01TW4n1Jy+nt7OZyVsfZdvTe6imCaXmMspTzg51DtZitaZW1cxOV5HWyacRkmqsMVgKgU8cp+zcfRDmcajnwUgpsNm1SJOYKErwm8qsO3kZi7pbie7awpbNO4jSlKBUQHnz7GDnOERas3emhrSglMAXHtU4xSAIfVcNdteeETdVJWX2+fkcBJ5SJHFEFCWElTJrTlzCict7qW7czObHd1CrxpQrCuV5CGvc/dCwgyHSEftmqojM2fE9z0m2Mxm00Yadu0fclJ0EWbfDcR4nCj3dVFYt/4W/Ujly5Mjxy4SdnHzW276kHRRrXY7Fkd90A0ldiRNn/VM8IRHCZl2BXedhjfNJPOka8mnr5JwC19RNKoXEUk1SQNLW1sTadcsolULue3QH+3cdcDUwmkr4QoLWrvZIVi1VCDftkWjAWjzh1CWpMS6/o8HBqXqkEGjcFJEQdQ4STymmI5fj0dJc4sR1S2lvLfPQE3vYvXOYqBrjl5y02WqNTcjqf2RSXyFIyaajcIqXJFP+yHoyrbVuukaQ9dPJOGS5MEoKZqMEKwTNzSXWnLiEwYFOHn5yLzu37aM2U6MkBL7v6nnYrAQ+8zjo+RyEdZ2JhZuiqXPwM7s0kpYzG3rKNfuLZjXaWNrKIWtOWMKywS6e3DXCU0/ucnawrueN1TrLg7HYTNSjhMiiUgYfiZSQZoVQfHfQRqdqKcAaGl2WpXLOiecpalMJ2ljK5QKrVi/m5PVDbNk1wtNP7aE6W6VgLEGgMCmQTc9YA0LVr4XAWOM6YONUXQYyx8wprPzsfqj3XzqeRM9mlXNz5MiR48WI5/L79JJW8WQPxUdZ7IIOsvMhcN1ppZhTxND422b7tY28Bi+TdyapwQ88OtubWbq8n+UrF9Hd1UIYeiRZOXNPiUYiY905qDsIdc512e58tc8ct2w7Czb75zhkUZzEleVvb2ti+YoBli4foLe7lWIhIM1qdXhZ08AGh3nHXXAssXB93VILOFjHQQjR2G+clXpvb21i+fJ+Vq1ZTF9vG4VCQJrl3nhSouZxmBeUAho9fucpccScIrhhnzkbYGk04KtzUErS0lxm2bI+lq1cRH9fB8VC4JQ31uDV81CYdz/MO8dDOSxcP98u82woQGV5SVGiUZ5zFpcu7WVo5SIW9XdSLoUYS1bgLWsqKUTDltYu7ATtroVoHHMhh7oNGwGYYy45cuTI8auCl3YEBRclORLqP/ImcxLkvIFK4AaZ+vsiyxmxxmKY677raoDUn25dzYvWljK93S20t1doaSnT19NGa2sT1ZkaxswlTOpM9rmQg2Nm6hzmcYJs+iBLuLX1s2hwsO7JHkFLc5me7lb6+trxPUVfbxvtbU1MT067cuzZgGqES6I1GQeY42CtRWSDft0RIbNLXS5toCFfdc5cVhEWaGkp09PVQkdHM80tTfT3ttPR1sTk2KTj4FmMyPafJRXPRUIcr7rjpjKHrq7uXsDBzrNDPbcne6+5UqK7s5me7jba2ir097XT0V6hOl1Fa0uIi8zQuBai0QNI1HlYdyepTP7SuBZZ1MKYuRk/5t0PZHVPWislujtbGOjvoFQq0N/XTmdHhYlRV4G2YOccmzoHbd051CNrdQ5zTmVmBzFnh/odcbT7fcH3IvdUcuTI8SLFf5hmgcVyiOeFR30/TTVxnIJ1XXatECSpRiEIAkUca9LU4HkKH1ee3EqB73sUfEUYeHR1NNPT1UqxVCA2mraWJtaeMEilUiIMfU5Zu4Q0ThgZnaQQBkQzNYZHJth/YIJqLSbVjoPVlkJQ5+CSN0NfkaZ1DhKJ619jBfi+7yqIeoruzha6O1uotJaZnqnR2dHM6hUDVJqcWmPdmsVUp6scWLsEaS0mNQwfGGffgXGqmRInjhOsdnYQWel+gc1yTxwH5UlCIYni1E01BF6DQ0d7hb7uVspNRapxSkd7hRXL+mhpLiOl4MTVixg/fz2r1yx2zffilIMjE+wdHmdmNnIdkbOGg4GvnExau9E/zLoAJ6k+jIPnOw6eknS0V+jpaqW1pYlqklCplBha1EVHewXf91i9vI8LzlvHwdEp9yVIDQcPTrDvwDjTsxFaa+Io4+BJpKfmcVBobUlSg1KS0BPEiSaxFs/3CMMApSSdbU30drfS0lZherZGe3szQ4u66OpswfMUK5f1cf45a1mxchFplOBJwcjIJHv2jzE14xynOE4wUZ3DQjsYbRrRodBXDQ7KU4SlwnHDo8pXz9fXK0eOHDleULykHRQv8PC8I5+Cta5EfJSk+ELghT4uFcDleSglUUITaycd9ZVkturqVEhfUfQ9Sk1F1p4wyCvOX8+6k5cTtjQxNT6Nby2lUoi1lvPPOoHTTl9FpbUJtOHRB57g1o2Pcetdm0mMIakaV47dWjzpu1wT46YfPCUwmoYc2ZeCKDLExiJ9j9BTFEohJ65ZzAXnrOXUl62h0FRkZnoWL9X4noeQgjNOW8natUM0dzSjqxFbt+zk5ts38fONjxPrSZJa4qYjrMUveGgh0MbgC1fx1aSa2FgUzg41Y4m1QXiKQuYgrFzez2UXncz6U1bQ3NHM9FQVkSQ0tZRBCE47eRmrVw3Q1FoBa3l601Zuv3szN922iSjVpFFClGqkNniBAikxGSdPCTBQMwaFS1yOMg4oRcFThIWAFcv6uejctZxxxiqae9qZma5iqxFNzSUA1q8ZZHBxF5X2Zjwh2LZlBz+/fRO3bHyc2r5RdOTK0gttKAUKoSRRopHWuoRda4gSi1QugTeJU+JEY5Uk9BRB4DE01MMl56/njDNPoLWrlWotwsxGlFubEEqyeuUAi3rbKbdXEMaw+5k93HnPFjbc8jCzcYq2CXGqITUU/CyfJnUclBIIKzCJa4Hge6rBwROCoq+OWwdFypf0rG2OHDlyNPCSdlDGD04etZsx0OjZEvgeVe3qcYS+wloYr8YUpKQYeESpJtGGcjl0Rc1qMWOzEdXpKo8VAoIgoIbgtDNWU6mUSJPUJZciIPSplAsY4MEHn+LuOzfzyKPb2bdnhJnZmuPgKwLfo2YMaeo4gGCilhBISSHwiFONFpJiMcTLOEzMRsxOeTy+ZRee587h/ItPoVwuYlKNzqZcpO/RXAzRiebRLbu4587HeXjTNvbuOcjUVBWRDW5hg4Mm9BQIZ4dAuMZ6sdZMaVeUzNeaKE4YPxgz43s8EfqUSwWq2nLm2SdQaSqiY4+UbPrD82hq9pFSsOnR7dx15+M88ug29uw+yOTkLEIICp4kKBRcP6MoafSrmagl+EJSCn2i1DClU2cHrYmTlImRSWY8xZOhTxj61LTl3ItOormpSOopdJYAi6dobq0gpGDzE7u4a+PjPPjwVnbtPMD4+DRAxiEkBaJaQqhcXs1ELcHL7JAYw3SUUgh9Kr4iilMmRyeRSvL005kdUsP5l5xKa1MJrRS6Pj2kJE2tTQgpeGbbMBvveJxNj25j144DjI257PVAKcJy6Ho31RJ85dRRU1GKtFAMfWJtmKjGlAsByndRuImR42e/R7X43/SdypEjR44XC17SDornOTXFkeGSE5WSbgAztvH0WS8mpuflARjrysErJQnwXFEsbXhm6z727B3l/oef5o3j01x6yamEYUCaqVMCX5EkmtvveJSvfOmn7N51gGotRmsX4ZDSJZfW1Sh1DjpTCRnrkmBFxiGdx8FkyQ9btzkOd9//BCPjU/zaa88h8D1SbUizbsSpNtz/wJN8/nM/Zuf2YWZma46Dr1ztDSkb5eZlln9jTZYDAVkyritGlxqDlIIw8Ei1y5fZtesgBw5OcO8DT7Fr70He9MYLKRQCtDGkiaEQeOhE8+ADT/Kv/3IdO3cMMzsbkaap45BFaywWbUwj38LMs4PJ8nT0PA6Br9BZVGD37hEOHJjgwYe3smd4lDe+4QIqTUWMtSRRSsFTaG3YvGkbn/vcj3hiyy5mZmqkqcbzlKsNoyQWVzjtUA5zdmBBkmvge2jpCr3t2zfK6OgU9z/wNE9v38d/fteVFAoB1jrnoOB7WGPZvm0ff/9/r+WpJ3czM1MlTTS+N98OjkO911E9L6mesySFcAqnVDsZsu8hpTmuiud4EZYcOXLkeKngJe2g+KF/zEJtxrput1YbCoECIRrdbyuhRy1KiFPnZEgL1ThBKOlyUnzPNYCrxYxNV5kYm+KOjY+xbu0QvV2tlJtLWGtJqjH7h8e56+7NPPboVtIoxQs9gkKAyJyCKNEYrSn6HiiXX6GAptAjTjRxYggCx6GW1UbxfIXnu8aDSZQwMT3B2MEJfn7bJk47dSWLejsoNBVcVGS2xsTELHfdvZmHHnwKHaV4gUdQdBystS5CkzoObmojRVioFHyibBrB9z1KAqqRy8XxfOXqpVhLEidMjFQZPTjBba1lzj9vPT1drVRayoQ+JHHK2Ogk9973JA8+8BQ2SZGeIiyFDQ5JqjGpy71QviJKNMJamkKPJHVTYYGvCISc4+ApvNBxSOOUyfFpJsenue32Rznj9NUsH+qh0tpE4Cl0lDA6Msn9Dz7FA/c/yczEDMp3dpDKa3DQqSZUkjBQ1GINxtBU8El1Nh3nKYq+pBYlrmqu7+GFPgBpnDA5Ps3YyCQ/9ySXXno6Q4u6aKqU8IshSZQwOTnDgw8+zd13byapRkglCUshvnKNKhNt0HFKkOWZRFkBtlLoclCqmTNT9j2qkatTo3zV4HAs5FM8OXLk+FXBS/vX7DiaS5FFJ+pqjbps2OJqTlhEo9GsU/PM6+2T7aOu3vADn7a2JtraKhRKYUMV44VufXt7hSDwEdkB7HwOmTTWZBJTmSlG6modkU0PGLKIjpzj0JBKC+cwtLdVaG9vJiw6x8xYSxD4tLQ6DoVCgJCiIWetn7g7tyyKkkUMXC2WOgf3/N5QNWVP9nUOdaK+79GaHauY5eFYa53ctrVCR0czhUIw17huHod6yfz56qmGHTK7LFBWHSoRriuNPEVLS5n2jgqlpmLDDtJXtLQ20dHRTLGYOUbZpWwUWhOiEUFyNV7cuessgiPmR1WybevXh0yNhZjj0NHeTKlcBOn2oTxFc4vjUCqFDYdhAQeYF82zjf452sy1CgBnF7JtZaa8ynXGOXLk+I+Cl3QE5Wh1TuZDCIHJBj5Rl6wCslHdolFpYp60ONu3ySTHUtLcUmb1igGamorMzNR45OGnSRLNunVLae9sYdWKflpam6hW46xexRw3p+wVCwpsWCsyPmTyVUfBZlLW+QOzsWClpFAKOWH1ItraKszMVNn0yDNUqxFrT1xKZ3crq1cO0NXZwo7ZOCsKZrFiPgcW/m3neah1nwjHYa5GjOOgrcVKQalcZM3KAafmqcU8/th2JidnOPHEIXr72lm5vI/OzmZ2VWMn2TYWUecg5mp/zK/3IRoy3nn1T+ocHInMDo5DWAxZtbyfzo4WtLY8+MAWxiemWbVyMQOLu1g+1EtPTxtjo1NzdpBzHNx5ztnFNO6NOTvUnVOxwFEjkykLwsBnzcp+untaiaOUJzbtZN/+EVavHmTxYDfLlvUx0N/Blqmq68FjDDZzSjLV84LJGou7Fgu6VMzpkxdwypEjR47/CHhpOyipwR6jWaDKqo4iBKl2UztSCVJt0amrFup7EmsNqbZIT+FLgTUmazBnsULilX36F3WxdHEnw8Nj3HDjQ3ztquuYna3x5ndcwWtffSaLu1tZNNjNwakqaRRjUoOQFiXncUg1HsY1/TNOVqvJchIyDkJJAiUbHFzTOYFXKtDZ2866FQPs3nOQW+/czOf/8VqqU7O85jdfwW/8+jl0t1dYvqKfvWMzxNWay3HIIjiBUiRSkCYahcutSDRorUmMdbk82fSDzFoACONyXEw2MKpige7+DtatGmB4/zh33LOFL3/2Oob3HOTKN7+CN7z+PPram1m5YoD947PE1QijDTLj4CkFvkCnBrTLMUmNINGG9BAO9TYEwro8DGNdHxxVCGnpbGXtqgGmp2a556Gt/Mv/+Q7Duw/witecw1t/+xKaCz4rV/Szdc8o1ekqJrODyqaM8CU61S4PRQoMTn5ussrBApz0V0rXvTrjUI9yyUJIS0czp69fyoHhcR54ZBtXf/Y6tj6+jQuvPIe3/NbFDPa2ctLaJWzbO0Z1xuUDSbJquJ5ECK8hMZfKcdDakBgXhRHZdBSZHWTG4bjfCZOFeHLkyJHjRYln//v0knZQkih2ZcSPBCEIfUVYDEEpZhINGELPJzWGKE2xSuEpSRw5FU9TKcQzhjh2qgkhBcVKmdauNvoGOtn25G6+8/07ufvhrYyOTWG04dof3MnuHfs59+Sl9PV3sG98lokD41Qnplxuia8oeAH4HrNplg/jKVIkUZQgfUWoJEmkSa2l4Ht4AuI4IYlTEIJipURzZyuDQ73s3TXMd667i3s3bWf4wASBsFx/w73s3nWAC05bTk9PG32LuhgdHqM6NkUcJ/i+R+AphOcxnWhsqikUAhJridMEI9wgmMQJcWooFwJ8AUmSkmRl7QvlIi3dbSxe0sPB4TF+cvPD3LtpO7v3jiBSzY9/ej/7949y8Rkr6e/voHdgnImD48yMTRJHKb6S+EWnZprVCUmaUgx9jII4Sl2EyJOkcUqsDaU6hyjOOEBYLtLc0crAYDdT49N84fM/5s5HtrFj1wE8rbnp1kcYn5jh3FOW0traRP/ibg7uG2F2bIokTrDKORyOgyFOUkoFH6MEUS1FKknB8zBJSpwawqKP7wnSmmucaCyEpQKVzlYWL+4iqcV88eobuGfTdp5+ag8BcOvtjzI2Ps0Fpy2ns6OZ/sXdjA6PMz0yTlyL8ZTCV4FLrjauNkzR85FKuGtuIVQSk6ZEiaYY+vhSYOLEnYM5dgzFaJOXus+RI8eLFs/l9+lXt5uxcJM3BhfCD6XEGPeEWm4q0NdaZu/4LDPTVVeTREqq2qCo56xYhBRIz8MLAloqBSq+Yse+Mcana3SUAoSAg9MxTaWAob42agZGp6rorAuvtaahDkksFD2J1YbYGErlIt0tJcZmIsYnZvCF675cm8+BrB+Q76F8n0pTga5ywDO7RxibqtFS8CgFHvsmaxRCn6G+NqxSHJiYdZ2A4wSb9fuxQGqhkEVrYm0JiwGLOyocmKwxMTWLwuIrRS1rVKjmc/A8VOA68LaXArbvGWVsukZzqCgFHnsnqhQKPkO9bcjAZ9/oDDrJOMyzQ2ohUBJpDZE2hIWQvrYmJmsxo+MzDQ5VY1wzP0FjKk55ChUEFIsBvc1Fdu0f48D4LGVfUin47J+sEQQei3ta8MOQ4YnZrDO0G9jr00dp5gSIjIMfBvS3V5iNEg6OzyCNwfckUVZbXs2bjlGeQvo+pVJIf2uJ7XtGGZmcpaAkHU0hu8dn8ZRiUXczleYyu0emG9fCGN2wg7auLYKyEGuNF/gMdDQzEyccHJtBGEPgSSLroiJe3Q7H+bZ+8EO/zauvPOvf/B3LkSNHjl8GJicnaW1t/dXvZqw8iTqqzNgVREvjFCElKvSJZ1PSVLN0qJeXv2w1d9//FPfduwWrJMVKyMzUbCYd9hr7NalmNpqlOj3DuKdIjSXwFIl1peIDzylUdu8fI0oM2rqiX0oIkCrjoF1l1mLAbFKjVo1Zs2YJLz9zNY9t3skddzwKAoJCAKkmTTVB4KHUHIc4SqlOzzIdKBJjCT2FtrgB1lMIYO/w+Nx0SZ2Dp7DGkiQpxmYcqhFJnLB0WR8XXbieTZt3cefGx4jTlEIhhFpMmqTIQM1xMJp4xnGY9BWptQRKYoCaNgSeQgL7D06QpM4B8pXrHySl45BmHFTgoVNDVEsYHOzhgvPXs3P3CD+78X60NhRbQpiNnMTWzzgIdz3jmSqz07NUx6dcY0NPYoWgpp1TIQUcGJki1RPEOrODdFN7NlMCaWPxCiWSOCaqJfT0dnDhJaeyZ98YN9/8ELVaQlAoIRMXSZO+atwP1lii2RrVmWrGwRW3Q0A11Y1zHh2f4cDoNFFqGhyUUi6fJ0lJtaUQFDDaEEUJnV1tnHvhSYyOz7DhZ/dTrSUUMg5RpojynkWVWJHLjHPkyPErguddxfOxj33MJRbOW3p7exvvW2v52Mc+Rn9/P8VikYsuuohHH330FzqWPc5C9vRZT1LVxpUxHxrq5axz1rJ8eR9KClLt+uzU+/HMbyonhWj0ikmMC597mWIjzfIaXM5CpuoRYq6vS52DdTkQQkrSLEQ/ONjNmWefyKpVi/CURNe7Cmc2qvfvmc9BCuGqq+L61RhwFWAzpVJq3GcO5WDBRVLqHLLGhgP9nZx59lpWr16clZt3fWqUcNtbM/fALhF4WT8cV6TOcdAWlzeR8UsyJYon5ylgGhxsxkE4O1hLX187Z7z8BE5cN+TqjRiTcXC5QAuuBaLRcTo2ri6JJwQm4yAzFVZq5zioeRzmq6uUkqTaJdB2d7XwspefyNp1Q5SKwZyaJstHql+Les6qyuzrOFi8TBUUZRyUdBy0tVnDwoVJsWaeHeoKps7OZk4/cw0nnbKccjHM8o9ASQn1e9I+i3seDvv+5Uu+5Eu+vJiWZ4tfSgRl7dq1/PSnP228rj+FA3zqU5/iM5/5DFdffTWrVq3ir//6r7nsssvYsmULlUrlOR3neCoeixtklHRJkQhBuVRgcLCbJUO9DA320FQuMjntlBZKunobCNEYGGXWHM7iEhkVNF5bQOEcoHr6YiYqXTCYCOGSL0024BaLAYOLu1izZpA9u0doKheYmJxtJG3WL6DN9iOzZoH16SqZLaZ+jnWZKripLVvnIObUKhkHrQ3WQrEUsmigg8ElPezdO0pzpcTsbESSpEgpnTy2Ic+2yExZJDM7zOdQ5yRwUxcIkNY1xJs/cFKXy2YDblgI6O/rYNnSPuIopblSohbFLnFUioyDOMQOTuFj551742/mVDkLOSy0g5Lu+mpjKBR8+nraWbN6MRhLa2sT42PTLqG5bof65y2NZoE2O45oLGLB63qDQUVdDTU3ReOuhbOD1oZCGNDT3cbgkh4qzWXa2poYHZ0iSTW+ysrbP8spHlt3wnLkyJHjRYgXvFmg53kLoiZ1WGv5u7/7O/7iL/6C17/+9QB84QtfoKenh69+9av8/u///nM6jjFZH5sjQAiBkALP91y/kyghDHy6u1tZNNBJqRgyMNBJd3crcZJSq0Z4vuttI2TWcdiCwYJxT7tkgwrWIoRECLBZkq6Qwg2GxjYiDzaraeL5not+xIlrvNfRTF9fB8VCQHd3Kz09bcRJShwl+L6CwEOI+V2GMw5CQPZEjbVOcSIlJqtqK5TMPAaDMTSE1A0OUhJHMZ6SdHa2MjDQRTEMWDTQSU9vO1MzVWama5RLBfzA2WLOCXQcyAbXwzhYx0FmHGydg8jsIERWzVW46SMhaGuvsGhRF83NZXp72ujta2dmtkYcxQS+7zgcaofM+RLSKX7qFYKFlBgyO2TOVcMOYs4OylOIjIO1lvbOFgYWdVIsBrS1Vejra2dkZJLJyVm8UngUDlleTt2hze4PJQWaLFLkSaQF0qNz0JkyqKO9wsBAB03lIoUwoK+vgwMHJpicnCEoF4/A4VjInZMcOXL8auCX4qA8+eST9Pf3E4YhZ511Fp/4xCdYtmwZW7duZd++fVx++eWNbcMw5MILL+SOO+44qoMSRRFRFDVeT05mPU0CddRmgUIImlvcwNfcXGZ6coZiKWTpsn4Gl/QgpWBwsJvzLjiJZ57eQ3W2RqWlicmpWYaHx1wNjawDb71Uehi65m2JNhSzAXxWx3hSEAQecWpIEteR1w99lJJUmkv0dLfR0lImrsUgYNHiHpav6Adr6e/v4NzzT+KZp3czO1OjXCkxPVNleP84Y2NTWRfghDTrcFv0A+IoIUk1Bd+pkGa0QSIJQ0kaa9cY0JP4gYdUkkqlRG9vOy0tZWpZf6ChZf2sWr0I5Sm6uts459y1dHY2c/DAOB2drUzP1hjeP8bIyGSjE3GDg+cTx6krs+8rPE8yUzUIISmEkjTRxIlGKkkQunyeUrlAT3cb7W0VkjhBG8PAoi7WnDCI70k6O5s597z1dHW3MjE2RXNrhdnZGgcOjHPw4KST5CYpaeLUVaVCQJJoYm0IlYfvuWaPIAkDibbGNeGTEj90TmqpVKCnt4221goYw+xsjcGhXtavX4bIHKazXn4ilUqJ/ftGaW2rEMUpw8NjHDw44bo+Jylpoh2Hok+SOAWYLxWBp5gxCQhLKF3l2mqauFL1gY/yXK+l7p42OtqbMakmimIWL+nhpJOWUywEWODlZ6+l3FRk3+6DdHa3MluNGRmZYP/+seNKjW2SkM7MPrcvbI4cOXL8O+G5/D497w7KWWedxRe/+EVWrVrF/v37+eu//mvOOeccHn30Ufbt2wdAT0/Pgs/09PSwffv2o+7zk5/8JB//+McPW3+s+SwlJf39HVz5mrM5/dQVeEoSxQmlcpGW5hJaawYWdfI7b7uUmakqQeBhETz40NPc8OO7mRifRmsapdF933P7yKYnhBBZ5VOXL6KUdLkVWmOweIGLWPT1dfDKV76MM1+2mmIhoFaLKZQKtLaU0drQ19fBb//OpUxPzRD4HgjBw49s5cc/upuHH3bTPnUOSknHIctRkdn5W7JKqlIipSE1Gp2YRuSmq6uVV77qTM48czXlYkC1GlMsF2huLmGNoaOzmTe+6UKmJmfctIbvsWXLTq6//i7G796M1q7BYJI5aq5uS70iLXN9bIxBComSbvpEW4MfuKhJZ0cLF19yKueft57mpiKz1RpBGNDeVkEbQ6W5xJt/8yKmJmZc/5tCwGOP72DDhvu4687H0FnycJJdC6WUS/w1xkWvEC5aU+/zI13OkTYGz1cIT9Da2sTFF5/KOWefSEe7c4CCQkhrSxlrLa2tZX79dedy0cWnIAE/8Ni6bT8/uv4u7rzzMeckZdfD9xWeUiSxblSdFVmlOW3mqtBqY0i1U/94QtHSXOa889Zz8cWn0N7WRHW2hp9VAq736XnNa1/O+eevA2splgo8s3UfN974ADfd+AA6y0E6GnZ99zoevvnHx9wmR44cOV4oTM8LNhwPz7uDcsUVVzT+Xr9+PWeffTbLly/nC1/4Ai9/+csBDnMq6gP+0fDBD36Q97///Y3Xk5OTLF68mKnpGkod+QdbCMG2rfvZeNsj6Cjm7HPX0dfXQRwlrniYUmANoe9R6WunFiX87IZ7uO+Bp3nqqT1MTM6CBV9AuRSCp5ioJnhYygWfWqqxQFMhINaGydmYkidpLYfUEk21GlOtxWzfvp8773gUHcVc+IpT6e3vIK7FWK2RnsKkGl8Kens7mJqa5Z47H2PjXY/z5JO7GRufwWiDJ6BcCpCex9hsjG8tTcWASLvuyOXQNQ6cqiYUPElruUAtTqnVYmZrsHPnAe7a+ChJLeIVl55OX38naZKCcVMy1hh8KejpbqMWJdx5+ybuvf9JtmzeyfjETEPm2lIKEJ7n7GAt5dAjMpaZWkJTwSNNDZO1hKInaSmHRElKrZZQrSWw+wD33LUZZS3nnLuOxYPdJHGKSTVe4G5DBXT3tGGx3HbLQ9x19xYef2w7o2PT6FTjCagUAzxfMVmLkdrSVPBJLMzWEpoCZ4fpKCH0FK2lkFqSEkUJ1SgBRrnn7s3oOOHCi09hyVAvaZxitUH5Hta6onLdXa1EccLDDzzFnXc+xqOPbmdkdIokmeOgfMVENUZqTSn00AJGZ2MqvsIYy0zkpvNayyFRrInilFqcYozlvnu34Ak4/4KTWLqszzWS1Brp+2BBWktnZwtCCu7Z+Dj33LuFRx5+htExx+FYGL7nMfZEB465TY4cOXK8UJg1xy84WccvXWZcLpdZv349Tz75JK973esA2LdvH319fY1thoeHD4uqzEcYhoRheNh631P4njrqrPvY6CS33PQQjz6ylWe2D/PWt7yC9rYmAFIs0rrciKmpWb7ytZvYcP1djIxOkqSm0XnWr0ctUk0apQShh/AUSTV2KptS4EqU11JS4VEIPEKlEFn104nRKW6/7REef3Qrz+w8wFvfegndHZVGdVaLq3g7Nj7N975/Bz+57k727B0hSQ1KuNyRwHMcEm1IajFB6CE9RVpLXMXTUuC6M9cSEqsICh6hlMiMw/TkDHfcvonHNm1l85O7ee97XtuwQ2LdTaCUohYlfOfa27numtvYv3+MKEnxlEQogZ9xiLUhiWKXF+F56CghSQ2UQ6QnMLWE2EqCgu9qjSQabS2zU1Xuvftxntqyg81P7OZ33nYpQ0t6wFjSLJlVSkGtGvHjDffx3W/cxO7dI8RZvoryvQYHYy1xLaLge0jfI41TklhjywFKCEyUkFhLGGYcUoMxhlo14r57tvDk49t59PEdvPs9r2XJoi7AJRhb65rtRVHMhhsf5Jpv3syO7fupRglCCMIsiuZ5h3DwlJveixJsOURJsLWE2BiKxYCgoCDVTiYdJTz0wFNsfWo3jzy6nXe+8wpWrhhweTHWouYlM//855v48ud/zO5dB6nWYoRw3Z2PBdXoD5AjR44cL0I8h9+nX3qzwCiKePzxx+nr62Pp0qX09vayYcOGxvtxHHPLLbdwzjnnPOd916c45BEWJQRBNngMj0zynW/dwgP3P0mcaDzfw0YJSkmMgPvueYKvfWkDI+PTCOmqnarMiLE2zCQaa6EpcHkFtURTVJKyJ6klGm0sTYEbOGZiTZTlCdQdDOV5jE9V+cE1t3HHrY8QxSme5yFS7STGwGObtvKdb9zMzj0jcxwyiWydQ2osLVlH22riOvI2+YooNSTaUPYVnhTMxLoR4RHzOEzO1Pj+Nbdx088eIE40ylPYKHEKI+CZp/fwlat/zI7dB7HC5dUo4Tgk2jCTuBoilcBxqKWaQEmaA0Wc6gYHX0pmY001cRycHRSe7zM5E7HhJ/dy888eYHq66qInSeoUQr7Hli27+NqXNrB9l+PgB3N2SLRhNnZVXiuhjxLODr4QNAcqq79iKHoZhyTjkEXoPE/i+R6zccrPfno/133vDmZmayhfIbRzCFGSvXtG+fqXNvD45p1oyGrSuKTo1DgO0TwOtdQV12vNIjhRqil4kqKnMg7pHAcl8QOf2Sjhlpsf5PvX3s70TBXPd3aQgPQUu3cf5CtX38ATT+4mtdbZQckj3uvzlwXS8nzJl3zJlxfh8mzxvEdQ/st/+S+89rWvZXBwkOHhYf76r/+ayclJ3v72tyOE4H3vex+f+MQnWLlyJStXruQTn/gEpVKJt771rc/5WPPaqB0RrlGcU3aUm4q0tJYJQq/RgA/A9z2aW8s0VUpMTVfBmsZ0U71+isjktsZaJ+MVTkEkqBfGsphMY+pKpjhFD+COldU4KZUKtLaWCQuu+q2uF3vzPVpayjRVioxPzqC1PiIHLGhr5jgZmylGnCWcoslmnXKPxMHJi1vbmggzR6feldn3FZXmEpXmMlPTtXkcsgyTeRwW2sGShR4y4YzjUM8LmZM8u2JvFigUAlpamygWw4yDa96olKS5uURzS5l9w+NHtwNgspotC65NPRflUA7OCA0OQgjC0KetveK6HgtBal3lWk9JmipFlxMindKmnlty6LVwjQMXcqjbzBqnoTqMA2C0c2CD0Ke1rYliKWzcDx4uilNpKtLaVnG1Ug7lcAw0jpUjR44cL0I8l9+n5z2CsmvXLt7ylrewevVqXv/61xMEAXfeeSdLliwB4L/+1//K+973Pv7gD/6AM844g927d/OTn/zkOddAATIPQRx5wfUlSTMlx9JlfQwN9SKFYM+eEe6+63F27BwGC4sXdbF8Rb+TwKauSV99P/MTcetPwSIboSzWbcacHLfxfjZQ1TkIYPFgF4NLevCUYt/+Ue6+azNbt+3DWkt3TxvLl/fj+4o0a2TnzvEQDlnhuXpyLMx13K3XblnAQQhXzTbVYGHR4i5WrOhHSsGBA+Pcc89mnn56D9pY+vo6WLNmEM9XrlliqqHhnBxiB+blEtl5HXozR2COgzsHW+cA9PW1s3LVAEHgMzo6xb33buGJJ3ahU01nVwurVi8mCLx5HI5gh3kcbFZ0RiAO51CvrCqyuiPZtFdXdyurVi0iDH0mJma45+7NbN68gzhOaWkus2bNYkolVzBNa029Po47zyxSYcwhdrBAPXF53v1wNA5draxZM0jge0xMzPDgA0+xadNWkjSlvaOZtWuHKBSCLNF2jsMxlxw5cuT4FcHzHkH5+te/fsz3hRB87GMf42Mf+9i/+ViyEbE4HBaBTlMSrSmWCpx++io8T/Hgg0/zla/+jDt+/jCnnXUCb3/bZaxetYizzjyBRzZtJU1SlBT4KsjKhrrpD6tThDagXGl1TFb6q/5EbQxGKJSUzuszBmuskyonKX7os379Mjram9myZSefv/rH3H7Lw5ywboh3vvPVLF/WxymnrOD+B59ienIWJSVe6Ge1TwRGCKzRjoOnXLEyYxHGYPCQEkgMFgm+RGUcsJY0dRyUrzjllJV0dbXy2GPb+fZ3b+MnP7yT1euG+N23XcZJJy3jnHPWcs99W5idqTVqlxyRg/IadkAbTOC5QmnGoqVFSm+Og3EditM4RXmK1WsG6epqZesze/j6N2/mhuvupndRJ7//+6/h5JOWccbpq7j1tkeYnJhBAkoFDWWOFc7pQ2uE9Ny6FGcHoVxBOeu6DiNUNlXn7FBvzudJwcqVi1i+vJ9nntnL93+wke9+6xb6+jt529sv54zTV3L6Gau57Y5HmZzc5/oSHYmDcV2XEQJjDdIYV7ROCkSSRen8rKovFqwhrXMIfVasGGDFin62bd3H9T++h+9+8xYqrWX+0++9irNffiIve9lqrvvR3UxPHwBt8YrBUe/3BnIfJUeOHL8ieEn34tEahDjyjFb9CdZXis6OCv0Dnfz0p/dz/Q/v5Mmn9xAUQ+6+azPjBye44sqXs3ioh/bWCvFs7J6ajUVIp+LxlaSmBVGqKYYuUXLWWoyxNHkSk2hmE03gKUJPut43qZPaGuv6wbQ2lxhc0sMdGx/juh/cwYMPP0NYCHno4Wf4u898i1decRaLFnfR093KxOgUOnUcJAbf8/CVJLaWmVRTCn1Xc6OWYLWlqATCwExq8AJJyZOZU2Ax2jY4tFRKrFq9iNtuf5TvXXMrmx7bgV8MeOyx7fzf//NdLrnkNE4/cw19Pe1MT8yQxGmjuq2f1RqJjKGaaoqB41S1kGpDWboGgDNao4SzA9aSaDcVYrKCaq3NJRYt7mLTo9u57gd3cN/9TyKVYuvWffzfv/sOl11+BqeevorurlbGRyad0sdYwOApD+VJEty5FjwIlKJqU9LUUCo653BWO8ehlPUHSrRB6zkOTaUCq1YvYvMTu/jut2/h3nufACnZsXOYf/nH7/H4hSdz3gUnsXhRF/v3jFCrunvCAr5SKE+SCpiaNhQ915Oommri1FAounL8s9n2TXUOJkVr25AgV8oFli7r4+mt+/jeNbdx3/1PorVl3/A4//KP3+fxR7fzqivPYvGiTsYOTlCdjVwbAHvsoGdeRTZHjhy/KnhJdzM+8/T/fPRuxjh1TKEUUqqU6OloZv++UfYemEAALYWA8VoM1tLT2cLAoi72DI9RnakRZY3q6hEUqyTKWlSckgiBCH3aQh8BjMUpOorxjcUGHqkQLsKg3VO7UpKwGFJoKtDX2crowQl27x9FG0tLMWQmSkiNobu9mf6BDg5OzDAzMUOtGs0V5VLKcQBUlJAIAYFPa8HHB0aTlDRK8LXB+opUSoQxkDoOUkkKhYBCU5H+njZGD0ywa98o2hjaiyGTsVPitLeUWLasjwOj00xNzhDNRiRpVipXSqxSjkNc5+DREgaEUjCSpKS1GC/ViMAjkRJhrPMiMzlzGPoUKyW6OpqZnZpl5+4REq1pKQTMppo4SelobWLJYA8HJ2eYnpghqkaZtNZmHKRTs8QJCWB8n5ZCQEEKxpKUqBbja+OUVuoQDlISFnzCUoHenjaimRrbdg5TS1LaigVqqaaWJLQ0FVm2tJfJasz42BS1mdphHKQQ+HFCYsEEHk2FgIqUjKSaqBbjZcXyYk8t4CCkIAwDCk0FujtbSGsJW3fsJ0o0LZl0vBo5DsuX9TExW2NyfIbabI04TuE4X9dXTz3D+louM86RI8eLE7NG85ZtDzyrbsYvaQflrOM4KPWy4loK0lgjrUX6riOxSDTGV/hSYFKNRriiYsZiU9No3ofvga9QxpKOTxNJQXt/J2euHSLwFHc9vp39O/bjxylhe4VUKUg0JEk2KLoutloJ0kQjjUV6Co3FxBqRKW9M6qYHlK9QdiEH4XtYX+EJQXJwgkhJmnvaOGv9Msq+xz1P7GLP9v2oWkTYUkYHPqQa4hSywmXKUxglSBKNMNbZBSBOMZ7EVxKbGlLriswpwNZzYYRA+ArreygL6dgUsRRUulo5fe0Q7U1F7nliFzu37kXM1Ci3V0h87zAO0nODe5o6B055EoPAJClWZRzq3ZgP4wDC87C+5/rYjE1RNZZiRzNnnryczqYCDz6zj2ee3IWsRhQqJUwhwKYakhS0S35W8zmkGuUrjBCYOAUpUZ6ELIImfQ9P4DpMZzlB7lo4ZZHJOJQ6mjn5xCUMtjdz/9a9PPPUbuxUlVKliC6GWG0QceL+L5yk23qOg001XsbBxilaSvyMQ6oNXui7qTJtjltFFuCKqWc4KXdQcuTI8SLFrNH81rN0UH7pMuNfJox19S2OtpAlUirhusbOVV913XBdSoHru6ONdfkjWdJl/fNKCnzPDYq1OMFY11Bu3UnLOPm0FXR2tmAt1DK5ru8pV4uirvIwLpFWCdd1V1vrmvsJ1/kXaBxTZ7VAVCYLqTfVk1LgewrPU1RrMUYbmisl1q1fxsmnraSnpxUpHQdwtTKUdC3t6g0KF3AwdQ71rsBzVXHTzKly4iQ3LVJP9nQcJLU4QWtX/fXEtUOccvoqenvbEULMq9fhZLFAg4NsHGeu2qoQrhOxhXlN/Op2IEvdyOwoM6mwp4gSV3q/VAw54cQlnHL6KgYGOpFSEMWpm47JONTVRY5D1ikZ1/1ZMK8LM7bRuTrNrpsUYo7DPLmy73vUIteCoFQKWbV6MaeesYrFi7vxPOXuFWMbFYgbdjBz96QlU3LN52AP5ZDJh7P74Vj3e/2ezZEjR45fBbykHRRrj7/AXN6gbfztBuq6JPPw7ea6EbvaFU6ZEacaL8tpWbVmMWtOWEJ3ZwuB7+qAgJOpSjmnNJmvtKlzFtmx5t6b9/c8DiY7CdeBV2ZOkks0bW9rYtXqRaw+YZCe7jbCwCfRzhFYyGEuL2F+l+T6scx8BU527HpX4MZnM8dOSTe9EmUc2lrKrFg5wAlrl9DX10Yh9Ej0XN6NEgs5WNx+6hwOUyPVS+YzP9fT0mh6KASelHjSXQspnSx5xcpFrDlxiIH+Dgqh73J/TMZh/rWoq5wyo8+3v2kwmNPqN9RR9X+ZrTzp9hslKVJJmislli3vZ83aIRYNdFAqhmhjSY3Br3MQonFP1W1fbwBYfz3fDo37VTCPkz3+PU+OHDly/Grgpe2giKMvZINOo0zHIfLUeiTFSYWFU8E0IgY05LFSOCPZLNJQqZTo6Wqlt7+D/sVd9PW00txcdrkJ1qKyfde9EEtWj8XORS0ajoA8xEHKRiJTr9MiwGYclACRRVkqTUV6OltYPNhNd38H/b1ttLaUEUpijHHFvtwe5zhkUYh69KZ+ilII5DwOMhs0jbFu0M44iIwD8zh0d7YwsLiLgcXd9Pe209rShJzPoa58nXctjDlUHmwzDqLhSNWjFsY4O9TdKVHfZxYFKpVDutorDCzqpHegg/4+x0H5HtoYJC5qU/fA7Pz7gbrD5g4gxcJrITN716+FzXr9iOx6CFwBvXK5QFdHM4OLu+jsa2egv4P21ib8wHMSd+YcvoX3wzwnpX6G86Ml9XvUzt0/dQ7HvO9z5MiR41cEL2kVT1gI8D1X5GrhUzfZIGtItEZagycFVkg3tQAEvkJaizY0plWSRDulh6cIpE8QeLS3V+joaEYpycRAF709baxdvYiW5hLFYsialQMcOHUF3V2ttLY1YY1hdHSKgyOCOHJTIYm2CJu6sL6SpNrlZISem36oK2WUcEW5jDEIpQgCH89TdHRUaO9oplgMaG9pYmCgg3UnDDqnRApWLe9j36kraGutUCwF+L5ibHSKgwcnqdWcAiUxFpE4DlLJxjRP4CmUcByEEARenYObUgn8EM9TtLU10dnVTBD49HS00NefcWguoTzJqmV9nHbKcloqJSrNJTxPMjY6xYEDE1SrsauDknGQQiCURFvnBAReVqX1GByUkrS1NdHR0ew6I3e20NbWxIlrl9DV0UyhELB8qIfTTllOZ1sFz1cUCj5jY9McPDjB7GyEMZZUG3SSZtNmsqGUCj0XHarXnwmUcvVjdJ2Dj5QZh84WmpoKtDeX6epq4cS1S+jpasX3PZYt6eGUk5fRVHIF4MpNBSYmZjgwPM7MTG0BBzdtJrOif4ag0XAy4+ApjNbZPSsICr7LBzrK98ECqqpyJU+OHDletHguv08veQflaEmy1kK1FlOrJQRKUCwEpMaSpJpAuTwCrKWmXRg+8BQz1YhYW8JCQKEYUGkqctK6Ic4/50SWr1qMFpK4FtHeXKJcDLHAeS8/gVXLB/AKAYEn2fHUbu68ewsb79nC6Pg0uhZTiyJ8QSP0H6caJesDkCHSBk9JAuXyO2qJdhwKPqViyPq1Q5xz1hpWnTiEkZI0immpFAgClxtz5qkrWbq4GxUG+BL27TrAHXc+zu13bWFkdJJqLaEW1VzTwfkclMD3JcJaIm2c0sZTVKOYWqIJQp9iIaBYDFizehEXnbeOlasXI4KAOIqplAJaWsoIITjtpGUM9LSB51EIPfbv3M/d9z7Jz+94jOGDE0RRQjQbobCUwgCbTdMoIPA8wFLNpo5CT1HLOPiBTyH0KRQCVq8a4NyXn8D69csQhZC4GlEOPVqaSwghWH/iIB0tZWQYEPoeI/sOcuddm7n9rs3s3TdGLUqIogRpLeVigFSSKEmdk+R7WGOJUu2UNp4kTlI3neV7hKWAIPBYvryPC89Zy4nrl+EVC6RxQtGXtLc1oZRgzcoB2isXYpRrVzB+YIz7H3iKm27dxK7dB4mTlNkoQVjXdFJIRZRqpLb4nkIIqMUpQkoKviKOE6I4RXoelTBoTFkdDVK9pIOiOXLkyNHAS9pBGR+bRqn46BtYS+i5J+lYG9JEE/oKhGAqSmkq+ASeyyUwQlAqhsgoIa5FjEcxSS1mz95RduwZoau/i+UrB/CkBOsiEgiotDRRaiohleSZZ/ayc88Iu/eOMHJwgsnJWay1BJ6iGPok1pIkKYGnEFIwHaUUfEXoK6JEY3Bl4CEhrsVM1BJqhYg9+0bZuWeEjt4O1p20FJHlQlghiFJLublEqVLECsmuncPs3DvK7r2jjBwcZ3x8xnFQ0jlp1hIlKaGnkEoyVUsoBR5BxmHWWoqFACHcYD4epVRDj737xti5Z4TOvg5WrekkDHxXjE5IEmMpNhUZLIZIJdm1+yA794yya88IBw9MMD42BVleSrEQYKwgil23X08KpuOU0JcUAq/BoVQIQKTEScrE2DTVIOOwe4Se/k7WnryC0FdYY1zirzYUSkUGh3pRnse+fSPs2us4HBgeZ3x00uWlSEmxGGCFoBolBMolNk9HKb4n3bVIXV2bUlYorxolTI5NoTzF/n1j7NgzQmdvByed0kWh4LuKskpRSwxhMWTRkh6EVBw4OOE47K5zmHLTgFJQLLpCgLMZB8/zmIlSAk8SBh5xopmJksyJEdSilMmxqeNWi42zxoY5cuTI8WLEc/l9ekk7KNJa5DHCRZ5yP/ZSSpLY1fOQUpJaS6wN2lr87Ik0SjXFzFlw1Vc1cS1m8xO7GB6d5P6HnuG1r34555y7Fj/0qc5EGGtpbipggbvv2sw1197O9p3DjB6cYHamhsgG5TBTk8xGCcY6tYrG5TD4nnROD66gWCFwHZFFxkHHKU88uZsDI5Pc/cBTvPaKs3jFpacRBB6ztZg4SmlpLmGt4bFNW/nGN29m2/ZhDh4YZ2a66jhIZ4c6h7oyyGQcAmspZGqXWBuKQOh7rthbqtGJ5pmtexmfmuXeB5/m0otP5VWvPpMw9KnVYqI4pbXFRTE2P7aDr3ztZ2zfMczBgxNMT80irVNIOWWPIopTtLUUhKvKmhiDMpLAd8kdsTYUhSD0FcJmHNKUbdv2Mz45y0OPbecVF+znilefRampQC1Oqc3GNDcXEVLy5BO7+Na3b2HLk7s5ODzO1MQMGIsnBWHg4WVN/JyU2OV1JMYgTH3aTRBr5/jUIytJqkEbduw8wORsxAOPbOXcLTv5zd+6mDD0iRPN1OQsbe0VpJTs2zPCVZ/7EU8+s4eRgxNMjE27irTSKZx8JanWi/Fl5z3HQSGEIU41RbIIk7HEWePDYyF3TXLkyPGrgpe0gxIUArwsB+VIMNZSSw0i1YRSYiVuWkEIWkLfTW2kBt9ThAJma7GT3HrKDdBArRqxa/t+dm8fxlcey5b30T/QQbkYZEmtlgPD4/zsxge47daH3dO0cF1zPd/DZNMnsdYEUoKviFODlNAcumNEietq7ANR5sRIz00RAETViD07q+zcvh+MZc0Jgyxa3EW5EFDwPKzRTE7McuOND3LTjQ9Ql5t4nutibK0l0pZYxxkHp7aRQtASekjhOCglKQvhOCCQas4OSZyyd+cwu7btozobccppK+jrbadUDCgWAqwxTEzM8PPbHuFnP73fSYYBz1MoL8RaS2IsSS12Zfx9j8QYpIFK4IGAWqyRQlL2Mw7WFVcLCq5TdJKk7N9zkP17R5iZrLJ6zWJWrV5EIQgIKwopBaOjU9x51+P8dMN9xFEMwtWhCYshFlddN6nFSCkpBZ6TVRvtOGTXQghBOVAkSUpkLWIehzTVDO85yL5dBziwf5wzzzqBZUt7CQsBqqWMsJaZmSp33vU4P/rR3dSTcJVX5+A6IidRgpKiwUEYTVNW46WWdXeuhD5JnHEQgqBw9Jo/dchIYqM8ByVHjhwvTjyXHJRf6Qnrupz30OdKO++/9bcOlfku2DjTewaBR6EQIKXKVDEuXFUoBITZdEBDDjpPyiuy/9R3Nf8gh74+EofG54Ag8CkUA6SUDbVNo0LqPA7YhTeCOPSYR9i3G0vtXCLm/M9kyhMQ+L5HoRDiZdEFY8w8OwSHcDjSidkF6+rbzl2LebqdBRzm9uf7HoWiS+Bt1K0BCqG7FkrJBdsv5DBf1MuCe6B+uDn57+FJqXU5r++5+8HznfOiM6cvyHJmpJSZIufwL6Q45G93fdzVaHBovJ/3KM6RI8d/PLykIyj12hbHQr0eiDmkFoiZJzV1+xFuQDlk3wYLSlKplFi2tJfmljJpqtm+bR9pqlm6rJ/mljLLl/bR3FJmfGIGq11BrvqYMl/i7DiAq8UyV4hrYSfiOQ5kUlekpFjwWLmsj46OZowx7NgxzOx0laUrBigWQpYv66OjvZmRsSlMVhOlYYdManuoHayxmZQ542CcU7CAc905kZJSyWf50j7a2pqwwPbt+5mcnGHl6sUUSyHLlvbS0d7M+OQMOtVH5FCviTKfA3KOgzFHtoN1enEKxZClQz10dbaAEOzefZCx0UmGlvZRqRRZOtRLV2cLu2JXzM05cfM5zNVlqTuw8+1iM2nvYRxwDiFSEHg+y5b20NvbBrgO2fv2jLB81SKaKyWGlvTQ29PGvgNjpMmROMx1PEbMu0ft3D1psnvo0PvnWBBKocLjR1py5MiR44WA0umz3vYl7aA0imscCfUfdilIrQXj6nhYXPXOQEBsLCqLFmhrsFLiCQFmroKqNiB9RXdPG+vXLGZ2NuLOe5/gC//8fWZmarzt91/LJReexOrlffT2tjM2XXOSXWNQwhVME1KQZEU4HAdX2dazoOt1WABtwQhcXky9JotxHIQvaW6t8LJTljEzU+P+h7fy//7+GqbGpnjTO17FZZecyqplvQwN9XJwqkqqY4Q2jQJvQgpS65yBBXaQgrhei0QIV+1UuOJiwrqqrta4CrPCU7S1Nzc4PLJ5J1f/8/fZs30/b/xPV3DlFS9j1VAPS5f2ct+j20hTPY8DCCkdB2sboTsDKLLKsnKOgxYCP+Ngsgqr2liskhSbSpx+0lKkgPsf3so//d132L1tL1e+6WLe8Prz6OtqYfnyfnYfnESnGmGM63IsRZaD5BwNL0s01oCX2d7g7hNjQAvwpEAu4GCwSlFpKnL2GStJ4pRNm3fyxat+xOMPPMEVb7qY3/iNc+nvaWXdiYPsv2ManZg5DnWZd3Yt5tvBE656LJnk3BiDETLjUK/Ie+yvRM9F57Jiafu/6WuVI0eOHL8sTNeq8N/ueVbbvqQdlCSOMUdpT+JqnXhuOkRIppMaPhAWfNLEUE1TUIqCr5z8VBuaiyG+tcS1iCRKQQjCpiLNna0MDvUxOT7J175+Ez+/awtbntxFmmi+8vWb2bV9P2ecsIihZX0cmI6YHJkgmpzBmJTAd7kHUkqms1ocxYKP1pZqLUYFHiVPEUUJsbGUwpBQQFyLSaLEcSgXaepoYWhZLzqK+frXb+K2e5/i0cd2oIzmG9+5jV07D3D2+iUsXdbLjtEpxofHqU1OozPVULEUoqRkajZCa+MUPdpSSxK0lDSFHkmcUE00TU0BoYSkFpPUEqyAoFig0tnK0PIBhNF8+1u3cPt9T7Hpka0ks1W+9Z3b2Ld3lAtOXcrKlQPsGJ1m8uAE1YkpTJLie4pCUaGUYqYWuxLxBZ/ECmpxjFWSiu+RxOkhHBKSKMZa8EsFyu3NLFrSQ6AE1157G7fd/wz3P/g0plrj2h/eyej4NGevG2TRok56dnUxsn+U2sQ0cZTiK0lYCvGUYrqWUEsSyoUAi6Aax0glKYYeJkmppZpCMaTgOVl3PSfGK4Q0dbSweHEXrU1Frr3mVm5/4Bnuu3szenKKH1x/NwfHprng1GUsX9bLph0HGRseY3ZskjhKXdK0F+AFHjO1hCROKRd8UpyyKbFQCQNMklKNU0pNRUIlMXFCFMVH9cfr6Lr4fFb/+jnP91ctR44cOZ4XTE5Own/7k2e17Uu6WeDLjtEsUGRVP4WUjad0rHVPy75HezFgtBqTJmlW9VSQ1LczphHi9wshhaYiPR0VmgOPx5/Zy8GxGdqKPlLAgZmY9uYSa5f3UrWCvQcniWZqRNValjCbRS8QBLjoQZ1Dc+gzk6TUosR5ihkHbx4HhCAohITlAh2tTfS3FHn4id0Mj83Q7EtKoce+qYhyKWTd8l4IfHYNT1CdrhLN1jBZETghBRrh9p1xkErRWQ4ZryXESeoaGQpIhERiEdZk0wwCPwwolIt0tVfobi7waMahEihKgWLvZI2mUsiJy3rxSwW27R0jmq1lHHTDDhrhqu1aS2pdc8SWQsBsoqlGCYqMAy6q1OCAwC8EhKUCLS1lBjua2PLMPnYfmKSooLngs28qolQMWL2km0JTkZ3Dk1SnZ+c4IBAqs4MQCGNIcdMibcWAKDXMRDHSOJvNcZjLcfEyO7Q0l1na08xjT+xmz8gUAdBVCdk1XiUIPFYNdtHR1crTe0apzlSpzVQxyZwdTBY1k9aiLaAk7eWQaqJdnZQs0pUK11NJWvusIigf+u+/zZVXvvwX+l7lyJEjxy8bk5OTtLa2PqtmgS/pCIofKDzv6KdgjSVOUqxweQu1WkScGpYv7+f0k5bywKbtbNq0Fd+TNJWLVKdrbtrDd435sLiowoGIiYMTFH1JrF3lUwtonCQ0SVIef3I3tSTrxKuk61ujpJOoJimphXJTgVotplqLWTPUy+knLeWJZ/Zx//1PYqWgVCoQVWNiY+Y4kHGoOg77Q89Jg5XAZlNHgZJYrXnymb3EqSHWcxzUPA7a4mS5tZgoShla1sl5Z61my9N7eeCBp0iNodJUdNGbVBP43lwCaJIyPjLBxMgEewJFYiy+ks6pslnROWN4ets+Yp2po7I+NJ7vlERJJu0NSyE61dSqEUt6e3n5y1axZ98YG+98DG0slUqRqBqjtc4aFDqVj05cLZDxkUlGditS46bD5Hw7GMO2ncMuOpQafCUaqiFrLWminZy7qYhOLLXZGn0DnVxwzlr2H5jgzrs3E8UplaYiaaKJk4TAU3iZmsmkmsnRKSZGJxnZMzzHQUBkLH5WHXjX3hF27D7IbOKqGHtK4gUeZHZIjaFUDF2xwJka3b3tnHP2iYxNznL7xseI4pjmiuOQ1GvGZHY4FubnUeXIkSPHSxkvaQfleLDWYrRBecrlomg35z801MvLz1/PZDXhsU1bSVNXRVVgXc8dm/3IC1AumQVjLXGjM7F0OSXW1dYQ1DvyutdKLkyuNMYgMtluqg1WG5YMdnPWeevA83jwgadcefNsoNPzOeA63zoOrkaIxTWs09Z1I1ZyfjdcDucAWQQg45B1vR3o7+Dl560D3+fRR7YyM5s2EmbTLOeizqLeqM9Y5wCJLD9DW4vVBiWydgFZ/o4nXDfiOTu4fkZYXCTFGIw29Pa2cdY5a3niyd3cc89makkMUrooirZYNdfgTzb26erYCCHw5tlFZbkbqXH9gryMU0PBlOVxYC0qq1ZrtKGrs4Uzz13LM8/s48GHnmZ2pooRrl5NrA1GSWSWy+rs4PKF6hxUlvAaZSqeBoes9op3hGthjUUqV5/HaENHezNnvPwEhg9McP/9TzIzNZvlwwhibbHSYtWzq3OSF2rLkSPHixX/YQq1GXvMHNmGKkYKgcn6mxSLAUsGu1m1epAnnthNsRQyOxuhjSsmprPphLoIR4BrZIdTWahskDTZceqN47R1ctD667oU1Slzs6THTJEThD6Di7tZv34ZB4YnKJdCpmaqmMzZMKLeVG4hB3ADb73Bn862qTe603YhpzoHFnAwGONycRYNdLJq1WIOHJikqalINcsNUcKdB8yX22ZNExEYLCqb/jAZD5Uds97kUJFVu53PATfo27odAo/+/g5Wr16MMZampiJR1r9ICplxyJrp2blmgQhXZK7ekLDOod6Ur35P1B2khRzq18iitcH3PXp72li3bime8mhpLjMxMUOamsy5yRQ0ZEqv7Lykzc4746CtQNt5nLJjKg65Fja7Fs6YaGPwA4+e7lZWrlxEW3szrS1lxsamHAcpGuqfOodjwdrnVmcgR44cOf5/9v47WrLjvvMEPxFxTdrnvSlvUCgHRwIEDej9sCmph2ppdlqtVffo7Mz2LFfSTJtz5pzWbk/rtDQ7OmfUre5RtzSUKEOZESkakCBIGBIEAcIVTAEolPdV71U9m+6aiNg/IjLfK6CqAEyzRRR5v3UeiffyZuY3fzczI27E7/v9/m3iJyaLpzvgXw0Cd6UehIpAuSbUMFQMj7gGx3qtzOzMKCMj/Zy/sEDSSQl8FoqQa7Jf2ZN+4hKLfRyuk36Krg8XwitvMBaLwfiBTQhBECikkGRphlKSgf4aU1PD9NUrTEwMMTLaT5rnpGlOICU2CBA+HbnLwXZVy1L2InmlV+iY3GCt621AeEmuWc/BGaZJKUm9QdjwUB8zM6NUKyU2zI4xNjZIo9Uh6aTO28Nz6MlvrXUW+7yqDlKCN2Wz1kmyhcHZ4BunjOmeDxUopBDozPWDDAzWmJkeZWiwztTkMGNjg7TaCWmSEQQSGwYIJfzgbl/DoWt00u3r6HGQbjrX5WBFb16A8k6xuZdADwzWmJ4eod8H/41PDPr8opRyKSJcxwFcwrMwa4nYuD+7SU8vndrLpnFyoPWTVSFAKeUmlF4CPTBQY3pqmP6+KqVSxMTEEPOXlmm3E6qVEkEY9OTPV/NUuRLF5KRAgQI/HrihJyhuX15d9TYhoOIbKiuVEo2VJpVqiS1bppiZHUMpyczMKLfetp3+o+doNzvU+qq02gkrK01WV9uuoTXT6FwjAxfmlxtNrg1xFLhgt8Rd5YZKkeWGLDeoQBKErgelUo7p769RqcSknRQhBTOzY2zaNIEQgomJQc+hSmO1TbVWppNkLC83aTbbaG3WOEgX5pelObl2fSpKSTomQwiIgpA8cz0OSklUKJFSUi7HDAxUqVZKtFsJUgk2b55ky9ZJAi+h3n/rNkqViEtzSwwN99PupKysNFlZaTnZb67Jc41Ua3XQxrnwBkrR1q6lNIok2mpSf2zgowZKJRcsWKuWnSoHmJoZYdv2aaI4ZGSkj1tv206lGrO82KDeVyVJMlZWW6ysNF0dck3um13jOED7eodRQKgUbeM4hKHEaE2qDdK6HhilJHEcMjBQo1opYY2h3U7YsHGCnTdtQErBwECNffu3IpXk4vkF+vtrZFr36qC1s/3PuhxKEToz5FqjAhc42e5kGO3Ssq21JOmVHKI4ZKC/Sq1WRmcua2h2wzg7d22gVHYhlftu2YYVcOHsZYZG+knSjNVGi+WlZi9t+VootncKFCjw44Ibe4ISXnuCopRk0+YJPvjB27nppg3Y3A2o9f4qE+ODWGOY3TDG3//7H2Z5qYGUAhUEHDl6jgcffMbJZ9OcdpaQdjIq1ZhSKWI1bZGlObV6CSklK2mTWLkBOEty2p2UMAqI4pAoCtm4aZz3vu9W9u3Z7HNlcmr1KhMTg9hcMz01wn/9X3+YpcVVpIAwjjhy9BwPPPAMLx48QaeT0mklJJ2MuBQyWIlYTt1qS6UaE0UBq0stlIW4L8RoQ6edokJFPQoIw4DpmRE++MHb2b17E4EUZGlGvb/K2NggwlpGhvv4zM++l8WFFaxxac6nz8zzwAPP8PRTr5CmOUknpdNOKXlr+9WsTZrmlMoRcRywsqiROHv2xFg6nQwVSMI4JIoCJqeGueee/dxx+w4CJUnTjHK1xOTEEFZrBgZq/L2/9z4WvclcXIo5fXae737nOZ588hDtVkKSZHTaKWGgGCjXaDYTx6EUEkcBq8saIS3VepkstSSdtDdJCkPF2NgA7/vAbdx263YqpZBOO6FSqzA2NgDGMjhQ5ad+6l3c85596CwnLpe4MLfIgw8e4MknXqblz0O7y6FUo6kdh2rg0qcbSy00lmpYAmtZWWyCFNRDx2FkpI977rmFt7/9JiqliE4noVItMzY24BpsheRTf+du3vnO3eRpTrlaYm5+ie997yCPfPc52u3kup+Jokm2QIECPy64oScoK6ttVHB1IxQpJOcvLHLs2HnGhvvYu28LtXqZNHWeHEJKwkAwNjbA9PQIWmt+8NhLHD92jnPnF1ha8Y6wWlMO3dVxxzh31lg5sy+spazclXJbG4JAUg1dE2qz1aGdZFy4uMTxY+cZG6zz9rt2UamWSBKnDMHn7wwP1ZmaGiZLUl544QTHjp7j3PnLLC43ybPccQhc2F5Tu22tknI9Dx3j+BgBHW2QUrocGWNpthJEknFxznEYHqjx9rt2UffqEOmVRkpYhgfrjI8NoHPNwRdOcPzYec6cvcTSsls5sJnnECjavoE29hLujvF8gLY2LtMnVGTW0moldNKMcH6J48fPMzUxyK23bmN4ZIA0zQiUdE2xFoYGa4yNDSCl4LlnjnL86DnOnJlncalBlubYXFNSkigK6BhnmhYrt7XTrYNGuGZVKan4vJ92O6GTZKgw4MTxC4wN1XnHO25maGSGLMtRCIRyJn39fVVGRvox2nD0yFlOHDvP6TPzLC41SZL0mhwQgpa2hEogDSTaEChJNXK5R+124jJ2pOTEiQtMTQxyx+072b5jmlwbhLVI6bpgB/oqDA3WUEpy6KVTnDh2nlOn51hYapCm2XU/E1n2xl0aCxQoUOCtjBvbB+Vtv3xNHxRw2zylOGR6cphP/fS7+MiH30YcOflwGIdkviHTCvjWt5/hL//sAS5cXKSVpD5nx83gFJADiRREFgJj6CgnNS7nBq0kiYDIQGgtRkAG3cw+4ihgfHSAT37qbv6LT73DhQBaiMsRaSdDa41Qkocfepa//qvvcPzEhR4HBISegwbaUhJZS2gMHSkxUlDONVYIOlIQWIit65W4gkMYMDrSx4c++nb+7t99D5VyjDWGMHarLnmaIwLJ9x9/mT/9w29y6tQcjXbiPUicy2ngOXSkILQQGkMiJVoKypnGynUcjKtDzlrjbBQoxkb6ef+Hbuenf+bdDPXXyLKcUiVGZ9r1AcUBTz51mD/53H0cO37hqhwM0PIcImNJBeRKUso1CEEihVtRMtYlFb+Kw9BAjXe9Zx+/8Asfpl4vozNNqVpykt4kJYwjnjlwhC/8ybd5+eVTrDQ7PRv663HIAkUpy5H+XAgL5atwCJVkeLDOO965h5/9e+/zk9OMuBSBgE6zQxCHHD56nv/wu3/D4cNnWWm2XQP36/mg/POf5xOfuPPNf6gKFChQ4G8Bb8YH5YZeD1YKlBJX/QmUJAgUaaY5cuw8//F//yoHnjmMNpbIp++GcYhQkmcPHOXf/c4XOXZyjo6/qldqTbrbTDXaWmpRgAXamaGkJNVA0c6dt4e7zdLMcpKu/NTzyHLDqbOX+cPP3cd3v/Oc62EpR4AlKoWIQHHwhRP8we/fywsvnqSTZs67Q8medLeZajJt6YsDBNDONLEU1ANFkhsyY6mGCiWgmeorOQSSTBvOnF/k//iP9/Y4hHHUk9zKUHHy5EV+57f/iucPnqDRTlDKc5BONtvMNLl/rQJo54ZICuqhorOOQyBErw4IenUw1nL2/AJ/8YUH+dY3n6TZTihVnBeIChVhOeLokXP8x3//FZ59wXGQ3kNE+ciCZqZJckM9ClBC0Mo0gXAcUs+hEnQ5aDq58e+VNQ5zl1f4y794iC996RHaSUZUiQHrGqrjiAsXF/iPv/dVHn3sRVaanTUOysmquxz6PId2rlHAQKTItZMblwNFSUmamab9Kg4WmLu0whf/+rt85W++R6vVIfLvByEEUTnm4sVF/v2/+SKP/+AQy422a7b2HK73U/SgFChQ4McFN/QExelo1rJe1/+swfly5Ln2A7a8ImRQKYkQXtVh1hJ716fH2nXP536/WuIsPUXPem5dAwxrLTrXgHC+LNDTwzoOLg3XeA7Ch9pd+WKufF6vwr0i9bbLjyv+tsYhz7VT1PjntN4h1SmCZE9Z8qoi957Urv91nQT5yufrCWx6tezKfY21aK3BOg5dXk4R5N1m9XU4cCWH9Yes59Stw5Xng57Sx6l4IFDK1brLQbk6GG3c6lpXevMqrMm3X3OTU3352159LrqHuzq4LcPue3AtTNKZy2ltvCfOa0txvZ8CBQoU+HHADT1BYf0gLsSrftyAn6U5Qgg2bppg46ZxgkCxstLi9Ok5VpabKKWYmR1l85YpwJJnuZtICO+h4k3Pup4VTm3s/FK0cXJjIVzYncX6YDw3+Pc4ZDnWWqZnRtm4aZxSHNJotDl1eo7FxVUCpZicHGbT5kmCQJFnLoUXvLeKd0sF4QzdPIdugJ70fh3aG4B1Ofi7YLocjGF6ZpQt26aJooBWK+H0mUssXF5BCMHk5BDbd86+DgdXB4RLijbWBwn6emlv0d+tW7cOxrjaWmsZHx9i6/bpngfNmTPzXL60gkAwNjbIth2zhKFz6NW59gO+W9FSXsqre3VwPimOg+hx6nnWyK782nNNc7Q2jI4OsH3HjFNXJRmnT88zP78M1jI0VHfpzOWYPM/RWd5LGRbdIMVuHWyXg3sP4OXGxr8/ehz8e9JY5+prtGF4pJ8dO2cplR2Hc+cuM3dhEWstwyP97Nq1kTgO0bk/F/Zq7/PXvu8LFChQ4McBN3STrBDXWdK2FqM1WhtK5ZB9ezfTV69w9Oh5/vqvv8vj332O/W+7iZ/7+Q8wMzXErbds5eDLp9BZ3ltp6U58jDdCk/7SvZvtI7DerEugvFeJht6EAdzkQOeaMA656aZZJsYHOX9+gT/90wd49DsHuGn3Zn7hH3yEsdEB9u7ZxDPPHqOznPY4iCs4WAIs2nMQQIClheuN6PbKOA5rklPtZcJBGHDzrg1smBnhzJl5vvLVx/j2vY+zbddG/t7PvZ8dO2Z42x07efLpIzRWmgCuidU/lhEuVVf519k1Swu6/iC+Ltpad6wfmLsTilxrgiBgy9ZJZqZHmJ9b4itfeYz7732M8ekRfukffZKtWya4df9Wvvu9g7TaiV/tUb0JkPErDZK19GGs49D2fKTnoP15EH4SabR1MmWp2LBxnJt2zHDp0jL33fcUf/NXDzExPcLP/98+xM27NnDbrdv47iMvcPHiIhrX+CsQCAnGOA7Kdjm4uoRA009kJH7V7CocdO44bNw4xk07Z7l8aZkHH3qOv/mrh6jWq/z9X/wI+/dt5Y7bt/O1rz/B5cvLWKsJlFP5FChQoMBPAt70BOU73/kOv/Vbv8VTTz3F+fPn+eIXv8inP/3p3u3WWn7913+d3/u932NxcZE777yTf/tv/y27d+/uHZMkCb/2a7/Gn/3Zn9Fut/nABz7A7/7u7zIzM/OmuFhjnWHY1W7DonNnKz/YX+XmPZt55sBRvvyl7/Hk04cRwvKNbzzB5UvLfOrvvJN9t26n76uPMd/qoHMwYeBkv8rF3ae5pp3mBEoRBYrEL8/HoUJIQSt16olyFFxxFa+1xmhNtVxj997NHDl6jq9++fs89PBzIOD8Q8+ytNjgk596B5u3TTM60sfK4go6d+ZqSNHjkOWGRicjDALi0HHIrct/UVLSTnOshVIUOEda291aMhitqdQr3Pa2nbz8ylm++Nff5dHvv4g1hvOPvMDlS8t8/BN3sfPmjYyP9tNcbrjtnjBwhnc+2yfLNc00J1SKKFRk2pIZTRAoAiXpZDnGQCkMUEp4t1+3nWEyx2HnTRu4MLfE17/6GA88dIA0zTlx7jKNRodPfvIutm53dVi+vNzjIMUah1y7QL0gUMRh4DxZUt3rmUkyt0VU8j4x1roVHK0NJtdUKhH7929lYbnJl/76ER544BnanZSzc0ssLDb4yEfexi23bWPDhjHmLy6SZ7kzulPO7l+FjkPTc4gCRaZdXaSShEqS5BpjzBoH1jjoTFOtRey6eRMrzQ5f+MKDPPTwczQaLdJT8/zb/+1LfPRjb+Pd9+xndnaEpYVl8m4d3oARW9GHUqBAgbcq/rNa3TebTfbv388v/uIv8jM/8zOvuf03f/M3+V//1/+Vz33uc+zYsYN/+S//JR/60Ic4dOgQ9XodgM9+9rN85Stf4Qtf+ALDw8P86q/+Kp/85Cd56qmnUOrqviZXg9YGIa4uMwaIS874qlQt8cjDz3L8xAVeOnTG5dCM9nOmscyj33+Ry5eW2bVzlkq9wrC1dNqJGxBwrQnauolKKZR0Mk2uLYP1ElIILq+0kVZTiQKS3NDxKo6uVXwch/T1V6nVqzz5+MtcuLDA8y+eJE1zpkb6uLTU5PEnXmZhYYUd26eRgWJ4dKDHAQO55xAoQS0Oaacu8K6/WqIUKuaX2xijKUcuQK+TaaSgxyGMA+r9Far1CgeePsx99z7Osy+cIEkyNk4McmFhlacPHOXy5RVuv20bKgwYGhug00qcbNVzMNY1elbDgCTzTbvViFIUML/UIs01lUihLbSSHKVFb9chDANqtTL1/iovHTzJU4+/zDPPH6PVSpga6WNJG5559ijLS6vs37sFISXDYwO0WwlZrtG56XEQQlArhSSZIcly6pWYSing8nKbNHd1MBbaqUZq0+MQBIpqtY9ytczx4+d55XdP8uTTR1hZbTMz1k+jnXLwpVMsLa5y9PAZkiRjeHSAdqtN6s3ycsAYt43T5ZDmmkocMFArcXGpRZI5DiJQNJP8Cg4qkAwM1anWK5w8cYH/4z98jSeeeoWV1Q7To32s2pSXXjnN8kqDk8fPk2vD0OgA7VaHNM1d/8514HqYbjhhXoECBX5C8Ga+n/6TZMZCiCtWUKy1TE1N8dnPfpZ/8k/+CeBWS8bHx/nX//pf88u//MssLy8zOjrK5z//eX72Z38WgHPnzjE7O8u9997LRz7ykdd93q7M+K63/TfXlhkLfC+IS7qVxgW5aVyvQFkJWrnzquguxxspCYSzddfa6Yw17j6REoRa00g15b4qd+3fTBQGfO+ZY6wsrFAPJSYMnQ8IoLAILFJIhOxysEhhMThFSgyk+BA8/EqDEIRSOA5+dUgjyHFpvSWds5LmhJUKd96yhf5qxKPPnuDy3CJVJRBxRCu3KNyP8Hb0Qgrn3WJcxozBBRxWlaDlfUNUtw5CEkiu4GA8h1BJYp3TSDVBpcQdezcxMlDl0QPHmbu4QFVCWC6xmum1OvQaYNf8YxTr6iAg9YN+l8PV6tDlIKWghmG1k2GjiLft38L4UI0nDp7i7Jl5qkqgopCWBrmuDkIK5LU44CXRQrhZu7XkwgX9SesD/tZxUFJSRbPaySCO2XvTLNtmhnns+ZOcPjNPyRpK5ZhV7Z47eBUH7Ve31nMoCUFiDEj5Wg74vpvX+bj+03/+X/HxQmZcoECBtyjejMz4h9qDcvz4cS5cuMCHP/zh3t/iOOaee+7h0Ucf5Zd/+Zd56qmnyLLsimOmpqbYs2cPjz766FUnKEmSkCRrDporKyuAu1o019jiEV5WIwM38Ga+Z0AqifFpuPgGRq0NufEmW2ItbRbpjhdKIYFOq4M20N9fZc/+rZRLEYdOX2Lp8hLtJKdcigmlRGgDOveZLBbpGzy1XafasC6JGN98ajwHFUikEC5VuZtAHEhCKQkDRavZIjcw3Fdmz74tDPVXOHJ+ictzi3SSjHIcEYXKXeZ7RY4QLtzPpfOCtYZAKaRYS0dW/jkzbQijLgfb4yACSeClz51Wm9xYBmtlbt6zmemJQY5eWGb+4gKtdkp/tewybIwBr8gRgJJ42bSrQ6BcXk1qDAaIpMS+pg7rOPRkz5Kk1SLNNH39Mbt2b2Lj9DBnl1qcO3uJTpJRiULCSIH2HKxFGRDrORhLEHgO694PWEtmLFK5gEWs8WnQIJWz9g8CRWe1Q5Zp+gYidtw0yy27Zjmz1OLcucu0Wx0in+WD1ghfB4njIP2WnTGW0HPoplGHXlWUakPgt7eEfz+8/uWELbZ4ChQo8JbFjyzN+MKFCwCMj49f8ffx8XFOnjzZOyaKIgYHB19zTPf+r8Zv/MZv8Ou//uuv+btLd71GD4oFKbqyzW5Ym/UTF+dn0V1270piuynA+L4Jad3EQiqJMIY008gwYHiozk27NlKtxox+70VOHFGk7YyKv+o31mK0m0B1OUjhr9BxDa1CuEZO6aWnhq5Iw//ur7ARbkAV3gukk2bIKGKgv8ZNuzYwPFhj/InDHI1O0+4klIAgkJjM+i2qtRqtUwv36qK7UmCxjkOPk5sAukEdhHLhhEmWI0OXKbN9xwybN47xvScPc+jFgGazhfVbYhaL1p6Df/bue9P0JMjWcfCNpc7YzRKKNQ6OvkXJLgdJyyut6rUy23fMsG3zBM+8eIrnooBOp4MxliByLr9dDr3mZv8eML61VwjQWLpp1Mbaq5wL/Hl0fSiBlKykOQhJX63M1m3T3Lx3C0+/eJrnSiFLq4bcuMmeez8Yfy784/gz0pUhSyHIcZPF9WnIXQ629z69/gzljRxToECBAj8q/MjTjF89Q7L29a/qrnfMP/tn/4xf+ZVf6f2+srLC7OxsLyH2Wug2aLov+fWDAeR+JcM/e2+y0m1u7T5216RLG0OmNYMDNSYnBpnwacTTU8O8XCsz32i5VYFQOamtv7/p9U34gdGsubteMQD5CZO7gLeeh/tdSme2JoQgSTUjgyUmxgfYsHGcSjlmZtol4TaXGhhtKJWc3b7J13w/enVwCwL+PLntLqnW6t47xrrJSddzRArpEoaNJUlzhvprjI8PMLthnJkNY8zOjDLQX2V1YQWtNVEUOjVPtw7eHh+vaOlWuHvO5bpTv55Db8AVXmbsPUPSNKdcKzM22sfs7BjjU8PMzjoO5324YKwk2kiv/FmrBV1FjZ/4SH8yem+/3mSkew7t2v38uVBK0Ely+gZqjI72s2njOEOjA8zOjjI0WGPl8jJZqinVJLm12HxtkmF8zd2kcK3GV3JYm1zDWm/J6320F558ltPJpdc5qkCBAgV+NFhttd7wsT/UCcrExATgVkkmJyd7f5+bm+utqkxMTJCmKYuLi1esoszNzXH33Xdf9XHjOCaO49eSDxRBcO2XYK0l18Z5cgiw1m0ZuMnI2tUyCALlvCusMVjh0mfDQFHvq1Dvq2CMpRyFTM+OsH37NP39Lh14+/YpTp+YJgoVQ8N9yEDSWG2zsgxpmrs+AmN62zzWP6f0KyOSNQ5KOGVSvo6DUpK+vgr1esVNENKcjZsn2LljmsHBGlJKtm5xv0ugUi1RrsaOw1KTRGSeg0ViPAfrObiJm5JrJmFKijUOrHGo18v09VecD4iF2Y1j7Ng+TX9/xXHYOsHOnTNgDH39VUrliEajw/JSA5JXcQDvSwJCuG0PKYSvAz0+ue/7UGGAktI12fZViKKQUMDIaD837ZxhdLSfcili86Zxdu6YJpSSIFTU+io0V9ssLzdJuu+HXh0Ar3QSuB6Z7uSwu+WFxXGwjoMUglq1RF9/lTgOMWnO1PQwO3fMMD4+QBgGbNo0zs4dM1jvITMwVKfZ7LC81Oy9J7V17zPpJeTW18Ftg8keh0DKXt26HF4PZ/7Pr/DsH8+97nEFChQo8KNAy1y/0X89fqgTlM2bNzMxMcH999/PrbfeCkCapjz88MP863/9rwG4/fbbCcOQ+++/n8985jMAnD9/nhdeeIHf/M3ffFPPV6lXCILXTlwAsJZ2O6XV6hBIQSUOyS1kuSZSglIUYK0hyTVhoIiUpNFOyY2lVI6pVGJqtTL7bt7AnXfsYGJ2jCw3CGuYGBugVi0hhODd77iZzbNjaFzezcLFyzx14ChPHjjK0nKTdjul3UpQWKqlCC0FaaYJpeOgtVOBBIEikpJ2kjmr9FJEuVKiXI64de8m7rh1G9ObJkgzg5KC0eE65VIECO68fQczE0Pk1vmWrC6u8NQzR3ji6SMsLDZod1KazU6Pg5GKJNOESlCKFFhLxzcMlwJJq5ORakMUh9RqZcqliJt3znD3nTcxMztG5naeGB6sMjhQQ0rB7bdsY2ywTpIb4iigsbTCgeeO89gTr3Dp8gpJmtNstBHWUimFqECR5jkSJ0m2WDppjgoU5UDR7qQkuSEqhVSrJcqliF07Znj77dvYsmOW3HWZMlgvM9BfRUrJ/t2bqJcjcutWvTqrTZ45cJQnnj7CxfklOklGo9FGGEu1FEIQ0MlzlOdgjCHNDUI6xVaS5XTSnDAOqVVKRFHATTumueuOHWzZNo3Graj010qMDPehlGT3zllqP/tektxNjNNWh4MHT/Do4y9z7sIiaZqz2miDMVTjkMAroiResi6gk+QIJSlHAZ0ko+M9bOrV0uumFQdNhW0VWzwFChR4a+I/6xZPo9HgyJEjvd+PHz/OgQMHGBoaYsOGDXz2s5/lX/2rf8X27dvZvn07/+pf/SsqlQo///M/D0B/fz+/9Eu/xK/+6q8yPDzM0NAQv/Zrv8bevXv54Ac/+Ka4LC82CIL0mrdr7RQrpSgkB/Jce+MxQTvLKUeKUCny3OXWlOPQTRDaCXmaoXPNaqNNpg2jI/1MTo+i/aBq/dr7+PggQ0N9BFHIpblF5s9f6l0xLy810MagcI+tEaR5jpKur6WdaSIlHQdtyBDEcYDpZCSdlDzLSZOI1UabNDcMDtSY3TiB0WtX3wYYGelnYLBOGIcsXFrmhcUVz6HB0uIq2q/glKIQIwRJ6jgoKWllmlKoCANJrg2JdtJom2SkScZKrklLEaurTmo7ONzHzIZxtx2mNSpQWGBoqE5/vYKKAlZX2zz75AqtVsLKsquDMU7FUopDkJLUy7EDKWnnrg7OV2WNgyEj8xySdsrqaoskzalVSmzdMYPRBoxBKom2lv6BGrt3byKMY1aWG7z0wnFa7YTl5SZLiw0nS7eWUhyAdJ4tSjifmU6mUVIQBpLM5+lEYYCxkCY5K3mTMFSsrrRIspxKtcTWbTOoQGJyTeDfY/W+Crt2bXAqomaHg88dpd1JWfZ16CpxSlEA3rNFCGe538kNoRKEocv0aeeaOHb5T2mWs7LUvJrr/hVI0yLNuECBAj8eeNMTlCeffJL3ve99vd+7vSG/8Au/wOc+9zn+x//xf6TdbvPf/rf/bc+o7Zvf/GbPAwXgt3/7twmCgM985jM9o7bPfe5zb8oDBcBkOdpc+4oyUJJyKUSFiuV2CsZSiiSZtc5sLFREgRsk0kwzVIkRQKeTkaU5zdUWB186zdJqm4OvnOWjH3kbe/duRkhBo5VgLfRVY4JI8Mqh03zt6z/g8OEznDt7iZWlBjrN3apEKSCMQlY6qXO2jd1EoZXlSBVSCiRpR9O2moFKRLUkaLdT8jSnow0vvnSaxZU2z710ik989O3cdsd21yiaZCSdjP7+CmHgwv6+/OXvc+jwGc6cmnODcpqjlJsghXHASicn14ZSGGKFM5hTSlIOFFluaKWawVpAVYS02ymZ5/DKkbM0OynPHzrNB993K3e942aCKKTZTknTnIH+CkEsOXfmEn/9pe9x6PBpzp65xOLCiuMgBaU4JIoDGmlOmhtqpRCkoNVxKcTV6LUcOp2MNMtJcs2Ro+dZbSe8dPQ8H3jvLdz9zt2EUUg7zel0UvrrZaJSzLmzl7n364/zwosnOH1yjkvzy+g0QwpBHIfEUUgzd+e8XooQUtLMMkqhohYH5Dp3k8cwoFoKkdaSZjlprjl2/ALtNOfgK2d5zzv38sEP3UYQhSS5ZnWlzeBgjSCOWF5u8ld/9R1eePEEZ89cYn5uiTzJkFJQjkLiOKSVa5JMUysFSClpZxkaRV8coHVOM80pRSUqpRDZcb0/1xCt9WCNKVQ8BQoUeMvizXw//Sf5oPyo0PNBufOXr73Fg1c0eP2I8Hv93cZMY6xzOjXdZkSxbulJ9K5U3d8sQRDw3vfewj/6Rx9ndGwAIWSv8fXypRX+5E++zVe+8ihZmvssGvm6HHrNsr4HpSuNdn0Rr+UghODOO3fz2c/+NOMTAygVkGVu8G80O/z5Fx7iC194gDzPXSNml0OXiOeA73GQQri8mFfVoXv71eoAgltu2c4/+2c/x8hIHypQvVo2Gm2+9KVH+YPf/zrWurC99VsS68Pwur936/7qsDx66p0rOVhrCQLFrl0b+X999mfYvHmcMAzR2hAGkuWVJt+87yn+4A++TrPZvqIOr+HQPTevORev5nAl5y7fDRvG+f/8f/8BszOjRHFIkmSEoaLdTvnOw8/xv/wvf+GyfK5Xh3UcrvaevBqH6+FjS0fY0774uscVKFCgwI8CLaP5uRMH/vZ9UP62IbpBcNeA89CAnlLDKzckvgkSLy/2DZK5cVMJKd1jY50nitbOybTdSV0OjJSvmUC0OymdTuqacNeFw2EsZh0Hp5xxTZFKiJ7SR8re4W4A7D4GjoPxybatduJDC91jORM2d99OktJpp4Dro1jPQXebQf2syqybpIgr6iB6zaly3eswueOQa89Bu60JF0zoB13rVp86ncT5iSAQXtdr7dq56DYpG5wZXO/cGLwLr/OmMes5+DobbUiNodVyHLrBjNIHAmIhSTI6fotMCAn+fPYUQV2JuW/UpcuBbsaRez9o01WByR5Hq+3auWgl6Nz09NtdY0Ap3FZLu514yVb3PK1xsNY66farOAi6E7buBNL4ZuI1Dtf/UHB9aVuBAgUK/CjxJr6fbugJyvWyeACEpTdQdhUiUnSTZ40fXIVXVogrr3K9+YW1zpyrUimxccMYg0N9IODS/DIWGB6uMzhYZ9OGcep9VRqNtptQrFtqfw0HJ2NxihJv1NZVbgghegoS6/7HjXFKUopDNm8cZ3S0HyEli4sNmo0O4xOD1OplNm0YZ2Cwxspq6zocYP2ETWvnXLpWB9bq0OVg1jhU4pCNs6OMjg6gAsXlyyt0OimjYwP09VfZtHGMgYE6zVbbTTKM7U3kuonM7rWuSYz1q+qgjUV4Z1tYm/wY63TXcRwxOzvK2NggQRCwtNSg1ewwMtpPva/Chg1jDA31MTe/iPb+I3hpdXeC1uPga67N2qTAcXjVubB27f+lIAojNsyOMjE5RBAGNBptLs2vMDk1RLlSYsOGMUZH+1lYbKC1vjoH1laRhK8DfqLoOJg1DuvqcP0PxZtbQi1QoECBv038yIza/tbRNZa4BgR+tcAP9OsvLgPwqwrdv7sEXoXf4vA+INpaRBAwPNLH3p2zWGt55vnjfP73vkar2eG/+kef4G23bmPX9ilGR/tZbbs+E+kNzgQ4Oat/XOGZdZOA1zaVvEeGdOnIeBO6rixVKEWtr8rt+zYjhOCFQ6f5w//9qyxdWuYzv/hR7nr7Tm7aPsXMzAgvHjmH7qQI483NehzckwhvvGGsq0N3juc4+DqIq3PoG6hx297NGGN48dAZ/vRz93HmxAU+84sf5T3v2sPOrZPMTo/w0vHzaJ1dhcNaGnH3FHajBpAC4SdkRnSlvus4GAtKUqqVueXmjVTLEcfPzPMH//4rnD5yjk/+7Hv50AduZcP0MJs2jjG/1EDrFGEMym/JXcHBrtWley78Zpuvg1/R4UoOVkkq1RJ37N9CHAUcO3mRv/zTB3j+iUN88ufex4c/dDubZkbYsXWax587im4b0E4lJcBNToRz7u0mZFt8KrTnJDwZ41eUhF/5ef2LjzdyTIECBQr8aPBmvp9u6AlK1kmw6tovNwoDSpUYrRTLq20CLJVKTCc3tJKMqFqiGkharYTEwmB/hUAbOq2ENM1ASsJqmb6xATZvm8amGd/4xhM89MQhHnzgGdJOiu6rcu7MPFuG62zeNs1SbliZXyZdcYqNKAwolWNMqFhudJDaUKvEdIyl0eoQVyKqUUC7lZBYS1+lTGQsSTshSXKsgLBWoT7Sz6YNY1QDyTe+/gMeOXCUb97/FFmjTVotc+7cJW6aHGL79hnm2hlLFxdJlhsY7WTU5UoJGyqWGh1ErqlVYxILzVaKKofU4pCkndLKNAMDFSILaSuhnaQgBEGlRH1sgM2bJ6iXQu6//ym+d+Ao3/rmU6zMLZLUKlycW2LfhlF23jTLfJqzPL9EZ3G1x6FUjiEKWG2lpGlGrRKTC2iudlBxSF8Y9Dj09VdcVlE7oZNkbgAvl6iO9DEzO8ZgrcTDDz3LYy+e5N5vPMHKxQVWAsXSSpObp0fYvGmCk4sNLp9fIFlqkOUJgVKUKzEiClhppyRJSr1aQkvB6kqbMAqolUOyJKOV5tTqZcpKkLUS2knm7PLLJWoj/UxPDzM9NsCD336axw6e5L57f8D8kbM0opCF5Sa3bZnkpp0zHF9cZXFuidbCClk7QSlJpRwj4pDVjlOM1SsxWkqajQyUpL8akycZq0lGX3+FkhTknZSW32K8HkxuXncXqECBAgV+VHgz30839AQFKbv7JVeFtpDmGosL2hPG9VAoKegvx2RSOCM3ISgpSZ4bdK7RriED6VVAlTik3Ur45v1P8ezhs1xYbtJfryBqZZ575jDnj5zllu1TZJE7NiuF6JZL9dUWEm/LHnnjrUwbZ8BWibBKkmm3lB9LidaGxOfRWN9jU4pDKqUQYQz33f80T710ivPLTWrVElE15uWDJ7hw4gK3bJsiqJcpRwFJKSRvKrS1aBwHIVwdrDHk2iKVpK8ckXmJsQBKgcJoQ6Itua9Dj0McYXLNw999nqdfOsWFpSalSFGfGubIy6e4fGaOF7dMUh6sU44C0lJEHipyzyHNtXNi7QbmGYNQino5wkjHASAOFcYYEuNXLISrQxyHVEsRwloefewlXjh8llOXVwiVZHpymNMnLvCFP32A3RvHqA/3UwoDKuUI3QzIvLtvmmvoclDSh0Iq+soRtsvBWuLAGaYlmXErN+s4VEoRgRA8/sQhnnnxJGcWVtFZzsbZUc6dnuOv/vxhDm4YZXJ6xHEoRWRhQKad+V2qDSLXvfgA7Ruj6qUILen1nZQC1eNgtKvD6+qMi9lJgQIFfkxwQ6t43vH2X752mjFrTrIiUMRhQNJJ0dayacskOzZOcPT0HEcOn0UBlVqJVicFvdab4rtAMcKFtalMo5VES0mQOZfYLApRxhBogw4VVkmksa7D0m8L5NpilaASR25lJNds3jLJ9s2TnL2wwMsvn0JaKFViklxjspzgahysJUgyciXRSiHzHGUsWRQgrSXIDUZJTKgcB2N8/4irg5WCSslxyLRhanaUvTtmOH1xkVcOncZkmkq1RJJr9Ks5SImRwm3ZZDlaCrSSqNwgjSGNApSFINcYJdGegzAGvBOqNgYj3GRHpxmdNGdyeoTdO2a5vNzg+eePY3JNtVqic7U6SIn1/RlBmmOkIFcKqTVKG7IwQOA4WCUxgdssE+vOhdYGDVTKMXmS0klzRscH2b97E4vLTQ6+eJK0k1Iux+RY8iTrTai6WQRWupyhIOlycAGRUa5JorDHASnQnpNwHbeAOxcGKJUiTJbTTjKGxwbYv2sjjU7Kc88fI2klVCslMix56szk1qIZro2PLh9lb7twki1QoMBbEy2j+XsnnnlDKp7X/8Z7K8N1OF7zx1ow3pxLrLs63rxpgrvv2c/WbVN+RUMj/WDWDXXzUhNvSe+yUBJvXx4olzybGp/IK4SbWGiDwitjruCgEcYiA2dEpnPNhg1j3P2efezYOYsAMq0RUrpeiC4HfznctcW31pl3IZw1f26coZjy6pvEq2x6HOiqPqzjYA3KczDGMD01zDves5+bdm0kUJIs11gpneX7+jp4DoEQWGvodDlIlzOTaNObSKTrOKgeB+E5GLBOcpsbS55rJieGuOvde9izbwtKCrJcg1rj0E0RXquDVyxl2iX/Khf8mHQjDaQg8xzWH48rQ8/cLQgVmbHkWc7ISB/vePde9u7fShw56bYVXdt/c0VitvT9OcJCJ3O+JIGUWKCdG28+598fuV7j4Juduu9J2zOYA51rhgfrvP3u3dxy23ZKUUiWa4x/PVabtWbw67zfX3d1pUCBAgVuINzQWzw92ei1bvf/L7sJw9ZSKUVs3DjO/lu3cf7CZUpxSKPV8cF8gm5KgLUu3Vb4DB2NSx8OcIm4CU6UURIuX0dbJxvuNnbm3ebOLofuRMFawkCxYcMY+2/dRqPRolQKWV3VvXycLnfba9lcC67LDYSwJlEGYj8R6fHzE4K819zZ5dCVNVuiMGBmeoT9t26j1UmoVEo0m52euqk7mPZC8uiOgW5CEFo38KZAbiEWTjWlfQNs0OPAOg4WKdzqg7HOz2Rycoh9+7e5eIFyTKuVOD8QIcjEleex9xqE7b3Wbr1yC5EAaUGzJiUXfnvpynPhzqvWbsI2MTbIvlu2UamUqNfLLC6uoo0lDNZ8ZOw6IlLgzzm+3i6FuctBrJNxdycz2r6WA7isHxUoxkb72bNvC5cuLdNXL3P58gq5Ns7+/goON9yCZ4ECBQr8X8INPUHpTjquDjdoq0ChlCJNM4JAMTRUZ8OGMUaG62zcMMbQcJ0kzUmTlCBQWGPoBdlhkcb0TNnWX6EKARI3AJp1g3hPAeQHZeE5BIEiyzRSCAb6q2yYGWV6cojZmVGGh/tJkpwszYlCSRCoNQ7W+oBD21OhOCWO9YP1Whoy3ZUbfx9r1lKMexzSDCEEA4M1Zmdc8u6mjeOMjvSzstoi6aRUy5HjwBoHIy3Krslyu6N193fhFVVWeH+Y7gTNeOM5IZDKcdB+Jaq/r8rszCgT4wO0W21GRvtpNDukaUYcBq/hYKVdU0JJN9kS3Ylkt/5dXsLfx9re+0Tg+k5UINFaY4yhv6/K9PQI0xNDdJptxsYGuHRphSTJiMJSL4zSKXyt2zqTdk2N459S+OW27nsAXwfhpcGv4aAkRrtVt76+ClPTI4wO91GrlhgfH+Ti3BJJklGOAoJQ+cni62t0bsAd2wIFChS4Km7oCYoQwhlxXfU2iKKQUimiVIpYWm5SrZTYunWaqclhwkAxOTnMtm3TGAOtdsJAf5WON1xLkgxwA4v1zZtKuSZXY6xP3HVbP9au9QdoY7Cmyw2i0HGISxHtdkK17FZwpqZHkEIwOtLvOVgajTZ9fZWe0ViaZu45PAcLhL3n8cZefhvCWkvgTcu6HPAS1TAMenVotjqUSxFbtk4xu2GMMFCMjQ2wdds0nSRjbm6JoaG+HodOx2Uddfs3sBal3JaGMW57SSjRk+EGfrtJ+xRgvFQ3CBSlUkS5HNHppFTKMbOzY2zYOEYpDhke7mP79mnSNGdxqcFAf5U0zUk6qVPxrOshAXqSXe1TgUPlUpit53cFB0AKl3DcrYPWGoxl85ZJNm2eQEpBX1+VrVunWVlpc/78ZQb6q+TVMp2uksg475Qeh8BxMD0Oa0nEzmDO8WMdBxVISqUy5XJMmuUESrFp0wSbNk1QLkfEpZCt26ZZWmpy9twlBgZqZNUSnU5Ku51esd10rc9EgQIFCvw44IZukn3/e//7a1rdSynYtHmS99yzn82bxnsuryPjA2zcMEYcheTacPz4eebnlgAolWPOnr3E9x55gZdeOkmeaVqdhCzTRKGiFIUkWTfLJkAIaGc5SkhKUUCS5SSZy7aplmPCMGDjxnHe+e69bN0ySZ5pdK4ZGulj86YJKuWYJMs5dWqO+TlnKlaulDh/YYHvffd5Dr18iiTJaLYTMh90WI0jOus4SAFtHzhXCgNybWinGUo6OWsYKGZmR3nPPfvZtm2KPNdkScbI2AAbN477RGQ4eWqOixcWybOcSq3E/PwyjzzyAs8/d5QszWl1XOZOGCjKcUia5WTGEAcKJSTtLHcqoCggN4Z2kiGlpFqOiMKQickh7n7nHvbs2YTONWmaMTBYZ9PGcfr6KhhjOXHyInMXXeJvpVpiYXGV7z96kGcPHPUDdOLqKyXVUkSWa5LchR0qIWnnOcJCHLlk4lbi8ncq5ZgwVIyNDfKud+9l166NKClotzoMDvexYcOYm4zkhvMXFrhwfoFWs0Otr8zKSpvvfe8Fnj1whHYrodVJSXx9uxzSXBMFilC5OlhrXdYRlmYnRSColCPiKGR4pI933L2HW27ZigDarQ4DQ33Mzo4y0F8lCBWnTs1z/vxl2s0Otb4KyystnnriEI8/9lJvwngtvH/+JXatnP8hftoKFChQ4IeHltH83MmfAKv75dU2QaCvepuUguWVFkmSMjRUZ9OmCVSgXGZLqNDGEsWCm27awE03bQDg2NFzHD9+geXVFssrLd/MqAmlJAwUuXBX6aFwBlpCuH4QYw0ZEAYKm2uyLKehDTJQLK+26LRT+vsq7Lp5I/jehzBQWCzVKGD7tml27JhBCMGZ03OcOjXH8mqLpdUWWZpjteMQBYpMuqv0QIAVglxAKNyKSu63cuIsJ81yGsY1pNZXWrQ7KbVqiR07Z4miAGMsgVJo63pOtmyZZOvWKQRw7uwlLlxYZMXXIfcNwIFwab+577EI6HIQPQ4ZgkApYpmT5jmNpkGpjHK1RKvVoVqO2b5jhlLZDe5R6LioQLBt6xRbtkyilAsdnJtbYnW13TuPVhsCAVHglFTa5oQAPQ5u1SS3Lh24JDVJntNsdpBKEpdiWu2EUhyy/5athKGbyHRXv8JQsHHDGBs2jqOEYH5+iWcOHO1xaLcT1wgtIFZrHALcykWK45Ab1/8TKEVJueTmVsutwqgooNnsEEcBO2+apV6rkBtn4uZ86AQbN44xOztKoBTz84scePYYq80OS34L7nrIsqt/HgoUKFDgRsMNvYJy++3/EKWuLTMOA8XwYJ3t26b41E+/m7vu2gXG9WTIMMBqTZ45Bc/Tzx7lL//4fo6duMjlhVWSbvptoIhDRaINy52MaqgoRwFLHWfcNVyOSDLNSprTVwop+3RkpzKxhEHAQH+FLZsm+OSn38m73r0XF08jCOIQnebkeY4KQ5555ghf/ZtHOHjwJJcWVklStyoRh4qS9xO51EypR4pKFLCc5CS5YaTiVoNWkpxyFFCPFGlu6KS5ayZVisGBKhtnx/jY37mb97/3FkLv86HCAKsNeZYTRiEvHTrNn//Jtzh06AwX55foJF0OklIYkBnLYjulEioqoWIl1XRyzWg1RvsalcKAvthzyHIfSKjor5fZvHGcD330bXzoI29zfie5ISxFWGtIWglROebwsfP8xefv5+CLJ5m7tEyn47bbokBSChVWCC41E0qBpB4FrGaadqYZrkQYY1lJcuJAUo8D8tzQybRrRlWSvnqF2alh3veh2/nkf/EOylHojORKMUa71aWoHHH48Fm+/MVHOPDMEc5dXOxtM8WB6nGYbyaUlaQWB7Ryw0onZ7QaIbAsd3KkFAyVQ7+q5ThIKanXSmyYGeWe99/Kxz5+J4MDVbIkI4wjhICklRCWIubml/ijP/g6zz9/nAsXl2i2k9ftMfnk6jFuSS798D5sBQoUKPBDxJuRGd/QKyiBb7q8FgRweXGVpacPc/LMJSrlmD17N1PyybNRFKCN5YXnj/Pbv/XnzM0tkWc54CY34BQhbS/zrPgr7UQbIi9D7vjekIqSGGNp5e53pVyWjMCytNzkuYMnOHNhASUld919M5VS5FQkYYAGXnrpJL/3e1/l2NFz5Fnu+k28isR0OVhLzf+tow2hAKUEqe+DKSuJsJ6DdUZs0tdhablJo3mKIycuUI5C3vHO3ZRKEWmSE8cBxsLpM/P8//6Xv+T4sXO9DJs1DqLHoeL7PxJtPQdJ6mtUVhLBOg4+TFAAq402B18+xenzl5FS8v4P3EqtVibLNUpKwlLEsWPn+Xf/5ku88MJxt3pkLUFXTSMEHe36QCrKBfN1jHU+NkqSOqkMJeWaVds9DoJQOjVMo9HmlaPnOH56HiEEn/zkO6hWY5dbpCRBHHLx4iL/4T/cy9NPvUKeuxyd0PfdrOdQVc7ErqOdcqkeOHkxWGLllEKuDlzBodVKOHz0HCdPz6O14ad/+t3UaiWyXBOGAWEp4tKlZf7tv/kSj37voG/otQRvwAdFXic8s0CBAgVuJNzQExRvLXGNG334HJDlmrmLiywvN9du7l6JClhdbXHh/GUXlKe6jY/rsleMQQlBGCpybchzQ+gHoDQ3bqsncK6tWa7ppuEKr6oRAnJtuDS3xPJyo8dBYhE+3bfV7DB3YYEkyQhChbwKBykEUeh8TLocAuk54DiY13BwzZlWOEnr6twSiwsrvfpJu+Yz0mp1uHDuEh0/eZOIHgdjrNsOWc9BGwLptn2S63JYq4M2loXLK1y+vNxr+BTr1EGddsKFc5dJOhkqkD0O3eZkw1odcuOex23BSVLfFOuaVSHznKT3QhG+idhYWLy8wuX5ZYzrJkb6vCaEIE1zLp6/TLPZoVSK3Puoy8Fa3xS7xkH7OsRhcAUHgDQ3gPWeMI6D7HJYXGV+brEXGCitz0kCkk7K+bOXaLUS4jhErWsCvh76dm5jrH/bdY8pUKBAgR8VmmkKJ555Q8fe2BMUJRDXuao03gwMYHbzGJs2jRNFIZ1OSrPRomLLlEoRGzaOsWnTBIePnCPP3RW7lBJhBRiDzi1WAqFAGIHNNQSBk5kmKTJUEAhsYkBbx0u6QdkaS55pQDCzYZTNWyZdc2yS0Wp2iEsh5UqJ6ZlRNm4aZ2GxQZrmV+cggEgijHUclEIEElKX4YIS2LzLoTsgu36RPHV1mJwcYuv2acqliDTNWW22qRhLqRwxNTXCtm3TPPX0YdLEc1COgzEGfB2srwOeAz0OynOwkLsVCeFXOqx1dbAGJiYG2bpt2q2eZDmNRpswDKjVykxMDrFt2xTnLyyQJpmTiXsXV2EMQnv5cqjcYK69/DhQ2Fbee06Tu4A+IYWrg+xycEqkoaE6O26apa9eIcs1zdUWQaCoVMuMjQ6wffsMJ05eJE1zVCBRvpbCGFd/LHQ5GI0VEhEH2GbuZ4XOph6tPQdxBQdjLEODdXbsnKVWK5PnmtVmhzDMqVRKjI4NsPOmDbzyylnHQQmUUojXWSHZ/Pf/Lnd8+I4fyuerQIECBX7YWFlZgT/539/QsTf2BIXrR49oY9DGEEUhN9+0gbGxQebnl/jmN5/kiUdfYN/tO/kvPnU342OD7L55E0eOX8CkGUaDkm7VoWuGJoBAuC0fY9fcQTUufTgAMmvdKgz0fDm6HIIgYNvWKWamRlhZafG1rz3O4997np03b+LTP/UuBvqr3HzTBg6+eIpms43Rgq67uvXpxwLXHJv7K3ABhAha0DOQ6+b/iN4/t2qhjUEpxbZt02zeNMHycpMHH3yWh+5/gm03beCTn7qbmekRbr1lK88dPEG71UEbv6LkPWBcGrKrg/GvPcI16base/7AG8bpXg1Eb0XKaINUio0bx9m8aYJms8N3vvMcD37zCcanRvjZ/+oDjA33sXfPZh5/4hWSNEP46IE1DsLZzAvIxNq5CQW08QZtgMEnMAvZOxeOgwYpmZ4eYdeOGVqthEcffZGvf/l7jE8N86lPv4vNm8bZv38L33/8JRYWVj2HNXfgbhqy8nUwFpQ3aWt1vW8EvTRstc6nxXSl0lIwPT3CzTdtoNNJeOLJV/j6l79HtV7lZz7zXrZvm+K2W7fxrW8/41b+jJNPi+u+40GGIbJ0dWVbgQIFCvyoIdM3/v10Q09QHK7+he2uVJ352dBgndvetpMTpy5y370/4NsPui/9F145y6X5JT728Tu56527+ea3nqK92sKGiiAMnK15EBBIQ5Zr2kmOUoowVCS5wWKJAoWUgnbi+kZKUeCW43GDUVfWWynH3HrHDhaXG3z7r57mb778fZaWGzx78CSXL6/wsY+/nd37tnD/AwdYWljBBgYVSISURIEk8MGGzU5GoBSRb9zNretNUEo663XjZLaBco6t1lp0psk6GaX+kLvu3s3lhVXu+8YPuO+bT3FpfolnXzzFxYuLfOzjd3L7nbv46r0/4ORSAyMFYRCA38ZRQpBpTSvJexwybclsThAoxyHVaGPWcfAeKrkm7WTU+yP27N1MmuX81V8+zFe+8n0uXFxAysMsLTX5+Cfv5OZ9WxgcrLF4eRkjnYeKENJvaTlL/lbHGe+5bRZDK3XybqVck7I21pu9dTmA1oY0ySiVYm65bTsyCvg//+o7fPWrj3H6zBxhEHBxbomPf/xOtt+0gZnpES7NLTrH2EB6DvI1HLpbf83ENcYGgSLNdS/NOgzW6mC0IU1SSuWY3Xs3E8QhX/zrR/j6N57g5IkLGAuXLq/wiU/cxa7dG5mcHGLx8graGMIgeGM+J4UXSoECBd6qeBPfTzf0BCXLjTdTvzrCKKTeV2VouI+jh8/wjXsf57HHXyLLNLOTg5w8t8Bf//UjnDk9zy37tzI00u/6IDopea791Ef0jLfCQJJr14NQjkOEgGY7A2HcQKktudZo0/U0tb2ti4GhPs6enueJx1/ike8dZLXRZnZyiIuXVvibLz/KmdNz7N27hb7+KiNjA3TaKUYblx3jr9iFFJQCNynItaEUuQF6tZW6AUwptHBX6N0MG4slCBXVWh/9A3XmLy7yB//xXh7+znOsNtpsmRnh7Nwy9379CU6dnOOee/bRP1BjZGyQVrtDrjVC+zpYEFIQ+Tpo7SYiYSBpNFM0hjBwmTxZvpZhY7GoQDE4XGdgsI/Ll5b54z+6n4e/8xwLC6vMTA6ysNTk3m88wdmz87zz7t3U+yqMjg+6lZze61nzio2jAO05RIEiihTNVuol3BIpreOQrXGQSjIwVKdWr9BuJXz+c/dx/7ee5uLcMhunh1hpdHjgwQOcPj3HB953K6VyzOjYIM1m23PIWT8hXs8hVJJqKWS54TgEgUDJgCzTpOs4CCnpH6jR11+j3Ur4yy88yDfvf4q5+WVmJgZZbXZ46OHnOHv2Eh/7yB3UamVGxwdpNdvkuZv8XQ/dfp0CBQoUeEviTXw/3dAy47teJ83YuZwqNBD45sbMK16qgWQ10yjpGk2VlGTCbdVYY5yKBbddkuN8L0oYVhNNWI655aYZwlDx1ItnaK826YsVmVS0M+fV0Q2pk9JZvOfWbUNYrcmM2woqK0FinPNoKARKSecjItY4gMt4ya2T2VYxLCc5Mo7Zf9MMfeWIp14+w8pSg1oosUrRzE1vu2U9B7cdBWhD5v1C+gJJIzcgXH5OoJzPiQSEcY2w+DpknkMFy2qaI6KQvdunGeor8+RLZ1haWKUeCkQUspJoAvFqDhKNuIJDrw7a9disr4MSr+WQ45xp+wLBaidDS8WendOMDVQ5cPg8l+aXqAUCEQQ0Xl0HIZDBGgdhjAs3tFDxAZA57jwFSpF3m3ytQXt1lsblISklqUvLapJjVMD2zeNsnhzkqUNnmbu4SEVBFEcspwaJUzv1OHTTqT2HTLs6VHwdtK9DIAW5lL6Zea2f6nr4p//s5/n4J+584x+mAgUKFPhbxMrKCgMDAz/+MmNrXCrsNW9HIoQbWDq5y8FRUpIZQyd3mTtKSowxpHlOEAaAXXtc0W1MlCgBnWZCri0jAzX23bKNUinixMUVTi6v0m5ror4aoZBI4xo0rTWABOE4djLjeiS8JDnJDVa6bQtjDFmWI5SiK/O4goNwSpXWSoPcWIaGy+zdv5XBvjKnFposL67SbqeU6xWiMASjwb8O2+PgUpclvrfEGDraYLCE0uUQtdMc5bet7DoOUkpCqQiUoN1skeWGoaE+bt6zmanxAU4vtlhcWKHZSqnHMVEkEMa6BtIeBzcXTrRGdC3zrZNtGyCUCmMNaZojA+XjBGwvyVcqx0FKQdJxmT3VwTI379nMhskh5lsZ83OLtDs55VpAFIWgzRoH4ZtGXsVBeQ4WN0HDWjqpa7iVSvpz4S3slSQMJSpQdJot0jSnNlRh564N7N0xzcVWxqX5ZdrtDkEYEkUBGAN6HQef/Ji+qg6pcSGToVJgLe00R4YBoRBgu4nGr3c9YQu7+wIFCrxl8Wa+n17fWOEtDNOTv17lxzqlhfB5NAafUCxcA2nek7a6JkeXZuyL5/NvsO6KN/RKlCTLEUIwOFhj1+5N7N67mdHRfqSUJFnuj1VIKaGXJGy91Ff0EopFt8HWrgXbuZ6VbtLuWgKwtdZn2fg+kzQDBAMDVXbdvJHde7cwPjbg+h68f0rgVSf0soJsT27rmn79a/d1wK8UdPtmpF9BseteQ4+DlM5ATgj6+6rsuGmWPfu3MDkxRBgoknTNR0Z5xcmrOYDP0+s28a4pfHu173LohQ76vyklCQJJmmushVq1xM6ds+zZt4WpqWHCMCDLvUmekigleu8Va1nHoRsIKXxC8zoOWNd8261DNw9pPQfl6tDlsG3bNHv2b2VmeoQ4Dsly7RORnQpJeLl0N9zySg70UqLtFeep+55krYflWu93/3PjrYcWKFCgwNVxQ09Q7HV+8Fvx1k80euqH3oCwrldn3X9bazHeE8P6CUt3oNXGUi5HjI/0M7NhnE1bJpkcH6Baid0AZy1Krg0+/qndoGHXDzTrUoDXvR43ebK9wDn3v24ADfxgmeaGcjlidLiPzVsmmZodY2pyiFqtjMFNBlxgn3tdV9SEK1uKu5OFKzmIXh1sr51hjYPA+cqUShEjw3U2b55k67Zpptdx0Nb5pXRNw7qvuTs4r73qtUni+ixisW6SZro17J0LlyKd5ZooDhkerLNx0wSzmyaYmR6hXis5pY0PdJRi/bPZ3sRzbRLfnaz5H3tlrbrnwa7jpvxPkmtiz2Hz5kkmZ8aYnRmhv15GSEmutT/2VefCn9/ee45up9OrzkWXQ/e9zOv/FChQoMCPC27oLR4p/RL8NWCFcCZnOEmou2J15mhSyt4KjAACKVz2Dm7IEsr5kARetaEtxJWYsbEBpiaG6K+X6eurMjU+xNjYAGmSEvgtAW0tRgks8goOUqxdzWPdc1rocVB+YAUvn5VdDm7rQUpBVIoYHR1gemKIkeE+hBBMjQ8yMT5Iq9H22yDeC0RLrHKj8RqHtTpgrX9tvg7C9e1YY9D4gdPXQSnZS+sN44hRX4d6vUwQBkxNDDIxNkBzpelcYZUktxbr74NfpUA7Yzsh3eqB7dbBr/YI4X9fz8FLfJU/F1JKgjhiZKSfqYlBhofqVCqlXh1Sn1fj6uA4GL9SpC1g3VbbGge7di78JCrw20ta29dyUBIlBSoMGBl1HMbH+omigKmJISYmhlhdaboGXiXIrcQaiTFyjYN2JnLdVGxrnbRd+HMBbivQGovuviul4PVkxnjPmQIFChR4K+LNfD/d0BOUvsE6YXhtTXW7nbC62kYaQ70SY4SgnWSEUlAphbTbKUluKJdCQgFLjQ5WSqrVEtVqiUolZueWSfbevJHhiSG0X52YHB2g3ldBKckH37OHrVsmyIwhkJKVS8u89MoZXjh0mpXVNu1OSmO1jc01fdUYpHTyVOESbjtJRifTlGLXa7DaStBApVamWokplSJ2bZti985ZxqZHSL1yZnygRqUcg4B33nUT05NDZF7p0l5p8tLLp3j+pVMsrbbodDJWV1qOQyUCpWglGQGWciUm6TgOURxQUZKVRoccqFRL9NVKlKKQbZsmuGXPJsYmhsiAKAwYGagyPFRHSsk73n4TY8N9tLOcQEk6Ky0OHT7DgRdPsrjUJEkzVlfbmDSnVg5RYUArzRDGUqtEZJmTL8dxSClc41CuxNRrZUpRyNZN4+y9aZbpTZMuYE9KBmolRob7UEpyx/4tVMsRmR/xs0aHl185zfMvn/bZRq4OeZpTL4UEUUAzyRDaUqs6Du00JwwDypGi2Upoa0OpUqLeVyIMA7ZuHGffzRuZnh0jxxKXIgbKMeOjAyil2L97I+Xw/T6LyZB3Mo4dPcszL5xg7tIyaZqzstoiT3JqpZAwCmglOWhDtRJhtKHRyQijgGocsNpISI0hLsf0DVRe18o+isMf4iesQIECBX50uKEnKI1G65ppxgBploN1fQBWCBfW5ntSUm180yzexMylBSfa0OmkTtbqew5Gh/u4Zd8WhsYHSdoJIte9DKCNG8aZ3DBOuVqiudLiwBMvc/jYeVqthNXVFlnmmiOjQCGEINO+j0EKMmN6W0jGuFWXMFDoXPc4aG8ZPzzUx637tzI8PkiaZIg0c70uAmamR5mYGKZcL7O61ODQCyc4cvScn6CtcQgD14Dr6gASl6HDeg7CEoUKk2mXnGstecnl0QwN1tm3bwtj0yNkaY7upJRip6KamhxiZKSfUq1EmmQ8/+QhTpy8SKedsrraTUTWhIFrOs6NQeCeN9drKwbG28n3OCQZWMjjHGMM/f01dm2fZmrTBHmWodspURxirWV8bIB6f5Vqf5WknfLKC8cch05Ko9EizTRaa0K/0pV1VzGUk01b3CqGsS5eIAiclX2aZDS8ZFxr7Uz1ds0ytWHc+e20EuJSBAJGRvvpq5cp1SokScqRF09y4dwlkk7K6qqXCueegz8X7rX7fiDva2OtJdeuDjqzZGlGo9F63QazLLu27L5AgQIFbiTc0BOUpNkhV9dW8SglqZVClFI0UzdZKfv8lEYnoxwo4lDSyTSpNtTLEVFu6KQZnUYbnWQ898IJVhodTpxf4EMfuYOZ6RGMtiRe+hrEIeVAcWlhhW/c+wMOPHOEkycvsjC/TJJmKCmoxSEqULQzjTaacujC+VY6GSWfltzJnfy4EofOCC7J3OvrpDz/4gmWG20On5rj7/z0u5idHsEEitQ4BU4QBZSVYmFhlW99+2meefIVjh0/z6W5JTqdFKUk1TgkDBQtP0iXwwADrCQZsZTEYUCS56xqQ80f20kzOs0OWTvlpUOn6SQZR89c4iMffRtbt06iVInUWox2qc2lOKTVSvjGN57gyR8c4uTJC8xdXKTTTpBKUgkDwjAgyTVprimHCoRgJc2IpKQUBXQyzWqS9zgkaU7S6pB1Eg69coZ2O+X42ct87BNvZ8f2GVTN5QJpIAgU1VJEo9nmoQef5fHHXuLY0XNcOH+ZVitBCkEl8hy0IclyKqGbOK4kGaHyic1a00hzqlFALVAkaUbaSkhFwuEj50hTzZFT83z0E29n7+5NyFqZzDoPnFBKNzlJMx78znM89shBTpy4wLlzl2k32kgpqEQhYRiQakOS5JT9pK2R5C74MApIc81KklEvRdQCRZrmpK3XTzPWb0CKXKBAgQI3At70BOU73/kOv/Vbv8VTTz3F+fPn+eIXv8inP/3p3u3/4B/8A/7wD//wivvceeedPPbYY73fkyTh137t1/izP/sz2u02H/jAB/jd3/1dZmZm3hSXuBQRBNexzRXeOyPNCb0cIvMTi2oUYHJDZn1arrF0khwhBUEUeMkxXLq0zOVLy7zyymnaacbf/el3M9hfJYgC1ztgLAsLq3z96z/gL77wIMuLDdfnoiQlf1Xd5aAEqED1fD0qocIYS6ZdLwhAmjoOKgpQfiy6fHmFhUsrvPTiSdppyj/4+x+mv15BRYFr6jSW5WaTBx46wJ98/lssLTjnUaEUJb8NZCx0uhy8+yoWqmGA0YZMu0Rh5TkgQIUByr9DlpYaHHjmCC+9dIrLiyv88n/zSQb6qwRR6PJphGB1pcXD332eP/zD+1heaHgOssfBWpzKR0AcKrRvQqkECmssqfelUYgeBxkqSn61anm5yfOLxzly+CyLy6v833/xo4yPDRCX415Px8pyk8efOMQff/5+zp+9jNb6inOxnkNpPYdQ+YBBl50TK0GWacchUMTKcWistnnh+eO8cug05y5c5n/4Hz7DUH+NqBTSzV1sNTs8+8Jxfv8/3sulC4vO9O/VdfArHb065JZyIHt1EFJQDhSZ5yoCSayu7fnThXoDiccFChQocCPgTX+bNZtN9u/fz7/5N//mmsd89KMf5fz5872fe++994rbP/vZz/LFL36RL3zhCzzyyCM0Gg0++clPovWbu/qTgbruD1KSG+e6qoRrQtXGJcZGSiJwS/mya4qltRu4hUAGyjWaGkOnnXD58gpnz112Wy8+HyZQLriv3Uo4d36BS/NLtJsdtNbOmMxz0P7qWq3bSsFaIiWRsMZBCLQ2V3CQvlGy005YWlzl9JlLNBodl80iJaFy/iVZmnP+/AJzc4u0Gh10bnocRI+D8a9V9mSzPQ7aSbJD2eVgses5WM9hYZUzZy/RbifoXLvm2cAF46VpzsW5ReYuLjrn0yy/OgfwHFzDVKgk0m/BCcGVHFjjgIU0SVleanDm7CVWG21M7l5TGCikhTTJuDi3yMWLizQbbmtJXMEBMm2Qdi312BhXByXoObWGygUk5t4fRQYSGSgs1nFYbnD6zDzLy02XMSQEUeD8S/I8Z25+ifPnLtNstJ2/zToOBshzg7CukbercHI2+qLHIfLvv9w3b3c5XO+n8EApUKDAjwve9ArKxz72MT72sY9d95g4jpmYmLjqbcvLy/z+7/8+n//85/ngBz8IwB//8R8zOzvLt771LT7ykY+8YS6vZ9TWVUkY69QasOZHoo0fePwVrbZeFdSVuBrTk9oKKalUYmamhhkZ7ScqxbRaCRZLOY4YGetnZnqEarXMSt7srayA6bmHdicq0rhUWyx+AO76Xjh32a5apMuh6wsipCQKA2anRxgfHyQsRW6SYCzlOGRwqM7szAj1eoWlbNVJYz0HehzW1DvCm464OoBbwFnjIKX3APEcrHF1iKKAqclhxsYGKZUiOu0ErQ2lOGR4uI/ZmVHq9QorS42eQkm+ikNXLdP1+9DeH0T627S1PQ69Ovj7IARRFDA5McT4+CCVetlFE3gOg8N9zEyP0N9fpdVoO/2LsVhvlqe8EYrxzyu8ljc3TtLcbUJ1tzk5sfNJ84Jj4ziEUcjkxBCTk8OUayW3FZXlVOKI/oE6szOjDA7WueQzmtZzkALs+tfq5xTac+hOMnL/XEo49c4bM2orUKBAgR8P/GfpQXnooYcYGxtjYGCAe+65h//5f/6fGRsbA+Cpp54iyzI+/OEP946fmppiz549PProo29qggJc+/tarPmdWG8m0R2MrHWW74kf8HqeG6w3SnODirYWKyUDQ33cvHOWOAo5cvQc933tMTqdlA9/7E5279nEru3TDA33sdxoe+M3i7Ki57diX+U54j1myfGyZtb8NnocuryMxUhJpVbmlj2bnIPtqTm+/pVHaTRavO+Db2Pf/i3ctGOGqckhllZaaOOycLoDrOMgruDQrUNmu24g7kmvxkFbi5GCWl+F/bs3EoYBp07Pc/83Hmd+bpH3ffAObrt9Bzu3TTE5OcTKahvTnUBK1ZuoaeEzfWz36dxESHtm4tUcurS6ZmRCEFdK7LlploH+GnPzK3z1S48wd3GBd7xrH3fdfTObN4wzMzPChYtLaK3dJMknQyOEr4PtPW/3XJh156J3jrqGcevrIASlUsQtezbRV69w8eIS377/SY4fOcs73r2Pu+7ezZZN42zdNM6ly6voLL+SwzrjnbU6eA7WrjtPa34pQqx5ohQoUKDATwJ+6BOUj33sY/yX/+V/ycaNGzl+/Dj/0//0P/H+97+fp556ijiOuXDhAlEUMTg4eMX9xsfHuXDhwlUfM0kSkiTp/b6ysgJAnmT+kvi1EEAYKkpRSKoUnU5GYCxh5Jo0W0mOltI1zWY5iTZUyjGhAO2vhi2uD6NUr7Jx8yT95ZAfPHGIbzzwLN/4Px8m6SScX27zyY/ewWS9xOatU1xqJnRWW5g0w5ITBopSHJIGAZ1OSmA0URTQ0YZWkoFSlDyHzFiiOKQkBXmWk2a5u6oPA0q1CjMbRpkarvP4D17mwe+9yJf+7Ftk7Q6n5ht8YqnBptE623fMcHaxSXOpgU5TbO5cXUtRSB4IWp0UZXKiMCDB2alnCMpRgMk17UxTKsfEUmCynCTN3ECtFKX+Ghs2TzI92s/TT7/CQ99/ia/+5UMszS9x4uIKCystds2OcNPOWc4ttWgtN9FJis01gZLEcYgKQtpJhs5y4iggs9BKc4xvYNW5ppNr4lJErKTnkPu+HkWlXmV8ZoQNE4McfOE4jzx5mC/84TdZvbTISyfnWemkbJscZNvWKY6cXWRlcQWTpOSJ4xCt55A6DlbipL7Src6gNe1UE0Yh5VBh13OQkspAnYmJQXZuGufZA0f43lNH+OKfP8j8yXO8dHKehUaHW7ZPsvvmjRw6s8Dq0iqmnbhtPiWJo5AgdBzyLHeNuUAn843SpRCrDa0kJ/J1QGs6Sfa6TbLGq7IKFChQ4C2JN/H99EOfoPzsz/5s77/37NnDHXfcwcaNG/na177GT//0T1/zfra37fBa/MZv/Aa//uu//pq/G23QXGOLR4DQAunW7fHu873nCZXE9vw7XX+KcyB1PSDaGKRUVCslBobqlMsx33/0RR59+givnJwnCCRhtcxDDx3g9NGzvOeObc5VdLiPZWtpLuXoXCON7ymQyj2HNT3LdKFkb6kf/BaItzzPtUFrt8JTqcT0D9YZGKjxgx+8zIOPHeKVk3MIoL9e4fuPHuTUsXPc87btSCkZHu5DakNjMUfnOUILlDFY1eXQvTIXhL4XxJ+E3qqFsbZXB4SkXI7pH6rT31/hueeO8d0nXuGVk/PYNGd4qM4PfvAy58/Mcc8d2wnDkOGhPgJrWV3I0JlGCOG2tJTfRjHeUdcbs2nx2joY45KCtXZhhqVSRN9QjYGBKi+/fIonnj3OC0cvkHRShgbrPP/sUS7PLXL3LVuIKiWGh+sInbO6kJOnmTvP2mAD6Q3puhwEgRK9lQtsd/XGc1jXB1KqRPQP1hge7uPYsfN87y++w4vHL9BaajA+NsDBgyeYn1vi7v2bGB13ZnrKGlaynCx1BnLu/SDXIhiwa3Jz/KKg7brsum056+vwehMUu2b/W6BAgQJvPbyJ76f/pDRjIcRrVDxXw/bt2/mH//Af8k/+yT/hgQce4AMf+AALCwtXrKLs37+fT3/601ediFxtBWV2dpZ33PXL11fxeFWGQVAtBWSpWymZmhxmx8ZRXjl1iXNnLxEFklIcstJOkUAYSD9Z8v0SCOJQUg4ky62UTpIzUAkRQrDQTIlDxWA1pqMt7cxJRYUnYC2++Rb6yhFZltNOcyYmh9i+YYwzF5c4ceoikRTEcUgjyRG+YVLI9RzcSkhfrFhsJLSTnHopoBQqLjUSAiUZqMZoBM0kR/Y2bdx+SaY12kCtHKFzx2F4ZIC92yY5eWGJk6fnkNZSKUU00gzrG0evxqEeKZabCa00px47DvOrCUEgGaw6Q7zVTuZCCddxyH3jayUOwRpanYyh4T5u2jrJpaUmh4+eczLbUsRqkjkPG+8Xsv5cSCkYKAWstlManYxqFFCJFJcbCVJK+qsRCCfbFX4rp7sXmOcuRblWisAYmp2M+kCNvTumWVxpcfjYeWyuqZQi2rlG54YwkOsM0oRLhZaSgXLISjOhmWTEgWKwGnFxpYMQ0F+JCIKA5Xb2Gg5aGzJtKccBEmh1Uqp9VfZun2allXDoyFlMrqmVI1qZJs+Na2a+xmrhevzTf/rzfOzjb3/d4woUKFDgR4G3VJrx5cuXOX36NJOTkwDcfvvthGHI/fffz2c+8xkAzp8/zwsvvMBv/uZvXvUx4jgmjl87ERFc3/rbWOMUFkoilCLTKVYbNm2e4O5378V8/0XOnp4jzQyVahlhU6zRWCmutNC3hk5Hkws3KYtCRZJ7pUXoQvFW2wm5S5jzluSOobUGkzsZrgwUWTshT3M2bBjn7nv2ceC5Y5w4ccE5xFZKSHK09hzWi6ysMwxbTjPfKKpItcVYZxoXSEGzk6KN6zVZz8FgsN305kDR7qToXDM9Ncw77tlP+fnjnDkzT5JmVKollBBkee5UPPIaHKSrQ2YsOs0JfR1anZTcuJ4bIeUVHIzWgKttmmiyLGdiYoh3vHsvJ07OcfToOdIs73HIs9z17sigd5aFNeSZZTnPXR3CgNxYmj6FWUnnFux7e925750L6zhYt3XXaXXIspzR4T7e8Z59nD49z8nT86y2EkqV2CVf6wwrQUj3UbGAsJY8y1lax8FYy2onc+nIUtBJNaaT9Wp4JQcDxiKV39pLc4YH67z9nbu5vNDgxKmLLLcSzDoORoBSr/9xbZ48zeLTpdc9rkCBAgV+FFhpNN7wsW96gtJoNDhy5Ejv9+PHj3PgwAGGhoYYGhriX/yLf8HP/MzPMDk5yYkTJ/jn//yfMzIywk/91E8B0N/fzy/90i/xq7/6qwwPDzM0NMSv/dqvsXfv3p6q542i6zp6zdu9nLfrUKq9TfymTRPsu2075+eW+P4jL9BJUoyAQAly7Rsypc/HCSRKSDLvahrFzp486aQY46zirTYknYwgCogiBdZdJVvjVR9dd1Dvw6KUYNPGMfbftp1mK+Hh+BlarRTjPVlM5jkIn4+jXIpwrg1t71oaRQGddkqWW0rlCGEtnU7uehziwKl/tHHbAz5NuMchd46uM7Oj7Lt1O60k59HvPk+7nZAbd1zu6yv8VoPscsg1nU5GHIeujyXJSHNNqRojLCTtFOH7TcRVOCi15kejpGBqapi9t2ynVC1T+cYPWEwytHXnQuPVL13ZtecgjaXTSoiigChyHLJEE1diJJB0UoSUxKUQAZh8jQPWtS1JKUm9RHliYpD9t26nWqvw8EMHWFlukmvj8o/8+8h4Dt1zoY2l00yIYmf8lmY5zXZGqRK5IMFOhsVS8py0dk3L+PeEFE4tlWmDlJKxsX727NvGpcvLfPv+p1habDh/nEA61c86DtfDqT//Es/8ZfNNfY4KFChQ4G8LzTx7w8e+6QnKk08+yfve977e77/yK78CwC/8wi/w7/7dv+P555/nj/7oj1haWmJycpL3ve99/Pmf/zn1er13n9/+7d8mCAI+85nP9IzaPve5z6G8GdYbhTH0gtVeje7XuFQu6C5Lc6SSDAzU2LhxjKnJYTZtHGdwsMbF+WWy1DW0Wt9k2A2ukxaUV190u13Wx6FIsaYEEb5vwVrTG5Ctn2AE3sJeCEG9r8qGDWNs2TzJuTPzDA7WSdMlskwT+GC+buhbV90hnUJ3TS4NXprj+ka6kmi6slg/eXNBhG5wDwJJnjuDsL6+KhtmR5mcGGLzlgmGh/tYbXRIkoxyHKC8p4aTx4Ls9acIn868Jo/tKm6wTiYbCHqcehMD3LaIUsqtEFlLrVZhdmaEDbOjZGnK0HAfjWZClmaEgfQcvKIKi7T+tXT/Zl0dhN/+kcKpYrp/98rpnhJK4PpfpPcX0dpQq5WZnh5hy+YJdJYzOjrA5curpGlOWIlR3iSu+5qttMguB9b6aLpKsG4PTzeJuqcAMlfhoN0KX61WYnpqmOmpIfr6K4yO9TM3v0SSZMS1EkGg1hKNX2dHtrO0QKs9f91jChQoUOBHhbZ5435nb3qC8t73vve6X5L33Xff6z5GqVTid37nd/id3/mdN/v0V8B6s7Gr3oYbCMIgIAgUrZUW1WqJ8YkhJsaHiMKAiYlBJiaHWG10aLcS+uqlnmmW9m6vxhiEkD43RrpBqjsQ+cRbrDNNcz2wBqMtxho3UHpX2CBQdJKUKAwY86m7SgqGhupMTg7TaHRoNNvEtTJhFLoB1F/xG2PcUGd9wq0f+JXoeqp4TlKsu9p2V9zW+5qEnkO77TiMTwwyNTlMGCrGRweYnBpmYbHB/KVlquWIMAp6TapY0MIitO1l13S9PVyukK+L6XJwacTG8+hyC8KAwNv4B0q6ZOipYSrliJHhfqamRlhaarK03CSOylfl0NXldh1Tu34qjgM9Dt1zs56D6HLwDq0CGB0bYHpqGCUl9XqZqalhLlxY5MKFBSjHRFGAXnc+hbGIV3GwXc8U5Tqx3UJHdzLn6tI1xhM+BTkIFFnu4hdGxwaYmhqhXI6I4pDp6RHOnVvg/PnLUCsRRqFfgTGv219W9McWKFDgxwX/SU2yPyqsrKzQ39/P+9/731+zSVZKwdT0CLfdvoONG8dZWW5gjGVmdox9+zbTVyvTbKc89/wxTh6/gJSSgcEap0/Pc+DAEY4fO++2M5KMLM8JpAsTzLRBW0skXSNt4h1iQx8+57ZwJOXY5a1MTQ2z/5ZtbN4ySdpJaTU7TE6PcMstWxkaqNFodnj+4AlOn7yItTAwWOPs2UsceOaI601Jc9qdlCx3z1MKAzKvNIp8f0WqXY9LpNw2UOpt68uliEApxicGue32HWzZMknSSWk2O8xuGGf3nk0M9VfJtOH5549z8sQFOu2E0fFBLs4tceDpwxx+5QxZrukkac+KPvYherkxhFK6LQ3jnFGjwLn3prlz0y3HEVGoGBkdYN/+rezYOYvOchqrbcYmBtm/fwvjowOkueaFgyc4duQcaZoxMtrPxYtLPP/cMQ4dOk2SZHSSjDTLkQJKYYA2lmw9B293H/otvSTXSCFcWnUQMDRc55Zbt7N9xwyBlMzPLzE5PcLumzcyPTlMkmYcOnyG40fPs7raYnR8kMXFVQ48c4RXXj5NJ0npdDKSq3AIpCQQgtQb/EXKuet2co0Q+DoEDAzU2HfLVnbt2oAQgqWFVcYnh7j55o1MTgyhlOSFgyc5evQsS4sNpqZHWFhc5eALJ3j+uWOkyfWXR98//xK7Vs//8D90BQoUKPBDQMtofu7EgbdGk+x/TjRaCUFw9fmV9Jbik1PD3HHHDoaH+8hzjfRuqHmm6eurcNedu3jbHTtRSrK4uIqxlueeP0az2XHqmzR39vDlABEE2Dxx2TNh4BpfsxwjLMQhAZCnGVmWY7UhCJ2Pydj4ILfespXJyeEehzBQGGOo91W4885d3H7bdoJAsbrS4vEnDvHc88dpthLSxD2ewAUTEgaYdgehHQeEQObOjMxGIYEQZGlOmmXOqE1Jho1ldGyQ/fu3Mjk55LZcpGvuzLKcShxz2+3b2b9/C0GgaDQ6HDhwhOc9hyzLPQdLUIoQYYBpp45DoEBJZEe7VQIZEEhXhzwztIwlzRT92jA03Mct+7cwPT3ienSAUuxWB+I45LZbt7Nn92aCQNJuJTz9zBEOHTpNq504t1gf+BjEITIMyToJaNOLFJC6W4cABcg0I9eGljGoIKfWV2FoqI/dN29k8+YJv4Xm6mCNoVyO2bdvC7tu2tBbbTr44gleevEUrU5Kq9XpcVBxiIxCsnaC8I3YBAqZaCdJDgOUUsgsJ8+0r0NOuVqif6DG7t2b2Lhx3EmNrSWOQ/JcowLFnj2b2LFzxvUCZZrnD57g+LELtDsp7XZy1fd7F3muC7PZAgUKvHXxJr6fbugVlFtv/SXUNQLUhBCUyxGz0yPs3b2Jj37yLnbv2YTO3JW9CgOs1mRpTlSKOXbiAn/1p9/m5UNnOHX2kou2RxAHLmU3s7Cc5FSUoBwqllM3IA/GzvitkRn64pBYOsOtTq6xFsrliKmJIXbtnOUTn34n+/Zudhk2UqCiEONVHFE55sjRc3zza4/x9IEjnDpziUajjbVQCiRxqDBCcLmdUVWSSqRYzTSptgzFAbk2rOaaShhQUYIk13QyjTaWUiliemqYndum+MSn38Vtt23H+twjGQZYbciTjKgccer0PF/54iM8//xxjp+8yPJKC8DVIVRoBEtJTlkKyqGkmRs6uWG4HDoOqaYcBVQDQZo54zdtLaUoZHx8kJt3zvKBD9/OXe/Y3bOxD0sRWEun2aFULTN3aZm//vMHOXDgKCdPz7O03MRaQ6QU5UiBkFzuZMQSaqGiqS3t3DAUBxhjWM00caCohYo003SynNy4ScDE2ADbtkzywY++jXe/e5/rVTKGoBRhtSHtpMTlmPMXF7j/60/wxBMvc+T4BcfBr1qVIjc5vdzJiQVUI0VHW1ZTzXA5AGNZzTRKKfojRZZr2qnjEEUBoyP97Nw+zfs/eDvvvmc/caRcoGUpAgtJq0NUilhptPniXz7M008f5vjJi1xaWHUKoOvgU83j3JIUPSgFChR4a6JlNH/vJ2EFJQoCguDaLyHPck6cvMjFi4scPz3PP/5//h22bZtGBYosN95rRHL48Bn+t9/5IodfPk27nWCse2zf0UjqVTmRb3zMLChrr7CJj4Qz4EqEBCkJA5z3R6Y5fXqeS5eWOX3+Mv/wH36CfXs3o4Kg544qA8uRo2f5/d//Os8dOEqz0fbhccpzEGQIjLbEuKbMzLoG3hBL5ptxI9yAn0iFlZIggMCC1YYzp+eZn1/i8PEL/L9/5e+yd/cmojgkzbXz2AgUFy4s8O9+98sceOYw7VaCNsYF4HUVJzgju8gbi2W4lpBIdOvg/tsaQ2Ich7DLwVgunL/M4sIKJ07PobXlzrt2US65FRQpBEEUcvbsPJ/73Df5/qMv0Fhto407TwjnRZLh+lsiLBLpOVgiLLlvKg6d0xyJsVjfd6K8gubChUUWFlY5cuICeW5497v2UCpF7lwI1y906fIyn/+j+/nud56jsdom15pQSm/4J8h9Lk6ERQpJ5qf4MZa8a/wmBMIYEuOUUz0OFubnl1hebnD0xAWSNOMD77+VUjkiz51yKIgCFpcafP6Pv8X99z3hVvPyNQ7XQ9czpkCBAgXemnjj3083dja7uPaPEBAohVKKViflheePcebMJRfYJyXkuTNjE4Kzp+d59ukjtJMMqRRBINcFuBnS3K02xF5llGlDKAWRdH0nxlpnR47rB8l8uF1PIhwokiznpYMnOHnivE/tFW6LRDjPkLkLi7zw7DFWVluOg1JXhMiluVuxKYdXcigp1/OhvbGaFMJx0GscpOeQ5ZqXDp7g6CtnfEidAO/yagVcvrTC008eYmW1hZBOefRaDhB7ZUuuLUGXgzY9DmodB9vjIFBBQJprjhw+y5EjZ0izHCEleK5SSS7NL3Pg6VdYXrk2B20spUAhBaTaNQuXlJP+amMJpXNl7fYEWWuhx0GhreXokXO8/OJJUp92LHz/ihCC1dU2zz5zhPlLyyCE4yCdVEdbxyFfxyE3zoitHCiMcS7AobyyL8l61ZOUgiBwvSvHj13g4PPHSTO37We1dhykZGW5yTNPvsLlhdXXcLju+55uplPxr/hX/Cv+vTX/vVHc0Cso7jv5GrMxv6LRlQtPTA4zMztKuRSRZ5pGK6GulEvnnR5hanqEc+cvk/nGSiHWQva6BlvOotw5mercIjBIpcC4FRbUmpqk+2M8BykFo2ODzMyOUa3E5FrTbHYolSLiOGRyapjJ6RFWG22yLEMKeSUHL/nNtOkl/Xa9VmTgJkdaG5BeXWJ7+lyscQ6uQgpGRgfYsHGcSjlGa0OjlSADl5Q8MTnE7MZxDr18mizLe0ol//Rea+1VNV6t4wIBLTKUa3W4KgdLbnKEgMGhOhs3TlCvlTHG0mwnxHFIqRQxNj7I7IZx5i+vuL4XsWY7706FG4Kz3NVBrecQuKZhY9YmPFfjIKWgf6DGps0T9NUrWOv7mUJFuRQzMtLP7IZxTp+ZX8dBXpNDV1KdG4NSgSuTdj76UqmeHBwvE879Y/b3Vx2HPleHVjvBWLclNzLaz6Ytkxw7fr7XgyS9muz1PhWvf0yBAgUK/GjwZr6fbuwJSm8CcXXo7lV9KWTH9hmmp0dotxMee+wlnnjsJW65fQfvetcepqeH2blzhgsXF8gy07tiBbd9YwXO+RPn0uq8SZzkVrPmuWHsWgKu8FftxmfqqCBk06YJ5/mRa8fh+y+yY9cG3vveWxge6mPn9mmOHz9P2shBOjWQ8/gQvTmPshYrnMxXdJ8X98uVHLwiV4DWblIRqIBNmyfYunWKNM155sARvvPAM+zYtZH33LOPoaE+9u7ZzLFj5+m0EyyCQL6Wg8SCkM4tdt1rX+Ng1zj0zoXnECpmZkbZssU5Cz9z4AjfffAAk9MjfORjb2dosM7NN2/khRdPkCaZe/zApSFbv9LjfE7cE17BgetzMMa7uArlwv52zmKs5eWXT3H/N55gfGKI93/wNoYG6+zZs4lnnzvK8nITYSwycAP/VTn4cxF0OXj/E2vBrOO3noMMJBMTg+zatQFr4dArp/n2fU/SN1Djox9/G2Ojg+zft4VHv3+QxmrbTXYCcc28qvW44ZrKChQo8BODN/P9dINPUK79hd29Us2ynL7+CnfceROLiw0ef+xFvvTlRzl86AyPPfUK8/OLvOtde7n7XXv53qMHWV1uEihFECjn6REorBCkJiVJc+JKhFTOy8P6BlRyTaedo+KQOAwQ1jr3UmPIM02aZpTKEbfevgNj4b6v/4A/+8JDHD58honJIRYur3D3O/ew/7btPPL9gyxeXiFQElWOXT9D6DhkaU4nzd3WQqBIEqcWcq6tliTLEIEkDkIkApNrrDXoXJMmKVEUcOddN2OBb3z9B/zNV77PcweOMj51kAvnL3PPe2/hHe/cw4MPHWBlqYEUgjAoOf+QQIEUpGlGmubEZYVUijTNMbkmikMklqSTgZSUyqrHwU3SNGk7JYqq7N67magU8cC3n+Yv/+o7HDhwlL7+KguLq7zvvbdwy+07+Pp9T7Awv+wGfm8aFwSuByPLNUmSEJcjgkCRZBqT5URR4OTGSYYVklJJudUNr3LSuSHpJMTlmL37tjI00s/DDx7gS19+lMcfe4n+/ioXLizw/g/cxr5btvKtB57m0tySdyNWfnvmGhySDJPmhHFIIAVpkrnm4LJzlnUcnDFb0kkolWN27d7E8OgA33n4Wb76tcd59NGDxKWIi3OLfOhDt7P/1u2MjvSzdHkFow1hteyzka73oSg6UAoUKPDWxZv5frqhJyhZrrHkV7/RggoUlWqJ8fFBkk7G5//omzzwwDOsNNqMjfRz4vh5fu/ff5VXDp3h1tt3MDY2iNXGSVp9b0LoLdalkN78y105SyEw0q1SGN8YKaVbazDGkPsBSSpJX1+V0dEBsJa/+PMHue++J5mbX2JsdIDz5y7zH/7D1zj08mn237qNsdFBGstN2u20Z48uvPOolGvmX9I/Zy9zp9tn4XNfrDHk2nEQ0rnXjowNEMchf/anD/D1ex9n7vIyE6ODzF1c5A//8D5efPEkH/rwHYxPDNJqtHtSa+GXAZRQPmnYmcVJbG+SKHzNAZQSztG1Wwfv01KrVxgbGyBQiq9++VHuvfdxzpy9xOhIPysrLf7wc/dx6OXTvPd9tzA62s/qUoNWK1mziRcuddptPcmeSV6Pg+galQmkcpysdhy0v3+tVmFgqE5/f5WvfeX7fOmLj3Di1EXGRgdpNjt84QsP8tJLp/jYx+9kbHSAC8N9NFZbbrvQC95U+CoOOLM4upk7vmlZCmeVb30astYaC1SrZQaH+6jXynzr/qf40hcf4dTpOYYG67STjL/48wc59PIpfuqn3834+CALl1Z6HLS9voqn69pboECBAjc6bmiZ8Z1v+28IgmvIjHGDtYoCZBhQlpJms03Lm43VlWTFD3yVUFGrlWlqg800OnOBfQBaCLQQhEDFWjpAIgR167Z8loUgtJYK0BaCFGcLr6xb/FdSosIAQkUlUHRaHZpJjpCCmpS0jCEzlkqgqFZLdKzFeA5GGyy2xyEA6tbS8hyqWCILS0KgPIdUCDqv4iClJAgDxDoOjSQHKeiXkoZ1vS0lJemrl+lYi/arEjp3g6oRgtxzqPo6pEJQASJrWRICaS1VIBOCFl7ptI6DChUyDCgpRdZJWe2kIAQ1JUmsJfEc6rUSHcD0OLg6dDlIoM9aEl/zMlCylmW/tVbx562Fjyqwdo1DoBBhQDlU6E7KStvlMNWVIrWWjjZEUtBfK5MK4SZYad6z5zf+XIh1HDpCEAM1a1n0W4AV74HfwE1igy4H4STuMgycdDzJWGknGKBPKZJrceiei9f5uH5s+Sh723P/lz5XBQoUKPCfGy2j+bmTPwEyY+mvpq8Fay1pmqPTnMyuhd6Bb2IU7kpba8PycotEgMINaNIPNG9kz3/dpXvvPq5Hxa12pFlOnuXkflIjvVW8C39zDaXGGFZXWyRC9Dh0G3S7HF4zNK3/Q68R07o043Uc8Bx0lpPhc3WUM7JbH4JnrWV1xXGQPQ5i7fG7r4+uWoQrXjfd3hs/OCPcipL0HPJMuy0v3MRFeQ7WGJf66zk0Vtt0enVYa1TmmnVY9xdfB+vr4LY8fCaOteS5Js81WdtNGq44F/7cCAuNRpvET0QC/95xaidx1T3Ubi2s5+jaltzvUvj3hL9jl0PShtCryrocrOg291qaDVcH0a0Dr/9+7DUzFyhQoMBbEW/i++nGlhkXKFCgQIECBX4sUUxQChQoUKBAgQJvORQTlAIFChQoUKDAWw7FBKVAgQIFChQo8JZDMUEpUKBAgQIFCrzlcEOreMb6YsIgvu4xBuf2GuFUEJn/ewWo+f/uFiHFqXi6szbr75sDIVAGEn9czT9e2d+/DE566x8jYJ2DqX+c0D92l0PJP57xt12PQ9extg60/XEVf7+Sv63i/955gxwsUPWPZ/zx0nOS/jG6HIyvg/L3SfxPl0Psb6v4x25fhYP1jxH423L/uGXPW79BDsLXoftaS/75u3Uo++O6HF5dzy6HwHPVnnfuf+9ySP1zdTnA2vvh1Rwi3HuiK3ov++eq+cfqPmaXQ/d8hv45u3XI/E/onzfx93mjH9SByhg1U3qDRxcoUKDA3y5EnsGJZ97QsTf0BOW//398klq1es3bncjVenM1YE0NjBKC3BrAyUDxFvFCrN0PuhEqTmYaCInGYowLyRMIMuOSeJUUaGN7qbg9dS4+ludVHKznYHwC7xoHf/9rcZASbR0HJQXScxBC9B7vzXAIhECv50DXeO7KOvS4eQ7GumA+5bNoMm/GFgiBwd12LQ5dJWz3dyXcc17J4bV16HLAQihl73mUN8nLjTufSrj7vB4HKdw5dxycJNxwZR0AL2X3LNbXQXgO1kmpAyl8UKTjANZlIL2Gg3uuq9XBXvE+xJvD+byfN2ASPV4vUS/d0B/rAgUK/BhjpdGAe776ho69ob/Jbv/Ana9r9HLF1/o6v5IrjvGD09ohYt1t3lsEQEh//64bCGv/3Xts6x9vbUQSsGawtY7D+ue9Cql1hh/Wv471+vGrcFj3mvH5OVe+dNs74qqJCOu5+Wdd/3y9e/njruRke5k9Xb5dJl1ub/ZcrP3e/W83ObHYq5wLgR/arzwX163DNStxlbq8ug5rNb96Hejd9po6vIFzccV7klefi+vhjR9ZoECBAn/bCFZW3vCxRQ/KjYBixClQoECBAj9hKCYoNwJef2W/QIECBQoU+LFCMUEpUKBAgQIFCrzlUExQbgQUWzwFChQoUOAnDMUE5UZAscVToECBAgV+wlBMUG4EFCsoBQoUKFDgJwzFBOVGQLGCUqBAgQIFfsJQTFBuBBQrKAUKFChQ4CcMxQTlRkCxglKgQIECBX7C8KYmKL/xG7/B2972Nur1OmNjY3z605/m0KFDVxxjreVf/It/wdTUFOVymfe+970cPHjwimOSJOEf/+N/zMjICNVqlU996lOcOXPmP/3VFChQoECBAgV+LPCmJigPP/ww/91/99/x2GOPcf/995PnOR/+8IdpNpv///buPyiK+/4f+HP5dQGEC6hwnFJKG5rUojaF1GgdNf7AOiE2Taeapk104nRCIlQ+6sRqZ776x7dg0qlOOmno1OaD1fygfygNnRgjjkrqOCYGZQTtGDOSBBOuNCnegZJD4fX54/aW27vb4w4M7HHPx+TO293X7b72dYR93ftuFy3m+eefx65du/Diiy/izJkzsNlsWLZsGXp6erSYyspK1NfXo66uDidPnkRvby9KS0sxMDBw+/ZsIuFHPEREFGMUMfxjMMP7z3/+g6ysLDQ1NWHBggUQEdjtdlRWVmLLli0APKMl2dnZeO655/DUU0/B6XRi6tSp2L9/P1avXg0A+Oyzz5Cbm4tDhw5h+fLlw27X5XLBarXi2jUn/xZPwGP+LR7+LR4iInNyuVyw3nknnM7hj9+j+g6K0+kEAGRmZgIA2tvb4XA4UFJSosVYLBYsXLgQp06dAgA0Nzfj5s2buhi73Y7CwkItxp/b7YbL5dLdYgqPOEREFGNG3KCICDZu3Ij58+ejsLAQAOBwOAAA2dnZutjs7GxtmcPhQFJSEjIyMgxj/FVXV8NqtWq33NzckaYdnfglWSIiijEjblDKy8tx/vx5vP766wHLFEX/ll9EAub5CxWzdetWOJ1O7dbR0THStKMTR1CIiCjGjKhBqaioQENDA44fP47p06dr8202GwAEjIR0dXVpoyo2mw39/f3o7u42jPFnsViQnp6uu8UUjqAQEVGMiahBERGUl5fj4MGDOHbsGPLz83XL8/PzYbPZ0NjYqM3r7+9HU1MT5s2bBwAoKipCYmKiLqazsxNtbW1aDBEREcW2hEiC169fj9deew1vvPEG0tLStJESq9WK5ORkKIqCyspKVFVVoaCgAAUFBaiqqkJKSgoee+wxLXbdunXYtGkTJk+ejMzMTGzevBkzZ87E0qVLI0p+oK8PA4mJYUTqz3IZmjaaH+z58FlmdAaNf1ys5WC0LFQetyMH77TR41DbN8on0hxC1cEoj2A5RVJHIqLocqvvy7BjI2pQampqAACLFi3Sza+trcXatWsBAM8++yz6+vrwzDPPoLu7G3PmzMGRI0eQlpamxe/evRsJCQlYtWoV+vr6sGTJEuzduxfx8fGRpINzG/8fUpOSQsYYnM1qfJorAPE73RbQn16LwCVBTtENIwejU0zDzsFvOmQOBqc0h1kH3TrHMAf4n3b8VeUQ4oTjgFOfw8nBZ32jrUPovImIosf1/v6wY0d1HZTx4r0Oyut59yIlzrip8X7ndugaJ4p2TRPvL3z/g6D3i7qB197wxCnqQlHjFDXQezD3rE+9GoUY5ACByNjn4Lvv3pwUv+2KGje6HNQrf4SZA3R5D5+Dth11u6JebMYoB0CBhJmDYR3UO+Mc1Lr45uCti08O3uviwPc54b4W2l1oSjhBRETj4MbgAB79uOWrvw4KERER0VeBDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZTsJ4JzAas/7/VqSlpBgHKIrnX5Gh6XAe+z7Hf30BcYMAFJ9l4pkeixygeDYVsI6xyAFD21HGqQ7Dru825BCwv6FyiFPr4PucwZHnEBAXJAcioijSc+MG8PiqsGKjukGZ9lAJ0tPTR7EGvwNYyDj4xIrB40jWGWlOY5lDuLmNRx1CbXes6mCWHIiIoovL5Qo7NqobFM8v/tC//BXI0HtO/3fG6nMVRYGo8z0hQ+tUFAFEbQ8Cnu+7qqFlunVogxyB75J9t+uf09A7ZgCKwJNGeAe6oUOl73745ODJKPQ+wH97AgWKrg7+axl6jugO11qdQ74W3tnemvi+Nt5loV4Ln2xC7Ie+DoaV8E/KJ8hov4NPB61DGK+F7mcS4b/2kUQSEY21SH4/8Tso0YCj+kREFGPYoEQDviUmIqIYwwYlGnAEhYiIYgwbFCIiIjIdNijRgB/xEBFRjGGDEg34EQ8REcUYNijRgCMoREQUYyJqUKqrq3HfffchLS0NWVlZePjhh3Hp0iVdzNq1a6Eoiu52//3362LcbjcqKiowZcoUpKamYuXKlbh69ero92ai4ggKERHFmIgalKamJqxfvx6nT59GY2Mjbt26hZKSEly/fl0X98Mf/hCdnZ3a7dChQ7rllZWVqK+vR11dHU6ePIne3l6UlpZiYGBg9Hs0EXEEhYiIYkxEV5I9fPiwbrq2thZZWVlobm7GggULtPkWiwU2my3oOpxOJ15++WXs378fS5cuBQC88soryM3NxdGjR7F8+fJI92Hi4wgKERHFmFF9B8XpdAIAMjMzdfNPnDiBrKwsfOtb38Ivf/lLdHV1acuam5tx8+ZNlJSUaPPsdjsKCwtx6tSpoNtxu91wuVy6GxEREU1cI25QRAQbN27E/PnzUVhYqM1fsWIFXn31VRw7dgy///3vcebMGSxevBhutxsA4HA4kJSUhIyMDN36srOz4XA4gm6ruroaVqtVu+Xm5o407ejEj3iIiCjGjPiPBZaXl+P8+fM4efKkbv7q1au1x4WFhSguLkZeXh7efPNNPPLII4brExEoSvAj8datW7Fx40Zt2uVyxVaTwo94iIgoxoxoBKWiogINDQ04fvw4pk+fHjI2JycHeXl5uHz5MgDAZrOhv78f3d3duriuri5kZ2cHXYfFYkF6erruFlM4gkJERDEmogZFRFBeXo6DBw/i2LFjyM/PH/Y5X3zxBTo6OpCTkwMAKCoqQmJiIhobG7WYzs5OtLW1Yd68eRGmHyM4gkJERDEmoo941q9fj9deew1vvPEG0tLStO+MWK1WJCcno7e3Fzt27MBPfvIT5OTk4KOPPsK2bdswZcoU/PjHP9Zi161bh02bNmHy5MnIzMzE5s2bMXPmTO2sHvKjgE0KERHFlIgalJqaGgDAokWLdPNra2uxdu1axMfHo7W1Ffv27cO1a9eQk5ODBx54AH/729+Qlpamxe/evRsJCQlYtWoV+vr6sGTJEuzduxfx8fGj36OJiM0JERHFGEVEou7w53K5YLVacaZqNybdkWwYN/TVDYEAUHyHIhTF88VcNVJ87jEUpc5T16IoUMS7PkW3XBQF0NYH/doUAOKbg3cNit+aRH3kn8PQ1G3PIUgdoOYGz+qGz0EBFPHNwbduoXOAVvnR5ABAUYZyUF/nSF+LwIoPk4PfKyUBOUReh3ByCIVfVyIiM+v9sg/F2/4HTqdz2O+TjvgsHjO48r+vISXeeBd8f/X7Tys+/xrFGE/7H04DD0P+z/fdrhlzQJDHtyMH/22GyiHcOvi2FPoc/OMjzwFBHgfPIdycQ+fgu71wcxgOmxQiMqsbA7fCjo3qBmXw5i0MDhj/2vaetewdJFLUEQZRH2sjB+pjLQY+75gVAQRD79LVhaLG6UcOvOtT30GLQQ4QiIx9Dr777s1J8duuqHGjy0E9MIeZA3R5D5+Dth11uyFHcdRiSJg5GNZBvTPOAfpRHN+6+OSgpqrl4K1lWK+FdheaEk4QEdE4GBwM/0/a8K8ZExERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkekkjHcCo2F/cBkmWSxhRAoAJci00fxgz4fPMvF77F0mPs/xX0+oHIzWPZIcgk0Ptw7mMPzj4Z4PePr9wVHmEG4diIiiT6/bDbzUElasIiIyfJi5uFwuWK1WfP7pZ0hPTzeMC3XY8hwKBIo6V9R7/TS0Kc90HBSI9kzPclHvFfX5os3Vb9Mz33da0aJ98/wqcwjMSfGLG1kOChQMhszBPw//nALzHD4H73ZGn8PI6+CfAzDoty7xeVaw/QxsbYfLYThsZ4jIrFwuFyZPs8PpdIY8fgNRPoKSkJqKhNTUkDGKdjABoChAkH5MURR4+zRPiOKzTABR16HEqc8P8i5bW7eo61O8CXgONt7t+uTgu90gSfkcwQSKDDUkuu0GPPZvWHw3G+qQ6JebZ09029OepcYNHZi9y42ag6FGKpLXYmja+1gAUduDgNfC0xwEvBYh62BYiSB18a/DUM2D1wHasoA6hPFa6H4m4f9ahBJ+JBHRWEsYuBV2LL+DEg2iboyLiIhodNigRAO+JSYiohjDBiUacASFiIhiDBuUaMARFCIiijFsUKIBR1CIiCjGsEEhIiIi04moQampqcGsWbOQnp6O9PR0zJ07F2+99Za2XESwY8cOUeqnEQAADVVJREFU2O12JCcnY9GiRbhw4YJuHW63GxUVFZgyZQpSU1OxcuVKXL169fbszUTFj3iIiCjGRNSgTJ8+HTt37sT777+P999/H4sXL8aPfvQjrQl5/vnnsWvXLrz44os4c+YMbDYbli1bhp6eHm0dlZWVqK+vR11dHU6ePIne3l6UlpZiYGDg9u7ZRMKPeIiIKMaM+kqymZmZ+N3vfocnn3wSdrsdlZWV2LJlCwDPaEl2djaee+45PPXUU3A6nZg6dSr279+P1atXAwA+++wz5Obm4tChQ1i+fHlY2/ReSfbateGvRMcLtflulhdq44XaiIjGj8vlgvXOO8O6kuyIv4MyMDCAuro6XL9+HXPnzkV7ezscDgdKSkq0GIvFgoULF+LUqVMAgObmZty8eVMXY7fbUVhYqMUE43a74XK5dLeYwhEUIiKKMRE3KK2trZg0aRIsFgvKyspQX1+PGTNmwOFwAACys7N18dnZ2doyh8OBpKQkZGRkGMYEU11dDavVqt1yc3MjTTu68S0xERHFmIgblLvvvhstLS04ffo0nn76aaxZswYXL17UliuK/mgqIgHz/A0Xs3XrVjidTu3W0dERadrRjSMoREQUYyJuUJKSknDXXXehuLgY1dXVmD17Nl544QXYbDYACBgJ6erq0kZVbDYb+vv70d3dbRgTjMVi0c4c8t6IiIho4hr1dVBEBG63G/n5+bDZbGhsbNSW9ff3o6mpCfPmzQMAFBUVITExURfT2dmJtrY2LYaC4Ec8REQUYxIiCd62bRtWrFiB3Nxc9PT0oK6uDidOnMDhw4ehKAoqKytRVVWFgoICFBQUoKqqCikpKXjssccAAFarFevWrcOmTZswefJkZGZmYvPmzZg5cyaWLl36lezghMCPeIiIKMZE1KD8+9//xuOPP47Ozk5YrVbMmjULhw8fxrJlywAAzz77LPr6+vDMM8+gu7sbc+bMwZEjR5CWlqatY/fu3UhISMCqVavQ19eHJUuWYO/evYiPj7+9ezaRhHUuLBER0cQx6uugjIeYuw4K/K854rPdgMe8Dgqvg0JEZE6RXAclohEUs3F98CEwadLIV6A/rgdO+y4QeI4sgOfgF+xx6JWE3naET9cF3u4cwhYih4CcIswlVG66dRs3amHnMKLXwmC7o61DRDkQEUUXV29v2LFR3aC8+0Q5UuLD2YVg71ZDPQ72XN9l/gcn/3WEWo9ZcvBdh9H8keYQbHqi5+Cd/ipyCPb8UKJuUJSIYsSNgVthx0Z1g3Kr70vcijP+7srQIMfQRyrej2u8Q+iKGqiLAYJ8rOCJU9SFosYpaqBoH3sAUNSBdjHIAaK+sR7bHHz33ZuT4rddUeNGl4P6oUaYOUCX9/A5aNtRtyvq52hGOQCK36CLcQ6GdVDvjHNQ6+Kbg7cuPjl4P/KD73PCfS20u9CUcIKIiMbBwGD4f3dv1KcZExEREd1ubFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6CeOdwEiICADgxuBAyDhF0ccrigKIQNTHIgJFDdTFAFAnoSgCeP4DFMUTLwJR4xQ1UNR1e9YHiOcueA4QiIx9Dr777s1J8duuqHGjywFQPHdh5QBd3sPnoG1H3a5AARTjHAAFEmYOhnVQ74xzUOvim4O3Lj45qKlqOXhrGdZrod2FpoQTREQ0DrzHbe/vulCiskHp6ekBAKzrOD/OmRAREVGkenp6YLVaQ8YoEk4bYzKDg4O4dOkSZsyYgY6ODqSnp493SlHB5XIhNzeXNYsQ6xY51mxkWLfIsWYjM151ExH09PTAbrcjLi70t0yicgQlLi4O06ZNAwCkp6fzhzJCrNnIsG6RY81GhnWLHGs2MuNRt+FGTrz4JVkiIiIyHTYoREREZDpR26BYLBZs374dFotlvFOJGqzZyLBukWPNRoZ1ixxrNjLRULeo/JIsERERTWxRO4JCREREExcbFCIiIjIdNihERERkOmxQiIiIyHSiskF56aWXkJ+fjzvuuANFRUX45z//Od4pjZt33nkHDz30EOx2OxRFwd///nfdchHBjh07YLfbkZycjEWLFuHChQu6GLfbjYqKCkyZMgWpqalYuXIlrl69OoZ7Mbaqq6tx3333IS0tDVlZWXj44Ydx6dIlXQzrFqimpgazZs3SLuw0d+5cvPXWW9py1mx41dXVUBQFlZWV2jzWLdCOHTugKIruZrPZtOWsWXCffvopfvGLX2Dy5MlISUnBd7/7XTQ3N2vLo65uEmXq6uokMTFR9uzZIxcvXpQNGzZIamqqfPzxx+Od2rg4dOiQ/OY3v5EDBw4IAKmvr9ct37lzp6SlpcmBAwektbVVVq9eLTk5OeJyubSYsrIymTZtmjQ2NsrZs2flgQcekNmzZ8utW7fGeG/GxvLly6W2tlba2tqkpaVFHnzwQfna174mvb29WgzrFqihoUHefPNNuXTpkly6dEm2bdsmiYmJ0tbWJiKs2XDee+89+frXvy6zZs2SDRs2aPNZt0Dbt2+X73znO9LZ2andurq6tOWsWaD//ve/kpeXJ2vXrpV3331X2tvb5ejRo/Lhhx9qMdFWt6hrUL7//e9LWVmZbt4999wjv/71r8cpI/Pwb1AGBwfFZrPJzp07tXlffvmlWK1W+dOf/iQiIteuXZPExESpq6vTYj799FOJi4uTw4cPj1nu46mrq0sASFNTk4iwbpHIyMiQv/zlL6zZMHp6eqSgoEAaGxtl4cKFWoPCugW3fft2mT17dtBlrFlwW7Zskfnz5xsuj8a6RdVHPP39/WhubkZJSYlufklJCU6dOjVOWZlXe3s7HA6Hrl4WiwULFy7U6tXc3IybN2/qYux2OwoLC2Ompk6nEwCQmZkJgHULx8DAAOrq6nD9+nXMnTuXNRvG+vXr8eCDD2Lp0qW6+aybscuXL8NutyM/Px+PPvoorly5AoA1M9LQ0IDi4mL89Kc/RVZWFu69917s2bNHWx6NdYuqBuXzzz/HwMAAsrOzdfOzs7PhcDjGKSvz8tYkVL0cDgeSkpKQkZFhGDORiQg2btyI+fPno7CwEADrFkpraysmTZoEi8WCsrIy1NfXY8aMGaxZCHV1dTh79iyqq6sDlrFuwc2ZMwf79u3D22+/jT179sDhcGDevHn44osvWDMDV65cQU1NDQoKCvD222+jrKwMv/rVr7Bv3z4A0fmzFpV/zVhRFN20iATMoyEjqVes1LS8vBznz5/HyZMnA5axboHuvvtutLS04Nq1azhw4ADWrFmDpqYmbTlrptfR0YENGzbgyJEjuOOOOwzjWDe9FStWaI9nzpyJuXPn4pvf/Cb++te/4v777wfAmvkbHBxEcXExqqqqAAD33nsvLly4gJqaGjzxxBNaXDTVLapGUKZMmYL4+PiATq6rqyugKyRo33oPVS+bzYb+/n50d3cbxkxUFRUVaGhowPHjxzF9+nRtPutmLCkpCXfddReKi4tRXV2N2bNn44UXXmDNDDQ3N6OrqwtFRUVISEhAQkICmpqa8Ic//AEJCQnafrNuoaWmpmLmzJm4fPkyf9YM5OTkYMaMGbp53/72t/HJJ58AiM7fa1HVoCQlJaGoqAiNjY26+Y2NjZg3b944ZWVe+fn5sNlsunr19/ejqalJq1dRURESExN1MZ2dnWhra5uwNRURlJeX4+DBgzh27Bjy8/N1y1m38IkI3G43a2ZgyZIlaG1tRUtLi3YrLi7Gz3/+c7S0tOAb3/gG6xYGt9uNf/3rX8jJyeHPmoEf/OAHAZdL+OCDD5CXlwcgSn+vjfnXckfJe5rxyy+/LBcvXpTKykpJTU2Vjz76aLxTGxc9PT1y7tw5OXfunACQXbt2yblz57TTrnfu3ClWq1UOHjwora2t8rOf/SzoaWXTp0+Xo0ePytmzZ2Xx4sUT+nS8p59+WqxWq5w4cUJ3GuONGze0GNYt0NatW+Wdd96R9vZ2OX/+vGzbtk3i4uLkyJEjIsKahcv3LB4R1i2YTZs2yYkTJ+TKlSty+vRpKS0tlbS0NO33PGsW6L333pOEhAT57W9/K5cvX5ZXX31VUlJS5JVXXtFioq1uUdegiIj88Y9/lLy8PElKSpLvfe972umhsej48eMCIOC2Zs0aEfGcWrZ9+3ax2WxisVhkwYIF0traqltHX1+flJeXS2ZmpiQnJ0tpaal88skn47A3YyNYvQBIbW2tFsO6BXryySe1/++mTp0qS5Ys0ZoTEdYsXP4NCusWyHt9jsTERLHb7fLII4/IhQsXtOWsWXD/+Mc/pLCwUCwWi9xzzz3y5z//Wbc82uqmiIiM/bgNERERkbGo+g4KERERxQY2KERERGQ6bFCIiIjIdNigEBERkemwQSEiIiLTYYNCREREpsMGhYiIiEyHDQoRERGZDhsUIiIiMh02KERERGQ6bFCIiIjIdNigEBERken8H131N2009Z+iAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFFCAYAAADGjxacAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9kElEQVR4nOy9d6AdV3Xv/9l7Zk67vXfdq94t22ruBZfYgI0Bh15MT0iBEBJCeInNCyEJvLzAyw9DqMbgCrjggrssS5YsS7YkW7Kt3nXVbr/nnjJl//7Ye8459+qqERNbMF977HvmzJn5zpo5Z69Ze63vEkopRYQIESJEiBAhwpsI8o0mECFChAgRIkSIMBaRgxIhQoQIESJEeNMhclAiRIgQIUKECG86RA5KhAgRIkSIEOFNh8hBiRAhQoQIESK86RA5KBEiRIgQIUKENx0iByVChAgRIkSI8KZD5KBEiBAhQoQIEd50iByUCBEiRIgQIcKbDpGDEuH3Bl1dXbz97W//rT//4IMP8pGPfIS5c+fiOA5CiGNu67ouX/3qV+nq6iIejzNjxgz+8z//87c+9u8jurq6uOGGG96QY99+++1861vfGvc9IQQ33XTT/yifU8WTTz7JggULKCsrQwjBfffdN+52Tz/9NEIIfvnLX477/p//+Z8fdR+n02n+7d/+jXnz5lFZWUlFRQWTJ0/mPe95D0uXLh13P0eOHCEejyOEYM2aNad0LnfddRezZ88mmUwihGDdunXcdNNNx/1+RYgAYL/RBCJEeLPg3nvv5bnnnuOss84iHo/zwgsvHHPbz372s/zsZz/jn/7pn1i4cCGPPvoon/vc5xgaGuLv//7v/wdZv3lx7733UllZ+YYc+/bbb2fDhg18/vOfP+q9lStX0t7e/j9P6iShlOI973kP06ZN49e//jVlZWVMnz79ddm37/tceeWVvPzyy/zN3/wNixYtAmDLli088MADLFu2jIsvvvioz/3sZz8jn88D8KMf/YgFCxac1PEOHz7Mhz/8Ya666ipuvvlm4vE406ZNe13OJcIfAFSECP+DSKfTv7N9d3Z2qre97W2/9ed93y/8/Wd/9mfqWF+PDRs2KCGE+vrXvz5q/ac+9SmVTCZVT0/Pb83hjUAQBGpkZOSNpvG64m1ve5vq7Ox8o2n8Vti7d68C1L/927+dcNslS5YoQP3iF78Y9/2x9/FTTz2lAPXjH/943O1LvwOlmDNnjmpsbFQLFy5UVVVVJ32/LF++XAHqrrvuGrX+xhtvPOb3K0KEENEUT4TfGcIw7osvvsj1119PTU0NkydPBmDNmjW8733vo6uri2QySVdXF+9///vZtWvXqH3ccsstCCFYsmQJf/qnf0p9fT11dXW8613vYv/+/SfkcPPNN2PbNjfeeOMJt5Xy5L4O9913H0opPvaxj41a/7GPfYxMJsMjjzxy3M9v3bqVj33sY0ydOpVUKkVbWxvXXHMNL7/88qjtwvD9z3/+c77whS/Q3NxMMpnk4osvZu3ataO2veGGGygvL2fjxo1cdtlllJWV0dDQwJ//+Z8zMjIyalshBH/+53/O9773PWbOnEk8HuenP/0pAMuXL+eyyy6joqKCVCrFeeedx0MPPVT47PLly3Echy9+8Yuj9hlepx/96EeFdWOneMLzuf322/nSl75ES0sL5eXlXHPNNRw8eJChoSE+/elPU19fT319PR/72McYHh4edZzvfOc7XHTRRTQ2NlJWVsbcuXP5xje+geu6hW0uueQSHnroIXbt2oUQorCUnv/YKZ4NGzbwjne8g5qaGhKJBGeeeWbBJmP533HHHXzlK1+htbWVyspKLr/8cjZt2sTJ4ET2vemmmwrRnS996UsIIejq6jqpfZ8Menp6AGhpaRn3/fG+A6tWrWLDhg18+MMf5lOf+hQDAwP86le/OuGxbrjhBi644AIA3vve9yKE4JJLLjnm9nfddRdXXnklLS0tJJNJZs6cyd/93d+RTqeP2vYHP/gB06ZNIx6PM2vWLG6//XZuuOGG19VWEd4EeKM9pAi/vwifkjo7O9WXvvQl9fjjj6v77rtPKaXUL37xC/WP//iP6t5771VLly5Vd955p7r44otVQ0ODOnz4cGEfP/nJTxSgJk2apP7iL/5CPfroo+qHP/yhqqmpUZdeeumo45VGUIIgUH/913+tHMdRP/nJT06Z+/EiKO973/tUQ0PDUeuHh4cVoL785S8fd99Lly5Vf/3Xf61++ctfqqVLl6p7771XXXfddSqZTKrXXnutsF34dNzR0aHe8Y53qAceeED9/Oc/V1OmTFGVlZVq27ZthW0/+tGPqlgspiZMmKD++Z//WT322GPqpptuUrZtq7e//e2jjg+otrY2dcYZZ6jbb79dPfXUU2rDhg3q6aefVo7jqPnz56u77rpL3XffferKK69UQgh15513Fj7/r//6rwpQ999/v1JKR5RSqZT60Ic+NOo4nZ2d6qMf/ehR59PZ2aluuOEG9cgjj6jvfe97qry8XF166aXqiiuuUF/84hfVY489pv7t3/5NWZal/uIv/mLUPv/qr/5Kffe731WPPPKIeuqpp9R//Md/qPr6evWxj32ssM3GjRvV+eefr5qbm9XKlSsLS+n533jjjYXXr732mqqoqFCTJ09Wt956q3rooYfU+9///qOiGCH/rq4u9cEPflA99NBD6o477lATJkxQU6dOVZ7nHfe6n4x99+zZo+655x4FqL/4i79QK1euVC+++OIx93mqEZQdO3Yox3HUtGnT1M9//nO1f//+43JWSkcGAbVx40Y1ODioUqmUuuSSS074ua1bt6rvfOc7ClBf//rX1cqVK9XGjRuVUuNHUP7pn/5J/cd//Id66KGH1NNPP62+973vqYkTJx71Pf+v//ovBah3v/vd6sEHH1S33XabmjZtmurs7Dxto2YRxkfkoET4nSH8EfrHf/zHE27reZ4aHh5WZWVl6tvf/nZhfeigfPaznx21/Te+8Q0FqO7u7sK60EEZGRlR7373u1VVVZV64oknfivux3NQrrjiCjV9+vRx34vFYurTn/70KR3L8zyVz+fV1KlT1V/91V8V1oeDz9lnn62CICis37lzp3IcR33yk58srPvoRz+qgFG2U0qpf/7nf1aAWr58eWEdoKqqqlRvb++obc855xzV2NiohoaGRnGbM2eOam9vL3AIgkC99a1vVdXV1WrDhg1q1qxZasaMGWp4eHjU/o7loFxzzTWjtvv85z+vAPWXf/mXo9Zfd911qra29ph2831fua6rbr31VmVZ1qjzOd4Uz1gH5X3ve5+Kx+Nq9+7do7a7+uqrVSqVUv39/aP4v/Wtbx213d13362AUU7QeDhZ++7YsUMB6pvf/OZx91fK6WQdFKWU+tGPfqTKy8sVoADV0tKiPvKRj6hnnnnmqM+n02lVWVmpzjnnnMK6j370o0oIobZu3fpb8zvRFE8QBMp1XbV06VIFqPXr1yul9DVvbm5WixcvHrX9rl27lOM4kYPye4ZoiifC7xzvfve7j1o3PDzMl770JaZMmYJt29i2TXl5Oel0mldfffWo7a+99tpRr8844wyAo6aEenp6eMtb3sLzzz9fCKeXwvd9PM8rLEEQ/FbndLwKhBNVJ3iex9e//nVmzZpFLBbDtm1isRhbtmwZ99w/8IEPjNpnZ2cn5513HkuWLDlq2w9+8INHfRY4atu3vOUt1NTUFF6n02lWrVrF9ddfT3l5eWG9ZVl8+MMfZu/evYVpDCEEt956KxUVFSxYsIAdO3Zw9913U1ZWdtzzDjG20mrmzJkAvO1tbztqfW9v76hpnrVr13LttddSV1eHZVk4jsNHPvIRfN9n8+bNJ3X8sXjqqae47LLL6OjoGLX+hhtuYGRkhJUrV45af7L3YilOxb6/a3z84x9n79693H777fzlX/4lHR0d/PznP+fiiy/mm9/85qht7777bgYHB/n4xz8+6vNKKX7yk5+8rry2b9/OBz7wAZqbmwvXNkzYDb8XmzZt4sCBA7znPe8Z9dkJEyZw/vnnv658IrzxiByUCL9zjDff/YEPfID/7//7//jkJz/Jo48+yvPPP8/q1atpaGggk8kctX1dXd2o1/F4HOCobTdv3syqVau4+uqrmTNnzlH7ueyyy3Acp7CU/vCeLOrq6gpz+aVIp9Pk83lqa2uP+/kvfOEL/MM//APXXXcdDzzwAKtWrWL16tXMmzdv3HNvbm4ed91YDrZtH2Wn8LNjtx17Tfr6+lBKjXutWltbj9pHXV0d1157Ldlslquuuoq5c+ce75RHYax9YrHYcddns1kAdu/ezYUXXsi+ffv49re/zbJly1i9ejXf+c53gKPvhZNFT0/PSZ83nPy9WIpTte/JwrZ1Iabv++O+73leYZtSVFVV8f73v59vf/vbrFq1ipdeeommpia+8pWv0N/fX9juRz/6EYlEgquuuor+/n76+/s544wz6Orq4pZbbjnmcU8Vw8PDXHjhhaxatYqvfe1rPP3006xevZp77rkHKNo2tFFTU9NR+xhvXYTTG1GZcYTfOcZGFAYGBnjwwQe58cYb+bu/+7vC+lwuR29v73/rWOeeey5//Md/zCc+8QkAvvvd745K/Puv//ovhoaGCq/r6+tP+Rhz587lzjvv5MCBA6OchzDJdTzHqBQ///nP+chHPsLXv/71UeuPHDlCdXX1UdsfOHBg3HVjB0rP8+jp6Rm1Pvzs2G3HXpOamhqklHR3dx91rDAZudRWjz/+ON/97ndZtGgR9957L7/61a/GjZS9nrjvvvtIp9Pcc889dHZ2FtavW7fuv7Xfurq6kz7v3xanat+TRTgo79u3b9z39+3bd1ID9+zZs3nf+97Ht771LTZv3syiRYvYvHkzy5cvB3SEYjw8+uijvPWtbz1l3mPx1FNPsX//fp5++ulRZc6lzhIU7+ODBw8etY/xvicRTm9EEZQI/+MQQqCUKjx5hvjhD3/4ujyRffSjH+XOO+/kJz/5SSH8H2L69OksWLCgsPw2Wf/veMc7EEIcVeVxyy23kEwmueqqq477eSHEUef+0EMPHXOQueOOO1BKFV7v2rWLFStWjFsRcdttt416ffvttwMct3oCoKysjMWLF3PPPfeMigQEQcDPf/5z2tvbC/oV3d3dfOhDH+Liiy9mxYoVXHvttXziE59gx44dxz3GfxehU1VqO6UUP/jBD47aNh6Pn3RE5bLLLisMkKW49dZbSaVSnHPOOf8N1hqnYt9TwdSpU+ns7OQXv/jFqHsEtAbJkiVLuPzyywvrenp6CnomY/Haa68BxYhOWJH1gx/8gCVLloxaHn74YRzH4cc//vEpcx4P411b0A8UpZg+fTrNzc3cfffdo9bv3r2bFStWvC5cIrx5EEVQIvyPo7KykosuuohvfvOb1NfX09XVxdKlS/nRj340bgTht8H1119PKpXi+uuvJ5PJcMcddxSmDI6FXbt2sXr1agC2bdsGUFDo7OrqKohTzZ49m0984hPceOONWJbFwoULeeyxx/j+97/P1772tRNO8bz97W/nlltuYcaMGZxxxhm88MILfPOb3zymeNihQ4d45zvfWSjxvPHGG0kkEnz5y18etV0sFuPf//3fGR4eZuHChaxYsYKvfe1rXH311YVyz+PhX/7lX7jiiiu49NJL+eIXv0gsFuPmm29mw4YN3HHHHQgh8H2f97///YVyYcuyuOWWWzjzzDN573vfy/Lly09o598WV1xxBbFYjPe///387d/+Ldlslu9+97v09fUdte3cuXO55557+O53v8v8+fORUh5TXOzGG2/kwQcf5NJLL+Uf//Efqa2t5bbbbuOhhx7iG9/4BlVVVa8L/5Ox72+D//N//g/vec97uOyyy/jUpz5Fc3MzW7Zs4V//9V+JxWL8wz/8Q2HbJUuW8LnPfY4PfvCDnHfeedTV1XHo0CHuuOMOHnnkET7ykY/Q3t6O53nceuutzJw5k09+8pPjHveaa67h17/+NYcPH6ahoeG34h7ivPPOo6amhj/5kz/hxhtvxHEcbrvtNtavXz9qOyklX/3qV/nMZz7D9ddfz8c//nH6+/v56le/SktLy0lLBUQ4TfAGJuhG+D1HmKlfWjYcYu/everd7363qqmpURUVFeqqq65SGzZsOKryI6ziWb169ajPh9UBS5YsKawbT6htyZIlqry8XF111VUnFJcKjzXeUspJKaXy+by68cYb1YQJE1QsFlPTpk1T/+///b+TsktfX5/6xCc+oRobG1UqlVIXXHCBWrZsmbr44ovVxRdffNQ5/uxnP1N/+Zd/qRoaGlQ8HlcXXnihWrNmzah9fvSjH1VlZWXqpZdeUpdccolKJpOqtrZW/emf/ulR1TWA+rM/+7NxuS1btky95S1vUWVlZSqZTKpzzjlHPfDAA4X3v/KVrygppXryySdHfW7FihXKtm31uc99rrDuWFU8Yys6jnWNx7t/HnjgATVv3jyVSCRUW1ub+pu/+Rv1m9/85qh7obe3V11//fWqurpaCSFGVYwwpopHKaVefvlldc0116iqqioVi8XUvHnzjipPPxb/sOrmZMrZT2Tf0v2dTBVPiCeeeEJdeeWVqrq6Wtm2rVpaWtSHPvQhtWXLllHb7dmzR/2v//W/CmXYtm2riooKtXjxYvWf//mfhVLp++67TwHqW9/61jGP+cgjjyhA/fu///sxtzmVKp4VK1aoc889V6VSKdXQ0KA++clPqhdffHFc237/+99XU6ZMKXz3fvzjH6t3vOMd6qyzzjoZc0U4TSCUGhMXjBAhwpsCTz/9NJdeeim/+MUvuP7664+77Q033MAvf/nLo4TNIkT4Q0B/fz/Tpk3juuuu4/vf//4bTSfC64RoiidChAgRIpw2OHDgAP/8z//MpZdeSl1dHbt27eI//uM/GBoa4nOf+9wbTS/C64jIQYkQIUKECKcN4vE4O3fu5LOf/Sy9vb2FRObvfe97zJ49+42mF+F1RDTFEyFChAgRIkR40+ENTXm++eabmThxIolEgvnz57Ns2bI3kk6ECBEiRIgQ4U2CN8xBueuuu/j85z/PV77yFdauXcuFF17I1Vdfze7du98oShEiRIgQIUKENwnesCmexYsXc/bZZ/Pd7363sG7mzJlcd911/Mu//MsbQSlChAgRIkSI8CbBG5Ikm8/neeGFF0bJnANceeWV46oB5nI5crlc4XUQBPT29lJXV/dbixtFiBAhQoQIEf5noZRiaGiI1tbWEwrrvSEOypEjR/B9/6geEU1NTeP2U/iXf/kXvvrVr/5P0YsQIUKECBEi/A6xZ8+eY6pnh3hDy4zHRj+UUuNGRL785S/zhS98ofB6YGCACRMmMH/+x7DsY8tqW4BQ4AFCgKUgADwB5QqGBNhKb+cJUAocQAnwAQFIpaVEA6G3Q+ltHTMxljf7EOFnlE7sCYT+nGX24aJ3aJv95QWkFGSFft8CfKH5OarIAYq8ldAXTBkOEogpyJRwCAxHSfEz0vDwzH5tsz9XQKWxg1R6376AwNgBoW0XchhrB9/s2zbnYZvj+uG5qzEczLVQmPMYYwdxDA6+2VYam/vGDiEHYWwWchCh/Y1dx+UwzrXIl9g/CI9j9heeU8hhrB0AkgrSx+AQ2i68Fr4y+yi5j8rMOYT3YSD0djajORwPVw5sZ3b2yAm2ihAhQoQ3BiOBzyd2v0RFRcUJt31DHJT6+nosyzoqWnLo0KFxO2/G4/GjmkgBWHYM+7gOikAoAFXioAjjKCgsIYyDokd3pRQ2AiVAoMY4KMIMSHpb26TuBOZvIQQCEEqNcVCE2Uf4uXB/ClsJbKGMgyIQQhEAtipygLEOiuaJEMY5UNglHALDcbSDUuSuzLYBgkAUPy+V0gOhEATGDghtu5DDWDuIcThIBELo8x3toAgzGKsSB0UYO4AtBOIYHIT5VOgcCGMHSuw+yg6Gp1JqjINSwsFsqxD45loEJfYPzD1jK3NdxWgO2kEpcuAEHIoOijCOsypxUEbbQRk7BAWbjOZwPCQsh5S0jrtNhAgRIrzROJn0jDekiicWizF//nwef/zxUesff/xxzjvvvDeCUoQIESJEiBDhTYQ3bIrnC1/4Ah/+8IdZsGAB5557Lt///vfZvXs3f/Inf/L6HWTUw2b4HK4AUeK9qZJ3x2L8teNtdSqkwiNqCqXHMPH9kJYovhf+dUolVyWfH++DorDNMamWvP9bFnuJcWxYWKUQBTscj8Nvd+jCccbjUHIAUYjUlGwniu//9gRKuYx3LUqvryge5ii6rxOHCBEiRDiN8IY5KO9973vp6enhf//v/013dzdz5szh4YcfprOz8xT3NP4Pd+iOEOjpEGFJfNcjUIrq+ira6yrZ2zfEwKF+lAArHkPlXQKlQBYdGCkECkWgFD4mp4RibkYYgvKNYyFNGD8cX5RSBIFOSrBsC9/18L2AqoYq2uqrODKQ5siBXj0F4TgI3ycIfJAyDOwjzHSPUuChw/8SCJTCNX8Lw0EBdgkHZZyeINDvWTHNIfB9Kmoq6Gqq4cDQCD0HevEChYw7CE9zEEIW7KCnUo62Q8hBhBxQBAosEdrOXI0SDtKxCPwA3/Mpqy6no6mGgUyOA3uP4CmFFXdQJRwQAoFAHsMOvsnxCTkEhtdRHNAVYAU7eD6B65OsTNHZWsdwJkd3dy+e5yPjNiJQqMCHk+DgAXmTByRMDk2BA2bqbQwH6UhUAL7rkShP0tFSR9rz6N57BNfzsOIOIoDA95FCaB4n4ahErkyECBHerDiV36c3VEn2s5/9LDt37iSXy/HCCy9w0UUXndLnhRTHXZQCz/UQKsByLPJmUJw8qYWLr1zAtKlt+J5P3vWxYzYECt/1UIFCSIE0ORZhIqNrjhsmnLomAVIwOplUYgb0Eg7KD7BjNq4fkM+5TOxs4uLL5zNz5gQCPyDv+liOhUDhub7mYPYhRfE4ozigB0VJcZBUYzhIqQdoz/NHcXBdj/a2ei66Yj6zZ3chgVzew7ItvS/XJ1CqYEtp8iVKOUh0Amve2EGKkiTYsXYocPCxbAtPQS7n0tJUw4VvOYszz5yCUIpc3kM6trap6+MHwVF2CM81oJgEW7CDONoOcgyHwPNxHBtPKXI5l4a6Si667GzOPHsaji3J5V2ElFhSjMshtLdbwkEBWZN7ou0itCMX3iPmWgB4vuZg25a2X86lrqaC8y+ex8JFM4nZFrm8h7AsbCnwXR/fL3I47hJ5JxEiRPg9wRvqoPx3IY+zhFFyTxWfnwOlsG2LiV1NLFw8k6mTWnRUwyTMYrYvBNSFSbAkfDovRkbCJ+XRkzAl0zAlEXvfrLSEwDfRlK4JjSxcNINpU9twHEs7A+YYfqCTNQsJoqo48xNy0ANh8W8zcTVqKkhQwiHQ01uWEASBQkpJR1sd8xfNYOa0duLxmI4eoQd0X6kSTobDeHYosYdSIcNjcDC2DSMvCEFbSy3zF05n9qxO4nEHv3SQV2rUcRQ6MlF63PDYhW1UyIDC9QjfK0SZlMKS2g5KQHNjNQsWTmf27E7KUgl9zc09EdqhlIM6ioNOSlZoB2ns+6Wf13bQ66QQqEAn7DbWV3LWgmnMO2Mi5WUJAsNTmoTh8LyPd8+f1l/mCBEiRBiD07ub8YmSMgR6qkRKAtfDkoKyihSdHQ10tNXR1dFIeUUStz9N4HpIS4Ivw3IJQOmpG6Wj62GJr8KUmJrDBxSnVXzjTYgSL0VJPcWkvAAhIFGWZEJbPZMnNtG9+yDllSlyvUMoz9dP2ZbUHy1wKJ6SYwbA8JjhwBWgp1VEKQeBLl8RAmVpDoGni5dT5Uk6WuvpaK2jp6uJquoyBtNZgrynOcgxdghPVujjFuwgiu7KuBzCCyEESkqE1KSFUiRScdpa65jY0UiQy1NZVcbQSA7leggpQUpUuH9VdPQ0B03CR5kKqOLUShi5OYoD5n7Q3irKD0gk47Q21zB5YjNB3qOmpoLDPYMEno9w7IIdhDn/0dci5KDPW5ntQjsQ2gEQqiSPRAiQAhUEqCAgkYrT3FTDhLY6aipT1NZWcODwgL4nYzZYUt9D4TWIECFChD8AnN4OSqAgCMZ/T4CUAjvuYDs2+UyOZCJGc0stba31JOMx2lvraG6pI5dzcbN5nEQMX+gwPipAmQFJoctaHXRY38eUxVKcTnAw2iLoFVagkEJPkdhxB8e28F2XuGPT2FxDa2sd8ZhDY0MVzS31ZHMuXtbFScSw4+Zp2DxFhxwsKYiVcHCE9j8C8zpmuORLOaC0HWKag5d3iTsWjc01tLfXk4g7tLTU0dJaz8BQhuGBYcoqy3AUxjEocgjQg/IoO1CcZvEpapfkw6gRmoNAYMdsHEvnftiWpL6xmva2BirKEzQ1VNPSVs9gOkt+JEs8Gcchpgd2xSgOtuHgAb4SxGTRadN20dEZ10SeLBTSTFdZMRvbkgS+jyXQHNobiMccaqrLaG2r5+CRAQZ7BxFxBycRK4SwSjmUXotACWxhzr1gFx39yCt9m9pjOFiWJPADJFDfUE1bewNlqQSpRIzW9gb2H+pnoGcQmYjhxGO6tLw0lHYsGJ4RIkSI8GbEqfw+ndYOih2zsO3xT0EKSV19JZOntFFdU0F6ME0yFadzYgttExrxPJ+2jkbe+tbF7NxxgFwmR6oyxcBAmp3bu+nu7iHwA5QXEBhnJXxCVkZPpHQaQ0dSdGRACIFtW1iWpK6ukkmTW6mtrSSXySGkpK2jgUmTW3Fdj6aWWq6+ehG7dh4gPTRCWWWK4eEM27ft58CBPp234fk6sVIZbQzDISiZVironozhIKWkpqacKVPbqauvIjeSBaBzYgvTZkxABQHVtZVcceV8Jk1qoadnUNsrnWXHjm727T2M7wfg+RAU7RBO0wTmb2UiF+EUiPERCnaoqipj4sRWGptryGfzoBStHQ1Mn9WJHyiqq8u58o8WMnVKG4P92kkayeTYteMAe/cewnX9ozjoaRuFr0KbhBx07g/mtWVZWJagsqKMSVNaaWysQfk+mUyejq4m5p05Bd8PqKwq49K3nElbez2HuvuorC4j7/rs2N6tOeS9AgdKrwWKQGnH1lcUIjbBKA4Sy5KUlyeZOKmV1rZ6/LxLLufS0dnEWWdN0Y6TY3PJpWfS3FLHwe5eamrLyeRc9u05zI4d3bhumO00PmQY+YoQIUKENyNO4ffptHZQXM8PJx+OgiWhtraSyy49k7MXTKO8MkXg+tiOhZASN5unvrGa9/zxxbiuhxOzGRhIs+GlHdx//7PsMQOzCgJsqUPybqBMMqgoVsyYRFhXKWwpkSLAD5R2LICamgouvnAu8xdOp66+Ci/vYduGQ96lrr6a66+/ENckqI6MZHnl5R3cc9+z7O/u1efoB1hS6M8EARYU8iOgOKXhmdwKWwp8P8DzfIRUVFamuOj8OSxYPIP6+kpc18exLSzbIjeSo7qmnGuuORc37yFti1w2z6ZXd3PvfcvZvfvQGA7aDrKEg6/CWSmBFygsS3MIDIdAQVl5knMWTefCS+ZRV19FYPYnbQs375FIJbju2vNwXW2HTCbH5s17eeiBlezZe7jIwUTGRnHAREpEcWpHiiIH3/cJlCCZirN44XTOO38OrW11uJ6PLSWWbZHPu5SXJ7nyyoW85dKzQAo812Pn9m7uu+9Z9u7THILjcPBVsXrJN4nWTuFaBAQK4okY88+awmWXn01DY00hH8Z2bPLZPI5jcfnl87nk4nlgpuS2b93HY4+tYcfOA7je+Pd7iDBvKEKECBHejDiV36c3rJvxfweDg4NUVVWx4OxPYFvHUpIVlFWm6JrcyoKzpvC2ty6irb2RTDZPzNJTHoHnk8l7JFNxhnuHuP3up1m/YSc7tu1nsHdQRwPMABYzg4WnwLYkKP0ULSyJ6+lBy7Yt3EDhej7C9xEIUhVJOiY2c+acibzz2vPo6GpmJJMjZUlE3IG8x1DepbwsyZFDfTz62BpWrN7Ejq37GOwb0omcx+AglcINFI4tyfsBlgLblriKEg6QLEvSMamFubM6uf4d5zFhUis518UCHMch8H0yOZdEMk56aIQHH1jJqrVb2bJpDwNHBkykRGI7moPyfFylsCwLqRS+4ZDzA6RSeioJyLs+wg8QKBKpBC0TGjnrjElcfeUCZs2ZSDbvYgUBsWQcAsVwOkuyIomfyXHvfc+ycs1mtm3dR9+hfvwgQAmJtC3itkT5vnYQLIkNeL7CNnYYywE/QKKIJ+O0Tmhi1owOrr16EXPOnEIu72IHAXYyDp5POpsnmUqQHs6wdMk6lq58hdde3UXf4X7tsAqBtG1itgQ/wA0CpJQ4AnJ+QNy2yPsKoQLDQZD3PPA0h1g8RlNHA3Nnd/HWK+dz5llTtXOTd0kkYiggk87iJGJI4KEHn+PZ519j86a9HO4+QuAfY0rT4G3DOzgje/h1+65FiBAhwuuJkcDn/bvWMTAwQGVl5XG3Pa0dlHPP+Qy2fbQEPgAKvCAgCBTlqTjzF0znL/7ynTQ31WBZklygiEmJ73kcOjLId79zP6uee4WhdFY/fVu6JqJgHqFl8oV5Og+jF5apsginPQgrVUwYyw8Unh9Qnoox78wpfOrTb2fy5Badk2Ik5n0v4NDhfn56y6Mse+Yl+gbSCCFwChzMCVGUP5dG1t4PFI4cn4MQOnnU9zWHVMJh2vQO/vpv3sPEzmYsW5LzFQlLRxpGMnluvvl+ljy1loGhDMDRHMbYIdQccaSOGhSmXsZyCBSeF5BMOMycMYFP/8k1zJ7diWNZuKEdPY+BoQx33vEUjzy8ip6+YUBhW1ZJBU1RRl6EicDo6JETVuaESbNjOASBwvUCEjGbzq4m/uzPr+PMM6foKiqzP2XscMcdT/Hwgyt1wmygHZ5CxZYafS1CDm6giFm6Mic4AYd4zKKrs5lPfubtnLNoBpZxLEMHMOf6/OpXz3D3nUvo7RvGD7TDc6Lo6FV9W5mbOXT8jSJEiBDhDcJI4PO+nWtPykE5rSsTfV8PvuMuSuFYFsm4Qzbn8syyl3hp/TbyeV0hIlwPIcDzAza+vJ0nnnyRvOuRjDs4ji499o2wmB4VzGDE6PLZwt8FR0YP0H6gOViWJJVw8PyAFStfYe2LW8hl8/pTJlzv+T5bNu/l6aXrGRzOkIw7xEzpcVgeHJaplHIAUz0yhkPYnyb8fMhBKVix8hWef+5VcjlXa3O4HgiB5wds27afRx5dzeBQhkTMJj7KDmpcO0BRDyXkIErsUOAgheGgeHHdVlau2MjwUEaL4nm+5i4EO7d389hja+gfTBsO+jN+oIrNJI0djMELVVVKhddl9LVQSt8T0nCQlmD9S9t5ZulLpIcz2u/yAoTSfA8e6OXxx9bQfbCPuGOTiI3mULwWjOJgU1oGPT4HIQwHKXl5406WLlnH8HAGISTS8xEmIXr/vsM8/PAqDh0ZIOZYJOJOYR/HW07UqydChAgRThec1g6KrkQV4y9G7yOf18JrDQ3VtLTWk0jGCtUYAPF4jOaWOpqba7VgWt7D9wMt0iZFycCvn8xDhAmyxdeimKAKBQ5KqcI+6+sraWuvJ1WW0N2KlVYk1RxqaWquRUBhe1HgYAZkkxg7KjFXjeVAobRWitEcPM+jrq6StvYGUikdeQp1YpyYQ2NTNa1t9QUOXqkdCk6BKh6HYvVMOFjrBFW9xWgOZp+uT3VVOW0dDZRXJIFicq9tW9Q3VNHWVo9EGA5+0Q5jOECJ1sioa4F5z+i4hIJ1CvKuh5v3qaxMMaGzkYrKFELqCEygFI5jU19fRVt7A45tGbuNw0Ed7QqETlrp/RHeD6VCbXnXw3M9KiqStE9ooKIipaNMYbWWbVFbV8mECU3YlizYLdzH8ZZSDZgIESJEOJ1xWifJhtoX40EpCJROWHViFlMmtzJhQiOu6/PKKztZu2YLc8+cxJlnTqGjvYGpU1rp6RnE9z1kALZVlIr30V1s7XAQUaH+hy51FRTf8ygKxelISlDI0ZjQ0ciEjkZQsOHlHax9YTOTp7axYMF06uurmDq5lb17DpEZyZvKj2KVTjgAO0brIxSXE4JCmrDWRVGjOQjwfc3Bti0mdOhzVSg2b9rLyuUbmDytnfnzp9HYWMPsmZ3s3XOYXM5FBppDqO0ROiKh/koQchhjh0BppV1RwiMITCTFlrS21jJ1ShtSSrZu28+qZzfS1FLLhRedQX19FTNndLB5817y6Swy0LkupRwo4RDawaJoB0toZ3EUBzO94vsKyxY0NVQzfVoHliXZtesQy5aup6GxmnPOnUWqLM7sWRN4ZeNOhoczoBS2tIoS9qPsXRRdi4sSFVtzY4Z2GctBWoLmxmpmz+hEWpK9e4+wbOl6KqvKuPCiM6iuKmfunC7WrH6NkUwegqDA4UQ4DWdtI0SI8AeCP5gyY2FJhHWMIJACL+/iZl3KyipZdM4scjmX5597hbt+8Qzr121jxqwJfPB9l7Jg8UzOv+gM1qzeRDqTw3ZsnFhCDyqB7iHjKYUrhBZrM4OfQg9SglD/RGGHT8pSogA/75HP5ok5Kc5eMJ1keYLly1/mlp8+xvr12+nqauJDH7yMRefM4uwF03j++dcY6B3CdmxsJ65l2ks45IXAFgJLFXvgSFRBeh1lNDek1AJfIYdMHrs8weJzZ5FMJVj2zMv84lfPsPLZjUyY2Mx73n0h518wlwsuPoNnn93A8EBaJ6CWJbXEfKAjDKUcpHmtB+QSCXqlNUFC0TkF+J5LPpsjVZZg9tyJVFaVseb517jjriU8++wr1NVXcuhgHxdcdAYLFs3kySfX0t8ziJCSZJmt9WSUQpnpuzxFOxT7IqnCdJNSYCmFVWKHwPPIZ3PE4g6z506kfUIjL6zZzK9+tYwnnnyRuvpKrt99iLdcfjZnL5zB00tfoq9nUAvDmeovWynwjR3GcPDN7E/oLAVKYYccpNSaNX6Rw8yZnbR1NLBu7Vbuu/9ZHn/sBZLlCfbsOcRll89nwTkzuf/+FQxu36+1VBwbYR3fQxElfaQiRIgQ4c2GU/l9Oq0dFOUFKMavaggTE+NlCerqq0g4Fr/85TM88sjz9BweoL6him2b9/Cf37mfP9q6j9kzO6mpqyTn+gS+LmkNp1AU6N4smKdn46hAyfQEEEippdEDkCownxPEUnGqayuoSMV58P4VPPjQKvbtOkhtbQX7dh/i5u8+wOYt+5g1o4P6+ip6+4Y1hyAgQBTl9o1AWZgQq4XBTKKq4aCkKEip6woa/blYKk5VTQX1NRU88OsV3Hf/Crr3HqaurpKD+47wwx8+zKuv7eEtl55JY2MNA4MjuHnPcChGcYQschhrh7AvjZQlUvkFDuAkYlTVVlBVnmLpknX8+oGVbN+6j6qqMgb7hvj+Dx7mtc17uejCudTVV9HTO6R1P4IApUQxgiKEUdRVBbG4UjtYaJ2UULI+5ACaQ0VVGS1NNSxbup67f/EM2zbvoaqqnOGBEW792eO8umkPV/3RApqaati79wi5bF5L0qtgXA6F8zbRrOLrEg5BUFCCteMxKqvLaKiv4vlVr/LLe5axbfNeUmVJ8tk8P//ZE2zavJd3XncBzc01HDo8QDaT08qz6gQOiu1gJZPH3SZChAgR3ihY/vG1nEpxWlfxLFz4aWx7/DJjAdiWRSxmY8ccKsoTDA2k6R8cIQBqkzGOjOSxBFRXJKmqqaB/cATleuRdj7yny4SF0AOOFFotNO/5SNumrbFah+YP9OHlXWK2rgTR+SvFqhfbksQcG+nYVFakyAxn6BtIkw8U1UmHoZwHSlFVnqCyupzhkTx+Lq9zJTztGgihRb+kJXAQ5DwPpEVLYzWpmM3ug306SmNJlJR4QVAQT1NofZZ4zHCoTJEZztLXP0wuCGgsS9CbyaOCgIqUduaGRrJ4ORc375Ify0EKHGFKZy2LpvoqyhIxzSGTw7EkwrLIe1qptZRDzLGxYjblZUncXJ7eviFyfkB1MsZwXjuGFWUJamorGc7k8HMuruvpUmHDQaGdj7gU5F2fQEBTQzUVyRj7Dg/oEl1LRyzG2sGSkrhjIx2LiooUft6lp3eIjOtTk4yR9Xxynk95IkZdfRWZvI52eHmPnOcXeuMoXaZFzHBQQlBbW0FjVYqdB/vJpDM6smLb5E2pN6M4WFiOQ1l5gsDz6ekZJOv5VCdjjLg+ecOhvr6KkbyHm83huR451z9hePQLn7iCKy+Y/fp80SJEiBDhdcbg8BAdC846qSqe0zqCohMDx5/iCZ8z3bxHJptncDCtnQxb4gcw4vlYlhbSSmfyDKaP6Kd8qbNHLDNFE6q42okYCkEul6W2LMnCc2YRT8T4zW9WcaA7je0ksSyJm8uDFEjLQgidgeG6Pl7OZXg4gxQCy5I4UpH1AqQUWAgyWZfh7l4UEDMcpPl/4GuBMNuOoYQkl3OpqHRYsHgG1ZUphh5/gT07D2Kl4jqxc0T3G5a25iCE5uDnx3AQghHXK6jO5lyPvfuPAFqArpjYWcIhEUMJQS7vUV7ucObZU2luruXRR1ezY/sQIhEnmbDI5fLasbMtpOHg+z654SIHrR8iyHo6ChYzSan7u3uKHEbZQYuuWY6NsG3y6SxOzGbeWVNoa61jydPr2fTqbkQiRjxm4WZc7VSN5eC6pE05uRCCmGOR9XV0JGZbeH7A/gN9KFO6HHa2Ruj+Ob7nY8cc7Yils8TiMWbP6WLm9A7cJet4deNOlG0RS9moYVeLsY3iEJB3swynM9rGQuDYFrlQzM228P2A/Qd6AZ3PUki6PkF4NNncSMX0yb/dFypChAgRfsdQg4Mnve1pXcUjjreY3/HA1FoUNSx0KN5Tur8O4RSOySUJpzMIX6tiV1kFqEBRUZHkjDMnc/aCadRUl2vdi4BCpUgQqONyCMtifYoXIAh5q5IOyubzKijloP8uSyWYN28yZy+YTkNdld5HWIarSjoRi+L+wzLcsA7GEuCq0d2fCzzVGA7mvKSJpASBIpWKM3tOFwsXTaexsRrQScGWJfXUR6HkuFhxVFqBFNpBR6iKPI/NQRnb6qvsK0U85jB7VhcLFs6gtbm2xA5FzqUI1Fg7MCrBNrwHBKPvh1DHRCmFCordiwOlSMQdpk/vYOHimbS31heUZGV4LcJ+UaKUQ7EmrNQOpffhqHtGFd87/iJOYptoiZZoiZY3bjlZnNYRlONBmZGwqEtRHJDCZM5QQwQoGXBAhGIUQGmpUBAEODGb2tpKujp1B+CGhiqcmIMyg5AIu86GUwFCFQa5cBBSSo1yUEoHIwocKOpshLobQuC6HrZtU1NdzpTJrVRUpGhqrCaeiKHM6CuELOqWKFBCjTvgldqBEtsU8k2UWcwHhfEifN/HcWyqq8uZNLGFqVPaaGmqIR6P4fk+KIUscCCstx2Hgyo4aKWe8igOjL4WQgqkhMD3sS09VTOxq4mJE5tpba0jkYiNcioDUWrb4rUo9A0quS4hBzODU3BeA8Uo3RVMVMXztCx/RWWKSRNb6OhooK2tjmQqTiaTJwgC3ZU5/OyY+2HsPRlyEIx2kpSCoPR+OC6iZoERIkR48+JUfp9O6wiKMk+ix1qCEq2KsZFxWTIoQ9E5UCX7BbBsqR0QpfA9j6rqclpb66iuKqOupoK2tnpqayt0M79AYTs2lm0ZfoZD6QBbymHM+QjziKxKPgt6isJxbO2g5Fyqqstoaa2jqbGasrI4rW311NVXglJ4nocds8blEA6KpRwsUXxd+l4pBwVIS3MANIeqMlpa6qiuLiORiNHaVk99QxUCcF3fNHK0AFGIfBQiKIKj7FD6etxrobTgnO3YSCnJ53TvnOaWWhoaqqmsSNLWqjlYUuC5vr4WjmXyZzSH8FqMPdewn9Go9wSj7yVlpPUNh1wmT0V5kubmWlpbaknEHdpa62lorMG2LfLZPLZj6eobUbRDeC0K5xpeZ1Hiz1G8Z8OoWaCOfa8XFiJEiBDh9wOndQTFsmVhIB4PyjgNCmGeTnX1i6cUCSCj0A3rCEP5unRWCIGwLRKJGG1t9bS21SOBkXSWxuYazpg7ifLyBFJKFiycgbQs9u89TFl5EoTg0KE+du86xMhItuC4FJ+adWQjrxRxdGmwEEJz0+8WOZgk3/aOBlpa6ojHHXqPDNDaVs+MmRNIJGKgFGedNQU/CNi98wCxeAwnZnPoUB+7dh0iPZzRg2JgqpKEkcMXWpo9KSCndHQkjCqESq2yhENLax3t7Q3EHJv+viFaWuuYPmMCVZVloBTz5k0mm82zY3s3qbIE0pL09Ayyc+dBhoZG9HUIOaDPN2xwGDN2wOiZKHMtwq7M0rKwHYvWljra2utJJmIMDY5QXVPOlClt1NZWIBDMmDWBK69cwN49hxBCkEjGOXJkgN27DjIwOKK7U5tIV2BsLhC4QBytqRJgOCgjmY8RnLMklmXR0lJLe0cDZakEPUcGaGisZsrUNmrrKpEIps/o4Ior5rNj+35QkCxL0Nc/zM4dB+gPeysZDmFrgtAOcfSUmwrtoErk9FFIyzphfDQqMY4QIcLvC05rByV8ahz/TfBNgzZp27p3TqAQlqlGQU+xOAIwPWQsKVCuj49OTEwmYpx99lTe+tbFtLfX45tGbYlEzJR8Ki65ZB7nnDuTwAtIJON0d/ewZMlaenuHGE5ndHM3kyTpI5B+gLQEvtIDj48gZrROfIFO+vV8fLSKq+PYnHXWFK68cgGTJ7fi5j0QhoNOiuHc82Zz9vypeK5PLO7Q1zfEU0vWcf99zzI0NELg+xAopGNpJVrfR1pSD9JK28EWAhEEetpJSvCMoq6jO+3Ont3JO95xPl1dzQW7J5PxggO2YOF05p05hXxON9s7fLifFSs2cs89yxgcTGs7BAHSVDspP8CyBIHSTkBgnMUCB0tzCPwAHJ3EO2PmBN7+9nOYPq0DIdG9fZIxPSXiB8ybN5mZMztxXY9EIsbgYJply17m/vtXaAclCHTjQNsikILA052qfeMEBKATnIMAF101JbxAX3fbwnYEU6e1c+215zFrZieg8P2AeCKm84OCgFmzu5g6rZ1cNk88EWN4OMOaNZu4++6l9PYOGQ66EiwQOvnYlvpaoEy+kpQIFeiuzLaF8Dx8T4EtCtNsESJEiPD7jtPaQcnnPALv2LNUgdADXVyArcBFYClICMFQoCiXAldpgS3H/O67psrCz7n09Q6xcuVGhgZHuPCCOSw+dxaWbTGSzpJKxRFSkBnOYsVt4imHNas3sWzZy2x8ZReHD/WTz7ooAUJKYmj9kDw6N6VcQiaAhNBP7mb8QQrIheXKOZfBIOC5515loD/NokXTuezy+SggO5IjmUqAkGTSWeyYQyJp8+orO1myZD3rX9rOwQN9mgOAJYmjdUtCDmUChgJF0jQbzBs7SLQYm6c0h6EgYM2aLeRyLucsnsl5588hmYwzks6SSMSwbIvcSA4sSaosyWuv7eLJJ9ay8ZWddO/vLeEgiIsih0BBUkI2gLgUBGjxOVvovJBcCYe077N27VYymRwLF0znqqsXkUppDqlkHGlbZEdyICWpVILNm/ew9On1rFu/jb17DpHL5HQ+kiWIoYXkcoCrFOVSklEKR2hnKY8+vl3KIe/hez4vrd+O6/rsOKubK/9oAalUQjsjcQdppnUCIFWWZN++wzzym+fZsHEnu3cdJJ/NaztIzcE295urFEkhyKI5SPS1kEJgK20rF4XMn1g/IHSiI0SIEOF0x2ntoDiOhW0f5xSEDpP7oViYFAVhrbAjsTLrA6U9FUtK3clY6YqU7du62b3rEK9s3Ek6k+eii+biODZhDYbtWLoJ34qN/PhHv2Hbtv3k854u441pbgqdYKsw6qpKGdVRUcjxCLn5vm6sZ1t2IQljx/Zu9uw+xLp1W8nmPK68cr7OBzFJwLZtoVTA+vU7+cH3H+S11/aQzeaxZAkHMQ4HY4dCnkmBg47exGNFDnv3HKJ7/xFeWr+d3r4hrrnmXGIxuzClYDsWvoKNG3dy83fuZ9Nru8mcgIPOqyixg/lbKYXn+0gh9DEMh/37DtO9v4eNL+9gcGiEd1x3PnFjB2U4IASvvrqLH//oN6xft430SBYpdRQo5KAChedrtV2Fwg+CwnFDDkChF1GRAxw40MvBg32sX7eVw0cG+NCHLicecwr3kGXppNh9+47w/759D+vWbmU4rTmU2kGZZpLhcQt/YyqVChz8Qin0ySTJyijCEiFChN8TnNZJskGgy0iPtRDoahmEzkGx0YOPqyAlIGsyNm1MDoqZ+yf8vBDEEw6WLdm8ZS8P3P8sBw70YjkWqAChFHbM5kjPAA8/+BwbN+4yn4npQddU1ZRyCBVGc4pCDkophwBTVRMmVEKBw969R/jV3U+zb9+RosR/EGA5NsPpLL95aBWrn99EoJTmYAmTlKmwQkeAYkJoTkGZ1CXXAaGMP4U8DFHKIe5gOza7dh3k3l8t48CBPp2jYabIhG0xMpLl8UdX89xzr+gS4BNwsIQgB7qHzTE4yDDBFojFHJ1fc3iAe3+1jK2b9+qpIGMH27EZGs6w7JmXWLFiI3nXI56IYVnWURzCCioLQdZcCwUFZdpRCrHK3GconJiNE7Pp6Rnkl3c/zfbt+4vl3b6PsC1c1+eZpet54vEXyJnpJssezUGOsYNr7BAoXVllG/v76DyVAocTLHrG840uIoyWaImWaDnecnI4rSMoJRXAx3hfaFsYXRL9AKqK6rAAShXFr5TSJaToUD/oPAeldJfbhsZqqqrKCzoXAv0UXlmRoqm5lnjMNp1vAczgXcIBimWlgmIpacihyBHNQWgnyfcC3ZBOCpqaa6mpKddP6uhBy7agvCxBU3MNyVS8wCFUwi1UB416Atc2Cbs6m17MhfeMikqRgx8UIgQNDdXU1JRj25aOfAQBlm1RXp6kqbmWVCqO7/kwDoexZSbSmEaciANFDkJAQ0M1tbWVJnqkB2dLQlkqQWNjDeVlCUYyOV3qK47mIMZyKNg9pCgMB/1neE0DPyjkPTU0VFNXW4nj6ERtL9AJv4lEjMbGaioqyzRn/2gO4bUorawKdVCg9D4wW5zgXg+ht4lqeSJEiPBmxcn/Pp3WERQKDsCxlqJDEG6uzIpR1Q4lY6cq3a9S+L5PECgqK1PMnDGB8rIEQ0MjrFj+MkueXEtf3zBlZUlmzpxAVXW56VZrBjEzKJU6JaKES1hWSsn6QglqOJiZ6Y4gUCQSMebM6aKmpoKRTI5nl29gyVNrOXSoH8uymDljAg0NVXpayzg1IQe97xLxNmMUeZRjVOLIlHDw/YAgCEilEsya1UlZWZKRkSyrn3+VJx5bQ3d3L5YlmT6tnYaGat1puJQDRQ6F46D/M17J91EcTEKqHwQ4MYcZM9qpr6/EdT3WrN7EE4+/wN69h7Edi6lT22huqS06VqGwTCkHs6pwmJJrEb4ulmYXG/D5vk6atR2bWTMn0NRcS971WL9uK088uoZdOw+CgClT2uhobwD0VNFRHIzIyig7FN4LOYjR5eHHvddP0oOJECFChNMEp3UERQojQX6s9wv5HnokUCUjsSn0JByW9ECgEMjigBgEuDkXISUtrfXMnjORgwf7eOTR1fzirqfJZPO8810Xcu215zJlajvtHY0cPNiH7/l6asGWhp8q5LuosDkMxegFRVpFDrI4NeLmXBCClpZaFi6eyb59PSxdup6f/exxMuksV7/tHN7xjvPo7Gpm2vQO9nf34ubyxOMxLMcucIBQK0MXFAtGC5cVn+z1YCqlLHLI60TXCR1NLFw0g0OH+li+fAN33P4Uhw/3c9XVi3jXuy6gc2IzM2d2cuDgOtycSyzu4IzhgFIoc20Eo1VcQw6hgyelNFEacPN5AqVoqK9iwaKZpEdyPPnUOn70o4c5cqifiy6Zxwc+cBm1tRXMmNnJ9h0HyOfyemrIckqcEGX+EYXjhhoto66H0oXG+j7S0SrX9QiCgKrqci646AyOHBlg9epN3Hbbk+zctp8LLpnHe/74YqZOaWP+wuns2n1Qtz+IOcQMB4nAD3xKxfTCezIYvYpQcVBKrc57ojwUcbKhlggRIkR4I3AKv0+ntYNyvDJjgclRMS/CqQTQVSKugpjJRQiUzvvwlcBHIcMBEl1ym0jGaW6u4fCRAW677QmWLXsZPVUkuevOJezaeYB3vusCWlvreK0sQTqdMVGAogOgzHFDqfWYgDy6msQ3i9YAMRxCbXqlOcQTMVpb6hgZyXHHHU+x7JmXdI5FzOH++5azfds+/vg9l9DWVk9FeZIBzy/YqCDfj853CKX3HSHIq6KSrG+e4iW6wsZ4CoWIUzzu0NJaRz7v8cMfPMzy5S+TzeZJJuM8+MBKdu06yPvedymdXU2UlyUZCrsIj7FDKJevlLaJp4qqvgUOZhtDBJSeTovZFvX1VQgBt/70MR5//AUGBtKUlSV44vEXONDdy3XvvICmphqqKsvw8h6YRFQodoa2TXQiMNfCxUS0VFHhN+xOXLSD1oZx4noKJ5lK8LNbH+epp9bS2zdEVXUZS59ex97dh7j++ouYMKGBysoyXNcr3A8g8MzUkVXgoLDNsaQolsCHHAJ0pReqRPTv2N+KsXN5ESJEiPDmwSn8Pp3m3Yw/c8xuxqAHvVDOXUqpNTaUIl6WoLW6nH39afKmcR2WxA+CQpKmb6Ye4jGbWMwhVZ4kZlscPNjHUDpLyiTCDo9kKUvFaW6qxVeK9HAGN++SzXs6L8JwcJUWlhNmmiJWlqSpKkVvOsfwYFon0lrWURyEgIRj48QdkqkEZck43d1HGBrOEos5JGIW/cNZknGbpqZaLNtiaHAEN5cnm/dMTxjt/IR2INBTDlYyRmddJQcGM4wMjyCVApNQaoU5OIZD3LGJxR1SZQlSiRjd3b0MpTPEHYd4zKJvKEMq7tDUVIMTc+jvH8ZzPbI59ygOQkqkMlMliTjNNeUMZPMM9g/r5FzLwjN2KOUQsy3icYdYIk5lRZJDB/sYGBzBsiWpuMPAcJZ4zKahQUv/Dw6m8XIu2byrq3ZCDkqXnwultEZMPEZbbQXpnEtffxoZaN0TP1BYJufFM9+SuKM5xJNxqirLONDdw8DQCEJIasriHB4cIW6cqPLKFH19w3h5l2zOxfMDhNBPBb72UHTyq+8jYg5tdZUM5Vz6BtJaL8eW+j4MRnM4Hv7+7z/A2962+NS+UBEiRIjwP4TBwUGqq6t//7sZC6kHO43idE0BKsD3PJASGXfIj3go36erq4XzFkxj5dqtbFizCSEFyVQZ3nBGJ1Xatu6pI7SgWG4ky+BQBl9ovY5EzCZvymUTMRuUYvf+HoRSxKWeEhBCIMx0TuD5+qk9GSOXz+LmXCbN6OS8hdPYuGkva1ZsJBAQj8fws74esGxLOxNCC4DlR7IMD2fopsghpxTK84k7FpYQ7DvQB4aDVeBgRMg8T3Moj5EdyRHkXdontXDxRXNZ/9peXnzuFfKuR6IyRpBz8V1PdwE2HDAchkrt4Ni4KHzXJ+7YWFKw/2A/SiliAmxLFjmgCFzDIWnjuQH5rEtrZzMXnj+HXfuPsHzJOvKeT7IyBlkf3/NHc1AKN5NjOJ3lUM8AMSlIOBZZpRhxfRzbwpaCg0cGUEEJBwTCKtohCBSxRIp8Lk8+69LSXMdFbzmLfQf6WP7MenJZV+ua4BPkPCzL0tVCJRzS6SwHDg8QtwwHXzHseti2hWNLjvQNcbBnkLgEW0qdQyIlkiIHJ5bA933yOZemxhrOu/gMDvenWfrkWrKZHIl4CuEHBJ6LtCTSskqSiI/xnYhyUSJEiPBmxin8Pr3uSbI33XSTqVgoLs3NzYX3lVLcdNNNtLa2kkwmueSSS9i4ceNvdaxiZcTYv3X0QwG+b6ZJhNB6F1IysauJxefPZurkFqQUeIHWHhFK4QcmO2FUYieUZigU1o/5Ozy/cH3YAdkzqrOWlHiB7qkysbORxefNZvq0dixLau0Rqc/BN6W9R3FQo5N+oVgBM4qhGlN9IkZz8I1z1dFaz6LzZjNzRgexmK3tgy5r9YOiJkhpIqcw0xOjOJTaoeTe0+dQTIL1zZScNJohgVK0Ntew6NyZzJ0zkZitIyf6mPp6hSW8o2w+xg7CTN2Md9+HdghvdD/Q3YgtS+Kba9HUUMWic2cxd24XqUQMz8wFhveMPw6HUfs3EZ5wemrUdQr/KPEbwuNqO+gpnoa6ShYsmsGZ8yZTlozhGcE1Swiz/dH3+LFyZEW0REu0RMubeDlZ/E4iKLNnz+aJJ54ovLasYr+cb3zjG/zf//t/ueWWW5g2bRpf+9rXuOKKK9i0aRMVFRWndByhVEmX2bFv6v8FUmBJifK04FWqLEHXhEa6upqZNKGJVFmSweEMygsQlsRXCksUy4x9Ff4lTP4GoIo9fEKxMa1donMHxs6aKSF0pCcIECjiyRid7Q3MnDGB7n09pMoTuAMjKFOOGph9j+agPZFw+gd0/kY4KAUmn0ON4lA8j5CD8gNQkEjF6Wiro7OziQPdvVRUpEiP5Ag8T28nhFbB1Z8mKLGDXdgrRuOlyMFCOynaTqOb1wXGYQ0TUGKJGG2tdUye2IKX8yivTDGSy6OMs+YJ00bQJDkHqljVEt64oVZJqR3kURxEwWrKeExCKZQf4MQdWptrmTm9AxEoqqrL6esbJvB8bEuihDRl6Mrsv4SDKOUgdL6IKOlKbP72UCg1+lpg7KD8gFg8RlNjDV2dTVRWlFFdU05P7xCBp6NCSgrj+J04SRaOvv8iRIgQ4c2CU/l9+p04KLZtj4qahFBK8a1vfYuvfOUrvOtd7wLgpz/9KU1NTdx+++185jOfObUDhYmcx3hPCKGrWCwLN+sSj9nUN1bT0VZPKhmno62e+qZq8q6Hm81h2bYeyM3gocXbiuJpNqGgGISZL3m0M+EAvjB5Hso4T2gO0nS/9XIutm1RW1dFW2sdyUSMpsZqGppqyec9vFwe6ThmwDUDGOCZwdlCERMCTxXl+aUQ5NHJvg56gHQBoUAqk6QqixzcXB7HEtQ1VNPR3kAyHqOjrZ7G5lqGhjNk0hkSZUmsUCXWRFu8EjvEhLZD2MtIAnlBkQOlHMykhBCF6Rrf9bCEoKq2go62BqoqU7Q01dDUXEs6ncXL5rHiTpGD8QhCDlJQtEOBgyBPidAa49hBCKSjOyz7rgdKUVNfRXtbPclkjNqaCppb6jjSM0h6cAQ7FceKmQokE1XxShyQUjvYaIellIO+P47NIfB8RBBQbTiUlyVJxmO0tNRz6PAA6YE0sYpUsRIrOCnv5MTbRIgQIcJpgN+Jg7JlyxZaW1uJx+MsXryYr3/960yaNIkdO3Zw4MABrrzyysK28Xiciy++mBUrVhzTQcnlcuRyucLrwcFBACzTYXY8CCmoqiqjpbWOyqoyBvuGSKUSTJzSSntXM1IK2iY0cvFF89i2ZS8jI1mqaisZHExz6EAvPUcGCcIS5cJ0B6O1MyiWw46ddrAsXWJcWVVGc0stVdUVZNNZhICOziYmTm4DpWhpreOiC+eybes+0sMZKqrKGU5nONjdS1/vEJ7vFys4KB54FAcUshDrKK63TA5IZUWK5rY6qqsryAyPAIJJU1qZMq0dy5bUNdZw/gVzaKiv5PChfuqbakinsxw80MuRQ/0EQYBXYodCnM6om4V6HaWhO6W0IxHaoaw8SXNLLTW1lbpfje/T3tHI9FmdWLZFTX0lF150Bo0NVfT3DVFdV8VIOsuhg30cPtyP7wUoFYziEAY2wqmkkEMh3mGumbQkEkFZWYLmVs1BeT7pdIauiS3MPmMSAkF1bTnnnDuLqookB7p7qa6rJO+6HOzWHDzX1zlFQTAuh9GicyVTPCEHIUgl4zS11FJXX4WX98hlc3R2NTN33iTiiRhKKc45bzZl5XG69x6hobmWTDbPkcP9HOju1RyOA+Xm8dIjx90mQoQIEd4onMrv0+texfOb3/yGkZERpk2bxsGDB/na177Ga6+9xsaNG9m0aRPnn38++/bto7W1tfCZT3/60+zatYtHH3103H3edNNNfPWrXz1q/bnn/im2HR/3M5YlmTmjg3e+4zzOnD9NP1Fn81RUlpGqSOopH9sik84yOJDGjtk4lsXL67fxwEPPseaFLVpwzVReIHTeRKi7EpQIjoV9faQZJZVSCOM8zZjWztvffg4LF81AOhb5TJ7y8iRllSnwfDCN9gYG0kjbIh6z2fjSdh548DleWLuVfM41SqRHcyg9ZshBCDN9oRRCSoSUTJncwjvfcR4LF8/Ejjlk0lkqK5KkKsvA8xGOTS6TY7B/GKQgkYixddMefv3ASp5d+Sqe6x2TQ6CKaZvH4mDZFhM6Gnnb1Qu58OJ5xJNxMukMqVScypoKbWNLks+6DPQPoYR2Jra8upvfPLKaZc9uIJvNaw6M5iCMHU7EQUhJe1sd17z9HM4/fw7lVWWkhzOUpxKUV5chTNmW6/kM9g3hKUil4uzddYAHfv0cy57dQHokqzkoQIYc9F0Q8gnMFKFvHFcL01vHcGhuruFtVy3k0recVeBQloxTXlWGVIAt8fIeA31DuEFARXmKPbsO8PjjL/Lo4y8wMlJ01MfD+ztjLKo7rXPfI0SI8HuM4VyOS773729MFc/VV19d+Hvu3Lmce+65TJ48mZ/+9Kecc845AAVVzhBKqaPWleLLX/4yX/jCFwqvBwcH6ejoIJ/J4Vvj+1dCCHbuOsiTyzaQzrpccP5sWtrqyeZc8LU0u1IKy7Zobq3Dzbk88uhqXli3jS3busmms1ovxDS7i0mJ7/l4gcK2JFbooFgS1wuwUNi2hRso8q4Hbh6JYNeewzz97AbSmTyXv+VMWlrryebyWH6Asm2E76OEoLmljvRQmudWvcby515l09Z9jAyN6GRJS2I7NnHbwnc9XYJrWcTQ8uqWLXH9AEspbMvCQ5HPaw5Cwd59R1jy7EYGR3L80eXzaWuvJ+/6po+PbjQohKChqYZczmXFsxt4/sUtvLJpL5nhEfxA28GO2cQsifB8vCDAsizdQ8hwyPsBUikc28JT4LoeKucicnm6u3tYtuo1XAUXnj+bjgmNZPMeyvWxHLsQjWpoqkWgWPr0Szy3+jU2vLqb4cERfM9HSYll7CA9D9dwcAR4vsI2dhBK4VgSH0k+5KAUBw/2sXzVa4zkPC6/dB4dnc3kXQ/pBQjHQgSKfBBQ31hDPueyft1Wlj/3Ki+9sovBgTSe6xkOFnFLIn0fN1BYlsARAtcPiNkW+UAVOQiJ6xc5HD7Uz4rVm3CBSy86g4mTWvAChfJ9pGOjk20CauqrsKRg1cpXeW7NJta+tJ0hw+F4OLLmVfbljhx3mwgRIkR4ozASHD8KXIrf+aNWWVkZc+fOZcuWLVx33XUAHDhwgJaWlsI2hw4doqmp6Zj7iMfjxONHR0picee4Oij9fcM8vWQtr6zfxt7dB3nv+99CdXU5Ap2f4JiEyuGhEe6+cwkPPLCSw73DOoEz7gAmUhIoPBWYfjl6uiU0sW10MpTQlTiYgUnaFgIYGBhm+TMv88pL29m35xDv/+BlVNdUFOcjTMLtwMAwD/x6BQ/+eiV7unv1fhwb2zEclMLz/ELPnpCDD1qrA1BSFqp1SjkMD2d4dvkGXnlpOzu27uNTn7mGmtAOStvBloJsLs8D96/gnl8tY//BPnzf1yqsFDn4flDgIAyHQOhcE61GK7VTpRS2FMi4gwAti7/qVba8uovtm/fywQ9fQUdno9aFwXxeQC6T44knXuDO259i9/4efN+UD4d9f9Bl2wFGwl/pXCFfFO2A0JVZqGAUh2zOZc3zr7Fp4042v7qLz/zptbS21pm5KZ2IbAlBLpfn6SXruOvOJWzfeZC86xGzJXErVoic+X5AoVmi0jbwwvvBRE/G4+C6HuvWbmXr5r1s2riTj3/irUye0opA57PoxGfdf+nZlRv58Q8fZtfeI+TyrtaBsY59vwNYWSuqMo4QIcKbFqfy+/Q778WTy+V49dVXaWlpYeLEiTQ3N/P4448X3s/n8yxdupTzzjvvlPftKx3eP9Zi2xYJ26a3b4g7717Kiy9swTNP7ORchKUl5des3swttz7OgBHZitlWYR9hoiugp1IolhcLilUjYY6IFMXqHt9ENBKOTTqd5Vf3LmfZMy/rBE3b1voots4T2fDyDu6882n2HegtcAhOwEGhk1ZLOXAMDknHJpPJ8ct7lvPUk2vxPB/Ltgp2QAh2bOvmxz95hH37e4hJSdyxi3k4YzgU61qKzfbCLBilNx7FwbIkyZhDNpPnN4+t4cknX2RkOIMVd8AorToxh82b9vLTWx9nz/4eHMNBlXAIz52SnJewkueokusxHKQQJGMOnufz2BMvcv99z5LN5BCOrZsAmkTe7v293Hrr47y2aS+2FCRjNgoxjh1KOChwEFpc7zgchOHgux5PPb2e++57lpF0FidWtIPl2HTvP8KPf/IIW7bvRwo0h+Pc6+GiRt2d0RIt0RItb8bl5PC6Oyhf/OIXWbp0KTt27GDVqlVcf/31DA4O8tGPfhQhBJ///Of5+te/zr333suGDRu44YYbSKVSfOADHzjlY+mkVXHMRSnd7E8FirLyBFXV5cTidqE0GMCxbaqqy6ioSJlGf35Re8MMRGEpc+lkkjrBa8ZwCHzdaK+qulwnQ4qi7L3j2FRVlVFekdRRCcOBcTmMvrilGURFDsWB9GgOcWpqyombCFE46NqORUVlisqqMqDYoDDkII7FQZUkg5bYINyiyAF838f3A5KJGNU15SSSOiqm5ee1E1NRlaKqqgxBsVHjKA6MPg7jvC7lIEo4AAU7xOMONbUVJJNxXdpt8lUsy6KiIklVdbkudfZ807macewwGqV6MOH7xa/kaA6+4VBdU04ytEPo5EpJeXmSmpoKE03x8X113Hu9eI4n/+WPECFChDczXvcpnr179/L+97+fI0eO0NDQwDnnnMNzzz1HZ2cnAH/7t39LJpPhs5/9LH19fSxevJjHHnvslDVQwPQtOc7vcaHzrG0xeWILE7uaEAj27+9h65Z9TJzUQltbPR0dDUyd0sq6ddtwPR8pJbatfbdA6d41wjyBF3r0AIiiHkj4nk/pwKiF4nzfx7YtOic00NXZiGVZHDzQy7at+2ltrWNCZxONTTVMmdzKoYN9ZLJ5LClNFQ4EmOOaBMywT04o3HU8DlJA4GuHw7IsJnQ0MGVqG0IKDh/u59VXdtPeXs+EziZaWuqYNWMChw/2k8+7o+ygEIVpHmkcjjB3KKxgKuVgCnyKHAI9RSUtSUtLLdOmthOLOfT2DrHptd3U1lYyeUorDfVVzJjewa6dBxgZySGlwLIsc56jOVDKgdEcGM8OJRyaGqqZMb2DWNxhYCDNKxt3UlVdzuTJrVRWlTFr5gS2bNnLSDqHEGDblhH/OzaHsKeRrioancArRCkHrfPS2FjNrJkTcGI2AwNpXn11F+XlSaZP66C2rpK5c7p4+aXtZLN5oMjheAirmSJEiBDhzYhT+X163R2UO++887jvCyG46aabuOmmm/7bxworI8aDMvkSXt4jmYxz9vxpWLbF2nVbuf2Op1ix7GXOXjSDj37ocqbN6GDh4pm89NJ2vLyHZVvYJnHTlgFBoKeTlAinElRBBExQbO6mlOn/IwRIqfMlfA8v7+E4NnPmTqKmtpJNr+3mx7c8yrPLXmbm7E4++fGrmTyljXlnTeHFtVsYHhwB28KyLYQU2EZ51FcKX4jCAFw6rRJOswSAZfJalJQgwHddvLyHnZTMO2sqDQ3VvLJxF7+8dxmPPfw802d18uEPXc68eZM55/zZPP/8a2TSWQIZYDs6wiALHIwdQkek5G6zQg6j7CD0oB5oDolkjOkzJlDfWM327fu5666nefQ3z9PcVs9nPv025s2bzNkLpvPMMy8xNJAmkBLLtB6QprOyp5SejjGVOkHJdbfG2EGGXqwQBJ65FjGbKdPamDS5he3bu7n/1yu491fLaG6t4yMfvoIFC6Zz9oJpLFv+MkMDaQQC27a0VL3h4CtFMIZD6CQV7aAbT1olHJTv4eVdnJjN5CmtTJ7Sxo4dB/jNb57nnl8+Q3l1GR+/4Y8499zZzF80gwcfWkV6KINCYTvWMe/3km9FlIMSIUKENy1O5ffp9K5HNE+y479nNEosSU1NBRPaG3jyqbX8+r4V7Nyxn3gqwYurXqXnUD/XXHsek7qaqaoqZySTN6F5vV8tRW6mkwi7IxdlzwVmIEIP3MpsEwqUKUBJQUVFioldTTz33Cvcf9+zvPLyDmJlCTa+tJ1//7+/4K1vO4eujkYa6qvo6RkqclBFh6gQKTCJuUUOJspDMUcjTDzFbK+k1iKZOb2DFSs28stfPsPmV3cRS8bZ9Oou/vPb93DZlQs4d/FMmppq6B9IE5hkVyjlUDxnDKfQUQsH6bDNQKCMaJ3Q2iWB0Bw6Oxp45ZVd3Hfvs7y0djMy5rBn5wG+/R+/4sqrFrJo4XQaGqo40jNYSDwezw6FvB+K0ynH4hBOgCkhiCfjzJjWwZbN+7jzrqdZ98ImhOOwf89hvnvz/Vx0yZm85ZJ5tLc1sG/vEdywckYpAlThHijNPRLmEGH34ZBDaDup9N0Q2iGRjDN5Ugs7dx7gl798hnUvbiFA0HOon+9959e88spurrnmXDra6jl8uJ9czuW4woSFe+GoycYIESJEeBPh5H+fTutuxosWfvr43YylJJGIkapI0lRfzcEDvXQf6kMIQVUyTn8mB4HuxdLW0cj+A71k0lly2TyeXyyFUkLL5VtK4fo+wrapKU8iBPSls/h5F8eSuorGlLmWcojHHRJlCVqaaug9Msi+7h58pahKJUibYzXWV9HaWs+R/iHSAyNkT8ABy6K6IokjJL0jWbxcHkdKlHU0ByklibhDIpWgtaWW3iMD7N2vOdSmEgzmXDzPo6aqnEmTWjjcM8jQ4Ai5bA7XK+GA0OJ4SuGa8ueq8iQxS9Kb1hxsKXXp9Tgc4jGbZFmShoYqRoYz7Nl7GNfzqUolGHE98nmPuppyOjubONI3THpQ20FzKOa/CEsQQ2uWBFJQVZEibkn6R3LksjmckEOgEEExviKFKHQibm6qIZfJsXPXIbKuR01Zgqznk825VFUkmTixhaGRLP19w2RHckdxkJbAKeFQXpakwrHoyeTIZ/JYQujS6zEchBDEYw6JVJzGxmq8nMuOXQfJuR5VyQS5wCeTzVNVnmLy5FYGhkcY7E+TzeR0afgJvtxvHdjG3Ozh424TIUKECG8URgKf9+9ce1I6KKe1g3LOOZ85plAbgFDhU7Xpx6L0E2YgTIaqFEjzBKyEQJYosgYm/BG4HoFSxJJxlIKRoRGq6yo4//y5xOIOy5e9zKHuHpLlSWzbIpfJIUBXyMgwqfJoDkoII+Cln/AVovAYbo3l4PkEQUAsEQMhSQ+lKa9MccGFZ1CWjLNy1avs332IeCpOLOaQHckiFFjOsTiY6I4QqNAO6H4xSoDUboC23RgOTiKGEIL0UIbyiiSLz51FXW0lK557hT07uokl4qRScUaGMyfgULTDaA4UyrnleBz8ACvu4Dg2w4NpnJjN+RedQUNdFWte2My2zXuJJ2LEEjHymRwqCLTOyomuRThdpw1DYC6H6QakOVDkYMccbMMhFneYv2gmXe0NrF67ha2v7caybcoqkmSGM+NyCCNtYSWQEqACHemywsjZeHY4Aa7u38rckUMn90WKECFChP9hjAQ+7ztJB+V3Xmb8u4Q4wT8UEkophOdB5wi4qtjsrTREHxQGSOMkKKMEKoqdicvLkpx51hQWLJpBdXWZ0cTQcuZBEBQrT0yKZoEDxU7AFkbDpJBFYs6pwCGs/NCJlUGgu98qdPJvKhEvcKivq9THNTkXKlD45qm9wIHRHEDnibhK64+I0ndUYValwCHM6SnlkEzEmDt3EovPnUVTQ5WuggqKInjH4hDmbJTaIXQESu1Q7AxdwiEo9hfy/ADHtpkzZyKLzplJS0stynQfltLkyATKOAFjOKCMo6LvA1+F9xSjthnFgbAaKTDaNwLfD4g5NjNndrD4vNm0t9WBAj/QtkIpM1U2moNSSu/fcAjtEDpFYcxFjrXDie75CBEiRPg9wemdg8Kxiyq1T6JGdZYNRz+dn2Ckyc3q0FMLUCZvIqwMKf43MAquNTXlTJvWTmVVivq6SmzHIjAD59hBIuSgBx6BFzpJoshfjcvh6GTHsORUWhZVVWXMmN5BZWWKxsZqnJiDCh2CkmqjMIIUaoSEHMLjhfYpdZwE4JsoSshJ6R0jEPi+j2VLKqvKmDatnclT2mhuqsFxbOMQhA5dMTinSjnoRJpR+SNSgApKOBinIRywzYkBOjE18INCOe7UKa1MmdLGqpZarSeiihxCI4ixHLS7McruQpSsE6EdRkdSQh6ag64IKi9PMmVyKzNmdNDWWk884WiV3IIdRAkHSjgUbSONAyxFMcIiDffS7SMXJEKECH8oOK0dlLFVJOO/Hw42o2IEBWciXCNFUZdED9raKbEsCZbU+/J8KipTtDTXUV9XSU1NOa2tdVRWlZMeyaIChW3EzcLjK4Xpz1IseQ2hdVzCvEftECgBgXmEDwckaUmkafzn5l0qKpI0NdfS2lqHbUlaW+qoqamgf2AY3/OxHAvh650XOKAKzkc4UJYOeqV2wTgLob1CDmEFiZt3qShP0dRUQ31dJVUVSVpb66mpraCndwjf87FtG1/4RQ6UJvcaRV5zrAIHQ0SYN7STVSI9JiW2o6NEubxLKhWnsamaluZaamsqaGvTHAYG04aDVfhs6Cjq5o7F6xCetxShsxQ6pKLAwUwI6e2kxLY1l1wmRyqVoLGxhva2eirKE7S31VNXV8XBQ324ORfLsQqJvQUOJdbWkRyz78K1KP43vEdVSdL1cWGihREiRIjwpsQp/D6d1g6K7mZ87Fkq3w8QKigML6F2SaDAEUJ36MXkPpj3hBlELUviODY1NRXU1VVi25LBwREaG2s4a/5UKiqSOI7NvDOnMDAwwv79R6iuLsf3A/r6hujpGSSXcw0HzacwlYSRNUc7RYhiLowekgKE0E6JbVs011ZQU1tJKhnj4ME+WlvrOPOsqZSlEggBs+d00dMzyK5dB0kmY9i2RW+v5pDN5lFBgDChgCIHgYe2gx40S+xghsXQQbMsi4bqcurrK4knHHp6BmlpruOMMyZRXV2GlIJZs7vYv7+HHTu6qahIIaWkr3+II4cHdKO/ICgMrqUcfGXUcI/iUHSmQj2WhupyamsrKStP0Nc7RHV1OTNndVJbW4ltWUyb3sE558xiz55D2I5FPObQ1zdMT88AI5kc+EVnQ4lijpKndNSm4KyM4ak56AThqqpy6uurKCtPcPhQPw0NVcyc2Ul9fRWWZTF5ahvnnDuLbdv2gRCUpRIMDKQ5fLifdDqruzGXSt6iozm+4QDFqFaBgyEiZVHs7VgIpyIjRIgQ4c2IU/l9Oq0dlEJqxzEQmEoS6WjZeKEUQgo8BY5S5JE4UqF8hY/EljoJUimBsiSpsgSLF8/g8svPpqGphuHBEWIxm7qGamIxhyAIuOSSM5kzu4tMNk9FRUr33ln2Mo89/gKHD/WjAoXwfWTMJkCHRywpyQtwAoUnBLaJWARCa2ZIT6FUAKYCaOHCGVz6ljNpa6tnaHAEx7Gpq6/U/Wn8gHPPm8306R0MD2coL0+SyeR4dvkGHnl0NQe6e1G+4eDYOkHYD5CWwEPgqABXCSwhkEGAj8CyhG5iGICyLOJxhzPPnMzVVy+krb2BoaEMjm1RW1dJKhXH9wIWLprOpEktDA2NUF6RJJvJs+q5V3no4VXs23dET/2EHKQAL8CSAleAHSg8w0EEikDo3kDKD3TiqKUbNs6dO4nLrzibyZNbGR7OIgXU1lVSXp7E9TzmzZtMe2s9w8MZkqkEvu/z3MpXeOTR1ezadQilPJSvI0xKSFTgYVuSvBA4ge4JJKREqlCe30L6Hr6vTBTLYtasTq66aiGTJreSyeRAQW1dBZVV5fiez6xZnbQ019LfP0wyFUcFivXrtvLrB1aybdt+HZExwn1KCpSxgy90cmzYmNFS+m/LsZCBh+8FqOM446U4kRMTIUKECG8UTuX36bR2UHJZF9861sma/ivSwjH5JHkFtoK4FAx7ikoJrq+foGNCl6F6aCfF9wMGRZrNW/ZRU1PBOefMZMbMCToR1KjNCgG2JWlqrsVxbLZt3ceLL2zhlVd209c7RDab1zLpUne7lUDOeFQpIRhW+v8+WnzMEQJbCEZAd072fZQK2LJlH1VVZUgE886aoqMRJmFVCD391NhYTWtrHfv2Hmbd2q1s2LiT3p7RHGzjDOWMW5eUMKAUFVJHlfIKbAm2EGQQuL6Pn9WVMNu2d7NmzRYsy2LmrE4cx8Zz9QCvAOlDfX0VLS11HOjuYd3arby8YQe9PYPkMnkt4y4ESSFwgKyZTktIwYiChHnyz6OwEVhSkAc8P0Bm8yg/YMeObl58YQu2lCxcPBOUwnU9YwcL4fvU1lbQ3FJLd3cva1/cxksv7eDwoX6yI1n8QHOwhcARkAE8pUhZgrQHjtRqsDkT1bElZIUgH/j42Tye67Nz10FefHELQgjmL5iG49j6fhBoRzhQ1FSX09BQzcBAmmeXv8y6dds5dLCfbCZPEKiC0J0tBDml1WbjUpBWirglsYS2jxQ6wpVFkA8UfjZ/wkRY3/ejKZ4IESK8efGHMsUTcyxs+9in4CvTbdfXuRCYyg6hwBOiUCGBqbbwg0BPq1gWlgDP9Xh5/Ta2bdnLyy9t5wMfvpx5cyehgsAIo+lESSElm7bs5ac//g3rXtzK4HAGKQUxxy40NNRJtJpDqDDqh0mZpryUsEJEShxLYpsS3A0vb2fb1n2sfv41PvWn13DGnIkIk1viK1AqQEqLbdu6ue22J3j+uVfp708XOAQKPDSHgsqt4eCFQ54KUKYM1vd9kIJYzNYclGLza7vZvfMAa1/czAc+ciWLF07XFSomEdT3A5SCA4f6+OGPHub5la/Q159GCL2fUg5CCITUuRWi1A5KEWYGB14AUuCEHFBs2bKPXTsPsPaFzQyms1xw/pxCFlFA0XHcu6+Hu+98imVLX+JIzyAI3e/IQjskQaAIVICQenpLBlqh1wE9BSO0lx94gf6s4SCAHdv2s2/PIVY//xrv/eDlXHbpmVq1Vyl8BMKcX2/vILfd9iRPP/kiR3qGUCh9LUIOYXWP4RB2hhaGA6KYFK3GcDgepFEPjhAhQoQ3JU7h9+m0dlACxXGTZAXgYPQ+MCcrBHkF5UKQMYOrrZSpGBHYpvAzMJU8tmPjuj6rnn8NpKDp89W0T2jEd80gnohz6GAvd93+FMuWvYxtWzp8Hw7egCN0fkVA0eAjCpJCRy2EEDgl1T62CKs9VIGD5/ts2LiT73/3Ab7yvz5IR0ejtoHrEYvHGBhIc9+9y3nkN88TjzvYTpEDxg4IgV/gIMgEUCEhb3JxHEIOoR1Gc/D9gPUvbWfkvx6gs72etrYGQBhdEJuhwRF+9YulPPjAc6SS8UK58XgcwnyLnIKE0GXflBw35BlyQAhsW6IUbN3ezY9/9DBNjdXMnt2lHUZP68QMDKR5/NHV/PrXKwGOycGjmJQ6Yjgo0Hk5mJJmIQq5KcpEgGzHRinYvuMA3/3OfUzqamLqlDaklOQzeRLJGJlMjiVL1nH7bU+STMawLNP2IDjaDiGHnIkiBWr0uXsltgqTjY+HMIcoQoQIEd6c+AOZ4tEZjMc+WTGe82IGO1X6epzdKrNfXQWjE2cT8RiJRKxQFSLMA388ESOR1AJmoe5GyG1cDoy9RCfBwQxu8YTmIHWtbmHQi8ccEskYUmotFkzy7ejucaVpuvrvQpXLMTiOtQNALB4jkYhj2bKg0WLZgljc0d2BpdDTUGFEZBSH8ZkcCyGH0ObhIB2LOSSNHYKgyE3bIY5lSVzXM1VJYlTp9bjHOFUOSmkOyZgW5YOiA+LYJA2HsOz6KDuURItOGlFuSYQIEf6AcFo7KCfqZqzQwloYB2OUpgnFpm5QLEUFUeg8q5TCc3V9SWVVOdNndFBRmSKf99i9+yCe5zNxYgsVFSlmzOhg2TMv0dc7RKCU7jxrGuWFHMAM+CUlo6Lw1uj+MkKIcOYJz9N5BfFEjNmzOqmrq8L3A/bsOUw6nWHSpFYSiRjTp3dQX1/JkSODOqrhjMNBhLbB2KH0uOIYdtAclFIkk3FmzOiguqacIFDs3XuYwcERpkxtI5mIMW1aOw31VfT1DeF7x+BAsex2tB3UqL/D7UING8/zUYEimYozfVoHDY3VKKXo7u6hr2+Yzq4mKsqTTJ3aRlNTDXv2HMLztHCctIpCa8fjULCDGJ+D7/kESuE4NjOmd9DSUgcourv7ONDdw+QpbVRUaJn69vYGuvf34Hk+lm1hWWFtlNm3iU6FHAq9jgJ1tE0MhxNO8dgWMuacYKsIESJEeGMg/T+UCEqhCHR8SAkohWfU2EKtk0ApHKkTDyU6OTYwOR2WFQ5c+onY83ykFDQ0VjN37kTSw1meW/Uqt/70UUZGcnzww1fwlkvPZMaMCTQ119LTM6i1SCwJSMMBPPN0HU4ZaG0Uga+KEuuB0lNLtiUKHJQK8DwfIQQVlWUsXDSd4eEML7y4mR//8DcMDQzz7vdeyuWXncX0ae10TWzh8JEBPCMiJuUYDkoVuiH7ShGTQvesGcVBYUuTJ2I4+KYnT3VNOQsXTCc9nOHlDTu55SeP0L3vCO9+7yW89epFTJ3axqRJLaxeM2Q4CKS0Cxz8YLQ42tF2ECUcZIFDgML3fZSCZCrO/PlTEQjWrNnMf33vQfbtPcTVbz+Xd113Pi0ttUyZ0sbevYe17aRAWpY+b2E4hHYwx7bDewCdIKuvka6qskwSsULh+ToyVFEZ49xzZ+G6HuvXb+fnP3+C1zbs4KprzuUd155La2sdc+ZOpPtAL57vm9J1p+BQ++Z+kybSFto8vE9kmIujFJaURhn3xN+IpksvYEpXzUl9e/5bOFHYKTp2dOzo2NGxx8FwNgN/t/qktj2tHZTjuyd6C603piMoYRKiBbq01CQmhrkACkWAxCIUEtNJnbbjMGFCI5ZlcdttT/DYY2vo70+DgB99/0F2bNvP2685l4kTm9m8aQ9u3h01naAFwnRuSahc6wA5IGaOX8xHUASIEg66XNpxbNrb6qmpreSO25/k8cfWcPDwAI5t8fNbH2Pr5r28690XMn16O+vXbSOXyR/FAbR0emCcBcfYwTLbhRxChdlRHIyEfUdHI7V1ldx991KeePwFDhzsxbItbvvZ4+zYtp/3vPdSZs+ZyPr128hnc6VBGwIz8EtV/NsGXIo5F6V5GVoPxGiyKEXgawn7+roqmlvreOCBlTz04Ep27jqIE3P41d1Ps3/vYd5x3flMntLKqlWvMpLOFiIUlNhfhnwCfQ3y5r6Q41wLLbVvBO98nVzb0FDN5Cmt3H//Ch55+Hl27DxALO5w/73L2bWjmz9+zyXMmzeJ5cteJmM4hDetKnAIezLp8/eE1jyxoJAjE16LkMOJfjSaL7+YaW9ddPyNIkSIEOENwuDgIPzd505q29O6WeCChZ/GtsbvZqynJ0RxwDH5IIECK2ZTk4rTM5IjyHuFp1hfqeJAacLviZhNMpWgvqGa8lSczZv3cqR3iKryBEJK+gbSVBvZ+bznc/BgH9lMTouTmad0iUl2lEbnQylkzKEqEWM475LPuTqyMh4HBPG4zmmoqa2ksa6Sja/s4kjPIKlUnFTc5nBfmvJUnOnTO7Bsi/3dPWTSWTI5V/fGQU8XFeyA0mq1tkVDeYK+TB437xaF7AAZOi2GQyxmk0rFqa2ror6mnFdf283hniHKkjGScYeDvUNUlCWYPq2dWCLGnj2HyWVyZLJ5XR1lOISqqsLkzwjbpioVZ8T1yGXzpi2BFtErtQMI4jGLZDJORVU5bU01bNm6j+6DfcQcm4pUnMN9w6SSMaZMbiVZlqC7u5eR4UyBg0CXERftoB0vZVnUlMXJeQEjmTxS6bJsXxUVhb0w/8bkl1RVl9PRVserr+3h4KE+LMuivjLF/p4hEjGLSRNbqG+oZueug/paZHO4vrZDKEyHuTdUgUOCEdcnm8sjTWm4b65FyOFE39avfOWDvO1ti0/5OxUhQoQI/xMYHBykurr697+b8aLFx+9mLJUCzyeQEjsRw83kCPyASTMnsHDuRNZs3MXWjTuRUhAvS5IbyWIrhbAtfKH7rTgmFyHv6y7IMQm+r0qiAQrbkrgmTBKTAikFrplKkkqLpLkK4mUJ3EweN5ena2YnC+ZOZNOOA2xcuwWBwCmL4+VcLD8ocBACYiZPwQ10xCdmEkPzChxLV9HELEk+0FzjZlrCVXpwlwqE7+EhiKXi5LN5/LxH68QWLl40nQ3bunll/TYCzydWnsTPuwjT88eXmoNjHLxcoCt9Qg4+piTXD4jbkrwCFShiEmwpixwA4fl4KOxEnMD1yGfztHY1c878qew52M+Lq15F+QHx8iRuLo/0ddl3YCT2Hak55M1xHTNnlzfTICEH10zPHZODUjipBH7eJZ/JU9dWz8XnzuLAkQFeWL0JN5MjVpbE932E643LwQ0UrrEDgbZL3LHIuz4JS+Kip5LihoOntIMRcvCVwkrECQIfdyRHbXMtF547kyMDGVY/9wr5TI54eVILB7qePj+jOXM8/P2XP8BbowhKhAgR3qQ4FQfl9J7iESeQ/lam+63QToP+GyZ1NXPuhXMZyLps27gDz1ekbIlQOsfAMn1nwj1rqfqwZ4qOBHgUpyjANPgrpECaTi7GsfD9AITAsiwyQYDvB3RNaOTcC+aAY/PK2q14QUBcSq3RciwOCnxRnKIAjpJIFyUc9L8638TzA5Th4BuF1vbWOhZfMIcg5rBl4w7SOZeE0eXwfa1kK4QsTqUpXRkViNHVP2HCsTF5ic0o9N7RuUBa7l47T9ouLU01LD5vDjVb9/HS6k2M5F2SUk/s+EYnhBL9D2H2XdoNGUzpsijawVyyozj4ptu0Y1vksnl836epvpJzzp/Ntu0H2PjSNkaGR4gJw9NcOzGOIGBYsBU2FvTUaIn6Ug6M5aAUMUvg+drW9bWVLDxnFgcOD7Bh3RZGhkaICy1vnw85nIQOij7fqNonQoQIb078wSjJnigHRec0iIJsOggSCYeuCY1MnzGBLVv2kUjGSY/kEEZiPAiUyb3QCAchTF5IOPBYIkxaDLvfCi06pnSORchPAUE4uCidnOnEHbo6Gpl7xiSOHB4gmYozNJyBwIiHiWL+QZGD3mk47REmc4bXOlAmuVMJI96mXYhC7kXIIdCCarGEw4S2eqZP7+DIkUHKypKMZPIoz0cKLUEfNtADfV7hWRWckRKOwnCQYbULjKoMguL0jsm8xXZs2lrrmDmjA5QiVZ4gk8uDEZTzhM5BkcYd0gnOxXMP9xl2qy5woOg4+Udx0CelBfICLMempamGuXMn4tg2lZVl9PenUX6AJfS1EKLECSx4HjqnyJymnsoT6GaPFHOdxuUQOnhKT+9YMZumxmqmTW2ntraSqsoyenuHCjL4aoxTeiKchkHRCBEi/IHgVH6fTmsHRY9YwTHfFkIgHQtpWXg5F8exqK2vYkJHAxXlSTrbG6itr8I90IubzWtRr0I5i37a98KcDGGSXM0gaZuBy1XaMXHQSZceOsoQ5nAIIRC2hZQSP+9iS0mlyV+oqkjR0lxLXUMVedfDz+npBOnYCMOBkIMZ/GNCOyAhBykELkURuCIHkBT1UIRtYUmJl3expKC6tpKO9gbKUgk6Oxp1r6F0FjebJ5aIGQ6y4Ez4JXYocEA7ClKAK0oExgyHwORwhJof0rYQUhK4PhJBRU05He0N1NZU0N5SR0NjDSMjObxcHmnbmoMQBa8g5KCnvbTT5GPsgBZfG49DmGQb2kEI3c6AQFFVU0F7WwNVlWU0NlTR1FSjGz1m8ljJWJHDGDsIRnOwDA/3ZDiYztS+54MfUFVdTltrHVWVZaQSMZqaazl0ZIB8JodTljyKw/EROScRIkT4/cBp7aBYljhmN2MhBKmyBFU1FaRSCYb7h0mVJZg4pZX2CU1YlqS1vYGz509j+5Z9ZNJZymvKGRnJMdg/zNDgCAplZOq1KJsU2gEo7TYbKB1xCZNxC4O2lEghSKYSVNWUk0olyGdyCCFo72xkQlczQgiamms1h8p9DA9lKKtMkc3lGegfJj2UwQ8CzcFUw0j0NE/okFjo/jUYDkHIAXTjOyCZSlBdU0GqPEFuOIOQkomTW5k4uRXbsWhoquHMs6aQTMQ4crCP2sZqMtk8g/3DDA6kCUxJsgpUUV/M+E+20NGkfCk/itEUPb0mSSRjVNWUU16ewjUdlls7Gpk8tQ0nZlNbX8nZ86dSlooz0DdERXUF2VyeoYE0gwNpY4dQP6SoCxKYKS5LUOBQiFwZDpaZ4osnYlTXVFBWnkR5PpmRLBMmtjBtxgSkFFRVl3PGmVOQluTg/h6qaipw/YCB/mGGBtL4vo9ncmwwdijVXrPQdginvxiPQ9zYoSKFn/fI5/J0dDUzfWYniaQW/Jt31hQQcGDvEWoba8jlXYYG0wz0Des2BMdBNL0TIUKE3xec1kmy55//2WMmyUopmTG9nbdfvYhpMzvJ5PT0RW1dJTX1VSQsndDZc6if3p5BhCVJxB12btvPo4+/wIvrtupcDaN7EZgBSUqJbxr1KeO82LZllFOL1UPCkliWxbSprVx15QJmzp6I5/t4eY/qmnIammqIWRIvUPT0DNLXM0iA1vjYs6ObRx5dw7qXtpPLuQUOqnBugsDXOTGOLXFdH9uouhY5gJAWQgomT2zmbW9dzKw5XQQKctk8dbUV1DRUk3IsXAV9vUP0Hhkg7wdUlCc5sO8wjzy6hueefw3X9caxgygop0opcL0Ax5Z6CkYZlV0JUlpISzKho4E/uvxsFiyaiacU+WyeqsoU9U01pOIOPtBzZJC+ngFcL6CsPMHB/T08+dRaVjz3KplMHhVoobZSDirQzpNtSTwvKMjhB6G2i9SOmpCSttY6rv6jBZx59jRsx2YknaG6upz6xmrNQcHAQJq+I/2ksy4VFSn6jgzw+OMv8OxzrzAykiPwNYfCNJvh4AWKeMwml/dwQg6m+kYAwmjSNDfVcOVlZ7H43NlYIYeqMmobqilPxgiEZKB/mJ7D/Yxk81RWltHXM8CyZ17iiafWMZLJHfe78bd/+z6uvjpKko0QIcKbEzpJtur3P0l2ZDiDZY3/RCml5MDBPjZt76a6voo5cyZSXpbA9XSreykgrqChsZqW1lp8P2D16k1s2r6f/d09DA+O6Hl/28KJ2TgIAqMiKqUo5l5YslCtI20bD0Xe1d1vpYCDB/vZtL2bqtpKFi2cTjIVJ+/6xCxLD+AKausqaWmpJZ9z2fjKbjZt62Zfdy9DA2ndzde2sB0bRwqU6+ErLaLmGOE1S8pCwznb0tU/ec/Dz2ZBKQ4dHmDz9v1U1lSwcOF0ysuTuvTXPNU7CmprK2hoqMLzfV59ZTebtu1nz74jDA+m8X2FsCVOzMEWAnxdhUKooaLADpveBQGObeEhcD0PP5dFKDhyZIDNOw7Q0FrPmfMmUVdXiev5RoRMIlHU1FbQ0FiFFIKXXtrBpm372b33MEMDw+TzPsKW2DEbR0rwfHwTnnBMVqxVyqFgBx/f5LUcOWKzZccBquurOHfxTGqmtemEZIQWlFNQWVVGfV0lnu+zfVs3m7d3s2vvYQb70+RyeUR4LawSDqbaC6UFAAOAIMAx1T+u5+NlNIce22LrzoM0tjUw/+ypTJvWhm9aE1iWRCKoqkpRXV2GlJItm/eyZXs3O3YfYnBgmFzOPe53wnPD9O0IESJEeDPi5H+fTusIyuKFn8a2x9dBAa0r4sQd2lvqePe7LuDyKxfgxBykSVQNci45k+fx9JNrue2Op9h/sI98Nm966AjdZRjtSAhhOtYajRSBDvcHUmChQAlCFV9h8iaUEFgxm+aGat557Xm87dpz9QCnwE7G8LMuWV8P1M8sXc8vf/kMW3cdIJ8ZhwPFKhpMyaqSOhGiyEF3B8ZsizIcHJvG+iredtVC3nn9RbpnThDgxB18PyCf95C2ZM1zr/HTWx9jx55DZEay5jxAmTLb0A6BqUjRiaEC4St8KUwlkyhU0pRykLZFY30Vf3TFfN717gupqC5H5T3iqTi4PulcHidms/aFLdzy08fYuqObzEgOYa5RgQNFEbXx7FBqp1IOYQ5KbXU5l150Bh/66JWUV6QQrk+sTJc+Z3MeTtxh/bqt3HHbk2zYtIf0cKaEg46JHHUtFAS2RHpB0Q6KozkgwJbU1lRw8flzeM/7LqWltQ4355JIxFACMukstonm3Xzzr3lt6z6GhzMI/9j5ViG+/Pcf5K2RDkqECBHepDiVMuOTLQx4U0KZotpxFyGwzJP2zp0HuPl7D7LuxS0IpYglYijfR8YdbNti3dqt/Mf/u4c9ew6jXA9bSrOPYr8fRVGaXBWOb8qLTR6CLjU2FSZC87OkQPoBB7p7+eFPHuGZpS/pCpZkDIIAK+HgODYbN+zg+z98mFde243KGw5iDAcV9mXRxw9zYcLkVaWK68IqlwKHIODQwT7+64cP88zS9aggwEnEdBWJbeE4Nnt2HuT//N9fsPHV3XjZfAkHYVoCjLYDUFCKDTU+oNhhehQHE205fKiP2+9cwqOPrNZaH6m4SWaRJJJxtm3dz3du/jUbNu40HHSihzJOgRXaQY3O8xAU7R/aZiwHYTj09w1xx91Pc+89y/DyLk5KXwtpW8QSDocO9PK9/3qQFateJT+S1XorBQ7CcBidaxImxhbtIMbnIAU2MNA3xC/vXc699y4nO6LtoJQuiU+k4hw+2Me3vn0vz6/ZTC6dxRFFDsdbIkSIEOH3Bae1g3IiFAcw3VNHa5FISrsDS6krKjwzfTPePsL9qDGvT5oAFPVQoJDYGzaM05onuqojzOs4HodSqGP8Pd4+VGiHUg4leSRSGjsEQeEz453OMY8pxv2zsMLMgmhNFsC2dPFuaVM+KUVBp4USJ2TsDlXJupPmQAkHLzC9l2RJ3yP92rIEvu8Xu0KPC3Vcex/FYQyv8Fqo8PpDIdtWGOfa94NCbtPJ4rQLh0aIECHCMXBaOyhSFgfWoxahhdnyeQ8BTOxqprOrGWlJBgZG2LP3MP0DaaSUdExoZPLkVq0Ym/cKSbDSlKsUZwiMDsp4I3RhkCsZbIVRfM17BIGio72Bzq5mYjGH4eEMu/ccpq9/WCdPttQxaVIrtiXJhRxEyIFRHBjFQRRIiPE4mGTWXN7DDwLa2xuYPKUN27FJj+TYs/cwPT2DIATNLXVMn9GBZUnyeU83SjQcSgfx0oFflP4/9BqOxcH1CuJsU6a2EU/GGBnJsXfvEQ4fGQQBDY01TJvejm1b5FwP1zRKlKZqJ7S/GHtswjeL16XAwdwTSmkOnufT2FDFtOkdJJJxcjmXPXsPc/hwP0GgqK6tZPr0CSQT8dEcZNjluISDKOEgxjhF49iBEg4N9VVMnzGBeDJGNueyb38vB7p7CQJFbX0Vs2d3Eos5uGM4HG+JingiRIjw+4LTOkm2UOc5HpQi8AMC3yceTzD3jIlUVqbYvr2bX/5qGaueWc8Zi2bx4Q++hZbmWs6cN4VNm/YWGv3ZllMYgHQ4P5TaKraQg7EqqmqUuq2iyMG2LabP6KC5qYYD3b387PanWLl0HdPnTORjN/wRjQ1VzJnbxUsvbyc/MIxAYUm7UE6rp3eKcl/h35YAVxU5FN4pcIDA9wl8H8tymDlzAh0dDezde4T7H3yOpx5eyeSZXXzgA29h2tR2FiyYztp12xgZHEEpoTsKCzHaDsK08FO6CaM05bVS6BwVz8SaSjkoPyDwfCzHYeLkFtrbGjh0qJ9fP/gcjz24kqa2Bj79mbczqauZM+dNZsXKV8hlcgSBQMRkwUFBqUIHZN3Rx0SAhNYgCUXbApMTNIpDoDkIy2JCZxPTprXRc2SAhx97gfvvfprmtno+9OErmDVzAmefNYUVKzZy+GAvQQAiVmIH8w8UOSh0uXluFAcTlTGei0L3/glMG4EJnU3MmN5Bz5EBnlr6Evfd/TSpihQ3fPxqzjxjEmfPn8Yjj66hr2cASjic4Etxwq9NhAgRIpwOOGUH5ZlnnuGb3/wmL7zwAt3d3dx7771cd911hfeVUnz1q1/l+9//Pn19fSxevJjvfOc7zJ49u7BNLpfji1/8InfccQeZTIbLLruMm2++mfb29lPiUhphGAsF+EGA6/k0VKSYO2ci69Zv4/57l/Pii1tBwOOPPE/v4X7e8c7zmT9/Kg8+uJLD6Qz/f3t/HiZXdd/5469zl1q6et9XtVorElqRMKsNGAzGxntiJ54k9sSTr50YJgx44rHnmZ+d58mA7XzH/jrxhElsD3gNdmKwsVmFAQFmE0JCGwjta7e61eq9q+pu5/fHufdWVau7JQFG3ei8/JSpqnvuve/7qVLfT53zWUypinBBoasxcXyHjOcsJIWqpROJbiS+L3E9n/JKmxXLu9iz9yi/vu9ZFYtiwLEnXmZoYIQPfPBSFixoo662goETw6oQm03cWK9Ug3IKJEWdmGXhuqNpMSOc8XEDlVlUVZ7mHRcu5rVdR7j3F0/y7LOvEMiAY09v48TxId73/otZtmwujfVV7B4cRQRgJ+wiDUxqB9V8L9w2YR0o2teTSkN1eZql582ht2+Q+3/zHE88vhnH8zjcfYL/bzTLDR+4hIUL26ivreTE8SEALKz4ONHMxUkaZGmZ+fiZDO0gVEVXx/MpS9isWjmf4eEs997zJI8/tpls3qGnb5DBgVGue++FrL5gIR0dDRzr7lep5IlCg0EhS78D0XOPk5fBIrsZRBrAcZWG85d2MpbN8bOfPc769VsYHc3iHurjO/9wD++9/h1ceeVK2tvq6T8+hO/7KsD7FA6KnkHRaDRvF87YQRkbG2PlypX8x//4H/nYxz520vZvfOMbfPOb3+Suu+5i0aJF/N3f/R3vec972LlzJxUVFQDcfPPN/PrXv+buu++mrq6OW2+9lRtuuIGNGzdimuZJx5wK1/GQwRSrVAKSCZuamnLKytM8uf5l9u/r4dVdhwkCaK+v4OBojueef4UT/UMsXtRBeVU5CMiO5XFddbsRRhgkagpsJK4EKQwySRuAoZwLgVQOjWmoHj2BRPo+oGpjVFdnyFRmeOH5VznW3c+2Vw+Sy3u01lVwfGicF158jYH+YRYubMdM2DQ21jA+nsN1Vem3Yg0JJE6girWVJyySlsmJsEOyjar5EWsIVLVU2zKprCyjvDLDSxt38eD9z7N1x36yeY+5jVV0Z0fZ9PIeTvQPc8HqBVgJm8amGsZHszgn2cEggXJ6lAabpGVwYjzUIFVcjwN4kYawTkl5fSUVVeVs336ADc+/wstb9zGazdNaW8mg67N56z6GhkZZvmwewjJpbKohO5aLl7xEGKxKsQagLGGRtk0GsqomSkIqO7iEHYB9pcEwDOrqKkln0uzb181r//sAGzfvZnAkS3t9FaPZPNt3HmRwcITdrx0i73g0RHZwPNU8MAwcFkakISAAkrZFZcqm31eF9Wyp0p7zqM7MhPVTDMOgtraCTGWGfft7+P4//4aNL+1maDRLa10FI4Hk1V1HGBl+nAN7juJJSUNTNdnRHLm8q6rPTkMUP6TRaDSznTeUZiyEKJlBkVLS2trKzTffzBe/+EVAzZY0NTXx9a9/nc9+9rMMDQ3R0NDAj370Iz7xiU8AcPToUTo6OnjggQe47rrrTnneOM34FN2MTaH6o7hRIGio0ZVQZhqMeT4JQy0D+OHyjB3OOnhRmoYM8APVN8YQkB3PU1ae5sK1i7Btixc27GRoYIR0OgmGges46pe2Yaig3Ek0ADiB6jrsSBlWQhVhBVZJ0lSFvrzoowkC/CDAsm1MQzA+niOZSrJm7SIqMyle2LiL/r5BUkkbwzJx8m5YqC3SoH79e6EjY0axEAGUWwZjXhCXzffDKQE7XN/ygkk0CEE2myeRSrB61Xzqait4bsNrHD92gmTSxk4myGbzqldQqCGqpuqF3ZAjN9QNVAdoJ5Cxzqj3kB2mFRd/FkEgEaZB0rYYG89hGAar1yyisa6STS/v4eiRPpKJBKZ9sh1KNITLRMWfRWRvq+iziL4fXlicjbDZoGEa2LbF+HgO0zJZev5c5s1pZMOmPRw5dAzLNEmlk2RzeZWabYYaUI6LLyV+IONZGTeQJE1B3pexziD8vlphPFSsYRq+9KU/5n3v02nGGo1mZnLWuhnv27ePnp4err322vi9ZDLJFVdcwTPPPMNnP/tZNm7ciOu6JWNaW1tZtmwZzzzzzKQOSj6fJ58vVNAcHh4GTi+jJojqcBA1zAvLw0c3qDBWQP3ll+ESRaHJnu+pTAojnDHxPJ/yTIrVaxZRVpZi585DHO8bJAnYpkE+XGuwjGINxGswQXhDsoRaEjAoLFlEFViDqGZHqMsPVCyLkVSppJ7rU11ls/qChdTWVLBnXw+93f0ECRvbNFSsBWAZhVZ+sQYZpeUKLCROmBZbCLUNNSAKIT7FGhJqqcL1fCqTNstXzKdjTiN79x+j5+hxzECStsyTNAhKA3gjO5ihHYSgaNlExp9dFPcBqjqs7/uqSJph4Hk+ZWmL5cu76JrbTPexAQ4dOIZvSxJhtpYfSBVHE6oo0RBed/RZQCFtW0rCzyJuqBzaTmkwLVWl1/N8UskES5Z0snr1Ao4eG+TQgR48odK3CUINUaZOHGgdWVthCtUNWVBYNozHqHCaWMP0nKLDt0aj0ZxFzlo3456eHgCamppK3m9qauLAgQPxmEQiQU1NzUljov0ncvvtt/O3f/u3J71/KgelOKlDFL0Z9Ysxoz/4RbG2URl1UbK/upn6gUQYBlVVGZacN4eKyjLq6irZt68HGcj4GKoelyi54RbHq0iUU+BBSWfgaHxU12NiPIMhBJ4fIAyDisoyli7ppK62gsaGKl6zzKI06ULw6EQNBY0yvinGNU0mnlOW2jfa3w9UNd2KijSLz2tn4cJ2Hnt0I5ZpEPhBaL/JNITXUfR6KjsUX3fx/kqDiLs1l5WlWLyonUWLO3j+uR2q4aMsnDeaAIqOGS2ATKahOIYldkiKhAgR2VZp8H1Vt6SsLMnCBa0sWzaXF57bQcK2cP2AqDhcsR0INRVnQ0UafArfvYAJmidcx1SoOJ3XPSmq0Wg0v1fOejfjiR5SlN0yHdON+dKXvsQtt9wSvx4eHqajo6PkpjfVMaMbgSHUDQDCaX4Z/VfdPkxR6FRcXPJKGAamUGfxPZ9MJkVzcy2NjdXU1lTQ2lpHRUWavOOCtNWv5nguIsq+KdglmsgwwpxZI1xekkTT+vIkDYYhABMhBK7jUlaWpKmphs45Ddi2RVtbPVVVGUZHswR+gBn25Yl+rSNlfMMzRNFNOrzRm0IQSFmkS5b2kUGl6pqxBoeyshSNjTW0NNVSX1dJe3sDlVUZhofHQw2qP9FEDVAodhd/5jJa2lEazFBXsYbIfqapOkO7jqq8Wt9QRXtbPQ31VXR0NFBVlWFsLIcfasAPCrNDJRoKMxlRgK8QqkpwNGuCUDMmQbEdYg2CfD7SUM3cziYqK8ro6GikuqaC/hPDuK6HZZnhDNHJdjApmjkLNUT2jz4LIcOGlZzaOQHof/FlDmX7TmOkRqPRvPWMjI+f9tg31UFpbm4G1CxJS0tL/H5vb288q9Lc3IzjOAwMDJTMovT29nLppZdOetxkMkkyeXKsSVT7YSqCMNYg+uUblY5HoEq4h3dKoe4GKoE4kHG9CdM0qapKksmkME2D0dEcjY3VLF3aSWVlGal0gvOWdNLdfYLu7n4qKsoIAsnYWI6xsWxY9EwdM5YZZYAICnrC9wlTlEs0GAZlmQxlZSlSKZu+viFaW+s4f9lcKiszACxc1M6BA70cPHiMVCqBaRqMjeYYG8/huqoGS2GGR8TLTVKAiFszi1CbCoaVUbM9U2koT5dRXp7Gtk0GB0Zpbqll6fmdVIU9YxYuamfp0rns399DeXkKYRiMj+YYHcuWaDBE8bkUgnDaKtamprRk2C7ADBvtpdNlZDJJUqkEQ0NjVFeXs2RpJ3X1VSSTNvPmt7J0aSdHjhzHMAwSCSv8LCI7BEhfxqeKplekKHw3pChoEBM0CCEoL09SlkmRTifp7x+ioaGaJUs7aWisxrZNuua1cP6yuezdcxSAdDoZfx/yeZXCXtBQ9FlENjFOtgNBmMY8RefuYg7/+31s/sGxU47TaDSas8F4MH2gfzFvqoPS1dVFc3Mz69atY/Xq1QA4jsP69ev5+te/DsCaNWuwbZt169bx8Y9/HIDu7m62bdvGN77xjTM6n2GaGFNm/UgC38MIAoRlqlTY8AbgSrCR5BGq+V0Q4BMGtAY+QhgYpkVlVYZLL1nC5ZcvpyyTYnQ0S6YsRXNLLYmEjef5vPvq1SxdMofhkXHKy9Pk8y4bX9zJE09s4fjxIWSgNBiWqeIuArVE40iwJbhCNdojzEiJNWBgWCbpTIrLL1/GJZecT01tOUND42TKkjQ21WCaJr7nc9nly1kwv5UTJ0bIlKeRUrLxxdd4/PHNHDs2gAw8dd5QA0EQZ9okkTgyDCCVUcqwwJCqm45h2qTLUly4djFXXrmSmpoKhkfGKUsnaGqupaKiDM/1uOjiJczpaKD/xIhqRuj7bNu6j0cffYmj3SeQMtJgxBrMUIMtVS2XYg1RiwAkCNsglU6wZs0irrhiOQ2NNYyN5bAtk4bGaioq0jh5l1WrFtDYUM3AwCjJVALLNNiyZQ+PPb5ZtTFwJCLwMcxQgwywijT4qO+HKVVKsmEamH7YpdpWDs/KVfO58spVtLTWMTIyjh1mG9XUVuA6HsuWdVFbW8HxviHlLFqq4d/DD7/Ivv09+J5fqiG0gyfUP8ZCE8aCBiNQlXWFbZ16/VboGBSNRjNz+b3GoIyOjrJ79+749b59+9i8eTO1tbXMmTOHm2++mdtuu42FCxeycOFCbrvtNsrKyvjkJz8JQFVVFZ/5zGe49dZbqauro7a2li984QssX76ca6655oy0ZLN5LHPqRR7fDzBMg7RpIAKVvWMLsBHkAknaUksqngQL1bPGwcfPu5iej2kI+vqGOHFihDlzGlmxYp6KO0AgwqDH+rpKqqsyWJZFX98AL2/eS2/vEMPDY4yP5+J4jbShYlIcqYyeNAR5PyAhDJU1FARYlsAyBVkXPMfFCEuhKw3DzJnTyLJlXXGVWWEaCFNQY2eoqijDMA0GBkbYvm0fvX2DRRoCDGGQCn+dO4FEGJAUgmwgSYXNYtwgwDQFtmmQ83xcx8P11M3xeP8Q/SeG6ZzbxNLzOzEMI17KAUm1bVGRSWOYBmOjWTZt2kVv3xBDw2Nkx3PhkhOkhYUwBE4YlVqwg9LmygBTqAJxOXxcz8P1AwI/oL9/iL6+ITo6Glm+vEvNykgZx51U2RnS6SS2bTI8NMYrrxzkWO8gQ4NjjIfLPgAp21THlx5IScowyUnV/8gQSoMhBLZhkBc+ecfD9H1cx6S/f5jjx4eYM6eRCy88L64Oa1omfiBJJGzmz2th4cJ2stk827buo7d3kMHBUcbHlB0kkLZM9X3zAClJGAZ5GWBT0ADqs8h7AY7n4/q5U/7j9j0/npXRaDSaGccZ/H064zTjJ554gquuuuqk9z/1qU9x1113xYXa/vmf/7mkUNuyZcvisblcjv/6X/8rP/3pT0sKtXV0dJyWhijN+OJ3fHbabsZ++Gs8GToHeSlj5+C4G9CcNBn3AlwJSVMt9+TDpQ0rvA8IQ3Weveii8/iDT1zFvK4mclmHdFkShCA3lsWybQaGx/jpD9fxzO+209c/FNerKNZgALkwa6bcFJzwJFWmchhclMMgBOT8kzXUVGdYev5cPvv5D9HWVIvnuiTTSaQEJ++QSNj09g3xq1/9jvWPbaL72CC+55VoSBgq5ThKZc2YBsccn/qEiRdI8oEkYQoMCblw+cMuBIBQXVXOypXz+MNPXMn558/FyTskkwk1K5VzwDAYz+b5t39bzxO/3URP7yCu45ZqCNOe8+HXLmMIBn1JpalSnPNh2rEpIOurMZYoxH+Ul6dZumQOf/Lp61i6pBPXcUmXJZEInFwewzDI5l1+8+tneOShDRw+0h9rCKQKhrWFwDYK11hpCvo9SZkhMIFxKUkIgSXUGCkLGhCCivI0Cxe28Wd/fj3Lz59L4PnYCQspBIGn6sbk8i4PPfwC99/3LEeO9JPPOyUaLAF2mF4tQzsMeAHllokpJeOBSi+2hbJJUKxhGq4f2s3y8d5TjNJoNJqzw3jg80cHNp9WmvEbqoNytji5DsoUlxBnXxQCFKObjKplEa3vU8i6kfFOcZqvEGCYBu+6YiWf+9wNNDXVEgRBGCdicKJ/iB/8cB2/+c2z+J4qyFUcHDpRQ/w6DhKdSkOUP1TIZLnwHedx6y1/QFNzbRwsaicsRkdz/OQnj/Kznz1O4EvkhADV8PBxrAOowNcgnGVChueNrzvSFGoIQyKklKxYOZ///t//A42N1WomJaytMjaW4xf//iR33vkQAIEfaZAlmTAlGortwCk0hJimwaJFHdxyyx8wf0ErRthYz7ZNRkayPPDA89x550Nkx/OxHeJjT/NZTLR/yWcTvS6irb2Bv/u7/8icOU3Ytkku55BKJcjlHB57bBP/79//XJW29yfREBqj+Fzxd3KqzyLecWreN7iH5VntoGg0mpnJeODzR/s3nZaDMqubBcYpMVE6z8QHpX/P45sCRSXqhTh5DJTcxBGQz7uMjoyHwaai0G03vNeOjoyTz7mACAMdi44x4fiCQhrp9BrC10IFS7qux/DQWJjeqgbE/X+AsdEc2fE8IKfQUPj/qC5JVDJfcvK9L3LQIjsIAa7rMRJm6kQZJyrYNNQwlmNsPF+wXfExTtJQOO+pNMjQDkKoWjTDw2N4YQM9lfVSuM7seI7xsZyyjTGJYzDh+MUZMlNqYBINQ2N4rl9I3Q4KzkZ2PM/oaDbWIMQkzknR8ePzylINxWPiN6Z5zLpfGxqNRjMFs9pBmbabcVgBVBL9SpXxc0FxD5uiX6ey0Ggvyg5yXQ/X8ciUp1i4qIPqmgqkDBgYHKV/YATP86mqzrBocQcVlSpg1HU8lb5apCGsEKY0UCgIJmINhVtSdCMs1eCSSNict2QO9Q3VgGBoaIzj/SO4rk9ZJsWixe3U1lXieT7OJBqKi4NFtVgiO4iT7AAUafBcD8fxSKUSLFzUTn1DFQjBwNAYvX2DuJ5HpjzNwkUd1E+jIbZDeIMudhCm0yAAz/Nw8ip1d8HCdpqaa1R36pFxjh8fJu+4lGVSzF/QRmNjNYEf4OSn1sCEz4LwHRllz1A0sxVrUNdlmipzqaW1TmV4jeXo7Rsin3dJJm3mL2ijtbUOP9QQ+EUaROE7GX0eBWe11A5igh1O2c34TP4BaTQazQxmdnczjn+HT7FVqBuOL0EUzXZI1Hp+XMQrvFkGRFVDo1/dAb7nhz1cqli+bC5BELDxpd385IePMD6e55N/eg1rL1jEkiVzaGioimc4DDNs6RdqKJwr0qC63wYULb+E9S6MokwMKYN4xiRTnmbNmkWAZOvWffzwh48wdGKEP/zjq7jowvM477wO2tsbGBocUx2MDZWeW6IhnHGJzjXRDsR2OFkDQGVlhgtWL8D3Ara9to+7//Vxjhzq5Q/+6CreefkyFi9qp72jgR07DqhOzpNpoHjWRMb1QKbTABLfD5BSkkonWbVyHulUkr17u7nrzoc4uP8Y7//QpVxz1SrmzGmkc24zx44N4LsBRiAQhknUcDCc/MKc8FlEE3LRKYNwhkm9Vq6L7/tICclkgrVrFpFM2uzafYRf/PtTbN28mxs+cjnXvHs1nXMaWbS4g/4TI/iBhwgEhmkpO0S1UGS0jBRqKP4swu+1yoYvXug7BSJ2qzQajWbGcSZ/n2a1g3KqOihSqj4uIrwpR7MFFjAaQKWl0lt9wkqmUhKIQv+cwJc4jottWXR2NlHXWM39v3mOBx98gdd2HSGQkqH//Svee92FvOuqVcyf38ru1w7j5F1sWxXzklKli0pZVNYdSAEjSMoQ+MiSyraBDNNswxuom3cxTYO21jrmLWzjgfuf5+GHN7D9lYP4XsDQd+9n185DXPved7BsWRevbNtPPudgWcUaIKoeG2WhJwUM+5CxIlspDYaUBGFWU6zBcRFC0N7RwLyFbTzyyIs88sgGtm0/gOP6/N/vPcC+PUd5/wcvYdXqhby64wD5nBPWMLGUBtQySKRBAklgXELKKNUgYg1hETdf4joq66a2ppzFSzt5+umtPPjA87y4aTeu69N/10McOXCM97z3QpaeP5dNG19jZGgM00iSsFUQqyrwqpyiSEMaGEWSQIRtEJTjpmZWJKZQmTUyAC+cFaqrreCCCxexfv3LPPzgC7z08h7Gx/L89Mfr2L/nKB/40GVcdPESXtzwKiM5ByOdDFsVoDSENWFkeI7IDglDpVo7RF2rI6fVUD2UTkG0fKfRaDQzkTP5+zSrHRTXC8Jb+xREjlrYi0VEwaemQYUpCITqtisCiTAF0jDC3ik+fjiTUl1dTnl5Gfm8yy9+/gTPPbODI939VFWqtN6du44wcGKEg4f6GB3L0dhUy+jwOI7n4Xp+UQxHuGwTZoUElkkmip/w/NiJkgKlwfPVlQmoqs6QyaSxbJN/u/txnnziZQ4d6aOivIxMxmbPnm6O9w7S0zMAQtDQVE0iaeO4EzQIVEG68Gd6YAgqEyaBkARBqMEI7SBDDeF3qaIyQ6Y8hRCC3/zqGX739FYOHTlOpixFdXmK/QePcc8vnqSn5wR20qa+sYZkMkHecafWIEGaBmVh4yIv8GI7YBjIQOJ7MrZDRUUZZWVJkukkDz3wPC++8Cq79xwlmUpQXZ7iaPcJ7v3l7zhytJ9MeZq6+ioMw1AawpoqhMcSRRp806DMUFFJnhdgxP0ORGiHIP6WZcrTlJWlyJSnWffQizzzu23s3deNnbCpqyqju2eA+3/zHMeODdDSWkddfRWWYZLLOyfZQYT1b4SEwDTImAaBgECG38nQDkjVBynwOeUkSlAUj6PRaDQzjTP5+zS7s3gunr6bsfAl0vfBNDATNm7OQQaSjnktLOpqZtfBXg7sOowQgmQmjZvNq2Jipok0w6Z+ob/nomZCrDB+org8vSElXjjzYofndqNYkkA5IIEhSKSSODkH33Fpn9/KonktHOo+wZ5XDwJgp5P4rofwfIRpKEdBqLotAvAEeIHSgAg7IUvC4mISV6iutzbqPuahfp1HGqQQ2GVJnKxD4Pk0djSwYlEHB4+dYM/OQ/ieTyKTInA88HyEYSBD5yHWgJrlsGQAQj0n1GCFdhCTaFD5tQFSgJmy8V0fL+/S2FbP0sUdHB8c5ZUtewn8gGR5Gs9xlR0MA2kqO1gITNQ53ABMqZa+XCli52p6DSA8Hx9JoiyF67h4OZea5hpWLpvLwOAYr+zYj5tzscuSEEgCx8WYoMEAfKFm38wg1EDofBoCO9SAECQo9PrxwyhW4fkq8ymdIPAC3JxDdUMVK5fOZTjvsOPlveSzeRKZNAQ+geOpmTDTPKWDcv3gblboNGONRjNDOWeyeER4I5rqIQHPU03bDNPA9QOkDOjqauayK1excEErMpC4XoBpmyADPC8o6qIblkAPAmQQ4IW+nIFaMvGkWhoSqKWkIAggCOI4DxXroQrGERY18/wA1/PpnNPIZVes5LzFHSBDDWHxN8/zVT8eQzkcat0nQPoBriw0HgxQjlPUjdiX4JdoKMTX+L66Bssy8YIA3/dpb63j0itWsmRpJ6YhcD1fVecVkYaw5H6RhiAI8GQQahAFDSKywwQNFOJKfN9HhpVTfSlxXY+WphoueedyVqyYhyEEjqeqrBqUaojiR2QgQzsoDVHsSKkd5OQahCqIV7CDxPU8GusqufSdK1ixcj5J28JxvThI2Q/bFRRrQIafRVCwg4RCZ2gR+WMFDfH3FfDCwnOmYahxnk99bQXvuGwZF1ywiGTCwvV85XgKoWZwijVM9/g9/nvTaDSat5LZ7aCc4hEFvhJlbgCJhE1XZyOrVi9g/txmEklbZbSEsxJB0bEJ9y90wC2khhoijBkJz2OEMwx+NF6GGqKYD6F+eQdSVR2d26E0LJzfQjKZUPMt4c00YEKqqSzVEJ3TLLohRS11IselWANE8RZCLScEEsu26GirZ+XqBSxe0EpZOqWyV8IOvRM1BLKQbVOsITqnKNIQPY+6K5+kgTAGwzJpa6ll1aoFLDmvIyx+R+zgRdcRfZ5BkR3MKIgUFcsROwaoNc7JNIjwtSSMrQkChGnQ3Fgda6goT4MhkEEQN1Y8SYMs1RAF+goKQdCi6LPwJ9ghCL8X6vugAqob66tZsWIey87vpLIiDSLUYJxsh+keGo1G83ZhVseglNwtJhKGEGCZGJaBn3exLJPq2ko6Oxqprymna04jNbWVOL0DeHlXzXBEqTxhATcvDHA1DLVkEDkLVlG2iSSquKq6IxP9kg5vVMJUGgLXwzQE5ZXldHY00NpUw5y2BmrqKsl5Pr7jqewfy4zreyBLNSSKNNhAIAplMKypNAgRa/AdF1MIqmrK6WxvoK46Q1dnE3UNVQyP5XDzDgnbQlhWHP9AUaDvRDuYQmCEblswUQNh/yNCDZbqRCw9HwMoq8rQ0dFAS0MVzmg9dfVVjI7n8fNqWUVYqiz+RA3CINbgRwGt4d35JA0y1BB9TaLAYV/NglRUZuhoq6e1uYb86DgNTTX0nhjBdzzsVAJhW0QpxwRFGoT6zCMNZughRU6qGWqI7VasIWw8GIQza+WVGdra6misq6Ayo/os9fQN4eVdEukkhh1+Hyjy0KZCntkar0aj0byVnMnfp1ntoERxjJNvE9hJm/JKm1TKZnx4nJpMinnz22hprceyTFpb6liwsA0B5HN50hVlZHMunuPi5V0CKeMZkSj7xyF0SMLzuOF/rXBcFMdoorJP7IRFpjJBKmnj5xxS6SRtcxppa6vHEIKGhioWLGwDIDuWJV2eJpv38PIOnusRhGmx0S9oOzxngLpBClmYtUlQOnsSpUzbtklZRRmppI2bzZNKJ5k7v5WOOY2q4V5DNQsWtJF3PAb6BqmqqySVd3HzyhYSGWfhTNRghe8Va5ComItIg4HAsE3S5WlSSZvAcUmXQUt7A3PmNJFM2tTVVbJwUTuu5zM6NEqmIkPWcVWcSNQFWEYZV8pJ8sLzWgKM0FGIHDciDRRmVyyroMEIVNBs+9xm5na1YApBZWWG+QvaGB7Ncrz7BBXV5aQ8Hyfv4DthN+QpNJihjsj+UfxLnsJMU6whkyKZSoDrkbAt2jqbmDu3mVQqEdZQaWdgaJze7n5qaspJladw8uF3MpjeQ5nq34NGo9HMNmZ1kOwVV9w4ZZCsYRjM72rhqqtW0dHZxHg2j5CSpqYa2uY0krYt/CBg374eeo8NIgSk0km6j/bz5FNb2Lb9AL7v4zkegR8g1d3+pOJugjANNnxfSIkhBFbCxrJNujqbueJdy+mc14LreniuT319FV1dzSRTCTzX4+ChPvqODeD5AWWZFMePDfDE+pfZ8epBnLwq0hZEpesnaIjuR2o5QsQahBBYCQvTNJnT0cDVV61i3vw2XM8jn3NpbKpmTmcT6aSNJwRHD/bS03OCnONRWZ6m//gQTz21lU0v78FzfTzXxfdK7UBUzwNAqEDdQEzQYFtYtnIG33X5cs47f25Y7Mylrq6SjjmNVFaUIaRk34Fj9PYM4LgeZZkUQwOjPPO7bWzctJtc3sFzPHxfuUnSKNIQxgqpZa8JdiCyg0FTUw1XXbGSRefNwTAEo2M5GuojDRn8wKenZ4Bj3ScYGc1SWVnG2GiWp5/eysaXdjOezU+tgcKSniGJi7GJcAbJsi1M26K+vpJ3XbacVasXEEjJ2FiO+vpK2tobqKnMIG2To4f66OnuZ3g0R3VlGSMj42zcsJOnn91BLpef9t/GNX07OX+053X8q9JoNJrfP2cSJDurZ1BGhrOY5uRpxqYhGBoeJ5tXN8ILOpuwLJMgDJD0/YCEabB4yRwWnzcHAezd282+/T0MD48zMjymgiMNQcK2sEwDz/XVsoZpIMMASdM04gJitm0RBBLH9ciNZjEMwdDIGGM5h6qqDEvOm4MUKv7CMlUH3mTCYuHCNhYtakcIweHDfRw+1MfwyDgjQ+MqYNMQ2FNpkKGGQAUA25ZJADiOR340hwCGKssYyzpkKtIsWtimGttF+3k+Cctk3vxW5s1vBaD7aD/HegeVhuExPE/FpdgJC9s04iBe0zQwpOr7o+wA0g+wbQuJJO945J0chhAMZdKMZnOUl6dYuLCNVCqB56n+OaqvkcGCBW3Mm9eKaQqOHu2n7/gQQ6PjDA+Pkc+7ocNjYlumCl6VEtNUzfUCKdXnGsg4CBYEjuOSH1N2SKeTjIznSKUTrFgxL/y8lHbl7al6N52dTQghOH58iJdf3sPQSJbh4TGyWUdlVdnWpBr8IMAyTAJCDaapsq1cj/x4HkGehG0yMp7DTlosXtRBpjytNFgm0lcxMZ2dTXR0NGKYgv7jQ7z88l6GR7OMDI2RzTnT/ptwXU8v8Wg0mhnLuZNmvPYvpu1mjGlSXpVh8YJW/uCj7+KiS5bi+QG2AYZtg++Tczws22LHlj3c9YNH2HXgGCODo0jXC4NsBcI0sIUgCAIV82CGpcqlmqlx/QBTqBu2F6gblSFRIbWmWl6Z39nEH3z0ci5953ICCWkBpBLgeIw5HsmkzZbNu7nnnqd4ecdBhgdHkK6PRBUsE4aBHQZveqEGIcENJLZp4AYBJmAaBp6UeIHElDLWkK4oY257A3/wkct451WrMA0DISVmwgI/IO942EmbXTsP8ZMfP8q2nYc40T+MdLyTNcgAL1BOYJQ1Y5sGjh+opTDDwEfi+eGMkjIUyUyars5Gbrj+HbznugsxbBPD87HTSUQQMDqWJ1mW5NC+bn7wg0d4eccBBk6MEOTdIg0C2zCQ4TUahuo67AYS2zBwAqXBNAwCVMbMRA3tLbW877q1vO8Dl2AnbEzfx0wnwfPJ5hyS6SR7dx/l3nue4vlNuzneN0jguKomSqjBCuNzijXk/IC0aeIEgZo1MQQ+4iQNdjpJR1s9773mAt77/ouoqMzgOS6JVAIB5MZyWOkk/X1D3PW9B9i4dR99xwfxc04c7D0V1w/v1c0CNRrNjGU88Pnj0+xmPKtnUDANMM1JN0VLH6ODo2x+aTdHj/bzxUySZcu6sBM2eccjkbCw/IDt2/bx9b//Ob09J1R6ZxhUipTKQOEUvsr+kHF/vCgrJKoI6gfhdH5YcE0IlSQ1PjzGKzsO8E+9A2AaXHLJUkQqiR9IjIRFQkpefeUAd/zzb9i7+4gq6AUIUxUPsyQQx6IUaaBIA6GG0CmxhVpmiDRkh8d4bWeWb337GFbS5tJLzyeVTJB3PZIJC1tKjhw+zv/7v/6NvbuP4PsSiZxUg5RKAxRiNn2pMlmiwGJlh1IN+bEsr716iO/3nECYJu9+9yrKy9O4no9pGqRSCfbv7eYfv/NLtm3dq3oaxXZA1X8hysQpTW2eqMGfoAGhco/yY1n27+vmu//3QaRhcMP7L1K1XwJ1rYlUgt7eAf7le/ezccNOvHB2TBgqFDjSICdo8KWKtfEofBZe6KRO1OBm8+zfe5Q7f3Acxw/42EffSaY8hesFJGyTZDpJ3/EhvvOdX/LM01tP0jAdUbqxRqPRzETO5O/TrHZQ5DQZCxL1S14YAtcL6OkZYGhwNIwTEHFVWWEIRobHOHLkuIodMQ1Vcj2IE5TjWiLKRZmQAkwhtTR+P3wjkBLTUCXKAyk51jvI4MBoIR00CNRNyxCMjeXo6TmB43rYlqmCMcNlpGINYbu7mMg5KtUg4nTdSINlCAIJx3oHOdE/HOpEBYuGmrNjWQ4fPq6cFttCItTy1RR2iD6E8FSFzKOIEjsINasRSPr7hzneNxiPjTJchCHIZvMcPdqP43jqs4DJNchSDZFTMJWGqOuzFTo7/f0j9PUOhEMFIvDjujOu43H0aD9j2TxlqQQg8CKHbQoNUfxLiR1C0VHvo2INEjgxMELvsYH4fRW4q4qx5XMORw73MZ5zSCftUENwSgelYvF8Gqvmn2KURqPRnB3GHAf2bzqtsbPaQYkKkU26DQjCwmISQUdHA51zm9XsSc5hbGSctEyTTiXomNNE19xm9u7rxg8ChGHERa+ie42KRwnf8FVsCuE5RFhgLRqjNIlYgx8GuLa1N9A1r4VUOkku7zI+miWVTlBWlqKtvYHOziaGBkdxXC9ssFeqQUbTNoZA+uq5MFS6qggb8k3UACBlgOMpDS3Ntcxf0EYylcBxPEZGs6QDSTqdoKWtngULWnl5855TahCGIAgKTl7ghXYQ4fuCsE9SWPdESlzPRyJoaKxm/oI2yjIpXNdjdGQcO2FTXp6mqbmWBfNb6T02gBNWUBVRq4IoldiXccl8GbYOMMxTawBwXTU7VVdbwcJFHZRXqBmc0eExLNsik0lT31DNwgVtHDzYq+wgIg0izjiOHeMiDaalYoRKNIT2iZoCRhokUFtbwaLF7WTK03iez8hYFsvxyGRSNDRWs/i8DnbvOVqi4VTM/dM/ZO11a085TqPRaM4Gw8PD8JN/Pq2xs9tBYfriVEGgephYqQRLl3TS2FjD8eODPPTwi7z4u20sW7uYj3zoUpqbqjn//E72HziG5/kIqYIWCauPqul8iRVW/PCR2OGZPVkoVuYjCaSq/imi/UINZsJmwfxW2tvqGBke574HnueFp7aw6PwuPvqRy6muLGPJeXN49dVDjI+OgyTUgMrekZIAiS0iDVFqq8CN0nllVJysEB+i+rgoDYZtsWBhG11zmxgeHuO3j7/M+oc3MO+8OXzwQ5fS0VbP6lXz2fHKQfLjOYLYDpNrCKRaQjGFIFdkhyCMF4k6AUsp48/CsFUgaldXM+PjeZ5Yv4XHHt5AY1s9f/In11BfW8HyZXN58aVdOI4LgYy7Iav5o1ADhdL7AqUhqiZbaMJX6EYsCfvZhA5oa1s9SxZ3kB3P89SzO3jwl0/T1FrPhz96OV2dTaxcOY/nN+xk6MQwgZChgyAKdgivPdIAElsInEgPxDYyYgcptEOooa21niXnzSGfc3j+xdd48FdPU1aR4eN/dBUL57dwwaoFPPb4ZkaHxvBRTQtPNTtq2DZGaur2DxqNRnM2MZzT//s0qx0UwzRUYbPJkODkXZy8Q1N1OWvfsZiDB4/x4AMv8NjjmxgeGmP7riOc6B3k+vdfxKWXL2fdupfiX9J2wo78E5CBKkmOqn+hnJGi+hbh66juhymiNFOVReLkHKrSSdasXcTg0DiP/vtT3HffMwwNj7F1x0EG+oe4/n0XsWLlfB57bBMD/UNheq6lZhAAmKghwJfqTlysQXXqVV15paEWhFzXI5dzqEio2JMTg6M8/MALPLxuI8ePD7Hl1UP0HRvg+vdfxEUXL+XBB19g/8AIhmlQlrDUzTk0aqmGsE6MjH05/HCmxQgrvBLawfP8WMPy5V24ns+//Xw9v/71sxw7NoB4aRcjg6O874aLWb5yPtVVv+NE3yCGIUjbduxwBb5aDvJFqQZXFhxWVZNFYoSfB0LZwQ81JFMJLli9EDtp8+//vp7f/OZ5Dh3uw96yl97eQd7//os4b2kn7a119PWcAKAsY2EYRsEBkxJfiBINkXNioAroBWE8igFqpgWB76vPIpVKsGx5F8l0knvueYoHH3yBAweOEUg4cWKY97//YpYs66KlqZYdx4cIAknGtqb+vofE31mNRqOZgZzJ36dZ7aC4jo8MvEm3CcBOWFRUlVHbUM2e1w7z0G+e47kNO3Edj47mGg50n+CeXz7N4cN9rFo5n7rGagxTkMvm8VwvvNsYqt6FENhI1WtGCMrCZZ2xsButjcQzDdWYLpAQqM61tm1RXlFGdW0FRw72seG5V3j62R2MjmRpb67hWP8wv7rvWQ4f6mP58nlU1pRTP1ZDLpsvdDQ2DSQCYQqSSNxQQ8owSFgGI2F2kY0kmKBBSrBMk7r6KqpqKug7NsD//Zf7Wf/0NkZGssxrr+No7xAPPLyBgwd7ufJdK6iqqaBhPM/4WA7fjTSIUINBAhUI6wtImQa2YTDiq46/tlQaXMLloNAOpmFQXVdJTW0l/ceH+PFdD7P+qa2cGBihvamGE0NjPPDwixw5cpzLLjmfiqpyGppqyI7nVDovqJu8IcA0SCDxpcQDkqYgaYZ2iDQYxRoK/ZGqaysor8yQzeb54Z0P8chvX6K3b4jOllqGR3M8/sRmDh/u5eqrVpMqS9LQXMP4aBbfU/1zMFQtGmEaJJHKDqh4p4xpMCQEXqjBMIywsJ8Et9AfqaqmnMqqcrLjeX7+09/yyKNKQ3tTNSPjeZ54cgtHjhzn+mvXUl5ZRkNzLeOjWTzXV32dpiEICjV6NBqNZqZxJn+fZnWa8Tve8dlp04xtw1C1Q8LX0vfxA+VkVFgGQ65PwhCYhlBl3VHpon4Q4IY3AhEFeVoWJpDLOyTSSc5fMgfbsti6Yz/jI1lSSRtpqNkKMyxxGwXqWqZQGR1CgK9iUhwJZaYgF6jME1OI0BEhTml2o+DQYg0CcjkHK2GzZEknFWUJtuw4yMjQKAnbwjBNHNdTpdaLNNimwIt811iDpNIyGfFUmrQVakAIVRk3CHBOsoOplnRyLlbCYvGidqqrMmzZfoChgRGStoWZsMjlnXCpS2kwDYFtGviEwb5BgO8HuBLSpiDnqxkX6zTsgGGQtExyOQcMweLFc6irLmfHa4fp7xskmSjYwUDFgMjQxrZlFHoCBcrpyIefhRvIsEKvckDilgZS4niBCpKVqn+OME0SpkEu5yBMg66uFua01LLl1UMc7x3AMk0SSZtc3j1Zg2kQhMX9Ig3q+2CQ9VV3ZCuMOZGGiDPJIg3T8eUvf5L3ve+i0//HpNFoNG8hw8PDVFdXv/3TjA1B2Gl3ciTg+T5eEKWEqngEQ0JOyjhWJJDgu75aDgiDKqPj+r66kdq2Sh12XI+a2krWrF1MuizJwUO9DPYPk0jaWKZBPqeKmplRPx3A92WckWOEzosVzoSUNNfz1GyDMMPAznBppViDKvzlkykv44I1i6itznCkZ4ATxwfVspBlIHM+vhBYRRo8X+IHhS7JQghMCfkwE8Uo1hAat9DJGIJYg40UAtfzyJSnWLFqPu1tDXQfG+B47wCmqZwHOR6oG7xthdchQjuo2ZAoHdYM7TCZhrhDrxE1OQwIvAArYSBME8f1SaVsVqycx5w5jQwMj3Hs6HFMyySVMJD5IMwgsmK7+75UHY2Ljh99FrJEQ9iF2BBhoC4IKWINtmkiTAPX9UnbFkuWdrJy+Tz6R7Ic6+4HBGnbhGweX0qsYg1S4vt+mMRVbAflfMSp0r4f9hco1TA9Os1Yo9HMXM6ZNONpg2TDQElZNFb9ClcxIlGTOWRYnjzKEIniKaKslTBANsqQAUFVZRnLlndRXp7mt49sDGMHZJypERB2t401yPjmF+kxiWI5FLJI40kawv+pzBk1o1FRnmLZsrnU11fx1FNb2bP7CEEgC52GozTqCRoK3w0Z26G4K3O0OUoYirNWwmMqh05pKM+kWbKkkwUL2nj6qS3sfPWgKlJniPh4pRpOTtE2UfdgYzINRZ+xOj8FO4dHS6eSLDlvDosWd7DppV1sMY1Ypwivw5xwTIo+i0iDR8FZjO0kiz6P6EsUxp9E3wcJpNMJFi1qZ/WahWzatIstphnWYQln0qKU9aLvmJSF18WOUVRXpbirdomGUyCYOvVeo9FozjbnTLPAYgdk0o1hQTMouslRuBFNdiOQ0c7Rfoahll9Qv2jT6SQNjTW0NNdSW1NBc3MtZZmUik+QFIIYhQjPXdq3R70l4/MXawibKJ+sQRiYpsAQkHc80ukE9Q3VzOtqJpW0aWmppbw8TS5sJmeEZfQn0xDdCGU4e4Mg7rJb7ESpDJhiO4j42lzHI5VOUl9fxZz2Btrb6mlrrae8vIzx8ZzKWppCQ+QQBKEdIoqdN3EKDUIIPNcjkbCpraugo72B1uZa2tsaKC9Pk8+7KmPINOKLi+xe/B0odpgmOmMGynGdqAFhYJgqvsR1XJJJm9raSubNbaautoL29gYqq8oYGhrD91SqtiyqFQOSMLaZKNxVTvg+FH8WUCgGeDqLtzoCRaPRvF04dWGFGUw8wzHlo/hXvCj95S5Kb4jF26LjCiFIJm3KMiksy8QQgqamGubMaaSiIk2mPEXHnEZaWmqxTAPTNCjLpEmlE4XiXMW3jEhDFJdx0hWJwsyPLNy4Ig22bUMgaWhUGqqrMqRSCdrbG2htqydhmQigLJMilU5gGKUaiq83tkPR85IZqch+4WyBnbDJZNLYtgVS0thQTcecRsrL05imoL29gbb2epIJ1UtYaUiWaChcpphSQ7G+Yg2gNJRl0qRSCWQgqaurZM6cJmprK0ilErS11dPW3kA6LBlfVqY0qF47stRzj+q7oJwQNcsiprWD0mBRlkmTTCbwPT9ueFjfUIVlmbS11dPe0UimLIUfNn9Ml6UwLDP+Xp7kQ0QOy4RZJFFkjVN/1ydcn0aj0cxyZvUMSjJlTx0kK8H3PALPJzAMtaSD6nzrBJJKYFBCylBpoh7KiTHDGQgzaVNZWcbatYtZs2YRpmGQzeaorMzQ2lZPWTqJ7wdc994LOX/ZXAZPjJAqU+/t3HmIZ57ZTn//ML7rE3gegRAq2yOcVchKKBeScVRQpoHEk+q2FGkwEhZlZSkuvmgJK1bOo6wsxdjIOBVVGeUU2RYEAVddtYqFi9rp6x0klU5gmiavvnqQ3z29jd6+QZUF44YahOo6LIQK0K0SMCLDIFYkLkBoB2EIrESCdFmS1asXcNFF55FKJhgdGaeyKkNzSx3V1Rk81+fydy2no7ORvt5BysqSIAT79nXz5Pqt9Bw7QeD56vNA2cGUqodNzpdkBIyHGizCuiKRBiEwkzapVIJVqxbwjnecR3l5mux4jlQqQWNTDTU1FXiex9oLF9PQWE1/3yCmpboo79/fw++e3saRI8fxPB/fdUs1CEEWKEeSlyCFiLOUpFDVXQ0hMBM2dsJi5cr5XHTReVRXlTM6kiWdSdLcXEt9fRXS91m9egE1tRUc6z6hmismLA4fPs769S+rpUA/wHddJIJACIwwFiqHJAPkJEhDkAztIAUYgZpBMZP2KddvzVOkIWs0Gs1sYVY7KGNjeSxz6l+NUgYqi8YywoquUWM3gStVYS0hVDl3YagZEM/3yecdhBOVnJfU1JRz3uIOKirLCAJZuAlImDu3iY45jZiGIJd12PnaIV577TDZME03CAJMw8BOqC7DvqdiNCxDBUtGmS6qGqwqB++7QaghXFqSATU1FSxbNpeqqkzcZdkIF0M65jTS2lavnI6cw/79Pbz22iGy2TxjYznVbVgI7KStAoL9ANNUGtwwi8iI7CBE3B3ZzbsIR3XH9TyfqqoMS5fOpbq6vFCePfz139paT3NzLUKA5wXs3n2EAwePkc3lGRvNIaW60ScStlo68QIMqTR4UsXDGGHWjqDQodlzXHA9gkDie74KzF0xj/r6ShVzEwaZSilpaa6loaEKw1Adlw8cOMahQ73kcg5jYzl8P8AQahYEw8B3vNAOBl543kiDBCzTIJCSnOMiXA/btfBcj/LyMhX/01AVf9cMYSCRNDRWU1evItN9L+DgoV56ewfJ5Zzw+6CaBtpJG1MY+J6nAnXD4NkSDVJi2RaBqzpD4/qcKhLFcyfv7q3RaDSzjVntoKj03Mm3SUAaJr4RzkgAThitmRAwKqFSgBMW3EoA0g8IDAMD9ct2bDTLU09uZc/uo1x26fl86COXUVdXxdholkwmBUIwPpIlkU4yNpbnl/c8zVNPbeXw0eOMDI+rKXvTJAjLwpuhBhlI0kIwCpShfq17oQaCAN8QCEwMJE7O4Zmnt7Fn11FWrZrPn33qWqprysmN5UlnUggE2bEciVSC8fEc6x7ZyKOPbuTAwV5GhsZUvMcEDX7oHKWFYFhCefjaFQJbhBqEQFgmRiBx8g4bNuzk8OE+1l6wkA995HI6OhrJZfOkkjaGZZIbyyEskyCQrHtkA488vJGDh/sYGhzBFBAYJlKonkSmBC98nhKCcSAVvnYBW4RpyEKAZWJIiee4bHxpFwcP9bJieRd/8qfvoa2tnvGxHJmylOrjM5bDsEw8L+Dxx17ikYdfZO/+nrAHk3IsA6F6EllBgBc6R2XAKJAQqkeTQ5jm6weqe3GoIfADXn55L93dJ1i6ZA5//B+uZt68FnJZh0TCwrBM3JyDDCvfPvvsDn75y6fZf+AYJ/qHVeyTKQiEqTRIdY1ebAdBQkgMKcmjUpIN38elYAdxqlUcncCj0WjeJpzxfPCTTz7JBz7wAVpbWxFC8Mtf/rJk+6c//elCemj4uPjii0vG5PN5brrpJurr68lkMnzwgx/k8OHDZyxemMaUD8NUNVDs8MbnSxnXtHClJG2oJQ4Zvu+HNTYsoZq5ibAWx9hYlt17jvCLe57i7n99jOP9QyRTCWQYr5AuSzE2luMX//4kP/v5E7y68xDDQ2Nx91nLNLDDOAwvnDExhCAvJYlwJqdYQ6TTNg0MQ9UkGRvLsW9fNw888Dzf++79DJwYIZlSlW4DJIlUgmw2z4MPvsBddz7E9u37GRocVdkmZpEGKNIAuUDZwS269kCqrsyWENhGWKlXqOJ1+/f18OvfPMdddz7E8eOD2AnlnAAkUgk8z2fdIy/yve89wLbt+xk4MRx3CbZMg4RZqsEMHUQ7vEkXa/CKNRgFDYcO9fHYbzfzf+74NQcP9mInbFU8TUpS6SSe57N+/WbuuuthNm3ew4n+4ZIZskTo0XpBpEGQDTUUf08KOok1CEOQzzscOtzHY49v5h++fQ/dR/uxbBMznG0zEzZBEPDCC6/y7W/fw6ZNu+nrHVQaTAPTNEmYYZn+cIkptgMqHsYLNQhQM1zFGqb5zkc9gDQajebtwBk7KGNjY6xcuZLvfOc7U45573vfS3d3d/x44IEHSrbffPPN3Hvvvdx99908/fTTjI6OcsMNN6i6D2eAlNM/oi63UVCq6vUnwqqrYXl6IQoZJOFzCLN/hKolYhgGJ06MsOu1I+SyDqZpggwrgxoG+ZzDnt1HOd43pKbrw/ojU2pA9fCxJtEQBUuKSAMoDabByMg4r75ykNHRXCFH1Q/UzEAg2bvnKEe7+9XyhGWq4mCRBlmUQgsQxmHYRZlDcVYJopByG2owQw1DQ2PsfPUQ2ayjetNIiQzjVfwgYP++Ho4c6Y91Rxpk+Ou/WIMINViTaohsJUs0WKbBeDbPazsPMTQ0VgiADZe9fD/g0MFeDh8+TiADLNsMM2lKNRSnMEefBURZO8QZP3Gac6gv0pDNObz6ykEGh8Zii0rPj1OsDx/qY/++boJATqohusaJdpCySMMEnaf6vsff+5KcIP3QD/3Qj5n2OD3OeInn+uuv5/rrr592TDKZpLm5edJtQ0NDfP/73+dHP/oR11xzDQA//vGP6ejo4NFHH+W66647bS1CMPUvRkFcf4MgTPNE3SAMEdbeAHUjEoWOu9JQRcVE6DG4rkcgVa2LefNaqK2tACSjYzkAMpk01dXlzF/QyjPPbiebdUAQN5eLzhvdZWMnhAk3Q1EYGztLhnruup4qWW+pZn9RnMX4eB7XcSmvKKO8PMW8ea1UV5czns0DUWG6sAOvQJV9j1GOU9gUuaAz3CYR6jqimRfXR0pJImHTNa+FhoZqTEMwNp7H83zKy9NUVpQxb34L1dXl5PJOQUPUT2iChugGHUyqYYIdJHier274psHcuc00NdZgmqEdXNUFOJNJ0dXVQl1dBf39I3HMT7EGgsI/kSiLaGK6eVzBLxQWOR6e5yMDNfPR1dWsgpUtk3zeZXwsR0VlGalUgrldzTQ21TAyMo7ncbKGIicFUIXowtNOfF+G32UjcjinQe2vs3k0Gs1M5fT/Pv1eQv6feOIJGhsbWbRoEX/xF39Bb29vvG3jxo24rsu1114bv9fa2sqyZct45plnzuxE0zho6j+i5KYX//GXan0/CP/ai3CQlBP3k/h+EAbKVnD++Z0kEzZ79nTz/e8+wHf+4V62b9+PaRosWTKH2tpKVb/DD+JjqXRWEToppTegKMA0upRIW6QhesP3VUXUskyKVSvnk06rCrbf++79/NN3fsnmzbvxvIAlS+bQ0lIHsYboYJNriEq5R05R7CTIyIZFGgKlobwizcoV87Btk4MH+/jxD9fx7W/+Oy9s2InjeJy3uIOWllpAxBpCCUXHK73eyA7FGoKJGlAxIDIISKYTLFs2l+qacvr6hvjxj9bxD9/6d373u+24rk9XVzPt7Y3xrE4QFD5nVXpfxunTob8SF0grsUP46UTVdKUk7oicSNqsWjmfqqpyevsG+fnPnuD/++a/sX79FrLZPPPntTBvXosKxp1CQ/RZROctnj1SYwXBBA1v0g8TjUajmfG86UGy119/PX/4h39IZ2cn+/bt43/8j//Bu9/9bjZu3EgymaSnp4dEIkFNTU3Jfk1NTfT09Ex6zHw+Tz6fj18PDw8DKi3VNKb6q1woY48MQKhpdFC/mPNSLW9IwC+au5AYGIbAkCrTJJ9zMEyDjjmNzJ3XynPPv8Kv73uGZ5/dgev5HDnSzwc/fClLlnTSNa+F/ft7cB2XskwKw7AK9VCkKvgVoF7bAhxZVNY8ki2LNQh83yefcxCGQdP8alasXsBzz+3goQdf4In1W/A9n/2H+njf+97BBRcs4vxlc9m16zC5cRVEm7AKWS7KMZAEqOJhNpKcnNCRGRBSzaAUa3Byakakdckclq+cz8aNu3j4oQ08+eQWxsdz7D/YS88HLuHSy85n5aoF7NlzlFw2TzqdLFnyUg6ASveWgcRC2SFyEKbSEAQBTt4hCCRt7Q2sWrOIV189yMMPbeChhzaQzeZ5ddcR+noHWHvheSxb3sW2rXuVHdJJbLtUg5rBUo5CItQgKFS2jSYiCrM4AikDsuOqGF5TUw2XvnM5W7fuZd26jTz66EsMDY6ya083R48c58p3r+LiS89n69Z95MbzpFKJgobw2NFMlUT9Q3Q5eUbHmKDhVL8+orgvjUajmYmc1VL3n/jEJ+Lny5YtY+3atXR2dnL//ffz0Y9+dMr9orTVybj99tv527/925Pe9zxJ4U/5BMJlFglxT5lodUGEjk0QRDcLGf6KV7Mq0pfxL97y8jSZ8jRl6SS/e2oLDz/yIjt2HKSmOkMinWT9ky9z5OhxbrjhYlKpBA2N1YwOj6sUWS9Q/VOi5RJRmKIXQqXYEoAvC7+SpUFBQxhUkClPU1aWoqa2guef2c6v7nuWbdv2UVFRRkV5iuee3cHBA8f44AcvwRCChsZqhgZGCxqipTABRugghSKwDaHqr0SzSUoIUhLP3CAlZWUpyjIpqqrK2bxpFw8+uIHt2/dTlk5SXZVhw4ZXOXLkOEePHseyDBoaqhkeGlO9kIo1ULCDhDjlWoX0RHYAWaQhKkKWTqsCdDU1FezYto/1619mw4bXsG2T6qoMW7fspbd3gAMHjmGaJvWNNRimSjmeXEM4bWagPgsZtjMIv4vR8lZBg1rqi6ro7n7tMI+s28hLL+1CGIKm+iq27zjA0aPHOXy4l8bGGhoaqzFNA9f1SjRIRKE6bDjTZRkGfhjbFGmIqrcVa5gOGeiCbRqNZuZyJn+f3lA3YyEE9957Lx/+8IenHbdw4UL+03/6T3zxi1/kscce4+qrr+bEiRMlsygrV67kwx/+8KSOyGQzKB0dHVx4im7GJmAEAZ4wMG1TFSsLAmqb6zivo4FXDh/nxNHjGIbATCbwHFcVUjNUB2RDCJKWqWpySNXlWHo+bljbJLp52aaBEQaRmuHNNO+pzslKg0qftZI20nHxPJ/q5loWdTRwqHeI7kO9qpJp0sZzfWwZxBqEEKQsE8NQhb2CQOK7Xth8UJCwDPKuj20KhKmySUyAQJLzvBINHqgsE9cj8H0ydVWsmt/CnmMD9BzuQwQSM2njeT5WUKohaRlYpomPuokHrqdqhwhVNyXveCQsQxW5s0xEuLSTd328MM3blKqTtGFb4PuqpkhdFUvmNnFsaJyD+7pV4bKkjev52EE486Xu6iRNA8sy8aVy4gLPUw0IIbZDIrKDacZBtidrUNk20vPxXY9kVTnLF7ZyYjjLvv094HoYSVvZzvcxhMALA3mUHaJ0ZYnnegS+OmYmaTGa90iEJflN28IAlTbs+bh+QYMvJcK2IJD4jkuyMsOyBa0MjOfZt7cb6XpYoQajSMOp/rF++cuf5P26m7FGo5mhzKhuxv39/Rw6dIiWlhYA1qxZg23brFu3jo9//OMAdHd3s23bNr7xjW9MeoxkMkkymTzpfcMQKgV1KsIZBCwwzIRaKgkC5nU1c9k7l+M/u4NnDvXiB5Ast/ByDp7vY9oCw1Rl42UQ4Hk++UDiCVV51hICJ8zySIRBqFnXw3QgaaDSQcPlCcL9ZZjdM57N4zoec+c0cdkVK9i8ZS9H9/fghLMUgevheT7GBA2+J3GkqtGREkpDVqpfzFHqcs7zEa5PajINvo9EYNkm43mHwPVob63j0itXkty6j97Dx8m74dKU5+N5PqYlMMLy+QQSz3NxAokrIGmoFF0H1SnZNML0aS9Auj4pAWb42RiGgQgknuepJYxUAsfzcR2PlqYaLrliJXsPHOPw3qM4YbCr4Xp4ro9hm4jIDlLdzJ1AVX1NGgLLADeAvF8o9jZRg4g0RA6FhGTGIuv6OI5He10ll7xrJYcO93HkcB8jYznK0klMGeC7PjLUQKTB9XADtTyWNASmAW4gyHoBplDxTU4gyWUd0kItRaolGqXBD4N9EykTN/BwXI/Wmgouunw5fSdGOHqol+GxHFZZClP6uJ6PaZoI2zxlmMn4gcMMvJQ+xSiNRqM5OwyPjp722DN2UEZHR9m9e3f8et++fWzevJna2lpqa2v56le/ysc+9jFaWlrYv38/X/7yl6mvr+cjH/kIAFVVVXzmM5/h1ltvpa6ujtraWr7whS+wfPnyOKvndDEKM+CT4ktwg4BEWHM1CCRJy2Le3CZWrllET+8gLzy1lZzrYRqFuhNRx2MonvJXSzVBmMERzbUbhoqlEAhE2JwwCFRQRZSp4wUSw1TLSn6gpu7ndTayes0isuN5nrI3MZ53VKaGEOQDiRVqEMUaUBriKq7hNjvUwAQNUaXXWIOhbpa+r0rpz22vZ8UFixh3PJ5/cgvjuXx47eoGi5Sq4zNhF+FC5G+cySLC2YCEYajlhWjpIton1iBDDeHrMHOpvaWWVRcspCyT4rcPPk827yqHQqhaMVYYp6NMrpbeRNHrKMNGVZU1YjtEgbeBVJGoYUY0Xri/FdpBAq1N1axes4iKyjKeenwzQ2EdG9NQGkzl45ZoIH4NhE6IF0iSYXNAGcZAxRoo1YBUjmU+bF3d3FDF8lXzOX58iCceeZGBgVFVH8cIxxgy1jAdh37+Kzb92+n/AdBoNJq3kjHPPe2xZ+ygvPjii1x11VXx61tuuQWAT33qU9xxxx1s3bqVH/7whwwODtLS0sJVV13Fz372MyoqKuJ9vvWtb2FZFh//+MfJZrNcffXV3HXXXaq+yJlQKPwwCWF6ral+/Qauh2kaVFZnmNfZRFtzLfM7m6iqLsc9MYzvuKroWHjDiIIkvCi4NOwTI2WY/QJEtU1UNoxyHrxQkxEVsACkaWBYBoHrI4SgrLKMro5G5s9tpufgMapqynGODxG4qvstpqEyWMJr88PYA2Go+i2RBlsUInD8yTTEphBIo1gDVFSU0dnRQGtTDQu6mqmpq2RkPI/vhHVeTLMozUjih6ERQoTBxaEGU6g+QgjlEE6nAdNAGAYyPFimIs2cjgY62+rxc3lqaysZyzrxZ4VphunX6jMo1aBEROcM1CQFfuzYFQrflSS4RMXMApURVFaepqOtnvlzm5COS319FX0nRggcDztpx3aINciTNQRSfWTRZUYaiDWopaZIgzSEKo0fBEhfaWhtraO9uZaayjIaGqo4dnwI33FJJG2wzDATK4qYnZp8/wnGx45NP0ij0WjOEtng9OudnbGDcuWVV04b5PLwww+f8hipVIp//Md/5B//8R/P9PQlyGBibY8CAvXr3UpYmJZJfixLKpOmqaWOpqZaEgmLluYamlrrGM/myY/nSZSl4gwONRsQ3pBQjoENOISvRTjjQmF7IFTRryjwMQqItBIWlmXi5h2StkljUy1NzTUYhqCurpKWUENuLEcyncRK2KpwW3htXqjBQpRoSIRZSgHqkUDVzHDCm6g1QYNpmuRzeRKWSWNzLa2t9di2SWNDNS2t9QwMjjHUP0R5VTlW0sZQUzGqDoosXHexBotC9o3SoGZGJtNg2haWaeC5HpZh0NBYQ2tLHel0goa6Klra6hkcHmd8eIxUJhVriOzgR85hqMFFZWAlBJiyoMEO83cjDWYYBE2owTQNXMfDQPXOaWutxzAMKirStLbV0907yIljAySTtnJSQmdLyoIGU6jWBLEGiIvtRRqEEDgyKu8/QYOh7CCkpL5BaUinE6SSNq1tDRzuGaD/2AnKUgmsRKmG6f9RyFP5MBqNRnPWOJO/T28oSPZsMTw8TFVVFVdeeROWdXJsCqiYg/a2etauXcScOU0MDI6ClHR0NHL+8i6qytNkc3m2bN3H/n09YBjUVpdz5HAfmzbtZvfeo/h+gOu4+F5QlOYZRSGr9Zeo8BthBhCBxDANEqFT0tpazwWrF9A1v5XxbJ7sWI729npWrphPVXU54+M5tm/fz4H9x/CButoKjh4+zkubdrF3Xzeu4+E4Lr4fxNcVawiXWOKCb6JIg6GaA5qmQUtTLWvXLqJrXgvjOYfx0RydnU2cv2wuNVUZcp7PK9v2s39/D2PjeVqaa+jrHWTjS7vY+dohPFfFi3ieP4kdimqJhBqirBtDCOyEjWWbNNRXsXrVAhaf10HecRkdydLcXMvylfNobKjG93y2btvP3j1HyeVdGhqqON43yMsv7+XVVw+Sd9yChtOwQ6kG5ZzV1VWy5oKFLFzUDobB8d4B2tsbWLq0k+bmWhzHZffuo+zdc5TB4XGam2sYGhjlpZd28crOQ+RyDm4Y5AwgwviWEg1CpQYXaxAoDZZtUlNdzupVCzhvSScSycDAKK0ttSxZ2klrUw3SMnl1+3727DlK/4kROtobGBgYYdu2/bz88h7yzvTTo9f0vsrS0cnT9TUajeZsMx74/NH+TTMjSPb3ychIDsuaPM3YNFT599bWet7xjsVU11TguT6WZWDZFp7jUVGZ4eKLl7JmzSIsy2RoaIwNAja/vIfRkWzcWdeyLQxD4PlBHHCpus2q88iwiJllGUghcT0fN1ymCIKA5uZaLli9gIamGnzPxzLDzsmeT0VFGRddvJQLLliIaZmMjebYsOFVXn55D2NjOZwwJsOyVHaMGy7RRBoCqTr/SqkKiJmWiTAkjuvjjuUQQuDV+zQ11bB69UIam2oIfBV0adkmbt6lIpNizZqFrFgxD9MyyY7nePnlPby8ZS+jozk81wPADjOVJtqhoEEVdLMsEyFVBVx3PIdhGFRXl1NXX8mqVfNpbqnD99RyVyJp43s+iYTNBRcsZPmyuRimiZN32LRpN6++coixsRy5nJqrsiwTyzRxfR8kmKZKHy/WEASBCioFXM/DHc+DEFRUlFFbV8ny5V10zGlCBmFnacvC8zzS6SQrVs7jvPM6lAbH5ZUdB9i+Yz/jYznGx/NKg2liWQZuWJCvoEFiGqqyjRdqMIWqwpvN5iEnVFp2dTkrlnfRPqchXi5KJGw8x8MyTZYt72Lx4g6EYeD7Pq/sOMDevd2Mj+fjKsFT4Xq6m7FGo3l7MKtnUC5c85+wzKnTjBPpJI2tdaxc2skHPnAJS5fNxXE8EoaBkbCQvk8u75FKJzlyoIcf/vhRtr92mGNH+8mNZtV0vSFUgzdDVUb1JFimEa4vgTAN3DB7wzINXKluEkbo3CTSSeqaajh/UTsf+8jlnL9iHnnHo8wUkLDB9Rh1PMrSSfbvOcqvf/McL2zeTc+R4+THciqdVghMyyRhGAS+H2swpMQNJLZp4ASB6u5sGngTNNhJm/rmWhYvaOMPPnI5Ky9YqLYLMG0LPJ+845FMJThyuI9773mKl7bu4/ChXrIj4yreJNagiqZ5gboxizAg17YM8n6AIcG2Qg2+jwidGSthU9NQzdLF7Vx/3VouvvR8FavhB1jpBEKq9gHpTJrh/iF++q+PsWHzXo4e6WN8aCwOqhWmScI0IPBxg7COilCZRJZl4IQaLEulhru+D2F6r5WwqGmoZn5XCx9474VcdsWKuLOxmUqAHzCec0ilk/QeG+ChB5/ndy/s5MD+HsaHx5CB6nxtxBoC3CDAMAxsATk/IGWZOH6AkGCbBp4A1wvA91WKsW1SVVfFwgVtvO89a3jnlSsxbBM/75FMJ0BCbjyHnUowNprlFz9/gudf2s3Bg8cYGRiZckkz4n0je1mR63vT/q1pNBrNm8l44PPHBza//WdQTMvEtKa+BNf1OLL/GP09Jzhy5Dif//yHWbCgFcMycT1Vv8Q0DfbsPsI//uO9vLrjAONhxVTTVseVYfaKH4AMA0JlGBgpUPVFolhSL1BjbUMgTLW/53p0H+pjsG+Qnp4T/Ke/eD/Lls0Fy4q7DdumwZ49R/m/33+QTZt2qT4/ElVbpURDUKLBp5AlouIfwiyhCRp8P6D78HEG+gY5sL+H/3LLH7Ls/E6shI3j+XF9kWPHTnDHHfexceNrjI87KpPFmsQOCAyhglICVOyNHwXEijBLBRUrIkI7BkFAX08/z50Y5ujhPrxAcvFFS8JaHwGGECQSFt1HjvPDHzzM757eyvBIVtVRK7IDqBmSSIMgjAsRBTsgVEfmWEMYZBoEkr6eEwz1D3PoQA9OILnssvNJpOw448i2Tfr7h/jRj9ax/onNDI9k8cPZEExV06SgIew1RBh7FAbFhit+uFJlhFmCWIOUkhN9g2waHOXw/h5yrse7r1pFKpXA8wMsw8C2LYYGR/nJT37Lww++wMhYFt+XsYbpMAzd0Vij0cxczuTv0++lF89bRTStPtXDMgwSYSO3l7fs5fDhPnUTMw3wvLgs+KGDvWzcuAvH9UiYJpZhxMdQcY1ROk4hEyPOyCh6TjhWUNBlGAZJy8TzfLZt38/+fd3qV7AIs1mEaiJ3rOeEWloazSkN0XLFNBrUDbJYg4wr50axEcUafD9g2/b97HrtkDquIcBVcSUI6D8+zAsbdjI6msO2DLVkFR6DKTRAITh0ok1KNQgSloXvB7y26wi7dh3GcT2EaYAXhMs1Jsf7Bnlx42sMj2SxTRN7ogaKTlJsB+KCrCdroJDynAgdrl27j7Jj+358z4cws0iibvCjI1k2btxFX/8wlqm+Q9ExSu1QqsGk0F8w/j5MpUFK9u7rYeuWvbiuH34nVdMFYRqMDI2xYcNO+gdGwu+x6oY83fc9kBIdIqvRaN4uzGoHRdVBEVM+/CAg77jIQNLSUkt7R4P6per6jIZdeBMJi7b2etrb6wl8NT76RW+E1UOjYMeobwqEiTpFWmRRUKTSFpbXDwLyrgpybWysob2jkXRZEs9XGhzHI5GwaWmto62tHkMQaxATNBAuc5ScV5ZqgIKGaH8pJXnXw/d8Ghuq6ZzbTDqdJPADRrOqE7BtWzS31NLZ2YSINHgFDYV+PqV2iGwRvSFV5PAkGsAJNdTWVjC3s5ny8jRBIBnL5nEcF9M0aGyqobOzCcMQKjB2goboouUET6X0tjy5HUBp8FyP6upy5nY1U15RhpQwNp4nl3cwTJP6+io65zaRsK1Qgx/XZhFxCvrJGooyy+Nnk2lwXQ/X9amqKqOrq4WKyjJkIBnLOuTyDqZpUNdQzbx5LdiWieN4SsMpvu9qNkfPnmg0mrcHs3qJZ7rGaBJJ4KtlkUTSZuHCdtra6slm8zz33CtseP4VVq1ZxOWXLaOttZ7Fizvo6T5B4KpkVcsOK4dScAKi3ikyXkoQ8S/1qMFbPIMRygp81Y3YNE265jbT0dGA5/k8+9wrbHjuFRad18GVV66irq6SRYva2bevG2c0C6glrEL33cKvdKWptBAbFGYRVDZLpEE1+/N9H2FbzO1qZv68FhzHY9Pm3Tz52GYWLZnDFVesoLZWBZDu3XuUXNZBigDLNOPicJFTVmyHuGBcqMEsSn0uaFDLTL7vY1kW7e0NzJvfCsCmzbt56omXaWmr47rr3kFtbQVLl3Sybds+nLyHIMAwzNhBijVEn3MYZFqsIfIhoqyeyA6BHxD4AVgGzc01nLe4Ayklr7xykHUPb6CppZarr76AmpoKli2by8sv72FocBSBjJdOTtYg4oJxlpioQZ6sIQjCQnkGzc21LFkyByklr752iN8+spHK6nLe+94LaWqsYeXKeTzzzHbGRrLIIg3TIs4sjU+j0WjeSs7k79OsdlAM01BT45Og+uG45HMOFeVp3nHREgaGxnjud9u479fPsmvXUV548TV6e07wzitWctk7l/P0k1vIZfPYCVX/QggQvsQPJD5hsCqFuh9SyrAwGXjqpFiowE3CXj2e75LLOiQTNmvWLgIEDz7wAj/72eO8tucoLU019PcNcdm7VrD6goX87qmtnOgbUmmpCUvdlMKmfZ6UuEKVuTek6q0DYIZFwJQGsJCxBoTAcZSGctPk4kuWIoXgwQee59e/eZaXt+yjubmG7qPHufKq1Vx6+XIe++1LDJ0YxbQMEklbOVxBEPec8YUqc2+EmmSowQjtEoQazFgDuK5PLutQUW5y/vIukqkEv330JX7xiyfZvGUflZVp+o8Pc9XVF3DBhYt58IHn6e8dwjAN7MgOoQZfSrwJdpioQaLqn5iGEdvB83xy2TzJlM2KFfOoa6ji8cc2cd99z/D8hp1UVWboPtrPu69Zw8rVC3h03Ub6ek6AEKo2jTmZBpVW7FEo0BbbAVUHZioNS5bOpaGphvVPvMz99z/Hs8+9QjKd4Fh3P++57kJWr1lEfV0lA8eHCCTYoYbpiJb3NBqNZiZyJn+fZrWD4rs+QnpTbjdNg4qqDA3NtXg5hx//4BHWPbqR7FiOhoZqDuzr5v/882/YvfsoF65ZRENTDZ6UeI5HEKZrBqjiZ4YwsAhvfmGhMAidAqQq1GYYeFIiAokRVsszTYPyygx1jdUYUvLznz3O/Q++wODxIRqaajh2tJ9/+d79vLbrCBesnk99YzUDw+N4jkvgq0qj0cyMYRgkUdVtAyGKiqQJglCDNASeVFVojbhmiCBTWUZ9fRXphM3P/vUx7vv1swz2D9PYVMvxYwPcddcj7HjlEO9771qammsZHs2RzzmxHWRoC8MwsCdqCJ0WX0osZKhB1WSJNAghKKsoo66xiqRpcv+vn+G+Xz9Hz5HjcQfou+56mJ2vHeY9V6+mvrGaE0NjODkntkOkQYR28KXEp9QOPqooGkLghbVpRLhEA1BWUUZVdYaaygwP/uY5fv7vT3LkYC+NzbWMj2W5++7H2fHqIT50w8U0NFZTVVdFdjyH9IOwQePUGgwBnggdFSmxhMAVpRoEkC5PU11TQWVFmt8+8iL/9ounOHKol7q6SvJ5l5/9/Aleee0wn/iDd9HcXENv/zDZ0WysYTp0N2ONRjOTecu6GZ8t4jTjC/+faboZC2xTkLAthG1hGQa5sSw510cagkrTYNAPMANJ0jZJl6dx/QBcVcPE8X1EtEQRTqub4WyBJ1TlUKQkLwRWuOTjh0s+hlRZPhIVqJu0LbBNbMskP54nl3fxDEGFYTAeBMhAkrJMUpmUKhEfanD9QE3tCxFrsMJlAy+czbGlJCeEqlR6Cg3CNrEmaKgxDYYDifQDEqZBpiKtZkVc1W047yn3qFiDGS45eaGDYklJtsgOgRDKmSnSYBoGSdvEsFXRNC/nMJ5z8IWg3DTISrUUljIN0uWqoq/S4OP4flx0LVpWU20HlGMkgERoB0Oq7s1TarBU0z3bVs0hx7MOjoBK0yQvJa4fkDAEmfI0gRCqe7XjnVIDQJmUjIafhYlyZP2JGoQgaVvKDraJn3dVA0mUhmyoIVmkIQi7Luc9/5T/uN83tIcV2d4z+vek0Wg0bxXnTJqxMFQGzFRICU7ew8u7qhWMVIXVPIGKRRCqKmrgBwwNjyOlxEYgRXhs1PS9DGcLZBTcwMleYBS8KqKsmyjfFXAdD9dx1VJBqMEXYdM5oRrNBYFkZHRclUmXSgOG6iljyKi5HqUaonMXaaBYQ/h/EhWY6Tmu6qocZvYQ2kGGdkBKhkeyBKEdEIXrKLFDGIQaZadMDFCN1BVrAPAcH8/x4pt7wQ5Kg2moeI6R0VypBhH+NwwICkR09CL7U8jciTXJSTSEjte4cGI7iPCzkEI1dRRSMDqaxRdgSVHIoirSIKfQQJGGoEiDIZTTBGqZx3c9gvA7aYhIQ8EOAhgdy4WzUqUapkMUOZIajUYz4ziDv0+zOotHo3lbov0LjUaj0Q6KRjPjmHWLrhqNRvPmox0UjWamoWdQNBqNRjsoGo1Go9FoZh7aQdFoZhp6iUej0WhmdxZPY0US20pOuT0qquZRWu3VAzJAGWE2CYXiXlb4Xz/cJ+ozE1Do0+ZTMJxb9Lx4n6h2yWQaJOCE58+F4yMNAah6JkyoEBu+LtZnhK/zRecp3ieunxJuLxR2U9tcoCLUER2r2A7RNU3UUGwHM3zkwn1KCqVNoaHYzi6QCq9BhO8H4THsovNAYeVjogYRjp1oh+LKu1FF18k0OEA6fD+ycaShUGOltILtRA2E1zFetE+xvSZq8Cccww015MOx9jQapqM63UB5MPW/CY1GozmbCM+F/ZtOa+ysdlD+y+duoDyTmXJ7UeuW+HVUut4SAlcGcTfaqJS8McU+yMLxAll6o4qyP2WY5yom7D+VBjMs6hVlwZ6phih91ZfTa1CvRVFfmFI7eEXpuGeiobgFwEkaJuwzmYboOk7XDhS9nrjtzdAQFJ33VBoI9SKKNYTdjE9HA/Kkz/MkDVNc63Q0ViapTNmnHqjRaDRngeHRUbjiN6c1dlY7KGuueccpC72UUFRDZKr346Z48aaiGxqltS6IXovwliMn34fi11M8Lz36xFfT6J1q3IRrneo6SveZ7qSTDy6xw8RrmGDLUnlT6BECIQs9eaeyl6C0JkzJZzPFxzyppkkHz4TPYpqL0Gg0mlmKOTx82mN1DMosQCd1aDQajeZcQzsoswD9O1qj0Wg05xraQdFoNBqNRjPj0A7KLEAv8Wg0Go3mXEM7KLMAvcSj0Wg0mnMN7aDMAvQMikaj0WjONbSDMgvQMygajUajOdfQDsosQM+gaDQajeZcQzsoswA9g6LRaDSac40zclBuv/12LrzwQioqKmhsbOTDH/4wO3fuLBkjpeSrX/0qra2tpNNprrzySrZv314yJp/Pc9NNN1FfX08mk+GDH/wghw8ffuNXo9FoNBqN5m3BGTko69ev5/Of/zzPPfcc69atw/M8rr32WsbGxuIx3/jGN/jmN7/Jd77zHTZs2EBzczPvec97GBkZicfcfPPN3Hvvvdx99908/fTTjI6OcsMNN+D7/mSnPefRSzwajUajOdcQcqpmKadBX18fjY2NrF+/nne9611IKWltbeXmm2/mi1/8IqBmS5qamvj617/OZz/7WYaGhmhoaOBHP/oRn/jEJwA4evQoHR0dPPDAA1x33XWnPO/w8DBVVVUMDg7qXjxTjdO9eE553qkHz4TPQvfi0Wg0bz+Gh4eprq5maGjolPfvNxSDMjQ0BEBtbS0A+/bto6enh2uvvTYek0wmueKKK3jmmWcA2LhxI67rloxpbW1l2bJl8ZiJ5PN5hoeHSx7nEnoGRaPRaDTnGq/bQZFScsstt3D55ZezbNkyAHp6egBoamoqGdvU1BRv6+npIZFIUFNTM+WYidx+++1UVVXFj46Ojtcre1aif0drNBqN5lzjdTsoN954I1u2bOFf//VfT9omROlvfinlSe9NZLoxX/rSlxgaGoofhw4der2yZyV6BkWj0Wg05xqvy0G56aabuO+++3j88cdpb2+P329ubgY4aSakt7c3nlVpbm7GcRwGBgamHDORZDJJZWVlyeNcQs+gaDQajeZc44wcFCklN954I/fccw+PPfYYXV1dJdu7urpobm5m3bp18XuO47B+/XouvfRSANasWYNt2yVjuru72bZtWzxGo9FoNBrNuY11JoM///nP89Of/pRf/epXVFRUxDMlVVVVpNNphBDcfPPN3HbbbSxcuJCFCxdy2223UVZWxic/+cl47Gc+8xluvfVW6urqqK2t5Qtf+ALLly/nmmuuOSPxfjaHbyfOaB+FpJA/ISZ5/61gJmt4I8d6s/Y/k+O92ed+I8d9vVpmwvdBo9Fofr/42dxpjz0jB+WOO+4A4Morryx5/8477+TTn/40AH/zN39DNpvlr/7qrxgYGOCiiy7ikUceoaKiIh7/rW99C8uy+PjHP042m+Xqq6/mrrvuwjTNM5HDplv+f2QSp3BQTiO1uPR93vw1lTNNGX0rNUybk/sm63g9qbOzScPpHvt1fRY67Vij0cx+xhzntMe+oTooZ4uoDsq/dq6izJjaqYmCbkvqaKg3impRCIRQ78kp9oleT9yfqPaJEOoeJmXp89PWcHK9j9PSoDaefN7w+XTXVHIdxeNO0w6F5wCTaJhmnzdHQ+G8kR2QEnmWNZy2HYq/A1NpCL9fEzVoNBrNbGU88PnjA5t//3VQNBqNRqPRaH4faAdFo9FoNBrNjEM7KBqNRqPRaGYc2kHRaDQajUYz49AOikaj0Wg0mhmHdlA0Go1Go9HMOLSDotFoNBqNZsahHRSNRqPRaDQzDu2gaDQajUajmXFoB0Wj0Wg0Gs2MQzsoGo1Go9FoZhzaQdFoNBqNRjPj0A6KRqPRaDSaGYd2UDQajUaj0cw4tIOi0Wg0Go1mxqEdFI1Go9FoNDMO7aBoNBqNRqOZcWgHRaPRaDQazYzDOtsC3ggr/u7LVJSVTT1ACPVfKQuvT+f5xH2KXyOA6Pk0553ueG+mhuL9TltD0SW8Xg1T7jfFsc/k2t+ohqnsMN3xz5aG4tenq0Gj0WhmKSPj4/CnHz+tsbPaQWn7wLVUVlaebRkajUaj0WhOg+Hh4dMee24t8US/RKd5X0wYU/y6eIsofi1EyaEn7iOmOH7puSacd8otE/RO3DbJmMk0Tb7PVBumHlxih4nXMJW9p9MjROm1T2W7cOxkx5jmtCdrmnTw1J/FJAc89bjX9Vmc0Yeh0Wg0bzvOLQdllqIn9jUajUZzrqEdlFmA/i2t0Wg0mnMN7aDMAvQMikaj0WjONbSDotFoNBqNZsahHZRZgF7i0Wg0Gs25hnZQZgF6iUej0Wg05xraQZkF6BkUjUaj0ZxrnJGDcvvtt3PhhRdSUVFBY2MjH/7wh9m5c2fJmE9/+tMIIUoeF198ccmYfD7PTTfdRH19PZlMhg9+8IMcPnz4jV/N2xQ9g6LRaDSac40zclDWr1/P5z//eZ577jnWrVuH53lce+21jI2NlYx773vfS3d3d/x44IEHSrbffPPN3Hvvvdx99908/fTTjI6OcsMNN+D7/hu/orchegZFo9FoNOcaZ1Tq/qGHHip5feedd9LY2MjGjRt517veFb+fTCZpbm6e9BhDQ0N8//vf50c/+hHXXHMNAD/+8Y/p6Ojg0Ucf5brrrjvTa3jbo2dQNBqNRnOu8YZiUIaGhgCora0tef+JJ56gsbGRRYsW8Rd/8Rf09vbG2zZu3Ijrulx77bXxe62trSxbtoxnnnlm0vPk83mGh4dLHhqNRqPRaN6+vG4HRUrJLbfcwuWXX86yZcvi96+//np+8pOf8Nhjj/G//tf/YsOGDbz73e8mn88D0NPTQyKRoKampuR4TU1N9PT0THqu22+/naqqqvjR0dHxemXPSvQSj0aj0WjONV53N+Mbb7yRLVu28PTTT5e8/4lPfCJ+vmzZMtauXUtnZyf3338/H/3oR6c8npRyyuZyX/rSl7jlllvi18PDw+eUk6KXeDQajUZzrvG6ZlBuuukm7rvvPh5//HHa29unHdvS0kJnZye7du0CoLm5GcdxGBgYKBnX29tLU1PTpMdIJpNUVlaWPM4l9AyKRqPRaM41zshBkVJy4403cs899/DYY4/R1dV1yn36+/s5dOgQLS0tAKxZswbbtlm3bl08pru7m23btnHppZeeofxzAz2DotFoNJpzjTNa4vn85z/PT3/6U371q19RUVERx4xUVVWRTqcZHR3lq1/9Kh/72MdoaWlh//79fPnLX6a+vp6PfOQj8djPfOYz3HrrrdTV1VFbW8sXvvAFli9fHmf1aEoRaCdFo9FoNOcWZ+Sg3HHHHQBceeWVJe/feeedfPrTn8Y0TbZu3coPf/hDBgcHaWlp4aqrruJnP/sZFRUV8fhvfetbWJbFxz/+cbLZLFdffTV33XUXpmm+8St6G6KdE41Go9Gcawgp5ay7/w0PD1NVVcWG275JRSo96Q1cRP8vwgDconfVLV8U/Ve9p14Vj5lsn+JtpWeTyKL9i/Z5kzSUHr9420RtBQ3xPlNpEAJk6bHOzA7T2WeC7lDqydcx8Rqmu9Zp7HyadkBOdo3F81ST6X69Gl6PHabWcKp/rKWaNBqNZmYxmsuy9sv/haGhoVPGk77uLJ6ZwN7/+6+UmVNfwqlu5TD1LW2q2/LE96faNtn+0207Ew3TjTsdt+r3oaH4tdZwZhpOdd6p3OKp0C6KRqOZqYz73mmPndUOSuC6BH4w5fYobTmaJBJCqD/yYUqzel8gin9VT7JP9Hri/iDVD2shwh+4svT5aWvgpOenpUFtPPm84fPprqnkOorHnaYdCs8BJtEwzT5vjobCeSM7ICXyLGs4bTsUfwem0hB+vyZq0Gg0mtmKH5x+SxvdzVij0Wg0Gs2MQzsoGo1Go9FoZhzaQdFoNBqNRjPj0A6KRqPRaDSaGYd2UDQajUaj0cw4tIOi0Wg0Go1mxqEdFI1Go9FoNDMO7aBoNBqNRqOZcWgHRaPRaDQazYxDOygajUaj0WhmHNpB0Wg0Go1GM+PQDopGo9FoNJoZh3ZQNBqNRqPRzDi0g6LRaDQajWbGoR0UjUaj0Wg0Mw7toGg0Go1Go5lxaAdFo9FoNBrNjMM62wLeCK3vfw/lyeQ0I0T4X1n0vPi1nDDmdPY53eeTbZvs+K9nn1Ndx1THm0rvG9Ew3XHfKg1vlh1O9fyt0DDdeSSnZrLPRqPRaGYGo/k8/NPm0xorpJSn81dvRjE8PExVVRXHjxylsrJyynGT3VpK//xLJOKMbkcT359q22T7T7btdPeZTsPrOd6pboOnc1ue7hY93T5vtYaZbofptp2pe1J8TI1Go5lpDA8PU9fWytDQ0LT3b5jlMyhWpgwrU3b6OwgBk/ljRe8LISj22YpfT3mzEwKBjA89cR+KX0/xvPToU99kT9I7cdsU1zrVdZTuM9WGqQeX3jwnXMMEW5bKm0KPEAgpC9c+le0AOYUdpvqYJ9U06eCpP4tJDvh7+iymuQiNRqOZpZi+d9pjdQzKLEDfpjQajUZzrqEdlFmAnrLXaDQazbmGdlBmAXoGRaPRaDTnGtpBmQXoGRSNRqPRnGtoB2UWoGdQNBqNRnOuoR0UjUaj0Wg0M44zclDuuOMOVqxYQWVlJZWVlVxyySU8+OCD8XYpJV/96ldpbW0lnU5z5ZVXsn379pJj5PN5brrpJurr68lkMnzwgx/k8OHDb87VvE3RSzwajUajOdc4Iwelvb2dr33ta7z44ou8+OKLvPvd7+ZDH/pQ7IR84xvf4Jvf/Cbf+c532LBhA83NzbznPe9hZGQkPsbNN9/Mvffey913383TTz/N6OgoN9xwA77vv7lX9jZCL/FoNBqN5lzjDVeSra2t5e///u/58z//c1pbW7n55pv54he/CKjZkqamJr7+9a/z2c9+lqGhIRoaGvjRj37EJz7xCQCOHj1KR0cHDzzwANddd91pnTOqJDs4OHjKSnQl6EJtp9hnqg1TD9aF2nShNo1GozldhoeHqa6uPq1Ksq87BsX3fe6++27Gxsa45JJL2LdvHz09PVx77bXxmGQyyRVXXMEzzzwDwMaNG3Fdt2RMa2sry5Yti8dMRj6fZ3h4uORxLqFvUxqNRqM51zhjB2Xr1q2Ul5eTTCb53Oc+x7333svSpUvp6ekBoKmpqWR8U1NTvK2np4dEIkFNTc2UYybj9ttvp6qqKn50dHScqexZjY5B0Wg0Gs25xhk7KIsXL2bz5s0899xz/OVf/iWf+tSn2LFjR7xdiNLbqZTypPcmcqoxX/rSlxgaGoofhw4dOlPZsxo9g6LRaDSac40zdlASiQQLFixg7dq13H777axcuZJvf/vbNDc3A5w0E9Lb2xvPqjQ3N+M4DgMDA1OOmYxkMhlnDkUPjUaj0Wg0b1/ecB0UKSX5fJ6uri6am5tZt25dvM1xHNavX8+ll14KwJo1a7Btu2RMd3c327Zti8doTkYv8Wg0Go3mXMM6k8Ff/vKXuf766+no6GBkZIS7776bJ554goceegghBDfffDO33XYbCxcuZOHChdx2222UlZXxyU9+EoCqqio+85nPcOutt1JXV0dtbS1f+MIXWL58Oddcc83v5QLfDuglHo1Go9Gca5yRg3Ls2DH+9E//lO7ubqqqqlixYgUPPfQQ73nPewD4m7/5G7LZLH/1V3/FwMAAF110EY888ggVFRXxMb71rW9hWRYf//jHyWazXH311dx1112YpvnmXtnbiDPK/tVoNBqN5m3AG66DcjY41+qgTKt3qnG6Dsopzzv14JnwWeg6KBqN5u3HmdRBOaMZlJnG8Gt7oLz89R9AogM8Zgr6s9BoNJq3PcOjo6c9dlY7KM//2ecpM6e7hNLf96WvBaV3xUnnRibZZ+L+0405XQ1M8vx0NBTvN9M0nOnxznSfycae6tpnkobJNJ2uBo1Go5mdjPveaY+d1Q6Kl83hGVPHrkS1VUqWCNQbRdPsAiHUe3KKfaLXE/cnWtYRQt1OpCx9ftoaTl7KOC0NauPJ5w2fT3dNJddRPO407VB4DjCJhmn2eXM0FM4b2QEpkWdZw2nbofg7MJWG8Ps1UYNGo9HMVrzg9PvuveE0Y41Go9FoNJo3G+2gaDQajUajmXFoB0Wj0Wg0Gs2MQzsoGo1Go9FoZhzaQdFoNBqNRjPj0A6KRqPRaDSaGYd2UDQajUaj0cw4tIOi0Wg0Go1mxqEdFI1Go9FoNDMO7aBoNBqNRqOZcWgHRaPRaDQazYxDOygajUaj0WhmHNpB0Wg0Go1GM+PQDopGo9FoNJoZh3ZQNBqNRqPRzDi0g6LRaDQajWbGoR0UjUaj0Wg0Mw7rbAt4PUgpARgP/GnHCSFKxgshkOoN9VxKQCCEek9OsU/0euL+IFGHEIhon+Lnp62Bk56flga18eTzhs+nu6aS6yged5p2KDwHmETDNPu8ORoK543sgJTIs6zhtO1Q/B2YSkP4/ZqoQaPRaGYr0X37dP6ezUoHZWRkBIDPHNp6lpVoNBqNRqM5U0ZGRqiqqpp2jJCz8GdZEATs3LmTpUuXcujQISorK8+2pFnB8PAwHR0d2mZniLbbmaNt9vrQdjtztM1eH2fLblJKRkZGaG1txTCmjzKZlTMohmHQ1tYGQGVlpf5SniHaZq8PbbczR9vs9aHtduZom70+zobdTjVzEqGDZDUajUaj0cw4tIOi0Wg0Go1mxjFrHZRkMslXvvIVksnk2ZYya9A2e31ou5052mavD223M0fb7PUxG+w2K4NkNRqNRqPRvL2ZtTMoGo1Go9Fo3r5oB0Wj0Wg0Gs2MQzsoGo1Go9FoZhzaQdFoNBqNRjPjmJUOyj/90z/R1dVFKpVizZo1PPXUU2db0lnjySef5AMf+ACtra0IIfjlL39Zsl1KyVe/+lVaW1tJp9NceeWVbN++vWRMPp/npptuor6+nkwmwwc/+EEOHz78Fl7FW8vtt9/OhRdeSEVFBY2NjXz4wx9m586dJWO03U7mjjvuYMWKFXFhp0suuYQHH3ww3q5tdmpuv/12hBDcfPPN8Xvabifz1a9+FSFEyaO5uTnerm02OUeOHOFP/uRPqKuro6ysjFWrVrFx48Z4+6yzm5xl3H333dK2bfnd735X7tixQ/71X/+1zGQy8sCBA2db2lnhgQcekP/9v/93+Ytf/EIC8t577y3Z/rWvfU1WVFTIX/ziF3Lr1q3yE5/4hGxpaZHDw8PxmM997nOyra1Nrlu3Tr700kvyqquukitXrpSe573FV/PWcN1118k777xTbtu2TW7evFm+//3vl3PmzJGjo6PxGG23k7nvvvvk/fffL3fu3Cl37twpv/zlL0vbtuW2bduklNpmp+KFF16Qc+fOlStWrJB//dd/Hb+v7XYyX/nKV+T5558vu7u740dvb2+8XdvsZE6cOCE7Ozvlpz/9afn888/Lffv2yUcffVTu3r07HjPb7DbrHJR3vOMd8nOf+1zJe+edd578b//tv50lRTOHiQ5KEASyublZfu1rX4vfy+VysqqqSv6f//N/pJRSDg4OStu25d133x2POXLkiDQMQz700ENvmfazSW9vrwTk+vXrpZTabmdCTU2N/N73vqdtdgpGRkbkwoUL5bp16+QVV1wROyjabpPzla98Ra5cuXLSbdpmk/PFL35RXn755VNun412m1VLPI7jsHHjRq699tqS96+99lqeeeaZs6Rq5rJv3z56enpK7JVMJrniiitie23cuBHXdUvGtLa2smzZsnPGpkNDQwDU1tYC2m6ng+/73H333YyNjXHJJZdom52Cz3/+87z//e/nmmuuKXlf221qdu3aRWtrK11dXfzRH/0Re/fuBbTNpuK+++5j7dq1/OEf/iGNjY2sXr2a7373u/H22Wi3WeWgHD9+HN/3aWpqKnm/qamJnp6es6Rq5hLZZDp79fT0kEgkqKmpmXLM2xkpJbfccguXX345y5YtA7TdpmPr1q2Ul5eTTCb53Oc+x7333svSpUu1zabh7rvv5qWXXuL2228/aZu22+RcdNFF/PCHP+Thhx/mu9/9Lj09PVx66aX09/drm03B3r17ueOOO1i4cCEPP/wwn/vc5/jP//k/88Mf/hCYnd+1WdnNWAhR8lpKedJ7mgKvx17nik1vvPFGtmzZwtNPP33SNm23k1m8eDGbN29mcHCQX/ziF3zqU59i/fr18XZts1IOHTrEX//1X/PII4+QSqWmHKftVsr1118fP1++fDmXXHIJ8+fP5wc/+AEXX3wxoG02kSAIWLt2LbfddhsAq1evZvv27dxxxx382Z/9WTxuNtltVs2g1NfXY5rmSZ5cb2/vSV6hhjjqfTp7NTc34zgOAwMDU455u3LTTTdx33338fjjj9Pe3h6/r+02NYlEggULFrB27Vpuv/12Vq5cybe//W1tsynYuHEjvb29rFmzBsuysCyL9evX8w//8A9YlhVft7bb9GQyGZYvX86uXbv0d20KWlpaWLp0acl7S5Ys4eDBg8Ds/Ls2qxyURCLBmjVrWLduXcn769at49JLLz1LqmYuXV1dNDc3l9jLcRzWr18f22vNmjXYtl0ypru7m23btr1tbSql5MYbb+See+7hscceo6urq2S7ttvpI6Ukn89rm03B1VdfzdatW9m8eXP8WLt2Lf/hP/wHNm/ezLx587TdToN8Ps8rr7xCS0uL/q5NwWWXXXZSuYTXXnuNzs5OYJb+XXvLw3LfIFGa8fe//325Y8cOefPNN8tMJiP3799/tqWdFUZGRuSmTZvkpk2bJCC/+c1vyk2bNsVp11/72tdkVVWVvOeee+TWrVvlH//xH0+aVtbe3i4fffRR+dJLL8l3v/vdb+t0vL/8y7+UVVVV8oknnihJYxwfH4/HaLudzJe+9CX55JNPyn379sktW7bIL3/5y9IwDPnII49IKbXNTpfiLB4ptd0m49Zbb5VPPPGE3Lt3r3zuuefkDTfcICsqKuK/89pmJ/PCCy9Iy7Lk//yf/1Pu2rVL/uQnP5FlZWXyxz/+cTxmttlt1jkoUkr5v//3/5adnZ0ykUjICy64IE4PPRd5/PHHJXDS41Of+pSUUqWWfeUrX5HNzc0ymUzKd73rXXLr1q0lx8hms/LGG2+UtbW1Mp1OyxtuuEEePHjwLFzNW8Nk9gLknXfeGY/RdjuZP//zP4//3TU0NMirr746dk6k1DY7XSY6KNpuJxPV57BtW7a2tsqPfvSjcvv27fF2bbPJ+fWvfy2XLVsmk8mkPO+88+S//Mu/lGyfbXYTUkr51s/baDQajUaj0UzNrIpB0Wg0Go1Gc26gHRSNRqPRaDQzDu2gaDQajUajmXFoB0Wj0Wg0Gs2MQzsoGo1Go9FoZhzaQdFoNBqNRjPj0A6KRqPRaDSaGYd2UDQajUaj0cw4tIOi0Wg0Go1mxqEdFI1Go9FoNDMO7aBoNBqNRqOZcWgHRaPRaDQazYzj/w/ytjZvPcbeWQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5RklEQVR4nO3de1RVdf7/8deJywERTgLCASWktFJBR7ExmUq8YY7mpJWWXXRlfTUvxVLLsPklNQ2UfdNqbJypTFMrqjGsKTMxlXLMQpJJra9jk6YWDEXILTwgfX5/9HV/OwIqiLGx52OtvZbns99778/+nAO83LfjMMYYAQAA2Mg5rd0BAACA4xFQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQYHtdunTRqFGjmr38m2++qVtuuUUJCQny8/OTw+Fowd6dHdLT01ttXD799FOlp6dr//799eZNmjRJXbp0+dn71BTfffedrr/+ekVERMjhcOjqq69utPZEn+Xt27fL4XBo+fLlVtukSZPUvn37Fu5xw1pzrBsbQ4fDofT09FbpE1qfb2t3ADjTsrOztW3bNvXp00dOp1P5+fmt3SXbue2223TllVe2yrY//fRTPfDAA0pOTq73B/L//b//p7vuuqtV+nWq/vCHPyg7O1vPPfecLrjgAoWGhrZ2l5qlNcf6bBlDtCwCClrE999/r3bt2rV2Nxr0zDPP6JxzfjxYOGPGjDYfUM7EWHfu3FmdO3du0XW2hAsuuKC1u3BSu3bt0gUXXKAbb7yxtbvipbq6WoGBgadc35pjbdcxROviFA+a7NjpgI8//ljXXnutOnToYP1y2759u66//np16dJFgYGB6tKli2644QZ9+eWXXutYvny5HA6HNm3apDvuuEPh4eEKCwvT2LFj9fXXX5+0D3/+85/l6+ur+fPnn7T2WDhprgceeED9+/dXaGioQkJC1LdvXy1dulTHf8/mscP32dnZ6tWrlwICAnT++efrySef9KrbvHmzHA6HVq1apVmzZsntdiswMFADBw7Ujh07vGqPHeLfuXOnUlJSFBwcrCFDhkj68bD4tGnT1KlTJ/n7++v888/XfffdJ4/HI0k6cuSI+vTpo65du6qsrMxaZ1FRkdxut5KTk1VXVyep4VM8x/bnzTffVJ8+fRQYGKju3bvrzTfflPTje9i9e3cFBQXp17/+tbZv3+61/Kl8FpYvX67rrrtOkjRo0CA5HA6v0xwNnXY4cuSI0tLSFBcXJ39/f3Xq1EnTp0/X4cOHG+z/unXr1LdvXwUGBuriiy/Wc889V/9NbsDJxnf//v1yOBzasGGDPvvsM6vvmzdvPqX1N9c//vEPhYeHa9SoUaqqqpL0f/v62muvqU+fPgoICNADDzwgSXrqqad0xRVXKCIiQkFBQUpISNCCBQtUW1vrtd6GxtrhcGjGjBlauXKlunfvrnbt2ql3797WZ+Cn9u7dqwkTJigiIkJOp1Pdu3fXU089dcJ9aeoYfvPNN5o2bZp69Oih9u3bKyIiQoMHD9b7779fr/bQoUO69tprFRwcrHPPPVc33nij8vLy6p1Gg31xBAXNNnbsWF1//fWaOnWq9Yty//79uuiii3T99dcrNDRUhYWFWrJkiS655BJ9+umnCg8P91rHbbfdppEjR+rFF1/UwYMHdffdd+umm27Sxo0bG9ymMUZ33323nnzyST377LOaNGnSmd5N7d+/X1OmTNF5550nSdq2bZtmzpypr776Svfff79XbUFBgVJTU5Weni63260XXnhBd911l2pqajRnzhyv2nnz5qlv37569tlnVVZWpvT0dCUnJ2vHjh06//zzrbqamhqNHj1aU6ZM0b333qujR4/qyJEjGjRokP7973/rgQceUK9evfT+++8rMzNTBQUFeuuttxQQEKBXXnlFiYmJuvXWW7V69Wr98MMPuvHGG2WM0UsvvSQfH58T7vs///lPpaWl6b777pPL5dIDDzygsWPHKi0tTe+++64yMjLkcDg0d+5cjRo1Svv27bP+134qn4WRI0cqIyND8+bN01NPPaW+fftKavx/88YYXX311Xr33XeVlpamyy+/XJ988onmz5+vDz74QB988IGcTqdX/2fPnq17771XkZGRevbZZzV58mR17dpVV1xxRaP7fSrjGxUVpQ8++EDTpk1TWVmZXnjhBUlSjx49Tjimp+OVV17RLbfcoltvvVV/+tOfvN6/jz/+WJ999pl+//vfKy4uTkFBQZKkf//735owYYIV6P75z3/qj3/8o/7nf/7nlMLaW2+9pby8PD344INq3769FixYoDFjxmjPnj3W5/TTTz9VUlKSzjvvPD322GNyu9165513dOedd+rbb79t9D8STR3D7777TpI0f/58ud1uVVZWKjs7W8nJyXr33XeVnJwsSaqqqtKgQYP03Xff6ZFHHlHXrl21bt06jR8//tQGGvZggCaaP3++kWTuv//+k9YePXrUVFZWmqCgIPPEE09Y7cuWLTOSzLRp07zqFyxYYCSZwsJCqy02NtaMHDnSfP/99+aaa64xLpfLbNiwoVl9nz59ujmdj31dXZ2pra01Dz74oAkLCzM//PCDVz8dDocpKCjwWmbYsGEmJCTEVFVVGWOM2bRpk5Fk+vbt67X8/v37jZ+fn7ntttustokTJxpJ5rnnnvNa51/+8hcjybzyyite7Y888oiRZNavX2+1vfzyy0aSefzxx839999vzjnnHK/5xvzfe/pTsbGxJjAw0Bw6dMhqKygoMJJMVFSUtT/GGLNmzRojybzxxhuNjl1jn4VXX33VSDKbNm2qt8zEiRNNbGys9XrdunVGklmwYIFX3bF9fPrpp736HxAQYL788kurrbq62oSGhpopU6Y02k9jmja+AwcOND179jzh+n7ap5EjRzY4Ly8vz0gyy5Yts9omTpxogoKCjDHGPPzww8bHx8c88sgjDa7Xx8fH7Nmz54TbP/b5XbFihfHx8THfffed17Z+OtbGGCPJREZGmvLycqutqKjInHPOOSYzM9NqGz58uOncubMpKyvzWn7GjBkmICDAazsNaWwMJZn58+c3utzRo0dNbW2tGTJkiBkzZozV/tRTTxlJ5u233/aqnzJlSr0xhn1xigfNds0119Rrq6ys1Ny5c9W1a1f5+vrK19dX7du3V1VVlT777LN69aNHj/Z63atXL0mqd0qopKREgwcP1kcffaQtW7ZYpzmOqaur09GjR63phx9+ON3ds2zcuFFDhw6Vy+WSj4+P/Pz8dP/996ukpETFxcVetT179lTv3r292iZMmKDy8nJ9/PHH9dp/elolNjZWSUlJ2rRpU70+HD/WGzduVFBQkK699lqv9mNHlN59912rbdy4cbrjjjt0991366GHHtK8efM0bNiwU9r3X/3qV+rUqZP1unv37pKk5ORkr+tgjrX/9H1r6mfhVBw7snb8kbPrrrtOQUFBXvt9rP/HjnxJUkBAgC688MJ6n6+GtnOq43umGWM0ZcoUzZ8/Xy+++KLuueeeBut69eqlCy+8sF77jh07NHr0aIWFhVmf31tuuUV1dXX617/+ddLtDxo0SMHBwdbryMhIRUREWGN45MgRvfvuuxozZozatWvn9XP429/+VkeOHNG2bduauff1/eUvf1Hfvn0VEBAgX19f+fn56d133/X6TOXm5io4OLjehd833HBDi/UDZx4BBc0WFRVVr23ChAlavHixbrvtNr3zzjv66KOPlJeXp44dO6q6urpefVhYmNfrY4fnj6/917/+pQ8//FAjRoxQfHx8vfUMGTJEfn5+1nTrrbeezq5ZPvroI6WkpEj68WLbf/zjH8rLy9N9993XYD/dbne9dRxrKykpOaXa4+vatWunkJAQr7aSkhK53e56141ERETI19e33jpuvfVW1dbWytfXV3feeWej+3u84++m8Pf3P2H7kSNHrLamfhZORUlJiXx9fdWxY0evdofD0eDYHf/5kn78jJ1s+00d31Pl6+trXfdzvKNHj0qS/Pz8vNpramr08ssvq2fPnhoxYkSj627o5/HAgQO6/PLL9dVXX+mJJ57Q+++/r7y8POvakFN5H042hiUlJTp69Kj+9Kc/ef0M+vn56be//a0k6dtvvz3pdk7FwoULdccdd6h///5avXq1tm3bpry8PF155ZVe+1JSUqLIyMh6yzfUBvviGhQ02/G/vMvKyvTmm29q/vz5uvfee612j8djnTturgEDBui6667T5MmTJUlLlizxuvj1r3/9qyoqKqzXx1/r0lxZWVny8/PTm2++qYCAAKt9zZo1DdYXFRU12nb8L/rGao+va+j5JGFhYfrwww9ljPGaX1xcrKNHj3rtf1VVlW6++WZdeOGF+s9//qPbbrtNr7/+eoP9byln6rMQFhamo0eP6ptvvvEKKcYYFRUV6ZJLLjmtfv90O6c6vk0RGRmpr776qsF5x9qP/yPqdDq1adMmDR8+XEOHDtW6devUoUOHess39DlZs2aNqqqq9Nprryk2NtZqLygoaFb/G9KhQwf5+Pjo5ptv1vTp0xusiYuLa5FtrVq1SsnJyVqyZIlX+09/9qUf37+PPvqo3vIN/czBvjiCghbjcDhkjPG6SFGSnn322Ub/19gUEydOVFZWlpYtW2Ydoj7moosuUr9+/ayppR445XA45Ovr63UxYnV1tVauXNlg/e7du/XPf/7Tq+3FF19UcHCwdQHoMS+99JLXnUBffvmltm7dal3odyJDhgxRZWVlvaC0YsUKa/4xU6dO1YEDB/Taa69p6dKleuONN7Ro0aKTbuN0NOWz0NhRs4Yc269Vq1Z5ta9evVpVVVX1Tv01V1PGtymGDh2qXbt26dNPP60375VXXlH79u3Vv3//evP69Omj3NxcHTp0SMnJyfVOLTbmWGj56ftgjNEzzzzTrP43pF27dho0aJB27NihXr16ef0cHpsaOgrTHA6Ho95n6pNPPtEHH3zg1TZw4EBVVFTo7bff9mrPyspqkX7g58ERFLSYkJAQXXHFFXr00UcVHh6uLl26KDc3V0uXLtW5557bItu49tpr1a5dO1177bWqrq7WSy+9ZJ1eaMyXX36pvLw8ST/e0SBJf/vb3yT9eHtmv379Gl125MiRWrhwoSZMmKD/+q//UklJif77v/+73i/JY6KjozV69Gilp6crKipKq1atUk5Ojh555JF6zy4pLi7WmDFjdPvtt6usrEzz589XQECA0tLSTjoOt9xyi5566ilNnDhR+/fvV0JCgrZs2aKMjAz99re/1dChQyX9GAhWrVqlZcuWqWfPnurZs6dmzJihuXPn6je/+Y1+/etfn3RbzdGUz8KxU3ZPP/20goODFRAQoLi4uAb/qA0bNkzDhw/X3LlzVV5ert/85jfWXTx9+vTRzTff3CL9P9Xxbaq77rpLK1asUHJysubNm6eEhASVlpbq5Zdf1t/+9jctXLjQ63qPn+revbvef/99DR06VFdccYU2bNhw0mfXDBs2TP7+/rrhhht0zz336MiRI1qyZIlKS0ub1f/GPPHEE7rssst0+eWX64477lCXLl1UUVGhzz//XH//+98bvSuvqUaNGqU//OEPmj9/vgYOHKg9e/bowQcfVFxcnHWKTPrxPzOLFi3STTfdpIceekhdu3bV22+/rXfeeUfS6T96AD+T1rs+F23VsTs+vvnmm3rzDh06ZK655hrToUMHExwcbK688kqza9cuExsbayZOnGjVHbuLJy8vz2v5Y3e4/PSOjobufNi0aZNp3769ufLKK833339/wv4e21ZD00/71JjnnnvOXHTRRcbpdJrzzz/fZGZmmqVLlxpJZt++ffX6+be//c307NnT+Pv7my5dupiFCxc2uI8rV640d955p+nYsaNxOp3m8ssvN9u3b/eq/eldHMcrKSkxU6dONVFRUcbX19fExsaatLQ0c+TIEWOMMZ988okJDAyst49HjhwxiYmJpkuXLqa0tNQY0/hdPA3dcSLJTJ8+3att3759RpJ59NFHrbZT/SwYY8zjjz9u4uLijI+Pj9ddFg3dWVJdXW3mzp1rYmNjjZ+fn4mKijJ33HGHtS8n6//AgQPNwIED67Uf72Tj+9P1nepdPMb8eBfMHXfcYc477zzj6+trgoODzWWXXWZeffXVerUNvf+HDh0yF198senSpYv597//fcJ9NcaYv//976Z3794mICDAdOrUydx9993m7bffrvdz1thdPMe/18e2d/x7uG/fPnPrrbeaTp06GT8/P9OxY0eTlJRkHnrooZOOyanexePxeMycOXNMp06dTEBAgOnbt69Zs2ZNg30/cOCAGTt2rGnfvr0JDg4211xzjVm7dq2RZF5//fWT9gmtz2HMcU+bAtAsXbp0UXx8fIMPsfqpzZs3a9CgQXr11Vfr3SUC4MzJyMjQ73//ex04cMCWT06GN07xAADOOosXL5YkXXzxxaqtrdXGjRv15JNP6qabbiKctBEEFADAWaddu3ZatGiR9u/fL4/Ho/POO09z587V73//+9buGk4Rp3gAAIDttOqlzH/+858VFxengIAAJSYmNviFTwAA4Jen1QLKyy+/rNTUVN13333asWOHLr/8co0YMUIHDhxorS4BAACbaLVTPP3791ffvn29ngjYvXt3XX311crMzDzhsj/88IO+/vprBQcHN/j0RAAAYD/GGFVUVCg6Ovqkz6NplYtka2pqlJ+f7/UIbElKSUnR1q1b69V7PB55PB7r9VdffXVGv9IcAACcOQcPHjzp3VStElC+/fZb1dXV1fvOicjIyAa/KyEzM1MPPPBA/RVd/YLk165+OwAAsJ/a76U1Nzb6xOSfatXbjI8/PWOO+2KuY9LS0jRr1izrdXl5uWJiYn4MJ35BZ7yfAACg5ZzK5RmtElDCw8Pl4+NT72hJcXFxg1+H7XQ6G/3uEwAAcPZplbt4/P39lZiYqJycHK/2nJwcJSUltUaXAACAjbTaKZ5Zs2bp5ptvVr9+/TRgwAA9/fTTOnDggKZOndpaXQIAADbRagFl/PjxKikp0YMPPqjCwkLFx8dr7dq1io2Nba0uAQAAm2iTj7ovLy+Xy+WSrsvmIlkAANqK2irp1TEqKytTSEjICUtb9VH3AAAADSGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA22nxgJKeni6Hw+E1ud1ua74xRunp6YqOjlZgYKCSk5O1e/fulu4GAABow87IEZSePXuqsLDQmnbu3GnNW7BggRYuXKjFixcrLy9Pbrdbw4YNU0VFxZnoCgAAaIN8z8hKfX29jpocY4zR448/rvvuu09jx46VJD3//POKjIzUiy++qClTpjS4Po/HI4/HY70uLy8/E90GAAA2cUaOoOzdu1fR0dGKi4vT9ddfry+++EKStG/fPhUVFSklJcWqdTqdGjhwoLZu3dro+jIzM+VyuawpJibmTHQbAADYRIsHlP79+2vFihV655139Mwzz6ioqEhJSUkqKSlRUVGRJCkyMtJrmcjISGteQ9LS0lRWVmZNBw8ebOluAwAAG2nxUzwjRoyw/p2QkKABAwboggsu0PPPP69LL71UkuRwOLyWMcbUa/spp9Mpp9PZ0l0FAAA2dcZvMw4KClJCQoL27t1rXZdy/NGS4uLiekdVAADAL9cZDygej0efffaZoqKiFBcXJ7fbrZycHGt+TU2NcnNzlZSUdKa7AgAA2ogWP8UzZ84cXXXVVTrvvPNUXFyshx56SOXl5Zo4caIcDodSU1OVkZGhbt26qVu3bsrIyFC7du00YcKElu4KAABoo1o8oBw6dEg33HCDvv32W3Xs2FGXXnqptm3bptjYWEnSPffco+rqak2bNk2lpaXq37+/1q9fr+Dg4JbuCgAAaKMcxhjT2p1oqvLycrlcLum6bMkvqLW7AwAATkVtlfTqGJWVlSkkJOSEpXwXDwAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsJ0mB5T33ntPV111laKjo+VwOLRmzRqv+cYYpaenKzo6WoGBgUpOTtbu3bu9ajwej2bOnKnw8HAFBQVp9OjROnTo0GntCAAAOHs0OaBUVVWpd+/eWrx4cYPzFyxYoIULF2rx4sXKy8uT2+3WsGHDVFFRYdWkpqYqOztbWVlZ2rJliyorKzVq1CjV1dU1f08AAMBZw2GMMc1e2OFQdna2rr76akk/Hj2Jjo5Wamqq5s6dK+nHoyWRkZF65JFHNGXKFJWVlaljx45auXKlxo8fL0n6+uuvFRMTo7Vr12r48OH1tuPxeOTxeKzX5eXliomJka7LlvyCmtt9AADwc6qtkl4do7KyMoWEhJywtEWvQdm3b5+KioqUkpJitTmdTg0cOFBbt26VJOXn56u2ttarJjo6WvHx8VbN8TIzM+VyuawpJiamJbsNAABspkUDSlFRkSQpMjLSqz0yMtKaV1RUJH9/f3Xo0KHRmuOlpaWprKzMmg4ePNiS3QYAADbjeyZW6nA4vF4bY+q1He9ENU6nU06ns8X6BwAA7K1FA4rb7Zb041GSqKgoq724uNg6quJ2u1VTU6PS0lKvoyjFxcVKSkpq4hYd/zsBAAD7O/W/2S16iicuLk5ut1s5OTlWW01NjXJzc63wkZiYKD8/P6+awsJC7dq1qxkBBQAAnI2afASlsrJSn3/+ufV63759KigoUGhoqM477zylpqYqIyND3bp1U7du3ZSRkaF27dppwoQJkiSXy6XJkydr9uzZCgsLU2hoqObMmaOEhAQNHTq05fYMAAC0WU0OKNu3b9egQYOs17NmzZIkTZw4UcuXL9c999yj6upqTZs2TaWlperfv7/Wr1+v4OBga5lFixbJ19dX48aNU3V1tYYMGaLly5fLx8enib0x/zsBAAD7O/W/2af1HJTWUl5eLpfLxXNQAABoS1rrOSgAAAAtgYACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsp8kB5b333tNVV12l6OhoORwOrVmzxmv+pEmT5HA4vKZLL73Uq8bj8WjmzJkKDw9XUFCQRo8erUOHDp3WjgAAgLNHkwNKVVWVevfurcWLFzdac+WVV6qwsNCa1q5d6zU/NTVV2dnZysrK0pYtW1RZWalRo0aprq6u6XsAAADOOr5NXWDEiBEaMWLECWucTqfcbneD88rKyrR06VKtXLlSQ4cOlSStWrVKMTEx2rBhg4YPH97ULgEAgLPMGbkGZfPmzYqIiNCFF16o22+/XcXFxda8/Px81dbWKiUlxWqLjo5WfHy8tm7d2uD6PB6PysvLvSYAAHD2avGAMmLECL3wwgvauHGjHnvsMeXl5Wnw4MHyeDySpKKiIvn7+6tDhw5ey0VGRqqoqKjBdWZmZsrlcllTTExMS3cbAADYSJNP8ZzM+PHjrX/Hx8erX79+io2N1VtvvaWxY8c2upwxRg6Ho8F5aWlpmjVrlvW6vLyckAIAwFnsjN9mHBUVpdjYWO3du1eS5Ha7VVNTo9LSUq+64uJiRUZGNrgOp9OpkJAQrwkAAJy9znhAKSkp0cGDBxUVFSVJSkxMlJ+fn3JycqyawsJC7dq1S0lJSWe6OwAAoA1o8imeyspKff7559brffv2qaCgQKGhoQoNDVV6erquueYaRUVFaf/+/Zo3b57Cw8M1ZswYSZLL5dLkyZM1e/ZshYWFKTQ0VHPmzFFCQoJ1Vw8AAPhla3JA2b59uwYNGmS9PnZtyMSJE7VkyRLt3LlTK1as0OHDhxUVFaVBgwbp5ZdfVnBwsLXMokWL5Ovrq3Hjxqm6ulpDhgzR8uXL5ePj0wK7BAAA2jqHMca0dieaqry8XC6XS7ouW/ILau3uAACAU1FbJb06RmVlZSe9npTv4gEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALbTpICSmZmpSy65RMHBwYqIiNDVV1+tPXv2eNUYY5Senq7o6GgFBgYqOTlZu3fv9qrxeDyaOXOmwsPDFRQUpNGjR+vQoUOnvzcAAOCs0KSAkpubq+nTp2vbtm3KycnR0aNHlZKSoqqqKqtmwYIFWrhwoRYvXqy8vDy53W4NGzZMFRUVVk1qaqqys7OVlZWlLVu2qLKyUqNGjVJdXV3L7RkAAGizHMYY09yFv/nmG0VERCg3N1dXXHGFjDGKjo5Wamqq5s6dK+nHoyWRkZF65JFHNGXKFJWVlaljx45auXKlxo8fL0n6+uuvFRMTo7Vr12r48OEn3W55eblcLpd0XbbkF9Tc7gMAgJ9TbZX06hiVlZUpJCTkhKWndQ1KWVmZJCk0NFSStG/fPhUVFSklJcWqcTqdGjhwoLZu3SpJys/PV21trVdNdHS04uPjrZrjeTwelZeXe00AAODs1eyAYozRrFmzdNlllyk+Pl6SVFRUJEmKjIz0qo2MjLTmFRUVyd/fXx06dGi05niZmZlyuVzWFBMT09xuAwCANqDZAWXGjBn65JNP9NJLL9Wb53A4vF4bY+q1He9ENWlpaSorK7OmgwcPNrfbAACgDWhWQJk5c6beeOMNbdq0SZ07d7ba3W63JNU7ElJcXGwdVXG73aqpqVFpaWmjNcdzOp0KCQnxmgAAwNmrSQHFGKMZM2botdde08aNGxUXF+c1Py4uTm63Wzk5OVZbTU2NcnNzlZSUJElKTEyUn5+fV01hYaF27dpl1QAAgF8236YUT58+XS+++KJef/11BQcHW0dKXC6XAgMD5XA4lJqaqoyMDHXr1k3dunVTRkaG2rVrpwkTJli1kydP1uzZsxUWFqbQ0FDNmTNHCQkJGjp0aMvvIQAAaHOaFFCWLFkiSUpOTvZqX7ZsmSZNmiRJuueee1RdXa1p06aptLRU/fv31/r16xUcHGzVL1q0SL6+vho3bpyqq6s1ZMgQLV++XD4+Pqe3NwAA4KxwWs9BaS08BwUAgDbo53oOCgAAwJnQpFM8tuP43wkAANhfE/5mt+mAkjbgJQUE+rV2NwAAwCk4Ul2rzFdOrbZNX4Ny+EMppH1r9wYAAJyK8krp3P7iGhQAANA2EVAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtNCmgZGZm6pJLLlFwcLAiIiJ09dVXa8+ePV41kyZNksPh8JouvfRSrxqPx6OZM2cqPDxcQUFBGj16tA4dOnT6ewMAAM4KTQooubm5mj59urZt26acnBwdPXpUKSkpqqqq8qq78sorVVhYaE1r1671mp+amqrs7GxlZWVpy5Ytqqys1KhRo1RXV3f6ewQAANo836YUr1u3zuv1smXLFBERofz8fF1xxRVWu9PplNvtbnAdZWVlWrp0qVauXKmhQ4dKklatWqWYmBht2LBBw4cPr7eMx+ORx+OxXpeXlzel2wAAoI05rWtQysrKJEmhoaFe7Zs3b1ZERIQuvPBC3X777SouLrbm5efnq7a2VikpKVZbdHS04uPjtXXr1ga3k5mZKZfLZU0xMTGn020AAGBzzQ4oxhjNmjVLl112meLj4632ESNG6IUXXtDGjRv12GOPKS8vT4MHD7aOgBQVFcnf318dOnTwWl9kZKSKiooa3FZaWprKysqs6eDBg83tNgAAaAOadIrnp2bMmKFPPvlEW7Zs8WofP3689e/4+Hj169dPsbGxeuuttzR27NhG12eMkcPhaHCe0+mU0+lsblcBAEAb06wjKDNnztQbb7yhTZs2qXPnziesjYqKUmxsrPbu3StJcrvdqqmpUWlpqVddcXGxIiMjm9MdAABwlmlSQDHGaMaMGXrttde0ceNGxcXFnXSZkpISHTx4UFFRUZKkxMRE+fn5KScnx6opLCzUrl27lJSU1MTuAwCAs1GTTvFMnz5dL774ol5//XUFBwdb14y4XC4FBgaqsrJS6enpuuaaaxQVFaX9+/dr3rx5Cg8P15gxY6zayZMna/bs2QoLC1NoaKjmzJmjhIQE664eAADwy9akgLJkyRJJUnJyslf7smXLNGnSJPn4+Gjnzp1asWKFDh8+rKioKA0aNEgvv/yygoODrfpFixbJ19dX48aNU3V1tYYMGaLly5fLx8fn9PcIAAC0eQ5jjGntTjRVeXm5XC6XDn8ohbRv7d4AAIBTUV4pndv/x8eUhISEnLCW7+IBAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC206SAsmTJEvXq1UshISEKCQnRgAED9Pbbb1vzjTFKT09XdHS0AgMDlZycrN27d3utw+PxaObMmQoPD1dQUJBGjx6tQ4cOtczeAACAs0KTAkrnzp318MMPa/v27dq+fbsGDx6s3/3ud1YIWbBggRYuXKjFixcrLy9Pbrdbw4YNU0VFhbWO1NRUZWdnKysrS1u2bFFlZaVGjRqlurq6lt0zAADQZjmMMeZ0VhAaGqpHH31Ut956q6Kjo5Wamqq5c+dK+vFoSWRkpB555BFNmTJFZWVl6tixo1auXKnx48dLkr7++mvFxMRo7dq1Gj58eIPb8Hg88ng81uvy8nLFxMTo8IdSSPvT6T0AAPi5lFdK5/aXysrKFBIScsLaZl+DUldXp6ysLFVVVWnAgAHat2+fioqKlJKSYtU4nU4NHDhQW7dulSTl5+ertrbWqyY6Olrx8fFWTUMyMzPlcrmsKSYmprndBgAAbUCTA8rOnTvVvn17OZ1OTZ06VdnZ2erRo4eKiookSZGRkV71kZGR1ryioiL5+/urQ4cOjdY0JC0tTWVlZdZ08ODBpnYbAAC0Ib5NXeCiiy5SQUGBDh8+rNWrV2vixInKzc215jscDq96Y0y9tuOdrMbpdMrpdDa1qwAAoI1q8hEUf39/de3aVf369VNmZqZ69+6tJ554Qm63W5LqHQkpLi62jqq43W7V1NSotLS00RoAAIDTfg6KMUYej0dxcXFyu93Kycmx5tXU1Cg3N1dJSUmSpMTERPn5+XnVFBYWateuXVYNAABAk07xzJs3TyNGjFBMTIwqKiqUlZWlzZs3a926dXI4HEpNTVVGRoa6deumbt26KSMjQ+3atdOECRMkSS6XS5MnT9bs2bMVFham0NBQzZkzRwkJCRo6dOgZ2UEAAND2NCmg/Oc//9HNN9+swsJCuVwu9erVS+vWrdOwYcMkSffcc4+qq6s1bdo0lZaWqn///lq/fr2Cg4OtdSxatEi+vr4aN26cqqurNWTIEC1fvlw+Pj4tu2cAAKDNOu3noLSG8vJyuVwunoMCAEAb8rM8BwUAAOBMIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbaVJAWbJkiXr16qWQkBCFhIRowIABevvtt635kyZNksPh8JouvfRSr3V4PB7NnDlT4eHhCgoK0ujRo3Xo0KGW2RsAAHBWaFJA6dy5sx5++GFt375d27dv1+DBg/W73/1Ou3fvtmquvPJKFRYWWtPatWu91pGamqrs7GxlZWVpy5Ytqqys1KhRo1RXV9cyewQAANo8hzHGnM4KQkND9eijj2ry5MmaNGmSDh8+rDVr1jRYW1ZWpo4dO2rlypUaP368JOnrr79WTEyM1q5dq+HDh5/SNsvLy+VyuXT4Qymk/en0HgAA/FzKK6Vz+/+YB0JCQk5Y2+xrUOrq6pSVlaWqqioNGDDAat+8ebMiIiJ04YUX6vbbb1dxcbE1Lz8/X7W1tUpJSbHaoqOjFR8fr61btza6LY/Ho/Lycq8JAACcvZocUHbu3Kn27dvL6XRq6tSpys7OVo8ePSRJI0aM0AsvvKCNGzfqscceU15engYPHiyPxyNJKioqkr+/vzp06OC1zsjISBUVFTW6zczMTLlcLmuKiYlparcBAEAb4tvUBS666CIVFBTo8OHDWr16tSZOnKjc3Fz16NHDOm0jSfHx8erXr59iY2P11ltvaezYsY2u0xgjh8PR6Py0tDTNmjXLel1eXk5IAQDgLNbkgOLv76+uXbtKkvr166e8vDw98cQT+utf/1qvNioqSrGxsdq7d68kye12q6amRqWlpV5HUYqLi5WUlNToNp1Op5xOZ1O7CgAA2qjTfg6KMcY6hXO8kpISHTx4UFFRUZKkxMRE+fn5KScnx6opLCzUrl27ThhQAADAL0uTjqDMmzdPI0aMUExMjCoqKpSVlaXNmzdr3bp1qqysVHp6uq655hpFRUVp//79mjdvnsLDwzVmzBhJksvl0uTJkzV79myFhYUpNDRUc+bMUUJCgoYOHXpGdhAAALQ9TQoo//nPf3TzzTersLBQLpdLvXr10rp16zRs2DBVV1dr586dWrFihQ4fPqyoqCgNGjRIL7/8soKDg611LFq0SL6+vho3bpyqq6s1ZMgQLV++XD4+Pi2+cwAAoG067eegtAaegwIAQNvzszwHBQAA4EwhoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANs5rYCSmZkph8Oh1NRUq80Yo/T0dEVHRyswMFDJycnavXu313Iej0czZ85UeHi4goKCNHr0aB06dOh0ugIAAM4izQ4oeXl5evrpp9WrVy+v9gULFmjhwoVavHix8vLy5Ha7NWzYMFVUVFg1qampys7OVlZWlrZs2aLKykqNGjVKdXV1zd8TAABw1mhWQKmsrNSNN96oZ555Rh06dLDajTF6/PHHdd9992ns2LGKj4/X888/r++//14vvviiJKmsrExLly7VY489pqFDh6pPnz5atWqVdu7cqQ0bNrTMXgEAgDatWQFl+vTpGjlypIYOHerVvm/fPhUVFSklJcVqczqdGjhwoLZu3SpJys/PV21trVdNdHS04uPjrZrjeTwelZeXe00AAODs5dvUBbKysvTxxx8rLy+v3ryioiJJUmRkpFd7ZGSkvvzyS6vG39/f68jLsZpjyx8vMzNTDzzwQFO7CgAA2qgmHUE5ePCg7rrrLq1atUoBAQGN1jkcDq/Xxph6bcc7UU1aWprKysqs6eDBg03pNgAAaGOaFFDy8/NVXFysxMRE+fr6ytfXV7m5uXryySfl6+trHTk5/khIcXGxNc/tdqumpkalpaWN1hzP6XQqJCTEawIAAGevJgWUIUOGaOfOnSooKLCmfv366cYbb1RBQYHOP/98ud1u5eTkWMvU1NQoNzdXSUlJkqTExET5+fl51RQWFmrXrl1WDQAA+GVr0jUowcHBio+P92oLCgpSWFiY1Z6amqqMjAx169ZN3bp1U0ZGhtq1a6cJEyZIklwulyZPnqzZs2crLCxMoaGhmjNnjhISEupddAsAAH6ZmnyR7Mncc889qq6u1rRp01RaWqr+/ftr/fr1Cg4OtmoWLVokX19fjRs3TtXV1RoyZIiWL18uHx+flu4OAABogxzGGNPanWiq8vJyuVwuHf5QCmnf2r0BAACnorxSOrf/j89EO9n1pHwXDwAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsJ0W/zbjn8Ox7zcsr2zljgAAgFN27O/2qXxPcZsMKBUVFZKk84a0ckcAAECTVVRUyOVynbDGYU4lxtjMDz/8oD179qhHjx46ePDgSb+yGT8qLy9XTEwMY9ZEjFvTMWbNw7g1HWPWPK01bsYYVVRUKDo6Wuecc+KrTNrkEZRzzjlHnTp1kiSFhITwoWwixqx5GLemY8yah3FrOsaseVpj3E525OQYLpIFAAC2Q0ABAAC202YDitPp1Pz58+V0Olu7K20GY9Y8jFvTMWbNw7g1HWPWPG1h3NrkRbIAAODs1maPoAAAgLMXAQUAANgOAQUAANgOAQUAANgOAQUAANhOmwwof/7znxUXF6eAgAAlJibq/fffb+0utZr33ntPV111laKjo+VwOLRmzRqv+cYYpaenKzo6WoGBgUpOTtbu3bu9ajwej2bOnKnw8HAFBQVp9OjROnTo0M+4Fz+vzMxMXXLJJQoODlZERISuvvpq7dmzx6uGcatvyZIl6tWrl/XkyQEDBujtt9+25jNmJ5eZmSmHw6HU1FSrjXGrLz09XQ6Hw2tyu93WfMasYV999ZVuuukmhYWFqV27dvrVr36l/Px8a36bGzfTxmRlZRk/Pz/zzDPPmE8//dTcddddJigoyHz55Zet3bVWsXbtWnPfffeZ1atXG0kmOzvba/7DDz9sgoODzerVq83OnTvN+PHjTVRUlCkvL7dqpk6dajp16mRycnLMxx9/bAYNGmR69+5tjh49+jPvzc9j+PDhZtmyZWbXrl2moKDAjBw50px33nmmsrLSqmHc6nvjjTfMW2+9Zfbs2WP27Nlj5s2bZ/z8/MyuXbuMMYzZyXz00UemS5cuplevXuauu+6y2hm3+ubPn2969uxpCgsLram4uNiaz5jV991335nY2FgzadIk8+GHH5p9+/aZDRs2mM8//9yqaWvj1uYCyq9//WszdepUr7aLL77Y3Hvvva3UI/s4PqD88MMPxu12m4cffthqO3LkiHG5XOYvf/mLMcaYw4cPGz8/P5OVlWXVfPXVV+acc84x69at+9n63pqKi4uNJJObm2uMYdyaokOHDubZZ59lzE6ioqLCdOvWzeTk5JiBAwdaAYVxa9j8+fNN7969G5zHmDVs7ty55rLLLmt0flsctzZ1iqempkb5+flKSUnxak9JSdHWrVtbqVf2tW/fPhUVFXmNl9Pp1MCBA63xys/PV21trVdNdHS04uPjfzFjWlZWJkkKDQ2VxLidirq6OmVlZamqqkoDBgxgzE5i+vTpGjlypIYOHerVzrg1bu/evYqOjlZcXJyuv/56ffHFF5IYs8a88cYb6tevn6677jpFRESoT58+euaZZ6z5bXHc2lRA+fbbb1VXV6fIyEiv9sjISBUVFbVSr+zr2JicaLyKiork7++vDh06NFpzNjPGaNasWbrssssUHx8viXE7kZ07d6p9+/ZyOp2aOnWqsrOz1aNHD8bsBLKysvTxxx8rMzOz3jzGrWH9+/fXihUr9M477+iZZ55RUVGRkpKSVFJSwpg14osvvtCSJUvUrVs3vfPOO5o6daruvPNOrVixQlLb/Kz5/uxbbAEOh8PrtTGmXhv+T3PG65cypjNmzNAnn3yiLVu21JvHuNV30UUXqaCgQIcPH9bq1as1ceJE5ebmWvMZM28HDx7UXXfdpfXr1ysgIKDROsbN24gRI6x/JyQkaMCAAbrgggv0/PPP69JLL5XEmB3vhx9+UL9+/ZSRkSFJ6tOnj3bv3q0lS5bolltusera0ri1qSMo4eHh8vHxqZfkiouL66VCyLrq/UTj5Xa7VVNTo9LS0kZrzlYzZ87UG2+8oU2bNqlz585WO+PWOH9/f3Xt2lX9+vVTZmamevfurSeeeIIxa0R+fr6Ki4uVmJgoX19f+fr6Kjc3V08++aR8fX2t/WbcTiwoKEgJCQnau3cvn7VGREVFqUePHl5t3bt314EDByS1zd9rbSqg+Pv7KzExUTk5OV7tOTk5SkpKaqVe2VdcXJzcbrfXeNXU1Cg3N9car8TERPn5+XnVFBYWateuXWftmBpjNGPGDL322mvauHGj4uLivOYzbqfOGCOPx8OYNWLIkCHauXOnCgoKrKlfv3668cYbVVBQoPPPP59xOwUej0efffaZoqKi+Kw14je/+U29xyX861//UmxsrKQ2+nvtZ78s9zQdu8146dKl5tNPPzWpqakmKCjI7N+/v7W71ioqKirMjh07zI4dO4wks3DhQrNjxw7rtuuHH37YuFwu89prr5mdO3eaG264ocHbyjp37mw2bNhgPv74YzN48OCz+na8O+64w7hcLrN582av2xi///57q4Zxqy8tLc289957Zt++feaTTz4x8+bNM+ecc45Zv369MYYxO1U/vYvHGMatIbNnzzabN282X3zxhdm2bZsZNWqUCQ4Otn7PM2b1ffTRR8bX19f88Y9/NHv37jUvvPCCadeunVm1apVV09bGrc0FFGOMeeqpp0xsbKzx9/c3ffv2tW4P/SXatGmTkVRvmjhxojHmx1vL5s+fb9xut3E6neaKK64wO3fu9FpHdXW1mTFjhgkNDTWBgYFm1KhR5sCBA62wNz+PhsZLklm2bJlVw7jVd+utt1o/dx07djRDhgyxwokxjNmpOj6gMG71HXs+h5+fn4mOjjZjx441u3fvtuYzZg37+9//buLj443T6TQXX3yxefrpp73mt7VxcxhjzM9/3AYAAKBxbeoaFAAA8MtAQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALbz/wFpvxmKIcpebwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6DklEQVR4nO3de1xVdb7/8feWDRtE2CMgbFBETCsVdBTLtIt4wyxz0krLptGTdfI6MerkaDNJM42UTVodG2cq09QKp0nsZiqmUo45oeWk1jH7pakFQxFyCzeI398fHde4uaggxsJez8djPXJ/12et9V1fNpt367YdxhgjAAAAG2nR1B0AAACojoACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4AC2+vQoYOGDx/eoGWLi4v1xz/+UcnJyfJ4PGrVqpUSExP1yCOP6NixY43c0+YrLS1NDoejSbb98ccfKy0tTQcPHqwxb/z48erQocMP3qf6+Pbbb3XrrbcqMjJSDodDN954Y521p3sv79ixQw6HQ8uWLbPaxo8fr1atWjVyj2vXlGNd1xg6HA6lpaU1SZ/Q9JxN3QHgfDp06JAef/xx3XHHHZo+fbpatWqld999V2lpacrKylJWVlaT/WG2k7vuukvXXnttk2z7448/1oMPPqjk5OQafyB/97vf6d57722Sfp2tP/zhD8rMzNRzzz2niy66SGFhYU3dpQZpyrG+UMYQjYuAgkbx3XffqWXLlk3djRri4+N18OBBBQcHW20DBw5UcHCwfv3rX+sf//iHrrrqqibsYf2dj7Fu166d2rVr16jrbAwXXXRRU3fhjPbs2aOLLrpIt99+e1N3xUd5ebmCgoLOur4px9quY4imxSke1NvJ0wEffPCBbr75ZrVu3dr6cNuxY4duvfVWdejQQUFBQerQoYNuu+02ffHFFz7rWLZsmRwOhzZv3qxJkyYpIiJC4eHhGjVqlL766qsz9uHPf/6znE6n5s6de9q64OBgn3By0uWXXy5JOnz48Bm39eCDD6pPnz4KCwtTaGioevXqpSVLlqj692yePHyfmZmp7t27KzAwUB07dtSTTz7pU7dlyxY5HA6tXLlS06dPl8fjUVBQkPr3768PP/zQp/bkIf7du3crJSVFISEhGjRokKTvD4tPnjxZbdu2VUBAgDp27Kj7779fXq9XknTs2DH17NlTnTp1UlFRkbXOvLw8eTweJScnq6qqSlLtp3hO7s8bb7yhnj17KigoSF26dNEbb7wh6fufYZcuXRQcHKzLL79cO3bs8Fn+bN4Ly5Yt0y233CJJGjBggBwOh89pjtpOOxw7dkyzZ89WfHy8AgIC1LZtW02ZMkVHjx6ttf/r1q1Tr169FBQUpEsvvVTPPfdczR9yLc40vgcPHpTD4dDGjRv1ySefWH3fsmXLWa2/of7xj38oIiJCw4cPV1lZmaT/7Ovq1avVs2dPBQYG6sEHH5QkPfXUU7rmmmsUGRmp4OBgJSYmav78+aqsrPRZb21j7XA4NHXqVK1YsUJdunRRy5Yt1aNHD+s9cKr9+/dr7NixioyMlMvlUpcuXfTUU0+ddl/qO4Zff/21Jk+erK5du6pVq1aKjIzUwIED9e6779aoPXLkiG6++WaFhIToJz/5iW6//Xbl5OTUOI0GGzNAPc2dO9dIMnFxcWbWrFkmKyvLrFmzxhhjzMsvv2weeOABk5mZabKzs01GRobp37+/adOmjfn666+tdSxdutRIMh07djTTpk0z69evN88++6xp3bq1GTBggM/24uLizPXXX2+MMebEiRNmxowZxt/f3yxduvSc9+Ff//rXGWvHjx9vlixZYrKyskxWVpb5wx/+YIKCgsyDDz5Yo59t27Y17du3N88995xZu3atuf32240k8+ijj1p1mzdvNpJMbGys+dnPfmZef/11s3LlStOpUycTGhpq/t//+39W7bhx44y/v7/p0KGDSU9PN2+//bZZv369KS8vN927dzfBwcHmT3/6k9mwYYP53e9+Z5xOp7nuuuus5T/99FMTEhJiRo0aZYwxpqqqygwcONBERkaar776qsZ4VN+fdu3amYSEBPPSSy+ZtWvXmj59+hh/f3/zwAMPmCuvvNKsXr3aZGZmmosvvthERUWZ7777zlr+bN4L+fn5Zt68eUaSeeqpp8x7771n3nvvPZOfn2/tf1xcnLXOEydOmKFDhxqn02l+97vfmQ0bNpg//elPJjg42PTs2dMcO3asRv+7du1qli9fbtavX29uueUWI8lkZ2ef9md+NuN77Ngx895775mePXuajh07Wn0vKiqqc72nvpery8nJMZJ83tfjxo0zwcHB1utVq1YZl8tlJk2aZI4fP+6z3ujoaNOxY0fz3HPPmc2bN5v333/fGGPMr371K7N48WKzbt06s2nTJrNw4UITERFh/uu//stn+9XH2hhjJJkOHTqYyy+/3Pztb38za9euNcnJycbpdPq8T/fu3WvcbrdJTEw0y5cvNxs2bDAzZswwLVq0MGlpaXWOx5nGUJKZO3euVf+///u/ZtKkSSYjI8Ns2bLFvPHGG2bChAmmRYsWZvPmzVZdaWmp6dSpkwkLCzNPPfWUWb9+vfnVr35l4uPja4wx7IuAgno7+cfsgQceOGPt8ePHTWlpqQkODjZPPPGE1X4yoEyePNmnfv78+UaSyc3NtdpOfqh/99135qabbjJut9ts3Lixwf3/17/+ZYKCgszIkSPrvWxVVZWprKw0v//97014eLg5ceKETz8dDofZtWuXzzJDhgwxoaGhpqyszBjzn4DSq1cvn+UPHjxo/P39zV133WW1jRs3zkgyzz33nM86//KXvxhJ5m9/+5tP+yOPPGIkmQ0bNlhtq1atMpLM448/bh544AHTokULn/nG1B1QgoKCzJEjR6y2Xbt2GUkmOjra2h9jjFmzZo2RZF577bU6x66u98LLL79sJPn8gTl1/0/9o7lu3TojycyfP9+n7uQ+Pv300z79DwwMNF988YXVVl5ebsLCwsw999xTZz+Nqd/49u/f33Tr1u206zu1Tw0NKA8//LDx8/MzjzzySK3r9fPzM/v27Tvt9k++f5cvX278/PzMt99+67Ot2gJKVFSUKS4uttry8vJMixYtTHp6utU2dOhQ065duxrhbOrUqSYwMNBnO7WpawyrB5Tqjh8/biorK82gQYN8fp+feuopI8m89dZbPvX33HMPAaUZ4RQPGuymm26q0VZaWqpZs2apU6dOcjqdcjqdatWqlcrKyvTJJ5/UqB8xYoTP6+7du0tSjVNCBQUFGjhwoN5//31t3brVOs1xUlVVlY4fP25NJ06cqLXPBw8e1PDhwxUbG6tnn332rPZz06ZNGjx4sNxut/z8/OTv768HHnhABQUFys/P96nt1q2bevTo4dM2duxYFRcX64MPPqjRfupplbi4OPXr10+bN2+u0YfqY71p0yYFBwfr5ptv9mkfP368JOntt9+22kaPHq1Jkybp17/+tR566CHNmTNHQ4YMOat9/+lPf6q2bdtar7t06SJJSk5O9rkO5mT7qT+3+r4XzsamTZt89vOkW265RcHBwT77fbL/7du3t14HBgbq4osvrvH+qm07Zzu+55sxRvfcc4/mzp2rF198Uffdd1+tdd27d9fFF19co/3DDz/UiBEjFB4ebr1/f/GLX6iqqkqffvrpGbc/YMAAhYSEWK+joqIUGRlpjeGxY8f09ttva+TIkWrZsqXP7+F1112nY8eOafv27Q3c+5r+8pe/qFevXgoMDJTT6ZS/v7/efvttn/dUdna2QkJCalz4fdtttzVaP3D+EVDQYNHR0TXaxo4dq0WLFumuu+7S+vXr9f777ysnJ0dt2rRReXl5jfrw8HCf1y6XS5Jq1H766af65z//qWHDhikhIaHGegYNGiR/f39ruvPOO2vUfPHFFxowYICcTqfefvvts7pT4P3331dKSook6ZlnntE//vEP5eTk6P7776+1nx6Pp8Y6TrYVFBScVW31upYtWyo0NNSnraCgQB6Pp8Z1I5GRkXI6nTXWceedd6qyslJOp1O//OUv69zf6qqPUUBAwGnbT711u77vhbNRUFAgp9OpNm3a+LQ7HI5ax676+0v6/j12pu3Xd3zPltPptK77qe748eOSJH9/f5/2iooKrVq1St26ddOwYcPqXHdtv4+HDh3S1VdfrS+//FJPPPGE3n33XeXk5FjXhpzNz+FMY1hQUKDjx4/rf/7nf3x+B/39/XXddddJkr755pszbudsLFiwQJMmTVKfPn30yiuvaPv27crJydG1117rsy8FBQWKioqqsXxtbbAv7uJBg1X/8C4qKtIbb7yhuXPn6je/+Y3V7vV69e23357Ttvr27atbbrlFEyZMkCQtXrxYLVr8J1//9a9/VUlJifU6IiLCZ/kvvvhCycnJMsZoy5YtZ33HSkZGhvz9/fXGG28oMDDQal+zZk2t9Xl5eXW2Vf+gr6u2el1tt0GHh4frn//8p4wxPvPz8/N1/Phxn/0vKyvTHXfcoYsvvlj//ve/ddddd+nVV1+ttf+N5Xy9F8LDw3X8+HF9/fXXPiHFGKO8vDxddtll59TvU7dztuNbH1FRUfryyy9rnXeyvfofUZfLpc2bN2vo0KEaPHiw1q1bp9atW9dYvrb3yZo1a1RWVqbVq1crLi7Oat+1a1eD+l+b1q1by8/PT3fccYemTJlSa018fHyjbGvlypVKTk7W4sWLfdpP/d2Xvv/5vf/++zWWr+13DvbFERQ0GofDIWOMdRTkpGeffbbO/2usj3HjxikjI0NLly61DlGfdMkll6h3797WdOrdCIcOHbLuWNm0aZPPB/XZ7JPT6ZSfn5/VVl5erhUrVtRav3fvXv3rX//yaXvxxRcVEhKiXr16+bS/9NJLPncCffHFF9q2bZuSk5PP2K9BgwaptLS0RlBavny5Nf+kiRMn6tChQ1q9erWWLFmi1157TQsXLjzjNs5Ffd4LdR01q83J/Vq5cqVP+yuvvKKysrIap/4aqj7jWx+DBw/Wnj179PHHH9eY97e//U2tWrVSnz59aszr2bOnsrOzdeTIESUnJ9c4tViXk6Hl1J+DMUbPPPNMg/pfm5YtW2rAgAH68MMP1b17d5/fw5NTbUdhGsLhcNR4T3300Ud67733fNr69++vkpISvfXWWz7tGRkZjdIP/DA4goJGExoaqmuuuUaPPvqoIiIi1KFDB2VnZ2vJkiX6yU9+0ijbuPnmm9WyZUvdfPPNKi8v10svvWSdXqhNfn6+BgwYoNzcXC1ZskT5+fk+H+5nev7H9ddfrwULFmjs2LH67//+bxUUFOhPf/pTjQ/Jk2JiYjRixAilpaUpOjpaK1euVFZWlh555JEazy7Jz8/XyJEjdffdd6uoqEhz585VYGCgZs+efcZx+MUvfqGnnnpK48aN08GDB5WYmKitW7dq3rx5uu666zR48GBJ3weClStXaunSperWrZu6deumqVOnatasWbryyiut260bW33eCydP2T399NMKCQlRYGCg4uPja/2jNmTIEA0dOlSzZs1ScXGxrrzySn300UeaO3euevbsqTvuuKNR+n+241tf9957r5YvX67k5GTNmTNHiYmJKiws1KpVq/T3v/9dCxYs8Lne41RdunTRu+++q8GDB+uaa67Rxo0bz3gkcMiQIQoICNBtt92m++67T8eOHdPixYtVWFjYoP7X5YknntBVV12lq6++WpMmTVKHDh1UUlKizz77TK+//rp17dC5Gj58uP7whz9o7ty56t+/v/bt26ff//73io+Pt06RSd//z8zChQv185//XA899JA6deqkt956S+vXr5ckn6OvsLEmuzwXzdbJOz5OvW34pCNHjpibbrrJtG7d2oSEhJhrr73W7Nmzx8TFxZlx48ZZdSfv4snJyfFZ/uQdLqfe0VHbnQ+bN282rVq1Mtdee63Pra3VnVxfXdPp7hA46bnnnjOXXHKJcblcpmPHjiY9Pd0sWbLESDIHDhyo0c+///3vplu3biYgIMB06NDBLFiwoNY+rVixwvzyl780bdq0MS6Xy1x99dVmx44dPrXVbzM9VUFBgZk4caKJjo42TqfTxMXFmdmzZ1u32n700UcmKCjIZ9yN+f7WzqSkJNOhQwdTWFhojKn7Lp7a7jiRZKZMmeLTduDAgRq3U5/te8EYYx5//HETHx9v/Pz8fO6yqO3OkvLycjNr1iwTFxdn/P39TXR0tJk0aZK1L2fqf//+/U3//v1rtFd3pvE9dX1nexePMd/fBTNp0iTTvn1743Q6TUhIiLnqqqvMyy+/XKO2tp//kSNHzKWXXmo6dOhg3ep7uruDXn/9ddOjRw8TGBho2rZta37961+bt956q8bvWV138VT/WZ/cXvWf4YEDB8ydd95p2rZta/z9/U2bNm1Mv379zEMPPXTGMTnbu3i8Xq+ZOXOmadu2rQkMDDS9evUya9asqbXvhw4dMqNGjTKtWrUyISEh5qabbjJr1641ksyrr756xj6h6TmMqfa0KQAN0qFDByUkJNT6EKtTbdmyRQMGDNDLL79c4y4RAOfPvHnz9Nvf/laHDh2y5ZOT4YtTPACAC86iRYskSZdeeqkqKyu1adMmPfnkk/r5z39OOGkmCCgAgAtOy5YttXDhQh08eFBer1ft27fXrFmz9Nvf/rapu4azxCkeAABgO016KfOf//xnxcfHKzAwUElJSbV+4RMAAPjxabKAsmrVKqWmpur+++/Xhx9+qKuvvlrDhg3ToUOHmqpLAADAJprsFE+fPn3Uq1cvnycCdunSRTfeeKPS09NPu+yJEyf01VdfKSQkpNanJwIAAPsxxqikpEQxMTFnfB5Nk1wkW1FRoZ07d/o8AluSUlJStG3bthr1Xq9XXq/Xev3ll1+qa9eu572fAACg8R0+fPiMd1M1SUD55ptvVFVVVeM7J6Kiomr9roT09HQ9+OCDNVc08gXJ2bJmOwAAsJH/O9tR+Z20ZmydT0w+VZPeZlz99Iyp9sVcJ82ePVvTp0+3XhcXFys2Nlbybyk5g897PwEAwLnw/dt+NpdnNElAiYiIkJ+fX42jJfn5+bV+HbbL5arju08c+s9Oc7c0AAD2ZKr998ya5C6egIAAJSUlKSsry6c9KytL/fr1a4ouAQAAG2myUzzTp0/XHXfcod69e6tv3756+umndejQIU2cOLGpugQAAGyiyQLKmDFjVFBQoN///vfKzc1VQkKC1q5dq7i4uKbqEgAAsIlm+aj74uJiud1uafSaUy6SbXa7AQDAj0tlmfTySBUVFSk0NPS0pU36qHsAAIDaEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtNHpASUtLk8Ph8Jk8Ho813xijtLQ0xcTEKCgoSMnJydq7d29jdwMAADRj5+UISrdu3ZSbm2tNu3fvtubNnz9fCxYs0KJFi5STkyOPx6MhQ4aopKTkfHQFAAA0Q87zslKn0+eoyUnGGD3++OO6//77NWrUKEnS888/r6ioKL344ou65557al2f1+uV1+u1XhcXF5+PbgMAAJs4L0dQ9u/fr5iYGMXHx+vWW2/V559/Lkk6cOCA8vLylJKSYtW6XC71799f27Ztq3N96enpcrvd1hQbG3s+ug0AAGyi0QNKnz59tHz5cq1fv17PPPOM8vLy1K9fPxUUFCgvL0+SFBUV5bNMVFSUNa82s2fPVlFRkTUdPny4sbsNAABspNFP8QwbNsz6d2Jiovr27auLLrpIzz//vK644gpJksPh8FnGGFOj7VQul0sul6uxuwoAAGzqvN9mHBwcrMTERO3fv9+6LqX60ZL8/PwaR1UAAMCP13kPKF6vV5988omio6MVHx8vj8ejrKwsa35FRYWys7PVr1+/890VAADQTDT6KZ6ZM2fqhhtuUPv27ZWfn6+HHnpIxcXFGjdunBwOh1JTUzVv3jx17txZnTt31rx589SyZUuNHTu2sbsCAACaqUYPKEeOHNFtt92mb775Rm3atNEVV1yh7du3Ky4uTpJ03333qby8XJMnT1ZhYaH69OmjDRs2KCQkpLG7AgAAmimHMcY0dSfqq7i4WG63Wxq9RnIG/19rs9sNAAB+XCrLpJdHqqioSKGhoact5bt4AACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7dQ7oLzzzju64YYbFBMTI4fDoTVr1vjMN8YoLS1NMTExCgoKUnJysvbu3etT4/V6NW3aNEVERCg4OFgjRozQkSNHzmlHAADAhaPeAaWsrEw9evTQokWLap0/f/58LViwQIsWLVJOTo48Ho+GDBmikpISqyY1NVWZmZnKyMjQ1q1bVVpaquHDh6uqqqrhewIAAC4YDmOMafDCDocyMzN14403Svr+6ElMTIxSU1M1a9YsSd8fLYmKitIjjzyie+65R0VFRWrTpo1WrFihMWPGSJK++uorxcbGau3atRo6dGiN7Xi9Xnm9Xut1cXGxYmNjpdFrJGfw/7U2eDcAAMAPobJMenmkioqKFBoaetrSRr0G5cCBA8rLy1NKSorV5nK51L9/f23btk2StHPnTlVWVvrUxMTEKCEhwaqpLj09XW6325piY2Mbs9sAAMBmGjWg5OXlSZKioqJ82qOioqx5eXl5CggIUOvWreusqW727NkqKiqypsOHDzdmtwEAgM04z8dKHQ6Hz2tjTI226k5X43K55HK5Gq1/AADA3ho1oHg8HknfHyWJjo622vPz862jKh6PRxUVFSosLPQ5ipKfn69+/frVc4unXndy+gAEAACa2tn/rW7UUzzx8fHyeDzKysqy2ioqKpSdnW2Fj6SkJPn7+/vU5Obmas+ePQ0IKAAA4EJU7yMopaWl+uyzz6zXBw4c0K5duxQWFqb27dsrNTVV8+bNU+fOndW5c2fNmzdPLVu21NixYyVJbrdbEyZM0IwZMxQeHq6wsDDNnDlTiYmJGjx4cOPtGQAAaLbqHVB27NihAQMGWK+nT58uSRo3bpyWLVum++67T+Xl5Zo8ebIKCwvVp08fbdiwQSEhIdYyCxculNPp1OjRo1VeXq5BgwZp2bJl8vPzq2dvHOL2YgAAmouz/5t9Ts9BaSrFxcVyu92nPAel2e0CAAA/Pk31HJSmwwWyAABcSC6QgAIAAC4kBBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA79Q4o77zzjm644QbFxMTI4XBozZo1PvPHjx8vh8PhM11xxRU+NV6vV9OmTVNERISCg4M1YsQIHTly5Jx2BAAAXDjqHVDKysrUo0cPLVq0qM6aa6+9Vrm5uda0du1an/mpqanKzMxURkaGtm7dqtLSUg0fPlxVVVX13wMAAHDBcdZ3gWHDhmnYsGGnrXG5XPJ4PLXOKyoq0pIlS7RixQoNHjxYkrRy5UrFxsZq48aNGjp0aH27BAAALjDn5RqULVu2KDIyUhdffLHuvvtu5efnW/N27typyspKpaSkWG0xMTFKSEjQtm3bal2f1+tVcXGxzwQAAC5cjR5Qhg0bphdeeEGbNm3SY489ppycHA0cOFBer1eSlJeXp4CAALVu3dpnuaioKOXl5dW6zvT0dLndbmuKjY1t7G4DAAAbqfcpnjMZM2aM9e+EhAT17t1bcXFxevPNNzVq1Kg6lzPGyOFw1Dpv9uzZmj59uvW6uLiYkAIAwAXsvN9mHB0drbi4OO3fv1+S5PF4VFFRocLCQp+6/Px8RUVF1boOl8ul0NBQnwkAAFy4zntAKSgo0OHDhxUdHS1JSkpKkr+/v7Kysqya3Nxc7dmzR/369Tvf3QEAAM1AvU/xlJaW6rPPPrNeHzhwQLt27VJYWJjCwsKUlpamm266SdHR0Tp48KDmzJmjiIgIjRw5UpLkdrs1YcIEzZgxQ+Hh4QoLC9PMmTOVmJho3dUDAAB+3OodUHbs2KEBAwZYr09eGzJu3DgtXrxYu3fv1vLly3X06FFFR0drwIABWrVqlUJCQqxlFi5cKKfTqdGjR6u8vFyDBg3SsmXL5Ofn1wi7BAAAmjuHMcY0dSfqq7i4WG63Wxq9RnIG/19rs9sNAAB+XCrLpJdHqqio6IzXk/JdPAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHbqFVDS09N12WWXKSQkRJGRkbrxxhu1b98+nxpjjNLS0hQTE6OgoCAlJydr7969PjVer1fTpk1TRESEgoODNWLECB05cuTc9wYAAFwQ6hVQsrOzNWXKFG3fvl1ZWVk6fvy4UlJSVFZWZtXMnz9fCxYs0KJFi5STkyOPx6MhQ4aopKTEqklNTVVmZqYyMjK0detWlZaWavjw4aqqqmq8PQMAAM2WwxhjGrrw119/rcjISGVnZ+uaa66RMUYxMTFKTU3VrFmzJH1/tCQqKkqPPPKI7rnnHhUVFalNmzZasWKFxowZI0n66quvFBsbq7Vr12ro0KFn3G5xcbHcbrc0eo3kDP6/1gbvBgAA+CFUlkkvj1RRUZFCQ0NPW3pO16AUFRVJksLCwiRJBw4cUF5enlJSUqwal8ul/v37a9u2bZKknTt3qrKy0qcmJiZGCQkJVk11Xq9XxcXFPhMAALhwNTigGGM0ffp0XXXVVUpISJAk5eXlSZKioqJ8aqOioqx5eXl5CggIUOvWreusqS49PV1ut9uaYmNjG9ptAADQDDQ4oEydOlUfffSRXnrppRrzHA6Hz2tjTI226k5XM3v2bBUVFVnT4cOHG9ptAADQDDQooEybNk2vvfaaNm/erHbt2lntHo9HkmocCcnPz7eOqng8HlVUVKiwsLDOmupcLpdCQ0N9JgAAcOGqV0Axxmjq1KlavXq1Nm3apPj4eJ/58fHx8ng8ysrKstoqKiqUnZ2tfv36SZKSkpLk7+/vU5Obm6s9e/ZYNQAA4MfNWZ/iKVOm6MUXX9Srr76qkJAQ60iJ2+1WUFCQHA6HUlNTNW/ePHXu3FmdO3fWvHnz1LJlS40dO9aqnTBhgmbMmKHw8HCFhYVp5syZSkxM1ODBgxt/DwEAQLNTr4CyePFiSVJycrJP+9KlSzV+/HhJ0n333afy8nJNnjxZhYWF6tOnjzZs2KCQkBCrfuHChXI6nRo9erTKy8s1aNAgLVu2TH5+fue2NwAA4IJwTs9BaSo8BwUAgGboh3oOCgAAwPlQr1M89mMkB0dOAABoFk7/xBEfzTqgzO77kgKD/Ju6GwAA4CwcK69U+t/OrrZZX4NydLsUGnLmegAA0PSKS6Wf9BHXoAAAgOaJgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGynXgElPT1dl112mUJCQhQZGakbb7xR+/bt86kZP368HA6Hz3TFFVf41Hi9Xk2bNk0REREKDg7WiBEjdOTIkXPfGwAAcEGoV0DJzs7WlClTtH37dmVlZen48eNKSUlRWVmZT921116r3Nxca1q7dq3P/NTUVGVmZiojI0Nbt25VaWmphg8frqqqqnPfIwAA0Ow561O8bt06n9dLly5VZGSkdu7cqWuuucZqd7lc8ng8ta6jqKhIS5Ys0YoVKzR48GBJ0sqVKxUbG6uNGzdq6NChNZbxer3yer3W6+Li4vp0GwAANDPndA1KUVGRJCksLMynfcuWLYqMjNTFF1+su+++W/n5+da8nTt3qrKyUikpKVZbTEyMEhIStG3btlq3k56eLrfbbU2xsbHn0m0AAGBzDQ4oxhhNnz5dV111lRISEqz2YcOG6YUXXtCmTZv02GOPKScnRwMHDrSOgOTl5SkgIECtW7f2WV9UVJTy8vJq3dbs2bNVVFRkTYcPH25otwEAQDNQr1M8p5o6dao++ugjbd261ad9zJgx1r8TEhLUu3dvxcXF6c0339SoUaPqXJ8xRg6Ho9Z5LpdLLperoV0FAADNTIOOoEybNk2vvfaaNm/erHbt2p22Njo6WnFxcdq/f78kyePxqKKiQoWFhT51+fn5ioqKakh3AADABaZeAcUYo6lTp2r16tXatGmT4uPjz7hMQUGBDh8+rOjoaElSUlKS/P39lZWVZdXk5uZqz5496tevXz27DwAALkT1OsUzZcoUvfjii3r11VcVEhJiXTPidrsVFBSk0tJSpaWl6aabblJ0dLQOHjyoOXPmKCIiQiNHjrRqJ0yYoBkzZig8PFxhYWGaOXOmEhMTrbt6AADAj1u9AsrixYslScnJyT7tS5cu1fjx4+Xn56fdu3dr+fLlOnr0qKKjozVgwACtWrVKISEhVv3ChQvldDo1evRolZeXa9CgQVq2bJn8/PzOfY8AAECz5zDGmKbuRH0VFxfL7Xbr6HYpNOTM9QAAoOkVl0o/6fP9Y0pCQ0NPW8t38QAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANshoAAAANupV0BZvHixunfvrtDQUIWGhqpv37566623rPnGGKWlpSkmJkZBQUFKTk7W3r17fdbh9Xo1bdo0RUREKDg4WCNGjNCRI0caZ28AAMAFoV4BpV27dnr44Ye1Y8cO7dixQwMHDtTPfvYzK4TMnz9fCxYs0KJFi5STkyOPx6MhQ4aopKTEWkdqaqoyMzOVkZGhrVu3qrS0VMOHD1dVVVXj7hkAAGi2HMYYcy4rCAsL06OPPqo777xTMTExSk1N1axZsyR9f7QkKipKjzzyiO655x4VFRWpTZs2WrFihcaMGSNJ+uqrrxQbG6u1a9dq6NChtW7D6/XK6/Var4uLixUbG6uj26XQkHPpPQAA+KEUl0o/6SMVFRUpNDT0tLUNvgalqqpKGRkZKisrU9++fXXgwAHl5eUpJSXFqnG5XOrfv7+2bdsmSdq5c6cqKyt9amJiYpSQkGDV1CY9PV1ut9uaYmNjG9ptAADQDNQ7oOzevVutWrWSy+XSxIkTlZmZqa5duyovL0+SFBUV5VMfFRVlzcvLy1NAQIBat25dZ01tZs+eraKiIms6fPhwfbsNAACaEWd9F7jkkku0a9cuHT16VK+88orGjRun7Oxsa77D4fCpN8bUaKvuTDUul0sul6u+XQUAAM1UvY+gBAQEqFOnTurdu7fS09PVo0cPPfHEE/J4PJJU40hIfn6+dVTF4/GooqJChYWFddYAAACc83NQjDHyer2Kj4+Xx+NRVlaWNa+iokLZ2dnq16+fJCkpKUn+/v4+Nbm5udqzZ49VAwAAUK9TPHPmzNGwYcMUGxurkpISZWRkaMuWLVq3bp0cDodSU1M1b948de7cWZ07d9a8efPUsmVLjR07VpLkdrs1YcIEzZgxQ+Hh4QoLC9PMmTOVmJiowYMHn5cdBAAAzU+9Asq///1v3XHHHcrNzZXb7Vb37t21bt06DRkyRJJ03333qby8XJMnT1ZhYaH69OmjDRs2KCTkP/cCL1y4UE6nU6NHj1Z5ebkGDRqkZcuWyc/Pr3H3DAAANFvn/ByUplBcXCy3281zUAAAaEZ+kOegAAAAnC8EFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAC2dfrvQQdwISOgALCtZveYawCNhoACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsp14BZfHixerevbtCQ0MVGhqqvn376q233rLmjx8/Xg6Hw2e64oorfNbh9Xo1bdo0RUREKDg4WCNGjNCRI0caZ28AAMAFoV4BpV27dnr44Ye1Y8cO7dixQwMHDtTPfvYz7d2716q59tprlZuba01r1671WUdqaqoyMzOVkZGhrVu3qrS0VMOHD1dVVVXj7BEAAGj2HMYYcy4rCAsL06OPPqoJEyZo/PjxOnr0qNasWVNrbVFRkdq0aaMVK1ZozJgxkqSvvvpKsbGxWrt2rYYOHXpW2ywuLpbb7dbR7VJoyLn0HgAA/FCKS6Wf9Pk+D4SGhp62tsHXoFRVVSkjI0NlZWXq27ev1b5lyxZFRkbq4osv1t133638/Hxr3s6dO1VZWamUlBSrLSYmRgkJCdq2bVud2/J6vSouLvaZAADAhaveAWX37t1q1aqVXC6XJk6cqMzMTHXt2lWSNGzYML3wwgvatGmTHnvsMeXk5GjgwIHyer2SpLy8PAUEBKh169Y+64yKilJeXl6d20xPT5fb7bam2NjY+nYbAAA0I876LnDJJZdo165dOnr0qF555RWNGzdO2dnZ6tq1q3XaRpISEhLUu3dvxcXF6c0339SoUaPqXKcxRg6Ho875s2fP1vTp063XxcXFhBQAAC5g9Q4oAQEB6tSpkySpd+/eysnJ0RNPPKG//vWvNWqjo6MVFxen/fv3S5I8Ho8qKipUWFjocxQlPz9f/fr1q3ObLpdLLpervl0FAADN1Dk/B8UYY53Cqa6goECHDx9WdHS0JCkpKUn+/v7KysqyanJzc7Vnz57TBhQAAPDjUq8jKHPmzNGwYcMUGxurkpISZWRkaMuWLVq3bp1KS0uVlpamm266SdHR0Tp48KDmzJmjiIgIjRw5UpLkdrs1YcIEzZgxQ+Hh4QoLC9PMmTOVmJiowYMHn5cdBAAAzU+9Asq///1v3XHHHcrNzZXb7Vb37t21bt06DRkyROXl5dq9e7eWL1+uo0ePKjo6WgMGDNCqVasUEvKfe4EXLlwop9Op0aNHq7y8XIMGDdKyZcvk5+fX6DsHAACap3N+DkpT4DkoAAA0Pz/Ic1AAAADOFwIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwnXMKKOnp6XI4HEpNTbXajDFKS0tTTEyMgoKClJycrL179/os5/V6NW3aNEVERCg4OFgjRozQkSNHzqUrAADgAtLggJKTk6Onn35a3bt392mfP3++FixYoEWLFiknJ0cej0dDhgxRSUmJVZOamqrMzExlZGRo69atKi0t1fDhw1VVVdXwPQEAABeMBgWU0tJS3X777XrmmWfUunVrq90Yo8cff1z333+/Ro0apYSEBD3//PP67rvv9OKLL0qSioqKtGTJEj322GMaPHiwevbsqZUrV2r37t3auHFj4+wVAABo1hoUUKZMmaLrr79egwcP9mk/cOCA8vLylJKSYrW5XC71799f27ZtkyTt3LlTlZWVPjUxMTFKSEiwaqrzer0qLi72mQAAwIXLWd8FMjIy9MEHHygnJ6fGvLy8PElSVFSUT3tUVJS++OILqyYgIMDnyMvJmpPLV5eenq4HH3ywvl0FAADNVL2OoBw+fFj33nuvVq5cqcDAwDrrHA6Hz2tjTI226k5XM3v2bBUVFVnT4cOH69NtAADQzNQroOzcuVP5+flKSkqS0+mU0+lUdna2nnzySTmdTuvISfUjIfn5+dY8j8ejiooKFRYW1llTncvlUmhoqM8EAAAuXPUKKIMGDdLu3bu1a9cua+rdu7duv/127dq1Sx07dpTH41FWVpa1TEVFhbKzs9WvXz9JUlJSkvz9/X1qcnNztWfPHqsGAAD8uNXrGpSQkBAlJCT4tAUHBys8PNxqT01N1bx589S5c2d17txZ8+bNU8uWLTV27FhJktvt1oQJEzRjxgyFh4crLCxMM2fOVGJiYo2LbgEAwI9TvS+SPZP77rtP5eXlmjx5sgoLC9WnTx9t2LBBISEhVs3ChQvldDo1evRolZeXa9CgQVq2bJn8/PwauzsAAKAZchhjTFN3or6Ki4vldrt1dLsUGnLmegAA0PSKS6Wf9Pn+mWhnup6U7+IBAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0BBs+Jo6g4AABqkvp/fjf5txj+Ek99vWFwm/mIBANBMFJd+/9+z+Z7iZhlQSkpKJEntBzVxRwAAQL2VlJTI7XaftsZhzibG2MyJEye0b98+de3aVYcPHz7jVzbje8XFxYqNjWXM6olxqz/GrGEYt/pjzBqmqcbNGKOSkhLFxMSoRYvTX2XSLI+gtGjRQm3btpUkhYaG8qasJ8asYRi3+mPMGoZxqz/GrGGaYtzOdOTkJC6SBQAAtkNAAQAAttNsA4rL5dLcuXPlcrmauivNBmPWMIxb/TFmDcO41R9j1jDNYdya5UWyAADgwtZsj6AAAIALFwEFAADYDgEFAADYDgEFAADYDgEFAADYTrMMKH/+858VHx+vwMBAJSUl6d13323qLjWZd955RzfccINiYmLkcDi0Zs0an/nGGKWlpSkmJkZBQUFKTk7W3r17fWq8Xq+mTZumiIgIBQcHa8SIETpy5MgPuBc/rPT0dF122WUKCQlRZGSkbrzxRu3bt8+nhnGrafHixerevbv15Mm+ffvqrbfesuYzZmeWnp4uh8Oh1NRUq41xqyktLU0Oh8Nn8ng81nzGrHZffvmlfv7znys8PFwtW7bUT3/6U+3cudOa3+zGzTQzGRkZxt/f3zzzzDPm448/Nvfee68JDg42X3zxRVN3rUmsXbvW3H///eaVV14xkkxmZqbP/IcfftiEhISYV155xezevduMGTPGREdHm+LiYqtm4sSJpm3btiYrK8t88MEHZsCAAaZHjx7m+PHjP/De/DCGDh1qli5davbs2WN27dplrr/+etO+fXtTWlpq1TBuNb322mvmzTffNPv27TP79u0zc+bMMf7+/mbPnj3GGMbsTN5//33ToUMH0717d3Pvvfda7YxbTXPnzjXdunUzubm51pSfn2/NZ8xq+vbbb01cXJwZP368+ec//2kOHDhgNm7caD777DOrprmNW7MLKJdffrmZOHGiT9ull15qfvOb3zRRj+yjekA5ceKE8Xg85uGHH7bajh07Ztxut/nLX/5ijDHm6NGjxt/f32RkZFg1X375pWnRooVZt27dD9b3ppSfn28kmezsbGMM41YfrVu3Ns8++yxjdgYlJSWmc+fOJisry/Tv398KKIxb7ebOnWt69OhR6zzGrHazZs0yV111VZ3zm+O4NatTPBUVFdq5c6dSUlJ82lNSUrRt27Ym6pV9HThwQHl5eT7j5XK51L9/f2u8du7cqcrKSp+amJgYJSQk/GjGtKioSJIUFhYmiXE7G1VVVcrIyFBZWZn69u3LmJ3BlClTdP3112vw4ME+7Yxb3fbv36+YmBjFx8fr1ltv1eeffy6JMavLa6+9pt69e+uWW25RZGSkevbsqWeeecaa3xzHrVkFlG+++UZVVVWKioryaY+KilJeXl4T9cq+To7J6cYrLy9PAQEBat26dZ01FzJjjKZPn66rrrpKCQkJkhi309m9e7datWoll8uliRMnKjMzU127dmXMTiMjI0MffPCB0tPTa8xj3GrXp08fLV++XOvXr9czzzyjvLw89evXTwUFBYxZHT7//HMtXrxYnTt31vr16zVx4kT98pe/1PLlyyU1z/ea8wffYiNwOBw+r40xNdrwHw0Zrx/LmE6dOlUfffSRtm7dWmMe41bTJZdcol27duno0aN65ZVXNG7cOGVnZ1vzGTNfhw8f1r333qsNGzYoMDCwzjrGzdewYcOsfycmJqpv37666KKL9Pzzz+uKK66QxJhVd+LECfXu3Vvz5s2TJPXs2VN79+7V4sWL9Ytf/MKqa07j1qyOoERERMjPz69GksvPz6+RCiHrqvfTjZfH41FFRYUKCwvrrLlQTZs2Ta+99po2b96sdu3aWe2MW90CAgLUqVMn9e7dW+np6erRo4eeeOIJxqwOO3fuVH5+vpKSkuR0OuV0OpWdna0nn3xSTqfT2m/G7fSCg4OVmJio/fv3816rQ3R0tLp27erT1qVLFx06dEhS8/xca1YBJSAgQElJScrKyvJpz8rKUr9+/ZqoV/YVHx8vj8fjM14VFRXKzs62xispKUn+/v4+Nbm5udqzZ88FO6bGGE2dOlWrV6/Wpk2bFB8f7zOfcTt7xhh5vV7GrA6DBg3S7t27tWvXLmvq3bu3br/9du3atUsdO3Zk3M6C1+vVJ598oujoaN5rdbjyyitrPC7h008/VVxcnKRm+rn2g1+We45O3ma8ZMkS8/HHH5vU1FQTHBxsDh482NRdaxIlJSXmww8/NB9++KGRZBYsWGA+/PBD67brhx9+2LjdbrN69Wqze/duc9ttt9V6W1m7du3Mxo0bzQcffGAGDhx4Qd+ON2nSJON2u82WLVt8bmP87rvvrBrGrabZs2ebd955xxw4cMB89NFHZs6cOaZFixZmw4YNxhjG7GydehePMYxbbWbMmGG2bNliPv/8c7N9+3YzfPhwExISYn3OM2Y1vf/++8bpdJo//vGPZv/+/eaFF14wLVu2NCtXrrRqmtu4NbuAYowxTz31lImLizMBAQGmV69e1u2hP0abN282kmpM48aNM8Z8f2vZ3LlzjcfjMS6Xy1xzzTVm9+7dPusoLy83U6dONWFhYSYoKMgMHz7cHDp0qAn25odR23hJMkuXLrVqGLea7rzzTuv3rk2bNmbQoEFWODGGMTtb1QMK41bTyedz+Pv7m5iYGDNq1Cizd+9eaz5jVrvXX3/dJCQkGJfLZS699FLz9NNP+8xvbuPmMMaYH/64DQAAQN2a1TUoAADgx4GAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbIeAAgAAbOf/A1ZHdX1H0hRXAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6/klEQVR4nO3deXxU9b3/8feQSSYLyZQkJJNADEFAgQBlUQQXwi6KVFBBUQtXtLLWFKgUbCW2XqJYQb1YWimCgBpqJYiKQBCIUrQGlMuiF/EnCGjSKIYsGCYQvr8/aE6ZLMCEYE7g9Xw8zoPM93zOme/5zkzy5mzjMMYYAQAA2Eij+u4AAABAZQQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQU2F6LFi00ePDgWi//yCOPqHPnzoqMjFRwcLBatmypX/ziF/rqq6/qsJcNW1pamhwOR70896effqq0tDTt37+/yrzRo0erRYsWP3qf/PH999/rzjvvVExMjBwOh2699dYaa8/0Xt66dascDocWL15stY0ePVqNGzeu4x5Xrz7HuqYxdDgcSktLq5c+of4567sDwIV25MgR3XXXXWrbtq3Cw8P16aef6vHHH9eqVau0e/duRUVF1XcX693999+vG2+8sV6e+9NPP9Vjjz2mlJSUKn8gf/e73+mhhx6ql36dqz/84Q/KzMzUiy++qMsvv1yRkZH13aVaqc+xvljGEHWLgII68cMPPyg0NLS+u1Gt559/3udxSkqKkpKSdNNNN+mNN97QfffdV089q50LMdbNmzdX8+bN63SddeHyyy+v7y6c1a5du3T55Zfr7rvvru+u+CgtLVVISMg519fnWNt1DFG/OMQDv1UcDvj44491++23q0mTJtYvt61bt+rOO+9UixYtFBISohYtWuiuu+6qcjhl8eLFcjgc2rhxo8aNG6fo6GhFRUVp2LBh+uabb87ahz/96U9yOp2aOXNmrbahadOmkiSn8+wZ/bHHHlP37t0VGRmpiIgIdenSRQsXLlTl79ms2H2fmZmpjh07WoeTnnvuOZ+6TZs2yeFwaNmyZZo8ebI8Ho9CQkLUq1cvffLJJz61Fbv4d+7cqQEDBig8PFx9+/aVdGq3+Pjx49WsWTMFBQWpZcuWeuSRR+T1eiVJx44dU+fOndWqVSsVFhZa68zLy5PH41FKSorKy8slVX+Ip2J73nrrLXXu3FkhISFq27at3nrrLUmnXsO2bdsqLCxMV199tbZu3eqz/Lm8FxYvXqw77rhDktS7d285HA6fwxzVHXY4duyYpk+frqSkJAUFBalZs2aaMGGCjhw5Um3/16xZoy5duigkJERXXnmlXnzxxaovcjXONr779++Xw+HQ+vXr9dlnn1l937Rp0zmtv7b+8Y9/KDo6WoMHD9bRo0cl/WdbV6xYoc6dOys4OFiPPfaYpFMB/YYbblBMTIzCwsLUoUMHzZ49W8ePH/dZb3Vj7XA4NHHiRC1dulRt27ZVaGioOnXqZL0HTrd3716NHDlSMTExcrlcatu2bZX/HFTm7xh+++23Gj9+vNq1a6fGjRsrJiZGffr00fvvv1+l9tChQ7r99tsVHh6un/zkJ7r77ruVk5NT5TAabMwAfpo5c6aRZBITE820adNMVlaWWblypTHGmNdee808+uijJjMz02RnZ5uMjAzTq1cv07RpU/Ptt99a61i0aJGRZFq2bGkmTZpk1q5da/7617+aJk2amN69e/s8X2Jiorn55puNMcacPHnSTJkyxQQGBppFixb51e/jx4+bH374wXz88cfm2muvNW3atDHFxcVnXW706NFm4cKFJisry2RlZZk//OEPJiQkxDz22GNV+tmsWTNz2WWXmRdffNGsXr3a3H333UaSeeqpp6y6jRs3GkkmISHB/OxnPzNvvvmmWbZsmWnVqpWJiIgw/+///T+rdtSoUSYwMNC0aNHCpKenm3fffdesXbvWlJaWmo4dO5qwsDDzxz/+0axbt8787ne/M06n09x0003W8p9//rkJDw83w4YNM8YYU15ebvr06WNiYmLMN998Y9VVvKaVt6d58+YmOTnZvPrqq2b16tWme/fuJjAw0Dz66KPm2muvNStWrDCZmZmmTZs2JjY21vzwww/W8ufyXsjPzzezZs0ykszzzz9vPvjgA/PBBx+Y/Px8a/sTExOtdZ48edIMHDjQOJ1O87vf/c6sW7fO/PGPfzRhYWGmc+fO5tixY1X6365dO7NkyRKzdu1ac8cddxhJJjs7+4yv+bmM77Fjx8wHH3xgOnfubFq2bGn1vbCwsMb1nv5eriwnJ8dI8nlfjxo1yoSFhVmPly9fblwulxk3bpw5ceKEz3rj4uJMy5YtzYsvvmg2btxoPvroI2OMMb/61a/M/PnzzZo1a8yGDRvM3LlzTXR0tPmv//ovn+evPNbGGCPJtGjRwlx99dXmb3/7m1m9erVJSUkxTqfT5326e/du43a7TYcOHcySJUvMunXrzJQpU0yjRo1MWlpajeNxtjGUZGbOnGnV/9///Z8ZN26cycjIMJs2bTJvvfWWGTNmjGnUqJHZuHGjVVdSUmJatWplIiMjzfPPP2/Wrl1rfvWrX5mkpKQqYwz7IqDAbxV/zB599NGz1p44ccKUlJSYsLAw8+yzz1rtFQFl/PjxPvWzZ882kkxubq7VVvFL/YcffjC33XabcbvdZv369X71OTc310iypu7du5uvv/7ar3UYc+oP/PHjx83vf/97ExUVZU6ePOnTT4fDYbZv3+6zTP/+/U1ERIQ5evSoMeY/AaVLly4+y+/fv98EBgaa+++/32obNWqUkWRefPFFn3X++c9/NpLM3/72N5/2J5980kgy69ats9qWL19uJJlnnnnGPProo6ZRo0Y+842pOaCEhISYQ4cOWW3bt283kkxcXJy1PcYYs3LlSiPJrFq1qsaxq+m98NprrxlJPn9gTt/+0/9orlmzxkgys2fP9qmr2MYXXnjBp//BwcHmq6++stpKS0tNZGSkefDBB2vspzH+jW+vXr1M+/btz7i+0/tU24DyxBNPmICAAPPkk09Wu96AgACzZ8+eMz5/xft3yZIlJiAgwHz//fc+z1VdQImNjTVFRUVWW15enmnUqJFJT0+32gYOHGiaN29eJZxNnDjRBAcH+zxPdWoaw8oBpbITJ06Y48ePm759+5qhQ4da7c8//7yRZN555x2f+gcffJCA0oBwiAe1dtttt1VpKykp0bRp09SqVSs5nU45nU41btxYR48e1WeffValfsiQIT6PO3bsKElVDgkdPnxYffr00UcffaTNmzdbhzkqlJeX68SJE9Z08uRJn/nR0dHKycnR5s2btWDBAn3//ffq3bu3cnNzz7qdGzZsUL9+/eR2uxUQEKDAwEA9+uijOnz4sPLz831q27dvr06dOvm0jRw5UkVFRfr444+rtJ9+WCUxMVE9e/bUxo0bq/Sh8lhv2LBBYWFhuv32233aR48eLUl69913rbbhw4dr3Lhx+vWvf63HH39cM2bMUP/+/c+63ZL005/+VM2aNbMet23bVtKp83hOPw+mov30183f98K52LBhg892VrjjjjsUFhbms90V/b/sssusx8HBwWrTps1Zr+DyZ3wvNGOMHnzwQc2cOVOvvPKKHn744WrrOnbsqDZt2lRp/+STTzRkyBBFRUVZ79+f//znKi8v1+eff37W5+/du7fCw8Otx7GxsYqJibHG8NixY3r33Xc1dOhQhYaG+nwOb7rpJh07dkwffvhhLbe+qj//+c/q0qWLgoOD5XQ6FRgYqHfffdfnPZWdna3w8PAqJ37fddddddYPXHgEFNRaXFxclbaRI0dq3rx5uv/++7V27Vp99NFHysnJUdOmTVVaWlqlvvIVNC6XS5Kq1H7++ef65z//qUGDBik5ObnKevr27avAwEBrqnziq9PpVLdu3XTttdfq/vvv14YNG/Tll1/qiSeeOOM2fvTRRxowYIAkacGCBfrHP/6hnJwcPfLII9X20+PxVFlHRdvhw4fPqbZyXWhoqCIiInzaDh8+LI/HU+W8kZiYGDmdzirruO+++3T8+HE5nU798pe/rHF7K6t8NUVQUNAZ248dO2a1+fteOBeHDx+W0+m0ziGq4HA4qh276q7QcrlcZ31+f8f3XDmdTuu8n8pOnDghSQoMDPRpLysr0/Lly9W+fXsNGjSoxnVX93k8cOCArr/+en399dd69tln9f777ysnJ8c6N+RcXoezjeHhw4d14sQJ/c///I/PZzAwMFA33XSTJOm777476/Ocizlz5mjcuHHq3r27Xn/9dX344YfKycnRjTfe6LMthw8fVmxsbJXlq2uDfXEVD2qt8i/vwsJCvfXWW5o5c6Z+85vfWO1er1fff//9eT1Xjx49dMcdd2jMmDGSpPnz56tRo//k67/85S8qLi62HkdHR59xfc2bN1d8fPxZ/weZkZGhwMBAvfXWWwoODrbaV65cWW19Xl5ejW2Vf9HXVFu5rrr7k0RFRemf//ynjDE+8/Pz83XixAmf7T969KjuvfdetWnTRv/61790//3364033qi2/3XlQr0XoqKidOLECX377bc+IcUYo7y8PF111VXn1e/Tn+dcx9cfsbGx+vrrr6udV9Fe+Y+oy+XSxo0bNXDgQPXr109r1qxRkyZNqixf3ftk5cqVOnr0qFasWKHExESrffv27bXqf3WaNGmigIAA3XvvvZowYUK1NUlJSXXyXMuWLVNKSormz5/v0376Z1869fp99NFHVZav7jMH+2IPCuqMw+GQMcbaC1Lhr3/9a43/a/THqFGjlJGRoUWLFlm7qCtcccUV6tatmzWd7YZTX3zxhQ4dOqRWrVqdsc7hcMjpdCogIMBqKy0t1dKlS6ut3717t/73f//Xp+2VV15ReHi4unTp4tP+6quv+lwJ9NVXX2nLli1KSUk5Y5+kU3uMSkpKqgSlJUuWWPMrjB07VgcOHNCKFSu0cOFCrVq1SnPnzj3rc5wPf94LNe01q07Fdi1btsyn/fXXX9fRo0erHPqrLX/G1x/9+vXTrl279Omnn1aZ97e//U2NGzdW9+7dq8zr3LmzsrOzdejQIaWkpFQ5tFiTitBy+utgjNGCBQtq1f/qhIaGqnfv3vrkk0/UsWNHn89hxVRX9xpyOBxV3lM7duzQBx984NPWq1cvFRcX65133vFpz8jIqJN+4MfBHhTUmYiICN1www166qmnFB0drRYtWig7O1sLFy7UT37ykzp5jttvv12hoaG6/fbbVVpaqldffdU6vFCdHTt26Fe/+pVuv/12tWzZUo0aNdLOnTs1d+5cRUVFaerUqWd8vptvvllz5szRyJEj9Ytf/EKHDx/WH//4xyq/JCvEx8dryJAhSktLU1xcnJYtW6asrCw9+eSTVe5dkp+fr6FDh+qBBx5QYWGhZs6cqeDgYE2fPv2s4/Dzn/9czz//vEaNGqX9+/erQ4cO2rx5s2bNmqWbbrpJ/fr1k3QqECxbtkyLFi1S+/bt1b59e02cOFHTpk3Ttddeq6uvvvqsz1Ub/rwXKg7ZvfDCCwoPD1dwcLCSkpKq/aPWv39/DRw4UNOmTVNRUZGuvfZa7dixQzNnzlTnzp1177331kn/z3V8/fXQQw9pyZIlSklJ0YwZM9ShQwcVFBRo+fLl+vvf/645c+b4nO9xurZt2+r9999Xv379dMMNN2j9+vVnvXdN//79FRQUpLvuuksPP/ywjh07pvnz56ugoKBW/a/Js88+q+uuu07XX3+9xo0bpxYtWqi4uFhffPGF3nzzTevcofM1ePBg/eEPf9DMmTPVq1cv7dmzR7///e+VlJRkHSKTTv1nZu7cubrnnnv0+OOPq1WrVnrnnXe0du1aSfLZ+wobq7/zc9FQVVzxcfplwxUOHTpkbrvtNtOkSRMTHh5ubrzxRrNr1y6TmJhoRo0aZdVVXMWTk5Pjs3zFFS6nX9FR3ZUPGzduNI0bNzY33nijz6WtleXl5Zl77rnHXH755SY0NNQEBQWZli1bmrFjx5oDBw6c0/a++OKL5oorrjAul8u0bNnSpKenm4ULFxpJZt++fVX6+fe//920b9/eBAUFmRYtWpg5c+ZUu41Lly41v/zlL03Tpk2Ny+Uy119/vdm6datPbeXLTE93+PBhM3bsWBMXF2ecTqdJTEw006dPty613bFjhwkJCfEZd2NOXdrZtWtX06JFC1NQUGCMqfkqnuquOJFkJkyY4NO2b9++KpdTn+t7wRhjnnnmGZOUlGQCAgJ8rrKo7sqS0tJSM23aNJOYmGgCAwNNXFycGTdunLUtZ+t/r169TK9evaq0V3a28T19fed6FY8xp96T48aNM5dddplxOp0mPDzcXHfddea1116rUlvd63/o0CFz5ZVXmhYtWliX+p7p6qA333zTdOrUyQQHB5tmzZqZX//61+add96p8jmr6Sqeyq91xfNVfg337dtn7rvvPtOsWTMTGBhomjZtanr27Gkef/zxs47JuV7F4/V6zdSpU02zZs1McHCw6dKli1m5cmW1fT9w4IAZNmyYady4sQkPDze33XabWb16tZFk3njjjbP2CfXPYUylu00BqJUWLVooOTm52ptYnW7Tpk3q3bu3XnvttSpXiQC4cGbNmqXf/va3OnDggC3vnAxfHOIBAFx05s2bJ0m68sordfz4cW3YsEHPPfec7rnnHsJJA0FAAQBcdEJDQzV37lzt379fXq9Xl112maZNm6bf/va39d01nCMO8QAAANup11OZ//SnPykpKUnBwcHq2rVrtV/4BAAALj31FlCWL1+u1NRUPfLII/rkk090/fXXa9CgQTpw4EB9dQkAANhEvR3i6d69u7p06eJzR8C2bdvq1ltvVXp6+hmXPXnypL755huFh4dXe/dEAABgP8YYFRcXKz4+/qz3o6mXk2TLysq0bds2n1tgS9KAAQO0ZcuWKvVer1der9d6/PXXX6tdu3YXvJ8AAKDuHTx48KxXU9VLQPnuu+9UXl5e5TsnYmNjq/2uhPT0dD322GNVVzT0ZckZJonzfAEAsK9/H+04/oO0cmSNd0w+Xb1eZlz58Iyp9MVcFaZPn67Jkydbj4uKipSQkCAFhknO0FPbbfSffwE0XBW/AvgsX/wcp73YvN4Xt0p/28/l9Ix6CSjR0dEKCAiosrckPz+/2q/DdrlcNXz3SUUqqfgZANBw8Hv70vHv19px7q95vVzFExQUpK5duyorK8unPSsrSz179vRjTZUSGO91AGh4+N198TOV/j0H9XaIZ/Lkybr33nvVrVs39ejRQy+88IIOHDigsWPH1leXAACATdRbQBkxYoQOHz6s3//+98rNzVVycrJWr16txMTE+uoSAACwiQZ5q/uioiK53W5p+MpTV/E4JDW8zQBQHU4ru3TwWl9aHJLKjkqvDVVhYaEiIiLOWF6vt7oHAACoDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYTp0HlLS0NDkcDp/J4/FY840xSktLU3x8vEJCQpSSkqLdu3fXdTcAAEADdkH2oLRv3165ubnWtHPnTmve7NmzNWfOHM2bN085OTnyeDzq37+/iouLL0RXAABAA+S8ICt1On32mlQwxuiZZ57RI488omHDhkmSXnrpJcXGxuqVV17Rgw8+WO36vF6vvF6v9bioqOhCdBsAANjEBdmDsnfvXsXHxyspKUl33nmnvvzyS0nSvn37lJeXpwEDBli1LpdLvXr10pYtW2pcX3p6utxutzUlJCRciG4DAACbqPOA0r17dy1ZskRr167VggULlJeXp549e+rw4cPKy8uTJMXGxvosExsba82rzvTp01VYWGhNBw8erOtuAwAAG6nzQzyDBg2yfu7QoYN69Oihyy+/XC+99JKuueYaSZLD4fBZxhhTpe10LpdLLperrrsKAABs6oJfZhwWFqYOHTpo79691nkplfeW5OfnV9mrAgAALl0XPKB4vV599tlniouLU1JSkjwej7Kysqz5ZWVlys7OVs+ePS90VwAAQANR54d4pk6dqltuuUWXXXaZ8vPz9fjjj6uoqEijRo2Sw+FQamqqZs2apdatW6t169aaNWuWQkNDNXLkyLruCgAAaKDqPKAcOnRId911l7777js1bdpU11xzjT788EMlJiZKkh5++GGVlpZq/PjxKigoUPfu3bVu3TqFh4fXdVcAAEAD5TDGmPruhL+Kiorkdrul4SslZ5jkkNTwNgNAdSrOl+cjffHjtb60OCSVHZVeG6rCwkJFREScsZzv4gEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALbjd0B57733dMsttyg+Pl4Oh0MrV670mW+MUVpamuLj4xUSEqKUlBTt3r3bp8br9WrSpEmKjo5WWFiYhgwZokOHDp3XhgAAgIuH3wHl6NGj6tSpk+bNm1ft/NmzZ2vOnDmaN2+ecnJy5PF41L9/fxUXF1s1qampyszMVEZGhjZv3qySkhINHjxY5eXltd8SAABw0XAYY0ytF3Y4lJmZqVtvvVXSqb0n8fHxSk1N1bRp0ySd2lsSGxurJ598Ug8++KAKCwvVtGlTLV26VCNGjJAkffPNN0pISNDq1as1cODAKs/j9Xrl9Xqtx0VFRUpISJCGr5ScYZJDUu03A4CdOP79Lx/pix+v9aXFIansqPTaUBUWFioiIuKM5XV6Dsq+ffuUl5enAQMGWG0ul0u9evXSli1bJEnbtm3T8ePHfWri4+OVnJxs1VSWnp4ut9ttTQkJCXXZbQAAYDN1GlDy8vIkSbGxsT7tsbGx1ry8vDwFBQWpSZMmNdZUNn36dBUWFlrTwYMH67LbAADAZpwXYqUOh8PnsTGmSltlZ6pxuVxyuVx11j8AAGBvdRpQPB6PpFN7SeLi4qz2/Px8a6+Kx+NRWVmZCgoKfPai5Ofnq2fPnrV41oqDl2cOQAAAoL6d+9/qOj3Ek5SUJI/Ho6ysLKutrKxM2dnZVvjo2rWrAgMDfWpyc3O1a9euWgYUAABge36eDO33HpSSkhJ98cUX1uN9+/Zp+/btioyM1GWXXabU1FTNmjVLrVu3VuvWrTVr1iyFhoZq5MiRkiS3260xY8ZoypQpioqKUmRkpKZOnaoOHTqoX79+fvbGiD0nAAA0AH7+ufY7oGzdulW9e/e2Hk+ePFmSNGrUKC1evFgPP/ywSktLNX78eBUUFKh79+5at26dwsPDrWXmzp0rp9Op4cOHq7S0VH379tXixYsVEBDgb3dOw3VqAADY27n/rT6v+6DUl6KiIrnd7n/fByX03/dBqe9eAQD8xy/wS8rxeroPSv1wiMM8wEWEj/SlwyHJQTi5ZPj5ub4IAgoAALjYEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDt+B1Q3nvvPd1yyy2Kj4+Xw+HQypUrfeaPHj1aDofDZ7rmmmt8arxeryZNmqTo6GiFhYVpyJAhOnTo0HltCAAAuHj4HVCOHj2qTp06ad68eTXW3HjjjcrNzbWm1atX+8xPTU1VZmamMjIytHnzZpWUlGjw4MEqLy/3fwsAAMBFx+nvAoMGDdKgQYPOWONyueTxeKqdV1hYqIULF2rp0qXq16+fJGnZsmVKSEjQ+vXrNXDgQH+7BAAALjIX5ByUTZs2KSYmRm3atNEDDzyg/Px8a962bdt0/PhxDRgwwGqLj49XcnKytmzZUu36vF6vioqKfCYAAHDxqvOAMmjQIL388svasGGDnn76aeXk5KhPnz7yer2SpLy8PAUFBalJkyY+y8XGxiovL6/adaanp8vtdltTQkJCXXcbAADYiN+HeM5mxIgR1s/Jycnq1q2bEhMT9fbbb2vYsGE1LmeMkcPhqHbe9OnTNXnyZOtxUVERIQUAgIvYBb/MOC4uTomJidq7d68kyePxqKysTAUFBT51+fn5io2NrXYdLpdLERERPhMAALh4XfCAcvjwYR08eFBxcXGSpK5duyowMFBZWVlWTW5urnbt2qWePXte6O4AAIAGwO9DPCUlJfriiy+sx/v27dP27dsVGRmpyMhIpaWl6bbbblNcXJz279+vGTNmKDo6WkOHDpUkud1ujRkzRlOmTFFUVJQiIyM1depUdejQwbqqBwAAXNr8Dihbt25V7969rccV54aMGjVK8+fP186dO7VkyRIdOXJEcXFx6t27t5YvX67w8HBrmblz58rpdGr48OEqLS1V3759tXjxYgUEBNTBJgEAgIbOYYwx9d0JfxUVFcntdkvDV0rOMMkhqeFtBoDqVJwrz0f64sdrfWlxSCo7Kr02VIWFhWc9n5Tv4gEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALbjV0BJT0/XVVddpfDwcMXExOjWW2/Vnj17fGqMMUpLS1N8fLxCQkKUkpKi3bt3+9R4vV5NmjRJ0dHRCgsL05AhQ3To0KHz3xoAAHBR8CugZGdna8KECfrwww+VlZWlEydOaMCAATp69KhVM3v2bM2ZM0fz5s1TTk6OPB6P+vfvr+LiYqsmNTVVmZmZysjI0ObNm1VSUqLBgwervLy87rYMAAA0WA5jjKntwt9++61iYmKUnZ2tG264QcYYxcfHKzU1VdOmTZN0am9JbGysnnzyST344IMqLCxU06ZNtXTpUo0YMUKS9M033yghIUGrV6/WwIEDz/q8RUVFcrvd0vCVkjNMckiq/WYAsBPHv//lI33x47W+tDgklR2VXhuqwsJCRUREnLH8vM5BKSwslCRFRkZKkvbt26e8vDwNGDDAqnG5XOrVq5e2bNkiSdq2bZuOHz/uUxMfH6/k5GSrpjKv16uioiKfCQAAXLxqHVCMMZo8ebKuu+46JScnS5Ly8vIkSbGxsT61sbGx1ry8vDwFBQWpSZMmNdZUlp6eLrfbbU0JCQm17TYAAGgAah1QJk6cqB07dujVV1+tMs/hcPg8NsZUaavsTDXTp09XYWGhNR08eLC23QYAAA1ArQLKpEmTtGrVKm3cuFHNmze32j0ejyRV2ROSn59v7VXxeDwqKytTQUFBjTWVuVwuRURE+EwAAODi5VdAMcZo4sSJWrFihTZs2KCkpCSf+UlJSfJ4PMrKyrLaysrKlJ2drZ49e0qSunbtqsDAQJ+a3Nxc7dq1y6oBAACXNqc/xRMmTNArr7yiN954Q+Hh4daeErfbrZCQEDkcDqWmpmrWrFlq3bq1WrdurVmzZik0NFQjR460aseMGaMpU6YoKipKkZGRmjp1qjp06KB+/frV/RYCAIAGx6+AMn/+fElSSkqKT/uiRYs0evRoSdLDDz+s0tJSjR8/XgUFBerevbvWrVun8PBwq37u3LlyOp0aPny4SktL1bdvXy1evFgBAQHntzUAAOCicF73Qakv3AcFuIhxb4xLB6/1peXHvA8KAADAheDXIR77MZLj39H7zFcxA2ho+ExfOnitLx1+vNYNOqBM7/GqgkMC67sbAADgHBwrPa70v51bbYM+B+XIh1JEuE4dvySBAwBga0Ul0k+6i3NQAABAw0RAAQAAtkNAAQAAtkNAAQAAtkNAQYPCudCXDl5r4NJGQEGD0uAuOUOt8VoDlzYCCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB2/Akp6erquuuoqhYeHKyYmRrfeeqv27NnjUzN69Gg5HA6f6ZprrvGp8Xq9mjRpkqKjoxUWFqYhQ4bo0KFD5781AADgouBXQMnOztaECRP04YcfKisrSydOnNCAAQN09OhRn7obb7xRubm51rR69Wqf+ampqcrMzFRGRoY2b96skpISDR48WOXl5ee/RQAAoMFz+lO8Zs0an8eLFi1STEyMtm3bphtuuMFqd7lc8ng81a6jsLBQCxcu1NKlS9WvXz9J0rJly5SQkKD169dr4MCBVZbxer3yer3W46KiIn+6DQAAGpjzOgelsLBQkhQZGenTvmnTJsXExKhNmzZ64IEHlJ+fb83btm2bjh8/rgEDBlht8fHxSk5O1pYtW6p9nvT0dLndbmtKSEg4n24DAACbq3VAMcZo8uTJuu6665ScnGy1Dxo0SC+//LI2bNigp59+Wjk5OerTp4+1ByQvL09BQUFq0qSJz/piY2OVl5dX7XNNnz5dhYWF1nTw4MHadhsAADQAfh3iOd3EiRO1Y8cObd682ad9xIgR1s/Jycnq1q2bEhMT9fbbb2vYsGE1rs8YI4fDUe08l8sll8tV264CAIAGplZ7UCZNmqRVq1Zp48aNat68+Rlr4+LilJiYqL1790qSPB6PysrKVFBQ4FOXn5+v2NjY2nQHAABcZPwKKMYYTZw4UStWrNCGDRuUlJR01mUOHz6sgwcPKi4uTpLUtWtXBQYGKisry6rJzc3Vrl271LNnTz+7DwAALkZ+HeKZMGGCXnnlFb3xxhsKDw+3zhlxu90KCQlRSUmJ0tLSdNtttykuLk779+/XjBkzFB0draFDh1q1Y8aM0ZQpUxQVFaXIyEhNnTpVHTp0sK7qAQAAlza/Asr8+fMlSSkpKT7tixYt0ujRoxUQEKCdO3dqyZIlOnLkiOLi4tS7d28tX75c4eHhVv3cuXPldDo1fPhwlZaWqm/fvlq8eLECAgLOf4sAAECD5zDGmPruhL+Kiorkdrt15EMpIlySkVT9+bUAAMAmikqkn3Q/dZuSiIiIM9byXTwAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2/Aoo8+fPV8eOHRUREaGIiAj16NFD77zzjjXfGKO0tDTFx8crJCREKSkp2r17t886vF6vJk2apOjoaIWFhWnIkCE6dOhQ3WwNAAC4KPgVUJo3b64nnnhCW7du1datW9WnTx/97Gc/s0LI7NmzNWfOHM2bN085OTnyeDzq37+/iouLrXWkpqYqMzNTGRkZ2rx5s0pKSjR48GCVl5fX7ZYBAIAGy2GMMeezgsjISD311FO67777FB8fr9TUVE2bNk3Sqb0lsbGxevLJJ/Xggw+qsLBQTZs21dKlSzVixAhJ0jfffKOEhAStXr1aAwcOrPY5vF6vvF6v9bioqEgJCQk68qEUES7JSHKcz1YAAIALrahE+kl3qbCwUBEREWesrfU5KOXl5crIyNDRo0fVo0cP7du3T3l5eRowYIBV43K51KtXL23ZskWStG3bNh0/ftynJj4+XsnJyVZNddLT0+V2u60pISGhtt0GAAANgN8BZefOnWrcuLFcLpfGjh2rzMxMtWvXTnl5eZKk2NhYn/rY2FhrXl5enoKCgtSkSZMaa6ozffp0FRYWWtPBgwf97TYAAGhAnP4ucMUVV2j79u06cuSIXn/9dY0aNUrZ2dnWfIfD91iLMaZKW2Vnq3G5XHK5XP52FQAANFB+70EJCgpSq1at1K1bN6Wnp6tTp0569tln5fF4JKnKnpD8/Hxrr4rH41FZWZkKCgpqrAEAADjv+6AYY+T1epWUlCSPx6OsrCxrXllZmbKzs9WzZ09JUteuXRUYGOhTk5ubq127dlk1AAAAfh3imTFjhgYNGqSEhAQVFxcrIyNDmzZt0po1a+RwOJSamqpZs2apdevWat26tWbNmqXQ0FCNHDlSkuR2uzVmzBhNmTJFUVFRioyM1NSpU9WhQwf169fvgmwgAABoePwKKP/617907733Kjc3V263Wx07dtSaNWvUv39/SdLDDz+s0tJSjR8/XgUFBerevbvWrVun8PBwax1z586V0+nU8OHDVVpaqr59+2rx4sUKCAio2y0DAAAN1nnfB6U+FBUVye12cx8UAAAakB/lPigAAAAXCgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFAADYDgEFgG1x/0Xg0kVAQYPDHy0AuPgRUNCgOHTqmw1w8eO1Bi5tBBQ0KPzBunTwWgOXNgIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHb8Cyvz589WxY0dFREQoIiJCPXr00DvvvGPNHz16tBwOh890zTXX+KzD6/Vq0qRJio6OVlhYmIYMGaJDhw7VzdYAAICLgl8BpXnz5nriiSe0detWbd26VX369NHPfvYz7d6926q58cYblZuba02rV6/2WUdqaqoyMzOVkZGhzZs3q6SkRIMHD1Z5eXndbBEAAGjwHMYYcz4riIyM1FNPPaUxY8Zo9OjROnLkiFauXFltbWFhoZo2baqlS5dqxIgRkqRvvvlGCQkJWr16tQYOHHhOz1lUVCS3260jH0oR4ZKMJMf5bAUAALjQikqkn3Q/lQciIiLOWFvrc1DKy8uVkZGho0ePqkePHlb7pk2bFBMTozZt2uiBBx5Qfn6+NW/btm06fvy4BgwYYLXFx8crOTlZW7ZsqfG5vF6vioqKfCYAAHDx8jug7Ny5U40bN5bL5dLYsWOVmZmpdu3aSZIGDRqkl19+WRs2bNDTTz+tnJwc9enTR16vV5KUl5enoKAgNWnSxGedsbGxysvLq/E509PT5Xa7rSkhIcHfbgMAgAbE6e8CV1xxhbZv364jR47o9ddf16hRo5Sdna127dpZh20kKTk5Wd26dVNiYqLefvttDRs2rMZ1GmPkcNR8jGb69OmaPHmy9bioqIiQAgDARczvgBIUFKRWrVpJkrp166acnBw9++yz+stf/lKlNi4uTomJidq7d68kyePxqKysTAUFBT57UfLz89WzZ88an9PlcsnlcvnbVQAA0ECd931QjDHWIZzKDh8+rIMHDyouLk6S1LVrVwUGBiorK8uqyc3N1a5du84YUAAAwKXFrz0oM2bM0KBBg5SQkKDi4mJlZGRo06ZNWrNmjUpKSpSWlqbbbrtNcXFx2r9/v2bMmKHo6GgNHTpUkuR2uzVmzBhNmTJFUVFRioyM1NSpU9WhQwf169fvgmwgAABoePwKKP/617907733Kjc3V263Wx07dtSaNWvUv39/lZaWaufOnVqyZImOHDmiuLg49e7dW8uXL1d4eLi1jrlz58rpdGr48OEqLS1V3759tXjxYgUEBNT5xgEAgIbpvO+DUh+4DwoAAA3Pj3IfFAAAgAuFgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGznvAJKenq6HA6HUlNTrTZjjNLS0hQfH6+QkBClpKRo9+7dPst5vV5NmjRJ0dHRCgsL05AhQ3To0KHz6QoAALiI1Dqg5OTk6IUXXlDHjh192mfPnq05c+Zo3rx5ysnJkcfjUf/+/VVcXGzVpKamKjMzUxkZGdq8ebNKSko0ePBglZeX135LAADARaNWAaWkpER33323FixYoCZNmljtxhg988wzeuSRRzRs2DAlJyfrpZde0g8//KBXXnlFklRYWKiFCxfq6aefVr9+/dS5c2ctW7ZMO3fu1Pr16+tmqwAAQINWq4AyYcIE3XzzzerXr59P+759+5SXl6cBAwZYbS6XS7169dKWLVskSdu2bdPx48d9auLj45WcnGzVVOb1elVUVOQzAQCAi5fT3wUyMjL08ccfKycnp8q8vLw8SVJsbKxPe2xsrL766iurJigoyGfPS0VNxfKVpaen67HHHvO3qwAAoIHyaw/KwYMH9dBDD2nZsmUKDg6usc7hcPg8NsZUaavsTDXTp09XYWGhNR08eNCfbgMAgAbGr4Cybds25efnq2vXrnI6nXI6ncrOztZzzz0np9Np7TmpvCckPz/fmufxeFRWVqaCgoIaaypzuVyKiIjwmQAAwMXLr4DSt29f7dy5U9u3b7embt266e6779b27dvVsmVLeTweZWVlWcuUlZUpOztbPXv2lCR17dpVgYGBPjW5ubnatWuXVQMAAC5tfp2DEh4eruTkZJ+2sLAwRUVFWe2pqamaNWuWWrdurdatW2vWrFkKDQ3VyJEjJUlut1tjxozRlClTFBUVpcjISE2dOlUdOnSoctItAAC4NPl9kuzZPPzwwyotLdX48eNVUFCg7t27a926dQoPD7dq5s6dK6fTqeHDh6u0tFR9+/bV4sWLFRAQUNfdAQAADZDDGGPquxP+Kioqktvt1pEPpYhwSUbSmc/BBQAA9ayoRPpJ91P3RDvb+aR8Fw8AALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoaFL5yCQAuDXX+bcY/horvNyw6qlN/sfiyQAAAbK+o5NS/5/I9xQ0yoBQXF0uSLutbzx0BAAB+Ky4ultvtPmONw5xLjLGZkydPas+ePWrXrp0OHjx41q9sxilFRUVKSEhgzPzEuPmPMasdxs1/jFnt1Ne4GWNUXFys+Ph4NWp05rNMGuQelEaNGqlZs2aSpIiICN6UfmLMaodx8x9jVjuMm/8Ys9qpj3E7256TCpwkCwAAbIeAAgAAbKfBBhSXy6WZM2fK5XLVd1caDMasdhg3/zFmtcO4+Y8xq52GMG4N8iRZAABwcWuwe1AAAMDFi4ACAABsh4ACAABsh4ACAABsh4ACAABsp0EGlD/96U9KSkpScHCwunbtqvfff7++u1Rv3nvvPd1yyy2Kj4+Xw+HQypUrfeYbY5SWlqb4+HiFhIQoJSVFu3fv9qnxer2aNGmSoqOjFRYWpiFDhujQoUM/4lb8uNLT03XVVVcpPDxcMTExuvXWW7Vnzx6fGsatqvnz56tjx47WnSd79Oihd955x5rPmJ1denq6HA6HUlNTrTbGraq0tDQ5HA6fyePxWPMZs+p9/fXXuueeexQVFaXQ0FD99Kc/1bZt26z5DW7cTAOTkZFhAgMDzYIFC8ynn35qHnroIRMWFma++uqr+u5avVi9erV55JFHzOuvv24kmczMTJ/5TzzxhAkPDzevv/662blzpxkxYoSJi4szRUVFVs3YsWNNs2bNTFZWlvn4449N7969TadOncyJEyd+5K35cQwcONAsWrTI7Nq1y2zfvt3cfPPN5rLLLjMlJSVWDeNW1apVq8zbb79t9uzZY/bs2WNmzJhhAgMDza5du4wxjNnZfPTRR6ZFixamY8eO5qGHHrLaGbeqZs6cadq3b29yc3OtKT8/35rPmFX1/fffm8TERDN69Gjzz3/+0+zbt8+sX7/efPHFF1ZNQxu3BhdQrr76ajN27FiftiuvvNL85je/qace2UflgHLy5Enj8XjME088YbUdO3bMuN1u8+c//9kYY8yRI0dMYGCgycjIsGq+/vpr06hRI7NmzZofre/1KT8/30gy2dnZxhjGzR9NmjQxf/3rXxmzsyguLjatW7c2WVlZplevXlZAYdyqN3PmTNOpU6dq5zFm1Zs2bZq57rrrapzfEMetQR3iKSsr07Zt2zRgwACf9gEDBmjLli311Cv72rdvn/Ly8nzGy+VyqVevXtZ4bdu2TcePH/epiY+PV3Jy8iUzpoWFhZKkyMhISYzbuSgvL1dGRoaOHj2qHj16MGZnMWHCBN18883q16+fTzvjVrO9e/cqPj5eSUlJuvPOO/Xll19KYsxqsmrVKnXr1k133HGHYmJi1LlzZy1YsMCa3xDHrUEFlO+++07l5eWKjY31aY+NjVVeXl499cq+KsbkTOOVl5enoKAgNWnSpMaai5kxRpMnT9Z1112n5ORkSYzbmezcuVONGzeWy+XS2LFjlZmZqXbt2jFmZ5CRkaGPP/5Y6enpVeYxbtXr3r27lixZorVr12rBggXKy8tTz549dfjwYcasBl9++aXmz5+v1q1ba+3atRo7dqx++ctfasmSJZIa5nvN+aM/Yx1wOBw+j40xVdrwH7UZr0tlTCdOnKgdO3Zo8+bNVeYxblVdccUV2r59u44cOaLXX39do0aNUnZ2tjWfMfN18OBBPfTQQ1q3bp2Cg4NrrGPcfA0aNMj6uUOHDurRo4cuv/xyvfTSS7rmmmskMWaVnTx5Ut26ddOsWbMkSZ07d9bu3bs1f/58/fznP7fqGtK4Nag9KNHR0QoICKiS5PLz86ukQsg66/1M4+XxeFRWVqaCgoIaay5WkyZN0qpVq7Rx40Y1b97camfcahYUFKRWrVqpW7duSk9PV6dOnfTss88yZjXYtm2b8vPz1bVrVzmdTjmdTmVnZ+u5556T0+m0tptxO7OwsDB16NBBe/fu5b1Wg7i4OLVr186nrW3btjpw4ICkhvl7rUEFlKCgIHXt2lVZWVk+7VlZWerZs2c99cq+kpKS5PF4fMarrKxM2dnZ1nh17dpVgYGBPjW5ubnatWvXRTumxhhNnDhRK1as0IYNG5SUlOQzn3E7d8YYeb1exqwGffv21c6dO7V9+3Zr6tatm+6++25t375dLVu2ZNzOgdfr1Weffaa4uDjeazW49tprq9wu4fPPP1diYqKkBvp77Uc/Lfc8VVxmvHDhQvPpp5+a1NRUExYWZvbv31/fXasXxcXF5pNPPjGffPKJkWTmzJljPvnkE+uy6yeeeMK43W6zYsUKs3PnTnPXXXdVe1lZ8+bNzfr1683HH39s+vTpc1Ffjjdu3DjjdrvNpk2bfC5j/OGHH6waxq2q6dOnm/fee8/s27fP7Nixw8yYMcM0atTIrFu3zhjDmJ2r06/iMYZxq86UKVPMpk2bzJdffmk+/PBDM3jwYBMeHm79nmfMqvroo4+M0+k0//3f/2327t1rXn75ZRMaGmqWLVtm1TS0cWtwAcUYY55//nmTmJhogoKCTJcuXazLQy9FGzduNJKqTKNGjTLGnLq0bObMmcbj8RiXy2VuuOEGs3PnTp91lJaWmokTJ5rIyEgTEhJiBg8ebA4cOFAPW/PjqG68JJlFixZZNYxbVffdd5/1uWvatKnp27evFU6MYczOVeWAwrhVVXF/jsDAQBMfH2+GDRtmdu/ebc1nzKr35ptvmuTkZONyucyVV15pXnjhBZ/5DW3cHMYY8+PvtwEAAKhZgzoHBQAAXBoIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHb+P56jmNy7qcDNAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7WElEQVR4nO3de1xVZaL/8e+WDRtE2IkIG5QQU0tFHS9l2kW8Z5mTVlo2jZ6sk9eJUSdHOyXNdKSstBobZ2pMUyucJrGbqZhKOdaIpie1jtkvTS0YypCL4Ubx+f1hrOPmom7EWMDn/Xqtl6xnPWutZz1rbfi6btthjDECAACwkUa13QAAAIDyCCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCiwvVatWmno0KE1sqzi4mK1a9dODodDTz31VI0ssz5ISUmRw+GolXV/9tlnSklJ0YEDBypMGzt2rFq1avWzt8kfP/zwg+644w5FRUXJ4XDolltuqbLu2Y7lbdu2yeFwaMmSJVbZ2LFj1aRJkxpuceVqs6+r6kOHw6GUlJRaaRNqn7O2GwD8nB5++GEdO3astpthO/fee69uuOGGWln3Z599pkcffVRJSUkV/kA+/PDDeuCBB2qlXefrj3/8o9LT0/XSSy/psssuU0RERG03qVpqs6/rSx+iZhFQUCN+/PFHNW7cuLabcVZbt27Vn/70J73yyiu6/fbba7s51XYx+rply5Zq2bJljS6zJlx22WW13YRz2r17ty677DLdddddtd0UH8XFxQoJCTnv+rXZ13btQ9QuLvHAb2WXAz755BPddtttatq0qfXLbdu2bbrjjjvUqlUrhYSEqFWrVrrzzjv19ddf+yxjyZIlcjgc2rhxoyZMmKDIyEg1a9ZMI0aM0LfffnvONvz5z3+W0+nU7Nmzz6vNJSUluueeezRp0iT16NHDr+199NFH1bNnT0VERCg8PFzdunXTokWLVP57NstO36enp6tz584KDg5W69at9dxzz/nU27RpkxwOh5YvX66pU6fK4/EoJCREffr00Y4dO3zqlp3i37VrlwYNGqSwsDD1799f0unT4hMnTlSLFi0UFBSk1q1b66GHHpLX65UkHT9+XF27dlWbNm2Un59vLTMnJ0cej0dJSUkqLS2VVPklnrLteeedd9S1a1eFhISoffv2eueddySd3oft27dXaGiorrrqKm3bts1n/vM5FpYsWWKFxb59+8rhcPhc5qjsssPx48c1c+ZMJSQkKCgoSC1atNCkSZN09OjRStu/Zs0adevWTSEhIbriiiv00ksvVdzJlThX/x44cEAOh0Pr16/X559/brV906ZN57X86vrnP/+pyMhIDR061DobWLatK1euVNeuXRUcHKxHH31UkvT888/r+uuvV1RUlEJDQ9WpUyfNnTtXJ06c8FluZX3tcDg0efJkLVu2TO3bt1fjxo3VpUsX6xg40759+zR69GhFRUXJ5XKpffv2ev7558+6Lf724XfffaeJEyeqQ4cOatKkiaKiotSvXz99+OGHFeoePnxYt912m8LCwnTJJZforrvuUlZWVoXLaLAxA/hp9uzZRpKJj483M2bMMBkZGWbVqlXGGGNef/1188gjj5j09HSTmZlp0tLSTJ8+fUzz5s3Nd999Zy1j8eLFRpJp3bq1mTJlilm7dq3529/+Zpo2bWr69u3rs774+Hhz0003GWOMOXXqlJk2bZoJDAw0ixcvPu82P/TQQ6ZVq1amqKjI7N+/30gyTz755HnNO3bsWLNo0SKTkZFhMjIyzB//+EcTEhJiHn300QrtbNGihbn00kvNSy+9ZFavXm3uuuuuCuvauHGjkWTi4uLML3/5S/P222+b5cuXmzZt2pjw8HDz//7f/7PqjhkzxgQGBppWrVqZ1NRU8/7775u1a9ea4uJi07lzZxMaGmqeeuops27dOvPwww8bp9NpbrzxRmv+L774woSFhZkRI0YYY4wpLS01/fr1M1FRUebbb7+16pXt0/Lb07JlS5OYmGhee+01s3r1atOzZ08TGBhoHnnkEXPNNdeYlStXmvT0dNOuXTsTHR1tfvzxR2v+8zkWcnNzzZw5c4wk8/zzz5uPPvrIfPTRRyY3N9fa/vj4eGuZp06dMoMHDzZOp9M8/PDDZt26deapp54yoaGhpmvXrub48eMV2t+hQwezdOlSs3btWnP77bcbSSYzM/Os+/x8+vf48ePmo48+Ml27djWtW7e22p6fn1/lcs88lsvLysoyknyO6zFjxpjQ0FBrfMWKFcblcpkJEyaYkydP+iw3JibGtG7d2rz00ktm48aNZuvWrcYYY37729+ahQsXmjVr1pgNGzaY+fPnm8jISPMf//EfPusv39fGGCPJtGrVylx11VXm73//u1m9erVJSkoyTqfT5zjds2ePcbvdplOnTmbp0qVm3bp1Ztq0aaZRo0YmJSWlyv44Vx9KMrNnz7bq/+///q+ZMGGCSUtLM5s2bTLvvPOOGTdunGnUqJHZuHGjVa+oqMi0adPGREREmOeff96sXbvW/Pa3vzUJCQkV+hj2RUCB38r+mD3yyCPnrHvy5ElTVFRkQkNDzbPPPmuVlwWUiRMn+tSfO3eukWSys7OtsrJf6j/++KO59dZbjdvtNuvXrz/v9u7YscMEBgaaNWvWGGOM3wHlTKWlpebEiRPmD3/4g2nWrJk5deqUTzsdDofZuXOnzzwDBw404eHh5tixY8aY/wso3bp185n/wIEDJjAw0Nx7771W2ZgxY4wk89JLL/ks8y9/+YuRZP7+97/7lD/xxBNGklm3bp1VtmLFCiPJPPPMM+aRRx4xjRo18pluTNUBJSQkxBw+fNgq27lzp5FkYmJirO0xxphVq1YZSeatt96qsu+qOhZef/11I8nnD8yZ23/mH801a9YYSWbu3Lk+9cq28YUXXvBpf3BwsPn666+tsuLiYhMREWHuv//+KttpjH/926dPH9OxY8ezLu/MNlU3oDz++OMmICDAPPHEE5UuNyAgwOzdu/es6y87fpcuXWoCAgLMDz/84LOuygJKdHS0KSgosMpycnJMo0aNTGpqqlU2ePBg07JlywrhbPLkySY4ONhnPZWpqg/LB5TyTp48aU6cOGH69+9vhg8fbpU///zzRpJ57733fOrff//9BJQ6hEs8qLZbb721QllRUZFmzJihNm3ayOl0yul0qkmTJjp27Jg+//zzCvWHDRvmM965c2dJqnBJ6MiRI+rXr5+2bt2qzZs3W5c5ypSWlurkyZPWcOrUKUnSyZMndc8992jUqFEaPHhwtbZzw4YNGjBggNxutwICAhQYGKhHHnlER44cUW5urk/djh07qkuXLj5lo0ePVkFBgT755JMK5WdeVomPj1fv3r21cePGCm0o39cbNmxQaGiobrvtNp/ysWPHSpLef/99q2zkyJGaMGGCfve73+mxxx7TrFmzNHDgwPPa9l/84hdq0aKFNd6+fXtJUlJSks99MGXlZ+43f4+F87Fhwwaf7Sxz++23KzQ01Ge7y9p/6aWXWuPBwcFq165dheOrsvWcb/9ebMYY3X///Zo9e7ZeffVVPfjgg5XW69y5s9q1a1ehfMeOHRo2bJiaNWtmHb+//vWvVVpaqi+++OKc6+/bt6/CwsKs8ejoaEVFRVl9ePz4cb3//vsaPny4Gjdu7PM5vPHGG3X8+HF9/PHH1dz6iv7yl7+oW7duCg4OltPpVGBgoN5//32fYyozM1NhYWEVbvy+8847a6wduPgIKKi2mJiYCmWjR4/WggULdO+992rt2rXaunWrsrKy1Lx5cxUXF1eo36xZM59xl8slSRXqfvHFF/rXv/6lIUOGKDExscJy+vfvr8DAQGu45557JEnPPPOMvvrqK82ePVtHjx7V0aNHVVBQIOn0L9ajR49a92FUZuvWrRo0aJAk6cUXX9Q///lPZWVl6aGHHqq0nR6Pp8IyysqOHDlyXnXL12vcuLHCw8N9yo4cOSKPx1PhvpGoqCg5nc4Ky7jnnnt04sQJOZ1O/eY3v6lye8sr/zRFUFDQWcuPHz9ulfl7LJyPI0eOyOl0qnnz5j7lDoej0r4rf3xJp4+xc63f3/49X06ns8rj7eTJk5KkwMBAn/KSkhKtWLFCHTt21JAhQ6pcdmWfx4MHD+q6667TN998o2effVYffvihsrKyrHtDzmc/nKsPjxw5opMnT+pPf/qTz2cwMDBQN954oyTp+++/P+d6zse8efM0YcIE9ezZU2+88YY+/vhjZWVl6YYbbvDZliNHjig6OrrC/JWVwb54igfVVv6Xd35+vt555x3Nnj1bv//9761yr9erH3744YLW1atXL91+++0aN26cJGnhwoVq1Oj/8vVf//pXFRYWWuORkZGSTj8dkJ+fr7Zt21ZY5sMPP6yHH35YO3bs0C9+8YtK15uWlqbAwEC98847Cg4OtspXrVpVaf2cnJwqy8r/oq+qbvl6lb2fpFmzZvrXv/4lY4zP9NzcXJ08edLafkk6duyY7r77brVr107//ve/de+99+rNN9+stP015WIdC82aNdPJkyf13Xff+YQUY4xycnJ05ZVXXlC7z1zP+favP6Kjo/XNN99UOq2svPwfUZfLpY0bN2rw4MEaMGCA1qxZo6ZNm1aYv7LjZNWqVTp27JhWrlyp+Ph4q3znzp3Van9lmjZtqoCAAN19992aNGlSpXUSEhJqZF3Lly9XUlKSFi5c6FN+5mdfOr3/tm7dWmH+yj5zsC/OoKDGOBwOGWOssyBl/va3v531LMX5GjNmjNLS0rR48WLrFHWZyy+/XD169LCGsqcRfv/732vjxo0+w2uvvSZJGj9+vDZu3Kg2bdqcdZucTqcCAgKssuLiYi1btqzS+nv27NH//M//+JS9+uqrCgsLU7du3XzKX3vtNZ8ngb7++mtt2bJFSUlJ5+yL/v37q6ioqEJQWrp0qTW9zPjx43Xw4EGtXLlSixYt0ltvvaX58+efcx0Xwp9joaqzZpUp267ly5f7lL/xxhs6duxYhUt/1eVP//pjwIAB2r17tz777LMK0/7+97+rSZMm6tmzZ4VpXbt2VWZmpg4fPqykpKQKlxarUhZaztwPxhi9+OKL1Wp/ZRo3bqy+fftqx44d6ty5s8/nsGyo7CxMdTgcjgrH1KeffqqPPvrIp6xPnz4qLCzUe++951OelpZWI+3Az4MzKKgx4eHhuv766/Xkk08qMjJSrVq1UmZmphYtWqRLLrmkRtZx2223qXHjxrrttttUXFys1157zbq8UJkrrrhCV1xxhU9Z2RtLL7vssnOGgZtuuknz5s3T6NGj9Z//+Z86cuSInnrqqQq/JMvExsZq2LBhSklJUUxMjJYvX66MjAw98cQTFd5dkpubq+HDh+u+++5Tfn6+Zs+ereDgYM2cOfOc/fDrX/9azz//vMaMGaMDBw6oU6dO2rx5s+bMmaMbb7xRAwYMkHQ6ECxfvlyLFy9Wx44d1bFjR02ePFkzZszQNddco6uuuuqc66oOf46Fskt2L7zwgsLCwhQcHKyEhIRK/6gNHDhQgwcP1owZM1RQUKBrrrlGn376qWbPnq2uXbvq7rvvrpH2n2//+uuBBx7Q0qVLlZSUpFmzZqlTp07Ky8vTihUr9I9//EPz5s3zud/jTO3bt9eHH36oAQMG6Prrr9f69evP+e6agQMHKigoSHfeeacefPBBHT9+XAsXLlReXl612l+VZ599Vtdee62uu+46TZgwQa1atVJhYaG+/PJLvf3229a9Qxdq6NCh+uMf/6jZs2erT58+2rt3r/7whz8oISHBukQmnf7PzPz58/WrX/1Kjz32mNq0aaP33ntPa9eulSSfs6+wsdq7Pxd1VdkTH2c+Nlzm8OHD5tZbbzVNmzY1YWFh5oYbbjC7d+828fHxZsyYMVa9sqd4srKyfOYve8LlzCc6KnvyYePGjaZJkybmhhtu8Hm09Xz4+xTPSy+9ZC6//HLjcrlM69atTWpqqlm0aJGRZPbv31+hnf/4xz9Mx44dTVBQkGnVqpWZN29epdu4bNky85vf/MY0b97cuFwuc91115lt27b51C3/mOmZjhw5YsaPH29iYmKM0+k08fHxZubMmdajtp9++qkJCQnx6XdjTj/a2b17d9OqVSuTl5dnjKn6KZ7KnjiRZCZNmuRTVlmfnu+xYIwxzzzzjElISDABAQE+T1lU9mRJcXGxmTFjhomPjzeBgYEmJibGTJgwwdqWc7W/T58+pk+fPhXKyztX/565vPN9iseY00/BTJgwwVx66aXG6XSasLAwc+2115rXX3+9Qt3K9v/hw4fNFVdcYVq1amU96nu2p4Pefvtt06VLFxMcHGxatGhhfve735n33nuvwuesqqd4yu/rsvWV34f79+8399xzj2nRooUJDAw0zZs3N7179zaPPfbYOfvkfJ/i8Xq9Zvr06aZFixYmODjYdOvWzaxatarSth88eNCMGDHCNGnSxISFhZlbb73VrF692kgyb7755jnbhNrnMKbc26YAVEurVq2UmJhY6UuszrRp0yb17dtXr7/+eoWnRABcPHPmzNF//dd/6eDBg7Z8czJ8cYkHAFDvLFiwQNLpy7wnTpzQhg0b9Nxzz+lXv/oV4aSOIKAAAOqdxo0ba/78+Tpw4IC8Xq8uvfRSzZgxQ//1X/9V203DeeISDwAAsJ1avZX5z3/+sxISEhQcHKzu3btX+oVPAACg4am1gLJixQolJyfroYce0o4dO3TddddpyJAhOnjwYG01CQAA2EStXeLp2bOnunXr5vNGwPbt2+uWW25RamrqWec9deqUvv32W4WFhVX69kQAAGA/xhgVFhYqNjb2nO+jqZWbZEtKSrR9+3afV2BL0qBBg7Rly5YK9b1er7xerzX+zTffqEOHDhe9nQAAoOYdOnTonE9T1UpA+f7771VaWlrhOyeio6Mr/a6E1NRUPfrooxUXNPwVyRkqOYxkJMmhn34AAAC28dPVjhM/SqtGV/nG5DPV6mPG5S/PmHJfzFVm5syZmjp1qjVeUFCguLg4KTBUcjb+v1xCPgHqvrJfAXyW6z/HGTub/V2/lfvbfj63Z9RKQImMjFRAQECFsyW5ubmVfh22y+Wq4rtPylJJ+XGOdACwP35XNxw/7WvH+e/zWnmKJygoSN27d1dGRoZPeUZGhnr37u3HksrCyE8bbM4sR/3kEPu3oWBfNxiGfV3vle1jc/77udYu8UydOlV33323evTooV69eumFF17QwYMHNX78eD+XdOb5YM6e1F/lz/uzr+svrvE0HOzrhqPsMt757+taCyijRo3SkSNH9Ic//EHZ2dlKTEzU6tWrFR8f7+eSyv/B4oCvn87cz2eOo/5hXzcc7OuGw/HTbj7/Myh18lX3BQUFcrvd0shVPz3FI8lwBgWoF/hb1XCwrxsWh6SSY9Lrw5Wfn6/w8PCzVq/VV90DAABUhoACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsp8YDSkpKihwOh8/g8Xis6cYYpaSkKDY2ViEhIUpKStKePXtquhkAAKAOuyhnUDp27Kjs7Gxr2LVrlzVt7ty5mjdvnhYsWKCsrCx5PB4NHDhQhYWFF6MpAACgDnJelIU6nT5nTcoYY/TMM8/ooYce0ogRIyRJL7/8sqKjo/Xqq6/q/vvvr3R5Xq9XXq/XGi8oKLgYzQYAADZxUc6g7Nu3T7GxsUpISNAdd9yhr776SpK0f/9+5eTkaNCgQVZdl8ulPn36aMuWLVUuLzU1VW632xri4uIuRrMBAIBN1HhA6dmzp5YuXaq1a9fqxRdfVE5Ojnr37q0jR44oJydHkhQdHe0zT3R0tDWtMjNnzlR+fr41HDp0qKabDQAAbKTGL/EMGTLE+rlTp07q1auXLrvsMr388su6+uqrJUkOh8NnHmNMhbIzuVwuuVyumm4qAACwqYv+mHFoaKg6deqkffv2WfellD9bkpubW+GsCgAAaLguekDxer36/PPPFRMTo4SEBHk8HmVkZFjTS0pKlJmZqd69e1/spgAAgDqixi/xTJ8+XTfffLMuvfRS5ebm6rHHHlNBQYHGjBkjh8Oh5ORkzZkzR23btlXbtm01Z84cNW7cWKNHj67ppgAAgDqqxgPK4cOHdeedd+r7779X8+bNdfXVV+vjjz9WfHy8JOnBBx9UcXGxJk6cqLy8PPXs2VPr1q1TWFhYTTcFAADUUQ5jjKntRviroKBAbrdbGrlKcoZKDknG6KcfardxAC5M2f3yfJTrP/Z1w+KQVHJMen248vPzFR4eftbqfBcPAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHb8DygcffKCbb75ZsbGxcjgcWrVqlc90Y4xSUlIUGxurkJAQJSUlac+ePT51vF6vpkyZosjISIWGhmrYsGE6fPjwBW0IAACoP/wOKMeOHVOXLl20YMGCSqfPnTtX8+bN04IFC5SVlSWPx6OBAweqsLDQqpOcnKz09HSlpaVp8+bNKioq0tChQ1VaWlr9LQEAAPWGwxhjqj2zw6H09HTdcsstkk6fPYmNjVVycrJmzJgh6fTZkujoaD3xxBO6//77lZ+fr+bNm2vZsmUaNWqUJOnbb79VXFycVq9ercGDB1dYj9frldfrtcYLCgoUFxcnjVwlOUMlhyRj9NMP1d0cAHbg+OlfPsr1H/u6YXFIKjkmvT5c+fn5Cg8PP2v1Gr0HZf/+/crJydGgQYOsMpfLpT59+mjLli2SpO3bt+vEiRM+dWJjY5WYmGjVKS81NVVut9sa4uLiarLZAADAZmo0oOTk5EiSoqOjfcqjo6OtaTk5OQoKClLTpk2rrFPezJkzlZ+fbw2HDh2qyWYDAACbcV6MhTocDp9xY0yFsvLOVsflcsnlctVY+wAAgL3VaEDxeDySTp8liYmJscpzc3Otsyoej0clJSXKy8vzOYuSm5ur3r17V2OtZRcvHeX+BQAA9nL+f6Nr9BJPQkKCPB6PMjIyrLKSkhJlZmZa4aN79+4KDAz0qZOdna3du3dXM6AAAADb8/NmaL/PoBQVFenLL7+0xvfv36+dO3cqIiJCl156qZKTkzVnzhy1bdtWbdu21Zw5c9S4cWONHj1akuR2uzVu3DhNmzZNzZo1U0REhKZPn65OnTppwIABfram7MkdAABQn/gdULZt26a+ffta41OnTpUkjRkzRkuWLNGDDz6o4uJiTZw4UXl5eerZs6fWrVunsLAwa5758+fL6XRq5MiRKi4uVv/+/bVkyRIFBAT4vwU++YRHjQEAsCf//j5f0HtQaktBQYHcbvfp96AENv5pe8s2nIBSv/HihIaDfd1wsK/rv5/28Ylj0uu3/PzvQakVlV7l4bIPUGc5VO4jzOe53qqwr1Gv+bmvL8pjxj+vM5M3Z0/qP/Zvw8G+bjjY1/WfKffvudX9MygAAKDeIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADb8TugfPDBB7r55psVGxsrh8OhVatW+UwfO3asHA6Hz3D11Vf71PF6vZoyZYoiIyMVGhqqYcOG6fDhwxe0IQAAoP7wO6AcO3ZMXbp00YIFC6qsc8MNNyg7O9saVq9e7TM9OTlZ6enpSktL0+bNm1VUVKShQ4eqtLTU/y0AAAD1jtPfGYYMGaIhQ4actY7L5ZLH46l0Wn5+vhYtWqRly5ZpwIABkqTly5crLi5O69ev1+DBg/1tEgAAqGcuyj0omzZtUlRUlNq1a6f77rtPubm51rTt27frxIkTGjRokFUWGxurxMREbdmypdLleb1eFRQU+AwAAKD+qvGAMmTIEL3yyivasGGDnn76aWVlZalfv37yer2SpJycHAUFBalp06Y+80VHRysnJ6fSZaampsrtdltDXFxcTTcbAADYiN+XeM5l1KhR1s+JiYnq0aOH4uPj9e6772rEiBFVzmeMkcPhqHTazJkzNXXqVGu8oKCAkAIAQD120R8zjomJUXx8vPbt2ydJ8ng8KikpUV5enk+93NxcRUdHV7oMl8ul8PBwnwEAANRfFz2gHDlyRIcOHVJMTIwkqXv37goMDFRGRoZVJzs7W7t371bv3r0vdnMAAEAd4PclnqKiIn355ZfW+P79+7Vz505FREQoIiJCKSkpuvXWWxUTE6MDBw5o1qxZioyM1PDhwyVJbrdb48aN07Rp09SsWTNFRERo+vTp6tSpk/VUDwAAaNj8Dijbtm1T3759rfGye0PGjBmjhQsXateuXVq6dKmOHj2qmJgY9e3bVytWrFBYWJg1z/z58+V0OjVy5EgVFxerf//+WrJkiQICAmpgkwAAQF3nMMaY2m6EvwoKCuR2u6WRqyRnqOSQZIx++qF2GwfgwpTdK89Huf5jXzcsDkklx6TXhys/P/+c95PyXTwAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2/AooqampuvLKKxUWFqaoqCjdcsst2rt3r08dY4xSUlIUGxurkJAQJSUlac+ePT51vF6vpkyZosjISIWGhmrYsGE6fPjwhW8NAACoF/wKKJmZmZo0aZI+/vhjZWRk6OTJkxo0aJCOHTtm1Zk7d67mzZunBQsWKCsrSx6PRwMHDlRhYaFVJzk5Wenp6UpLS9PmzZtVVFSkoUOHqrS0tOa2DAAA1FkOY4yp7szfffedoqKilJmZqeuvv17GGMXGxio5OVkzZsyQdPpsSXR0tJ544gndf//9ys/PV/PmzbVs2TKNGjVKkvTtt98qLi5Oq1ev1uDBg8+53oKCArndbmnkKskZKjkkGaOffqju5gCwA8dP//JRrv/Y1w2LQ1LJMen14crPz1d4ePhZq1/QPSj5+fmSpIiICEnS/v37lZOTo0GDBll1XC6X+vTpoy1btkiStm/frhMnTvjUiY2NVWJiolWnPK/Xq4KCAp8BAADUX9UOKMYYTZ06Vddee60SExMlSTk5OZKk6Ohon7rR0dHWtJycHAUFBalp06ZV1ikvNTVVbrfbGuLi4qrbbAAAUAdUO6BMnjxZn376qV577bUK0xwOh8+4MaZCWXlnqzNz5kzl5+dbw6FDh6rbbAAAUAdUK6BMmTJFb731ljZu3KiWLVta5R6PR5IqnAnJzc21zqp4PB6VlJQoLy+vyjrluVwuhYeH+wwAAKD+8iugGGM0efJkrVy5Uhs2bFBCQoLP9ISEBHk8HmVkZFhlJSUlyszMVO/evSVJ3bt3V2BgoE+d7Oxs7d6926oDAAAaNqc/lSdNmqRXX31Vb775psLCwqwzJW63WyEhIXI4HEpOTtacOXPUtm1btW3bVnPmzFHjxo01evRoq+64ceM0bdo0NWvWTBEREZo+fbo6deqkAQMG1PwWAgCAOsevgLJw4UJJUlJSkk/54sWLNXbsWEnSgw8+qOLiYk2cOFF5eXnq2bOn1q1bp7CwMKv+/Pnz5XQ6NXLkSBUXF6t///5asmSJAgICLmxrAABAvXBB70GpLbwHBajHeDdGw8G+blh+zvegAAAAXAx+XeKxHyM5forejp/GAdQPZ38zAeoT9nXD4ce+rtMBZWav1xQcEljbzQAAAOfhePEJpf79/OrW6XtQjn4shTf5qZAEDgB1DncONhwOSflF0iU91UDuQSGYAECdRThpOPzd13U/oAAAgHqHgAIAAGyHgAIAAGyHgII6hVuOGg72NdCwEVBQp3BDXcPBvgYaNgIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHb8CSmpqqq688kqFhYUpKipKt9xyi/bu3etTZ+zYsXI4HD7D1Vdf7VPH6/VqypQpioyMVGhoqIYNG6bDhw9f+NYAAIB6wa+AkpmZqUmTJunjjz9WRkaGTp48qUGDBunYsWM+9W644QZlZ2dbw+rVq32mJycnKz09XWlpadq8ebOKioo0dOhQlZaWXvgWAQCAOs/pT+U1a9b4jC9evFhRUVHavn27rr/+eqvc5XLJ4/FUuoz8/HwtWrRIy5Yt04ABAyRJy5cvV1xcnNavX6/BgwdXmMfr9crr9VrjBQUF/jQbAADUMRd0D0p+fr4kKSIiwqd806ZNioqKUrt27XTfffcpNzfXmrZ9+3adOHFCgwYNsspiY2OVmJioLVu2VLqe1NRUud1ua4iLi7uQZgMAAJurdkAxxmjq1Km69tprlZiYaJUPGTJEr7zyijZs2KCnn35aWVlZ6tevn3UGJCcnR0FBQWratKnP8qKjo5WTk1PpumbOnKn8/HxrOHToUHWbDQAA6gC/LvGcafLkyfr000+1efNmn/JRo0ZZPycmJqpHjx6Kj4/Xu+++qxEjRlS5PGOMHA5HpdNcLpdcLld1mwoAAOqYap1BmTJlit566y1t3LhRLVu2PGvdmJgYxcfHa9++fZIkj8ejkpIS5eXl+dTLzc1VdHR0dZoDAADqGb8CijFGkydP1sqVK7VhwwYlJCScc54jR47o0KFDiomJkSR1795dgYGBysjIsOpkZ2dr9+7d6t27t5/NBwAA9ZFfl3gmTZqkV199VW+++abCwsKse0bcbrdCQkJUVFSklJQU3XrrrYqJidGBAwc0a9YsRUZGavjw4VbdcePGadq0aWrWrJkiIiI0ffp0derUyXqqBwAANGx+BZSFCxdKkpKSknzKFy9erLFjxyogIEC7du3S0qVLdfToUcXExKhv375asWKFwsLCrPrz58+X0+nUyJEjVVxcrP79+2vJkiUKCAi48C0CAAB1nsMYY2q7Ef4qKCiQ2+3W0Y+l8DBJRlLl99cCAACbKCiSLul5+jUl4eHhZ63Ld/EAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADb8SugLFy4UJ07d1Z4eLjCw8PVq1cvvffee9Z0Y4xSUlIUGxurkJAQJSUlac+ePT7L8Hq9mjJliiIjIxUaGqphw4bp8OHDNbM1AACgXvAroLRs2VKPP/64tm3bpm3btqlfv3765S9/aYWQuXPnat68eVqwYIGysrLk8Xg0cOBAFRYWWstITk5Wenq60tLStHnzZhUVFWno0KEqLS2t2S0DAAB1lsMYYy5kAREREXryySd1zz33KDY2VsnJyZoxY4ak02dLoqOj9cQTT+j+++9Xfn6+mjdvrmXLlmnUqFGSpG+//VZxcXFavXq1Bg8eXOk6vF6vvF6vNV5QUKC4uDgd/VgKD5NkJDkuZCsAAMDFVlAkXdJTys/PV3h4+FnrVvselNLSUqWlpenYsWPq1auX9u/fr5ycHA0aNMiq43K51KdPH23ZskWStH37dp04ccKnTmxsrBITE606lUlNTZXb7baGuLi46jYbAADUAX4HlF27dqlJkyZyuVwaP3680tPT1aFDB+Xk5EiSoqOjfepHR0db03JychQUFKSmTZtWWacyM2fOVH5+vjUcOnTI32YDAIA6xOnvDJdffrl27typo0eP6o033tCYMWOUmZlpTXc4fK+1GGMqlJV3rjoul0sul8vfpgIAgDrK7zMoQUFBatOmjXr06KHU1FR16dJFzz77rDwejyRVOBOSm5trnVXxeDwqKSlRXl5elXUAAAAu+D0oxhh5vV4lJCTI4/EoIyPDmlZSUqLMzEz17t1bktS9e3cFBgb61MnOztbu3butOgAAAH5d4pk1a5aGDBmiuLg4FRYWKi0tTZs2bdKaNWvkcDiUnJysOXPmqG3btmrbtq3mzJmjxo0ba/To0ZIkt9utcePGadq0aWrWrJkiIiI0ffp0derUSQMGDLgoGwgAAOoevwLKv//9b919993Kzs6W2+1W586dtWbNGg0cOFCS9OCDD6q4uFgTJ05UXl6eevbsqXXr1iksLMxaxvz58+V0OjVy5EgVFxerf//+WrJkiQICAmp2ywAAQJ11we9BqQ0FBQVyu928BwUAgDrkZ3kPCgAAwMVCQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZT9wMK70ABAKDeqfsBBUC9xf89gIar7gcUh06fRUGDwR8tAKj/6n5AQYNCHm042NdAw0ZAQZ3CH6yGg30NNGwEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDt+BZSFCxeqc+fOCg8PV3h4uHr16qX33nvPmj527Fg5HA6f4eqrr/ZZhtfr1ZQpUxQZGanQ0FANGzZMhw8frpmtAQAA9YJfAaVly5Z6/PHHtW3bNm3btk39+vXTL3/5S+3Zs8eqc8MNNyg7O9saVq9e7bOM5ORkpaenKy0tTZs3b1ZRUZGGDh2q0tLSmtkiAABQ5zmMMeZCFhAREaEnn3xS48aN09ixY3X06FGtWrWq0rr5+flq3ry5li1bplGjRkmSvv32W8XFxWn16tUaPHjwea2zoKBAbrdbRz+WwsMkGUmOC9kKAABwsRUUSZf0PJ0HwsPDz1q32veglJaWKi0tTceOHVOvXr2s8k2bNikqKkrt2rXTfffdp9zcXGva9u3bdeLECQ0aNMgqi42NVWJiorZs2VLlurxerwoKCnwGAABQf/kdUHbt2qUmTZrI5XJp/PjxSk9PV4cOHSRJQ4YM0SuvvKINGzbo6aefVlZWlvr16yev1ytJysnJUVBQkJo2beqzzOjoaOXk5FS5ztTUVLndbmuIi4vzt9kAAKAOcfo7w+WXX66dO3fq6NGjeuONNzRmzBhlZmaqQ4cO1mUbSUpMTFSPHj0UHx+vd999VyNGjKhymcYYORxVX6OZOXOmpk6dao0XFBQQUgAAqMf8DihBQUFq06aNJKlHjx7KysrSs88+q7/+9a8V6sbExCg+Pl779u2TJHk8HpWUlCgvL8/nLEpubq569+5d5TpdLpdcLpe/TQUAAHXUBb8HxRhjXcIp78iRIzp06JBiYmIkSd27d1dgYKAyMjKsOtnZ2dq9e/dZAwoAAGhY/DqDMmvWLA0ZMkRxcXEqLCxUWlqaNm3apDVr1qioqEgpKSm69dZbFRMTowMHDmjWrFmKjIzU8OHDJUlut1vjxo3TtGnT1KxZM0VERGj69Onq1KmTBgwYcFE2EAAA1D1+BZR///vfuvvuu5WdnS23263OnTtrzZo1GjhwoIqLi7Vr1y4tXbpUR48eVUxMjPr27asVK1YoLCzMWsb8+fPldDo1cuRIFRcXq3///lqyZIkCAgJqfOMAAEDddMHvQakNvAcFAIC652d5DwoAAMDFQkABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2c0EBJTU1VQ6HQ8nJyVaZMUYpKSmKjY1VSEiIkpKStGfPHp/5vF6vpkyZosjISIWGhmrYsGE6fPjwhTQFAADUI9UOKFlZWXrhhRfUuXNnn/K5c+dq3rx5WrBggbKysuTxeDRw4EAVFhZadZKTk5Wenq60tDRt3rxZRUVFGjp0qEpLS6u/JQAAoN6oVkApKirSXXfdpRdffFFNmza1yo0xeuaZZ/TQQw9pxIgRSkxM1Msvv6wff/xRr776qiQpPz9fixYt0tNPP60BAwaoa9euWr58uXbt2qX169fXzFYBAIA6rVoBZdKkSbrppps0YMAAn/L9+/crJydHgwYNsspcLpf69OmjLVu2SJK2b9+uEydO+NSJjY1VYmKiVac8r9ergoICnwEAANRfTn9nSEtL0yeffKKsrKwK03JyciRJ0dHRPuXR0dH6+uuvrTpBQUE+Z17K6pTNX15qaqoeffRRf5sKAADqKL/OoBw6dEgPPPCAli9fruDg4CrrORwOn3FjTIWy8s5WZ+bMmcrPz7eGQ4cO+dNsAABQx/gVULZv367c3Fx1795dTqdTTqdTmZmZeu655+R0Oq0zJ+XPhOTm5lrTPB6PSkpKlJeXV2Wd8lwul8LDw30GAABQf/kVUPr3769du3Zp586d1tCjRw/ddddd2rlzp1q3bi2Px6OMjAxrnpKSEmVmZqp3796SpO7duyswMNCnTnZ2tnbv3m3VAQAADZtf96CEhYUpMTHRpyw0NFTNmjWzypOTkzVnzhy1bdtWbdu21Zw5c9S4cWONHj1akuR2uzVu3DhNmzZNzZo1U0REhKZPn65OnTpVuOkWAAA0TH7fJHsuDz74oIqLizVx4kTl5eWpZ8+eWrduncLCwqw68+fPl9Pp1MiRI1VcXKz+/ftryZIlCggIqOnmAACAOshhjDG13Qh/FRQUyO126+jHUniYJCPp7PfgAgCAWlZQJF3S8/Q70c51PynfxQMAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgII6ha9cAoCGoca/zfjnUPb9hgXHdPovFl8WCACA7RUUnf73fL6nuE4GlMLCQknSpf1ruSEAAMBvhYWFcrvdZ63jMOcTY2zm1KlT2rt3rzp06KBDhw6d8yubcVpBQYHi4uLoMz/Rb/6jz6qHfvMffVY9tdVvxhgVFhYqNjZWjRqd/S6TOnkGpVGjRmrRooUkKTw8nIPST/RZ9dBv/qPPqod+8x99Vj210W/nOnNShptkAQCA7RBQAACA7dTZgOJyuTR79my5XK7abkqdQZ9VD/3mP/qseug3/9Fn1VMX+q1O3iQLAADqtzp7BgUAANRfBBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7dTKg/PnPf1ZCQoKCg4PVvXt3ffjhh7XdpFrzwQcf6Oabb1ZsbKwcDodWrVrlM90Yo5SUFMXGxiokJERJSUnas2ePTx2v16spU6YoMjJSoaGhGjZsmA4fPvwzbsXPKzU1VVdeeaXCwsIUFRWlW265RXv37vWpQ79VtHDhQnXu3Nl682SvXr303nvvWdPps3NLTU2Vw+FQcnKyVUa/VZSSkiKHw+EzeDweazp9VrlvvvlGv/rVr9SsWTM1btxYv/jFL7R9+3Zrep3rN1PHpKWlmcDAQPPiiy+azz77zDzwwAMmNDTUfP3117XdtFqxevVq89BDD5k33njDSDLp6ek+0x9//HETFhZm3njjDbNr1y4zatQoExMTYwoKCqw648ePNy1atDAZGRnmk08+MX379jVdunQxJ0+e/Jm35ucxePBgs3jxYrN7926zc+dOc9NNN5lLL73UFBUVWXXot4reeust8+6775q9e/eavXv3mlmzZpnAwECze/duYwx9di5bt241rVq1Mp07dzYPPPCAVU6/VTR79mzTsWNHk52dbQ25ubnWdPqsoh9++MHEx8ebsWPHmn/9619m//79Zv369ebLL7+06tS1fqtzAeWqq64y48eP9ym74oorzO9///taapF9lA8op06dMh6Pxzz++ONW2fHjx43b7TZ/+ctfjDHGHD161AQGBpq0tDSrzjfffGMaNWpk1qxZ87O1vTbl5uYaSSYzM9MYQ7/5o2nTpuZvf/sbfXYOhYWFpm3btiYjI8P06dPHCij0W+Vmz55tunTpUuk0+qxyM2bMMNdee22V0+tiv9WpSzwlJSXavn27Bg0a5FM+aNAgbdmypZZaZV/79+9XTk6OT3+5XC716dPH6q/t27frxIkTPnViY2OVmJjYYPo0Pz9fkhQRESGJfjsfpaWlSktL07Fjx9SrVy/67BwmTZqkm266SQMGDPApp9+qtm/fPsXGxiohIUF33HGHvvrqK0n0WVXeeust9ejRQ7fffruioqLUtWtXvfjii9b0uthvdSqgfP/99yotLVV0dLRPeXR0tHJycmqpVfZV1idn66+cnBwFBQWpadOmVdapz4wxmjp1qq699lolJiZKot/OZteuXWrSpIlcLpfGjx+v9PR0dejQgT47i7S0NH3yySdKTU2tMI1+q1zPnj21dOlSrV27Vi+++KJycnLUu3dvHTlyhD6rwldffaWFCxeqbdu2Wrt2rcaPH6/f/OY3Wrp0qaS6eaw5f/Y11gCHw+EzboypUIb/U53+aih9OnnyZH366afavHlzhWn0W0WXX365du7cqaNHj+qNN97QmDFjlJmZaU2nz3wdOnRIDzzwgNatW6fg4OAq69FvvoYMGWL93KlTJ/Xq1UuXXXaZXn75ZV199dWS6LPyTp06pR49emjOnDmSpK5du2rPnj1auHChfv3rX1v16lK/1akzKJGRkQoICKiQ5HJzcyukQsi66/1s/eXxeFRSUqK8vLwq69RXU6ZM0VtvvaWNGzeqZcuWVjn9VrWgoCC1adNGPXr0UGpqqrp06aJnn32WPqvC9u3blZubq+7du8vpdMrpdCozM1PPPfecnE6ntd3029mFhoaqU6dO2rdvH8daFWJiYtShQwefsvbt2+vgwYOS6ubvtToVUIKCgtS9e3dlZGT4lGdkZKh379611Cr7SkhIkMfj8emvkpISZWZmWv3VvXt3BQYG+tTJzs7W7t27622fGmM0efJkrVy5Uhs2bFBCQoLPdPrt/Blj5PV66bMq9O/fX7t27dLOnTutoUePHrrrrru0c+dOtW7dmn47D16vV59//rliYmI41qpwzTXXVHhdwhdffKH4+HhJdfT32s9+W+4FKnvMeNGiReazzz4zycnJJjQ01Bw4cKC2m1YrCgsLzY4dO8yOHTuMJDNv3jyzY8cO67Hrxx9/3LjdbrNy5Uqza9cuc+edd1b6WFnLli3N+vXrzSeffGL69etXrx/HmzBhgnG73WbTpk0+jzH++OOPVh36raKZM2eaDz74wOzfv998+umnZtasWaZRo0Zm3bp1xhj67Hyd+RSPMfRbZaZNm2Y2bdpkvvrqK/Pxxx+boUOHmrCwMOv3PH1W0datW43T6TT//d//bfbt22deeeUV07hxY7N8+XKrTl3rtzoXUIwx5vnnnzfx8fEmKCjIdOvWzXo8tCHauHGjkVRhGDNmjDHm9KNls2fPNh6Px7hcLnP99debXbt2+SyjuLjYTJ482URERJiQkBAzdOhQc/DgwVrYmp9HZf0lySxevNiqQ79VdM8991ifu+bNm5v+/ftb4cQY+ux8lQ8o9FtFZe/nCAwMNLGxsWbEiBFmz5491nT6rHJvv/22SUxMNC6Xy1xxxRXmhRde8Jle1/rNYYwxP/95GwAAgKrVqXtQAABAw0BAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtvP/Ae8c387xGrMyAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+E0lEQVR4nO3de1xUdeL/8ffIwIAIrIgwoISYViroeinTLuI9y9y00rJa/WZ987qx6uZq303abaVs02otd2tNUyvcNrGbN0ylXGtDy29qfc1+aWrBUqZcDAelz+8P4azDRQUxzgyv5+NxxPmcz5z5nM9nBt58zgWHMcYIAADARpo0dAMAAAAqI6AAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaDA9tq0aaOhQ4fW+fkpKSlyOBxVluuuu64eW+nb0tLS5HA4GuS1P/30U6WlpWn//v1V1o0dO1Zt2rT5ydtUG99//71uu+02RUdHy+Fw6Kabbqqx7pney9u2bZPD4dCSJUussrFjx6pZs2b13OLqNWRf19SHDodDaWlpDdImNDxnQzcA+Cm0bdtWL730klfZz372s4ZpjA3dc889DRbYPv30Uz388MNKSUmp8gPyd7/7ne6///4Gade5+sMf/qDMzEy98MILuvjiixUZGdnQTaqThuxrf+lD1C8CCurFDz/8oKZNmzZ0M2oUEhKiK6+8sqGbUS8uRF+3bt1arVu3rtdt1oeLL764oZtwVrt27dLFF1+sO+64o6Gb4qWkpEQhISHnXL8h+9qufYiGxSEe1FrF4YCPPvpIt9xyi5o3b259c9u2bZtuu+02tWnTRiEhIWrTpo1uv/12ffXVV17bWLJkiRwOhzZt2qQJEyYoKipKLVq00IgRI/TNN9+ctQ3PPvusnE6nZs+efUH28XQPP/ywevbsqcjISIWHh6tbt25atGiRKv+dzYrp+8zMTHXu3FnBwcFq27atnn76aa96mzdvlsPh0PLlyzV16lS53W6FhISoT58++vjjj73qVkzx79y5U4MGDVJYWJj69+8v6dS0+MSJE9WqVSsFBQWpbdu2evDBB+XxeCRJx48fV9euXdWuXTsVFBRY28zLy5Pb7VZKSorKysokVX+Ip2J/3nrrLXXt2lUhISHq0KGD3nrrLUmnxrBDhw4KDQ3VFVdcoW3btnk9/1zeC0uWLNGtt94qSerbt691+K3iMEd1hx2OHz+umTNnKjExUUFBQWrVqpUmTZqko0ePVtv+tWvXqlu3bgoJCdFll12mF154oeogV+Ns/bt//345HA5t2LBBn332mdX2zZs3n9P26+qf//ynoqKiNHToUB07dkzSf/Z15cqV6tq1q4KDg/Xwww9Lkp555hlde+21io6OVmhoqJKTkzV37lydOHHCa7vV9bXD4dDkyZO1bNkydejQQU2bNlWXLl2s98Dp9u7dq9GjRys6Oloul0sdOnTQM888c8Z9qW0ffvvtt5o4caI6duyoZs2aKTo6Wv369dN7771Xpe6hQ4d0yy23KCwsTD/72c90xx13KCcnp8phNNiYAWpp9uzZRpJJSEgwM2bMMFlZWWbVqlXGGGNeffVV89BDD5nMzEyTnZ1tMjIyTJ8+fUzLli3Nt99+a21j8eLFRpJp27atmTJlilm3bp3529/+Zpo3b2769u3r9XoJCQnmhhtuMMYY8+OPP5pp06aZwMBAs3jx4nNqb58+fUxwcLBp3ry5CQgIMG3btjWzZs0yP/zwwzk9f+zYsWbRokUmKyvLZGVlmT/84Q8mJCTEPPzww1Xa2apVK3PRRReZF154waxevdrccccdRpJ5/PHHrXqbNm0ykkx8fLz5xS9+Yd58802zfPly065dOxMeHm7+3//7f1bdMWPGmMDAQNOmTRuTnp5u3nnnHbNu3TpTUlJiOnfubEJDQ82f/vQns379evO73/3OOJ1Oc/3111vP//zzz01YWJgZMWKEMcaYsrIy069fPxMdHW2++eYbq17FmFben9atW5ukpCTzyiuvmNWrV5uePXuawMBA89BDD5mrrrrKrFy50mRmZppLLrnExMTEePXpubwX8vPzzZw5c4wk88wzz5j333/fvP/++yY/P9/a/4SEBGubP/74oxk8eLBxOp3md7/7nVm/fr3505/+ZEJDQ03Xrl3N8ePHq7S/Y8eOZunSpWbdunXm1ltvNZJMdnb2Gcf8XPr3+PHj5v333zddu3Y1bdu2tdpeUFBQ43ZPfy9XlpOTYyR5va/HjBljQkNDrccrVqwwLpfLTJgwwZw8edJru7GxsaZt27bmhRdeMJs2bTIffvihMcaYX//612bhwoVm7dq1ZuPGjWb+/PkmKirK/Nd//ZfX61fua2OMkWTatGljrrjiCvP3v//drF692qSkpBin0+n1Pt29e7eJiIgwycnJZunSpWb9+vVm2rRppkmTJiYtLa3G/jhbH0oys2fPtur/3//9n5kwYYLJyMgwmzdvNm+99ZYZN26cadKkidm0aZNVr7i42LRr185ERkaaZ555xqxbt878+te/NomJiVX6GPZFQEGtVfwwe+ihh85a9+TJk6a4uNiEhoaap556yiqvCCgTJ070qj937lwjyeTm5lplFd/Uf/jhB3PzzTebiIgIs2HDhnNu74MPPmieffZZs3HjRvP222+byZMnG6fTaa699lpTVlZ2ztsx5tQP+BMnTpjf//73pkWLFubHH3/0aqfD4TA7duzwes7AgQNNeHi4OXbsmDHmPwGlW7duXs/fv3+/CQwMNPfcc49VNmbMGCPJvPDCC17b/Mtf/mIkmb///e9e5Y899piRZNavX2+VrVixwkgyTz75pHnooYdMkyZNvNYbU3NACQkJMYcOHbLKduzYYSSZ2NhYa3+MMWbVqlVGknnjjTdq7Lua3guvvvqqkeT1A+b0/T/9h+batWuNJDN37lyvehX7+Nxzz3m1Pzg42Hz11VdWWUlJiYmMjDT33Xdfje00pnb926dPH9OpU6czbu/0NtU1oDz66KMmICDAPPbYY9VuNyAgwOzZs+eMr1/x/l26dKkJCAgw33//vddrVRdQYmJiTGFhoVWWl5dnmjRpYtLT062ywYMHm9atW1cJZ5MnTzbBwcFer1OdmvqwckCp7OTJk+bEiROmf//+Zvjw4Vb5M888YySZNWvWeNW/7777CCg+hEM8qLObb765SllxcbFmzJihdu3ayel0yul0qlmzZjp27Jg+++yzKvWHDRvm9bhz586SVOWQ0OHDh9WvXz99+OGH2rJli3WYo0JZWZlOnjxpLT/++KO17pFHHtGECRPUt29fXX/99frzn/+sRx99VO+++65ef/31s+7nxo0bNWDAAEVERCggIECBgYF66KGHdPjwYeXn53vV7dSpk7p06eJVNnr0aBUWFuqjjz6qUn76YZWEhAT17t1bmzZtqtKGyn29ceNGhYaG6pZbbvEqHzt2rCTpnXfescpGjhypCRMm6De/+Y0eeeQRzZo1SwMHDjzrfkvSz3/+c7Vq1cp63KFDB0mnrow6/TyYivLTx62274VzsXHjRq/9rHDrrbcqNDTUa78r2n/RRRdZj4ODg3XJJZdUeX9V9zrn2r8XmjFG9913n2bPnq2XX35ZDzzwQLX1OnfurEsuuaRK+ccff6xhw4apRYsW1vv3l7/8pcrKyvT555+f9fX79u2rsLAw63FMTIyio6OtPjx+/LjeeecdDR8+XE2bNvX6HF5//fU6fvy4PvjggzrufVV/+ctf1K1bNwUHB8vpdCowMFDvvPOO13sqOztbYWFhVU78vv322+utHbjwCCios9jY2Cplo0eP1oIFC3TPPfdo3bp1+vDDD5WTk6OWLVuqpKSkSv0WLVp4PXa5XJJUpe7nn3+uf/3rXxoyZIiSkpKqbKd///4KDAy0lrvvvvuMbb/zzjsl6azfOD/88EMNGjRIkvT888/rn//8p3JycvTggw9W2063211lGxVlhw8fPqe6les1bdpU4eHhXmWHDx+W2+2uct5IdHS0nE5nlW3cfffdOnHihJxOp371q1/VuL+VVb6aIigo6Izlx48ft8pq+144F4cPH5bT6VTLli29yh0OR7V9V/n9JZ16j53t9Wvbv+fK6XRa5/1UdvLkSUlSYGCgV3lpaalWrFihTp06aciQITVuu7rP44EDB3TNNdfo66+/1lNPPaX33ntPOTk51rkh5zIOZ+vDw4cP6+TJk/rzn//s9RkMDAzU9ddfL0n67rvvzvo652LevHmaMGGCevbsqddee00ffPCBcnJydN1113nty+HDhxUTE1Pl+dWVwb64igd1Vvmbd0FBgd566y3Nnj1bv/3tb61yj8ej77///rxeq1evXrr11ls1btw4SdLChQvVpMl/8vVf//pXFRUVWY+joqLOabunb6M6GRkZCgwM1FtvvaXg4GCrfNWqVdXWz8vLq7Gs8jf6mupWrlfd/UlatGihf/3rXzLGeK3Pz8/XyZMnvfb/2LFjuuuuu3TJJZfo3//+t+65555zmjk6HxfqvdCiRQudPHlS3377rVdIMcYoLy9Pl19++Xm1+/TXOdf+rY2YmBh9/fXX1a6rKK/8Q9TlcmnTpk0aPHiwBgwYoLVr16p58+ZVnl/d+2TVqlU6duyYVq5cqYSEBKt8x44ddWp/dZo3b66AgADdddddmjRpUrV1EhMT6+W1li9frpSUFC1cuNCr/PTPvnRq/D788MMqz6/uMwf7YgYF9cbhcMgYY82CVPjb3/5W42+NtTFmzBhlZGRo8eLF1hR1hUsvvVQ9evSwlrPdcOrFF1+UpLNeeuxwOOR0OhUQEGCVlZSUaNmyZdXW3717t/73f//Xq+zll19WWFiYunXr5lX+yiuveF0J9NVXX2nr1q1KSUk5Y5ukUzNGxcXFVYLS0qVLrfUVxo8frwMHDmjlypVatGiR3njjDc2fP/+sr3E+avNeqGnWrDoV+7V8+XKv8tdee03Hjh2rcuivrmrTv7UxYMAA7dq1S59++mmVdX//+9/VrFkz9ezZs8q6rl27Kjs7W4cOHVJKSkqVQ4s1qQgtp4+DMUbPP/98ndpfnaZNm6pv3776+OOP1blzZ6/PYcVS3SxMXTgcjirvqU8++UTvv/++V1mfPn1UVFSkNWvWeJVnZGTUSzvw02AGBfUmPDxc1157rR5//HFFRUWpTZs2ys7O1qJFi+rtpmi33HKLmjZtqltuuUUlJSV65ZVXrMML1Xnvvff0xz/+UcOHD1fbtm11/PhxrVmzRs8995z69eunG2+88Yyvd8MNN2jevHkaPXq0/vu//1uHDx/Wn/70pyrfJCvExcVp2LBhSktLU2xsrJYvX66srCw99thjVe5dkp+fr+HDh+vee+9VQUGBZs+ereDgYM2cOfOs/fDLX/5SzzzzjMaMGaP9+/crOTlZW7Zs0Zw5c3T99ddrwIABkk4FguXLl2vx4sXq1KmTOnXqpMmTJ2vGjBm66qqrdMUVV5z1teqiNu+FikN2zz33nMLCwhQcHKzExMRqf6gNHDhQgwcP1owZM1RYWKirrrpKn3zyiWbPnq2uXbvqrrvuqpf2n2v/1tb999+vpUuXKiUlRbNmzVJycrKOHDmiFStW6B//+IfmzZvndb7H6Tp06KD33ntPAwYM0LXXXqsNGzac9d41AwcOVFBQkG6//XY98MADOn78uBYuXKgjR47Uqf01eeqpp3T11Vfrmmuu0YQJE9SmTRsVFRXpiy++0JtvvmmdO3S+hg4dqj/84Q+aPXu2+vTpoz179uj3v/+9EhMTrUNk0qlfZubPn68777xTjzzyiNq1a6c1a9Zo3bp1ks4+cwqbaLjzc+GrKq74OP2y4QqHDh0yN998s2nevLkJCwsz1113ndm1a5dJSEgwY8aMsepVXMWTk5Pj9fyKK1xOv6KjuisfNm3aZJo1a2auu+66M14uvHfvXnP99debVq1aGZfLZYKDg01ycrL54x//6HVJ6pm88MIL5tJLLzUul8u0bdvWpKenm0WLFhlJZt++fVXa+Y9//MN06tTJBAUFmTZt2ph58+ZVu4/Lli0zv/rVr0zLli2Ny+Uy11xzjdm2bZtX3cqXmZ7u8OHDZvz48SY2NtY4nU6TkJBgZs6cae3XJ598YkJCQrz63ZhTl3Z2797dtGnTxhw5csQYU/NVPNVdcSLJTJo0yats3759VS6nPtf3gjHGPPnkkyYxMdEEBAR4XWVR3ZUlJSUlZsaMGSYhIcEEBgaa2NhYM2HCBGtfztb+Pn36mD59+lQpr+xs/Xv69s71Kh5jTl0FM2HCBHPRRRcZp9NpwsLCzNVXX21effXVKnWrG/9Dhw6Zyy67zLRp08a61PdMVwe9+eabpkuXLiY4ONi0atXK/OY3vzFr1qyp8jmr6SqeymNd8XqVx3Dfvn3m7rvvNq1atTKBgYGmZcuWpnfv3uaRRx45a5+c61U8Ho/HTJ8+3bRq1coEBwebbt26mVWrVlXb9gMHDpgRI0aYZs2ambCwMHPzzTeb1atXG0nm9ddfP2ub0PAcxlS62xSAOmnTpo2SkpKqvYnV6TZv3qy+ffvq1VdfrXKVCIALZ86cOfqf//kfHThwwJZ3ToY3DvEAAPzOggULJEmXXXaZTpw4oY0bN+rpp5/WnXfeSTjxEQQUAIDfadq0qebPn6/9+/fL4/Hooosu0owZM/Q///M/Dd00nCMO8QAAANtp0FOZn332WSUmJio4OFjdu3ev9g8+AQCAxqfBAsqKFSuUmpqqBx98UB9//LGuueYaDRkyRAcOHGioJgEAAJtosEM8PXv2VLdu3bzuCNihQwfddNNNSk9PP+Nzf/zxR33zzTcKCwur9u6JAADAfowxKioqUlxc3FnvR9MgJ8mWlpZq+/btXrfAlqRBgwZp69atVep7PB55PB7r8ddff62OHTte8HYCAID6d/DgwbNeTdUgAeW7775TWVlZlb85ERMTU+3fSkhPT9fDDz9cdUPDX5KcoZLDSEaSHCr/z394FVWzHgAAXGDlRztO/CCtGl3jHZNP16CXGVc+PGMq/WGuCjNnztTUqVOtx4WFhYqPj5cCQyVn0//kjuryR5UyQgpgaxXfAviY+j/HaYPNePu3Sj/bz+X0jAYJKFFRUQoICKgyW5Kfn1/tn8N2uVw1/O2TilRS6XHFjAqzJwBgY3xPbjzKx9px7mPeIFfxBAUFqXv37srKyvIqz8rKUu/evWuxpYrQUb7DFft9+lfH6fVO/wrf5BDj11gw1o2GYaz9XsUYm3Mf5wY7xDN16lTddddd6tGjh3r16qXnnntOBw4c0Pjx42u5pdPng8sDSJU8Yso7pabjQLC9iunAiovOHKeNI8PpZyod4+GQjx9jcBsNR+UZhLNrsIAyatQoHT58WL///e+Vm5urpKQkrV69WgkJCbXcUsXOVp4dqdwJhBPfdvo4n/4Y/oexbjwY68bDUenrOTzDF291X1hYqIiICGnkqvKreFT+m3VNMyiq+Sof+IbK378qn3oE/1HTWDPO/oexbTwqxrr0mPTqcBUUFCg8PPyMT2nQW93/9PgUAD6DUxKARs2//prx6efM1jh7wiyKTzrTb9MMqX+paWwZZ//DLFnjUd3s91n4V0Cp7nQUMol/4BBP43H6WJ/ptDL4Psa28ajDWPtXQKlQJZyQWHweMyaNC7MmjQN3fWg86vA59tNzUByVOqO6cMKnwmfxA8v/Wb9tVf6c8rn1KwwnzsCPZlAqXcJkzZxINf9EY37Rd5zpOxnj51/OFkqYVvE/lceY8fVf555K/XQGBQDgG5hGQfX8MKCQvP1bdTfgg/9jnP0XY9u4+MCdZOtfdaf7m2rW1/52u7CDymMJ/1XT+DLu/ouxRVV+OINSHaYQAQDwJY0koAAAAF/SSAMKMyoAANiZ/waUMx7S5HgnAAB25r8B5YyYQQEAwM4aaUABAAB2RkABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2U+8BJS0tTQ6Hw2txu93WemOM0tLSFBcXp5CQEKWkpGj37t313QwAAODDLsgMSqdOnZSbm2stO3futNbNnTtX8+bN04IFC5STkyO3262BAweqqKjoQjQFAAD4IOcF2ajT6TVrUsEYoyeffFIPPvigRowYIUl68cUXFRMTo5dffln33XdftdvzeDzyeDzW48LCwgvRbAAAYBMXZAZl7969iouLU2Jiom677TZ9+eWXkqR9+/YpLy9PgwYNsuq6XC716dNHW7durXF76enpioiIsJb4+PgL0WwAAGAT9R5QevbsqaVLl2rdunV6/vnnlZeXp969e+vw4cPKy8uTJMXExHg9JyYmxlpXnZkzZ6qgoMBaDh48WN/NBgAANlLvh3iGDBli/T85OVm9evXSxRdfrBdffFFXXnmlJMnhcHg9xxhTpex0LpdLLpervpsKAABs6oJfZhwaGqrk5GTt3bvXOi+l8mxJfn5+lVkVAADQeF3wgOLxePTZZ58pNjZWiYmJcrvdysrKstaXlpYqOztbvXv3vtBNAQAAPqLeD/FMnz5dN954oy666CLl5+frkUceUWFhocaMGSOHw6HU1FTNmTNH7du3V/v27TVnzhw1bdpUo0ePru+mAAAAH1XvAeXQoUO6/fbb9d1336lly5a68sor9cEHHyghIUGS9MADD6ikpEQTJ07UkSNH1LNnT61fv15hYWH13RQAAOCjHMYY09CNqK3CwkJFRERII1dJzlDJIckYlf/Hu7JDkqkor/wVgO1UnC/PR9T/MdaNz4lj0qvDVVBQoPDw8DNW5W/xAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA26l1QHn33Xd14403Ki4uTg6HQ6tWrfJab4xRWlqa4uLiFBISopSUFO3evdurjsfj0ZQpUxQVFaXQ0FANGzZMhw4dOq8dAQAA/qPWAeXYsWPq0qWLFixYUO36uXPnat68eVqwYIFycnLkdrs1cOBAFRUVWXVSU1OVmZmpjIwMbdmyRcXFxRo6dKjKysrqvicAAMBvOIwxps5PdjiUmZmpm266SdKp2ZO4uDilpqZqxowZkk7NlsTExOixxx7Tfffdp4KCArVs2VLLli3TqFGjJEnffPON4uPjtXr1ag0ePLjK63g8Hnk8HutxYWGh4uPjpZGrJGeo5JBkjMr/U6mRkkxFeeWvAGzHUf6Vj6j/Y6wbnxPHpFeHq6CgQOHh4WesWq/noOzbt095eXkaNGiQVeZyudSnTx9t3bpVkrR9+3adOHHCq05cXJySkpKsOpWlp6crIiLCWuLj4+uz2QAAwGbqNaDk5eVJkmJiYrzKY2JirHV5eXkKCgpS8+bNa6xT2cyZM1VQUGAtBw8erM9mAwAAm3FeiI06HA6vx8aYKmWVnamOy+WSy+Wqt/YBAAB7q9eA4na7JZ2aJYmNjbXK8/PzrVkVt9ut0tJSHTlyxGsWJT8/X717967Dq1YcvHRU+lpZ5fIzByYAAFDfzv1nb70e4klMTJTb7VZWVpZVVlpaquzsbCt8dO/eXYGBgV51cnNztWvXrjoGFAAA4G9qPYNSXFysL774wnq8b98+7dixQ5GRkbrooouUmpqqOXPmqH379mrfvr3mzJmjpk2bavTo0ZKkiIgIjRs3TtOmTVOLFi0UGRmp6dOnKzk5WQMGDKhlayquyAEAAP6k1gFl27Zt6tu3r/V46tSpkqQxY8ZoyZIleuCBB1RSUqKJEyfqyJEj6tmzp9avX6+wsDDrOfPnz5fT6dTIkSNVUlKi/v37a8mSJQoICKj9Hnjlk5ouIT798uLT6wIAgJ9G7W7xcV73QWkohYWFioiIOHUflMCm5ftbwz1OuOWJn+HGCY0HY914MNb+r3yMTxyTXr3pp78PSoOo9iiPo1LZ2U6gBWAbDtXw+YXfqTLWwH9ckMuMf1qnJ+/y6ZKz3jCWaRXfxexY41E+uIxzI8AA+7/yn821GGvfn0Gpjjnta7UdwofBLzCMjQPjDDRK/hlQqmAOEQAAX+L/AaXGQzwAAMCu/CSgnGEOmCwCAEDDq+XhWj84SVaq/jb2p1/eY1T1zFnuieJbTj9T8qxnQcOnVfdbBZ9Z/1Z5zBlf+M0MyumYMvFfp1+TyKXjjQvjDPiHc/8s+8kMilTz7MjZngPfcPpYMYPi36ob64r/V14P/8LY+r9zH2M/CiinM5W+Vnd4hw+C76o8vvBfpob/w78wtqjKDw/xAAAAX0dAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtkNAAQAAtlPrgPLuu+/qxhtvVFxcnBwOh1atWuW1fuzYsXI4HF7LlVde6VXH4/FoypQpioqKUmhoqIYNG6ZDhw6d144AAAD/UeuAcuzYMXXp0kULFiyosc51112n3Nxca1m9erXX+tTUVGVmZiojI0NbtmxRcXGxhg4dqrKystrvAQAA8DvO2j5hyJAhGjJkyBnruFwuud3uatcVFBRo0aJFWrZsmQYMGCBJWr58ueLj47VhwwYNHjy4tk0CAAB+5oKcg7J582ZFR0frkksu0b333qv8/Hxr3fbt23XixAkNGjTIKouLi1NSUpK2bt1a7fY8Ho8KCwu9FgAA4L/qPaAMGTJEL730kjZu3KgnnnhCOTk56tevnzwejyQpLy9PQUFBat68udfzYmJilJeXV+0209PTFRERYS3x8fH13WwAAGAjtT7EczajRo2y/p+UlKQePXooISFBb7/9tkaMGFHj84wxcjgc1a6bOXOmpk6daj0uLCwkpAAA4Mcu+GXGsbGxSkhI0N69eyVJbrdbpaWlOnLkiFe9/Px8xcTEVLsNl8ul8PBwrwUAAPivCx5QDh8+rIMHDyo2NlaS1L17dwUGBiorK8uqk5ubq127dql3794XujkAAMAH1PoQT3Fxsb744gvr8b59+7Rjxw5FRkYqMjJSaWlpuvnmmxUbG6v9+/dr1qxZioqK0vDhwyVJERERGjdunKZNm6YWLVooMjJS06dPV3JysnVVDwAAaNxqHVC2bdumvn37Wo8rzg0ZM2aMFi5cqJ07d2rp0qU6evSoYmNj1bdvX61YsUJhYWHWc+bPny+n06mRI0eqpKRE/fv315IlSxQQEFAPuwQAAHydwxhjGroRtVVYWKiIiAhp5CrJGSo5JBmj8v94V3ZIMhXllb8CsJ2Kc+X5iPo/xrrxOXFMenW4CgoKzno+KX+LBwAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2E6tAkp6erouv/xyhYWFKTo6WjfddJP27NnjVccYo7S0NMXFxSkkJEQpKSnavXu3Vx2Px6MpU6YoKipKoaGhGjZsmA4dOnT+ewMAAPxCrQJKdna2Jk2apA8++EBZWVk6efKkBg0apGPHjll15s6dq3nz5mnBggXKycmR2+3WwIEDVVRUZNVJTU1VZmamMjIytGXLFhUXF2vo0KEqKyurvz0DAAA+y2GMMXV98rfffqvo6GhlZ2fr2muvlTFGcXFxSk1N1YwZMySdmi2JiYnRY489pvvuu08FBQVq2bKlli1bplGjRkmSvvnmG8XHx2v16tUaPHjwWV+3sLBQERER0shVkjNUckgyRuX/qbSHkkxFeeWvAGzHUf6Vj6j/Y6wbnxPHpFeHq6CgQOHh4Wesel7noBQUFEiSIiMjJUn79u1TXl6eBg0aZNVxuVzq06ePtm7dKknavn27Tpw44VUnLi5OSUlJVp3KPB6PCgsLvRYAAOC/6hxQjDGaOnWqrr76aiUlJUmS8vLyJEkxMTFedWNiYqx1eXl5CgoKUvPmzWusU1l6eroiIiKsJT4+vq7NBgAAPqDOAWXy5Mn65JNP9Morr1RZ53A4vB4bY6qUVXamOjNnzlRBQYG1HDx4sK7NBgAAPqBOAWXKlCl64403tGnTJrVu3doqd7vdklRlJiQ/P9+aVXG73SotLdWRI0dqrFOZy+VSeHi41wIAAPxXrQKKMUaTJ0/WypUrtXHjRiUmJnqtT0xMlNvtVlZWllVWWlqq7Oxs9e7dW5LUvXt3BQYGetXJzc3Vrl27rDoAAKBxc9am8qRJk/Tyyy/r9ddfV1hYmDVTEhERoZCQEDkcDqWmpmrOnDlq37692rdvrzlz5qhp06YaPXq0VXfcuHGaNm2aWrRoocjISE2fPl3JyckaMGBA/e8hAADwObUKKAsXLpQkpaSkeJUvXrxYY8eOlSQ98MADKikp0cSJE3XkyBH17NlT69evV1hYmFV//vz5cjqdGjlypEpKStS/f38tWbJEAQEB57c3AADAL5zXfVAaCvdBAfwY98ZoPBjrxuenug8KAADAhVCrQzz2YyRHefR2lD+uTkUdVf4KwLbOfGcC+BPGuvGoxVj7dECZ2esVBYcENnQzAADAOTheckLpfz+3uj59DsrRD6TwZuWF1aUyU0M5AMAWOCOw8XBIKiiWftZTjeQcFAIIAPgswknjUdux9v2AAgAA/I7/BhSuJgYAwGf5b0CB/yJ0Nh6MNdBoEVDgUxzWP/B3jDXQuPlvQHFU+gq/wC/UjQdjDTRu/htQAACAzyKgAAAA2yGgAAAA2yGgwCfU9VQix3k8F/bGuPovxhaSj/8tHjQedT1hkhMt/Rdj678YW0jMoAAAABsioAAAANshoJTjmCcAAPZBQAEAALZDQCnHSVkAANgHAQUAANgOAQUAANgOAQUAANgOAQUAANgOAQUAANgOAaUc90EBAMA+CCjluMwYAAD7IKAAAADbqVVASU9P1+WXX66wsDBFR0frpptu0p49e7zqjB07Vg6Hw2u58sorvep4PB5NmTJFUVFRCg0N1bBhw3To0KHz3xsAAOAXahVQsrOzNWnSJH3wwQfKysrSyZMnNWjQIB07dsyr3nXXXafc3FxrWb16tdf61NRUZWZmKiMjQ1u2bFFxcbGGDh2qsrKy898jAADg85y1qbx27Vqvx4sXL1Z0dLS2b9+ua6+91ip3uVxyu93VbqOgoECLFi3SsmXLNGDAAEnS8uXLFR8frw0bNmjw4MFVnuPxeOTxeKzHhYWFtWk2AADwMed1DkpBQYEkKTIy0qt88+bNio6O1iWXXKJ7771X+fn51rrt27frxIkTGjRokFUWFxenpKQkbd26tdrXSU9PV0REhLXEx8efT7MBAIDN1TmgGGM0depUXX311UpKSrLKhwwZopdeekkbN27UE088oZycHPXr18+aAcnLy1NQUJCaN2/utb2YmBjl5eVV+1ozZ85UQUGBtRw8eLCuza4RlxkDAGAftTrEc7rJkyfrk08+0ZYtW7zKR40aZf0/KSlJPXr0UEJCgt5++22NGDGixu0ZY+RwVB8TXC6XXC5XXZt6TrjMGAAA+6jTDMqUKVP0xhtvaNOmTWrduvUZ68bGxiohIUF79+6VJLndbpWWlurIkSNe9fLz8xUTE1OX5tQLZlAAALCPWgUUY4wmT56slStXauPGjUpMTDzrcw4fPqyDBw8qNjZWktS9e3cFBgYqKyvLqpObm6tdu3apd+/etWx+/WEGBQAA+6jVIZ5Jkybp5Zdf1uuvv66wsDDrnJGIiAiFhISouLhYaWlpuvnmmxUbG6v9+/dr1qxZioqK0vDhw62648aN07Rp09SiRQtFRkZq+vTpSk5Otq7qAQAAjVutAsrChQslSSkpKV7lixcv1tixYxUQEKCdO3dq6dKlOnr0qGJjY9W3b1+tWLFCYWFhVv358+fL6XRq5MiRKikpUf/+/bVkyRIFBASc/x4BAACf5zDG+NzRjcLCQkVEROjoB1J4mE4dn+EkEgAAbK2wWPpZz1O3KQkPDz9jXf4WDwAAsB0CCgAAsB0CSjmOEAEAYB8ElHI+dyIOAAB+jIACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4BSjsuMAQCwDwIKAACwHQJKOe6DAgCAfRBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQynGZMQAA9kFAAQAAtkNAKcdlxgAA2AcBBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BBQAA2A4BpRz3QQEAwD4IKOW4zBgAAPsgoAAAANshoAAAANupVUBZuHChOnfurPDwcIWHh6tXr15as2aNtd4Yo7S0NMXFxSkkJEQpKSnavXu31zY8Ho+mTJmiqKgohYaGatiwYTp06FD97A0AAPALtQoorVu31qOPPqpt27Zp27Zt6tevn37xi19YIWTu3LmaN2+eFixYoJycHLndbg0cOFBFRUXWNlJTU5WZmamMjAxt2bJFxcXFGjp0qMrKyup3zwAAgM9yGGPO6/zQyMhIPf7447r77rsVFxen1NRUzZgxQ9Kp2ZKYmBg99thjuu+++1RQUKCWLVtq2bJlGjVqlCTpm2++UXx8vFavXq3BgwdX+xoej0cej8d6XFhYqPj4eB39QAoP06kzXLkMBwAAWyssln7WUyooKFB4ePgZ69b5HJSysjJlZGTo2LFj6tWrl/bt26e8vDwNGjTIquNyudSnTx9t3bpVkrR9+3adOHHCq05cXJySkpKsOtVJT09XRESEtcTHx9e12QAAwAfUOqDs3LlTzZo1k8vl0vjx45WZmamOHTsqLy9PkhQTE+NVPyYmxlqXl5enoKAgNW/evMY61Zk5c6YKCgqs5eDBg7VtNgAA8CHO2j7h0ksv1Y4dO3T06FG99tprGjNmjLKzs631Dof3sRZjTJWyys5Wx+VyyeVy1bapteIQ90IBAMAuaj2DEhQUpHbt2qlHjx5KT09Xly5d9NRTT8ntdktSlZmQ/Px8a1bF7XartLRUR44cqbFOQyGcAABgH+d9HxRjjDwejxITE+V2u5WVlWWtKy0tVXZ2tnr37i1J6t69uwIDA73q5ObmateuXVYdAACAWh3imTVrloYMGaL4+HgVFRUpIyNDmzdv1tq1a+VwOJSamqo5c+aoffv2at++vebMmaOmTZtq9OjRkqSIiAiNGzdO06ZNU4sWLRQZGanp06crOTlZAwYMuCA7CAAAfE+tAsq///1v3XXXXcrNzVVERIQ6d+6stWvXauDAgZKkBx54QCUlJZo4caKOHDminj17av369QoLC7O2MX/+fDmdTo0cOVIlJSXq37+/lixZooCAgPrdMwAA4LPO+z4oDaGwsFARERHcBwUAAB/yk9wHBQAA4EIhoJRjAgYAAPsgoAAAANshoJTzuRNxAADwYwQUAABgOwQUAABgO/4dUDhuAwCAT/L9gMI9UAAA8Du+H1BqUhFcmEUBfBa/ewCNl+8HFEJIo+NgvAHA7/l+QKkJv3r5JYckw9g2CvzuATRu/htQKtTihxk/9+yvLj+wGFffRDgBGjf/DygAAMDnEFBOw29s/olxBQDfQ0ABAAC2Q0ABAAC2Q0Apx4mUAADYBwEFAADYDgGlHCdSAgBgHwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwSUctwHBQAA+yCgAAAA2yGglOM+KAAA2EetAsrChQvVuXNnhYeHKzw8XL169dKaNWus9WPHjpXD4fBarrzySq9teDweTZkyRVFRUQoNDdWwYcN06NCh+tkbAADgF2oVUFq3bq1HH31U27Zt07Zt29SvXz/94he/0O7du6061113nXJzc61l9erVXttITU1VZmamMjIytGXLFhUXF2vo0KEqKyurnz0CAAA+z2GMOa+jG5GRkXr88cc1btw4jR07VkePHtWqVauqrVtQUKCWLVtq2bJlGjVqlCTpm2++UXx8vFavXq3Bgwef02sWFhYqIiJCRz+QwsN06vgMZ7kCAGBrhcXSz3qeygPh4eFnrFvnc1DKysqUkZGhY8eOqVevXlb55s2bFR0drUsuuUT33nuv8vPzrXXbt2/XiRMnNGjQIKssLi5OSUlJ2rp1a42v5fF4VFhY6LUAAAD/VeuAsnPnTjVr1kwul0vjx49XZmamOnbsKEkaMmSIXnrpJW3cuFFPPPGEcnJy1K9fP3k8HklSXl6egoKC1Lx5c69txsTEKC8vr8bXTE9PV0REhLXEx8fXttkAAMCHOGv7hEsvvVQ7duzQ0aNH9dprr2nMmDHKzs5Wx44drcM2kpSUlKQePXooISFBb7/9tkaMGFHjNo0xcjhqPkYzc+ZMTZ061XpcWFhY7yHFIa7kAQDALmodUIKCgtSuXTtJUo8ePZSTk6OnnnpKf/3rX6vUjY2NVUJCgvbu3StJcrvdKi0t1ZEjR7xmUfLz89W7d+8aX9PlcsnlctW2qQAAwEed931QjDHWIZzKDh8+rIMHDyo2NlaS1L17dwUGBiorK8uqk5ubq127dp0xoPwUmD0BAMA+ajWDMmvWLA0ZMkTx8fEqKipSRkaGNm/erLVr16q4uFhpaWm6+eabFRsbq/3792vWrFmKiorS8OHDJUkREREaN26cpk2bphYtWigyMlLTp09XcnKyBgwYcEF2EAAA+J5aBZR///vfuuuuu5Sbm6uIiAh17txZa9eu1cCBA1VSUqKdO3dq6dKlOnr0qGJjY9W3b1+tWLFCYWFh1jbmz58vp9OpkSNHqqSkRP3799eSJUsUEBBQ7zsHAAB803nfB6UhcB8UAAB8z09yHxQAAIALhYBSjgkYAADsg4ACAABsh4BSzudOxAEAwI8RUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUMpxHxQAAOyDgFKOy4wBALAPAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAko5btQGAIB9EFDKcaM2AADsg4ACAABsh4ACAABsh4ACAABsh4ACAABsh4ACAABsh4BSjsuMAQCwDwIKAACwHQJKOe6DAgCAfZxXQElPT5fD4VBqaqpVZoxRWlqa4uLiFBISopSUFO3evdvreR6PR1OmTFFUVJRCQ0M1bNgwHTp06HyaAgAA/EidA0pOTo6ee+45de7c2at87ty5mjdvnhYsWKCcnBy53W4NHDhQRUVFVp3U1FRlZmYqIyNDW7ZsUXFxsYYOHaqysrK67wkAAPAbdQooxcXFuuOOO/T888+refPmVrkxRk8++aQefPBBjRgxQklJSXrxxRf1ww8/6OWXX5YkFRQUaNGiRXriiSc0YMAAde3aVcuXL9fOnTu1YcOG+tkrAADg0+oUUCZNmqQbbrhBAwYM8Crft2+f8vLyNGjQIKvM5XKpT58+2rp1qyRp+/btOnHihFeduLg4JSUlWXUq83g8Kiws9FoAAID/ctb2CRkZGfroo4+Uk5NTZV1eXp4kKSYmxqs8JiZGX331lVUnKCjIa+alok7F8ytLT0/Xww8/XNum1opDnCgLAIBd1GoG5eDBg7r//vu1fPlyBQcH11jP4fC+q4gxpkpZZWeqM3PmTBUUFFjLwYMHa9NsAADgY2oVULZv3678/Hx1795dTqdTTqdT2dnZevrpp+V0Oq2Zk8ozIfn5+dY6t9ut0tJSHTlypMY6lblcLoWHh3st9Y3ZEwAA7KNWAaV///7auXOnduzYYS09evTQHXfcoR07dqht27Zyu93KysqynlNaWqrs7Gz17t1bktS9e3cFBgZ61cnNzdWuXbusOgAAoHGr1TkoYWFhSkpK8ioLDQ1VixYtrPLU1FTNmTNH7du3V/v27TVnzhw1bdpUo0ePliRFRERo3LhxmjZtmlq0aKHIyEhNnz5dycnJVU66BQAAjVOtT5I9mwceeEAlJSWaOHGijhw5op49e2r9+vUKCwuz6syfP19Op1MjR45USUmJ+vfvryVLliggIKC+mwMAAHyQwxjjc6dfFBYWKiIiQkc/kMLDdOoEEv7aHwAAtlZYLP2s56l7op3tfFL+Fk858g0AAPZBQAEAALZDQCnnc8e5AADwYwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwSUctwHBQAA+yCglOMyYwAA7MP/AwrJAwAAn+P/AaUWOMxjf3UZI8YVAHxPvf81459Cxd83LDymUz99zvTHAvlDggAA2EJh8amv5/J3in0yoBQVFUmSLurfwA0BAAC1VlRUpIiIiDPWcZhziTE28+OPP2rPnj3q2LGjDh48eNY/2YxTCgsLFR8fT5/VEv1We/RZ3dBvtUef1U1D9ZsxRkVFRYqLi1OTJmc+y8QnZ1CaNGmiVq1aSZLCw8N5U9YSfVY39Fvt0Wd1Q7/VHn1WNw3Rb2ebOanASbIAAMB2CCgAAMB2fDaguFwuzZ49Wy6Xq6Gb4jPos7qh32qPPqsb+q326LO68YV+88mTZAEAgH/z2RkUAADgvwgoAADAdggoAADAdggoAADAdggoAADAdnwyoDz77LNKTExUcHCwunfvrvfee6+hm9Rg3n33Xd14442Ki4uTw+HQqlWrvNYbY5SWlqa4uDiFhIQoJSVFu3fv9qrj8Xg0ZcoURUVFKTQ0VMOGDdOhQ4d+wr34aaWnp+vyyy9XWFiYoqOjddNNN2nPnj1edei3qhYuXKjOnTtbd57s1auX1qxZY62nz84uPT1dDodDqampVhn9VlVaWpocDofX4na7rfX0WfW+/vpr3XnnnWrRooWaNm2qn//859q+fbu13uf6zfiYjIwMExgYaJ5//nnz6aefmvvvv9+Ehoaar776qqGb1iBWr15tHnzwQfPaa68ZSSYzM9Nr/aOPPmrCwsLMa6+9Znbu3GlGjRplYmNjTWFhoVVn/PjxplWrViYrK8t89NFHpm/fvqZLly7m5MmTP/He/DQGDx5sFi9ebHbt2mV27NhhbrjhBnPRRReZ4uJiqw79VtUbb7xh3n77bbNnzx6zZ88eM2vWLBMYGGh27dpljKHPzubDDz80bdq0MZ07dzb333+/VU6/VTV79mzTqVMnk5ubay35+fnWevqsqu+//94kJCSYsWPHmn/9619m3759ZsOGDeaLL76w6vhav/lcQLniiivM+PHjvcouu+wy89vf/raBWmQflQPKjz/+aNxut3n00UetsuPHj5uIiAjzl7/8xRhjzNGjR01gYKDJyMiw6nz99demSZMmZu3atT9Z2xtSfn6+kWSys7ONMfRbbTRv3tz87W9/o8/OoqioyLRv395kZWWZPn36WAGFfqve7NmzTZcuXapdR59Vb8aMGebqq6+ucb0v9ptPHeIpLS3V9u3bNWjQIK/yQYMGaevWrQ3UKvvat2+f8vLyvPrL5XKpT58+Vn9t375dJ06c8KoTFxenpKSkRtOnBQUFkqTIyEhJ9Nu5KCsrU0ZGho4dO6ZevXrRZ2cxadIk3XDDDRowYIBXOf1Ws7179youLk6JiYm67bbb9OWXX0qiz2ryxhtvqEePHrr11lsVHR2trl276vnnn7fW+2K/+VRA+e6771RWVqaYmBiv8piYGOXl5TVQq+yrok/O1F95eXkKCgpS8+bNa6zjz4wxmjp1qq6++molJSVJot/OZOfOnWrWrJlcLpfGjx+vzMxMdezYkT47g4yMDH300UdKT0+vso5+q17Pnj21dOlSrVu3Ts8//7zy8vLUu3dvHT58mD6rwZdffqmFCxeqffv2WrduncaPH69f/epXWrp0qSTffK85f/JXrAcOh8PrsTGmShn+oy791Vj6dPLkyfrkk0+0ZcuWKuvot6ouvfRS7dixQ0ePHtVrr72mMWPGKDs721pPn3k7ePCg7r//fq1fv17BwcE11qPfvA0ZMsT6f3Jysnr16qWLL75YL774oq688kpJ9FllP/74o3r06KE5c+ZIkrp27ardu3dr4cKF+uUvf2nV86V+86kZlKioKAUEBFRJcvn5+VVSIWSd9X6m/nK73SotLdWRI0dqrOOvpkyZojfeeEObNm1S69atrXL6rWZBQUFq166devToofT0dHXp0kVPPfUUfVaD7du3Kz8/X927d5fT6ZTT6VR2draefvppOZ1Oa7/ptzMLDQ1VcnKy9u7dy3utBrGxserYsaNXWYcOHXTgwAFJvvl9zacCSlBQkLp3766srCyv8qysLPXu3buBWmVfiYmJcrvdXv1VWlqq7Oxsq7+6d++uwMBArzq5ubnatWuX3/apMUaTJ0/WypUrtXHjRiUmJnqtp9/OnTFGHo+HPqtB//79tXPnTu3YscNaevTooTvuuEM7duxQ27Zt6bdz4PF49Nlnnyk2Npb3Wg2uuuqqKrdL+Pzzz5WQkCDJR7+v/eSn5Z6nisuMFy1aZD799FOTmppqQkNDzf79+xu6aQ2iqKjIfPzxx+bjjz82ksy8efPMxx9/bF12/eijj5qIiAizcuVKs3PnTnP77bdXe1lZ69atzYYNG8xHH31k+vXr59eX402YMMFERESYzZs3e13G+MMPP1h16LeqZs6cad59912zb98+88knn5hZs2aZJk2amPXr1xtj6LNzdfpVPMbQb9WZNm2a2bx5s/nyyy/NBx98YIYOHWrCwsKs7/P0WVUffvihcTqd5o9//KPZu3eveemll0zTpk3N8uXLrTq+1m8+F1CMMeaZZ54xCQkJJigoyHTr1s26PLQx2rRpk5FUZRkzZowx5tSlZbNnzzZut9u4XC5z7bXXmp07d3pto6SkxEyePNlERkaakJAQM3ToUHPgwIEG2JufRnX9JcksXrzYqkO/VXX33Xdbn7uWLVua/v37W+HEGPrsXFUOKPRbVRX35wgMDDRxcXFmxIgRZvfu3dZ6+qx6b775pklKSjIul8tcdtll5rnnnvNa72v95jDGmJ9+3gYAAKBmPnUOCgAAaBwIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHb+P9i5bx27thNvAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+xElEQVR4nO3de1zUVeL/8ffIwAgIJCA3JcTUUlFXsUxrw7tZ5qaVlm2r36xvXjdW3VxtN21rpay0+tq6W5mmVrhtYmbeMJUya0PLr5f6mv3S1ISlTEEUQfH8/lA+63BRBzE+M7yej8c4zvmc+cz5nDMDb87nMg5jjBEAAICN1KvtBgAAAJRHQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQIHtNW3aVP3797+kdRw7dkyPPfaYWrZsKZfLpYiICHXv3l27d++uoVZ6t2nTpsnhcNTKa3/55ZeaNm2a9u7dW2HZ8OHD1bRp05+9TZ746aefdPfddysqKkoOh0O33357lXXP917evHmzHA6H5s+fb5UNHz5cDRo0qOEWV642+7qqPnQ4HJo2bVqttAm1z1nbDQAut8LCQnXv3l0HDx7UH/7wB7Vr1075+fnatGmTjh8/XtvNs4UHHnhAN998c6289pdffqnHH39c3bp1q/AL8k9/+pMefvjhWmnXxXriiSeUkZGh1157TVdddZXCw8Nru0nVUpt97St9iJpFQEGNOH78uIKCgmq7GZX64x//qK+++krbtm1Ts2bNrPIBAwbUYquq73L0dZMmTdSkSZMaXWdNuOqqq2q7CRe0Y8cOXXXVVbr33ntruyluioqKFBgYeNH1a7Ov7dqHqF3s4oHHynYHfP7557rzzjvVsGFD64fb5s2bdffdd6tp06YKDAxU06ZNdc899+i7775zW8f8+fPlcDi0fv16jRo1SpGRkYqIiNCgQYN08ODBC7bhr3/9q5xOp6ZOnXreesePH9err76qu+66yy2ceOLxxx9X586dFR4ertDQUHXs2FFz585V+e/ZLJu+z8jIULt27VS/fn01a9ZML774olu9DRs2yOFwaNGiRRo/frxiYmIUGBiolJQUffHFF251y6b4t2/frj59+igkJEQ9e/aUdGZafPTo0WrcuLECAgLUrFkzPfrooyouLpYknThxQh06dFDz5s2Vn59vrTM3N1cxMTHq1q2bSktLJVW+i6dse5YvX64OHTooMDBQrVq10vLlyyWdGcNWrVopODhY1113nTZv3uz2/It5L8yfP1933XWXJKl79+5yOBxuuzkq2+1w4sQJTZ48WYmJiQoICFDjxo01ZswYHTlypNL2r1q1Sh07dlRgYKCuueYavfbaaxUHuRIX6t+9e/fK4XBo7dq1+uqrr6y2b9iw4aLWX10ff/yxIiMj1b9/fx07dkzSf7Z1yZIl6tChg+rXr6/HH39ckvTSSy/ppptuUlRUlIKDg9W2bVvNmDFDJ0+edFtvZX3tcDg0duxYLVy4UK1atVJQUJDat29vvQfOtXv3bg0dOlRRUVFyuVxq1aqVXnrppfNui6d9+MMPP2j06NFq3bq1GjRooKioKPXo0UMfffRRhboHDhzQnXfeqZCQEF1xxRW69957lZ2dXWE3GmzMAB6aOnWqkWQSEhLMpEmTTGZmplm6dKkxxpi3337bPPbYYyYjI8NkZWWZ9PR0k5KSYho1amR++OEHax3z5s0zkkyzZs3MuHHjzOrVq82rr75qGjZsaLp37+72egkJCebWW281xhhz+vRpM2HCBOPv72/mzZt3wbZ++OGHRpL5y1/+YkaOHGmuuOIK4+/vb5KTk83y5csvanuHDx9u5s6dazIzM01mZqZ54oknTGBgoHn88ccrtLNx48bmyiuvNK+99ppZsWKFuffee40k88wzz1j11q9fbySZ+Ph486tf/cq89957ZtGiRaZ58+YmNDTU/L//9/+susOGDTP+/v6madOmJi0tzXzwwQdm9erVpqioyLRr184EBwebZ5991qxZs8b86U9/Mk6n09xyyy3W87/++msTEhJiBg0aZIwxprS01PTo0cNERUWZgwcPWvXKxrT89jRp0sQkJSWZt956y6xYscJ07tzZ+Pv7m8cee8zccMMNZsmSJSYjI8O0bNnSREdHm+PHj1vPv5j3Ql5enpk+fbqRZF566SXzySefmE8++cTk5eVZ25+QkGCt8/Tp06Zv377G6XSaP/3pT2bNmjXm2WefNcHBwaZDhw7mxIkTFdrfunVrs2DBArN69Wpz1113GUkmKyvrvGN+Mf174sQJ88knn5gOHTqYZs2aWW3Pz8+vcr3nvpfLy87ONpLc3tfDhg0zwcHB1uPFixcbl8tlRo0aZU6dOuW23tjYWNOsWTPz2muvmfXr15vPPvvMGGPM7373OzNnzhyzatUqs27dOjNr1iwTGRlp/uu//svt9cv3tTHGSDJNmzY11113nfnHP/5hVqxYYbp162acTqfb+3Tnzp0mLCzMtG3b1ixYsMCsWbPGTJgwwdSrV89Mmzatyv64UB9KMlOnTrXq/9///Z8ZNWqUSU9PNxs2bDDLly83I0aMMPXq1TPr16+36hUWFprmzZub8PBw89JLL5nVq1eb3/3udyYxMbFCH8O+CCjwWNkvs8cee+yCdU+dOmUKCwtNcHCweeGFF6zysoAyevRot/ozZswwkkxOTo5VVvZD/fjx4+aOO+4wYWFhZu3atRfV1rfeestIMqGhoeaGG24wy5YtM8uXLzfdu3c3DofDrFq16iK3+ozS0lJz8uRJ8+c//9lERESY06dPu7XT4XCYrVu3uj2nd+/eJjQ01Bw7dswY85+A0rFjR7fn79271/j7+5sHHnjAKhs2bJiRZF577TW3df7tb38zksw//vEPt/Knn37aSDJr1qyxyhYvXmwkmeeff9489thjpl69em7Ljak6oAQGBpoDBw5YZVu3bjWSTGxsrLU9xhizdOlSI8ksW7asyr6r6r3w9ttvG0luv2DO3f5zf2muWrXKSDIzZsxwq1e2jS+//LJb++vXr2++++47q6yoqMiEh4ebhx56qMp2GuNZ/6akpJg2bdqcd33ntqm6AeWpp54yfn5+5umnn650vX5+fmbXrl3nff2y9++CBQuMn5+f+emnn9xeq7KAEh0dbQoKCqyy3NxcU69ePZOWlmaV9e3b1zRp0qRCOBs7dqypX7++2+tUpqo+LB9Qyjt16pQ5efKk6dmzpxk4cKBV/tJLLxlJZuXKlW71H3roIQKKF2EXD6rtjjvuqFBWWFioSZMmqXnz5nI6nXI6nWrQoIGOHTumr776qkL98seBtGvXTpIq7BI6dOiQevTooc8++0wbN260dnOUKS0t1alTp6zb6dOnJcm6DwgI0MqVK3Xbbbfp1ltv1fLlyxUbG6snnnjigtu5bt069erVS2FhYfLz85O/v78ee+wxHTp0SHl5eW5127Rpo/bt27uVDR06VAUFBfr8888rlJ+7WyUhIUFdu3bV+vXrK7ShfF+vW7dOwcHBuvPOO93Khw8fLkn64IMPrLLBgwdr1KhR+v3vf68nn3xSU6ZMUe/evS+43ZL0i1/8Qo0bN7Yet2rVSpLUrVs3t+NgysrPHTdP3wsXY926dW7bWeauu+5ScHCw23aXtf/KK6+0HtevX18tW7as8P6q7HUutn8vN2OMHnroIU2dOlVvvvmmHnnkkUrrtWvXTi1btqxQ/sUXX2jAgAGKiIiw3r+/+c1vVFpaqq+//vqCr9+9e3eFhIRYj6OjoxUVFWX14YkTJ/TBBx9o4MCBCgoKcvsc3nLLLTpx4oQ+/fTTam59RX/729/UsWNH1a9fX06nU/7+/vrggw/c3lNZWVkKCQmpcOD3PffcU2PtwOVHQEG1xcbGVigbOnSoZs+erQceeECrV6/WZ599puzsbDVq1EhFRUUV6kdERLg9drlcklSh7tdff61//etf6tevn5KSkiqsp2fPnvL397du999/v9v6u3bt6vZDNigoSCkpKRVCQ3mfffaZ+vTpI0l65ZVX9PHHHys7O1uPPvpope2MiYmpsI6yskOHDl1U3fL1goKCFBoa6lZ26NAhxcTEVDhuJCoqSk6ns8I67r//fp08eVJOp1O//e1vq9ze8sqfTREQEHDe8hMnTlhlnr4XLsahQ4fkdDrVqFEjt3KHw1Fp35V/f0ln3mMXen1P+/diOZ1O67if8k6dOiVJ8vf3dysvKSnR4sWL1aZNG/Xr16/KdVf2edy3b59++ctf6vvvv9cLL7ygjz76SNnZ2daxIRczDhfqw0OHDunUqVP6n//5H7fPoL+/v2655RZJ0o8//njB17kYM2fO1KhRo9S5c2e98847+vTTT5Wdna2bb77ZbVsOHTqk6OjoCs+vrAz2xVk8qLbyP7zz8/O1fPlyTZ06VX/4wx+s8uLiYv3000+X9FpdunTRXXfdpREjRkiS5syZo3r1/pOv//73v+vo0aPW48jISEn/mZGpjDHGbR2VSU9Pl7+/v5YvX6769etb5UuXLq20fm5ubpVl5X/QV1W3fL3Krk8SERGhf/3rXzLGuC3Py8vTqVOnrO2XzlwD5r777lPLli3173//Ww888IDefffdSttfUy7XeyEiIkKnTp3SDz/84BZSjDHKzc3Vtddee0ntPvd1LrZ/PREdHa3vv/++0mVl5eV/ibpcLq1fv159+/ZVr169tGrVKjVs2LDC8yt7nyxdulTHjh3TkiVLlJCQYJVv3bq1Wu2vTMOGDeXn56f77rtPY8aMqbROYmJijbzWokWL1K1bN82ZM8et/NzPvnRm/D777LMKz6/sMwf7YgYFNcbhcMgYY82ClHn11Ver/KvRE8OGDVN6errmzZtnTVGXufrqq9WpUyfrVnY2QmxsrLp06aKPP/5YBQUFVv3jx48rKytL119//QW3yel0ys/PzyorKirSwoULK62/c+dO/e///q9b2ZtvvqmQkBB17NjRrfytt95yOxPou+++06ZNm9StW7fztkk6M2NUWFhYISgtWLDAWl5m5MiR2rdvn5YsWaK5c+dq2bJlmjVr1gVf41J48l6oatasMmXbtWjRIrfyd955R8eOHauw66+6POlfT/Tq1Us7duzQl19+WWHZP/7xDzVo0ECdO3eusKxDhw7KysrSgQMH1K1btwq7FqtSFlrOHQdjjF555ZVqtb8yQUFB6t69u7744gu1a9fO7XNYdqtsFqY6HA5HhffUtm3b9Mknn7iVpaSk6OjRo1q5cqVbeXp6eo20Az8PZlBQY0JDQ3XTTTfpmWeeUWRkpJo2baqsrCzNnTtXV1xxRY28xp133qmgoCDdeeedKioq0ltvvWXtXqjKs88+q+7du6tv376aNGmSHA6HnnvuOf34448XPAbl1ltv1cyZMzV06FD993//tw4dOqRnn322wg/JMnFxcRowYICmTZum2NhYLVq0SJmZmXr66acrXLskLy9PAwcO1IMPPqj8/HxNnTpV9evX1+TJky/YD7/5zW/00ksvadiwYdq7d6/atm2rjRs3avr06brlllvUq1cvSWcCwaJFizRv3jy1adNGbdq00dixYzVp0iTdcMMNuu666y74WtXhyXuhbJfdyy+/rJCQENWvX1+JiYmV/lLr3bu3NY4FBQW64YYbtG3bNk2dOlUdOnTQfffdVyPtv9j+9dTDDz+sBQsWqFu3bpoyZYratm2rw4cPa/HixfrnP/+pmTNnuu2KPFerVq300UcfqVevXrrpppu0du3aC167pnfv3goICNA999yjRx55RCdOnNCcOXN0+PDharW/Ki+88IJuvPFG/fKXv9SoUaPUtGlTHT16VN98843ee+8969ihS9W/f3898cQTmjp1qlJSUrRr1y79+c9/VmJiorWLTDrzx8ysWbP061//Wk8++aSaN2+ulStXavXq1ZJ0wZlT2EStHZ4Lr1V2xse5pw2XOXDggLnjjjtMw4YNTUhIiLn55pvNjh07TEJCghk2bJhVr+wsnuzsbLfnl53hcu4ZHZWd+bB+/XrToEEDc/PNN7ud2lqVjz76yKSkpJigoCATFBRkevToYT7++OOL2t7XXnvNXH311cblcplmzZqZtLQ0M3fuXCPJ7Nmzp0I7//nPf5o2bdqYgIAA07RpUzNz5sxKt3HhwoXmt7/9rWnUqJFxuVzml7/8pdm8ebNb3fKnmZ7r0KFDZuTIkSY2NtY4nU6TkJBgJk+ebJ1qu23bNhMYGOjW78acObUzOTnZNG3a1Bw+fNgYU/VZPJWdcSLJjBkzxq1sz549FU6nvtj3gjHGPP/88yYxMdH4+fm5nWVR2ZklRUVFZtKkSSYhIcH4+/ub2NhYM2rUKGtbLtT+lJQUk5KSUqG8vAv177nru9izeIw5cxbMqFGjzJVXXmmcTqcJCQkxN954o3n77bcr1K1s/A8cOGCuueYa07RpU+tU3/OdHfTee++Z9u3bm/r165vGjRub3//+92blypUVPmdVncVTfqzLXq/8GO7Zs8fcf//9pnHjxsbf3980atTIdO3a1Tz55JMX7JOLPYunuLjYTJw40TRu3NjUr1/fdOzY0SxdurTStu/bt88MGjTINGjQwISEhJg77rjDrFixwkgy77777gXbhNrnMKbc1aYAVEvTpk2VlJRU6UWszrVhwwZ1795db7/9doWzRABcPtOnT9cf//hH7du3z5ZXToY7dvEAAHzO7NmzJUnXXHONTp48qXXr1unFF1/Ur3/9a8KJlyCgAAB8TlBQkGbNmqW9e/equLhYV155pSZNmqQ//vGPtd00XCR28QAAANup1UOZ//rXvyoxMVH169dXcnJypV/4BAAA6p5aCyiLFy9WamqqHn30UX3xxRf65S9/qX79+mnfvn211SQAAGATtbaLp3PnzurYsaPbFQFbtWql22+/XWlpaed97unTp3Xw4EGFhIRUevVEAABgP8YYHT16VHFxcRe8Hk2tHCRbUlKiLVu2uF0CW5L69OmjTZs2VahfXFys4uJi6/H333+v1q1bX/Z2AgCAmrd///4Lnk1VKwHlxx9/VGlpaYXvnIiOjq70uxLS0tL0+OOPV1zRwDckZ7DkMJJx/Ode50wKuT0stwyADZXNivJZBXzH2c/1yePS0qFVXjH5XLV6mnH53TOm3BdzlZk8ebLGjx9vPS4oKFB8fLzkHyw5g87mjrKAUv5FVK6MkOLV+N3l+8r/CGCsfZej3AeasfZdZWNddncRh2fUSkCJjIyUn59fhdmSvLy8Sr8O2+VyVfHdJ0ZW4CjLHY6z/zln0RkEE+9WNq6Mo+87+4OLKyDUHQx1HVAWQi9+sGvlLJ6AgAAlJycrMzPTrTwzM1Ndu3at3krPDSSmXNl/0su5hfAmjrMh1KEzIbTs//A95uyH2OH4z1jDNxlz5lY21vBhZ39oezDOtbaLZ/z48brvvvvUqVMndenSRS+//LL27dunkSNHerCWyoJHJcefuB2bwl/g3qn8vp1yM2fwHeWn/SXG2WeVBVAG1/eZcvcXVmsBZciQITp06JD+/Oc/KycnR0lJSVqxYoUSEhI8XFPZLyrHf5K4VMk0EuHEu5VND5btwGQcfRdjXWc4yo01P599WNnv5oufQfHKS90XFBQoLCxMGrz07Fk8OhtIyh+PUu6egOK9KptAUbky+Iaqxppx9j2Mbd1RNtYlx6S3Byo/P1+hoaHnfUqtXuq+xl0wmPEpALwGhyQAdZpvfpvxeWdPmEXxSuf7a5oh9S1VjS3j7HuYJas7Kpv9vgDfDCgXOHYWXohdPHXHuWNtxC8vX8bY1h3VGGvfDCgVwgmJxesxY1K3MGtSN3DVh7qjGjMovnUMisVR7odaZeGET4XX4heW77P+2ir/OeVz61MYzrrFwz84fGgGxeF+b82cSFX3CPOL3uN8P8kYP99yoVDCtIrv4fsN6o6LT6U+OoMCAPAOTKOgcj4YUEjevq2yC/DB9zHOvouxrVu84EqyNa+yw/1NJcs9v9wu7KD8WMJ3VTW+jLvvYmxRkQ/OoFSGKUQAALxJHQkoAADAm9TRgMKMCgAAdua7AeW8uzTZ3wkAgJ35bkA5L2ZQAACwszoaUAAAgJ0RUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO3UeECZNm2aHA6H2y0mJsZabozRtGnTFBcXp8DAQHXr1k07d+6s6WYAAAAvdllmUNq0aaOcnBzrtn37dmvZjBkzNHPmTM2ePVvZ2dmKiYlR7969dfTo0cvRFAAA4IWcl2WlTqfbrEkZY4yef/55Pfrooxo0aJAk6fXXX1d0dLTefPNNPfTQQ5Wur7i4WMXFxdbjgoKCy9FsAABgE5dlBmX37t2Ki4tTYmKi7r77bn377beSpD179ig3N1d9+vSx6rpcLqWkpGjTpk1Vri8tLU1hYWHWLT4+/nI0GwAA2ESNB5TOnTtrwYIFWr16tV555RXl5uaqa9euOnTokHJzcyVJ0dHRbs+Jjo62llVm8uTJys/Pt2779++v6WYDAAAbqfFdPP369bP+37ZtW3Xp0kVXXXWVXn/9dV1//fWSJIfD4fYcY0yFsnO5XC65XK6abioAALCpy36acXBwsNq2bavdu3dbx6WUny3Jy8urMKsCAADqrsseUIqLi/XVV18pNjZWiYmJiomJUWZmprW8pKREWVlZ6tq16+VuCgAA8BI1votn4sSJuu2223TllVcqLy9PTz75pAoKCjRs2DA5HA6lpqZq+vTpatGihVq0aKHp06crKChIQ4cOremmAAAAL1XjAeXAgQO655579OOPP6pRo0a6/vrr9emnnyohIUGS9Mgjj6ioqEijR4/W4cOH1blzZ61Zs0YhISE13RQAAOClHMYYU9uN8FRBQYHCwsKkwUslZ7DkkGSM5HCcuT+XQ5JxSDJlD865B2A7ZcfL8xH1fYx13eKQVHJMenug8vPzFRoaet7qfBcPAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHY8DyocffqjbbrtNcXFxcjgcWrp0qdtyY4ymTZumuLg4BQYGqlu3btq5c6dbneLiYo0bN06RkZEKDg7WgAEDdODAgUvaEAAA4Ds8DijHjh1T+/btNXv27EqXz5gxQzNnztTs2bOVnZ2tmJgY9e7dW0ePHrXqpKamKiMjQ+np6dq4caMKCwvVv39/lZaWVn9LAACAz3AYY0y1n+xwKCMjQ7fffrukM7MncXFxSk1N1aRJkySdmS2Jjo7W008/rYceekj5+flq1KiRFi5cqCFDhkiSDh48qPj4eK1YsUJ9+/at8DrFxcUqLi62HhcUFCg+Pl4avFRyBksOScZIDseZe7dGSjIOSabswTn3AGzHcfaej6jvY6zrFoekkmPS2wOVn5+v0NDQ81av0WNQ9uzZo9zcXPXp08cqc7lcSklJ0aZNmyRJW7Zs0cmTJ93qxMXFKSkpyapTXlpamsLCwqxbfHx8TTYbAADYTI0GlNzcXElSdHS0W3l0dLS1LDc3VwEBAWrYsGGVdcqbPHmy8vPzrdv+/ftrstkAAMBmnJdjpQ6Hw+2xMaZCWXnnq+NyueRyuWqsfQAAwN5qNKDExMRIOjNLEhsba5Xn5eVZsyoxMTEqKSnR4cOH3WZR8vLy1LVr12q8atkxJWXhpqogVL78/IEJAADUtIv/3Vuju3gSExMVExOjzMxMq6ykpERZWVlW+EhOTpa/v79bnZycHO3YsaOaAQUAANiehwdDezyDUlhYqG+++cZ6vGfPHm3dulXh4eG68sorlZqaqunTp6tFixZq0aKFpk+frqCgIA0dOlSSFBYWphEjRmjChAmKiIhQeHi4Jk6cqLZt26pXr14etqZs9gQA4LU4sbJu8PDXtccBZfPmzerevbv1ePz48ZKkYcOGaf78+XrkkUdUVFSk0aNH6/Dhw+rcubPWrFmjkJAQ6zmzZs2S0+nU4MGDVVRUpJ49e2r+/Pny8/PztDnlNriqU4jPPb343LoAAOBnYSQ5Lv537yVdB6W2FBQUKCws7Mx1UPyDzl7nRGc23JQLKCRzH8OFE+oOxrruYKx939kxPnlMevv2n/86KLWi0kTmKDezcqEDaAHYxrnHvFsF8EkVxhr4j8tymvHPq9zsSVlYOe8FY5lW8V7MjtUdDG7dwVj7PlPu/sK8fwalzLmBxJQrq9AhfBh8AsMIAN7Dw9ky3wko58UcIgAA3sT3A0qVu3gAAIBd+X5AIYsAAOB1fOAg2TKOcv8/97onplwZ10TxPuceEVt+LOFbKvurgs+sbys/5owvfHIGhSkT31XZdy4x3nUD4wz4hov/LPvQDEpVsyMXeg68w7ljxQyKb6tsrMv+X345fAtj6/sufox9KKCcq/z51pXt3uGD4L08P58e3spU8X/4FsYWFfngLh4AAODtCCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2PA4oH374oW677TbFxcXJ4XBo6dKlbsuHDx8uh8Phdrv++uvd6hQXF2vcuHGKjIxUcHCwBgwYoAMHDlzShgAAAN/hcUA5duyY2rdvr9mzZ1dZ5+abb1ZOTo51W7Fihdvy1NRUZWRkKD09XRs3blRhYaH69++v0tJSz7cAAAD4HKenT+jXr5/69et33joul0sxMTGVLsvPz9fcuXO1cOFC9erVS5K0aNEixcfHa+3aterbt6+nTQIAAD7mshyDsmHDBkVFRally5Z68MEHlZeXZy3bsmWLTp48qT59+lhlcXFxSkpK0qZNmypdX3FxsQoKCtxuAADAd9V4QOnXr5/eeOMNrVu3Ts8995yys7PVo0cPFRcXS5Jyc3MVEBCghg0buj0vOjpaubm5la4zLS1NYWFh1i0+Pr6mmw0AAGzE4108FzJkyBDr/0lJSerUqZMSEhL0/vvva9CgQVU+zxgjh8NR6bLJkydr/Pjx1uOCggJCCgAAPuyyn2YcGxurhIQE7d69W5IUExOjkpISHT582K1eXl6eoqOjK12Hy+VSaGio2w0AAPiuyx5QDh06pP379ys2NlaSlJycLH9/f2VmZlp1cnJytGPHDnXt2vVyNwcAAHgBj3fxFBYW6ptvvrEe79mzR1u3blV4eLjCw8M1bdo03XHHHYqNjdXevXs1ZcoURUZGauDAgZKksLAwjRgxQhMmTFBERITCw8M1ceJEtW3b1jqrBwAA1G0eB5TNmzere/fu1uOyY0OGDRumOXPmaPv27VqwYIGOHDmi2NhYde/eXYsXL1ZISIj1nFmzZsnpdGrw4MEqKipSz549NX/+fPn5+dXAJgEAAG/nMMaY2m6EpwoKChQWFiYNXio5gyWHJGMkh+PM/bkckoxDkil7cM49ANspO1aej6jvY6zrFoekkmPS2wOVn59/weNJ+S4eAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOx4FlLS0NF177bUKCQlRVFSUbr/9du3atcutjjFG06ZNU1xcnAIDA9WtWzft3LnTrU5xcbHGjRunyMhIBQcHa8CAATpw4MClbw0AAPAJHgWUrKwsjRkzRp9++qkyMzN16tQp9enTR8eOHbPqzJgxQzNnztTs2bOVnZ2tmJgY9e7dW0ePHrXqpKamKiMjQ+np6dq4caMKCwvVv39/lZaW1tyWAQAAr+UwxpjqPvmHH35QVFSUsrKydNNNN8kYo7i4OKWmpmrSpEmSzsyWREdH6+mnn9ZDDz2k/Px8NWrUSAsXLtSQIUMkSQcPHlR8fLxWrFihvn37XvB1CwoKFBYWJg1eKjmDJYckYySH48y92xZKMg5JpuzBOfcAbMdx9p6PqO9jrOsWh6SSY9LbA5Wfn6/Q0NDzVr+kY1Dy8/MlSeHh4ZKkPXv2KDc3V3369LHquFwupaSkaNOmTZKkLVu26OTJk2514uLilJSUZNUpr7i4WAUFBW43AADgu6odUIwxGj9+vG688UYlJSVJknJzcyVJ0dHRbnWjo6OtZbm5uQoICFDDhg2rrFNeWlqawsLCrFt8fHx1mw0AALxAtQPK2LFjtW3bNr311lsVljkcDrfHxpgKZeWdr87kyZOVn59v3fbv31/dZgMAAC9QrYAybtw4LVu2TOvXr1eTJk2s8piYGEmqMBOSl5dnzarExMSopKREhw8frrJOeS6XS6GhoW43AADguzwKKMYYjR07VkuWLNG6deuUmJjotjwxMVExMTHKzMy0ykpKSpSVlaWuXbtKkpKTk+Xv7+9WJycnRzt27LDqAACAus3pSeUxY8bozTff1LvvvquQkBBrpiQsLEyBgYFyOBxKTU3V9OnT1aJFC7Vo0ULTp09XUFCQhg4datUdMWKEJkyYoIiICIWHh2vixIlq27atevXqVfNbCAAAvI5HAWXOnDmSpG7durmVz5s3T8OHD5ckPfLIIyoqKtLo0aN1+PBhde7cWWvWrFFISIhVf9asWXI6nRo8eLCKiorUs2dPzZ8/X35+fpe2NQAAwCdc0nVQagvXQQF8GNfGqDsY67rl57wOCgAAwOXg0S4e+zGS42z0dpQ9rqRaWR2VvwdgW+e/MgF8CWNdd3gw1l4dUCZ3eUv1A/1ruxkAAOAinCg6qbR/XFxdrz4G5cinUmiDs4WVpTJTRTkAwBY4IrDucEjKL5Su6Kw6cgwKAQQAvBbhpO7wdKy9P6CU4fASAAB8hu8ElPI4mxgAAK/lOwHFUe4evovQWXcw1kCd5TsBBXWCw/oHvo6xBuo23w0ozKj4JP6grjsYa6Bu892AAgAAvBYBBQAA2A4BBQAA2A4BBV6huocSOS7hubA3xtV3MbaQvPy7eFB3VPeASQ609F2Mre9ibCExgwIAAGyIgAIAAGyHgHIW+zwBALAPAgoAALAdAspZHJQFAIB9EFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFDO4jooAADYBwHlLE4zBgDAPggoAADAdjwKKGlpabr22msVEhKiqKgo3X777dq1a5dbneHDh8vhcLjdrr/+erc6xcXFGjdunCIjIxUcHKwBAwbowIEDl741AADAJ3gUULKysjRmzBh9+umnyszM1KlTp9SnTx8dO3bMrd7NN9+snJwc67ZixQq35ampqcrIyFB6ero2btyowsJC9e/fX6WlpZe+RQAAwOs5Pam8atUqt8fz5s1TVFSUtmzZoptuuskqd7lciomJqXQd+fn5mjt3rhYuXKhevXpJkhYtWqT4+HitXbtWffv2rfCc4uJiFRcXW48LCgo8aTYAAPAyl3QMSn5+viQpPDzcrXzDhg2KiopSy5Yt9eCDDyovL89atmXLFp08eVJ9+vSxyuLi4pSUlKRNmzZV+jppaWkKCwuzbvHx8ZfSbAAAYHPVDijGGI0fP1433nijkpKSrPJ+/frpjTfe0Lp16/Tcc88pOztbPXr0sGZAcnNzFRAQoIYNG7qtLzo6Wrm5uZW+1uTJk5Wfn2/d9u/fX91mV4nTjAEAsA+PdvGca+zYsdq2bZs2btzoVj5kyBDr/0lJSerUqZMSEhL0/vvva9CgQVWuzxgjh6PymOByueRyuarb1IvCacYAANhHtWZQxo0bp2XLlmn9+vVq0qTJeevGxsYqISFBu3fvliTFxMSopKREhw8fdquXl5en6Ojo6jSnRjCDAgCAfXgUUIwxGjt2rJYsWaJ169YpMTHxgs85dOiQ9u/fr9jYWElScnKy/P39lZmZadXJycnRjh071LVrVw+bX3OYQQEAwD482sUzZswYvfnmm3r33XcVEhJiHTMSFhamwMBAFRYWatq0abrjjjsUGxurvXv3asqUKYqMjNTAgQOtuiNGjNCECRMUERGh8PBwTZw4UW3btrXO6gEAAHWbRwFlzpw5kqRu3bq5lc+bN0/Dhw+Xn5+ftm/frgULFujIkSOKjY1V9+7dtXjxYoWEhFj1Z82aJafTqcGDB6uoqEg9e/bU/Pnz5efnd+lbBAAAvJ7DGON1ezcKCgoUFhamI59KoSE6s3+Gg0gAALC1gkLpis5nLlMSGhp63rp8Fw8AALAdAgoAALAdAspZ7CECAMA+CChned2BOAAA+DACCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CylmcZgwAgH0QUAAAgO0QUM7iOigAANgHAQUAANgOAQUAANgOAQUAANgOAQUAANgOAeUsTjMGAMA+CCgAAMB2CChncZoxAAD2QUABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0A5i+ugAABgHwSUszjNGAAA+yCgAAAA2yGgAAAA2/EooMyZM0ft2rVTaGioQkND1aVLF61cudJabozRtGnTFBcXp8DAQHXr1k07d+50W0dxcbHGjRunyMhIBQcHa8CAATpw4EDNbA0AAPAJHgWUJk2a6KmnntLmzZu1efNm9ejRQ7/61a+sEDJjxgzNnDlTs2fPVnZ2tmJiYtS7d28dPXrUWkdqaqoyMjKUnp6ujRs3qrCwUP3791dpaWnNbhkAAPBaDmPMJR0fGh4ermeeeUb333+/4uLilJqaqkmTJkk6M1sSHR2tp59+Wg899JDy8/PVqFEjLVy4UEOGDJEkHTx4UPHx8VqxYoX69u1b6WsUFxeruLjYelxQUKD4+Hgd+VQKDdGZI1w5DQcAAFsrKJSu6Czl5+crNDT0vHWrfQxKaWmp0tPTdezYMXXp0kV79uxRbm6u+vTpY9VxuVxKSUnRpk2bJElbtmzRyZMn3erExcUpKSnJqlOZtLQ0hYWFWbf4+PjqNhsAAHgBjwPK9u3b1aBBA7lcLo0cOVIZGRlq3bq1cnNzJUnR0dFu9aOjo61lubm5CggIUMOGDausU5nJkycrPz/fuu3fv9/TZgMAAC/i9PQJV199tbZu3aojR47onXfe0bBhw5SVlWUtdzjc97UYYyqUlXehOi6XSy6Xy9OmesQhroUCAIBdeDyDEhAQoObNm6tTp05KS0tT+/bt9cILLygmJkaSKsyE5OXlWbMqMTExKikp0eHDh6usU1sIJwAA2MclXwfFGKPi4mIlJiYqJiZGmZmZ1rKSkhJlZWWpa9eukqTk5GT5+/u71cnJydGOHTusOgAAAB7t4pkyZYr69eun+Ph4HT16VOnp6dqwYYNWrVolh8Oh1NRUTZ8+XS1atFCLFi00ffp0BQUFaejQoZKksLAwjRgxQhMmTFBERITCw8M1ceJEtW3bVr169bosGwgAALyPRwHl3//+t+677z7l5OQoLCxM7dq106pVq9S7d29J0iOPPKKioiKNHj1ahw8fVufOnbVmzRqFhIRY65g1a5acTqcGDx6soqIi9ezZU/Pnz5efn1/NbhkAAPBal3wdlNpQUFCgsLAwroMCAIAX+VmugwIAAHC5EFDOYgIGAAD7IKAAAADbIaCc5XUH4gAA4MMIKAAAwHYIKAAAwHZ8O6Cw3wYAAK/k/QHl3GugEEgAAPAJ3h9QznXuucJlwYXQAngtTv8H6i7vDyhlIaQsiBBIfB6/tADA93l/QCnjqOIePoVJsbqDsQbqNt8JKFXxIKiQaeyvOr+wGFfvRDgB6jbfDygAAMDrEFDOwV9svolxBQDvQ0ABAAC2Q0ABAAC2Q0A5iwMpAQCwDwIKAACwHQLKWRxICQCAfRBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQzuI6KAAA2AcBBQAA2A4B5SyugwIAgH14FFDmzJmjdu3aKTQ0VKGhoerSpYtWrlxpLR8+fLgcDofb7frrr3dbR3FxscaNG6fIyEgFBwdrwIABOnDgQM1sDQAA8AkeBZQmTZroqaee0ubNm7V582b16NFDv/rVr7Rz506rzs0336ycnBzrtmLFCrd1pKamKiMjQ+np6dq4caMKCwvVv39/lZaW1swWAQAAr+cwxlzS3o3w8HA988wzGjFihIYPH64jR45o6dKlldbNz89Xo0aNtHDhQg0ZMkSSdPDgQcXHx2vFihXq27fvRb1mQUGBwsLCdORTKTREZ/bPcJQrAAC2VlAoXdH5TB4IDQ09b91qH4NSWlqq9PR0HTt2TF26dLHKN2zYoKioKLVs2VIPPvig8vLyrGVbtmzRyZMn1adPH6ssLi5OSUlJ2rRpU5WvVVxcrIKCArcbAADwXR4HlO3bt6tBgwZyuVwaOXKkMjIy1Lp1a0lSv3799MYbb2jdunV67rnnlJ2drR49eqi4uFiSlJubq4CAADVs2NBtndHR0crNza3yNdPS0hQWFmbd4uPjPW02AADwIk5Pn3D11Vdr69atOnLkiN555x0NGzZMWVlZat26tbXbRpKSkpLUqVMnJSQk6P3339egQYOqXKcxRg5H1ftoJk+erPHjx1uPCwoKajykOMSZPAAA2IXHASUgIEDNmzeXJHXq1EnZ2dl64YUX9Pe//71C3djYWCUkJGj37t2SpJiYGJWUlOjw4cNusyh5eXnq2rVrla/pcrnkcrk8bSoAAPBSl3wdFGOMtQunvEOHDmn//v2KjY2VJCUnJ8vf31+ZmZlWnZycHO3YseO8AeXnwOwJAAD24dEMypQpU9SvXz/Fx8fr6NGjSk9P14YNG7Rq1SoVFhZq2rRpuuOOOxQbG6u9e/dqypQpioyM1MCBAyVJYWFhGjFihCZMmKCIiAiFh4dr4sSJatu2rXr16nVZNhAAAHgfjwLKv//9b913333KyclRWFiY2rVrp1WrVql3794qKirS9u3btWDBAh05ckSxsbHq3r27Fi9erJCQEGsds2bNktPp1ODBg1VUVKSePXtq/vz58vPzq/GNAwAA3umSr4NSG7gOCgAA3udnuQ4KAADA5UJAOYsJGAAA7IOAAgAAbIeAcpbXHYgDAIAPI6AAAADbIaAAAADbIaAAAADbIaAAAADbIaAAAADbIaCcxXVQAACwDwLKWZxmDACAfRBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQzuJCbQAA2AcB5Swu1AYAgH0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUM7iNGMAAOyDgAIAAGyHgHIW10EBAMA+LimgpKWlyeFwKDU11SozxmjatGmKi4tTYGCgunXrpp07d7o9r7i4WOPGjVNkZKSCg4M1YMAAHThw4FKaAgAAfEi1A0p2drZefvlltWvXzq18xowZmjlzpmbPnq3s7GzFxMSod+/eOnr0qFUnNTVVGRkZSk9P18aNG1VYWKj+/furtLS0+lsCAAB8RrUCSmFhoe6991698soratiwoVVujNHzzz+vRx99VIMGDVJSUpJef/11HT9+XG+++aYkKT8/X3PnztVzzz2nXr16qUOHDlq0aJG2b9+utWvX1sxWAQAAr1atgDJmzBjdeuut6tWrl1v5nj17lJubqz59+lhlLpdLKSkp2rRpkyRpy5YtOnnypFuduLg4JSUlWXXKKy4uVkFBgdsNAAD4LqenT0hPT9fnn3+u7OzsCstyc3MlSdHR0W7l0dHR+u6776w6AQEBbjMvZXXKnl9eWlqaHn/8cU+b6hGHOFAWAAC78GgGZf/+/Xr44Ye1aNEi1a9fv8p6Dof7VUWMMRXKyjtfncmTJys/P9+67d+/35NmAwAAL+NRQNmyZYvy8vKUnJwsp9Mpp9OprKwsvfjii3I6ndbMSfmZkLy8PGtZTEyMSkpKdPjw4SrrlOdyuRQaGup2q2nMngAAYB8eBZSePXtq+/bt2rp1q3Xr1KmT7r33Xm3dulXNmjVTTEyMMjMzreeUlJQoKytLXbt2lSQlJyfL39/frU5OTo527Nhh1QEAAHWbR8eghISEKCkpya0sODhYERERVnlqaqqmT5+uFi1aqEWLFpo+fbqCgoI0dOhQSVJYWJhGjBihCRMmKCIiQuHh4Zo4caLatm1b4aBbAABQN3l8kOyFPPLIIyoqKtLo0aN1+PBhde7cWWvWrFFISIhVZ9asWXI6nRo8eLCKiorUs2dPzZ8/X35+fjXdHAAA4IUcxhivO/yioKBAYWFhOvKpFBqiMweQ8G1/AADYWkGhdEXnM9dEu9DxpHwXz1nkGwAA7IOAAgAAbIeAcpbX7ecCAMCHEVAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFDO4jooAADYBwHlLE4zBgDAPnw/oJA8AADwOr4fUDzAbh77q84YMa4A4H1q/NuMfw5l329YcExnfvuYcvdulSspAwAAP7uCwjP3F/M9xV4ZUI4ePSpJurJnLTcEAAB47OjRowoLCztvHYe5mBhjM6dPn9auXbvUunVr7d+//4Jf2YwzCgoKFB8fT595iH7zHH1WPfSb5+iz6qmtfjPG6OjRo4qLi1O9euc/ysQrZ1Dq1aunxo0bS5JCQ0N5U3qIPqse+s1z9Fn10G+eo8+qpzb67UIzJ2U4SBYAANgOAQUAANiO1wYUl8ulqVOnyuVy1XZTvAZ9Vj30m+fos+qh3zxHn1WPN/SbVx4kCwAAfJvXzqAAAADfRUABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC245UB5a9//asSExNVv359JScn66OPPqrtJtWaDz/8ULfddpvi4uLkcDi0dOlSt+XGGE2bNk1xcXEKDAxUt27dtHPnTrc6xcXFGjdunCIjIxUcHKwBAwbowIEDP+NW/LzS0tJ07bXXKiQkRFFRUbr99tu1a9cutzr0W0Vz5sxRu3btrCtPdunSRStXrrSW02cXlpaWJofDodTUVKuMfqto2rRpcjgcbreYmBhrOX1Wue+//16//vWvFRERoaCgIP3iF7/Qli1brOVe12/Gy6Snpxt/f3/zyiuvmC+//NI8/PDDJjg42Hz33Xe13bRasWLFCvPoo4+ad955x0gyGRkZbsufeuopExISYt555x2zfft2M2TIEBMbG2sKCgqsOiNHjjSNGzc2mZmZ5vPPPzfdu3c37du3N6dOnfqZt+bn0bdvXzNv3jyzY8cOs3XrVnPrrbeaK6+80hQWFlp16LeKli1bZt5//32za9cus2vXLjNlyhTj7+9vduzYYYyhzy7ks88+M02bNjXt2rUzDz/8sFVOv1U0depU06ZNG5OTk2Pd8vLyrOX0WUU//fSTSUhIMMOHDzf/+te/zJ49e8zatWvNN998Y9Xxtn7zuoBy3XXXmZEjR7qVXXPNNeYPf/hDLbXIPsoHlNOnT5uYmBjz1FNPWWUnTpwwYWFh5m9/+5sxxpgjR44Yf39/k56ebtX5/vvvTb169cyqVat+trbXpry8PCPJZGVlGWPoN080bNjQvPrqq/TZBRw9etS0aNHCZGZmmpSUFCug0G+Vmzp1qmnfvn2ly+izyk2aNMnceOONVS73xn7zql08JSUl2rJli/r06eNW3qdPH23atKmWWmVfe/bsUW5urlt/uVwupaSkWP21ZcsWnTx50q1OXFyckpKS6kyf5ufnS5LCw8Ml0W8Xo7S0VOnp6Tp27Ji6dOlCn13AmDFjdOutt6pXr15u5fRb1Xbv3q24uDglJibq7rvv1rfffiuJPqvKsmXL1KlTJ911112KiopShw4d9Morr1jLvbHfvCqg/PjjjyotLVV0dLRbeXR0tHJzc2upVfZV1ifn66/c3FwFBASoYcOGVdbxZcYYjR8/XjfeeKOSkpIk0W/ns337djVo0EAul0sjR45URkaGWrduTZ+dR3p6uj7//HOlpaVVWEa/Va5z585asGCBVq9erVdeeUW5ubnq2rWrDh06RJ9V4dtvv9WcOXPUokULrV69WiNHjtRvf/tbLViwQJJ3vtecP/sr1gCHw+H22BhToQz/UZ3+qit9OnbsWG3btk0bN26ssIx+q+jqq6/W1q1bdeTIEb3zzjsaNmyYsrKyrOX0mbv9+/fr4Ycf1po1a1S/fv0q69Fv7vr162f9v23bturSpYuuuuoqvf7667r++usl0WflnT59Wp06ddL06dMlSR06dNDOnTs1Z84c/eY3v7HqeVO/edUMSmRkpPz8/Cokuby8vAqpELKOej9ff8XExKikpESHDx+uso6vGjdunJYtW6b169erSZMmVjn9VrWAgAA1b95cnTp1Ulpamtq3b68XXniBPqvCli1blJeXp+TkZDmdTjmdTmVlZenFF1+U0+m0tpt+O7/g4GC1bdtWu3fv5r1WhdjYWLVu3dqtrFWrVtq3b58k7/y55lUBJSAgQMnJycrMzHQrz8zMVNeuXWupVfaVmJiomJgYt/4qKSlRVlaW1V/Jycny9/d3q5OTk6MdO3b4bJ8aYzR27FgtWbJE69atU2Jiotty+u3iGWNUXFxMn1WhZ8+e2r59u7Zu3WrdOnXqpHvvvVdbt25Vs2bN6LeLUFxcrK+++kqxsbG816pwww03VLhcwtdff62EhARJXvpz7Wc/LPcSlZ1mPHfuXPPll1+a1NRUExwcbPbu3VvbTasVR48eNV988YX54osvjCQzc+ZM88UXX1inXT/11FMmLCzMLFmyxGzfvt3cc889lZ5W1qRJE7N27Vrz+eefmx49evj06XijRo0yYWFhZsOGDW6nMR4/ftyqQ79VNHnyZPPhhx+aPXv2mG3btpkpU6aYevXqmTVr1hhj6LOLde5ZPMbQb5WZMGGC2bBhg/n222/Np59+avr3729CQkKsn/P0WUWfffaZcTqd5i9/+YvZvXu3eeONN0xQUJBZtGiRVcfb+s3rAooxxrz00ksmISHBBAQEmI4dO1qnh9ZF69evN5Iq3IYNG2aMOXNq2dSpU01MTIxxuVzmpptuMtu3b3dbR1FRkRk7dqwJDw83gYGBpn///mbfvn21sDU/j8r6S5KZN2+eVYd+q+j++++3PneNGjUyPXv2tMKJMfTZxSofUOi3isquz+Hv72/i4uLMoEGDzM6dO63l9Fnl3nvvPZOUlGRcLpe55pprzMsvv+y23Nv6zWGMMT//vA0AAEDVvOoYFAAAUDcQUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO0QUAAAgO38f2EguVP0cldDAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+7klEQVR4nO3de3xU1aH28WfIJEMIyZQQcoMYgqACAcpFEbQS7qJIBRUUa+GIHrnWFKgUbCW2HqJYQT1YWi2CgBq0ErwhEASiFK0B5Qjoi1hBQJNGMeSCIYG43j9IdjO5QCYEs2fy+34+Q5i11+xZe62ZyZO1L+MwxhgBAADYSLPGbgAAAEBVBBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBQAAGA7BBTYXvv27TVy5Mh6PfbQoUNyOBy13q699toGbq1vSklJkcPhaJTn/uSTT5SSkqJDhw5VWzZx4kS1b9/+R2+TN7777jvdeuutioyMlMPh0I033lhr3bO9lnfu3CmHw6EVK1ZYZRMnTlTLli0buMU1a8y+rq0PHQ6HUlJSGqVNaHzOxm4AcCHFxMTovffeq1a+bt06PfLIIxo9enQjtMp+7rrrrkYLa5988okefPBBJSUlVfsF+fvf/1733ntvo7Srrv74xz8qPT1dzz77rC6++GKFh4c3dpPqpTH72l/6EA2LgIIG8f3336tFixaN3YxqXC6Xrrzyymrlc+fOVYsWLXTbbbc1QqvOz4Xo63bt2qldu3YNus6GcPHFFzd2E85p7969uvjii3X77bc3dlM8FBcXKzg4uM71G7Ov7dqHaFzs4oHXKnYHfPjhh7r55pvVqlUr68Nt586duvXWW9W+fXsFBwerffv2uu222/Tll196rGPFihVyOBzaunWrpkyZooiICLVu3VpjxozR119/fc42/PnPf5bT6dT8+fO9bv+//vUvZWZmauzYsQoLCztn/QcffFB9+/ZVeHi4wsLC1KtXLy1btkxVv2ezYvo+PT1d3bt3V/PmzdWhQwc9+eSTHvW2bdsmh8Oh1atXa+bMmYqOjlZwcLAGDBigjz76yKNuxRT/nj17NGzYMIWGhmrw4MGSzkyLT506VW3btlVQUJA6dOig+++/XyUlJZKkkydPqmfPnurYsaPy8/Otdebk5Cg6OlpJSUkqKyuTVPMunorteeONN9SzZ08FBwerc+fOeuONNySdGcPOnTsrJCREV1xxhXbu3Onx+Lq8FlasWKFbbrlFkjRw4EBr11vFbo6adjucPHlSc+fOVUJCgoKCgtS2bVtNmzZNx48fr7H9GzZsUK9evRQcHKzLLrtMzz77bPVBrsG5+rdi9+HmzZv16aefWm3ftm1bndZfX//4xz8UERGhkSNH6sSJE5L+s61r165Vz5491bx5cz344IOSpKeeekrXXHONIiMjFRISom7dumnhwoU6deqUx3pr6muHw6Hp06dr1apV6ty5s1q0aKEePXpYr4HKDhw4oPHjxysyMlIul0udO3fWU089ddZt8bYPv/nmG02dOlVdunRRy5YtFRkZqUGDBundd9+tVvfo0aO6+eabFRoaqp/85Ce6/fbblZWVVW03GmzMAF6aP3++kWTi4+PNnDlzTEZGhlm3bp0xxpiXX37ZPPDAAyY9Pd1kZmaatLQ0M2DAANOmTRvzzTffWOtYvny5kWQ6dOhgZsyYYTZu3Gj+9re/mVatWpmBAwd6PF98fLy5/vrrjTHG/PDDD2bWrFkmMDDQLF++vF7tnzdvnpFktm/fXqf6EydONMuWLTMZGRkmIyPD/PGPfzTBwcHmwQcfrNbOtm3bmosuusg8++yzZv369eb22283ksyjjz5q1du6dauRZOLi4szPf/5z8/rrr5vVq1ebjh07mrCwMPOvf/3LqjthwgQTGBho2rdvb1JTU83bb79tNm7caIqLi0337t1NSEiI+dOf/mQ2bdpkfv/73xun02muu+466/GfffaZCQ0NNWPGjDHGGFNWVmYGDRpkIiMjzddff23VqxjTqtvTrl07k5iYaF588UWzfv1607dvXxMYGGgeeOABc9VVV5m1a9ea9PR0c8kll5ioqCjz/fffW4+vy2shNzfXLFiwwEgyTz31lHnvvffMe++9Z3Jzc63tj4+Pt9b5ww8/mOHDhxun02l+//vfm02bNpk//elPJiQkxPTs2dOcPHmyWvu7dOliVq5caTZu3GhuueUWI8lkZmaedczr0r8nT5407733nunZs6fp0KGD1fb8/Pxa11v5tVxVVlaWkeTxup4wYYIJCQmx7q9Zs8a4XC4zZcoUc/r0aY/1xsTEmA4dOphnn33WbN261XzwwQfGGGN+/etfm6VLl5oNGzaYLVu2mMWLF5uIiAjzX//1Xx7PX7WvjTFGkmnfvr254oorzEsvvWTWr19vkpKSjNPp9Hid7tu3z7jdbtOtWzezcuVKs2nTJjNr1izTrFkzk5KSUmt/nKsPJZn58+db9f/f//t/ZsqUKSYtLc1s27bNvPHGG2bSpEmmWbNmZuvWrVa9oqIi07FjRxMeHm6eeuops3HjRvPrX//aJCQkVOtj2BcBBV6r+GX2wAMPnLPu6dOnTVFRkQkJCTFPPPGEVV4RUKZOnepRf+HChUaSyc7OtsoqPtS///57c9NNNxm32202b95cr7afPn3atG3b1lx22WX1enxZWZk5deqU+cMf/mBat25tfvjhB492OhwOs3v3bo/HDB061ISFhZkTJ04YY/4TUHr16uXx+EOHDpnAwEBz1113WWUTJkwwksyzzz7rsc6//OUvRpJ56aWXPMofeeQRI8ls2rTJKluzZo2RZB5//HHzwAMPmGbNmnksN6b2gBIcHGyOHj1qle3evdtIMjExMdb2GGPMunXrjCTz2muv1dp3tb0WXn75ZSPJ4xdM5e2v/Etzw4YNRpJZuHChR72KbXz66ac92t+8eXPz5ZdfWmXFxcUmPDzc3HPPPbW20xjv+nfAgAGma9euZ11f5TbVN6A8/PDDJiAgwDzyyCM1rjcgIMDs37//rM9f8fpduXKlCQgIMN99953Hc9UUUKKiokxBQYFVlpOTY5o1a2ZSU1OtsuHDh5t27dpVC2fTp083zZs393iemtTWh1UDSlWnT582p06dMoMHDzajR4+2yp966ikjybz11lse9e+55x4Cig9hFw/q7aabbqpWVlRUpDlz5qhjx45yOp1yOp1q2bKlTpw4oU8//bRa/VGjRnnc7969uyRV2yV07NgxDRo0SB988IG2b99u7eaoUFZWptOnT1u3H374ocY2b9iwQV999ZUmTZpU5+3csmWLhgwZIrfbrYCAAAUGBuqBBx7QsWPHlJub61G3a9eu6tGjh0fZ+PHjVVBQoA8//LBaeeXdKvHx8erfv7+2bt1arQ1V+3rLli0KCQnRzTff7FE+ceJESdLbb79tlY0dO1ZTpkzRb37zGz300EOaN2+ehg4dWqdt/+lPf6q2bdta9zt37ixJSkpK8jgOpqK88rh5+1qoiy1btnhsZ4VbbrlFISEhHttd0f6LLrrIut+8eXNdcskl1V5fNT1PXfv3QjPG6J577tH8+fP1wgsv6L777quxXvfu3XXJJZdUK//oo480atQotW7d2nr9/vKXv1RZWZk+++yzcz7/wIEDFRoaat2PiopSZGSk1YcnT57U22+/rdGjR6tFixYe78PrrrtOJ0+e1Pvvv1/Pra/uL3/5i3r16qXmzZvL6XQqMDBQb7/9tsdrKjMzU6GhodUO/PbFY86aMgIK6i0mJqZa2fjx47VkyRLddddd2rhxoz744ANlZWWpTZs2Ki4urla/devWHvddLpckVav72Wef6Z///KdGjBihxMTEausZPHiwAgMDrdudd95ZY5uXLVtmfUDXxQcffKBhw4ZJkp555hn94x//UFZWlu6///4a2xkdHV1tHRVlx44dq1PdqvVatGhR7ViZY8eOKTo6utpxI5GRkXI6ndXWceedd+rUqVNyOp361a9+Vev2VlX1bIqgoKCzlp88edIq8/a1UBfHjh2T0+lUmzZtPModDkeNfVf19SWdeY2d6/m97d+6cjqd1nE/VZ0+fVqSFBgY6FFeWlqqNWvWqGvXrhoxYkSt667p/Xj48GH97Gc/01dffaUnnnhC7777rrKysqxjQ+oyDufqw2PHjun06dP63//9X4/3YGBgoK677jpJ0rfffnvO56mLRYsWacqUKerbt69eeeUVvf/++8rKytK1117rsS3Hjh1TVFRUtcfXVAb74iwe1FvVD+/8/Hy98cYbmj9/vn77299a5SUlJfruu+/O67n69eunW265xZr5WLp0qZo1+0++/utf/6rCwkLrfkRERLV15Obm6o033tCoUaMUGRlZp+dNS0tTYGCg3njjDTVv3twqX7duXY31c3Jyai2r+kFfW92q9Wq6Pknr1q31z3/+U8YYj+W5ubk6ffq0x/afOHFCd9xxhy655BL9+9//1l133aVXX321xvY3lAv1WmjdurVOnz6tb775xiOkGGOUk5Ojyy+//LzaXfl56tq/3oiKitJXX31V47KK8qq/RF0ul7Zu3arhw4dryJAh2rBhg1q1alXt8TW9TtatW6cTJ05o7dq1io+Pt8p3795dr/bXpFWrVgoICNAdd9yhadOm1VgnISGhQZ5r9erVSkpK0tKlSz3KK7/3pTPj98EHH1R7fE3vOdgXMyhoMA6HQ8YYaxakwt/+9rda/2r0xoQJE5SWlqbly5dbU9QVLr30UvXp08e61XTBqZUrV+rUqVNe7d5xOBxyOp0KCAiwyoqLi7Vq1aoa6+/bt0//93//51H2wgsvKDQ0VL169fIof/HFFz3OBPryyy+1Y8cOJSUlnbNdgwcPVlFRUbWgtHLlSmt5hcmTJ+vw4cNau3atli1bptdee02LFy8+53OcD29eC7XNmtWkYrtWr17tUf7KK6/oxIkT1Xb91Zc3/euNIUOGaO/evfrkk0+qLXvppZfUsmVL9e3bt9qynj17KjMzU0ePHlVSUlK1XYu1qQgtlcfBGKNnnnmmXu2vSYsWLTRw4EB99NFH6t69u8f7sOJW0yxMfTgcjmqvqY8//rjatY4GDBigwsJCvfXWWx7laWlpDdIO/DiYQUGDCQsL0zXXXKNHH31UERERat++vTIzM7Vs2TL95Cc/aZDnuPnmm9WiRQvdfPPNKi4u1osvvmjtXjiXZcuWKS4uTsOHD6/z811//fVatGiRxo8fr//+7//WsWPH9Kc//anah2SF2NhYjRo1SikpKYqJidHq1auVkZGhRx55pNq1S3JzczV69Gjdfffdys/P1/z589W8eXPNnTv3nO365S9/qaeeekoTJkzQoUOH1K1bN23fvl0LFizQddddpyFDhkg6EwhWr16t5cuXq2vXrurataumT5+uOXPm6KqrrtIVV1xR577whjevhYpddk8//bRCQ0PVvHlzJSQk1PhLbejQoRo+fLjmzJmjgoICXXXVVfr44481f/589ezZU3fccUeDtL+u/eute++9VytXrlRSUpLmzZunbt26KS8vT2vWrNHf//53LVq0yON4j8o6d+6sd999V0OGDNE111yjzZs3n/PaNUOHDlVQUJBuu+023XfffTp58qSWLl2qvLy8erW/Nk888YSuvvpq/exnP9OUKVPUvn17FRYW6vPPP9frr79uHTt0vkaOHKk//vGPmj9/vgYMGKD9+/frD3/4gxISEqxdZNKZP2YWL16sX/ziF3rooYfUsWNHvfXWW9q4caMkecy+wsYa7/hc+KqKMz4qnzZc4ejRo+amm24yrVq1MqGhoebaa681e/fuNfHx8WbChAlWvYqzeLKysjweX3GGS+UzOmo682Hr1q2mZcuW5tprr/U4tbU2//jHP+p85lFVzz77rLn00kuNy+UyHTp0MKmpqWbZsmVGkjl48GC1dv797383Xbt2NUFBQaZ9+/Zm0aJFNW7jqlWrzK9+9SvTpk0b43K5zM9+9jOzc+dOj7pVTzOt7NixY2by5MkmJibGOJ1OEx8fb+bOnWudavvxxx+b4OBgj3435sypnb179zbt27c3eXl5xpjaz+Kp6YwTSWbatGkeZQcPHqx2OnVdXwvGGPP444+bhIQEExAQ4HGWRU1nlhQXF5s5c+aY+Ph4ExgYaGJiYsyUKVOsbTlX+wcMGGAGDBhQrbyqc/Vv5fXV9SweY86cBTNlyhRz0UUXGafTaUJDQ83VV19tXn755Wp1axr/o0ePmssuu8y0b9/eOtX3bGcHvf7666ZHjx6mefPmpm3btuY3v/mNeeutt6q9z2o7i6fqWFc8X9UxPHjwoLnzzjtN27ZtTWBgoGnTpo3p37+/eeihh87ZJ3U9i6ekpMTMnj3btG3b1jRv3tz06tXLrFu3rsa2Hz582IwZM8a0bNnShIaGmptuusmsX7/eSDKvvvrqOduExucwpsrVpgDUS/v27ZWYmFjjRawq27ZtmwYOHKiXX3652lkiAC6cBQsW6He/+50OHz5syysnwxO7eAAAfmfJkiWSpMsuu0ynTp3Sli1b9OSTT+oXv/gF4cRHEFAAAH6nRYsWWrx4sQ4dOqSSkhJddNFFmjNnjn73u981dtNQR+ziAQAAttOohzL/+c9/VkJCgpo3b67evXvX+IVPAACg6Wm0gLJmzRolJyfr/vvv10cffaSf/exnGjFihA4fPtxYTQIAADbRaLt4+vbtq169enlcEbBz58668cYblZqaetbH/vDDD/r6668VGhpa49UTAQCA/RhjVFhYqNjY2HNej6ZRDpItLS3Vrl27PC6BLUnDhg3Tjh07qtUvKSlRSUmJdf+rr75Sly5dLng7AQBAwzty5Mg5z6ZqlIDy7bffqqysrNp3TkRFRdX4XQmpqal68MEHq69o9POSM0RyGMk4/vNTlSaFPO5WWQbAhipmRXmvAv6j/H196ntp3fhar5hcWaOeZlx194yp8sVcFebOnauZM2da9wsKChQXFycFhkjOFuW5oyKgyPPzzcokjqoF8EX87vJ/VT8CGGv/5ajyhmas/VfFWFf8qMPhGY0SUCIiIhQQEFBttiQ3N7fGr8N2uVy1fPdJpcBh5Q9H+Yvc/Ce48Kr3A+UvZmP9A79VMdb8QdFk8DndBFSE0LqPc6OcxRMUFKTevXsrIyPDozwjI0P9+/ev30orf5Y5jOf/q82ecGCtz3GY/4yrw1H+s7EbhQvizFewMM5NgTFnbhXva/ix8jezF+PcaLt4Zs6cqTvuuEN9+vRRv3799PTTT+vw4cOaPHmyF2upKXhUmiqsVsxfZL6r6r4dxtFvVZ32lxhuv1UeQhncJsBU+XlujRZQxo0bp2PHjukPf/iDsrOzlZiYqPXr1ys+Pt7LNVXs4nGUJ/GzHaTAp5zvqgieFTswy+8zpH6olrGG/3FUGWvezH6sYtdt3WdQfPJS9wUFBXK73dLYdeVn8chzf3W1iRUH+7N9XW2vaYbT/zDWTQcHRDcdFWN96oT00mjl5+crLCzsrA9p1EvdNzgrhFfecc3ZO36l/PAEC7ut/VfVsYb/YqybDi/G2X+/zbjWw1MIKj6p8qEnle9XlDGk/qO2sWWc/U9N72vG2T9VHes68NOAYjx37Vi7eOCzajpGVlXK4B8qj3XV6xrBv9Q0toyzf6rH+9hPAkoNW1zjnp2z7e4httsaMyZNC7MmTYPhLJ4mwzrove5TKH5yDEoNG1zr671ySOHPcJ/EUPm/Gv/a4qIofqfacDLGfs3LPzj8ZAZF8jwoVqo+Z1jbRdr4E803nO1Di/HzL+f6BcV71n/U9Mci/JP371k/mUE5G174AAD4Gj8MKPxl5d+qji/jDfg23sNNiw9cSbbh1XS4f9VdOo4qy+A7OMy/6WB8mx7GHNX54QxKbXgDAADgK5pQQAEAAL6iiQYUDpwFAMDOmlBA4ZonAAD4iiYUUPiGOQAAfEUTCigAAMBXEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtNHhASUlJkcPh8LhFR0dby40xSklJUWxsrIKDg5WUlKR9+/Y1dDMAAIAPuyAzKF27dlV2drZ127Nnj7Vs4cKFWrRokZYsWaKsrCxFR0dr6NChKiwsvBBNAQAAPsh5QVbqdHrMmlQwxujxxx/X/fffrzFjxkiSnnvuOUVFRemFF17QPffcU+P6SkpKVFJSYt0vKCi4EM0GAAA2cUFmUA4cOKDY2FglJCTo1ltv1RdffCFJOnjwoHJycjRs2DCrrsvl0oABA7Rjx45a15eamiq3223d4uLiLkSzAQCATTR4QOnbt69WrlypjRs36plnnlFOTo769++vY8eOKScnR5IUFRXl8ZioqChrWU3mzp2r/Px863bkyJGGbjYAALCRBt/FM2LECOv/3bp1U79+/XTxxRfrueee05VXXilJcjgcHo8xxlQrq8zlcsnlcjV0UwEAgE1d8NOMQ0JC1K1bNx04cMA6LqXqbElubm61WRUAANB0XfCAUlJSok8//VQxMTFKSEhQdHS0MjIyrOWlpaXKzMxU//79L3RTAACAj2jwXTyzZ8/WDTfcoIsuuki5ubl66KGHVFBQoAkTJsjhcCg5OVkLFixQp06d1KlTJy1YsEAtWrTQ+PHjG7opAADARzV4QDl69Khuu+02ffvtt2rTpo2uvPJKvf/++4qPj5ck3XfffSouLtbUqVOVl5envn37atOmTQoNDW3opgAAAB/lMMaYxm6EtwoKCuR2u6Wx6yRniOSQZIzkcJz5WZlHmUOSqfQTgO1UHC/PW9T/MdZNi0NS6Qnp5dHKz89XWFjYWavzXTwAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2vA4o77zzjm644QbFxsbK4XBo3bp1HsuNMUpJSVFsbKyCg4OVlJSkffv2edQpKSnRjBkzFBERoZCQEI0aNUpHjx49rw0BAAD+w+uAcuLECfXo0UNLliypcfnChQu1aNEiLVmyRFlZWYqOjtbQoUNVWFho1UlOTlZ6errS0tK0fft2FRUVaeTIkSorK6v/lgAAAL/hMMaYej/Y4VB6erpuvPFGSWdmT2JjY5WcnKw5c+ZIOjNbEhUVpUceeUT33HOP8vPz1aZNG61atUrjxo2TJH399deKi4vT+vXrNXz48GrPU1JSopKSEut+QUGB4uLipLHrJGeI5JBkjORwnPnp2chKZQ5JptJPALbjKP/JW9T/MdZNi0NS6Qnp5dHKz89XWFjYWas36DEoBw8eVE5OjoYNG2aVuVwuDRgwQDt27JAk7dq1S6dOnfKoExsbq8TERKtOVampqXK73dYtLi6uIZsNAABspkEDSk5OjiQpKirKozwqKspalpOTo6CgILVq1arWOlXNnTtX+fn51u3IkSMN2WwAAGAzzguxUofD4XHfGFOtrKqz1XG5XHK5XA3WPgAAYG8NGlCio6MlnZkliYmJscpzc3OtWZXo6GiVlpYqLy/PYxYlNzdX/fv3r8ezVhxTUhFuago5dS0DAAAXTt1/9zboLp6EhARFR0crIyPDKistLVVmZqYVPnr37q3AwECPOtnZ2dq7d289AwoAALA9Lw+G9noGpaioSJ9//rl1/+DBg9q9e7fCw8N10UUXKTk5WQsWLFCnTp3UqVMnLViwQC1atND48eMlSW63W5MmTdKsWbPUunVrhYeHa/bs2erWrZuGDBniZWsqZk+q4MhwAPAdnFjZNFTe2VEHXgeUnTt3auDAgdb9mTNnSpImTJigFStW6L777lNxcbGmTp2qvLw89e3bV5s2bVJoaKj1mMWLF8vpdGrs2LEqLi7W4MGDtWLFCgUEBHjbnCobW9MpxJVPLa5aFz6H8Nl0MNaAH6r7G/q8roPSWAoKCuR2u89cByWwhWTKP8kc5sz/rQ+2ytdGIaL7hYoDqRnTJsBRaYgZZ7/mcDDOfq/8s/v0CemlG3/866A0CqMzwaTi/5V/VsOBsT7PqNL48mHmlypPAzPE/q1irBnnpsOLsb4gpxn/uKrOnlTZ+ho7g3eEz6rT+MI/GM+/KRhr/+UwjK/fK38/V/0MPws/CCjlKs/4V54urDGL8E7wWdbQETKbBIa4aWCcmw4vxtr3d/HUpOpX78BPscvOP1W9rpGXh/4D8Av+M4PioWoqqXomD8nF9zF+/svU8n8ATYl/zqBUqOmYFAAA8CPzfibUT2dQalJ5FqXqdVEIMYD98Z71f5y+5b+8H1M/CihVv4un6oEo7MP2bWcbPz7M/Avv1aaHMW86Gum7eBpXTRdBOdcvLlOHOrCPyuN1zovewOfV9l5mzP0Xn8n+rymeZuyhpg6ounuHN4FvqekXFGPonwgmTQ9ji+r8aAYFAAD4CwIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHa8DyjvvvKMbbrhBsbGxcjgcWrduncfyiRMnyuFweNyuvPJKjzolJSWaMWOGIiIiFBISolGjRuno0aPntSEAAMB/eB1QTpw4oR49emjJkiW11rn22muVnZ1t3davX++xPDk5Wenp6UpLS9P27dtVVFSkkSNHqqyszPstAAAAfsfp7QNGjBihESNGnLWOy+VSdHR0jcvy8/O1bNkyrVq1SkOGDJEkrV69WnFxcdq8ebOGDx/ubZMAAICfuSDHoGzbtk2RkZG65JJLdPfddys3N9datmvXLp06dUrDhg2zymJjY5WYmKgdO3bUuL6SkhIVFBR43AAAgP9q8IAyYsQIPf/889qyZYsee+wxZWVladCgQSopKZEk5eTkKCgoSK1atfJ4XFRUlHJycmpcZ2pqqtxut3WLi4tr6GYDAAAb8XoXz7mMGzfO+n9iYqL69Omj+Ph4vfnmmxozZkytjzPGyOFw1Lhs7ty5mjlzpnW/oKCAkAIAgB+74KcZx8TEKD4+XgcOHJAkRUdHq7S0VHl5eR71cnNzFRUVVeM6XC6XwsLCPG4AAMB/XfCAcuzYMR05ckQxMTGSpN69eyswMFAZGRlWnezsbO3du1f9+/e/0M0BAAA+wOtdPEVFRfr888+t+wcPHtTu3bsVHh6u8PBwpaSk6KabblJMTIwOHTqkefPmKSIiQqNHj5Ykud1uTZo0SbNmzVLr1q0VHh6u2bNnq1u3btZZPQAAoGnzOqDs3LlTAwcOtO5XHBsyYcIELV26VHv27NHKlSt1/PhxxcTEaODAgVqzZo1CQ0OtxyxevFhOp1Njx45VcXGxBg8erBUrViggIKABNgkAAPg6hzHGNHYjvFVQUCC32y2NXSc5QySHJGMkh+PMz8o8yhySTKWfAGyn4lh53qL+j7FuWhySSk9IL49Wfn7+OY8n5bt4AACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7RBQAACA7XgVUFJTU3X55ZcrNDRUkZGRuvHGG7V//36POsYYpaSkKDY2VsHBwUpKStK+ffs86pSUlGjGjBmKiIhQSEiIRo0apaNHj57/1gAAAL/gVUDJzMzUtGnT9P777ysjI0OnT5/WsGHDdOLECavOwoULtWjRIi1ZskRZWVmKjo7W0KFDVVhYaNVJTk5Wenq60tLStH37dhUVFWnkyJEqKytruC0DAAA+y2GMMfV98DfffKPIyEhlZmbqmmuukTFGsbGxSk5O1pw5cySdmS2JiorSI488onvuuUf5+flq06aNVq1apXHjxkmSvv76a8XFxWn9+vUaPnz4OZ+3oKBAbrdbGrtOcoZIDknGSA7HmZ8eW1i5zCHJVPoJwHYc5T95i/o/xrppcUgqPSG9PFr5+fkKCws7a/XzOgYlPz9fkhQeHi5JOnjwoHJycjRs2DCrjsvl0oABA7Rjxw5J0q5du3Tq1CmPOrGxsUpMTLTqVFVSUqKCggKPGwAA8F/1DijGGM2cOVNXX321EhMTJUk5OTmSpKioKI+6UVFR1rKcnBwFBQWpVatWtdapKjU1VW6327rFxcXVt9kAAMAH1DugTJ8+XR9//LFefPHFasscDofHfWNMtbKqzlZn7ty5ys/Pt25Hjhypb7MBAIAPqFdAmTFjhl577TVt3bpV7dq1s8qjo6MlqdpMSG5urjWrEh0drdLSUuXl5dVapyqXy6WwsDCPGwAA8F9eBRRjjKZPn661a9dqy5YtSkhI8FiekJCg6OhoZWRkWGWlpaXKzMxU//79JUm9e/dWYGCgR53s7Gzt3bvXqgMAAJo2pzeVp02bphdeeEGvvvqqQkNDrZkSt9ut4OBgORwOJScna8GCBerUqZM6deqkBQsWqEWLFho/frxVd9KkSZo1a5Zat26t8PBwzZ49W926ddOQIUMafgsBAIDP8SqgLF26VJKUlJTkUb58+XJNnDhRknTfffepuLhYU6dOVV5envr27atNmzYpNDTUqr948WI5nU6NHTtWxcXFGjx4sFasWKGAgIDz2xoAAOAXzus6KI2F66AAfoxrYzQdjHXT8mNeBwUAAOBC8GoXj/0YyVEevR0V92uqU+n/Hj8B2NbZr0wAf8JYNx1ejLVPB5S5/V5U8+DAxm4GAACog5PFp5T6Ut3q+vQxKMffl8JalhdWTmWVDzMhmQOAbXFEYNPhkJRfJP2kr5rIMSg1BRBCCQD4BMJJ0+HtWPt+QKlQ+fCSihtBxb/xydY0MM7+jzFGDfwnoNSmhhc+ucXHVT5rHP6NPzSAJsunD5L1UP4h5qhyXn3VK6AAAGyGEIoa+PwMiqOW/8OPMdBNB2MN+A2HvHtL+/wMiqnyf2umpMpZPMyeAADQeCoOD60rn59BqaouG09YAQDA3vwuoAAAAN/n3wGF/dcAAPgk/w4o8Bv1zZreHpQF38G4+i/GFpIfHCSLpqG+xw1xvJH/Ymz9F2MLiRkUAABgQwQUAABgOwSUcuzzBADAPggoAADAdggo5TgoCwAA+yCgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGgAAAA2yGglOM6KAAA2AcBpRynGQMAYB8EFAAAYDteBZTU1FRdfvnlCg0NVWRkpG688Ubt37/fo87EiRPlcDg8bldeeaVHnZKSEs2YMUMREREKCQnRqFGjdPTo0fPfGgAA4Be8CiiZmZmaNm2a3n//fWVkZOj06dMaNmyYTpw44VHv2muvVXZ2tnVbv369x/Lk5GSlp6crLS1N27dvV1FRkUaOHKmysrLz3yIAAODznN5U3rBhg8f95cuXKzIyUrt27dI111xjlbtcLkVHR9e4jvz8fC1btkyrVq3SkCFDJEmrV69WXFycNm/erOHDh1d7TElJiUpKSqz7BQUF3jQbAAD4mPM6BiU/P1+SFB4e7lG+bds2RUZG6pJLLtHdd9+t3Nxca9muXbt06tQpDRs2zCqLjY1VYmKiduzYUePzpKamyu12W7e4uLjzaTYAALC5egcUY4xmzpypq6++WomJiVb5iBEj9Pzzz2vLli167LHHlJWVpUGDBlkzIDk5OQoKClKrVq081hcVFaWcnJwan2vu3LnKz8+3bkeOHKlvs2vFacYAANiHV7t4Kps+fbo+/vhjbd++3aN83Lhx1v8TExPVp08fxcfH680339SYMWNqXZ8xRg5HzTHB5XLJ5XLVt6l1wmnGAADYR71mUGbMmKHXXntNW7duVbt27c5aNyYmRvHx8Tpw4IAkKTo6WqWlpcrLy/Ool5ubq6ioqPo0p0EwgwIAgH14FVCMMZo+fbrWrl2rLVu2KCEh4ZyPOXbsmI4cOaKYmBhJUu/evRUYGKiMjAyrTnZ2tvbu3av+/ft72fyGwwwKAAD24dUunmnTpumFF17Qq6++qtDQUOuYEbfbreDgYBUVFSklJUU33XSTYmJidOjQIc2bN08REREaPXq0VXfSpEmaNWuWWrdurfDwcM2ePVvdunWzzuoBAABNm1cBZenSpZKkpKQkj/Lly5dr4sSJCggI0J49e7Ry5UodP35cMTExGjhwoNasWaPQ0FCr/uLFi+V0OjV27FgVFxdr8ODBWrFihQICAs5/iwAAgM9zGGN8bu9GQUGB3G63jr8vhYXqzP4ZDiIBAMDWCoqkn/Q9c5mSsLCws9blu3gAAIDtEFAAAIDtEFDKsYcIAAD7IKCU87kDcQAA8GMEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsEFAAAYDsElHKcZgwAgH0QUAAAgO0QUMpxHRQAAOyDgAIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgFKO04wBALAPAgoAALAdAko5TjMGAMA+CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCgAAMB2CCjluA4KAAD2QUApx2nGAADYBwEFAADYDgEFAADYjlcBZenSperevbvCwsIUFhamfv366a233rKWG2OUkpKi2NhYBQcHKykpSfv27fNYR0lJiWbMmKGIiAiFhIRo1KhROnr0aMNsDQAA8AteBZR27drp4Ycf1s6dO7Vz504NGjRIP//5z60QsnDhQi1atEhLlixRVlaWoqOjNXToUBUWFlrrSE5OVnp6utLS0rR9+3YVFRVp5MiRKisra9gtAwAAPsthjDmv40PDw8P16KOP6s4771RsbKySk5M1Z84cSWdmS6KiovTII4/onnvuUX5+vtq0aaNVq1Zp3LhxkqSvv/5acXFxWr9+vYYPH17jc5SUlKikpMS6X1BQoLi4OB1/XwoL1ZkjXDkNBwAAWysokn7SV8rPz1dYWNhZ69b7GJSysjKlpaXpxIkT6tevnw4ePKicnBwNGzbMquNyuTRgwADt2LFDkrRr1y6dOnXKo05sbKwSExOtOjVJTU2V2+22bnFxcfVtNgAA8AFeB5Q9e/aoZcuWcrlcmjx5stLT09WlSxfl5ORIkqKiojzqR0VFWctycnIUFBSkVq1a1VqnJnPnzlV+fr51O3LkiLfNBgAAPsTp7QMuvfRS7d69W8ePH9crr7yiCRMmKDMz01rucHjuazHGVCur6lx1XC6XXC6Xt031ikNcCwUAALvwegYlKChIHTt2VJ8+fZSamqoePXroiSeeUHR0tCRVmwnJzc21ZlWio6NVWlqqvLy8Wus0FsIJAAD2cd7XQTHGqKSkRAkJCYqOjlZGRoa1rLS0VJmZmerfv78kqXfv3goMDPSok52drb1791p1AAAAvNrFM2/ePI0YMUJxcXEqLCxUWlqatm3bpg0bNsjhcCg5OVkLFixQp06d1KlTJy1YsEAtWrTQ+PHjJUlut1uTJk3SrFmz1Lp1a4WHh2v27Nnq1q2bhgwZckE2EAAA+B6vAsq///1v3XHHHcrOzpbb7Vb37t21YcMGDR06VJJ03333qbi4WFOnTlVeXp769u2rTZs2KTQ01FrH4sWL5XQ6NXbsWBUXF2vw4MFasWKFAgICGnbLAACAzzrv66A0hoKCArndbq6DAgCAD/lRroMCAABwoRBQyjEBAwCAfRBQAACA7RBQyvncgTgAAPgxAgoAALAdAgoAALAd/wwopspPAADgU3w/oFS+BgqBBAAAv+D7AaWyyucKVwSXs4QWR6UbfAhBtMlwMNZAk+XVpe5tqXII8TJp8Nnnm86ROwEAfsB/ZlAclX4wLeLXDGPbZDDWQNPlPwGlnKl6x4sPOD4L/RPjCgC+x+8CCgAA8H0ElEo4rsE/Ma4A4HsIKAAAwHb8O6Bw8AEAAD7JvwOKF8gyAADYBwEFAADYDgGlHAdSAgBgHwQUAABgOwQUAABgOwQUAABgOwQUAABgOwQUAABgOwSUclwHBQAA+yCgAAAA2yGglOM6KAAA2IdXAWXp0qXq3r27wsLCFBYWpn79+umtt96ylk+cOFEOh8PjduWVV3qso6SkRDNmzFBERIRCQkI0atQoHT16tGG2BgAA+AWvAkq7du308MMPa+fOndq5c6cGDRqkn//859q3b59V59prr1V2drZ1W79+vcc6kpOTlZ6errS0NG3fvl1FRUUaOXKkysrKGmaLAACAz3MYY85r70Z4eLgeffRRTZo0SRMnTtTx48e1bt26Guvm5+erTZs2WrVqlcaNGydJ+vrrrxUXF6f169dr+PDhdXrOgoICud1uHX9fCgvVmf0zHOUKAICtFRRJP+l7Jg+EhYWdtW69j0EpKytTWlqaTpw4oX79+lnl27ZtU2RkpC655BLdfffdys3NtZbt2rVLp06d0rBhw6yy2NhYJSYmaseOHbU+V0lJiQoKCjxuAADAf3kdUPbs2aOWLVvK5XJp8uTJSk9PV5cuXSRJI0aM0PPPP68tW7boscceU1ZWlgYNGqSSkhJJUk5OjoKCgtSqVSuPdUZFRSknJ6fW50xNTZXb7bZucXFx3jYbAAD4EKe3D7j00ku1e/duHT9+XK+88oomTJigzMxMdenSxdptI0mJiYnq06eP4uPj9eabb2rMmDG1rtMYI4ej9n00c+fO1cyZM637BQUFDR5SHOJMHgAA7MLrgBIUFKSOHTtKkvr06aOsrCw98cQT+utf/1qtbkxMjOLj43XgwAFJUnR0tEpLS5WXl+cxi5Kbm6v+/fvX+pwul0sul8vbpgIAAB913tdBMcZYu3CqOnbsmI4cOaKYmBhJUu/evRUYGKiMjAyrTnZ2tvbu3XvWgPJjYPYEAAD78GoGZd68eRoxYoTi4uJUWFiotLQ0bdu2TRs2bFBRUZFSUlJ00003KSYmRocOHdK8efMUERGh0aNHS5LcbrcmTZqkWbNmqXXr1goPD9fs2bPVrVs3DRky5IJsIAAA8D1eBZR///vfuuOOO5SdnS23263u3btrw4YNGjp0qIqLi7Vnzx6tXLlSx48fV0xMjAYOHKg1a9YoNDTUWsfixYvldDo1duxYFRcXa/DgwVqxYoUCAgIafOMAAIBvOu/roDQGroMCAIDv+VGugwIAAHChEFDKMQEDAIB9EFAAAIDtEFDK+dyBOAAA+DECCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CCgAAsB0CSjmugwIAgH0QUMpxmjEAAPZBQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQAEAALZDQCnHhdoAALAPAko5LtQGAIB9EFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFAAAIDtEFDKcZoxAAD2QUABAAC2Q0Apx3VQAACwj/MKKKmpqXI4HEpOTrbKjDFKSUlRbGysgoODlZSUpH379nk8rqSkRDNmzFBERIRCQkI0atQoHT169HyaAgAA/Ei9A0pWVpaefvppde/e3aN84cKFWrRokZYsWaKsrCxFR0dr6NChKiwstOokJycrPT1daWlp2r59u4qKijRy5EiVlZXVf0sAAIDfqFdAKSoq0u23365nnnlGrVq1ssqNMXr88cd1//33a8yYMUpMTNRzzz2n77//Xi+88IIkKT8/X8uWLdNjjz2mIUOGqGfPnlq9erX27NmjzZs3N8xWAQAAn1avgDJt2jRdf/31GjJkiEf5wYMHlZOTo2HDhlllLpdLAwYM0I4dOyRJu3bt0qlTpzzqxMbGKjEx0apTVUlJiQoKCjxuAADAfzm9fUBaWpo+/PBDZWVlVVuWk5MjSYqKivIoj4qK0pdffmnVCQoK8ph5qahT8fiqUlNT9eCDD3rbVK84xIGyAADYhVczKEeOHNG9996r1atXq3nz5rXWczg8rypijKlWVtXZ6sydO1f5+fnW7ciRI940GwAA+BivAsquXbuUm5ur3r17y+l0yul0KjMzU08++aScTqc1c1J1JiQ3N9daFh0drdLSUuXl5dVapyqXy6WwsDCPW0Nj9gQAAPvwKqAMHjxYe/bs0e7du61bnz59dPvtt2v37t3q0KGDoqOjlZGRYT2mtLRUmZmZ6t+/vySpd+/eCgwM9KiTnZ2tvXv3WnUAAEDT5tUxKKGhoUpMTPQoCwkJUevWra3y5ORkLViwQJ06dVKnTp20YMECtWjRQuPHj5ckud1uTZo0SbNmzVLr1q0VHh6u2bNnq1u3btUOugUAAE2T1wfJnst9992n4uJiTZ06VXl5eerbt682bdqk0NBQq87ixYvldDo1duxYFRcXa/DgwVqxYoUCAgIaujkAAMAHOYwxPnf4RUFBgdxut46/L4WF6swBJHzbHwAAtlZQJP2k75lrop3reFK+i6cc+QYAAPsgoAAAANshoJTzuf1cAAD4MQIKAACwHQIKAACwHQIKAACwHQIKAACwHQIKAACwHQJKOa6DAgCAfRBQynGaMQAA9uH/AYXkAQCAz/H/gAK/Up9dcey+A4DG5+1ncYN/m/GPoeL7DQtO6MwWmyo/yzkkmfKyisWS5/8BAMCF59CZLwuU/vN7/Gx8MqAUFhZKki4a3MgNAQAAXissLJTb7T5rHYepS4yxmR9++EH79+9Xly5ddOTIkXN+ZTPOKCgoUFxcHH3mJfrNe/RZ/dBv3qPP6qex+s0Yo8LCQsXGxqpZs7MfZeKTMyjNmjVT27ZtJUlhYWG8KL1En9UP/eY9+qx+6Dfv0Wf10xj9dq6ZkwocJAsAAGyHgAIAAGzHZwOKy+XS/Pnz5XK5GrspPoM+qx/6zXv0Wf3Qb96jz+rHF/rNJw+SBQAA/s1nZ1AAAID/IqAAAADbIaAAAADbIaAAAADbIaAAAADb8cmA8uc//1kJCQlq3ry5evfurXfffbexm9Ro3nnnHd1www2KjY2Vw+HQunXrPJYbY5SSkqLY2FgFBwcrKSlJ+/bt86hTUlKiGTNmKCIiQiEhIRo1apSOHj36I27Fjys1NVWXX365QkNDFRkZqRtvvFH79+/3qEO/Vbd06VJ1797duvJkv3799NZbb1nL6bNzS01NlcPhUHJyslVGv1WXkpIih8PhcYuOjraW02c1++qrr/SLX/xCrVu3VosWLfTTn/5Uu3btspb7XL8ZH5OWlmYCAwPNM888Yz755BNz7733mpCQEPPll182dtMaxfr16839999vXnnlFSPJpKeneyx/+OGHTWhoqHnllVfMnj17zLhx40xMTIwpKCiw6kyePNm0bdvWZGRkmA8//NAMHDjQ9OjRw5w+ffpH3pofx/Dhw83y5cvN3r17ze7du831119vLrroIlNUVGTVod+qe+2118ybb75p9u/fb/bv32/mzZtnAgMDzd69e40x9Nm5fPDBB6Z9+/ame/fu5t5777XK6bfq5s+fb7p27Wqys7OtW25urrWcPqvuu+++M/Hx8WbixInmn//8pzl48KDZvHmz+fzzz606vtZvPhdQrrjiCjN58mSPsssuu8z89re/baQW2UfVgPLDDz+Y6Oho8/DDD1tlJ0+eNG632/zlL38xxhhz/PhxExgYaNLS0qw6X331lWnWrJnZsGHDj9b2xpSbm2skmczMTGMM/eaNVq1amb/97W/02TkUFhaaTp06mYyMDDNgwAAroNBvNZs/f77p0aNHjcvos5rNmTPHXH311bUu98V+86ldPKWlpdq1a5eGDRvmUT5s2DDt2LGjkVplXwcPHlROTo5Hf7lcLg0YMMDqr127dunUqVMedWJjY5WYmNhk+jQ/P1+SFB4eLol+q4uysjKlpaXpxIkT6tevH312DtOmTdP111+vIUOGeJTTb7U7cOCAYmNjlZCQoFtvvVVffPGFJPqsNq+99pr69OmjW265RZGRkerZs6eeeeYZa7kv9ptPBZRvv/1WZWVlioqK8iiPiopSTk5OI7XKvir65Gz9lZOTo6CgILVq1arWOv7MGKOZM2fq6quvVmJioiT67Wz27Nmjli1byuVyafLkyUpPT1eXLl3os7NIS0vThx9+qNTU1GrL6Lea9e3bVytXrtTGjRv1zDPPKCcnR/3799exY8fos1p88cUXWrp0qTp16qSNGzdq8uTJ+tWvfqWVK1dK8s3XmvNHf8YG4HA4PO4bY6qV4T/q019NpU+nT5+ujz/+WNu3b6+2jH6r7tJLL9Xu3bt1/PhxvfLKK5owYYIyMzOt5fSZpyNHjujee+/Vpk2b1Lx581rr0W+eRowYYf2/W7du6tevny6++GI999xzuvLKKyXRZ1X98MMP6tOnjxYsWCBJ6tmzp/bt26elS5fql7/8pVXPl/rNp2ZQIiIiFBAQUC3J5ebmVkuFkHXU+9n6Kzo6WqWlpcrLy6u1jr+aMWOGXnvtNW3dulXt2rWzyum32gUFBaljx47q06ePUlNT1aNHDz3xxBP0WS127dql3Nxc9e7dW06nU06nU5mZmXryySfldDqt7abfzi4kJETdunXTgQMHeK3VIiYmRl26dPEo69y5sw4fPizJNz/XfCqgBAUFqXfv3srIyPAoz8jIUP/+/RupVfaVkJCg6Ohoj/4qLS1VZmam1V+9e/dWYGCgR53s7Gzt3bvXb/vUGKPp06dr7dq12rJlixISEjyW0291Z4xRSUkJfVaLwYMHa8+ePdq9e7d169Onj26//Xbt3r1bHTp0oN/qoKSkRJ9++qliYmJ4rdXiqquuqna5hM8++0zx8fGSfPRz7Uc/LPc8VZxmvGzZMvPJJ5+Y5ORkExISYg4dOtTYTWsUhYWF5qOPPjIfffSRkWQWLVpkPvroI+u064cffti43W6zdu1as2fPHnPbbbfVeFpZu3btzObNm82HH35oBg0a5Nen402ZMsW43W6zbds2j9MYv//+e6sO/Vbd3LlzzTvvvGMOHjxoPv74YzNv3jzTrFkzs2nTJmMMfVZXlc/iMYZ+q8msWbPMtm3bzBdffGHef/99M3LkSBMaGmp9ztNn1X3wwQfG6XSa//mf/zEHDhwwzz//vGnRooVZvXq1VcfX+s3nAooxxjz11FMmPj7eBAUFmV69elmnhzZFW7duNZKq3SZMmGCMOXNq2fz58010dLRxuVzmmmuuMXv27PFYR3FxsZk+fboJDw83wcHBZuTIkebw4cONsDU/jpr6S5JZvny5VYd+q+7OO++03ndt2rQxgwcPtsKJMfRZXVUNKPRbdRXX5wgMDDSxsbFmzJgxZt++fdZy+qxmr7/+uklMTDQul8tcdtll5umnn/ZY7mv95jDGmB9/3gYAAKB2PnUMCgAAaBoIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHYIKAAAwHb+PxjP+GHrxmekAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDTElEQVR4nO3dfVxUVeI/8M+VgeHBYeJBGFBETC0VdBXLNAtURC1zU0vLttVv1tfnlVVXF90Sd1swK61W191c09QMaxWz8glTKddc8Wl9qK/ZL0xNZinC4SEcEM/vD5nb3JkBGUS5c+fzfr1GmXPPzNx7ztyZD+eee5GEEAJEREREKtKiuVeAiIiIyBEDChEREakOAwoRERGpDgMKERERqQ4DChEREakOAwoRERGpDgMKERERqQ4DChEREakOAwoRERGpDgMKqV67du0wbNiwRj/earXi5ZdfRnx8PIKCghAZGYmhQ4fiwIEDTbiWni0jIwOSJDXLa3/xxRfIyMjAuXPnnJaNHz8e7dq1u+3r5I4ff/wRTzzxBCIiIiBJEh599NE669b3Xj58+DAkScKaNWvksvHjx6Nly5ZNvMauNWdb19WGkiQhIyOjWdaJmp+uuVeA6FZ77rnn8M477yA9PR0DBgzAjz/+iEWLFiEpKQn/+te/cO+99zb3Kja7Z599FkOGDGmW1/7iiy+wcOFCJCcnO31BPv/885gxY0azrFdD/elPf0JOTg7eeust3HnnnQgNDW3uVWqU5mxrrbQhNS0GFGoSP/30EwIDA5t7NZxYrVZs2LABY8eOxYsvviiX33///YiOjsY777zjcQHlVrR1mzZt0KZNmyZ9zqZw5513Nvcq3NCpU6dw55134qmnnmruVVGorKxEQEBAg+s3Z1urtQ2pefEQD7nNdjjg6NGjeOyxxxASEiJ/uB0+fBhPPPEE2rVrh4CAALRr1w5PPvkkvv32W8VzrFmzBpIkYe/evZg8eTLCw8MRFhaGkSNH4tKlSzdch7/+9a/Q6XRYsGBBvfVatGiBFi1awGg0KsqDg4PRokUL+Pv73/C1Fi5ciN69eyM0NBTBwcHo2bMnVq1aBce/s2kbvs/JyUG3bt3g7++P9u3b44033lDU27dvHyRJwvr16zFz5kyYTCYEBAQgKSkJx44dU9S1DfGfPHkSqampMBgMGDhwIIDrw+JTpkxB69at4efnh/bt22P+/PmwWq0AgCtXrqBHjx7o0KEDLBaL/JxmsxkmkwnJycmoqakB4PoQj217PvroI/To0QMBAQHo3LkzPvroIwDX+7Bz584ICgrCvffei8OHDyse35D3wpo1a/D4448DAPr37w9JkhSHOVwddrhy5QrS09MRFxcHPz8/tG7dGlOnTsXly5ddrv+OHTvQs2dPBAQE4O6778Zbb73l3Mku3Kh9z507B0mSsHv3bnz55Zfyuu/bt69Bz99Y//rXvxAeHo5hw4ahoqICwM/bunnzZvTo0QP+/v5YuHAhAGD58uV48MEHERERgaCgICQkJGDx4sWorq5WPK+rtpYkCdOmTcO6devQuXNnBAYGonv37vJ7wN7Zs2cxduxYREREQK/Xo3Pnzli+fHm92+JuG37//feYMmUKunTpgpYtWyIiIgIDBgzAZ5995lT34sWLeOyxx2AwGHDHHXfgqaeeQn5+vtNhNFIxQeSmBQsWCAAiNjZWzJ07V+Tm5ootW7YIIYR4//33xQsvvCBycnJEXl6eyM7OFklJSaJVq1bi+++/l59j9erVAoBo3769mD59uti5c6f4xz/+IUJCQkT//v0VrxcbGysefvhhIYQQ165dE7NmzRK+vr5i9erVDVrfGTNmiJYtW4qcnBxhsVhEQUGBePLJJ0VISIg4e/bsDR8/fvx4sWrVKpGbmytyc3PFn/70JxEQECAWLlzotJ6tW7cWbdu2FW+99ZbYtm2beOqppwQA8fLLL8v19u7dKwCImJgY8ctf/lJ8+OGHYv369aJDhw4iODhY/L//9//kuuPGjRO+vr6iXbt2IisrS3zyySdi586dorKyUnTr1k0EBQWJV155RezatUs8//zzQqfTiYceekh+/FdffSUMBoMYOXKkEEKImpoaMWDAABERESEuXbok17P1qeP2tGnTRsTHx4t3331XbNu2TfTu3Vv4+vqKF154Qdx///1i8+bNIicnR3Tq1ElERkaKn376SX58Q94LRUVFIjMzUwAQy5cvF59//rn4/PPPRVFRkbz9sbGx8nNeu3ZNDB48WOh0OvH888+LXbt2iVdeeUUEBQWJHj16iCtXrjitf5cuXcTatWvFzp07xeOPPy4AiLy8vHr7vCHte+XKFfH555+LHj16iPbt28vrbrFY6nxe+/eyo/z8fAFA8b4eN26cCAoKku9v3LhR6PV6MXnyZHH16lXF80ZFRYn27duLt956S+zdu1ccOnRICCHEb3/7W7FixQqxY8cOsWfPHrF06VIRHh4u/ud//kfx+o5tLYQQAES7du3EvffeK9577z2xbds2kZycLHQ6neJ9evr0aWE0GkVCQoJYu3at2LVrl5g1a5Zo0aKFyMjIqLM9btSGAMSCBQvk+v/3f/8nJk+eLLKzs8W+ffvERx99JCZMmCBatGgh9u7dK9crLy8XHTp0EKGhoWL58uVi586d4re//a2Ii4tzamNSLwYUcpvty+yFF164Yd2rV6+K8vJyERQUJF5//XW53BZQpkyZoqi/ePFiAUAUFhbKZbYP9Z9++kmMGjVKGI1GsXv37gav77Vr18QLL7wgWrRoIQAIAKJt27bi2LFjDX4Om5qaGlFdXS3++Mc/irCwMHHt2jXFekqSJI4fP654zKBBg0RwcLCoqKgQQvwcUHr27Kl4/Llz54Svr6949tln5bJx48YJAOKtt95SPOff/vY3AUC89957ivKXXnpJABC7du2SyzZu3CgAiNdee01uB/vlQtQdUAICAsTFixflsuPHjwsAIioqSt4eIYTYsmWLACC2bt1aZ9vV9V54//33BQDFF4z99tt/ae7YsUMAEIsXL1bUs23jm2++qVh/f39/8e2338pllZWVIjQ0VEycOLHO9RTCvfZNSkoSXbt2rff57NepsQFl0aJFwsfHR7z00ksun9fHx0ecOXOm3te3vX/Xrl0rfHx8xI8//qh4LVcBJTIyUpSWlsplZrNZtGjRQmRlZcllgwcPFm3atHEKZ9OmTRP+/v6K13GlrjZ0DCiOrl69Kqqrq8XAgQPFiBEj5PLly5cLAGL79u2K+hMnTmRA8SA8xEONNmrUKKey8vJyzJ07Fx06dIBOp4NOp0PLli1RUVGBL7/80qn+8OHDFfe7desGAE6HhIqLizFgwAAcOnQI+/fvlw9z2NTU1ODq1avy7dq1a/KyP//5z3jllVeQkZGBvXv34oMPPsBdd92FQYMGOR1ScWXPnj1ISUmB0WiEj48PfH198cILL6C4uBhFRUWKul27dkX37t0VZWPHjkVpaSmOHj3qVG5/WCU2NhZ9+/bF3r17ndbBsa337NmDoKAgPPbYY4ry8ePHAwA++eQTuWz06NGYPHkyfve73+HFF1/EvHnzMGjQoBtuNwD84he/QOvWreX7nTt3BgAkJycr5sHYyu37zd33QkPs2bNHsZ02jz/+OIKCghTbbVv/tm3byvf9/f3RqVMnp/eXq9dpaPveakIITJw4EQsWLMCGDRswZ84cl/W6deuGTp06OZUfO3YMw4cPR1hYmPz+/fWvf42amhp89dVXN3z9/v37w2AwyPcjIyMREREht+GVK1fwySefYMSIEQgMDFTshw899BCuXLmCgwcPNnLrnf3tb39Dz5494e/vD51OB19fX3zyySeK91ReXh4MBoPTxO8nn3yyydaDbj0GFGq0qKgop7KxY8di2bJlePbZZ7Fz504cOnQI+fn5aNWqFSorK53qh4WFKe7r9XoAcKr71Vdf4d///jeGDh2K+Ph4p+cZOHAgfH195dszzzwDAPjyyy/xwgsvYOHChXj++eeRnJyM4cOH4+OPP8Ydd9yBmTNn1ruNhw4dQmpqKgBg5cqV+Ne//oX8/HzMnz/f5XqaTCan57CVFRcXN6iuY73AwEAEBwcryoqLi2EymZzmjURERECn0zk9xzPPPIPq6mrodDr85je/qXN7HTmeTeHn51dv+ZUrV+Qyd98LDVFcXAydTodWrVopyiVJctl2ju8v4Pp77Eav7277NpROp5Pn/Ti6evUqAMDX11dRXlVVhY0bN6Jr164YOnRonc/tan88f/48HnjgAXz33Xd4/fXX8dlnnyE/P1+eG9KQfrhRGxYXF+Pq1av4y1/+otgHfX198dBDDwEAfvjhhxu+TkMsWbIEkydPRu/evbFp0yYcPHgQ+fn5GDJkiGJbiouLERkZ6fR4V2WkXjyLhxrN8cPbYrHgo48+woIFC/D73/9eLrdarfjxxx9v6rX69OmDxx9/HBMmTAAArFixAi1a/Jyv//73v6OsrEy+Hx4eDgD4z3/+AyEE7rnnHsXz+fr6onv37sjLy6v3dbOzs+Hr64uPPvpIMaF2y5YtLuubzeY6yxw/6Ouq61jP1fVJwsLC8O9//xtCCMXyoqIiXL16Vd5+AKioqMDTTz+NTp064b///S+effZZfPDBBy7Xv6ncqvdCWFgYrl69iu+//14RUoQQMJvNTv18M6/T0PZ1R2RkJL777juXy2zljl+ier0ee/fuxeDBg5GSkoIdO3YgJCTE6fGu3idbtmxBRUUFNm/ejNjYWLn8+PHjjVp/V0JCQuDj44Onn34aU6dOdVknLi6uSV5r/fr1SE5OxooVKxTl9vs+cL3/Dh065PR4V/scqRdHUKjJSJIEIYQ8CmLzj3/8o87fGt0xbtw4ZGdnY/Xq1fIQtc1dd92FXr16yTfb2QjR0dEA4DTEbLVacfTo0RueWitJEnQ6HXx8fOSyyspKrFu3zmX906dP4z//+Y+ibMOGDTAYDOjZs6ei/N1331WcCfTtt9/iwIEDSE5OrnedgOsjRuXl5U5Bae3atfJym0mTJuH8+fPYvHkzVq1aha1bt2Lp0qU3fI2b4c57oa5RM1ds27V+/XpF+aZNm1BRUeF06K+x3Glfd6SkpODUqVP44osvnJa99957aNmyJXr37u20rEePHsjLy8PFixeRnJzsdGixLrbQYt8PQgisXLmyUevvSmBgIPr3749jx46hW7duiv3QdnM1CtMYkiQ5vadOnDiBzz//XFGWlJSEsrIybN++XVGenZ3dJOtBtwdHUKjJBAcH48EHH8TLL7+M8PBwtGvXDnl5eVi1ahXuuOOOJnmNxx57DIGBgXjsscdQWVmJd999Vz684Eq/fv1wzz33ICMjAz/99BMefPBBWCwW/OUvf0FBQUGdQcPm4YcfxpIlSzB27Fj87//+L4qLi/HKK684fUjaREdHY/jw4cjIyEBUVBTWr1+P3NxcvPTSS07XLikqKsKIESPw3HPPwWKxYMGCBfD390d6evoN2+HXv/41li9fjnHjxuHcuXNISEjA/v37kZmZiYceeggpKSkArgeC9evXY/Xq1ejatSu6du2KadOmYe7cubj//vtv2TVg3Hkv2A7ZvfnmmzAYDPD390dcXJzLL7VBgwZh8ODBmDt3LkpLS3H//ffjxIkTWLBgAXr06IGnn366Sda/oe3rrhkzZmDt2rVITk7GvHnzkJCQgJKSEmzcuBH//Oc/sWTJEsV8D3udO3fGZ599hpSUFDz44IPYvXv3DQP2oEGD4OfnhyeffBJz5szBlStXsGLFCpSUlDRq/evy+uuvo1+/fnjggQcwefJktGvXDmVlZfj666/x4YcfynOHbtawYcPwpz/9CQsWLEBSUhLOnDmDP/7xj4iLi5MPkQHXf5lZunQpfvWrX+HFF19Ehw4dsH37duzcuRMAFKOvpGLNNj2XPJbtjA/704ZtLl68KEaNGiVCQkKEwWAQQ4YMEadOnRKxsbFi3Lhxcj3bWTz5+fmKx9vOcLE/o8PVmQ979+4VLVu2FEOGDFGc2urK5cuXxfz580Xnzp1FYGCgiIiIEMnJyWLbtm0N2t633npL3HXXXUKv14v27duLrKwssWrVKgFAFBQUOK3nP//5T9G1a1fh5+cn2rVrJ5YsWeJyG9etWyd+85vfiFatWgm9Xi8eeOABcfjwYUVdx9NM7RUXF4tJkyaJqKgoodPpRGxsrEhPT5dPtT1x4oQICAhQtLsQ10/tTExMFO3atRMlJSVCiLrP4nF1xgkAMXXqVEVZQUGB0+nUDX0vCCHEa6+9JuLi4oSPj4/iLAtXZ5ZUVlaKuXPnitjYWOHr6yuioqLE5MmT5W250fonJSWJpKQkp3JHN2pf++dr6Fk8Qlw/C2by5Mmibdu2QqfTCYPBIPr16yfef/99p7qu+v/ixYvi7rvvFu3atZNP9a3v7KAPP/xQdO/eXfj7+4vWrVuL3/3ud2L79u1O+1ldZ/E49rXt9Rz7sKCgQDzzzDOidevWwtfXV7Rq1Ur07dtXvPjiizdsk4aexWO1WsXs2bNF69athb+/v+jZs6fYsmWLy3U/f/68GDlypGjZsqUwGAxi1KhRYtu2bQKA+OCDD264TtT8JCEcrjZFRI3Srl07xMfHu7yIlb19+/ahf//+eP/9953OEiGiWyczMxN/+MMfcP78eVVeOZmUeIiHiIg0Z9myZQCAu+++G9XV1dizZw/eeOMN/OpXv2I48RAMKEREpDmBgYFYunQpzp07B6vVirZt22Lu3Ln4wx/+0NyrRg3EQzxERESkOs06lfmvf/0r4uLi4O/vj8TERJd/8ImIiIi8T7MFlI0bNyItLQ3z58/HsWPH8MADD2Do0KE4f/58c60SERERqUSzHeLp3bs3evbsqbgiYOfOnfHoo48iKyur3sdeu3YNly5dgsFgcHn1RCIiIlIfIQTKysoQHR19w+vRNMsk2aqqKhw5ckRxCWwASE1NxYEDB5zqW61WWK1W+f53332HLl263PL1JCIioqZ34cKFG55N1SwB5YcffkBNTY3T35yIjIx0+bcSsrKysHDhQucnGvEOoAsCJAEI6ef/YTcopLhru+NQh4hUxDYqyn2USDtq9+vqn4AtY+u8YrK9Zj3N2PHwjHD4w1w26enpir86W1paipiYGMA3CNAF1uYNW0CB8vNN/tkxwDCkeCR+d2mf40cA+1q7JIcdmn2tXba+tv3XgOkZzRJQwsPD4ePj4zRaUlRU5PLPYev1+jr+9old0JBzh/Tzm9xxRMUxvDCkeJDajpO7y1XItH/Ds189l2Nfu8L+1RTBVKp9tu/hhvdts5zF4+fnh8TEROTm5irKc3Nz0bdv38Y9qf33lSTsRlNqF0iKCrX/cyfwGLY+lWB3c+w/AfarBojaPlT0s+ONNEGI6zenfibtqd2h3TixpdkO8cycORNPP/00evXqhT59+uDNN9/E+fPnMWnSJDeexTFwuBgtUbzXXYy4kIdwPLbDDtQuF8fx2N0aJdV2NztX+4TD/zfWbAFlzJgxKC4uxh//+EcUFhYiPj4e27ZtQ2xsrJvPZAscUm0Sr+fDzVaHPJAteNoOYNbe5xeX9kh19DVpj2Nfc2fWMNuh24aPoHjkpe5LS0thNBqB0Vtqz+JBbfBwnI+Cn+ea2J/pAwYVj1PXe5rdqD3sa+/BqSfew9bX1RXAeyNgsVgQHBxc70O09ccC5aklDqfxuDwNmYnds9T2mxw4bcXCrgs5SVYbHCbJugws7F9N4SRZ7+FG12oroMhsh3zgepqK4suOPIJtxMt2vNrlyTvsU02wH920P4THw3naY3/Gpf190p56f+FwTVsBxf7NbZsZbn/ohzyf/eCXfRlpk6jjZ9IW9q0XaMjlA5Sa9a8ZNx0XWyxfvM2pED9/y0kOy8iz2Z+DTJrg1JXsX21x9TnM/tU2DzjNuGlJUMz0tz+V3ukwj91oimJghRFe1Rynl7icbsI+1IS6+tqN2f/kIVx1KXdjbZIc/m8AjQQU2I2WOEx+lc+xd5wca8PDP56hvne148FN9qdnYxDxHq5Gs0mb3P9c1k5AAeqYOGm7Pgpc/+bN/UL9HC8uWVemdJxox771THX1tatr9ZFnq+87i/2rLe5fp01LAcXuYm21d+UyV9dFcbzwF6mb4yE8V4d4HN/4HEjxTHX1NftXe+zPynPsZ/avtsh/LNADriTbtOqaJGtbbB9S7PYEl9fPIFWq69RTuQBw/tWbPJLjRRTr/DxjH3s82+g24KKf2b+a4r0jKC7G/BXfVbaE7uoKsozpHsepy1z1IfvVYzV4KhH72OPVm0HYv9rieFbtjWkkoDhy+IRzmiMrwL/94MnqumIsrySrHTeaNMb+1QTFxTMdF5C2uH8hTY1cB6UBeMEnIg/BM+u8Bo/iUD28J6BwT/AC/FLTBh6yI9IkN7+GvSiguPpbD/zQ80yO5x27Wk7awLDiHRyvrknkVQHFFY6qEBERqZGXBxQiIiJSIwYUIiIiUh0GFCJSOc5JIPJGXh5Q+MFHpH6cK0bkjbw8oPCDj4iISI28PKAQERGRGjGgEBERkeowoBAREZHqMKAQERGR6jCgEBERkeowoBAREZHqMKAQERGR6jCgEBERkeo0eUDJyMiAJEmKm8lkkpcLIZCRkYHo6GgEBAQgOTkZp0+fburVICLN4BWfibzRLRlB6dq1KwoLC+XbyZMn5WWLFy/GkiVLsGzZMuTn58NkMmHQoEEoKyu7FatCRB6PV3wm8ka6W/KkOp1i1MRGCIHXXnsN8+fPx8iRIwEAb7/9NiIjI7FhwwZMnDjR5fNZrVZYrVb5fmlpaROtKX8zIyIiUqNbMoJy9uxZREdHIy4uDk888QS++eYbAEBBQQHMZjNSU1Plunq9HklJSThw4ECdz5eVlQWj0SjfYmJimmhN+ZsZERGRGjV5QOnduzfWrl2LnTt3YuXKlTCbzejbty+Ki4thNpsBAJGRkYrHREZGystcSU9Ph8VikW8XLlxoorXlCAoREZEaNfkhnqFDh8o/JyQkoE+fPrjzzjvx9ttv47777gMASJJy5EII4VRmT6/XQ6/XN/Wq4voICkMKERGR2tzy04yDgoKQkJCAs2fPyvNSHEdLioqKnEZVbg+GEyIiIjW65QHFarXiyy+/RFRUFOLi4mAymZCbmysvr6qqQl5eHvr27XurV4WIiIg8RJMf4pk9ezYeeeQRtG3bFkVFRXjxxRdRWlqKcePGQZIkpKWlITMzEx07dkTHjh2RmZmJwMBAjB07tqlXhYiIiDxUkweUixcv4sknn8QPP/yAVq1a4b777sPBgwcRGxsLAJgzZw4qKysxZcoUlJSUoHfv3ti1axcMBkNTrwoRERF5KEkI4XETMUpLS2E0GoHRWwBdUO1cVwFI0vX/5dOH7csA5aRYTpD1fK76kP3q8ex2358LuN9qUr19TZojAaiqAN4fAYvFguDg4Hqre/nf4uF1UIiIiNTIywMKkzoREZEaeXlA4QgKERGRGnl5QCEiIiI18vKAwkM82sIRMSIirfDygMIvNG1h4CQi0govDyhERESkRl4eUPgbNxERkRp5eUAhIiIiNWJAISIiItVhQCEiIiLVYUAhDeFZWUREWuHlAYVfaNrCSc9ERFrh5QGFX2hERERq5OUBhSMoREREauTlAYWIiIjUiAGFiIiIVMfLAwrnoBAREamRlwcUIiIiUiMvDyicJEtERKRGXh5QiIiISI0YUIiIiEh1GFBIQ3jIjohIKxhQSEN4VhYRkVYwoBAREZHqeHlA4W/cREREauTlAYVzFoiIiNTIywMKERERqZHbAeXTTz/FI488gujoaEiShC1btiiWCyGQkZGB6OhoBAQEIDk5GadPn1bUsVqtmD59OsLDwxEUFIThw4fj4sWLN7UhjcNDPERERGrkdkCpqKhA9+7dsWzZMpfLFy9ejCVLlmDZsmXIz8+HyWTCoEGDUFZWJtdJS0tDTk4OsrOzsX//fpSXl2PYsGGoqalp/JY0Cg/xEBERqZEkhGj0MIIkScjJycGjjz4K4ProSXR0NNLS0jB37lwA10dLIiMj8dJLL2HixImwWCxo1aoV1q1bhzFjxgAALl26hJiYGGzbtg2DBw92eh2r1Qqr1SrfLy0tRUxMDDB6C6ALup4zhAAk6fr/cvCwL0NtuaufyTO56kP2q8ez231/LuB+q0n19jVpjgSgqgJ4fwQsFguCg4Prrd6kc1AKCgpgNpuRmpoql+n1eiQlJeHAgQMAgCNHjqC6ulpRJzo6GvHx8XIdR1lZWTAajfItJiamKVebiIiIVKZJA4rZbAYAREZGKsojIyPlZWazGX5+fggJCamzjqP09HRYLBb5duHChaZcbSIiIlIZ3a14UklSzu0QQjiVOaqvjl6vh16vb7L1+xmHE4mIiNSoSQOKyWQCcH2UJCoqSi4vKiqSR1VMJhOqqqpQUlKiGEUpKipC3759G/GqtjkntnBjH3JcldnuOz6OPJOr/mOfao+r/Zq0if2rbQ3v3yY9xBMXFweTyYTc3Fy5rKqqCnl5eXL4SExMhK+vr6JOYWEhTp061ciA0kD2WYXvfyIiotvLzQMWbo+glJeX4+uvv5bvFxQU4Pjx4wgNDUXbtm2RlpaGzMxMdOzYER07dkRmZiYCAwMxduxYAIDRaMSECRMwa9YshIWFITQ0FLNnz0ZCQgJSUlLcXBv7M3bsOM0Md4UpxWPxyJz3YF97B/YzueB2QDl8+DD69+8v3585cyYAYNy4cVizZg3mzJmDyspKTJkyBSUlJejduzd27doFg8EgP2bp0qXQ6XQYPXo0KisrMXDgQKxZswY+Pj7ub4EiZzgGFtv9usptP5P61fajZPvZRjjUcVVOnsV+3+R+6x0cf2Fk/2qWG2MDN3UdlOZSWloKo9F4/ToovoGAqN1iSVz/Wf4Mc7w2iqvA4nGb791sE6kVfSovtPuZ/er5pHp+s2b/aookOXQp+1ebJOBqBfDeo7f/OijNQuB6MHEsc0XiOKLHE2AXap39PDH2tbbZ+pr97AXq+4XDNc8PKLZ3uDx6Ilz/Iu144g6noHgoV4d5SJsc9mV+i2kXd2cvIGqPajR8P74l10FpFq6O4sDuZ2FXjzyQ3a/UwrGcnaotdt9WTn1N2uN4eIc0S8LPUzIaQAMjKC7YhxM4/MwRFI3hJ5smsVu9g5D/IW/gZn9rZwRFwW4SrP1EWU7E8ly2YUHbG9zlfFj2pzYIxYAZ56NomLwfCw6Gal0jBgW0N4Ji/4a3P6PHqRL3BI/EkS8i7eL+rWG2+aINf4T2AkqdXF0PBS7uExHRbcWPYXJBQ4d4bId0XL3T67vgE3kE22hYvdfE4HVQtMHFvunUnexfbbB9bsNh/2b/ao/tMH3Dv3s1FFBcXbgLbpSRqjXo1DT2qTa46Efushrl0KnsZw2zu6BqA2kooNizn1Vnf36x4/nHAPcGDyEc+s7lb1ocQdEGu9+q7f9XYP9qh0N/O98hLRC2idDefpqxgnSDDzryDOw87+PY53wPaBP71bs0vL+9IKDUhzuGZ6rrevdMotrg6sqKwmE5aQuvpknOvDygEBERkRp5eUDhmTxERERq5OUBhUOJREREauTlAYWIiIjUyMsDCg/xEBERqZGXBxQiIiJSIwYUIiIiUh0GFCIiIlIdBhQiIiJSHS8PKDzNmIiISI28PKDwLB4iIiI18vKAwhEUIiIiNfLygEJERERq5OUBhYd4iIiI1MjLAwoRERGpkdsB5dNPP8UjjzyC6OhoSJKELVu2KJaPHz8ekiQpbvfdd5+ijtVqxfTp0xEeHo6goCAMHz4cFy9evKkNaRzOQSEiIlIjtwNKRUUFunfvjmXLltVZZ8iQISgsLJRv27ZtUyxPS0tDTk4OsrOzsX//fpSXl2PYsGGoqalxfwtuCg/xEBERqZHO3QcMHToUQ4cOrbeOXq+HyWRyucxisWDVqlVYt24dUlJSAADr169HTEwMdu/ejcGDB7u7SkRERKQxt2QOyr59+xAREYFOnTrhueeeQ1FRkbzsyJEjqK6uRmpqqlwWHR2N+Ph4HDhwwOXzWa1WlJaWKm5Ng4d4iIiI1KjJA8rQoUPxzjvvYM+ePXj11VeRn5+PAQMGwGq1AgDMZjP8/PwQEhKieFxkZCTMZrPL58zKyoLRaJRvMTExTb3aREREpCJuH+K5kTFjxsg/x8fHo1evXoiNjcXHH3+MkSNH1vk4IQQkyfWckPT0dMycOVO+X1pa2kQhRQJHUYiIiNTnlp9mHBUVhdjYWJw9exYAYDKZUFVVhZKSEkW9oqIiREZGunwOvV6P4OBgxY2IiIi065YHlOLiYly4cAFRUVEAgMTERPj6+iI3N1euU1hYiFOnTqFv3763enWIiIjIA7h9iKe8vBxff/21fL+goADHjx9HaGgoQkNDkZGRgVGjRiEqKgrnzp3DvHnzEB4ejhEjRgAAjEYjJkyYgFmzZiEsLAyhoaGYPXs2EhIS5LN6bh8e3iEiIlIjtwPK4cOH0b9/f/m+bW7IuHHjsGLFCpw8eRJr167F5cuXERUVhf79+2Pjxo0wGAzyY5YuXQqdTofRo0ejsrISAwcOxJo1a+Dj49MEm+QOzkEhIiJSI0kI4XHf0KWlpTAajcDoLYAuqDZnCECSrv8vX4DNvgxQBhK7OuShXAVMhk6P57RrOu637F/NqLevSXMkAFUVwPsjYLFYbjiflH+Lh4iIiFSHAYWIiIhUx8sDCocSiYiI1MjLAwoRERGpkZcHFP41YyIiIjXy8oBCREREasSAQkRERKrDgEJERESq4+UBhWfxEBERqZGXBxROkiUiIlIjLw8oREREpEZeHlB4iIeIiEiNvDygEBERkRp5eUDhHBQiIiI18vKAwkM8REREauTlAYUjKERERGrk5QGFiIiI1MjLAwoP8WgLR8SIiLTCywMKaQsDJxGRVjCgEBERkep4eUDhIQEiIiI18vKAwkMCREREauTlAYWIiIjUiAGFiIiIVMfLAwrnoBAREamRlwcUzkEhIiJSIy8PKBxBISIiUiMvDygcQdEWBk4iIq1wK6BkZWXhnnvugcFgQEREBB599FGcOXNGUUcIgYyMDERHRyMgIADJyck4ffq0oo7VasX06dMRHh6OoKAgDB8+HBcvXrz5rSEvx8BJRKQVbgWUvLw8TJ06FQcPHkRubi6uXr2K1NRUVFRUyHUWL16MJUuWYNmyZcjPz4fJZMKgQYNQVlYm10lLS0NOTg6ys7Oxf/9+lJeXY9iwYaipqWm6LWsQ/sZNRESkRpIQotG/dn7//feIiIhAXl4eHnzwQQghEB0djbS0NMydOxfA9dGSyMhIvPTSS5g4cSIsFgtatWqFdevWYcyYMQCAS5cuISYmBtu2bcPgwYNv+LqlpaUwGo3A6C2ALuh6zhACkKTr/8vBw74MteWufibP5KoP2a8ez273/bmA+60m1dvXpDkSgKoK4P0RsFgsCA4Orrf6Tc1BsVgsAIDQ0FAAQEFBAcxmM1JTU+U6er0eSUlJOHDgAADgyJEjqK6uVtSJjo5GfHy8XMeR1WpFaWmp4tY0OIJCRESkRo0OKEIIzJw5E/369UN8fDwAwGw2AwAiIyMVdSMjI+VlZrMZfn5+CAkJqbOOo6ysLBiNRvkWExPT2NV23Iomeh4iIiJqSo0OKNOmTcOJEyfw7rvvOi2TJOXIhBDCqcxRfXXS09NhsVjk24ULFxq72o5r2kTPQ0RERE2pUQFl+vTp2Lp1K/bu3Ys2bdrI5SaTCQCcRkKKiorkURWTyYSqqiqUlJTUWceRXq9HcHCw4kZERETa5VZAEUJg2rRp2Lx5M/bs2YO4uDjF8ri4OJhMJuTm5splVVVVyMvLQ9++fQEAiYmJ8PX1VdQpLCzEqVOn5DpERETk3XTuVJ46dSo2bNiADz74AAaDQR4pMRqNCAgIgCRJSEtLQ2ZmJjp27IiOHTsiMzMTgYGBGDt2rFx3woQJmDVrFsLCwhAaGorZs2cjISEBKSkpTb+F9eIcFCIiIjVyK6CsWLECAJCcnKwoX716NcaPHw8AmDNnDiorKzFlyhSUlJSgd+/e2LVrFwwGg1x/6dKl0Ol0GD16NCorKzFw4ECsWbMGPj4+N7c1buMpbURERGp0U9dBaS5Ndx0UgAHFk/E6KJrE66B4D14HxbvczuugEBEREd0Kbh3iUR8BSLVpW7Ldr/1fUcfuZ7j6mTyTqz5kv2oG91vv4bKvSZPcuLqHRweU9D7vwj/At7lXg4iIiBrgSmU1st5rWF2PnoNy+SAQ3LK20D6V2aahOExHcTkFhYiImg1nnXgPCYClHLijN7xkDoqroFFfmVTHciIiIrpl3A2inh9QbITd/7ab46iK/XLyXOw/Is0Q8j9EStoJKDaOoyMu3vhO82iJSJ24n3oHjmqTC9oJKNLP/0mS85Ecvv+JiIg8h0efxeNIsj+sU8+kWf5S5uGYNr0H+5rIa2kqoAhXh3dqgwlDCRGRuvGMHrKnqYDiNDH2BhowXYXUxPaXC2p/BuCyvxvyFmBfq5/8ZeViv66rj9mvnsvV4Lcj9q+Hc7MDtRVQHN/ZN/imsm8rjiR7APvDc/V0GD/EtKG+vmYfaw/71Au4+UWrnUmy9WlANOfOQUREpB7eEVDI4zV2hIvX5dMu9qt2sW8J0NohHtKsxo5wcWRMu9i32sW+JYAjKERERKRCDChERESkOgwotXjMk4iISD0YUIiIiEh1GFBqcVIWERGRejCgEBERkeowoBAREZHqMKAQERGR6jCgEBERkeowoBAREZHqMKDU4nVQiIiI1IMBpRZPMyYiIlIPBhQiIiJSHbcCSlZWFu655x4YDAZERETg0UcfxZkzZxR1xo8fD0mSFLf77rtPUcdqtWL69OkIDw9HUFAQhg8fjosXL9781hAREZEmuBVQ8vLyMHXqVBw8eBC5ubm4evUqUlNTUVFRoag3ZMgQFBYWyrdt27YplqelpSEnJwfZ2dnYv38/ysvLMWzYMNTU1Nz8FhEREZHH07lTeceOHYr7q1evRkREBI4cOYIHH3xQLtfr9TCZTC6fw2KxYNWqVVi3bh1SUlIAAOvXr0dMTAx2796NwYMHOz3GarXCarXK90tLS91ZbSIiIvIwNzUHxWKxAABCQ0MV5fv27UNERAQ6deqE5557DkVFRfKyI0eOoLq6GqmpqXJZdHQ04uPjceDAAZevk5WVBaPRKN9iYmJuZrWJiIhI5RodUIQQmDlzJvr164f4+Hi5fOjQoXjnnXewZ88evPrqq8jPz8eAAQPkERCz2Qw/Pz+EhIQoni8yMhJms9nla6Wnp8Nisci3CxcuNHa168TTjImIiNTDrUM89qZNm4YTJ05g//79ivIxY8bIP8fHx6NXr16IjY3Fxx9/jJEjR9b5fEIISJLrmKDX66HX6xu7qg3C04yJiIjUo1EjKNOnT8fWrVuxd+9etGnTpt66UVFRiI2NxdmzZwEAJpMJVVVVKCkpUdQrKipCZGRkY1anSXAEhYiISD3cCihCCEybNg2bN2/Gnj17EBcXd8PHFBcX48KFC4iKigIAJCYmwtfXF7m5uXKdwsJCnDp1Cn379nVz9ZsOR1CIiIjUw61DPFOnTsWGDRvwwQcfwGAwyHNGjEYjAgICUF5ejoyMDIwaNQpRUVE4d+4c5s2bh/DwcIwYMUKuO2HCBMyaNQthYWEIDQ3F7NmzkZCQIJ/VQ0RERN7NrYCyYsUKAEBycrKifPXq1Rg/fjx8fHxw8uRJrF27FpcvX0ZUVBT69++PjRs3wmAwyPWXLl0KnU6H0aNHo7KyEgMHDsSaNWvg4+Nz81tEREREHk8SQnjc0Y3S0lIYjUZcPggEG3D9+AwnkRAREalaaTlwR+/rlykJDg6uty7/Fg8RERGpDgMKERERqQ4DSi0eISIiIlIPBpRaHjcRh4iISMMYUIiIiEh1GFCIiIhIdRhQiIiISHUYUIiIiEh1GFCIiIhIdRhQavE0YyIiIvVgQCEiIiLVYUCpxeugEBERqQcDChEREakOAwoRERGpDgMKERERqQ4DChEREakOA0otnmZMRESkHgwoREREpDoMKLV4mjEREZF6MKAQERGR6jCgEBERkeowoBAREZHqMKAQERGR6jCgEBERkeowoNTidVCIiIjUgwGlFk8zJiIiUg8GFCIiIlIdBhQiIiJSHbcCyooVK9CtWzcEBwcjODgYffr0wfbt2+XlQghkZGQgOjoaAQEBSE5OxunTpxXPYbVaMX36dISHhyMoKAjDhw/HxYsXm2ZriIiISBPcCiht2rTBokWLcPjwYRw+fBgDBgzAL3/5SzmELF68GEuWLMGyZcuQn58Pk8mEQYMGoaysTH6OtLQ05OTkIDs7G/v370d5eTmGDRuGmpqapt0yIiIi8liSEOKm5oeGhobi5ZdfxjPPPIPo6GikpaVh7ty5AK6PlkRGRuKll17CxIkTYbFY0KpVK6xbtw5jxowBAFy6dAkxMTHYtm0bBg8e7PI1rFYrrFarfL+0tBQxMTG4fBAINuD6DFeehkNERKRqpeXAHb0Bi8WC4ODgeus2eg5KTU0NsrOzUVFRgT59+qCgoABmsxmpqalyHb1ej6SkJBw4cAAAcOTIEVRXVyvqREdHIz4+Xq7jSlZWFoxGo3yLiYlp7GoTERGRB3A7oJw8eRItW7aEXq/HpEmTkJOTgy5dusBsNgMAIiMjFfUjIyPlZWazGX5+fggJCamzjivp6emwWCzy7cKFC+6uNhEREXkQnbsPuOuuu3D8+HFcvnwZmzZtwrhx45CXlycvlyTlsRYhhFOZoxvV0ev10Ov17q6qWyTwWihERERq4fYIip+fHzp06IBevXohKysL3bt3x+uvvw6TyQQATiMhRUVF8qiKyWRCVVUVSkpK6qzTXBhOiIiI1OOmr4MihIDVakVcXBxMJhNyc3PlZVVVVcjLy0Pfvn0BAImJifD19VXUKSwsxKlTp+Q6RERERG4d4pk3bx6GDh2KmJgYlJWVITs7G/v27cOOHTsgSRLS0tKQmZmJjh07omPHjsjMzERgYCDGjh0LADAajZgwYQJmzZqFsLAwhIaGYvbs2UhISEBKSsot2UAiIiLyPG4FlP/+9794+umnUVhYCKPRiG7dumHHjh0YNGgQAGDOnDmorKzElClTUFJSgt69e2PXrl0wGAzycyxduhQ6nQ6jR49GZWUlBg4ciDVr1sDHx6dpt4yIiIg81k1fB6U5lJaWwmg08jooREREHuS2XAeFiIiI6FZhQKnFARgiIiL1YEAhIiIi1WFAqeVxE3GIiIg0jAGFiIiIVIcBhYiIiFRHmwFFOPzvahkRERGplucHFPtroNQXPkQdPxMREZHqeH5AsWd/rrAtuNQVRhhSPBf7zmtI7Gsir+XWpe5VyT6E1BVI7MMKL3ji8SSJGYWISOs8P6DYOAYV0ha7vhX292vLSGNq+1dwv9Y+u18g+cuHhjWiY7V1iAdwfZinEQ8llZGg7CDJ4f8GPow8RF39Tdpjty8znGhYI/ZhbQWUuhqggV9m5GEa0J/8wNMA7rdE2uDmvqytgHKT+GWmTexXIiLPw4BCREREqqPtgMKhYSIiIo+k7YDiBmYZIiIi9WBAISIiItVhQKnFiZRERETqwYBCREREqsOAQkRERKrDgEJERESqw4BCREREqsOAQkRERKrDgFKL10EhIiJSDwYUIiIiUh0GlFq8DgoREZF6uBVQVqxYgW7duiE4OBjBwcHo06cPtm/fLi8fP348JElS3O677z7Fc1itVkyfPh3h4eEICgrC8OHDcfHixabZGiIiItIEtwJKmzZtsGjRIhw+fBiHDx/GgAED8Mtf/hKnT5+W6wwZMgSFhYXybdu2bYrnSEtLQ05ODrKzs7F//36Ul5dj2LBhqKmpaZotIiIiIo8nCSFu6uhGaGgoXn75ZUyYMAHjx4/H5cuXsWXLFpd1LRYLWrVqhXXr1mHMmDEAgEuXLiEmJgbbtm3D4MGDG/SapaWlMBqNuHwQCDbg+vEZznIlIiJStdJy4I7e1/NAcHBwvXUbPQelpqYG2dnZqKioQJ8+feTyffv2ISIiAp06dcJzzz2HoqIiedmRI0dQXV2N1NRUuSw6Ohrx8fE4cOBAna9ltVpRWlqquBEREZF2uR1QTp48iZYtW0Kv12PSpEnIyclBly5dAABDhw7FO++8gz179uDVV19Ffn4+BgwYAKvVCgAwm83w8/NDSEiI4jkjIyNhNpvrfM2srCwYjUb5FhMT4+5qExERkQfRufuAu+66C8ePH8fly5exadMmjBs3Dnl5eejSpYt82AYA4uPj0atXL8TGxuLjjz/GyJEj63xOIQQkqe5jNOnp6Zg5c6Z8v7S0tMlDigSeyUNERKQWbgcUPz8/dOjQAQDQq1cv5Ofn4/XXX8ff//53p7pRUVGIjY3F2bNnAQAmkwlVVVUoKSlRjKIUFRWhb9++db6mXq+HXq93d1WJiIjIQ930dVCEEPIhHEfFxcW4cOECoqKiAACJiYnw9fVFbm6uXKewsBCnTp2qN6DcDhw9ISIiUg+3RlDmzZuHoUOHIiYmBmVlZcjOzsa+ffuwY8cOlJeXIyMjA6NGjUJUVBTOnTuHefPmITw8HCNGjAAAGI1GTJgwAbNmzUJYWBhCQ0Mxe/ZsJCQkICUl5ZZsIBEREXketwLKf//7Xzz99NMoLCyE0WhEt27dsGPHDgwaNAiVlZU4efIk1q5di8uXLyMqKgr9+/fHxo0bYTAY5OdYunQpdDodRo8ejcrKSgwcOBBr1qyBj49Pk28cEREReaabvg5Kc+B1UIiIiDzPbbkOChEREdGtwoBSiwMwRERE6sGAQkRERKrDgFLL4ybiEBERaRgDChEREakOAwoRERGpDgMKERERqQ4DChEREakOAwoRERGpDgNKLV4HhYiISD0YUGrxNGMiIiL1YEAhIiIi1WFAISIiItVhQCEiIiLVYUAhIiIi1WFAISIiItVhQCEiIiLVYUAhIiIi1WFAqcULtREREakHA0otXqiNiIhIPRhQiIiISHUYUIiIiEh1GFCIiIhIdRhQiIiISHUYUIiIiEh1GFBq8TRjIiIi9WBAISIiItVhQKnF66AQERGpx00FlKysLEiShLS0NLlMCIGMjAxER0cjICAAycnJOH36tOJxVqsV06dPR3h4OIKCgjB8+HBcvHjxZlaFiIiINKTRASU/Px9vvvkmunXrpihfvHgxlixZgmXLliE/Px8mkwmDBg1CWVmZXCctLQ05OTnIzs7G/v37UV5ejmHDhqGmpqbxW0JERESa0aiAUl5ejqeeegorV65ESEiIXC6EwGuvvYb58+dj5MiRiI+Px9tvv42ffvoJGzZsAABYLBasWrUKr776KlJSUtCjRw+sX78eJ0+exO7du5tmq4iIiMijNSqgTJ06FQ8//DBSUlIU5QUFBTCbzUhNTZXL9Ho9kpKScODAAQDAkSNHUF1dragTHR2N+Ph4uY4jq9WK0tJSxY2IiIi0S+fuA7Kzs3H06FHk5+c7LTObzQCAyMhIRXlkZCS+/fZbuY6fn59i5MVWx/Z4R1lZWVi4cKG7q+oWCZwoS0REpBZujaBcuHABM2bMwPr16+Hv719nPUlSXlVECOFU5qi+Ounp6bBYLPLtwoUL7qw2EREReRi3AsqRI0dQVFSExMRE6HQ66HQ65OXl4Y033oBOp5NHThxHQoqKiuRlJpMJVVVVKCkpqbOOI71ej+DgYMWtqXH0hIiISD3cCigDBw7EyZMncfz4cfnWq1cvPPXUUzh+/Djat28Pk8mE3Nxc+TFVVVXIy8tD3759AQCJiYnw9fVV1CksLMSpU6fkOkREROTd3JqDYjAYEB8frygLCgpCWFiYXJ6WlobMzEx07NgRHTt2RGZmJgIDAzF27FgAgNFoxIQJEzBr1iyEhYUhNDQUs2fPRkJCgtOkWyIiIvJObk+SvZE5c+agsrISU6ZMQUlJCXr37o1du3bBYDDIdZYuXQqdTofRo0ejsrISAwcOxJo1a+Dj49PUq0NEREQeSBJCeNz0i9LSUhiNRlw+CAQbcH0CCf/aHxERkaqVlgN39L5+TbQbzSfl3+KpxXxDRESkHgwoREREpDoMKLU87jgXERGRhjGgEBERkeowoBAREZHqMKAQERGR6jCgEBERkeowoBAREZHqMKDU4nVQiIiI1IMBpRZPMyYiIlIP7QcU4eJ/phEiIiJV035AsWnAMRwe5tEm9isRUfNz97O4yf+a8e1g+/uGpRW4vsXC4f9aEgDbn0KUpNqf+W3l0WzdfKsfQ0RETa+0/Pr/Dfk7xR4ZUMrKygAAbQc284oQERGR28rKymA0GuutI4mGxBiVuXbtGs6cOYMuXbrgwoULN/yTzXRdaWkpYmJi2GZuYru5j23WOGw397HNGqe52k0IgbKyMkRHR6NFi/pnmXjkCEqLFi3QunVrAEBwcDDflG5imzUO2819bLPGYbu5j23WOM3RbjcaObHxnkmyRERE5DEYUIiIiEh1PDag6PV6LFiwAHq9vrlXxWOwzRqH7eY+tlnjsN3cxzZrHE9oN4+cJEtERETa5rEjKERERKRdDChERESkOgwoREREpDoMKERERKQ6DChERESkOh4ZUP76178iLi4O/v7+SExMxGeffdbcq9RsPv30UzzyyCOIjo6GJEnYsmWLYrkQAhkZGYiOjkZAQACSk5Nx+vRpRR2r1Yrp06cjPDwcQUFBGD58OC5evHgbt+L2ysrKwj333AODwYCIiAg8+uijOHPmjKIO283ZihUr0K1bN/nKk3369MH27dvl5WyzG8vKyoIkSUhLS5PL2G7OMjIyIEmS4mYymeTlbDPXvvvuO/zqV79CWFgYAgMD8Ytf/AJHjhyRl3tcuwkPk52dLXx9fcXKlSvFF198IWbMmCGCgoLEt99+29yr1iy2bdsm5s+fLzZt2iQAiJycHMXyRYsWCYPBIDZt2iROnjwpxowZI6KiokRpaalcZ9KkSaJ169YiNzdXHD16VPTv3190795dXL169TZvze0xePBgsXr1anHq1Clx/Phx8fDDD4u2bduK8vJyuQ7bzdnWrVvFxx9/LM6cOSPOnDkj5s2bJ3x9fcWpU6eEEGyzGzl06JBo166d6Natm5gxY4ZcznZztmDBAtG1a1dRWFgo34qKiuTlbDNnP/74o4iNjRXjx48X//73v0VBQYHYvXu3+Prrr+U6ntZuHhdQ7r33XjFp0iRF2d133y1+//vfN9MaqYdjQLl27ZowmUxi0aJFctmVK1eE0WgUf/vb34QQQly+fFn4+vqK7Oxsuc53330nWrRoIXbs2HHb1r05FRUVCQAiLy9PCMF2c0dISIj4xz/+wTa7gbKyMtGxY0eRm5srkpKS5IDCdnNtwYIFonv37i6Xsc1cmzt3rujXr1+dyz2x3TzqEE9VVRWOHDmC1NRURXlqaioOHDjQTGulXgUFBTCbzYr20uv1SEpKktvryJEjqK6uVtSJjo5GfHy817SpxWIBAISGhgJguzVETU0NsrOzUVFRgT59+rDNbmDq1Kl4+OGHkZKSoihnu9Xt7NmziI6ORlxcHJ544gl88803ANhmddm6dSt69eqFxx9/HBEREejRowdWrlwpL/fEdvOogPLDDz+gpqYGkZGRivLIyEiYzeZmWiv1srVJfe1lNpvh5+eHkJCQOutomRACM2fORL9+/RAfHw+A7VafkydPomXLltDr9Zg0aRJycnLQpUsXtlk9srOzcfToUWRlZTktY7u51rt3b6xduxY7d+7EypUrYTab0bdvXxQXF7PN6vDNN99gxYoV6NixI3bu3IlJkybhN7/5DdauXQvAM99rutv+ik1AkiTFfSGEUxn9rDHt5S1tOm3aNJw4cQL79+93WsZ2c3bXXXfh+PHjuHz5MjZt2oRx48YhLy9PXs42U7pw4QJmzJiBXbt2wd/fv856bDeloUOHyj8nJCSgT58+uPPOO/H222/jvvvuA8A2c3Tt2jX06tULmZmZAIAePXrg9OnTWLFiBX7961/L9Typ3TxqBCU8PBw+Pj5OSa6oqMgpFRLkWe/1tZfJZEJVVRVKSkrqrKNV06dPx9atW7F37160adNGLme71c3Pzw8dOnRAr169kJWVhe7du+P1119nm9XhyJEjKCoqQmJiInQ6HXQ6HfLy8vDGG29Ap9PJ2812q19QUBASEhJw9uxZvtfqEBUVhS5duijKOnfujPPnzwPwzM81jwoofn5+SExMRG5urqI8NzcXffv2baa1Uq+4uDiYTCZFe1VVVSEvL09ur8TERPj6+irqFBYW4tSpU5ptUyEEpk2bhs2bN2PPnj2Ii4tTLGe7NZwQAlarlW1Wh4EDB+LkyZM4fvy4fOvVqxeeeuopHD9+HO3bt2e7NYDVasWXX36JqKgovtfqcP/99ztdLuGrr75CbGwsAA/9XLvt03Jvku0041WrVokvvvhCpKWliaCgIHHu3LnmXrVmUVZWJo4dOyaOHTsmAIglS5aIY8eOyaddL1q0SBiNRrF582Zx8uRJ8eSTT7o8raxNmzZi9+7d4ujRo2LAgAGaPh1v8uTJwmg0in379ilOY/zpp5/kOmw3Z+np6eLTTz8VBQUF4sSJE2LevHmiRYsWYteuXUIItllD2Z/FIwTbzZVZs2aJffv2iW+++UYcPHhQDBs2TBgMBvlznm3m7NChQ0Kn04k///nP4uzZs+Kdd94RgYGBYv369XIdT2s3jwsoQgixfPlyERsbK/z8/ETPnj3l00O90d69ewUAp9u4ceOEENdPLVuwYIEwmUxCr9eLBx98UJw8eVLxHJWVlWLatGkiNDRUBAQEiGHDhonz5883w9bcHq7aC4BYvXq1XIft5uyZZ56R97tWrVqJgQMHyuFECLZZQzkGFLabM9v1OXx9fUV0dLQYOXKkOH36tLycbebahx9+KOLj44Verxd33323ePPNNxXLPa3dJCGEuP3jNkRERER186g5KEREROQdGFCIiIhIdRhQiIiISHUYUIiIiEh1GFCIiIhIdRhQiIiISHUYUIiIiEh1GFCIiIhIdRhQiIiISHUYUIiIiEh1GFCIiIhIdf4/6t05a0tx6vcAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEO0lEQVR4nO3de1xUZeI/8M+JgeEiTFyEAUUkL6WCrmJrsqUoiLqa66W07KIvra/35KWmoftLbFtI+6bV2rqbmaZmWKuYW2piKuWaG6Lkra9rmyYYRBEOl3BAfH5/CKe5yyA6Z8583q/XiPPMMzPnPM+cmc885zlnJCGEABEREZGC3OHqBSAiIiKyxIBCREREisOAQkRERIrDgEJERESKw4BCREREisOAQkRERIrDgEJERESKw4BCREREisOAQkRERIrDgEKK17FjR4wcObLF96+rq8Pzzz+P2NhY+Pj4ICYmBunp6aitrW3FpXRvGRkZkCTJJc995swZZGRk4MKFC1a3TZ48GR07drzty+SMn3/+GY888gjCw8MhSRJGjx5tt66j1/LRo0chSRI2bNggl02ePBlt2rRp5SW2zZVtba8NJUlCRkaGS5aJXE/j6gUgutUeffRR7Nq1C88//zzuvfdefPHFF3jxxRdx+vRp7Ny509WLpwhPPfUUhg0b5pLnPnPmDJYtW4akpCSrD8j/9//+H+bOneuS5WquP/3pT8jJycHbb7+NTp06ISQkxNWL1CKubGu1tCG1LgYUahW//PIL/P39Xb0YVo4cOYLt27fjlVdewbx58wAAKSkp0Gg0WLx4MXJzczFkyBAXL6VzbkVbt2/fHu3bt2/Vx2wNnTp1cvUi3NCpU6fQqVMnPPbYY65eFDO1tbXw8/Nrdn1XtrVS25Bci7t4yGlNuwOOHTuGhx56CMHBwfKb29GjR/HII4+gY8eO8PPzQ8eOHfHoo4/iu+++M3uMDRs2QJIkHDhwADNmzEBYWBhCQ0MxduxYfP/99zdchr/+9a/QaDRYunSpw3r/+te/AAC///3vzcqbhtm3bdt2w+datmwZ+vXrh5CQEAQFBaFPnz5Yt24dLH9ns2n4PicnBz179oSvry/uuusuvP7662b1Dh48CEmSsHnzZsybNw96vR5+fn4YOHAgjh8/bla3aYj/5MmTSE1NRWBgIJKTkwFcHxafOXMm2rVrBx8fH9x1111YsmQJjEYjAODKlSvo3bs3OnfuDIPBID9maWkp9Ho9kpKS0NDQAMD2Lp6m9fnoo4/Qu3dv+Pn5oVu3bvjoo48AXO/Dbt26ISAgAL/97W9x9OhRs/s357WwYcMGPPzwwwCAQYMGQZIks90ctnY7XLlyBenp6fIuu3bt2mHWrFm4fPmyzeXfs2cP+vTpAz8/P9xzzz14++23rTvZhhu174ULFyBJEvbt24evv/5aXvaDBw826/Fb6l//+hfCwsIwcuRI1NTUAPh1Xbdv347evXvD19cXy5YtAwC88cYbGDBgAMLDwxEQEID4+HisWLEC9fX1Zo9rq60lScLs2bOxadMmdOvWDf7+/ujVq5f8GjB17tw5TJw4EeHh4dBqtejWrRveeOMNh+vibBv++OOPmDlzJrp37442bdogPDwcgwcPxueff25Vt7i4GA899BACAwNx55134rHHHkN+fr7VbjRSLo6gUIuNHTsWjzzyCKZPny6/UV64cAF33303HnnkEYSEhKCkpARr1qzBvffeizNnziAsLMzsMZ566imMGDECW7ZsQVFREZ599lk8/vjj2L9/v83nFELg2Wefxeuvv4633noLkydPdriMdXV1AACtVmtW3nT9xIkTN1zPCxcuYNq0aejQoQOA66Myc+bMwaVLl/D888+b1S0sLERaWhoyMjKg1+vx7rvvYu7cuairq8OCBQvM6i5evBh9+vTBW2+9BYPBgIyMDCQlJeH48eO46667zNZh1KhRmDZtGp577jlcvXoVV65cwaBBg/Df//4Xy5YtQ8+ePfH5558jKysLhYWF+Pjjj+Hr64v3338fCQkJmDJlCrZt24Zr167hsccegxAC7733Hry8vByu+1dffYX09HQsWbIEOp0Oy5Ytw9ixY5Geno5PP/0UmZmZkCQJixYtwsiRI3H+/Hn5W3tzXgsjRoxAZmYmFi9ejDfeeAN9+vQBYP/bvBACo0ePxqeffor09HQ88MADOHHiBJYuXYovvvgCX3zxhVlff/XVV5g/fz6ee+45RERE4K233sLUqVPRuXNnDBgwwO56N6d9IyMj8cUXX2DmzJkwGAx49913AQDdu3d32KY34/3338eTTz6JKVOm4C9/+YtZ/x07dgxff/01/vjHPyI2NhYBAQEAgP/+97+YOHGiHOi++uor/PnPf8b//d//NSusffzxx8jPz8cLL7yANm3aYMWKFRgzZgzOnj0rv07PnDmDxMREdOjQAa+88gr0ej0++eQTPPPMM/jpp5/sfpFwtg1//vlnAMDSpUuh1+tRXV2NnJwcJCUl4dNPP0VSUhIAoKamBoMGDcLPP/+M5cuXo3PnztizZw8mTJjQvIYmZRBETlq6dKkAIJ5//vkb1r169aqorq4WAQEB4rXXXpPL169fLwCImTNnmtVfsWKFACBKSkrkspiYGDFixAjxyy+/iHHjxgmdTif27dvXrGXdsWOHACA2bdpkVr5u3ToBQHTt2rVZj9OkoaFB1NfXixdeeEGEhoaKa9eumS2nJEmisLDQ7D5DhgwRQUFBoqamRgghxIEDBwQA0adPH7P7X7hwQXh7e4unnnpKLps0aZIAIN5++22zx/zb3/4mAIj333/frHz58uUCgNi7d69ctnXrVgFAvPrqq+L5558Xd9xxh9ntQvzap6ZiYmKEn5+fKC4ulssKCwsFABEZGSmvjxC/tvPOnTvttp2918IHH3wgAIgDBw5Y3WfSpEkiJiZGvr5nzx4BQKxYscKsXtM6vvnmm2bL7+vrK7777ju5rLa2VoSEhIhp06bZXU4hnGvfgQMHih49ejh8PNNlGjFihM3b8vPzBQCxfv16uWzSpEkiICBACCHESy+9JLy8vMTy5cttPq6Xl5c4e/asw+dvev1u3LhReHl5iZ9//tnsuUzbWgghAIiIiAhRWVkpl5WWloo77rhDZGVlyWVDhw4V7du3FwaDwez+s2fPFr6+vmbPY4u9NgQgli5davd+V69eFfX19SI5OVmMGTNGLn/jjTcEALF7926z+tOmTbNqY1Iu7uKhFhs3bpxVWXV1NRYtWoTOnTtDo9FAo9GgTZs2qKmpwddff21Vf9SoUWbXe/bsCQBWu4TKy8sxePBgfPnllzh06JC8m6NJQ0MDrl69Kl+uXbsGABg+fDg6d+6MRYsWITc3F5cvX8aePXuwePFieHl54Y47brwJ7N+/HykpKdDpdPDy8oK3tzeef/55lJeXo6yszKxujx490KtXL7OyiRMnorKyEseOHbMqN92tEhMTg8TERBw4cMBqGSzbev/+/QgICMBDDz1kVt40ovTpp5/KZePHj8eMGTPw7LPP4sUXX8TixYubPe/mN7/5Ddq1aydf79atGwAgKSnJbB5MU7lpvzn7WmiOppE1y5Gzhx9+GAEBAWbr3bT8TSNfAODr64uuXbtavb5sPU9z2/dWE0Jg2rRpWLp0KbZs2YKFCxfarNezZ0907drVqvz48eMYNWoUQkND5dfvk08+iYaGBvznP/+54fMPGjQIgYGB8vWIiAiEh4fLbXjlyhV8+umnGDNmDPz9/c22w9///ve4cuUKjhw50sK1t/a3v/0Nffr0ga+vLzQaDby9vfHpp5+avaby8vIQGBhoNfH70UcfbbXloFuPAYVaLDIy0qps4sSJWL16NZ566il88skn+PLLL5Gfn4+2bdvaPKw3NDTU7HrT8Lxl3f/85z/497//jeHDhyMuLs7qcZKTk+Ht7S1fpkyZAgDw8fHB7t270aFDB6SmpiI4OBgPPfQQFi9ejODgYLMPX1u+/PJLpKamAgDWrl2Lf/3rX8jPz8eSJUtsLqder7d6jKay8vLyZtW1rOfv74+goCCzsvLycuj1eqt5I+Hh4dBoNFaPMWXKFNTX10Oj0eCZZ56xu76WLI+m8PHxcVh+5coVuczZ10JzlJeXQ6PRoG3btmblkiTZbDvL1xdw/TV2o+d3tn2bS6PRyPN+LF29ehUA4O3tbVZeV1eHrVu3okePHhg+fLjdx7a1PV68eBEPPPAALl26hNdeew2ff/458vPz5bkhzemHG7VheXk5rl69ir/85S9m26C3t7c89+unn3664fM0x8qVKzFjxgz069cP27Ztw5EjR5Cfn49hw4aZrUt5eTkiIiKs7m+rjJSLc1CoxSzfvA0GAz766CMsXboUzz33nFxuNBrlfcct1b9/fzz88MOYOnUqAGDNmjVmox9///vfUVVVJV83nevSuXNnfPHFF7h06RJ+/vlndOrUCQaDAXPnznU4DwEAsrOz4e3tjY8++gi+vr5y+Y4dO2zWLy0ttVtm+UZvr65lPVvnJwkNDcW///1vCCHMbi8rK8PVq1fN1r+mpgZPPPEEunbtih9++AFPPfUUPvzwQ5vL31pu1WshNDQUV69exY8//mgWUoQQKC0txb333ntTy236PM1tX2dERETg0qVLNm9rKrf8ENVqtThw4ACGDh2KlJQU7NmzB8HBwVb3t/U62bFjB2pqarB9+3bExMTI5YWFhS1afluCg4Ph5eWFJ554ArNmzbJZJzY2tlWea/PmzUhKSsKaNWvMyk23feB6/3355ZdW97e1zZFycQSFWo0kSRBCWE1Ifeutt+x+a3TGpEmTkJ2djfXr18tD1E3uvvtu9O3bV77YOuFUu3btEB8fD39/f7z88ssICAiQA4+jddJoNGaTEWtra7Fp0yab9U+fPo2vvvrKrGzLli0IDAyUJ4A2ee+998yOBPruu+9w+PBheaKfI8nJyaiurrYKShs3bpRvbzJ9+nRcvHgR27dvx7p167Bz506sWrXqhs9xM5x5LdgbNbOlab02b95sVr5t2zbU1NRY7fprKWfa1xkpKSk4deoUzpw5Y3Xb+++/jzZt2qBfv35Wt/Xu3Rt5eXkoLi5GUlKS1a5Fe5pCi2k/CCGwdu3aFi2/Lf7+/hg0aBCOHz+Onj17mm2HTRdbozAtIUmS1WvqxIkT+OKLL8zKBg4ciKqqKuzevdusPDs7u1WWg24PjqBQqwkKCsKAAQPw8ssvIywsDB07dkReXh7WrVuHO++8s1We46GHHoK/vz8eeugh1NbW4r333pN3L9izYsUK6PV6dOjQAT/88APef/997NixA5s2bbrhLp4RI0Zg5cqVmDhxIv7nf/4H5eXl+N///V+rN8kmUVFRGDVqFDIyMhAZGYnNmzcjNzcXy5cvtzp3SVlZGcaMGYOnn34aBoMBS5cuha+vL9LT02/YDk8++STeeOMNTJo0CRcuXEB8fDwOHTqEzMxM/P73v0dKSgqA64Fg8+bNWL9+PXr06IEePXpg9uzZWLRoEX73u9/ht7/97Q2fqyWceS007bJ78803ERgYCF9fX8TGxtr8UBsyZAiGDh2KRYsWobKyEr/73e/ko3h69+6NJ554olWWv7nt66y5c+di48aNSEpKwuLFixEfH4+Kigps3boV//jHP7By5Uqz+R6munXrhs8//xwpKSkYMGAA9u3bd8Nz1wwZMgQ+Pj549NFHsXDhQly5cgVr1qxBRUVFi5bfntdeew33338/HnjgAcyYMQMdO3ZEVVUVvvnmG/zzn/+0e1Ses0aOHIk//elPWLp0KQYOHIizZ8/ihRdeQGxsrLyLDLj+ZWbVqlV4/PHH8eKLL6Jz587YvXs3PvnkEwBo1twzUgDXzc8ld9V0xMePP/5odVtxcbEYN26cCA4OFoGBgWLYsGHi1KlTIiYmRkyaNEmu13QUT35+vtn9m45wMT2iw9aRDwcOHBBt2rQRw4YNE7/88ovD5V22bJno1KmT0Gq14s477xTDhg0Tn332WbPX9+233xZ333230Gq14q677hJZWVnyUUDnz5+3Ws5//OMfokePHsLHx0d07NhRrFy50uY6btq0STzzzDOibdu2QqvVigceeEAcPXrUrK7pURyWysvLxfTp00VkZKTQaDQiJiZGpKeniytXrgghhDhx4oTw8/Mza3chhLhy5YpISEgQHTt2FBUVFUII+0fx2DriBICYNWuWWdn58+cFAPHyyy/LZc19LQghxKuvvipiY2OFl5eX2VEWto4sqa2tFYsWLRIxMTHC29tbREZGihkzZsjrcqPlHzhwoBg4cKBVuaUbta/p4zX3KB4hrh8FM2PGDNGhQweh0WhEYGCguP/++8UHH3xgVddW/xcXF4t77rlHdOzYUfz3v/91uK5CCPHPf/5T9OrVS/j6+op27dqJZ599VuzevdtqO7N3FI9lXzc9n2Ufnj9/XkyZMkW0a9dOeHt7i7Zt24rExETx4osv3rBNmnsUj9FoFAsWLBDt2rUTvr6+ok+fPmLHjh02l/3ixYti7Nixok2bNiIwMFCMGzdO7Nq1SwAQH3744Q2XiVxPEsLibFNE1CIdO3ZEXFyczZNYmTp48CAGDRqEDz74wOooESK6dTIzM/HHP/4RFy9eVOSZk8kcd/EQEZHqrF69GgBwzz33oL6+Hvv378frr7+Oxx9/nOHETTCgEBGR6vj7+2PVqlW4cOECjEYjOnTogEWLFuGPf/yjqxeNmom7eIiIiEhxXDqV+a9//StiY2Ph6+uLhIQEmz/4RERERJ7HZQFl69atSEtLw5IlS3D8+HE88MADGD58OC5evOiqRSIiIiKFcNkunn79+qFPnz5mZwTs1q0bRo8ejaysLIf3vXbtGr7//nsEBgbaPHsiERERKY8QAlVVVYiKirrh+WhcMkm2rq4OBQUFZqfABoDU1FQcPnzYqr7RaITRaJSvX7p06Zb+pDkRERHdOkVFRTc8msolAeWnn35CQ0OD1W9ORERE2PythKysLCxbtsz6gca8C2gCAEkAAgAkk/83kmByvemKWSERKUrTqCi3USL1aNyu638Bdky0e8ZkUy49zNhy94yw+GGuJunp6Zg3b558vbKyEtHR0YB3AKDxb8wbjaFDMgkfTVkEjbdL4td6DCnuiZ9d6mf5FsC+Vi/JYoNmX6tXU183/WnG9AyXBJSwsDB4eXlZjZaUlZXZ/DlsrVZr57dPTIKGad4QTS1gGkhgEVgAhhR30thXpv1p1X+mL3j2q/tq7EdhusFaYv+qimAqVb+mz+Hm961LjuLx8fFBQkICcnNzzcpzc3ORmJjYgkeUTN7MxPVg0rSrR2osl0xHTZr+ciNwH40hVIL1ty7TOuxX9yfE9YskNeYTYeNCqiD3NSz6mlRH/l7Z/ANbXLaLZ968eXjiiSfQt29f9O/fH2+++SYuXryI6dOnt/xBLfOH1QCJnREXUj7TUCKargv2oRpZ9fWvV0llLL9s8H1ZveRc0vwOdllAmTBhAsrLy/HCCy+gpKQEcXFx2LVrF2JiYpx4FJNXsyT9+q3LsgHkwNI00kJup+lbljwaZjIyxi5VF2HyYcWzCKibaV8D3JbVTN6N1/yN2i1PdV9ZWQmdTgeM39F4FA8gz0+QLOabmB3dY7Krx/1W27NZvaY5gqJanHbiOTj1xLNIAOprgPfHwGAwICgoyGF19fxYoOnROfKL3PRbtq2jeJrqkPKZBhLJfDTF7DDyJuxX92UxSdZmYGH/qgonyapfCz5y1RNQAJMRk8ZdPbbmo0gmFbkNuA+zoWAb57qBjXJyT6ajm6YBlPMT1EfuWx5mrHqm23EzqSugmL64m+YsmB7dQ+7P1pGn7Fr1Enb+T+rCvvUATSOjzb+HS3/NuPXYODSt6eRtklUhfv2UkyxuI/cmwbpfya3ZnHvE/lUPW+/D7F91c4PDjFuX6fkSYJ5XrHbzmB75Y1KPEV7ZLKeX2Jxuwj5UBXt9bTVPgdyerS7lZqxOzh/Eo5aAAosPLYsQYj0JxQR3/7gHR69qy52b7E/3xiDiOWyNZpM6Of++rJ6AAtiZONl0fhTY/ubN7UL5LPfg2cuUlhPt2LfuyV5fW+ZP9q/7c/SZxf5VF2HxtxnUFVDkN7Cmmf/i19NlW54XRd4dxK3ALUgmr2p7u3gsX/gcSHFP9vqa/as+prvmm7Tgg4zcgPxjgc3vWJUEFNNvzjbmlwjTkGLyjmfz/BmkSGaHnsLizcvWJxj71G057GtT7GO3Zzq6bYX9qyqeO4Ji8gHVdDp7s8+qxus2T3XPmO52rLrMVh+yX92Wad502I3sY7fnMIOwf9XF3kkX7VNJQDEh78KRr9iYIytMdu1wI3BPNxo1Yb+6txtNGmP/qoLZyTMtbyB1cf5Emio5D0oz8IRPKsKhX3XjkXVE5EkBhR9qKmJv7J8faupg69sE+1aVTH+mgn1MFjwooFgcgmp9hVSD/apu7F/VsNmV7F/VcnKcwIMCii0cVSEiIlIiDw8oRETkMvyOSA4woBAREZHiMKAQkcJxToJqsWvJAQ8PKNw6iJSP+wGIPJGHBxS+8RERESmRhwcUIiJyGX5HJAcYUIiIiEhxGFCIiMg1OA2QHGBAISIi1+AuHnKAAYWIiIgUhwGFiIhcg7t4yAEGFCIiIlIcBhQiInINzkEhB1o9oGRkZECSJLOLXq+XbxdCICMjA1FRUfDz80NSUhJOnz7d2otBRKrB/QCqxa4lB27JCEqPHj1QUlIiX06ePCnftmLFCqxcuRKrV69Gfn4+9Ho9hgwZgqqqqluxKETk9vg1W7XYteSA5pY8qEZjNmrSRAiBV199FUuWLMHYsWMBAO+88w4iIiKwZcsWTJs2zebjGY1GGI1G+XplZWUrLSnjOxGRywgwpJBdt2QE5dy5c4iKikJsbCweeeQRfPvttwCA8+fPo7S0FKmpqXJdrVaLgQMH4vDhw3YfLysrCzqdTr5ER0e30pJyyyAiIlKiVg8o/fr1w8aNG/HJJ59g7dq1KC0tRWJiIsrLy1FaWgoAiIiIMLtPRESEfJst6enpMBgM8qWoqKiVlpYjKERERErU6rt4hg8fLv8/Pj4e/fv3R6dOnfDOO+/gvvvuAwBIkvnIhRDCqsyUVquFVqtt7UXF9REUhhQiIpfgIDY5cMsPMw4ICEB8fDzOnTsnz0uxHC0pKyuzGlW5PRhOiIhchm/B5MAtDyhGoxFff/01IiMjERsbC71ej9zcXPn2uro65OXlITEx8VYvChEREbmJVt/Fs2DBAjz44IPo0KEDysrK8OKLL6KyshKTJk2CJElIS0tDZmYmunTpgi5duiAzMxP+/v6YOHFiay8KEREpGXfxkAOtHlCKi4vx6KOP4qeffkLbtm1x33334ciRI4iJiQEALFy4ELW1tZg5cyYqKirQr18/7N27F4GBga29KEREROSmJCGE2+0FrKyshE6nA8bvADQBJnNdLQ+qF4AkAfIqmk6K5QRZ92erD9mvbq9pExamBdxuVclhX5PqSADqaoAPxsBgMCAoKMhhdQ//LR6OLxIRuQyzCDng4QGFWwcREZESeXhA4QgKkfLxiwSRJ/LwgEJEyscvEkSeyMMDCr+ZqQs/yIiI1MLDAwo/0NSFgZPIrfAtmBzw8IBCREQuw+8U5ICHBxRuHURELsMRFHLAwwMKERERKREDChERESkOAwoREREpDgMKqQh3aBMRqYWHBxR+oKkLJz0TEamFhwcUfqAREbkM34LJAQ8PKBxBISJyGb4FkwMeHlCIiIhIiRhQiIjINbiLhxzw8IDCrYOIyGW4i4cc8PCAQkRELsPviOSAhwcUxnciIiIl8vCAQkRELsPviOQAAwoREREpDgMKqQi/jhG5Fc5BIQcYUEhF+G5HRKQWDChEROQaHPQkBzw8oPAbNxERkRJ5eEBhfCciIlIiDw8oRETkMhzEJgecDiifffYZHnzwQURFRUGSJOzYscPsdiEEMjIyEBUVBT8/PyQlJeH06dNmdYxGI+bMmYOwsDAEBARg1KhRKC4uvqkVaRluHURELsNBbHLA6YBSU1ODXr16YfXq1TZvX7FiBVauXInVq1cjPz8fer0eQ4YMQVVVlVwnLS0NOTk5yM7OxqFDh1BdXY2RI0eioaGh5WvSItw6iIhcht8RyQFJCNHil4gkScjJycHo0aMBXB89iYqKQlpaGhYtWgTg+mhJREQEli9fjmnTpsFgMKBt27bYtGkTJkyYAAD4/vvvER0djV27dmHo0KFWz2M0GmE0GuXrlZWViI6OBsbvADQB13OGQOM/pqFDAJIEyKsoV7T4P7knW33IfnV7TZuwMC3gdqtKDvuaVEcCUFcDfDAGBoMBQUFBDqu36hyU8+fPo7S0FKmpqXKZVqvFwIEDcfjwYQBAQUEB6uvrzepERUUhLi5OrmMpKysLOp1OvkRHR7fmYhMRkSswi5ADrRpQSktLAQARERFm5REREfJtpaWl8PHxQXBwsN06ltLT02EwGORLUVFRay42ERERKYzmVjyoJJnP7RBCWJVZclRHq9VCq9W22vL9isOJREREStSqAUWv1wO4PkoSGRkpl5eVlcmjKnq9HnV1daioqDAbRSkrK0NiYmILnrVp3onlX9j4C5PrTfU4Uda92eo/9qn6SHb+T27NZleyf9Wt+f3bqrt4YmNjodfrkZubK5fV1dUhLy9PDh8JCQnw9vY2q1NSUoJTp061MKCYcLTeplmFr38iIqLby8kdFk6PoFRXV+Obb76Rr58/fx6FhYUICQlBhw4dkJaWhszMTHTp0gVdunRBZmYm/P39MXHiRACATqfD1KlTMX/+fISGhiIkJAQLFixAfHw8UlJSnFway6N2GlnNDLeFKcVtcc+c52Bfewb2s+dw4qPX6YBy9OhRDBo0SL4+b948AMCkSZOwYcMGLFy4ELW1tZg5cyYqKirQr18/7N27F4GBgfJ9Vq1aBY1Gg/Hjx6O2thbJycnYsGEDvLy8nF0cq6OKzVfe1m4fy4rcKtxDYz9KTf9vIizq2Con9yKZ/fkVt1v1suxs9i/d5HlQXKWyshI6ne76eVC8/QHR9OHVeM6Tpsm2wqTM7jwVt1t9D2UraAIMKGrUnK9Y7F/VaPrSYdal7F9VkgDU/QJ8MPr2nwfl9hM3/swyJXEc0X1Z9JvEflQtzhPzHPye6DlasE27eUAxeSezd2CO5QkoJRt1yI007uYR7EB1E/h1l55pGakSN2f1a9yknfly6eYBxZTFLgDTYGJ6XZhcyI3Ym5fAdzZ1svUtgn2tOgJgv3oaFx1m7FKWAQSwfeoEjqC4MclGuGTSVCVh8ZdUTLCfPYkT015vyZlkXUYeLTEdSbGYPMsPN/fUNCzY9KOQNufDsj/VQZiPfHKegnrJ27H4dRCc1MneeVMdUMkIiq1Xtbg+T8HumQq5JbgljnwRqU8LPrzI3Ti/60IlAaU5K23vMFVuEUREREqjrl08MlvHHTs8oxspXdNomM2BL1uTjjhC5r5sbJtW3cn+VQeTgxrMtm/2r/rYep92TKUBxfLkXZYvdu7icTvNOjSNfaoONvqRm6xKWZ7fyLqI1ML5yWTqCijywIhpQwiLG+0df0yKJiz6zuY3LY6gqIPFqQIcjpqR+7Pob+srpAbC+XNYqWQOigmr17V0gzc6cg/sPM9j2ed8DaiOkP8hj+GRJ2prCW4Y7snemfaYRNXBcuTT9K/l/8mtmR5mzO2XLHh4QCEiIpdhFiEHPDyg8EgeIiIiJfLwgML4TkREpEQeHlCIiMhlOIhNDnh4QOHWQUTkMhzEJgc8PKAQEZHL8DsiOcCAQkRErsERFHKAAYWIiFyDIyjkAAMKERERKY6HBxSOLxIRuQzfgskBDw8oHF8kInIZvgWTAx4eUBjfiYhchm/B5ICHBxQiIiJSIg8PKBxfJCJyGb4FkwMeHlCIiMhluIuHHHA6oHz22Wd48MEHERUVBUmSsGPHDrPbJ0+eDEmSzC733XefWR2j0Yg5c+YgLCwMAQEBGDVqFIqLi29qRVqGWwcREZESOR1Qampq0KtXL6xevdpunWHDhqGkpES+7Nq1y+z2tLQ05OTkIDs7G4cOHUJ1dTVGjhyJhoYG59fgpnB8kYiISIk0zt5h+PDhGD58uMM6Wq0Wer3e5m0GgwHr1q3Dpk2bkJKSAgDYvHkzoqOjsW/fPgwdOtTZRSIiInfE74jkwC2Zg3Lw4EGEh4eja9euePrpp1FWVibfVlBQgPr6eqSmpsplUVFRiIuLw+HDh20+ntFoRGVlpdmldXAXDxGRy/AtmBxo9YAyfPhwvPvuu9i/fz9eeeUV5OfnY/DgwTAajQCA0tJS+Pj4IDg42Ox+ERERKC0ttfmYWVlZ0Ol08iU6Orq1F5uIiG43jqCQA07v4rmRCRMmyP+Pi4tD3759ERMTg48//hhjx461ez8hBCTJ9qs1PT0d8+bNk69XVla2UkiRwAhPROQiAgwpZNctP8w4MjISMTExOHfuHABAr9ejrq4OFRUVZvXKysoQERFh8zG0Wi2CgoLMLkRE5OYYTsiBWx5QysvLUVRUhMjISABAQkICvL29kZubK9cpKSnBqVOnkJiYeKsXh4iIlIID2OSA07t4qqur8c0338jXz58/j8LCQoSEhCAkJAQZGRkYN24cIiMjceHCBSxevBhhYWEYM2YMAECn02Hq1KmYP38+QkNDERISggULFiA+Pl4+quf24dZBROQyHEEhB5wOKEePHsWgQYPk601zQyZNmoQ1a9bg5MmT2LhxIy5fvozIyEgMGjQIW7duRWBgoHyfVatWQaPRYPz48aitrUVycjI2bNgALy+vVlglZ3AOChGRy3AOCjkgCSHc7hO6srISOp0OGL8D0ASY5AzLV7sAJAmQV9E0kEi/1iE3ZStgMnS6PatN03K7Zf+qhsO+JtWRANTVAB+MgcFguOF8Uv4WDxERESkOAwoREREpjocHFA4lEhG5DN+CyQEPDyhEROQynCBLDnh4QOHWQUREpEQeHlCIiMhluIuHHGBAISIiIsVhQCEiItfgXnZywMMDCscXiYhchm/B5ICHBxTGdyIiIiXy8IBCRERESuThAYXji0RELsNBbHLAwwMKERERKZGHBxTGdyIiIiXy8IDCXTxERC7Dt2BywMMDCkdQiIiIlMjDAwoREbkMvyOSAx4eUDi+qC58tyNyK3wLJgc8PKCQuvDdjohILRhQiIiISHE8PKBwlwCR8nFkjMgTeXhA4RsfkfLxi4RqsWvJAQ8PKERERKREDChERESkOB4eUDi+SKR83BWrWuxacsDDAwq3DiLl4xcJIk/k4QGFb3xERERK5OEBhSMo6sLASUSkFk4FlKysLNx7770IDAxEeHg4Ro8ejbNnz5rVEUIgIyMDUVFR8PPzQ1JSEk6fPm1Wx2g0Ys6cOQgLC0NAQABGjRqF4uLim18b8nAMnEREauFUQMnLy8OsWbNw5MgR5Obm4urVq0hNTUVNTY1cZ8WKFVi5ciVWr16N/Px86PV6DBkyBFVVVXKdtLQ05OTkIDs7G4cOHUJ1dTVGjhyJhoaG1luzZuE3biIiIiWShBAt/tr5448/Ijw8HHl5eRgwYACEEIiKikJaWhoWLVoE4PpoSUREBJYvX45p06bBYDCgbdu22LRpEyZMmAAA+P777xEdHY1du3Zh6NChN3zeyspK6HQ6YPwOQBNwPWcINP5jGjoEIEmAvIpyRYv/k3uy1YfsV7fXtAkL0wJut6rksK9JdSQAdTXAB2NgMBgQFBTksPpNzUExGAwAgJCQEADA+fPnUVpaitTUVLmOVqvFwIEDcfjwYQBAQUEB6uvrzepERUUhLi5OrmPJaDSisrLS7NI6OIJCRESkRC0OKEIIzJs3D/fffz/i4uIAAKWlpQCAiIgIs7oRERHybaWlpfDx8UFwcLDdOpaysrKg0+nkS3R0dEsX23ItWulxiIiIqDW1OKDMnj0bJ06cwHvvvWd1mySZj0wIIazKLDmqk56eDoPBIF+KiopautiWS9pKj0NEREStqUUBZc6cOdi5cycOHDiA9u3by+V6vR4ArEZCysrK5FEVvV6Puro6VFRU2K1jSavVIigoyOxCRERujoPY5IBTAUUIgdmzZ2P79u3Yv38/YmNjzW6PjY2FXq9Hbm6uXFZXV4e8vDwkJiYCABISEuDt7W1Wp6SkBKdOnZLrEBERkWfTOFN51qxZ2LJlCz788EMEBgbKIyU6nQ5+fn6QJAlpaWnIzMxEly5d0KVLF2RmZsLf3x8TJ06U606dOhXz589HaGgoQkJCsGDBAsTHxyMlJaX119AhxnciIiIlciqgrFmzBgCQlJRkVr5+/XpMnjwZALBw4ULU1tZi5syZqKioQL9+/bB3714EBgbK9VetWgWNRoPx48ejtrYWycnJ2LBhA7y8vG5ubZzGQ9qIiFyG0wDJgZs6D4qrtN55UAAGFHfG86CoEs+D4lnMupT9q2q38zwoRERELcYRFHLAqV08yiMAqTFtSyZlVnVs3caU7v5s9SH7VTW43XoOu+/fpDpOhFK3Dijp/d+Dr5+3qxeDiIiImuFKbT2y3m9eXbeeg3L5CBDUprGwadelrb+wKAM4tEhEpACcdeI5JACGauDOfvCQOSi2Aoit8CGZ/GU4ISIiuq2cDaLuH1BMmYYUGwf0yH8Z14mIFIFvx2SPugKKrbFCG69+yU45uQEGTM/CvvYM7GfP4URfqyegWOzCsdyTw706KsGOJFIfbteew1OO4rFFsvoPrOanMKy7Ob6ZeQ72NZHHUl1AEZZXGoMJQwkRkbLxiB4ypbqAYvcoHhssq3HDULimXy5o/D8Am33dnO5nXyuf3V+wsL4qY7+6L8niry3sXzfnZAeqL6A4MfHEtK04kuwGTHfPOegwvompg6O+Zh+rD/vUAzj5QaueSbKONCOac+MgIiJSDs8IKOT2WjrCxfPyqRf7Vb3YtwSocRcPqVJLR7g4MqZe7Fv1Yt8SwBEUIiIiUiAGFCIiIlIcBpRG3OdJRESkHAwoREREpDgMKI04KYuIiEg5GFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUBrxPChERETKwYDSiIcZExERKQcDChERESmOUwElKysL9957LwIDAxEeHo7Ro0fj7NmzZnUmT54MSZLMLvfdd59ZHaPRiDlz5iAsLAwBAQEYNWoUiouLb35tiIiISBWcCih5eXmYNWsWjhw5gtzcXFy9ehWpqamoqakxqzds2DCUlJTIl127dpndnpaWhpycHGRnZ+PQoUOorq7GyJEj0dDQcPNrRERERG5P40zlPXv2mF1fv349wsPDUVBQgAEDBsjlWq0Wer3e5mMYDAasW7cOmzZtQkpKCgBg8+bNiI6Oxr59+zB06FCr+xiNRhiNRvl6ZWWlM4tNREREbuam5qAYDAYAQEhIiFn5wYMHER4ejq5du+Lpp59GWVmZfFtBQQHq6+uRmpoql0VFRSEuLg6HDx+2+TxZWVnQ6XTyJTo6+mYWm4iIiBSuxQFFCIF58+bh/vvvR1xcnFw+fPhwvPvuu9i/fz9eeeUV5OfnY/DgwfIISGlpKXx8fBAcHGz2eBERESgtLbX5XOnp6TAYDPKlqKiopYttFw8zJiIiUg6ndvGYmj17Nk6cOIFDhw6ZlU+YMEH+f1xcHPr27YuYmBh8/PHHGDt2rN3HE0JAkmzHBK1WC61W29JFbRYeZkxERKQcLRpBmTNnDnbu3IkDBw6gffv2DutGRkYiJiYG586dAwDo9XrU1dWhoqLCrF5ZWRkiIiJasjitgiMoREREyuFUQBFCYPbs2di+fTv279+P2NjYG96nvLwcRUVFiIyMBAAkJCTA29sbubm5cp2SkhKcOnUKiYmJTi5+6+EIChERkXI4tYtn1qxZ2LJlCz788EMEBgbKc0Z0Oh38/PxQXV2NjIwMjBs3DpGRkbhw4QIWL16MsLAwjBkzRq47depUzJ8/H6GhoQgJCcGCBQsQHx8vH9VDREREns2pgLJmzRoAQFJSkln5+vXrMXnyZHh5eeHkyZPYuHEjLl++jMjISAwaNAhbt25FYGCgXH/VqlXQaDQYP348amtrkZycjA0bNsDLy+vm14iIiIjcniSEcLu9G5WVldDpdLh8BAgKxPX9M5xEQkREpGiV1cCd/a6fpiQoKMhhXf4WDxERESkOAwoREREpDgNKI+4hIiIiUg4GlEZuNxGHiIhIxRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFAa8TBjIiIi5WBAISIiIsVhQGnE86AQEREpBwMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DSiMeZkxERKQcDChERESkOAwojXiYMRERkXIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgNOJ5UIiIiJSDAaURDzMmIiJSDgYUIiIiUhwGFCIiIlIcpwLKmjVr0LNnTwQFBSEoKAj9+/fH7t275duFEMjIyEBUVBT8/PyQlJSE06dPmz2G0WjEnDlzEBYWhoCAAIwaNQrFxcWtszZERESkCk4FlPbt2+Oll17C0aNHcfToUQwePBh/+MMf5BCyYsUKrFy5EqtXr0Z+fj70ej2GDBmCqqoq+THS0tKQk5OD7OxsHDp0CNXV1Rg5ciQaGhpad82IiIjIbUlCiJuaHxoSEoKXX34ZU6ZMQVRUFNLS0rBo0SIA10dLIiIisHz5ckybNg0GgwFt27bFpk2bMGHCBADA999/j+joaOzatQtDhw61+RxGoxFGo1G+XllZiejoaFw+AgQF4voMVx6GQ0REpGiV1cCd/QCDwYCgoCCHdVs8B6WhoQHZ2dmoqalB//79cf78eZSWliI1NVWuo9VqMXDgQBw+fBgAUFBQgPr6erM6UVFRiIuLk+vYkpWVBZ1OJ1+io6NbuthERETkBpwOKCdPnkSbNm2g1Woxffp05OTkoHv37igtLQUAREREmNWPiIiQbystLYWPjw+Cg4Pt1rElPT0dBoNBvhQVFTm72ERERORGNM7e4e6770ZhYSEuX76Mbdu2YdKkScjLy5NvlyTzfS1CCKsySzeqo9VqodVqnV1Up0jguVCIiIiUwukRFB8fH3Tu3Bl9+/ZFVlYWevXqhddeew16vR4ArEZCysrK5FEVvV6Puro6VFRU2K3jKgwnREREynHT50ERQsBoNCI2NhZ6vR65ubnybXV1dcjLy0NiYiIAICEhAd7e3mZ1SkpKcOrUKbkOERERkVO7eBYvXozhw4cjOjoaVVVVyM7OxsGDB7Fnzx5IkoS0tDRkZmaiS5cu6NKlCzIzM+Hv74+JEycCAHQ6HaZOnYr58+cjNDQUISEhWLBgAeLj45GSknJLVpCIiIjcj1MB5YcffsATTzyBkpIS6HQ69OzZE3v27MGQIUMAAAsXLkRtbS1mzpyJiooK9OvXD3v37kVgYKD8GKtWrYJGo8H48eNRW1uL5ORkbNiwAV5eXq27ZkREROS2bvo8KK5QWVkJnU7H86AQERG5kdtyHhQiIiKiW4UBpREHYIiIiJSDAYWIiIgUhwGlkdtNxCEiIlIxBhQiIiJSHAYUIiIiUhx1BRRh56+tOkRERKRY7h9QTM+B4ugX/4Sd/xMREZHiuH9AaWIZOpqCS3MCC7kPAfadB5HY156B/ew5nOhrp051r0imIcReKDEt5wlP3JvkOHeSynB79QzsZ8/hRF+rZwSlaaWbQghf8OpiMnIiTK8zqahTY9+a9TWpk8kXTL5tq1gLtmP1BBTAOpg4OWLCjUPBLPtWsvjbzLuRm7DX36Q+Jtsyc6iKtWAbVldAsaeZH2bkZprRn3zDUwFut0Tq4OS27BkBpZn4YaZO7FciIvfDgEJERESKo+6AwqFhIiIit6TugOIEZhkiIiLlYEAhIiIixWFAacSJlERERMrBgEJERESKw4BCREREisOAQkRERIrDgEJERESKw4BCREREisOA0ojnQSEiIlIOBhQiIiJSHAaURjwPChERkXI4FVDWrFmDnj17IigoCEFBQejfvz92794t3z558mRIkmR2ue+++8wew2g0Ys6cOQgLC0NAQABGjRqF4uLi1lkbIiIiUgWnAkr79u3x0ksv4ejRozh69CgGDx6MP/zhDzh9+rRcZ9iwYSgpKZEvu3btMnuMtLQ05OTkIDs7G4cOHUJ1dTVGjhyJhoaG1lkjIiIicnuSEOKm9m6EhITg5ZdfxtSpUzF58mRcvnwZO3bssFnXYDCgbdu22LRpEyZMmAAA+P777xEdHY1du3Zh6NChzXrOyspK6HQ6XD4CBAXi+v4ZznIlIiJStMpq4M5+1/NAUFCQw7otnoPS0NCA7Oxs1NTUoH///nL5wYMHER4ejq5du+Lpp59GWVmZfFtBQQHq6+uRmpoql0VFRSEuLg6HDx+2+1xGoxGVlZVmFyIiIlIvpwPKyZMn0aZNG2i1WkyfPh05OTno3r07AGD48OF49913sX//frzyyivIz8/H4MGDYTQaAQClpaXw8fFBcHCw2WNGRESgtLTU7nNmZWVBp9PJl+joaGcXm4iIiNyIxtk73H333SgsLMTly5exbds2TJo0CXl5eejevbu82wYA4uLi0LdvX8TExODjjz/G2LFj7T6mEAKSZH8fTXp6OubNmydfr6ysbPWQIoFH8hARESmF0wHFx8cHnTt3BgD07dsX+fn5eO211/D3v//dqm5kZCRiYmJw7tw5AIBer0ddXR0qKirMRlHKysqQmJho9zm1Wi20Wq2zi0pERERu6qbPgyKEkHfhWCovL0dRUREiIyMBAAkJCfD29kZubq5cp6SkBKdOnXIYUG4Hjp4QEREph1MjKIsXL8bw4cMRHR2NqqoqZGdn4+DBg9izZw+qq6uRkZGBcePGITIyEhcuXMDixYsRFhaGMWPGAAB0Oh2mTp2K+fPnIzQ0FCEhIViwYAHi4+ORkpJyS1aQiIiI3I9TAeWHH37AE088gZKSEuh0OvTs2RN79uzBkCFDUFtbi5MnT2Ljxo24fPkyIiMjMWjQIGzduhWBgYHyY6xatQoajQbjx49HbW0tkpOTsWHDBnh5ebX6yhEREZF7uunzoLgCz4NCRETkfm7LeVCIiIiIbhUGlEYcgCEiIlIOBhQiIiJSHAaURm43EYeIiEjFGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUBrxPChERETKwYDSiIcZExERKQcDChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOA0ojnqiNiIhIORhQGvFEbURERMrBgEJERESKw4BCREREisOAQkRERIrDgEJERESKw4BCREREisOA0oiHGRMRESkHAwoREREpDgNKI54HhYiISDluKqBkZWVBkiSkpaXJZUIIZGRkICoqCn5+fkhKSsLp06fN7mc0GjFnzhyEhYUhICAAo0aNQnFx8c0sChEREalIiwNKfn4+3nzzTfTs2dOsfMWKFVi5ciVWr16N/Px86PV6DBkyBFVVVXKdtLQ05OTkIDs7G4cOHUJ1dTVGjhyJhoaGlq8JERERqUaLAkp1dTUee+wxrF27FsHBwXK5EAKvvvoqlixZgrFjxyIuLg7vvPMOfvnlF2zZsgUAYDAYsG7dOrzyyitISUlB7969sXnzZpw8eRL79u1rnbUiIiIit9aigDJr1iyMGDECKSkpZuXnz59HaWkpUlNT5TKtVouBAwfi8OHDAICCggLU19eb1YmKikJcXJxcx5LRaERlZaXZhYiIiNRL4+wdsrOzcezYMeTn51vdVlpaCgCIiIgwK4+IiMB3330n1/Hx8TEbeWmq03R/S1lZWVi2bJmzi+oUCZwoS0REpBROjaAUFRVh7ty52Lx5M3x9fe3WkyTzs4oIIazKLDmqk56eDoPBIF+KioqcWWwiIiJyM04FlIKCApSVlSEhIQEajQYajQZ5eXl4/fXXodFo5JETy5GQsrIy+Ta9Xo+6ujpUVFTYrWNJq9UiKCjI7NLaOHpCRESkHE4FlOTkZJw8eRKFhYXypW/fvnjsscdQWFiIu+66C3q9Hrm5ufJ96urqkJeXh8TERABAQkICvL29zeqUlJTg1KlTch0iIiLybE7NQQkMDERcXJxZWUBAAEJDQ+XytLQ0ZGZmokuXLujSpQsyMzPh7++PiRMnAgB0Oh2mTp2K+fPnIzQ0FCEhIViwYAHi4+OtJt0SERGRZ3J6kuyNLFy4ELW1tZg5cyYqKirQr18/7N27F4GBgXKdVatWQaPRYPz48aitrUVycjI2bNgALy+v1l4cIiIickOSEMLtpl9UVlZCp9Ph8hEgKBDXJ5Dw1/6IiIgUrbIauLPf9XOi3Wg+KX+LpxHzDRERkXIwoBAREZHiMKA0crv9XERERCrGgEJERESKw4BCREREisOAQkRERIrDgEJERESKw4BCREREisOA0ojnQSEiIlIOBpRGPMyYiIhIOdQfUISNv0wjREREiqaugOIoeDRjHw5386gT+5WIyPWcfS9u9V8zvh2aft+wsgbX19j0xwJN/i8BaPopRElq/D8/rdxaU3ff6vsQEVHrq6y+/rc5v1PslgGlqqoKANAh2cULQkRERE6rqqqCTqdzWEcSzYkxCnPt2jWcPXsW3bt3R1FR0Q1/spmuq6ysRHR0NNvMSWw357HNWobt5jy2Wcu4qt2EEKiqqkJUVBTuuMPxLBO3HEG544470K5dOwBAUFAQX5ROYpu1DNvNeWyzlmG7OY9t1jKuaLcbjZw0UdckWSIiIlIFBhQiIiJSHLcNKFqtFkuXLoVWq3X1orgNtlnLsN2cxzZrGbab89hmLeMO7eaWk2SJiIhI3dx2BIWIiIjUiwGFiIiIFIcBhYiIiBSHAYWIiIgUhwGFiIiIFMctA8pf//pXxMbGwtfXFwkJCfj8889dvUgu89lnn+HBBx9EVFQUJEnCjh07zG4XQiAjIwNRUVHw8/NDUlISTp8+bVbHaDRizpw5CAsLQ0BAAEaNGoXi4uLbuBa3V1ZWFu69914EBgYiPDwco0ePxtmzZ83qsN2srVmzBj179pTPPNm/f3/s3r1bvp1tdmNZWVmQJAlpaWlyGdvNWkZGBiRJMrvo9Xr5draZbZcuXcLjjz+O0NBQ+Pv74ze/+Q0KCgrk292u3YSbyc7OFt7e3mLt2rXizJkzYu7cuSIgIEB89913rl40l9i1a5dYsmSJ2LZtmwAgcnJyzG5/6aWXRGBgoNi2bZs4efKkmDBhgoiMjBSVlZVynenTp4t27dqJ3NxccezYMTFo0CDRq1cvcfXq1du8NrfH0KFDxfr168WpU6dEYWGhGDFihOjQoYOorq6W67DdrO3cuVN8/PHH4uzZs+Ls2bNi8eLFwtvbW5w6dUoIwTa7kS+//FJ07NhR9OzZU8ydO1cuZ7tZW7p0qejRo4coKSmRL2VlZfLtbDNrP//8s4iJiRGTJ08W//73v8X58+fFvn37xDfffCPXcbd2c7uA8tvf/lZMnz7drOyee+4Rzz33nIuWSDksA8q1a9eEXq8XL730klx25coVodPpxN/+9jchhBCXL18W3t7eIjs7W65z6dIlcccdd4g9e/bctmV3pbKyMgFA5OXlCSHYbs4IDg4Wb731FtvsBqqqqkSXLl1Ebm6uGDhwoBxQ2G62LV26VPTq1cvmbWwz2xYtWiTuv/9+u7e7Y7u51S6euro6FBQUIDU11aw8NTUVhw8fdtFSKdf58+dRWlpq1l5arRYDBw6U26ugoAD19fVmdaKiohAXF+cxbWowGAAAISEhANhuzdHQ0IDs7GzU1NSgf//+bLMbmDVrFkaMGIGUlBSzcrabfefOnUNUVBRiY2PxyCOP4NtvvwXANrNn586d6Nu3Lx5++GGEh4ejd+/eWLt2rXy7O7abWwWUn376CQ0NDYiIiDArj4iIQGlpqYuWSrma2sRRe5WWlsLHxwfBwcF266iZEALz5s3D/fffj7i4OABsN0dOnjyJNm3aQKvVYvr06cjJyUH37t3ZZg5kZ2fj2LFjyMrKsrqN7WZbv379sHHjRnzyySdYu3YtSktLkZiYiPLycraZHd9++y3WrFmDLl264JNPPsH06dPxzDPPYOPGjQDc87Wmue3P2AokSTK7LoSwKqNftaS9PKVNZ8+ejRMnTuDQoUNWt7HdrN19990oLCzE5cuXsW3bNkyaNAl5eXny7Wwzc0VFRZg7dy727t0LX19fu/XYbuaGDx8u/z8+Ph79+/dHp06d8M477+C+++4DwDazdO3aNfTt2xeZmZkAgN69e+P06dNYs2YNnnzySbmeO7WbW42ghIWFwcvLyyrJlZWVWaVCgjzr3VF76fV61NXVoaKiwm4dtZozZw527tyJAwcOoH379nI5280+Hx8fdO7cGX379kVWVhZ69eqF1157jW1mR0FBAcrKypCQkACNRgONRoO8vDy8/vrr0Gg08nqz3RwLCAhAfHw8zp07x9eaHZGRkejevbtZWbdu3XDx4kUA7vm+5lYBxcfHBwkJCcjNzTUrz83NRWJioouWSrliY2Oh1+vN2quurg55eXlyeyUkJMDb29usTklJCU6dOqXaNhVCYPbs2di+fTv279+P2NhYs9vZbs0nhIDRaGSb2ZGcnIyTJ0+isLBQvvTt2xePPfYYCgsLcdddd7HdmsFoNOLrr79GZGQkX2t2/O53v7M6XcJ//vMfxMTEAHDT97XbPi33JjUdZrxu3Tpx5swZkZaWJgICAsSFCxdcvWguUVVVJY4fPy6OHz8uAIiVK1eK48ePy4ddv/TSS0Kn04nt27eLkydPikcffdTmYWXt27cX+/btE8eOHRODBw9W9eF4M2bMEDqdThw8eNDsMMZffvlFrsN2s5aeni4+++wzcf78eXHixAmxePFicccdd4i9e/cKIdhmzWV6FI8QbDdb5s+fLw4ePCi+/fZbceTIETFy5EgRGBgov8+zzax9+eWXQqPRiD//+c/i3Llz4t133xX+/v5i8+bNch13aze3CyhCCPHGG2+ImJgY4ePjI/r06SMfHuqJDhw4IABYXSZNmiSEuH5o2dKlS4VerxdarVYMGDBAnDx50uwxamtrxezZs0VISIjw8/MTI0eOFBcvXnTB2twettoLgFi/fr1ch+1mbcqUKfJ217ZtW5GcnCyHEyHYZs1lGVDYbtaazs/h7e0toqKixNixY8Xp06fl29lmtv3zn/8UcXFxQqvVinvuuUe8+eabZre7W7tJQghx+8dtiIiIiOxzqzkoRERE5BkYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhx/j+Ru16Fgjp6hAAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGKCAYAAAAmMbr9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEx0lEQVR4nO3de1xUZeI/8M+RgREQJi7CgBJakeWCVuCqrCWKoq6XvK2mXbSlNvOS/NS1VXeDbVsw/arZ16LNfElqirUKaZqKqZQvMpHyG1gvsxVvCVGG3KQB8fn9oXN2blwGUc4583m/XgMz5zwzc87zzDnzOc+5jCSEECAiIiJSkA7tPQFEREREthhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFBIUbp164ZRo0a1+vkfffQRnnrqKURFRcHd3R2SJDVatr6+Hn//+9/RrVs36PV63Hffffjf//3fVr+3FnXr1g3Tp09vl/fevHkzXnvtNYfjJElCSkrKbZ0eZ33yySeIiYmBt7c3JElCdna2w3KHDh2CJEn497//7XD87Nmz7T7HkiRh9uzZbT3JDrVnXTuqw4yMDEiShDNnzrTLNNHto2vvCSBqS1lZWThy5AgefPBB6PV6FBQUNFp25syZ2LhxI/7xj3+gT58+2Lt3L+bOnYuqqiosXrz4Nk61cmVlZcHX17dd3nvz5s0oKipCUlKS3bjPP/8cXbt2vf0T1UJCCEyaNAn33nsvduzYAW9vb/To0aO9J6tV2quuG6vDDz/88LZPC7UPBhRy2pUrV+Dl5dXek+HQ2rVr0aHD9Y7B2bNnNxpQTpw4gXXr1uGf//wn/vznPwMA4uLicOnSJbzyyiuYMWMG/P39b9t03ywhBH799Vd4enq26es++OCDbfp6baVfv37tPQlNunjxIn755ReMGzcO8fHx7T05svr6ekiSBJ2u5av+9qprpdYh3T7cxUNNSklJgSRJ+PLLLzFx4kT4+fnh7rvvBgAcO3YMjz32GLp16wZPT09069YNU6ZMwdmzZ61ew9wle/DgQTz//PMIDAxEQEAAxo8fj4sXLzY7DW+++SZ0Oh2Sk5ObLWsOJ83Jzs6GEAJPP/201fCnn34atbW12LNnT5PP//777/H0008jIiICXl5e6NKlC0aPHo3CwkKrcubu+02bNmHevHkwGo3w9PTEwIED8dVXX1mVnT59Ojp16oQTJ04gPj4e3t7e6Ny5M2bPno0rV65YlTV38b/11lu4//77odfr8e677wIADh8+jPj4ePj4+MDLywuxsbHYtWuX/NzDhw/D3d0dCxYssHpNczutW7dOHma7i8c8P5s3b8aLL76IkJAQdOrUCaNHj8aPP/6Iqqoq/OlPf0JgYCACAwPx9NNPo7q62up93njjDTzyyCMICgqCt7c3oqKisGzZMtTX18tl4uLisGvXLpw9exaSJMk3y/m33e1QVFSERx99FH5+fujYsSMeeOABuU5sp3/Lli1YsmQJQkND4evriyFDhuDkyZNoiebqNyUlRe5xePHFFyFJErp169ai124tIQQWL14Md3d3rF27FsB/53Xjxo2YP38+unTpAr1ej++//x4//fQTZs6ciZ49e6JTp04ICgrC4MGD8dlnn9m9tm1dO7s8b926Ff3794e3tzc6deqEYcOG2X32bTlbhzk5OXj00UfRtWtXdOzYEffccw+ee+45/Pzzz3ZlP/zwQ/Tq1Qt6vR533XUXVq9eLa/nSFkYUKhFxo8fj3vuuQcffPAB3nrrLQDAmTNn0KNHD7z22mvYu3cvXn31VZSUlKBPnz4OVwzPPPMM3N3dsXnzZixbtgyHDh3CE0880eh7CiGwYMECJCUl4Z133sHf//73NpufoqIidO7cGUaj0Wp4r1695PFNuXjxIgICArB06VLs2bMHb7zxBnQ6Hfr27evwi27x4sU4ffo03nnnHbzzzju4ePEi4uLicPr0aaty9fX1+P3vf4/4+HhkZ2dj9uzZ+Ne//oXJkyfbvWZ2djbS09Px0ksvYe/evXj44YeRm5uLwYMHo6KiAuvWrcOWLVvg4+OD0aNHY+vWrQCAAQMG4JVXXsGKFSuwY8cOANd7lGbNmoUnnngCiYmJzdbf4sWLUVZWhoyMDKxYsQKHDh3ClClTMGHCBBgMBmzZsgULFy7Exo0b7XaX/ec//8HUqVOxceNGfPTRR0hMTMTy5cvx3HPPyWXefPNN/O53v4PRaMTnn38u3xpz8uRJxMbG4sSJE3j99dexfft29OzZE9OnT8eyZcscTv/Zs2fxzjvv4O2338apU6cwevRoNDQ0NDnfLanfZ555Btu3bwcAzJkzB59//jmysrKardPWMplMmDp1KtasWYOdO3fi2WeftRq/aNEinDt3Dm+99RZ27tyJoKAg/PLLLwCA5ORk7Nq1C+vXr8ddd92FuLg4HDp0qEXv25LlOTU1FVOmTEHPnj3x/vvvY+PGjaiqqsLDDz+Mb775psnXdqYO//Of/6B///5IT0/Hvn378NJLL+GLL77AgAEDrILvnj17MH78eAQEBGDr1q1YtmwZtmzZYhdkSSEEUROSk5MFAPHSSy81W/bq1auiurpaeHt7i9WrV8vD169fLwCImTNnWpVftmyZACBKSkrkYeHh4WLkyJHiypUrYsKECcJgMIj9+/e3atpnzZolGvuIDx06VPTo0cPhOA8PD/GnP/3Jqfe6evWqqKurExEREeL//b//Jw8/ePCgACAeeughce3aNXn4mTNnhLu7u3jmmWfkYdOmTRMArOpOCCH++c9/CgDi8OHD8jAAwmAwiF9++cWqbL9+/URQUJCoqqqymrbIyEjRtWtXeRquXbsmfv/734s77rhDFBUViZ49e4r77rtPVFdXW71eeHi4mDZtmt38jB492qpcUlKSACBeeOEFq+Fjx44V/v7+jdZbQ0ODqK+vFxs2bBBubm5W8zNy5EgRHh7u8HkARHJysvz4scceE3q9Xpw7d86q3IgRI4SXl5e4fPmy1fT//ve/tyr3/vvvCwDi888/b3RahWh5/RYXFwsAYvny5U2+nuU0ffDBBw7HO/ocAxCzZs0Sly5dEgMGDBBdunQRx48fd/i6jzzySLPTcPXqVVFfXy/i4+PFuHHj7N7Lsq5bujyfO3dO6HQ6MWfOHKtyVVVVwmg0ikmTJjU5TY3Vofn9i4uLHT7v2rVror6+Xpw9e1YAEB9++KE8rk+fPiIsLEyYTCar6QkICGh0XUHthz0o1CITJkywG1ZdXY0XX3wR99xzD3Q6HXQ6HTp16oSamhp8++23duXHjBlj9djcW2G7S+jSpUsYPHgwjh49KnenW2poaMDVq1fl27Vr11o1T0116TbX3Xv16lWkpqaiZ8+e8PDwgE6ng4eHB06dOuVw3qdOnWr1muHh4YiNjcXBgwftyj7++ON2zwVgV3bw4MHw8/OTH9fU1OCLL77AxIkT0alTJ3m4m5sbnnzySVy4cEHu3ZEkCRs2bICPjw9iYmJQXFyM999/H97e3k3Ot5ntmVb3338/AGDkyJF2w3/55Rer3TxfffUVxowZg4CAALi5ucHd3R1PPfUUGhoa8N1337Xo/W0dOHAA8fHxCAsLsxo+ffp0XLlyxa73paWfRUvO1O/tUFxcjP79+6OyshJHjhxB7969HZZztOwCwFtvvYWHHnoIHTt2hE6ng7u7Oz755BOHn19HmqvDvXv34urVq3jqqaeslteOHTti4MCBLe6paYmysjLMmDEDYWFh8ryEh4cDgDw/NTU1OHbsGMaOHQsPDw/5ueZdlKQ8DCjUIiEhIXbDzN3KzzzzDPbu3YujR48iPz8fnTt3Rm1trV35gIAAq8d6vR4A7Mp+9913+OKLLzBixAhERkbavU58fDzc3d3l2x//+Een5ycgIACXLl2yG15TU4O6urpmD5CdN28e/va3v2Hs2LHYuXMnvvjiC+Tn56N3794O5912V5J5mO006HQ6u3oyP9e2rG2blJeXQwjhsK1CQ0PtXiMgIABjxozBr7/+iuHDhyMqKqqpWbZiWz/mFX5jw3/99VcAwLlz5/Dwww/jhx9+wOrVq/HZZ58hPz8fb7zxBgD7z0JLXbp0qcXzDbT8s2jJ2fptKfMBq43tXrp69arDg1qPHj2K7777DpMnT27yLBtH07ty5Uo8//zz6Nu3L7Zt24YjR44gPz8fw4cPb3EbNFeHP/74IwCgT58+Vsuru7s7tm7d6nA3cGtcu3YNCQkJ2L59OxYuXIhPPvkER48exZEjR6ymx9x+wcHBdq/haBi1P57FQy1i26NQUVGBjz76CMnJyfjLX/4iDzeZTPL+7dbq378//vCHP8jHQqSnp1sd/Pqvf/0LVVVV8uPAwECn3yMqKgqZmZkoLS21Cg/mg1wdBSNLmzZtwlNPPYXU1FSr4T///DPuuOMOu/KlpaUOh9mu5K9evYpLly5ZDTc/17asbZv4+fmhQ4cOKCkpsXsv88GLlnWVk5OD9PR0/Pa3v0VWVha2bdvW6NZ2W8nOzkZNTQ22b98ub+ECwPHjx2/qdQMCAlo8363lbP22lPnL8YcffnA4/ocffnD4BTp58mQYjUYsWbIE165dw1//+leHz3fUG7hp0ybExcUhPT3darjlcnWzzHXx73//26qt21pRURH+7//+DxkZGZg2bZo8/Pvvv7cq5+fnB0mS5OBkydHySe2PPSjUKpIkQQghbzWZvfPOO80eaNgS06ZNQ2ZmJtavXy93/5v16NEDMTEx8q01Z0g8+uijkCTJ7uC4jIwMeHp6Yvjw4U0+X5Iku3nftWtXo18yW7ZsgRBCfnz27Fnk5eUhLi7Orux7771n9Xjz5s0A4LCsJW9vb/Tt2xfbt2+32gq+du0aNm3ahK5du+Lee+8FAJSUlOCJJ57AwIEDkZeXhzFjxiAxMRHFxcVNvsfNMn9ZWtadEEI+88SSXq9v8dZ8fHw8Dhw4YHcWyYYNG+Dl5dUmp8o6U7/OiIiIQHh4OD744AOrzwgA/PTTTzh48CCGDBni8Ll//etf8dprr+Gll17CokWLWvyejj6/X3/9dZMHIjtr2LBh0Ol0+M9//mO1vFre2oKjzxRwfUPGkre3N2JiYpCdnY26ujp5eHV1NT766KM2mRZqW+xBoVbx9fXFI488guXLlyMwMBDdunVDbm4u1q1b57AHoTUmTpwILy8vTJw4EbW1tdiyZYvVvmNHzp49i/z8fADXj+wHIF+hs1u3bvJK8Te/+Q0SExORnJwMNzc39OnTB/v27cPbb7+NV155pdldPKNGjUJGRgbuu+8+9OrVCwUFBVi+fHmjXe1lZWUYN24cnn32WVRUVCA5ORkdO3a0+1Lx8PDAihUrUF1djT59+iAvLw+vvPIKRowYgQEDBjRbZ2lpaRg6dCgGDRqEBQsWwMPDA2+++SaKioqwZcsWSJKEhoYGTJkyRT5d2M3NDRkZGXjggQcwefJkHD58uNl6bq2hQ4fCw8MDU6ZMwcKFC/Hrr78iPT0d5eXldmWjoqKwfft2pKenIzo6Gh06dGj0Sy05ORkfffQRBg0ahJdeegn+/v547733sGvXLixbtgwGg6FNpr8l9dsa//M//4NJkyYhPj4ezz77LIxGI06dOoWlS5fCw8MDf/vb3xp97ty5c9GpUyf86U9/QnV1NV5//fVmp2PUqFH4xz/+geTkZAwcOBAnT57Eyy+/jO7du+Pq1autmgdb3bp1w8svv4wlS5bg9OnTGD58OPz8/PDjjz/i6NGj8Pb2bpMz8+677z7cfffd+Mtf/gIhBPz9/bFz507k5OTYlX355ZcxcuRIDBs2DHPnzkVDQwOWL1+OTp063XTPL90C7Xd8LqmB+Syen376yW7chQsXxIQJE4Sfn5/w8fERw4cPF0VFRXZnfpiPus/Pz7d6vvksg4MHD8rDzGfx2Jbr1KmTGD58uLhy5UqT02t+L0c3y2kSQoi6ujqRnJws7rzzTuHh4SHuvfde8frrr7eoXsrLy0ViYqIICgoSXl5eYsCAAeKzzz4TAwcOFAMHDrSbx40bN4oXXnhBdO7cWej1evHwww+LY8eOWb3mtGnThLe3t/j6669FXFyc8PT0FP7+/uL555+3O7sGN87icOSzzz4TgwcPFt7e3sLT01P069dP7Ny5Ux6/ZMkS0aFDB/HJJ59YPS8vL0/odDoxd+5ceVhjZ/HYnnHSWBs7+vzs3LlT9O7dW3Ts2FF06dJF/PnPfxYff/yx3Wfhl19+ERMnThR33HGHkCTJ6iwL2JxZIoQQhYWFYvTo0cJgMAgPDw/Ru3dvsX79eqsyjU2/+YwR2/KONFe/lq/XkrN4zPbv3y8SEhLEHXfcIXQ6nQgJCRFPPPGEOHXqlF1ZR+2/ZcsWodPpxNNPPy0aGhqaPDvIZDKJBQsWiC5duoiOHTuKhx56SGRnZ4tp06bZnTllW9fOLM9CCJGdnS0GDRokfH19hV6vF+Hh4WLixInNnp3nzFk833zzjRg6dKjw8fERfn5+4g9/+IM4d+6cw89JVlaWiIqKEh4eHuLOO+8US5cuFS+88ILw8/Nrcnro9pOEsOlTJKI2c+jQIQwaNAgffPABJk6c2GTZ6dOn49///rfdhc2I6Napr6/HAw88gC5dumDfvn3tPTlkgbt4iIjIZSQmJmLo0KEICQlBaWkp3nrrLXz77bdYvXp1e08a2WBAISIil1FVVYUFCxbgp59+gru7Ox566CHs3r270QORqf1wFw8REREpTrueZvzmm2+ie/fu6NixI6Kjox3+UBURERG5nnYLKFu3bkVSUhKWLFmCr776Cg8//DBGjBiBc+fOtdckERERkUK02y6evn374qGHHrK6kuH999+PsWPHIi0trcnnXrt2DRcvXoSPjw9/IpuIiEglhBCoqqpCaGio1RXCHWmXg2Tr6upQUFBgdYl0AEhISEBeXp5deZPJBJPJJD/+4Ycf0LNnz1s+nURERNT2zp8/3+RvSAHtFFB+/vlnNDQ02P2+RHBwsMPfREhLS3N8xcFx7wE6b0AS1y/FBcni/g0SLB6bH1gNJCJFMfeKchkl0o4by3X9FSB7Knx8fJp9RrueZmy7e0YI4XCXzaJFizBv3jz5cWVl5fWfVXf3BnReN/LGjdAhWYQPITkILxb/uQJUH353aZ+jvbZsb22SbBZotrN2mdva/K8Fh2e0S0AJDAyEm5ubXW9JWVmZw1/t1Ov1dj8EdZ1Fb4hl3hCWwyxCil3nCUOKetxoK2G5QrNtP8sPPNtVvW60oxBwnFYAtq/GCNt2ZvtqjzmEtrxt2+UsHg8PD0RHR9v9mFNOTg5iY2Nb8YqSxcpMXA8k0o1hlr0m5nJyLwsXAvW4ETjNN/Mw2zJsV/UT4r/LqQQ4/mkl0gS5rWHT1qQ55mZ14sSWdtvFM2/ePDz55JOIiYlB//798fbbb+PcuXOYMWNG61/U6hATy5BiLmAxjNTFsitY4L8hk02pPXZt/d+HpDG2u3hIuxrdsGxcuwWUyZMn49KlS3j55ZdRUlKCyMhI7N69G+Hh4U68ikUXv2TbO2K1z+e/X2oMJ+okLNpZcri/jrRCbms0voeHtMGyrUnb5N14LW9sVV7qvrKyEgaDAZiUfeMsHkA+PkFq5gBZywNpVTfnLszuM8021CweduI6eOiJ6zC3dX0N8P44VFRUwNfXt8mnaOfHAoVFz4nVh9xBOLE6+I5LhKrI+zFvtKHVaeU8SFZT5LaG7R2wfTXGbhlm+2qWE02rnYACWPT4m4OIxTA5pIA9KGpk+2VlbmfLkGJ7DRxSJ9sTsyxDKdtXW+yWazawZsnfvy1/Srv+WGCbEzb37Q5R4Idf9eya0OJLi82rPbbLNGkTT95xHU60s0YCioNPt+3pxdcHWpS1PQKPR2mpn915yKR2Do89Yvtqh6P1MNtX21RwmnHbsrxewo1/wmI3jtWJPZZn/sAi1zC+K5rlrh3LzGkeZnmHJ/eoW2NtLSTrcaR+ttddhMVj0hbnT+LRSkCBzQfc9lRj25Riid9mqmB5pUm7prTZkc392Cpne6A7uKtHsyx6sx2tnkk7WrFe1k5AAewPrjPfMV+sza43BVwg1KCxz7XdwZS8poImNHqQrM1/Uj9HQZR7ebSpFccKaiugWB4JbrlSswsjlqGFS4I6NPOpdjSaW9oq1cKGY/tqRCMNyfbVGPNZPC1vWI0EFItjT6yOQzBfF0WyPt3YfHllh9fPIGUSDu9eZ3NggrAcRqpjeTpxk7t22MbqJ6x7yQCul7XO9XpQLL6gzBdis/ySkq+T4ehS94zp6sfuE81p0aFhbGPVazKDsH21RXI6c2okoFiQg4nFJpjtNVEsL9rGhUCFGjvcn6cBaENTp3ZwudUmXvNe+5xvU41cB4WIiIi0xAUCivl4E+7P1D5udWkHd8USuToXCCg3SMLB/i+u9NSpuetis13VrbmLnrB9tcdymWb70nWuE1AcYq8KkfJwuSQiVwooDOVEKsGFlYhcKaBwo4xIJbiwEpErBRRulBGpFBdeIlfkOgHFIa74iJTHdrlkjwqRK3LxgMIVHxERkRK5TkBhFiEiIlIN1wko3JtDRESkGq4TUNiDQqQSXFiJyJUCCntQiIiIVMN1AgoRqQS3JoiIAYWIiIgUyHUCCndrExERqYbrBBQiUgluTRDRLQgoKSkpkCTJ6mY0GuXxQgikpKQgNDQUnp6eiIuLw4kTJ9p6MuxxtzaRSnHhJXJFt6QH5Te/+Q1KSkrkW2FhoTxu2bJlWLlyJdasWYP8/HwYjUYMHToUVVVVt2JS/osbZUQqxYWXyBXpbsmL6nRWvSZmQgi89tprWLJkCcaPHw8AePfddxEcHIzNmzfjueeec/h6JpMJJpNJflxZWdlGU8otMyLl4XJJRLeoB+XUqVMIDQ1F9+7d8dhjj+H06dMAgOLiYpSWliIhIUEuq9frMXDgQOTl5TX6emlpaTAYDPItLCzM+YlyuM7jlhmR8nC5JKJbEFD69u2LDRs2YO/evVi7di1KS0sRGxuLS5cuobS0FAAQHBxs9Zzg4GB5nCOLFi1CRUWFfDt//rzzE+ZwncctNSLl4XJJRLdgF8+IESPk+1FRUejfvz/uvvtuvPvuu+jXrx8AQJKs04IQwm6YJb1eD71ef3MTJuAgpEjgypCIiEh5bvlpxt7e3oiKisKpU6fk41Jse0vKysrselVuD4YTIiIiJbrlAcVkMuHbb79FSEgIunfvDqPRiJycHHl8XV0dcnNzERsbe6snhYhUQQKPQyGiNt/Fs2DBAowePRp33nknysrK8Morr6CyshLTpk2DJElISkpCamoqIiIiEBERgdTUVHh5eWHq1KltPSlEpEoO98cSkYtp84By4cIFTJkyBT///DM6d+6Mfv364ciRIwgPDwcALFy4ELW1tZg5cybKy8vRt29f7Nu3Dz4+Pm09Kda4viNSCR4bRkSAJIRQ3ZqgsrISBoMBmJQN6Lwt1meWW1437ksAzLMoSdfvSwAEV4Lq56gN2a6qJ91oQ7kZLduU7asplqtreQDbV7MkAHU1wAfjUFFRAV9f3yaLu85v8TjsQWG3ChERkRK5TkBxiEmdiIhIiVwnoPBKskQqwmWTyNXdkt/iISJqPfZsEpEr9aDwUvcugFvd2sB2JCJXCijcxeMCGDiJiLTCdQIKERERqYaLBxRucRMpE3s3iVwdD5IlIoXhhgMRuVIPCjfIiIiIVMN1Ago3yoiIiFTDdQIKuQB2k2kD25GIXD6gcEWoLewm0wbLH/0kIlfl4gGFX2hEysRlk8jVuU5A4a8ZExERqYbrBBRukBGphARuPBARr4NCRArDrQkicqUeFIe4IiRSJvagELk61wkoXN8RqYQEbjwQkesEFP6aMZGKcNkkcnU8BoWIFIa9J0TkSj0oRKQSPIuHiBhQSFP4pUZEpBUMKKQh3DWgHWxLIlfHgEJERESK4+IBhVtpRERESuTiAYXHLBApE5dNIlfnOqcZc31HpBLs2SSiVvSgfPrppxg9ejRCQ0MhSRKys7OtxgshkJKSgtDQUHh6eiIuLg4nTpywKmMymTBnzhwEBgbC29sbY8aMwYULF25qRlqHK0Ii5eHWBBG1IqDU1NSgd+/eWLNmjcPxy5Ytw8qVK7FmzRrk5+fDaDRi6NChqKqqksskJSUhKysLmZmZOHz4MKqrqzFq1Cg0NDS0fk5ahStCIuXhhgMRAZIQotVrA0mSkJWVhbFjxwK43nsSGhqKpKQkvPjiiwCu95YEBwfj1VdfxXPPPYeKigp07twZGzduxOTJkwEAFy9eRFhYGHbv3o1hw4bZvY/JZILJZJIfV1ZWIiwsDJiUDei8LX66Q+C/oePGfQmAeRYl6fp9CYDg732on6M2ZLuqnuUiLA8QDu6T6jXZ1qQ5EoC6GuCDcaioqICvr2+Txdv0INni4mKUlpYiISFBHqbX6zFw4EDk5eUBAAoKClBfX29VJjQ0FJGRkXIZW2lpaTAYDPItLCzM+YljZwkREZFqtGlAKS0tBQAEBwdbDQ8ODpbHlZaWwsPDA35+fo2WsbVo0SJUVFTIt/Pnz7flZBORonBrgohu0Vk8kmS9ghFC2A2z1VQZvV4PvV5/cxNlufdHxu5EIuUxL6xcNolcWZsGFKPRCOB6L0lISIg8vKysTO5VMRqNqKurQ3l5uVUvSllZGWJjY1vxrpYrM8v/NvetwoltOVIvR+3HNtUGqQX3SXvYvtrW8vZt01083bt3h9FoRE5Ojjysrq4Oubm5cviIjo6Gu7u7VZmSkhIUFRW1MqBYaG6+uUFGRETUPpz8Dna6B6W6uhrff/+9/Li4uBjHjx+Hv78/7rzzTiQlJSE1NRURERGIiIhAamoqvLy8MHXqVACAwWBAYmIi5s+fj4CAAPj7+2PBggWIiorCkCFDnJwah/ttHBwZ7ghTuiqx5991sK1dB9vaNTj5tet0QDl27BgGDRokP543bx4AYNq0acjIyMDChQtRW1uLmTNnory8HH379sW+ffvg4+MjP2fVqlXQ6XSYNGkSamtrER8fj4yMDLi5uTk7OdYz3EhesR9hezoyKZ/FGkySLJpN2JRxNJxUy66tudxqk2QTUti+muVESLmp66C0l8rKShgMhuvXQXH3+u81TeTrnNyoAWExzPK4E0nceA7ABUEtLI8bssSAojny8mt+DAfNyfbVDOnGH6smZftqkgSg7grwwdjbfx2U20808Z3lYITEfkT1smk3ie3oMtjU2sXtRNfRiqMqVB5QLM7CaezEHNutMMniMamPZHElYLahxon/Ls/SjcekTVyWtU/cuDmxcanygGLJJoFYBhNLwuY/qYSDZClsHpO2WO7qYVtrmGT1jzRMkv+0yC25UFu7cBQ8mrpEBvf2qJDtfmqAjahhbFoXYXlMIGmeE4e9aiegABb7My0qwPJAWcn2C45rQPVw0FZ2IZPtqR0WbcmNCRfABnYZTmRRjeziaeTD7Wiw3MUk2KWoVjywTuOEdds21ytK6uXox8hJoySne8o00oPSxExLlndsuhKFxXBStqaud8Pm0x7LEGp5n22tLTxpwXW0oo01ElBs2YaOpi7URqpgm7wd7tphatEGmwPdHTYl21cbbNpaxvbVHCEs9mC0jEYDim2fsO3+bItdPFwOVKIlxySwMTVBNNHWXGa1RX3XCaVWMx8D6qoHycodI5ZrMWE9UlhsbTtZWdSeLNpUNNZTwh4UTbA7vdgCL4WuPXYnLwBsXy2yuIZVC2nkIFkLdp9ryT6rcO+OCnGF5XoaTSekFbwAnwtyyQu1NcP2CrMAuGCoVWNHS/IqfNpg2b6O2pTtqz2O2pxcnesEFH7miVTC4dYEEbkY1wkoDnElSEREpEQuHlDYrUJERKRE2jqLh4g0gBsOROTyPSjcxUOkTFw2iVydiwcUIlIm9qIQuToGFCJSGPaeEJErBRSu84hUgr0nRORKAYXrPCKV4NYEEblSQHGIqYVIebhcEpHLBxRuqRERESmR6wQUh1mEW2pEysSNByJX5zoBhVmESCUkcIElItcJKA5xK41IeRhOiMjlAwoRKRM3HohcndMB5dNPP8Xo0aMRGhoKSZKQnZ1tNX769OmQJMnq1q9fP6syJpMJc+bMQWBgILy9vTFmzBhcuHDhpmakWTwGhUgluIuHiFoRUGpqatC7d2+sWbOm0TLDhw9HSUmJfNu9e7fV+KSkJGRlZSEzMxOHDx9GdXU1Ro0ahYaGBufn4KZwK41IeQS4bBKR079mPGLECIwYMaLJMnq9Hkaj0eG4iooKrFu3Dhs3bsSQIUMAAJs2bUJYWBj279+PYcOGOTtJLcN1HpGKsAeFyNXdkmNQDh06hKCgINx777149tlnUVZWJo8rKChAfX09EhIS5GGhoaGIjIxEXl6ew9czmUyorKy0urUNrgSJiIiUqM0DyogRI/Dee+/hwIEDWLFiBfLz8zF48GCYTCYAQGlpKTw8PODn52f1vODgYJSWljp8zbS0NBgMBvkWFhbm/ISx94RIJbiwElErdvE0Z/LkyfL9yMhIxMTEIDw8HLt27cL48eMbfZ4QApLkeMW0aNEizJs3T35cWVnZupBihwfjESmPeX8sl00iV3bLTzMOCQlBeHg4Tp06BQAwGo2oq6tDeXm5VbmysjIEBwc7fA29Xg9fX1+rm9O4riNSCfagENFtCCiXLl3C+fPnERISAgCIjo6Gu7s7cnJy5DIlJSUoKipCbGzsrZ4cIlI8bk0QUSt28VRXV+P777+XHxcXF+P48ePw9/eHv78/UlJSMGHCBISEhODMmTNYvHgxAgMDMW7cOACAwWBAYmIi5s+fj4CAAPj7+2PBggWIioqSz+q5fbgiJFImLptErs7pgHLs2DEMGjRIfmw+NmTatGlIT09HYWEhNmzYgMuXLyMkJASDBg3C1q1b4ePjIz9n1apV0Ol0mDRpEmpraxEfH4+MjAy4ubm1wSw1wmGvMfdzEykPl0siAiQhhOrWBJWVlTAYDMCkbEDnbbE+s7zYyY37EgDzLErS9fsSAGFZjtTJ0RcZv9xUz27RtGxTtq+mNNnWpDkSgLoa4INxqKioaPZ4Uv4WDxEpjAQeKEtEbX6aMRHRzeEWNBG5fA8KV4RERERK5OIBhYiIiJTIdQJKo2fxEBERkdK4TkDh3hwiIiLVcJ2Aws4SIpXgwkpErhRQiEgl2N1JRK4UUByu87giJFIe9qAQkSsFFIe4IiRSHm44EJErBRRmESIiItVwnYDCXTxERESq4ToBhT0oREREquE6AcVhZwlTC5HycLkkIlcKKA7XedzFQ6Q8XC6JyJUCCntQiFSCyyURuVJAISIiItVwnYDCXTwugFveRERa4ToBhVnEBbCRtYHtSESuFFC4cU2kEhK4wBKR6wQUHiRLpBIC7EUhItcJKDwGhUgluOFARK4UUJhFiIiIVMN1Ago3yoiIiFTDdQIKj0EhUgl2dxKRKwUUHoNCpBI8i4eIXCmgsAeFSCV4Fg8RuVJAYQ+KC2Dg1Aa2IxE5GVDS0tLQp08f+Pj4ICgoCGPHjsXJkyetygghkJKSgtDQUHh6eiIuLg4nTpywKmMymTBnzhwEBgbC29sbY8aMwYULF25+bsjFMXBqA9uRiJwMKLm5uZg1axaOHDmCnJwcXL16FQkJCaipqZHLLFu2DCtXrsSaNWuQn58Po9GIoUOHoqqqSi6TlJSErKwsZGZm4vDhw6iursaoUaPQ0NDQdnNmi7t4iFSCyyURAZIQotWbKz/99BOCgoKQm5uLRx55BEIIhIaGIikpCS+++CKA670lwcHBePXVV/Hcc8+hoqICnTt3xsaNGzF58mQAwMWLFxEWFobdu3dj2LBhzb5vZWUlDAYDMCkb0HlfX58J3PhjXrnduC8BMM+iJF2/LwEQ8pNItRy1IdtV9aQby7C8arJsU7avpliuruUBbF/NkgDU1QAfjENFRQV8fX2bLH5Tx6BUVFQAAPz9/QEAxcXFKC0tRUJCglxGr9dj4MCByMvLAwAUFBSgvr7eqkxoaCgiIyPlMrZMJhMqKyutbm2DW2pEysQvKSJX1+qAIoTAvHnzMGDAAERGRgIASktLAQDBwcFWZYODg+VxpaWl8PDwgJ+fX6NlbKWlpcFgMMi3sLAw5yeYB8kSqQSXSyK6iYAye/ZsfP3119iyZYvdOEmyTgNCCLthtpoqs2jRIlRUVMi38+fPt3aybae0jV6HiNoOl0siamVAmTNnDnbs2IGDBw+ia9eu8nCj0QgAdj0hZWVlcq+K0WhEXV0dysvLGy1jS6/Xw9fX1+pGRFrFHhQicjKgCCEwe/ZsbN++HQcOHED37t2txnfv3h1GoxE5OTnysLq6OuTm5iI2NhYAEB0dDXd3d6syJSUlKCoqksvcElznERERqYbOmcKzZs3C5s2b8eGHH8LHx0fuKTEYDPD09IQkSUhKSkJqaioiIiIQERGB1NRUeHl5YerUqXLZxMREzJ8/HwEBAfD398eCBQsQFRWFIUOGtP0cNomphUh5eCYHETkZUNLT0wEAcXFxVsPXr1+P6dOnAwAWLlyI2tpazJw5E+Xl5ejbty/27dsHHx8fufyqVaug0+kwadIk1NbWIj4+HhkZGXBzc7u5uWmKw93aXBESKQ+XSSK6yeugtJdWXQdFwvXHVtdBMZcjdeJ1UDRJutGGDq+NwfbVFF4HxbXczuugqAo/80QqwYWViJzcxaM8ApDMV4m1GAab+5bjzPclrgTVz1Ebsl01o6llmrTFYVuTJjlxFQFVB5RF/bego6d7e08GERERtcCvtfVIe79lZVV9DMrlI4BvpxsDzbsuHf2HzTDAqRRHRES3Bo86cR0SgIpq4I6+cJFjUBwFEEfhQ7L4z3BCRER0WzkbRNUfUCxZhhTboCIs/jOuExEpAlfH1BhtBRRHfYUOPv1SI8NJBRgwXQvb2jWwnV2HE22tnYBiswvHdk8O9+poBBuSSHu4XLsOJ9paOwHlBjmY2FaCxfEpwtF4UjbLnhMJ7EnROsvdtGxn18B21j4n21hzAUXg+sVizf/NQUR95yqRQy3YhUcqx8vbuBaLtuV2o4a1YhlW9XVQ7JgDie2nvJGDZ3mxexWxaLPmesAcHRvd1HBSmBa0dWMn7LFdVcjc3jbrZUfYvirWivSprYDiaLdOE/hhV5+WtFljZdje6tJUe4kWlCF1YVuSLW0FlMZINv+JiIhI0TR3DEpb4jXdlKet2oNtqx22Z+uxbbWL7epaXKMHpZXY5ag8bdUmbFvt4E8Jug62r2thDwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpjlMBJS0tDX369IGPjw+CgoIwduxYnDx50qrM9OnTIUmS1a1fv35WZUwmE+bMmYPAwEB4e3tjzJgxuHDhws3PDREREWmCUwElNzcXs2bNwpEjR5CTk4OrV68iISEBNTU1VuWGDx+OkpIS+bZ7926r8UlJScjKykJmZiYOHz6M6upqjBo1Cg0NDTc/R0RERKR6OmcK79mzx+rx+vXrERQUhIKCAjzyyCPycL1eD6PR6PA1KioqsG7dOmzcuBFDhgwBAGzatAlhYWHYv38/hg0bZvcck8kEk8kkP66srHRmsomIiEhlbuoYlIqKCgCAv7+/1fBDhw4hKCgI9957L5599lmUlZXJ4woKClBfX4+EhAR5WGhoKCIjI5GXl+fwfdLS0mAwGORbWFjYzUw2ERERKVyrA4oQAvPmzcOAAQMQGRkpDx8xYgTee+89HDhwACtWrEB+fj4GDx4s94CUlpbCw8MDfn5+Vq8XHByM0tJSh++1aNEiVFRUyLfz58+3drKJiIhIBZzaxWNp9uzZ+Prrr3H48GGr4ZMnT5bvR0ZGIiYmBuHh4di1axfGjx/f6OsJISBJksNxer0eer2+tZNKREREKtOqHpQ5c+Zgx44dOHjwILp27dpk2ZCQEISHh+PUqVMAAKPRiLq6OpSXl1uVKysrQ3BwcGsmh4iIiDTGqYAihMDs2bOxfft2HDhwAN27d2/2OZcuXcL58+cREhICAIiOjoa7uztycnLkMiUlJSgqKkJsbKyTk09ERERa5NQunlmzZmHz5s348MMP4ePjIx8zYjAY4OnpierqaqSkpGDChAkICQnBmTNnsHjxYgQGBmLcuHFy2cTERMyfPx8BAQHw9/fHggULEBUVJZ/VQ0RERK7NqYCSnp4OAIiLi7Mavn79ekyfPh1ubm4oLCzEhg0bcPnyZYSEhGDQoEHYunUrfHx85PKrVq2CTqfDpEmTUFtbi/j4eGRkZMDNze3m54iIiIhUTxJCiPaeCGdVVlbCYDDg8hHA1weAAOD4+FoiIiJSiMpq4I6+1y9T4uvr22RZ/hYPERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKY5TASU9PR29evWCr68vfH190b9/f3z88cfyeCEEUlJSEBoaCk9PT8TFxeHEiRNWr2EymTBnzhwEBgbC29sbY8aMwYULF9pmboiIiEgTnAooXbt2xdKlS3Hs2DEcO3YMgwcPxqOPPiqHkGXLlmHlypVYs2YN8vPzYTQaMXToUFRVVcmvkZSUhKysLGRmZuLw4cOorq7GqFGj0NDQ0LZzRkRERKolCSHEzbyAv78/li9fjj/+8Y8IDQ1FUlISXnzxRQDXe0uCg4Px6quv4rnnnkNFRQU6d+6MjRs3YvLkyQCAixcvIiwsDLt378awYcMcvofJZILJZJIfV1ZWIiwsDJePAL4+AAQA6WbmgoiIiG61ymrgjr5ARUUFfH19myzb6mNQGhoakJmZiZqaGvTv3x/FxcUoLS1FQkKCXEav12PgwIHIy8sDABQUFKC+vt6qTGhoKCIjI+UyjqSlpcFgMMi3sLCw1k42ERERqYDTAaWwsBCdOnWCXq/HjBkzkJWVhZ49e6K0tBQAEBwcbFU+ODhYHldaWgoPDw/4+fk1WsaRRYsWoaKiQr6dP3/e2ckmIiIiFdE5+4QePXrg+PHjuHz5MrZt24Zp06YhNzdXHi9J1vtahBB2w2w1V0av10Ov1zs7qURERKRSTvegeHh44J577kFMTAzS0tLQu3dvrF69GkajEQDsekLKysrkXhWj0Yi6ujqUl5c3WoaIiIjopq+DIoSAyWRC9+7dYTQakZOTI4+rq6tDbm4uYmNjAQDR0dFwd3e3KlNSUoKioiK5DBEREZFTu3gWL16MESNGICwsDFVVVcjMzMShQ4ewZ88eSJKEpKQkpKamIiIiAhEREUhNTYWXlxemTp0KADAYDEhMTMT8+fMREBAAf39/LFiwAFFRURgyZMgtmUEiIiJSH6cCyo8//ognn3wSJSUlMBgM6NWrF/bs2YOhQ4cCABYuXIja2lrMnDkT5eXl6Nu3L/bt2wcfHx/5NVatWgWdTodJkyahtrYW8fHxyMjIgJubW9vOGREREanWTV8HpT1UVlbCYDDwOihEREQqcluug0JERER0qzCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiaCugiEb+OypDREREiqX+gGJ5DRQJjQcQ0ch9IiIiUhz1BxQz29BhDi6Owggv6qZuDJguQ7Jpay66GsVl2nU40dbqDyiWIaSpK8pKaDq0kGpI/JZyHTZtzUVXo7hMuw4n2lr9AcXMPNPmEGJZCbZrNS4M6iMgt6OwfMxvLO2xaFurtiZtstjAtO0xIw1pxXLs1I8FKp5t8HDUY8Lf7VEn2zZrQRs2lVFJwVrY1pbbJKRiFscQWq6e2a4a04rvXe30oDRFsvlPqtOapuMKTvvYxtrDNtUuZ9fj2upBIc1q7UqLKzvtYttqF9tWm5xtV9foQSEiIiJV0XZAcdSfxN08REREiqftgEJERESqxIBCREREisOAQkRERIrDgEJERESKw4BCREREisOAQkRERIrDgEJERESKw4BCREREisOAQkRERIrDgEJERESKw4BCREREiuNUQElPT0evXr3g6+sLX19f9O/fHx9//LE8fvr06ZAkyerWr18/q9cwmUyYM2cOAgMD4e3tjTFjxuDChQttMzdERESkCU4FlK5du2Lp0qU4duwYjh07hsGDB+PRRx/FiRMn5DLDhw9HSUmJfNu9e7fVayQlJSErKwuZmZk4fPgwqqurMWrUKDQ0NLTNHBEREZHqSUIIcTMv4O/vj+XLlyMxMRHTp0/H5cuXkZ2d7bBsRUUFOnfujI0bN2Ly5MkAgIsXLyIsLAy7d+/GsGHDWvSelZWVMBgMuHwE8PUBIMBfKSYiIlK4ymrgjr7X84Cvr2+TZVt9DEpDQwMyMzNRU1OD/v37y8MPHTqEoKAg3HvvvXj22WdRVlYmjysoKEB9fT0SEhLkYaGhoYiMjEReXl6j72UymVBZWWl1IyIiIu1yOqAUFhaiU6dO0Ov1mDFjBrKystCzZ08AwIgRI/Dee+/hwIEDWLFiBfLz8zF48GCYTCYAQGlpKTw8PODn52f1msHBwSgtLW30PdPS0mAwGORbWFiYs5NNREREKqJz9gk9evTA8ePHcfnyZWzbtg3Tpk1Dbm4uevbsKe+2AYDIyEjExMQgPDwcu3btwvjx4xt9TSEEJKnxfTSLFi3CvHnz5MeVlZUMKURERBrmdEDx8PDAPffcAwCIiYlBfn4+Vq9ejX/96192ZUNCQhAeHo5Tp04BAIxGI+rq6lBeXm7Vi1JWVobY2NhG31Ov10Ov1zs7qURERKRSN30dFCGEvAvH1qVLl3D+/HmEhIQAAKKjo+Hu7o6cnBy5TElJCYqKipoMKERERORanOpBWbx4MUaMGIGwsDBUVVUhMzMThw4dwp49e1BdXY2UlBRMmDABISEhOHPmDBYvXozAwECMGzcOAGAwGJCYmIj58+cjICAA/v7+WLBgAaKiojBkyJBbMoNERESkPk4FlB9//BFPPvkkSkpKYDAY0KtXL+zZswdDhw5FbW0tCgsLsWHDBly+fBkhISEYNGgQtm7dCh8fH/k1Vq1aBZ1Oh0mTJqG2thbx8fHIyMiAm5tbm88cERERqdNNXwelPfA6KEREROpzW66DQkRERHSrMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHi3FRASUtLgyRJSEpKkocJIZCSkoLQ0FB4enoiLi4OJ06csHqeyWTCnDlzEBgYCG9vb4wZMwYXLly4mUkhIiIiDWl1QMnPz8fbb7+NXr16WQ1ftmwZVq5ciTVr1iA/Px9GoxFDhw5FVVWVXCYpKQlZWVnIzMzE4cOHUV1djVGjRqGhoaH1c0JERESa0aqAUl1djccffxxr166Fn5+fPFwIgddeew1LlizB+PHjERkZiXfffRdXrlzB5s2bAQAVFRVYt24dVqxYgSFDhuDBBx/Epk2bUFhYiP3797fNXBEREZGqtSqgzJo1CyNHjsSQIUOshhcXF6O0tBQJCQnyML1ej4EDByIvLw8AUFBQgPr6eqsyoaGhiIyMlMvYMplMqKystLoRERGRdumcfUJmZia+/PJL5Ofn240rLS0FAAQHB1sNDw4OxtmzZ+UyHh4eVj0v5jLm59tKS0vD3//+d2cnlYiIiFTKqR6U8+fPY+7cudi0aRM6duzYaDlJkqweCyHshtlqqsyiRYtQUVEh386fP+/MZBMREZHKOBVQCgoKUFZWhujoaOh0Ouh0OuTm5uL111+HTqeTe05se0LKysrkcUajEXV1dSgvL2+0jC29Xg9fX1+rGxEREWmXUwElPj4ehYWFOH78uHyLiYnB448/juPHj+Ouu+6C0WhETk6O/Jy6ujrk5uYiNjYWABAdHQ13d3erMiUlJSgqKpLLEBERkWtz6hgUHx8fREZGWg3z9vZGQECAPDwpKQmpqamIiIhAREQEUlNT4eXlhalTpwIADAYDEhMTMX/+fAQEBMDf3x8LFixAVFSU3UG3RERE5JqcPki2OQsXLkRtbS1mzpyJ8vJy9O3bF/v27YOPj49cZtWqVdDpdJg0aRJqa2sRHx+PjIwMuLm5tfXkEBERkQpJQgjR3hPhrMrKShgMBlw+Avj6ABAAmj4Gl4iIiNpZZTVwR9/r10Rr7nhS/hYPERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKQ4DChERESkOAwoREREpDgMKERERKY72A4pw8F91F/cnIiJyLdoKKC0JHvzNHpcigU2uVWxX7WLbapOz7drmv2Z8O5h/37CyBtfn2PLHAi3uSwDMP4UoSTfuN1FD5pci5WpNG7FdiYiUobL6+v+W/E6xKgNKVVUVAODO+HaeECIiInJaVVUVDAZDk2Uk0ZIYozDXrl3DyZMn0bNnT5w/f77Zn2ym6yorKxEWFsY6cxLrzXmss9ZhvTmPddY67VVvQghUVVUhNDQUHTo0fZSJKntQOnTogC5dugAAfH19+aF0EuusdVhvzmOdtQ7rzXmss9Zpj3prrufETFsHyRIREZEmMKAQERGR4qg2oOj1eiQnJ0Ov17f3pKgG66x1WG/OY521DuvNeayz1lFDvanyIFkiIiLSNtX2oBAREZF2MaAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4qgyoLz55pvo3r07OnbsiOjoaHz22WftPUnt5tNPP8Xo0aMRGhoKSZKQnZ1tNV4IgZSUFISGhsLT0xNxcXE4ceKEVRmTyYQ5c+YgMDAQ3t7eGDNmDC5cuHAb5+L2SktLQ58+feDj44OgoCCMHTsWJ0+etCrDerOXnp6OXr16yVee7N+/Pz7++GN5POuseWlpaZAkCUlJSfIw1pu9lJQUSJJkdTMajfJ41pljP/zwA5544gkEBATAy8sLDzzwAAoKCuTxqqs3oTKZmZnC3d1drF27VnzzzTdi7ty5wtvbW5w9e7a9J61d7N69WyxZskRs27ZNABBZWVlW45cuXSp8fHzEtm3bRGFhoZg8ebIICQkRlZWVcpkZM2aILl26iJycHPHll1+KQYMGid69e4urV6/e5rm5PYYNGybWr18vioqKxPHjx8XIkSPFnXfeKaqrq+UyrDd7O3bsELt27RInT54UJ0+eFIsXLxbu7u6iqKhICME6a87Ro0dFt27dRK9evcTcuXPl4aw3e8nJyeI3v/mNKCkpkW9lZWXyeNaZvV9++UWEh4eL6dOniy+++EIUFxeL/fv3i++//14uo7Z6U11A+e1vfytmzJhhNey+++4Tf/nLX9ppipTDNqBcu3ZNGI1GsXTpUnnYr7/+KgwGg3jrrbeEEEJcvnxZuLu7i8zMTLnMDz/8IDp06CD27Nlz26a9PZWVlQkAIjc3VwjBenOGn5+feOedd1hnzaiqqhIREREiJydHDBw4UA4orDfHkpOTRe/evR2OY5059uKLL4oBAwY0Ol6N9aaqXTx1dXUoKChAQkKC1fCEhATk5eW101QpV3FxMUpLS63qS6/XY+DAgXJ9FRQUoL6+3qpMaGgoIiMjXaZOKyoqAAD+/v4AWG8t0dDQgMzMTNTU1KB///6ss2bMmjULI0eOxJAhQ6yGs94ad+rUKYSGhqJ79+547LHHcPr0aQCss8bs2LEDMTEx+MMf/oCgoCA8+OCDWLt2rTxejfWmqoDy888/o6GhAcHBwVbDg4ODUVpa2k5TpVzmOmmqvkpLS+Hh4QE/P79Gy2iZEALz5s3DgAEDEBkZCYD11pTCwkJ06tQJer0eM2bMQFZWFnr27Mk6a0JmZia+/PJLpKWl2Y1jvTnWt29fbNiwAXv37sXatWtRWlqK2NhYXLp0iXXWiNOnTyM9PR0RERHYu3cvZsyYgRdeeAEbNmwAoM7Pmu62v2MbkCTJ6rEQwm4Y/Vdr6stV6nT27Nn4+uuvcfjwYbtxrDd7PXr0wPHjx3H58mVs27YN06ZNQ25urjyedWbt/PnzmDt3Lvbt24eOHTs2Wo71Zm3EiBHy/aioKPTv3x9333033n33XfTr1w8A68zWtWvXEBMTg9TUVADAgw8+iBMnTiA9PR1PPfWUXE5N9aaqHpTAwEC4ubnZJbmysjK7VEiQj3pvqr6MRiPq6upQXl7eaBmtmjNnDnbs2IGDBw+ia9eu8nDWW+M8PDxwzz33ICYmBmlpaejduzdWr17NOmtEQUEBysrKEB0dDZ1OB51Oh9zcXLz++uvQ6XTyfLPemubt7Y2oqCicOnWKn7VGhISEoGfPnlbD7r//fpw7dw6AOtdrqgooHh4eiI6ORk5OjtXwnJwcxMbGttNUKVf37t1hNBqt6quurg65ublyfUVHR8Pd3d2qTElJCYqKijRbp0IIzJ49G9u3b8eBAwfQvXt3q/Gst5YTQsBkMrHOGhEfH4/CwkIcP35cvsXExODxxx/H8ePHcdddd7HeWsBkMuHbb79FSEgIP2uN+N3vfmd3uYTvvvsO4eHhAFS6Xrvth+XeJPNpxuvWrRPffPONSEpKEt7e3uLMmTPtPWntoqqqSnz11Vfiq6++EgDEypUrxVdffSWfdr106VJhMBjE9u3bRWFhoZgyZYrD08q6du0q9u/fL7788ksxePBgTZ+O9/zzzwuDwSAOHTpkdRrjlStX5DKsN3uLFi0Sn376qSguLhZff/21WLx4sejQoYPYt2+fEIJ11lKWZ/EIwXpzZP78+eLQoUPi9OnT4siRI2LUqFHCx8dHXs+zzuwdPXpU6HQ68c9//lOcOnVKvPfee8LLy0ts2rRJLqO2elNdQBFCiDfeeEOEh4cLDw8P8dBDD8mnh7qigwcPCgB2t2nTpgkhrp9alpycLIxGo9Dr9eKRRx4RhYWFVq9RW1srZs+eLfz9/YWnp6cYNWqUOHfuXDvMze3hqL4AiPXr18tlWG/2/vjHP8rLXefOnUV8fLwcToRgnbWUbUBhvdkzX5/D3d1dhIaGivHjx4sTJ07I41lnju3cuVNERkYKvV4v7rvvPvH2229bjVdbvUlCCHH7+22IiIiIGqeqY1CIiIjINTCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeL8f+miw3OMg4nvAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = figure()\n", + "# @manipulate for flagimg in collect(keys(pics)), k=slider(1:40,value=1)\n", + "for flagimg in collect(keys(pics)), k=1:10\n", + " display(\n", + " withfig(fig) do\n", + " title(\"rank-$k approximation of $flagimg flag\")\n", + " p = float.(channelview(pics[flagimg])) # convert to an array\n", + " pr,pg,pb = p[1,:,:],p[2,:,:],p[3,:,:]\n", + " Ur,σr,Vr = svd(pr)\n", + " Ug,σg,Vg = svd(pg)\n", + " Ub,σb,Vb = svd(pb)\n", + " p̂r = clip01.(Ur[:,1:k]*Diagonal(σr[1:k])*Vr[:,1:k]')\n", + " p̂g = clip01.(Ug[:,1:k]*Diagonal(σg[1:k])*Vg[:,1:k]')\n", + " p̂b = clip01.(Ub[:,1:k]*Diagonal(σb[1:k])*Vb[:,1:k]')\n", + " imshow(cat(p̂r,p̂g,p̂b, dims=3))\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moral of the story: if *k* is large enough,\n", + "```\n", + "U[:,1:k] * Diagonal(σ[1:k]) * V[:,1:k]'\n", + "```\n", + "$$\n", + "= \\sigma_1 u_1 v_1^T + \\sigma_2 u_2 v_2^T + \\cdots + \\sigma_k u_k v_k^T\n", + "$$\n", + "is a good approximation to A often requiring less storage and less computation, revealing the \"most important\" parts of A." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Nearly rank-deficient matrices\n", + "\n", + "Consider the matrix\n", + "$$\n", + "B = \\begin{pmatrix} 1 & 2 \\\\ 1 & 2.01 \\end{pmatrix}\n", + "$$\n", + "The rows (and columns) of $B$ are *nearly* linearly dependent. Maybe they were \"supposed\" to be *exactly* dependent but there was some error (e.g. measurement error) in constructing $B$.\n", + "\n", + "The SVD of $B$ reveals that fact, because one of the singular values is much smaller than the other:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 3.168610111694078\n", + " 0.0031559578640154287" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = [1 2\n", + " 1 2.01]\n", + "σ = svdvals(B) # returns just the σ values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We say that the matrix $B$ is **ill-conditioned**. The **condition number** of a full-rank matrix is the ratio $\\sigma_1 / \\sigma_r = \\sigma_\\max / \\sigma_\\min$ of largest to smallest singular value. It is computed in Julia by the `cond` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1004.0090039930228" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "σ[1]/σ[2]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1004.0090039930228" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cond(B) # same thing: the condition number of B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we plot what $B$ does to a circle, it *almost* projects it to a line. The output ellipse is so thin we can't really see it is an ellipse." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAGxCAYAAAA3ayKTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLI0lEQVR4nO3deVxU5f4H8M+ArLIoiwqKgCtqoSlpaqbkUmrllmnua2muaWXaTaFUrPTm/ZmaXgvMXa8XbVHLTFxSExXT3HIBQcEFFFCUQeD5/XHuzDDsA8ycMzOf9+s1L+acOXPOd4ZhPpxznvM8KiGEABERkcLYyF0AERFRcRhQRESkSAwoIiJSJAYUEREpEgOKiIgUiQFFRESKxIAiIiJFYkAREZEiMaCIiEiRGFAFREVFQaVSISEhQe5SAACPHj1CWFgYYmJi5C6lQrp06YIuXbqYfLvnz59HWFiYyX6Pu3btQlhYmEm2VVhOTg4mTJgAHx8f2NraolWrViUuO2rUKAQEBOjNCwgIwKhRo7TTCQkJUKlUiIqKMkq9xlTc61OpVHq/m9I+G8U9X2nK+/uJiYmBSqXSu9WsWRPt2rXD2rVrTVNsFWBAFdC7d28cPXoUPj4+cpcCQAqo8PBwsw0ouZw/fx7h4eEmDajw8HCTbKuwlStXYtWqVfjoo49w+PBhrFu3rsRlP/74Y0RHR5uwOvkdPXoU48aN006X9tmwxPdn4cKFOHr0KI4ePYp169bB398fo0aNwrJly+QurVyqyV2Aknh7e8Pb21vuMojK7a+//oKTkxMmT55c5rINGzY0QUXK8txzz5V7WUt8fxo3bqz3HvTq1QuxsbHYtGkTpkyZImNl5cM9qAKKO8TXpUsXPPXUU4iNjUWnTp3g7OyMBg0aYNGiRcjPz9cup9mlXr9+PWbMmIE6derAyckJnTt3RlxcnN52Sjr0VfAQQ0JCgjYsw8PDtbvpmsMxd+/exVtvvQU/Pz84ODjA29sbHTt2xK+//lrqa7xy5QpGjx6Nxo0bw9nZGXXr1sWrr76Ks2fP6i2neT2bNm3CRx99BF9fX7i5uaFbt264dOmS3rJCCHz++efw9/eHo6MjWrdujd27d5daR0HZ2dmYPXs2AgMDYW9vj7p162LSpElIT0/XW67w4RqNgoepoqKiMHDgQABAaGio9n3THBLR/D4PHTqE5557Dk5OTqhbty4+/vhj5OXlFXn9hfdeCx9iGTVqFJYvX66tT3PTfIa2bduGdu3awd3dXfvZGTNmTJW8JyqVCmvWrMHjx4+LvM7iGOMQ1s2bN7WfQ3t7e/j6+uL111/H7du3tcskJiZi2LBhqFWrFhwcHNCsWTMsWbJE7+9H874uXrwY//znPxEYGAgXFxe0b98ex44dK7LdqKgoNG3aVLu+7777rtj6Cn5myvpsFPf+lPezGRAQgFdeeQV79uxB69at4eTkhKCgIHz77bdFarp16xbefvtt1KtXD/b29ggMDER4eDhyc3P1lktOTsYbb7wBV1dXuLu7Y9CgQbh161axr7O8bGxs4OLiAjs7u0qtx1S4B1UOt27dwtChQzFz5kzMmzcP0dHRmD17Nnx9fTFixAi9ZefMmYPWrVtjzZo1yMjIQFhYGLp06YK4uDg0aNCg3Nv08fHBnj178PLLL2Ps2LHawxSa0Bo+fDhOnTqFBQsWoEmTJkhPT8epU6eQlpZW6nqTk5Ph6emJRYsWwdvbG/fu3cPatWvRrl07xMXFoWnTpkVeT8eOHbFmzRpkZmZi1qxZePXVV3HhwgXY2toCkAI0PDwcY8eOxeuvv46kpCSMHz8eeXl5RdZXmBACffv2xb59+zB79mx06tQJZ86cwbx587SHJhwcHMr9vvXu3RsLFy7EnDlzsHz5crRu3RqA/n/Ht27dwuDBg/Hhhx/ik08+wU8//YT58+fj/v37+Oqrr8q9LUA6LJSVlYX//Oc/OHr0qHa+j48Pjh49ikGDBmHQoEEICwuDo6Mjrl+/jt9++61K3pOjR4/i008/xf79+7XrNOVewM2bN/Hss8/iyZMnmDNnDoKDg5GWloaff/4Z9+/fR+3atXH37l106NABOTk5+PTTTxEQEIAff/wR7733Hq5evYoVK1borXP58uUICgrC0qVLAUjvb69evRAfHw93d3cAUtCMHj0affr0wZIlS7R/Z2q1GjY2Jf/PXZ7PRkGGfjb//PNPzJw5Ex9++CFq166NNWvWYOzYsWjUqBFeeOEFANJnr23btrCxscHcuXPRsGFDHD16FPPnz0dCQgIiIyMBAI8fP0a3bt2QnJyMiIgINGnSBD/99BMGDRpk0O8oPz9fG3xpaWmIjIzEX3/9hdWrVxu0HtkI0oqMjBQARHx8vHZe586dBQDxxx9/6C3bvHlz8dJLL2mn9+/fLwCI1q1bi/z8fO38hIQEYWdnJ8aNG6e3zs6dOxfZ/siRI4W/v792+u7duwKAmDdvXpFlXVxcxPTp0w1/kYXk5uaKnJwc0bhxY/Huu+8WeT29evXSW37r1q0CgDh69KgQQoj79+8LR0dH0a9fP73lfv/9dwGg2NdZ0J49ewQA8fnnn+vN37JliwAgVq9erZ1X0nvh7+8vRo4cqZ3etm2bACD2799fZFnN73Pnzp1688ePHy9sbGzE9evX9V5/4XXEx8cLACIyMlI7b9KkSaK4P6XFixcLACI9Pb2EV188Q96TkSNHiurVq5drvYU/X0IUfe+Ke30lGTNmjLCzsxPnz58vcZkPP/yw2L+fiRMnCpVKJS5duqS33aefflrk5uZqlzt+/LgAIDZt2iSEECIvL0/4+vqW+HdW+PUV/syU9tko/P4Y8nvw9/cXjo6O2s+PEEI8fvxYeHh4iLfffls77+233xYuLi56ywmh+6ycO3dOCCHEypUrS/ycluf3o/n8Fr7Z2NiIjz76qNTnKgkP8ZVDnTp10LZtW715wcHBuH79epFlhwwZApVKpZ329/dHhw4dsH///iqtqW3btoiKisL8+fNx7NgxPHnypFzPy83NxcKFC9G8eXPY29ujWrVqsLe3x+XLl3HhwoUiy7/22mt608HBwQCgfe1Hjx5FdnY2hg4dqrdchw4d4O/vX2Y9mv/8C7YkA4CBAweievXq2LdvX7lelyFcXV2LvK4hQ4YgPz8fBw8erLLtPPvsswCAN954A1u3bsXNmzfL9Tw53pPS5Obm6t3E/4aQ2717N0JDQ9GsWbMSn/vbb7+hefPmRf5+Ro0aBSFEkb3J3r17a/fMgaKft0uXLiE5ObnEv7OqZOjvoVWrVqhfv7522tHREU2aNNH7nvjxxx8RGhoKX19fvfe0Z8+eAIADBw4AAPbv31/i59QQn332GWJjYxEbG4u9e/figw8+wKJFi/D+++8btB65MKDKwdPTs8g8BwcHPH78uMj8OnXqFDuvrENvhtqyZQtGjhyJNWvWoH379vDw8MCIESPKPEY9Y8YMfPzxx+jbty9++OEH/PHHH4iNjUXLli2LfT2FX7vmkIZmWc3rKul1lyUtLQ3VqlUr0jhFpVIZ5X0DgNq1axeZp6m1Krf3wgsvYMeOHcjNzcWIESNQr149PPXUU9i0aVOpz5PjPSlJQkIC7Ozs9G6aL9G7d++iXr16pT4/LS2t2Faxvr6+2scLMvbnzRCG/h7K8z1x+/Zt/PDDD0Xe0xYtWgAAUlNTtdsu7XNaXg0aNEBISAhCQkLQrVs3REREYNy4cViyZAkuXrxo0LrkwHNQVay4gLh165beh9fR0REZGRlFltN8OMvDy8sLS5cuxdKlS5GYmIjvv/8eH374Ie7cuYM9e/aU+Lz169djxIgRWLhwYZFt16hRo9zb19C8rpJed1kn5T09PZGbm4u7d+/qfREIIXDr1i3tXggg/bGr1eoi6zD0C7vgCfyCtWrqAaTfEYAi2zPkdwQAffr0QZ8+faBWq3Hs2DFERERgyJAhCAgIQPv27Yt9jiHvibH5+voiNjZWb57mvKK3tzdu3LhR6vM9PT2RkpJSZH5ycjIA6XNsiLI+b1XJGL8HLy8vBAcHY8GCBcU+rgluT09PHD9+vMjjVfEag4ODIYTAmTNnEBQUVOn1GRP3oKrYpk2btIdAAOnQxJEjR/Ra7QUEBODvv//W+/JLS0vDkSNH9NZV+L/HktSvXx+TJ09G9+7dcerUqVKXValURRod/PTTT+U+/FTYc889B0dHR2zYsEFv/pEjR4o9BFpY165dAUjBWdD27duRlZWlfRyQ3rczZ87oLffbb7/h4cOHevPKet8ePHiA77//Xm/exo0bYWNjoz2ZrQnWwtsr/LzybE+zTOfOnfHZZ58BQJGWnQUZ8p4Ym729vfY/cM3N1dUVANCzZ0/s37+/SKvOgrp27Yrz588X+Vx+9913UKlUCA0NNaiepk2bwsfHp8S/s7KU929KUztQtb+HV155BX/99RcaNmxY5H0NCQnRBlRoaGiJn9PKOn36NACgVq1alV6XsXEPqorduXMH/fr1w/jx45GRkYF58+bB0dERs2fP1i4zfPhwrFq1CsOGDcP48eORlpaGzz//HG5ubnrrcnV1hb+/P3bu3ImuXbvCw8MDXl5eqFmzJkJDQzFkyBAEBQXB1dUVsbGx2LNnD/r3719qfa+88gqioqIQFBSE4OBgnDx5El988UWZh2pKUrNmTbz33nuYP38+xo0bh4EDByIpKQlhYWHlOhzRvXt3vPTSS5g1axYyMzPRsWNHbUupZ555BsOHD9d73z7++GPMnTsXnTt3xvnz5/HVV19pW3dpPPXUUwCA1atXw9XVFY6OjggMDNT+9+3p6YmJEyciMTERTZo0wa5du/Dvf/8bEydO1J5DqFOnjvaQSM2aNeHv7499+/bhv//9b5HX8PTTTwOQjvf37NkTtra2CA4Oxvz583Hjxg107doV9erVQ3p6Ov71r3/Bzs4OnTt3rpL3RE6ffPIJdu/ejRdeeAFz5szB008/jfT0dOzZswczZsxAUFAQ3n33XXz33Xfo3bs3PvnkE/j7++Onn37CihUrMHHiRDRp0sSgbdrY2ODTTz/FuHHjtH9n6enp5f68lfXZKMgYv4dPPvkEe/fuRYcOHTB16lQ0bdoU2dnZSEhIwK5du/D111+jXr16GDFiBL788kuMGDECCxYsQOPGjbFr1y78/PPPBm3v8uXL2mb6GRkZ+PXXX/HNN98gJCQEnTp1Mrh+k5OvfYbylNSKr0WLFkWWLdziR9NqZt26dWLq1KnC29tbODg4iE6dOokTJ04Uef7atWtFs2bNhKOjo2jevLnYsmVLsa2sfv31V/HMM88IBwcHAUCMHDlSZGdniwkTJojg4GDh5uYmnJycRNOmTcW8efNEVlZWqa/x/v37YuzYsaJWrVrC2dlZPP/88+LQoUNFWhZqXs+2bdv0nl9cK6/8/HwREREh/Pz8hL29vQgODhY//PBDia0VC3v8+LGYNWuW8Pf3F3Z2dsLHx0dMnDhR3L9/X285tVotPvjgA+Hn5yecnJxE586dxenTp4u0RBNCiKVLl4rAwEBha2urV6/m9xkTEyNCQkKEg4OD8PHxEXPmzBFPnjzRW0dKSop4/fXXhYeHh3B3dxfDhg0TJ06cKPL61Wq1GDdunPD29hYqlUr7Gfrxxx9Fz549Rd26dYW9vb2oVauW6NWrlzh06FCVvSdytuITQoikpCQxZswYUadOHWFnZyd8fX3FG2+8IW7fvq1d5vr162LIkCHC09NT2NnZiaZNm4ovvvhC5OXlFdnuF198UWQbKKb15po1a0Tjxo2Fvb29aNKkifj222+LfX3FPbekz0Zxzy/v78Hf31/07t27SO3F/Q3cvXtXTJ06VQQGBgo7Ozvh4eEh2rRpIz766CPx8OFD7XI3btwQAwYMEC4uLsLV1VUMGDBAHDlypMKt+KpXry6aN28u5s2bJzIyMkp9vlKohCiwn0wVFhMTg9DQUGzbtg2vv/663OVQCbp06YLU1FT89ddfcpdCRGXgOSgiIlIkBhQRESkSD/EREZEimWwPKiIiAiqVCtOnTzfVJomIyIyZJKBiY2OxevVqbbclREREZTF6QD18+BBDhw7Fv//9b9SsWdPYmyMiIgth9At1J02ahN69e6Nbt26YP39+qcuq1Wq93hXy8/Nx7949eHp66nUMSURE5kEIgQcPHsDX17fU4VCKY9SA2rx5M06dOlWkL6+SREREyDZ0NhERGU9SUpLBPdYYLaCSkpIwbdo0/PLLL9qON8sye/ZszJgxQzudkZGB+vXrIykpqUg3QEREpHyZmZnw8/PT9uFoCKM1M9+xYwf69eunN7ZLXl4eVCoVbGxsoFar9R4rTmZmJtzd3ZGRkcGAIiIyQ5X5HjfaHlTXrl1x9uxZvXmjR49GUFAQZs2aVWY4ERGRdTNaQLm6ump7DtaoXr06PD09i8wnIiIqjF0dERGRIpl0PKiYmBhTbo6IDCCEQG5uLvLy8uQuhcyIra0tqlWrZpRLgThgIREhJycHKSkpePTokdylkBlydnaGj48P7O3tq3S9DCgiK5efn4/4+HjY2trC19cX9vb2vDCeykUIgZycHNy9exfx8fFo3LixwRfjloYBRWTlcnJykJ+fDz8/Pzg7O8tdDpkZJycn2NnZ4fr168jJySn3da/lwUYSRAQAVfqfL1kXY312+IkkIiJFYkAREZEiMaCIyCx16dLFrAdAValU2LFjh+zrUDI2kiAis/Tf//4XdnZ2Jt9uWFgYduzYgdOnT1dqPSkpKRwjrwwMKCIySx4eHnKXUCl16tQp9fEnT57IEsBKwkN8RFSyrKySb9nZ5V/28eOylzVQ4UN8AQEBWLhwIcaMGQNXV1fUr18fq1ev1j6ekJAAlUqFzZs3o0OHDnB0dESLFi30eriJiopCjRo19LazY8cO7XVhUVFRCA8Px59//gmVSgWVSoWoqKgSa/z222/RokULODg4wMfHB5MnT9Y+VvDwnKa2rVu3okuXLnB0dMT69evLXEdhN2/exKBBg1CzZk14enqiT58+SEhIKP2NVDAGFBGVzMWl5NuAAfrL1qpV8rI9e+ovGxBQdJkqsGTJEoSEhCAuLg7vvPMOJk6ciIsXL+ot8/7772PmzJmIi4tDhw4d8NprryEtLa1c6x80aBBmzpyJFi1aICUlBSkpKRg0aFCxy65cuRKTJk3CW2+9hbNnz+L7779Ho0aNSl3/rFmzMHXqVFy4cAEvvfSSQet49OgRQkND4eLigoMHD+Lw4cNwcXHByy+/jJycnHK9PqXhIT4ishi9evXCO++8A0D6sv/yyy8RExODoKAg7TKTJ0/GgP+F68qVK7Fnzx588803+OCDD8pcv5OTE1xcXFCtWrUyD9HNnz8fM2fOxLRp07Tznn322VKfM336dPTv379C69i8eTNsbGywZs0a7R5fZGQkatSogZiYGPTo0aPM16c0DCgiKtnDhyU/VnhMtzt3Sl628IWcRjrsFBwcrL2vUqlQp04d3ClUV/v27bX3q1WrhpCQEFy4cKFK67hz5w6Sk5PRtWtXg54XEhJS4XWcPHkSV65cKTJybXZ2Nq5evWpQHUrBgCKiklWvLv+yBijcqEClUiE/P7/M52n2OGxsbFB4kPEnT54YXIeTk5PBzwGkMfMquo78/Hy0adMGGzZsKPKYt7d3heqRG89BEZFVOXbsmPZ+bm4uTp48qT0E6O3tjQcPHiCrQKONws3J7e3tyxySxNXVFQEBAdi3b1+F6zR0Ha1bt8bly5dRq1YtNGrUSO/m7u5e4TrkxIAiIquyfPlyREdH4+LFi5g0aRLu37+PMWPGAADatWsHZ2dnzJkzB1euXMHGjRuLtNILCAhAfHw8Tp8+jdTUVKjV6mK3ExYWhiVLluD//u//cPnyZZw6dQrLli0zqFZD1jF06FB4eXmhT58+OHToEOLj43HgwAFMmzYNN27cMGi7SsGAIiKrsmjRInz22Wdo2bIlDh06hJ07d8LLywuAdG3V+vXrsWvXLjz99NPYtGkTwsLC9J4/YMAAvPzyywgNDYW3tzc2bdpU7HZGjhyJpUuXYsWKFWjRogVeeeUVXL582aBaDVmHs7MzDh48iPr166N///5o1qwZxowZg8ePH8PNzc2g7SqFShQ+4KogmZmZcHd3R0ZGhtm+wURKl52djfj4eAQGBlbpUAlKk5CQgMDAQMTFxaFVq1Zyl2NRSvsMVeZ7nHtQRESkSAwoIiJSJDYzJyKrEBAQUKQJOSkb96CIiEiRGFBERKRIDCgiIlIkBhQRESkSA4qIiBSJAUVERIrEgCIiUrjiRt/VdGIbExMDlUqF9PR02eozFgYUEVmtsLAwo3V7VNzw8cbQoUMHpKSkmG2P5aXhhbpERGbM3t6+zNF9zRX3oIioRFlZJd+ys8u/7OPHZS9rKLVajalTp6JWrVpwdHTE888/j9jYWO3jxe3B7NixQzs4YVRUFMLDw/Hnn39CpVJBpVJph9ZQqVRYuXIlevbsCScnJwQGBmLbtm3a9RR3WO306dNQqVRISEhATEwMRo8ejYyMDO26C/eKXtAPP/yANm3awNHREQ0aNEB4eDhyc3PL9T4UrkXzunfs2IEmTZrA0dER3bt3R1JSkvY5f/75J0JDQ+Hq6go3Nze0adMGJ06c0D5+5MgRvPDCC3BycoKfnx+mTp2qN0aWqTCgiKhELi4l3wYM0F+2Vq2Sl+3ZU3/ZgICiyxjqgw8+wPbt27F27VqcOnUKjRo1wksvvYR79+6V6/mDBg3CzJkz0aJFC6SkpCAlJQWDBg3SPv7xxx9jwIAB+PPPPzFs2DC8+eab5R4avkOHDli6dCnc3Ny0637vvfeKXfbnn3/GsGHDMHXqVJw/fx6rVq1CVFQUFixYUK5tFefRo0dYsGAB1q5di99//x2ZmZkYPHiw9vGhQ4eiXr16iI2NxcmTJ/Hhhx9qRyM+e/YsXnrpJfTv3x9nzpzBli1bcPjwYUyePLnC9VSYULCMjAwBQGRkZMhdCpHFevz4sTh//rx4/PhxkceAkm+9eukv6+xc8rKdO+sv6+VVdBlDPHz4UNjZ2YkNGzZo5+Xk5AhfX1/x+eefCyGEiIyMFO7u7nrPi46OFgW/9ubNmydatmxZzOuGmDBhgt68du3aiYkTJwohhNi/f78AIO7fv699PC4uTgAQ8fHxJW6/OJ06dRILFy7Um7du3Trh4+OjV090dLQQQoj4+HgBQMTFxRVbS2RkpAAgjh07pn3+hQsXBADxxx9/CCGEcHV1FVFRUcXWM3z4cPHWW2/pzTt06JCwsbEp9jMiROmfocp8j/McFBGV6OHDkh+ztdWfvnOn5GVtCh2rSUiocEkAgKtXr+LJkyfo2LGjdp6dnR3atm1b7r2csrRv377IdOHh36vCyZMnERsbq7fHlJeXh+zsbDx69AjOzs4Gr7NatWoICQnRTgcFBaFGjRq4cOEC2rZtixkzZmDcuHFYt24dunXrhoEDB6Jhw4baeq5cuYINGzZony+EQH5+PuLj49GsWbNKvFoDX4fJtkREZqd6dfmXLY74X6/kmvNJBedr5tnY2BTpvfzJkyeV2m7BdResozLrzs/PR3h4OPr371/kscoMIFn4vSk4LywsDEOGDMFPP/2E3bt3Y968edi8eTP69euH/Px8vP3225g6dWqR59evX7/C9VSEUc9BrVy5EsHBwXBzc4Obmxvat2+P3bt3G3OTRGQFGjVqBHt7exw+fFg778mTJzhx4oT2P3xvb288ePBA7+R+4T0ge3t75OXlFbuNY8eOFZkOCgrSrhsAUlJSKrTuglq3bo1Lly6hUaNGRW42hXc9yyk3N1ev0cOlS5eQnp6urR8AmjRpgnfffRe//PIL+vfvj8jISG09586dK7Yee3v7CtVTUUYNqHr16mHRokU4ceIETpw4gRdffBF9+vTBuXPnjLlZIrJw1atXx8SJE/H+++9jz549OH/+PMaPH49Hjx5h7NixAIB27drB2dkZc+bMwZUrV7Bx40ZtKz2NgIAAxMfH4/Tp00hNTYVardY+tm3bNnz77bf4+++/MW/ePBw/flzbUKBRo0bw8/NDWFgY/v77b/z0009YsmRJkXU/fPgQ+/btQ2pqKh49elTsa5k7dy6+++47hIWF4dy5c7hw4QK2bNmCf/zjHxV+f+zs7DBlyhT88ccfOHXqFEaPHo3nnnsObdu2xePHjzF58mTExMTg+vXr+P333xEbG6sN9lmzZuHo0aOYNGkSTp8+jcuXL+P777/HlClTKlxPhRl81qqSatasKdasWVOuZdlIgsj4SjvBrWSPHz8WU6ZMEV5eXsLBwUF07NhRHD9+XG+Z6Oho0ahRI+Ho6CheeeUVsXr1ar1GEtnZ2WLAgAGiRo0aAoCIjIwUQkiNEpYvXy66d+8uHBwchL+/v9i0aZPeug8fPiyefvpp4ejoKDp16iS2bdum10hCCCEmTJggPD09BQAxb968El/Lnj17RIcOHYSTk5Nwc3MTbdu2FatXr9Y+DgMbSbi7u4vt27eLBg0aCHt7e/Hiiy+KhIQEIYQQarVaDB48WPj5+Ql7e3vh6+srJk+erPf7P378uOjevbtwcXER1atXF8HBwWLBggWl/i6M0UhC9b8Xb3R5eXnYtm0bRo4cibi4ODRv3rzIMmq1Wu8/mMzMTPj5+SEjIwNubm6mKJPI6mRnZyM+Ph6BgYGVOudhSVQqFaKjo9G3b1+5SzFYVFQUpk+fbtKuj0r7DGVmZsLd3b1C3+NGvw7q7NmzcHFxgYODAyZMmIDo6OhiwwkAIiIi4O7urr35+fkZuzwiIlIoowdU06ZNcfr0aRw7dgwTJ07EyJEjcf78+WKXnT17NjIyMrS3glc+ExGRdTHZIT6Nbt26oWHDhli1alWZy1Zm15CIyoeH+KiyzPYQX2FCCL3zTERERMUx6oW6c+bMQc+ePeHn54cHDx5g8+bNiImJwZ49e4y5WSKqABMfTCELYqzPjlED6vbt2xg+fLh2rJLg4GDs2bMH3bt3N+ZmicgAmk5CHz16BCcnJ5mrIXOkucZL81mqKkYNqG+++caYqyeiKmBra4saNWrgzv8603N2di62mxyiwoQQePToEe7cuYMaNWrAtnAHjZXEvviISDvg3Z3SenwlKkGNGjWMMmgiA4qIoFKp4OPjg1q1alW6Q1WyLnZ2dlW+56TBgCIiLVtbW6N92RAZiiPqEhGRIjGgiIhIkRhQRESkSAwoIiJSJAYUEREpEgOKiIgUiQFFRESKxIAiIiJFYkAREZEiMaCIiEiRGFBERKRIDCgiIlIkBhQRESkSA4qIiBSJAUVERIrEgCIiIkViQBERkSIxoIiISJEYUEREpEgMKCIiUiQGFBERKRIDioiIFIkBRUREisSAIiIqRnY2cO4cIITclVgvBhQRUSEXLgBOTsBTTwGHDsldjfViQBERFXDxItC8uW66aVP5arF2DCgiov958ABo1kw3vXMnULu2fPVYOwYUEdH/uLgAbdpI93fsAF57TdZyrF41uQsgIlIKlQqIjQVSUgBfX7mrIe5BEZFVu3RJCqY//5SmVSqGk1IwoIjIav39NxAUJN1v1QrIz5e1HCqEAUVEVunvv/Vb6G3fDtjwG1FRjPrriIiIwLPPPgtXV1fUqlULffv2xaVLl4y5SSKiMl2+rB9O//kP0L+/fPVQ8YwaUAcOHMCkSZNw7Ngx7N27F7m5uejRoweysrKMuVkiohJduQI0aaKb3rYNGDBAvnqoZCohTNeRx927d1GrVi0cOHAAL7zwQpnLZ2Zmwt3dHRkZGXBzczNBhURkyYTQP4y3dSswcKB89ViDynyPm/SIa0ZGBgDAw8Oj2MfVajUyMzP1bkREVUWlAvbule5v2cJwUjqT7UEJIdCnTx/cv38fh0ro3CosLAzh4eFF5nMPiogqIzcXqFbgqs/8fDaIMBWz2IOaPHkyzpw5g02bNpW4zOzZs5GRkaG9JSUlmao8IrJQV68CdnbAsGG6eQwn82CSX9OUKVPw/fffY//+/ahXr16Jyzk4OMDNzU3vRkRUUdeuAY0aSfc3bABu3ZK3HjKMUbs6EkJgypQpiI6ORkxMDAIDA425OSIirWvXgIYNddMbNgB16shXDxnOqAE1adIkbNy4ETt37oSrqytu/e/fF3d3dzg5ORlz00RkxQqH0/r1wJAh8tVDFWPURhIqlarY+ZGRkRg1alSZz2czcyIyVHw80KCBbnrdOv3zT2RalfkeN/ohPiIiU2rdWnf/u+8YTuaMbVmIyKKkpEg/o6KA4cNlLYUqieNBEZHZu3sXcHKSBhx0dJR6jCDzxz0oIjJriYlArVqAq6s0ZDtZDgYUEZmtxETA3183ffCgfLVQ1WNAEZFZSkrSD6fVq4HeveWrh6oeA4qIzM6NG0D9+rrpr78Gxo+Xrx4yDgYUEZmVmzcBPz/d9IoVwNtvy1cPGQ8DiojMysaNuvvLlwMTJ8pXCxkXm5kTkVl5/30gPR2oWxd45x25qyFjYkARkeKlpADnzgHduknTCxbIWw+ZBg/xEZGipaQAvr5A9+7Atm1yV0OmxIAiIsW6dUsKJ40bN+SrhUyPAUVEinTrFuDjo5tevBh491356iHTY0ARkeLcvq0fTp9/DsycKV89JA8GFBEpyu3b+iPfLloktdwj68OAIiJFycrS3V+4EJg1S75aSF5sZk5EitKgAXD1KvDbb8C4cXJXQ3LiHhQRye7uXWDkSN04Tg0aMJyIe1BEJLO7d6XxnAAgJga4fl3WckhBuAdFRLJJTdWFEwCMGiVbKaRADCgikkVaGuDtrZv++GMgPFy+ekh5GFBEZHJpaYCXl256zhzgk0/kq4eUiQFFRCb14IF+OM2ezc5fqXgMKCIyqerVgZo1pfuzZknXOhEVh634iMikbGykQ3xHjwIdOshdDSkZ96CIyOju35eCKT5emlapGE5UNgYUERnV/fuAh4d0EW6DBkB2ttwVkblgQBGR0aSnS+GkMW0a4OgoWzlkZhhQRGQU6em6xhAAMHkysHSpXNWQOWJAEVGVKxxO77wDLFsmWzlkphhQRFSlhNAPpwkTgOXL5auHzBcDioiqlEoFbNgg3X/7bWDlSnnrIfPF66CIqMoNGQL07g24u8tdCZkz7kERUaVlZkp7TrNn6+YxnKiyGFBEVCmZmbowWrQIOH9e3nrIchg1oA4ePIhXX30Vvr6+UKlU2LFjhzE3R0QmVjCcAGDECKB5c/nqIcti1IDKyspCy5Yt8dVXXxlzM0Qkg8LhNGwYsHatfPWQ5TFqI4mePXuiZ8+extwEEcngwQP9cHrzTWDdOvnqIcukqFZ8arUaarVaO52ZmSljNURVIC9P6iH1/HkgMRHo1w+oW1d67McfgS++AGxtAXt7wMEB8PSUxkCvXRvo1Qto2lTe+ktQMJwGDQI2bpSvFrJcigqoiIgIhHPMZzJnaWlATAxw+DDw++/A2bP6vaMGBuoCKi0NOHiw5HX5+OgC6vRp4NtvpS7Au3XTH/FPBqdOAc88AwwcCGzeLGspZMEUFVCzZ8/GjBkztNOZmZnw8/OTsSKichBCamMNANu2ARMn6j/u6AgEBQENG+p3sdClC7B1K5CfD+TkAI8fS6F1+zaQnAy0bKlb9tdfpb6Cli2TttW2LfDKK9KxtYYNjf4SAeDJE8DOTrrfqpXUS3mNGibZNFkplRBCmGRDKhWio6PRt2/fcj8nMzMT7u7uyMjIgJubm/GKIzLUo0fSrkNUFDB6tHQDgBs3gJ49gRdeADp2lIIkMFA6jFcZhw9L4RcTA5w5o/9Yu3ZSHUFBldtGKR48ANzcgOefBw4dMtpmyAJV5ntcUXtQRIqXnCx1LPf118C9e9I8GxtdQNWrJx3Wq2rPPy/dAODmTWDPHmnv69dfgb//BurX1y2bl1f5QCzg4UMpnAApJw8dAjp1qrLVE5XIqAH18OFDXLlyRTsdHx+P06dPw8PDA/UL/kERKd3du0BEBLBiBaBpyNOgAfDWW1L7alOqWxcYO1a63b4NXLoEODtLjwkh7bmFhEjdOmjOd1XQw4eAq6tu+rXXGE5kOkY9xBcTE4PQ0NAi80eOHImoqKgyn89DfKQYL74I7N8v3e/YEZg5U/q2rsI9lSoREwNo/uacnIBZs4APPpDuG6hwOL36KvD991VTJlmPynyPm+wcVEUwoEhWBRs/7N0r7ZEsXAh0766brzRCSCH18cdSK0IA8PeXDkv27l3u1RQOp969pVbxRIaqzPc4++IjKuzhQ2mciH/9SzevWzcgNhbo0UO54QRItYWGSieKtmwB/PyA69elFn9jxgBZWeVazZQpuvs9ezKcSB4MKKKCTpyQLvBZvRqYMwe4c0ear1IpO5gKU6mAN94ALl6UDkeqVNK1VPb25Xr6mjXSz549gV27jFcmUWnYio9I49tvpbHJ1WppzyMqSurVwZw5OwOLF0s9WLi76y5k0hzZLxC6WVnStU41akin1vLypAaKRHLhx48oLw+YOlVqFadWS40fzpyRGkZYio4dgaee0k1/9pk0FntuLgApnFxcpOuI09KkRRhOJDd+BMm65ecDgwfremj45BMgOtqyu0i4cgX4xz+kw5h9+iDr9kO4uOgeXrxYvtKICmJAkXWzsQHatJHOzWzZIrV+s/Rdh0aNgO3bAScnPNq1Hy51dOn04otSQ0UiJWAzcyIhpL2Kxo3lrsSkHh2IRfUuz2qnQzvlYt+BambVFoSUj83MiQyRkyO10HvwQJpWqawvnB5BL5w6Iwb7VN2gylGX8iwi02JAkXURQmocEBEBDBiga81mZWJjdfc7PfMA+11eg+rgAen8G5FCsJk5WZeICCAyUjrP9O675nVtUxXq3BlYulTquujXX12h+i0auHBBajBCpBA8B0XW4+efpStPhZA6fS08bpOFe/wYOHIE6NpV7krImvAcFFFZbtyQeh0XQurGyArDydlZ6rFpxYoyFk5NlYbKvXrVJLURlYQBRZYvPx8YPlz64n3mGenYlhXRhJNGmT2ST5kC/Oc/wMiR0kXMRDJhQJHlu3YN+Osv6Vt661ZpCHYrUTic2rYFdu8u40mLFkldmf/+O7BkiVHrIyoNA4osX6NGwLlz0sWpjRrJXY3JFA6nkBDg2LFytAvx99ftZX78sXSNGJEMGFBkHWrVAl5+We4qTCY7Wz+cWrcGjh83oNHi6NHSuFc5OVJrRyIZMKDIch07BuzYYbXXOmk884w0iohBLepVKql/Qjs7aTAojrlBMmBAkWUSQuqhvF8/q2sUAUin2e7ckXaETp6s4OVeTZsC06ZJ97/4okrrIyoPBhRZpp9/lrpLcHYGhg6VuxqTyM4GJk2SGi0CgLe3NMRVpa5F/vBDqYf3HTuqokQig7AnCbI8QkhfqoB0vZO5DzpYDtnZgJOTdH/Fiio8qunpKTWUIJIB96DI8hw9Kt0cHID33pO7GqMrGE6A/riEVS4ry4grJ9LHgCLLs3y59HPIEKBOHXlrMTK1Wj+cWrSQBgOucrGxwHPPAW++aYSVExWPh/jIsty5A2zbJt2fNEneWoxMrda/5rhZM+DsWSP1f+vmBvzxh7TymzeBunWNsBEifdyDIsuSlAQEBUlXpbZpI3c1RiOEfjg1bSpdi2y0ztmbNgWef17a8MaNRtoIkT4GFFmWNm2kY1y//ip3JUalUkndFgHSWIvnz5tg5JBhw6Sf69YZeUNEEgYUWSZ3d7krMLo//gA2bAAuXpSGtzK6N94AbG2l44jXrplgg2TtGFBkOVJSpA7oLFRODhAYKOWDxpAhJgonAKhZUzrMB7BnCTIJBhRZjunTAQ8PYO1auSupcjk5Uqv5hAQgOBjIzJSpkN69pZ8MKDIBtuIjyyAEsG+fdFGQhfVYrgknDX9/wMVFpmJ695aGLuGwvGQCDCiyDNeuAWlpgL098OyzcldTZQqHU/360ks12WG9wpo3t8g9VFImHuIjyxAbK/1s2VIKKQtQXDjFx8sYTkQmxj0osgxxcdLPkBB566hCzZrp7terp6Bwys4GLl2ShoNv3VruasiCKeHjTlR5f/8t/Sz4rW7m/v1v6aevL3D9ukLCCZDatrdqBcyeLXclZOGU8pEnqpzLl6WfjRvLW0clFeyF/MUXpfNNSUkKCidA6qkDkPaiiIxISR97ooobOBAYO9bIXXkb15MnQLVqwPDhunmBgQoLJ0A6GQYAyclWP1oxGZdKCOV+wjIzM+Hu7o6MjAy4ubnJXQ6R0Tx5ot+24+efgR495KunVAV7qU1NlcaMIipBZb7HTfK/2YoVKxAYGAhHR0e0adMGhw4dMsVmiczCkyf6rfW8vBR+mZGDg9SrBADcvi1vLWTRjB5QW7ZswfTp0/HRRx8hLi4OnTp1Qs+ePZGYmGjsTZO1yMmRhoC4e1fuSgz25Ik0npPmOIaHB3DrltTlnaJVry79tOCupUh+Rg+of/7znxg7dizGjRuHZs2aYenSpfDz88PKlSuLLKtWq5GZmal3IyrT+fNSO+xWreSuxCBPnkjf83l50nTNmtJwVooPJ0B3iC87W946yKIZNaBycnJw8uRJ9Ch0ML1Hjx44cuRIkeUjIiLg7u6uvfn5+RmzPLIUT55IP6uZ12V9772nK71GDWkH0CzCScPGBsjNlbsKsmBGDajU1FTk5eWhdu3aevNr166NW7duFVl+9uzZyMjI0N6SkpKMWR5ZCs1ASPn58tZhoC++kH66u0ttDcwqnKpVk95v5baxIgtgkn85VYVGUhNCFJkHAA4ODnAoeLaYqDw0PadmZclbRznk5urOO9nbSw3ibGzMLJwA3XutORdFZARGDSgvLy/Y2toW2Vu6c+dOkb0qogrTBNTDh/LWUYbcXOk808OH0q16dTPuNnDgQGn8LR8fuSshC2bUQ3z29vZo06YN9u7dqzd/79696NChgzE3TdZE0+T5yRMZB0oqXW6u1EJPk6FTpshbT6UtWQJs3Cg1TiEyEqMf4psxYwaGDx+OkJAQtG/fHqtXr0ZiYiImTJhg7E2TtaheXWplkJ4u9QvUooXcFenJy5OubXrwQJq2twdWr5a3JiJzYPSAGjRoENLS0vDJJ58gJSUFTz31FHbt2gV/f39jb5qsyahR0gl7hZ0TycsDatUCMjKk6WrVpNM3ZtbgUF9mJvDoEVC7tq6BCpERsKsjIiPJy5O+w9PSpGkbG+myITs7eeuqtG+/lfo97NUL+OknuashhVN8V0dE1uj4cV04qVQWEk4AcOaM9NPMe44n5WNAkeVISwNOnpS7Cq327YEPPpAO56nVFhJOgG5wyGeekbcOsngMKLIM8fFSS4T27WXtHy4/H7h4UTf92WdSV4EWE065uQwoMhkGFFmGgABp6NknT4A//pClhPx8wN9fGtR3+3bdfItqR3DqlNQcsUYNxbWWJMvDgCLLoFIBL7wg3d+/3+Sbz8+XBhe8cUOanjzZ5CWYxm+/ST+7dDHD7i/I3DCgyHJoOiX+4QeTbjY/H2jYECg4gsz16yYtwXR275Z+vviivHWQVWBAkeV45RWpLXdcnH5aGFF+PtCoEZCQoJunVptxF0ZlmTsXePttoE8fuSshK8CAIsvh7Q1outDats3om8vPB5o0kdpnaFh0OAHSUL9ffw3Ury93JWQFGFBkWYYOlX6uX2/0TeXkAFev6qYtPpyITIwBRZZl8GDgn/8Efv7Z6JtydASuXQOCgqSLcC06nM6eBd55Bzh9Wu5KyIowoMiy1KgBvPuu1AGeEQgBfPONbpy+wEDgwgXA4ocx+/prYOVKYMECuSshK8KAIsumGVO9CggBPP00MG4cULdula1W+e7ckfrfA6S9KCITYUCRZTp0SGow8cEHVbI6IYBWrYBz56TplBQrGu38X/+SjmG2bStd/0RkIgwoskyPHgFHj0qHpSrZ5FwIoHVrXR+pgNSbkkX1EFGSO3eAZcuk+3PmWMmLJqVgQJFl6tED6NxZaloXFlbh1QgBtGmj3zbg8WOpgYRVCA+XujZq0wZ49VW5qyErw4Aiy6RSAYsWSfejooATJyq0muee0/WNClhZOF26BKxaJd1fvFi6CJrIhPiJI8v13HPSdVFCSL0f5OUZvApN33qAlYUTIDVRDAsD3niD555IFgwosmxLlgDu7lIv3P/6l8FPv3FDamdhdeEESBd2/eMfwObNcldCVooBRZatdm3g88+l+7/+WmbTOyGAUaN07SpUKmlMJ6sKp5s39cfUYsMIkgkDiizf+PHA1q3Ajz+W+mUrhDRix9q10rhOGRkmrFEp1GrgtdekJuV//y13NWTlqsldAJHRqVTAwIG6ac1eVIGwEkI6zXL4sG4xi+66qCQzZkiHQz09gerV5a6GrBz3oMi6ZGcDY8YAX36pnSWE1En3wYO6xbKyACcnGeqT04oV0k2lknYjraq7DFIi7kGRdfnvf6Vm5yoVUL8+xIDX0b27/iC8WVmAs7NsFcpjzx5g6lTpfkQE0Lu3vPUQgXtQZG3efFNqci4EMHQo3nzxNvbt0z1sleF06BDQv7/UDH/EiCrrHoqoshhQZF1UKmD5cmDAACAnB/2O6r6MrTKc8vOBadOkVnu9egH//jdb7ZFiMKDI+tjaAhs2AD16YJD6Oxy2fxEPo/daXzgBUu8QP/4otXT8z3+stGUIKRUDiqxOnz7AR584ADt3Aq++io45+1F9/BDg4UO5SzOdCxd09319gdWrrbBVCCkdA4qsymuvAd9/DyxcCETvdgS2bweGD5f2qFxc5C7P+PLzgblzgRYtpD0mIgVjQJHV6NsX+OEH3XT37gDs7IDvvpN6P9c4dAi4dcvU5Rlfaqq0+/jpp1IjEQ7fTgrHgCKr0L+/dERP48GDEnaYrl+XdrNatgR27zZZfUa3bx8QHCydb7K3l5raz58vd1VEpWJAkcV7/XUgOlo3XWI4AUBODuDnJw3U16uX1Ow6Lc0kdRrF/fvAW28B3bpJwwA3awYcPw6MHCl3ZURlYkCRRfvyS+k0k0ZmZhmnmho3Bv74A3j3Xam59bp1QFAQ8PXXQG6u0eutcnFxUtNxAJgwQRoXq2VLeWsiKieVEGV07yyjzMxMuLu7IyMjA25ubnKXQ2bo4UPA1VW6n5mpu18ux44B48YB585J061aSXsfdnZVXWbVEQK4fBlo0kQ3b948aQ+qUyf56iKrVZnvce5BkUXKz5d+urhIIWVwOAG64XSXLQM8PKQh5DXhJIR0OFApcnOBLVuAkBDpXFNSku6x8HCGE5klBhRZnOHDpWtxNflRvXoFwknDzg6YPBm4ckUaXVbj8GGgfn3go4+A+PjKllxxCQnSHlKDBsDgwVJP5La2wNGj8tVEVEWMGlALFixAhw4d4OzsjBo1ahhzU0QApDYN69dL96u0v9OaNYGCn+ENG4Dbt6ULqho0kMZPWrwYuHSpzEERq8SVK0DHjtK2P/lE2mPy9JRCNDFRGqadyMwZ9RzUvHnzUKNGDdy4cQPffPMN0tPTDXo+z0GRIUaNkkaJ0MjIAIz2sXnyRLrid9UqqQm35pgiILUCPH1aOiwISIFV0f7t1Grg/HnpUKOTk9TZLSB1HOjlJQ0f0q0bMHasdKGXVQ39S+agMt/jJmkkERUVhenTpzOgyGjGjAEiI3XTRg2nwm7flobx2L5dusi3Xj3g6lXd4716SXtWDRsCAQFSsHh4SMcda9bU39tZsgS4eFHaC7p+XVqPpvVgq1ZSUGn8+KM0r149E7xIooqpzPe4osaDUqvVUKvV2unMzEwZqyFzMXasfjilp5swnACgdm1g4kTp9uiRFCwaQkitAe/fB65dK/rcJk30AyoyUtdqUKNmTalpePv2+ntjr7xS9a+FSEEUFVAREREIDw+XuwwyI+fPA99+q5tOTwfc3WUrRxqvo1kz/Xlnzkh7QteuSXtG9+9LF/8+eFB01NrRo6X5/v7SrXFjaQ+JQ2CQFTL4EF9YWFiZIRIbG4uQkBDtdHkP8RW3B+Xn58dDfFSqN98ENm9WQDgRUREmPcQ3efJkDB48uNRlAgICDF0tAMDBwQEODg4Vei5Zl/R0XaO6TZukDh+qKep4ABFVlsF/0l5eXvDy8jJGLUTl8s47wMqVwP79QJcu0jyGE5HlMeqfdWJiIu7du4fExETk5eXh9P+692/UqBFcrGHsHapykydL4QQAoaGmueSIiORh1ICaO3cu1ha4MOWZZ54BAOzfvx9dNP/6EpXTlCnA8uW66fv35auFiIyPncWSWZg2Dfi//9NN37+v37EDESkTO4sli/buu/rhdO8ew4nIGjCgSNFyc4GlS3XT9+5J160SkeVjQJGiVaum692H4URkXRhQpEgnT+rut2oltdZjOBFZFwYUKc6sWdK4e88/L3clRCQnBhQpyocfAp9/Lt3//Xf9USyIyLowoEgx5swBPvtMN52aCtjwE0pktfjnT4rw0UdARIRuOjVVGiCWiKwXA4pk949/SCOnazCciAhgQJECcM+JiIrDgCLZ5eQAL7zAcCIifQwoksWqVdKgsgBgawscOMBwIiJ9DCgyufBwYMIEwMuLPZITUckYUGRSn34KhIXpppXblz4RyY0BRSYzfz4wd65u+s4dwMNDvnqISNkYUGQSCxcCH3+sm75zB/D2lq8eIlI+BhQZ3RdfSBfiaty+zXAiorIxoMjonJx092/fBmrVkq8WIjIf1eQugCzf5MnSCLg9ejCciKj8GFBkFIsXS3tOkyZJ08OGyVsPEZkfBhRVuSVLgPffl+57ewNvvCFvPURknngOiqrUP/8JvPeebvqFF+SrhYjMGwOKqszSpcDMmbrplBSgTh3ZyiEiM8eAoirxr38B776rm2Y4EVFlMaCo0rZuBaZP100nJzOciKjyGFBUaaGhuvs3bwI+PvLVQkSWg634qNK8vaWui548AXx95a6GiCwF96CoQlauBBwcgPx8adrbm+FERFWLAUUGW7kSeOcdaSTcDh3kroaILBUDigyyapUUThrbt8tXCxFZNgYUldvq1dJIuBpJSUDduvLVQ0SWjQFF5bJmDfD227rppCSgXj356iEiy8eAojIlJADjx+umExMZTkRkfAwoKlNAANCunXT/+nXAz0/WcojISvA6KCpRXh5gayvdP3YMePQIcHaWtyYish5G24NKSEjA2LFjERgYCCcnJzRs2BDz5s1DTk6OsTZJVSgqCqhWDThzRjeP4UREpmS0PaiLFy8iPz8fq1atQqNGjfDXX39h/PjxyMrKwuLFi421WaoCa9cCo0dL91u2BISQtx4isk4qIUz39fPFF19g5cqVuHbtWrmWz8zMhLu7OzIyMuDm5mbk6ggAvvsOGDlSNx0fL52DIiKqiMp8j5v0HFRGRgY8PDxKfFytVkOtVmunMzMzTVEW/c/69QwnIlIOk7Xiu3r1KpYtW4YJBa/0LCQiIgLu7u7amx+bi5nMhg3A8OG6aYYTEcnN4IAKCwuDSqUq9XbixAm95yQnJ+Pll1/GwIEDMW7cuBLXPXv2bGRkZGhvSUlJhr8iMpgQwLBhuulr1xhORCQ/g89BpaamIjU1tdRlAgIC4OjoCEAKp9DQULRr1w5RUVGwsSl/JvIclOn89hvQtasUToGBcldDRJbCpOegvLy84OXlVa5lb968idDQULRp0waRkZEGhRMZ39270jAZAPDii9LQGSqVvDUREWkYLTGSk5PRpUsX+Pn5YfHixbh79y5u3bqFW7duGWuTZIAtW4BatfQP7TGciEhJjNaK75dffsGVK1dw5coV1CvUcZsJW7ZTMbZsAQYPlu5v2KC7KJeISEmMtgc1atQoCCGKvZF8CoYTAFy+zHAiImXiSSErUlw4NWokXz1ERKXh/85WYts2/XC6cgVo2FC+eoiIysI9KCvxxhu6+wwnIjIHDCgroVYDrq7A338znIjIPPAQn5WwtwfYtSERmRPuQRERkSIxoIiISJEYUEREpEgMKCIiUiQGFBERKRIDioiIFIkBRUREisSAIiIiRWJAERGRIjGgiIhIkRhQRESkSAwoIiJSJAYUEREpEgOKiIgUiQFFRESKxIAiIiJFYkAREZEiMaCIiEiRGFBERKRIDCgiIlIkBhQRESkSA4qIiBSJAUVERIrEgCIiIkViQBERkSIxoIiISJEYUEREpEgMKCIiUiQGFBERKRIDioiIFMmoAfXaa6+hfv36cHR0hI+PD4YPH47k5GRjbpKIiCyEUQMqNDQUW7duxaVLl7B9+3ZcvXoVr7/+ujE3SUREFkIlhBCm2tj333+Pvn37Qq1Ww87OrszlMzMz4e7ujoyMDLi5uZmgQiIiqkqV+R6vZqSairh37x42bNiADh06lBhOarUaarVaO52ZmWmq8oiISGGM3khi1qxZqF69Ojw9PZGYmIidO3eWuGxERATc3d21Nz8/P2OXR0RECmVwQIWFhUGlUpV6O3HihHb5999/H3Fxcfjll19ga2uLESNGoKSjirNnz0ZGRob2lpSUVPFXRkREZs3gc1CpqalITU0tdZmAgAA4OjoWmX/jxg34+fnhyJEjaN++fZnb4jkoIiLzZtJzUF5eXvDy8jL0aQCg3XMqeJ6JiIioOEZrJHH8+HEcP34czz//PGrWrIlr165h7ty5aNiwYbn2noiIyLoZrZGEk5MT/vvf/6Jr165o2rQpxowZg6eeegoHDhyAg4ODsTZLREQWwmh7UE8//TR+++03Y62eiIgsHPviIyIiRWJAERGRIjGgiIhIkRhQRESkSAwoIiJSJAYUEREpEgOKiIgUiQFFRESKxIAiIiJFYkAREZEiMaCIiEiRGFBERKRIDCgiIlIkBhQRESkSA4qIiBSJAUVERIrEgCIiIkViQBERkSIxoIiISJEYUEREpEgMKCIiUiQGFBERKRIDioiIFIkBRUREisSAIiIiRWJAERGRIjGgiIhIkRhQRESkSAwoIiJSJAYUEREpEgOKiIgUiQFFRESKxIAiIiJFYkAREZEiMaCIiEiRTBJQarUarVq1gkqlwunTp02xSSIiMnMmCagPPvgAvr6+ptgUERFZCKMH1O7du/HLL79g8eLFxt4UERFZkGrGXPnt27cxfvx47NixA87OzmUur1aroVartdMZGRkAgMzMTKPVSERExqP5/hZCGPxcowWUEAKjRo3ChAkTEBISgoSEhDKfExERgfDw8CLz/fz8jFAhERGZSlpaGtzd3Q16jkoYGGthYWHFhkhBsbGxOHLkCLZs2YKDBw/C1tYWCQkJCAwMRFxcHFq1alXs8wrvQaWnp8Pf3x+JiYkGvzA5ZWZmws/PD0lJSXBzc5O7HIOYa+2s27RYt+mZa+0ZGRmoX78+7t+/jxo1ahj0XIP3oCZPnozBgweXukxAQADmz5+PY8eOwcHBQe+xkJAQDB06FGvXri3yPAcHhyLLA4C7u7tZ/UI03NzczLJuwHxrZ92mxbpNz1xrt7ExvMmDwQHl5eUFLy+vMpf7v//7P8yfP187nZycjJdeeglbtmxBu3btDN0sERFZGaOdg6pfv77etIuLCwCgYcOGqFevnrE2S0REFkLRPUk4ODhg3rx5xR72UzJzrRsw39pZt2mxbtMz19orU7fBjSSIiIhMQdF7UEREZL0YUEREpEgMKCIiUiQGFBERKRIDioiIFMnsAsocx5Z67bXXUL9+fTg6OsLHxwfDhw9HcnKy3GWVKiEhAWPHjkVgYCCcnJzQsGFDzJs3Dzk5OXKXVqYFCxagQ4cOcHZ2NrhrFVNasWIFAgMD4ejoiDZt2uDQoUNyl1SmgwcP4tVXX4Wvry9UKhV27Nghd0nlEhERgWeffRaurq6oVasW+vbti0uXLsldVplWrlyJ4OBgbe8R7du3x+7du+Uuy2ARERFQqVSYPn26Qc8zu4Ayx7GlQkNDsXXrVly6dAnbt2/H1atX8frrr8tdVqkuXryI/Px8rFq1CufOncOXX36Jr7/+GnPmzJG7tDLl5ORg4MCBmDhxotyllGjLli2YPn06PvroI8TFxaFTp07o2bMnEhMT5S6tVFlZWWjZsiW++uoruUsxyIEDBzBp0iQcO3YMe/fuRW5uLnr06IGsrCy5SytVvXr1sGjRIpw4cQInTpzAiy++iD59+uDcuXNyl1ZusbGxWL16NYKDgw1/sjAju3btEkFBQeLcuXMCgIiLi5O7pArZuXOnUKlUIicnR+5SDPL555+LwMBAucsot8jISOHu7i53GcVq27atmDBhgt68oKAg8eGHH8pUkeEAiOjoaLnLqJA7d+4IAOLAgQNyl2KwmjVrijVr1shdRrk8ePBANG7cWOzdu1d07txZTJs2zaDnm80elGZsqXXr1pVrbCmlunfvHjZs2IAOHTrAzs5O7nIMkpGRAQ8PD7nLMHs5OTk4efIkevTooTe/R48eOHLkiExVWRfNWHPm9HnOy8vD5s2bkZWVhfbt28tdTrlMmjQJvXv3Rrdu3Sr0fLMIKFFobClzNGvWLFSvXh2enp5ITEzEzp075S7JIFevXsWyZcswYcIEuUsxe6mpqcjLy0Pt2rX15teuXRu3bt2SqSrrIYTAjBkz8Pzzz+Opp56Su5wynT17Fi4uLnBwcMCECRMQHR2N5s2by11WmTZv3oxTp04hIiKiwuuQNaDCwsKgUqlKvZ04cQLLli1DZmYmZs+eLWe5espbu8b777+PuLg4/PLLL7C1tcWIESMqNMKkqesGpJ7oX375ZQwcOBDjxo0zec0VrVvpVCqV3rQQosg8qnqTJ0/GmTNnsGnTJrlLKZemTZvi9OnTOHbsGCZOnIiRI0fi/PnzcpdVqqSkJEybNg3r16+Ho6Njhdcja198qampSE1NLXWZgIAADB48GD/88IPeH29eXh5sbW1LHFvK2Mpbe3G/nBs3bsDPzw9Hjhwx+a66oXUnJycjNDQU7dq1Q1RUVIXGdKkKFXm/o6KiMH36dKSnpxu5OsPk5OTA2dkZ27ZtQ79+/bTzp02bhtOnT+PAgQMyVld+KpUK0dHR6Nu3r9yllNuUKVOwY8cOHDx4EIGBgXKXUyHdunVDw4YNsWrVKrlLKdGOHTvQr18/2Nraaufl5eVBpVLBxsYGarVa77GSGG24jfIw57Glylt7cTT/ExQcPdhUDKn75s2bCA0NRZs2bRAZGSlbOAGVe7+Vxt7eHm3atMHevXv1Amrv3r3o06ePjJVZLiEEpkyZgujoaMTExJhtOAHSa5Hju8MQXbt2xdmzZ/XmjR49GkFBQZg1a1a5wgmQOaDKy5zHljp+/DiOHz+O559/HjVr1sS1a9cwd+5cNGzYUNEnOpOTk9GlSxfUr18fixcvxt27d7WP1alTR8bKypaYmIh79+4hMTEReXl52uvlGjVqpP3syG3GjBkYPnw4QkJC0L59e6xevRqJiYmKP8f38OFDXLlyRTsdHx+P06dPw8PDo8jfqZJMmjQJGzduxM6dO+Hq6qo91+fu7g4nJyeZqyvZnDlz0LNnT/j5+eHBgwfYvHkzYmJisGfPHrlLK5Wrq2uR83uac/AGnfer0jaFJhIfH282zczPnDkjQkNDhYeHh3BwcBABAQFiwoQJ4saNG3KXVqrIyEgBoNib0o0cObLYuvfv3y93aXqWL18u/P39hb29vWjdurVZNHnev39/se/tyJEj5S6tVCV9liMjI+UurVRjxozRfka8vb1F165dxS+//CJ3WRVSkWbmHA+KiIgUySyamRMRkfVhQBERkSIxoIiISJEYUEREpEgMKCIiUiQGFBERKRIDioiIFIkBRUREisSAIiIiRWJAERGRIjGgiIhIkf4ffMGh5tknRYgAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'inputs and outputs of ill-conditioned B')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Θ = range(0,2π, length=200)\n", + "V = [[cos(θ),sin(θ)] for θ in Θ]\n", + "U = [B*v for v in V]\n", + "Vx, Vy = first.(V), last.(V)\n", + "Ux, Uy = first.(U), last.(U)\n", + "plot(Vx,Vy, \"r--\")\n", + "plot(Ux,Uy, \"b--\")\n", + "\n", + "axis(\"square\")\n", + "xlim(-4,4)\n", + "ylim(-4,4)\n", + "legend([\"input circle\", \"output ellipse\"])\n", + "title(\"inputs and outputs of ill-conditioned B\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, $B$ is *almost* the rank-1 matrix $\\tilde{B} = \\sigma_1 u_1 v_1^T$:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 0.997999 2.001\n", + " 1.00199 2.00901" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U,σ,V = svd(B)\n", + "B̃ = σ[1] * U[:,1] * V[:,1]' # \"best\" rank-1 approximation to B" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " -0.00200098 0.000997992\n", + " 0.00199301 -0.000994014" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B̃ - B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What happens if we blindly try to solve $Bx = b$ without knowing this fact?\n", + "\n", + "First, because $B$ is nearly singular, $x = B^{-1} b$ tends to be pretty large for most $b$: we *almost* divided by zero:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -199.00000000000426\n", + " 100.00000000000213" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = B \\ [1, 2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Second, the **result can be hugely sensitive** to **small changes in b**:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.0\n", + " 0.0" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B \\ [1, 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " -1.0000000000000444\n", + " 1.0000000000000222" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B \\ [1, 1.01]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a general problem with \"ill-conditioned\" (nearly singular) systems of equations: the results can be **very sensitive** to **tiny errors** in the inputs (or to **tiny roundoff errors** during the computation)." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "80debc31686545698edc62df8560a7f1", + "lastKernelId": "543c08df-86e5-47aa-a527-e8f39e04dd04" + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/SVD.ipynb b/notes/SVD.ipynb similarity index 100% rename from lectures/SVD.ipynb rename to notes/SVD.ipynb diff --git a/lectures/Sample Variance division by n-1.ipynb b/notes/Sample Variance division by n-1.ipynb similarity index 100% rename from lectures/Sample Variance division by n-1.ipynb rename to notes/Sample Variance division by n-1.ipynb diff --git a/notes/Sine-series.ipynb b/notes/Sine-series.ipynb new file mode 100644 index 00000000..ce1cef38 --- /dev/null +++ b/notes/Sine-series.ipynb @@ -0,0 +1,1346 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fourier sine series" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Consider the sine functions $\\sin(n\\pi x)$ for $n=1,2,\\ldots$ on the interval $x \\in [0,1]$, with the \"usual\" function inner product $f(x) \\cdot g(x) = \\int_0^1 f(x) g(x) \\, dx$. It is a remarkable fact that the sine functions are **orthogonal** under this dot product:\n", + "\n", + "$$\n", + "\\sin(m\\pi x) \\cdot \\sin(n\\pi x) = \\int_0^1 \\sin(m\\pi x) \\sin(n\\pi x) \\, dx = \\begin{cases} 0 & m \\ne n \\\\ \\frac{1}{2} & m = n \\end{cases} .\n", + "$$\n", + "\n", + "This can be verified by simply doing the integral, a first-year calculus exercise. (The identity $\\sin A \\sin B = \\frac{1}{2}[\\cos (A-B) - \\cos(A+B)]$ is useful here.)\n", + "\n", + "Let's plot a few of these functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhUV9rAf6OZuCsxILgTgmvxylZoobTFKlRot74t293q161uS9stNaBABalTpFiLBwjuLnFC3Caj9/vjZiaE2CSZyUyS+3ueebjMnHvOO5mZe9/zqkwQBAEJCQkJCQkJiRaE3NkCSEhISEhISEjYG0nBkZCQkJCQkGhxSAqOhISEhISERItDUnAkJCQkJCQkWhySgiMhISEhISHR4pAUHAkJCQkJCYkWh6TgSEhISEhISLQ4JAVHQkJCQkJCosUhKTgSEhISEhISLQ5JwZGQcAK7du3i1VdfJT8/v8prsbGx3HzzzU0vlJMZOXIkI0eOtMtcMpmMV1991S5z1ZfNmzfTr18/PD09kclk/Prrr06RA+DEiRO8+uqrXLp0qcprM2fOJDY2tsllkpBoKiQFR0LCCezatYvXXnutWgVHovEkJiby4IMPNvm6giAwefJkVCoVq1atIjExkREjRjS5HBZOnDjBa6+9Vq2C8+9//5tffvml6YWSkGgilM4WQEKiNaHVatFoNM4Wo8UzcOBAp6ybnp5Obm4ut99+O6NHj3aKDLbSvn17Z4sgIeFQJAuOhEQD2LFjB6NHj8bb2xsPDw8GDx7MmjVrKo1ZvHgxMpmMDRs2cP/99xMcHIyHhwdz587l+eefB6Bt27bIZDJkMhlbtmypdP4ff/xB3759cXd3p3PnzixatKiKHMeOHePWW2/F398fjUZD7969WbJkSZVxx48fZ9y4cXh4eBAcHMycOXNYs2ZNtesuWrSIXr16odFoCAgI4Pbbb+fkyZOVxsycORMvLy/OnTvHjTfeiJeXF1FRUTz77LPodLpKY1977TUGDBhAQEAAPj4+9O3bl4ULF9LQPr9//vknI0eOJDAwEHd3d6Kjo5k0aRKlpaXWMde7qCyfxV9//cWjjz5KUFAQgYGB3HHHHaSnp1dZY8WKFQwaNAhPT0+8vLwYP348Bw8erFWuV199lcjISABeeOEFZDKZ1QVUkzvo1VdfRSaTVXpOJpPx+OOP880339ClSxc8PDzo1asXq1evrnL+qVOnmDp1KqGhobi5uREdHc306dPR6XQsXryYu+66C4BRo0ZZv2eLFy+uUaaysjLmzp1L27ZtUavVtGnThjlz5lSxNFrcqHV9R0tLS3nuuedo27at9fvUr18/li1bVuvfUkLCLggSEhL1YsuWLYJKpRLi4+OFFStWCL/++qswbtw4QSaTCcuXL7eO+/rrrwVAaNOmjTB79mxh3bp1wo8//ihcunRJeOKJJwRA+Pnnn4XExEQhMTFRKCgoEARBEGJiYoTIyEiha9euwtKlS4X169cLd911lwAIW7dutc5/6tQpwdvbW2jfvr2wdOlSYc2aNcLUqVMFQHjnnXes49LT04XAwEAhOjpaWLx4sbB27Vph2rRpQmxsrAAIf/31l3Xsf/7zHwEQpk6dKqxZs0ZYunSp0K5dO8HX11c4c+aMddyMGTMEtVotdOnSRXj//feFTZs2CS+//LIgk8mE1157rdLfa+bMmcLChQuFjRs3Chs3bhTeeOMNwd3dvcq4ESNGCCNGjKj1b3/x4kVBo9EIY8eOFX799Vdhy5YtwnfffSdMmzZNyMvLs44DhFdeeaXKZ9GuXTvhiSeeENavXy8sWLBA8Pf3F0aNGlVpjTfffFOQyWTC/fffL6xevVr4+eefhUGDBgmenp7C8ePHa5QtJSVF+PnnnwVAeOKJJ4TExEThwIED1r9XTExMlXNeeeUV4frLMCDExsYK/fv3F1auXCmsXbtWGDlypKBUKoXz589bxx06dEjw8vISYmNjhc8//1zYvHmz8O233wqTJ08WCgsLhaysLOvn+emnn1q/Z1lZWdXKZDabhfHjxwtKpVL497//LWzYsEF4//33BU9PT6FPnz5CWVmZdayt39GHH35Y8PDwED744APhr7/+ElavXi28/fbbwieffFLj31FCwl5ICo6ERD0ZOHCgEBISIhQVFVmfMxqNQvfu3YXIyEjBbDYLglBxU50+fXqVOd577z0BEC5evFjltZiYGEGj0QiXL1+2PqfVaoWAgADh4Ycftj539913C25ubkJycnKl8ydOnCh4eHgI+fn5giAIwvPPPy/IZLIqN+fx48dXUnDy8vIEd3d34cYbb6w0Ljk5WXBzcxPuuece63MzZswQAGHlypWVxt54441Cp06dqrwnCyaTSTAYDMLrr78uBAYGWv9WgmCbgvPjjz8KgHDo0KFax9Wk4Dz22GOVxr377rsCIGRkZFjfq1KpFJ544olK44qKioSwsDBh8uTJta578eJFARDee++9Ss/XV8EJDQ0VCgsLrc9lZmYKcrlceOutt6zP3XDDDYKfn59VYamOH374oYoSW5NMf/zxhwAI7777bqVxK1asEADhyy+/tD5n63e0e/fuwm233VajfBISjkRyUUlI1IOSkhL27NnDnXfeiZeXl/V5hULBtGnTSE1N5fTp05XOmTRpUr3X6d27N9HR0db/azQaOnbsyOXLl63P/fnnn4wePZqoqKhK586cOZPS0lISExMB2Lp1K927d6dr166Vxk2dOrXS/xMTE9FqtcycObPS81FRUdxwww1s3ry50vMymYxbbrml0nM9e/asJKNFzjFjxuDr64tCoUClUvHyyy+Tk5NDVlaWDX+NCnr37o1arWb27NksWbKECxcu1Ov8v/3tb1XkBawyr1+/HqPRyPTp0zEajdaHRqNhxIgRVdx5jmLUqFF4e3tb/x8aGkpISIhVztLSUrZu3crkyZMJDg62y5p//vknQJXP/6677sLT07PK52/Ld7R///6sW7eOF198kS1btqDVau0iq4SELUgKjoREPcjLy0MQBMLDw6u8FhERAUBOTk6l56sbWxeBgYFVnnNzc6t0g8jJybFJjpycHEJDQ6uMu/45y/ia5rz+fXl4eFQJmHZzc6OsrMz6/7179zJu3DgAvvrqK3bu3ElSUhIvvfQSQL1veO3bt2fTpk2EhIQwZ84c2rdvT/v27fnoo49sOv/6v6ubm1slOa5cuQJAQkICKpWq0mPFihVkZ2fXS96GUtfnn5eXh8lkssb82IOcnByUSmUVhUkmkxEWFlbl87flO/rxxx/zwgsv8OuvvzJq1CgCAgK47bbbOHv2rN3klpCoCSmLSkKiHvj7+yOXy8nIyKjymiVYNSgoqNLz1weR2ovAwECb5AgMDLTeuK8lMzOzynxAjXNe/75sYfny5ahUKlavXl1JGWpMbZhhw4YxbNgwTCYT+/bt45NPPuGpp54iNDSUu+++u8HzQsXf7McffyQmJqZRc12LRqOpEnwNNFhhCggIQKFQkJqa2ljRrAQGBmI0Grl69WolJUcQBDIzM0lISKj3nJ6enrz22mu89tprXLlyxWrNueWWWzh16pTdZJeQqA7JgiMhUQ88PT0ZMGAAP//8c6Wdqtls5ttvvyUyMpKOHTvWOc/1loOGMHr0aP78888qWUBLly7Fw8PDmio9YsQIjh07xokTJyqNW758eaX/Dxo0CHd3d7799ttKz6emplrdYfVFJpOhVCpRKBTW57RaLd98802957oehULBgAED+PTTTwE4cOBAo+ccP348SqWS8+fP069fv2ofDSE2NpasrKxKiqZer2f9+vUNms/d3Z0RI0bwww8/1Kok1ed7Zvl8r//8f/rpJ0pKShqd9h4aGsrMmTOZOnUqp0+frpT1JiHhCCQLjoREPXnrrbcYO3Yso0aN4rnnnkOtVjN//nyOHTvGsmXLbLLY9OjRA4CPPvqIGTNmoFKp6NSpU6W4i7p45ZVXWL16NaNGjeLll18mICCA7777jjVr1vDuu+/i6+sLwFNPPcWiRYuYOHEir7/+OqGhoXz//ffWHbRcLu5z/Pz8+Pe//80///lPpk+fztSpU8nJyeG1115Do9Hwyiuv1PdPxU033cQHH3zAPffcw+zZs8nJyeH999+33njry+eff86ff/7JTTfdRHR0NGVlZdbU5DFjxjRozmuJjY3l9ddf56WXXuLChQtMmDABf39/rly5wt69e60WifoyZcoUXn75Ze6++26ef/55ysrK+PjjjzGZTA2W9YMPPmDo0KEMGDCAF198kbi4OK5cucKqVav44osv8Pb2pnv37gB8+eWXeHt7o9FoaNu2bbXupbFjxzJ+/HheeOEFCgsLGTJkCEeOHOGVV16hT58+TJs2rd4yDhgwgJtvvpmePXvi7+/PyZMn+eabbxg0aBAeHh4Nfu8SEjbh7ChnCYnmyPbt24UbbrhB8PT0FNzd3YWBAwcKv//+e6UxlsydpKSkaueYO3euEBERIcjl8kqZLjExMcJNN91UZXx1WUZHjx4VbrnlFsHX11dQq9VCr169hK+//rrKuceOHRPGjBkjaDQaISAgQHjggQeEJUuWCIBw+PDhSmMXLFgg9OzZU1Cr1YKvr69w6623VsnAmjFjhuDp6VllneqyghYtWiR06tRJcHNzE9q1aye89dZbwsKFC6tkkdmSRZWYmCjcfvvtQkxMjODm5iYEBgYKI0aMEFatWlVpHDVkUV3/Wfz111/VZhn9+uuvwqhRowQfHx/Bzc1NiImJEe68805h06ZNtcpXUxaVIAjC2rVrhd69ewvu7u5Cu3bthP/97381ZlHNmTOnyvkxMTHCjBkzKj134sQJ4a677hICAwMFtVotREdHCzNnzqyU0j1v3jyhbdu2gkKhEADr96O6zC6tViu88MILQkxMjKBSqYTw8HDh0UcfrZSCb5HFlu/oiy++KPTr10/w9/e3fv5PP/20kJ2dXc1fT0LCvsgEoYHVtiQkJJo1s2fPZtmyZeTk5KBWq50tjoSEhIRdkVxUEhKtgNdff52IiAjatWtHcXExq1evZsGCBfzrX/+SlBsJCYkWiaTgSEi0AlQqFe+99x6pqakYjUY6dOjABx98wJNPPuls0SQkJCQcguSikpCQkJCQkGhxSGniEhISEhISEi0OScGRkJCQkJCQaHFICo6EhISEhIREi6NVBhmbzWbS09Px9vZ2WBl9CQkJCQkJCfsiCAJFRUVERERYi5TWRKtUcNLT06t0YJaQkJCQkJBoHqSkpNTZbLZVKjiWcvgpKSn4+Pg4WRoJCQkJCQkJWygsLCQqKsqmtjatUsGxuKV8fHwkBUdCQkJCQqKZYUt4iRRkLCEhISEhIdHikBQcCQkJCQkJiRaHpOBISEhISEhItDgkBUdCQkJCQkKixSEpOBISEhISEhItDknBkZCQkJCQkGhxSAqOhISEhISERItDUnAkJCQkJCQkWhySgiMhISEhISHR4pAUHAkJCQkJCYkWh0MVnG3btnHLLbcQERGBTCbj119/rfOcrVu3Eh8fj0ajoV27dnz++edVxvz000907doVNzc3unbtyi+//OIA6SUkJCQkJCSaKw5VcEpKSujVqxf/+9//bBp/8eJFbrzxRoYNG8bBgwf55z//yd///nd++ukn65jExESmTJnCtGnTOHz4MNOmTWPy5Mns2bPHUW9DQkJCQkJCopkhEwRBaJKFZDJ++eUXbrvtthrHvPDCC6xatYqTJ09an3vkkUc4fPgwiYmJAEyZMoXCwkLWrVtnHTNhwgT8/f1ZtmyZTbIUFhbi6+tLQUGB1Gyzngh6PaaCAhSBgcjkDdePjWYjeWV5KOVKvFReqBQqO0rZQHTFoC8BswFkcnDzBrUX2NDUTcI5CIKA0SygN5rRGc3ojWaMZjNymQyFXIZMBgqZDI1KgbtKgVze/D9Ls06HoNcj12iQqVzgd9MKEASBMlMZJYYSlDIlvm6+NjV7lLA/9bl/u1Q38cTERMaNG1fpufHjx7Nw4UIMBgMqlYrExESefvrpKmPmzZtX47w6nQ6dTmf9f2FhoV3lbskIgoD2wAHylq+gZHcipuwcEARkHh5oOnTAa9Qo/O+ZiqKOL1qONoetqVvZmbaTw1cPc1V7FbNgtr4e4h5Cz+CexIfGM7HtRALdAx33pkpyIDkR0vbB1dPioygTDCVVx8oU4NsG/GIgtBtE9IHIBAhs7zj5WjmCIJBVpCM5t5TMgjKuFJaRVaTjSmEZOcV6CssMFGgNFGoNFJYZMZlt36N5qBV4qBV4uSkJ8FQT4OlGoKeaAC81YT4a2vi508ZffPhoXEd5MF69St6KlZQkJqI9cgQMBgAUgYF4jx6Nz40T8RgwQLrp2pHTuadZf2k9h68e5lj2MUqNpdbX3BRuRHpFkhCWwNA2QxkcMdg1NmkSlXApBSczM5PQ0NBKz4WGhmI0GsnOziY8PLzGMZmZmTXO+9Zbb/Haa685ROaWjO7cOdLn/pOyo0ervCaUlqI9fBjt4cPkLFhAwPTpBD3yMDK1utK4s3lnWXpiKWsurMFgNlR6TYYMAfHmlKXNYlPyJjYlb+K/+/7LyKiRPNjzQboFdrPPm8k6CSdWwanVkHmk9rFyFQhmEEziIz9ZfFzaXjHGPxbixkK32yF6EDTCmtVa0RlNnM8q4cyVIk5lFnHhajGXc0pJzi1FazA1aE6FXLTcIIBJEDALAtfaqEv1Jkr1JrKL9VzKKa15IsBHo6RdsBftg71oH+JJ+2AvOoV6Ex3g0WSWILNWS+7ixeR8tQBzaVV5TTk55K9cSf7KlXgMGkj4K6+gjo1tEtlaImbBzJoLa/j25LecyDlR5XXLNUtn0nG+4DznC86z/PRygtyDmNp5KlM6TcHXzdcJkktUh0spOECVHYjFg3bt89WNqW3nMnfuXJ555hnr/wsLC4mKirKHuC0SQRDI+/Y7st5/H0GnQ6bR4HPzTfjddhvqdu1Q+PigT05Ge/AguYuXoDt7luz58ylJTKTNvA9RhYZSoCvg4wMf88OZH6xKTJeALoyIGsGAsAHE+MQQoAlAQKDEUMLZvLMcvnqYzcmbOZp91Krs3NTuJp7q+xRhnmH1fyP6EjiyAg4shfSDlV8L7gxRAyCsBwR1BN9I8AoR3VLiHwGMZVCaKyo3eRch8yikHYC0/ZB3CZK+Eh8+baDPNOg3C7wbIGcrQG80czqziEMpeRxKKeBoWj4XrpZgrMH6IpdBhJ87Eb7uhPi4EeqjIdTHjSAvN3zdVfi6q/BxV+GtUeKhUqJWylEr5aJycx2CIFBmMFOiN1KqM1GiN1JUZiS3REdOiZ7cYj3ZxToyC8tIy9eSlqclr1S0Dh1KyedQSn6l+bzdlHSJ8KF7hC/d2/jQN9qfmEAPu1tPDOnppDz6GLrTpwHQ9OiB3+S78BwwAGVoKEJZGdpjxyj6Yz0Fq1ZRmribC3+7ldC5L+I/dapdZWkNJGUm8V7Se5zMFUMklHIlo6JGMThiMD2DexLpFYlGqcFgNpBVmsWZvDPsStvFXyl/cVV7lU8OfsKS40t4su+TTOowCYVc4eR3JOFSMTjDhw+nT58+fPTRR9bnfvnlFyZPnkxpaSkqlYro6GiefvrpSm6qDz/8kHnz5nH58mWbZJFicGpGEASuvPUWeUu/AcBz2DDC3/w/VCEh1Y83mylct47MV1/DXFSEIjCQq//3MP/MWkBuWS4AY2PGMqPbDHoF97JJhrN5Z1l4bCFrLqwBwFvlzcuDX2ZC7ATb3kRJDuz5DJIWgDZPfE6ugg5jofPN0GEceAXbNld16Irg0g44uRpOrgJductTroQed8Gw5yAoruHztwBKdEb2X85jz8Uc9lzI5UhaAXqjuco4b42SzmHedArzJi7Yi5ggT2IDPWnj545a6TyrWKneSHJuKReulnA+q5jzV4s5d7WYM1eKq30fQV5q+kb70y/Wn/5tA+nRxrdaZctWtEeOkPLYHEzZ2SiCggid+yI+EyfWGPemT04m87XXKdm5U5TnsccIeuJxyWVlA3qTng/3f8i3J78FwEvlxazus7iz450EaALqPN9gMrD+8noWHVvE2byzAPQM6sm7I96ljVcbh8reGqnP/dulFJwXXniB33//nRMnKkyDjz76KIcOHaoUZFxUVMTatWutYyZOnIifn58UZNxIBEHgypv/Ie9b8Yce8uILBMyYYdNFUn/5Mql/fxLd6dMUusPL0xS4t4vjpYEvkRCW0CB5jucc583db3I0W3SR3R53O/8a+C/UCnX1J+iKIHE+7PoE9EXicwHtIOFB6DkFPIMaJEetGMpEt9feryBlt/icTA49JsPof4uWoVaAySxwKCWfrWeusv3sVY6mFlSxzvh5qOgV6UevKD96RfrSNcKHMB9Ns7oJG0xmzl8t5lhaIcfTCzicks+xtEL0pspKj49GyaD2gQyJC2JIXBDtgjxtfp9lJ05w+b5pmEtLcevUiajP5qOKiKjzPEEQyJ4/n+xPxKxV//vuI/Slfzarv29Tk1KUwtN/Pc3pPNFKdmfHO3mizxM2KTbXYzQbWXF6BZ8c/IQSQwk+ah/eGvYWwyOH21vsVo3LKDjFxcWcO3cOgD59+vDBBx8watQoAgICiI6OZu7cuaSlpbF06VJATBPv3r07Dz/8MA899BCJiYk88sgjLFu2jEmTJgGwa9cuhg8fzptvvsmtt97Kb7/9xr/+9S927NjBgAEDbJJLUnCqJ+ujj8j57HOQyQh/43X87rzT5nO1Ri1z/3iKMe9vo30maP096LziJzyiYxslk8Fs4PPDn7Pg6ALMgpmEsATmjZqHj/qaz00Q4OgPsOFfUHxFfC6sJwx/TrTYNJWpOG0/bH0PzpRn+Ck1MPgJGPoMqD2aRoYmpKDUwOZTV/jzVBbbz2ZToK0cYxXp786AtoEMaBdA/9gAh7hxXIEyg4ljaQXsv5xH0iXRalVUZqw0JibQg9GdQxnTNYSE2ABUiuotMYa0NC7efTemq9l49O9P5Pz5KLw86yVP3rJlZL7+BggCIS+8QOCsmQ19ay2aY9nHmLN5DrlluQRoAnhjyBt2UUYyijN4duuz1o3ZPxL+wbSu0xo9r4SIyyg4W7ZsYdSoUVWenzFjBosXL2bmzJlcunSJLVu2WF/bunUrTz/9NMePHyciIoIXXniBRx55pNL5P/74I//617+4cOEC7du358033+SOO+6wWS5JwalK0ebNpM55HICwN17H/667bD9XX8Tjmx/nQNYBgnRuzPvRC3XyFdy6dCF2+TLkbm6Nlm9X2i6e2foMJYYS4vzi+HLslwR7BEPOeVj1d7i8QxwY0A5u+Dd0vc15gb9pB0Rl67LoLsC/LdzyEbQb4Rx57EhWYRkbTlxh/fFMEs/nVLLS+GiUDOsYzIiOwQxuH0ikf8tT6mzBaDJzLL2Qneey2XE2m/2X8ypZeHw0SkZ1DuGmHuEM7xiMRiUq4KbiYi5NuRv9+fO4dexIzHffovD2bpAMuUuWcOWtt0EuJ+qz+XiNaP7fPXuyM20nT295Gq1RS+eAzvzvhv8R6hla94k2ojfpeTfpXVacXgHAwz0fZk7vOS1SwW9qXEbBcVUkBacyuosXuXTXZMzFxfhPn0bYP/9p87nF+mIe2PAAJ3JO4K3y5n+j/0cPIYKLd0zClJuL/z33EPbyv+0i56ncU8zZNIcsbRbtfduxKHgUAX+9DUYtKN1Fi83gJ0DZeIWq0QiCGJ/zx1woTBOfi58F498Edf125M6moNTA2mMZ/Howjb2XcitlJXUK9WZs11BGdgqmd5QfyhosE62ZYp2R7WeusulkFn+dziK3RG99zdtNydiuodzUM5yOX39A8apVKENDiV2xHFVYwwPWBUEg8+WXyf/hR+ReXrT9+SfU0dH2eDvNnj0Ze5izeQ46k44hEUP478j/4qmy/29SEAS+OvoVnxz8BICZ3WbyTPwzkpLTSCQFpw4kBacCwWDg4uQp6E6exL1fPDFff21z8TCdScejmx4lKTOJAE0AX4z9gs4BnQEo3r6dlIdmA9Dmo4/wGT+utqlsJrUolRnrppGlzaaTTs/CzCx8Y4bC3z4RU7ddjbJC2Py6mG0FEBgHkxaI9XRcGL3RzJ+nrvDzgTS2nL5ayQLRO8qPCd3DGN8tjLZBzUtZczYms8DB5DzWHctkzZEMMgvLABiWdoh/Jn2LWSZHmPcZ3cYNa/SNUNDruTxzFtoDB/Do14/opUsaVZyzJXDgygEe2fQIWqOWkVEj+WDkB6jkjq1fs/zUct7c8yYAT/V9igd6PODQ9Vo6koJTB5KCU0H2l19x9YMPUPj60vb3VTVmS12PyWzi2a3Psjl5M54qTxaNX0TXwK6VxmS9/z45CxYi9/Wl/bq1KAPqH7hXhUs7ufTL/cz0UZCjVNDPow1f3vYbKpULWG1q48IW+OURKMoAhRpufA/6znC5KsmXsktYnpTCj/tTyC6usDR0DvPm1t5tuKVXeKt1Pdkbs1ngQHIem7cd44b3n8ZLX8r3HcfwTdcJdAr15q5+kdwZH4mfRw1B9TagT03lwt9uRSgtJfSf/yRgeuuNBblUcIl71t5Dkb6IIRFD+PiGj2tOWLAzS44v4f197wPw2uDXuKOD7SEVEpWRFJw6kBQcEf2lS+LFT68n4p238b31VpvP/XD/hyw6tgiVXMXnYz6nf3j/KmMEg4GLd01Gd+oUvrffTsRb/2m4sIIA+xbCuhfAbORMSAem+8gpMWm5o8MdvDroVdc3/Zbmwm9z4HR5BmCf++CmD5zuUtMbzWw4kcmyvcnsPJdjfT7Y241JfSO5rU8EncNa7+/E0aQ+8QRFGzeh79CFBZNfZP3pHGsquptSzt96RTB9UCw9IhtWQC5v+XIyX30NmUZDu19/aZWFAAt0Bdy79l4uF16mZ3BPFoxbgLvSvUllsFwzlTIlX437in5h/Zp0/ZaCpODUgaTgiP7h5OkzKE1KwnPIEKIWfGWzgvDHpT94fuvzALwz7B1ubHdjjWNLDx7k8tR7AIj59hs8+jXgR20ywNrnYf/X4v+7T4K/fcL2rAM8/ufjmAUzz/d7nundptd/7qbGbIadH8Kf/ydWS44eDFO+BU8HtqaogcyCMpYkXmJlUgo55XEhMhmM6BjM1P7R3NA5pMZsHwn7ULxzJykPPAgKBW1/+RlNx44UlBr4/Ug63+1J5mRGRVuZXlF+TB8Yw009w62BybYgCAIpDzxAya5EPEcMJ/qLLxzxVlwWo9nII5seYU/GHsI9w/n+pu8JcndAyYg6EASBF7a/wLqL6wjQBLDi5hUNK2DaypEUnDqQFBwo/GM9aU89hczdnXa/r0IdaVu9ljN5Z7hv7X1ojVpmdZvFM/2eqfOcjJdfIX/lStw6xNH255/r1yBQVww/zIBzmwAZjHkVhjxpde18c+Ib3k16F4VMweIJi+kd0tv2uZ3Juc3ww0yxSKB/W7jvpybrb3UivZAF2y/w+5F0DCbx5x/q48aUflFMToiSXFBNhKDXc+G229FfuFBtcL8giC6spYmXWXs0w/pZ+XuomNo/mllD2hLsbZv1T3fxIhdu+RsYjUQtWIDX0CF2fz+uyicHP+HLI1/irnTnm4nf0Cmgk9Nk0Rq1TF83nVO5p+gW2I0lE5fgpnBx97qLISk4ddDaFRzBYOD8zTdjuJxM0Jw5BD/xuE3nlRnLuHv13ZwvOM+g8EF8NuYzm8qRm/LzOT/xRkx5eYS9+ir+d0+xTdDiq/DdnZBxSMySunMRdK5sLbp2VxTuGc4Pt/zQfHrBZJ2C7+8SW0F4BIlKTkRvhywlCAJbz1xlwfaL7DiXbX2+f2wA9w9ty5guIVIGVBOT8/Vist55B0VAAO3/WFdrw9rsYh0rklL4fk8yaflaANRKOXfFRzJ7eDtiAusO9r7y1lvkLlkqbjR++QWZ0uU69did3Rm7mb1hNgIC7w5/l4ltJzpbJNKK07h79d3k6/KZ1nUa/0j4h7NFalbU5/4tXdFaIXkrV2K4nIwiKIiAWbNsPu/9fe9zvuA8Qe5BvD38bZt7rSj8/Ah67DEAsufPx1xWVvdJhemw+EZRufEIhJmrqyg3IFbIfnngy0R5R5FRksEru16h2ejsIZ3hwc1iUcLSbFh8s9gCwo4YTWZ+OZjKhHnbmfl1EjvOZSOXwc09w/ltzhBWPjKICd3DJOWmiTEVF5P9+ecAhDzzdK3KDUCQlxtzRsWx7R+j+Py+ePpE+6E3mvluTzKj3t/C498f4FhaQe1zPPYYCl9fdGfPkf/jj3Z7L65KtjabF7e9iIDApA6TXEK5AWjj1Yb/G/J/gGiB3pW2y8kStVykq1orw1RcTPan8wEInvOYzVVSt6ZstRatenPIm/UuZe43ZTLKiHCMWVnkffd97YPzLsGiCZB9Bnwi4f4NEFlz7I6X2ov3R7yPSq5ic/JmVp1fVS/ZnIpXCMxcA7HDxPYS390Fl3Y2elqLYjPuw208veIwp68U4alWcP+Qtmx9fhT/u6cvvaL8Gi+/RIPIXbIEc0EB6nbt8L39dpvPU8hlTOgexs+PDmbF7IGM7BSMWYDVRzK4+ZMdTFu4h70Xc6s/19eXoMdFa232p/Mx63R2eS+uiCAIvJH4BjllOcT5xfFC/xecLVIlRkSN4O5OdwPw0s6XrH37JOyLpOC0MvK+/Q5Tbi7q2FibWzEU6Ap4NfFVAKZ1ncbgNoPrva5crSa4vFJyzpdfYioqqmGxNFhyC+RfFqsS37/OpsaVXQO7Mqf3HADe2fsOV0qu1FtGp6HxgXt/hPajwVAqKjnJuxs0lcksVFJsLmSX4Oeh4vnxndg1dzQv39KVqAApxsaZmAoKyF28BIDgx+cgU9S/lYhMJmNAu0AWz+rP2r8P49beESjkMrafzWbyF4lMX7SXw9d1QQfwnzIZZXg4xqtXW7QVZ93FdfyZ8idKmZK3h73d5BlTtvBsv2eJ84sjW5vNW3vecrY4LRJJwWlFmLVacpeIF9agOY/ZHOz7333/JVubTaxPLE/2fbLB6/ve+jfU7dphKiiwNvSsRPFVWHqrGJMS0A5mrgU/26uvzug2gx5BPSgyFPH67tebj6sKQKWBu7+DdiPBUALf3gkpSTafbjIL/HowjbEfbK2i2Ox44QbmjIrD192xBc0kbCN3yRLMRUW4dYjDe8KERs/XNcKHj+7uw5bnRjK1fzRKuYxtZ65y66c7eWjpPk5lVmRiydRqgmY/BEDOVwsw6/U1TdtsydZm85+9YkmK2b1mOzWouDY0Sg1vDn0ThUzBH5f+YEvKFmeL1OKQFJxWRP4PP2LKy0MVGYnPRNv80bszdvPLuV8AsUBVYyL+ZUolQY8+CkDuN99WjsXR5sE3t0POWdEtNf038Amv1/xKuZI3hryBSq5iW+o21lxc02BZnYLKHe5eVuGu+vYOsYFnLQiCwJbTWdz08XaeWnGoWsXGy63lB5M2F0yFheQuEZsLBz3+hF0rC0cFePDWHT3489mR3NG3DXIZbDxxhYkfbeeJZQe5cLUYAN877kAZEoIxM5OCn3+x2/quwlt73qJAV0DngM482ONBZ4tTK10Du1rLW7yx+w2K9DVYtiUahKTgtBIEvZ6cr8U6MoEPPmhTBoXOpOO1Xa8BMKXTFPqG9m20HD4TxqOKiMCUm0vBr7+WL1QkWiyuHAXPEJixql6Wm2tp79eeR3qJzVnfT3q/+V0w1B5wzwqxPo6uUFT6sk5WO/RYWgH3LdzDzK+TOJVZhI9GKSk2Lk7+Dz9gLilBHdce77FjHLJGdKAHH0zuzYanh3NTz3AEAX4/nM6YD7by0i9HyTOI1wAQ3cWC0VjHjM2HXWm72HB5A3KZ3LrZcXUe6/UY0d7RZJVm8dGBj5wtTotCUnBaCQW/r8aYkYEiOAjf22+z6Zyvj31NanEqIR4hPNX3KbvIIVOpCJg5E4CcRV8j6Eph2VRI2wfu/qLlppH1YGZ2m0msTyw5ZTl8euhTO0jdxKg94d6VENkfygrEmJyiTOvLaflanllxiFv+t4Od53JQK+Q8NKwt2/4xSlJsXBjBYCD3G9E1GzhrlsP7QsWFePPpPX1Z8/ehjO4cglmA7/YkM/K9LfwUHo88IABDejpFmzY5VI6mQm/SW11T93S+x9oXz9XRKDW8MugVAFaeXsnJnOo3NBL1R1JwWgGCIFhjbwJnzkTuVrebKaM4g4VHFwLwXL/n8FJ72U0evzsnofD1xZCcTNHb98Gl7aD2hvt+htCudU9QB2qFmn8OEIumLTu1jFO5pxo9Z5Pj5i1acgLjoCAFvp9McVE+b687xaj3t/DzwTQEAf7WK4LNz47gpZu6NqpnkYTjKfxjPcbMTBSBgfjcfHOTrdstwpeFMxNYPnsg3dv4UKQz8ubmi6yKHgBgdZk1dxYfX8zlwssEuQfxWO/HnC1Ovegf3p+JsRMREHhr71vNK37QhZEUnFZAaVISujNnkLm725w59f6+9ykzlREfGs+E2MYHQl6L3MMD/3vvBSB3w2GQKWDKN9Cm8S4wC4MiBjE+djxmwczbe99unhcMjwC49wcEjyDIOMyhD+7gq61n0BvNDGgbwG9zhvDx1D5SVlQzQBAEcstdxP733mPTJsPeDGwXyKo5Q3nvzp6EeLvxfVgCBpkC7cGDHN2U2OTy2JMrJVf46shXgLgh81Z7O1mi+vNMv2dwV7pzMOtg84sfdFEkBacVYKk743vLLSh8667ym5SZZPVjz+0/1yFNLP37+IBMQJujpqz789B+lN3XeK7fc7gp3Nh/ZT9/pvxp9/mbgjOGYP7t/hJlgoqhwn7+6/UdX02LZ/nsgVIdm2aEdt8+yk6cQKbR4D91qtPkkMtl3NUvir+eG8m0G/uyM6o3ANve+R8v/XKUglKD02RrDJ8c/IQyUxl9QvpwY9uae+O5MmGeYTzUQ8xw+3Dfh5QaSp0sUfNHUnBaOIaMDKuP3WI1qQ1BEPhw/4cA3NnhTsekWKbuR7n1H3hHillUeYdtqGzcAMI8w5jeVcxQ+HD/hxjMzefiXVRm4P9Wn2DiR9v5Ni2U581PICDjNuMfjC340fU7p0tUIm+5WCTT95abUfr7O1ka8HRT8sy4Ttz8+tMADEs9zLotRxn9wRZ+OZjarCyep3JPWYt7PtfvuWb925jRbQZtvNqQpc3i25PVlNKQqBeSgtPCyVuxAkwmPBIS0HTqWOf4DZc3cDT7KO5Kdx7t/aj9BcpPgWV3g7EM/1HdAChYvbrmwn+N5IEeDxCgCeBy4WVWnl7pkDXsiSAI/HYojRv+u5UFOy5iMguM6xrKP55+Htn4N8VBG/8NF7Y6V1AJmzHm5VG0YQMAflPudrI0lYkaGI97376oBBN35xwmu1jP0ysOc89XeziXVexs8epEEATeT3ofAYGJsRPpGdzT2SI1CrVCzRN9ngBg0bFFUoXjRiIpOC0YwWAg/wexWqkt1huD2cDHBz4GxEykIPcg+wpk1MGK+6AkC0K74/HMMtRx7RFKSyn4zTHtFTxVntYKx18c/oISQ4lD1rEHqXmlzPw6iSeXH+JqkY7YQA8Wz0rgy+n9xDibgY9Br3tAMMOPs6Ag1dkiS9hAwS+/IhgMaLp1w717N2eLUwW/yXcBcHvmAZ4f2wGNSk7ihRwmfrSN99afQqs3OVnCmtmVvos9mXtQy9U8Gd/wIqSuxMS2E+kS0IUSQ4k1rkiiYUgKTgumeNs2TDk5KIKC8B59Q53jfz7zM8lFyQRoApjRbYb9BfrjRbF5pnsATF2OTOOD/91iPELe8mUOM4vf0eEOYnxiyNPl8e0J1zP7ms0Ci3deZNyH29h65ipqpZxnx3Zk/dPDGdkppGKgTAY3f1DenDMHVk4XlUYJl0UQBPJXipZDv8mTnSxN9fiMH4/c2xtjaioz3bPZ+PQIRncOwWAS+PSv84yft41d57PrnqiJEQSBTw5+AsCUzlNo49XGyRLZB7lMztPxoutw+enlpBZJG5mGIik4LZj8n34GxBYJdbVl0Jl0fHnkSwAe6fUInirbmnDazOEVsG8RIINJX4FfVIVsGg36c+cpO3LEvmuWo5QreayXmDa65PgSCnS1d11uSs5eKeLOz3fx6u8nKNWbSIj1Z92Tw3hidAfclNX0KFK5ixlnGj+xyvG6fzS5zBK2U7pnL/pLl5B7eOBz003OFqda5O7u+N4ipq3n//gjUQEeLJjRjy+mxRPhqyE5t5R7vtrDS78cpVjnOkUB/0r5i+M5x3FXuvNA9wecLY5dGRQxiEHhgzCajdbrskT9kRScForx6lWKt4pxGn533FHn+B/P/EiWNoswzzAmdZhkX2GyTsLqp8TjEf+AuIoKrgpvb7zHjgUg31LZ2AFMaDuBOL84igxFLDm+xGHr2IreaObjzWe56eMdHEjOx1Ot4I3burNi9iDaB9dRc8g/Fu5cCMhg/2I48E0TSCzREPJ/+gkAn5tvRuFl502DHbGUjyjauAljXh4ymYzx3cLY8MwI7h0gVhX/bk8y4z/cxvazV50pKgBmwcz/Dv0PgPu63Eege6CTJbI/c/qIrvVV51eRUpjiZGmaJ5KC00IpWLUKTCbce/fGrX3tlYHLjGUsOLoAgId6PIRaYceCcboiWDFN7JLdbiSMeKHKEL/yysqFa9Zi1jnG5SKXyXm8j9jN/NuT3zo1eO9kRiF/+98OPth4Br3JzA2dQ9j4zAimDYxBLrcxAyRuDIx6STxe8yxkOMb6JdFwTMUlFG3cCIDfpLo3Gc5E07Urmq5dEQwGCldVxMN5uSl58/YefP/gAKIC3EnL1zJt4V5e/OkIhWXOy0rccHkDZ/PO4q3ydow73QXoFdyLIW2GYBJMfH7kc2eL0yyRFJwWiCAIFe4pGy6sP5z5gWxtNhGeEdwed7s9BYHfnxQbaHpHwKSFIK/qdvEYMABleDjmwkKK/3RcvZobom6ga2BXtEatU2JxTGaBz7ee59b/7eRUZhEBnmo+urs3C2f0I8LPvf4TDnsWOk4Akw5+ehD0Ut0MV6Jo40aEsjLUsbFoerp+do/lWlFdwP/guCD+eHI4MwbFALA8KYXxH25jy+msJpURROvNF4e/AGBat2n4utVd26u5MqeXaMVZfWE1lwsvO1ma5oek4LRAyo4eRX/hAjJ39zq7hutMOhYdWwTAQz0fQqWwY3O6g9/CsZ9AroS7vgbP6rOyZAoFvrf+DYD8XxzX3VgmkzG7x2xAbOFQqC902FrXk5JbytQvd/P2ulPoTWbGdAlh/VPDubV3m4bX7ZDL4db54BUG2adhw0v2FVqiURT89hsAvrfd2ixqs/jceCMolZSdOIHu3Lkqr3u6KXnt1u6smD2QmEAPMgrKmPl1Eq/8dowyQ9NlWm1J2cK5/HN4qjy5p/M9TbauM+gR3IPhkcMxC2Ypo6oBSApOC6Rg9WoAvEePRuFVezzHb+d+I1ubTahHKLe2v9V+QuReELOmQHSlRA+sdbjfbbcBULJjJ4YrjtsVjooeRZxfHMWGYpafWu6wdSwIgsCKpGQmzNvG3ku5eKoVvDupJ19N70ewtx3K9XsGwu3l5ut9i+CUVOLdFTCkp1O6Zw8gVhBvDij9/fEaNgwQm/PWxIB2gfzx5HBmDo4FYEniZW7+ZAfH0x0fvC8IgvVGP7Xz1BZtvbEwu6e4KVtzYQ0ZxRlOlqZ5ISk4LQzBZKJw3ToAfG6uPWvDaDby9TGxP87MbjPtZ70xGeHnh0FfDNGDYUjd9SnUsbG49+kDZjNF6/+wjxzVIJfJebDHgwB8c+Ibh5ZDv1qk46Gl+3jhp6OU6E30jw3gj6eGMzkhyr47+vajYLBYHIzfHodC6SLobAp+Xw2CgEdCAqo2zSd92ZJNVbh6NYLZXOM4d7WCV//WjSX39yfY241zWcXc9ulOvth6HrPZcVWQE9MTOZZzDI1Cw7Su0xy2jivRK7gXCWEJGAUjS0+0jMaoTYWk4LQwSvfuxXQ1G4WvL16DB9c6dsOlDaQWp+Ln5scdHewYBLnjQ0jdC24+onWhmrib6rCk0RauWWs/WaphfOx4or2jydfl8+OZHx2yxvazV5n40XY2ncxCrZAzd2Jnls0e6LjGmDe8LNbH0ebCLw9DLTcnCcdT8LsYx+J7mx2tok2A16hRyD09MaSloT14sM7xIzoGs/6p4YzrGorBJPDWulPcs2A36flah8i34JiYDHFnxzsJ0AQ4ZA1X5MHu4qbsp7M/kVeW52Rpmg+SgtPCsLqnJkxApq45G0oQBBYeWwjAvV3uxUNlpxtv2n7Y+rZ4fOP74B9j86k+48eBXI728GH0qY4rbqWUK5nVfRYgZlQZzfar7WEwmXnnj1NMX7SX7GIdnUK9+e3xITw8oj0KWzOkGoJSLQZxK93h4lZI/J/j1pKoFd3Zs+jPnUemUuE9bpyzxakXcnd3q8wFq3636ZwATzVfTIvnnUk98FAr2H0hlwnztrH2qH0ticezj5OUmYRSpmyxmVM1MShiEF0CuqA1avnu5HfOFqfZICk4LQizTkfRBjEt1bcO91RieiJn8s7grnRnamc7dTfWl8DPs8FshG63Q8/6VW5VBgfjMaA/gNXN5ihuaX8LAZoAMkoy2HBpg13mTMktZfIXiXy25TyCAPcOiOa3x4fQJdzHLvPXSXBHmPCWePznG3D1dNOsK1EJy3fXc9gwFN7eTpam/ljcVEXr1yMYbVP+ZTIZUxKiWfP3YfSK8qOwzMhj3x3gZTsGIC8+vhgQWxmEeYbZZc7mgkwms7rWl59ejtboGAtZS0NScFoQJdu3Yy4qQhkWhnt8fK1jLb7cSR0m2S9Qb+MrkHNOTAm/6QOxtUA9sWR9Fa51rILjpnCzKnaLjy9udJuIdUczuOnj7RxMzsdbo2T+vX158/YeaFS2uefsRvxMiBsLJj38NgfMrttHqCUiCAKF68QYMp+JE5wsTcPw6N8fhb8/pvx8Svfurde5bYM8+fGRQTw6Uqy9tTTxMnd+vovLOY3rAZdWnMaGy+JGpLVZbyyMjh5NpFckBboCfj9vm3WttdMkCs78+fNp27YtGo2G+Ph4tm/fXuPYmTNnIpPJqjy6datoUrd48eJqx5SVlTXF23FZCv9YD4DPhAnI5DV/tGfzzrIzfSdymZx7utgpzfLSTkgqT2O8bT54NMw/7j12LCiV6E6eRHfhgn1kq4EpnaagUWg4mXuSpMykBs1RZjDxr1+P8uh3BygsM9In2o+1fx/GjT3C7SytjchkcMs8Mf4pNQl2z3eOHK0U3Zkz6C9eRKZW4zVqlLPFaRAypdJaXdxyTakPKoWcFyZ0ZvGsBPw9VBxLK+Tmj3ew5kjDXVbfnvgWs2BmUPggOgV0avA8zRmFXMF9Xe8DxAQJsyDF2dWFwxWcFStW8NRTT/HSSy9x8OBBhg0bxsSJE0lOTq52/EcffURGRob1kZKSQkBAAHfddVelcT4+PpXGZWRkoNFoHP12XBazXk/xli0AeI+v3e//7UmxyN0NUTcQ5R3V+MUNWlhVnsXTd4aY1dNAlP7+eA4Rg6Md7aby1/hza5wYBNqQ7ISU3FImfbaLb3eL3+VHR7Zn5cODHBdIbCu+kTDu/8TjP/8PsqvWNJFwDFb31PBhdZZocGUs15CiTZtsdlNdz8hOIax9chgJsf4U6YzM+f4A//61/i6rQn0hP50VW17M7D6zQbK0FG6Pux1vlTeXCi+xPbVmQ4GEiMMVnA8++IAHHniABx98kC5dujBv3jyioqL47LPPqh3v6+tLWFiY9bFv3z7y8vKYNWtWpXEymazSuLCw1uWTvZ6SXbswFxejDAnBvVevGsdla7NZfV4MRJ7ebbp9Ft/yNuSeB+9wGPt6o6fzGS+a9os2bmr0XHVxXxdxR7QtdVu9uvb+dSqrvPZHIQGeapbe358XJnRGpXARr2/f6dBuFBjLJFdVEyEIAkVW91TtBTZdHc8BA1D4+WHKzaV0374GzxPu686yhwbyWLnL6pvdl5n0Wf1cVr+e/RWtUUucXxyDwgc1WJaWgIfKgzs7in3DpJTxunHo1Viv17N//37GXZdJMG7cOHbt2mXTHAsXLmTMmDHExFTOxikuLiYmJobIyEhuvvlmDtaS0qjT6SgsLKz0aGkUrRf9095jx9bqnvrpzE/ozXq6B3and3Dvxi+cfhB2fSIe3/QBuPs1ekqvUSNBoUB36hT6FMc2mYv1jWVQ+CAEBFaeWVnneJNZ4IONZ5i1OIkCrYHeUX6sfmIowzsGO1TOeiOTwd8+BrUXpOyGvVJHYkejO3MG/eXLyNzc8B450tniNArRTSU2xS38o3F1qZQKOf8od1kFeKo5nl7ILZ/s4C8b2jyYzCaWnVoGwD1d7mkWFaEdzT1d7kEhU7A3cy9n8s44WxyXxqEKTnZ2NiaTidDQ0ErPh4aGkpmZWef5GRkZrFu3jgcffLDS8507d2bx4sWsWrWKZcuWodFoGDJkCGfPnq12nrfeegtfX1/rIyrKDm4ZF0IwGCgq7+FUW1qqyWzix7Ni3Re7XCxMBvjtCRBM0O0O6Hxj4+YrR+nvj0dCAtA0Vpy7O98NwC9nf0FnqrnZZ16JnlmLk/h4s/g9mzYwhhUPD2xYH6mmwC+6wqK26TWxurSEwyjaJH5XPYcORe7pup3DbcV73HhA/A0KpsZbAEd2CmHN34fSJ1rMsrp/cRKfbD5ba2HAHWk7SC1OxUftw01ta88MbS2EeYZxQ/QNAKw8XfemrDXTJPb062+kgiDYdHNdvHgxfn5+3FZext/CwIEDue++++jVqxfDhg1j5cqVdOzYkU8++aTaeebOnUtBQYH1keJgq0BTU7J3L+aCAhQBAXj0qzl7alvqNjJLMvFz82NcrB3qc+ycB1eOgrs/THy38fNdg2X3aOnG7EhGRI4g3DOcfF0+f1ysfrd6JDWfmz/ZwbYzV9Go5Hw4pRdv3NYdN2UTZ0nVl/hZEDsMjFpY+7zYAFXCIRRt3gyILVJaAp4DByD39cWUk2NT0T9bCPd1Z/nsgdw7IBpBgP9uPMPD3+6vsTO5pebLHR3usF+trhbA5E5iCY7VF1Y7tBp7c8ehCk5QUBAKhaKKtSYrK6uKVed6BEFg0aJFTJs2DXUtBesA5HI5CQkJNVpw3Nzc8PHxqfRoSViUAO/Ro5Epar7hrjizAoDb4m7DTdHIPkjZZ2FruVIz4R3wsq+LxnuMqOBoDx7EkOXYjsUKucJ6waiuP9WP+1O58/NE0vK1xAZ68MtjQ7i9T6RDZbIbcjncPA8Uaji3CU786myJWiT61DR0J06CXC66WFsAMpUKrxHDASja/Kfd5nVTKnjz9h68O6knaoWcjSeucNv/dnL2SlGlcRcKLpCYkYhcJrdaWSVEBoQNINYnlhJDCasv1Nw3rLXjUAVHrVYTHx/Pxut24Rs3bmRwHW0Etm7dyrlz53jggQfqXEcQBA4dOkR4uJNSc52IYDZT/OdfQIXVozpSClPYmbYTgMkd61eAr+qiAqx5Vqy1Ejem3gX9bEEVGoqmV08Aiv+038W1Ju7ocAcquYpjOcc4ln0MAKPJzP+tPsFzPxxGbzQzpksovz0+tOkK99mLoDgY+ox4vO5FKGt5MWjOpvhP0XrjER+P0t/fydLYD+8bRGtU0Z+bG10r6nomJ0TxwyODCPfVcCG7hNs+3cm6a6ofW9qoDI8cThuv5tPPqymQyWTWTdmK0yvs/tm0FBzuonrmmWdYsGABixYt4uTJkzz99NMkJyfzyCOPAKL7aPr0qtk8CxcuZMCAAXTv3r3Ka6+99hrr16/nwoULHDp0iAceeIBDhw5Z52xNlB0/gTErC7mHBx4Da+7Y/cOZHwAYEjGEKJ9GxiAd/1lsB6Bwgxvfa1BBP1vwKa/FYanO7EgCNAGMjxVjDpadWkZBqYFZi5NYsOMiAH8f3YEvp8Xj626nhqRNzdCnIaAdFGfCX286W5oWR9GmcvfUmJbhnrLgOXQoMpUKw+Vk9OfP233+XlF+/P7EUAa1C6REb+LR7w7wwYbTaA1lrDov9vO6q+NddczSOvlb+7+hUWg4k3eGw1cPO1scl8ThCs6UKVOYN28er7/+Or1792bbtm2sXbvWmhWVkZFRpSZOQUEBP/30U43Wm/z8fGbPnk2XLl0YN24caWlpbNu2jf79+zv67bgcxX+J1g3PoUOR1+DK05l0/HLuF6DCd9tgygrhj3+Kx8OeEW+aDsKrfPdYkpSEqbhxlVBtwWIGX3fxD26Z/wfbz2bjrlIw/96+PDO2I3JH9pJyNCqN2BsMxIyq9ENOFaclYczLs6ZSe7WQ+BsLCi9PPAaJG6eickuxvQnycuObB/rz4NC2AHz85znuW7aAAl0BYZ5hDIkY4pB1mzu+br5MaCuW1FhxeoWTpXFNmiTI+LHHHuPSpUvodDr279/P8OHDra8tXryYLeUF6iz4+vpSWlrKQw89VO18H374IZcvX0an05GVlcX69esZNKh11kco+msLQK1VUzdc2kC+Lp9Qj1CGRw6vcZxNbHlbtAL4t4UhTzVurjpwa9cWdUwMGAyU7Nzp0LUAegb1JNKjAwaznkzzdtr4ufPjo4OcV5XY3sSNhu6TQDDD6qel2jh2onjrVjCbcevcGXVkM4nNqgcWN1VxeRC1I1Aq5Pzr5q68d2dPVAoZJ4rFshdjo/6GQu7igfxOZEqnKQCsv7Re6jJeDS5SlUyiIRjS09GdLA9sHFGz4mJJJbyr410o5cqGL3jlOOz5XDy+8T3RKuBgvMrriRRfpwTbG0EQ+HzrBc6dF+N+vIL38vOcgXSLsFOfLldh/H/ENg7pB2DfImdL0yIo3rIVAO8bmmdrhrqwbJ60R45gvHrVoWvd1S+KD+6NQOl5EUGQseLPcA4mSzfumuge1J1ugd0wmA38eu5XZ4vjckgKTjOm6C/RZOzepw/KgOp7P53OPc2hq4dQypRM6jip4YtZAosFE3S5BTqMbfhc9cCSkVK8datdanFUh95o5vkfj/DOH6cwFPRGhScGeQ5nCvY7ZD2n4h0Go18Wjze/ASXZzpWnmSMYDJTs2AGA14gRTpbGMahCQ9D06AGCQJGDNxoAp0vEekLuhu7kFLgz5cvd/HowzeHrNlcsVpyVp1dK/amuQ1JwmjHW7Klado4W3+wN0TcQ5B7U8MUOL4PkRFB5wIS3Gz5PPfGIj0fu5YUpN5eyo0ftPn9BqYEZi/by4/5U5DJ4/W+9mdzlNoCWuyPqdz+E9QBdgdirSqLBlO4/gLm4GEVAgKgEtFAsG42Sbdscuo7epOe3878B8MboBxnTJRS90cxTKw7x7h+nai0K2FqZ0HYC3mpvUotT2ZVuW4eA1oKk4DRTzCUllO7dC9Qcf1NqKGXNhTVAhZbfIMoKYeMr4vGIf4jNHJsImUqF57ChAHbfPSbnlHLHZztJvJCDp1rBwpkJTB8Uy+1xtwPwV8pf5Jfl23VNl0CuEGsXAexfDBlHnCpOc6Z4q+ie8ho+vNYWKc0dr+Gidapk5y4Evd5h62xO3myNFxwTO5wvp8XzaHkfq/lbzvP35Qfr3ayzpeOudOfW9mLTYEtqvYRIy/1FtnBK9uxBMBhQRUaibtu22jGbkzdTaiwl0iuShLCEhi+24wMoyYKA9jBwTsPnaSDe5QpccXlAtT3YfzmX2+bv5PzVEsJ9NfzwyGBGdQoBoFNAJ7oEdMFgNrDm4hq7relSxA6BbrcDAvzxolThuIFYYsO8RrZM95QFTdcuKIKCMJeWUnrggMPWsdyg7+hwB0q5ErlcxgsTOvP+Xb1QymWsPpLBfQv2kFfiOCWrOXJ7B3FTtjV1qxRsfA2SgtNMKS43FXsNH1Zj24vfzomm3lvjbm1436nci5D4qXg8/k1Q1l5V2hF4DhsGcjm606cx2NDDrC5WHU5n6ld7yC3R072ND7/OGULXiMrF+26Luw1owW4qgLFvgFIDl3dKFY4bgD45Gf3Fi6BU4jmkZacyy+RyvIYNA6B4q2PcVJcKLrE3cy9ymdxqRbVwZ3wkS+/vj7dGyb7LedxRz47kLZ2O/h3pGtgVo9nI2otrnS2OyyApOM0QQRAo2bYdAM/h1WdPpRensydzDyAWhGowG18WKxa3GwkdJzR8nkag9PfHvTy+wRLQ2RAEQeDTv87x92UH0RvNjO0aysqHBxHqUzUb7KZ2N6GSqziVe4qTOScbvKZL4xdVkeq/4d9g0DpVnOaGJXvKIz4ehbe3k6VxPJZMzWIHxeH8fPZnAIa2GUq4V9XSDIPjgvjp0cG08XPnYnYJt8/fxf7LkrXCgsVNZdnYSkgKTrNEf/48hvR0ZGo1ngMGVDvGUgV0QNgAIrwiGrbQpR1wchXI5GJ6sYMqFtuCp2X3uL1hCo7JLPDv347x3vrTADw4tC2f3xePh7r6tHlfN19rx94WbcUZ8iT4REJBCuz82NnSNCuKt4ubDK8aNhktDc/Bg0GhQH/+PPrUVLvObTQbrdesSR1qzvbsGOrNL48NpnsbH3JL9Nzz1e5K7R1aMze2vRGVXMXJ3JOczj3tbHFcAknBaYYUl1tvPBISkLu7V3ndLJgruacahNkEf8wVj+NnQmi3hs1jJ7yGiwpOya5dCEZjvc4tM5h49Nv9fLs7GZkMXvtbN/51c1cUdVQmtrip1lxcg97UQn3+ag8Y97p4vONDKLDvjaulYtbpKE1KArAGwbd0FD4+ePTpA1QEV9uLxPREcspy8HfzZ1jksFrHhvhoWDF7EKM7h6Azmnns+wMs2H7BrvI0R/w0foyMGglgzURr7UgKTjOkeHtF/E11HLhygNTiVDxVnoyObmDp+EPfQeYRcPOFUS81VFS7oenWDYWfH+aiIrSHbe+7klei594Fe9hw4gpqpZz59/RlxuBYm84dFD6IEI8QCnQF/JXimDL1LkG3OyB6MBi1Utq4jWgPHkQoK0MZHIxbhw7OFqfJ8Cx3U5U00JJaE7+f/x2AG9uJVog65XBT8uX0fkwfFIMgwP+tOcl/1p5s9Wnk1k3ZhTUYzAbnCuMCSApOM8NcUoJ2n1iAznNY9aZxi/Y+PnY8HiqP+i+iKxKLwIGYFu7ZiPo5dkKmUFgDOS2ugbpIzSvlzs9FP72PRsm3DwxgYj3aLijkCqtf29LLq0Uik8H4csXm8HIpbdwGSnaK9UY8Bw9qeAB/M8Rz8GAASvfuRTDY5wZapC/izxSxp94t7W+x+TyFXMZrf+vGixM7A/Dltgs8+8NhDKbWW+xucMRgAjWB5Jblsj3VtutkS0ZScJoZJeUXFjE9PLbK66WGUtZfWg9UBJ3Vm50flaeFt4P+sxshrX2xuAJs2T2eSC/kjvm7rGngPz46mP5tq6/2XBuWHVFieiKZJY3P4HJZ2sSLfaoQYOO/pbTxOrD0Rmvp2VPXo+nSBYW/P+bSUrRH7KMIb7y8EZ1JRzvfdnQN6Fqvc2UyGY+MaM9/7+qFQi7jl4NpPLhkHyW6+rmxWwpKudKqJErBxpKC0+yw7hyHDKl257gpeRNao5Zo72j6hPSp/wJFmRVp4WNec0paeE14ld9Myo4fx5iTU+O4XeezmfJFIllFOjqFevPzY4PpGNqwLJdon2j6hvTFLJitZvQWy+iXQaGGC1vgvOMaKzZ3jLm5lJ0UM+s8W1mTX5lcjmd5d3HLtaixWH5Xt7S/pcHWsEnxkSyY3g+NSs7WM1e5Z4FYBqI1YtnYbkvdRm5ZrpOlcS6SgtPMKNllUXAGV/t6o2vfbHkbDKUQmSD2nHIhlMHBuHXtAlT8Ha5n/fFMZi5KokhnpH/bAFY+Mohw36qB2PXBYsVZdX4VQku2bPjHVljsNrwsdRuvgZLERBAE3Dp2RBkc7GxxmhyPcqWuJDGx0XOlFaex78o+ZMi4ud3NjZprVOcQvn9oIH4eKg6n5HPnZ7tIzStttIzNjTj/OLoHdscoGFl7oXXXxJEUnGaEISMD/YULIJfjOXBgldfTitPYm7kXGTJuadcA5ST7LBxYKh6Pfd2paeE14Wm9uO6u8tpP+1N57LsD6E1mxnUNZen9/fF1rztgsS7GxozFTeHGpcJLnMxtoTVxLAx7FjS+kHVcjMeRqELFJqN1uacseJXH4WiPHMFUVNSouVafXw1A/7D+hHmGNVq2vtH+/PjIICJ8NVzILuGO+bs4lVnY6HmbG5bs2daeTSUpOM0Iy4XVvUcPFD4+VV63XizC+1dbKKtONr0qdgvvOBFiqrcQORvPgeUKzu7EStaUxTsv8uwPhzGZBSb1jWT+vX3RqBR2WdNL7WVNv7T09mqxeATAsOfE4z//D/StbwdcG4IgXBNg7Jq/EUejatMGVUw0mEzWVPmGIAgCv1+ocE/Zi7gQb356bDAdQ73IKtIx5YvdHExuXQUBJ7adaC1U2ppr4kgKTjOiIv6m6oVVEARrie4GWW+S98Cp1WJRvzGvNkZMh+IR3xdUKozpGRiSkxEEgY82neXV308AMGtILO/d2ROlwr5f7Rvb3gjAHxf/wNTSXTf9Z4NvNBSlw57PnC2NS6G/eBFjZiYytRqPfvHOFsdpWJS7xsThHM0+yuXCy7gr3RkTM8ZeogEQ7uvODw8Ppm+0HwVaA/ct2EPi+Zrj9loavm6+DI8Us2zXXVznZGmch6TgNBMEs9nq865u53gm7wwXCi6glqvrX/tGEGBTebfw3vdCSOfGiusw5B4eePTqBUDxrkTeWH2SDzedAeDpMR15+eauyOso4NcQhrUZho/ahyxtFvuv7Lf7/C6FSgOj/y0e75gHpa07UPFaLDd09/i+1RbZbC1YFZwaYuFswVK5eHT0aDxVnnaR61p8PVR888AAhsQFUqI3MfPrvfx56ord13FVJradCIgKTouOHawFScFpJpSdPIkpLw+5hwfu5Tf4a7F0vR4eORwvtVf9Jj+9DpITQekOo/5pD3Edikd5Fkfij+tZtPMiAK/c0pUnx3RwWE0SlULF2JixAC23w/i1dL8TQnuArhB2znO2NC6DNT28lbqnLHgOGAByOfqLFzFk1L9Vgt6k549LfwANtDjbiKebkoUzEhjTJRSd0czspfv5/XC6w9ZzJUZEjsBD6UF6STqHr9peHLUlISk4zQTLTsljwABkqsqBs2bBzB8XxYvFje1urN/EZhNsfk08Hvgo+DSwb1UTok7oD0Dg2SMoZQL/vasXs4a0dfi6N7W7CYCNlza23NYNFuTyCivOni+hUOr3I+j1lO7dC1SULGitKHx80PToDkDJrvpnU+1I20GBroBg92AGhFffT89eaFQKPruvL7f2jsBoFvj78oOsSEp26JqugEapsVrzW2uHcUnBaSaU7hEvrJYaFNdy+OphMkoy8FR5MqxN7X1cqnD0R7h6CjR+YuNFF6dEZ+SJg3pKlW746kv5cogfk+Ijm2Tt+NB4QjxCKDIUsT2tFVQJ7TAOogaILRy2v+9saZyO9vBhzKWlKAICcOvsum7cpsKzEenilg3ZxLYTUcjtkwxQGyqFnA8m92Zq/2gEAV746SgLd1x0+LrOxuKmWn9pPUZz6yt+KCk4zQDBYKD0wAFAtOBcjyWzZ3T0aDRKje0Tmwyw5S3xeMjfwd2vsaI6lMIyA9MW7mHbxXxOBrcDoFfW2SZbXy6TW4ONW3w2FYhlAka/LB7vXwy5Lf+GUBvFlvTwgQORyaVLpzUOJzERwWx7e4RSQylbUrcAMCF2giNEqxaFXMZ/bu/O7OHiteON1Sf4aNPZFh2fMjBiIH5ufuSW5bI3Y6+zxWlypF9pM0B79BhCaSkKP78qjf2MZiMbL28EKjJ9bObQd5B3ETyDYcAj9hLXIRSUGpi2YA8HkvPxdVfR8xYx66Jkd+OLjdUHi5tqa8pWivXFTbq2U4gdCu1vALMRtr7jbGmcyrVVxCXAvXdvZO7umHJy0J05Y/N529K2oTVqaePVhu5B3R0oYVVkMhlzJ3bm2bEdAfhw0xn+s/Zki1VyVHIV42PHA63TTSUpOM2A0r17APDo37/KznFPxh5yy3IJ0ATUz5dtKIOt74rHw54Ftf2zGOxFXomeexbs5nBqAf4eKr5/aAAdb7wBgNJ9+xH0TRcP08m/E+1826E369mc3EraGdzwL/Hfw8shq4UXOqwBU0EBZceOATVXEW9tyNVqPBL6AfWLw1l/UeyVNyF2glMalcpkMp4Y3YGXbxb7Xn21/SIv/XqsxXYit7ipNidvRmfSOVmapkVScJoBJXvKFZwB/au8ZtHKx8aMRSlX2j7p/sVQmAY+bSB+lj3EdAjZxTqmfrWb4+mFBHmpWT57EN0ifHHr2BGFvz9CaSnao0ebTB6ZTGa14rQKNxWIjTg73wwI8NebzpbGKZTu2wdmM+q2bVGFNb7ibkuhvunixfpitqVuAypuvM7i/qFteXdST2Qy+H5PMv/85WiLVHL6hPQh1COUYkNxq+swLik4Lo5Zr0d74CBQnpp5DWXGMqsVwXLTtQl9CWz/r3g8/Hmx7okLklVUxtQvd3Mqs4hgbzeWzx5IpzCxaaZMLsdjoPj3qK5tgyOxXJj3ZO4hW5vdpGs7jRv+Bcjg5O+Q1sLrAFWDJXvKo3/VTUZrxnOQqOCU7tuH2QZL6l8pf6E364n1iaWjf0dHi1cnkxOi+HByb+QyWJ6Uwj9+OoKphSk518YOtjY3laTguDhlhw8j6HQoAgNRt29f6bXtadspMZQQ7hlOr+CqtXFqZO9XUJIlNlfsc599BbYTmQVl3P3Fbs5mFRPmo2HF7IHEhVTuCG5t22CHpn/1Ico7ip7BPTELZjZc2tCkazuNkC7Qc4p4vOVt58riBEr2ii0JPPonOFkS18KtYwcUQUEIZWVoDx2qc7yl9s2Ets5xT1XHbX3aMO/uPijkMn7cn8rz5S1fWhKWTdm21G2tI3awHEnBcXFK9lh2jglVLgiWTrET2k5ALrPxoywrqCjcNnIuKBrfjNLepOVrmfJlIheyS2jj586KhwfSLrhq8UJLyrz28GHMJSVNKuP4GDFwb8PlVqLgAIz4B8gUcHYDpLYeK46poADdqVMAeCRICs61yGQyaxxOXX2pCnQF7EoXXVlNmT1lC3/rFcHH5UrOzwfTeGblIYwm2zPDXJ3OAZ2J9YlFZ9LxZ8qfzhanyZAUHBentDz+5nr3VImhxOrLrlf21J4vQJsHQR2hx112k9NepOSWMuWLRC7nlBIV4M7y2QOJCaw+AFoVFYUqIgKMRkr3N+0N11LV+MCVA63HTRXY/horzlvOlaUJKd2/HwQBdWwsqpAQZ4vjcliUvtKkfbWO+zP5T4xmIx38O9Der32tY53BTT3D+fSePijlMn47lM5TK1qOkiOTyaz3idbUm0pScFwYs06H9rBYYtujf2UFZ1vqNqsvu5N/J9smLCuAxE/F45EvQhMU2KoPl3NKmPJFIql5WmIDPVgxexBRAR41jpfJZNa2DU0dhxPuFU7PoJ4ICGy6vKlJ13Yqw58TrTjnNkJq7Te0lkLpHin+pjY8yxUc7aFDtWY0Wm6sE2OdG1xcGxO6hzP/3r6oFDJWH8ng78sPYmghSs74tqLVeXfGbgr1hU6WpmmQFBwXRntQvGAog4NRt42t9Jql9s3YmLG2+7L3fAll+RDUCbreZldZG4uo3OwmvaCM9sGerHh4EBF+dTcztAQ5luxpWgUHYFzsOKCVuakC20Ovu8XjVmLFsbheJAWnetRxcWJGY1kZ2vJU+uvJLctlb6aoKLqae+p6xnUL4/P74lEr5Kw9msnj3x9Ab2z+Sk4733bE+cVhNBvZmrLV2eI0CU2i4MyfP5+2bdui0WiIj49n+/aaU9W2bNmCTCar8jhV7gO38NNPP9G1a1fc3Nzo2rUrv/zyi6PfRpNjrX8zYEAlJabUUGpN97O4SuqkrBAS/ycej/iHS1lvUnJLmfrlbjILy+gQ4sXy2YMI9bEts8sS9Kk7eQpTUZEjxayC5W+//8r+1uOmgmusOJsgpfa4i+aOqbCQspNi7R8p/qZ6ZDIZHv3K43D2Vv992HR5EybBRNfArkT5RDWleA1idJdQvpgWj1opZ/3xKzz23QF0RpOzxWo0lmtWa9mUOVzBWbFiBU899RQvvfQSBw8eZNiwYUycOJHk5NqbnZ0+fZqMjAzro8M1FXwTExOZMmUK06ZN4/Dhw0ybNo3JkyezpzxepaVgDTC+rv7NjrQdlJnKiPSKpHOAjT1x9lqsNx2h2+12lrThpOaVcveXFZab7x8aSLC3m83nq0JCUMVEgyCgLW9n0VREeEXQI6gHZsHM5sutpOgfQEA76DVVPG7hVpzSfeXxNzExqEKl+JuaqIjDqV7BaQ7uqesZ1TmEr6b3Q62Us+nkFeZ81/wtORYFZ1farlaRTeVwBeeDDz7ggQce4MEHH6RLly7MmzePqKgoPvvss1rPCwkJISwszPpQKCosDvPmzWPs2LHMnTuXzp07M3fuXEaPHs28efMc/G6aDrNWi/bIEaBqgLHVPRVro3tKV1RhvRnuOtabtHwtU7/aTVq+lnZBniyrp3Jjwbp73Nf0MSGtbUdkxWLFOb8ZUlpujxvJPWUbFktq6cGDCAZDpdeytdnsvyImAVjcus2FER2DWTQjATelnE0ns3hi2YFmHZMT5xdHrE8serPemqTSknGogqPX69m/fz/jxlX+Uo8bN45ddVS+7NOnD+Hh4YwePZq//vqr0muJiYlV5hw/fnyNc+p0OgoLCys9XJ3SAwfAYEAZHo4qqsKkW2YsY2uq6D8dF2PjxWLvl2LmVGAH6H6HI8StNxkFWu75ajcpuVpiAj34/qGBhNjolroej362ZXE4AouCs+/KPnK0OU2+vtMIaAu9W74Vp6LAn+Seqg23jh2R+/oilJZSduJEpdf+SvkLAYFugd2I8IpwkoQNZ2iHINGSoxDdVU834+wqmUzWqjZlDlVwsrOzMZlMhIaGVno+NDSUzMzMas8JDw/nyy+/5KeffuLnn3+mU6dOjB49mm3bKrTNzMzMes351ltv4evra31ERbm+D9iSueHZv38lK83OtJ1ojVrCPcPpFtit7ol0xbDLYr153iWsN1cKy7jnqz1cziklOsCDZQ8NJMy34dWULXU4tMeOYdZq7SWmTUR6R9ItsJvopmotvaksDH8e5Eo4/2eLrItjKiqS4m9sRCaXV1hSr3NTWbIMx8SMaXK57MXwjsF8Pq0iu+r5H5tvxWOLFW1H2g5KDaVOlsaxNEmQ8fVuFEEQanStdOrUiYceeoi+ffsyaNAg5s+fz0033cT777/f4Dnnzp1LQUGB9ZGSktKId9M0lO6pCDC+FovWbXP2VNJXoM2FgPbQfZLd5awvWYVlTP1qNxezS4j0d2fZ7IE2ZUvVhqpNG5RhYWA0WtPqmxJrNlVrqWpswT8WekwWj7e/X+vQ5kjp/v1gNqOKiZb6T9mAtfHmNQpOga6AvRniZm1MdPNVcABu6BzKp/f0RSmX8cvBNF786Uiz7F3Vyb8TUd5R6Ew6tqW1bDeVQxWcoKAgFApFFctKVlZWFQtMbQwcOJCzZ89a/x8WFlavOd3c3PDx8an0cGXMJSXWdMtrff86k87qnrIpe0pfCrs+EY9H/AMU9WjG6QCuFum4Z8EeLlwVKxQve2ggbRqp3MB1WRxOdFMlXUlqXW4qgGHPADI4vRauHHe2NHbFkhEkWW9sw/J30u4/gGASM462pm7FKBjF2A/fWCdKZx/GdQvj46lixeMf9qfy0q/HEITmpeRc66baeGmjk6VxLA5VcNRqNfHx8WzcWPmPuHHjRgaXd6G1hYMHDxIeHm79/6BBg6rMuWHDhnrN6cpojxwBkwllRDjqyDbW5xPTEykxlBDqEUrP4J51T3RgKZTmiDvt7nc6TmAbyCnWce+C3ZzLKibcV8OyhwbWWsSvvjgz0DjKO4ouAV0wC+ZWVQYdgKAO0PVW8Xj7B86Vxc5Y4m88pQBjm9B07ozc2xtzcTFlJ8WyHtfW62op3NgjnA8m90Iug2V7k3l11fFmp+RYrM7b07ajNTatW78pcbiL6plnnmHBggUsWrSIkydP8vTTT5OcnMwjjzwCiO6j6dOnW8fPmzePX3/9lbNnz3L8+HHmzp3LTz/9xOOPP24d8+STT7JhwwbeeecdTp06xTvvvMOmTZt46qmnHP12moTSfWI8g0ff+ErPX3uxqLP3lFEPuz4Wj4c85VTrTX6pnnsX7OHMlWJCfdxY9tBAogPtp9zANXE4dVRTdRSt1k0FMOxZ8d/jP0POeefKYidMxcXWYFnJgmMbMoUCj759AVE5LDWUsitNTPwYHT3amaLZnVt7t+HdO3shk8GSxMv835qTzUrJ6RrQlTZebdAatexM2+lscRyGwxWcKVOmMG/ePF5//XV69+7Ntm3bWLt2LTExMQBkZGRUqomj1+t57rnn6NmzJ8OGDWPHjh2sWbOGO+6oyP4ZPHgwy5cv5+uvv6Znz54sXryYFStWMOC6eJXmSumBcgWnX4WCYzAZ+CtZzCazaTd0ZAUUpoFXGPS+xyFy2kJRmYEZXydxKrOIYG9RuYkNqr63VGNQt2snVlPV6dAea3pXiSWjLSkziQJdQZOv71TCe0KH8SCYYceHzpbGLmgt8TfR0aiusR5L1I41XTwpiW1pYjuZaO9oOvp3dLJk9ufO+Ejeur0HAAt3XOSdP043GyWntWRTNUmQ8WOPPcalS5fQ6XTs37+f4cOHW19bvHgxW7Zssf7/H//4B+fOnUOr1ZKbm8v27du58caqzSTvvPNOTp06hV6v5+TJk5UUoOaMYDCgPSQGyrqX74ZA7B9SZCgi2D2Y3iG9a5/EbKq40Qx+ApT1ry1jD7R6Ew8s2cfhlHz8PVR8+8CAaruC24NKcThOcFNF+0QT5xeHSTC1ivoSVRj+nPjv4eVQkOpcWexAiSU9vNwyKGEb1oJ/+/ez+aJocR4dM9r2djLNjLv7R/PGbd0B+HzreT7cdLaOM1wHi4KzNWUrZcYyJ0vjGKReVC5G2alTCFotcl9f3OLirM9bUpBviL6hbvfUid8g9zy4+0P8TAdKWzM6o4mHv93P3ou5eLspWXr/ADqFeTt0TcvNqHSfc9oH3BB9A0DrSxcHiOoPscPAbICdHztbmkajtbiJJfdUvdB07YrcwwNzYSEXD2wBYGx0y4m/qY5pA2N4+eauAHy8+SxfbG0ebtoeQT0I9Qil1FjKnoyW1QXAgqTguBjW+Js+fZDJxY/HZDbxV4ronqrTly0IFcGeAx4FN8dYTGrDaDLz92UH2XbmKu4qBV/PSqBHpK/D17VYcK7N4mhKLJ+NpVZRq8NixTmwBIqznCtLIzBrtWgt8Tf9JAtOfZAplVbLc7uLZYR6hNI9qLuTpXI89w9tyz8mdALgrXWn+G7PZSdLVDcymazFb8okBcfFKN0vuleujb85fPUwuWW5eKu96RdWxwX37Ea4chTUXtD/IUeKWi1ms8BzPxxm/fErqJVyFszoR7/YgCZZ261TJ+ReXphLSii7rjlrU9AloAsRnhGUmcpITE9s8vWdTtsR0KYfGMsg8VNnS9NgtEePilXEg4NRtWlT9wkSlbBYvbomC4yJGdNi3VPX89jIOB4b2R6Af/16jF8PpjlZorqxbMq2pGzBZG7+zUSvR1JwXAhBENDuFxtGul+TQfVnsph6PCJyBCq5qrYJKgqu9ZsFHk2jWFQsL/DSr8f49VA6SrmM+ff0ZUhcUJOtL1MocI8Xd49aJ8ThtIYdUa3IZBVWnKSFYnuQZoj2wEEA3OPjW83N2Z6o+/YCoFOqwJiolpU9VRfPj+/E9EExCAI8+8NhNhyvvrq+q9A3tC8+ah/ydHkcunrI2eLYHUnBcSH0Fy9iystD5uaGe3exDYMgCNbaKpabZ41c3gUpe0ChhkGP1z7WzgiCwP+tOcmyvcnIZPDhlN6M6Wp7MUd74cxAY6j4jLambsVoNjpFBqfScQKEdgd9Eez50tnSNAhrFuM1Qf4StnMsqAyDAvxKoVtZ021wXAGZTMart3Tjjj5tMJkFHv/+IDvOZjtbrBpRyVWMiBwBVGykWxKSguNClO4XL6zuPXsiU6sBOJd/jpSiFNRyNUMihtQ+wfb/iv/2uQ+8m7a0/IebzrJwx0UA3rmjJ7f0ck5TvWsrGjsjZbNPSB/83Pwo0BVw4MqBJl/f6chk5dWNgT2fib3QmhGC2Yz24CEAqzVQon78eWU758svP7pDTd86xdnI5TLevbMn47uFojeZeWjpPvZfznW2WDVi2ZT9mfxns0lztxVJwXEhLJkb115YLVr1oIhBeKhqKY6XfhDObwaZAgb/3aFyXs8XW8/z8WYxPfLVW7oyOcF5zUzdu3VDptFgys9Hf77psxmUciUjo0YCrdRNBdD1NgiME11U+xY5W5p6oTt7DnNRETIPDzSdOjlbnGaHIAj8lfIXpyNF1572QMtrwmoLSoWcj6f2YViHILQGEzO/TuJYmmvWxxocMRg3hRupxamczW8+ae62ICk4LkTpAXHH7xFfEUhss3vKkjnV404IaOsQ+apj+d5k3lonBvT+Y0InZg5purWrQ6ZW4967N1CRkdbU3BBVviNKaXk7IpuQK2Do0+Jx4qdg1DlXnnpguSF79O6FTOnc3m3NkRM5J8gqzeJijAaA0vJ4ptaIm1LBF9PiSYj1p6jMyPRFezmXVeRssargofJgUPggoOW5qSQFx0UwXMnCkJICcjnufXoDkFmSyYmcE8iQWf2k1XL1NJz8XTy23FiagHVHM/jnL0cBeGREex4bGVfHGU2DR98+AGgPOsdFNChiEO5Kd/Hzyz3hFBmcTo/J4B0BxZlw9AdnS2MzpdUE+UvYjmVD5p8g3jD1589jys93okTOxUOtZOHMBLq38SG3RM99C/aSklvqbLGqcK2bqiUhKTgugmXn6Na5EwovsXaN5cvWJ6QPge6BNZ+88yNAgM43Q0gXR4sqLnkumyeXH8IswN0JUbwwwXXM+e59yvvhlMdSNDUapYahbYYCsPlyK3VTKdUw8FHxeOfHYDY7Vx4b0VqsqOVKskT9sNTrGtx1POq2ojW39GDrteIA+GhULL1/AB1CvMgsLOPeBXvIKnKtysEjokYgl8k5mXuSjOIMZ4tjNyQFx0WorsGmTe6pwnQ4slI8biLrzeGUfGYv3YfeZGZi9zDevL2HS6XTuvfuBTIZhuRkjNnOyWAYFTUKaHk7onoRPxPcfCD7NJxd72xp6sSQkYEhPR0UCjQ9ezlbnGZHalEqZ/POopApGN5mOO4WS+qBVhhsfx0Bnmq+fXAAUQHuJOeWMmNREgVag7PFshKgCaB3cG+g4r7TEpAUHBfBGn9TXuCvQFfAvkwx1dlys6yW3Z+J5fFjhkCk46uunssqZubXeynRmxgSF8i8u3ujkLuOcgOg8PbGrUMHwHm7x+GRw1HKlJwvOM+lgktOkcHpaHyg3/3i8c6PnCuLDVh+g5rOnVF42b8hbEvHYr3pE9IHP42fdbPWmuNwriXUR8M39w8gyMuNkxmFPLR0H2UG1ymuZ9lIW5o6twQkBccFMBUVoSuvvGspc74tdRsmwUScXxzRPtHVn1hWCPsXi8dNkDmVlq9l2sI95JUa6BXpyxfT+uGmVDh83Ybg3seye3TOxdXXzZeEMLGi65aULU6RwSUY8IhYlyk5EVL2OluaWqkosimlhzcEi4Jj2ZBZLDhlR49i1uudJpcrERvkyeJZCXi7Kdl7MZfHvz+I0eQa7ltLcsS+K/so0Llmxld9kRQcF0B76BAIAqroaFQhIUDFxaJW99T+xaArhKBO0GGcQ2XMKdYxbeEeMgrKiAvx4utZ/fFyc90sk4pAY+ftHkdEiYHhW1K3OE0Gp+MTDj0ni8cubsWxWPs8pPo39ebauk+jokUFRx0biyIgAEGvp+zYcWeK51J0b+PLVzP6oVbK2XTyCnN/PuoS2ZZRPlF08O+ASTCxLXWbs8WxC5KC4wJUxN+IF1adSceOtB1ALc01jXrRPQUw+AmQO+6jLNYZmfl1EheultDGz51vHuhPgKfaYevZA4sFp+z4ccw656QpW+rhHMo61GJ2RA3CYl08tQayXbPOhqmoCN3p00BFkLqE7VxrcY7yFutgyWSyijgcJ2U0uioD2wXyydQ+yGXww/5U3l7X9L3zqsNyv2kpNbwkBccFsFgZLBeDvRl70Rq1hHiE0CWghqyoYz9BUTp4hVXskB1AmcHE7KX7OJpWQICnmqUP9Cfc191h69kLVVQUiqAgBIOBsuPO2T228WpDnF8cJsHE9rTtTpHBJQjuBJ1uBATY9YmzpakW7aHDYDajiopCFRribHGaHde7pyx4WDIapTicKozvFsbbd/QE4IttF/hia9MXJr0ey6ZsV/ou9Kbm71aUFBwnIxiNYvdiwKPc6rA1dSsgNtesNjtJuOZGMeBhULo5RDajycyTyw+y63wOnmoFS2b1p32wl0PWsjcymQyP8npCzszisFwwtqZsdZoMLoHFinN4ORRdca4s1WCxMEjp4fXnWovz9S71azOpXMEN42pMTojixYmdAXhr3Sl+2JfiVHm6BHQh2D0YrVFLUmaSU2WxB5KC42TKTp9G0GqRe3ujbt8eQRCsCo7l5liFc5sh6ziovSqyVOyMIAi89Msx1h+/glop56sZ/egR6euQtRyFs+vhANYCjTvTdmIwu05aaJMTPRAi+4NJB3u/cLY0VZAK/DWcPRl7RIuzewhdA7tWek3TrRsyNzdMeXnoL15yjoAuziMj2jN7eDsAXvz5KBtPOG8DIJfJGR45HKjYaDdnJAXHyWgPHQLAvVcvZHI5Z/LOkFmSiUahoX9Y/+pP2lUerNl3Brj7OUSud/44zYp9Kchl8MnUPgxu3/y6AlsqQmsPHnTa7rFHUA8CNAEUGYpaZ/NNCzIZDHlSPE5aADrXKVkvGAxoD4tNIaUA4/pjcU+NjBqJXFb5liJXq9H06A5IcTi1MXdiZyb1jSzvQH6APRdynCbLtVbn5m51kxQcJ2PtXFx+M7ZozQPDB6JRaqqekH4ILm4Tm2paKsXamQXbL/B5uT/47Uk9Gd+taTuT2wtNt27I1GpMubnoL11yigwKuYJhbYYBrTxdHMQ4nMA4KCuAA0udLY2VslOnEMrKkPv6om7XztniNCvMgtnqfrVkT11PRRyOpODUhEwm451JPRjTJQSd0cyDS/ZxIr3QKbIMCB+Am8KN9JJ0zuWfc4oM9kJScJyM1YJT3iDScrGwpBhXYdfH4r/dJ4Gf/bt2/3Yojf9bcxIQdxWT+zmvM3hjkavVaLpbdo+HnCaHdUeU2vx3RI1CLhcz/gAS54PJNVx21iD/3qIVVcJ2Tuae5Kr2Ku5K9xotzhVxOFKgcW0oFXL+d09f+scGUKQTm3Nezilpcjncle4MCB8ANH83lfRrdiKGrCwMqakgk+HeqxfZ2myOZosBxxY/aCXyLsPxX8XjIfYv7LfzXDbP/SCa6u8f0tbqF27OOLvxJsDgiMGo5CpSilK4WHDRaXK4BD3vBs8QKEwVMwFdAO2hcvdU+SZDwna2pYj1UgZHDEatqL50hCV5Qn/xIsbc3CaTrTmiUSn4akY/Ood5k12sY9rCvU7pW2WJHWzuVmdJwXEiFuuNW4cOKLy82J66HQGBroFdCfGoJlV193wQTNBuFIT1sKssx9IKePib/RhMAjf3DOdfN3Vxqf5SDcVSD8eZDf88VB7W3W2rLvoHoNKImX8Aif8TMwKdzPVWVAnbuTbjsyYUfn6o49oDFX9riZrxdVex9P7+RAd4kJxbyv2LkyjWGZtUBssG+8jVI+SWNV+lVFJwnIhl5+heTXp4FUpzK+IW7Gy9ScktZebX4o9oULtA/ju5F3IX6y/VUCx/W/2585jy850mh8Xl2OrTxUHM/FN5QOZRuOTc+kCGrCyxwaZcjqZHT6fK0ty4WnqV4zlijalhkcNqHeveS2xearnmSdROiI+Gpff3J9BTzbG0Qh79dj96Y9O1dAjzDKNzQGcEBLanNt8aXpKC40Ssvv8+vdGb9OxK3wXUEH+zbxEYSkXLTbtamm/Wk5xiHdMX7SW7WEeXcB++mB7vsv2lGoIyIAB1TAyANVPGGViU1kNXD5Fflu80OVwCjwDofY94nPipU0WpbEWVGmzWB0vxyu6B3Qlyrz3L0mIdc+ZvsLkRG+TJwpkJuKsUbD+bzYs/HWnSGD7LNas5x+FICo6TMOv11gq7Hr17k5SZhNaoJdg9uGr1YqMe9n4lHg96Qky5tQOleiP3L9nHxWyxBcOSWQn4aFR2mduVsDRPdGY11QivCDr6d8QsmFt3VWMLAx4FZHDmD6e2b7BaUSX3VL2x9CsaHlVNvOB1WC04R48imFyng7ar0zvKj/n39kUhl/HzwTTeW3+6yda2KDi70ndhcJGEgPoiKThOQnfiBIJej8LfH1VMjFVLHh45vEotCY7/DMWZYluGbrfbZX2Dycyc7w5wOCUffw8VSx/oT4hPNWnpLYBr6+E4k5YSuGcXguKg00TxePd8p4khxd80jEoW51ribyy4tW+P3NMTobQU3VnX7EfmqozqHMJbt4sxl/O3nGfJrktNsm63oG4EuQdRYihh35V9TbKmvZEUHCdhqa57fXp4lerFglBhxu//ECgb3+RSEAT++fNR/jp9FY1KzsKZCc2mBUNDsDQx1R49imBs2mC9a7F8tjvTdzbbHZFdGTRH/PfQMihp+sJmYpfrY4CYIi5hO/sy99Vsca4GmUKBey8xxkmKw6k/kxOieGZsRwBe/f04fxzLcPiaLaGqsaTgOAnrzrFPH87mnyW9JB03hZu1/oCVyzsh8wgo3e3WluG/G87ww/5UFHIZn97Tl77R/naZ11VRt2uH3MsLQat16u6xe1B3AjWBlBhK2J+132lyuAwxQyC8Fxi1sH9Rky9fduqUaEX180MdG9vk6zdnrrU425ptqbG4qaQ4nAbxxA1x3DMgGkGAvy8/RNIlx2c3WRScLSlbmmUNL0nBcQKCIFQqLmbxZQ8IH4C78rpO3Ynl5vted4vBmY3km8RL/O8vsTrlf27vzuguoY2e09WRyeW49yzfPTrx4lppRyRlU4mxZIMeF4/3fgVGXZMuX6lNSgsoidBUXNsvr9p6XTVQkUl1yBFitXhkMhmv/60bY7qEojeaeWBxEmevOLblyaDwQajlatKK07hQcMGhazkCScFxAsaMDIxZWaBQ4N6jhzUmo4ovO+c8nF4rHg98rNHr/nEsg5dXiYHNz4ztyJSE6EbP2VywuCCcbR63ZMg11x2R3el6G3hHQPGVJi/8V2FF7d2k6zZ3LhRcIK04DbVczcDwgTafZ1Fw9BcvOrVkQ3NGqZDzydQ+9I32o7DMyIxFe8kscFwhQA+VBwnhCUDzjB1sEgVn/vz5tG3bFo1GQ3x8PNu315xF8vPPPzN27FiCg4Px8fFh0KBBrF+/vtKYxYsXI5PJqjzKypq+4mNDsBSd03TpQr5My5GrR4BqdkN7vgAEiBsLwR0btebei7n8ffkhBAHuHRDNEzfENWq+5oa7i5jHLTui1OLUZrkjsjtKNQyYLR4nftqkhf9KpQDjBmGxOCeEJ+Ch8rD5PKW/f0XJhqNHHSJba8BdrWDhjATaBXuSXlDGzK/3UqB1XEzfyMiRQMXn3pxwuIKzYsUKnnrqKV566SUOHjzIsGHDmDhxIsnJydWO37ZtG2PHjmXt2rXs37+fUaNGccstt3DwugwYHx8fMjIyKj00muaRBXRtaqqlenHngM6EeV7T1FKbDwe/FY8HNc56cy6riIeW7kNvNDOuayiv39q91ZnkNeUuKmfvHj1UHvQPL69qnLLFaXK4FPEzxcJ/V47BxaZx3RmuZGFMzwC5HPce9q0K3tKxpXpxTbiKJbW54++pZsms/gR7u3Eqs4iHv9mHzuiY9HvLxrs51vByuILzwQcf8MADD/Dggw/SpUsX5s2bR1RUFJ999lm14+fNm8c//vEPEhIS6NChA//5z3/o0KEDv//+e6VxMpmMsLCwSo/mwrUF/mq8WBxYCoYSCOnaqMJ+WUVlzPw6iQKtgb7Rfnw8tQ+KFlKluD640u7RsiNqrpkJdsfdH/rcJx43UeE/a4G/jh2Re0oF/mylQFfAoaxDQP3ibyxopDgcuxEV4MHiWQl4uSnZfSGXZ1cexmy2vwW0OdfwcqiCo9fr2b9/P+PGjav0/Lhx49i1a5dNc5jNZoqKiggIqBxgW1xcTExMDJGRkdx8881VLDzXotPpKCwsrPRwFmatlrJTpwBQ9exurSVRKT3cZIS9X4rHAx9tcGG/Ur2RBxbvIzVPS2ygBwtmJKBRtZwqxfXFVXaPljicw1cPk1eW51RZXIYBjwAyOLsBrjq+mFlF/RspPbw+7EzbiUkwEecXRxuvNvU+39LQVHvkCIK56VoPtFS6Rfjy+X3xqBQyVh/J4D9rTzpkneZa1dihCk52djYmk4nQ0MqZOqGhoWRmZto0x3//+19KSkqYPHmy9bnOnTuzePFiVq1axbJly9BoNAwZMoSzNaQAv/XWW/j6+lofUVFRDX9TjaTsxAkwGlEGB3NYnkaJoYQg9yC6BnatGHRyFRSkgEcQ9Jhc82S1YDSZeeL7gxxNKyDAU83iWf0J8Gx8DZ3mjKukqYZ5htHJvxNmwczO9J1OlcVlCGwPnW8Sj5ug8J9U4K9hNCR76lrcOnZEptFgLipCf/GiPUVrtQztEMR7d4rXtgU7LjqkEKBlU7YzbScGc/Op4dUkQcbXx3sIgmBTDMiyZct49dVXWbFiBSEhFd21Bw4cyH333UevXr0YNmwYK1eupGPHjnzyySfVzjN37lwKCgqsj5SUlMa9oUZgsR5oevVka1p5qfPrqxdbLvAJD4jdl+uJIAi8suo4m09l4aaUs2BGP2KDJDO8e89yBccFdo+W5oTNuZGd3bEU/ju8HEqyHbaMcF2bFAnbMJqN7EjbATQs/gZAplTi3r07ILmp7Mltfdrw/PhOALz2+3E2HLfNgGArPYJ6EKAJoNhQzIErB+w6tyNxqIITFBSEQqGoYq3JysqqYtW5nhUrVvDAAw+wcuVKxowZU+tYuVxOQkJCjRYcNzc3fHx8Kj2chfaImDHl3rOntRZKpd1QShKkJoFCDQkPNmiNz7de4Ls9ychk8NHdfVp8IT9b0XTqiMzNDXNhIfpLl5wqy7A2ooKzM30nJrPUmweA6EEQ0QeMZWJzWQdRdvJkpTYpErZx5OoRCvWF+Lr50jO44Z3Xra1TpEBju/LYyPZM7R+FWYC/Lz/IoZR8u80tl8mt16zm5KZyqIKjVquJj49n48aNlZ7fuHEjgwcPrvG8ZcuWMXPmTL7//ntuuummOtcRBIFDhw4RHh7eaJkdjUXBKYgLI7U4FaVcyaDwQRUDdpcHWfa4C7xCqpmhdn47lMY7f4gxPq/c3JUJ3ZtP8LWjkalUaKy7R+deXHsG98Rb7U2BroCj2VLKLCDGmg14VDxOWiA2mXUAUoG/hmG5sQ1tMxSlXNngeVylZENLQyaT8cat3RnRMZgyg5kHlySRnFNqt/ktG3GLFa854HAX1TPPPMOCBQtYtGgRJ0+e5OmnnyY5OZlHHnkEEN1H06dPt45ftmwZ06dP57///S8DBw4kMzOTzMxMCgoKrGNee+011q9fz4ULFzh06BAPPPAAhw4dss7pqhiuZGHMEFNTd/teBSA+NL6ilkR+CpxYJR4PfLTe8+++kMPzP4gK1IND2zJzSFu7yN2SsF5cjzj34qqUKxkSMQSg2WUmOJRut4NXqFj478SvDllCqn/TMCx1UBrqnrJg+Q3qzp7FVFzcaLkkKlAq5Hx6b1+6RfiQXaxn5uK95JfaZ6MwKGIQCpmCiwUXSSlyXphHfXC4gjNlyhTmzZvH66+/Tu/evdm2bRtr164lptw0nJGRUakmzhdffIHRaGTOnDmEh4dbH08++aR1TH5+PrNnz6ZLly6MGzeOtLQ0tm3bRv/+/R39dhqF5abqFhfHtty9QIWrAoC9X4BggrbDIax+tTnOXili9tJ96E1mJnYP45831t0ArzVSsXs84mRJpDicalFe45rd/ZlDCv9ZLAdSBpXtpBalci7/HAqZgsERNVvfbUEZHIyqTRsQBMqkgn92x8tNyaKZCUT4arhwtYSHlu6jzNB4N7i32pveIb2B5mPFaZIg48cee4xLly6h0+nYv38/w4dXxJwsXryYLVu2WP+/ZYtYwv76x+LFi61jPvzwQy5fvoxOpyMrK4v169czaNA1bh4XpazcPaXq0ZWkzCSg4iaHrhj2LxWPB86p17xZhWKtm8IyI/Ex/nw4pTfyVljrxhYsNzXd6dOYS+1nvm0IFgvOydyTXC296lRZXIr4WWIMWvoBMR7NjhivXhUL/MlkVnelRN1YrDe9Q3rj6+bb6PkkN5VjCfXR8PWs/ni7KUm6lMdzP9inRo5lQ95cNmVSL6omxGI1SIvxwmA20MarDW19yt1Ih74DXQEExkGHcbXMUpkSnZH7lySRlq+lbZAnX03v16pr3dSFKjQUZVgYmM1ojx1zqiyB7oF0DxRvss1lR9QkeAWLMWggWnHsiCUGzi0uDoWXl13nbslsuybj0x64Sk2qlkynMG++mFZRI+fd9Y2vL2XZkCdlJlFmdP3WSJKC00QIJpP1hro3QCzuNrTNUDHI0WyquJAPeATktn0sRpOZx78/wLG0QgI91SyeldDqa93YgivtHq1uKikOpzIDyuPpTvwGBWl2m9ayydD0angWUGtDa9SSlCFa0hobf2Ph2t+g1HTWcQyOC+LtO8Tv+udbz/Pt7suNmq+DXwdCPUIpM5Wx78o+e4joUCQFp4nQnTuHUFqK3MODtWbxImuNvznzB+RdBI0f9L7HpvkEQeDfvx3nr9NX0ajEWjcxgVKtG1twJQVnaJuhACSmJzarAloOJ7wnxAwRY9KSFthtWmv8TU9JwbGVpMwk9GY94Z7htPNtZ5c5NV26IFOrMeXlYaihL6GEfZgUH8kzY8VmzS//dozNJ680eC6ZTNasYgclBaeJsFxYhS5xpGkzUMvVJISJbeit1pv4maC2TUmZv+U8y/aKtW4+vrsPfaRaNzZjNY+7wO6xW2A3/N38KTYUczjL+QqXS2Gx4uxfDAZto6cTTCZrUKtFyZWoG8uNzGpxtgMytRpNV7F6uytsNFo6T9wQx+R+kZgFePz7gxxNLaj7pBqwbMq2pW5z+vWzLiQFp4mw+P7TYkQFJiEsQUwPv3IcLm0HmQL6P2TTXL8eTOO9cn/qq7d0Y1w3qdZNfdB07QpKJaar2RjT050qi0KuYEgbKV28WjrfBL7RoM2FIysbPZ3u/HnMpaXIPDxwi4uzg4AtH0EQrPFhlTI+7YC71HizyZDJZLx5ew+GdQhCazBx/5IkUnIblmQxMHwgSrmS1OJULhc2zuXlaCQFp4koK/f9Xxt/A8CeL8R/u9wCvpF1zrP7Qg7P/yjueGYPb8eMwbF2l7WlI9do0HTuDLjG7tGamSApOJWRX6P07/m80SnjlixG9+7dkSmkQHxbuFx4mdTiVFRyFQPCB9h1bqmicdOiUsiZf29fOod5c7VIx6zFSRSU1t8t7qnyJD40HnD95AhJwWkCTMXF6M6dA2C9p9hgbljkMCi9Zmc6oO4iheevFvPwN/sxmARu7BHGixM6O0zmlo4rxeEMjhiMXCbnbN5ZMkvs20Om2dN3Gqg8IesEXNzWqKms8TdSgLHNWJTuvqF9KwqS2gnLb7Ds9GnM2sa7ICXqxluj4utZCYT5aDiXVczD3+5DZ6x/jZzmsimTFJwmoOzYMRAEjCH+5HiYiPKOIsYnBg4sBaMWwnpC9MBa58gp1jHr6yQKtAb6RPvxwWSp1k1jcKU0VT+NHz2DxJuuq18wmhx3f+g9VTze83mjprJmUEkBxjbjKPcUgDIsDGVICJhM4jVSokkI93Xn61kJeLkp2X0hlxd+PFLvWBrL9yEpM4lSg3PridWGpOA0AZYLa3qMWHdjWJthYDJWZIcMeETsw1MDZQYTs7/ZT3JuKVEB7lKtGztg3T2eOIFZ75ieR/WhOWUmNDkW6+bpdZB7oUFTmEtKrFZUS1d5idopNZSyL1NMBXaEgiOTyaztMlzBktqa6BLuw/x7+6KUy/j1UDofbqq+UXVNtPVtSxuvNhjMBvZm7nWQlI1HUnCaAEuA8b5AMXJ9aJuhcHotFKSARyB0n1TjuWazwPM/HmH/5Tx8NEq+nplAkJdbk8jdklFFRaHw90cwGNCdOuVscaw3kN0Zu9GbnK9wuRRBHSBuDCDA3q8aNIX22HEwm1GGhaEKrX8T29aIJT08wjOCtr6O6WvnSq7i1sbwjsH853axJdDHm8/y0/5Um8+VyWTWOFJXjsORFBwHIwiC9cd7MLgEN4WbmB5uCS6OnwUqTY3nf7jpDL8fTkcpl/H5ffHEhXg3hdgtHplMdk0Wh/Mvrp0DOhPsHozWqGX/lf3OFsf1sHQZP/gt6IrqfbqlD5yUHm47FnfpsMhhDuu6bnEVlx465PIpxy2RyQlRPDayPQAv/nyExPM5Np9rqWq9PXW7y352koLjYIzp6ZiyszEr5FwIhf5h/dFkn4XLO8TU8IQHajz3h30pfPKnaFb/zx09GBwX1FRitwoswaausHu8dkckxeFUQ/sbILAD6Arh0Pf1Pl0q8Fc/rk0Pt2Z8OgBNt24VJRsyMhy2jkTNPDeuEzf1DMdgEnjk2/2cv2pbh/eEsATUcjXpJelcKGiY69jRSAqOg7G4p7Ii3DGoym9iFutN11vBJ6La83ady2buz2JRssdHxTG5X1STyNuacDXzuBSHUwtyOQx4WDze8zmYzTafKgiCtUyDlEFlGxcLL5JWnIZKrqJ/WH+HrSPXaNB0FKvsusrvsLUhl8v471296BPtR4HWwKyvk8gp1tV5nrvS3Vqs1lWvWZKC42AsAcZHgsXGZMMCesDRH8QXa0gNP5dVxCPf7sdoFrilV4S1zLaEfdH06AEyGYbUVIzZ2c4WRyygJVNyqfASKYUpzhbH9eg1Fdx8xUDjsxtsPs2YmYnx6lVQKESLgUSd7EgVrTf9QvvZPT38eioqix9x6DoSNaNRKfhqej+iAtxJzi1l9jf7KTPUnT5u2ZS5ahyOpOA4GMuu5EyEQKxPLFFnNoKxDMJ7Q1TVnVF2sViAqbDMSHyMP+/d2VNKB3cQCm9v3OJE/7PF0uZMvNXe9A7pDUhuqmpx84L46eLxHtu7jFtunG4dOyJ3d3eEZC2OpnBPWbCk7bvCb7A1E+TlxtczE/DRKNl/OY/nfzyC2Vx7bI0lOWJ/1n6K9ba5tpoSScFxIILBQNmJEwCcjZAxNGJIranhZQYTs5fuIyVXS3SAB19Oi5fSwR2MxoUCjUHqLl4n/WeDTA4XtkDWSZtOsdw4JfeUbZQaSq2doi3fR0diSdsvO34cwSA1nHUmcSHefH5fPEq5jN8Pp/PhpjO1jo/2iSbaOxqj2ciejD1NJKXtSAqOAyk7fQZBp6PEXUZGAAwzKaEwDTyDofsdlcaazQLP/nCYA8n5+LqL1SYDpXRwh+NycTjXFNDSGqXqrlXwixZ7VEFFLFsdVAQYSxlUtrA3cy8Gs4E2Xm2I9Yl1+Hrq2Bjkvr4IOh1lp2u/oUo4nsFxQfznDjF9/JM/z/HDvtrd5a68KZMUHAdiSU09GwbuKg/6ndokvhA/C5SVlZf3N5xmzZEMVAoxHbx9sFdTi9sqse4ejx5FMNW/ZLm9ifOLI8wzDJ1JR1JmkrPFcU0sKeOHl4M2r9ahgsFA2fHjgGTBsZVr3VOOSg+/FplcjnsP8YZquWZKOJfJ/aJ4fJTYkHbuz0fZda7mGMVr2za4Wrq4pOA4kLLynePZCBjg3xl1ciLIldDv/krjViQlM3/LeQDevqMng9oHNrmsrRW3uPbIPTwwl5aiO3/e2eIgk8kqLhgumpngdGIGQ2gPsc3JgW9qHao7exahrAy5tzfqto4pVteSEATB+r2z1DlpCizp+2UuYkmVgGfGduSWXhEYzWL6+Lms6mNs+oX1Q6PQkFWaxZk817LASQqOA7EEN55tI2NoUXlxsq63gU+4dczOc9m89IvYh+XvozswKb7ujuIS9kOmUKDp3h1wPTfVjrQdLrcjcglksoqU8b1fgblmy5s1/qZHD2Ry6XJXFxcLLpJeko5arramADcFUiaV6yGXy3jvzp7Ex/hTWGZk1uK91aaPuync6B8uJsy4mptK+sU7CFNBAfpLlwA4Fy5j6PlE8YVrUsPPXqlIB7+1dwRPj+ngBEklrH2pXCSLY0D4AFRyFanFqVwqvORscVyTHneCewAUJIs9qmrAEjyukdxTNmG5QfUL64e7sukyzjTlLir9pUuY8vObbF2J2tGoFHw5LZ7oAA9ScrU8tHRftenjrmp1lhQcB6E9Ihbpy/CHUF8/2ui1ENEXIvsBcLVITAcvKjOSEOvPO5N6Nom/W6IqFRWNXUPB8VB50C9U/J642gXDZVC5Q/xM8biWLuNWC45UwdgmrO0ZHNBcszaU/v6oYqIB0B492qRrS9ROoJcbX89KwNddxYHkfJ794XCV9HFLOYHDVw9TqC90hpjVIik4DsLi7jgXIWNoQXkgZHlquFZv4sGl+0jN0xIb6MEX06Tu4M7EUodDd+4c5pISJ0sj4sqZCS5DwgNiu5NL2yHzWJWXTYWF6C+IJeSlHlR1U2oo5cCVA0DT1L+5HkvAv6tsNCQqaB/sxef3xaNSyFhzJIP/bjxd6fVI70ja+bbDJJhITE90kpRVkRQcB1FR4E/GsIKr4BkC3W7DbBZ4ZuUhDqfk4+eh4utZ/QnwVDtZ2taNKiQEZXg4mM1i12kXwHKD2XdlH6WGUidL46L4RkKXW8TjvVVTxi2WAFVkJMqAgKaUrFmyJ2MPBrOBSK9IYnximnx9a8kGKZPKJRnUPpC37hA3g5/+dZ6VSZXTx6299FzI6iwpOA5AEASKjxwCIDVCRt8ynZg5pXTjnfWnWHcsE7VCzpfT+tE2yNO5wkoAFS4MV7m4xvrEEukVidFsJDHDdXZELoclpu3ISijNrfRSmbXAn2S9sYWm6B5eGxZXcdnhI1JwvYtyZ3wkf79BTB//5y9H2XlN+vi1bRvMgu294hyJpOA4AENyMrKCIvQKCPfSopKroN8slu1N5outosn83Tt70r+ttKt0FawKjotkUslkMpfv8+ISRA+E8F5i+5MDSyq9ZAkwlurf1E1TdQ+vDU2nTsjUakwFBRguX3aKDBJ18/TYjtzauyJ9/OwVMUO4b0hfPJQe5JTlcDLXtirjjkZScByA5SZ5KRSG6LXQ7Xa2Zyr4169inMBTYzpwW582zhRR4josaaqutHu03GikdPFakMkqrDh7F4DJCIg3bCnA2HYuFFwgoySjydPDr0WmVqPp2hWQ+lK5MjKZjHcm9aRfjD9FZUZmLU7iapEOtULNwPCBgOu4qSQFxwHkHxAr0J5tI2NoaRmX46bx2LcHMJkFbu/ThidHS+ngroama1dQKDBevYoxM9PZ4gCQEJaAWq4msyST8/nOL0LosnS7AzyCoDAVTq8BwJCaiikvD1Qq3Lp0cbKAro/lhpQQntCk6eHX42oZjRLVo1Ep+HJ6P2ICPUjNq0gfHxpZsSlzBSQFxwHkHRCbjhWFmAgM6cU964wU6Yz0bxvA25N6SOngLojc3R23Th0B17m4uivdSQgXd9NSNlUtqDTQb5Z4XN6fyvIZajp3Ru4m9XSrC8sNqanTw69H42KuYomaCfBU8/VMMX38UEo+z6w8xJBwUcE5mn2UAl2BkyWUFBy7Y9bpUJ5PBSDMT8dHRaNJy9fSLsiTL6fF46aU0sFdlYpAY9dQcKByVWOJWuh3v9gG5fJOyDhyTYNNyT1VFyWGEvZn7QecF39jwb1XbwDKTp/GrKtaNVfCtWgX7MWX08T08bVHM1m6o4A4vzjMgpld6bucLZ6k4Ngb7fHjKEwCBR7QRa3gi+we+HuoWDQzAT8PKR3clbHW4XCRTCqouOEcyDpAsb76XjASgE8EdL1VPN7zhfUztMRWSdTM7ozdGM1Gor2jnZIefi2qNhEoAgPBYKDsxIn/b+/O46Iq9weOf2Zjhh0BWRQUTUVQcMMFzTQXTFMrr7Zey0qz3W63XzczS+ua7beybnXLlptmm9pyywUtd0FRcUHcxR1FRPZ15vz+OMwgsuPMnJnheb9evBzhzDlfRmG+53m+z/dRNBahcfp3DOCNifKNxMfrjxKolh87wk2ZXRKcf//733To0AGDwUCfPn3YuLH+4fb169fTp08fDAYDHTt25OOPa3YqXbp0KdHR0ej1eqKjo1m+fLmtwm+SjKREAI61gZS8G1Bp3PjPvXFEiOXgDs9SaLwvDam8XOFoZO192tPOux0VpgqSzyUrHY5jqyw2NqX+QOl+eRWHGMFpmNKrp66kUqkcbkWj0LDbeoVZakvX7ZY3i958ZrPiy8VtnuB89913PPXUU8yaNYtdu3YxePBgRo8ezcmTJ2s9/vjx44wZM4bBgweza9cunn/+eZ588kmWLl1qOWbr1q3ccccdTJ48md27dzN58mRuv/12kpOVfwPI2roWgPJAI98aR/LmpFj6Rojl4M7ALSICtbc3UkkJpYcPKx2OhaWBlqjDqV9YX2jTi9JsE1J5ORo/P3Tt2ikdlUNzhOXhV7P0w3GgqWKhYU+N6MxtvdpSXtAeTG5kl2Rz4NIBRWOyeYLzzjvv8OCDDzJ16lSioqJ49913CQ8P56OPPqr1+I8//ph27drx7rvvEhUVxdSpU3nggQd46623LMe8++67jBw5kpkzZ9K1a1dmzpzJ8OHDeffdd2397TRId0iuv8nzDeC+kX25padYDu4sVGo17pWb/jlUHc4V2zaI5eL1UKmg/yMUZ8tTwYaY7qKgvwFHLh8hszATvUav2PLwq1k6GjtIsb/QOCqVitf+EkPfiNYY8zty3VmJxAOJisZk0wSnrKyMHTt2kJCQUO3zCQkJbNlSewHS1q1baxw/atQoUlJSKK+cNqjrmLrOWVpaSl5eXrUPW0hJ+gP/XAkTUBR9D49XdnwUnIfBAZepxgXHodfouVB0gcOXHWdkySF1u5XiXG8A3ENFzVtDzKM3fUP6YtAaFI5GZoiJAZWK8jNnqLh4seEnCA5Dr9XwyeQ44i/6Mv8rI4Me/5jiQuU237RpgnPx4kWMRiPBwcHVPh8cHExmHb1GMjMzaz2+oqKCi5X/2es6pq5zzp8/H19fX8tHeHh4c7+lehUc3UquJ2QFqPjbg4+Ku0cn5IgrqQxag+Xu2hEK9xyaVk9xni8A7iaxK3VDHGV5+JU0Xl64XdcRcKyfQ6Fx/D3d+L/SCwBkBqop1yh3o2GXIuOr3+glSar3zb+246/+fFPOOXPmTHJzcy0fp06dqvW4azX0nll0WLONiM8+x00rFqg5I/PweNnRoxhtNNLXHOY3IEfpEOqoKnJyKM+SW8e7G/fA2V0KR+S4CsoKLLuHO1KCA2KayqmV5OKbJm9aHNd/BD4G5UYGbfouHBgYiEajqTGycuHChRojMGYhISG1Hq/VagkICKj3mLrOqdfr8fHxqfZhK8GtvImIGmCz8wu2pfX3R1c5wmfejdoRmN+AUi+kiuXi9Sip/DdzCzCg0UuWxn9CTcnnkqmQKmjv055wH9uMajeXI7ZsEBpp12KKs+TBBo8bxioaik0THDc3N/r06UNiYvVCo8TERAYOHFjrc+Lj42scv3r1auLi4tDpdPUeU9c5BaEpzNNUjrSKI9wnnAifCCqkCpLOJSkdjsOydDDu1Uf+xL6lUHBBwYgcl2X3cAcbvYErV1LtRTIaFY5GaDSTEdPmjynN0wJVI3FKsfk8ytNPP81nn33G559/Tnp6On/72984efIkDz8s96yYOXMm9957r+X4hx9+mBMnTvD000+Tnp7O559/zsKFC3nmmWcsx8yYMYPVq1fz+uuvc+DAAV5//XXWrFnDU089ZetvR2gBHHU/HLFcvGGWDTYH3Aht48BYBju+VDYoB+SIy8OvpO/UCZWHB6bCQsqOHVM6HKGxDidSfPQcSCq0wcHogoMUDcfmCc4dd9zBu+++y8svv0zPnj3ZsGEDv//+O+3byx0zz507V60nTocOHfj9999Zt24dPXv25JVXXuH999/nL3/5i+WYgQMH8u233/LFF18QGxvLl19+yXfffUf//v1t/e0ILcCVhcaOtCzbsrv4abG7eG0kSbKMurn3iK3aZXz7QqgoUzAyx3P48mHOF53HoDEQFxKndDg1qLRa3Lt1A0ShsVPZ9gkll+SiYqVHbwC09rjIo48+yqOPPlrr17788ssanxsyZAg7d+6s95wTJ05k4sSJ1ghPEKrRR0WBTofx0iXKz5zBLSxM6ZAAiAuJw6AxcKH4AodyDhHpH6l0SA6l/MQJjLm5qNzcMERGgjoSVr8ABZmQ/gvEiN8XZuZi9X6h/dBrHHMzUvcesRRt305x6m78rrjBFRxU1iE4+gfF2a2AqpFwJYmlPoJwFbVejyEqCoDiVMcpctRr9PQL7QeIaaramO/0DdHRqNzcQOsGfR+Uv5hcc7uXlswRl4dfzeCALRuEemz7DwDFufIiHkNl01QliQRHEGpRNU3lOAkOiN3F62Oumap259hnCmjc4PR2OL1DmcAcTH5ZPrsuyMvnHbH+xsy8s3jp4cOYCguVDUaoX0kupH5DeZGaivxyUKstU4xKEgmOINTCsorDQQuNUy+kklfmOH16HIF5c0bDlRtsegVB98rpDTGKA8i7hxslIx18OxDm7RjTr7XRBQehDQkBk4nifWlKhyPUZ9diKC+kuEJu0Kjv3Bm1p/IbTIsERxBqYVkqnp6OVOY4Baph3mFE+ERglIwknRXLxc1MpaWUHDwI1FLc2H+6/Gfacsivvdt5S2Kuv3Hk0RszRx1JFa5gMlmmp0rU3YGqfzeliQRHEGqha9cOjZ8fUlmZ5Y3TUZg33xTTVFVK9u+H8nI0/v7o2l61wW2bXhDeH0zlkPKFMgE6iCuXhzty/Y2ZOVl1pJ5UwlWOJELOcTD4Unxe7lnkCAXGIBIcQaiVSqXCEFu5s7iDTlNtOiOWi5tZlofHxta+ZYt5FCflc6gotWNkjuVgzkGyirNw17rTJ7iP0uE0yNKTKnW3+L/uqCqnfqUef6UkLR0AQ4xIcATBoVXth+NYw+NxwXG4a93JKs7iYI5jjS4ppdYC4ytFjQfvUCi8AGk/2S8wB2Oenuof2h83BTdBbCxDt26g0VCRlUVFHZspCwqqXBoOKkoDR2IqKkLt4YG+03VKRwaIBEcQ6uSo++G4adzoHyI3tRSbb8osS8TrmvvX6K5YMv4RtNDRAGeangJQu7ujj+wCON5IqoCl9obI0ZScyAbA0L07Ko1GwaCqiARHEOrgXjlFVX7iJBU5OQpHU92V01QtXcWlS5SfPg2Ae329N/rcDxq9vMP46RQ7Rec4cktzSc1KBZwnwYHqncUFB1K5NByA/tMbHkVVgEhwBKEOGl9f3CIigKpdqh3F9WFygrM7aze5pbkKR6Ms8xSiW8eOaHx86j7QMxBiJsmPkz+yQ2SOZevZrZgkE538OhHqFap0OI1mGUl1sKniFi/1GygvhNZdocOQhkdRFSASHEGoh6NuvNnWqy0dfTtilIxsPbdV6XAUVXxFgXGD+j8k/7n/Z8g7a8OoHI+5+7UzLA+/knvPypVUaWlI5eUKRyMA8tLw5E/kx/0ewlRUROnhw0BVQuoIRIIjCPUwmAuNHXB4/MrNN1uykqYMjYf2gHYDwVQhr6hqIUySyenqb8zcIiJQe3sjlZRY3kQFhZmXhut9ocedcpsGk8khdhC/kkhwBKEeVYXGjrWzOFT1w9l8djMmyaRwNMqQTCaKK6cPGz00blky/gWUl9goMseSfimdSyWX8NB60Cuol9LhNIlKrbbUVolpKgdhHr3pPRncPJs2impHIsERhHoYIrug0usx5eZSlpGhdDjV9A7qjbvWnYvFFzlw6YDS4SiiLCMDU34+KoMBQ5cujXtS17Hg0xaKLkLaMtsG6CDMq+3i28Sj0+gUjqbpDA46VdwiXTwMR9cCKug7FWhEmwaFiARHEOqh0ukwREcDjtdN1U3jxoDQAUDLXU1l/sVq6NYNla6Rb9wareUXM0ktY8m4uf7G2aanzNwdeKq4xTHv6dblJvDvADSiTYNCRIIjCA2wLFN1wLvHlr5c3NyjqMlD432mgNYAmXvgVLL1A3MgOSU57M2Sp/EGtR2kcDTNY/73LTt2DGNuy141qKjinKql4QMeAaA8M1NuwqjR4N69u4LB1SQSHEFogGUllQPePZrvyFvqcvEmFRhfycMfYm+XH7v4LuNbzm5BQqJLqy6EeIYoHU6zaP390YWHA1C8d5/C0bRgO7+G8iIIioYONwDyNhoA+sguqD08lIyuBpHgCEIDLBv+HTiAqcSxilJDvULp5NcJk2Ri69mWtVzcVFxMyaFDQDOLG/tVFhvv/wVyT1sxMsdiHt1ztuXhV6uaphKFxoowVsC2T+XHAx6Byj3fzIXf5n8fRyISHEFogLZNGzSBgVBRQcn+dKXDqcH8xmWus2gpSvbvh4oKNK0D0YY2o3FdSHeIGAySEbYvtH6ADsBoMrL5zGbAeetvzKqmikWCo4iDv0HuSXD3r2qYiUhwBMGpqVSqK9rFO94v1yvrcFrScnHLyo3YHrXvIN4Y5iXjO76E8mLrBOZA0rLTyCnNwUvnRY8gx3sDagrzNGTJbsdr2dAiJFVO5cY9ADp3AKSyMkrS0gCR4AiC0zInOI62kgrk5eIeWg8ulVwi/ZLjjTDZilV6b3QZDb7toPgS7P3RSpE5DvP0VHybeHRq51sefiV9VBQqnQ7j5cuUnzqldDgty9lUOLkF1FesQARKDh5CKi1FfcW2No5EJDiC0AiOumUDgE6jsywXb0m7i1tWUF1L7w2NFvpV/sJO/sTlloyb/z84+/QUgNrNDX10FOCYP4cuzVyI3+028KmaDq6anopt/iiqDYkERxAawRATAyoV5WfOUJGdrXQ4NZi7GreU5eIVWVlUnD0HKhWGa12a2msyaN3h/F44scU6ATqA7OJs0rLl6QNnLzA2ExtvKiD/POxbKj/u/0i1Lzly/Q2IBEcQGkXj5YW+03WAY949mt/A9l7cy+WSy8oGYwfm6Sl9p+vQeHld28k8/KHHHfJjF1oybl4eHuUfRWuP1kqHYxVVtXCO9zPoslI+B2MZhPWFsD7VvmRJcHr2VCCwhokERxAayeDAqzhCPEMsy8W3nHWdUYi6WDoYW6tzav+H5T8P/A8un7TOORVmnp5yldEbqNpZvDQ9HVNZmcLRtAAVpZBSucJwQPXRm4rsbMpPnoQrFmE4GpHgCEIjVW286XgJDrSsaaqqAmMrDY0HRUGHISCZYPtn1jmngowmI5vPVi4PD3P++hszXVgYmlatkMrLKd2/X+lwXN++ZVCYBd5tIGp8tS+ZbzLcruuIxttbiegaJBIcQWgkyzLVvfuQTI63HNtcSOrqu4tLRiMllTuIm+/orcI8irPjKygrst55FbD34l7yyvLwdvMmJjBG6XCspnrLBjFNZVOSBEn/lh/3mwZXbdLq6PU3IBIcQWg0fadOqNzdMRUUUHbsmNLh1NAzqCeeOk8ulVxif7br3t2WHTuGqbAQlYcH+k6drHfiLqPArz2UXIa931vvvAowN30c1GYQWrVW4Wisy5zUOmItnEs5uVXeq03rLu/ddhWR4AiCC1FptZbN5Bzxl6tOrSM+NB5w7a7Glumpbt1QaTTWO7FaA/0ekh87+ZJxV6y/MXPkWjiXYh69ib1dLsS/gmQ0WnqCuffoaefAGk8kOILQBFX9cBzzl6tl2wYX7odT3NwNNhuj119B5wEX9kOGc76GWUVZloaPzrp7eH3cY+Qpt/LTp6m4dEnhaFxUzgk48Jv8+KriYoDSI0cxFRWh9vS0rC51RCLBEYQmMDj4/L+5oHTfxX1cLL6ocDS2UZyaCoDBFkPj7n7Q4y75cfIn1j+/HZhH77oFdCPQPVDhaKxP4+OD23Xmlg2OeaPh9LZ/KhfcdxwqF+BfpXh3KgCG2BjrjqJamU0TnJycHCZPnoyvry++vr5MnjyZy5cv13l8eXk5//jHP4iJicHT05M2bdpw7733cvbs2WrHDR06FJVKVe3jzjvvtOW3IghA1Xxz6aFDmIocrxA1yCOIKP8oJCSXXE1lLCig9PBhADxs1XvDPE114DfIybDNNWxo/an1AAwJH6JwJLYjNt60odIC2PFf+fGAR2s9xBnqb8DGCc7dd99NamoqK1euZOXKlaSmpjJ58uQ6jy8qKmLnzp3Mnj2bnTt3smzZMg4dOsT48eNrHDtt2jTOnTtn+fjkE+e82xKciy44GG1wMJhMlk3mHM3Q8KEAbDi9QdlAbKBkzx6QJHRt26JtbaPmdUFdoeONgATJ/7HNNWyk1FjK1nNbARgS5sIJTg/H3RvO6e1eAqW54H8ddBpZ6yHFqc6R4NisvD49PZ2VK1eSlJRE//79Afj000+Jj4/n4MGDREZG1niOr68viYmJ1T63YMEC+vXrx8mTJ2nXrp3l8x4eHoSEhNgqfEGok3uPHuSvXk3xnj149O2rdDg1DAkbwke7P2Lzmc2UG8vRaZx7k8UrFVVOT9m8c2r843DsT9j5Xxj6DzD42vZ6VpKSmUJxRTFB7vJInquqWiq+F8lkQqUW1RZWYTJVdfPu/zDU8roa8/IoO3oUcPwEx2b/K7Zu3Yqvr68luQEYMGAAvr6+bNnS+E6rubm5qFQq/Pz8qn1+8eLFBAYG0q1bN5555hny8/PrPEdpaSl5eXnVPgShuRx5402AqIAoAt0DKaooIuV8itLhWFWxvRKcTsOhdVcoy4edX9v2Wla07tQ6AG4Iv8EhNz+0Fn2XLqgMBrllw/HjSofjOo6uhewjoPeBnnfVekjxHrkHla5dO7T+/rUe4yhsluBkZmYSFBRU4/NBQUFkZmY26hwlJSU899xz3H333fj4+Fg+f88997BkyRLWrVvH7NmzWbp0KRMmTKjzPPPnz7fUAfn6+hIeHt70b0gQKjn6/L9apeaGsBsAWH96vcLRWI9kMlWtoLJ1gqNSVdUfJH8MxgrbXs8KJEmyTEu68vQUyC0bDN27AVXTJYIVbFkg/9lrMuhr705sLjB29NEbaEaCM2fOnBoFvld/pKTId4213UFIktSoO4vy8nLuvPNOTCYT//73v6t9bdq0aYwYMYLu3btz55138uOPP7JmzRp27txZ67lmzpxJbm6u5ePUqVNN/bYFwcLQrRtoNFScP0/5+fNKh1Mrc4Kz7tQ6JCfu53KlsowMTLm5qAwGDF1rTnFbXezt4BEIuacg/RfbX+8aHbl8hLOFZ9Fr9PQP7d/wE5xc1dYpjjmS6nQy98Lx9aDSwICH6zzMWQqMoRk1OI8//niDK5YiIiLYs2cP52v55Z+VlUVwcHC9zy8vL+f222/n+PHj/PHHH9VGb2rTu3dvdDodhw8fpnfv3jW+rtfr0ev19Z5DEBpL7eGBvksXStPTKU7djW5UgtIh1RAfGo+b2o0zBWc4nnucjn4dlQ7pmhXvSgXA0L0bKp0d6op07tB3Kqx/DbZ+AN1uk0d2HJR5tK5fSD/cte4KR2N75jdYkeBYydYP5T+jbwG/drUeIknSFX2oXDDBCQwMJDCw4d4K8fHx5Obmsm3bNvr16wdAcnIyubm5DBw4sM7nmZObw4cP8+effxIQENDgtdLS0igvLyc0NLTx34ggXAP3nj0qE5xUfBwwwfHQedA3tC+bz2xm/en1rpHgVNbf2Gx5eG36Pgib/gVndsCpbdDOcUdGzMvDzavoXJ25Fq704EG56ZyHh8IRObG8c7D3R/lx/ON1HmYZRdXr7TOKeo1sVoMTFRXFTTfdxLRp00hKSiIpKYlp06YxduzYaiuounbtyvLlywGoqKhg4sSJpKSksHjxYoxGI5mZmWRmZlJWVgbA0aNHefnll0lJSSEjI4Pff/+dSZMm0atXLwYNcr2unYJj8ujVC4DiXbsUjqRu5joMV6nDsVuB8ZW8guSpKpBHcRxUTkkOu7PkqQPz9KSr04WEoA0KcuiWDU5j23/AVA7t4iGsT52HmeudDN2722cU9RrZdG3d4sWLiYmJISEhgYSEBGJjY/n66+orEg4ePEhubi4Ap0+f5pdffuH06dP07NmT0NBQy4d55ZWbmxtr165l1KhRREZG8uSTT5KQkMCaNWvQOHBHRcG1uFcmOCVpaZhKSxWOpnbmN7rUC6nkluYqHM21MebnU3rkCGDnBAcg/jH5zwP/g0uOuWJn05lNSEhEtookxLPltM8Q01RWUFYIKZ/Lj+sZvQHnKjAGG/bBAfD392fRokX1HnNlAWRERESDBZHh4eGsX+8ad6SC89KFhaEJCMCYnU1J2n48evdSOqQa2nq1pZNfJ45cPsKmM5u4uePNSofUbMXmBn9hYWgbMUVuVUFRcN1weQlt8icw+jX7Xr8RzKN0LWX0xsy9Ryz5iYliJdW1SP0GSi5Dqw4QObreQ52p/gbEXlSC0CwqlQr3Xj0BMU1lD4pMT13JPIqz62sovqxMDHUoN5Wz+cxmwLW3Z6jNlTuLu8pqQbsyGat2DY9/DNR1z4KYioooPXgQkGsQnYFIcAShmSx1OKmOm+CYC043ndlEhcnxe7nUxdIaXqkE57ph0DoKygrk7sYOZOf5nRSUF+Bv8CcmMEbpcOzKPSZGbtlw4QIVV+1ZKDTCwRVw6RgY/KDn3fUeWrxvH5hMaENC0DWwEtpRiARHEJrJXIdTlJrqsHePMYEx+On9yC/LJ/VCqtLhNIvc4E/hBEelqhrFSf4EjOXKxFEL8+jc4LaDUata1q90tbs7hih5S4qiyjYCQhOYl4bHPQBunvUe6kz9b8xa1k+DIFiRoVs30OkwZl2k/MwZpcOplUatYXDbwYDzbr5Zdvw4prw8ucFfZBflAomZBJ6tIe807P9ZuTiuYule3MKmp8zcK+vfiuto9CrU4cwOOLkF1Dro91CDh5v7UCl2k9EMIsERhGZS6/UYouW7R0euw7khvLKr8el1ygbSTOb6G7s1+KuLziA3/gP5ztcBRu0ycjM4kXcCrVpLfGi80uEowsMykuq4P4MOyTx6EzMRfOrvISdJkuV3nCMuqKiLSHAE4Rp49HT8fjiD2gxCq9JyPPc4J/NOKh1OkynS4K8ucQ+CRg9nd8KJxm8abCvm6am44Di83LwUjkYZ5qni0gMHMRYUKhyNk7h8CtJ+kh+bp17rUXY8A2NOjtzgL8p5dqkXCY4gXANLHY4Dz/97u3nTJ1hu3uWM01SKr6C6klfrql2Wt7yvbCxUJTgtpXtxbXQhIWjbhMoN//aKfjiNkvwxSEboMARCGi5ML94lT/8ZYrqjcnOzdXRWIxIcQbgGlrvHg4599+isu4vLDf6OAg6S4ADEPwGo4NBKuHBAsTDyyvLYeV5+47mhbcvqf3M1j17yHoRFog6nYSV5VSsBG2jsZ2Z+Xc2vs7MQCY4gXANdcBC6Nm0c/u7RXICacj6FgrIChaNpvOLU3XKDv/Bw+zf4q0tgJ+ha2TRxywLFwthyZgtGyUhH346E+4QrFocjsBQaO/BIqsPY8SWU5kFgJHQa0ainFO+Up+Ddnaj+BkSCIwjXrGqaynHrcNr7tCfCJ4IKUwVbz21VOpxGK9q5AwCP3g525zjoKfnPPd9BnjL9V8yjceZmji1ZVU+qVCSjUeFoHFhFaVVjv0FPgrrhFKAiJ4ey4/IWJebX2VmIBEcQrpF56sTR7x7N01TrTq1TNI6mqLpzdLAEJ7wvtBsob1CY/LHdL19hqmDjmY1Ay9ueoTb6Ll1Qe3hgKiiwTGkKtdjzPeSfA+9QiLm9UU8xL6Bwu+46NH5+NgzO+kSCIwjXyDyCU7x7N5LJpHA0dTMXoq4/vd4puhpL5eWW5mIefRwswQEYNEP+M+ULKLHvZqa7LuwitzQXX70vPYN62vXajkil1WLoUbltwy5Rh1Mrk6mqMH7Ao6BtXLGwub+QMy0PNxMJjiBcI0NkF1Tu7pjy8ig7dkzpcOrUK6gXfno/cktz2XXBcafTzErS05FKStD4+uLWsaPS4dTUOUGuYyjNk+sa7OiPk38A8vSUVm3TPZOdhrkA1pFbNijq0Aq4eAj0vtBnSqOfVmQeRXWyAmMQCY4gXDOVTifviYNj1+Fo1VrLdIb5DdKRmVduuPfqhaoRtQJ2p1bLdQwASR9BRZldLitJEn+e+hOAYeHD7HJNZ2CphdvpuD+Ditr8nvxn3wfA4NOop5jKyijZtw8QIziC0GJZpqkcvA5nWDv5DfHPU3867P5ZZsU7KhMcR5yeMouZJNcz5J+DvT/Y5ZKHcg5xpuAMeo2e+DYts3txbdx79gCVivJTp6jIylI6HMdyYiucSgaNG/R/pNFPK9mXhlRWhsbfH1379jYM0DZEgiMIVuDeqyfg+PvhxIfGo9foOVNwhkM5h5QOp06SJFX13ujTR+Fo6qHVQ/+H5cdb3pfrHGzsj1Py6Ft8aDweOg+bX89ZaLy90XfuDDj2SKoizKM3Pe4C78bvBG6uZ3Lv1QuVSmWLyGxKJDiCYAXmbQTKMjKouHhR2WDq4aHzsNz1m98oHVH5iRMYs7NR6XTypqaOLO5+cPOGrANweLXNL/fnycrpqXZieupqVRtvigTH4kK6XH+DCgY+2aSnFjnh/lNXEgmOIFiBxs+v6u5xh2OP4pjrNsxvlI7IXEdhiIlBrdcrHE0DDL5ykgM2377hXME50i+lo0IllofXwtIPR4zgVNlc+X8yaqzcpLKRJEmqatPghAXGIBIcQbAa9zh5KqVoR4rCkdRvSPgQ1Co16ZfSOVdwTulwamVp8OfI9TdXGvAIqHVwYjOc2m6zy5hH3XoF9SLAPcBm13FW5n5Jxfv3YyopUTgaB5B7BvZ+Lz82N6dspPITJzBeuoTKzQ1DdwcfRa2DSHAEwUo8+sQBUJyyQ+FI6udv8Kdn656A405TWQqMneXO0acNxFY2Ttvyns0uY149dWP4jTa7hjPThYWhCQyE8nJK0tKUDkd5Sf8GUwW0vx7C4pr0VMsoavfuqJ1og80riQRHEKzEo3IEp+TAAYwFjr3f05WrqRxNxaVLltbw5uJtpzDwCfnP9P9B1kGrnz63NJeUTHl08MZ2IsGpjUqlskxTFTn4jYbNFedU9We6/qmmP32X8zb4MxMJjiBYiS4kBF3btmAyOfxycfMIQEpmCrml9u3C2xBLa/hO16Ft1UrhaJogKAoibwYk2PQvq59+45mNGCUjnfw60d7H+Zbs2otHX3mkwtGnim1u+0IoK4Cgbo3eVPNKRY66TUoTiARHEKzIw0nqcNr5tKOTXyeMkpENpzcoHU415iJtj94OvDy8Ljf8Xf5zz/eQc8KqpzY3ZxTTU/XziKucKt65q+VuvFleXLVH2qAZ0MQl3hU5OZQdlff0cneyDTavJBIcQbAi98qeLY5ehwNVb5SONk1l7iXk7oxD4237QMcbQTJW9R6xglJjKZvPbAbE8vCG6CMjUXt5yRtvHrT+VKFT2PlfKMwC33bQfUKTn27+GXTr2NG5RlGvIhIcQbAiy93jnj2YyuzTur+5zG+Um85sotRYqnA0MlNJCcWVxaEO3eCvPjc8I/+5axHkZ1rllMnnkimqKCLIPYjogGirnNNVqTQaS/frohTHHkm1iYrSquT6+qdAo2vyKYq2ySsBPfr2tWJg9icSHEGwIrcOHdD4+yNdsYeLo4oOiCbII4jiimK2nt2qdDgAlOzdC+XlaFu3RhcWpnQ4zdN+EIQPAGMpbFlglVOuPbkWkIuL1Srxa7sh5huNou0tMMHZvQTyzshbiPS8p1mnMCeGIsERBMFCpVJZerc4+ioOtUrNiHZy8WHiiUSFo5GZ62/ce/d2ytbwgFzvYB7FSfkCii5d0+kqTBWW+psR7ZteLNoSWRKclBSH33PNqowVVQXuA58EnaHpp8jPpyQ9Hagq2HZWIsERBCsz1+E4eqExVL1h/nnqT8qN5QpHc0WDP2esv7lSpxEQ2gPKC+Wdxq9ByvkULpdexk/vR1ywc7/h2It7t26oDAaMOTmUHTumdDj2s28p5GSARyD0ua9ZpyjetQtMJnTt2qELbvy+VY5IJDiCYGWWhn9OsIqjd1Bv/A3+5Jflsy1zm6KxSBUVluJsZx8aR6WCwZUrqrZ9AiV5zT7VmhNrALlmSqvWWiM6l6dyc8O9cn+4FjNNZTLBxrfkx/GPgZtns05TtL2y/ibO+ZNpkeAIgpUZorqi9vDAlJ9P6eHDSodTL41aw/B2wwHlp6lK0tMxFRWh9vFBHxmpaCxW0XUcBEZCSS5s/6xZpzCajJb6G/N0otA4V05TtQjpv8DFQ/LeaH2nNvs05oTQ6W8yEAmOIFidSqutunt08DocgJHtRwLyNFWFqUKxOIq2ySNIHnFxqDQaxeKwGrUaBj8tP976IZQVNfkUqVmpXCy+iLfOmwGhA6wcoGurKjTe7vp1OJIEGypHb/o/AgafZp3GVFREceXiCGevvwEbJzg5OTlMnjwZX19ffH19mTx5MpcvX673OVOmTEGlUlX7GDCg+g92aWkpTzzxBIGBgXh6ejJ+/HhOnz5tw+9EEJrGWTbeBIgLicNX78ulkkvsPK/cTuiF5gTHBe4cLbpPBL/2UHRR7k3SRObpqaHhQ9E1Y7lvS+beIxZ0OirOn6f8zBmlw7GtQ6vg/F5w84L+05t9muLdu6GiAm1oqNyV3cnZdEL37rvv5vTp06xcuRKAhx56iMmTJ/Prr7/W+7ybbrqJL774wvJ3t6s2+nrqqaf49ddf+fbbbwkICODvf/87Y8eOZceOHWiseOdnNBopL1e+8FKoSafTWfXf2tqu3HhTkiSHXhGkU+u4MfxGfjryE4knEukX2s/uMUgVFZYNNj36uVCCo9HKvUj+9zfY8j7EPQDaxm1caJJMlmlDsXqq6dTu7rh3707xrl0UbU/BzVnbDjREkmDDm/Ljvg+Ch3+zT3Vl/Y0j/85qLJslOOnp6axcuZKkpCT69+8PwKeffkp8fDwHDx4ksp45dr1eT0hISK1fy83NZeHChXz99deMGCH/0C9atIjw8HDWrFnDqFGjrjl2SZLIzMxscLRJUJafnx8hISEO+YNouXvMyqL81Cnc2rVTOqR6jWw/kp+O/MTak2uZ2X+m3XutlKQfwFRQgNrbG0PXrna9ts31vAfWvyH3JtnzLfS+t1FP23dxH+eLzuOh9WBgm4E2DtI1ecTFyQlOynb8brtV6XBs49g6OJMCWgPEP35Np6qqv3H+6SmwYYKzdetWfH19LckNwIABA/D19WXLli31Jjjr1q0jKCgIPz8/hgwZwrx58wgKCgJgx44dlJeXk5CQYDm+TZs2dO/enS1bttSa4JSWllJaWtWpNS+v/hUN5uQmKCgIDw8Ph3wDbckkSaKoqIgLFy4AEBoaqnBENakNBty7daM4NVW+e3TwBGdA6AC8dF5kFWexJ2sPPYN62vX6Lld/cyWtXt5pfNXzsPFt6HFXo7rLmqenbgi7AYO26f1MBPmNOvvTT1270Nhce9NnCngFNfs0ptJSeYoK8IhzjVFUmyU4mZmZlqTkSkFBQWRm1t2+fPTo0UyaNIn27dtz/PhxZs+ezbBhw9ixYwd6vZ7MzEzc3NxoddX+GMHBwXWed/78+cydO7dRcRuNRktyExAQ0KjnCPbn7u4OwIULFwgKCnLI6SqP/v3lBGdbMn5/afp+MPbkpnFjSPgQfjv2G6tPrLZ/grPdNVrD16nPFLkBW04G7PkOev213sMlSRLTU1bg3qsXqNWUnzhJ+fkL6IKbnwA4pBNb4MQmUOvkxn7XoGTvXqSyMjSBgbh1iLBOfApr8jj0nDlzahQBX/2RUpkt1zby0VA9wh133MHNN99M9+7dGTduHCtWrODQoUP89ttv9cZV33lnzpxJbm6u5ePUqVN1nsdcc+Ph4VHv9QTlmf+NHLVOyrO/XMtSmLzNKVZxmFdTrT2x1q7xSkZjVWv4fvav/7ELN095V2eQ6yUaaKp44NIBThecxqAxMLjtYDsE6Jo03t7ou8qzBcVOUPDfZObam173gO+1FQW7Wv0NNCPBefzxx0lPT6/3o3v37oSEhHD+/Pkaz8/KyiK4Cd0RQ0NDad++PYcr+4mEhIRQVlZGTk5OteMuXLhQ53n1ej0+Pj7VPhriKv/ArszR/43ce/VCpdNRkZlJ+YkTSofToEFtBuGudeds4Vn2Z++323Ut9TdeXhiiXKz+5kpxD4Bna3kUZ/e39R5qHr0Z1HYQHjpxs3UtXLYfzskkOPoHqLVw/d+u+XSuVn8DzUhwAgMD6dq1a70fBoOB+Ph4cnNz2batqjtqcnIyubm5DBzY+IK57OxsTp06Zamz6NOnDzqdjsTEqqZk586dY9++fU06ryDYmtrd3dIPpzApWdlgGsGgNXBD2A0ArD6x2m7Xtdw59unjevU3V3LzhEFPyY/rGcWRJIk1J+X6G/OomtB8V/bDcSl/vir/2fMeaBVxTaeSysspSk0FXKf+BmzYBycqKoqbbrqJadOmkZSURFJSEtOmTWPs2LHVCoy7du3K8uXLASgoKOCZZ55h69atZGRksG7dOsaNG0dgYCC33XYbAL6+vjz44IP8/e9/Z+3atezatYu//vWvxMTEWFZVCYKj8Kgssi/a5vgJDlS9oa7KWGW3aSpLgbGrTk9dKe4B8AyCyyfkXZ9rcSjnEMdzj+OmdrMknELzmeu6Sg8foSI7W+ForCRjExxfL9femDd2vQYl+/cjFRWh8fVF37mTFQJ0DDZdC7p48WJiYmJISEggISGB2NhYvv7662rHHDx4kNzcXAA0Gg179+7llltuoUuXLtx333106dKFrVu34u3tbXnOv/71L2699VZuv/12Bg0ahIeHB7/++qtDFpoKLZvnADnBcZY6nBvCbsBd686ZgjPsvbjX5tdrEfU3V3LzkPviQJ2jOCuOrwBgcNhgvN28a3xdaBptq1boK1sPFCYlKRyNlfw5X/6z92Twu/YVmubRLfe4OFRq19ngwKbfib+/P4sWLSIvL4+8vDwWLVqEn59ftWMkSWLKlCmAvDJm1apVXLhwgbKyMk6cOMGXX35JeHh4tecYDAYWLFhAdnY2RUVF/PrrrzWOEWoaOnQoTz31VJOek52dTVBQEBkZGVaLY+LEibzzzjtWO58jc4+NlXc1zs6m7MgRpcNpkLvWnRvDbwSq3mhtqfTgQUz5+ag9PV27/uZKfe6vHMU5CanfVPuSJEmszJAbo97U4SYlonNJnpXd8ItcIcE5vkFeOaVxq9rQ9RpVdRF3nfobEHtRtSjLli3jlVdeadJz5s+fz7hx44iIiLBaHC+++CLz5s1rsB+RK1C5ueHRuzfgHHU4AGM6jAHkaSqjyba7oZt/sbrH9UGlbSE7Zbt5VBWFbnwLKsosX9p7cS9nCs7grnVnSNgQhQJ0PZ7xcoJTuNXJExxJqqq96TMFfK+9O7NUVmYpMPaMj7/m8zkSkeC0IP7+/tWm+hpSXFzMwoULmTq1+TvT1iY2NpaIiAgWL15s1fM6Ko/Ku8fCZOf45TqwzUC83bzJKs5i5wXb7k1VtE0eGvdsCdNTV4q7H7yC5VGcXVXT9uZRsxvDb8Rd665UdC7HIy4OtFrKT5+mzJn3LTz2J5zcCho9XP+0VU5ZvHs3UnExmoAA9J07W+WcjkIkOI0gSRJFZRWKfDS1buPHH38kJiYGd3d3AgICGDFiBIWFhUDNKaqhQ4fy5JNP8uyzz+Lv709ISAhz5syxfH3FihVotVrir8rqu3btWmcPpPfff58lS5ZgMBg4c8UGd1OnTiU2NtZSbzV+/HiWLKm9yNLVmPvhFG1PQTLadkTEGnQanaXY2JbTVJLJRNEOebf1FlF/cyWde9X0woY3obwYo8nIqoxVAIzuMFrB4FyP2tMT99hYAAq3blU4mma6cvQm7gHwsU4Hd/Pr4TlggEvV34CNN9t0FcXlRqJfXKXItfe/PAoPt8b9M507d4677rqLN954g9tuu438/Hw2btxYb5L01Vdf8fTTT5OcnMzWrVuZMmUKgwYNYuTIkWzYsIG4uJpzssuXLyc6Opq1a9cSHR1NeXk5HTt2ZMmSJYwbNw43Nzdee+015s+fzwcffMDcuXNZtWoVSUlJ+Pr6AtCvXz/mz59PaWkper2+eS+OkzB064ba0xNTbi4lBw7g3q2b0iE1aHSH0Sw7vIzEE4nM7D8Tndr6O1mXHjiAKTe3sv4myurnd3h9psCWBZB7CrZ/xs6OA8gqzsLbzZtBbQYpHZ3L8RwwgOKdOynamkSrSZOUDqfpDifC6e2gdbdK3xuzwi2VCU7lNJ4rca10rYU7d+4cFRUVTJgwgYiICGJiYnj00Ufx8vKq8zmxsbG89NJLdO7cmXvvvZe4uDjWrl0LQEZGBm3atKnxnMzMTLRaLYMGDSIkJITs7GwqKioYPHgwer0elUrFvHnz+Oyzz3j11Vd57733WLlyJW3bVnXabNu2LaWlpfVu2+EqVFqtZalqUfK2Bo52DH2D+xJgCOBy6WWSztpmaq1wyxagsnNqS6m/uZJWD0Ofkx9vfIffD/8MyEv1dY3Yq0poGksdTnKyU6xorMZkgrUvy4/7TQXvxjfLrY+xoIDivfJqSVervwExgtMo7joN+1++9l3Km3vtxurRowfDhw8nJiaGUaNGkZCQwMSJE2vs23Wl2MphW7PQ0FDLJpbFxcUYDDU3+du7dy9dunSxjLykpqbSunXrap2kx44dS3R0NHPnzmX16tV0u2rUwryXVFFRUaO/P2fm0b8/BevWUZicRMAD9ysdToM0ag0JEQksObCEFcdXMDjM+tsFmBMcz0EteLQi9k7Y9C7l2YdJzJCnA2+KEKunbMG9Rw9U7u4Ys7MpPXQYQ2QXpUNqvLRlcH4v6H2sVnsDlTVwRiO69u3Qtb22rR4ckRjBaQSVSoWHm1aRj6ZsR6DRaEhMTGTFihVER0ezYMECIiMjOX78eJ3P0emq3ymqVCpMJhMgd62+eksMgD179hATE2P5e2pqao1EadWqVRw4cACj0VjrFhqXLl0CoHXr1o3+/pyZuR9O8fYUJAfdO+tq5tVUf5z6g5KKEque21RSQlGKXH/jOagFdyDXaGHYLJLcDeSaygjQt6JfSAurR7ITlZsbHn36AFCU5ER1OMZy+OOf8uOBT4KHv9VObam/ccHRGxAJjstRqVQMGjSIuXPnsmvXLtzc3CydopuqV69e7N9fc0+iPXv2VEtork5wdu7cyaRJk/jkk08YNWoUs2fPrnGOffv2ERYWRmBgYLNiczb6yEg0vr6YioooSUtTOpxGiW0dS6hnKIXlhWw6s8mq5y5K2YFUVoY2JAS3jh2tem6nE3ULKwLlu+cEjR8atWhYaitOuVx8538h57i8j9mAR6x66sKtlaOoA0SCIzi45ORkXn31VVJSUjh58iTLli0jKyuLqGYWcI4aNYq0tLRqozgmk4m0tLRqCc2xY8do3749INft3HzzzTz33HNMnjyZl19+maVLl7KjcrWM2caNG0lISGhWXM5IpVZbVgo5Sz8ctUptmS75/fjvVj23ZXpq4ECH3zTV1kpMZfyhl38Vjz6+E/LOKhyR6zK3bCjavh2pokLhaBqhrAjWvyE/vuH/QF93PWVTlZ+/QNmRo6BS4dHfNUcNRYLjQnx8fNiwYQNjxoyhS5cuvPDCC7z99tuMHt28JacxMTHExcXx/fffWz539OhRioqKqiU4PXr0YM6cOWzYsIHRo0czfvx4nn/+eUDeHHXcuHHMmjXLcnxJSQnLly9n2rRpzfxOnZOHZdsG57l7NC9X3nB6A4XlhVY7b+HmzYCc4LR0m85sotBYSqikoUdRftUbmmB1hqgoeSS1sNBSXOvQtv0HCjLl7Rj6TLHqqYsqfw8ZoqPR1lOn6cxEkbELiYqKYuXKlXV+fd26dfX+HeCnn36q9vfZs2fzzDPPMG3aNNRqNZ07d66xAuHXX3+1PE5PT69xzp9//rna3xcuXEj//v0ZMMD1liXWx9wuvnjnLkwlJahrKeB2NF39uxLhE0FGXgaJJxK5tdOt13zOiosXKT14EADPga45NN4Uvx6Vf35uajccdcZn8pRE/GMQ6FpN1xyBSq3Go39/8levpigpCY9evZQOqW7Fl2HTv+THQ5+XV91ZkWV5uAv/DIoRHKFeY8aMYfr06dWa9l0rnU7HggULrHY+Z+HWsSPakBCk0lJLga2jU6lUjLtuHAC/HP3FKuc0Fzbqo6PQ+luvYNIZ5ZTksOHMBgDG9XoYutwEkhHWzFE2MBfmNHU4W96HksvQOgpib7fqqSVJsvwcerjwjaZIcIQGzZgxw6qbmT700ENERkZa7XzOQqVSWVYMmadonMG4juNQoWJ75nbOFFx7olu4Sf7evVry8vBKvx//nQpTBVH+UXRu1RlGzAWVGg78D0440UofJ2J+Qy/etQtTcbHC0dQh9wxs/bf8ePhssHLhednx41ScP19tZZkrEgmOINiR+U3dmRKcUK9Qy9Ll/x393zWdS5KkagXGLZ15VOyWTrfInwjqCr3vlR8nzpbb8wtW5RYRIY+klpdTtNO2e6012x//hIpiaDcQIsdY/fTm6Sn33r2dYqq8uUSCIwh25BEfDyoVpYcOUV7ZUNEZjO80HoBfj/16TV1gy44coSIrC5Vej3vlLust1ZGcI+zP3o9Wpa2+99TQmaDzlNvy7/+57hMIzaJSqSz1cIWbtygcTS3O7Ybdlfv0JfwTbLDKsDDJtfvfmIkERxDsSNuqFYbu3QEH/eVahxHtRuCudedE3gl2Z+1u9nkKKkeuPPr2Re3ie5A1xDx6MzhsMP6GK2qRvENg4BPy4zVzoKLM/sG5OM/rrwegcJN1+ztdM0mC1S8AEnSfCGHWnz6SKiosW8a44v5TVxIJjiDYmTPW4XjoPCw7jP98tPmjCmJ6SlZhquB/x+Tpvluuu6XmAQOfAM8gucFbyud2js71eQ4aWDWSev680uFUObwajm8AjR6Gv2iTSxTv3YspPx+1jw8GJ9j491qIBEcQ7MxSh7NlC1LlthjOYPx18jTVquOrmrV1g6msTN77hha+/xSQdC6JrOIsfPW+te/zpfeCG2fKj9e/DiW59g3QxWlbtcIQK2834zCjOMYKWF3Z9X3Aw9CqvU0uU7hxI1DZZFPj2l2zRYIjCHbm3qMHag8PjJcuUbK/Zt8gR9U3pC+hnqHkl+ez7tS6Jj+/eOcupJISNK0D0Xdp2T1efjkiT0+NjhiNm8at9oN63QuBXaD4Emx4047RtQxe18uJZcFGB0lwdn4FFw+Cu79VN9S8WsEGOcHxGmz9DXQdjUhwBMHOVG5ulmmqgg3rFY6m8dQqNWM7jgWaN01lmZ6Kj2/R2zPkl+Xzx6k/gCtWT9VGo4WEefLjpI/h4hE7RNdyeA2urMPZskX5bRtK8mDdfPnx0Jng7meTy1RkZ1Oybx8AnpXfvysTCY4gKMDzhhsAKFy/QeFImsY8TbXl7BayirKa9NyCTVVD4y3Z6ozVlBpL6ejbkW4BDdRAdEmATiPBVA6rZ9V/rNAkhpgYeduGvDyK9+xRNpiNb0FhFvhfB3H32+wy5uk4fXQUuqAgm13HUYgERxAU4FWZ4BTv2UPFFZuZOroI3wh6tO6BSTI1aQPO8vMXKN2fDipVixgar4959dT468Y3biTrpvmg1sKhlXB4jY2jazlUGo2lFqygsi5FERcPVzX1G/UqaHQ2u1TV9NQNNruGIxEJTgsydOhQnnrqqSY9Jzs7m6CgIDIyMmwSU10mTpzIO++8Y9dr2pMuOBh9164gSY5T5NhI5lGcZYeXNbonjnkqzhAbgzYgwGaxObrjucfZeWFntem+BgV2hv4Py49XPgfGctsF2MJ4Vibbio2kSpL8b2oqh84JEHmT7S5lNFp+13jd0DJuMkSC04IsW7aMV155pUnPmT9/PuPGjSMiIqLa5/r27Yu3tzdBQUHceuutHKzcPNFaXnzxRebNm0deXp5Vz+tIzKM4Beucpw4HYEyHMbhr3TmWe4ydFxrXCbZgvfw9eg0ZYsvQHN6Ph34EYHDbwQR7Bjf+iUOeBY9AyD4M2z61UXQtj9cNg0GlomT/fmWWix9aCUfWgFoHo+bb9FIle/dizM1F7eODe48eNr2WoxAJTgvi7++Pt7d3o48vLi5m4cKFTJ06tdrn169fz2OPPUZSUhKJiYlUVFSQkJBAYWGh1WKNjY0lIiKCxYsXW+2cjsZrqPxmX7BpE5LRqHA0jefl5sWYDnL7+O8Pft/g8aayMktr+Jac4JQaSy3F2ZO6TGrakw2+VX1R1r0GhRetHF3LpA0IwD02FlDgRqO8RB69gcrd4zvZ9HL5lTcZngMHotJqbXotRyESnMaQJCgrVOajiW3xf/zxR2JiYnB3dycgIIARI0ZYEo+rp6iGDh3Kk08+ybPPPou/vz8hISHMmTPH8vUVK1ag1WqJv6qd98qVK5kyZQrdunWjR48efPHFF5w8eZIdO6p2yO7atSsqlarWj/fff58lS5ZgMBiq7VI+depUYmNjyc2Ve36MHz+eJUuWNOn7dybusbGofX0x5eZSvFvhIscmmhQpv0Ennkgkp6T+GqKibduRiorQBgVhiI62R3gOaXXGanJLcwnxDOH6ts1YwdLrrxASC6W58EfTRmKFunndOBSAgnXr7HvhpA8hJwO8QuCGZ2x+uYI//gTA+8ahNr+Wo2gZady1Ki+CV9soc+3nz4KbZ6MOPXfuHHfddRdvvPEGt912G/n5+WzcuLHeOomvvvqKp59+muTkZLZu3cqUKVMYNGgQI0eOZMOGDcTFxTV4XXNC4u9f1W5++fLlREdHs3btWqKjoykvL6djx44sWbKEcePG4ebmxmuvvcb8+fP54IMPmDt3LqtWrSIpKQlfX18A+vXrx/z58yktLUXvgm39VVotXoMGkff77xT8+ScevXspHVKjdQvoRreAbqRlp/HzkZ+Z0n1KncdWTU/d0KKXh/9w6AcAJnaeiKY5u0OrNTD6DfjiJtjxFfSaDGEN/3wK9fMaOpSsd9+jcOtWTCUl9tl8MvcMbHhLfpzwCugbP7LeHOVnzlB68CCo1ZYVnC2BGMFxIefOnaOiooIJEyYQERFBTEwMjz76KF5eXnU+JzY2lpdeeonOnTtz7733EhcXx9q1awHIyMigTZv6EztJknj66ae5/vrr6V65xxJAZmYmWq2WQYMGERISQnZ2NhUVFQwePBi9Xo9KpWLevHl89tlnvPrqq7z33nusXLmStm3bWs7Rtm1bSktLyczMvMZXxnF5DRsGQP4ffygcSdOZp1l+OPQDJqn2jsySJFnujFvy9NThnMPsurALjUrDbZ1va/6J2sdDj7sBCf73lNz9Vrgm+shItKGhSCUlFCYl2eeiibPlG+fwARDTxOnKZsj/cx0AHr17o23VyubXcxRiBKcxdB7ySIpS126kHj16MHz4cGJiYhg1ahQJCQlMnDiRVvX8h46tnH82Cw0N5ULlLtfFxcUYGribefzxx9mzZw+brloJtHfvXrp06WIZeUlNTaV169YEB1cVVo4dO5bo6Gjmzp3L6tWr6XbVviju7u4AFBUVNfCdOy+vGwaDVkvZ0aOUZWTgdkUxt6Mb3WE0b6W8xcn8k2zL3MaA0Job95UdOUL5qVNyc0MX37m4PubRmxvDbyTI4xr7jyS8Agd/h8y9sO0/EP+oFSJsuVQqFV5Dh3B5ybcUrFuH99Chtr3gkTWwbymo1DDmDZvsFn61gsobKK8bb7T5tRyJGMFpDJVKniZS4qMJ//k1Gg2JiYmsWLGC6OhoFixYQGRkJMePH6/zOTpd9Z4LKpUKU+X+SIGBgeTU06PliSee4JdffuHPP/8kLCys2tf27NlDTEyM5e+pqak1kqlVq1Zx4MABjEZjtcTH7NKlSwC0bt26zhicncbHB89+fQHIX+tcozgeOg9u7ngzUHexcX7laKBnfDxqz8ZNtbqaovIi/ndU3lizycXFtfEMhJFz5cd/zoM8hW6+XIh35Rt/wZ/rGt36oFnKiuB/ldsw9JsOobZfzWQsKKBwu7wHnNcwkeAITkylUjFo0CDmzp3Lrl27cHNzY/ny5c06V69evdi/f3+Nz0uSxOOPP86yZcv4448/6NChQ41j9uzZUy2huTrB2blzJ5MmTeKTTz5h1KhRzJ49u8Y59u3bR1hYGIGBgc2K31l4DRsOOPc01Z8n/+Ricc2VPfmJcmM6rxHD7RqXI1mVsYr88nzCvMIY0KbmKFez9LoXwvpBWUHVShyh2Tz690fl4UHF+fOU7Euz3YU2vAGXT4BPWxhmn87UhZs2QXk5bhER6Gv5Xe3KbJrg5OTkMHnyZHx9ffH19WXy5Mlcvny53ufUtfLmzTerNpsbOnRoja/feeedtvxWnEJycjKvvvoqKSkpnDx5kmXLlpGVlUVUVFSzzjdq1CjS0tJqjOI89thjLFq0iG+++QZvb28yMzPJzMykuLgYAJPJRFpaWrWE5tixY7RvL++Om5GRwc0338xzzz3H5MmTefnll1m6dGm1VVgAGzduJCEhoVmxOxPvyruq4l27qKgctXIWkf6R9GjdgwqpguWHqyfS5efOUZKWBioV3pW1Ri2Rpbi4y0TUKiv9ylWrYey/QKWB/T/DodXWOW8LpdbrLR228xMTbXOR82mwZYH8eMybNi8sNjPfOHm1wJ9BmyY4d999N6mpqaxcuZKVK1eSmprK5MmT633OuXPnqn18/vnnqFQq/vKXv1Q7btq0adWO++STT2z5rTgFHx8fNmzYwJgxY+jSpQsvvPACb7/9NqNHj27W+WJiYoiLi+P776tPP3z00Ufk5uYydOhQQkNDLR/fffcdAEePHqWoqKhagtOjRw/mzJnDhg0bGD16NOPHj+f5558HoE+fPowbN45Zs6ruaEpKSli+fDnTpk1rVuzORNemDfroKDCZKKgsBnQmt0feDshN7Iymqn4+5ik39969W2z34vTsdPZe3ItWreXWTrda9+Qh3avqb35/Rp7+EJrNe+RIAPLX2GA7DJMJfn0KTBXQdSx0vdn616iFVFZm+Z3iPbzlJTg2KzJOT09n5cqVJCUl0b9/fwA+/fRT4uPjOXjwIJGRkbU+LyQkpNrff/75Z2688UY6duxY7fMeHh41jm3poqKiWLlyZZ1fX3dVn4er/w7w008/Vfv77NmzeeaZZ5g2bRpqtZwPNzRH3blz5xrH/Prrr5bH6enpNZ7z88/Vd6deuHAh/fv3Z8AAKw3pOzjvYcMp3Z9O/tq1+P1lgtLhNElC+wRe3/Y6ZwvPsunMJoaEy6ulzG8U3sNb7vTUdwflpH9EuxEEuNsgyRvyHOxbLk97rJsvFyALzeI1dAgqnY6yY8coPXoU/XXXWe/kO76A09vAzVte6m8nhUlJmPLz0bQOxL2X87ShsBabjeBs3boVX19fS3IDMGDAAHx9fdmyZUujznH+/Hl+++03HnzwwRpfW7x4MYGBgXTr1o1nnnmG/Pz8Os9TWlpKXl5etQ+hccaMGcP06dOrNeSzB51Ox4IFC+x6TSWZ7x4LN23CWFCgcDRNY9AamNBZTsoWpS8CwHj5MkWVhY0t8c4RIKckh/8dk4uL7+xqoyl0vRfc/Lb8eOsHcDrFNtdpATReXngMlFf6mWvHrCI/E9ZUFoUPnw2+bes/3oryVstTl94jRqBSt7ySW5t9x5mZmQTVsh17UFBQo/uafPXVV3h7ezNhQvU72nvuuYclS5awbt06Zs+ezdKlS2scc6X58+db6oB8fX0JDw9v2jfTws2YMcPur9lDDz1U5yifK9J36YxbRES1IWVnclfXu1Cr1CSdS+JwzmHy//gTjEb0nTvjVll71dL8eOhHSo2lRAdE0zuot+0uFHkTxNwOkgl+fgwqSm13LRfnPWIEYMU6HEmSp6ZKc6FNL+g7tcGnWItUUUHBGnkVo08LqGWsTZMTnDlz5tRZCGz+SEmR7yJq61oqSVKju5l+/vnn3HPPPTV6sUybNo0RI0bQvXt37rzzTn788UfWrFnDzp21b/w3c+ZMcnNzLR+nTp1q4nctCLalUqnwvmkUAPmrVykcTdO18WrD8HbyVNTi9MXkrVwBYPmeWppyUznfHvgWgL9G/dX2HZxHvw6eQZB1ANa/bttruTDvYcNAraYkLY1ya4xa7/4WDq2QN9O85UO5G7WdFKWkYLx8GY2fHx59+9rtuo6kyQnO448/Tnp6er0f3bt3JyQkhPO17M6alZVVa8+Tq23cuJGDBw/W2OixNr1790an03H48OFav67X6/Hx8an2IQiOxmeUnAwUbNiIyYobl9rLX6P+CsCfab9SWDkN7dPMAndnl5iRyIXiCwS6BzIqwg5Jnoc/jH1HfrzpXTi7y/bXdEHagAA8+vQBIG/VNa5MyzsLK/4hP75xJgR3q/94K8uvnJ7yGj6sxWyuebUmJziBgYF07dq13g+DwUB8fDy5ubls27bN8tzk5GRyc3MZOHBgg9dZuHAhffr0oUcjtnVPS0ujvLyc0NDQpn47guAw9F27omvfDqm01LJ/kzPpFdSL6IBoeqSXQIURfWQk+qsWB7QEkiTx9f6vAbgj8g7cNG72uXDUOOg2ASQj/PQYVJTZ57ouxufmMQDk/f57808iSfDLE5VTU71h4AwrRdfIyxuNljoi841TS2SzGpyoqChuuukmpk2bRlJSEklJSUybNo2xY8dWq63o2rVrjUZ0eXl5/PDDD7WO3hw9epSXX36ZlJQUMjIy+P3335k0aRK9evVi0KBBtvp2BMHmVCoVPgnyL6O8lc43TaVSqZgcPZn4dHkFnUfCCIUjUkbK+RT2Ze9Dr9Fbp3NxU4x5EzwC4UIabHiz4eOFGrwTEkCjoWTfPspOnGjeSXZ9LW/JoNHDbR+Dxr4jKEXbU6jIykLt64tnC1mJWhubllUvXryYmJgYEhISSEhIIDY2lq+//rraMQcPHrTsRm327bffIkkSd911V41zurm5sXbtWkaNGkVkZCRPPvkkCQkJrFmzBo3GfvObgmAL5pqVgvXrMRY43zTVCN9+xJyQE5ykqJa3agNg4b6FANza6VbbLA2vj2egnOQAbHwbTm237/VdgNbf37JvWt6KFU0/weWTsFLu8cWwF6C1/RdL5P0mr97zSUhA5WanEUQHZNPfQP7+/ixatMiyNHvRokX4+flVO0aSJKZMmVLtcw899BBFRUX4+vrWOGd4eDjr168nOzub0tJSjhw5wnvvvYe/v78NvxNBsA9DdLS8mqq0lPw1NuqoakPFa9ehMcHxYPjP5f9Va/zXEhy8dJDNZzajVqm5r9t9ygTR7Tbo/hd5qmrZVCgRbTGaylw7lvdbE6epTCb4+XEoy4fw/hD/mA2iayCEsjJL/ZDPzfZpKOioWuYtliA4KJVKhc/4cQDk/fJrA0c7HnPMO7t7cCr/FGtO2qArrAP7Iu0LQG5+GO6tUDsKlQpufgd820FOBqx4Vpk4nJj3yBGg01F6+DAlhw41/olb3oPj60HrDrf8266rpswKN27ElJeHNigIj75xdr++IxEJjiA4GN9xcoJTmJRE+YULCkfTeGWnz1CUkgIqFSG3ybUnC/cutO3uzA7kdP5pVh6XO4nf3/1+ZYNx94MJ/wGVGnYvgb0/KhuPk9H4+Fj2pmr0KM7pFPjjn/Lj0a9DYCcbRVe/vN9+A8BnzBhULbxsQyQ4LcjQoUN56qmnmvSc7OxsgoKCyMjIsElMdZk4cSLvvPOOXa/pKNzCw3Hv2RNMpmtbyWFneb/+Asg7M//l+um4a91Jv5TOxjMbFY7MPj7b+xlGycjANgOJDohWOhxoHw83/J/8+H9/g5xmFsy2UL7jxgKQ+/PPSMYGplqLL8OP98t7TXW7DXrfa/sAa2EsKJSbbAI+Y8cqEoMjEQlOC7Js2TJeeaVpe9XMnz+fcePGERERYfncRx99RGxsrKWnUHx8PCuaU4xXjxdffJF58+a12G01nG2aSpIkcn+WExzfW26hlaEVd0bK2xN8vPtjlx/FOVtwlp+PyvupPdLjEYWjucINz0JYPyjNg2UPgbFC6YichtewYah9fKjIzKQoObnuAyUJ/veUXFzs1w7GvSdPEyogf/VqpJIS3CIiMHRzgCRbYSLBaUH8/f3x9vZu9PHFxcUsXLiwxnL9sLAwXnvtNVJSUkhJSWHYsGHccsstpKWlWS3W2NhYIiIiWLx4sdXO6Ux8Ro8GrZaS/fspPXJE6XAaVLJnD2UZGagMBsu+Wvd2uxeDxsDei3vZfHazwhHa1sK9C6kwVdA/tD89g3oqHU4VjRb+8qm8yeOpJHlDTqFR1Hq9pSfO5as2Ia5m538hbTmotTDxCzDUXBxjL5eXLgXA97bbbN892wmIBMfF/Pjjj8TExODu7k5AQAAjRoygsLIr7tVTVEOHDuXJJ5/k2Wefxd/fn5CQEObMmWP5+ooVK9BqtcRXLpk0GzduHGPGjKFLly506dKFefPm4eXlRVJSkuWYrl271rmVx/vvv8+SJUswGAzVNvGcOnUqsbGxlrYB48ePZ8mSJTZ4lRyftlUrvIbIu3Jf/nGpwtE0zDx64z1yJBovTwAC3QOZFCnX4ny0+yOXHcXJLMxk2ZFlADwc+7DC0dSiVQSMe1d+vPEtOOA8055K87vtNgDyVyfWvgnuhQNV3YqHvQBhyhX1lh4/TvGOHaBW43vrLYrF4UhEgtMIkiRRVF6kyEdT3hTOnTvHXXfdxQMPPEB6ejrr1q1jwoQJ9Z7jq6++wtPTk+TkZN544w1efvllEis3mtuwYQNxcfX/wBqNRr799lsKCwurJULm5o1r167l3LlznDx5Eq1Wyw8//MD06dO58847iYyMZP58+Y5y7ty5rFq1ihUrVljaA/Tr149t27ZRWtoyNw/0m/gXQK4BMJU5bldaU0kJuf+T+274jh9f7WsPdH8AvUbPnqw9LluL88meT6gwVRAXHEdciIOuWomZCP2my4+XT4fso8rG4yQMMTG4deyIVFJC/sqV1b9YfBm+vRsqiqHjjXbvVny13GXy71zPwdeja8R2SC1By9ygoomKK4rp/01/Ra6dfHcyHjqPRh177tw5KioqmDBhAu0rd3COiYmp9zmxsbG89NJLAHTu3JkPPviAtWvXMnLkSDIyMmjTpk2tz9u7dy/x8fGUlJTg5eXF8uXLiY6umvPNzMxEq9UyaNAg9Ho9qampVFRUMHjwYPR6PQDz5s1j4sSJtGnThvfee4+NGzfStm1byznatm1LaWkpmZmZlu+nJfEaPBhtcDAV589TsHatw+7rlLdyJaa8PHRt2uA5sPpoX6B7IHd1vYsv077k/Z3vc33b61GrXOe+6kTeCZYflt9Ynuj1hMLRNCDhn3ButzxV9d1fYeoacPNUOiqHplKp8L3tVrLefofLS5fhN3Gi/AWTEZZNg0tHwTcc/vIZqJX7fy1VVJBbOY3mN+EvisXhaFznN41Ajx49GD58ODExMUyaNIlPP/2UnJycep8TGxtb7e+hoaFcqFyaXFxcXGMnd7PIyEhSU1NJSkrikUce4b777mP//v2Wr+/du5cuXbpYkpnU1FRat25dbaPVsWPHEh0dzdy5c1m+fDndulXfjM7d3R2AoqKiRr4CrkWl1eI7QR4iv/yD4y7zvfzd9wD43T6p1mWpD3Z/EC+dFwdzDlqWUbuKD3Z9gFEyckPYDfQO7q10OPXTusHtX4FXMFzYL++V5KLThtbke8stoNVSvGsXJQcPyp/881U4vBq0BrhjkdxBWkEFmzZRkZWFplUrvG8cqmgsjkSM4DSCu9ad5LvrqaK38bUbS6PRkJiYyJYtW1i9ejULFixg1qxZJCcn06FDh1qfo9Ppqv1dpVJhMpkAeWPVuhIkNzc3OnWS+zzExcWxfft23nvvPT755BMA9uzZU230KDU1tUYytWrVKg4cOIDRaKx1h/lLly4B0Lp168Z8+y7J7y9/IfujjyncsoWy06dxCwtTOqRqSg4donjXLtBq8Z0wodZj/Ax+3N/9fhbsWsAHqR8wMmIkOrWu1mOdSXp2OiszVqJCxZO9nlQ6nMbxDoFJX8JX42DfUmgbB/GPKh2VQ9MFBeE9YgT5K1eSs2QJoZN6yrVMAOMXQJueSoYHwOUl3wLgO35ci96a4WpiBKcRVCoVHjoPRT6aWgmvUqkYNGgQc+fOZdeuXbi5udXYzLSxevXqVW1Upj6SJFWrldmzZ0+1hObqBGfnzp1MmjSJTz75hFGjRjF79uwa59y3bx9hYWEEBip7d6Qkt7AwPAcOBKpGShyJOSbvG29EFxRU53F/jfor/gZ/TuWf4vuDjvd9NJUkSbyzQ+7TNLrDaCL97b/fULO1HyhPVwGsfgEOO9+WIPbW6k655UHezz9j/L4yIYx/HGJvVzAqWdnJkxRs2ACAX2WcgkwkOC4kOTmZV199lZSUFE6ePMmyZcvIysoiKiqqWecbNWoUaWlpNUZxnn/+eTZu3EhGRgZ79+5l1qxZrFu3jnvuuQcAk8lEWlpatYTm2LFjljqajIwMbr75Zp577jkmT57Myy+/zNKlS9mxY0e162zcuJGEhIRmxe5K/O6Sf2ld/v57TMXFCkdTxVRURO4v8uopvzvuqPdYD50Hj/WU9+X5aPdH5Jbm1nu8o1t/ej1J55LQqXU83utxpcNpuv4PQ4+75f2qvr9Prs0R6uTRvx9uEe0wFZeQe0SCDkNgxFylwwIgZ8m3IEl4Dh6Mvo6R+pZKJDguxMfHhw0bNliWcL/wwgu8/fbbjG5mcWpMTAxxcXF8/331O+7z588zefJkIiMjGT58OMnJyaxcuZKRlf1Pjh49SlFRUbUEp0ePHsyZM4cNGzYwevRoxo8fz/PPyzvu9unTh3HjxjFr1izL8SUlJSxfvpxp06Y1K3ZX4j1sGLq2bTHm5pL7q+M0/ru8bDmm/Hx07dvVKC6uzYTOE+jk14nc0lw+2v2RHSK0jXJjOW+lyFMU90bfq9yeU9dCpZIb0nW4AcoL4Zs7IPe00lE5LFVZIa0i5Cnzy8daIU38Qu4xpDBTUZGl902re+5WOBrHo5JctTlFPfLy8vD19SU3NxcfH59qXyspKeH48eN06NChzgLbluT333/nmWeeYd++fajtuErgww8/5Oeff2b16tV1HtOS/q2yv/iSC6+/jr5zJzr88oviTbwko5Gjo8dQfvIkwbNfwL9y9K4hW89u5aHEh9CoNCwbv4yOfh1tHKn1fZX2FW+lvEWAIYDfJvyGp86JVyIVX4bPb4KsdAiKhgdWKtqoziEZy+GbOzCm/8HhX0KQKlSEL/wMr0GDlI6MnO+/J/PFl9CFh3PdqpWoFFzJZS/1vX9fzfVfDeGajBkzhunTp1dryGcPOp2OBQsW2PWajsxv4l9Qe3hQevgIRVu3Kh0O+X/8QfnJk6h9fS3N0Bojvk08Q8OHYpSMvLrtVadr/neh6AIf7/4YgBm9Zzh3cgPyppz3fF+1sur7e+U3dEEmSfDz43B0LRpPd/zG3wTApYULFQ4MJJOJS//9LwCt7r67RSQ3TSVeEaFBM2bMIDzcvsPwDz30EJGRTlS4aWMab298KxOJ7C++VDYY4NKXXwFy8aXao3F9msyejXsWvUZP8rlkfjv+my3Cs5nXtr1GQXkBsYGx3NLJRbrF+rWDu78HnSccWyc3AhR7VsnWzIE934JKA7f/l4DH/g80Ggq3bKXYilvTNEfBH39QduQoam9vS1NQoTqR4AiCk/C/715QqyncuJHivfsUi6N49265JbxOR6u7mz7vH+4TzvRYuavum9vfdJqC4/Wn1pN4IhGNSsOL8S+6VMNC2vSUe+SotfLy8Z8flZvZtWSb34fN78qPxy+AziPRtW2Lzxh5f6pLCz9XLDRJkrj4yX8AefRG04Q9BlsSF/oJFQTX5tauHb7jxgJw8eOPFYsj68MPAfAdOxZdcN1Lw+szpdsUrvO9jksll3g75W1rhmcTReVFvJr8KgCToyc717Lwxuo8Uu6Ro9LAnu/kRoCVPbFanE3/gsTK1hXDX4ReVTVmAQ8+AMgdvMtOnVIiOoq2bqVk715UBgP+905WJAZnIBIcQXAiAdMfBpWKgrVrKUlPt/v1i3btonDDRtBoCHyk+RtL6jQ6Xox/EYDlR5az4fQGa4VoE2+mvMnZwrO08WzDIz0eUToc24kaBxMXyklO6mL434yWl+RseFOemgIY+jwM/nu1Lxu6dsXz+uvBZOLiv5VZDWgevfGbOBFtQIAiMTgDkeAIghPRd+xg2ZPq4kf2H8W5uOADAHxvuxW3du2u6Vy9g3szOVq++3xpy0vklNS/rYhSNpzewI+H5K0yXhn0SqP3hnNa3W6DCf8BlRp2/hd+e7plJDmSBOtegz8qmyAOewGG/qPWQ1s/Ke87lvvzz5QeOWKvCAEo3LKFouRk0GoJeOB+u17b2YgERxCcTOAj8ihO/urVFO/ZY7frFqWkULhlC2i1BD5snVGMJ3s9SUffjlwsvsgrSa843KqqyyWXeWmLvBntX6P+Sr/QfgpHZCcxE+HWjwEV7PgClj8EFY67o/01kyQ5sVk3X/77iDlww//Vebh7bCzeI0eAyUTWe+/bJ0bklVPn35J7MLW68050dWyGLMhEgiMITkbfuTO+48cDcP611+2SFEgmE+fffBMAvwkTcAtr28AzGsegNfDq4FfRqrQknkjkh0M/WOW81mCSTMzcNJOLxRfp6NuRGb1nKB2SffW4AyZ8Khce7/0Bvr0LSguUjsr6jBXw65NV+0sl/BOu/1uDT2v95JPyjUZiIsV799o4SFneb79Tuj8dtacngY+68FSplYgERxCcUOun/4bK3Z3inTvJX2n7Hbpzf/qZkt17UHt4EPj4Y1Y9d7eAbjzZW96s8rVtr5F2Udnlt2af7vmUTWc2odfoeeOGNzBoXbuZZK1iJ8Fd34LWHY6sgS9uglz79sSyqdJ8OXHb+V95Su7mt2HgE416arUbjVfnI9l4Gs9UVkbWu+8CEDBtKlp/f5tezxWIBEcQnJAuOJiABx8E4MKbb2EqKbHZtYz5+Vx4W17pFPjYo/VuqtlcU7pNYVj4MMpN5Ty97mkul1y2+jWaYsvZLXyYKq8Wm9V/lmuummqsziPhvl/BIxAy98Jnw+HMTqWjunaXjsFnI+HwajmBu2MR9J3apFO0fmoGKg8PinftInfZMhsFKsv+9FPKz5xBGxSE/3332fRarkIkOILgpAIefABtSAjlZ89ysXLpti1c/OADjNnZuHXogP9k2yxJValUvHL9K4R7h3O28Cwz/pxBqbG04SfawJGcIzyz7hkkJCZ0nsBtnRvfqdllhfeFaWuhdVfIPydv77DjK6Wjar4ja+HTYfIWFV4hMOV/0PXmJp9GFxpK68flzVYvvPkWFTm2KZQvPXKEix9/AkDQs8+idne3yXVcjUhwWpChQ4fy1FNPNek52dnZBAUFkZGRYZOY6jJx4kTeeecdu17T2ajd3QmZ/QIA2Qs/pzg11erXKEpJ4dJ/vwYg+PnnUbm5Wf0aZj5uPrx/4/t467zZeWEnszbNwiTZd/VOVlEWj659lPzyfHq27snMfjPten2H1ioCHlwNkWPAWCrXrfz0qHPV5RgrYM1cWDQBinOgbR94aB2ExTX7lP6T/4q+SxeMublceP0N68VaSTKZOPfCbCgvx2vIEHxuHmP1a7gqkeC0IMuWLeOVV15p0nPmz5/PuHHjiIiIqPPrKpWqyYlTQ1588UXmzZtHXl6eVc/raryHD8f3lvFgMnF25vNWnaoy5udz9tl/gCThe9tteA2+3mrnrkunVp34143/QqvWsipjFa9te81uK6sul1zmkTWPcK7wHO192rNg2IKWWXdTH4Mv3LEYhs0GVHKvnE8Gw+kdSkfWsItH4IvRsKnyxinuAZjyO/iEXtNpVTodIXPmgEpF7k8/kff779ce6xUu/fe/FKemovbwIGTOS4pvtOtMRILTgvj7++PdhJbexcXFLFy4kKlTa5+X3r59O//5z3+IjY21VogWsbGxREREsHjxYquf29UEP/882tatKTt+nPPzrLOBpSRJZL7yCuVnz6ILDyd41iwrRNo4/UP78/LAlwFYcmAJ85Ln2Xwk51LJJR5c/SAHcw7ib/Dno+Ef4Wfws+k1nZZaDTc8I0/r+ITJtSwLR8Lq2VBWpHR0NZmMsPXf8PH1cHob6H1g4hcw9l+gs04C69G7FwEPy9uPnJv9ImUnT1rlvEU7dnDhLbn+Lej/nkEXem3JWEsjEhwX8+OPPxITE4O7uzsBAQGMGDGCwsJCoOYU1dChQ3nyySd59tln8ff3JyQkhDlz5li+vmLFCrRaLfHx8TWuU1BQwD333MOnn35Kq1atany9a9euqFSqWj/ef/99lixZgsFgqLZL+dSpU4mNjSU3V96baPz48SxZssRKr4zr0vj6Evrqq6BScfmHH8hZdO1J4aUvvyLvl19BrabN66+j8bLvrtnjrhvH3IFzUaHiu4PfMXfrXMpNttnlOrMwkwdXPcihnEMEGAL4fNTnhPvYd3NZpxRxPTyyCbpPBMkIW96Hj+LhwO9yXxlHcGob/GcIrJoJFcXQcSg8sgW6T7D6pVo/9hjucX0wFRZy5qm/YSq6tmSv/MIFTj/1FFRU4DNmNH533mmdQFsQkeA0giRJmIqKFPloyt34uXPnuOuuu3jggQdIT09n3bp1TJgwod5zfPXVV3h6epKcnMwbb7zByy+/TGJiIgAbNmwgLq72uenHHnuMm2++mREjRtT69eXLlwOwdu1azp07x8mTJ9Fqtfzwww9Mnz6dO++8k8jISObPlxtrzZ07l1WrVrFixQp8fX0B6NevH9u2baO0VJliU2fiNfh6gv5Pbkx2fv58CjZuava58n7/nQuvvw5A0N//jkfvXlaJsakmdJ7Ay4NeRoWKZYeX8XDiw1ZfXZV6IZU7/3cnRy4fobV7az6/6XOu87vOqtdwae6t5K0d7voOfNpCToa87Pq/4+HsLuXiyj4KP9wvjyxl7gWDH4x9Fyb/BH62SV5VWi1t33oLjZ8fJfv3c/qJJzGVNa85ojE/n9OPP4Ex6yL6zp0IfeUVMTXVDFqlA3AGUnExB3v3UeTakTt3oPJoXGv4c+fOUVFRwYQJE2jfvj0AMTEx9T4nNjaWl16SO7V27tyZDz74gLVr1zJy5EgyMjJoU0unzG+//ZadO3eyffv2Os+bmZmJVqtl0KBB6PV6UlNTqaioYPDgwej1egDmzZvHxIkTadOmDe+99x4bN26kbduqBnJt27altLSUzMxMy/cj1M3//imUHj5M7vLlnH78cdr+6194D7uxSefI/+NPzv7jOQBa3XMP/gq3gr+106346f34x4Z/sC1zG3f+difzrp9Hn+Br+3k0mox8c+Ab/rXjX5SbyunSqgvvD3uftl7WaWDY4kTeBBGDYOM7sPVDOL4B/jMUOo+Sp7PC+oI93qDP74ctC+TNQiUjoIKe98DIueAZaPPL60JCCPvo35x8cCqFmzdz9u/P0PZf76DSNv6t1piXx8kHp1Kydy8aX1/avv8+ak/7jqC6CpuO4MybN4+BAwfi4eGBn59fo54jSRJz5syhTZs2uLu7M3ToUNLSqjf+Ki0t5YknniAwMBBPT0/Gjx/P6dOnbfAdOJcePXowfPhwYmJimDRpEp9++ik5DSxbvLp+JjQ0lAsXLgByDY7BUH2O+tSpU8yYMYNFixbV+NqV9u7dS5cuXSzJTGpqKq1btyY4ONhyzNixY4mOjmbu3LksX76cbt26VTuHe+VSyKJrHOptKVQqFSFz5+A1dChSaSmnn3iCy0sb15tDkiSyv/yS0489hlRejvfIEQQ/P9Mh7hqHhg9l0ZhFtPVqy5mCM9y/8n7mJ88nr6x5BehHco4wZeUU3tj+BuWmcoaFD+Pr0V+L5OZa6b1hxEvw+HaIvVNunHd4lTyK8p+hsPNrKLHBooGKUti3DL6+TZ4i2/2NnNx0HgUPb4RbP7RLcmPm0asX4R8sQKXTkZ+YyMn7H6AiK6tRzy07cYITU6bIyY2fH+2++hJ9hw42jth12XQEp6ysjEmTJhEfH8/ChQsb9Zw33niDd955hy+//JIuXbrwz3/+k5EjR3Lw4EFLgexTTz3Fr7/+yrfffktAQAB///vfGTt2LDt27ECj0Vj9+1C5uxO5U5lVAqom9DvQaDQkJiayZcsWVq9ezYIFC5g1axbJycl0qOOHRKfTVb+eSoWpsiNnYGBgjQRpx44dXLhwgT59qu6gjUYjGzZs4IMPPqC0tBSNRsOePXuqjR6lpqbWSKZWrVrFgQMHMBqN1RIfs0uXLgHQunXrRr8GLZ3azY2wBe9z7oXZ5P78M+dmzSL/jz8IeWFWnQWKZRkZnH/rLQrWrAXAb9IkQl6cjcoGP0vN1blVZ34Y9wNvp7zN0sNL+ebAN/xy9BfuibqHO7veSaB7/W9gkiRx4NIBFu5byOqM1UhIeOo8ebrP00zqMskhEjmX0ao9TPgEhjwrj+js/QHOpcIvj8Pvz0DnBOhyE1w3rPkrmIouQcZGud7n0EowT12q1PKO6ANnQJgyo+4AngMH0nbB+5z9+zMUbd/OsQkTCHlhNt4jR6BS1xxXkIxGLi9dKm+9UlSEplUr2n35BYbIFtxg0gpsmuDMnTsXgC+//LJRx0uSxLvvvsusWbOYMEEuAvvqq68IDg7mm2++Yfr06eTm5rJw4UK+/vprS/3HokWLCA8PZ82aNYwaNcrq34dKpWr0NJHSVCoVgwYNYtCgQbz44ou0b9+e5cuX8/TTTzf5XL169WLRokXVPjd8+HD2XrXvyv3330/Xrl35xz/+YUkw9+zZw6233mo5JjU1ld69e1v+vnPnTiZNmsQnn3zCt99+y+zZs/nhh+r7EO3bt4+wsDACA+139+UKVDodofNfRdcunIsffUzB2rUc3bwZrxuH4pOQgK5NG1Q6HSUHD1G4ZQt5K1ZARQWo1QT93//hP+U+h3zD93bzZs7AOSREJPDm9jc5cvkIn+z5hE/3fkqf4D4MbDOQzn6daevVFrVKTamxlOO5xzmQc4A/T/5JRl6G5Vwj2o3g2b7PEuolVqXYTMB18ujJyJdh51ewewlcPATpv8gfAK06QJteEBwNfhHg00Zeiu7mCZIJTBVyMlNwHnKOQ9ZBOJsqN+i7kncb6Hk39Por+DvGiIf30KFE/PADZ2Y8SenhI5yZMQO3667Db8IEDNFRaAICqDh/geI9u7n841Iqzp0DwKNfP9q8Nl9spGkFDlWDc/z4cTIzM0lISLB8Tq/XM2TIELZs2cL06dPZsWMH5eXl1Y5p06YN3bt3Z8uWLbUmOKWlpdUKVV21t0pycjJr164lISGBoKAgkpOTycrKIioqqlnnGzVqFDNnziQnJ8eyUsrb25vu3btXO87T05OAgADL500mE2lpabz44ouWY44dO8Ztt8kdYTMyMrj55pt57rnnmDx5MtHR0fTt25cdO3ZUGxnauHFjtX9nofFUajWtH3sMn4QEzs2ZS/GOHeSvWEn+itr3rfIccgPBzzyDvnNnO0fadAPbDGTp+KWsObGGr9K+Ys/FPWzP3M72zLprwgDc1G4MazeMqTFTW/bWC/bmGQCDn5Y3sMzcKyc3R9bKRcg5x+WPtGZscxDYRR4N6nozhPcHteOMOJrpO3Yg4rvvuPjpp+QsWkzZ0aNcqNy09moaPz8CHnpIvsGoZZRHaDqHSnAyMzMBakxXBAcHc+LECcsxbm5uNZYmBwcHW55/tfnz51tGk1yZj48PGzZs4N133yUvL4/27dvz9ttvM3r06GadLyYmhri4OL7//numT5/e6OcdPXqUoqKialNSPXr0YM6cOfTq1Yvp06czfvx4nn/+eQD69OnDuHHjmDVrFisrN44sKSlh+fLlrFq1qlmxCzJ95860X/Q1Jfv2kbdyJYWbt2DKz8dUUoKubVs8+/fH68YbFVsp1VxqlZqEiAQSIhI4U3CGNSfWkJadxtHLR7lQJNeQaVQa2vm0o6NvR/qG9GVo+FA8daJYUzEqFYTGyh/DXpA7CZ9NlROd7COQcwLyz8obYJYVgkoDGq28AsorGHzDIKgrtI6SExov55i6Vnt4EDRjBgEPPMDlpUsp3rGTkoMHMeXmog0ORte2LT5jRuOdkIC6smZRsBKpiV566SUJqPdj+/bt1Z7zxRdfSL6+vg2ee/PmzRIgnT17ttrnp06dKo0aNUqSJElavHix5ObmVuO5I0aMkKZPn17reUtKSqTc3FzLx6lTpyRAys3NrXFscXGxtH//fqm4uLjBeFuC3377TYqKipKMRqNdr/vBBx9II0eOrPcY8W8lCILQsuTm5tb5/n21Jo/gPP7449zZQMOhutr6NyQkJASQR2lCryiIvHDhgmVUJyQkhLKysmrTJuZjBg4cWOt59Xq9ZTWP0DRjxozh8OHDnDlzhvBw+zU/0+l0LFiwwG7XEwRBEFxLkxOcwMBAmxV9dujQgZCQEBITE+nVSx4yLysrY/369bxe2XisT58+6HQ6EhMTuf322wG5/8u+fft44w3rb3QmwIwZM+x+zYceesju1xQEQRBch01rcE6ePMmlS5c4efIkRqOR1Mrdjjt16oSXlxcgt/SfP38+t912m2XTxldffZXOnTvTuXNnXn31VTw8PLj77rsB8PX15cEHH+Tvf/87AQEB+Pv788wzzxATE1NnV11BEARBEFoWmyY4L774Il999ZXl7+ZRmT///JOhQ4cCcPDgQcveQwDPPvssxcXFPProo+Tk5NC/f39Wr15dbZPIf/3rX2i1Wm6//XaKi4sZPnw4X375pU164AiCIAiC4HxUkuQou6LZT15eHr6+vuTm5uLj41PtayUlJRw/fpwOHTrU26lXUJ74txIEQWhZ6nv/vppYbF+HFpj3OR3xbyQIgiDURSQ4VzFvXSD2P3J85n+jq7ebEARBEASHavTnCDQaDX5+fpYNJz08PByybX1LJkkSRUVFXLhwAT8/P1F7JQiCINQgEpxamPvxmJMcwTH5+flZ/q0EQRAE4UoiwamFSqUiNDSUoKAgysvLlQ5HqIVOpxMjN4IgCEKdRIJTD41GI95EBUEQBMEJiSJjQRAEQRBcjkhwBEEQBEFwOSLBEQRBEATB5bTIGhxzg7i8vDyFIxEEQRAEobHM79uNafTaIhOc/Px8AMLDwxWORBAEQRCEpsrPz8fX17feY1rkXlQmk4mzZ8/i7e1t9SZ+eXl5hIeHc+rUqQb3yRCaT7zO9iFeZ/sQr7P9iNfaPmz1OkuSRH5+Pm3atEGtrr/KpkWO4KjVasLCwmx6DR8fH/HDYwfidbYP8Trbh3id7Ue81vZhi9e5oZEbM1FkLAiCIAiCyxEJjiAIgiAILkckOFam1+t56aWX0Ov1Sofi0sTrbB/idbYP8Trbj3it7cMRXucWWWQsCIIgCIJrEyM4giAIgiC4HJHgCIIgCILgckSCIwiCIAiCyxEJjiAIgiAILkckOM3w73//mw4dOmAwGOjTpw8bN26s9/j169fTp08fDAYDHTt25OOPP7ZTpM6tKa/zsmXLGDlyJK1bt8bHx4f4+HhWrVplx2idV1P/P5tt3rwZrVZLz549bRugi2jq61xaWsqsWbNo3749er2e6667js8//9xO0Tqvpr7OixcvpkePHnh4eBAaGsr9999Pdna2naJ1Ths2bGDcuHG0adMGlUrFTz/91OBzFHkflIQm+fbbbyWdTid9+umn0v79+6UZM2ZInp6e0okTJ2o9/tixY5KHh4c0Y8YMaf/+/dKnn34q6XQ66ccff7Rz5M6lqa/zjBkzpNdff13atm2bdOjQIWnmzJmSTqeTdu7caefInUtTX2ezy5cvSx07dpQSEhKkHj162CdYJ9ac13n8+PFS//79pcTEROn48eNScnKytHnzZjtG7Xya+jpv3LhRUqvV0nvvvScdO3ZM2rhxo9StWzfp1ltvtXPkzuX333+XZs2aJS1dulQCpOXLl9d7vFLvgyLBaaJ+/fpJDz/8cLXPde3aVXruuedqPf7ZZ5+VunbtWu1z06dPlwYMGGCzGF1BU1/n2kRHR0tz5861dmgupbmv8x133CG98MIL0ksvvSQSnEZo6uu8YsUKydfXV8rOzrZHeC6jqa/zm2++KXXs2LHa595//30pLCzMZjG6msYkOEq9D4opqiYoKytjx44dJCQkVPt8QkICW7ZsqfU5W7durXH8qFGjSElJoby83GaxOrPmvM5XM5lM5Ofn4+/vb4sQXUJzX+cvvviCo0eP8tJLL9k6RJfQnNf5l19+IS4ujjfeeIO2bdvSpUsXnnnmGYqLi+0RslNqzus8cOBATp8+ze+//44kSZw/f54ff/yRm2++2R4htxhKvQ+2yM02m+vixYsYjUaCg4OrfT44OJjMzMxan5OZmVnr8RUVFVy8eJHQ0FCbxeusmvM6X+3tt9+msLCQ22+/3RYhuoTmvM6HDx/mueeeY+PGjWi14tdHYzTndT527BibNm3CYDCwfPlyLl68yKOPPsqlS5dEHU4dmvM6Dxw4kMWLF3PHHXdQUlJCRUUF48ePZ8GCBfYIucVQ6n1QjOA0g0qlqvZ3SZJqfK6h42v7vFBdU19nsyVLljBnzhy+++47goKCbBWey2js62w0Grn77ruZO3cuXbp0sVd4LqMp/59NJhMqlYrFixfTr18/xowZwzvvvMOXX34pRnEa0JTXef/+/Tz55JO8+OKL7Nixg5UrV3L8+HEefvhhe4TaoijxPihuwZogMDAQjUZT427gwoULNbJTs5CQkFqP12q1BAQE2CxWZ9ac19nsu+++48EHH+SHH35gxIgRtgzT6TX1dc7PzyclJYVdu3bx+OOPA/IbsSRJaLVaVq9ezbBhw+wSuzNpzv/n0NBQ2rZti6+vr+VzUVFRSJLE6dOn6dy5s01jdkbNeZ3nz5/PoEGD+L//+z8AYmNj8fT0ZPDgwfzzn/8UI+xWotT7oBjBaQI3Nzf69OlDYmJitc8nJiYycODAWp8THx9f4/jVq1cTFxeHTqezWazOrDmvM8gjN1OmTOGbb74Rc+iN0NTX2cfHh71795Kammr5ePjhh4mMjCQ1NZX+/fvbK3Sn0pz/z4MGDeLs2bMUFBRYPnfo0CHUajVhYWE2jddZNed1LioqQq2u/jao0WiAqhEG4dop9j5o0xJmF2Rehrhw4UJp//790lNPPSV5enpKGRkZkiRJ0nPPPSdNnjzZcrx5edzf/vY3af/+/dLChQvFMvFGaOrr/M0330harVb68MMPpXPnzlk+Ll++rNS34BSa+jpfTayiapymvs75+flSWFiYNHHiRCktLU1av3691LlzZ2nq1KlKfQtOnGxA7AAAAt1JREFUoamv8xdffCFptVrp3//+t3T06FFp06ZNUlxcnNSvXz+lvgWnkJ+fL+3atUvatWuXBEjvvPOOtGvXLstyfEd5HxQJTjN8+OGHUvv27SU3Nzepd+/e0vr16y1fu++++6QhQ4ZUO37dunVSr169JDc3NykiIkL66KOP7Byxc2rK6zxkyBAJqPFx33332T9wJ9PU/89XEglO4zX1dU5PT5dGjBghubu7S2FhYdLTTz8tFRUV2Tlq59PU1/n999+XoqOjJXd3dyk0NFS65557pNOnT9s5aufy559/1vv71lHeB1WSJMbhBEEQBEFwLaIGRxAEQRAElyMSHEEQBEEQXI5IcARBEARBcDkiwREEQRAEweWIBEcQBEEQBJcjEhxBEARBEFyOSHAEQRAEQXA5IsERBEEQBMHliARHEARBEASXIxIcQRAEQRBcjkhwBEFwCUuWLMFgMHDmzBnL56ZOnUpsbCy5ubkKRiYIghLEXlSCILgESZLo2bMngwcP5oMPPmDu3Ll89tlnJCUl0bZtW6XDEwTBzrRKByAIgmANKpWKefPmMXHiRNq0acN7773Hxo0bRXIjCC2UGMERBMGl9O7dm7S0NFavXs2QIUOUDkcQBIWIGhxBEFzGqlWrOHDgAEajkeDgYKXDEQRBQWIERxAEl7Bz506GDh3Khx9+yLfffouHhwc//PCD0mEJgqAQUYMjCILTy8jI4Oabb+a5555j8uTJREdH07dvX3bs2EGfPn2UDk8QBAWIERxBEJzapUuXGDRoEDfccAOffPKJ5fO33HILpaWlrFy5UsHoBEFQikhwBEEQBEFwOaLIWBAEQRAElyMSHEEQBEEQXI5IcARBEARBcDkiwREEQRAEweWIBEcQBEEQBJcjEhxBEARBEFyOSHAEQRAEQXA5IsERBEEQBMHliARHEARBEASXIxIcQRAEQRBcjkhwBEEQBEFwOSLBEQRBEATB5fw/3yZsC/npepQAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n", + "│ caller = npyinitialize() at numpy.jl:67\n", + "└ @ PyCall /Users/stevenj/.julia/packages/PyCall/L0fLP/src/numpy.jl:67\n" + ] + }, + { + "data": { + "text/plain": [ + "PyObject Text(0.5, 1.0, 'orthogonal sine functions')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "x = range(0,1,length=200)\n", + "plot(x, sin.(π*x), \"-\")\n", + "plot(x, sin.(2π*x), \"-\")\n", + "plot(x, sin.(3π*x), \"-\")\n", + "plot(x, sin.(4π*x), \"-\")\n", + "legend([L\"\\sin(\\pi x)\", L\"\\sin(2\\pi x)\", L\"\\sin(3\\pi x)\", L\"\\sin(4\\pi x)\"])\n", + "xlabel(L\"x\")\n", + "title(\"orthogonal sine functions\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sines as an orthogonal basis\n", + "\n", + "We can consider the $\\sin(n\\pi x)$ functions as an orthogonal basis for some set of functions, defined by all linear combinations of these $\\sin(n\\pi x)$ functions (their **span**). At first glance, it seems like this should be a rather \"small\" subspace of all functions. One of the most remarkable facts of mathematics, however, is that the span of the sine functions contains nearly all possible functions of practical interest! This was first proposed by Fourier in 1807, but took almost 150 years to make rigorous and precise.\n", + "\n", + "For a function $f(x)$ defined on $x \\in [0,1]$, the [Fourier sine series](http://en.wikipedia.org/wiki/Fourier_sine_and_cosine_series) writes $f(x)$ as:\n", + "$$\n", + "f(x) = \\sum_{n=1}^\\infty b_n \\sin(n\\pi x)\n", + "$$\n", + "where the coefficients $b_n$ can be found by integration:\n", + "$$\n", + "b_m = 2 \\int_0^1 f(x) \\sin(m\\pi x) dx \\, .\n", + "$$\n", + "\n", + "Let's define a function `sinecoef` in [Julia](http://julialang.org) to compute these [integrals numerically](http://en.wikipedia.org/wiki/Numerical_integration), using Julia's [quadgk](https://github.com/JuliaMath/QuadGK.jl) function We'll use the `abstol` parameter to set an integration tolerance: we want the error to be small compared to $\\sqrt{\\int_0^1 |f(x)|^2 dx}$." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "sinecoef (generic function with 1 method)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using QuadGK\n", + "\n", + "sinecoef(f, m) = 2 * quadgk(x -> f(x) * sin(m*π*x), 0,1, atol=1e-8 * sqrt(quadgk(x->abs2(f(x)),0,1)[1]))[1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Truncated series = Projection = Fitting!\n", + "\n", + "In practice, of course, we are usually forced to truncate the series to a finite number N of terms:\n", + "\n", + "$$\n", + "f(x) \\approx \\sum_{n=1}^N b_n \\sin(n\\pi x)\n", + "$$\n", + "\n", + "while still computing $b_m = 2 \\int_0^1 f(x) \\sin(m\\pi x) dx$ as above. The key thing to understand is that **this is orthogonal projection** of $f(x)$ onto the **N-dimensional subspace** spanned by $\\{\\sin(\\pi x), \\sin(2\\pi x), \\ldots, \\sin(N\\pi x)\\}$.\n", + "\n", + "And, just for projection with vectors in $\\mathbb{R}^m$, **projection is equivalent to least-square fitting**. That means that truncating the Fourier series is equivalent to finding the $b_n$ that **minimize**\n", + "$$\n", + "\\left\\Vert f(x) - \\sum_{n=1}^N b_n \\sin(n\\pi x) \\right\\Vert^2 = \\int_0^1 \\left| f(x) - \\sum_{n=1}^N b_n \\sin(n\\pi x) \\right|^2 dx\n", + "$$\n", + "over all possible $\\{b_1,\\ldots,b_N\\}$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A sine-series example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For example, if we have the function $f(x) = 0.5 - |x - 0.5|$, the first 20 coefficients are:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20-element Vector{Float64}:\n", + " 0.4052847345693511\n", + " 5.031872079333402e-18\n", + " -0.045031637174372426\n", + " 1.821156848822449e-17\n", + " 0.016211389382773993\n", + " -2.0848986065940786e-17\n", + " -0.008271117032027663\n", + " -1.2554430899086627e-17\n", + " 0.005003515241596977\n", + " 4.703324618594227e-17\n", + " -0.0033494606162756263\n", + " -7.308916560896717e-18\n", + " 0.0023981345240789223\n", + " -2.3414712309558446e-16\n", + " -0.0018012654869748413\n", + " -8.725341965181291e-17\n", + " 0.0014023693237693808\n", + " 3.6769709280601687e-16\n", + " -0.0011226723949289694\n", + " -4.114118967289368e-16" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f(x) = 0.5 - abs(x - 0.5)\n", + "sinecoef.(f, 1:20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(Notice that $b_n = 0$ for *even* $n$, which correspond to *antisymmetric* sine functions that integrate to zero against this *symmetric* $f$.) The coefficients seem to be converging (getting smaller), as we would hope for a convergent series. Let's plot them." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHLCAYAAAAtG1f3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlUUlEQVR4nO3deVxU1fsH8M+A7Ig7iIJbbiEqimiSmGhq1teNrH5abmnlkkpkLllumaYtWoprqalppqJZWbnkgpo7YKRlKgoqiiurCAz398dhkJHFWbl3Zj7v12teOGfu3PvMwMjDOc85RyVJkgQiIiIigp3cARAREREpBRMjIiIiogJMjIiIiIgKMDEiIiIiKsDEiIiIiKgAEyMiIiKiAkyMiIiIiAowMSIiIiIqwMSIiIiIqAATIyIiIqICTIyIiIiICjAxsmFHjx5F3759UadOHTg5OcHLywvt27fHu+++W3jM6tWroVKpcOnSJfkCNTNbeI1kehs3bkSzZs3g4uIClUqF2NjYcrluRkYG3njjDdSuXRsVKlRAgwYNAAAzZ86En58f8vPz9TrfN998g9q1ayMzM9Mc4RaTkZGB8PBw1KpVC87OzggICMD333+v03P37dsHlUpV4u3IkSNmjhyoV68epk+fbvbr6Kq83kulvW5zqyB3ACSPX375Bb169UKnTp0wb948eHt7Izk5GSdOnMD333+Pzz//HADwwgsv4M8//4S3t7fMEZuPLbxGMq2bN29i4MCBeO6557B48WI4OTmhcePG5XLtiIgIbNmyBYsXL0bdunVRqVIlXLt2DfPmzcPq1athZ6ff37uDBw/G3LlzMW/ePMyYMcNMUT8UFhaG48eP45NPPkHjxo2xfv169O/fH/n5+RgwYIBO55g9ezZCQ0O12vz9/c0RrqLxvTQTiWxSx44dpSeeeELKzc0t9pharZYhovKXmZkpdwhWyRbe14MHD0oApI0bN5r0vI977x48eCC5u7tL7733nlb7hAkTpNq1axv82f3ss8+kSpUqmf1798svv0gApPXr12u1d+3aVapVq5aUl5dX5vP37t0rAZA2bdpkzjBLVbduXWnatGmyXPtR5fleKul1lwcOpdmo27dvo3r16qhQoXinYdG/OEsaZpo+fTpUKhX+/vtv9O/fH5UqVYKXlxdef/11pKamap3rv//+w4ABA+Dp6QknJyc8+eSTiIyM1CnGmzdv4s0334Svry+cnJxQo0YNPP3009i9e7fe19DEfOrUKfTr1w9VqlTBE088Uepr1OWcusZXkn/++Qf9+/eHl5cXnJycUKdOHQwaNAgPHjzQOu7gwYPo0qULKlasCFdXVwQHB+OXX34p8bWV9f3Ytm0bVCoV9uzZUyyWJUuWQKVS4fTp03q9/se9rz/++CNatGgBJycnNGjQAF9++WXh8Y/S53uoy8+dru+xIT+fQ4YMQYcOHQAAr7zyClQqFTp16lT4uC7fs8e9dyUZOnQonJyckJGRgU8//RQqlQpPPfUUcnJy8M0332DAgAFan93k5GS4u7vj//7v/7TO8/PPP8PBwQFTpkwpbHv11VeRlpam8zCMobZu3Qp3d3e89NJLxV7btWvXcPToUbNe39T0eY9NzdreS0WROzMjeQwfPlwCII0ZM0Y6cuSIlJOTU+Jxq1atkgBICQkJhW3Tpk2TAEhNmjSRpk6dKu3atUv64osvJCcnJ2no0KGFx/39999SpUqVpObNm0tr1qyRdu7cKb377ruSnZ2dNH369MfG2L17d6lGjRrS8uXLpX379knbtm2Tpk6dKn3//fd6X0MTc926daWJEydKu3btkrZt21bia9T1nLrEV5LY2FjJ3d1dqlevnrR06VJpz5490rp166SXX35ZSktLKzxu3759koODgxQYGCht3LhR2rZtm9StWzdJpVJpXUOX70dubq7k6ekpvfrqq8Xiadu2rdS6dWuDvm+lva+//vqrZGdnJ3Xq1EnaunWrtGnTJqldu3ZSvXr1pEf/29H3e/i4nztd32NDfz7Pnz8vRUZGSgCk2bNnS3/++af0999/6/U9K+u9K83Zs2elyZMnSwCk7du3S3/++ad07tw56cCBAxIAaceOHcWeM2PGDEmlUkknTpyQJEn0Ejg7O0tjxowpduyTTz4phYWFlXr9/Px8KTc3V6dbaZ566ikpKCioWHt8fLwEQFq2bFmpz9XED0Dy9PSU7O3tpYoVK0rdunWToqOjy3yeqZTUc6LPe2xK5fle2lqPERMjG3Xr1i2pQ4cOEgAJgOTg4CAFBwdLc+bMkdLT0wuPKysxmjdvntY5R40aJTk7O0v5+fmSJInEwcfHR0pNTdU67u2335acnZ2lO3fulBmju7u7FB4eXuYxul5DE/PUqVOLnePR16jrOXWJrySdO3eWKleuLKWkpJR53FNPPSV5enpqfT/y8vIkf39/ycfHp/B91vX7ERERIbm4uEj37t0rPObMmTMSAGnhwoWFbfp830p7X4OCgiRfX1/pwYMHhW3p6elStWrViiVG+n4PH/c6JUm399iYn8/ShiF0/Z4VfT0l/UyWZsyYMVKVKlW02ubOnSsBkK5fv17s+MzMTKlWrVpSly5dpGPHjkkVK1aUhg4dqhWHxquvvip5eXk99jXrciv6/0VRjRo1krp3716s/dq1a4WJZllOnToljRs3Ttq6dat04MABaeXKldKTTz4p2dvbS7/99luZzzWFkhIEfd5jUyrP99LWEiMOpdmoatWqITo6urBwr3fv3jh37hwmT56M5s2b49atW489R69evbTut2jRAtnZ2UhJSUF2djb27NmDvn37wtXVFXl5eYW3559/HtnZ2Y+dRdK2bVusXr0as2bNwpEjR5Cbm6v1uCHXePHFF8u8pj7nfFx8JcnKysL+/fvx8ssvo0aNGqUel5mZiaNHj6Jfv35wd3cvbLe3t8fAgQNx5coV/Pvvv1rPKev7AQCvv/467t+/j40bNxYes2rVKjg5ORUWahr6fSv6vmZmZuLEiRPo06cPHB0dC9vd3d3Rs2dPrecZcr3HvU5d3mNT/Hw+ypDvGfD4n8miTp48icDAQK22a9euQaVSoXr16sWOd3V1xaxZs7Bnzx6EhoaiR48eWLFiRYnDmZ6enkhJSUFeXl6J1w4MDMTx48d1utWqVavU11DStXV5DABatWqFBQsWoE+fPggJCcHQoUNx+PBheHt7Y8KECaU+r6wZWI/e9J1dqM97bOp45HgvbQFnpdm4Nm3aoE2bNgCA3NxcTJw4EfPnz8e8efMwb968Mp9brVo1rftOTk4AgPv37xf+klm4cCEWLlxY4vMfl3xt3LgRs2bNwtdff40PP/wQ7u7u6Nu3L+bNm4eaNWvi9u3bel/jcTPP9Dnn4+Iryd27d6FWq+Hj41NmHHfv3oUkSSXGq/mlc/v2ba32sr4fANCsWTMEBQVh1apVePPNN6FWq7Fu3Tr07t0bVatW1fv1F1U0Tk3sXl5exY57tM2Q6z3uderyHhv6OstiyPcMePzPpIZarUZsbCzGjBmj1X7//n04ODjA3t6+xOdpZsupVCqsXr261OOcnZ0hSRKys7O1EjsNd3d3BAQE6BRrSbWLgPjelfQe3LlzBwAKfw71UblyZfzvf//D0qVLcf/+fbi4uBQ7pkmTJlixYoVO56tTp47eMej6HpsyHrneS1vAxIgKOTg4YNq0aZg/fz7i4+ONOleVKlUK/1IePXp0icfUr1+/zHNUr14dCxYswIIFC5CYmIjt27dj0qRJSElJwW+//WbQNR73V5Q+53xcfCWpWrUq7O3tceXKlcfGYWdnh+Tk5GKPXbt2rfD6+ho6dChGjRqFs2fP4uLFi0hOTsbQoUO1rmvI963o+1qlShWoVCrcuHGj2HHXr1/Xum+Kn5NH6fIem+O6hn7PHvczqXH27FlkZWUV6zGqXr06cnJykJmZCTc3N63HYmNj8b///Q9PP/00Dh06hJUrV5b6eu/cuQMnJ6cSkyIA2L9/f7Fp3aVJSEhAvXr1irU3b94cGzZsQF5enlby9NdffwEwfJq4JEkASn8vvb29MXz4cIPO/Tj6vMemjEeu99ImyDmOR/K5du1aie1//vmnBEAaNmyYJEll1xjdvHlT67mPHvvss89KLVu21KozMVafPn2kGjVqFN7X9RqlxWzquB+NrySdO3eWqlSpUmIsRbVv316qWbOmlJWVVdimVqul5s2bl1hj9LjvhyRJ0t27dyVnZ2dpwoQJUr9+/Uqc4q3P6y/t2vrUGBn7PSzpderyHhvzfS6txkjX71lZr6c0mtd54cIFrfY1a9ZIAKS4uDit9n/++Ufy9PSUevToIeXk5Ei9e/eWqlevrlVjVlTXrl2lVq1alXr9tLQ06fjx4zrdSntPd+zYIQEoVoj+3HPP6TTFvCR37tyRateuLQUEBOj9XH09Wmuj73tsSuX5XtpajRF7jGxU9+7d4ePjg549e6Jp06bIz89HbGwsPv/8c7i7u2PcuHFGX+PLL79Ehw4dEBISgpEjR6JevXpIT0/H+fPn8dNPP+GPP/4o9bmpqakIDQ3FgAED0LRpU1SsWBHHjx/Hb7/9hrCwMJNcw5i4dY2vJF988QU6dOiAdu3aYdKkSWjYsCFu3LiB7du3Y9myZahYsSIAYM6cOejatStCQ0Mxfvx4ODo6YvHixYiPj8eGDRsM+ouucuXK6Nu3L1avXo179+5h/PjxxRYENMV7OnPmTLzwwgvo3r07xo0bB7VajU8//RTu7u6FXf2mvN6jdHmPzXFdc3zPNE6ePInKlSsXrnStoVkq4MiRI2jRogUA4NKlS3j22WfRpEkTbNmyBQ4ODvjkk0/g7++P2bNnY+7cuVrnyM/Px7FjxzBs2LBSr1+xYsXCYXdD9ejRA127dsXIkSORlpaGhg0bYsOGDfjtt9+wbt26wiGo/fv3o0uXLpg6dSqmTp1a+PwBAwagTp06aNOmDapXr47//vsPn3/+OW7cuIHVq1cbFZu+9H2PTc2a3kvFkTszI3ls3LhRGjBggNSoUSPJ3d1dcnBwkOrUqSMNHDhQOnPmTOFxxvQYSZIkJSQkSK+//rpUu3ZtycHBQapRo4YUHBwszZo1q8z4srOzpREjRkgtWrSQPDw8JBcXF6lJkybStGnTii1Cp8s19Okx0uWc+sRXkjNnzkgvvfSSVK1aNcnR0VGqU6eONGTIECk7O1vruOjoaKlz586Sm5ub5OLiIj311FPSTz/9pHWMPt8PSZKknTt3Fs4eOnfuXInx6fp9K+t93bp1q9S8efPC1/fJJ59IY8eOLTarStfr6fs6dXmPDf35LGtxPF2+Z49770rSvn17qXPnziU+FhISIj3//POSJIne4CeeeEJq3bp1sRl3b7zxhuTk5FTsvdqzZ48EQDp58qROsRgjPT1dGjt2rFSzZk3J0dFRatGihbRhwwatYzTv76O9FHPmzJECAgKkSpUqSfb29lKNGjWkvn37SseOHTN73JL0sOfEkPfYHMrrvbS1HiOVJBUMKBIRmVFubi4CAgJQu3Zt7Ny5U+5wrMqWLVvwyiuv4PLly6hdu7bezx84cCAuXryIQ4cOmSE661GvXj0MGTLEpvYNA2zvdXMojYjMYtiwYejatSu8vb1x/fp1LF26FGfPnsWXX34pd2hWJywsDEFBQZgzZw4WLVqk13MvXLiAjRs3GjR0SGSNmBgRkVmkp6dj/PjxuHnzJhwcHNC6dWvs2LEDzz77rNyhWR2VSoUVK1Zg+/btyM/P12sj2cTERCxatKhwmxMiW8fEiIjM4ocffpA7BJvi7+9v0BTt0NBQnafhE9kC1hgRERERFeCWIEREREQFmBgRERERFWCNkZ7y8/Nx7do1VKxY0baXTCciIrIgkiQhPT0dtWrVKnOCAhMjPV27dg2+vr5yh0FEREQGSEpKKnOTaSZGetJs15CUlAQPDw+ZoyEiIiJdpKWlwdfXt/D3eGmYGOlJM3zm4eHBxIiIiMjCPK4MhsXXRERERAWYGBEREREV4FAaERGRwuTn5yMnJ0fuMCyKg4MD7O3tjT4PEyMiIiIFycnJQUJCAvLz8+UOxeJUrlwZNWvWNGo5HSZGRERECiFJEpKTk2Fvbw9fX1+9NgS2ZZIkISsrCykpKQAAb29vg8/FxIiIiEgh8vLykJWVhVq1asHV1VXucCyKi4sLACAlJQWenp4GD6sxFSUiIlIItVoNAHB0dJQ5EsukSSZzc3MNPgcTIyIiIoXhllOGMcX7ZpOJ0c8//4wmTZqgUaNG+Prrr+UOh4iIiBTC5mqM8vLyEBERgb1798LDwwOtW7dGWFgYqlatKndoREREJDOb6zE6duwYmjVrhtq1a6NixYp4/vnn8fvvv8sdFhERESmAxSVGBw4cQM+ePVGrVi2oVCps27at2DGLFy9G/fr14ezsjMDAQERHRxc+du3aNdSuXbvwvo+PD65evVoeoRMREZHCWVxilJmZiZYtW2LRokUlPr5x40aEh4djypQpiImJQUhICHr06IHExEQAYq2DR5VVrPXgwQOkpaVp3czlwgXg9GmznZ6IiGyEWg3s2wds2CC+Fkx2M6t9+/ahXr16Wm0TJ05Ejx49THa+8mBxiVGPHj0wa9YshIWFlfj4F198gWHDhmH48OF48sknsWDBAvj6+mLJkiUAgNq1a2v1EF25cqXMhaDmzJmDSpUqFd58fX1N+4IKqNXAoEFAmzbAnDlAXp5ZLkNERFYuKgqoVw8IDQUGDBBf69UT7eUtNjYWLVu2LP8LG8HiEqOy5OTk4OTJk+jWrZtWe7du3XD48GEAQNu2bREfH4+rV68iPT0dO3bsQPfu3Us95+TJk5Gamlp4S0pKMkvsmZlAjRpAbi7w/vvA008D//xjlksREZGViooC+vUDrlzRbr96VbSXd3IUFxeHgICA8r2okawqMbp16xbUajW8vLy02r28vHD9+nUAQIUKFfD5558jNDQUrVq1wnvvvYdq1aqVek4nJyd4eHho3czBwwPYuhVYswaoVAk4dgxo1QqYPx/gdjlERPQ4ajUwbhxQQsVIYVt4ePkMqwHA9evXcePGDeTn56Njx45wdXVFmzZtEBcXVz4BGMiqEiONR2uGJEnSauvVqxfOnTuH8+fP48033yzv8EqlUgEDBwLx8UC3bkB2NhARIbpBC7Z/ISIiKlF0dPGeoqIkCUhKEseVh5iYGADAggULMHv2bJw4cQIVK1bE//3f/5VPAAayqsSoevXqsLe3L+wd0khJSSnWi6SvyMhI+Pn5ISgoyKjz6MLHB/jtN2DpUsDNDUhPBypXNvtliYjIgiUnm/Y4Y8XGxsLZ2Rnbtm1Dhw4d4Ofnh48//hj//PNPsd/TSmJViZGjoyMCAwOxa9curfZdu3YhODjYqHOPHj0aZ86cwfHjx406j65UKuCtt8QstfXrAc22OTk5YqyYiIioKF03lDdi43m9xMbG4uWXX0atWrUK29zc3AAA+QquEbG4xCgjIwOxsbGIjY0FACQkJCA2NrZwOn5ERAS+/vprrFy5EmfPnsU777yDxMREjBgxQsaoDdegAdC06cP7H38MNGsmapFKGkcmIiLbFBIiRhxKW4FGpQJ8fcVx5SE2NrZY4fWpU6dQs2bNwtngPXr0wLRp0/DUU0+hbt26OHPmTPkEVwaLS4xOnDiBVq1aoVWrVgBEItSqVStMnToVAPDKK69gwYIFmDlzJgICAnDgwAHs2LEDdevWlTNsk1CrgT/+AFJTgcGDgb59gRs35I6KiIiUwN4e+PJL8e9HkyPN/QULxHHmlpWVhfPnz0NdpNI7Pz8fCxcuxJAhQwrrfuPj41G/fn0cOXIEb7zxBn766SfzB/cYFpcYderUCZIkFbutXr268JhRo0bh0qVLePDgAU6ePImOHTsafd3yrDEqjb09sHevWOfIwQH48UfRe7Rpk2whERGRgoSFAZs3A0U2eAAgepI2bxaPl4e4uDjY29tj1apVOHbsGM6dO4eXX34ZmZmZeP/99wEAqampcHBwwJAhQwCIcpjKCiiotbjESC7lXWNUmgoVgEmTgJMngYAA4PZt4OWXgf/7P/FvIiKybWFhwKVL4g/p9evF14SE8kuKAJEYNW7cGNOnT8eLL76IVq1awcHBAYcPH0bFihUBiN6itm3bFj4nPj4ezZo1K78gS1FB7gDIMM2bA0ePipqjjz8GfvoJmDULKGNJJiIishH29kCnTvJdf8SIEYW1vS+99FKJx8THx6N58+aF9//66y/4+/uXS3xlYWJkwRwdgRkzgJ49gfPngYYNHz6Wk/NwJhsREZHS/P3333j22WcBAHl5ecjIyOBQmiVRQo1Radq0EUNpGgcOAI0bA7t3yxcTERFRWb766iv06tULgNiV4r///pM5IoGJkY6UUmOki48/Bi5fBrp2BUaPBjIy5I6IiIisXb169RAeHq7Y8+mKiZEViooSCREALF4sirQPHpQ1JCIisnJMjEix3NyARYvEUFqdOsCFC0DHjsD48cD9+3JHR0REpFxMjKxYly7AX38Bw4aJVbI//xz4+We5oyIiIlIuJkY6UnLxdVk8PICvvxYJ0ZtvAv36yR0RERGRcjEx0pElFV+X5IUXgGXLHi4Lf+cO8PzzQFycvHEREREpCRMjGzVlCvDrr0BQEDB7NpCXJ3dERERE8mNiZKOmTwf69AFyc0WS9PTTwD//yB0VERGRvJgY2SgvLzGtf80aoFIl4NgxoFUrYP58ID9f7uiIiIjkwcTIhqlUwMCBQHw80L07kJ0NREQAc+bIHRkREZE8mBjpyFJnpenCx0fUGy1fDjRpAowaJXdEREREQFJSEjp16gQ/Pz+0aNECmzZtMvs1VZIkSWa/ihVJS0tDpUqVkJqaCg8PD7nDMbm8PKBCwdbCkiS2Fxk8GPD1lTcuIiJbkJ2djYSEBNSvXx/Ozs5yhyO75ORk3LhxAwEBAUhJSUHr1q3x77//ws3NrcTjy3r/dP39zR4jBVCrgX37gA0bxFe1Wr5YNEkRAKxdC3z4IeDvD3z7rUiUiIiIyou3tzcCAgIAAJ6enqhatSru3Llj1msyMZJZVBRQrx4QGgoMGCC+1qsn2uXWrh3w1FNAWhowZIiYxXb9utxRERGREh04cAA9e/ZErVq1oFKpsG3bthKPGzJkCCZNmqT3+U+cOIH8/Hz4mnkIg4mRjKKixErUV65ot1+9KtrlTo6aNAGio0UxtoMDsH276D0qhyFeIiKyMJmZmWjZsiUWLVpU6jH5+fn45Zdf0Lt3b73Offv2bQwaNAjLly83NszHYmIkE7UaGDeu5OEpTVt4uLzDaoAYWps0CTh5Ukznv30bePllsSEtERGRRo8ePTBr1iyEhYWVesyhQ4dgZ2eHdu3aAQDOnz8PlUqFX375BV26dIGrqyuaNGmCo0ePFj7nwYMH6Nu3LyZPnozg4GCzvw4mRjKJji7eU1SUJAFJSeI4JWjeHDhyBJg6VfQe9ewpd0RERLYjM7P0W3a27sfev6/bseayfft29OzZE3Z2Iv2Ii4uDSqXC559/jg8++ABxcXGoU6dO4VCbJEkYMmQIOnfujIEDB5ovsCKYGMkkOdm0x5UHR0dgxgwgIQF45pmH7Xv2AKmp8sVFRGTt3N1Lv734ovaxnp6lH9ujh/ax9eqVfJy5bN++XWsYLS4uDpUqVcLGjRsRGhqKRo0aoU+fPrh58yYA0cO0ceNGbNu2DQEBAQgICMBff/1lvgABVHj8IQSIdYwiIyOhNtHYlre3aY8rT7VrP/z3+fNAr15AtWrAN98AXbvKFxcRESnX2bNnceXKFTz77LOFbXFxcejZsydq1KhR2Hbx4kU0bNgQANChQwfkl/N2DEyMdDR69GiMHj26cB0EY4WEiIUVr14tuc5IpRKPh4QYfSmzSksDatUSCVK3bsDIkcC8eeb9i4OIyNZkZJT+mL299v2UlNKPtXtknOjSJYND0tv27dvRtWtXuLi4FLbFxcVh4sSJWsfFxMSgY8eO5RfYIziUJhN7e+DLL8W/VSrtxzT3Fywo/gOvNK1bA7GxwNtvi/tLlgAtWyqnNoqIyBq4uZV+e3QdyLKOLZKTlHmsOfz444/o1atX4f3U1FRcvnwZrVq10jouNja2cO0iOTAxklFYGLB5s/bQFCB6ijZvFo9bAjc3YOFCYPduoE4d4OJFUYNkwDIVRERkoTIyMhAbG4vY2FgAQEJCAmJjY5GYmIiUlBQcP34c//vf/wqPj4uLg729PVq2bFnYdvnyZdy9e1fWxIhDaTILCwN69xY9LMnJoqYoJET5PUUl6dIF+OsvsRHtN9+IYm0iIrINJ06cQGhoaOH9iIgIAMDgwYMREhKCdu3awdPTs/DxuLg4NG3aVGtoLSYmBpUrV0a9evXKLe5Hca80PVn7Xmmm8scfQIcOD5Ojq1eBGjWYLBERlcVa90rr1asXOnTogAkTJpj1OtwrjRSrc+eHSVBOjlj3qG1bIC5O3riIiKj8dejQAf3795c7DJ0wMSKzO3dOLFYZFwcEBQEffwzk5ckdFRERlZcJEyaYfY8zU2FiRGbn7w/8/bfYhDY3F/jgAyA4GPjnH7kjIyIi0sbESEeRkZHw8/NDUFCQ3KFYJE9PsSnu2rVApUrA8eNi77UvvgDKee0uIiKiUjEx0tHo0aNx5swZHD9+XO5QLJZKBbz2mug9eu45sb/Pli0lL3BJREQkB07Xp3JXuzawYwfw9ddAp04PlybIzQUqVCi+4CUREVF5YY8RyUKlAt54A2jU6GHbpElA9+6iUJuIyJZxJR3DmOJ9Y2JEipCSAixbBuzaJYq1V6/mEBsR2R77gi70nJwcmSOxTFlZWQAABwcHg8/BoTRSBE9P4NQpYPBg4MgRYOhQUay9fDlQs6bc0RERlY8KFSrA1dUVN2/ehIODA+we3fWVSiRJErKyspCSkoLKlSsXJpiG4MrXeuLK1+alVgOffQZMnSoWhqxaFVi8GHjlFbkjIyIqHzk5OUhISEA+p+zqrXLlyqhZsyZUJRSr6vr7m4mRnpgYlY/4eGDQICAmBvDwAC5cAKpXlzsqIqLykZ+fz+E0PTk4OJTZU6Tr728OpZEi+fsDR4+KVbKfeIJJERHZFjs7O6vaK82ScPCSFMvBAZg+HRg48GHbb78BQ4YA9+7JFBQREVk1JkZkMXJygDffBL79FmjeHNi5U+6IiIjI2jAxIovh6Ah8/z3QsCFw5YpY82jkSCAjQ+7IiIjIWjAxIosSHAzExgJjxoj7S5cCLVoABw7IGhYREVkJJkZkcdzcgK++AvbsAerUARISxNYip0/LHRkREVk6zkrTUWRkJCIjI6FWq+UOhQp07gz89RcQEQHcvy96joiIiIzBdYz0xHWMlCkvT2xACwA3bojtRSZOBJyc5I2LiIiUQdff3xxKI6ugSYokCRgxApg2DWjbFoiLkzcuIiKyLEyMyKqoVMBrr4kFIU+fBoKCgFmzRI8SERHR4zAxIqvz4ovA338DffsCubnAhx+K2Wxnz8odGRERKR0TI7JKnp7Ali3AunVA5crA8eNAq1bArl1yR0ZERErGxIislkoFvPqq2JD2uecAb2/gqafkjoqIiJSMiRFZvdq1gR07gMOHgYoVRVt+PrB1q/hKRESkwcSIbIJKJXqMNJYuBcLCxLYiiYnyxUVERMrCxIhskp0d4OwM7N4tNqRdvVpM9SciItvGxIhs0ogRYs+1p54C0tKAoUOBXr2A5GS5IyMiIjkxMSKb1aQJcPAg8MkngKMj8PPPgL+/qEciIiLbxMSIbJq9vdg65ORJMZ0/NRWoUUPuqIiISC5MjIggeoqOHgV27hSrZWtcvChfTEREVP6YGBEVcHAAOnd+eD8+HnjySWDwYODePdnCIiKicsTEiKgU0dFiS5E1a0SP0s6dckdERETmxsSIqBQjR4ri7IYNgatXxZpHI0YA6elyR0ZERObCxIioDMHBYlr/mDHi/rJlQMuWwP79soZFRERmYpOJUd++fVGlShX069dP7lDIAri5AV99BezZA9StCyQkiEJtIiKyPjaZGI0dOxZr1qyROwyyMJ07A6dPA3PmAO+++7D9wQP5YiIiItOyycQoNDQUFTW7iRLpwcMDmDRJrH8EANnZQJs2wPvvM0EiIrIGikuMDhw4gJ49e6JWrVpQqVTYtm1bsWMWL16M+vXrw9nZGYGBgYiOji7/QIkAREWJaf1z5oj1j2Jj5Y6IiIiMobjEKDMzEy1btsSiRYtKfHzjxo0IDw/HlClTEBMTg5CQEPTo0QOJRbZIDwwMhL+/f7HbtWvX9I7nwYMHSEtL07oRaQwYAGzeDFSvDvz1l0iOZs0C8vLkjoyIiAyhkiTd9xSvX78+VCqV3hcJDw/H2LFj9X6eSqXC1q1b0adPn8K2du3aoXXr1liyZElh25NPPok+ffpgzpw5Op973759WLRoETZv3lzmcdOnT8eMGTOKtaempsLDw0Pn65F1S0kRU/m3bhX327QBvv0W8POTNy4iIhLS0tJQqVKlx/7+rqDPSVevXm1QMPXq1TPoeY/KycnByZMnMWnSJK32bt264fDhwya5xqMmT56MiIiIwvtpaWnw9fU1y7XIcnl6Alu2AOvXA2+/DZw4AUyYIDamJSIiy6FXYvTMM8+YKw6d3Lp1C2q1Gl5eXlrtXl5euH79us7n6d69O06dOoXMzEz4+Phg69atCCq6QVYRTk5OcHJyMipusg0qFfDqq0CnTsA77wCffSZ3REREpC+9EiOleHQ4T5IkvYb4fv/9d72vGRkZicjISKjVar2fS7aldm3ghx+02yIigCeeEKtp2ymuso+IiDRMlhj9888/+Omnn1C5cmU0a9YM/v7+Jq/BqV69Ouzt7Yv1DqWkpBTrRTK10aNHY/To0YVjlES6+vNPYP588e+tW4GVK4E6deSNiYiISmayv1179OiBnJwc3Lt3D8uWLUOnTp3QpEkTU50eAODo6IjAwEDs2rVLq33Xrl0IDg426bWITKVdO7FytouLWD27eXNg1SpA92kPRERUXkzWY1SzZk1MmTJFq82QYaeMjAycP3++8H5CQgJiY2NRtWpV1KlTBxERERg4cCDatGmD9u3bY/ny5UhMTMSIESOMfg1E5mBnJ/Za694dGDwYOHIEeP11sQbS8uWAt7fcERIRkYbJeoy6d++OtWvXarXZa5YH1sOJEyfQqlUrtGrVCgAQERGBVq1aYerUqQCAV155BQsWLMDMmTMREBCAAwcOYMeOHahbt67xL6IMkZGR8PPzK7VIm+hxGjcGDh4E5s4FHB3FjLVOnQCWrRERKYde6xiV5fnnn0d8fDwcHR3Rtm1bNG/eHM2bN8f//vc/U5xeMXRdB4GoLPHxwKBBwOTJwEsvyR0NEZH1M8s6RiVJSUlBfn4+duzYUXjh+Ph4xMfHY/fu3VaXGBGZgr8/cOwYUKHIJ/Cnn4D8fKB3b/niIiKydQb3GJ0+fRr9+/fHP//8A0DUGA0dOhSTJ0+Gm5ubSYNUEvYYkTmkpADNmgG3bomepC+/BCpXljsqIiLroevvb4NrjIYNGwYvLy8cPHgQMTExmDVrFn799Ve0adMGd+/eNfS0RDbJw0MUZNvZAWvWiB4lA5bbIiIiIxncY+Tm5oaTJ0+iadOmhW2SJOGll16Cs7Mz1q1bZ7IglaDoAo/nzp1jjxGZxeHDYuaaZmLmW28Bn34KVKwob1xERJZO1x4jgxOjZ555Bp988gnat2+v1X7u3DkEBgYiPT3dkNMqHofSyNwyM0VR9sKF4n79+kBMDMB1RYmIDGeWobQXXngB77//Pn744QeMGDEC77zzDm7cuKF1TGpqKqpUqWJY1EQENzexIOSePUDdusCzzzIpIiIqL3rNSmvevDlOnTqFVatWFSZEDRo0wMsvv4yAgACo1WqsWrUK8zX7HxCRwTp3Bk6fFpvTaiQlAVevAk89JV9cRETWzOChtBs3biAmJgaxsbGFt/Pnz8Pe3h5NmjTB6dOnTR2rInAojeQiSWL17D17gIkTgWnTACcnuaMiIrIMZl/HyMvLC8899xyee+65wrb79+8jLi4OcXFxhp5WsYoWXxPJITsb8PQUax3NmSNWzv72W6BgkXgiIjIBk618bSvYY0Ryi4oCRowAbt4UC0ROnQpMmgQ4OMgdGRGRcpl9HSMikkdYmNhSJCwMyMsTiVFwMHDlityRERFZPr2G0urXrw9V0UpQHYWHh2Ps2LF6P4+ISubpCWzeDKxfD7z9NpCRAVSrJndURESWT6/EaPXq1QZdpF69egY9j4hKp1IBr74KdOoE3L0LuLiIdrVazF7jx46ISH96JUbPPPOMueIgshhqNRAdDSQnA97eQEgIYG8vXzy1a4ubxhdfANOnA/PmASNHim1GiIhIN/wvU0eRkZHw8/NDUFCQ3KGQjKKiRE9MaCgwYID4Wq+eaFcCSQL27gWyssQQW7duQGKi3FEREVkOzkrTE2el2a6oKKBfP5F8FKUpu9u8WRREyy0/H4iMFGsd3b8v9llbsAAYOlR7sUgiIlvCWWlEJqRWA+PGFU+KgIdt4eHiOLnZ2QFjxgBxcUD79kB6OjBsGNCzpxj+IyKi0jExItJBdHTZ0+ElSRQ8R0eXX0yP06iRiGfuXMDREdi1C7h9W+6oiIiUzeDEKDExESWNwkmShEQWNZCV0bWnRWk9Mvb2wIQJwMmTwNdfA/7+Dx978EC+uIiIlMrgxKh+/fq4efNmsfY7d+6gfv36RgVFpDTe3qY9rrz5+wMDBz68f+IE0KABsG2bbCERESmSwYmRJEklLvaYkZEBZ2dno4IiUpqQEMDHp/TiZZUK8PUVx1mCuXOBa9eAvn2BQYOAe/fkjoiISBn03kQ2IiICAKBSqfDhhx/C1dW18DG1Wo2jR48iICDAZAEqBTeRtW329sCXX4pZaSqVdhG2JllasEDe9Yz0sW4d8MQTwKefAmvXAn/8AXzzDdC9u9yRERHJS+/p+qGhoQCA/fv3o3379nB0dCx8zNHREfXq1cP48ePRqFEj00aqEJyub9uiosTstKKF2L6+IilSwlR9ff35JzBkCHDunLj/5pvAZ5+JKf5ERNZE19/fBq9jNHToUHz55Zc2lxwwMSKlrXxtrKws4P33RY8YIIq0hw2TNyYiIlMze2Jkq5gYkbXauxdYs0YMqXEbESKyNrr+/ta7xqioPXv2YM+ePUhJSUF+fr7WYytXrjTm1ERUzkJDxU0jI0PUVE2bJhaKJCKyBQb/XThjxgx069YNe/bswa1bt3D37l2tGxFZto8+An7/HejQAZg8meseEZFtMHgozdvbG/PmzcPAoouj2AAOpZGtuHsXGDtWzGADxFpI334LtG4tb1xERIYw+15pOTk5CA4ONvTpRKRwVaqIqfxRUUCNGkB8PNCuHTBzJpCbK3d0RETmYXBiNHz4cKxfv96UsRCRAvXtC/z9t1iOIC9P1By9/77cURERmYfBxdfZ2dlYvnw5du/ejRYtWsDBwUHr8S+++MLo4IhIGWrUADZvBjZsAKZPB959V+6IiIjMw+DE6PTp04UrXMfHx2s9VtJWIZaOK1+TrVOpgAEDgFde0V636ZNPxOy1hg3li42IyFS4jpGeWHxN9FBUFPDii4CrKzBvHjByJNdAIiJlMnvxNQBER0fjtddeQ3BwMK5evQoAWLt2LQ4ePGjMaYnIQgQGirWPsrKAt98GunYFLl+WOyoiIsMZnBht2bIF3bt3h4uLC06dOoUHBYucpKenY/bs2SYLkIiUq25dYPduYOFCwMVFbEbbvLlYPZt90URkiQxOjGbNmoWlS5dixYoVWoXXwcHBOHXqlEmCIyLls7MTvUVxcWKF7PR0YPhw4I035I6MiEh/BidG//77Lzp27Fis3cPDA/fu3TMmJiKyQI0aic11580DnJzE9H4iIktjcGLk7e2N8+fPF2s/ePAgGjRoYFRQRGSZ7O2B994DEhKA559/2L5vH3DzpmxhERHpzODE6K233sK4ceNw9OhRqFQqXLt2Dd999x3Gjx+PUaNGmTJGIrIw3t4P/52UBPTpI7YU2bZNroiIiHRj8DpGEyZMQGpqKkJDQ5GdnY2OHTvCyckJ48ePx9tvv23KGInIgqWnA76+YkuRvn2B114DvvpKbDlCRKQ0Rq9jlJWVhTNnziA/Px9+fn5wd3c3VWyKxHWMiPT34IFYMXvePCA/H6hVS8xce+45uSMjIluh6+9vLvCoJyZGRIb7809g8GDgv//E/bfeApYsEatqExGZk66/v/UaSouIiMBHH30ENzc3RERElHks90ojoke1bw/ExopNaL/8UqyYzaSIiJREr8QoJiYGubm5hf8ujTXulUZEpuHqCixYIPZXCwx82J6cDFSqJB4nIpILh9L0xKE0ItNTq4FnnhFT+r/9FnjqKbkjIiJrUy57pdmSyMhI+Pn5ISgoSO5QiKzOpUti7aNz54CnnwYmTxYF20RE5c3gHqM5c+bAy8sLr7/+ulb7ypUrcfPmTUycONEkASoNe4yIzOPuXWDsWGDdOnHf3x9YswZo1UreuIjIOpi9x2jZsmVo2rRpsfZmzZph6dKlhp6WiMqJWi1WpN6wQXxVq+WNp0oVYO1aICoKqFFDrHvUti0wcyZQUNpIRGR2BidG169fh3fR5W0L1KhRA8nJyUYFRUTmFRUF1KsHhIYCAwaIr/XqiXa59e0L/P038OKLQF4esHUrwEpIIiovBidGvr6+OHToULH2Q4cOoVatWkYFRUTmExUlZoRduaLdfvWqaFdCclSjBrBpE7B+vSjGdnQU7Xl58vdsEZF1M3hLkOHDhyM8PBy5ubno3LkzAGDPnj2YMGEC3n33XZMFSESmo1YD48aV3AMjSWJNofBwoHdvsSGsnFQqoH9/7bZZs4Bdu0Sy1LChPHERkXUzaq+0O3fuYNSoUcjJyQEAODs7Y+LEiZg8ebLJAiQi04mOLt5TVJQkiU1fo6OBTp3KLSydpKUBCxcCd+4ALVsCc+cCo0YBdpxbS0QmZPB/KSqVCnPnzsXNmzdx5MgRxMXF4c6dO5g6daop4yMiE9K1/E+JZYIeHsCpU0DnzkBWFjBmDNC1K3D5styREZE1MfpvLXd3dwQFBcHf3x9OTk6miImIzKSE+RJGHVfe6tYVQ2mLFokVsv/4A2jeHFi5kgXaRGQaeq1jxL3SuI4RWTa1Wsw+u3q15ERCpQJ8fMRii3LXGD3Of/8BQ4YAhw8DLi7Av/8Cvr5yR0VESmWWTWSL7pV26tSpUvdE415pRMpkby82b+3XTyRBRZMjzcd2wQLlJ0UA0KgRcOAAMH8+4O7OpIiITEOvHqPTp0/D398fdjZc7cgeI7IGUVFidlrRQmxfX5EUhYXJFpZJREeLIu3ISDHtn4gI0P33t16Jkb29PZKTk+Hp6YkGDRrg+PHjqFatmkkCthRMjMhaqNUiiUhOFjVFISGW0VNUFrVabCXyzz8iKVq2TCwYSURkli1BKleujISEBADApUuXkJ+fb1yURCQbe3sxJb9/f/HV0pMiQLyG9etFcnTzpuj9GjhQ7MNGRKQLvWqMXnzxRTzzzDPw9vaGSqVCmzZtYF/K/6YXL140SYBERPpo1Qo4cQKYPh2YN09sSvvHH8DXXwM9esgdHREpnV5DaXFxcUhKSsKlS5cwduxYzJw5ExUrVizx2HHjxpksSCXhUBqR5ThyBBg8GDh3Ttw/eBB4+ml5YyIieZi9xqh+/fo4cOAAfG1sKggTIyLLkpUFvP8+cOmS2JCWk2aJbJPZa4wSExPh7OxsXJQySEpKQqdOneDn54cWLVpg06ZNcodERGbk6ipm223Z8jApunsX+OADkTQRERWld41Rx44dUatWLQCwyBqjChUqYMGCBQgICEBKSgpat26N559/Hm5ubnKHRkRmVPS/qnHjgLVrgR9+EBvStm8vX1xEpCx6JUbLly9HWFgYzp8/j7Fjx+KNN94otcZIqby9veFdsN+Bp6cnqlatijt37jAxIrIhAwaIguz//gM6dADeew+YMQPgrkZEpFdiBADPPfccAODkyZMYN26cyROjAwcO4NNPP8XJkyeRnJyMrVu3ok+fPlrHLF68GJ9++imSk5PRrFkzLFiwACEhIXpf68SJE8jPz7e5OikiW/fcc0B8vOg5WrMGmDsX+OUX0XvUurXc0RGRnAxewnrVqlVm6S3KzMxEy5YtsWjRohIf37hxI8LDwzFlyhTExMQgJCQEPXr0QGJiYuExgYGB8Pf3L3a7du1a4TG3b9/GoEGDsHz5cpO/BiJSvsqVRSK0dSvg6SkSpXbtxH0isl16zUp7VHR0NJYtW4YLFy5g8+bNqF27NtauXYv69eujQ4cOxgenUhXrMWrXrh1at26NJUuWFLY9+eST6NOnD+bMmaPTeR88eICuXbvijTfewMCBAx977IMHDwrvp6WlwdfXl7PSiKzIzZvAyJHAoUPA338DVavKHRERmZpZZqUVtWXLFnTv3h0uLi6IiYkpTB7S09Mxe/ZsQ09bppycHJw8eRLdunXTau/WrRsOHz6s0zkkScKQIUPQuXPnxyZFADBnzhxUqlSp8MZhNyLrU6MGsGkTcOrUw6RIksRMNrVa3tiIqHwZnBjNmjULS5cuxYoVK+Dg4FDYHhwcjFOnTpkkuEfdunULarUaXl5eWu1eXl64fv26Tuc4dOgQNm7ciG3btiEgIAABAQH466+/Sj1+8uTJSE1NLbwlJSUZ9RqI6CG1Gti3D9iwQXyVMwlRqcSecRrr1gH9+gEdO4oibSKyDXoXX2v8+++/6NixY7F2Dw8P3Lt3z5iYHkv1yAptkiQVaytNhw4d9NrjzcnJCU6cqkJkclFRovj5ypWHbT4+wJdfij3O5GZvD1SsCBw+DLRsKbYXGTUKsDP4z0kisgQGf8S9vb1x/vz5Yu0HDx5EgwYNjAqqNNWrV4e9vX2x3qGUlJRivUimFhkZCT8/PwQFBZn1OkS2ICpK9MYUTYoA4OpV0R4VJU9cRQ0YAPz1F9ClC3D/PjBmDNC1K3D5styREZE5GZwYvfXWWxg3bhyOHj0KlUqFa9eu4bvvvsP48eMxatQoU8ZYyNHREYGBgdi1a5dW+65duxAcHGyWa2qMHj0aZ86cwfHjx816HSJrp1aLnqKSpn1o2sLDlVHbU7cusHMnEBkpVtD+4w+geXOxMCQRWSeDh9ImTJiA1NRUhIaGIjs7Gx07doSTkxPGjx+Pt99+2+CAMjIytHqiEhISEBsbi6pVq6JOnTqIiIjAwIED0aZNG7Rv3x7Lly9HYmIiRowYYfA1iaj8REcX7ykqSpKApCRxXKdO5RZWqezsxBBat27AkCFi5pqnp9xREZG5GDVdHwCysrJw5swZ5Ofnw8/PD+7u7kYFtG/fPoSGhhZrHzx4MFavXg1ALPA4b948JCcnw9/fH/Pnzy+x3skcuIkskXE2bBDDVI+zfj3Qv7/549GHWg3s3w907vyw7cIFoEEDbk5LpHS6/v42KjG6d+8evvnmG5w9exYqlQp+fn54/fXXUalSJUNPqViRkZGIjIyEWq3GuXPnmBgRGWjfPqCEv32K2btXGT1GZblwAWjRAujRA1iyREz7JyJlMntidOLEicJ1jNq2bQtJknDixAncv38fO3fuRGsrXVefPUZExlGrgXr1RKF1Sf/7qFRidlpCgvbGr0q0bh0wdCiQlyeSomXLgL595Y6KiEpi9sQoJCQEDRs2xIoVK1ChgihVysvLw/Dhw3Hx4kUcOHDAsMgVjokRkfE0s9IA7eRIMxy1ebMypuzrIiYGGDxYzGADgNdeA776CqhSRd64iEib2Ve+PnHiBCZOnFiYFAFAhQoVMGHCBJw4ccLQ0xKRDQgLE8lP7dra7T4+lpUUAUCrVsDx48D774tC7XXrAH9/4Ndf5Y6MiAxhcGLk4eGhtXGrRlJSklk2l5Ub1zEiMq2wMODSJVFLtH69+JqQYFlJkYaTE/Dxx2IxyMaNgWvXxL+JyPIYPJQ2duxYbN26FZ999hmCg4OhUqlw8OBBvPfee3jxxRexYMECE4eqDBxKI6KyZGUBCxcC77wDODqKtgcPRPJERPLR9fe3wesYffbZZ1CpVBg0aBDy8vIAAA4ODhg5ciQ++eQTQ09LRGTRXF2BiRMf3s/NBZ5+WtzmzBGPE5FymWQdowsXLkCSJDRs2BCuVv6pZ48REenj55+Bnj3Fvxs1Ar79FmjfXt6YiGyR2YuvNVxdXdG8eXO0aNHC6pMiIiJ9/e9/wG+/iULz//4DOnQAJk0Sw2tEpDwGJ0Zz5szBypUri7WvXLkSc+fONSooIiJr0r07EB8PDBoE5OcDc+cCgYHAqVNyR0ZEjzI4MVq2bBmaNm1arL1Zs2ZYunSpUUEpEWelEZExKlcWw2jbtom91v7+WxRoG1fMQESmZnCNkbOzM86ePYv69etrtV+8eBF+fn7Izs42SYBKwxojIsuiVosNaZOTAW9vICRE/hW1b90SSdGHH4rp/URkfmavMfL19cWhQ4eKtR86dAi1atUy9LRERCYTFSW2HwkNFRvXhoaK+1FR8sZVvTqwdq12UvTBB8C8eSKRIyL5GDxdf/jw4QgPD0dubi46F2w1vWfPHkyYMAHvvvuuyQIkIjKEZtuRR/vEr14V7UpaYfuvv4DZs0Ws27aJIbdGjeSOisg2GTyUJkkSJk2ahK+++go5OTkAxPDaxIkTMXXqVJMGqSQcSiNSPs1GtVeulPy40jaqlSRg9Wpg3DggPR1wcREF2qNHi21GiMh4Zt9EViMjIwNnz56Fi4sLGjVqBCcrX96ViRGR8u3bJ4bNHmfvXqBTJ3NHo7vERGDYMGD3bnE/NBRYuVIkeURknHJbx8jd3R1BQUHw9/e36qSIs9KILEdysmmPKy916gC//w5ERooVsvfuFcXiBZ3yRFQO2Emro9GjR+PMmTM4fvy43KEQ0WN4e5v2uPJkZweMGgXExYnFIGfOfLjnGhGZn8HF10REShUSImqIrl4teZ0gTY1RSEj5x6arhg3FkGDRGqPdu4EbN8QMO5VKttCIrBp7jIjI6tjbA19+Kf79aAKhub9ggTIKr8tib/8w3nv3gCFDgNdeE7PqUlLkjIzIejExIiKrFBYmpuTXrq3d7uOjrKn6unJ3B0aMACpUEEsR+PvLvx4TkTUyKjGKjo7Ga6+9hvbt2+Pq1asAgLVr1+LgwYMmCY6IyBhhYcClS6KIef168TUhwfKSIkAkRB98ABw/DrRoAdy8Cbz4ouhBuntX7uiIrIfBidGWLVvQvXt3uLi4ICYmBg8KtopOT0/H7NmzTRYgEZEx7O3FlPz+/cVXpQ+fPU5AAHDsGPD++6L+6LvvgGbNRO0RERnP4MRo1qxZWLp0KVasWAEHB4fC9uDgYJyywi2jOV2fiJTCyQn4+GPg8GGgSRPgmWcALy+5oyKyDgYv8Ojq6oozZ86gXr16qFixIuLi4tCgQQNuIktEVk1pm9Levy/WOapUSdxPSQH+/lu3BS6JbInZF3j09vbG+fPni7UfPHgQDRo0MPS0RESKpcRNaV1cHiZFkgS89RbQuTMwdiyQlSVfXESWyuDE6K233sK4ceNw9OhRqFQqXLt2Dd999x3Gjx+PUaNGmTJGIiLZaTalfXT/Nc2mtEqYIZaXB9SsKf69cKGoRzp8WNaQiCyOUXulTZkyBfPnzy8cNnNycsL48ePx0UcfmSxApeFQGpHtsbRNaXfuFHuuXbkiCrTHjwdmzACcneWOjEg+5baJbFZWFs6cOYP8/Hz4+fnB3d3dmNMpHhMjIttjiZvS3rsHhIcD334r7vv5AT/+KFbUJrJFuv7+NnpLEFdXV7Rp08bY0xARKZYlbkpbuTKwejXQty/w5pui3ogz14gez6jEaM+ePdizZw9SUlKQn5+v9djKlSuNCoyISCkseVPa3r2Bp58WtVAVK4o2SQIuXgSeeELe2IiUyODi6xkzZqBbt27Ys2cPbt26hbt372rdiIishWZT2tI2blWpAF9f5W5KW7060LLlw/vLlomhtblzRf0UET1kcI/R0qVLsXr1agwcONCU8RARKY5mU9p+/UQSVLQy05I2pdXYv1+sfTRpkqg7Wr0aaNxY7qiIlMHgHqOcnBwEBwebMhZF48rXRLbNmjalXb8eWLUK8PAA/vxTTOtfuBB4pCKCyCYZPCtt4sSJcHd3x4cffmjqmBSNs9KIbJvSVr42RmKimNa/e7e4HxoKrFwpliYgsjZmn5WWnZ2N5cuXY/fu3WjRooXWfmkA8MUXXxh6aiIixdJsSmsoJSVWdeqINY+WLhVrHe3fL7YUYWJEtszgxOj06dMICAgAAMTHx2s9piqtQpGIyIZFRQHjxmkvFOnjI+qX5BqKU6mAkSOBbt2AAweAtm0fPpadzUUhyfYYvcCjreFQGhEZQrOlyKP/42r+jlRandLffwPPPgt8+inw6qulz8gjshRm30SWiIh0o1aLnqKS/gzVtIWHK2vq/Pz5wPXrwMCBwIsviiE2Ilug11BaREQEPvroI7i5uSEiIqLMY1ljREQkREeXvs8aIJKjpCRxnFK2FFm6FKhfX+yxtnWriG3ZMmX1ahGZg16JUUxMDHJzcwv/XRrWGBERPWSJW4pUqABMmQK88AIweDBw+rToORowQEztr1pV7giJzEOvxGjv3r0l/puIiEpnyVuKBAQAx44BM2cCn3wi1kBq0wZ45x25IyMyD4NrjO7fv4+srKzC+5cvX8aCBQuwc+dOkwRGRGQtLH1LEScn4OOPgcOHRc3RmDFyR0RkPgYnRr1798aaNWsAAPfu3UPbtm3x+eefo3fv3liyZInJAiQisnSaLUWA4smRJW0p0q4dsGaNGGYDxHT+558H/vhD3riITMngxOjUqVMIKfjzZvPmzahZsyYuX76MNWvW4KuvvjJZgERE1sCathTR+Pxz4NdfgS5dRC9SZqbcEREZz+AFHrOyslCxYkUAwM6dOxEWFgY7Ozs89dRTuHz5sskCJCKyFmFhQO/ehq18raQVszXGjQOuXgWWLAEWLQJ++w349lvAhrbRJCtkcI9Rw4YNsW3bNiQlJeH3339Ht27dAAApKSlWufAhN5ElIlPQbCnSv7/4qktyExUltukIDRWzwkJDxf2oKPPG+jju7sDixcDvv4uer/PngQ4dgAkTxDAbkSUyeOXrzZs3Y8CAAVCr1ejSpUth0fWcOXNw4MAB/PrrryYNVCm48jURlSdLWTH73j2xSOW334r7b74p1j0iUgpdf38btSXI9evXkZycjJYtW8LOTnQ+HTt2DB4eHmjatKmhp1U0JkZEVF7UatEzVNrikCqV6KlJSJB/WE1j+3axIe2uXUDdunJHQ/RQuSRGtoiJERGVl337xLDZ4+zdq5wVswGR0BVN1D79FHjuOaB5c/liIuJeaUREFs4SV8wGtJOinTtFzVGbNsDcucraD46oJEyMiIgUypJXzNZo0QLo2RPIyQEmTRLF2efOyR0VUemYGBERKZSlr5gNADVrAj/+CKxeDXh4AEeOiG1GvvwSyM+XOzqi4gxKjHJzcxEaGopzTPuJiMzGmBWz1WpRo7Rhg/gq5xCWSiU2oo2PB559Frh/X8xge+UV+WIiKo1BiZGDgwPi4+OhKu3PGCIiMglDVsxW6rpHvr6i5mjxYsDNDXjpJXnjISqJwbPS3n33XTg4OOCTTz4xdUyKxllpRCQHXVe+tpR1j65fF8NsGtHRQIMGxRNAIlMx+3T9MWPGYM2aNWjYsCHatGkDNzc3rce/+OILQ06reEyMiEipLHHdIwBISQH8/YHcXGDhQuDVV0uvqyIylK6/vw3eKy0+Ph6tW7cGgGK1RhxiIyIqf9HRpSdFgOhFSkoSxylp3aPMTKB+feDYMWDgQGDLFmDpUsDLS+7IyBYZnBjt3bvXlHEQEZGRLHXdo/r1gUOHgHnzgOnTgW3bgIMHxea0/frJHR3ZGk7XJyKyEpa87lGFCsD77wPHj4u1j27dEsXZr74K5OXJHR3ZEqMSo+joaLz22mto3749rl69CgBYu3YtDh48aJLgiIhId4aue6Skqf0tW4rk6IMPRB2Uq6tImojKi8GJ0ZYtW9C9e3e4uLggJiYGDx48AACkp6dj9uzZJguQiIh0Y8i6R0qc2u/oCHz0EfDnn8Dnnz9sv3EDSEuTLy6yDQYnRrNmzcLSpUuxYsUKODg4FLYHBwfj1KlTJgmOiIj0o8+6R5qp/Y8WbF+9KtrlXvcoKEislg2IwvFBg8RGtHv2yBsXWTeDE6N///0XHTt2LNbu4eGBe/fuGRMTEREZISwMuHQJ2LsXWL9efE1I0E6K1Gpg3Lji6x0BD9vCw5Wz6ev168D580Biolg9e8wYMZuNyNQMToy8vb1x/vz5Yu0HDx5EgwYNjArKnNLT0xEUFISAgAA0b94cK1askDskIiKTs7cXU/L79xdfH123SJ+p/Urg7Q3ExQEjR4r7ixaJPdcOHZI1LLJCBidGb731FsaNG4ejR49CpVLh2rVr+O677zB+/HiMGjXKlDGalKurK/bv34/Y2FgcPXoUc+bMwe3bt+UOi4ioXFni1H53d7GdyM6dYmjw/HlRSP7ee0B2ttzRkbUwODGaMGEC+vTpg9DQUGRkZKBjx44YPnw43nrrLbz99tumjNGk7O3t4erqCgDIzs6GWq2GgYt/ExFZLEue2t+1K/DXX8CQIaJn66efSh4SJDKEUdP1P/74Y9y6dQvHjh3DkSNHcPPmTXz00UdGBXTgwAH07NkTtWrVgkqlwrZt24ods3jxYtSvXx/Ozs4IDAxEtJ59vffu3UPLli3h4+ODCRMmoHr16kbFTERkaQyZ2q+kaf2VKwOrVgHbtwNr1gAuLg9jzMmRLy6yfEYv8Ojq6oo2bdqgbdu2cHd3NzqgzMxMtGzZEosWLSrx8Y0bNyI8PBxTpkxBTEwMQkJC0KNHDyQmJhYeExgYCH9//2K3a9euAQAqV66MuLg4JCQkYP369bhx40ap8Tx48ABpaWlaNyIiS6fv1H4lTusHgJ49gbZtH96fPx946inRo0RkCL02kY2IiMBHH30ENzc3RERElHmsKTaRValU2Lp1K/r06VPY1q5dO7Ru3RpLliwpbHvyySfRp08fzJkzR+9rjBw5Ep07d8ZLL71U4uPTp0/HjBkzirVzE1kisgZRUWJ2WtFCbF9fkRRpZrFppvU/+ttCk0A9ugyAXLKzgYYNxXIDDg7AjBmi/ogLRBKg+yayeiVGoaGh2Lp1KypXrozQ0NDST6pS4Y8//tAv4lLOUzQxysnJgaurKzZt2oS+ffsWHjdu3DjExsZi//79jz3njRs34OLiAg8PD6SlpaF9+/bYsGEDWrRoUeLxDx48KFy8EhBvrK+vLxMjIrIaarWYfZacLGqKQkIe9hSp1aJnqLQZbCqVGJJLSCg+800O168Db74p6o4AoF074NtvgSZN5I2L5KdrYqRXHq3ZODY3NxcAsGzZMjRu3NiIMPVz69YtqNVqeD2y5bKXlxeuX7+u0zmuXLmCYcOGQZIkSJKEt99+u9SkCACcnJzg5ORkVNxEREqmmdpfEn2m9Zd2jvJUsybw44+i7mjsWODoUTGtf84ccd+OO4TSYxjUwejg4ID4+HioSqvaM7NHrytJks6xBAYGIjY21gxRERFZH0uc1q9SAYMHA507A8OGAbt2ARMmAM8/D5Tj3/JkoQzOnQcNGoRvvvnGlLE8VvXq1WFvb1+sdyglJaVYL5KpRUZGws/PD0FBQWa9DhGRkug7rV9JM9d8fYHffweWLAHmzWNSRLoxuCQtJycHX3/9NXbt2oU2bdrAzc1N63FTFF8/ytHREYGBgdi1a5dWjdGuXbvQu3dvk1+vqNGjR2P06NGFY5RERLZAM63/6tWS1wrS1BiFhJRcyO3jI2a/yVWcrVIBI0Zot508CUybBixdKuIjKsrgxCg+Ph6tW7cGAJw7d07rMWOG2DIyMrS2GklISEBsbCyqVq2KOnXqICIiAgMHDkSbNm3Qvn17LF++HImJiRjx6E8+EREZTTOtv18/kWQUTY6KTuv/8ceSZ65pNqRVysw1SQLeekskR/7+wMKFwGuvlb6eE9kgSWH27t0rASh2Gzx4cOExkZGRUt26dSVHR0epdevW0v79+8stvtTUVAmAlJqaWm7XJCKS25YtkuTjI0kitRA3X1/RnpdX/LGiN5VKHJuXJ/erEM6ckaSgoIfx9ekjSdevyx0VmZuuv7/1mq5vyyIjIxEZGQm1Wo1z585xuj4R2ZzSpvXv2ycWfHycvXuVMXMNAPLygLlzxVpHublA9eqiFqlfP7kjI3MxyzpGRc2cObPMx6dOnWrIaRVP1zeWiMhWbNggVsN+nPXrgf79zR+PPuLigEGDgNOnxf1ffwWee07emMg8zLKOUVFbt27Vup+bm4uEhARUqFABTzzxhNUmRkREpE2fmWtlLSYph5YtgePHgY8+Ao4dA7p1ky8WUgaDE6OYmJhibWlpaRgyZIjWjDEiIrJuus5cu3Wr+Cracs9aAwBHR5EYqdUPF4DMyBBt778PcCKybTHpGqAeHh6YOXMmPvzwQ1OeVhG4jhERUcl02ZD2//4PePnl4qtoa2atyb0ZLaDdczVxolj7qEULYM8e+WKi8mfyxdHv3buH1NRUU59WdqNHj8aZM2dw/PhxuUMhIlKcsDAxJb92be12Hx9g40ZRh1RSb5KmLTxc3sUgH/V//wc0aAAkJgLPPgu8/TaQmSl3VFQeDC6+/uqrr7TuS5KE5ORkrF27Fh07dsSGDRtMEqDSsPiaiKh0JdUQRUdb3qw1QAynTZwILF4s7j/xhNiQ9umn5Y2LDGP24uv58+dr3bezs0ONGjUwePBgTJ482dDTEhGRBStpQ1p99ltTUnG2uzsQGQn06QO8/jpw4YKIZ9UqsRcbWSeDE6OEhARTxkFERFZK11lr//2nzOLsrl2B+HjgnXfECt/du8sXC5kfF3jUERd4JCIyjFotEp6yZq1VrQrcuVP8cU3xtlK2FLlxAyi6Z/nmzUCvXmJmGymb2Rd4BESh9TfffIOzZ89CpVLhySefxLBhw6x6k1XWGBER6S8q6uGq0o/utyZJQLVqwO3bJT9XM90/IUHeNY8etXWrSNYCAoA1a4DmzeWOiMqi6+9vg2elnThxAk888QTmz5+PO3fu4NatW5g/fz6eeOIJnDp1ytDTEhGRFSpr1tqMGaUnRYBInJKSRO2RktjZiYQuNhYIDATmzBFbjZBlM7jHKCQkBA0bNsSKFStQoYIoVcrLy8Pw4cNx8eJFHDhwwKSBKgV7jIiIDFdScfUPP+i2pci6dSKxUkJhtsb168BbbwHbt4v77dqJmWtNmsgbFxVn9qE0FxcXxMTEoGnTplrtZ86cQZs2bZCVlWXIaRWPiRERkWnpugltjRrAzZsP7yuhMBsQPVpr1wJjxwKpqYCzM7BoETBsmLxxkTazD6V5eHggMTGxWHtSUhIqVqxo6GmJiMjGaLYUeXTV7EcVTYoA5ayarVKJjWj/+kvMYMvOBmrWlDcmMpzBidErr7yCYcOGYePGjUhKSsKVK1fw/fffY/jw4eivtO2TTYBbghARmUdZW4qURWmrZvv6Ar//DvzxB/DCCw/b//uv5Nl4pEwGD6Xl5OTgvffew9KlS5FXUG3m4OCAkSNH4pNPPoGTk5NJA1UKDqUREZlHVBQwbpz2OkaPDp+VZv58MY1eKbVHGleuAP7+ovbom29EzxjJw2w1RhcvXkT9+vWhKkjrs7KycOHCBUiShIYNG8LV1dW4yBWOiRERkfk8Wpx99Srw2mv6nUMptUcAsG2b2HftwQOgUiVg4ULxevTpGSPTMFuNUaNGjXCzSPo+dOhQeHp6okWLFlafFBERkXlpthTp3198fXR6vy6UUnsEiO1EYmOBtm1FYfagQUDfvmKhSFImvROjRzuYduzYgUxuOUxERGaga2F2UUqrPWraFDh0CPj4Y8DBQWwr0qyZWNeJlMfg4msiIiJzM6YwOylJDF1t2CCWBJAzSapQAXj/feDECaBlS7Gg5cGD8sVDpdM7MVKpVIX1RUXbiIiIzKG0VbN18c47YvHI0FCxX5vcw2stWgDHjgGffQbMnv2wPTtbvphIm97F13Z2dujRo0fhrLOffvoJnTt3hpubm9ZxUXL/9JkJi6+JiORRtDD7xg2R9OhDaRvSaqjVop6qUSMxu86KtxuVldlmpQ0dOlSn41atWqXPaRUvMjISkZGRUKvVOHfuHBMjIiIZqdWiB+jqVf3WCFLihrT794seLUkSayGtXAk8+6zcUVkfs28JYqvYY0REpAxRUWL2GaD/AopKW/coOhoYOhS4cEHcHzUKmDsXcHeXNy5rYvYtQYiIiORkTbVHISFAXBwwerS4v3ixKNKOjpY3LlvEHiM9sceIiEhZrK32aPdu4PXXxay6Vq3ETDY7dmMYjUNpZsLEiIhIuayl9ig1FXj3XWDMGNFzRMbjUBoREdkca1n3qFIl4OuvtZOijz8GPvwQyMmRLy5bwB4jPbHHiIhI+UrakFZfStpzLSEBaNwYyMsDAgKANWuA5s3ljsqysMeIiIhsVlgYcOkSsHcvsH69mIWmLyXtuVa/vngd1aqJvdcCA4E5c0SiRKbFHiM9sceIiMjyGFp7BAA1aojEqnZt+af237gBvPWW2G8NANq1A1avFvuxUdnYY2RikZGR8PPzQ1BQkNyhEBGRngytPQKAmzeB115TxtR+Ly9g61bg229FHdLRo8DTTwMZGfLFZG3YY6Qn9hgREVkuY2uPlDS1PykJGDYM6NlTzF6jsnG6vpkwMSIismymWPdIKVP7JUncNOscHTwIxMeL4Tbu766NiZGZMDEiIrIextQeffAB0KWL/HVHGpmZYnr/hQtAt27AN9+IBI4E1hgRERE9hjG1R7NmKaPuSMPFBXj7bcDZGdi5E/D3F9P62f2hHyZGRERk04zZcw1QzrR+OzsgPFxM52/XTqyePXgw0KcPcP26vLFZEiZGRERk84que7RunZiir2sPkqbO5403gD175F0xGwCaNBG1RrNnAw4OwPbtovfo0iV547IUTIyIiIgghtU6dQJefRVYulS06TO8ducO8Oyzyhhaq1ABmDxZbEAbEAC0bw/UrStvTJaCiREREdEjjBleU8rQGgC0aCHWOlqz5mGSd+8esGOHrGEpGhMjIiKiEhQdXvvgA92fpxlaGzEC+O47+TekdXQEqlR5eH/cOOCFF4DXXxd1SKSNiREREVEpNMNr06eLqe/6DK0pacVsjfx8wNNTvI5Vq8RGtLt3yx2VsjAxIiIiegxjpvUDyhles7MDPv0UOHAAeOIJsXp2167AqFHcVkSDiREREZEOjKk7UtrMtQ4dgLg4YPRocX/JErE45F9/yRuXEjAxIiIi0pGm7mj3bqBqVf2fr6SZa25uwKJF4rX4+gJZWUCtWvLGpARMjHQUGRkJPz8/BAUFyR0KERHJyN5ebAWyYoUYVjNkaO3KFeDFF8U+bXIXZ3fpInqKfv4ZqFZNtEkScO6cfDHJiXul6Yl7pRERkUZUlJjldeWKcefx8RE1TGFhponLWN99J1bNnjwZ+PBDMbPN0nGvNCIiIjMzZsXsopRSnK1x6JDoxZo1C2jbFjh9Wu6Iyg8TIyIiIiMYu2I2oLzi7MWLgR9+EENrcXFAmzZii5G8PHnjKg9MjIiIiEzE2A1plVSc/dJLwN9/i01oc3OBKVOAp58G/v1X3rjMjYkRERGRCRk7cw1QztCal5eIYc0aoFIl4Ngx4No1eWMyNyZGREREJmbszDUlDa2pVMDAgUB8PLBsmVjJWyM7W764zIWJERERkZlY09Cajw/w5psP71+8KOJaulQkcdaCiREREZEZFZ25Fh4u2vTtQVLSukcaixcDN24AI0cC3buL7UWsARMjIiIiM9PMXJs/H9iyxfAepAULlLMp7bx54vU4OwO7dokNadessfzeIyZGRERE5chairPt7EQPWGws0K4dkJoqFoXs0we4fl2+uIzFxIiIiKicmao4e8QIICfHPDHqqkkT4OBBsc6RgwOwfTuwfLm8MRmDiREREZFMjC3OvnlTFEXLPaxWoYLYPuTECbHQ5aRJ8sZjDCZGREREMjJ2aO3mTVGYPXOm/EXZLVqIrVE0e6vl5gI9ewI//SRvXPpgYkRERCQzY4fWAGDaNGUUZRe1dCnw889Ar17AkCHAvXtyR/R4TIyIiIgUwtihNaVN63/jDWD8eJHoffutmLm2a5e8MT0OEyMiIiIFKWndI30pZVq/szPw6adAdDTQsKFI3Lp1A0aNAjIy5IurLEyMiIiIFObRdY+qVzfsPJoeJLnrj55+Wkzrf/ttcX/JEmD4cPniKYvNJkZZWVmoW7cuxo8fL3coREREpQoLE+sW1ahh+DmUUH/k5gYsXCiKzJs0AWbMkC+WsthsYvTxxx+jXbt2codBRET0WI6OopDZkKJsDaX0HnXpApw5I5IjjS+/BI4dky+momwyMfrvv//wzz//4Pnnn5c7FCIiIp0YW5itoYTeI7si2cfhw6JYPDgY+OAD+ResVFxidODAAfTs2RO1atWCSqXCtm3bih2zePFi1K9fH87OzggMDER0dLRe1xg/fjzmzJljooiJiIjKR1gYcPmy8cNQSuk9AkTP0f/9n4jj448f1iHJRXGJUWZmJlq2bIlFixaV+PjGjRsRHh6OKVOmICYmBiEhIejRowcSExMLjwkMDIS/v3+x27Vr1/Djjz+icePGaNy4sU7xPHjwAGlpaVo3IiIiudjbA1OniqJsHx/jzqWE3qNq1YD164FNm0QsEyfKFwsAqCRJufvgqlQqbN26FX369Clsa9euHVq3bo0lS5YUtj355JPo06ePTr1AkydPxrp162Bvb4+MjAzk5ubi3XffxdSpU0s8fvr06ZhRQmqempoKDw8P/V8UERGRiajVYir8jz+KKfrGmDEDmDJFJF5yycsT24uYQ1paGipVqvTY398WlRjl5OTA1dUVmzZtQt++fQuPGzduHGJjY7F//369zr969WrEx8fjs88+K/WYBw8e4MGDB4X309LS4Ovry8SIiIgUJSoKGDtWzGAzlI+PKIQOCzNdXEqha2KkuKG0sty6dQtqtRpeXl5a7V5eXrh+/bpZrunk5AQPDw+tGxERkdKYov5ISbVHcrGoxEhD9ch8RUmSirXpYsiQIWX2FhUVGRkJPz8/BAUF6X0dIiKi8lC0/siY2WtKqD2Si0UlRtWrV4e9vX2x3qGUlJRivUimNnr0aJw5cwbHjx8363WIiIiMZcreo02bTBeXJbCoxMjR0RGBgYHY9cgOdLt27UJwcLBMURERESmPqXqP+vcX6yfZCsUlRhkZGYiNjUVsbCwAICEhAbGxsYXT8SMiIvD1119j5cqVOHv2LN555x0kJiZixIgRMkZNRESkTMb2HqnVwEsv2U7dkeJmpe3btw+hoaHF2gcPHozVq1cDEAs8zps3D8nJyfD398f8+fPRsWNHs8YVGRmJyMhIqNVqnDt3jrPSiIjI4hg7c82SZ61ZxXR9JdL1jSUiIlIizQrT06YZfg4lrHmkL6ucrk9ERETGMUXt0bRpgKendQ6vMTEiIiKyQcbWHt25IxIkLy/rmtbPxIiIiMhGaXqPfvjB8GGx27eta1FIJkY64gKPRERkrV56Cfj+e+POYS2LQrL4Wk8sviYiImtliv3WANED9dJLponJVFh8TURERHoxxYrZAPDKK+Iclji0xsSIiIiICpli1pokAdOnW2ZhNhMjIiIiKsYUvUeWWJjNxEhHLL4mIiJbU7T3qFo1w89jSesesfhaTyy+JiIiW6RZMXvBAuDuXcPPU60asHx5+W8rwuJrIiIiMhlN79HNm6YZXtu0yXSxmRITIyIiItKZKRaFBJQ7c42JEREREenN2EUhlTpzjYkRERERGaRfP+MLs5U2tMbESEeclUZERFRcWBhw44YYFqtSxfDzKGVojbPS9MRZaURERCXTzFybNs3wc7i7A++9B0yZYlwN06M4K42IiIjKlSnWPcrIEImVXLVHTIyIiIjIpDTDa9OmASqVYee4fVvUMJV3csTEiIiIiEzO3l7MOvvhB8PPIUlAeHj51h0xMSIiIiKzMXbmWlISEB1t2pjKwsSIiIiIzMrYobXkZNPHVBomRjridH0iIiLDGTO05u1t8nBKxen6euJ0fSIiIuNERQFvvikKrMuiUgE+PkBCgvFT9zldn4iIiBSp6KKQ7u4lH6MZcluwwLTrGT0OEyMiIiIqd5o1j+7dEwlS1araj/v4AJs3iySqPHEoTU8cSiMiIjI9tVrMPktOFjVFISHyrHxdwXSXJCIiIjKMvT3QqZPcUXAojYiIiKgQEyMiIiKiAkyMiIiIiAowMSIiIiIqwMRIR1z5moiIyPpxur6eOF2fiIjI8nDlayIiIiI9MTEiIiIiKsDEiIiIiKgAV77Wk6YkKy0tTeZIiIiISFea39uPK61mYqSn9PR0AICvr6/MkRAREZG+0tPTUalSpVIf56w0PeXn56Nx48Y4efIkVCqVTs8JCgrC8ePHyzwmLS0Nvr6+SEpK4my3Arq8b3Iq7/jMdT1TndeY8xjyXH2fw8+hYfg5LJ/r8XP4kLk+h5IkIT09HbVq1YKdXemVROwx0pOdnR0cHR3LzDYfZW9vr/M318PDg/8hF9DnfZNDecdnruuZ6rzGnMeQ5+r7HH4ODcPPYflcj5/D4szxOdTldzeLrw0wevRosx5PgtLft/KOz1zXM9V5jTmPIc/l57B8KP194+fQdOfh51DgUJpCcOFIIvnxc0gkP7k/h+wxUggnJydMmzYNTk5OcodCZLP4OSSSn9yfQ/YYERERERVgjxERERFRASZGRERERAWYGBEREREVYGJEREREVICJEREREVEBJkYW4ueff0aTJk3QqFEjfP3113KHQ2ST+vbtiypVqqBfv35yh0Jkk5KSktCpUyf4+fmhRYsW2LRpk8mvwen6FiAvLw9+fn7Yu3cvPDw80Lp1axw9ehRVq1aVOzQim7J3715kZGTg22+/xebNm+UOh8jmJCcn48aNGwgICEBKSgpat26Nf//9F25ubia7BnuMLMCxY8fQrFkz1K5dGxUrVsTzzz+P33//Xe6wiGxOaGgoKlasKHcYRDbL29sbAQEBAABPT09UrVoVd+7cMek1mBiVgwMHDqBnz56oVasWVCoVtm3bVuyYxYsXo379+nB2dkZgYCCio6MLH7t27Rpq165deN/HxwdXr14tj9CJrIaxn0MiMp4pP4cnTpxAfn4+fH19TRojE6NykJmZiZYtW2LRokUlPr5x40aEh4djypQpiImJQUhICHr06IHExEQAQEmjnSqVyqwxE1kbYz+HRGQ8U30Ob9++jUGDBmH58uWmD1KicgVA2rp1q1Zb27ZtpREjRmi1NW3aVJo0aZIkSZJ06NAhqU+fPoWPjR07Vvruu+/MHiuRtTLkc6ixd+9e6cUXXzR3iERWz9DPYXZ2thQSEiKtWbPGLHGxx0hmOTk5OHnyJLp166bV3q1bNxw+fBgA0LZtW8THx+Pq1atIT0/Hjh070L17dznCJbJKunwOici8dPkcSpKEIUOGoHPnzhg4cKBZ4qhglrOSzm7dugW1Wg0vLy+tdi8vL1y/fh0AUKFCBXz++ecIDQ1Ffn4+JkyYgGrVqskRLpFV0uVzCADdu3fHqVOnkJmZCR8fH2zduhVBQUHlHS6RVdLlc3jo0CFs3LgRLVq0KKxPWrt2LZo3b26yOJgYKcSjNUOSJGm19erVC7169SrvsIhsyuM+h5wNSmR+ZX0OO3TogPz8fLNen0NpMqtevTrs7e21/ioFgJSUlGJZMxGZBz+HRPJTyueQiZHMHB0dERgYiF27dmm179q1C8HBwTJFRWRb+Dkkkp9SPoccSisHGRkZOH/+fOH9hIQExMbGomrVqqhTpw4iIiIwcOBAtGnTBu3bt8fy5cuRmJiIESNGyBg1kXXh55BIfhbxOTTLXDfSsnfvXglAsdvgwYMLj4mMjJTq1q0rOTo6Sq1bt5b2798vX8BEVoifQyL5WcLnkHulERERERVgjRERERFRASZGRERERAWYGBEREREVYGJEREREVICJEREREVEBJkZEREREBZgYERERERVgYkRERERUgIkRERERUQEmRkREREQFmBgRERERFWBiRERERFSAiRER2bzz589DpVLhl19+QZcuXeDq6oomTZrg6NGjcodGROWMiRER2by4uDioVCp8/vnn+OCDDxAXF4c6depg0qRJcodGROWMiRER2by4uDhUqlQJGzduRGhoKBo1aoQ+ffrg5s2bcodGROWMiRER2by4uDj07NkTNWrUKGy7ePEiGjZsKGNURCQHJkZEZPPi4uLQvn17rbaYmBgEBATIExARyYaJERHZtNTUVFy+fBmtWrXSao+NjWViRGSDmBgRkU2Li4uDvb09WrZsWdh2+fJl3L17l4kRkQ1iYkRENi0uLg5NmzaFi4tLYVtMTAwqV66MevXqyRcYEclCJUmSJHcQRERERErAHiMiIiKiAkyMiIiIiAowMSIiIiIqwMSIiIiIqAATIyIiIqICTIyIiIiICjAxIiIiIirAxIiIiIioABMjIiIiogJMjIiIiIgKMDEiIiIiKvD/VFvzcHrVersAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using PyPlot\n", + "n = 1:2:99 # odd integers from 1 to 99\n", + "loglog(n, abs.(sinecoef.(f, n)), \"bo\")\n", + "xlabel(L\"n\")\n", + "ylabel(L\"Fourier sine coefficient $|b_n|$\")\n", + "title(L\"Sine series convergence for $f(x) = 0.5 - |x - 0.5|$\")\n", + "loglog(n, 1 ./ n.^2, \"b--\")\n", + "legend([L\"|b_n|\", L\"1/n^2\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "They decay asymptotically as $1/n^2$. It turns out that one can prove this from the fact that $f(x)$ is continuous with a discontinuous slope.\n", + "\n", + "Now let's plot the series itself and compare it to $f(x)$. We'll use Julia's [Interact package](https://github.com/JuliaLang/Interact.jl) so that we can drag a slider to control the number of terms in the series." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "sinesum (generic function with 1 method)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# First, define a function to evaluate N terms of the sine series, given the coefficients b\n", + "function sinesum(b, x)\n", + " f = 0.0\n", + " for n = 1:length(b)\n", + " f += b[n] * sin(n*π*x)\n", + " end\n", + " return f\n", + "end" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzj0lEQVR4nO3dd1iV5RvA8e9hIyhuRHH2c6KpaM7MynKVppVamgLh3jNFDbeYW3JhIlhqamZDM9Mst+VIc+DIvTByMRRBOM/vjzdREvQcPIMD9+e6ztXLe573PTcn5Nw84350SimFEEIIIYSV2Fk7ACGEEELkbpKMCCGEEMKqJBkRQgghhFVJMiKEEEIIq5JkRAghhBBWJcmIEEIIIaxKkhEhhBBCWJWDtQMwhF6v5+rVq+TNmxedTmftcIQQQghhAKUU8fHxFC9eHDu7zPs/bCIZuXr1KiVLlrR2GEIIIYTIgkuXLuHt7Z3p8zaRjOTNmxfQvpl8+fJZORohhBBCGCIuLo6SJUumfY5nxiaSkQdDM/ny5ZNkRAghhLAxT5tiIRNYhRBCCGFVkowIIYQQwqokGRFCCCGEVdnEnBEhhMhNUlNTuX//vrXDEOKpHB0dsbe3f+b7SDIihBDZhFKKa9eucfv2bWuHIoTB8ufPT7FixZ6pDpgkI0IIkU08SESKFi1Knjx5pMijyNaUUty9e5eYmBgAvLy8snwvSUaEECIbSE1NTUtEChUqZO1whDCIq6srADExMRQtWjTLQzYygVUIIbKBB3NE8uTJY+VIhDDOg5/ZZ5nnJMmIEEJkIzI0I2yNKX5mJRkRQgghhFVlKRmZP38+ZcuWxcXFhVq1arFjx45M227duhWdTvfY48SJE1kOWgghhBA5h9HJyKpVqxg4cCCjRo3i4MGDNGrUiBYtWnDx4sUnXnfy5Emio6PTHuXLl89y0EIIIURWnDhxgnr16uHi4kKNGjWsHY74l9HJyMyZMwkMDKRr165UrlyZ2bNnU7JkSRYsWPDE64oWLUqxYsXSHqYokiKEsH3Xr1/n7t271g5D2DidTse333771HZjxozBzc2NkydPsmXLFvMHJgxiVDKSnJzMgQMHaNq0abrzTZs2Zffu3U+8tmbNmnh5edGkSRN+/fXXJ7ZNSkoiLi4u3UMIkfN89dVXFC1alMaNG6PX660djsgFzpw5w4svvkjp0qVlCXU2YlQycv36dVJTU/H09Ex33tPTk2vXrmV4jZeXF4sWLeLrr79m7dq1VKxYkSZNmrB9+/ZMXyckJAQPD4+0R8mSJY0JUwhhA6Kjo+nRowclS5Zk2bJl2NnJfPrM3LlzJ9PHvXv3DG6bmJhoUFtjKaWYOnUq5cqVw9XVlerVq7NmzZq051577TWaN2+OUgqA27dvU6pUKUaNGgVoNVYCAwMpW7Ysrq6uVKxYkTlz5jz2OkuWLMHHxwdnZ2e8vLzo27cvAGXKlAGgbdu26HS6tK//S6fTceDAAcaPH49Op2Ps2LFGf6/CTJQRrly5ogC1e/fudOcnTpyoKlasaPB93nzzTdWqVatMn793756KjY1Ne1y6dEkBKjY21phwhRDZlF6vV61atVKA8vX1VcnJydYOyeoSExNVVFSUSkxMfOw5INNHy5Yt07XNkydPpm0bN26crm3hwoUzbGeskSNHqkqVKqmNGzeqM2fOqIiICOXs7Ky2bt2qlFLq8uXLqkCBAmr27NlKKaU6dOigateunfb/PTk5WQUHB6u9e/eqs2fPqmXLlqk8efKoVatWpb3G/PnzlYuLi5o9e7Y6efKk2rt3r5o1a5ZSSqmYmBgFqIiICBUdHa1iYmIyjDM6Olr5+PioIUOGqOjoaBUfH2/09yoe96Sf3djYWIM+v42qwFq4cGHs7e0f6wWJiYl5rLfkSerVq8eyZcsyfd7Z2RlnZ2djQhNC2JBly5axbt06HB0diYyMxNHREaUUS5YsoWnTptIbakPu3LnDzJkz+eWXX6hfvz4A5cqVY+fOnYSFhdG4cWNKlChBWFgYnTt35u+//2bdunUcPHgQR0dHQNtsbdy4cWn3LFu2LLt372b16tW0b98egIkTJzJkyBAGDBiQ1u6FF14AoEiRIsDDPVIyU6xYMRwcHHB3d39iO2F5RiUjTk5O1KpVi82bN9O2bdu085s3b+att94y+D4HDx58phr2QgjbdfXqVfr37w/A2LFjqVatGgAjRoxg6tSpNG3alI0bN0rxr0ckJCRk+tx/FwM82CckI/8dCjt//vwzxQUQFRXFvXv3eP3119OdT05OpmbNmmlft2vXjm+++YaQkBAWLFhAhQoV0rVfuHAhixcv5sKFCyQmJpKcnJy22iUmJoarV6/SpEmTZ45XZE9G700zePBgOnfuTO3atalfvz6LFi3i4sWL9OzZE4CgoCCuXLnC559/DsDs2bMpU6YMPj4+JCcns2zZMr7++mu+/vpr034nQohsTylF9+7duX37NrVr1+ajjz5Ke+7DDz8kNDSUTZs2sXjxYrp162bFSLMXNzc3q7fNzIOJxz/88AMlSpRI99yjPdx3797lwIED2Nvb89dff6Vrt3r1agYNGsSMGTOoX78+efPmZdq0afz+++/Aw/1PRM5ldDLSoUMHbty4wfjx44mOjqZq1aps2LCB0qVLA9qktEdrjiQnJzN06FCuXLmCq6srPj4+/PDDD7Rs2dJ034UQwibcv3+fkiVL4uzszNKlS3FwePgrqGLFikyaNIkhQ4YwZMgQmjZtmvZ7RWRfVapUwdnZmYsXL9K4ceNM2w0ZMgQ7Ozt+/PFHWrZsyRtvvMGrr74KwI4dO2jQoAG9e/dOa3/mzJm047x581KmTBm2bNnCK6+8kuH9HR0dSU1NNdF3JSzOPNNZTMvQCTBCCNtw8eLFDM+npKSohg0bKkA1adJE6fV6C0dmPU+aBJjdjRo1ShUqVEhFRkaq06dPqz/++EPNnTtXRUZGKqWUWr9+vXJyclIHDhxQSik1evRo5e3trW7evKmUUmr27NkqX758auPGjerkyZNq9OjRKl++fKp69epprxEZGalcXFzUnDlz1KlTp9SBAwdUaGho2vPly5dXvXr1UtHR0Wn3zUj16tXVmDFjTP8m5GKmmMAqa+mEEGanlEpb1glkOkHV3t6eiIgIXF1d2bJlC2FhYZYKUTyDCRMmEBwcTEhICJUrV6ZZs2asW7eOsmXL8s8//xAYGMjYsWPx9fUFtMJjxYsXTxve79mzJ2+//TYdOnSgbt263LhxI10vCYCfnx+zZ89m/vz5+Pj48Oabb6Yb7pkxYwabN2+mZMmS6eaqCNugU4/+hsim4uLi8PDwIDY2lnz58lk7HCGEkcLDw1m5ciWLFy82aOhlzpw5DBw4EA8PDy5cuICHh4cForSue/fuce7cubR9v4SwFU/62TX081t6RoQQZnXx4kUGDx7Mzz//bPDE9X79+hEQEMCPP/6YKxIRIXI7oyewCiGEoZRSdO3albi4OOrXr5+uRsST2NnZsWTJEjNHJ4TILqRnRAhhNp999hmbN2/GxcWFiIiILG+QeeLECc6dO2fi6IQQ2YUkI0IIs7hw4QJDhgwBYPLkyVSsWDFL91mzZg01atTA399fNtMTIoeSZEQIYXJ6vZ4PP/yQhIQEGjZsmFZxNSt8fX1xcHBg+/btzJs3z4RRCiGyC0lGhBAm988//xAdHY2rq+szDc+Ats/J1KlTARg+fDinT582VZhCiGxCkhEhhMl5enryxx9/sGnTJsqXL//M9+vZsyevvvoqiYmJBAQEyHCNEDmMJCNCCLNwcXHhxRdfNMm97OzsCA8Px93dnZ07dxIaGmqS+wohsgdJRoQQJrNo0SI++eQTUlJSTH7vMmXKMH36dEDbkPPRvUuEsISxY8em7SRsa/z9/WnTpo21w8iUJCNCCJM4c+YMgwYNYsSIEaxevdosr9G9e3feeOMNPv74Y9lELxvZvn07rVq1onjx4uh0Or799luDrjOmbXYwdOhQtmzZYu0wsmTOnDlERkZaO4xMSdEzIcQze7B65u7du7z88su89957ZnkdnU7HunXr0Ol0Zrm/yJo7d+5QvXp1AgICeOeddyz++vfv38fR0dHsr+Pu7o67u7vZX8eUUlNT0el02b6SsfSMCCGe2dy5c9m+fTtubm4sWbIEOzvz/Wp5NBFJSkoiOjrabK8lDNOiRQsmTpzI22+/bfA1ZcqUAaBt27bodLq0rwHWrVtHrVq1cHFxoVy5cowbNy7d0J9Op2PhwoW89dZbuLm5MXHixLQhlCVLllCqVCnc3d3p1asXqampTJ06lWLFilG0aFEmTZr0xLi2bt1KnTp1cHNzI3/+/DRs2JALFy4Ajw/TPBj6mD59Ol5eXhQqVIg+ffpw//79tDbJycl89NFHlChRAjc3N+rWrcvWrVufGMPYsWMpVaoUzs7OFC9ePN3S+KfdLzIykvz587N+/XqqVKmCs7MzFy5ceGyYRinF1KlTKVeuHK6urlSvXp01a9akPX/r1i06depEkSJFcHV1pXz58kRERDwx7mchPSNCiGfy119/MWLECACmTZtG2bJlLfK6UVFRdOjQATc3N3bt2vVMy4ezLaXg7l3rvHaePGDGHqh9+/ZRtGhRIiIiaN68edr/v59++okPPviA0NBQGjVqxJkzZ+jevTug7fb7wJgxYwgJCWHWrFlpuz2fOXOGH3/8kY0bN3LmzBneffddzp07R4UKFdi2bRu7d+/mww8/pEmTJtSrV++xmFJSUmjTpg3dunXjyy+/JDk5mb179z6xJ+7XX3/Fy8uLX3/9ldOnT9OhQwdq1KhBt27dAAgICOD8+fOsXLmS4sWL880339C8eXOOHDmS4UqzNWvWMGvWLFauXImPjw/Xrl3jzz//THvekPvdvXuXkJAQFi9eTKFChShatOhjrzN69GjWrl3LggULKF++PNu3b+eDDz6gSJEiNG7cmI8//pioqCh+/PFHChcuzOnTp0lMTDTkf23WKBsQGxurABUbG2vtUIQQj0hJSVENGzZUgGrSpIlKTU212GtfunRJ5cuXTwHqk08+sdjrmktiYqKKiopSiYmJD08mJCilpSSWfyQkZOn7ANQ333yT5baNGjVSkydPTnfuiy++UF5eXumuGzhwYLo2Y8aMUXny5FFxcXFp55o1a6bKlCmT7ueyYsWKKiQkJMN4bty4oQC1devWDJ8fM2aMql69etrXfn5+qnTp0iolJSXtXLt27VSHDh2UUkqdPn1a6XQ6deXKlXT3adKkiQoKCsrwNWbMmKEqVKigkpOTH3vOkPtFREQoQB06dChdGz8/P/XWW28ppZRKSEhQLi4uavfu3enaBAYGqvfff18ppVSrVq1UQEBAhjH+V4Y/u/8y9PNbhmmEEFl28OBB9u3bh7u7O+Hh4WYdnvkvb29vZs+eDUBwcDBRUVEWe21hnMmTJ6fNt3B3d+fixYuZtj1w4ADjx49P175bt25ER0dz95Feotq1az92bZkyZcibN2/a156enlSpUiXdz6WnpycxMTEZvnbBggXx9/enWbNmtGrVijlz5jx1GNDHxyddr5yXl1fa/f/44w+UUlSoUCHd97Nt27ZMV4O1a9eOxMREypUrR7du3fjmm2/ShqgMvZ+TkxPPP/98pjFHRUVx7949Xn/99XT3+fzzz9Pu06tXL1auXEmNGjX46KOP2L179xPfh2clwzRCiCyrXbs2f/zxB3/99ZdVVrf4+/uzZs0aNmzYgL+/P7t378bBIQf9WsuTBxISrPfaJtKzZ0/at2+f9nXx4sUzbavX6xk3blyG809cXFzSjt3c3B57/r+TWHU6XYbnnlQ0LyIigv79+7Nx40ZWrVrF6NGj2bx5c4bDOpm95oP76/V67O3tOXDgwGPDiJlNhC1ZsiQnT55k8+bN/Pzzz/Tu3Ztp06axbds2g+/n6ur6xKGlB/H98MMPlChRIt1zzs7OgDYP6MKFC/zwww/8/PPPNGnShD59+qQtrze1HPSvVghhDT4+Pvj4+FjltXU6HYsWLcLHx4d9+/Yxbdo0goKCrBKLWeh0kMGHrq0pWLAgBQsWfOy8o6Mjqamp6c75+vpy8uRJ/ve//1kqvMfUrFmTmjVrEhQURP369VmxYkWmycjT7pOamkpMTAyNGjUy+DpXV1dat25N69at6dOnD5UqVeLIkSNZvt9/PZjYevHiRRo3bpxpuyJFiuDv74+/vz+NGjVi2LBhkowIIbKPzz//nMqVK/PCCy9YOxRKlChBaGgofn5+jB07llatWlG1alVrh5WrJCQkpNsz6Ny5cxw6dIiCBQtSqlSpTK8rU6YMW7ZsoWHDhjg7O1OgQAGCg4N58803KVmyJO3atcPOzo7Dhw9z5MgRJk6caNbv49y5cyxatIjWrVtTvHhxTp48yalTp+jSpUuW7lehQgU6depEly5dmDFjBjVr1uT69ev88ssvVKtWjZYtWz52TWRkJKmpqdStW5c8efLwxRdf4OrqSunSpSlUqJDR98tI3rx5GTp0KIMGDUKv1/Piiy8SFxfH7t27cXd3x8/Pj+DgYGrVqoWPjw9JSUmsX7+eypUrZ+l9MIQkI0IIo5w4cYLu3btz//59fv/99wzH7i2tc+fOrFmzhvj4eJurA5ET7N+/n1deeSXt68GDBwPg5+f3xEJbM2bMYPDgwXz22WeUKFGC8+fP06xZM9avX8/48eOZOnUqjo6OVKpUia5du5r72yBPnjycOHGCpUuXcuPGDby8vOjbty89evTI8j0jIiKYOHEiQ4YM4cqVKxQqVIj69etnmjjkz5+fKVOmMHjwYFJTU6lWrRrr1q2jUKFCWbpfZiZMmEDRokUJCQnh7Nmz5M+fH19fX0aOHAlo806CgoI4f/48rq6uNGrUiJUrV2b5fXganVJKme3uJhIXF4eHhwexsbHky5fP2uEIkWulpKTQsGFD9u7dS/PmzdmwYUO2KUAWHx+Pm5ubRSfRmtK9e/c4d+4cZcuWTTc3Qojs7kk/u4Z+ftvmv1ohhFXMmDGDvXv34uHhwWeffZZtEhHQup4fTUTu3btnxWiEEMaQZEQIYZCoqCiCg4MBmD17Nt7e3laOKGMJCQn07duXhg0bpquEKYTIviQZEUI8VUpKCn5+fiQnJ/PGG2/g5+dn7ZAylZCQwJdffskff/xBSEiItcMRQhhAkhEhxFOtXLmS/fv3kz9/fsLCwrLV8Mx/FStWjLlz5wLaJL1Dhw5ZNyAhxFPJahohxFN16tSJhIQEPDw8HiuSlB299957rFmzhrVr1+Ln58e+fftwcnKydlgGsYE1BUKkY4qfWekZEUI8lU6no2fPnrz//vvWDsUgOp2OBQsWULhwYQ4fPvzUnVqzgweVPO9aa2M8IbLowc/sf6vRGkOW9gohMvXjjz/y4osvptvvw5asXr2aDh06YG9vz969e/H19bV2SE8UHR3N7du3KVq0KHny5MnWw2FCKKW4e/cuMTEx5M+fHy8vr8faGPr5LcM0QogMHT58mLfeeovixYvz+++/4+npae2QjNa+fXvWrFnDzz///NQNz7KDYsWKAWS6kZsQ2VH+/PnTfnazSpIRIcRj7t+/j5+fH/fv36dmzZoULVrU2iFl2fz587l//36Gf7VlNzqdDi8vL4oWLSrLkoVNcHR0fGzTvqyQZEQI8ZjJkyen7S2yYMECmx4uKFy4sLVDMJq9vb1JfsELYStkAqsQIp1Dhw6lbUg2b968Z+5+zU6+++47XnvtNanOKkQ2I8mIECJNcnIyfn5+pKSk8Pbbb9OhQwdrh2QyCQkJdO/enS1btjBu3DhrhyOEeIQkI0KINNOmTePw4cMULlzY5odn/svd3Z2FCxcCMHXqVPbu3WvliIQQD0gyIoRI07VrV95++23mzZtn05NWM9O2bVs6deqEXq/Hz89PhmuEyCakzogQIh2lVI7qEfmvmzdv4uPjw7Vr1xg2bBhTp061dkhC5FiGfn5Lz4gQguPHj6cd5+REBKBgwYKEhYUBMGPGDPbs2WPliIQQkowIkcvt27ePatWq8f7775OcnGztcCyidevWdOnSBb1ez8aNG60djhC5ntQZESIXu3fvHv7+/qSmpgLYzGZypjB79mw6dOhAy5YtrR2KELme9IwIkYuNGzeOqKgoPD09mTt3rrXDsagCBQpIIiJENiHJiBC51O+//542eXPhwoUUKlTIyhFZz5UrV+jZs6fsmCuElcgwjRC50IPhGb1eT6dOnWjTpo21Q7IapRQtWrTgyJEjuLq6MmvWLGuHJESuIz0jQuRCwcHBnDhxgmLFihEaGmrtcKxKp9PxySefADBnzhx27Nhh5YiEyH0kGREiF3r11Vfx9vYmLCyMggULWjscq2vRogWBgYEopQgICODOnTvWDkmIXEWKngmRSyUmJuLq6mrtMLKN2NhYqlatyuXLl+nXr1+u7zESwhSk6JkQ4jHx8fFpx5KIpOfh4UF4eDgAn376Kdu2bbNyRELkHpKMCJFL7Nq1i1KlSrFkyRJrh5JtNW3alG7dugEwefJkK0cjRO4hyYgQucDdu3cJCAjg9u3bMkHzKaZPn05wcDDffPONtUMRIteQOSNC5AKDBg1i9uzZlChRgqNHj5I/f35rhySEyAVkzogQAoAdO3YwZ84cAD777DNJRIyg1+sJCwtLN9dGCGF6kowIkYPduXOHgIAAlFIEBgbSokULa4dkU/z9/enZsyfDhg2zdihC5GiSjAiRgwUFBXHmzBm8vb2ZMWOGtcOxOQEBAQCEhYWxefNmK0cjRM4lyYgQOZRSCmdnZ+zs7AgPD8fDw8PaIdmcV155hT59+gAQGBhIXFyclSMSImeSCaxC5HBnzpzhueees3YYNishIYHq1atz9uxZunXrxqJFi6wdkhA2w9DPb0lGhMiBlFLodDrrBnH3Lly69PARHQ23b0NsrPZISAC9Xns8+DXk5gbu7tojXz4oVgyKF3/4KFUKHCy/v+e2bdt4+eWXAdi4cSPNmjWzeAxC2CKzJiPz589n2rRpREdH4+Pjw+zZs2nUqNFTr9u1axeNGzematWqHDp0yODXk2RECMP98ssvBAcHs2TJEipUqGD+F7x/Hw4fhoMH4dgx7REVBVeumP61HB2hfHmoVEl71KgBdepoSYqZk68BAwYQGhpK2bJlOXXqFA5WSIqEsDVmS0ZWrVpF586dmT9/Pg0bNiQsLIzFixcTFRVFqVKlMr0uNjYWX19f/ve///H3339LMiKEGcTHx1OtWjUuXLhA3759+fTTT03/IgkJsHUr7NgBe/bA/v2QmJhxW3d3KFlSexQvDgUKQP784OEBefOCvb2WRNjZaT0kd+9q909I0HpRrl2Dq1e1x5UrcO9exq9TpAi88AI0agSvvQY1a2r3NqE7d+7QuXNngoODqVGjhknvLUROZbZkpG7duvj6+rJgwYK0c5UrV6ZNmzaEhIRket17771H+fLlsbe359tvv5VkRAgz6NmzJ2FhYZQpU4bDhw+TN2/eZ7+pUvDnn7BhA2zaBLt3a70hj8qfX0sGqlYFHx+oUkXrucif33Q9Fnq9Ntxz4oT2iIrSEqHDhyEl5fF4XnkFWrSA1q3B09M0MQghjGLo57dR/YzJyckcOHCAESNGpDvftGlTdu/enel1ERERnDlzhmXLljFx4sSnvk5SUhJJSUlpX8sMdiGebvPmzYSFhQGwZMmSZ0tElNI+6Nes0R5nz6Z/vmxZaNIEGjSA+vWhQgWtd8Oc7OygdGnt8eicjXv34NAh+O03+PVXrdfm9m345hvt0aMHNGwIbdvCu+9qQzom8Oeff1KqVCkKFChgkvsJkZsZlYxcv36d1NRUPP/zV4anpyfXrl3L8Jq//vqLESNGsGPHDoPHWENCQhg3bpwxoQmRq8XFxREYGAhAnz59eOWVV7J2o4sXITJSe5w79/C8iws0bQrNm2v/zU6rc1xcoF497TFwoNZLcuCA1ovz3Xfa8c6d2mPIEK3HpEsXeOcdbagoC8LCwujbty+dOnUiMjLSpN+OELlRlv6U+e8s/cxm7qemptKxY0fGjRtn1ES6oKAgYmNj0x6XLl3KSphC5BpDhw7l0qVLlCtXjilTphh3cVISrFypJRllysCYMVoi4uYGHTrA6tXwzz/aB3uvXtkrEcmIgwPUrQsff6z17ly4AKGh0Lix9vyvv0JAgDZ04++vtTFStWrVSE1NZenSpaxbt8608QuRGykjJCUlKXt7e7V27dp05/v3769eeumlx9rfunVLAcre3j7todPp0s5t2bLFoNeNjY1VgIqNjTUmXCFyhbt37ypfX18FqG3bthl+YUyMUuPHK1WsmFLawIz2eOUVpb74Qqk7d8wXtLWcP6/UpElKVaiQ/nuuV0+pZcuUSkoy+FZDhw5VgPLy8lI3btwwY9BC2C5DP7+zNIG1Vq1azJ8/P+1clSpVeOuttx6bwKrX64mKikp3bv78+fzyyy+sWbOGsmXL4ubm9tTXlAmsQjzZ/fv3+eWXXwyrfxEVBbNmwbJlD1enFC8OXbtqPQVly5o11mxBKW2Oyfz5sGrVwwm5np7aUE/v3lqdkydITEykZs2anDx5kg8++IAvvvjC/HELYWMM/vw2NstZuXKlcnR0VOHh4SoqKkoNHDhQubm5qfPnzyullBoxYoTq3LlzptePGTNGVa9e3ajXlJ4RIUzgyBGl2rVL3yNQu7ZSy5crlZxs7eis59o1pSZMUKp48YfvS/78SgUHK3X9+hMv3bNnj7Kzs1OA+vbbby0UsBC2w9DPb6PnjHTo0IHZs2czfvx4atSowfbt29mwYQOlS5cGIDo6mosXL2YthRJCGOzHH3/k448/Jjk5+ckNjxyBdu2gWjX46ivtXJs2Wp2QvXuhY0etmFhu5ekJo0fD+fPw+efakuTbt2H8eG3lzogRcOtWhpfWq1ePoUOHAtCjRw9uZdJOCPFkUg5eCBt069YtqlatytWrV5kyZQrDhw9/vNGFCzBqFCxf/vDcu+9CcLCWmIiM6fWwdi1MmqQtGQatWFtQEPTtC66u6Zrfu3ePF198kc6dO9OvXz/szL3EWQgbInvTCJGD+fv7s3TpUipUqMDBgwfJkyfPwydjYyEkBGbP1lbKgNYz8vHHkoQYQylYvx5GjoSjR7Vz3t5aj0mXLukqvKampmJv4oqvQuQEhn5+SwovhI1Zt24dS5cuRafTERER8TARSU2FBQvgf/+DTz7REpGXX9bqbKxeLYmIsXQ6aNVK6x2JjNRK2l++DB9+qC0d/u23tKaPJiJ3797l9u3bFg9XCFsmyYgQNuTmzZv06NEDgCFDhtCgQQPtiX37tA/I3r3h+nVt3sO6dfDLL+Dra8WIcwB7e/Dzg1OnYNo0bV+dAwe0yrOBgVoNln/t3buX6tWr07NnTysGLITtkWRECBsyYMAAoqOjqVixIuPHj9cmWvburSUiBw5oH5Rz52r7tbz5ptl3ss1VXFxg6FA4eVJbAg2wZIlWCn/+fNDrsbOz49y5c6xatYo1a9ZYNVwhbIkkI0LYiAsXLrB27Vrs7OyIjIzEdd06qFhRG5pRCj74QPug7NMnd6+OMTdPT4iI0DYM9PXVEsI+faBxY2rny0dQUBAAvXr1IiYmxrqxCmEjJBkRwkaULl2aw4cPs3TaNOrNmKGVao+J0YZkfvkFvvhCdqe1pPr1taXRc+eCu7u2983zzzPG1ZUaVaty/fp1+vTpY+0ohbAJkowIYUOe++MPPggJ0XbSdXDQlun++ae2+ZuwPHt7rVfk6FFtb5+kJBxGjWJnairP29uzZs0aVq9ebe0ohcj2ZGmvENncxo0byZuSQsNly7TS5aCtjFm6FGrWtG5w4iGltP8ngwbB7dvcd3BgUEoKKwsW5FhU1GO7nQuRG8jSXiFygH/++Ye577+Pd6tWWiJib/9wN1pJRLIXnU6b2BoVBc2b45iSwlzgR3t7dH//be3ohMjWJBkRIrtKTeWXV17hu9u3KQ2ocuVgzx6t6JaTk7WjE5nx8oING+DTT1HOzrzwzz8UbdJEK6AmhMiQJCNCZEeXLxPz/PN0OHYMe+BGixboDh2CF16wdmTCEDod9O2L7sABeP55rfZLq1akDh0KKSnWjk6IbEeSESGym82b0VevTtGoKOKBNa1bU2jDBsib19qRCWP5+MDevST9WwTNfsYMVJMmEB1t5cCEyF4kGREiu1AKpkxBNW+O3c2bHAA6VqxI6wc77Qrb5OzMqd69ec/enjhAt327Nt/n11+tHZkQ2YYkI0JkB3Fx8M47EBSETq9nMdDY3p7xX36Jk8wPsXnVqlWj2rhx1AaO2dnB33/Da6/BlClaEipELifJiBDWdvw41KkD33wDTk6osDCcP/+ccZ98Qk1ZMZNjDB8+nHy1avGCXs8Wb2/Q6yEoCDp1gsREa4cnhFVJnREhrOnHH7VKqvHxUKIEfP21ts+MyJGOHTuGr68vycnJ7O7ShforVmgTWmvXhm+/1X4GhMhBpM6IENndp59qm9nFx8NLL7F34UJuli9v7aiEGfn4+DBu3DgAWnz3Hf+sWAEFC2p1Y154QSsvL0QuJMmIEJaWkgJ9+0L//lpXfUAA0Z9/TvMuXahatSonTpywdoTCjIYOHUqdOnVwcXHhVPHisG+ftuomOhpeegm+/NLaIQphcQ7WDkCIXCUuThuW2bhR+3rKFNSwYfRo04Zbt27h6+vLc889Z90YhVk5ODiwcuVK8uXLR6FChbSTu3drc0fWr4eOHeHCBRg+XKtXIkQuID0jQljKlSvQsKGWiLi6avNDhg9n2fLlrFu3DkdHRyIjI3F0dLR2pMLMypYt+zARAciXT5szMniw9nVQkNZ7lppqlfiEsDRJRoSwhBMnoEEDbXdXLy/YsQPefpurV6/Sv39/AMaOHUu1atWsHKiwJKUUK1asoGPHjig7O5gxA2bP1npE5s/XlnvfvWvtMIUwO0lGhDC3337TekQuXoSKFbX9ZWrVQilF9+7duX37NrVr1+ajjz6ydqTCwq5cuUJgYCBffvkl4eHh2skBA2D1anB2hu++gyZNtHLyQuRgkowIYU4bNsCrr8LNm1otkZ07oXRpAJYvX84PP/yAk5MTkZGRODjIFK7cxtvbm0mTJgEwePBgLly4oD3x7ruweTMUKPAwmb10yYqRCmFekowIYS6ffw6tW2sFrZo3h19+gcKF055+44036Ny5M+PHj8fHx8eKgQprGjBgAA0bNiQ+Pp6uXbuSVvqpUSPYtQtKlYJTp+DFF+Gvv6wbrBBmIkXPhDCH+fOhTx/t+IMPYMkSyGRiqlIKnayayNVOnTpFjRo1SExMZOHChfTo0ePhkxcvwuuvawmJp6fWYyJzi4SNkKJnQljLzJkPE5EBA2Dp0nSJyJkzZ3j0bwBJRESFChUICQkBYMiQIZw7d+7hk6VKwfbtUL26tqdN48bw++9WilQI85BkRAhTmjQJhgzRjoOCYNYssHv4z+zixYv4+vrSunVrYmNjrRSkyI769etHo0aNuHPnDj/++GP6Jz09tV1+69WDW7e0Sa2y66/IQSQZEcIUlILRo7UHwPjxWmLySK+HUoquXbsSFxfHjRs3cHd3t1KwIjuys7MjIiKCX375hd69ez/eoEABbYimSRO4cwfeeAO2bLF8oEKYgSQjQjwrpWDoUC35AJg2DT7++LHqmYsXL2bz5s24uLgQGRmJvb29FYIV2dlzzz3HK6+8knkDd3etSusbb2gTo1u1koRE5AiSjAjxLJTSqmbOnKl9/emnWmLyHxcuXGDwv9U1J0+eTIUKFSwZpbBB586dY9iwYej1+vRPuLho1XtbtpSEROQYkowIkVVKafNCZs/Wvl60SCvh/VgzRWBgIAkJCTRs2DCt4qoQmbl37x7169dn+vTpzJs37/EGzs6wdq0kJCLHkGREiKwaOxY++UQ7XrAAunXLsFlYWBhbtmzB1dWViIgIGZ4RT+Xi4kJwcDAAw4cP5/Tp0483koRE5CCSjAiRFZMmaZNUAebMgZ49M23q4+NDuXLlCAkJoXz58hYKUNi6nj178uqrr5KYmEhAQMDjwzWQcUKyfbvlgxXiGUnRMyGMNW0aPNhHZupUGDbsqZfcuXMHV1dX7Owk/xeGO3/+PNWqVSMhIYFZs2YxcODAjBsmJcHbb2vbD+TNq1X7rV3borEKkREpeiaEOXz66cNEZOLEJyYidx/ZbdXNzU0SEWG0MmXKMH36dACCgoI4depUxg2dnWHNGnj5ZYiPh2bN4NgxywUqxDOS345CGOqLL+DB5NOPP4ZRozJteubMGcqUKUNoaGjG3etCGKh79+689tpr3Lt3jylTpmTe0NUVvv9e25Dx5k2thPzZs5YLVIhnIMmIEIZYvx4CArTjgQNh3LhMm+r1ej788EP++ecfvvnmG8vEJ3IsnU5HeHg4wcHBLFiw4MmN8+aFH3+EqlUhOlorkHblimUCFeIZyJwRIZ5mxw5o2hTu3YPOnSEyMl2J9/8KDQ1lwIABuLm5ceTIEcqWLWu5WIUALRFp1AjOnIFKlbRJrUWKWDsqkQvJnBEhTOHPP7UVCvfuwZtvQnj4ExORv/76ixEjRgAwbdo0SUSEyaWkpBAeHk5qamrmjby84OefwdsbTpzQVtskJFguSCGMJMmIEJk5c0abCBgbCy++CKtXp9t9979SU1MJCAggMTGRJk2apN8GXggTUErRvHlzunbtyswHVX8zU6aMlpAUKgT790P79nD/vkXiFMJYkowIkZFr17QJgH//Dc8/D+vWaRMEnyA0NJRdu3bh7u5OeHi4rJ4RJqfT6ejUqRMAH3/8MVFRUU++oGJFbb6Tq6s2l6R7d61ysBDZjPy2FOK/7tzRhmTOnYNy5eCnnyB//qdelpiYiL29PTNmzKB06dLmj1PkSv7+/rRs2ZKkpCT8/f1JSUl58gX16sGqVdrwYmQk/FvZVYjsRCawCvGo1FRo21brCSlUCH77Df73P4MvP3HiBBUrVkT3nx17hTClK1eu4OPjQ2xsLCEhIWnzlJ7os8+0nhHQti94QtVgIUxFJrAKYSylYMAALRFxcdH+a0Ai8mg+X6lSJUlEhNmVKFGC0NBQAMaMGcPRo0efflG3bjBmjHbcpw98+635AhTCSJKMCPHAzJkwbx7odLBsGdSv/9RLjh8/ToMGDfjzzz8tEKAQD3Xu3Jk333yT5ORkevbsiUGd3GPGQNeuoNfD++/D77+bP1AhDCDJiBAAX30FQ4dqx9OnwzvvPPWSB6tnfvvtNz7++GMzByhEejqdjrCwMJo3b87ixYsN65HT6bQhmjfe0Jarv/UWXLhg/mCFeAqZMyLErl1apcqkJOjXT9uF14Bf7FOnTmX48OF4eHhw9OhRvL29LRCsECYQH68tVz98GKpVg507QX63CjOQOSNCGOLsWe2vw6Qk7b+zZhmUiERFRaX1hsyaNUsSEZEtHDhwgPuG1BLJm1ebE+XpCUeOaEM2T1uVI4QZSTIicq+4OK266o0b8MILsGIF2Ns/9bKUlBT8/f1JTk6mZcuW+Pv7mz9WIZ5i0qRJ1KlTh5CQEMMuKFVK21jPxQU2bIAhQ8wboBBPIMmIyJ1SU7W/BqOioEQJ+O47yJPHoEunT5/Ovn378PDwYNGiRbJ6RmQLzz33HHq9ngkTJnDo0CHDLqpTR9uNGiA0FObPN1t8QjyJJCMidxoxQvtr0NVVS0S8vAy6TK/Xs3nzZgDmzJlDiRIlzBmlEAbr0KEDb7/9drqeO4O8+y5Mnqwd9++vFfkTwsIkGRG5T2SktmLmwXGtWgZfamdnx6ZNm1izZg1dunQxS3hCZIVOp2PBggUULlyYP//8k0mTJhl+8YgR4Oen9Ri2bw8nT5ovUCEyIKtpRO6yaxe8+iokJ2tlsceNs3ZEQpjU6tWr6dChA/b29uzduxdfX1/DLkxO1laV7dyp7Wnz++/g4WHeYEWOJ6tphPivCxe0Uu/JyVodkQfVKA1w+PBhhgwZwt27d80YoBDPrn379rRr147U1FTjhmucnGDNGvD21npGPvhAK44mhAVIMiJyh7t3taW7//wDNWrA0qXaxmEGuH//Pn5+fsycOZPhw4ebN04hTGDevHk899xz9O/fH0dHR8Mv9PSEb74BZ2dtt18jEnYhnoWDtQMQwuyU0vbl+PNPKFpUm7Dq5mbw5ZMnT+bQoUMUKlSI0aNHmzFQIUyjSJEinDhxAgeHLPyKr11b21SvSxeYOFFL3g2oSCzEs8hSz8j8+fMpW7YsLi4u1KpVix07dmTadufOnTRs2JBChQrh6upKpUqVmDVrVpYDFsJooaEPa4h89ZVWX8FAhw4dYuLEiQDMnTsXT09Pc0UphEk9mojExsZy7949wy/u3BkGDdKO/fy0wmhCmJHRyciqVasYOHAgo0aN4uDBgzRq1IgWLVpw8eLFDNu7ubnRt29ftm/fzvHjxxk9ejSjR49m0aJFzxy8EE+1bdvDYk4zZsBLLxl8aXJyMn5+fqSkpPDOO+/QoUMHMwUphPn88ssvVK1alXHGTtaeOlWb0HrnDrRpAzdvmiU+ISALq2nq1q2Lr68vCxYsSDtXuXJl2rRpY3Dlv7fffhs3Nze+eFBs5ylkNY3IkitXwNcXYmKgY0dtJ14jCpSNGTOG8ePHU7hwYY4dO0bRokXNGKwQ5vHtt9/Stm1b7Ozs2L17N3Xr1jX84hs3tGGb8+fh9dfhxx8NqlIsxANmWU2TnJzMgQMHaNq0abrzTZs2Zffu3Qbd4+DBg+zevZvGjRtn2iYpKYm4uLh0DyGMkpSkFXOKiYHq1bUxcCMSkfj4eOb/W41y/vz5kogIm9WmTRs6deqEXq/H39/fuOGaQoUeVifevBnGjzdfoCJXMyoZuX79OqmpqY+Nm3t6enLt2rUnXuvt7Y2zszO1a9emT58+dO3aNdO2ISEheHh4pD1KlixpTJhCwMCB8NtvkD8/rF1rcKn3B/LmzcvBgweZOnUq7dq1M0uIQlhKaGgoxYoV48SJEwQHBxt38fPPQ1iYdjx+vNY7IoSJZWkC63/34lBKPXV/jh07drB//34WLlzI7Nmz+fLLLzNtGxQURGxsbNrj0qVLWQlT5FYREbBwodYTsmIFlCuXpdt4e3szbNgwEwcnhOUVLFiQsH8TihkzZrBnzx7jbvDBB9Cr18Pj8+dNG6DI9YxKRgoXLoy9vf1jvSAxMTFPXWVQtmxZqlWrRrdu3Rg0aBBjx47NtK2zszP58uVL9xDCIH/++fCX5vjx0KKFUZcfOHCADRs2mCEwIayrdevWdO7cOW24JjEx0bgbzJql7W598ya0a6cNhQphIkYlI05OTtSqVStto7AHNm/eTIMGDQy+j1KKJPlBFqYWF/fwl2TLljBypFGXJyUl0aVLF9544w1Z7SVypDlz5uDl5UX16tWNmzsCWiG0r76CggVh/35tKFQIEzG6Is7gwYPp3LkztWvXpn79+ixatIiLFy/Ss2dPQBtiuXLlCp9//jmgVQIsVaoUlSpVArS6I9OnT6dfv34m/DZErqcUdO8Of/0FJUvC558bXGH1gbFjxxIVFUXRokV5++23zRSoENZToEAB/vjjD4oVK5a1G5QuDcuXa8n+woXQoIFWk0SIZ2R0MtKhQwdu3LjB+PHjiY6OpmrVqmzYsIHSpUsDEB0dna7miF6vJygoiHPnzuHg4MBzzz3HlClT6NGjh+m+CyEWLIBVq8DBQftvoUJGXb53716mTp0KwMKFCylcuLA5ohTC6h5NRJRSpKamGleptXnzh5tM9uihVWitVs30gYpcRXbtFbbvwAHtL7TkZK2w2eDBRl1+7949atasyYkTJ+jUqRPLli0zU6BCZB8xMTH07t0bb29vZs+ebdzFqala78imTdoOv/v3g7u7WeIUtk127RW5w+3b0L69loi89dbDEtZGCA4O5sSJExQrVozQ0FDTxyhENnTw4EG+/vprQkNDn7ilR4bs7bXhmhIltB1++/Y1T5Ai15BkRNgupeDDD+HsWShTRlvSa0RhM4C//vqLGTNmABAWFkbBggXNEKgQ2U+zZs0IDAxEKUVAQAB37twx7gaFC2tL5+3stF2wDayoLURGJBkRtis0VNvu3NERVq+GAgWMvkX58uVZs2YNgwcPpnXr1mYIUojsa8aMGXh7e3PmzBmCgoKMv8FLL8GYMdpxr15aL4kQWSBzRoRt2r9fmydy/76WlMjqLCGyZNOmTTRr1gyArVu3PnGrjgylpmr71vz6q7b1wm+/gYuLGSIVtkjmjIicKz4e3n9fS0TefjtL49WHDx9+6hYGQuQGTZs2pVu3bgAEBASQkJBg3A3s7bVNKIsU0YoODh1qhihFTifJiLA9/frB6dNaPZHFi42eJ3L37l3eeecdfHx8jC+LLUQONH36dEqVKkVKSgrns1LqvXhxrbYPwLx52n5QQhhBkhFhW778UpssZ2enzebPwjyRUaNGcfr0aVxdXalcubIZghTCtuTLl49169Zx9OhRqlatmrWbNG8OD/ZyCgyU/WuEUSQZEbbj3Dn4t9Ivo0dDo0ZG32L79u3MmTMHgM8++4z8+fObMEAhbNfzzz//7HPyJk2CunW1JfcdO0JKikliEzmfJCPCNty/r/1yi4uDhg3h44+NvsWdO3cICAhAKUVgYCAtjNxET4jcQCnFokWLGJqVuR+OjrByJXh4wJ49MHGi6QMUOZIkI8I2jBunzdL38NCGZ4wpX/2voKAgzp49S8mSJdNqiwgh0jt48CA9evRgxowZj22KapAyZbR9awAmTIDdu00an8iZJBkR2d/WrTB5sna8aJG2WZeRtm/fzqeffgrA4sWL8fDwMGGAQuQcvr6+9OnTB4DAwEDi4uKMv8l778EHH4Ber/03K/cQuYokIyJ7u3lT+2X2oNpq+/ZZuo2vry+9evWiR48eNG3a1MRBCpGzTJkyhXLlynHp0qWsDdcAzJ2r/eFw7hz072/aAEWOI0XPRPallJZ8rFkDFSpoG+I942Zcer0eOzvJwYV4mm3btvHyyy8DsHHjxrTCaEbZuRMaN9Z6SFavhnbtTBukyPak6JmwfcuXa4mIg4N2nIVE5PLly+j1+rSvJRERwjCNGzem/789Gl27diU2Ntb4m7z4IjwoM9+9O1y6ZMIIRU4iv5lF9nTxIvw7bs2YMVC7ttG3iI+P58UXX+S1114jOjraxAEKkfNNnjyZ5557jqtXr/Lzzz9n7SZjxsALL2jLff38tF4SIf7D+CUJQpibXg/+/tqkt3r1YMSILN1m2LBhXLhwAZ1OR968eU0boxC5gJubG8uXL0cpRb169bJ2E0dHrWezZk1t/5oZMx4WRxPiX9IzIrKfOXO0X1p58mglprOwjHfz5s2EhYUBsGTJEtyfca6JELlV3bp1s56IPFC+PMyerR2PGgWHDj1rWCKHkWREZC/Hjj0cY545U/slZqS4uDgCAwMB6Nu3L6+88oopIxQi1zp+/DhTpkzJ2sWBgdCmjVbAsEsXSEoyaWzCtkkyIrKP5GRtGW9SErRsqU14y4IhQ4Zw6dIlypUrl/VfnEKIdGJiYqhduzZBQUGsX7/e+BvodBAWpu3ue+QIjB1r8hiF7ZJkRGQf48Zp3beFCmVpN16An376icWLFwMQERGBm5ubiYMUIncqWrQovXr1AqB79+7cvHkzKzfREhKAqVO1kvFCIMmIyC5274YHvRhhYeDllaXbFClShCpVqjBgwABeeuklEwYohJgwYQIVK1YkOjqaAQMGZO0mbdtC587aRHU/P7h717RBCpskRc+E9SUkQPXqcPasNpa8dOkz3S4pKQm9Xo+rq6uJAhRCPPDbb7/RsGFD9Ho93377LW+99ZbxN7l9G6pWhStXoF8/CA01eZwie5CiZ8J2DB+uJSKlSmX5l1LSI5PhnJ2dJRERwkzq1auXViK+R48e3Lhxw/ib5M8PS5Zox59+Cr/8YroAhU2SZERY1y+/wPz52vGSJdquvEa6desWlStXJiQkhJSUFBMHKIT4r3HjxlG5cmX+/vtv5syZk7WbNG0KPXtqxwEBkJUKryLHkGREWE9CgrbcD7RfSk2aZOk2gwYN4ty5c0RGRpKcnGzCAIUQGXFxcWHp0qVMnjyZ4ODgrN9o2jQoV06ruDx4sOkCFDZH5owI6+nTR+sVKV1aW+qXhSqp69ato3Xr1uh0Onbu3EmDBg3MEKgQwmx27NA201MKvv8eWrWydkTChGTOiMjeHh2eCQ/PUiJy8+ZNuv9bi2TIkCGSiAhhJUlJSaxYsSJrFzdq9LBXpFs3yMqSYWHzJBkRlmei4ZkBAwZw7do1KlWqxPjx400YoBDCUPfv36du3bp06tSJNWvWZO0mEydC5crw998waJBpAxQ2QZIRYXnDh8P589rwzNSpWbrFt99+y7Jly7CzsyMyMlJWzwhhJY6OjrT6d2ilV69exMTEGH8TFxdtArtOp+1HtWGDiaMU2Z0kI8KyTDA8A/D333/j7OzMsGHDqFu3rgkDFEIY6+OPP+b555/n+vXr9O7dmyxNRaxX72GvSI8esroml5EJrMJyEhKgWjWtV6RnT1iw4Jlud+LECcqUKYOLi4tp4hNCZNnBgwepU6cOKSkprFy5kg4dOhh/k7t34fnn4cwZbW+qB6Xjhc2SCawi+zHB8MyjKlWqJImIENlEzZo1GTVqFAB9+vTh77//Nv4mefJoPaYAixbBli0mjFBkZ5KMCMv49df0xc2yMDzzzz//8PLLL/P777+bODghhCmMHDmSGjVqcOPGDQZntW5I48bw74Z8dOum9aiKHE+SEWF+d+9qv1RAG5559dUs3aZv375s27aNHj16oNfrTRigEMIUnJyciIyMpFmzZkyaNCnrN/rkE217iHPn4N/eFpGzyZwRYX4ffaRVWvT2hmPHIAv/D7/66ivat2+Pvb09v//+O7Vq1TJDoEKIbOOnn6B5c22FzY4d0LChtSMSWSBzRkT28McfMGOGdrxgQZYSkZiYGHr37g1o3cCSiAhhOw4ePJi11TXNmml71igFH34IiYmmD05kG5KMCPO5f18rbqbXQ4cO8OabRt9CKUXv3r25fv06zz//PKNHjzZDoEIIcxg0aBC+vr4sX748azeYMQO8vODUKRg3zrTBiWxFkhFhPjNnwqFDULAghIZm6RarV6/m66+/xsHBgcjISJycnEwboxDCbAoXLgxAv379uHr1qvE3KFAAFi7UjqdNg/37TRidyE4kGRHm8ddfMHasdjxzJhQtmqXbfPvttwCMHj2amjVrmiY2IYRFDB8+nFq1anH79m26d++eteGa1q3hvfe0HtZu3SAlxfSBCquTZESYnlJawaJ79+D116FLlyzfasWKFXz55ZeMHDnShAEKISzBwcGBpUuX4uTkxA8//MDnn3+etRvNnq31khw6BHPmmDJEkU1IMiJMLzwctm7VChiFhWmz4bNIp9Px3nvv4ejoaLr4hBAW4+Pjw7h/53sMGDCAy5cvG38TT0+YPl07Dg7WlvyKHEWSEWFaV6/C0KHa8YQJULas0beIjo5m4MCBxMXFmTg4IYQ1DB06lDp16hAbG0u3bt2yNlwTEKAVRLt7F3r31npgRY4hyYgwrX79tA2uXngBBgww+nKlFD169GDOnDn4+fmZIUAhhKU9mIBeokSJrP+71um0nlYnJ9i4EVauNG2Qwqqk6JkwnbVr4Z13wMEBDhzQNrwy0hdffEGXLl1wdHTkwIEDVKtWzQyBCiGsITk5+dlXxE2YoA3VFCkCJ05oq/VEtiVFz4RlxcVpvSKgVVzNQiJy9epV+vfvD8DYsWMlEREih3k0Ebl161bWhmuGD4cqVeCff7TfNSJHkGREmMbo0dp8kf/9Dz7+2OjLlVJ0796d27dvU7t2bT6SXzJC5Fjff/89lSpVYvHixcZf7OSk7egLDyfLC5snyYh4dvv3w9y52vGCBeDiYvQtli5dyg8//ICTkxNLly7FwcHBxEEKIbKL06dPExMTw5AhQ7hw4YLxN2jYUNt0E6BHD62MgLBpkoyIZ5Oaqv0yUAo6doTXXjP6FikpKWk7fI4fP54qVaqYOkohRDYyYMAAGjZsSHx8PIGBgVkbrgkJeVgqfvJk0wcpLEqSEfFs5s3TNsPLn1+rtJoFDg4O7Nq1i5EjRzJkyBDTxieEyHbs7e2JiIjA1dWVLVu2EBYWZvxN8ueHTz/VjqdMgagok8YoLEtW04isu3IFKleG+Hht/4gePawdkRDChsyZM4eBAwfi5ubGkSNHKGtsXSKl4K23YN06behm+3awk7+xsxNZTSPMb8AALRGpV0/bM8JIFy9eZM2aNWYITAhhC/r160ejRo24c+cOgYGB6PV6426g02m9s+7usGsXRESYJ1BhdpKMiKz54Qf4+muwt9cKERn514hSiq5du9KuXTvGjx9vpiCFENmZnZ0dERER5MmThzJlypCUlGT8TUqWhH/LzfPRR3D9ummDFBYhyYgw3p070KePdjxoUJZqiixevJjNmzfj4uJChw4dTBygEMJWPPfcc5w8eZIlS5bg6uqatZv06wfVqsHNmzBihGkDFBYhyYgw3vjxcOEClCoFY8caffmFCxcYPHgwAJMnT6ZixYomDlAIYUu8vb3TjpVSxg/XODpqZQVAqz2ye7cJoxOWIMmIMM6RIw9XzcydC25uRl2ulCIwMJCEhAQaNmyYVnFVCCEuX75My5YtmTdvnvEXN2wIH36oHffqBSkppg1OmJUkI8Jwer1WaCglBdq2hVatjL5FWFgYW7ZswdXVlYiICOzt7c0QqBDCFq1fv56NGzcyfPhwTp8+bfwNPvlE26vm8OGHy36FTZBkRBguIkLr/nR3h9BQoy+/efMmw4YNA2DKlCmUL1/e1BEKIWxY9+7defXVV0lMTCQgIMD44ZrChWHqVO04OBguXzZ9kMIsspSMzJ8/n7Jly+Li4kKtWrXYsWNHpm3Xrl3L66+/TpEiRciXLx/169fnp59+ynLAwkpu3tQ2qAJt5vojY7yGKliwIGvWrKFjx4707dvXxAEKIWydnZ0d4eHhuLu7s3PnTkKz8EcPAQFQvz4kJMC/c9NE9md0MrJq1SoGDhzIqFGjOHjwII0aNaJFixZcvHgxw/bbt2/n9ddfZ8OGDRw4cIBXXnmFVq1acfDgwWcOXljQqFFw4wZUrfpwd94saNasGcuXL8dOChMJITJQpkwZpk+fDkBQUBCnTp0y7gZ2dloRRnt7+OorkD9+bYLRFVjr1q2Lr68vCx7MXAYqV65MmzZtCAkJMegePj4+dOjQgeDg4AyfT0pKSrfePC4ujpIlS0oFVmvZvx/q1NGqHW7bBi+9ZNTlFy5cQKfTUapUKTMFKITISZRSNG3alJ9//pn69euzY8cO4+eXDR4Ms2ZpO4kfOZKlDTzFszNLBdbk5GQOHDhA06ZN051v2rQpuw1cSqXX64mPj6dgwYKZtgkJCcHDwyPtUbJkSWPCFKak12s1RZSCTp2MTkT0ej1dunShatWqbNiwwUxBCiFyEp1OR3h4OHnz5uX69etcvXrV+JuMGwfFi8Pp09rEVpGtGZWMXL9+ndTUVDw9PdOd9/T05Nq1awbdY8aMGdy5c4f27dtn2iYoKIjY2Ni0x6VLl4wJU5jSkiWwdy/kzQvTphl9+dy5c9m+fTt6vZ7KlSubIUAhRE5UqlQpfvrpJw4dOpS1P0jz5oXZs7XjkBAtKRHZVpYG7nU6XbqvlVKPncvIl19+ydixY1m1ahVFixbNtJ2zszP58uVL9xBWcOPGw2qG48dr23Ub4fTp04z49/pp06YZvwmWECJXq1+/Pnny5Mn6Dd59F5o1g6Qk6NtX6+EV2ZJRyUjhwoWxt7d/rBckJibmsd6S/1q1ahWBgYGsXr2a1157zfhIheU9mLRarZr2D9kIer2egIAAEhMTefXVV+khO/oKIbIoNTWVWbNmMWfOHOMu1Om04oxOTtpE1u+/N0+A4pkZlYw4OTlRq1YtNm/enO785s2badCgQabXffnll/j7+7NixQreeOONrEUqLGv/fli0SDueOxccHIy6PDQ0lJ07d+Lu7k54eLisnhFCZNn69esZPHgww4cPJyoqyriL//c/GDpUOx40CBITTR+geHbKSCtXrlSOjo4qPDxcRUVFqYEDByo3Nzd1/vx5pZRSI0aMUJ07d05rv2LFCuXg4KDmzZunoqOj0x63b982+DVjY2MVoGJjY40NV2RFaqpSL7ygFCj1wQdGX37q1Cnl4uKiALVw4UIzBCiEyE30er1q2bKlAtQLL7yg7t+/b9wNEhKU8vbWfqeNG2eeIEWGDP38NjoZUUqpefPmqdKlSysnJyfl6+urtm3blvacn5+faty4cdrXjRs3VsBjDz8/P4NfT5IRC1u0SPtHmy+fUtHRRl9+9+5dNWzYMNWsWTOl1+vNEKAQIre5fPmy8vDwUICaPHmy8TdYtUr7vebiotS5cyaPT2TM0M9vo+uMWIOh65SFCdy4ARUqaBVXZ8+GAQOyfKvU1FTZe0YIYTKff/45fn5+ODk5ceDAAapWrWr4xUpBkybw66/a3lpr15ovUJHGLHVGRC4wcqSWiFSrptUXMUJMTAypqalpX0siIoQwpc6dO9OqVSuSk5Px9/fn/v37hl+s02mb59nbwzffwKZN5gtUGE2SEfHQvn3w2Wfa8bx5Rk1aTU1NpXXr1jRq1IizZ8+aKUAhRG6m0+kICwujQIEC/Pnnn/z222/G3cDH5+F2Fv37Q3Ky6YMUWSLJiNA8Wmm1c2do1Mioy2fMmMHvv/9OVFQUTk5OZgpSCJHbeXl5sWzZMvbv308jI39PATB2LBQtCidPgrFLhYXZyJwRoVmyBAIDtaqFp05BsWIGXxoVFUXNmjVJTk5myZIlBAQEmDFQIYR4RpGR2u6+7u5aUlK8uLUjyrFkzogwXGwsBAVpx2PGGJWIpKSk4O/vT3JyMi1btsTf3988MQohRAYOHjzI4sWLjbuoSxeoVw8SEuCjj8wTmDCKJCMCJkyAmBioWPHheKqBpk2bxr59+/Dw8GDRokUGbQsghBCmcOzYMerUqUOvXr04dOiQ4Rfa2WnFHHU6WL4ctm83W4zCMJKM5HaPjpvOmqWVTTbQ0aNHGTt2LKBVXC1RooQZAhRCiIxVqVKF1q1bk5KSgp+fH8nGTEitVQu6ddOO+/WDlBTzBCkMIslIbjd4sPaP8I03oEULoy51cHCgWrVqvPnmm3Tu3NlMAQohRMZ0Oh0LFiygcOHCHD58mEmTJhl3g0mToEABOHwYFi40T5DCIDKBNTfbsEFLQhwd4dgxKF/e6Fvcv3+fO3fukD9/ftPHJ4QQBli9ejUdOnTA3t6evXv34uvra/jFCxZA796QP782eb9IEbPFmRvJBFbxZMnJ2qZRAAMHGpWIPFpoyNHRURIRIYRVtW/fnnbt2pGamoqfnx9JSUmGX9y9O9SoAbdvw8cfmytE8RSSjORWoaHaXwGenjB6tMGX3b9/nwYNGjB69Gjj/sELIYQZzZs3jyJFinD06FEiIyMNv9De/uG8uc8+04ZshMVJMpIbXbsG48drx1OmgBFDX5MnT2b//v0sWLCA27dvmyc+IYQwUpEiRVi0aBFz5syh24OJqYZ66SVo104r/jhwoFb8UViUzBnJjT78ECIioE4d2LNHW+ZmgEOHDvHCCy+QkpLCl19+yXvvvWfmQIUQwkLOn4dKlSApSdtEr21ba0eUI8icEZGxffu0RAS0oRoDE5Hk5GT8/PxISUnh7bffpkOHDmYMUgghns2dO3dYt26d4ReUKQNDh2rHQ4bAvXtmiUtkTJKR3ESv1zaHAq0CYd26Bl86adIkDh8+TOHChVmwYIEUNxNCZFu3bt2ievXqtGnThr179xp+4YgR4OUF587B7Nlmi088TpKR3GT5cvjtN20/hilTDL7sjz/+SFu/P2/ePIoWLWquCIUQ4pkVKFCAunXrotfr8fPz456hvRzu7vDJJ9rxpEkQHW2+IEU6kozkFvHxMHy4djx6tJb9G+jMmTO4uLjQrl072rdvb6YAhRDCdEJDQylWrBgnTpxgzJgxhl/YqZM2ny4hAUaNMl+AIh2ZwJpbBAVpvSH/+x8cPQrOzkZdfvbsWfLmzUsRKQgkhLAR33//PW+99RZ2dnbs2rWLevXqGXbhb79B/fra8b59ULu2+YLM4WQCq3jo7FmYOVM7njnT6EQEoFy5cpKICCFsSuvWrencuTN6vR5/f38SExMNu7BePa2HBGSpr4VIMpIbDB+uVVx9/XV4802DLklKSqJVq1b8+uuvZg5OCCHMZ86cOXh5eXHy5EkmTJhg+IVTpkCePLBrF6xaZb4ABSDJSM63YwesWaMt4Z0xQ9sy2wDjxo1j/fr1dOzY0fC/JoQQIpspUKAAixYt4s0336Rv376GX+jtra2uARg2DO7eNU+AApA5IzmbXq8t392/X9t/ISzMoMv27t1L/fr10ev1rF27lrZS/EcIYeOUUsaXJEhM1AqhXbwIY8eCMRNhBSBzRgRoS3n374e8eR+Wf3+Ke/fu4efnh16vp2PHjpKICCFyhEcTkaioKMMucnWFqVO1408+gUuXzBCZAElGcq47d7QVNKAtT/P0NOiyMWPGcOLECYoVK0ZoaKgZAxRCCMtKTU3F39+fqlWrsmPHDsMuat8eXnxR6yV5MGwjTE6SkZxq+nS4ckUrcTxggEGX7Nmzh+nTpwMQFhZGoUKFzBigEEJYlr29PQ4ODiilCAgI4M6dO0+/SKfTdvXV6WDFCm0/L2FykozkRFeuPOxanDoVXFwMuuyrr75Cr9fTuXNnWrdubcYAhRDCOmbMmIG3tzdnzpwh6EHv8dP4+kJAgHY8eLAs9TUDmcCaE/n5weefQ8OG2moaAydtKaVYtWoVzZo1o0CBAmYOUgghrGPTpk00a9YMgK1bt9K4ceOnX3T1KpQvr62qWbkSZLNQg8gE1txq/34tEQGYNcvgRAS0CV7vvfeeJCJCiBytadOmdOvWDYCAgAASEhKeflHx4g+31BgxQnb1NTFJRnISpbQuRIAPPoAXXnjqJXfv3mXo0KHcuHHDzMEJIUT2MX36dEqVKsW5c+cYYejE1CFDtKTk/HmQCf4mJclITrJ2rTYs4+oKISEGXTJq1ChmzJhB8+bNsYEROyGEMIl8+fIRHh6Ol5dX2pDNU7m5weTJ2vGkSfDPP+YLMJeROSM5RVISVKmi7UMTHAzjxj31kh07dtC4cWOUUmzYsIEWLVpYIFAhhMg+EhMTcXV1NfwCvV7bOO/gQejdG+bNM19wOYDMGcltQkO1RMTLSytd/BR37twhICAApRSBgYGSiAghcqVHE5H4+PinX/Bgaw3QqlofP26myHIXSUZygpgYmDhRO548Gdzdn3pJUFAQZ86cwdvbmxkP/mEJIUQutXz5ckqXLs3PP//89MavvAKtW0NqqkF//Imnk2QkJxgzBuLitLXwXbo8tfnWrVv59NNPAQgPD8fDw8PcEQohRLa2Z88ebt26RWBgIHFxcU+/YOpUcHCAH34AQxIY8USSjNi6Y8dg0SLteOZMrQvxKYKDgwHo3r07TZs2NWd0QghhE6ZMmULZsmW5ePEiQ4cOffoFFStCr17a8ZAhWi+JyDJJRmzdkCHahKq2bcGQwj3Ad999x+DBg5k2bZqZgxNCCNvg7u5OREQEAJ999hmbNm16+kVjxkD+/HD4MCxdat4AczhZTWPLNm2CZs3A0RGiouB//7N2REIIYdMGDBhAaGgo3t7eHD169OnD2DNmwNChUKwY/PWXQXP2chNZTZPTPTpxqk+fpyYi8fHxrFixQmqJCCHEE0yePJnnnnuOy5cvM/hBEckn6dsXypWDa9dAepuzTJIRW/XFF1rXoIcHjB791OYfffQRnTp1onfv3hYITgghbJObmxsRERHY29vj7u6OXq9/8gXOzvDJJ9rxtGlw+bL5g8yBJBmxRXfvwqhR2vGoUVCo0BObb968mYULFwLQvn17c0cnhBA2rVGjRpw6dYo5c+ZgZ8CiAN55R9uYNDHRoD8OxeMkGbFFs2ZpO0iWLg39+j2xaVxcHIGBgQD06dOHV155xRIRCiGETStXrlza8VOHt3U6bTUjaBNZ//jDjJHlTJKM2JqYmIddgpMng4vLE5sPHTqUS5cuUa5cOaZMmWKBAIUQIuc4e/Ysr7zyCuvXr39ywzp14P33teMhQ7SNS4XBJBmxNePGQXw81KoF7733xKY//fQTn332GQARERG4yyxvIYQwyqJFi9i2bRvdu3fn1q1bT24cEqLNIdm6Fdats0h8OYUkI7bkxAltLwSA6dOfWOAsOTmZ7t27A9C/f39eeuklS0QohBA5ypgxY6hYsSLR0dEMGDDgyY1Ll4aBA7XjESMgJcXs8eUUkozYkhEjtCW9b74JL7/8xKZOTk4sW7aM5s2bM/nBltdCCCGM4urqSmRkJHZ2dnzxxRd8//33T75gxAgoWFDbQO/fImri6aToma3YsQNeegns7eHIEahc2doRCSFErjF8+HCmTp1KsWLFOHr0KIWetIpx9mwYNEgrhHb6NLi5WSzO7EaKnuUkSmkV/gC6dn1iInL79m3++usvCwUmhBC5w7hx46hcuTLXrl2jf//+T27cu/fDQmgPVtmIJ5JkxBasXg1792rZ9dixT2w6cOBAqlevzrJlyywTmxBC5AIuLi5pwzVHjhx58s6+Tk7aakfQdvf9+2/LBGnDJBnJ7pKStDFIgI8+0rr9MrFu3TqWLl3KvXv30q2RF0II8ezq1KnDxo0b2b9//9OnDLRrBy+8AAkJ2ipI8USSjGR38+bB+fPg5aWtXc/EzZs36dGjBwBDhgyhQYMGFgpQCCFyj9dffx0nJ6enN7Sz03pFABYtgpMnzRuYjZNkJDu7dQsmTtSOJ0x44iSoAQMGEB0dTcWKFRk/fryFAhRCiNzp/v37TJgwgbVr12be6OWXtdWPqakQFGSx2GyRJCPZ2aRJWkJStSr4+2fa7LvvvmPZsmXY2dkRGRmJq6ur5WIUQohcKCwsjODgYHr06EFMTEzmDadM0XpJvvkGdu2yXIA2RpKR7OrcOfj0U+146lRtSW8Gbty4kTY8M2zYMOrVq2epCIUQItfq3r071apV4/r16/Tp0yfzhj4+8OGH2vGwYVImPhOSjGRXI0dCcjI0aQLNm2faLG/evPTs2ZPq1asz9ikrbYQQQpiGk5MTkZGRODg4sGbNGlavXp1543HjwNUV9uzRekjEY6ToWXa0b5+26ZJOp+3+WKPGUy+5f/8+jo6O5o9NCCFEmrFjxzJu3DgKFSrEsWPH8PT0zLjhxx9rcwDLl4djxyCX/L6Wome2SimtKw+gc+dME5G4uDiSk5PTvpZERAghLG/kyJFUr16dGzdu0KtXLzL9+/6jj6BIEfjrL/h3A1PxUJaSkfnz51O2bFlcXFyoVasWO3bsyLRtdHQ0HTt2pGLFitjZ2THwwSZCImM//gjbtmk7P06YkGmz7t27U6dOHY4ePWrB4IQQQjzKycmJpUuX4uDgwI8//ph5Bey8eR8WrRw7Vtt9XaQxOhlZtWoVAwcOZNSoURw8eJBGjRrRokULLl68mGH7pKQkihQpwqhRo6hevfozB5yjpaY+LHDWvz+UKpVhs6+++opVq1Zx9OhRkpKSLBigEEKI/6pevTrh4eEcOnSIChUqZN6wWzdtmOaff2DaNMsFaAOMnjNSt25dfH19WbBgQdq5ypUr06ZNG0JCQp547csvv0yNGjWYPXu2UUHmmjkjS5dqS3jz54czZ7SdH/8jJiYGHx8frl+/zujRo5nwhN4TIYQQ2czatfDOO5AnjzZkU7y4tSMyK7PMGUlOTubAgQM0bdo03fmmTZuye/furEWagaSkJOLi4tI9crx797QJTqAVx8kgEVFK0bt3b65fv87zzz/Pxw/aCyGEyDZ2797Nd999l/GTbdtC/fpw9y6MGWPZwLIxo5KR69evk5qa+thsYU9PT65du2ayoEJCQvDw8Eh7lCxZ0mT3zrbmzYNLl6BECejXL8Mmq1ev5uuvv8bBwYHIyEjDShILIYSwmC1btvDiiy/i7+/P1atXH2+g0z0colmyRFtZI7I2gVWn06X7Win12LlnERQURGxsbNrj0qVLJrt3tnT7tlZtFWD8eG09+n/8/fffaYV1Ro0aRc2aNS0YoBBCCEM0btwYX19fbt++TY8ePTJeXdOwodZDotc/nCeYyxmVjBQuXBh7e/vHekFiYmIyX1udBc7OzuTLly/dI0f75BOt7HuVKtClS4ZN7t27R+XKlalRowYjR460cIBCCCEM4eDgwNKlS3FycmL9+vV8/vnnGTcMCdEqa69fD1u3WjTG7MioZMTJyYlatWqxefPmdOc3b94su8Rm1ZUr8GBCb0gIODhk2Kx06dJs3bqVjRs3yvCMEEJkYz4+PowbNw7QNjG9cuXK440qVoTu3bXj4cNzfZl4o4dpBg8ezOLFi1myZAnHjx9n0KBBXLx4kZ49ewLaEEuX//x1f+jQIQ4dOkRCQgL//PMPhw4dIioqyjTfga0bO1abvNqwIbRq9djTqampacf29vYm7YESQghhHkOHDqVOnTrExsbSrVu3jIdrgoO1VTV79+b6MvFZKgc/f/58pk6dSnR0NFWrVmXWrFm89NJLAPj7+3P+/Hm2PtLtlNF8ktKlS3P+/HmDXi/HLu09flzbkVev13Zz/E/vklKKt99+mzJlyjBp0iTy5MljpUCFEEIY6/jx49SsWZOkpCR++OEHWrZs+XijB2XiK1aEo0cz7R23VYZ+fsveNNbUti18+y20aZNhVvzFF1/QpUsXHB0d+eOPP6hatarFQxRCCJF1c+fOJU+ePAQEBGS80CMuDsqVgxs3YNEirTBaDiLJSHa3axe8+CLY2WnZcOXK6Z6+evUqPj4+3L59m0mTJsmkVSGEyKlmz4ZBg7QCaH/9pQ3d5BCyUV52ppQ2YQngww8fS0SUUnTv3p3bt29Tu3ZtPvroIysEKYQQwpRiY2PZtm3b40/06gWlS8PVq/Dpp5YPLBuQZMQa1q3TekZcXB5unPSIpUuX8sMPP+Dk5ERkZCQOOWwMUQghcptz585RtWpVWrVqxYULF9I/6eys1ZgCbVXlzZuWD9DKJBmxtJQUrdw7wMCBWsXVR1y+fDltZ+Px48fj4+Nj2fiEEEKYXKlSpShdujTx8fF07dr18dU1nTpBtWoQGwtTplgnSCuSZMTSPv8coqKgQIGHQzWPOHHiBAB16tRhyJAhlo5OCCGEGdjb27NkyRJcXV35+eefWbRo0X8baL0ioA3VXL5s+SCtSJIRS0pM1NaVA4wape3O+x+vvfYax44dY8WKFTI8I4QQOUiFChWYPHkyAEOGDOHcuXPpG7RsCY0aabWnMhjCz8kkGbGkTz/VKq6WLAn/7jOTkRIlSvDcc89ZMDAhhBCW0L9/fxo1asSdO3cIDAxEr9c/fFKn07YHAYiI0HrRcwlJRizl5s2HXXATJmiTV/+llMLf358ffvjBSsEJIYSwBDs7O5YsWUKePHn49ddfWbx4cfoG9etrtaf0eq0HPZeQZMRSpkzRduetVg0++CDdU4sXL2bp0qW8++67/P3339aJTwghhEX873//Y8qUKXTo0IG333778QaTJ2s1qL79FvbssXh81iBFzyzh4kWoUAGSkuCHH7RxwX9duHCBqlWrkpCQwIwZMxg8eLAVAxVCCGEJSqmMK7I+0LUrhIdrc0i2bdOGcGyQFD3LTsaM0RKRxo2hRYu000opAgMDSUhIoGHDhgwYMMCKQQohhLCURxMRpRSnT59O32DsWG04f8cO2LDBssFZgSQj5nbkCCxdqh1/8km67DYsLIwtW7bg6upKREQE9vb2VgpSCCGENdy5c4d27drx/PPPp09IvL2hXz/tOCgIHtnBPSeSZMTcRo7Uyr+/8w7UrZt2+ty5cwwdOhSAkJAQypcvb60IhRBCWImrqyu3bt0iMTGRgICA9KtrRozQSkAcOQIrVlgtRkuQZMScdu2C9eu1YjaTJqV76quvvuLOnTs0atSIfg+yXyGEELmKnZ0d4eHhuLu7s3PnTkJDQx8+WbCglpAAfPyxNtyfQ0kyYi5KPfwhCgiAihXTPf3RRx+xdu1aIiIisLOT/w1CCJFblSlThunTpwMwcuRITp069fDJfv203XwvXIAFC6wUofnJahpz2bAB3nhD2wDp9Glt/E8IIYTIgFKKpk2b8vPPP9OgQQO2b9/+cB7hZ59B9+5QuDCcOQO28jmIrKaxLr1emysC0LdvWiKi1+sJDg7m2rVrVgxOCCFEdqPT6QgPDydv3rzs3r2b2bNnP3zyQe/69evwbw9KTiPJiDmsXg1//qllrw926AXmzZvHhAkTqFevHsnJyVYMUAghRHZTqlQpZs6cSalSpahRo8bDJxwctEJoADNnQg78g1aSEVO7fx9Gj9aOhw6FQoUAOH36NMP/3aX3o48+wsnJyVoRCiGEyKYCAwM5duwYTZo0Sf9E27baisw7d7QtRXIYSUZMbckSbUyvSBEYOBDQhmcCAgJITEzk1VdfpWfPntaNUQghRLak0+lwd3dP+/ru3bsPnni4id6iRdpcxBxEkhFTunsXxo3TjkePhrx5AQgNDWXnzp24u7sTHh4uq2eEEEI8kVKKsLAwSpcuTdSD3XsfVPFOSdGW+uYg8qloSnPnQnQ0lC4NPXoAcOrUKUb+O5l1+vTplClTxooBCiGEsBXff/89169fx9/fn5SUFO3kg93fV66EQ4esFpupSTJiKrdvazvzgtY74uwMwNixY0lMTOS1116je/fu1otPCCGEzdDpdCxatAgPDw/27duXVoeE6tXh/fe141GjrBegiUkyYirTpsGtW1ClCnzwQdrpRYsWMXDgQBYvXvzkHRqFEEKIR5QoUYI5c+YAMGbMGI4ePao9MX68tsJmwwZtI70cQIqemcK1a/Dcc9qckW++gTZtrB2REEKIHEApRevWrVm/fj21atViz549ODo6Qs+eEBYGDRtqCUk2/WNXip5Z0sSJWiJSty689RapqamsXLky/YZHQgghhJF0Oh1hYWEUKFCAAwcOMHXqVO2J4GBwcdH2QNuwwbpBmoAkI8/q7FltmRVoRWl0OmbMmMH777/Pu+++a93YhBBC2LzixYsTGhqKnZ0dSQ82yyteHPr3145HjtQqf9swSUae1ZgxWqGz11+HV18lKiqK4OBgAFq1amXl4IQQQuQEnTp14tixY4wfP/7hyeHDwcMDDh/WVtfYMElGnsWRI7B8uXY8eTIpKSn4+/uTlJREy5Yt8ff3t2p4QgghcgadTkelSpXSvlZKQcGCMGyYdiI4WPvD2EZJMvIsRo0CpeDdd6F2baZPn86+ffvw8PBg0aJFsnpGCCGEyUVFRdGoUSMOHToEAwaAp6dW+Ts83NqhZZkkI1m1ezesWwd2djBhAkePHmXMmDGAVnG1RIkSVg5QCCFETjRhwgR27dqFv78/yU5OD/dDGz9eW0xhgyQZyQqlHu7GGxCAqliRbt26kZyczJtvvknnzp2tG58QQogca/bs2RQqVIg///yTSZMmQffuUKaMVgH800+tHV6WSDKSFT/9BNu3a1VWx4xBp9Px6aef0qhRI8LCwmR4RgghhNl4enoyf/58ACZPnswfR48+3Bftk0+0iuA2RpIRY+n12jIqgD59oGRJAGrXrs327dspXry4FYMTQgiRG7Rv35533303beFEcrt24OOjVQKfNs3a4RlNkhFjffUVHDwIefNyf+hQjh8/bu2IhBBC5ELz58+nSJEiHDlyhAmTJ8OkSdoTs2drlcFtiCQjxrh//+G2zUOGEPLZZ1SvXp3Q0FDrxiWEECLXKVKkSNpwzS+//EJKy5ZQr542iXXiRCtHZxxJRowREQF//QWFC3P4tdeYMGEC9+/fp0iRItaOTAghRC707rvvsnbtWrZt24aDoyOEhGhPLFqkVQi3EZKMGCoxMW2CUMrw4XTp04eUlBTatm3Le++9Z+XghBBC5FZt27bFwcFB++Lll6FpU60n/99yE7ZAkhFDzZ0LV69CqVKE3LrFn3/+SaFChViwYIGsnhFCCGF1SUlJBAUFcaRjR+3E8uVapXAbIMmIIW7fTuv6Oh8QwPh/d02cP38+np6eVgxMCCGE0AQHBzNlyhTaT5lCatu2Wk2sBwXRsjlJRgwxfTrcuoWqVIm2X39NSkoK7777Lu3bt7d2ZEIIIQQAH330EcWKFePEiRPMLFgQ7O3h+++1iuHZnCQjT/P339oyKUA/YQKd/PwoWbJk2gxmIYQQIjsoVKgQYWFhAIyIiCCmZUvtiZEjtV6SbEySkaeZNAnu3IEXXsD+nXcYOnQop06dkhU0Qgghsp3WrVvTuXNn9Ho97Y8dQzk7w7ZtsGmTtUN7IklGnuTcOVi4EICksWPh34mqLi4uVgxKCCGEyNycOXPw8vJi29mzbK9aVTsZFKRVEM+mJBl5krFj4f59TpcpQ/XBg/n999+tHZEQQgjxRAUKFGDRokUABJw6hd7dXascvmaNlSPLnCQjmTl6FL74AoBOFy5w8uRJrl69auWghBBCiKd78803mTlzJr8eOYLd0KHayY8/hpQU6waWCUlGMjN6NCjFprx52asUHTt2pG3bttaOSgghhDDIoEGDKF26NAweDIULw6lTEBlp7bAyJMlIRvbsge++Q6/TMSA+nmLFisn+M0IIIWxT3rycatdOOx47Vqsons1IMvJfSmkTfYClSnECCAsLo1ChQtaNSwghhMiC5cuX8/yCBVx1cIArVyAblqaQZOS/Nm2CbdtI1ukYA3Tu3JnWrVtbOyohhBAiS958802KeHsz+sF8kZAQiI21blD/IcnIo/R6rTgMsL5kSVK8vJgzZ46VgxJCCCGyzsPDg8WLF/M5cBzgxg2YMcPKUaUnycijvv4a/vgD3N1pu28fv/32GwUKFLB2VEIIIcQzadasGR9268aDnWrUzJkQE2PVmB4lycgDKSmoBxsKDRmCrmhRSpUqZd2YhBBCCBOZPn06+0uWZB+gu3MHJk+2dkhpJBl5IDIS3alTxDs7ExsYaO1ohBBCCJPKly8f4UuWMPLfr/Xz58OFC1aN6QFJRgASE0n6d65IcFISvx8/buWAhBBCCNN77bXXqD18OH/7+GB3/7621DcbkGQESJo9G+d//uEikOjnR9OmTa0dkhBCCGEWIVOm4Bkern3x+ecQFWXdgMhiMjJ//nzKli2Li4sLtWrVYseOHU9sv23bNmrVqoWLiwvlypVj4b+bz2ULsbGkjB8PQGiBAnwiq2eEEELkdHXrQps2oNdzu18/a0djfDKyatUqBg4cyKhRozh48CCNGjWiRYsWXLx4McP2586do2XLljRq1IiDBw8ycuRI+vfvz9dff/3MwZvChf79cbt3j+NAs+XL8fDwsHZIQgghhNlFdeyIHsj/yy8k/PqrVWPRKaWUMRfUrVsXX19fFixYkHaucuXKtGnThpCQkMfaDx8+nO+//57jj8zD6NmzJ3/++Sd79uwx6DXj4uLw8PAgNjaWfPnyGRPuE905dw6eew43pVj42mv03LzZZPcWQgghsrOEhAR+8vLinYQEokqUoMrlyyZ/DUM/v43qGUlOTubAgQOPzalo2rQpu3fvzvCaPXv2PNa+WbNm7N+/n/v372d4TVJSEnFxceke5pAwciRuSvGnkxMds/HWykIIIYSpubu7U+Kzz0gGqly5QvJPP1ktFqOSkevXr5Oamoqnp2e6856enly7di3Da65du5Zh+5SUFK5fv57hNSEhIXh4eKQ9SpYsaUyYhlEKz7x5UTodeWbPJp8MzwghhMhl6r33Hn+/9RYqf36cbtywWhxZmsCq0+nSfa2Ueuzc09pndP6BoKAgYmNj0x6XLl3KSphPptPBokXo/vqL8r16mf7+QgghhA0ouWQJurNnoWNHq8XgYEzjwoULY29v/1gvSExMzGO9Hw8UK1Ysw/YODg6Z7oTr7OyMs7OzMaFl3XPPWeZ1hBBCiOyoYEFrR2Bcz4iTkxO1atVi838mem7evJkGDRpkeE39+vUfa79p0yZq166No6OjkeEKIYQQIqcxephm8ODBLF68mCVLlnD8+HEGDRrExYsX6dmzJ6ANsXTp0iWtfc+ePblw4QKDBw/m+PHjLFmyhPDwcIYOHWq670IIIYQQNsuoYRqADh06cOPGDcaPH090dDRVq1Zlw4YNlC5dGoDo6Oh0NUfKli3Lhg0bGDRoEPPmzaN48eKEhobyzjvvmO67EEIIIYTNMrrOiDWYq86IEEIIIczHLHVGhBBCCCFMTZIRIYQQQliVJCNCCCGEsCpJRoQQQghhVZKMCCGEEMKqJBkRQgghhFVJMiKEEEIIq5JkRAghhBBWJcmIEEIIIazK6HLw1vCgSGxcXJyVIxFCCCGEoR58bj+t2LtNJCPx8fEAlCxZ0sqRCCGEEMJY8fHxeHh4ZPq8TexNo9fruXr1Knnz5kWn05nsvnFxcZQsWZJLly7JnjdmJu+1Zcj7bBnyPluGvM+WYc73WSlFfHw8xYsXx84u85khNtEzYmdnh7e3t9nuny9fPvlBtxB5ry1D3mfLkPfZMuR9tgxzvc9P6hF5QCawCiGEEMKqJBkRQgghhFXl6mTE2dmZMWPG4OzsbO1Qcjx5ry1D3mfLkPfZMuR9tozs8D7bxARWIYQQQuRcubpnRAghhBDWJ8mIEEIIIaxKkhEhhBBCWJUkI0IIIYSwqhyfjMyfP5+yZcvi4uJCrVq12LFjxxPbb9u2jVq1auHi4kK5cuVYuHChhSK1bca8z2vXruX111+nSJEi5MuXj/r16/PTTz9ZMFrbZuzP9AO7du3CwcGBGjVqmDfAHMLY9zkpKYlRo0ZRunRpnJ2dee6551iyZImForVdxr7Py5cvp3r16uTJkwcvLy8CAgK4ceOGhaK1Tdu3b6dVq1YUL14cnU7Ht99++9RrLP5ZqHKwlStXKkdHR/XZZ5+pqKgoNWDAAOXm5qYuXLiQYfuzZ8+qPHnyqAEDBqioqCj12WefKUdHR7VmzRoLR25bjH2fBwwYoD755BO1d+9ederUKRUUFKQcHR3VH3/8YeHIbY+x7/UDt2/fVuXKlVNNmzZV1atXt0ywNiwr73Pr1q1V3bp11ebNm9W5c+fU77//rnbt2mXBqG2Pse/zjh07lJ2dnZozZ446e/as2rFjh/Lx8VFt2rSxcOS2ZcOGDWrUqFHq66+/VoD65ptvntjeGp+FOToZqVOnjurZs2e6c5UqVVIjRozIsP1HH32kKlWqlO5cjx49VL169cwWY05g7PuckSpVqqhx48aZOrQcJ6vvdYcOHdTo0aPVmDFjJBkxgLHv848//qg8PDzUjRs3LBFejmHs+zxt2jRVrly5dOdCQ0OVt7e32WLMaQxJRqzxWZhjh2mSk5M5cOAATZs2TXe+adOm7N69O8Nr9uzZ81j7Zs2asX//fu7fv2+2WG1ZVt7n/9Lr9cTHx1OwYEFzhJhjZPW9joiI4MyZM4wZM8bcIeYIWXmfv//+e2rXrs3UqVMpUaIEFSpUYOjQoSQmJloiZJuUlfe5QYMGXL58mQ0bNqCU4u+//2bNmjW88cYblgg517DGZ6FNbJSXFdevXyc1NRVPT8905z09Pbl27VqG11y7di3D9ikpKVy/fh0vLy+zxWursvI+/9eMGTO4c+cO7du3N0eIOUZW3uu//vqLESNGsGPHDhwccuw/d5PKyvt89uxZdu7ciYuLC9988w3Xr1+nd+/e3Lx5U+aNZCIr73ODBg1Yvnw5HTp04N69e6SkpNC6dWs+/fRTS4Sca1jjszDH9ow8oNPp0n2tlHrs3NPaZ3RepGfs+/zAl19+ydixY1m1ahVFixY1V3g5iqHvdWpqKh07dmTcuHFUqFDBUuHlGMb8TOv1enQ6HcuXL6dOnTq0bNmSmTNnEhkZKb0jT2HM+xwVFUX//v0JDg7mwIEDbNy4kXPnztGzZ09LhJqrWPqzMMf+qVS4cGHs7e0fy7BjYmIey/geKFasWIbtHRwcKFSokNlitWVZeZ8fWLVqFYGBgXz11Ve89tpr5gwzRzD2vY6Pj2f//v0cPHiQvn37AtqHplIKBwcHNm3axKuvvmqR2G1JVn6mvby8KFGiRLqt0itXroxSisuXL1O+fHmzxmyLsvI+h4SE0LBhQ4YNGwbA888/j5ubG40aNWLixInSe20i1vgszLE9I05OTtSqVYvNmzenO79582YaNGiQ4TX169d/rP2mTZuoXbs2jo6OZovVlmXlfQatR8Tf358VK1bIeK+BjH2v8+XLx5EjRzh06FDao2fPnlSsWJFDhw5Rt25dS4VuU7LyM92wYUOuXr1KQkJC2rlTp05hZ2eHt7e3WeO1VVl5n+/evYudXfqPLXt7e+DhX+7i2Vnls9BsU2OzgQfLxsLDw1VUVJQaOHCgcnNzU+fPn1dKKTVixAjVuXPntPYPljMNGjRIRUVFqfDwcFnaawBj3+cVK1YoBwcHNW/ePBUdHZ32uH37trW+BZth7Hv9X7KaxjDGvs/x8fHK29tbvfvuu+rYsWNq27Ztqnz58qpr167W+hZsgrHvc0REhHJwcFDz589XZ86cUTt37lS1a9dWderUsda3YBPi4+PVwYMH1cGDBxWgZs6cqQ4ePJi2hDo7fBbm6GREKaXmzZunSpcurZycnJSvr6/atm1b2nN+fn6qcePG6dpv3bpV1axZUzk5OakyZcqoBQsWWDhi22TM+9y4cWMFPPbw8/OzfOA2yNif6UdJMmI4Y9/n48ePq9dee025uroqb29vNXjwYHX37l0LR217jH2fQ0NDVZUqVZSrq6vy8vJSnTp1UpcvX7Zw1Lbl119/feLv3OzwWahTSvq2hBBCCGE9OXbOiBBCCCFsgyQjQgghhLAqSUaEEEIIYVWSjAghhBDCqiQZEUIIIYRVSTIihBBCCKuSZEQIIYQQViXJiBBCCCGsSpIRIYQQQliVJCNCCCGEsCpJRoQQQghhVZKMCCGs4ssvv8TFxYUrV66knevatSvPP/88sbGxVoxMCGFpslGeEMIqlFLUqFGDRo0aMXfuXMaNG8fixYv57bffKFGihLXDE0JYkIO1AxBC5E46nY5Jkybx7rvvUrx4cebMmcOOHTskEREiF5KeESGEVfn6+nLs2DE2bdpE48aNrR2OEMIKZM6IEMJqfvrpJ06cOEFqaiqenp7WDkcIYSXSMyKEsIo//viDl19+mXnz5rFy5Ury5MnDV199Ze2whBBWIHNGhBAWd/78ed544w1GjBhB586dqVKlCi+88AIHDhygVq1a1g5PCGFh0jMihLComzdv0rBhQ1566SXCwsLSzr/11lskJSWxceNGK0YnhLAGSUaEEEIIYVUygVUIIYQQViXJiBBCCCGsSpIRIYQQQliVJCNCCCGEsCpJRoQQQghhVZKMCCGEEMKqJBkRQgghhFVJMiKEEEIIq5JkRAghhBBWJcmIEEIIIaxKkhEhhBBCWNX/ASVH0MGvNfVRAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvsklEQVR4nO3dd1hW9f/H8efNRhDMPXP9XOHWnJmVhalpNsy+lYq5cM/c2xypOCgH5sCycjcsNW2YlpW5B+6dYoQDHMg8vz+OouQCBQ43vB7XdV8dzjn3fb84Ifeb81k2wzAMRERERCziYHUAERERydpUjIiIiIilVIyIiIiIpVSMiIiIiKVUjIiIiIilVIyIiIiIpVSMiIiIiKWcrA6QHAkJCZw9e5bs2bNjs9msjiMiIiLJYBgGly9fpmDBgjg43Pv+h10UI2fPnqVIkSJWxxAREZGHcPr0aQoXLnzP43ZRjGTPnh0wvxkvLy+L04iIiEhyREZGUqRIkcTP8Xuxi2LkZtOMl5eXihERERE786AuFurAKiIiIpZSMSIiIiKWUjEiIiIilrKLPiMiIllJfHw8sbGxVscQeSBnZ2ccHR0f+XVUjIiIZBCGYXDu3DkuXbpkdRSRZMuRIwf58+d/pHnAVIyIiGQQNwuRvHnzki1bNk3yKBmaYRhcu3aNsLAwAAoUKPDQr6ViREQkA4iPj08sRHLlymV1HJFkcXd3ByAsLIy8efM+dJONOrCKiGQAN/uIZMuWzeIkIilz82f2Ufo5qRgREclA1DQj9iY1fmZVjIiIiIilHqoYmTlzJsWLF8fNzY1q1aqxadOme567YcMGbDbbHY8DBw48dGgRERHJPFJcjCxZsoRevXoxZMgQduzYQb169WjUqBGnTp267/MOHjxIaGho4qNUqVIPHVpERORhHDhwgFq1auHm5kblypWtjiM3pLgYmTJlCu3ataN9+/aUK1eOadOmUaRIEWbNmnXf5+XNm5f8+fMnPlJjkhQRsX/h4eFcu3bN6hhi52w2G1999dUDzxsxYgQeHh4cPHiQH3/8Me2DSbKkqBiJiYlh27Zt+Pr6Jtnv6+vL5s2b7/vcKlWqUKBAARo0aMDPP/9833Ojo6OJjIxM8hCRzGfZsmXkzZuX+vXrk5CQYHUcyQKOHj3KU089RdGiRTWEOgNJUTESHh5OfHw8+fLlS7I/X758nDt37q7PKVCgAHPmzGHFihWsXLmSMmXK0KBBAzZu3HjP9xk/fjze3t6JjyJFiqQkpojYgdDQUDp16kSRIkVYtGgRDg7qT38vV69evefj+vXryT43KioqWeemlGEYTJw4kRIlSuDu7k6lSpVYvnx54rHnn3+eF198EcMwALh06RKPP/44Q4YMAcw5Vtq1a0fx4sVxd3enTJkyTJ8+/Y73mT9/Pj4+Pri6ulKgQAG6desGQLFixQB45ZVXsNlsiV//l81mY9u2bYwePRqbzcbIkSNT/L1KGjFS4MyZMwZgbN68Ocn+999/3yhTpkyyX+ell14ymjZtes/j169fNyIiIhIfp0+fNgAjIiIiJXFFJINKSEgwmjZtagBG1apVjZiYGKsjWS4qKsoICQkxoqKi7jgG3PPRuHHjJOdmy5btnufWr18/ybm5c+e+63kpNXjwYKNs2bLG2rVrjaNHjxoLFiwwXF1djQ0bNhiGYRh///238dhjjxnTpk0zDMMwWrZsaVSvXj3x/3tMTIwxfPhwY8uWLcaxY8eMRYsWGdmyZTOWLFmS+B4zZ8403NzcjGnTphkHDx40tmzZYkydOtUwDMMICwszAGPBggVGaGioERYWdtecoaGhho+Pj9G3b18jNDTUuHz5coq/V7nT/X52IyIikvX5naIZWHPnzo2jo+Mdd0HCwsLuuFtyP7Vq1WLRokX3PO7q6oqrq2tKoomIHVm0aBGrVq3C2dmZ4OBgnJ2dMQyD+fPn4+vrq7uhduTq1atMmTKFn376idq1awNQokQJfv31V4KCgqhfvz6FChUiKCiIVq1a8c8//7Bq1Sp27NiBs7MzYC62NmrUqMTXLF68OJs3b2bp0qW88cYbALz//vv07duXnj17Jp735JNPApAnTx7g1hop95I/f36cnJzw9PS873mS/lJUjLi4uFCtWjXWr1/PK6+8krh//fr1vPzyy8l+nR07djzSHPYiYr/Onj1Ljx49ABg5ciQVKlQAYODAgUycOBFfX1/Wrl2ryb9uc+XKlXse++9ggJvrhNzNf5vCTpw48Ui5AEJCQrh+/TovvPBCkv0xMTFUqVIl8esWLVrw5ZdfMn78eGbNmkXp0qWTnD979mzmzp3LyZMniYqKIiYmJnG0S1hYGGfPnqVBgwaPnFcyphSvTdOnTx9atWpF9erVqV27NnPmzOHUqVP4+/sDMGjQIM6cOcMnn3wCwLRp0yhWrBg+Pj7ExMSwaNEiVqxYwYoVK1L3OxGRDM8wDDp27MilS5eoXr06/fv3Tzz27rvvEhgYyLp165g7dy4dOnSwMGnG4uHhYfm593Kz4/F3331HoUKFkhy7/Q73tWvX2LZtG46Ojhw+fDjJeUuXLqV3794EBARQu3ZtsmfPzqRJk/jzzz+BW+ufSOaV4mKkZcuWnD9/ntGjRxMaGkr58uVZvXo1RYsWBcxOabfPORITE0O/fv04c+YM7u7u+Pj48N1339G4cePU+y5ExC7ExsZSpEgRXF1dWbhwIU5Ot34FlSlThrFjx9K3b1/69u2Lr69v4u8VybieeOIJXF1dOXXqFPXr17/neX379sXBwYE1a9bQuHFjmjRpwnPPPQfApk2bqFOnDl26dEk8/+jRo4nb2bNnp1ixYvz44488++yzd319Z2dn4uPjU+m7knSXNt1ZUldyO8CIiH04derUXffHxcUZdevWNQCjQYMGRkJCQjons879OgFmdEOGDDFy5cplBAcHG0eOHDG2b99ufPTRR0ZwcLBhGIbx7bffGi4uLsa2bdsMwzCMoUOHGoULFzYuXLhgGIZhTJs2zfDy8jLWrl1rHDx40Bg6dKjh5eVlVKpUKfE9goODDTc3N2P69OnGoUOHjG3bthmBgYGJx0uVKmV07tzZCA0NTXzdu6lUqZIxYsSI1L8IWVhqdGDVWDoRSXOGYSQO6wTu2UHV0dGRBQsW4O7uzo8//khQUFB6RZRHMGbMGIYPH8748eMpV64cDRs2ZNWqVRQvXpx///2Xdu3aMXLkSKpWrQqYE48VLFgwsXnf39+fV199lZYtW1KzZk3Onz+f5C4JQJs2bZg2bRozZ87Ex8eHl156KUlzT0BAAOvXr6dIkSJJ+qqIfbAZt/+GyKAiIyPx9vYmIiICLy8vq+OISArNmzePxYsXM3fu3GQ1vUyfPp1evXrh7e3NyZMn8fb2ToeU1rp+/TrHjx9PXPdLxF7c72c3uZ/fujMiImnq1KlT9OnThx9++CHZHde7d+9O27ZtWbNmTZYoRESyuhR3YBURSS7DMGjfvj2RkZHUrl07yRwR9+Pg4MD8+fPTOJ2IZBS6MyIiaebjjz9m/fr1uLm5sWDBgodeIPPAgQMcP348ldOJSEahYkRE0sTJkyfp27cvAOPGjaNMmTIP9TrLly+ncuXK+Pn5aTE9kUxKxYiIpLqEhATeffddrly5Qt26dRNnXH0YVatWxcnJiY0bNzJjxoxUTCkiGYWKERFJdf/++y+hoaG4u7s/UvMMmOucTJw4EYABAwZw5MiR1IopIhmEihERSXX58uVj+/btrFu3jlKlSj3y6/n7+/Pcc88RFRVF27Zt1VwjksmoGBGRNOHm5sZTTz2VKq/l4ODAvHnz8PT05NdffyUwMDBVXldEMgYVIyKSaubMmcMHH3xAXFxcqr92sWLFmDx5MmAuyHn72iUi6WHkyJGJKwnbGz8/P5o3b251jHtSMSIiqeLo0aP07t2bgQMHsnTp0jR5j44dO9KkSROGDRumRfQykFmzZlGxYkW8vLzw8vKidu3arFmz5oHPs9lsfPXVV2kfMJX069ePH3/80eoYD2X69OkEBwdbHeOeNOmZiDyym6Nnrl27xjPPPMObb76ZJu9js9lYtWoVNpstTV5fHk7hwoWZMGEC//d//wfAwoULefnll9mxYwc+Pj5p/v6xsbE4Ozun+ft4enri6emZ5u+TmuLj47HZbBl+JmPdGRGRR/bRRx+xceNGPDw8mD9/Pg4Oafer5fZCJDo6mtDQ0DR7L0mepk2b0rhxY0qXLk3p0qUZO3Ysnp6e/PHHH/d8TrFixQB45ZVXsNlsiV8DrFq1imrVquHm5kaJEiUYNWpUkqY/m83G7Nmzefnll/Hw8OD9999PbEKZP38+jz/+OJ6ennTu3Jn4+HgmTpxI/vz5yZs3L2PHjr3v97JhwwZq1KiBh4cHOXLkoG7dupw8eRK4s5nmZtPH5MmTKVCgALly5aJr167ExsYmnhMTE0P//v0pVKgQHh4e1KxZkw0bNtw3w8iRI3n88cdxdXWlYMGCSYbGP+j1goODyZEjB99++y1PPPEErq6unDx58o5mGsMwmDhxIiVKlMDd3Z1KlSqxfPnyxOMXL17k7bffJk+ePLi7u1OqVCkWLFhw39yPQndGROSRHD58mIEDBwIwadIkihcvni7vGxISQsuWLfHw8OC33357pOHDGZZhwLVr1rx3tmzwEHeg4uPjWbZsGVevXqV27dr3PO+vv/4ib968LFiwgBdffDHx/9/333/PO++8Q2BgIPXq1ePo0aN07NgRMFf7vWnEiBGMHz+eqVOnJq72fPToUdasWcPatWs5evQor7/+OsePH6d06dL88ssvbN68mXfffZcGDRpQq1atOzLFxcXRvHlzOnTowBdffEFMTAxbtmy57524n3/+mQIFCvDzzz9z5MgRWrZsSeXKlenQoQMAbdu25cSJEyxevJiCBQvy5Zdf8uKLL7Jnz567jjRbvnw5U6dOZfHixfj4+HDu3Dl27dqVeDw5r3ft2jXGjx/P3LlzyZUrF3nz5r3jfYYOHcrKlSuZNWsWpUqVYuPGjbzzzjvkyZOH+vXrM2zYMEJCQlizZg25c+fmyJEjREVF3fM6PDLDDkRERBiAERERYXUUEblNXFycUbduXQMwGjRoYMTHx6fbe58+fdrw8vIyAOODDz5It/dNK1FRUUZISIgRFRV1a+eVK4ZhliTp/7hyJUX5d+/ebXh4eBiOjo6Gt7e38d133z3wOYDx5ZdfJtlXr149Y9y4cUn2ffrpp0aBAgWSPK9Xr15JzhkxYoSRLVs2IzIyMnFfw4YNjWLFiiX5uSxTpowxfvz4u+Y5f/68ARgbNmy46/ERI0YYlSpVSvy6TZs2RtGiRY24uLjEfS1atDBatmxpGIZhHDlyxLDZbMaZM2eSvE6DBg2MQYMG3fU9AgICjNKlSxsxMTF3HEvO6y1YsMAAjJ07dyY5p02bNsbLL79sGIZhXLlyxXBzczM2b96c5Jx27doZ//vf/wzDMIymTZsabdu2vWvG/7rrz+4Nyf38VjONiDy0HTt28Ndff+Hp6cm8efPStHnmvwoXLsy0adMAGD58OCEhIen23nKnMmXKsHPnTv744w86d+5MmzZtEv+fjBs3LrG/haenJ6dOnbrn62zbto3Ro0cnOb9Dhw6EhoZy7ba7RNWrV7/jucWKFSN79uyJX+fLl48nnngiyc9lvnz5CAsLu+t758yZEz8/Pxo2bEjTpk2ZPn36A5sBfXx8ktyVK1CgQOLrb9++HcMwKF26dJLv55dffrnnaLAWLVoQFRVFiRIl6NChA19++WViE1VyX8/FxYWKFSveM3NISAjXr1/nhRdeSPI6n3zySeLrdO7cmcWLF1O5cmX69+/P5s2b73sdHpWaaUTkoVWvXp3t27dz+PBhS0a3+Pn5sXz5clavXo2fnx+bN2/GySkT/VrLlg2uXLHuvVPAxcUlsQNr9erV+euvv5g+fTpBQUH4+/vzxhtvJJ5bsGDBe75OQkICo0aN4tVXX73jmJubW+K2h4fHHcf/24nVZrPddd/9Js1bsGABPXr0YO3atSxZsoShQ4eyfv36uzbr3Os9b75+QkICjo6ObNu27Y5mxHt1hC1SpAgHDx5k/fr1/PDDD3Tp0oVJkybxyy+/JPv13N3d79u0dDPfd999R6FChZIcc3V1BaBRo0acPHmS7777jh9++IEGDRrQtWvXxOH1qS0T/asVESv4+Piky4iJu7HZbMyZMwcfHx/++usvJk2axKBBgyzJkiZsNrjLh649MAyD6OhowLzjkDNnzjvOcXZ2Jj4+Psm+qlWrcvDgwcTCxgpVqlShSpUqDBo0iNq1a/P555/fsxh50OvEx8cTFhZGvXr1kv08d3d3mjVrRrNmzejatStly5Zlz549D/16/3WzY+upU6eoX7/+Pc/LkycPfn5++Pn5Ua9ePd577z0VIyKScXzyySeUK1eOJ5980uooFCpUiMDAQNq0acPIkSNp2rQp5cuXtzpWljJ48GAaNWpEkSJFuHz5MosXL2bDhg2sXbv2vs8rVqwYP/74I3Xr1sXV1ZXHHnuM4cOH89JLL1GkSBFatGiBg4MDu3fvZs+ePbz//vtp+n0cP36cOXPm0KxZMwoWLMjBgwc5dOgQrVu3fqjXK126NG+//TatW7cmICCAKlWqEB4ezk8//USFChVo3LjxHc8JDg4mPj6emjVrki1bNj799FPc3d0pWrQouXLlSvHr3U327Nnp168fvXv3JiEhgaeeeorIyEg2b96Mp6cnbdq0Yfjw4VSrVg0fHx+io6P59ttvKVeu3ENdh+RQMSIiKXLgwAE6duxIbGwsf/75513b7tNbq1atWL58OZcvX7a7eSAyg3/++YdWrVoRGhqKt7c3FStWZO3atbzwwgv3fV5AQAB9+vTh448/plChQpw4cYKGDRvy7bffMnr0aCZOnIizszNly5alffv2af59ZMuWjQMHDrBw4ULOnz9PgQIF6NatG506dXro11ywYAHvv/8+ffv25cyZM+TKlYvatWvfs3DIkSMHEyZMoE+fPsTHx1OhQgVWrVpFrly5Hur17mXMmDHkzZuX8ePHc+zYMXLkyEHVqlUZPHgwYDa7DRo0iBMnTuDu7k69evVYvHjxQ1+HB7EZhmGk2aunksjISLy9vYmIiMDLy8vqOCJZVlxcHHXr1mXLli28+OKLrF69OsNMQHb58mU8PDzStRNtarp+/TrHjx+nePHiSfpGiGR09/vZTe7nt33+qxURSwQEBLBlyxa8vb35+OOPM0whAuat59sLkevXr1uYRkRSQsWIiCRLSEgIw4cPB2DatGkULlzY4kR3d+XKFbp160bdunWTzIQpIhmXihEReaC4uDjatGlDTEwMTZo0oU2bNqnzwoYBsbHmI5VcuXKFL774gu3btzN+/PhUe10RSTvqwCoiD7R48WK2bt1Kjhw5CAoKSn7zjGHAiROwaxfs2QN798Lp03D2LISFwfXr5jkATk7mMNa8eaFIEXj8cShfHipVgipV4EYHvgfJnz8/H330EW+99RZjxoyhWbNmdrvsu0hWoWJERB7o7bff5sqVK3h7e98xSdIdwsNh9Wr48UfzceZM8t4kLg4iIszH4cN3Hq9UCRo0gBdegOeeAxeXe77Um2++yfLly1m5ciVt2rThr7/+wuU+52ckdjCmQCSJ1PiZ1WgaEXl0kZGwciUsXgw//AC3T2Tl4gI+PlCxIlSoAMWKQcGCkC8fuLuDm9utBeGuXIFz58y7J8ePw+7dsHMn/Hfq7Bw54NVX4c03zcLkLovkhYWF4ePjQ3h4OMOHD2fUqFFpeQUeWXx8PIcOHSJv3ryJwzhF7MH58+cJCwujdOnSd8wMm9zPbxUjInJPa9as4amnnkqy3kcS+/fDRx/BJ58knba8cmV48UXzTkbdumbR8Sj++Qd++sm807J6Ndy+Xkjx4tC1K7z7Ljz2WJKnLV26lJYtW+Lo6MiWLVuoWrXqo+VIY6GhoVy6dIm8efOSLVu2DDVaSeS/DMPg2rVrhIWFkSNHDgoUKHDHOSpGROSR7N69m+rVq1OwYEH+/PNP8uXLd+vgH3/AqFFw+wybZcrA229Dy5ZQunTaBYuPh02bzLswS5bApUvm/mzZoH17GDgQbvul+MYbb/DDDz/w6aef0qRJk7TLlQoMw+DcuXNcuvk9idiBHDlykD9//rsWzypGROShxcbGUqNGDXbu3Enz5s1ZuXKl+Ytm61YYPhzWrDFPdHCApk2he3ezuSS9/5K/dg0++ww+/NDsIAtms0/nzjBgAOTLR3h4OLGxsXf9qy2jio+P17BksQvOzs53NM3cTsWIiDy0UaNGMXLkSHLmzMm+ffvIbxjmHYdPPjFPcHSE1q1hyBAoWdLasGD2OfnhBxg5Em4udZ49O4wYYRZKdtJ5VSSz0QysIvJQdu7cmbgg2czp08n/6adms8vNQqRVKzhwAObPzxiFCJh3ZF54AX791Ww6qlYNLl+Gfv3MjrPr1gHw9ddf8/zzz2t2VpEMRndGRCRRTEwMTz75JLt376b3c88RcPEith07zIO1akFgIGSAlXofKCEBFi407+aEhQEQ+847PLF2LUfCwxk4cKAmRBNJB7ozIiIpNmnSJEJ272ZCtmwEbNxoFiI5c0JwMPz2m30UImD2ZWnbFg4dgp49wWbDedEidick0ASYOHEiW7ZssTqliNygYkREEnX09WXfY48x4No1bHFx5lweISHQpo35AW9vvL1h2jSz+aZ0adwvXOBbYFpCAh1atVJzjUgGYYe/XUQkTXz1FXl8fSl98aI5qdjixbB8uTk5mb2rU8ecPK1PHwC6A8GHDhHYrZulsUTEpGJEJKuLjeVC69bwyivmnB01a5of3C1bpv9Q3bTk7g4BAbB6NdFeXlQBOs+bx0H1HRGxnIoRkazswgUi69Qh56efAhDfu7c5oVjRohYHS0ONGuEaEsL+fPnIDpQZPNicwC0hwepkIlmWihGRrGr/fhKefBKvrVu5DEx+6ikcp0wBZ2erk6W9QoXIv2cPx19+2fx65Eh44w24etXSWCJZlYoRkaxo3TqoVQuHY8c4DjTNmZO2X31ldap09ViePBT/6iuYN88swFasgKeeSrrujYikCxUjIlnNZ59BkyYQGclGoAbQa968rLtS7Lvv8u+yZUS6u5t9ZerUMYcEi0i6UTEikpVMmwbvvANxcXzr5cXzQMO336Z58+YWB7OOYRg0GDaMylFR/JsjB5w4Ya40/NdfVkcTyTJUjIhkBYYBgwdD794AbKpWjWaRkeTKn5/AwECLw1nLZrPxwQcfcBwof+kSl8uUgfBweOYZWL/e6ngiWYKKEZHMzjDMWUhvDmEdN46rY8ZQqHBhgoKCyJkzp7X5MoBGjRrRrl07woC6MTHENWhgrgjctCmsXm11PJFMT2vTiGRmhgE9esBHH5lfz54NnToBEBUVhbu7u4XhMpaIiAjKly/P33//Ta8uXZh69ix89ZW54u/y5WZhIiIporVpRLI6w4Du3c1CxGaDuXO5/NZbiYdViCTl7e3NvHnzAJg2cyYbu3WD11+HmBh47TX48kuLE4pkXipGRDKjm4XIjBmJhchvZcvy+OOPM3/+fKvTZVi+vr506NABgLETJ8IXX8Cbb0JsrDkPyapVFicUyZxUjIhkNoYB/frdKkTmz+fam2/Stm1bLl26xKZNm6xOmKFNnjyZ4cOH8+WXX4KTE3z6Kbz1FsTFQYsW8PPPVkcUyXTUZ0Qksxk3DoYMMbfnz4e2benduzfTpk2jUKFC7N27lxw5clga0e7ExZlNNl9/DZ6e8MMP5ho+InJf6jMikhUFBd0qRKZMgbZt2bRpE9OnTwfg448/ViGSAgkJCQQFBXE5KspcxbhBA7hyBRo1gj17rI4nkmmoGBHJLJYuhc6dze0hQ6B3b65evUrbtm0xDIN27drRqFEjazPaGT8/P/z9/XnvvffAzc0cXVOrFly8CC+8AMeOWR1RJFNQMSKSGfzwgzmzqmGAvz+MGQPAoEGDOHr0KIULFyYgIMDikPanbdu2AAQFBbF+/XqziWb1aqhYEf75Bxo3hgsXLE4pYv9UjIjYu337zKGnN0d83BjKaxgGrq6uODg4MG/ePLy9va1OaneeffZZunbtCkC7du2IjIyExx6DNWugSBE4eBCaN4fr160NKmLn1IFVxJ6dO2c2G5w8aa44+8MP4Oqa5JSjR49SsmRJiwLavytXrlCpUiWOHTtGhw4dmDNnjnlg715zDZvISHP472efgYP+vhO5nTqwimR2165Bs2ZmIVKqlNmf4UYhcvvfGCpEHo2np2fi3Cwff/wx33//vXmgfHlYudIc/rt4sbn2j4g8lIcqRmbOnEnx4sVxc3OjWrVqyZ634LfffsPJyYnKlSs/zNuKyE0JCWYfkb/+gly5zH4MuXIB8NNPP1GvXj0OHTpkccjMo379+vTo0QOAzp07ExcXZx5o0ABuzNrKBx+YQ6lFJMVSXIwsWbKEXr16MWTIEHbs2EG9evVo1KgRp06duu/zIiIiaN26NQ0aNHjosCJyw9Ch5vTkLi7mHZH/+z8ALl++zLvvvstvv/3Ghx9+aG3GTGbcuHG88sorrFy5Eicnp1sHWreGkSPN7c6d4fffLcknYs9S3GekZs2aVK1alVmzZiXuK1euHM2bN2f8zVVB7+LNN9+kVKlSODo68tVXX7Fz585kv6f6jIjcZulSaNnS3F60CN5+O/GQv78/QUFBFCtWjN27d5M9e3aLQmYxCQlm5+EVKyBfPti6FQoXtjqViOXSpM9ITEwM27Ztw9fXN8l+X19fNm/efM/nLViwgKNHjzJixIhkvU90dDSRkZFJHiIC7N4NN4ab8t57SQqR9evXExQUBMD8+fNViKSxXbt2cfHiRfMLBwcIDr415PeVVyAqytJ8IvYkRcVIeHg48fHx5MuXL8n+fPnyce7cubs+5/DhwwwcOJDPPvss6a3N+xg/fjze3t6JjyJFiqQkpkjmdP68OYz02jVzwq3b7kRGRkbSrl07ALp27cqzzz5rUcisISgoiOrVq9O7d+9bOz09zSazXLnMOyMdO5rzvojIAz1UB1abzZbka8Mw7tgHEB8fz1tvvcWoUaMoXbp0sl9/0KBBREREJD5Onz79MDFFMo+4OHP46PHjUKKEOXrD0THxcL9+/Th9+jQlSpRgwoQJFgbNGipUqEB8fDwLFy5k1e0r+RYvDsuWmf9vFi0yp+QXkQdKUTGSO3duHB0d77gLEhYWdsfdEjA7023dupVu3brh5OSEk5MTo0ePZteuXTg5OfHTTz/d9X1cXV3x8vJK8hDJ0gYONOcQyZbN/Os7Z87EQ1FRUWzbtg0wm0Q9PT0tCpl11KlTh759+wLQqVMnLtw+C+uzz8KNtYAYMAA2brQgoYh9SVEx4uLiQrVq1cxpkW+zfv166tSpc8f5Xl5e7Nmzh507dyY+/P39KVOmDDt37qSmVr0UebCVK+HmVO4LF0KFCkkOu7u788cff7B27VqefvppCwJmTaNHj6ZMmTKEhobSs2fPpAe7dIFWrSA+3uxsfI9mbBExpbiZpk+fPsydO5f58+ezf/9+evfuzalTp/D39wfMJpbWrVubL+7gQPny5ZM88ubNi5ubG+XLl8fDwyN1vxuRzObo0VsdVvv1M5exvwtnZ2caNmyYjsHE3d2d4OBgHBwcWLRoEV9//fWtgzYbzJoFPj5mIfLWW2ZTm4jcVYqLkZYtWzJt2jRGjx5N5cqV2bhxI6tXr6Zo0aIAhIaGPnDOERFJhuvXzeGikZFQpw6MG5fk8Jo1axg2bBgxMTEWBZRatWrRr18/wGyuSRxdA+DhAcuXmx1bf/4ZkjmaUCQr0to0IhlV164wc6Y5OmPnziTzVly8eJHy5ctz9uxZJkyYwIABA6zLmcVdv36dp556ilatWtG9e3cc/rs+zeLF8L//mdvffgtNmqR/SBGLJPfzW8WISEa0ZIk5egbMqd4bNUpy2M/Pj4ULF1K6dGl27NhBtmzZLAgpN8XHx+N42+imO3TrBjNmmCv+7tgBN+4ki2R2WihPxF4dOgTt25vbgwffUYisWrWKhQsXYrPZWLBggQqRDOD2QuTatWtcunQp6QkBAfDkk3DxojlRnfqPiCShYkQkI4mJMW/pX7kC9evDqFFJDl+4cIFOnToB0Ldv37uOYhPrbNmyhUqVKiV26E/k6mo212TPDr/9BmPHWhNQJINSMSKSkQwbBtu3m/OIfPaZuTz9bXr27EloaChlypRh9OjRFoWUe3FwcOD48eMsWbKE5cuXJz1YooQ5wgZg9GizKBERQMWISMbx008waZK5PXcuFCqU5PDJkydZuXIlDg4OBAcH4+7ubkFIuZ/q1aszaNAgADp37kxYWFjSE95+G955x1xY76234L/NOSJZlIoRkYzg/HlzKXrDgA4dzIXW/qNo0aLs3r2boKAgatWqZUFISY5hw4ZRoUIFwsPD6dq1650nzJhh3iU5dQo6ddL6NSJoNI2I9QzDnMxs5UooXdpsptGEgHZt+/bt1KxZk7i4OJYsWcIbb7yR9IQ//4SnnjI7ss6ff2tiO5FMRqNpROzFvHlmIeLsDJ9/fkchsnbtWn755ReLwsnDqFq1KkOGDAGgS5cu/PPPP0lPqFnT7DcC0L07HD6czglFMhYVIyJWOnQIbq5r8v77UK1aksP//vsvrVu35plnnkm6OqxkeIMHD6ZSpUrUrFmTu96A7t8fnnkGrl6FNm3MdWxEsigVIyJWiYsz+4lcuwbPPWeuPfMf3bp1499//8XHxwdfX18LQsrDcnFx4aeffuLbb78lf/78d57g6AjBweZw399/v9V5WSQLUjEiYpXJk82+A15e5ofSf6YRX7ZsGUuXLsXR0ZGFCxfi6upqTU55aDlz5sRmsyV+HRsbm/SEokVh+nRze/hw2LMnHdOJZBwqRkSssHfvrYXTpk+HIkWSHA4LC6NLly6AuRJ2tf8034h9uXTpEn5+frRo0eLOJhs/P2jaFGJjoVUrc+I7kSxGxYhIeouNNZtnYmLgpZfM/gK3MQyDLl26EB4eTsWKFRk2bJhFQSW1nD59ms8//5yvv/6azz77LOlBmw3mzDEXRNy161bHVpEsRMWISHobN85cLO2xx8wPodtu4wNs3LiRFStW4OTkRHBwMC4uLhYFldRSoUIFRty4E9a9e3fOnj2b9IT8+WH2bHN7/Hiz+U4kC9E8IyLpaft2c1hnXJw5jPfm0vK3MQyDRYsWERYWRt++fS0IKWkhLi6OWrVqsW3bNl566SW++eabJP1JAHN21s8+M+eb2bEDtAii2Lnkfn6rGBFJL9HRUL262V/ktddg2bI77opI5rZv3z6qVq1KTEwMwcHBtPlPEx0XL0KFCnDmjDm6SiNsxM5p0jORjGbUKLMQyZPHXDDtP4XIb7/9xoULFywKJ+nBx8eHUTdWYu7ZsydnzpxJesJjj0FQkLk9ZQps2ZLOCUWsoWJEJD1s3w4TJ5rbs2ebBcltQkNDadq0KeXLl+fAgQMWBJT00q9fP2rUqIGbmxsnTpy484QmTcwF9RIS4N13zTtqIpmcihGRtBYbC+3amTNsvvEGvPpqksOGYdCpUycuXrxIgQIFKFmypEVBJT04OTmxePFi9u3bR926de9+0rRpZsG6b5/Z4Vkkk1MxIpLWpkyBnTvNW/CBgXccXrRoEatWrcLZ2Zng4GCcnZ3TP6Okq+LFi5MrV657n5A7N3z0kbk9bhzs3p0+wUQsomJEJC0dPgwjR5rbU6dCvnxJDp89e5YePXoAMHLkSCpUqJDOAcVKhmHw+eef89Zbb905GVqLFtC8uTny6t13zf+KZFIqRkTSSkICdOgA16+Dr6850dltDMOgY8eOXLp0ierVq9O/f3+LgopVzpw5Q7t27fjiiy+YN29e0oM2G8ycCTlywLZt5h02kUxKxYhIWpk7F375xZwrIijojtEzn332Gd999x0uLi4EBwfj5ORkUVCxSuHChRk7diwAffr04eTJk0lPKFDgVhEyYoS5yrNIJqRiRCQtnD0L771nbo8dC8WK3XFKkyZNaNWqFaNHj8bHxyd980mG0bNnT+rWrcvly5dp37793deu8fU177B16AAZf2ookRTTpGciqc0wzBEzX30FNWrA5s3mcvH3PN24cyZOyVIOHTpE5cqViYqKYvbs2XTq1CnpCSdOgI8PXLsG8+dD27aW5BRJKU16JmKVFSvMQsTJyWyq+U8hcvTo0SR//aoQkdKlSzN+/HgA+vbty/Hjx5OeUKyYOWkemDOz/vtv+gYUSWMqRkRSU0QEdO9ubg8aZE7tfZtTp05RtWpVmjVrRkREhAUBJaPq3r079erV4+rVq6xZs+bOE3r2hEqV4MIFsyARyURUjIikpqFD4dw5c6GzIUOSHDIMg/bt2xMZGcn58+fx9PS0KKRkRA4ODixYsICffvqJLl263HmCs/OtjtCffAI//ZT+IUXSiIoRkdSydas5FBPM/7q6Jjk8d+5c1q9fj5ubG8HBwTjepx+JZE0lS5bk2WefvfcJNWvCzULF39/s1CqSCagYEUkN8fHmh0NCgrmuSIMGSQ6fPHmSPn36ADBu3DhKly5tRUqxI8ePH+e9994jISEh6YGxY80hv4cPw41+JiL2TsWISGqYNcucmMrbGwICkhwyDIN27dpx5coV6tatmzjjqsi9XL9+ndq1azN58mRmzJiR9KC3961lBcaPBy2sKJmAihGRRxUaeqt/yPjxd0z5HhQUxI8//oi7uzsLFixQ84w8kJubG8OHDwdgwIABHDlyJOkJr71mru4bGwudOmnuEbF7KkZEHlWfPhAZCU8+CR073nHYx8eHEiVKMH78eEqVKmVBQLFH/v7+PPfcc0RFRdG2bdukzTU2m7mQXrZssHEjBAdbllMkNWjSM5FHsW4dNGwIDg7w119QtepdT7t69Sru7u44OKj+l+Q7ceIEFSpU4MqVK0ydOpVevXolPWHSJOjf31zl99Ahc2VokQxEk56JpLXr16FrV3O7e/c7CpFr164lbnt4eKgQkRQrVqwYkydPBmDQoEEc+u/aNL16wRNPQHi4OaxcxE7pt6PIw5owAY4cgYIFYfToJIeOHj1KsWLFCAwMvHM0hEgKdOzYkeeff57r168zYcKEpAednc3mGrjViVrEDqkYEXkYhw7dGlY5bRrcdvsxISGBd999l3///Zcvv/zSmnySadhsNubNm8fw4cOZNWvWnSc8+yz8739mJ9auXc3h5SJ2Rn1GRFLKMODFF2/1F1mzxuxQeENgYCA9e/bEw8ODPXv2ULx4cQvDSpZw9iyUKQNXrpjrIbVrZ3UiEUB9RkTSztdfm4WIiwt8+GGSQuTw4cMMHDgQgEmTJqkQkVQXFxfHvHnziI+Pv7WzYMFbC+kNGGCuXyNiR1SMiKREVBT07m1u9+sHtw3VjY+Pp23btkRFRdGgQYM7l4EXeUSGYfDiiy/Svn17pkyZkvRg9+7g4wPnz9+xLpJIRqdiRCQlJk6EEyegcGEYPDjJocDAQH777Tc8PT2ZN2+eRs9IqrPZbLz99tsADBs2jJCQkFsHnZ3h5mytQUHmWkkidkK/LUWS68QJcwQNmFO+e3gkORwVFYWjoyMBAQEULVo0/fNJluDn50fjxo2Jjo7Gz8+PuLi4Wwfr1zfXRjIMc0E9dWYVO6EOrCLJ9eqr8OWX5uiFH39M0lfkpgMHDlCmTBlsdzkmklrOnDmDj48PERERjB8/PrGfEmAuT1CmDFy+DHPmQIcO1gWVLE8dWEVS07p1ZiHi6HhHp9Xb6/myZcuqEJE0V6hQIQJvLJY3YsQI9u7de+tggQK35r0ZONDsQyKSwakYEXmQmBi4udLuzU6CN+zfv586deqwa9cui8JJVtWqVSteeuklYmJi8Pf3T1IU060bVKhgjqq5seCeSEamYkTkQaZPh4MHIW9eGDkycffN0TN//PEHw4YNsy6fZEk2m42goCBefPFF5s6dm/SOnJMT3LhzwuzZsHu3NSFFkknFiMj9nD1765b3Bx+At3fioYCAAP7880+8vb2ZOXOmRQElKytYsCBr1qyhbNmydx585hl4/XWzE2vPnmanVpEMSsWIyP3072/OalmrFrRunbg7JCQk8W7I1KlTKVy4sFUJRRJt27aN2NjYWzsmTwY3N9iwAVassCyXyIOoGBG5l02b4LPPzM6qH34IN+YNiYuLw8/Pj5iYGBo3boyfn5+1OUWAsWPHUqNGDcbfXDMJoGhRs6AGc5K+qChrwok8gIoRkbuJizM7q4I5NLJ69cRDkydP5q+//sLb25s5c+Zo9IxkCCVLliQhIYExY8awc+fOWwcGDDAn6Tt5EiZNsiyfyP2oGBG5m3nzYNcueOwxGDs2cXdCQgLr168HYPr06RQqVMiqhCJJtGzZkldffTXJnTsAsmW7VYRMmACnTlkXUuQeVIyI/FdkJNwcHTNyJOTOnXjIwcGBdevWsXz5clrf1odExGo2m41Zs2aRO3dudu3axdjbimhatoR69cxmmpvNNiIZiIoRkf8aNw7+/RdKl4bOne847OjoyGuvvabmGclw8ubNy4wb69OMHTuW7du3mwdsNnOIus0GS5bAxo0WphS5k4oRkdsdPw5Tp5rbkyebi48Bu3fvpm/fvly7ds3CcCIP9sYbb9CiRQvi4+OTNtdUqXJraviePSE+3rqQIv+hYkTkdoMGmTOuPvccvPQSALGxsbRp04YpU6YwYMAAiwOKPNiMGTMoWbIkPXr0wPlGQQ3A+++bc+Xs3Gn2ixLJILRQnshNmzdD3brmrewdO6BSJQBGjRrFyJEjyZUrF/v27SNfvnwWBxV5sLi4OJycnO48MH069Opl9oU6dMjspC2SRtJ0obyZM2dSvHhx3NzcqFatGps2bbrnub/++it169YlV65cuLu7U7ZsWabevA0uklEkJEDv3ub2u+8mFiI7d+7k/fffB+Cjjz5SISJ24/ZCJCIiguvXr5tfdOkC5cpBeDiMGmVROpGkUlyMLFmyhF69ejFkyBB27NhBvXr1aNSoEafuMVzMw8ODbt26sXHjRvbv38/QoUMZOnQoc+bMeeTwIqlm8WLYsgU8PMxb2UBMTAxt2rQhLi6O1157jZYtW1ocUiTlfvrpJ8qXL8+om4WHszNMm2Zuf/QRhIRYlk0kkZFCNWrUMPz9/ZPsK1u2rDFw4MBkv8Yrr7xivPPOO8k+PyIiwgCMiIiIZD9HJNmuXTOMIkUMAwzj/fcTdw8fPtwAjNy5cxv//POPhQFFHt6XX35pAIaDg4Pxxx9/3DrQrJn5M//ii9aFk0wvuZ/fKbozEhMTw7Zt2/D19U2y39fXl82bNyfrNXbs2MHmzZupX7/+Pc+Jjo4mMjIyyUMkzUyZAqdPQ5Ei0KcPAJcvX05c/G7mzJnkzZvXyoQiD6158+a8/fbbJCQk4Ofnd6u55uZosbVrzYeIhVJUjISHhxMfH39Hu3m+fPk4d+7cfZ9buHBhXF1dqV69Ol27dqV9+/b3PHf8+PF4e3snPooUKZKSmCLJd+4c3FzLY8IEcHcHIHv27OzYsYOJEyfSokULCwOKPLrAwEDy58/PgQMHGD58uLmzVCno1s3c7tvXXAJBxCIP1YH1v5M9GYbxwAmgNm3axNatW5k9ezbTpk3jiy++uOe5gwYNIiIiIvFx+vTph4kp8mDDhsHVq1CjBrz5ZpJDhQsX5r333rMomEjqyZkzJ0FBQQAEBATw+++/mweGDYNcucx+I+rHJxZKUTGSO3duHB0d77gLEhYW9sBRBsWLF6dChQp06NCB3r17M3LkyHue6+rqipeXV5KHSKrbtevWXAtTp4KDA9u2bWP16tXW5hJJA82aNaNVq1aJzTVRUVHmsN6bv4uHD4dLl6yMKFlYiooRFxcXqlWrlrhQ2E3r16+nTp06yX4dwzCIjo5OyVuLpC7DMPuHGAa88QbUqUN0dDStW7emSZMmGu0lmdL06dMpUKAAlSpVutV3pFMnKFsWzp9PsiikSHq6y4w499enTx9atWpF9erVqV27NnPmzOHUqVP4+/sDZhPLmTNn+OSTTwBzJsDHH3+csmXLAua8I5MnT6b7zeXZRazw7bfw00/g4mL2FQFGjhxJSEgIefPm5dVXX7U4oEjqe+yxx9i+fTv58+e/tdPZGQICoEkTc0I0f38oWdK6kJIlpbgYadmyJefPn2f06NGEhoZSvnx5Vq9eTdGiRQEIDQ1NMudIQkICgwYN4vjx4zg5OVGyZEkmTJhAp06dUu+7EEmJ2Fjo18/c7t0bihdny5YtTJw4EYDZs2eT+7aVekUyk9sLEcMwiI+Px6lRI/D1hXXrzFV9V6ywMKFkRZoOXrKeDz+EHj0gTx44coTrLi5UqVKFAwcO8Pbbb7No0SKrE4qkubCwMLp06ULhwoWZNm0a7N1rzjyckAAbNsB9pl8QSa40nQ5exG5dvHirw96YMeDlxfDhwzlw4AD58+cnMDDQ0ngi6WXHjh2sWLGCwMBAc0mP8uWhY0fzYJ8+ZlEikk5UjEjWMmYMXLgAPj7Qrh2HDx8mICAAgKCgIHLmzGlxQJH00bBhQ9q1a4dhGLRt25arV6/C6NHg5QXbt8ONfn8i6UHFiGQdhw+ba3GA2WHPyYlSpUqxfPly+vTpQ7NmzazNJ5LOAgICKFy4MEePHmXQoEFm0+XQoebBwYPhyhVrA0qWoT4jknW88gp89RU0agSaS0QEgHXr1tGwYUMANmzYQP1ateCJJ+DYMXNStNGjLU4o9kx9RkRut2GDWYg4OsLkyezevfuBSxiIZAW+vr506NABgLZt23IlNhZujCxj8mRz3SaRNKZiRDK/+PjEBfDo1IlrxYrx2muv4ePjc2tabJEsbPLkyTz++OPExcVx4sQJePVVePppiIqCQYOsjidZgIoRyfw+/RR27DA75o0cyZAhQzhy5Aju7u6UK1fO6nQilvPy8mLVqlXs3buX8uXLg81mrmZts8Fnn8GWLVZHlExOxYhkbleumB3xAIYOZeP+/UyfPh2Ajz/+mBw5cliXTSQDqVixYtI2/WrVoHVrc/vm0gkiaUTFiGRukyZBaCgUL87Vdu1o27YthmHQrl07GjVqZHU6kQzHMAzmzJlDv379YNw4yJYNfvsNli2zOppkYhpNI5nX339D6dJmu/eyZfTYuJEPP/yQIkWKsGfPHry9va1OKJLhbN++nWrVqgHmSJsXfv8dRoyAokXhwAFwc7M4odgTjaYRGTzYLESeeoqNefLw4YcfAjB37lwVIiL3ULVqVbp27QpAu3btiOzYEQoVgpMnzYX0RNKA7oxI5rR1Kzz5pLm9ZQtXypWjf//+JCQkMHv2bGuziWRwV65coVKlShw7dowOHTowp149s/9I9uxw5AjkzWt1RLETujMiWZdhmKvxArzzDjz5JJ6ensycOZOZM2dam03EDnh6ejJ//nzA7Oj9fe7cZofWy5fNJhuRVKZiRDKflSvh11/B3Z3Q7t1JuG3BLwcH/ciLJEf9+vXp0aMHAO07duTKmDHmgTlzYN8+C5NJZqTfzJK5REdD//7mZvfu1H7jDZ5//nlCQ0MtDiZif8aNG0fJkiU5e/Ys31+7Bq+9Zq7m26+f1dEkk3GyOoBIqvrwQ3NNjQIF6B8ezsmTJ7HZbGTPnt3qZCJ2x8PDg88++wzDMKhVqxZUrgzffANr15qPF1+0OqJkErozIpnHv//CjVvJ+956i8Abbd7z58/H09PTymQidqtmzZpmIQJQsiTcaLqhb1+Ii7MumGQqKkYk8xg5EiIjia9QgSZLlgDQrVs3nn32WWtziWQS+/fvZ6qHB+TKBSEhMHeu1ZEkk1AxIplDSAgEBQEwtUgRTv79NyVKlGDChAkWBxPJHMLCwqhevTp9Ro9m7+uvmzuHD4eICGuDSaagYkQyh379ID6ef2rX5r3VqwFYsGABHh4eFgcTyRzy5s1L586dAWj89dfE/9//mU2j48dbnEwyAxUjYv++/x7WrAEnJ8L79+eJJ56gZ8+ePP3001YnE8lUxowZQ5kyZTh97hzTChc2d06dCsePWxtM7J5mYBX7Fhdn9vDftw969YKpU4mOjiYhIQF3d3er04lkOn/88Qd169YlISGBfypVIu+uXdCyJSxebHU0yYA0A6tkDfPmwb59GI89BsOGAeDq6qpCRCSN1KpVy1zRF2h5+jSGzQZLlsDvv1ucTOyZihGxX5GRiQXIaJuN8UFBxGmooUiaGzVqFOXKlWPDhQtsq1zZ3Nm7tzkhmshDUDEi9mvcOPj3X0K9vHj/wgWCg4OJiYmxOpVIpufm5sbChQsZN24clb/5Bjw84M8/zTskIg9BfUbEPh0/DmXLQkwMzYBvbTZ+/fVX6tSpY3Uykaxn7FgYOhQefxwOHAA1k8oN6jMimdugQRATwyYXF1YBffv2VSEiYpHorl25misXnDoF06ZZHUfskO6MiP3ZvBnq1iUBqApEly3L9u3b1WlVxAKxsbE8+eSTPLFrF58DeHrCkSOQL5/V0SQD0J0RyZwSEsyOcsB8YI+DA8HBwSpERCzi7OxM06ZNWQxsc3KCK1fMmVlFUkDFiNiXxYthyxZiXV1538WF9957j5o1a1qdSiRLGzZsGBUqVqTHjdFsxty5sGePxanEnqgYEfsRFQUDBwLgPHQoa3ftYuTIkdZmEhFcXFwIDg5mi5MTSwFbQoK5qm/G7wUgGYSKEbEfU6fC6dNQpAj07UvZsmVxc3OzOpWIAFWqVGHIkCEMBKIB1q83l2kQSQYVI2Ifzp0jYdw4AI60a6ehgyIZ0ODBg/GuXJnpN3f07QuxsVZGEjuhYkTsw7BhOFy9yp9Ai5UrSdBMjyIZzs3mmj+ee474nDnNOUc+/tjqWGIHNLRXMr5duzCqVMFmGDzt4MDULVuoVq2a1alE5H5mzYIuXSB3bjh8GHLksDqRWEBDeyVzMAxiunXDZhgsBZ4ZMkSFiIg96NABypWD8HCMsWOtTiMZnIoRydCMVatw+fVXooHgsmUZOnSo1ZFEJDmcnAgqXRqAhGnT4Ngxa/NIhqZiRDKu2Fgu+/sDEGizMfbzz3FxcbE4lIgkV3j16nwPOMbFEdWjh9VxJANTMSIZ1+zZeIWGEgbEDxhAlSpVrE4kIikwYOBA5j/xBPGA+3ffYWzaZHUkyaBUjEjGdPEi3JjQ7OS779J39Ghr84hIijk5OTF86VIWOJgfNefbtDGXdBD5DxUjkjGNGQMXLoCPD08GBeHs7Gx1IhF5CD4+PlwbOJBIIPfx45yfMcPqSJIBqRiRDCfs11+Jn35j2qSAAHBysjaQiDySLqNG8WnhwgAk9O+PcfWqxYkko1ExIhmKYRgcf/11HBMS2JYvHzRsaHUkEXlETk5ONFi1itOOjuS5ft1c2kHkNipGJEP5YfBgav7zD3FA9qAgq+OISCopW7kyBYKDAbBNmADnzlkbSDIUFSOSYZw9fZoCEycCsLNmTUq//LLFiUQkNTm9/TbUqgVXrxL93nvYwQTgkk5UjEiGYBgGK5o0oXxCApGOjlT+6iurI4lIarPZYMoUAJwXLWLliBEWB5KMQsWIZAifz57NG3v2AHCtb1+c8ue3OJGIpInatTlQuTIOQK5x4zh54oTViSQDUDEilouLi+Py4MHkAy7kzk3+MWOsjiQiaajU8uVE22w8Ex/PnObN1VwjKkbEek6nT9MpKgoA7zlzQFO+i2RqjiVLcrVDBwBa7drFxzNnWpxIrKZiRKw3YAC26Gh47jkcmze3Oo2IpIOckyZxzdOTssDBPn04fvy41ZHEQipGxDKnTp3i5zFjYNmyWx3bbDarY4lIevDywu3G6LlBMTH0bN2aBE0Vn2WpGBFLGIZBh3bt8Bw+3NzRrh1UqmRtKBFJVw4dOhBTqhS5ga4XLxIdHW11JLGIihGxxNy5c8n7ww88CcR7eMD771sdSUTSm5MTLh9+CEDDQ4dwP3PG4kBiFRUjku5OnjzJ0N69mXDja8ehQyFfPksziYhFGjaEF1+E2FgYMADDMNRckwWpGJF0ZRgG7dq1o/PVqxQCjGLFoFcvi1OJiKUCAsDREVaupH+tWszQyr5ZjooRSVdBQUEc+PFH+t/42jZxIri5WZpJRCz2xBPQsSMALbdsYWD//hw5csTiUJKeVIxIurlw4QLvvfce44FsAE89Ba+/bnEqEckQRo7E8PKiOvDq9eu0bdtWzTVZyEMVIzNnzqR48eK4ublRrVo1Nm3adM9zV65cyQsvvECePHnw8vKidu3afP/99w8dWOxXzpw5WT92LK1u7tBQXhG5KW9ebEOGADDBZmPbr78SGBhocShJLykuRpYsWUKvXr0YMmQIO3bsoF69ejRq1IhTp07d9fyNGzfywgsvsHr1arZt28azzz5L06ZN2bFjxyOHFztjGNRautTcbtUKnnzS2jwikrH06AHFilHIMOgHDBo0iEOHDlmdStKBzUjhogA1a9akatWqzJo1K3FfuXLlaN68OePHj0/Wa/j4+NCyZUuG35xj4j+io6OTjDePjIykSJEiRERE4OXllZK4kgGcPHkSm83G43/8AS1bQrZscPAgFC5sdTQRyWiWLoWWLYlycKBkQgLFatdm06ZNODo6Wp1MHkJkZCTe3t4P/PxO0Z2RmJgYtm3bhq+vb5L9vr6+bN68OVmvkZCQwOXLl8mZM+c9zxk/fjze3t6JjyJFiqQkpmQgCQkJtG7dmid9fIjq1s3c2b+/ChERubsWLaBOHdwTEvjAyYnw8HDOnj1rdSpJYykqRsLDw4mPjyfff+aEyJcvH+fOnUvWawQEBHD16lXeeOONe54zaNAgIiIiEh+nT59OSUzJQD766CM2btxIz+ho3P/9F4oUgffeszqWiGRUN5eGAN6Jj2dXcLD+IM0CHqoDq+0/nQ4Nw7hj39188cUXjBw5kiVLlpA3b957nufq6oqXl1eSh9ifI0eOMHDgQB6HxKG8TJ5sNtOIiNxLzZrw1lvYDAP3QYMgZb0JxA6lqBjJnTs3jo6Od9wFCQsLu+NuyX8tWbKEdu3asXTpUp5//vmUJxW7kpCQQNu2bYmKimJh3rw4xcZC/frmLVgRkQeZMAHc3WHjRhKWLGHq1KlMnz7d6lSSRlJUjLi4uFCtWjXWr1+fZP/69eupU6fOPZ/3xRdf4Ofnx+eff06TJk0eLqnYlcDAQH799VcaurvzTFgYODjA9OkayisiyVOkCAwaBMD17t0Z2qcPAwYMICQkxOJgkhZS3EzTp08f5s6dy/z589m/fz+9e/fm1KlT+Pv7A2Z/j9atWyee/8UXX9C6dWsCAgKoVasW586d49y5c0RERKTedyEZyuHDhxk0aBAOwKJcucydHTtqVV4RSZl+/aBYMbKFhzP3//6P6Oho/Pz8iIuLszqZpLIUFyMtW7Zk2rRpjB49msqVK7Nx40ZWr15N0aJFAQgNDU0y50hQUBBxcXF07dqVAgUKJD569uyZet+FZCiFCxeme/fuTH3iCXL//TfkyAFjxlgdS0Tsjbu7uW4N8Obp01TMnp2//vqLSZMmWRxMUluK5xmxQnLHKUsGcvEiRqlS2M6fh8BA6N7d6kQiYo8MA55/Hn76iZPVq1Ns61ZcXFzYtm0b5cuXtzqdPECazDMicj9hYWHEx8ebX4wYYRYiPj7QubO1wUTEftlsZn8zR0eKbt3KkFq1iImJwc/Pj9jYWKvTSSpRMSKpIj4+nmbNmlGvXj1Or1kDM2eaB6ZPBycna8OJiH0rXx66dgVgxMWL5M6Rg127dvHHH39YHExSi4oRSRUBAQH8+eefhOzbR55x4yA+Hl55BRo0sDqaiGQGI0dCrlw4HzzIhpYt2bp1K/Xq1bM6laQSFSPyyEJCQhg2bBgAK1q1wu3XX8HVNbHjmYjII3vsMRg3DgCfJUuoVLCgxYEkNakYkUcSFxeHn58fMTExvNywIc+tXm0e6NcPihe3NpyIZC7t2kGVKnDpEgwdCsCOHTuYO3eutbnkkakYkUcyadIk/vrrL7y9vVlYqRK248ehUKHEyYpERFKNo6M5Og/g4485unw5NWrUoHPnzuzcudPSaPJoVIzIQ9u7dy8jR44EYO7IkXh/9JF5YOJE8PCwLpiIZF5PPQX/+x8YBiWmTaNZ06bExcXRpk0bYmJirE4nD0nFiDw0JycnKlSowEsvvcRrW7bAtWtQt675i0JEJK1MnAjZsmH77Tfm+/qSO3dudu/ezdixY61OJg9Jk57JI4mNjSX6++/xbNrUnA9g61aoWtXqWCKS2Y0da/YbKVSIFePG8XqbNjg6OrJlyxaq6ndQhqFJzyTN3D7RkDPgOWCA+UXnzipERCR99O1rdpI/c4bXDh6kRYsWxMfH06ZNG6Kjo61OJymkYkRSJDY2ljp16jB06FDzH/yHH0JICOTODe+/b3U8Eckq3Nxg6lRze/JkZvfpQ548edi7dy/BwcGWRpOU09SYkiLjxo1j69atHDt2jJ4tWpDnRgdWJkww5wEQEUkvzZpB48awejU5R4xgTlAQp06fpkOHDlYnkxRSnxFJtp07d/Lkk08SFxfHF198wZurVsHnn0PNmrB5MzjoRpuIpLOjR801sKKjYflyeO01qxPJbdRnRFJVTEwMbdq0IS4ujldffZWW+fObhYjNBjNmqBAREWuULAk3+6316gVXrwJw9epVVq1aZV0uSRF9gkiyjB07lt27d5M7d25mBQZi697dPODvD9WqWRtORLK2gQOhWDH4+294/30uXrxIpUqVaN68OVu2bLE6nSSDihF5oO3btyeO358xYwZ5ly6FvXshVy51WhUR67m735qZNSCAx/75h5o1a5KQkECbNm24fv26tfnkgVSMyAMdPXoUNzc3WrRowRv16sGIEeaBCRMgZ05rw4mIADRtCi+9BLGx0L07gdOnkz9/fg4cOMCIm7+zJMNSB1ZJlmPHjpE9e3by9OkDixZBjRrw++/qKyIiGcexY/DEE2Zn1iVL+MbNjZdffhkHBwd+++03atWqZXXCLEcdWCVVlShRgjz795uFiDqtikhGVKLErUU6e/em2bPP0qpVKxISEvDz8yMqKsrafHJP+jSRu4qOjqZp06b8/PPP5o64OOjWzdzu1AmqV7cunIjIvQwYYBYlZ8/CmDFMnz6dAgUKcPDgQcaMGWN1OrkHFSNyV6NGjeLbb7/lrbfeMv+amDED9uwxO61qMSoRyajc3G51Zp06lcdCQ5kzZw4vvfQS3W7+QSUZjvqMyB22bNlC7dq1SUhIYOXKlbxSowaUKweXL8OcOaDZDUUko2veHL7+Gp59Fn78EQOw2WxWp8py1GdEHsr169dp06YNCQkJvPXWW7zyyivmREKXL0OtWtCundURRUQebNo08y7Jzz/D4sVJCpGQkBDrcsldqRiRJEaMGMGBAwfInz8/gYGBsHq1OcWyoyMEBanTqojYh2LFYMgQc7tPH7h0ifj4ePz8/ChfvjybNm2yNJ4kpU8WSfT7778zefJkAIKCgsjl7n6r02rv3lCxooXpRERS6L33oHRpOHcOhgzB0dERJycnDMOgbdu2XL0xdbxYT8WIJFq2bBkJCQm0atWKZs2ambOrHj8ORYrcmuhMRMReuLrC7Nnm9qxZsGULAQEBFC5cmKNHjzLo5jBgsZw6sEoiwzBYsmQJDRs25LGzZ6FyZXNI71dfwcsvWx1PROThtGkDn3wClSrB1q2s++knGjZsCMCGDRuoX7++xQEzL3VglRSz2Wy8+eabPJYjB3TubBYizZqpEBER+zZ5srl0xa5dMH06vr6+dLgxKrBt27ZcuXLF4oCiYiSLu3btGv369eP8+fO3dgYHw6ZNkC3brfH6IiL2Kk8emDjR3B4+HE6dYvLkyTz++OMcP36cgQMHWptPVIxkdUOGDCEgIIAXX3wRwzAgPNzs9AUwahQULWptQBGR1NC2LTz1FFy7Bt264ZU9O/PmzaNAgQKJTTZiHfUZycI2bdpE/fr1MQyD1atX06hRI3MekfnzoUIF2LYNnJ2tjikikjpCQsy+cLGxsHIlvPIKUVFRuLu7W50s01KfEbmvq1ev0rZtWwzDoF27dmYhsmmTWYiA2QNdhYiIZCZPPHHrzm/37nD5cpJC5PLlyxYFExUjWdSgQYM4evQohQsXJiAgAGJiwN/fPNihA9SpY21AEZG0MHSouZDemTNm/5EbPvvsM4oWLcoPP/xgYbisS8VIFrRhwwY+/PBDAObNm4e3t7fZ2zwkxOzoNWGCxQlFRNKIuzvMnGluBwbC9u2AOenjxYsXadeuHZGRkRYGzJpUjGRBw2/8NdCxY0d8fX3h4EEYPdo8OGWKOQRORCSzatgQ3nwTEhKgUyeIj2fChAkUL16cU6dO0a9fP6sTZjkqRrKgr7/+mj59+jBp0iTzH2PHjhAdbf4Dffttq+OJiKS9qVPB2xu2boWPPsLT05MFCxYA8PHHH7Nu3TqLA2YtGk2T1c2ZY/5lkC0b7NtnLi4lIpIVzJ5tTvDo4WH+/italJ49exIYGEjhwoXZu3ev2YwtD02jaSSJy5cv8/nnn5Ok9jx7Fvr3N7fHjlUhIiJZS8eOUK8eXL1q/lFmGIwbN46SJUvy999/06dPH6sTZhkqRrKI/v378/bbb9OlS5dbO7t3h4gIePJJc1tEJCtxcICPPzYX1Pv+e1i0CA8PDxYsWICjoyOenp4kJCRYnTJLUDNNFrB+/Xqzoyrw008/8eyzz5oT/rz2Gjg5mZObVaxocUoREYuMGwdDhpid9/fvh7x5OXbsGCVKlLA6md1TM40A5g9Cu3btAOjatatZiFy6BN26mSf0769CRESytvfeM1f0vXABevUCSFKI2MHf7HZPxUgm169fP06fPk2JEiWYcHP+kAEDIDQUSpeGYcOsDSgiYjVnZ5g712y2+eIL+O67xEPHjh3j2Wef5dtvv7UwYOanYiQT+/777/n4448BWLBgAZ6enrBxozmCBsz/urlZmFBEJIOoXh169za3/f3hxsRnc+bM4ZdffqFjx45cvHjRwoCZm4qRTComJoaOHTsC0KNHD55++mm4ft2c6h3MXuT161uYUEQkgxk92pwq/u+/YdAgAEaMGEGZMmUIDQ2lZ8+eFgfMvFSMZFIuLi4sWrSIF198kXHjxpk7338fDh2CAgXggw+sDSgiktFky3brzvHMmfDbb7i7uxMcHIyDgwOffvop33zzjbUZMykVI5lYvXr1WLNmDR4eHrBz560C5KOPIEcOK6OJiGRMDRpA27bmdvv2cP06tWrVSpwivlOnTpw/f97CgJmTipFM5tKlSxw+fDjpzthY8x9XXBy8+qr5EBGRuwsIgHz54MABc0JIYNSoUZQrV45z587Ro0cPiwNmPipGMplevXpRqVIlFi1adGvnhAnmnZGcOW+tVikiInf32GPmHWRI/P3p5uaW2FyzZ88ereybylSMZCKrVq1i4cKFXL9+/dYY+d27YcwYc/ujj8xqX0RE7u+11+CVV8w7yn5+EBtLjRo1WLt2LVu3btUEnKlMxUgmceHCBTp16gRA3759qVOnzq3mmdhYePllc8lsERF5MJsNZs0y7yjv2mXO0gq88MILuLi4WBwu81Exkkn07NmT0NBQypQpw+jRo82dkybB9u3mLcdZs8x/XCIikjz58t1qrnn/fbO5+4bY2FjGjBnDypUrrcmWyagYyQS+/vprFi1ahIODA8HBwbi7u8PevTBypHlCYKA5nFdERFLmzTeTNtfExAAQFBTE8OHD6dSpE2FhYdZmzARUjNi58+fPJzbPvPfee9SqVcv8R3OzeaZpU3j7bYtTiojYqZvNNblymc0148cD0LFjRypUqEB4eDhdu3a1OKT9UzFi57Jnz46/vz+VKlVi5M07IQEBsHWrOZfI7NlqnhEReRR3aa5xcXEhODgYJycnli9fztKlS63NaOdshh0sR5jcJYizstjYWJydnSEkBKpUMW8lBgdDmzZWRxMRsX+GAa+/DitXmiv8btkCLi6MHDmSUaNGkStXLvbt20c+jVhMIrmf37ozYqciIyOJudF2CZiFSHw8vPuuWYg0bgytW1uYUEQkE7HZzHmabjbX3BhdM3jwYCpVqsT58+fp3LkzdvD3fYb0UMXIzJkzKV68OG5ublSrVo1Nmzbd89zQ0FDeeustypQpg4ODA7169XrYrHKbjh07UqNGDfbu3Xtr55Qp8Oef4OUFQUFqnhERSU23N9eMHZvYXLNw4UKcnJxYs2bNnTNgS7KkuBhZsmQJvXr1YsiQIezYsYN69erRqFEjTp06ddfzo6OjyZMnD0OGDKFSpUqPHFhg2bJlLFmyhL179xIdHW3u3LsXhg41t6dMgcKFrQsoIpJZtWxpLqlx2+iaSpUqMW/ePHbu3Enp0qWtTmiXUtxnpGbNmlStWpVZs2Yl7itXrhzNmzdn/I1exvfyzDPPULlyZaZNm5aikOozcktYWBg+Pj6Eh4czdOhQxowZYzbL1KoFO3ZAkyawapXuioiIpJV//gEfHzh/HoYPh1GjrE6UYaVJn5GYmBi2bduGr69vkv2+vr5s3rz54ZLeRXR0NJGRkUkeAoZh0KVLF8LDw6lYsSLDhg0zD4wZYxYiuXLB3LkqRERE0lK+fDBjhrk9diz89VeSw5s3b+brr7+2IJj9SlExEh4eTnx8/B29hfPly8e5c+dSLdT48ePx9vZOfBQpUiTVXtueLV26lBUrVuDk5ERwcLA5JfEffyR2pGL2bMif39qQIiJZQcuW5iM+Hlq1gmvXAPjxxx956qmn8PPz4+zZsxaHtB8P1YHV9p+/vA3DuGPfoxg0aBARERGJj9OnT6faa9urf/75J3FinSFDhlClShXzh791a0hIMCc2e/11i1OKiGQhM2dCwYJw8CAMHAhA/fr1qVq1KpcuXaJTp04aXZNMKSpGcufOjaOj4x13QcLCwlJ1bLWrqyteXl5JHlnd9evXKVeuHJUrV2bw4MHmzgED4PBhKFQIPvzQ2oAiIllNzpwwf765/eGHsH49Tk5OLFy4EBcXF7799ls++eQTazPaiRQVIy4uLlSrVo3169cn2b9+/XpzlVhJM0WLFmXDhg2sXbvWbJ5Zv/7WELMFC8zF8EREJH01bAhdupjbbdvCxYv4+Pgw6kan1p49e3LmzBkLA9qHFDfT9OnTh7lz5zJ//nz2799P7969OXXqFP7+/oDZxNL6P5Nt7dy5k507d3LlyhX+/fdfdu7cSUhISOp8B5lcfHx84rajo6N5B+riRfOHHqBrV3jhBYvSiYgIEydCqVJw5oz5Oxno168fNWrUICIigg4dOqi55gEeajr4mTNnMnHiREJDQylfvjxTp07l6aefBsDPz48TJ06wYcOGW29yl/4kRYsW5cSJE8l6v6w6tNcwDF599VWKFSvG2LFjyZYtm3mgVStYtMj84d+xAzw8rA0qIpLV/fkn1K1rdmhdvBhatmT//v1UqVKF6OhovvvuOxo3bmx1ynSX3M9vrU2TgX366ae0bt0aZ2dntm/fTvny5WH5cmjRAhwc4LffzPlFRETEeiNGwOjRZrP5nj1QqBAfffQR2bJlo23btqk60MNeqBixc2fPnsXHx4dLly4xduxYs9PquXNQvrw50c6QIebqkSIikjHExkKdOuaq6b6+sHZtlp/3SQvl2THDMOjYsSOXLl2ievXq9O/f3xy+6+dnFiKVK5uz/omISMbh7AyffgpubrBunTn09zYRERH88ssvFoXL2FSMZEALFy7ku+++w8XFheDgYJycnMyRM99/b/6QL1oELi5WxxQRkf8qWxY++MDcfu89cw4S4Pjx45QvX56mTZty8uRJCwNmTCpGMpi///47cWXj0aNH4+PjY7Y99u9vnjB5srkmgoiIZEzdusHzz0NUlDkhZUwMjz/+OEWLFuXy5cu0b99eo2v+Q8VIBnPgwAEAatSoQd++fc0f5rfeguhocxG8m+PZRUQkY3JwgOBgc1K0bdtg2DAcHR2ZP38+7u7u/PDDD8yZM8fqlBmKOrBmQGfOnOH69euULFkSevaEwEDIm9e8Q5I3r9XxREQkOb76Cl55xezEun49NGjAtGnT6N27Nx4eHuzZs4fixYtbnTJNqQOrHStUqJBZiKxZYxYiYFbZKkREROxH8+bQqRMYhrmO2Pnz9OjRg3r16nH16lXatWtHQkKC1SkzBBUjGYBhGPj5+fHdd9/d2hkWZo6eAejRAxo1siSbiIg8gilTzE6tZ89C+/Y42GzMnz+fbNmy8fPPPzN37lyrE2YIKkYygLlz57Jw4UJef/11/vnnH7OKfvddsyApX/5Wz2wREbEv2bLB55+bIyC/+grmzOH//u//mDBhAi1btuTVV1+1OmGGoD4jFjt58iTly5fnypUrBAQE0KdPH3Nseteu4OoKf/0FFSpYHVNERB7FlCnQty+4u8O2bRhly2aJGVnVZ8QOGIZBu3btuHLlCnXr1qVnz56wb5/5Awvm4ksqRERE7F+vXuasrFFR8L//YYuJSTxkGAZHjhyxLlsGoGLEQkFBQfz444+4u7uzYMECHGNjzWG816/Diy9C9+5WRxQRkdRwc7hv7tywaxcMHgzA1atXadGiBRUrVszSBYmKEYscP36cfv36ATB+/HhKlSplzta3ezfkyQMLFmT5NQ1ERDKVAgXM3+1gNtusW4e7uzsXL14kKiqKtm3bZtnRNSpGLLJs2TKuXr1KvXr16N69O3z5pTnlO8DChZA/v7UBRUQk9b30kjlDK0Dr1jiEhzNv3jw8PT359ddfCbw5nUMWow6sFvryyy+pWLEiJZ2czMXvLl2Cfv1g0iSro4mISFqJioIaNWDvXnPahm+/Jejjj/H398fd3Z2dO3dSunRpq1OmiuR+fqsYsVpsLNSvD7//bv5wbtqkRfBERDK7vXvhySfNPoKTJmH07Yuvry8//PADderUYePGjTg6Olqd8pFpNE0GlJCQwPDhwzl37tytnSNGmIWIlxcsXqxCREQkKyhf/tYM24MGYfvzT+bNm0f27NnZvHkz06ZNszReelMxko5mzJjBmDFjqFWrFjExMeZaBRMmmAfnzoVMvkaBiIjcpn17ePNNiIuDN9/k8ezZmTJlCo8//jiVK1e2Ol26UjNNOjly5AgVK1YkKiqKGTNm0OW116BSJfjnH3PtgtmzrY4oIiLpLTISqlaFo0fhlVcwli/n6rVreHp6Wp0sVaiZJgNJSEigbdu2REVF8dxzz+HfsSO0amUWIuXLw9SpVkcUEREreHnBkiXg7Axffolt5swkhci1a9csDJd+VIykg8DAQH799Vc8PT2ZN28eDpMnm0007u7mD6G7u9URRUTEKtWqweTJ5nbfvrB9O4ZhEBQURNGiRQkJCbE2XzpQMZLGDh06xOAbM+1NnjyZYmfPwtCh5sEPP4QnnrAwnYiIZAjdu8PLL0NMDLRsCZGRfPPNN4SHh+Pn50dcXJzVCdOUipE0NnLkSKKionj++efp2KIF/O9/EB9v/vfdd62OJyIiGYHNBvPnw+OPw5Ej2Pz9mRMUhLe3N3/99ReTb945yaTUgTWNXblyhWHDhtGrZ0+K9u5tLiFdsiRs3262FYqIiNz0++9Qr575R+vHH7PQ2Rk/Pz9cXFzYtm0b5cuXtzphiqgDawbh6enJ1KlTKbpypVmIuLiY84moEBERkf+qXRvGjTO3u3enddWqvPTSS8TExODn50dsbKy1+dKIipE0EB8fz+LFi28teLR5MwwYYG5PnQrVq1sXTkREMrZ+/aBhQ7h+HVvLlsyZOpXHHnuMbdu2MXHiRKvTpQkVI2kgICCA//3vf7z++uvw77/wxhuJk9rQubPV8UREJCNzcIBPPjFX+d2/nwKjRhE4fToODg5ER0dbnS5NOFkdILMJCQlh+PDhADRr0gTeeQfOnIEyZWDOHLOTkoiIyP3kzWs26T/3HCxaxNtPPUX1ffsoW7as1cnShO6MpKK4uDj8/PyIjo6mcePGtDlzBtatM+cRWb4csme3OqKIiNiLp59O7D9i69GDslevJh6yg7EnKaJiJBVNnjyZv/76C29vbxa2bo1t5EjzwKxZ5kyrIiIiKdGvHzRrZs4/0qIFXLxISEgI9erVY+fOnVanSzUa2ptK9u7dS7Vq1YiJiWHptGm0GDcOwsLMuUTmzbM6noiI2KuLF81ZWo8fh2bN+J+7O4uXLKFSpUps2bIFlwy82ruG9qYjwzDo0KEDMTExNGvcmNdXrDALkYoV4aOPrI4nIiL27LHHzKZ+V1f45hvmlC5Nrly52LVrF2PHjrU6XapQMZIKbDYbH374IfXq1WNR8eLYNm0y+4csX651Z0RE5NFVrQrTpwOQfdw4lnbrBsC4cePYvn27lclShYqRVFK9enU29u9P9hkzzB3z5kGpUtaGEhGRzKNjR3OEZnw8z82ZQ7uXXkocOBETE2N1ukeiYuQRxMbGsn//fvOLEyegdWtzu3t3s6ORiIhIarHZYPZs8PGB0FBmXrpEvty52bNnD2PGjLE63SNRMfIIxo8fT6VKlZgxZUpiL2dq1Li1FLSIiEhq8vAwuwB4eODy66/8/PTTAPz00092vbKvipGHtHPnTsaMGUNsbCwvrF0LW7eanYyWLjXXnxEREUkLZcvC3LkAlFu5kt8GD+aXX37Bycl+5zFVMfIQbi5YFBcXx/Rq1Si9fr154NNPoWhRa8OJiEjm9+ab0LUrAHVmzcLpzBmLAz0aFSMPYezYsezatYv63t5037fP3Dl8ODRpYm0wERHJOgIC4MknzS4Cr79OdEQEgwYN4s8//7Q6WYpp0rMU2r59OzVr1sQzLo7TefPiGRYGjRrBt9+aixuJiIikl5MnzWG/Fy7wZ8WK1Nq9m7Jly7Jjxw7c3NysTqdJz9LCzeaZ+Lg4fsyf3yxEiheHRYtUiIiISPorWhS++AJsNmru3k1vLy8OHDjAiBEjrE6WIvoETQFHR0dat25NgJcXVc+dAzc3WLECcua0OpqIiGRVvr5wY2jvpKgoqmGulfbHH39YmysFVIykgKOjI/3KlaN3ZKS5Y/ZsqFLF2lAiIiKDBkGzZjjGxrLWw4PHEhLw8/MjKirK6mTJomIkGaKjo83/oUePmrPfAXTuDG3aWBtMREQEzK4CCxfC//0fua9eZYWLC4cPHmTYsGFWJ0sWFSPJMGrUKGpXqsTVRo3g0iWoVQumTbM6loiIyC05csDKlZAtG/VjYhgFzJ07l/Pnz1ud7IFUjDzAli1b+GDCBPocPozH4cOQNy8sW6aJzUREJOOpUCFxQrShwKFJk8iVK5e1mZJBxch9XL9+HT8/P/wNg9YAjo6wZAkULmx1NBERkbv73/+gRw8A8vbrB4cPWxzowVSM3MeIESPIsX8/027u+OADeOYZ6wKJiIgkx+TJULcuREbCq6/y87ff8vvvv1ud6p5UjNzDH3/8waeTJrEMcAZzIbw+fSxOJSIikgzOzmaXgvz5Ye9eQps2pdU773D16lWrk92VipG7iIqKon2bNnxhGBQCKFcO5s0zl28WERGxBwUKwLJlGE5OvAU0PnaMQYMGWZ3qrlSM3MWVK1cYFR1NfcDw9DR7J2fPbnUsERGRlHnqKWyTJwMQAGz/8EN++eUXazPdhYqRu8jz88+8dvIkALaFC83lmkVEROxRjx7w5ps4A8uA/q1aceXKFatTJaFi5DYJCQmwbx+8+665Y8AAePVVa0OJiIg8CpsN5s4l/oknKABMPn2awe+9Z3WqJFSM3GZIt26cq1sXrl6FBg3g/fetjiQiIvLoPDxw/Oor4rJlox5QYvZsdu/ebXWqRCpGbti0cSM1Zs0if0QEUXnymKsgOjlZHUtERCR1lCqF0+efA9ALqLBnj6VxbqdiBLh69Sp/vPIKrwCxDg64f/st5MljdSwREZHU9fLLMHgwALYOHSCD3B15qGJk5syZFC9eHDc3N6pVq8amTZvue/4vv/xCtWrVcHNzo0SJEsyePfuhwqaVBW+/TZ8LFwCInTIFatSwOJGIiEgaGT0afH0hKor4l19mdwYYXZPiYmTJkiX06tWLIUOGsGPHDurVq0ejRo04derUXc8/fvw4jRs3pl69euzYsYPBgwfTo0cPVqxY8cjhU8MfS5fS8uuvcQT+btiQbDem0BUREcmUHB3h88+JLlgQxxMnOP/ii0ReumRpJJthGEZKnlCzZk2qVq3KrFmzEveVK1eO5s2bM378+DvOHzBgAN988w379+9P3Ofv78+uXbuSPTVtZGQk3t7eRERE4OXllZK493UlPJxjhQpRMSaGk7lzU/T0aXBzS7XXFxERyaiu/fYbDvXq4WYYrKpalabbtqX6eyT38ztFd0ZiYmLYtm0bvr6+Sfb7+vqyefPmuz7n999/v+P8hg0bsnXrVmJjY+/6nOjoaCIjI5M80kJUx45UjInhooMDOX/6SYWIiIhkGdnq1uX4jRlZm27fTszy5ZZlSVExEh4eTnx8PPny5UuyP1++fJw7d+6uzzl37txdz4+LiyM8PPyuzxk/fjze3t6JjyJFiqQkZvIkJJCnRAkMBwfCAwPJXqFC6r+HiIhIBlZu7FhOv/wyRvbsuLi6WpbjoTqw2v6zRothGHfse9D5d9t/06BBg4iIiEh8nD59+mFi3p+DA0yejC0khFJdu6b+64uIiNiBIkuXYtuxA5o2tSxDiibSyJ07N46OjnfcBQkLC7vj7sdN+fPnv+v5Tk5O5MqV667PcXV1xTW9KrQyZdLnfURERDIiFxcoWdLSCCm6M+Li4kK1atVYv359kv3r16+nTp06d31O7dq17zh/3bp1VK9eHWdn5xTGFRERkcwmxc00ffr0Ye7cucyfP5/9+/fTu3dvTp06hb+/P2A2sbRu3TrxfH9/f06ePEmfPn3Yv38/8+fPZ968efTr1y/1vgsRERGxWyme77xly5acP3+e0aNHExoaSvny5Vm9ejVFixYFIDQ0NMmcI8WLF2f16tX07t2bGTNmULBgQQIDA3nttddS77sQERERu5XieUaskFbzjIiIiEjaSZN5RkRERERSm4oRERERsZSKEREREbGUihERERGxlIoRERERsZSKEREREbGUihERERGxlIoRERERsZSKEREREbFUiqeDt8LNSWIjIyMtTiIiIiLJdfNz+0GTvdtFMXL58mUAihQpYnESERERSanLly/j7e19z+N2sTZNQkICZ8+eJXv27NhstlR73cjISIoUKcLp06e15k0a07VOH7rO6UPXOX3oOqePtLzOhmFw+fJlChYsiIPDvXuG2MWdEQcHBwoXLpxmr+/l5aUf9HSia50+dJ3Th65z+tB1Th9pdZ3vd0fkJnVgFREREUupGBERERFLZelixNXVlREjRuDq6mp1lExP1zp96DqnD13n9KHrnD4ywnW2iw6sIiIiknll6TsjIiIiYj0VIyIiImIpFSMiIiJiKRUjIiIiYqlMX4zMnDmT4sWL4+bmRrVq1di0adN9z//ll1+oVq0abm5ulChRgtmzZ6dTUvuWkuu8cuVKXnjhBfLkyYOXlxe1a9fm+++/T8e09i2lP9M3/fbbbzg5OVG5cuW0DZhJpPQ6R0dHM2TIEIoWLYqrqyslS5Zk/vz56ZTWfqX0On/22WdUqlSJbNmyUaBAAdq2bcv58+fTKa192rhxI02bNqVgwYLYbDa++uqrBz4n3T8LjUxs8eLFhrOzs/Hxxx8bISEhRs+ePQ0PDw/j5MmTdz3/2LFjRrZs2YyePXsaISEhxscff2w4Ozsby5cvT+fk9iWl17lnz57GBx98YGzZssU4dOiQMWjQIMPZ2dnYvn17Oie3Pym91jddunTJKFGihOHr62tUqlQpfcLasYe5zs2aNTNq1qxprF+/3jh+/Ljx559/Gr/99ls6prY/Kb3OmzZtMhwcHIzp06cbx44dMzZt2mT4+PgYzZs3T+fk9mX16tXGkCFDjBUrVhiA8eWXX973fCs+CzN1MVKjRg3D398/yb6yZcsaAwcOvOv5/fv3N8qWLZtkX6dOnYxatWqlWcbMIKXX+W6eeOIJY9SoUakdLdN52GvdsmVLY+jQocaIESNUjCRDSq/zmjVrDG9vb+P8+fPpES/TSOl1njRpklGiRIkk+wIDA43ChQunWcbMJjnFiBWfhZm2mSYmJoZt27bh6+ubZL+vry+bN2++63N+//33O85v2LAhW7duJTY2Ns2y2rOHuc7/lZCQwOXLl8mZM2daRMw0HvZaL1iwgKNHjzJixIi0jpgpPMx1/uabb6hevToTJ06kUKFClC5dmn79+hEVFZUeke3Sw1znOnXq8Pfff7N69WoMw+Cff/5h+fLlNGnSJD0iZxlWfBbaxUJ5DyM8PJz4+Hjy5cuXZH++fPk4d+7cXZ9z7ty5u54fFxdHeHg4BQoUSLO89uphrvN/BQQEcPXqVd544420iJhpPMy1Pnz4MAMHDmTTpk04OWXaf+6p6mGu87Fjx/j1119xc3Pjyy+/JDw8nC5dunDhwgX1G7mHh7nOderU4bPPPqNly5Zcv36duLg4mjVrxocffpgekbMMKz4LM+2dkZtsNluSrw3DuGPfg86/235JKqXX+aYvvviCkSNHsmTJEvLmzZtW8TKV5F7r+Ph43nrrLUaNGkXp0qXTK16mkZKf6YSEBGw2G5999hk1atSgcePGTJkyheDgYN0deYCUXOeQkBB69OjB8OHD2bZtG2vXruX48eP4+/unR9QsJb0/CzPtn0q5c+fG0dHxjgo7LCzsjorvpvz589/1fCcnJ3LlypVmWe3Zw1znm5YsWUK7du1YtmwZzz//fFrGzBRSeq0vX77M1q1b2bFjB926dQPMD03DMHBycmLdunU899xz6ZLdnjzMz3SBAgUoVKhQkqXSy5Urh2EY/P3335QqVSpNM9ujh7nO48ePp27durz33nsAVKxYEQ8PD+rVq8f777+vu9epxIrPwkx7Z8TFxYVq1aqxfv36JPvXr19PnTp17vqc2rVr33H+unXrqF69Os7OzmmW1Z49zHUG846In58fn3/+udp7kyml19rLy4s9e/awc+fOxIe/vz9lypRh586d1KxZM72i25WH+ZmuW7cuZ8+e5cqVK4n7Dh06hIODA4ULF07TvPbqYa7ztWvXcHBI+rHl6OgI3PrLXR6dJZ+FadY1NgO4OWxs3rx5RkhIiNGrVy/Dw8PDOHHihGEYhjFw4ECjVatWieffHM7Uu3dvIyQkxJg3b56G9iZDSq/z559/bjg5ORkzZswwQkNDEx+XLl2y6luwGym91v+l0TTJk9LrfPnyZaNw4cLG66+/buzbt8/45ZdfjFKlShnt27e36luwCym9zgsWLDCcnJyMmTNnGkePHjV+/fVXo3r16kaNGjWs+hbswuXLl40dO3YYO3bsMABjypQpxo4dOxKHUGeEz8JMXYwYhmHMmDHDKFq0qOHi4mJUrVrV+OWXXxKPtWnTxqhfv36S8zds2GBUqVLFcHFxMYoVK2bMmjUrnRPbp5Rc5/r16xvAHY82bdqkf3A7lNKf6dupGEm+lF7n/fv3G88//7zh7u5uFC5c2OjTp49x7dq1dE5tf1J6nQMDA40nnnjCcHd3NwoUKGC8/fbbxt9//53Oqe3Lzz//fN/fuRnhs9BmGLq3JSIiItbJtH1GRERExD6oGBERERFLqRgRERERS6kYEREREUupGBERERFLqRgRERERS6kYEREREUupGBERERFLqRgRERERS6kYEREREUupGBERERFLqRgREUt88cUXuLm5cebMmcR97du3p2LFikRERFiYTETSmxbKExFLGIZB5cqVqVevHh999BGjRo1i7ty5/PHHHxQqVMjqeCKSjpysDiAiWZPNZmPs2LG8/vrrFCxYkOnTp7Np0yYVIiJZkO6MiIilqlatyr59+1i3bh3169e3Oo6IWEB9RkTEMt9//z0HDhwgPj6efPnyWR1HRCyiOyMiYont27fzzDPPMGPGDBYvXky2bNlYtmyZ1bFExALqMyIi6e7EiRM0adKEgQMH0qpVK5544gmefPJJtm3bRrVq1ayOJyLpTHdGRCRdXbhwgbp16/L0008TFBSUuP/ll18mOjqatWvXWphORKygYkREREQspQ6sIiIiYikVIyIiImIpFSMiIiJiKRUjIiIiYikVIyIiImIpFSMiIiJiKRUjIiIiYikVIyIiImIpFSMiIiJiKRUjIiIiYikVIyIiImKp/wdBpdHoM2k5fQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoJElEQVR4nO3dd3gU1dvG8e+mNxJ6CL1Ik16kiqhAEBREXyUq0qQ3qUoJ0gSCNAFpoSUg0kRRUUSj/iiKKNJEiiAgNRBDSSjpmfePgWikmIQkk3J/rmsvd8/O7t4Zl8yTM2fOsRmGYSAiIiJiETurA4iIiEjupmJERERELKViRERERCylYkREREQspWJERERELKViRERERCylYkREREQs5WB1gJRITEzk/Pnz5MmTB5vNZnUcERERSQHDMLh27RpFixbFzu7e/R/Zohg5f/48JUqUsDqGiIiIpMGZM2coXrz4PZ/PFsVInjx5APOH8fT0tDiNiIiIpERkZCQlSpRIOo7fS7YoRm6fmvH09FQxIiIiks381xALDWAVERERS6kYEREREUupGBERERFLZYsxIyIiuUlCQgJxcXFWxxD5T46Ojtjb2z/w+6gYERHJIgzD4MKFC1y9etXqKCIpljdvXooUKfJA84CpGBERySJuFyKFCxfGzc1NkzxKlmYYBjdv3iQsLAwAHx+fNL+XihERkSwgISEhqRApUKCA1XFEUsTV1RWAsLAwChcunOZTNhrAKiKSBdweI+Lm5mZxEpHUuf2dfZBxTipGRESyEJ2akewmPb6zKkZERETEUmkqRubPn0+ZMmVwcXGhTp06bN++/Z7bbtmyBZvNdsftyJEjaQ4tIiIiOUeqi5G1a9cyaNAg/P392bt3L02aNKFVq1acPn36vq/7/fffCQ0NTbqVL18+zaFFRETS4siRIzRo0AAXFxdq1qxpdRy5JdXFyMyZM+nWrRvdu3encuXKzJo1ixIlSrBgwYL7vq5w4cIUKVIk6ZYek6SISPYXHh7OzZs3rY4h2ZzNZuOTTz75z+3Gjh2Lu7s7v//+O99++23GB5MUSVUxEhsby+7du/H19U3W7uvry44dO+772lq1auHj40OzZs343//+d99tY2JiiIyMTHYTkZznww8/pHDhwjRt2pTExESr40gucPz4cR599FFKlSqlS6izkFQVI+Hh4SQkJODt7Z2s3dvbmwsXLtz1NT4+PixatIiPPvqIjz/+mIoVK9KsWTO2bdt2z88JCAjAy8sr6VaiRInUxBSRbCA0NJRevXpRokQJVq5ciZ2dxtPfy40bN+55i46OTvG2UVFRKdo2tQzDYOrUqZQtWxZXV1dq1KjB+vXrk55r3rw5Tz31FIZhAHD16lVKliyJv78/YM6x0q1bN8qUKYOrqysVK1Zk9uzZd3zOsmXLqFKlCs7Ozvj4+NC/f38ASpcuDcBzzz2HzWZLevxvNpuN3bt3M2HCBGw2G+PGjUv1zyoZxEiFc+fOGYCxY8eOZO0TJ040KlasmOL3eeaZZ4w2bdrc8/no6GgjIiIi6XbmzBkDMCIiIlITV0SyqMTERKNNmzYGYNSuXduIjY21OpLloqKijEOHDhlRUVF3PAfc89a6detk27q5ud1z26ZNmybbtmDBgnfdLrVGjRplVKpUydi8ebNx/PhxIygoyHB2dja2bNliGIZhnD171siXL58xa9YswzAMw8/Pz6hbt27S//fY2FhjzJgxxs8//2ycOHHCWLlypeHm5masXbs26TPmz59vuLi4GLNmzTJ+//134+effzbeffddwzAMIywszACMoKAgIzQ01AgLC7trztDQUKNKlSrG0KFDjdDQUOPatWup/lnlTvf77kZERKTo+J2qGVgLFiyIvb39Hb0gYWFhd/SW3E+DBg1YuXLlPZ93dnbG2dk5NdFEJBtZuXIlGzduxNHRkeDgYBwdHTEMg2XLluHr66ve0Gzkxo0bzJw5k++++46GDRsCULZsWb7//nsCAwNp2rQpxYoVIzAwkI4dO3Lx4kU2btzI3r17cXR0BMzF1saPH5/0nmXKlGHHjh2sW7eO9u3bAzBx4kSGDh3KwIEDk7Z75JFHAChUqBDw9xop91KkSBEcHBzw8PC473aS+VJVjDg5OVGnTh1CQkJ47rnnktpDQkJ49tlnU/w+e/fufaA57EUk+zp//jyvv/46AOPGjaNatWoAjBgxgqlTp+Lr68vmzZs1+dc/XL9+/Z7P/ftigNvrhNzNv0+F/fnnnw+UC+DQoUNER0fTokWLZO2xsbHUqlUr6fGLL77Ihg0bCAgIYMGCBVSoUCHZ9gsXLmTJkiWcOnWKqKgoYmNjk652CQsL4/z58zRr1uyB80rWlOq1aYYMGULHjh2pW7cuDRs2ZNGiRZw+fZrevXsDMHLkSM6dO8eKFSsAmDVrFqVLl6ZKlSrExsaycuVKPvroIz766KP0/UlEJMszDIOePXty9epV6taty5tvvpn03GuvvcacOXP4+uuvWbJkCT169LAwadbi7u5u+bb3cnvg8RdffEGxYsWSPffPHu6bN2+ye/du7O3tOXbsWLLt1q1bx+DBg5kxYwYNGzYkT548TJs2jZ9++gn4e/0TyblSXYz4+flx6dIlJkyYQGhoKFWrVmXTpk2UKlUKMAel/XPOkdjYWIYNG8a5c+dwdXWlSpUqfPHFF7Ru3Tr9fgoRyRbi4uIoUaIEzs7OLF++HAeHv38FVaxYkUmTJjF06FCGDh2Kr69v0u8VyboefvhhnJ2dOX36NE2bNr3ndkOHDsXOzo4vv/yS1q1b8/TTT/Pkk08CsH37dho1akTfvn2Ttj9+/HjS/Tx58lC6dGm+/fZbnnjiibu+v6OjIwkJCen0U0mmy5jhLOkrpQNgRCR7OH369F3b4+PjjcaNGxuA0axZMyMxMTGTk1nnfoMAszp/f3+jQIECRnBwsPHHH38Ye/bsMebOnWsEBwcbhmEYn3/+ueHk5GTs3r3bMAzDGD16tFG8eHHj8uXLhmEYxqxZswxPT09j8+bNxu+//26MHj3a8PT0NGrUqJH0GcHBwYaLi4sxe/Zs4+jRo8bu3buNOXPmJD1fvnx5o0+fPkZoaGjS+95NjRo1jLFjx6b/TsjF0mMAq66lE5EMZxhG0mWdwD0HqNrb2xMUFISrqyvffvstgYGBmRVRHsDbb7/NmDFjCAgIoHLlyrRs2ZKNGzdSpkwZ/vrrL7p168a4ceOoXbs2YE48VrRo0aTT+7179+b555/Hz8+P+vXrc+nSpWS9JACdO3dm1qxZzJ8/nypVqvDMM88kO90zY8YMQkJCKFGiRLKxKpI92Ix//obIoiIjI/Hy8iIiIgJPT0+r44hIKi1dupQ1a9awZMmSFJ16mT17NoMGDcLLy4tTp07h5eWVCSmtFR0dzcmTJ5PW/RLJLu733U3p8Vs9IyKSoU6fPs2QIUP45ptvUjxwfcCAAXTt2pUvv/wyVxQiIrldqgewioiklGEYdO/encjISBo2bJhsjoj7sbOzY9myZRmcTkSyCvWMiEiGWbx4MSEhIbi4uBAUFJTmBTKPHDnCyZMn0zmdiGQVKkZEJEOcOnWKoUOHAjB58mQqVqyYpvdZv349NWvWpEuXLlpMTySHUjEiIukuMTGR1157jevXr9O4ceOkGVfTonbt2jg4OLBt2zbmzZuXjilFJKtQMSIi6e6vv/4iNDQUV1fXBzo9A+Y6J1OnTgVg+PDh/PHHH+kVU0SyCBUjIpLuvL292bNnD19//TXly5d/4Pfr3bs3Tz75JFFRUXTt2lWna0RyGBUjIpIhXFxcePTRR9Plvezs7Fi6dCkeHh58//33zJkzJ13eV0SyBhUjIpJuFi1axDvvvEN8fHy6v3fp0qWZPn06YC7I+c+1S0Qyw7hx45JWEs5uunTpQrt27ayOcU8qRkQkXRw/fpzBgwczYsQI1q1blyGf0bNnT55++mneeustLaKXhYwbNw6bzZbsVqRIkf98nc1m45NPPsn4gOlk2LBhfPvtt1bHSJPZs2cTHBxsdYx70qRnIvLAbl89c/PmTR5//HFeeumlDPkcm83Gxo0bsdlsGfL+knZVqlThm2++SXr8IIOWUysuLg5HR8cM/xwPDw88PDwy/HPSU0JCAjabLcvPZKyeERF5YHPnzmXbtm24u7uzbNky7Owy7lfLPwuRmJgYQkNDM+yzJOUcHBwoUqRI0q1QoUL33b506dIAPPfcc9hstqTHABs3bqROnTq4uLhQtmxZxo8fn+zUn81mY+HChTz77LO4u7szceLEpFMoy5Yto2TJknh4eNCnTx8SEhKYOnUqRYoUoXDhwkyaNOm+ubZs2UK9evVwd3cnb968NG7cmFOnTgF3nqa5fepj+vTp+Pj4UKBAAfr160dcXFzSNrGxsbz55psUK1YMd3d36tevz5YtW+6bYdy4cZQsWRJnZ2eKFi2a7NL4/3q/4OBg8ubNy+eff87DDz+Ms7Mzp06duuM0jWEYTJ06lbJly+Lq6kqNGjVYv3590vNXrlyhQ4cOFCpUCFdXV8qXL09QUNB9cz8I9YyIyAM5duwYI0aMAGDatGmUKVPmzo0MA44ehe3b4eBBOHIEzp+HS5cgKgocHMDFBXx8oFgxqFIFateGhg3B2/uun3vo0CH8/Pxwd3fnhx9+yNS/xDONYcDNm9Z8tpsbpKIH6tixYxQtWhRnZ2fq16/P5MmTKVu27D2337VrF4ULFyYoKIinnnoq6f/fV199xauvvsqcOXNo0qQJx48fp2fPnoC52u9tY8eOJSAggHfffTdptefjx4/z5ZdfsnnzZo4fP84LL7zAyZMnqVChAlu3bmXHjh289tprNGvWjAYNGtyRKT4+nnbt2tGjRw9Wr15NbGwsP//883174v73v//h4+PD//73P/744w/8/PyoWbMmPXr0AKBr1678+eefrFmzhqJFi7JhwwaeeuopDhw4cNcrzdavX8+7777LmjVrqFKlChcuXGD//v1Jz6fk/W7evElAQABLliyhQIECFC5c+I7PGT16NB9//DELFiygfPnybNu2jVdffZVChQrRtGlT3nrrLQ4dOsSXX35JwYIF+eOPP4iKirrnfnhgRjYQERFhAEZERITVUUTkH+Lj443GjRsbgNGsWTMjISHh7yfj4gzjm28Mo2dPw/DxMQzz0Jr6W61ahvHWW4bx++/JPvvMmTOGp6enARjvvPNOJv/k6S8qKso4dOiQERUV9Xfj9etp328Pert+PcXZN23aZKxfv9749ddfjZCQEKNp06aGt7e3ER4eft/XAcaGDRuStTVp0sSYPHlysrb333/f8PHxSfa6QYMGJdtm7NixhpubmxEZGZnU1rJlS6N06dLJvpcVK1Y0AgIC7prn0qVLBmBs2bLlrs+PHTvWqFGjRtLjzp07G6VKlTLi4+OT2l588UXDz8/PMAzD+OOPPwybzWacO3cu2fs0a9bMGDly5F0/Y8aMGUaFChWM2NjYO55LyfsFBQUZgLFv375k23Tu3Nl49tlnDcMwjOvXrxsuLi7Gjh07km3TrVs34+WXXzYMwzDatGljdO3a9a4Z/+2u391bUnr8Vs+IiKTZ3r172bVrFx4eHixdutQ8PXP5MixeDPPmwZkzf2/s7AwNGpg9HpUrQ8mSUKAAuLtDfLzZAxAaCqdOwf798MsvcOAA7N1r3t5+2+wpGTgQXniB4sWLM2vWLF577TXGjBnDM888w8MPP2zdzsjFWrVqlXS/WrVqNGzYkHLlyrF8+XKGDBnC5MmTmTx5ctI2hw4domTJknd9r927d7Nr165kp1MSEhKIjo7m5s2buLm5AVC3bt07Xlu6dGny5MmT9Njb2xt7e/tkpw29vb0JCwu762fnz5+fLl260LJlS1q0aEHz5s1p3749Pj4+9/zZq1SpkqxXzsfHhwMHDgCwZ88eDMOgQoUKyV4TExNDgQIF7vp+L774IrNmzaJs2bI89dRTtG7dmjZt2uDg4JDi93NycqJ69er3zHzo0CGio6Np0aJFsvbY2Fhq1aoFQJ8+ffi///s/9uzZg6+vL+3ataNRo0b3fM8HpWJERNKsbt267Nmzh2PHjlHKwwOGDYP5881TLwD588P//R+8+CI0aWKeikmNixfhq69g7VrYvBl+/NG8lSsHw4fTpUsX1q9fz6ZNm+jSpQs7duzAwSEH/Vpzc4Pr16377DRyd3enWrVqHDt2DDAnrWvfvn3S80WLFr3naxMTExk/fjzPP//8Hc+5/OP74+7ufsfz/x7EarPZ7tp2v0nzgoKCeP3119m8eTNr165l9OjRhISE3PW0zr0+8/b7JyYmYm9vz+7du+84jXivgbAlSpTg999/JyQkhG+++Ya+ffsybdo0tm7dmuL3c3V1ve+ppdv5vvjiC4oVK5bsOWdnZ8AsME+dOsUXX3zBN998Q7NmzejXr1/S5fXpLQf9qxURK1R56CGqfPYZdO4MkZFmY82aZg/GSy+lvgD5J29v6NTJvIWGwqJF8N57cPw49OyJbdYslvv789APP7Br1y6mTZvGyJEj0+XnyhJsNrPnKJuJiYnh8OHDNGnSBDB7HPLnz3/Hdo6OjiQkJCRrq127Nr///jsPPfRQpmS9m1q1alGrVi1GjhxJw4YNWbVq1T2Lkf96n4SEBMLCwpL2RUq4urrStm1b2rZtS79+/ahUqRIHDhxI8/v92+2BradPn6Zp06b33K5QoUJ06dKFLl260KRJE9544w0VIyKSdaxYsYLKlSvzSEwM9OhhDkgFqF4dpkyBp55K1eDHFPHxgbFjzd6XxYth4kQ4dIiCHTrwa+3a1N+zh3HjxtGmTRuqVq2avp8t9zVs2DDatGlDyZIlCQsLY+LEiURGRtK5c+f7vq506dJ8++23NG7cGGdnZ/Lly5d0yq1EiRK8+OKL2NnZ8euvv3LgwAEmTpyYoT/HyZMnWbRoEW3btqVo0aL8/vvvHD16lE6dOqXp/SpUqECHDh3o1KkTM2bMoFatWoSHh/Pdd99RrVo1WrdufcdrgoODSUhIoH79+ri5ufH+++/j6upKqVKlKFCgQKrf727y5MnDsGHDGDx4MImJiTz66KNERkayY8cOPDw86Ny5M2PGjKFOnTpUqVKFmJgYPv/8cypXrpym/ZASurRXRFLlyJEjDOzRg1316pmnXo4cMXswVqwwx3a0apX+hcg/ubvDoEFw7BgMHgwODpTcs4ejjo6MKVcOj2zYk5DdnT17lpdffpmKFSvy/PPP4+TkxM6dO/9zYroZM2YQEhJCiRIlksYqtGzZks8//5yQkBAeeeQRGjRowMyZMzNlkjs3NzeOHDnC//3f/1GhQgV69uxJ//796dWrV5rfMygoiE6dOjF06FAqVqxI27Zt+emnnyhRosRdt8+bNy+LFy+mcePGVK9enW+//ZaNGzcmjQlJ7fvdy9tvv82YMWMICAigcuXKtGzZko0bNyZdDefk5MTIkSOpXr06jz32GPb29qxZsybN++G/2AzDMDLs3dNJZGQkXl5eRERE4OnpaXUckVwrPj6eV2vVYvRvv5HU99C9O0ydCvnyWRPqt9+gSxfYvdt87Odn9pz8YyBjdhAdHc3JkycpU6ZMsrERIlnd/b67KT1+q2dERFLsq1deYdmtQiShUCH4+mvzwG9VIQJQtao5qPXtt835StauhXr1iNmzx7pMIpIqKkZE5L8lJHCpa1ee/vBD3IBzVatif+AA/OvSQMs4OsLo0bBlC4k+PnDkCImPPEL8Rx9ZnUxEUkDFiIjc37VrJLZtS4Fbi2ytfughiu7bd8+ZUS3VuDHhX3/NVgcHXBMTsX/xRZg1y5zGS0SyLBUjInJv4eHw5JPYbdpEFPCamxuPbdmCLQtPvV64alVCg4JYCNgMwxzkOnAg3GduCRGxlooREbm7s2fhscfgl18wChZk0/DhtFiy5I5JkrIivw4dCHnuOYbdbnjvPeja1ZzpNYvLBtcUiCSTHt9ZzTMiInf64w9o1gxOn4bixbGFhPB/lSpZnSrFbDYbCxYupMr27ZwLD2elzYb9ihXmzLArV4KTk9UR73B7Js+bN2/i6upqcRqRlLt5azHHf89GmxoqRkQkuZMn4Ykn4OxZbhQtirF5Mx7ZqBC5rXDhwsybNw8/Pz9ibTY+tLfH7sMPzYJk/XpzrZwsxN7enrx58yatm+Lm5nbfKb1FrGYYBjdv3iQsLIy8efM+0MrZmmdERP525ox5aubPP4kuW5aHTp/GoVgxfvrpJ7yz4oDVFGjfvj3ffPMNmwcNol5AAERHm+vlrFljXgqchRiGwYULF7h69arVUURSLG/evBQpUuSuxXNKj99Z61+iiFgnNBSefBL+/BPjoYdo4+zMufh42tWqReHCha1Ol2bz588nLi7OXHm1YUN45hn46CNzsrZly8Au6wyds9ls+Pj4ULhwYeLi4qyOI/KfHB0dH6hH5DYVIyICERHQsqU5VqR0aWa1acM3775L/vz5WbBgQbY+XVCwYMG/H7RoYU6K9sILsHw5eHrC7NkZO319Gtjb26fLL3iR7CLr/EkgItaIjYXnnoMDB8DHh0Nz5/Lme+8BMG/ePIoUKWJxwPTz6aef0nzuXGIXLzYLkPfeg8mTrY4lkuupGBHJzQwDXnsN/vc/8PAg7tNPeXnUKOLj43n++efx8/OzOmG6uX79Oj179uTbb79l7NGjZiEC5sytq1ZZG04kl1MxIpKb+fvDBx+YAzk/+oipX3/Nr7/+SsGCBbP96Zl/8/DwYOHChQBMnTqVnx95BIbdmomka1fYvt3CdCK5m4oRkdxq2TIICDDvL14Mvr50796d559/nnnz5mXrQav38txzz9GhQwcSExPp3Lkz0ePHm1fWxMbCs8/C0aNWRxTJlXRpr0hutHMnNG1qHoTHjoVx45KeMgwjR/WI/Nvly5epUqUKFy5c4I033mDq+PHmVUQ7d0KlSvDTT+bAVhF5YCk9fqtnRCS3OX8enn/+74GrY8Zw+PDhpKdzciECkD9/fgIDAwGYMWMGP+7bB598AsWKwZEj0KmT1rERyWQqRkRyk+hosxAJDYUqVWD5cnbt3k21atV4+eWXiY2NtTphpmjbti2dOnUiMTGRzZs3mysQf/yxOSvrp5/CxIlWRxTJVVSMiOQm/fqZpyHy5YNPPyXa0ZEuXbqQkJAAgFMWXLMlo8yaNYsvvviC8ePHmw316sGCBeb9sWNh40brwonkMipGRHKL4OC/ZxxduxbKlWP8+PEcOnQIb29v5s6da3XCTJUvXz5at26dvLFrV7NgA3j1VXMSOBHJcCpGRHKDgwehb1/z/oQJ0KIFP/30E1OnTgVg4cKFFChQwMKA1jp37hy9e/c2Vx9991149FGIjISXXoKYGKvjieR4KkZEcrobN6B9e3O12hYtYORIoqOj6dKlC4mJiXTo0IF27dpZndIyhmHQqlUrAgMD8ff3B0dHWL0aChSA3bth+HCrI4rkeCpGRHK6AQPg0CHw8YGVK8HOjjFjxnDkyBGKFCnCnDlzrE5oKZvNxjvvvAPA7Nmz2b59OxQvbq5dYzaaV9uISIZRMSKSk61YAUFB5jiRVavg1kRmTz75JMWLFycwMJD8+fNbHNJ6rVq1olu3bhiGQdeuXblx4wY8/TQMHWpu0LUrnDplbUiRHEyTnonkVMeOQa1a5mmaCRPgrbeSPR0VFYWrq6tF4bKeiIgIqlatytmzZxkwYIDZYxQbC02awM8/Q8OGsHWreRpHRFJEk56J5Gbx8dCxo1mIPP44jBoFwLVr15I2USGSnJeXF0uXLgXgvffeY+vWreDkBGvWgJcX/PijVvgVySAqRkRyosmTzflEvLzMUzX29vzwww+ULFmSZcuWWZ0uy/L19aVHjx4ATL5deJQp8/f8I2+/Dbt2WZROJOdSMSKS0/z8s3laBmD+fChRgps3b9K1a1euXr1qDtCUe5o+fTpjxoxhw4YNfze+/LJ5mW9Cgjn/yM2b1gUUyYE0ZkQkJ7lxwxwncuyYefBcvRqAwYMHM2vWLIoVK8Zvv/1G3rx5rc2ZHV2+DNWqmWv79OsHuWySOJG00JgRkdxo2DCzEClWzOwVAbZv387s2bMBWLx4sQqRVEhMTCQwMNAca5M/v3llEsC8efDVV9aGE8lBVIyI5BRffw0LF5r3ly+HfPm4ceMGXbt2xTAMunXrRqtWrazNmM106dKF3r1788Ybb5gNvr7Qv795v2tXs7dERB6YihGRnODaNbg18JL+/aFZMwBGjhzJ8ePHKV68ODNmzLAwYPbUtWtXAAIDAwkJCTEb33kHKlY0Vz4eMsTCdCI5h4oRkZxg+HA4fdq88iMgADCnOXd2dsbOzo6lS5fi5eVlccjs54knnqDfrYXzunXrRmRkJLi5madrbDazB+rLLy1OKZL9aQCrSHa3ZQs88YR5/5tvknpFbjt+/DjlypXL/Fw5xPXr16lRowYnTpygR48eLFq0yHxi8GCYNQtKlIDffgP9bhK5gwawiuQGN25At27m/Z49kwqRf/6NoULkwXh4eCTNzbJ48WK+uj1wdeJEKFsWzpzRYnoiDyhNxcj8+fMpU6YMLi4u1KlTJ8XzFvzwww84ODhQs2bNtHysiPzb6NFw4oS5sNu0aQB89913NGnShKNHj1ocLudo2rQpr7/+OgB9+vQhPj4e3N1hyRJzg4ULzR4qEUmTVBcja9euZdCgQfj7+7N3716aNGlCq1atOH369H1fFxERQadOnWj2ry5kEUmjHTvMFWUBFi8GT0+uXbvGa6+9xg8//MB7771nbb4cZvLkyTz33HN8/PHHODg4mI1PPAG9epn3u3Uze6pEJNVSPWakfv361K5dmwW3p0cGKleuTLt27Qi4NXDubl566SXKly+Pvb09n3zyCfv27UvxZ2rMiMi/xMaak5sdOgSdO0NwMAC9e/cmMDCQ0qVL8+uvv5InTx5rc+YGkZFQpQqcPWuOI5k50+pEIllGhowZiY2NZffu3fj6+iZr9/X1ZceOHfd8XVBQEMePH2fs2LEp+pyYmBgiIyOT3UTkH6ZPNwuRQoWSDn4hISEEBgYCsGzZMhUiGWz//v1cuXLFHLh6e1Dr7NmwZ4+1wUSyoVQVI+Hh4SQkJODt7Z2s3dvbmwsXLtz1NceOHWPEiBF88MEHf3dt/oeAgAC8vLySbiVKlEhNTJGc7fhxc8E2MAuR/PmJjIyk262BrP369eOJ21fXSIYIDAykbt26DB482Gxo1Qr8/CAx0Txtk5BgbUCRbCZNA1htNluyx4Zh3NEGkJCQwCuvvML48eOpUKFCit9/5MiRREREJN3OnDmTlpgiOY9hQN++EB1tXjnToQMAw4YN48yZM5QtW5YpU6ZYHDLnq1atGgkJCSxfvpyNGzeaje++a/aS/PLL36v8ikiKpKoYKViwIPb29nf0goSFhd3RWwJw7do1fvnlF/r374+DgwMODg5MmDCB/fv34+DgwHfffXfXz3F2dsbT0zPZTUSANWvMad+dnc0Dns1GVFQUu3fvBsxToh4eHhaHzPkaNWrE0KFDAejVqxeXL18GH5+kCecYNQrOnbMwoUj2kqpixMnJiTp16vw9LfItISEhNGrU6I7tPT09OXDgAPv27Uu69e7dm4oVK7Jv3z7q16//YOlFcpMrV2DQIPO+vz+ULw+Aq6srO3fuZPPmzTz22GPW5ctlJkyYQMWKFQkNDWXgwIFmY69eUK+eOT3/7f9XIvKfUn2aZsiQISxZsoRly5Zx+PBhBg8ezOnTp+nduzdgnmLp1KmT+eZ2dlStWjXZrXDhwri4uFC1alXc3d3T96cRyclGjoSwMKhUCd58M9lTjo6OtGzZ0qJguZOrqyvBwcHY2dmxcuVKPv30U7C3h8BA87/r18OmTVbHFMkWUl2M+Pn5MWvWLCZMmEDNmjXZtm0bmzZtolSpUgCEhob+55wjIpJKO3aYBzkwJ9hydubLL7/krbfeIjY21tpsuViDBg0YNmwYYJ6uuXLlCtSs+XevSN++mntEJAW0No1IVhcXB7Vrm+ufdO0Ky5Zx5coVqlatyvnz55kyZQrDNR25ZaKjo3n00Ufp2LEjAwYMwM7ODq5fh4cfNqeKf/NNc6VfkVwopcdvFSMiWd2sWeZkWgUKwJEjULAgXbp0Yfny5VSoUIG9e/fi5uZmdcpcLSEhAXt7++SNn30Gzz4LDg5w4IB5ek0kl9FCeSI5wYULcHuywIAAKFiQjRs3snz5cmw2G0FBQSpEsoB/FiI3b97k6tWr0LYtPP00xMfDgAHmZdkiclcqRkSyshEjzOnG69aF117j8uXL9Lq1FsrQoUPvehWbWOfnn3+mRo0aSQP6mT0bnJzgm29gwwZrw4lkYSpGRLKqHTtg+XLz/ty5YG/PwIEDCQ0NpWLFikyYMMHafHIHOzs7Tp48ydq1a1m/fj2UK/f3lU+DB8PNm9YGFMmiVIyIZEUJCdC/v3n/tdegfn1OnTrFxx9/jJ2dHcHBwbi6ulqbUe5Qt25dRo4cCUCfPn0ICwszL8kuWRJOn/57UjQRSUbFiEhWtHgx7N0LefPCrendS5Uqxa+//kpgYCANGjSwNp/c01tvvUW1atUIDw+nX79+4OZmThUPMHUq/PGHtQFFsiAVIyJZTXi4OZ04mAviFSqU9FS5cuXo3r27RcEkJZycnAgODsbBwYH169ezbt06eO458PWF2FjNzCpyFypGRLIaf39z6vfq1aF3bzZv3szWrVutTiWpULt2bfz9/QHo27cvF8PCYM4ccHSEL76A24vriQigYkQka/nlF/MUDcDcufx15QqdOnXi8ccf/3t1WMkWRo0aRY0aNahfvz6GYUDFijBkiPnkwIHmyssiAqgYEck6EhPNQauGAR06QJMm9O/fn7/++osqVarg6+trdUJJBScnJ7777js+//xzihQpYjaOHg3FisHJkzBtmrUBRbIQFSMiWcXy5fDTT+DhAVOn8uGHH7Ju3Trs7e1Zvnw5zs7OVieUVMqfPz82my3pcZyzM0yfbj6YMgXOnrUomUjWomJEJCuIjDQnOAMYN44wBwf69u0LmCth16lTx8Jw8qCuXr1Kly5dePHFFzHat4dHHzXnHLn9/1wkl1MxIpIVBARAWBhUqIDRvz99+/YlPDyc6tWr89Zbb1mdTh7QmTNnWLVqFZ9++ikfrFplrjdks8EHH8CPP1odT8RyKkZErHbyJMycad6fPp1tO3fy0Ucf4eDgQHBwME5OTtbmkwdWrVo1xt5aY2jAgAGc9/ExV2AGczBrYqKF6USsp2JExGpvvmnOP9G8OTzzDI899hgrVqxgypQp1KpVy+p0kk6GDx9OnTp1uHr1Kr169cKYOBHy5IFdu2DlSqvjiVjKZhhZfynJlC5BLJLtbN8Ojz0Gdnawbx9Uq2Z1IslABw8epHbt2sTGxhIcHEznixdh+HDw8YGjR83ByyI5SEqP3+oZEbFKYuLfs3H26MEPkZFcvnzZ0kiSsapUqcL48eMBGDhwIOdeeMFcTC80VOvWSK6mYkTEKitWwJ494OnJxX79aNOmDVWrVuXIkSNWJ5MMNGzYMOrVq4eLiwt/hob+fanvjBnm+CGRXMjB6gAiudL160nrzxj+/vTw9+fKlSvUrl2bcuXKWRxOMpKDgwNr1qzB09OTAgUKmJPcPfkkfPcdvPEGrF9vdUSRTKeeERErvPOO2TVftiyrChZk48aNODo6EhwcjKOjo9XpJIOVKVPGLETAvMR31ixz3NBHH4HWIZJcSMWISGY7fTqpa/7yqFH0HzoUgHHjxlFNA1hzFcMwWLVqFa8EBGD07Gk2DhwICQnWBhPJZCpGRDLbiBEQHY3RtCmdPv6Yq1evUrduXd58802rk0kmO3fuHN26dWP16tWsrFAB8uaF/fth6VKro4lkKhUjIpnpxx9h9Wqw2djUvDlfbNqEk5MTwcHBODhoCFduU7x4cSZNmgRAv7Fjufz66+YTo0fD1avWBRPJZCpGRDJLYiIMHmzef+01GvXrR8eOHZkwYQJVqlSxNptYZuDAgTRu3Jhr167xyvffY1SqBH/9BbeKFJHcQJOeiWSWDz6AV181J7Y6dgxuLStvGEaylV0l9zl69Cg1a9YkKiqKL/r3p/XcueDoCIcOwUMPWR1PJM006ZlIVvKPFVov9eqF4e2d9JQKEalQoQIBtyY9ax8UxM2mTSEuzrzUVyQXUDEikhmmT4ezZ4kvXpzKixbRtm1bIiIirE4lWciAAQNo0qQJN27c4NMmTcDeHj75xJx/RCSH04g5kYx27pw5rwgwJV8+/jp7lkuXLuGhdUjkH+zs7AgKCuL06dM88cQT5gDWuXPNcUZ79pjFiUgOpTEjIhmtc2dYsYIL5crhc/w4Li4u7N+/nwoVKlidTLKyS5fM8SJXr0JgINyeh0QkG9GYEZGsYNcucw0awO/8eQAmT56sQkT+08nISD6tVct8MHo06LSe5GAqRkQyimEkXcr7dZEibIuKonHjxrx+ey4JkXuIjo6mYcOGvPC//3GlcGFd6is5nooRkYzy4Yfwww/EOTnR9cIFXF1dCQoKwl7n/uU/uLi4MGbMGOKB125PfjZrFvzxh4WpRDKOihGRjBAVBbemdz//6qu4lC1LQEAA5cuXtziYZBe9e/fmySef5JPYWH7Km9e81FdLBkgOpQGsIhlh8mTw94fixeH337lhGLi6umJnp/pfUu7PP/+kWrVqlLx+nQN2dtglJpqX+j7xhNXRRFJEA1hFrBIaCrcmsOKdd8DNDXd3dxUikmqlS5dm+vTpHAIW3Z4cb/BgreorOY5+O4qkt9Gj4fp1fnFwYM5ff5GYmGh1IsnGevbsSfPmzRmdkMANJydzVd+gIKtjiaQrFSMi6WnvXoxbB4r+8fFs+OQTa/NItmez2Vi6dCn9xozB+fYVNf7+EBlpbTCRdKQxIyLpxTDMc/lbt7IK6OnuzoEDByhTpozVySSniI2FatXg6FEYPhymTLE6kch9acyISGbbsAG2biUKGAFMmzZNhYikLycnEqZOBcB49104ftziQCLpQ8WISHqIicG4tcLqNKBCs2b06tXL2kyS4xiGQcs5c/gasMXG6lJfyTFUjIikhzlzsJ04wXlgvrs7S5cu1dUzku5sNhsdXn2VIUACwMcfw5Yt1oYSSQf6bSnyoC5ehLffBmC0zcaEmTMpVaqUxaEkp+rSpQulWrcm8NZjY9AgXeor2Z6KEZEHNWYMXLsGderw5m+/0aNHD6sTSQ5ms9lYtGgRM/Lk4Spg278fgoMtTiXyYFSMiDyI/fsxliwx78+aRaWHH8Z2e3IqkQxSrFgxxs6dy/hbj+OGD9elvpKtqRgRSSvD4EavXtgSE7nq6wuPPmp1IslFOnbsyJ+tW3MUcLx0CWPyZKsjiaSZihGRNEr45BPcf/qJaGCYztlLJrPZbMxbvJhVtWubj999F06etDiVSNqoGBFJi5gYIm+NDZnr7Mw4nbMXCxQtWpRxv/wCzZubE6LpUl/JplSMiKTBhbfeIt+lS4QC3jNnUrx4casjSW5ls8HMmWBnB+vXE//dd1YnEkk1FSMiqRQfGorHzJkArKlWjVf79LE4keR61aqxu25dAP569VVd6ivZjooRkVT69bnn8EhIYL+dHe2/+EJXz0iWcLpbNyIAn9BQTt+a90Yku1AxIpIKib/+So2ffgIgdPhwipUoYXEiEVO7Hj3YUK0aAG6TJhF76ZLFiURSTsWISEoZBnZDh2IPnG3QgJa3l3MXyQJsNhutN23ihJ0dBePj2fnss1ZHEkkxFSMiKfXFF/DNN+DkRPEPPtDpGclyChcvzvkhQwCo98MP/LZxo8WJRFJGxYhIChzYvZuwTp3MB4MHQ9my1gYSuYdHp07lQOHCuADnOnYkNjbW6kgi/0nFiMh/iIuLY3PbthS+coVIV1cYNcrqSCL3ZrNRbO1aEoCWERE47txpdSKR/6RiROQ/vOvvT/fz580HEyeCp6e1gUT+Q/7HH8d2a1I+2+DBkJhocSKR+0tTMTJ//nzKlCmDi4sLderUYfv27ffc9vvvv6dx48YUKFAAV1dXKlWqxLvvvpvmwCKZad++fXhMn04+4EqpUngOHGh1JJEUsbtdOO/Zw82FC4mOjrY6ksg9pboYWbt2LYMGDcLf35+9e/fSpEkTWrVqxenTp++6vbu7O/3792fbtm0cPnyY0aNHM3r0aBYtWvTA4UUyUmxsLBP8/OhpGADkXbYM7O0tTiWSQoULw1tvAXBtwAAC/P0tDiRybzbDuPWbNoXq169P7dq1WbBgQVJb5cqVadeuHQEBASl6j+effx53d3fef//9FG0fGRmJl5cXEREReKqLXDLJ2DFjaPL22zQHYlq1wnnTJqsjiaROTAzXS5fG48IFJgHNd+6kfv36VqeSXCSlx+9U9YzExsaye/dufH19k7X7+vqyY8eOFL3H3r172bFjB02bNr3nNjExMURGRia7iWSma9eucWrWLJoDCY6OOM+da3UkkdRzdsbj1h+OQ4FRr7yi0zWSJaWqGAkPDychIQFvb+9k7d7e3ly4cOG+ry1evDjOzs7UrVuXfv360b1793tuGxAQgJeXV9KthGa5lEyWx8GBJV5eANgPH65LeSX7evZZ4h59FBeg54kTjBkzxupEIndI0wDWf0/2ZBjGf04AtX37dn755RcWLlzIrFmzWL169T23HTlyJBEREUm3M2fOpCWmSNpNm4bD2bNQvDiMGGF1GpG0s9lwnDsXw2bDD9g5fTo//vij1alEknFIzcYFCxbE3t7+jl6QsLCwO3pL/q1MmTIAVKtWjYsXLzJu3Dhefvnlu27r7OyMs7NzaqKJpIvdu3cTceAAT94e/zR9Ori7WxtK5EHVqIGte3dYvJiZhsGrnTuzd/9+XF1drU4mAqSyZ8TJyYk6deoQEhKSrD0kJIRGjRql+H0MwyAmJiY1Hy2S4WJiYujUqRPhXbtCdDQ0bQrt21sdSyR9vP02hocHdYEBefNq7IhkKanqGQEYMmQIHTt2pG7dujRs2JBFixZx+vRpevfuDZinWM6dO8eKFSsAmDdvHiVLlqRSpUqAOe/I9OnTGTBgQDr+GCIPbty4cRQ+dIj2gGFnh23OHND6M5JTeHtje+stGD6cfmfPgqOj1YlEkqS6GPHz8+PSpUtMmDCB0NBQqlatyqZNmyhVqhQAoaGhyeYcSUxMZOTIkZw8eRIHBwfKlSvHlClT6NWrV/r9FCIP6Oeff2bGO++w+9ZjW58+UL26pZlE0t3AgRAYCCdOwDvvYEyYQEJCAg4OqT4UiKSrVM8zYgXNMyIZKTo6mlq1atH8yBHeA8ifH44dM/8rktNs2ADPP4/h4kK/xx/HqWJFZs2aZXUqyaEyZJ4RkZxozJgxhB85wtu3T8lMmqRCRHKudu3gySexRUfTcvNm5syZc98lPUQyg3pGJFc7duwYlSpVYn5iIr0AatSA3bs17bvkbIcOmd/1+HhaA0fLlWP//v2468oxSWfqGRFJgfLlyxPyzjv0uN3w3nsqRCTne/hhGDQIgPn29pw9fpyRI0dam0lyNRUjkrsZBk9u2GD+Q3j5ZWjSxOpEIpljzBgoWpTSCQm8Abz33nts3brV6lSSS6kYkVzp119/NSfvW7ECduwANzeYOtXqWCKZJ08emDEDgLfs7SkFdO3alevXr1ubS3IlFSOS69y8eZP/+7//o1HlysTd6qpm7Fhz6neR3MTPD554AqeEBAJdXYmPj+fPP/+0OpXkQipGJNfx9/fnjz/+YGxcHI5Xr0Llyknnz0VyFZvNHCfl4EDLqCiOzJxJ1apVrU4luZCKEclVtm3bxuzZs6kLdLp502ycPx+cnCzNJWKZKlXMydAAtxEjzKUQRDKZihHJNW7cuEHXrl2xGQbrChbEZhjQoQM8/rjV0USsNXYsFC0Kx49jTJvGokWLGDZsmNWpJBfRHMCSa4wcOZITJ04wMl8+yoSHg6enuSqvSG6XJ4/5b+GVVzAmTWJyTAyngJYtW9KiRQur00kuoJ4RyRW2bdvGe++9RyFgfFyc2ThxIhQpYmkukSzjpZfg8cexi4nh0zJlAOjWrRuRkZEWB5PcQMWI5Aq1a9emT58+fFKhAo7Xr0OtWtCnj9WxRLIOmw3mzgUHB2qcPMlrRYpw5swZna6RTKFiRHIFDw8P5r/yCo2OHjUb5s8HrVQqklyVKklXls0FXIHFixfz1VdfWZlKcgEVI5KjnT17lsTERIiL+7snpEcPaNDA2mAiWdXYsVCyJK4XLvBZnToAdO/enYiICIuDSU6mYkRyrGvXrvHoo4/SvHlzIidNgt9+gwIFICDA6mgiWZeHh3m6Bmi2fz+tihfn/PnzfPPNNxYHk5xM/dSSY73xxhucOnWKYgkJ5Pn5Z7PxnXfMgkRE7q1NG3juOWwbNrA2Xz4Orl1Lg0aNrE4lOZh6RiRHCgkJITAwEIBPS5TAduMGNG4MXbtanEwkm5gzBzw8yHPgAA0OHLA6jeRwKkYkx4mMjKRbt24ALH7qKQr++CM4OsKiRWCnr7xIihQvbl7+DjBiBFy8yOHDh5kyZYq1uSRH0mkayXGGDh3KmTNnqF66NK/t22c2jhgBDz9saS6RbKd/f3j/fdi9m+i+fam7eTM3b96katWqPPPMM1ankxxEfyZKjvLVV1+xZMkSAL6sUQO7CxegQgUYNcriZCLZkL09BAaCnR0uH3/Mu61aAdCzZ08uX75scTjJSVSMSI5SqFAhHn74Yd598UWKfvqp2bhwIbi4WBtMJLuqU8fsIQG6791L9fLlCQ0NZeCtxfVE0oOKEclRateuzZ6dO3n94EGzoWtXeOIJa0OJZHdvvw3FimF34gRfNG6MnZ0dK1eu5NPbBb/IA1IxIjlCTExM0n3nOXOwO3QIChaEadMsTCWSQ3h6mlfXAMU/+IBpnTsD0KtXLy5dumRlMskhVIxItnflyhUqV65MQEAA8YcPm3/FAcyapTlFRNLLc89B27YQF8egAweoUqkSFy9eZPbs2VYnkxzAZhiGYXWI/xIZGYmXlxcRERF4enpaHUeymC5durB8+XIqlC/PIR8f7LdtA19f2LzZXPxLRNLHuXPmVWmRkZweNIgPChfmjTfewEHrPMk9pPT4rZ4RydY2btzI8uXLsdlsfN6+vVmIuLiYC+GpEBFJX8WKwfTpAJQMDGSkn58KEUkXKkYk27p8+TI9e/YEYFyvXpSfN898YuxYKFfOwmQiOVj37uag8Kgoc9FJwyAmJoZVq1ZZnUyyMRUjkm0NHDiQCxcuUKliRfzPnYOrV6F2bRg61OpoIjmXzWbOZuzqCt99R/zixdSvX58OHTqwfv16q9NJNqViRLKlTz75hJUrV2JnZ8dnr76K/caN4OAAy5aZU7+LSMZ56KGkgeIOb77JK48/DkCfPn0ICwuzMJhkVypGJFu6ePEizs7OjOvXj/K3R/P7+0ONGtYGE8ktBg6ERx6BiAiGnTxJ9WrVCA8Pp2/fvmSD6yIki1ExItlSr1692LdvH6MuXIDwcKhaVVO+i2QmBwdYuhQcHLD77DM+6dgRBwcHPvroI9atW2d1OslmVIxItlXpyBHsP/zQXD8jKAicnKyOJJK7VKuW9EdAmenTmThkCAD9+vXj4sWLViaTbEbFiGQbf/31F48//jg//fQTXL4MffqYT7zxBtSta204kdxq1Chz7pGwMIadP0/NmjW5dOkSQ24VJiIpoUnPJNvw8/Nj3bp11KhRg701amBbsQIqVoR9+7QQnoiVdu6ERo3AMDg5axZ9vvyShQsXUrp0aauTicU06ZnkKB9++CHr1q3D3t6eD197zSxEbDbz6hkVIiLWatAg6ZL6MgEBbP7gAxUikioqRiTLCwsLo2/fvgCMHzqU8rcXvxs0yPxrTESs9/bbULkyXLwI/fsnNe/du1dX18h/UjEiWZphGPTt25fw8HCqV6/OiLAwOHvWnGF14kSr44nIbS4usHy5OaB8zRpYv57BgwdTu3ZtPvjgA6vTSRanYkSytHXr1vHRRx/h4ODAx127Yh8c/PfpGTc3q+OJyD898giMGGHe79OHkrdOoQ4YMIDz589bGEyyOhUjkqV98sknAEwaPJhyU6aYjUOGwGOPWRdKRO5tzBioXh3Cwxl45Ah1atfm6tWr9OzZU6dr5J5UjEiWtmrVKlavWsWw48fNc9EPP6zTMyJZmZOTebrGwQG7Tz7hk/btcXJy4osvvmDFihVWp5MsSsWIZGk2m42XDAO7jz82Z3xcsUJXz4hkdTVrmj0kQPEpU5hx60qbgQMHcvbsWQuDSValYkSynNDQUAYNGkRkZCScOwf9+plPvPUW1KljbTgRSZkRI8x/r1ev0nffPuo98ggRERH06NFDp2vkDg5WBxD5J8Mw6NWrFxs3buTUn3+yIToarl41Z1gdOdLqeCKSUo6O5uma2rWx+/JLNrz9NvXOn6dz585WJ5MsSD0jkqWsXLmSjRs34ujoyNxq1eCrr8DZ2Tw94+hodTwRSY0qVcz5R4Ci77zDiZAQXnrpJWw2m8XBJKtRMSJZxvnz53n99dcBmD1gAMVmzjSfmDLFnExJRLKfoUOhSRO4fh2nbt0gPh6AK1eu6HSNJFExIlmCYRj07NmTq1evUq9OHXrv3Ak3b8Ljj8OtAkVEsiF7e7Nn09MTfvwRAgL47LPPqFSpEkuWLLE6nWQRKkYkS1i+fDlffPEFTk5ObHz0UWw7dkCePBAUBHb6mopka6VLw7x55v3x47n+3XeEhYUxdOhQTp06ZWk0yRr0W14sFx8fz6RJkwBY3KMHhW//0pozx/wlJiLZX4cO4OcHCQm8/MUXNG/QgGvXrtGtWzedrhEVI2I9BwcHfvjhB8YNG0bHzZvNc8rt24NG3YvkHDYbLFgAxYtj++MP1pcsiaurK99++y2BgYFWpxOLqRiRLKFw4cKMvXwZ2/HjULw4LFxo/vISkZwjXz5z/IjNhte6dax95RUAhg0bxsmTJy0OJ1ZSMSKWOX36NOvXrzcfrF9vLn5ns8HKleYvLRHJeZ54wrzCBnjm0095tn59bty4Qbdu3UhMTLQ4nFhFxYhYwjAMunfvzosvvsi7Q4dCz57mEyNGQNOm1oYTkYw1cSJUr44tPJwPXFxwc3WldOnSxMTEWJ1MLKJiRCyxZMkSQkJCcHV2pucPP8CVK+Ysq+PGWR1NRDKaszN88AE4O+O+dStnR41i2bJluLq6Wp1MLKJiRDLdqVOnGDJkCACbW7TA/aefwM3N/OXk5GRxOhHJFFWrwjvvAJBv0iT47TfA7DXV6ZrcR8WIZCrDMOjWrRvXr1+na40aNPnqK/OJ2bOhQgVrw4lI5howAJ56CqKj4aWXOHfsGK1bt2be7cv7JddQMSKZKjAwkG+//Zb8Li4sjIzEFhcHzz0H3bpZHU1EMpudHQQHg7c3HDzI1W7d2Lx5M8OHD+ePP/6wOp1kIhUjkmkuX77MG2+8AcC2GjVwOnkSihaFxYt1Ga9IbuXtDe+/D0CV7dsZW7UqUVFRdO3aVadrcpE0FSPz58+nTJkyuLi4UKdOHbZv337PbT/++GNatGhBoUKF8PT0pGHDhnx1u2tecpX8+fOzfv165jdoQJWffjL/Klq5EgoUsDqaiFipRQsYPhyAt06fprKbG99//z1z5syxOJhkllQXI2vXrmXQoEH4+/uzd+9emjRpQqtWrTh9+vRdt9+2bRstWrRg06ZN7N69myeeeII2bdqwd+/eBw4v2U/LkiXp8+uv5oOxY805B0RE3n4b6tfHPjKSb318sAdGjhzJ0aNHrU4mmcBmpHJRgPr161O7dm0WLFiQ1Fa5cmXatWtHQEBAit6jSpUq+Pn5MWbMmLs+HxMTk+x688jISEqUKEFERASenp6piStZwKlTp7DZbJQsWBDq1YODB6FZM/jqK3NFTxERgJMnoWZNiIxkZZkydDx5koYNG7J9+3bs9bsiW4qMjMTLy+s/j9+p6hmJjY1l9+7d+Pr6Jmv39fVlx44dKXqPxMRErl27Rv78+e+5TUBAAF5eXkm3EiVKpCamZCGJiYl06tSJqlWrcqZdO7MQKVLEvIxXv1xE5J/KlIFb69R0+PNPWru6Eh4ezvnz5y0OJhktVcVIeHg4CQkJeHt7J2v39vbmwoULKXqPGTNmcOPGDdq3b3/PbUaOHElERETS7cyZM6mJKVnI3Llz2bZtG34xMZQICTHHiaxaZQ5aExH5t5degtdew2YYbHB3Z9833+gP0lwgTQNYbf+68sEwjDva7mb16tWMGzeOtWvXUrhw4Xtu5+zsjKenZ7KbZD9//PEHI0aMoDIw/3bjuHEaJyIi9zdnDlSqhFN4OG79+kHqRhNINuSQmo0LFiyIvb39Hb0gYWFhd/SW/NvatWvp1q0bH374Ic2bN099UslWEhMT6dq1K7aoKDa5u+N44wY0bw6jRlkdTUSyOnd3WLMG6teHzz8ncfZsZhsGdnZ2DBw40Op0kgFS1TPi5OREnTp1CAkJSdYeEhJCo0aN7vm61atX06VLF1atWsXTTz+dtqSSrcyZM4fvv/+ehQ4OlL5xwxwnsnKlxomISMrUqAHTpwNgvPEGK4cMYfjw4Rw6dMjiYJIRUn2aZsiQISxZsoRly5Zx+PBhBg8ezOnTp+nduzdgjvfo1KlT0varV6+mU6dOzJgxgwYNGnDhwgUuXLhARERE+v0UkqUcO3bM/B4AHePjNU5ERNKmXz9o1w77+Hi+cHXFJSaGLl26EB8fb3UySWepLkb8/PyYNWsWEyZMoGbNmmzbto1NmzZRqlQpAEJDQ5PNORIYGEh8fDz9+vXDx8cn6aautpyrePHivP3yywTe7gXROBERSQubDZYtg9KlKRIVxXIHB3bt2sW0adOsTibpLNXzjFghpdcpSxZx44Y5n8ihQ+Y4kc2bdXpGRNJu1y5o3Bji4hgALHJyYvfu3VStWtXqZPIfMmSeEZH7CQsLIyEhAfr3NwsRHx/NJyIiD+6RR5LGj8y02agWG0uXLl2Ii4uzOJikFxUjki4SEhJo27YtARUrmqtw3h4ncp9LuEVEUmzAAHjuORwNg/V2dvy5bx87d+60OpWkk1Rd2ityLzNmzODaTz8x5HbD+PHw+OMWJhKRHOX2+JF9+yh98iR/PPkkeR991OpUkk7UMyIP7NChQwSMHs06wA3MFThHjrQ4lYjkOHnzwrp14OhI3u++g/feszqRpBMVI/JA4uPj6dKlCzPj4qgCGD4+mk9ERDJO3bowY4Z5f9gwfn//fZYsWWJtJnlgKkbkgUybNo2Hd+2iK2DY2WHTOBERyWj9+8P//R/ExeHUqRMje/dm3759VqeSB6BiRNLst99+Y+2YMUnrztg0TkREMoPNBkuXYpQtSxlgcUICnTt1IjY21upkkkYqRiTNHGNj+djBATfAaNFC686ISObx8sK2bh2GkxPtgCcOHGDSpElWp5I0UjEiaVZxzhzKRkeTWKQItpUrzct5RUQyS5062GbOBGAq8PXEiezZs8faTJImOnpIqsXFxZlziSxfDnZ22K1Zo3EiImKNvn3hxRdxAlYnJjKgQwdiYmKsTiWppGJEUiUuLo5Xa9UitkcPs2HCBGja1NpQIpJ72WyweDEJpUtTGnjzyBGCg4KsTiWppGJEUmXauHGMPXgQp/h4Ypo21XwiImI9Ly/sP/6YBAcHngV6XL9udSJJJRUjkmL79u2jeEAADwNRefPivG6dxomISNZQqxb2c+YAYDdyJPz4o8WBJDV0JJEUiY2N5eM2behkGCQALhs2aJyIiGQtvXuDnx/Ex5PYvj2bP/jA6kSSQipGJEUWDxzIiLNnAYgaORKb5hMRkazGZoNFi0goVw67s2dJfPVVftZietmCihH5T/u+/54nFy7EDbhQvToeEydaHUlE5O48PbH/6CNi7e1pDWxv25bo6GirU8l/UDEi92cY5PX3pzJw2cWFIiEhGiciIllbjRrETpsGwMC//iKoWzeLA8l/0VFF7i84mNLbtmHY2WG3dq3GiYhItuAxaBBnmzbFAWi7ahW/fPml1ZHkPlSMyL399hv06weA7e23ydu2rcWBRERSyGaj+Oefc97Tk2JA1AsvEHXjhtWp5B5UjMhdxVy6xJmGDSEqCnx9YcQIqyOJiKSOhwfumzYRBTS5eZPtrVtbnUjuQcWI3MkwONS0KSWuXyfUzo6oxYs1TkREsiWvxo35feBAAFp8/z1s2WJtILkrHWHkDifeeotaBw+SABybMAHXkiWtjiQikmY1Z83C6NwZW2IivPwyXLxodST5FxUjkkzML79QdPJkANbXqMFj/v4WJxIReXC2efPg4YfhwgWut2sHCQlWR5J/UDEif7t+nYiWLXExDP7n5ETzkBCrE4mIpA93dxLWrCHGwQGPnTs5dXuxT8kSVIyIyTD464UXKHz5MueAmCVLKFCokNWpRETSjX21arzfqBEAJYKCiPr8c4sTyW0qRsQUFEShr74iAQjy9eWpjh2tTiQiku5e/OwzVru5YQfEtW8PoaFWRxJUjAiY84n072/e9fOj35o1FgcSEckYXl5eFFqzhl8Bz6gorrZuDfHxVsfK9VSM5HY3bkD79uZ8Ii1bUmPVKvLly2d1KhGRDNO8TRs+fPFFrgF59+0jVgP1LadiJJeL790bDh8m0dsbVqzQfCIikiu8sWQJowoUAMBh6lT4+muLE+VuOvLkZitW4LByJQlAn7x5MTRgVURyCU9PT55ds4YVt8aP0KEDnDtndaxcS8VIbnX4MAm9egEwDmj37rvYbDZLI4mIZKbmzZvz4tmzULMmhIebE6Jp/IglVIzkRlFRJL7wAvbR0XwLXOjalVatWlmdSkQk07nmywcffgh58sD27TBmjNWRciUVI7nRwIHYHTrEBeANHx+mv/uu1YlERKzz0ENs79zZvB8QAF9+aW2eXEjFSG6zejUsXkwi8CowJTgYLy8vq1OJiFhqrWEw79b9xFdfhTNnLM2T26gYyU2OHYOePQGYBJTr2RNfX19rM4mIZAFTpkzhvdKl2Q3YXb4ML70EcXFWx8o1VIzkFtHR5nwi168T16gRkYMGMW3aNKtTiYhkCR4eHgQGB9MeiADYsQM0/0imUTGSWwwdCvv2QcGCOK5bx7R338XT09PqVCIiWUbTpk155vXXee12w7RpsGmTlZFyDRUjucH69TB/PgDGihVQrJjFgUREsqbJkyezv1w55txu6NJF69dkAhUjOd3Jk9CtGwBTgL6ffWZtHhGRLMzd3Z2goCBG2tlxtmBB+Osv6NgREhOtjpajqRjJyeLi4JVXIDKSHcBbQPv27a1OJSKSpTVp0oQDx45RfPt2cHODb781T9lIhlExkpONHw87dxJhs/Ey0KtfP5544gmrU4mIZHlly5aFSpVgzq0TNqNHw08/WRsqB1MxklNt2QKTJwPQwzBwKFuWKVOmWJtJRCSbOfH443xXqJA5TfzLL0NEhNWRciQVIznRpUvw6qtgGCwFPgSCgoLw8PCwOpmISLayaPFinv/rL87Y25tj8Pr0AcOwOlaOo2IkpzEM6N4dzp3juIMDrwOvv/46jz32mNXJRESynbFjx1KkYkX8EhJIsNnMWaxXrLA6Vo6jYiSnCQyETz4BR0ciFizgsaeeYvKt0zUiIpI6rq6uBAcH85OdHWNu94j06wdHj1obLIdRMZKTHDwIgweb96dMoXb37nz55Ze4u7tbm0tEJBtr0KABw4YNYwrwvZMT3LhhThcfE2N1tBxDxUhOER1tDq6KjuZGkyYwaJDViUREcozx48dTsXJl/GJjuebsDHv3wsiRVsfKMVSM5BRvvgkHDhDh4kKVXbtYuWqV1YlERHIMFxcXgoODuWBnx6giRczGd9/VdPHpRMVITvD55/DeewD4RUdzOibGvEZeRETSTb169di8eTMzjh6FAQPMxq5dISzM2mA5gIqR7C401PzHAAS6u/MVMHToUBo1amRtLhGRHKhFixY4OTnB1KlQtapZiHTvrst9H5CKkezMMMxCJDycP/Pl4/UbN6hYsSITJkywOpmISI4WZ29P4GOPkeDgABs3wuLFVkfK1lSMZGfz5sFXX5Hg5ESrK1eIt7MjODgYV1dXq5OJiORogYGB9J4/n/FOTmbD4MG63PcBqBjJro4cgTfeAOAtZ2eOAG+88QYNGjSwNpeISC7Qs2dPqlWrxsSbN/mtUCG4edOc+Touzupo2ZKKkewoNtb80kdHk9i8Oc6DB1OjRg3GjRtndTIRkVzBycmJ4OBg7B0caPXXX8S6u8OuXTBxotXRsiUVI9nRhAmwezfkz4/d8uWMHT+eXbt24eLiYnUyEZFco3bt2vj7+3MW6GuzmY0TJ8KPP1qaKztSMZLd7NgBAQEAxM2bB0WLAuDo6GhlKhGRXGnUqFHUqFGDpdevs6VECUhMNHuur12zOlq2kqZiZP78+ZQpUwYXFxfq1KnD9u3b77ltaGgor7zyChUrVsTOzo5Bmhk07a5dg44dITGRbaVK8ciUKfz2229WpxIRybWcnJxYvnw5Dg4O+IWFEVe0KJw4oVmwUynVxcjatWsZNGgQ/v7+7N27lyZNmtCqVStOnz591+1jYmIoVKgQ/v7+1KhR44ED52qDB8OJE9woVIg2p07x22+/EaO1EURELFWjRg2WLl3Ktv37cVy1Cmw2WLYMNmywOlq2YTOM1M3UUr9+fWrXrs2CBQuS2ipXrky7du0IuHX64F4ef/xxatasyaxZs1IVMjIyEi8vLyIiIvD09EzVa3OMTz+Fdu0wbDbaeXryWUQEo0eP5u2337Y6mYiI/NOIEfDOO1CgABw4AD4+VieyTEqP36nqGYmNjWX37t34+voma/f19WXHjh1pS3oXMTExREZGJrvlahcvQo8eAHxavjyfRURQvXp13nrrLYuDiYjIv/3YqhVXy5SBS5fM392anfU/paoYCQ8PJyEhAW9v72Tt3t7eXLhwId1CBQQE4OXllXQrUaJEur13tmMY5lTDf/3FlVKl8Dt6FAcHB4KDg80piUVEJMv49ttvafzEE7QKD8dwcoIvvoCgIKtjZXlpGsBqu30J0y2GYdzR9iBGjhxJRERE0u3MmTPp9t7ZTlAQfP45hpMTba5eJRbw9/enVq1aVicTEZF/adq0KbVr12bntWsE316wdNAguMe4SjGlqhgpWLAg9vb2d/SChIWF3dFb8iCcnZ3x9PRMdsuVTp9OGpF9dehQbNWqUbNmTUaNGmVtLhERuSsHBweWL1+Ok5MT3Y8cIeyhh8wrIbt1My/7lbtKVTHi5OREnTp1CAkJSdYeEhKiVWLTm2GYX95r16BhQ/K9/TZbtmxh8+bNOj0jIpKFValShfHjx5MIPHXhAokuLvDNN7BwodXRsqxUn6YZMmQIS5YsYdmyZRw+fJjBgwdz+vRpevfuDZinWDp16pTsNfv27WPfvn1cv36dv/76i3379nHo0KH0+QlyqsBA+OYbDFdXCA4Ge3vs7e3TtQdKREQyxrBhw6hXrx57r18nsEwZs/GNN+D4cWuDZVGpvrQXzEnPpk6dSmhoKFWrVuXdd9/lscceA6BLly78+eefbNmy5e8Puct4klKlSvHnn3+m6PNy3aW9J09CtWpw4wZLq1Xjt2bNmDRpEm5ublYnExGRFDp8+DC1atUiNiaGsOrVKfjrr/Doo7BlC9jbWx0vU6T0+J2mYiSz5apiJDERnnwStm7lYsWK+Pz+Ow6OjuzZs4eqVatanU5ERFJh7ty5uLm50fWJJ7BVrw7Xr8OMGTBkiNXRMkVKj98OmZhJUmLePNi6lUQ3N1qeP48BjBs3ToWIiEg21L9//78fvPuuOe/IqFHQqhVUrmxdsCxGC+VlJceOwfDhACwsU4b9165Rt25d3nzzTYuDiYjIg4p44QUu1a8PMTHQuTPEx1sdKctQMZJVJCRA164QFcX5ypXpf/AgTk5OBAcH4+CgDiwRkezs5MmTVK1WjUa//UaCpyfs2gVTp1odK8tQMZJVzJoFP/xAors7Lc+exQAmTJhAlSpVrE4mIiIPqGTJkpQqVYqjN24w7fas4uPGmWvXiIqRLOHIEfD3N+/27MkZOzvq1avH0KFDLQ4mIiLpwd7enmXLluHq6srIgwc5WaMGxMXBa6/pdA0qRqyXkABdupjnEFu25OEZMzh48CCrVq3S6RkRkRykQoUKTJ48GYDmR4+ap2t++QVmzrQ4mfVUjFhtzhz46Sfw9ITFi8Fmo1ixYpQrV87qZCIiks5ef/11mjRpwomoKKYVLWo2jhkDv/9ubTCLqRix0okTSadngqpU4Ytff7U4kIiIZCQ7OzuWLVuGm5sbI48c4XSVKmbPeC5fu0bFiFUMw7zePCqK8xUr8tqPP/LCCy9w8eJFq5OJiEgGeuihh5gyZQp+fn54rFwJHh7www/mPFO5lIoRqyxdCt99R6KLC0+dOQPApEmTtPaMiEgu0L9/f9asWUP+mjX/vsR3xAhzOZBcSMWIFc6dg1tXygSWKMGBmzdp3LgxAwcOtDiYiIhkhn+u2Wb07ElUvXpw86bZY571V2lJdypGMpthQJ8+EBnJxdKl6X/sGK6urgQFBWGfSxZOEhER040bN3jRz49H9u8n0cUFvv3W7DnPZVSMZLa1a2HjRgxHR565eJFEICAggPLly1udTEREMpmrqytXrlzhYEwM8318zMahQ+HsWWuDZTIVI5kpPBwGDADgh8cf55eoKJo0acKAW20iIpK72NnZsXTpUjw8PBh48iShpUpBZCT07p2rTteoGMlMAweaBUm1ajz6+ed8/PHHBAUFYWen/w0iIrlV6dKlmT59OonA0xcukOjoCF98AR98YHW0TGMzjKxfekVGRuLl5UVERASenp5Wx0mbzz+HNm3Azg527oRHHrE6kYiIZBGGYeDr68s333zDwpIl6XX6NBQoAIcPQ6FCVsdLs5Qev/UneWaIiDC73IDv69fnwu1FkkRERDCvrlm6dCl58uSh/+nThPn4wKVLSVde5nQqRjLD8OFw7hxXCxXC98cfadCgAbGxsVanEhGRLKRkyZLMnDmToiVLcsrfH2w2eP99+Pprq6NlOBUjGW37dggMBKB9RARRwJtvvomTk5O1uUREJMvp1q0bBw8e5JF+/ZIueKB3b3MOkhxMxUhGiomBnj0B+Mzbm5DYWJ588kl63zplIyIi8k82mw0PDw/zwcSJJBYvbs7KOn68tcEymIqRjPTOO3DkCDfy5KHzxYt4eHiwdOlSXT0jIiL3ZRgGgatW0TEiwmyYMQP27rU2VAbSUTGj/P47TJoEQO/oaK4C06dPp3Tp0lamEhGRbOKzzz5j1bVrfJMvHyQkmFPFJyRYHStDqBjJCIYBvXpBbCz7fHxYGRdH8+bN6XnrlI2IiMj92Gw2Fi1ahJeXF69euUK0iwvs3g1z5lgdLUOoGMkIQUGwdSu4uVE+JIRBgwaxZMmSZAsjiYiI3E+xYsWYPXs2F4HBcXFm4+jR8OefVsbKEJr0LL2FhUGlSnDlCkybBsOGWZ1IRESyKcMwaNu2LV98/jm7PDyoc/06tGplztCaDf7A1aRnVhk8GK5c4UqpUiS+/rrVaUREJBuz2WwEBgaSN18+Oly/Try9PXz5pbnoag6iYiQ9ffUVrFpFos1Gi1OneOGll6xOJCIi2VzRokWZM2cOx+zs2Pboo2bjwIFw+bK1wdKRipH0cvMm9OkDwDw7O3YDbdq0sTaTiIjkCB06dODgwYM8+fXX8PDD5pCAN9+0Ola6UTGSXsaPh5MnuejoyKiEBFq3bk2XLl2sTiUiIjmAzWajUqVK4OQEixaZjUuXwpYtluZKLypG0sP+/eaENED3uDjsvbxYtGiRrp4REZF0dyhfPjYUKWI+6NPHnO07m1Mx8qASEswp3xMS+Nhm43Ngzpw5FCtWzOpkIiKSA7399tt0vXCBSw4OcOQITJ9udaQHpmLkQc2fDz//zHV7e/obBs888wwdO3a0OpWIiORQs2bNwqFAAQbEx5sNEyfC8ePWhnpAKkYexPnz4O8PwKVhw3ioSRMCAwN1ekZERDKMt7c38+fPZzXwrc0G0dHQv785+3c2pUnPHoSfH6xbB/Xrw44doAXwREQkk7z44ovsX7+e32w2nAzDPB69+KLVsZLRpGcZ7euvYd06DDs7WLBAhYiIiGSq+fPnc7VQISbf7lMYOBAiI60NlUY6gqZFdDT06wfAe8Cc7dutzSMiIrlOoUKFmD9/PlOAMy4uEBoKb71ldaw0UTGSFu+8A3/8wXlgdGIihQoVsjqRiIjkQi+88AKrP/6Yohs2mA1z55qr+2YzGjOSWn/8gVG1KraYGPyAuOee46OPPtKgVRERsdYrr8Dq1VC3LuzcCfb2VifSmJEMYRjQvz+2mBi+Br7Nn58FCxaoEBEREcvFBAQQ5ewMv/wCCxdaHSdVVIykxvr18NVXxAD9gPkLFuDt7W11KhEREcbMn8/QW7OxGqNGmWNIsgkVIykVGYkxaBAAU4CaL7xA+/btLY0kIiJy25tvvsmn3t78DNgiI2HIEKsjpZiKkZQaNw7b+fNcKVCAlcWLM3/+fKsTiYiIJClQoAALFi2iN5AAsGaNOQ1FNqBiJCX274c5cwDIt3IlB44d0xU0IiKS5bRt25aqHTvy3q3HiX36QFSUpZlSQsXIf0lMJLF3b3NBvBdegKeewsXFxepUIiIidzV79mzme3tzDrA7cQICAqyO9J9UjPyXZcuw27mTGzYbezp1sjqNiIjIfeXLl4+ZS5bw+q3HxpQp5uq+WZiKkfsJDyd+6FAARhsGp26vkCgiIpKFPfPMMzw6YwY3n3gCW1wc9O2bpRfSUzFyH/FDh+IQGcl+IPyll3juueesjiQiIpIig4cMwW3pUnBxgf/9zxzQmkWpGLmX77/HYcUKAEbnz8+suXMtDiQiIpJKZcqAvz8AsQMGQESExYHuTsXI3cTFcbNzZwAWAz2CgihQoIC1mURERNJgdfHiHAWcLl0ibuRIq+PclYqRu4ibPh23EycIB/a2b0/btm2tjiQiIpImrZ97jnEFCwJgv3Ah7N1rcaI7qRj5tzNncJg4EYDJXl5Mymbz+4uIiPyTl5cXnVeuZA1gZxhEdugAiYlWx0pGxci/DRqE7eZNjMaNGbRvH/ny5bM6kYiIyANp2bIlu195hUjA8/BhoufNszpSMjbDyMLX+tyS0iWIH1Ti559j16aNuezy3r1QrVqGfZaIiEhmioyMZFapUoy5epUbzs64nz0Lt07fZORnpuT4rZ6R227e5EqHDgDE9OmjQkRERHIUT09PGq9Zw37APSaGyz17Wh0piYqRW0736UOByEjOAN83b251HBERkXTXrGVLfnz1VQDyb9gAO3ZYnMikYgS4uXcvRW7NKbKxWTOaPfusxYlEREQyRu/334fXXjMf9OkDWWB28TQVI/Pnz6dMmTK4uLhQp04dtm/fft/tt27dSp06dXBxcaFs2bIszEpXqBgGZ9q2xQn4zsWFDuvXW51IREQkY73zDuTPD7/+ytkRI6xOk/piZO3atQwaNAh/f3/27t1LkyZNaNWqFadPn77r9idPnqR169Y0adKEvXv3MmrUKF5//XU++uijBw6fHg6NHUvFs2eJAhwXLsQrb16rI4mIiGSsggU51acPAHlnzuSaxQvppfpqmvr161O7dm0WLFiQ1Fa5cmXatWtHwF2WKR4+fDifffYZhw8fTmrr3bs3+/fv58cff0zRZ2bU1TTXz53jZqlSFE5I4NO6dXl21650e28REZGs7HpkJMcKF6ZWTAy7ypblkePH0/0zMuRqmtjYWHbv3o2vr2+ydl9fX3bcYxDMjz/+eMf2LVu25JdffiEuLu6ur4mJiSEyMjLZLSPcHDKEwgkJHHdw4IlNmzLkM0RERLIiD09PEt97jwTgkRMniLXwOJiqYiQ8PJyEhAS8vb2TtXt7e3PhwoW7vubChQt33T4+Pp7w8PC7viYgIAAvL6+kW4kSJVITM2UMg8IFCmDYbCS+9x6ehQql/2eIiIhkYXV69OBcu3YYXl44XbtmWY40DWC12WzJHhuGcUfbf21/t/bbRo4cSURERNLtzJkzaYl5fzYbzJ+P7fffKd+7d/q/v4iISDZQMjgY2++/g5+fZRkcUrNxwYIFsbe3v6MXJCws7I7ej9uKFCly1+0dHBzuuRKus7Mzzs7OqYmWduXLZ87niIiIZEVeXubNQqnqGXFycqJOnTqEhIQkaw8JCaFRo0Z3fU3Dhg3v2P7rr7+mbt26ODo6pjKuiIiI5DSpPk0zZMgQlixZwrJlyzh8+DCDBw/m9OnT9L51qmPkyJF06tQpafvevXtz6tQphgwZwuHDh1m2bBlLly5l2LBh6fdTiIiISLaVqtM0AH5+fly6dIkJEyYQGhpK1apV2bRpE6VKlQIgNDQ02ZwjZcqUYdOmTQwePJh58+ZRtGhR5syZw//93/+l308hIiIi2ZZW7RUREZEMoVV7RUREJFtQMSIiIiKWUjEiIiIillIxIiIiIpZSMSIiIiKWUjEiIiIillIxIiIiIpZSMSIiIiKWUjEiIiIilkr1dPBWuD1JbGRkpMVJREREJKVuH7f/a7L3bFGMXLt2DYASJUpYnERERERS69q1a3h5ed3z+WyxNk1iYiLnz58nT5482Gy2dHvfyMhISpQowZkzZ7TmTQbTvs4c2s+ZQ/s5c2g/Z46M3M+GYXDt2jWKFi2Knd29R4Zki54ROzs7ihcvnmHv7+npqS96JtG+zhzaz5lD+zlzaD9njozaz/frEblNA1hFRETEUipGRERExFK5uhhxdnZm7NixODs7Wx0lx9O+zhzaz5lD+zlzaD9njqywn7PFAFYRERHJuXJ1z4iIiIhYT8WIiIiIWErFiIiIiFhKxYiIiIhYKscXI/Pnz6dMmTK4uLhQp04dtm/fft/tt27dSp06dXBxcaFs2bIsXLgwk5Jmb6nZzx9//DEtWrSgUKFCeHp60rBhQ7766qtMTJu9pfY7fdsPP/yAg4MDNWvWzNiAOURq93NMTAz+/v6UKlUKZ2dnypUrx7JlyzIpbfaV2v38wQcfUKNGDdzc3PDx8aFr165cunQpk9JmT9u2baNNmzYULVoUm83GJ5988p+vyfRjoZGDrVmzxnB0dDQWL15sHDp0yBg4cKDh7u5unDp16q7bnzhxwnBzczMGDhxoHDp0yFi8eLHh6OhorF+/PpOTZy+p3c8DBw403nnnHePnn382jh49aowcOdJwdHQ09uzZk8nJs5/U7uvbrl69apQtW9bw9fU1atSokTlhs7G07Oe2bdsa9evXN0JCQoyTJ08aP/30k/HDDz9kYursJ7X7efv27YadnZ0xe/Zs48SJE8b27duNKlWqGO3atcvk5NnLpk2bDH9/f+Ojjz4yAGPDhg333d6KY2GOLkbq1atn9O7dO1lbpUqVjBEjRtx1+zfffNOoVKlSsrZevXoZDRo0yLCMOUFq9/PdPPzww8b48ePTO1qOk9Z97efnZ4wePdoYO3asipEUSO1+/vLLLw0vLy/j0qVLmREvx0jtfp42bZpRtmzZZG1z5swxihcvnmEZc5qUFCNWHAtz7Gma2NhYdu/eja+vb7J2X19fduzYcdfX/Pjjj3ds37JlS3755Rfi4uIyLGt2lpb9/G+JiYlcu3aN/PnzZ0TEHCOt+zooKIjjx48zduzYjI6YI6RlP3/22WfUrVuXqVOnUqxYMSpUqMCwYcOIiorKjMjZUlr2c6NGjTh79iybNm3CMAwuXrzI+vXrefrppzMjcq5hxbEwWyyUlxbh4eEkJCTg7e2drN3b25sLFy7c9TUXLly46/bx8fGEh4fj4+OTYXmzq7Ts53+bMWMGN27coH379hkRMcdIy74+duwYI0aMYPv27Tg45Nh/7ukqLfv5xIkTfP/997i4uLBhwwbCw8Pp27cvly9f1riRe0jLfm7UqBEffPABfn5+REdHEx8fT9u2bXnvvfcyI3KuYcWxMMf2jNxms9mSPTYM4462/9r+bu2SXGr3822rV69m3LhxrF27lsKFC2dUvBwlpfs6ISGBV155hfHjx1OhQoXMipdjpOY7nZiYiM1m44MPPqBevXq0bt2amTNnEhwcrN6R/5Ca/Xzo0CFef/11xowZw+7du9m8eTMnT56kd+/emRE1V8nsY2GO/VOpYMGC2Nvb31Fhh4WF3VHx3VakSJG7bu/g4ECBAgUyLGt2lpb9fNvatWvp1q0bH374Ic2bN8/ImDlCavf1tWvX+OWXX9i7dy/9+/cHzIOmYRg4ODjw9ddf8+STT2ZK9uwkLd9pHx8fihUrlmyp9MqVK2MYBmfPnqV8+fIZmjk7Sst+DggIoHHjxrzxxhsAVK9eHXd3d5o0acLEiRPVe51OrDgW5tieEScnJ+rUqUNISEiy9pCQEBo1anTX1zRs2PCO7b/++mvq1q2Lo6NjhmXNztKyn8HsEenSpQurVq3S+d4USu2+9vT05MCBA+zbty/p1rt3bypWrMi+ffuoX79+ZkXPVtLynW7cuDHnz5/n+vXrSW1Hjx7Fzs6O4sWLZ2je7Cot+/nmzZvY2SU/bNnb2wN//+UuD86SY2GGDY3NAm5fNrZ06VLj0KFDxqBBgwx3d3fjzz//NAzDMEaMGGF07NgxafvblzMNHjzYOHTokLF06VJd2psCqd3Pq1atMhwcHIx58+YZoaGhSberV69a9SNkG6nd1/+mq2lSJrX7+dq1a0bx4sWNF154wTh48KCxdetWo3z58kb37t2t+hGyhdTu56CgIMPBwcGYP3++cfz4ceP777836tata9SrV8+qHyFbuHbtmrF3715j7969BmDMnDnT2Lt3b9Il1FnhWJijixHDMIx58+YZpUqVMpycnIzatWsbW7duTXquc+fORtOmTZNtv2XLFqNWrVqGk5OTUbp0aWPBggWZnDh7Ss1+btq0qQHccevcuXPmB8+GUvud/icVIymX2v18+PBho3nz5oarq6tRvHhxY8iQIcbNmzczOXX2k9r9PGfOHOPhhx82XF1dDR8fH6NDhw7G2bNnMzl19vK///3vvr9zs8Kx0GYY6tsSERER6+TYMSMiIiKSPagYEREREUupGBERERFLqRgRERERS6kYEREREUupGBERERFLqRgRERERS6kYEREREUupGBERERFLqRgRERERS6kYEREREUupGBERS6xevRoXFxfOnTuX1Na9e3eqV69ORESEhclEJLNpoTwRsYRhGNSsWZMmTZowd+5cxo8fz5IlS9i5cyfFihWzOp6IZCIHqwOISO5ks9mYNGkSL7zwAkWLFmX27Nls375dhYhILqSeERGxVO3atTl48CBff/01TZs2tTqOiFhAY0ZExDJfffUVR44cISEhAW9vb6vjiIhF1DMiIpbYs2cPjz/+OPPmzWPNmjW4ubnx4YcfWh1LRCygMSMikun+/PNPnn76aUaMGEHHjh15+OGHeeSRR9i9ezd16tSxOp6IZDL1jIhIprp8+TKNGzfmscceIzAwMKn92WefJSYmhs2bN1uYTkSsoGJERERELKUBrCIiImIpFSMiIiJiKRUjIiIiYikVIyIiImIpFSMiIiJiKRUjIiIiYikVIyIiImIpFSMiIiJiKRUjIiIiYikVIyIiImIpFSMiIiJiqf8HuBd756L++M4AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABi5UlEQVR4nO3dd3gU1cPF8e+mB0JCD70pIE1KUJqINQgqIiooKARpUZCOgkgHAwhK701EKRZsNIMFUPwBUkSkikio0iQFUnfn/WMhr5GWhCQ3m5zP8+xjdnZ2c3Zc2MPMnTs2y7IsRERERAxxMx1AREREcjeVERERETFKZURERESMUhkRERERo1RGRERExCiVERERETFKZURERESM8jAdIDUcDgcnT54kX7582Gw203FEREQkFSzLIjo6mhIlSuDmduP9Hy5RRk6ePEnp0qVNxxAREZF0OHbsGKVKlbrh4y5RRvLlywc434y/v7/hNCIiIpIaUVFRlC5dOvl7/EZcooxcPTTj7++vMiIiIuJibjXEQgNYRURExCiVERERETFKZURERESMcokxIyIiuYndbicxMdF0DJFb8vT0xN3d/bZfR2VERCSbsCyL06dPc/HiRdNRRFItf/78FCtW7LbmAVMZERHJJq4WkaJFi5InTx5N8ijZmmVZXL58mTNnzgBQvHjxdL+WyoiISDZgt9uTi0ihQoVMxxFJFV9fXwDOnDlD0aJF033IRgNYRUSygatjRPLkyWM4iUjaXP3M3s44J5UREZFsRIdmxNVkxGdWZURERESMSlcZmTFjBuXLl8fHx4egoCA2bdp0w3V/+OEHbDbbNbf9+/enO7SIiIjkHGkuI8uXL6d3794MHjyYnTt30rhxY5o1a0ZERMRNn3fgwAFOnTqVfKtYsWK6Q4uIiKTH/v37qV+/Pj4+PtSqVct0HLkizWXk3XffpVOnTnTu3JkqVaowadIkSpcuzcyZM2/6vKJFi1KsWLHkW0ZMkiIiru/cuXNcvnzZdAxxcTabjc8///yW6w0bNoy8efNy4MABvv3228wPJqmSpjKSkJDA9u3bCQ4OTrE8ODiYzZs33/S5tWvXpnjx4jz88MN8//33N103Pj6eqKioFDcRyXk+/vhjihYtSpMmTXA4HKbjSC5w+PBh7rvvPsqWLatTqLORNJWRc+fOYbfbCQwMTLE8MDCQ06dPX/c5xYsXZ86cOXz66ad89tlnVK5cmYcffpiNGzfe8PeEhYUREBCQfCtdunRaYoqICzh16hTdunWjdOnSLFmyBDc3jae/kUuXLt3wFhcXl+p1Y2NjU7VuWlmWxfjx46lQoQK+vr7UrFmTTz75JPmxRx55hMceewzLsgC4ePEiZcqUYfDgwYBzjpVOnTpRvnx5fH19qVy5MpMnT77m9yxYsIBq1arh7e1N8eLF6dGjBwDlypUD4Omnn8ZmsyXf/y+bzcb27dsZOXIkNpuN4cOHp/m9Siax0uDEiRMWYG3evDnF8tGjR1uVK1dO9es88cQT1pNPPnnDx+Pi4qzIyMjk27FjxyzAioyMTEtcEcmmHA6H9eSTT1qAVadOHSshIcF0JONiY2OtvXv3WrGxsdc8Btzw1rx58xTr5smT54brNmnSJMW6hQsXvu56afXmm29ad911l7V27Vrr8OHD1sKFCy1vb2/rhx9+sCzLso4fP24VKFDAmjRpkmVZltWmTRurbt26yf/fExISrKFDh1pbt261/vzzT2vJkiVWnjx5rOXLlyf/jhkzZlg+Pj7WpEmTrAMHDlhbt2613nvvPcuyLOvMmTMWYC1cuNA6deqUdebMmevmPHXqlFWtWjWrX79+1qlTp6zo6Og0v1e51s0+u5GRkan6/k7TDKyFCxfG3d39mr0gZ86cuWZvyc3Ur1+fJUuW3PBxb29vvL290xJNRFzIkiVL+Oqrr/D09GTRokV4enpiWRYLFiwgODhYe0NdyKVLl3j33Xf57rvvaNCgAQAVKlTgxx9/ZPbs2TRp0oSSJUsye/ZsXnrpJf7++2+++uordu7ciaenJ+C82NqIESOSX7N8+fJs3ryZFStW0Lp1awBGjx5Nv3796NWrV/J699xzDwBFihQB/v8aKTdSrFgxPDw88PPzu+l6kvXSVEa8vLwICgoiPDycp59+Onl5eHg4Tz31VKpfZ+fOnbc1h72IuK6TJ0/Ss2dPAIYPH06NGjUAGDhwIOPHjyc4OJi1a9dq8q9/iYmJueFj/z0Z4Op1Qq7nv4fC/vrrr9vKBbB3717i4uJ49NFHUyxPSEigdu3ayfefe+45Vq5cSVhYGDNnzqRSpUop1p81axbz5s3j6NGjxMbGkpCQkHy2y5kzZzh58iQPP/zwbeeV7CnN16bp27cvL730EnXr1qVBgwbMmTOHiIgIQkNDARg0aBAnTpxg8eLFAEyaNIly5cpRrVo1EhISWLJkCZ9++imffvppxr4TEcn2LMuia9euXLx4kbp16/L6668nP/byyy8zZcoUvvnmG+bNm0eXLl0MJs1e8ubNa3zdG7k68HjVqlWULFkyxWP/3sN9+fJltm/fjru7O4cOHUqx3ooVK+jTpw8TJ06kQYMG5MuXj3feeYctW7YA/3/9E8m50lxG2rRpw/nz5xk5ciSnTp2ievXqrF69mrJlywLOQWn/nnMkISGB/v37c+LECXx9falWrRqrVq2iefPmGfcuRMQlJCYmUrp0aby9vXn//ffx8Pj/v4IqV67MmDFj6NevH/369SM4ODj57xXJvqpWrYq3tzcRERE0adLkhuv169cPNzc31qxZQ/PmzXn88cd56KGHANi0aRMNGzbk1VdfTV7/8OHDyT/ny5ePcuXK8e233/Lggw9e9/U9PT2x2+0Z9K4ky2XOcJaMldoBMCLiGiIiIq67PCkpyWrUqJEFWA8//LDlcDiyOJk5NxsEmN0NHjzYKlSokLVo0SLrjz/+sHbs2GFNmzbNWrRokWVZlvX1119bXl5e1vbt2y3Lsqy33nrLKlWqlHXhwgXLsixr0qRJlr+/v7V27VrrwIED1ltvvWX5+/tbNWvWTP4dixYtsnx8fKzJkydbBw8etLZv325NmTIl+fGKFStar7zyinXq1Knk172emjVrWsOGDcv4jZCLZcQAVp1LJyKZzrKs5NM6gRsOUHV3d2fhwoX4+vry7bffMnv27KyKKLdh1KhRDB06lLCwMKpUqULTpk356quvKF++PGfPnqVTp04MHz6cOnXqAM6Jx0qUKJF8eD80NJRWrVrRpk0b6tWrx/nz51PsJQHo0KEDkyZNYsaMGVSrVo0nnngixeGeiRMnEh4eTunSpVOMVRHXYLP+/TdENhUVFUVAQACRkZH4+/ubjiMiaTR//nyWLVvGvHnzUnXoZfLkyfTu3ZuAgACOHj1KQEBAFqQ0Ky4ujiNHjiRf90vEVdzss5va72/tGRGRTBUREUHfvn1Zv359qgeuv/baa3Ts2JE1a9bkiiIiktuleQCriEhqWZZF586diYqKokGDBinmiLgZNzc3FixYkMnpRCS70J4REck0c+fOJTw8HB8fHxYuXJjuC2Tu37+fI0eOZHA6EckuVEZEJFMcPXqUfv36AfD2229TuXLldL3OJ598Qq1atQgJCdHF9ERyKJUREclwDoeDl19+mZiYGBo1apQ842p61KlTBw8PDzZu3Mj06dMzMKWIZBcqIyKS4c6ePcupU6fw9fW9rcMz4LzOyfjx4wF44403+OOPPzIqpohkExrAKiIZLjAwkB07dvDLL79QsWLFlA/Gx8OePbB/P5w/Dxcvgrc3+PlBqVJQrRqULw//KjChoaF8+umnfPfdd3Ts2JENGzZcc50VEXFdKiMikil8fHy47777nHcOHYLPPoMvv4StWyEp6eZP9veHRx+FZs3g2WdxCwhg/vz51KhRgx9//JEpU6bQu3fvTH8PIpI19E8LEckwc+bMYdy4cSQlJYHD4Swfjz4KlSrBwIGwebOziBQsCE2aQOvW0KULhIRAq1ZQqxb4+EBUFHz6KXTuDCVKQKdOlLt0iQkTJgDOC3L++9olIllh+PDhyVcSdjUhISG0bNnSdIwb0gysIpIhDh8+zN13383ly5f5duBAHlq3DnbudD7o5gaPPAItWzr3dpQtCzbb9V/Iboft22HNGlixAvbudS632bBeeIEuJ09S4dFHef3111NcaM/VufIMrOXKlePo0aPXLH/11VdvOujYZrOxcuXKbP0l+W8xMTHEx8dTqFAh01HSLDIyEsuyyJ8/f4a/dkbMwJpz/iSLiDFXz57Jf/ky3xQqRKOxY50P5MsHr7zivJUrl7oXc3eHe+913oYOhZ9+gkmT4NNPsX30EXO9vbE99JBzz4tkC9u2bUtxxdw9e/bw6KOP8txzz2XJ709MTMTT0zPTf4+fnx9+fn6Z/nsykt1ux2azZfuZjHWYRkRu27SpU7lj40b2Ao3OnwdPT+jVC/78E8aNS30R+S+bDe67Dz75BHbsgEcfxRYf7ywptWuT8MsvnDp1KiPfiqRDkSJFKFasWPLt66+/5o477qBJkyY3fE65K5+Jp59+GpvNlnwf4KuvviIoKAgfHx8qVKjAiBEjnIf+rrDZbMyaNYunnnqKvHnzMnr06ORDKAsWLKBMmTL4+fnxyiuvYLfbGT9+PMWKFaNo0aKMGTPmpu/lhx9+4N577yVv3rzkz5+fRo0aJe/1+e9hmquHPiZMmEDx4sUpVKgQ3bt3JzExMXmdhIQEXn/9dUqWLEnevHmpV68eP/zww00zDB8+nDJlyuDt7U2JEiVSnBp/q9dbtGgR+fPn5+uvv6Zq1ap4e3tz9OjRaw7TWJbF+PHjqVChAr6+vtSsWZNPPvkk+fF//vmHdu3aUaRIEXx9falYsSILFy68ae7boT0jInJb/ti1i8L9+pE8efu998KCBc6zYjJS7dqwbh0sX+4sOnv3Yt17Lx+ULUu/Q4dwz0GHbJJZFly+bOZ358lz40NpN5GQkMCSJUvo27cvtps8f9u2bRQtWpSFCxfy2GOPJZ/+vW7dOl588UWmTJlC48aNOXz4MF27dgWcV/u9atiwYYSFhfHee+8lX+358OHDrFmzhrVr13L48GGeffZZjhw5QqVKldiwYQObN2/m5Zdf5uGHH6Z+/frXZEpKSqJly5Z06dKFpUuXkpCQwNatW2/6Pr7//nuKFy/O999/zx9//EGbNm2oVasWXbp0AaBjx4789ddfLFu2jBIlSrBy5Uoee+wxfvvtt2vPNMM5yd97773HsmXLqFatGqdPn+bXX39Nfjw1r3f58mXCwsKYN28ehQoVomjRotf8nrfeeovPPvuMmTNnUrFiRTZu3MiLL75IkSJFaNKkCUOGDGHv3r2sWbOGwoUL88cffxAbG3vD7XDbLBcQGRlpAVZkZKTpKCLyL0kHD1p/+vpaFlhJNptlf/tty0pKyvxffPasdfnhhy3L+XVt7Q4Ksqz4+Mz/vZkoNjbW2rt3rxUbG/v/C2Nikt9jlt9iYtL1PpYvX265u7tbJ06cuOW6gLVy5coUyxo3bmy9/fbbKZZ98MEHVvHixVM8r3fv3inWGTZsmJUnTx4rKioqeVnTpk2tcuXKWXa7PXlZ5cqVrbCwsOvmOX/+vAVYP/zww3UfHzZsmFWzZs3k+x06dLDKli1rJf3rM//cc89Zbdq0sSzLsv744w/LZrNdsy0efvhha9CgQdf9HRMnTrQqVapkJSQkXPNYal5v4cKFFmDt2rUrxTodOnSwnnrqKcuyLCsmJsby8fGxNm/enGKdTp06WS+88IJlWZb15JNPWh07drxuxv+67mf3itR+f+swjYikz9atOOrVo3xsLKdsNs4uW4bboEEp5gfJNIUL4xseztY2bbADNbZv59J998GFC5n/u+Wm5s+fT7NmzShRokTysrfffjt5vIWfnx8RERE3fP727dsZOXJkivW7dOnCqVOnuPyvvUR169a95rnlypUjX758yfcDAwOpWrVqijlpAgMDOXPmzHV/d8GCBQkJCaFp06Y8+eSTTJ48+ZaHAatVq5ZiUr/ixYsnv/6OHTuwLItKlSqleD8bNmy44dlgzz33HLGxsVSoUIEuXbqwcuXK5ENUqX09Ly8v7r777htm3rt3L3FxcTz66KMpXmfx4sXJr/PKK6+wbNkyatWqxeuvv87mzZtvuh1uVw7crykime7LL+H55/GMjSW2ShV29e9Ps9atszaDzcY9S5cy7M8/6b9tG/7btmE1bIgtPBxKl87aLJklTx6IiTH3u9Po6NGjrF+/ns8++yzF8tDQUFr/6/Px76LyXw6HgxEjRtCqVatrHvv3mRp58+a95vH/DmK12WzXXXazaxwtXLiQnj17snbtWpYvX85bb71FeHj4dQ/r3Oh3Xn19h8OBu7s727dvv2YW4hsNhC1dujQHDhwgPDyc9evX8+qrr/LOO++wYcOGVL+er6/vTQ8tXc23atUqSpYsmeIxb29vAJo1a8bRo0dZtWoV69ev5+GHH6Z79+7Jp9dnNJUREUmbjz+GF15wnoLbrBm+K1bQzNAZBjabjW4rV/LYXXexNCaGsgcOOOcv+e679A+azU5sNrjOl252tXDhQooWLcrjjz+eYnnBggUpWLDgNet7enqmOAsHnNciOnDgAHfeeWemZr2Z2rVrU7t2bQYNGkSDBg346KOPblhGbvU6drudM2fO0Lhx41Q/z9fXlxYtWtCiRQu6d+/OXXfdxW+//Zbu1/uvqwNbIyIibjrIuEiRIoSEhBASEkLjxo0ZMGCAyoiIZAPLl0O7dmC3c65ZMwp/+SUYHjhasmRJQqdP574OHfgeuPPIEbj/fmchMfiFlts4HA4WLlxIhw4dUj3/S7ly5fj2229p1KgR3t7eFChQgKFDh/LEE09QunRpnnvuOdzc3Ni9eze//fYbo0ePztT3cOTIEebMmUOLFi0oUaIEBw4c4ODBg7Rv3z5dr1epUiXatWtH+/btmThxIrVr1+bcuXN899131KhRg+bNm1/znEWLFmG326lXrx558uThgw8+wNfXl7Jly1KoUKE0v9715MuXj/79+9OnTx8cDgf33XcfUVFRbN68GT8/Pzp06MDQoUMJCgqiWrVqxMfH8/XXX1OlSpV0bYfU0JgREUmdjz+Gtm3BbmexmxvF167ll127TKcC4KWXXqL2k08ysEEDEu64A44dgwcfhJuMTZCMtX79eiIiInj55ZdT/ZyJEycSHh5O6dKlqV27NgBNmzbl66+/Jjw8nHvuuYf69evz7rvvUrZs2cyKnixPnjzs37+fZ555hkqVKtG1a1d69OhBt27d0v2aCxcupH379vTr14/KlSvTokULtmzZQukbHErMnz8/c+fOpVGjRtx99918++23fPXVV8kTraX19W5k1KhRDB06lLCwMKpUqULTpk356quvKF++POAcdzJo0CDuvvtu7r//ftzd3Vm2bFm6t8OtaAZWEbm1775zzpyakMDXhQvz1LlzBD/2GKtXr77psemsFB0dTd68eXE7exYeeMB5Ib7KlWHTJihSxHS8W3LlGVgld8uIGVi1Z0REbm7XLuc07gkJ7K9Rg6fOnSNfQABz587NNkUEnLue3dzcIDAQvvkGq1QpOHAAmjeH6GjT8UTkJlRGROTG/vrLuUckOppL99zDvfv34wAmTZpEqVKlTKe7rpiYGHqMG8ez/v5YhQvDL79AmzbOAbciki2pjIjI9UVFweOPw+nTWNWr80RiItGJiTz++ON06NDBdLobiomJYenSpXy2dy/zW7UCX1/nRfcGDDAdTURuQGVERK7lcMBLLzmvmFuiBJ916cIPu3aRP39+Zs+ena0Oz/xXsWLFmDZtGgCvLFjAkREjnA+89x7Mn28wmYjciMqIiFxrxAjnxGbe3rByJa1ee42ZM2cyY8aMayZJyo6ef/55WrVq5bzWyJIlJA0Z4nwgNBQ2bDAb7hZc4JwCkRQy4jOrMiIiKX32GYwc6fx5zhy4915sNhuhoaG88MILZrOlks1mY+bMmRQuXJjdu3czCqB1a0hKcv735EnTEa9xdSbPy6YujCeSTlc/s/+djTYtNOmZiPy/gwfh6niQPn1YU6QI90VHp7jeh6soWrQo06dPp02bNox5+21abthA7X374LffnDPIfvut8Qnb/s3d3Z38+fMnX9ckT5482fpwmIhlWVy+fJkzZ86QP3/+a6aoT4vs8ydRRMyKi3OedRITA02asPvFF3mqfn1KlCjBli1bCAwMNJ0wzVq3bs0nn3zC+vXrOXnxIrU/+QTq1oWNG+Gtt2DsWNMRUyhWrBjADS/kJpId5c+fP/mzm14qIyLiNGCAc06RwoVJfP99OrRsSWJiIrVr16Zo0aKm06XbjBkzSExMpHjx4s4F8+c7D9WMGwf33QdPPGE24L/YbDaKFy9O0aJFSUxMNB1H5JY8PT1va4/IVZqBVUSc40Seecb58+rVjNi6leHDh1OwYEF+//332/5XT7bTqxdMmQIFC8Lu3eACg3JFXJFmYBWR1PnrL7h6PZHXX2dX8eLJFySbPn16jioiX3zxBY888ghxo0ZBUBBcuAAdOzpPZRYRY1RGRHIzux3at4fISKhfn4ShQ+nQoQNJSUm0atWKNm3amE6YYWJiYujatSvffvstI8LCYMkS54Ro4eHOvSQiYozKiEhuNmmS80Jyfn7w0Ue8M2kSu3fvpnDhwsycOTNHnc3h5+fHrFmzABg/fjxbo6Lg3XedDw4c6DzLRkSMUBkRya1+/x0GD3b+/O67UL48nTt3plWrVkyfPt2lB63eyNNPP027du1wOBx06NCBuA4dnANY4+OhXTvnGUUikuU0gFUkN0pMhPr1YccO54XwVq2CK3tBLMvKUXtE/uvChQtUq1aN06dPM2DAAMb37w81asCZM84zisaPNx1RJMfQAFYRubExY5xFpEABmDePffv3Jz+Uk4sIQMGCBZk9ezYAEydO5OfDh2HuXK4sgK1bDaYTyZ1URkRym+3b4crZMsyYwbYTJ6hRowYvvPACCQkJZrNlkRYtWtC+fXscDgdr166FFi2gbVvnWTUvv+w8bCMiWUZlRCQ3SUx0nspqt0Pr1sS1bElISAh2ux0ALy8vwwGzzqRJk1i1ahUjrl7Vd/JkKFrUOZZmzBiz4URyGZURkdzknXecZ40UKgTTpjFixAj27t1LYGAg06ZNM50uSxUoUIDmzZv//4LChWH6dOfPYWHO2WhFJEuojIjkFgcP/v/VeN97jy1//sn4K4M1Z82aRaFChQyGM+vEiROEhoZyuXlz50y0SUnOwzWakl0kS+jaNCK5gWVBt27OsRCPPkrcs88SUqcODoeDdu3a0bJlS9MJjbEsi2bNmvHbb7/h6+vLe9Omwfffw86dMGECDBpkOqJIjqc9IyK5wYIF8MMPzhlHZ81i6LBh7N+/n2LFijEll88+arPZGDduHACTJ09m06FD8N57zgdHjoQ//zSYTiR3UBkRyelOn4b+/Z0/jxoFFSrw0EMPUapUKWbPnk3BggXN5ssGmjVrRqdOnbAsi44dO3KpVSt48EHnJGjduzv3LIlIptGkZyI5XZs2sGKF88Jw//sfeDiPzsbGxuLr62s4XPYRGRlJ9erVOX78OK+99hpTuneHu++GhAT4+GN49lnTEUVcjiY9ExFYu9ZZRNzdYe5comNjkx9SEUkpICCA+fPnAzB16lQ2nD7tvGYNQK9eEBVlMJ1IzqYyIpJTxcVBjx7On3v25KfLlylTpgwLFiwwmysbCw4OpkuXLgC8/fbbzsGrd94JJ0/CkCGG04nkXCojIjnVhAlw+DAUL87l11+nY8eOXLx4kU2bNplOlq1NmDCBoUOHsnLlSvDxgRkznA9Mm+acvVZEMpzGjIjkRH/9BVWqOPeOfPQRfbZuZdKkSZQsWZI9e/aQP39+0wldS9u2sHSpc9zNli3Ow14icksaMyKSm/Xu7SwiDzzAppIlmTx5MgBz585VEUkDh8PB7NmziRk5EgICnHtG5s0zHUskx1EZEclpVq2CL74ADw8ujx9Px5dfxrIsOnXqRLNmzUyncykhISGEhobSf8IEuHoNm8GD4cIFs8FEchiVEZGcJC4OevZ0/ty7NwM/+IDDhw9TqlQpJk6caDabC+rYsSMAs2fPZn2lSlCtGpw/r8GsIhlMZUQkJxk/3jljaIkSWEOG4O3tjZubG/PnzycgIMB0Opfz4IMP0r17dwBe7taNS2PHOh+YNQt+/dVgMpGcRQNYRXKKI0egalXn3pFly5yTnQGHDx/mjjvuMBzOdcXExFCzZk3+/PNPunTpwpzISOfcLY0bw4YNYLOZjiiSbWkAq0hu06+fs4g89BDWc88lL1YRuT1+fn7Jc7PMnTuXDU8+CXnywKZNzjNsROS2pauMzJgxg/Lly+Pj40NQUFCq5y346aef8PDwoFatWun5tSJyI99/DytXgrs7W9q1o/H993Pw4EHTqXKMJk2a0PPKWJyOQ4divzoz64ABEBNjMJlIzpDmMrJ8+XJ69+7N4MGD2blzJ40bN6ZZs2ZERETc9HmRkZG0b9+ehx9+ON1hReQ67HbnqbxAwssv02bkSH766SemTp1qNlcO8/bbb/P000/z2Wef4T5gAFSo4JyZdfRo09FEXF6ax4zUq1ePOnXqMHPmzORlVapUoWXLloSFhd3wec8//zwVK1bE3d2dzz//nF27dqX6d2rMiMhNzJ0LXbtC/vz0a9GCdxcvply5cuzevZt8+fKZTpdzffUVtGgBnp6wZw9UqmQ6kUi2kyljRhISEti+fTvBwcEplgcHB7N58+YbPm/hwoUcPnyYYcOGper3xMfHExUVleImItcRGemc9wLY/8ILvLt4MQALFixQEclkv5YuTeKjj0JionO8joikW5rKyLlz57Db7QQGBqZYHhgYyOnTp6/7nEOHDjFw4EA+/PBDPK5cuvxWwsLCCAgISL6VLl06LTFFco8xY+DsWewVK9L8q68A6N69Ow8++KDhYDnb7NmzqXvPPQzJmxc8PODrr+Gbb0zHEnFZ6RrAavvPqWyWZV2zDMBut9O2bVtGjBhBpTTswhw0aBCRkZHJt2PHjqUnpkjO9scfMGkSANMrVODI8eNUqFCBsVfnwpBMU6NGDex2O+M+/5w/mzd3LuzbF5KSzAYTcVFpKiOFCxfG3d39mr0gZ86cuWZvCUB0dDS//PILPXr0wMPDAw8PD0aOHMmvv/6Kh4cH33333XV/j7e3N/7+/iluIvIfAwZAYiL2Rx7h/TNnAOchUT8/P8PBcr6GDRvS78qhmce3bMFRoAD8/rtz/I6IpFmayoiXlxdBQUGEh4enWB4eHk7Dhg2vWd/f35/ffvuNXbt2Jd9CQ0OpXLkyu3btol69ereXXiS3+u47+PxzcHfHffJk/rdlC2vXruX+++83nSzXGDlyJJUrV2b/33/zwZ13OhcOGQIXLxrNJeKK0nyYpm/fvsybN48FCxawb98++vTpQ0REBKGhoYDzEEv79u2dL+7mRvXq1VPcihYtio+PD9WrVydv3rwZ+25EcgO7Hfr0cf78yitQtSqenp40bdrUbK5cxtfXl0WLFuHm5kanbduIKl3aed2aUaNMRxNxOWkuI23atGHSpEmMHDmSWrVqsXHjRlavXk3ZsmUBOHXq1C3nHBGR2zB/PuzeTaKfH297eZGQkGA6Ua5Vv359+vfvjx3oGh3tXDhlCmjCOZE00bVpRFxJZCRUrAhnzzLU359RUVGMHTuWN954w3SyXCsuLo777ruPl156iZ7r1mFbs8Y5/8gXX5iOJmJcar+/VUZEXMnrr8M773DK358yUVFUqFSJnTt3kidPHtPJcjW73Y67uzvs3w/VqzsPpYWHwyOPmI4mYpQulCeS0/zrVN5OUVHYbTYWLlyoIpINuLu7O3+46y4Su3Z1/tynj071FUkllRERV3HlVN7vvb1ZA/Tr1++6Z7GJOVu3bqXB2rXEeHk5p4ifP990JBGXoDIi4gqunMprt9noHh9P5cqVGTlypOlU8h9ubm7siohg0NVBxW+95RznIyI3pTIikt3966q8c9zdOeDmxqJFi/D19TWbS65Rt25dBg0axCzgoLs7nDunq/qKpILKiEh2N38+/PYbFCjAYz//zOzZs6lfv77pVHIDQ4YMoUqNGvSy250LJk92jvcRkRtSGRHJziIjnbv6AYYPp3zdunTu3NlsJrkpLy8vFi1axHoPD9aA86q+/fubjiWSramMiGRno0fD2bNcKlPGOduquIQ6deowePBg+gFJ4Jxz5AbX4hIRlRGR7OuPP7AmTwbg2YgIvlq71nAgSYs333wTr5o1WXNldmr69HGO/xGRa6iMiGRX/ftjS0xkDXCsWjWCg4NNJ5I08PLy4rvvvuOJX36BAgVg926d6ityAyojItnRt9/CF1+QBLzu5sb777+Pt7e36VSSRgULFsRWuDAMHw6ApVN9Ra5LZUQku0lKIum11wCYCbR8802CgoLMZpLbcvGFFzgZEIDt7FksXdVX5BoqIyLZjDVvHh779nEB+LhqVYYMGWI6ktymY6dP0y0mBgDHpElw6JDZQCLZjMqISHZy8SKJAwcCMNLNjclLluDl5WU4lNyuGjVqUH/ECFYD7nY7sVf2fImIk8qISHYyejRekZFcLFGCsmFh1K5d23QiySBvvPEGC6pWJQnwXbcOa/1605FEsg2bZVmW6RC3ktpLEIu4tEOHoFo15yRZa9bAY4+ZTiQZ7Pfff+f7u++mh8PBP6VKUeDIEfDwMB1LJNOk9vtbe0ZEsokLHTs6i0jz5ioiOVS1atVIGjyY80CB48f5Z8IE05FEsgWVEZFs4PyyZRT86ScSgT+7dzcdRzJRj6FDWXBlIjS/cePg4kWzgUSyAZUREcOsxERiunYF4OMiRSj96KOGE0lm8vDw4NlvviGpUiU8L14EneorojIiYtrWLl0oGx3NeaDmypV4enqajiSZrHylSnhMmeK8M2UKHDxoNpCIYSojIgad2ruXOxcvBuCXJ5+kWqNGhhNJlmnaFKt5c0hKYvtDD+EC5xKIZBqVERFDLMtiyxNPUMiyOOzjw8MrVpiOJFns7wEDSASCTpxgbb9+puOIGKMyImLIVxMm8PiRIwC4T5mCh4+P4USS1Yo98AC/NW4MQNnJkzl6+LDhRCJmqIyIGPLY+vV4An/cdRflunQxHUcMqfnZZ0R6eFDV4eDzJ57Q4RrJlVRGRExYtw6vb74BDw/u+Pxz02nEIPfChYl7800A2u3fz6L33jOcSCTrqYyIZLHDBw5g9e3rvPPaa9gqVzYbSIwLHDKE88WKURiIeeMNjlw5fCeSW6iMiGShiIgIZtesiW3vXhwFC8LQoaYjSXbg4UGBhQsBCE1K4udFi8zmEcliKiMiWcSyLPq3b8+b8fHOBWPGQP78RjNJ9uH22GNcevBBPIG227ebjiOSpVRGRLLIvHnzaLphA/mBuGrVcNOgVfmPvLNmgacnrFoFX39tOo5IllEZEckCR48e5aNeveh05b7PvHng7m40k2RDlSrBlfFEid27M6hPHxwOh+FQIplPZUQkk1mWReeXX2Z8bCwAjg4doH59w6kk23rrLazixfGMiMBj0iSmT59uOpFIplMZEclks2fPpux333EPYPfzw23cONORJDvz88P27rsAvAlMHzCAP/74w2wmkUymMiKSyWqWKcM4N+cfNfdRoyAw0HAiyfbatMF64AF8gbfj4+nYsaMO10iOpjIikskarFlDIYcDq2pV6N7ddBxxBTYbtqlTsdzdaQXk+fFHply9yq9IDqQyIpJJLl++DLt3w4wZANimTnWeKSGSGtWrY+vZE4CpwLCBAzl48KDZTCKZRGVEJBMcPnyYcmXLcqJVK3A44Lnn4KGHTMcSVzNsGFZgIJWAV+LjGTt2rOlEIpnCZrnAVZmioqIICAggMjISf39/03FEbsrhcPDggw9ScuNGPgIsX19s+/dDmTKmo4kr+uADaN+eBE9PrH378L7jDtOJRFIttd/f2jMiksGmTZvGrxs38p7NBoBt8GAVEUm/F1+ERo3wSkzE+8oF9URyGpURkQx06NAhBg4cyGgg0LKgcmXo3990LHFlNhtMmwZubrBiBfZvvmH+/PnY7XbTyUQyjMqISAax2+107NiRarGxvHp14YwZ4O1tMpbkBLVqwSuvAHDy6ad5tXNn3r0yF4lITqAyIpJBpkyZwv9++om5bm7OP1gvvqhBq5JxRo+GYsUoffkybwBDhgxh7969plOJZAiVEZEMEhsbSw+bjVoOh/NqvBMmmI4kOUn+/PDeewC85eZG6fh4QkJCSEpKMptLJAOojIhkkDdDQpiYJ4/zTliYZlqVjNemDQQH4+VwMNfdnW3btjFBpVdyAJURkduUfHZ8nz64X7oE9epB165mQ0nOZLM5xyH5+PCA3U47YNiwYezZs8d0MpHbojIichv27dtHw4YN+XPGDFixwnnGw8yZzv+KZIY77oAhQwCY5uVF3oQEQkNDcYEpo0RuyMN0ABFXdfXsmV+3bMF3927nwp49oXZts8Ek5+vfHz78kPx79/JhqVKUnzcP25V5bURckf75JpJOEydOZMuWLYz29qb45ctQsiSMHGk6luQGXl4waxYAzY4f567z5w0HErk9KiMi6bB3716GDBnC3UCfxETnwilTIF8+o7kkF2ncGF5+2flzaCgkJrJ9+3YSr34eRVyIyohIGiUlJRESEoI9IYFP/P1xczigVSvnTSQrjR8PhQvDnj1837w59957L2FhYaZTiaSZyohIGk2YMIFt27Yx0MeHilFRzvkfpk0zHUtyo0KF4MpMrPf/8AMVHQ5GjRrFrl27zOYSSSOVEZE0cDgchIeHUwEY7nA4F06YAMWLG80ludiLL8Jjj+GelMTnBQviuLLnLiEhwXQykVRTGRFJAzc3N75Zt46fq1fHIyEBHnzw/4/bi5hgs8Hs2eDnx10XLvB63rz8+uuvjBkzxnQykVRTGRFJI/fFiym6Zw/4+MCcOc4vAxGTypSBceMAGJmURFlgzJgx7Nixw2wukVRSGRFJhd27d9OvXz8uHz4M/fo5F44cCXfeaTaYyFWhodC4MZ7x8XwRGIjdbtfhGnEZmvRM5BYSExPp0KEDu3bt4sUvvqD2xYsQFAR9+piOJvL/3Nxg3jyoWZOaf//NgCJFqNSzJ56enqaTidyS9oyI3MLbb7/Nrl27aO/nR+3Dh8Hd3fmXvoe6vGQzlSrBiBEAjEtMpPPjj2tmVnEJ6SojM2bMoHz58vj4+BAUFMSmTZtuuO6PP/5Io0aNKFSoEL6+vtx11128d+Uy2CLZ3a5duxg9ejSFgdlXrzfzxhtQq5bJWCI31rcvBAVhu3gRevQAIDIykri4OLO5RG4izWVk+fLl9O7dm8GDB7Nz504aN25Ms2bNiIiIuO76efPmpUePHmzcuJF9+/bx1ltv8dZbbzFnzpzbDi+SmRISEujQoQNJSUl8WbIkPlFRUKMGDB1qOprIjXl4wPz5zv9+9hl7hgyhevXqjLiyx0QkO7JZabzUY7169ahTpw4zZ85MXlalShVatmyZ6pn/WrVqRd68efnggw9StX5UVBQBAQFERkbi7++flrgi6TZs2DBGjhxJ53z5mBsd7fzLfcsWqFPHdDSRWxs2DEaOJMHPjzIxMZx1c2Pz5s3Uq1fPdDLJRVL7/Z2mPSMJCQls376d4ODgFMuDg4PZvHlzql5j586dbN68mSZNmtxwnfj4eKKiolLcRLJSdHQ0M2bMIBCYdrWvDx6sIiKuY/BgqF0br5gYVpcsicPhICQkRIdrJFtKUxk5d+4cdrudwMDAFMsDAwM5ffr0TZ9bqlQpvL29qVu3Lt27d6dz5843XDcsLIyAgIDkW+nSpdMSU+S25cuXj507drCpalW8Y2KcY0TefNN0LJHU8/KC998HLy/qnDhBT39/9u/fz1AdZpRsKF0DWP87OtuyrFuO2N60aRO//PILs2bNYtKkSSxduvSG6w4aNIjIyMjk27Fjx9ITU+S2lPrhByru3Quensl/qYu4lBo1nPPhABOSkigNTJw4kZ9//tlsLpH/SNO5iYULF8bd3f2avSBnzpy5Zm/Jf5UvXx6AGjVq8PfffzN8+HBeeOGF667r7e2Nt7d3WqKJZIjt27fz999/07xmTXjtNefCYcPg7rvNBhNJr/794Ysv8Pz5Z9YUK0aN06cJCQlh165d+Pr6mk4nAqRxz4iXlxdBQUGEh4enWB4eHk7Dhg1T/TqWZREfH5+WXy2S6eLj42nfvj2PP/44EY89BpGRULeu81ReEVfl7u7cs+frS7XTpxno70/NmjU1dkSylTTP2tS3b19eeukl6tatS4MGDZgzZw4RERGEhoYCzkMsJ06cYPHixQBMnz6dMmXKcNdddwHOeUcmTJjAa1f/1SmSTQwfPpy9e/fSL18+yuzZ8//H3DW5mbi6ihVh/Hh47TVGJybiNmYMFChgOpVIsjT/LdumTRvOnz/PyJEjOXXqFNWrV2f16tWULVsWgFOnTqWYc8ThcDBo0CCOHDmCh4cHd9xxB2PHjqVbt24Z9y5EbtPWrVsZP348lYCxV/favf02VK1qNJdIhnn1Vfj8c9y+/RZCQmDjRiw3N+x2Ox4q3GJYmucZMUHzjEhmiouLo3bt2vyxfz8HChakwoUL8NBDEB7uvN6HSE4REQHVq0N0NDEDBxJy6BClSpVi0qRJppNJDpUp84yI5ERDhw5l//79jM+b11lE8ud3Hp5REZGcpkwZmD4dgDzjxxPx6adMmTLlppf0EMkK+ttWcrVDhw4xceJEGgK9Y2OdC2fPhlKljOYSyTQvvgjPP4+bw8HX+fKRx7Lo2LEjly5dMp1McjGVEcnVKlasyOeLF/NlQAA2hwPat4fWrU3HEsk8NhvMnAmlS1M0Opp5efJw+PBhBg0aZDqZ5GIqI5LrPbl+PYUiI6FcOZg61XQckcyXPz988AHYbDx/+TKtgKlTp7JhwwbTySSXUhmRXGn37t3Oyfs++QQWLXKOD1m8GDRAWnKLJk1g4EAAFnt7UxLo2LEjMTExZnNJrqQyIrnO5cuXeeaZZ3ikShUSO3VyLhw4EBo3NhtMJKsNHw5165I3Pp7l3t7YExP566+/TKeSXEgnl0uuM3jwYP784w9+9PLCMyEBgoKcU76L5DZeXvDhh1C7No0uX+ZAt274VK9uOpXkQtozIrnKxo0bmTx5MkOABgkJ4OcHH32ki+BJ7lWpEkyeDIDPyJGwc6fhQJIbqYxIrnHp0iU6duzIA5ZF8kXUZ892/mUskpt16gRPPw2JiVgvvMCCqVPp37+/6VSSi6iMSK4xaNAgov/8k2Vubs4PfqdO0Lat6Vgi5tlsMHculCiB7cAB6NmTiRMnXnNRVJHMojIiucLGjRuZNnUqHwBFHQ7nNWemTDEdSyT7KFTIOX7EzY2XgbZAp06diIqKMp1McgGVEckV6tSpw8p69WgK4OsLK1ZAnjymY4lkLw88AEOGADDbZsP72DEdrpEsoTIiuYLfrl089csvzjvTpkG1amYDiWRXQ4ZAkyb4WRbLgPfnzmXdunWmU0kOpzIiOdrx48dxnD0LL7wAdju0awcdO5qOJZJ9ubs7D9cUKkQQMB7o3LkzkZGRppNJDqYyIjlWdHQ09zVqxJYqVeD4cahY0XlNDpvNdDSR7K1kSeeVq4FeQN0TJ1i/fr3ZTJKjqYxIjjVgwACejoigwfnzWN7eznEi+fKZjiXiGh5/HPr2BeBjPz+eufdew4EkJ1MZkRwpPDycHbNnM+7Kfdt770GtWiYjibiesDCoWxeP6Gjnoc6kJNOJJIdSGZEcJyoqij4dO7IM8AJ49lkIDTWcSsQFeXnBsmXOPYo//cS5Hj0YO3as6VSSA6mMSI7Tr29fhp84QQXAUa6cczInjRMRSZ877nD+GQIKzp5N+KBBfP3114ZDSU6jMiI5yrp16/CcP59nAYeHB24rVkD+/KZjibi2Nm2gSxfcgCXAm506ceHCBdOpJAdRGZEcpcyFC0y6shfEbfx4uOcew4lEcohJk3BUrUpxYMKZM/Tu2dN0IslBVEYk54iOpsqwYXhZFvZmzaB3b9OJRHKOPHlw+/hj7N7eBAOlPvyQL774wnQqySFURiRHiI+Lcw5SPXQISpXC/YMPNE5EJKNVrYr7zJkAjAIWdOzI+fPnzWaSHEFlRFzeP//8w9DSpeGjj7Dc3WHpUudFv0Qk44WEYH/hBdyB6f/8w9ywMNOJJAdQGRGX905ICMPOnQMgccgQuO8+w4lEcjCbDfc5c4gtU4ZSwOv79oFlmU4lLk5lRFza6k8+od2XX5IH+Ofee/G6csVREclEfn74fvkleHvjtno1vPuu6UTi4lRGxGVduHCBi+3bUw2IypuXAl99BW76SItkiZo1YdIkAKyBA1k3cqTZPOLS9De3uKzlTz5J29hYHID3J59A0aKmI4nkLt264Xj2WWxJSVQeNowvFi0ynUhclMqIuKTw6dN5afNmAE526oT3Y48ZTiSSC9lsuM2bx4X8+SkHuHfrxpm//zadSlyQyoi4nrg4ao8dix9wuEwZSs2ebTqRSO4VEEC+1atJtNl4IiGBL5s2xdKAVkkjlRFxPf36Ufj4cZIKFKDk99+Du7vpRCK5mmeDBvzdrx8AL/36K+Hjxt3iGSIpqYyIa/nkE5gxAwCPjz7Cp0IFw4FEBKDU+PHsr1wZb+DOwYM588cfpiOJC1EZEZdxfts2Yp5/3nnnjTdA40REsg+bjQo//MApT08qOBz88cgjmn9EUk1lRFxDQgL/PPYYfnY7v+bJg2PECNOJROQ/vIoVI2bePJJsNhoePQrz5pmOJC5CZURcwsFWrbjzwgUuAG7Ll+Pm7W06kohcR8X27fG4OmakZ0/47TezgcQlqIxItndxyRIqrVoFwNrWranxxBOGE4nITfXrB82aQVwccS1aYMXEmE4k2ZzKiGRr1rFjuHXqBMCHhQrx7AcfGE4kIrfk5gbvv8/FvHnx+esv/mzWzHQiyeZURiT7SkribNOm+CcksAOotmoVXl5eplOJSGoUKcKXzz+PHbjjxx/558rU8SLXozIi2deoURTdt49o4KfXXqNWvXqmE4lIGrSdNYs5JUoA4Nu/P9a+fYYTSXalMiLZ0/ffw6hRAOzp3p3QiRMNBxKRtPLw8OD+NWv4zmbDx27nn+BgiI01HUuyIZURyX7OnoV27ZxzFHTsSINp0/D09DSdSkTSodrdd/P7oEGcBgoeP05Mly6mI0k2pDIi2YvDQdzzz8OpU9grV4apU00nEpHb9MqIEYyuXBkH4Pfhh1hLl5qOJNmMyohkK9bEifh89x2xQN8SJSBvXtORROQ2eXh40H3lSqbky+dc0K0baLp4+ReVEck+tm7FGjQIgH5ubnSePNlwIBHJKFWqVOHV06ehcWNs0dHQpg3Ex5uOJdmEyohkD5GRJD33HG52Ox8DpUaOpEaNGqZTiUgG8sqTB5YuhUKFYMcOrP79TUeSbEJlRMyzLKwuXfCIiOAIMKNWLV5/4w3TqUQkM5Qsyf9efRUA27RpsHKl4UCSHaiMiHnz52P7+GMSgRc9PJj+4Yd4eHiYTiUimWRz/vyMv/KzPSQE/vrLYBrJDlRGxKyDB7F69QJgMNBi9GiqVq1qNpOIZKpevXqxqkEDfgbco6Kwnn8eEhNNxxKDVEbEnIQEaNsW2+XLJNx3H16DBtGvXz/TqUQkk7m7uzPv/fcJ8fbmH8C2ZQsMH246lhikMiLmDBsG27dDgQJ4LVvG6Lff1uEZkVyiYsWKvDpuHJ2v3LfCwmDjRqOZxByVETHj+++xxo1z/jxvHpQsaTaPiGS51157jbONGzMfsFkW1ksvwcWLpmOJASojkvUuXMB66SVslsVcYOSePaYTiYgBbm5uLFy4kEG+vvydLx+2iAjo3t10LDFAZUSylmVBt27YTpzgIDDI25s2bdqYTiUihtxxxx3sOHiQwPBwcHeHjz6CDz80HUuymMqIZK1Fi+CTT0gE2gKDw8KoXLmy4VAiYlKpUqWgXj0YOhQA69VXdbpvLqMyIlnn0CGs114DYAjg06gRPXv2NJtJRLKN4+3b83v+/NiiouCll8BuNx1JsojKiGSNxERo1w7bpUt8D0zz8WHhwoW4u7ubTiYi2cTXa9fyxMWLRAH8+COMHWs6kmQRlRHJGqNGwbZtXADaA2+PG0fFihVNpxKRbKRr165UeOghely5bw0fDtu2mYwkWSRdZWTGjBmUL18eHx8fgoKC2LRp0w3X/eyzz3j00UcpUqQI/v7+NGjQgHXr1qU7sLigLVvg7bcBiHjzTe5v25YePXrc4kkiktu4ubkxf/58VubNy3LAlpQE7dpBTIzpaJLJ0lxGli9fTu/evRk8eDA7d+6kcePGNGvWjIiIiOuuv3HjRh599FFWr17N9u3befDBB3nyySfZuXPnbYcXF3D5MrRv7zz227YttcaM4cMPP8TNTTvlRORa5cqVY8LEiYQCxwEOHQJd3TfHs1mWZaXlCfXq1aNOnTrMnDkzeVmVKlVo2bIlYWFhqXqNatWq0aZNG4ZeGTn9X/Hx8cTHxyffj4qKonTp0kRGRuLv75+WuGJaz54wdSpJgYF47NsHBQqYTiQi2ZxlWQQHB5O0fj3fX124di00bWoylqRDVFQUAQEBt/z+TtM/TxMSEti+fTvBwcEplgcHB7N58+ZUvYbD4SA6OpqCBQvecJ2wsDACAgKSb6VLl05LTMkuvv0Wpk4F4LmoKFb//LPhQCLiCmw2G/Pnz2d7vny8nz+/c+HLL8M//xjNJZknTWXk3Llz2O12AgMDUywPDAzk9OnTqXqNiRMncunSJVq3bn3DdQYNGkRkZGTy7dixY2mJKdnBxYsQEgLADCDczY0qVaqYTCQiLqRMmTKsW7eO5w4dgkqV4ORJ555WyZHSdeDeZrOluG9Z1jXLrmfp0qUMHz6c5cuXU7Ro0Ruu5+3tjb+/f4qbuJheveD4cQ7bbAwA3nnnHcqXL286lYi4kAYNGpCncGF4/31wc4MlS+Czz0zHkkyQpjJSuHBh3N3dr9kLcubMmWv2lvzX8uXL6dSpEytWrOCRRx5Je1JxHStXwuLF2IGXLIv6Dz1Et27dTKcSERdlv+cetj74oPNOt25w5ozZQJLh0lRGvLy8CAoKIjw8PMXy8PBwGjZseMPnLV26lJCQED766CMef/zx9CUV13DmjPMvC2A88JufH/Pnz9fZMyKSbl9//TWNv/2W3TYbnDvn/DsmbedeSDaX5m+Ivn37Mm/ePBYsWMC+ffvo06cPERERhIaGAs7xHu3bt09ef+nSpbRv356JEydSv359Tp8+zenTp4mMjMy4dyHZg2VB165w9iy7bTaGAxMmTKBcuXKGg4mIK2vRogWPNG/OS5ZFos0Gn3/uPGQjOUaay0ibNm2YNGkSI0eOpFatWmzcuJHVq1dTtmxZAE6dOpVizpHZs2eTlJRE9+7dKV68ePKtV69eGfcuJHt4/3344gssT0/Wt2/Pg02b0rVrV9OpRMTF2Ww25syZw9GAAIZf3SPy2mugkxtyjDTPM2JCas9TFoNOnIBq1SAyEsLCYOBA7Ha7rj0jIhlm8eLFvNyhA5ttNu61LHj0UVi3DlJxAoWYkSnzjIhcl2U5j+FGRmLdcw8MGACgIiIiGeqll16i+ZNP0t6yiLPZIDwcZs0yHUsygMqI3L4lS2DVKhJsNtolJPDn0aOmE4lIDmSz2Zg9ezZnChTgzat7QwYMgL/+MppLbp/KiNyeU6ecc4oAwy2L1X/9hZeXl+FQIpJTFS9enCVLltDhl1+gUSO4dMk5cD77jziQm1AZkfSzLHjlFfjnH3bYbLwDvPfee5QqVcp0MhHJwZo3b07N2rVhwQLw8XEerlm40HQsuQ0qI5J+y5bBF1+QaLMRYlkEN29OyJUp4EVEMl2lSpy4OqFi377OgfTiklRGJH3+/tt5ah0w2rKICAhgzpw5qbosgIhIRvj999+5Y9o0toHzTL7QUB2ucVEqI5I+PXrA+fP8arMRBkyZMoWSJUuaTiUiuUjVqlV5/KmnCAHnZGhffw1Ll5qOJemgeUYk7T7+GFq3xvLw4MWKFYm64w6+/PJL7RURkSx35swZqlWrRrdz5xgNULAg7N0Lt7hemmQNzTMimePsWejeHQDbwIEs+vVXPvjgAxURETGiaNGiTJ8+nXHAToALF5IPIYvrUBmRtOnVy1lIqlWDt97C09OT/Pnzm04lIrlY69atefq553gZSALn3ttPPzWcStJCZURSb80aWLoUOzDz3nuJN51HROSK6dOnc6JIEcZeXdC9O5w/bzKSpIHKiKTO5cvw6qsATAbe+uILLl68aDSSiMhVRYoUYc6cORSYOBGrShXnGX+9e5uOJankYTqAuIgRI+Cvv4gAhgLzpk8nUAPERCQbadmypfOHRo2gYUPnpSpefBGaNjWaS25Ne0bk1nbvxpo4EYDuQNNWrWjTpo3ZTCIiN1KvHomvvOL8OTTUOWW8ZGsqI3JzDgd07YrNbudT4H+FCzNz5kydPSMi2dY///xD0OrVHAXnRfSGDzcbSG5JZURubvZs2LKFKKAnzkFiRYsWNZ1KROSGChQoQI0GDbiybwTr3Xdhxw6jmeTmVEbkxk6dgoEDARjh5UWj556jdevWhkOJiNzalClT2FmsGMsAm8MBXbpAUpLpWHIDKiNyY716QVQU3HMP3ffsYfr06aYTiYikSqFChZg9eza9gH/AuWdk8mTDqeRGNB28XN+qVfDEE+DuDr/8ArVqmU4kIpJm7du3x/ODD5gPWHnyYNuzB8qXNx0r19B08JJ+ly5hXZlTJKJVKxUREXFZkydPZk2xYnwP2C5fhlde0ZV9syGVEbnWiBHYIiI4CjywYQOxsbGmE4mIpEuBAgWYM3cuyx54AMvbG9at05V9syGVEUnp11+dI89xzikycdYsfH19zWYSEbkNTzzxBLO++w7bkCHOBb17a6r4bEZlRP6f3Y6jc2dsdjsfAwFt2/L000+bTiUicttsNhsMGADVqzsv9tmvn+lI8i8qI/L/Zs3C7ZdfiATGFCnClClTTCcSEckwdnd3RpUujQPg/ffh229NR5IrVEbE6eRJkl5/HYBBwMh58yhUqJDZTCIiGcjd3Z2jJUow48p9R9euoDFx2YLKiDj16oXH5cv8D7jUrh0tWrQwnUhEJMNNnDiR6SVKcBxw+/NPGDnSdCRBZUQAvv4aPvkEy92di2PHMmnqVNOJREQyRUBAAJMXLqT7lfuOd96B3383mklURiQmBro7/1ja+vblsTfeoECBAoZDiYhknuDgYAK7dOFzwM1ux96li/OioGKMykgulzh4MEREYC9TBoYNMx1HRCRLTJgwgXElShADuP/8MyxcaDpSrqYykpvt3InblUMyfb29sfLkMRxIRCRr+Pv7M+r995mYL59zweuvO0/5FSNURnIru53otm1xtyyWA49Nnuw8D19EJJd45JFHeP3ECahZEy5cgP79TUfKtVRGcqn4994j3/79XAS2vvACzZo1Mx1JRCTL+ebLB7Nng80GixfD99+bjpQrqYzkRsePY735JgDj8udn6MyZhgOJiBhUrx4HH3oIgEsdOkB8vOFAuY/KSC50tm1bfBIT+Rl4cOlSAgICTEcSETFqbvnynAbyHjtG3KhRpuPkOiojuc2XX1Jk0yYSgW+efZbgxx4znUhExLhh771HWJEiALiPHQuHDhlOlLuojOQmMTHQowcAm+65hz7z5xsOJCKSPfj5+dFqxQq+ATztds63aQOWZTpWrqEykpsMHQrHjkH58jz0ww/4+/ubTiQikm00eeABtrRvTxxQaOdOLi9YYDpSrqEykktc2rQJx6RJzjszZoDmFBERuUbfGTOYUbAgAImvvQYXL5oNlEuojOQGdjvnnnkGN8ti2513gsaJiIhcV968ebl3xQr2AwGxsVgDB5qOlCuojOQC+197jbJnz/IPkDB2rOk4IiLZ2n0PP4z/hx8CYJszB/73P8OJcj6VkRwuet8+Ss2aBcDaBx6g0TPPGE4kIpL9lWjbFjp0AMvC6tYNEhNNR8rRVEZyuD+aNcPPstju7c2TX3xhOo6IiOuYMAF7/vzYdu9mb2io6TQ5mspIDrZz2DBqHz1KImDNmoWfzp4REUm9woVZ2aABAOUWLuTib78ZDpRzqYzkUAnnzxM4ZgwAP9StS92QELOBRERc0OMff8wvvr7ksSz+bN7cdJwcS2Ukh/IaPZoSdjunfH1puGaN6TgiIi7JN29ePOfNIxGoc/w4W69c10sylspITrR9O0yZAkDxzz8nb+HChgOJiLiumm3bsql+fQBKjhvH+b/+MhsoB1IZyWEunjtHXIcO4HBA27YQHGw6koiIy2u4ahXHPD0p6XCwpVkz03FyHJWRHGZ18+b4/P478XnywLvvmo4jIpIj+BQsyOXx4wFoun8/MZs2GU6Us6iM5CDhCxbQYts2AI699hoEBhpOJCKSc1Tu3ZvTTZrgDvj16wd2u+lIOYbKSA5x4cIF7K++ih/wZ8mS3Pn226YjiYjkOMWWLgV/f9i2DWbONB0nx1AZySEWP/00j8XHkwCU+PJLcNP/WhGRDFe8OFy5rEZ8//6snjvXcKCcQd9YOcCqpUt5duNGAM6EhOBTp47hRCIiOVi3bpwuVw7v+HjsPXpw5swZ04lcnsqIizt//jwnO3WiFHCuQAFKzZhhOpKISM7m5kahTz4hCXgyIYEFTz9tOpHLUxlxcf4HDtA5Ntb585Il4OtrOJGISM7nGRTEuQ4dAHhh82Y+W7zYcCLXpjLiypKS8OzRAxvgaNsWL01VLCKSZYpNn84/+fNTFjjVrRt///236UguS2XERUVFRZH07ruwcycULIjbe++ZjiQikrvkzYvf++8D0C0ujvEvvIBlWYZDuaZ0lZEZM2ZQvnx5fHx8CAoKYtNNJn85deoUbdu2pXLlyri5udG7d+/0ZpV/ebNdOxIHDXLeGT8eihY1G0hEJBfybNGCi8HBeABtf/iBQ/v3m47kktJcRpYvX07v3r0ZPHgwO3fupHHjxjRr1oyIiIjrrh8fH0+RIkUYPHgwNWvWvO3AAh+vWMFjX3+Nr8NBdJ068PLLpiOJiORa+RctIiFPHoIsi0rr15uO45JsVhr3KdWrV486deow81+TvVSpUoWWLVsSFhZ20+c+8MAD1KpVi0mTJqUpZFRUFAEBAURGRuLv75+m5+Y0Z86c4c0772RedDRJ7u547NkDd91lOpaISO42axa88grkywd790KpUqYTZQup/f5O056RhIQEtm/fTvB/Lr4WHBzM5s2b05f0OuLj44mKikpxE7AsiwGdOzM6Otq54M03VURERLKDrl2hfn2Ijub8iy/yxRdfmE7kUtJURs6dO4fdbifwP9c8CQwM5PTp0xkWKiwsjICAgORb6dKlM+y1XdmKFSto+NVXFAPiypXDY/Bg05FERAScs17PmYPD3Z1CGzawvF07Tp48aTqVy0jXAFabzZbivmVZ1yy7HYMGDSIyMjL5duzYsQx7bVf1999/80HXrnS7ct9n8WLw9jaaSURE/qVGDejbF4Cxly7Rq1MnnV2TSmkqI4ULF8bd3f2avSBnzpy5Zm/J7fD29sbf3z/FLbeLi4xkWmIiAPaXX4bGjQ0nEhGR/3IbPpyEkiUpA9Rfu5bFmgwtVdJURry8vAgKCiI8PDzF8vDwcBo2bJihwSSlssuWUS42FnuRIrhPmGA6joiIXE+ePHhduXheb2B+jx6cOHHCaCRXkObDNH379mXevHksWLCAffv20adPHyIiIggNDQWch1jat2+f4jm7du1i165dxMTEcPbsWXbt2sXevXsz5h3kcHa7HQ4cgDFjAHCfMgUKFDCcSkREbqhZMxytW+MOTIyJoVvnzjpccwseaX1CmzZtOH/+PCNHjuTUqVNUr16d1atXU7ZsWcA5ydl/5xypXbt28s/bt2/no48+omzZsvz111+3lz6HsyyLZ595hnd++YU7ExKgWTNo08Z0LBERuQW3SZOwr1nDPdHRlF+7ljVr1tBcl+y4oTTPM2JCbp1n5IMPPuD79u1ZADh8fXHbuxfKlTMdS0REUuPK3COJ3t54HDqELReeGZop84xI1jl58iQje/Tg6ugQt1GjVERERFxJ167QoAGe8fHYuneH7P9vf2NURrIhy7Lo2rUrw6OiKAhYtWpBr16mY4mISFq4ucHcueDpCV99xeVFi9iwYYPpVNmSykg29P7775O0ahXtAMvNDdvcueCR5uE9IiJiWrVqcGWCysudO9PhiSc4evSo4VDZj8pINnP8+HEG9+rF1Sv/2Hr2hLp1jWYSEZHbMGgQVrVqFHY4GBETQ2edXXMNlZFsZv/+/QyJi6M8YJUpA6NGmY4kIiK3w8sL27x5WDYbHQC39euZM2eO6VTZispINvNInjx0uzLTqm3uXPDzM5xIRERuW/36zj3dwBxgaN++HDlyxGymbERlJDuJi4NOnbBZFoSEwH+ujiwiIi5s9GissmUpC7x5+TKdOnXC4XCYTpUtqIxkA5ZlERISwqGQENi/HwIDYeJE07FERCQj+flhu3J45jUg9vvvmTdvntlM2YRO0cgG5s2bx67336f81QUzZkDBgiYjiYhIZggOhg4dcHv/fVb4++P7+OOmE2UL2jNi2NGjRxnQpw8LuNIMn3kGWrUynEpERDLNu+9iFS1K6agoCl+5qF5upzJikGVZdOrUidBLl6gDWAUKwLRppmOJiEhmKlgQ29Spzp/ffhtrzx7++OMPs5kMUxkxaPbs2Rz79luGX7lve+89KFbMZCQREckKzz0HLVpAYiKHmjShVo0aubqQqIwYcuTIEQb068c8wAegaVNo395wKhERyRI2G8yYgeXvT6ULF+gcF0fHjh1z7dk1KiOGfPzxx7S/fJnGgOXnB7NnOz+cIiKSO5Qsie2ddwB4Gzj1449MmTLFbCZDbJYLzEmb2ksQu5SjR0m86y484+Kc40S6dzedSEREsprDAY8+Ct99xwaguY8PO3/9lUqVKplOliFS+/2tPSMmWBZ06+YsIvfdB6+8YjqRiIiY4OYG8+Zh5c1LE6DTlcM1drvddLIspTKShRwOB0OHDiXy3Xdh3Trw9oZ585wfRhERyZ3Kl08+XDMW+HvzZiZNmmQ0UlbTt2AWmj59Ou+PGoXbgAHOBWPGQOXKZkOJiIh53brBQw+RB/jQ25tad99tOlGWUhnJIn/88QdvvP4684F8lgUNG0Lv3qZjiYhIduDmBvPnY/n5US8+nof37jWdKEupjGQBh8NBx44d6RAXxyOA5esLixaBu7vpaCIikl2UK5d8uIZBg+DQIS5fvmw2UxZRGckCU6ZM4cSPP3LlI4Zt7FioWNFoJhERyYa6dYOHH4bYWE41b065MmXYmwv2kujU3kx28OBBatesyaq4OB4AuP9++P57DVoVEZHrO3oUq3p1bDEx9AY233MPmzdvxsPD9a5tq1N7s4nhw4fT6UoRsfLmhYULVUREROTGypbFNmEC4JwM7Z9t25hw5X5OpT0jmezSrl143nMPXklJMGOG5hQREZFbsywIDob16/kReNTTk207dlC9enXTydJEe0ayA7udvD16OIvIww87jwWKiIjcis3mnAwtXz7uA15NTCQkJITExETTyTKFykgmsNvtLFu2DMd778FPP4GfH8yfr8MzIiKSemXLYps4EYAxQOz27YwfP95spkyib8dMMHHiRIa/8AJJb7zhXPDuu1C2rNlQIiLiejp3hubN8QGWAEk59FRf1xuam83t3buXkUOG8B3g5XBA06bOD5OIiEhaXT1cU6MGtc+fp7bpPJlEe0YyUFJSEiEhIQxISOBewMqf33ntGZvNdDQREXFVxYtjmzXL+fPYsfDzz7jAuSdpojKSgSZMmIDbtm0MvnLfNnMmlCplNJOIiOQAzz4LL74IDgfxzz/Pow0bsmvXLtOpMoxO7c0ge/bsoXGdOmxNTKQiQNu28OGHpmOJiEhOcfEi1KgBx48zE5hdsyZbt27Fy8vLdLIb0qm9WciyLLp06ULYlSJilSoF06aZjiUiIjlJ/vzO65oBrwDFf/2VMWPGmEyUYVRGMoDNZmNxmzaEXr2/aBEUKGAykoiI5EQPPwy9egGwAJg1Zgw7duwwmykDqIxkhLNnqTh2rPPnPn2cHxYREZHMEBYGVapQHJhqtxPSoQMJCQmmU90WlZHbkJiYyL69e6FrV/j7b6hWDd5+23QsERHJyXx94YMPsDw8aA3U2LOHUaNGmU51W1RGbkNYWBgT774bPv8cPD1hyRLw8TEdS0REcrqgIGxDhwIwHdizZg1JSUlmM90GlZF02rVrF0tGjuQ9u925YNQoqFXLaCYREclFBg2CevXID3yaLx8eLnzJEddNblBCQgIvd+jAArudfIDVuDH07286loiI5CYeHvDBB5AnD24//ABXrmPjilRG0mHMmDEE797NfYDDzw/b4sXg7m46loiI5DYVK8KUKQBYgwcztWNHtmzZYjhU2qmMpNGOHTtYM2YMI6/cd5s6FcqVMxlJRERys5dfhmeewZaYSPCiRbzSvj1xcXGmU6WJykgaJCQk8MpLL7HEbscLoFUr6NDBdCwREcnNbDaYMwd78eJUBkIPHmTYsGGmU6WJykgauLu7My9vXioB9hIlYO5cXQRPRETMK1gQ9w8/xLLZ6Ar88c47/O9//zOdKtVURtLA/dNPqbFtG5bNhvtHH0HBgqYjiYiIOD34ILbXXwdgjmXxert2xMbGGg6VOiojqRAfH0/cgQPOyc0A25tvQpMmhlOJiIj8x8iRJNWqRSFg6J9/MvStt0wnShWVkVQYNWwYv9euDZGRUL8+uNixOBERySW8vPBYtowkb28eAbxnzOD8+fOmU92SysgtbN26Fc9x4wiKjSXR1xc+/NA526qIiEh2VLkyHleuHD/KbqfQ0aOGA92ayshNxMXFMaV1a67u5PKcNw8qVDCaSURE5JY6dYKnn8aWmAht28KlS6YT3ZTKyE2MfeMNxhw9ijsQ37q183+oiIhIdmezOc/4LFkSDhzg+PPP8/PPP5tOdUMqIzfwv59/puqUKZQFLhUrhve8eaYjiYiIpF6hQrB4MZbNRqmvv+b9Vq24lE33kKiMXEdsbCxftmpFayDJZiPvF19AvnymY4mIiKTNQw+R8NprAIw+fZqxV37OblRGriN21y6GnjkDQMKQIXDvvYYTiYiIpI/3O+8QeeedFAYeXLiQDd99ZzrSNVRG/is+noI9euDjcBDXsCF5dBqviIi4Mi8vAlatIs7Dg4eAbc8+S0xMjOlUKaiM/IvD4YDBg2HHDihUCJ8VK8BNm0hERFxcpUpYV67u2/uff5gVEmI2z3/om/Zf5jz7LEyc6Lwzf75zFLKIiEgO4BsayukHH8QDeObTT9nz00+mIyVTGbnif19+ScuVKwE49sQT8NRThhOJiIhkIJuNYitXciEggPJAtalTwbJMpwJURgC4FBND7AsvUAw4kT8/pVesMB1JREQk4wUEUHDtWnB3x7Z8OSxaZDoRkM4yMmPGDMqXL4+Pjw9BQUFs2rTpputv2LCBoKAgfHx8qFChArNmzUpX2Myy5vHHefDyZeIA/1WrwNfXdCQREZHMUb8+jBoFgNWjB3uvHBUwKc1lZPny5fTu3ZvBgwezc+dOGjduTLNmzYiIiLju+keOHKF58+Y0btyYnTt38uabb9KzZ08+/fTT2w6fEX6ZP58nN24E4Mirr5KvYUPDiURERDLZ668Tdc892C5fxmrThqizZ43GsVlW2g4Y1atXjzp16jBz5szkZVWqVKFly5aEhYVds/4bb7zBl19+yb59+5KXhYaG8uuvv6Z6atqoqCgCAgKIjIzE398/LXFvKubMGU6VKkXFxER2lynD3X/95ZxCV0REJIe7dOgQ8XfdRUGHg/XVq/PIb79l+O9I7fd3mvaMJCQksH37doKDg1MsDw4OZvPmzdd9zs8//3zN+k2bNuWXX34hMTHxus+Jj48nKioqxS0zxL7yChUTE/nb3Z3y33+vIiIiIrlG3ooVOTl6NACP7NlDwuefG8uSpjJy7tw57HY7gYGBKZYHBgZy+vTp6z7n9OnT110/KSmJc+fOXfc5YWFhBAQEJN9Kly6dlpip43BQpHRpLJuNqKlTyaer8YqISC5TfdAgIlq2xPL3x8vgmTXpGsBq+88eBMuyrll2q/Wvt/yqQYMGERkZmXw7duxYemLenJsbTJqEbd8+Kr7ySsa/voiIiAsos3Qptl9/haefNpbBIy0rFy5cGHd392v2gpw5c+aavR9XFStW7Lrre3h4UKhQoes+x9vbG29v77RES7/KlbPm94iIiGRHPj5QrpzRCGnaM+Ll5UVQUBDh4eEploeHh9PwBmehNGjQ4Jr1v/nmG+rWrYunp2ca44qIiEhOk+bDNH379mXevHksWLCAffv20adPHyIiIggNDQWch1jat2+fvH5oaChHjx6lb9++7Nu3jwULFjB//nz69++fce9CREREXFaaDtMAtGnThvPnzzNy5EhOnTpF9erVWb16NWXLlgXg1KlTKeYcKV++PKtXr6ZPnz5Mnz6dEiVKMGXKFJ555pmMexciIiListI8z4gJmTXPiIiIiGSeTJlnRERERCSjqYyIiIiIUSojIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUSojIiIiYpTKiIiIiBilMiIiIiJGpXk6eBOuThIbFRVlOImIiIik1tXv7VtN9u4SZSQ6OhqA0qVLG04iIiIiaRUdHU1AQMANH3eJa9M4HA5OnjxJvnz5sNlsGfa6UVFRlC5dmmPHjumaN5lM2zpraDtnDW3nrKHtnDUycztblkV0dDQlSpTAze3GI0NcYs+Im5sbpUqVyrTX9/f31wc9i2hbZw1t56yh7Zw1tJ2zRmZt55vtEblKA1hFRETEKJURERERMSpXlxFvb2+GDRuGt7e36Sg5nrZ11tB2zhrazllD2zlrZIft7BIDWEVERCTnytV7RkRERMQ8lRERERExSmVEREREjFIZEREREaNyfBmZMWMG5cuXx8fHh6CgIDZt2nTT9Tds2EBQUBA+Pj5UqFCBWbNmZVFS15aW7fzZZ5/x6KOPUqRIEfz9/WnQoAHr1q3LwrSuLa2f6at++uknPDw8qFWrVuYGzCHSup3j4+MZPHgwZcuWxdvbmzvuuIMFCxZkUVrXldbt/OGHH1KzZk3y5MlD8eLF6dixI+fPn8+itK5p48aNPPnkk5QoUQKbzcbnn39+y+dk+XehlYMtW7bM8vT0tObOnWvt3bvX6tWrl5U3b17r6NGj113/zz//tPLkyWP16tXL2rt3rzV37lzL09PT+uSTT7I4uWtJ63bu1auXNW7cOGvr1q3WwYMHrUGDBlmenp7Wjh07sji560nrtr7q4sWLVoUKFazg4GCrZs2aWRPWhaVnO7do0cKqV6+eFR4ebh05csTasmWL9dNPP2VhateT1u28adMmy83NzZo8ebL1559/Wps2bbKqVatmtWzZMouTu5bVq1dbgwcPtj799FMLsFauXHnT9U18F+boMnLvvfdaoaGhKZbddddd1sCBA6+7/uuvv27dddddKZZ169bNql+/fqZlzAnSup2vp2rVqtaIESMyOlqOk95t3aZNG+utt96yhg0bpjKSCmndzmvWrLECAgKs8+fPZ0W8HCOt2/mdd96xKlSokGLZlClTrFKlSmVaxpwmNWXExHdhjj1Mk5CQwPbt2wkODk6xPDg4mM2bN1/3OT///PM16zdt2pRffvmFxMTETMvqytKznf/L4XAQHR1NwYIFMyNijpHebb1w4UIOHz7MsGHDMjtijpCe7fzll19St25dxo8fT8mSJalUqRL9+/cnNjY2KyK7pPRs54YNG3L8+HFWr16NZVn8/ffffPLJJzz++ONZETnXMPFd6BIXykuPc+fOYbfbCQwMTLE8MDCQ06dPX/c5p0+fvu76SUlJnDt3juLFi2daXleVnu38XxMnTuTSpUu0bt06MyLmGOnZ1ocOHWLgwIFs2rQJD48c+8c9Q6VnO//555/8+OOP+Pj4sHLlSs6dO8err77KhQsXNG7kBtKznRs2bMiHH35ImzZtiIuLIykpiRYtWjB16tSsiJxrmPguzLF7Rq6y2Wwp7luWdc2yW61/veWSUlq381VLly5l+PDhLF++nKJFi2ZWvBwltdvabrfTtm1bRowYQaVKlbIqXo6Rls+0w+HAZrPx4Ycfcu+999K8eXPeffddFi1apL0jt5CW7bx371569uzJ0KFD2b59O2vXruXIkSOEhoZmRdRcJau/C3PsP5UKFy6Mu7v7NQ37zJkz1zS+q4oVK3bd9T08PChUqFCmZXVl6dnOVy1fvpxOnTrx8ccf88gjj2RmzBwhrds6OjqaX375hZ07d9KjRw/A+aVpWRYeHh588803PPTQQ1mS3ZWk5zNdvHhxSpYsmeJS6VWqVMGyLI4fP07FihUzNbMrSs92DgsLo1GjRgwYMACAu+++m7x589K4cWNGjx6tvdcZxMR3YY7dM+Ll5UVQUBDh4eEploeHh9OwYcPrPqdBgwbXrP/NN99Qt25dPD09My2rK0vPdgbnHpGQkBA++ugjHe9NpbRua39/f3777Td27dqVfAsNDaVy5crs2rWLevXqZVV0l5Kez3SjRo04efIkMTExycsOHjyIm5sbpUqVytS8rio92/ny5cu4uaX82nJ3dwf+/1/ucvuMfBdm2tDYbODqaWPz58+39u7da/Xu3dvKmzev9ddff1mWZVkDBw60XnrppeT1r57O1KdPH2vv3r3W/PnzdWpvKqR1O3/00UeWh4eHNX36dOvUqVPJt4sXL5p6Cy4jrdv6v3Q2TeqkdTtHR0dbpUqVsp599lnr999/tzZs2GBVrFjR6ty5s6m34BLSup0XLlxoeXh4WDNmzLAOHz5s/fjjj1bdunWte++919RbcAnR0dHWzp07rZ07d1qA9e6771o7d+5MPoU6O3wX5ugyYlmWNX36dKts2bKWl5eXVadOHWvDhg3Jj3Xo0MFq0qRJivV/+OEHq3bt2paXl5dVrlw5a+bMmVmc2DWlZTs3adLEAq65dejQIeuDu6C0fqb/TWUk9dK6nfft22c98sgjlq+vr1WqVCmrb9++1uXLl7M4tetJ63aeMmWKVbVqVcvX19cqXry41a5dO+v48eNZnNq1fP/99zf9Ozc7fBfaLEv7tkRERMScHDtmRERERFyDyoiIiIgYpTIiIiIiRqmMiIiIiFEqIyIiImKUyoiIiIgYpTIiIiIiRqmMiIiIiFEqIyIiImKUyoiIiIgYpTIiIiIiRqmMiIgRS5cuxcfHhxMnTiQv69y5M3fffTeRkZEGk4lIVtOF8kTECMuyqFWrFo0bN2batGmMGDGCefPm8b///Y+SJUuajiciWcjDdAARyZ1sNhtjxozh2WefpUSJEkyePJlNmzapiIjkQtozIiJG1alTh99//51vvvmGJk2amI4jIgZozIiIGLNu3Tr279+P3W4nMDDQdBwRMUR7RkTEiB07dvDAAw8wffp0li1bRp48efj4449NxxIRAzRmRESy3F9//cXjjz/OwIEDeemll6hatSr33HMP27dvJygoyHQ8Ecli2jMiIlnqwoULNGrUiPvvv5/Zs2cnL3/qqaeIj49n7dq1BtOJiAkqIyIiImKUBrCKiIiIUSojIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUSojIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUSojIiIiYpTKiIiIiBj1f/+3oMnzv+ijAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgqklEQVR4nO3dd3QU5cPF8e+mF0jooUpvolKVJmKjiSigEpXeQZASUIkgTTCCIEV6C02KAhYU0dgAxQaC8pOOdIIRkCRASNmd94+FvEZaEpI82eR+ztljdnZ29u64ZG+mPGOzLMtCRERExBA30wFEREQkd1MZEREREaNURkRERMQolRERERExSmVEREREjFIZEREREaNURkRERMQoD9MBUsPhcHDq1Cny5s2LzWYzHUdERERSwbIsYmNjKV68OG5uN97+4RJl5NSpU5QqVcp0DBEREUmH48ePU7JkyRs+7hJlJG/evIDzzQQEBBhOIyIiIqkRExNDqVKlkr/Hb8QlysjVXTMBAQEqIyIiIi7mVodY6ABWERERMUplRERERIxSGRERERGjXOKYERGR3MRut5OYmGg6hsgteXp64u7uftvLURkREckmLMvi9OnTnD9/3nQUkVTLly8fRYsWva1xwFRGRESyiatFpEiRIvj5+WmQR8nWLMvi0qVLREVFAVCsWLF0L0tlREQkG7Db7clFpGDBgqbjiKSKr68vAFFRURQpUiTdu2x0AKuISDZw9RgRPz8/w0lE0ubqZ/Z2jnNSGRERyUa0a0ZcTUZ8ZlVGRERExKh0lZFZs2ZRtmxZfHx8qF27Nlu2bLnhvN9++y02m+2a2969e9MdWkRERHKONJeR1atXM2jQIIYPH86OHTto1KgRLVq04NixYzd93r59+4iMjEy+VaxYMd2hRURE0mPv3r3Uq1cPHx8fatSoYTqOXJHmMvL222/TvXt3evToQdWqVZk6dSqlSpVi9uzZN31ekSJFKFq0aPItIwZJERHXd+bMGS5dumQ6hrg4m83Ghx9+eMv5Ro0ahb+/P/v27eOrr77K/GCSKmkqIwkJCWzfvp2mTZummN60aVO2bt160+fWrFmTYsWK8cgjj/DNN9/cdN74+HhiYmJS3EQk53n//fcpUqQIjRs3xuFwmI4jucChQ4e4//77KV26tE6hzkbSVEbOnDmD3W4nKCgoxfSgoCBOnz593ecUK1aMefPmsXbtWtatW0flypV55JFH2Lx58w1fJywsjMDAwORbqVKl0hJTRFxAZGQkvXv3plSpUixfvhw3Nx1PfyMXL1684e3y5cupnjcuLi5V86aVZVlMnDiRcuXK4evrS/Xq1VmzZk3yY48++ijNmzfHsiwAzp8/zx133MHw4cMB5xgr3bt3p2zZsvj6+lK5cmWmTZt2zessWrSIatWq4e3tTbFixejfvz8AZcqUAaBNmzbYbLbk+/9ls9nYvn07Y8eOxWazMXr06DS/V8kkVhqcPHnSAqytW7emmD5u3DircuXKqV7O448/brVq1eqGj1++fNmKjo5Ovh0/ftwCrOjo6LTEFZFsyuFwWK1atbIAq1atWlZCQoLpSMbFxcVZu3fvtuLi4q55DLjh7bHHHksxr5+f3w3nbdy4cYp5CxUqdN350urVV1+1qlSpYm3cuNE6dOiQFR4ebnl7e1vffvutZVmWdeLECSt//vzW1KlTLcuyrODgYKtOnTrJ/98TEhKskSNHWj///LP1559/WsuXL7f8/Pys1atXJ7/GrFmzLB8fH2vq1KnWvn37rJ9//tmaMmWKZVmWFRUVZQFWeHi4FRkZaUVFRV03Z2RkpFWtWjVryJAhVmRkpBUbG5vm9yrXutlnNzo6OlXf32kagbVQoUK4u7tfsxUkKirqmq0lN1OvXj2WL19+w8e9vb3x9vZOSzQRcSHLly9n/fr1eHp6snjxYjw9PbEsi0WLFtG0aVNtDXUhFy9e5O233+brr7+mfv36AJQrV47vvvuOuXPn0rhxY0qUKMHcuXPp2LEjf/31F+vXr2fHjh14enoCzoutjRkzJnmZZcuWZevWrbz33nu0a9cOgHHjxjFkyBAGDhyYPN+9994LQOHChYH/v0bKjRQtWhQPDw/y5Mlz0/kk66WpjHh5eVG7dm0iIiJo06ZN8vSIiAiefPLJVC9nx44dtzWGvYi4rlOnTjFgwAAARo8ezd133w3AsGHDmDhxIk2bNmXjxo0a/OtfLly4cMPH/nsywNXrhFzPf3eFHTly5LZyAezevZvLly/TpEmTFNMTEhKoWbNm8v1nnnmGDz74gLCwMGbPnk2lSpVSzD9nzhwWLFjA0aNHiYuLIyEhIflsl6ioKE6dOsUjjzxy23kle0rztWlCQkLo2LEjderUoX79+sybN49jx47Rp08fAEJDQzl58iRLly4FYOrUqZQpU4Zq1aqRkJDA8uXLWbt2LWvXrs3YdyIi2Z5lWfTq1Yvz589Tp04dXn755eTHunXrxvTp0/niiy9YsGABPXv2NJg0e/H39zc+741cPfD4008/pUSJEike+/cW7kuXLrF9+3bc3d05cOBAivnee+89Bg8ezOTJk6lfvz558+blrbfe4qeffgL+//onknOluYwEBwdz9uxZxo4dS2RkJHfddRcbNmygdOnSgPOgtH+POZKQkMDQoUM5efIkvr6+VKtWjU8//ZTHHnss496FiLiExMRESpUqhbe3N0uWLMHD4/9/BVWuXJnx48czZMgQhgwZQtOmTZN/r0j2deedd+Lt7c2xY8do3LjxDecbMmQIbm5ufPbZZzz22GO0bNmShx9+GIAtW7bQoEEDXnjhheT5Dx06lPxz3rx5KVOmDF999RUPPfTQdZfv6emJ3W7PoHclWS5zDmfJWKk9AEZEXMOxY8euOz0pKclq2LChBViPPPKI5XA4sjiZOTc7CDC7Gz58uFWwYEFr8eLF1sGDB61ff/3VmjFjhrV48WLLsizrk08+sby8vKzt27dblmVZI0aMsEqWLGmdO3fOsizLmjp1qhUQEGBt3LjR2rdvnzVixAgrICDAql69evJrLF682PLx8bGmTZtm7d+/39q+fbs1ffr05McrVqxo9e3b14qMjExe7vVUr17dGjVqVMavhFwsIw5g1bl0IpLpLMtKPq0TuOEBqu7u7oSHh+Pr68tXX33F3Llzsyqi3IbXX3+dkSNHEhYWRtWqVWnWrBnr16+nbNmy/P3333Tv3p3Ro0dTq1YtwDnwWPHixZN37/fp04e2bdsSHBxM3bp1OXv2bIqtJACdO3dm6tSpzJo1i2rVqvH444+n2N0zefJkIiIiKFWqVIpjVcQ12Kx//4bIpmJiYggMDCQ6OpqAgADTcUQkjRYuXMiqVatYsGBBqna9TJs2jUGDBhEYGMjRo0cJDAzMgpRmXb58mcOHDydf90vEVdzss5va729tGRGRTHXs2DFCQkL48ssvU33g+osvvkjXrl357LPPckUREcnt0nwAq4hIalmWRY8ePYiJiaF+/fopxoi4GTc3NxYtWpTJ6UQku9CWERHJNPPnzyciIgIfHx/Cw8PTfYHMvXv3cvjw4QxOJyLZhbaMiEimOHr0KEOGDAHgjTfeoHLlypCQAN9+C1u3ws6dcOoU/PMPeHlBYCBUqgT33ANNmsBdd4HNxpo1a+jQoQN169blm2++0TVsRHIglRERyXAOh4Nu3bpx4cIFGjZsyIAHHoDu3WHNGrjZVbh/+OH/fy5bFrp3594mTfDw8GDz5s3MnDmTF198MfPfgIhkKZUREclwf//9N5GRkdTw9majlxfuder8/4NFi0LTplC7NpQpA/nzQ2IinDsHe/c6t5p8+y0cPgwjRlB6/Hi2NGjAI199xSuvvEKLFi2oUKGCqbcmIplAZUREMlxQ3rz8/vDDuO/fj+2bb8DdHZ5+Gvr1g4YN4Va7Wi5dgrVrYcYM+Plnan71FYc8PXkhLo6uXbqwafNm7a4RyUH0r1lEMtYvv0DNmnjMnInNbofWrWH3bli1Cho1unURAfDzg44d4ccf4dNP4c47yZ+YyEpg6PffM/fNNzP7XYhIFlIZEZEMs7ljR+z16sH+/VC8OGzcCB984DwwNT1sNnjsMdixA8aMwe7hwZNA8xEjOP7xxxmaXeRWRo8enXwlYVfTpUsXWrdubTrGDamMiMjtS0rifJcuPLB8Oe4OB8fuvRd27YJmzTJm+V5eMHIkbj/9xGlfX8paFiWDg+HDDzNm+XJbYmNjGTRoEKVLl8bX15cGDRrwyy+/3PJ5NpuND13o/+HQoUP56quvTMdIl2nTprF48WLTMW5IZUREbk9CAlZwMPmWLAFgYZkylPzhByhQIMNfylarFkEnTkCLFtguX4annoIFCzL8dSRtevToQUREBMuWLWPXrl00bdqURx99lJMnT2bJ6ycmJmbJ6+TJk4eCBQtmyWtlFLvdjsPhIDAwkHz58pmOc0MqIyKSfnFx0KYNtnXriAc6eHvz8Ndf45bOwc1Sw1agAHz8sfNUYYcDevaEKVMy7fXk5uLi4li7di0TJ07kgQceoEKFCowePZqyZcsye/bsGz6vTJkyALRp0wabzZZ8H2D9+vXUrl0bHx8fypUrx5gxY0hKSkp+3GazMWfOHJ588kn8/f0ZN25c8i6URYsWcccdd5AnTx769u2L3W5n4sSJFC1alCJFijB+/Pibvp9vv/2W++67D39/f/Lly0fDhg05evQocO1umqu7PiZNmkSxYsUoWLAg/fr1S1GOEhISePnllylRogT+/v7UrVuXb7/99qYZRo8ezR133IG3tzfFixdnwIABqV7e4sWLyZcvH5988gl33nkn3t7eHD169JrdNJZlMXHiRMqVK4evry/Vq1dnzZo1yY//888/tG/fnsKFC+Pr60vFihUJDw+/ae7bobNpRCR9EhKgTRv4/HMuAa2BNlOmULZs2cx/bQ8Pdg8ezPcffUTPM2cgJMS5K6dfv8x/7axkWc4zi0zw83Mes3MLSUlJ2O32ay6Q5uvry3fffXfD5/3yyy8UKVKE8PBwmjdvnjw67+eff06HDh2YPn06jRo14tChQ/Tq1QtwXu33qlGjRhEWFsaUKVOSr/Z86NAhPvvsMzZu3MihQ4d4+umnOXz4MJUqVWLTpk1s3bqVbt268cgjj1CvXr3rvpfWrVvTs2dPVq5cSUJCAj///DO2m6yHb775hmLFivHNN99w8OBBgoODqVGjBj179gSga9euHDlyhFWrVlG8eHE++OADmjdvzq5du6hYseI1y1uzZg1Tpkxh1apVVKtWjdOnT/Pbb78lP56a5V26dImwsDAWLFhAwYIFKVKkyDWvM2LECNatW8fs2bOpWLEimzdvpkOHDhQuXJjGjRvz2muvsXv3bj777DMKFSrEwYMHiYuLu+F6uG2WC4iOjrYAKzo62nQUEbEsy0pKsqzgYMsC65Kbm9UIrEceecSy2+1ZFuH48eNWQN681jjnV7bztmBBlr1+RouLi7N2795txcXF/f/ECxf+/71l9e3ChVRnr1+/vtW4cWPr5MmTVlJSkrVs2TLLZrNZlSpVuunzAOuDDz5IMa1Ro0bWG2+8kWLasmXLrGLFiqV43qBBg1LMM2rUKMvPz8+KiYlJntasWTOrTJkyKT6XlStXtsLCwq6b5+zZsxZgffvtt9d9fNSoUVb16tWT73fu3NkqXbq0lZSUlDztmWeesYKDgy3LsqyDBw9aNpvNOnnyZIrlPPLII1ZoaOh1X2Py5MlWpUqVrISEhGseS83ywsPDLcDauXNnink6d+5sPfnkk5ZlWdaFCxcsHx8fa+vWrSnm6d69u/Xcc89ZlmVZrVq1srp27XrdjP913c/uFan9/tZuGhFJG8uC/v1h9WocHh484+bGjjx5WLhwYZaO/VGyZEmmTpvGCODtq7uFeveGzz7LsgzitGzZMizLokSJEnh7ezN9+nSef/755K0db7zxBnny5Em+HTt27IbL2r59O2PHjk0xf8+ePYmMjOTSv7YS1fn3QHpXlClThrx58ybfDwoK4s4770zxuQwKCiIqKuq6r12gQAG6dOlCs2bNaNWqFdOmTSMyMvKm771atWoprrlUrFix5OX/+uuvWJZFpUqVUryfTZs2cejQoesu75lnniEuLo5y5crRs2dPPvjgg+RdVKldnpeXF/fcc88NM+/evZvLly/TpEmTFMtZunRp8nL69u3LqlWrqFGjBi+//DJbt2696Xq4XdpNIyJpM2ECzJkDNhtuy5cz4a67OHDgAKVLl87yKF26dGHNmjUM2bCBioUK0erMGWjXDrZsARc9BTMFPz+4cMHca6dS+fLl2bRpExcvXiQmJoZixYoRHBycvMuuT58+tGvXLnn+4sWL33BZDoeDMWPG0LZt22se+/euIH9//2se9/T0THHfZrNdd5rD4bjh64eHhzNgwAA2btzI6tWrGTFiBBEREdfdrXOj17y6fIfDgbu7O9u3b7/mIpF58uS57vJKlSrFvn37iIiI4Msvv+SFF17grbfeYtOmTalenq+v7013LV3N9+mnn1KiRIkUj3l7ewPQokULjh49yqeffsqXX37JI488Qr9+/Zg0adINl3s7VEZEJPXWr4dXX3X+PH06BAdTDedfhybYbDbmzZtHtWrVeOrMGfaVL0/ZQ4egZUv46ScoWdJIrgxjs8F1vnSzK39/f/z9/fnnn3/4/PPPmThxIuDc4lDgOmdXeXp6YrfbU0yrVasW+/btMzrkf82aNalZsyahoaHUr1+fFStW3LCM3Go5drudqKgoGjVqlOrn+fr68sQTT/DEE0/Qr18/qlSpwq5du9K9vP+6emDrsWPHaNy48Q3nK1y4MF26dKFLly40atSIl156SWVERAz74w94/nmwLPY9/DAxdetyr+lMQIkSJZg+fTqdO3em7rFjHKtQAZ+DB52n/W7eDFf+0pPM8/nnn2NZFpUrV+bgwYO89NJLVK5cma5du970eWXKlOGrr76iYcOGeHt7kz9/fkaOHMnjjz9OqVKleOaZZ3Bzc+P3339n165djBs3LlPfx+HDh5k3bx5PPPEExYsXZ9++fezfv59OnTqla3mVKlWiffv2dOrUicmTJ1OzZk3OnDnD119/zd13381jjz12zXMWL16M3W6nbt26+Pn5sWzZMnx9fSldujQFCxZM8/KuJ2/evAwdOpTBgwfjcDi4//77iYmJYevWreTJk4fOnTszcuRIateuTbVq1YiPj+eTTz6hatWq6VoPqaFjRkTk1s6fhyeegAsXuHjffdT+7jvq1avHtm3bTCcDoGPHjrRq1YpqDRtyZtEi58X3fv4ZBg40HS1XiI6OTv4LvlOnTtx///188cUX1+zC+K/JkycTERFBqVKlqFmzJgDNmjXjk08+ISIignvvvZd69erx9ttvZ8luQD8/P/bu3ctTTz1FpUqV6NWrF/3796d3797pXmZ4eDidOnViyJAhVK5cmSeeeIKffvqJUqVKXXf+fPnyMX/+fBo2bMg999zDV199xfr165PHN0nr8m7k9ddfZ+TIkYSFhVG1alWaNWvG+vXrk3eteXl5ERoayj333MMDDzyAu7s7q1atSvd6uBWbZVlWpi09g8TExBAYGEh0dDQBAQGm44jkLpblvMjdunVYZcrQLH9+InbsoHnz5mzYsOGm+6azUmxsLP7+/s6DFTdudA4jb1mwaBHc4i/07ODy5cscPnyYsmXLXnOarEh2drPPbmq/v7VlRERubuZMWLcOPD1Z+vjjROzYQWBgIPPnz882RQScm56Tz5po3pzE115z/ty3r3NoehHJtlRGROTGfv0VhgwB4PSQIfSaNw+AqVOnUjKbHhx64cIF+vfvT/3163E0bw7x8fDcc87RYkUkW1IZEZHri4lxniabkIDjySdpFRFBQkICLVu2pHPnzqbT3dCFCxdYuXIl23fs4O2774agIOfBty+/bDqaiNyAyoiIXN+QIXDoEJQuzZoWLdi2fTv58uVj7ty52Wr3zH8VLVqUGTNmABA6ZQqHru6umTEDPvnEYDIRuRGd2isi1/r0U+fVcG02WLqUZxo14pxlERgYeM0gSdnRs88+y5o1a1i3bh1t583j1wEDcJ8+3Xkg665dULSo6Yg35ALnFIikkBGfWW0ZEZGUzp6FHj2cPw8eDA88gM1mo0+fPjz33HNms6WSzWZj9uzZFCpUiN9//53xefJA9epw5gy88ILzLJts5uppsJdMXRhPJJ2ufmZvdSr3zWjLiIik1L8/nD4NVarweaNGNIiNTXG9D1dRpEgRZs6cSXBwMGMnTOCZ5cup2rEjfPABvPceBAebjpiCu7s7+fLlS76uiZ+fX7beHSZiWRaXLl0iKiqKfPnyXTNEfVponBER+X9Xv6Td3TmwdCnVunShePHi/PTTTwQFBZlOly7t2rXjyy+/ZNmyZbTctg1Gj4aCBWH3brjOpdVNsiyL06dPc/78edNRRFItX758FC1a9LrlObXf3yojIuJ09ixUqQJnzmB/9VXqbNjAzp07ad26NevWrXPZv9LPnDlDYmIixYoVg4QEuPde+P13eOYZZ/nKhux2O4mJiaZjiNySp6fnTbeIpPb7W7tpRMRp6FDnMRV33cUbbm7s3LmTAgUKMHv2bJctIgCFChX6/zteXhAeDvfdB++/D2vWOEeXzWbc3d1va5O3iKvRAawiAl9/DYsXg83G/qFDGfvmmwDMnDmTotn4zJO0+uijj3j05ZdJeukl54R+/eCff8yGEhGVEZFcLy4OrlwIzN67N8+8/TZJSUm0bduW4Gx2kOftuHDhAr169eKrr75idFISVK0KUVHw6qumo4nkeiojIrnduHFw8CAUL87bV06FLVSokMvvnvmvPHnyMGfOHADC3n6bPQMGOB+YOxd+/NFgMhFRGRHJzXbtgokTnT/PmEGn/v1p27YtM2fOpEg2O9MkI7Rp04b27dvjcDhoO20a9g4dnGOO9O4NSUmm44nkWiojIrmVw/H/X8KtW0ObNgQFBbFmzRratWtnOl2mmT59OkWLFmXv3r2MCwyEAgWcZ9dMn246mkiupTIiklutWAE//AD+/hy4ussCctSumespUKAAc+fOBWDs7NkcunK8DCNHwrFjBpOJ5F4qIyK50YUL8MorABzv0oWqTZrw3HPPkZCQYDhY1njiiSfo1KkTDoeDZR4ecP/9cPEi/KuUiUjW0TgjIrnRm2/CqVM4ypThia++wm63A+Dl5WU4WNaZOnUqwcHBPPbYY/DHH1CjBnz0EWzcCM2bm44nkqtoy4hIbnP4MEyaBMC7NWuyc+9egoKCmDFjhuFgWSt//vzOIgJQrdr/bxUZNMg5UquIZBmVEZHc5uWXIT6e6Dp16PLhhwDMmTOHggULms1l0MmTJxl07hxW4cKwb58OZhXJYiojIrnJt9/CmjVYbm50PHMGh2XRvn17WrdubTqZMZZl0aJFC6YtXsyqGjWcE8eMgchIo7lEchOVEZHcwm6HgQMB+OGee1h/5AhFixZlei7fCmCz2ZgwYQIAHSIiiKla1XmAb2io4WQiuYfKiEhusWCBczyNfPmIGzaMkiVLMnfuXAoUKGA6mXEtWrSge/fuOIAuMTHOiUuWaGRWkSxisyzLMh3iVlJ7CWIRuYHz56FiRedVeadNgwEDiIuLw9fX13SybCM6Opq77rqLEydO8EPVqtTbswfq1IGffgI3/d0mkh6p/f7WvzCR3GDsWDhzBnvlytC3L4CKyH8EBgaycOFCAJ7cs4ckf3/Ytg3Cww0nE8n5VEZEcrq9e+GddwBod+IEi5YtMxwo+2ratCk9e/YkClhYooRzYmioc8uSiGQalRGRnC4kBJKS+Nrfn3UXL7JlyxbTibK1SZMmMXLkSDr+/DNUrQp//+3csiQimUbHjIjkZBs2QMuWJLm5cafDwaUSJfjf//5Hvnz5TCdzDV98Ac2agYeH8wrHVaqYTiTiUnTMiEhul5Dg3CoCTHU4OADMnz9fRSQNHI8+ypF77nFe2fjKuhSRjKcyIpJTzZwJ+/Zxxt2d14Hu3bvTokUL06lcSpcuXWjy++8kubnBZ585tzSJSIZTGRHJiaKinKOIAq/Y7QSULMnkyZMNh3I9Xbt25SAwxeFwTggJ0XVrRDKByohITvTaaxAdzYkiRVhqs7Fw4UICAwNNp3I5Dz30EP369WMc8Lebm/O6NTNnmo4lkuPoAFaRnGbnTqhVCywLNm/mUPHilC9f3nQql3XhwgWqV6/Og3/+yUKAwEDYvx+KFDEdTSTb0wGsIrmRZcGgQc7/BgdDo0YqIrcpT548LFq0iMXAdoDoaOeWJxHJMOkqI7NmzaJs2bL4+PhQu3btVI9b8P333+Ph4UGNq1fGFJGMtXYtbNpEvJsbf/bpYzpNjtG4cWP6DxjAwCv3rfnznVugRCRDpLmMrF69mkGDBjF8+HB27NhBo0aNaNGiBceOHbvp86Kjo+nUqROPPPJIusOKyE3ExeEYMgSANx0OpqxdazhQzvLGG29QpE0b/mnWDJtlOa+AnP33cou4hDQfM1K3bl1q1arF7Nmzk6dVrVqV1q1bExYWdsPnPfvss1SsWBF3d3c+/PBDdqbhrwodMyKSCuPHw4gRHAea3XEHP/3vf+TNm9d0qpzn2DHn4GdxcfD++/D006YTiWRbmXLMSEJCAtu3b6dp06Yppjdt2pStW7fe8Hnh4eEcOnSIUaNGpep14uPjiYmJSXETkZs4eRL7668D8DIwc/FiFZHMcscd8PLLANhDQpylRERuS5rKyJkzZ7Db7QQFBaWYHhQUxOnTp6/7nAMHDjBs2DDeffddPDw8UvU6YWFhBAYGJt9KlSqVlpgiuU7CkCG4x8fzHVDwhRd46KGHTEfK0RYWLMhxwP34cdD4LSK3LV0HsNpsthT3Lcu6ZhqA3W7n+eefZ8yYMVSqVCnVyw8NDSU6Ojr5dvz48fTEFMkdfvwRr9WrcQBvlSjBmxMmmE6U41WtXZuXr/ycNG4cnDhhNI+Iq0tTGSlUqBDu7u7XbAWJioq6ZmsJQGxsLNu2baN///54eHjg4eHB2LFj+e233/Dw8ODrr7++7ut4e3sTEBCQ4iYi1+Fw4HjxRQAWA0NWrCBPnjxGI+UGDRo0oOSQIXwHeMTHEz94sOlIIi4tTWXEy8uL2rVrExERkWJ6REQEDRo0uGb+gIAAdu3axc6dO5Nvffr0oXLlyuzcuZO6deveXnqR3G75cty2bcPKk4eyK1bwwAMPmE6Ua4x9/XWmlC6NA/BeswZuctyciNxc6g7i+JeQkBA6duxInTp1qF+/PvPmzePYsWP0uTKmQWhoKCdPnmTp0qW4ublx1113pXh+kSJF8PHxuWa6iKRRbCwMGwaA7bXXeOi55wwHyl18fX15adUqwuvXpzvwT+fO5N+3D9w0lqRIWqX5X01wcDBTp05l7Nix1KhRg82bN7NhwwZKly4NQGRk5C3HHBGR23eoRw+IjMQqV8455oVkuXr16nGqXz9igPwHD3JxzhzTkURckq5NI+KConfswLtWLXyAtR078tTSpaYj5VqXL19mboUKDDx5EqtoUWz794NOqxYBdG0akRztQOvW+ADf+/nR4l8DEErW8/Hxof/+/VChArbTp+GNN0xHEnE5KiMiLuaHceOoc+wYSYD/3Ln4+fubjpTrufv5wdtvA2C9/TYxO3YYTiTiWlRGRFzIuago8o8ZA8CPNWtSo0MHw4kk2eOPE123LraEBPa2amU6jYhLURkRcSGftGxJlaQk/nF3p/Ynn5iOI/9ms3E8JIQk4L6TJ9k8cqTpRCIuQ2VExEUc//VXWm3bBsA/Q4bgW7y44UTyX3e1a8cv994LQOE33iDq1CnDiURcg8qIiIsoNW8e+YEzpUpRTgdJZlu1P/6Y8+7uVLXb+ejxx03HEXEJKiMirmDHDpg3D4BC774L7u6GA8mNeBUtSszQoQC03bGDDxctMpxIJPtTGRHJ5jZ+9hnRnTuDZcGzz0KjRqYjyS3cMW4cfxUpQkEgql8//vrrL9ORRLI1lRGRbOzvv//mg+BgAnftIsnbGyZONB1JUsPDgwJLlgDQPT4e9717DQcSyd5URkSysSF9+vBabKzzTmgolCplNpCkmmfz5iS0bIm7ZVFo/Hjnli0RuS6VEZFs6v3336fSunWUBOJLlMDjlVdMR5I08po+Hby8ICIC1q8nMTHRdCSRbEllRCQbioqKYkLv3gy9ct97xgzw8TGaSdKhXDkYMgSAvzp04Lm2bXGBy4GJZDmVEZFsxrIsXujblzH//IMP4Hj4YXjySdOxJL1CQ0ksVIig2FjKfvIJ7777rulEItmOyohINrN582bs69bREnB4eOA2axbYbKZjSXrlzYvnpEkAvAa83q8fpzQYmkgKKiMi2cwDtWqxvEABANxeeQUqVzacSG5bx45YdeoQALwcE0Pv3r21u0bkX1RGRLIZ27hx+J87B2XKwKuvmo4jGcHNDdv06QB0Bf765BOWLl1qNpNINqIyIpJNfP/990R//33ypeh55x3w8zMbSjJO/frQqRNuwFwgZMAATp48aTqVSLagMiKSDURGRtLq8cfZ8/DDkJTkPGBV1zXJed56Cyt/fmoC/R0Ojhw5YjqRSLagMiJimGVZ9O7dm8fPn6deQgKWnx9Mm2Y6lmSGIkWwXRlFd7Rl0VCD2IkAKiMixi1fvpwt69cz6cp928iRULq00UySibp1g4YNsV28CAMGmE4jki2ojIgYdOrUKQYMGMAbQBGAqlVh8GDDqSRTubnB3Lng4QEffcSmkBCef/55nV0juZrKiIghlmXRq1cvqp0/T9+rE2fNcg4fLjlbtWrw0ksAlJ8yhfUrV7Jw4ULDoUTMURkRMeTdd9/ly08/ZcHVCd27w4MPGkwkWWrECChblpLAGCAkJISjR4+aTiVihMqIiCEtW7Zk1d13UwUgKAjeest0JMlKfn7OLWHAQKB8bCw9evTQ7hrJlVRGRAzJf+IErffscd6ZMQPy5zcbSLJe8+bQrh3uwCKbjW++/JJ58+aZTiWS5VRGRLLYoUOHsJKSoGfP/x9T5KmnTMcSU6ZNg/z5qWlZDAGGDBnC4cOHTacSyVIqIyJZ6NixY9SqVYv5NWrATz9BQADMnKkL4eVmRYvClCkAjLXZKHHxIp999pnhUCJZS2VEJItYlkWPHj3IFxNDh6u7ZyZMgBIlzAYT8zp1gubN8bYsfq5WjRd69zadSCRLqYyIZJEFCxYQERHBXDc3/BwOuP9+6NXLdCzJDmw259gjefIQ+Mcfzq1lIrmIyohIFjh69CghISF0Apo7HM6xRObPdw6AJQJwxx3/f0ZVaCjHN2/mpZdewuFwmM0lkgX0m1Akk1mWRffu3Qm8cIEZ7u7OiaNHQ5UqRnNJNtSrFzRuDJcucbhJEyZNmsRMbSWRXEBlRCSTzZ07l6+++opwNzfy2u1w333Jo2+KpODmBgsWgK8vDyQk0B145ZVXOHjwoOlkIplKZUQkk1WrVo3QQoVo4nCAtzcsWeK8LonI9VSoAOPGATDV3Z1CcXF07dpVu2skR1MZEclkje64g/GXLzvvjB+v3TNyawMHQr165LHbWeLuzvfffcf06dNNpxLJNCojIpnk0qVL4HBAt27YLlyAhg1h0CDTscQVuLvD0qXg58dDdjv9gdDQUPbv3286mUimUBkRyQSHDh2iTJkyfBMcDF9/Db6+sHix80tGJDUqVkw+u+YtNzdKX77Mm2++aTiUSOZQGRHJYA6Hg27dupH377+pt26dc+KECc5jAUTSom9faNIEb4eDr4oXZ7Z21UgOpTIiksFmzJjB95s3866bG74OBzz4IPTrZzqWuCKbDcLDIV8+Spw6hffbb5tOJJIpVEZEMtCBAwcYNmwYrwL1HA7ntWfCwzW4maRfiRIwa5bz59dfJ+nHH1m4cCF2u91sLpEMpN+QIhnEbrfTtWtX7omLY9TVC9/NmgVlyhjNJTnAs89Cu3aQlMTJRx6hf48evK2tJJKDqIyIZJDp06fz2/ff867NhrtlwXPPQfv2pmNJTmCzOYtt0aKUvnSJCcBrr73G7t27TScTyRAqIyIZJC4ujmk2G+Uty3mdkaub1kUyQsGCsGgRAAOAR+Lj6dKlC0lJSWZziWQAlRGRDPJqlSp0sywsm805RkS+fKYjSU7TooVzQDRgsc3GsV9+YdKkSYZDidw+lRGR22RZFpw8CT17AmB75RXnxc5EMsOECVC9OoUtiyXA6JEj+d///mc6lchtURkRuQ179uyhYf36xD71FJw7B7VqwZgxpmNJTubtDStWYPn60gx4ITGRPn36OEuxiItSGRFJp6tnzzT46Sfy/vSTc5TVd98FLy/T0SSnu/NObFOmADDBZmNZSAi2q2dwibgglRGRdJo8eTLWTz8RdnXClCm6CJ5knV69oHVrPC2Lsq++Chcvmk4kkm4qIyLpsHv3biaNGMEqwBPgmWecXw4iWcVmgwULnIOi7dsHgwezfft2EhMTTScTSTOVEZE0SkpKokvnzsxKTKQsYJUtC/PnO78cRLJSwYKwbJnzszd/Pm/eey9hYWG3fp5INqMyIpJGkyZNos62bTwNWJ6e2FavhsBA07Ekt3roIRg2DIB5lsXSsWPZuXOn2UwiaaQyIpIGDoeDP9et4+pA3LYJE+Dee41mEmHMGKx69cgPLLfb6dGpEwkJCaZTiaSayohIGrhdvMjc6Gh8AOvxx2HQINORRMDTE9uqVTjy5aMeELxrF+PHjzedSiTVVEZEUsuy4IUXsO3fDyVLYlu8WMeJSPZRujRuixcD8BKwY9w4fv31V6ORRFJLZUQkFX7//XdWtWgBy5eDuzusXOk8eFAkO3nyyeTh4sMdDl5p3167a8QlqIyI3EJiYiKjg4Np9fnnzgljxsD995sNJXIjEyaQWL06BYFlSUl4auuduACVEZFbmDhmDGP27sUfiH/ggeQzF0SyJW9vPNeuxQoIoOjBg9hGjzadSOSW0lVGZs2aRdmyZfHx8aF27dps2bLlhvN+9913NGzYkIIFC+Lr60uVKlWYcmUYY5HsbufOnRR54w3uBi4HBOC9erVzN41Idla+PLYFC5w/h4Vx8YMPuHz5stlMIjeR5jKyevVqBg0axPDhw9mxYweNGjWiRYsWHDt27Lrz+/v7079/fzZv3syePXsYMWIEI0aMYN68ebcdXiQzJSQksOLJJ+lpWTgA7zVroGhR07FEUueZZ6BvX7As4p5+mrdfesl0IpEbsllpvNRj3bp1qVWrFrNnz06eVrVqVVq3bp3qkf/atm2Lv78/y5YtS9X8MTExBAYGEh0dTUBAQFriiqTb1BdfpNuMGQQAFwcOxH/qVNORRNLm8mWiq1Yl8MgRvgb8v/+eug0amE4luUhqv7/TtGUkISGB7du307Rp0xTTmzZtytatW1O1jB07drB161YaN258w3ni4+OJiYlJcRPJSrFnzvDgnDkEAGcqV8Z/0iTTkUTSzseHwI0buezhwcPAz08+qd01ki2lqYycOXMGu91OUFBQiulBQUGcPn36ps8tWbIk3t7e1KlTh379+tGjR48bzhsWFkZgYGDyrVSpUmmJKXLb8o4fT42kJOL8/CgUEQEeHqYjiaRP5cokzZgBQL8zZ1jSpYvZPCLXka4DWG3/OVXMsqxrpv3Xli1b2LZtG3PmzGHq1KmsXLnyhvOGhoYSHR2dfDt+/Hh6Yoqkz8cfw5VdMr6rVoHKsLi4PL17c/TRR3EDnli9ml8+/dR0JJEU0vTnXqFChXB3d79mK0hUVNQ1W0v+q2zZsgDcfffd/PXXX4wePZrnnnvuuvN6e3vj7e2dlmgiGeL3Tz+lSocOeIFzqPdWrQwnEskYpT/6iBPFi1MyOpqD7doRFxWFr7+/6VgiQBq3jHh5eVG7dm0iIiJSTI+IiKBBGg6KsiyL+Pj4tLy0SKaLv3iRpGeewSs2lqjSpWHCBNORRDKOnx95N2wgDmh06RLWW2+ZTiSSLM27aUJCQliwYAGLFi1iz549DB48mGPHjtGnTx/AuYulU6dOyfPPnDmT9evXc+DAAQ4cOEB4eDiTJk2iQ4cOGfcuRDLA1iZNqBUXR6zNhsf774OXl+lIIhkqsEEDEiZPBsBv3Dj44QfDiUSc0nxUXnBwMGfPnmXs2LFERkZy1113sWHDBkqXLg1AZGRkijFHHA4HoaGhHD58GA8PD8qXL8+bb75J7969M+5diNymve+8Q+Mrv5j3hIRw3733Gk4kkjkCBw+GX36BVauwnn0W+7ZteBQubDqW5HJpHmfEBI0zIpnp8pEjXKhQgUJ2O19XqMDDBw6YjiSSuWJiSKpeHY8jR/itfHmqHzigK1BLpsiUcUZEchyHg2MPPkghu509Hh7U+PZb04lEMl9AAL+EhJAAVD90iIMhIaYTSS6nMiK52pmhQ6l09CgXgcipUylQooTpSCJZov6LL7Kubl0A7pg6lTgdPyIGqYxI7vXddxSaPh2A9c2a8XC/foYDiWStFhs3EuHjgxcQ89hjcOGC6UiSS6mMSO509iw89xzY7dChA89+9pnpRCJZLjBfPjyWLeM4EHT+PKefftp0JMmlVEYk97Esop9+Gk6cgIoVYdYsHbwnudZDTz/Nyscfxw4U/fxzLuuK6mKAyojkOgmTJhH47bdcBn4bPhzy5jUdScSoPu++y9TAQAA8Bw2CffvMBpJcR2VEcpft23EbNgyA1wMDKf3kk4YDiZgXEBBAk2++IemBB3CPi4N27UBX95UspDIiuceFC1xq3RoPh4O1wP0rVpAvXz7TqUSyhXtq1sRj1SooXBh+/x2GDDEdSXIRlRHJNRL79cPvxAmOAZs6dKDFY4+ZjiSSvRQrhrVkifPnWbNg3TqzeSTXUBmR3GHNGjyXLsUBDClcmNdnzDCdSCRb2hEUxNVLRCZ26eI80Fskk6mMSM53/DiJXbsCEAb0XL6cwCsH64lISrVq1eJUnz78AnjGxpLUvj04HKZjSQ6nMiI5m90OHTvieeECR4oU4WSPHjRt2tR0KpFsbfxbbzGsZEkuAh6bN8Pbb5uOJDmcyojkbBMnwqZN4O9Pme+/Z8bcuaYTiWR7efLkYeTy5Qy6ct8RGgo7dxpMJDmdyojkXL/8gjVypPPnd96BChVwc9NHXiQ1GjdujN+LL/Ih4JaUhP3ZZ+HSJdOxJIfSb2bJmS5cwPHss9iSkvi2cGEimzUznUjE5bwRFsb4MmWIBNz37YOXXzYdSXIolRHJmQYOxO3PPzkGDPTxIW9AgOlEIi7H39+fGatWcX7qVOeEmTNhwwajmSRnUhmRnGftWli0CAfQEZi6ZAl58uQxnUrEJdWtW5eqAwfCoEHOCV27QlSU0UyS86iMSM5y+jSOXr0AeBO4p39/HnroIbOZRHKCsDAuV6rkLCLduoFlmU4kOYjKiOQclgW9euF27hw7gaVly/Lmm2+aTiWSI0TFxPDAsWNcBvj0U9CZaZKBVEYk5wgPh/Xrice5e2be4sX4+/ubTiWSIxQpUoQH+vVj2JX71tChcOiQ0UySc6iMSM5w5AgMHAjAjCJFeGTgQB544AGzmURymNdff53PK1XiG8B28SJ06eIcWFDkNqmMiOtzOJy/FC9cgIYN6X/4MGFhYaZTieQ4vr6+hC9ZQnebjViA776Dq2faiNwGlRFxfdOmJY+yypIlePv54evrazqVSI5Ur149nnnpJQZfuW8NHw67dxvNJK5PZURc2+7dWKGhAHz26KMklS5tOJBIzjdmzBi2VqnCBsAWHw+dO0NioulY4sJURsR1JSZCp07Y4uP5DBi0ezcJCQmmU4nkeD4+PixZupRDw4Zh5c8P27aBzlyT26AyIq5r/HjYvp1zQA8gfPFi/Pz8TKcSyRXuvfdeXgwLwzZjhnPC2LHw669mQ4nLUhkR1/Tbb1jjxwPwAvD80KE0aNDAbCaR3Oi557C3aQNJSdCpE8THm04kLkhlRFxPYiJ07YotKYm1wG+VKzN27FjTqURypcSkJB7dv5+/AP74A0aNMh1JXJDKiLiet96CHTs4C7xos7F4yRKdPSNiiKenJ/e3aUPvK/ett96CX34xmklcj8qIuJY//oAxYwAY6uFBp5dfpm7duoZDieRur732GofvuYeVgM3hwOreHXQwuaSByoi4DrvdeYGuhARo2ZJXfv+d0aNHm04lkut5eXmxePFiQtzd+Ruw7doFGnhQ0kBlRFzHlCnw888QEABz51KlalV8fHxMpxIRoGbNmvQeMYIXr9y3xo+HXbuMZhLXoTIirmH/fqzXXgPgz/79oUQJw4FE5L9effVV9lWvzoeALTHRuSUzKcl0LHEBKiOS/Tkc0L07tsuX+QJo+8knOBwO06lE5D+8vLxYvGQJ7zVujCNvXudgaFOmmI4lLkBlRLK/mTPhu++IBfq4ubFw0SLc3PTRFcmOqlevzopvv8Vt2jTnhJEjYf9+s6Ek29NvdMne/vwT65VXAHgZ6DB8OLVr1zabSURurUsXaNoULl92nl2jrZlyEyojkn1ZFlbPntji4vgG+OHuuxkxYoTpVCKSGjYbY0uWJBawffcdzJ5tOpFkYyojkn0tWYLt66+5BPRxdyd8yRK8vLxMpxKRVHIvV45hV352vPwyHDliMo5kYyojkj39/TcMGQLAaOD5116jZs2aRiOJSNq88sor/FyrFpsBt0uXsPr2BcsyHUuyIZURyZ6GDIFz57DuuYfay5bx6quvmk4kImnk4eHB4qVLecHTk8uAbeNGWLXKdCzJhlRGJPv56itYtgxsNmzz5xPcoQOenp6mU4lIOlSrVo0OY8cy7sp9+4svwrlzRjNJ9qMyItlLXBxJPXsCkNCzJ9x3n+FAInK7hg4dyjd16vAH4H72LNbQoaYjSTajMiLZijVuHB6HD3MS6HLypOk4IpIBPDw8WLB0Ka8WKgSALTwcvvnGcCrJTlRGJPv44w+sCRMAGOzuTqgutCWSY1StWpX3T56Evn2dE3r3hsuXzYaSbENlRLIHh4OELl1ws9v5CKgxZgx333236VQikoG8vLycV/MtVgwOHMAaN+7WT5JcQWVEsgVr3jy8tm0jFph/zz28fGXUVRHJYQID+aVzZwCssDD43/8MB5LsQGVEzIuMJDEkBIDR7u5MXLkSDw8Pw6FEJLNsKVSIDwE3h4PLXbpoqHhRGRHzHIMG4RUXxy9A0Ouvc+edd5qOJCKZaOCgQSypU4dYwGf7dqy5c01HEsNURsSszz7D7b33sNzd+albN0Jeesl0IhHJZO7u7kxcsYJRV8YPSggJgVOnDKcSk1RGxJyLF5OPrLcNGkT/hQu1e0Ykl6hYsSJlJkzgR8D78mUudu9uOpIYpDIixsSEhMDRo3DHHTB6tOk4IpLF+g8cyJxatUgE/DduxPHBB6YjiSEqI2KEtWMH/vPnA7CyUSPIk8dwIhHJam5ubrz23ntMvbJF1Na/P8TEGE4lJqiMSNaz2znTpg3ulsVaNzdqvfaa6UQiYkj58uV5bvduKF8e26lTMGKE6UhigMqIZLlzr79O4aNHOQ+cHTmSypUrm44kIgaVrFgR5swBwJoxA8ePPxpOJFlNZUSylHX8OD5XRl2cX64c3fVXkIgAPPooF9u2xWZZnH36aUhMNJ1IspDKiGSpI61a4We384ObG603bMDd3d10JBHJJt6vV4+zQOGTJzmjP1RyFZURyTKxy5ZR9rffSAQOvfQSFbV7RkT+pdOQISysUgWAPJMm4Th0yHAiySrpKiOzZs2ibNmy+Pj4ULt2bbZs2XLDedetW0eTJk0oXLgwAQEB1K9fn88//zzdgcVFxcSQNzQUgE+rVeP5N94wHEhEshs3NzfabdjAZnd3fBwOjj3+OFiW6ViSBdJcRlavXs2gQYMYPnw4O3bsoFGjRrRo0YJjx45dd/7NmzfTpEkTNmzYwPbt23nooYdo1aoVO3bsuO3w4kJGjICTJ6F8eVr/8gtubtooJyLXKlO2LKdee414oMzevUROnWo6kmQBm2WlrXbWrVuXWrVqMXv27ORpVatWpXXr1oSFhaVqGdWqVSM4OJiRI0de9/H4+Hji4+OT78fExFCqVCmio6MJCAhIS1zJBiI/+oiibdpgsyyIiIBHHzUdSUSyMcuyWFqhAp3//JNznp4EnjqFe6FCpmNJOsTExBAYGHjL7+80/XmakJDA9u3badq0aYrpTZs2ZevWralahsPhIDY2lgIFCtxwnrCwMAIDA5NvpUqVSktMyUYc8fFcaN8em2Vx8qGHVERE5JZsNhsPbdzIPjc3CiQmEjdwoOlIksnSVEbOnDmD3W4nKCgoxfSgoCBOnz6dqmVMnjyZixcv0q5duxvOExoaSnR0dPLt+PHjaYkp2cj3wcFUvHiRs0DSxImm44iIi7ijYkUSZ8wAIM+KFfDdd4YTSWZK1457m82W4r5lWddMu56VK1cyevRoVq9eTZEiRW44n7e3NwEBASlu4nqOfPsttT76CIDfOnakdJ06hhOJiCu5q29f6NHDead3b0hIMBtIMk2aykihQoVwd3e/ZitIVFTUNVtL/mv16tV0796d9957j0e1qT7Hc9jtRLZtiz+wM18+HgwPNx1JRFzRxIlYRYrA7t1sbdPGdBrJJGkqI15eXtSuXZuIiIgU0yMiImjQoMENn7dy5Uq6dOnCihUraNmyZfqSikvZ2K0b9f/5h3ig0Jo1uGlwMxFJj/z52d6hAwC1Nmzg4IYNhgNJZkjzbpqQkBAWLFjAokWL2LNnD4MHD+bYsWP06dMHcB7v0alTp+T5V65cSadOnZg8eTL16tXj9OnTnD59mujo6Ix7F5KtHNq2jVpLlwLwe6tWlHzkEcOJRMSV1X7rLbYXKoQPcP7ZZ0nSUPE5TprLSHBwMFOnTmXs2LHUqFGDzZs3s2HDBkqXLg1AZGRkijFH5s6dS1JSEv369aNYsWLJt4E6OjrHKj17NkWBY/7+1HnvPdNxRMTF2dzcKPHxx1wC6sTGsvH5501HkgyW5nFGTEjtecqSDXz3HTRqBID9669xf+ghw4FEJKfYHhxM7ffe4wzw9+bNVL3yu0ayr0wZZ0TkZqKOH8fq1ct5p0cPFRERyVC1li3jcEAAhYBDrVuTqN01OYbKiGQIu93OBw0aYNuzh6SCBUFjiohIBrN5eZF35UocwOPnzrF35kzTkSSDqIxIhggfNowuJ04AED1mDOTPbziRiOREhR57zHkBPeDumTMhLs5wIskIKiNy23b/8QcVJ0/GGzhx990UfOEF05FEJAcr8+67UKIEHDwI48ebjiMZQGVEbktSUhJrH3+cxpbFZXd3Snz0EaRiNF4RkXQLCIB33gHAmjCBNWPGGA4kt0tlRG7LzFGj6HfkCADxr76KrWxZs4FEJHdo04aYhx/GlpRE8dGj2fnrr6YTyW1QGZF0+9///keRN9+kAHC2dGkCR440HUlEcpG84eHEeXjQAFj/xBMk6No1LktlRNIt8IcfeM7hwA4UeP998PAwHUlEchHbHXeQNHo0AC+ePMm0YcPMBpJ0UxmR9Ll4kVJvvAFA4gsvYLv3XsOBRCQ3yjtsGGfLlycfUHrqVH7V7hqXpDIiaZaYmAhjxsCRI3DHHfhMmGA6kojkVu7uFFyzBrvNRjvLYkHbtsTHx5tOJWmkMiJpkpiYSJcaNbBPmuScMGsW5MljNpSI5G41ahDfty8ALx89yvK5cw0HkrRSGZE0CRs3jkG7d+NuWVxu1QpatjQdSUQEv4kTuVS4MGWAbkePmo4jaaQyIqm2c+dOzo8bx71Agp8fPvrrQ0SyC39//JYsAcA2bRrs2GE4kKSFyoikSkJCAqHPPcdYhwMAz8mToVgxw6lERP6lRQsIDga7HXuPHqz/8EPTiSSVVEYkVcaPG8fgvXvJAyTUq4ft6tV5RUSyk6lTcQQG4v7rr3zVti0///yz6USSCiojcku//vorJ8aNoymQ5OmJ15Il4KaPjohkQ0WL4nblquGvWxavPP88ly9fNhxKbkXfKHJLJ7dtY5JlAeAxbhxUqmQ4kYjITfToQWLduuQFBh86xCiNDp3tqYzIzVkWrT77jPxAYvXqEBJiOpGIyM25ueG5aBEODw+eAE5MmsSPP/5oOpXchMqI3NyaNfDhh+DhgefSpRryXURcw5134nZli8g0y2JIhw7ExcUZDiU3ojIi1xUfH8/zzZqR0Lu3c0JoKNxzj9lQIiJpMWwYSXffTSFg4KFDvP7666YTyQ2ojMh1jRkzhhZffIHXP//gqFoVhg83HUlEJG08PfFYsgSHuzvtgKFly5pOJDegMiLX+Pnnn/n9zTfpCFg2G27h4eDtbTqWiEja1ayJW2goAAVGjIAzZwwHkutRGZEULl++zAsdOjD7ytkztkGDoG5ds6FERG7HiBFQrRpERcGgQezevdt0IvkPlRFJYdSoUXQ/cIBSgL1MGRg3znQkEZHb4+0N4eFYbm7w7rsMq1aNLVu2mE4l/6IyIsl++OEHfn7rLfpeue++aBH4+RnNJCKSIe69F9vQoQDMAQZ06sTFixfNZpJkKiOS7KN332Xhld0z9OwJDz1kNpCISEYaPRp7hQoUB148coTQK8eSiHkqI5IszG6nHGAvWRImTTIdR0QkY/n64r54MZbNRjdg/zvvsGnTJtOpBJURuerLL7HNmQOAe3g4BAQYDiQikgkaNsQ2YAAA84AXO3fmwoULZjOJykhud+nSJYa/+CL2Ll2cE/r2hUcfNZpJRCRTjR+Po0wZ7gD6Hz3KsGHDTCfK9VRGcrnhw4dTdsYM3E+exCpXDq5c7VJEJMfy98dt8WIAegEdCxY0GkdURnK1LVu2sH/qVHrgHNzMFh4OefKYjiUikvkaN4ZBgwCoO38+nDtnNk8upzKSS128eJGBnTox78p928CB8MADRjOJiGSpN96AKlUgMhL69SM2NtZ0olxLZSSXCg0NZfCRI5QA7BUqOP9RiojkJr6+sGQJuLvDqlUMLFaML7/80nSqXEllJBf69ttvOfbOO85rz7i54b5smfMfpYhIbnPffc6rkgMTL15kWJcuxMTEGA6V+6iM5EKTQ0OZe+Vn20svQb16RvOIiBj12mvYq1enEDDq5EmGDhliOlGuozKS21gWa4sUIQiwV60KY8aYTiQiYpaXF+7Ll+Pw9KQVkLRgAV988YXpVLmKykhus3QpXh9/DB4ezt0z3t6mE4mImHfXXbhduTDoVGBU585ER0cbjZSbqIzkErGxsXw8ZQpW//7OCWPGQO3aZkOJiGQnQ4Zgr1+fAOCN06cZMniw6US5hspILjFs6FAKh4Rgu3ABGjWCV14xHUlEJHtxd8d96VLsPj48BDx26BAOh8N0qlxBZSQXiIiIoPC8edQHEv39Ydky56lsIiKSUoUKuE+eDEDbn3/Gbd8+w4FyB5WRHC4mJoZZHTrw2pX7nvPnQ+nSRjOJiGRrfftC06Zw+TJ06IAVH286UY6nMpLDjRgwgMlRUbgDic8+C889ZzqSiEj2ZrNBeDgUKAC//srKihX55JNPTKfK0VRGcrDPP/+c2kuWUA64XLQonnPmmI4kIuIaiheH+fMBePb4ccI7d+aff/4xHCrnUhnJoRISEvi4fXs6Aw6bDZ/334fAQNOxRERcR9u2JHXqhBsw5dw5Qvv2NZ0ox1IZyaG8/vqLqVf2cya9/DLcf7/hRCIirsdj5kwulyjBHcADq1fz8ccfm46UI6mM5ER2O3TsiOeFC3DffXi9/rrpRCIirilPHnzWrsVus/E88HmnTpw9e9Z0qhxHZSSHOX/+PGeGDYNNm8DfH959Fzw9TccSEXFddeviGDECgDeioxnbrZvhQDmPykgOM6VjRwInTXLemT4dKlQwG0hEJAfwHDmS2HvuIRDo9OWXxOhg1gylMpKDbHj/fZ775BM8gbMPPghdu5qOJCKSM3h4kPeDD0jy9aX2pUsE6OzEDKUykkOcO3eOM126UAU4nycPBdeudZ4rLyIiGaNcOTxmzXL+PHIkbNtmNk8OojKSQyxu25ZOly4B4Lt6tXOwHhERyVidO8PTT0NSEmebN+ejFStMJ8oRVEZygI3h4XTctAmAU88/j/djjxlOJCKSQ9lsMHcuF/Llo+DZs/zTvTtRUVGmU7k8lREXd/bvv/Hq04fCwKkiRSi+aJHpSCIiOVuBAnivXAlAl8uXCW/TxnAg16cy4uICly3j4YQELttsFNy4Eby9TUcSEcnxPJs3568OHQDotnUrH8+bZziRa1MZcWW7duHx6qsAeE6bhnfNmoYDiYjkHkELFnA6KIjCgH///vwVGWk6kstSGXFRMVFROJ5/HuLjoWVL3Pv3Nx1JRCR38famwOefc9lm45HERNY3b45lWaZTuaR0lZFZs2ZRtmxZfHx8qF27Nlu2bLnhvJGRkTz//PNUrlwZNzc3Bg0alN6s8i/fNWqE2//+R1KBArBwoU7jFRExwKt6deeo10CH33/n6CefGE7kmtJcRlavXs2gQYMYPnw4O3bsoFGjRrRo0YJjx45dd/74+HgKFy7M8OHDqV69+m0HFtg8YgSP7d8PwOGRIyEoyHAiEZHcq+T48ZyoXh0foMyrr8Lly6YjuRyblcZtSnXr1qVWrVrMnj07eVrVqlVp3bo1YWFhN33ugw8+SI0aNZg6dWqaQsbExBAYGEh0dDQBAQFpem5O8/eePTiqVSPIsvixTh3q/fKL6UgiIhIVBXff7fzvwIGQxu+5nCq1399p2jKSkJDA9u3badq0aYrpTZs2ZevWrelLeh3x8fHExMSkuAlYDgeHH3mEIMvikLc3tb780nQkEREBKFIEFi92/jxtGj+MGmU0jqtJUxk5c+YMdrudoP/sFggKCuL06dMZFiosLIzAwMDkW6lSpTJs2a5sW58+3BcZSQKQuHgxXoGBpiOJiMhVLVpwvHVrAMq9/jqnd+0ym8eFpOsAVtt/Dpa0LOuaabcjNDSU6Ojo5Nvx48czbNmu6szWrdw5fz4A3zRpQpVnnzWcSERE/qvY0qUc8vEhyLI40qQJlsNhOpJLSFMZKVSoEO7u7tdsBYmKirpma8nt8Pb2JiAgIMUtV0tIIG+fPvgDP+XJw0Mff2w6kYiIXIdH3rxYy5cTD9T76y9+7NbNdCSXkKYy4uXlRe3atYmIiEgxPSIiggYNGmRoMPmX0aPx3rULK39+ym3ZgpePj+lEIiJyAxWeeorvWrYEoPqSJfx15dphcmMeaX1CSEgIHTt2pE6dOtSvX5958+Zx7Ngx+vTpAzh3sZw8eZKlS5cmP2fnzp0AXLhwgb///pudO3fi5eXFnXfemTHvIgezf/017m++CYBt/nwK16hhNpCIiNxS43Xr+KlwYerGxHDqiScoEhWFTZfruKE0l5Hg4GDOnj3L2LFjiYyM5K677mLDhg2ULl0acA5y9t8xR2r+a5jy7du3s2LFCkqXLs2RI0duL30OZ/3zD+cef5zClkVSp054PPWU6UgiIpIKHl5eFPj4Y848+CAVYmI41L495desMR0r20rzOCMm5MpxRiyLww0aUPbHHzkAJP70E3fed5/pVCIikgaf9uxJywULsGw2bF9+CQ8/bDpSlsqUcUYk6/wzYwZlf/yRJOD7Pn1UREREXFDL+fOhVy9slgWdOsG5c6YjZUsqI9mQdfgw3iEhAMwvXpwO77xjOJGIiKTb229DpUpw8iR/t20L2X+HRJZTGclu7HaimjXDLymJ7202HtiwAQ+PNB/aIyIi2YW/PycnTiQRKLxpE2cmTzadKNtRGclmol99laADB4gBdr30EtV0cUEREZdX9PHHWXjlRA+/YcOwDhwwnCh7URnJTrZtI++Vxvx2uXL0GD/ecCAREckI7u7uPPzZZ2x2c8PvyhZwEhNNx8o2VEayi4sXoX173Ox2Lj3+OB0//1y7Z0REcpBKVauyf8QI/gGCDh/mnyFDTEfKNlRGsouXXoL9+6F4cfyWLKF8hQqmE4mISAbrNmoUU6tUASDgnXdwbN5sOFH2oDKSDVjr18Ps2c47S5ZAgQJmA4mISKZwc3Oj4/r1LHd3xx242LYtREebjmWcyohpf/3F5fbtAZju7s5fd99tOJCIiGSmChUqcOGNN/jL35+8Z89Cv36mIxmnMmKSZXGpfXt8Y2PZBVjjx2fo1Y9FRCR76v3SSwRFRIC7O7z7LqxYYTqSUSojBllz5+L31VfEA5Nq1KD/0KGmI4mISBaw2WxQvz689hoA9t69IRdfr01lxJR9+0gaMACA1zw9GfHee7i7uxsOJSIiWenioEHsK1AA9wsXiHvmGbDbTUcyQmXEhMRE4p9+Gs/ERL4ESkyYQMWKFU2nEhGRLOabNy+vV65MDOC7bRuOsDDTkYxQGTFhzBi8//c/zgGz77uPFwcONJ1IREQMcHNzY9yKFQzx9nZOGDUKfv7ZbCgDVEay2o8/wpXme3DIECauWIGbm/43iIjkVmXKlKHO1KmsBNwcDhLatXMOhJmL6FswK126BJ07g8MB7dtz36RJlC9f3nQqERExrFfv3qxu3JhjgNfRozheftl0pCylMpKFrNBQ2L8fe9Gi8M47puOIiEg2YbPZmL50Kf19fQFwmzULvvzScKqsozKSVb75Btv06QB0czhI8Pc3HEhERLKTO+64gyemT2dpnjzOCd265ZrRWVVGskJMDIkdOwIwF6g7ahReXl5mM4mISLbTvXt32h44AOXLw/HjMHiw6UhZQmUkC1ghIXiePMmfwPoHHqBPnz6mI4mISDZks9nIU7QoLF4MNhuEh8P69aZjZTqVkcz26afYFi7EAbzg68uMJUt09oyIiNyU1bAhvz36KABJXbvC2bOGE2UufStmprNnnR8iYCrQZsoUypQpYzKRiIi4iFFubuwGPM6exfHCC6bjZCqVkcz04ot4/P03e4CvHnqIXr16mU4kIiIuwGazMXPhQl7w9ycJcHvvPVi92nSsTKMyklnefx9WrsRyd2fjs88yKzzceWEkERGRVChRogRdZ85k/JX7Sb17w+nTRjNlFpWRzHD6NPTtC4AtNJTBK1dSunRpw6FERMTVdOrUiZ2PPcavgEd0NI7u3cGyTMfKcCojGc2ysPr0gbNnsWrUSL48tIiISFrZbDZmzp/PiwEBxANuGzY4z7TJYVRGMtp772H76CMSgZACBUDjiYiIyG0oXrw4fWfOZNTVXf2DB8PJk2ZDZTCVkYz0998kXdk9Mw64p0MHs3lERCRHaN++PV1+/x3uvdc5KmufPjlqd43KSAZy9O+Pxz//8Buws3lzunTpYjqSiIjkADabjSp33eUcBM3TEz75BFauNB0rw6iMZJQPPsDtvfdIAgbkycOsBQt09oyIiGSsatWIujKKd9ILL8BffxkOlDFURjLCuXMk9uwJwESg+8yZlChRwmwmERHJkUL++osdOM+usffrZzpOhlAZyQDW4MF4nj3LbmBbixZ0vHJRPBERkYw2efp0QgIDSQLc166FtWtNR7ptKiO369NPsS1diuXmxvTq1Zmh3TMiIpKJgoKC6DtvHm9euZ/Yq5fLX7tGZeR2REdD794A2AYPZs7OnRQvXtxwKBERyenatWvHH23a8Afgee4c9gEDTEe6LSojt8EREuI817tCBRg71nQcERHJRabPncuQfPmwA+4rVjjPsHFRKiPpFRGB26JFAKx57DHw8zMcSEREcpPChQvTY/583r5y3+rdG86fNxkp3VRG0iM2loTOnQF4B0isV89sHhERyZWefvppKq1ciVWxIrZTp+Cll0xHSheVkXSwv/IKXpGRHAZ+aNWKZ5991nQkERHJpZ589llsCxc67yxYABERZgOlg8pIWv3wA7bZswEYkjcvU+bP19kzIiJiVqNG2K9cjuRy585w8aLhQGmjMpIWCQnEdeyIGxAOPLtgAUFBQaZTiYiIMNrbmyOAT2QkSa++ajpOmqiMpEFSWBi+hw4RBWxu1Yp27dqZjiQiIgLAoBEjGJ4/PwBu77wD27YZTpR6KiOptW8f7m+8AcDYAgWYeHX/nIiISDZQsGBBghcvZgXgZllcfP55SEw0HStVVEZSw+GAXr2wJSRAixZMOnGCwoULm04lIiKSwhNPPMH3Tz/NWcD/wAESJ0wwHSlVVEZSIXHOHNi82TmWyOzZ+Pj6mo4kIiJyXePmzWNsYKDzzpgxcPCg2UCpoDJyK5GRJIWEAHC0Z08oXdpwIBERkRvLnz8/TZYtIwLwTEoisVs3sCzTsW5KZeQWznXogG98PL8Av95/v+k4IiIit/R4q1Ycf/VVHD4+eG7ZAosXm450UyojN5GwZg0Fvv6aJGBdixa0efpp05FERERSpdv48bhdvW7akCHw119mA92EysiNxMQQ17UrALP9/Rm6bJnhQCIiImk0eDDUrAn//MOZDh1Mp7khlZEbON2tG4EXLnAQKBseTsGCBU1HEhERSRsPDz5r2xY7UOjLL7m8dq3pRNelMnId8d9+S5Er/8PWPPoojz/zjOFEIiIi6dPgxReZnycPAJe6dIHYWLOBrkNl5L8SEnDv2xc3YLWvL73fe890IhERkXQLDAyk/PLl/AkUuHCBE1cOQchOVEb+a8IEPPbuxSpcmIY//ED+K0PrioiIuKomTz7JRy1aAFB87VouffON4UQpqYz8i2P3bhg3DgDbtGmUrF7dcCIREZGM0X3VKtb6+eEGnH/6aUhIMB0pmcrIVQ4Hh5s2hYQEEps0gWefNZ1IREQkwwQEBFBo6VL+BoqfO8fpIUNMR0qmMnLFgWHDKH/yJBeBHzp2BJvNdCQREZEM1fipp/i6VSsAgubPh/37DSdyUhkBLh06RNDkyQB8UrcuD3TsaDiRiIhI5gj+6CNo2hRbfDz06ZMthopPVxmZNWsWZcuWxcfHh9q1a7Nly5abzr9p0yZq166Nj48P5cqVY86cOekKm1n2NW9OgMPBb56eNN+wwXQcERGRzGOzwezZ4OsL33zD0aujtBqU5jKyevVqBg0axPDhw9mxYweNGjWiRYsWHDt27LrzHz58mMcee4xGjRqxY8cOXn31VQYMGMDabDLwyv/eeIOaBw+SBFycNo3AAgVMRxIREclc5cpxsmdPAALGjiX2zz+NxrFZVtq2z9StW5datWoxe/bs5GlVq1aldevWhIWFXTP/K6+8wscff8yePXuSp/Xp04fffvuNH374IVWvGRMTQ2BgINHR0QQEBKQl7k1dOHWK2DvuoJjdzsbq1Wm+c2eGLVtERCQ7u/DPPxwrWpQ7ExL4sUIF6h04kOGvkdrv7zRtGUlISGD79u00bdo0xfSmTZuydevW6z7nhx9+uGb+Zs2asW3bNhITE6/7nPj4eGJiYlLcMsOlQYMoZrdzxMODBp9/nimvISIikh3lyZ+fy9Om4QDqHTxIwqefGsuSpjJy5swZ7HY7QUFBKaYHBQVx+vTp6z7n9OnT150/KSmJM2fOXPc5YWFhBAYGJt9KlSqVlpipY1kUKVwYy2Yj8Z13CPhPRhERkZyuVp8+nGjdGiswEK+LF43lSNcBrLb/nPZqWdY10241//WmXxUaGkp0dHTy7fjx4+mJeXM2G8yciW3fPir26ZPxyxcREXEBdyxdim3vXmjXzlgGj7TMXKhQIdzd3a/ZChIVFXXN1o+rihYtet35PTw8bnglXG9vb7y9vdMSLf0qVsya1xEREcmO8uZ13gxK05YRLy8vateuTURERIrpERERNGjQ4LrPqV+//jXzf/HFF9SpUwdPT880xhUREZGcJs27aUJCQliwYAGLFi1iz549DB48mGPHjtHnyq6O0NBQOnXqlDx/nz59OHr0KCEhIezZs4dFixaxcOFChg4dmnHvQkRERFxWmnbTAAQHB3P27FnGjh1LZGQkd911Fxs2bKB06dIAREZGphhzpGzZsmzYsIHBgwczc+ZMihcvzvTp03nqqacy7l2IiIiIy0rzOCMmZNY4IyIiIpJ5MmWcEREREZGMpjIiIiIiRqmMiIiIiFEqIyIiImKUyoiIiIgYpTIiIiIiRqmMiIiIiFEqIyIiImKUyoiIiIgYlebh4E24OkhsTEyM4SQiIiKSWle/t2812LtLlJHY2FgASpUqZTiJiIiIpFVsbCyBgYE3fNwlrk3jcDg4deoUefPmxWazZdhyY2JiKFWqFMePH9c1bzKZ1nXW0HrOGlrPWUPrOWtk5nq2LIvY2FiKFy+Om9uNjwxxiS0jbm5ulCxZMtOWHxAQoA96FtG6zhpaz1lD6zlraD1njcxazzfbInKVDmAVERERo1RGRERExKhcXUa8vb0ZNWoU3t7epqPkeFrXWUPrOWtoPWcNreeskR3Ws0scwCoiIiI5V67eMiIiIiLmqYyIiIiIUSojIiIiYpTKiIiIiBiV48vIrFmzKFu2LD4+PtSuXZstW7bcdP5NmzZRu3ZtfHx8KFeuHHPmzMmipK4tLet53bp1NGnShMKFCxMQEED9+vX5/PPPszCta0vrZ/qq77//Hg8PD2rUqJG5AXOItK7n+Ph4hg8fTunSpfH29qZ8+fIsWrQoi9K6rrSu53fffZfq1avj5+dHsWLF6Nq1K2fPns2itK5p8+bNtGrViuLFi2Oz2fjwww9v+Zws/y60crBVq1ZZnp6e1vz5863du3dbAwcOtPz9/a2jR49ed/4///zT8vPzswYOHGjt3r3bmj9/vuXp6WmtWbMmi5O7lrSu54EDB1oTJkywfv75Z2v//v1WaGio5enpaf36669ZnNz1pHVdX3X+/HmrXLlyVtOmTa3q1atnTVgXlp71/MQTT1h169a1IiIirMOHD1s//fST9f3332dhateT1vW8ZcsWy83NzZo2bZr1559/Wlu2bLGqVatmtW7dOouTu5YNGzZYw4cPt9auXWsB1gcffHDT+U18F+boMnLfffdZffr0STGtSpUq1rBhw647/8svv2xVqVIlxbTevXtb9erVy7SMOUFa1/P13HnnndaYMWMyOlqOk951HRwcbI0YMcIaNWqUykgqpHU9f/bZZ1ZgYKB19uzZrIiXY6R1Pb/11ltWuXLlUkybPn26VbJkyUzLmNOkpoyY+C7MsbtpEhIS2L59O02bNk0xvWnTpmzduvW6z/nhhx+umb9Zs2Zs27aNxMTETMvqytKznv/L4XAQGxtLgQIFMiNijpHedR0eHs6hQ4cYNWpUZkfMEdKznj/++GPq1KnDxIkTKVGiBJUqVWLo0KHExcVlRWSXlJ713KBBA06cOMGGDRuwLIu//vqLNWvW0LJly6yInGuY+C50iQvlpceZM2ew2+0EBQWlmB4UFMTp06ev+5zTp09fd/6kpCTOnDlDsWLFMi2vq0rPev6vyZMnc/HiRdq1a5cZEXOM9KzrAwcOMGzYMLZs2YKHR479556h0rOe//zzT7777jt8fHz44IMPOHPmDC+88ALnzp3TcSM3kJ713KBBA959912Cg4O5fPkySUlJPPHEE7zzzjtZETnXMPFdmGO3jFxls9lS3Lcs65ppt5r/etMlpbSu56tWrlzJ6NGjWb16NUWKFMmseDlKate13W7n+eefZ8yYMVSqVCmr4uUYaflMOxwObDYb7777Lvfddx+PPfYYb7/9NosXL9bWkVtIy3revXs3AwYMYOTIkWzfvp2NGzdy+PBh+vTpkxVRc5Ws/i7MsX8qFSpUCHd392sadlRU1DWN76qiRYted34PDw8KFiyYaVldWXrW81WrV6+me/fuvP/++zz66KOZGTNHSOu6jo2NZdu2bezYsYP+/fsDzi9Ny7Lw8PDgiy++4OGHH86S7K4kPZ/pYsWKUaJEiRSXSq9atSqWZXHixAkqVqyYqZldUXrWc1hYGA0bNuSll14C4J577sHf359GjRoxbtw4bb3OICa+C3PslhEvLy9q165NREREiukRERE0aNDgus+pX7/+NfN/8cUX1KlTB09Pz0zL6srSs57BuUWkS5curFixQvt7Uymt6zogIIBdu3axc+fO5FufPn2oXLkyO3fupG7dulkV3aWk5zPdsGFDTp06xYULF5Kn7d+/Hzc3N0qWLJmpeV1VetbzpUuXcHNL+bXl7u4O/P9f7nL7jHwXZtqhsdnA1dPGFi5caO3evdsaNGiQ5e/vbx05csSyLMsaNmyY1bFjx+T5r57ONHjwYGv37t3WwoULdWpvKqR1Pa9YscLy8PCwZs6caUVGRibfzp8/b+otuIy0ruv/0tk0qZPW9RwbG2uVLFnSevrpp60//vjD2rRpk1WxYkWrR48ept6CS0jreg4PD7c8PDysWbNmWYcOHbK+++47q06dOtZ9991n6i24hNjYWGvHjh3Wjh07LMB6++23rR07diSfQp0dvgtzdBmxLMuaOXOmVbp0acvLy8uqVauWtWnTpuTHOnfubDVu3DjF/N9++61Vs2ZNy8vLyypTpow1e/bsLE7smtKynhs3bmwB19w6d+6c9cFdUFo/0/+mMpJ6aV3Pe/bssR599FHL19fXKlmypBUSEmJdunQpi1O7nrSu5+nTp1t33nmn5evraxUrVsxq3769deLEiSxO7Vq++eabm/7OzQ7fhTbL0rYtERERMSfHHjMiIiIirkFlRERERIxSGRERERGjVEZERETEKJURERERMUplRERERIxSGRERERGjVEZERETEKJURERERMUplRERERIxSGRERERGjVEZExIiVK1fi4+PDyZMnk6f16NGDe+65h+joaIPJRCSr6UJ5ImKEZVnUqFGDRo0aMWPGDMaMGcOCBQv48ccfKVGihOl4IpKFPEwHEJHcyWazMX78eJ5++mmKFy/OtGnT2LJli4qISC6kLSMiYlStWrX4448/+OKLL2jcuLHpOCJigI4ZERFjPv/8c/bu3YvdbicoKMh0HBExRFtGRMSIX3/9lQcffJCZM2eyatUq/Pz8eP/9903HEhEDdMyIiGS5I0eO0LJlS4YNG0bHjh258847uffee9m+fTu1a9c2HU9Espi2jIhIljp37hwNGzbkgQceYO7cucnTn3zySeLj49m4caPBdCJigsqIiIiIGKUDWEVERMQolRERERExSmVEREREjFIZEREREaNURkRERMQolRERERExSmVEREREjFIZEREREaNURkRERMQolRERERExSmVEREREjPo/ZbPeemwAvVUAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfPklEQVR4nO3dd3hU1cLF4d+kF0ioSWhSlCaiNKWJIGCkCAIq2AAFhCjSuyAgolgA6b2pSG+CIoINULx4wWADpfeEUFMgdXK+PwL5bqQlIcnOTNb7PPNc5uTMmTXnRmZxyt42y7IsRERERAxxMR1ARERE8jaVERERETFKZURERESMUhkRERERo1RGRERExCiVERERETFKZURERESMcjMdID2Sk5M5ffo0+fPnx2azmY4jIiIi6WBZFtHR0RQvXhwXl5sf/3CIMnL69GlKlSplOoaIiIhkwokTJyhZsuRNf+4QZSR//vxAyofx8/MznEZERETSIyoqilKlSqV+j9+MQ5SRa6dm/Pz8VEZEREQczO0usdAFrCIiImKUyoiIiIgYpTIiIiIiRjnENSMiIs7CbreTmJhoOoZIlnB3d8fV1fWOt6MyIiKSAyzLIjw8nEuXLpmOIpKlChQoQFBQ0B2NA6YyIiKSA64VkYCAAHx8fDSAozg8y7K4cuUKERERABQrVizT21IZERHJZna7PbWIFC5c2HQckSzj7e0NQEREBAEBAZk+ZaMLWEVEstm1a0R8fHwMJxHJetd+r+/kWiiVERGRHKJTM+KMsuL3WmVEREREjMpUGZkxYwZly5bFy8uLmjVrsn379puu+8MPP2Cz2a57/P3335kOLSIiIs4jw2Vk+fLl9O3bl+HDhxMaGkqDBg1o3rw5x48fv+Xr/vnnH8LCwlIf5cuXz3RoERGRf/v777+pU6cOXl5eVKtWzXQcyYAMl5GJEyfStWtXunXrRuXKlZk0aRKlSpVi5syZt3xdQEAAQUFBqY+sGCRFRBzfuXPnuHLliukYkovZbDbWrVt32/VGjRqFr68v//zzD99++232B5Msk6EykpCQwO7duwkODk6zPDg4mB07dtzytdWrV6dYsWI0adKE77///pbrxsfHExUVleYhIs5n5cqVBAQE0LBhQ5KTk03HEQd36NAhHn74YUqXLq1bqB1MhsrIuXPnsNvtBAYGplkeGBhIeHj4DV9TrFgx5syZw+rVq1mzZg0VK1akSZMmbNu27abvM27cOPz9/VMfpUqVykhMEXEAYWFh9OjRg1KlSrF48WJcXPLm9fSXL1++6SMuLi7d68bGxqZr3YyyLIsPPviAcuXK4e3tzQMPPMCqVatSf9a0aVOaNWuGZVkAXLp0ibvuuovhw4cDKWOsdO3albJly+Lt7U3FihWZPHnyde+zYMECqlSpgqenJ8WKFeP1118HoEyZMgC0bdsWm82W+vzfbDYbu3fvZsyYMdhsNkaPHp3hzyoGWRlw6tQpC7B27NiRZvnYsWOtihUrpns7TzzxhNWqVaub/jwuLs6KjIxMfZw4ccICrMjIyIzEFZFcKjk52WrVqpUFWDVq1LASEhJMR8pWsbGx1t69e63Y2Njrfgbc9NGiRYs06/r4+Nx03YYNG6ZZt0iRIjdcL6PeeOMNq1KlStamTZusQ4cOWQsXLrQ8PT2tH374wbIsyzp58qRVsGBBa9KkSZZlWVaHDh2sWrVqpf5/mpCQYI0cOdL65ZdfrMOHD1uLFy+2fHx8rOXLl6e+x4wZMywvLy9r0qRJ1j///GP98ssv1kcffWRZlmVFRERYgLVw4UIrLCzMioiIuGHOsLAwq0qVKtaAAQOssLAwKzo6OsOfVTLnVr/fkZGR6fr+ztAIrEWKFMHV1fW6oyARERHXHS25lTp16rB48eKb/tzT0xNPT8+MRBMRB7J48WI2bNiAu7s7ixYtwt3dHcuyWLBgAcHBwToamktcvnyZiRMn8t1331G3bl0AypUrx48//sjs2bNp2LAhJUqUYPbs2XTs2JEzZ86wYcMGQkNDcXd3B1ImUnvrrbdSt1m2bFl27NjBihUraN++PQBjx45lwIAB9OnTJ3W9Bx98EICiRYsC/z//yc0EBQXh5uZGvnz5brme5E4ZKiMeHh7UrFmTLVu20LZt29TlW7Zs4cknn0z3dkJDQ+9oDHsRcVynT5+md+/eAIwePZqqVasCMHToUD744AOCg4PZtGlTnhkgLCYm5qY/+/eF/tfmALmRf5/mOnr06B3lAti7dy9xcXE89thjaZYnJCRQvXr11OfPPPMMa9euZdy4ccycOZMKFSqkWX/WrFnMmzePY8eOERsbS0JCQurdLhEREZw+fZomTZrccV5xXBmem6Z///507NiRWrVqUbduXebMmcPx48cJCQkBYNiwYZw6dYpPPvkEgEmTJlGmTBmqVKlCQkICixcvZvXq1axevTprP4mI5HqWZdG9e3cuXbpErVq1GDx4cOrPunTpwpQpU9i8eTPz5s3jlVdeMZg05/j6+hpf92auXVT85ZdfUqJEiTQ/+9+j11euXGH37t24urpy4MCBNOutWLGCfv36MWHCBOrWrUv+/Pn58MMP2blzJ/D/c5tI3pbhMtKhQwfOnz/PmDFjCAsL47777mPjxo2ULl0aSLko7X/HHElISGDgwIGcOnUKb29vqlSpwpdffkmLFi2y7lOIiENITEykVKlSeHp68vHHH+Pm9v9/BVWsWJF33nmHAQMGMGDAAIKDg1P/XhEz7r33Xjw9PTl+/DgNGza86XoDBgzAxcWFr776ihYtWtCyZUsaN24MwPbt26lXrx6vvfZa6vqHDh1K/XP+/PkpU6YM3377LY8++ugNt+/u7o7dbs+iTyW5UvZczpK10nsBjIg4huPHj99weVJSklW/fn0LsJo0aWIlJyfncLLscasL/HK74cOHW4ULF7YWLVpkHTx40Pr111+tadOmWYsWLbIsy7K++OILy8PDw9q9e7dlWZY1YsQIq2TJktaFCxcsy7KsSZMmWX5+ftamTZusf/75xxoxYoTl5+dnPfDAA6nvsWjRIsvLy8uaPHmytX//fmv37t3WlClTUn9evnx569VXX7XCwsJSt3sjDzzwgDVq1Kis3wlyS1lxAWvevJdORHKUZVmpt34CN71A1dXVlYULF+Lt7c23337L7Nmzcyqi3MTbb7/NyJEjGTduHJUrV+bxxx9nw4YNlC1blrNnz9K1a1dGjx5NjRo1gJSBx4oXL5566j4kJIR27drRoUMHateuzfnz59McJQHo3LkzkyZNYsaMGVSpUoUnnngizemeCRMmsGXLFkqVKpXmWhVxHjbrf/+GyKWioqLw9/cnMjISPz8/03FEJIPmz5/PsmXLmDdvXrpOvUyePJm+ffvi7+/PsWPH8Pf3z4GU2ScuLo4jR46kzukl4kxu9fud3u9vHRkRkWx1/Phx+vfvzzfffHP9hetXrkB4OJw5A/9zTUCvXr14+eWX+eqrrxy+iIjI7WX4AlYRkfSyLItu3boRFRVF3bp16fP88zB7Nnz5JezeDadP///KLi5Qvjw8/DAurVqxYPZsuDpWhYg4N5UREck2c+fOZcuWLVT18OCroCBcS5WCpKS0K10bTyQ5Gf75J+Uxfz4ULQp9+kDv3vx96hSenp6ULVs25z+EiGQ7naYRkWxx7NgxRvXvzwRgT1IS/mvXphSRGjVg3Dj48Ue4eDFlWUICnDoFX3wB/fpBUBCcPQsjRhBfogQfVq3KS507azI9ESelMiIiWS45OZkPnnqKny9fpj/gkpwMTzwB//lPyumZoUOhfn0oUCDl9IybGxQvDi1bwsSJcOIELFkCFSrgGR3N/KQkhm7fzoL33jP90UQkG6iMiEjWsixixo1j0u7dlAESS5aEr76CDRugdu30bcPNDZ57Dv78E8aNI8nNjeZA8+HDOblyZTaGFxETVEZEJOskJ0OvXviNGIE7cK5RI9z/+guaNcvc9tzdYehQXH79lWM+PpQAinboQPLatVmZWkQMUxkRkayRkADPPw/Tp6dclDphAkW++w6yYGwgl6pVYedOvnR1xdOy4KmnUi5yFRGnoDIiIncuKQmefRaWL8fu6or900+hf///v1MmC5S+7z5OTZnCAsDFsqBbN5g3L8u2L3I7L730Em3atDEdI1MaNWpE3759Tce4KZUREbkzycnQpQusXUsc0MJuZ3kWlpD/9cqrr7KmRQt21q+fsqB7d1i+PFveS1Js27aNVq1aUbx4cWw2G+vWrbtunTVr1vD4449TpEgRbDYbe/bsue12jx49mu51c4vJkyezaNEi0zEyZc2aNbz99tumY9yUyoiI3Jn+/eHTT0kCngESGjXi2WefzZa3stlsbPjiC2pv3w4hIWBZ8OKL8PXX2fJ+ApcvX+aBBx5g2rRpt1ynfv36vGfobqfExMQceR9/f38KFCiQI++VVa7tm0KFCpE/f37DaW5OZUREMm/WLJg8GYCOwPe+vixYsAAXl+z7q8Vms6Wc/pk+HXuHDimniNq3h717s+0987LmzZszduxY2rVrd9N1OnbsyMiRI2natGm6t3ttALvq1atjs9lo1KhR6s8WLlxI5cqV8fLyolKlSsyYMSP1Z9eOqKxYsYJGjRrh5eXF4sWLU0+hvPvuuwQGBlKgQAHeeustkpKSGDRoEIUKFaJkyZIsWLDglrlWrVpF1apV8fb2pnDhwjRt2pTLly8D15+madSoEb1792bw4MEUKlSIoKAgRo8enWZ7kZGRdO/enYCAAPz8/GjcuDG//fbbTd8/ISGB119/nWLFiuHl5UWZMmUYN25curc3evRoqlWrxoIFCyhXrhyenp5YlnXdaZqEhAQGDx5MiRIl8PX1pXbt2vzwww+pPz927BitWrWiYMGC+Pr6UqVKFTZu3HjLfXcnNAKriGTOd9/B668DMNLNjWVJScz48MMcGyV1799/88Iff7Agf36qR0WljGOyc2fKyK2OwLJS5uYxwccnS6/nyYxffvmFhx56iG+++YYqVarg4eEBpIzaO2rUKKZNm0b16tUJDQ3llVdewdfXl86dO6e+fsiQIUyYMIGFCxfi6enJ1q1b+e677yhZsiTbtm3jp59+omvXrvz888888sgj7Ny5k+XLlxMSEsJjjz12w5mjw8LCeO655/jggw9o27Yt0dHRbN++nVvNJ/vxxx/Tv39/du7cyc8//8xLL71E/fr1eeyxx7Asi5YtW1KoUCE2btyIv78/s2fPpkmTJuzfv59ChQpdt70pU6awfv16VqxYwV133cWJEyc4ceIEQLq3d/DgQVasWMHq1atxdXW9Ye6XX36Zo0ePsmzZMooXL87atWtp1qwZf/zxB+XLl6dnz54kJCSwbds2fH192bt3L/ny5Uv//8EZZTmAyMhIC7AiIyNNRxERy7Ksgwctq2BBywJrU9GiFmA1adLEstvtORbhxIkTlp+fn1UYrAuFClkWWFajRpaVmJhjGdIrNjbW2rt3rxUbG/v/C2NiUjKbeMTEZOpzANbatWtv+vMjR45YgBUaGnrbbd1s3VKlSllLlixJs+ztt9+26tatm+Z1kyZNSrNO586drdKlS6f5HaxYsaLVoEGD1OdJSUmWr6+vtXTp0htm2r17twVYR48eveHPO3fubD355JOpzxs2bGg9/PDDadZ58MEHrSFDhliWZVnffvut5efnZ8XFxaVZ5+6777Zmz559w/fo1auX1bhxYys5Ofm6n6Vne6NGjbLc3d2tiIiINOs0bNjQ6tOnj2VZlnXw4EHLZrNZp06dSrNOkyZNrGHDhlmWZVlVq1a1Ro8efcOM/3bD3++r0vv9rdM0IpIx8fHwzDNw8SIx993HM5cukS9fPubPn5+tp2f+rWTJkkyaNInzwKPR0SR7e8MPP8Bbb+VYBkmfkJAQ8uXLl/q4mbNnz3LixAm6du2aZv2xY8dy6NChNOvWqlXrutdXqVIlze9gYGAgVatWTX3u6upK4cKFiYiIuOH7P/DAAzRp0oSqVavyzDPPMHfuXC5evHjLz3b//feneV6sWLHU7e/evZuYmBgKFy6c5vMcOXLkus9zzUsvvcSePXuoWLEivXv3ZvPmzak/S+/2SpcuTdFbHCH89ddfsSyLChUqpNnO1q1bU7fTu3dvxo4dS/369Rk1ahS///77LffDndJpGhHJmIEDITQUihQh36ZN/HzpEgcOHKB06dI5HuWll15i1apVbNy4kVGlSvH24cMwdmzKUPOZHWgtp/j4QEyMuffOQWPGjGHgwIG3Xe/a3ENz586l9r9G6/336QZfX9/rXu/+r1mebTbbDZfdbI4jV1dXtmzZwo4dO9i8eTNTp05l+PDh7Ny586anH2+1/eTkZIoVK5bmWoxrbnYhbI0aNThy5AhfffUV33zzDe3bt6dp06asWrUq3du70b75X8nJybi6urJ79+7r9uu1stitWzcef/xxvvzySzZv3sy4ceOYMGECvXr1uuW2M0tlRETSb/VquHZXxSefQIkSVClRgipVqhiJY7PZmDNnDlWqVGHs4cO0feghavzyS8odNnv2QMmSRnKli80Gt/nScBYBAQEEBASkWXbtGhG73Z66LDAwkBIlSnD48GFeeOGFHM14jc1mo379+tSvX5+RI0dSunRp1q5dS//+/TO8rRo1ahAeHo6bmxtlypRJ9+v8/Pzo0KEDHTp04Omnn6ZZs2ZcuHAh09v7t+rVq2O324mIiKBBgwY3Xa9UqVKEhIQQEhLCsGHDmDt3rsqIiBh2/Dh07QrAny1aEFukCA8ajgRQokQJpkyZQufOnWkUGsqZypXx3rcPXn455ZbfHDx15IxiYmI4ePBg6vMjR46wZ88eChUqxF133QXAhQsXOH78OKdPnwbgn3/+ASAoKIigoKAbbjcgIABvb282bdpEyZIl8fLywt/fn9GjR9O7d2/8/Pxo3rw58fHx7Nq1i4sXL2aqEGTEzp07+fbbbwkODiYgIICdO3dy9uxZKleunKntNW3alLp169KmTRvef/99KlasyOnTp9m4cSNt2rS54ammjz76iGLFilGtWjVcXFxYuXIlQUFBFChQIFPbu5EKFSrwwgsv0KlTJyZMmED16tU5d+4c3333HVWrVqVFixb07duX5s2bU6FCBS5evMh3332X6f2QHvqvVERu79rAZpGRxD7wAHW++YY6deqwa9cu08mAlFtLW7VqRc369Tk/dSp4e8M338DMmaajObxdu3ZRvXp1qlevDkD//v2pXr06I0eOTF1n/fr1VK9enZYtWwLw7LPPUr16dWbNmnXT7bq5uTFlyhRmz55N8eLFefLJJ4GU0wPz5s1j0aJFVK1alYYNG7Jo0aIcuUvLz8+Pbdu20aJFCypUqMCIESOYMGECzZs3z9T2bDYbGzdu5JFHHqFLly5UqFCBZ599lqNHjxIYGHjD1+TLl4/333+fWrVq8eCDD3L06FE2btyIi4tLprZ3MwsXLqRTp04MGDCAihUr0rp1a3bu3Jl6l5Hdbqdnz55UrlyZZs2aUbFixTS3WGc1m2Xd4p6lXCIqKgp/f38iIyPxy4J5LkQkg2bMgJ49sby9eaZ8eVb//jvNmjVj48aNKeN+5ALR0dH4+vqmXMA4bRr06pVSSvbsgQoVjGaLi4vjyJEjlC1bFi8vL6NZRLLarX6/0/v9rSMjInJrBw/CoEEAfNO0Kat//x1/f3/mzp2ba4oIQP78+f//TorXXsPeuDHExkKnTikDo4lIrqUyIiI3Z7enXHtx5QqXH3qIVps2ATBp0iRK5tKLQ2NiYni9d29aRURg+funDIT24YemY4nILaiMiMjNzZgBP/6IlS8fz8XGEp+YSMuWLdOMhJnbxMTEsHTpUr76808+b9w4ZeFbb8GBA2aDichNqYyIyI2dPAnDhwPwy1NPseGPPyhQoACzZ8/OVadn/i0oKCh1Urdn1q8nqk6dlIHaevRIGX9URHIdlRERubE+fSA6GurU4aH585k5cyYzZsygRIkSppPd1rPPPku7du1Istt59uJFLG9v+P57+Phjo7kc4H4BkQzLit9r3U0jItdbvx6efBLc3ODXX+F/htR2FBEREVSpUoVz587xdZMmBH/7LRQqBPv2wb8G4Mpudrud/fv3ExAQQOHChXP0vUWy2/nz54mIiKBChQrXjeia3u9vDXomImlFR0PPngAcatuWgDJlyG84UmYEBAQwffp0OnToQOvvv+dChQr47N8P/fvD4sU5msXV1ZUCBQqkzlni4+OTq091iaSHZVlcuXKFiIgIChQocNMZgtNDR0ZEJK3+/eGjj4gvUYKAM2coWKIEO3fuzPCgSrlF+/bt+eabb1j/5ps8PGBAynUj33wDTZrkaA7LsggPD+fSpUs5+r4i2a1AgQIEBQXdsGDryIiIZFxoKEyeDEB/T0+ikpJoXL36dfOKOJIZM2aQmJhIsWLF4PDh/x8Q7bff4F+TnGUnm81GsWLFCAgIIDExMcfeVyQ7ubu739ERkWt0ZEREUlgWPPww7NjBn1WqUPWvvyhUqBB//fXXTecXcTiXLqWMxnr2LEyYkHIUSESyjUZgFZGMWbIEduzA7u1Ny7//BmD69OnOU0SAz7duZXyRIilPRo+GsDCjeUQkhcqIiKRctHp1yPdp/v4ct9tp164dHTp0MBws68TExNC9e3cG79vH8eLFUz7zkCGmY4kIKiMiAvDuuxAWxoVChRgcHk6RIkWYOXOmU93xkS9fPmbNmoUFPB0WhmWzwaefwo8/mo4mkuepjIjkdQcOwMSJANgmTeKJdu2YPn26Q1+0ejNt27blhRde4L+WxQp//5SFr7+eMgePiBijC1hF8rpWreCLL6B5c/jySyxwqiMi/3bhwgWqVKlCYng4x7288ImLS7nD5urYKiKSdXQBq4jc3saN8MUXWG5u8NFHYLM5dREBKFSoELNnz+Y8MCg+PmXhyJFw4YLRXCJ5mcqISF6VkAB9+wIwwW7nudGjSUhIMJsph7Ru3ZpOnTox27IIDwhIKSJjxpiOJZJnqYyI5FWTJ8OBA5x1c2PM1bO1Hh4ehkPlnEmTJrH+yy8JWrIkZcH06XD1lmYRyVm6ZkQkLwoPTxn8KzqazsDXgYH89ddfeXcStyefTJkcsGXLlOtnRCRL6JoREbm5N9+E6Gh+AT4FZs2alXeLCBA+cCBJLi7w5Zfw9dem44jkOSojInnNnj1Y8+cD0Bd4/oUXaNOmjclERlmWRXDPnkxOTk5Z0K8fJCWZDSWSx6iMiOQllgV9+2KzLJYCR4KCmDJliulURtlsNt5//33eBs4B7NsHs2cbTiWSt6iMiOQl69bB1q3YPTyYHBTE7NmzKVSokOlUxjVv3pynu3blzavPrZEj4eJFo5lE8hKVEZG8Ij4eBg4EwHXwYL4/fJjWrVsbDpV7TJgwga9KlOAPwKZbfUVylMqISF4xZQocPgzFisGQIXh7e5tOlKv4+/szZ8EC+l99njx1Kvzzj9FMInmFyohIXnDmDEmjRwOwrXlzyJfPbJ5cKjg4mLKvvMJ6wMVuTz2SJCLZS2VEJA9IfOMN3K5cYRewSJPC3dL48eM52rNnyhD5X3wBmzebjiTi9DTomYiz++03kqtXx8WyaFukCAsPHKBAgQKmU+V+/funzNdTpQrs2QNubqYTiTgcDXomImBZXHr5ZVwsi+VA908+URFJrzffxCpcGP76i7jJk02nEXFqKiMiTixuxQoKhIYSB/zavj3Nmzc3HclxFCzIJ3ffDUDSiBGa1VckG6mMiDir+Hiie/QAYG7+/LwxZ47hQI6n9Dvv8CeQLy6O4127mo4j4rRURkSclDV1KkUjIwkD7v3kE/z9/U1HcjiNmjblu6tjsRRft46YnTsNJxJxTiojIs7o7Flsb78NgOt779EkD889c6e6fPYZX/v44AYcf+qplCH1RSRLqYyIOCHrzTchKgqqVydg0CDTcRxavnz5KDBvHvHAvadO8etbb5mOJOJ0MlVGZsyYQdmyZfHy8qJmzZps3749Xa/76aefcHNzo1q1apl5WxFJh53z5pF8baK3SZPARf/muFO1n3uObbVqAVDonXdIunzZcCIR55Lhv6WWL19O3759GT58OKGhoTRo0IDmzZtz/PjxW74uMjKSTp060aRJk0yHFZFbi46KIqlXL1yB0LvvhkceMR3JadTbsIELXl6USUrCbdo003FEnEqGy8jEiRPp2rUr3bp1o3LlykyaNIlSpUoxc+bMW76uR48ePP/889StWzfTYUXk1pY+/TT14+KIB8qvXWs6jlPxDQqi0LU7ksaOhbAws4FEnEiGykhCQgK7d+8mODg4zfLg4GB27Nhx09ctXLiQQ4cOMWrUqHS9T3x8PFFRUWkeInJr327YwONbtgBwulMn8lWtajiRE3rhBahdG2JiuNCjBxcvXjSdSMQpZKiMnDt3DrvdTmBgYJrlgYGBhIeH3/A1Bw4cYOjQoXz22We4pXM45XHjxuHv75/6KFWqVEZiiuQ5UVFR/PHii5QGLuTLR9nbHKmUTHJxgaujsRbasIEpL75oOJCIc8jUlW02my3Nc8uyrlsGYLfbef7553nrrbeoUKFCurc/bNgwIiMjUx8nTpzITEyRPOO97t0JuXoE0XvWLPDxMZzIidWuTcTVkWwf37iRDZ9/bjiQiOPL0MxPRYoUwdXV9bqjIBEREdcdLQGIjo5m165dhIaG8vrrrwOQnJyMZVm4ubmxefNmGjdufN3rPD098fT0zEg0kTwrNjaW4E2b8AIu1qxJweefNx3J6QXMn09c6dLUSUykV+fO1D98mEKFCpmOJeKwMnRkxMPDg5o1a7Ll6nnpa7Zs2UK9evWuW9/Pz48//viDPXv2pD5CQkKoWLEie/bsoXbt2neWXkTw3rqVRpGRJLu6UvDTT+EGRyklixUrhuubbwIwLDKSIa++ajiQiGPL8JzY/fv3p2PHjtSqVYu6desyZ84cjh8/TkhICJByiuXUqVN88sknuLi4cN9996V5fUBAAF5eXtctF5FMSEiAPn0AcOnTBypXNhwo73AfPJjYOXMofvIklVes4PPnn+fJJ580HUvEIWW4jHTo0IHz588zZswYwsLCuO+++9i4cSOlS5cGICws7LZjjojInfvqq69wGT+ex/fvh8BASOfdapJFPD3xnjsXmjenNxDcpQuPHDxIwYIFTScTcTg2y8r9Ey1ERUXh7+9PZGQkfn5+puOIGHfx4kWaVq7MD2fOkB9g0SLo3NlwqrzJ3q4drmvXcrpMGYIOHMAlnXcNiuQF6f3+1jjRIg6oX79+DLtaROy1a0PHjqYj5VmuU6Zg5ctH8aNHcfn4Y9NxRBySyoiIg9mwYQNnP/6YpwHL1RXXOXM0/4xJJUtiuzZ53uDBXDl+nEuXLhmNJOJo9DeYiAO5cOECfV95helXn9v694f77zeaSYBevaBqVbhwgQ1Vq6Ze0C8i6aMyIuJA+vTpQ/czZygDJJcqpYtWcwt3d5gxA4AOUVEcW76cVatWGQ4l4jhURkQcxLFjx/hn1Sr6X33uMn06+PoazST/4+GH4eWXAZgJvB4SQkREhNlMIg5CZUTEQZQuVYqt996LO0DbttCqlelI8m/vv49VsCDVgBfOn6dnz56mE4k4BJUREUcxfz7ev/4K+fLBlCmm08iNFC2K7YMPAHgb2L1qFStWrDCbScQBqIyI5HKbNm1ix5o1MGRIyoIxY6BkSbOh5Oa6doVHH8UHmAu89uqrnDlzxnQqkVxNZUQkFzt79iydOnXi9FNPwcWLUL16yp0bknvZbDBnDpaXF02AESVK4ABjS4oYpTIikou9/vrrPHL2bMqYIm5usGABaITP3O+ee7CNGQNAnxMnCFIZEbkllRGRXGrlypV8u2LF/48pMmwYVKtmMpJkRL9+ULMmtkuXUo9mJSYmms0kkkupjIjkQhEREbz22mtMAgIBqlSB4cPNhpKMcXOD+fNT/nf1aqY++ijPPPOMTtmI3IDKiEguY1kWr732GrXPneNFwHJxSTk94+lpOppk1AMPwODBADz9ww9s/fxzPvvsM8OhRHIflRGRXGbbtm18s3o1s68+t/XvDw89ZDST3IE334SKFSkGTAJ69erF6dOnDYcSyV1URkRymUceeYT/NmxICYDy5VNu5RXH5eUFCxZgubjQGWh46RI9evTQ6RqR/6EyIpLL2DZtovzWrSlP5s8Hb2+zgeTO1auHbdAgAOYA//niCz755BOzmURyEZURkVzip59+4uLBg9ClS8qCPn2gQQOzoSTrvPUW3HcfAcAsoE/v3pw6dcp0KpFcQWVEJBcICwuj1RNP8GPVqhAeDpUrw7hxpmNJVvL0hE8+wXJz4yngeeDo0aOGQ4nkDiojIoZZlkWPHj1ocekSreLiUgY3+/RTnZ5xRtWrYxs1CoBpNhv1y5Qxm0ckl1AZETFs8eLF7NmwgWlXn9tGjYKaNY1mkmw0dCg8+CAukZEp89joQlYRlRERk06fPk2fXr1YBBQAqFMn5ctKnJebG3zyScpdNl9/zX+7dOH555/X3TWSp6mMiBhiWRbdu3enU2QkjQHLxyflS0pzzzi/SpXgvfcAuG/RIn5bupT58+cbDiVijsqIiCGfffYZR778kveuPrdNmJAyrojkDb16QbNmeANLgWH9+nHs2DHTqUSMUBkRMaRl48Z8VaAAXgDNm0OPHqYjSU5ycYFFi7CKFuV+YHhMDN26ddPpGsmTVEZEDCn4zjvcdekSVkBAytwzNpvpSJLTAgOxLVoEQF/A7ZtvmDNnjslEIkaojIjksEOHDmGtWQMzZgBg++QTCAoynEqMadECevcGYBHwfv/+HDlyxGgkkZymMiKSg44fP07ratWIefbZlAUDB8Ljj5sNJea9/z5W1aoEAtOuXOGrjRtNJxLJUbpsXySHWJZF9y5dmBkTQ37AqlUL2zvvmI4luYGXF7YlS0iuVYsW8fFgt5tOJJKjdGREJIfMmzePOt9+yyOA3dcX27Jl4OFhOpbkFvfdh8uECSl/HjQIfvvNbB6RHKQyIpIDjh07xuo+fXjz6nPXOXPg7ruNZpJc6LXXoFUrSEggoW1bRvTpQ3JysulUItlOZUQkm1mWRb9OnZgXG4srkNypEzz/vOlYkhvZbLBwIVaJEngcOUKlKVOYPm3a7V8n4uBURkSy2exZs+i8bRslgYSyZXGZPt10JMnNChfGtmwZyS4uvAj8OXAgBw8eNJ1KJFupjIhks6b//MOTQJKrKx6rV0O+fKYjSW738MPw9tsAfJSYyFsdOuh0jTg1lRGR7LRnD/fMmgWAy/jxUL264UDiKFyGDiX24YfxAYb8+iszxo83HUkk26iMiGSTK2fOQIcOEB8PTzyBS58+piOJI3FxwXvVKi77+XEf4PPGG+zfv990KpFsoTIikg0OHTzIxtKlYf9+rJIlYdEiDfcuGRcYiM+aNSQDXex2vn/lFdOJRLKFyohIFktOTmZly5Y8HR+PHbA++wwKFzYdSxyUrUkToq8eVev+66+goyPihFRGRLLYkhEj6H31CyNy4EBcHnnEcCJxdP4TJkDDhthiYlJO/cXFmY4kkqVURkSy0MHff6f6e+/hA5yoVIlC779vOpI4A1dX+OwzKFIE9uxhb4sW2DVkvDgRlRGRLGK329kbHEwVy+K8hwclvvsOXPSfmGSREiWwPvkEgHu//54vXn7ZcCCRrKO/KUWyyNedO9P6zBmSgaRFi3ApVsx0JHEytubN+b15cwAafvopBzZvNpxIJGuojIhkhQMHaLJyJQChLVsS+NxzhgOJs6q6bh37ChSgABDfrh1JV66YjiRyx1RGRO5UXBy0b49nQgJXHnyQGuvWmU4kTszm4UHBTZu4aLNx3+XL7G7WzHQkkTumMiJyh6wBA2DPHihSBJ+1a7G5uZmOJE4uqHZt9vTuDUDt7ds5OnOm4UQid0ZlROQOnJw8GduMGSlPPvkESpQwG0jyjEYffcSGMmUA8O/TB+v0abOBRO6AyohIJtkPHsR/wAAAVt99N1y9sFAkJ9hsNmp++y2H8uenYGIits6dQZPpiYNSGRHJjIQEzjRuTH67nZ2urtTessV0IsmDipcrx92//AI+PvDNN/DBB6YjiWSKyohIJpwLCaH4iRNcAI6NG0fJsmVNR5K8qlIlmDIFAGvECJJ+/NFwIJGMUxkRySD7119TZOFCAKbXqMEzAwcaTiR5Xpcu/FW1Kja7nehWreDSJdOJRDJEZUQkI86e5cozzwAw38ODLuvXY9NsvGKazcbffftyGCh46RIXO3QAyzKdSiTdVEZE0suysLp0IX90NHsBz6lTKaG7ZySXaPfyy8xp1IhEoODmzSTNnm06kki6qYyIpNfMmdi++ALLw4PT48fzwiuvmE4kkspms9F/+XLG+fgAkNyrF+zdaziVSPqojIikx59/wtXbeG0ffEDTAQN0ekZynYCAACrNn89mwCMpidgnn4TYWNOxRG5LZUTkdmJjiW3bFuLisAcHw9WRL0Vyo/bPPsvKVq04A3gfPIh9yBDTkURuS2VE5DbsgwbhffAgZ4A3S5YEHRGRXO7d+fN5IygIANepU1PGIBHJxVRGRG7lyy9xnT4dgN7589Pn3XcNBxK5vaJFizL7xAl49dWUBS+9BBcuGM0kciuZKiMzZsygbNmyeHl5UbNmTbZv337TdX/88Ufq169P4cKF8fb2plKlSnz00UeZDiySYyIiSOzYEYBJQNs5cwgMDDQaSSS93Nzc4MMPoXx5OHUKe0iI6UgiN5XhMrJ8+XL69u3L8OHDCQ0NpUGDBjRv3pzjx4/fcH1fX19ef/11tm3bxr59+xgxYgQjRoxgzpw5dxxeJNtYFsnduuF+8SJ/ADvbtKFDhw6mU4lkjK8v/+3blyTAdeVKWLLEdCKRG7JZVsZGxqlduzY1atRg5v9MWV25cmXatGnDuHHj0rWNdu3a4evry6effpqu9aOiovD39ycyMhI/P7+MxBXJnI8/hpdeIgF4vEABlv/zDwEBAaZTiWTYunXr+LVtW8YASfny4fbXX3DXXaZjSR6R3u/vDB0ZSUhIYPfu3QQHB6dZHhwczI4dO9K1jdDQUHbs2EHDhg1vuk58fDxRUVFpHiI55tgxrKt3zIwCXpszR0VEHFabNm04+txz/Ay4xcRg79RJs/tKrpOhMnLu3Dnsdvt1580DAwMJDw+/5WtLliyJp6cntWrVomfPnnTr1u2m644bNw5/f//UR6lSpTISUyTzkpPh5ZexRUURX7MmhceN45mrw7+LOKpJ06bRv0gRYgDXrVth0iTTkUTSyNQFrP8e7MmyrNsOALV9+3Z27drFrFmzmDRpEkuXLr3pusOGDSMyMjL1ceLEiczEFMm4qVPh++/BxwfPpUsZOHSo6UQid6xQoUIMmz+fflefJw8dCn/8YTSTyP9yy8jKRYoUwdXV9bqjIBEREbe9y6Ds1SnWq1atypkzZxg9ejTPPffcDdf19PTE09MzI9FE7ty+fSQPGZLS0MePT7kLQcRJtG7dmlUvvsiGxYtplZhI8osv4rJrF7i7m44mkrEjIx4eHtSsWZMtW7akWb5lyxbq1auX7u1YlkV8fHxG3lokeyUmktyxIy7x8WwC5rhoCB5xPpOnTGF4QABRHh64/P47aNwcySUydGQEoH///nTs2JFatWpRt25d5syZw/Hjxwm5eg/7sGHDOHXqFJ988gkA06dP56677qJSpUpAyrgj48ePp1evXln4MUTu0Lvv4rJ7NxeBIYUL8+1TT5lOJJLlChYsyObffsPvhx/guedg7Fh48kmoVs10NMnjMlxGOnTowPnz5xkzZgxhYWHcd999bNy4kdKlSwMQFhaWZsyR5ORkhg0bxpEjR3Bzc+Puu+/mvffeo0ePHln3KUTuxG+/kfz227gAPYHRc+dSpEgR06lEskVQUBB06AArV8KaNVidO2P773/Bw8N0NMnDMjzOiAkaZ0SyTWIiyQ89hMuePawB1jz/PIs/+8x0KpFsd/bPP/GsWRO/hAQYNQpGjzYdSZxQtowzIuJ0PvwQlz17uACMLlqUKVOnmk4kkiN+PXWKVxISAEgeOxb27DEbSPI0lRHJu/buJfnqvwb7AGPnzaNQoUJGI4nklMcff5z8XbqwCnCx27F37AhXy4lITlMZkbzJbocuXXBJTCS8Rg0C+vWjdevWplOJ5KgJEycytlgxzgKuf/4J77xjOpLkUSojkjdNmgQ7d4KfH0Gff86EiRNNJxLJcf7+/nywaBE9rz5PfucdCA01mknyJpURyXsOHCB5+PCUP0+YACVLms0jYlBwcDAFXnmFlVw9XfPyy5CUZDqW5DEqI5K3JCdjf/llXOLj+cHNjZ/vvdd0IhHjxo8fz3slSnDJxQXX334DHSmUHKYyInnLjBm4/vQTMcDQwoWprDIigp+fHws3bsRz2rSUBaNGwcGDZkNJnqIyInnHkSPYBw8GYDAwauFCChQoYDSSSG5x//334x0SAk2bQlwcdO8OuX8YKnESKiOSN1gWSa+8gmtsLD8AiV260Lx5c9OpRHIXmw1r1iwSPTxSZq+eP990IskjVEYkb1i6FLdvvyUOGBkUxHidExe5odDISIZcHW8ksW9fCAszG0jyBJURcX7nz5PQM+XmxbeBER9/jL+/v9lMIrlUjRo1SHr1Vf4LuF++TKLmEZMcoDIizm/QIDwuXeJ0wYJc6taN4OBg04lEcrV3P/iAUSVKkAi4b9gAa9aYjiROThPliXP7/nto3Djlzz/9RHKdOri4qIOL3M7WrVvZ3qgRI4C4QoXwOnQIdMG3ZJAmyhOJiyOxa9eUP7/6KtSrpyIikk4NGzbk4muv8TfgdeECCX37mo4kTkx/M4vTih81CvcjRzjn4UF4nz6m44g4nDEffMDo4sUB8Pj4Y/jhB7OBxGmpjIhz+usvXMePB+BNf3/ylShhOJCI4/H19aXfmjWcads2ZUGPHiljkIhkMZURcT7JyVxq3x635GQ+B9ovW0a+fPlMpxJxSLVr1yZw4UIoVgz279fMvpItVEbE6cROmUKBvXuJBnZ17syj1y5gFZHM8feHq0PF2999F/7803AgcTYqI+JcwsKwhgwB4KPChRk6fbrhQCLOIeLhh1nv6oprcjIXn34a7HbTkcSJqIyIUwnv0AGfhAR+ARqtXImvr6/pSCJOISAggD1duxIFFPznHy5PmGA6kjgRlRFxHl98QdD27SQBPzz/PI88+qjpRCJOZdCkSXwUEACAy4gRcPKk4UTiLFRGxDnExMBrr6X8ecAAes2bZzaPiBPy9vbm8bVr2QF4JyYS9tRTmtlXsoTKiDiFpDfegBMnoGxZ3MaMwdvb23QkEadUp149/tOlCwlAsV9+Ifrjj01HEiegMiIOL+q777BNnQqAfdo08PExnEjEub02fTrzihRJedKrF1y6ZDSPOD6VEXFsSUlcfOYZXIEN+fMT36iR6UQiTs/Ly4uH1q7lfJEi5I+JgaFDTUcSB6cyIg7tr+7dKX3hAheAoKVL8dFREZEcUevhhym8alXKk9mzYft2s4HEoamMiMO6tGcPZRctAuCbxx/nwZYtzQYSyWsaNoRu3QCIfPZZiI83HEgclcqIOCbL4mjLlvhYFr94e9NqzRrTiUTypMR33uGcmxv+p0+zt2NH03HEQamMiEP6ZfBgqp0+TTzguWgR3jo9I2KEe0AA37ZuDcA9K1dyXqdrJBNURsTxXLpElTlzANhWvz4PtG9vOJBI3tZ2yRK25s+PBxDRti2WhoqXDFIZEcczdCi+UVHElytHgy+/NJ1GJM/z8PSk8PLlRAOVz59nd48epiOJg1EZEcfy008pV+4DngsX4uXvbziQiADc17w5PzZrBkCFBQs4+9tvhhOJI1EZEYdx9tQpjgQHpzzp0gUeecRsIBFJo8maNfzh44OfZXGkVSvTccSBqIyIw/i2WTPKXrnCBTc3kt9/33QcEfkXD29vPBYtIslm46ETJ2DdOtORxEGojIhD+GrKFNr8+ScAkaNG4XJtKGoRyVUqPvMMbtdGZO3ZE6KizAYSh6AyIrlexJkz+AwciBdwsFw5yg4fbjqSiNzKm2/CPffA6dOc7dYNSzP7ym2ojEiuZlkWy554goaJicTZbNz1xRdgs5mOJSK34u2deqF54ZUr+XrUKMOBJLdTGZFcbd28eTy3axcAF15/HY/KlQ0nEpF0adyY32rUwAUo/c47nD561HQiycVURiRXKzhuHEWBMwEBFJ8wwXQcEcmAKhs3csHNjcrJyXz3+OM6XSM3pTIiudf339PoyBEsmy1ldlB3d9OJRCQD3AIDufzuuwA8s38/63QXnNyEyojkTnFxcHUUR1tICG4NGhgOJCKZUWrgQA5VqIAnEDBiBCePHzcdSXIhlRHJdcLCwtj8yCNw4AAUKwbjxpmOJCKZZbNR+ssviXVxob7dzqoWLXS6Rq6jMiK5imVZvPfsszz63/+mLJg2DTTku4hDc7vnHqIGDQLgtaNHITzcbCDJdVRGJFf57OOP6bRtG+5AZNOm0K6d6UgikgUCx44luUYNPC5fxtanj+k4ksuojEiucfr0afa/+io1gVgvL/w//dR0JBHJKm5uuMybB66usHIlMUuX6nSNpFIZkVzBsixGv/ACw+LiAPCYNg2CggynEpEsVb069O8PQOSLL/LxtGmGA0luoTIiucLHCxfy/A8/4A3E1KuHa5cupiOJSHYYPZpLhQpRIjmZ2AEDOHbsmOlEkguojIhxSUlJHBo6lEZAgrs7+T77TEO+izgrHx/yf/YZAD0SE/nw6ad1ukZURsQ8t/Bw3rp6esb1vfegTBmzgUQkW7k2a0bUk0/iAnTftYu5M2aYjiSGqYyIWZYFr76KS3Q01KmDq66yF8kT/ObNI9bXl/uBU/36ceTIEdORxCCVETHm+PHj/Kd/f/jiC/DwgPnzU660FxHnV6QIntOnAzAsMZGRzz1HcnKy4VBiisqIGGFZFv07daLcpEkpC4YPh3vvNZpJRHKWS6dOXKlfHy/gjWPHiL96ulbyHpURMWLevHm027qVACC+fHkYOtR0JBHJaTYbPp98QrKXF5XDw/Fevtx0IjFEZURy3LFjx/ihd2+eB5JdXPD87LOU0zQikveUK4fLmDEpfx4wACs8XKdr8iCVEclRlmXRv2NHPrp2OHbIEHjwQbOhRMSsfv2gWjW4eJEfq1VjugZDy3NURiRHzZ41i2e3b085PVOxIi6jRpmOJCKmubnB/PnYXVxocOYM/x04kIMHD5pOJTlIZURyzIULF/i5Xz+eAewuLnguXQqenqZjiUhuUKMGLiNGADApMZGBL7yg0zV5SKbKyIwZMyhbtixeXl7UrFmT7du333TdNWvW8Nhjj1G0aFH8/PyoW7cuX3/9daYDi+MqlJDA3KvXhtjefDNlngoRkatsI0YQX6UKhYCuv/zClMmTTUeSHJLhMrJ8+XL69u3L8OHDCQ0NpUGDBjRv3pzjx4/fcP1t27bx2GOPsXHjRnbv3s2jjz5Kq1atCA0NvePw4kAsC0JC8IiOhurVcRk+3HQiEclt3N3xXLYMu5sbrYC/Bg9m//79plNJDrBZGZwUoHbt2tSoUYOZM2emLqtcuTJt2rRh3Lhx6dpGlSpV6NChAyNHjrzhz+Pj44mPj099HhUVRalSpYiMjMTPzy8jcSUXOHbsGL5r11KkXz9wd4fdu6FqVdOxRCSXst57D9uwYUQCnWvUYPUvv+CqAREdUlRUFP7+/rf9/s7QkZGEhAR2795NcHBwmuXBwcHs2LEjXdtITk4mOjqaQoUK3XSdcePG4e/vn/ooVapURmJKLpKcnEy/Dh1w7dcvZcHo0SoiInJLtkGDiK9eHX9g0L59nD51ynQkyWYZKiPnzp3DbrcTGBiYZnlgYCDh4eHp2saECRO4fPky7du3v+k6w4YNIzIyMvVx4sSJjMSUXGTa1Kl02bmTgkB81aoweLDpSCKS27m6ppyu8fSkfmwspb780nQiyWaZuoDV9q/p3S3Lum7ZjSxdupTRo0ezfPlyAgICbrqep6cnfn5+aR7ieA4ePMhfgwbxBJDk5obnsmUpt/CJiNxOhQq4vv9+yp8HDYJDh8zmkWyVoTJSpEgRXF1drzsKEhERcd3Rkn9bvnw5Xbt2ZcWKFTRt2jTjScWhJCcn88Zzz/FhYiIALmPHau4ZEcmYXr2gYUO4fJmTwcFM/ugj04kkm2SojHh4eFCzZk22bNmSZvmWLVuoV6/eTV+3dOlSXnrpJZYsWULLli0zl1QcytRJk+i1axd+QFytWrgMHGg6kog4GhcXWLiQJC8vSh4+zKlBg9i7d6/pVJINMnyapn///sybN48FCxawb98++vXrx/HjxwkJCQFSrvfo1KlT6vpLly6lU6dOTJgwgTp16hAeHk54eDiRkZFZ9ykkVzlw4ADnhgyhAZDg5YXXihWgK+FFJDPKlsX16uzeY+x2xrRvT1JSktlMkuUyXEY6dOjApEmTGDNmDNWqVWPbtm1s3LiR0qVLAxAWFpZmzJHZs2eTlJREz549KVasWOqjT58+WfcpJFcpde4co66OnOg+YwaULWs4kYg4Mlv37sQ1bowXMOyvv5iYzmEkxHFkeJwRE9J7n7LkArGxULMm7NuH1bYtttWrIR0XN4uI3NKZM8SWL493dDQTXVwI/u037rvvPtOp5DayZZwRkVuJiIggecgQ2LcPgoKwzZmjIiIiWSMwEK9PPwWgb3Iy09q1I/HqBfLi+FRGJEvY7XbGNmyIy9SpKQsWLoQiRcyGEhGnYnvySS6/+CIuwPADB9j1r5spxHGpjEiWmP722wz5+28AYjp3hmbNDCcSEWfkO3Mml4sXpxRQd/Fi03Eki6iMyB3b+9dfFH/7bUoAl4oVI9+MGaYjiYizypcP3zVrUu7QW7oUliwxnUiygMqI3JGkpCSWt2rF08nJJNls+K9fDz4+pmOJiDOrXRuuTrSa1KMHy66N1CoOS2VE7sicN95gwJEjAFweNAhbrVqGE4lInvDGG1x54AHcYmIoNnQoe3bvNp1I7oDKiGTan7/9RtXx4/EDIu65B/933jEdSUTyCjc3vFetItbVlYbAd088QUJCgulUkkkqI5JpAZ98QgPL4oqrK0U3bdIkeCKSo2z33EPihx8C8Hp4OPN79TKcSDJLZUQyZ/duAq7dxvvRR9juvttsHhHJk/z69uXkgw/iATwyZw6hO3aYjiSZoDIiGZZ46RK88AIkJkK7dvi8/rrpSCKSV9lslNy4kYteXlQB9rZqRXx8vOlUkkEqI5IhiYmJrK9QAf75B6t4cdAoqyJiWpEi2BYtAuCFCxf4dtAgs3kkw1RGJENWd+rEU2fPAnBp8mQoXNhwIhERKNChA4datgSg+cqVcPXvKXEMKiOSbn9u2ULTZcsA2PfEExR8+mnDiURE/t/dK1fCvfdiCw+HV16B3D8PrFylMiLpkhAXR1S7dhQBDvv7U2nlStORRETS8vaGzz4Dd3f4/HN+0901DkNlRNLl2yefpF5MDLGA/xdfYPPyMh1JROR61apxZcQIAO6ZPp3fV60yHEjSQ2VEbmvf8uU03rwZgL1du1L44YcNJxIRuTmfESP4MzAQX4COHYmLjjYdSW5DZURuLTaW4oMG4QnsLlaMmnPnmk4kInJrLi6U2LKFSzYb98fF8dPjj5tOJLehMiK3NmQI/idOkFSkCKW/+Ua38YqIQyhYtSoHBw4EoNHPP/PX7NmGE8mtqIzIzW3cCFdHWXX79FOK3Huv4UAiIulX64MP+LFcOVwB/169iA0PNx1JbkJlRG4o/sQJLrZtm/Kkd29o1sxsIBGRTKjy3Xccc3WlZGIi+x57zHQcuQmVEbmeZXHk0UcpmJDAPjc3YkePNp1IRCRTCpYuzcl338UO1PjzT1i+3HQkuQGVEbnO0SFDqHToEHHA6Q8/xLtgQdORREQyrf7gwbhcvd2XkBA4ccJsILmOyoikER8aStD48QCsqFGDJn37mg0kIpIFbCNHwkMPwaVLXH76aUhONh1J/ofKiPy/+HjON2uGl2XxvYcHLTdtMp1IRCRruLtj//hj4tzc8P3lFw5rtvFcRWVEUp1++WWKR0RwFkiYPZvCRYuajiQikmVcK1VieZ06AJScOZPYHTsMJ5JrVEYkxTffUHzpUgAWN2rE4y+9ZDaPiEg2aLNhA5u8vPAAIp94Aq5cMR1JUBkRgAsXoHNnAA40bcpLa9YYDiQikj38CxTA85NPCAOCLl7k1Isvmo4kqIwIQM+ecPo0VKhA+c8/p6DunhERJ/boM8+w/OrYSSXWriVW/wAzTmUkj4tftAiWLcNydYXFi8HHx3QkEZFs12X5chbkywdA4osvQkSE4UR5m8pIXnbyJPaQEADmBgRg1aplOJCISM7w8/OjzLJl/O3mhl9sLHTrBpZlOlaepTKSVyUnc7FtW3zi4/kvcNfs2dg0CZ6I5CGNW7akzE8/gYcHbNgAc+aYjpRnqYzkUfEffUTBXbu4Aqx76imatWplOpKISI7zeughGDcOAKtfP/jnH8OJ8iaVkbzo77+xDR0KwLsFCjB4/nzDgUREDOrbl7AqVbDFxhLZujUkJppOlOeojOQ1iYlEtWmDR1ISm4FHli7F39/fdCoREXNcXJheqxYXAP/9+4kfNsx0ojxHZSSveecd/P75h4vAty+8QPDV29tERPKyodOm8WZAAADuEyfCf/5jOFHeojKSl/zyC4wdC8CXLVowfMYMw4FERHKHfPny0X7FCj4FXCyLy888o9FZc5DKSF5x5Qp07Ah2Ozz7LC9++SV+fn6mU4mI5BoNGzbkr+7dOQX4njxJ/KBBpiPlGSojeUTCgAGwfz9W8eIwfbrpOCIiudKbEyfyZlAQAO4zZsD27YYT5Q0qI3nB1q14zJoFwNTq1aFQIcOBRERyJ19fX15esYL5NhsugPXSSxATYzqW01MZcXaXL3PluecAmAtUHTDAbB4RkVyuQYMGNA4Nhbvuwnb4MAwZYjqS01MZcXIJ/fvjExbGceCfV17h0UcfNR1JRCTXK/vAA3BtDKYZM+Dbb80GcnIqI87shx/wuDq88ZtBQYyeONFwIBERB9K0KZEvvACQcoQ5KspwIOelMuKsYmJST8/MAbouX06+qzNUiohI+kwICOAQ4HP2LPE9e5qO47RURpyUfdAgfMLDOQYc7NGDRx55xHQkERGHM+yddxhVqhTJgOfixfDVV6YjOSWVEWf0/fe4Xr17ZlatWoyaMMFwIBERx+Tt7c3rK1Yw5erz2BdfhIsXjWZyRiojziYmBrp0Sflzjx6M++9/8fX1NZtJRMSB1alTh7P9+vEP4H3hAnGvvmo6ktNRGXEy8X37wtGjULo0fPih6TgiIk7hzXffZXTp0iQDXsuX63RNFlMZcSbffYfn1VvRvnnuOcif33AgERHn4OXlRb//OV2T3L277q7JQiojzuJ/7p6ZBfi0amU2j4iIk3nooYeo+vnnWGXL4nLyJAwdajqS01AZcRJx/fvjExHBUeBk797Uq1fPdCQREafTpHVrbPPmpTyZORO2bjUbyEmojDiDn3/GY+5cAN4uWZLh771nOJCIiBNr3Jjkrl0BiHn22ZRZ0eWOqIw4uvh4otu3xwX4GHhl5Uq8vb1NpxIRcWrzKlbkJJAvPJzLgwaZjuPwVEYc3JURI8h/8iRngKO9e1OnTh3TkUREnN5LffrwXunSAHjPmAH//a/hRI5NZcSR/fkn3pMnAzChdGmGvP++4UAiInmDh4cHXdasYanNhgtw6amnICHBdCyHpTLiqOx26NYNW2IitG7NO/v34+XlZTqViEieUaNGDU4MHEgEUODECWLeeMN0JIelMuKg4j78EHbuBD8/mDEDdw8P05FERPKcvmPHMv6uuwDwmjgR6/ffDSdyTJkqIzNmzKBs2bJ4eXlRs2ZNtm/fftN1w8LCeP7556lYsSIuLi707ds3s1nlmiNHYMQIAE717QslSpjNIyKSR3l4ePDC55/zuc2Gm2UR/8ILkJRkOpbDyXAZWb58OX379mX48OGEhobSoEEDmjdvzvHjx2+4fnx8PEWLFmX48OE88MADdxw4z7Mswtu0wctuZysQ/sQTphOJiORpD1SrRsJHH2HPnx+vP/+Ejz4yHcnh2CzLsjLygtq1a1OjRg1mzpyZuqxy5cq0adOGcePG3fK1jRo1olq1akyaNClDIaOiovD39ycyMhI/P78MvdbZRE2Zgl+fPsQCs157jX7Tp5uOJCIiAAsWQNeu4OUFv/8O5cubTmRcer+/M3RkJCEhgd27dxMcHJxmeXBwMDt27Mhc0huIj48nKioqzUPACg/HNnAgALODguip9i0iknu8/DI0bQpxcZxt1w4y9m/9PC1DZeTcuXPY7XYCAwPTLA8MDCQ8PDzLQo0bNw5/f//UR6lSpbJs247sRNu25E9MJBRouH49HrpoVUQk97DZ+KlTJy4DRf/8k0vjx5tO5DAydQGrzWZL89yyrOuW3Ylhw4YRGRmZ+jhx4kSWbdtRXfr4Y+76z39IAnZ27071Bx80HUlERP6l9nPPMadkSQDc3ngD69Qpw4kcQ4bKSJEiRXB1db3uKEhERMR1R0vuhKenJ35+fmkeeVpkJPmGDAHg04AAukydajiQiIjciJubG8FffskvNhv5kpI40aqVTtekQ4bKiIeHBzVr1mTLli1plm/ZskWzxGanwYNxO3MGq3x5WuzcqdMzIiK5WJX77+eP3r1JBO4KDeX8nDmmI+V6GT5N079/f+bNm8eCBQvYt28f/fr14/jx44SEhAApp1g6deqU5jV79uxhz549xMTEcPbsWfbs2cPevXuz5hM4Oft338HVX2Tb3LkEliljNpCIiNxW5/Hj+aR4cQBcevfGOn/ecKLczS2jL+jQoQPnz59nzJgxhIWFcd9997Fx40ZKX50wKCws7LoxR6pXr5765927d7NkyRJKly7N0aNH7yy9k7OuXOFM69YUBxK7dMG9YUPTkUREJB3c3Nyov3Ej+6pXp3JCAieffZaS/zqrIP8vw+OMmJBXxxn5o3Vrqm7YwGng0o4d3Fu3rulIIiKSAav69+epSZOwWRZs3gyPPWY6Uo7KlnFGJOdEfPMNlTZsAGDH88+riIiIOKCnJ07E9vrrKU+6d4eYGLOBcimVkVzISkri0tNP4w58X6AAbT7+2HQkERHJrHffhbvugqNHOfnyy6bT5EoqI7nQL506USEykkig+Jo1uLll+NIeERHJLfLlI/yttwAovmoVYevWmc2TC6mM5DJh//kPVZYuBeDntm2p+OijhhOJiMidKtqxI5uKFsUFiHvxRaz4eNORchWVkdzEsnDv3Zt8QGj+/DRdtsx0IhERyQKurq7cs2EDEUDZy5fZ9cwzpiPlKiojucmyZRT573+xPDwovGoVbhrcTETEadxTuza7OnYE4IENGzj59deGE+UeKiO5xfnz0KcPALYRI7jrXzMji4iI42u2cCE/FSqEBxDZvj3JiYmmI+UKKiO5gGVZ/Fi7Npw9C1WqwNV5aERExLm4uLpSfN06ooAqUVH8fPVISV6nMpILfNW/Pw8fOkQycOGDD0CnZ0REnFbZBg3Y3b49APU2bACNRq4yYtrxv/+m0uTJAPxWvz6FWrQwnEhERLJboyVL4JFHsF25Aj165PmZfVVGDLIsi58ff5xylsUZDw/u/+IL05FERCQH2FxdYe5c8PSEzZs5M3686UhGqYwYtHr4cJ6+OqmgfepUXAsUMBtIRERyToUKJAwbBoDb4MEc2bnTcCBzNFGeIUcOHCCyUiWqJSezv1o1KoSGmo4kIiI5LDk+nkNFilA+JoZvixTh0TNncHFxnuMEmigvlzvaty/VkpOJcnPjno0bTccREREDXDw98V26lCSgyblzfNG9u+lIRqiMmHD4MI9+/z0AcW+/jUuxYoYDiYiIKcWfeII/r44tVWv+fA7u3m04Uc5TGclplpVy5XRsLDRuTIDGFBERyfMeWLuWU97eFAf+bNkSu91uOlKOUhnJQcnJyaxp0wa++Qa8vGD2bLDZTMcSERHDbD4+uC1cCECbM2dY1auX4UQ5S2UkBy147z0arl8PQNKIEXDPPYYTiYhIbhHYoQP7HnkEgFbr16ccQc8jVEZyyMGDBykwciSFgXMlSuA2eLDpSCIikstU+vxzkosVw+fUKXjrLdNxcozKSA5ITk5mQatWPG23Y7fZKLRuHbi7m44lIiK5jK1AAVxmzkx5Mn48sT/9ZDZQDlEZyQGzx42j199/AxD96qu41KplOJGIiORaTz6J1b492O0caNiQvb//bjpRtlMZyWb79+8n36hRFAMuBgVRYMIE05FERCS3mzyZaHd37rfb+a5lS5KSkkwnylYqI9lsTffudLTbSQYKrF6dcheNiIjILdiCgkj64AMAup08yXwnHwZCZSQ7RUUx+NAhAGK6dMFWr57hQCIi4igK9unDqfvuwwuo/NFH/OnEp2tURrLT0KG4nDwJ5crhN2WK6TQiIuJIbDaKr19PrKsrj1gW61u1IjEx0XSqbKEykg3sdjvfjRwJ166InjsXfH3NhhIREYdjK1uWhJEjAeh5/DgzR4wwnCh7qIxkg8njxnHX22+nPOneHRo3NhtIREQclv/w4Zy9+278geC1a1OmFXEyKiNZbO/evbiMHs09wOWCBeHqBUgiIiKZ4upKkXXrsNzdqXTgAKxYYTpRllMZyUJJSUmMf/ppel2d4Mjn00/B399wKhERcXS2++7DNnx4ypNevbDOnTMbKIupjGShj957jwH79uEKXHnqKWwtW5qOJCIizmLYMKhSBc6eZdO997Jnzx7TibKMykgW+fPPP0keNYoqQKy/Pz5z5piOJCIizsTDA+bNIxlofvYss9u1IyEhwXSqLKEykgUsy+KjZ59lYHIyAF4LFkChQoZTiYiI06lTh9hXXgFg6JEjfDhqlOFAWUNlJAvY4uKYFhOTcnqmXTts7dqZjiQiIk7Kd+JEYooWpTTg9/77/Prrr6Yj3TGVkawwfDjex45BsWL4zJtnOo2IiDizfPnIt3gxAD0ti0nPPOPwp2tURu5AYmIiRz/9FCZNSlkwbx4ULGg0k4iI5AHBwcQ+9xwuwMjDh3n/zTdNJ7ojKiN3YPzo0SR36pQyAE3XrtCihelIIiKSR3jPnMmVwoW5B6jy8ccOPbOvykgm7dmzh4LjxlEOuFykCEycaDqSiIjkJf7++CxfDkC7M2dw++47w4EyT2UkExISEpj51FOEXB2S12fpUvDzM5xKRETynCZN4PXXU/7cpQtcvGg2TyapjGTC+DffZPjhwwBceeklbE2bGk4kIiJ51vvvQ4UKcOoUoQ0asHPnTtOJMkxlJIN+/fVXin/4IXcB0YGB+EydajqSiIjkZT4+8PHHJNtsVP/rLz5r1464uDjTqTJEZSQDEhISWNCuHS9ZFslA/lWrIF8+07FERCSvq1OHuL59ARh5+jQfDhxoNk8GqYxkgOvFi7x34QIAcSEh8PDDhhOJiIik8HnvPSLLlqUI8MD06fzn559NR0o3lZH0sixcX3uNfNHRJFesiI/unhERkdzEwwP/detIcnGhNfB5u3bExsaaTpUuKiPpEB8fT8LcubBmDbi54bJkCXh7m44lIiKS1v33kzBiBABDw8OZ0KeP4UDpozKSDlP69iUxJCTlyZgxUKOG2UAiIiI34TNyJBcqVcIfaLBgAefPnjUd6bZURm7jl59/pu6sWfhaFucqV4bBg01HEhERuTlXVwqtX0+ihwcN7XYKL1liOtFtqYzcQlxcHDuefJKHgVg3N4ps3AiurqZjiYiI3Fr58rhfmzdtyBD46y+jcW5HZeQW5nTvTs+rh7fskyZBmTJG84iIiKRbSEjKnGnx8UQ/+ST/2brVdKKbUhm5iV9++IHgTz/FHThdrx75XnvNdCQREZH0s9lgwQLi/PzIf+gQv7dpw+XLl02nuiGVkRuIjY3lQNu2VAIuentTfP36lP9TRUREHElgIPZZswDodukSCzp2NBzoxlRGbiDh88954dIlANw+/RQKFzYbSEREJJN8n3uOE82b4wK0WbuWn774wnSk66iM/NvZs/j36wdA9Msvk/+ppwwHEhERuTOlVq7kjJ8fpYALzz5LTHS06UhpqIz8j2S7Hbp3h/BwuPde8k+fbjqSiIjInfP1xXfdOpKAVpcvs6pdO9OJ0lAZ+R/LmzeHdeuw3N1h8WKNsioiIk4j36OPcqxzZwDafvMN+zZtMpzo/6mMXPXfZctotWULAAc6doTq1Q0nEhERyVp3z5vHsRIl8AcqjRsHdrvpSIDKCACXIyNxfekl8gH7AwOpMGeO6UgiIiJZz82N0lu3Qr582LZtg/HjTScCMllGZsyYQdmyZfHy8qJmzZps3779lutv3bqVmjVr4uXlRbly5Zh19Taj3OL7Zs2oER9PlM1G0ObNGmVVRESc1913w5QpAFhvvsnfuWC4+AyXkeXLl9O3b1+GDx9OaGgoDRo0oHnz5hw/fvyG6x85coQWLVrQoEEDQkNDeeONN+jduzerV6++4/BZ4dfZs2n2n/8AcGzgQPzuv99wIhERkWz20ktcbNwYW2Iibp07ExUebjSOzbIsKyMvqF27NjVq1GDmzJmpyypXrkybNm0YN27cdesPGTKE9evXs2/fvtRlISEh/Pbbb/z888/pes+oqCj8/f2JjIzEz88vI3FvKebMGSJKlaJcYiK7ypWj1sGDGtxMRETyhJijR7l8zz0E2u18d++9NM6G+WvS+/2doSMjCQkJ7N69m+Dg4DTLg4OD2bFjxw1f8/PPP1+3/uOPP86uXbtITEy84Wvi4+OJiopK88gOsT17Ui4xkXBXVyp8+62KiIiI5Bn5ypThzNWDCI337iXh88+NZclQGTl37hx2u53AwMA0ywMDAwm/ySGe8PDwG66flJTEuXPnbviacePG4e/vn/ooVapURmKmj2VRtEQJLJuN6KlT8dMkeCIiksfcP2gQx9u0wfLzwyMpyViOTF3AavvXEQTLsq5bdrv1b7T8mmHDhhEZGZn6OHHiRGZi3prNBpMnY9u3j/Kvvpr12xcREXEAdy1Zgu2PP8DgiONuGVm5SJEiuLq6XncUJCIi4rqjH9cEBQXdcH03NzcK32TOF09PTzw9PTMSLfMqVsyZ9xEREcmNvL3hrruMRsjQkREPDw9q1qzJlquDg12zZcsW6tWrd8PX1K1b97r1N2/eTK1atXB3d89gXBEREXE2GT5N079/f+bNm8eCBQvYt28f/fr14/jx44SEhAApp1g6deqUun5ISAjHjh2jf//+7Nu3jwULFjB//nwGDhyYdZ9CREREHFaGTtMAdOjQgfPnzzNmzBjCwsK477772LhxI6VLlwYgLCwszZgjZcuWZePGjfTr14/p06dTvHhxpkyZwlOaDVdERETIxDgjJmTXOCMiIiKSfbJlnBERERGRrKYyIiIiIkapjIiIiIhRKiMiIiJilMqIiIiIGKUyIiIiIkapjIiIiIhRKiMiIiJilMqIiIiIGJXh4eBNuDZIbFRUlOEkIiIikl7XvrdvN9i7Q5SR6OhoAEqVKmU4iYiIiGRUdHQ0/v7+N/25Q8xNk5yczOnTp8mfPz82my3LthsVFUWpUqU4ceKE5rzJZtrXOUP7OWdoP+cM7eeckZ372bIsoqOjKV68OC4uN78yxCGOjLi4uFCyZMls276fn59+0XOI9nXO0H7OGdrPOUP7OWdk136+1RGRa3QBq4iIiBilMiIiIiJG5eky4unpyahRo/D09DQdxelpX+cM7eecof2cM7Sfc0Zu2M8OcQGriIiIOK88fWREREREzFMZEREREaNURkRERMQolRERERExyunLyIwZMyhbtixeXl7UrFmT7du333L9rVu3UrNmTby8vChXrhyzZs3KoaSOLSP7ec2aNTz22GMULVoUPz8/6taty9dff52DaR1bRn+nr/npp59wc3OjWrVq2RvQSWR0P8fHxzN8+HBKly6Np6cnd999NwsWLMihtI4ro/v5s88+44EHHsDHx4dixYrx8ssvc/78+RxK65i2bdtGq1atKF68ODabjXXr1t32NTn+XWg5sWXLllnu7u7W3Llzrb1791p9+vSxfH19rWPHjt1w/cOHD1s+Pj5Wnz59rL1791pz58613N3drVWrVuVwcseS0f3cp08f6/3337d++eUXa//+/dawYcMsd3d369dff83h5I4no/v6mkuXLlnlypWzgoODrQceeCBnwjqwzOzn1q1bW7Vr17a2bNliHTlyxNq5c6f1008/5WBqx5PR/bx9+3bLxcXFmjx5snX48GFr+/btVpUqVaw2bdrkcHLHsnHjRmv48OHW6tWrLcBau3btLdc38V3o1GXkoYceskJCQtIsq1SpkjV06NAbrj948GCrUqVKaZb16NHDqlOnTrZldAYZ3c83cu+991pvvfVWVkdzOpnd1x06dLBGjBhhjRo1SmUkHTK6n7/66ivL39/fOn/+fE7EcxoZ3c8ffvihVa5cuTTLpkyZYpUsWTLbMjqb9JQRE9+FTnuaJiEhgd27dxMcHJxmeXBwMDt27Ljha37++efr1n/88cfZtWsXiYmJ2ZbVkWVmP/9bcnIy0dHRFCpUKDsiOo3M7uuFCxdy6NAhRo0ald0RnUJm9vP69eupVasWH3zwASVKlKBChQoMHDiQ2NjYnIjskDKzn+vVq8fJkyfZuHEjlmVx5swZVq1aRcuWLXMicp5h4rvQISbKy4xz585ht9sJDAxMszwwMJDw8PAbviY8PPyG6yclJXHu3DmKFSuWbXkdVWb2879NmDCBy5cv0759++yI6DQys68PHDjA0KFD2b59O25uTvufe5bKzH4+fPgwP/74I15eXqxdu5Zz587x2muvceHCBV03chOZ2c/16tXjs88+o0OHDsTFxZGUlETr1q2ZOnVqTkTOM0x8FzrtkZFrbDZbmueWZV237Hbr32i5pJXR/XzN0qVLGT16NMuXLycgICC74jmV9O5ru93O888/z1tvvUWFChVyKp7TyMjvdHJyMjabjc8++4yHHnqIFi1aMHHiRBYtWqSjI7eRkf28d+9eevfuzciRI9m9ezebNm3iyJEjhISE5ETUPCWnvwud9p9KRYoUwdXV9bqGHRERcV3juyYoKOiG67u5uVG4cOFsy+rIMrOfr1m+fDldu3Zl5cqVNG3aNDtjOoWM7uvo6Gh27dpFaGgor7/+OpDypWlZFm5ubmzevJnGjRvnSHZHkpnf6WLFilGiRIk0U6VXrlwZy7I4efIk5cuXz9bMjigz+3ncuHHUr1+fQYMGAXD//ffj6+tLgwYNGDt2rI5eZxET34VOe2TEw8ODmjVrsmXLljTLt2zZQr169W74mrp16163/ubNm6lVqxbu7u7ZltWRZWY/Q8oRkZdeeoklS5bofG86ZXRf+/n58ccff7Bnz57UR0hICBUrVmTPnj3Url07p6I7lMz8TtevX5/Tp08TExOTumz//v24uLhQsmTJbM3rqDKzn69cuYKLS9qvLVdXV+D//+Uud87Id2G2XRqbC1y7bWz+/PnW3r17rb59+1q+vr7W0aNHLcuyrKFDh1odO3ZMXf/a7Uz9+vWz9u7da82fP1+39qZDRvfzkiVLLDc3N2v69OlWWFhY6uPSpUumPoLDyOi+/jfdTZM+Gd3P0dHRVsmSJa2nn37a+uuvv6ytW7da5cuXt7p162bqIziEjO7nhQsXWm5ubtaMGTOsQ4cOWT/++KNVq1Yt66GHHjL1ERxCdHS0FRoaaoWGhlqANXHiRCs0NDT1Furc8F3o1GXEsixr+vTpVunSpS0PDw+rRo0a1tatW1N/1rlzZ6thw4Zp1v/hhx+s6tWrWx4eHlaZMmWsmTNn5nBix5SR/dywYUMLuO7RuXPnnA/ugDL6O/2/VEbSL6P7ed++fVbTpk0tb29vq2TJklb//v2tK1eu5HBqx5PR/TxlyhTr3nvvtby9va1ixYpZL7zwgnXy5MkcTu1Yvv/++1v+nZsbvgttlqVjWyIiImKO014zIiIiIo5BZURERESMUhkRERERo1RGRERExCiVERERETFKZURERESMUhkRERERo1RGRERExCiVERERETFKZURERESMUhkRERERo1RGRMSIpUuX4uXlxalTp1KXdevWjfvvv5/IyEiDyUQkp2miPBExwrIsqlWrRoMGDZg2bRpvvfUW8+bN4z//+Q8lSpQwHU9EcpCb6QAikjfZbDbeeecdnn76aYoXL87kyZPZvn27iohIHqQjIyJiVI0aNfjrr7/YvHkzDRs2NB1HRAzQNSMiYszXX3/N33//jd1uJzAw0HQcETFER0ZExIhff/2VRo0aMX36dJYtW4aPjw8rV640HUtEDNA1IyKS444ePUrLli0ZOnQoHTt25N577+XBBx9k9+7d1KxZ03Q8EclhOjIiIjnqwoUL1K9fn0ceeYTZs2enLn/yySeJj49n06ZNBtOJiAkqIyIiImKULmAVERERo1RGRERExCiVERERETFKZURERESMUhkRERERo1RGRERExCiVERERETFKZURERESMUhkRERERo1RGRERExCiVERERETHq/wCEuYpr/IoLxgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABerUlEQVR4nO3dd3RU5eL18e+kk0BCTWgxgNJEL1IEAREVCE0QQYpyKUoxItJVEKSJYkMBKdJRKdJVrlRRAQXxJ4LXK9jpCQQCpAFp87x/BPIaaUlI8mSS/Vlr1sqcOXNmz2HI7JzyHIcxxiAiIiJiiZvtACIiIlKwqYyIiIiIVSojIiIiYpXKiIiIiFilMiIiIiJWqYyIiIiIVSojIiIiYpWH7QAZ4XQ6CQ8Pp0iRIjgcDttxREREJAOMMcTGxlK2bFnc3K69/cMlykh4eDjBwcG2Y4iIiEgWHD16lPLly1/zcZcoI0WKFAFS34y/v7/lNCIiIpIRMTExBAcHp32PX4tLlJHLu2b8/f1VRkRERFzMjQ6x0AGsIiIiYpXKiIiIiFilMiIiIiJWucQxIyIi+UVKSgpJSUm2Y4hkC09PT9zd3W96OSojIiK5wBjDiRMnOHfunO0oItmqaNGilC5d+qbGAVMZERHJBZeLSGBgIL6+vhrAUVyeMYbz588TGRkJQJkyZbK8LJUREZEclpKSklZESpQoYTuOSLYpVKgQAJGRkQQGBmZ5l40OYBURyWGXjxHx9fW1nEQk+13+XN/MsVAqIyIiuUS7ZiQ/yo7PtcqIiIiIWJWlMjJz5kwqVqyIj48PderUYceOHdec96uvvsLhcFxx++WXX7IcWkRERPKPTJeR5cuXM3jwYEaNGsXevXtp3LgxrVq14siRI9d93q+//kpERETarXLlylkOLSIi8k+//PIL99xzDz4+Ptx1112240gmZLqMvP322/Tu3Zs+ffpQvXp1pkyZQnBwMLNmzbru8wIDAyldunTaLTsGSRER13f69GnOnz9vO4bkYQ6Hg48//viG840dOxY/Pz9+/fVXtm7dmvPBJNtkqowkJiayZ88eQkND000PDQ1l586d131urVq1KFOmDE2bNuXLL7+87rwJCQnExMSku4lI/rNy5UoCAwNp0qQJTqfTdhxxcX/++Sf33nsvISEhOoXaxWSqjJw+fZqUlBSCgoLSTQ8KCuLEiRNXfU6ZMmWYM2cOq1evZs2aNVStWpWmTZuyffv2a77OpEmTCAgISLsFBwdnJqaIuICIiAieeuopgoODWbx4MW5uBfN4+vj4+GveLl68mOF5L1y4kKF5M8sYwxtvvEGlSpUoVKgQNWvWZNWqVWmPNWvWjJYtW2KMAeDcuXPccsstjBo1CkgdY6V3795UrFiRQoUKUbVqVaZOnXrF6yxYsIAaNWrg7e1NmTJlGDBgAAAVKlQA4JFHHsHhcKTd/yeHw8GePXuYMGECDoeDcePGZfq9ikUmE44fP24As3PnznTTJ06caKpWrZrh5Tz00EOmbdu213z84sWLJjo6Ou129OhRA5jo6OjMxBWRPMrpdJq2bdsawNSuXdskJibajpSjLly4YPbv328uXLhwxWPANW+tW7dON6+vr+81523SpEm6eUuWLHnV+TLrxRdfNNWqVTMbN240f/75p1m4cKHx9vY2X331lTHGmGPHjplixYqZKVOmGGOM6dKli6lbt27av2liYqIZM2aM+e6778xff/1lFi9ebHx9fc3y5cvTXmPmzJnGx8fHTJkyxfz666/mu+++M++8844xxpjIyEgDmIULF5qIiAgTGRl51ZwRERGmRo0aZtiwYSYiIsLExsZm+r1K1lzv8x0dHZ2h7+9MjcBasmRJ3N3dr9gKEhkZecXWkuu55557WLx48TUf9/b2xtvbOzPRRMSFLF68mHXr1uHp6cmiRYvw9PTEGMOCBQsIDQ3V1tA8Ij4+nrfffpsvvviCBg0aAFCpUiW+/vprZs+eTZMmTShXrhyzZ8+me/funDx5knXr1rF37148PT2B1AupjR8/Pm2ZFStWZOfOnaxYsYLOnTsDMHHiRIYNG8agQYPS5rv77rsBKFWqFPD/r39yLaVLl8bDw4PChQtfdz7JmzJVRry8vKhTpw5btmzhkUceSZu+ZcsWHn744QwvZ+/evTc1hr2IuK7w8HAGDhwIwLhx47jzzjsBGDFiBG+88QahoaFs3LixwAwQFhcXd83H/nmg/+VrgFzNP3dzHTp06KZyAezfv5+LFy/SvHnzdNMTExOpVatW2v1OnTqxdu1aJk2axKxZs6hSpUq6+d977z3mzZvH4cOHuXDhAomJiWlnu0RGRhIeHk7Tpk1vOq+4rkxfm2bo0KF0796dunXr0qBBA+bMmcORI0cICwsDYOTIkRw/fpwPPvgAgClTplChQgVq1KhBYmIiixcvZvXq1axevTp734mI5HnGGPr168e5c+eoW7cuzz//fNpjTz75JNOmTWPz5s3MmzePvn37Wkyae/z8/KzPey2XDyr+7LPPKFeuXLrH/r71+vz58+zZswd3d3d+//33dPOtWLGCIUOGMHnyZBo0aECRIkV488032b17N/D/r20iBVumy0iXLl2IiopiwoQJREREcMcdd7B+/XpCQkKA1IPS/j7mSGJiIsOHD+f48eMUKlSIGjVq8Nlnn9G6devsexci4hKSkpIIDg7G29ub999/Hw+P//8rqGrVqrzyyisMGzaMYcOGERoamvZ7Rey4/fbb8fb25siRIzRp0uSa8w0bNgw3Nzc2bNhA69atadOmDQ8++CAAO3bsoGHDhvTv3z9t/j///DPt5yJFilChQgW2bt3KAw88cNXle3p6kpKSkk3vSvKknDmcJXtl9AAYEXENR44cuer05ORk06hRIwOYpk2bGqfTmcvJcsb1DvDL60aNGmVKlChhFi1aZP744w/zww8/mOnTp5tFixYZY4z5z3/+Y7y8vMyePXuMMcaMHj3alC9f3pw5c8YYY8yUKVOMv7+/2bhxo/n111/N6NGjjb+/v6lZs2baayxatMj4+PiYqVOnmt9++83s2bPHTJs2Le3xypUrm6efftpERESkLfdqatasacaOHZv9K0GuKzsOYC2Y59KJSK4yxqSd+glc8wBVd3d3Fi5cSKFChdi6dSuzZ8/OrYhyDS+//DJjxoxh0qRJVK9enRYtWrBu3ToqVqzIqVOn6N27N+PGjaN27dpA6sBjZcuWTdt1HxYWRocOHejSpQv169cnKioq3VYSgJ49ezJlyhRmzpxJjRo1eOihh9Lt7pk8eTJbtmwhODg43bEqkn84zN9/Q+RRMTExBAQEEB0djb+/v+04IpJJ8+fP56OPPmLevHmElC8P334LX34Jv/0Gp06BmxuUKwd33QXNmzP1s88YPGQIAQEBHD58mICAANtv4aZcvHiRgwcPpl3TSyQ/ud7nO6Pf35k+ZkREJDOOHDnC0KFD8YiJIbxvX0J+/BGuc1YIwMDatfFt3Jg7X3nF5YuIiNyYyoiI5BhjDP1696ZXTAyvurnht2VL6gNFi0LLlnDnnVC2LKSkwOHD8PXX8M03OH74gb4ATz8N774L1ziwUUTyB5UREckxyyZNYvznn1MfwOlM3Q3z4ovQvj1cGhTrCqdPw9y5MHky/PwzPPggZ7p3J/rFF6lYrVruhReRXKMDWEUkR5xcsoSWo0ZRH7jo4wOzZ8OePdCp07WLCEDJkjByZOrxJE8/DUDxDz/kYr16OMPDcye8iOQqlRERyXbOjz6iRPfuFAcOFC6M588/Q79+qQeqZlTx4jBzJifmzCEKqB4bS+ydd8Kvv+ZUbBGxRGVERLLX/Pk4unXDwxhWuLvjuWsX7pUqZXlxpfv2ZcO4cfwOBJw5Q3LDhvDLL9mXV0SsUxkRkeyzZAn06YPD6SS5d2/Kbt3KbXfccdOLffyll3jh3nv5AfA4cwbTtCn89dfN5xWRPEFlRESyx+bN0KtX6s/PPovH3Lnce50hxDPDzc2Ntz/8kA5+fvwPcISHQ9Om8I8riIuIa1IZEZGbt3cvdOgAycnsr1mT5Lfegmy+6m6FChUYOXkyzYDfHQ44dCj1rJyLF7P1dUSupVevXrRv3952jCy5//77GTx4sO0Y16QyIiI35/RpeOQRiI/nCzc37vrxR1asWpUjL9WvXz/qtmnD50OGYIoVg927oXdvyPsDSbus7du307ZtW8qWLYvD4eDjjz++Yp5x48ZRrVo1/Pz8KFasGM2aNUu7Ku+1HDp0CIfDwb59+3ImeA6YOnUqixYtsh0jS9asWcPLL79sO8Y1qYyISNYlJ0PXrnD4MMd8fOjgdNLo/vvp2rVrjrycw+Fg3bp1PD15Mo7Vq8HDA5YuTR2TRHJEfHw8NWvWZPr06decp0qVKkyfPp2ffvqJr7/+mgoVKhAaGsqpU6dyJWNSUlKuvE5AQABFixbNldfKLpfXTfHixSlSpIjlNNeRAxfwy3a6aq9IHvXCC8aASfDyMjXA+Pn5mb/++ivXXj5x2jRjwBgPD2N27cq1180sV75q798BZu3atTec7/Lv7M8///y6y/r7rUmTJmmPLViwwFSrVs14e3ubqlWrmhkzZqQ9dvDgQQOY5cuXmyZNmhhvb2+zYMEC07NnT/Pwww+bV155xQQGBpqAgAAzbtw4k5SUZIYPH26KFStmypUrZ+bPn3/d7CtXrjR33HGH8fHxMcWLFzdNmzY1cXFxxhiT9hqXNWnSxDz77LPmueeeM8WKFTNBQUFXXDX43Llzpm/fvqZUqVKmSJEi5oEHHjD79u275usnJCSYZ555xpQuXdp4e3ubkJAQ8+qrr2Z4eWPHjjU1a9Y08+fPNxUrVjQOh8M4nU7TpEkTM2jQoHSv89xzz5myZcsaX19fU69ePfPll1+mPX7o0CHz0EMPmaJFixpfX19z++23m88+++yqmbPjqr0agVVEsmbrVnj9dQCeAH4GZr75JhUrVsyVl9+/fz9dZs/m7eLFaX7mTOoWmr17oVixXHn9m2YMnD9v57V9fbP9mJ7LEhMTmTNnDgEBAdSsWfOa83333XfUq1ePzz//nBo1auDl5QXA3LlzGTt2LNOnT6dWrVrs3buXvn374ufnR8+ePdOe/8ILLzB58mQWLlyIt7c327Zt44svvqB8+fJs376db775ht69e7Nr1y7uu+8+du/ezfLlywkLC6N58+ZXvXJ0REQEjz32GG+88QaPPPIIsbGx7NixI90Vp//p/fffZ+jQoezevZtdu3bRq1cvGjVqRPPmzTHG0KZNG4oXL8769esJCAhg9uzZNG3alN9++43ixYtfsbxp06bx6aefsmLFCm655RaOHj3K0aNHATK8vD/++IMVK1awevVq3N3dr5r7iSee4NChQ3z00UeULVuWtWvX0rJlS3766ScqV67MM888Q2JiItu3b8fPz4/9+/dTuHDha66Hm3bdqpJHaMuISB5z+rQxZcsaA+bjoCADmKZNm5qUlJRci3D06FHj7+9vioA5U6JE6haSDh2McTpzLUNGXfUvx7i41Mw2bpf+0s8srrNlZN26dcbPz884HA5TtmxZ89133113WZe3cOzduzfd9ODgYLN06dJ0015++WXToEGDdM+bMmVKunl69uxpQkJC0n0Gq1ataho3bpx2Pzk52fj5+Zlly5ZdNdOePXsMYA4dOnTVx6+2ZeTee+9NN8/dd99tXnjhBWOMMVu3bjX+/v7m4sWL6ea59dZbzezZs6/6Gs8++6x58MEHjfMqn+OMLG/s2LHG09PTREZGppvn71tG/vjjD+NwOMzx48fTzdO0aVMzcuRIY4wxd955pxk3btxVM/5TdmwZ0TEjIpI5xkCfPhAezoWQEHqdOUPhwoWZP38+bpkZYfUmlS9fnilTphALtImJwXh4wJo18P77uZZB/r8HHniAffv2sXPnTlq2bEnnzp2JvHR15rCwMAoXLpx2u5ZTp05x9OhRevfunW7+iRMn8ueff6abt27dulc8v0aNGuk+g0FBQdx5551p993d3SlRokRarn+qWbMmTZs25c4776RTp07MnTuXs2fPXvd9/+tf/0p3v0yZMmnL37NnD3FxcZQoUSLd+zl48OAV7+eyXr16sW/fPqpWrcrAgQPZvHlz2mMZXV5ISAilSpW6ZuYffvgBYwxVqlRJt5xt27alLWfgwIFMnDiRRo0aMXbsWP773/9edz3cLO2mEZHMWbQIPv4YPD0ptHYtX3t58fvvvxMSEpLrUXr16sWqVatYv34908uX59ljx2DQoNQxSK6yGT5P8fWFuDh7r53N/Pz8uO2227jtttu45557qFy5MvPnz2fkyJFMmDCB4cOH33AZTqcTSN1VU79+/XSP/XN3g5+f3xXP9/zHNY8cDsdVp11+nX9yd3dny5Yt7Ny5k82bN/Puu+8yatQodu/efc3dj9dbvtPppEyZMnz11VdXPO9aB8LWrl2bgwcPsmHDBj7//HM6d+5Ms2bNWLVqVYaXd7V183dOpxN3d3f27NlzxXq9XBb79OlDixYt+Oyzz9i8eTOTJk1i8uTJPPvss9dddlapjIhIxkVEwNChqT9PnAi1alGD1L9IbXA4HMyZM4caNWow+NgxOgQHU+7o0dQtNxs35thxEdnC4YAbfGm4MmMMCQkJAAQGBhIYGJju8cvHiKSkpKRNCwoKoly5cvz1119069Yt98L+jcPhoFGjRjRq1IgxY8YQEhLC2rVrGXr5c58JtWvX5sSJE3h4eFChQoUMP8/f358uXbrQpUsXHn30UVq2bMmZM2eyvLx/qlWrFikpKURGRtK4ceNrzhccHExYWBhhYWGMHDmSuXPnqoyIiGXGQP/+cO4cpytW5GDjxtxtOxNQrlw5pk2bRs+ePWl54gQ/envjtnkzzJ2benE+uSlxcXH88ccfafcPHjzIvn37KF68OLfccgvx8fG88sortGvXjjJlyhAVFcXMmTM5duwYnTp1uuZyAwMDKVSoEBs3bqR8+fL4+PgQEBDAuHHjGDhwIP7+/rRq1YqEhAS+//57zp49m6VCkBm7d+9m69athIaGEhgYyO7duzl16hTVq1fP0vKaNWtGgwYNaN++Pa+//jpVq1YlPDyc9evX0759+6vuanrnnXcoU6YMd911F25ubqxcuZLSpUtTtGjRLC3vaqpUqUK3bt3o0aMHkydPplatWpw+fZovvviCO++8k9atWzN48GBatWpFlSpVOHv2LF988UWW10NG6JgREcmYlSvh448xHh60OHaMe+69l++//952KgC6d+9O27ZtKdmoEeeeey514vDhEB5uN1g+8P3331OrVi1q1aoFwNChQ6lVqxZjxowBUndt/PLLL3Ts2JEqVarw0EMPcerUKXbs2HHdLWYeHh5MmzaN2bNnU7ZsWR5++GEgdffAvHnzWLRoEXfeeSdNmjRh0aJFuXKWlr+/P9u3b6d169ZUqVKF0aNHM3nyZFq1apWl5TkcDtavX899993Hk08+SZUqVejatSuHDh0iKCjoqs8pXLgwr7/+OnXr1uXuu+/m0KFDrF+/Hjc3tywt71oWLlxIjx49GDZsGFWrVqVdu3bs3r077SyjlJQUnnnmGapXr07Lli2pWrUqM2fOzNJ6yAiHMXl/6MKYmBgCAgKIjo7G39/fdhyRguf0abj9djh1inlly9I3PJyWLVuyfv16HHlkV0hsbCx+fn64GQMNG8J330GnTrBihe1oXLx4kYMHD1KxYkV8fHxsxxHJVtf7fGf0+1tbRkTkxkaMgFOnOBUURP/wcAICApg7d26eKSIARYoUST2Twt0dZs/GuLunbs3ZsMF2NBG5AZUREbm+PXtgwQIAHo2KIgmYMmUK5cuXt5vrGuLi4hgwbx5LSpRIndC/v73BxUQkQ1RGROTajIGBA8EYNhQvzvbkZNq0aZNuJMy8Ji4ujmXLlhEWGUl0QEDq1X3z8AXCRERlRESuZ9ky2LmTJG9v+pw5Q9GiRZk9e3ae2j3zT6VLl2b69OnEA0/ExqZOfOst+N//rOYSkWvTqb0icnXx8fD88wB4vPQSL5UoQUBAAOXKlbMc7Ma6du3KqlWrWLNmDV/4+/NgTEzqFp6tW62OPeIC5wuIZFp2fK5VRkTk6iZNguPHoWJFHMOGEeZCZ4E4HA5mzZrF9u3befL0aX738MDzyy9Th4vv2DHX81wepfP8+fMUKlQo119fJCedv3RM1j9Ho80MlRERudLBg6m7NoALEydSyIWKyGWBgYHMmDGDLl268FpKCi8BDBsGrVtDLhcCd3d3ihYtmnbNEl9f3zy9q0skI4wxnD9/nsjISIoWLXrNKwRnhMYZEZErdewIa9aw1eGgd3Awu7/7LtODKuUVnTt35pstW/jD05NCp07B+PFwacCu3GSM4cSJE5w7dy7XX1skJxUtWpTSpUtftWBn9PtbZURE0vviC2jalGTgLqBy+/asWbPGZf+SP336NElJSZTZsQO6dEndKvLLL3DLLVbypKSkkJSUZOW1RbKbp6fndbeIqIyISOYlJ0OtWvC///EuMK54cX7++WdKly5tO9nNMwYeeAC2bYPOnWH5ctuJRPI9jcAqIpk3ezb8739EAWOBGTNm5I8iAuBw8GX79qRA6hDx27bZTiQil6iMiEiqqCjMSy8B8BLwQIcOdOnSxW6mbBQXF0fXSZOYfXnCwIHwt8vXi4g9KiMikmrsWBxnz/JfYE2JEsyaNctljxO5msKFC/Pee+/xEnAG4L//hXnzLKcSEVAZERGAn36CWbMAWN24MdNmziQwMNByqOz3yCOP0KpbN8Zeum9GjYKzZ61mEhGVERExBgYNAqcTOnZk3LZtdO7c2XaqHDNt2jQ+DgriZ8ARFQUTJtiOJFLgqYyIFHRr18KXX4K3N7z1Vr7aNXM1xYsXZ8acOQy+dN/57rtw4IDNSCIFnsqISEF24QIJAwYAsObWW0ksW9ZyoNzRrl07yvbowSeAW0oKDB1qO5JIgaYyIlKAJb3+Ot4RERwFPr39dry8vGxHyjVTpkwhYM4c8PSEjRth/XrbkUQKLA16JlJQHTtGYqVKeCUlEebvzyt//UWJEiVsp8p9zz8Pb74JVaqkHshbgAqZSE7ToGcicl2ne/fGKymJr4GWixYVzCICMHo0KSVLwm+/kfj227bTiBRIKiMiBVDCF19QcvNmnMDGVq1o/8gjtiNZY4oUYby3NwApY8fCpSvrikjuURkRKWicTk49/jgAywoVYujixZYD2eVwOGgwezbfA4USE4no08d2JJECR2VEpKBZuJDyJ08S43BQ4r33KF68uO1E1rVq04bP27QBIGjdOi7s2mU5kUjBojIiUpBER8OLLwJQaNIkWvboYTlQ3vH0kiV8UqgQbsDxRx9NHQxORHKFyohIAZL40kupx0RUrYrnkCG24+QpAQEBFJszh/PAbeHh/KyRWUVyjcqISAHxw9KlON59N/XOO+/oFNaruO/f/+bz2rUBKPnaa3DhguVEIgWDyohIAXA+Pp74vn3xBPaVLw+tWtmOlGfd/9lnnPP3J+jiRXjrLdtxRAoElRGRAmDZY4/R+Px5EoBKn3xiO06e5l+6NEVnz06989prcOyY3UAiBYDKiEg+983nn/PAunUAHOvcGf9LuyHkOrp0gUaN4Px5fu/YkdjYWNuJRPI1lRGRfCw+Pp7vOnemEnDG15db58+3Hck1OBwwdSpOoPJ33zGre3fbiUTyNZURkXzsjQEDeOrsWQB8pk2DwoUtJ3IhdepwonVrAB745BO2bNpkOZBI/qUyIpJPGWPosHMnvsCZO+/E98knbUdyOWUXLOCCpyd3Axsef5yYmBjbkUTyJZURkXzK8eWX1PztN4ybG8U//DB114NkTlAQbmPGAPDcmTOMGjjQciCR/EllRCQfMomJcOmL0xEWBjVrWk7kuryfe47z5cpRBgh+/302aXeNSLbLUhmZOXMmFStWxMfHhzp16rBjx44MPe+bb77Bw8ODu+66KysvKyIZ8MUXX/BelSrw889QogS8/LLtSK7N2xvf994DYAjwTu/eJCcn280kks9kuowsX76cwYMHM2rUKPbu3Uvjxo1p1aoVR44cue7zoqOj6dGjB02bNs1yWBG5vtjYWMb06EHPw4dTJ0yeDLoQ3s176CGSH3oIT2BVyZJ4uGmjskh2yvT/qLfffpvevXvTp08fqlevzpQpUwgODmbWrFnXfd5TTz3F448/ToMGDbIcVkSu77nhwxlx/Di+QPK994IuhJdtPGbOhMKFKfzjj7Bgge04IvlKpspIYmIie/bsITQ0NN300NBQdu7cec3nLVy4kD///JOxY8dm6HUSEhKIiYlJdxOR69uyZQun5szhIcDp4YHH3Lk6aDU7BQfD5YvnPf88P3/5JWcvnTYtIjcnU2Xk9OnTpKSkEBQUlG56UFAQJ06cuOpzfv/9d0aMGMGSJUvw8PDI0OtMmjSJgICAtFtwcHBmYooUODExMQx84gmmXbrvNmIEVKtmNVO+9OyzcNddcPYsPzRtyhBd+VgkW2Rpx6fjH39tGWOumAaQkpLC448/zvjx46lSpUqGlz9y5Eiio6PTbkePHs1KTJECY/jw4Tx1/DjlAGelSvDii7Yj5U8eHjB7NsbhoLsxHH7/fdZdGmpfRLIuY5sqLilZsiTu7u5XbAWJjIy8YmsJpB5M9/3337N3714GDBgAgNPpxBiDh4cHmzdv5sEHH7zied7e3nh7e2cmmkiBdeHCBeJ37ODZS/fdZs2CQoWsZsrX6tXD8fTTMHMms4BW/frR6OefKa4DhUWyLFNbRry8vKhTpw5btmxJN33Lli00bNjwivn9/f356aef2LdvX9otLCyMqlWrsm/fPurXr39z6UWEQh4eLPbywh2ga1f4xzFdkgNefRUTFEQ1oM+JEwwaNMh2IhGXlqktIwBDhw6le/fu1K1blwYNGjBnzhyOHDlCWFgYkLqL5fjx43zwwQe4ublxxx13pHt+YGAgPj4+V0wXkSx6/XUc//1v6pgiU6bYTlMwBATgmDULOnTgBaDe4sV88uijPPzww7aTibikTJeRLl26EBUVxYQJE4iIiOCOO+5g/fr1hISEABAREXHDMUdE5OZt2LCBPz75hAELFuAAmDYNrrK7VHLII49A5854rFjBQuChfv247777KFasmO1kIi7HYYwxtkPcSExMDAEBAURHR+Pv7287joh1Z8+epWaNGqyKiKAeQNu28MknOpU3t0VGYm6/HUdUFLtataL+f/6DmwZEE0mT0e9v/a8RcUFDhgyh86UiYgICYNYsFREbAgNxvPsuAA0+/xy3/fstBxJxTSojIi5m3bp17Hz/fS5fccbx9ttQrpzVTAVa167Qrh0kJcGTT3I+JoZz587ZTiXiUlRGRFzImTNneLpfP+YDhQCaN4cnnrCcqoBzOFK3TAUEwP/9HzMqVUo7oF9EMkZlRMSFDBo0iMdPnKAxYAoXhjlztHsmLyhbFt55B4BBUVEcWL6cVatWWQ4l4jpURkRcxOHDh/l91SomXrrvmDoVKlSwGUn+rlcvaNcOL+BDYHBYGJGRkZZDibgGlRERFxESFMT24GC8AB5+WLtn8hqHA+bOxQQG8i9St5A888wztlOJuASVERFXMWoUXr//DoGB2j2TVwUG4pg3D4BhwKlVq1ixYoXdTCIuQGVEJI/buHEjP77zDrz9duqE+fNTC4nkTW3bQt++uAHvAy+EhXHy5EnbqUTytEyPwCoiuefUqVMM+Pe/+SIqKnVCv37w0EN2Q8mNvf025vPPCTl4kHm+vrjA2JIiVmnLiEgeNmDAAMZFRXELYCpVgsmTbUeSjChcGMeSJRg3N5oeP07pHTtsJxLJ01RGRPKolStX4r1iBf8GjJsbjsWLoXBh27Ekoxo0wPHii6k/9+sHhw+TlJRkN5NIHqUyIpIHRUZGMrlfP2Zeuu8YNw4aNLAZSbJizBi45x44d47f776bLh07apeNyFWojIjkMcYYBj31FLPOnaMw4Lz/frj8F7a4Fk9PWLqUlCJFqHzqFLXXrWPJkiW2U4nkOSojInnM9u3bafDxx9QCkooWxW3JEnB3tx1LsqpiRdznzwfgRWBFWBjh4eF2M4nkMSojInnMfWfPMvDSz55LlqQONS6urVMnnL174wa8Fx/Pc716aXeNyN+ojIjkJUeP4njyydSfhw2D1q3t5pFs4zZtGhdvvZWyQLctW/hg0SLbkUTyDJURkTzim23bSOrcGc6ehbp14dVXbUeS7OTri8/atSR5eNAa+K1/f44fP247lUieoDIikgdERESws2VLPL/9lhQ/P/joI/Dysh1Lstudd+I2ZQoAYy9e5NTGjXbziOQRKiMilhljmN6xI8MuXky9/957cOutllNJTnHv35/4li3xAu6aNAliYmxHErFOZUTEspUzZ/LMrl24AWc6dMDj3/+2HUlyksOB39KlcMst8Oef8PTToINZpYBTGRGxKPzYMYoNHkxZ4HSpUhT/8EPbkSQ3FCsGy5Zh3N1h6VJmN2igs2ukQFMZEbHEGMOG0FCaJydz0eGg6KZN4OtrO5bkloYNiRk+HIB/797N6okTLQcSsUdlRMSSjRMm0OPAAQDOjB6NR61alhNJbgt49VUOV66MH1B13DiO/Pqr7UgiVqiMiNgQHU3owoV4Ar/ceSdlx4+3nUhscHOj/JdfcsbTkzudTvY1a6bdNVIgqYyI5DZjoG9f3A8fhgoVqLptGzgctlOJJe7lynH+vfcAaHfsGFvCwiwnEsl9KiMiuezUK6/AypXg4QHLl+MoVsx2JLGs/JNP8n3TpgDUmzOHozt2WE4kkrtURkRyUcTmzRR+6SUALowdC/XqWU4keUXtzz7jf0WKUBTw7NkTkpJsRxLJNSojIrnExMWR1KEDhYCdRYvi9cILtiNJHuLm7U2RdetI8vOj9MGDMGaM7UgiuUZlRCSX/NaiBbfExxMOBG3YgLunp+1IkseENGmC5/vvp9557TXYvNluIJFcojIikgtOT51K1Z07SQG+6d+fW++5x3Ykyas6dkwdlRWIfeQRnOHhlgOJ5DyHcYHzyGJiYggICCA6Ohp/f3/bcUQyxfz2Gxduvx3flBQWBAfT8+BB3N3dbceSPOzi2bP8GRhIjeRkjlStyi3794Ob/nYU15PR7299ukVyUkICp5s1wzclhe1ubjTevFlFRG7Ip1gx/jtyJPHALb/+ymkdXyT5nMqISE4aNYpSR49yxs2N38aMoXK1arYTiYvoMm4cMy59Xoq+9RbOb76xnEgk56iMiOSUzz+HyZMB8P3oI568dEqvSEa4ubnRef16lnt44AHEtW0LZ8/ajiWSI1RGRHJCVBTOHj1Sfw4Lw6dTJ9y0z18yqULFisS/9Ra/A/5nzxLbtWvqCL4i+Yx+O4pkN2OI69YNt4gIzgQG4nzzTduJxIU9MXAg79SrRyJQZPNmWLDAdiSRbKcyIpLNnPPnU3jTJhKBEcHB4OtrO5K4MIfDwYiVK/myWbPUCYMGwZ9/2g0lks1URkSy0x9/kPzMMwC87OnJyJUrtXtGbtott9xCi40boUkTiI+HHj0gJcV2LJFso9+SItklKYmLHTvilZjIV0C5d96hYsWKtlNJfuHuDu+/jylSBHbuxPnaa7YTiWQblRGRbOIcPx6f//6Xs8DsRo3od2kUTZHsYm65hTeCg1N/HjMG9u61nEgke6iMiGSH3bvh1VcBGOztzWtLlmj3jGQ7h8NB4LBhrALcnU4uduoEFy7YjiVy0/TbUuRmXbgAPXviZgxLHA4aTZtGSEiI7VSST/V64glWN2tGBODz5584R4ywHUnkpqmMiNys0aPh11+hTBnu3rWLvn372k4k+ZjD4eCtRYt49tJZWm7TpsHWrZZTidwclRGRm7FjB+add1J/njuXKvXr43A47GaSfK9cuXK0mzWLmZfuJ3XrBtHRVjOJ3AyVEZGsio8nsVs3HMZw5uGHoU0b24mkAOnevTtftGzJ74DnyZOYoUNtRxLJMpURkSxyvvACXkePcgTon5BgO44UMA6Hg2nz5zO7Xj2Mw4FjwQLYvNl2LJEsURkRyYovvsBtxgwABvr68tbcuZYDSUFUtmxZ3tq9G8ezz6ZO6NMHYmLshhLJApURkcyKjSWxe3cAZgEPT59O+fLl7WaSgu3VV6FSJTh6lJRhw2ynEck0lRGRTHIOG4ZXeDgHga2hofTq1ct2JCno/Pz48IEHAHCfNw8+/9xyIJHMURkRyYxt23C7tEvmWT8/pi5YoLNnJE/wbNaM6Zd+TuzRA2JjreYRyQyVEZGMungR068fAO8BnWbMoFy5cnYziVzSpUsXdrVrx0HAKyKClOHDbUcSyTCVEZGMevVVHL/9hilThrLvv0+PHj1sJxJJ43A4eGfuXIb6+wPgPmcOfPGF5VQiGaMyIpIRP/8Ml66S6nj3Xdr16KHdM5LnBAYG8tjcucy6dD+hRw+Ij7eaSSQjVEZEbsTpJL5bN0hKIrlNG+jQwXYikWvq3Lkzu9q35wjgffw4KS+9ZDuSyA2pjIjcQMrMmfj9+COxwPhSpUBbRCSPmzxnDi+XLg2A29Sp8MMPlhOJXJ/KiMj1HD9O8qVxGyb6+jLg0q4akbysVKlSzDp6FDp3xuF0pg6GlpxsO5bINWWpjMycOZOKFSvi4+NDnTp12LFjxzXn/frrr2nUqBElSpSgUKFCVKtWjXcuX1hMJI8716MH3omJfAvUnjuXoKAg25FEMsTDwwOmToWiRWHvXpLefNN2JJFrynQZWb58OYMHD2bUqFHs3buXxo0b06pVK44cOXLV+f38/BgwYADbt2/nwIEDjB49mtGjRzNnzpybDi+Sk5JWrqToF1+QBKxo1ozOjz1mO5JI5pQuzYHevQEwY8bAX39ZDiRydQ5jjMnME+rXr0/t2rWZNWtW2rTq1avTvn17Jk2alKFldOjQAT8/Pz788MMMzR8TE0NAQADR0dH4XzptTSRHRUcTExyMf2ws7xQqRLdDhwgMDLSdSiTTPl67loAOHXgAiK5Xj4Bvv9VxT5JrMvr9naktI4mJiezZs4fQ0NB000NDQ9m5c2eGlrF371527txJkyZNrjlPQkICMTEx6W4iuSlx+HD8Y2P5Dbhl7lwVEXFZ7R95hP+0bctFIOC770hcuNB2JJErZKqMnD59mpSUlCv2mwcFBXHixInrPrd8+fJ4e3tTt25dnnnmGfr06XPNeSdNmkRAQEDaLTg4ODMxRW7Ozp14zZ8PwA/9+tGxWzfLgURuzqhFi3incGEAkgYMgFOnLCcSSS9LB7D+c7AnY8wNB4DasWMH33//Pe+99x5Tpkxh2bJl15x35MiRREdHp92OHj2alZgimZeYCH37gjHwxBN0nT3bdiKRm1a8eHHueP99/gv4XbjAqUtXnRbJKzwyM3PJkiVxd3e/YitIZGTkDc8yqFixIgB33nknJ0+eZNy4cTx2jQMCvb298fb2zkw0kWxxfNAgyu3fD6VKwVtv2Y4jkm3adujAuJYtuWPjRkpt2kTCp5/i3a6d7VgiQCa3jHh5eVGnTh22bNmSbvqWLVto2LBhhpdjjCEhISEzLy2S4xJ/+olSl7aEbG3XDooXt5xIJHsNWrqUBb6+AHg8+6yGipc8I1NbRgCGDh1K9+7dqVu3Lg0aNGDOnDkcOXKEsLAwIHUXy/Hjx/nggw8AmDFjBrfccgvVqlUDUscdeeutt3j22Wez8W2I3CSnk2Nt2lDJGLZ6eVEzg2eGibiSYsWK0fbHH+HBB3E/cgTGj4c33rAdSyTzZaRLly5ERUUxYcIEIiIiuOOOO1i/fj0hISEAREREpBtzxOl0MnLkSA4ePIiHhwe33norr732Gk899VT2vQuRm3TwpZeodPQo8UDytGmULFXKdiSRHBF0220wYwa0a4d5+21SOnXC4+67bceSAi7T44zYoHFGJCddPHSIhFtvJcDpZEnt2nTbs8d2JJEcd/Hhh/H59FOOBAZyS3g4uLvbjiT5UI6MMyKSH/3SqhUBTic/enjQasMG23FEcsWuLl04B9wSGcmfgwdbTiMFncqIFGjH58zhrl9+IRk4++abFNfgZlJAPPD443zaqBEApWfM4PyBA5YTSUGmMiIFV1wc5SZOBGBHnTrcr78OpYB5eN06vvPyws8Y/mrdOnV8HRELVEak4HrpJTh6FCpU4IFt22ynEcl1AcWKkTRjBonAHYcOsX/8eNuRpIBSGZEC6felSzHTpqXeee898POzG0jEkkZ9+rCpdm0ASk2cSJxGvBYLVEakwDkfHU3yE0/gcDo5FRoKLVrYjiRiVZONG/nDw4NSKSkkDh1qO44UQCojUuBsbdOG6omJnHU48Jo+3XYcEev8S5XCMWcOAMVXrYIdOywnkoJGZUQKlO+WLaPZN98AcHTIEAIqV7acSCRvuPWJJ+Dy1dT79QNdskNykcqIFBjxcXEk9u5NIeBAmTL8SxfCE0nvjTcwQUHwyy9seuAB22mkAFEZkQJjzSOPcO+FC1x0OCj/2WfgcNiOJJK3FCvGoUunuN+/axc758+3m0cKDJURKRB2ffIJrT//HICjvXpRpFYty4lE8qaKL7zA/0JC8Abcn3mGmHPnbEeSAkBlRAqEukuXUgI4Vrw4lWfPth1HJO9yOKi4fj3nHQ7qJyTwcbt2thNJAaAyIvnfhg14rlgBbm6UXb8ePD1tJxLJ0/xuv53w/v0BaLdjB18uXWo5keR3KiOSrx3/9VdMWFjqnUGDcKtf324gERdx25QpHAkMpCgQ16cP0dHRtiNJPqYyIvlWbGwsG+++G8eRIyQHB8PLL9uOJOI6PDwotXYtyUDbCxf432uv2U4k+ZjKiORbM3r04InYWACSpk3TkO8imVSoYUMiu3UDoNHSpRAXZzmR5FcqI5Ivfb5hA60//hg34ESzZhRq3952JBGXVHb2bKhQAY4cgTFjbMeRfEplRPKdmJgY9jz2GP8CYn18KL1sme1IIq7Lzw9mzQLATJ3KogEDLAeS/EhlRPKdN/r0YdClg+08p0+HkiUtJxJxcS1bcrFDBxxOJzVnzOCzTz6xnUjyGZURyVc2bdhAs5Ur8QHO1KuHz5NP2o4kki/4zJrFeR8fagF7unfnzJkztiNJPqIyIvlKtW++4X4gwcOD4suXa8h3kewSGIjHlCkADI+NZaKKvmQjlRHJP44eJeTddwFwmzgx9aA7Eck2Xv36EV27Nr7AQ598widr19qOJPmEyojkCwkXL6Ze9jwmBu65B8/hw21HEsl/HA4Cli8n0cODB4FvevYkKirKdirJB1RGxOWdPXuWl4KDYeNGjLc3LFgA7u62Y4nkT7fdhmPSJABeio3l/fHjLQeS/EBlRFzehH79ePH0aQCSRo+G6tUtJxLJ3zyHDiW2Zk2KAIP37wdjbEcSF6cyIi5t3aef0mzVKooCsbffjteIEbYjieR/bm4UWbkSfHxw27oV5s2znUhcnMqIuKwzZ86wpUcP2gDJ7u6pvxw9PGzHEikYKleGV18FwAwbxsfTplkOJK5MZURc1ri+fZlwaXAzM3Ys3H675UQiBczAgTgbNMARG0uhQYNYtXKl7UTiolRGxCV9vHYtoWvWpF7evHp1PEeOtB1JpOBxd8dt4UKSPDxoAXz95JNERkbaTiUuSGVEXJL/p5/yEKm7ZwqvWKHdMyK2VK2KY+JEAMbHxfFSr14YHdAqmaQyIq4nIoIHP/4YADNmDNxxh908IgWcx/DhxP3rXwQA7TdsYMXy5bYjiYtRGRHXYgz07g3nzkGdOni++KLtRCJyaQtlsrs7rYBv+/Th5MmTtlOJC1EZEZdx6tQp3qlSBTZsAG9vWLRIu2dE8oqqVdPOrnk5Pp7X+va1HEhcicqIuIxXe/Qg7I8/AHC+9pp2z4jkMR7DhxNXty6FgUnh4ZCSYjuSuAiVEXEJq5Yt498bN1IIiKlfH7eBA21HEpF/cnOj8KpV4O+Pz5498MYbthOJi1AZkTwvMjKSo717Uwc4X6gQ/mvWgJs+uiJ5UkgIXB4AbexYfvnoI51dIzek3+iSpxljeLdzZwZduACA54IFULas5VQicl09esAjj0BSEsmPPcayhQttJ5I8TmVE8rQ1ixbRe9s23ICotm3x7NrVdiQRuRGHA2bPJs7PjzuAqP79CQ8Pt51K8jCVEcnTSk6YQAXgbNGilFi82HYcEcmoUqUodOn/7DMJCUzr2FG7a+SaVEYk71q5kiaHDuF0OCiydi34+9tOJCKZ4N6+PWc7dMANCPv2W5bNnm07kuRRKiOSNx0/Dk89BYDbyJF43H+/3TwikiXFFi3iXLFiVADMwIEcO3bMdiTJg1RGJM+JOH6cXxs0gLNnoU4dGDvWdiQRyaoiRSi8Zg1OoFtSEgvbtdPuGrmCyojkKcYY/tOiBVWPHiXB3R0WLwYvL9uxROQmeNx/P2f69AHg+d9/h4gIy4kkr1EZkTzlP6+9Rveffwbg9IgRUK2a5UQikh1KTp+Os2ZNvOPicPTpk3qdKZFLVEYkzwg/eJCKo0fjA/xRpQrlXn7ZdiQRyS7e3rgtWZJ6XakNGzg/ebJ210galRHJE4wx7GrWjDucTs56eFBh69bUsQpEJP+oUQNefz315+eeY+XEiXbzSJ6hMiJ5wqYRI3jkr78AiH3nHTzKl7ecSERyxLPPcrhyZXyB28aN4/Cli19KwaYyItYlnzpFzbffxg3YV68etwwYYDuSiOQUNzfKf/45MR4e1HY6+bp5c+2uEZURsc9j0CDKJCdzulgx7ti0yXYcEclh7rfcQvzkyQB0PXSIj59/3nIisU1lROxauhSWLQN3d0pu2IBH0aK2E4lILigzcCAH6tbFHag5eTKHfvrJdiSxSGVErDm+axeJffum3nnpJahf324gEclVVTdvJsLbm0rGsL9FC5xOp+1IYonKiFhhkpM53aYNXufPc6x8eRg1ynYkEcllbsWK4Vy4ECfQOiKCpBUrbEcSS1RGxIrvunal5tmzxAGJ8+eDh4ftSCJiQbnHHiOuf38AvAcM0OisBZTKiOS68PXrqbV6NQC7OnemUmio5UQiYpP/O+/AXXdBVBSmd2+cKSm2I0kuUxmRXGXOnyehc2e8gO3Fi/PgkiW2I4mIbV5esHgxxtsbx4YNbH/sMduJJJepjEiu+umhh6gYH89JoPz69bhr94yIANSowc527QCot3Ilh3Waf4GiMiK5Jmb1av715ZcAfPvUU1TS2TMi8jcNli5lT7Fi+AIXHn0U58WLtiNJLslSGZk5cyYVK1bEx8eHOnXqsGPHjmvOu2bNGpo3b06pUqXw9/enQYMGbFLjLXjOnMF/4EAANleuTNuZMy0HEpG8xs3Dg8D16zkDVIuL4/8ubSmR/C/TZWT58uUMHjyYUaNGsXfvXho3bkyrVq04cuTIVeffvn07zZs3Z/369ezZs4cHHniAtm3bsnfv3psOLy7CGAgLg/BwqFqV0H37cHPTRjkRuVLwPfew59L4Q3W3bOHIRx9ZTiS5wWEyeVGA+vXrU7t2bWbNmpU2rXr16rRv355JkyZlaBk1atSgS5cujBkz5qqPJyQkkJCQkHY/JiaG4OBgoqOj8ff3z0xcyQNOT5lCySFDUk/f3bUL6ta1HUlE8jBjDJ+XLUvzEyc47u1N6RMncNfozC4pJiaGgICAG35/Z+rP08TERPbs2UPoP07FDA0NZefOnRlahtPpJDY2luLFi19znkmTJhEQEJB2Cw4OzkxMyUOchw7hM3w4AL8+9piKiIjckMPhoNqWLRx2OCiXkMCFsDDbkSSHZaqMnD59mpSUFIKCgtJNDwoK4sSJExlaxuTJk4mPj6dz587XnGfkyJFER0en3Y4ePZqZmJJXOJ2EN29O4ZQUdru54fXSS7YTiYiLCL7jDmKnT8c4HBRevhzWrLEdSXJQlnbcOxyOdPeNMVdMu5ply5Yxbtw4li9fTmBg4DXn8/b2xt/fP91NXM/p0aMp/8cfxAN/jBlDxcqVbUcSERdyR//+OC5f0bdfP43Omo9lqoyULFkSd3f3K7aCREZGXrG15J+WL19O7969WbFiBc2aNct8UnEpzh9/xP+11wCYXbUqj2mriIhkxYQJmEujsx5q2jT1gHjJdzJVRry8vKhTpw5btmxJN33Lli00bNjwms9btmwZvXr1YunSpbRp0yZrScV1JCQQ1bo1Xsawwd2dDhs26OwZEckaLy++fPJJLgIVDhwg4honPohry/Q3xNChQ5k3bx4LFizgwIEDDBkyhCNHjhB26QCjkSNH0qNHj7T5ly1bRo8ePZg8eTL33HMPJ06c4MSJE0RHR2ffu5A85cyzz1IqPJxTwKlJk6hQsaLtSCLiwh4YMID3q1cHoNirr5L8v/9ZTiTZLdNlpEuXLkyZMoUJEyZw1113sX37dtavX09ISAgAERER6cYcmT17NsnJyTzzzDOUKVMm7TZo0KDsexeSd2zfTrF58wCYeddddL90Jo2ISFY5HA4e2rSJLzw88HE6OdWyJSQm2o4l2SjT44zYkNHzlMWy6GioWRMOH4YnnyRlzhzc3d1tpxKRfGLllCk0HTKE4kBk374EzpljO5LcQI6MMyJyPRfCwlKLSMWKMGWKioiIZKtHBw1ibp06AJSYO5fk7dstJ5LsojIi2SLl008p9NFHOIHwSZOgSBHbkUQkn3E4HPRYt46PvLxwB5IeewxiY23HkmygMiI37+xZLvz73wDM9PLC2aiR5UAikl+VKVOG4osXk1imDIXCw2HwYNuRJBuojMhNO9erF4VjY/kV8J82jfLly9uOJCL5WGinTngtXw4OByxYoNFZ8wGVEbkpKWvWUPTTT0kBZjdoQPd+/WxHEpGCoHFjuDQ668WePTU6q4tTGZGsi4riQs+eALzr5cWwlSszdFkAEZHssL9rV/YBPnFxRHftqtFZXZjKiGTZue7dKRwXx36g5IwZlCtXznYkESlAqtesyaKmTUkEArZvJ/mDD2xHkixSGZGsWbOGohs2kALMa9SIbr17204kIgWMw+HgxaVLmezrC0Di009DBq8gL3mLyohk3qlTcGn4f55/njH/+Y92z4iIFYGBgdw2dy4/AL4XLnDu8ce1u8YFqYxIpjn7908tJDVq4D5hAkWLFrUdSUQKsE6PP86y5s1JAop++SVJS5bYjiSZpDIimZK8dCluq1aR4nCQOHcueHvbjiQiwvNLljDl0u6a5KefTv2DSVyGyohk3OnTJPTtC8Db3t6crVTJciARkVSlSpWiyqJFnCpblkJxcTBggO1IkgkqI5JhZ3r1wu/8eX4CQubOJSgoyHYkEZE0D3fqRKl168DdHVas0GBoLkRlRDIkad06in/2GSnA4vvvp1O3brYjiYhcqXZteOEFABKefBKioiwHkoxQGZEbi40lvnt3AOb4+DBs+XKdPSMiedbZZ5/ld09PvKOjOX3pulmSt6mMyA1F9u1L0ehoDgKBs2cTGBhoO5KIyDUVK12aDx54gBSg5MaNJK5aZTuS3IDKiFzfrl2UWrECgCWNG9OxRw/LgUREbmzw0qW85+cHwIUnnoDoaMuJ5HpURuTaEhKgd28cxhDboQNPrV5tO5GISIaUKFGCkIUL+Q0IiIvjZK9etiPJdaiMyLW9+iocOACBgRSZO5dSpUrZTiQikmEPderEytBQAII+/piELVssJ5JrURmRq0r84QeSXn459c6770Lx4nYDiYhkQf+PPmJxoUIAxHTtChcvWk4kV6MyIldKSeFE27Z4GsNGb28uPPSQ7UQiIllSrFgxSi5YQJS3N6XOnIHLf2RJnqIyIlc4/Nxz3BIeTjRgpk+n0KUhlkVEXFHLrl0pvnRp6p033oAff7QbSK6gMiLpJPz6K6WmTAFg1d1306pPH7uBRESygaNDB+jQAZKTudCtGyQn244kf6MyIv+fMRxu2RJfY9jl6Un7zz6znUhEJNukTJ3KeU9PCv38M38NHmw7jvyNyoik+X3sWKocOsRF4PzUqZTQ2TMiko+4ly/Pyvr1ASgzcybn//c/y4nkMpURSRUZSdk33wTg01q1aPr005YDiYhkv/br1rHT25tCxnCkdWswxnYkQWVELhs4EL+LFzkbEkLzjRttpxERyREBRYvinDWLC0C1o0f55cUXbUcSVEYEYN06WL4c3N0ptmYNxXTtGRHJx+594gnW3303AKXfeIP4v/6ynEhURgq48xERnHv88dQ7w4alXn5bRCSfa75hAz97elLU6eSXFi1sxynwVEYKuL0tWlA0Lo6j3t6YMWNsxxERyRX+JUoQN3UqyUCdP/5I3UIs1qiMFGA/vvsujX76CYDwceNwXLrCpYhIQVD/6acxQ4ak3unfH2Ji7AYqwFRGCqj4qCiKDBsGwPYqVag/YoTlRCIiuc9z4kS49VY4dozES78TJfepjBRQX7dsSaWkJE66uVFz82bbcURE7PD1hTlzAPCaN4//uzQCteQulZEC6P/mzePB778HIGL0aAJCQiwnEhGx6MEH2Vm9OgDFnnuOmMhIy4EKHpWRgiY5mSJDhuAJ7KlYkbvGj7edSETEun9t2kSkuzu3JSezQ2fX5DqVkYLmnXeoFhfHeW9vqmhwMxERAAoHB3Nq7FgAQvftY+esWZYTFSwqIwXJH3/ApdN3fWfNokiVKpYDiYjkHTVeeokfb70VT6DwoEFER0XZjlRgqIwUELExMZxs1w4uXoRmzaBXL9uRRETynMqbNhHt5sa/kpLY1KqV7TgFhspIAfFJ27YEHThAgocHzJ4NDoftSCIieY7vrbdy8rnnAGj/ww84f/vNcqKCQWWkANi+bBltt28H4EjfvlCpkuVEIiJ5V5VJkzjfsCFeKSm4PfWUruybC1RG8rmY6Ggu9O5NAHAoMJDK775rO5KISN7mcOD74YepY5B89RVm7lzbifI9lZF8blnHjrS4cIEkIPDTT8Hd3XYkEZG8r1IlePllAOL79+fz99+3HCh/UxnJx75YtYr2W7cCEN6zJ77161tOJCLiQgYN4kiZMhROSSH5qac4e+aM7UT5lspIPpWYmEhUr14EASeKFSNk9mzbkUREXIu7O4GffEIS0DIhgcWPPGI7Ub6lMpJPeX31FZ3i43ECAatWgbe37UgiIi7H5+67OfnkkwB03r6dDYsXW06UP6mM5EdxcdCvHwBuAwdS6MEHLQcSEXFd5WfO5GSJEgQBMX37EqXB0LKdykg+c+7cOc4OGACHD0NICLzyiu1IIiKuzduboqtW4QS6XLzI3E6dbCfKd1RG8pl3H3+cgMtHfc+eDYUL2w0kIpIPeN9/P5GdOwPQ/euviQkPt5wof1EZyUc+W72ajhs24AZEtmwJuvKkiEi2KT1/PheCgiiXlIT/G2/YjpOvqIzkE2fOnOFgz57cDsT6+hKog6xERLJX4cIUurzledo02LXLbp58RGUkn5jarRtPx8cD4LVgAZQoYTmRiEg+1KIF9OwJxhDVti0fL1tmO1G+oDKSD6xbuZIuGzfiDpwODcW7SxfbkURE8q933iHe358SUVEc792byMhI24lcnsqIi4uKiuJQr16pu2f8/Ci5dKntSCIi+VuxYngtWgTA0xcuME1/AN40lREX53/gAM9cuACA98KF2j0jIpILPB95hKiHHsIN6PHVV6z+8EPbkVyayogru3gRz759cTMG52OP4aVz30VEck2JDz8kpkgRqgCn+vXj5MmTtiO5LJURFxUTE0PK6NHwyy9QujRu06fbjiQiUrAULUqhS2cu9rt4kWmdOmGMsRzKNWWpjMycOZOKFSvi4+NDnTp12LFjxzXnjYiI4PHHH6dq1aq4ubkxePDgrGaVv3mjQweYPDn1zuzZULy43UAiIgWQZ7t2RLVvjxvw5Ndf88ePP9qO5JIyXUaWL1/O4MGDGTVqFHv37qVx48a0atWKI0eOXHX+hIQESpUqxahRo6hZs+ZNBxZYvWQJ3bZuxR2IatUK2rWzHUlEpMAqsWgR8cWLc6sxVF6wwHYcl+QwmdymVL9+fWrXrs2sWbPSplWvXp327dszadKk6z73/vvv56677mLKlCmZChkTE0NAQADR0dH4+/tn6rn5TWRkJMsrVODZCxeILVyYIocPa6uIiIhtmzZBy5apP3/1FTRpYjVOXpHR7+9MbRlJTExkz549hIaGppseGhrKzp07s5b0KhISEoiJiUl3EzDG8E6XLvS/dPaMz6JFKiIiInlBixbQty8AFx9/nP989JHlQK4lU2Xk9OnTpKSkEBQUlG56UFAQJ06cyLZQkyZNIiAgIO0WHBycbct2Zas/+IAnv/oKd+BM69Z4duxoO5KIiFz21ltcCAzEJzycEz17Eq6L6WVYlg5gdTgc6e4bY66YdjNGjhxJdHR02u3o0aPZtmxXdfLkSWKfeorKQLS/P8V17RkRkbzF3x+vDz4AoE9iIrM6dNDZNRmUqTJSsmRJ3N3dr9gKEhkZecXWkpvh7e2Nv79/uluBt2EDTyQkAOC7fDkUK2Y5kIiI/JN7ixacuTQi61O7d/PR346vlGvLVBnx8vKiTp06bNmyJd30LVu20LBhw2wNJn9z+jRBI0YAEP/UU3hePkhKRETynOLz53OmRAnKAx6DB3P8+HHbkfK8TO+mGTp0KPPmzWPBggUcOHCAIUOGcOTIEcLCwoDUXSw9evRI95x9+/axb98+4uLiOHXqFPv27WP//v3Z8w7yuZTkZOjXD06ehNtvxy+TZyKJiEgu8/PD/5NPSAY6JSXx4UMPaXfNDXhk9gldunQhKiqKCRMmEBERwR133MH69esJCQkBUgc5++eYI7Vq1Ur7ec+ePSxdupSQkBAOHTp0c+nzOWMMM+rVY+DevRhPTxyLF4OPj+1YIiJyAx6NGnHq6acpNWsW/fbt44sPP6TpP/5Ql/8v0+OM2FBQxxlZ+/bbNB02DH/gxKBBlNZWERER15GUxMnbbiPoyBFMaCiOjRshG0/2cAU5Ms6I5J7wo0cJev55/IGjISGUvjz0u4iIuAZPT4I2bQIfHxybN8PMmbYT5VkqI3mQMYZNoaE0TEkh3s2NMlu2gLu77VgiIpJZ1arBG28AYJ57ju8+/NByoLxJZSQPWvfyy3T75RcAzo0fj0flypYTiYhIlj3zDBcaNcJx4QLuvXpx+I8/bCfKc1RG8phjf/zBbePH4wX8dvvtlBs1ynYkERG5GW5ueC1ZQqy7O3WcTr5q0UJn1/yDykgekzJiBLc7nZzx8KDS558XuIOdRETyI/eQEOIu7a7p9tdfrB050nKivEVlJC/54gtCVq8GIGHmTDzKlLEcSEREskuZoUP5tVYtPIA73niDQxpvK43KSF5x7hz06pX6c79+lLl09UcREck/Km/ezCkvL6oYw77QUJxOp+1IeYLKSB5gjGFnnTpw9CjcdhvoNF4RkXzJrWRJEt97D4D2x4+zccgQy4nyBpWRPOCLsDAa/vUXKcCZqVOhcGHbkUREJIeUe+IJfrzvPgBaLF8OUVGWE9mnMmLZsd27qTVnDgD/17w5xVu3tpxIRERy2r/Wr4dq1XA/eRKefhoK+Nk1KiMWmZQUTrRuTXHgFz8/7v70U9uRREQkFzj8/ODDD8HDA1au5MTbb9uOZJXKiEVfd+tG3TNnuAD4rFqFuy6CJyJScNStS+KlU3wLDR/Ooe3bLQeyR2XEkmOff07d5csB+LZjRyq0bGk5kYiI5DaP0aPZ7+9PAHCmXTucycm2I1mhMmJDUhIevXpRCNhdrBhNLpUSEREpWNy8vPD/5BPigNrR0ex49FHbkaxQGbFhwgRKHz9OYuHCBP3nP7jpIngiIgVW+fvvZ0+3bgDc88knHFq3znKi3Kcyktu+/RZefRUArwULqNCwoeVAIiJi230ffMCukiXxBpK6diXl/HnbkXKVykgucsbEENWmDTid0K0bdOpkO5KIiOQBDjc3gjdu5LTDQeXz59nTpo3tSLlKZSQX/dy6NSXOnOG4uzuJBfw0LhERSa98nTrsffppAO7etg0K0Nk1KiO5JHzuXO785hsAvn/mGbwCAy0nEhGRvKbZ9Okkde+Owxjo0QNiYmxHyhUqI7nAGRmJ9zPPALAqOJi277xjOZGIiORFDocDzxkzoGJFOHyY5EvfHfmdykhOM4Y/mzenRFISB9zcuHvLFtzctNpFROQaihTBfPABTocDj8WLOTp1qu1EOU7fijks4s03qfzf/5II/DxiBCFVq9qOJCIieV2jRqysVAmAIsOHk3z0qOVAOUtlJCcdPkzAqFEAfHjrrXScONFyIBERcQUOh4N7t2zhv25uFE1O5nCzZvn6YnoqIznF6YSePfFNTuZgmTI027wZh8NhO5WIiLiIchUrcvDll7kI3PrbbxwfO9Z2pByjMpJT3nkHtm0DPz8q7thByKXNbSIiIhnVbuRIPrz9dgCKv/IKST//bDlRzlAZyQEp+/aRMmJE6p0pU+DWW63mERER1+RwOGizaRNfeXhQyOkksmVLyIcX01MZyW4JCZxu3Rr35GT+r3Rp6N3bdiIREXFhZcuX58zkyZwFyh07Bq+8YjtStlMZyWann3mGoIgIIoE/XngBdJyIiIjcpEeefZbzb72Veufll+G77+wGymYqI9koeds2is+fD8Ds2rXpOmiQ5UQiIpIfOBwOyg0bBl27QkoK5t//hvh427GyjcpIdomPJ6ZjR9yAJZ6ePPnppzp7RkREsteMGSQFBeH4/XdOPfmk7TTZRmUkm5x+6imKR0VxFHCbNo1y5crZjiQiIvlN8eK8Ub06AKVWrCBp3TrLgbKHykg2MF99RcklSwCYW78+XZ96ynIiERHJr/p89BGzfXwAOP/vf0N0tOVEN09l5GbFxeG4tKns09KlCVuzRrtnREQkxwQFBVFyzhx+BwJiYjjds6ftSDdNZeRmvfACHDwIISG0++03ypYtazuRiIjkcx27d+eD++/HCZT85BOSPv3UdqSbojJyE5I3b4aZM1PvzJ8PRYrYDSQiIgXGwBUrmFOoEHBpd825c3YD3QSVkayKjSWuSxcA/tuoETRtajmQiIgUJKVKlSJo7tzU3TWxsTiHDLEdKctURrLo9BNPUPTcOQ4Cv2qUVRERseCRbt2IeOUVjMOB26JFsGGD7UhZojKSBUmffUbJ1asBWHDvvTzaq5fdQCIiUmDd9+KLOC4Pstm3r0vurlEZyazoaOIffxyAOT4+DFi1SmfPiIiIXa+8gvO22+D4cSK7d7edJtNURjLpdM+eFI2J4Q+gxOzZBAUF2Y4kIiIFna8v79WrhxMI/M9/SPz4Y9uJMkVlJBOS1q+n5Cef4ATeb9KEjj162I4kIiICQJdp05jr6wvAhe7dXWp3jcpIRsXF4fHMMwAsKlyYgStXWg4kIiLy/5UoUYLyixbxGxAQF0fkv/9tO1KGqYxk1OjROA4dgpAQHj94kFKlStlOJCIikk6bTp1Y3qJF6u6azz4jwUUGQ1MZyYDEbdsw06al3pkzB5+SJe0GEhERuYYBy5Yxz88PuDQYWmys5UQ3pjJyIwkJnOvYEYcxnGrdGkJDbScSERG5pmLFihG8aBEHgWKxsVwYNsx2pBtSGbmB4/37ExgVxUlg96URV0VERPKyVo8+yg9hYQAUmjcPvvnGcqLrUxm5joT/+z8CFywA4KN77+UhnT0jIiIuouOsWfDEE2AM9OkDFy/ajnRNKiPXkpxMZLt2eALrvb3599q1thOJiIhkzuTJULo0/PILx55+2naaa1IZuYbDQ4cSfOIE5wD3996jhA5aFRERV1OsGNsvHWIQtGgRF7791nKgq1MZuYqL//sfgdOnA7CqQQNa6NozIiLiomqOH89nhQrhCZx6+GFITrYd6QoqI/9kDG5hYRQyhh1eXnT8z39sJxIREcmygIAAfOfP5yxwS2Qkfz77rO1IV1AZ+ad58/D65huMry+Vtm6lWPHithOJiIjclAcee4xP7rsPgHKzZxP/44+WE6WnMvI3zqNHYfhwABwTJ1Lu3nstJxIREckeHT79lB0+PvgYQ3jr1uB02o6URmXkMmP4+f77ISaG5Dp1YOBA24lERESyjX9AAI45c4gHKoeHc2zcONuR0qiMXHJgwgTu/OsvEoHv+vUDd3fbkURERLLVvd2780XTpgCUmzoVjh2znCiVyggQf+QIgRMmALChVi0a9utnOZGIiEjOaLtpE9SvjyMmBvr3Tx0UzbIslZGZM2dSsWJFfHx8qFOnDjt27Lju/Nu2baNOnTr4+PhQqVIl3nvvvSyFzSk/h4ZSwunkFw8P7t+0yXYcERGRnOPuDvPng6cnrFvHwddft50o82Vk+fLlDB48mFGjRrF3714aN25Mq1atOHLkyFXnP3jwIK1bt6Zx48bs3buXF198kYEDB7J69eqbDp8dfnrjDer9+ispwLnJkwkoVcp2JBERkZxVowbhTz4JQJFRo4g9dMhqHIcxmds+U79+fWrXrs2sWbPSplWvXp327dszadKkK+Z/4YUX+PTTTzlw4EDatLCwMH788Ud27dqVodeMiYkhICCA6Oho/P39MxP3uuIiIogJDqZsSgqf33knzf7732xbtoiISF4Wd+YMx0uXpmpSEjsrV6bhb79l+2tk9Ps7U1tGEhMT2bNnD6Ghoemmh4aGsnPnzqs+Z9euXVfM36JFC77//nuSkpKu+pyEhARiYmLS3XLC+cGDKZuSwhF3d+pp94yIiBQghYsXJ37KFJxAw99/J/Gzz6xlyVQZOX36NCkpKQQFBaWbHhQUxIkTJ676nBMnTlx1/uTkZE6fPn3V50yaNImAgIC0W3BwcGZiZowxBJYqhXE4SJg+Hf8yZbL/NURERPKw2v37c6x9e0xAAF7x8dZyZOkAVofDke6+MeaKaTea/2rTLxs5ciTR0dFpt6NHj2Yl5vU5HDB9Oo5ffqFyWFj2L19ERMQF3PLhhzj274fOna1l8MjMzCVLlsTd3f2KrSCRkZFXbP24rHTp0led38PDgxIlSlz1Od7e3nh7e2cmWtZVqZI7ryMiIpIXFS6cerMoU1tGvLy8qFOnDlu2bEk3fcuWLTRs2PCqz2nQoMEV82/evJm6devi6emZybgiIiKS32R6N83QoUOZN28eCxYs4MCBAwwZMoQjR44QdmlXx8iRI+nRo0fa/GFhYRw+fJihQ4dy4MABFixYwPz58xl+6RowIiIiUrBlajcNQJcuXYiKimLChAlERERwxx13sH79ekJCQgCIiIhIN+ZIxYoVWb9+PUOGDGHGjBmULVuWadOm0bFjx+x7FyIiIuKyMj3OiA05Nc6IiIiI5JwcGWdEREREJLupjIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlZlejh4Gy4PEhsTE2M5iYiIiGTU5e/tGw327hJlJDY2FoDg4GDLSURERCSzYmNjCQgIuObjLnFtGqfTSXh4OEWKFMHhcGTbcmNiYggODubo0aO65k0O07rOHVrPuUPrOXdoPeeOnFzPxhhiY2MpW7Ysbm7XPjLEJbaMuLm5Ub58+Rxbvr+/vz7ouUTrOndoPecOrefcofWcO3JqPV9vi8hlOoBVRERErFIZEREREasKdBnx9vZm7NixeHt7246S72ld5w6t59yh9Zw7tJ5zR15Yzy5xAKuIiIjkXwV6y4iIiIjYpzIiIiIiVqmMiIiIiFUqIyIiImJVvi8jM2fOpGLFivj4+FCnTh127Nhx3fm3bdtGnTp18PHxoVKlSrz33nu5lNS1ZWY9r1mzhubNm1OqVCn8/f1p0KABmzZtysW0ri2zn+nLvvnmGzw8PLjrrrtyNmA+kdn1nJCQwKhRowgJCcHb25tbb72VBQsW5FJa15XZ9bxkyRJq1qyJr68vZcqU4YknniAqKiqX0rqm7du307ZtW8qWLYvD4eDjjz++4XNy/bvQ5GMfffSR8fT0NHPnzjX79+83gwYNMn5+fubw4cNXnf+vv/4yvr6+ZtCgQWb//v1m7ty5xtPT06xatSqXk7uWzK7nQYMGmddff91899135rfffjMjR440np6e5ocffsjl5K4ns+v6snPnzplKlSqZ0NBQU7NmzdwJ68Kysp7btWtn6tevb7Zs2WIOHjxodu/ebb755ptcTO16Mrued+zYYdzc3MzUqVPNX3/9ZXbs2GFq1Khh2rdvn8vJXcv69evNqFGjzOrVqw1g1q5de935bXwX5usyUq9ePRMWFpZuWrVq1cyIESOuOv/zzz9vqlWrlm7aU089Ze65554cy5gfZHY9X83tt99uxo8fn93R8p2srusuXbqY0aNHm7Fjx6qMZEBm1/OGDRtMQECAiYqKyo14+UZm1/Obb75pKlWqlG7atGnTTPny5XMsY36TkTJi47sw3+6mSUxMZM+ePYSGhqabHhoays6dO6/6nF27dl0xf4sWLfj+++9JSkrKsayuLCvr+Z+cTiexsbEUL148JyLmG1ld1wsXLuTPP/9k7NixOR0xX8jKev7000+pW7cub7zxBuXKlaNKlSoMHz6cCxcu5EZkl5SV9dywYUOOHTvG+vXrMcZw8uRJVq1aRZs2bXIjcoFh47vQJS6UlxWnT58mJSWFoKCgdNODgoI4ceLEVZ9z4sSJq86fnJzM6dOnKVOmTI7ldVVZWc//NHnyZOLj4+ncuXNORMw3srKuf//9d0aMGMGOHTvw8Mi3/92zVVbW819//cXXX3+Nj48Pa9eu5fTp0/Tv358zZ87ouJFryMp6btiwIUuWLKFLly5cvHiR5ORk2rVrx7vvvpsbkQsMG9+F+XbLyGUOhyPdfWPMFdNuNP/Vpkt6mV3Ply1btoxx48axfPlyAgMDcypevpLRdZ2SksLjjz/O+PHjqVKlSm7Fyzcy85l2Op04HA6WLFlCvXr1aN26NW+//TaLFi3S1pEbyMx63r9/PwMHDmTMmDHs2bOHjRs3cvDgQcLCwnIjaoGS29+F+fZPpZIlS+Lu7n5Fw46MjLyi8V1WunTpq87v4eFBiRIlciyrK8vKer5s+fLl9O7dm5UrV9KsWbOcjJkvZHZdx8bG8v3337N3714GDBgApH5pGmPw8PBg8+bNPPjgg7mS3ZVk5TNdpkwZypUrl+5S6dWrV8cYw7Fjx6hcuXKOZnZFWVnPkyZNolGjRjz33HMA/Otf/8LPz4/GjRszceJEbb3OJja+C/PtlhEvLy/q1KnDli1b0k3fsmULDRs2vOpzGjRocMX8mzdvpm7dunh6euZYVleWlfUMqVtEevXqxdKlS7W/N4Myu679/f356aef2LdvX9otLCyMqlWrsm/fPurXr59b0V1KVj7TjRo1Ijw8nLi4uLRpv/32G25ubpQvXz5H87qqrKzn8+fP4+aW/mvL3d0d+P9/ucvNs/JdmGOHxuYBl08bmz9/vtm/f78ZPHiw8fPzM4cOHTLGGDNixAjTvXv3tPkvn840ZMgQs3//fjN//nyd2psBmV3PS5cuNR4eHmbGjBkmIiIi7Xbu3Dlbb8FlZHZd/5POpsmYzK7n2NhYU758efPoo4+an3/+2Wzbts1UrlzZ9OnTx9ZbcAmZXc8LFy40Hh4eZubMmebPP/80X3/9talbt66pV6+erbfgEmJjY83evXvN3r17DWDefvtts3fv3rRTqPPCd2G+LiPGGDNjxgwTEhJivLy8TO3atc22bdvSHuvZs6dp0qRJuvm/+uorU6tWLePl5WUqVKhgZs2alcuJXVNm1nOTJk0McMWtZ8+euR/cBWX2M/13KiMZl9n1fODAAdOsWTNTqFAhU758eTN06FBz/vz5XE7tejK7nqdNm2Zuv/12U6hQIVOmTBnTrVs3c+zYsVxO7Vq+/PLL6/7OzQvfhQ5jtG1LRERE7Mm3x4yIiIiIa1AZEREREatURkRERMQqlRERERGxSmVERERErFIZEREREatURkRERMQqlRERERGxSmVERERErFIZEREREatURkRERMQqlRERsWLZsmX4+Phw/PjxtGl9+vThX//6F9HR0RaTiUhu04XyRMQKYwx33XUXjRs3Zvr06YwfP5558+bx7bffUq5cOdvxRCQXedgOICIFk8Ph4JVXXuHRRx+lbNmyTJ06lR07dqiIiBRA2jIiIlbVrl2bn3/+mc2bN9OkSRPbcUTEAh0zIiLWbNq0iV9++YWUlBSCgoJsxxERS7RlRESs+OGHH7j//vuZMWMGH330Eb6+vqxcudJ2LBGxQMeMiEiuO3ToEG3atGHEiBF0796d22+/nbvvvps9e/ZQp04d2/FEJJdpy4iI5KozZ87QqFEj7rvvPmbPnp02/eGHHyYhIYGNGzdaTCciNqiMiIiIiFU6gFVERESsUhkRERERq1RGRERExCqVEREREbFKZURERESsUhkRERERq1RGRERExCqVEREREbFKZURERESsUhkRERERq1RGRERExKr/B/bMVmg+Iw4EAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeYElEQVR4nO3dd3gU5cLG4d9uKgQSeiihC0iTqjQRpYQuHUTpRaKINEURVEQUG4ooVZqKIEVRkAhElCJ4QCJ4UFQQ6QQiLQXSd74/EvKdSDEbkrzJ5rmva6+TnczOPpkTsw/zzrxjsyzLQkRERMQQu+kAIiIikrepjIiIiIhRKiMiIiJilMqIiIiIGKUyIiIiIkapjIiIiIhRKiMiIiJilLvpAOnhcDg4c+YMBQsWxGazmY4jIiIi6WBZFlFRUZQuXRq7/ebHP3JFGTlz5gxly5Y1HUNEREQy4OTJkwQEBNz0+7mijBQsWBBI/mF8fX0NpxEREZH0iIyMpGzZsqmf4zeTK8rItaEZX19flREREZFc5t9OsdAJrCIiImKUyoiIiIgYpTIiIiIiRuWKc0ZERFxFUlISCQkJpmOIZAoPDw/c3NxuezsqIyIi2cCyLM6ePcvly5dNRxHJVIUKFaJkyZK3NQ+YyoiISDa4VkRKlChB/vz5NYGj5HqWZXH16lXCw8MBKFWqVIa3pTIiIpLFkpKSUotI0aJFTccRyTT58uUDIDw8nBIlSmR4yEYnsIqIZLFr54jkz5/fcBKRzHft9/p2zoVSGRERySYamhFXlBm/1yojIiIiYlSGysicOXOoWLEi3t7eNGjQgB07dtx03a1bt2Kz2a57/P777xkOLSIiIq7D6TKycuVKxowZw6RJk9i3bx/Nmzenffv2nDhx4pav++OPPwgLC0t9VKlSJcOhRURE/un333+ncePGeHt7U7duXdNxxAlOl5G3336boUOHMmzYMKpXr87MmTMpW7Ysc+fOveXrSpQoQcmSJVMfmTFJiojkfufPn+fq1aumY0gOZrPZ+OKLL/51vRdffBEfHx/++OMPtmzZkvXBJNM4VUbi4+MJDQ0lMDAwzfLAwEB27dp1y9fWq1ePUqVK0apVK7777rtbrhsXF0dkZGSah4i4ntWrV1OiRAlatGiBw+EwHUdyuSNHjnDvvfdSvnx5XUKdyzhVRs6fP09SUhL+/v5plvv7+3P27NkbvqZUqVIsWLCAzz77jM8//5xq1arRqlUrtm/fftP3mT59On5+fqmPsmXLOhNTRHKBsLAwRowYQdmyZVm2bBl2e948n/7KlSs3fcTGxqZ73ZiYmHSt6yzLsnjjjTeoVKkS+fLlo06dOqxZsyb1e61bt6Zdu3ZYlgXA5cuXKVeuHJMmTQKS51gZOnQoFStWJF++fFSrVo133333uvdZvHgxNWvWxMvLi1KlSvHEE08AUKFCBQC6deuGzWZLff5PNpuN0NBQpk6dis1mY8qUKU7/rGKQ5YTTp09bgLVr1640y6dNm2ZVq1Yt3dvp1KmT1blz55t+PzY21oqIiEh9nDx50gKsiIgIZ+KKSA7lcDiszp07W4BVv359Kz4+3nSkLBUTE2MdPHjQiomJue57wE0fHTp0SLNu/vz5b7puixYt0qxbrFixG67nrOeee8668847rY0bN1pHjhyxlixZYnl5eVlbt261LMuyTp06ZRUuXNiaOXOmZVmW1adPH6thw4ap/5/Gx8dbL7zwgrVnzx7rr7/+spYtW2blz5/fWrlyZep7zJkzx/L29rZmzpxp/fHHH9aePXusd955x7IsywoPD7cAa8mSJVZYWJgVHh5+w5xhYWFWzZo1rfHjx1thYWFWVFSU0z+rZMytfr8jIiLS9fnt1AysxYoVw83N7bqjIOHh4dcdLbmVxo0bs2zZspt+38vLCy8vL2eiiUgusmzZMtavX4+HhwdLly7Fw8MDy7JYvHgxgYGBOhqaQ1y5coW3336bb7/9liZNmgBQqVIlvv/+e+bPn0+LFi0oU6YM8+fPp3///pw7d47169ezb98+PDw8gOQbqb300kup26xYsSK7du1i1apV9O7dG4Bp06Yxfvx4Ro8enbre3XffDUDx4sWB/7//yc2ULFkSd3d3ChQocMv1JGdyqox4enrSoEEDQkJC6NatW+rykJAQunTpku7t7Nu377bmsBeR3OvMmTM8+eSTAEyZMoXatWsD8Oyzz/LGG28QGBjIxo0b88wEYdHR0Tf93j9P9L92D5Ab+ecw17Fjx24rF8DBgweJjY2lTZs2aZbHx8dTr1691Oe9evVi7dq1TJ8+nblz51K1atU068+bN4+FCxdy/PhxYmJiiI+PT73aJTw8nDNnztCqVavbziu5l9P3phk3bhz9+/enYcOGNGnShAULFnDixAmCgoIAmDhxIqdPn+ajjz4CYObMmVSoUIGaNWsSHx/PsmXL+Oyzz/jss88y9ycRkRzPsiweffRRLl++TMOGDZkwYULq94YMGcKsWbPYvHkzCxcuZPjw4QaTZh8fHx/j697MtZOKN2zYQJkyZdJ873+PXl+9epXQ0FDc3Nw4fPhwmvVWrVrF2LFjmTFjBk2aNKFgwYK8+eab7N69G/j/e5tI3uZ0GenTpw8XLlxg6tSphIWFUatWLYKDgylfvjyQfFLa/845Eh8fz1NPPcXp06fJly8fNWvWZMOGDXTo0CHzfgoRyRUSEhIoW7YsXl5efPjhh7i7//+foGrVqvHKK68wfvx4xo8fT2BgYOrfFTGjRo0aeHl5ceLECVq0aHHT9caPH4/dbufrr7+mQ4cOdOzYkZYtWwKwY8cOmjZtyuOPP566/pEjR1K/LliwIBUqVGDLli088MADN9y+h4cHSUlJmfRTSY6UNaezZK70ngAjIrnDiRMnbrg8MTHRatasmQVYrVq1shwORzYnyxq3OsEvp5s0aZJVtGhRa+nSpdaff/5p/fTTT9b7779vLV261LIsy/rqq68sT09PKzQ01LIsy5o8ebIVEBBgXbx40bIsy5o5c6bl6+trbdy40frjjz+syZMnW76+vladOnVS32Pp0qWWt7e39e6771qHDh2yQkNDrVmzZqV+v0qVKtZjjz1mhYWFpW73RurUqWO9+OKLmb8T5JYy4wTWvHktnYhkK8uyUi/95NIlygYHQ69eUK0aFCkCJUtCgwa4PfYYKwcMoKC3N1u2bGH+/Plmgwsvv/wyL7zwAtOnT6d69eq0bduW9evXU7FiRf7++2+GDh3KlClTqF+/PpA88Vjp0qVTh+6DgoLo3r07ffr0oVGjRly4cCHNURKAgQMHMnPmTObMmUPNmjXp1KlTmuGeGTNmEBISQtmyZdOcqyKuw2al/oXIuSIjI/Hz8yMiIgJfX1/TcUTESYsWLSL4o49YUqUKvsuWQVzcLdePKlSIZy5f5lNfX46eOIGfn182Jc0asbGxHD16NPWeXiKu5Fa/3+n9/Hb6nBEREWecOHGCXaNGsSgmBt9rkx3Wrg29e0PjxlC6NCQkwJEj8N13sHIlBf/+mznAG6VLU+DoUdB9RkRcmoZpRCTLWDEx/NG4MYtiYigEWHXqwMaN8PPPMHkytG4NNWpAnTrQvTu89x6cOJH8v35+FPj99+TCknJ1noi4JpUREckaFy9y9q67aBMWRhJw/oknsO3dC23bwq3mEPH2hieegN9/h44dk4d0Bg7kclAQ5PxRZRHJAJUREcl8Fy4Q36wZpf78kwhg7WOPUey998DdiZHhkiVh3ToO9uwJQKH587FGjQLdUE/E5aiMiEjmiozEat8ez99/5wwwqm5dur33Xsa2Zbfj/frrjPL0xAHYZs+Gp57KzLQikgOojIhI5omLgwcfxPbjj1xyc6OTlxfPr1p13bTmzqhUqRLV33mHwdcWvPNO8kNEXIbKiIhkDsuCxx6DbdvA15f827cz65tvqFKlym1vOigoiFMtW/L0tQXjxsHq1be9XRHJGVRGRCRzvP8+LFkCdjusXo1X06bce++9mbJpu93OokWLmOfjQ+qAz6BB8OuvmbJ9ETFLZUREbt/27TB2LADftm9PYsp9STJThQoVeGvGDMYAW+x2uHo1+XLgyMhMfy+RGxk0aBBdu3Y1HSND7r//fsaMGWM6xk2pjIjI7bl4ER55BJKSWOHmRqsNG1i1alWWvNWjjz5K+44dOfDss1gBAXDoEAwbpkt+s9D27dvp3LkzpUuXxmaz8cUXX1y3zqBBg7DZbGkejRs3vuV2jx07hs1mY//+/VkTPAu8++67LF261HSMDPn88895+eWXTce4Kc3AKiIZZ1kwYgScOsXJfPkYHhPD/fffz0MPPZQlb2ez2Vi/fj02mw06d4b77ks+d6RjRxg4MEveM6+7cuUKderUYfDgwfTo0eOm67Vr144lS5akPvf09MyOeEDy3aA9PDyy/H1y420Jru2bIkWKmI5ySzoyIiIZt3gxrFlDkt1Ot5gY8PFh8eLF2O1Z96fFdm3CtMaNSXz++eSvR42C48ez7D3zsvbt2zNt2jS6d+9+y/W8vLwoWbJk6uPfPvwqVqwIQL169bDZbNx///2p31uyZAnVq1fH29ubO++8kzlz5qR+79oRlVWrVnH//ffj7e3NsmXLUodQXn31Vfz9/SlUqBAvvfQSiYmJPP300xQpUoSAgAAWL158y1xr1qyhdu3a5MuXj6JFi9K6dWuuXLkCXD9Mc//99/Pkk08yYcIEihQpQsmSJZkyZUqa7UVERPDoo49SokQJfH19admyJT///PNN3z8+Pp4nnniCUqVK4e3tTYUKFZg+fXq6tzdlyhTq1q3L4sWLqVSpEl5eXliWdd0wTXx8PBMmTKBMmTL4+PjQqFEjtm7dmvr948eP07lzZwoXLoyPjw81a9YkODj4lvvudujIiIhkzNGjMHo0AC/a7YQ6HMx5883UD5msdvDgQfquXMnHBQpwV1RU8gmtW7Ykn0CbG1hW8nkvJuTPf+tZcDNg69atlChRgkKFCtGiRQteeeUVSpQocdP19+zZwz333MM333xDzZo1U4+kfPDBB7z44ou8//771KtXj3379jF8+HB8fHwY+D9Hv5555hlmzJjBkiVL8PLyYtu2bXz77bcEBASwfft2du7cydChQ/nhhx+477772L17NytXriQoKIg2bdpQtmzZ6zKFhYXRt29f3njjDbp160ZUVBQ7duzgVveT/fDDDxk3bhy7d+/mhx9+YNCgQTRr1ow2bdpgWRYdO3akSJEiBAcH4+fnx/z582nVqhWHDh26YWGbNWsW69atY9WqVZQrV46TJ09y8uRJgHRv788//2TVqlV89tlnN72sfvDgwRw7doxPP/2U0qVLs3btWtq1a8eBAweoUqUKI0eOJD4+nu3bt+Pj48PBgwcpUKDATffDbbNygYiICAuwIiIiTEcREcuyLIfDslq3tiywfvL1tWxgtWrVykpKSsq2CCdPnrR8fX2tSmDFeXpaFljWjBnZ9v7OiImJsQ4ePGjFxMT8/8Lo6OTMJh7R0Rn6OQBr7dq11y3/9NNPra+++so6cOCAtW7dOqtOnTpWzZo1rdjY2Jtu6+jRoxZg7du3L83ysmXLWsuXL0+z7OWXX7aaNGmS5nUzZ85Ms87AgQOt8uXLp/kdrFatmtW8efPU54mJiZaPj4+1YsWKG2YKDQ21AOvYsWM3/P7AgQOtLl26pD5v0aKFde+996ZZ5+6777aeeeYZy7Isa8uWLZavr+91+6Fy5crW/Pnzb/geo0aNslq2bGk5HI7rvpee7b344ouWh4eHFR4enmadFi1aWKNHj7Ysy7L+/PNPy2azWadPn06zTqtWrayJEydalmVZtWvXtqZMmXLDjP90w9/vFOn9/NaRERFx3tKl8M03OLy8eCQmBp8CBVi0aFGWDs/8U0BAADNnzmTIkCGMczh4H5JvvtetG2TT0RlJ1qdPn9Sva9WqRcOGDSlfvjwbNmyge/fuBAUFsWzZstR1oqOjb7idv//+m5MnTzJ06FCGDx+eujwxMfG68zUaNmx43etr1qyZ5nfQ39+fWrVqpT53c3OjaNGihIeH3/D969SpQ6tWrahduzZt27YlMDCQnj17Urhw4Zv+7HfddVea56VKlUrdfmhoKNHR0RQtWjTNOjExMRw5cuSG2xs0aBBt2rShWrVqtGvXjk6dOhEYGOjU9sqXL0/x4sVvmvmnn37CsiyqVq2aZnlcXFzqtp988kkee+wxNm/eTOvWrenRo8d1P2tmUhkREeecPZs86RhgnzqV1R07cvjwYcqXL5/tUQYNGsSaNWuYHRzM4IIFaRAVBY8/DsHBmT4Mkeny54ebfChny3tnoVKlSlG+fHkOHz4MwNSpU3kqHdP4O1LuO/TBBx/QqFGjNN/753CDj4/Pda//50msNpvthsscN7m/kZubGyEhIezatYvNmzfz3nvvMWnSJHbv3n3T4cdbbd/hcFCqVKk052JcU6hQoRtur379+hw9epSvv/6ab775ht69e9O6dWvWrFmT7u3daN/8L4fDgZubG6Ghodft12tDMcOGDaNt27Zs2LCBzZs3M336dGbMmMGoUaNuue2MUhkREeeMGgWXL0P9+jBuHDXd3alZs6aRKDabjQULFlCzZk0ejojgVzc33DduhJUrIYuu6Mk0Nhv8y4dGbnXhwgVOnjxJqVKlAChRosR1549cO0ckKSkpdZm/vz9lypThr7/+4pFHHsm+wP/DZrPRrFkzmjVrxgsvvED58uVZu3Yt41IKuDPq16/P2bNncXd3p0KFCul+na+vL3369KFPnz707NmTdu3acfHixQxv75/q1atHUlIS4eHhNG/e/KbrlS1blqCgIIKCgpg4cSIffPCByoiI5AAbNsCaNTjsdg6OG0ctZ+7Cm0XKlCnDrFmzGDhwIK8CL0DyibVt28ItDq9L+kRHR/Pnn3+mPj969Cj79++nSJEilCtXjujoaKZMmUKPHj0oVaoUx44d47nnnqNYsWJ069btptstUaIE+fLlY+PGjQQEBODt7Y2fnx9TpkzhySefxNfXl/bt2xMXF8fevXu5dOlShgqBM3bv3s2WLVsIDAykRIkS7N69m7///pvq1atnaHutW7emSZMmdO3alddff51q1apx5swZgoOD6dq16w2Hmt555x1KlSpF3bp1sdvtrF69mpIlS1KoUKEMbe9GqlatyiOPPMKAAQOYMWMG9erV4/z583z77bfUrl2bDh06MGbMGNq3b0/VqlW5dOkS3377bYb3Q3rkktPORcS4+PjUWVbftdmoM2AAe/fuNRwqWf/+/encuTPfN2tGfOXKEB4OzzxjOpZL2Lt3L/Xq1aNevXoAjBs3jnr16vHCCy8AyUMbBw4coEuXLlStWpWBAwdStWpVfvjhBwoWLHjT7bq7uzNr1izmz59P6dKl6dKlC5A8PLBw4UKWLl1K7dq1adGiBUuXLs2Wq7R8fX3Zvn07HTp0oGrVqkyePJkZM2bQvn37DG3PZrMRHBzMfffdx5AhQ6hatSoPPfQQx44dw9/f/4avKVCgAK+//joNGzbk7rvv5tixYwQHB2O32zO0vZtZsmQJAwYMYPz48VSrVo0HH3yQ3bt3p15llJSUxMiRI6levTrt2rWjWrVqaS6xzmw2y8r5UxdGRkbi5+dHREQEvr6+puOI5E1vvQVPP81Fd3cqJCbSrF07goOD/3/eD8OioqLw8fHBvnNn8mRoNhvs3g133206GrGxsRw9epSKFSvi7e1tOo5IprrV73d6P791ZERE/t25czB1KgBPJSZi9/Pjgw8+yDFFBKBgwYLJV1I0bw79+iVfxDpqFNzkZEURyTlURkTk3z33HERFEWqzsRSYOXMmAQEBplPdUHR0NJPc3blitycfGfn4Y9ORRORfqIyIyK3t3YuVcs+RUZZFh44d08yEmdNER0czb906Xrp2ROSZZyAiwmwoEbkllRERuTnLgtGjsVkWnwC/FSrE/Pnzc9TwzD+VLFmS999/n5nAH5A8xJSD71YqIiojInIrn34Ku3Zh5c+P49VXmTNnDmXKlDGd6l899NBDdO7enTEpz61334XffjMZKTlHzr9eQMRpmfF7rTIiIjd25Qo8/TQAtokT6T9xIn379jUcKn1sNhtz585lb7FirAdsiYkwZkzykR4Drs3SedXUjfFEstC13+t/zkbrDPMzFolIzvT663D6NI7y5bGPH286jdNKlCjB7NmzGdunD4GA1+bN8NVX0Llztmdxc3OjUKFCqfcsyZ8/f44e6hJJD8uyuHr1KuHh4RQqVOimdwhOD80zIiLXO3YMx513Yo+LI6hYMV765RenJ1XKKXr37k2T9esZGxsLd9wBv/wCXl7ZnsOyLM6ePcvly5ez/b1FslKhQoUoWbLkDQt2ej+/dWRERK7jGD8ee1wc3wHnmjW77r4iucmcOXNIfOWV5InQ/vwT3n0XJkzI9hw2m41SpUpRokQJEhISsv39RbKCh4fHbR0RuUZHRkQkra1b4YEHSALu9/Vl9R9/ULJkSdOpbt+HH8KgQVCgABw+DK7wM4nkcJqBVUScl5REzKOPAjAfGDl/vmsUEYD+/blUpQpER5Oo+9aI5CgqIyKSKnHePPIdPswlYE/HjvTp08d0pEwTffUqj5w/D4D7Rx/Bjz8aTiQi16iMiEiyS5eITzmX4k0fH95YvNilrvgoUKAAwxct4qOU51FDhxq71FdE0lIZEZFkL71E/qtXOVmwIPUWLMjVJ63eTLdu3fixWzeigYIHDhC/dKnpSCKCTmAVEYCDB+GuuyApCWvTJmyBgaYTZZmLFy8yv3x5JkZHE1GgAH5hYckntYpIptMJrCKSPpZF9KOPQlISPPigSxcRgCJFilB7yRKOAn7R0ZwaNcp0JJE8T2VEJI879M47FNi5kwS7nfjp003HyRadevZkfYsWAPh//DEcO2Y2kEgepzIikofFRkTgNXEiAMHVquFZo4bhRNmn/+efc75OHTySklLvwSMiZqiMiORhW7t0oXx8POfsdu4NDjYdJ1sVLlKEYh9/DHY7rFkD331nOpJInqUyIpJH/bR+Pfdu2wbAqVGjKFqhgtlAJtSuDUFBAJzq2ZOrkZGGA4nkTSojInlQbGwsp/v1owBwqFgxGrz9tulIxlgvvUSEmxsBFy+yoVs303FE8iSVEZE8aPGQIXSOjMQB+K9alTxUkUfZihXj9PDhADzw7bf8kMeGq0Rygrz7F0gkr0pKot/u3QCcaNsWvwceMBzIvBrvvcfpQoUoBvz+8MNcuXLFdCSRPEVlRCSvWbAA37/+wipUiAoff2w6Tc7g7o5fymys/SMieHfECLN5RPIYlRGRPCTq2DGYPBkA28svQ/HiZgPlIAW6dCG8SRPcgYaffMK2rVtNRxLJM1RGRPKInTt3sqpaNbh4Mc1VJPL/Snz0EQl2O4HAlrFjTccRyTNURkTygKtXr/J2374Mjo9PXjBrFri7mw2VE91xB44nnwRgSmQkxMYaDiSSN6iMiOQBz0+cyKSTJ7ED8b16wf33m46UY3lNnQqlSmH/6y947TXTcUTyBJURERe3Y8cOHLNmUR9IKFAAz/feMx0pZytYEGbOBMCaPp2VL71EVFSU2UwiLk5lRMSFXblyhef69+fllOceb78N/v5GM+UKvXpBhw7Y4uMpOWUKE556ynQiEZemMiLiwiZOnMi448cpACQ2bgxDh5qOlDvYbDB7Nkne3rQA4hcsICQkxHQqEZelMiLioizLov7Jk3QDHG5uuH/wQZ6eadVpFSrgNm0aAG8CEwYNIlL3rhHJEvrLJOKibFFRDNq7FwD7009DrVqGE+VCo0eTVKcORYCnzpzhKQ3XiGQJlRERF2RZFkyYAKdOQaVK8PzzpiPlTu7uuC1ciGW38whw/IMP2LRpk+lUIi4nQ2Vkzpw5VKxYEW9vbxo0aMCOHTvS9bqdO3fi7u5O3bp1M/K2IpIO3377LaNr14b585MXLFoE+fObDZWbNWyIbdQoABYAT48YQWJiotlMIi7G6TKycuVKxowZw6RJk9i3bx/Nmzenffv2nDhx4pavi4iIYMCAAbRq1SrDYUXk1qKionhi0CDG/vpr8oLHHtOcIplh2jQcFSpQHvi2QQPcNWGcSKayWZZlOfOCRo0aUb9+febOnZu6rHr16nTt2pXp06ff9HUPPfQQVapUwc3NjS+++IL9+/en+z0jIyPx8/MjIiICX19fZ+KK5ClBQUHUnD+fUYCjXDnsv/ySPG+G3L5t2/6/2G3cCG3bGo0jkhuk9/PbqSMj8fHxhIaGEhgYmGZ5YGAgu3btuunrlixZwpEjR3jxxRfT9T5xcXFERkameYjIrYWEhHAwpYgA2BctUhHJTC1aQMpU8QwdyoEdO7h06ZLZTCIuwqkycv78eZKSkvD/x6RJ/v7+nD179oavOXz4MM8++yyffPJJug9tTp8+HT8/v9RH2bJlnYkpkudERkYyavBgFl9bMHw4tG5tMpJrevVVuOMOOH2a0BYtGKub6YlkigydwGqz2dI8tyzrumUASUlJPPzww7z00ktUrVo13dufOHEiERERqY+TJ09mJKZInvHUU0/xzOnT3AE4ypSBN980Hck1+fjAkiVYNhuDLIu/P/yQ9evXm04lkus5dRZWsWLFcHNzu+4oSHh4+HVHSyD5ZLq9e/eyb98+nnjiCQAcDgeWZeHu7s7mzZtp2bLlda/z8vLCy8vLmWgieVZMTAzFQ0IYDFh2O/bly8HPz3Qs13XvvdjGjIF33uEDoM3w4TQ7eJAiRYqYTiaSazl1ZMTT05MGDRpcNy1ySEgITZs2vW59X19fDhw4wP79+1MfQUFBVKtWjf3799OoUaPbSy8i5AsLY9qFCwDYnn8e7rvPcKI84JVXcFSpQmngpXPnGH3tXBIRyRCnr08bN24c/fv3p2HDhjRp0oQFCxZw4sQJgoKCgOQhltOnT/PRRx9ht9up9Y9ZH0uUKIG3t/d1y0UkAxISoG9fbFFRcO+9MHmy6UR5Q7582Jcvx9G4MT2Tkvj6k0/4slcvunTpYjqZSK7k9Dkjffr0YebMmUydOpW6deuyfft2goODKV++PABhYWH/OueIiNy+r7/+mu333w979kChQvDJJ6D5L7JPw4bYX3kFgFnA60OH6uoakQxyep4REzTPiEhaly5d4rEqVVh+4ULyvyjWrIEePUzHynscDpJatsRt2zbOlS1L8UOHsHt7m04lkmNkyTwjIpIzvBAUxDspRSRh6FAVEVPsdtyWLcMqXBj/kyexT51qOpFIrqQyIpLLrP/yS9qvWkUp4GrFinjMmmU6Ut4WEIDtgw+Sv37tNWI3buTy5ctGI4nkNiojIrnIxYsX+XHAADoACe7u5F+3TjfBywl69IAhQ8CyuNS5M+MHDzadSCRXURkRyUXe7tePySm3R7Deegt0VVrO8e67xJYrR6nERDp88QVrVq82nUgk11AZEcklThw8yICNG/EELt53H56a2yJnKVAA788/J9Fupwfww+DBhIeHm04lkiuojIjkEuXefJOqlkV04cIUWbsWbnALBjGsQQNIuXv5tCtXmN6vn+FAIrmDyohIbrB8OSxdCnY7BdauBU09nmO5P/UUEU2bkg8YEhLCZ8uWmY4kkuOpjIjkcNuWLCFx+PDkJ5MnJ9/KXnIuux2/zz8n2seH2sDlYcM4d+6c6VQiOZrKiEgO9veZMxR49FHcr17lQo0a8PzzpiNJevj747VyJQBD4+LwDA42HEgkZ1MZEcnBdrZqRYPERCLsdgp88YWme89FPDp2JGbUKAAKjx8PJ08aTiSSc6mMiORQ255/ngd//x2A89On41WliuFE4qx8b70FDRvCpUvQrx8JsbGmI4nkSCojIjnQ37/+yp2vvIId2FO/PpUnTDAdSTLC0xNWrMAqUAC2b2d1vXrkgtuBiWQ7lRGRHMZKSuJkq1b4WxZHvLyou2WL6UhyO+64g1MTJwLQ5/ff2fzii4YDieQ8KiMiOcyR0aOpf+4csUD8Rx/hWaiQ6Uhym8o+9xwH6tTBDagxbRphBw+ajiSSo6iMiOQkP/1E5QULAPi+Wzeq9+5tOJBklurffstJLy/KWhZHWrfGcjhMRxLJMVRGRHKK6Gh46CFsCQnQtSutP/vMdCLJRO5FihC/dCkJwL1hYfwwbJjpSCI5hsqISA5xrk8fOHwYAgJg0SJN9+6CKj/0EDvatweg7pIlnNu61WwgkRxCZUQkB7g0bx7+wcE4gOOvvKLp3l3YfV98wW5fX/IDBYYNA13uK6IyImKadewYHimTYy0uWZLSffsaTiRZyd3Tk1IhITiKFcPnyBHQZdsiKiMiRiUlEd6uHQUSE9lts9FowwY8PDxMp5IsVu6ee7B/9FHyk/feg/XrzQYSMUxlRMSgyIkT8f/jD6KA0LFjqV2/vulIkl3at8caOxaAqJ49sU6dMhxIxByVERFDrF278HnrLQDeqlCBR19/3XAiyW6nR47kJ5uNgvHxhLVuDUlJpiOJGKEyImJCZCTRXbviZll8arfTe/163HUTvDwnoHJl9j/zDNFA6T/+4FLKTK0ieY3KiIgJI0dS8O+/+dvHh7AXXqBmrVqmE4khA6dNY2bKTRB933oLa9cuw4lEsp/KiEh2W7UKli0Du53imzYx5oUXTCcSg9zc3Oi9fj2furnhZllEd+4Mly+bjiWSrVRGRLLT2bMkjRiR/PVzz0GzZtg0uVmeV7VaNS698gp/AQUvXiS6f3/Q3X0lD1EZEckulkVMv364Xb7MEV9fIp580nQiyUFGPP00r9epQwJQ4KuvYMkS05FEso3KiEg2sZYsId+WLcQBL1aoQAHNsir/w263M+GzzzgxfHjyglGj4M8/zYYSySYqIyLZ4fhxEkaOBOBld3deWL0aNzc3w6Ekp6lcuTKV582Dli3h6lUYMgR0d1/JA1RGRLKaw0HMww/jGRvLLqDYa69RtWpV06kkp7LbYdEiHD4+sGMHjlmzTCcSyXIqIyJZzJozh3y7dnEVmFW/PqPGjDEdSXK42JIledae/Oc5acKE5Ls5i7gwlRGRrHT4MInjxgEw2cODlz/9VMMz8q+8vb2pMH063wAeCQnEPPywhmvEpamMiGQVhwOGDsUjIYGd+fJR/vXXqZIyuZXIvwl67DEWNWlCFJBv714N14hLUxkRySoLF8KOHeDjQ73QUEaNHm06keQidrud6cuXM8nLC9Bwjbg2lRGRrBAWhjVhQvLX06aRv3p17Hb95ybOqVChAjVnzkwdrrnat6+Ga8Ql6a+jSBaIHjIEW0QEZ8uVw5FySa9IRjw6YgRLmjUjCsgfGgrvvWc6kkimUxkRyWSOL76gwMaNJAKTS5QAnbAqt8FmszF9+XK2duiQvGDSJDh+3GwokUymMiKSmSIjuTpoEAAzPTyYtGqVhmfktpUrV47O69dD8+Zw5Qo89pjuXSMuRX8lRTLR5ccfp0BEBH8Cvm++ScWKFU1HEldht8OCBVienvD11zg++cR0IpFMozIikkmSvv8e35QPiPn16jFs1CjDicTVWNWqsTQgAICYoCC4cMFwIpHMoTIikhni47nUqxd2YJm7O0+sXavhGcl0NpsN+7PPcgDwuXKFy0OHmo4kkin011IkM7zxBsXOniUcSHr9dcqXL286kbioAcOGsaRJExxAoS+/JGnjRtORRG6byojI7frjD3j5ZQAS3nqLAWPHGg4krsxmszF+9Wo+8PQEIOrhh5Pv8CuSi6mMiNwOhwPr0UchPh7ataPMuHHYbDbTqcTFlSlThoKzZnECKHTpEn9rLhvJ5VRGRG5D2LRp2LZvJ8nbG+bOBRURySZ9H32UpXffDUCRpUuxQkMNJxLJOJURkQxKOnWKAlOnArCkUiWoUMFsIMlTbDYbw774gm0lS+IG2IYPh8RE07FEMkRlRCSDDnfoQMGkJH5yc6NdcLDpOJIHlS5dmhb790PhwrBvH7zzjulIIhmiMiKSASfef587DxwgETj5/PME6OoZMcXfH2bMAMDx/PMkHDpkOJCI82yWlfPnFI6MjMTPz4+IiAh8fX1Nx5E8LvHiRS6ULIl/QgJrKlWix59/6qRVMcuyOFa5MhWOHuVI5cpUPnxY5y9JjpDez28dGRFx0s+dOuGfkMBRu52mmzapiIh5Nhu/jBpFLFD5yBGOT59uOpGIU1RGRJzg2LmTej/8AMDh8eMpfccdhhOJJOs4Zgyf1agBQMEXXiA+LMxwIpH0UxkRSa/4eOwjRmAHjt1/P21ef910IpFUNpuNNps2cdDNjSJJSfzavr3pSCLppjIikl5vvgm//grFilFh9WoNz0iOUyIggLApU3AA9X7+mcPz5pmOJJIuKiMi6fD7unUkvPhi8pOZM6FYMaN5RG6m1eTJbK5cGQCv0aOJj4gwnEjk36mMiPyLhLg4oh9+GI+kJA6WKwcPP2w6ksgtNdy8mbNubpSLj8fjtddMxxH5VyojIv/i6169aHjlCleA4mvW6JJJyfGKVapE8VWrALC99Rb897+GE4ncWobKyJw5c6hYsSLe3t40aNCAHTt23HTd77//nmbNmlG0aFHy5cvHnXfeyTuaJVByiV+++Ybm69cDcKhfP4qn3AtEJKdz694duneHxEQShwwh9soV05FEbsrpMrJy5UrGjBnDpEmT2LdvH82bN6d9+/acOHHihuv7+PjwxBNPsH37dn777TcmT57M5MmTWbBgwW2HF8lK8fHxnO7Zk8LAkUKFqLt4selIIs557z0SfXxwDw1lc9euptOI3JTTM7A2atSI+vXrM3fu3NRl1atXp2vXrkxP50Q73bt3x8fHh48//jhd62sGVjHhk4ce4pGVK0kEIr/5hiKtWpmOJOK0/UFB1J0/nyjgzy+/pN6DD5qOJHlIlszAGh8fT2hoKIGBgWmWBwYGsmvXrnRtY9++fezatYsWLVrcdJ24uDgiIyPTPESyU9Tp09y/ejUAfz74oIqI5Fp158zhULFiFAQuPfIIsTExpiOJXMepMnL+/HmSkpLw9/dPs9zf35+zZ8/e8rUBAQF4eXnRsGFDRo4cybBhw2667vTp0/Hz80t9lC1b1pmYIret4KuvUsbh4FLRoty5YoXpOCIZZ7fj/+WXxAMto6NZ/dBDphOJXCdDJ7D+c7Iny7L+dQKoHTt2sHfvXubNm8fMmTNZcYs/8BMnTiQiIiL1cfLkyYzEFMmYnTthzhwACq9aBfnzGw4kcnv8mjblaO/eALRet449mzcbTiSSlrszKxcrVgw3N7frjoKEh4dfd7TknypWrAhA7dq1OXfuHFOmTKFv3743XNfLywsvLy9noolkip927aLqQw9RAGDIEGjZ0nQkkUxR7cMPObNxI6UjI9nWuze1w8LIly+f6VgigJNHRjw9PWnQoAEhISFploeEhNC0adN0b8eyLOLi4px5a5EsFxcXx+4uXShw6hRXfX3hrbdMRxLJPN7eFPzkEwAeioggYetWs3lE/odTR0YAxo0bR//+/WnYsCFNmjRhwYIFnDhxgqCgICB5iOX06dN89NFHAMyePZty5cpx5513Asnzjrz11luMGjUqE38Mkds39/HHGXn+PACJ77wDhQsbTiSSuQp26sTVhx8m//Ll+I4bl3zkT0ehJQdwuoz06dOHCxcuMHXqVMLCwqhVqxbBwcGUL18egLCwsDRzjjgcDiZOnMjRo0dxd3encuXKvPbaa4wYMSLzfgqR27Tnhx9ovHgxHsCZe+6h9ODBpiOJZIn8778PW7bA779jTZ9O0uTJuLs7/VEgkqmcnmfEBM0zIlkpNjaWt8uX57nwcK56eJD/6FEoU8Z0LJGss2oV9OlDgt3OW488wsSUI9kimS1L5hkRcUXvjB7Nk+HhAFivvaYiIq6vVy/C77kHD4eDez/+mB3btplOJHmcyojkaYcPHaLeggUUAC7UqIHPmDGmI4lkPZuNEqtWEevuTnMgpGdPrujeNWKQyojkaVV27qQdkODmRtHPPwe7/pOQPKJ8eaxp0wCYcP48bz7+uOFAkpfpL6/kXadOQcqREI9XXoFq1czmEclm+Z5+mku1alEAuO+jj9j23XemI0kepTIiedJ/f/6ZuAEDIDISGjWC8eNNRxLJfnY7hdeuJd7NjZbAN716ER0dbTqV5EEqI5LnXL16lRWBgXh99x0OT09YuhR0aaPkVXfcgePVVwF49uJFTn//veFAkhepjEie8+aTT/JsytUzcZMmQcqEfCJ5lfdTTxHdoAE+lkW1N94Ah8N0JMljVEYkT9m+bRuNFy3CD7h0553kmzTJdCQR8+x2CqxcCfnywXffwfz5phNJHqMyInnGlStX2NizJ22BeDc3Cn/xBbi5mY4lkjNUrgyvvQZAwtixvDp8uOFAkpeojEie8cYTT/Bsyr1nkqZM0dUzIv/0xBNE1a+PR1wcjRcuJGTTJtOJJI9QGZE8Yfu2bdy7dCm+wKUaNcg3caLpSCI5j91OwVWriHN3pyWw9aGHiIyMNJ1K8gCVEckT7tm3jzakDM+sXavhGZGbqVwZpk8H4LnLl3lj2DDDgSQvUBkR1/fHH3g/9xwA7m++CVWrGg4kkrN5jRvHpfr18QE6r17N5uBg05HExamMiEs7dfQoVr9+EBMDrVphHz3adCSRnM9up/CXX3LVy4tGwH/79iUiIsJ0KnFhKiPisqKiovi8Xj1se/fiKFQoeXIz3XtGJH0CArDPnQvAmMhIQufNMxxIXJn+MovLmte/PyNT/jUXN2sWBAQYTiSSu3gPHsz5Nm1wB1ouXgxXr5qOJC5KZURc0rdffEGPL7/EDTjbpg35+vc3HUkkVyr26adQpgwcOgQTJpiOIy5KZURcTmRkJH/360cl4ELBgpRcvdp0JJHcq0gRWLIk+evZs1k5eLDZPOKSVEbE5XzSvTt9rlzBAeRfswb8/ExHEsnd2rThasolvvctXcqm5csNBxJXozIiLmXr8uX03rIFgFOPPEK+wEDDiURcQ/5ZszhXpAilgIShQ7l44YLpSOJCVEbEdTgc1H/vPYoCJ4sXp9zixaYTibiOfPnwW7eOBKBTbCyrHnzQdCJxISoj4jpmz8b3P//B8vam+KZN4OlpOpGIS/Fu1oywESMA6LtrF5s/+MBwInEVKiPiEuL3708909/25pt416tnNpCIiyr3/vscL10aP6DgyJFcCA83HUlcgMqI5HqXzp3jcKNGEBuLo21bGDnSdCQR1+XuTsmQEK7Y7TRJSCC0b1/TicQFqIxIrrerdWtqxsdzyW4ndvZssNlMRxJxaV41ahCecr+nNjt2wL59hhNJbqcyIrnarunTaf/LLwCcmzaN/JUrG04kkjdUnDoVunXDlpAAjzySfP8nkQxSGZFc69KxY5SbPBk7sKdWLe6cONF0JJG8w2aDBQugZEn47Tf+6NbNdCLJxVRGJNf6tWVLAhwOTnh4UDtlbhERyUbFipGYckVNtU2b2PH884YDSW6lMiK50o9PPcW9R4+SBETNmUO+EiVMRxLJk9w7deI/DRsCUOXVV/n7998NJ5LcSGVEcp9Tp7gr5dbmW5s0oWbKNNUiYkb9kBD+8vKipMPBn61bYzkcpiNJLqMyIrmLwwGDBuF19SoxtWvTbNMm04lE8jzPQoWIX7yYBKDJ6dPseeIJ05Ekl1EZkdzl3XdhyxbIn598a9bgXbCg6UQiAtz58MNsa9kSgBrz5vH3nj2GE0luojIiucbFbduIHz8++cmMGVC1qtlAIpLGfV99xU8+PhS0LC526gRJSaYjSS6hMiK5Q1wcUV264GlZbC9YEMfw4aYTicg/eObLR75Vq7ji5ka1v/+GN94wHUlyCZURyRX+6NWL8hERhAN+a9Zgd3MzHUlEbqB6hw74LFqU/OSFFyA01GwgyRVURiTHu/T551RZvx6AkN69qRMYaDiRiNzSgAHQsyckJhLbsyfWlSumE0kOpzIiOZp16RKJ/fphB9YUKUKvjz82HUlE/o3NBvPmEeHjg/exYxzq2tV0IsnhVEYkRzvRuTPFY2I4DFRZtw5PT0/TkUQkPYoWZUPPngBU++YbLixbZjiQ5GQqI5JzrVhB+Z07SQS2DRtGnWbNTCcSESf0XriQFSmzI9uGDcP6+2/DiSSnUhmRnOnkSXjsMQB+79GDgXPmGA4kIs5yd3enTnAwB202isTFcbJdO7As07EkB1IZkZzH4YDBgyEiAho1otaKFXh4eJhOJSIZUKNBA/7zxBPEA+V++omLM2aYjiQ5kMqI5DgRr78OW7Zg5csHH38MKiIiudqAt99mftmyAHg/+yzWn38aTiQ5jcqI5CjWn3/ilXIb8oV33AFVqhhOJCK3y93dndbBwfzH05P8SUnJl/4mJpqOJTmIyojkHA4H4Z064Z2UxHc2G411Ga+Iy6heqxb1f/kFfH2x/fADvPaa6UiSg6iMSI4RMXUq/n/8QRRwcPx4atepYzqSiGQizypVYPZsAKypU7F+/tlwIskpVEYkR7B+/x3vl18G4L3y5RkxfbrhRCKSJR55hLBGjbAlJHChc2dISDCdSHIAlRExLzGR8x074uVwEGKz0XXDBtzd3U2nEpGsYLPxZbt2XACKnTzJ5WefNZ1IcgCVETEu6Y03KP7XX0QAh595hho1a5qOJCJZaPjzz/N+1aoA+LzzjoZrRGVEDPvlF9xeegmAkE6deDRlqEZEXJebmxsPr1/POrsdD8vivIZr8jyVETEnISH5Er/4eOjUiZ7r1ml4RiSPqFK1KuemTOECUPzkSS4984zpSGKQyogYc/nZZ2HfPihcGBYsSL7Tp4jkGUMnTWJ2tWoAFJg5E8f+/WYDiTEqI2KE9euv+LzzDgCft2wJpUoZTiQi2c1ut/PIV1+xzs0ND8uCQYM0XJNHqYxI9ktKIrxzZzwsiw12OzWnTTOdSEQMqXzHHTTcsweKFMH+88+aDC2PUhmRbHfxpZfwP3qUCODM5MlUu/NO05FExKDS9evDe+8BYL38soZr8iCVEclW1pEj5HvlFQDmV67MkBdeMJxIRHKEvn2JadsWW0ICf3fponvX5DEqI5J9LIvTHTuSz+Fgm91Otw0bcHNzM51KRHICm43VDzzAJcD/xAnOp9wwU/IGlRHJNtHvvUfAH39wFTj23HNUSTmLXkQEoN/TT7MoZdi2wBtv4Dh82HAiyS4ZKiNz5syhYsWKeHt706BBA3bs2HHTdT///HPatGlD8eLF8fX1pUmTJmzatCnDgSWXOnOGAilDMmvr1aN/ykRnIiLX2O12egYHs9XNDW+Hg1MdO4JlmY4l2cDpMrJy5UrGjBnDpEmT2LdvH82bN6d9+/acOHHihutv376dNm3aEBwcTGhoKA888ACdO3dm3759tx1ecgnLgsceg4gIuPtuHtmzB7tdB+VE5HoVKlbkzJQpXAXKHT7M2VdfNR1JsoHNspyrnY0aNaJ+/frMnTs3dVn16tXp2rUr09N5p9WaNWvSp08fXrjJyYtxcXHExcWlPo+MjKRs2bJERETg6+vrTFzJAf6ePZviTzwBHh7w009Qq5bpSCKSg1mWxYJq1Rhx+DBRbm7kP3YMt4AA07EkAyIjI/Hz8/vXz2+n/nkaHx9PaGgogYGBaZYHBgaya9eudG3D4XAQFRVFkSJFbrrO9OnT8fPzS32ULVvWmZiSgzjCw3EfOxaAw716qYiIyL+y2Wy037iRn+x2CiYlEffoo6YjSRZzqoycP3+epKQk/P390yz39/fn7Nmz6drGjBkzuHLlCr17977pOhMnTiQiIiL1cfLkSWdiSg5yqGNHCick8KvNhrsu4xWRdCpXqRJuS5diubuT/+uv4bPPTEeSLJShgXvbP+4hYlnWdctuZMWKFUyZMoWVK1dSokSJm67n5eWFr69vmofkPmcWLuTOvXtJAn5/+mkq6uoZEXFCnf79sV27gd4TT8ClS2YDSZZxqowUK1YMNze3646ChIeHX3e05J9WrlzJ0KFDWbVqFa1bt3Y+qeQqjsuXcRs5EoDPypalWzrPJxIRSWPyZKw774SzZ/m1fXvTaSSLOFVGPD09adCgASEhIWmWh4SE0LRp05u+bsWKFQwaNIjly5fTsWPHjCWVXOVAp074x8fzl81Go02bdPWMiGSMtzffDxyIA6i5ezfHFy82nUiygNOfEOPGjWPhwoUsXryY3377jbFjx3LixAmCgoKA5PM9BgwYkLr+ihUrGDBgADNmzKBx48acPXuWs2fPEhERkXk/heQoJ1esoM7OnQD8OmYM5atXN5xIRHKze595hg3lywPg9vjjJEZGGk4kmc3pMtKnTx9mzpzJ1KlTqVu3Ltu3byc4OJjyKb8oYWFhaeYcmT9/PomJiYwcOZJSpUqlPkaPHp15P4XkHLGxlJkyBYCvy5Sh04wZZvOISK5ns9losGkTJ202AuLiCNURdpfj9DwjJqT3OmXJAZ5/HqZNg5IlSTpwALdixUwnEhEXsWX8eFq9/TZJwLEVK6j80EOmI8m/yJJ5RkRu5cJ332G99lryk9mzVUREJFO1fOsttpYpgxvgGDKEhCtXTEeSTKIyIpkiKT6es507Y0tM5EpgIHTvbjqSiLgYm83GnRs3ct5mo0pMDKc13O8yVEYkU2zr0YOaV64QAUS88orpOCLiokrWqsXJp54CoMLHH8PBg4YTSWZQGZHbdnjzZhp99RUAvwwcSOmGDQ0nEhFXVu/116FTJ4iPh2HDICnJdCS5TSojclsSExK40KsXPsB/ixShqeYAEJGsZrPB3LlQsCD88AO7+vUznUhuk8qI3JaNDz9M48hIYoASX3yBTZObiUh2CAjgzJgxANz16accDA42m0duiz45JMN+27qVpmvWAHCwd29KNm9uOJGI5CWlXnyRX4sVowBwuU8f4uPiTEeSDFIZkQwr88YbFAGO+PpSf9ky03FEJI+xublRct06YoGm0dF81aeP6UiSQSojkjHr1+P79ddYbm6UWLcOm4eH6UQikgcVbdKEQw8/DMD9X37Jf/9x7zTJHVRGxGkJFy7AY48BYBs/noItWhhOJCJ52V0ffshfhQpRBDjTsydxGq7JdVRGxCkJCQl8Wb06nD6NVakSvPii6Ugikte5u1P4s89IBNpFRrI15cRWyT1URsQpH48YQc+//wbg0htvQP78hhOJiEDhli050qMHAIFffgmXL5sNJE5RGZF0+3n3bpouWQLAkQceoEjKf/giIjlBtWXLoGpVbGFhMGGC6TjiBJURSZf4+Hh+7NyZO4FLXl5USrmkV0Qkx/D2hoULk7/+4AN2TZtmNo+km8qIpMuSkSMZlDI8Y5s3D1uRIoYTiYjcQPPmxA4ZAoD/88+zd/t2w4EkPVRG5F/t+89/aLpwIe7AiaZNKTRokOlIIiI35f3OO1zIn5/KwM/duhEbG2s6kvwLlRH5V15vvkltIMLLi3Jffmk6jojIrfn64pEyXDPo4kU+ePRRw4Hk36iMyK399BM1rhWQOXOgWDGzeURE0sG3b19O3XcfbkCLjz9m944dpiPJLaiMyM3Fx8Pgwcm35+7VC7+UcVgRkdwgYM0aIr28uAv4sVs3YmJiTEeSm1AZkRuKi4vjk9q14b//TT4a8v77piOJiDineHHsc+YAMOLCBRaNHGk4kNyMyojc0PzHH6f3oUMAxL/9NpQoYTiRiIjzCgwZwplmzfAARvznP6Cp4nMklRG5zo+7dtF88WI8gNONG+PZr5/pSCIiGVZ67Vqs4sXx+O03ePll03HkBlRGJI3Y2Fh2delCPSDK05MyX3wBNpvpWCIiGVe8OLa5c5O/fu01/lq50mweuY7KiKQx9/HHeez8+eQns2aBv7/ZQCIimaFHDxwPPQRJScQ+9BDff/ON6UTyP1RGJNV/tm+nxZIleAJhjRpRUNfmi4gLsb//Ppfz5aMG8GuvXly5csV0JEmhMiKpIidMoD4Q5eVFqbVrNTwjIq6laFE8Fi0CYNjly8zXbNI5hsqIJPvPf2jz449A8r1nKFXKcCARkczn07cvZ1q3xg3ouGYNOzZvNh1JUBkRgKtXYcAAbA4HPPIIBfSvBRFxYaVXreJS/vxUA/7o1Yvo6GjTkfI8lZE87urVq3zfrBkcPgxlysB775mOJCKStQoXxuvDDwEYEhnJBwMGGA4kKiN53If9+nHv/v0AWIsXQ+HCZgOJiGSD/D17crpdO+zAiJ07ITLSdKQ8TWUkD9sVHEzntWsBON6xI7bAQMOJRESyT5mVK3GUK0f+8HAYO9Z0nDxNZSSPunLlCuf69CEAOOfrS3lNAiQieY2vL/aPP06+cnDxYmI+/dR0ojxLZSSP+rRXL7pFR5ME+KxZAz4+piOJiGS/++6Dp58GIPrhh9m+erXhQHmTykgetOvzz+ny9dcAHH/oIQq0aWM4kYiIQVOncqpoUYpbFnEDBxIZEWE6UZ6jMpLXWBbW8OEUA04WLUqllDPKRUTyLC8vimzYQBzQJiaGLzp3Np0oz1EZyWuWLKHZxYskurlReP168PQ0nUhExLj8jRpx6rHHAOi+Ywc7li41GyiPURnJS44ehdGjAXCfPp0CTZoYDiQiknNUfv99DpcpQwEg34gRRFy4YDpSnqEykkdEXb7MuQ4dIDoa7r0Xxo0zHUlEJGex2ykTEkKU3U7D+Hi+advWdKI8Q2Ukjwhp1w7/338n1sMDPvwQ3NxMRxIRyXHyV6/OmYkTAei6bx+OvXsNJ8obVEbygB/mzaPT7t0AHB0zBipVMhtIRCQHq/byy0S3a4ebw4F9wACIiTEdyeWpjLi4yPBwiowahSfwc8WKVH/9ddORRERyNpuNAh9/DCVLwm+/YT37rOlELk9lxMXtbtWKaomJnHdzo/KWLckzDYqIyK0VKwaLFwNgmzWL/0ybZjiQa1MZcWE/vvYabX75BYCzr7xCgYoVDScSEclF2rfnh3r1ACj34otcPnrUcCDXpTLiouLPnaPM5MkA7KxVi1rPPGM4kYhI7lN382aOeXhQ2uHgYMuWpuO4LJURF+U5bhylk5I4nT8/db/5xnQcEZFcKV+xYkTPnUsi0PTYMfZOmGA6kktSGXFFn34Ky5eDmxtlvv0WH39/04lERHKtWkOHsjVlksjKb73FpZThb8k8KiMuJuLXX0kaMSL5yaRJ0KiR2UAiIi7g3k2b+MXbm8KWxYnAQLAs05FcisqIK3E4ONWmDW6RkZyvVAlSzhkREZHb412wII6lS4kB6oSFEfP226YjuRSVERfyy4gR1AwL4ypwYto08PAwHUlExGXc1acPx1Nuppfv+efh0CHDiVyHyoiLiNi1izsWLgRgY+vW1O/b13AiERHXc+f770OrVsmzsvbvD4mJpiO5BJURVxAfz6VOnfAGtvn40P7LL00nEhFxTXY7LFmC5ecHe/ZwsF8/04lcgsqICzj08MNUuHSJ80CBTz8lX/78piOJiLiusmUJ6dIFgKorV3Jx82bDgXI/lZFcLmLDBu747DMAvu7alQadOhlOJCLi+u5fsIBNfn64A1d79oSrV01HytVURnKzyEh8R47EDnxZuDC9VqwwnUhEJE/w9PKi5OefcwYIiIricI8epiPlaiojudn48diOH4cKFehw+DDe3t6mE4mI5Bl1Wrbk20ceAaDKxo1cWrXKcKLcS2Ukl7q6Zg2kXD3D0qV4FC1qNpCISB7Ue/FiVqX8/XUMHIh18aLhRLlThsrInDlzqFixIt7e3jRo0IAdO3bcdN2wsDAefvhhqlWrht1uZ8yYMRnNKtdcukTsgAEAnO/XD1q0MBxIRCRv8vT0pPpXX3EIKBobS9TAgaYj5UpOl5GVK1cyZswYJk2axL59+2jevDnt27fnxIkTN1w/Li6O4sWLM2nSJOrUqXPbgQWOd+lCkZgY/gBOBAWZjiMikqfVbtyYP59/Hstux/err2DlStORch2bZTk3wX6jRo2oX78+c+fOTV1WvXp1unbtyvTp02/52vvvv5+6desyc+ZMp0JGRkbi5+dHREQEvr6+Tr3W1VxeupRCgweTBCwcNIgRS5aYjiQiIgAvvAAvvwyFC8OBA1CmjOlExqX389upIyPx8fGEhoYSGBiYZnlgYCC7du3KWNIbiIuLIzIyMs1DwAoPx5ZyJGRp8eIMnj/fcCIREUn1/PPQoAFcusS5Bx/UzfSc4FQZOX/+PElJSfj/45b0/v7+nD17NtNCTZ8+HT8/v9RH2bJlM23buZZlcapzZ/zi4vgFaLB+PZ6enqZTiYjINR4e/PD448QC/j/9xCUnRwHysgydwGqz2dI8tyzrumW3Y+LEiURERKQ+Tp48mWnbzq0i5s+n7J49JADfP/oodRs1Mh1JRET+4e4BA1iQMjzjOWEClj6/0sWpMlKsWDHc3NyuOwoSHh5+3dGS2+Hl5YWvr2+aR54WFkaBZ58FYGHJkgx57z3DgURE5Ebc3d1ptWEDe2w2fBITOd2xo4Zr0sGpMuLp6UmDBg0ICQlJszwkJISmTZtmajBJYVkwfDhuERFYDRrQ/ccfNTwjIpKD1axTh5/HjCEWCDhwgEvvvGM6Uo7n9DDNuHHjWLhwIYsXL+a3335j7NixnDhxgqCUEysnTpzIgJQ5MK7Zv38/+/fvJzo6mr///pv9+/dz8ODBzPkJXJxj8WLYsAE8PbF9+CH+AQGmI4mIyL8Y/MYbfJByvqPnM89ouOZfuDv7gj59+nDhwgWmTp1KWFgYtWrVIjg4mPLlywPJk5z9c86RevXqpX4dGhrK8uXLKV++PMeOHbu99C7OOnmSmKAgfID455/Hs2ZN05FERCQd3N3dab1hA3vq1OGexETCu3enxJ49kInnV7oSp+cZMSFPzjNiWZyqV4+An39mt82Gz7591NKkcSIiuconkyfT5/XXcU9MhMWLYfBg05GyVZbMMyLZ59Ls2QT8/DNxwM9PPqkiIiKSCz0ybRrur7yS/GTMGDh1ymienEplJAeyzp3DPm4cAItKl2bIW28ZTiQiIhk2bhzccw9ERnKhZ09dXXMDKiM50LHOnfFLSGC/zUaLDRtwd3f61B4REckp3N05NW0asUDR3bs5r39gXkdlJIc5/8EHVPzxRxKBfU88Qc26dU1HEhGR21SqZUsWp1zokW/iRF1d8w8qIznJpUsUTJncbFmpUvR/+23DgUREJDO4ubnROjiYH202fJKSOKHJ0NJQGclJxo3D6+JFEu64g/u++UbDMyIiLqRqjRr89vTTxAPlDxwgXLNpp9KlvTnFpk3Qrl3yNeg7d0KTJqYTiYhIJnM4HCypWJGhJ05wycMDv1OnsJcoYTpWltGlvbmIFRnJ+R49kp88+aSKiIiIi7Lb7bT4+mt+tdkonJDAkQcfNB0pR1AZyQEOdulCsStXOGqzce7JJ03HERGRLHRHjRr8Om4cDpuNKrt3Q3Cw6UjGqYwYdnbVKmpu3QrA3kcfxb9SJbOBREQky/V6803sY8cmPwkKgqgos4EMUxkxyLp6lcRBgwBY5+9P99mzzQYSEZFsYbPZYOpUqFQJTp7k8uOPm45klMqIQT937UpATAyngZrBwbi5uZmOJCIi2cXHh5h33wWg0LJlnFqxwnAgc1RGDDn9xRfUDgkBIHT4cCrXr284kYiIZDevDh0ILlUKAMfQoTiuXjWcyAyVERPi4/F87DHcgJDixek0b57pRCIiYoDdbqfWxo2E2WyUi4lhb5cupiMZoTJiwvTpFD97ljhfX+7YsAG7Xf83iIjkVeXuuov/jhgBQP1vvuH4F1+YDWSAJj3Lbr/8AvXrQ0ICfPop9OljOpGIiBhmWRbbS5akRXg4f/j4cMeFC7h5eZmOdds06VkO5EhI4GS7dslF5MEHoXdv05FERCQHsNlsVA4O5hJQ7coVdnbvbjpStlIZyUbf9+lD2dOnibTZiJ85M3nqdxERESCgQQP+O3gwAM1CQuDQIcOJso/KSDY59u23NFi7FoDQvn3xrFjRcCIREclp7lu4kMRWrXBLSIBhw8DhMB0pW6iMZANHUhLnu3fHB9hXqBAtPvrIdCQREcmBbHY77gsXgo8P7NhB/Pvvm46ULVRGssE3/frRMCKCGKD42rXYNbmZiIjcTIUKWK+8AkDcmDEc2rLFcKCspzKSxY58/z33fPopAPu7dyfg/vvNBhIRkZxv5Eh+K1SIgpbF3z16kJiQYDpRllIZyWIX+valEPCHry+NU0qJiIjIrdjc3Smydi1xQLOICL5+5BHTkbKUykhW+uwz7jl1iiS7nYIrV2Lz8DCdSEREcgn/++/n1x49AGi6ejW/pdzh3RWpjGSVixdh5EgA3J57jtLt2hkOJCIiuU295cs54utLUeB0t24kuOhwjcpIFkhKSuKv7t3h3Dm4806YPNl0JBERyYVsnp4UXL2aBKD15ct8OXCg6UhZQmUkC6wZMYJK27bhAFi0CFxgSl8RETGjRGAgvz/4IABt161LPvLuYlRGMtlvP/5Io0WLAPi9VSto2tRwIhERye1qrVxJXOXKFLxyBcaONR0n06mMZKLExET2d+5MBSDc25vqKTOuioiI3A6btzdeH3+cfBuRjz7CCg42HSlTqYxkouWjRtHn3DkA7AsXYitY0HAiERFxGU2awOjRAIR368Z/v//ecKDMozKSSX796SfunjcPO/DnvfdSzMWvCRcREQOmTeOcjw/+8fH83rUr8fHxphNlCpWRTGBZFj927kx14JKnJ5W/+MJ0JBERcUU+Pnh8+CEAvS9cYNnw4YYDZQ6VkUxgCw1lYMrwjPX++9iKFjWcSEREXFWRHj040qoVAM0/+oh9O3caTnT7VEZuV1wcDB6MLSkJ+vShiIu0VBERybkqf/YZF/LlowrwswsM16iM3IaEhATOjx4Nv/wCxYtDHrnVs4iIGObnh/vChQD0P3+exUFBhgPdHpWR27B01CgKzZ+f/GTuXChWzGwgERHJM/wefpjjzZvjBgR++imJV66YjpRhKiMZ9POePTSZPx934HjjxpByMyMREZHsUv7zz4nz9aVSTAzur71mOk6GqYxkQHx8PLs7d6YWEOHpSbkvvzQdSURE8qJixfBKmfWb6dNh716zeTJIZSQDFo8cyZDwcACsOXOwlShhOJGIiORZPXtCnz6QlMS59u3Zs3276UROUxlx0r7du7l34ULcgRNNmlBo6FDTkUREJK+bPZsoHx/8z5/nQLduxMbGmk7kFJURJ8THx7P7wQeTh2e8vDQ8IyIiOUPRoljz5gEw+OJFFg8bZjiQc1RGnOD28888ev588pM5c5Iv5xUREckBfPv14+QDD2AHWn/yCXu2bjUdKd1URtIrLg63oUOxOxwk9eiB35AhphOJiIikUfbzz7mYPz9Vgd+7dSMmJsZ0pHRRGUmHuLg4Ep57Dg4cgOLFcZs713QkERGR6xUqhMfSpQAMuHyZpYMGGY2TXioj6fDhsGG4vf128pOFCzU8IyIiOVbBXr043rYtAB1Wr+bCsWNmA6WDysi/2Pvdd7Retgw7cKxVK3jwQdORREREbqn86tVEFC5MecuiaC6YDE1l5BZiY2M51q0blYBwHx8qfP656UgiIiL/rmBB/D77LPnr+fNh0yazef6FysgtfPrII/SMiMABeK1YAb6+piOJiIikzwMPwKhRAMT268eezZsNB7o5lZGb2Pv117RPORLyV9eu+HXubDiRiIiIk6ZPJ9LfH+/z5znTowdXcujN9FRGbiDm6lUu9u6NP3CyUCHuWLHCdCQRERHn+fhgX7aMJKBrdDSrevY0neiGVEZuIGHRIgKjo4kH/L78Ery9TUcSERHJkAKtW3Osb18AumzcyA9r1hhOdD2VkX86fhzfyZMBuDphAr733Wc4kIiIyO2p/OGHHCtWjCJA/IABREdFmY6UhsrI/3AkJsLgwRAZCU2bUujVV01HEhERuX0eHhQLDibWZqNFTAwbOnUynSgNlZH/sa5VK/juOywfH/joI3BzMx1JREQkUxS4+26OP/YYAJ23b+ePdesMJ/p/KiMpQj/6iHbbtwNwcNgwqFzZcCIREZHMVe299zhcoQL5garTpkFCgulIgMoIAFcuXcJ7+HC8gf8GBFDznXdMRxIREcl8djtVduyAQoWw/fgj5JDTETJURubMmUPFihXx9vamQYMG7Nix45brb9u2jQYNGuDt7U2lSpWYN29ehsJmlR1t21IzPp6LdjsVvvkGbDbTkURERLJGQACk3PDVevll/vj4Y8OBMlBGVq5cyZgxY5g0aRL79u2jefPmtG/fnhMnTtxw/aNHj9KhQweaN2/Ovn37eO6553jyySf57No0tYb9NGcObX78EYCTzz2Hb7VqhhOJiIhksYce4mLbttiSknAfMoTIs2eNxrFZlmU584JGjRpRv3595qa0KoDq1avTtWtXpk+fft36zzzzDOvWreO3335LXRYUFMTPP//MDz/8kK73jIyMxM/Pj4iICHwzcUr26HPnOB8QQIXERP5zxx00Pnw407YtIiKSk0WfOEFUpUqUSkriuxo1eODXXzP9PdL7+e3UkZH4+HhCQ0MJDAxMszwwMJBdu3bd8DU//PDDdeu3bduWvXv3knCTE2fi4uKIjIxM88gKV0eNokJiImfc3KixZUuWvIeIiEhOVKBcOf5+/XUAHjh4kHiDV9c4VUbOnz9PUlIS/v7+aZb7+/tz9iaHeM6ePXvD9RMTEzl//vwNXzN9+nT8/PxSH2XLlnUmZvpYFiVKlcKy2bjy/vv4liuX+e8hIiKSg901fjwnunbF8vPDMzHRWI4MncBq+8cJnpZlXbfs39a/0fJrJk6cSEREROrj5MmTGYl5azYbvPsutt9/p0pQUOZvX0REJBcot3w5tgMHoHt3YxncnVm5WLFiuLm5XXcUJDw8/LqjH9eULFnyhuu7u7tTtGjRG77Gy8sLLy8vZ6JlXNWq2fM+IiIiOVG+fJAVIxBOcOrIiKenJw0aNCAkJCTN8pCQEJo2bXrD1zRp0uS69Tdv3kzDhg3x8PBwMq6IiIi4GqeHacaNG8fChQtZvHgxv/32G2PHjuXEiRMEpQx1TJw4kQEDBqSuHxQUxPHjxxk3bhy//fYbixcvZtGiRTz11FOZ91OIiIhIruXUMA1Anz59uHDhAlOnTiUsLIxatWoRHBxM+fLlAQgLC0sz50jFihUJDg5m7NixzJ49m9KlSzNr1ix69OiReT+FiIiI5FpOzzNiQlbNMyIiIiJZJ0vmGRERERHJbCojIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUSojIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUU5PB2/CtUliIyMjDScRERGR9Lr2uf1vk73nijISFRUFQFnDtzgWERER50VFReHn53fT7+eKe9M4HA7OnDlDwYIFsdlsmbbdyMhIypYty8mTJ3XPmyymfZ09tJ+zh/Zz9tB+zh5ZuZ8tyyIqKorSpUtjt9/8zJBccWTEbrcTEBCQZdv39fXVL3o20b7OHtrP2UP7OXtoP2ePrNrPtzoico1OYBURERGjVEZERETEqDxdRry8vHjxxRfx8vIyHcXlaV9nD+3n7KH9nD20n7NHTtjPueIEVhEREXFdefrIiIiIiJinMiIiIiJGqYyIiIiIUSojIiIiYpTLl5E5c+ZQsWJFvL29adCgATt27Ljl+tu2baNBgwZ4e3tTqVIl5s2bl01Jczdn9vPnn39OmzZtKF68OL6+vjRp0oRNmzZlY9rczdnf6Wt27tyJu7s7devWzdqALsLZ/RwXF8ekSZMoX748Xl5eVK5cmcWLF2dT2tzL2f38ySefUKdOHfLnz0+pUqUYPHgwFy5cyKa0udP27dvp3LkzpUuXxmaz8cUXX/zra7L9s9ByYZ9++qnl4eFhffDBB9bBgwet0aNHWz4+Ptbx48dvuP5ff/1l5c+f3xo9erR18OBB64MPPrA8PDysNWvWZHPy3MXZ/Tx69Gjr9ddft/bs2WMdOnTImjhxouXh4WH99NNP2Zw893F2X19z+fJlq1KlSlZgYKBVp06d7Ambi2VkPz/44INWo0aNrJCQEOvo0aPW7t27rZ07d2Zj6tzH2f28Y8cOy263W++++671119/WTt27LBq1qxpde3aNZuT5y7BwcHWpEmTrM8++8wCrLVr195yfROfhS5dRu655x4rKCgozbI777zTevbZZ2+4/oQJE6w777wzzbIRI0ZYjRs3zrKMrsDZ/XwjNWrUsF566aXMjuZyMrqv+/TpY02ePNl68cUXVUbSwdn9/PXXX1t+fn7WhQsXsiOey3B2P7/55ptWpUqV0iybNWuWFRAQkGUZXU16yoiJz0KXHaaJj48nNDSUwMDANMsDAwPZtWvXDV/zww8/XLd+27Zt2bt3LwkJCVmWNTfLyH7+J4fDQVRUFEWKFMmKiC4jo/t6yZIlHDlyhBdffDGrI7qEjOzndevW0bBhQ9544w3KlClD1apVeeqpp4iJicmOyLlSRvZz06ZNOXXqFMHBwViWxblz51izZg0dO3bMjsh5honPwlxxo7yMOH/+PElJSfj7+6dZ7u/vz9mzZ2/4mrNnz95w/cTERM6fP0+pUqWyLG9ulZH9/E8zZszgypUr9O7dOysiuoyM7OvDhw/z7LPPsmPHDtzdXfY/90yVkf38119/8f333+Pt7c3atWs5f/48jz/+OBcvXtR5IzeRkf3ctGlTPvnkE/r06UNsbCyJiYk8+OCDvPfee9kROc8w8VnoskdGrrHZbGmeW5Z13bJ/W/9GyyUtZ/fzNStWrGDKlCmsXLmSEiVKZFU8l5LefZ2UlMTDDz/MSy+9RNWqVbMrnstw5nfa4XBgs9n45JNPuOeee+jQoQNvv/02S5cu1dGRf+HMfj548CBPPvkkL7zwAqGhoWzcuJGjR48SFBSUHVHzlOz+LHTZfyoVK1YMNze36xp2eHj4dY3vmpIlS95wfXd3d4oWLZplWXOzjOzna1auXMnQoUNZvXo1rVu3zsqYLsHZfR0VFcXevXvZt28fTzzxBJD8oWlZFu7u7mzevJmWLVtmS/bcJCO/06VKlaJMmTJpbpVevXp1LMvi1KlTVKlSJUsz50YZ2c/Tp0+nWbNmPP300wDcdddd+Pj40Lx5c6ZNm6aj15nExGehyx4Z8fT0pEGDBoSEhKRZHhISQtOmTW/4miZNmly3/ubNm2nYsCEeHh5ZljU3y8h+huQjIoMGDWL58uUa700nZ/e1r68vBw4cYP/+/amPoKAgqlWrxv79+2nUqFF2Rc9VMvI73axZM86cOUN0dHTqskOHDmG32wkICMjSvLlVRvbz1atXsdvTfmy5ubkB//8vd7l9Rj4Ls+zU2Bzg2mVjixYtsg4ePGiNGTPG8vHxsY4dO2ZZlmU9++yzVv/+/VPXv3Y509ixY62DBw9aixYt0qW96eDsfl6+fLnl7u5uzZ492woLC0t9XL582dSPkGs4u6//SVfTpI+z+zkqKsoKCAiwevbsaf3666/Wtm3brCpVqljDhg0z9SPkCs7u5yVLllju7u7WnDlzrCNHjljff/+91bBhQ+uee+4x9SPkClFRUda+ffusffv2WYD19ttvW/v27Uu9hDonfBa6dBmxLMuaPXu2Vb58ecvT09OqX7++tW3bttTvDRw40GrRokWa9bdu3WrVq1fP8vT0tCpUqGDNnTs3mxPnTs7s5xYtWljAdY+BAwdmf/BcyNnf6f+lMpJ+zu7n3377zWrdurWVL18+KyAgwBo3bpx19erVbE6d+zi7n2fNmmXVqFHDypcvn1WqVCnrkUcesU6dOpXNqXOX77777pZ/c3PCZ6HNsnRsS0RERMxx2XNGREREJHdQGRERERGjVEZERETEKJURERERMUplRERERIxSGRERERGjVEZERETEKJURERERMUplRERERIxSGRERERGjVEZERETEKJURETFixYoVeHt7c/r06dRlw4YN46677iIiIsJgMhHJbrpRnogYYVkWdevWpXnz5rz//vu89NJLLFy4kP/85z+UKVPGdDwRyUbupgOISN5ks9l45ZVX6NmzJ6VLl+bdd99lx44dKiIieZCOjIiIUfXr1+fXX39l8+bNtGjRwnQcETFA54yIiDGbNm3i999/JykpCX9/f9NxRMQQHRkRESN++ukn7r//fmbPns2nn35K/vz5Wb16telYImKAzhkRkWx37NgxOnbsyLPPPkv//v2pUaMGd999N6GhoTRo0MB0PBHJZjoyIiLZ6uLFizRr1oz77ruP+fPnpy7v0qULcXFxbNy40WA6ETFBZURERESM0gmsIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUSojIiIiYpTKiIiIiBilMiIiIiJGqYyIiIiIUSojIiIiYpTKiIiIiBilMiIiIiJG/R874tM+nIIlvQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdxklEQVR4nO3deZxN9ePH8dedubMzY52x70tCllFCojC2lLRosxSVImsLEZGSSqGQJVQSCkUNoUWiFI0WhCzZhrHODGO2ez+/P4b5fSdLM2NmPrO8n4/HeXzdc8899z2n+537nrN8jsMYYxARERGxxMN2ABERESnYVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERscppO0B6uN1uDh8+TOHChXE4HLbjiIiISDoYY4iNjaVMmTJ4eFx+/0eeKCOHDx+mfPnytmOIiIhIJhw4cIBy5cpd9vk8UUYKFy4MpPwwgYGBltOIiIhIesTExFC+fPnU7/HLyRNl5MKhmcDAQJURERGRPOa/TrHQCawiIiJilcqIiIiIWKUyIiIiIlbliXNGRETyC5fLRVJSku0YIlnCy8sLT0/Pq16PyoiISA4wxnDkyBFOnz5tO4pIlipSpAilSpW6qnHAVEZERHLAhSISHByMv7+/BnCUPM8YQ1xcHFFRUQCULl060+tSGRERyWYulyu1iBQvXtx2HJEs4+fnB0BUVBTBwcGZPmSjE1hFRLLZhXNE/P39LScRyXoXPtdXcy6UyoiISA7RoRnJj7Lic60yIiIiIlZlqoxMnTqVypUr4+vrS2hoKOvWrbvsst999x0Oh+Oi6a+//sp0aBEREck/MlxGFi5cyMCBAxk+fDgRERE0b96c9u3bs3///iu+bseOHURGRqZO1atXz3RoERGRf/vrr7+48cYb8fX1pX79+rbjSAZkuIy8+eab9OrVi969e1OrVi0mTpxI+fLlmTZt2hVfFxwcTKlSpVKnrBgkRUTyvuPHjxMXF2c7huRiDoeDzz777D+XGzVqFAEBAezYsYOvv/46+4NJlslQGUlMTGTz5s2EhYWlmR8WFsaGDRuu+NoGDRpQunRpWrVqxbfffnvFZRMSEoiJiUkziUj+88knnxAcHEyLFi1wu92240get3v3bm666SYqVqyoS6jzmAyVkePHj+NyuQgJCUkzPyQkhCNHjlzyNaVLl2bGjBksXryYJUuWULNmTVq1asX3339/2fcZN24cQUFBqVP58uUzElNE8oDIyEgef/xxypcvz7x58/DwKJjn0589e/ayU3x8fLqXPXfuXLqWzShjDK+99hpVqlTBz8+PevXq8emnn6Y+17p1a9q1a4cxBoDTp09ToUIFhg8fDqSMsdKrVy8qV66Mn58fNWvWZNKkSRe9z+zZs6lduzY+Pj6ULl2afv36AVCpUiUA7rzzThwOR+rjf3M4HGzevJkxY8bgcDh48cUXM/yzikUmAw4dOmQAs2HDhjTzx44da2rWrJnu9dx2222mU6dOl30+Pj7eREdHp04HDhwwgImOjs5IXBHJpdxut+nUqZMBTMOGDU1iYqLtSNnq3LlzZtu2bebcuXMXPQdcdurQoUOaZf39/S+7bIsWLdIsW6JEiUsul1HPP/+8ueaaa8zKlSvN7t27zZw5c4yPj4/57rvvjDHGHDx40BQtWtRMnDjRGGNM165dTaNGjVL/myYmJpqRI0ean3/+2ezZs8fMmzfP+Pv7m4ULF6a+x9SpU42vr6+ZOHGi2bFjh/n555/NW2+9ZYwxJioqygBmzpw5JjIy0kRFRV0yZ2RkpKldu7YZMmSIiYyMNLGxsRn+WSVzrvT5jo6OTtf3d4ZGYC1RogSenp4X7QWJioq6aG/Jldx4443Mmzfvss/7+Pjg4+OTkWgikofMmzeP5cuX4+Xlxdy5c/Hy8sIYw+zZswkLC9Pe0Fzi7NmzvPnmm3zzzTc0adIEgCpVqvDDDz8wffp0WrRoQdmyZZk+fTrdunXj6NGjLF++nIiICLy8vICUG6mNHj06dZ2VK1dmw4YNLFq0iHvvvReAsWPHMmTIEAYMGJC63PXXXw9AyZIlgf+//8nllCpVCqfTSaFCha64nOROGSoj3t7ehIaGsnr1au68887U+atXr+aOO+5I93oiIiKuagx7Ecm7Dh8+TP/+/QF48cUXqVu3LgBDhw7ltddeIywsjJUrVxaYAcLOnDlz2ef+faL/hXuAXMq/D3Pt27fvqnIBbNu2jfj4eNq0aZNmfmJiIg0aNEh9fM8997B06VLGjRvHtGnTqFGjRprl3333XWbNmsU///zDuXPnSExMTL3aJSoqisOHD9OqVaurzit5V4bvTTN48GC6detGo0aNaNKkCTNmzGD//v306dMHgGHDhnHo0CE++OADACZOnEilSpWoXbs2iYmJzJs3j8WLF7N48eKs/UlEJNczxvDYY49x+vRpGjVqxLPPPpv63COPPMLkyZNZtWoVs2bN4tFHH7WYNOcEBARYX/ZyLpxU/OWXX1K2bNk0z/3v3uu4uDg2b96Mp6cnu3btSrPcokWLGDRoEBMmTKBJkyYULlyY119/nY0bNwL/f28TKdgyXEa6du3KiRMnGDNmDJGRkdSpU4fw8HAqVqwIpJyU9r9jjiQmJvL0009z6NAh/Pz8qF27Nl9++SUdOnTIup9CRPKEpKQkypcvj4+PD++//z5O5///CqpZsyYvv/wyQ4YMYciQIYSFhaX+XhE7rr32Wnx8fNi/fz8tWrS47HJDhgzBw8ODFStW0KFDBzp27Mitt94KwLp162jatClPPvlk6vK7d+9O/XfhwoWpVKkSX3/9Nbfccssl1+/l5YXL5cqin0pypew5nSVrpfcEGBHJA5KTTdSHHxrTt68xjRsbU7WqMdWrG9O6tXGNHGkeatDAAKZVq1bG7XbbTpslrnSCX243fPhwU7x4cTN37lzz999/m19//dW88847Zu7cucYYY7744gvj7e1tNm/ebIwxZsSIEaZcuXLm5MmTxhhjJk6caAIDA83KlSvNjh07zIgRI0xgYKCpV69e6nvMnTvX+Pr6mkmTJpmdO3eazZs3m8mTJ6c+X716dfPEE0+YyMjI1PVeSr169cyoUaOyfiPIFWXFCawqIyKS7dxut3EnJxvz4YfGVKliDFxxWuPhYeqDmTZtmu3oWSIvlxG3220mTZpkatasaby8vEzJkiVN27Ztzdq1a01UVJQJCQkxr7zySurySUlJ5oYbbjD33nuvMSbl6siePXuaoKAgU6RIEfPEE0+YoUOHpikjxhjz7rvvpr5H6dKlzVNPPZX63LJly0y1atWM0+k0FStWvGxWlRE7sqKMOIw5f3F4LhYTE0NQUBDR0dEEBgbajiMiGfTxhAlUf+UVGp08mTKjWDG4915o2RLKl4fERPjrL1ixAr74Atxu3MBbPj70PnSIoDw+gFV8fDx79+5NvaeXSH5ypc93er+/M3zOiIhIRhxZsoSwZ56huDEkO504x4yBAQPA3z/tgi1bQp8+sG8fZuhQPBYuZEhCAnTuDIsXQ3CwjfgikgMK5pCHIpIjzNKlFL3nHoobw46AABwRETBs2MVF5H9VqoRjwQJYtAgKF4YffoCbb4YDB3IuuIjkKJUREckey5Zh7r4bH7ebLz08cPzwA5516qT/9ffcAz//nHIYZ8cOkm+8UYVEJJ9SGRGRrPftt5h77sHD7WYesGv8eGpk5pbu11zDl8OGscvhwHn4MKZdO7hw3omI5BsqIyKStXbtwnTpgiMxkaXAzKZNeWrQoEyvrlbbtnTy9eUg4Ni2De64I+WEVxHJN1RGRCTrxMZC5844Tp8mws+PR3x9mTV37kXDmmdElSpV6P/GG7QDTkPKOSRDhmRRYBHJDVRGRCRrGAM9esC2bVCmDLW2bmX56tVUr179qlfdp08fQm69lYcuzHjnHbjCzTZFJG9RGRGRrPHuu7B0KXh7w5Il+FauzE033ZQlq/bw8OC9995jbaFCjLkw87HHUoqPiOR5KiMicvX++iv10MmasDCSQ0Oz/C0qVarEG2+8wWhgtYcHnDsHDz2k80ckx/Ts2ZPOnTvbjpEpLVu2ZODAgbZjXJbKiIhcncREePBBOHeONR4ehH3xBYsWLcqWt3rsscdo37Ej2595BlOsGEREwOjR2fJekuL777+nU6dOlClTBofDwWeffXbRMg6H45LT66+/ftn17tu3D4fDwZYtW7IvfBabNGkSc+fOtR0jU5YsWcJLL71kO8ZlqYyIyNUZPRp+/ZVop5PubjctWrbkvvvuy5a3cjgcLF++nP6vvopjxoyUma++Chs2ZMv7CZw9e5Z69erxzjvvXHaZyMjINNPs2bNxOBzcddddOZIxKSkpR94nKCiIIkWK5Mh7ZZUL26ZYsWIULlzYcprLUxkRkcz77TcYPx6AR5KTiQkIYPbs2Xh4ZN+vFofDkfKPu+7C9eCD4HZD796QkJBt71mQtW/fnrFjx9KlS5fLLlOqVKk00+eff84tt9xClSpVLvuaypUrA9CgQQMcDgctW7ZMfW7OnDnUqlULX19frrnmGqZOnZr63IU9KosWLaJly5b4+voyb9681EMor7zyCiEhIRQpUoTRo0eTnJzMM888Q7FixShXrhyzZ8++4s/76aefUrduXfz8/ChevDitW7fm7NmzwMWHaVq2bEn//v159tlnKVasGKVKleLFF19Ms77o6Ggee+wxgoODCQwM5NZbb+W333677PsnJibSr18/Spcuja+vL5UqVWLcuHHpXt+LL75I/fr1mT17NlWqVMHHxwdjzEWHaRITE3n22WcpW7YsAQEBNG7cmO+++y71+X/++YdOnTpRtGhRAgICqF27NuHh4VfcdldD96YRkcxxuVJOInW5WOLhwRK3m6mvv576JZPdtm3bxqObN7Pc6aTY9u0ppWjkyBx57yxhDMTF2Xlvf3+4UOqy2NGjR/nyyy95//33r7jczz//zA033MCaNWuoXbs23t7eAMycOZNRo0bxzjvv0KBBAyIiInj00UcJCAigR48eqa9/7rnnmDBhAnPmzMHHx4e1a9fyzTffUK5cOb7//nvWr19Pr169+PHHH7n55pvZuHEjCxcupE+fPrRp04by5ctflCkyMpL777+f1157jTvvvJPY2FjWrVvHle4n+/777zN48GA2btzIjz/+SM+ePWnWrBlt2rTBGEPHjh0pVqwY4eHhBAUFMX36dFq1asXOnTspVqzYReubPHkyy5YtY9GiRVSoUIEDBw5w4PzIw+ld399//82iRYtYvHjxZS+rf/jhh9m3bx8LFiygTJkyLF26lHbt2vHHH39QvXp1+vbtS2JiIt9//z0BAQFs27aNQoUKXfG/6VXJ+psJZ7303oJYRHLQ5MnGgIn19DSlwbRq1cq4XK4ce/sDBw6YwMBA0zXla90Yb29jtm3LsffPiEveYv3MmZTcNqYzZzL1cwBm6dKlV1xm/PjxpmjRope8nfz/2rt3rwFMREREmvnly5c38+fPTzPvpZdeMk2aNEnzuokTJ6ZZpkePHqZixYppPoM1a9Y0zZs3T32cnJxsAgICzMcff3zJTJs3bzaA2bdv3yWf79Gjh7njjjtSH7do0cLcdNNNaZa5/vrrzXPPPWeMMebrr782gYGBJj4+Ps0yVatWNdOnT7/kezz11FPm1ltvNW63+6Ln0rO+UaNGGS8vLxMVFZVmmRYtWpgBAwYYY4z5+++/jcPhMIcOHUqzTKtWrcywYcOMMcbUrVvXvPjii5fM+G+X/Hyfl97vbx2mEZGMO3AAnn8egKFAbKFCvPfee9l6eObfypUrx8SJE1kIrPDwSDmR9rHHUg7biDWzZ8/mwQcfTHMr+T59+lCoUKHU6XKOHTvGgQMH6NWrV5rlx44dy+7du9Ms26hRo4teX7t27TSfwZCQEOrWrZv62NPTk+LFixMVFXXJ969Xrx6tWrWibt263HPPPcycOZNTp05d8ee97rrr0jwuXbp06vo3b97MmTNnKF68eJqfZ+/evRf9PBf07NmTLVu2ULNmTfr378+qVatSn0vv+ipWrEjJkiUvm/nXX3/FGEONGjXSrGft2rWp6+nfvz9jx46lWbNmjBo1it9///2K2+Fq6TCNiGTcU0/BmTPQtClPvPsurXfvpmLFijkeo2fPnnz66ac8Hh7OXx4e+P/wA3z4Ycrga7mdv3/KNrT13tlg3bp17Nixg4ULF6aZP2bMGJ5++un/fL37fJGcOXMmjRs3TvPcvw83BAQEXPR6Ly+vNI8dDscl57kvU1g9PT1ZvXo1GzZsYNWqVbz99tsMHz6cjRs3Xvbw45XW73a7KV26dJpzMS643ImwDRs2ZO/evaxYsYI1a9Zw77330rp1az799NN0r+9S2+Z/ud1uPD092bx580Xb9UJZ7N27N23btuXLL79k1apVjBs3jgkTJvDUU09dcd2ZpTIiIhmzciV8/jk4nTB9OrXr1KH2//z1mZMcDgczZsygdu3ajIqO5nWAZ5+Fzp0hKMhKpnRzOOA/vjTymvfee4/Q0FDq1auXZn5wcDDBwcFp5l04R8TlcqXOCwkJoWzZsuzZs4cHH3ww+wNfgsPhoFmzZjRr1oyRI0dSsWJFli5dyuDBgzO8roYNG3LkyBGcTieVKlVK9+sCAwPp2rUrXbt25e6776Zdu3acPHky0+v7twYNGuByuYiKiqJ58+aXXa58+fL06dOHPn36MGzYMGbOnKkyIiK5QFISnL/p3ZF77qFUnTqWA0HZsmWZPHkyvXv0oDdQMyoq5XLjN9+0HS1fOHPmDH///Xfq471797JlyxaKFStGhQoVUufHxMTwySefMGHChHStNzg4GD8/P1auXEm5cuXw9fUlKCiIF198kf79+xMYGEj79u1JSEhg06ZNnDp1KlOFICM2btzI119/TVhYGMHBwWzcuJFjx45Rq1atTK2vdevWNGnShM6dOzN+/Hhq1qzJ4cOHCQ8Pp3Pnzpc81PTWW29RunRp6tevj4eHB5988gmlSpWiSJEimVrfpdSoUYMHH3yQ7t27M2HCBBo0aMDx48f55ptvqFu3Lh06dGDgwIG0b9+eGjVqcOrUKb755ptMb4f00DkjIpJ+U6fCX38RBVy7YAGbNm2ynQiAbt260a5TJ2ZdOH4/eTJs3Wo3VD6xadMmGjRoQIMGDQAYPHgwDRo0YOS/rlxasGABxhjuv//+dK3X6XQyefJkpk+fTpkyZbjjjjuAlMMDs2bNYu7cudStW5cWLVowd+7cHLlKKzAwkO+//54OHTpQo0YNRowYwYQJE2jfvn2m1udwOAgPD+fmm2/mkUceoUaNGtx3333s27ePkJCQS76mUKFCjB8/nkaNGnH99dezb98+wsPD8fDwyNT6LmfOnDl0796dIUOGULNmTW6//XY2btyYepWRy+Wib9++1KpVi3bt2lGzZs00l1hnNYcxV7hmKZeIiYkhKCiI6OhoAgMDbccRKZiOHcNUr44jOppHgYPt2hEeHv7/435YFhsbS0BAAB533QWffQa33gpr1mTbJawZER8fz969e6lcuXKaEztF8oMrfb7T+/2tPSMikj4vvIAjOpoIYHFgIDNnzsw1RQSgcOHCKVdSvPkm+PrCN9/A4sW2Y4lIOqiMiMh/27IFc3749QHAm5MmUa5cObuZLuNMyZKEnz+h1gwebG9gMRFJN5UREbkyYzADBuAwhoVAYMeOaUbCzG3OnDnDo3//zT+A48ABuMLN2kQkd1AZEZErW7wYx/ffcw4YGxjI9OnTc9XhmX8rVaoUb0yZwoVRLdyvvgr791vNJCJXpjIiIpd37hycH6xqa8eOPP/uu5QtW9ZyqP9233334b7zTr4DPOLjcaVjwK2ckAeuFxDJsKz4XKuMiMjlTZgA//wD5crRaNGidF+2aZvD4WDau+8yukgRXIDnJ5/AunXW8lwYpTNO569IPnThc/3v0WgzQoOeicilHTxI8tixKb8kXn8924YQzy7BwcE8MX06M7t2pQ8Q9+ij+G/dCpe5i2l28vT0pEiRIqn3LPH398/Vh7pE0sMYQ1xcHFFRURQpUuSydwhOD5UREbmkU48/TtGEBH728aFiy5ZkbEil3OHee++l10cfcd/y5RTZsQPeey/lZnoWlCpVCuCyN2kTyauKFCmS+vnOLA16JiIXSf7+e5wtWuAGnmnZkje++SbP/iV//PhxvKZNI2jkSChRAnbtgsvcpCwnuFwukpKSrL2/SFby8vK64h6R9H5/q4yISFpuN4fKl6fs4cN86ONDm337rvqvHuuSkqBePdi+HQYOhLfesp1IpEDQCKwikin7x46l7OHDxACFJk7M+0UEwMsLJk4EIHnSJBK2bLEaR0TSUhkRkVSJJ07g99JLACytU4fOjz9uOVHWOdO0KSu9vXEawz9dukDu3yksUmCojIhIql+6dKFkcjJ7PDxov2JFnj1P5FIKFSqEx1tvkQDU2LuXnTpUI5JrqIyISIrdu2n6008AHHr6aYJz6b1nrkbYk0+y6tprAfAZOpT46GjLiUQEVEZE5IJnnsGRmIhp04bmr75qO022aRYezlEPDyomJfH1HXfYjiMiqIyICPDPnDmwdCl4euJ46y3IR4dn/q1YxYocfuopAJqvXcumL76wnEhEVEZECrhffvyR6EceAcD12GNQu7blRNmvwZtvsrtECQIBzxEjbMcRKfBURkQKsPj4eNbceSfXAWe8vfEcO9Z2pJzh4UHJ+fMBaPDbb/DLL5YDiRRsKiMiBdibTz9N36NHUx6MGwfFitkNlIMC27SB7t1THvTvD2633UAiBZjKiEgBtXHjRipPmUIgcLJ6dQoNHGg7Us4bNw4CAuCnn5jdurXuqitiicqISAEUHx/Pu/fcw/2A2+Gg2IIF4FEAfx2UKYMZPhyAtt9+y+hnnrEcSKRgKoC/fURk9PDhPHfgAACJvXpBw4aWE9njGDSIuFKlKAuUmDqVdevW2Y4kUuCojIgUQA+fPMk1QHyRIvi+/rrtOHb5+uI/cyYAg4DXHniAs2fP2s0kUsCojIgUNHv3UmPhQgB8334bihSxmyc3uO02Ejt3xgmMPHiQ5597znYikQJFZUSkAImNiYHHHoNz56BlS3jwQduRcg3vqVNJCgjgesAxZQpr1661HUmkwFAZESkg1q9fz7BSpWDNGvD1hZkz8/VIqxlWujReb74JwFhg1gsv2M0jUoCojIgUAHFxcTzXrRtjz51LmfHSS1Ctmt1QuVHv3iQ3bUohYK6/PxhjO5FIgaAyIlIADH/+eYbs3UsRILlBAyiIY4qkh4cHzlmzwNsbz6++ggULbCcSKRBURkTyuXXr1nFw0iTuBNyenjjnzgWn03as3KtWLTg/9ojp148PXnuN2NhYy6FE8jeVEZF87OzZswzq3p13zj/2eP55uO46q5nyhKFDoX59HCdPEvTcczzz9NO2E4nkayojIvnYsKFDeWHfPkIAV82aqX/xy3/w9oYPPsDtdHIHcG7GDFavXm07lUi+pTIikk8ZY2i5fTt3AG4vLzwXLAAfH9ux8o66dfEYMwaAScCIHj2IiYmxm0kkn1IZEcmnHH/+SZcffgDA47XXoH59u4HyomeewdWoEUWAlyIjeXrIENuJRPIllRGRfMjExcH990NCAnToAAMG2I6UNzmdeM6bh8vbmzDAc9YsvvrqK9upRPKdTJWRqVOnUrlyZXx9fQkNDU33jaXWr1+P0+mkvv5CE8k233zzDZ9VrQpbt0JICMyZo8HNrkbNmniOHw/ABGBCr14kJyfbzSSSz2S4jCxcuJCBAwcyfPhwIiIiaN68Oe3bt2f//v1XfF10dDTdu3enVatWmQ4rIlcWGxvLwvvu484jR1JmfPghBAfbDZUf9O9PcqtW+AOfBwTgVBkRyVIZLiNvvvkmvXr1onfv3tSqVYuJEydSvnx5pk2bdsXXPf744zzwwAM0adIk02FF5MpefuIJXjl2DIDEAQOgTRvLifIJDw+c8+ZByZL47dwJw4bZTiSSr2SojCQmJrJ582bCwsLSzA8LC2PDhg2Xfd2cOXPYvXs3o0aNStf7JCQkEBMTk2YSkStbvXIl7T76iOJATM2aeL/2mu1I+UupUimHvAAmTmTPlCmcOnXKbiaRfCJDZeT48eO4XC5CQkLSzA8JCeHIhd3C/7Jr1y6GDh3KRx99hDOdoz6OGzeOoKCg1Kl8+fIZiSlS4MTExLCla1daAvFeXgQuX54yVoZkrY4d4amnAAjo149RffpYDiSSP2TqBFbHv06GM8ZcNA/A5XLxwAMPMHr0aGrUqJHu9Q8bNozo6OjU6cCBA5mJKVJgTO3WjUEX9iC+8w5Ur243UH722mucrVqVEKD9okUs//xz24lE8rwM3aCiRIkSeHp6XrQXJCoq6qK9JZByMt2mTZuIiIigX79+ALjdbowxOJ1OVq1axa233nrR63x8fPDR4Ewi6XIuMpLuK1fiBKJatyb40UdtR8rffH0J+PxzkurXp31yMqO6daPZvn0UK1bMdjKRPCtDe0a8vb0JDQ29aFjk1atX07Rp04uWDwwM5I8//mDLli2pU58+fahZsyZbtmyhcePGV5depKAzBr9BgyiTmEhcqVIEL16sy3hzQu3amDfeAGB4bCxvPfSQ5UAieVuGb905ePBgunXrRqNGjWjSpAkzZsxg//799Dl/7HTYsGEcOnSIDz74AA8PD+rUqZPm9cHBwfj6+l40X0QyYe5cWLgQnE78P/sMAgNtJyowvPv35+TSpRRbu5buK1bw5YIFdLzvPtuxRPKkDJeRrl27cuLECcaMGUNkZCR16tQhPDycihUrAhAZGfmfY46IyNX7fuZMGvftiw/ASy+B9jTmLIeDYkuWcLpSJarHxrLl4Yc51bYtRYsWtZ1MJM9xGGOM7RD/JSYmhqCgIKKjownUX34inDpyhIMVKlA3KYl9VatSaedO8NDdHWxIWLMGZ5s2eALuuXPx6NHDdiSRXCO939/67SWSB21s1Yq6SUmc8vAg5KuvVEQs8mndGsf5MZQ8+vaFXbssJxLJe/QbTCSP+enFF2m3bRsAR8aNw69qVcuJxOOFF6BFCzh7Fve993L66FHbkUTyFJURkTzk1F9/UfWllwD4oUEDaj37rOVEAoCnJ8ybR3JgIB5btrD+5pttJxLJU1RGRPIKt5sDt95KSbebHd7ehH79te1E8r/KlWPvyJEAdNy5kx+ef95yIJG8Q2VEJI84OWoU10VGEgfEz52Ln67ayHWqDxnCj9dfD8A1r77K8d9/t5xIJG9QGRHJC379lWLjx6f886GHqHf//ZYDyeWErlnDX76+lDCGyNatweWyHUkk11MZEcntzpyB++6DpCTo0oWbPvjAdiK5Au/AQFwffcRZoO6xY/yh0VlF/pPKiEgud+Duu1MuFy1XDmbO1HDveUDtLl1YffvtANRasICTX3xhOZFI7qYyIpKLRc+eTfmvvsINbHjySdDN2PKMDosWsaJIEZxA0BNPwOnTtiOJ5FoqIyK51cGDeD7xBADvlShB6ODBlgNJRnj7+NA4IgJTpQqeBw/Co49C7h/wWsQKlRGR3Mjt5mj79hRKTOQXIHT5cnx8fGynkgwqVqkSjgULwOmETz8l+d13bUcSyZVURkRyodgxYwj580/OAuufeIKGN95oO5Jk1vXXc+78+COufv0wf/5pOZBI7qMyIpLLmF9/xXfMGABeL1uWJydOtBtIrtrft9/OVw4HPm430e3awblztiOJ5CoqIyK5SVwccXfeiZcxLHU4uGPZMry9vW2nkqtUt149tj/3HEeAIocOcfb8uUAikkJlRCQ3eeYZAvbvJ65IEQ6/+CINGja0nUiySL+XXuKl6tUBCHj/fcyqVZYTieQeDmNy/+ndMTExBAUFER0dTWBgoO04Itlj9WoIC0v596pV0KaN3TyS5bZu3cr3113HE243Z4sVI2DPHggKsh1LJNuk9/tbe0ZEcoOYGBIujNTZr5+KSD5Vu3Zt4kaN4m8g4ORJzj7+uO1IIrmCyohILhD3xBP4REWxz9OTHQ8/bDuOZKMBzz/P+Fq1cAMBCxfC8uW2I4lYpzIiYplZsQL/+fMBGFulClXq1rWcSLKT0+nk+S+/JKFv35QZjz4KJ07YDSVimcqIiE2nTxP34IMATPbwYMDixXh5eVkOJdmtcuXK+L3xBtSqBUePwoViIlJAqYyIWBTXpw8Bp06xC4h/4QXqaq9IweHri3n/fdweHrBwIWbhQtuJRKxRGRGxxHzxBf4LF+IGXq1Zk8EjRtiOJDnsUOnSjDt/F+Z4Ha6RAkxlRMSGU6c41707kHJ4ZvDixTidTsuhJKeVK1eOgFde4Q/ALzaWM489ZjuSiBUqIyI2PPss/qdOERkYiGv0aGrXrm07kVjy1JAhTL7uOlxAoSVLMCtW2I4kkuM06JlITlu7Flq2TPn3unWYZs1wnN9VLwXTzp07WXnttfR3uYgtVozC+/ZB4cK2Y4lcNQ16JpIbxceTeGEckccfh5tuUhERatSogecrr7AHKHzyJNH9+tmOJJKjVEZEclD0c8/hvXcvJ3x8iB42zHYcyUWeePpp3q5TB4DADz+E9estJxLJOSojIjnE/Pkn/m+/DcCEihUpVK6c5USSm3h4eNDvs8+IbNcOhzHQuzfEx9uOJZIjVEZEcoLbTdQdd+BlDMs9POi5bBmenp62U0kuU7VqVUrPnw8hIfDXX/Dyy7YjieQIlRGRHHDilVcI2bOHWODIiBHUqFnTdiTJrYoWhSlTAHC98gruLVvs5hHJAbqaRiSbmYMHiatUiQCXizerVGHAzp3aKyJXFB8fz9dFitAxIYGjFSoQsmcP6DMjeZCuphHJJfbddhsBLhc/Oxx0+vJLFRH5T76+vhwbOZLTQMj+/RwbOdJ2JJFspTIikp2WLqXyb7+RBOx85hmqX3ON7USSR3QfOpQ55w/nBbz6Ku69ey0nEsk+KiMi2SU6OvVurObpp3lg3DjLgSQv8fDw4M7wcNZ7eODvdvNPx46Q+4+qi2SKyohINkl65hmIjITq1fF+6SU8PPR/N8mYSlWqcHDkSBKAytu3E/nWW7YjiWQL/XYUyQaHFi3Ca+ZMANzTpoGvr+VEklfdO3IkH1epAkDA8OG6s6/kSyojIlnMfe4cSeeHfF9RqhTccovlRJKXORwObv3qK46WLElgfDw8/bTtSCJZTmVEJIv9fNddVIqL4xhwbXi4Ds/IVatQrRohn38ODgfMnQtr1tiOJJKl9FtSJAvtW7mSBudvAb/l4Yep2KCB5USSbzRpAk8+CUDMAw/gio21HEgk66iMiGQRV1ISp7t2xQfYWLw4rc6fMyKSVczLLxPl40PgsWNsuv1223FEsozKiEgW+ebBB6kfE8NZoOxnn+Ghwc0kizmCgvj98ccBCP3uO/YsXmw5kUjWUBkRyQqRkTRfvhyA3++5h3I33WQ5kORXrSZOZF2pUjiBhO7dSdadfSUfUBkRyQr9++MbH8+5OnW4cf5822kkH3M4HFQLD+c0UCsujrV33WU7kshVUxkRuUrm88/h00/B0xO/Dz/E4XTajiT5XOkGDdh2/vLxG8PD2bFypeVEIldHZUTkKuz45Rei7r035cGQIVC/vtU8UnA0mTWL34sXJwA4ff/9GLfbdiSRTFMZEckkl8vF7506EZKYSKS/P4waZTuSFCAODw9CPvuMRA8PGp8+jUOHByUPUxkRyaT5/ftz19GjADhnzQJ/f8uJpKAJuekmvF96KeXBoEFw/LjdQCKZpDIikgnbtmyhwbRpeAB/N21Kyfvvtx1JCqpnnoG6deH4cU706EFSUpLtRCIZpjIikkHJycmsve026hhDtLc3VT/7zHYkKci8vGDmTIzDQfHwcBb16mU7kUiGqYyIZNB7zz3Hw4cOAeB64w0cJUtaTiQFXuPG7GzbFoCmH37I7z/+aDmQSMaojIhkgDs5mcazZ+MLHKpTh2L9+tmOJAJAjYULOebnR2Ug4o47SExMtB1JJN1URkQywGPmTOqfPk2yjw9lLtxFVSQXcAQG4jVrFgAPHTvG7L59LScSST+VEZH02rcv5WRBwPn66ziqVLGbR+RfijzwAPubNsUTuGHWLH79+WfbkUTSRWVEJB1+/+03drZoAWfPQvPmoL86JZeqsGQJZ7y8aAh8p8M1kkeojIj8h6SkJD6/7TZq7N9PotMJs2eDh/6vI7lUSAjuN94AoP+JE3jt3285kMh/029Ukf/wzrPPMuDgQQASRo6EatUsJxK5ssCnnsJ9yy04k5Jw9OkDxtiOJHJFmSojU6dOpXLlyvj6+hIaGsq6desuu+wPP/xAs2bNKF68OH5+flxzzTW89dZbmQ4skpO2RERQe9IkAoFjNWpQ+PnnbUcS+W8OBx4zZoCvL3z9NXFvv018fLztVCKXleEysnDhQgYOHMjw4cOJiIigefPmtG/fnv2X2RUYEBBAv379+P7779m+fTsjRoxgxIgRzJgx46rDi2SnxMRElt5+O2HGkODhQYnPPwdPT9uxRNKnWjUYOxYA98CBTBo0yHIgkctzGJOx/XeNGzemYcOGTJs2LXVerVq16Ny5M+PGjUvXOrp06UJAQAAffvhhupaPiYkhKCiI6OhoAgMDMxJXJNMmDBpE74kTCQJiR42i8Isv2o4kkjEuF8fr1qXE9u18C/hv2EDjJk1sp5ICJL3f3xnaM5KYmMjmzZsJCwtLMz8sLIwNGzakax0RERFs2LCBFi1aXHaZhIQEYmJi0kwiOSk2JoZ6U6YQBJyoXp3CL7xgO5JIxnl6UmL5cuI9PbkFWNO5sw7XSK6UoTJy/PhxXC4XISEhaeaHhIRw5MiRK762XLly+Pj40KhRI/r27Uvv3r0vu+y4ceMICgpKncqXL5+RmCJXrfD8+bROSiLZ6aS4Ds9IXla1Kq5XXwVgcFQUb2vUYMmFMnUCq+Nfo04aYy6a92/r1q1j06ZNvPvuu0ycOJGPP/74sssOGzaM6Ojo1OnAgQOZiSmSObt2wZAhADjfeANq1bIcSOTqBAwZQlT9+vgBN733Hj9e4aIDERucGVm4RIkSeHp6XrQXJCoq6qK9Jf9WuXJlAOrWrcvRo0d58cUXuf8yt1338fHBx8cnI9FEssTmjRup0qMHRePioFUreOop25FErp7DQfCyZcRVrUqTpCQmdOlC/f378fPzs51MBMjgnhFvb29CQ0NZvXp1mvmrV6+madOm6V6PMYaEhISMvLVItktISGBDp04U3bGDBD8/mDNHg5tJ/lG+PGbiRAAGnDhB0ubNdvOI/I8M7RkBGDx4MN26daNRo0Y0adKEGTNmsH//fvr06QOkHGI5dOgQH3zwAQBTpkyhQoUKXHPNNUDKuCNvvPEGT+kvTsllZj7+OH2OHQMg8c038dG5SpLPBDzxBPHLluH71VcE9usHP/8M3t62Y4lkvIx07dqVEydOMGbMGCIjI6lTpw7h4eFUrFgRgMjIyDRjjrjdboYNG8bevXtxOp1UrVqVV199lccffzzrfgqRq/TL99/T6v338QIONm1KOX0+JT9yOPCdOxfq1IHffsOMGIHrlVdwOjP8VSCSpTI8zogNGmdEslN8fDyLypSh+6lTnPLzo+iBA1C8uO1YItln6VLo0gU3MPWuu+j36ae2E0k+lS3jjIjkRx927073U6cAcL7/voqI5H933snBtm3xAG5fvJgN4eG2E0kBpzIiBdruTZto/8knAOxt357C99xjOZFIzij36adEFS5MBeB4166cPXvWdiQpwFRGpECr+uablAOOFSlC5fOlRKRAKFQI/yVLSAZuP3OGT7t0sZ1ICjCVESm4FiyAjz8GT09KrlwJAQG2E4nkqEKtW7OvWzcAOq9axU8LF1pOJAWVyogUSNu/+gr3hStmhg+Hxo3tBhKxpNrs2ewODiYIcPTsyZnoaNuRpABSGZECJy42lug778QjJobYa6+FESNsRxKxx+kk+KuvOONw0Dg+njO6O7VYoDIiBc6aDh248dw5zjocmA8/BC8v25FErCpcvz6nzpeQUlOmwK+/2g0kBY7KiBQom2fNot0PPwCwp39/Ahs2tJxIJHco/8IL0KULJCXBgw9CXJztSFKAqIxIgXH2+HECn3wSb+DXihWp+9ZbtiOJ5B4OB8yYgSldGv76i/UZuN+YyNVSGZECY1OrVlRPSiLKw4Nq33yT8stXRP5f8eL8PXw4AM1++42Il1+2HEgKCpURKRD+eO01Wvz+OwAHXnqJwCpVLCcSyZ2q9+3Lt9ddB0C5kSOJ3bPHciIpCFRGJP87dozaEyYA8E2dOoQ+/7zlQCK52/Vff81OLy9Kut3svvVWyP23MJM8TmVE8jdjoHdvPKKioHZtWv70k+1EIrleoRIliJk2jUSg/j//8OeQIbYjST6nMiL52qnXX4dly8DbGz76CA+NsiqSLo169WJFs2YAVJo4kZjffrOcSPIzlRHJt878+is+Q4cCEDN0KNSrZzmRSN7SOjycn319KWQMiV27gstlO5LkUyojkj8lJXG8XTv8jWG9ry8e2s0skmEBgYF4zZ9Psr8/JXbsgPHjbUeSfEplRPKlPT17UunYMU4Bjvffp1BgoO1IInlSgzvvxDl1asqDUaM0OqtkC5URyXfOrl5NxfnzAVjati1N773XciKRPK5795TRWZOTOd6+PZw7ZzuR5DMqI5K/nD3LmbvvxhNYWqgQXRcvtp1IJO9zODg2dixHgBJRUezt2tV2IslnVEYkX9l///2ExMRwAAhesIAAXT0jkiVK1qrFF126AFB5+XJiVPQlC6mMSP6xZg0Vli8HYPmdd9KsY0fLgUTylwfnzeOjIkUASO7WDU6etBtI8g2VEckfoqPhkUcAcD3+OA9/9JHlQCL5j5+fH9WXLGEHUOzcOQ7dfrtGZ5UsoTIi+YKrf384cACqVsVzwgT8/PxsRxLJl2645RZWdetGMlB2/XpiZ82yHUnyAZURyfPOfPwxnh98gHE4SH7vPdB5IiLZ6tEZM5heogQAHgMGwNGjlhNJXqcyInnb8eO4zh+eea9IERKvv95yIJH8z9fXl8aff87R0qUJOHcOnnhCh2vkqqiMSJ526M47CYqPZytQe/Fi/P39bUcSKRAaNW1KSHg4OJ2wdCksWGA7kuRhKiOSZ52ZNYuyP/xAErD6oYdocssttiOJFCz168OIEQAkPPYYHDliN4/kWSojkjcdOYLp2xeAd0uU4PEZMywHEimYkp55hr98ffE5c0ZX10imqYxInnSoSxcKJybyK9D4s8909YyIJV7+/nzdrRtJQNlffiH63XdtR5I8SGVE8p4lSyj7448kAesefpgbmjWznUikQHv0nXeYGRICgMfAgZjISMuJJK9RGZG85dQpOH94Jvrxx3n8wt1ERcQab29vmixbRgRQODFRh2skw1RGJG95+umUk+SuuYYSEyfi6+trO5GIAA1uuIGf+vQhESi3aRPR06bZjiR5iMqI5BmnP/0UZs/GOBwwaxaoiIjkKr0mTWJmqVIAeA4apMHQJN1URiRvOHuWxJ49Afi4eHHcTZrYzSMiF/H29uam5cv5u3BhCiUmQv/+tiNJHqEyInnCznvvJfjsWf4Bai1ZgoeHProiuVG9Ro2otnYteHrCokXw+ee2I0keoN/okuudDA+nWng4AGsfeIAGzZtbTiQiV9SgQcr5XUDio49iTp+2m0dyPZURydVMfDxn77sPD2BZ0aLcN2eO7Ugikh6jRhFVpAjex47xd5cuttNILqcyIrna1oceonxsLEeBSosX4+3tbTuSiKSHnx8r77oLgOrffsvxxYstB5LcTGVEcq/ff+eaJUsA+P6ee7hO954RyVMeePddFpcoAUBi9+6YuDjLiSS3UhmR3Ck5GXr1wmkMBxs1ovO8ebYTiUgGOZ1Orl2+nENAmbg4/rznHtuRJJdSGZHcadIk2LQJgoIo9/nneOnwjEieVOvGG/mxW7eUf4eHc3TFCsuJJDdSGZFcJ2rDBhKHDk15MGEClCljN5CIXJXOs2ezulgxnEDsffdhkpJsR5JcRmVEchXjdnPk9tvxTk7m9xIl4JFHbEcSkavkdDqp+PnnnHI4qBYTk/JHhsj/UBmRXOWn3r257sQJ4gDvDz4Ah8N2JBHJAjVuuonCs2YB4Bg9GnbutJxIchOVEck1jmzeTO3z44is79CBa9q3t5xIRLKS8+GHISwM4uNJevhhjMtlO5LkEiojkisYt5t/OnQgEPgzIIBbzl/SKyL5iMMB06eT7OuL14YN/NCjh+1EkkuojEiusLZvXxpHRZEI+H30EU4fH9uRRCQ7VKrEurZtAbjuo484+NNPlgNJbqAyItYlHzlC3ZkzAfi5dWuq3nGH5UQikp1uXrSIPwsXJgg40KkTxu22HUksUxkR65zPPENxl4sjJUtyo+7wKZLveXp7U3jhQhKAJsePs+bRR21HEstURsSu8HCYNw88PCj1xRc4/f1tJxKRHFCxfXs2d+gAQIPZs/ln0ybLicQmlRGx5sDWrcR1757yYMAAuOEGu4FEJEfduHgxfwcEUALYddttuHW4psBSGRErjDFsadcO/xMnOFm0KIwdazuSiOQwD19ffOfNwwW0PnqUpKVLbUcSS1RGxIovnnmGTgcPAnDmrbdAh2dECqRynTsT16cPAD4DBkB0tOVEYoPKiOS4/Tt2UOvNNwH448YbqaCxBkQKtMITJkC1anDoEObZZ3W4pgBSGZEcZYzhx7AwqhnDMW9vrv3yS9uRRMQ2f3+4MFT8jBl8NnCg3TyS41RGJEctef557t6/H4CkyZPxLFbMciIRyRVatGBr8+YA1HvnHXb/8YflQJKTVEYkx5w8coSar72GJ7CjYUPKPP647UgikovUWraMKB8fqhrDz+3b63BNAZKpMjJ16lQqV66Mr68voaGhrFu37rLLLlmyhDZt2lCyZEkCAwNp0qQJX331VaYDS95VbMYM6rjdxPj4UD083HYcEcllPIoUwUydCsC9hw6x8OmnLSeSnJLhMrJw4UIGDhzI8OHDiYiIoHnz5rRv357953e9/9v3339PmzZtCA8PZ/Pmzdxyyy106tSJiIiIqw4vecjWramX7wbOmYNHSIjlQCKSG4U88gi7rr8eT6DOxIns/PNP25EkBziMMSYjL2jcuDENGzZk2rRpqfNq1apF586dGTduXLrWUbt2bbp27crIkSMv+XxCQgIJCQmpj2NiYihfvjzR0dEEBgZmJK7kAv/s2UOpu+/GJyICOnWCzz9PuXuniMglmGPHiC5bliJJScwsV45H9u3D09PTdizJhJiYGIKCgv7z+ztDe0YSExPZvHkzYWFhaeaHhYWxYcOGdK3D7XYTGxtLsSucuDhu3DiCgoJSp/Lly2ckpuQibreb5W3a4BMRQZK/P0ybpiIiIlfkKFmS5POX//c4eJCob7+1nEiyW4bKyPHjx3G5XIT8axd7SEgIR44cSdc6JkyYwNmzZ7n33nsvu8ywYcOIjo5OnQ4cOJCRmJKLfPTCC/TasweA6OHDoWxZy4lEJC8o0bcvJ2+6CW+g9PDhkJxsO5Jko0ydwOr411+2xpiL5l3Kxx9/zIsvvsjChQsJDg6+7HI+Pj4EBgammSTv+Xv7dq4dNw4/YP+111Ji2DDbkUQkr3A4KLZgAQQGws8/wxtv2E4k2ShDZaREiRJ4enpetBckKirqor0l/7Zw4UJ69erFokWLaN26dcaTSp7idrtZ264docYQ63RSbuVKHZ4RkYwpWxYmTQIgecQI5g0dajmQZJcMlRFvb29CQ0NZvXp1mvmrV6+madOml33dxx9/TM+ePZk/fz4dO3bMXFLJUxY8/TTdz19hFT9hAh4670dEMqNHD440aoTT5aL2a6+x7bffbCeSbJDhwzSDBw9m1qxZzJ49m+3btzNo0CD2799Pn/M3Oho2bBjdL9wWnpQi0r17dyZMmMCNN97IkSNHOHLkCNG6GVK+9fcff9Bg4kS8gN2hoZR86inbkUQkr3I4CPn8c2K9vGhgDD906ECyzh/JdzJcRrp27crEiRMZM2YM9evX5/vvvyc8PJyKFSsCEBkZmWbMkenTp5OcnEzfvn0pXbp06jRgwICs+ykkV6k0cya1jOGktzdVdHhGRK6So0wZkt56C4CHDx/mA927Jt/J8DgjNqT3OmXJBb79Fm69FQDXsmV4dupkOZCI5AvG8M8NN1Bx0yb+dDhwbNpE7YYNbaeS/5At44yIXMmx3bsxPXumPHjsMRUREck6DgcVvvyS097e1DGGjR07kpSUZDuVZBGVEckSLpeLn5o0wbF/P0kVKsCECbYjiUg+4wgOTr13TY8jR9g6e7blRJJVVEYkS3z+yCN0OnYMN3DqrbegUCHbkUQkHyraqxeHWrbEE6j/1ltw7pztSJIFVEbkqu1Yt46bPvgAgK3t2xPcpYvlRCKSn5VdvBhKl4YdO2DECNtxJAuojMhVSU5K4vDttxMM7CtUiDpLltiOJCL5XbFiMHMmAOatt1j+7LOWA8nVUhmRq7LigQe45fRpEgH/xYtx+PrajiQiBUHHjpy6804cxlD79df5ff1624nkKqiMSKbtWL2amz/9FIA/776b4H/dzVlEJDsVmTOHKH9/qgA7b7+dxMRE25Ekk1RGJHPcbsqNHEkQsL1oURrMn287kYgUMI6gILzmzQPg7pMnWXRhaAHJc1RGJHPeeYeAn37C+PtTdvVqHF5ethOJSAFU9M472dmhAwC3fvwxv33zjeVEkhkqI5JhSX/8Ac89B4DjjTcIDA21nEhECrIan37KwcKFKQMc7tKFhIQE25Ekg1RGJEOS4uLYdeONEB+Pu00bOH+DRBERa/z8CPj0U5KB9tHRrOvXz3YiySCVEcmQ9R07cm1cHKcdDk689ppugiciuULRsDD+vvdeAFotWQKHD1tOJBmhMiLptuOjj7jpu+8A2Na3LyXr17eaR0Tkf10zbx40bIjj5Eno3Rty/31g5TyVEUmXxOhovHr1wgmsL1uWJpMm2Y4kIpKWlxd88AH4+MCKFfz21FO2E0k6qYxIumxu25YqCQkc8fCgxpo1ODz00RGRXKh2beKGDwegypQp/LZ0qeVAkh76RpH/tHP6dJps3Jjy72efpeQ111hOJCJyef7PP8/24GAKA0kPPkj82bO2I8l/UBmRK4uOpuz5G1GtrlKFm8eNsxxIROQ/eHpSasUKzjgcNDp3jjW33WY7kfwHlRG5soEDCTh+nKQKFai/Zo3tNCIi6VK0YUP+fvJJANp89x2/aZToXE1lRC7vs89g7lxwOPCaP5+SlSvbTiQikm71336bLWXL4gM4H3mEczExtiPJZaiMyCUlHDjA6a5dUx48+yw0a2Y3kIhIRjkcVFq9mpMOB7UTEthwfth4yX1URuRixrC7VSuKJCayzenk3NChthOJiGRKkVq12PvMMwDc+tNP8MsvlhPJpaiMyEX2vPgi1+7aRSIQOX48fkWK2I4kIpJpoePHY+67D4fLBd27w7lztiPJv6iMSBrxO3dScuxYAJbUq0erwYMtJxIRuXqOKVOgdGn46y9OPP647TjyLyoj8v/cbg62aUNht5tfvLxos2qV7UQiIlmjWDFcM2YAUPzDD/ldo0jnKiojkmrPs89Sbf9+4oCYyZMpHhxsO5KISJbxvO021tasCUDxp5/mbGSk5URygcqIpNi1i7Ln/1L49PrradWnj+VAIiJZr/6aNfzj6UnZ5GT+aNXKdhw5T2VEwOWCnj3xSU7mSJ06dFqxwnYiEZFsEVSuHEfHj8cN3Lh9O39qVOlcQWVEYMIE2LABChem1JdfUrR4cduJRESyzQ1DhrD6uusAKDViBGf27rWcSFRGCrhzv/xC8vPPpzyYNAkqVLAbSEQkBzRZvZodXl6UcLvZ1aYNGGM7UoGmMlKQJSVxomNHnC4X64KCMD162E4kIpIjAoODOT1pEklAg927QfeusUplpAD757HHKHfsGCeApClTcHjo4yAiBUfjJ56AF15IedCvHxw8aDdQAaZvnwLq3Lp1lJ07F4BPbrmFWx980G4gERELvEaOhOuvh9OnSe7RQ4drLFEZKYji44m+4w6cwDI/P+5futR2IhERO5xO+OADkr28cH7zDdsHDrSdqEBSGSmA9vfsSalTpzgCFP7gA4KCgmxHEhGx55pr+KxxYwAqvv02sRERlgMVPCojBc3GjZRduBCAxW3bcsvdd1sOJCJiX7svv2SDry/+xnC0ffuU8Zckx6iMFCQJCfDII3gCm2rVotuiRbYTiYjkCoUCA/GYO5cYoNrRo+x87DHbkQoUlZGC5OWXYds2CA6m0bp1BAYG2k4kIpJr3Ni1K1+0bg1ApdmziV2/3nKigkNlpIA4u2ED7ldeSXnwzjugUVZFRC5yx9KlrPH3xxs4dfvtkJhoO1KBoDJSECQnc7xzZzxcLiIqVwadJyIickkBhQpRaP58jgEVTp7EvPii7UgFgspIAbCrTx8qHjvGSSDu9dfB4bAdSUQk17rxjjtwT5kCgGP8ePjxR8uJ8j+VkXzuzObNlH/vPQC+bNWKZnfdZTmRiEjuF/Lkk/DQQ+B2Yx55BOLjbUfK11RG8jO3myMdO+ILrPXz404NbiYikn6TJpFcogSOv/5iZ8+ettPkayoj+dj2fv2odvQosYDv++9TqHBh25FERPKOYsVYcNNNAFReuJCYdessB8q/VEbyqcSdO6nw7rsArGzZksb33GM5kYhI3nPX/PmsKlQIL+BE586QnGw7Ur6kMpIfGYN3374EGMMfRYvSYdky24lERPIkPz8/in/8MaeAyidPsq13b9uR8iWVkfxozhxYswZ8fam7cSMBOjwjIpJpobfdxpr27QGo/P77nNq40XKi/EdlJJ+J3r4d14W7To4ZA9WrW80jIpIfdFq8mPUBAfgBR26/Hdxu25HyFZWR/MQYdrdti2dsLCcqV4ZBg2wnEhHJF3z9/AiYN48zQK2oKM5NmmQ7Ur6iMpKPbH7uORoeOEAicGD0aHA6bUcSEck36nfuzMEnngDAb9QoOHDAcqL8Q2Uknzi1cycVJ0wA4LumTanfrZvlRCIi+c81b78NTZpAbCw88QQYYztSvqAykk9sb9uWEm43O7y9aR4ebjuOiEj+5OkJs2ZhvL3hyy/5efBg24nyBZWRfOCn4cNpum8fLiBx2jT8goJsRxIRyb+uvZaNbdoAUHXSJI5t22Y5UN6nMpLHndyzh4qvvgrADzfcQN1HHrGcSEQk/2u4YAE7fH0pbgw72rWzHSfPUxnJ44JefpnSbjf/eHvTeOVK23FERAoE70KFMDNn4gJuOnCAdc89ZztSnqYykpd9/TWes2cDUHbFCnyLFrUcSESk4LjmoYf4qWlTAKq9/jpRu3ZZTpR3qYzkUTGHD2MuDEv85JM4b73VbiARkQLo+i+/ZL+3N6WNYUtYGEZX12RKpsrI1KlTqVy5Mr6+voSGhrLuCncyjIyM5IEHHqBmzZp4eHgw8MLooHJV1rdsiWPfPhJLl4bz54yIiEjO8i5ShMQpUwAI27ePgx9+aDlR3pThMrJw4UIGDhzI8OHDiYiIoHnz5rRv3579+/dfcvmEhARKlizJ8OHDqVev3lUHFvjmpZdoe3534L7hw0H3nhERsaZa797suOUWAMqPGQNxcZYT5T0Ok8F9So0bN6Zhw4ZMmzYtdV6tWrXo3Lkz48aNu+JrW7ZsSf369Zk4cWKGQsbExBAUFER0dDSBgYEZem1+E7V/P9FVqlDd5WJzvXqEbtliO5KIiERHQ+3acOgQDB4M5wehLOjS+/2doT0jiYmJbN68mbCwsDTzw8LC2LBhQ+aSXkJCQgIxMTFpJgFjDD+EhVHd5eKY00ndr76yHUlERACCgmD6dADMW2/x/fjxlgPlLRkqI8ePH8flchESEpJmfkhICEeOHMmyUOPGjSMoKCh1Kl++fJatOy9b/eqr3L5jBwCxr72G97/+O4iIiEUdOxLZujUOYwh5/nkO79ljO1GekakTWB0OR5rHxpiL5l2NYcOGER0dnTod0M2IOHrgAGVeeAEn8Gft2lTRHXlFRHKdkh99xHGnk5puN+t1dU26ZaiMlChRAk9Pz4v2gkRFRV20t+Rq+Pj4EBgYmGYq6HwmTqSOy8UpT09q6PCMiEiu5AwOJu78+SJ37t7Nl6NHW06UN2SojHh7exMaGsrq1avTzF+9ejVNzw/8Itngzz8p8vbbAHi88w7eZctaDiQiIpdToX9/tl13HU6g8ksvcWjvXtuRcr0MH6YZPHgws2bNYvbs2Wzfvp1Bgwaxf/9++vTpA6QcYunevXua12zZsoUtW7Zw5swZjh07xpYtW9imGwuliyshAR55BJKS4PbbCXr8cduRRETkP9RYuZKTTie13W6+0+Ga/+TM6Au6du3KiRMnGDNmDJGRkdSpU4fw8HAqVqwIpAxy9u8xRxo0aJD6782bNzN//nwqVqzIvn37ri59PmeM4cPQUHpu3YoJCsIxbRpk4bk5IiKSPZylSxM3fjzFhgzh3r//5od33qH5U0/ZjpVrZXicERsK6jgjn73+Om2ffRY/4OCYMZR74QXbkUREJL2MYXeDBlT97TdMgwY4Nm4ELy/bqXJUtowzIjnn8MGDBA8bhh+wp1o1yo0YYTuSiIhkhMNB1ZUroVgxHBER8NprthPlWiojuZAxhmVt29LU5SLOw4MKK1bo8IyISF5UqhRMmgSAGTOGX+bOtZsnl1IZyYWWvvoqPc6f4Bs9bBjOatUsJxIRkUx78EHibr0VR2IiHr168c/u3bYT5ToqI7nMwX37qPDCC/gBe6tXp/SYMbYjiYjI1XA48Jkzh1hPT0Ldbr5q105X1/yLykgukzB6NI1cLmI9PSm/ahV46D+RiEhe51mhAmfP/3HZ/e+/WaQ/NNPQN11u8uuvVJ03D4C48eNxVqpkN4+IiGSZUsOGse+aa/AFqowZw95du2xHyjVURnKL+Hjo3h2Sk+GuuwgZPNh2IhERyUoOBxW++opYT0+ud7v5pm1b3G637VS5gspILmCMYUWjRrB1K4SEgAY3ExHJlzwqVODs+PEAdNu7l6WjRllOlDuojOQCXzz7LG23bgXg1OuvQ8mSlhOJiEh2KTV4MLuvuw5v4I7FiyEhwXYk61RGLNu/dSt1JkzAA/jzhhso2q2b7UgiIpKdHA6qrF4NJUvi3L4dtHdEZcQmYwx/hIVR2RgifXyotXKl7UgiIpIDHMHBMGMGAOb11zm4aJHlRHapjFi0ol8/Oh4+DIBr1iw8ixa1nEhERHJM584kPfAADreb+PvuY/fvv9tOZI3KiCX//PorDadNA+DXFi0o99BDlhOJiEhO83z7baJ8fKhmDFvatSuwV9eojNhgDOd69qSUMezz86P+l1/aTiQiIhZ4FCuGe9YsAO6KjGRp376WE9mhMmLDggVc88cfuD08cM6fj0dAgO1EIiJiSamHHmJrixYANJ4+nb83bbKcKOepjOS0Q4fgyScB8Bg5knKdO9vNIyIi1l37xRcc8vOjnDHs6tABl8tlO1KOUhnJQW6Xi10tWsDp09CoETz/vO1IIiKSCzgKFcJz3jxcQPtjx/iid2/bkXKUykgOWvvAA1TfvZsEIHHWLPDysh1JRERyiVJduvBnu3YAtP/sM4iKshsoB6mM5JB/vv6aG85fR/7LXXfhXa+e5UQiIpLbXLd0Ka7atfE+fRoeewyMsR0pR6iM5AB3UhIxd95JALClSBGaLlhgO5KIiORCDl9fPD/6KGXP+eefkzBzpu1IOUJlJAds6NKFurGxxADFly/Hw+m0HUlERHKrevUwo0cDkNCnD7vWrLEcKPupjGSzfcuWccMXXwDwa/fulL/pJsuJREQk13vmGbYVLUqgMUR36UJyYqLtRNlKZSQ7JSTg6NEDb2BDiRK0mDPHdiIREckDHE4nxZYt4yzQKDaW7+66y3akbKUykp1Gj6bi6dOc8fOj/IoVODy0uUVEJH1K3XQTv3fvDkCzL75g17JllhNlH307ZpcNG2D8eAAKffgh5Rs1shxIRETymhvnzGFzyZL4AYn3309SXJztSNlCZSQbuGJiiL3rLnC7oVs3yOe710REJHs4PDwou2IFpxwOasfF8WOnTrYjZQuVkWzwW7t2FD5yhON+fjB5su04IiKSh5UKDeXPJ54AoNm330I+vHeNykgW+2fGDBr++CMAm598EooUsRtIRETyvJveeYeY9u3xNCZlj/u5c7YjZSmVkSyUfOwYfv36AbC8YkXCXn/dciIREckPHA4HgR9+CKVLw19/YYYOtR0pS6mMZKG/wsIITkribw8PQtesweFw2I4kIiL5RfHi8N57ADgmT+bvGTMsB8o6KiNZZP9bb1FnyxZcwM7hwylTrZrtSCIikt+0b8+aqlUBCOjXj8RjxywHyhoqI1nAHD1K4WefBWBxtWq0Pz+Mr4iISFa7btUq9np4UDopia1t2tiOkyVURq6WMTj69KFocjK7/f25adUqHZ4REZFsE1ylCntGjcINNPjtN3a/8YbtSFdNZeRqffQRfPYZOJ1UXb+eMpUr204kIiL5XKuRI1lWsyYARYcOJfHgQcuJro7KyFVI2rsX15NPpjwYNQrq17eaR0RECo5ma9awzdOTYi4Xu1u1AmNsR8o0lZHMMoZ/wsLwjI3lSIUKkM8usxIRkdytZLlyHHr1VRKBWjt34po923akTFMZyaT9o0ZR7e+/iQc2P/UUOJ22I4mISAHT5umn2fXQQwB4DhoE//xjOVHmqIxkQuKOHRR/+WUAPq5Thw5DhlhOJCIiBVXtuXOhaVOIjYWePVPui5bHqIxklNvNobZtCXC7+dHppMNXX+nqGRERscfTE95/H+PvD999xz958A9klZEMOvDss1T+5x/OACcnTCCkTBnbkUREpKCrVo2lzZoBUGrSJBIiIiwHyhiVkQxI/OMPSr75JgDzGzSgY//+lhOJiIikaDF/Pt96e+NjDMfat4ekJNuR0k1lJL1cLrwefRRfY/jex4c7V660nUhERCRV8RIlSHr3XU4C5Y4eZf9TT9mOlG4qI+k1aRKOjRshMJAb/viDksHBthOJiIikEfbwwyy6cLhmxgziN2+2nCh9VEbSIXHrVszw4SkPJkzAt3p1u4FEREQuo+uyZaz28cHbGKJuuw2Sk21H+k8qI//F7eZQ+/Y44uOJbtQIevWynUhEROSyihYrhmP6dKKBCkeOcHbsWNuR/pPKyH/YN2wYlQ8c4CzwU69eoMt4RUQkl2vdowcb770XgIBXX4UdOywnujKVkSuI37GDkufvhvhpaCht+/SxnEhERCR9whYsgLAwSEhI2avvctmOdFkqI5djDPvbtSPA7eZnLy9uW7HCdiIREZH0czhgxgwoVAjWr2dvLh4MTWXkMnaPHEmNffuIB2InTqR4yZK2I4mIiGRMxYr8fPfdAJSaPJm4P/6wHOjSHMbk/nsOx8TEEBQURHR0NIGBgdn+fud27yaxRg2C3G4WNGzIfXnk0igREZF/iz51iq2lS9M0IYFdZctSff9+8MiZfRHp/f7WnpF/MwaPfv0Icrv5zcuLthrcTERE8rCgokVJnjaNs0D1Q4fY+fTTtiNdRGXk3xYtwmflSoyXF8FffEFRHZ4REZE87uaHH2Z5kyYAlJk4kbPbtllOlJbKyP9wHz0K/foB4Bg+nNJhYZYTiYiIZI0O4eH84uNDofMXaJCLztJQGfkfW26+GY4fx3XttTBsmO04IiIiWSawSBGS3n2Xc0CtAwc4MGaM7UipVEbO2/rKKzTcuRMX8MsTT4C3t+1IIiIiWappz558e8stAJSbOBEiI+0GOk9lBDh78CAlRo4EYFXdutx4/lCNiIhIftNh1SoIDcVx+nTqqQm2ZaqMTJ06lcqVK+Pr60toaCjr1q274vJr164lNDQUX19fqlSpwrvvvpupsNnlj7AwQlwudjudNF21ynYcERGR7ON0wnvvpfzvkiXsOT/SuE0ZLiMLFy5k4MCBDB8+nIiICJo3b0779u3Zv3//JZffu3cvHTp0oHnz5kRERPD888/Tv39/Fi9efNXhs8Lvb7zBjdu34wZOvPYaQaVK2Y4kIiKSverVI7JHDwAKPfccMfv2WY2T4UHPGjduTMOGDZk2bVrqvFq1atG5c2fGjRt30fLPPfccy5YtY/v27anz+vTpw2+//caPP/6YrvfMrkHPzkRGEl2+PGVdLr6pXZtb//wzy9YtIiKSm505cYIjpUtTLSmJ9TVq0CwbbqaXLYOeJSYmsnnzZsL+dclrWFgYGzZsuORrfvzxx4uWb9u2LZs2bSIpKemSr0lISCAmJibNlB3iBgygrMvFAU9PGunwjIiIFCCFihcn9q23cAPNdu4k8csvrWXJUBk5fvw4LpeLkJCQNPNDQkI4cuTIJV9z5MiRSy6fnJzM8ePHL/macePGERQUlDqVL18+IzHTxxiCg4MxDgfx77xDYJkyWf8eIiIiuViDvn052LkzJigI77g4azkydQKrw+FI89gYc9G8/1r+UvMvGDZsGNHR0anTgQMHMhPzyhwOeOcdHDt2UL1Pn6xfv4iISB5Q4cMPcWzbBvfcYy2DMyMLlyhRAk9Pz4v2gkRFRV209+OCUqVKXXJ5p9NJ8eLFL/kaHx8ffHx8MhIt86pXz5n3ERERyY0KFUqZLMrQnhFvb29CQ0NZvXp1mvmrV6+madOml3xNkyZNLlp+1apVNGrUCC8vrwzGFRERkfwmw4dpBg8ezKxZs5g9ezbbt29n0KBB7N+/nz7nD3UMGzaM7t27py7fp08f/vnnHwYPHsz27duZPXs27733Hk/nwrsGioiISM7L0GEagK5du3LixAnGjBlDZGQkderUITw8nIoVKwIQGRmZZsyRypUrEx4ezqBBg5gyZQplypRh8uTJ3HXXXVn3U4iIiEieleFxRmzIrnFGREREJPtkyzgjIiIiIllNZURERESsUhkRERERq1RGRERExCqVEREREbFKZURERESsUhkRERERq1RGRERExCqVEREREbEqw8PB23BhkNiYmBjLSURERCS9Lnxv/9dg73mijMTGxgJQvnx5y0lEREQko2JjYwkKCrrs83ni3jRut5vDhw9TuHBhHA5Hlq03JiaG8uXLc+DAAd3zJptpW+cMbeecoe2cM7Sdc0Z2bmdjDLGxsZQpUwYPj8ufGZIn9ox4eHhQrly5bFt/YGCgPug5RNs6Z2g75wxt55yh7Zwzsms7X2mPyAU6gVVERESsUhkRERERqwp0GfHx8WHUqFH4+PjYjpLvaVvnDG3nnKHtnDO0nXNGbtjOeeIEVhEREcm/CvSeEREREbFPZURERESsUhkRERERq1RGRERExKp8X0amTp1K5cqV8fX1JTQ0lHXr1l1x+bVr1xIaGoqvry9VqlTh3XffzaGkeVtGtvOSJUto06YNJUuWJDAwkCZNmvDVV1/lYNq8LaOf6QvWr1+P0+mkfv362Rswn8jodk5ISGD48OFUrFgRHx8fqlatyuzZs3Mobd6V0e380UcfUa9ePfz9/SldujQPP/wwJ06cyKG0edP3339Pp06dKFOmDA6Hg88+++w/X5Pj34UmH1uwYIHx8vIyM2fONNu2bTMDBgwwAQEB5p9//rnk8nv27DH+/v5mwIABZtu2bWbmzJnGy8vLfPrppzmcPG/J6HYeMGCAGT9+vPn555/Nzp07zbBhw4yXl5f59ddfczh53pPRbX3B6dOnTZUqVUxYWJipV69ezoTNwzKznW+//XbTuHFjs3r1arN3716zceNGs379+hxMnfdkdDuvW7fOeHh4mEmTJpk9e/aYdevWmdq1a5vOnTvncPK8JTw83AwfPtwsXrzYAGbp0qVXXN7Gd2G+LiM33HCD6dOnT5p511xzjRk6dOgll3/22WfNNddck2be448/bm688cZsy5gfZHQ7X8q1115rRo8endXR8p3MbuuuXbuaESNGmFGjRqmMpENGt/OKFStMUFCQOXHiRE7Eyzcyup1ff/11U6VKlTTzJk+ebMqVK5dtGfOb9JQRG9+F+fYwTWJiIps3byYsLCzN/LCwMDZs2HDJ1/z4448XLd+2bVs2bdpEUlJStmXNyzKznf/N7XYTGxtLsWLFsiNivpHZbT1nzhx2797NqFGjsjtivpCZ7bxs2TIaNWrEa6+9RtmyZalRowZPP/00586dy4nIeVJmtnPTpk05ePAg4eHhGGM4evQon376KR07dsyJyAWGje/CPHGjvMw4fvw4LpeLkJCQNPNDQkI4cuTIJV9z5MiRSy6fnJzM8ePHKV26dLblzasys53/bcKECZw9e5Z77703OyLmG5nZ1rt27WLo0KGsW7cOpzPf/t89S2VmO+/Zs4cffvgBX19fli5dyvHjx3nyySc5efKkzhu5jMxs56ZNm/LRRx/RtWtX4uPjSU5O5vbbb+ftt9/OicgFho3vwny7Z+QCh8OR5rEx5qJ5/7X8peZLWhndzhd8/PHHvPjiiyxcuJDg4ODsipevpHdbu1wuHnjgAUaPHk2NGjVyKl6+kZHPtNvtxuFw8NFHH3HDDTfQoUMH3nzzTebOnau9I/8hI9t527Zt9O/fn5EjR7J582ZWrlzJ3r176dOnT05ELVBy+rsw3/6pVKJECTw9PS9q2FFRURc1vgtKlSp1yeWdTifFixfPtqx5WWa28wULFy6kV69efPLJJ7Ru3To7Y+YLGd3WsbGxbNq0iYiICPr16wekfGkaY3A6naxatYpbb701R7LnJZn5TJcuXZqyZcumuVV6rVq1MMZw8OBBqlevnq2Z86LMbOdx48bRrFkznnnmGQCuu+46AgICaN68OWPHjtXe6yxi47sw3+4Z8fb2JjQ0lNWrV6eZv3r1apo2bXrJ1zRp0uSi5VetWkWjRo3w8vLKtqx5WWa2M6TsEenZsyfz58/X8d50yui2DgwM5I8//mDLli2pU58+fahZsyZbtmyhcePGORU9T8nMZ7pZs2YcPnyYM2fOpM7buXMnHh4elCtXLlvz5lWZ2c5xcXF4eKT92vL09AT+/y93uXpWvguz7dTYXODCZWPvvfee2bZtmxk4cKAJCAgw+/btM8YYM3ToUNOtW7fU5S9czjRo0CCzbds289577+nS3nTI6HaeP3++cTqdZsqUKSYyMjJ1On36tK0fIc/I6Lb+N11Nkz4Z3c6xsbGmXLly5u677zZbt241a9euNdWrVze9e/e29SPkCRndznPmzDFOp9NMnTrV7N692/zwww+mUaNG5oYbbrD1I+QJsbGxJiIiwkRERBjAvPnmmyYiIiL1Eurc8F2Yr8uIMcZMmTLFVKxY0Xh7e5uGDRuatWvXpj7Xo0cP06JFizTLf/fdd6ZBgwbG29vbVKpUyUybNi2HE+dNGdnOLVq0MMBFU48ePXI+eB6U0c/0/1IZSb+Mbuft27eb1q1bGz8/P1OuXDkzePBgExcXl8Op856MbufJkyeba6+91vj5+ZnSpUubBx980Bw8eDCHU+ct33777RV/5+aG70KHMdq3JSIiIvbk23NGREREJG9QGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpUREbHi448/xtfXl0OHDqXO6927N9dddx3R0dEWk4lITtON8kTECmMM9evXp3nz5rzzzjuMHj2aWbNm8dNPP1G2bFnb8UQkBzltBxCRgsnhcPDyyy9z9913U6ZMGSZNmsS6detUREQKIO0ZERGrGjZsyNatW1m1ahUtWrSwHUdELNA5IyJizVdffcVff/2Fy+UiJCTEdhwRsUR7RkTEil9//ZWWLVsyZcoUFixYgL+/P5988ontWCJigc4ZEZEct2/fPjp27MjQoUPp1q0b1157Lddffz2bN28mNDTUdjwRyWHaMyIiOerkyZM0a9aMm2++menTp6fOv+OOO0hISGDlypUW04mIDSojIiIiYpVOYBURERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERser/ACE4ys8Frf2nAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd40lEQVR4nO3de3yO9ePH8de984ZtOWwOmxk55zglJBXm0JfopBIpik6S9I345pBSpJCo5NBBUpQOjkuFUsqiAyLn02aO28zO9+f3B/ZrOW2z7bN7ez8fj/vxcF/3dV/3e1fL/XYdPh+HMcYgIiIiYomb7QAiIiJSsqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVh+0AOeF0Ojl48CBlypTB4XDYjiMiIiI5YIwhMTGRypUr4+Z24eMfLlFGDh48SGhoqO0YIiIikgf79u0jJCTkgq+7RBkpU6YMcPqH8ff3t5xGREREciIhIYHQ0NCs7/ELcYkycvbUjL+/v8qIiIiIi7nUJRa6gFVERESsUhkRERERq1RGRERExCqXuGZERKS4yMzMJD093XYMkXzh6emJu7v7ZW9HZUREpBAYY4iNjeXEiRO2o4jkq8DAQCpWrHhZ44CpjIiIFIKzRSQoKAg/Pz8N4CguzxjDqVOniIuLA6BSpUp53pbKiIhIAcvMzMwqIuXKlbMdRyTf+Pr6AhAXF0dQUFCeT9noAlYRkQJ29hoRPz8/y0lE8t/Z3+vLuRZKZUREpJDo1IwUR/nxe60yIiIiIlblqYxMmzaN8PBwfHx8iIiIYM2aNRdc97vvvsPhcJzz+Ouvv/IcWkRERIqPXJeR+fPnM2jQIIYPH86GDRto3bo1nTp1Yu/evRd939atW4mJicl61KxZM8+hRURE/u2vv/7i2muvxcfHh8aNG9uOI7mQ6zLy6quv0rdvX/r160fdunWZNGkSoaGhTJ8+/aLvCwoKomLFilmP/BgkRURc35EjRzh16pTtGFKEORwOFi1adMn1Ro4cSalSpdi6dSsrV64s+GCSb3JVRtLS0oiOjiYyMjLb8sjISNauXXvR9zZp0oRKlSrRtm1bvv3224uum5qaSkJCQraHiBQ/n3zyCUFBQbRp0wan02k7jri4HTt2cN111xEWFqZbqF1MrsrIkSNHyMzMJDg4ONvy4OBgYmNjz/ueSpUq8fbbb7Nw4UI+/fRTateuTdu2bVm9evUFP2fcuHEEBARkPUJDQ3MTU0RcQExMDP379yc0NJQPPvgAN7eSeT19UlLSBR8pKSk5Xjc5OTlH6+aWMYbx48dTvXp1fH19adSoEQsWLMh6rV27dnTs2BFjDAAnTpygatWqDB8+HDg9xkrfvn0JDw/H19eX2rVrM3ny5HM+Z9asWdSvXx9vb28qVarEY489BkC1atUA6N69Ow6HI+v5vzkcDqKjoxkzZgwOh4NRo0bl+mcVi0wuHDhwwABm7dq12ZaPHTvW1K5dO8fb+c9//mO6dOlywddTUlJMfHx81mPfvn0GMPHx8bmJKyJFlNPpNF26dDGAadq0qUlLS7MdqUAlJyebzZs3m+Tk5HNeAy746Ny5c7Z1/fz8LrhumzZtsq1bvnz5866XW88++6ypU6eOWbZsmdmxY4eZPXu28fb2Nt99950xxpj9+/ebK664wkyaNMkYY0yPHj1Ms2bNsv6bpqWlmeeee878/PPPZufOneaDDz4wfn5+Zv78+VmfMW3aNOPj42MmTZpktm7dan7++Wfz2muvGWOMiYuLM4CZPXu2iYmJMXFxcefNGRMTY+rXr2+eeuopExMTYxITE3P9s0reXOz3Oz4+Pkff37kagbV8+fK4u7ufcxQkLi7unKMlF3PttdfywQcfXPB1b29vvL29cxNNRFzIBx98wJdffomnpydz5szB09MTYwyzZs0iMjJSR0OLiKSkJF599VW++eYbWrRoAUD16tX5/vvveeutt2jTpg1VqlThrbfeolevXhw6dIgvv/ySDRs24OnpCZyeSG306NFZ2wwPD2ft2rV8/PHH3HnnnQCMHTuWp556iieeeCJrvauvvhqAChUqAP8//8mFVKxYEQ8PD0qXLn3R9aRoylUZ8fLyIiIigqioKLp37561PCoqiltuuSXH29mwYcNljWEvIq7r4MGDDBw4EIBRo0bRoEEDAIYOHcr48eOJjIxk2bJlJWaAsJMnT17wtX9f6H92DpDz+fdprt27d19WLoDNmzeTkpJC+/btsy1PS0ujSZMmWc/vuOMOPvvsM8aNG8f06dOpVatWtvXffPNN3nnnHfbs2UNycjJpaWlZd7vExcVx8OBB2rZte9l5xXXlem6awYMH06tXL5o1a0aLFi14++232bt3LwMGDABg2LBhHDhwgPfeew+ASZMmUa1aNerXr09aWhoffPABCxcuZOHChfn7k4hIkWeM4aGHHuLEiRM0a9aM//73v1mvPfDAA0yZMoUVK1bwzjvv8OCDD1pMWnhKlSplfd0LOXtR8eLFi6lSpUq21/559PrUqVNER0fj7u7O33//nW29jz/+mCeffJKJEyfSokULypQpw4QJE1i3bh3w/3ObSMmW6zLSo0cPjh49ypgxY4iJieGqq65iyZIlhIWFAacvSvvnmCNpaWkMGTKEAwcO4OvrS/369Vm8eDGdO3fOv59CRFxCeno6oaGhBHp5sbBPHzxGjoQDB8DHh9rh4cx66CHumTKFp556isjIyKy/V8SOevXq4e3tzd69e2nTps0F13vqqadwc3Nj6dKldO7cmZtvvpmbbroJgDVr1tCyZUseeeSRrPV37NiR9ecyZcpQrVo1Vq5cyY033nje7Xt6epKZmZlPP5UUSQVzOUv+yukFMCJSxB0/bszQoSazTBlj4LyPXb6+pjeYdjfdZJxOp+3E+eJiF/gVdcOHDzflypUzc+bMMdu3bze//vqrmTp1qpkzZ44xxpivvvrKeHl5mejoaGOMMSNGjDAhISHm2LFjxhhjJk2aZPz9/c2yZcvM1q1bzYgRI4y/v79p1KhR1mfMmTPH+Pj4mMmTJ5tt27aZ6OhoM2XKlKzXa9asaR5++GETExOTtd3zadSokRk5cmT+7wS5qPy4gFVlREQKnNPpNM4vvjCmUqX/Lx5VqxrTr58xL7xgzMiRxtx6qzGlS2e9vgbMB2PH2o6eL1y5jDidTjN58mRTu3Zt4+npaSpUqGA6dOhgVq1aZeLi4kxwcLB58cUXs9ZPT08311xzjbnzzjuNMafvjuzTp48JCAgwgYGB5uGHHzZDhw7NVkaMMebNN9/M+oxKlSqZxx9/POu1L774wlx55ZXGw8PDhIWFXTCryogd+VFGHMacuTm8CEtISCAgIID4+Hj8/f1txxGR3DCG9bfeSrOzI2jWqgXjx0OXLvDvsUUSEmDaNNJGjcIrNZUTgMfnn1O6a9dCDp2/UlJS2LVrV9acXiLFycV+v3P6/V0yRxkSkcLhdHKyZ8+sIrKhVSv47Te45ZZziwiAvz8MHYrHli3sqFCBQKD0HXdADoYCFxHXpTIiIgXDGMyjj1J63jwygZerV6fhqlWQgyMDbuHh1Ni3D269FdLS4Lbb4PPPCz6ziFihMiIiBWP0aBxvvokT6OfpSbclS3I3Qaa3N8yfD717g9OJs0cPuMQcWCLimlRGRCT/LVgAZ0bd7A80fPllateunfvteHiwsHNnlri54ZaaiunaFfbsyd+sImKdyoiI5K/ffsPcdx8ArwJbWrXKGnE1L5pcfTV9fHxYDziOHoU77oDU1PzJKiJFgsqIiOSfkyfh9ttxnDrFD6VKMdLHh9mzZ+fu9My/VK9enVETJnA7cAzgl1/gqafyK7GIFAEqIyKSf558ErZvh5AQIrZtY2lUFDVr1rzszQ4YMIAaN91Er7ML3ngDPv30srcrIkWDyoiI5I9PP4V33gGHA957D5/KlbnuuuvyZdNubm7MnDmT1aVL89LZhf37w0UmjhMR16EyIiKX7/BheOghAH66/noyWrfO94+oVq0ar7zyCiOB3x0OOHIEHn749HitIoWgT58+dOvWzXaMPLnhhhsYNGiQ7RgXpDIiIpfvqafg6FH+dDi4ftUqPv744wL5mIceeoj2N9/Mz48+ivH0PH00Zt68AvksOW316tV06dKFypUr43A4WHSeAegOHTpEnz59qFy5Mn5+fnTs2PGc2Xv/bffu3TgcDjZu3FgwwQvA5MmTmTNnju0YefLpp5/y/PPP245xQSojInJ5oqLg/fdxAn2NodUNN3DXXXcVyEc5HA6+/PJL+r3+Oo7nnju9cNAgOHasQD5PICkpiUaNGjF16tTzvm6MoVu3buzcuZPPP/+cDRs2EBYWRrt27UhKSiqUjOnp6YXyOQEBAQQGBhbKZ+WXs/umbNmylClTxnKaiyiQWXPymSbKEymikpKMqV7dGDCTwJQqVcrs3LmzcD47NdVk1q17emK9Bx8snM/MI1eeKO+fAPPZZ59lW7Z161YDmD///DNrWUZGhilbtqyZMWPGRbf1z0ebNm2yXps1a5apU6eO8fb2NrVr1zZvvPFG1mu7du0ygJk/f75p06aN8fb2NrNmzTL33XefueWWW8wLL7xggoKCTEBAgBk1apRJT083Q4YMMVdccYWpUqWKmTlz5kV/xk8++cRcddVVxsfHx5QtW9a0bdvWnDx50hhjsj7jrDZt2pjHH3/cPP300+aKK64wwcHB50zUd+LECfPggw+aChUqmDJlypgbb7zRbNy48YKfn5qaah599FFTsWJF4+3tbcLCwrJNRHip7Y0cOdI0atTIzJw504SHhxuHw2GcTqdp06aNeeKJJ7J9ztNPP20qV65s/Pz8zDXXXGO+/fbbrNd3795t/vOf/5jAwEDj5+dn6tWrZxYvXnzezPkxUZ6HrRIkIsXAmDGwcyf7HQ5GGMOECRMIDw8vlI/evH07L6ek8C7AjBnQpw+0bFkon50vjIFTp+x8tp/f6QuN80HqmTFf/jlBmru7O15eXnz//ff069fvvO/7+eefueaaa/j666+pX78+Xl5eAMyYMYORI0cydepUmjRpwoYNG3jwwQcpVaoU950ZvwbgmWeeYeLEicyePRtvb29WrVrFN998Q0hICKtXr+aHH36gb9++/Pjjj1x//fWsW7eO+fPnM2DAANq3b09oaOg5mWJiYrj77rsZP3483bt3JzExkTVr1mAucl3Su+++y+DBg1m3bh0//vgjffr0oVWrVrRv3x5jDDfffDNly5ZlyZIlBAQE8NZbb9G2bVu2bdtG2bJlz9nelClT+OKLL/j444+pWrUq+/btY9++fQA53t727dv5+OOPWbhw4QVvq7///vvZvXs3H330EZUrV+azzz6jY8eO/PHHH9SsWZNHH32UtLQ0Vq9eTalSpdi8eTOlS5e+4H64bBetKkWEjoyIFEF//mmc7u7GgPkPmLZt25rMzMxC+/h9+/YZf39/887pr3VjrrrKmLS0Qvv83DjvvxxPnjyd28bjzL/0c4vzHBlJS0szYWFh5o477jDHjh0zqampZty4cQYwkZGRF9zW2SMcGzZsyLY8NDTUfPjhh9mWPf/886ZFixbZ3jdp0qRs69x3330mLCws2+9g7dq1TevWrbOeZ2RkmFKlSpl58+adN1N0dLQBzO7du8/7+vmOjFx33XXZ1rn66qvNM888Y4wxZuXKlcbf39+kpKRkW6dGjRrmrbfeOu9nPP744+amm24yTqfznNdysr2RI0caT09PExcXl22dfx4Z2b59u3E4HObAgQPZ1mnbtq0ZNmyYMcaYBg0amFGjRp0347/lx5ERXTMiIrlnDDzxBI7MTD53OPiudGlmzpyJ2/lm4i0gISEhTJo0if8CRwD+/PP0+CNSqDw9PVm4cGHWv8z9/Pz47rvv6NSpU9a/ygcMGEDp0qWzHhdy+PBh9u3bR9++fbOtP3bsWHbs2JFt3WbNmp3z/vr162f7HQwODqZBgwZZz93d3SlXrhxxF7glvFGjRrRt25YGDRpwxx13MGPGDI4fP37Rn79hw4bZnleqVClr+9HR0Zw8eZJy5cpl+3l27dp1zs9zVp8+fdi4cSO1a9dm4MCBrFixIuu1nG4vLCyMChUqXDDzr7/+ijGGWrVqZdvOqlWrsrYzcOBAxo4dS6tWrRg5ciS///77RffD5dJpGhHJvc8/h5UrwdubuosW8X5KCmFhYYUeo0+fPixYsIChS5bwDmBGjcLRsydc5C/iIsPP7/SItbY+Ox9FRESwceNG4uPjSUtLo0KFCjRv3jyrMIwZM4YhQ4ZccjtOpxM4faqmefPm2V779+mGUqVKnfN+T0/PbM8dDsd5l539nH9zd3cnKiqKtWvXsmLFCl5//XWGDx/OunXrLnj68WLbdzqdVKpUie++++6c913oQtimTZuya9culi5dytdff82dd95Ju3btWLBgQY63d759809OpxN3d3eio6PP2a9ny2K/fv3o0KEDixcvZsWKFYwbN46JEyfy+OOPX3TbeaUyIiK5k5Ly/8OxP/UUtTp2pJalKA6Hg7fffpsG9erxSEICTePjYcQIeOstS4lyweGAS3xpuJqAgAAA/v77b9avX591K2lQUBBBQUHZ1j17jUhmZmbWsuDgYKpUqcLOnTvp2bNnIaXOzuFw0KpVK1q1asVzzz1HWFgYn332GYMHD871tpo2bUpsbCweHh5Uq1Ytx+/z9/enR48e9OjRg9tvv52OHTty7NixPG/v35o0aUJmZiZxcXG0vsiYQKGhoQwYMIABAwYwbNgwZsyYoTIiIkXEa6/Bzp2kVaiA17BhttNQpUoVJr3+OgPvu4/vATNjBo4BA6BJE9vRioWTJ0+yffv2rOe7du1i48aNlC1blqpVqwLwySefUKFCBapWrcoff/zBE088Qbdu3YiMjLzgdoOCgvD19WXZsmWEhITg4+NDQEAAo0aNYuDAgfj7+9OpUydSU1NZv349x48fz1MhyI1169axcuVKIiMjCQoKYt26dRw+fJi6devmaXvt2rWjRYsWdOvWjZfPzFx98OBBlixZQrdu3c57qum1116jUqVKNG7cGDc3Nz755BMqVqxIYGBgnrZ3PrVq1aJnz5707t2biRMn0qRJE44cOcI333xDgwYN6Ny5M4MGDaJTp07UqlWL48eP88033+R5P+SErhkRkZw7eBDn2LEA9DtyhPV//WU50Gm9evWibJcurAwKwnHmehaNzJo/1q9fT5MmTWhyptwNHjyYJk2a8NzZcV44fRdKr169qFOnDgMHDqRXr17Mu8RgdB4eHkyZMoW33nqLypUrc8sttwCnTw+88847zJkzhwYNGtCmTRvmzJlTKHdp+fv7s3r1ajp37kytWrUYMWIEEydOpFOnTnnansPhYMmSJVx//fU88MAD1KpVi7vuuovdu3cTHBx83veULl2al19+mWbNmnH11Veze/dulixZgpubW562dyGzZ8+md+/ePPXUU9SuXZuuXbuybt26rLuMMjMzefTRR6lbty4dO3akdu3aTJs2LU/7ISccxhT9/2MTEhIICAggPj4ef39/23FESiznvffiNncuPwLPd+jA4qVLceTTLaKXKzExkVLHjuFWty4kJ8NHH0GPHrZjAZCSksKuXbsIDw/PdgusSHFwsd/vnH5/68iIiOTMTz/hNncuAM+WKsXb77xTZIoIQJkyZXALC4OhQwEwQ4bYG8dDRHJFZURELs3pJPnBBwGYDdw3dSohISF2M13AyYcf5ljp0jj27yfzpZcu/QYRsU5lREQuKXPOHHz//JNEYGXbttlGwixqTmZmcuZeH5wvvQR791rNIyKXpjIiIheXmEjambsYXvHx4eV33y1Sp2f+rWLFikS+9RarAM/0dI4/9JDtSCJyCSojInJx48bhGx9PfIUK1HvrLapUqWI70SXddffdfHHTTTiBK5YvJ/2bb2xHArjoHCcirio/fq9VRkTkwnbuhFdfBSBgxgx69O5tOVDOOBwOnpk3j/fPXNl/uGdP+MfgWoXt7Cidp3RBrRRDZ3+v/z0abW5o0DMRuaDYXr2omJoK7dpB16624+RKUFAQga+/zokHH6RybCx7Ro8mbMwYK1nc3d0JDAzMmrPEz8+vSJ/qEskJYwynTp0iLi6OwMDAC84QnBMaZ0REzmvHzJnU6NePTOD4t99S/oYbbEfKk3cbN+a+334jNTAQ79274cyQ5YXNGENsbCwnTpyw8vkiBSUwMJCKFSuet2Dn9PtbZUREzpGeksLOK66gdkoKS8PD6bhjh8v+S/5ITAyB11+Px/btMGQITJhgNU9mZibp6elWM4jkF09Pz4seEVEZEZE8+7JLF7p89RXHHQ7S/vyT4Hr1bEe6PMuWQadO4OkJf/4JtWxN7SdSsmgEVhHJkz/WrOHar74CYGfv3q5fRAA6doSbb4b0dH5s1YqUlBTbiUTkH1RGRCRLWloaG269lQrAvjJlaPr227Yj5Zuk558nHWhx5AjzivCgbSIlkcqIiGSZPWQIdx85AkCZGTNweHlZTpR/SjVpwu4zdwRd+/HH/LJ2reVEInKWyoiInGYM9//yC57AgWbNCCwiM97mp5rvvUe8tzd1gaju3XW6RqSIUBkRkdM++ACvn37C+PlRZcEC22kKRkAAHi+/DMAjcXGMPzPMvYjYpTIiImz96afTt70Cjueeg7Awy4kKTqnHHuP4lVcSCNScPp0ff/zRdiSREk9lRKSE++WXX1jZsiXExWHq1IEnn7QdqWC5u3PF/Pk4HQ7uBv6eOtV2IpEST2VEpARLSUlhQo8eDDgz3JBj+nQoRhetXlDTpqT17w9A7x9/BM0ZI2KVyohICTZm5Eie3rULNyD1jjvARYd8zwuf8eMhJAR27YKxY23HESnRVEZESqh169aRNmECVwPpfn54T5liO1LhKlMGXn8dADNhAqPvvFOz6opYojIiUgKlpKTw3D338PyZ0zOeU6ZAxYqWU1nQrRvmlltwZGTQ7pNPGPHss7YTiZRIKiMiJdDI//2PYTt34gukt2kDDzxgO5I1jtdfJ8PXl1aAc/Jk1qxZYzuSSImjMiJSAvVOSeEGIMPbG8/Zs8FFZ+TNF6GheEycCMCLwKiePUlKSrKbSaSEURkRKWn27aP+u+8C4DF+PISHWw5UBPTvT0abNvgBo/ft49lnnrGdSKREURkRKUES4+Ph/vshMRFatoTHHrMdqWhwc8Pj3XfJ8PXlOsD9jTdYtWqV7VQiJYbKiEgJ8cMPPzCxYkVYuRL8/GDWLHDTXwFZwsLwmDwZgBeA94cPt5tHpATR30QiJcCpU6d47e67GX52YrjXX4fate2GKor69SPjppvwBd5KS4OMDNuJREoElRGREmDMkCG8vG8fnkBa9+6nT9XIuRwOPObMAX9/3H/5BV54wXYikRJBZUSkmFuzZg31p0+nBnAqKAivWbNK9t0zlxIaCtOmAWDGjGHRf/9LYmKi5VAixZvKiEgxlpSUxOe3304vINPhwO+zzyAw0Hasoq9nT+jZE4fTSaMJE/jfwIG2E4kUayojIsXYxIcfZmRcHADpzz57+g4ayZk33iC5UiXCgavnzCEqKsp2IpFiS2VEpJgyqancv2IFZYBjDRviM3q07UiuJSAA34ULyXQ46Al8ddddJCQk2E4lUiypjIgUU47nniP00CEyAwMpu3gxuLvbjuR6WrQg48wtvs8fO8ZLDz1kOZBI8aQyIlIMmeXLYfx4ANxnz4aQEMuJXJf3qFGcaNgQf+CW+fNZsXix7UgixU6eysi0adMIDw/Hx8eHiIiIHE8s9cMPP+Dh4UHjxo3z8rEikgNrFi7kWJcup588/DB062Y1j8tzdyfwyy855e1Nc2BHz55kaPwRkXyV6zIyf/58Bg0axPDhw9mwYQOtW7emU6dO7N2796Lvi4+Pp3fv3rRt2zbPYUXk4hLj48m4917KpadzsGxZODMBnFymqlVxmzkTgAEJCXh8953dPCLFTK7LyKuvvkrfvn3p168fdevWZdKkSYSGhjJ9+vSLvq9///7cc889tGjRIs9hReTilnbqxI0pKaQ4HAQsWQK+vrYjFRs+PXtC//44jIFeveDMXUoicvlyVUbS0tKIjo4mMjIy2/LIyEjWrl17wffNnj2bHTt2MHLkyBx9TmpqKgkJCdkeInJxP02fzi0//gjAnoEDKdW8ueVExdBrr0H9+hAbS8Ktt3L86FHbiUSKhVyVkSNHjpCZmUlwcHC25cHBwcTGxp73PX///TdDhw5l7ty5eHh45Ohzxo0bR0BAQNYjNDQ0NzFFSpyEmBjKDxyIN/BbeDi1X3vNdqTiydcXPvqIDE9P/H/4gaUdO9pOJFIs5OkCVse/hpI2xpyzDCAzM5N77rmH0aNHU6tWrRxvf9iwYcTHx2c99u3bl5eYIiXGbzfeyJUZGcS4u1Pj22813HtBuuoq9jzxBAC3r1/PahU/kcuWqzJSvnx53N3dzzkKEhcXd87REoDExETWr1/PY489hoeHBx4eHowZM4bffvsNDw8Pvvnmm/N+jre3N/7+/tkeInJ+aR98QOutW3ECcRMnUjoszHakYq/G+PH8UbMmXkDI009zbM8e25FEXFquyoiXlxcRERHnDIscFRVFy/MMM+3v788ff/zBxo0bsx4DBgygdu3abNy4keY6py1yeXbvxuuxxwDYdffdNDrzL3YpYA4HV377LQc9PKiemcmmm26ynUjEpeX6NM3gwYN55513mDVrFlu2bOHJJ59k7969DBgwADh9iqV3796nN+7mxlVXXZXtERQUhI+PD1dddRWlSpXK359GpCTJyIB77oH4eGjRghrvvWc7UYniW6UKx6dOJRNovXMn0U8+aTuSiMvKdRnp0aMHkyZNYsyYMTRu3JjVq1ezZMkSws4cGo6JibnkmCMicvm29+4NP/6I8feHDz+EHF4gLvmnfv/+rGzVCoDakycTHx1tOZGIa3IYY4ztEJeSkJBAQEAA8fHxun5EBEhYupRSnTvjDnxx9910/fBD25FKrJSkJDZVrEjEyZOYZs1w/PADeHnZjiVSJOT0+1tz04i4mhMnSLvjDtyBT/39affOO7YTlWg+pUrR+M8/oWxZHOvXw5mJ9UQk51RGRFzM/m7dKJ+UxA6gyoIF+Pn52Y5U4rmHhcGsWaefvPIKJxcssBtIxMWojIi4kJNvvknIqlVkAEvuuYfm7dvbjiRn3XILh26/HYCMe++FCwwEKSLnUhkRcRW7duE+cCAAb5QrRz+dnily9g8axO9AYGoqhzp0AKfTdiQRl6AyIuIKMjJIuf12fNPT+R5ovmgRvpoEr8iJaNWK7wYM4BQQ/PvvnBw1ynYkEZegMiLiCsaNw+fXX8ksXZr948Zx7XXX2U4kFzBg8mTGV6kCgM/YsaDbfUUuSWVEpKjbuBHGjAHAffp07ho61G4euSgvLy+6fv45CxwOPIwhvls3SE21HUukSFMZESnK0tJIuPXW06Otdu8OPXvaTiQ50DQigp1DhnAICNi/n6T//td2JJEiTWVEpAhLGjYM/127OAws795ds/G6kEFjx/JStWoA+E2dCuvW2Q0kUoSpjIgUVdHR+JyZnn5cSAg33Hmn5UCSG15eXvwvOhrTsycOpxP69IHkZNuxRIoklRGRoig1lfju3XE3ho8dDnouWoS3t7ftVJJLZcuWxTFlClSqBH/9ReaIEbYjiRRJKiMiRVDS008TsG8fh4AdTz5JRESE7UiSV2XLcvLVVwFwvPoq5ocfLAcSKXpURkSKGPPTT/i8/joA48LCeGrcOMuJ5HLtql+fdx0O3IDE22+HU6dsRxIpUlRGRIqStDRO3X037sCHDgf3ffYZXpoB1uU1aNCAw88+y37APzaWxKefth1JpEhRGREpSsaPp9Tu3aSUKcPxUaNo0qSJ7USSTwaNGsUrNWoA4Dd9OkaDoYlkcRhjjO0Ql5KQkEBAQADx8fH4+/vbjiNSMLZuhYYNIS0N5s6Fe+6xnUjy2aZNm9jUsCF3Op0cDQuj3Pbt4OFhO5ZIgcnp97eOjIgUBU4n8XfddbqIdOwId99tO5EUgPr16xM7dCjHgHJ79hCvuWtEAJURkSLhxKuvErBxI6ccDnYMGaLBzYqxR0aPZmp4OAClJ0yAHTssJxKxT2VExDJz8CAew4YBML1yZapef73lRFKQPDw86PX116Rdfz3uaWnQvz8U/bPlIgVKZUTEsr3dulE6I4P1DgeRX32Fp6en7UhSwMKrV8dr1izw9YWVK+Hdd21HErFKZUTEoqNz5hD2yy9kABsfeYQGjRvbjiSFpUYNzJlrRk7274+JjbWbR8QilRERS0x8PObhhwGYW7EifSZNshtICt2BO+9kg8NB6bQ0dnXpYjuOiDUqIyKWbLv9dsqnpLATuPrLL/HQLZ4lTki1amwaNIgMoPr69cTNmmU7kogVKiMiNvz4I7VWrgTg5759qdesmeVAYsvdEyYwv0qV008eeQSTkGA3kIgFKiMihS0tDR58EIcxcN999Jgxw3Yiscjd3Z1rFi9ml8NBUGoqf3brZjuSSKFTGREpZEeHDoVNm6BCBZg4EYfGFCnxajZqxMYBAwCo/+23HFi0yG4gkUKmMiJSiA5++y2lX3sNgFMvvgjlyllOJEXFLVOnsiwoCDfA59FHIT3ddiSRQqMyIlJIjNPJ4dtuwxv4MTAQ7z59bEeSIsTNzY3aX31FWkAA5Q4ehFdesR1JpNCojIgUktX330+j48dJAoIXLMBdd8/Iv4RffTVeU6eefjJ6NPz9t91AIoVEZUSkEOxbv54G770HwPquXanetq3lRFJk9ewJ7dtDaip/t2uHMzPTdiKRAqcyIlLAjDH8/Z//UBbYWqoU1338se1IUpQ5HKROnswpoObevXzTu7ftRCIFTmVEpIAtefxxbjp0iEzA9/33cff2th1JijjvunXZ2L07AE0//JBd69ZZTiRSsFRGRApSUhJtFy4E4LcbbqDqmS8YkUu59qOP+Lt0acoC27t0wel02o4kUmBURkQK0siR+MTG4qxalcaff247jbgQNy8vSn34IZlA+8OH+eLMPEYixZHKiEgBSf7hBzgzpojb9Om4+ftbTiSupnKXLvzZrh0ATd5+m783bLCcSKRgqIyIFIAdW7ey7YYbwOnE9OgBnTvbjiQuquFnnxHj40MYsLNXL9txRAqEyohIPnM6nSzr3JlGGRkkenhgzhwdEckLR+nSuL/9NgCRW7bAL79YTiSS/1RGRPLZ+yNHcv/OnQCkPP88bpUqWU4kri6oVy/o2ROH0wkPPqih4qXYURkRyUd/b91K9RdfxA/YX7s2FZ55xnYkKS5efRXKloXffuPnu+8mU4OhSTGiMiKSTzIzM/myc2daO50ku7tTefFi0Iy8kl+CgjATJwLQYOFCZg0fbjmQSP5RGRHJJ3NGjuShM6dnkp97DrcaNSwnkuLGcd99HKhXD1/gyvHj2bxpk+1IIvlCZUQkPxjDTR99RGngYM2alB0xwnYiKY4cDip//jkpbm7caAxf3HwzGRkZtlOJXDaVEZH8MGMG4Tt24PTxodLixeCm/7WkYDiuvJKUkSMBeGzPHmY8+6zlRCKXT39jilwms2cPDBkCgNuLL+KoWdNyIinuAkeMILZOHUoD9V55hT9//912JJHLojIichm2bN7MukaNIDERWrSAgQNtR5KSwM2N4K++ItndnTbGENWtG8YY26lE8kxlRCSPMjMzWdClC9fGx5Pm5gazZoG7u+1YUkI4atQg9fnnAXgiJgbHjh2WE4nkncqISB7NGD6cJ87cPXNq6FCoU8dyIilpAp95Btq2xS0lBfr0AY09Ii5KZUQkDzb/8Qf1x4/HHzh05ZUEjh5tO5KURG5uMHMmlC4NP/zAviFDSNforOKCVEZEcikjI4NvOnemtTGccncnaNky8PCwHUtKqrCw06OzAuUnTeLtwYMtBxLJPZURkVx6f/BgHtq/H4DUl1/GocHNxLZ+/Yhp2BBf4JqpU9moyfTExaiMiOSCMymJG2fNwgvY27QpV+hfoVIUOBxU/OorTnp6cjWwrksX0tLSbKcSyTGVEZFccBs+nGpJSaQEBhK6dKnmnpEiwxEaSubrrwPQ99Ah3h0wwHIikZxTGRHJqagomDwZAJ+5c3EEBVkOJJJdQP/+7LnuOjyAG2fPZuOaNbYjieSIyohIDmxas4b47t1PP3n4Yejc2W4gkQsI+/JLjvj6ciWw85ZbdLpGXILKiMglpKelsb9rVwKSkjgUGAivvGI7ksiFBQbi8eGHOIFbjx/Hc/Fi24lELkllROQSvrzrLjqcOEE64DFvHvj52Y4kclGB3bplzZfkeOghiI21G0jkEvJURqZNm0Z4eDg+Pj5ERESw5iLnJb///ntatWpFuXLl8PX1pU6dOrz22mt5DixSmDYtWULbzz4D4K877qBcx46WE4nkjNvYsdCoERw5Qnrv3qQkJ9uOJHJBuS4j8+fPZ9CgQQwfPpwNGzbQunVrOnXqxN69e8+7fqlSpXjsscdYvXo1W7ZsYcSIEYwYMYK33377ssOLFKS05GRO3XknAcDWsmW5au5c25FEcs7bG+bOJdPTE8+oKJZ362Y7kcgFOUwup3ps3rw5TZs2Zfr06VnL6tatS7du3Rg3blyOtnHrrbdSqlQp3n///Rytn5CQQEBAAPHx8fj7++cmrkierWjfnsivvyYJSFm3jnLXXGM7kkiu/d63Lw1nzSIZ2PbRRzTq0cN2JClBcvr9nasjI2lpaURHRxMZGZlteWRkJGvXrs3RNjZs2MDatWtp06bNBddJTU0lISEh20OkMCWtXcsNX38NwJb+/VVExGU1nDGDPypWxBfwuO8+UvT3qRRBuSojR44cITMzk+Dg4GzLg4ODib3EBVIhISF4e3vTrFkzHn30Ufr163fBdceNG0dAQEDWIzQ0NDcxRS5PSgqlHnoIL+DvevVo9o+jgCIux82NkK+/5pjDQf3UVH7o0MF2IpFz5OkCVse/Rp00xpyz7N/WrFnD+vXrefPNN5k0aRLz5s274LrDhg0jPj4+67Fv3768xBTJm2efhU2bICiImt9+q1FWxeVdUb8+O55+GoAbfvqJP3TNnhQxuZpqtHz58ri7u59zFCQuLu6coyX/Fh4eDkCDBg04dOgQo0aN4u677z7vut7e3nh7e+cmmki+2DZ9OrXO3u01axZolFUpJq5++WW+X7CA63buJOCxx0ju1g1f/X5LEZGrIyNeXl5EREQQFRWVbXlUVBQtW7bM8XaMMaSmpubmo0UKXGpsLGUGDgRg8/XXw803W04kkr/qf/MN+9zdqZqejpsmeZQiJFdHRgAGDx5Mr169aNasGS1atODtt99m7969DDgzKdOwYcM4cOAA7733HgBvvPEGVatWpU6dOsDpcUdeeeUVHn/88Xz8MUQu35a2bWmckcEOd3eCzvz+ihQnV4SF4fzkE7jtNrznzoXbbwfd8itFQK7LSI8ePTh69ChjxowhJiaGq666iiVLlhAWFgZATExMtjFHnE4nw4YNY9euXXh4eFCjRg1eeukl+vfvn38/hchl2j52LI03byYD2PfCC9Q48/ssUtyU694dnn4axo/HPPggmc2a4RESYjuWlHC5HmfEBo0zIgUpZccOUmvVIsDp5NMGDbj1999tRxIpWKmppEdE4LlpE5uqVaP+zp26UFsKRIGMMyJS7Did7G3blgCnk40eHtzwr+uhRIolb29+fvxxUoD6u3fz95k7bURsURmREi1u1Chq7dnDKeDo5MmUvcRdYSLFRav+/fm8eXMAqrz6Kqc2brQbSEo0lREpuf76i6AJEwBYdtNNtH3kEcuBRApXx6VL+d7bGz9jiOvYEdLTbUeSEkplREqm9HS4915ISYHISG49M/S7SEkScMUVZL7zDseBaocOsfuhh2xHkhJKZURKpEOPPQbR0XDFFacHN9PFe1JCtbn3XhbceCMAIXPmcOrbby0nkpJIZURKnJTvvqP8meGwtw0eDFWqWE4kYlePRYv43M8PD8D9/vshKcl2JClhVEakZElOJuHWW3EHPvX1Jeixx2wnErHO39+fK5cvx1mlCt579sDQobYjSQmjMiIlyt5+/Qg6fpwYoMycOQQGBtqOJFIk1L/uOtzmzDn9ZOpU+O47m3GkhFEZkRIj+fvvqfzhhwAsbNuW9nfeaTmRSBHTrh3mwQcBONqtG5w8aTePlBgqI1IypKVxrFs3PIAvfX3ptXCh7UQiRdJv997LHqBcfDx7773XdhwpIVRGpETY/fDDVDl6lCOcPj0TEBBgO5JIkdT4+uv5smtXAKp+/jlJixdbTiQlgcqIFH+bNhH2/vsAfHHTTdyg0zMiF9Vn7lzmlSkDwKm779bpGilwKiNSvGVmQt++ONLT4eab6bNihe1EIkVe6dKlCf3oI/YAFRIT2dOzp+1IUsypjEixdmL0aFi3Dvz94c03cXN3tx1JxCVc17kzi7t1AyDsiy84+dVXdgNJsaYyIsXWyY0b8R47FoATI0ZASIjlRCKu5b4PPmDemWnfHX376nSNFBiVESmenE4O3Hwzvsaw1scHjwEDbCcScTmlSpWi5mefkVqxIqXi4mDYMNuRpJhSGZFiafOTT1L74EFOAY4ZMyh95mI8EcmdZjfdhPd7751+8sYbsHat3UBSLKmMSLGTuHkzoa+/DsCy666jhcZKELk87dvD/feDMRzp3h1SU20nkmJGZUSKF2PY1bEjZYzhV29vOmiMBJF8cXjoUA4B5ePi2HbffbbjSDGjMiLFyu/PPEPDfftIBZxvv02pMxfficjlqVCrFsu7dAEgfP584tessZxIihOVESk+Dh2i3ttvA/B1ixY0693bciCR4uWOjz4iqnRpPOH06ZrMTNuRpJhQGZHi4/HH8YiPx9mwITctW2Y7jUix4+vnR9kPP+QEUOPoUf48M6meyOVSGZFiIf3jj+GTT8DdHbfZs/HV6RmRAhHRpQsrO3QAoPrs2RyPjracSIoDlRFxeSd27eL4PfcA4HzqKWja1HIikeLt5s8+Y52fH37AsTvuAGNsRxIXpzIiLu+P9u0Jysxkp6cnKc88YzuOSLHn4+uL7/vvk+7hQY1du2DOHNuRxMWpjIhL+2n0aFrv2IETSJoyBb+yZW1HEikRGt56K54vvHD6yeDBEBtrN5C4NJURcVnH9uwhZMwYANY2aUIDDfkuUrgGDz59WvTECfbecovtNOLCVEbEZUVHRhLidLLf05OI5cttxxEpeTw8SH/zTTKAqj//zNqnn7adSFyUyoi4pDUvvkj7bdsASHzlFXwrVLCcSKRk8rz6ata2bAlA9Vdf5fDff1tOJK5IZURcT3IyDSZPBuCXBg2oO3Cg5UAiJdu1S5awx8uLik4nv0VGYnR3jeSSyoi4nlGjCIyLI71CBRqsWGE7jUiJ5xUQQOobbwDQbvduvhs50nIicTUqI+Ja1q+HV14BwHPGDHwqVrQcSEQAavXrx/qICACqvfACh3butJxIXInKiLiMwwcOsOOGG8DphB49QFfvixQpDZctI9bTk3Cnk+jOnW3HEReiMiIu49sOHaiRlMRxd3ecZ64ZEZGiw6t8eU69+ioAnbZtg59+spxIXIXKiLiE5RMn0m3TJgCOjx6NW3Cw5UQicj7VH3sMevXCYQw88ACkpNiOJC5AZUSKvLiDBwkaOhQvYGvNmlR/9lnbkUTkYiZNguBg2LKF2Ecf1d01ckkqI1KkGWNY3qEDTTIySHBzI3z5cnA4bMcSkYspWxamTQOg/KxZLDk7bLzIBaiMSJG29LXXuOPPPwE4/r//4RUebjmRiOTIrbeypX59PIDQUaM4uGeP7URShKmMSNGVmcmVL76ID7C9Rg3CNHaBiEupuXw5J9zdaZiZydcaDE0uQmVEiq4pU6h19Cjpvr6ErVih0zMiLsajShVOnjlF02PbNr4YN85yIimqVEakaNq+HYYPB8Bz0iQ8q1e3HEhE8iLkv/9le+3aeAOVn3uO/TpdI+ehMiJFTsyBA2y/4QZIToa2beHBB21HEpG8cjiotmwZJ93duTozkyUdOuh0jZxDZUSKFGMMX3TsyJUHDpDs7g4zZuj0jIiL86hWjcTnngPggZ07Tx/5FPkHlREpUha99ho9z94989//gu6eESkWKv3vfzhvvBGP9HQcffuentZB5AyVESkyDu7fT9lnnqE0sLdaNSqPHWs7kojkF4cDt5kzoVQpWLOGU+PG6XSNZFEZkSLBGMMXHTrQJiODFDc3Ki9dCm769RQpVsLD4czcNW4jRrDg+ectB5KiQn/bS5Gw6KWXuG/zZgCODxuGR506lhOJSIF48EF21amDD1Bj9Gj26PoRQWVEioCM5GRqjB6NL7CrZk0qjRljO5KIFBSHg6rLl5Po7k5Tp5NvdHeNoDIiRYDH+PE0TE0l2ceH0BUrdHpGpJhzr1qVpPHjAbh3504WnhlTSEou/a0vdq1fD2fOG/vOnIlHtWp284hIoaj45JP83agRnkC9l15i119/2Y4kFqmMiDX7tm0joVs3yMyEO++Eu++2HUlECovDQY3lyznm6Uk9Y/ipQwecut23xFIZESuMMfzSvj3+Bw6QWKbM6enGNbiZSIniFhxM6pQpAPTYu5f0VassJxJbVEbEiiVPPcWte/cCED9xIpQrZzmRiNhQacAAkm6/HTfA+8EHISnJdiSxQGVECt3e33+n0aRJAPzeogUhmntGpEQrNWMGhITAjh2Yp5/W6ZoSSGVECpUxhq0dOhBiDPt9fKi/dKntSCJiW2AgzJ4NgGP6dL547DG7eaTQqYxIoVrRvz/tY2PJBMycObgHBNiOJCJFQbt2/HHDDQBcPX06O6Oj7eaRQqUyIoXm+JYtNJsxA4Bf27UjtEcPy4lEpCip/+WX7PPzowqwvVMnna4pQfJURqZNm0Z4eDg+Pj5ERESwZs2aC6776aef0r59eypUqIC/vz8tWrRg+fLleQ4sLsoYrnj6acoBewIDifjyS9uJRKSIcStdGvcPPiATiDx8mKUPPGA7khSSXJeR+fPnM2jQIIYPH86GDRto3bo1nTp1Yu+ZOyP+bfXq1bRv354lS5YQHR3NjTfeSJcuXdiwYcNlhxcXMnMmLF4MXl6ErVmDm4+P7UQiUgRV7t6djZ07A9D83XfZ8f33lhNJYXCYXE4K0Lx5c5o2bcr06dOzltWtW5du3boxbty4HG2jfv369OjRg+eee+68r6emppKampr1PCEhgdDQUOLj4/H3989NXCkCDqxZQ6VOnXBLSoIJE2DIENuRRKQIM6mpbK9QgZqJiawNDKT54cO4e3jYjiV5kJCQQEBAwCW/v3N1ZCQtLY3o6GgiIyOzLY+MjGTt2rU52obT6SQxMZGyZctecJ1x48YREBCQ9QgNDc1NTClCnOnpHP3Pf3BLSuJY/frw5JO2I4lIEefw9qb0p5+SArQ8ceL0WERSrOWqjBw5coTMzEyCg4OzLQ8ODiY2NjZH25g4cSJJSUnceeedF1xn2LBhxMfHZz327duXm5hShKy9/XYaJiSQCCRNmwbu7rYjiYgLqNSuHbGPPw5A2eefh507LSeSgpSnC1gd/xq22xhzzrLzmTdvHqNGjWL+/PkEBQVdcD1vb2/8/f2zPcT17P3qK67+4gsA1vfsSej111tOJCKupNqkSdCmzelRWe+77/Q8VlIs5aqMlC9fHnd393OOgsTFxZ1ztOTf5s+fT9++ffn4449p165d7pOKS3EmJ5PWowfewNry5Wnz7ru2I4mIq3FzgzlzMKVLw/ffs+bWW20nkgKSqzLi5eVFREQEUVFR2ZZHRUXRsmXLC75v3rx59OnThw8//JCbb745b0nFpUR36cKVp05xBAhZsgQ3nZ4RkbyoVo2NffoAcM0XX7Bj0SKrcaRg5Po0zeDBg3nnnXeYNWsWW7Zs4cknn2Tv3r0MGDAAOH29R+/evbPWnzdvHr1792bixIlce+21xMbGEhsbS3x8fP79FFKk7PvoI5quXAnAr/37U/Xqqy0nEhFX1njyZH4KCsIbyLznHjI0mV6xk+sy0qNHDyZNmsSYMWNo3Lgxq1evZsmSJYSFhQEQExOTbcyRt956i4yMDB599FEqVaqU9XjiiSfy76eQouPkSaoMH447EFW5Mu3/cQu4iEheONzcCFu+nCMOB7WSk/lZR9iLnVyPM2JDTu9TliLg4YfhzTchNJTMDRtwL1fOdiIRKSa+HTiQG19/nUxg9/vvU+Pee21HkksokHFGRC7mxLx5p4sIwOzZKiIikq9umDyZb0JCcAe8+vUj/fhx25Ekn6iMSL7IPHyY9PvuAyC+Tx9o29ZuIBEpdhwOB/WiotjvcBCamsphzV1TbKiMSL7Y1r49FdLT2ermRuKzz9qOIyLFVMU6dTgwdiwAlRctAk28WiyojMhl2//KK9T97TcygG3DhxNSs6btSCJSjDV/9lk4exPEAw/AsWN2A8ll0wWsclky9uwhqUYNAjIzmXvlldyzbVuORuMVEbksycnQtCn89Rc7rr6aGj//bDuRnIcuYJWCZwx727cnIDOTX93duSEqSkVERAqHry87Ro4kA6jxyy/sfukl24nkMqiMSJ4dGDOG6n//TTKwb+xYqlSrZjuSiJQg1Xv0YGGdOgBcMWIEabt32w0keaYyInmzfz8VX3kFgLn16tH1mWcsBxKRksbhcHDj11+zwcODgMxM9rRrB0X/ygM5D5URyT1joH9/3E+exNm8ObevXq3TMyJiRVCVKsS+/DLJQM0dO9g7YoTtSJIHKiOSaxnvvgtLloCXF26zZxOowc1ExKJOgwfzUePGAJQfN47UzZvtBpJcUxmRXEnfv5+T/foBkDFiBNStazmRiAj8Z9ky1nh64mcMx265BZxO25EkF1RGJFe2dehAYGYmv7m7c/T++23HEREBoEJwMKemTiXN25tK27fDtGm2I0kuqIxIju2aMIH6mzeTDsSMHUtwSIjtSCIiWTo89BBer712+snQobBrl91AkmMqI5IjaTEx+J8Z5n1RnTp00N0zIlIU9e8PbdpAUhKHu3fX3TUuQmVEcmRLhw6Uy8hgi7s7bVas0N0zIlI0ubkRP3EiyQ4HFX77jV26u8YlqIzIJW2fPJlGf/xBJqcHOgsKDbUdSUTkggIiIljQpAkA5V96iZTt2y0nkktRGZGLi4+n8pgxACyuVYt2mpFXRFxA56VLWe/pSRmnk10dOuh0TRGnMiIX9/TT+B07Rlq1arSIirKdRkQkR8oFBZHw2mukAnV37mT76NG2I8lFaNZeubCvv4b27U//efVqaN3abh4RkVz6pEkT7ti4kRNubnjv2IGv5tAqVJq1Vy5L6tGjHOra9fSTRx9VERERl9Ru+XL+8PAg0Olke6dOtuPIBaiMyHlFd+hAcHIy+9zcSH7uOdtxRETy5IqgII5PnEiGw0GDv/6CBQtsR5LzUBmRc2x++22ujY4GYM+IEfgGBVlOJCKSd9cPHIj78OGnnzz6KBw9ajeQnENlRLJJOX4c38cfxw34tkYNrtNFXyJSDDhGjIB69SAujhN9+tiOI/+iMiLZ/NSxI+FpacS4udFoxQrbcURE8oe3N5nvvIPT4SDwq6/4c/x424nkH1RGJMvvM2fS+uefAdg7dChlq1e3nEhEJP+4t2jBiquuAqD8s8+SdPCg5URylsqInJaaSoVnnsEdWFutGs1feMF2IhGRfNdi+XJ2eXhQMTOTjZGRtuPIGSojctqLL1Lp6FFS/P2pp8HNRKSYCqhUiSMvvQRAq02b+O3sLL9ilQY9E/j9d4iIgIwMmD8f7rzTdiIRkQL1bf363Lh5M3s9PCi7fz+lg4NtRyqWNOiZ5MiphAT2t29/uoh07w533GE7kohIgYtYsYL97u5UzcjgF52usU5lpIT7pnNnQuLiiHd3x0ydCg6H7UgiIgXOv0oV4p5/HoAb/vgD1q61nKhkUxkpwda//z7tfvgBgN2DBuGoXNlyIhGRwtN02DAy7r0XhzHwwAOQkmI7UomlMlJCJSUk4Pbgg/gAf4SE0GjCBNuRREQKnceUKVCxImzdSuqIEbbjlFgqIyXU8ptvpmlqKokOB2FLl+r0jIiUTFdcAdOnA+A+cSLrzvxZCpfKSAm0bu5cOn7/PQD7Hn8c/zODAImIlEjduhF95ZV4AGWeeIKEI0dsJypxVEZKGqcT70cewQ/4q3Jl6k2aZDuRiIh1dVas4JibG/XS0/m2Y0fbcUoclZGSZvp0GickkOrpSRWdnhERAaBUeDiHnn0WgE7R0fzw9tuWE5UsKiMlya5d8MwzAHi/+iplGja0HEhEpOioO2YMf4SH4wX4PfYY8ceO2Y5UYqiMlBCJCQnEdukCSUlw/fXwyCO2I4mIFC0OBzWWLyfRzY0m6eks0+maQqMyUkJ80aULFTdtIs3DA2bOBDf9pxcR+Te/mjWJGTIEgO6//opz61bLiUoGfSOVAGvmzqXL6tUA7HnwQbjySsuJRESKrlovvcSpVq3wyszE7aGHwOm0HanYUxkp5hLi48ns1w9/YGfFitR8/XXbkUREijaHA7/334dSpWD1asybb9pOVOypjBRzn3btyg0pKaQ6HAR/9RW4u9uOJCJS9IWHw7hxACQPHMjKWbMsByreVEaKse/mzqXbmdMzBx56iFIREZYTiYi4kEcfZXeVKvhlZuL+8MMc1901BUZlpJhKS00ls18/AoE9wcFUnzrVdiQREdfi5kbFxYtJcTi4IS2Nzzp3tp2o2FIZKaa83n+ftikppDscVPjiC/DwsB1JRMTl+DRqROzjjwNw57p1fK3B0AqEykhxtHMnPPkkAJ7jx+N3zTWWA4mIuK5qr73GzpAQSgOlH3uMo4cP245U7KiMFDMnjh4luUcPOHkSWrfOKiUiIpJHbm5UiYrilMPBtenpLO3QwXaiYkdlpJhZ1rEjvuvXk+7jA3Pm6O4ZEZF84F2nDofOTKdxx8aNnPzlF8uJiheVkWLku6lT6b5+PQB7nngCqle3nEhEpPgIf/FFjjRrhrcxlH7kEUhPtx2p2FAZKSaOxcZS7skn8Qa2hIdz5Zn740VEJJ84HJRftAgCA2H9enjpJduJig2VkWJiVWQkDTIyOOHmRrWvvwaHw3YkEZHip0oVeOMNADJHjeKbV16xHKh4UBkpBlZPmECXP/4AIG7MGHx1ekZEpODcfTfbGzfG3emk0tChxO3bZzuRy1MZcXFH9+2j8rBheAAb69al1vDhtiOJiBRvDgdVv/qKox4e1M3MZG27drYTuTyVERcX+PLLXJmZSZyHB3W+/tp2HBGREsGrShVOnLlmpOu2bax8/nnLiVybyogrW7kS9zPnLssuWoRP5cqWA4mIlBw1nnqKjY0a4QaEjxpF3M6dtiO5LJURF5Wwdy+mT5/TTx5+GI+bb7aaR0SkJKq3YgWxnp5Udzr5tV07jDG2I7mkPJWRadOmER4ejo+PDxEREaxZs+aC68bExHDPPfdQu3Zt3NzcGDRoUF6zyj9saNMGx/79pIaGwoQJtuOIiJRIXkFBJL3+OgAdd+3iwKxZlhO5plyXkfnz5zNo0CCGDx/Ohg0baN26NZ06dWLv3r3nXT81NZUKFSowfPhwGjVqdNmBBX54+mna7N5NJrBr5EgoVcp2JBGREqtG//78deYi1pDnnoPjxy0ncj0Ok8tjSs2bN6dp06ZMnz49a1ndunXp1q0b4y4x0NYNN9xA48aNmTRpUq5CJiQkEBAQQHx8PP7+/rl6b3FzeNMmaNCACsawumVLrv/hB9uRRETk1Clo3Bj+/ht69oQPPrCdqEjI6fd3ro6MpKWlER0dTWRkZLblkZGRrF27Nm9JzyM1NZWEhIRsDwHjdLKrfXsqGMNWHx+uXbbMdiQREQHw84P33gM3N5g7l5/PzGMjOZOrMnLkyBEyMzMJDg7Otjw4OJjY2Nh8CzVu3DgCAgKyHqGhofm2bVf282OPcU1MDGmAc84cvMqUsR1JRETOuvZadt11FwA1JkwgduNGu3lcSJ4uYHX8a6hxY8w5yy7HsGHDiI+Pz3rs0+h2HI6Opu6bbwKwum1b6vboYTmRiIj8W+iMGWz19aWcMezt0AHjdNqO5BJyVUbKly+Pu7v7OUdB4uLizjlacjm8vb3x9/fP9ijRnE7KPP44/sbwm58f13/5pe1EIiJyHh5+frjPnUsqcE1cHGsffNB2JJeQqzLi5eVFREQEUVFR2ZZHRUXRsmXLfA0m/zB1Kj4//ojx86PKypV4+fraTiQiIhdwZffurO3YEYCGs2YR+9NPlhMVfR65fcPgwYPp1asXzZo1o0WLFrz99tvs3buXAQMGAKdPsRw4cID33nsv6z0bz5w3O3nyJIcPH2bjxo14eXlRr169/PkpirHMTZtwP3MhlGPCBMpfe63lRCIicimtFy3it/LlaXTyJLtuvpnguDgc7u62YxVZuS4jPXr04OjRo4wZM4aYmBiuuuoqlixZQlhYGHB6kLN/jznSpEmTrD9HR0fz4YcfEhYWxu7duy8vfTFn0tPZ0bo1tVJSyLzpJtwffth2JBERyQEPb29KLVjAyY4daXjsGJsHDKDejBm2YxVZuR5nxIaSOs7Ixttvp/HChZwAYqOiqKOZIUVEXMq3d93FjfPnY7y9cfz6K5SwMwIFMs6IFJ64FSuov3AhAKvuuENFRETEBd04bx507IgjNRV694b0dNuRiiSVkSLIJCeTfNtteALfBAZy89y5tiOJiEheOBzwzjtwxRUQHc1u3V1zXiojRdCft91G2MmTHAIqf/EFHp6etiOJiEheValC3MiRAIS8+y4xGp7hHCojRUzcp59Sf+lSAL7v3Zs6rVtbTiQiIper3KOPsrJcOTyA9Lvuwpw6ZTtSkaIyUpScPEnpxx7DDfiqfHlumTnTdiIREckH7h4ehC1eTCxQ9dQp/uja1XakIkVlpCgZMgS/mBgyqlShflQUHh65vvNaRESKqCubN+enfv0AaLhyJTHz5llOVHSojBQVy5bBW28B4PHee4Q3bmw3j4iI5Luub73FFxUrAuB44AGcJ07YDVREqIwUAeb4cY7feuvpJwMHwk032Q0kIiIFws3NjfpLl7LL4aBiSgrb/vMf25GKBJWRImBr165ckZzMdoeDQ4MG2Y4jIiIFqEbjxvz6+OM4gTo//AC6u0ZlxLZDH3xAne+/ByD6kUcIDg+3nEhERArarZMm4fbUU6ef9OsHhw/bDWSZyohFJiEBc2YAnAWVKnH75MmWE4mISGFwOBwwduzp4eHj4ki8/37bkaxSGbFoU9euVExJYY/DQeMlS3DXjI4iIiWHjw/Jb75JJlBm8WJipk+3ncgalRFLYubP56pVqwCIHjCAK3X3jIhIiePdqhUfV60KgNcTT+A8etRyIjtURmw4dQqfRx8F4MuKFek2darlQCIiYoObmxstV6xgm8NBufR0tnTubDuSFSojNjz3HFccPUpy2bJctXQpbm76zyAiUlKF1a7N5iFDcAL1f/6Z/TNm2I5U6BzGGGM7xKUkJCQQEBBAfHw8/v7+tuNcnp9+glatwOk8fTuX7jEXESnxjDF8GhbGbfv2ccjLi/KxsbhfcYXtWJctp9/f+id5IXImJxPXpcvpInLvvSoiIiICnL675poVK9jlcBCclsafJex0jcpIIYru1o2gI0c47OZG2vjxtuOIiEgRElqnDpvPjD3S6Kef4JtvLCcqPCojhWTv55/TZMUKAKL79sWrUiXLiUREpKjpPH486Wcm06NfPzh50m6gQqIyUgicqamk9uyJB/BdUBCRb75pO5KIiBRBDocDz1dfhapVYdcu0v/7X9uRCoXKSCH4qXt3aiYlcRSo/tVXuntGREQurEwZzJlZ3N2nT2fX++9bDlTw9K1YwHYvXkyzpUsB2PjAA1S9+mrLiUREpMjr0IEVISG4AW4PPURGYqLtRAVKZaQgZWSQ2bs3XsCP5ctzUwm8d1xERHLP4XBw1fLlxDgchKWksL6Y332pMlKQJk2ixrFjJHt5EfrVVzh0ekZERHKocr16bBk4EICrV69mx7x5lhMVHH07FpRt2+B//wPAd/p0Qpo3txxIRERczY2vvcZ3lSvjDvDAA6QX07trVEYKQGZ6Ooe7doWUFGjfHkr41NAiIpI3DoeDOsuXc9jhoEZKCj916WI7UoFQGSkA39xxBxW2biXZwwNmzACHw3YkERFxURWvuootZyZXbbl6NWzcaDdQAVAZyWd/r1hBi88/B2DjXXdBWJjlRCIi4upaT55MYvv2uDud8MADkJ5uO1K+UhnJRxnp6Ry/4w5KA3+ULcu1c+bYjiQiIsWAw82NMu+9B1dcARs2YIrZlCIqI/koqkcPrklI4BRQ4fPPcbi7244kIiLFRcWKMHkyAOn/+x9bFi60HCj/qIzkk7++/pqWn30GwKa776bidddZTiQiIsXOvfeyoVIlvIwhvXdv0pKTbSfKFyoj+cA4nRy74w4CgL8CA2n23nu2I4mISHHkcBCyeDEJDgcNT53im1tusZ0oX6iM5APHBx/Q8sQJ0hwOyi5ahMPDw3YkEREppio0acK2Bx8EoE1UFJsWLbIbKB+ojFyumBh44gkAvF54gaA2bSwHEhGR4q7Zm2/ye1AQvkDyvfeSlpJiO9JlURm5DOlpaSTeey+cOAEREfD007YjiYhISeBwUGXxYpKAZklJLO/e3Xaiy6Iychm+6NmTMt98Q6a7O8yeDTo9IyIihaRcs2Zse+ABANquWEHG9u2WE+Wdykge/blyJW0WLABgU/fu0KCB5UQiIlLSNJkxg6N16uDndOLxyCNgjO1IeaIykgdpaWkcvO02ygO7AgJoMHeu7UgiIlISublR7vPPwccHoqJOH6V3QSojefDpvfcSGR9PBuD/ySc4vLxsRxIRkZKqVi0YMwaA5Ece4dcvv7QcKPdURnLpt5UrufGTTwDY1r075dq3t5xIRERKvCefZF/FivimphJ/992kuNhgaCojuZCWlsb+224jGNjr70+9efNsRxIREQEPD8p88glpwI1JSXx25522E+WKykguuC9Zws3x8WQCZT75BLy9bUcSEREBIPC669h5zz0ARH71FdFLllhOlHMqIzl1/DjujzwCgBk8mCsiIy0HEhERya7OnDnsueIKygFxd91FsoucrlEZyYHU1FQyHn309GirtWrhMXas7UgiIiLn8vTkik8/JQPolJjIJz162E6UIyojObDgnnvwmDcP4+YG774Lvr62I4mIiJyX/w03sOuOOwDo/NVXHNuyxXKiS1MZuYRfly4l8tNPAdjWrRtce63dQCIiIpdQ8/33OVypEuWNoeywYUV+MDSVkYtISU7mxJ13UgHYExhIbd09IyIirsDbmwpLl4KnJ3z+Obz3nu1EF6UychFf3HYbN508SRoQ8PnnoMHNRETEVTRqBKNGAZDxyCNEL1pkNc7FqIxcwK+LFtFh6VIAtvfqReD111tOJCIikkv//S+Hr7wSj1OnSL7nHpISE20nOi+VkfNITkoitWdPAoC/K1SgnouO9S8iIiWchwc+H31EssPBdcnJLOnSxXai81IZOY+MKVNoceoUpxwOgpYsAXd325FERETypExEBLsHDADg5lWr+LkITu6qMvJv27ZR5vnnAUgZPZqAZs0sBxIREbk8dadOZUvlyvgB7n37cjI+3nakbFRG/sGZlga9e0NyMrRrR9nhw21HEhERuXxuboSsWEGiw0FEaipfd+pkO1E2KiP/sPTGG2HdOoy/P8yaBW7aPSIiUjyUqV+fvYMHA9Dpxx/ZtnCh5UT/T9+2Z/w6axbt164F4M/+/SE01HIiERGR/FV/wgQ2X3kl3kDNsWMhLc12JEBlBICkY8co9fDDeAG/hoXR4OWXbUcSERHJfw4H9dasgXLlcGzcCGeukbQtT2Vk2rRphIeH4+PjQ0REBGvWrLno+qtWrSIiIgIfHx+qV6/Om2++maewBWVt+/bUTkvjiJsbV65cCQ6H7UgiIiIFo2JFOPM9bF58ka1FYHTWXJeR+fPnM2jQIIYPH86GDRto3bo1nTp1Yu/eveddf9euXXTu3JnWrVuzYcMGnn32WQYOHMjCInKuasMbb3DTr78CsO9//8O/Rg3LiURERArY7bdzrFMnHE4nnn37khATYzWOw5jczZ7TvHlzmjZtyvTp07OW1a1bl27dujFu3Lhz1n/mmWf44osv2PKPWQMHDBjAb7/9xo8//pijz0xISCAgIID4+Hj8/f1zE/eiTh46xJGQEKplZPBjzZq02LYt37YtIiJSlJ3ct4/E8HAqZWbybb163LhpU75/Rk6/v3N1ZCQtLY3o6GgiIyOzLY+MjGTtmYs//+3HH388Z/0OHTqwfv160tPTz/ue1NRUEhISsj0KwqnHH6daRgYH3d2p//XXBfIZIiIiRVHp0FDizlwjeePmzaR9+aW1LLkqI0eOHCEzM5Pg4OBsy4ODg4mNjT3ve2JjY8+7fkZGBkeOHDnve8aNG0dAQEDWI7Qg7mwxhqCKFTEOB0mvv45/1ar5/xkiIiJFWKOnnmJvt26YgAC8LN5Zk6cLWB3/usDTGHPOskutf77lZw0bNoz4+Pisx759+/IS8+IcDpgyBcdff1Hz4Yfzf/siIiIuoOqHH+L44w+47TZrGTxys3L58uVxd3c/5yhIXFzcOUc/zqpYseJ51/fw8KBcuXLnfY+3tzfe3t65iZZ3tWoVzueIiIgURb6+1sfWytWRES8vLyIiIoiKisq2PCoqipYtW573PS1atDhn/RUrVtCsWTM8PT1zGVdERESKm1yfphk8eDDvvPMOs2bNYsuWLTz55JPs3buXAWdmBBw2bBi9e/fOWn/AgAHs2bOHwYMHs2XLFmbNmsXMmTMZMmRI/v0UIiIi4rJydZoGoEePHhw9epQxY8YQExPDVVddxZIlSwgLCwMgJiYm25gj4eHhLFmyhCeffJI33niDypUrM2XKFG6zeG5KREREio5cjzNiQ0GNMyIiIiIFp0DGGRERERHJbyojIiIiYpXKiIiIiFilMiIiIiJWqYyIiIiIVSojIiIiYpXKiIiIiFilMiIiIiJWqYyIiIiIVbkeDt6Gs4PEJiQkWE4iIiIiOXX2e/tSg727RBlJTEwEINTyFMciIiKSe4mJiQQEBFzwdZeYm8bpdHLw4EHKlCmDw+HIt+0mJCQQGhrKvn37NOdNAdO+Lhzaz4VD+7lwaD8XjoLcz8YYEhMTqVy5Mm5uF74yxCWOjLi5uRESElJg2/f399cveiHRvi4c2s+FQ/u5cGg/F46C2s8XOyJyli5gFREREatURkRERMSqEl1GvL29GTlyJN7e3rajFHva14VD+7lwaD8XDu3nwlEU9rNLXMAqIiIixVeJPjIiIiIi9qmMiIiIiFUqIyIiImKVyoiIiIhYVezLyLRp0wgPD8fHx4eIiAjWrFlz0fVXrVpFREQEPj4+VK9enTfffLOQkrq23OznTz/9lPbt21OhQgX8/f1p0aIFy5cvL8S0ri23v9Nn/fDDD3h4eNC4ceOCDVhM5HY/p6amMnz4cMLCwvD29qZGjRrMmjWrkNK6rtzu57lz59KoUSP8/PyoVKkS999/P0ePHi2ktK5p9erVdOnShcqVK+NwOFi0aNEl31Po34WmGPvoo4+Mp6enmTFjhtm8ebN54oknTKlSpcyePXvOu/7OnTuNn5+feeKJJ8zmzZvNjBkzjKenp1mwYEEhJ3ctud3PTzzxhHn55ZfNzz//bLZt22aGDRtmPD09za+//lrIyV1Pbvf1WSdOnDDVq1c3kZGRplGjRoUT1oXlZT937drVNG/e3ERFRZldu3aZdevWmR9++KEQU7ue3O7nNWvWGDc3NzN58mSzc+dOs2bNGlO/fn3TrVu3Qk7uWpYsWWKGDx9uFi5caADz2WefXXR9G9+FxbqMXHPNNWbAgAHZltWpU8cMHTr0vOv/97//NXXq1Mm2rH///ubaa68tsIzFQW738/nUq1fPjB49Or+jFTt53dc9evQwI0aMMCNHjlQZyYHc7uelS5eagIAAc/To0cKIV2zkdj9PmDDBVK9ePduyKVOmmJCQkALLWNzkpIzY+C4stqdp0tLSiI6OJjIyMtvyyMhI1q5de973/Pjjj+es36FDB9avX096enqBZXVlednP/+Z0OklMTKRs2bIFEbHYyOu+nj17Njt27GDkyJEFHbFYyMt+/uKLL2jWrBnjx4+nSpUq1KpViyFDhpCcnFwYkV1SXvZzy5Yt2b9/P0uWLMEYw6FDh1iwYAE333xzYUQuMWx8F7rERHl5ceTIETIzMwkODs62PDg4mNjY2PO+JzY29rzrZ2RkcOTIESpVqlRgeV1VXvbzv02cOJGkpCTuvPPOgohYbORlX//9998MHTqUNWvW4OFRbP93z1d52c87d+7k+++/x8fHh88++4wjR47wyCOPcOzYMV03cgF52c8tW7Zk7ty59OjRg5SUFDIyMujatSuvv/56YUQuMWx8FxbbIyNnORyObM+NMecsu9T651su2eV2P581b948Ro0axfz58wkKCiqoeMVKTvd1ZmYm99xzD6NHj6ZWrVqFFa/YyM3vtNPpxOFwMHfuXK655ho6d+7Mq6++ypw5c3R05BJys583b97MwIEDee6554iOjmbZsmXs2rWLAQMGFEbUEqWwvwuL7T+Vypcvj7u7+zkNOy4u7pzGd1bFihXPu76HhwflypUrsKyuLC/7+az58+fTt29fPvnkE9q1a1eQMYuF3O7rxMRE1q9fz4YNG3jssceA01+axhg8PDxYsWIFN910U6FkdyV5+Z2uVKkSVapUyTZVet26dTHGsH//fmrWrFmgmV1RXvbzuHHjaNWqFU8//TQADRs2pFSpUrRu3ZqxY8fq6HU+sfFdWGyPjHh5eREREUFUVFS25VFRUbRs2fK872nRosU5669YsYJmzZrh6elZYFldWV72M5w+ItKnTx8+/PBDne/Nodzua39/f/744w82btyY9RgwYAC1a9dm48aNNG/evLCiu5S8/E63atWKgwcPcvLkyaxl27Ztw83NjZCQkALN66rysp9PnTqFm1v2ry13d3fg///lLpfPyndhgV0aWwScvW1s5syZZvPmzWbQoEGmVKlSZvfu3cYYY4YOHWp69eqVtf7Z25mefPJJs3nzZjNz5kzd2psDud3PH374ofHw8DBvvPGGiYmJyXqcOHHC1o/gMnK7r/9Nd9PkTG73c2JiogkJCTG333672bRpk1m1apWpWbOm6devn60fwSXkdj/Pnj3beHh4mGnTppkdO3aY77//3jRr1sxcc801tn4El5CYmGg2bNhgNmzYYADz6quvmg0bNmTdQl0UvguLdRkxxpg33njDhIWFGS8vL9O0aVOzatWqrNfuu+8+06ZNm2zrf/fdd6ZJkybGy8vLVKtWzUyfPr2QE7um3OznNm3aGOCcx3333Vf4wV1Qbn+n/0llJOdyu5+3bNli2rVrZ3x9fU1ISIgZPHiwOXXqVCGndj253c9Tpkwx9erVM76+vqZSpUqmZ8+eZv/+/YWc2rV8++23F/07tyh8FzqM0bEtERERsafYXjMiIiIirkFlRERERKxSGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZExIp58+bh4+PDgQMHspb169ePhg0bEh8fbzGZiBQ2TZQnIlYYY2jcuDGtW7dm6tSpjB49mnfeeYeffvqJKlWq2I4nIoXIw3YAESmZHA4HL7zwArfffjuVK1dm8uTJrFmzRkVEpATSkRERsapp06Zs2rSJFStW0KZNG9txRMQCXTMiItYsX76cv/76i8zMTIKDg23HERFLdGRERKz49ddfueGGG3jjjTf46KOP8PPz45NPPrEdS0Qs0DUjIlLodu/ezc0338zQoUPp1asX9erV4+qrryY6OpqIiAjb8USkkOnIiIgUqmPHjtGqVSuuv/563nrrrazlt9xyC6mpqSxbtsxiOhGxQWVERERErNIFrCIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIiIiVv0fXrYhg2ioW1YAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdcUlEQVR4nO3de3zOdePH8dd17cjYnGeYUyGnnAlJhTlHRx1u0UEp5FCKuBMqUgqFlNPdTVIhxcI6IYrMlCLkfBhzyDZjx+vz+2Oz370c2mbbZ9f2fj4e1yPXd9/re733bVzvfQ+fj8MYYxARERGxxGk7gIiIiBRuKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiIiIWOVpO0BmuFwujh07RvHixXE4HLbjiIiISCYYY4iNjaVChQo4nVc+/uEWZeTYsWMEBwfbjiEiIiLZcPjwYSpVqnTFr7tFGSlevDiQ+s34+/tbTiMiIiKZERMTQ3BwcPrn+JW4RRm5eGrG399fZURERMTN/NMlFrqAVURERKxSGRERERGrVEZERETEKre4ZkREpKBISUkhKSnJdgyRHOHl5YWHh8c1b0dlREQkDxhjOH78OGfPnrUdRSRHlShRgvLly1/TOGAqIyIieeBiESlXrhxFixbVAI7i9owxnD9/nqioKACCgoKyvS2VERGRXJaSkpJeREqXLm07jkiOKVKkCABRUVGUK1cu26dsdAGriEguu3iNSNGiRS0nEcl5F3+ur+VaKJUREZE8olMzUhDlxM+1yoiIiIhYla0yMmPGDKpVq4avry9NmjRh/fr1V1z3+++/x+FwXPL4448/sh1aRERECo4sl5HFixczZMgQRo0aRUREBG3atKFz584cOnToqq/btWsXkZGR6Y8aNWpkO7SIiMjf/fHHH9x00034+vrSsGFD23EkC7JcRt566y0ee+wxHn/8cWrXrs2UKVMIDg5m5syZV31duXLlKF++fPojJwZJERH3d+rUKc6fP287huRjDoeDzz///B/XGzNmDH5+fuzatYtvvvkm94NJjslSGUlMTCQ8PJyQkJAMy0NCQti4ceNVX9uoUSOCgoJo164d33333VXXTUhIICYmJsNDRAqeTz/9lHLlytG2bVtcLpftOOLm9u7dy80330yVKlV0C7WbyVIZOXXqFCkpKQQGBmZYHhgYyPHjxy/7mqCgIN5//32WLFnC0qVLqVWrFu3atWPdunVXfJ8JEyYQEBCQ/ggODs5KTBFxA5GRkTz55JMEBwezYMECnM7CeT19XFzcFR/x8fGZXvfChQuZWjerjDFMmjSJ6tWrU6RIERo0aMBnn32W/rX27dvTqVMnjDEAnD17lsqVKzNq1CggdYyVxx57jGrVqlGkSBFq1arF1KlTL3mfuXPnUrduXXx8fAgKCmLgwIEAVK1aFYA777wTh8OR/vzvHA4H4eHhjBs3DofDwcsvv5zl71UsMllw9OhRA5iNGzdmWP7KK6+YWrVqZXo73bp1M927d7/i1+Pj4010dHT64/DhwwYw0dHRWYkrIvmUy+Uy3bt3N4Bp3LixSUxMtB0pV124cMHs2LHDXLhw4ZKvAVd8dOnSJcO6RYsWveK6bdu2zbBumTJlLrteVr344ovmhhtuMKtWrTJ79+418+bNMz4+Pub77783xhhz5MgRU7JkSTNlyhRjjDG9evUyTZs2Tf9/mpiYaF566SWzefNms2/fPrNgwQJTtGhRs3jx4vT3mDFjhvH19TVTpkwxu3btMps3bzZvv/22McaYqKgoA5h58+aZyMhIExUVddmckZGRpm7duubZZ581kZGRJjY2Nsvfq2TP1X6+o6OjM/X5naURWMuUKYOHh8clR0GioqIuOVpyNTfddBMLFiy44td9fHzw8fHJSjQRcSMLFizgyy+/xMvLi/nz5+Pl5YUxhrlz5xISEqKjoflEXFwcb731Ft9++y0tW7YEoHr16vzwww/MmjWLtm3bUrFiRWbNmkXv3r05ceIEX375JREREXh5eQGpE6mNHTs2fZvVqlVj48aNfPLJJ9x3330AvPLKKzz77LMMHjw4fb1mzZoBULZsWeD/5z+5kvLly+Pp6UmxYsWuup7kT1kqI97e3jRp0oSwsDDuvPPO9OVhYWH06NEj09uJiIi4pjHsRcR9HTt2jGeeeQaAl19+mfr16wMwYsQIJk2aREhICKtWrSo0A4SdO3fuil/7+4X+F+cAuZy/n+Y6cODANeUC2LFjB/Hx8XTo0CHD8sTERBo1apT+/N5772XZsmVMmDCBmTNnUrNmzQzrv/fee8yePZuDBw9y4cIFEhMT0+92iYqK4tixY7Rr1+6a84r7yvLcNMOGDaN37940bdqUli1b8v7773Po0CH69+8PwMiRIzl69CgffvghAFOmTKFq1arUrVuXxMREFixYwJIlS1iyZEnOficiku8ZY3jiiSc4e/YsTZs04fn77oP168HXl8fvvJNp06axZs0aZs+eTb9+/WzHzRN+fn7W172SixcVr1y5kooVK2b42v8evT5//jzh4eF4eHiwZ8+eDOt98sknDB06lMmTJ9OyZUuKFy/OG2+8waZNm4D/n9tECrcsl5FevXpx+vRpxo0bR2RkJPXq1SM0NJQqVaoAqRel/e+YI4mJiTz33HMcPXqUIkWKULduXVauXEmXLl1y7rsQEbeQlJREndKluc3Dg2eOHsXzf8YbqgEcqFSJUUeOMHLYMEJCQtL/XRE76tSpg4+PD4cOHaJt27ZXXO/ZZ5/F6XTy1Vdf0aVLF7p27crtt98OwPr162nVqhVPP/10+vp79+5N/3Px4sWpWrUq33zzDbfddttlt+/l5UVKSkoOfVeSL+XO5Sw5K7MXwIhIPpaSYsyUKcYULWoMpD68vIypXt2YSpX+fxmYP8AMbtzYuFwu26lzxNUu8MvvRo0aZUqXLm3mz59v/vzzT7N161bz7rvvmvnz5xtjjFmxYoXx9vY24eHhxhhjRo8ebSpVqmTOnDljjDFmypQpxt/f36xatcrs2rXLjB492vj7+5sGDRqkv8f8+fONr6+vmTp1qtm9e7cJDw8306ZNS/96jRo1zFNPPWUiIyPTt3s5DRo0MGPGjMn5nSBXlRMXsKqMiEiuc8XGGlf37v9fOJo3N2bpUmP+9x+v48eNmTzZJJUtawyYZDAb7r7bmAJQSNy5jLhcLjN16lRTq1Yt4+XlZcqWLWs6duxo1q5da6KiokxgYKB57bXX0tdPSkoyzZs3N/fdd58xJvXuyL59+5qAgABTokQJ89RTT5kRI0ZkKCPGGPPee++lv0dQUJAZNGhQ+te++OILc/311xtPT09TpUqVK2ZVGbEjJ8qIw5i0m8PzsZiYGAICAoiOjsbf3992HBHJilOniGrRgnL79uHy8cH59tvQvz9c6QLVs2fZERJCnZ9/BiDh6afxeffdK6/vBuLj49m/f3/6nF4iBcnVfr4z+/ldOEcZEpG8ERtL4m23UW7fPk4Di594Ap566urFokQJbvjxRxY1bw6Az4wZMHx46jEVESmQVEZEJHckJmLuugvv334jChjYoAH3vf12pl7q9PDggU2b4OKcV5Mnw5QpuRZVROxSGRGR3DFkCI6vv+YccKe3Ny8vXpz1CTL7908tIoB57jn46quczyki1qmMiEjO++ij9KMavYB7Jk6kVq1a2drUZ8HBzHU6cbhcmPvvh/37czCoiOQHKiMikrN27sQ88QQArwDRrVunj7iaHY2bNOFZX182AI6YGHjoIUhOzpmsIpIvqIyISM5JSoKHHsIRF8dPRYsy0deXefPmZf30zP+oXr06r77xBg8B0QA//givvJJTiUUkH1AZEZGc8/rrEBEBpUrR8LffWBUWRo3/GWU1u/r37891t9/Ok2nPzfjx8NNP17xdEckfVEZEJGds3w7jxqX++Z138K1WjZtvvjlHNu10OpkzZw4rixXjQ8DhcsHjj0NiYo5sX0TsUhkRkWuXnAyPPAJJSeypXZvke+/N8beoWrUqb775JkOBKIDff089EiOSR/r27UvPnj1tx8iWW2+9lSFDhtiOcUUqIyJy7aZMgfBw/gJu2bmTTz79NFfe5oknnqBl165svO++1AWvvAJ//JEr7yWpJkyYQLNmzShevDjlypWjZ8+e7Nq1K8M6S5cupWPHjpQpUwaHw8G2bdv+cbsHDhzI9Lr5xdSpU5k/f77tGNmydOlSxo8fbzvGFamMiMi1OXYMM3YsAM8BN9x6K/fff3+uvJXD4eDLL7+k58cfQ+fOqadpnnhCo7PmorVr1zJgwAB++uknwsLCSE5OJiQkhLi4uPR14uLiaN26NRMnTrSSMSkpKU/eJyAggBIlSuTJe+WUi/umVKlSFC9e3HKaq8idaXNylibKE8nHHnjAGDA/gilWtKjZt29f3rzvgQPG5eeXOvHeggV5857Z5M4T5f1dVFSUAczatWsv+dr+/fsNYCIiIv5xO0CGR9u2bdO/NnfuXHPDDTcYHx8fU6tWLTN9+vRL3mPx4sWmbdu2xsfHx8ydO9f06dPH9OjRw7z66qumXLlyJiAgwLz88ssmKSnJPPfcc6ZkyZKmYsWKZs6cOVfN9emnn5p69eoZX19fU6pUKdOuXTtz7tw5Y4xJf4+L2rZtawYNGmSGDx9uSpYsaQIDAy+ZqO/s2bOmX79+pmzZsqZ48eLmtttuM9u2bbvi+yckJJgBAwaY8uXLGx8fH1OlSpUMExH+0/bGjBljGjRoYObMmWOqVatmHA6Hcblcpm3btmbw4MEZ3mf48OGmQoUKpmjRoqZ58+bmu+++S//6gQMHTLdu3UyJEiVM0aJFTZ06dczKlSsvmzknJsrztNaCRMT9rV0LixbhAgYAk958k2rVquXJW++Ii2NNsWIMiYvDDB+O4447ID//5vd3xsD583beu2jRbE88GB0dDaT+pn0tNm/eTPPmzfn666+pW7cu3t7eAHzwwQeMGTOGd999l0aNGhEREUG/fv3w8/OjT58+6a9/4YUXmDx5MvPmzcPHx4e1a9fy7bffUqlSJdatW8eGDRt47LHH+PHHH7nlllvYtGkTixcvpn///nTo0IHg4OBLMkVGRvLAAw8wadIk7rzzTmJjY1m/fj3mKkfe/vOf/zBs2DA2bdrEjz/+SN++fWndujUdOnTAGEPXrl0pVaoUoaGhBAQEMGvWLNq1a8fu3bsvuw+nTZvGF198wSeffELlypU5fPgwhw8fBsj09v78808++eQTlixZcsXb6h955BEOHDjAxx9/TIUKFVi2bBmdOnVi+/bt1KhRgwEDBpCYmMi6devw8/Njx44dFCtWLPP/g7PqqlUln9CREZF8KDHRuOrVMwbMDDDt2rUzKSkpefb2hw8fNmWLFzd7Uj/WjXnhhTx776y67G+O586l5rbxSPtNP6tcLpfp3r27ufnmmy/79awcGbnSusHBweajjz7KsGz8+PGmZcuWGV43ZcqUDOv06dPHVKlSJcPPYK1atUybNm3SnycnJxs/Pz+zaNGiy2YKDw83gDlw4MBlv365IyN/3xfNmjUzL6T9LH7zzTfG39/fxMfHZ1jnuuuuM7NmzbrsewwaNMjcfvvtxuVyXfK1zGxvzJgxxsvLy0RFRWVY53+PjPz555/G4XCYo0ePZlinXbt2ZuTIkcYYY+rXr29efvnly2b8Ox0ZERF7pk/H8dtvnAIm+Pmxfs4cnM68uwytUqVKvD51KkMffZQvATN5Mo7HHoMcGNdELm/gwIH8+uuv/PDDD1l6Xf/+/VmwYEH683Pnzl12vZMnT3L48GEee+wx+vXrl748OTmZgICADOs2bdr0ktfXrVs3w89gYGAg9erVS3/u4eFB6dKliYqKuuz7N2jQgHbt2lG/fn06duxISEgI99xzDyVLlrzi93bjjTdmeB4UFJS+/fDwcM6dO0fp0qUzrHPhwgX27t172e317duXDh06UKtWLTp16kS3bt0ICQnJ0vaqVKlC2bJlr5h569atGGOoWbNmhuUJCQnp237mmWd46qmnWLNmDe3bt+fuu+++5HvNSSojIpJ1UVEwZgwAiS+/zLQGDahSpUqex+jbty+fffopoV99RZfkZFxDhuBcuTLPc2RL0aJwhQ/lPHnvLBo0aBBffPEF69ato1KlSll67bhx43juuef+cT2XywWknqpp0aJFhq/9/XSDn5/fJa/38vLK8NzhcFx22cX3+TsPDw/CwsLYuHEja9as4Z133mHUqFFs2rTpiqcfr7Z9l8tFUFAQ33///SWvu9KFsI0bN2b//v189dVXfP3119x33320b9+ezz77LNPbu9y++V8ulwsPDw/Cw8Mv2a8XT8U8/vjjdOzYkZUrV7JmzRomTJjA5MmTGTRo0FW3nV0qIyKSdaNHQ0wMNGlChX//m555eETkfzkcDt7/4AN63HAD7c+dwzs0FFauhK5dreTJEocD/uFDIz8wxjBo0CCWLVvG999/n61rgsqVK0e5cuUyLLt4jUhKSkr6ssDAQCpWrMi+fft46KGHri14NjkcDlq3bk3r1q156aWXqFKlCsuWLWPYsGFZ3lbjxo05fvw4np6eVK1aNdOv8/f3p1evXvTq1Yt77rmHTp06cebMmWxv7+8aNWpESkoKUVFRtGnT5orrBQcH079/f/r378/IkSP54IMPVEZEJJ/Ytg0zezYOgKlTwVIRuahixYo8M306U/r04XkgYcAAfDp0gLQPO7k2AwYM4KOPPmL58uUUL16c48ePA6m3uRYpUgSAM2fOcOjQIY4dOwaQPg5J+fLlKV++/GW3W65cOYoUKcKqVauoVKkSvr6+BAQE8PLLL/PMM8/g7+9P586dSUhIYMuWLfz111/ZKgRZsWnTJr755htCQkIoV64cmzZt4uTJk9SuXTtb22vfvj0tW7akZ8+evP7669SqVYtjx44RGhpKz549L3uq6e233yYoKIiGDRvidDr59NNPKV++PCVKlMjW9i6nZs2aPPTQQzz88MNMnjyZRo0acerUKb799lvq169Ply5dGDJkCJ07d6ZmzZr89ddffPvtt9neD5mhcUZEJPOMIe7JJ3EYw2Jgi4+P7UQA9O7dm/BOnTjj5YXPwYPwzju2IxUYM2fOJDo6mltvvZWgoKD0x+LFi9PX+eKLL2jUqBFd045I3X///TRq1Ij33nvvitv19PRk2rRpzJo1iwoVKtCjRw8g9fTA7NmzmT9/PvXr16dt27bMnz8/T+7S8vf3Z926dXTp0oWaNWsyevRoJk+eTOfOnbO1PYfDQWhoKLfccguPPvooNWvW5P777+fAgQMEBgZe9jXFihXj9ddfp2nTpjRr1owDBw4QGhqK0+nM1vauZN68eTz88MM8++yz1KpVizvuuINNmzal32WUkpLCgAEDqF27Np06daJWrVrMmDEjW/shMxzG5P/RgmJiYggICCA6Ohp/f3/bcUQKrZRPP8Xjvvu4ADzZti3/+e47HNm8RTSnxcbG4vfJJzgffxz8/WH3bsjiP9C5JT4+nv3791OtWjV8fX1txxHJUVf7+c7s57eOjIhI5iQkENu/PwDv+Pjw2oIF+aaIABQvXhznI49A06YQE0PyiBG2I4lIJqmMiEimnBg5khJnznAUqDBlSpbvqMgTTifn04Ykd86fT9KmTZYDiUhmqIyIyD9KPnKEYlOnAvBxgwY89OSTlhNdWUzdunzq7Y0TiLzvPs1bI+IGVEZE5B8d+Ne/8HO52OLhwf1ffpmvTs/8Xfny5fGaPJk4oPKhQxx4/XXbkUTkH6iMiMjVRURw3bp1AJx56SUqXmZOj/ymx4ABLK9TBwDfl14i8exZu4HSuMH9AiJZlhM/1yojInJlxsDgwTiMgQcfJOSll2wnyhSHw0H70FAOOp2UT0piQ9pto7ZcHKXzvK2J8URy0cWf67+PRpsVGvRMRK4oYvRoGq1fD0WKQNqFoe6iXJUqbBgyhCpvvcVN69axfeVK6lsamdXDw4MSJUqkz1lStGjRfH2qSyQzjDGcP3+eqKgoSpQoccUZgjND44yIyGVt37QJ/5tuogpw7rnnKPbGG7YjZZ0x/BYYSL2TJznWpg0V0k432YliOH78OGfzySkjkZxSokQJypcvf9mCndnPb5UREblEUlIS84OD6XfiBFFFilD25EkcbjCPyuX89f33lGjXDofLBevWwVXm4sgLKSkpJCUlWc0gklO8vLyuekQks5/fOk0jIpd4b9gwnjhxAgCvGTPctogAlLz1VnjiCXjvPXjmGdiyBa7hcPK18vDwuKbD2SIFkS5gFZEMtkVEUGv6dHyAYw0bUrJPH9uRrt24cVCiBGzbxtv16hEfH287kYj8D5UREUmXmJjIh3feSYgxJDqdBH36aepU9+6ubFkSRo4E4OE//uDNF16wHEhE/pfKiIikm/Lqqww9eBCApKFDcVx/veVEOcdn2DDOVq1KaaDKtGls3rzZdiQRSaMyIiLpBpw4QTBwrmxZ/MaPtx0nZ3l6UmLxYlxAb+C9e+7R6RqRfEJlRERS/fwzfh98AECx//wndWyRgqZ5cxL79QPgxcOHGZd26kZE7FIZERF2/vILPPYYuFzw0EPQubPtSLnG9803uVC6NNcDxaZM4ccff7QdSaTQUxkRKeR+/vlnFjVqBNu3Y8qUgSlTbEfKXf7+FEk7AjQc2Pqf/9jNIyIqIyKFWXx8POMeeIBRaWMfOqZOhTJlLKfKA3feSWLXrngBAzZvBg1CJmKVyohIITZuzBhG7N2LD5DYvj088IDtSHnG+4MPoGRJiIiACRNsxxEp1FRGRAqpTZs24fXGG7QGknx98Z4zp2CMKZJZQUEwfToAZvx4Xr3nHs2qK2KJyohIIRQfH8/U++7jpbTTM14ffACVK1tOZcH992PuvhtHcjLdlyzhJQ2GJmKFyohIIfTa888z4dAhPICEe++Ff/3LdiQ7HA4cM2aQ6O/PjUCpd99l/fr1tlOJFDoqIyKFjTE89csvVAHiypfHZ/Zs24nsKlcO77lzAXgBePf++4mLi7ObSaSQURkRKWzmzSNo3TqMpyd+y5fDVab1LjTuvpvEXr3wACYdO8a4YcNsJxIpVFRGRAqRuPBwGDQIAMf48dC8ueVE+Yf3Bx9wPiiIKkDj999n7fff244kUmiojIgUEhu/+469LVrA+fNw++3w/PO2I+UvxYtT9PPPSXE46AVsGTjQdiKRQkNlRKQQOH/+PLvuuosbU1KI9fGB//4XnPrrf4nmzUn6978BGHbgAOzebTePSCGhf41ECoH/PvQQj5w9C4Bj3jyoUMFuoHzM96WX4LbbcMTFwYMPQmKi7UgiBZ7KiEgB99Py5fT8/HMADnTvTrFCNMpqtnh4pB45KlUKwsP5pVs3YmNjbacSKdBURkQKsLjYWBIfeIBA4EjJklT95BPbkdxDxYqQdrtvg7Aw5vXqZTmQSMGmMiJSgK3p0oVbLlwgHgj46ivw9bUdyX306MGRHj0A6PXVV6xdvNhyIJGCS2VEpIAy4eF037gRgH2DBlG8RQvLidxPpUWLOFq6NIGAs08fYtKuuxGRnKUyIlIQnTuH44EH8HS5ONehA3WmTrWdyD0VKUKJVau44HDQJiGBsI4dbScSKZBURkQKIDNoEOzZAxUrUmzRosI1G28O82valEPPPgvAHZs385OKnUiOy1YZmTFjBtWqVcPX15cmTZpkemKpDRs24OnpScOGDbPztiKSCb/9+9845s/HOBywcCGULm07kturNWkSW2vUwAuo8NxzJJ8+bTuSSIGS5TKyePFihgwZwqhRo4iIiKBNmzZ07tyZQ4cOXfV10dHRPPzww7Rr1y7bYUXk6s799huVX30VgNVNmkDbtpYTFRAOB7W+/54TRYtSOTkZz4EDwRjbqUQKDIcxWfsb1aJFCxo3bszMmTPTl9WuXZuePXsyYcKEK77u/vvvp0aNGnh4ePD555+zbdu2TL9nTEwMAQEBREdH469JvUQuLzmZvZUqcd2JE4T7+FAzMpLiJUvaTlWw/PQT3HwzpKTAnDnw6KO2E4nka5n9/M7SkZHExETCw8MJCQnJsDwkJISNaVftX868efPYu3cvY8aMydT7JCQkEBMTk+EhIle395FHuO7ECaKBxHnzVERyw003wfjxAKQMGED0pk2WA4kUDFkqI6dOnSIlJYXAwMAMywMDAzl+/PhlX7Nnzx5GjBjBwoUL8fT0zNT7TJgwgYCAgPRHcHBwVmKKFDpxa9ZQdcECAJZ26EBLjbKae154gSM33IBHfDzRnTtDfLztRCJuL1sXsDr+dmW+MeaSZQApKSk8+OCDjB07lpo1a2Z6+yNHjiQ6Ojr9cfjw4ezEFCkcYmK4cPfdeADLihXj3qVLbScq2JxOIl9/nSig8l9/se/ee20nEnF7WSojZcqUwcPD45KjIFFRUZccLQGIjY1ly5YtDBw4EE9PTzw9PRk3bhy//PILnp6efPvtt5d9Hx8fH/z9/TM8ROTykp9+mjLnzrEfKPfJJxQrVsx2pAKv2R138MVddwFQfcUKYhcutJxIxL1lqYx4e3vTpEkTwsLCMiwPCwujVatWl6zv7+/P9u3b2bZtW/qjf//+1KpVi23bttFCI0KKXJvFi/FcuBDjdBI1eTKtO3e2najQeGjBAuZdvC7n0UfhyBG7gUTcWOYu4vgfw4YNo3fv3jRt2pSWLVvy/vvvc+jQIfr37w+knmI5evQoH374IU6nk3r16mV4fbly5fD19b1kuYhk0eHDkPb3zjFqFC2GDbMcqHApUqQIdZYvZ8stt9A0MZGTnTtT9pdfwKmxJEWyKst/a3r16sWUKVMYN24cDRs2ZN26dYSGhlKlShUAIiMj/3HMERG5Ri4Xp7t1g7NncTVrBv/+t+1EhVKLNm349vHHOQeU/e03zk+aZDuSiFvK8jgjNmicEZGM4iZPxu+55zgHLHzuOZ584w3bkQqt+Ph43q5Vi5GHDmGKFMGxbRtk4YJ9kYIsV8YZEZF84MgRnCNHAvB22bL0HjvWcqDCzdfXl+f37oX27XFcuAB9+6YOiiYimaYyIuJOjOH43XdTJCmJjUC7JUsoWrSo7VSFnoenZ+qIrP7+8OOPXHjlFduRRNyKyoiIGzk3bx7lN28mEdjYty+t2rSxHUkuqlyZfYMGAeA5bhz8/rvlQCLuQ2VExF2cPk3KgAEAzCpdmgEzZlgOJH93pkcPVgJeLhdn7rgDkpJsRxJxCyojIm7i3JNPEhAfz+9A86VLKVKkiO1I8jdNmzXjt8GDOQOU2rePc5mcj0uksFMZEXEHYWEUW7IE43Cwd8QIWtxyi+1EcgVDJ03ijUqVAPB+/XXYtctyIpH8T2VEJL+Li4MnngDAMWgQd0yYYDmQXI23tzf3fv45qx0OvF0uTvbsCS6X7Vgi+ZrKiEg+d6B3bzhwACpXhldftR1HMqFxkybseOaZ1MHQ/viDmMmTbUcSyddURkTysb9WryZ42TIAfnrkEdAkeG5jwKRJzKhQAYBi48fD0aOWE4nkXyojIvlVYiIxvXrhAXwZEECjtIHOxD14e3vz+LZtmBYtcMbGwtNPQ/4f8FrECpURkXxqe58+VImO5iQQvGQJPj4+tiNJFpUqWxbH7Nng6QlffEHyxx/bjiSSL6mMiORDpzdsoGbaB9f3PXvSsF07y4kk2+rVI37oUADOPfII5vRpy4FE8h+VEZF8xqSkENWjBz7A+uLF6aHfpt3en7168QdQIiGBvXfdZTuOSL6jMiKSz+wZPpzap08TC5T8+GO8dXrG7dVr0oRN/foBcP26dZz65BPLiUTyF5URkfzkyBFqzJ4NwOaePanXpYvlQJJTHpoxg0/LlgUg8ZFHMOfPW04kkn+ojIjkF8bAU0/hiI2Fli1p99lnthNJDvL09KTeF19wFKhw/jy/3Xef7Ugi+YbKiEg+sWv8eFixAry9YfZs8PCwHUlyWO2bbuKnf/0r9c8rV3IiLMxyIpH8QWVEJB84/vvvlHr5ZQBOPvEE1KljN5Dkmh7z5vFdyZJ4AkUHD4aUFNuRRKxTGRGxzBjD7506UdYY/vT1pcTEibYjSS7y9PTkutBQXP7+FN+5E955x3YkEetURkQs++aFF2h35AgugA8+wMvPz3YkyWWVb7oJ56RJqU9Gj4aDB+0GErFMZUTEosg//6RG2iRq4S1bcn3a9QRSCPTrh2nTBuLi2NayJUYz+0ohpjIiYokxhk0hIVRxuTjm7U2j0FDbkSQvOZ2cGDeOBKBhZCTf9e9vO5GINSojIpasGjeO7vv3A5A0bRqeJUrYDSR5rvyttxLesSMA9WbP5vAvv1hOJGKHyoiIDYmJdPjkEzyA3xo1osqTT9pOJJa0WLaM/UWKUM4Yfu/cGaOZfaUQUhkRsWHSJDx37IAyZai7erXtNGKRR5EieMydiwvoFBnJimHDbEcSyXMqIyJ57NCqVZjx41OfTJ2KI22IcCm8Kt9/P9tvvhmAOlOncmDnTsuJRPKWyohIHjq0fz8nunXDkZhIUseO8MADtiNJPlH/yy+J8vbmOmM4M2SI7TgieUplRCSPGGMI7dSJZikpnPPwwPn+++Bw2I4l+YSzRAlSpk4FoPE334AuZpVCRGVEJI8sfu01Ht69G4C4l1/Go3Jly4kkvwnq3x/uvjt1iPh+/TRUvBQaKiMieeDg/v1UGDOGosChGjUIHDXKdiTJr955BwIC4OefWd6hAy4NhiaFgMqISC4zxrC0c2duSUnhgtNJxZUrdXpGriwoiKRXXwWg3Xff8eG4cZYDieQ+lRGRXLZgwgQe27ULgHMjRuBRo4blRJLfeT31FMeuu45iQPD48fy5Z4/tSCK5SmVEJDcZQ9cvv8QfOFa1KmX1W65khtNJ+RUriHc6aedysbxzZ52ukQJNZUQkN82bR6mffsJ4e1N+xQrw8LCdSNyE84YbiBs9GoAn9+5l/ksvWU4kkntURkRyyYXff4fBgwFwjBuHs25dy4nE3ZQeM4ajNWtSDKj52mvs/uMP25FEcoXKiEgu2Lt7N782bAjnzqVOE//cc7YjiTtyOqnw1Vec9/DgZmMI79PHdiKRXKEyIpLDXC4X33TsSIvkZOI8PDDz5+v0jGSbo3p14tOmD7j/118h7WJokYJEZUQkhy0eMYJHDhwA4PzEiTirV7cbSNxeqREjICQER3w89OkDycm2I4nkKJURkRz05/btNHzzTbyAfQ0bUvbZZ21HkoLA4YDZs8HfHzZt4udevUjR6KxSgKiMiOSQlJQUtnbsSG1jOO3tTdXVqzW4meSc4GBM2tw1DZYuZYGuQ5ICRGVEJId8PnAg90VGApA8axbOcuUsJ5KCxtGnDwcbNcIbaDZ1Kju3brUdSSRHqIyI5IQzZ+jw0UcA/N62LYF9+9rNIwWTw0Hl1as54+NDHWP4tXNnknX9iBQAKiMiOWHAAPxjYkioWpU6K1bYTiMFmKNsWVyzZwPQKyqKJf36WU4kcu1URkSukfnoI/j4Y/DwwGfxYhzFitmOJAVcmX/9iz/atwfglvnz2bl+veVEItdGZUTkGuz59lvOPfxw6pN//xuaN7cbSAqNWsuXc6hYMYKAkz17YjR3jbgxlRGRbEpJSuLsnXdSPCWFXSVKwKhRtiNJIeIoWhTfJUtIcji45cwZHPPn244kkm0qIyLZ9P1dd9EsJoY4IGD5cvD0tB1JCplyISF4TZyY+uSZZ+DPP+0GEskmlRGRbNi7fDmt0y5U/aV3b8rfcovlRFJoPfsstG0LcXGcu/NOki5csJ1IJMtURkSyKDkujpQHHsAX+LlsWVrq8LjY5OEBH35IvK8vxX77jQ1duthOJJJlKiMiWfRz167UvHCB0w4HlVavxuHUXyOxrHJltj7+OAA3f/89uz/80HIgkazRv6IiWeBau5YWa9cC8OvAgQQ1amQ5kUiqltOmsS44GE/At18/Es+csR1JJNNURkQyKyYGZ9++OIEDt93GrWnzhIjkBw6Hg9rffMMRp5PKiYlsTxuHRMQdqIyIZNaQIXDgAFStStXPP8ehSfAknylbowZ7Ro/GBTSJiGDvlCm2I4lkisqISCYcmDoV5s3DOBzw4YepU7mL5EO3jR3Lypo1ASgxfDiJR49aTiTyz1RGRP5B0tGj+KdN1/51o0bQpo3lRCJXd9PXX7PL25vSycl4DRoExtiOJHJVKiMiV2MMe9u1o1RyMr97eHDjsmW2E4n8o7LBwVy3YQN4eeFYtiz1aJ5IPpatMjJjxgyqVauGr68vTZo0Yf1VJmn64YcfaN26NaVLl6ZIkSLccMMNvP3229kOLJKXDo0fzw27dpEIHH71VQIrV7YdSSRTPJs2hbFjATCDBhG/a5flRCJXluUysnjxYoYMGcKoUaOIiIigTZs2dO7cmUOHDl12fT8/PwYOHMi6devYuXMno0ePZvTo0bz//vvXHF4kNyXu2UOptH/MP6lXj47PP285kUgWPf88Z+vWxREby7EOHUCT6Uk+5TAmaycTW7RoQePGjZk5c2b6stq1a9OzZ08mTJiQqW3cdddd+Pn58d///jdT68fExBAQEEB0dDT+unBQ8oLLxf7q1al28CCbPT2peugQ5YKCbKcSybI1M2fS6umnKQYcHDSIKtOm2Y4khUhmP7+zdGQkMTGR8PBwQkJCMiwPCQlh48aNmdpGREQEGzdupG3btldcJyEhgZiYmAwPkbwU//rrVDt4kHPAqbfeUhERtxXy1FN83KIFAEHvvktCeLjlRCKXylIZOXXqFCkpKQQGBmZYHhgYyPHjx6/62kqVKuHj40PTpk0ZMGAAj6cNXXw5EyZMICAgIP0RHByclZgi1+b33/FNOz2z4a676DJokOVAItfmrpUrWePjg7cxnO7cGRITbUcSySBbF7D+fbAnY8w/DgC1fv16tmzZwnvvvceUKVNYtGjRFdcdOXIk0dHR6Y/Dhw9nJ6ZI1iUlwcMPQ0ICdOlCx88+s51I5JqVKl0aM2sWp4AKJ09y+KmnbEcSySBLZaRMmTJ4eHhcchQkKirqkqMlf1etWjXq169Pv379GDp0KC+//PIV1/Xx8cHf3z/DQyQvHB06FLZuhVKlYPZs0CirUkB07NOHRbfcAkD5uXOJ/+kny4lE/l+Wyoi3tzdNmjQhLCwsw/KwsDBatWqV6e0YY0hISMjKW4vkusRff6XMjBkAfNujB+g6ESlg/vX556zw9cUL8HziidQjgSL5QJZP0wwbNozZs2czd+5cdu7cydChQzl06BD9+/cHUk+xPPzww+nrT58+nS+//JI9e/awZ88e5s2bx5tvvsm//vWvnPsuRK5VSgrHunTBxxi+9vbmxtdft51IJMeVLFmS5ps3Q+nSeG7fDhMn2o4kAoBnVl/Qq1cvTp8+zbhx44iMjKRevXqEhoZSpUoVACIjIzOMOeJyuRg5ciT79+/H09OT6667jokTJ/Lkk0/m3Hchco0OvvACVY8eJQZIfvddypQtazuSSK4oV78+vPMOPPggZvx4Urp1w7NRI9uxpJDL8jgjNmicEclNCbt2kVy7Nn7GMLdZMx7dvNl2JJHcZQwJXbrgs2oVh8uVI/jIEfDysp1KCqBcGWdEpMAxhoMdO+JnDD96edEzNNR2IpHc53CwsXdvzgDBUVEcGDDAdiIp5FRGpFA78frr1Dx4kAvA+WnTKFWmjO1IInnitgcfZGna3TUVPviA8z//bDmRFGYqI1J4RUYSmHah6tdt2tAu7SJskcLi3uXL+drXF28gqnt3SE62HUkKKZURKZyMgaefhrNnoWlTun/7re1EInkuoEQJvObM4SxQ9cQJ9g0caDuSFFIqI1IoHZw8GT7/HDw9Ye7c1P+KFEJtH3yQzy+ernn/feIiIiwnksJIZUQKnfOHD+M3YgQAhx9+GOrXt5xIxK67vviCtb6++BoDjz8OLpftSFLIqIxIofN7x46USUnhD09Pir/2mu04Itb5BwRQbulSjJ8fflu3wsyZtiNJIaMyIoXK9kmTaLZzJynAmUmTKPEPcyqJFBa1O3fGcXFE1hdegAMHrOaRwkVlRAqNuMhISr/4IgDf1KtHq6FDLScSyWeefhpz880QF8euW29NvdBbJA+ojEihsbVjRyqkpHDQw4MWa9bYjiOS/zid7Bg2jAtArYMH+X34cNuJpJBQGZFC4Zdp02izfTsAUa+9RoBm5BW5rLp33snqli0BqPTWW8Tu3m05kRQGKiNS8F24QP1p0wBYV7s2zZ5/3nIgkfytfWgo2729CTCGP0NCdLpGcp3KiBR8Y8bg3LsXKlbk5g0bbKcRyfeKlShBwsyZJAGNDh5k2+jRtiNJAacyIgXaiRUrMJMnpz557z2cJUvaDSTiJpo++ijfNG8OQKWJE4nZt89yIinIVEakwIo9fZozd92Fw+Xiwp13QrdutiOJuJU2q1axy9ubMi4XZ/v0sR1HCjCVESmwvuvUidpJSZx2Okm5eHRERDLNr2RJkt57D+N0UvmHH2DFCtuRpIBSGZECaeP779NpyxYAjr/4IsWqVbOcSMQ91XvkERzDhqU+6d8foqPtBpICSWVECpyYM2coOmgQ3sD2qlWpO26c7Ugi7m3sWLj+ejh6lG0dOthOIwWQyogUOKs7d6ZhYiIxTifXhYWBw2E7koh7K1qUv958E4CGP//Mj6++ajmQFDQqI1KgrJ89m+6bNwMQOXw4Ra+/3nIikYKhZI8ebGjQAIAKY8Zw5vBhy4mkIFEZkYLD5aLR9On4An9UrkytCRNsJxIpUBqvWcNRT0+qpKSwOSTEdhwpQFRGpOCYMYNi27ZhihWj6po1Oj0jksOKlCtHzBtvABDyxx+se/11y4mkoFAZkQIh4Y8/YMQIAByvv45vrVqWE4kUTLWHDGFLvXo4gfKjRnH66FHbkaQAUBkRt/fXmTNsadQI4uIwbdqk3n4oIrmm3urVnPLwoGZKCr/36mU7jhQAKiPi9pZ160br+HguOBzET58OTv1Yi+Qm3woVOPvaawC0+ekn2LrVciJxd/pXW9xa2Lx53P3jjwAcHziQIvXrW04kUjhc//zzcO+9OFJS4LHHICnJdiRxYyoj4rbOnD6N46mnCAAOBgVR7e23bUcSKVzeeQdKlYJt2/jloYdspxE3pjIibmtZ1660T0gg0eEgcMUK8PCwHUmkcAkMJDlt3qcbPv2U1fqFQLJJZUTc0pqZM+m1aRMAkQMH4tu4seVEIoWTZ58+7Lr+enyA0s8/T1RkpO1I4oZURsT9pKRQf/JkigH7goOpMmWK7UQihZfDQbVVqzjndNI0OZnQTp0wxthOJW5GZUTcz+TJBO3dS0rRolQMC9PdMyKWeV93HWdGjgTgvl9/JXTqVMuJxN3oX3FxL7/+Cv/+NwAe77yDjwY3E8kXKo8fz75q1SgKlBs+nBMaDE2yQGVE3MbJI0f4s1UrSEyE7t3hkUdsRxKRixwOKq1ZQ6zTSbPkZNZ26WI7kbgRlRFxGxs6dOD6uDjOeHjgmjVLc8+I5DPe11/PX2PHAnDvjh0aDE0yTWVE3MK348fT/Y8/APhr4kScQUGWE4nI5VQeNQruugtHcjL07g3x8bYjiRtQGZF87+T+/VR7+WU8gIgbb+S6556zHUlErsThgFmzIDAQduwgql8/3V0j/0hlRPI1Ywxb27WjmstFpJcXdcPCbEcSkX9SpgzMmZP6xwUL+Hr0aMuBJL9TGZF8bd3IkXTcvx+Ac9Om4V2unOVEIpIpXbsS0bQpTuCGCROITDvNKnI5KiOSf505w41p4xX81KIFNfr3txxIRLKiflgYR7y9CTaG3zt00OkauSKVEcm/nn6akvHxRFeoQJM1a2ynEZEs8ixRgsTZs3EB7Y8c4fvBg21HknxKZUTyp48/hsWLwcODgM8/x8vf33YiEcmG6r17s6ltWwDqv/sux3S7r1yGyojkOye2biWub9/UJ6NHQ7NmVvOIyLVptnIle4oUoYwxHO7UCeNy2Y4k+YzKiOQrxuXiaKdO+CUksKdECRg1ynYkEblGnn5+eCxaRALQ4uTJ9DttRC5SGZF8ZdNjj9H45EkuAGb+fPDysh1JRHJA9R498HjtNQAcw4ZB2l1yIqAyIvnIiR9+oP78+QD80LUrNXv0sBtIRHKU5/PPQ5s2cO4cSQ89hElOth1J8gmVEckXTHIyZ7p3xw/4uXhxblu61HYkEclpHh4wfz7Jvr54/fgjmx54wHYiySdURiRf2PrAA9Q+e5ZoIGDpUjy9vW1HEpHcUL0633bvDkCjzz7jmG7bF1RGJB9IDg+n/mefAfDDvfdSs317y4lEJDe1++gjNpQsiQ8Qd889mIQE25HEMpURsSshAc9HH8Ub2FGzJh0XLrSdSERymYenJ0FffslpoEZsLFvvvNN2JLFMZUTsGjsWfv0VypShzvr1eOruGZFCoXrr1vyUNp5Qw6++4tiyZXYDiVUqI2LN8aVLMRMnpj55/33QJHgihUrnOXMIK1sWDyDloYdwnTtnO5JYojIiVphz50j5179wGMMvDRqADtOKFDpOp5PrV63imMNB8IULuJ5/3nYksURlRKzY0b07FS9c4AhQ9IMPbMcREUuqNW6M13//C4DnzJnw9deWE4kNKiOS504sWEDd778HYNOTT1JDc8+IFGplH3oInn4aAPPII7jOnLGcSPKayojkKfPXXzgffxyAJeXL03P6dMuJRCRfmDSJpKpVcRw5wu5OnWynkTymMiJ5anfnzpRNSOBPh4MGq1bh4eFhO5KI5Ad+fqy4915SgBt+/pnId9+1nUjykMqI5JnYhQuptWkTKcDWwYO5vkED25FEJB/pMXEiH1epAkCRoUNxnThhOZHklWyVkRkzZlCtWjV8fX1p0qQJ69evv+K6S5cupUOHDpQtWxZ/f39atmzJ6tWrsx1Y3NTZsxQfPhyAr2rX5p7Jky0HEpH8xul00nrNGn5zOimRnMyezp1tR5I8kuUysnjxYoYMGcKoUaOIiIigTZs2dO7cmUOHDl12/XXr1tGhQwdCQ0MJDw/ntttuo3v37kRERFxzeHEjzz4LkZFQsybdwsNxOnVQTkQuVbVmTXa98ALJQK2ICI7purJCwWGMMVl5QYsWLWjcuDEzZ85MX1a7dm169uzJhAkTMrWNunXr0qtXL1566aXLfj0hIYGE/5mrICYmhuDgYKKjo/H3989KXMkHTvz3vwQ+/DA4HLB+PbRubTuSiORjxhg+rl6dBw4c4LSXFyWOHMFDgyK6pZiYGAICAv7x8ztLv54mJiYSHh5OSEhIhuUhISFs3LgxU9twuVzExsZSqlSpK64zYcIEAgIC0h/BwcFZiSn5iCs6Gle/fgAc6NZNRURE/pHD4aD16tX84XRSOimJ+P79bUeSXJalMnLq1ClSUlIIDAzMsDwwMJDjx49nahuTJ08mLi6O++6774rrjBw5kujo6PTH4cOHsxJT8pHt3bsTlJDAAYcDXnvNdhwRcROVa9YkadYsjNOJ37JlsGKF7UiSi7J14t7hcGR4boy5ZNnlLFq0iJdffpnFixdT7iqH3Hx8fPD398/wEPdz5KOPaJB2cfOvgwZRtV49y4lExJ3Uf/xxHMOGpT558kk4e9ZqHsk9WSojZcqUwcPD45KjIFFRUZccLfm7xYsX89hjj/HJJ5/Qvn37rCcVt+I6dw7z2GMArKhQgW5vv205kYi4pXHjMDVrwrFj/K7B0AqsLJURb29vmjRpQlhYWIblYWFhtGrV6oqvW7RoEX379uWjjz6ia9eu2UsqbiWie3eC4+M56nBQ/6uvdPeMiGRPkSL88MgjuIC6mzZx8P33bSeSXJDlT4hhw4Yxe/Zs5s6dy86dOxk6dCiHDh2if9oFRiNHjuThhx9OX3/RokU8/PDDTJ48mZtuuonjx49z/PhxoqOjc+67kHzl0Gef0TBt7plfn36aKjfeaDeQiLi1m194gS+qVgXAZ9AgkjV3TYGT5TLSq1cvpkyZwrhx42jYsCHr1q0jNDSUKmmj5kVGRmYYc2TWrFkkJyczYMAAgoKC0h+DBw/Oue9C8o+EBCq99BIewDdBQXR65x3biUTEzTkcDpqvWcN+p5PyiYn8qsHQCpwsjzNiQ2bvU5Z84N//hldegXLlSNm+XWMDiEiOWT1yJB0nTgRg/+zZVEu7Lk3yr1wZZ0Tkas588w3m4sB3M2aoiIhIjgp57TVWpp2u8Xr6aZJ0d02BoTIiOSIlPp6Td9yBIyWFc507w913244kIgWMw+GgyZo1HHY6qZSYSFTagIri/lRGJEds6NmTWufPc8bhIObVV23HEZECqnyNGkSOHQtAxSVLYMMGy4kkJ6iMyDX784svaJE2E/P2xx+nQqNGlhOJSEHWfPRoeOQRMAYefRQuXLAdSa6Ryohck+SEBC48+CA+wOayZbnlvfdsRxKRwmDyZAgKgt27+eWuu2ynkWukMiLX5Pu77qJ+XBzRQPDKlTg0uJmI5IWSJTn04osA1Fu1il0LF1oOJNdCnxySbbtDQ2kVGgrA7488QlCzZpYTiUhhEjxgAOsrVcIDcDz+OInnztmOJNmkMiLZ43JRacwYigLbypSh5ezZthOJSCHjcDi4Yc0aTjoc1IyPZ0O3brYjSTapjEj2vPceRbdswfj5Uf3rr3V6RkSsKFu7NnvSRvS+ee1adi5ebDmRZIc+QSTLkvbsgeefB8AxcSL+DRpYTiQihVmrt95ic4UKeAGuvn1JiIuzHUmySGVEsiQpMZHwpk0hLg5Xq1bw9NO2I4lIYedwcN3q1Zx1OKgbH09E7962E0kWqYxIloTeey83xcRwATjzxhug0zMikg+UrlePvQMHAtAiNBT++MNyIskKfZJIpv2+Zg1tv/gCgD8eeogyrVpZTiQi8v+aTJ0KnTrhSEhIHQwtJcV2JMkklRHJlMSEBE7dcw8lgN0lS9Jw/nzLiURE/sbhgFmzoHhx+PFHfuvf33YiySSVEcmULx54gLaxsSQCpT//HIenp+1IIiKXqlyZuLS5a6rNns0vy5ZZDiSZoTIi/+jXsDBuS/sLveu++yh9yy2WE4mIXJnf4MH8HhiIH3DhX/8iXnPX5HsqI/KPSr70EqWB/SVKUH/BAttxRESuzumkwooVXABuOn+elT172k4k/0BlRK5uyRKCf/oJ4+FBiSVLwMvLdiIRkX9UsmlT9j72GAAd1qxh6/LllhPJ1aiMyJWdPp0+johjxAhK3n675UAiIplXb9Ys9pQtiz8Q+9BDXDh/3nYkuQKVEbmshIQE1t54I0RFQZ068O9/244kIpI1Hh6U+/JL4oG2cXGs6NXLdiK5ApURuaylvXrR9tgxkoH4994DHx/bkUREsiygRQv2P/wwAHevXw+RkZYTyeWojMglIkJDCUk7v/rnvffi26aN5UQiItlXe84cTJMmOKOjU089G2M7kvyNyohkEH/hAjH33Zd690zJktygu2dExN15euKYOxc8PeHzzzk6aZLtRPI3KiOSwYo776RtXBzxQMkvvwRvb9uRRESu3Y034nrpJQD8Roxg02efWQ4k/0tlRNJtXbKEjqtXA7C3b19KtG5tOZGISM5xjhzJ3rJlKQEkPfwwcbGxtiNJGpURSeVyETB4MMWBP8qVo+7s2bYTiYjkLE9PyoWGcsHh4OYLFwjt3t12IkmjMiKppkzhuqNHSfLxIWjVKvDwsJ1IRCTHFW/alANPPQVA17Vr2bxwoeVEAiojArBjB7z4IgBe06YR0KiR5UAiIrmn9jvvsLNCBYoCno89xrmzZ21HKvRURgq589HRHL79dkhIgM6doV8/25FERHKX00mlsDBiHA4aJyTwbefOthMVeiojhdy6Tp0IPnGCaA8PzAcfgMNhO5KISK4rXqcOh4cPB6Dbli2wbZvdQIWcykghFvHBB7T/6ScA9j/7LI6KFS0nEhHJO3UnTiSle3ecycnQu3fqEWKxQmWkkIo7dYriAwbgCfxcrRoNJ060HUlEJG85HHjMng1ly8Jvv5EwcqTtRIWWykghtalDB65PSiLK6aTW11/r9IyIFE7lysH77wPg9fbb/Dxlit08hZTKSCEUMWUKt6adHz0yZgz+1avbDSQiYlPPnvx0ww04gbLDhxNz7JjtRIWOykhhExtL+REjcAI/1KpF47ThkUVECrN6X3/NMQ8PqiYns7V9e9txCh2VkcJm2DCCEhI44+/PjV9/bTuNiEi+UKxiRU6mTaB3686dhL/2muVEhYvKSGESGgppw7yXWr4c/0qVLAcSEck/GgwbxtoGDQCo+O9/E33woOVEhYfKSCERe+AAFx56KPXJkCFw660244iI5EtNw8LY5+VFeZeLHe3a2Y5TaKiMFBK72renyNmzRJYoATr8KCJyWX5lyxIzbRopQMu9e3F98ontSIWCykgh8OuoUTTdu5dk4Ohrr0GRIrYjiYjkWw379ycmbTI959NPw/HjlhMVfCojBVzs7t0Epw1otqZpU5qm/QUTEZErKzllCjRoAKdPY554AoyxHalAUxkpyIzhQPv2lHS5+M3bm1vWrLGdSETEPXh7w4cfYry8cHz5JduGDrWdqEBTGSnAfhs6lPqHDxMPxL//PsVKlrQdSUTEfdx4I6tatQLgumnTiP71V8uBCi6VkQIqcdcuqk6bBsCqm2+maZ8+lhOJiLifW1esYKuvL8WN4WhICLhctiMVSCojBZHLhfcTT1DMGLaXLEmHlSttJxIRcUtFihXD8eGHxAF1Tpxg+5NP2o5UIKmMFERTpsC6deDnR/0tW/Dz97edSETEbTW6917WdOgAwPWzZ/PXTz9ZTlTwqIwUMDE//YTr4jTYkyeDJsETEblmnZcvZ4OfH0WA0926QXKy7UgFispIQZKUxOlu3XAmJnL0xhvhiSdsJxIRKRB8ixSh6KJFnAWuP32a+LFjbUcqUFRGCpA/+val2unTnAGOjRsHDoftSCIiBUaj7t05/PzzAPhOnAgREZYTFRwqIwVE9Pr1XPfRRwB81bUrzXr0sJxIRKTgqT9xItx1V+ppmt69IT7edqQCQWWkIEhO5kzPnngBYcWKcZfmUhARyR0OB7z3HqZcOfj9d3ZdnIBUronKSAGw49FHqXbmDGeAUosWUaRoUduRREQKrrJl+eqOOwC4bulSzoSFWQ7k/lRG3NzZH3/kuv/+F4Cvu3alSbdulhOJiBR87adPZ1VAAJ5A7L33QmKi7UhuTWXEnaWk4D90KD7AD8WLc8enn9pOJCJSKHh7e1NhyRJOAlWio/ldp2uuicqIO5s6FeemTeDvT4tffsG3SBHbiURECo0b27Xj+7vvBqDmZ59x+ttvLSdyXyojbupcRARm1KjUJ2++iVe1anYDiYgUQj0WLuRbf3+8gOi77sLodE22ZKuMzJgxg2rVquHr60uTJk1Yv379FdeNjIzkwQcfpFatWjidToYMGZLdrHKRy8Whjh1xxMdzrkULePxx24lERAolbx8fApcu5QxQPTqa0yNG2I7klrJcRhYvXsyQIUMYNWoUERERtGnThs6dO3Po0KHLrp+QkEDZsmUZNWoUDRo0uObAAlv79aPOyZOcA/a/+KIGNxMRsahuu3bsSBvxusz06fD775YTuR+HMcZk5QUtWrSgcePGzJw5M31Z7dq16dmzJxMmTLjqa2+99VYaNmzIlClTshQyJiaGgIAAoqOj8S/kk76d2rKFIs2a4Qes6NiRbqtW2Y4kIiLGQLduEBoKzZvDhg3g6Wk7lXWZ/fzO0pGRxMREwsPDCQkJybA8JCSEjRs3Zi/pZSQkJBATE5PhIWBcLo527YofEO7nR8jnn9uOJCIikHqEetYs8PeHzZv5rV8/24ncSpbKyKlTp0hJSSEwMDDD8sDAQI4fP55joSZMmEBAQED6Izg4OMe27c62PPUUDaKiuAAUWbgQb19f25FEROSiSpXYkVZCrps/nxNXuZ5SMsrWBayOv12jYIy5ZNm1GDlyJNHR0emPw4cP59i23dXJiAhqffABAOs6dKCO5p4REcl3ak6YwE/Fi1MEON2jByY52XYkt5ClMlKmTBk8PDwuOQoSFRV1ydGSa+Hj44O/v3+GR6FmDH7PPou/MfxatCi3LV9uO5GIiFyGp5cXpZYsIRao89df/Nynj+1IbiFLZcTb25smTZoQ9rdx+MPCwmjVqlWOBpP/sWABRb/7DuPtTYWvvsJbg5uJiORbNTt0YGPa0eu6H33E8Q0bLCfK/7J8qe+wYcPo3bs3TZs2pWXLlrz//vscOnSI/v37A6mnWI4ePcqHH36Y/ppt27YBcO7cOU6ePMm2bdvw9vamTp06OfNdFGApR4/iMXgwAI4xYyhzyy2WE4mIyD9p98knhJcpQ5PYWP684w4Co6JweHjYjpVvZbmM9OrVi9OnTzNu3DgiIyOpV68eoaGhVKlSBUgd5OzvY440atQo/c/h4eF89NFHVKlShQMHDlxb+gLOuFz83KwZN/31F66GDXEOH247koiIZIKntzcBn37K+U6daHDmDNuHDKH+O+/YjpVvZXmcERsK6zgj6wYO5Jbp00kCDn72GdenzYEgIiLuYf3dd9Nm6VJM8eI4fvsNKle2HSlP5co4I5J3jm/fTp0ZMwD46bbbVERERNxQm08+gVatcMTGwhNPpA6OJpdQGcmHjDHs6tSJMsbwZ5EitFyxwnYkERHJDg8PmDMHfHxg9Wr+GDnSdqJ8SWUkH/pu8GDaHjtGMuCYNw/PokVtRxIRkey64QbOpN2IUP711zmyebPlQPmPykg+c3T7duq8+y4AP996K9f16mU5kYiIXKuAcePYWawYJYDDXbtiXC7bkfIVlZF8xvHss5Q3hv2+vjT78kvbcUREJAd4+PhQZNEiEoGWp07xreauyUBlJD/56isqhIVhHA68PvwQz2LFbCcSEZEcUrVbN7Z07gxAw7lzOajTNelURvKL6OjUK60Bx5AhVLr3XsuBREQkp920bBl7/PwoDezv1g2XTtcAKiP5gjGG75s1gyNH4Lrr4JVXbEcSEZFc4PTxwWfhQpKBW0+e5Junn7YdKV9QGckHQocN49Y9ewA488YboLtnREQKrMo9ehAREgJAu6VL4fRpy4nsUxmx7NCOHdSdOhWAba1bU+rOOy0nEhGR3NZ0+XKoUwfnyZOQdttvYaYyYpExhq0dO1LVGCJ9fKi/cqXtSCIikgccvr4wdy44nbBwIcdmzbIdySqVEYu+eO45eh45AkDKe+/hERBgOZGIiOSZFi1IHDQo9c/9+7Nv61a7eSxSGbHkwI4d1H37bQB+u+kmKvXtazeQiIjkOc9XX+VIkSJUAHZ06VJo765RGbHk1JNPcr0xRHl7Uyc01HYcERGxwOnnh8d//oML6HbiBJ8X0rtrVEZs+P57mv7wAwApM2fiLFnSciAREbEl6N57+f222wBo+v777CmEp2tURvJaTAxcPCXTrx9Bjz5qNY6IiNhX74sviCxShMrG8HuXLqSkpNiOlKdURvKQy+UivG1bOHgQqlWDyZNtRxIRkXzAUawYzrlzAeh54gSf9+9vOVHeUhnJQyuffpom27bhApI++ACKF7cdSURE8onA++/nt3btAOi6bBn89ZflRHlHZSSP7Pv5Z5ql3Uf+6+2345X2AyciInJR3eXLcV1/Pb6nT8PAgbbj5BmVkTzgcrnY36UL5YGDRYty45df2o4kIiL5kMPPD+eCBamDoX30EQkLF9qOlCdURvLAqkceod2pUyQDXosW4dTcMyIiciUtWmBGjADgXO/e7Fq71nKg3Kcyksv2/vADLT78EIBtXbtS4Y47LCcSEZF876WX2OvvT2ljONGzJ8lJSbYT5SqVkdxkDDG9elEa2F28OE2WLrWdSERE3IDDx4diS5aQANxy9iyrH3jAdqRcpTKSm+bModGxYyR5eFBsyRIc3t62E4mIiJsIbN+e3+69F4A2S5awa80ay4lyj8pIbtm/H4YOBcBr4kQqdOhgOZCIiLibxh99xI6SJfEHYu65h6SEBNuRcoXKSC5ISUoiqmtXOHcO2rRJLyUiIiJZ4fD0pPSXXxIHNIuN5du777YdKVeojOSCtXfdRbmdO7ng4QHz54OHh+1IIiLipgJbt+b3Pn0AuH31ati1y3KinKcyksP+/PJLWq1YAUDEQw9B9eqWE4mIiLtrNmcOcS1b4pWcDA8/DMnJtiPlKJWRHJR84QKJ99+PL7ClbFlazptnO5KIiBQADg8P/BYvhoAA2LwZM3Gi7Ug5SmUkB/14xx3UOX+es0DF0FAcTu1eERHJIcHBMG0aAMkvvcSuxYstB8o5+rTMIX9+8gk3ff01ANv79yeoaVPLiUREpMDp3ZufK1bEyxicffuSGBtrO1GOUBnJAebCBRx9++IF/BAUxM3Tp9uOJCIiBZHDQZVVqzjpcFAjPp5NnTrZTpQjVEZygGPMGK67cIHTXl5cv2aNTs+IiEiuKVevHruHDQOg1caN7CoA1yc6jDHGdoh/EhMTQ0BAANHR0fj7+9uOk9EPP8Att4AxsHw5aO4ZERHJA2urVKHtoUMc9PYm6PhxvEuWtB3pEpn9/Nav8Ncg6a+/SHzwwdQi0revioiIiOSZut98w1GnkyqJiWwNCbEd55qojFyDX0JC8D58mJiSJWHKFNtxRESkEClz/fXsffFFAG7asoWU1astJ8o+lZFs2jtjBk23bAFgy9NPp977LSIikoduGT+efWkXsXo8/jicPWs3UDapjGRD4okTFBsyBICV1atz2/jxdgOJiEihVf2zz+C66+DIERg82HacbFEZyYadHToQmJTEn04nTb/+GofDYTuSiIgUVn5+8J//YBwO+PBDdk+aZDtRlqmMZNG+N9+kwfbtpAAHxo4lsFo125FERKSwa92atc2aAVD6xReJP3TIcqCsURnJgsTDhykxYgQAy2vVov3o0ZYTiYiIpKq/bBk7PT0pnZLCn+3bp97p6SZURjLLGLwGDqRUSgo7vLxokzb0u4iISH5QukIFTrzxBklAvT17+PPll21HyjSVkcz6739xfPEFeHlx3YYNlK1UyXYiERGRDG4dMoTlDRoAUO6VV4jfs8dyosxRGcmEhH37MM88k/pk7Fh80s7LiYiI5DftwsLY6uWFv8vFwQ4d3OJ0jcrIPzGGfR074oiO5lydOjB8uO1EIiIiV1SybFmip07lAlDr4EHOTZ5sO9I/Uhn5B3vHj6f2n3+SCPz0xBPg6Wk7koiIyFXd9tRTbOrRA4BiY8dCPr+7RmXkKuIPHKD0uHEALL/xRtq76WAyIiJS+Ny6ZAm0agXnzkG/fvn6dI3KyFXs6diREikpbPf05HY3HvNfREQKIQ8PmDsXfHxgzRr+zMfDUaiMXMHuV1+l/u7dJAGn33yT0uXL244kIiKSNbVqEXHnnQCUmziR8/n07hqHMfn4uE2amJgYAgICiI6Oxt/fP9ff78KhQ5yvXp3SKSksu/FG7vzll1x/TxERkdwQffo0+4OCaJiUxG9Vq1Jv3z7Io2lMMvv5rSMjl+EYOpTSKSns9PTk1jVrbMcRERHJtoDSpTn3zjskAPUOHGBnPjxdozLyd8uX47t0KcbDg5LLllEyMNB2IhERkWty85NP8lXTpgAETZxI3N69lhNlpDLyP1ynTkH//gA4hg+nfLdulhOJiIjkjNtXreI3Ly9KuFzsCQnJV3fXqIz8jy233ALHj5NSsyaMGWM7joiISI7xTztdkwQ03LePg/loMDSVkTS/vfEGzXfuxAVseeop8PW1HUlERCRH3fTkk6xr3RqAypMmwcmTlhOlUhkB4o4do8zIkQB8Xa8eLYYMsRtIREQkl7T79luoVw/HyZNwcd41y7JVRmbMmEG1atXw9fWlSZMmrF+//qrrr127liZNmuDr60v16tV57733shU2t/zSoQPlU1LY7+lJC909IyIiBZm3N8yblzoo2scfs++tt2wnynoZWbx4MUOGDGHUqFFERETQpk0bOnfuzKErjHu/f/9+unTpQps2bYiIiODFF1/kmWeeYcmSJdccPif8OnkyrXbsAODUxIkEBAVZTiQiIpLLmjbleO/eABQbPpyYgwetxsnyoGctWrSgcePGzJw5M31Z7dq16dmzJxMmTLhk/RdeeIEvvviCnTt3pi/r378/v/zyCz/++GOm3jO3Bj07FxnJ2cqVqZSczHd163Lbb7/l2LZFRETys3OnTnG8QgWuT0piQ82atN61K8ffI1cGPUtMTCQ8PJyQkJAMy0NCQti4ceNlX/Pjjz9esn7Hjh3ZsmULSUlJl31NQkICMTExGR654fzgwVRKTuawhwdNdHpGREQKkWJlyhD79tu4gNa7d5O4YoW1LFkqI6dOnSIlJYXAvw0EFhgYyPHjxy/7muPHj192/eTkZE6dOnXZ10yYMIGAgID0R3BwcFZiZo4xlAsMxDgcxL/7Lv4VKuT8e4iIiORjjQYM4EjPnpiAALwvXLCWI1sXsDr+Nqa9MeaSZf+0/uWWXzRy5Eiio6PTH4cPH85OzKtzOOCdd3Ds2kWNtIHORERECpvK//0vjh074N57rWXwzMrKZcqUwcPD45KjIFFRUZcc/biofPnyl13f09OT0qVLX/Y1Pj4++Pj4ZCVa9tWokTfvIyIikh8VK5b6sChLR0a8vb1p0qQJYWFhGZaHhYXRqlWry76mZcuWl6y/Zs0amjZtipeXVxbjioiISEGT5dM0w4YNY/bs2cydO5edO3cydOhQDh06RP+0Ux0jR47k4YcfTl+/f//+HDx4kGHDhrFz507mzp3LnDlzeO6553LuuxARERG3laXTNAC9evXi9OnTjBs3jsjISOrVq0doaChVqlQBIDIyMsOYI9WqVSM0NJShQ4cyffp0KlSowLRp07j77rtz7rsQERERt5XlcUZsyK1xRkRERCT35Mo4IyIiIiI5TWVERERErFIZEREREatURkRERMQqlRERERGxSmVERERErFIZEREREatURkRERMQqlRERERGxKsvDwdtwcZDYmJgYy0lEREQksy5+bv/TYO9uUUZiY2MBCA4OtpxEREREsio2NpaAgIArft0t5qZxuVwcO3aM4sWL43A4cmy7MTExBAcHc/jwYc15k8u0r/OG9nPe0H7OG9rPeSM397MxhtjYWCpUqIDTeeUrQ9ziyIjT6aRSpUq5tn1/f3/9oOcR7eu8of2cN7Sf84b2c97Irf18tSMiF+kCVhEREbFKZURERESsKtRlxMfHhzFjxuDj42M7SoGnfZ03tJ/zhvZz3tB+zhv5YT+7xQWsIiIiUnAV6iMjIiIiYp/KiIiIiFilMiIiIiJWqYyIiIiIVQW+jMyYMYNq1arh6+tLkyZNWL9+/VXXX7t2LU2aNMHX15fq1avz3nvv5VFS95aV/bx06VI6dOhA2bJl8ff3p2XLlqxevToP07q3rP5MX7RhwwY8PT1p2LBh7gYsILK6nxMSEhg1ahRVqlTBx8eH6667jrlz5+ZRWveV1f28cOFCGjRoQNGiRQkKCuKRRx7h9OnTeZTWPa1bt47u3btToUIFHA4Hn3/++T++Js8/C00B9vHHHxsvLy/zwQcfmB07dpjBgwcbPz8/c/Dgwcuuv2/fPlO0aFEzePBgs2PHDvPBBx8YLy8v89lnn+VxcveS1f08ePBg8/rrr5vNmzeb3bt3m5EjRxovLy+zdevWPE7ufrK6ry86e/asqV69ugkJCTENGjTIm7BuLDv7+Y477jAtWrQwYWFhZv/+/WbTpk1mw4YNeZja/WR1P69fv944nU4zdepUs2/fPrN+/XpTt25d07NnzzxO7l5CQ0PNqFGjzJIlSwxgli1bdtX1bXwWFugy0rx5c9O/f/8My2644QYzYsSIy67//PPPmxtuuCHDsieffNLcdNNNuZaxIMjqfr6cOnXqmLFjx+Z0tAInu/u6V69eZvTo0WbMmDEqI5mQ1f381VdfmYCAAHP69Om8iFdgZHU/v/HGG6Z69eoZlk2bNs1UqlQp1zIWNJkpIzY+CwvsaZrExETCw8MJCQnJsDwkJISNGzde9jU//vjjJet37NiRLVu2kJSUlGtZ3Vl29vPfuVwuYmNjKVWqVG5ELDCyu6/nzZvH3r17GTNmTG5HLBCys5+/+OILmjZtyqRJk6hYsSI1a9bkueee48KFC3kR2S1lZz+3atWKI0eOEBoaijGGEydO8Nlnn9G1a9e8iFxo2PgsdIuJ8rLj1KlTpKSkEBgYmGF5YGAgx48fv+xrjh8/ftn1k5OTOXXqFEFBQbmW111lZz//3eTJk4mLi+O+++7LjYgFRnb29Z49exgxYgTr16/H07PA/nXPUdnZz/v27eOHH37A19eXZcuWcerUKZ5++mnOnDmj60auIDv7uVWrVixcuJBevXoRHx9PcnIyd9xxB++8805eRC40bHwWFtgjIxc5HI4Mz40xlyz7p/Uvt1wyyup+vmjRokW8/PLLLF68mHLlyuVWvAIls/s6JSWFBx98kLFjx1KzZs28ildgZOVn2uVy4XA4WLhwIc2bN6dLly689dZbzJ8/X0dH/kFW9vOOHTt45plneOmllwgPD2fVqlXs37+f/v3750XUQiWvPwsL7K9KZcqUwcPD45KGHRUVdUnju6h8+fKXXd/T05PSpUvnWlZ3lp39fNHixYt57LHH+PTTT2nfvn1uxiwQsrqvY2Nj2bJlCxEREQwcOBBI/dA0xuDp6cmaNWu4/fbb8yS7O8nOz3RQUBAVK1bMMFV67dq1McZw5MgRatSokauZ3VF29vOECRNo3bo1w4cPB+DGG2/Ez8+PNm3a8Morr+jodQ6x8VlYYI+MeHt706RJE8LCwjIsDwsLo1WrVpd9TcuWLS9Zf82aNTRt2hQvL69cy+rOsrOfIfWISN++ffnoo490vjeTsrqv/f392b59O9u2bUt/9O/fn1q1arFt2zZatGiRV9HdSnZ+plu3bs2xY8c4d+5c+rLdu3fjdDqpVKlSruZ1V9nZz+fPn8fpzPix5eHhAfz/b+5y7ax8FubapbH5wMXbxubMmWN27NhhhgwZYvz8/MyBAweMMcaMGDHC9O7dO339i7czDR061OzYscPMmTNHt/ZmQlb380cffWQ8PT3N9OnTTWRkZPrj7Nmztr4Ft5HVff13upsmc7K6n2NjY02lSpXMPffcY37//Xezdu1aU6NGDfP444/b+hbcQlb387x584ynp6eZMWOG2bt3r/nhhx9M06ZNTfPmzW19C24hNjbWREREmIiICAOYt956y0RERKTfQp0fPgsLdBkxxpjp06ebKlWqGG9vb9O4cWOzdu3a9K/16dPHtG3bNsP633//vWnUqJHx9vY2VatWNTNnzszjxO4pK/u5bdu2Brjk0adPn7wP7oay+jP9v1RGMi+r+3nnzp2mffv2pkiRIqZSpUpm2LBh5vz583mc2v1kdT9PmzbN1KlTxxQpUsQEBQWZhx56yBw5ciSPU7uX77777qr/5uaHz0KHMTq2JSIiIvYU2GtGRERExD2ojIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiFixaNEifH19OXr0aPqyxx9/nBtvvJHo6GiLyUQkr2miPBGxwhhDw4YNadOmDe+++y5jx45l9uzZ/PTTT1SsWNF2PBHJQ562A4hI4eRwOHj11Ve55557qFChAlOnTmX9+vUqIiKFkI6MiIhVjRs35vfff2fNmjW0bdvWdhwRsUDXjIiINatXr+aPP/4gJSWFwMBA23FExBIdGRERK7Zu3cqtt97K9OnT+fjjjylatCiffvqp7VgiYoGuGRGRPHfgwAG6du3KiBEj6N27N3Xq1KFZs2aEh4fTpEkT2/FEJI/pyIiI5KkzZ87QunVrbrnlFmbNmpW+vEePHiQkJLBq1SqL6UTEBpURERERsUoXsIqIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiIiIWPV/QIXk7ecqzNYAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdzUlEQVR4nO3dd1xV9ePH8ddlIwpOEDduU3NgztRKJUemLbWlllmWmqOl2TfN6mtllg01t9+WWVmmiQPLVZamYVqOcu8QU0BkXj6/P1B+kSNA4MOF9/PxuI+H99xzz3nfE3HfnPE5DmOMQURERMQSN9sBREREpGhTGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKg/bAbIiLS2NY8eOUaJECRwOh+04IiIikgXGGOLi4qhQoQJubpff/+ESZeTYsWNUrlzZdgwRERHJgcOHD1OpUqXLvu4SZaREiRJA+ofx9/e3nEZERESyIjY2lsqVK2d8j1+OS5SRC4dm/P39VUZERERczL+dYqETWEVERMQqlRERERGxSmVERERErHKJc0ZERAoLp9NJSkqK7RgiucLT0xN3d/erXo7KiIhIPjDGcOLECc6cOWM7ikiuKlmyJOXLl7+qccBURkRE8sGFIhIYGEixYsU0gKO4PGMM586dIyoqCoDg4OAcL0tlREQkjzmdzowiUqZMGdtxRHKNr68vAFFRUQQGBub4kI1OYBURyWMXzhEpVqyY5SQiue/Cz/XVnAulMiIikk90aEYKo9z4uVYZEREREatyVEamTp1KSEgIPj4+hIaGsn79+svOu2bNGhwOx0WPXbt25Ti0iIiIFB7ZLiMLFixg+PDhjBkzhsjISNq2bUuXLl04dOjQFd+3e/dujh8/nvGoVatWjkOLiIj8065du2jZsiU+Pj40btzYdhzJhmyXkTfeeIMBAwbw0EMPUa9ePSZPnkzlypWZNm3aFd8XGBhI+fLlMx65MUiKiLi+6Ohozp07ZzuGFGAOh4NFixb963xjx47Fz8+P3bt388033+R9MMk12SojycnJbNmyhbCwsEzTw8LC2LBhwxXf26RJE4KDg+nQoQOrV6++4rxJSUnExsZmeohI4fPZZ58RGBhI+/btSUtLsx1HXNzevXu5/vrrqVq1qi6hdjHZKiPR0dE4nU6CgoIyTQ8KCuLEiROXfE9wcDAzZsxg4cKFfPHFF9SpU4cOHTqwbt26y65nwoQJBAQEZDwqV66cnZgi4gKOHz/OI488QuXKlfnwww9xcyua59PHx8df9pGYmJjleRMSErI0b3YZY3jttdeoXr06vr6+NGrUiM8//zzjtY4dO9K5c2eMMQCcOXOGKlWqMGbMGCB9jJUBAwYQEhKCr68vderU4a233rpoPXPmzKF+/fp4e3sTHBzMkCFDAKhWrRoAt912Gw6HI+P5PzkcDrZs2cL48eNxOByMGzcu259VLDLZcPToUQOYDRs2ZJr+0ksvmTp16mR5Obfccovp3r37ZV9PTEw0MTExGY/Dhw8bwMTExGQnrogUUGlpaaZ79+4GME2bNjXJycm2I+WphIQEs2PHDpOQkHDRa8BlH127ds00b7FixS47b/v27TPNW7Zs2UvOl13PPvusqVu3rlm+fLnZu3evmTt3rvH29jZr1qwxxhhz5MgRU6pUKTN58mRjjDG9e/c2zZo1y/hvmpycbJ5//nmzadMms2/fPvPhhx+aYsWKmQULFmSsY+rUqcbHx8dMnjzZ7N6922zatMm8+eabxhhjoqKiDGDmzp1rjh8/bqKioi6Z8/jx46Z+/frmiSeeMMePHzdxcXHZ/qySM1f6+Y6JicnS93e2RmAtW7Ys7u7uF+0FiYqKumhvyZW0bNmSDz/88LKve3t74+3tnZ1oIuJCPvzwQ5YsWYKnpyfz5s3D09MTYwxz5swhLCxMe0MLiPj4eN544w2+/fZbWrVqBUD16tX57rvvmD59Ou3bt6dixYpMnz6d+++/nz///JMlS5YQGRmJp6cnkH4jtRdeeCFjmSEhIWzYsIFPP/2UXr16AfDSSy/xxBNPMGzYsIz5rrvuOgDKlSsH/P/9Ty6nfPnyeHh4ULx48SvOJwVTtsqIl5cXoaGhREREcNttt2VMj4iIoEePHlleTmRk5FWNYS8iruvYsWM8/vjjAIwbN46GDRsCMGrUKF577TXCwsJYvnx5kRkg7OzZs5d97Z8n+l+4B8il/PMw14EDB64qF8COHTtITEykU6dOmaYnJyfTpEmTjOd33XUXX375JRMmTGDatGnUrl070/zvvfces2bN4uDBgyQkJJCcnJxxtUtUVBTHjh2jQ4cOV51XXFe2700zcuRI7r//fpo1a0arVq2YMWMGhw4dYtCgQQCMHj2ao0eP8v777wMwefJkqlWrRv369UlOTubDDz9k4cKFLFy4MHc/iYgUeMYYHn74YZxnzjCuWjVG7dwJ7duDry+jypVjp6cnX69cyaxZsxg4cKDtuPnCz8/P+ryXc+Gk4qVLl1KxYsVMr/197/W5c+fYsmUL7u7u/PHHH5nm+/TTTxkxYgSTJk2iVatWlChRgokTJ7Jx40bg/+9tIkVbtstI7969OXXqFOPHj+f48eM0aNCA8PBwqlatCqSflPb3MUeSk5N58sknOXr0KL6+vtSvX5+lS5fStWvX3PsUIuISUuLjeTA6mo+AgAMH4G9/vZcCFgO/As8PG0ZYWFjG7xWx45prrsHb25tDhw7Rvn37y873xBNP4ObmxrJly+jatSvdunXjpptuAmD9+vW0bt2axx57LGP+vXv3Zvy7RIkSVKtWjW+++YYbb7zxksv39PTE6XTm0qeSgihHd+197LHHMv1g/d28efMyPX/66ad5+umnc7IaESlMDh7Eq1cvbt+0Kf157drQuzfUqweJifDjj5gFC2gQE8MXCQl81aYNVfbtw+HlZTd3EVaiRAmefPJJRowYQVpaGtdffz2xsbFs2LCB4sWL069fP5YuXcqcOXP44YcfaNq0KaNGjaJfv35s27aNUqVKUbNmTd5//31WrFhBSEgIH3zwAT/99BMhISEZ6xk3bhyDBg0iMDCQLl26EBcXx/fff8/QoUMBMspKmzZt8Pb2plSpUrY2ieSVvDm3Nndl9WxcESmY0n75xaSVL28MGFOqlDHz5hnjdF484+nT5q9+/dLnA3OoXj1jCsFVEVe62qCgS0tLM2+99ZapU6eO8fT0NOXKlTM333yzWbt2rYmKijJBQUHmv//9b8b8KSkppnnz5qZXr17GmPSrI/v3728CAgJMyZIlzaOPPmpGjRplGjVqlGk97733XsY6goODzdChQzNeW7x4salZs6bx8PAwVatWvWzWRo0ambFjx+bmx5csyI2raRzGnL84vACLjY0lICCAmJgY/P39bccRkezYsYPE5s3xiY8nuW5dvJYtg8uMFXHB4ocfpsPMmfgBqe3b47FiBbjwFXaJiYns378/455eIoXJlX6+s/r9XTRHGRKR/HH8OKlhYfjEx7MRmHnvvf9aRABuee893rzlFpzFiuGxdi3cey/onAGRQktlRETyRmIipnt3PI4e5XdgXLNmDBo9OktvdXNz47klS3BfvBi8vGDhQvjbWBUiUriojIhI3njySRxbtnAS6OHlxeQPP8z+DTI7dIA5c9L//eKLsHRprscUEftURkQk9y1cCFOmAHA/8PArr1CnTp0cLepzb2+mnR/Qy9x/Pxw9mlspRaSAUBkRkdx1+DBmwAAAXgXOtmmTMeJqTjRt2pRnfXz4CXCcPg0PPZR+rY2IFBoqIyKSe4yBQYNwxMSwzceHl318mDt3bvYPz/xN9erVeXniRPoCiQDLl8OsWbmVWEQKAJUREck9n3wC4eHg5UWdDRsIj4igVq1aV73YQYMGUeGmm3j2/HMzcmSm0VtFxLWpjIhI7oiOhguHY557Du8mTbj++utzZdFubm7Mnj2b2X5+rAccZ8/+/7pExOWpjIhI7hg5EqKjORkUROoTT+T64qtVq8ZrkybxCJACsGQJLF6c6+sRuZz+/fvTs2dP2zFy5IYbbmD48OG2Y1yWyoiIXL316+GDD0gDuv35J58uWpQnq3n44Yep3q0bP7Vrlz5h6FCIj8+TdUm6CRMmcN1111GiRAkCAwPp2bMnu3fvzjTPuHHjqFu3Ln5+fpQqVYqOHTtm3JX3cg4cOIDD4WDr1q15mD53vfXWWxfdf81VfPHFF7z44ou2Y1yWyoiIXB2nEzNsGAAzAb8bbqBPnz55siqHw8GSJUtoHR4OVavCoUPw0kt5si5Jt3btWgYPHsyPP/5IREQEqamphIWFEf+3Eli7dm3effddtm/fznfffUe1atUICwvj5MmT+ZIxJSUlX9YTEBBAyZIl82VdueXCtildujQlSpSwnOYK8ua2OblLN8oTKcBmzjQGzGkwVYsVM/v27cuf9X71lTFg0jw8jNm9O3/WmUOufKO8f4qKijKAWbt27WXnufA7e9WqVZedB8j0aN++fcZrc+bMMXXr1jXe3t6mTp06ZsqUKRmv7d+/3wBmwYIFpn379sbb29vMmTPH9OvXz/To0cO8/PLLJjAw0AQEBJhx48aZlJQU8+STT5pSpUqZihUrmtmzZ1/x83322WemQYMGxsfHx5QuXdp06NDBnD171hhjMtZxQfv27c3QoUPNU089ZUqVKmWCgoIuulHfmTNnzMCBA025cuVMiRIlzI033mi2bt162fUnJSWZwYMHm/Llyxtvb29TtWrVTDci/LfljR071jRq1MjMnj3bhISEGIfDYdLS0kz79u3NsGHDMq3nqaeeMhUqVDDFihUzzZs3N6tXr854/cCBA+aWW24xJUuWNMWKFTPXXHONWbp06SUz58aN8jystSARcX0xMaQ+8wwewDjgmddfz3Rr+Ly0o2ZNoosXp93Zs5gnnsCxZEm+rDfXGAPnztlZd7Fi4HDk6K0xMTFA+l/al5KcnMyMGTMICAigUaNGl13Opk2baN68OatWraJ+/fp4eXkBMHPmTMaOHcu7775LkyZNiIyMZODAgfj5+dGvX7+M9z/zzDNMmjSJuXPn4u3tzdq1a/n222+pVKkS69at4/vvv2fAgAH88MMPtGvXjo0bN7JgwQIGDRpEp06dqFy58kWZjh8/zt13381rr73GbbfdRlxcHOvXr8dcYVyb//3vf4wcOZKNGzfyww8/0L9/f9q0aUOnTp0wxtCtWzdKly5NeHg4AQEBTJ8+nQ4dOvD7779fchu+/fbbLF68mE8//ZQqVapw+PBhDh8+DJDl5e3Zs4dPP/2UhQsXXvay+gceeIADBw7wySefUKFCBb788ks6d+7M9u3bqVWrFoMHDyY5OZl169bh5+fHjh07KF68+GW3w1W7YlUpILRnRKRgco4YYQyYHWDCbrzROJ3OfFv34cOHTVM/P5Oc/rVuzMqV+bbu7LrkX45nz6bntvE4/5d+dqWlpZnu3bub66+//qLXlixZYvz8/IzD4TAVKlQwmzZtuuKyLuzhiIyMzDS9cuXK5uOPP8407cUXXzStWrXK9L7Jkydnmqdfv36matWqmX4G69SpY9q2bZvxPDU11fj5+Zn58+dfMtOWLVsMYA4cOHDJ1y+1Z+Sf2+K6664zzzzzjDHGmG+++cb4+/ubxMTETPPUqFHDTJ8+/ZLrGDp0qLnppptMWlraRa9lZXljx441np6eJioqKtM8f98zsmfPHuNwOMzRo0czzdOhQwczevRoY4wxDRs2NOPGjbtkxn/KjT0jOmdERHJm9254+20AnvXxYcbcubi55d+vlEqVKjHknXd49/zzxMceg9TUfFt/UTRkyBC2bdvG/PnzL3rtxhtvZOvWrWzYsIHOnTvTq1cvoqKigPRxYooXL57xuJyTJ09y+PBhBgwYkGn+l156ib1792aat1mzZhe9v379+pl+BoOCgmjYsGHGc3d3d8qUKZOR658aNWpEhw4daNiwIXfddRczZ87k9OnTV9wm1157babnwcHBGcvfsmULZ8+epUyZMpk+z/79+y/6PBf079+frVu3UqdOHR5//HFWrlyZ8VpWl1e1alXKlSt32cw///wzxhhq166daTlr167NWM7jjz/OSy+9RJs2bRg7dizbtm274na4WjpMIyI5M3Ikbk4nce3a0W/ECKpWrZrvEfr370+f+fOJjoig7J49OKdOxd1Vxh8pVgzOnrW37mwaOnQoixcvZt26dVSqVOmi1/38/KhZsyY1a9akZcuW1KpVi9mzZzN69GjGjx/Pk08++a/rSEtLA9IP1bRo0SLTa/883ODn53fR+z09PTM9dzgcl5x2YT3/5O7uTkREBBs2bGDlypW88847jBkzho0bN1728OOVlp+WlkZwcDBr1qy56H2XOxG2adOm7N+/n2XLlrFq1Sp69epFx44d+fzzz7O8vEttm79LS0vD3d2dLVu2XLRdL5TFhx56iJtvvpmlS5eycuVKJkyYwKRJkxg6dOgVl51TKiMikn3h4ekPDw9KzJxJz9q1rcRwOBy8MXcuE2rWZFJiIsmjRuF7331wmfMZChSHA/7lS6MgMMYwdOhQvvzyS9asWZPlc4KMMSQlJQEQGBhIYGBgptcvnCPidDozpgUFBVGxYkX27dvHvffem0ufIHscDgdt2rShTZs2PP/881StWpUvv/ySkSNHZntZTZs25cSJE3h4eFCtWrUsv8/f35/evXvTu3dv7rzzTjp37sxff/2V4+X9U5MmTXA6nURFRdG2bdvLzle5cmUGDRrEoEGDGD16NDNnzlQZEZECIjmZmIceIgBg2DCwVEQuqFixIo2nTmX7gw/SMCGB6GHDKPvBB1YzFSaDBw/m448/5quvvqJEiRKcOHECSL/M1dfXl/j4eF5++WVuvfVWgoODOXXqFFOnTuXIkSPcddddl11uYGAgvr6+LF++nEqVKuHj40NAQADjxo3j8ccfx9/fny5dupCUlMTmzZs5ffp0jgpBdmzcuJFvvvmGsLAwAgMD2bhxIydPnqRevXo5Wl7Hjh1p1aoVPXv25NVXX6VOnTocO3aM8PBwevbseclDTW+++SbBwcE0btwYNzc3PvvsM8qXL0/JkiVztLxLqV27Nvfeey99+/Zl0qRJNGnShOjoaL799lsaNmxI165dGT58OF26dKF27dqcPn2ab7/9NsfbISt0zoiIZMufzz9PwPHjRAGRt9xiOw4A9/Xvz6ctWwJQ5pNPYNcuy4kKj2nTphETE8MNN9xAcHBwxmPBggVA+qGNXbt2cccdd1C7dm1uueUWTp48yfr166lfv/5ll+vh4cHbb7/N9OnTqVChAj169ADSDw/MmjWLefPm0bBhQ9q3b8+8efPy5Sotf39/1q1bR9euXalduzbPPfcckyZNokuXLjlansPhIDw8nHbt2vHggw9Su3Zt+vTpw4EDBwgKCrrke4oXL86rr75Ks2bNuO666zhw4ADh4eG4ubnlaHmXM3fuXPr27csTTzxBnTp1uPXWW9m4cWPGVUZOp5PBgwdTr149OnfuTJ06dZg6dWqOtkNWOIwp+Pfijo2NJSAggJiYGPz9/W3HESmyUo8dI6FKFUo4nUyuX59h27fjyOElorktLi6O4vfem36Jb5cu6YeRCojExET2799PSEgIPj4+tuOI5Kor/Xxn9ftbe0ZEJMt+69mTEk4nv7i5cefSpQWmiACUKFECx6RJ4OkJy5aRnEdD0otI7lMZEZEs2ffZZzT86ScAjj7zDJUsXD3zr2rVIvnRRwE43qcPKbauVhGRbFEZEZF/lZqSQuyDD+IGrKlQgS4vv2w70mWdHjKEPx0OqiYlsfb2223HEZEsUBkRkX/147BhND57lnigzqJFBerwzD8F1arF/kceAaBFRAS//m3QKBEpmFRGROTK4uNps3gxAHt69SL4uussB/p3Ld59l92lS1MCONi7N8nJybYjAVzxHicirio3fq5VRkTkyiZMwHH0KISE0Oh//7OdJksc7u6Umz+fNKDbmTO8f35PiS0XRuk8Z+vGeCJ56MLP9T9Ho80ODXomIpe1Zs4c2r/+Og6AN94AF7ostXRYGPtuuonq335L6Lx5/PzYYzS1tFfH3d2dkiVLZtyzpFixYgX6UJdIVhhjOHfuHFFRUZQsWfKydwjOCpUREbmkbb/8QtJDD+EwhqT27fE+PyiVK6n+ySecrViRJikpbJ83DyweYipfvjzAZW/SJuKqSpYsmfHznVMa9ExELpKSksJztWrx6sGDJLu54bljB446dWzHypGzEyZQ/NlnoVSp9JFZ/3GPlPzmdDpJSUmxmkEkt3h6el5xj0hWv7+1Z0RELjLpP/9h+MGDACQ98QReLlpEAIo/9RR8+ils3QrDh8PHH1vN4+7uflW7s0UKI53AKiKZbN26lZKvvUYwEFuhAiVefNF2pKvj4QEzZ4KbG8yfz+jGjUlMTLSdSkT+RmVERDIkJycz6c47efj80dsSH30E3t6WU+WCZs0yRmZ95JdfmDBmjOVAIvJ3KiMikmHShAk8tXcvbkBCnz44brjBcqLc4/XKK8SXK0c1oOQbb7Bp0ybbkUTkPJUREckwNCaGa4HEEiXwfecd23FyV/Hi+L3/PgCPAxN79dLhGpECQmVERNL99BPF334bAJ+5c6FsWcuB8kDnziTdeSfuwLiDBxn/7LO2E4kIKiMiAuzauhX69wenE/r0gTvusB0pz3hPm0ZiyZLUB8q8+SY//PCD7UgiRZ7KiEgR99NPP7GkaVPYsQMTFATvvms7Ut4qWxafDz4AYASw87337OYREZURkaIsMTGRN3v1YuT5q2cc06dDmTKWU+WDW24h6b77cAMeXLcOYmNtJxIp0lRGRIqwV0aP5qUDB3AHknr1Ahcc8j2nvKdMgWrV4MABGDnSdhyRIk1lRKSI2vjjj9SdPJnqQHxgIN4zZtiOlL/8/WHePHA4YPZs3gsL0111RSxRGREpghITE1l02230AZwOB35ffQUBAbZj5b/27TFPPglA74gIXh861HIgkaJJZUSkCHpnyBDGnDgBQNKzz0LLlpYT2eN4+WXO1K5NKeCmOXNYv3q17UgiRY7KiEhRk5TEw2vWUBw42bAhxV54wXYiuzw9KblsGec8Pbke+OWOO4iPj7edSqRIURkRKWpGjyZg715MmTKUW7YMdAdZqF4dzl/i+9jp08y5/37LgUSKFpURkSLk3Oefw5tvAuCYOxcqVrScqOAo9uCDHLn5ZtyA27/8kg1ffWU7kkiRoTIiUkT89NVXxPfqlf5k6FDo3t1uoAKo0sKFHC9ZkoqA+0MPwfnxV0Qkb6mMiBQB5+LiSL37bsoZw6FSpeC112xHKpj8/Cjx9dekuLvTIjoa3nrLdiKRIkFlRKQIWN25M60SEjjncFBy+XLw8bEdqcAq3qYNnhdKyNNPw88/2w0kUgSojIgUcr9MmcLNGzYAsGfECPybN7ecyAU89hj07AkpKZzp0oW4Y8dsJxIp1FRGRAqx+MOHKTd8OB7ADzVqcO3rr9uO5BrOj8p6qlgxSkZF8euNN9pOJFKoqYyIFFbGsOeGG6iQmso+Dw+uWbMm/UtWsqZ0aQ7+9784gVa//872Z56xnUik0FIZESmkzLvv0mjfPpKAPydPJqBSJduRXE7TYcNYft11AIRMnMjZyEjLiUQKJ5URkcJo61Yc5++5Evef/9Bq8GDLgVxX+4gINvr4UNwYosPCIDnZdiSRQkdlRKSwOXcOc/fd6V+at95K2aI+3PtVKh4QQNr773MKqBYdzf577rEdSaTQyVEZmTp1KiEhIfj4+BAaGsr69euz9L7vv/8eDw8PGjdunJPVikgWHL73Xhy7dpEaGAhz5ug8kVzQ6q67+KJbNwBCFi7E+fXXlhOJFC7ZLiMLFixg+PDhjBkzhsjISNq2bUuXLl04dOjQFd8XExND37596dChQ47DisiVnfvySyovWgTAey1bQpkydgMVIvcsWEB49eoAuA8YACdPWk4kUng4jMneeMctWrSgadOmTJs2LWNavXr16NmzJxMmTLjs+/r06UOtWrVwd3dn0aJFbN26NcvrjI2NJSAggJiYGPz9/bMTV6ToOHWKM1WqUPLcOeaVKMEdR49SokQJ26kKl8REaNYMfvsN7rgDPvtMe55EriCr39/Z2jOSnJzMli1bCAsLyzQ9LCyMDecHVbqUuXPnsnfvXsaOHZul9SQlJREbG5vpISJXYAx/3nYbJc+dYycQsmCBikhe8PGBDz4ADw9YuJD4mTNtJxIpFLJVRqKjo3E6nQQFBWWaHhQUxIkTJy75nj/++INRo0bx0Ucf4eHhkaX1TJgwgYCAgIxH5cqVsxNTpMhJmDmToPXrSQGW3HUX7bt0sR2p8GrShJ8ubN+hQ+HoUbt5RAqBHJ3A6vjHbkljzEXTAJxOJ/fccw8vvPACtWvXzvLyR48eTUxMTMbj8OHDOYkpUjQcOgRDhgDwTqlSPDZnjuVAhV/Kk0+yCfBLTiaqe3fd3VfkKmWrjJQtWxZ3d/eL9oJERUVdtLcEIC4ujs2bNzNkyBA8PDzw8PBg/Pjx/PLLL3h4ePDtt99ecj3e3t74+/tneojIJRiDc+BAfFNS+AFo9vnnFC9e3HaqQq91u3aseeABEoDAyEji33jDdiQRl5atMuLl5UVoaCgRERGZpkdERNC6deuL5vf392f79u1s3bo14zFo0CDq1KnD1q1badGixdWlFynqPvkE95UrMV5eOGfMoN1NN9lOVGQMnTKFN8uVA8B91CjYu9dyIhHXlbWTOP5m5MiR3H///TRr1oxWrVoxY8YMDh06xKBBg4D0QyxHjx7l/fffx83NjQYNGmR6f2BgID4+PhdNF5Fsio6Gxx8HwPHcc1w/cKDlQEWLr68vNy1axOo2bbgxNZWTt91GuV9+0dU1IjmQ7XNGevfuzeTJkxk/fjyNGzdm3bp1hIeHU7VqVQCOHz/+r2OOiMjVO9KnD0RHk3bNNaCbuFnRsnVrNg0cyDmg3PbtxL/zju1IIi4p2+OM2KBxRkQyi1u4kBJ33kka8NFjj3H/lCm2IxVZiYmJTKtVixFHjmACAnDs2AEVKtiOJVIg5Mk4IyJSAMTHk9C/PwAflizJHRMn2s1TxPn4+PD4nj3QrBmOmJiMK5tEJOtURkRczN777iPw7FkOAbU//ZRixYrZjlTkuXt7w+zZ6YOhffkl8e+/bzuSiEtRGRFxITHffEO18/eeibjtNlp26mQ3kPy/a6/l6P33A5D8yCNw+rTlQCKuQ2VExFWkpHDmrrtwB74uUYJ7PvrIdiL5hxMDBrALKJWYyP477rAdR8RlqIyIuIjT//kPVU+f5hRQ/pNP8PX1tR1J/iG0TRvW9+tHGhCyejWnP/vMdiQRl6AyIuIK/viDUm+9BcCvDzxAs65dLQeSy+k3YwYLSpcGIOmBB+DcOcuJRAo+lRGRgs4YePjh9NvXd+xI+9mzbSeSK/Dy8qLel19yBCgfH8+uu++2HUmkwFMZESngto8cCWvWgK8vTJ+uET5dQON27Vjfpw8ANRcv5tSqVZYTiRRsKiMiBVj0r79S+fzhmd/69IHq1S0nkqy643//Y2VAAB6A/8iRkJpqO5JIgaUyIlKA/dGlCyWN4TcfH2pqqHGX4uXlxXU//IApWRLP7dth8mTbkUQKLJURkQLq+6efptWRI6QCjtmz8fbzsx1JsqlUvXo4Xn89/cnzz5Oye7fdQCIFlMqISAF0cs8eqk+aBMCG1q255p57LCeSHHvwQVLatoWEBH5r2xaTlmY7kUiBozIiUsAYY9hy880Ep6VxyMuLluHhtiPJ1XA42Pf00yQAjU+eZMNjj9lOJFLgqIyIFDBbp0yh8759ACS98w5eAQGWE8nVqnPLLfxwfuj+ejNmcGLbNsuJRAoWlRGRgiQpicZTpgCwvXlzaj38sOVAklvaffUVu319KW0Mu7p0wRhjO5JIgaEyIlKQvPQSjl27ICiIhsuX204jucjD1xePuXNxAjccO8Y3Tz5pO5JIgaEyIlJARP7vf5hXXkl/MmUKlCplN5Dkuhq9e7Pl+usBqPPmmxz7/XfLiUQKBpURkQLg+OHDmAEDcKSmEtexI+iOr4VW06+/5piXF5WNgeeesx1HpEBQGRGxzBjDss6daep0Eufujo/uPVOoeQQE4DZjBgAVPv8cNm60nEjEPpUREcu+mjSJu3fsACDm+efxrFLFciLJa+X79YP77ku/CeLAgZCSYjuSiFUqIyIWHTt6lDKjR+ML7K9Rg0r/+Y/tSJJf3nwTU7YsbN/OgmbNdHWNFGkqIyKWGGNY2KULbVNTSXRzo3J4uO7IW5SULcvp8+Wzx7ZtfPbyy5YDidijMiJiyRfvvEPf7dsBOPPEE3jUrm05keS30kOHcqBOHXyA4HHjOLh/v+1IIlaojIjYYAy3fvUVAcCxSpUoP2GC7URig8NB5aVLSXBzo63TyRddu+pwjRRJKiMiNkybhue334KPD8HLl4O7u+1EYol7jRrEPfMMAA/t2sX8//7XciKR/KcyIpLPDkVEYC6Mvvnqqzjq17cbSKwLfPFFjlavTgmgyvPPs3/vXtuRRPKVyohIPjq0dy8nO3fGkZBAyg03wJAhtiNJQeDuTvCKFZxzc+P6tDSOnt9TIlJUqIyI5BNjDGvDwghNSyPW3R23efPATf8LSjq3mjWJf+EFAK7/+mvYudNyIpH8o9+EIvnkq2ef5e59+wCInzgR96pVLSeSgqbcmDHQuTMkJUHfvhoMTYoMlRGRfHBo504avPoqHsCuJk0IHjHCdiQpiBwOmDULSpaEzZtZccMNpKWl2U4lkudURkTymDGGrZ06UdMYory8qLVype1IUpBVrEjym28CcNOGDXyq80ekCFAZEclj4UOHcuvRowAkT5+Oe9mylhNJQefVrx97mjTBE7h20iT2/vab7UgieUplRCQvnTpFp/nzAYhs145K/fvbzSOuweGg+vLl/OXlxTXGsDksTIdrpFBTGRHJK8bAI4/g9ddfpNWuTaPwcNuJxIW4BQaSMm0aAL2PHeOLoUMtJxLJOyojInkkafZsWLgQPDxw+/hj3Pz8bEcSFxP04IPsaNsWgBZTp7Jn82bLiUTyhsqISB44uG4dSQ8/DEDa2LEQGmo5kbiqekuXctTXl8pAVJ8+tuOI5AmVEZFclpaayl+33oq/Mfzq7w9PP207krgwR4kSuH/4IWkOB6337oXPP7cdSSTXqYyI5LLv77yTJjExnAUCFi3CzcvLdiRxceVvvx230aPTnzzyCBw/bjeQSC5TGRHJRQe//prmX30FwOZ77qHyjTdaTiSFxtix0KQJ/PUXh8PCcKam2k4kkmtURkRyifPcOZL79MEb+KFsWdq9/77tSFKYeHlhPviAZDc3Kv/6K9/06mU7kUiuURkRySU/d+9Orfh4ooFKy5bh5u5uO5IUMo769Yk8X0LafPkle5Yts5xIJHeojIjkhvXrabZ6NQBbHn2Uys2aWQ4khVXzDz9ka5ky+AEJd91FamKi7UgiV01lRORqxcVB3744jOHM7bcTNmWK7URSiDnc3SkfHk4M0DA+ng3du9uOJHLVVEZErpIZMQIOHIBq1Sg5dy4Oh8N2JCnkyjdvzrbz49i0WrWKPQsWWE4kcnVURkSuwuFp03DMno1xOGDePPD3tx1Jiojrp03ju+BgPAGPBx7AnDtnO5JIjqmMiOSQ888/KTZsGACLQkKgfXvLiaQocbi5UWPlSk55e1MtIQHHhXFIRFyQyohIThjDno4dKZOSwk43N65bscJ2IimCghs0oMyiRelP3n4bIiKs5hHJKZURkRw4MnEidX79lRTgj//8h0o1a9qOJEVV587w6KMAJN93HylRUZYDiWSfwxhjbIf4N7GxsQQEBBATE4O/jsmLZakHDpBQsyYlnE4+qFWL+3bv1kmrYld8PKeqVqXMqVNsb9iQhtu22U4kAmT9+1t7RkSywxgOd+pECaeTze7u3BQRoSIi9vn5sWX4cFKBhtu3c+CVV2wnEskWlRGRbEibOpWQPXtIAA6/9BIVq1a1HUkEgE5jxvBF3boAlH7uOZL377ecSCTrVEZEsurAAdyefhqA3Q8+SM9nnrEcSOT/ORwObli1ikgPD/ydTg517AhpabZjiWSJyohIVhgDAwfCuXPQrh2NZ87U4RkpcAIrVuTEa6+RANTct4/DutxXXITKiEgWHH7xRVi1CuPjA7NmgZv+15GCqcuIEcxv3BiAchMnkrx9u91AIlmg36gi/yLl0CECxo8H4KumTaFWLcuJRK6s+/LlfOfri48xeD72mA7XSIGnMiJyJcaw5+ab8Xc6iXR3p9Wnn9pOJPKvygUF0XL7dvDzw/Hdd/Dee7YjiVxRjsrI1KlTCQkJwcfHh9DQUNavX3/Zeb/77jvatGlDmTJl8PX1pW7durz55ps5DiySn/a//jr1du0iBTjx8ssEVaxoO5JIlnjUqAHnL/E1zzxD4u7dlhOJXF62y8iCBQsYPnw4Y8aMITIykrZt29KlSxcOHTp0yfn9/PwYMmQI69atY+fOnTz33HM899xzzJgx46rDi+Sl5OPH8X/2WQC+rFePzuevpBFxGY89xpkGDXCcPcvBrl3TT8QWKYCyPQJrixYtaNq0KdOmTcuYVq9ePXr27MmECROytIzbb78dPz8/PvjggyzNrxFYxYatjRrReNs2drm7U3r/fgIrV7YdSSTbVk2ZwvVDhuAD7B07lhrjxtmOJEVInozAmpyczJYtWwgLC8s0PSwsjA0bNmRpGZGRkWzYsIH2V7jDaVJSErGxsZkeIvnp3Oef03jbNtKAo+PHq4iIy+o4eDBfNWoEQJkXXyTx4EHLiUQulq0yEh0djdPpJCgoKNP0oKAgTpw4ccX3VqpUCW9vb5o1a8bgwYN56KGHLjvvhAkTCAgIyHhU1heB5KfYWIqNGAHAz23b0uH8oRoRV9VpxQq2e3hQMi2N3TffbDuOyEVydALrPwd7Msb86wBQ69evZ/Pmzbz33ntMnjyZ+fPnX3be0aNHExMTk/E4fPhwTmKK5MyoUXDkCFSvTrNly2ynEblqpYOCODVxIqlAo9272a1710gBk60yUrZsWdzd3S/aCxIVFXXR3pJ/CgkJoWHDhgwcOJARI0Yw7grHLb29vfH398/0EMkPu2fMgAvnQ82cCX5+dgOJ5JIbhg8nvEEDAEo99xwJx45ZTiTy/7JVRry8vAgNDSUiIiLT9IiICFq3bp3l5RhjSEpKys6qRfJc0pkz+AwdCsDO66+Hm26ynEgkd7VduZK97u4EOp246d5KUoBk+zDNyJEjmTVrFnPmzGHnzp2MGDGCQ4cOMWjQICD9EEvfvn0z5p8yZQpLlizhjz/+4I8//mDu3Lm8/vrr3Hfffbn3KURywY+dO1M1OZnjbm4E/u9/tuOI5LpSwcGUXLgQHA68P/wQVq2yHUkEAI/svqF3796cOnWK8ePHc/z4cRo0aEB4eDhVz99K/fjx45nGHElLS2P06NHs378fDw8PatSowSuvvMIjjzySe59C5Cr9Nm8e12/cCMCBZ56hVfXqlhOJ5I0yPXrA4MHw7ruYgQNxRkbiUbKk7VhSxGV7nBEbNM6I5KXE2FgOBgZSJymJDVWr0vrAAduRRPJWXBzOa67B/cgR1jZuTPvISNuJpJDKk3FGRAqjdV27UicpiVMOB/VWrrQdRyTvlShB5KOPAtB261a2Tp1qOZAUdSojUqQdDA/nhu+/B+DAyJGUql3bciKR/NHs2Wf5vlYt3IDiw4cTf+qU7UhShKmMSNHldFL1hRfwAn6rXp3QiRNtJxLJVw1XriTKzY2aKSl817mz7ThShKmMSNE1eTJs2gT+/tRfuxb+ZeA+kcLGv1o1jo0ZA0CHzZvZMmuW5URSVKmMSJG0a8kSzHPPpT+ZNAkqVbIbSMSSxuPHsyUkBA/AZ/Bgzp4+bTuSFEEqI1LknDt7lthevXAkJnKmWTMYMMB2JBGraq9cyWk3N+onJ3P2hRdsx5EiSGVEipzwW2+leWIi5xwO3GbN0uEZKfJK1KxJ3PjxAJR/7z3YtctyIilqVEakSNn46afcvHo1AAceeQT/87dWFynqqjz7LHTuDElJ6XsLnU7bkaQIURmRIiP+7FmS+venBPBHUBDXTJliO5JIweFwwPTpmOLFYcMGFnXqZDuRFCEqI1JkLOrZk3YJCSQC5b/+Gtz04y+SSZUqHB4yBIBOq1ez/oMPLAeSokK/jaVI+PGLL+j6zTcAHBowgBLNmllOJFIwVXn5Zf6oUAE/gIEDiY2JsR1JigCVESn8jKHZnDmUAg6WLUvt996znUik4HJzo8LSpSQ6HLRNSuLLW2+1nUiKAJURKfzmz8dj6VLw9KTyqlXgke2bVYsUKX6NG3P0/J3Ve6xbx5oPP7ScSAo7lREp1I7/9BNm8OD0J889h5uunhHJkhrvvMOBoCBKAo6HHiLmzBnLiaQwUxmRQisuNpY/2rXDceYMyY0bw+jRtiOJuA4PDwLDw0l0OGiflMTep5+2nUgKMZURKbSWdOtGu8REEh0OUmbNAk9P25FEXEqxpk35c9gwAJp+/DHs3Ws5kRRWKiNSKH0/bx49vvsOgEODB+MXGmo5kYhrqjppErRvD/Hx0L+/BkOTPKEyIoVO7F9/4f3II/gBuytVovZbb9mOJOK63Nxg7lwoXhy++45vu3e3nUgKIZURKXRW3XwzzZKTiXM4qBwRocHNRK5WSAix52+g12bZMtZo9GLJZfotLYXKhqlTuWXzZgCOjhpFsbp1LScSKRz8R4xgZ0gI3kDp4cP5688/bUeSQkRlRAqPpCSavPEGXsAvNWpQ9+WXbScSKTwcDqpFRHDGzY1rU1NZExZmO5EUIiojUng8/zy+e/diAgOp/e236Tf+EpFc41ujBifHjQOg+7ZtrJk0yW4gKTRURqRQSP72W5g4EQDHjBn4VqliOZFI4VTruefYVqcOnkDwM89w6uhR25GkEFAZEZd3+tAhTtx8MxhDWr9+0KOH7UgihZfDQe1Vq4h2d6eO08muO++0nUgKAZURcXlbO3WiSmoqRzw8SHzlFdtxRAo9n0qV+Ou11wBovXEjrF1rOZG4OpURcWkbx47lxt9/B+DMm29SrHx5y4lEiobaI0fCQw/hMCZ9MLTYWNuRxIWpjIjLOr1nD9VeegmAdaGhNBgyxHIikSLmjTegWjU4cIA9OjwqV0FlRFyTMfzeoQNBaWns8fLiupUrbScSKXpKlCB19mzSgJpr1vD9qFG2E4mLUhkRl/TTk0/S4tAhUoCEGTPwLV3adiSRIsnjppvY0LIlALVee42TO3ZYTiSuSGVEXM/RozR87z0A1lx/PQ379bMcSKRoa75iBXu8vQk0hr2dOmHS0mxHEhejMiKuxRgYMACfc+dIaNiQtuHhthOJFHle/v6kzp1LCtDy2DE2Pv647UjiYlRGxLVMnw4rVoCPD76ffopPiRK2E4kIUPfuu1l3440A1Js6lZM//2w5kbgSlRFxGac2biRh8OD0J6+8AroJnkiB0vbrr9lWrBgBxvBn166gwzWSRSoj4hqcTqK7dcM3LY1NxYuTdqGUiEiB4VWsGJ7z55Po5kaDP/+EqVNtRxIXoTIiLmFb377UOXWKWMB3/nzcPDxsRxKRS6h36634vP12+pOnn4bdu+0GEpegMiIF3qnVq6nz8ccArLr1VhrecovlRCJyRY8+Cp06QUIC8XfeiUlJsZ1ICjiVESnQTFISsbfdhjew2t+fWz791HYkEfk3bm4wZw4JXl74/forv9x9t+1EUsCpjEiBtrNPH0JiYjgJlF24EC9vb9uRRCQrKlVixa23AlB/4UJOrlhhOZAUZCojUnD98AN1v/oKgG979aJhx46WA4lIdtzy8cesKlkST+DcnXdiEhJsR5ICSmVECqaEBOjfHzdj2N+2Lbd/+KHtRCKSTR6enlRasoQTQNWzZ9lx++22I0kBpTIiBdPYsfD771ChAiGLF+Pp6Wk7kYjkQN3rr2d9374A1Fu+nKjPPrOcSAoilREpcKLDw0l7/fX0J9OnQ8mSVvOIyNW5bfZsFpUrhxuQ1q8fJi7OdiQpYFRGpEAxiYnE9+mDmzGsrVQJdBmviMvz8PCgXng4h93dKZ+QAM8+azuSFDAqI1KgbO/Th6pxcfwJlDs/toiIuL46zZpRfvFiABzvvgvr11tOJAWJyogUGFErV1Lv/NUz3999N9e0bWs5kYjkJs+uXWHAAACcDzyAOXfOciIpKFRGpEAwycnE3nUXnsA3pUpx6/vv244kInnh9ddJKF0a97172XbbbbbTSAGhMiIFws/33EPN2FhOAZW+/BIP3XtGpHAqWZLl50tIg5UrOX5+b6gUbSojYl3qtm00XLgQgA29e1OnfXvLiUQkL906fTorypXDHUi8915MYqLtSGKZyojY5XTi8fDDeAG7atakywcf2E4kInnM3d2dmkuWEAWExMez5Y47bEcSy1RGxK633oKNG8Hfn7qrV+Ohwc1EioQaLVrwU//+ADQKD+fo0qV2A4lVKiNizbG1a3GOGpX+ZNIkqFTJbiARyVddZs1ibZky6feu6dOHtKQk25HEEpURscI4nUT37Il7Sgr7qlfPuNxPRIoON3d3qn79NX8Btc6exfnKK7YjiSUqI2LF9337cu2ZM5wFmDEDHA7bkUTEgmotW8LkyQB4/ve/sGOH3UBihcqI5Lsj331H4/Ojq2667Taqd+hgOZGI2FT68ceha1dITsY8+CBpKSm2I0k+UxmRfGXS0jjRowfFgV/8/Wm/YIHtSCJim8MB06eTVqIEjo0b+b5XL9uJJJ+pjEi+WtO/P83++osEIOCzz3DX1TMiAlCpEutvvRWAZosWcXDVKsuBJD+pjEi+Of3rrzQ5P47I5h49qBYWZjmRiBQkbf/3P7aUKoUvcPqOO0hLTbUdSfJJjsrI1KlTCQkJwcfHh9DQUNZf4e6LX3zxBZ06daJcuXL4+/vTqlUrVqxYkePA4qKModTo0ZQE9pQpQ5vPPrOdSEQKGDd3d4K++oqzQOPYWNb06WM7kuSTbJeRBQsWMHz4cMaMGUNkZCRt27alS5cuHDp06JLzr1u3jk6dOhEeHs6WLVu48cYb6d69O5GRkVcdXlzI/Pnw9dfg5UXNtWtx0+EZEbmESm3bsrV3bwCaL1zIvm+/tZxI8oPDGGOy84YWLVrQtGlTpk2bljGtXr169OzZkwkTJmRpGfXr16d37948//zzl3w9KSmJpL8NfhMbG0vlypWJiYnB398/O3GlADi8eTMVOnXC/cwZeOklGDPGdiQRKcCM08mvZcvS8MwZNgUEEBodjbtunumSYmNjCQgI+Nfv72ztGUlOTmbLli2E/eNYf1hYGBs2bMjSMtLS0oiLi6N06dKXnWfChAkEBARkPCpXrpydmFKApKWlsbdLF9zPnCGmenV4+mnbkUSkgHO4u1Pmyy9JAJrHxBBzfhwSKbyyVUaio6NxOp0EBQVlmh4UFMSJEyeytIxJkyYRHx9PrytcujV69GhiYmIyHocPH85OTClAlj/0EDdER5MCnH37bdDhGRHJggo33MCfQ4YAUPqll+DoUcuJJC/l6ARWxz9GyzTGXDTtUubPn8+4ceNYsGABgYGBl53P29sbf3//TA9xPft++onQuXMB+KVLFyp262Y5kYi4kmqTJ0Pz5hATA4MGQfbOKhAXkq0yUrZsWdzd3S/aCxIVFXXR3pJ/WrBgAQMGDODTTz+lY8eO2U8qLiUtLY093boRBOz386PpwoW2I4mIq3F3hzlzMJ6e8PXXLO/Xz3YiySPZKiNeXl6EhoYSERGRaXpERAStW7e+7Pvmz59P//79+fjjj+mmv46LhCUPP0zYyZM4Ae8PP8TN19d2JBFxRfXrs+uuuwC47oMP2L1uneVAkheyfZhm5MiRzJo1izlz5rBz505GjBjBoUOHGDRoEJB+vkffvn0z5p8/fz59+/Zl0qRJtGzZkhMnTnDixAliYmJy71NIgbJ3yxaumz0bgO2dOlGhZ0+7gUTEpdWdO5e9/v6UAQ737EmqBkMrdLJdRnr37s3kyZMZP348jRs3Zt26dYSHh1O1alUAjh8/nmnMkenTp5OamsrgwYMJDg7OeAwbNiz3PoUUKFXfeYcKwJFixWi0aJHtOCLi4hxeXpT49FNSgI6nT7NYh2sKnWyPM2JDVq9TlgJg5Uq4+WZwOHCuXo17+/a2E4lIIbGtRw+uXbyYE8Dp9eupd/31tiPJv8iTcUZEruTknj2Yhx5KfzJkiIqIiOSqhgsWcKh4ccoD+3r0ICUlxXYkySUqI5IrnE4nG1u1wnH4MClVqsB//2s7kogUMg4fH4p98glOoNtff/H7pEm2I0kuURmRXPHVgAHcEh1NGnD6zTeheHHbkUSkECrbrRsHb78dgPqTJ0N0tN1AkitURuSq7f7+e9r8738A/Na5M4Hnf1GIiOSF6h99BNdcA3/+CY89psHQCgGVEbkqqSkpHOnenSDgQPHiNPjiC9uRRKSw8/GB998HDw/47DO+ffhh24nkKqmMyFVZet99dDh9mhSg2Gef4dDgZiKSH0JDiTpfQhrPmsWvK1daDiRXQ2VEcmzXN9/Q7tNPAfjtttsI7NzZciIRKUrKvfkme0qWpDRw5s47SU5Ksh1JckhlRHLGGCq98AKlgD8CAmj0ySe2E4lIEePw8qLU4sUkAtfHxbH8jjtsR5IcUhmRnJk5k+Lr12O8vQlasQKHl5ftRCJSBJVp25Zd998PwE1Ll/Lr4sWWE0lOqIxItqXs3g0jRwLgmDAB/xYtLCcSkaKs8bx57ChbluJA0t13k3TunO1Ikk0qI5ItKYmJbG/WDOLjSWvbFnSPIRGxzc2NoGXLOOtwEHruHD//7Wat4hpURiRbVvfoQdOzZzkLnHr9dXDTj5CI2FemWTP+OH/3+JZffw2//WY5kWSHvkkky3YuXEi785fP7XjoIco1b245kYjI/2syZQp06YIjKQn69gXdu8ZlqIxIliTHx5N2//34AD8HBXHd9Om2I4mIZOZwwKxZUKoU/Pwzu3W4xmWojEiWfN+tG/UTEjjtcFBl5UocOjwjIgVRhQqcfe01AGp88gm/nb9VhRRs+kaRf7Xrww9pu3Zt+r+HDqXstddaTiQicnnFH3qIH6tUwQPwfvhhEk+fth1J/oXKiFxZQgIVRo3CA9hQqRKt3nrLdiIRkX9Ve9Uq/nRzo2ZyMpvCwmzHkX+hMiJXNmYM/kePklquHLVXrbKdRkQkS0rXqsX+MWMAuH7zZn6bOtVyIrkShzEF/97LsbGxBAQEEBMTg7+/v+04RceaNXDTTem35166FLp2tZ1IRCRb1tSqxQ179nDY05OyR47gGxhoO1KRktXvb+0ZkUtKOnmSP7t2TS8iAweqiIiIS2q0ahWH3d2pnJLC9ptvth1HLkNlRC5pW6dOBCUkcNDdnYSXXrIdR0QkR0pVrcqRF18EoPnWrbBsmd1AckkqI3KR3ydN4rpffiENODhunHZriohLazV6NObxx9OfDBgAf/1lN5BcRGVEMkk8coRSzzwDwLK6dWn33HOWE4mIXD3HK69AnTpw/Dgx5+/yKwWHyoj8P2P4vWNHyjmd7PbwoKWunhGRwsLXF+fcuTgdDgLCw9k5frztRPI3KiOS4Y/x47l2925SgBOvvUaZihVtRxIRyTXurVoR3qgRAEEvvMC5ffssJ5ILVEYk3dGjVJwwAYDFjRrRfsQIy4FERHJfu5Ur2e7pSem0NPZ16JB+xaBYpzIi6f8zDhhAsaQkTtWowU0REbYTiYjkiYBy5Yh7912SgAYHDrB71CjbkQSVEQGYOxdWrABvb8p8/TWlypWznUhEJM+0fvhhvm7eHIAKEycSv2OH5USiMlLEJezZQ8Jjj6U/efFFqFvXbiARkXzQaflyNnt5UcIYjoSFQVqa7UhFmspIUWYM+8LC8E1K4lc/P4zOExGRIsK/VCmSZszgnMNBnaNHQfeusUplpAjb9fzz1N+/nyTg9Ouv4/DwsB1JRCTftOnXD49Jk9KfjBoF+/fbDVSEqYwUUef27aP8f/8LQHhoKG0HDbKcSEQk/3kNGwbt2kF8PKkPPqirayxRGSmKjOGPTp0omZbGdk9Pblq+3HYiERE73Nxg9mxSvbzwWLOGHU88YTtRkaQyUgT9NnYsjfbtIwWIe+stAsqWtR1JRMSemjVZfN11AFSaPJm4nTstByp6VEaKmpMnMwY3W960Ka0ffdRyIBER+8KWLuVnb2/8jeHAzTfrcE0+UxkpaoYMoWRqKsfKlqX9ihW204iIFAjFAwJwzphBEtDw8GG2n79hqOQPlZGi5Isv4NNPwd2dCitW4K/DMyIiGa7r25eVrVoBUPn114n9/XfLiYoOlZEiIu7AARIeeCD9yTPPQNOmdgOJiBRAN4WH86uXFyWN4Y+wMB2uyScqI0XEjrAwfGNjOVaqFDz/vO04IiIFkl/JkiRNn04KEHrwIGkLFtiOVCSojBQBkePH0+KPP3ACx196Cby9bUcSESmwQvv35+zjjwPg9vjjcPKk5USFn8pIIRd78CAVXngBgNWNGxN64T40IiJyWaUmToSGDeHkScywYbbjFHoqI4Xc9rAwgtLS2OfpScuVK23HERFxDV5eMHcuxt0dx/z5/PTcc7YTFWoqI4XYlpdfps3vv5MGxL75JsXLlbMdSUTEdYSGsub8YGhVJkzgjO5dk2dURgqp5Ohoyo8dC8C6xo1pPHiw5UQiIq6nZXg4e728CEpLY3vHjrbjFFoqI4WU13/+Q0Wnk+O+vlynwc1ERHLEt1QpEt59lzSg7b59/Hj+jzzJXSojhdHq1fDeewAEL12KX2Cg5UAiIq6rwcCBfNesGQBVXnqJv3S4JtepjBQyZ44eJblfv/QngwbBjTfaDSQiUgg0X7GCg56eVEhL45dOnWzHKXRURgqZTZ064XX4MPFlysCrr9qOIyJSKPiULs25d94B4Ma9e4lftMhuoEJGZaQQ+e7VV+l4/tbXB8eMAX9/y4lERAqPeo88wqEePQDwGzYM4uIsJyo8VEYKib+OHiV4zBjcgE0NGnDNiBG2I4mIFDpVPvwQQkLg0CEYNcp2nEJDZaSQ2BAWRg2nkyh3dxrq6hkRkbxRvDjMmpX+76lTWTd+vN08hYTKSCGw9vXX6bJjBwCnJ0zAt0IFy4lERAqxm27i1zZtAKj8wgtE6eqaq6Yy4uJOHTtG0KhRuAOR11xDnaeesh1JRKTQq71oEcc9PQlJS+OnsDDbcVyeyoiLKzl1KnWdTv7y8KCeDs+IiOQLr7JlOfvGGwB02bOHb3S45qqojLiyX37B/fzlu/7vv49PpUqWA4mIFB21hgwhsnFj3ICqL7zAnwcO2I7kslRGXFRsdDRp/ftDairccQced99tO5KISJFTf8UKojw8qJmWxg+dOmGMsR3JJeWojEydOpWQkBB8fHwIDQ1l/fr1l533+PHj3HPPPdSpUwc3NzeGDx+e06zyNytvuAG3rVtJLVkS3n3XdhwRkSLJKzAw43BN9z17OPz555YTuaZsl5EFCxYwfPhwxowZQ2RkJG3btqVLly4cOnTokvMnJSVRrlw5xowZQ6NGja46sMCqCRPo+dtvABwcNQrKl7ecSESk6Ko+dCh7W7fGHagybhwkJtqO5HIcJpv7lFq0aEHTpk2ZNm1axrR69erRs2dPJkyYcMX33nDDDTRu3JjJkydnK2RsbCwBAQHExMTgX8RHFY06eJDTNWpQx+lk2zXXcO35UiIiIhadOgX168Off8LTT+t2HOdl9fs7W3tGkpOT2bJlC2H/uIwpLCyMDRs25CzpJSQlJREbG5vpIWCM4cdOnajjdHLSw4O6q1bZjiQiIgBlysD06QCYiRNZ/8orlgO5lmyVkejoaJxOJ0FBQZmmBwUFceLEiVwLNWHCBAICAjIelStXzrVlu7JvX3iBW/74A4DYSZPwCg62nEhERDL06MGxsDAcxlBxzBiOn/99Lf8uRyewOhyOTM+NMRdNuxqjR48mJiYm43H48OFcW7aritq3j+ovvogb8HOTJtR4/HHbkURE5B8CP/6YE56eVE9LI1JX12RZtspI2bJlcXd3v2gvSFRU1EV7S66Gt7c3/v7+mR5Fne/zzxOSlsZxT08arFxpO46IiFyCR5kyJJ4/p7LrwYOsevppy4lcQ7bKiJeXF6GhoURERGSaHhERQevWrXM1mPzNihWU+OgjALznz8erbFnLgURE5HKqDRjAllatALhm0iSO6UKDf+WR3TeMHDmS+++/n2bNmtGqVStmzJjBoUOHGDRoEJB+iOXo0aO8//77Ge/ZunUrAGfPnuXkyZNs3boVLy8vrrnmmtz5FIWY89Qp3AcMSH8ydCil77jDbiAREflXjZYv51BgIFWSkvg2LIzgI0dy9XSGwibbZaR3796cOnWK8ePHc/z4cRo0aEB4eDhVq1YF0gc5++eYI02aNMn495YtW/j444+pWrUqBzR07hUZY1jXpAk3Hj1KWs2auOnsbBERl+Dh749z3jycd9/NTceOseW55wh9+WXbsQqsbI8zYkNRHWdkzfDh3PDWWziBAx98QI377rMdSUREsmFzWBjNIiIwZcvi+PVXyMXzK11BnowzIvnnxPbtXPP22wBsbNdORURExAU1W7IErr0WR3Q0PPIIFPy//61QGSmATFoae8PCCDSGPb6+NA8Ptx1JRERywtsbPvgAPD3hq6/YNXq07UQFkspIAbT+0Udpc+IEKYDj/ffx8POzHUlERHLq2mv5a9gwAIJffZUjuThieWGhMlLAHPvpJ66dMQOAHzt1osadd1pOJCIiVyvgpZf4tUQJAoCTt9yCcTptRypQVEYKEmPweuwxSgK/+fnRavFi24lERCQXuHt74/f555wDmpw+zff33ms7UoGiMlKQTJ9O2c2bMd7elPjiCzx8fGwnEhGRXBISFsbG228HoOmCBRz+9lvLiQoOlZGCYu9eePJJAByvvEKVf9wZWUREXF/7BQvYEhBAMSD2tttIS0mxHalAUBkpAExqKr+3bg3x8XDDDaCb4ImIFEpuHh6UWbyYWKB+bCw/9eljO1KBoDJSAGzq04faUVHEAicnTgQ3/WcRESmsqrVrx6Z77gGg+ddfw6+/Wk5kn771LDu2ciWNFy4E4IdevSjXrJnlRCIiktc6fPAB3HILjuRk6NsXivjhGpURi0xSEvF33ok38H2pUnQ8f2deEREp3BxubjBjBpQuDZGR/DVypO1IVqmMWPTzbbdRKy6OaCD4669x98j2fQtFRMRVBQeT+MYbAPi/+y6Hv/zSciB7VEYsObpoEY2WLQNgY//+VG/d2nIiERHJb17338/qwEA8AOe995J27pztSFaojNiQkIDPww/jAUSUK0eX2bNtJxIREQvc3NyosXw5fzocVEtI4OdbbrEdyQqVERtGj6bMyZMklC5NzeXLcdPVMyIiRVaVJk2IfPRRAJquXs2hjz+2nCj/OYwp+Pczjo2NJSAggJiYGPz9/W3HuTpr16aPJQKwbBl07mw1joiI2GeMYUXFinQ+fpyj3t6U//NP3AMCbMe6aln9/taf5PkoLS6Ov267Lf3Jww+riIiICAAOh4P6K1dyyOGgYlIS27t2tR0pX6mM5KNt3btT+vRpjrq7k/zyy7bjiIhIAVK5QQN+HTECgMYbNkBEhOVE+UdlJJ8c+eQTrl27FoCfBw3Cq2xZy4lERKSg6fL66yQ/8kj6kwcfhDNnrObJLyoj+SDt7FnMAw/gBoQHB9Pt7bdtRxIRkQLI4XDgNWkS1KwJR46Qen5PSWGnMpIPIrt3p3JiIkcdDurr6hkREbkSPz/M7NkYhwOPefM4OGuW7UR5Tt+KeezQggU0WbMGgF8ee4yq115rN5CIiBR8bduypEoVADwHDyb19GnLgfKWykheSkzE/eGHcQNWBgfT5Z13bCcSEREX4HA4aLZyJQcdDiokJ/NLIb+6RmUkL40bR8XYWGKLFaPesmU4HA7biURExEVUqF2bXU89BUDojz+yb948u4HykAY9yyubNkGrVpCWBosWQY8ethOJiIiLMcawolo1Oh86xCFvb4L//BNPFxoMTYOeWeQ8d46Y229PLyJ3360iIiIiOeJwOGi0YgVHHQ6qJCWxpVs325HyhMpIHtjYvTsBR49yxtsbdBmviIhcheC6ddk9ciQAzTdsgB9/tJwo96mM5LJ9n39O82+/BeDnAQNAg5uJiMhVunHiRGJ69MDNmPTB0BITbUfKVSojuSj13DmcffviAawvX54b333XdiQRESkEHA4HAXPmQFAQ7NyJGT/edqRcpTKSi3689VZqJSQQ7XBQc/lyXT0jIiK5p3RpmDYNAOeECeyeP99yoNyjMpJL9ixcSItvvgFgx6BBBDdqZDmRiIgUOrfdxg+VK+MB8OCDJJ89aztRrlAZyQUmORln3754Aj8EBdFWh2dERCSP1Fi2jGiHgzqJiXx3yy224+QKlZFc4Hj9deqcO0eshwchy5bh0L1nREQkjwTWr88fQ4cCcP3atexYsMByoqunb82rtWMHvPACAP6zZ1O+SRPLgUREpLBrNXkymypUwAswDzxA8rlztiNdFZWRq5CSmEjC3XdDcjJ07Qr33287koiIFAUOBzVWrOCMw0H9hATWuvjhGpWRq7C6Rw98t20jyccHpk8HXT0jIiL5pEyDBvw+eDAA7desIXXbNsuJck5lJId2fPUVbVeuBGDr/fdDpUqWE4mISFHT/O23OdG0KV7G4DFwIKSm2o6UIyojOZCcmEjCvffiC/xSrhzN33vPdiQRESmKHA7KL14MAQHpN2h9803biXJEZSQHIm67jdD4eM4CFZYu1dUzIiJiT8WKGSUkZfRofnHBq2v0LZpNvy5ZQvvlywH4/cEHKXfddZYTiYhIkde/P7tDQvB0Okl74AES4+NtJ8oWlZFsSE5K4uzdd1Mc2FG2LE1nzrQdSUREBBwOAhctIs7hoElCAqu6d7edKFtURrLBY948WsbHk+BwEPT116DDMyIiUkCUuvZa9j72GAAdVq9m62efWU6Udfo2zarDh3F76ikAPCZMoEyLFpYDiYiIZNb4nXf4tXx5fIHUfv1IcJHDNSojWZCUmIhz4ECIi4OWLfF88knbkURERC7mcFB5xQrOOhw0S0hghYscrlEZyYIld96J+4oVpHl6wpw54O5uO5KIiMglBVx7LfsefRSAsNWrOb15s+VE/05l5F9sXbyYTkuXArCzd2+oV89yIhERkSu79p13OFSzJsWAUk8+CWlptiNdkcrIFSSeO8e5e+4hAPijTBnqz5tnO5KIiMi/c3OjysqV4OcHa9fCtGm2E12RysgVLO/Rg9bx8SQAZZcu1eEZERFxHSEh8OqrAKQ++SQ/L1xoOdDlqYxcxtbPPqPTqlUA7Bk4kFK6ekZERFzNo4/yZ926eCQmknzffcTHxdlOdEkqI5eQcPYsaX374gfsCAqioe49IyIirsjNjWLz5xPvcNAyMZHl3brZTnRJKiOX4Jw4kaaJicQ5HFRcuVKDm4mIiMsq0bgxB4YMAaDr+vVsev99y4kupm/Zf/rtN4q/8goAya++SsC111oOJCIicnXqv/UWv1aqhC/gPXAgZ8+csR0pE5WRv0lLSoK+fSE5Gbp1o4wGNxMRkcLA4aBqRAQxDgeNkpNZc/PNthNlojLyNyvbt4effyatZEmYORMcDtuRREREckWJunU5/MwzANy8aRN/LFhgOdH/Uxk5L3LWLDpu3AjAr48+CsHBlhOJiIjkrgb//S/b69TBE6j54ouQmGg7EqAyAkD8qVMUf+wxPICfQkK49r//tR1JREQk9zkcNFy/HgIDcfz2Gzz/vO1EQA7LyNSpUwkJCcHHx4fQ0FDWr19/xfnXrl1LaGgoPj4+VK9enfcK2KWyP4SFUSslhSg3N+qcH1tERESkUCpXLv1UBMC8/jq/z5ljOVAOysiCBQsYPnw4Y8aMITIykrZt29KlSxcOHTp0yfn3799P165dadu2LZGRkTz77LM8/vjjLCwgI8FFvvsuN/38MwBHn38e/+rVLScSERHJY7feyqnu3XEYg/cjjxB77JjVOA5jjMnOG1q0aEHTpk2Z9rdx7uvVq0fPnj2ZMGHCRfM/88wzLF68mJ07d2ZMGzRoEL/88gs//PBDltYZGxtLQEAAMTEx+Pv7ZyfuFZ09cYLoypWplprKhtq1ab17d64tW0REpCA7e/QoMVWrUtHpZE29etywY0euryOr39/Z2jOSnJzMli1bCAsLyzQ9LCyMDRs2XPI9P/zww0Xz33zzzWzevJmUlJRLvicpKYnY2NhMj7xw7vHHqZaaylF3dxro8IyIiBQhxStWJHriRABu2LmT5CVLrGXJVhmJjo7G6XQSFBSUaXpQUBAnTpy45HtOnDhxyflTU1OJjo6+5HsmTJhAQEBAxqNy5crZiZk1xhBYvjzG4eDcO+/gnxfrEBERKcAajRjBoZ49MQEBeCUnW8uRoxNYHf8Yf8MYc9G0f5v/UtMvGD16NDExMRmPw4cP5yTmlTkc8PbbOHbtotajj+b+8kVERFxAlY8+wrF9O9xxh7UMHtmZuWzZsri7u1+0FyQqKuqivR8XlC9f/pLze3h4UKZMmUu+x9vbG29v7+xEy7natfNnPSIiIgVRsWLpD4uytWfEy8uL0NBQIiIiMk2PiIigdevWl3xPq1atLpp/5cqVNGvWDE9Pz2zGFRERkcIm24dpRo4cyaxZs5gzZw47d+5kxIgRHDp0iEGDBgHph1j69u2bMf+gQYM4ePAgI0eOZOfOncyZM4fZs2fzpO77IiIiImTzMA1A7969OXXqFOPHj+f48eM0aNCA8PBwqlatCsDx48czjTkSEhJCeHg4I0aMYMqUKVSoUIG3336bOywemxIREZGCI9vjjNiQV+OMiIiISN7Jk3FGRERERHKbyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImJVtoeDt+HCILGxsbGWk4iIiEhWXfje/rfB3l2ijMTFxQFQuXJly0lEREQku+Li4ggICLjs6y5xb5q0tDSOHTtGiRIlcDgcubbc2NhYKleuzOHDh3XPmzymbZ0/tJ3zh7Zz/tB2zh95uZ2NMcTFxVGhQgXc3C5/ZohL7Blxc3OjUqVKebZ8f39//aDnE23r/KHtnD+0nfOHtnP+yKvtfKU9IhfoBFYRERGxSmVERERErCrSZcTb25uxY8fi7e1tO0qhp22dP7Sd84e2c/7Qds4fBWE7u8QJrCIiIlJ4Fek9IyIiImKfyoiIiIhYpTIiIiIiVqmMiIiIiFWFvoxMnTqVkJAQfHx8CA0NZf369Vecf+3atYSGhuLj40P16tV577338impa8vOdv7iiy/o1KkT5cqVw9/fn1atWrFixYp8TOvasvszfcH333+Ph4cHjRs3ztuAhUR2t3NSUhJjxoyhatWqeHt7U6NGDebMmZNPaV1XdrfzRx99RKNGjShWrBjBwcE88MADnDp1Kp/SuqZ169bRvXt3KlSogMPhYNGiRf/6nnz/LjSF2CeffGI8PT3NzJkzzY4dO8ywYcOMn5+fOXjw4CXn37dvnylWrJgZNmyY2bFjh5k5c6bx9PQ0n3/+eT4ndy3Z3c7Dhg0zr776qtm0aZP5/fffzejRo42np6f5+eef8zm568nutr7gzJkzpnr16iYsLMw0atQof8K6sJxs51tvvdW0aNHCREREmP3795uNGzea77//Ph9Tu57sbuf169cbNzc389Zbb5l9+/aZ9evXm/r165uePXvmc3LXEh4ebsaMGWMWLlxoAPPll19ecX4b34WFuow0b97cDBo0KNO0unXrmlGjRl1y/qefftrUrVs307RHHnnEtGzZMs8yFgbZ3c6Xcs0115gXXnght6MVOjnd1r179zbPPfecGTt2rMpIFmR3Oy9btswEBASYU6dO5Ue8QiO723nixImmevXqmaa9/fbbplKlSnmWsbDJShmx8V1YaA/TJCcns2XLFsLCwjJNDwsLY8OGDZd8zw8//HDR/DfffDObN28mJSUlz7K6spxs539KS0sjLi6O0qVL50XEQiOn23ru3Lns3buXsWPH5nXEQiEn23nx4sU0a9aM1157jYoVK1K7dm2efPJJEhIS8iOyS8rJdm7dujVHjhwhPDwcYwx//vknn3/+Od26dcuPyEWGje9Cl7hRXk5ER0fjdDoJCgrKND0oKIgTJ05c8j0nTpy45PypqalER0cTHBycZ3ldVU628z9NmjSJ+Ph4evXqlRcRC42cbOs//viDUaNGsX79ejw8Cu3/7rkqJ9t53759fPfdd/j4+PDll18SHR3NY489xl9//aXzRi4jJ9u5devWfPTRR/Tu3ZvExERSU1O59dZbeeedd/IjcpFh47uw0O4ZucDhcGR6boy5aNq/zX+p6ZJZdrfzBfPnz2fcuHEsWLCAwMDAvIpXqGR1WzudTu655x5eeOEFateunV/xCo3s/EynpaXhcDj46KOPaN68OV27duWNN95g3rx52jvyL7KznXfs2MHjjz/O888/z5YtW1i+fDn79+9n0KBB+RG1SMnv78JC+6dS2bJlcXd3v6hhR0VFXdT4Lihfvvwl5/fw8KBMmTJ5ltWV5WQ7X7BgwQIGDBjAZ599RseOHfMyZqGQ3W0dFxfH5s2biYyMZMiQIUD6l6YxBg8PD1auXMlNN92UL9ldSU5+poODg6lYsWKmW6XXq1cPYwxHjhyhVq1aeZrZFeVkO0+YMIE2bdrw1FNPAXDttdfi5+dH27Zteemll7T3OpfY+C4stHtGvLy8CA0NJSIiItP0iIgIWrdufcn3tGrV6qL5V65cSbNmzfD09MyzrK4sJ9sZ0veI9O/fn48//ljHe7Mou9va39+f7du3s3Xr1ozHoEGDqFOnDlu3bqVFixb5Fd2l5ORnuk2bNhw7doyzZ89mTPv9999xc3OjUqVKeZrXVeVkO587dw43t8xfW+7u7sD//+UuV8/Kd2GenRpbAFy4bGz27Nlmx44dZvjw4cbPz88cOHDAGGPMqFGjzP33358x/4XLmUaMGGF27NhhZs+erUt7syC72/njjz82Hh4eZsqUKeb48eMZjzNnztj6CC4ju9v6n3Q1TdZkdzvHxcWZSpUqmTvvvNP89ttvZu3ataZWrVrmoYcesvURXEJ2t/PcuXONh4eHmTp1qtm7d6/57rvvTLNmzUzz5s1tfQSXEBcXZyIjI01kZKQBzBtvvGEiIyMzLqEuCN+FhbqMGGPMlClTTNWqVY2Xl5dp2rSpWbt2bcZr/fr1M+3bt880/5o1a0yTJk2Ml5eXqVatmpk2bVo+J3ZN2dnO7du3N8BFj379+uV/cBeU3Z/pv1MZybrsbuedO3eajh07Gl9fX1OpUiUzcuRIc+7cuXxO7Xqyu53ffvttc8011xhfX18THBxs7r33XnPkyJF8Tu1aVq9efcXfuQXhu9BhjPZtiYiIiD2F9pwRERERcQ0qIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIlbMnz8fHx8fjh49mjHtoYce4tprryUmJsZiMhHJb7pRnohYYYyhcePGtG3blnfffZcXXniBWbNm8eOPP1KxYkXb8UQkH3nYDiAiRZPD4eDll1/mzjvvpEKFCrz11lusX79eRUSkCNKeERGxqmnTpvz222+sXLmS9u3b244jIhbonBERsWbFihXs2rULp9NJUFCQ7TgiYon2jIiIFT///DM33HADU6ZM4ZNPPqFYsWJ89tlntmOJiAU6Z0RE8t2BAwfo1q0bo0aN4v777+eaa67huuuuY8uWLYSGhtqOJyL5THtGRCRf/fXXX7Rp04Z27doxffr0jOk9evQgKSmJ5cuXW0wnIjaojIiIiIhVOoFVRERErFIZEREREatURkRERMQqlRERERGxSmVERERErFIZEREREatURkRERMQqlRERERGxSmVERERErFIZEREREatURkRERMSq/wMnGiNF+IISywAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdNklEQVR4nO3dd3gU1eLG8e+mF0goISGQSFF6L4KACAqEXqx4LYCCCqJS1KsIV4pcuRakqCAooIggIBZUWkAFBAQNoShNeguGUBICpJ/fH8H8jBSTkORkk/fzPPs87GR29t0xsi9zZs44jDEGEREREUtcbAcQERGRok1lRERERKxSGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGr3GwHyIq0tDSOHz9O8eLFcTgctuOIiIhIFhhjOHfuHOXKlcPF5erHP5yijBw/fpzQ0FDbMURERCQHjhw5QkhIyFV/7hRlpHjx4kD6h/Hz87OcRkRERLIiLi6O0NDQjO/xq3GKMvLn0Iyfn5/KiIiIiJP5p1MsdAKriIiIWKUyIiIiIlapjIiIiIhVTnHOiIhIYZGamkpycrLtGCK5wt3dHVdX1+vejsqIiEg+MMZw4sQJzp49azuKSK4qUaIEZcuWva55wFRGRETywZ9FJDAwEB8fH03gKE7PGMOFCxeIjo4GIDg4OMfbUhkREcljqampGUWkdOnStuOI5Bpvb28AoqOjCQwMzPGQjU5gFRHJY3+eI+Lj42M5iUju+/P3+nrOhVIZERHJJxqakcIoN36vVUZERETEqhyVkSlTplCpUiW8vLxo1KgRa9euveq6P/zwAw6H47LHrl27chxaRERECo9sl5H58+czePBghg8fTmRkJC1btqRjx44cPnz4mq/bvXs3UVFRGY8qVarkOLSIiMjf7dq1i1tuuQUvLy/q169vO45kQ7bLyFtvvUXfvn3p168fNWrUYOLEiYSGhjJ16tRrvi4wMJCyZctmPHJjkhQRcX4xMTFcuHDBdgwpwBwOB19++eU/rjdy5Eh8fX3ZvXs3q1atyvtgkmuyVUaSkpKIiIggLCws0/KwsDDWr19/zdc2aNCA4OBg2rRpw/fff3/NdRMTE4mLi8v0EJHCZ+HChQQGBtKqVSvS0tJsxxEnt2/fPm699VYqVKigS6idTLbKSExMDKmpqQQFBWVaHhQUxIkTJ674muDgYKZPn86iRYv4/PPPqVatGm3atGHNmjVXfZ9x48bh7++f8QgNDc1OTBFxAlFRUTzxxBOEhoYyZ84cXFyK5vn058+fv+ojISEhy+tevHgxS+tmlzGG119/ncqVK+Pt7U29evX47LPPMn7Wtm1bOnTogDEGgLNnz3LDDTcwfPhwIH2Olb59+1KpUiW8vb2pVq0akyZNuux9Zs6cSa1atfD09CQ4OJinnnoKgIoVKwJw55134nA4Mp7/ncPhICIigjFjxuBwOBg1alS2P6tYZLLh2LFjBjDr16/PtHzs2LGmWrVqWd5Oly5dTNeuXa/684SEBBMbG5vxOHLkiAFMbGxsduKKSAGVlpZmunbtagDTsGFDk5SUZDtSnrp48aLZsWOHuXjx4mU/A6766NSpU6Z1fXx8rrpuq1atMq0bEBBwxfWy66WXXjLVq1c3y5YtM/v27TOzZs0ynp6e5ocffjDGGHP06FFTsmRJM3HiRGOMMT179jSNGzfO+G+alJRkXn75ZbNp0yazf/9+M2fOHOPj42Pmz5+f8R5TpkwxXl5eZuLEiWb37t1m06ZNZsKECcYYY6Kjow1gZs2aZaKiokx0dPQVc0ZFRZlatWqZZ5991kRFRZlz585l+7NKzlzr9zs2NjZL39/ZmoE1ICAAV1fXy46CREdHX3a05FpuueUW5syZc9Wfe3p64unpmZ1oIuJE5syZw9dff427uzsffvgh7u7uGGOYOXMmYWFhOhpaQJw/f5633nqL7777jmbNmgFQuXJlfvzxR6ZNm0arVq0oX74806ZN4+GHH+aPP/7g66+/JjIyEnd3dyD9RmqjR4/O2GalSpVYv349CxYs4L777gNg7NixPPvsswwaNChjvZtvvhmAMmXKAP9//5OrKVu2LG5ubhQrVuya60nBlK0y4uHhQaNGjQgPD+fOO+/MWB4eHk737t2zvJ3IyMjrmsNeRJzX8ePHeeaZZwB49cUXqZOWBnv2MGLaNF596y3CwsJYtmxZkZkgLD4+/qo/+/uJ/n/eA+RK/j7MdfDgwevKBbBjxw4SEhJo165dpuVJSUk0aNAg4/m9997LF198wbhx45g6dSpVq1bNtP57773HBx98wKFDh7h48SJJSUkZV7tER0dz/Phx2rRpc915xXll+940Q4cO5eGHH6Zx48Y0a9aM6dOnc/jwYfr37w/AsGHDOHbsGLNnzwZg4sSJVKxYkVq1apGUlMScOXNYtGgRixYtyt1PIiIFnjGG/o89RvezZ3nO15far7wCr7wCwCteXtzs4sKrK1bwwQcf8Nhjj1lOmz98fX2tr3s1f55U/O2331K+fPlMP/vr0esLFy4QERGBq6srv//+e6b1FixYwJAhQxg/fjzNmjWjePHivPHGG2zcuBH4/3ubSNGW7TLSs2dPTp06xZgxY4iKiqJ27dosWbKEChUqAOknpf11zpGkpCSee+45jh07hre3N7Vq1eLbb7+lU6dOufcpRMQpJG/bxuSff6YiwJ8nUwYEQEICLvHx9AB6AB8NHMjhli25oXp1S0kFoGbNmnh6enL48GFatWp11fWeffZZXFxcWLp0KZ06daJz587ccccdAKxdu5bmzZvz5JNPZqy/b9++jD8XL16cihUrsmrVKm6//fYrbt/d3Z3U1NRc+lRSIOXN6Sy5K6snwIhIAbZkiTHFixsDJtXPz5hx44yJikr/WVqaMZs3m9RevUwqGANmX7FiJu3oUbuZc8m1TvAr6IYPH25Kly5tPvzwQ7N3716zefNm884775gPP/zQGGPMN998Yzw8PExERIQxxpgRI0aYkJAQc/r0aWOMMRMnTjR+fn5m2bJlZvfu3WbEiBHGz8/P1KtXL+M9PvzwQ+Pl5WUmTZpk9uzZYyIiIszkyZMzfl6lShUzYMAAExUVlbHdK6lXr54ZOXJk7u8EuabcOIFVZURE8lzal1+aNHd3Y8CY2277/xJyBUc+/thEXSokZwMCjDl0KB+T5g1nLiNpaWlm0qRJplq1asbd3d2UKVPGtG/f3qxevdpER0eboKAg8+qrr2asn5ycbJo0aWLuu+8+Y0z61ZF9+vQx/v7+pkSJEmbAgAHmxRdfzFRGjDHmvffey3iP4OBg8/TTT2f8bPHixeamm24ybm5upkKFClfNqjJiR26UEYcxly4OL8Di4uLw9/cnNjYWPz8/23FEJDt+/JHU1q1xTU3lfJcu+C5aBB4e13zJrJdf5rZXXuFGILVmTVzXrwd///zJmwcSEhI4cOBAxj29RAqTa/1+Z/X7u2jOMiQi+ePgQVJ79MA1NZXPgem33faPRQSg96hRTLn3XpICAnDdsQPuvRdSUvI+r4hYoTIiInkjIQHToweup06xGXi7SROeGTo0Sy91cXFh/IIFeCxfDr6+EB4OmlFTpNBSGRGRvDF8OI6tW4kGenp68t7s2dm/QWbDhjBrFgDm1VdBNz8TKZRURkQk961aBW+9BcCjwJPjxlGtWrUcbeozh4MZLi44jME89BCcPp2LQUWkIFAZEZHcdfYspk8fAKYBZ1u0yJhxNScaNmzIi15e7AQcJ07Ac8/lSkwRKThURkQkd40ahePoUQ65uzPCy4tZs2Zlf3jmLypXrszoN96gL5AG6cM2K1bkVloRKQBURkQk9/z2G7zzDgDBn3/OF+HhVKlS5bo3279/f7zvuIO3Lz03jz8O17ini4g4F5UREckdxsCgQZCaCj164NGlC7feemuubNrFxYUZM2YwzteXA4Dj0CEYOzZXti0i9qmMiEju+OILWLWKFDc3Ul57Ldc3X7FiRUaPH8+fZ5+Yt96CPXty/X1ErqZPnz706NHDdowcad26NYMHD7Yd46pURkTk+l24QPKlk1THpaSw4Jdf8uRtHn/8cUynTuytWhVHcjIMHpx+REbyzLhx47j55pspXrw4gYGB9OjRg927d2dap0+fPjgcjkyPW2655ZrbPXjwIA6Hgy1btuRh+tw1adIkPvzwQ9sxcuTzzz/nlUt3yC6IVEZE5Lqlvf467seOcQRY37Il999/f568j8Ph4OtvvuGmr78Gd3dYuhS++SZP3kvSrV69moEDB/LTTz8RHh5OSkoKYWFhnP/zrsuXdOjQgaioqIzHkiVL8i1jcnJyvryPv78/JUqUyJf3yi1/7ptSpUpRvHhxy2muTmVERK7PoUOkvfoqACM8PZny0Ue4uOTdXy0OhwOqVoVnnwUg5emnISEhz96vqFu2bBl9+vShVq1a1KtXj1mzZnH48GEiIiIyrefp6UnZsmUzHqVKlbrmditVqgRAgwYNcDgctG7dOuNns2bNokaNGnh5eVG9enWmTJmS8bM/j6gsWLCA1q1b4+XlxZw5czKGUF599VWCgoIoUaIEo0ePJiUlheeff55SpUoREhLCzJkzr5nrs88+o06dOnh7e1O6dGnatm2bUbz+PkzTunVrnnnmGf79739TqlQpypYty6i/zRQcGxvL448/TmBgIH5+ftxxxx1s3br1qu+flJTEU089RXBwMF5eXlSsWJFx48ZleXujRo2ifv36zJw5k8qVK+Pp6Ykx5rJhmqSkJP79739Tvnx5fH19adq0KT/88EPGzw8dOkTXrl0pWbIkvr6+1KpVK08LpluebVlEioRz/ftTPDmZH4Bb3nor40smr+286y5KvfkmQYcOkfbGG7j85z/58r65xhi4cMHOe/v4gMORo5fGxsYCXFY2fvjhBwIDAylRogStWrXiv//9L4GBgVfdzqZNm2jSpAkrV66kVq1aeFy6Z9H777/PyJEjeeedd2jQoAGRkZE89thj+Pr60rt374zXv/DCC4wfP55Zs2bh6enJ6tWr+e677wgJCWHNmjWsW7eOvn37smHDBm677TY2btzI/Pnz6d+/P+3atSM0NPSyTFFRUfzrX//i9ddf58477+TcuXOsXbuWa91P9qOPPmLo0KFs3LiRDRs20KdPH1q0aEG7du0wxtC5c2dKlSrFkiVL8Pf3Z9q0abRp04Y9e/ZcsbBNnjyZxYsXs2DBAm644QaOHDnCkSNHALK8vb1797JgwQIWLVp01cvqH3nkEQ4ePMinn35KuXLl+OKLL+jQoQPbt2+nSpUqDBw4kKSkJNasWYOvry87duygWLFiV90P1y33byac+7J6C2IRyV8pK1YYAyYFTL8mTUxqamq+vfeRI0fMo97exoBJdHc35siRfHvv7LriLdbj441JryT5/4iPz9HnSEtLM127djW33nprpuWffvqp+eabb8z27dvN4sWLTb169UytWrVMQkLCVbd14MABA5jIyMhMy0NDQ83cuXMzLXvllVdMs2bNMr1u4sSJmdbp3bu3qVChQqbfwWrVqpmWLVtmPE9JSTG+vr5m3rx5V8wUERFhAHPw4MEr/rx3796me/fuGc9btWp12b64+eabzQsvvGCMMWbVqlXGz8/vsv1w4403mmnTpl3xPZ5++mlzxx13mLS0tMt+lpXtjRw50ri7u5vo6OhM67Rq1coMGjTIGGPM3r17jcPhMMeOHcu0Tps2bcywYcOMMcbUqVPHjBo16ooZ/+6Kv9+XZPX7W0dGRCRnUlJI6t8fb+ADd3dGLFiQp8MzfxcSEsKt77zDj337cmtyMrH9++Ov80fy1FNPPcW2bdv48ccfMy3v2bNnxp9r165N48aNqVChAt9++y133XUX/fv3Z86cORnrxF9ljpiTJ09y5MgR+vbty2OPPZaxPCUlBX9//0zrNm7c+LLX16pVK9PvYFBQELVr18547urqSunSpYmOjr7i+9erV482bdpQp04d2rdvT1hYGPfccw8lS5a84voAdevWzfQ8ODg4Y/sRERHEx8dTunTpTOtcvHiRffv2XXF7ffr0oV27dlSrVo0OHTrQpUsXwsLCsrW9ChUqUKZMmatm3rx5M8YYqlatmml5YmJixrafeeYZBgwYwIoVK2jbti133333ZZ81N6mMiEjOTJmC9/79pPj7E/L221SoUCHfI/R55BEGzZxJ83Xr8P/2W1JWr8atVat8z5EjPj72Jm7z8cn2S55++mkWL17MmjVrCAkJuea6wcHBVKhQgd9//x2AMWPG8FwWpvFPS0sD0odqmjZtmulnfx9u8PX1vez17u7umZ47HI4rLvvzff7O1dWV8PBw1q9fz4oVK3j77bcZPnw4GzduvOrw47W2n5aWRnBwcKZzMf50tRNhGzZsyIEDB1i6dCkrV67kvvvuo23btnz22WdZ3t6V9s1fpaWl4erqSkRExGX79c+hmH79+tG+fXu+/fZbVqxYwbhx4xg/fjxPP/30NbedUyojIpJ9J0/Cyy8D4Pa//9H54YetxHA4HLwwfz4fV6pE7+RkTj74IMGHD0M+HqHJMYcD/uFLoyAwxvD000/zxRdf8MMPP2TpnKBTp05x5MgRgoODAQgMDLzs/JE/zxFJTU3NWBYUFET58uXZv38/Dz74YC5+iqxzOBy0aNGCFi1a8PLLL1OhQgW++OILhg4dmu1tNWzYkBMnTuDm5kbFihWz/Do/Pz969uxJz549ueeee+jQoQOnT5/O8fb+rkGDBqSmphIdHU3Lli2vul5oaCj9+/enf//+DBs2jPfff19lREQKjj333kvV2FioXx/+cjjdhvLly+P91lvEPv00wceOcWzsWMpfKkpy/QYOHMjcuXP56quvKF68OCdOnADSL3P19vYmPj6eUaNGcffddxMcHMzBgwd56aWXCAgI4M4777zqdgMDA/H29mbZsmWEhITg5eWFv78/o0aN4plnnsHPz4+OHTuSmJjIL7/8wpkzZ3JUCLJj48aNrFq1irCwMAIDA9m4cSMnT56kRo0aOdpe27ZtadasGT169OC1116jWrVqHD9+nCVLltCjR48rDjVNmDCB4OBg6tevj4uLCwsXLqRs2bKUKFEiR9u7kqpVq/Lggw/Sq1cvxo8fT4MGDYiJieG7776jTp06dOrUicGDB9OxY0eqVq3KmTNn+O6773K8H7LCCf75ICIFyYFFi7hp9WoAdg0cCNdxE7zccu/AgXxWsyYAZSdPhktXfMj1mzp1KrGxsbRu3Zrg4OCMx/z584H0oY3t27fTvXt3qlatSu/evalatSobNmy45rwWbm5uTJ48mWnTplGuXDm6d+8OpA8PfPDBB3z44YfUqVOHVq1a8eGHH+bLVVp+fn6sWbOGTp06UbVqVUaMGMH48ePp2LFjjrbncDhYsmQJt912G48++ihVq1bl/vvv5+DBgwQFBV3xNcWKFeO1116jcePG3HzzzRw8eJAlS5bg4uKSo+1dzaxZs+jVqxfPPvss1apVo1u3bmzcuDHjKqPU1FQGDhxIjRo16NChA9WqVct0iXVucxhT8KcvjIuLw9/fn9jYWPz8/GzHESmyUpKT2VGqFHXj4/k+OJjWx46lz/tRAJw7dYpiLVrg2L07fQ6SN9+0HSlDQkICBw4coFKlSnh5edmOI5KrrvX7ndXvbx0ZEZEsW/bQQ9SNjyceqPbVVwWmiAAUL10ax4QJ6U8mTSJx2za7gUQky1RGRCRLdm3cSKMFCwDYfffdlLv5ZsuJrqBjR1Lat4eUFH5u2TLfpgkXkeujMiIi/yglJYXN3boRDBzz9aXhX+aMKGjOvPwyScCtcXEsfOQR23FEJAtURkTkHy17/XXuuzSRk+e0aTgK8HkPZZo3Z1+XLgA0+uQTtv78s+VEIvJPVEZE5NqMofOSJbgBh5s0IcDS/A/ZUX3OHM54elINWNm9O0lJSbYjAVzzHicizio3fq9VRkTk2j7+GMe6deDjww2ffWY7TZY4/P1xfe01AB6LimLyiy9azfPnLJ0XbN0YTyQP/fl7/ffZaLNDk56JyFWFL1xIm+eeS/9Xy8svwxXudFpQ+T39NKfeeYfSe/dSecIENj/0EA0bNrSSxdXVlRIlSmTcs8THx6dAXYkkkhPGGC5cuEB0dDQlSpS46h2Cs0JlRESuaNu2bRzq2RMXY0ipUgW3IUNsR8oeFxdKL1pESv363GUMv3z+OVgqIwBly5YFuOpN2kScVYkSJTJ+v3NKk56JyGWSk5MZWKMG0y/dCdT88AMOZ7kB3d9cGDQIn8mToXx52LEDLP8dkpqaqkuOpdBwd3e/5hGRrH5/68iIiFzmjVGjeOFSETnfpw++TlpEAHz+9z9YsgT27oVhw+Ddd63mcXV1va7D2SKFkU5gFZFMtmzZgs+4cdwInC9dGt9Jk2xHuj7e3jBtGgBm6lQGN2pEQkKC5VAi8lcqIyKSISkpiTfvuYdnLo3e+syebX1YI1fccQfJvXrhMIZnNm9m3Esv2U4kIn+hMiIiGSa98gqj9+3DBbh47704OnWyHSnXuL/9NufLlKEyEDJhAps2bbIdSUQuURkRkQxP7dyZPjxTpgze06fbjpO7/PzwvXRvnceAmXffreEakQJCZURE0n38Md6LFmFcXfH98ksoUcJ2otzXujUJAwYAMOroUf733HOWA4kIqIyICLB32TJ48kkAHCNHQvPmlhPlHa/x4zkXEkJZoM6777Jh/XrbkUSKPJURkSLul/XrOdOxI8THk9ayJRT2kzu9vSn+5ZekOBzcDZwcN852IpEiT2VEpAhLSEhga7du3AzEe3jg8sknUBTmwGjUiKSRIwHotnIl/Pab5UAiRZvKiEgR9kmfPvQ9dQoA8/77TnXvmevl85//QPv2kJAAPXuCbmInYo3KiEgRFbF0KZ3mzwfgQPv2FO/Vy3KifObiArNnQ9my8NtvrGncWHfVFbFEZUSkCEq4eJH4e+8lGDji70+lL76wHcmOwEDM7NmkAbft3MnCe++1nUikSFIZESmClnfpQqvz50kA/L75Jn3K9CLK0a4d+3v2BKDHkiVsunS0SETyj8qISFGzZQtd16wBYM8TT+B/662WA9l308cfszcwEH/Ao3dvzp85YzuSSJGiMiJSlJw/D/ffj0tKCqldulB36lTbiQoGd3cCV67krMNB/cRE1rdtazuRSJGiMiJShCQNHAi7d0O5crjOmgUOh+1IBYZfnTocHDECgHabN7Nt/HjLiUSKDpURkSJi1yuv4PHRRxiHA+bMgYAA25EKnPpjxvBDjRoAlH/pJYiOtpxIpGhQGREpAi7u3k3wqFEAfFOnDtx+u91ABVjD77/njzJlKJ2UBH36QFqa7UgihZ7KiEhhl5rKsTZt8E9LY7O7Oy1XrrSdqEDzCwoi6LvvwMsLli6FyZNtRxIp9FRGRAq5A08+yU3HjnEOOPfee5QoU8Z2pIKvdm146y0AUp97jvNr11oOJFK4qYyIFGIX16whZPp0ABa2bEmrRx+1nMiJ9O/PL6GhuKamcq5rV4iPt51IpNBSGREprOLjOde9O+7A197e3L14se1EzsXh4OLbb3MEKBsbyzHNziqSZ1RGRAopM3gwgWfPcgTw/fhj/EuUsB3J6bTs3p1FPXqQBpRftowLCxbYjiRSKKmMiBRGixfjmDEDHA5c5szhjrvvtp3IafX7+GNm+vsDkNynD1y6y7GI5B6VEZHCJjYWM2BA+p+fe47yDz5oN4+TK1asGFUXLGAH4H/xIlEqdiK5LkdlZMqUKVSqVAkvLy8aNWrE2iyeab5u3Trc3NyoX79+Tt5WRLLg2IMP4jh+nKSKFWH0aNtxCoXbwsJY0rMnKUDw6tWkzp1rO5JIoZLtMjJ//nwGDx7M8OHDiYyMpGXLlnTs2JHDhw9f83WxsbH06tWLNm3a5DisiFzbhaVLKf/ttwBMbdCgSN+NN7cNmDGDRdWrA+D69NMQFWU5kUjh4TDGmOy8oGnTpjRs2JCpf7nBVo0aNejRowfjxo276uvuv/9+qlSpgqurK19++SVbtmzJ8nvGxcXh7+9PbGwsfn5+2YkrUnRcvMgfwcEExcYyt1gxuh4/TvHixW2nKlySk+GWW2DzZujaFb76Svf3EbmGrH5/Z+vISFJSEhEREYSFhWVaHhYWxvr166/6ulmzZrFv3z5GjhyZpfdJTEwkLi4u00NEru3AI48QFBvLMSBk7lwVkbzg7g6zZ4OHB3z9NfEzZ9pOJFIoZKuMxMTEkJqaSlBQUKblQUFBnDhx4oqv+f3333nxxRf55JNPcHNzy9L7jBs3Dn9//4xHaGhodmKKFDnxa9cSOn8+AN907MhtXbtaTlSI1arFz+3bA5D21FO6ukYkF+ToBFbH3w5LGmMuWwaQmprKAw88wOjRo6latWqWtz9s2DBiY2MzHkeOHMlJTJGiISWFU3fdhRuwxNeXBzUXRp5LefZZfgX8EhI4osnQRK5btspIQEAArq6ulx0FiY6OvuxoCcC5c+f45ZdfeOqpp3Bzc8PNzY0xY8awdetW3Nzc+O677674Pp6envj5+WV6iMiVJb/+OhViYjgNlPz4Y4oVK2Y7UqHXrFUrvn/gAdKA0O+/59xnn9mOJOLUslVGPDw8aNSoEeHh4ZmWh4eH07x588vW9/PzY/v27WzZsiXj0b9/f6pVq8aWLVto2rTp9aUXKer27sX9lVcAODZ0KM3uvNNyoKKj3wcf8HHJkgAk9Omje9eIXIesncTxF0OHDuXhhx+mcePGNGvWjOnTp3P48GH69+8PpA+xHDt2jNmzZ+Pi4kLt2rUzvT4wMBAvL6/LlotINhkDjz8OCQnQpg113nzTdqIixdvbmxqffcbBNm2oeP48+x54gBt1/x+RHMn2OSM9e/Zk4sSJjBkzhvr167NmzRqWLFlChQoVAIiKivrHOUdE5PptHzIEvv8e4+0N06frElMLmtxxB6sunTNS6euvifvbUWMRyZpszzNig+YZEcns7M6dOGrVwt8YvuvUiTsuTXQm+S8hIYFV5cvT+fRpTO3aOCIi0i/9FZG8mWdERAqGvR064G8Mv3p6csu8ebbjFGleXl502LEDAgJw/PorvPGG7UgiTkdlRMTJ/DxsGI0PHyYZSJk2DR8dLbTONSgIJk4EwIwZQ9zPP9sNJOJkVEZEnMiZAwcIff11ANY0bUr93r0tJ5IMDzzA2WbNcCQlcbRzZ0hLs51IxGmojIg4kS1hYZRNS+OAuzvNly61HUf+yuHg8Isvch6oefIkEU8+aTuRiNNQGRFxEifmzeP2vXsBuDBpEt6X5riQgqNut26sbtcOgJumTydm+3bLiUScg8qIiDO4eJGyL78MwM5Wrag1YIDlQHI1bb/6iu3e3vgbw96OHW3HEXEKKiMizmDUKNi7F8qXp8ZXX9lOI9fg4e2N28yZpAC3HDvGj88/bzuSSIGnMiJSwK1/5x3Mn7OrTpkC/v52A8k/qnH//Wy49VYAbhw/nujff7ecSKRgUxkRKcBOHj9O8SFDcKSlcezWW6FbN9uRJIuafvMNhz08CDaGYv/9r+04IgWayohIARbeoQN1UlKIdXUl4JNPbMeRbPDw96fEggUA+Hz0Efz4o+VEIgWXyohIAbV00iTuunQ1xun//AfPG26wnEiyy697d+jbN/3JY4+RrDv7ilyRyohIARR94gSlnnsOL2DPjTdS6dKVNOKE3niDtMBA2LWLRY0b4wS3AxPJdyojIgWMMYavO3SgaUoK511cqLhsme7I68xKluTIv/8NwF27d/PNa69ZDiRS8KiMiBQwm+bP5/6tWwE4/cILeNx0k+VEcr0qDB3KnurV8QCCRozg+NGjtiOJFCgqIyIFiTE0mTEDX+BI5cqEjh1rO5HkBoeDykuXEu/iQpPUVL7q2FHDNSJ/oTIiUpDMnIlj5Urw8iJ02TJw0f+ihYVbxYqcGzYMgAd//ZVFb71lOZFIwaG/6UQKiJ+//JK0oUPTn7zyClSpYjeQ5LrgMWM4UqECfkCZF17g2JEjtiOJFAgqIyIFQNSxY5y7915c4uK4WLcuDBliO5LkBRcXgpct46KLC61SU0nU0RERQGVExDpjDIs7dOCOlBQSHA7c5swBV1fbsSSPuFWvzvmRIwGoPG0a7NljOZGIfSojIpYtfv11ev36KwCnX3wR9zp1LCeSvBYwYgS0bQsXL0Lv3pCSYjuSiFUqIyIWHT90iBuGD8cb2H/TTZTT1TNFg4sLzJyJ8fODn37i00aNdHWNFGkqIyKWGGNY07YtDVJTiXV15YZVq3T1TFESGsqZUaMAuGvbNr649GeRokh/84lYsnzUKO7duxeAuNdfx033nilySg0ezN5atfAAqowdy6Hff7cdScQKlRERG+Ljaffxx7gCvzZoQOifl/RK0eJwUGnFCs64uVEnLY31YWEarpEiSWVExIahQ3E9cABCQ6m1apXtNGKRa7lyXLx0ie99Bw/y1aX72IgUJSojIvksavp0eP/99JvfffQRjpIlbUcSy8o9/TQ7br4ZV6Du+PEc3L7ddiSRfKUyIpKPjm7ejGv//gAkDhwIt99uOZEUFNWXL+eEpyeVjeH8gAG244jkK5URkXxi0tI43KEDgcawz9sbt//9z3YkKUBcSpYkdcYMjMNBrXXr4OuvbUcSyTcqIyL5ZO0jj9D85EmSANdPP8XV19d2JClgyj/4II4/bwXQrx+cPGk3kEg+URkRyQfH1qyh4ezZAGzs0oWK3bpZTiQF1n//C7VqQXQ0vzZvTlpqqu1EInlOZUQkj5mUFM5060YxYIufH80XLbIdSQoyLy8SZ8wgCai9dy+reve2nUgkz6mMiOSxTffcQ+3YWOIA/y+/xNXDw3YkKeA8mzYlont3AJp+8gkHf/jBbiCRPKYyIpKXIiO5+ZtvAPjpX/+ikq6ekSxqunAh2/398QPOdu9OWnKy7UgieUZlRCSvJCTAQw/hkppKSteutP34Y9uJxIm4uLtTcvFizgH14+JYd/fdtiOJ5BmVEZE8kvzvf8OOHRAUhNuMGbi4utqOJE4m5LbbiHj4YQCafP01BxcvtpxIJG+ojIjkgWOffILr228DkDZ9OpQpYzmROKtWH37IhoAAPAHXPn0gMdF2JJFcpzIiksvSzpzBtW9fXIBvgoOhSxfbkcSJOVxcCF22jHgfH0LPnIGXX7YdSSTXqYyI5LJdHTpQNjGRAw4HtZcvx8VF/5vJ9Qlp1Ihic+emP3njDVizxm4gkVymvyVFctHxd9+l5qZNpAJbhg6lYp06tiNJYdG9Ozz6KBjDubvuIvXMGduJRHKNyohILkk9dgzvwYMBWFChAt1ff91uICl0zIQJRHl5UfzUKXaEhdmOI5JrVEZEcoMxHOjQgZIpKWxzcaF5eLiGZyTXOfz8iBw8mDSgzi+/cOTSSdIizk5/W4rkhoULuenXX0kG9gwfToUqVWwnkkKq46uvsqhyZQCKDR1KyrFjlhOJXD+VEZHrFRMDTz0FQOyTT3L36NGWA0lh5nA4aB4ezq8uLpRMSeFg27ZgjO1YItdFZUTkOpnBg9Nv9V6rFgETJuBwOGxHkkKufOXK7B8zhkTgpl27OPbKK7YjiVwXlRGR63DkvfdwfPIJxsUFZs4E3QRP8knXl17ikxo1APAfMwZz9KjlRCI5pzIikkOpp0/j+cwzAHxZsSI0aWI3kBQpDoeDDsuXs8vfn2KpqTgGDtRwjTgtlRGRHNresSOBycnsc3GhybJltuNIEVQuNJTqP/4I7u6weDEsWGA7kkiOqIyI5MDBWbOov2kTALuff57yunpGbKldG4YPByB5wACSo6IsBxLJPocxBf+4XlxcHP7+/sTGxuLn52c7jhRxKbGxnAgKIiQxkW9vuIFOBw/qpFWxKymJ6BtuIPCPP9hWty51t261nUgEyPr3t46MiGTT5s6dCUlM5IjDQYPly1VExD4PD7Y89RSpQN1t29ivydDEyaiMiGRD2vr1NF63DoDdQ4ZQrnp1y4lE0rUbPpxvLg0X+jz7LEkxMZYTiWSdyohIViUm4tKvHy7Aodtuo82bb9pOJJLB4XDQbMUKDri4UDY5ma0dOtiOJJJlKiMiWTV2LOzcCYGBVPj8cw3PSIETWLEiB0eMAODmiAj2TJ9uOZFI1qiMiGTBnoULSX311fQn774LpUvbDSRyFbePHk34pXvXeD39NElnz9oNJJIFKiMi/yD54kVSevfGNS2NLZUrwz332I4kck0NVqzghKsrNyQl4T52rO04Iv9IZUTkH6zu2pWaFy9yxuGg/Jdf2o4j8o8CbryRMosWAeCYMAF+/tlyIpFry1EZmTJlCpUqVcLLy4tGjRqxdu3aq677448/0qJFC0qXLo23tzfVq1dnwoQJOQ4skp92fvklt65aBcDuJ56gTJ06lhOJZI1r9+7wwAOQlkZqnz4kxMXZjiRyVdkuI/Pnz2fw4MEMHz6cyMhIWrZsSceOHTl8+PAV1/f19eWpp55izZo17Ny5kxEjRjBixAim68QqKeCSEhJIePBBvIDIoCCavvuu7Ugi2TNpEkklSuC6Ywc/dupkO43IVWV7BtamTZvSsGFDpk6dmrGsRo0a9OjRg3HjxmVpG3fddRe+vr58/PHHWVpfM7CKDUs6dqTTsmXEOxwk/PILAQ0b2o4kkm0/P/ccN48fTzKwc84c6j74oO1IUoTkyQysSUlJREREEBYWlml5WFgY69evz9I2IiMjWb9+Pa1atbrqOomJicTFxWV6iOSn+O3baXXp5nd7Hn1URUSc1s1vvMEvISG4A45+/UiIj7cdSeQy2SojMTExpKamEhQUlGl5UFAQJ06cuOZrQ0JC8PT0pHHjxgwcOJB+/fpddd1x48bh7++f8QgNDc1OTJHrYwzFhgzBFzhcuTINNaQozszh4MZly4h1OKiTkMDKLl1sJxK5TI5OYP37ZE/GmH+cAGrt2rX88ssvvPfee0ycOJF58+Zddd1hw4YRGxub8Thy5EhOYorkzIwZsGoVeHtzw/Ll4KKLzsS5laxVi/1PPQVAm9WriVywwHIikczcsrNyQEAArq6ulx0FiY6Ovuxoyd9VqlQJgDp16vDHH38watQo/vWvf11xXU9PTzw9PbMTTSRXbFuyhBqDBuEO6TOu3nST7UgiuaLBpEls/+wz6kRFkdynDxc7d8bb19d2LBEgm0dGPDw8aNSoEeHh4ZmWh4eH07x58yxvxxhDYmJidt5aJM8lJiRwpmdP3C9c4I9KlWDQINuRRHKPw8ENS5dy3uGgycWLpL33nu1EIhmyffx56NChfPDBB8ycOZOdO3cyZMgQDh8+TP/+/YH0IZZevXplrP/uu+/y9ddf8/vvv/P7778za9Ys3nzzTR566KHc+xQiueDLe++lVXw8iYDHxx+Dq6vtSCK5yr9ePVJfeQUA31Gj4CpTMojkt2wN0wD07NmTU6dOMWbMGKKioqhduzZLliyhQoUKAERFRWWacyQtLY1hw4Zx4MAB3NzcuPHGG/nf//7HE088kXufQuQ6RS5dSrtvvgFg7wMPUKtFC8uJRPKG37BhsHQprFuHeeIJUhcvxs3d3XYsKeKyPc+IDZpnRPJSQkICqwMDaX/uHAdLlqTiH3+A/nKWwmz3bky9ejgSE/kkLIwHly+3nUgKqTyZZ0SkMFrYsyftz50jGSj5xRcqIlL4VavG7w88AEDHFSv4SfdcEstURqRI279hAx0WL07/83334X+NyfhECpOq06dzqHRpSgHnH3yQ85oMTSxSGZGiyxgqjxtHGeBYmTJUy+LtCUQKBTc3Si1eTCLQ5sIFvuzRw3YiKcJURqTo+vBD+Ppr8PCg/MqV4OFhO5FIvirevDmHHn0UgK6rVvHT/PmWE0lRpTIiRdLOpUtJe+aZ9CdjxkDdunYDiVhSdfp09gYF4Qek9elDvO4FJhaojEiRcyE+nti778YlPp64OnXguedsRxKxx9WVoKVLueBw0Dwhgbgs3n1dJDepjEiRs7xzZ265eJELDkf6UI0mN5MirniDBpwZNgyAchMnwu7ddgNJkaMyIkXKz7Nn03HNGgD2P/kkfg0bWk4kUjCUHzsW2rWDhATo1QtSUmxHkiJEZUSKjPNnz+L5+ON4Ab+WL0/tt9+2HUmk4HA4YOZMjL8/bNrE0tatbSeSIkRlRIqM1e3bUzcxkViHgxvCw9P/8hWR/xcSwqFnnwWg7bp1/DR1quVAUlSojEiRsHn6dMI2bQLg0Asv4FejhuVEIgVTxREj2FK5Mu5AiUGDiDt50nYkKQJURqTwu3iR+m+9hRsQUbkydV991XYikYLL4eCmlSs55eJC9eRk1rdtazuRFAEqI1L4DR+Oy+7dULYsDTZs0PCMyD8oVqkSUWPGABC2bRsbx4+3nEgKO5URKdROLlwIEyakP/ngA1wCA+0GEnEStYcPZ2ONGrgAZV94gdijR21HkkJMZUQKrXPHjpH4r38BcOFf/4LOnS0nEnEutVeu5JibGxVSUzl1adp4kbygMiKF1rY2bQhJTeWwmxtpOswskm2+5coRN2kSAJXDw2HpUsuJpLBSGZFCacvo0bTYvZs0IObNNykWHGw7kohTqvHkkzBoUPqTvn3h1Cm7gaRQchhjjO0Q/yQuLg5/f39iY2Px8/OzHUcKuHP79pFYtSoBaWmsbNCAtps3244k4twuXoSGDWHXLnbUrUvNrVttJxInkdXvbx0ZkcLFGH5v04aAtDR2u7vTLDzcdiIR5+ftzemJE0kBam7bxuZ//9t2IilkVEakUNn+/PM0PHSIJCB+6lR8S5e2HUmkUCjVvj3fNWsGQKU33+TMb79ZTiSFicqIFB6HDlHzvfcAWNG8OY369rUcSKRwablsGb96elLSGA6HhUHBH+UXJ6EyIoVDWho88giu58+TdssttFm2zHYikULH28+P1FmzSADqHT/OloEDbUeSQkJlRAqFlAkT4PvvwccHl48/xrt4cduRRAqlev/6F+G33w5A1alTOfPzz5YTSWGgMiJOL/ann0h5/nkAUl9/HW66yXIikcKt3TffsMnHBx/g3F13QWqq7Uji5FRGxLmlpHCqSxe8jGGtjw+JffrYTiRS6Hn5+OA5dy6Jnp7ccPQovPmm7Uji5FRGxKnt7NuXyqdOcQbwnjsXH19f25FEioR63bvjOXVq+pP//Ae2bbMbSJyayog4rbMbNlB59mwAlnfoQOPu3S0nEili+vSBrl0hOZkzXbtCYqLtROKkVEbEOaWmEtOtG57Aal9fui9aZDuRSNHjcJA8ZQqnXV0pefgwOx94wHYicVIqI+KUfu3bl5tiYogF/ObNw9vHx3YkkSLJPSSEFT16AFDl8885/d13dgOJU1IZEeezZw/V584FILxDBxp07Wo5kEjRdtfcuYT7++MGnL37bkxSku1I4mRURsS5pKbCo4/ilpxMfIsWdPn8c9uJRIo8Dw8Pyi5cyCmg8tmzbO/Vy3YkcTIqI+Jc3nkH1q2D4sUpNncuXt7ethOJCFCnXTtW33knANXmzydmzRrLicSZqIyI0zi1cSMJQ4emP3njDbjhBruBRCSTLvPmscbPD0/grCZDk2xQGRHnkJbGH1274pWWxsZixUjr1892IhH5Gw9PTwIWLuS8mxs3nToFkybZjiROQmVEnMLmxx6j5smTxAM+n3yCi6ur7UgicgU1w8Lw/XMytOHD4fff7QYSp6AyIgVezM8/U23mTAB+6NCBOt26WU4kItfUty+0aQMJCZy7/36MhmvkH6iMSIFm0tI43rkzvsDPvr6EffGF7Ugi8k8cDnj/fRLd3Sm+eTM/9+1rO5EUcCojUqD9MmAAdU+e5ALpwzMeXl62I4lIVlSqxA/t2wNQ46OP+GPTJsuBpCBTGZGC69gxas2aBcDasDBq6d4zIk6lzaJFRBYrRnHgWOfOmLQ025GkgFIZkYLJGBgwAJ/kZGJuuok7vvrKdiIRySY3Dw+KffopF4GGMTGsf+wx25GkgFIZkYLp00/h66/B3Z2AL7/EXcMzIk6pSufObOjYEYDaM2dy/OefLSeSgkhlRAqcP7ZvJ/7RR9Of/Oc/UKuW3UAicl1u++ILfvX1xR84ouEauQKVESlQjDHs7tCBYgkJHPDzgxdftB1JRK6Tm6cn3nPnkgQ0PXkS5s2zHUkKGJURKVB+GDKE244fJwVImT4d3N1tRxKRXHBjt264jBoFgOOZZ+CPP6zmkYJFZUQKjKgdO6g+eTIAm267jSo9e1pOJCK5ye2ll6B+fTh9mqTHH8cYYzuSFBAqI1IgGGP4tX17go3hoJcXTb791nYkEclt7u4waxZprq54LF7MqgEDbCeSAkJlRAqE8Oefp93Ro6QB5v33cStWzHYkEckL9euz6fbbAag7fTpHIiMtB5KCQGVErEs5e5aal+7uubl5cyo99JDlRCKSl27+6iv2+/gQaAy7O3XScI2ojIh9bv/5DyEpKZz296e+hmdECj1XHx/cPvqIVKDtiRMsGzjQdiSxTGVE7Fq7Ft55B4BSn32GW4kSdvOISL644Z57iLzjDgDqvfceh7ZutZxIbFIZEWuO7NxJ/L33pj/p2xfatrUbSETyVcPFizns7U05Y/itY0fSNBlakaUyIlYYY4gMC6PYH38Q6+8P48fbjiQi+czF1xfXDz8kDegUFUWyhmmLLJURsWLp0KF0O3oUgLiJE8Hf324gEbGi/H33cf7S7R88n3oKzp2znEhsUBmRfHd42zbqXbp6JvLWWwnt08duIBGxqvjkyVCpEhw+jHnuOQ3XFEEqI5KvjDHsat+e8sZwxMuLujosKyK+vjBjBgCO6dP5WlfXFDkqI5Kvlg8YQNiJE6QCfPQRrn5+tiOJSEFw++1svzQZ2s3vvcf+iAjLgSQ/qYxIvjmzZw+Npk8HILJtW0Lvu89yIhEpSGotXswRHx/KAXt1dU2RkqMyMmXKFCpVqoSXlxeNGjVi7dq1V133888/p127dpQpUwY/Pz+aNWvG8uXLcxxYnJQxlBw2jDLGcLhECRouXmw7kYgUMC7FiuE6Zw6pQNjJkyy5dGKrFH7ZLiPz589n8ODBDB8+nMjISFq2bEnHjh05fPjwFddfs2YN7dq1Y8mSJURERHD77bfTtWtXInU/gqLlk0/g88/B3Z0bvv8eF29v24lEpAAqd+edbO3YEYBbPvqIfevWWU4k+cFhsnlTgKZNm9KwYUOmTp2asaxGjRr06NGDcePGZWkbtWrVomfPnrz88stX/HliYiKJiYkZz+Pi4ggNDSU2NhY/nWPgdI7+9BPl2rfHJS4Oxo6F4cNtRxKRAswkJrIvIICb4uNZW7IkzaOjcXVzsx1LciAuLg5/f/9//P7O1pGRpKQkIiIiCAsLy7Q8LCyM9evXZ2kbaWlpnDt3jlKlSl11nXHjxuHv75/xCA0NzU5MKUDSUlM51qkTLnFxnK1aFV54wXYkESngHJ6e+C5aRCLQ8swZYi9NBSCFV7bKSExMDKmpqQQFBWVaHhQUxIkTJ7K0jfHjx3P+/Hnuu8bJi8OGDSM2NjbjceTIkezElALkh3/9i6ZnznARiH/3XdC/bkQkC4LDwjjx5JMAlBo9Gg4dspxI8lKOTmB1OByZnhtjLlt2JfPmzWPUqFHMnz+fwMDAq67n6emJn59fpoc4n4OrVtFk4UIAIu65hxDde0ZEsqHC5MnQokX6rKyPPAK6uqbQylYZCQgIwNXV9bKjINHR0ZcdLfm7+fPn07dvXxYsWEBbfSkVemnJycTedRfFgC0lStB83jzbkUTE2bi6wocfYnx84Pvv+eGee2wnkjySrTLi4eFBo0aNCA8Pz7Q8PDyc5s2bX/V18+bNo0+fPsydO5fOnTvnLKk4lR/vuYd6cXHEAQFff42LhmdEJCduuoltDz8MQNMvvmDvN99YDiR5IdvDNEOHDuWDDz5g5syZ7Ny5kyFDhnD48GH69+8PpJ/v0atXr4z1582bR69evRg/fjy33HILJ06c4MSJE8TGxubep5AC5dCSJTS5NI/I5ocfJuTWWy0nEhFnVnfKFCICAvAGEu6/n5SEBNuRJJdlu4z07NmTiRMnMmbMGOrXr8+aNWtYsmQJFSpUACAqKirTnCPTpk0jJSWFgQMHEhwcnPEYNGhQ7n0KKTiSkwkdPhwvYGOZMrT68EPbiUTEyTlcXCi3ZAmxQO3z51nXrZvtSJLLsj3PiA1ZvU5ZCoDRo2HUKChVitStW3ENCbGdSEQKiR+feIJbp08nCTi8cCE36RySAi9P5hkRuZbTK1dixo5NfzJlioqIiOSqFlOnsqFsWTwA06sXyfHxtiNJLlEZkVyRevEip7t1w5GSQnynTtCzp+1IIlLIOFxcqLxiBScdDqpcvMiJS+cqivNTGZFc8VPXrtx08SInHQ7iXn3VdhwRKaSC6tTh8EsvARA6bx5s2GA5keQGlRG5bvsXLaLJqlUAbB8wgHL16llOJCKFWaOxY+Hhh9MnQevdG86ftx1JrpPKiFyXlAsXSHn4YdyBtWXLcvs779iOJCJFweTJUL48/P47v+nqGqenMiLXZUO3blS9eJEYh4Obli3L0m0BRESuW4kSHLx05/da333H3mnTLAeS66EyIjm297PPuOXS8MxvAwYQrOEZEclHFR57jGWVKgHg+/TTJJ08aTmR5JTKiORMcjIh//kP7sC6smW57e23bScSkSLG4XDQaNUqDri4EJyczK9hYbYjSQ6pjEjOjBuH165dmNKlqb16NQ4X/SqJSP4rU6kSB0aOJA1ouGUL+yZOtB1JckAzsEq2Jf/yC+7NmkFKCsybB/ffbzuSiBRxi6tVo9uePcS4uVH84EE8y5e3HUnQDKySR5IvXGBfq1aQkkJq9+6a3ExECoRmK1eyy9WVgJQUjnbrBgX/39nyFyojki1ru3Sh+oULnHY4OP3KK6CrZ0SkACgTGkrUa6+R6uLCjZs3w2ef2Y4k2aAyIlm2a+FCbv3+ewB2DxxImTp1LCcSEfl/tz/7LK4jRqQ/GTgQYmLsBpIsUxmRLEk6f5603r3xADYFB3PLpEm2I4mIXG74cKhdG06e5Ojdd9tOI1mkMiJZsrZrV2pevMgZh4PKy5fr6hkRKZg8PIibOJFUIGTNGva88YbtRJIF+kaRf7RjwQJa/mV4JkDDMyJSgPm1acO3NWsCUOKll0iIirKcSP6JyohcW0oKZYcNwwP4uVw5bpk82XYiEZF/1GL5cva6uhKYkqLJ0JyAyohc2xtvUGr/flL9/Ki8fLmunhERp1A6JIQT//0vaUDjX39l54QJtiPJNWjSM7m6336Dhg0hKQlmz06/ZbeIiBNZXqMG7Xft4ribGyWPHsU7KMh2pCJFk57JdUk8f549LVqkF5EuXeChh2xHEhHJtibh4Rx0daVcSgrbOna0HUeuQmVEruj7Ll2oGhvLWYeDixMnanhGRJxSyZAQosaMAaBpZCR8953lRHIlKiNymW2ffsrtP/wAwL6nnsL7xhvtBhIRuQ7NXnoJ88QT6U/69YPz5+0GksuojEgmCfHxmEcewROILFeORprcTEQKAcfrr0NoKBw4wKn+/W3Hkb9RGZFMvuvShXoJCcQ6HFTU1TMiUlj4+ZH63nsAlJwzh61TplgOJH+lMiIZtsybxx2rVwOw/6mnKFm7tuVEIiK5x7VTJ36sUgUXoPjgwZzXvWsKDJURSZeaSsmhQ/ECtpYrRwMNz4hIIVQnPJw/XFyonJzMT5oMrcBQGZF0EyZQ4cQJkry9qaDhGREppPwrVOD4yJEAtI6MZLOGawoETXomsGsX1K8PiYkwYwY8+qjtRCIieeqnKlW4Ze9e9rq7U/b4cYoFBNiOVChp0jPJkgvnznHwjjvSi0j79vDII7YjiYjkuZrh4US7uHBTcjLr27e3HafIUxkp4sI7d6ZiVBTxLi6Y6dM1PCMiRYJfxYpEvfwyAO22bIGff7YbqIhTGSnCfvnkE8LWrgXgwFNP4bjhBsuJRETyT72RI0m5914caWnpR4UTE21HKrJURoqo83FxOPr1wxv4rVw56kycaDuSiEi+c5syBcqUgd9+I/E//7Edp8hSGSmiwjt1olFCAuccDkJ19YyIFFUBAXDpihrXN95g49SplgMVTSojRdCmWbPouG4dAIcHD8ZPk5uJSFF2zz1svvFG3IDigwYRp8nQ8p3KSFGTnIzfM8/gCWwPDaXW+PG2E4mIWFctPJzTLi7UTE7mB11dk+9URoqaceOoHh/PBU9PKoaHa3hGRATwrVSJE8OHA9Bx82bWa7gmX6mMFCWbN8MrrwDgM2sWxatVsxxIRKTgqDl6NNsqV8ad9OGaWA3X5BuVkSLiXEwMZ7t3h5QUuOceuP9+25FERAoWh4ObwsM56+JCneRkVmm4Jt+ojBQR69u1o8TRo8R5e6efOa7hGRGRy/hUrsyJl14CoNuWLaRt3Wo5UdGgMlIEbJo4kbZbtgBwaNiw9GvqRUTkiqqPGcP5Nm1wS0vDpXdvSEqyHanQUxkp5OKioijz/PO4AhurVaOOJvUREbk2hwPfOXOgdGnYuhUzerTtRIWeykgh93O7dlRKSSHK1ZVaK1fajiMi4hzKloVLV9SkvfoqP2oahDylMlKI/fzaa7T57TcAYl57jWIhIZYTiYg4kXvvJbJmTVyB4Bde4MyxY7YTFVoqI4VUUkwMwZeumf+xTh3qPPus5UQiIs6neng4f7i5cWNqKpvatrUdp9BSGSmkPF58kZDUVKK8vWkQHm47joiIU/IuV47Tr78OQPtdu1h/aa4myV0qI4XRt9/CjBngcBC8bBm+QUG2E4mIOK0aQ4bwU716AFQYNYrTBw5YTlT4qIwUMrH795PyyCPpT4YMgdtusxtIRKQQqL9yJYfd3SmflsZ2DdfkOpWRQmZH27a4nTxJbLlyMHas7TgiIoWCV0AA8e+8QxrQav9+LsybZztSoaIyUoj88sILNDtwgFTg0OjR4O1tO5KISKFR8/HHOXzvvQD4DB4MJ0/aDVSIqIwUEmd27aLyG28A8P0tt1C3Xz/LiURECp+Ks2dD7doQHQ39+4MxtiMVCiojhYEx7G/XjlLGsMvTkxbLltlOJCJSOHl5wezZGDc3+Pxzfh482HaiQkFlpBDYPGQIjY4eJQlIev99vP39bUcSESm8GjRg46U7+lZ9+21iLt37S3JOZcTJndm2jRsnTwbgu9tuo+7DD1tOJCJS+DVcsIDt3t74G8Ox9u01XHOdVEacmTH4P/ss/saw3ceH1t9+azuRiEiR4OHjg8ucOVwE6kVHE/H447YjOTWVEWc2YwYuK1eClxfVf/oJr2LFbCcSESkyat11Fz9cGq6p9sEHxGzaZDmR81IZcVLnfvsNM3Ro+pOxY3GvU8duIBGRIqjNl1/yi68vxYATnTtjUlNtR3JKOSojU6ZMoVKlSnh5edGoUSPWrl171XWjoqJ44IEHqFatGi4uLgzWmcfXzxj2tW2L49w5LtStC9qnIiJWeHh54Tt/PvFA7ZgYTr78su1ITinbZWT+/PkMHjyY4cOHExkZScuWLenYsSOHDx++4vqJiYmUKVOG4cOHU+/S3P5yfX5+8knqnzhBArD/5ZfB1dV2JBGRIqtG58782rs3AIETJsCePZYTOR+HMdk7Bbhp06Y0bNiQqVOnZiyrUaMGPXr0YNy4cdd8bevWralfvz4TJ07MVsi4uDj8/f2JjY3Fz88vW68tbGK2bMGjYUP8jGFZmzZ0WLnSdiQRETEG2reH8HBo1gzWrtU/FMn693e2jowkJSURERFBWFhYpuVhYWGsX78+Z0mvIDExkbi4uEwPAZOWxuEOHfAzhm0+Ptzx9de2I4mICIDDkX63dD8/2LCB3x591HYip5KtMhITE0NqaipBf7slfVBQECdOnMi1UOPGjcPf3z/jERoammvbdmabBg6k4R9/kAC4zZ6Nh+49IyJScISGsuPSJb43zZ5N9PffWw7kPHJ0AqvD4cj03Bhz2bLrMWzYMGJjYzMeR44cybVtO6uTW7ZQfdo0ANa2aUPNu++2nEhERP6u6quvssbfH08g9s47MUlJtiM5hWyVkYCAAFxdXS87ChIdHX3Z0ZLr4enpiZ+fX6ZHkWYMvpcmN/vVx4dWixfbTiQiIlfg5u5O0JdfchqoEhvLlvvvtx3JKWSrjHh4eNCoUSPCw8MzLQ8PD6d58+a5Gkz+Ys4cfL77DuPhQdklS/Dw8bGdSERErqJa69b82LMnALW/+ILoFSssJyr4sj1MM3ToUD744ANmzpzJzp07GTJkCIcPH6Z///5A+hBLr169Mr1my5YtbNmyhfj4eE6ePMmWLVvYsWNH7nyCQi716FF45hkAHKNGEdCqleVEIiLyTzp9/DHflyyJOxB/zz2YxETbkQo0t+y+oGfPnpw6dYoxY8YQFRVF7dq1WbJkCRUqVADSJzn7+5wjDRo0yPhzREQEc+fOpUKFChw8ePD60hdyJi2NiJtvpsnZs6Q2aIDr88/bjiQiIlng5u5O+cWLOdmyJZXPneP3Pn2oMm+e7VgFVrbnGbGhqM4z8uOAAdz63nskAYc+/5wqd95pO5KIiGTD0r596ThzJsbVFcemTdCwoe1I+SpP5hmR/HNiyxZqXbp6ZkPbtioiIiJOqOOMGXDvvThSU6FPH9DVNVekMlIAmbQ0DnToQElj2OXjQwtdPSMi4rzefRcCAmD7dg499pjtNAWSykgBtObJJ2n2xx8kA24ff4ybJjcTEXFeZcrwx6hRAJSfPZuob7+1m6cAUhkpYI5HRlJn+nQAfmrblpvuustyIhERuV4B/fvzXenSuAEX779fV9f8jcpIQWIMbk8/TSlj2O3jQzMNz4iIFAqurq5U+OYbTgKV4+PZrH9oZqIyUpAsWEDgunUYNzd8Pv1UwzMiIoXIjbfcwqbevQGot2QJx3Sz0wwqIwVFdDQMHAiAY/hwQrt2tRxIRERyW8eZM/kuIAA3IOFf/yItIcF2pAJBZaQAMMbwc5MmcOoU1K0LL71kO5KIiOQBFxcXKl0arrnx/Hki77nHdqQCQWWkAFjVvz83HzpECnBq/Hjw8LAdSURE8kilpk355ZFHAGi4bBls3mw5kX0qI5Yd2byZ+peunvmlXTtKt21rOZGIiOS1DpoMLROVEYuMMezr2JEAYK+PDzd/9ZXtSCIikg8cDge8807GZGinhw61HckqlRGLwp94gtbR0aQAHnPm4KqrZ0REio7AQBLeegsAv3ff5UgR/gepyoglhyIiaPD++wBsbteOG3TvGRGRIsfjwQf5ITAQNyDxgQeK7NU1KiOWXOjblzLAfh8fGhfhNiwiUpS5uLhQ+dtviQFuunCBTd27245khcqIDZ9/To2tW0lzccHjk09w0fCMiEiRdUPjxkReuoFe4xUrOPTFF5YT5T+VkfwWEwMDBgDg8sILhPToYTePiIhY13baNNZcGq5JeughUi9etB0pX6mM5KO0tDS2tW6dPttqzZrw8su2I4mISAHgcDiovHQpMQ4HVYrgcI3KSD5a1q8fdX/7jRQg+f33wcvLdiQRESkgQho2ZOvjjwPQ9LvvIDLScqL8ozKST/Zv3EjjWbMA2NKhA+7Nm1tOJCIiBc0dU6eS0qMHLkVsMjSVkXyQlpbGwS5dCAT2+/rS8PPPbUcSEZECyOFw4DZtWvpkaNu2kTxqlO1I+UJlJB8sfeQR7oiJIQXw+vRTXT0jIiJXFxiIeffd9D+PG8f+RYvs5skHKiN5bN/69TSdPRuArZ07U65LF8uJRESkwLv3Xn4sWxZ3IPXhh0m5cMF2ojylMpKXjOFUz54EAPuKFaNhEWi3IiJy/RwOBzcuW5Z+dc3Fi/zUtavtSHlKZSQvffopTY4eJdXFBe8FC3B4etpOJCIiTiK4Xj1+vTQvVdPvvmPvwoWWE+UdlZG8EhUFAwcC4DpyJOU6drQcSEREnE2rd97hx+Bg3IG03r1JPn/edqQ8oTKSB1JTUjjWpQucOQMNGsCwYbYjiYiIE3I4HNx0abimaiEerlEZyQNLH3qI8ps3k+xwwEcfgbu77UgiIuKkytaty45LR9qbr15dKCdDUxnJZXu+/54W8+cDsK1HD6hTx24gERFxei0nTyaufXtc09IK5WRoKiO5KCU5mVM9elAS2OPvT8NLpUREROR6OBwO/GbPzpgMzYwdaztSrlIZyUUr77uPZnFxXAT8v/oKh4ZnREQktwQGwqXJ0FLHjmX3p59aDpR7VEZyyZ6lS7n1yy8B+PWBBwhq1cpuIBERKXzuu4+fQkNxMwYeeYSk+HjbiXKFykguMCkpXOzZk2LAttKlaXxpxlUREZHcVnnJEmIcDqolJLC+c2fbcXKFykgucEyYQL1z5zjv6krQt9/icHW1HUlERAqpwNq12TNoEAAt1qxh59y5lhNdP5WR6/XrrzBiBAC+06YR1LSp5UAiIlLYNZ8wgQ3ly+MOuPbtS9K5c7YjXReVkeuQfP48Cffdl36JVZcu8OijtiOJiEgRUWXFivTJ0BIS2ODks3yrjFyHDZ064bVzJxd9feH998HhsB1JRESKiICaNdnz7LMA3LpuHSnr1llOlHMqIzm0Z84cmq9ZA0BE375QtqzlRCIiUtQ0f+MNDt92G66AW9++cPGi7Ug5ojKSA0mxsbj364cbsCYkhBYTJ9qOJCIiRdQNX34J5crB7t0wfLjtODmiMpIDEe3bUykxkRMOB9XDw3FoeEZERGwpWRI++ACAtAkT2DF1quVA2acykk17pk2j2caN6X9+4QUCq1e3nEhERIq8jh3ZWLcuLkDxQYNIOHnSdqJsURnJhqSYGHyffhqAFZUrc9u4cZYTiYiIpLvpq6844uJCaHIyW9q1sx0nW1RGssHt3/+mfHIyh1xdabBype04IiIiGUpXrMjh0aMBuGXrVnY60fmMKiNZ9fXXuMyaBQ4HZZcto0ylSrYTiYiIZNJixAiWXzp9oOTzz3Px+HHLibJGZSQLEo8fx/Trl/7k2WfxbNvWbiAREZGraLJyJftcXSmbksJvTjJcozKSBTvbtcMRHc2FSpXglVdsxxEREbmqkuXLE/W//5EKNN6xg3NOcPNWlZF/sOeNN6i/YwcpwMYBA8DLy3YkERGRa7r1ueeIuOMOAIo/9xwU8KtrVEauIeH4cUoNGwbAkpo1uf355y0nEhERyZomS5ZA7drpRWTAADDGdqSrUhm5ht/CwghITWWPqystVqywHUdERCTrPD1h9mxwc4NFi9gzZoztRFelMnIVu958k0a//UYqcGLcOEqXL287koiISPY0aMDW7t0BCBwzhgv79lkOdGUOYwrwcZtL4uLi8Pf3JzY2Fj8/vzx/v4vHjxNXoQJBKSksqVmTTr/9lufvKSIikhdiY2I4VK4cdZOT2VapEnX37cu3u8xn9ftbR0auwPHsswSlpLDP1ZVm4eG244iIiOSYf0AA5yZPJgmoe+AAO0aOtB3pMiojf7d0KV6ffopxOPBdsICS5crZTiQiInJdWvTvz7KGDQEo+9//cv7AAcuJMlMZ+Yu0M2fgsccAcAweTNm77rKcSEREJHe0Xr6cHe7ulEpLY1dYmO04maiM/MXG226DY8dIrVwZxo61HUdERCTX+AUEcG7SJFKARnv3cvCtt2xHyqAycsn28eNp9uuvpAERTz4JPj62I4mIiOSqpgMGsLZZMwAqvPYanDplOVE6lRHgfFQUpV58EYDva9akybPPWk4kIiKSN27//nuoUQNHdDQMHmw7DpDDMjJlyhQqVaqEl5cXjRo1Yu3atddcf/Xq1TRq1AgvLy8qV67Me++9l6OweSUyLIzyKSkccnWlsa6eERGRwszTE2bNAhcXmDOHfZMm2U6U/TIyf/58Bg8ezPDhw4mMjKRly5Z07NiRw4cPX3H9AwcO0KlTJ1q2bElkZCQvvfQSzzzzDIsWLbru8Llh61tvceuvvwIQPW4c/rp6RkRECrumTfnjwQcB8H32WeKu8h2eX7I96VnTpk1p2LAhU6dOzVhWo0YNevTowbhx4y5b/4UXXmDx4sXs3LkzY1n//v3ZunUrGzZsyNJ75tWkZ/FRUZy94QZCUlL4oWZNWmtyMxERKSLiT57kZLlyVEpJ4ceqVbl19+5cf488mfQsKSmJiIgIwv52SVBYWBjr16+/4ms2bNhw2frt27fnl19+ITk5+YqvSUxMJC4uLtMjL1wYNIiQlBSOuLrSUPeeERGRIqRYmTKcfest0oBb9+wh6euvrWXJVhmJiYkhNTWVoKCgTMuDgoI4ceLEFV9z4sSJK66fkpJCTEzMFV8zbtw4/P39Mx6hoaHZiZk1xhAYFIRxOEh4+238dO8ZEREpYho8/TRHe/TA+PvjkZBgLUeOTmB1/G1Oe2PMZcv+af0rLf/TsGHDiI2NzXgcOXIkJzGvzeGAt9/GsWsXVQYMyP3ti4iIOIEb5szBsWMH3HuvtQxu2Vk5ICAAV1fXy46CREdHX3b0409ly5a94vpubm6ULl36iq/x9PTE09MzO9FyrmrV/HkfERGRgsjXN/1hUbaOjHh4eNCoUSPC/3b5a3h4OM2bN7/ia5o1a3bZ+itWrKBx48a4u7tnM66IiIgUNtkephk6dCgffPABM2fOZOfOnQwZMoTDhw/Tv39/IH2IpVevXhnr9+/fn0OHDjF06FB27tzJzJkzmTFjBs8991zufQoRERFxWtkapgHo2bMnp06dYsyYMURFRVG7dm2WLFlChQoVAIiKiso050ilSpVYsmQJQ4YM4d1336VcuXJMnjyZu+++O/c+hYiIiDitbM8zYkNezTMiIiIieSdP5hkRERERyW0qIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFUqIyIiImKVyoiIiIhYpTIiIiIiVqmMiIiIiFXZng7ehj8niY2Li7OcRERERLLqz+/tf5rs3SnKyLlz5wAIDQ21nERERESy69y5c/j7+1/1505xb5q0tDSOHz9O8eLFcTgcubbduLg4QkNDOXLkiO55k8e0r/OH9nP+0H7OH9rP+SMv97MxhnPnzlGuXDlcXK5+ZohTHBlxcXEhJCQkz7bv5+enX/R8on2dP7Sf84f2c/7Qfs4febWfr3VE5E86gVVERESsUhkRERERq4p0GfH09GTkyJF4enrajlLoaV/nD+3n/KH9nD+0n/NHQdjPTnECq4iIiBReRfrIiIiIiNinMiIiIiJWqYyIiIiIVSojIiIiYlWhLyNTpkyhUqVKeHl50ahRI9auXXvN9VevXk2jRo3w8vKicuXKvPfee/mU1LllZz9//vnntGvXjjJlyuDn50ezZs1Yvnx5PqZ1btn9nf7TunXrcHNzo379+nkbsJDI7n5OTExk+PDhVKhQAU9PT2688UZmzpyZT2mdV3b38yeffEK9evXw8fEhODiYRx55hFOnTuVTWue0Zs0aunbtSrly5XA4HHz55Zf/+Jp8/y40hdinn35q3N3dzfvvv2927NhhBg0aZHx9fc2hQ4euuP7+/fuNj4+PGTRokNmxY4d5//33jbu7u/nss8/yOblzye5+HjRokHnttdfMpk2bzJ49e8ywYcOMu7u72bx5cz4ndz7Z3dd/Onv2rKlcubIJCwsz9erVy5+wTiwn+7lbt26madOmJjw83Bw4cMBs3LjRrFu3Lh9TO5/s7ue1a9caFxcXM2nSJLN//36zdu1aU6tWLdOjR498Tu5clixZYoYPH24WLVpkAPPFF19cc30b34WFuow0adLE9O/fP9Oy6tWrmxdffPGK6//73/821atXz7TsiSeeMLfcckueZSwMsrufr6RmzZpm9OjRuR2t0Mnpvu7Zs6cZMWKEGTlypMpIFmR3Py9dutT4+/ubU6dO5Ue8QiO7+/mNN94wlStXzrRs8uTJJiQkJM8yFjZZKSM2vgsL7TBNUlISERERhIWFZVoeFhbG+vXrr/iaDRs2XLZ++/bt+eWXX0hOTs6zrM4sJ/v579LS0jh37hylSpXKi4iFRk739axZs9i3bx8jR47M64iFQk728+LFi2ncuDGvv/465cuXp2rVqjz33HNcvHgxPyI7pZzs5+bNm3P06FGWLFmCMYY//viDzz77jM6dO+dH5CLDxnehU9woLydiYmJITU0lKCgo0/KgoCBOnDhxxdecOHHiiuunpKQQExNDcHBwnuV1VjnZz383fvx4zp8/z3333ZcXEQuNnOzr33//nRdffJG1a9fi5lZo/3fPVTnZz/v37+fHH3/Ey8uLL774gpiYGJ588klOnz6t80auIif7uXnz5nzyySf07NmThIQEUlJS6NatG2+//XZ+RC4ybHwXFtojI39yOByZnhtjLlv2T+tfablklt39/Kd58+YxatQo5s+fT2BgYF7FK1Syuq9TU1N54IEHGD16NFWrVs2veIVGdn6n09LScDgcfPLJJzRp0oROnTrx1ltv8eGHH+royD/Izn7esWMHzzzzDC+//DIREREsW7aMAwcO0L9///yIWqTk93dhof2nUkBAAK6urpc17Ojo6Msa35/Kli17xfXd3NwoXbp0nmV1ZjnZz3+aP38+ffv2ZeHChbRt2zYvYxYK2d3X586d45dffiEyMpKnnnoKSP/SNMbg5ubGihUruOOOO/IluzPJye90cHAw5cuXz3Sr9Bo1amCM4ejRo1SpUiVPMzujnOzncePG0aJFC55//nkA6tati6+vLy1btmTs2LE6ep1LbHwXFtojIx4eHjRq1Ijw8PBMy8PDw2nevPkVX9OsWbPL1l+xYgWNGzfG3d09z7I6s5zsZ0g/ItKnTx/mzp2r8d4syu6+9vPzY/v27WzZsiXj0b9/f6pVq8aWLVto2rRpfkV3Kjn5nW7RogXHjx8nPj4+Y9mePXtwcXEhJCQkT/M6q5zs5wsXLuDikvlry9XVFfj/f7nL9bPyXZhnp8YWAH9eNjZjxgyzY8cOM3jwYOPr62sOHjxojDHmxRdfNA8//HDG+n9ezjRkyBCzY8cOM2PGDF3amwXZ3c9z5841bm5u5t133zVRUVEZj7Nnz9r6CE4ju/v673Q1TdZkdz+fO3fOhISEmHvuucf89ttvZvXq1aZKlSqmX79+tj6CU8jufp41a5Zxc3MzU6ZMMfv27TM//vijady4sWnSpImtj+AUzp07ZyIjI01kZKQBzFtvvWUiIyMzLqEuCN+FhbqMGGPMu+++aypUqGA8PDxMw4YNzerVqzN+1rt3b9OqVatM6//www+mQYMGxsPDw1SsWNFMnTo1nxM7p+zs51atWhngskfv3r3zP7gTyu7v9F+pjGRddvfzzp07Tdu2bY23t7cJCQkxQ4cONRcuXMjn1M4nu/t58uTJpmbNmsbb29sEBwebBx980Bw9ejSfUzuX77///pp/5xaE70KHMTq2JSIiIvYU2nNGRERExDmojIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiIiIWKUyIiIiIlapjIiIiIhVKiMiIiJilcqIiFgxb948vLy8OHbsWMayfv36UbduXWJjYy0mE5H8phvliYgVxhjq169Py5Yteeeddxg9ejQffPABP/30E+XLl7cdT0TykZvtACJSNDkcDv773/9yzz33UK5cOSZNmsTatWtVRESKIB0ZERGrGjZsyG+//caKFSto1aqV7TgiYoHOGRERa5YvX86uXbtITU0lKCjIdhwRsURHRkTEis2bN9O6dWveffddPv30U3x8fFi4cKHtWCJigc4ZEZF8d/DgQTp37syLL77Iww8/TM2aNbn55puJiIigUaNGtuOJSD7TkRERyVenT5+mRYsW3HbbbUybNi1jeffu3UlMTGTZsmUW04mIDSojIiIiYpVOYBURERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERsUplRERERKxSGRERERGrVEZERETEKpURERERser/ACw51Z+auX6aAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#using Interact\n", + "fig = figure()\n", + "x = range(0,1, 1000)\n", + "#@manipulate for n=1:2:99\n", + "for n = 1:2:25\n", + " display(\n", + " withfig(fig) do\n", + " plot(x, f.(x), \"k--\")\n", + " b = sinecoef.(f, 1:n)\n", + " plot(x, [sinesum(b, x) for x in x], \"r-\")\n", + " xlabel(L\"$x$\")\n", + " legend([\"exact f\", \"$n-term sine series\"])\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In contrast, if we make a smoother function, e.g. $g(x) = \\sin(\\sin(3 \\pi x) + 5\\sin(\\pi x))$, then it eventually converges *much* more quickly (in fact, for a smooth function like this the series converges *exponentially* fast):" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAINCAYAAAD7t1ITAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5FElEQVR4nOzdd3hTZf/H8U9aOoG2QBkFCrTMsisgS0BkCaICKuAAFyCCAxBBXI+4cAKiDFEBByIqSwRFZMneQ1kyCmW0lNlSoDu/P/JLoLZAKU1Oxvt1XbmeND055xPLk5zzzX3fX5PZbDYLAAAAAAAAwDV5GR0AAAAAAAAAcAUU0gAAAAAAAIA8oJAGAAAAAAAA5AGFNAAAAAAAACAPKKQBAAAAAAAAeUAhDQAAAAAAAMgDCmkAAAAAAABAHlBIAwAAAAAAAPKgkNEBjJCVlaXjx4+raNGiMplMRscBAAAuwmw26/z58ypbtqy8vPg+0hlxngcAAPIjr+d5HllIO378uMLDw42OAQAAXNSRI0dUvnx5o2MgF5znAQCAm3G98zyPLKQVLVpUkuU/TlBQkMFpAACAq0hKSlJ4eLjtXALOh/M8AACQH3k9z/PIQpp1mH9QUBAnWAAA4IYxZdB5cZ4HAABuxvXO81jcAwAAAAAAAMgDCmkAAAAAAABAHlBIAwAAAAAAAPLAI9dIA9yF2WxWRkaGMjMzjY4CXJe3t7cKFSrE2lIAAAAAXBaFNMBFpaWlKS4uThcvXjQ6CpBngYGBCgsLk6+vr9FRAAAAAOCGUUgDXFBWVpZiYmLk7e2tsmXLytfXl1E+cGpms1lpaWk6efKkYmJiVLVqVXl5sboAAAAAANdCIQ1wQWlpacrKylJ4eLgCAwONjgPkSUBAgHx8fHT48GGlpaXJ39/f6EgAAAAAcEMYDgC4MEb0wNXwbxYAAACAK+OKBgAAAAAAAMgDCmkAAAAAAABAHlBIA+BxTCaT5s6da3QMAAAAAICLoZAGAAAAAAAA5AGFNAAOZTab9cEHHygyMlIBAQGqV6+efv75Z9vv2rZtqzvvvFNms1mSdO7cOVWoUEGvvPKKJCkzM1NPPvmkIiIiFBAQoOrVq+uTTz7JcZwpU6aoVq1a8vPzU1hYmJ555hlJUqVKlSRJXbt2lclksv2cmzVr1qh+/fry9/dXw4YNNXfuXJlMJm3btq3g/oMAAHL49ddfVb16dVWtWlVffvml0XEAAABs7FpI++uvv3T33XerbNmyeZ5KtWLFCjVo0ED+/v6KjIzUpEmTcmwza9Ys1axZU35+fqpZs6bmzJljh/SAa7pw4cJVbykpKXne9tKlS3na9ka9+uqrmjp1qiZOnKidO3dq8ODBeuSRR7RixQqZTCZ9/fXX2rBhg8aNGydJ6t+/v0qXLq033nhDkpSVlaXy5cvrxx9/1K5du/T666/r5Zdf1o8//mg7xsSJEzVw4ED169dPf//9t3755RdVqVJFkrRx40ZJ0tSpUxUXF2f7+b/Onz+vu+++W3Xq1NGWLVv01ltvafjw4Tf8egEANyYjI0NDhgzR0qVLtWXLFr3//vs6c+aM0bEAAAAkSYXsufMLFy6oXr16evzxx3Xfffddd/uYmBh16tRJffv21XfffafVq1drwIABKlmypO35a9euVY8ePfTWW2+pa9eumjNnjrp3765Vq1apcePG9nw5gEsoUqTIVX/XqVMnLViwwPZzqVKldPHixVy3bdWqlZYvX277uVKlSjp16lSO7awjx/LiwoULGj16tJYuXaqmTZtKkiIjI7Vq1Sp9/vnnatWqlcqVK6fPP/9cvXr10okTJzR//nxt3bpVPj4+kiQfHx+NHDnSts+IiAitWbNGP/74o7p37y5Jevvtt/XCCy/o+eeft23XqFEjSVLJkiUlSSEhISpTpsxVs06fPl0mk0lffPGF/P39VbNmTR07dkx9+/bN8+sFANy4DRs2qFatWipXrpwky2fXokWL9OCDDxqcDAAAwM4j0jp27Ki3335b3bp1y9P2kyZNUoUKFTR27FhFRUWpT58+euKJJ/TRRx/Zthk7dqzatWunESNGqEaNGhoxYoTatGmjsWPH2ulVACgou3btUkpKitq1a6ciRYrYbt98840OHDhg2+6BBx5Qt27dNGrUKH388ceqVq1atv1MmjRJDRs2VMmSJVWkSBF98cUXio2NlSQlJCTo+PHjatOmzU1l3bt3r+rWrSt/f3/bY7feeutN7RMAPEFeZiRMmDBBERER8vf3V4MGDbRy5Urb744fP24roklS+fLldezYMUdEBwAAuC67jki7UWvXrlX79u2zPdahQwd99dVXSk9Pl4+Pj9auXavBgwfn2IZC2mU7duxQRESEihYtanQUGCA5Ofmqv/P29s72c0JCwlW39fLKXmc/dOjQTeWSLNMyJWnBggXZLpIkyc/Pz3b/4sWL2rx5s7y9vbVv375s2/34448aPHiwPv74YzVt2lRFixbVhx9+qPXr10uSAgICbjqnZBlpZzKZcjwG4NpSUlJ08uRJhYeHGx0FBrnejISZM2dq0KBBmjBhgpo3b67PP/9cHTt21K5du1ShQoVc32v/+34MAABgFKdqNhAfH6/SpUtne6x06dLKyMiwTSm72jbx8fFX3W9qaqqSkpKy3dzZCy+8oPDwcE2bNs3oKDBA4cKFr3q7cnTV9bb9b0HqatvdCOvahrGxsapSpUq225UX3S+88IK8vLz022+/ady4cVq6dKntdytXrlSzZs00YMAARUdHq0qVKtlGsxUtWlSVKlXSkiVLrprDx8dHmZmZ18xao0YN7dixQ6mpqbbHNm3adEOvF/A08+fPV8WKFTV+/Hijo8BA15uRMHr0aD355JPq06ePoqKiNHbsWIWHh2vixImSpHLlymUbgXb06FGFhYVd9Xiedp4HAACM5VSFNCnnN47WbyWvfDy3ba71TeWoUaMUHBxsu7nbt+QZGRnZfvby8lJiYqIef/xxffHFFwalAnIqWrSohg4dqsGDB+vrr7/WgQMHtHXrVo0fP15ff/21JMtotSlTpmj69Olq166dXnrpJT366KM6e/asJKlKlSratGmTFi1apH///VevvfZajoYBb7zxhj7++GONGzdO+/bt05YtW/Tpp5/afm8ttMXHx9v2+18PPfSQsrKy1K9fP+3evVuLFi2yTTNnZASQ07x589SlSxclJCQoMTHR9vjp06d1+PBhA5PBmaSlpWnz5s05ZiC0b99ea9askWSZRv/PP//o2LFjOn/+vBYuXKgOHTpcdZ/ufp4HAACci1MV0sqUKZNjZFlCQoIKFSqkEiVKXHOb/45Su9KIESOUmJhoux05cqTgwxuoZ8+eGjp0qK2g9ttvv+nFF1+UJD377LP6+++/jYwHZPPWW2/p9ddf16hRoxQVFaUOHTpo/vz5ioiI0MmTJ/Xkk0/qjTfe0C233CJJ+t///qeyZcuqf//+kixdPLt166YePXqocePGOn36tAYMGJDtGI8++qjGjh2rCRMmqFatWurcuXO2KaIff/yxFi9erPDwcEVHR+eaMygoSPPnz9e2bdtUv359vfLKK3r99dclKcfIPsDTHTlyRI8//riysrL06KOP6pNPPpEknTp1Sm3atFHv3r1tU7vh2U6dOqXMzMxrzi4oVKiQPv74Y7Vu3VrR0dF68cUXbeeBuXH38zwAAOBcTGYHLfpjMpk0Z84cdenS5arbDB8+XPPnz9euXbtsjz399NPatm2b1q5dK0nq0aOH7dtJq44dOyokJEQzZszIU5akpCQFBwcrMTFRQUFB+XtBTmLZsmW644475O3trR07dqhmzZqSLKP07r77bi1YsECtWrXSsmXLGEXjRlJSUhQTE2NbqBmOMX36dD3++ONKTEwssLXYPA3/dt3Tgw8+qB9++EGNGjXS6tWrbV12Y2JiVKdOHV24cEFff/21evfubXDSm+dO5xCO8N/zP2sjgTVr1ti6N0vSO++8o2+//VZ79uy56WPyNwIAAPmR13MIu45IS05O1rZt27Rt2zZJlhPqbdu22brrjRgxIttJdf/+/XX48GENGTJEu3fv1pQpU/TVV19p6NChtm2ef/55/fHHH3r//fe1Z88evf/++/rzzz81aNAge74Up/Xyyy9LshQcrUU0yXLiOnHiRPn5+WnFihXZCo8A8uabb77RqlWrFBMTo7lz52r48OHq3r07RTTgCps3b9YPP/wgk8mkzz//3FZEk6SIiAi99tprkqS33347x1IE8DyhoaHy9va+4dkFAAAAzsKuhbRNmzYpOjraNnVqyJAhio6Otk2PiouLsxXVJMsJ98KFC7V8+XLVr19fb731lsaNG5et41OzZs30ww8/aOrUqapbt66mTZummTNnqnHjxvZ8KU5p7dq1WrdunXx9ffXqq6/m+H14eLieffZZSdL777/v6HiAy4uPj9cjjzyiqKgoDR48WA888IAmT55sdCzAqXzwwQeSLOsK5jZVeuDAgQoNDdW+ffs0Z84cR8eDk/H19VWDBg20ePHibI8vXrxYzZo1MygVAABA3hWy585vv/32XFuYW+XWVbJVq1basmXLNfd7//336/7777/ZeC7Punj6ww8/fNVvcQcNGqTExESPHbEH3Ixhw4Zp2LBhRscAnFrz5s21YcMG29qc/1WkSBE9/fTTeuuttzR58mQ98MADDk4IR0tOTtb+/fttP1tnJBQvXlwVKlTQkCFD1KtXLzVs2FBNmzbV5MmTFRsba1sLEwAAwJk5bI00Z+IOa2dcuHBBpUqV0sWLF7VhwwY1atTI6EhwINaZgqvi3657ysrKkpfX1Qe5Hz58WBERETKbzTpw4IAiIyMdmK5gucM5hL0tX75crVu3zvH4o48+avsSdcKECfrggw8UFxen2rVra8yYMWrZsmWBHJ+/EQAAyA+nWCMN9jN//nxdvHhRlStXVsOGDY2OAwDwYNcqoklSxYoV1bZtW0nSrFmzHBEJBrLOSPjv7cqZCAMGDNChQ4eUmpqqzZs3F1gRDQAAwN4opLmoW265RcOGDdOzzz6bp26cq1at0uOPP67ffvvNAekAAO5u9+7dmjlzpi5evJin7f/3v/9p2bJlGjJkiJ2TAQAAAPZj1zXSYD/VqlW7oQYCc+fO1bRp05ScnKyOHTvaMRkAwBNMmjRJ48aNyzZd71qaN29u/1AAAACAnTEizUM8/PDDkqRff/01z6MHAADIjdls1s8//yxJNA8AAACAR6GQ5oJ+/PFHLViwQBcuXMjzc+rXr6/w8HClpKRo2bJldkwHAHB327Zt0/HjxxUYGKg2bdrk+Xn//vuvnnnmGT3zzDN2TAcAAADYD4U0F2M2mzV8+HB17txZK1asyPPzTCaT7rrrLknSggUL7BUPwP974403VL9+faNj5Mtjjz2mLl26GB0DTsz6OdKuXbsb6r564cIFjR8/Xl9//bXS0tLsFQ8AAACwGwppLubAgQM6dOiQfHx81KpVqxt67pWFNLPZbI94wHX99ddfuvvuu1W2bFmZTCbNnTs3T8+7kW2dwdChQ7VkyRKjY+TLJ598kqc1r+C5rIU06+dKXtWrV08lS5ZUcnKy1q1bZ49oAAAAgF1RSHMxf/zxhyTptttuU+HChW/ouXfccYf8/f0VGxurnTt32iMecF0XLlxQvXr19Nlnnxly/PT0dIccp0iRIipRooRDjlVQMjMzlZWVpeDgYIWEhBgdB07q5MmTWr9+vSSpU6dON/RcLy8vtWvXTtLlzzMAAADAlVBIczHW9c3atm17w88NDAxU69atVb16dcXFxRV0NCBPOnbsqLffflvdunXL83MqVaokSeratatMJpPtZ0maP3++GjRoIH9/f0VGRmrkyJHKyMiw/d5kMmnSpEm69957VbhwYb399tu2aZdTpkxRhQoVVKRIET399NPKzMzUBx98oDJlyqhUqVJ65513rplr+fLluvXWW1W4cGGFhISoefPmOnz4sKScUzut0yU/+ugjhYWFqUSJEho4cGC2wl5aWpqGDRumcuXKqXDhwmrcuLGWL19+zQxvvPGGKlSoID8/P5UtW1bPPfdcnvc3bdo0hYSE6Ndff1XNmjXl5+enw4cP55jaaTab9cEHHygyMlIBAQGqV6+ebaF5STp79qwefvhhlSxZUgEBAapataqmTp16zdxwXStXrpTZbFa9evVUrly5G36+9fNr6dKlBR0NAAAAsLtCRgdA3pnNZq1Zs0aSZURafsyZM0d+fn4FGQvOwmyWjOrIGhgomUx22/3GjRtVqlQpTZ06VXfeeae8vb0lSYsWLdIjjzyicePGqUWLFjpw4ID69esnSfrf//5ne/7//vc/jRo1SmPGjJG3t7emTp2qAwcO6LffftPvv/+uAwcO6P7771dMTIyqVaumFStWaM2aNXriiSfUpk0bNWnSJEemjIwMdenSRX379tWMGTOUlpamDRs2yHSN/w7Lli1TWFiYli1bpv3796tHjx6qX7+++vbtK0l6/PHHdejQIf3www8qW7as5syZozvvvFN///23qlatmmN/P//8s8aMGaMffvhBtWrVUnx8vLZv3277fV72d/HiRY0aNUpffvmlSpQooVKlSuU4zquvvqrZs2dr4sSJqlq1qv766y898sgjKlmypFq1aqXXXntNu3bt0m+//abQ0FDt379fly5dysufFi6oW7duiomJ0cmTJ/P1fOvn1+bNm5WamspnEgAAAFwKhTQXEhsbq+PHj6tQoUJq2LBhvvbBBYsbu3hRKlLEmGMnJ0s3ONX4RpQsWVKSFBISojJlytgef+edd/TSSy/p0UcflSRFRkbqrbfe0rBhw7IV0h566CE98cQT2faZlZWlKVOmqGjRoqpZs6Zat26tvXv3auHChfLy8lL16tX1/vvva/ny5bkW0pKSkpSYmKjOnTurcuXKkqSoqKhrvo5ixYrps88+k7e3t2rUqKG77rpLS5YsUd++fXXgwAHNmDFDR48eVdmyZSVZ1ln7/fffNXXqVL377rs59hcbG6syZcqobdu28vHxUYUKFXTrrbdKUp73l56ergkTJqhevXq5Zr5w4YJGjx6tpUuXqmnTprb/zqtWrdLnn3+uVq1aKTY2VtHR0bb3pStHDMI9VapUKd9/5ypVqqhkyZI6efKktmzZYvt3BQAAALgCCmkuxLowc3R0tAIDA29qX+np6UpLS7vhddYAe3v33XezFY127dqlChUq5Lrt5s2btXHjxmxTMDMzM5WSkqKLFy/a/n+SW+G5UqVKKlq0qO3n0qVLy9vbW15eXtkeS0hIyPXYxYsX12OPPaYOHTqoXbt2atu2rbp3766wsLCrvrZatWrZRtNJUlhYmP7++29J0pYtW2Q2m1WtWrVsz0lNTb3qWmsPPPCAxo4dq8jISN15553q1KmT7r77bhUqVCjP+/P19VXdunWvmnnXrl1KSUmxrWtllZaWpujoaEnS008/rfvuu09btmxR+/bt1aVLFzVr1uyq+4RnM5lMatasmXbs2KEzZ84YHQcAAAC4IRTSXEj37t1Vv359nTt37qb288Ybb+ijjz7SG2+8oaFDhxZMOBgvMNAyMsyoYxeQ/v37q3v37rafraOpcpOVlaWRI0fmut6av7+/7X5uBWMfH59sP5tMplwfy8rKuurxp06dqueee06///67Zs6cqVdffVWLFy/OdQTb1Y5p3X9WVpa8vb21efPmbMU2ydK4IDfh4eHau3evFi9erD///FMDBgzQhx9+qBUrVuR5fwEBAdecjmrNt2DBghzrYVlHuHbs2FGHDx/WggUL9Oeff6pNmzYaOHCgPvroo6vuF65p7ty5mjZtmh588EH16NEj3/uZOXMmI6RR4MaPH6/x48crMzPT6CgAAMCNUUhzISaTSdWrV7/p/QQFBenChQtatmwZhTR3YjLZdXqloxQvXlzFixfP8biPj0+Oi6NbbrlFe/fuVZUqVRwVL4fo6GhFR0drxIgRatq0qb7//vurFtKut5/MzEwlJCSoRYsWeX5eQECA7rnnHt1zzz0aOHCgatSoob///jvf+/svaxOC2NhYtWrV6qrblSxZUo899pgee+wxtWjRQi+++CKFNDe0cOFCzZs3T1WqVLmpQhpFNNjDwIEDNXDgQCUlJSk4ONjoOAAAwE1RSPNA1ovqtWvXymw2X3M0ClDQkpOTtX//ftvPMTEx2rZtm4oXL37VKZySZSrmkiVL1Lx5c/n5+alYsWJ6/fXX1blzZ4WHh+uBBx6Ql5eXduzYob///ltvv/22XV9HTEyMJk+erHvuuUdly5bV3r179e+//6p379752l+1atX08MMPq3fv3vr4448VHR2tU6dOaenSpapTp446deqU4znTpk1TZmamGjdurMDAQH377bcKCAhQxYoVVaJEiRveX26KFi2qoUOHavDgwcrKytJtt92mpKQkrVmzRkWKFNGjjz6q119/XQ0aNFCtWrWUmpqqX3/99brrxcE1WRve3Exx9kpms9k2ehIAAABwBV7X3wTOYNu2bXr44Yf1xRdf3PS+6tWrJz8/P509e1b79u0rgHRA3m3atMk2ikuShgwZoujoaL3++uvXfN7HH3+sxYsXKzw83PbcDh066Ndff9XixYvVqFEjNWnSRKNHj1bFihXt/joCAwO1Z88e3XfffapWrZr69eunZ555Rk899VS+9zl16lT17t1bL7zwgqpXr6577rlH69evV3h4eK7bh4SE6IsvvlDz5s1Vt25dLVmyRPPnz7etgXaj+7uat956S6+//rpGjRqlqKgodejQQfPnz1dERIQkyzprI0aMUN26ddWyZUt5e3vrhx9+yPd/BzinxMRE7dq1S5LyNeryvwYMGKDixYtr7ty5N70vAAAAwFFMZrPZbHQIR7MO+U9MTFRQUJDRcfJk/PjxeuaZZ9SpUyctWLDgpvfXvHlzrVmzRt9884169epVAAnhSCkpKYqJiVFERES2tcAAZ8e/Xdf1559/ql27doqIiNDBgwdven99+/bVl19+qZdffjlbwxBn54rnEJ6GvxEAAMiPvJ5DMCLNRWzZskWSZU2ogmAdTWDtBAoAwLWsX79ektS4ceMC2Z91ZOnWrVsLZH8AAFxPZqa0fLk0Y4blf+lNAiA/WCPNRRR0Ic16IUQhDQCQF9bPi4KY1ild/jzbvHkz63UCAOxu9mzp+eelo0cvP1a+vPTJJ1IuDeAB4KoYkeYCUlNTtXPnTkkFV0hr2rSpOnXqpPvvv79A9gcAcG8mk0m+vr4FVkirW7euvLy8lJCQoLi4uALZJwAAuZk9W7r//uxFNEk6dszy+OzZxuQC4JoYkeYCdu7cqfT09Ot2NbwR4eHhBbLWGgDAM/zyyy9KTU1VoUIFc+oQGBioqKgo7dy5U1u2bFHZsmULZL8AAFwpM9MyEi23lcHNZslkkgYNku69V6KJNIC8YESaC7BO64yOjmbqCwDAMH5+fvIuwKsM6zpp1s85AAAK2sqVOUeiXclslo4csWwHAHnBiDQXEBcXJ29vb9WvX79A92s2m3X8+HHFx8erQYMGBbpvOIYHNt2Fi+PfrGvKysqSl1fBf/d2++23KyEhQRUrVizwfQMAIEl5XT2AVQYA5BUj0lzAa6+9pgsXLujVV18t0P2uWLFC5cuX1wMPPFCg+4X9+fj4SJIuXrxocBLgxlj/zVr/DcM1tGnTRnXr1tWaNWsKdL9PPvmkFi1apEcffbRA9wsAgFVYWMFuBwCMSHMRfn5+8vPzK9B91q1bV5IUExOjc+fOKSQkpED3D/vx9vZWSEiIEhISJFnWGmLaL5yZ2WzWxYsXlZCQoJCQkAKdHgj7ysrK0qZNm5ScnKzg4GCj4wAAcENatLB05zx2LPd10kwmy+9btHB8NgCuiUKaB7M2L4iNjdX27dvVqlUroyPhBpQpU0aSbMU0wBWEhITY/u3CNezfv1/Jycny9/dX9erV7XKMM2fOyNfXV0WKFLHL/gEAnsvbW/rkE0t3TpMpezHN+j302LE0GgCQdxTSnNz69es1aNAgtW7dWu+++26B7z86OlqxsbHaunUrhTQXYzKZFBYWplKlSik9Pd3oOMB1+fj4MBLNBW3dulWSZRRzQXXsvFKXLl00b948TZ8+XQ899FCB7x8AgG7dpJ9/tnTvvLLxQPnyliJat26GRQPggiikOblt27Zp3bp1KlasmF32Hx0drXnz5tkulOB6vL29KU4AsBvr54O1w2ZBC/v/RWn++ecfu+wfAADJUiy7915Ld864OMuaaC1aMBINwI2jkObkdu7cKUmqVauWXfZvvTCikAYAyI29C2m1a9eWdPnzDgAAe/H2lm6/3egUAFwdXTudnKMKabt27VJKSopdjgEAcE1ms9nuhTTr5xsj0gAAAOAKGJHm5KyFtJo1a9pl/+XLl9eIESMUFRUlc25tbAAAHis1NVVt27bV9u3bbSPHCpq1kHbw4EFdvHhRgYGBdjkOAAAAUBBMZg+sniQlJSk4OFiJiYkKCgoyOs5VnT59WqGhoZKk8+fP080MAOCWSpQooTNnzmj79u2qW7eu0XGuyVXOITwZfyMAAJAfeT2HYGqnE7OORqtYsSJFNACA26pevbokae/evQYnAQAAAK6NqZ1OLCkpSRUrVlSdOnXsepyLFy9qw4YNOnXqlO6//367HgsA4DpOnjypEiVKyMvLvt+7devWTdHR0apYsaJdjwP3Nn78eI0fP16ZmZlGRwEAAG6MqZ0uMOQ/KyvLrhcx27dvV/369VWsWDGdPn1aJpPJbscCALiO2rVrKyYmRosWLdJtt91mdByn4GrnEJ6IvxEAAMgPpna6EXuPBKhevbq8vb119uxZxcXF2fVYAADXkJaWpr179+rixYuMFAMAAAD+H4U0yN/fX1WrVpUk/fPPPwanAQA4g3379ikjI0NBQUEqX7683Y93/vx5bdmyhQ7SAAAAcGoU0pxURkaGKlSooBYtWujs2bN2P17t2rUlUUgDAFhYPw9q1apl9yn/KSkpCg4OVoMGDXTq1Cm7HgsAAAC4GRTSnFRsbKyOHDmijRs3Kjg42O7Ho5AGALjSlYU0e/P391eFChUkSf/++6/djwcAAADkF4U0J7Vv3z5JUpUqVey+Rpp0uZD2999/2/1YAADnt3PnTkmXPx/srVq1apKkvXv3OuR4AAAAQH5QSHNS1kKade0ye7NeKO3cuVNZWVkOOSYAwHk5ckSaZGl8IzEiDQAAAM6tkNEBkDvrhYSjCmmVK1fWpEmTVLt2bRZ6BgAPZzab9eCDD2r79u2qU6eOQ45pHZFGIQ0AAADOjEKak3L0iLRChQrpqaeecsixAADOzWQyaeTIkQ49JlM7AQAA4AocMrVzwoQJioiIkL+/vxo0aKCVK1deddvHHntMJpMpx+3KqSXTpk3LdZuUlBRHvByHsBbSrBcWAAC4M+vn3f79+1liAAAAAE7L7iPSZs6cqUGDBmnChAlq3ry5Pv/8c3Xs2FG7du2ydei60ieffKL33nvP9nNGRobq1aunBx54INt2QUFBOb619vf3t8+LcDCz2azKlSsrNTXVYSPSJOnIkSNatGiRAgIC9PDDDzvsuAAA57Jv3z4FBgaqbNmyMplMDjlmeHi4nn76aUVGRio9PV1+fn4OOS4AAABwI0xmOy+I1bhxY91yyy2aOHGi7bGoqCh16dJFo0aNuu7z586dq27duikmJkYVK1aUZBmRNmjQIJ07dy5fmZKSkhQcHKzExEQFBQXlax/uaN68eerSpYtuueUWbd682eg4AACDdO7cWQsWLNCkSZOY9v8fnEM4P/5GAAAgP/J6DmHXqZ1paWnavHmz2rdvn+3x9u3ba82aNXnax1dffaW2bdvaimhWycnJqlixosqXL6/OnTtr69atV91HamqqkpKSst2QU40aNSRJe/bsYVoNAHiwnTt3Srr8uQAAAADAwq6FtFOnTikzM1OlS5fO9njp0qUVHx9/3efHxcXpt99+U58+fbI9XqNGDU2bNk2//PKLZsyYIX9/fzVv3ty2rth/jRo1SsHBwbZbeHh4/l+UAxjVNTMyMlI+Pj66ePGijh49akgGAICxLl68qEOHDkmSatas6dBjJycna/v27dq9e7dDjwsAAADklUOaDfx3fRWz2ZynNVemTZumkJAQdenSJdvjTZo00SOPPKJ69eqpRYsW+vHHH1WtWjV9+umnue5nxIgRSkxMtN2OHDmS79fiCC+++KLKlSt31ddjLz4+PqpSpYoky6g0AIDn+ffffyVJxYsXV8mSJR167AkTJqh+/fp65513HHpcAAAAIK/sWkgLDQ2Vt7d3jtFnCQkJOUap/ZfZbNaUKVPUq1cv+fr6XnNbLy8vNWrU6Koj0vz8/BQUFJTt5swOHDig48ePO2yB5ytdOb0TAOB5rI18jJjWGRkZKUk6ePCgw48NAAAA5IVdC2m+vr5q0KCBFi9enO3xxYsXq1mzZtd87ooVK7R//349+eST1z2O2WzWtm3bFBYWdlN5nUVMTIykyxcUjkQhDQA8m/X9n0IaAAAAkFMhex9gyJAh6tWrlxo2bKimTZtq8uTJio2NVf/+/SVZpl0eO3ZM33zzTbbnffXVV2rcuLFq166dY58jR45UkyZNVLVqVSUlJWncuHHatm2bxo8fb++XY3dms9lWSIuIiHD48a0XTqxPAwCeyToirXr16g4/trWQduLECV24cEGFCxd2eAYAAADgWuxeSOvRo4dOnz6tN998U3Fxcapdu7YWLlxo68IZFxen2NjYbM9JTEzUrFmz9Mknn+S6z3Pnzqlfv36Kj49XcHCwoqOj9ddff+nWW2+198uxu7Nnz9q6ilaqVMnhx2/fvr2WLl2qqKgohx8bAGC8nj17qnz58mrVqpXDjx0SEqKQkBCdO3dOMTExuX6ZBgAAABjJZDaqRaSBkpKSFBwcrMTERKdbL23z5s1q2LChypQpo7i4OKPjAADgUA0aNNCWLVs0b9483XPPPUbHycGZzyFgwd8IAADkR17PIRzStRN5Z10XxohpnQAAGI110gAAAODM7D61EzemcOHCatmypaKjow3L8Mcff2jZsmVq3769WrdubVgOAIBjHT16VAcPHlRUVJRKlixpSIYHH3xQjRo1MmRqKQAAAHA9FNKcTKdOndSpUydDM8ybN08TJkyQJAppAOBB5s6dq2effVb33nuv5s6da0iGbt26GXJcAAAAIC+Y2okcrJ079+zZY3ASAIAjGdmxEwAAAHAFFNKcTHp6utERbB07d+/ebXASAIAjWb9AsX6hYoTMzExt375d8+fPlwf2Q8JNGD9+vGrWrKlGjRoZHQUAALgxCmlOJCsrS8HBwSpfvryhHTutF1AHDhxwisIeAMAxnGFEWnp6uurXr6977rlHp0+fNiwHXM/AgQO1a9cubdy40egoAADAjVFIcyJxcXG6dOmS4uPjDVvkWZLKli2rgIAAZWRk6PDhw4blAAA4TnJyso4cOSLJ2EKav7+/ypQpI0l8BgEAAMDpUEhzIocOHZIkhYeHq1Ah4/pAeHl5qUqVKpKkffv2GZYDAOA4//77ryQpNDRUJUqUMDRLhQoVJFFIAwAAgPOhkOZErBcMlSpVMjaIpKpVq0qikAYAnsIZpnVaVaxYUZIUGxtrcBIAAAAgO+OGPSEH65Sa8PBwg5NIH3zwgUaPHq3y5csbHQUA4ACNGzfWxIkTFRISYnQUWyGNEWkAAABwNhTSnIj1m3frlBYjVa5c2egIAAAHioyMVP/+/Y2OIYmpnQAAAHBeTO10Is5USAMAwCiMSAMAAICzYkSaE6lfv77Onz/vFOvTpKWl6c0339S+ffv0zTffyM/Pz+hIAAA7+v7771WxYkU1atRIvr6+hmaJjo7W+++/rxo1ahiaAwAAAPgvk9lsNhsdwtGSkpIUHBysxMREBQUFGR3HKZnNZgUFBSk5OVm7d+/mYgYA3FhiYqJtbbSkpCQVLVrU2EBOjHMI58ffCAAA5EdezyGY2olcmUwmValSRRKdOwHA3e3fv1+SVLp0aYpoAAAAwDVQSHMS6enpSk9PNzpGNlWrVpVEIQ0A3J21kGb9AsUZ7N27V7/88gvrpAEAAMCpUEhzEkuXLpWfn5/atm1rdBQbCmkA4Bms7/PW931n8MILL+jee+/VH3/8YXQUAAAAwIZCmpOIjY2V2Wx2qkX9KaQBgGdwxhFpdO4EAACAM6KQ5iSOHDkiSapQoYLBSS6jkAYAnsEZR6RZPw8ppAEAAMCZUEhzErGxsZKcs5B24sQJpaWlGZwGAGAvjEgDAAAA8qaQ0QFgYS2khYeHG5zkspIlS+rAgQOqUKGCChXinwoAuCOz2axvv/1W+/btU7Vq1YyOY2P9PDx69KjBSQAAAIDLqI44CWec2mkymRQZGWl0DACAHZlMJrVv317t27c3Oko25cuXlyQdO3ZMWVlZ8vJiED0AAACMx1mpE8jKynLKQhoAAEYJCwuTyWRSWlqaTp06ZXQcAAAAQBIj0pxCSkqKunfvrtjYWJUtW9boONksW7ZMX3zxherWrauXXnrJ6DgAgAL2119/KTY2Vo0bN3aqZgO+vr4aN26cQkNDFRgYaHQcAAAAQBIj0pxCYGCgvvnmGy1fvly+vr5Gx8nm6NGjmjFjhhYtWmR0FACAHUydOlW9evXSzJkzjY6SwzPPPKOePXuqSJEiRkcBAAAAJFFIw3VYRydYO7oBANyLM3bsBAAAAJwVhTQnkJycrPT0dKNj5Kpy5cqSLIs9p6SkGJwGAFDQ9u3bJ0lONa3TKjY2Vr/88ovWr19vdBQAAABAEoU0p/C///1Pfn5+GjlypNFRcggNDVXRokVlNpsVExNjdBwAQAE6f/68Tpw4Ick5R6TNmDFD9957ryZMmGB0FAAAAEAShTSnEBsbK7PZrJCQEKOj5GAymRQZGSlJOnjwoMFpAAAFyTqts2TJkgoODjY4TU7ly5eXZFmvEwAAAHAGFNKcwLFjxyRdvmBwNtbpnQcOHDA4CQCgIDn7+mgU0gAAAOBsKKQ5gePHj0uSypUrZ3CS3EVGRsrb21tnz541OgoAoABZ10dz1kKa9XPx6NGjMpvNBqcBAAAAJJPZA89Mk5KSFBwcrMTERAUFBRmaJSsrS/7+/kpPT9fhw4dVoUIFQ/PkJjk5WX5+fvLx8TE6CgCgAB0/flzbt29XiRIldOuttxodJ4dLly4pMDBQknTmzBkVK1bM4ETOdQ6B3PE3AgAA+ZHXc4hCDsyEXJw6dUrp6ekymUwKCwszOk6uihQpYnQEAIAdlC1bVmXLljU6xlUFBASoRIkSOn36tI4ePeoUhTQ4r/Hjx2v8+PHKzMw0OgoAAHBjTO00mHV9tFKlSjHiCwCA/2CdNOTVwIEDtWvXLm3cuNHoKAAAwI0xIs1gAQEBevjhh1W4cGGjo1yV2WzW448/rn///VezZs1y2pFzAIC8S0tL0/vvv6+IiAj17NlThQo55ynBa6+9pvT0dNWvX9/oKAAAAABrpLF2Rt5UrlxZBw8e1IoVK9SyZUuj4wAAbtK+fftUrVo1BQYGKjk5WSaTyehILoFzCOfH3wgAAORHXs8hmNqJPKlcubIk6eDBgwYnAQAUhJiYGElSREQERTQAAAAgjyikGezs2bNKT083OsZ1WQtpBw4cMDgJAKAgWL8YiYiIMDjJtZ06dUq//PKLfvnlF6OjAAAAABTSjPbQQw/Jz89P06dPNzrKNUVGRkqikAYA7uLKEWnObNu2bbr33ns1YsQIo6MAAAAAFNKMdvz4cZnNZoWGhhod5ZqY2gkA7sVaSLN+UeKs6NoJAAAAZ0IhzWDHjh2TJJUrV87gJNfG1E4AcC+uMrXT+vmYlJSkpKQkg9MAAADA01FIM1BKSopOnz4tSSpbtqzBaa4tMjJSXl5eKlKkiC5dumR0HADATXKVqZ1FixZVcHCwJEalAQAAwHiFjA7gyY4fPy5J8vf3V7FixQxOc21FixZVSkqKfHx8jI4CACgAq1atUkxMjKpWrWp0lOsqV66cEhMTFRcXp5o1axodBwAAAB7MISPSJkyYoIiICPn7+6tBgwZauXLlVbddvny5TCZTjtuePXuybTdr1izVrFlTfn5+qlmzpubMmWPvl1HgrIW0cuXKyWQyGZzm+iiiAYD7iIqKUqdOnRQQEGB0lOsKCwuTdPlzEwAAADCK3QtpM2fO1KBBg/TKK69o69atatGihTp27KjY2NhrPm/v3r2Ki4uz3a78xnzt2rXq0aOHevXqpe3bt6tXr17q3r271q9fb++XU6BcZX00AACMZF3+gEIaAAAAjGb3Qtro0aP15JNPqk+fPoqKitLYsWMVHh6uiRMnXvN5pUqVUpkyZWw3b29v2+/Gjh2rdu3aacSIEapRo4ZGjBihNm3aaOzYsXZ+NQWrXLlyeuSRR9S+fXujo+TJrFmz1Lx5c7300ktGRwEA3IQ//vhDb7/9tlatWmV0lDzp16+ffvjhB913331GRwEAAICHs+saaWlpadq8eXOOwkv79u21Zs2aaz43OjpaKSkpqlmzpl599VW1bt3a9ru1a9dq8ODB2bbv0KHDVQtpqampSk1Ntf3sLF2/brvtNt12221Gx8iz8+fPa82aNQoMDDQ6CgDgJvzyyy8aP368XnrpJZf4HHKFjAAAAPAMdh2RdurUKWVmZqp06dLZHi9durTi4+NzfU5YWJgmT56sWbNmafbs2apevbratGmjv/76y7ZNfHz8De1z1KhRCg4Ott3Cw8Nv8pV5psqVK0uSDhw4YHASAMDNcJWOnQAAAICzcUjXzv8upG82m6+6uH716tVVvXp1289NmzbVkSNH9NFHH6lly5b52ueIESM0ZMgQ289JSUlOUUw7ceKEihUrJl9fX6Oj5ElkZKQkKTY2Vunp6TQfAAAXZS2kWd/Xnd358+e1ZMkSnT9/Xr169TI6DgAAADyYXUekhYaGytvbO8dIsYSEhBwjyq6lSZMm2rdvn+3nMmXK3NA+/fz8FBQUlO3mDJo1ayY/Pz+tW7fO6Ch5EhYWJn9/f2VmZl63WQQAwDmZzWaXG5F28uRJde3aVf369ZPZbDY6DgAAADyYXQtpvr6+atCggRYvXpzt8cWLF6tZs2Z53s/WrVsVFhZm+7lp06Y59vnHH3/c0D6NZjabbV07b6SoaCQvLy/bRRfTOwHANcXHxyslJUVeXl6qUKGC0XHyxHoOkJKSosTERIPTAAAAwJPZfWrnkCFD1KtXLzVs2FBNmzbV5MmTFRsbq/79+0uyTLs8duyYvvnmG0mWjpyVKlVSrVq1lJaWpu+++06zZs3SrFmzbPt8/vnn1bJlS73//vu69957NW/ePP35558u031Mks6cOWNrgFC2bFmD0+RdZGSkdu/ebRvNAABwLdb37/DwcJeZoh8QEKCQkBCdO3dOx48fV0hIiNGRAAAA4KHsXkjr0aOHTp8+rTfffFNxcXGqXbu2Fi5cqIoVK0qS4uLisk0TTEtL09ChQ3Xs2DEFBASoVq1aWrBggTp16mTbplmzZvrhhx/06quv6rXXXlPlypU1c+ZMNW7c2N4vp8BYR6OFhobKz8/P4DR5V6VKFdvfDgDgeg4ePCjJdaZ1WpUtW9ZWSKtZs6bRcQAAAOChTGYPXGwkKSlJwcHBSkxMNGy9tN9//10dO3ZU3bp1tX37dkMy5Me1mjoAAJxfSkqKDh48qIyMDNWtW9foOHnWtm1bLVmyRN98842hDQec4RwC18bfCAAA5EdezyEc0rUTOVlHpJUrV87gJDeGIhoAuDZ/f3+XHNFlXQbh+PHjBicBAACAJ7NrswFcnasW0gAAMIK14UBcXJzBSQAAAODJGJFmkDp16qhXr15q0aKF0VFuSGpqqtq0aaOYmBjt2bNHRYsWNToSAOAGvPjiiwoJCdFTTz2l0NBQo+PkWc+ePXXLLbeoTp06RkcBAACAB2ONNNbOuGHFixfX2bNntWPHDi5oAMCFpKWlKSAgQFlZWYqLi1OZMmWMjuRyOIdwfvyNAABAfuT1HIKpnbhh1k5vMTExBicBANyI2NhYZWVlKSAgQKVLlzY6DgAAAOByKKQZ5Pjx40pLSzM6Rr5ERkZKopAGAK7G+r5dqVIll2sek5qaqrlz52rixInywMH0AAAAcBIU0gxgNpsVEREhPz8/xcbGGh3nhjEiDQBck/V92/qFiCvJyspS165dNWDAACUmJhodBwAAAB6KQpoBzp49axuN5opTayikAYBrOnjwoKTL7+OuJCAgQCEhIZIso7oBAAAAI1BIM0BcXJwkqVixYvLz8zM4zY2zXoBZL8gAAK7B+gWIKxbSJKls2bKSLn+OAgAAAI5GIc0A8fHxkqSwsDCDk+RPZGSkwsPDVaFCBaOjAABugCtP7ZQuF9IYkQYAAACjFDI6gCeyfpNepkwZg5PkT7Vq1VxybTcA8HTLli3ToUOHVL58eaOj5Iv1CyhGpAEAAMAojEgzgKuPSAMAuKbChQurVq1aCg4ONjpKvjAiDdcyfvx41axZU40aNTI6CgAAcGMU0gzg6iPSrmQ2m42OAADwEBTScC0DBw7Url27tHHjRqOjAAAAN0YhzQCNGjVS79691bRpU6Oj5Nvbb7+t8uXL64MPPjA6CgAgD9asWaO+ffvq66+/NjpKvnXs2FE//vijXn31VaOjAAAAwEOxRpoBevbsqZ49exod46akp6fr2LFjOnDggNFRAAB5sH79en355ZdKTEzUo48+anScfKlataqqVq1qdAwAAAB4MEakIV8iIiIkXe4ABwBwbq7esRMAAABwBhTSDBAbG6uUlBSjY9wUCmkA4FoOHjwo6fL7tysym82aM2eOxo8frwsXLhgdBwAAAB6IqZ0OlpKSoooVK0qSzpw5o2LFihmcKH+sF2KxsbHKzMyUt7e3wYkAANdi/eLDlQtpJpNJjz/+uBITE3XHHXcoKirK6EgAAADwMIxIc7D4+HhJkp+fn0JCQowNcxPKlSsnHx8f21ppAADnZTab3WZqp7Xj9YkTJwxOAgAAAE9EIc3BrIW0MmXKyGQyGZwm/7y9vW0j65jeCQDO7cSJE7p06ZJMJpMqVKhgdJybYi2kWT9PAQAAAEdiaqeDxcXFSZLCwsIMTnLzmjZtqrJly8rLi3osADiz2NhYSVL58uXl6+trcJqbQyENAAAARqKQ5mDWQpr1QsCVffPNN0ZHAADkwa233qrz58/r5MmTRke5aaVLl5ZEIQ0AAADGoJDmYNYTf3cYkQYAcB1FihRRkSJFjI5x0xiRBgAAACMxJ8/B3GlEmlVmZqbREQAAHoJCGgAAAIzEiDQHu+2225Senq5GjRoZHeWm7d69W+3bt5eXl5cOHz5sdBwAwFW8+OKLSkpK0nPPPadatWoZHeemtG7dWj/99JMqV65sdBQAAAB4IJPZbDYbHcLRkpKSFBwcrMTERAUFBRkdx2WdPHlSpUqVkslk0sWLF+Xv7290JABALipVqqTDhw9r9erVatasmdFxXBrnEM6PvxEAAMiPvJ5DMLUT+RYaGqrChQvLbDYzIg0AnFR6erqOHDkiSYqIiDA4DQAAAODaKKQ5UFZWlg4dOqSUlBSjoxQIk8lkuyiLiYkxOA0AIDdHjhxRVlaW/P393WZ9zjlz5mj8+PFKSkoyOgoAAAA8DIU0Bzp9+rQiIiIUGBio9PR0o+MUCAppAODcDh48KMkyvdNkMhmcpmD0799fzzzzDJ89AAAAcDgKaQ5k7dhZokQJ+fj4GJymYFBIAwDnZn1/joyMNDhJwSldurQk6cSJEwYnAQAAgKehkOZA8fHxkqSwsDCDkxQcCmkA4Nys78/utD6adYqq9XMVAAAAcBQKaQ5kHZHmLmvUSFKtWrV02223qVatWkZHAQDkIiEhQRKFNAAAAKAgFDI6gCdxxxFp7dq1U7t27YyOAQC4ii+//FJjxowxOkaBshbSmNoJAAAAR6OQ5kDuOCINAOD8ihYtanSEAmVdI40RaQAAAHA0pnY6kDuOSLNKS0tTWlqa0TEAAB6AqZ0AAAAwCoU0B2rTpo0ee+wxRUdHGx2lQN1zzz0KCAjQggULjI4CALjCv//+q/bt22vYsGFGRylQLVu21E8//aQPP/zQ6CgAAADwMEztdKC+ffuqb9++RscocAEBAcrKyqJzJwA4mT179mjx4sU6e/as0VEKVHh4uMLDw42OAQAAAA/EiDTcNGsnOAppAOBcDh48KMm9OnYCAAAARqKQ5iCZmZk6dOiQLl68aHSUAkchDQCck/V92R0LaXPnztVnn33mdqPtAAAA4NyY2ukgR48eVUREhHx9fZWSkiKTyWR0pAITGRkpiUIaADgbdy6kPfvsszp69KgaN26sRo0aGR0HAAAAHoIRaQ5y4sQJSVLp0qXdqogmXb5AO3TokMxms8FpAABW7jy1k86dAAAAMAKFNAe5spDmbipUqCCTyaSLFy8qISHB6DgAAElms9k2Is06ctidWD9PrZ+vAAAAgCMwtdNB3LmQ5uvrq65du6pw4cLKyMgwOg4AQNK5c+cUEBCgS5cuqUKFCkbHKXCMSAMAAIARHDIibcKECYqIiJC/v78aNGiglStXXnXb2bNnq127dipZsqSCgoLUtGlTLVq0KNs206ZNk8lkynFLSUmx90vJN3cupEnSrFmz9M0336hcuXJGRwEASCpWrJhOnTqlpKQk+fn5GR2nwFFIAwAAgBHsXkibOXOmBg0apFdeeUVbt25VixYt1LFjR8XGxua6/V9//aV27dpp4cKF2rx5s1q3bq27775bW7duzbZdUFCQ4uList38/f3t/XLyzd0LaQAA51SkSBGjI9gFUzsBAABgBLtP7Rw9erSefPJJ9enTR5I0duxYLVq0SBMnTtSoUaNybD927NhsP7/77ruaN2+e5s+fr+joaNvjJpPJ9m20K/CEQlp6eroSExMVGhpqdBQAgJtjRBoAAACMYNdCWlpamjZv3qyXXnop2+Pt27fXmjVr8rSPrKwsnT9/XsWLF8/2eHJysipWrKjMzEzVr19fb731VrZC25VSU1OVmppq+zkpKekGX8nNa9eunQoXLnzVjK7u559/Vo8ePdSqVSstXbrU6DgA4PFef/11bdiwQc8++6zuuusuo+MUuGbNmunnn392y46kNysiIiJfHcIHDRqk5557zg6JAAAA3IddC2mnTp1SZmZmjlFYpUuXzvM3yB9//LEuXLig7t272x6rUaOGpk2bpjp16igpKUmffPKJmjdvru3bt6tq1ao59jFq1CiNHDny5l7MTerTp49tVJ47KlOmjLKysmwd4gAAxlq9erWWLl2qhx9+2OgodlGuXDndd999RsdwStOmTcvX8ypVqlSgOQAAANyRQ7p2/vdbUbPZnKdvSmfMmKE33nhD8+bNU6lSpWyPN2nSRE2aNLH93Lx5c91yyy369NNPNW7cuBz7GTFihIYMGWL7OSkpSeHh4fl5KbiKyMhISdKRI0eUnp4uHx8fgxMBgGezfrHBiC3P06pVK6MjAAAAuC27NhsIDQ2Vt7d3jtFnCQkJ110rbObMmXryySf1448/qm3bttfc1svLS40aNdK+ffty/b2fn5+CgoKy3RwpMzNTMTExunjxokOP60hlypSRn5+fMjMzdeTIEaPjAIBHy8jIsDX1sX7R4Y7mzZunTz/9VKdOnTI6CgAAADyEXQtpvr6+atCggRYvXpzt8cWLF6tZs2ZXfd6MGTP02GOP6fvvv8/Tui5ms1nbtm1TWFjYTWe2h/j4eEVGRiooKEhZWVlGx7ELLy8v26gHpncCgLGOHDmizMxM+fn5uVRjnhs1ZMgQPffcc9q7d6/RUVzGnj179OGHH+qLL77QmjVrDFk3FgAAwJXZtZAmWU5yv/zyS02ZMkW7d+/W4MGDFRsbq/79+0uyTLvs3bu3bfsZM2aod+/e+vjjj9WkSRPFx8crPj5eiYmJtm1GjhypRYsW6eDBg9q2bZuefPJJbdu2zbZPZ2Pt2FmqVCl5edn9P7lhKKQBgHOwvg9XqlTJrT93rKPb6dyZdx07dlRaWprOnTunzz//XLfffruqV69udCwAAACXYfc10nr06KHTp0/rzTffVFxcnGrXrq2FCxeqYsWKkqS4uDjb9BNJ+vzzz5WRkaGBAwdq4MCBtscfffRR2+K5586dU79+/RQfH6/g4GBFR0frr7/+0q233mrvl5Mv1kLa9aazujprIe3gwYMGJwEAz2Z9H3b39dGso+0opOVdmTJl9Morr2R7LDMz06A0BWv8+PEaP36827weAADgnBzSbGDAgAEaMGBArr/7b2ep5cuXX3d/Y8aM0ZgxYwogmWN4SiGtRYsWSkpKUnR0tNFRAMCjpaamqnjx4m69Ppp0+XPV+jmL6+vQoYO+/fZb9erVy/aYt7e3gYkKjvVL2KSkJAUHBxsdBwAAuCmHFNI8nacU0nr27KmePXsaHQMAPJ61oJCRkWF0FLuikHbjNmzYoClTpmjkyJG69dZbVadOHdWpU0edO3c2OhoAAIBLoJDmAJ5SSAMAOJdChdz7Y976uZqQkGBwEtexcOFCSVJSUpL++ecf/fPPP/rzzz8ppAEAAOSRe59hOwlPKqSlp6fryJEjCg8Pl4+Pj9FxAABujBFpeZeQkKCsrCzbunJBQUFq1qzZNbuoAwAAICf3beXlRNq0aaMnnnhCt9xyi9FR7K5cuXKqXLmy9u7da3QUAPBIFy5cUPXq1W3dGd1Z06ZNNXv2bH322WdGR3FaO3bsUK1atRQWFqZy5cqpXLlyevXVV3XhwgWjowEAALgkk9lsNhsdwtGsi9AmJiYqKCjI6DhupUGDBtqyZYvmzZune+65x+g4AOBx/vnnH9WpU0fFihXTmTNnjI7jdlztHKJRo0YqWrSo3nnnHRUuXFibN2/WZ599posXL2rNmjUqVqyY0RELnKv9jQAAgHPI6zkEI9JQoCIiIiRJMTExBicBAM9kff+1vh/Ds+3atUsTJkxQ06ZNVbduXT3++OPatGmTatWqpWeffdboeAAAAC6HQpqdZWVl6eDBgx4zhSIyMlIShTQAMMrBgwclXX4/dnezZ8/Wp59+qtOnTxsdxSk1bNhQZ8+ezfaYyWTSu+++q3nz5hmUCgAAwHXRbMDOTp48qcqVK8tkMiktLc3tO6hZR0BYL+QAAI5l/SLDUwppgwcPVmxsrBo1aqQSJUoYHccp3HXXXapXr57q16+v/v37a/DgwZo3b162pkeJiYluOa0TAADA3ty7quMErJ3EQkND3b6IJjEiDQCMZv0iw1OmdpYuXVqxsbF07rxCnTp1tGXLFk2dOtX23yUyMlLdu3dX/fr1lZmZqalTp2rMmDEGJwUAAHA97l/ZMZj1BPbKb4Hd2ZUj0sxms0wmk8GJAMCzeNrUTuvna0JCgsFJnMd7771nu3/ixAlt3bpV27Zt07Zt2zRx4kTt379f3t7eGjlypO677z4DkwIAALgeCml25mmFtIoVK+qhhx5SZGSk0tPT5evra3QkAPAoxYoVU0hIiEeNSJPEiLSrKF26tO68807deeedtscuXbqkbdu2aceOHQYmAwAAcE0U0uzM0wppfn5+mj59utExAMBjrVy5UpJkNpsNTuIYpUqVkkQh7UYEBASoadOmatq0qdFRAAAAXA6FNDvztEIaAMA5eMrUeqZ25hQREZGvv/+gQYP03HPP2SERAACA+6CQZmeeWEjLyMjQkSNH5O3trQoVKhgdBwDgxpjamdO0adPy9bxKlSoVaA4AAAB3RCHNzu644w75+PioYcOGRkdxmLffflsjR45Unz599MUXXxgdBwA8xocffqgpU6aoX79+Gjx4sNFxHKJFixaaPXs2RaArtGrVyugIAAAAbotCmp09+uijevTRR42O4VDWTnExMTEGJwEAz7J7927t2bNHycnJRkdxmHLlyqlr165GxwAAAICH8DI6ANyPtVPcwYMHDU4CAJ7F+r5r/UIDAAAAQMGikGZHWVlZOnDggEeNDJAuX8DFxsYqIyPD4DQA4DmsI4E9rZD2888/a9y4cTp37pzRUQAAAODmKKTZ0enTp1WlShUVLVpUaWlpRsdxmLCwMPn5+SkzM1NHjx41Og4AeIS0tDQdOXJEkucV0p577jk9//zzjIQGAACA3VFIs6OEhARJUrFixeTr62twGsfx8vJSxYoVJTG9EwAc5fDhwzKbzQoMDFSpUqWMjuNQdO68utjYWJnN5hyPm81mxcbGGpAIAADAtVFIsyPrCb31BN+T0HAAABzL+sVFRESETCaTwWkci0La1UVEROjkyZM5Hj9z5oxtTVMAAADkHV077ciTC2ndu3dXgwYNVK9ePaOjAIDHiI6OVlRUlNExHI5C2tWZzeZcC6vJycny9/c3IBEAAIBro5BmR55cSHv88ceNjgAAHqVDhw7q0KGD0TEMYZ3Kal1SAdKQIUMkSSaTSa+99poCAwNtv8vMzNT69etVv359g9IBAAC4LgppduTJhTQAAByFEWk5bd26VZJlRNrff/+dba1WX19f1atXT0OHDjUqHgAAgMuikGZHnlxIy8rKUmxsrI4cOaIWLVoYHQcA3N7VpvB5AgppOS1btkySZYT4J598oqCgIIMTAQAAuAcKaXbUunVreXt7q1GjRkZHcbjExETbIsbJyckqXLiwwYkAwL2VL19eISEh+u2331ShQgWj4zjU7bffrrlz57J4fi6mTp1qdAQAAAC3YjLn1hPdzSUlJSk4OFiJiYl8Q2tHxYoV07lz5/TPP/+oVq1aRscBALd19uxZFS9eXBJfXtibK55DLFmyREuWLFFCQoKysrKy/W7KlCkGpbIfV/wbAQAA4+X1HMLLgZngYawjA2JiYgxOAgDuzfo+W7p0aYpoyGbkyJFq3769lixZolOnTuns2bPZbgAAALgxTO20E7PZrAMHDqh06dIqUqSIR65bExERoa1bt+rgwYNGRwEAt2Z9n/XkqY0zZ85UXFycnnjiCUYhXWHSpEmaNm2aevXqZXQUAAAAt0AhzU7OnTunqlWrSpIuXbokf39/gxM5XmRkpCRGpAGAvVnfZ63vu55o4MCBOn36tNq2bavatWsbHcdppKWlqVmzZkbHAAAAcBtM7bQTa+ewoKAgjyyiSZdHRjAiDQDsy/o+68mFNDp35q5Pnz76/vvvjY4BAADgNhiRZicJCQmSLp/YeyLWSAMAx2Bqp+XzdteuXRTS/iMlJUWTJ0/Wn3/+qbp168rHxyfb70ePHm1QMgAAANdEIc1OrCfynlxIq1OnjkaMGKGoqCijowCAW6tevboSEhJUvXp1o6MYhhFpuduxY4fq168vSfrnn3+y/c4T128FAAC4WRTS7IRCmlS+fHm9++67RscAALc3btw4oyMYzvp5ax0RDotly5YZHQEAAMCtsEaanVBIAwDAcUqVKiWJEWkAAACwLwppdkIhzSIuLk7Lly9nnTQAsJOMjAyZzWajYxiOqZ1Xt3LlSj3yyCNq2rSpjh07Jkn69ttvtWrVKoOTAQAAuB4KaXZy++23q2/fvrr11luNjmKo4cOHq3Xr1po5c6bRUQDALX377bcqUqSI+vXrZ3QUQ7Vt21Zz587Ve++9Z3QUpzJr1ix16NBBAQEB2rp1q1JTUyVJ58+fZ/kFAACAfGCNNDt56KGH9NBDDxkdw3DWDnLWjnIAgIIVExOjixcvytvb2+gohqpYsaIqVqxodAyn8/bbb2vSpEnq3bu3fvjhB9vjzZo105tvvmlgMgAAANfEiDTYVWRkpCQKaQBgL9b3V+sXF8CV9u7dq5YtW+Z4PCgoSOfOnXN8IAAAABdHIc0OzGaz9u/fr6SkJI9ft6Zy5cqSpAMHDhicBADck7WQZv3iwlOZzWbNmDFDY8eO1YULF4yO4zTCwsK0f//+HI+vWrXK4//NAAAA5AeFNDtITk5W1apVFRwc7PEn89ZCWmxsrNLS0gxOAwDux9rMxdOLIiaTSf3799fgwYN19OhRo+M4jaeeekrPP/+81q9fL5PJpOPHj2v69OkaOnSoBgwYYHQ8AAAAl8MaaXZg7RgWGBioIkWKGJzGWGXKlFFgYKAuXryow4cPq2rVqkZHAgC3cfHiRcXHx0tiaqdk6dyZlJSkEydOqHr16kbHcQrDhg1TYmKiWrdurZSUFLVs2VJ+fn4aOnSonnnmGaPjAQAAuBxGpNlBQkKCJMsJvaczmUy2UWm5TS0BAOSfdVpnSEiIihUrZnAa41k/d61faMHinXfe0alTp7RhwwatW7dOJ0+e1FtvvWV0LAAAAJfkkELahAkTFBERIX9/fzVo0EArV6685vYrVqxQgwYN5O/vr8jISE2aNCnHNrNmzVLNmjXl5+enmjVras6cOfaKf8OsJ/AU0iyGDh2qyZMnq3bt2kZHAQC3YjKZ1KVLF915551GR3EKpUqVkkQhLTeBgYFq2LChbr31Vo8fLQ8AAHAz7D61c+bMmRo0aJAmTJig5s2b6/PPP1fHjh21a9cuVahQIcf2MTEx6tSpk/r27avvvvtOq1ev1oABA1SyZEndd999kqS1a9eqR48eeuutt9S1a1fNmTNH3bt316pVq9S4cWN7v6TropCWXe/evY2OAABuqVatWk71RZLRGJFmMWTIEL311lsqXLiwhgwZcs1tR48e7aBUAAAA7sHuhbTRo0frySefVJ8+fSRJY8eO1aJFizRx4kSNGjUqx/aTJk1ShQoVNHbsWElSVFSUNm3apI8++shWSBs7dqzatWunESNGSJJGjBihFStWaOzYsZoxY4a9X9J1UUgDAMDxrJ+71iUWPNXWrVuVnp5uuw8AAICCY9dCWlpamjZv3qyXXnop2+Pt27fXmjVrcn3O2rVr1b59+2yPdejQQV999ZXS09Pl4+OjtWvXavDgwTm2sRbfjJaxb5+mSootXtzoKE7h0qVL2rhxo06dOqVu3boZHQcA3Ma5c+cUHBwsk8lkdBSnUDo0VJMk7f73X6OjGGrZsmW53gcAAMDNs2sh7dSpU8rMzMwxMqt06dK2LmP/FR8fn+v2GRkZOnXqlMLCwq66zdX2mZqaqtTUVNvPSUlJ+Xk5eZOZqReXLlWQpONr10pms+ThFzhxcXFq1aqV/P39deHCBXl50eMCAApCgwYNdOLECS1fvlwNGzY0Oo7hem7frhBJGTt2SBcuSIULGx3JcKNGjVLp0qX1xBNPZHt8ypQpOnnypIYPH25QMgAAANfkkIrGf78pN5vN1/z2PLft//v4jexz1KhRCg4Ott3Cw8NvKP8N8fZW0PTpUqFCKrtihfTuu/Y7louoUKGCChUqpJSUFB0/ftzoOADgFtLT03X48GFduHBBZcuWNTqO8aZNU8gXX0iSCk2cSBHt/33++eeqUaNGjsdr1aqVazMnAAAAXJtdC2mhoaHy9vbOMVIsISHhquuHlSlTJtftCxUqpBIlSlxzm6vtc8SIEUpMTLTdjhw5kt+XlDetW0uffWa5/+qr0uzZ9j2ekytUqJAqVqwoSTpw4IDBaQDAPRw+fFiZmZkKCAhQWFiY0XGMtXq11K+f5f7//id1725sHicSHx+f67+PkiVLKi4uzoBEAAAArs2uhTRfX181aNBAixcvzvb44sWL1axZs1yf07Rp0xzb//HHH2rYsKF8fHyuuc3V9unn56egoKBsN7t76inp2Wct93v1kjx8sd/KlStLopAGAAVl//79kizvrx69Rtrhw1LXrlJ6unT//dLrrxudyKmEh4dr9erVOR5fvXq1241kHD9+vGrWrKlGjRoZHQUAALgxu0/tHDJkiL788ktNmTJFu3fv1uDBgxUbG6v+/ftLsowW6927t237/v376/DhwxoyZIh2796tKVOm6KuvvtLQoUNt2zz//PP6448/9P7772vPnj16//339eeff2rQoEH2fjk3ZvRoqX176eJF6Z57pKus4eYJqlSpIolCGgAUFOv7qfWLCo+UnGz5fD15UoqOlqZNk1iHM5s+ffpo0KBBmjp1qg4fPqzDhw9rypQpGjx4sPr27Wt0vAI1cOBA7dq1Sxs3bjQ6CgAAcGN2bTYgST169NDp06f15ptvKi4uTrVr19bChQttU/3i4uIUGxtr2z4iIkILFy7U4MGDNX78eJUtW1bjxo3TfffdZ9umWbNm+uGHH/Tqq6/qtddeU+XKlTVz5kw1btzY3i/nxhQqJM2cKTVpIu3dK3XpIi1fLvn7G53M4awXetYRFACAm2N9P7V+UeFxsrIsI7537JBKl5bmzWNdtFwMGzZMZ86c0YABA5SWliZJ8vf31/DhwzVixAiD0wEAALgek9m6kr8HSUpKUnBwsBITEx0zzXPfPqlxY+nsWenhh6Vvv/W4Tp7z5s1Tly5d1KBBA23atMnoOADg8u655x7Nnz9fEyZM0NNPP210HMd75RVLQx8/P2nFCsvnrAM4/ByigCQnJ2v37t0KCAhQ1apV5efnZ3Qku3HVvxEAADBWXs8h7D4iDZKqVpV+/tkyzXP6dKlWLcnDvgVu1KiRJk2apKioKKOjAIBbaNmypUwmk+rXr290FMf7/vvLXbG//NJhRTRXVqRIEdYOAwAAKACMSHPkN5UTJ0oDBljuz5ljmeoJAADybv16qVUrKTVVeukladQohx7eFUY7DRkyRG+99ZYKFy6sIUOGXHPb0aNHOyiV47jC3wgAADgfRqQ5o6eflnbulMaPlx55RFq9WqpXz+hUAAC4hqNHLV9CpaZKd98tvfOO0Ymc0tatW5Weni5J2rJly1W7unp0t1cAAIB8opDmaGPHWhoP/Pmn5SJg40bLIskeYMeOHdq6dauio6NVt25do+MAgMtKSkpSSkqKSpYs6TnFkIsXpXvvtXTArlPHslQCHTpz9cknn9i+RV2+fLmxYQAAANwMZ6COVqiQ9OOPUrVq0pEjUteuUkqK0akcYsyYMXrsscc0b948o6MAgEv78ccfVbp0aXXr1s3oKI5hNkuPPSZt2SKFhkq//CIVLWp0KqcVHR2tU6dOSZIiIyN1+vRpgxMBAAC4DwppRihWTJo/XwoJkdaulfr1s1wkuLnKlStLkg4cOGBwEgBwbfv375cklStXzuAkDvLmm9JPP0k+PtLs2VKlSkYncmohISGKiYmRJB06dEhZWVkGJwIAAHAfTO00SrVqlouCO++Uvv3W0slz+HCjU9kVhTQAKBjW99EqVaoYnMQBfvpJeuMNy/2JE6UWLQyN4wruu+8+tWrVSmFhYTKZTGrYsKG8vb1z3fbgwYMOTgcAAODaKKQZqW1b6ZNPpGeekUaMkKKipHvuMTqV3VBIA4CCYR2RZn1fdVtbtkiPPmq5P3iw9OSTxuZxEZMnT1a3bt20f/9+Pffcc+rbt6+KMhUWAACgQFBIM9rAgZZOnhMnSg89JK1ZI7npQvzWkRNxcXG6cOGCChcubHAiAHA9ZrPZM0akxcVZvly6dMkyevvDD41O5DJ27Nih9u3b684779TmzZv1/PPPU0gDAAAoIKyR5gw++URq00a6cMHSyTMhwehEdlG8eHGFhIRIYioJAOTXyZMndf78eZlMJkVERBgdxz4uXZK6dJGOHZNq1JB++EG6ytRE5HRls4EVK1YoLS3N4EQAAADug0KaM/DxsawBU7WqFBsrdesmpaYancoumN4JADfH+v5Zvnx5+fv7G5zGDsxmqW9facOGy815goONTuVSaDYAAABgP0ztdBbWi4UmTaTVq6WnnpKmTpVMJqOTFah3331XktSgQQODkwCAaypevLief/55BQYGGh3FPkaNkqZPlwoVkn7+WXLn6at2QrMBAAAA+zGZzWaz0SEcLSkpScHBwUpMTFRQUJDRcbJbvFjq2FHKzJQ++EB68UWjEwEA4BizZ0v33We5P3Gi1L+/sXly4dTnEFf4/fffbc0G3nzzzauukfb88887OJn9ucrfCAAAOJe8nkMwIs3ZtGsnjR0rPfusNHy4ZW2Yu+82OhUAAPa1ZYvUq5fl/nPPOWURzZXceeedkkSzAQAAgALGGmnOaOBAywWE2Wzp5Pn330YnKjDJycn69ttv9SHd1wAgX3bu3KnTp0/LrQaUHz9u6dB58aLUoYP08cdGJ3IbU6dO1bZt2/TII4+oWbNmOnbsmCTp22+/1apVqwxOBwAA4HoopDkjk0kaN0664w4pOdlycXHypNGpCkRKSop69+6t4cOH69KlS0bHAQCXc/vttys0NFTbt283OkrBuHhRuvdeS4fOqChp5kzL+mgoELNmzVKHDh0UEBCgLVu2KPX/mxmdP3/etm4pAAAA8o5CmrOydvKsUkU6dMhtOnmWKFFCISEhMpvNdO4EgBt09uxZnTp1StLlLsguLStLevxxadMmqUQJOnTawdtvv61Jkybpiy++kI+Pj+3xZs2aacuWLQYmAwAAcE0U0pxZ8eKXLypWrZKeftoy3dOFmUwmVatWTZK0b98+g9MAgGuxvm+GhYW5x5pXb74p/fij5cuj2bMldygOOpm9e/eqZcuWOR4PCgrSuXPnHB8IAADAxVFIc3Y1alguMry8pKlTpdGjjU5006pWrSpJ+vfffw1OAgCuxVpIs34h4dJ++EEaOdJyf9IkKZdiD25eWFiY9u/fn+PxVatWKTIy0oBEAAAAro1Cmito314aM8Zy/8UXpQULjM1zkxiRBgD5Y/0CwuULaevXS489Zrk/dKj0xBOGxnFnTz31lJ5//nmtX79eJpNJx48f1/Tp0zV06FANGDDA6HgAAAAuh9V8XcWzz0o7d0qTJ0sPPiitXSvVqmV0qnxhRBoA5I/1fdP6PuqSjhyxNBdITZXuvlt67z2jE7m1YcOGKTExUa1bt1ZKSopatmwpPz8/DR06VM8884zR8QAAAFwOhTRXYTJJn30m/fuvtHy55eJjwwYpNNToZDeMEWkAkD8uPyItOdny+XXihFS3rjR9uuTtbXQqt/fOO+/olVde0a5du5SVlaWaNWuqSJEiRscCAABwSRTSXImPj/Tzz1LjxtKBA9J990mLF0u+vkYnuyFRUVFauHCha4+oAAADPP3009q+fbvq1atndJQbl5Ul9eolbd8ulSol/fKL5A4NE1xEYGCgGjZsaHQMAAAAl0chzdWUKGHp5NmkifTXX9KAAdIXX1hGrLmIwMBAdezY0egYAOBy+vTpY3SE/HvlFWnuXMnPz/K/FSsanchjnDt3Tl999ZV2794tk8mkqKgoPfnkkwoODjY6GgAAgMuh2YArioqSZs60dPL86itp7FijEwEAcHXffHN5LbSvvpKaNjU2jwfZtGmTKleurDFjxujMmTM6deqUxowZo8qVK2vLli1GxwMAAHA5FNJc1Z13Sh9/bLk/dKjLdfJcv369Ro4cqblz5xodBQBcwv79+7Vx40YlJSUZHeXGrFol9e1ruf/KK9LDDxubx8MMHjxY99xzjw4dOqTZs2drzpw5iomJUefOnTVo0CCj4wEAALgcCmmu7PnnLRcnWVlSz57Sjh1GJ8qzpUuX6o033tCsWbOMjgIALmHy5Mm69dZb9dprrxkdJe8OHZK6dpXS0izrer75ptGJPM6mTZs0fPhwFSp0eTWPQoUKadiwYdq0aZOByQAAAFwThTRXZjJJ48dLd9xh6YTWubMUF2d0qjyxdpyzdqADAFyby3XsTEqyfC6dOiXdcov09deWJQngUEFBQYqNjc3x+JEjR1SUZg8AAAA3jDNaV2ft5Fm9unTkiHTvvdLFi0anui5rx85///1XZrPZ4DQA4PxcqpCWmSk9+KC0c6cUFmbp0Fm4sNGpPFKPHj305JNPaubMmTpy5IiOHj2qH374QX369NGDDz5odDwAAACXQ9dOd1CsmGWNtMaNpY0bpd69pR9/dOpv/qtUqSLJ0kns9OnTCg0NNTgRADivzMxMHThwQNLlLyKc2osvSgsXSv7+liJauXJGJ/JYH330kUwmk3r37q2MjAxJko+Pj55++mm9Z20AAQAAgDxz3koLbkzlytKcOZYRarNmSa++anSiawoMDFT58uUlSfv27TM4DQA4t9jYWKWlpcnPz0/h4eFGx7m2L76Qxoyx3P/mG6lhQ2PzeDhfX1998sknOnv2rLZt26atW7fqzJkzGjNmjPz8/IyOBwAA4HIopLmTFi2kr76y3B81Spo2zdA418M6aQCQN9b3ySpVqsjb29vgNNfw55/S009b7o8cKT3wgLF5oFGjRmnKlCkKDAxUnTp1VLduXQUGBmrKlCl6//33jY4HAADgciikuZtevS6PRuvXT1qxwtg813DlOmkAgKtzifXRdu2S7r/fsj7aI49IrtRd1I19/vnnqlGjRo7Ha9WqpUmTJhmQCAAAwLWxRpo7GjlS2rdPmjlT6tpVWrdOcsKLr2HDhmnQoEGKjIw0OgoAOLXWrVtrzJgxqlSpktFRcpeQIN11l5SYKN12m/Tll5bO0jBcfHy8wsLCcjxesmRJxblIp28AAABnQiHNHXl5SVOnSocPW4ponTtb/rd4caOTZUMBDQDypnbt2qpdu7bRMXJ36ZKlY/ShQ5fX62TtLacRHh6u1atXKyIiItvjq1evVtmyZQ1KBQAA4LoopLmrgABp7lxLJ899+6Ru3aQ//pB8fY1OBgBwF1lZ0mOPWb6sKVbM0qmTLsxOpU+fPho0aJDS09N1xx13SJKWLFmiYcOG6YUXXjA4HQAAgOuhkObOSpeWfv1VatbMslZa//6WZgRONN3mo48+0t9//61Ro0bxzTgA5CI1NVVz585VtWrVVL9+fZmc6D1cr78u/fijpWP0nDlOuYyApxs2bJjOnDmjAQMGKC0tTZLk7++v4cOHa8SIEQanAwAAcD0ms9lsNjqEoyUlJSk4OFiJiYkKCgoyOo79/f67Ze2arCxLN8+XXjI6kU1UVJT27NmjRYsWqX379kbHAQCns2vXLtWqVUtBQUE6d+6c8xTSpk2THn/88v1HHzUyjcO46jlEcnKydu/erYCAAFWtWlV+bjz91lX/RgAAwFh5PYega6cnuPNO6dNPLfdHjJBmzTI2zxWioqIkSXv27DE4CQA4J2vHzqpVqzpPEW35cktnaEl65RWPKaK5siJFiqhRo0aqXbu2WxfRAAAA7I1CmqcYMEB67jnL/V69pI0bjc3z/2rUqCGJQhoAXM3u3bslXX6/NNzevZZ1N9PTpR49pDffNDoRAAAA4DAU0jzJ6NFSp06WDmv33CPFxhqdyHZhaL1QBABkZ/2iwTqC11CnTlmWCjh7VmrSxNIh2otTCQAAAHgOzn49ibe39MMPUp06Uny8dPfd0vnzhkZiaicAXJvTjEhLTZW6dpUOHJAqVZLmzbN0iAYAAAA8CIU0T1O0qKWTZ+nS0o4dUs+eUkaGYXGqV68uSYqPj9e5c+cMywEAzshsNjvHiDSzWerTR1q1SgoOlhYskEqVMi4PAAAAYBAKaZ6oQgVp/nzLSIKFC6Vnn7VcJBkgKChIZcuWlZeXlw4ePGhIBgBwVsePH9f58+fl7e2tKlWqGBfkzTel776zjGz++WepZk3jsgAAAAAGsmsh7ezZs+rVq5eCg4MVHBysXr16XXPUUXp6uoYPH646deqocOHCKlu2rHr37q3jx49n2+7222+XyWTKduvZs6c9X4r7adRI+v57yWSSJk2SPvrIsCirVq3ShQsXdMsttxiWAQCcUUhIiH755ReNHz9evr6+xoSYPl164w3L/YkTpbZtjckBAAAAOAGT2Wy/oUgdO3bU0aNHNXnyZElSv379VKlSJc2fPz/X7RMTE3X//ferb9++qlevns6ePatBgwYpIyNDmzZtsm13++23q1q1anrzik5hAQEBCg4OzlOupKQkBQcHKzExUUFBQTfxCt3AJ59IgwZZ7s+cKXXvbmgcAIATWbVKatNGSkuTXnxR+uADoxMZjnMI58ffCAAA5EdezyEK2SvA7t279fvvv2vdunVq3LixJOmLL75Q06ZNtXfvXtvaWFcKDg7W4sWLsz326aef6tZbb1VsbKwqVKhgezwwMFBlypSxV3zP8fzz0sGD0rhxUu/eUrlyUvPmRqcCABht717p3nstRbSuXaX33jM6EQAAAGA4u03tXLt2rYKDg21FNElq0qSJgoODtWbNmjzvJzExUSaTSSEhIdkenz59ukJDQ1WrVi0NHTpU56/RfTI1NVVJSUnZbrjC6NGWi6XUVMv/7tvn0MPHxsaqT58+euihhxx6XABwdt99951mzZqlM2fOOPbAJ05IHTtKZ85It95qWR/Ni2VVAQAAALudFcfHx6tULh29SpUqpfj4+DztIyUlRS+99JIeeuihbMPqHn74Yc2YMUPLly/Xa6+9plmzZqlbt25X3c+oUaNs67QFBwcrPDz8xl+QO/P2tqyX1qiRdPq05eLp5EkHHt5bX331lX788UelpaU57LgA4OyGDRum+++/X/sc+QXHxYvSPfdIMTFSZKSlOU1goOOODwAAADixGy6kvfHGGzkW+v/vzbqemclkyvF8s9mc6+P/lZ6erp49eyorK0sTJkzI9ru+ffuqbdu2ql27tnr27Kmff/5Zf/75p7Zs2ZLrvkaMGKHExETb7ciRIzf6st1fYKDlYqlSJenAAcvItEuXHHLosmXLqmjRosrMzNSBAwccckwAcHaJiYmKi4uTJNWoUcMxB83MlB56SNqwQSpeXPrtNymXL8UAAAAAT3XDa6Q988wz1+2QWalSJe3YsUMnTpzI8buTJ0+qdOnS13x+enq6unfvrpiYGC1duvS6C8Xecsst8vHx0b59+3Lt/Ojn5yc/P79r7gOSSpeWFi6UmjWT1q6VevWSfvzR7tN5TCaTatSooY0bN2rPnj2Kioqy6/EAwBXs2bNHkhQWFpbnZjo3xWy2NJ+ZN0/y85N++UWqVs3+xwUAAABcyA0X0kJDQxUaGnrd7Zo2barExERt2LBBt956qyRp/fr1SkxMVLNmza76PGsRbd++fVq2bJlKlChx3WPt3LlT6enpCgsLy/sLQe6ioqS5c6V27aRZs6Thw6UPP7T7Ya2FtN27d6tr1652Px4AODtrIc1hXy6MGSN99plkMlnWRKPxDAAAAJCD3YYaRUVF6c4771Tfvn21bt06rVu3Tn379lXnzp2zdeysUaOG5syZI0nKyMjQ/fffr02bNmn69OnKzMxUfHy84uPjbWtnHThwQG+++aY2bdqkQ4cOaeHChXrggQcUHR2t5pz0F4xWraSpUy33P/pI+s/UWnuwTluyXjgCgKfbvXu3JAcV0n76SXrhBcv9Dz+U7r/f/scEAAAAXJBd5+xNnz5dderUUfv27dW+fXvVrVtX3377bbZt9u7dq8TEREnS0aNH9csvv+jo0aOqX7++wsLCbDdrp09fX18tWbJEHTp0UPXq1fXcc8+pffv2+vPPP+Xt7W3Pl+NZHn5Yevtty/1nn7Wsn2ZHFNIAIDvr+6Hd10dbvdoylV+SnnlGGjLEvscDAAAAXNgNT+28EcWLF9d33313zW3MZrPtfqVKlbL9nJvw8HCtWLGiQPLhOl5+2dK17auvpJ49pb/+kho0sMuhrBeKlxzU4AAAnJ1DRqT9+6+lQ2dqquV/x461TO0EAAAAkCu7FtLg4kwmaeJEKTZWWrxY6txZWrdOqlixwA9VvXp1JScnq3DhwgW+bwBwRXPnztWuXbvUwE5fYCghQerYUTpzRrr1VmnGDImR3QAAAMA12bcdI1yfj4/0889SnTpSfPzli64C5u3tTRENAK4QFRWl++67TyEhIQW/84sXLSPQDh6UIiIs0/cDAwv+OAAAAICboZCG6wsKkhYskMqVk3bvtlx8MQUTAFxTZqZlHcz166XixaXffpNKlTI6FQAAAOASKKQhb8LDLRdbwcGWhakffthyMVaAfv31V7Vu3VrDhg0r0P0CgKuZM2eO3n//fW3fvr1gd2w2W5oJzJ0r+flJ8+ZJV3TSBgAAAHBtFNKQd3XqWC6+fH2lOXOk556zXJQVkOTkZC1fvlyrVq0qsH0CgCuaPn26XnrpJS1durRgd/zRR9K4cZb733wj3XZbwe4fAAAAcHMU0nBjbr9d+u47SyOCCROk994rsF3Xrl1bkrRz587rdm8FAHf2zz//SLr8vlggvv1Wso74/fhjqXv3gts3AAAA4CEopOHGPfCANHas5f7LL0tff10gu61WrZoKFSqkpKQkHT16tED2CQCuJiUlRfv375ck1apVq2B2umiR9MQTlvsvvGCZ3gkAAADghlFIQ/4895z04ouW+08+Kf3++03v0tfXV9WqVZN0eTQGAHiavXv3KjMzU8WKFVNYWNjN73DTJum++6SMDOmhh6QPPrj5fQIAAAAeikIa8u+99y43Hbj/fsvF2k2yTmOikAbAU1nf/2rVqiWTyXRzO9u/X+rUSbpwQWrbVpo6VfLiox8AAADIL86mkX9eXtKUKZaLswsXpLvukg4cuKldXrlOGgB4Iuv7302vj3bihNShg3TypHTLLdLs2ZZmMQAAAADyjUIabo6vrzRrllS/vpSQIN15p+V/86lWrVoqU6aMChcuXHAZAcCFFEijgfPnLSPRDh6UIiOlhQulokULKCEAAADguUxmD2yPmJSUpODgYCUmJiooKMjoOO4hPl5q2lQ6dEhq1EhatkzKRzHMbDbf/FQmAHBhKSkp2rNnj8qUKaMyZcrc+A7S0qTOnaXFi6WSJaXVq6WqVQs+qIfiHML58TcCAAD5kddzCEakoWCUKWNpOFCihLRxo9S9u5SefsO7oYgGwNP5+/urfv36+SuiZWVZunMuXmz5MmPBAopoAAAAQAGikIaCU7269OuvUkCAZRpRnz6Wi7p88sDBkgBwc156SZo+XSpUSPr5Z8sIYQAAAAAFhkIaClaTJtKPP0re3tI330hDh0o3WBD78MMPFR4erlGjRtkpJAA4p4ULF6pfv36aO3fujT95zBjpww8t96dMsaxZCQAAAKBAUUhDwevc2XIRJ1ku7N5774aenpmZqaNHj9oW3AYAT7F06VJ98cUXWrZs2Y098bvvpCFDLPfff1/q1avgwwFObvz48apZs6YaMRITAADYEYU02Efv3tLo0Zb7L78sffFFnp9q7VRHIQ2Ap8lXx85ff5Uee8xy//nnpRdfLPhggAsYOHCgdu3apY0bNxodBQAAuDEKabCfwYMtRTRJ6t/fsl5PHlgvIPfu3av0fDQsAABXtXPnTklSrVq18vaEv/6SHnhAysyUHnnE8gUGTVsAAAAAu6GQBvt6+22pXz9L04GHH5aWLLnuUypUqKAiRYooLS1N+/btc0BIADDeuXPndPToUUl5LKRt2ybdfbeUkmL53ylTJC8+1gEAAAB74owb9mUySRMmSPfdJ6WlSV26SNeZcuHl5WUblbZjxw4HhAQA41nf7ypUqKDg4OBrb7xvn9Shg5SUJLVsKc2cKfn4OCAlAAAA4NkopMH+vL2l6dOlNm2k5GSpY0dpz55rPqVevXqSpG3btjkgIAAYz/p+V79+/WtveOyY1K6dlJAg1a8v/fKLFBBg73gAAAAARCENjuLnJ82ZIzVsKJ0+LbVvLx05ctXNmzZtqubNm6tChQoODAkAxrFO67R+kZAr6/vn4cNSlSrS779L1xu9BgAAAKDAmMxms9noEI6WlJSk4OBgJSYmKigoyOg4nuXUKem226S9e6UaNaSVK6XQUKNTAYBTSEpKUkZGhooXL57zl8nJUtu20vr1Urly0qpVUqVKDs/o6TiHcH78jQAAQH7k9RyCEWlwrNBQ6Y8/pPLlLdM7O3WSzp83OhUAOIWgoKDci2ipqVLXrpYiWvHilvdRimgAAACAw1FIg+NVqGC5CCxRwtJ44N57pUuXct30woULSkpKcnBAAHAimZnSI49If/4pFS4sLVwo1axpdCoAAADAI1FIgzGioqTffpOKFpWWLZMeeMDS1fMKzz33nIoWLarJkycbFBIAHGP27Nm6/fbb9emnn2b/hdks9e8v/fyzpSvnnDlS48bGhAQAAABAIQ0GatRI+vVXS7e5BQssIy4yMmy/Ll26tMxmM507Abi9tWvXasWKFdpzZUdjs1kaPFj68kvJy0v6/ntLt04AAAAAhqGQBmO1bGkZYeHjI/30k9S3r5SVJely57rt27cbmRAA7M76Ple/fv3LD772mvTJJ5b7X30l3X+/44MBAAAAyIZCGozXoYM0c6bk7S1NmyY9/7xkNtsuKHfv3q2UlBRDIwKAvVw58tb6BYJGjZLeecdy/7PPpMceMyQbAAAAgOwopME5dO1qKaKZTJaLxpdfVrly5VS8eHFlZmZq165dRicEALuIj4/XyZMn5eXlpdq1a1tGob38suWX778vDRxobEAAAAAANhTS4DweeUSaONFy/733ZBo1yjY6g3XSALgr67TOatWqKfD776VBgyy/eP11adgw44IBAAAAyIFCGpzLU09JH31kuf/KK3r2/9dLY500AO7K+v42MCRE6tfP8uALL0hvvGFYJgAAAAC5K2R0ACCHF16QkpOlN95Q1xUr9GWzZgpu0cLoVABgF1lZWXo0OFgDNmywdOp8+mnpww8tU90BAAAAOBVGpME5vf66paAm6cm1a3V/errBgQDAPkZER2vaxYvyysqSeve2rBNJEQ0AAABwShTS4JxMJsuIjP79LSM0evWSfvrJ6FQAULCWL7c0W0lPlx54QPrqK8mLj2YAAADAWXG2DudlMknjxyurd28pM1PmBx+UZs0yOhUAFIxVq2Tu3FlKSZHuukv67jupECsuAAAAAM6MQhqcm5eXngsM1DeSTJmZUs+e0rx5RqcCgJuzerXUsaNMFy7oLz8/vdewoeTra3QqAAAAANdBIQ1Or36DBnpc0pLSpaWMDMv0p19/NToWAOTP2rXSnXdKycnaWaaM7kxNVSprogEAAAAugUIanF7Dhg2VJan7pUsyd+9uWUvovvuk334zOhoA3Jh166QOHSydiVu3Vu+QEF2S1KBBA6OTAQAAAMgDCmlwerVq1ZKfn5/OJCXpwBtvWIpoaWmWBbr/+MPoeACQNxs2WIpo589Lt9+u5BkztHXvXkkU0gAAAABXQSENTs/Hx0f169eXJG3avl2aMUPq0kVKTZXuvVdassTQfABwXZs2Se3bS0lJUsuW0q+/atu+fTKbzSpbtqzCwsKMTggAAAAgDyikwSU0bNhQkrRp0ybJx0eaOVO6+25Lt7u775aWLzc2IABczebNUrt2UmKidNtt0oIFUuHClvczXX5/AwAAAOD8KKTBJWQrpEmW7nY//SR16iRduiTddZe0bJmBCQEgF1u3Wopo585JzZtLCxdKRYpIkjZv3iyJaZ0AAACAK7FrIe3s2bPq1auXgoODFRwcrF69euncuXPXfM5jjz0mk8mU7dakSZNs26SmpurZZ59VaGioChcurHvuuUdHjx614yuB0Vq1aqU333xTr7322uUH/fykWbMsaw5dvGgppi1ebFxIALjStm1S27bS2bNS06aWIlrRorZf16pVS82aNVPTpk2NywgAAADghpjMZrPZXjvv2LGjjh49qsmTJ0uS+vXrp0qVKmn+/PlXfc5jjz2mEydOaOrUqbbHfH19Vbx4cdvPTz/9tObPn69p06apRIkSeuGFF3TmzBlt3rxZ3t7e182VlJSk4OBgJSYmKigo6CZeIZxCSoqlAcHChZbi2pw5UseORqcC4Mk2brQU+c+elZo0kRYtkvi8cQucQzg//kYAACA/8noOUcheAXbv3q3ff/9d69atU+PGjSVJX3zxhZo2baq9e/eqevXqV32un5+fypQpk+vvEhMT9dVXX+nbb79V27ZtJUnfffedwsPD9eeff6pDhw4F/2Lg3Pz9pdmzpR49pHnzLI0Ifv7ZsnYaADjamjWWYn5SkmUk2m+/UUQDAAAA3ITdpnauXbtWwcHBtiKaJDVp0kTBwcFas2bNNZ+7fPlylSpVStWqVVPfvn2VkJBg+93mzZuVnp6u9u3b2x4rW7asateufdX9pqamKikpKdsNrufkyZOaM2eOFixYkPOXfn6WNdPuv19KS5O6dbMU1wDAkVasyN6dc9EiKTg4x2bHjh1TcnKyAQEBAAAA3Ay7FdLi4+NVqlSpHI+XKlVK8fHxV31ex44dNX36dC1dulQff/yxNm7cqDvuuEOpqam2/fr6+qpYsWLZnle6dOmr7nfUqFG2ddqCg4MVHh5+E68MRvn999/VrVs3jRo1KvcNfHykGTOkBx+UMjKk7t0t3T0BwBH+/NMyEu3CBcvaaL/9lm1NtCsNGjRIwcHB+vLLLx0cEgAAAMDNuOFC2htvvJGjGcB/b9bOiiaTKcfzzWZzro9b9ejRQ3fddZdq166tu+++W7/99pv+/fff3Ech5XG/I0aMUGJiou125MiRG3jFcBbWzp1btmxRRkZG7hsVKiR9+63Uq5eUmSk99JA0fboDUwLwSAsXSp07W7oId+wozZ8vBQZedfN169YpKytLVatWdWBIAAAAADfrhtdIe+aZZ9SzZ89rblOpUiXt2LFDJ06cyPG7kydPqnTp0nk+XlhYmCpWrKh9+/ZJksqUKaO0tDSdPXs226i0hIQENWvWLNd9+Pn5yc/PL8/HhHOqXr26beG/HTt26JZbbsl9Q29vaepUywi1KVMsRbWMDOnRRx0bGIBnmDdPeuABKT1duvdey0jYa3zmHD16VEePHpWXl5ftCwIAAAAAruGGR6SFhoaqRo0a17z5+/uradOmSkxM1IYNG2zPXb9+vRITE69a8MrN6dOndeTIEYWFhUmSGjRoIB8fHy1evNi2TVxcnP75558b2i9cj5eXl23NvbVr1157Y29v6YsvpKeeksxm6bHHpEmT7B8SgGexrs2Ynm4ppv300zWLaJLls1CS6tatq8KFCzsiJQAAAIACYrc10qKionTnnXeqb9++WrdundatW6e+ffuqc+fO2Tp21qhRQ3PmzJEkJScna+jQoVq7dq0OHTqk5cuX6+6771ZoaKi6du0qSQoODtaTTz6pF154QUuWLNHWrVv1yCOPqE6dOrYunnBfTZs2lZSHQpokeXlJEydKzz5r+fnpp6X337djOgAe5bvvpJ49LSNeH3lE+v57y0jY61i3bp0kSwMeAAAAAK7FboU0SZo+fbrq1Kmj9u3bq3379qpbt66+/fbbbNvs3btXiYmJkiRvb2/9/fffuvfee1WtWjU9+uijqlatmtauXauiVyzYPGbMGHXp0kXdu3dX8+bNFRgYqPnz58vb29ueLwdOwFpIs16IXpfJJH3yifTyy5afX3pJGjHCMkoNAPJr/HjLtPGsLOmJJ6Rp0yxrNOYBhTQAAADAdZnMZs+rKCQlJdnW2goKCjI6Dm7AuXPnVLx4cZnNZp04cSLXzrBX9cEH0vDhlvsDBkiffmoZtQYAeWU2S++8I732muXnZ56xFOvz+F6Snp6uoKAgpaSkaM+ePdlGaMM1cA7h/PgbAQCA/MjrOcQNNxsAjBQSEqLZs2erTp06Klmy5I09edgwKTjYMsVzwgQpKcnSjCAPU7EAQGazNHSoNHq05efXX5feeMMy8jWP0tPT9eGHH2rr1q107AQAAABcEIU0uJwuXbrk/8lPPSUFBUm9e1vWNzp/XvrhB8nfv8DyAXBDGRmW948pUyw/jxkjDRp0w7sJDAzUM888U7DZAAAAADgM89rgeR58UJozx9JZb948qXNnKTnZ6FQAnFVqqtSjh6WI5uUlTZ2aryIaAAAAANdHIQ0uJyUlRR9//LEefPBBZWRk5G8nnTtLv/8uFSkiLVkitW0rnT5dsEEBuL4LF6S775Zmz5Z8faWff5Yeeyzfu5s+fbp2794tD1yeFAAAAHALFNLgcnx9ffX222/rhx9+0I4dO/K/o9tvl5YulYoXl9avl267TTp8uMByAnBxZ85I7dpJixdLhQtLCxZIXbvme3fHjx/XI488otq1a+v8+fMFGBQAAACAo1BIg8vx8vJS48aNJUmrVq26uZ01aiStXCmVLy/t2SM1ayb9/XcBpATg0mJjLcX1tWulYsUuj1y9CStXrpQk1atXj06CAAAAgIuikAaX1LJlS0mXL0xvSs2alovlWrWk48elFi2kv/66+f0CcE1//20pqu/eLZUrZ3k/+P/i/c2wvl+1aNHipvcFAAAAwBgU0uCSrIW0v/76q2DWGipf3jIy7bbbpMREqX17adasm98vANeyfLmlmH7s2OUie+3aBbJrCmkAAACA66OQBpfUqFEj+fn5KSEhQf/++2/B7LRYMemPP6QuXSxd+h54QJo4sWD2DcD5/fST1KGDpZjeooW0apUUHl4guz537pz+/v9p4xTSAAAAANdFIQ0uyc/PT02aNJFkGZVWYAICLF35nnpKMpulAQOk116z3AfgvsaNk3r0kNLSpG7dLEX1YsUKbPerV6+W2WxW1apVVbp06QLbLwAAAADHopAGl9WyZUv5+PgoLi6uYHfs7W0ZiTZypOXnt9+WnnxSSk8v2OMAMF5WljR8uPT885aC+cCB0o8/Sv7+BXoYpnUCAAAA7sFkLpAFplxLUlKSgoODlZiYSOc0F3bu3Dn5+fkpICDAfgeZPFl6+mnLxXabNpbRaiEh9jseAMdJSZGeeEKaMcPy87vvSi+9JJlMBX6oc+fOac2aNSpVqpQaNmxY4PuH43AO4fz4GwEAgPzI6zlEIQdmAgpUiCMKWv36Wbr29eghLVkiNW8uLVggVapk/2MDsJ+TJ6WuXaXVq6VChaQvv5QefdRuhwsJCVGnTp3stn8AAAAAjsHUTriFrKws++38rrssi46XLSvt2iU1bixt2GC/4wGwrz17pCZNLEW04GDp99/tWkQDAAAA4D4opMGl/fLLL4qOjlb//v3te6D69aX166V69aSEBKlVK2n2bPseE0DBW7ZMatpUOnhQioiQ1q61TNu2o8mTJ2vEiBG2rp0AAAAAXBeFNLg0b29vbdu2TX/++af9D1a+vLRypdSpk2Vtpfvvlz76iI6egKuYOlVq3146d85STFu/XoqKsvthp0yZovfee0+bN2+2+7EAAAAA2BeFNLi0li1bqlChQoqJidHBgwftf8CiRaV58yyd/cxm6cUXpf796egJOLOsLOnlly2NBTIypJ49paVLpZIl7X7oxMREbdy4UZLUxs4j3wAAAADYH4U0uLSiRYuqSZMmkqQlS5Y45qCFCkmffiqNGWPp7jd5stSunXTqlGOODyDvLlywNAsZNcry86uvStOnS/7+Djn8ihUrlJWVpapVqyo8PNwhxwQAAABgPxTS4PLatWsnSVq8eLHjDmoySYMGWUanFSkirVghNWok7djhuAwAru3wYUun3Z9/lnx8pGnTpLfekrwc99FnLfDfcccdDjsmAAAAAPuhkAaX17ZtW0mWC1a7du/Mzd13S+vWSZUrS4cOSc2aSXPmODYDgJz++ktq2FDavl0qVcoyldOAzpzWQhrTOgEAAAD3QCENLq9Ro0YqWrSozpw5o23btjk+QK1a0oYNls5/Fy5I3bpJb75pWZcJgONNmmT5/+OpU9Itt0gbN0q33ebwGCdOnNDOnTslSa1bt3b48QEAAAAUPAppcHk+Pj7q3r27HnnkEfn4+BgTonhx6fffpeees/z8v/9Z1mW6cMGYPIAnSkuzNP94+unLTQVWrpQqVDAkzv79+xUaGqr69esrNDTUkAwAAAAACpbJbDabjQ7haElJSQoODlZiYqKCgoKMjgN38+WX0oABlk6e9epJs2dLkZFGpwLcW0KCdP/9lsKZySS9+640fLjlvoGysrJ08uRJlS5d2tAcKDicQzg//kYAACA/8noOwYg0oKD16WNZj6lUKcv6TA0aSAsXGp0KcF9r11qmcK5cKQUFSfPnSy+9ZHgRTZK8vLwoogEAAABuhEIa3IbZbNa2bdu0f/9+o6NY1mPatElq3Fg6d0666y7LdM/MTKOTAe7DbJY+/VRq2VI6dkyqUUNav97y/zeDpaSkyAMHfAMAAABuj0Ia3MaLL76o6OhojRs3zugoFuHh0ooVlmmekqUBwV13SadPG5sLcAcXLkgPP2xZlzAjQ3rgAUvTjxo1jE4mSfr4449Vrlw5jR8/3ugoAAAAAAoQhTS4jRYtWkiSfv31V+cZCeLnJ40fL33zjRQQIC1aZJmCtmmT0ckA17V3r2W054wZUqFC0pgx0syZUtGiRiezWbhwoeLi4oxrgAIAAADALiikwW20adNGfn5+iomJ0Z49e4yOk12vXtK6dVLlylJsrNS8uTR5smVqGoC8+/lnqWFDaedOKSxMWrZMGjTIKdZDszp9+rTWrVsnSerYsaPBaQAAAAAUJAppcBtFihTR7bffLklasGCBsWFyU7euZSTaPfdIaWnSU09JDz4oJSYanQxwfikp0rPPWqZwJidLrVpJW7ZY1iN0Mn/88YeysrJUp04dhYeHGx0HAAAAQAGikAa3ctf/LzLulIU0SQoJkebMkd57T/L2tkxHu+UWaeNGo5MBzmvvXqlJE+mzzyw/v/ii9OefUpkyxua6ioX/36W3U6dOBicBAAAAUNAopMGtWAtpK1eu1Llz54wNczVeXtLw4dLKlVLFitLBg5apnqNHS1lZRqcDnIfZLH39tdSggbR9uxQaKi1cKH3wgWVtNCeUmZmp33//XRKFNAAAAMAdUUiDW4mMjFRUVJQyMzP1xx9/GB3n2po2lbZtk+67T0pPl154Qbr7bunUKaOTAcY7f17q3Vt67DFLh8477rAU05x8zbHVq1fr1KlTKlasmJo2bWp0HAAAAAAFzDm/0gduwvvvv6/AwEBbF0+nFhIi/fSTNGmSNHiwZbRNvXrSd99JrVsbnQ4wxpYtUo8e0v79linQI0dKL71kue/kypYtq6FDh8rHx4eOnQAAAIAbMpnNntc2MCkpScHBwUpMTFRQUJDRcQCLHTssxYM9eywdCAcPlt55R/L3NzoZ4BiZmZZpm//7n2WUZoUK0vffW6Y+A06Ccwjnx98IAADkR17PIZjaCTgLa1fPvn0ta0ONHi01bCht3Wp0MsD+DhyQWraUXn7ZUkTr1s3yb58iGoD/a+/u42o+/z+Av073SUXSHbmpJpLb3OVmGMI0MeZ2fdncjDHih7mdzGhiZu5pjBE2YTNMms1EYyvKlxJSyWjuumeVun5/fL6ONXfnHJ3zOZ1ez8fj89i6znXOeX+uT87nOu+uGyIiIiI9wkQaGaTLly9jypQpmDVrltyhqMfKCti4EfjhB8DREbhwAWjbFggJkUbrEBkaIYCwMGlKc0wMYG0NbNkCREQAdnZyR6eW77//HpGRkSgqKpI7FCIiIiIi0hIm0sgg3bhxAytWrMCGDRtQXFwsdzjq8/cH/vtfoH9/aXTO7NlA587SDp9EhiIzE+jbFxg7VtpQoEsX6fd+xAhpenMFM3PmTPTq1Qt79uyROxQiIiIiItISJtLIIHXs2BEODg7IysrCL7/8Inc4mqlZE9izRxqdY20NnDwpTf9cuxYoLZU7OiLNCQHs2gU0aQIcOACYmQGffQYcPQrUrSt3dBpJSkrCxYsXYWZmhj59+sgdDhERERERaQkTaWSQjI2N0b9/fwBARESEzNG8BIVCGp1z7py0flRBATBhgrSj5+XLckdHpL4//wQCAoChQ4E7d6QpnXFxwNSpgFHFvSV9++23AIBu3bpxcXMiIiIiIgNWcb+1EL3AwIEDAQD79u2rmNM7/6lePeCXX4CVK6V11I4fl0anLV0KPHwod3REL/ZoLTQvL2kNQFNTYMEC4PffAW9vuaN7KUIIhIeHAwCGDh0qczRERERERKRNTKSRwerSpQscHBxw584dHDlyRO5wXp6REfDBB8D580CPHsDffwMzZgC+vtKINSJ9dfUq0L27tBZabi7Qpo20I+dHH0nTOiu42NhYXL58GZaWlujXr5/c4RARERERkRYxkUYGy8TERDk6ZNu2bTJHU47q1QMiI4HNm4Fq1YDYWMDHB5gzB7h/X+7oiB4rLgaWLZPWQvv5Z8DSEli+XNqds3FjuaMrN49GowUEBMDa2lrmaIiIiIiISJuYSCODFhgYCCcnJ3h4eMgdSvlSKIB33gESE4F+/aTpnYsXS8mJH36QOzoiafpxixbA9OlSgrdrV2lHzilTAGNjuaMrV+f+NyJ0+PDhMkdCRERERETaptVEWlZWFgIDA2FrawtbW1sEBgYiOzv7uc9RKBRPPZYuXaqs06VLlyceHzJkiDZPhSqoli1bIiMjA5988oncoWiHszOwd690uLoCaWlA377SYu5paXJHR5XRrVvSBhmdOwMXLgD29sBXXwE//QS4u8sdnVYcPXoUZ86cQc+ePeUOhYiIiIiItEyribRhw4YhPj4ehw8fxuHDhxEfH4/AwMDnPufmzZtljs2bN0OhUGDAgAFl6o0ZM6ZMvQ0bNmjzVKiCUigUMDExkTsM7VIogP79gaQk4MMPARMTYP9+aVH3kBCgqEjuCKkyKCkB1q0DPD2Br7+Wfi/few9ITgZGjqzQO3K+iEKhQIsWLWBqaip3KEREREREpGVa+2aTlJSEw4cP48svv4Svry98fX0RFhaGAwcOIDk5+ZnPc3JyKnN8//336Nq1K9zc3MrUq1KlSpl6tra22joVMgAlJSWIiorCjRs35A5Fe6ysgE8/BRISpNFADx4As2dLOyL+8IO0ayKRNvz6K9C6NfD++0B2NtCyJXDqFLB+PWBnJ3d0WnP//n3k5eXJHQYREREREemQ1hJpv/32G2xtbdG2bVtlWbt27WBra4uYmBiVXuOvv/7CwYMHMWrUqCceCw8Ph729PRo3boxp06Y998tMYWEhcnNzyxxUuQwdOhR+fn4ICwuTOxTt8/ICfvkF2L4dcHQELl+Wpnv26CEl2YjKy5UrwJtvAl26SLtw2tgAq1YBv/8u7cxp4LZu3QpnZ2csWrRI7lCIiIiIiEhHtDbnLTMzEw4ODk+UOzg4IDMzU6XX2Lp1K6ytrfHmm2+WKR8+fDjq168PJycnnD9/HrNmzUJCQgKioqKe+johISFYsGCB+idBBqNfv37YvXs3wsLCMGfOnMox3XP4cOCNN6TpnZ9/Dhw9Ki3+PmoUsHAh4OQkd5R64/bt27h69Sry8/Nx//59FBUVwczMDBYWFqhatSoaN24MGxsbucPUH9nZwCefACtXSjtzGhlJ0zgXLABq1pQ7Op0QQmDDhg0oKChA1apV5Q6HiIiIiIh0RO0RacHBwc/cEODRERsbC0BaN+bfhBBPLX+azZs3Y/jw4bCwsChTPmbMGHTv3h3e3t4YMmQIIiIi8NNPP+HMmTNPfZ1Zs2YhJydHeWRkZKh51lTRDRgwAPb29vjzzz9x8OBBucPRHRsbKZF28SIweLA0vfPLL4FXXpF2+SwokDtCnRFCICUlBeHh4ZgxYwZu376tfGzdunVo164dunfvjr59+2LgwIHo27cv/Pz80L59e5w4cUJZNyYmBh988AE2b96My5cvQ1SmKbNFRcDq1YCHB/DZZ1ISrVcv4Nw5YO3aSpNEA4DY2FgkJCTA3Nz8hWt/EhERERGR4VB7WM7EiRNfuENmvXr1cO7cOfz1119PPHb79m04Ojq+8H2io6ORnJyMb7755oV1W7ZsCVNTU1y+fBktW7Z84nFzc3OYm5u/8HXIcJmbm+Pdd99FaGgo1q9fj4CAALlD0q169YBdu4BJk4ApU6Spd3PmSCOK5s4FxowBDPDfSG5uLg4ePIioqCj8/PPPSE9PVz7WrVs35S6L9evXR506dWBjY4MqVarA1NQURUVFKCwsRE5ODmrVqqV83rFjx7B69Wrlz46OjujcuTP8/f3Rp08f2BnimmAlJUB4ODB//uPdYL28pGRar16yhiaXjRs3AgDeeustw7zmRERERET0VAqhpeEUSUlJ8PLywunTp9Hmf2vlnD59Gu3atcPFixfh6en53OePHDkS58+fV45ue57z58+jSZMm+PXXX/Hqq6++sH5ubi5sbW2Rk5PD6VqVSEpKCjw8PKBQKHDlypUnNrCoNEpLpaTa3LlAaqpUVrcuEBwMvP22tOunAYiIiMDbb7+NwsJCZZmpqSlatWqFFi1aYOzYsWjWrJnar3v8+HH88MMPOH36NE6fPo2if+yKamxsjLi4OI1eVy8JAezbJ/2uJCVJZU5OwEcfSclXA/ldUVdubi5cXFxQUFCA48ePo1OnTnKHRDrEPoT+4zUiIiIiTajah9DaZgONGjVCr169MGbMGJw6dQqnTp3CmDFj4O/vXyaJ1rBhQ+zbt++J4Hfv3o3Ro0c/8bopKSn4+OOPERsbi7S0NBw6dAhvvfUWWrRogQ4dOmjrdMgAuLu7w8/PT7m2UaVlZAQMGyZN91y3DnB2BtLTgXfeAZo0Ab79VhqBVMEkJCTg3Llzyp9btGiBwsJCNGzYENOnT8fhw4eRlZWFmJgYrFmzRuNk16uvvoqlS5fi+PHjyMnJwfHjxzF37lw0adIE1atXh7e3t7Lu7t27cfz48Yo3/VMI4McfpZ04BwyQkmjVqwNLlgApKcD48ZU2iQZIyw4UFBSgYcOG6Nixo9zhEBERERGRDmktkQZIO2s2adIEfn5+8PPzQ9OmTbFt27YydZKTk5GTk1OmbNeuXRBCYOjQoU+8ppmZGY4ePYqePXvC09MTkyZNgp+fH3766ScYGxtr83TIAIwfPx4AEB8fL28g+sDMDBg3Ttp5celSwM7u8VpqjRsDX38trYGlx0pLS/Hdd9+hQ4cOaN68OebNm6d8zN3dHcnJyUhMTERoaCh69uwJKyurcn1/CwsLdOrUCQsXLsS5c+eQnJys/Bx6+PAhJk+ejM6dO6NVq1bYsWMHivW8PVFaCuzdC7RqBbz+OhAXB1hZAfPmSaMXZ8wAqlSRO0pZCSGwdu1aAEBQUJDKa34SEREREZFh0NrUTn3GIf+VV0lJCWJiYtCxY0d+Af63nBxgxQrpyM6WyurVA2bOBEaO1Ks11IqKihAeHo7Q0FBcvHgRgDRtc+DAgdi+fTuMjLT6NwKVZGdnY/r06di+fTv+/vtvAICrqyumTJmCcePGwdLSUuYI/+HhQ+Cbb6QNKBITpbIqVaRE64cfAk/Zgbky+/PPP7FhwwbMmjVLv64j6QT7EPqP14iIiIg0oWofgok0drCIysrNlaZ8Ll8O3Lollbm4AEFB0rpY1arJGR0iIiIwbdo05cYBNjY2eP/99zFp0iQ4OzvLGtvT3LlzB+vWrcPq1atx63/t6ezsjC+//BKvv/66vMEVFABbt0qbBly9KpXZ2EibUkyeDNjbyxsfkR5iH0L/8RoRERGRJmRfI41I3+Xk5CDp0QLq9JiNjTQKKTVV2tWzdm3gxg1pWl/t2sDEicDly7KFl5mZifT0dDg5OSE0NBQZGRkICQnRyyQaANjb22PevHlIT0/Hxo0bUadOHdy8eVPeeDMypGtcuzYwYYKURLO3BxYtAq5dAxYuZBLtKfR+ai4REREREWkdR6TxL5WV0k8//YQ333wTHh4eiIuL4zTP5ykqAsLDgc8/B/77X6lMoQD69AGmTAG6dpV+1pJHO2M+2hmxqKgIGzZswKhRo1ClAq7XVVRUhKNHj6J3797KspUrV6JJkybo2rWrdt/89Glp6u7u3Y83lHB3l0afvfuutB4aPVPfvn1RXFyM0NBQNGnSRO5wSCbsQ+g/XiMiIiLSBKd2Pgc7WHT37l3UqVMH9+/fx6FDh8okNegZhAB+/llKxBw48Ljc01Oa8jliRLmOYvrrr78wc+ZMbNmyBR4eHjh//jzM9WidtvJy+fJlNG7cGMXFxQgICEBoaCgaNGhQfm+Qmwvs2AFs3AicPfu4vEsXKRHapw/AjVpe6I8//kCbNm1gZGSEpKSk8r1GVKGwD6H/eI2IiIhIE5zaSfQcNWrUUO7gOXfuXFTCfLL6FAqgWzfghx+A5GRpSqCVlfT/06YBtWoBQ4dKybbSUo3fpri4GMuXL0eDBg2wZcsWAED79u3x4MGDcjoR/WJnZ4f33nsPxsbG+P777+Ht7Y158+a93PkKIY0+GzUKcHYGxo+XkmhmZlLC8+xZ4JdfgL59mURTUXBwMADg7bffZhKNiIiIiKgS44g0/qWy0rp9+zbc3NyQn5+PPXv24M0335Q7pIonLw/YuRMICwNiYx+Xu7sDw4dLhxpJh+PHj2PcuHHKtet8fHywatUq+Pr6lnfkeicpKQlTp07F4cOHAQBubm5Ys2YNevXqpfqLXLsmXY/t24Hz5x+XN2oEjB0LBAYCNWqUc+SG79SpU/D19YWxsTEuXrwIDw8PuUMiGbEPof94jYiIiEgTnNr5HOxg0SPz5s3DJ598gsaNGyMhIQHGHJ2juTNnpIRaeLiUYHukVStg2DBgyBBpdNQzxMbGonXr1gCkBfpDQkLw7rvvwsio8gycFUJg3759mDx5Mq5fvw4rKyukpaXB/nlTZu/eldY827EDiI5+XG5hAQwaJCXQ2rfX6jp2hq5Xr16IjIzEyJEj8dVXX8kdDsmMfQj9x2tEREREmmAi7TnYwaJHsrOzUb9+fWRnZ2Pbtm14++235Q6p4isoAL77TkrsREY+XtTeyAjo3BkICJCOevXKPE0IgYCAADg5OWHJkiWoXr26zkPXF3l5eViwYAFq1aqFKVOmKMuFENLGGJmZwP79UjtHRQEPH0oVFAqpjYcPBwYOBKpVkyV+QxIVFQU/Pz+YmJjg4sWLcHd3lzskkhn7EPqP14iIiIg0oWofwkSHMRHpnWrVqmHGjBmYN28e0tPT5Q7HMFhZPZ7Wefs28O23UlItJkZal+uXX4CgIBQ3boxIc3N0XLoU1bp2hUKhwN69e2Fiwo8la2trLFu27HGBEPh92zacCQ7GCFtbWCYkSOugPdKixeNRf7Vr6z5gA7Zu3ToAwIQJE5hEIyIiIiIijkjjXyrpwYMHSElJgbe3t9yhGLbUVOC77yC+/x7i+HEY/fOjx8kJ6N4d6NFD+q+Li3xx6os7d4CjR4GoKIgjR6DIyCjzsGjdGor+/YF+/aQ10EgriouLsWHDBgwbNgx2dnZyh0N6gH0I/cdrRERERJrg1M7nYAeLSB7p6el47733EBsZiT4A/mNriy6FhTD++++yFb28gNdeAzp0kNb3cnU1/DW+bt4ETp6UjuPHpZ01//HxLMzMcMbaGl/evYv9AJxatsSmTZvQvHlz2UImqozYh9B/vEZERESkCVX7EJVnFW8iFZw/fx7BwcGohPllrSopKcHKlSvRuHFjREZGIt/cHA0XL8art2/DOCtLGnk1c6a0MYFCASQmAqtXA0OHAnXrStMV33oLWL5cmhp6757cp/RycnOljQFWrZJ20nRzk0bhvfUWsGKFtHGDEECTJsDUqcDhw1BkZaHl7dtot2ULHlSvjjNnzqB169aYO3cu/v53IpJe2vfff4/CwkK5wyAiIiIiIj3DEWn8SyX9z507d+Dq6oq///4bu3btwuDBg+UOyWCEhIRg9uzZAIBOnTohLCwMnp6eT6987x7w889SoikmRhqZ9WjDgn9ydQWaNZOORo2AV16RDn3apCAvD7h8Gbh0STrOnQPi44GUlCfrKhRA06aPR+G99tozdznNzMzEBx98gIiICABAREQEBgwYoMUTqVyOHj2K7t27w9vbG7///jssLS3lDon0CPsQ+o/XiIiIiDTBqZ3PwQ4WPUtwcDAWLFgAOzs7XLhwAU5OTnKHZBCysrLg6+uLoKAgjB07FkZGagyGLSgAYmOlpNrp00BCApCW9uz6NWpICbV69aRRXi4uQK1a0n8dHaWdLKtVA8zNNT+hoiIgOxvIygLu3gX+/LPscf06cOWKNF3zWVxdgebNgZYtpcRZu3aAmp9He/fuxYEDB7Bp0yZpN0/8Y2dP0khBQQGaNGmC1NRUvP/++1izZo3cIZGeYR9C//EaERERkSaYSHsOdrDoWYqKitC2bVvEx8cjICAA+/btY1JCA6dOncKOHTvwxRdfKNuvpKQExsbG5fMG2dnS6K6EBOm/ly5JI7+el7j6N3NzKaFmawuYmQGmpmWPkhIpYVZUBBQXS//Nz5fe+/591d/HwQFo0EA6GjWSdths3lxK+JWze/fuoVevXpg/fz769OlT7q9fGUyaNAmrVq1CnTp1cP78eVhbW8sdEukZ9iH0H68RERERaYKJtOdgB4ueJyEhAa1bt0ZxcTE2bdqEd999V+6QKoy8vDzMmTMHq1evhhAC4eHhGDZsmO4CyM+Xpk1evgxkZAA3bkgjxG7ckI6//pLWJysvNjaAnZ002q12bWnk26PD3V0aGVetWvm93wt8+OGHCA0NBQAMHToUK1asgIODg87ev6Lbv38/AgICAACHDx9Gz549ZY6I9BH7EPqP14iIiIg0wUTac7CDRS/yaE0vCwsLnDp1Cs2aNZM7JL136NAhjB8/HteuXQMAjBgxAp999hlqaGHk1UspKZHWLsvJkUaX5eY+HnX2z8PERBqZZmb2+LC0lNZgezSSrbxG2JWTgoICBAcHY/ny5SgtLYWdnR0+//xzBAYGcmTlC6Snp6NFixbIysrClClTsHz5crlDIj3FPoT+4zUiIiIiTTCR9hzsYNGLlJaWwt/fHz/++CPGjBmDjRs3yh2S3rp16xaCgoKwc+dOAEC9evWwceNG9OjRQ+bIKq/Y2FiMHj0aCQkJAAA/Pz+sX78e9evXlzky/eXv74+DBw+iTZs2iI6OhpmZmdwhkZ5iH0L/8RoRERGRJlTtQ6ix4jdR5WFkZITt27dj2bJlWLdundzh6LX+/ftj586dMDIywtSpU3H+/Hkm0WTWqlUr/PHHHwgJCYG5uTmOHDmCkJAQucPSa2vXrsXrr7+OXbt2MYlGRERERETPxBFp/EslqejRPxVOkSvr+PHjmDRpEsLCwtC6dWu5w6F/uXTpEmbPno0NGzYop9kWFRUxWUSkIfYh9B+vEREREWmCI9KIylFRURECAwMr/aierKwsTJgwAUuXLlWWvfrqqzhz5gyTaHqqQYMGiIiIUCbRhBAICAjAsGHDcOPGDZmjk9e2bdvw7bffyh0GERERERFVICZyB0BUERw4cADh4eEAgCpVqiAoKEjegHSspKQEmzdvxuzZs3Hnzh1YWVlh1KhRsLOzAyBNhaWK4dy5c4iMjIQQAj/88AM++ugjTJ48udKNUAsPD8fIkSNRWloKe3t7vPbaa3KHREREREREFQC//RKp4M0338ScOXMAAFOmTEFoaKjMEemGEAIHDx5Es2bNMHbsWNy5cwdeXl44cOCAMolGFUuzZs3wxx9/oF27dsjPz8eMGTPQsGFD7Ny5E6WlpXKHpxPh4eH4z3/+g9LSUowZMwZdunSROyQiIiIiIqogmEgjUtHChQsxf/58AMCHH36I2bNnG3Ti4eLFi3jttdfg7++PCxcuoHr16li+fDni4+OZeKjgfHx8cPLkSXz11VdwcnJCamoqhg0bhjZt2iAjI0Pu8LRGCIFly5YhMDBQmURbv349R1QSEREREZHK+O2BSEUKhQLBwcFYvHgxACAkJAQDBw5Efn6+zJFph6mpKU6ePAlzc3PMmDEDKSkpmDJlCkxNTeUOjcqBkZERRo4ciStXrmDhwoWwtrZGbm4unJyc5A5NK4qLizF+/HhMnz4dQghMnDiRSTQiIiIiIlIbv0EQqWnWrFn4+uuvYWZmhiNHjiAtLU3ukMrFmTNnykxZdXd3x5YtW5CcnIwlS5agevXqMkZH2mJlZYW5c+ciJSUFu3btUiZKCwsLMXToUBw7dgyGsLnz4cOHsWHDBigUCnz++edYuXIlk2hERERERKQ2hTCEb0hq4rboVB5iYmJw7949+Pv7K8uEEFAoFDJGpR4hBKKiorBixQr8+OOPAICEhAQ0bdpU5shIbuvXr8f48eMBAB07dsS0adPg7+8PY2NjmSPT3AcffIDu3bsjICBA7lCoAmMfQv/xGhEREZEmVO1D8M/xRBpq3759mSTawYMH0alTJ8THx8sXlIoKCgqwfv16NG7cGD179sSPP/4IIyMjDB8+HFWrVpU7PNIDvXv3xvvvvw8zMzOcOHEC/fr1g4eHB5YtW4Z79+7JHd4LpaSkYNCgQcjMzFSWrVq1ikk0IiIiIiJ6KUykEZUDIQTmzJmDkydPwsfHB2PHjkV6errcYT1VXFwcnJ2dMX78eCQlJaFq1aqYNGkSkpOTsX37dri5uckdIumBunXrYs2aNUhNTcWMGTNgZ2eHtLQ0TJ8+HXXq1EF2drbcIT7VrVu3MGXKFDRu3Bi7d+/G9OnT5Q6JiDTUv39/VK9eHQMHDpQ7FCIiIiIlJtKIyoFCocCBAwcwaNAglJaWIiwsDB4eHhg9ejQSEhJki0sIgbi4OOW0TQDw9vaGqakp3N3d8fnnn+P69ev44osv4OHhIVucpL9cXFywZMkSZGRkICwsDE2bNkW7du1QrVo1ZZ2wsDDExMSgpKREtjgvXbqEyZMno379+lixYgUKCwvRvXt3zJs3T7aYiOjlTJo0CV9//bXcYRARERGVwTXSuHYGlbMTJ04gODgYR48eVZb93//9H5YtW6aT98/OzkZ0dDSioqLw3XffISMjA25ubrhy5Ypy/barV6+iXr16XGyd1CaEQHZ2tnLziZs3b6J27dooLS2Fg4MD/P390adPH3Tq1Ak1a9bUSUyjRo3C5s2blT+3bt0aixYtQvfu3SvUmoVUMbAPoVvHjh3D6tWrERERofJzeI2IiIhIE1wjjUgmHTt2xE8//YQTJ05g0KBBMDExQZcuXZSPx8XFYfbs2Th48GC5rjW1atUqtGzZEnZ2dujbty9WrVqFjIwMVKlSBS1atEB+fr6yrpubG5NopBGFQlFmB9e8vDwMHjwYtra2uHXrFjZv3owBAwbAwcEBXl5e2LZtW7m9d05ODo4ePYqPPvoIOTk5ynIHBwcoFAr4+/vj8OHDOH36NHr06MEkGpEWHT9+HG+88QZcXFygUCjw3XffPVFn7dq1qF+/PiwsLODj44Po6GjdB0pERERUzkzkDoDIUHXo0AEdOnRAZmZmmZE5Bw8eREhIiPJnJycnNGzYEB4eHnBwcMCECRPg4uICADh37hwSExORl5eH3Nxc5OTk4MaNG0hPT0daWhp+++032NvbA5Cmtp09exYA4OnpiS5dusDf3x/dunWDpaWlDs+cKpMGDRpgx44dKCoqQnR0NPbv34+jR4/iwoULSEpKQmlpqbJudHQ03nnnHdSpUweurq5wdXWFnZ0dqlatCisrK3Tt2lX5u5+QkIA9e/bg5s2buHbtGi5cuIA///xT+Vrt2rXD66+/DgCYOHEixo4di/r16+v25IkqsYKCAjRr1gzvvPMOBgwY8MTj33zzDYKCgrB27Vp06NABGzZsQO/evZGYmIg6deoAAHx8fFBYWPjEc48cOaL8LCAiIiLSN0ykEWmZk5NTmZ/btWuHd999FydOnMClS5eQmZmJzMxMHDt2DADwn//8R1l3586d+PTTT5/52unp6cpE2rBhw9CxY0d07tz5ifck0jYzMzN069YN3bp1AwDcvXsXJ06cQLt27ZR1EhISkJKSgpSUlKe+RkREhPILeWJiIhYuXPhEHVdXV7z66quoUaOGsqxWrVrleSpEpILevXujd+/ez3x8+fLlGDVqFEaPHg0AWLFiBSIjI7Fu3TrlH5Pi4uLKJZbCwsIyCbnc3NxyeV0iIiKip2EijUjH/Pz84OfnB0Caqnbp0iVcvHgRqampuH37NpydnZV169evjy5duqBq1aqwtbWFjY0NnJycULduXdStWxeenp7Kur6+vvD19dX5+RA9TY0aNRAQEFCmbNiwYfD29kZGRgauX7+O69evIycnB/n5+cjPz4etra2yrre3N8aPHw9nZ2e4uLigUaNG8PLyKrPJARHpp6KiIsTFxWHmzJllyv38/BATE1Pu7xcSEoIFCxaU++sSERERPQ03G+AitERERKQi9iGepFAosG/fPvTr1w8AcOPGDdSqVQsnT55E+/btlfUWL16MrVu3Ijk5WaXX7dmzJ86cOYOCggLY2dlh3759aN269RP1njYizdXVldeIiIiI1KJqP48j0oiIiIio3P17ww8hhFqbgERGRqpUz9zcHObm5mrFRkRERKQpbttHREREROXG3t4exsbGyMzMLFN+69YtODo6yhQVERERUflgIo2IiIiIyo2ZmRl8fHwQFRVVpjwqKqrMVE8iIiKiiohTO4mIiIhILfn5+bhy5Yry59TUVMTHx8POzg516tTB1KlTERgYiFatWsHX1xcbN27EtWvXMG7cOBmjJiIiInp5TKQRERERkVpiY2PRtWtX5c9Tp04FAIwYMQJbtmzB4MGDcffuXXz88ce4efMmvL29cejQIdStW1eukImIiIjKBXft5G5OREREpCL2IfQfrxERERFpQtU+BNdIIyIiIiIiIiIiUoFWE2mLFi1C+/btUaVKFVSrVk2l5wghEBwcDBcXF1haWqJLly64cOFCmTqFhYX44IMPYG9vDysrK/Tt2xfXr1/XwhkQERERERERERFJtJpIKyoqwltvvYXx48er/JzQ0FAsX74cq1evxh9//AEnJyf06NEDeXl5yjpBQUHYt28fdu3ahRMnTiA/Px/+/v4oKSnRxmkQERERERERERHpZo20LVu2ICgoCNnZ2c+tJ4SAi4sLgoKC8OGHHwKQRp85OjpiyZIleO+995CTk4OaNWti27ZtGDx4MADgxo0bcHV1xaFDh9CzZ88XxsO1M4iIiEgT7EPoP14jIiIi0kSFXCMtNTUVmZmZ8PPzU5aZm5ujc+fOiImJAQDExcWhuLi4TB0XFxd4e3sr6/xbYWEhcnNzyxxERERERERERETq0KtEWmZmJgDA0dGxTLmjo6PysczMTJiZmaF69erPrPNvISEhsLW1VR6urq5aiJ6IiIiIiIiIiAyZ2om04OBgKBSK5x6xsbEvFZRCoSjzsxDiibJ/e16dWbNmIScnR3lkZGS8VHxERERERERERFT5mKj7hIkTJ2LIkCHPrVOvXj2NgnFycgIgjTpzdnZWlt+6dUs5Ss3JyQlFRUXIysoqMyrt1q1baN++/VNf19zcHObm5hrFREREREREREREBGiQSLO3t4e9vb02YkH9+vXh5OSEqKgotGjRAoC08+evv/6KJUuWAAB8fHxgamqKqKgoDBo0CABw8+ZNnD9/HqGhoVqJi4iIiIiIiIiISO1EmjquXbuGe/fu4dq1aygpKUF8fDwAwMPDA1WrVgUANGzYECEhIejfvz8UCgWCgoKwePFivPLKK3jllVewePFiVKlSBcOGDQMA2NraYtSoUfi///s/1KhRA3Z2dpg2bRqaNGmC7t27a/N0iIiIiIiIiIioEtNqIu2jjz7C1q1blT8/GmX2yy+/oEuXLgCA5ORk5OTkKOvMmDEDDx48wPvvv4+srCy0bdsWR44cgbW1tbLO559/DhMTEwwaNAgPHjxAt27dsGXLFhgbG2vzdIiIiIiIiIiIqBJTCCGE3EHoWm5uLmxtbZGTkwMbGxu5wyEiIqIKgn0I/bVmzRqsWbMGJSUluHTpEq8RERERqUXVfl6lTKTl5OSgWrVqyMjIYAeLiIiIVJabmwtXV1dkZ2fD1tZW7nDoKdjPIyIiIk2o2s/T6tROfZWXlwcAcHV1lTkSIiIiqojy8vKYSNNT7OcRERHRy3hRP69SjkgrLS3FjRs3YG1tDYVCUe6v/yiLyb+EyoPtLz9eA3mx/eXF9peXtttfCIG8vDy4uLjAyMio3F+fXp62+3kVHT+j5MdrIC+2v7zY/vJi+z+fqv28SjkizcjICLVr19b6+9jY2PCXU0Zsf/nxGsiL7S8vtr+8tNn+HImm33TVz6vo+BklP14DebH95cX2lxfb/9lU6efxT6lEREREREREREQqYCKNiIiIiIiIiIhIBUykaYG5uTnmz58Pc3NzuUOplNj+8uM1kBfbX15sf3mx/Ymej/9G5MdrIC+2v7zY/vJi+5ePSrnZABERERERERERkbo4Io2IiIiIiIiIiEgFTKQRERERERERERGpgIk0IiIiIiIiIiIiFTCRRkREREREREREpAIm0jS0du1a1K9fHxYWFvDx8UF0dPRz6//666/w8fGBhYUF3NzcsH79eh1FapjUaf+9e/eiR48eqFmzJmxsbODr64vIyEgdRmt41P39f+TkyZMwMTFB8+bNtRuggVO3/QsLCzFnzhzUrVsX5ubmcHd3x+bNm3UUreFRt/3Dw8PRrFkzVKlSBc7OznjnnXdw9+5dHUVrWI4fP4433ngDLi4uUCgU+O677174HN5/qTJQ93NpzZo1aNSoESwtLeHp6Ymvv/76iTrZ2dmYMGECnJ2dYWFhgUaNGuHQoUPaOoUKTRvtv2LFCnh6esLS0hKurq6YMmUK/v77b22dQoWlrfvCnj174OXlBXNzc3h5eWHfvn1aiL7i00b7h4WFoVOnTqhevTqqV6+O7t274/fff9fSGVRs2u4X7dq1CwqFAv369Su/oA2FILXt2rVLmJqairCwMJGYmCgmT54srKysRHp6+lPrX716VVSpUkVMnjxZJCYmirCwMGFqaioiIiJ0HLlhULf9J0+eLJYsWSJ+//13cenSJTFr1ixhamoqzpw5o+PIDYO67f9Idna2cHNzE35+fqJZs2a6CdYAadL+ffv2FW3bthVRUVEiNTVVnD59Wpw8eVKHURsOdds/OjpaGBkZiS+++EJcvXpVREdHi8aNG4t+/frpOHLDcOjQITFnzhyxZ88eAUDs27fvufV5/6XKQN3PpbVr1wpra2uxa9cukZKSInbu3CmqVq0q9u/fr6xTWFgoWrVqJV5//XVx4sQJkZaWJqKjo0V8fLyuTqvC0Eb7b9++XZibm4vw8HCRmpoqIiMjhbOzswgKCtLVaVUY2rgvxMTECGNjY7F48WKRlJQkFi9eLExMTMSpU6e0fDYVjzbaf9iwYWLNmjXi7NmzIikpSbzzzjvC1tZWXL9+XctnU/Fos1+UlpYmatWqJTp16iQCAgK0cwIVGBNpGmjTpo0YN25cmbKGDRuKmTNnPrX+jBkzRMOGDcuUvffee6Jdu3Zai9GQqdv+T+Pl5SUWLFhQ3qFVCpq2/+DBg8XcuXPF/PnzmUh7Ceq2/48//ihsbW3F3bt3dRGewVO3/ZcuXSrc3NzKlK1cuVLUrl1bazFWFqp0GHn/pcpA3c8lX19fMW3atDJlkydPFh06dFD+vG7dOuHm5iaKiorKP2ADo432nzBhgnjttdfK1Jk6daro2LFjOUVtmMrrvjBo0CDRq1evMnV69uwphgwZUm6xGiJt3ZcfPnworK2txdatW8sjTINVnu3/8OFD0aFDB/Hll1+KESNGMJH2FJzaqaaioiLExcXBz8+vTLmfnx9iYmKe+pzffvvtifo9e/ZEbGwsiouLtRarIdKk/f+ttLQUeXl5sLOz00aIBk3T9v/qq6+QkpKC+fPnaztEg6ZJ++/fvx+tWrVCaGgoatWqhQYNGmDatGl48OCBLkI2KJq0f/v27XH9+nUcOnQIQgj89ddfiIiIQJ8+fXQRcqXH+y8ZOk0+lwoLC2FhYVGmzNLSEr///rvy38X+/fvh6+uLCRMmwNHREd7e3li8eDFKSkq0cyIVlLbav2PHjoiLi1NOZ7t69SoOHTrEe0c5UOW+8Kw6qn7XoGfT5L58//59FBcX87tbOVC1/T/++GPUrFkTo0aN0nWIFQYTaWq6c+cOSkpK4OjoWKbc0dERmZmZT31OZmbmU+s/fPgQd+7c0VqshkiT9v+3zz77DAUFBRg0aJA2QjRomrT/5cuXMXPmTISHh8PExEQXYRosTdr/6tWrOHHiBM6fP499+/ZhxYoViIiIwIQJE3QRskHRpP3bt2+P8PBwDB48GGZmZnByckK1atWwatUqXYRc6fH+S4ZOk8+lnj174ssvv0RcXByEEIiNjcXmzZtRXFys/Hdx9epVREREoKSkBIcOHcLcuXPx2WefYdGiRVo/p4pEW+0/ZMgQLFy4EB07doSpqSnc3d3RtWtXzJw5U+vnZOhUuS88q46q3zXo2TS5L8+cORO1atVC9+7ddRGiQVOl/U+ePIlNmzYhLCxMjhArDCbSNKRQKMr8LIR4ouxF9Z9WTqpRt/0f2blzJ4KDg/HNN9/AwcFBW+EZPFXbv6SkBMOGDcOCBQvQoEEDXYVn8NT5/S8tLYVCoUB4eDjatGmD119/HcuXL8eWLVs4Kk1D6rR/YmIiJk2ahI8++ghxcXE4fPgwUlNTMW7cOF2ESuD9lyoHdT6X5s2bh969e6Ndu3YwNTVFQEAARo4cCQAwNjYGIN07HBwcsHHjRvj4+GDIkCGYM2cO1q1bp9XzqKjKu/2PHTuGRYsWYe3atThz5gz27t2LAwcOYOHChVo9j8pClfuCpt816MXUuS+HhoZi586d2Lt37xMjOUkzz2v/vLw8vP322wgLC4O9vb0c4VUYHB6iJnt7exgbGz/xF4lbt249kd19xMnJ6an1TUxMUKNGDa3Faog0af9HvvnmG4waNQq7d+/mXzQ0pG775+XlITY2FmfPnsXEiRMBSJ1zIQRMTExw5MgRvPbaazqJ3RBo8vvv7OyMWrVqwdbWVlnWqFEjCCFw/fp1vPLKK1qN2ZBo0v4hISHo0KEDpk+fDgBo2rQprKys0KlTJ3zyySdwdnbWetyVGe+/ZOg0+VyytLTE5s2bsWHDBvz1119wdnbGxo0bYW1trfzi5OzsDFNTU2ViB5DuHZmZmSgqKoKZmZn2TqoC0Vb7z5s3D4GBgRg9ejQAoEmTJigoKMDYsWMxZ84cGBlxLISmVLkvPKvOi75r0Iupc19etmwZFi9ejJ9++glNmzbVZZgG60Xtf+HCBaSlpeGNN95QPl5aWgoAMDExQXJyMtzd3XUas77ip7CazMzM4OPjg6ioqDLlUVFRaN++/VOf4+vr+0T9I0eOoFWrVjA1NdVarIZIk/YHpJFoI0eOxI4dO7i+xEtQt/1tbGzw3//+F/Hx8cpj3Lhx8PT0RHx8PNq2baur0A2CJr//HTp0wI0bN5Cfn68su3TpEoyMjFC7dm2txmtoNGn/+/fvP/GF59EX00d/ASTt4f2XDJ2m/SIAMDU1Re3atWFsbIxdu3bB399f+XnVoUMHXLlyRfkFCpDuHc7Ozkyi/YO22v9Z9w4hbRRXvidRyahyX3hWnRddU3oxVe/LS5cuxcKFC3H48GG0atVK12EarBe1f8OGDZ/47ta3b1907doV8fHxcHV1lSlyPaTTrQ0MxKNtrjdt2iQSExNFUFCQsLKyEmlpaUIIIWbOnCkCAwOV9R9tMztlyhSRmJgoNm3a9MxtZunF1G3/HTt2CBMTE7FmzRpx8+ZN5ZGdnS3XKVRo6rb/v3HXzpejbvvn5eWJ2rVri4EDB4oLFy6IX3/9Vbzyyiti9OjRcp1ChaZu+3/11VfCxMRErF27VqSkpIgTJ06IVq1aiTZt2sh1ChVaXl6eOHv2rDh79qwAIJYvXy7Onj0r0tPThRC8/1LlpO7nUnJysti2bZu4dOmSOH36tBg8eLCws7MTqampyjrXrl0TVatWFRMnThTJycniwIEDwsHBQXzyySe6Pj29p432nz9/vrC2thY7d+4UV69eFUeOHBHu7u5i0KBBuj49vaeN+8LJkyeFsbGx+PTTT0VSUpL49NNPhYmJiTh16pTOz0/faaP9lyxZIszMzERERESZ7255eXk6Pz99p4t+EXftfDom0jS0Zs0aUbduXWFmZiZatmwpfv31V+VjI0aMEJ07dy5T/9ixY6JFixbCzMxM1KtXT6xbt07HERsWddq/c+fOAsATx4gRI3QfuIFQ9/f/n5hIe3nqtn9SUpLo3r27sLS0FLVr1xZTp04V9+/f13HUhkPd9l+5cqXw8vISlpaWwtnZWQwfPlxcv35dx1Ebhl9++eW5n+e8/1Jlpc7nUmJiomjevLmwtLQUNjY2IiAgQFy8ePGJ14yJiRFt27YV5ubmws3NTSxatEg8fPhQF6dT4ZR3+xcXF4vg4GDh7u4uLCwshKurq3j//fdFVlaWjs6o4tDWfWH37t3C09NTmJqaioYNG4o9e/bo4GwqHm20f926dZ/6mvPnz9fNSVUguugXMZH2dAohOD6YiIiIiIiIiIjoRbhGGhERERERERERkQqYSCMiIiIiIiIiIlIBE2lEREREREREREQqYCKNiIiIiIiIiIhIBUykERERERERERERqYCJNCIiIiIiIiIiIhUwkUZERERERERERKQCJtKIiIiIiIiIiIhUwEQaERERERERERGRCphIIyIiIiIiIiIiUgETaUREAHbu3AkLCwv8+eefyrLRo0ejadOmyMnJkTEyIiIiInpZV65cgUKhwMGDB9GtWzdUqVIFnp6eOH36tNyhEVEFw0QaERGAIUOGwNPTEyEhIQCABQsWIDIyEj/++CNsbW1ljo6IiIiIXkZCQgIUCgU+++wzzJ07FwkJCahTpw5mzpwpd2hEVMGYyB0AEZE+UCgUWLRoEQYOHAgXFxd88cUXiI6ORq1ateQOjYiIiIheUkJCAmxtbfHNN9+gZs2aAIB+/fph3bp1MkdGRBUNE2lERP/j7+8PLy8vLFiwAEeOHEHjxo3lDomIiIiIykFCQgLeeOMNZRINAK5evQoPDw8ZoyKiiohTO4mI/icyMhIXL15ESUkJHB0d5Q6HiIiIiMpJQkICfH19y5SdPXsWzZs3lycgIqqwmEgjIgJw5swZvPXWW9iwYQN69uyJefPmyR0SEREREZWDnJwcpKeno0WLFmXK4+PjmUgjIrVxaicRVXppaWno06cPZs6cicDAQHh5eaF169aIi4uDj4+P3OERERER0UtISEiAsbExmjVrpixLT09HVlYWE2lEpDaOSCOiSu3evXvo3bs3+vbti9mzZwMAfHx88MYbb2DOnDkyR0dERERELyshIQENGzaEpaWlsuzs2bOoVq0a6tWrJ19gRFQhKYQQQu4giIiIiIiIiIiI9B1HpBEREREREREREamAiTQiIiIiIiIiIiIVMJFGRERERERERESkAibSiIiIiIiIiIiIVMBEGhERERERERERkQqYSCMiIiIiIiIiIlIBE2lEREREREREREQqYCKNiIiIiIiIiIhIBUykERERERERERERqYCJNCIiIiIiIiIiIhUwkUZERERERERERKQCJtKIiIiIiIiIiIhU8P/g6j5r6KmdDwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMkAAAINCAYAAAAk+SgMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVmUlEQVR4nOzdd3gU1dvG8e+mhwAJnQCh944U6Yj0IkhTRAEVUAREQCxYsIsFEESkqIAiikpRqtJ7kSogRYL0XhNqQpJ9/5h3o/wohmR3z+7m/lxXLnYnszN3BLOzz5zzHJvdbrcjIiIiIiIiIiKSjvmZDiAiIiIiIiIiImKaimQiIiIiIiIiIpLuqUgmIiIiIiIiIiLpnopkIiIiIiIiIiKS7qlIJiIiIiIiIiIi6Z6KZCIiIiIiIiIiku6pSCYiIiIiIiIiIumeimQiIiIiIiIiIpLuBZgO4GxJSUkcO3aMTJkyYbPZTMcRERERL2G327l48SJ58uTBz0/3ET2VrvVERETkbqX0Os/nimTHjh0jKirKdAwRERHxUocPHyZfvnymY8ht6FpPREREUuu/rvN8rkiWKVMmwPrBM2fObDiNiIiIeIvY2FiioqKSryXEM+laT0RERO5WSq/zfK5I5hh2nzlzZl04iYiIyF3TFD7Ppms9ERERSa3/us5Tww0REREREREREUn3VCQTEREREY83evRoSpcuTdWqVU1HERERER+lIpmIiIiIeLzevXuzc+dONmzYYDqKiIiI+Cif60km4ivsdjsJCQkkJiaajiLyn/z9/QkICFAvJxERERER8Voqkol4oPj4eI4fP86VK1dMRxFJsQwZMhAZGUlQUJDpKCIiIiIiIndNRTIRD5OUlMT+/fvx9/cnT548BAUFaXSOeDS73U58fDynT59m//79FCtWDD8/zeYXERERERHvoiKZiIeJj48nKSmJqKgoMmTIYDqOSIqEhoYSGBjIwYMHiY+PJyQkxHQkERERERGRu6Jb/SIeSiNxxNvo36yIiIiIiHgzfaIREREREREREZF0T0UyERERERERERFJ91QkExERERERERGRdE9FMhHxKTabjZ9//tl0DBEREREREfEyKpKJiIiIiIiIiEi659Ii2YoVK3jggQfIkydPikd3LF++nMqVKxMSEkLhwoUZO3asKyOKeJXLly/f9uvatWsp3vfq1asp2vdu2e12PvroIwoXLkxoaCgVKlRg2rRpyd9r2LAhTZs2xW63A3DhwgXy58/Pq6++CkBiYiLdunWjUKFChIaGUqJECUaOHHnTeSZMmECZMmUIDg4mMjKSPn36AFCwYEEA2rRpg81mS35+K2vWrKFixYqEhIRQpUoVfv75Z2w2G1u3br3rn1tERHxDYiIsWwbff2/9mZhoOpGIiIi4k0uLZJcvX6ZChQp89tlnKdp///79NG/enDp16rBlyxZeeeUV+vbty/Tp010ZU8RrZMyY8bZf7dq1u2HfnDlz3nbfZs2a3bBvwYIFb7nf3XrttdeYOHEiY8aM4c8//6R///489thjLF++HJvNxtdff83vv//Op59+CkDPnj3JlSsXb775JgBJSUnky5ePH3/8kZ07dzJ48GBeeeUVfvzxx+RzjBkzht69e/PUU0+xfft2Zs2aRdGiRQHYsGEDABMnTuT48ePJz//XxYsXeeCBByhXrhybN2/mnXfe4aWXXrrrn1dERHzHjBlQsCDUrw+dOll/FixobRcREZH0IcCVB2/WrNlNH8bvZOzYseTPn58RI0YAUKpUKTZu3MjQoUNvKgCIiGe5fPkyw4cPZ8mSJdSoUQOAwoULs2rVKsaNG0e9evXImzcv48aNo3Pnzpw8eZLZs2ezZcsWAgMDAQgMDOStt95KPmahQoVYs2YNP/74Iw899BAA7777Ls8//zzPPfdc8n5Vq1YFIEeOHABERESQO3fu22adMmUKNpuNL774gpCQEEqXLs3Ro0fp0aOHc/+jiIiIV5gxA9q3h/8f6Jzs6FFr+7Rp0LatmWwiIiLiPi4tkt2ttWvX0rhx4xu2NWnShK+++orr168nf5AWSa8uXbp02+/5+/vf8PzUqVO33dfP78ZBpAcOHEhTLoCdO3dy7do1GjVqdMP2+Ph4KlWqlPy8Q4cOzJw5kyFDhjBmzBiKFy9+w/5jx47lyy+/5ODBg1y9epX4+HgqVqwIWD/TsWPHaNCgQZqy7tmzh/LlyxMSEpK8rVq1amk6pkh6smPHDooVK0ZwcLDpKCJplpgIzz13c4EMrG02G/TrB61bw/+81YqIiIiP8agi2YkTJ8iVK9cN23LlykVCQgJnzpwhMjLyptfExcURFxeX/Dw2NtblOd3t5MmTLF26lI4dOyZv++OPPyhbtuxNhRHxbWFhYcb3vZ2kpCQA5s6dS968eW/43r8/SF+5coVNmzbh7+/P3r17b9jvxx9/pH///gwbNowaNWqQKVMmPv74Y9avXw9AaGhomnOC1R/NZrPdtE1EUubJJ5/k+PHjTJw4kYYNG5qOI5ImK1fCkSO3/77dDocPW/vdd5/bYomIiIgBHre65e0+uP7vdochQ4YQHh6e/BUVFeXyjO4UGxtLw4YNeeyxx1i9ejUAZ86coWHDhvTp00cf7MVjlC5dmuDgYA4dOkTRokVv+Pr3/5fPP/88fn5+zJ8/n08//ZQlS5Ykf2/lypXUrFmTXr16UalSJYoWLcq+ffuSv58pUyYKFizI4sWLb5sjMDCQxP/otFyyZEm2bdt2Q4F948aNqfmxRdKFY8eO3fB+4+/vz5EjR2jRogWLFi0ymEwk7Y4fd+5+IiIi4r08qkiWO3duTpw4ccO2U6dOERAQQLZs2W75mkGDBhETE5P8dfjwYXdEdZtevXqxY8cOcubMSdasWQHYunUrZ8+eZezYsUyZMsVwQhFLpkyZGDhwIP379+frr79m3759bNmyhdGjR/P1118D1iizCRMmMGXKFBo1asTLL79M165dOX/+PABFixZl48aN/Pbbb/z111+8/vrrNzXff/PNNxk2bBiffvope/fuZfPmzYwaNSr5+44i2okTJ5KP+786depEUlISTz31FLt27eK3335j6NChwO0L8iLp1bFjx6hQoQJPPvlk8sq4S5cupV27dsTHx/PYY49x+vRpwylFUu8WExXStJ+IiIh4L48qktWoUYOFCxfesG3BggVUqVLltv3IgoODyZw58w1fvmLZsmXJDcZnzJhBqVKlAGjYsCFvv/02AH379uXMmTMmY4oke+eddxg8eDBDhgyhVKlSNGnShNmzZ1OoUCFOnz5Nt27dePPNN7nnnnsAeOONN8iTJw89e/YErNUu27Zty8MPP8y9997L2bNn6dWr1w3n6Nq1KyNGjODzzz+nTJkytGzZ8oZpm8OGDWPhwoVERUXd0Avt3zJnzszs2bPZunUrFStW5NVXX2Xw4MEAN/QpExF48cUXOXPmDFu3bk0uIoeEhDB58mRKly7NyZMnee211wynFEm9OnUgXz6r99jtZM1q7SciIiK+zWZ34Xy9S5cuER0dDUClSpUYPnw49evXJ2vWrOTPn59BgwZx9OhRvvnmGwD2799P2bJlefrpp+nRowdr166lZ8+efP/99yle3TI2Npbw8HBiYmK8umBmt9upVasWa9eu5ZlnnuHzzz+/4fsJCQlUqVKFP/74gxdeeIGPPvrIUFJxtmvXrrF//34KFSqkgo0bTZkyhSeeeIKYmBin9T5Lb/Rv1/ds3LiRqlWrYrPZ2LBhA5UrV77h+6tWraJOnTr4+/uza9cuihUrZiipc/jKNYSvc8Xfk2N1S7h1A3+At9+G1167czFNREREPFNKrx9cOpJs48aNVKpUKXk0x4ABA6hUqVLyiI3jx49z6NCh5P0LFSrEvHnzWLZsGRUrVuSdd97h008/TXGBzJesWrWKtWvXEhwcnPzf698CAgJ4//33ARg1atQdVzIUkZt98803rFq1iv379/Pzzz/z0ksv8dBDD6lAJvIvH3/8MQCPPvroTQUygNq1a9O8eXMSExMZNmyYu+OJOE3btjBtGvzPujNERcGDD1qPBw+G7t3h+nW3xxMRERE3cenqlvfdd98dG8tPmjTppm316tVj8+bNLkzlHT799FMAHn/8cXLnzn3LfZo1a0aVKlXYuHEjX3zxBa+++qo7I4p4tRMnTjB48GBOnDhBZGQkHTp04L333jMdS8RjHDhwgGnTpgHwwgsv3Ha/l156icyZM9O1a1d3RRNxibZtoXVraxXL48etHmR16oC/P4wdC717w4QJ1kqYP/0EGmwoIiLie1xaJJPUq1GjBtu3b0/u1XQrNpuN5557js6dO7N9+3Y3phPxfi+++CIvvvii6RgiHmvUqFEkJSXRsGFDypcvf9v96tatS926dd2YTMR1/P3hvvtu3t6zp9W37OGHYcECqFsX5s69eeSZiIiIeDePatwv/xgwYAC7du2iQoUKd9yvQ4cObNmyhalTp7opmYiI+Dq73c6MGTMAeO655wynEfEMLVvC8uWQKxf88QdUrw66RykiIuJbVCTzYDabLXklsdsJDg6mYsWK7gkkIiLpgs1mY/v27UyZMoUmTZqk6DVbtmxh4MCB7N+/38XpRMypUgXWrYOSJa1pl7Vrw+LFplOJiIiIs6hI5mFOnTrFzJkzuXjx4l2/NiYmhmvXrrkglYiIpDcZM2akU6dOBAYGpmj/gQMHMmzYMKZPn+7iZCJmFSwIa9ZYUy5jY6FpU/j6a9OpRERExBlUJPMws2bNom3btjRr1uyuXte/f39y5crFzz//7JpgIiIid9C6dWsA5s2bZziJiOtlyWL1JnvkEUhIgMcfh7ffhjusVyUiIiJeQEUyDzN37lyAFE9vcciQIQNxcXHMnDnTFbFERCSd+OWXX6hSpQqff/75Xb2uefPmAKxcuZLY2FhXRBPxKMHB8O23MGiQ9fyNN6BbN7h+3WwuERERST0VyTxIXFwcixYtAv75sJFSrVq1AuDXX3/luq7ORFzqzTff9NpegI8//jgPPvig6RjiwWbPns2mTZvYs2fPXb2uaNGiFC9enISEBBYuXOiidCKexc8P3n8fxo61Hk+cCC1aWNMwRURExPuoSOZBVq1axaVLl8idOzeVKlW6q9dWrVqVHDlyEBsby+rVq12UUOTOxowZQ/ny5cmcOTOZM2emRo0azJ8//z9fZ7PZvGqq8MCBA1nspZ2aR44cyaRJk0zHEA+VlJSUPF2yRYsWd/16xw0eTbmU9Obpp2HWLAgLg4ULoU4dq7G/iIiIeBcVyTzIggULAGjatCl+fnf3V+Pn55f84WTOnDlOzyaSEvny5eODDz5g48aNbNy4kfvvv5/WrVvz559/uuX87hpFmTFjRrJly+aWczlLYmIiSUlJhIeHExERYTqOeKgtW7Zw/PhxwsLCqFev3l2/3tFPc8GCBdjVnEnSmRYtYPlyyJ0btm2D6tWtP0VERMR7qEjmQVasWAFA/fr1U/X6li1bAiqSiTkPPPAAzZs3p3jx4hQvXpz33nuPjBkzsm7dutu+pmDBggC0adMGm82W/BysaV+VK1cmJCSEwoUL89Zbb5GQkJD8fZvNxtixY2ndujVhYWG8++67yVMhJ0yYQP78+cmYMSPPPPMMiYmJfPTRR+TOnZucOXPy3nvv3fFnWbZsGdWqVSMsLIyIiAhq1arFwYMHgZunWzqmMA4dOpTIyEiyZctG7969byjaxcfH8+KLL5I3b17CwsK49957WbZs2R0zvPnmm+TPn5/g4GDy5MlD3759U3y8SZMmERERwZw5cyhdujTBwcEcPHjwpumWdrudjz76iMKFCxMaGkqFChWYNm1a8vfPnz/Po48+So4cOQgNDaVYsWJMnDjxjrnFeznePxo3bkxwcPBdv75WrVoEBARw6dIlTp8+7ex4Ih6vcmVYtw5KlYKjR6F2bWtkmYiIiHiHANMBxHL58mU2btwIQN26dVN1jEaNGuHv78+ePXs4fPgwUVFRzowoJtntcOWKmXNnyAA2212/LDExkZ9++onLly9To0aN2+63YcMGcubMycSJE2natCn+/v4A/Pbbbzz22GN8+umn1KlTh3379vHUU08B8MYbbyS//o033mDIkCF88skn+Pv7M3HiRPbt28f8+fP59ddf2bdvH+3bt2f//v0UL16c5cuXs2bNGp588kkaNGhA9erVb8qUkJDAgw8+SI8ePfj++++Jj4/n999/x3aH/w5Lly4lMjKSpUuXEh0dzcMPP0zFihXp0aMHAE888QQHDhxg6tSp5MmTh5kzZ9K0aVO2b99OsWLFbjretGnT+OSTT5g6dSplypThxIkT/PHHH8nfT8nxrly5wpAhQ/jyyy/Jli0bOXPmvOk8r732GjNmzGDMmDEUK1aMFStW8Nhjj5EjRw7q1avH66+/zs6dO5k/fz7Zs2cnOjqaq1ev3va/g3g3xzTipk2bpur1YWFh7Ny5kyJFitz1iGgRX1GgAKxeDW3bwrJl0Lw5fPGFtQKmiIiIeDi7j4mJibED9piYGNNR7kpSUpJ9z5499m+++caelJSU6uP069fP/vHHH9tPnTrlxHTiTlevXrXv3LnTfvXq1X82Xrpkt1ulMvd/Xbp0V/m3bdtmDwsLs/v7+9vDw8Ptc+fO/c/XAPaZM2fesK1OnTr2999//4ZtkydPtkdGRt7wun79+t2wzxtvvGHPkCGDPTY2NnlbkyZN7AULFrQnJiYmbytRooR9yJAht8xz9uxZO2BftmzZLb//xhtv2CtUqJD8vGvXrvYCBQrYExISkrd16NDB/vDDD9vtdrs9OjrabrPZ7EePHr3hOA0aNLAPGjTolucYNmyYvXjx4vb4+PibvpeS402cONEO2Ldu3XrDPl27drW3bt3abrfb7ZcuXbKHhITY16xZc8M+3bp1sz/yyCN2u91uf+CBB+xPPPHELTP+r1v+2xWvcfnyZXtQUJAdsO/du9d0HCO89RoivfGWv6dr1+z2Tp3+eTt98027PQ2XeCIiIpIGKb1+0EgyD2Gz2ZKnqKXFJ5984qREIqlTokQJtm7dyoULF5g+fTpdu3Zl+fLllC5dmvfff5/3338/ed+dO3eSP3/+Wx5n06ZNbNiw4YZpkYmJiVy7do0rV66QIUMGAKpUqXLTawsWLEimTJmSn+fKlQt/f/8bRrbkypWLU6dO3fLcWbNm5fHHH6dJkyY0atSIhg0b8tBDDxEZGXnbn7tMmTLJo+AAIiMj2b59OwCbN2/Gbrff9P93XFzcbXubdejQgREjRlC4cGGaNm1K8+bNeeCBBwgICEjx8YKCgihfvvxtM+/cuZNr167RqFGjG7bHx8cnLx7yzDPP0K5dOzZv3kzjxo158MEHqVmz5m2PKd7rwoULPPjgg+zdu5ciRYqYjiNyk9GjRzN69GgSExNNR0mR4GCYPBkKFrRWwHzzTThwAMaNg6Agw+FERETkllQkE/EGGTLApUvmzn0XgoKCKFq0KGAVsDZs2MDIkSMZN24cPXv25KGHHkreN0+ePLc9TlJSEm+99RZt27a96XshISHJj8PCwm76fmBg4A3PbTbbLbclJSXd9vwTJ06kb9++/Prrr/zwww+89tprLFy48JbTM293Tsfxk5KS8Pf3Z9OmTTcU0sBaBOBWoqKi2LNnDwsXLmTRokX06tWLjz/+mOXLl6f4eKGhoXecIurIN3fuXPLmzXvD9xz9qJo1a8bBgweZO3cuixYtokGDBvTu3ZuhQ4fe9rjinfLkycMPP/yQ5uMkJSXRrVs3li1bxpo1a+5YXBa5G71796Z3797ExsYSHh5uOk6K+PnBe+9ZUzB79YJJk6xVL6dNAy/5EURERNIVFck8QEJCAk8++SSVKlXimWeeuaEAkBqHDx9m6dKlNGzY8I5FCPEiNpu1rrwXstvtxMXFAdYIraxZs960T2Bg4E0jA+655x727NmTXHAzoVKlSlSqVIlBgwZRo0YNvvvuu9sWyf7rOImJiZw6dYo6deqk+HWhoaG0atWKVq1a0bt3b0qWLMn27dtTfbz/5Wjof+jQoTuuZJgjRw4ef/xxHn/8cerUqcMLL7ygIpnclp+fH1u2bOHAgQOsWbOGdu3amY4kYtxTT0FUFHToAIsWQZ06MG8e5MtnOpmIiIj8m4pkHmDnzp1MnjyZn3/+meeeey7Nx+vUqROrVq3iyy+/pFu3bk5IKJIyr7zyCs2aNSMqKoqLFy8ydepUli1bxq+//nrH1xUsWJDFixdTq1YtgoODyZIlC4MHD6Zly5ZERUXRoUMH/Pz82LZtG9u3b+fdd9916c+xf/9+xo8fT6tWrciTJw979uzhr7/+okuXLqk6XvHixXn00Ufp0qULw4YNo1KlSpw5c4YlS5ZQrlw5mjdvftNrJk2aRGJiIvfeey8ZMmRg8uTJhIaGUqBAAbJly3bXx7uVTJkyMXDgQPr3709SUhK1a9cmNjaWNWvWkDFjRrp27crgwYOpXLkyZcqUIS4ujjlz5lCqVKlU/XcQz3Xt2jUOHDhAiRIl7jj6MKWqVavGH3/8wYYNG1QkE/l/zZrBihXQogVs3w7Vq8PcuVChgulkIiIi4qClpzzAhg0bAKhcubJTVgNzjCxZu3Ztmo8lcjdOnjxJ586dKVGiBA0aNGD9+vX8+uuvN/W8+l/Dhg1j4cKFREVFJffCatKkCXPmzGHhwoVUrVqV6tWrM3z4cAoUKODynyNDhgzs3r2bdu3aUbx4cZ566in69OnD008/nepjTpw4kS5duvD8889TokQJWrVqxfr162+7Cm1ERARffPEFtWrVonz58ixevJjZs2cn9xy72+PdzjvvvMPgwYMZMmQIpUqVokmTJsyePZtChQoB1vTZQYMGUb58eerWrYu/vz9Tp05N9X8H8Uxr1qyhVKlSVKtWzSnHq1q1KkDyqs0iYrnnHli3DkqXhqNHrRFlCxaYTiUiIiIONrvdbjcdwpkcfSpiYmLInDmz6Tgp0rNnT8aNG8cLL7zARx99lObjzZ49m1atWlGqVCl27tzphITiTteuXWP//v0UKlQozVNvRdxJ/3a91xtvvMHbb7/No48+yrfffpvm423dupVKlSoRHh7OuXPnnHIDyB288RoiPfKFv6cLF6BNG1i2DAICYPx4eOIJ06lERER8V0qvH7zjqtXHOUaSOe68p5WjZ9KuXbs4f/68U44pIiK+yzHyuHbt2k45XpkyZQgJCSEmJobo6GinHFPEl0REwK+/wqOPQkICPPkkvPEG+NataxEREe+jIplh165dY9u2bYDzimQ5cuRIbna+fv16pxxTRER8U1JSEr///jsA9957r1OOGRgYmDx12nEjSERuFBwMkyfDq69az99+Gx5/HOLjjcYSERFJ11QkM+yPP/4gISGB7NmzO7XXUo0aNQCrz4yIiMjt7Nmzh5iYGEJDQylXrpzTjlujRg0qVKiAv7+/044p4mtsNnj3XfjiC/D3h2++gebNISbGdDIREZH0SUUyw6Kjo/Hz86NKlSpOWVHMwVEkU/N+ERG5E8eI4ypVqhAQ4LxFr4cOHcrWrVvp2LGj044p4qu6d4c5cyBjRli8GGrXhsOHTacSERFJf5x3NSyp8uijj9K2bVun9w5r2bIlOXPmTC6WiYiI3Mq6desA5021dHDmjR+R9KBpU1ixAlq0gB07oHp1mDsXKlY0nUxERCT9UJHMA4SGhhIaGurUY0ZFRREVFeXUY4p7+djCs5IO6N+sd3r44YeJiIigWbNmLjl+QkICdrudwMBAlxxfxJdUqgTr1llTLv/8E+rUgWnToEkT08lERETSB023FPEwjg+SV65cMZxE5O44/s2qGOJd6tevzwcffEC9evWcfuxHHnmEsLAw5s+f7/Rji/iq/Plh1SqoXx8uXbJGln31lelUIiIi6YNGkhl06NAhOnbsSJUqVfj000+dfvxdu3Yxbdo0cuXKxVNPPeX044tr+Pv7ExERwalTpwDIkCGDpi2JR7Pb7Vy5coVTp04RERGhRu2SLDAwkPj4eP744w9atWplOo6I14iIgF9/tXqVTZ5s/XnwILz1ltXsX0RERFxDRTKD/vjjD9auXculS5dcdvzBgwdTrVo1Fcm8TO7cuQGSC2Ui3iAiIiL53654h/Xr1xMTE0OVKlXImjWr049fvnx5ALZt2+b0Y4v4uqAg+PprKFgQ3nnH+jpwAL780vqeiIiIOJ+KZAY5PjQ4PkQ4W+XKlQGrWHb9+nVNgfIiNpuNyMhIcubMyfXr103HEflPgYGBGkHmhUaOHMn333/Pe++9xyuvvOL041eoUAGw3odE5O7ZbPD221CgADz9tDWq7OhRmD7dGm0mIiIizqUimUHbt28HXFckK1KkCJkyZeLixYvs2rXLZecR1/H391fhQURcZsuWLQBUqlTJJcd3vO9ER0dz+fJlwsLCXHIeEV/XrRvkywft28OSJVC7NsybZ/UvExEREedR436DHCPJypUr55Lj+/n5cc899wCwefNml5xDRES80+XLl9mzZw/guiJZrly5yJkzJ3a7nV27drnkHCLpRZMmsHIl5MljrXxZvTps3Wo6lYiIiG9RkcyQa9eu8ddffwGuG0kG/0y53LRpk8vOISIi3mfbtm3Y7XZy587t0l5ypUqVAlCRTMQJKlaEdeugbFk4fhzq1LEa/IuIiIhzqEhmyK5du0hMTCRr1qzkyZPHZefRSDIREbkVx/uCq0aROTRu3Jj27dsTGRnp0vOIpBdRUbBqFTRoAJcuQcuWVjN/ERERSTv1JDPk7Nmz5MuXj8KFC2Nz4VrejpFke/bsISkpCT8/1UVFROSffmSOmymu4ooFAUTSu/BwqydZjx7wzTfWnwcOWCtguvCyUkRExOepSGZIw4YNOXz4MAkJCS49T/Hixdm2bRulSpVSgUxERJK5umm/iLhWUBBMmgQFC1orYL73Hhw8CF99ZX1PRERE7p6qJoYFBLi2Tunn50e5cuVcfh4REfEuEyZM4KuvvqJ27douP1dSUhKHDh1y+Y0hkfTGZoO33rIKYwEB8O230LQpXLhgOpmIiIh3UpFMREQkHapQoQJPPvkkuXLlcul57HY7efPmpUCBAskL1oiIcz35JMydC5kywdKlULs2HDpkOpWIiIj3UZHMgKSkJIoUKUL9+vU5e/asy8+3detWunTpwnPPPefyc4mIiPybzWYjX758AOzevdtwGhHf1bgxrFwJefLAn39C9erw/7OqRUREJIVUJDPg0KFD/P3336xZs4aIiAiXn+/SpUtMnjyZmTNnuvxcIiLi+aZPn87o0aPZu3evW85XqlQpwFrZWURcp0IFWLcOypWD48ehTh2YP990KhEREe+hIpkBjjvpxYoVw9/f3+XnK1u2LACHDx/m/PnzLj+fiIh4tvHjx9OnTx+WLVvmlvOpSCbiPlFR1oiyhg3h8mV44AEYP950KhEREe+gIpkBe/bsAaBEiRJuOV9ERAT58+cHYMeOHW45p4iIeK7t27cDUK5cObecT0UyEfcKD7d6lHXtComJ8PTT8OqrYLebTiYiIuLZVCQzwDGSrGTJkm47p+ODkOODkYiIpE9nz57l+PHjAJQpU8Yt53QUyXbv3k1SUpJbzimS3gUFwcSJ8Oab1vP334fOnSEuzmgsERERj6YimQHuHkkG/xTJtm3b5rZzioiI5/nzzz8BKFiwIJkyZXLLOYsUKUJAQABXrlzh6NGjbjmniIDNBm+8YRXLAgJgyhRo2hTUfUNEROTWAkwHSI9MjCQrX748oJFkIiLpneN9wNGv0h0CAgJ46qmnyJgxIwEBuvQQcbfHH4e8eaFdO1i2DGrVshr6FyhgOpmIiIhn0ZWqm12/fp0SJUpgt9vdPpLMz8+P69evu+2cIiLieRy9Kd3Vj8xh9OjRbj2fiNyoUSNYtQqaN4ddu6B6dZgzBypXNp1MRETEc2i6pZsFBgaydOlSjh8/Tnh4uNvOW6pUKS5dusTvv//utnOKiIjncRTJ3DmSTEQ8Q/nysG6d9eeJE1CvHsybZzqViIiI51CRLJ3w9/cnNDTUdAwRETFs1qxZrFy5kkaNGrn1vHa7nWPHjrFz5063nldEbpQvH6xcaY0su3wZWrWC8eNNpxIREfEMKpK5mV1rb4uIiEFZsmShdu3a5MiRw63n/fXXX8mbNy+PPPKIW88rIjfLnBnmzoUnnoDERHj6aXjlFdDisyIikt6pSOZmPXr0IH/+/HzzzTduP/dvv/1GrVq1ePrpp91+bhERSd+KFi0KQHR0tG4YiXiAwED46it46y3r+ZAh8NhjEBdnNpeIiIhJKpK52V9//cXhw4cJDAx0+7mvX7/OmjVrWL9+vdvPLSIi5v3000/079+fZcuWuf3cBQoUwN/fnytXrnD8+HG3n19EbmazweDBMGkSBATA999DkyZw/rzpZCIiImaoSOZm+/btA6BIkSJuP3epUqUA2L17N4mJiW4/v4iImDV79mxGjBjBqlWr3H7uoKAgChQoAFijyUTEc3TtCvPnW9Mwly+HWrXgwAHTqURERNxPRTI3unr1KseOHQPMFMkKFixISEgIcXFxHNCVj4hIumN6Zct/T7kUEc/SsCGsWmU19t+1C6pXh02bTKcSERFxLxXJ3Ojvv/8GIDw8nKxZs7r9/P7+/pQoUQJAq4uJiKQzSUlJ7NmzB4DSpUsbyaAimYhnK1cO1q2D8uXh5EmoW9dq8C8iIpJeqEjmRo6plkWLFsVmsxnJ4PhgtGvXLiPnFxERMw4fPsyVK1cIDAykcOHCRjIUK1YMUJFMUmf06NGULl2aqlWrmo7i0/LmhZUroXFjuHIFWrWCsWNNpxIREXEPFcncyPGhwMRUSwdHXzKNJBMRSV92794NWIWqgIAAIxlq1arF888/T8eOHY2cX7xb79692blzJxs2bDAdxedlzgxz5sCTT0JSEjzzDLz8svVYRETEl5m5Sk6nsmfPTq1atahcubKxDGXKlKFAgQJkyZLFWAYREXE/xwjikiVLGstQtWpVjQIS8RKBgfDll1CwoLUC5ocfwsGD1kqYwcGm04mIiLiGimRu1KVLF7p06WI0Q9u2bWnbtq3RDCIi4n6OvpiOEcUiIv/FZoPXX4cCBaBbN5g6FY4dg5kzwUB7XREREZfTdEsREZF0YOTIkZw4cYK+ffsazXHixAnWrFnDmTNnjOYQkZTr0gV+/dWahrliBdSqBfv3m04lIiLifCqSuUlSUhLx8fGmY9wgSY0lRETSDZvNRq5cuciZM6fRHO3ataNWrVosWbLEaA4RuTsNGsCqVZAvH+zeDdWrw8aNplOJiIg4l4pkbnLw4EFCQ0MpWbIkdrvdaJbBgweTK1cuPvvsM6M5REQk/SlUqBAABw4cMBtERO5auXKwbh1UqACnTkG9ejB7tulUIiIizqMimZscOHCApKQk7HY7NpvNaJbExEROnTqlFS5FRNKJLVu20Lp1az766CPTUZKLZPs1V0vEK+XNCytXQpMmcOUKPPggjBljOpWIiIhzqEjmJgcPHgSgYMGCZoPwT9Nmx0pnIiLi27Zs2cKsWbNYtGiR6SjJ74Mqkol4r0yZrBFk3bpBUhL06gUvvWQ9FhER8WYqkrmJY1pJgQIFzAYBSpcuDahIJiKSXjh+35csWdJwEk23FPEVgYHwxRfwzjvW848+gk6d4No1s7lERETSQkUyN/GkkWQlSpQA4PTp01pdTEQkHdi9ezfwz0hik/5dJNMCMiLezWaD116Db76ximY//ACNGsG5c6aTiYiIpI6KZG7iSSPJwsLCiIqKAuCvv/4ynEZERFzNk0aS5cuXDz8/P+Li4jhx4oTpOCLiBJ07w6+/Qni4tQJmzZrw99+mU4mIiNw9FcncxFEk84SRZADFixcHVCQTEfF1165dS+7/5QkjyQIDA3nzzTf57LPPCA0NNR1HRJzk/vth9WqIioI9e6BGDdiwwXQqERGRuxNgOkB6Ua9ePfLmzUvhwoVNRwGgVq1a2O12IiIiTEcREREXio6OJikpiYiICHLlymU6DgCvv/666Qgi4gJlysC6ddCiBWzdCvfdB99/D61amU4mIiKSMiqSucmkSZNMR7jBW2+9ZTqCiIi4wfHjxwkLC6NkyZLYbDbTcUTEx+XJAytWwEMPWVMw27SBTz+F3r1NJxMREflvmm4pIiLiwxo1asTFixeZP3++6SjJYmJiWLt2LevXrzcdRURcIFMmmDULuneHpCTo0wdeeMF6LCIi4slUJHODK1eukJCQYDrGLV26dEmri4mI+DibzeZR0+tnzZpFzZo1eeWVV0xHEREXCQyE8ePhvfes50OHwiOPwLVrZnOJiIjciYpkbjB8+HBCQkIYOHCg6SjJ7HY7RYoUIVOmTBw8eNB0HBERSUcci9g4FhQQEd9ks8Err8C331pFsx9/hEaN4OxZ08lERERuTUUyNzhw4ACJiYlkzpzZdJRkNpsteVUxrXApIuK76tSpQ7t27Th58qTpKMkKFCgAwJEjR0hMTDScRkRc7dFH4bffIDwcVq2CmjXh779NpxIREbmZimRu4Bip5bhz7imKFy8OqEgmIuKrzp07x6pVq5gxYwYZM2Y0HSdZnjx58PPz4/r16x5VvBMR16lfH1avhvz54a+/oHp1+P1306lERERupCKZGxw4cAD45865pyhRogQAe/bsMZxERERcYd++fYBVlAoLCzOc5h8BAQHkzZsXgEOHDhlOIyLuUqYMrFsHlSrB6dNw333wyy+mU4mIiPxDRTIXS0pKSv4AoJFkIiLiTtHR0QAUKVLEcJKb5c+fH4DDhw8bTiIi7hQZCStWQLNmcPUqtGkDn31mOpWIiIhFRTIXO3HiBPHx8fj7+yffNfcUjiKZRpKJiPgmR5GsaNGihpPcLCoqCtBIMpH0KGNGmDULnnoK7HZ49lkYOBC04LqIiJgWYDqAr3NMtcyXLx8BAZ71n9sx3fLQoUNcvXo1uZG/iIj4Bk8uknXu3JnatWtTt25d01FExICAABg7FgoWtFbAHDYMDh2Cb76BkBDT6UREJL3yrKqND8qYMSOdOnUia9aspqPcJFu2bDRv3py8efNy5coVFclERHyMoyeZJxbJmjdvbjqCiBhms8GgQVCgADz+OPz0Exw7ZvUpy5bNdDoREUmPVCRzsfLlyzNlyhTTMW7JZrMxd+5c0zFERMRFgoKCCAkJ8cgimYiIQ6dOkCeP1Z9s9WqoUQPmzwcPbKcoIiI+Tj3JREREfNSSJUu4fPkyFStWNB3lJvHx8axZs4bp06ebjiIiHuC++6wCWYECsHevVShbv950KhERSW9UJHOxs2fPkpCQYDrGHV29epUjR46YjiEiIi7g5+eHn5/nvd1fvnyZWrVq0b59e65evWo6joh4gNKlYd06uOceOH0a6te3pl6KiIi4i+ddNfuYBg0aEBwczOLFi01HuaU5c+YQFhZG+/btTUcREZF0JCIigrCwMAAOHz5sOI2IeIrcuWH5cmjeHK5etaZgjhplOpWIiKQXKpK52JEjR0hKSiJnzpymo9xS/vz5sdvt7Nmzx3QUERFxopEjR1KpUiU+/fRT01FuyWazkT9/fkBFMhG5UcaM1giyp58Gux369oXnn4ekJNPJRETE16lI5kJXrlzh7NmzAERFRRlOc2uOZs4XLlzg3LlzhtOIiIizbN++na1bt3L+/HnTUW7LUSQ7dOiQ4SQi4mkCAmDMGPjgA+v58OHw0EPW6DIRERFXUZHMhY4ePQpAWFgY4eHhhtPcWoYMGcibNy8Ae/fuNZxGREScJTo6GoAiHrw8nIpkInInNhu89BJ89x0EBcH06dCwIZw5YzqZiIj4KhXJXMgxfSQqKgqbzWY4ze05RpM5PlCJiIj327dvH/DP73hPpOmWIpISjzwCCxdCRASsWQM1a8L//4oTERFxKhXJXMixYmS+fPkMJ7kzFclERHzLv1ct9uQimaMVgUaSich/qVvXKpAVKAB790L16tZKmCIiIs6kIpkL/XskmScrVqwYoOmWIiK+4u+//wYgPDycbNmyGU5ze7Vq1WLUqFG8/PLLpqOIiBcoVcoqjFWubE25rF8fZs40nUpERHyJimQuVLp0aTp16kTt2rVNR7mj6tWr88QTT9C4cWPTUURExAkcI4OLFi3q8dP9+/Tpw/333286ioh4idy5YdkyaNkSrl2Ddu1g5EjTqURExFcEmA7gy9q0aUObNm1Mx/hP9erVo169eqZjiIiIk9jtdkqXLk2ZMmVMRxERcbqMGa0RZH37Witg9usHBw7AsGHgpyEAIiKSBnobERER8TEPPvggf/75J19//bXpKP9p06ZN/PDDD5w4ccJ0FBHxIgEBMHo0fPih9XzECOjQAa5eNRpLRES8nIpkLnTkyBESEhJMx0iRuLg4du3axfnz501HERGRdOSZZ56hY8eOrFMHbhG5SzYbvPgifP89BAXBjBnQoAGcPm06mYiIeCu3FMk+//xzChUqREhICJUrV2blypW33XfZsmXYbLabvnbv3u2OqE5z5coVoqKiCA4OJjY21nSc/9S4cWNKly7Nr7/+ajqKiIikI44VoI8ePWo4iYh4q44dYeFCyJIF1q6FmjVBi7aLiEhquLxI9sMPP9CvXz9effVVtmzZQp06dWjWrNl/Lve+Z88ejh8/nvzlWIHRWxw5cgSADBkykClTJsNp/lvRokWBf5o9i4iId4qPjyd79uxUrlyZmJgY03H+U968eQEVyUQkberWhTVroGBBq0BWvbpVMBMREbkbLi+SDR8+nG7dutG9e3dKlSrFiBEjiIqKYsyYMXd8Xc6cOcmdO3fyl7+/v6ujOtXhw4cBiIqK8uiVxRxUJBMR8Q0HDx7k7Nmz7N69m8yZM5uO858cRTLHzSVJX9q0aUOWLFlo37696SjiA0qWhHXroEoVOHsW7r/fmoIpIiKSUi4tksXHx7Np0yYaN258w/bGjRuzZs2aO762UqVKREZG0qBBA5YuXerKmC7huNh3TCPxdI4i2d69ew0nERGRtHDc7ChSpIhX3KTRSLL0rW/fvnzzzTemY4gPyZULli2DBx6Aa9egfXurqb+IiEhKuLRIdubMGRITE8mVK9cN23PlynXbVawiIyMZP34806dPZ8aMGZQoUYIGDRqwYsWKW+4fFxdHbGzsDV+ewFuLZBpJJiLi3Ry/xx2/1z2depKlb/Xr1/eKthTiXcLCYOZM6NUL7Hbo3x/69YPERNPJRETE07mlcf//3sm22+23vbtdokQJevTowT333EONGjX4/PPPadGiBUOHDr3l/kOGDCE8PDz5Kyoqyun5U+Pf0y29QZEiRQA4ffq0V/SwERGRW9u3bx/gPUWyf0+3tNvthtN4j6NHj/LYY4+RLVs2MmTIQMWKFdm0aZPTjr9ixQoeeOAB8uTJg81m4+eff77lfnezOJOIO/n7w2efwUcfWc9HjoQOHeDKFbO5RETEs7m0SJY9e3b8/f1vGjV26tSpm0aX3Un16tVvOw1w0KBBxMTEJH85ilOmedtIssyZM5MzZ07gnw9YIiLifbxtJFlUVBSjR49mypQpKpKl0Pnz56lVqxaBgYHMnz+fnTt3MmzYMCIiIm65/+rVq7l+/fpN23fv3n3bkf2XL1+mQoUKfPbZZ7fNkZLFmSpXrkzZsmVv+jp27Njd/dAiqWCzwQsvwNSpEBRkjS67/344fdp0MhER8VQBrjx4UFAQlStXZuHChbRp0yZ5+8KFC2ndunWKj7NlyxYiIyNv+b3g4GCCg4PTnNXZGjduTEREBOXLlzcdJcWeffZZwCpuioiId/p3TzJvEBoaSq9evUzH8CoffvghUVFRTJw4MXlbwYIFb7lvUlISvXv3plixYkydOjV5IaS//vqL+vXr079/f1588cWbXtesWTOaNWt2xxz/XpwJYMSIEfz222+MGTOGIUOGADh1dJtIaj38MOTJA61bw/r1UKMGzJ8PxYqZTiYiIp7GpUUygAEDBtC5c2eqVKlCjRo1GD9+PIcOHaJnz56ANRLs6NGjyU1bR4wYQcGCBSlTpgzx8fF8++23TJ8+nenTp7s6qlP17dvXdIS79tprr5mOICIiaVS6dGkAiunTn8+aNWsWTZo0oUOHDixfvpy8efPSq1cvevTocdO+fn5+zJs3j7p169KlSxcmT57M/v37uf/++2nVqtUtC2Qp4Vic6eWXX75he0oWZ0qt0aNHM3r0aBLVWEpSoU4dWLsWmjWDffusQtmsWVCzpulkIiLiSVxeJHv44Yc5e/Ysb7/9NsePH6ds2bLMmzePAgUKAHD8+PEbhuXHx8czcOBAjh49SmhoKGXKlGHu3Lk0b97c1VFFRES83owZM0xHuGs7duzgzz//pGzZspQpU8Z0HI/3999/M2bMGAYMGMArr7zC77//Tt++fQkODqZLly437Z8nTx6WLFlC3bp16dSpE2vXrqVBgwaMHTs21RlSszjTrTRp0oTNmzdz+fJl8uXLx8yZM6lateot9+3duze9e/cmNjaW8PDwVGeX9KtECatQ9sADsGGDNfVyyhRo1850MhER8RQ2u481AHFcOMXExJA5c2YjGa5evcrp06eJjIwkMDDQSIbUuH79On///TdnzpyhVq1apuOIiEg68eSTTzJx4kTeffddXn31VWM5POEaIiWCgoKoUqXKDSO2+vbty4YNG1i7du1tX7dixQrq1atH4cKF2bNnDwEBKbtXarPZmDlzJg8++GDytmPHjpE3b17WrFlDjRo1kre/9957TJ48md27d9/9D5ZC3vL3JJ7r8mV45BGYPdvqWzZsmLX65W3WFRMRER+Q0usHt6xumd6sWbOGAgUKULFiRdNR7sq2bdsoWbIk7XQ7TUTEKyUkJJiOkCqORW4ci97InUVGRiZPq3UoVarUDSPz/9fJkyd56qmneOCBB7hy5Qr9+/dPUwZnLc4kYkJYmNXEv3dvsNthwAB47jnQTF4REVGRzAUcF/mOZe29haPJ88mTJ7l48aLhNCIicrcGDRpE1qxZGTZsmOkod8Xxfnn06FHDSbxDrVq12LNnzw3b/vrrr+RWFv/rzJkzNGjQgFKlSjFjxgyWLFnCjz/+yMCBA1Od4d+LM/3bwoULqakmT+IF/P1h1CgYOtR6PmoUtG8PV66YzSUiImapSOYCjot8byuSRUREJK9suW/fPsNpRETkbkVHR3P+/HmPXPX5TlQkuzv9+/dn3bp1vP/++0RHR/Pdd98xfvx4evfufdO+SUlJNG3alAIFCvDDDz8QEBBAqVKlWLRoEZMmTeKTTz655TkuXbrE1q1b2bp1KwD79+9n69atN4xWGzBgAF9++SUTJkxg165d9O/f/4bFmUQ8nc0Gzz8PP/4IwcHw889Wn7JTp0wnExERU1zeuD89OnbsGOB9RTKwVkM7c+YM0dHRXjddVEQkvXPc4ChatKjhJHdHRbK7U7VqVWbOnMmgQYN4++23KVSoECNGjODRRx+9aV8/Pz+GDBlCnTp1CAoKSt5erlw5Fi1aRLZs2W55jo0bN1K/fv3k5wMGDACga9euTJo0CfjvxZlEvEWHDhAZCa1bw/r11sqX8+dD8eKmk4mIiLupSOYCjov8PHnyGE5y94oWLcratWvZu3ev6SgiInIX7HY70dHRwD/T572Fo0h28uRJ4uPjbyjmyK21bNmSli1bpmjfRo0a3XL7nW6G3XfffaRkbadevXrRq1evFOUQ8WS1a8OaNdCsGfz9t1UomzULtJaViEj6oumWLuAYSeatRTIg+YOWiIh4h+PHj3P16lX8/f29biRP9uzZk1eDPn78uOE0IpJelSgB69ZBtWpw7hw0aAA//WQ6lYiIuJOKZC7gC0UyjSQTEfEujpsbBQoU8LqRWH5+fnz55Zf8/PPPt53+JyLiDjlzwtKl1tTLuDh46CEYNsxaBVNERHyfplu6QJcuXTh06JDX3ckHqFatGm+++SYVKlQwHUVERO6Ct/Yjc+jSpYvpCCIiAGTIANOnQ//+1qqXAwfCgQMwYoS1KqaIiPguFclc4L333jMdIdWKFi3KG2+8YTqGiIjcpezZs9OsWTOqV69uOoqIiNfz94eRI6FgQWsFzM8+g8OH4bvvrCKaiIj4Jps9JV1ZvUhsbCzh4eHExMSQOXNm03FEREQkBf7++29+//13IiMjqVevnpEMuobwDvp7EnebNg0ee8yaflmtGsyebU3LFBER75HS6wf1JHOyCxcucOjQIa5fv246SqodOnSIX3/9NXnqjoiIiKv9/PPPPPLII4wdO9Z0FBGRG7RvD4sXQ7Zs8PvvUL067NljOpWIiLiCimRO9tNPP1GgQAHatm1rOkqqvfTSSzRr1oyZM2eajiIiIilgt9u5cOGC6RhpkjdvXgCOHj1qOImIyM1q1YI1a6BwYdi/H2rWhFWrTKcSERFnU5HMybx5ZUsHR9NnjSQTEfEOZ86cIUuWLOTIkcNrRzI7imRHjhwxnERE5NaKF4e1a+Hee+HcOWjYEH76yXQqERFxJhXJnMwXimRFihQBIDo62nASERFJCcfv69DQUAIDAw2nSZ18+fIB1vuoj7VLFREfkjMnLFkCDz5o9Sh76CEYOhT0a0tExDeoSOZkvlAk00gyERHv4iiSOW5yeCPH+2ZcXBxnz541nEZE5PYyZLCa+fftaz1/4QV49llITDSbS0RE0k5FMifzhSKZ40PWwYMHiY+PN5xGRET+i+OmhuMmhzcKCgoiR44cgKZciojn8/eHkSPhk0/AZoPRo6FNG7h82XQyERFJCxXJnMxRJHP0VvFGuXPnJkOGDCQlJXHgwAHTcURE5D84RpJ5c5EM/rnBdPz4ccNJRERSpl8/qy9ZSAjMng3168PJk6ZTiYhIaqlI5kQJCQmc/P93RW8eSWaz2TTlUkTEi/hKkez999/nl19+oXLlyqajiIikWLt2sHgxZMsGGzZAjRqwZ4/pVCIikhoBpgP4kvj4eF588UWOHTtG9uzZTcdJk0GDBnH9+nUqVKhgOoqIiPwHXymSNW/e3HQEEZFUqVnTWvmyWTPYt88qlP3yC9SpYzqZiIjcDRXJnChDhgx88MEHpmM4RceOHU1HEBGRFEhISOChhx5i3759Xt24X0TE2xUrZhXKWrWCdeugYUP45ht4+GHTyUREJKVUJBMREfFiAQEBfP7556ZjOMXRo0dZsWIFYWFhtGrVynQcEZG7liMHLFkCjz4KM2dCx45w8KC1AqbNZjqdiIj8F/Ukc6KTJ09y6NAhn1gR8sqVKyxYsIApU6aYjiIiIunE77//TqdOnRgyZIjpKCIiqRYaajXz79fPev7SS9C7NyQkGI0lIiIpoCKZE40aNYoCBQrQv39/01HS7NSpUzRp0oQnnniCxMRE03FEROQ2Tp06RWxsrOkYTuFY9MaxUrSIiLfy94dPPrG+bDYYMwbatIHLl00nExGRO1GRzIkcF/V58+Y1nCTtoqKiCAwM5Pr16xw5csR0HBERuY2XX36Z8PBwhg4dajpKmkVGRgJw4sQJ7Ha74TQiImnXrx9MmwYhITBnDtx3H5w4YTqViIjcjopkTuQokjnuhHszf39/ChUqBPyzapqIiHgex+/ofPnyGU6Sdrlz5was1aLPnTtnOI2IiHO0bWv1KcueHTZutFa+3LXLdCoREbkVFcmcyJeKZABFixYFVCQTEfFkjt/RvrCyZVBQENmyZQM05VJEfEuNGtbKl0WLwoEDUKsWrFhhOpWIiPwvFcmcyFeLZPv27TOcREREbuXy5cscP34c+Od3trdzvIc6fi4REV9RtKhVKKtRA86fh0aNYOpU06lEROTfVCRzkri4OM6ePQv4Rk8y+GdUgkaSiYh4pr///huArFmzkiVLFsNpnMPRl0wjyUTEF2XPDosXW1Mw4+PhkUfgww9BbRhFRDyDimRO4riYDwkJISIiwmwYJ9F0SxERz+b4/ewro8gABg0axC+//ELjxo1NRxERcYnQUPjxR+jf33r+8svQqxckJJjNJSIiEGA6gK8ICQnh5ZdfJj4+HpvNZjqOU1SpUoVJkyZRokQJ01FEROQWfKkfmcN9991nOoKIiMv5+8Pw4VCwoLUC5tixcPiwNf0yY0bT6URE0i+b3cfWWI+NjSU8PJyYmBgyZ85sOo6IiIjLLFiwgBkzZlCjRg26du1qOo7X0zWEd9Dfk/iamTOhUye4dg0qV4Y5c+D/F/sVEREnSen1g4pkIiIi4jFOnTrFokWLsNlsPPLII249t64hvIP+nsQXrVsHDzwAZ85AgQIwfz6UKmU6lYiI70jp9YN6kjnJoUOHOHjwIPHx8aajONXmzZsZN24cGzduNB1FRETSgejoaB599FFeffVV01FERNymenWrUFasGBw8CDVrwvLlplOJiKQ/KpI5ySuvvELBggUZOXKk6ShONX78eHr27Mkvv/xiOoqIiPzL9evX+eOPP7h06ZLpKE7179UtfWywu4jIHRUpAmvWWAWyCxegcWP47jvTqURE0hcVyZzEsbplnjx5DCdxLq1wKSLimfbt20fFihXJkyePTxWTHEWyuLg4Lly4YDaMiIibZc8OixZBu3YQHw+PPgoffAA+9GteRMSjqUjmJMePHwf+ubj3FY4i2b59+wwnERGRf3P8Xi5SpIjPrKoM1mrRWbJkAf55bxURSU9CQ+HHH+H5563ngwbBM89AQoLZXCIi6YGKZE5y4sQJwPeKZEWKFAE0kkxExNM4fi87bmb4kn9PuRQRSY/8/GDoUPj0U7DZYNw4aN0afGyGvYiIx1GRzAmuXr2aPCUkt4+t11y4cGEAzp8/z7lz5wynERERB0eRzHEzw5c4WhdoJJmIpHfPPgszZ1qjy+bNg3r1QL8aRURcR0UyJzh58iQAwcHBREREmA3jZGFhYckfVjTlUkTEc6SHkWQqkomIWCPIli6FHDlg82ZrJcydO02nEhHxTSqSOYHjIj537tw+1RfGQVMuRUQ8j+PGhS8Wyfr06cPs2bPp2LGj6SgiIh7h3nth7VooVgwOHbJWwFy2zHQqERHfE2A6gC/ImTMnL7/8MhkyZDAdxSXee+897HY75cuXNx1FRESAhIQE9u/fD/hmkaxatWqmI4iIeJwiRaxCWevWsHo1NG4MkyZBp06mk4mI+A4VyZygSJEiDBkyxHQMl6lTp47pCCIi8i/Xr1/n3XffZf/+/clT4kVExPdlywaLFkGXLvDTT/Doo3DwILz8stXgX0RE0kZFMhERES8TGhrKSy+9ZDqGy8TExDBnzhyuXLlCjx49TMcREfEoISEwdSoUKGCtgPnKK7B/P3z+OQTo052ISJqoJ5kT7N+/nwMHDhAXF2c6iktcvHiRL774grffftt0FBERSQfOnDnDY489xnPPPYfdbjcdR0TE4/j5wccfw6hR1uMvvoBWreDiRdPJRES8m4pkTvDcc89RqFAhvv76a9NRXCIhIYGnnnqKN954g0uXLpmOIyKS7u3YsYMdO3Zw9epV01FcwrG65dWrV4mNjTWcRkTEc/XpAzNnQmgozJ8P9erBsWOmU4mIeC8VyZzAsbql46Le12TJkoWsWbMC/6ymJiIi5rzyyiuUK1eOSZMmmY7iEhkyZCA8PBz45z1WRERurVUra6XLnDlhyxaoUQP+/NN0KhER76QimROcOHECgNy5cxtO4jqO1dOio6MNJxEREcfv4iJFihhO4jqOG08qkomI/Ldq1ayVL0uUgEOHoFYtWLrUdCoREe+jIlkaJSUlpasimUaSiYiYlZSUxN9//w3887vZFzlW7TymeUMiIilSuDCsXg21a0NMDDRpAt9+azqViIh3UZEsjc6dO0dCQgIAuXLlMpzGdRyjFTSSTETErKNHjxIXF0dAQAD58+c3HcdlNJJMROTuZcsGCxfCQw/B9evQuTO89x5oDRQRkZRRkSyNHKPIsmXLRlBQkOE0rqORZCIinsFxs6JQoUIEBAQYTuM6jiKZRpKJiNydkBD4/nt44QXr+WuvwVNPWUUzERG5M9+9unYTX2/a76CeZCIinsHxe9iXp1oCdOnShXr16lGqVCnTUUREvI6fH3z0ERQsCM8+C19+CUeOwI8/QqZMptOJiHguFcnSKCoqikGDBpElSxbTUVyqfPnyLF261KebRIuIeIP0UiQrV64c5cqVMx1DPMjo0aMZPXo0iYmJpqOIeI1evSAqCjp2hF9/hbp1Ye5c+P+2jyIi8j9sdrtvzVCPjY0lPDycmJgYMmfObDqOiIiIU61Zs4bly5dTtWpVGjZsaDqOT9E1hHfQ35PI3duwAVq2hFOnrKLZvHlQtqzpVCIi7pPS6weNJBMREfEiNWvWpGbNmqZjuNyVK1eYMWMGZ8+e5bnnnjMdJ8UKFSqEzWa769f169ePvn37uiCRiAhUrQrr1kGzZrBnD9SqBTNnwv33m04mIuJZNJIsjfbu3UtAQAB58uQhODjY5eczacmSJSxatIjatWvTvHlz03FERMSHnT9/nqxZswJw9epVQkJCXH5OZ1xDLF++PFWvK1iwIAUKFEjVa9MbjSQTSb1z5+DBB2HlSggMhK++slbAFBHxdRpJ5iZPPfUUy5Yt47vvvuORRx4xHcelFixYwIcffkifPn1UJBMRMeDixYssXbqUYsWK+XxD+4iICIKCgoiPj+fkyZNeU0CqV6+e6QgiIreVNSssWABPPAFTp0KXLnDwILz6KqRiEKyIiM/xMx3A2504cQKA3LlzG07ieo4m0fv27TOcREQkfdq2bRutW7dOFzcqbDZb8nur471WRETSLiQEpkyBl16ynr/+OvToAdevm80lIuIJNJIsjdJTkcyxsqVjZTUREXGv9LKypUPu3Lk5dOiQzxTJdu/ezezZs4mIiKBMmTKULVtW0wVFxAg/P/jgAyhQAPr0saZdHjkCP/4I+rUkIumZRpKlwdWrV7lw4QIAkZGRZsO4geND2f79+0lISDCcRkQk/XEUyRw3LXyd4731+PHjhpM4R7NmzYiPj+fChQuMGzeO++67jxIlSpiOJSLp2DPPwC+/QIYM8NtvULcuHD1qOpWIiDkaSZYGJ0+eBCA4OJjw8HDDaVwvb968BAcHExcXx+HDhylUqJDpSCIi6Up6HEkGvjPdMnfu3Lz66qs3bEtMTDSURkTE0rIlLF9u/fnHH1C9OsybB+XKmU4mIuJ+GkmWBo4727lz507Vcu/exs/Pj8KFCwOacikiYoKjJ6SKZN6pSZMmTJ48+YZt/v7+htKIiPyjShVYtw5KlrSmXdauDYsXm04lIuJ+KpKlgeOiPT1MtXRwfDBTkUxExP3S20iyjh07MmfOHAYOHGg6ilP8/vvvvPrqqxQtWpROnToxZMgQ5syZYzqWiAgABQvCmjXWlMvYWGjaFL75xnQqERH3stntdrvpEM4UGxtLeHg4MTExLm+Gu337dqZOnUpkZCR9+vRx6bk8RXR0NIGBgeTLl093v0VE3OjcuXNky5YNgMuXL5MhQwbDiXyPu64hYmNj2bFjBzt27GDnzp2MGDHCZefyRe681hNJj+Li4PHHYepU6/lbb1krYKaDiTMi4sNSev2gnmRpUK5cOcqls8n66WX0goiIpwkODub777/n+PHjKpB5mVOnTpGUlJQ8fTRz5szUrFmTmjVrGk4mInKz4GCYMsUaWfbBB/DGG3DgAIwbB4GBptOJiLiWpluKiIh4gbCwMDp27Ej//v1NR3Gba9euMXnyZIYOHYo3Dnzftm0bZcqUITIykrx585I3b15ee+01Ll++bDqaiMgd+fnBkCEwdqz1eOJEaNHCmoYpIuLLVCRLg927d/P3338TFxdnOorbXL58mddee43OnTuTlJRkOo6IiPi4Ll268MILL3DhwgXTUe5at27dyJUrF6tWrWLLli28++67zJ8/nypVqnD+/HnT8URE/tPTT8OsWRAWBgsXQp06cPSo6VQiIq6jnmRpULVqVTZu3MisWbN44IEHXHouT3H9+nVCQ0NJTEzkyJEj5M2b13QkEZF0YcGCBVy/fp1q1aqRI0cO03HcJkuWLFy4cIGdO3dSqlQpl57L2dcQYWFhbNq0iZIlSyZvs9vtdOjQgZCQEL799ts0nyM9Uk8yEffbtAlatoQTJyBfPpg3D9JZ1xkR8XIpvX7QSLI0cKxu6egxkh4EBgZSsGBBAPbt22c2jIhIOvLWW2/RsmVLli5dajqKWzneYx3vud7kViPGbDYb77//Pr/88ouhVCIid69yZVi7FkqVgiNHoHZtWLTIdCoREedTkSyVkpKS0mWRDP5p3h8dHW04iYhI+uG4MZHeFlCJjIwE4Pjx44aTpEyLFi145ZVX+PHHH+nZsyf9+/fn5MmTN+wTExNDlixZDCUUEUmdggVh9WqoV8/qTdasGUyaZDqViIhzaXXLVDp37hwJCQkA5MqVy3Aa9ypSpAigIpmIiLtcvHgxudDi+B2cXnjbSLJy5cqxefNmJk6cmPx3VrhwYR566CEqVqxIYmIiEydO5JNPPjGcVETk7mXJAr/9Bk8+Cd99B088AQcPwuDBYLOZTiciknYqkqWS42I9W7ZsBAUFGU7jXo5RDJpuKSLiHo7ft9mzZyc8PNxwGvfytiLZBx98kPz45MmTbNmyha1bt7J161bGjBlDdHQ0/v7+vPXWW7Rr185gUhGR1AkOhsmTrZFl778Pb74JBw7A+PEQGGg4nIhIGqlIlkqOaR+OaSDpiUaSiYi41969ewEoVqyY4STu521Fsn/LlSsXTZs2pWnTpsnbrl69ytatW9m2bZvBZCIiaePnB++9BwUKQK9e1rTLo0dh2jTQehoi4s1UJEul9NqPDP4ZSXbw4EHDSURE0gfHTYn01o8MoG3btpQrV85nfvbQ0FBq1KhBjRo1TEcREUmzp56yVrt86CFYuBDq1IG5c61tIiLeSEWyVCpTpgyvvvpq8kqP6UmxYsX4+++/iYqKMh1FRCRdSM8jyYoWLepVBbJChQphS0Vjnn79+tG3b18XJBIRca3mzWHFCmjRArZtg+rVrUJZhQqmk4mI3D2b3W63mw7hTLGxsYSHhxMTE0NmjfUVEREfsHPnTrZu3Uq5cuUoV66c6Tg+yxnXEMuXL0/V6woWLEiBAgVS9dr0Rtd6Ip7p4EGrYLZzJ2TKZE29bNzYdCoREUtKrx9UJBMRERGPlZCQwHfffceJEyfo16+fSxfL0TWEd9Dfk4jnunAB2rSBZcsgIMBq5v/EE6ZTiYik/PrBz42ZfMqOHTvYt28f8fHxpqMY8csvv/Doo48yYcIE01FERMSH+fn50a1bN1566SVOnTplOo6IiNxBRAT8+is8+igkJMCTT1qrX/rWsAwR8WUqkqVShw4dKFq0KKtXrzYdxYhdu3bx3XffsWzZMtNRRER82uHDhxk1ahRLly41HcUIPz8/cuXKBXjnCpciIulNcDBMngyvvmo9f+stazRZOh1bICJeRkWyVDp+/DiQPle3BChSpAjwz4prIiLiGuvXr6dv37688sorpqMY43ivdbz3ioiIZ7PZ4N13remW/v7w9ddWv7KYGNPJRETuTEWyVLh69Sox//8bPjIy0nAaMxwrje3bt89wEhER3+ZY2dKbVnh0Nsd7rUaSiYh4lx49YPZsyJgRFi+G2rXh8GHTqUREbk9FslRwXKQHBwcTHh5uOI0ZjpFkp06dIjY21nAaERHf5RixW6xYMcNJzHGMJPO2ItmhQ4e41fpIdrudQ4cOGUgkIuJ+zZrBihUQGQk7dkD16vDHH6ZTiYjcmopkqeC4SI+MjMRmsxlOY0bmzJnJkSMHoNFkIiKupJFk3lskK1SoEKdPn75p+7lz5yhUqJCBRCIiZlSqBOvWQZkycOwY1KkDCxaYTiUicjMVyVIhvfcjc9CUSxER19NIMu8tktnt9lveTLt06RIhISEGEomImJM/P6xaBfXrw8WLVo+yCRNMpxIRuVGA6QDe6N8jydKzIkWK8Pvvv3Pq1CnTUUREfNKlS5eSb8yk55FkLVq0oEiRIhQuXNh0lBQZMGAAADabjddff50MGTIkfy8xMZH169dTsWJFQ+lERMyJiIBff4Vu3eDbb60/DxywVsBMpxN0RMTDqEiWCpUrV+a1116jRIkSpqMYNWrUKCZMmEBgYKDpKCIiPskxUjdbtmxkyZLFcBpzChYsSMGCBU3HSLEtW7YA1kiy7du3ExQUlPy9oKAgKlSowMCBA03FExExKigIvvkGCha0VsB85x2rUPbll9b3RERMUpEsFe69917uvfde0zGMi4iIMB1BRMSnFS9enLVr13Lu3DnTUeQuLF26FIAnnniCkSNHkjlzZsOJREQ8i81mFccKFoSnn4bJk+HoUZgxA9Lpumgi4iFs9lstu+TFYmNjCQ8PJyYmRhelIiIiPsBut/PNN99w4sQJ+vTpQ1hYmEvOo2sI76C/JxHf8ttv0L49XLoEZcvCvHkQFWU6lYj4mpReP2gkWSps3bqVjBkzkj9//humUKQ3cXFx9OjRg+joaBYvXkxoaKjpSCIi4oNsNhvPPvssFy9epE2bNhQvXtx0pBRbvHgxixcv5tSpUyQlJd3wvQnqWC0iQpMmsHKl1ch/xw6oXh3mzgW1bhQRE7S6ZSq0bNmSYsWKsW3bNtNRjAoKCmLWrFmsXbuW/fv3m44jIuJzRo0axejRo5Ob96dn3rjC5VtvvUXjxo1ZvHgxZ86c4fz58zd8iYiIpWJFWLcOypSBY8egTh2rwb+IiLtpJNldSkpK4uTJk8A/F+zplc1mo0iRImzevJno6GhKly5tOpKIiE/54IMPOHbsGFWrVk33KypHRkayd+9eryoYjh07lkmTJtG5c2fTUUREPF7+/LBqFbRrB0uWQMuWMG6ctQKmiIi7aCTZXTp79iwJCQkA5MqVy3Aa84oWLQpAdHS04SQiIr7l8uXLHDt2DIBixYoZTmOeN44ki4+Pp2bNmqZjiIh4jYgImD8funSBxETo3h1efx18q4u2iHgytxTJPv/8cwoVKkRISAiVK1dm5cqVd9x/+fLlVK5cmZCQEAoXLszYsWPdETNFHBfn2bNnJzAw0HAa8xxFsn379hlOIiLiWxy/V7NmzUqWLFkMpzHPG4tk3bt357vvvjMdQ0TEqwQFwaRJMHiw9fzdd6FrV4iPNxpLRNIJl0+3/OGHH+jXrx+ff/45tWrVYty4cTRr1oydO3eSP3/+m/bfv38/zZs3p0ePHnz77besXr2aXr16kSNHDtq1a+fquP/JMc0jvU97cShSpAigkWQiIs62d+9eQKPIHLyxSHbt2jXGjx/PokWLKF++/E0314YPH24omYiIZ7PZ4K23oEABeOopmDwZjhyBGTOs0WYiIq7i8iLZ8OHD6datG927dwdgxIgR/Pbbb4wZM4YhQ4bctP/YsWPJnz8/I0aMAKBUqVJs3LiRoUOHekSRzHFxnt77kTlouqWIiGs4fq86fs+md46bU97Uk2zbtm1U/P/l2Xbs2HHD92w2m4FEIiLe5cknIW9eaN8eli6F2rVh3jyrf5mIiCu4tEgWHx/Ppk2bePnll2/Y3rhxY9asWXPL16xdu5bGjRvfsK1JkyZ89dVXXL9+3fgUx4BVq/gMuJyUZI35DQoymse0okWL4ufnh5+fH0lJSfj5qc2diIgzOEaSqUgG2O00zZePPY8/TtbMmU2nSbGlS5eajiAi4vWaNIGVK6FFC/jzT6heHebOhUqVTCcTEV/k0iLZmTNnSExMvKnBfa5cuW47XeLEiRO33D8hIYEzZ87cNM0xLi6OuLi45OexsbFOSn9r9584QW6AxYshe3Zo1gxat7b+TIc9YyIjI7l69SpB6bxYKCLibI6RZOl2umV8PCxfDrNnw+zZ5D5wwHr/jYiAoUNBfUFFRNKNihVh3TqrULZ9O9StCz/+aH0EExFxJrcM+/nfKQV2u/2O0wxutf+ttgMMGTKE8PDw5K+oqCgnJL693P36QY8ekDs3XLxo/XZ+9FHImRMaNICRI+HAAZdm8CQ2m00FMhERF/jpp59YtWoVjRo1Mh3Ffc6etRrPdOhg3Yhq3BhGjbLeV4ODoXlzGDLEWvLMS6xcuZLHHnuMGjVqcPToUQAmT57MqlWrDCcTEfEuUVHWiLIGDeDSJXjgAfjiC9OpRMTXuLRIlj17dvz9/W8aNXbq1KmbRos55M6d+5b7BwQEkC1btpv2HzRoEDExMclfhw8fdt4PcCv33w/jx8PRo9btjEGDoEwZSEiAJUugXz8oVAjKl7fWK96wAZKSXJtJRER8To4cOahVqxY5c+Y0HcW1jhyBzz6zPvXkygVdusC0adaNqFy5oFs3+Plnq4A2dy707AkhIaZTp8j06dNp0qQJoaGhbNmyJXnk+8WLF3n//fcNpxMR8T7h4VZPsq5drfslTz0Fr74K/z+mQkQkzVxaJAsKCqJy5cosXLjwhu0LFy6kZs2at3xNjRo1btp/wYIFVKlS5Zb9yIKDg8mcOfMNX27h5wf33gvvvw87dkB0NAwfDvXqWd/bvt1ar7haNeu2R8+e8NtvcP26e/K50dSpU6lduzZvvfWW6SgiIuIN/voLPvzQeh+NioJnn7VuNCUmQrly1ieedevg2DH48kurrUFYmOnUd+3dd99l7NixfPHFFzdcw9SsWZPNmzcbTCYi4r2CgmDiRHjjDev5++9D587wrw48IiKp5vLVLQcMGEDnzp2pUqUKNWrUYPz48Rw6dIiePXsC1kiwo0eP8s033wDQs2dPPvvsMwYMGECPHj1Yu3YtX331Fd9//72ro6ZNkSLQv7/1dfasdYtj1iz49VfrIn/cOOsrWzZo2xYeftgqqAW4/K/A5c6fP8/q1avJkg57somIuMK6deuYNm0atWvX5sEHHzQdxzl274bvv4fp063Oyw42G9SoAW3aWF9FipjL6GR79uyhbt26N23PnDkzFy5ccH8gEREfYbPBm29CgQLWaLIpU6yJPjNnWq0rRURSy+UVmocffpizZ8/y9ttvc/z4ccqWLcu8efMoUKAAYC3lfujQoeT9CxUqxLx58+jfvz+jR48mT548fPrpp7Rr187VUZ0nWzbrdkbnznDtGixbZk0VmTEDTp+2Js9/8YXVx6x9e3joIWs9Y39/08lTxbHy2r59+wwnERHxDcuXL2fYsGEcO3bMu4tkhw/D1Knw3Xewdes/2wMCrPYFbdpYo8T+Z1EeXxEZGUl0dDQFCxa8YfuqVasoXLiwmVAiIj7kiScgXz5o1876yFWrljVW4f8/aoqI3DWb3e5bM7hjY2MJDw8nJibGfVMvUyohwfrt/cMPVsHs3Ll/vpcnj1VU69oVSpUyFjE19u/fT+HChQkODubKlSv4+bllPQgREZ/VrVs3JkyYwJtvvskbjvkk3uLsWWtRm+++g383pw8IgCZNrJHULVt65IrQzr6G+Oijj/j666+ZMGECjRo1Yt68eRw8eJD+/fszePBg+vTp44TU6Y9HX+uJiBHbtllruxw9aq2vNncu3HOP6VQi4klSev3g/XP9vElAADRsaH19/jksXmwVzGbOtKZkfvjhPz1aHn/c+iDhgR8i/ldUVBQBAQHExcVx9OhRl68wKiLi6/bs2QNAiRIlDCdJocREWLQIvvoKfvkF4uOt7TYb1K0Ljzxi3ebPnt1sTjd78cUXiYmJoX79+ly7do26desSHBzMwIEDVSATEXGi8uWtVpbNm1utoevWte7XNG9uOpmIeBuNJPMEcXHW7Y5Jk6zxwY6l7YOD4cEH4emn4b77rA8bHqp48eLs3buXxYsXc//995uOIyLi1XLmzMnp06fZtGkT93jyrfD9+633rokTramVDhUrwmOPWTd78uUzle6uueoa4sqVK+zcuZOkpCRKly5NxowZnXbs9Mgrr/VExC1iYqxuNosWWZ1sPv/c6lkmIpLS6wfNi/MEwcFWM/9Zs6wxwsOGWat7xcVZI83uvx/KlIHPPoPYWNNpb6l48eIA/PXXX4aTiIh4t/Pnz3P69Gngn9+tHiUpCebPhxYtrCb7b79tFciyZIE+fWDzZtiyBZ5/3qsKZK6UIUMGqlSpQrVq1VQgExFxofBwa8zB449b4w6efhpeecV66xIRSQlNt/Q0uXLBgAHWKplbt8L48TB5MuzaBc8+Cy+/bPUu690bypY1nTZZyZIl2b59O0l6BxIRSRPHVMs8efJ4VkElJsYaNTZ6NOzd+8/2hg2hWzdr5HNIiKl0HmPAgAG88847hIWFMWDAgDvuO3z4cDelEhFJPwIDYcIEKFQI3ngDhgyBgwetbcHBptOJiKdTkcxT2WxQqRKMGQMffGAVykaPht27YexY66tpU3jxRY+Yivnxxx8zdOhQoxlERHzB3v8vQHlMP7JDh6wRzhMmwKVL1rbMmeHJJ60bNv+/wrFYtmzZwvXr15Mfi4iI+9lsMHiwtcpl9+7WWjJHj1qtoL2g5bOIGKSeZN7EboelS61i2c8//zNuuGpVq1jWpo01+V5ERLyW3W7nxIkTXLp0iWLFipkLsnOntZjMd99ZqzMDlC5tTans3Bk8aZSbk/j0NYQP0d+TiNyNRYuszjYXL0KpUtZ0zIIFTacSEXdTTzJfZLNZ/cmmT4e//oJevaypLRs2QIcOULKk1TzZ8WFGRES8js1mIzIy0lyB7PfframTZcrAN99Y7ykNGsCCBbBjBzzzjE8WyFxhyJAhTJgw4abtEyZM4MMPPzSQSEQk/WnYEFatgrx5rQ421avDpk2mU4mIp1KRzFsVKWKNKDt4EF5/3Ro3HB1tTX8pXRqmTPlnlUw3ad26NZGRkfz5559uPa+IiDjB1q3QsiXcey/88ot1Y6ZtW1i/3roN36iR8an93mbcuHGULFnypu1lypRh7NixBhKJiKRP5cvDunXWnydPQt26MHeu6VQi4olUJPN2OXNaK4sdOgQffwzZs1sNlR97zHoX+Oknty3ncvz4cU6cOJHcdFpERO5OUlISHTp04KWXXuKSo/+Xq+3eDQ89ZPXBnDvXmrbftSv8+ac1crlaNffk8EEnTpwgMjLypu05cuTg+PHjBhKJiKRf+fLBypXQuDFcuQKtWsG4caZTiYinUZHMV2TMCAMHwt9/w3vvWSPLdu60PvhUrQrLlrk8gqPJtIpkIiKpc/jwYaZNm8Ynn3xCiKtXijx2zBp9XKaMdUPFZoNHHrHeOyZNshq3SJpERUWxevXqm7avXr2aPHnyGEgkIpK+Zc4Mc+bAE09Y4wh69oRBg9w2pkBEvICKZL4mUyZ45RXYv99a8zhTJti8GerXtxr7//+qaa6gIpmISNr89ddfABQpUoSAABctQH3lCrzzDhQvbvWxTEqC1q3hjz+sJv3Fi7vmvOlQ9+7d6devHxMnTuTgwYMcPHiQCRMm0L9/f3r06GE6nkdo06YNWbJkoX379qajiEg6ERgIX31lTcYB+OADePRRiIszm0tEPIOKZL4qPBzefBP27bMa/Pv7WytilikD/fvD+fNOP6WKZCIiaeP4/VncFYUqu90qgpUsCYMHw+XLUKMGrF1rvT+UK+f8c6ZzL774It26daNXr14ULlyYwoUL8+yzz9K3b18GDRpkOp5H6Nu3L998843pGCKSzthsVlvnSZMgIACmTrWmYZ47ZzqZiJimIpmvy5HDavC/bRs0bw7Xr8OIEdaHpG+/tT40Ocm/i2R2Jx5XRCS9cIwkc/w+dZo//7S6FD/6KBw+DPnzw/ffw+rV1jJf4hI2m40PP/yQ06dPs27dOv744w/OnTvH4MGDTUfzGPXr1ydTpkymY4hIOtW1K/z6qzUNc8UKqFULDhwwnUpETFKRLL0oXdpqyPzbb1afmVOnoHNnaNDAatrsBMWKFcNms3H+/HnOnDnjlGOKiKQnTi+SXbliNVupWBFWrYKwMHj3Xev3fseOWq3STTJmzEjVqlUpW7YswcHBTj32kCFDsNls9OvXz6nHXbFiBQ888AB58uTBZrPx888/33K/zz//nEKFChESEkLlypVZuXKlU3OIiLhagwbWW2S+fNbbY/XqsHGj6VQiYoqLGp6Ix2rcGLZuhWHDrIn4S5daq2C+9BK8+iqkoVF0aGgo9957L6GhocTGxpIjRw7n5RYRSQecOt1y/nzo3dvqUQnw4IMwcqQ1ikxcZsCAAbzzzjuEhYUxYMCAO+47fPjwNJ1rw4YNjB8/nvLly99xv9WrV1OtWjUCAwNv2L57924iIiLInTv3Ta+5fPkyFSpU4IknnqBdu3a3PO4PP/xAv379+Pzzz6lVqxbjxo2jWbNm7Ny5k/z//++scuXKxN2i0c+CBQu0eIGIeIxy5WDdOmjRwmrRWa8e/PADtGxpOpmIuJuKZOlRUJA1sqBjR+jTB+bNs0YWTJ9uTcyvVi3Vh167dq3zcoqIpCPXr19PHoWbppFk58/Ds8/ClCnW86go+Owza617cbktW7Zw/fp1ADZv3oztNqP1brc9pS5dusSjjz7KF198wbvvvnvb/ZKSkujduzfFihVj6tSp+Pv7A9aoxfr169O/f39efPHFm17XrFkzmjVrdscMw4cPp1u3bnTv3h2AESNG8NtvvzFmzBiGDBkCwKZNm1L7I4qIuFXevNaUy4cesibftG5tvX0+84zpZCLiTppumZ4VKmStgTx9OuTODbt2WU2cX3lFy7uIiLhZYGAgMTExHDp0KPUjcefNsxZomTIF/Pzg+edh504VyNxo5MiRZM6cGYBly5axdOnSW34tWbIkTefp3bs3LVq0oGHDhnfcz8/Pj3nz5rFlyxa6dOlCUlIS+/bt4/7776dVq1a3LJClRHx8PJs2baJx48Y3bG/cuDFr1qxJ1TH/y+jRoyldujRVq1Z1yfFFRDJnhtmzoVs3a/HnXr2sCTdJSaaTiYi7qEiW3tls0LYt7NgBnTpZ7wBDhkCVKpCGu7+Ou+giIpJyfn5+REVF3f0oo9hY64q+RQs4fhxKlIA1a2DoUMiY0TVh5ZYqVaqUPCKwcOHCnD171unnmDp1Kps3b04erfVf8uTJw5IlS1i9ejWdOnXi/vvvp0GDBowdOzbVGc6cOUNiYiK5cuW6YXuuXLk4ceJEio/TpEkTOnTowLx588iXLx8bNmy47b69e/dm586dd9xHRCStAgPhiy/gnXes5x99ZH1MunbNbC4RcQ8VycSSLZs18mDGDMiZ0yqaVa8OH3xwV7dONm/eTFRU1H/2RxERESdZudJqpjJhgnXjY8AA2LIF7r3XdLJ0KSIigv3/3wfuwIEDJDl5+MHhw4d57rnn+Pbbbwm5iz6i+fPn55tvvuGHH34gICCAr776Ks1TPuHmaaN2u/2ujvvbb79x+vRprly5wpEjRzRKTEQ8gs0Gr70G33xjFc1++MFq7XzunOlkIuJqKpLJjdq0gT//hA4dICHB6l3WpIk1MiEFcuTIwZEjR4iOjtZoMhGRu/Dmm2/SoUMHli1blrIXJCZat7nvuw8OHYLChWH5cmthltBQV0aVO2jXrh316tWjUKFC2Gw2qlSpQuHChW/5lRqbNm3i1KlTVK5cmYCAAAICAli+fDmffvopAQEBJCYm3vJ1J0+e5KmnnuKBBx7gypUr9O/fPy0/JtmzZ8ff3/+mUWOnTp26aXSZiIi36twZfv3Vmoa5ciXUrPnPejgi4pvUuF9ulj27dbukaVOr+fOiRVChAnz9NfxHE9+8efOSIUMGrly5wv79+52zQpuISDqwYMEC1q5dS/v27f9752PH4LHHrBWKwbqKHz0aMmVybUj5T+PHj6dt27ZER0fTt29fevToQSYn/r00aNCA7du337DtiSeeoGTJkrz00kvJjfn/7cyZMzRo0IBSpUrx008/sXfvXu677z6Cg4MZOnRoqnIEBQVRuXJlFi5cSJs2bZK3L1y4kNatW6fqmCIinuj++2H1amjeHPbssSbbzJkDGvgq4ptUJJNbs9ngySetRv4dO8K2bdY7w/PPWz3L/mcZeQc/Pz+KFy/O1q1b2bNnj4pkIiIpYLfb2bVrFwClSpW6887z50OXLnDmDISFweefW8/FI2zbto3GjRvTtGlTNm3axHPPPefUIlmmTJkoW7bsDdvCwsLIli3bTdvBWt2yadOmFChQIHmqZalSpVi0aBH169cnb968txxVdunSJaKjo5Of79+/n61bt5I1a1by588PwIABA+jcuTNVqlShRo0ajB8/nkOHDtGzZ0+n/bwiIp6gbFlYt85q/bl1qzWI+/vvtS6OiC/SdEu5s1KlYP16a0QZWNN4GjWCkydv+5ISJUoAsGfPHnckFBHxeidPnuTChQvJNxpuKSkJ3njDumFx5gxUrAibN6tA5mH+3bh/+fLlxMfHG83j5+fHkCFDmD59OkFBQcnby5Urx6JFi247cnHjxo1UqlSJSpUqAVZBrFKlSgwePDh5n4cffpgRI0bw9ttvU7FiRVasWMG8efMoUKCAa38oERED8uSBFSusyTZXrlhdaj7/3HQqEXE2jSST/xYSAp9+CvXrQ9euVs+bypVh+vRbNoZWkUxE5O44RpEVKlTo1s3YL1ywplTOmWM979XLumlxF43bxT0cjftz5szpksb9t/JffewaNWp0y+0VK1a87Wvuu+8+7Hb7f567V69e9OrV6z/3ExHxBZkywaxZ1tvwl19C795w4IC11pmfhp+I+AQVySTl2rSxRpa1aQO7d0PdujBqFPToYU3P/H8qkomI3J07TrXcuRMefBD27rWKYuPGafSYB3M07o+MjExu3H+rPmEAf//9t5vTiYhIWgUGwvjxUKgQvPoqfPwxHDxotW/WvSsR76cimdydkiXh99/h8cdhxgx4+mnYuNFqGP3/fcrKli1L7dq1ufcWo8xERORmty2SzZhhjeC9dAny57eeV65sIKGklKsb94uIiHk2G7zyivXW/OST8OOP1po6P/8M2bKZTiciaaEimdy9TJlg2jT46CPr3eGLL2DfPmtbliyUL1+elStXmk4pIuI1rl27RnBw8D9FMrsdPvwQBg2yntevb606nCOHuZCSYk2bNgVwSeN+ERHxHI89BnnzWhNtVq2CmjWt9XUKFzadTERSSzOnJXVsNnjpJZg9GzJmhCVLrJUw9+0znUxExOt88cUXXL58mU6dOsH169Y0dkeB7NlnYcECFci80MSJE9m6dSuPPfYYNWvW5OjRowBMnjyZVatWGU4nIiLOUL8+rF5tjSr76y+oXt2aeCMi3klFMkmb5s2td4WoKNizx2rk//+jyK5evcr58+cNBxQR8Q7+/v4EX71qLZv11VdWB+BRo6yFUwI08NsbTZ8+nSZNmhAaGsrmzZuJi4sD4OLFi7z//vuG04mIiLOUKQNr10KlSnD6NNx3n9XgX0S8j4pkknbly8P69VC1Kpw9Cw0bMqN9e8LCwnj33XdNpxMR8Q7791vzNJYssUbozpoFffqYTiVp8O677zJ27Fi++OILAv+/bydAzZo12bx5s8FkIiLibHnywPLl1r2uq1etKZijR5tOJSJ3S0UycY7ISFi2DNq1g/h42k6fzrN2Ozt37jSdTETEo3333Xc8XLIkl8qXh127rOYmK1dCixamo0ka7dmzh7p16960PXPmzFy4cMH9gURExKUyZbK60fToAUlJ1r2ugQOtxyLiHVQkE+fJkMFa2qVvXwBGAi3WrLEaUIuIyC1dmDOHcXv2kPHSpX9G5lasaDqWOEFkZCTR0dE3bV+1ahWF1dVZRMQnBQTAuHHgmFU/bBh07AjXrpnNJSIpoyKZOJefH4wYwZVXXwWgT2ws8U88AQkJhoOJiHig2bPp9sMPRADHihSx5mnkzWs6lTjJ008/zXPPPcf69eux2WwcO3aMKVOmMHDgQHr16mU6noiIuIjNZq2/M2UKBAbCTz9Bw4ZWZxoR8Wwqkonz2WxkePddns+UiUQg6OuvoUMH3T4REfm3SZOgTRuCk5KYDewdNQoiIgyHEmd68cUXefDBB6lfvz6XLl2ibt26dO/enaeffpo+6jcnIuLzOnWyFqgOD7fWOqtZE/btM51KRO5ERTJxmS1VqtABSAwMhJ9/hgcegCtXTMcSETFv5Eh44glITOQboC1QolIl06nEBd577z3OnDnD77//zrp16zh9+jTvvPOO6VgiIuIm991nFcjy54e//oIaNazOCiLimVQkE5cpXbo0M4Gv2rWDsDBYtMhqRH3pkuloIiLmfPwx9OsHwOnOnXkcyBgRQa5cuUymEhfKkCEDVapUoVq1amTMmNF0HBERcbMyZWDdOrjnHjh9GurXh19+MZ1KRG5FRTJxmfr169O1a1eyd+gAv/1mLfeybJm1LnJsrOl4IiLu9/778OKL1uPXX2dJ8+bYgVKlSmGz2YxGE9e4cOECw4YNo3v37vTo0YPhw4cTExNjOpaIiLhZZKTVerR5c7h6Fdq0gVGjTKcSkf+lIpm4TLt27Zg0aRJt27aFWrVg4cJ/JuQ3agQXLpiOKCLiPm+/Df+/qAlvvQVvv02S3U6JEiUoX7682WziEhs3bqRIkSJ88sknnDt3jjNnzvDJJ59QpEgRNm/ebDqeiIi4WcaM1giyp58Gux369oWBAyEpyXQyEXGw2e12u+kQzhQbG0t4eDgxMTFkzpzZdBz5X5s3WwWyc+es8cYLF0LWrKZTiYi4jt0OgwfDu+9az99/31ry6oZd7BpJ5gGcfQ1Rp04dihYtyhdffEFAQAAACQkJdO/enb///psVK1ak+Rzpka71RMTb2e3w4Yf/XA60bw/ffAOhoWZzifiylF4/aCSZuNT169fZtWsX58+ftzbccw8sXQo5clgFs6ZNQdNORMSXvfnmPwWyoUNvKpABKpD5qI0bN/LSSy8lF8gAAgICePHFF9m4caPBZCIiYpLNBi+/DFOmQFAQTJsGDRvCmTOmk4mIimTiUo0bN6Z06dLMmzfvn43ly8OSJZAtG2zYYE3MVzN/EfFFH35oTbME+OQTeP755G/Z7XZ8bDC3/I/MmTNz6NChm7YfPnyYTJkyGUgkIiKepFMnWLAAIiJgzRqoWRP27TOdSiR9U5FMXKpEiRIA7Ny588ZvlC1rTbV0vCM88ABcueL+gCIirjJqlHWbGGDIkOQVLR2io6OJiIjg/vvvd382cYuHH36Ybt268cMPP3D48GGOHDnC1KlT6d69O4888ojpeCIi4gHq1bM+DhUoAHv3QvXqsH696VQi6VfAf+8iknqlS5cGblEkA6hUyVr1smFDa9XLNm1g1iwIDnZvSBERZ5swwerGC/D66/8Uy/5lx44dxMbGEqvVfn3W0KFDsdlsdOnShYSEBAACAwN55pln+OCDDwynExERT1GqFKxbBy1bwqZNUL8+fPcdPPig6WQi6Y9GkolL3bFIBlCtGsybBxkyWGONO3SA69fdmFBExMm+/x66d7ceDxhgrWR5Czt27ACgbNmy7kombhYUFMTIkSM5f/48W7duZcuWLZw7d45PPvmEYN0QEhGRf8md2xo30KIFXL0KbdvCp5+aTiWS/qhIJi7lKJJFR0cTFxd3651q14bZsyEkxPqze3etgywi3umXX6BzZ2vZqp49rUb9t2nKryKZ7xsyZAgTJkwgQ4YMlCtXjvLly5MhQwYmTJjAhx9+aDqeiIh4mIwZ4eefrUsIux2ee86636aPRiLuoyKZuFRkZCTh4eEkJSWxd+/e2+94//3w00/g72+tf/zSS+4LKSLiDCtXwsMPQ2IidO0Ko0fftkAGsH37dkBFMl82btw4SpYsedP2MmXKMHbsWAOJRETE0wUEwOefW2v/gLXuT4cO1ugyEXE9FcnEpWw2G6VKlQLuMOXSoWVL+Oor6/HQofDxxy5OJyLiJNu3Q6tWEBcHrVvDl1+C3+3fYuPi4vjrr78AFcl82YkTJ4iMjLxpe44cOTh+/LiBRCIi4g1sNnjxRauDQ1AQzJgBDRrAmTOmk4n4PhXJxOW6du3K22+/nbIPgl27wkcfWY9ffBG+/tq14URE0urgQWjaFC5csKaPf/+9dRv4Dvbs2UNiYiLh4eHkzZvXPTnF7aKioli9evVN21evXk2ePHkMJBIREW/SsSMsXAhZssDatVCjBkRHm04l4tu0uqW4XM+ePe/uBS+8AKdOWaPJunWDbNmsUWYiIp7m7Flo0gSOHYMyZawVekND//NlSUlJtGjRggwZMmC7w5RM8W7du3enX79+XL9+nfvvvx+AxYsX8+KLL/L8888bTiciIt6gbl1YvRqaN7cKZDVqWJcbNWqYTibim2x2u91uOoQzxcbGEh4eTkxMDJkzZzYdR1IrKQmeeMLqTxYSAkuW6J1ARDzL5cvQsKG1ZntUFKxZA/nymU4laeDsawi73c7LL7/Mp59+Snx8PAAhISG89NJLDB48OM3HT690rSci6dGJE9a4gU2brI9HU6ZYK2CKSMqk9PpB0y3FLfbv388vv/zClStXUvYCPz+rp0+LFnDtmtXrZ98+14YUEUmphARrDsS6ddYciN9+U4FMbmKz2fjwww85ffo069at448//uDcuXMqkImIyF3LnRuWL7cKZdeuQfv2MGKE6VQivkdFMnGLGjVq8OCDDyav5pYigYEwdSrcc4/VpbJFCzh3znUhRURSasAAmDPHmlo5Zw78/wIlKXVGnXfTlYwZM1K1alXKli1LcHCw6TgiIuKlwsJg5kx45hmw26F/f+jXz1pYW0ScQ0UycYvy5csD3F2RDCBjRusDaFQU7NkDbdpYq8eJiJgyapT1BfDtt1Cz5l29/OLFi+TIkYOcOXNy8eJFFwQUERERXxUQAKNH/7PW2ciR8NBDcPWq2VwivkJFMnGLcuXKAakokgFERsLcuZApE6xYAd27W7dORETcbe5c65YtwIcfpqoZyM6dOwHw9/cnU6ZMTgwnIiIi6YHNZq11NnUqBAXBjBlw//1w+rTpZCLeT0UycQtHkWzbtm2pPQBMmwb+/tbIjbfecmI6EZEU+OMPqw9ZUpK18u4LL6TqMDt27ACgbNmyzkwnIiIi6czDD8OiRVZ71HXrrHXO9u41nUrEu6lIJm7x75FkqV5QtXFjGDPGevzWWzB5spPSiYj8h+PHrU65ly5Zt2rHjLFu46aCimQiIiLiLHXqWAtsFypkrXNWo4b1XERSR0UycYvSpUvj5+fH2bNnOXHiROoP1KMHvPSS9bh7d+uWiYiIK12+DA88AEeOQMmS1qjWwMBUH85RJHPcPBARERFJi5IlYe1aqFoVzp6FBg1g+nTTqUS8k4pk4hahoaEUK1YMSMOUS4f334fWrSE+3mrkf/SoExKKiNxCUhJ07QqbNkH27NZCIlmypOmQGkkmIiIizpYrFyxdat3Xu3YNOnSAESNMpxLxPiqSidsMHjyY7777jkqVKqXtQH5+1lTLsmXhxAl48EEt5yIirvHee9at2KAg+PlnKFIkTYc7ffp08mja0qVLOyGgiIiIiCUsDGbOhN69rXXO+veH556DxETTyUS8R4DpAJJ+dOrUyXkHy5QJZs2yxhRv3GhNvfz221T3CBIRuckvv8DgwdbjMWOgVq00HzIxMZH+/ftz6tQpMmbMmObjiYiIiPybvz+MGgUFC1prDH36KRw6BFOmQIYMptOJeD6NJBPvVaiQ1RsoIAC++w4++sh0IhHxFX/+CY89Zj3u0weefNIph82dOzfDhw/n22+/dcrxRERERP6XzQYDB8IPP0BwsDUY/v774dQp08lEPJ+KZOI2iYmJLFiwgGHDhpGQkOCcg953H4wcaT0eNMjqFyQikhbnz1vTuC9dsn7HDB9uOpGIiIjIXXvoIVi0CLJmhfXrrZUv//rLdCoRz6YimbiNzWajbdu2DBw4kL179zrvwM88A08/bU2879QJdu1y3rFFJH1JSICOHSE6GgoUgB9/TNNKlv9r48aNxMTEOO14IiIiIndSuzasWWNNwvn7b6hZ03ouIremIpm4jZ+fX/Jqbmle4fLfbDZrsn3dunDxIrRta/0pInK3Bg2CBQsgNNSam5Ajh9MOfe3aNapXr05ERATHjx932nFFRERE7qRECVi3zmrnfPasNfVy2jTTqUQ8k4pk4lYVKlQAYOvWrc49cFCQNeIjb17YvdvqH2S3O/ccIuLbvv8ehg61Hk+cCBUrOvXwf/75J4mJiWTLlo3cuXM79dgiIiIid5IzJyxdCq1aQVycNRVz+HB9ZBL5XyqSiVvdc889AGzZssX5B8+VC376yZoaNW2a+giJSMr9+ae1Si7Ayy/Dww87/RR//PEHABUrVsSmlXhFRETEzcLCYMYMa00iux2efx769oXERNPJRDyHimTiVpUqVQKsIpndFbctatSAESOsxy+9BMuWOf8cIuJbLl6Edu3gyhVo0ADefdclp3GMoHWMqBURERFxN39/q1PNsGHW888+++cySERUJBM3K1euHP7+/pw6dcp1PXmeeQY6d7ZuiTz8MBw96prziIj3s9uhWzfYswfy5bOmXPr7u+RUjiJZRSdP4xQRERG5GzYbDBhgTcIJDoZffoH69eHUKdPJRMxTkUzcKjQ0lJIlSwIumnIJ1m/9sWOhfHnrN32HDhAf75pziYh3GznSukIMCLD6GjqxUf+/2e32G6ZbioiIiJjWvj0sXgxZs8Lvv1uTcvbsMZ1KxCwVycTtRo0axYYNG2jYsKHrTpIhgzXhPjwc1q61JtyLiPzb6tXwwgvW4+HDrStDFzlw4ACxsbEEBQUl3ygQERERMa1WLevjUuHC8PffULMmrFplOpWIOSqSidvVr1+fKlWqEBwc7NoTFSkC335rPf7sM5gyxbXnExHvcfKktaxTQgJ07Gh1sHWhzJkzM3r0aF599VUCAwNdei4RERGRu1G8uFUou/deOHcOGja0BtqLpEcqkolva9kSXn/devz007B7t9k8ImJeQgI88ggcOwalSsEXX1jTtF0oW7Zs9OrVi8GDB7v0PCIiIiKpkTMnLFkCDz4IcXHWvcShQ632rSLpiYpk4nZ2u51x48bx9NNPc+HCBdef8I034P774fJl67f91auuP6eIeK7Bg2HpUsiY0ZqWnTGj6UQiIiIixmXIANOmQd++1vMXXrAeJyaazSXiTiqSidvZbDaGDBnC+PHjXde8/9/8/a2pljlzwvbt8Nxzrj+niHim336DIUOsx19+CW7qD/b999+zefNmEhIS3HI+ERERkdTw97fWNRo+3Bpo/9ln0LatNd5AJD1QkUyMqFSpEuDCFS7/V+7cVqHMZrOmVn33nXvOKyKe4/hx6NzZevzMM/Dww2457ZkzZ+jUqROVK1fm0qVLbjmniIiISFr0728t/B0cDLNmQf36VktXEV+nIpkY4fYiGVgdKF97zXr89NPw11/uO7eImJWYCI89BqdPQ/ny1u1RN9m0aRMAxYsXJyIiwm3nFREREUmL9u2tPmXZssGGDdZC4Hv2mE4l4loqkokRRopkYPUnq1cPLl2y+pNdu+be84uIGe+/b13lhYXBDz9ASIjbTr1x40YAqlSp4rZzioiIiDhDzZrWypdFisD+/VahbNUq06lEXEdFMjHCUSTbvXs3V93ZSN/f35pqmSMH/PGHNY5YRHzbihXw5pvW488/d1sfMgdHkaxy5cpuPa+IiIiIMxQrZhXKqleH8+etCTo//mg6lYhrqEgmRuTNm5ccOXKQmJjI9u3b3XvyPHng22+t/mRjx+o3vIgvO3MGOnWCpCTo0sX6cjONJBMRERFvlyMHLF4MbdpAXJzV2vXjj8FuN51MxLlUJBMjbDZb8qiKXbt2uT9A48YwaJD1uHt3iI52fwYRcS27HR5/HI4ehRIlYPRot0c4ceIER44cwWazJY+gFREREfFGGTLATz/Bc89Zz198Efr0AS3eLb5ERTIxZvTo0Zw7d46uXbuaCfDWW1CnDly8aI00uX7dTA4RcY1PPoG5c61lmX78ETJmdHsER9P+kiVLkilTJrefX0RERMSZ/P1hxAjrMstmszpZtGkDly+bTibiHCqSiTGFCxcmS5Ys5gIEBMCUKZAli7VcyxtvmMsiIs71++/w8svW408+sVa0NKBOnTr89ttvfPDBB0bOLyIiIuIK/frBtGnWWkhz5sB998HJk6ZTiaSdimSSvkVFwRdfWI8/+ACWLjWbR0TSLjYWOna0Roe2bw89exqLkjlzZho3bkyrVq2MZRARERFxhbZtrcXDs2WDjRutxv67d5tOJZI2KpKJUUOHDqV+/fqsMrmOcLt20KOH1b+oc2c4e9ZcFhFJuz59rDXKCxSwiuA2m+lEIiIiIj6pRg1r5cuiReHAAahZ01pYXMRbqUgmRq1fv55ly5axevVqs0E++cRq7H30qNXIX8u0iHin77+HyZPBz8+aTh0RYSzKiRMnePnll5k5c6axDCIiIiKuVqwYrFljjSQ7fx4aNYKpU02nEkkdFcnEqGrVqgGwYcMGs0HCwqwP14GB8PPPMH682TwicvcOHoRnnrEev/Ya1KplNM769ev58MMPeUP9DkVERMTH5chhTb1s2xbi4+GRR+DDDzX2QLyPimRilKNI9vvvvxtOAlSqZPUlA+jfH3buNJtHRFIuMdGaLh0TY93GfP1104nYuHEjAFWrVjWcRERERMT1QkOtBcX797eev/wy9O4NCQlmc4ncDRXJxKh77rkHm83G4cOHOXHihOk41jItjRvD1avQqRNcu2Y6kYikxAcfwMqVkDGjNc0yIMB0IjZt2gRAlSpVDCcRERERcQ9/fxg+HEaMsNrCjhkDbdrA5cumk4mkjIpkYlSmTJkoXbo04AFTLsHqY/T119Z44T/+gEGDTCcSkf/y++/gmNI4ejQULmw2D2C321m/fj2gIpmIiIikP889B9OnQ0gIzJkD9eqBJ4yJEPkvKpKJcY6pSB5RJAPInRsmTrQejxgB8+cbjSMid3DpkjXqMzERHn7YmnLpAfbu3cu5c+cICQmhQoUKpuOIiIiIuF2bNrB0KWTPDps2WR0xdu0ynUrkzlQkE+OqVatG1qxZSUpKMh3lHy1awLPPWo8ffxxOnTIaR0Ruo29f2LcP8ueHsWOtcf0eYO3atQBUrlyZoKAgw2lEREREzKheHdautVbAPHgQataE5ctNpxK5PZcWyc6fP0/nzp0JDw8nPDyczp07c+HChTu+5vHHH8dms93wVb16dVfGFMO6d+/OmTNnePfdd01HudFHH0HZslaBrEcPLc0i4ml++ska9WmzweTJEPF/7d13eFTV2sbh3yQhIZSEGjqI9N6li/SOyCflIE2KoBQBUVGU4lFROYIoiKJUQTpBFJAiPYCHaEKRIk16FQmhmECyvz/WIRIJmIQke8pzX1cuZiY7mWfPziY776z1rix2J4qza9cuAGrWrGlzEhERERF7FS0K27aZAtmVK6YF9Lx5dqcSSViqFsk6d+5MeHg433//Pd9//z3h4eF0TcRUmGbNmnH27Nm4j5UrV6ZmTLFZunTpcDjJ6I940qeHOXPA1xeWL4fp0+1OJCJ3nDwJzz1nbr/2Gjz+uL15/ubDDz/k8OHDDLwzIlVERETEg+XIAevWwf/9H0RHm24Z77+vcQjifFKtSLZ//36+//57vvzyS2rWrEnNmjX54osv+O677zh48OADv9bPz4/cuXPHfWTLli21YoqTiYqKsjtCfBUqwJ0Rbi++aKZ1iYi9YmKgWzfzVmS1ajB6tN2J7uFwOChSpAgFCxa0O4qIiIiIU/D3h4ULYehQc3/4cHj+ebh9295cIndLtSLZ9u3bCQwMpHr16nGP1ahRg8DAQLZt2/bAr924cSNBQUEUL16cPn36cOEB/aCioqK4evVqvA9xPXPnzqVAgQIMGjTI7ij3GjrUjFK5ft38Ya7/xUXs9dFHsHEjZMwIc+dCunR2JxIRERGRRPDygg8/hIkTTceMzz+HJ580azGJOINUK5KdO3eOoKCgex4PCgri3APWfm3evDlz585l/fr1fPjhh+zcuZMGDRrcd4TR2LFj43qeBQYGUqBAgRTbB0k7GTNm5NSpU4SEhNgd5V7e3jBrFmTObCbTf/CB3YlEPNfevfD66+b2+PGmC6yTmTJlCk8//TTfffed3VFEREREnNKgQbB0qRldtnIl1KsHDygTiKSZJBfJRo8efU9j/b9/hIaGAiTYZ8qyrAf2n+rYsSMtW7akbNmytG7dmlWrVvHrr7+yYsWKBLd/7bXXiIiIiPs4efJkUndJnMCd5ta//PLLPy7uYItHHoFJk8ztUaPMGsYikraio81ozuhoswJtnz52J0rQypUrWbJkCYcPH7Y7iojTe+qpp8iaNStPP/203VFERCSNtW0LGzZAzpzw889mJcx9++xOJZ4uyUWyAQMGsH///gd+lC1blty5c3P+/Pl7vv7ixYvkypUr0c+XJ08eChUqxKFDhxL8vJ+fHwEBAfE+xPXkypWLokWLAmaqrlPq2tV0mrx9G7p0gZs37U4k4ln+/W8IC4Ps2eHLL80YfSdjWRY7duwAtLKlSGIMGjSI2bNn2x1DRERsUr06bN9uJgccPw61a8OmTXanEk+W5CJZjhw5KFmy5AM/0qdPT82aNYmIiOC///1v3Nf++OOPREREUKtWrUQ/3++//87JkyfJkydPUqOKi7nzc/FPPetsc2fSfJ48cOCA6TQpImljxw54911z+7PPIHdue/Pcx+HDh7l06RK+vr5UrFjR7jgiTq9+/fpkzpzZ7hgiImKjIkVMV5tatcy6TI0bw9df251KPFWq9SQrVaoUzZo1o0+fPuzYsYMdO3bQp08fWrVqRYkSJeK2K1myJMHBwQBcu3aNYcOGsX37dn777Tc2btxI69atyZEjB0899VRqRRUnUbt2bQDn7Et2R/bsMH26uf3xx7B2rb15RDzBnUUzYmPhmWfAiadlbd26FYCqVavi5+dncxpxV1OmTKF8+fJxI+hr1qzJqlWrUvQ5Nm/eTOvWrcmbNy8Oh4Nly5YluN2nn35K4cKFSZ8+PVWqVGHLli0pmkNERDxDjhywbp25zLt1y1zyjR0LlmV3MvE0qVYkA7NiYbly5WjSpAlNmjShfPnyfPXVV/G2OXjwIBEREQB4e3uzZ88ennzySYoXL0737t0pXrw427dv17uMHuBOkezHH3/ktjOvINmsGbzwgrndowdcvmxrHBG39+qrcOgQ5MsHn3xid5oHulMgePzxx21OIu4sf/78vPfee4SGhhIaGkqDBg148skn+eWXXxLcPiQkhFu3bt3z+IEDB+67mNL169epUKECk+7040zAggULGDx4MCNGjCAsLIy6devSvHlzTpw4EbdNlSpVKFu27D0fZ86cSeJei4iIu/P3hwULYNgwc//116FfP9PtRiStOCzLvWqzV69eJTAwkIiICPUnczGxsbE0aNCA8uXL8+9//5vAwEC7I93fjRtQqRL8+it06ADz5ztlfyQRl7dmDTRt+tftxo3tzfMPihYtypEjR1i5ciXNmze3O44kkStfQ2TLlo1x48bRq1eveI/HxsZSuXJlihUrxvz58/H29gbg119/pV69egwZMoRXXnnlgd/b4XAQHBxM27Zt4z1evXp1KleuzJQpU+IeK1WqFG3btmXs2LGJzr5x40YmTZrE4sWLE7W9Kx8nERFJnEmT4MUXzUSCFi1M8SxTJrtTiStL7PVDqo4kE0kKLy8vNm7cyMcff+zcBTKADBlgzhzw8YGFCzVpXiQ1/PEH9Oxpbvfv7/QFsps3b5IrVy7Sp0+fpN6bIg8jJiaG+fPnc/369QQXi/Dy8mLlypWEhYXRrVs3YmNjOXLkCA0aNKBNmzb/WCC7n+joaH766SeaNGkS7/EmTZqkWm/RyZMnU7p0aapVq5Yq319ERJzHgAGwdKkZXbZyJdSrB2fP2p1KPIGKZCLJVa0ajBxpbvfvD3dNLxGRFDBwIJw+DcWLwwcf2J3mH/n7+xMSEsKVK1ecv9AvLm/Pnj1kypQJPz8/+vXrR3BwMKVLl05w27x587J+/XpCQkLo3LkzDRo0oGHDhnz22WfJfv5Lly4RExNzz4rluXLluu8UzoQ0bdqU9u3bs3LlSvLnz8/OnTvvu23//v3Zt2/fA7cRERH38eSTsHEj5MwJP/8MNWrAfToLiKQYFcnE6dy8eZONGzfiEjOBX3vN/G8dEQHPPmvGA4vIw1u0CObOBS8vmD3bjN50EWrYL2mhRIkShIeHs2PHDp5//nm6d+/Ovn377rt9wYIFmT17NgsWLMDHx4dp06bhSIE2AX//HpZlJen7rl69mosXL3Ljxg1OnTqlUWIiIhLPY4+ZRc6LFzdjEmrXhg0b7E4l7kxFMnEqMTEx5MuXj/r16z/wYt9p+Pj89Qf8+vVO31RcxCWcPWu6tILp2Fq9ur15Eun69et2RxAP4uvrS9GiRalatSpjx46lQoUKTJw48b7bnz9/nueee47WrVtz48YNhgwZ8lDPnyNHDry9ve8ZNXbhwoV7RpeJiIg8jEcfhW3boE4dMzahaVPzXqpIalCRTJyKt7c3VapUAWDTpk02p0mkYsXgP/8xt4cPh/377c0j4sosC3r3NqvGVqoEb75pd6JEuXz5MlmyZKFKlSrcvHnT7jjigSzLIioqKsHPXbp0iYYNG1KqVCmWLl3K+vXrWbhwIcPuLB+WDL6+vlSpUoW1a9fGe3zt2rXqySciIikue3ZYu9asmXbrFnTpAu++ay4dRVKSimTidJ544gnArHblMvr1g2bN4M8/oWtX8z+3iCTdl1+a7qx+fvDVV+Dra3eiRAkJCeH27dtcv34df39/u+OIm3v99dfZsmULv/32G3v27GHEiBFs3LiRZ5555p5tY2NjadasGYUKFYqbalmqVCnWrVvHzJkzmTBhQoLPce3aNcLDwwkPDwfg2LFjhIeHc+Ku/ptDhw7lyy+/ZPr06ezfv58hQ4Zw4sQJ+t0ZCSoiIpKC0qeHefPg5ZfN/REjoG9fuH3b3lziXnzsDiDyd3cXyZLa28Q2DgdMmwblysFPP8G//w1vvWV3KhHXcvQo3JkC9u67UKaMvXmSYPPmzQA8/vjjNicRT3D+/Hm6du3K2bNnCQwMpHz58nz//fc0TmAFWC8vL8aOHUvdunXxvavoXK5cOdatW0f27NkTfI7Q0FDq168fd3/o0KEAdO/enZkzZwLQsWNHfv/9d9566y3Onj1L2bJlWblyJYUKFUrBvRUREfmLl5dZz6lQIRg0CL74Ak6ehIULIXNmu9OJO3BYLtEdPfGuXr1KYGAgERERBAQE2B1HkiE6OposWbJw8+ZNfvnll/uu1uWUFi6Ejh3B2xtCQlyml5KI7WJizNreISHm3/XrzVWQi6hSpQo///wzc+bMSXA0j7gGXUO4Bh0nEREBWL4cOnWCmzehYkVYsQLy5rU7lTirxF4/uM5fIOIxfH194/qZuNSUSzCT5Dt3Nn/wd+0KauQtkjgffmgKZJkywcyZLlUg+/333wkLCwOgYcOGNqcRERER8Qxt2sCmTRAUBOHhUKMG/PKL3anE1bnOXyHiUe5MuXSZ5v13mzQJ8uWDQ4fglVfsTiPi/Hbv/qtB/8SJ8MgjtsZJqg0bNmBZFmXKlCF37tx2xxERERHxGNWqwY4dUKKEmXZZu7aZkCCSXCqSiVNq27Yt48eP54033rA7StJlzWpGwgB8+imsXm1rHBGnFhVlRl1GR0Pr1vDss3YnSrIffvgBgEaNGtmcRERERMTzFC4M27ZBnToQEWHWU5szx+5U4qrUuF+cUtmyZSlbtqzdMZKvUSMYOBA++cT80b93L2TLZncqEeczZowZSZYjh+m86goLdfxNo0aN+OOPP2jVqpXdUUREREQ8UrZssHYt9OgBCxaY92B/+82sgOmCl5diIzXuF0ktN25A5cpw8KBp5j9/vt2JRJzLtm1Qty7ExsLSpfDUU3YnEg+nawjXoOMkIiL3ExsLr71mVsAE6NULpkyBdOnszSX2U+N+cXkRERHMmjWLd9991+4oyZMhA3z1lVnpcsECmDfP7kQizuPaNejWzVzJdOumApmIiIiIPDQvL3j/fdP1xssLpk0zHT0iI+1OJq5CRTJxWmfPnqVHjx6MGTOGGzdu2B0neapVgzt91V54AU6ftjePiLN4+WU4cgQKFDDN+l3U6tWr2bdvH242KFtERETEpT3/PHzzjRm3sHo1PP44nDljdypxBSqSidMqUaIEBQoUIDo6ms2bN9sdJ/lGjICqVeHKFejZE/THtHi6Vavgs8/M7RkzIEsWW+Mkl2VZ9OjRgzJlyrBlyxa744iIiIjIXVq1gk2bICgIwsOhRg3TKlrkQVQkE6flcDho0qQJAGvWrLE5zUNIl85Mu0yfHtasMWN/RTzV5cumOQTAiy9Cw4b25nkIu3bt4ty5c2TIkIHq1avbHUdERERE/qZqVdixA0qWhJMnoXZt+N/C5CIJUpFMnJpbFMnA/K98p3vkyy+bZv4inqh/fzh71pwTY8faneahrFy5EjCrW/r5+dmcRkREREQSUrgwhISYKZdXr0KzZjB7tt2pxFmpSCZOrWHDhjgcDn755RdOu3o/r/79oVEjuHnTNCq/fdvuRCJpa/588+Htba5M/P3tTvRQ7hTJWrRoYXMSEREREXmQbNnMpJ5OncyfYd27w7//rU44ci8VycSpZc+enapVqwKmQbZL8/L6q//Sf/8Lrrpqp0hynD5tFq8As5hFtWr25nlIly9fZvv27QA0b97c5jQiIiIi8k/8/GDuXBg+3NwfORJ694Zbt+zNJc5FRTJxei1btsThcHDQHaYo5s8Pkyeb22+9BaGh9uYRSQuWZfqQ/fGHaQwxYoTdiR7amjVriI2NpWzZshQsWNDuOCIiIiKSCF5epuPHlCnm9vTppsH/1at2JxNnoSKZOL0XXniBs2fP8v7779sdJWX861/QoQPExEDXrmb6pYg7+/xzs/Z2+vRmmmW6dHYnemjff/89oKmWIiIiIq6oXz/45hvIkMFMw6xb10x8EFGRTJxezpw5yZUrl90xUo7DYd66yJMHDhz4a7yviDs6fBheesncfu89KFXK3jwpZMqUKaxcuZKePXvaHUVEREREkqFVK9i0CXLlgt27oUYN2LPH7lRiNxXJxKXccpcJ49mymbG9AB9/DOvW2ZtHJDXExJhFKm7cgPr1YeBAuxOlGH9/f5o3b06JEiXsjiIiIiIiyVS1KuzYYd7HPXUK6tTRn2aeTkUycQnHjx+nYcOGlCxZEstdliBp1gyef97cfvZZuHLF1jgiKW7cONi+HQICYOZM0/hBRERERMSJPPIIhIRAvXqmN1nz5jBrlt2pxC76i0VcQlBQENu3b+fo0aPs2rXL7jgpZ9w4KFbMvG0xYIDdaURSTni4WTIIzGhJN2pu36ZNG4YPH87FixftjiIiIiIiKSBrVtNC91//gtu3oUcPs86au4zPkMRTkUxcgr+/P40bNwbg22+/tTlNCsqY0TQy9/Iy6xEvWmR3IpGHFxVlFqW4dQvatjVTLt3EgQMH+Pbbbxk/fjzp3GABAhEREREx/Pxgzhx47TVzf9Qo6NnTXNKK51CRTFxGmzZtAFi2bJm9QVJajRp//U/crx+cPWtvHpGHNXIk7N0LQUEwdapZrMJNBAcHA9CwYUOyZMlibxgRERERSVFeXvDuu/DZZ+b2zJnQsqWZhimeQUUycRlt2rTB29ubn3/+maNHj9odJ2WNHAmVKsHly9Crl8b1iuvautVMIwZTIMuZ0948KWzp0qUAtGvXzuYkIiIiIpJa+vaFb781E3/WroW6dU2HHHF/KpKJy8iZMyf169cHYJG7TUv09TVje/38YNUq+PxzuxOJJF1kpJlaaVlmMYonn7Q7UYo6ceIEoaGhOBwOnnSzfRMRERGR+Fq0gM2bIXdu2L3bTADavdvuVJLaVCQTl9K+fXsAFi5caHOSVFC6NIwda26/9BIcOmRvHpGkGjYMjh2DQoXgo4/sTpPi7ky1rFOnDkFBQTanEREREZHUVrky7NgBpUrB6dNQp44ZWSbuS0UycSlPPfUUTZo0oV+/fljuOCXxxRehfn24ccOMyLl92+5EIomzcuVf/cdmzoSAALsTpbglS5YAmmopIiIi4kkKFYKQEHjiCTNxokULmDHD7lSSWlQkE5eSM2dOVq9eTZ8+fXC4UTPwOHe6QwYEmLcs3n/f7kQi/+zSJdNLD2DIEHMF4WZiY2MpV64c2bNnV5FMRERExMNkzQrffw+dO5txDD17wujRaiXtjlQkE3E2BQvCJ5+Y26NHQ1iYrXFEHsiyzKqs586ZKcPvvGN3olTh5eXF5MmTOXfuHAULFrQ7joiIiIikMT8/00Z6xAhzf8wY04Y3OtreXJKyVCQTl3T69Gk+/vhjjh07ZneU1NG1K7RrZ96m6NIF/vzT7kQiCZs5E5YsgXTp4KuvIH16uxOlKh8fH7sjiIiIiIhNHA54+23TZcTbG2bNgpYtISLC7mSSUlQkE5fUu3dvXnzxRWbOnGl3lNThcJgVLnPlgn37/nq7QsSZHD4MgwaZ2//+t+ls6oZOnDjBtm3b3LMPooiIiIgkWZ8+8O23kDEjrFsHdevCqVN2p5KUoCKZuKRu3boBMHv2bGJjY21Ok0py5IBp08ztCRNg40Zb44jEc+uWGeV47RrUq2dWtnRTn332GbVr1+a5556zO4qIiIiIOInmzWHzZsidG/bsgerVYdcuu1PJw1KRTFxS27ZtCQgI4LfffmPLli12x0k9LVuatyksC7p31zhecR5vvw0//giBgTB7thlv7oZiY2P5+uuvAWjSpInNaURERETEmVSubNZbK10azpwxI8rWrLE7lTwMFcnEJfn7+9OhQwcAZs2aZXOaVDZ+PDz6KJw4AS++aHcaEdi2zRTJAD77zCw24aa2bt3K8ePHyZw5M61atbI7joiIiIg4mUKFICQE6teHyEho0QKmT7c7lSSXimTisrp37w7AokWLuH79us1pUlGmTGakjpeX6QwZHGx3IvFkV6+aaZaxsebfTp3sTpSqvvjiCwA6duyIv7+/zWlERERExBllyQLff28uj2NioFcvGDXKTAgS16Iimbis2rVrU6RIEa5du0awuxeOateGV14xt597Ds6dszePeK5Bg+DYMfOW2aRJdqdJVZcvX2bRokUA9OnTx+Y0IiIiIuLMfH3N2IY7a6699Rb06AHR0bbGkiRSkUxclsPhoHv37vj6+nLy5Em746S+MWOgQgW4dOmvPmUiaWnRIjOa0csLvvrK9CNzY3PmzCEqKooKFSpQrVo1u+OIiIiIiJNzOExXki++MC17Z882Df7VWtp1qEgmLq1///6cOnWK1157ze4oqc/X1xQmfH3hu+/+WvlSJC2cOgV9+5rbw4ebrqRubt26dYAZReZwOGxOIyIiIiKuondv8ydbpkywfj3UqQOeMK7DHahIJi4tW7Zs5MyZ0+4Yaadcub8apg8eDIcO2RpHPERsrFld9Y8/oGpVGD3a7kRpYtmyZfzwww8888wzdkcRERERERfTrBls2QJ58sDevVCjBoSH251K/omKZOI29uzZQ2RkpN0xUt/QoVCvHly/bpqmR0XZnchpxcbGcvHiRXbv3s2FCxfiHv/jjz/YvHkz4eHhHD16lBs3btiY0gWMG2feAsuQAebOhXTp7E6UJry8vGjQoAFZsmSxO4qIiIiIuKCKFWHHDihTBs6cMZMxVq+2O5U8iIpk4hZ69epF+fLl+eqrr+yOkvq8vWHOHMiWDX7+GTxhqmkinD59mtmzZ/PKK6/QokULHnnkEfz8/AgKCqJChQqsXLkybtudO3dSr149KlWqRJEiRciYMSN58uShVq1a9OjRg40bN9q3I85mx46/uo9OnAjFi9ubJw1cvXpVhVMRERERSREFC8LWrVC/Ply7Bi1bqnOOM1ORTNxCxYoVAZg8eTKWJzS0z58fZs40tydMgBUrbI1jhzNnznDp0qW4+yEhIXTv3p1x48axatUqjh8/zu3btwHImTMn/v7+cdt6e3tTokQJ8uTJE/f4uXPn2L59O7NmzeLIkSNx2x49epR33nmH0NBQYmNj02jvnMSVK/Cvf5l1rDt2NGtZe4Bx48ZRoEABpunqRURERERSQJYs8P330LWrubTu3RvefFNrsTkjFcnELXTr1o1MmTKxb9++eCOG3Frr1jBokLndo4cZv+vmTpw4wfvvv0+NGjXIly8fX375Zdzn6tWrR506dejfvz9Tpkxhy5YtnDx5kujoaC5cuEDHjh3jtm3YsCEHDhzgzJkzXL9+nUuXLrFz504WLFjAyJEjqVevXty23333HW+88QbVqlUjf/78DBo0iJCQEPcvmFkWPPcc/PYbFC4Mn39ulutxczdv3mTKlClcvnyZQDdfvVNERERE0o6vr1ko/s03zf233zZtf6Oj7c0l8TksNxt2c/XqVQIDA4mIiCAgIMDuOJKGhg0bxocffkjdunXZvHmz3XHSRlTUXx0g69eHtWvNdEw3cvPmTZYtW8aMGTNYt25dvJGCffr0YerUqan6/KtWrWLq1Kn88MMP8XreFSxYkN69ezNgwACyZs2aqhls8cUXpkjm4wMhIfDYY3YnShNTp06lb9++PPLIIxw6dAgfHx+7I0ka0jWEa9BxEhERVzd9urnUjokxf8YtXWpGm0nqSez1g4pk4jZOnz5N4cKFuXXrFtu2baNmzZp2R0obBw9ClSqmkf+//w1vvGF3ohRz8+ZNChcuzPnz5+Mee+KJJ+jUqRNt2rQhT548aZYlOjqatWvXsmDBApYtW0ZkZCR+fn6cOXOGbNmypVmONPHLL2YVyz//hA8+gJdftjtRmoiNjaVMmTIcOHCACRMmMHjwYLsjSRrTNYRr0HESERF3sHo1PP206VNWpgysXGn6l0nqSOz1g6ZbitvIly8fXbt2BeD999+3OU0aKlECJk82t0ePNqN+XNihQ4fibvv7+9O0aVMKFizIyJEjOXLkCBs2bKBv375pWiAD8PX1pWXLlsyePZsLFy4wZ84cRo8eHa9ANnDgQBYsWBDXC80l3bhh+o/9+Sc0bQovvWR3ojSzdOlSDhw4QEBAAD179rQ7joiIiIi4saZNYcsWyJvXvEddowaEhdmdSjSSTNzKgQMHKF26NPny5WPfvn1kzpzZ7khpw7KgWzez6mXBguZ/Vxcb3RQaGsqYMWP47rvv2LNnD2XLlgUgIiKCTJky4e3k00h37tzJY/+bkvjoo4/y6quv8uyzz5IuXTqbkyVRv36m/1iuXLBrl/nXA8TGxlKhQgX27t3LqFGjGD16tN2RxAa6hnANOk4iIuJOTp6EFi1g717IlAkWLoTmze1O5X40kkw8UsmSJVmzZg1HjhzxnAIZmIbqn34KRYvCiRNmuRQXqX//9NNPtGnThmrVqvHdd9/h5eXF9u3b4z4fGBjo9AUygCJFijBmzBiyZ8/O0aNH6du3LyVLlmTOnDnExMTYHS9xFi36q0H/nDkeUyADU6Tdt28fgYGBmmYpIiIiImmmQAHYuhUaNjRTL1u3hrvWJ5M0piKZuJ1GjRrh6+trd4y0lzkzzJ8P6dJBcDBMmmR3ogc6evQoHTt2pGrVqnz77bd4eXnRrVs3Dhw4QJ8+feyOl2TZsmVj5MiRHD9+nAkTJhAUFMTRo0fp2rUrFSpU4MiRI3ZHfLAjR+DO6/7qq9Cokb150thjjz3G/v37mTFjBlnUNVVERERE0lBgoOlJ1r27aebfp49pNe0i4x7ciopk4rZu377NypUr7Y6RtqpUgXHjzO2XXoIdO+zNcx/R0dHUqVOHhQsX4nA46NKlC/v372fWrFkUK1bM7ngPJWPGjAwePJijR4/y7rvvkiVLFiIjI8mfP7/d0e7v5k3TNTQiAmrWhLfesjuRLYoXL85TTz1ldwwRERER8UC+vjBjBowcae6/847pqBMdbW8uT6Mimbil6OhoKlasSMuWLdm8ebPdcdLWoEGm4HHrFnToAJcu2Z0IgFu3bnGnBaKvry+vvPIKjRs3Jjw8nK+++orixYvbnDBlZcyYkddee41jx46xdOlS/Pz8AFO8feONNzh79qzNCe/y4osQHg45cpgmCK7WR+0hREVFsXv3brtjiIiIiIjgcMCYMTBtGvj4mA4ozZrBlSt2J/McKpKJW/L19aVu3boAvPrqq8TGxtqcKA05HOZ/1WLFTBfILl3A5v3/4YcfKFeuHMuXL497bNCgQaxevZry5cvbmCz1ZcmShSpVqsTdnzZtGu+88w7FihXjnXfe4ebNmzamA2bNgi++MD83X38NzjziLRVMnDiRihUrMmLECLujiIiIiIgA0LMnrFhhOups2AC1a8Px43an8gwqkonbevPNN8mUKRM7duxg9uzZdsdJWwEBsGQJ+PvD6tXw9tu2xDh9+jSdOnWiUaNGHDx4kA8//DDuc15eXjgcDlty2aly5crUqFGD69ev88Ybb1C2bFn7pgXv3g3PP29ujxkDjRvbk8MmFy5c4O2338ayLEqUKGF3HBERERGROE2awJYtkC8f7NsHNWrAzz/bncr9qUgmbitv3ryM/N+E7ldffZUrnjZGtVw5+Owzc3v0aFi7Ns2e+tatW4wfP56SJUuyYMECvLy8GDhwYLyRZJ6qWrVqbNu2jXnz5pEvXz6OHj1Ky5YtadeuHSdOnEi7IFevmmm5N29C06bggSOpRo4cSWRkJFWqVKFLly52xxERERERiadCBdNmulw5OHcOHn8cVq2yO5V7U5FM3NqLL75IyZIluXDhAqNHj7Y7Ttrr1s0sjWJZ0LkznDqV6k+5Y8cOKleuzEsvvcS1a9eoUaMGoaGhfPzxx1o18H8cDgedOnVi//79DBs2DG9vb4KDg+nZs2faBLAs6NULDh0ya07PmQNenvXrYNu2bUydOhWA8ePH4+Vh+y8iIiIiriF/fjOirFEjuH4dWreG/13GSirQXwXi1nx9ffn4448BmDRpEj/99JPNiWzw8cdQqZJp4N+hg2non4ouXbrE3r17yZ49O19++SUhISFUqlQpVZ/TVWXOnJlx48YRHh5O/fr1+c9//hP3uVTtozdxIixebBr0L1xoGvZ7kKioKHr37o1lWfTo0YPHH3/c7kgiIiIiIvcVGGh6lHXvDjEx0LevmQjyv3XRJAWpSCZur3HjxnTs2JHatWuTLVs2u+OkvfTpTUEkMBC2b4eXXkrRbx8TE8OePXvi7rdq1YrJkydz8OBBevXqpRE6iVC2bFnWr19PxYoV4x577bXXeOaZZ1J+FcyNG2HYMHP7P/8xzQ08zLvvvsv+/fsJCgqK1ydPRERERMRZ+frCjBmmkw7Au++aNdqiomyN5Xb016t4hGnTprFhwwYKFy5sdxR7PPoofPWVuf3JJ+Z/1xTw448/Uq1aNerWrcuFCxfiHn/hhRfInj17ijyHJ7pw4QITJ07k66+/pmTJkkycOJHbt28//Dc+fhzatzdvP3XpAgMHPvz3dEFFihQhS5YsfPLJJ55ZOBcRERERl+RwwKhR5s85Hx+zOH3TpvDHH3Yncx8qkolHyJgxY7wRTX944v8irVubFQwB+vUzHSCT6fLly/Tt25eaNWsSFhaGw+GIN5pMHk5QUBAhISE89thjXL16lcGDB1O1alW2bduW/G964wY89ZSZdlu5smlk4IGriwJ069aNI0eO0L59e7ujiIiIiIgkWY8epoF/5sywaRPUrm3eD5eHpyKZeJTo6GgGDRpEhQoVuHjxot1x0t4bb0DbthAdDe3aQRKn8sXGxjJjxgxKlCjB1KlTsSyL7t27c/DgQRo2bJg6mT1UlSpV2L59O59//jlZs2Zl165d1K5dm549e3Lp0qWkfTPLMgs4hIVBzpwQHAz+/qkT3IlFRETE3c6WLRsODy0SioiIiIjra9QItm6FfPlg/37TRcUTW3CnNBXJxKNERUWxevVqTp48SefOnYmJibE7Utry8oLZs6F0aVMga9cu0ZPYb9++Tf369eOKNGXKlGHTpk3MnDmToKCgVA7umby8vHjuuec4ePBg3MqXCxcu5M8//0zaN5owwYzF9vaGRYugYMFUSOvcvvrqK4oXL86aNWvsjiIiIiIikiLKlzcThMqXh3PnoF49WLnS7lSuTUUy8SiZM2dmyZIlZMiQgXXr1jFq1Ci7I6W9zJnhm28gSxbzP2r//olaFsXHx4fy5cuTMWNGxo0bR1hYmFYFTCM5c+Zk2rRpbNu2jc8//5z8+fPHfe7o0aMP/uJ16+Dll83tCRPMb04Ps2PHDvr06cOFCxcebsqqiIiIiIiTyZ8ftmyBxo3h+nXTZefzz+1O5bpUJBOPU7ZsWb744gsA3nnnHWbOnGlvIDsULQrz55uRZdOmweTJ92wSGxvLrFmz4vUae/vtt9m/fz/Dhg0jXbp0aZlYgJo1a/LMM8/E3f/hhx8oVqwYL7zwQsJ99g4dgo4dITbWNC4YMCDtwjqJ48eP8+STTxIVFUWbNm1488037Y4kIiIiIpKiAgJgxQp49llz6d+vH7z2mrktSaMimXikzp078+qrrwLQu3dvVq1aZXMiGzRtCu+9Z24PHgyrV8d9KiQkhOrVq9OjRw8GDx6M9b+RZoGBgRQoUMCGsJKQDRs2EBsby5QpUyhevDhTpkz5axXMy5ehZUvz72OPwZQpHteo//Lly7Rq1YoLFy5QoUIF5s6di7e3t92xRERERERSXLp0ZvzDW2+Z+++9Zxa0T2R3HfkfFcnEY7377rt06dKFmJgYnnnmGSIjI+2OlPaGDYNu3SAmBtq358yaNfzrX/+iTp06hIaGkjlzZpo1a0as3oJwSm+//TYbNmygdOnSXLp0iRdeeIFy5cqxIjgY6//+z4wkK1gQli+H9OntjpumIiIiaNq0KXv37iV37tx8++23ZMqUye5YIiIiIiKpxuGAN9+EmTPBxwfmzTNjIxKadCIJU5FMPJaXlxfTpk2jefPmfPnll2TOnNnuSGnP4YCpU7ldqxZERnK7aVM2zJ+Pw+GgT58+HDp0iJdfflmjb5zYE088QXh4OJMmTSJHjhwcOHCAc+3a4di40fSf++47yJXL7phpbuzYsYSGhpIjRw7WrVunEZAiIiIi4jG6d4dVq8w0zE2boHZt+O03u1O5BodlJaJjtwu5evUqgYGBREREEBAQYHcccQGWZeG4axrazZs38ff3tzFR2ps1fjw1X3qJ4sC+zJm5tWYNFWrUsDuWJFFERAQhTz5Ji02bsBwOHCtWQPPmdseyRVRUFH379mXIkCFUqFDB7jjiInQN4Rp0nERERBJnzx5o0QJOnTLvm3/3HVStancqeyT2+kEjycTj3V0gO3nyJCVKlOBzN18OJCoqil9//TXufueBA/mwfn2iM2WidGQkFT78UF0eXVDgDz/QYtMmc+ejj+IKZJMmTaJnz57/vBKmiztx4kTc1GA/Pz9mzpypApmIiIiIeKxy5WDHDqhQAc6fNwvdf/ed3amcm4pkIneZPn06J0+epF+/fgwcOJDo6Gi7I6Woa9euMWHCBIoUKULz5s25desWAOnSpePz9evxXbHCdHxcvBiGD7c5rSTJ1q1wZ+XL/v1xDBoEQHR0NO+88w4zZsygRIkS9O7dm2PHjtkYNHUsXbqUcuXKMXToUNxsgLSIiIiISLLlywebN5veZDduwJNPwmef2Z3KealIJnKXkSNH8s477wBm9E3NmjU5cOCAzake3uXLl3nrrbcoVKgQQ4cO5fTp0/z555/xRpMB8PjjZkkUgHHjYMKEtA8rSbd3L7RuDX/+Ca1amVFk/+Pr60twcDBNmjTh9u3bTJs2jaJFi9KhQwd+/PFH+zKnkD///JMhQ4bwf//3f1y9epXQ0FBu3rxpdywREREREacREADffgs9e5oJQ88/b8ZEaPLQvVQkE7mLw+Hg9ddfZ/ny5WTPnp2ff/6ZypUrM378+LhRV67k8OHD9OrVi/z58zNq1CguX75M0aJF+eKLLzh69ChlypS594u6doWxY83toUNh7ty0DS1Jc/IkNGsGV65AzZqwYIFZyuYuNWrUYPXq1YSEhNCkSRNiY2NZtGgRNWrU4K07a0S7oM2bN1OhQgU++l9R8OWXX2bDhg1kyJDB3mAiIiIiIk4mXTr48ku4c/n//vtmIkpUlL25nI2KZCIJaN26Nbt376Zx48bcvHmTl156iU8//dTuWEl2+fJlpk+fzs2bN6lYsSLz58/nwIED9O7dGz8/v/t/4auvwuDB5naPHvD992kRV5Lq8mUzbvr0aShVyjQYeECBqFatWqxevZrw8HC6detGunTpaN26ddznjx49yuHDh9Mi+UO5cOECPXr0oF69evz666/kzp2b5cuX88EHH5AuXTq744mIiIiIOCWHA958E2bNMu+rz58PjRubPyvE0OqWIg8QGxvLjBkz+Pzzz9m0aVPcqpdXrlwhS5Ys9oa7S0xMDOvXr2fOnDlkypSJyZMnx31uxIgRtGjRglq1asVbpOAfxcaaUWVff20KL+vXQ/XqqZBekuXGDfMbbds202hg+3YoUCBJ3+LSpUvkyJEj7n6vXr2YPn06TzzxBM888wxt27aN93lncfnyZYoUKcKVK1fo3bs348aNc6rzUVyXriFcg46TiIjIw/vhB2jXDq5ehRIlYNUqKFzY7lSpJ7HXDyqSiSSCZVlxBaaYmBjKly+Pv78//fr1o1OnTmTKlCnNM127do21a9fy7bffsmLFCi5cuABApkyZOHfuHBkzZnz4J4mONr2u1qyB7NlhyxYzYknsFRUFTz1lfpNlyWKa9ic0dTYJLMuiY8eOLF68OK7xvbe3Nw0aNODpp5+mWbNmFCxYMAXCJ01sbCxbtmxh1apVjB07Nu48XLhwIYUKFaK6CreSgnQN4Rp0nERERFLG3r3QooXp4BIUBCtWQNWqdqdKHSqS6cJJUkloaCi1a9eOW/kyU6ZMNG/enKeeeormzZunyYiW4cOH89FHHxF11wTybNmy0alTJ7p06UKNGjWSNmrsQa5dgwYNYOdOyJMHNm2CYsVS5ntL0t26BR06wLJl4O9vCph16qTYtz9x4gRz5sxh0aJFhIeHxz1esWJFwsLC4u7//vvvZM+ePcWe927R0dFs376dlStXMm/ePE6ePAnA6tWradKkSao8pwjoGsJV6DiJiIiknDNnoGVLCA83E4jmzzfjJNxNYq8ffO77GRFJUNWqVTl9+jQzZ87ks88+48iRIyxatIhFixbh5eXFpEmTeP755wG4fv06t27dSlLhLDo6mlOnTnH06FH27NnD7t272bNnDytXriQoKAiADBkyEBUVxaOPPkrr1q1p3bo1devWxdfXN+V3OFMmWLnSFMr27DH/bt7s3mNxnVVMDHTrZgpkfn7wzTcpWiADKFiwIK+//jqvv/46hw8fZvHixXzzzTc0aNAgbptr164RFBREvnz5qFatGpUqVaJYsWIUL16cokWLkjlz5kQ/392jNENDQ3nzzTfZsmUL169fj9smICCAp59+mvz586fcjoqIiIiICHnzmj/v2reH1auhbVv45BN44QW7k9lDI8lEHkJsbCyhoaEsW7aM4OBgDhw4wLp162jYsCEA8+bNo3PnzgQGBpIzZ06CgoLImjUrPj4++Pj4MGLECCpVqgTA3LlzGTZsGOfPnyeh03LJkiW0a9cOgJMnTxIZGUmpUqVSbsTYP7lwAerVgwMH4JFHzIgyG6bfeazYWLNm850um8HB0KpVmj393cWsnTt3Ur169QR/TsH0wXv77bcBOH78OIMGDSJdunR4eXlx48YNIiMjuXr1KufOnePVV19l8P8WiQgNDaVatWoA5MyZk0aNGtGuXTtatWpF+vTpU38nxePpGsI16DiJiIikvFu3TGHsyy/N/ZdfhvfeAy83We5RI8lE0oCXlxePPfYYjz32GO+++y5nz54lW7ZscZ8/ceIEABEREURERNyzcmCfPn3ibkdHR3Pu3DkA/Pz8KFSoEGXLlqVcuXKUK1eO2rVrx21bIIkN2lNEUJDp7livHhw+/NeIsrx50z6Lp4mNNb+xZs0Cb28zBjoNC2RAvGJstWrViIiI4Oeff+a///0ve/fu5fDhwxw6dIiLFy/G+6Xzxx9/sHz58vt+32PHjsXdLlu2LJMmTaJWrVpUqFABL3f5jSwiIiIi4uTSpYOpU814iDfegHHj4MQJmDkTPOn9ao0kE0llV69e5ezZs1y4cIGLFy/yxx9/EBMTQ0xMDK1atYoreJ0/f55Tp05RsGBBcuTIkXYjxJLq5ElTKDt2zPQm++GHJK+qKEkQEwN9+sCMGWbN5jlzoHNnu1PdV0REBA6HI+7/30uXLhEcHMzt27e5ffs2GTJkICAggMyZM5MjRw6KFClC1qxZbU4tYugawjXoOImIiKSuOXPMJJZbt0x3l2++gbvGgrgkNe7XhZNI6vntN3jiCTh+HAoVgnXroGhRu1O5n1u3TA+y+fPNOOdZs6BLF7tTibgtXUO4Bh0nERGR1LdhAzz1FEREQIkSpk31o4/anSr5Env9oLksIpJ0jzwCW7ZA8eKmUPb447Bvn92p3EtUFHTsaApkPj6wYIEKZCIiIiIikibq14eQEDNp6OBBqFkTdu60O1XqU5FMRJKnQAHTk6xsWTh71kzB/Plnu1O5hxs3zNs2wcFmFctly+Dpp+1OJSIiIiIiHqRMGdixAypV+msdtwe0G3YLKpKJSPLlygUbN0LVqnDpknm7YcMGu1O5tkuXoGFDWLUK/P3hu++gZUu7U4mIiIiIiAfKmxc2bYJmzeDmTfNe/uTJdqdKPSqSicjDyZ7dNO+vWxeuXoWmTWHuXLtTuaajR6FWLfN2TdassHYtNGpkdyoREREREfFgmTPDt9+a9cRiY2HAAHj5ZXPb3ahIJiIPLyAA1qyB9u1Ns/kuXWDsWHCvdUFS108/mYn+hw6ZxRBCQqB2bbtTiYiIiIiI4OMDn38O77xj7v/nP9CpE/z5p725UpqKZCKSMtKnN03mX3rJ3H/9dejbF6Kj7c3lCpYsMRP8L1yAihVh+3YoVcruVCIiIiIiInEcDvNn3pw5kC4dLFpkJr78/rvdyVJOqhbJ3nnnHWrVqkWGDBnIkiVLor7GsixGjx5N3rx58ff354knnuCXX35JzZgiklK8vMxbCh9/bP4H/eIL01/r/Hm7kzmn2FgYNco05b9+HZo0MRP+8+SxO5mIiIiIiEiCnnkGVq+GwEAzAaZWLThyxO5UKSNVi2TR0dG0b9+e559/PtFf88EHHzB+/HgmTZrEzp07yZ07N40bNyYyMjIVk4pIiho40Cx7EhAAW7dClSqesV5wUkRGQrt28NZb5v6QIbBihXnNREREREREnFj9+qZAVrAg/Pqr6Rzz3//anerhpWqRbMyYMQwZMoRy5colanvLsvjoo48YMWIE7dq1o2zZssyaNYsbN27w9ddfp2ZUEUlprVqZ/yVLloTTp01j/+nT1acMYO9eqF4dvvkGfH1h5kwYP95M9BcREREREXEBZcqYNccqV4aLF+GJJ8yfOK7MqXqSHTt2jHPnztGkSZO4x/z8/KhXrx7btm1L8GuioqK4evVqvA8RcRIlSsCPP0KbNhAVBb16mbG5ERF2J7OHZcHUqVCtGuzfb6ZVbt4M3bvbnUxERERERCTJ8uQxHWNatICbN+Gpp2DSJLtTJZ9TFcnOnTsHQK5cueI9nitXrrjP/d3YsWMJDAyM+yhQoECq5xSRJAgIgOBgePdd8PaGefOgUiVTPPMkERHQsaNZzODPP6FZMwgPNyPKREREREREXFSmTGYE2XPPmXEBAwfCsGGmBbOrSXKRbPTo0Tgcjgd+hIaGPlQoh8MR775lWfc8dsdrr71GRERE3MfJkycf6rlFJBV4ecFrr5n+ZI88AseOQZ06ph+XJ6x+uWYNlCtnln/x8YFx40z/saAgu5OJiIiIiIg8NB8f+OwzGDvW3P/wQzNG4OZNe3MlVZIb4AwYMIBOnTo9cJtHHnkkWWFy584NmBFlee5a3e3ChQv3jC67w8/PDz8/v2Q9n4iksRo1zOipvn1hwQKzsuPixTBtmpmC6G4iIuCll8z+ATz6KHz9tUaPiYiIiIiI23E4YPhw08z/2WfNn3pnzphRZjly2J0ucZI8kixHjhyULFnygR/p06dPVpjChQuTO3du1q5dG/dYdHQ0mzZtolatWsn6niLiZAIDzZTLefPM/5R79pji2bBh4C49BS0L5s+H0qVNgczhgEGDYPduFchERERERMStde5sJtNkyQLbtkGtWnDkiN2pEidVe5KdOHGC8PBwTpw4QUxMDOHh4YSHh3Pt2rW4bUqWLElwcDBgplkOHjyYd999l+DgYPbu3UuPHj3IkCEDnTt3Ts2oIpKWHA7o1An27TP/g8bGmvG4xYvDjBmuOXn9jl27zLIu//qXedukaFHTyXLiRMiY0e50IiIiIiIiqa5ePQgJgUKF4NAhqFnTNdpSp2qRbOTIkVSqVIlRo0Zx7do1KlWqRKVKleL1LDt48CARd61098orrzB48GBeeOEFqlatyunTp1mzZg2ZM2dOzagiYoecOWHuXNOfq1gxOH8eevY0o63WrjUjslzFb7+Z1TsrVzYrVvr7w7//bUbK1a1rdzoREREREZE0Vbo07Nhh/kS6eBHq14dly+xO9WAOy3Klv0L/2dWrVwkMDCQiIoKAgAC744hIYkVHwyefwJgxEBlpHqtd29xv0MCMPnNGp0+blTu/+AJu3TKPtW8P//mPmYwvIi5D1xCuQcdJRETEtVy7ZiYSrVhh/qz76CPTjSYtJfb6IVVHkomIJJqvr2lyf+gQvPgi+PmZ8bmNGpmxuV9/7VwrYf70E3TpYlbr/PRTUyBr2NBMul+4UAUyERERERERIFMmM4KsXz8zWejFF2HoUOfssqMimYg4l1y5zFsLR4/CwIGmWPbjj/DMM2ZC+8iR8Ouv9mSLiDCN+OvUgapVzVTR27fNdMoNG2DdOlPQExERERERkTg+PmZswXvvmfsTJkCHDnDzJsTEwMaNZm23jRvNfbtouqWIOLfz52HqVJgyBc6e/evxqlVNc/xWrUw/s9Sajnn5sumPtnQpLF8Of/5pHvfxgY4dYfBgk0VEXJ6uIVyDjpOIiIhrmzcPevQwE4WKFzfTMc+c+evz+fObdc/atUu550zs9YOKZCLiGqKjTaFq9myznvDdby8UKgRNmsDjj0OVKuZ/Wm/v5D3PhQuwc6cZvbZunfn37nHApUtD167mI1++h9snEXEquoZwDTpOIiIirm/zZmjeHG7cuPdzd8Y/LF6ccoUyFcl04STivi5ehEWLYMkS2Lr13l5lGTOaQtmjj0LhwpAjB2TJAgEB5n/c2FjTQ+z3383H2bOmF9rhw3Du3L3PV6YMtGhhuk1WquS8iwiIyEPRNYRr0HESERFxfTExZszB+fMJf97hMCPKjh1L/viHuyX2+sHn4Z9KRCSN5cwJL7xgPq5fN29DrF0L//0vhIWZx8LCzEdylCoFjz0GtWpBs2Zqwi8iIiIiIpKCtmy5f4EMTIP/kyfNdk88kWaxVCQTEReXMaMZp9u8ubkfE/PXqLCjR+G330xfsStXIDLSbONwmJ5i2bJB9uwQFARFi5reZsWLmxFnIiIiIiIikirubjedEtulFBXJRMS9eHtDyZLmQ0RERERERJxOnjwpu11K8UrbpxMREREREREREU9Wt67pOXa/ds8OBxQoYLZLSyqSiYiIiIiIiIhImvH2hokTze2/F8ru3P/oo5Rp2p8UKpKJiIiIiIiIiEiaatcOFi82q1zeLX9+83i7dmmfST3JREREREREREQkzbVrB08+aVaxPHvW9CCrWzftR5DdoSKZiIiIiIiIiIjYwtsbnnjC7hSGpluKiIiIiC2eeuopsmbNytNPP213FBEREREVyURERETEHoMGDWL27Nl2xxAREREBVCQTEREREZvUr1+fzJkz2x1DREREBFCRTERERMSljB07lmrVqpE5c2aCgoJo27YtBw8eTNHn2Lx5M61btyZv3rw4HA6WLVuW4HaffvophQsXJn369FSpUoUtW7akaA4RERGRtKQimYiIiIgL2bRpE/3792fHjh2sXbuW27dv06RJE65fv57g9iEhIdy6deuexw8cOMC5c+cS/Jrr169ToUIFJk2adN8cCxYsYPDgwYwYMYKwsDDq1q1L8+bNOXHiRNw2VapUoWzZsvd8nDlzJol7LSIiIpL6HJZlWXaHSElXr14lMDCQiIgIAgIC7I4jIiIiLsJVryEuXrxIUFAQmzZt4vHHH4/3udjYWCpXrkyxYsWYP38+3v9bT/3XX3+lXr16DBkyhFdeeeWB39/hcBAcHEzbtm3jPV69enUqV67MlClT4h4rVaoUbdu2ZezYsYnOv3HjRiZNmsTixYsTtb2rHicRERGxT2KvHzSSTERERMSFRUREAJAtW7Z7Pufl5cXKlSsJCwujW7duxMbGcuTIERo0aECbNm3+sUB2P9HR0fz00080adIk3uNNmjRh27Ztyfqe/2Ty5MmULl2aatWqpcr3FxEREVGRTERERMRFWZbF0KFDqVOnDmXLlk1wm7x587J+/XpCQkLo3LkzDRo0oGHDhnz22WfJft5Lly4RExNDrly54j2eK1eu+07hTEjTpk1p3749K1euJH/+/OzcufO+2/bv3599+/Y9cBsRERGRh+FjdwARERERSZ4BAwawe/dutm7d+sDtChYsyOzZs6lXrx6PPvoo06ZNw+FwPPTz//17WJaVpO+7evXqh84gIiIiklI0kkxERETEBQ0cOJDly5ezYcMG8ufP/8Btz58/z3PPPUfr1q25ceMGQ4YMeajnzpEjB97e3veMGrtw4cI9o8tEREREXIWKZCIiIiIuxLIsBgwYwNKlS1m/fj2FCxd+4PaXLl2iYcOGlCpVKu5rFi5cyLBhw5KdwdfXlypVqrB27dp4j69du5ZatWol+/uKiIiI2EnTLUVERERcSP/+/fn666/55ptvyJw5c9xorsDAQPz9/eNtGxsbS7NmzShUqBALFizAx8eHUqVKsW7dOurXr0++fPkSHFV27do1Dh8+HHf/2LFjhIeHky1bNgoWLAjA0KFD6dq1K1WrVqVmzZpMnTqVEydO0K9fv1TcexEREZHU47Asy7I7RErSsuAiIiKSHK5yDXG/nl8zZsygR48e9zy+du1a6tatS/r06eM9Hh4eTvbs2SlQoMA9X7Nx40bq169/z+Pdu3dn5syZcfc//fRTPvjgA86ePUvZsmWZMGECjz/+eNJ2KIlc5TiJiIiI80js9YPbFckiIiLIkiULJ0+e1IWTiIiIJNrVq1cpUKAAV65cITAw0O44ch+61hMREZGkSux1nttNt4yMjARI8F1RERERkX8SGRmpIpkT07WeiIiIJNc/Xee53Uiy2NhYzpw5Q+bMmVNkafO/u1N91LuX9tExsJdef3vp9beXXn97pfbrb1kWkZGR5M2bFy8vrW3krHStl7K0v+5N++vetL/uTfubshJ7ned2I8m8vLz+cRn0lBAQEOARP6jOTMfAXnr97aXX3156/e2Vmq+/RpA5P13rpQ7tr3vT/ro37a970/6mnMRc5+ltUhERERERERER8XgqkomIiIiIiIiIiMdTkSyJ/Pz8GDVqFH5+fnZH8Vg6BvbS628vvf720utvL73+khY87edM++vetL/uTfvr3rS/9nC7xv0iIiIiIiIiIiJJpZFkIiIiIiIiIiLi8VQkExERERERERERj6cimYiIiIiIiIiIeDwVyURERERERERExOOpSJaATz/9lMKFC5M+fXqqVKnCli1bHrj9pk2bqFKlCunTp+fRRx/ls88+S6Ok7ikpr//SpUtp3LgxOXPmJCAggJo1a7J69eo0TOt+kvrzf0dISAg+Pj5UrFgxdQN6gKQeg6ioKEaMGEGhQoXw8/OjSJEiTJ8+PY3Sup+kvv5z586lQoUKZMiQgTx58vDss8/y+++/p1Fa97F582Zat25N3rx5cTgcLFu27B+/Rr9/5Z+k1s/VkiVLKF26NH5+fpQuXZrg4OBUSJ90Sd3fxFxHzZw5E4fDcc/Hn3/+mYp7kjhJ3d+NGzcmuC8HDhyIt527HN8ePXokuL9lypSJ28ZZj+/YsWOpVq0amTNnJigoiLZt23Lw4MF//DpXPX+Ts7+ufP4mZ39d+fxNzv668vkLMGXKFMqXL09AQEDcz+eqVase+DXOcv6qSPY3CxYsYPDgwYwYMYKwsDDq1q1L8+bNOXHiRILbHzt2jBYtWlC3bl3CwsJ4/fXXGTRoEEuWLEnj5O4hqa//5s2bady4MStXruSnn36ifv36tG7dmrCwsDRO7h6S+vrfERERQbdu3WjYsGEaJXVfyTkGHTp04IcffmDatGkcPHiQefPmUbJkyTRM7T6S+vpv3bqVbt260atXL3755RcWLVrEzp076d27dxond33Xr1+nQoUKTJo0KVHb6/evJEZq/Fxt376djh070rVrV3bt2kXXrl3p0KEDP/74Y2rtRqIldX8Tex0VEBDA2bNn432kT58+NXYhSZK6v3ccPHgw3r4UK1Ys7nPudHwnTpwYbz9PnjxJtmzZaN++fbztnPH4btq0if79+7Njxw7Wrl3L7du3adKkCdevX7/v17jy+Zuc/XXl8zc5+3uHK56/ydlfVz5/AfLnz897771HaGgooaGhNGjQgCeffJJffvklwe2d6vy1JJ7HHnvM6tevX7zHSpYsaQ0fPjzB7V955RWrZMmS8R7r27evVaNGjVTL6M6S+vonpHTp0taYMWNSOppHSO7r37FjR+uNN96wRo0aZVWoUCEVE7q/pB6DVatWWYGBgdbvv/+eFvHcXlJf/3HjxlmPPvpovMc+/vhjK3/+/KmW0RMAVnBw8AO30e9fSaqU+rnq0KGD1axZs3jbNG3a1OrUqVOKZU0JidnfhPz9OmrGjBlWYGBgygVLJYnZ3w0bNliA9ccff9x3G3c+vsHBwZbD4bB+++23uMdc5fheuHDBAqxNmzbddxt3On8Ts78JcdXzNzH7607nb3KOryufv3dkzZrV+vLLLxP8nDOdvxpJdpfo6Gh++uknmjRpEu/xJk2asG3btgS/Zvv27fds37RpU0JDQ7l161aqZXVHyXn9/y42NpbIyEiyZcuWGhHdWnJf/xkzZnDkyBFGjRqV2hHdXnKOwfLly6latSoffPAB+fLlo3jx4gwbNoybN2+mRWS3kpzXv1atWpw6dYqVK1diWRbnz59n8eLFtGzZMi0iezT9/pXUkJifq/ttk9hrFWd2v+uoa9euUahQIfLnz0+rVq1cfsR+pUqVyJMnDw0bNmTDhg3xPufOx3fatGk0atSIQoUKxXvcFY5vREQEwAOv8d3p/E3M/v6dK5+/Sdlfdzh/k3N8Xfn8jYmJYf78+Vy/fp2aNWsmuI0znb8qkt3l0qVLxMTEkCtXrniP58qVi3PnziX4NefOnUtw+9u3b3Pp0qVUy+qOkvP6/92HH37I9evX6dChQ2pEdGvJef0PHTrE8OHDmTt3Lj4+PmkR060l5xgcPXqUrVu3snfvXoKDg/noo49YvHgx/fv3T4vIbiU5r3+tWrWYO3cuHTt2xNfXl9y5c5MlSxY++eSTtIjs0fT7V1JDYn6u7rdNYq9VnFlC11ElS5Zk5syZLF++nHnz5pE+fXpq167NoUOHbEyaPHny5GHq1KksWbKEpUuXUqJECRo2bMjmzZvjtnHX43v27FlWrVp1TzsAVzi+lmUxdOhQ6tSpQ9myZe+7nbucv4nd379z1fM3sfvrLudvco6vq56/e/bsIVOmTPj5+dGvXz+Cg4MpXbp0gts60/mrv2oT4HA44t23LOuex/5p+4Qel8RJ6ut/x7x58xg9ejTffPMNQUFBqRXP7SX29Y+JiaFz586MGTOG4sWLp1U8j5CUcyA2NhaHw8HcuXMJDAwEYPz48Tz99NNMnjwZf3//VM/rbpLy+u/bt49BgwYxcuRImjZtytmzZ3n55Zfp168f06ZNS4u4Hk2/fyU1JObnKrnXKs7sftdRNWrUoEaNGnH3a9euTeXKlfnkk0/4+OOP7YiabCVKlKBEiRJx92vWrMnJkyf5z3/+w+OPPx73uDse35kzZ5IlSxbatm0b73FXOL4DBgxg9+7dbN269R+3dYfzNyn7e4crn7+J3V93OX+Tc3xd9fwtUaIE4eHhXLlyhSVLltC9e3c2bdp030KZs5y/KpLdJUeOHHh7e99Tibxw4cI9Fcs7cufOneD2Pj4+ZM+ePdWyuqPkvP53LFiwgF69erFo0SIaNWqUmjHdVlJf/8jISEJDQwkLC2PAgAGAKdhYloWPjw9r1qyhQYMGaZLdXSTnHMiTJw/58uWLK5ABlCpVCsuyOHXqVLxmpvJgyXn9x44dS+3atXn55ZcBKF++PBkzZqRu3bq8/fbb5MmTJ9Vzeyr9/pXUkJifq/tt80/XKs4sKddRXl5eVKtWzWlGKjysGjVqMGfOnLj77nh8Lcti+vTpdO3aFV9f3wdu62zHd+DAgSxfvpzNmzeTP3/+B27rDudvUvb3Dlc+f5Ozv3dztfM3Ofvryuevr68vRYsWBaBq1ars3LmTiRMn8vnnn9+zrTOdv5pueRdfX1+qVKnC2rVr4z2+du1aatWqleDX1KxZ857t16xZQ9WqVUmXLl2qZXVHyXn9wbxz0qNHD77++mv1AXoISX39AwIC2LNnD+Hh4XEf/fr1i3vHoHr16mkV3W0k5xyoXbs2Z86c4dq1a3GP/frrr3h5eSXrYsOTJef1v3HjBl5e8X+Vent7A3+9+yWpQ79/JTUk5ufqfts86FrFmSX1OsqyLMLDw93mTYCwsLB4++JuxxfMynqHDx+mV69e/7itsxxfy7IYMGAAS5cuZf369RQuXPgfv8aVz9/k7C+47vmb3P39O1c5fx9mf13x/L0fy7KIiopK8HNOdf6m6DIAbmD+/PlWunTprGnTpln79u2zBg8ebGXMmDFuFYnhw4dbXbt2jdv+6NGjVoYMGawhQ4ZY+/bts6ZNm2alS5fOWrx4sV274NKS+vp//fXXlo+PjzV58mTr7NmzcR9XrlyxaxdcWlJf/7/T6pYPL6nHIDIy0sqfP7/19NNPW7/88ou1adMmq1ixYlbv3r3t2gWXltTXf8aMGZaPj4/16aefWkeOHLG2bt1qVa1a1Xrsscfs2gWXFRkZaYWFhVlhYWEWYI0fP94KCwuzjh8/blmWfv9K8qTGz1VISIjl7e1tvffee9b+/fut9957z/Lx8bF27NiR5vv3d0nd38RcR40ePdr6/vvvrSNHjlhhYWHWs88+a/n4+Fg//vhjmu/f3yV1fydMmGAFBwdbv/76q7V3715r+PDhFmAtWbIkbht3Or53dOnSxapevXqC39NZj+/zzz9vBQYGWhs3boz3s3njxo24bdzp/E3O/rry+Zuc/XXl8zc5+3uHK56/lmVZr732mrV582br2LFj1u7du63XX3/d8vLystasWWNZlnOfvyqSJWDy5MlWoUKFLF9fX6ty5crxlmbt3r27Va9evXjbb9y40apUqZLl6+trPfLII9aUKVPSOLF7ScrrX69ePQu456N79+5pH9xNJPXn/24qkqWMpB6D/fv3W40aNbL8/f2t/PnzW0OHDo33S1eSJqmv/8cff2yVLl3a8vf3t/LkyWM988wz1qlTp9I4teu7s7T7/f4/1+9fSY7U+rlatGiRVaJECStdunRWyZIl4/2RZqek7m9irqMGDx5sFSxY0PL19bVy5sxpNWnSxNq2bVva7th9JHV/33//fatIkSJW+vTpraxZs1p16tSxVqxYcc/3dZfja1mWdeXKFcvf39+aOnVqgt/TWY9vQvsJWDNmzIjbxp3O3+Tsryufv8nZX1c+f5P78+yq569lWVbPnj3jrqdz5sxpNWzYMK5AZlnOff46LEvzQURERERERERExLOpJ5mIiIiIiIiIiHg8FclERERERERERMTjqUgmIiIiIiIiIiIeT0UyERERERERERHxeCqSiYiIiIiIiIiIx1ORTEREREREREREPJ6KZCIiIiIiIiIi4vFUJBMREREREREREY+nIpmIiIiIiIiIiHg8FclERERERERERMTjqUgmIm5v3rx5pE+fntOnT8c91rt3b8qXL09ERISNyURERETkYR0+fBiHw8GKFSto2LAhGTJkoESJEvz44492RxMRF6MimYi4vU6dOlGiRAnGjh0LwJgxY1i9ejWrVq0iMDDQ5nQiIiIi8jB27dqFw+Hgww8/5I033mDXrl0ULFiQ4cOH2x1NRFyMj90BRERSm8Ph4J133uHpp58mb968TJw4kS1btpAvXz67o4mIiIjIQ9q1axeBgYEsWLCAnDlzAtC2bVumTJliczIRcTUqkomIR2jVqhWlS5dmzJgxrFmzhjJlytgdSURERERSwK5du2jdunVcgQzg6NGjFC1a1MZUIuKKNN1SRDzC6tWrOXDgADExMeTKlcvuOCIiIiKSQnbt2kXNmjXjPRYWFkbFihXtCSQiLktFMhFxez///DPt27fn888/p2nTprz55pt2RxIRERGRFBAREcHx48epVKlSvMfDw8NVJBORJNN0SxFxa7/99hstW7Zk+PDhdO3aldKlS1OtWjV++uknqlSpYnc8EREREXkIu3btwtvbmwoVKsQ9dvz4cf744w8VyUQkyTSSTETc1uXLl2nevDlt2rTh9ddfB6BKlSq0bt2aESNG2JxORERERB7Wrl27KFmyJP7+/nGPhYWFkSVLFh555BH7gomIS3JYlmXZHUJERERERERERMROGkkmIiIiIiIiIiIeT0UyERERERERERHxeCqSiYiIiIiIiIiIx1ORTEREREREREREPJ6KZCIiIiIiIiIi4vFUJBMREREREREREY+nIpmIiIiIiIiIiHg8FclERERERERERMTjqUgmIiIiIiIiIiIeT0UyERERERERERHxeCqSiYiIiIiIiIiIx1ORTEREREREREREPN7/A7xMz6TFZcCrAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMkAAAINCAYAAAAk+SgMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADo+UlEQVR4nOzdd3hT5f/G8XfaQkuBlg0tlCl7SNlDQERZAg5UvqKCCig/cAAiDhRUFERZoggiyw0qLrYoQ4bsbdmy92yZnfn98ZBCpUBHkpOk9+u6euWQnpzc0JKcfM7zfB6b3W63IyIiIiIiIiIikoX5WR1ARERERERERETEaiqSiYiIiIiIiIhIlqcimYiIiIiIiIiIZHkqkomIiIiIiIiISJanIpmIiIiIiIiIiGR5KpKJiIiIiIiIiEiWpyKZiIiIiIiIiIhkeSqSiYiIiIiIiIhIlhdgdQBnS0pK4vDhw+TOnRubzWZ1HBEREfESdrudc+fOER4ejp+friN6Kp3riYiISHql9TzP54pkhw8fJiIiwuoYIiIi4qUOHDhAsWLFrI4hN6BzPREREcmoW53n+VyRLHfu3ID5i4eEhFicRkRERLxFTEwMERERyecS4pl0riciIiLpldbzPJ8rkjmG3YeEhOjESURERNJNU/g8m871REREJKNudZ6nhhsiIiIiIiIiIpLlqUgmIiIiIh5vzJgxVKpUidq1a1sdRURERHyUimQiIiIi4vF69uxJVFQUq1evtjqKiIiI+Cif60km4ivsdjsJCQkkJiZaHUXklvz9/QkICFAvJxERERER8Voqkol4oLi4OI4cOcLFixetjiKSZsHBwYSFhZE9e3aro4iIiIiIiKSbimQiHiYpKYk9e/bg7+9PeHg42bNn1+gc8Wh2u524uDhOnDjBnj17KFu2LH5+ms0vIiIiIiLeRUUyEQ8TFxdHUlISERERBAcHWx1HJE1y5MhBtmzZ2LdvH3FxcQQFBVkdSUREREREJF10qV/EQ2kkjngb/c6KiIiIiIg30ycaERERERERERHJ8lQkExERERERERGRLE9FMhERERERERERyfJUJBMRn2Kz2fjll1+sjiEiIiIiIiJeRkUyERERERERERHJ8lxaJPvrr79o27Yt4eHhaR7dsXjxYmrWrElQUBClS5dm3Lhxrowo4lUuXLhww6/Lly+ned9Lly6lad/0stvtfPDBB5QuXZocOXJw++238+OPPyZ/7+6776Zly5bY7XYAzp49S/Hixenfvz8AiYmJdOnShVKlSpEjRw7Kly/PRx99dN3zTJo0icqVKxMYGEhYWBjPPfccACVLlgTggQcewGazJf85NcuXL6d69eoEBQVRq1YtfvnlF2w2Gxs2bEj331tERHxDYiIsWgTffWduExOtTiQiIiLu5NIi2YULF7j99tv55JNP0rT/nj17aN26NY0aNWL9+vW8/vrrvPDCC0yfPt2VMUW8Rq5cuW741b59+xT7FipU6Ib7tmrVKsW+JUuWTHW/9HrjjTeYPHkyY8eO5Z9//qF37948/vjjLF68GJvNxhdffMGqVasYPXo0AN27d6dw4cK89dZbACQlJVGsWDG+//57oqKiGDBgAK+//jrff/998nOMHTuWnj178swzz7B582Z+++03brvtNgBWr14NwOTJkzly5Ejyn//r3LlztG3blqpVq7Ju3ToGDRrEK6+8ku6/r4iI+I6ffoKSJaFpU+jY0dyWLGnuFxERkawhwJUHb9Wq1XUfxm9m3LhxFC9enFGjRgFQsWJF1qxZw7Bhw64rAIiIZ7lw4QIjRoxgwYIF1K9fH4DSpUuzdOlSPvvsM5o0aULRokX57LPPeOKJJzh27BgzZsxg/fr1ZMuWDYBs2bLx9ttvJx+zVKlSLF++nO+//55HHnkEgHfffZeXXnqJF198MXm/2rVrA1CwYEEA8uTJQ5EiRW6Y9ZtvvsFms/H5558TFBREpUqVOHToEN26dXPuP4qIiHiFn36Chx6CKwOdkx06ZO7/8Ud48EFrsomIiIj7uLRIll5///03zZs3T3FfixYtmDhxIvHx8ckfpLMix/Q0m81mcRKx0vnz52/4PX9//xR/Pn78+A339fNLOYh07969mcoFEBUVxeXLl7nnnntS3B8XF0dkZGTynx9++GF+/vlnhgwZwtixYylXrlyK/ceNG8eECRPYt28fly5dIi4ujurVqwPm73T48GGaNWuWqazbt2+nWrVqBAUFJd9Xp06dTB1TRES8U2IivPji9QUyMPfZbNCrF9x3H/znrVZERER8jEcVyY4ePUrhwoVT3Fe4cGESEhI4efIkYWFh1z0mNjaW2NjY5D/HxMS4PKe77d+/n86dOzN06NAUH+STkpKuK3aIb8uZM6fl+95IUlISALNmzaJo0aIpvhcYGJi8ffHiRdauXYu/vz87d+5Msd/3339P7969GT58OPXr1yd37tx8+OGHrFy5EoAcOXJkOieYovN/C8721D4diUiy8+fPp5iG3bdvX5o0aULbtm0tTCWSeUuWwMGDN/6+3Q4HDpj97rzTbbFERETEAh5XYbnRB9cbjaAaMmQIoaGhyV8REREuz+hOx44do2nTpixatIg///wz+f6hQ4fy6KOPkqiOsuIhKlWqRGBgIPv37+e2225L8XXt/8uXXnoJPz8/5syZw+jRo1mwYEHy95YsWUKDBg3o0aMHkZGR3HbbbezevTv5+7lz56ZkyZIp/i/8V7Zs2W75/6JChQps2rQpRYF9zZo1Gflri2QJ06dPp2LFihw5cgSAffv2MWrUKO6//371DRWvd+XX2mn7iYiIiPfyqCJZkSJFOHr0aIr7jh8/TkBAAPnz50/1Ma+99hrR0dHJXwcOHHBHVLew2+08/vjj/Pvvv5QuXTq5J9Pu3bt58803+f777xkxYoTFKUWM3Llz07dvX3r37s0XX3zB7t27Wb9+PWPGjOGLL74AzCizSZMm8c0333DPPffw6quv0rlzZ86cOQPAbbfdxpo1a5g3bx47duzgzTffvK75/ltvvcXw4cMZPXo0O3fuZN26dXz88cfJ33cU0Y4ePZp83P/q2LEjSUlJPPPMM2zdupV58+YxbNgwQFOaRf5r69atdOrUiYMHDzJlyhTAvF936tSJpKQknnrqqRTFbBFvk8pEhUztJyIiIt7Lo4pk9evXZ/78+Snu+/3336lVq9YN+5EFBgYSEhKS4stXfP311/zxxx8EBQUxa9YsypQpA0CZMmUYM2YMAP37979uypqIVQYNGsSAAQMYMmQIFStWpEWLFsyYMYNSpUpx4sQJunTpwltvvUWNGjUAGDhwIOHh4XTv3h0wq10++OCDdOjQgbp163Lq1Cl69OiR4jk6d+7MqFGj+PTTT6lcuTJt2rRJ8X9g+PDhzJ8/n4iIiBS90K4VEhLCjBkz2LBhA9WrV6d///4MGDAAIEWfMpGszm630717dy5evMjdd9/Nyy+/DJj33vHjx9OoUSPOnTuXYiENEW/TqBEUK2Z6j6XGZoOICLOfiIiI+Dab3YWNeM6fP8+uXbsAiIyMZMSIETRt2pR8+fJRvHhxXnvtNQ4dOsSXX34JwJ49e6hSpQrPPvss3bp14++//6Z79+589913aV7dMiYmhtDQUKKjo726YBYXF0e5cuXYt28fgwcP5rXXXkvxfbvdTuvWrZk7dy7t27fnxx9/tCipONvly5fZs2cPpUqVUsHGjb755hueeuopoqOjndb7LKvR767v+eGHH3jkkUcIDg4mKiqKEiVKpPj+jh07qFy5MgkJCfz555/cddddFiV1Dl85h/B1rvg5OVa3hOsb+NtsWt1SRETE26X1/MGlI8nWrFlDZGRk8miOPn36EBkZmTxi48iRI+zfvz95/1KlSjF79mwWLVpE9erVGTRoEKNHj05zgcyXfPXVV+zbt48iRYrQq1ev675vs9kYNmwYfn5+TJ8+nfXr17s/pIgX+/LLL1m6dCl79uzhl19+4ZVXXuGRRx5RgUzkiqSkJN5++23ANOn/b4EMoFy5cskjQd9//3235hNxpgcfNIWw/6w7A0D79iqQiYiIZBUuHUlmBV+5CnznnXeyePFiPvzwQ/r27XvD/R599FGmTp1Kx44d+eabb9yYUFxFo3Hc44MPPuDTTz/l6NGjhIWFcf/99/Pee+8RHBxsdTSvpd9d3zJr1izatGlDaGgoe/fuJU+ePKnut3fvXsqUKUNSUhJbtmyhcuXK7g3qRL5yDuHrXPlzSkw0q1geOQK7dsGAARAUBNu2QSp1YhEREfESHjGSTDJu9uzZfPnllzz11FM33c/RH2batGmcOHHCHdFEfEK/fv3Yu3dvcmFn5MiRKpCJXMMxjb9Lly43LJCBWSxj9OjRLF68mIoVK7opnYhr+PvDnXfCo4/CG2+Y7cuX4ZVXrE4mIiIi7qCRZD7g448/plmzZlSqVMnqKOIEGo0j3kq/u74lMTGRuXPnUqlSJUqVKmV1HLfIiucQ3sidP6eNGyEy0vQpW7oUGjZ06dOJiIiIi2gkWRby/PPPq0AmIiJO5e/vz7333ptlCmQiqbn9duja1Wy/+CIkJVmbR0RERFxLRTIP8/vvvxMZGcnHH39sdRQREcmC7HY7SRmoBGzbto3nnnuOVzQvTXzMoEGQOzesXQtffWV1GhEREXElFck8zC+//MKGDRv4559/0vW49evX87///Y9XX33VRclERCQr2LBhAyVKlKB///7petyxY8cYM2YMEyZMICEhwUXpRNyvcGF4802z/dprcP68tXlERETEdVQk8yB2u53ffvsNgPvuuy9dj92/fz/Tpk3ju+++w8fazImIiBv98MMPHDx4kG3btqXrcQ0bNiRfvnycPn2aZcuWuSidiDVeeAHKlDGrXr7/vtVpRERExFVUJPMga9eu5dChQ+TMmZOmTZum67H33HMPOXLkYP/+/WzYsME1AUUEgLfeeovq1atbHSNDnnzySe6//36rY4iHstvt/PDDDwA8/PDD6XpsQEAAbdq0AeDXX391ejYRKwUGwrBhZnvYMNi3z9o8IiIi4hoqknmQWbNmAdCyZct0rwwXHBxMy5YtATNlU8QKb731FjabLcVXkSJFbvk4m83mVb+3ffv25c8//7Q6RoZ89NFHTJkyxeoY4qH++ecfdu3aRWBgYHLBKz3atWsHwMyZM50dTcRy990HTZtCbCz062d1GhEREXEFFck8yIIFCwBo3rx5hh7vGB3y888/OyuSSLpVrlyZI0eOJH9t3rzZbc8dHx/vlufJlSsX+fPnd8tzOUtiYiJJSUmEhoaSJ08eq+OIh5ozZw4ATZs2JVeuXOl+fLNmzfDz82Pnzp0cPHjQ2fFELGWzwciR4OcH338PS5danUhEREScTUUyD3Hx4kX+/vtvAO66664MHaNNmzbYbDY2b96sDydimYCAAIoUKZL8VbBgwZvuX7JkSQAeeOABbDZb8p8BZsyYQc2aNQkKCqJ06dK8/fbbKRqC22w2xo0bx3333UfOnDl59913k6dCTpo0ieLFi5MrVy7+7//+j8TERD744AOKFClCoUKFeO+9926aa9GiRdSpU4ecOXOSJ08eGjZsyL4r82v+O93SMYVx2LBhhIWFkT9/fnr27JmiaBcXF0e/fv0oWrQoOXPmpG7duixatOimGd566y2KFy9OYGAg4eHhvPDCC2k+3pQpU8iTJw8zZ86kUqVKBAYGsm/fvuumW9rtdj744ANKly5Njhw5uP322/nxxx+Tv3/mzBkee+wxChYsSI4cOShbtiyTJ0++aW7xXo4iWatWrTL0+Dx58lCjRg0AFi5c6LRcIp7i9tuha1ez3asXZGAhWBEREfFgAVYHECM6OpqHHnqInTt3UqZMmQwdI1++fNSuXZtVq1bxxx9/8OSTTzo3pFjHboeLF6157uBgc/k8jXbu3El4eDiBgYHUrVuXwYMHU7p06Rvuv3r1agoVKsTkyZNp2bIl/v7+AMybN4/HH3+c0aNH06hRI3bv3s0zzzwDwMCBA5MfP3DgQIYMGcLIkSPx9/dn8uTJ7N69mzlz5jB37lx2797NQw89xJ49eyhXrhyLFy9m+fLlPP300zRr1ox69epdlykhIYH777+fbt268d133xEXF8eqVauw3eTfYeHChYSFhbFw4UJ27dpFhw4dqF69Ot26dQPgqaeeYu/evUydOpXw8HB+/vlnWrZsyebNmylbtux1x/vxxx8ZOXIkU6dOpXLlyhw9epSNGzcmfz8tx7t48SJDhgxhwoQJ5M+fn0KFCl33PG+88QY//fQTY8eOpWzZsvz11188/vjjFCxYkCZNmvDmm28SFRXFnDlzKFCgALt27eLSpUs3/HcQ73Xu3DmWXhkak9EiGZgLPWfOnCExMdFZ0UQ8yqBBMHUqrF0LX34JOt0SERHxIXYfEx0dbQfs0dHRVkexxJtvvmmvVauWfdq0aVZHkQy6dOmSPSoqyn7p0qWrd54/b7ebUpn7v86fT3P22bNn23/88Uf7pk2b7PPnz7c3adLEXrhwYfvJkydv+jjA/vPPP6e4r1GjRvbBgwenuO+rr76yh4WFpXhcr169UuwzcOBAe3BwsD0mJib5vhYtWthLlixpT0xMTL6vfPny9iFDhqSa59SpU3bAvmjRolS/P3DgQPvtt9+e/OfOnTvbS5QoYU9ISEi+7+GHH7Z36NDBbrfb7bt27bLbbDb7oUOHUhynWbNm9tdeey3V5xg+fLi9XLly9ri4uOu+l5bjTZ482Q7YN2zYkGKfzp072++77z673W63nz9/3h4UFGRfvnx5in26dOlif/TRR+12u93etm1b+1NPPZVqxv9K9XdXvMbRo0ftPXv2tN99992ZOk58fLyTErlfVj+H8Bae8HP68EPzFlmkiN1+7pxlMURERCSN0nr+oJFkPubtt9/mnXfesTqGZFHXjj6pWrUq9evXp0yZMnzxxRf06dOHwYMHM3jw4OR9oqKiKF68eKrHWrt2LatXr04xLTIxMZHLly9z8eJFgoODAahVq9Z1jy1ZsiS5c+dO/nPhwoXx9/fHz88vxX3Hjx9P9bnz5cvHk08+SYsWLbjnnnu4++67eeSRRwgLC7vh371y5crJo+AAwsLCkvuxrVu3DrvdTrly5VI8JjY29oa9zR5++GFGjRpF6dKladmyJa1bt6Zt27YEBASk+XjZs2enWrVqN8wcFRXF5cuXueeee1LcHxcXR2RkJAD/93//R/v27Vm3bh3Nmzfn/vvvp0GDBjc8pnivwoUL88knn2T6OAEBOrUQ1xgzZgxjxozxiFGKzz8P48bB7t0wZAjcYga/iIiIeAmdyXqA2NhY9u3bR9myZW86nSstMvt48VDBwXD+vHXPnUE5c+akatWq7Ny5E4Du3bvzyCOPJH8/PDz8ho9NSkri7bff5sEHH7zue9eu/pozZ87rvp8tW7YUf7bZbKnel3STZjKTJ0/mhRdeYO7cuUybNo033niD+fPnpzo980bP6Th+UlIS/v7+rF27NkUhDbhhc/SIiAi2b9/O/Pnz+eOPP+jRowcffvghixcvTvPxcuTIcdPXBEe+WbNmUbRo0RTfCwwMBEzhc9++fcyaNYs//viDZs2a0bNnT4YNG3bD44qAKWpfvHgxRcFaJDN69uxJz549iYmJITQ01NIsgYEwbBg88AAMHw7dusE1LTVFRETES6lI5gFWr15No0aNqFy5Mlu2bHHKMc+fP8+ZM2eIiIhwyvHEYjYbpFIM8nSxsbFs3bqVRo0aAWaEVr58+a7bL1u2bNeNDKhRowbbt2/ntttuc0vW1ERGRhIZGclrr71G/fr1+fbbb29YJLvVcRITEzl+/Hjyv0Va5MiRg3bt2tGuXTt69uxJhQoV2Lx5c4aP91+Ohv779++nSZMmN9yvYMGCPPnkkzz55JM0atSIl19+WUUyHxMTE8PmzZupXbs22bNnz/Txxo4dyyuvvMITTzzBmDFjnJBQxPPcdx/cdRcsWAD9+pkVL0VERMS7qUjmAVasWAFw3dSpjPryyy95+umnadOmDb/88otTjimSFn379qVt27YUL16c48eP8+677xITE0Pnzp1v+riSJUvy559/0rBhQwIDA8mbNy8DBgygTZs2RERE8PDDD+Pn58emTZvYvHkz7777rkv/Hnv27GH8+PG0a9eO8PBwtm/fzo4dO+jUqVOGjleuXDkee+wxOnXqxPDhw4mMjOTkyZMsWLCAqlWr0rp16+seM2XKFBITE6lbty7BwcF89dVX5MiRgxIlSpA/f/50Hy81uXPnpm/fvvTu3ZukpCTuuOMOYmJiWL58Obly5aJz584MGDCAmjVrUrlyZWJjY5k5cyYVK1bM0L+DeK4//viD9u3bU7NmTdasWZPp4xUoUIBz584lr9os4otsNhg5EiIj4YcfYMkSyMR1CxEREfEAfrfeRVzNUSTLyAiV1JQrV47ExESWLl160+lkIs528OBBHn30UcqXL8+DDz5I9uzZWbFiBSVKlLjp44YPH878+fOJiIhI7oXVokULZs6cyfz586lduzb16tVjxIgRtzyWMwQHB7Nt2zbat29PuXLleOaZZ3juued49tlnM3zMyZMn06lTJ1566SXKly9Pu3btWLly5Q1He+bJk4fPP/+chg0bUq1aNf78809mzJiR3HMsvce7kUGDBjFgwACGDBlCxYoVadGiBTNmzKBUqVKA6Wv22muvUa1aNRo3boy/vz9Tp07N8L+DeKbFixcDULduXaccr379+gBs2rSJCxcuOOWYIp6oWjUz1RKgVy/QaZeIiIh3s9ntdrvVIZzJ0aciOjqakJAQq+Pckt1up1ixYhw+fJjFixfTuHHjTB8zLi6OPHnycOnSJaKiojTqw8tcvnyZPXv2UKpUqRS9t0Q8nX53vVf16tXZuHEj06ZNS9E3MDOKFSvGoUOHnPbe5g7edg6RVXnaz+n4cShbFmJiYNIkeOopqxOJiIjIf6X1/EEjySx28OBBDh8+jL+/PzVr1nTKMbNnz548GmDJkiVOOaaIiPimM2fOsGnTJgCnFrMco6Mdo6VFfFWhQvDmm2b79dfh3Dlr84iIiEjGqUhmsZUrVwJQrVq1VFfpyyhHM28VyURE5GaWLFmC3W6nfPnyFClSxGnHdUy5VJFMsoIXXoDbboOjR2HIEKvTiIiISEapSGax9evXA1CrVi2nHtdRJFu6dKlTjysiIr7F8T7h7CmRjtHR69atc+pxRTxR9uzgWPR3xAjYs8faPCIiIpIxWt3SYi1btgSgQYMGTj1uvXr18PPzY+/evRw8eJBixYo59fgiIuIbHCO9HCO/nKV69eq0bt2amjVrkpSUhJ+frsuJb2vXDpo1gz//hFdege+/tzqRiIiIpJeKZBZr1KhR8qgvZ8qdOzcvv/wyxYoVI0eOHE4/voiI+IahQ4eybNky7rrrLqceN0+ePMyaNcupxxTxZDabGUUWGQk//AB//QVesmaFiIiIXKEimQ97//33rY4gmeBjC89KFqDfWe9Uv359p48iE8mqqlWDbt3gs8+gVy9YvRr8/a1OJSIiImmluQ8W2r17N3PnzuX48eNWRxEPki1bNgAuXrxocRKR9HH8zjp+h0UAjhw5wsaNG62OIeI2gwZBSAisXw9ffGF1GhEREUkPjSSz0I8//sirr75Khw4dmDp1qtOPb7fb2bp1K6tWreLxxx8nIEA/bm/g7+9Pnjx5kounwcHB2Gw2i1OJ3JjdbufixYscP36cPHny4K9hE17j22+/JSkpiXvuuYfChQs7/fjz58+nefPmVKxYkaioKKcfX8QTFSwIAwZA377w+uvw8MOQO7fVqURERCQtVDWxkGNly8jISJcc3263U69ePc6dO0eNGjWoVq2aS55HnK9IkSIAGmUoXiVPnjzJv7viHd577z2ioqL47bffaNu2rdOPX7VqVQC2bdvGhQsXyJkzp9OfQ8QTPf88jBsHu3bBkCEweLDViURERCQtVCSz0IYNGwCzApgr+Pn5UatWLRYuXMjq1atVJPMiNpuNsLAwChUqRHx8vNVxRG4pW7ZsGkHmZaKjo9m6dSsAdevWdclzFClShCJFinD06FH++ecf6tSp45LnEfE02bPD8OFw332mmX+3blCqlNWpRERE5FZUJLPIhQsX2LFjB+C6IhlAnTp1WLhwIatWraJLly4uex5xDX9/fxUeRMQlVq9ejd1up2TJkhQqVMhlz1OlShUVySRLatsWmjWDP/+Efv3MipciIiLi2dS43yKbN2/GbrcTFhbmkj4wDrVr1wbMhyEREREHx/uCq0aROVSuXBmALVu2uPR5RDyNzQYjR4KfH/z4IyxebHUiERERuRUVySzi+LDg6NfiKo6r9ps2beLSpUsufS4REfEejr6YNWrUcOnzOIpk//zzj0ufR8QTVa0Kzzxjtnv3hsREa/OIiIjIzalIZhHHKl+ODw+uUqxYMQoXLkxiYmJyDzQRERFXLx7jUKVKFUBFMsm63nkHQkNh/Xr44gur04iIiMjNqEhmkWeeeYYpU6bQoUMHlz6PzWajZs2awNUPRCIikrWdO3eOXbt2Aa4vklWuXJk+ffrwzjvvYLfbXfpcIp6oYEEYMMBsv/46xMRYm0dERERuzGb3sTPWmJgYQkNDiY6OJiQkxOo4HmHRokVcuHCBOnXqULBgQavjiIiIxex2O4cPH2bz5s20bNnS6jgeQ+cQ3sEbf05xcVClCuzcCa++CkOGWJ1IREQka0nr+YOKZCIiIiLoHMJbeOvPacYMaNcOsmeHrVuhdGmrE4mIiGQdaT1/0HRLC+zZs4dPP/2UFStWWB1FRETE5WJiYliyZAnLli2zOoqIZdq0gbvvNqPK+vWzOo2IiIikRkUyCyxevJiePXvSv39/tz3n7NmzGThwIHv37nXbc4qIiGd64YUXeOuttzh69Khbnm/69Ok0btyYAY7GTCJZkM0GI0eCnx9Mnw6LF1udSERERP5LRTILOFa2rFSpktuec/DgwbzzzjssX77cbc8pIiKeJzY2lrFjx/L2228TFxfnlud0rOSsFS4lq6tSBZ591mz36gWJiZbGERERkf9QkcwCVhTJqlevDsCGDRvc9pwiIuJ5tmzZQkJCAvny5SMiIsItz+l4vzt27BinTp1yy3OKeKq334bQUNiwAaZMsTqNiIiIXEtFMgtYWSRbv369255TREQ8j+N9IDIyEpvN5pbnzJUrF8WKFQNgx44dbnlOEU9VsCAMHGi2X38dYmKszSMiIiJXqUjmZhcuXEjuC1axYkW3Pe+1I8l8bEFTERFJh2uLZO5Uvnx5ALZv3+7W5xXxRD17QrlycPw4DB5sdRoRERFxUJHMzXbs2IHdbidfvnwULFjQbc9buXJl/P39OXnyJIcPH3bb84qIiGexqkhWrlw5QCPJRACyZ4fhw832yJHw77/W5hERERFDRTI3c3w4qFChgtumuQDkyJGDChUqAOpLJiKSVSUlJbF582YAbr/9drc+t4pkIindey/ccw/ExcHLL1udRkREREBFMrdr1aoVS5Ys4f3333f7czumXG7cuNHtzy0iItY7evQoCQkJZMuWLblo5S7Nmzdn7Nix9OvXz63PK+KpbDYYMQL8/OCnn2DRIqsTiYiIiM3uYw2qYmJiCA0NJTo6mpCQEKvjeJTt27djs9koU6YM/v7+VscRERELJCYmcvDgQUqUKGF1FI+jcwjv4Gs/p5494dNP4fbbYe1a0CmaiIiI86X1/EEjybKQ8uXLU65cORXIRESyMH9/fxXIRDzI229DnjywcSNMnmx1GhERkaxNRTI3e/PNN/n888+5cOGC1VFERETcasOGDUyZMkV9yUSuUaAADBxotvv3h5gYa/OIiIhkZSqSudHp06d59913eeaZZyzL8Mknn/D444+zfft2yzKIiIg1HnroITp27Mju3bstef633nqLp556it9//92S5xfxVD16QLlycPw4vPee1WlERESyLhXJ3Gjnzp0AhIeHkzNnTksyTJs2jW+++Ya1a9da8vwiImKNuLg4fv31V7777juyZctmSYby5csDWuFS5L+yZ4fhw832qFFgUR1bREQky1ORzI0cRbKyZctalqFKlSoAbNmyxbIMIiLifjt27CAhIYGQkBAiIiIsyeBYUVNFMpHr3XsvNG8OcXHw8stWpxEREcmaVCRzIxXJRETEKps3bwbM+4DNZrMkg6NIpin/Itez2WDECLO65c8/w8KFVicSERHJelQkcyPHlXPHhwQrqEgmIpI1XVsks4rj/W/fvn3ExsZalkPEU1WuDN27m+3evSEx0do8IiIiWY2KZG7kCSPJKleuDMCePXs4f/68ZTlERMS9HBdHqlatalmGQoUKkTNnTux2O3v37rUsh3inMWPGUKlSJWrXrm11FJd66y3Ikwc2boRJk6xOIyIikrWoSOYmdrvdI4pkBQoUoEiRIgBs3brVshwiIuJenjCSzGazUaZMGQD+/fdfy3KId+rZsydRUVGsXr3a6iguVaAADBxotvv3h+hoa/OIiIhkJSqSuVFUVBQLFy60tEgG5gOSv7+/ruKLiGQRcXFx5MyZE39/f0tHkgEMHTqUefPmUa9ePUtziHiynj2hfHk4cQLee8/qNCIiIlmHzW63260O4UwxMTGEhoYSHR1NSEiI1XE80pEjR8ibNy9BQUFWRxERETeKjY0lMDDQ6hgeS+cQ3iGr/JxmzYI2bSBbNoiKgttuszqRiIiI90rr+YNGkmVBYWFhKpCJiGRBKpCJeI/WraFFC4iPh379rE4jIiKSNahI5iY///wzr776KosWLbI6ioiIiGXOnDnDV199xSeffGJ1FBGPZrPB8OHg7w8//wwLF1qdSERExPepSOYmM2fOZOjQoSxZssTqKCQlJdGtWzfq16/P6dOnrY4jIiIu9thjj1GnTh0WLFhgdRROnTpFp06d6NevHz7W8UHE6SpXhu7dzXavXpCYaGkcERERn6cimZs4VvEqVaqUxUnAz8+PuXPnsmLFCrZt22Z1HBERcbGVK1eyevVq/Pysf9svXrw4fn5+XLp0iaNHj1odR8Tjvf025MkDmzbBxIlWpxEREfFt1p8tZxF79uwBoHTp0hYnMSpWrAjA1q1bLU4iIiKudPny5eT3IMdrv5WyZ89O8eLFAdi9e7fFaUQ8X/788NZbZvuNNyA62tI4IiIiPk1FMjeIj4/nwIEDgGeMJIOrH5Q0kkxExLft2LGDpKQk8ubNS6FChayOA0CZMmWAq6OsReTmevSA8uXhxAl47z2r04iIiPguFcncYP/+/SQlJREUFESRIkWsjgNoJJmISFYRFRUFmNd9m81mcRrDMapaI8lE0iZbNhgxwmyPGgW7dlkaR0RExGepSOYG1/Yj85QPKBUqVABUJBMR8XWO13lPmGrp4BhJpiKZSNq1agUtWkB8PLz8stVpREREfJOKZG7gaf3I4OqHpT179nD58mWL04iIiKs4imSOiyOeQNMtRdLPZjOjyfz94ZdfwAMWqxUREfE5KpK5QZcuXdi3bx+jRo2yOkqyQoUKkT9/fooXL86RI0esjiMiIi5SpEgRypQpQ+XKla2Okqxx48bMmTOHr7/+2uooIl6lUiX4v/8z2716QWKipXFERER8js1ut9utDuFMMTExhIaGEh0dTUhIiNVxPFpsbCyBgYFWxxAREfEIOofwDln953TqFJQtC2fOwGefwTPPWJ1IRETE86X1/EEjybIwFchEREREvEv+/PDWW2b7jTcgOtrSOCIiIj5FRTI36Nq1K6+//jpnzpyxOoqIiGQhCQkJeOqA8ZkzZ/LOO++wefNmq6OIeJ3/+z+oUAFOnIB337U6jYiIiO9QkczFYmJimDhxIkOGDCEgIMDqOCls2bKFJk2acNddd1kdRUREXGD48OEUKFCAtxzDTjzIZ599xsCBA1m+fLnVUUS8TrZspok/wEcfwc6d1uYRERHxFSqSuZhjZcsCBQqQO3dui9OkFBwczF9//cXy5ctJVOdXERGfs3XrVk6fPo2/v7/VUa5TsmRJAPbu3WtpDhFv1aoVtGwJ8fHw8stWpxEREfENKpK5mGN5+1KlSlmc5HolSpQgKCiI2NjY5GKeiIj4jq1btwJQsWJFi5Ncr0SJEgDs27fP4iQi3mv4cPD3h19/hT//tDqNiIiI91ORzMUcxSdPLJL5+/tTvnx5ALZt22ZxGhERcSa73e7RRTKNJBPJvEqVoEcPs927NyQkWJtHRETE26lI5mKOk39PLJIBVKhQAbg62kBERHzD4cOHOXfuHP7+/pQtW9bqONfRSDIR5xg4EPLmhc2bYeJEq9OIiIh4NxXJXMxx8u/4MOBpHKMLVCQTEfEtjtf1MmXKkD17dovTXM8xkuzw4cPExsZaG0bEi+XPD2+/bbbfeAPOnrU0joiIiFdTkczFDh48CEDx4sUtTpI6FclERHyTJ0+1BLOgTY4cOQDYv3+/xWlEvFv37lChApw8Ce++a3UaERER76UimYutXLmSffv2ceedd1odJVWVKlUiPDycIkWKWB1FREScqHDhwjRv3pxGjRpZHSVVNpuNefPmsW3btuRRZSKSMdmywYgRZnv0aNi509o8IiIi3spmt9vtVodwppiYGEJDQ4mOjiYkJMTqOCIiIuIldA7hHfRzurHWrWHOHGjXzqx4KSIiIkZazx80kkxERERExAcMHw7+/vDbb/DHH1anERER8T4qkrnQypUreeyxxxg9erTVUdLExwYViohkWQkJCURHR1sd45a2bNnCoEGDmDBhgtVRRHxCxYrQs6fZ7t0bEhKszSMiIuJtVCRzoY0bN/Ltt9/y+++/Wx3lpj7++GOKFSvGa6+9ZnUUERFxgm3btpEnTx4qVKhgdZSb+ueffxgwYABffvml1VFEfMbAgZA3L2zZAqo/i4iIpI+KZC7kWK3LU1e2dLDZbBw6dIht27ZZHUVERJxg55Wu3aGhoRYnubkSJUoAsHfvXmuDiPiQfPng7bfN9ptvwtmzlsYRERHxKiqSuZCjSOb4EOCpypcvD8COHTssTiIiIs7geD0vW7asxUluzrGq5aFDh4iPj7c2jIgP6d7dTL08eRIGDbI6jYiIiPdQkcyFvGUkWbly5QDYtWsXiYmJFqcREZHMchTJHK/vnqpQoUIEBgaSlJTEwYMHrY4j4jOyZYMRI8z26NGg66AiIiJpoyKZC3lLkSwiIoKgoCDi4+M15UVExAc4plt6epHMz89PUy5FXKRlS2jd2jTv79vX6jQiIiLeQUUyF0lMTOTAgQOA5xfJ/Pz8kqfkaMqliIj385bplnD1PdJxYUlEnGf4cPD3hxkzYP58q9OIiIh4PrcUyT799FNKlSpFUFAQNWvWZMmSJTfcd9GiRdhstuu+vK2p/IkTJ7Db7fj7+xMWFmZ1nFtyjDbYvn27xUlERCQzYmJiOHbsGOAdRbKIiAgATbcUcYEKFaBnT7Pdp48ZVSYiIiI35vIi2bRp0+jVqxf9+/dn/fr1NGrUiFatWt3yivH27ds5cuRI8pc3nOhfq0iRIly+fJm9e/cSEBBgdZxbqlOnDo0aNaJAgQJWRxERkUyIjY2le/futG/fnpCQEKvj3NIbb7zB1q1b6d27t9VRRHzSwIFmxcstW+Dzz61OIyIi4tlsdrvd7sonqFu3LjVq1GDs2LHJ91WsWJH777+fIUOGXLf/okWLaNq0KWfOnCFPnjzpfr6YmBhCQ0OJjo72ig8HIiIi4hl0DuEd9HNKv08+geefh/z5YdcuyMAptoiIiFdL6/mDS0eSxcXFsXbtWpo3b57i/ubNm7N8+fKbPjYyMpKwsDCaNWvGwoULb7hfbGwsMTExKb5ERERERMTo3h0qVYJTp+Cdd6xOIyIi4rlcWiQ7efIkiYmJFC5cOMX9hQsX5ujRo6k+JiwsjPHjxzN9+nR++uknypcvT7Nmzfjrr79S3X/IkCGEhoYmfzl6m1ht1KhRPPbYY8ybN8/qKOly+fJlEhMTrY4hIiIZtG/fPs6fP291jDSLjo7mnXfe4fnnn7c6iojPCgiAESPM9scfg9ZpEhERSZ1bGvfbbLYUf7bb7dfd51C+fHm6detGjRo1qF+/Pp9++in33nsvw4YNS3X/1157jejo6OQvx4qSVluwYAHffvste/bssTpKmtWsWZPg4GA2b95sdRQREcmghx56iNy5czNz5kyro6SJn58fAwcO5JNPPvGq4p6It2nRAlq3Ns37+/a1Oo2IiIhncmmRrECBAvj7+183auz48ePXjS67mXr16rFz585UvxcYGEhISEiKL0/gWJigRIkSFidJu8DAQOx2u1a4FBHxUna7Pfn9slSpUhanSZvcuXMnv3d7yoUuEV81fLgZVTZjBsyfb3UaERERz+PSIln27NmpWbMm8//zLjx//nwaNGiQ5uOsX7+esLAwZ8dzKUeRrHjx4hYnSbvy5csDsENj8EVEvNKJEyeIjo7GZrNRpkwZq+OkmaNVgopkWc8DDzxA3rx5eeihh6yOkiVUqAA9e5rt3r3NqDIRERG5yuXTLfv06cOECROYNGlS8hLv+/fvp3v37oCZLtmpU6fk/UeNGsUvv/zCzp07+eeff3jttdeYPn06zz33nKujOs25c+c4c+YM4F1FsnLlygEqkomIeCvHKLLixYsTFBRkcZq0U5Es63rhhRf48ssvrY6RpQwcCPnywT//wPjxVqcRERHxLAGufoIOHTpw6tQp3nnnHY4cOUKVKlWYPXt28jTEI0eOJI+6ArMiZt++fTl06BA5cuSgcuXKzJo1i9atW7s6qtM4TvLz5s1L7ty5LU6Tdo6RZJpuKSLinRwXOcqWLWtxkvRxFMkOHjxocRJxt6ZNm7Jo0SKrY2QpefOaFS6few4GDIBHHzX3iYiIiJsa9/fo0YO9e/cSGxvL2rVrady4cfL3pkyZkuLkqF+/fuzatYtLly5x+vRplixZ4lUFMjAri4F3jSKDlCPJ7Ha7xWlERCS9HCPJHK/n3kIjydLv0KFDPP744+TPn5/g4GCqV6/O2rVrnXb8v/76i7Zt2xIeHo7NZuOXX35Jdb9PP/2UUqVKERQURM2aNVmyZInTMojrPPssVKoEp07BoEFWpxEREfEcbimSZTUnTpzAz8/P64pkt912GzabjejoaI4fP251HBERSSfHSDIVyXzbmTNnaNiwIdmyZWPOnDlERUUxfPhw8uTJk+r+y5YtIz4+/rr7t23bdt3iSg4XLlzg9ttv55NPPrlhjmnTptGrVy/69+/P+vXradSoEa1atUoxQ6BmzZpUqVLluq/Dhw+n7y8tThUQACNHmu2PPwZNIhARETFcPt0yK+rUqRMdO3bkwoULVkdJl6CgIB544AFCQkJSPZkWERHP1q5dO/Lly0fdunWtjpIu7dq1Y+vWrcnFMrm5oUOHEhERweTJk5PvK1myZKr7JiUl0bNnT8qWLcvUqVPx9/cHTEG1adOm9O7dm379+l33uFatWtGqVaub5hgxYgRdunSha9eugOkrO2/ePMaOHcuQIUMAnDq6TZyreXO4916YNQv69jUrXoqIiGR1GknmIgEBAYSGhlodI92mT5/O5MmTKVasmNVRREQknTp16sT48eOpV6+e1VHSJV++fFSoUIGcOXNaHcUr/Pbbb9SqVYuHH36YQoUKERkZyeeff57qvn5+fsyePZv169fTqVMnkpKS2L17N3fddRft2rVLtUCWFnFxcaxdu5bmzZunuL958+YsX748Q8e8lTFjxlCpUiVq167tkuNnRcOHm1FlM2fC779bnUZERMR6KpKJiIiIeJF///2XsWPHUrZsWebNm0f37t1vukpkeHg4CxYsYNmyZXTs2JG77rqLZs2aMW7cuAxnOHnyJImJiRQuXDjF/YULF77hFM7UtGjRgocffpjZs2dTrFgxVq9efcN9e/bsSVRU1E33kfQpX9408Afo3RsSEqzNIyIiYjUVyVzAMd1y165dVkfJkLi4OA4dOmR1DBERSYfjx4+zadMmLl68aHWUDBk5ciTdunXj33//tTqKx0tKSqJGjRoMHjyYyMhInn32Wbp168bYsWNv+JjixYvz5ZdfMm3aNAICApg4cSI2my3TWf57DLvdnq7jzps3jxMnTnDx4kUOHjyoUWIWGDAA8ueHqCgYP97qNCIiItZSkcwFfvnlF7777jsSExOtC3HoEMyfD99+Cz/9BBs3Qhr6jC1ZsoQcOXJw9913uyGkiIg4y08//cTtt9/OI488krYH7N0Lc+ea94mff4Z//rF0GMkXX3zBhAkT2LZtm2UZvEVYWBiVKlVKcV/FihVTNMz/r2PHjvHMM8/Qtm1bLl68SO/evTOVoUCBAvj7+183auz48ePXjS4Tz5Y3L7zzjtkeMADOnLE2j4iIiJVUJHOymJgYzp07B0DRokXd++TnzpmliqpVg2LFTEfWxx6D9u2henUoUAC6dIFNm254iOLFiyf3K7G0yCciIumSppUto6NhyBCoWBFKlYJWrcz7xIMPQpUqULgwdO8OFhSqtMJl2jVs2JDt/1mOcMeOHZQoUSLV/U+ePEmzZs2oWLEiP/30EwsWLOD777+nb9++Gc6QPXt2atasyfz581PcP3/+fBo0aJDh44o1nnkGKleGU6euFsxERESyIhXJnOzgwYMA5MmTh1y5crnnSZOSYNIk84GnTx/YvBn8/MyHoLvugvr1ITQUYmLMftWrw5NPpnqpMCIigsDAQOLj49m3b5978ouISKbt3LkTuEGRLCkJPv8cSpaE1183RbBs2UxhrGlTqFMHcuWC06fhs8/Mp+WuXeHsWbflV5Es7Xr37s2KFSsYPHgwu3bt4ttvv2X8+PH07Nnzun2TkpJo2bIlJUqUSJ5qWbFiRf744w+mTJnCyJEjU32O8+fPs2HDBjZs2ADAnj172LBhQ4rRan369GHChAlMmjSJrVu30rt3b/bv30/37t1d8vcW1wkIMNdZAT75xJI6uYiIiEdQkczJHL283DaKLDrajADo0sVc/itXznzAOXHCNJf4809Yvtx88Fm8GB55BOx2+OILqFrVfO8afn5+3HbbbcDVUQkiIuL5bjiSLDoa2rUzQ0XOnoVKlWDyZPM+sXkzLFgAK1eaCyfz55t9k5Jg4kRTLFu2zC35VSRLu9q1a/Pzzz/z3XffUaVKFQYNGsSoUaN47LHHrtvXz8+PIUOGMH36dLJnz558f9WqVfnjjz946KGHUn2ONWvWEBkZSWRkJGAKYpGRkQwYMCB5nw4dOjBq1Cjeeecdqlevzl9//cXs2bNvOKJNPNs990CbNmbWdSYGGYqIiHg1FcmczDGSrFixYq5/st27zdX/X3+FwED48EPYssV8EMqXL+W+fn7QuDFMmwYrVphi2qFDZqTZDz+k2NXxAUtFMhER75CQkJDc8L5s2bJXv3HgANSrB7NmQVAQjBhhptw/+aQZYXytgAC4+27znrJkCZQtC4cPm5FmN1g10ZlUJEufNm3asHnzZi5fvszWrVvp1q3bDfe95557CAoKuu7+6tWrJ/+7/9edd96J3W6/7mvKlCkp9uvRowd79+4lNjaWtWvX0rhx40z9vcRaw4aZl4JZs2DePKvTiIiIuJ+KZE7mtiLZzp3QpAns2AEREeYDTd++ZvrMrdStC+vWwX33QWws/O9/pnh2haNI5pi6IyIinm3v3r0kJCSQI0eOqyOZ9++HO+8086aKFYOlS6F3b/D3v/UB77gD1q83PS3j46FzZ5gwwaV/BxXJRKxXvjw8/7zZ7tPH0rU8RERELKEimZOdP38ePz8/1xbJ/v3XfPA5dMhMm1m1CtK7ZHrOnDB9uuk5k5RkGjfPnQtcHYWgkWQiIt7BcVGjbNmy+Pn5mWmVLVua94syZcyUyZo103fQnDnh+++vfmLu1s1M03QRR5Hs4MGD2O12lz2PiNzcm29C/vyma8dnn1mdRkRExL1sdh87E42JiSE0NJTo6GhCQkIsyZCQkEB8fDw5cuRw/sGjo00j/q1bTYFswQKzGllGJSWZEQJff22m3qxcyYZLlxg+fDj16tVLtQmwiIh4ll27dvHjjz8SEhJCj27d4N57TX+xokXNFPvMXLix280ItI8+MvOw5s6FZs2cF/6KhIQEdu3aRbFixdy38M1/eMI5hNyafk6uN3Ys9Ohhunfs3Hl9Fw8RERFvk9bzBxXJvElCgumoOm8ehIebEWTOWCAgLs70Jlu2zIyzX7ny+l41IiLiHfr2heHDzUiwJUvgSuP1TLHb4Ykn4JtvIE8eU3grXz7zx/UwPn0O4UP0c3K9hASzGPo//8CLL8KoUVYnEhERyZy0nj9ouqU3efddUyALDoYZM5xTIAPInt1MvSxWDLZvN2dDIiLifX7/3RTIAL76yjkFMgCbzfQkq1/fTOV8+GG4dMk5xxYRjxMQACNHmu0xY0xrQxERkaxARTInunz5Mo0bN+bRRx/l8uXLzj34X3/BoEFm+/PPoUYN5x6/cGGYOtWsgvnFFyT++CO7du3i2LFjzn0eERFxurlz57J96VLsnTubO3r0gAcecO6TBAXBTz9BoUKweTO8/LJzjw9MnTqVbt26MWfOHKcfW0TS5557oG1bM6rspZesTiMiIuIeKpI50aFDh1iyZAm//vorgYGBzjvw2bOmsX5SEjz5JHTs6LxjX6thQ+jXD4ALjz9Og7Jlr1vqXUREPMulS5do3bo1axo1wnb0qOlXOWyYa56sSBH48kuzPWYM/PabUw+/ePFiJkyYwN9//+3U44pIxgwbZhZOnz07eX0nERERn6YimRMdPHgQgKJFi2Kz2Zx34FdegYMHoWxZ+Phj5x03NW+/DdWqERIby1CurpgmIiKeaffu3dxlt/MYYL8yGhhXLBzj0KLF1WEl3bubCzlOUvRKG4FDhw457ZgiknHlyl1d4LZPH4iPtzaPiIiIq6lI5kSOk/pimVlF7L+WLIHx4832hAng6hW/smdPXu/7KSD7mjWufT4REcmUXVu28OmVbVvPnlCrluuf9N13zafnI0fMhRwnUZFMxPO8+Sbkz28WVr9yiigiIuKzVCRzIsdIMqcVyWJj4ZlnzHa3btC4sXOOeyv16nGiXTsAevzzj2lGISIiHinPF19QDjidI4cpXrlDUJDpjwnmQs5ffznlsCqSiXiePHmutsUdOBBOn7Y0joiIiEupSOZETi+SffCBWU6ocGEYOtQ5x0yjwBEjOANUSUjgkmMkm4iIeJaTJ6nz558ALGrZEm6ynLXTNW589ULOCy9AYmKmD6kimYhn6tYNqlQxBbK337Y6jYiIiOuoSOZETp1uefgwvP++2R41CvLmzfwx0yGkTBk+ujK10/+dd8DZq3WKiEjmDRpEcHw864DY9u3d//zvvWeGmWzcCJMmZfpwjiLZmTNnuHTpUqaPJyLOERAAI0ea7TFjzNRLERERX6QimRPFxcXh5+eXfJKfKW++CRcvQoMG0KFD5o+XAUuqVeMAkP3YMRg71pIMIiJyA//+m/za/DJQtnx592coUADeests9+8P0dGZOlxoaCg5riw6cPjw4UyGExFnuvtuaNfODBp1rN0hIiLia1Qkc6IZM2YQGxvLvffem7kDbdwIkyeb7eHDwZkrZaZDh86dWdu2rfnDe+/BuXOW5BARkVQMGQLx8Ry9/XbuevddyltRJAPo0QPKl4cTJ8x7RSbYbDa2bNnCuXPnKFOmjJMCioizDBsG2bLBnDnmS0RExNfY7Ha73eoQzhQTE0NoaCjR0dGEuLM3izPdcw/88YcZQTZ1qrVZEhJME4rt2+HDD6FvX2vziIgI7N8Pt90G8fGwbJkZdWylWbOgTRsIDIRdu8CZqzy7kU+cQ2QB+jlZ66WXYMQIqFjRXNfNls3qRCIiIreW1vMHjSTzNIsWmQJZ9uxmlIDVAgLglVfM9ogR6k0mIuIJPvzQFMiaNrW+QAbQurVp5B8bm+nRZCLi2d5808y03roVxo2zOo2IiIhzqUjmJBs2bKBRo0a88MILGT+I3W7W1gazjFCpUs4Jl0FJSUns2bOH+YUKYS9WDI4cgS++sDSTiEiWd/QofP45AFEPPsjMmTOt799ls8GgQWZ74kTYuzfDh5o/fz5du3bl8yt/RxHxLHnyXP3vPnCgWfFSRETEV6hI5iS7d+9m6dKlrFmzJuMHWbgQ/vrLjCJ79VXnhcuguLg4ypQpQ/M2bbjQvbu584MPzBRMERGxxogRZsRWgwYM/vtv2rZty5dffml1KjOS7O67zQg3xyfoDIiKimLixInMnz/fieFExJm6doWqVeHMGXj7bavTiIiIOI+KZE5y8OBBAIpltA/LtaPInnnGI/q5BAUFUaJECQA2160L+fOb1dR++MHiZCIiWdT58zB+vNl+7TV27NwJQLly5SwMdQ1HceyLL+BKtvRyrBB96NAhZ6USEScLCICRI832mDFm6qWIiIgvUJHMSTJdJFuwAJYuNU2PPWAUmUPZsmUB2HbgADimko4ebWEiEZEs7MsvIToaypbF3qoVOz2tSFavnulPlpho+qZlgIpkIt6hWTNo1878d3/pJavTiIiIOIeKZE7iOJl3nNyn29Ch5rZbN8joMVzA8cFrx44d8OyzZiroihWQmWmlIiKSfklJVy9SPP88J0+f5uzZswCUKVPGulz/9frr5vaLLyADvdLCw8MBOHz4MElJSc5MJiJONmyYWd1yzhzzJSIi4u1UJHMSx0iyDBXJNmyA+fPB39/jLsU5imQ7d+6EwoXhkUfMN8aMsTCViEgW9PvvsH07hITAk0+aixdA8eLFyZEjh8XhrtGwIdxxB8TFwahR6X54WFgYAPHx8Zw8edLJ4UTEmcqWvTrRoE8f05JQRETEm6lI5iSOlcUyNN1y2DBz+/DDULKk80I5QYqRZADPPWduv/sO9OFFRMR9HKPInn4acuf2vKmW13K0DRg71nT2Tofs2bNTqFAhQFMuRbzBm29CwYKwbRuMG2d1GhERkcxRkcxJ/P398ff3T54mkmb79sHUqWb75ZedHyyTHD3Jdu7caaa91KkDtWqZldUmTLA4nYhIFrF7t5nLZLMlX6xwXLxwvE57lNatoUoVs9DA2LHpfrhjVPaRI0ecnUxEnCw09OqaHQMHwqlT1uYRERHJDBXJnGT79u3ExsZSqlSp9D1w1CjT8fSuu6BGDZdky4wSJUrQv39/xo0bR2JiYooPaIwda7KLiIhrTZpkbps3hyv9x55++mm+/fZbOnXqZGGwG7DZ4JVXzPYnn5ipl+kwc+ZMzp8/T+vWrV0QTkScrUsXqFrVDBx9+22r04iIiGSczW63260O4UwxMTGEhoYSHR1NSEiI1XFu7swZiIiACxfMCIGWLa1OlDaXL0N4uMn/++9wzz1WJxIR8V0JCVC8OBw5Aj/+CO3bW50obeLiTAuBI0fgm2+gY0erE92SV51DZGH6OXmmBQvMipf+/rBpE1SqZHUiERGRq9J6/qCRZFaaONEUyKpWhRYtrE6TdkFB8NhjZtsxukFERFxjzhxTaCpYENq2tTpN2mXPDv/3f2bb0U9NRHzWXXfBffeZSQYetg6ViIhImqlI5gS//vorjRo14r333kv7g5KSrvZpeeEFMzXFQ506dYo///yTZcuWXb3z6afN7c8/w+nT1gQTEckKHP0fO3c2hSfg5MmTfPTRR/z+++8WBkuDZ54xmVeuNF9ptG7dOrp27cqbb77pwnAi4mzDhkG2bDB3rqnvi4iIeBsVyZxg27ZtLF269OoKkGkxdy78+6/pdurhU1CmT5/O3XffzeDBg6/eGRkJ1aubBv7ffmtZNhERn3b4MMyaZba7dEm+e9OmTfTq1YvnHD0iPVXhwvDoo2Y7HaPJjh8/zsSJE/n1119dFExEXOG22+DFF812nz4QH29tHhERkfRSkcwJDh8+DJC+lS3HjDG3Tz0FwcEuSOU8jpXTrisCOkaTacqliIhrfPmlmbt0xx1QoULy3Y7X43LlylmVLO1eeMHcfv+9KfqlgWN1y0OHDrkqlYi4yBtvmNnh27ZlaHFbERERS6lI5gTpLpL9++/VMeg9ergolfM4PoTt2bOHuGtXKOvY0UyjWb/efImIiPPY7fD112b7ySdTfGvnzp2AlxTJatQwRb6EBBg3Lk0PcRTJTp8+zaVLl1yZTkScLDQU3n3XbL/1Fpw6ZWkcERGRdFGRzAnSXSQbO9Z8+GneHK6M0vJk4eHhBAcHk5iYyJ49e65+I39+aNfObH/zjTXhRER81ebN8M8/5mLEf1a0dIwkK+sF7yEAOKaFTpxoimW3kDdvXoKCgoCr77Ei4j26dIFq1cxC6G+9ZXUaERGRtFORzAnSVSS7dOnq9MSePV2YynlsNlvyaAXH6IVkjlUuv/vOTAkSERHncFx8uPdeyJMnxbe8arolwAMPmPlXhw/D7Nm33N1ms2nKpYgX8/eHUaPM9tixEBVlaRwREfFwiYmwaJEpKyxaZG1pQUWyTLLb7Rw5cgRIY5Fs2jSzGmSJEuaDj5e4YV+yVq3MuPrDh2HJEguSiYj4oKQkc5YAVy9GXJGQkMC///4LeNFIsuzZr04ZHT8+TQ9xFMk0kkzEOzVtCvffbz7o9OljJlGIiIj8108/QcmS5n2jY0dzW7Kkud8KKpJl0vnz5ylYsCDZsmWjSJEit36Aox9L9+7mMpuXcIxWuK5IFhgIDz1ktrXKpYiIcyxZAgcOmIsQ/7mgsnfvXhISEggKCqJYsWIWBcyArl3N7Zw5sH//LXd3FMmOHz/uylQi4kIffgjZssG8eVfb8YqIiDj89JMpJxw8mPL+Q4fM/VYUylQky6TcuXNz4MABLl++TGBg4M13/ucfWLkSAgLMqpZe5IEHHmDixIn0SG2hgY4dze0PP0BsrHuDiYj4IsdUy/bt4UpvLodixYqxYsUKpk2bhp+fF72NlytnLg0mJaVpVeSPP/6YCxcu8IJjdUwR8Tq33Qa9epntPn0gPt7SOCIi4kESE+HFF1Mfaey4r1cv90+99KKza8+Wpg8qEyea2zZtoHBh1wZyspo1a/L0009TrVq167/ZpAmEh8PZszB3rtuziYj4lNhY+PFHs/2fqZYAQUFB1K1bl3aOhVO8yTPPmNs0NPDPnz8/wcHBbgglIq7Uv79pSbh9O3z6qdVpRETEUyxZcv0IsmvZ7WZihbu7OqlI5i5xcfDVV2a7Sxdrszibvz/8739mW1MuRUQyZ948syRceLi5COFLHnjArIx88KAuqohkEaGh8N57Zvutt+DUKUvjiIiIh7jS2t1p+zmLimSZNG7cOO644w7Gjh178x1/+w1OnoSwMGjZ0j3hnGz58uWMHz+eg6mVezt0MLezZpkVPEVEJGN++MHcPvJIqr0rP/30Uz755JPUX4s9XWDg1Qb+n31201337dtHly5dePrpp12fS0Rc6umnoVo1M+lg4ECr04iIiCcIC3Pufs6iIlkmbdmyhWXLlt16iXrHVMsnnzQ9ybxQ3759efbZZ/n777+v/2bt2hARARcumFEQIiKSfnFxMGOG2W7fPtVdPvjgA55//nn27t3rvlzO1K2buZ09+6aXBuPj45k0aRLTpk3DrmXxRLyavz+MGmW2x40zbXpFRCRra9QI8ua98fdtNlNiaNTIfZlARbJMcyxNHx4efuOdDhy4Wjjy4iviZcuWBVJZ4RLMb7DjA9306W5MJSLiQ/78E6KjoUgRaNDgum9fvnyZ/VdWhnSsOux1ypc3f7ekJPj66xvuFnblsuHFixc5d+6cu9KJiIs0bWpmXCcmmib+qn2LiGRtv/9uTntTY7OZ21GjUp1Y4VIqkmVSmopkU6aYM4EmTcwyP17K8YEs1SIZXC2SzZhhRkOIiEj6OC4yPPAApLIgzO7du7Hb7YSEhFCwYEE3h3Oizp3N7Rdf3PCTcs6cOQkNDQWuvteKiHf78EPInt18MJo92+o0IiJilTVr4OGHzTXTJk2gWLGU3y9WzKxj9eCD7s+mIlkmOU7cw240UTYpCSZPNtte3rD/lkWyBg3M6IfoaDMaQkRE0i4hAX75xWzfYKql4/W3XLly2ByX2LzRI4+Y/mT//APr1t1wN8cFKBXJRHxDmTLQq5fZ7tMH4uMtjSMiIhbYvRvuvdd0arrnHnPhZO9eWLjQrAO4cCHs2WNNgQxUJMuUpKQkjlzpp3LDkWRLl5qfcO7cN/zQ4y0cRbKdO3emvoOfnxn9AJpyKSKSXosXm2Xf8ue/4aqW1xbJvFqePHD//WZ7ypQb7ua4AHXE3csaiYjL9O8PhQrBjh0wZozVaURExJ2OH4cWLcxtZKQpG2TPbqZU3nknPPqouXX3FMtrqUiWCadOnSIhIQGAIkWKpL7TV1+Z24cfhuBgNyVzjduuTBU9deoUp260frejEPjLL2ZUhIiIpI3j4sJ9991wgRefKZLB1VUuv/vuhlP0NZJMxPeEhMC775rtt982i7+LiIjvu3AB2rQxI8lKljTT7nPntjrV9VQky4SzZ88SERFB0aJFyZYt2/U7XL4MP/xgtp94wr3hXCBnzpwULVoUuMlosiZNzCiIU6fgr7/cmE5ExIslJcHPP5vtm4w6drz2li9f3h2pXOuee8ya3qdOwaxZqe7iKJLd8MKMiHilp5+G22+Hs2dh4ECr04iIiKslJJhuG6tXm3LB3LmmU5MnUpEsE8qWLcv+/fs5cOBA6jvMmGH6cxUvDo0buzeci4wdO5ZFixZRpUqV1HcICDCjIAB++sl9wUREvNnff8PRo2aIRbNmN9ztp59+YtmyZTS7yT5ew98fHn/cbN9gymX//v25cOEC77//vvtyiccaM2YMlSpVonbt2lZHkUzy9zcrlgGMGwdbtlgaR0REXMhuh2efNSPHcuSAmTPNYueeSkUyJ7hh82THVMvHHkt1lTJv1LZtW5o0aUKuXLluvJOjL9lvv2l9bxGRtJgxw9zee69paH8DBQoUoEGDBt69suW1HKtczp4NJ05c9+2QkBCCvbxVgThPz549iYqKYvXq1VZHESe4807TlDkpyTTx1ymjiIhveustmDTJlESmToV69axOdHOpNz2RzDtxAubMMds+MNUyXZo1MyXiAwdg0yYznl5ERG7MUSRr29baHO5WuTLUqmXWAf/2W3jxRasTZVqpUqUytPJor169eOGFF1yQSMRzffCBGVEwf76Zdd2mjdWJRETEmcaPh3feMdtjx0K7dtbmSQsVyTJh4MCB/Pnnnzz//PN06NAh5TenTTMTb2vWhIoVrQnoAqdOneLXX38lJiaGXo41vP8rRw64+27zoW/GDBXJRERu5t9/ISrKzD9q2fKGuy1atIgZM2Zw55130taXimmdO5si2RdfXFckO3v2LH369OHkyZP8+uuvGSo+uduUm6zWeTMlS5Z0ag4Rb1CmDPTqZYplL70EzZubVc5ERMT7zZgB//d/ZnvAAHjmGWvzpJWKZJmwYcMGli1bxuOOnirXcky19LFRZCdPnqRLly7kzJmTF1988cYfWNq2vVoke+MN94YUEfEmM2ea2zvugLx5b7jbwoULGTFiBDExMb5VJPvf/6B3b1i/HrZuTXFhKTAwkMmTJwMQExNDaGioVSnTrEmTJlZHEPEq/fubtoQ7dsCYMeblQEREvNuKFdChg5lS//TTZsqlt/CNRlkWcSxJ71h9K9n27bBqlRkV8OijFiRznVKlSuHv78+FCxc4cuTIjXd0jJdftco0oxYRkdQ5imS3KHzt2LEDgHLlyrk6kXsVKAAtWpjt775L8a0cOXKQJ08e4Op7roj4lpAQeO89s/3223DypLV5REQkc7ZvN+WAS5egdWuzQIsXTAZIpiJZJtywSPb11+a2RQsoVMjNqVwre/bslCpVCrj6gS1VYWGmzwyYJhMiInK9mBhYtMhs36IZj+M1t7wnLweUUR07mttvv72ue7fjPdYXimTbtm3jww8/5PPPP2f58uXExMRYHUnEIzz1FFSvbhaFHzjQ6jQiIpJRR4+a7iGnTkHt2vD995Atm9Wp0kdFsgxKTEzk2LFjwH+KZElJV4tkPjbV0sEximHnzp0339ExKsLRkFpERFKaPx/i46Fs2ZuuhW232313JBmYLq7BwbB7N/xn5cKwsDDAN4pkrVq1Ii4ujrNnz/LZZ59x5513+mbRUySd/P1h5EizPW4cbNlibR4REUm/c+fMyLG9e+G228xkiZw5rU6VfupJlkEnTpwgMTERPz8/Cl07WmzZMvNbkTs33HefZflcqWzZssAtRpKBKZINHGg+BF6+DEFBbkgnIuJF0riq5dGjRzl//jx+fn6ULl3aDcHcLFcu85753XdmNFmdOsnfclyIuukUfy9RpEgR+vfvn+K+xMREi9KIeJY774QHH4SffjJ9yX7/3bum54iIZGVxcdC+vWkxW7AgzJ3rvZPqNJIsgxxXtAsVKkRAwDW1Rkc/lfbtzSqPPsgxiuGWRbLq1aFYMbh4ERYscH0wERFvkph4dTr6LaZaOkbulipViuy+uvSbY8rl1Knm3+YKX5pu2aJFC75yLOxzhb+/v0VpRDzPhx+a1S3/+ONqu0YREfFsdjt06WLGxuTMCbNnm9WLvZWKZBl08eJFihcvnnLJ9oQE+OEHs+1jDfuvleYimc129YOf+pKJiKS0apXpUB0aala2vIldu3YBPjrV0qFFC8ifH44dg4ULk+92TLc8c+aMVcmcZtWqVfTv35/bbruNjh07MmTIEGaqEiCSrHTpq6tbvvSSGZkgIiKe7fXXTccpf39TDnG0JvdWNrv9Px1yvZxjifjo6GhCQkJc/nx2ux2bYyz477+bk/wCBeDIEQjwzdms0dHRrFmzhnLlyhEREXHznX/7zUyhKVMGrnzIExERoH9/GDwY/ve/61Z1/C+73c6xY8e4ePGib063dPi//zMNiZ58EiZPBsxFKZvNRg43jM521zlETEwMW7ZsYcuWLURFRTFq1CiXPZcvcve5nrhXTAyUK2fq5SNGXC2aiYiI5/nkE3j+ebM9ebI5hfNUaT1/UJHMmZ5+2vxmdO8OY8e697k91blzZmRAfDzs3Gk6+ImICNSoYRo3fPUVPP641Wk8w5Il0Lix6et57Jjb2xa46hzi+PHjJCUlUaRIEacdMytTkcz3TZwIXbuagbY7d5r+NiIi4lmmT4eHHzbTLd9911z/9WRpPX/QdEtniY01nUbBjAoQI3fuq9OI5s61NouIiKc4dswUyACaN7c2iydp2BAiIswFltmzrU6TaZs2baJy5cqEhYVRtGhRihYtyhtvvMGFCxesjibi0Z580rS2jY42a0CJiIhnWbIEHnvMFMi6dzdTLn2FimQZ1K1bNxo2bMgff/xh7vj9d/NOHh5+y94yvmDRokW88cYbzJkz59Y7t2xpblUkExExfv/d3NaocculfxISEnjwwQfp168fFy9edEM4C/n5Xe3p+e23ACQlJfH000/TsmVLzp49a122DOjSpQuFCxdm6dKlrF+/nnfffZc5c+ZQq1Ytn+ixJuIq/v7gmIX82WewebOlcURE5BpRUdCunRkndN99ZsqlL61GrCJZBq1bt47ly5cTGxtr7pg61dw+8oh5Z/dxc+fO5b333mNWWhryO4pkCxea/0kiIlndvHnmtkWLW+66b98+fv75Z0aPHk1QUJCLg3mAxx4zt7Nmwdmz+Pn58csvvzBv3jyvW+EyKiqKTz/9lPr161OtWjWeeuop1qxZQ+XKlXne0cBDRFLVpIlZLD4pyfQl860GMSIi3unQIfPx/uxZaNDAtNX1tfKHimQZ5DhRDw8Ph4sX4ddfzTeyyFTLNK9wCVC1KoSFmX+npUtdnExExMMlJV0dSZaGIpnjdbZs2bL4+WWBt+2qVaFyZXNR5eefgasrXHpbkSy1EWM2m43Bgwfzq+O8QURu6MMPIXt2+PNP0EKwIiLWOnsWWrWCAwegfHmzRp+b28e6RRY423a+hIQEjh07Blwpks2aBRcuQMmSUKeOteHcJF1FMptNUy5FRBw2bIATJyBXLqhf/5a7O15ny5cv7+JgHsJmg44dzfaVVT/Dw8MB7yiS3Xvvvbz++ut8//33dO/end69eyefMzhER0eTN29eixKKeI9SpaBPH7P90ksQF2dtHhGRrCo2Fh54wEx/L1LEfKzPn9/qVK6hIlkGHDt2DLvdjr+/PwULFrw61fJ///Otybg34SiS7d+/n8uXL9/6ASqSiYgYjqmWd91lhkjcgqNI5njdzRI6dDC3CxbAiRPJRbIjR45YGCptqlatyrp163jxxRd57LHHWLVqFaVLl+app57io48+YsSIETz99NOMHDnS6qgiXuH116FwYbPK5SefWJ1GRCTrSUqCzp1h0SKzLt+cOWZ8kK9SkSwDHFeyw8LC8Dt/3owkgywz1RKgYMGChISEYLfb2b17960fcPfdpiHzli1w8KDrA4qIeCrHxYI0TLWELFokK1MGataExESYPt2rplu+//77zJ07lyNHjnDkyBFmz57Nm2++yaVLlxg7diz9+vVjx44dvP3221ZHFfEKuXPD4MFm+513zEBcERFxn5dfhmnTIFs20wmjenWrE7mWimQZ4LiSHR4ebnqRxcZChQpQrZrFydzHZrOlb8plvnxQt67ZdoyiEBHJamJiYPlys53GItnOnTuBLFYkg6sXnqZO9arpltcqXLgwLVu25NVXX2Xq1Kls27aNc+fOsWjRInr27Gl1PBGv0bkzREaaheQHDLA6jYhI1jFihPkCmDwZmjWzNo87qEiWAQkJCRQvXpySJUtmyamWDukqksHVD4SacikiWdXChZCQYEZKlSlzy93j4uI4deoUkAWLZI88Ym7/+ovSV1b1PHfunIWBnCNHjhzUr1+fZ5991uooIl7D3x9GjTLb48ebnjgiIuJaU6eafpAAH3xwdQFyX2ez231rQeWYmBhCQ0OJjo4mJCTEtU926pTpWpeQAFu3mtFkWcju3bvx8/OjePHi+Kdl3deVK6FePciTB06e9L21YkVEbqVHDxg7Fnr2THNzHbvdzuHDhwkPD8eWxS7G0KAB/P03CcOHk9CjB0FXimWu4oxziFKlSmXo59SrVy9eeOGFDD1nVuPWcz3xKA8/DD/+aEYyzJ+f5a5Pi4i4zYIFpq14fDy88IK5UOHtr7lpPX8IcGMm3/PTT6ZAVr16liuQAZRJwyiIFGrVgtBQs3bs+vXmzyIiWYljunkap1qCmd5etGhRFwXycB06wN9/EzB9OgGOJe483JQpUzL0uJK+3AFXxEk++ABmzIA//zS37dpZnUhExPds2mRWsoyPNxcnRo70/gJZeqhIlhnXTrWUW/P3hzvvNH3c/vhDRTIRyVr+/dd8BQSY10K5tYcfht69TR+3/fuheHGrE91SkyZNrI4g4rNKlYI+fWDIEDMFqEULCAy0OpWIiO/Yvx9atTJtdBs3hi+/NOvvZSVZ7K/rHPfeey9tatXCvmiRucOxVH0Wk5SUxMCBA3n00UeJjo5O24Mcnf7+/NN1wUREPJHjda9uXbNcWxoMHDiQhx56iAULFrgwmAcLD4dGjQD4pWNHWrRowa5duywOJSJWeu010+1k1640z1oXEZE0OH3aTLE8fBgqV4ZffgEXd7rwSCqSZcDq1aspuXYttqQk82Eni06R8PPz47PPPmPq1KnJq6/d0t13m9ulS+HyZdeFExHxNI5CVzqWBfrjjz+YPn06J06ccFEoL3DlQtRta9fy+++/s2fPHosDiYiVcueGwYPN9jvvQFZ+eRQRcZZLl8wU9q1boWhRmDMH8ua1OpU1VCRLp7i4OE6cOEHyBMssPtUy3StcVqgAYWGmQLZ8uQuTiYh4ELs9Q0Uyx2trllvZ8loPPQR+flS5fJnSwJEjR6xOJCIW69wZIiPNdKA337Q6jYiId0tMhMcfh2XLTAvxuXMhIsLqVNZRkSydjh49SgRwB2C32Uy/lCzM8cEtzSPJbDZNuRSRrGfLFjh+HIKDzSq/aXDq1ClOnjwJQNmyZV2ZzrMVKgR33QXAI8Dhw4etzSMilvPzg48+Mtuff26aTIuISPrZ7fDii2ZNwuzZTfvwKlWsTmUttxTJPv30U0qVKkVQUBA1a9ZkyZIlN91/8eLF1KxZk6CgIEqXLs24cePcETNNDh8+zCNXtm2NG5uxiFlYukeSwdUplyqSiUhW4Xi9a9TInIGkwfbt2wGIiIggV65crkrmHa5MueyAdxXJ9u/fj91uv+5+u93O/v37LUgk4jsaNTLXqpOSzPoeqfxXExGRWxg6FMaMMWNZvvoKtP6QG4pk06ZNo1evXvTv35/169fTqFEjWrVqdcOTwz179tC6dWsaNWrE+vXref3113nhhReYPn26q6OmyeHDhzXV8hqO0Q3pKpI5RpKtXg1nzzo/lIiIp3EUydIx1XLbtm0AVKhQwRWJvMuDD5Lo50d1wHaleOgNSpUqlWo/udOnT1OqVCkLEon4lg8+MKtbLlgAv/1mdRoREe/y5ZdmMRSAkSPhkUduvn9W4fIi2YgRI+jSpQtdu3alYsWKjBo1ioiICMaOHZvq/uPGjaN48eKMGjWKihUr0rVrV55++mmGDRvm6qhpcmHDBmoBiTYbtG9vdRzLXTuSLLWr5akqVgzKlTOX/hYvdmE6EREPkJBw9bXuyrTBtFCR7Br58nHi9tsBqLp1q8Vh0s5ut2Oz2a67//z58wRlxeWiRJysZEl46SWz/dJLEBtraRwREa/x++/QpYvZfvllM+VSjABXHjwuLo61a9fy6quvpri/efPmLL9B0/a///6b5s2bp7ivRYsWTJw4kfj4eLJly5bie7GxscRe844YExPjpPSpK7dhAwA7ixenQsGCLn0ub1CmTBlsNhsXL17k1KlTFChQIG0PbNYMduwwoyvuu8+1IUVErLRmDZw7Z5YIql49zQ+7dOkSgYGBKpJdcf7ee2H9epqfOWPmVaVSfPIUffr0AcBms/Hmm28SHByc/L3ExERWrlxJ9XT8LojIjb36KkyaBLt3w8cfQ9++VicSEfFs69aZ8T4JCdCxI7z/vtWJPItLR5KdPHmSxMREChcunOL+woULc/To0VQfc/To0VT3T0hISG5gfK0hQ4YQGhqa/BXh4mUY6lavDrlyUeGtt1z6PN4iKCiI3bt3c+nSpbQXyOBqX7I//nBNMBERT+GYatm0Kfj7p/lhH3/8MRcuXKCL4zJfFndb374QFETxGjVM0dGDrV+/nvXr12O329m8eXPyn9evX8+2bdu4/fbbmTJlitUxRXxC7twweLDZHjTIrJEiIiKp+/dfaNUKzp8341YmTzaLochVLh1J5vDfqQY3mn5ws/1Tux/gtddeS75iC2YkmUsLZe+8YybuevAVbHfLUF+VO+80/4Zbt8LhwxAe7vRcIiIeIQP9yBz8/f3xT0dhzaeFhpr3i7x5rU5ySwsXLgTgqaee4qOPPiIkJMTiRCK+rXNn+OQTMzrizTfhs8+sTiQi4nlOnoSWLc3FhNtvv7qipaTk0pphgQIF8Pf3v27U2PHjx68bLeZQpEiRVPcPCAggf/781+0fGBhISEhIii+Xy5ED1Eskc/Llgxo1zPaCBdZmERFxlUuXwNFeIANFMvkPLyiQXWvy5MkqkIm4gZ8fjBpltidMgI0bLY0jIuJxLl6ENm1g504oUQJmzwadoqTOpUWy7NmzU7NmTebPn5/i/vnz59OgQYNUH1O/fv3r9v/999+pVavWdf3IxDOsWrWKJ554gtccS2OkleMDo6ZcioivWrbMdJIuWtQsWJJGM2bMIDIykgEDBrgwnLjDn3/+yeuvv568ENG1XyLiPI0amZXZkpKgd2/TulBEREzvsQ4dYOVKM1Zl7lxN5LoZl88+7dOnDxMmTGDSpEls3bqV3r17s3//frp37w6Y6ZKdOnVK3r979+7s27ePPn36sHXrViZNmsTEiRPpqy6cHuv06dN8/fXXzJw5M30PdBTJFi1yeiYREY/gGCl7113pmqa/adMmNmzYwL59+1wUTNzh7bffpnnz5vz555+cPHmSM2fOpPgSEecaOhQCA2HhQvj1V6vTiIhYz26HHj1g5kwzGe6330BrQt2cy3uSdejQgVOnTvHOO+9w5MgRqlSpwuzZsylRogQAR44cYf/+/cn7lypVitmzZ9O7d2/GjBlDeHg4o0ePpn379q6OKhlU7sroiF27dpGUlIRfWjv/NWgAAQGwbx/s3WvW8RYR8SUZ7Ee2bds2AK1s6eXGjRvHlClTeOKJJ6yOIpIllCwJL71kGvn37WuaUwcGWp1KRMQ6gwbB55+baenffQcNG1qdyPPZ7HbfGowcExNDaGgo0dHR6gPiJgkJCQQHBxMfH8++ffsoXrx42h9cvz6sWAFTppiuqyIivuLcOdNDKzHRXAxIx2tj7dq1WbNmDT/99BMPPPCAC0PKtZx9DpE/f35WrVpFmTJlnJBOHHSuJzdz/jyULQtHj8IHH8DLL1udSETEGhMmQLduZnvsWLgymS/LSuv5gxb7lEwLCAhI/gCwffv29D34zjvNraZcioivWbbMFMhKlUpXgcxut2skmY/o2rUr3377rdUxRLKUXLlgyBCzPWgQHDtmbR4RESvMnHm1KNa/vwpk6eHy6ZaSNVSoUIFt27axdetW7rnnnrQ/sEkTeP99FclExPcsXmxumzRJ18MOHz7M+fPn8ff31wgkL3f58mXGjx/PH3/8QbVq1a5bgGjEiBEWJRPxbZ06wSefwNq1MGAAfPaZ1YlERNxn5UqzkEliopmsNWiQ1Ym8i0aSiVNUqlQJgKioqPQ9sGFD8Pc3PcnUoFpEfEkGi2SOUWRlypQhe/bszk4lbrRp0yaqV6+On58fW7ZsYf369clfGzZssDqeiM/y84NRo8z2hAmwcaOlcURE3GbnTmjTBi5dgpYtTT+ydKwdJWgkmThJxYoV8fPz49y5c+l7YO7cUKuWKXcvXmwu/YmIeLsLF2D1arOdziJZbGwsFStWTL74IN5r4cKFVkcQybLuuMOMpPj+e+jVyyw2rA+KIuLLjh2DFi3g5EmoWRN++AH+M4hd0kAjycQpHnroIS5evMg333yT/gc7PkBqyqWI+Iq//4aEBIiISPfKva1btyYqKooffvjBNdlERLKIDz4wq1suWgS//GJ1GhER1zl3Dlq3hj17oHRpmDXL9GiU9FORTJwiKCiIwIyuse1o3u+YmiQi4u2unWqZwaELNg158AlLlizh8ccfp379+hw6dAiAr776iqVLl1qcTMT3lSgBffua7b59ITbW2jwiIq4QHw8PPwzr1kGBAjB3LhQubHUq76UimVivYUPTPOLff+HAAavTiIhknmNkbDqnWoJZ3VJ8w/Tp02nRogU5cuRg/fr1xF75hH7u3DkGDx5scTqRrOHVVyEszJxmjh5tdRoREeey26FbN5g3D4KDzQiysmWtTuXdVCQTpxk9ejQNGjTgq6++St8DQ0LMpGnQaDIR8X6XLsGqVWY7nUWyc+fOkSdPHurUqcPly5ddEE7c6d1332XcuHF8/vnnKVa2bNCgAevWrbMwmUjWkSsXDBlitgcNMj17RER8xRtvwBdfmLXwvv8e6tSxOpH3U5FMnGbfvn38/fffrF27Nv0Pdky5VF8yEfF2K1ZAXJwZunDbbel66I4dO4iJiWHfvn0EBQW5KKC4y/bt22ncuPF194eEhHD27Fn3BxLJop54wqwTde4cvPmm1WlERJzj00/BMTD9s8/g3nutzeMrVCQTp3GsxLZ169b0P1jN+0XEV2SiH9m2bdsAqFChgrNTiQXCwsLYtWvXdfcvXbqU0qVLW5BIJGvy84NRo8z2hAmwYYOVaUREMu/nn+G558z2229Dly7W5vElKpKJ01SsWBGAqKio9D/4jjvMGczu3XDwoJOTiYi40bVFsnRyFMkcr6fi3Z599llefPFFVq5cic1m4/Dhw3zzzTf07duXHj16WB1PJEtp2BA6dDD9e3r1MrciIt5o2TLo2NG8jj3zjEbIOpuKZOI0jg91Bw8eJCYmJn0PDg2FyEizrb5kIuKtYmPNdEvIVJFMI8l8Q79+/bj//vtp2rQp58+fp3HjxnTt2pVnn32W5xyXf0XEbYYOhaAgc6r5yy9WpxERSb+tW6FtW7h82dyOGZPhhdTlBlQkE6fJmzcvRYoUAa5+0EsX9SUTEW+3apU5aylUCDJQ6HJMVy9fvryzk4lF3nvvPU6ePMmqVatYsWIFJ06cYNCgQVbHEsmSSpSAvn3Ndt++5rqGiIi3OHwYWraEM2egbl2YOhUCAqxO5XtUJBOncowmy1BfMkeRTCPJRMRbZaIfWXx8PDt27ACu9ngU3xAcHEytWrWoU6cOuXLlsjqOSJb2yitmXZV//4WPPrI6jYhI2kRHQ6tWsH8/lCsHM2dCcLDVqXyT6o7iVJUrV+bff/8lMTEx/Q++4w7zoXLnTlMmDw93fkAREVfKRD+y6OhoWrRowd69eylevLiTg4m79OnTh0GDBpEzZ0769Olz031HjBjhplQi4pArF7z/PnTuDO++a24LF7Y6lYjIjcXFwYMPwqZN5vVq7lwoUMDqVL5LRTJxqo8++oiPP/44Yw/OkweqVYONG2HpUnjkEadmExFxqfh4WL7cbGegSFagQAFmzJjh5FDibuvXryc+Pj55W0Q8z+OPwyefwOrV8MYb8PnnVicSEUldUhI8+SQsWGCK/LNnQ6lSVqfybSqSiVP5+WVyBm+jRiqSiYh3WrMGLl6E/PlB0yWzrIULF6a6LSKew88PRo0yK15OnAg9e0L16lanEhG53iuvwHffmd5j06dDjRpWJ/J96kkmLmPPyNrajRqZ2yVLnBtGRMTVHIuONG5sPoGl07lz5zL2uikea8iQIUyaNOm6+ydNmsTQoUMtSCQiDg0awP/+B3Y79OplbkVEPMmoUTBsmNmeNAmaN7c0TpahIpk43f3330+hQoXYvHlz+h98xx3mduNG051QRMRbOIr7GZhqCVC/fn0KFCjA33//7cRQYqXPPvuMCqmsclq5cmXGjRtnQSIRudbQoRAUZNpJ/vyz1WlERK76/ntwtDZ9/3144glr82QlKpKJ0x0/fpwTJ05kbIXL8HAoXdpcztMHRRHxFomJV/uROUbEpoNjZcvTp08TrkVLfMbRo0cJCwu77v6CBQty5MgRCxKJyLWKF4eXXzbbffvC5cvW5hERATM54YknzEfi556Dfv2sTpS1qEgmTlexYkUAoqKiMnYATbkUEW/zzz9m9GuuXGYBknTatWsX8fHx5MqVSytb+pCIiAiWLVt23f3Lli1TMVTEQ/TrZ67R7tkDH31kdRoRyeo2b4b777+6ouWoUWCzWZ0qa1GRTJyu0pWG1RkaSQYqkomI91m61NzWr286q6bTP//8A5jXT5vOhHxG165d6dWrF5MnT2bfvn3s27ePSZMm0bt3b7p162Z1PI/wwAMPkDdvXh566CGro0gWlSuXmcoE8N57cPSotXlEJOs6cABatTLXXe+4A77+Gvz9rU6V9Wh1S3E6x0iyDBfJHH3JVq2C2FgIDHRSMhERF3EUyRyvX+l0bZFMfEe/fv04ffo0PXr0IC4uDoCgoCBeeeUVXnvtNYvTeYYXXniBp59+mi+++MLqKJKFPfYYfPwxrF4Nb7wBEyZYnUhEspozZ0yB7NAhs0j6b79BjhxWp8qaNJJMnM7xIW/79u0kJCSk/wDlykGhQqZAtmaNk9OJiLhAJotkjunplStXdlYi8QA2m42hQ4dy4sQJVqxYwcaNGzl9+jQDBgywOprHaNq0Kblz57Y6hmRxfn5mShOYFeTWr7c0johkMZcvmymW//xjpn/PmQN581qdKutSkUycrnjx4gQHBxMfH8+uXbvSfwCb7eoHTU25FBFPt3+/GR/v7w9162boEI6RZCqS+aZcuXJRu3ZtqlSpQqCTR0cPGTIEm81Gr169nHrcv/76i7Zt2xIeHo7NZuOXX35Jdb9PP/2UUqVKERQURM2aNVmi923xUg0awKOPmkbZvXqZWxERV0tMNE36//oLQkJMgUztaa2l6ZbidH5+ftx5553ExsYSGxubsYM0agQ//WSKZK++6tyAIiLO5CgK1KgBOXNm6BD33nsv4eHhVKlSxYnBxAp9+vRh0KBB5MyZkz6OtdtvYMSIEZl6rtWrVzN+/Hiq3WKxiGXLllGnTh2yZcuW4v5t27aRJ08eihQpct1jLly4wO23385TTz1F+/btUz3utGnT6NWrF59++ikNGzbks88+o1WrVkRFRSUvQFGzZs1UzwV+//13LV4gHuf99+GXX8yH1Z9+ghv86ouIOIXdDr17w48/Qvbs5vUnA+s/iZOpSCYuMWvWrMwdwDGSbNkySEoy4+BFRDxRJqdaAgwdOtRJYcRq69evJz4+HoB169bdcCGGzC7QcP78eR577DE+//xz3n333Rvul5SURM+ePSlbtixTp07F/0oH4B07dtC0aVN69+5Nv1TWlm/VqhWtWrW6aYYRI0bQpUsXunbtCsCoUaOYN28eY8eOZciQIQCsXbs2o39FEbcrXhxefhneecfc3nsvBAVZnUpEfNWwYaYfIsCXX0LTptbmEUNFMvFM1aub5Yaio2HLFpXURcRzOYpkjpV5JUv76KOPCAkJAWDRokUue56ePXty7733cvfdd9+0SObn58fs2bNp3LgxnTp14quvvmLPnj3cddddtGvXLtUCWVrExcWxdu1aXv3PaO/mzZuzfPnyDB3zVsaMGcOYMWNITEx0yfFFAPr1M4379+wxfco0oUFEXOHrr83rDcCIEdChg7V55CoNzxGXOnfuXMYeGBAA9eubbfU3ERFPdeaMKeQDNGyYoUMcPHiQM2fOODGUWCkyMpKTJ08CULp0aU6dOuX055g6dSrr1q1LHq11K+Hh4SxYsIBly5bRsWNH7rrrLpo1a8a4ceMynOHkyZMkJiZSuHDhFPcXLlyYo0ePpvk4LVq04OGHH2b27NkUK1aM1atX33Dfnj17EhUVddN9RDIrZ04z7RLgvfcgHb/OIiJpMn8+PPWU2e7Tx0y5FM+hIpm4xNmzZ4mIiCBPnjxcunQpYwdxjMpwjNIQEfE0jhEzjlV5M+Cll14iX758fPLJJ04MJlbJkycPe/bsAWDv3r0kJSU59fgHDhzgxRdf5OuvvyYoHfPAihcvzpdffsm0adMICAhg4sSJmZ7yCddPG7Xb7ek67rx58zhx4gQXL17k4MGD1K5dO9OZRDLrscegTh04fx7697c6jYj4kvXr4cEHISEB/vc/+PBDqxPJf6lIJi4RGhrKpUuXSEpKYuvWrRk7yLUrXGqJIRHxRE7oR+ZY2bJMmTLOSCQWa9++PU2aNKFUqVLYbDZq1apF6dKlU/3KiLVr13L8+HFq1qxJQEAAAQEBLF68mNGjRxMQEHDDqYjHjh3jmWeeoW3btly8eJHembxsXaBAAfz9/a8bNXb8+PHrRpeJeBs/PzPVEmDyZFi3ztI4IuIj9u6F1q1NAb5pU5gyRa23PZF6kolL2Gw2qlSpwuLFi9m8eTM1atRI/0Hq1oVs2eDQIfOKUqqU03OKiGRKJotk8fHx7NixA4DKlSs7K5VYaPz48Tz44IPs2rWLF154gW7dupE7d26nHb9Zs2Zs3rw5xX1PPfUUFSpU4JVXXkluzH+tkydP0qxZMypWrMgPP/zAzp07ufPOOwkMDGTYsGEZypE9e3Zq1qzJ/PnzeeCBB5Lvnz9/Pvfdd1+GjiniSerXh44d4dtvzVSoRYvACYMvRSSLOnUKWrY0U7irVoWff4bAQKtTSWpUJBOXqVq1KosXL2aLo19PegUHQ82asGKF+SCqIpmIeJLLl2HVKrOdwSLZzp07iY+PJ1euXERERDgxnFhl06ZNNG/enJYtW7J27VpefPFFpxbJcufOTZUqVVLclzNnTvLnz3/d/WBWt2zZsiUlSpRInmpZsWJF/vjjD5o2bUrRokVTHVV2/vx5du3alfznPXv2sGHDBvLly0fx4sUB6NOnD0888QS1atWifv36jB8/nv3799O9e3en/X1FrPT+++aD7F9/wfTp8NBDVicSEW908SK0bQvbt0NEBMyZA6GhVqeSG9HgPnEZx8n6f694p4ujL5ma94uIp1m7FuLiTC+y227L0CEcr49VqlRxSn8osd61jfsXL15MXFycpXn8/PwYMmQI06dPJ3v27Mn3V61alT/++IOHbvCpf82aNURGRhIZGQmYglhkZCQDBgxI3qdDhw6MGjWKd955h+rVq/PXX38xe/ZsSpQo4dq/lIibRETAyy+b7ZdfNtdGRETSIyEBHn0U/v4b8uaFuXOhaFGrU8nNaCSZuEzVqlUBMj6SDMzojA8/VJFMRDzPtVMtM1jg2rRpEwDVqlVzViqxmKNxf6FChVzSuD81ixYtuun377nnnlTvr169+g0fc+edd2JPQz/QHj160KNHj1vuJ+Kt+vWDiRNN54+RI+G116xOJCLewm6H556D334zUyt/+w0qVbI6ldyKimTiMo7+OocOHeLMmTPkzZs3/Qdp2NDcbtsGJ05AwYJOTCgikglOaNqvIpnvcTTuDwsLS27cn1qfMIB///3XzelEJL1y5jTTLp94AgYPhiefhLAwq1OJiDd47z347DNzLfXbbzN1yihupCKZuExoaCgPPPAAhQoV4nJGx6fnzw+VK8M//8CyZXD//U7NKCKSIUlJ5jUJMnXG07FjRyIiImjouCAgXs/VjftFxP06doRPPoGVK+GNN8zIMhGRm5k8Gd5802yPHg0PPmhtHkk7mz0tY+m9SExMDKGhoURHRxMSEmJ1HHGGZ5+F8eOhb18z9VJExGr//ANVqpgFRs6eNSvxitdz9jnEU089xejRo1UkczKd64kVVqwwK17abLBmDWRk4XYRyRrmzDGN+hMT4dVXYcgQqxMJpP38QY37xfM5Rlg4Rm2IiFjNMdWyXj0VyOSGJk+ezIYNG3j88cdp0KABhw4dAuCrr75iqeN3SES8Qr16ZkSZ3Q69eplbEZH/Wr3arISbmAidOplp2uJdVCQTl7t48SLbt2/P+AEcRbK1a7WskIh4BkeBw7ECbwZs3bqV1atXc/HiRSeFEk8zffp0WrRoQY4cOVi3bh2xsbEAnDt3jsE6axbxOu+/DzlymPWkfvzR6jQi4ml27YJ774WLF6F5c5gwIcNrO4mFVCQTl4qKiiJXrlzUq1cvTatkpap0aShcGOLizPh2ERGrOaFp/+jRo6lTpw6DBg1yUijxNO+++y7jxo3j888/J9s1Iw4bNGjAunXrLEwmIhkREWFWuwR4+WVduxWRq44fh5YtzVpzkZGmkK7JBt5JRTJxqTJlyuDn58fZs2eTp5mkm82mKZci4jkOHoS9e8HfH+rWzfBhtLKl79u+fTuNGze+7v6QkBDOnj3r/kAikmn9+kGxYrBvH4wcaXUaEfEE58+bEWS7d0OpUjB7NqgdqfdSkUxcKjAwkHLlygGwZcuWjB9IRTIR8RSO16Hq1TN8BpSUlMTmzZsBFcl8WVhYGLt27bru/qVLl1K6dGkLEolIZgUHm2mXAO+9B0eOWJtHRKwVHw+PPGImPOXPD3PnQpEiVqeSzFCRTFyuatWqAMkfCDPEUSRbvlydUkXEWk6Yarlv3z7OnTtH9uzZky8kiO959tlnefHFF1m5ciU2m43Dhw/zzTff0LdvX3r06GF1PBHJoEcfNQOJL1yA/v2tTiMiVrHboXt3s5pljhwwcybotM77qUgmLnf77bcDsHHjxowfJDISgoLg1CnIzCIAIiKZtWSJuc1Ekcxx0aBixYopelWJb+nXrx/3338/TZs25fz58zRu3JiuXbvy7LPP8txzz1kdT0QyyM8PRo0y21OmmLWlRCTrGTgQJk0yrwnTpplVcMX7qUgmLle9enUANmzYkPGDZM8OdeqYbU25FBGrREfDlV5iySNcM0D9yLKO9957j5MnT7Jq1SpWrFjBiRMntFiDiA+oVw8ee8yMJOnVSxMdRLKazz4Dx9v5uHHQtq21ecR5VCQTl3MUybZt28alS5cyfiD1JRMRq/39t/kkVKYMhIVl+DAqkmUtwcHB1KpVizp16pArVy6r44iIk7z/vplitXSpWclORLKG334DR9eEgQOhWzdr84hzBVgdQHxfWFgYzz77LOXKlSMhISHjB1KRTESs5nj9ycQoMoBevXpRt25d7rnnHieEEk929uxZJk6cyNatW7HZbFSsWJEuXboQGhpqdTQRyaRixeCVV+Ctt+Dll6FNG1M0ExHf9fff8L//QVISdOliimTiW2x2u28NDo6JiSE0NJTo6GhCQkKsjiPOdPq0WTIE4PhxKFjQ2jwikvXcdRcsXAjjx+uyoQ9y9jnEmjVraNGiBTly5KBOnTrY7XbWrFnDpUuX+P3336lRo4YTUmc9OtcTT3LxIpQvDwcPmtUuX3/d6kQi4irbt0ODBuZjaevW8OuvEKBhR14jrecPmm4p3iNfPqhUyWwvX25tFhHJeuLjYeVKs53JkWSSNfTu3Zt27dqxd+9efvrpJ37++Wf27NlDmzZt6NWrl9XxRMQJgoNh6FCzPXgwHD5sbR4RcY0jR6BlS1Mgq1MHvv9eBTJfpSKZuEVCQgJRUVHMmzcvcwfSlEsRscrGjWbIQJ48UKFChg+zYsUKvvvuO/bt2+e8bOKR1qxZwyuvvELANWfRAQEB9OvXjzVr1liYTESc6dFHTSP/Cxegf3+r04iIs8XEmJFje/fCbbfBzJmQM6fVqcRVVCQTt9i+fTuVK1emffv2JCUlZfxAKpKJiFUcrzsNGpi1vjNo8uTJdOzYkXHjxjkpmHiqkJAQ9u/ff939Bw4cIHfu3BYkEhFXsNlg1CizPWUKrF1rZRoRcaa4OGjfHjZsgEKFYO5cdf3xdSqSiVuUL1+eoKAgLly4wO7duzN+IEeRbM0auHzZOeFERNLCSU37169fD0BkZGRmE4mH69ChA126dGHatGkcOHCAgwcPMnXqVLp27cqjjz5qdTwRcaK6deHxx832iy+ahZBFxLslJcHTT8Mff5iRY7NmmQXOxbepSCZuERAQQNWqVQHYsGFDxg9Upowp4cfF6TKdiLiP3e6UIllCQgKbN28GVCTLCoYNG8aDDz5Ip06dKFmyJCVKlODJJ5/koYceYqijiZGI+IwhQ0yPsmXL4IcfrE4jIpn1+uvwzTem99iPP0KtWlYnEndQkUzcpnr16gBs3Lgx4wex2TTlUkTcb98+0405IABq187wYbZt28bly5fJnTs3ZXQp0udlz56djz76iDNnzrBhwwbWr1/P6dOnGTlyJIGBgVbHExEnK1YMXnnFbL/8Mly6ZG0eEcm4jz++uijHhAmmab9kDSqSids4imSZGkkGKpKJiPs5Xm9q1DDDBDJo3bp1gHk99MtEXzPxDkOGDGHSpEkEBwdTtWpVqlWrRnBwMJMmTdJIMhEf1bcvRETA/v0wYoTVaUQkI3780UybBnjvPejc2do84l46Qxe3cXqRbPlyNXwQEfdQPzLJgM8++4wKqayEWrlyZS3cIOKjgoOvjj4ZMsQMQhYR7/HXX6a/oN0O//d/8NprVicSd1ORTNymatWq2Gw2Dh06xIkTJzJ+oBo1ICgITp6EHTucF1BE5EacXCSrUaNGZhOJFzh69ChhYWHX3V+wYEGOHDliQSIRcYf//Q/q1YMLF0xPIxHxDv/8A/fdB7GxcP/9ZsqlzWZ1KnE3FcnEbXLnzs3IkSP59ddfyZkzZ8YPlD371Z5AmnIpIq4WHQ1Xmu1ntkj21Vdf8fPPP3PPPfc4IZh4uoiICJal8j61bNkywsPDLUgkIu5gs8FHH5ntL74wi7KLiGc7eND0HTt7Fho0gG+/BX9/q1OJFQKsDiBZy4uOyd2Z1bAhLFliimRPP+2cY4qIpGbFCjPmvnRpKFIkU4eKiIggIiLCScHE03Xt2pVevXoRHx/PXXfdBcCff/5Jv379eOmllyxOJyKuVKcOPPEEfPUV9OplTls1IkXEM509C61amUJZhQrw22+QI4fVqcQqKpKJd1LzfhFxFydNtZSsp1+/fpw+fZoePXoQFxcHQFBQEK+88gqvqcmJiM8bMgSmTzdvI99/Dx06WJ1IRP7LMbVyyxYIC4O5cyF/fqtTiZU03VLc6vLly8ycOZNhw4Zl7kD165vb7dtNbzIREVdxUpHs22+/ZdCgQWzcuNEJocQb2Gw2hg4dyokTJ1ixYgUbN27k9OnTDBgwwOpoIuIGRYvCq6+a7X794NIla/OISEpJSdCpEyxeDLlzw+zZUKKE1anEaiqSiVvFxsbStm1bXn75ZU5mpriVP78ZCwtmlUsREVdISICVK822E/qRDRgwINUeVeLbcuXKRe3atalSpQqBgYFWxxERN3rpJYiIgP37Yfhwq9OIyLX69jWjPLNlg59/hurVrU4knkBFMnGr0NBQypUrB8DatWszdzBNuRQRV9u40SxPlicPVKqU4cPY7XatbCkikgUFB8PQoWZ7yBA4fNjaPCJiDB8OI0ea7SlToFkzS+OIB1GRTNyuVq1aAKzJ7FI/KpKJiKs5Xl/q1we/jL9lHjp0iGPHjuHv70+1atWcFE5ERLzB//5n3kYuXgS1IxSx3nffmVFkAB9+CB07WptHPIuKZOJ2Ti+SrVljOi6KiDibk/qRrVq1CoAqVaoQHByc2VQiIuJFbDb46COz/eWXsHq1tXlEsrIFC6BzZ7P94otmSrTItVQkE7dzWpGsbFkoWNAUyDI7dVNE5L/sdqcVyVZf+URUp06dzKYSEREvVLu2aRAO0KuXeYsREffauNGsZBkfD488AiNGmCK2yLVUJBO3i4yMxGazcfDgQY4ePZrxA9ls0KCB2daUSxFxtv374dAhCAiATBa3HCPJateu7YxkIiLihQYPNj3Kli+HadOsTiOStezbB61awblz0KQJfPFFpjppiA/Tr4W4Xa5cuahYsSKgvmQi4sEcK+dGRppPNRlkt9vZunUroJFkIiJZWdGi8OqrZrtfP7h0ydo8IlnF6dPQsiUcOQKVK8Mvv0BQkNWpxFOpSCaWGD9+PFFRUbRq1SpzB3IUyZYv17h1EXEuJ021tNls7N+/n40bN1K5cmUnBBMREW/Vty9ERMCBAzBsmNVpRHzfpUvQrh1s2wbFisHcuWbRcpEbUZFMLNGwYUMqVqyIv79/5g5UsyYEBsKJE7Bzp3PCiYiA04pkAAEBAVSrVo2AgIBMH0tERLxXjhzwwQdm+/33zax+EXGNxESzcuWyZaYwNneuKZSJ3IyKZOLdAgPhykIAmnIpIk5z7hxs2mS2Hb0PRUREnKBDB/PWcvEivP661WlEfJPdDi+8YKZWZs8Ov/5qplqK3IqKZGKZTz75hMcff5zDhw9n7kDqSyYizrZiBSQlQcmSEB6eqUM99thjdO7cmZ0a7SoiIpi1p0aNMttffglX1nYRESd6/3349FPz/+3rr6FxY6sTibdQkUwsM2HCBL755htWrFiRuQOpSCYizuakqZZxcXFMnz6dL7/8EpvWGBcRkStq14ZOncx2r15qrSviTF98cXWU5qhR8PDDlsYRL6MimVimXr16AJkvkjmmQm3bBqdOZTKViAhOK5Jt3ryZ2NhY8ubNS5kyZZwQTEREfMWQIWbx5L//hqlTrU4j4hvmzoWuXc12v35myqVIeqhIJpZxFMn+/vvvzB2oQAEoX95sL1+eyVQikuUlJJjplpDpItmqK3NoateurZFkIiKSQng4vPaa2X7lFdOjTEQybu1aeOghcyr32GOmEC2SXiqSiWXq168PwJo1a4iLi8vcwTTlUkScZfNmOH8eQkIy3eF19erVANSpU8cZyURExMe89BIULw4HDsDw4VanEfFe//4LrVvDhQvQrBlMmgR+qnZIBujXRixTrlw58uXLx+XLl9m4cWPmDqYimYg4i+N1pH598PfP1KFWrlwJmJFkIiIi/5UjB3zwgdl+/304dMjaPCLe6MQJaNkSjh+H6tXhp5/MipYiGaEimVjGZrM5ry+Zo0i2ejXExmYymYhkaU7qR3b27FmioqKAq9PLRURE/uuRR8xbzsWLV6dfikjaXLgAbdrAzp1QogTMnm0mA4hklIpkYqn69evj7+/P4cOHM3egcuVMb7LYWFi3zjnhRCRrclKR7NChQ1SuXJmyZctSqFAhJwQTERFfZLOZFfgAvvoKrgxCFpFbSEiADh1g1SrIl8807Q8LszqVeDsVycRSzz33HNHR0QzJbFdFm+3qKpeacikiGXXggPny94e6dTN1qMqVK7NlyxY2b97spHAiIuKratWCzp3Ndq9eYLdbGkfE49nt8H//B7NmQVAQzJgBFSpYnUp8gYpkYqk8efKQM2dO5xxMfclEJLMcrx/Vq4OTXpsCAwOdchwREfFtgwebt54VK2DqVKvTiHi2d96BCRNMc/6pU6+OlxDJLBXJxHdcWyTT5TcRyQgnTbVMSkrK/Kq9IiKSpYSHX+1J1q+f6VEmItf7/HN46y2z/emncN99lsYRH6MimVjuhx9+oG7durzxxhuZO1CtWhAYaJY32bXLOeFEJGtxUpFs48aN5MmTh3bt2jkhlIiIZBV9+pjm4wcPwrBhVqcR8TwzZ0L37mb7jTfg2WetzSO+R0UysdyFCxdYtWoVixcvztyBAgOhdm2zvXRp5oOJSNZy7hxs3Gi2M1kkW758OZcuXdJoMhERSZccOeCDD8z20KGmWCYixsqVZjXYpCR46ikz5VLE2VxaJDtz5gxPPPEEoaGhhIaG8sQTT3D27NmbPubJJ5/EZrOl+KpXr54rY4rFHD/fNWvWZP4D5R13mNslSzKZSkSynJUrzVlXiRJQtGimDrV8+XIAGqhBhoiIpNPDD5tT2osXr06/FMnqduyANm3g0iVo1Qo++8ys3SbibC4tknXs2JENGzYwd+5c5s6dy4YNG3jiiSdu+biWLVty5MiR5K/Zs2e7MqZYrFy5cuTLl4/Lly+zbt26zB3MUSTTSDIRSS8nTbUEFclERCTjbDYYNcrcfv21uYYjkpUdPQotW8LJk6bDzvffQ7ZsVqcSX+WyItnWrVuZO3cuEyZMoH79+tSvX5/PP/+cmTNnsn379ps+NjAwkCJFiiR/5cuXz1UxxQP4+flxx5Xi1pLMjgBr0MCcUezcCceOOSGdiGQZTiqSHT58mL179+Ln50edOnWcEExERLKamjWhc2ez3auX1qSSrOvcObj3XtizB8qUgVmzIFcuq1OJL3NZkezvv/8mNDSUunXrJt9Xr149QkNDk6+w38iiRYsoVKgQ5cqVo1u3/2/vvsOjKL82jn83jdASeu+K9I5SlC5NQDp2UEEFQSAqSlNARRQpijQRUGkC0n4iXXp/AeklSBOkgxB6gGTePx6TgARI2c1kd+/PdeXayWZ29szOws6eOc953uDMmTP3XTc8PJxLly7d9SPup1q1agCsWrUqcRtKnx6KFzfLUV94RUQeJiICNmwwy4lMkq35t5K1RIkSBAUFJTYyERHxUv37Q+rU5uPp55/tjkYk6d26BS1awB9/QObMsHAhZMlid1Ti6VyWJDt16hRZYnkHZ8mShVOnTt33cfXr12fy5MksW7aMwYMHs2nTJmrWrEl4eHis6w8YMCC651lwcDC5c+d22j5I0qlatSpgKskiIiIStzENuRSR+Nq501yqDAqKSbQnUNQkJFHJfxERkYTIkQN69jTLH35oepSJeAvLgnbtYPFiSJXKVJA9+qjdUYk3iHeSrG/fvvc01v/vz+bNmwFwxNJJz7KsWO+P8txzz9GgQQOKFy9Oo0aNWLBgAfv372fevHmxrt+jRw/CwsKif44dOxbfXZJkoHTp0hQsWJC6desmvhpQSTIRia+oCueKFcHXN1GbqlChAg0bNqRu3bpOCExERLxZSIiZT+bvv+Grr+yORiTp9OoFEyaY07JffoHHH7c7IvEWfvF9QKdOnXj++ecfuE6+fPnYsWMHp2PpCXX27FmyZs0a5+fLnj07efPm5c8//4z17ylSpCBFihRx3p4kT35+fuzfv985G4tKkv3xB1y9aurURUQeJKofohOa9rdu3ZrWrVsnejsiIiIpU5rkWKtW8OWX0LYt5Mpld1QirjViBAwYYJbHjIFnnrE3HvEu8U6SZcqUiUyZMj10vUqVKhEWFsb//d//RTcu3rhxI2FhYfGa7ev8+fMcO3aM7NmzxzdU8VZ58kDu3HDsmJkOqGZNuyMSkeTMsmKSZFWq2BuLiIjIf7RoYa4Br1kD3bubGS9FPNXs2fDOO2b5k0/g9dftjUe8j8t6khUpUoR69erxxhtvsGHDBjZs2MAbb7xBw4YNKVSoUPR6hQsXZvbs2QBcuXKF999/n/Xr13PkyBFWrFhBo0aNyJQpE02bNnVVqJKMWJbF/v37sRI7hU/UF93EzpYpIp7vr7/g+HEzl/gdk80kxObNmzl69KiTAhMRETETt3/9tbmdPDlmnhkRT7NmDbzwgrl++dZb0Lu33RGJN3JZkgxg8uTJlChRgjp16lCnTh1KlizJxIkT71onNDSUsLAwAHx9fdm5cyeNGzfmscceo02bNjz22GOsX7+etGnTujJUSQYiIyPJnz8/hQoVSvzQS/UlE5G4ikqmlytnOsMmQtu2bcmbNy//+9//nBCYiIiIUa4cvPqqWe7a1SQRRDzJnj3w7LMQHm5uhw83iWGRpBbv4ZbxkSFDBiY9pB74zoqhlClTsmjRIleGJMmYj48P+fLl46+//mLlypV3VRzGW1SSbP16uH0b/Fz6VhcRdxaVJIv6fyOB/vnnH3bu3AmY5v0iIiLO1L+/aWC+cSNMmQIvvWR3RCLOcfw41KsHFy6YOZR+/llf38Q+Lq0kE4mvatWqAbB8+fLEbahYMQgONo37t293QmTi9q5ehdBQc2a5fTucPWt3RJJcOKkf2erVq7Esi8KFC5MtWzYnBCYiIhIje3bo2dMsf/ihObURcXdhYaYx/7Fj8NhjMHduogv7RRJFSTJJVmrVqgXA0qVLiYyMTPiGfHxiZqnTkEvvtX079OgBxYtD2rRQuLC5PFW6NGTJAlmzwosvwpw5puJQvM/Zs7Bvn1lO5MyWK1euBGKS/SIiIs4WEgJ585rKm6++sjsakcQJD4emTWHHDsiWDRYtgjjMESjiUkqSSbJSsWJFUqVKxdmzZ9m1a1fiNqa+ZN5r7VqoXdskw774AnbvNs07goLM7KdZs5omB2fOmHrupk2hQAHT/ODWLbujl6S0dq25LVYMMmZM1KaWLl0KQPXq1RMZlIiISOwCA2OSYwMHmuobEXcUGWn67C1fDmnSwPz5kC+f3VGJKEkmyUxAQEB0Fcbvv/+euI1FDZ1as0bdTb3F+fPQurVJkP7+u2lm0LSpSYSdPGnquf/6C06dgitXYNUqeP99c8nq2DEz33Tp0kqsehMn9SM7ffo0O3bsAGIqYkVERFyhRQtzmnv9uimYF3FHH3wAU6ea0/VZs6BMGbsjEjGUJJNkJ+oLZqKTZOXLQ0CASYgcOuSEyCRZW7nSVANNnGiqxN54A/7803zqPv+8qeG+U6pU5gzzq69MgmzECFNJtGcPVKsGn3wCERH27IskHSf1I4v6/6pMmTJkzpw5sVGJiIjcl8MBX39tbidPhg0b7I5IJH6GDoXBg83yDz+YASAiyYWSZJLsNGjQgPfee4/33nsvcRsKDITHHzfLUV+ExTONGAFPPw2nT0ORIrBuHYwZE/ea7cBAePttk1R75RVT/92nj5l/+soVl4YuNrp6Ff74wywnMkn2zDPPMH36dHr37u2EwERERB6sbFl47TWz3LWrOXURcQfTpsG775rlL7+El1+2Nx6R/1KSTJKdwoULM2jQIOcMWVJfMs9mWdC7N3TqZBrvv/gibN5smvMnRPr0MGGCqUYLDDTNEapXN8k38TwbNphqwTx5zE8ipE+fnpYtW9KsWTMnBSciIvJgn31mejlt3AhTptgdjcjDLV9uOqOA6XLSrZu98YjERkky8WxKknkuyzKXofr3N79//jlMmuScOaNffhmWLTPDL7dsMVVq584lfruSvDipH5mIiIgdsmeHnj3NcvfupkBaJLnauROaNIGbN6F5czPk0uGwOyqReylJJsnSjRs3WLx4MSNGjEjchipXNrehoXD2bOIDk+SjXz/TkANg5EjTudaZn7SVKplhm9mzw65dplnChQvO277Yz0n9yGbNmsWnn37K7t27nRCUiIhI3IWEmO4Sx4/HzHopktwcPQr16sGlS+a0a9Ik8PW1OyqR2ClJJsnSqVOnqFu3Ll26dOHixYsJ31CGDFC8uFleu9YpsUky8N13JkkGMGoUdOjgmud57DFTUZY1K2zbBs2amctf4v5u3YrpdJzIJNkPP/zAxx9/zPz5850QmIiISNwFBsYkxwYONHMRiSQnFy5A/fpw4gQULQr/+59534okV0qSSbKUL18+ihQpQkREBEuWLEncxjTk0rPMm2ea7AN8/DG0b+/a5ytcGBYvhrRpYcUKePNNM9RT3NvWrXDtmkmkFymS4M3cvHmTFStWAPD00087KTgREZG4a94cqlaF69fNsEuR5OLGDWjc2EwenzMnLFxoWgCLJGdKkkmy9cwzzwAkvjpDSTLPceAAvPSSmcKpXTvo2zdpnrdkSZg+3dSF//STaaIg7i1qqOWTT4JPwj8K16xZw5UrV8iSJQulSpVyUnAi3qNp06akT5+eFi1a2B2KiNtyOGL6O02ZAuvX2x2RiJkb6eWXzSlXUBAsWAC5c9sdlcjDKUkmydadSbLIxMxrHZUk27JFHU3d2bVr5lJpWJjpNTdiRNJ2+6xXLyY59uGHOgN1d07qR/bbb78B5v8rn0Qk20S8VefOnZkwYYLdYYi4vbJl4bXXzHLXruZ6oohdLMu8D2fOhIAAM8SyRAm7oxKJG53RS7L11FNPkSZNGs6cOcMff/yR8A3lyWMuW9y+HdODSNxPx46wYwdkyWKqugICkj6GTp2gVSvzXnruOTh/PuljkMSzrJjK0kQmyebNmwdAw4YNExuViFeqUaMGadOmtTsMEY/Qvz+kSQP/93+mokzELl99BcOHm+WJE6F6dVvDEYkXJckk2QoICKB27dpAIodcOhymUQPAypVOiEyS3C+/wI8/mmFx06aZpgZ2cDhg7FjT0P/YMXPJVv3J3M++fSbBmTKlufSeQPv372f//v34+/tH/18lkhRGjRpFyZIlCQoKIigoiEqVKrFgwQKnPseqVato1KgROXLkwOFwMGfOnFjXGzlyJPnz5ycwMJBy5cqxOqpKU0SSXLZs0KuXWe7eXQMoxB4TJ5pBF2AGYbRqZW88IvGlJJkka1FDLjdt2pS4DVWrZm6VJHM/J0/GNOfv2dP+S1Fp05qkXUAAzJ1repSJe4n6El+hQqIqEvfv309QUBBVq1YlKCjIScGJPFyuXLn44osv2Lx5M5s3b6ZmzZo0btyY3bt3x7r+2rVruXXr1j3379u3j1OnTsX6mKtXr1KqVCmGR5UCxGLatGl07dqVXr16sXXrVqpUqUL9+vU5evRo9DrlypWjePHi9/ycOHEinnstInHRtSvkzw/Hj5vZLkWS0pIl8PrrZvm998z7UcTdOCzLs8ogLl26RHBwMGFhYfrS4gH++ecf/v77b0qUKIEjMf2n9u+HQoUgRQq4eFHzDrsLy4IGDUynz7JlzXBZf3+7ozK+/NJcpg0Kgl271InUnbzyCkyaBB99BJ98kqhN3bp1izNnzpDTrupGcSp3PofIkCEDX331FW3btr3r/sjISMqWLUvBggWZOnUqvr6+gEnyVqtWjZCQED744IMHbtvhcDB79myaNGly1/0VKlSgbNmyjBo1Kvq+IkWK0KRJEwYMGBDn2FesWMHw4cOZMWNGnNZ35+MkkhRmzoQWLczpbmio6Twi4mpbt5rBO1euwAsvmFMttWuV5CSu5w9620qyliFDBkqWLJm4BBlAwYKmBj08HDZudE5w4no//WQSZClSmNrt5JIgA3j/fahYES5dgrZtNezSnaxaZW4T2Y8MwN/fXwkysVVERARTp07l6tWrVKpU6Z6/+/j4MH/+fLZu3Urr1q2JjIzk4MGD1KxZk2efffahCbL7uXnzJlu2bKFOnTp33V+nTh3WrVuXoG0+zIgRIyhatCiPP/64S7Yv4imaNTPJihs3zPU8EVc7fBieecYkyGrWhB9+UIJM3JfeuuI2EjXDpcOhIZfu5tw5k4gCU+1TtKi98fyXr6/pkxYYaGrLJ02yOyKJiyNH4OhR8PMzs6Qm0JUrV/CwQmxxMzt37iRNmjSkSJGC9u3bM3v2bIre5//JHDlysGzZMtauXcuLL75IzZo1qVWrFqNHj07w8587d46IiAiyZs161/1Zs2a97xDO2NStW5eWLVsyf/58cuXK9cD2Ch07dmTPnj2Jb8Eg4uEcDvj6a3P788/gory1CGBO2evVg1OnoGRJmDXLXN8WcVdKkkmyd/XqVdq0aUPu3Lm5mpgOpEqSuZcPPjDN1UuUgJAQu6OJXaFC0LevWX7/fbhwwdZwJA5WrDC3jz8OqVMneDPt27fnkUce4bfffnNOXCLxVKhQIbZt28aGDRvo0KEDbdq0Yc+ePfddP0+ePEyYMIFp06bh5+fHuHHjEl+lDfdsw7KseG130aJFnD17lmvXrvH333+rSkzEScqUiekN1bUrJOZas8j9XLsGjRqZzjZ58pgBIMHBdkclkjhKkkmylypVKtasWcOJEydYuHBhwjcUlSRbvx5u3nROcOIaq1aZOm2HA777LnkNs/yvkBAoUgTOnIHeve2ORh4mKkmeiAkgwsPDmTt3LocPHyZDhgzOiUskngICAnj00UcpX748AwYMoFSpUnzzzTf3Xf/06dO8+eabNGrUiGvXrhGSyIsPmTJlwtfX956qsTNnztxTXSYi9ujf38w3tGkTTJ5sdzTiaW7fNr3HNmyA9Olh4ULIkcPuqEQST0kySfYcDgfNmjUDYNasWQnfUJEikDkzXL9uzhYkebp5M2Y2yzffhFh67CQrAQEwcqRZHjUKNm+2Nx55sKhKsqikeQL8/vvvXLp0iRw5clCxYkXnxCWSSJZlER4eHuvfzp07R61atShSpAizZs1i2bJlTJ8+nfejhrQnQEBAAOXKlWPJkiV33b9kyRIqJ2Ios4g4T9as0KuXWe7e3fSLEnEGy4KOHeHXX03nkblzzVctEU+gJJm4haZNmwLw22+/3fdLwEOpL5l7GDEC9u6FLFkgHrOj2ap6dXj5ZXPG0KGDxjQkV3/9ZXqS+frCk08meDMzZ84EoFmzZvioK63YoGfPnqxevZojR46wc+dOevXqxYoVK3jppZfuWTcyMpJ69eqRN2/e6KGWRYoU4ffff+fHH39k6NChsT7HlStX2LZtG9u2bQPg8OHDbNu2jaNHj0av8+677zJ27FjGjx/P3r17CQkJ4ejRo7SPutAhIrbr0gXy54cTJ2DgQLujEU/x2WcwZoz5ejVlSqJOq0SSHZ3di1uoWLEi2bJl49KlSyxbtizhG4pKkkVVk0jycv68adIP8PnnpnbbXXz1FQQFmUoyNfFPnqKS4+XLQ5o0CdrErVu3mDNnDgDNmzd3UmAi8XP69GleeeUVChUqRK1atdi4cSMLFy6kdu3a96zr4+PDgAEDmDlzJgEBAdH3lyhRgt9//50WLVrE+hybN2+mTJkylClTBjAJsTJlyvDxxx9Hr/Pcc8/x9ddf88knn1C6dGlWrVrF/PnzyZs3r5P3WEQSKjAQBg0yy199ZeauEUmM8eMh6qPg22/h31oGEY/hsDxseq5Lly4RHBxMWFgYQUFBdocjTvT2228zatQo2rVrx/fff5+wjezcaaZdSZ3aNFlPzr2uvFGXLjBsmDlGf/xhKn7cycCB8OGHkCsXhIZCqlR2RyR3ev110+vuww/hiy8StIklS5ZQp04dMmfOzMmTJ/F1t/eoPJDOIdyDjpNI/FgW1KhhrhU9/7yZ8VIkIebPh2efhYgI6NHDXNMWcRdxPX9QJZm4jaiqjVmzZnEzoY33ixWDDBng6lXYssWJ0UmihYbG9PYaMsT9EmQAnTubqX3+/tvMvS7JS1QlWSL6kUUNtWzatKkSZCIi4hYcDnNa4nDA1Kmwbp3dEYk72rQJWrY0CbLWrc3EECKeSEkycRvVq1enatWqdO7cOeF9yXx8oGpVs6y+ZMlLt25mmpxGjaBWLbujSZjAwJg+agMGwOnT9sYjMY4dg0OHEt2P7KWXXuKtt96KtfeTiIhIclW6NLRta5a7dFH7VImfAwegQQO4dg3q1oWxY03SVcQTKUkmbsPX15eVK1fSp08f0qZNm/ANqXl/8rN6tZkWx8/PNMxwZ88/b3peXbkCffvaHY1Eifr3Xras6R2XQFWqVGH06NFUjUq2i4iIuInPPoO0adU+VeLn9GmTGDt71pxG/fKLOtaIZ1OSTLxPVJJszRpTuST2sizo3dsst20LhQrZG09i+fjA4MFm+fvv4eBBe+MRI2qyjurV7YxCRETENlmzxpxy9ehhrueJPMiVK9CwoSnGz58f5s0ziVYRT6YkmbidGzduMGPGDFYmtBKsZEkIDobLl+Hfqe3FRkuWwKpVkCJFzJmbu6taFerXN00bombrFHslMkl26dIlOnfuzIYNG/Cw+W5ERMSLdOkCBQrAiRPw5Zd2RyPJ2a1b0KqVqTzMlAkWLYJs2eyOSsT1lCQTt/PVV1/RsmVLvkzoJ7uvL1SpYpY15NJed1aRdehgZoX0FFHJsUmTYN8+e2Pxdn//bSr6fHzgqacStIlZs2bx7bff8tprrzk5OBERkaSTIgUMGmSWBw2Cv/6yNx5JniwL3nwTFiyAlCnht9+gYEG7oxJJGkqSidt57rnnAFi8eDGnE9oYXX3JkodffzVT5aROber+PUn58tC4semM26+f3dF4Nyf0I5v0b/OWl19+GYc61YqIiBtr0sQUVt+4AR9+aHc0khx9/DH8+KO5vjh9OlSoYHdEIklHSTJxO4899hgVKlQgIiKCCRMmJGwjUUmyVavMkDhJepGR8NFHZrlLF8iSxd54XCGqmmzqVNi5095YvFlUkizq3308HT9+nGXLlgFoVksREXF7DgcMHWpup02DtWvtjkiSk9GjzSQPAN99Z3qSiXgTJcnELbVr1w6AsWPHJqw/UJkypqIkLAy2bnVydBInv/xiEkfBwfD++3ZH4xolS0LLlma5Tx97Y/FmiexHNn78eCzLokqVKuTLl89ZUYmIiNimdGn493Sarl3NtUuROXOgY0ez3LdvzHtExJsoSSZu6fnnnydNmjTs37+fVatWxX8Dfn4xX5iXLnVqbBIHkZExl6jefRfSp7c3Hlfq29dcqp09WwlZO5w4AX/+aY5BAvqRRURE8P333wPw5ptvOjs6ERER23z6qZmpcPNmmDjR7mjEbuvWwQsvmNP0du3MkEsRb6QkmbilNGnS8MILLwBEf4GNt1q1zO2/w6gkCc2dC7t2mTOzd96xOxrXKlrUnHEAfP65vbF4o6gkeLlykC5dvB++aNEijh07RoYMGWjRooVzYxMREbFR1qwxnS969IArV+yNR+yzbx80amT61DVoAKNGmeuLIt5ISTJxW1FDLk+ePElkQmrEa9Y0t6tXQ3i4EyOTB7Is6N/fLHfq5NlVZFGiJiWYOVMzXSa1qCRZVFI8ni5dukSOHDlo06YNgYGBTgxMRETEfp07Q4ECcPIkfPGF3dGIHU6ehHr14J9/4IknTJ86Pz+7oxKxj5Jk4rYef/xxQkNDWbp0KT4+CXgrFytmLqFdvw4bNjg/QInd77+bGS1TpoSQELujSRrFi5uZLi0LvvzS7mi8h2WZ9xskOEn2/PPP89dff9G3b1/nxSUiIpJMpEgBgwaZ5UGD4K+/7I1HktalS1C/vjnuBQvCb7+ZSedFvJmSZOK2HA4Hjz32WGI2EFNNpiGXSSeqiuzNNyFzZntjSUpR1WSTJukMNKns3w/Hj0NAADz5ZII34+fnR1BQkBMDExERST6aNIEaNczAig8/tDsaSSo3b0KzZrB9u5lkfuFC7zo1F7kfJcnEI5w9e5bQ0ND4PzAqSabm/Ulj7VpYuRL8/T13Rsv7qVDBVDPdvg1ffWV3NN4h6t/1k09CqlTxemh4eDgzZszg9u3bLghMREQk+XA4YOhQ8PExQ+3WrLE7InG1yEh4/XVzqpQ6Ncyfb4bdioiSZOIBZsyYQe7cuekYNV9xfEQNwdq4Ud1Kk0JUFdmrr0KuXLaGYotevczt2LFw6pS9sXiDRPQjmzx5Mi1btqRmVCJdRETEg5UqZWY0BOja1SRRxHP16AGTJ5veYzNnmvmNRMRQSz5xe0888QS3b99m6dKl7Nixg5IlS8b9wfnzm5/Dh00D//r1XReot9u6FRYsMJcpXVjLf/36dfbu3cuBAwc4ceIEx48f59SpU1y/fp2JEyeSMmVKAMaNG8eyZcsIDg4mZ86c5M6dmzx58lCkSBGyZs3qmuCqV4eKFU0PvK+/VodcV4qIgOXLzXI8k2SWZTFkyBAAGjVq5OzIREREkqVPP4Wff4YtW2DCBHNNUzzPsGEwcKBZHjcO6ta1Nx6R5EZJMnF7efLkoXnz5kyfPp1vvvmGcePGxW8DNWuaT4ilS5Ukc6V/kw48/zw88ohTNhkZGXnXpA1vvPEG48ePv+9sp9999110kmzDhg1MmTIl1vWyZMnC+vXrKfBv3bllWTicMQ+2wwE9e8Kzz8LIkSZZ6A2ze9ph61a4cAGCgqB8+Xg9dNGiRezevZs0adLwxhtvuChAERGR5CVLFvjoI/jgA1Np1KIFpEljd1TiTL/8YioFAT7/HFq3tjUckWRJSTLxCF27dmX69OlMmjSJfv36kSs+Q/lq1YpJkolrnDgBU6ea5XffTdSmLly4wPz58/n1119ZsmQJBw4cIEOGDABkyJCByMhIMmbMSOHChcmVKxc5cuQgW7ZspE2bNjpBBmbWwiJFinDhwgX+/vtvjh07xpEjRzh06BAXLly46z0UEhLC//3f/9GwYUOaNGlCkSJFEp40a9DAzHa5axeMGaMOua4S9e+5evV4z2M+ePBgANq1a0e6dOmcG5eIiEgy1rkzfPcdHDxoCt4/+8zuiMRZVq6El182k3+//TZ07253RCLJk8OyLMvuIJzp0qVLBAcHExYWptnIvEy1atVYtWoV77zzDsOGDYv7A0+fhmzZzPK5c5Axo2sC9Ga9epnLVVWqwKpV8X745cuXmTFjBpMnT2blypV3NVP/9ddfo4fEnfq3z1fWrFkTnMS6evUqBw8evGvYbrFixdizZ0/074899hitWrWiTZs2PProo/F/kh9/hNdegxw5zFDfgIAExSoPUKcOLFkC33xjzvjjaNOmTTzxxBP4+Phw8OBB8uXL57oYJdnROYR70HESca05c6BpU0iRAvbtA30Uur9du+CppyAszBzbX34BX1+7oxJJWnE9f1DjfvEYH3/8MQBjxozh5MmTcX9g1qxQrJhZjuphJM5z7RqMHm2WQ0Li/fC5c+eSLVs2Xn/9dZYuXcrt27cpVqwYPXv2ZMOGDdS/Y4hstmzZyJYtW6KGRqZOnfqevnbz5s1j9OjR1K9fn4CAAPbv389nn31GwYIFadKkSfyf5IUXTGL2xAkzjZQ4140bMVNzxbMfWZ8+fQB4+eWXlSATERGv1Lix6UYSHq6Cd09w7JjpKBMWZib8njxZCTKRB1GSTDxGzZo1qVy5Mg6Hgw0bNsTvwVFfpDXk0vkmToR//jHzSj/77ENXv379OseOHYv+vUyZMly/fp1ChQrx+eefc+DAAXbt2kX//v2pUKECfvEcSpcQ+fLl46233mL+/PmcPXuWKVOmUK9ePXx8fMidO3f0epZlcfz48YdvMEUKeOcdszx4sKl7F+dZvx6uXzeJyKJF4/yw69evc+3aNXx9ffnoo49cGKCIiEjy5XDA0KFmrqXp083cVuKeLl40CbK//4bCheHXX+GO7iMiEgslycRjOBwOvv/+ew4dOkTTpk3j9+CoJNnvvzs/MG8WGWnOssAMeXvAZatTp07Rq1cvcufOzZtvvhl9f65cudi1axd79+6lR48ePOKkpv8JFRQUxAsvvMCCBQs4evQoH95xiXXt2rXkyZOHFi1asG7dugdvqH17SJUKtm9XctbZol7PmjXNmX4cpUyZkuXLl7Nr166EDaMVERHxECVLQrt2ZrlrV3NKJ+7lxg1o0gR274bs2WHhQvi3ja+IPICSZOJRihYtSvbs2eP/wKjm3gcOmB5R4hwLF0JoqJlh8PXXY13lxIkTdO3alfz58/P5559z/vx5QkNDuXz5cvQ6RYsWdc7skk6WM2fOuxr8L1++nMjISGbOnMmTTz7J008/zar79WDLkCHmNfm3Ubw4SVSS7Omn4/1Qh8NB4cKFnRyQiIiI+/n0U3MK98cfMGGC3dFIfERGmpkrV640x3DBAsib1+6oRNyDkmTisVavXs2ff/4Zt5WDgqBSJbO8aJHrgvI2UVVk7dpB2rR3/envv/+mU6dOFChQgG+++YYbN25QsWJFZs2axZ9//kna/6zvDj766CN27dpF27Zt8fPzY+nSpVSrVo3q1auzfPly7pknpWtXU+m0cKHpqCqJd/EibNpkluPYj8yyLAYNGsT58+ddF5eIiIibyZIForoP9OgBd1y/lGTMssxk8r/8Av7+MHs2lCpld1Qi7kNJMvFIAwcOpGrVqrz33ntxf1DduuZWSTLn2LnTDF/18Ynpv3WH3377jREjRhAeHs6TTz7J4sWLWbduHU2bNsXXjbuJFitWjLFjx3LgwAHat2+Pv78/K1eu5LXXXrtrVk4AHnkEmjUzy0OGJH2wnuj33yEiwjTeyJMnTg+ZOnUq3bp1o0yZMty8edPFAYqIiLiPzp3h0Ufh1Cn44gu7o5G4GDzYTO4N8NNPpvuEiMSdkmTikRo3boyvry9z585leVxnrIxKki1dCrduuS44b/H11+a2WTPIl4/bt29z5MiR6D+/9tprtGzZkqVLl7J69Wpq166dLIdUJlTevHkZNWoUBw8epFOnTvTt2xd/f38AIiIiOHTokFkxKpE7ebI5A5XEiUpy16sXp9WvXbsW3VfurbfeIiAgwFWRiYiIuJ2AABg0yCwPHqyuJMndlCnQrZtZHjTITKguIvGjJJl4pEKFCtG+fXsAunTpwq24JL3KloVMmUwteXxnx5S7nTljkj4AISEsXLiQUqVKUa9evehjkSJFCqZPn07NmjU9Kjn2X7lz5+bbb7/l1Vdfjb7vp59+olChQrzzzjuceeQRM9T35k0YPty+QD2BZZmhqxCT9H6IwYMHc+zYMfLkycO7777rwuBERETc07PPmmqk8HC4Y74iSWaWLoWo082uXc2QSxGJPyXJxGP17duXjBkzsnPnTobEZSibjw/Urm2WNeQycUaNgvBwrpcowTOffkr9+vXZs2cPZ8+eZe/evXZHZ7t169Zx+/Zthg8fziOPPMLM/PnNH0aOhKtX7Q3One3da+Y4DwyEatUeuvqBAwf4/PPPATNEO6XmRBcREbmHw2HazPr4mD5Xq1fbHZH817Zt0LSpGQzTqpWp+vPga9AiLqUkmXisTJkyMfjfWQP79esXM7ztQdSXLPFu3CByxAgA2u7axYKFC/H39yckJIQDBw5QsmRJmwO039ixY1m2bBnly5fnypUrtJoyhb/8/ODCBayffrI7PPcVVUVWrRo8JOFlWRZvvPEGN27coFatWrRq1SoJAhQREXFPJUvCG2+Y5a5dzeyJkjwcOQL165vBMNWrm5lIffQtXyTB9M9HPFrr1q2pWbMm169fp0OHDvfOLvhfdeqY2y1b4Nw51wfogc59+y0+Z89yDPjFsmjcuDG7d+9myJAhpE+f3u7wko0aNWqwceNGJk2aRPacORn8b1P/M7166cwzoaKS23EYavnjjz+yYsUKUqVKxZgxYzx6yK+IiIgzfPqpmRD+jz9MQ3ix3/nzpg3rqVNQvLiZyTJFCrujEnFvSpKJR3M4HIwePZpcuXLRqVOnh38Rzp7dXCqzLFiyJGmC9CSWRcaJEwGYmT07i5ctY86cORQsWNDmwJInHx8fXnrpJUJDQ8nywQeEAVkvXoQFC+wOzf1cuwYrV5rlODTtb9q0Ke3ataN///4UKFDAxcGJiIi4v8yZ4eOPzXLPnqZySexz/brpFxcaCrlymdPHdOnsjkrE/SlJJh6vYMGCHDhwgEaNGsXtAVHVZBpyGSfbtm2jcePGnDt3DpYtw7FzJ1aqVLyzYwc1atSwOzy3kDp1anp/+SUBnTqZO/7toffll1/y9ddfx23iCW+3apXpKJw7NxQu/NDV06VLx/fff0+XLl2SIDgRERHP8M478OijpnJpwAC7o/FeERHw4ouwbp1JjC1caBJlIpJ4SpKJV0hxR93x8ePHuXHjxv1XjhqqtXixqSiTWJ08eZK2bdtStmxZfv31Vz799NPo5I7jtdfwzZTJ5gjdT8pu3cDXF5Yt4+TChfTp04eQkBBKlCjB/PnzHz5c2JtF9SOrV++BnWrXrVtH5B3DWTXMUkREJO4CAkxTeDCnfYcP2xuPN7Isk6ycM8cMrfz1VyhWzO6oRDyHkmTiVX777TdKlChB165d77/SU09BqlRw8iTs2JFksbmL69ev079/fwoWLMj48eOxLIsXXniBDxs3hvnzTYJC1TkJkycPtGgBQNaff2b48OFkzpyZ0NBQGjRoQL169di1a5fNQSZTUZWfDxhquXz5cp566imeffZZbt68mUSBiYiIeJZGjaBWLVPA/cEHdkfjfQYMMBPJOxwweTJUqWJ3RCKeRUky8Sp+fn5cvHiR7777jpEjR8a+UmAg1Kxpln/7LemCcwPTpk2jUKFC9O7dm6tXr1KxYkXWr1/PlClTyPHLL2alRo1APcgSLiQEAJ+ff6Zdgwb8+eefdOvWjYCAABYvXkypUqXo0KGDGd4qxpEjsG+fqcKrVSvWVQ4ePEjLli2xLIts2bIREBCQtDGKiIh4CIcDhg41MyjOmGE6HkjS+PFH6NXLLA8bBs2b2xqOiEdSkky8Sr169fjiiy8A6Ny5M8uWLYt9xaj+ZUqS3WXlypUcO3aM3LlzM2XKFNatW0fFihXN1DpR0xz9m+SRBKpQASpXhlu3YORIgoODGThwIHv27KF58+ZERkby008/PXjIsLeJmuigUiUIDr7nzxcvXqRhw4acP3+e8uXLM2zYsCQOUERExLOUKAFvvmmWu3Y1PbLEtRYuhHbtzPKHH0JUK1sRcS4lycTrdOvWjZdffpmIiAiaN2/OjtiGVDZoYG43boQzZ5I2wGTkzz//5MCBA9G/9+3bl88//5zQ0FBeeOGFmH5OY8aYKXZKl4Zq1ewJ1pNEJRpHjzavK/DII48wY8YMVqxYwbfffkuuO7qzbtiwwbv7lUUlsxs2vOdP4eHhtGzZkn379pErVy5+/fVXUqVKlcQBioiIeJ5PPjHXprZujblWKq6xebPpyBERAS+/DJ9/bndEIp5LSTLxOg6Hg++//57KlStz8eJFateuzf79++9eKWdOKFPGdMaMqlLxIufOnaNLly4ULVqUd955J/r+LFmy0KNHD1KmTBmz8s2bMHy4WQ4JeWDTdImjJk0gXz44dw4mTbrrT9WqVaNt27bRv69Zs4ZKlSpRvXp1Nm/enLRxJgdXr8LSpWb5P0myW7du8dxzz/H777+TOnVq5s6dS/bs2W0IUkRExPNkzgwff2yWe/aEy5ftjcdTHTxort9fvQq1a8O4cWaoq4i4hv55iVcKDAxk3rx5lC5dmjNnzjBw4MB7V4r6wu1FQy4vX75M//79efTRRxk2bBi3b9/Gx8eHa9eu3f9Bv/wCJ05Atmzw/PNJF6wn8/ODzp3N8tChD5xlNTQ0lMDAQFatWsXjjz9O8+bN2b17dxIFmgwsXWo6B+fPD0WL3vWn3bt3s2TJElKkSMHs2bMpXbq0PTGKiIh4qE6dTCva06dV3eQKZ8+aOYnOnDHX72fONDOMiojrKEkmXitdunQsWrSI9957L/Ym/lFJskWLTLWUB7t27RqDBw+mQIEC9O7dm7CwMEqVKsWSJUuYN2/e/YenWZZJ4gB07KhPbWdq2xbSpoW9e2Nmbox1tbaEhobyyiuv4HA4mDVrFiVKlKB169YcOnQoCQO2ydy55rZhw3uqGEuXLs3ChQuZNWsWtWvXtiE4ERERzxYQAIMHm+UhQ+DwYXvj8SRXr5oKsgMHzACD+fPNqaGIuJaSZOLVsmTJwqBBg6JnuouMjGTXrl3mj+XLQ5YspnZ89Wobo3S9yZMn8/7773Pu3DkKFizIlClT2LJlC08//fSDH7hmDWzZYmYEbd8+aYL1FkFBMd1Zhwx54Kp58uRhwoQJ7Ny5k2bNmmFZFhMnTqRu3bpERkYmQbA2iYyEefPM8r+TbZw/f56tW7dGr1KlShWeeeYZO6ITERHxCg0bwtNPm2vK3brZHY1nuH0bWrWCTZsgQwbTtD9bNrujEvEOSpKJ/MuyLLp27UqZMmX49ttvsRyOmAb+Hjbk8tKlS2zbti3699atW1OtWjXGjx/Pnj17eOGFF/D19X34hqKqyF55BTJlck2w3qxzZ9N0YskSiErePkCxYsWYOXMmmzZtom7duvTs2ROff5tWhIeHs3fvXldHnLT++ANOnoQ0aaBqVbZv307FihVj7zMoIiIiLuFwmOt5Pj5mOODKlXZH5N4sy1x7nj8fUqY0X0MKFbI7KhHvoSSZyL9u377NmTNnuH37Np07d+aVV17hao0a5o9z5z6wL5S7OHXqFD169CBPnjw0b96c27dvA5AiRQpWrFjBa6+9hp+fX9w2dvAgzJljlrt2dUm8Xi9fPmjWzCxHJSTjoHz58ixcuJBXX301+r6JEydStGhRmjZtysaNG50bp13+TV5bdesybtIkKlasyIEDB0iTJk30e1tERERcr0QJeOstsxwSYmZhlITp1y+mOf/UqVCpkt0RiXgXJclE/uXv78/PP//MkCFD8PX1ZfLkyZTv0YNIf3+TEHLTyhTLsti4cSOvvvoq+fLl44svviAsLIyAgAD+/vvvhG942DCTOKxb956G6eJEISHmdvJk07U1Hhx39Ojas2cPDoeDOXPmULFiRSpWrMjEiRO5ceOGM6NNWv/2I/vm4EHatWvHjRs3eOaZZ9iyZQtF9Z4UERFJUv36QXAwbN0KP/5odzTuacwY8zoCjBwJzz5rbzwi3khJMpE7OBwOQkJCWLFiBQUKFGDf8eMsuXULgMtTptgcXfytWLGCcuXKUbFiRX766SfCw8OpVKkSc+bMYffu3eTLly9hGw4Lg/HjzXJUEkdco1IlqFDBzOA4alSCNzNkyBB2797Nq6++ir+/Pxs3bqR169bkzp2bXr16YblbpeTx4/DHH0QCn2/bhr+/PwMGDGDu3LlkzJjR7uhERES8TubM0KePWe7VCy5dsjcedzN3LnToYJY/+iimMk9EkpaSZCKxeOqpp9ixYwfvvPMO/86dR+CCBbbGFBe3bt3iwoUL0b/7+/uzdetWUqRIQevWrVm/fj1r166lcePG0b2qEmTsWLhyxVSQ1anjhMjlvhyOmETkiBGQiMqvIkWK8MMPP3Ds2DE+++wzcuXKxblz59i+fftdVWeX3OGs9t+hvhuAAhUqsHXrVrp3756497WIiIgkSseOULAgnD4Nn39udzTuY8MGeO45MyfR66/HVJOJSNLTtwmR+0idOjXDhg3jzX9nz/PftAlOnsSyLL766itCQ0NtjtAIDw9n0aJFdOzYkZw5c/Lhhx9G/61y5cp8//33HD9+nJ9++omKFSvelQxJkNu3zVBLML3IErs9ebjmzSFPHjh7FpxQ0Zg1a1Z69erF4cOHmT17Nh999FH03w4dOkTmzJlp1KgRY8eO5dSpU4l+Pme4fPkyo0aNYmVUN+BZswBwtGjB2rVrKVasmI3RiYiICEBAAAwebJaHDoVDh+yNxx3s329mCL1+HZ55BkaP1um1iJ0cltuNsXmwS5cuERwcTFhYGEFBQXaHI56iYkXYuBFGjmTJo49S59/qqSeffJLXXnuNRo0akSVLliQLZ9++faxatYqFCxeyePFirl69Gv23QoUKsXfv3sQnw+7nl1/MnNSZMsHRo2baHXG9QYPMvOrFisHOnS47exo1ahRvv/32XfdVqFCB+vXrU716dSpUqEBgYKBLnvu/bt68yYoVK5g4cSKzZs3i2rVr1KhRg2XTp5t50CMiTL/AAgWSJB7xfDqHcA86TiLJW1TL2iVLzHW+GTPsjij5OnXKdNY4cgQefxyWL4fUqe2OSsQzxfX8QZVkInHRvLm5nTWLoKAgGjZsiI+PD2vXrqVdu3Zky5aNChUq0KdPH44ePerUpz516hSrV6++674XX3yRt956i9mzZ3P16lVy5MjBm2++yfz589m1a5frEmQQM8ti+/ZKkCWldu0gTRrYvRt+/91lT9OhQwd27drFp59+yuOPPw7Axo0b6du3L9WrV4+p5AKOHDnCvn37iHDyFFYTJkygSZMmZMyYkbp16zJp0iSuXbtGwYIFadq0Kdavv5oEWenSSpCJiIgkMw4HDBliZmecORPuOHWQO1y+bCrHjhyBRx4xk3YrQSZiP1WSicTFgQOmwYKvr2mykDEjJ06cYMKECcyYMYMtW7ZEr7pt2zZKlSoFwLRp01i9ejX58+cnU6ZMZMiQgfTp0xMQEIDD4aBUqVIEBAQAsG7dOrZt28bRo0f566+/OHr0KAcOHODMmTP4+Phw5coVUv6blOrRowcbNmygRo0aNGzYkDJlyrg2MRZl/XqoXNnU0v/1l6nmkaTTpYsZ6lqvHiRRj7wTJ04wb948li1bxtq1a9mzZw9p0qQB4N1332Xo0KGkSpWKAgUKkD9/fvLly0fevHnJmDEjrVq1IlWqVAAcPnyY8+fPc+vWLcLCwggLC+P8+fMcOXKE48ePM2nSpOj38DPPPMOCf/cvS5YsNG/enDZt2vDEE0+YdRo2hHnz4JNPTGdbESfROYR70HEScQ8dO5oZGkuXhs2bzWm0GDdvQqNGsHixmfBg/XqTKBMR14nr+YOSZCJxVaoU7NgBP/wAr756159OnDjB/PnzWbNmDWPHjsXPzw+A119/nR9++OG+mzx58iTZ/k00dejQgdGjR9+zjo+PDwULFmT+/PkUsLtqpkULc0nwtddiZreUpHPwoEnWWhbs2QNFiiTp01uWdVcytlOnTowfP57r16/Huv7FixcJDg4G4NVXX+Wnn36677bPnDlD5syZAZg4cSJHjx6lfv36lC5d+u5m/JcumbPJmzdNVV3Rok7YMxFD5xDuQcdJxD2cOwePPmomRf/+e1MUL+Y0rk0bmDjRVI6tWAHly9sdlYjni+v5g18SxiTi3po3N0myWbPuSZLlyJGDdu3a0e4/n/4tWrQgW7ZsHDlyhAsXLvDPP//wzz//cOvWLQB877ikVrZsWZo2bUru3LnJkycPefPmJX/+/BQpUiS6GsdWhw7B7Nlm+d137Y3FWz3yCDRpYo7D11/Dd98l6dP/t1px+PDhfPPNNxw8eJDDhw9H/xw7dowLFy6QNm3a6HUzZMhA7ty58fPzIzg4mHTp0pEuXbro97m/v3/0uq+88sr9g5g/3yTIChVK8iShiIiIxF2mTNCnjzlt7NXLtLRVXht69jQJMl9f0+pXCTKR5EWVZCJxtWsXlCgBKVKYWQbvSAB4haihfnXrwsKFdkfjvVavhqpVITAQjh0zZ6DepGVL0wG4Rw/NLS9Op3MI96DjJOI+bt40p8/798OHH8IXX9gdkb2GD4d33jHL48ebwRkikjTUuF/E2YoVM0PdwsNNPyRvcuECjBtnllVFZq+nnjKXHG/cMHOEe5Nr10wlGUCzZvbGIiIiIg8VEACDB5vloUNN5whvNWsWdO5slj/9VAkykeRKSTKRuHI4TE8ugKlT7Y0lqY0ZA1evmkuBtWvbHY13czggJMQsDx9ukrbe4rffTKIsb14oV87uaERERCQOGjSAOnVMVdkHH9gdjT3WrIEXXzT9yNq3N8NPRSR5UpJMJD5eeMHcLlhgqqu8wc2bZpglmCqypJhFUx6sZUvImdPMtOpNCduffza3L7yg96GIiIibcDhgyBDw8THVVCtW2B1R0tqzx8xkGR4OjRuba5w6jRFJvpQkE4mPEiWgeHGTOJo1y+5oksb06XDiBGTLFpMkFHv5+8c0tBgyxFyW9HQXL8YMtXzxRVtDERERkfgpVsxUUAF07QoREbaGk2SOH4d69cxpTKVKMGWKadgvIsmXkmQi8RWVKIqqavFklhXTSKJTJzNpgSQPb74JqVKZGVeXL7c7GtebNcskp4sVM8lqERERcSv9+kG6dLB9O/zwg93RuF5YGNSvb+ZZKlQI5s41p24ikrwpSSYSX1FJsmXL4ORJe2NxtRUrYNs2SJky5vKfJA/p08d0fB061N5YksKUKeZWVWQiIiJuKVMm6NPHLPfqBZcu2RuPK4WHQ9OmsHOnGYyxcCFkzGh3VCISFy5NkvXv35/KlSuTKlUq0qVLF6fHWJZF3759yZEjBylTpqR69ers3r3blWGKxE/+/FCxoqmymj7d7mhc68svze1rr+mTPTnq0sU0tfjtNwgNtTsa1zl1KqZa7vnn7Y1FREREEqxjR1NVdeYM9O9vdzSuERkJbdqYU5e0aU0r43z57I5KROLKpUmymzdv0rJlSzp06BDnxwwcOJAhQ4YwfPhwNm3aRLZs2ahduzaXL192YaQi8RRVzeLJQy7/+AMWLTJdVt97z+5oJDYFC5pOsADffGNvLK40fbo546xYEQoUsDsaERERSSB//5hOHl9/DQcP2hqOS3TrBtOmgZ+f6RZRurTdEYlIfLg0SdavXz9CQkIoEcf+MZZl8fXXX9OrVy+aNWtG8eLF+emnn7h27RpToobaiCQHrVqZ5NHGjZ756Q4wYIC5feEFJSaSs5AQc/vjj3D+vK2huEzU//+aOEJERMTtPfMM1KljWo1262Z3NM41ZIj5AXNq9vTTtoYjIgmQrHqSHT58mFOnTlGnTp3o+1KkSEG1atVYt25drI8JDw/n0qVLd/2IuFzWrFCrllmeONHeWFwhNBRmzjTL3bvbG4s8WLVqUKYMXL8OY8bYHY3z7dtnktG+viY5LSIiIm7N4TCJJF9fmD3bc+Yfmjo1ZvDFwIHw0kv2xiMiCZOskmSnTp0CIGvWrHfdnzVr1ui//deAAQMIDg6O/smdO7fL4xQBYpqm//CDGQrmSQYOND3XGjWC4sXtjkYexOGIqSb75huTLPMkP/5obuvXN51vRURExO0VKxYzJ1RICERE2BtPYi1fbvqQAXTuDO+/b288IpJw8U6S9e3bF4fD8cCfzZs3Jyooh8Nx1++WZd1zX5QePXoQFhYW/XPs2LFEPbdInDVpYuaxPnrUzHTpKY4di6mO69HD3lgkbp5/HvLmhdOn4fvv7Y7GeW7fhp9+Msuvv25vLCIiIuJU/fqZU+nt22H8eLujSbgdO8zXgps3oUULUyV3n6+uIuIG4p0k69SpE3v37n3gT/EEVp5k+7dK4L9VY2fOnLmnuixKihQpCAoKuutHJEmkTBnTwN+dP9n/a/BguHULqleHSpXsjkbiwt8fevY0y19+CTdu2BuPsyxcaGa2zJwZGjSwOxoRERFxoowZoW9fs9yrF4SF2RpOghw9aordL12CqlXNdWZfX7ujEpHEiHeSLFOmTBQuXPiBP4GBgQkKJn/+/GTLlo0lS5ZE33fz5k1WrlxJ5cqVE7RNEZeKqm6ZNQsuXLA3Fmc4dy6mEklVZO6lTRvIlQtOnDBDgD1BVPL5lVcgIMDeWERERMTp3n4bChWCs2ehf3+7o4mff/6BevXMqVexYjBnDiTwa7CIJCMu7Ul29OhRtm3bxtGjR4mIiGDbtm1s27aNK1euRK9TuHBhZs+eDZhhll27duXzzz9n9uzZ7Nq1i1dffZVUqVLxYlTFjkhyUrYslCwJ4eGmW6e7GzIErl0z+1W7tt3RSHykSBEzycKAAabm352dOQNz55rlqP5/IiIi4lH8/WNmg/z6azhwwNZw4uz6dWjcGPbuhZw5YcECSJ/e7qhExBlcmiT7+OOPKVOmDH369OHKlSuUKVOGMmXK3NWzLDQ0lLA7ams/+OADunbtyttvv0358uU5fvw4ixcvJm3atK4MVSRhHI6YL/DffWea3burs2dh2DCz3KePmim4o7ZtIXt201cuqpeXu/rxR9OT7IknNHmEiIiIB6tfH+rWNd0+unWzO5qHi4iAl1+GNWsgONgkyDR3nIjncFiWO3+rv9elS5cIDg4mLCxM/ckkafzzj7mEdOOG+bR88km7I0qYbt1g0CAoVw42bVKSzF19/bWZJip/fggNNZdo3U1EBDzyCPz1lxlyqUoySSI6h3APOk4inmfPHjM4IyICli6FmjXtjih2lgXvvAMjRphOEIsWmTa+IpL8xfX8waWVZCJeIUOGmAb+I0bYG0tCnToVE/snnyhB5s7efBOyZIHDh2HSJLujSZj5802CLEMGM3OniIiIeLSiRaFDB7McEmKSZcnRwIHmlNnhME36lSAT8TxKkok4Q8eO5nbGDJNwcjdffGGaK1SsaGrexX2lShUzVuGTT9yzN1lUwvb1180ssiIiIuLx+vY1fb127IBx4+yO5l4TJ8a0fx06FFq1sjceEXENJclEnKFsWahc2TRTiJod0l0cPw6jR5tlVZF5hrffNr3JjhyBMWPsjiZ+9u83YxccjphLyiIiIuLxMmY0iTKA3r3hjrbVtlu8OGZS+/ffhy5d7I1HRFxHSTIRZ4mqJvvuO5Mscxeff25m56xSBZ5+2u5oxBlSpYKPPzbLn34Kd8wonOyNGmVun3kGChSwNxYRERFJUh06QOHCZj6pzz6zOxrjjz+geXMzn9CLL8KXX9odkYi4kpJkIs7SogVkzWoqs6ZNszuauAkNjak0UhWZZ2nb1jS/P3PGNPN3BxcuwNixZrlTJ3tjERERkSTn7w9Dhpjlb76BAwfsjefQIXPd7soVqFULfvgBfPQNWsSj6Z+4iLMEBMTUXn/5pZn+Jrnr3t1cFmvYUJ1HPY2/f8wl2K++gnPn7I0nLkaNMmehJUqYueBFRETE69SvD/XqmYEZ779vXxznzpk4Tp+GUqVg1ixzui8ink1JMhFn6tAB0qaFXbvMDH3J2erVMGeOuRymunHP1KoVlC4Nly4lnzEL93P9ekzF2wcfqKpRRETEiw0eDL6+8L//wdKlSf/8166Za8h//gl58pjT+qCgpI9DRJKekmQizpQuHbRvb5a/+MLWUB4oMhLee88sv/GGmXdbPI+Pj5mrHMyMkXv32hvPg/z4o2lAkjcvPPec3dGIiIiIjYoWNfMQAYSEQERE0j337dvw/POwcaOZbXPhQsiRI+meX0TspSSZiLN17WpqsdesgbVr7Y4mdtOnw6ZNkDp1zDRC4plq14ZnnzVnfCEhyXMY8O3bZkgomOStv7+98YiIiIjt+vQxSaqdO2NalrqaZZnk3Ny5EBhobosUSZrnFpHkQUkyEWfLkQNatzbLyTEBdeVKTIOHDz6AbNnsjUdcb/Bgk7hdtAjmzbM7mntNmgSHD5u536PmVxcRERGvljEj9Otnlnv3hrAw1z/np5/C99+bYvyff4Ynn3T9c4pI8qIkmYgr9OplqmF+/x2WLbM7mrt98omZgTN/fujWze5oJCk8+qipIgNzGx5ubzx3unkz5gz4ww9NdaOIiIgIpotJ4cKmif6nn7r2ucaNM9VrAMOHQ5Mmrn0+EUmelCQTcYV8+eCtt8xyjx7JZ4jb7t0wdKhZHjYMUqa0Nx5JOr16marBAwdg0CC7o4kxdiwcOWJi69jR7mhEREQkGfH3hyFDzPKwYaaRvivMmxdz6t6zp5mLS0S8k5JkIq7SuzekSgX/939mah67WRZ06mT6Pz37rJmyR7xH2rQxybFPP4XQUHvjAbh6NWbWzY8+Mv9eRERERO5Qv775uXXLNYMg/u//zITgERHQpk3ynxBcRFxLSTIRV8ma1TTxB3NJ6tYtW8NhzBhYscJUj33zjb2xiD1efBHq1TPDLd94w8xyaqcvvoCTJ83Q33bt7I1FREREkq3Bg8HX11x3XrrUedv9809o0ACuXYO6dU0/MofDedsXEfejJJmIK3XrZrqO7t1rmhvY5ciRmGb9n39uhoOK93E4YPRo0/dr9WqTOLXL4cMxM1oOGmQmFhARERGJRZEiMV0ZunY1AyMS6/Rpc+3w3DkoVw5mzNAE2yKiJJmIa6VLZ6plwHQCPXky6WOIjIS2bc2sllWqQOfOSR+DJB9585pEKZjE6YED9sTx/vumoq1mTWja1J4YRERExG306QPp08OuXaalaWJcuWIqyA4dggIFTE+yNGmcE6eIuDclyURc7fXX4Ykn4PLlmGqupDRsmJlhM2VKGD/ezGkt3q1jR6he3fQEe+EFM8NkUvrf/2DWLPNe/OYbjWsQERGRh8qQIWZC7I8+gosXE7adW7egRQvYsgUyZYKFC02XFBERUJJMxPV8fGDECHM7ZQrMmZN0z71hQ0yH00GD4NFHk+65Jfny9YWJE83l2M2bY+Y7TwoXLsRMGdWtGxQvnnTPLSIiIm6tfXsz9PLcuYQ12Lcs05Z10SIzX9C8eVCwoPPjFBH3pSSZSFIoXz4mWfXmm3D2rOuf8/x5eO4507ShZUvNZS13y5XLdKcF+PJLc5aYFLp2NcOOCxWCvn2T5jlFRETEI/j7w5AhZnnYMNN4Pz4++gh++slcL5w+3Qz2EBG5k5JkIkmlXz9TNXP2rOkR5sqZBW/fhpdfhqNHTfWYpuqR2DRvbpKnlmWGXe7Z49rnmzgRJkww78Xx4yEw0LXPJyIiIh6nXj145hkzbDI+nUxGjYL+/c3y6NGmJ5mIyH8pSSaSVFKkMEmCgACYOzemebqzWZZpzr9woUlC/PILBAe75rnE/X39NVStanrmNWpkKhBdYfduM0YCzPDOypVd8zwiIiLi8QYPNtVgv/4Kv//+8PXnzIFOncxyv37Qrp1LwxMRN6YkmUhSKl0aRo40yx9/7JohbgMHmktlDgdMnmyeU+R+AgJg5kzIl89M8dSwoUmYOdPZs9CkCVy7BrVrQ+/ezt2+iIiIeJXChc08RAAhIWYQxf2sXWsK5iMjTT+yjz5KmhhFxD0pSSaS1Nq2hbfeMhVfLVvCmjXO2/agQdC9u1kePBiaNXPetsVzZcoEv/1mGvlv2GASZdeuOWfbUXOsHzgAefOaxK2vr3O2LSIiIl6rTx8z4+WuXTB2bOzr7N1rCuVv3DCnNyNHqgOJiDyYkmQidhg2DOrXh+vXTQLh//4vcduzLPj005jJAfr0MZfVROKqWDFYvBiCgmDVKnj66cRPMHH5Mjz7LGzaBBkzmqmkMmd2TrwiIiLi1TJkMEMnwVSHXbx4999PnDD9yy5cgAoVYOpU8PNL8jBFxM0oSSZih4AAmDHD9IK6dAmqV4fZsxO2revXTZP+jz82v/ftq1kDJWHKlze97NKlg/XrTd+whDbzP3ECataE5cshTRoztLhQIaeGKyIiIt6tfXsoWhTOnTMJsxUr4OefTYF8/fpmDquCBc3vqVPbHa2IuAMlyUTskiqV+cSuV88kupo3h549ITw87ttYvx7KloUpU8wQtlGjTBWZSEJVqgTr1pkeZQcOQLlypvIxPrOxLlwIZcrA5s2mgmz5cnMJV0RERMSJ/PxgyBCz/PXXUKMGvPiiGWK5Y4eZu2rhQtNZQkQkLpQkE7FT2rRmpstOncyQyQEDoGRJmDbtwR1I9+2DV1+FJ580y9mymaFyUbMHiiRGkSKmN1n9+qaJR5cuJln2v/9BRMT9H7djB7RoYR535ox5L2/YYCrURERERFzg6tX7/y0sDLZtS7JQRMQDOCzLsuwOwpkuXbpEcHAwYWFhBAUF2R2OSNzNmgUdOpjkAkDWrKZfWZky5vLX1auwf7+pytm0KeZxrVvD0KGmMYOIM1mWqU7s2dOcZQLkyGGqH0uXNu/L69fN+3LJEvjjD7OOjw907gz9+5uKSRE3oXMI96DjJCJRIiJM8fvff8f+d4cDcuWCw4c1b5CIt4vr+YOSZCLJyaVLplb8229Nc4X78fU1CbTeveHxx5MsPPFS58/DV1+ZqaPOn7//ej4+ZsbWnj1NFZmIm9E5hHvQcRKRKCtWmCGWD7N8uWkBLCLeK67nD5rfQyQ5CQoyDfh79IClS2H1atM4/eJFU5GTKxdUrAjPPGMqzUSSQsaM8MUXZkKIlSth2TLTr+zCBUiRAgoUMEMqGzbU7JUiIiKSZE6edO56IiJKkokkR/7+ZkhbvXp2RyISIzAQ6tY1PyIiIiI2y57dueuJiKhxv4iIiIiIiLidKlXMQAuHI/a/OxyQO7dZT0QkLpQkExEREREREbfj6wvffGOW/5soi/r966/VtF9E4k5JMhEREREREXFLzZrBjBmQM+fd9+fKZe5v1syeuETEPaknmYiIiIiIiLitZs2gcWMz59XJk6YHWZUqqiATkfhTkkxERERERETcmq8vVK9udxQi4u403FJEREREbNG0aVPSp09PixYt7A5FREREREkyEREREbFH586dmTBhgt1hiIiIiABKkomIiIiITWrUqEHatGntDkNEREQEUJJMRERExK0MGDCAxx9/nLRp05IlSxaaNGlCaGioU59j1apVNGrUiBw5cuBwOJgzZ06s640cOZL8+fMTGBhIuXLlWL16tVPjEBEREUlKSpKJiIiIuJGVK1fSsWNHNmzYwJIlS7h9+zZ16tTh6tWrsa6/du1abt26dc/9+/bt49SpU7E+5urVq5QqVYrhw4ffN45p06bRtWtXevXqxdatW6lSpQr169fn6NGj0euUK1eO4sWL3/Nz4sSJeO61iIiIiOs5LMuy7A7CmS5dukRwcDBhYWEEBQXZHY6IiIi4CXc9hzh79ixZsmRh5cqVVK1a9a6/RUZGUrZsWQoWLMjUqVPx9fUFYP/+/VSrVo2QkBA++OCDB27f4XAwe/ZsmjRpctf9FSpUoGzZsowaNSr6viJFitCkSRMGDBgQ5/hXrFjB8OHDmTFjRpzWd9fjJCIiIvaJ6/mDKslERERE3FhYWBgAGTJkuOdvPj4+zJ8/n61bt9K6dWsiIyM5ePAgNWvW5Nlnn31ogux+bt68yZYtW6hTp85d99epU4d169YlaJsPM2LECIoWLcrjjz/uku2LiIiIKEkmIiIi4qYsy+Ldd9/lqaeeonjx4rGukyNHDpYtW8batWt58cUXqVmzJrVq1WL06NEJft5z584RERFB1qxZ77o/a9as9x3CGZu6devSsmVL5s+fT65cudi0adN91+3YsSN79ux54DoiIiIiieFndwAiIiIikjCdOnVix44drFmz5oHr5cmThwkTJlCtWjUKFCjAuHHjcDgciX7+/27Dsqx4bXfRokWJjkFERETEWVRJJiIiIuKG3nnnHX799VeWL19Orly5Hrju6dOnefPNN2nUqBHXrl0jJCQkUc+dKVMmfH1976kaO3PmzD3VZSIiIiLuQkkyERERETdiWRadOnVi1qxZLFu2jPz58z9w/XPnzlGrVi2KFCkS/Zjp06fz/vvvJziGgIAAypUrx5IlS+66f8mSJVSuXDnB2xURERGxk4ZbioiIiLiRjh07MmXKFP73v/+RNm3a6Gqu4OBgUqZMede6kZGR1KtXj7x58zJt2jT8/PwoUqQIv//+OzVq1CBnzpyxVpVduXKFAwcORP9++PBhtm3bRoYMGciTJw8A7777Lq+88grly5enUqVKjBkzhqNHj9K+fXsX7r2IiIiI6zgsy7LsDsKZNC24iIiIJIS7nEPcr+fXDz/8wKuvvnrP/UuWLKFKlSoEBgbedf+2bdvImDEjuXPnvucxK1asoEaNGvfc36ZNG3788cfo30eOHMnAgQM5efIkxYsXZ+jQoVStWjV+OxRP7nKcREREJPmI6/mDxyXJwsLCSJcuHceOHdOJk4iIiMTZpUuXyJ07NxcvXiQ4ONjucOQ+dK4nIiIi8RXX8zyPG255+fJlgFivioqIiIg8zOXLl5UkS8Z0riciIiIJ9bDzPI+rJIuMjOTEiROkTZvWKVOb/1dU9lFXL+2jY2Avvf720utvL73+9nL1629ZFpcvXyZHjhz4+Ghuo+RK53rOpf31bNpfz6b99WzaX+eK63mex1WS+fj4PHQadGcICgryijdqcqZjYC+9/vbS628vvf72cuXrrwqy5E/neq6h/fVs2l/Ppv31bNpf54nLeZ4uk4qIiIiIiIiIiNdTkkxERERERERERLyekmTxlCJFCvr06UOKFCnsDsVr6RjYS6+/vfT620uvv730+ktS8Lb3mfbXs2l/PZv217Npf+3hcY37RURERERERERE4kuVZCIiIiIiIiIi4vWUJBMREREREREREa+nJJmIiIiIiIiIiHg9JclERERERERERMTrKUkWi5EjR5I/f34CAwMpV64cq1evfuD6K1eupFy5cgQGBlKgQAFGjx6dRJF6pvi8/rNmzaJ27dpkzpyZoKAgKlWqxKJFi5IwWs8T3/d/lLVr1+Ln50fp0qVdG6AXiO8xCA8Pp1evXuTNm5cUKVLwyCOPMH78+CSK1vPE9/WfPHkypUqVIlWqVGTPnp3XXnuN8+fPJ1G0nmPVqlU0atSIHDly4HA4mDNnzkMfo89fiS9ve5/Fd39XrFiBw+G452ffvn1JE3AiDRgwgMcff5y0adOSJUsWmjRpQmho6EMf567HOCH7687HeNSoUZQsWZKgoKDo8/4FCxY88DHuemwh/vvrzsf2vwYMGIDD4aBr164PXM+dj+9/xWWf3fkY9+3b9564s2XL9sDH2HV8lST7j2nTptG1a1d69erF1q1bqVKlCvXr1+fo0aOxrn/48GGeeeYZqlSpwtatW+nZsyedO3dm5syZSRy5Z4jv679q1Spq167N/Pnz2bJlCzVq1KBRo0Zs3bo1iSP3DPF9/aOEhYXRunVratWqlUSReq6EHINWrVqxdOlSxo0bR2hoKD///DOFCxdOwqg9R3xf/zVr1tC6dWvatm3L7t27+eWXX9i0aRPt2rVL4sjd39WrVylVqhTDhw+P0/r6/JWE8Lb3WXz3N0poaCgnT56M/ilYsKCLInSulStX0rFjRzZs2MCSJUu4ffs2derU4erVq/d9jDsf44TsbxR3PMa5cuXiiy++YPPmzWzevJmaNWvSuHFjdu/eHev67nxsIf77G8Udj+2dNm3axJgxYyhZsuQD13P343unuO5zFHc9xsWKFbsr7p07d953XVuPryV3eeKJJ6z27dvfdV/hwoWt7t27x7r+Bx98YBUuXPiu+9566y2rYsWKLovRk8X39Y9N0aJFrX79+jk7NK+Q0Nf/ueees3r37m316dPHKlWqlAsj9HzxPQYLFiywgoODrfPnzydFeB4vvq//V199ZRUoUOCu+4YNG2blypXLZTF6A8CaPXv2A9fR568klre9z+Kyv8uXL7cA68KFC0kSk6udOXPGAqyVK1fedx1POsZx2V9PO8bp06e3xo4dG+vfPOnYRnnQ/nrCsb18+bJVsGBBa8mSJVa1atWsLl263HddTzm+8dlndz7G8f2eaOfxVSXZHW7evMmWLVuoU6fOXffXqVOHdevWxfqY9evX37N+3bp12bx5M7du3XJZrJ4oIa//f0VGRnL58mUyZMjgihA9WkJf/x9++IGDBw/Sp08fV4fo8RJyDH799VfKly/PwIEDyZkzJ4899hjvv/8+169fT4qQPUpCXv/KlSvz999/M3/+fCzL4vTp08yYMYMGDRokRcheTZ+/khS89X1WpkwZsmfPTq1atVi+fLnd4SRYWFgYwAPPCz3pGMdlf6O4+zGOiIhg6tSpXL16lUqVKsW6jicd27jsbxR3PrYdO3akQYMGPP300w9d11OOb3z2OYq7HuM///yTHDlykD9/fp5//nkOHTp033XtPL5+Lt26mzl37hwRERFkzZr1rvuzZs3KqVOnYn3MqVOnYl3/9u3bnDt3juzZs7ssXk+TkNf/vwYPHszVq1dp1aqVK0L0aAl5/f/880+6d+/O6tWr8fPTfyeJlZBjcOjQIdasWUNgYCCzZ8/m3LlzvP322/zzzz/qSxZPCXn9K1euzOTJk3nuuee4ceMGt2/f5tlnn+Xbb79NipC9mj5/JSl42/sse/bsjBkzhnLlyhEeHs7EiROpVasWK1asoGrVqnaHFy+WZfHuu+/y1FNPUbx48fuu5ynHOK776+7HeOfOnVSqVIkbN26QJk0aZs+eTdGiRWNd1xOObXz2192P7dSpU/njjz/YtGlTnNb3hOMb331252NcoUIFJkyYwGOPPcbp06f57LPPqFy5Mrt37yZjxoz3rG/n8dW32lg4HI67frcs6577HrZ+bPdL3MT39Y/y888/07dvX/73v/+RJUsWV4Xn8eL6+kdERPDiiy/Sr18/HnvssaQKzyvE599AZGQkDoeDyZMnExwcDMCQIUNo0aIFI0aMIGXKlC6P19PE5/Xfs2cPnTt35uOPP6Zu3bqcPHmSbt260b59e8aNG5cU4Xo1ff5KUvCm91mhQoUoVKhQ9O+VKlXi2LFjDBo0KNl/AfuvTp06sWPHDtasWfPQdT3hGMd1f939GBcqVIht27Zx8eJFZs6cSZs2bVi5cuV9E0fufmzjs7/ufGyPHTtGly5dWLx4MYGBgXF+nDsf34Tsszsf4/r160cvlyhRgkqVKvHII4/w008/8e6778b6GLuOr4Zb3iFTpkz4+vreUzFw5syZe7KYUbJlyxbr+n5+frFmROX+EvL6R5k2bRpt27Zl+vTp8SpVlRjxff0vX77M5s2b6dSpE35+fvj5+fHJJ5+wfft2/Pz8WLZsWVKF7jES8m8ge/bs5MyZMzpBBlCkSBEsy+Lvv/92abyeJiGv/4ABA3jyySfp1q0bJUuWpG7duowcOZLx48dz8uTJpAjba+nzV5KC3mdQsWJF/vzzT7vDiJd33nmHX3/9leXLl5MrV64HrusJxzg++xsbdzrGAQEBPProo5QvX54BAwZQqlQpvvnmm1jX9YRjG5/9jY27HNstW7Zw5swZypUrF/29YuXKlQwbNgw/Pz8iIiLueYy7H9+E7HNs3OUY/1fq1KkpUaLEfWO38/gqSXaHgIAAypUrx5IlS+66f8mSJVSuXDnWx1SqVOme9RcvXkz58uXx9/d3WayeKCGvP5gKsldffZUpU6aoD1AixPf1DwoKYufOnWzbti36p3379tFXvCpUqJBUoXuMhPwbePLJJzlx4gRXrlyJvm///v34+Pgk6ETZmyXk9b927Ro+Pnd/lPr6+gIxV7vENfT5K0lB7zPYunWrWwxbAvP/bqdOnZg1axbLli0jf/78D32MOx/jhOxvbNzpGP+XZVmEh4fH+jd3Prb386D9jY27HNtatWrd872ifPnyvPTSS2zbti363OpO7n58E7LPsXGXY/xf4eHh7N27976x23p8XT41gJuZOnWq5e/vb40bN87as2eP1bVrVyt16tTWkSNHLMuyrO7du1uvvPJK9PqHDh2yUqVKZYWEhFh79uyxxo0bZ/n7+1szZsywaxfcWnxf/ylTplh+fn7WiBEjrJMnT0b/XLx40a5dcGvxff3/S7NbJl58j8Hly5etXLlyWS1atLB2795trVy50ipYsKDVrl07u3bBrcX39f/hhx8sPz8/a+TIkdbBgwetNWvWWOXLl7eeeOIJu3bBbV2+fNnaunWrtXXrVguwhgwZYm3dutX666+/LMvS5684h7e9z+K7v0OHDrVmz55t7d+/39q1a5fVvXt3C7Bmzpxp1y7ES4cOHazg4GBrxYoVd50XXrt2LXodTzrGCdlfdz7GPXr0sFatWmUdPnzY2rFjh9WzZ0/Lx8fHWrx4sWVZnnVsLSv+++vOxzY2/53p0dOOb2wets/ufIzfe+89a8WKFdahQ4esDRs2WA0bNrTSpk2bLPMsSpLFYsSIEVbevHmtgIAAq2zZsndNo9ymTRurWrVqd62/YsUKq0yZMlZAQICVL18+a9SoUUkcsWeJz+tfrVo1C7jnp02bNkkfuIeI7/v/TkqSOUd8j8HevXutp59+2kqZMqWVK1cu6913373rBFniJ76v/7Bhw6yiRYtaKVOmtLJnz2699NJL1t9//53EUbu/qGnN7/f/uT5/xRm87X0W3/398ssvrUceecQKDAy00qdPbz311FPWvHnz7Ak+AWLbV8D64YcfotfxpGOckP1152P8+uuvR38+Z86c2apVq1Z0wsiyPOvYWlb899edj21s/psw8rTjG5uH7bM7H+PnnnvOyp49u+Xv72/lyJHDatasmbV79+7ovyen4+uwLI0HERERERERERER76aeZCIiIiIiIiIi4vWUJBMREREREREREa+nJJmIiIiIiIiIiHg9JclERERERERERMTrKUkmIiIiIiIiIiJeT0kyERERERERERHxekqSiYiIiIiIiIiI11OSTEREREREREREvJ6SZCIiIiIiIiIi4vWUJBMREREREREREa+nJJmIeLyff/6ZwMBAjh8/Hn1fu3btKFmyJGFhYTZGJiIiIiKJdeDAARwOB/PmzaNWrVqkSpWKQoUKsXHjRrtDExE3oySZiHi8559/nkKFCjFgwAAA+vXrx6JFi1iwYAHBwcE2RyciIiIiibF9+3YcDgeDBw+md+/ebN++nTx58tC9e3e7QxMRN+NndwAiIq7mcDjo378/LVq0IEeOHHzzzTesXr2anDlz2h2aiIiIiCTS9u3bCQ4OZtq0aWTOnBmAJk2aMGrUKJsjExF3oySZiHiFhg0bUrRoUfr168fixYspVqyY3SGJiIiIiBNs376dRo0aRSfIAA4dOsSjjz5qY1Qi4o403FJEvMKiRYvYt28fERERZM2a1e5wRERERMRJtm/fTqVKle66b+vWrZQuXdqegETEbSlJJiIe748//qBly5Z899131K1bl48++sjukERERETECcLCwvjrr78oU6bMXfdv27ZNSTIRiTcNtxQRj3bkyBEaNGhA9+7deeWVVyhatCiPP/44W7ZsoVy5cnaHJyIiIiKJsH37dnx9fSlVqlT0fX/99RcXLlxQkkxE4k2VZCLisf755x/q16/Ps88+S8+ePQEoV64cjRo1olevXjZHJyIiIiKJtX37dgoXLkzKlCmj79u6dSvp0qUjX7589gUmIm7JYVmWZXcQIiIiIiIiIiIidlIlmYiIiIiIiIiIeD0lyURERERERERExOspSSYiIiIiIiIiIl5PSTIREREREREREfF6SpKJiIiIiIiIiIjXU5JMRERERERERES8npJkIiIiIiIiIiLi9ZQkExERERERERERr6ckmYiIiIiIiIiIeD0lyURERERERERExOspSSYiIiIiIiIiIl5PSTIREREREREREfF6/w91Et/NXDv+cgAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMkAAAINCAYAAAAk+SgMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsgUlEQVR4nOzdd3gU5drH8e+mJ/QaEmrovYMUUREVOQgqYsNCEdRXFAEV9ahYjxwbxYKoR4qCYgNsKIKCNJEWpIRO6KGEDgECyb5/PExCSCGE3Z0tv8915drJzOzMvZTdnXvu534cTqfTiYiIiIiIiIiISAALsjsAERERERERERERuylJJiIiIiIiIiIiAU9JMhERERERERERCXhKkomIiIiIiIiISMBTkkxERERERERERAKekmQiIiIiIiIiIhLwlCQTEREREREREZGApySZiIiIiIiIiIgEvBC7A3C19PR0du/eTZEiRXA4HHaHIyIiIj7C6XRy7NgxYmNjCQrSfURvpe96IiIicqny+z3P75Jku3fvpmLFinaHISIiIj5qx44dVKhQwe4wJBf6riciIiIFdbHveX6XJCtSpAhgXnjRokVtjkZERER8xdGjR6lYsWLGdwnxTvquJyIiIpcqv9/z/C5JZpXdFy1aVF+cRERE5JJpCJ9303c9ERERKaiLfc9Tww0REREREREREQl4SpKJiIiIiNf74IMPqFu3Li1atLA7FBEREfFTSpKJiIiIiNfr378/CQkJLFmyxO5QRERExE/5XU8yEX/hdDo5e/YsaWlpdociclHBwcGEhISol5OIiIiIiPgsJclEvFBqaipJSUmkpKTYHYpIvkVFRRETE0NYWJjdoYiIiIiIiFwyJclEvEx6ejqJiYkEBwcTGxtLWFiYqnPEqzmdTlJTU9m/fz+JiYnUqFGDoCCN5hcREREREd+iJJmIl0lNTSU9PZ2KFSsSFRVldzgi+RIZGUloaCjbtm0jNTWViIgIu0MSERERERG5JLrVL+KlVIkjvkb/ZkVERERExJfpikZERERERERERAKekmQiIiIiIiIiIhLwlCQTEREREREREZGApySZiPgVh8PBtGnT7A5DREREREREfIySZCIiIiIiIiIiEvDcmiSbO3cuXbp0ITY2Nt/VHX/++SfNmjUjIiKCqlWrMmbMGHeGKOJTTpw4kevPqVOn8r3vyZMn87XvpXI6nbz55ptUrVqVyMhIGjVqxLfffpux7brrruPGG2/E6XQCcPjwYSpVqsRzzz0HQFpaGg888ABxcXFERkZSq1YtRo0ale08Y8eOpV69eoSHhxMTE8Ojjz4KQJUqVQC49dZbcTgcGb/nZOHChTRu3JiIiAiaN2/OtGnTcDgcrFix4pJft4iI+Ie0NJgzB7780jympdkdkYiIiHiSW5NkJ06coFGjRrz//vv52j8xMZF//etftGvXjvj4eP79738zYMAAvvvuO3eGKeIzChcunOvPbbfdlmXfsmXL5rpvp06dsuxbpUqVHPe7VM8//zzjxo3jww8/ZM2aNQwaNIh7772XP//8E4fDwYQJE1i8eDHvvvsuAA8//DDR0dG89NJLAKSnp1OhQgW+/vprEhISGDp0KP/+97/5+uuvM87x4Ycf0r9/fx588EFWrVrFDz/8QPXq1QFYsmQJAOPGjSMpKSnj9wsdO3aMLl260KBBA5YvX86rr77K008/fcmvV0RE/MeUKVClCrRvDz16mMcqVcx6ERERCQwh7jx4p06dsl2M52XMmDFUqlSJkSNHAlCnTh2WLl3K22+/nS0BICLe5cSJEwwfPpw//viD1q1bA1C1alXmz5/PRx99xNVXX0358uX56KOPuO+++9i7dy8//vgj8fHxhIaGAhAaGsrLL7+cccy4uDgWLlzI119/zR133AHAa6+9xhNPPMHjjz+esV+LFi0AKFOmDADFixenXLlyucY6adIkHA4Hn3zyCREREdStW5ddu3bRr18/1/6hiIiIT5gyBbp3h3OFzhl27TLrv/0WunWzJzYRERHxHLcmyS7VX3/9xQ033JBlXceOHfn00085c+ZMxoV0IHI6naxbt44dO3bQqFEjoqOj7Q5JbHD8+PFctwUHB2f5fd++fbnuGxSUtYh069atlxUXQEJCAqdOneL666/Psj41NZUmTZpk/H777bczdepUhg0bxocffkjNmjWz7D9mzBj+97//sW3bNk6ePElqaiqNGzcGzGvavXs3HTp0uKxY169fT8OGDYmIiMhY17Jly8s6pkggOH36NEuXLsXpdNKiRQvCw8PtDknksqWlweOPZ0+QgVnncMDAgXDzzXDBR62IiIj4Ga9Kku3Zsydb8ic6OpqzZ8+SnJxMTExMtuecPn2a06dPZ/x+9OhRt8fpaUlJSfTs2ZOZM2cCEBISwtNPP82rr76Kw+GwOTrxpEKFCtm+b27S09MB+PnnnylfvnyWbedfSKekpLBs2TKCg4PZuHFjlv2+/vprBg0axDvvvEPr1q0pUqQIb731Fn///TcAkZGRlx0nmKTzhf93nDldHYlIhhkzZtC3b1927twJQLly5Rg/fjwdO3a0OTKRyzNvHpz7Z50jpxN27DD7XXONx8ISERERG3jd7Ja5XbjmlgwaNmwYxYoVy/ipWLGi22P0pMOHD3Pttdcyc+ZMQkJCqFKlCunp6VSvXl0JMvEqdevWJTw8nO3bt1O9evUsP+f/v3ziiScICgril19+4d133+WPP/7I2DZv3jzatGnDI488QpMmTahevTqbN2/O2F6kSBGqVKnC77//nmscoaGhpF2k03Lt2rVZuXJllgT70qVLC/KyRQLCL7/8QpcuXdi5cyclS5akZMmS7Nmzh86dO2fcwBHxVUlJrt1PREREfJdXJcnKlSvHnj17sqzbt28fISEhlCpVKsfnPPvssxw5ciTjZ8eOHZ4I1WP69evHunXrKF++PKtWrSIxMZFNmzbRq1cvu0MTyaJIkSI8+eSTDBo0iAkTJrB582bi4+P54IMPmDBhAmCqzMaOHcukSZO4/vrreeaZZ+jZsyeHDh0CoHr16ixdupQZM2awYcMGXnjhhWzN91966SXeeecd3n33XTZu3Mjy5ct57733MrZbSbQ9e/ZkHPdCPXr0ID09nQcffJC1a9cyY8YM3n77bSD3hLxIoEpPT+fJJ5/kzJkz3HHHHezYsYOdO3dy5513UqNGDapWrWp3iCKXJYeBCpe1n4iIiPgur0qStW7dOtsd6d9++43mzZvn2o8sPDycokWLZvnxF/PmzePbb78lODiY77//ntq1awOmmbklNTXVL4eYim969dVXGTp0KMOGDaNOnTp07NiRH3/8kbi4OPbv388DDzzASy+9RNOmTQF48cUXiY2N5eGHHwbMbJfdunXjzjvv5IorruDAgQM88sgjWc7Rs2dPRo4cyejRo6lXrx433XRTlmGb77zzDjNnzqRixYpZeqGdr2jRovz444+sWLGCxo0b89xzzzF06FCALH3KRMT0MJw/fz4vvvgiEydOJCoqisjISCZMmMDChQupVq2a3SGKXJZ27aBCBdN7LCcOB1SsaPYTERER/+ZwurERz/Hjx9m0aRMATZo0Yfjw4bRv356SJUtSqVIlnn32WXbt2sVnn30GQGJiIvXr1+ehhx6iX79+/PXXXzz88MN8+eWX+Z7d8ujRoxQrVowjR474fMIsPT2d8ePHs3v3bp5//vls22fMmMH//d//0alTJz744AMbIhR3OHXqFImJicTFxSlh40GTJk2id+/eHDlyxGW9zwKN/u2Kr/On7xD+zB1/T9bslpC1gb+VONPsliIiIr4tv98f3FpJtnTpUpo0aZJRzTF48GCaNGmSUbGRlJTE9u3bM/aPi4tj+vTpzJkzh8aNG/Pqq6/y7rvv5jtB5m+CgoLo06dPjgkyMFV0iYmJfPzxx343zFTE3T777DPmz59PYmIi06ZN4+mnn+aOO+5QgkzkPKtXr77opBYHDhzgxRdfZMCAAR6KSsT1unUzibAL5p2hSBElyERERAKJWyvJ7BBod4GvueYa/vzzT5555hmGDRtmdzjiAqrG8Yw333yT0aNHs2fPHmJiYrjlllv4z3/+Q1RUlN2h+Sz92/UvCQkJ1KtXjxYtWjB//nzCwsJy3G/ZsmU0b96ckJAQdu3aRdmyZT0cqesE2ncIX+XOv6e0NDOL5dSp8O67EBsL27dDcLBLTyMiIiIe5hWVZFIwSUlJNGzYkDfffJP09PQ89x00aBAAH330ESdPnvREeCJ+YciQIWzdujUjsTNixAglyETOM3r0aADKly+fa4IMoFmzZlxxxRWcPXs2o32CiK8KDoZrroE334SSJWH3bpg1y+6oRERExFOUJPNCkyZNYtWqVUybNo2goLz/im666SYqVarEoUOH+OmnnzwUoYiI+LNjx45lJLz69+9/0f379u0LwKeffnrR4ZkiviA8HO65xyyPHWtvLCIiIuI5SpJ5GafTyYQJEwDo1avXRfcPDg7mnnPf4j7//HN3hiYiIgFi2rRpHDt2jBo1atChQ4eL7n/HHXcQFhbGunXrWLt2rQciFHG/Pn3M47RpcPCgraGIiIiIhyhJ5mU2bNjA6tWrCQsL44477sjXc+69914AfvnlF5KTk90ZnoiIBICvv/4agB49euCwpvfLQ9GiRbnuuusAmDp1qltjE/GUxo3NT2oqfPGF3dGIiIiIJyhJ5mWsIZPXXHMNxYsXz9dz6taty8svv8zvv/9OyZIl3RidiIj4u0OHDjFjxgyAfN+sAbj11lsBmDJlilviErGDVU2mIZciIiKBQUkyL2MlyTp37nxJzxs6dChXXXXVRXuYiYiI5OWHH37gzJkz1K9fn7p16+b7eV27dqVMmTI0atSIM2fOuDFCEc/p0QPCwiA+HlassDsaERERcbcQuwOQTIcPH2bevHnApSfJRMRzXnrpJaZNm8YKH7xi6tWrF4cPH2batGl2hyJeqkePHkRHR19yoqts2bLs2bNHN2vEr5QqBTffDN98A+PGwahRdkckIiIi7qRvsl7k6NGj3HHHHbRp04Zq1apd8vMXLVrEwIEDM4bJiHhalSpVcDgc2X4uNjuew+HwqaTNk08+ye+//253GAUyatQoxo8fb3cY4sVCQ0O58cYb6dKlyyU/Vwky8UfWkMuJE+H0aXtjEREREfdSJZkXqVSpEl988QVOp7NAz//2228ZNWoUhw4domPHji6OTuTilixZQlpaWsbvq1ev5vrrr+f222/3yPnPnDlDaGio289TuHBhChcu7PbzuFJaWhoOh4NixYrZHYr4ufT0dNasWUO9evWUNBO/cP31UL487NoFP/4I3bvbHZGIiIi4i769eqH8zCSWE+uu//Tp00lPT3dlSCL5UqZMGcqVK5fx89NPP1GtWjWuvvrqXJ9TpUoVwDT9djgcGb8D/PjjjzRr1oyIiAiqVq3Kyy+/zNmzZzO2OxwOxowZw80330yhQoV47bXXeOmll2jcuDFjx46lUqVKFC5cmP/7v/8jLS2NN998k3LlylG2bFn+85//5Pla5syZQ8uWLSlUqBDFixenbdu2bNu2DSDjHJZevXpxyy238PbbbxMTE0OpUqXo379/luFqqampDBkyhPLly1OoUCGuuOIK5syZk2cML730EpUqVSI8PJzY2FgGDBiQ7+ONHz+e4sWL89NPP1G3bl3Cw8PZtm1bRqwWp9PJm2++SdWqVYmMjKRRo0Z8++23GdsPHTrEPffcQ5kyZYiMjKRGjRqMGzcuz7jFdw0fPpynnnqKNWvWFOj5TqeTmjVr0rBhQ58cjiySk+Bg6NnTLKuBv4iIiH9TJZmXOHr0KLt376ZWrVoFTpK1adOGwoULk5yczMqVK7NcxIuPczohJcWec0dFQQH+TaampjJx4kQGDx6c57/pJUuWULZsWcaNG8eNN95IcHAwADNmzODee+/l3XffpV27dmzevJkHH3wQgBdffDHj+S+++CLDhg1jxIgRBAcHM27cODZv3swvv/zCr7/+yubNm+nevTuJiYnUrFmTP//8k4ULF9KnTx86dOhAq1atssV09uxZbrnlFvr168eXX35JamoqixcvzvN1zJ49m5iYGGbPns2mTZu48847ady4Mf369QOgd+/ebN26lcmTJxMbG8vUqVO58cYbWbVqFTVq1Mh2vG+//ZYRI0YwefJk6tWrx549e/jnn38ytufneCkpKQwbNoz//e9/lCpVirJly2Y7z/PPP8+UKVP48MMPqVGjBnPnzuXee++lTJkyXH311bzwwgskJCTwyy+/ULp0aTZt2sTJkydz/XMQ3/bxxx+zfv16WrVqRb169S75+Q6Hg9q1a7N582Z+//13mjZt6oYoRTyvVy94/XWYMcNUlJUvb3dEIiIi4hZOP3PkyBEn4Dxy5IjdoVySyZMnOwFnhw4dLus4nTt3dgLOt99+20WRiaedPHnSmZCQ4Dx58mTmyuPHnU6TKvP8z/HjBXodX331lTM4ONi5a9eui+4LOKdOnZplXbt27Zyvv/56lnWff/65MyYmJsvzBg4cmGWfF1980RkVFeU8evRoxrqOHTs6q1Sp4kxLS8tYV6tWLeewYcNyjOfAgQNOwDlnzpwct7/44ovORo0aZfzes2dPZ+XKlZ1nz57NWHf77bc777zzTqfT6XRu2rTJ6XA4sv1ZdOjQwfnss8/meI533nnHWbNmTWdqamq2bfk53rhx45yAc8WKFVn26dmzp/Pmm292Op1O5/Hjx50RERHOhQsXZtnngQcecN59991Op9Pp7NKli7N37945xnihHP/tis/Ytm2bE3AGBwc7Dx8+XODjDB8+3Ak4b7zxRhdG5xm++h0i0Nj199SunflYvOCjSURERHxAfr8/aLill/jzzz8BqF+//mUd59prrwXw2abi4j8+/fRTOnXqRGxsbMa6119/PaOfV+HChdm+fXuuz1+2bBmvvPJKlv379etHUlISKedV1TVv3jzbc6tUqUKRIkUyfo+OjqZu3bpZ+iNFR0ezb9++HM9dsmRJevXqRceOHenSpQujRo0iKSkpz9dbr169jCo4gJiYmIzjL1++PGMY2vmv588//2Tz5s05Hu/222/n5MmTVK1alX79+jF16tSMoab5PV5YWBgNGzbMNeaEhAROnTrF9ddfn+U4n332WcZx/u///o/JkyfTuHFjhgwZwsKFC/P8cxDfZX0ONW/e/LJ611nDq//66y8N/ReX+uCDD6hbty4tWrSw5fxWA/+xY81dJBEREfE/Gm7pJayLk7x6N+VHhw4dAJg7dy6pqamEhYVddmziBaKi4Phx+859ibZt28asWbOYMmVKlvUPP/wwd9xxR8bv5yfQLpSens7LL79Mt27dsm2LiIjIWC5UqFC27Rc273c4HDmuy+sCfty4cQwYMIBff/2Vr776iueff56ZM2fmODwzt3Nax09PTyc4OJhly5ZlSaQBuU4AULFiRdavX8/MmTOZNWsWjzzyCG+99RZ//vlnvo8XGRmZ5xBRK76ff/6Z8heMHQoPDwegU6dObNu2jZ9//plZs2bRoUMH+vfvz9tvv53rccU3uepzqGHDhkRGRnLkyBHWrVtH3bp1XRGeCP3796d///4cPXrUlklIuneHRx+FTZtgwQK48kqPhyAiIiJupiSZFzhy5AgJCQkAXHmZ37gaNGhA6dKlM5p059TrSHyQwwE5JIO81bhx4yhbtiydO3fOsr5kyZKULFky2/6hoaFZZsUEaNq0KevXr6d69epujTUvTZo0oUmTJjz77LO0bt2aL774Itck2cWOk5aWxr59+2jXrl2+nxcZGUnXrl3p2rUr/fv3p3bt2qxatarAx7uQ1dB/+/bteSZGypQpQ69evejVqxft2rXjqaeeUpLMD82dOxeAq6666rKOExISQosWLZg7dy5//fWXkmTiNwoXhjvvNJVkY8cqSSYiIuKPlCTzAkuXLgUgLi6OMmXKXNaxgoKCWL16NWXLli3wBAAilyM9PZ1x48bRs2dPQkLy9xZTpUoVfv/9d9q2bUt4eDglSpRg6NCh3HTTTVSsWJHbb7+doKAgVq5cyapVq3jttdfc+hoSExP5+OOP6dq1K7Gxsaxfv54NGzZw//33F+h4NWvW5J577uH+++/nnXfeoUmTJiQnJ/PHH3/QoEED/vWvf2V7zvjx40lLS+OKK64gKiqKzz//nMjISCpXrkypUqUu+Xg5KVKkCE8++SSDBg0iPT2dK6+8kqNHj7Jw4UIKFy5Mz549GTp0KM2aNaNevXqcPn2an376iTp16hToz0G8V1JSEhs3bsThcFz2zRqA1q1bM3fuXBYtWsQDDzzggghFvEPv3iZB9vXX8O67JnEmIiIi/kNJMi+wePFiAJf12IiOjnbJcUQKYtasWWzfvp0+VvOWfHjnnXcYPHgwn3zyCeXLl2fr1q107NiRn376iVdeeYU333yT0NBQateuTd++fd0YvREVFcW6deuYMGECBw4cICYmhkcffZSHHnqowMccN24cr732Gk888QS7du2iVKlStG7dOteEVvHixfnvf//L4MGDSUtLo0GDBvz444+UKlWqQMfLzauvvkrZsmUZNmwYW7ZsoXjx4jRt2pR///vfgOlr9uyzz7J161YiIyNp164dkydPLvCfg3inLVu2EB0dTWxsrEuGsXXp0oWQkBBuuOEGF0Qn4j3atoUaNWDjRvjmG5M0ExEREf/hcDr9q/Wo1afiyJEjFC1a1O5w8uXWW29l2rRpvP322zzxxBMuO671V6uKMt9y6tQpEhMTiYuLy9J7S8Tb6d+ub3M6nRw8eDAjERuIfPE7RCCy++/pv/+FZ581wy3nzfP46UVERKQA8vv9QbNbeoH/+7//49lnn+X666932THvueceoqOjWbduncuOKSIi/svhcAR0gkwkv+6/H4KCYP582LDB7mhERETElZQk8wI33HADr7/+Og0bNnTZMXft2sX+/ftZuHChy44pIiL+x10F5fv372f69On89ddfbjm+iF1iY+HGG83y+PG2hiIiIiIupiSZn2rTpg2AkmQiIpKnGTNmUL58eQYMGODS437yySd07tyZ9957z6XHFfEGVi+yCRPggsmZRURExIcpSWazBQsW8Ouvv5KcnOzS47Zt2zbj+CIiIrlZvHgxu3fv5uDBgy49bpMmTQCIj4936XFFvEGXLlCqFOzeDb/9Znc0IiIi4ipKktnsnXfeoVOnTkycONGlx23VqhUA69evd3kCTkRE/Mfff/8NwBVXXOHS41pJsvXr13PixAmXHlvEbuHhcO+9ZnnsWHtjEREREddRksxm//zzD4BL+5EBlCpVitq1awOwaNEilx5bPMPPJp6VAKB/s77H6XSyePFiwPVJsnLlylGuXDmcTicrV6506bFFvIE15PL770H3I0VERPyDkmQ2OnbsGFu2bAFcnySDzAuepUuXuvzY4j6hoaEApKSk2ByJyKWx/s1a/4bF+yUmJpKcnExYWBiNGjVy+fGbNm0KwPLly11+bBG7NWoETZvCmTPwxRd2RyMiIiKuEGJ3AIFs9erVAMTGxlK6dGmXH//KK69k8+bNVKhQweXHFvcJDg6mePHi7Nu3D4CoqCgcDofNUYnkzul0kpKSwr59+yhevDjBwcF2hyT5ZA21bNy4MeHh4S4/fpMmTZg+fbr6konf6t0bli+HcePAxXNfiIiIiA2UJLORu4ZaWvr27Uvfvn3dcmxxr3LlygFkJMpEfEHx4sUz/u2Kb3DXUEuLVZ22atUqtxxfxG49esATT8CKFRAfD+da8YmIiIiPUpLMRlaPFncMcRHf5nA4iImJoWzZspw5c8bucEQuKjQ0VBVkPqhq1aq0bt2aK6+80i3Hv/LKK/n888/ddjNIxG4lS8Ktt8JXX5kG/u+9Z3dEIiIicjkcTj/rtHz06FGKFSvGkSNHKFq0qN3h5Klt27YsXLiQSZMm0aNHD7ed59ixY5w5c4aSJUu67RwiIiK+zpe+QwQyb/t7mjEDbrwRSpSA3bshIsLuiERERORC+f3+oMb9Nvrwww8ZN24cV199tdvO8cwzz1CsWDFGjhzptnOIiIiIBKrrroMKFeDQIfjhB7ujERERkcuhJJmNGjZsSK9evShfvrzbzlGhQgWcTifLli1z2zlERMT3HDhwgBMnTrj9PKtWreLdd9/lt99+c/u5ROwQHAw9e5rlcePsjUVEREQuj5Jkfq558+YALF26FD8bWSsiIpfhv//9L0WKFOHll19263mmTZvG448/zqRJk9x6HhE79eplHmfMgJ07bQ1FRERELoOSZDaZNWsWH3zwAatXr3breRo1akRwcDD79u1j165dbj2XiIj4jvj4eJxOJxUqVHDreerVqwfAmjVr3HoeETtVrw5XXw1OJ3z2md3RiIiISEEpSWaTSZMm8eijjzJ16lS3nicyMjLjAmX58uVuPZeIiPgGp9PJihUrAGjcuLFbz2V9Bq1du5b09HS3nkvETr17m8exY02yTERERHyPkmQ2WbduHQC1a9d2+7kaNWoEwMqVK91+LhER8X67du3iwIEDhISEZCSx3KVatWqEhYWRkpLC1q1b3XouETt17w6FC8PmzTBvnt3RiIiISEEoSWYDp9OZkSSrU6eO28/XsGFDQEkyEREx4uPjAfMZFBER4dZzhYSEZNwQ0pBL8WeFCsGdd5plNfAXERHxTUqS2WDv3r0cPnyYoKAgqlev7vbzXXnllfTp04euXbu6/VwiIuL9PDXU0qK+ZBIo+vQxj19/DceO2RuLiIiIXLoQuwMIRFYVWVxcnNvv4AO0atWKVq1auf08IiLiG+xKkiUkJHjkfCJ2ad0aatWC9evhm28yk2YiIiLiG1RJZgNP9iMTERG5UNeuXenZsyft2rXzyPnuvfdeFi1axKhRozxyPhG7OBxZG/iLiIiIb1ElmQ3Wrl0LuDhJtn8/bNpkOsbWrg2hoVk2p6amsm7dOqKiojwyxFNERLxXz5496dmzZ84bd+yAbdugTBmoWdNc9V+mypUrU7ly5cs+jogvuP9+eO45WLDAVJTVqmV3RCIiIpJfqiSzwUsvvcSCBQvo16/f5R8sIQE6d4boaGjTBho2hAoV4M034ezZjN2eeeYZGjVqxHvvvXf55xQREf/z559wxRVQqRK0a2duuNSoAZMmgdNpd3QiPiMmBm680SyPH29rKCIiInKJlCSzQYkSJWjTpg21LvfW4ldfQbNmMH26uYCpXBmKFoV9++Dpp+Haa+HQIUAzXIqIiLFx40ZWr15NamqqWeF0wn/+A9dcA4sXQ3AwxMVBRARs3gz33gu9eoG1fwFNnDiRgQMHZlRTi/gzqxfZhAlZ7lmKiIiIl1OSzFd98w3cfTecOgUdO8KGDbB1KyQnmyYYxYrBvHlw3XVw/DiNGjUCTJLMqYoAEZGA9c4779CgQQNeeukls+K11+D5581yv36wezds2WI+T1591STNPvvMJMvS0gp83nHjxjFq1CiWLFly+S9CxMvddBOULg1JSfDbb3ZHIyIiIvmlJJmHbdy4kUGDBjFp0qSCH2TNGtPwwumEvn3h55/NkBgwvch69zYJstKlYfly6NWLOrVrExwczMGDB9m9e7drXoyIiPic1atXA1C/fn2YMgWGDjUbhg+Hjz+GsmXN74UKmeTZjz+az5ZvvoE33ijweWvWrAnAhg0bLit+EV8QFmbyyqAG/iIiIr5ESTIPi4+PZ+TIkYwePbpgBzh5Eu68M7OCbMwYc5f/Qg0awA8/mAub774j4ttvM4Z3asiliEhgcjqdrFmzBoBG0dHw4INmw+DBMGhQzk/q1Mkkz8Ak1BYuLNC5rSTZxo0bC/R8EV9jDbn84QdTmCkiIiLeT0kyD9u8eTMA1apVK9gB/vtfU0lWrpwZ/pJTgszSujVYw2kee4yrzlWb/fPPPwU7t4iI+LTdu3dz+PBhgoODqT1qFBw4AE2awLBheT+xZ8/M4ZZ9+8KZM5d8blWSSaBp0MC0jj1zxsx/ISIiIt5PSTIP27RpEwDVq1e/9Cdv22ZmrQR4773MITF5GTIEWrSAI0d48NwwS1WSiYgEJquK7J7YWIJ//BFCQkxn8bCwvJ/ocJjPnTJlYO1aKEA19PlJMvXGlEBhVZONHatJYkVERHyBkmQedllJsmeeMcMsr7kGbrstf88JCYERIwBovGwZHw8cyEMPPXTp5xYREZ+3evVqHMALx4+bFQ8/bMpd8qN4cTMLJsCLL2bMnpxfVapUISQkhJSUFPXGlIBx990QHg4rV0J8vN3RiIiIyMUoSeZhBU6SrVsHX31llkeMMHf186ttW7j1Vhzp6fTbvp2rr7760s4tIiJ+Yc2aNdwKVD90CIoUgRdeuLQD9OljkmpHjpjKsksQGhpKXFwcoL5kEjhKlIBbbzXLauAvIiLi/ZQk86Dz755fcpLsv/81dfo33wyNG1/6yV97zTxOnQrqByMiEpB63n8/75Uvb355/PH8Dds/X3AwPPecWR41CqyKtHyaNm0a+/bt080aCSjWkMtJk8yAABEREfFeSpJ50JYtWwAoXrw4JUuWzP8Tt2+HiRPNsnVxcqnq1oWbbgKnk8RHH2X9+vUFO46IiPisq4DYXbsgIgIee6xgB+neHWrWhIMH4aOPLumpdevWpUyZMjgupRpaxMddey1UrAiHD8P339sdjYiIiORFSTIPqlevHklJSfzxxx+X9sQxY8yMYtdea5rwF9RTTwEQM3Mmv37+ecGPIyIivumdd8xjz56XXkVmCQ7O+Dxh9GhIT3dNbCJ+KjgYevUyyxpyKSIi4t2UJPMgh8NBuXLlaNKkSf6fdPo0fPqpWe7f//ICaNeOpNhYIoAyv/xyeccSERGfkjhvHs6ffza/DBp0eQfr0cM08t+yBX77Ld9P27ZtG4MHD2bgwIGXd34JSB988AF169alxeXcMLSJlSSbORN27LA1FBEREcmDkmTebsoU2LcPYmOha9fLO5bDwZ6bbwagzZo1motcRCSA7HzlFRzp6SSUKQO1al3ewaKiTDUamGqyfDp58iQjRoxg7NixOPUZJJeof//+JCQksGTJErtDuWRVq5rJyZ1OmDDB7mhEREQkN0qSedBLL73EU089dWn9wP73P/P44IMQEnLZMRTu25fjQJXTp0mfO/eyjyciIj4gLY06f/0FwAZXNc3/v/8zjz//DOcmpbmYKlWqAHDs2DEOHDjgmjhEfITVwH/cOI1SFhER8VZKknnQ+PHjefvtt9m/f3/+nrB7N8yebZatO/aXKa5hQ74OMn/tJ95/3yXHFBERLzd7NqVPnOAgEHT77a45Zq1a0KaNudr/8st8PSUiIoLy52bXtCazEQkUt90GRYqYUcrz5tkdjYiIiORESTIPOX36NNu3bwegevXq+XvS5MmmLr9tWzh39/1yhYSEMP/csSJ++cX0PBMREb/mPJfE+hqo1aiR6w58333m8RImg6latSqgJJkEnqgouOsus6wG/iIiIt5JSTIP2bZtG06nk0KFChEdHZ2/J02aZB579HBpLKeaN2cXEHrixCU1XBYRER+Umkr6d98B8G1QUEaSyiVuvx1CQ+Gff2DVqnw9RUkyCWTWkMtvv4WjR+2NRURERLJTksxDEhMTAYiLi8PhcFz8CevWwfLlpg/ZHXe4NJaHHnmEE//6l/nlq69cemwREfEyM2cSfOQISUBSjRqEhoa67tilSkHnzmZ58uR8PUVJMglkV1wBtWtDSgp8/bXd0YiIiMiFlCTzkK1btwKZTYsvyurv0rEjlC7t0liuvvpqar7wgvnl++/h5EmXHl9ERLzIueTVN0DNOnVcf3yrx9nUqfna3UqS7dy50/WxiHg5hyOzmkxDLkVERLyPkmQecslJMuti48473RIPV1wBlSvD8eNmZjIREfE/p06ZmyFAvZdf5tFHH3X9OTp3NkMu1641VdAXcfPNN7Nnzx5++eUX18ci4gPuuw+Cg+Gvv/L1X0ZEREQ8SEkyD7Ga9ucrSZaYaHq7BAdnDmNxsV9+/ZUlViznLqBERMTP/PEHHDsG5cvT4fnn6dChg+vPUawYWMfNRzVZkSJFiI6Ozl/rARE/VK4cWF0vxo2zNxYRERHJSkkyD/n888/ZtWsXvXr1uvjOP/xgHtu1g5Il3RLPoEGDGPznn+aX6dPh7Fm3nEdERGz044/msUsXCHLjR/6tt5rHfA65FAl01pDLzz7TVzARERFvoiSZhwQFBREbG0upUqUuvrNV2dW1q9viqVWrFn8Bp6Ki4OBBWLTIbecSEREbOJ3w008ATD1zhunTp+N0Ot1zrptvNs2WliyBfPQaGz58ON26deOvv/5yTzwiXq5zZyhTBvbsgV9/tTsaERERsShJ5m0OHoS5c83yzTe77TS1atUiDVhVsaJZce5CSkRE/MTKlbBzJ2nh4fT49FP69u3rviGO0dHQpo1Ztqqh8/Dnn38ydepUVqxY4Z54RLxcaKjpTQZq4C8iIuJNlCTzgK1bt3L77bfz0ksvXXznX36BtDSoXx/OzQDmDrVq1QJgZliYWaEkmYiIfzn3vr67Th1OAbVr13bv+W66yTzOmHHRXa3+nNakNiKBqHdv8/jjj7B/v72xiIiIiKEkmQesW7eOb7/9lilTplx8Z2u2L+tiw02si6UvDx0yEwSsWWMmDBAREf9wLkm2tFw5wANJshtvNI+//w6pqXnuWqlSJSBzUhuRQFS/PrRoYXqSTZxodzQiIiICSpJ5hHWn/KIzW6anw8yZZtm62HATq5Js9c6dpFlDZKZPd+s5RUTEQ5KT4e+/Afj53Cq3J8kaNjTDLk+cgAUL8ty1cuXKAGzbts29MYl4OauB/7hxpo2giIiI2EtJMg/Id5Js5UrYtw8KFYLWrd0aU+nSpSl5bubMfY0bm5WzZrn1nCIi4iF//GGuuBs0YOG5RJTbk2RBQdCxo1m+SCdyJclEjLvugogIWLUKli2zOxoRERFRkswDrCRZXFxc3jv+9pt5bN8erF5hbvTll1+ybNkySt15p1kxe7bmIRcR8QfnbnqktW/Ppk2bAA8kySCzCjqfSbKkpCRSLzI0U8SfFS8O3bqZZTXwFxERsZ+SZB6Q70oyK0l2ww1ujcdyww030LRpU8JatTLf0o4cgeXLPXJuERFxo99/B2BPvXqcOXOGqKgoKlSo4P7zXn89OBymMnr37lx3K1OmDBEREYSHh7Nnzx73xyXixawG/l9+CSdP2huLiIhIoFOSzAPylSRLSYH5882yh5JkGYKDTfUaaMiliIiv27LF/ISEULpbN5YuXcpXX31FUJAHPvJLl4bmzc1yHp8nDoeDnTt3kpKSktHEXyRQXXstVKoEhw/DtGl2RyMiIhLYlCRzs9OnT3P48GHgIkmyefPg9GmoWBFq1vRIbHv37mXkyJG8/vrrcN11ZqWSZCIivu1cFRmtWhFeujTNmjXjJjfPmJzFtdeax9mz89ytVKlSOBwODwQk4t2CgjKrycaNszcWERGRQKckmZuFh4eTkpLCrl27KF68eO47/vGHebzuOjNUxQMOHjzIoEGDGDZsGM4OHczKBQtMVZuIiPgmK0lm3fzwNKsyec4ce84v4oN69jSPs2aB5rMQERGxj5JkHhAUFERsbGzed8znzjWP11zjkZgAqlWrRnBwMMePHyepcGGoUAFSU02iTEREfE96emaSrEMHRo4cybvvvsvuPPqDuVzbthASAlu3mp9czJw5k27duvHqq696LDQRbxUXZ4ownU6YMMHuaERERAKXkmTe4MQJWLrULF99tcdOGxYWljHj5voNGzKHyPz5p8diEBERF1q3DpKTITISWrbkjTfe4PHHHycpKclzMRQuDC1amOU8hlzu2bOHqVOnMkcVZyJA5pDL8eNNvltEREQ8T0kyN/vggw+44447+P7773Pf6a+/4OxZ07W1cmXPBQfUrl0bgHXr1kG7dmblvHkejUFERFzEev9u1Ypjp09nzBxZrVo1z8ZhVUXnkQCzGvZv09gyEQC6dYOiRSExUfcrRURE7KIkmZvNnz+fb775hk2bNuW+kzXU0oNVZJZatWoBsH79+swk2d9/m0kERETEt1izJLdrx+bNmwEoXbp03j0x3cHqSzZ7thk/loPK524K7dixg3SVzYgQFQV33WWW1cBfRETEHkqSudmOHTsAqFixYu47WbcLr7rKAxFllSVJVrMmlC1rEmRLlng8FhERuUxWJVm7dhk3Z6pXr+75ONq0gdBQ2LEDtmzJcZfy5csTFBREampqRsWbSKDr08c8fvstHDlibywiIiKBSEkyN7tokuzUKVO5BfYnyRwODbkUEfFVO3aYafGCg6FVK3uTZIUKQfPmZjmXyWBCQ0MpX748oCGXIpaWLaFuXTh5Er76yu5oREREAo+SZG6UlpbGrl27gDySZEuWmMqtcuWgRg0PRmc0a9aMxYsXs2zZMrNCSTIREd9kDbVs0gQKF85IktWw4bMFMLNcQp4zJltDLrdv3+6JiES8nsOR2cBfQy5FREQ8T0kyN9qzZw9paWkEBwcTExOT807nD7V0ODwX3DmFChWiRYsWlChRIjMOMBc1aWkej0dERArIurlx5ZUAbNy4EbCpkgzMkEuAhQtz3aVy5cpERERwROPKRDLcd58pCF20CNautTsaERGRwKIkmRtZQy1jY2MJDg7OeSerab8NQy1z1LChmVrp6FFYudLuaEREJL/Oa9oPMHXqVBYtWsT1119vTzxWkmzNGjh8OMddPv74Y1JSUnjwwQc9F5eIl4uOhs6dzbKqyURERDxLSTI3OnDgAKGhobkPtUxLg7/+MsvWMEcbzJgxgwEDBjBlyhRz67J1a7PBik1ERLzboUOwerVZPldJVrJkSa644grKlCljT0zR0VC9upndctGiHHeJiorCYUMVtYi3sxr4f/YZnDljbywiIiKBREkyN+rcuTOnTp3il19+yXmHhAQ4fhwKF4Z69Twb3HnmzZvHe++9x2+//WZWtGplHnO5qBERES+zYIFJRlmzFHsLq5osj75kIpLdv/5l/ivv3Qu5fY0UERER11OSzM2CgoIoWrRozhutJFTLlqaCyyZWU2erfw1XXGEelSQTEfENVuXvuWb5CxcuZODAgXz33Xc2BpUZT259yfbu3cttt91Ghw4dPBiUiPcLDTW9yUBDLkVERDxJSTI7WUkoq3LLJtmSZC1bcm4FHDhgU1QiIpJvixebx3OfJ/Pnz2fUqFFmGL2drEqyv/+Gs2ezbY6MjGTKlCn88ccfHD9+3MPBiXg3a5bLn36CffvsjUVERCRQKEnmRn379uX2229n1apVOe9g3fm3eoDZxEqS7dixg5MnT0KpUmbIDmReeImIiHdKT898rz53k2PTpk1A5vu7berWhWLF4MSJHCeDKVq0KEWKFAFg165dno5OxKvVq2f+S589CxMn2h2NiIhIYFCSzI2mT5/Ot99+y+nTp7NvPHw4c15va3ijTUqXLk2xYsUA2LJli1mpvmQiIr5h/XozI3FUFNSvD2RWBlevXt3OyCAoKPNGUC59yazJbXbu3OmpqER8htXA/9NPTdtBERERcS8lydwkNTWVPXv2AOQ8u6V1179aNbBr5rFzHA5HxoVUxpBLJclERHyD9XnSrBmEhACZlWS2J8ngon3JKlSoAJhqZhHJ6q67ICLCzPW0ZInd0YiIiPg/jyTJRo8eTVxcHBERETRr1ox58+bluu+cOXNwOBzZftatW+eJUF1m9+7dOJ1OwsLCKJNTEsxL+pFZrCE5iYmJZoUV199/m6E8IiLinf7+2zyeG2p58uTJjKosr0iSWX0uc7nCt5JkqiQTya5YMbjtNrOsBv4iIiLu5/Yk2VdffcXAgQN57rnniI+Pp127dnTq1Int27fn+bz169eTlJSU8WN7X5VLZN0Rr1ChAkFBOfwxW/3IvCRJ9vbbb5OcnMzAgQPNigYNIDISjhyBDRtsjU1ERPJgJcnODd3fvHkzAMWLF6dUqVJ2RZWpeXPzuHkzHDyYbbOSZCJ5s4ZcfvklnDxpbywiIiL+zu1JsuHDh/PAAw/Qt29f6tSpw8iRI6lYsSIffvhhns8rW7Ys5cqVy/gJDg52d6guZSXJchxqmZ6eeVFjc9N+S/ny5SlVqhQOh8OsCAnJvLDRkEsREe908mRmQ/wLkmTVq1fPfE+3U8mSYFW0LV2abXOFChWIiIjgbA6zX4oIXHMNVKli7ltOnWp3NCIiIv7NrUmy1NRUli1bxg033JBl/Q033MDCXHqTWJo0aUJMTAwdOnRg9uzZue53+vRpjh49muXHG+SZJNu4EQ4dMk0mGjb0cGSXwKpys6reRETEu8THm6nvoqPh3OdN165d2bt3L5MmTbI5uPO0aGEec5gxuXfv3qSkpPC///3Pw0GJN7j11lspUaIE3bt3tzsUrxUUBL16meWxY20NRURExO+5NUmWnJxMWloa0dHRWdZHR0dnNLW/UExMDB9//DHfffcdU6ZMoVatWnTo0IG5c+fmuP+wYcMoVqxYxk+OSSkbnDhxgtDQ0JzjsfqyNG0KoaGeDSwXZ86cYdCgQdx0002cOHHCrLT6yORw519ERLzA+UMtz1WNORwOypYtS82aNW0M7AJWkiyHvmQhISHeUfEmthgwYACfffaZ3WF4vV69zH/x33+HrVvtjkZERMR/eaRx/4Vffp1OZ65fiGvVqkW/fv1o2rQprVu3ZvTo0XTu3Jm33347x/2fffZZjhw5kvHjLbNjvfLKK5w6dYqhQ4dm32glnazhjF4gNDSUCRMm8PPPP2cM1aFZM/O4ahWcPm1fcCIikrML+pF5Leumy+LF4HTaG4t4lfbt21OkSBG7w/B6lSvDtdea5QkT7I1FRETEn7k1SVa6dGmCg4OzVY3t27cvW3VZXlq1asXGjRtz3BYeHk7RokWz/HiLoKAgIiIism9Ytsw8WkkoL2FNjpDxZ12lCpQoAWfOwOrV9gUmIiI5s266WJVawAMPPMATTzzB3r17bQoqB02aQHAw7NkDu3Zl23zffffRsmXLzBmW5aJ27drFvffeS6lSpYiKiqJx48Yss75fuMDcuXPp0qULsbGxOBwOpk2bluN+lzKDuVweq4H/uHGaeFxERMRd3JokCwsLo1mzZsycOTPL+pkzZ9KmTZt8Hyc+Pp6YmBhXh2ePtDTTQwa8P0nmcGTG6MIv3iIi4gKHD5sZIyHjvfrUqVOMGzeO4cOH5zyzsl2ioqBePbOcw5DLJUuWsGTJErZqHFm+HDp0iLZt2xIaGsovv/xCQkIC77zzDsWLF89x/wULFnDmzJls69etW5dr+4sTJ07QqFEj3n///VzjyM8M5s2aNaN+/frZfnbv3n1pL1q49VYoVgy2bYM5c+yORkRExD+FuPsEgwcP5r777qN58+a0bt2ajz/+mO3bt/Pwww8DZrjkrl27MvpRjBw5kipVqlCvXj1SU1OZOHEi3333Hd999527Q3WZkydP0r59eypWrMjnn3+etZpswwY4ccJcMNSubV+QOciWJANz4TVrlpJkIiLeZsUK81i5splBEtiyZQtOp5OiRYtSunRp+2LLScuWZibOJUvM1f55KlSowPr169m5c6dNwfmWN954g4oVKzJu3LiMdVWqVMlx3/T0dPr370+NGjWYPHlyxmzhGzZsoH379gwaNIghQ4Zke16nTp3o1KlTnnGcP4M5mO9wM2bM4MMPP2TYsGEALq1uC3SRkXD33TBmjGngbw2/FBEREddx+23mO++8k5EjR/LKK6/QuHFj5s6dy/Tp06lcuTIASUlJWe44pqam8uSTT9KwYUPatWvH/Pnz+fnnn+nWrZu7Q3WZnTt38vfffzN9+nTCw8OzbrS+LFpDT7xIrkkyUJJMRMTbLF9uHps2zVi1adMmAKpXr+59zfDzaN5foUIFACXJ8umHH36gefPm3H777ZQtW5YmTZrwySef5LhvUFAQ06dPJz4+nvvvv5/09HQ2b97MtddeS9euXXNMkOXH5cxgXlAffPABdevWpcV5w4sDjTXk8rvvTDGpiIiIuJZHxmI88sgjbN26ldOnT7Ns2TKuuuqqjG3jx49nznk140OGDGHTpk2cPHmSgwcPMm/ePP71r395IkyXsSYPqFixYvaLFKt/jJcNtYSLJMlWrYLUVBuiEhGRHF0kSeZ1zk+SXdBQSUmyS7NlyxY+/PBDatSowYwZM3j44YfznCUyNjaWP/74gwULFtCjRw+uvfZaOnTowJgxYwocQ0FmMM9Jx44duf3225k+fToVKlRgSQ5JVEv//v1JSEjIcx9/17y5Gbl86hR89ZXd0YiIiPgfL2pY4j/OT5JlY1VkedHMlhYrSZaSksLJkyfNyrg407w/NVXN+0VEvImvJcnq14fwcDhyBC5o0K8k2aVJT0+nadOmvP766zRp0oSHHnqIfv368eGHH+b6nEqVKvHZZ5/x1VdfERISwqeffuqSasNLmcE8JzNmzGD//v2kpKSwc+fOgK4Syw+HI7OabOxYe2MRERHxR0qSucGuczN3lS9fPusGL27aD1C8eHH27t3L4cOHiYyMNCsdjswLMA25FBHxDidOwPr1ZtlXkmShodCggVm2EnznKEl2aWJiYqhbt26WdXXq1MnSvuJCe/fu5cEHH6RLly6kpKQwaNCgy4rBVTOYy6W7914ICYHFi2HNGrujERER8S9KkrlBrkkyq2l/oUJQq5YNkV1c2bJls98BVl8yERHvsnKlGbIYEwPlymWstmYMtCqDvU6TJubRumF0ToUKFYiIiCAsLMyGoHxP27ZtWW8lSc/ZsGFDRr/XCyUnJ9OhQwfq1KnDlClT+OOPP/j666958sknCxyDq2Ywl0tXtizcdJNZPm/uBhEREXEBt89uGYisi5RsSTKrH5kXNu3Pk5JkIiLeJYehlgCrVq1i7969lChRwoag8iGXJFmjRo1ISUnxvskGvNSgQYNo06YNr7/+OnfccQeLFy/m448/5uOPP862b3p6OjfeeCOVK1fOGGpZp04dZs2aRfv27SlfvnyOVWXHjx/PqEwESExMZMWKFZQsWZJKlSoBF5/BXNynTx+YNg0+/xyGDTOFmiIiInL5lCRzA6fTSVhYGLGxsVk3WEkmLxxqaZk1axbvvfceDRs25NVXXzUrrXhXrjS9yXSnX0TEXrkkyRwOB+XOqyzzOrkkyZQcuzQtWrRg6tSpPPvss7zyyivExcUxcuRI7rnnnmz7BgUFMWzYMNq1a5elUq9BgwbMmjWLUqVK5XiOpUuX0r59+4zfBw8eDEDPnj0ZP348YGYwP3DgAK+88gpJSUnUr18/ywzm4j6dOkF0NOzdC9Onw8032x2RiIiIf3A4nU6n3UG40tGjRylWrBhHjhyhaNGitsXhdDpJT08n+PyKsXbtYP58+OwzuO8+22LLy+TJk7n77rtp27Yt8+fPNyudTtO8/8gR+OcfaNjQ3iBFRAJdkyawYgVMmQK33mp3NPmXkgJFipihort3m+GiXsRbvkNI3vT3ZAwZAm+9BV27wvff2x2NiIiId8vv9wf1JHMTh8ORNUHm5U37LVYfm/OHWOBwZCbG/vnHhqhERCTD6dOZsw2fV0n2xRdf0K1bNyZOnGhTYPkQFZXZk/OCarKhQ4fSokULpk2b5vm4RHxQ797m8eef4YL5E0RERKSAlCTzlI0bTdP+8y8QvFC1atUAMwvWsWPHMjc0amQelSQTEbHX6tVw9iyULAnnekMBLFy4kKlTp7LG26e7y2XIZWJiIkuXLmXDhg02BCXie+rUgVatzH1Yb86Ni4iI+BIlyVxs1apVtG7dOnvT2hUrzGPDhl7dtL948eKULl0agM2bN2duUJJMRMQ7WMmlpk1Npe85VgVw9erV7Ygq/6zqtxxmuATYuXOnpyMS8Vl9+pjHsWNNdwwRERG5PEqSudiWLVtYtGgRy62myhYruWQlm7yYNeRy48aNmSutuFes0LcwERE75dK033rPtt7DvZZVSXbB56SVJNuxY4enIxLxWXfeCZGRsHYtLF5sdzQiIiK+T0kyF9u9ezcA5cuXz7rBh5JkVhVClr5k9etDUBAkJ0NSkk2RiYhIRmVy48YZq1JTU9m6dSvgA5VkVtyJiXD4cMZqK0lmfY6KyMUVLQrdu5vlsWPtjUVERMQfKEnmYrt27QIgNjY26wYfS5IVKlSIU6dOZa6MjMzspaYhlyIi9khPh1WrzPJ5nyfbtm0jPT2dqKgoYrxsxshsSpaEypXNspXwI/NzU0kykUtjNfCfPNlMICsiIiIFpySZi+VYSZacbKa6dzigQQObIsu/Z555hmPHjvHyyy9n3aC+ZCIi9tq6FY4fh7AwqFkzY/X5/cgc5/Up81o5NO+3kmRJSUmkp6fbEZWIT7r6aoiLg6NHYcoUu6MRERHxbUqSuViOlWRWUqlaNShSxIaoLk1YWFjOF1lKkomI2GvlSvNYrx6EhGSsPnDgAJGRkd4/1NKSQ5IsOjqaQoUKUaVKFY4cOWJTYCK+Jygos5pMQy5FREQuj5JkLmYlybJUkvnQUMs8KUkmImIvK0nWsGGW1ffeey8nTpxgwoQJNgRVADkkyUJCQjh27BibNm2iRIkSNgUm4pt69jQDFmbPNu3+REREpGCUJHOx0NBQwsLCcq4k86EkWZ8+fWjQoAGrV6/OXGnFv349nDxpT2AiIoEslyQZgMPhoHDhwh4OqICsJNnatXD6dMZqnxgqKuKFKlWC664zy+PH2xqKiIiIT1OSzMXi4+M5deoUdevWzVxpNSb2oSRZQkICq1evZv369ZkrY2KgdGnTOHrNGvuCExEJVHkkyXxK+fJQogSkpZlEmYhcNmvI5fjx5quaiIiIXDolydzA4XBk3g1PTc28APChJJnV18ZqBg2YOn7rNZw3I5mIiHhASgpY78nnJcnOnj1Ls2bN6N69O8ePH7cpuEt0/kQ21mydwOjRo2nZsiUjRoywKTAR33XLLVC8OGzfDn/8YXc0IiIivklJMndbuxbOnDHfWipVsjuafMsxSQbqSyYiYpc1a8DphOhoKFs2Y/XWrVtZvnw506dPJyoqysYAL5GV6LOq44D9+/ezZMkS1qq6TOSSRUZCjx5mWQ38RURECkZJMhf68ccfadWqFS+++GLmSiuZ1LChuXPuI2rUqAHAxo0bs25o3Ng8KkkmIuJZuQy1tG5mVKtWjaAgH/pYtyrJzkuSWf08d+/ebUdEIj7PGnI5ZQocOmRvLCIiIr7Ih75Ne78NGzbw999/Z62+8sGm/ZCPSrKVK01Fg4iIeMZFkmTW+7bPsF7HecMtlSQTuTzNmpn88+nTMHmy3dGIiIj4HiXJXGjXrl0APj+zJWRebO3atYuUlJTMDbVrQ0gIHDkCO3faFJ2ISADytyRZ/frmMSkJkpMBJclELpfDkVlNNm6cvbGIiIj4IiXJXMj6Ul++fHmzwun02SRZqVKlKF++PA0aNCD53MULAGFhULOmWdYMlyIinuF05poks4bF+1ySrHBhqFrVLJ+rJrOSZPv27ePMmTN2RSbi0+6919zPXLIkS6GmiIiI5IOSZC6UrZLMujseFAT16tkYWcHs2LGDlStXUunCCQesu/+rV3s+KBGRQLR7Nxw8CMHBUKdOlk0+W0kG2Zr3lylThpCQEJxOJ3v37rUxMBHfVaYMdO1qllVNJiIicmmUJHOhbJVkVhVZrVpmyiEf48htogEr4ackmYiIZ1hVZLVrQ3h4xmqn00lUVBTh4eEZE674lAua9wcFBVGtWjWqV6/OsWPHbAxMxLdZQy4nToTUVHtjERER8SUhdgfgL5xOZ/ZKMh8danlRqiQTEfGsXIZaOhwO4uPjSU9Pz/3GhjfLoXn/unXrbApGxH/ceCOUKwd79sDPP8Ott9odkYiIiG9QJZmLHD9+nNjYWCIiIoiJiTErrSTSBRc1vmLOnDk0btyYrlbNvsVKkiUkQHq65wMTEQk0VhLJev+9QFBQkG8nyVavhrQ0e2MR8SMhIXD//WZZQy5FRETyT0kyFylSpAhbtmwhJSWFiIgIs9JKkuVyUePtwsLC+Oeff1ixYkXWDdWqmeE+J09CYqItsYmIBBRrohQf/TzJVbVqph3ByZOwebPd0Yj4FWvI5fTppk2uiIiIXJySZC6WcSf/7FlYu9Ys++hFjdXfZseOHZw8eTJzQ3Aw1K1rljXkUkTEvdLSwBqCaL33njN06FCaNm3KZ599ZkNgLhAcnNnn8ly13DfffEOLFi148sknbQxMxPfVrg1t2pi3kM8/tzsaERER36Akmbts2mQ6pRYqBJUr2x1NgZQuXZqiRYsCkHhhxZia94uIeEZiIpw6BREREBeXZdOKFSuIj4/nxIkTNgXnAhc07z9x4gRLly5ltT5fRC6bVU02bhw4nfbGIiIi4guUJHOR9957jyuuuILRo0ebFdaX+7p1Icg3/5gdDgfVq1cHYNOmTVk3qnm/iIhnWEMt69QxlVfnsd6brfdqn2T1JTuXJLMmv7FmjBaRgrvjDoiKMsWoixbZHY2IiIj3883sjRdas2YNixcvZu/evdYK8+ijQy0t1oXXxo0bs25QkkxExDOszxOrgvectLQ0Np/r42UNj/dJF8xwqSSZiOsULQrdu5tlNfAXERG5OCXJXGTXrl0AlC9f3qzw8ab9FuvCK9dKsvXr4cwZD0clIhJArCTZBf3Idu7cSWpqKqGhoVSsWNGGwFzEGm65eTOcmyka4MCBA5w+fdrGwET8Q58+5nHyZPDlkdkiIiKeoCSZi1h3vGNiYswKP0mS1a1bl7p161K2bNmsGypVgsKFTYLswiozERFxnYQE83hBJZl186Jq1aoEXzAM06eUKQPlypnl1aspUaIE4eHhACRpSj6Ry3bVVWYi2WPH4Lvv7I5GRETEuylJ5iLWF/nY2FjTYNlKHPl4kqxHjx6sWbOGl19+OesGh0PN+0VE3O38mS1zSZL5dD8yi/VZuWYNDocjo5rMqtIWkYJzOKBXL7OsIZciIiJ5U5LMBdLS0ti3bx9wrpJs/XpzYVOiBFiVZf5IfclERNxryxZz4yUyEqpUybIpJCSEWrVqUe+C5JlPsl7DuaGlNWrUoEaNGqSmptoYlIj/6NnTJMvmzDFvKyIiIpKzELsD8AfJycmkpaXhcDjMsMTZs82GevXMNxI/4HQ6cTqdBJ0/U6eSZCIi7mX1I6tdO9vMlg888AAPPPCADUG5wQVJshkzZtgYjIj/qVgRrr8efvsNxo+HV16xOyIRERHvpEoyFzh27BhxcXFUrlyZkJAQv5nZ0nLPPfdQvHhxpk+fnnXDBRc1IiLiYrnMbOl39Hki4nZWA//x482ABxEREclOSTIXqF69Olu2bCExMdGs8JOm/ZYzZ85w9OhRNl7YoN96fZs2wcmTng9MRMTf5dK036ru9RvWzJ27dsHhw7aGIuKvbr7ZdALZsQN+/93uaETE26SlmSHZX35pHpVMl0ClJJk7+FmSzGoKbTWJzlCuHJQsCenpmY2lRUTEdXKpJNu5cyclS5akbdu2/pEsK14cypc3ywkJzJkzh+bNm3PXXXfZGpaIP4mIgB49zLIa+IvI+aZMMa1P27c37xPt25vfp0yxOzIRz1OSzNWOHwerosxPhsfkmiQ7f4ZLDZEREXGt82e2tCqtztm0aROHDx9m//79OPyk9+X5nydOp5Nly5axcuVKe2MS8TPWkMupU+HQIXtjERHvMGUKdO8OO3dmXb9rl1mvRJkEGiXJXOCll17iiiuuYOLEiZlDY6KjoXRpewNzkRo1agBkH24JmRdua9d6MCIRkQCweTOcPm1mtoyLy7LJej+23p/9wnlJstjYWAB2795tY0Ai/qdJE2jY0Ly1fPml3dGIiN3S0uDxxyGnonRr3cCBGnopgUVJMhdYvXo1ixcv5vDhw37XtB8yK8m2bdtGampq1o116phHKzkoIiKuYX2e1KkDQVk/rq3KXuv92S/kkCQ7cuQIJ06csDEoEf/icGRWk40da28sImK/efOyV5Cdz+k0fQznzfNcTCJ2U5LMBZKSkgAoV66c3/UjA/O6ChUqRHp6Olu3bs260UqSqZJMRMS1cmnaD/6fJCtSpAiFChUCMj9jRcQ17rkHQkNh2TLQiGaRwJbfj1h9FEsgUZLMBawv8DExMX6ZJHM4HNxwww3cdNNNnD17NutGK0m2aRNcWGUmIiIFZ1WSXdCPDPx0uKX1OpOS4NAh85mKkmQirla6NHTtapbVwF8ksJ37qHXZfiL+QEmyy+R0OtmzZw/gv0kygClTpvDjjz9S98KLtQoVoHBhM1D9wsb+IiJScLnMbJmens7mzZsBP6skK1oUKlY0ywkJSpKJuJE15HLiRN3jFAlk7dqZy7m8FC4MzZt7Jh4Rb6Ak2WU6evQoJ0+eBCAmPBysJsM53Pn3Sw4H1K5tljXkUkTENc6ezZzZ8oIk2YkTJ7jmmmuoVasWlStXtiE4NzpvyGX16tWpWbMmQUH6qiLiajfcYCpDkpPhp5/sjkZE7BIcnJk0z83x49C6dWYtiIi/0zfPy2Td4S5WrBiRW7aYlZUqmTvifsbpdHL8+PHsGzTDpYiIa23ebMo7IiOhSpUsm4oUKcL06dNZt24doaGh9sTnLuclycaOHcv69evp3r27vTGJ+KGQEOjZ0yyrgb9I4EpNha+/NsuFC2fdVrEivPACREebBFnz5vDBBznPhCniT5Qku0wpKSlUrVqVatWq5To0xh8sW7aMkiVL0rhx4+wb1bxfRMS1rKb9Ocxs6desmy7W56mIuE3v3ubxl18yB0KISGB5911TuF6mDGzdCrNnwxdfmMfERHjlFTPBx7/+BadPw6OPws03mypUEX8VQN+83aNp06Zs3ryZZcuWZSaJ/HCoZbly5Th8+DBbt27lzJkzWTcqSSYi4lpWkiyHz5NUf24gdF4lmYi4V82a0LYtpKfD55/bHY2IeNru3fDyy2b5jTegVCm45hq4+27zGBxstpUta4ZljxoFYWHw44/QsCH8/rtdkYu4l5JkrmQliaykkR+JiYkhMjKStLQ0tm3blnWj9XrXrTPftERE5PKsX28erZ6P5+nRowelSpXiyy+/9HBQHmAlBffs4Z/Zs2natCnXXXedvTGJ+DGrF9HYsRpCJRJonnrK9Btr1Spz+HVuHA4YMAAWLzaXfklJcP318MwzmvxD/I+SZK6Ux51/XxcUFGSGlAKbLpzFsmpVc1vh5Em4MIEmIiKXzkqS1aqVbdOmTZs4ePAgRf2w9yVFipi+nkChrVuJj49n5cqVNgcl4r9uvx2iomDDBvjrL7ujERFPmTvXDKt0OOD99/Pf2aFRI1i6FB56yCTW33jDVKReeHko4suUJLtMAwcOpGXLlvw4aRLs2mVW+mElGUCNGjWAHJJkISFwbpuGXIqIXCanM9ckmdPpzHgPrl69uqcj84xzQy7Lnmt4sn///uzD/CUgffDBB9StW5cWLVrYHYrfKFIE7rjDLKuBv0hgOHvW9BYDePBBaNbs0p4fFQVjxsB330GJEiZp1qQJTJigilTxD0qSXaaVK1eyZMkSQjdvNivKlYPixW2NyV2sC7KNGzdm36i+ZCIirrFvHxw5Ym7vXpAI27t3LydOnCAoKIi4uDibAnSzc0myItu2ERISApjXLdK/f38SEhJYsmSJ3aH4FWvI5VdfwYkT9sYiIu734YewahWULAn/+U/Bj9Otm2nqf/XVZthmr15wzz3mK4yILwuxOwBfl5SUBECl48fNCj8cammxkmTZKskg83UrSSYicnmsKrLKlSEyMssm6yZF5cqVCQsL83RknnEuSeZISCA6Oppdu3axZ88eKlSoYHNg+RMXF4fD4bjk5w0cOJABAwa4ISKRvF15pcnHb9oE33578d5EIuK79u2DF14wy//5j2nWfzkqVDAN/P/7X3jxRfjySzN0+4svoHXry49XxA5Kkl2mPXv2AFD24EGzwk+HWgI0bNiQTp060bZt2+wbVUkmIuIaeTTt9/uhlpA5w2VCAuUqVGDXrl0ZN6R8wfjx4wv0vCpVqrg0DpH8cjigd2947jkz5FJJMhH/9eyzptKraVPo1881xwwONu8f114LPXrA1q3Qrh289JI5nzVLpoivUJLsMpw8eZLDhw8DUNTqR+bHlWStWrVi+vTpOW88P0nmdJpvXCIicuku0rQf/DxJZn2e7N1LrUaNWAY+lSS7+uqr7Q5B5JLdf7+pLpk711SU+fNbjEigWrQos/fg+++7PnnVujWsWAGPPGIqyV54AWbOhIkToWJF155LxJ3Uk+wyWFVk4eHhhFp9uvy4kixPNWuaxNihQ6aOV0RECmbdOvOYQ5KsWrVqdOzYkZYtW3o4KA8qXNgMNQVaFStGzZo1/XdoqYiXqFABbrjBLBewGFJEvFhaWmaz/l693DcUslgxkxSbMMF8nM+da2bEnDLFPecTcQclyS6DdWe7cnQ0jsREszIAkmSHDh3i6NGjWVdGRoLVRFpDLkVECi6PSrI+ffrw66+/0qtXL8/G5GnnPksfu+461q9f7zevd926dbz11lt88sknLFy4MPtnqYiNrAb+48ebC2oR8R+ffgrLlkHRoqZ/mDs5HKY6NT4eWrQwNRS33WZm0tTkIOILlCS7DKmpqVSrVo2rypWD9HQzB250tN1hudU999xDyZIlmThxYvaNVoIwIcGzQYmI+IvUVLBuuuSQJAsYfjoZTKdOnUhNTeXw4cN89NFHXHPNNdQK5L9n8Spdu5rZ7nbtglmz7I5GRFzlwAHTGwzglVc8d7lavTrMnw/PPGMSZ598As2bmyGZIt5MSbLLcM0117Bp0yY+GTTIrKhTx+97ccXExACZM6xloeb9IiKXZ/NmU8JRuDDExmbZlJqaGjiVR376eVKuXDmee+45nnrqKSZMmMDy5ctJ0I0l8RLh4XDPPWbZ6lskIr7vhRfg4EGoXx/69/fsucPCYNgw05ssJsZ0lLjiChg50rSxFvFGSpK5gvUlPgCGWlrNoq3m0Vn46Z1/ERGPsYZaWn0ez7N48WKKFStG8+bNbQjMw859np5ZtYomTZr4zWvu2LEjn3/+eZZ1wZr2S7xI797mcdo0c1EtIr5t+XIYM8Ysv/8+hNg0bV+HDrBypalYTU2FQYOgc2fYu9eeeETyoiSZK1hJIT+e2dKSZ5LMT+/8i4h4TD5mtixRooQnI7LHuc+T0N272bhiBStXrsTpB7ecFy9ezHPPPUf16tXp0aMHw4YN46effrI7LJEMTZpA48bmIvaLL+yORkQuR3q6adbvdMLdd4Pdky+XLm0S8B98ABER8Msvpqn/jBn2xiVyISXJLkOvXr1o0aIFxxcvNisCoJKsRo0aAGzZsoW0C7u6Wq9/9244csTDkYmI+AErSVa7drZN1jB362aFXytZEsqWBaA2cObMGQ76QVnL9OnT2b59O8uXL+fRRx+lVKlSzFLzJ/EyVgN/DbkU8W2ffw5//QWFCsFbb9kdjeFwwCOPwJIlZvjn3r1w443wxBNw+rTd0YkYSpJdhn/++Yf4pUuJ2rXLrAiAJFmFChUICwsjNTWVHTt2ZN1YrJgZbA5mwLmIiFyaPCrJrCSZdbPC7537TG1RqBCQOaO0L9q3bx979uzJ+L1o0aK0adOGBx98kJEjR9oXmEgOevQwfYTi49VgW8RXHTkCQ4aY5aFDoXx5e+O5UP36sHhxZo+04cOhdevMr0EidlKS7DIkJSVRFQg6exaioqBSJbtDcrvg4GCqVq0K5DLk0rqw0zuciMils24w5DHcMtCSZE0jIwHfTJKtXLmSevXqERMTQ/ny5SlfvjzPP/88J06csDs0kVyVKgU332yWx42zNxYRKZiXXoJ9+0yL04ED7Y4mZ5GRpk/aDz+Y9534eGjaFP73PzX1F3spSVZAZ8+eZd++fWR0IatdG4IC44/zjjvuoH///pQ9NxQmCyXJREQKJjk5s1P2BYkwp9MZWMMtISNJVufcBAbnV2L5igceeIDo6Gjmz59PfHw8r732Gr/88gvNmzfn0KFDdocnkiurgf+kSRoCJeJrVq+G994zy++9ZypDvVmXLqapf4cOkJIC/frBHXeAPibFLoGR1XGDffv24XQ6qWvNPhYAQy0tL7/8Mu+//z4NGzbMvtHqo6MkmYjIpbHeNytWNA1EzrN3716OHz9OUFBQRjWv3zs3GU7Vc1fovlhJlpCQwOjRo2ndujUNGzakd+/eLF26lHr16vHYY4/ZHZ5Irm64wQzPOnAAfvzR7mhEJL+cTnjsMUhLg1tvNf+XfUFsLPz2G7zxhpmB89tvTVP/efPsjkwCkZJkBWTd0W4SEWFWBMDMlvmiSjIRkYLJox9Zeno6Dz/8MHfddRfh4eEeDswm524+lTt2jAa1ahEVFWVzQJcup4oxh8PB66+/zvfff29TVCIXFxwM999vltXAX8R3fPUVzJljZo8cMcLuaC5NUJDpo7ZwIVSvDjt2wDXXwIsvwtmzdkcngURJsgKy7mjXs1YEUCUZwNGjR1mzZk32DdbF3caN5haGiIjkTx5JstjYWD788EMmTZrk4aBsFBsLRYoQ5HSycsoUHn30UbsjypfOnTvz73//m6+//pqHH36YQYMGsXfv3iz7HDlyhBIlStgUoUj+WEMuZ8wAa44qEfFex4+bWSIB/v1vqFzZ3ngKqkULWL4cevaE9HR45RW4+mrYutXuyCRQKElWQOnp6dSoVo2qqalmRQBVkm3dupVixYrRrFkz0tPTs26sXBnCw00Di23b7AlQRMQX5ZEkC0gOR+YNqIQEe2O5BA0aNGD58uU8/vjj3HPPPSxevJiqVavSu3dvRo0axfDhw+nTpw8jfO0WvwScGjWgXTtzkfrZZ3ZHIyIX89prsHs3VK0KTz1ldzSXp0gRGD8evvgCihY11WWNG5tKORF3U5KsgLp06cKGP/4gIi0NQkOhWjW7Q/KYChUqEBoayunTp9m5c2fWjcHBpj4WNORSRORSWO+ZVm/H82zbto3jx497OCAvYCXJ1q61N45L8N///pdff/2VpKQkkpKSmD59Oi+88AInT57kww8/ZMiQIWzYsIGXX37Z7lBFLsqqJhs3TrPNiXiz9eth+HCzPHKkGW7pD+6+G1asgNat4cgRuOsu874UiF+JxHOUJLsc1p3tGjVMh8EAERISQlxcHACbNm3KvoOa94uIXJozZ2DzZrOcQyXZLbfcQpEiRfj11189HJjNziXJfhk+3Cdn9YyOjubGG2/kmWeeYfLkyaxbt45jx44xZ84c+vfvb3d4Ihd1++1mHpGNG2HBArujEZGcOJ0wYID5KvGvf8FNN9kdkWvFxcHcufDCC6Zv2fjx0LQpLF1qd2Tir5QkuxzWne0AGmppqVGjBgAbN27MvlHN+0VELk1iovl2GxkJFSpk2eR0OjPea6tUqWJDcDaymvcfPszmzZs5ceKEzQFdvsjISFq3bs1DDz1kdygiF1W4MNxxh1lWA38R7/T992ZmyLAwGDXKdCvwNyEhpjfZ7Nnma9LGjdCmDbz1lhkSLuJKgVP+5GK33HILPRcs4FYIuKb9QMYd/RwryZQkExG5NNb7Zc2a5jbpefbu3cuJEycICgqiatWqNgRno3Ofr7UAB2Zm6Wpe3t4gLi4ORwGuUAYOHMiAAQPcEJHI5enTxwy3/PprePddkzgTEe+QkgIDB5rlp57K7Hrjr666Cv75B/r1gylTzGyYv/1m+ibGxNgdnfgLJckKaMWKFTyZnGx+UZIsKytJtm6dByMSEfFheTTtt6rIKleuTFhYmCejsl9cHISHE3X6NJUxM0t7e5Js/PjxBXpewFUJis9o29Z0Ftm4Eb75JrNPmYjY7403zFxpFSvCs8/aHY1nlCwJ334L//sfPP44zJoFDRuaZL6/DTUVeyhJVgBOp5Ok3bvJGGQZwMMt80ySJSXB0aNmShIREcldPpJk1vtuQAkJMdV1q1ZRB1NJ5u2uvvpqu0MQcSmHwyTG/v1vcxGqJJmId9iyxSTJwDTtL1TI3ng8yeEw1WTt2mU29+/SBR57DN58038mLhB7qCdZARw6dIjiZ85QEnA6HOYLfICpV68eDz30UM49VYoXh+hos7xhg0fjEhHxSUqS5e5ctXYdTCWZiHje/febkeDz5umrnYi3GDQITp+GDh3gttvsjsYetWvDokWZQ07few9atoQ1a2wNS3yckmQFkJSUhDXA0hEXZxotB5gKFSowZswYHn300Zx3UF8yEZH8s94rrdmBz2NV7Pri7I4uoSSZiO3Kl4eOHc1yAUcUi4gLTZ8OP/xgCq7ffdc/m/XnV3g4jBhh/kzKloVVq6B5c/jwQzPzp8ilUpKsAM5PkgXiUMt8UZJMRCR/Dh+GffvMcg6VyV27dqVfv360atXKs3F5i3NJsmaRkRQrVszmYEQCV58+5nHCBEhLszcWkUB2+rTpxQXmUZejRqdOsHKlSeifOgWPPALdusGBA3ZHJr5GSbICSEpKyuxHFoBN+y3Hjx9nxYoVJCYmZt+o5v0iIvlj3UyIjYUiRbJtvu+++/j4448DPknWJDycp4cMsTkYkcDVpQuUKgW7d5vZ5ETEHu+8A5s2mdkchw61OxrvEh1tKsqGD4fQUJg2zTT1nz3b7sjElyhJVgDBwcE0tYZYBnCS7Nlnn6VJkyZ89NFH2TeqkkxEJH+smwk59CMTTHVdUJCpuNu71+5oLsn27dtx5jDWw+l0sn37dhsiEim48HC45x6zPG6cvbGIBKrt2+G118zyW29pfrScBAWZfm1//22+Wu3ebfq2/fvfcOaM3dGJL1CSrAB69OhB2xIlzC8BXN+a5wyXVl+djRshPd2DUYmI+Jg8mvbv37+fVatWkZKS4uGgvEhEBMTFmeW1a+2N5RLFxcWxf//+bOsPHjxInPWaRHyINeRy2jRITrY1FJGA9OSTcPIkXHkl9OhhdzTerUkTWLYM+vY1vcmGDTN/bps32x2ZeDslyQriyBGTkoYcmywHCquJtDXzWhZVqpga15MnYccOzwYmIuJL8kiSff/99zRs2JBu3bp5OCjvcubc580zt9zC2bNnbY4m/5xOJ44cuikfP36cCM1PLz6oUSNz4XnmDHzxhd3RiASW33+Hb74xlVLvvx/Yzfrzq1Ah+OQT8+dWvDgsXmzewyZOtDsy8WYhdgfgk6w72eXLQwA3EbaSZJs2bcp+IRASAtWrmz+r9euhcmWbohQR8XJ5JMmsSl2rcjdQhTRsCDNmUP7oUfbt20dsbKzdIeVp8ODBADgcDl544QWioqIytqWlpfH333/TuHFjm6ITuTx9+sBjj5khlwMG2B2NSGA4c8b8vwPTkL5RI3vj8TXdu0PLlnDvvTBvHtx3H/z6K4werSGrkp0qyQrgvz17AnCsYkWbI7FXlSpVCA4OJiUlhT179mTfQc37RUTylpZmuu9Cjkkyq1LXuikRqBznWhvUwUye4+3i4+OJj4/H6XSyatWqjN/j4+NZt24djRo1Yvz48XaHKVIgPXpAWBisWAHx8XZHIxIY3nvP1B6UKQOvvGJ3NL6pUiXTwP+VVyA4GCZNgsaNYdEiuyMTb6NKsgKI2roVyBz+EajCwsKoXLkyW7ZsYePGjcTExGTdQc37RUTytm2bmcs9PDzHilsrSRbolWTWJDl1gBU53ZTxMrPPTaPVu3dvRo0aRVHdphY/UrIk3HILfP21qSZr0sTuiET8W1ISvPSSWf7vf8FqjS2XLjgYXnjBNPLv0QMSE02fsldegaefNttFVEl2iVJSUqiamgpAZNOmNkdjv/OHXGZj9WtTkkxEJGfW+2ONGtm+mTmdTg23tJz7PCkPJPtQx91x48YpQSZ+yWrgP3EinDplbywi/m7IEDh2zAwX7NXL7mj8Q5s2phr2rrtMUf9zz8F118HOnXZHJt5AlWSXKCkpiTrnliN064xevXpx3XXX0bJly+wbVUkmIpK3PPqR7d69m5MnTxIcHEyVKlU8G5e3KVaMQ1FRlEhJIW31arujuSS///47v//+O/v27SP9gtmex44da1NUIpfnuuugQgVzQfnDD3DHHXZHJOKf5s0zyWiHwzTrD1KJi8sUL24mIOnYER59FObMMb3ePv3UVMtK4PLIf7PRo0cTFxdHREQEzZo1Y968eXnu/+eff9KsWTMiIiKoWrUqY8aM8USY+bJ361asSdutHimB7O677+app56ifv362TdaF307d8KJE54NTETEF1g9G/PoR1alShVCQ0M9GZVXOli2LAAhOVUue6mXX36ZG264gd9//53k5GQOHTqU5UfEVwUHw7kWvYwbZ28sIv7q7FmTvAHo2xdatLA3Hn/kcJjqvPh4aNYMDh6EW2+Fhx+GlBS7oxO7uL2S7KuvvmLgwIGMHj2atm3b8tFHH9GpUycSEhKoVKlStv0TExP517/+Rb9+/Zg4cSILFizgkUceoUyZMtx2223uDveiji9fThBwOCSE4mXK2B2OdytZEkqXhuRk2LBBTStERC6URyVZ5cqVGTZsGOHh4R4OyjulVqsGW7dS1YfGdo0ZM4bx48dz33332R2KiMv16gX/+Q/MmGHuh1aoYHdEIv7lo49g5UrTg+z11+2Oxr/VqAELF8Lzz8Nbb5k/+3nz4MsvoWFDu6MTT3N7Jdnw4cN54IEH6Nu3L3Xq1GHkyJFUrFiRDz/8MMf9x4wZQ6VKlRg5ciR16tShb9++9OnTh7ffftvdoeZL+rlhHknFipnUc4BLS0tj1apVTJ06FafTmX0HzXApIpK7PJJkcXFxPPPMMwwaNMjDQXmnOt26AXBlqVI2R5J/qamptGnTxu4wRNyienW46ipwOuGzz+yORsS/7N9vEjYAr71m6g7EvcLC4M03YeZMKFcOEhJMH7h33zXvcxI43JokS01NZdmyZdxwww1Z1t9www0sXLgwx+f89ddf2fbv2LEjS5cu5cyZM9n2P336NEePHs3y405lk5MBOKrbZQCcPXuWxo0b061bN/bu3Zt9BzXvFxHJ2dGjZsoqyDFJJhewWhysXWtvHJegb9++fPHFF3aHIeI2VgP/sWN1ESniSs8+C4cPQ+PG8NBDdkcTWK67zlTw3XSTmYD88cehSxeTuJTA4NYkWXJyMmlpaURHR2dZHx0dzZ5cpnDfs2dPjvufPXuW5HMJqvMNGzaMYsWKZfxUrFjRdS8gB01btIDoaK7Q1CIAhIeHZwybzXGGSzXvFxHJ2YYN5jE62nSPvcBvv/1GQkICZ8+e9Wxc3qpOHYiKMkP509LsjiZfTp06xfDhw7n66qt57LHHGDx4cJYfEV/XvTsULgybN5uhSSJy+RYvNs3jwTTrv2Dya/GAMmXMpCTvvQfh4fDzz2bY5W+/2R2ZeIJHGvc7LhiW6HQ6s6272P45rQd49tlnOXLkSMbPjh07XBBxHl56CfbsgQED3HseH1K9enVASTIRkUuSx1DLs2fP0rlzZ+rVq0eSVW0W6MqWhWPHzNWDj1wxrFy5ksaNGxMUFMTq1auJj4/P+FmxYoXd4YlctkKF4M47zbIa+ItcvvR06N/fLN9/P7Rta288gczhMBMnLF5sitn37DEzYT71FKSm2h2duJNbG/eXLl2a4ODgbFVj+/bty1YtZilXrlyO+4eEhFAqhz4k4eHh9jQ11vy7GWrUqMGsWbMyZmLL4vwkWXq6/txERCx5JMkSExM5e/YskZGRlC9f3sOBeSmHw+d6gc6ePdvuEETcrk8fU/Xy9demd0+RInZHJOK7xo6FpUvN/6M33rA7GgFTQbZ0KTzxBHz4Ibz9Nvzxh2nqX7Om3dGJO7g1YxEWFkazZs2YOXNmlvUzZ87MtZFt69ats+3/22+/0bx5c0JDQ90WqxRcnpVkVatCSIiZQ3fXLg9HJiLixfJIkq0/t61mzZoE6eaCiHix1q3N21hKCnzzjd3RiPiugwfhmWfM8ssvm+bx4h0iI2H0aJg2zXR9WL4cmjY1FbTqx+h/3P7Ne/Dgwfzvf/9j7NixrF27lkGDBrF9+3YefvhhwAyXvP/++zP2f/jhh9m2bRuDBw9m7dq1jB07lk8//ZQnn3zS3aFKAeWZJAsNhWrVzLKGXIqIZLJm/c0jSVZLDf193rx587j33ntp3bo1u87dLPr888+ZP3++zZGJuIbDAb17m+WxY+2NRcSXvfACHDgA9eqZYX7ifW6+2TT1b98eTpwwlbR33WUmWRD/4fYk2Z133snIkSN55ZVXaNy4MXPnzmX69OlUrlwZgKSkJLZv356xf1xcHNOnT2fOnDk0btyYV199lXfffZfbbrvN3aFKAdWoUQMwSTJnTql09SUTEckqPR2sIeo5JMI2nGvqX1N1/D7tu+++o2PHjkRGRhIfH8/p06cBOHbsGK+//rrN0Ym4zn33mY4aCxbo655IQcTHw5gxZvm990ydgXin8uVh5kwYNswMmPr6a2jUyLz/iX/wyBiORx55hK1bt3L69GmWLVvGVVddlbFt/PjxzJkzJ8v+V199NcuXL+f06dMkJiZmVJ2Jd4qLi2PYsGF8+umnpKenZ99BSTIRkax27ICTJ8234Li4bJtVSeYfXnvtNcaMGcMnn3ySpWVEmzZtWL58uY2RibhWbCx06mSWx4+3NRQRn+N0msqx9HQzEUb79nZHJBcTHGyGxi5YYLoLbd8OV11lhslqUnLfp0YnctkiIiJ45pln6N69O8E5zTimJJmISFbW+2G1auY2ZLbNSpL5g/Xr12e5MWgpWrQohzU2Q/xMnz7mccIEXSSKXIqJE2HhQoiKMk3hxXe0bGmqAO+7zyQ5X3rJJDm3bbM7MrkcSpKJ+ylJJiKSlfV+WLt2tk1Op5P33nuPV199ldo5bBffERMTk2O/zvnz51O1alUbIhJxn5tugtKlISkJfvvN7mhEfMPRo/DUU2b5hRegQgV745FLV7QofPaZSXYWKQLz55vhl5rIxHcpSSYukZSUxPfff8+ff/6ZfaOVJNu+3QwvEhEJdHnMbOlwOOjevTvPP/88RYoU8XBg4koPPfQQjz/+OH///TcOh4Pdu3czadIknnzySR555BG7wxNxqbAwuPdes6wG/iL58/LLsHcv1KgBgwbZHY1cjnvugRUr4Ior4MgRuOMOeOAB0+BffIuSZOIS3333HbfccgsjRozIvrF0aShe3Ay4txpVi4gEsjySZOI/hgwZwi233EL79u05fvw4V111FX379uWhhx7iUU1dJn7ImuXyhx8gOdneWES83Zo1MGqUWX73XQgPtzceuXxVq8K8efDcc2bm37FjoWlTUBtS36IkmbiENSRo3bp12Tc6HBpyKSJyvjySZAsWLODHH38kKSnJw0GJO/znP/8hOTmZxYsXs2jRIvbv38+rr75qd1gibtGwITRrBmfOwKRJdkcj4r2cTnjsMUhLg1tugRtvtDsicZXQUHjtNfjjDzMT5oYN0KoVvPOO6Vsm3k9JMnEJK0m2efNmzpw5k30HJclERIwTJ8zslpBjkuzdd9+la9eufPHFFx4OTNwlKiqK5s2b07JlSwoXLmx3OCJuZTXwHzvWJAJEJLtvvoHZsyEiAoYPtzsacYdrroF//jFJ0DNn4MknzSzAe/bYHZlcTPYptUQKoHz58hQqVIgTJ06wZcuW7DOyKUkmImJs2GAeS5UyPxfQzJa+bfDgwbz66qsUKlSIwYMH57nvcF0ZiR+6+24YPBhWrjSzvjVtandEIt7l+HF44gmz/MwzEBdnbzziPqVKwZQp8PHHpufcb7+Zitvx4+Ff/7I7OsmNkmTiEg6Hg1q1arF8+XLWrVuXe5LMujgUEQlUeQy1TE9PZ+O53o01a9b0ZFTiIvHx8RkV1fHx8TZHI+J5JUrArbfC5MmZ/XhEJNPrr8POnVClCgwZYnc04m4OBzz0ELRrZ24irFwJnTvD44/Df/9rqgnFuyhJJi5Tu3btjCTZzTffnHXj+ZVkTqd5txARCUR5JMl27dpFSkoKISEhxOnWsk+aPXt2jssigaR3b5MkmzQJ3n5bF4Eilg0bzP8JgJEjITLS1nDEg+rWhb//hqefNhM1jBoFc+bAl19CnTp2RyfnU08ycZk8m/dXr24SY0eOwL59Ho5MRMSLWEmyc++ZWTeZbdWqVSM0NNSTUYkbDBs2jLFjx2ZbP3bsWN544w0bIhLxjA4doGJFOHwYvv/e7mhEvIPTaaqHzpwxjfq7drU7IvG0iAiTHPvpJyhTxvQsa9bMDMdUD0fvoSSZuEy3bt2YPHkyzz77bPaNERGmphjUl0xEAlselWRWkkxDLf3DRx99lHED6Xz16tVjzJgxNkQk4hnBwdCrl1nOIU8sEpB++AF+/RXCwkwlkQbWBK7OnU2C7Prr4eRJMxyze3c4eNDuyASUJBMXqlevHnfeeWfuF3dq3i8igc7pzOzNmEeSTE37/cOePXuIiYnJtr5MmTIkJSXZEJGI51hJspkzMyf0FQlUJ0/CwIFm+YknoEYNW8MRLxATY5Kmb78NoaGmwX/DhmYIpthLSTLxHCXJRCTQ7d5tprUKDoaqVbNtfvTRR/niiy+46667bAhOXK1ixYosWLAg2/oFCxYQGxtrQ0QinlO1Klxzjbk3MGGC3dGI2OvNN2HrVqhQAZ57zu5oxFsEBZmk6V9/mcTprl1w7bXw/PNmWK7YQ0kycam5c+cyYsSIjGqILJQkE5FAZ/VsrFrVjLe4QM2aNbn77rtp1qyZhwMTd+jbty8DBw5k3LhxbNu2jW3btjF27FgGDRpEv3797A7PK9x6662UKFGC7t272x2KuEHv3uZx3DhIT7c3FhG7JCaaWQwB3nkHChWyNx7xPs2awfLl0KePubHwn//AVVfBli12RxaYlCQTlxo2bBiDBw9m7ty52TcqSSYigS6PfmTif4YMGcIDDzzAI488QtWqValatSqPPfYYAwYMyLl/ZwAaMGAAn332md1hiJvcdhsUKWIu9ObNszsaEXsMHgynTkH79nD77XZHI96qcGH49FP46isoVgwWLYLGjeGLL+yOLPAoSSYulecMl9ZF4ZYtkJrqwahERLxEHkmynTt3MmrUKGbPnu3hoMRdHA4Hb7zxBvv372fRokX8888/HDx4kKFDh9odmtdo3749RYoUsTsMcZNChcAaPa4G/hKIfv0Vpk2DkBB47z0165eLu+MO09S/bVs4dgzuuQfuv98si2coSSYulWeSLDbWfFtKS1PtqIgEJitJlsOMh3///TcDBw7k6aef9nBQ4m6FCxemRYsW1K9fn/DwcJcee9iwYTgcDgZaHaFdZO7cuXTp0oXY2FgcDgfTpk3Lcb/Ro0cTFxdHREQEzZo1Y57KheQC1pDLb7+Fo0ftjUXEk06fhgEDzPKAAVCvnr3xiO+oXNk08H/pJdO37PPPoUkTWLzY7sgCQ4jdAYh/sWZky7EnmcMBNWtCfLy5UMzhIlFExK/lUUmWkJAAQN26dT0ZkbjY4MGDefXVVylUqBCDBw/Oc9/hw4df1rmWLFnCxx9/TMOGDfPcb8GCBbRs2ZLQ0NAs69etW0fx4sUpV65ctuecOHGCRo0a0bt3b2677bYcj/vVV18xcOBARo8eTdu2bfnoo4/o1KkTCQkJVKpUCYBmzZpx+vTpbM/97bffNHlBgGjVynzlW7cOvv4a+va1OyIRzxgxAjZuhOhoePFFu6MRXxMSYv7ddOhgqsk2bzbVZa++CkOGmOSZuIeSZOJSViVZYmIip06dIiIiIusOtWplJslERALJyZOwbZtZziFJtnbtWgDq1KnjyajExeLj4zlzbkqq5cuX48hlbE1u6/Pr+PHj3HPPPXzyySe89tprue6Xnp5O//79qVGjBpMnTyY4OBiADRs20L59ewYNGsSQIUOyPa9Tp0506tQpzxiGDx/OAw88QN9zWY+RI0cyY8YMPvzwQ4YNGwbAsmXLCvoSxU84HKaa7OmnzZBLJckkEOzcaZIZAG+9BUWL2huP+K4rr4QVK+Chh+Cbb+DZZ2HmTPjsMyhf3u7o/JPyj+JS0dHRFCtWjPT0dDZt2pR9BzXvF5FAtWmTmbKoeHEoUybbZlWS+YdRo0ZR9NzV0Jw5c5g9e3aOP3/88cdlnad///507tyZ6667Ls/9goKCmD59OvHx8dx///2kp6ezefNmrr32Wrp27Zpjgiw/UlNTWbZsGTfccEOW9TfccAMLFy4s0DEv5oMPPqBu3bq0aNHCLccX97nvPggOhr/+ypzkV8SfPfkkpKSYyp9777U7GvF1JUqYhv6ffgpRUfDHH9CoEXz/vd2R+SclycSlHA5H3kMulSQTkUB1/lDLC6qI0tLSMt4zVUnm25o0aUJycjIAVatW5cCBAy4/x+TJk1m+fHlGtdbFxMbG8scff7BgwQJ69OjBtddeS4cOHRgzZkyBY0hOTiYtLY3o6Ogs66Ojo9mzZ0++j9OxY0duv/12pk+fToUKFViyZEmu+/bv35+EhIQ89xHvFBMD//qXWR43zt5YRNxt9myT0AgKgvffV7N+cQ2HA/r0geXLoWlTOHAAbrkF+vc3gxXEdZQkE5cbMWIES5YsyXmYhpUk27DBs0GJiNjNKp/IYajl1q1bOXXqFOHh4cTFxXk4MHGl4sWLk5iYCJi/1/T0dJcef8eOHTz++ONMnDgxe0uDPFSqVInPPvuMr776ipCQED799NPLHvIJ2YeNOp3OSzrujBkz2L9/PykpKezcuVNVYn7MauD/2Wdw9qy9sYi4y5kz8OijZvnhh6FxY1vDET9UqxYsXAhPPGF+Hz0aWrSAVavsjcufKEkmLtemTRuaN29OVFRU9o01a5rH/fvh0CHPBiYiYqc8mvZb/chq1aqV0TNKfNNtt93G1VdfTVxcHA6Hg+bNm1O1atUcfwpi2bJl7Nu3j2bNmhESEkJISAh//vkn7777LiEhIaSlpeX4vL179/Lggw/SpUsXUlJSGDRo0OW8TEqXLk1wcHC2qrF9+/Zlqy4TAejc2Yw037MHfv3V7mhE3OP99yEhAUqXzuxJJuJq4eHw9tswY4aZGGLNGpMoe/9909lDLo8a94tnFS5sOgzu2mUuGFu1sjsiERHPyCNJdu211/L3339zUvXyPu/jjz+mW7dubNq0iQEDBtCvXz+KFCnisuN36NCBVRfcLu7duze1a9fm6aefzjHJmpycTIcOHahTpw7ffPMNGzdu5JprriE8PJy33367QHGEhYXRrFkzZs6cya233pqxfubMmdx8880FOqb4t7Aw05tpxAjTwP+mm+yOSMS19uzJnMVy2DAoWdLeeMT/3XADrFxpKnWnT4fHHoPffjPvsaVL2x2d71KSTFwuJSWFTz/9lM2bNzNixIjswy5q1VKSTEQCi9OZmSQ7Nwvw+aKiomjZsqWHgxJ3WLlyJTfccAM33ngjy5Yt4/HHH3dpkqxIkSLUr18/y7pChQpRqlSpbOvBzG554403Urly5YyhlnXq1GHWrFm0b9+e8uXL51hVdvz48SwT8CQmJrJixQpKlixJpUqVABg8eDD33XcfzZs3p3Xr1nz88cds376dhx9+2GWvV/xLnz4mSfbjj2ZQQQ5zmIj4rKefhmPHTEVPnz52RyOBomxZ+OkneO89eOop8/7asKEZ2n6RuX0kFxpuKS4XEhLCoEGDGDVqFLt3786+g5r3i0ig2bsXjh41XXyrV7c7GnGj8xv3//nnn6SmptoaT1BQEMOGDeO7774jLCwsY32DBg2YNWsW3bt3z/F5S5cupUmTJjRp0gQwCbEmTZowdOjQjH3uvPNORo4cySuvvELjxo2ZO3cu06dPp3Llyu59UeKz6tc3CYSzZ2HiRLujEXGdBQtMUgLMkLcgXWWLBzkcMGAALF4MdepAUpKpMnv6abD5a4hP0n9fcbmwsDCqn7sITEhIyL6DkmQiEmis97sqVUwjifM4nU4GDx7M6NGjSUlJ8Xxs4lLubtyfkzlz5jBy5Mhct19//fU5Nvlv3LgxFStWzPE511xzDU6nM9vP+PHjs+z3yCOPsHXrVk6fPs2yZcu46qqrLuelSACwGviPG6feOeIf0tIym/U/8ACoMFzs0qgRLF0KDz1k3l/ffBPatoWNG+2OzLcoSSZuUbduXQDWrFmTfaOSZCISaPLoR7Z7925GjBjBgAED1LTfD7i7cb+Ir7v7boiIMDOxLVtmdzQil++jj2DFCihe3PQiE7FTVBSMGQPffQclSpikWZMmMGGCbkzkl3qSiVvUq1ePqVOn5p0k27TJ3HrRRaGI+Lt8zGxZrVo1wi+oMhPf4+7G/SK+rnhxuPVW+PJL01y6eXO7IxIpuP374bnnzPJrr6nPnniPbt1MVeO998Kff0KvXmZm4TFjoFgxu6PzbkqSiVvUq1cPyGW4ZaVKZrjR6dOwbRvobrqI+Lt168xjDkky633SqsAV33fjjTcCuKVxv4g/6NPHJMm+/BLeeQciI+2OSKRgnnsODh82w9weesjuaESyqlABfv8d3ngDhg6FyZNh0SL44gto3dru6LyXhluKW5w/3NJ5YV1ncHBm42oNuRSRQJCPSrI6dep4MiLxgHHjxrFixQruvfde2rRpw65duwD4/PPPmT9/vs3Ridjn2mvNPdPDh2HaNLujESmYJUvgf/8zy++/DyEqPxEvFBwM//43zJ8PcXGwdSu0awevvmoGdUl2SpKJW9SqVYvg4GCOHDnCnj17ctrBPCpJJiL+7vRpONfIXZVkgeW7776jY8eOREZGsnz5ck6fPg3AsWPHeP31122OTsQ+QUFm6A+YBv4iviY93TTrdzrNcLYrr7Q7IpG8tWoF8fHQo4dJjg0dCu3bw/btdkfmfZQkE7cIDw/n77//5uDBg8TExGTfQUkyEQkUmzebb9NFikAO74eqJPNfr732GmPGjOGTTz4hNDQ0Y32bNm1Yvny5jZGJ2M9Kks2aZbpviPiS8eNh8WLz0f7mm3ZHI5I/xYrBpEnw2WdQuDDMm2eGCn/3nd2ReRclycRtmjVrRokSJXLeqCSZiASK84daOhxZNh08eJD9+/cDULt2bU9HJm62fv16rrrqqmzrixYtyuHDhz0fkIgXiYszVQxOp5l1TcRXHDoETz9tll96Kcf7XyJe7b77zIysLVuaYe/du8ODD8KJE3ZH5h2UJBN7KEkmIoEij35kJUuWJDk5mUWLFlGoUCEPBybuFhMTw6ZNm7Ktnz9/PlU1aY0IffqYx/HjTcGtiC8YOhSSk6FOHXjsMbujESmYatVMn7JnnjH3cD/5xMw2vGKF3ZHZT0kycZstW7YwaNAgBg4cmH2jdbG4ezccP+7RuEREPCqPJBlAqVKluOKKKzwYkHjKQw89xOOPP87ff/+Nw+Fg9+7dTJo0iSeffJJHHnnE7vBEbNetGxQtato2/vmn3dGIXNw//8Do0Wb5vffgvJH0Ij4nNBSGDTPD3mNjzWTsV1wBI0YE9o0LJcnEbU6cOMHIkSMZN25c9hkuS5SAMmXM8oYNng9ORMRTLpIkE/81ZMgQbrnlFtq3b8/x48e56qqr6Nu3Lw899BCPPvqo3eGJ2C4qCu66yyyrgb94O6fTNOtPT4fbb4cOHeyOSMQ1rr3WJIC7doXUVBg8GDp3hr177Y7MHkqSidvUrFmT4OBgjh49mjHtfRYaciki/s7pNLflIMck2b///W+eeOIJNuhmgd/6z3/+Q3JyMosXL2bRokXs37+fV1991e6wRLyGNeTy22/hyBF7YxHJyxdfmOFpUVHw9tt2RyPiWqVLw7RpplIyIgJ+/RUaNjSPgUZJMnGb8PBwatSoAUBCQkL2HZQkExF/l5xsOvwCnHs/PN+4ceMYPnw4h6x9xC9FRUXRvHlzWrZsSeHChe0OR8SrtGxpejudPAlffWV3NCI5O3oUnnzSLD/3HFSqZG88Iu7gcMD//R8sWQL168O+fdCpk6ksO33a7ug8R0kycau6desCsGbNmuwblSQTEX9nvb9VrmxuPZ8nOTmZPXv2AFCvXj1PRyYecvjwYd555x369u1Lv379GD58OEdULiOSweHIrCbTkEvxVq+8Anv2QPXq8MQTdkcj4l7168PixWZ4MZgeZa1aZQ6O8HdKkolbWRd+SpKJSEDKox/Z6tWrAYiLi1N1kZ9aunQp1apVY8SIERw8eJDk5GRGjBhBtWrVWL58ud3hiXiN++6D4GBYtAjWrrU7GpGsEhJg1Ciz/O67EB5ubzwinhAZaSan+OEHKFXKzHrZrBn873+mm4g/U5JM3CpflWQbNvj//zQRCUz5SJLVr1/fkxGJBw0aNIiuXbuydetWpkyZwtSpU0lMTOSmm27KeeZnkQAVHW2aRIOqycS7OJ0wYACcPWuamnfqZHdEIp7VpQusXAnXXQcpKdCvH9xxR2Y3EX+kJJm4lVVJtjenqTGqVjW3DU+cgJwa+4uI+Lo8kmSrVq0CoEGDBp6MSDxo6dKlPP3004SEhGSsCwkJYciQISxdutTGyES8jzXk8rPP4MwZe2MRsXz3Hfz+u6keGzHC7mhE7BEbCzNmwJtvQkiImWilUSOYN8/uyNxDSTJxqzp16rBnzx42b96cfWNoqEmUgYZcioh/UiVZQCtatCjbt2/Ptn7Hjh0UKVLEhohEvNe//gVly8LevfDLL3ZHI2Lu4w8ebJaffjrzskUkEAUFwVNPwV9/md58O3bANdfA0KGm0tKfKEkmbhUSEkJ0dDQOhyPnHdSXTET81ZkzYN0gqF072+akpCRASTJ/duedd/LAAw/w1VdfsWPHDnbu3MnkyZPp27cvd999t93hiXiV0FDTmww05FK8w7BhJhFQubJJkokING8Oy5dDr16Qng6vvgpXXQVbt9odmesoSSb2UpJMRPzVli3m1lqhQlC+fLbNmzdvZteuXdSpU8eG4MQT3n77bbp168b9999PlSpVqFy5Mr169aJ79+688cYbdocn4nV69zaPP/0E+/bZG4sEto0b4a23zPLIkdkmqBYJaEWKmJsZX34JRYua6rJGjWDyZLsjcw0lycTtfv/9d7p06cIzzzyTfaOSZCLir6x5smvVghyqaR0OB7GxsVn6VYl/CQsLY9SoURw6dIgVK1YQHx/PwYMHGTFiBOGaHk0km3r1oGVLc39h4kS7o5FA5XTC449Daip07Ag332x3RCLe6a674J9/oHVrOHoU7r7b3Ow4dszuyC6PkmTidkeOHOGnn35i5syZ2TcqSSYi/spKkuUw1FICw7Bhwxg7dixRUVE0aNCAhg0bEhUVxdixY1VJJpILq4H/p59q8nOxx08/mb54oaEwalSO97lE5JwqVWDuXHjhBdO3bPx4aNoUfHl+IiXJxO0aNmwIwJo1azh7YVc/K0m2bRucPOnhyERE3CiPpv1Dhgzh5ptvZs6cOZ6NSTzqo48+onYOSdJ69eoxZswYGyIS8X533QUREZCQAEuW2B2NBJpTp0wVGZim/Tl8hIvIBUJC4JVXYPZsqFgRNm0y1WVvvmn6lvkaJcnE7apWrUqhQoU4ffo0GzduzLqxbFkoVszcKsxpBkwREV+VRyXZb7/9xg8//MDRo0c9HJR40p49e4iJicm2vkyZMhkTN4hIVsWKwW23mWU18BdPe+stSEyE2Fh4/nm7oxHxLVddZYZf3nabGTb/9NNmyLKvfeVRkkzcLigoiAYNGgCwcuXKrBsdDg25FBH/43TmmiQ7e/Ysa9euBTSzpb+rWLEiCxYsyLZ+wYIFxMbG2hCRiG+whlx++aUGGojnbN0Kr79ult95BwoXtjUcEZ9UogR88w188omZ8GLWLGjYEH780e7I8k9JMvEIa8hltiQZKEkmIv4nORkOHTI3AmrUyLJp48aNpKamUqhQIapUqWJPfOIRffv2ZeDAgYwbN45t27axbds2xo4dy6BBg+jXr5/d4Yl4rWuuMX1ujhyBqVPtjkYCxeDBZrjlNdfAnXfaHY2I73I4oG9fWLYMGjc2X4u7doXHHvONGx9KkolHKEkmIgHFqiKrXBkiI7NsWr16NWD6UgUF6WPYnw0ZMoQHHniARx55hKpVq1K1alUee+wxBgwYwLPPPmt3eCJeKygIevUyy2PH2hqKBIgZM0xCNjgY3ntPzfpFXKF2bVi0CAYNMr+//76ZwXjNGnvjuhh9OxePaNiwIYULFyYsLCz7RiXJRMTfWEmyHDr+rlq1CiBjGLr4L4fDwRtvvMH+/ftZtGgR//zzDwcPHmTo0KF2hybi9Xr2NI+//26GwYm4S2oqDBhglh97DNQJQcR1wsNh+HAzY2zZsrB6NTRvDh9+6L0zGCtJJh7Rpk0bjhw5wnfffZd94/lJMm/9nyIicimspH8OTfv/+ecfQEmyQFK4cGFatGhB/fr1CQ8PtzscEZ9QpQp06GCWJ0ywNRTxcyNHwoYN5gL+pZfsjkbEP914I6xcaR5PnYJHHoFbbzVDMQHS0mDOHNOLcs4c87tdlCQTjwgODs59WFH16qam+fBh2L/fo3GJiLhFHjNbhoaGEhUVRePGjT0bk4iIj+nd2zyOGwfp6fbGIv5p1y545RWz/OabZnZVEXGP6Gj4+WcYMQLCwuD776FRI3j5ZXNjpH176NHDPFapAlOm2BOnkmTicc4Lq8UiI6FSJbOsIZci4g+s97Ichlt+++23HD16lCuvvNLDQYmI+JZu3UzSYts2U1kg4mpPPgknTkDr1nDffXZHI+L/goJg4EDTq6xWLdi921Rw7tyZdb9du6B7d3sSZUqSicdMnjyZOnXq0L9//+wb1ZdMRPzF6dOwZYtZzqGSDEx1bXBwsAeDEhHxPZGRcPfdZlkN/MXV5syByZPNgJYPPjAX7yLiGU2awOLFUKhQztutupqBAz0/9FJvBeIxDoeDdevWsXz58uwblSQTEX+xaZMZF1S0KJQrl2VTtkpaERHJkzXk8rvvTGcOEVc4c8Y06Qd4+GFzwS4inrV8uankzI3TCTt2wLx5nosJlCQTD2rUqBFgZnZLv7CxhJJkIuIvzh9qecEc8n379qVevXo5T2IiIiLZtGgB9eqZRs9ffWV3NOIvRo82s+yVKgWvvWZ3NCKBKSnJtfu5ipJk4jHVq1cnIiKClJQUtlhDkSxKkomIv8ijaf+yZctISEggJCTEw0GJiPgmhyOzmkxDLsUV9u6FoUPN8uuvQ8mS9sYjEqhiYly7n6soSSYeExISQr169QD4559/sm60kmRbtpj6ZxERX5VLkiw1NZWEhAQAzWwpInIJ7r0XQkJM/5o1a+yORnzdM8/A0aPQrBk88IDd0YgErnbtoEKFbAMvMjgcULGi2c+TlCQTj7IuDOPj47NuKF8eoqLg7NnMhtciIr4ol5kt165dy5kzZyhevDiVrBl9RUTkoqKj4aabzPK4cfbGIr7tr79g/Hiz/P77oDl0ROwTHAyjRpnlCxNl1u8jR3r+/6mSZOJRTZs2BXJIkgUFQc2aZnnDBg9HJSLiIk5nrpVkK1asAMzNAkdut8xERCRH1pDLzz/XoAMpmLQ06N/fLPfpA61a2RuPiEC3bvDtt6Zm5nwVKpj13bp5PiYlycSjmjdvTsOGDamdQ68e9SUTEZ+3Z48ZwxEUBNWrZ9l0fpJMREQuTadOpqJs3z6YPt3uaMQXffIJxMdDsWIwbJjd0YiIpVs32LoVZs+GL74wj4mJ9iTIANQ5WDyqZcuW2fuRWZQkExFfZ71/xcVBeHiWTUqSiYgUXGgo3HcfvP22aeB/8812RyS+5MABeO45s/zqq1C2rL3xiEhWwcFwzTV2R2Gokky8h5JkIuLr8pjZsl69etSvX58mTZp4OCgREf9gDbn8+WdTuCuSX889BwcPQoMG8H//Z3c0IuLNlCQTW5w9e5bk5OSsK5UkExFfZyXJLmjaD/D++++zatUqGjZs6OGgRET8Q926po9UWhpMnGh3NOIrli2Djz82y++/b2ZKFRHJjZJk4nFffPEFRYoUoW/fvlk3WI379+2Dw4c9HpeIyGWzkvw59V0UEZHLZlWTjR1r5koRyUt6umnW73RCjx5w1VV2RyQi3k5JMvG4ChUqcOrUqewzXBYpAjExZlnVZCLii3IZbpmcnMzZs2dtCEhExL/ceSdERsLatbB4sd3RiLebMAH+/hsKF4a33rI7GhHxBUqSicdZTau3b9+uIZci4j9OnoRt28zyBcMte/XqRbFixfjmm29sCExExH8UKwa33WaWx461NxbxbocPw9NPm+UXX4TYWFvDEREfoSSZeFzRokWpUaMGQPZqMiXJRMRXbdxoxnOUKAFlymSsdjqdLFmyhJSUFCpVqmRjgCIi/qFPH/M4eTKkpNgbi3ivF1+E/f/f3p3H2VT/cRx/3ZkxM8Yy2XcaO8k2KApF2QkR1c/WHrIlWRKVpZ1E2kRCJLSRPUt2Msgusq/FmLHMMHN+f3zdQQaz3Xvunft+Ph7zuMe5597zmXPHved+zuf7+Z40xd3dutkdjYh4CyXJxBaVK1cG4I8//rj+jjJlzO327W6OSEQkla5t2u9wJKw+dOgQJ06cICAgQE37RUTSQO3aEBYGZ8/CzJl2RyOeaPNm06QfYNQoCAy0Nx4R8R5KkoktbpokK1vW3G7b5uaIRERS6SZN+9evXw9AuXLlyJgxo7ujEhFJd/z8oGNHs6whl/JflgUvvWSa9j/6KDz8sN0RiYg3UZJMbFGpUiXgFkmyPXsgNtbNUYmIpMK1lWTXcCbJqlSp4u6IRETSrQ4dTNHub7/Bvn12RyOe5NtvYdkyM8HDhx/aHY2IeBslycQWlStXpkWLFnTs2BHr2vm78+c3s1zGxZn+PiIi3sJZAetM9l+hJJmISNorUgTq1jXLEybYGop4kKgo6N3bLA8YAGoFKiLJpSSZ2CJHjhzMnDmTAQMG4Limdw8Oh4Zcioj3iYu7Wknm7K2IadrvTJJVrVrVjshERNItZwP/CRPM0DqRt96Co0ehWDF4+WW7oxERb6QkmXgeNe8XEW+zfz9cvAhBQaab9BWxsbH06NGD5s2bU65cORsDFBFJf5o3hzvugAMHYPFiu6MRu+3YASNGmOWPPoLgYHvjERHvpCSZ2MayLA4cOMDKlSuvv0OVZCLibZzvV6VKQUBAwuqgoCAGDhzIrFmzCNTUWiIiaSpjRnj8cbOsBv6+zdms//JlaNIEGje2OyIR8VZKkoltVqxYQZEiRWjTps31d6iSTES8jfP96pqhliIi4nrOIZczZ8Lp0/bGIvaZNQsWLoTAQBg50u5oRMSbKUkmtqlYsSJ+fn4cOnSII0eOXL3DWUm2c6e5HCQi4ulu0rR/2bJlHDx48PoJSkREJM2Eh0O5chATA1On2h2N2OH8eejZ0yz36WP6kYmIpJSSZGKbzJkzc9dddwGwdu3aq3cUKWLq52NiNKe3iHiHRJJk8fHxNGnShMKFC/Pnn3/aFJiISPrmcFytJhs/3t5YxB7Dh5u+dIULQ79+dkcjIt5OSTKx1T333APAmjVrrq709zd9fUBDLkXE81nW1feqa5Jke/bsISoqiowZM1JGwzBFRFzmf/8z7SDXrYMtW+yORtxpzx54912zPGIEhITYG4+IeD8lycRW1apVA/5TSQZq3i8i3uPwYYiKMgn+4sUTVjvf1ypWrEjANc38RUQkbeXKBU2bmmVVk/mWnj0hNhYefhhatLA7GhFJD5QkE1s5K8nWrVtHXFzc1TvUvF9EvIUzmV+ihOkYfMWqVasAuPfee+2ISkTEpziHXE6aZJImkv798ov5CQiAUaPM0FsRkdRSkkxsVbZsWUJCQoiKimLnzp3X3mFuVUkmIp7uJk37V69eDUD16tXdHZGIiM9p0ADy5oWTJ2H2bLujEVe7eBF69DDLPXtC6dK2hiMi6YiSZGKrgIAA3nnnHaZOnUqBAgWu3uH8srl9u+n3IyLiqZwVr9f0HTt37hybNm0CVEkmIuIOAQHQvr1Z1pDL9O/99+GvvyB/fhg40O5oRCQ9UZJMbNe1a1fatGlDaGjo1ZXFipmznXPn4OBB+4ITEbmdRCrJ1q9fT1xcHAUKFKBQoUI2BSYi4ls6dTK3c+bA0aP2xiKus38/DBtmlt9/H7JksTceEUlflCQTz5QhA5QsaZY15FJEPJVlJZokK1euHFOmTOGNN96wKTAREd9TujRUrw5xcfDNN3ZHI67y8stw4QLUqgVt29odjYikNy5Nkp0+fZp27doRGhpKaGgo7dq148yZM7d8TMeOHXE4HNf9aKhK+mZZFosXL+btt9/m/PnzV+9Q834R8XQnT8K//5puwaVKJazOkSMHjz/+OE8//bSNwYmI+B5nA//x49WxIz1asABmzDATSn/8sZr1i0jac2mS7IknniAiIoK5c+cyd+5cIiIiaNeu3W0f16BBA44ePZrwM2fOHFeGKR6gXbt29OvXj/Xr119dqeb9IuLpnO9PYWGQMaO9sYiICI89Zt6Od+yAK/OnSDoRGwvdupnlLl2gfHl74xGR9MllSbLt27czd+5cvvzyS6pXr0716tX54osv+OWXX66fxTARQUFB5M2bN+Ene/bsrgpTPIDD4eC+++4D4Pfff796hyrJRMTTJTLU8vDhw7z77rusWLHCpqBERHxX1qzQurVZVgP/9GXUKJP8zJUL1M1ARFzFZUmyVatWERoayj333JOw7t577yU0NJSVK1fe8rFLliwhd+7clCxZkmeffZYTJ07cdNuYmBjOnj173Y94n/vvvx/g+i+V11aSqV5eRDxRIjNbLlmyhFdffZWXX37ZpqBERHybc8jl1KlmDijxfkeOXE2MvfMO3HGHreGISDrmsiTZsWPHyJ079w3rc+fOzbFjx276uIYNGzJ58mQWL17MBx98wLp166hTpw4xMTGJbj98+PCEnmehoaGaRcxLOSvJVq5cSXx8vFlZsiT4+cHp03D8uI3RiYjcRCKVZKtWrQJQP00REZvUqgVFi0JUlOlfJd7vlVcgOhruvRc6dLA7GhFJz5KdJBs8ePANjfX/++PsK+VIpJOiZVmJrndq06YNjRs3ply5cjRt2pRff/2VXbt2MXv27ES379evH5GRkQk/Bw8eTO6vJB6gQoUKZMqUiTNnzrDN+aUzY0bT5wc05FJEPFMiSTJntXT16tXtiEhExOc5HNCpk1nWkEvvt2wZTJliXtfRo801dBERV0n2W0zXrl3Zvn37LX/KlStH3rx5OZ5I9c/JkyfJkydPkveXL18+ihQpwu7duxO9PygoiKxZs173I94nICAg4QvldX3J1LxfRDzV6dPgrIy+MtwyMjKSiIgIAGrWrGlTYCIi0qGDSaosWQJ799odjaTU5cvQtatZfu45CA+3Nx4RSf+SnSTLmTMnpUuXvuVPcHAw1atXJzIykrVr1yY8ds2aNURGRlKjRo0k7++ff/7h4MGD5MuXL7mhipdxDrl0DlUC1LxfRDyX832pYEHIkgUwVWSWZVGsWDHy589vY3AiIr6tUCF4+GGzPGGCraFIKowdC1u2QPbsMHSo3dGIiC9wWbFqmTJlaNCgAc8++yyrV69m9erVPPvsszRp0oRSpUolbFe6dGlmzZoFQHR0NL1792bVqlX8/fffLFmyhKZNm5IzZ05atGjhqlDFQ3Tq1Il169bx5ZdfXl2pSjIR8VSJDLVctmwZALVq1bIjIhERuYazgf+ECRAXZ2sokgInTsDAgWZ56FDIkcPeeETEN7h0RPfkyZO5++67qVevHvXq1aN8+fJ88803122zc+dOIiMjAfD392fLli088sgjlCxZkg4dOlCyZElWrVpFlitX6SX9KlKkCFWqVCFDhgxXVzq/fG7dak9QIiI343xfumZmyzVr1gAaaiki4gkeecTMgnjwICxaZHc0klx9+0JkJFSuDM8+a3c0IuIrAlz55NmzZ2fSpEm33MayrITljBkzMm/ePFeGJN7GmSQ7ccL8JDJjqoiILf7809zefXfCqrlz5/LHH39QvHhxm4IS8S4tWrRgyZIl1K1bl++//97ucCSdCQ6GJ5+EMWNMA/969eyOSJJq9eqrky6MHg3+/vbGIyK+Q3ODiEdZu3Ytzz77LMOGDTMrMmUyc3iDqslExLM4k2TlyiWsCgwM5N577yVnzpw2BSXiXbp168bEiRPtDkPSMecsl7NmmflWxPPFxV1t1t+xI2iyaBFxJyXJxKMcPnyYL7/88voKRGeVxpYt9gQlIvJfp05dndnyrrvsjUXEiz344INqqSEuVbkylC8PMTHw7bd2RyNJMW4cbNgAWbPC22/bHY2I+BolycSj1KpVC4fDwfbt2zl+/LhZ6azScFZtiIjYzfl+FBYGmTMD8Nxzz/HCCy+wa9cuGwMTXzB27FjKly9P1qxZyZo1K9WrV+fXX39N030sW7aMpk2bkj9/fhwOBz/88EOi233yySeEhYURHBxMeHg4y5cvT9M4RFLL4bjawP+rr+yNRW7vn3+gXz+z/OabkCePvfGIiO9Rkkw8So4cOShfvjwAS5YsMSudlWRKkomIp/hPP7JLly4xefJkPvvsM2JjY20MTHxBwYIFefvtt1m/fj3r16+nTp06PPLII2y9SVuCFStWcOnSpRvW79ixg2POisj/OHfuHBUqVGD06NE3jWPatGn06NGDAQMGsHHjRmrWrEnDhg05cOBAwjbh4eGUK1fuhp8jR44k87cWSbknn4QMGUx10ubNdkcjtzJwIPz7r7lG3qWL3dGIiC9Skkw8zoMPPgjAb7/9ZlZcW0l2zUQPIiK2cQ7/vvL+tH79es6fP0/27Nkp65xwRMRFmjZtSqNGjShZsiQlS5Zk6NChZM6cmdWrV9+wbXx8PF26dOGJJ54gLi4uYf2uXbt48MEHb9oPrGHDhgwZMoSWLVveNI4PP/yQp59+mmeeeYYyZcowcuRIChUqxNixYxO22bBhA3/++ecNP/nz50/FERBJnpw5oVkzs+xsBi+e548/4NNPzfLo0RDg0inmREQSpySZeJwbkmQlS5rLf1FRcM3VaRER2/ynaf/ChQsB8/7l56ePVnGfuLg4pk6dyrlz56ieSHdrPz8/5syZw8aNG2nfvj3x8fH89ddf1KlTh2bNmtGnT58U7Tc2NpYNGzZQ7z/TBdarV4+VK1em6DlvZ8yYMZQtW5aqVau65PklfXM28J80CVTw63ni402zfsuCxx+H2rXtjkhEfJXO5MXj1KpVCz8/P3bt2mWGY2TIAKVLmzvVvF9E7GZZNwy3XLRoEQAPPfSQXVGJj9myZQuZM2cmKCiIF154gVmzZt20ijF//vwsXryYFStW8MQTT1CnTh3q1q3Lp86SjRQ4deoUcXFx5PlPw6A8efLcdAhnYurXr0/r1q2ZM2cOBQsWZN26dTfdtkuXLmzbtu2W24jcTP36kC+fmXfll1/sjkb+65tvYNUqM7H9e+/ZHY2I+DIlycTj3HHHHVSuXJnSpUtz6NAhs1LN+0XEUxw8CGfPmnEgJUty/vx5Vq1aBUDdunVtDk58RalSpYiIiGD16tW8+OKLdOjQgW3btt10+8KFCzNx4kSmTZtGQEAA48aNw+FwpDqO/z6HZVnJet558+Zx8uRJzp8/z6FDh1QlJi4TEAAdOphlNfD3LJGR4Cxqff11KFDA3nhExLcpSSYeadmyZWzfvp1q1aqZFWreLyKewvk+VLo0BAby+++/ExsbS6FChShevLi9sYnPCAwMpHjx4lSpUoXhw4dToUIFPvroo5tuf/z4cZ577jmaNm3K+fPn6dmzZ6r2nzNnTvz9/W+oGjtx4sQN1WUinsI55PLXX0FzR3iOwYPhxAnTYaVHD7ujERFfpySZeKSMGTNev8JZSabhliJit/807Y+OjqZ48eLUrVs3TSpzRFLCsixiYmISve/UqVPUrVuXMmXKMHPmTBYvXsx3331H7969U7y/wMBAwsPDWbBgwXXrFyxYQI0aNVL8vCKuVLIk3Hef6X/1zTd2RyNgrjt9/LFZ/vhjCAy0Nx4REc0ZIh4tJiaGy5cvk8mZJNuxAy5dMn3KRETs8J+m/S1btqRly5bEqhO0uEn//v1p2LAhhQoVIioqiqlTp7JkyRLmzp17w7bx8fE0aNCAIkWKJAy1LFOmDAsXLuTBBx+kQIECiVaVRUdHs2fPnoR/79u3j4iICLJnz07hwoUB6NWrF+3ataNKlSpUr16dzz//nAMHDvDCCy+47pcXSaVOnWDFCjPksk8f0LUN+1iWadYfFwctWsB/5gEREbGFKsnEY/Xv35/s2bMzYcIEKFIEMmc20xHt3m13aCLiy5yVZM5h4FcE6vK3uMnx48dp164dpUqVom7duqxZs4a5c+fy8MMP37Ctn58fw4cPZ8aMGdf9jd59990sXLiQVq1aJbqP9evXU6lSJSpVqgSYhFilSpV4/fXXE7Zp06YNI0eO5M0336RixYosW7aMOXPmUKRIkTT+jUXSzmOPQUgI7NplGsWLfaZNg6VLITgYRoywOxoREUOVZOKxsmTJwvnz55k3bx5dunSBu+6CNWtMFcdNZvASEXGpy5dh+3azXK4cp0+fJnPmzGRQdau40bhx45K1fWLJM4CKFSve9DEPPPAAlmXd9rk7d+5M586dkxWPiJ2yZDGJsgkTTDWZRgfbIzoaXn7ZLPfvb66Hi4h4AlWSicdq0KABAL/99psZxqTm/SJitz17TEVrpkxw55307duX7Nmz8/nnn9sdmYiIJJGzgf+0aXDunL2x+KohQ8zkCUWLwiuv2B2NiMhVSpKJx6pQoQK5c+cmOjqalStXqnm/iNjP+f5z111YDgdz5swhOjo6oUeTiIh4vpo1oXhxU830/fd2R+N7du6EDz80yyNHmuGWIiKeQkky8Vh+fn7Uu9LBc+7cuVeTZKokExG7XNO0/88//+TQoUNkzJiR2rVr2xuXiIgkmcMBHTua5a++sjUUn2NZ0K2bmYerUSNo0sTuiERErqckmXi0+vXrAzBv3ryrwy3/+gvOn7cxKhHxWc4k2d13M2fOHADq1KlDxowZbQxKRESSq0MHkyxbtsyMpBf3+OEHmD8fAgPho480u6iIeB4lycSjOSvJIiIiOG5ZkCuXuQS1davNkYmIT3IOtyxXLiFJ1qhRIxsDEhGRlChYEK5ci2XCBFtD8Rnnz0PPnmb5lVfMkFcREU+jJJl4tNy5c/P888/zzjvvEBAQABUqmDs2b7Y3MBHxPdHRCeUGkUWKsGLFCgAaNmxoZ1QiIpJCzgb+EyZAXJytofiEd96B/fuhUCHo18/uaEREEhdgdwAit/Ppp59e/UeFCrBwIURE2BaPiPioLVtMJWu+fMyPiCAuLo4yZcoQFhZmd2QiIpICjzwC2bPD4cPm9NJZWSZpb+9ekyQD07Q/UyZ74xERuRlVkol3qVjR3CpJJiLu5nzfqViR8PBwhgwZQteuXW0NSUREUi4oCJ54wiyrgb9r9ewJMTFQty48+qjd0YiI3JwqycQr/PPPP8yePZvwwEDuAti0CeLjwU95XhFxk02bzG2FChQtWpQBAwbYG4+IiKTaU0/B6NGmofy//5rKMklbc+bATz9BQAB8/LGa9YuIZ1OGQbzCwIED6dChA6MXLTLT4URFwd9/2x2WiPiSayrJREQkfahUybytx8bClCl2R5P+xMRA9+5muUcPKFPG1nBERG5LSTLxCo888ggAP86ejVWunFmpIZci4i5xcQkThvx04ADTpk0jKirK5qBERCQtOBv4a8hl2vvgAzPnTb58MHCg3dGIiNyekmTiFR544AEyZ87M0aNHOZU/v1npHPokIuJqe/bAhQtYGTPS65NPaNu2LQsWLLA7KhERSQNPPmkGKmzcqGuwaenAARgyxCy/9x5kzWpvPCIiSaEkmXiFoKAgGjRoAMCa2FizUmcxIuIuV95vzhcvzl9//03GjBmpr2nQRETShRw5oFkzszx+vL2xpCe9e8OFC3D//VcnSBAR8XRKkonXcA65/G7HDrNClWQi4i5X3m+2ZcgAQP369cmk+etFRNKNp54yt5Mnmz5akjqLFsH06WaOrdGj1axfRLyHkmTiNZo2bUpgYCA/HThgVuzfD6dP2xuUiPiGK5Vkc48eBaBly5Y2BiMiImmtXj0oUAD++Qd+/tnuaLxbbCy89JJZ7twZKlSwNx4RkeRQkky8RmhoKA0bNuSsw0FUjhxmparJRMQdriTJ5hw9SkBAAE2aNLE3HhERSVP+/tC+vVlWA//U+fhj2L4dcuWCt96yOxoRkeRRkky8yrvvvsvhw4fJcv/9ZoWSZCLiaidOwNGjWA4HW4AHH3yQbNmy2R2ViIikMecsl/PmweHD9sbirY4ehcGDzfLbb8Mdd9gZjYhI8ilJJl6lZMmS5MuXDypWNCvUvF9EXO1KMv54liycAx5//HF74xEREZcoUcI0mY+Ph4kT7Y7GO/XpA9HRUK0adOxodzQiIsmnJJl4JyXJRMRdrrzP5K1fn71799K6dWt74xEREZdxNvAfPx4sy95YvM3y5TBpkmnSP3q0adovIuJt9NYlXmffvn387733ALC2bTPdQUVEXMU5rLtCBcLCwsicObO98YiIiMu0bg2ZMsHu3bBihd3ReI/Ll6FrV7P8zDNQtaq98YiIpJSSZOJ18uTJww8REZwBHLGxsG2b3SGJSDpm/fGHWXBWsIqISLqVOTM89phZVgP/pPv0U9i8GbJlg2HD7I5GRCTllCQTrxMSEkKr1q3Z4FyxYcOtNhcRSbnoaNixA4CXJkywNxYREXEL55DL774zHwNyaydOwMCBZnnoUMiZ0954RERSQ0ky8UodO3ZMSJJdWr3a1lhEJB3buBGHZXEIuBAaanc0IiLiBvfdZ5r4nzsH06fbHY3n698fzpwxBdfPPWd3NCIiqaMkmXilWrVqcSBXLgAiFy+2ORofoM61nkuvjUvFXGlIsx548skn7Q1GRETcwuGATp3M8vjx9sbi6dauhXHjzPLo0eDvb288IiKppSSZeCU/Pz9KPfEEAFn37VPz/rR04ACMGAEtW0KxYqZ7rb8/ZMkCZcpAq1bw8cewb5/dkfqWc+dg5kx4/nm4917Inh2CgiAgAAoUMHPW9+8PS5eaueslTRz88UcA9mXPTu3atW2ORkRE3KV9ezM74/LlsGuX3dF4pvh46NLFLLdvbyrwRES8nZJk4rWadu/OaSDQsjiyYIHd4Xi/5cuhfn0oUgR69YJZs2DvXjh/3lQrOXszzZgB3bpB0aLwwAPw/fdKyrjS1q1m7EKuXPDoo/D557BmDZw+bZLD8fFw5IiZgmv4cPOalC4No0ZBTIzd0Xu9DBERABR85BH8NJe9iIjPKFDAnBYBqCVl4r76CtavN9dR33nH7mhERNKGzvjFa90ZFsbJwoUByKGqppQ7cACaNIFatWD+fDPGoFYteP99WLTIJMqOHDGXURcsMB1ZH3zQbLd0qZkrvUIFmDPH7t8kfTl0CNq1g3Ll4Isv4MIFk5js0QOmTYMtW+DgQbPdunVmPEi7dpA1q5m3vnt3KFsWrlRCSfJtW72aQhcvAlC7Vy+boxEREXdzNvD/+muIi7M3Fk/z77/Qt69ZfuMNyJvX3nhERNKKw7LSV0Obs2fPEhoaSmRkJFmzZrU7HHG1vn3NpavnnzdzT0vyTJgAL71kqsQyZDBng6++CmFht3/swYOmqmnUKDh71qxr1QpGjjSXXyVlLl82Cco33zSJMTBDX3v0MEMqHY5bPz46GiZNMo8/etSse+op+OgjM6+9JNnHrVrx0owZnMyYkVznz9sdjriBziG8g14ncZeYGMif3ySE5syBhg3tjshzdOkCn3wCd90FGzea00gREU+W1PMHVZKJdwsPN7fr19sbh7eJjYXOnU1X2uho00Ri82aTaExKggygUCF46y34+294+WXTt+z7783Z0vffuzT8dGvPHlPF16+fSZDdf7+pEpsxA2rWvH2CDEwi7IUXTOXfq6+ax3z1FVSrZl4rSbKnK1QAwFG1qs2RiIiIHYKC4H//M8tq4H/Vxo1Xr01//LESZCKSvihJJt6tShUA4iIieLZ9e5uD8RLnz0PTpjB2rPn3G2/AsmWmj1VKZMtmKp82bDCJmMhIMwTzxRfhylA1SYJZs6BSJVi1yjT3mDDBvC5X/saTLXNmePtt+O03U9m3fbtp+L9hQ5qGnZ6FbN8OQE5nUxoREfE5ziGXP/wAp07ZGopHsCzo2tW0RG3TxnTgEBFJTzTcUrybZRGfLRt+kZGEA+M3baJ8+fJ2R+W5zp41/ceWL4eQEJg61STM0sqlS/D66yY5A1C9ujmrzJ077fZxG5cvX+avv/5i27ZtHD58mKNHj3Lu3DlGjhyZsM3gwYPZsmULWbNmJWvWrOTLl4+wsDDCwsIoUaIE2bJlc1u8xMebirzBg82/a9WCiRPNBApp5fBhaNwYNm0yCbiFC01CUxLl/Fh0lCpl+rvNnXu1e7OkazqH8A56ncTdKlc21VMffWTmLvJl33xjZrIMCYGdO6FgQbsjEhFJmqSePyhJJt6vXj1YsIDnAMdzz/HZZ5/ZHZFnungRGjQwzfazZjXNNVw1V/e8edC2LZw5A3feCbNnmybyLvT666/z008/sX37dmJjY6+7z8/Pj9jYWPz9/QF49NFHmTlz5k2f6+jRo+S90oH21KlTZMuWLeGxaerCBdNsf8YM8+/u3U1VXkBA2u/r7Fl45BFYsgRCQ2HxYnPWLzdYsGABQ155haWbNpkVJ09Czpz2BiVuoXMI76DXSdxt9GjTwrViRZMs81Vnz0LJknD8uJlQ29m4X0TEGyT1/MEF38RE3KxKFViwgCpAj2++YciQIeTKlcvuqDxLXBw8+aRJkGXJYhIkzn5urlC/PqxebaqX/vrLVJT99BPUrp3qp7506RLLly9n8eLFvPXWWziu9Onav38/m64kNUJCQihTpgxFihQhX7585MuXj0uXLiUkurp160bdunU5e/YskZGRHDp0iH379rFv3z4sy0pIkAE8++yzLFmyhDp16tC4cWOaN29O9uzZU/17EBlpklZLl0JgoGnu0alT6p/3ZrJmhZ9/NonSFSvM7erVZsZMuc6IESPwcybIihRRgkxExMc98YRpvxoRYZJklSrZHZE9Bg82CbISJaBnT7ujERFxDVWSifebMQNatWJ7SAhlz59nwIABDBkyxO6oPMvLL8OHH5pkzNy57msgceqUmZlx+XIIDoaZM1M0NZRlWaxZs4YJEybw3Xffcfr0aQDWr19P+JVk35o1azh69Cjly5fnzjvvxM8vZS0Xz58/T0hISMJ+w8LC2L9/f8L9AQEBPPTQQ7Rp04bWrVuTKVOm5O/k+HGTpIqIMMmrNEogJsnZs/DAA+Ysv0wZWLkS7rjDPfv2Atu3b6ds2bL0Bt4DePRRTUThQ3QO4R30Ookd2rSB774zFWWjRtkdjftt3QoVKpjrrupCICLeSLNbiu+40ti8VEwMwcDo0aM5e/asvTF5kilTTIIMTCMJd3ZYzZkT5s83fdAuXjSVU8lIOJw8eZK3336bMmXKUL16dT777DNOnz5Nzpw56dSpExkzZkzY9p577qF58+YULVo0xQkyICFBBuBwONizZw+rVq1i8ODBlC9fnsuXLzN37lw6derEQw89lPwd7N9vZq2MiDC92pYscV+CDK5WlDmb+bdta/qiCQDvv/8+AI/kz29WuLLiUkREvIaz2HvSJN+bl8iyTHIwLg6aN1eCTETSNyXJxPsVLgx58uAXF0fzwoWJjIzkU+e81L5u0yZ45hmz3K8fPPaY+2NwVpC1aWMa+7dpYxrTJ8GaNWvo168fO3fuJCQkhHbt2rFw4UKOHTvGV199RVkX9zkDUzl27733MmjQIDZt2sSOHTt48803KVasGG3btk3YLiYmhhkzZhAXF3fzJztwwCQp9+wxvdp+/92eMRsFCphEWcaMpn/csGHuj8ED7du3j4lX/jarOl/He++1MSIREfEUDz9sPj5PnzYF4L5k+nQzWXZw8NXrriIi6ZWSZOL9HI6EL7K97ruPFi1aULduXZuD8gBRUWao2IUL5pLfW2/ZF0uGDDB5Mjz9tKla6tjR/Ps/li5dyvTp0xP+3ahRI1q3bs1XX33FsWPHmDhxInXr1nVNE/0kKlWqFAMHDmTXrl28+OKLCesnT55Mq1atKFmyJGPGjOH8+fPXP/DQIZMg27cPihUzQ1BLlHBz9NeoVAnGjDHLgwaZs18fN2zYMC5fvkybmjUJOn4c/PwSKlVFRMS3+fub0xeA8eNtDcWtoqNN1w4wjfrDwuyNR0TE1ZQkk/ThSpKs6uXLzJw5M6FPlU/r2dM0zS9c2Ay5tDGxBJj9f/EFPP+8qdtv3x6mTcOyLBYtWkTt2rV54IEH6NKlC+fOnQPMrJTfffcdnTp1IkuWLPbG/x9+fn4EBgYm/PvSpUvkyJGDvXv30rVrV8LCwhgxYgQXLlyAw4dNgmzvXtMo/7ffPGPO9E6dzBl/fLzpSnzypN0R2ebQoUNMmDABgEENGpiV5cqZiS5ERES4miSbN89c+/IFw4aZ3/XOO6FPH7ujERFxPSXJJH1wDolatcreODzFrFkwbpypsps4EdJiNsa04HDAJ58kVJRZTzzBa2XK8NBDD7Fs2TICAwNp1aoVMTExdkeabM8//zwHDhxg9OjRhIWFceLECXr16kWNsDBOV65shliGhZkEWaFCdod71ZgxULYsHDsGnTubBKYPKlCgAD/88AM9evSgTGSkWamhliIico3ixaFWLfNRmcTOEV5t1y640qqTkSNNlwYRkfROSTJJH6pWNUOjDh2CQ4c4cuQIL7zwAkOHDrU7Mvc7dgyefdYs9+nj3qbwSeHnx54+fVhcsCCO+HgG79zJowEBvPTSS/z111988sknZPeUpF4yhYSE0KVLF3bu3MmXX35JeIECfHv8ONlOnIAiRUyCrHBhu8O8XkiImdAhIMBMqvDdd3ZHZAuHw0Hjxo0ZMWIErF5tVipJJiIi/+Fs4P/VV+n7upJlQbdupp1sw4bQrJndEYmIuIeSZJI+ZMoE5cub5TVrWLFiBZ999hlvv/02J06csDc2d+veHf75BypWhDfftDuaRJ27cIF6hw4xxeEgAzDd4WBU/foU9IQhiGkgQ4YMPN20KeuyZKE0EJM3r0mQFSnC6dOnWb58ud0hXq9yZRgwwCx37mwSrT7kutlwL12CdevMspJkIiLyH61aQebMpqOFp32cp6WffjLDSgMD4aOPzGAAERFfoCSZpB/OL7SrV9OqVSvCw8OJjo5myJAh9sblTrNnm0ogf39zifOanll2unDhAgsXLkz4d4UKFfho9GjCt2yBxx7DcemSmWRg7lwbo0xDp05B3bo4duyAggUJWrEiodPtkCFDqFWrFi1btmT37t02B3qN/v1NYvXff8087z5iyZIlFC5cmA+d03Vt2WImu7jjDihVytbYRETE82TObCbqhvTbwP/CBejRwyy//LK98wyJiLibkmSSflzTl8zhcPDOO+8A8Mknn7B582YbA3OT6GhTBQSmaX+lSvbGA1iWxQ8//EDZsmVp1KgRO3bsSLivS5culLrrLpg0CVq2hJgYaN4c5s+3L+C08O+/Zp74P/+EfPlMBVnRogl3x8XF4efnx6xZsyhbtiy9e/cmKirKxoCvCAyECRNMgvX779NPwvIW4uPj6dWrF5GRkfz1119mpXOo5T33mCHcIiIi/+Eccvndd2Yy8fTm3Xfh77/NHEPOQnMREV+hbwCSflSvbm43bIDYWOrWrUurVq2Ii4ujc+fOxMfH2xufq73+Ohw4YKYfGjzY7mjYtWsXjRo1okWLFvz999/kyZOH48eP37hhhgzw7bfwyCMmUfbII3BN1ZlXOXMG6tWDiAjIkwcWLzZdfq8xcuRItmzZQqNGjbh8+TIffPABpUqVYsqUKVh2NzepUME0IAHo2hUuXrQ3Hhf76quv2LhxI1mzZmWw8/+M+pGJiMht1KgBJUvC+fMwfbrd0aStffvg7bfN8gcfmI4mIiK+REkyST9KlIBs2cwX+yuVYyNGjCBTpkysWLGCiel5GqJNm0zDCICxY209o4mOjqZfv36UK1eOuXPnEhgYSP/+/dmxYwe1bzaJQGCguRzbtKl5/Zo1Mwkmb3L2LDRoYJK0OXPCokVQunSim5YtW5bZs2cze/ZsihcvztGjR3nyyScZPny4m4NOxBtvQP78ptnKlWrM9OjYsWO88sorAAwaNIhcuXKZO5QkExGR23A4rm/gn5707GlOxerUgdat7Y5GRMT9lCST9MPhuPrFduVKAAoWLMigQYMAGDVqlP2VOq5gWaZxRHy8OZtp0MC2UOLi4qhatSpvv/02ly5domHDhvz5558MHTqUTLdL3AUGmsuxjRubZhhNmsCSJW6JO9Wio6FRI1izBrJnN5Vwd91124c1atSILVu2MGTIEPLmzctTTz3lhmBvI0sWM887wPDhsGePreG4Srdu3Thz5gzh4eF0c1bPnTwJzj5x1arZF5yIiHi89u3NqPwVK2DnTrujSRu//go//mgmvP74YzXrFxHfpCSZpC/3329ur5luqEePHvTt25dFixbhSI+f9rNmmWRScDC8956tofj7+9OxY0fCwsL48ccfmT17NiWS0+01KMj0w2rY0CTKGjeGZctcF3BacA6xXLHCNHtfsMAMW0yi4OBgBgwYwL59+8ibN2/C+ueff56vv/7anmHCrVqZ3ykmBnr3dv/+Xeynn35i+vTp+Pv78+WXXxIQEGDu+P13c3vXXSbZKSIichP585vTFTAtPb1dTIyZIB1M54WyZe2NR0TELkqSSfpSq5a5XbbMVFgBGTJkYPjw4WTLls3GwFzk2iRG795QpIhbdx8ZGUmvXr1YfM3QyJ49e7J161aaNWuWsqRkcDDMnAn165tmH40amaGLnujUKTMeYdUqkyCbPx8qV07RUwUHBycsL1q0iM8//5yOHTtSs2ZNNm7cmEYBJ5HDYYbv+vubS8reUtGXRAcOHMDf35+XX36ZihUrXr3DmZB1vo+IiIjcgnPI5ddfw+XL9saSWiNGmGLqPHngyiAMERGfpCSZpC9Vq5pqpBMnrg6buoZlWUyYMIGDBw/aEJwLjBxpOqzmzw+vvuq23VqWxaRJkyhVqhQjRozgpZdeIi4uDoDAwEAyZsyYuh0EB5sKuYcfhnPnTKJsxow0iDwNHT0KtWvDxo2QK5dJJFWtmiZPXbNmTd555x0yZcrEypUrCQ8Pp3Pnzvz7779p8vxJUro0PP+8WX75ZTOcN53o2rUrK1euvNqs38lZgVqzpttjEhER79O0qWlDevSod0/OfegQvPWWWX7vPcia1d54RETspCSZpC9BQXDPPWY5kWF6AwcOpFOnTrRt25bY2Fg3B5fGjh2DIUPM8vDhkDmzW3a7efNmateuTbt27Th+/DglSpTggw8+wN/fP213lDEj/PwzPPooxMbCY4/BF1+k7T5SascOuO8+2LbNJCiXLUvWEMvbCQwMpE+fPuzcuZPHH38cy7IYO3YsJUuW5IsvvkhISLrc4MHmTPmPP2DSJPfs04Wu7UlYrVq165O5Z8+ahCcoSSYiIkkSGAhPPmmWvbmBf+/epnj/vvvgf/+zOxoREXspSSbpj/ML7jV9yZw6duxIaGgoK1eupFevXm4OLI0NHmwaxler5pYzmjNnztC9e3cqV67M8uXLCQkJYdiwYWzZsoUGrposICgIpk2D554zlUzPPWfGANhZ1bR0qZn7fd8+KFrU/J3dZBbL1CpQoABTpkzht99+o1y5cvzzzz8MHTrUfQneXLlgwACz3L+/OYP2UitWrKBq1aps3bo18Q1WrTJ/V2FhULCge4MTERGv5Rxy+dNPpguDt/ntN3Oq5ecHo0erWb+IiJJkkv5c25fsP4oXL86kKxUxY8aMYeLEie6MLO3s3Qvjxpnl9983ZzYutnDhQkaNGkVcXBytWrVi+/bt9OvXj6CgINfu2N8fPv30arLmzTfNLJ7R0a7db2K+/toMAT192sykunq1SZS52AMPPMAff/zByJEjGT16dEIFVFxcHKdcfUberZvpdXf4sPlb80J///03LVq0YMOGDbz99tuJb6R+ZCIikgIVKkB4OFy6BJMn2x1N8ly6BF27muUXX4Rr23SKiPgqJckk/ale3SRW/v4bEuk91qRJE15//XUAnn32WZZ4Y1PyN94wHWLr13fp0LBre2A9+uijPP/888yfP5/p06dTuHBhl+33Bg6HGVr61VdmbMPMmaaaa88e9+z/4kV44QXo2NGcUbZqBYsXm0orN8mQIQPdu3enSZMmCeu++OILSpQowejRo7nsqo7BwcHwzjtm+b334ORJ1+zHRaKiomjatCknT56kUqVKfPrpp4lvqCSZiIikkLOa7KuvEuaN8gqjR5vOETlzmmuQIiKiJJmkR1myQKVKZjmRIZcAgwYNokWLFsTGxvLII48QERHhvvhSa/v2q/2hnF1W09iBAwd48sknKVWqFGfOnAHA4XDw6aef8vDDD7tkn0nSqZNpkJ8nD2zZYi55jh/v2jPSbdtMk47PPjPJukGDzLiE1E5OkEqWZTFjxgzOnDnDSy+9RHh4OAsWLHDNzh57zFwmj46Gm1VieaCLFy/SokUL/vzzT/LmzctPP/1EpkyZEtsQ1q41y+pHJiIiyfT446ZDxObNV9tberpjx67OYjl8OGTPbm88IiKeQkkySZ9uMeQSwM/PjylTplC7dm3OnTt38z5FnsjZk6t58zSbTdHp7Nmz9O/fn1KlSjFlyhT++ecf5s2bl6b7SLXq1WH9ejOz5Llz8NRT0KIF7N+ftvu5fNkkhCpVMo3rc+SAX381veDcMLz1dhwOB3PnzmXs2LFky5aNzZs3U69ePRo0aMCmTZvSemcwdKhZHjPGTIPl4WJjY2nVqhWLFi0iU6ZM/PjjjxS8Wa+xtWvN5BB580Lx4u4NVEREvF727Oa0DLyngf+rr0JUlDmVfOopu6MREfEc9n/TE3EFZzXILYZSBgcH8+OPPzJ37lyedE5N5Ok2boTp003SIg3r4mNjYxk7diwlSpRg+PDhXLx4kQceeID169fTpk2bNNtPmilYEBYtMkmsgAD48UcoU8ZU1qW2V5llwQ8/QLly0K+fSZ40bgybNpnhrR7E39+fF154gV27dtG9e3cyZMjAvHnzqFSpEh9++GHa7qxePZN8jolxWQVjWho+fDizZ88mODiY2bNnU61atZtvvHSpua1ZUx2LRUQkRZyJpsmTTYGyJ1uxApxteUeP9ohrfyIiHkNviZI+1a5tPvF37rxl1UtoaCgPPfRQwr/379/P+vXr3RFhylzppUbbtnD33WnylBcvXuSuu+6ic+fOnDhxghIlSvDjjz+yePFiKleunCb7cAl/f3MZdONG83pfuGCOT+HCptru+PHkPd+lS/Dtt6Yhf4sW5m8nVy7TrP/nn6FAAdf8HmkgZ86cjBw5ku3btyckNR944IG03cm11WTjxrmvH1wK9ejRgypVqvDDDz9Qu3btW2+8cKG5rVvX9YGJiEi6VLcuFCoEZ86Ya3eeKi7uarP+p582k6SLiMhVSpJJ+pQtG1SpYpadX4Bv49ixYzz00EPUqlWL7777zoXBpdDq1fDLLyY5NHhwqp7KuqaHV3BwMDVr1iRv3rx8/PHH/PnnnzRr1gyHt1TUlCtn5i+fMgVKlDAzT775JuTPbyq/PvrIDJc8f/76x8XHw759MHWqufybJw888YQZepcxo5lNc88eaN/ea6qLihUrxtSpU9mzZ891Cc5XXnmFPn36cOLEidTt4P77oVEjc4btbGTiQU6cOJHwtx0aGsrq1aupf7vqv+hoWLXKLF+TMBcREUkOf3/o0MEse/KQy88+g4gIuOMO04tMRESupySZpF/OL7xJTJJlypSJ4sWLc+HCBdq0acNrr73muhkDU+K118xthw5QsmSKniImJoZx48ZRtmxZtmzZkrD+vffe46+//qJr164EBgamRbTu5XCYrrnbt5vhqPfea5Jg8+dDjx6m6XymTKYyrFAhUxUWFARFi5rHjR9vkmt585oE5L59ZjbNrFnt/s1SpGjRognLR44cYdSoUbz33nvceeedvPzyyxw7dizlTz5kiLn99lvTodhDzJ8/n7JlyzJixIiEdf7+/rd/4LJlpoowLAyKFXNhhCIikt517GhuFyxIdIJ12508aa4Bgvk4d+Mk3SIiXkNJMkm/nLMwLlyYpNkPs2TJwi+//ELv3r0BGDp0KLVr12bv3r2ujDJpfvvN9ODKkOHqkMtkOHv2LO+99x5hYWE888wz7Nixg1GjRiXcnyNHDkJCQtIyYnv4+0OrVqYyaM8e07OsYUNzuRTg1Ckz/PbIEdOYP0MG07G2e3fTv+7QIVMhlSePnb9FmsqXLx8zZ86katWqXLhwgQ8//JAiRYrQqVOnlDX4r1TJzHZpWTBwYNoHnEwxMTG89tprNGjQgH/++YfvvvsuecltZxJdVWQiIpJKxYqZDhCWZbo1eJoBA8xw0AoV4Pnn7Y5GRMQzOSwrCdkDL3L27FlCQ0OJjIwkq5dWgUgaiYkxwy4vXDAVL8no4TVlyhRefPFFzp49S+bMmRk2bBhdu3a1ZwiiZZlhbitXQpcupsNqEm3evJmxY8cyadIkoq80tC9QoAC9evXi2WefJUuWLK6K2rNYljkrPHjQVA2BqRrLndskynyAZVnMmzePt956i5UrVyas//rrr2nfvn3ynmznTihb1lTrrV4N99yTxtEmzZo1a3jqqafYtm0bAM899xwfffQRwcHBSX+Su++GP/+EadNM8k98ms4hvINeJ/FkEyeaov+iRWH3bs9pir9unfm4tixYvtycWoqI+JKknj94yNu2iAsEBZnZ+CDJQy6dnnjiCTZv3kytWrWIjo5m0aJF9vXo+vVXkyALDr5aI58EcXFxNGrUiE8//ZTo6GjKli3L+PHj2bt3L7169fKdBBmY4ZjZskH58mboZXi4GXLpIwkyAIfDQYMGDVixYgWrV6+mTZs2ZM6cmUaNGiVss2HDBnbv3n37JytV6mrjFecwYDc6evQoHTp0oHr16mzbto3cuXMzffp0Pvvss+QlyI4dMwkyhwPq1HFdwCIi4jMefRSyZIG9e00yyhPEx5tm/ZYF//ufEmQiIreiJJmkb8nsS3atIkWKsHjxYsaOHcuHH36YsH7fvn0sXrwYtxRhWtbVJETXrpAvX6KbXbp0idmzZ/P0008TGxsLmH5MXbp0oXXr1vz222/8+eefdOzY0Tt7jkmauueee5g6dSqHDh0iZ86cCet79uxJyZIlqV27NmPHjr1177LXXzdJxoULzVBVN7p48SJTp07FsizatWvHtm3baNWqVfKfaNEic1upElxzHERERFIqUya4MtG0xzTwHz/ezEuUJQu8+67d0YiIeDYNt5T0bdMmqFjRnLH8+y+kQYKoU6dOTJgwgbvuuovnnnuOdu3akS1bttTHmpgZM0yPrcyZTTP5a77I//vvv8ydO5dffvmFuXPncvr0aQB++uknmjZt6pp4JN2KiYmhZcuWzJ07l/j4eMBUn91///20bNmSRo0aUfK/E0Z06QKffGIuSS9b5pJZQC9dusS8efPYuHEjA6/pgfb5559TqVIlqlatmvIn79jRNI3p0wfeeSf1wYrX0zmEd9DrJJ5u1SqoUQNCQuDoUXvnATp92sz3dOoUfPAB9OplXywiInZK6vmDkmSSvsXHm95TJ0/C4sXw4IOpejrLsujVqxeff/4558+fByAwMJA6derQrFkzmjRpQqFChdIicoiLM8MDt20zDdLffBMwfZh69OjB2rVrE5IZAHny5KFt27a8+OKLlCpVKm1iEJ9z6NAhpkyZwowZM1i7dm3C+latWjF9+nTADOXdvXs3JTNnxq9ECbh4EebOhfr10ySGqKgoFi9ezNy5c5k5cyYnTpwAICIiggoVKqTJPrAsKFjQTOKwYIEa9wugcwhvoddJPJ1lQZkypoXnF1/AM8/YF8tLL5l2tmXKmGvHPtRpQkTkOupJJgKmW2rDhmZ59uxUP53D4WDEiBEcOXKEMWPGUL58eWJjY5k7dy6dO3e+YcjX/Pnz2bNnT8IQyNuJj4/nyJEjrF27llXdusG2bURlyMDEa+bozpIlC6tXryY+Pp67776bfv368fvvv3P48GFGjhypBJmkSsGCBenTpw9r1qzhwIEDjBw5krp1617Xu2zHjh2UKVOGO8qW5bsr1Y0nnnuO+fPmsXfvXi45J0e4jbi4uOu2/eWXX6hWrRo5cuSgefPmfPrpp5w4cYLcuXPTs2fPtO2jt3GjSZBlygQ1a6bd84qIiM9zOOCpp8yynUMuN20yBd8AH3+sBJmISFKokkzSv+nTzax1pUrBjh1p+tSWZbFjxw5+/PFHfvzxR+677z7ef/99AKKjo6/7Uh8aGkquXLnIli0bAQEBNG3alH79+gFw8uRJKlSowMmTJ7l8+TIBwA6gGNAXONKuHRMnTkzY55QpU7j//vspUqRImv4+Ikkxe/ZsWrduzYULF8gJ7AMyA82BH4HRo0fTpUsXAFauXMnLL79MQEAA/v7+nD9/nqioKM6ePcvJkyf55ptvaHOlecvPP/9Ms2bNAChWrBgNGjSgUaNGPPzww2RI6zP7N9+EQYOgRQuYOTNtn1u8ls4hvINeJ/EGR49CoUJmYMD27VC6tHv3b1lm/qrff4fWreG779y7fxERT5PU84cAN8YkYo969SAgwNS8794NJUqk2VM7HA7KlClDmTJl6Nu373XN/E+dOkX58uXZtWsXFy9eJDIyksjIyIT7y5Ytm7AcEhLC0aNHAfDz86Nn1qwUO3OGsxkzUuTNN3m0du3r9vnkk0+m2e8gklyNGzfm7NmzbNu2jXXr1rHqiy94eM0a3g0KYm58PDly5EjY9p9//mH16tU3fa6///47Yfm+++5j6tSpVKtWjbCwMFf+CvDLL+a2SRPX7kdERHxSvnxmMMMvv5jG+e5ufTllikmQhYTAleu3IiKSBKokE99Qt67pSTZiBPTo4dZdx8fHc+bMGU6ePMmJEyc4c+YMcXFxFC5cmMqVKwOmOmzTpk3kyJGDfNmyEVCmDBw6BCNHQvfubo1XJNlOn4awMIiMJH7SJOLbtCEgwFyDOXbsGGvXruXSpUtcvnyZkJAQsmbNSpYsWciVKxf58+fH39/fvfEeO3Z1ptijR03fQhF0DuEt9DqJt5g1C1q2NB8zBw+aa7bucPasGUBx7BgMHQr9+7tnvyIinkyVZCLXatLEJMl++cXtSTI/Pz+yZ89O9uzZb9ovzOFwULFiRfOPUaNMgqxgQXj+efcFKpJS2bJB794wcCB+b7yB35XhkwB58+ZNGELpMebMMbdVqypBJiIiLtO4sZmY/NgxM7+Nu4qX33zT7LN4cXj5ZffsU0QkvVDjfvENzrOSpUvhmiGPHufcORg2zCwPHAjBwfbGI5JU3bubbwK7d8M339gdza39/LO51VBLERFxocBAaNfOLLurgf+2bfDRR2Z51CgICnLPfkVE0gslycQ3lChh5r6+fPnqF2RPNGoUHD8ORYtCp052RyOSdFmyQN++ZvmNNyCJM7q6XXS0uZwP0LSpvbGIiEi655zl8uef4eRJ1+7LsqBbN3O626zZ1QneRUQk6ZQkE9/RqpW5/f57e+O4mdOn4d13zfKbb2qebvE+L75oen3t3w9ffml3NImbPRsuXoRixcA5xFlERMRFypWDKlVM4mrSJNfua8YMWLTIVI+NGOHafYmIpFdKkonvcCbJ5s41HU09zfvvw5kz5myqbVu7oxFJvpAQGDDALA8ZAhcu2BtPYqZPN7etW4PDYW8sIiLiE5zVZOPHm2ovVzh3Dnr1MsuvvmoGJYiISPIpSSa+4+67oWRJiIkxDfw9ybFjZiZLMMkFd8/2J5JWnnkGihQxs0aOHWt3NNc7d+5q0/7Wre2NRUREfEbbtqa6a8sW2LDBNfsYNszMoFmkiEmSiYhIyihJJr7D4bj6xdjThlwOGwbnz8M995gmEiLeKigIXn/dLA8fbnqAeYo5c0x1W1gYVKpkdzQiIuIjsmWDli3Nsisa+O/ebQYkgLnmGhKS9vsQEfEVLk2SDR06lBo1ahASEsIdd9yRpMdYlsXgwYPJnz8/GTNm5IEHHmDr1q2uDFN8iTNJ9uuvnjPkcv9++PRTszxsmIaAifdr395MlnHq1NUptjzBtGnmVkMtRUTEzZxDLr/9Nm27EViWmWA6Nhbq14dHHkm75xYR8UUuTZLFxsbSunVrXnzxxSQ/5t133+XDDz9k9OjRrFu3jrx58/Lwww8TFRXlwkjFZ5Qvb2a5vHjxam8iuw0eDJcuQd26UKeO3dGIpF5AgJnhEuC998ykFHb799+rM9s+/ri9sYiIiM+pUwcKFzbtZ3/4Ie2e95dfzLXfDBnMdSldAxIRSR2XJsneeOMNevbsyd13352k7S3LYuTIkQwYMICWLVtSrlw5vv76a86fP8+UKVNcGar4CocDOnY0yxMm2BmJsXkzTJxolocNszcWkbTUpo2ZhCIyEj74wO5oYOpUc5m9QgXNaikiIm7n53f1FHT8+LR5zosXTRUZmKb9pUqlzfOKiPgyj+pJtm/fPo4dO0a9evUS1gUFBVG7dm1WrlyZ6GNiYmI4e/bsdT8it/S//5kzld9/hz177IvDsuDllyE+3gz/qlbNvlhE0pqfH7z5pln+8EM4dMjeeJxJcec3FBERETdzfgQtXGi6baTWu+/Cvn2QPz+89lrqn09ERDwsSXbs2DEA8uTJc936PHnyJNz3X8OHDyc0NDThp1ChQi6PU7xc/vymaQPA11/bF8evv5qzpMBAePtt++IQcZXmzeH++03zlf797Ytj2zZYt84MA33iCfviEBERnxYWBg8+aK6TpvYU9O+/zfw4YAq2M2dOdXgiIkIKkmSDBw/G4XDc8mf9+vWpCsrxn8H0lmXdsM6pX79+REZGJvwcPHgwVfsWH+G8lPf113D5svv3f/ky9O5tlrt1g6JF3R+DiKs5HDBihFn+5htYu9aeOJzjWho3hty57YlBRESEqw38J0wwgwlSqlcvM9zygQdMhwMREUkbAcl9QNeuXWnbtu0tt7nzzjtTFEzevHkBU1GWL1++hPUnTpy4obrMKSgoiKCgoBTtT3xYs2aQIwccPGiaebdo4d79f/EFbN9uYhgwwL37FnGnKlWgQweTkO7Z0wxzdmdX4fPnYdw4s+z8ZiIiImKTli2hSxczTHLpUlNZllzz5sGsWeDvDx9/rGb9IiJpKdmVZDlz5qR06dK3/AkODk5RMGFhYeTNm5cFCxYkrIuNjWXp0qXUqFEjRc8pkqjgYHjuObM8apR79/3PPzBwoFkePBjuuMO9+xdxt2HDICQEVq6EadPcu+/Jk83smmFhppJMRETERiEh4Kw3SEkD/9hYMwgB4KWXzBw5IiKSdlzak+zAgQNERERw4MAB4uLiiIiIICIigujo6IRtSpcuzaxZswAzzLJHjx4MGzaMWbNm8eeff9KxY0dCQkJ4Qn1kJK29+KK5BLdkiZll0l369jWJsnLl4Pnn3bdfEbvkz2/+7sFMVuGuCVYs62oSvGtX8/9dRETEZp06mdvvvzeTQCfHyJGwa5fpHjB4cFpHJiIiLk2Svf7661SqVIlBgwYRHR1NpUqVqFSp0nU9y3bu3EnkNZ8Offr0oUePHnTu3JkqVapw+PBh5s+fT5YsWVwZqviiQoVMzTu4r5ps5Ur48kuzPHYsZMjgnv2K2K13byheHI4cuVpJ6WpLlsCff0KmTBpqKSIiHuOee6BMGTOvTXIKrA8dujpx9LvvQmioa+ITEfFlDsuyLLuDSEtnz54lNDSUyMhIsmbNanc44ul+/x1q1jQzTP71FxQs6Lp9Xb4M4eGmaq1TJ/jqK9ftS8QTLVwIDz9smqesXWv6lblS/fowf76pGv3kE9fuS9IFnUN4B71Okh68/z688grcey+sWpW0xzz+OEydCjVqwPLl4OfScgcRkfQlqecPemsV33bffVCrlmnw4JxH21XeecckyLJnN5f/RHzNQw/BE0+YYZDPPQeXLrluX6tXmwRZQID5FiIiIuJB/vc/0wVg9Wozl9PtLFliEmQOB4werQSZiIir6O1VfJvDcbVu/Ysv4MAB1+wnIgLeeMMsjxgBOXO6Zj8inu7DDyFbNti4EYYOdd1+nP/f2rc3TftFREQ8SN68V+eTuV0D/0uXTJN+gBdegEqVXBubiIgvU5JMpHZtM//2pUvw1ltp//wxMeaL+qVL0Lw5tGuX9vsQ8RZ58lwd+jhkiLmEntYWL4a5c80l+v790/75RURE0oCzgf/Eibcurv7kE9NiM0cO89EpIiKuoySZCFytJvvqK1PhkpZeew22bIFcueCzz0z1mogva9vWDLuMizPjTa6Z8TjV4uKgZ0+z3LkzFCuWds8tIiKShho3NrNUHj8Ov/6a+DbHj8Prr5vlYcNM1w4REXEdJclEAO6/H9q0gfh46NrV3KaFWbNMZ1YwCbLcudPmeUW83ZgxZobZv/6CZ581fcrSwqefmt5/2bLBoEFp85wiIiIukCHD1QEGNxty+eqrcPasmfvp6afdF5uIiK9SkkzE6f33IVMmWLkybWbC27ULOnQwy716QYsWqX9OkfTijjtg8mTTWH/q1KvJ5NTYt898mwBTHZojR+qfU0RExIWcQy5/+QVOnLj+vpUr4euvzfKYMaaLgIiIuJaSZCJOBQteneHylVeSNtXQzRw9Cg0bQlQU1KwJb7+dNjGKpCc1a8JHH5nlvn3hp59S/lyXL0PHjnDunHnezp3TJEQRERFXuusuqFbNfIxNmnR1fVycGdwA8NRTcM899sQnIuJrlCQTuVaXLlC/Ply8CI8+CmfOJP85IiNNgmzvXihaFKZPN/X0InKjF180wy3j46F1a1i4MGXP8+qrsGyZqQb96ivw08ebiIh4B2c12bhxV7sPfPGFaZMbGnr1Gq6IiLievkWIXMvPDyZMMFVl27dDq1YmYZZUJ06YmTI3bTKz+M2fb25FJHEOhxne3KIFxMbCI4/AvHnJe46PP4YPPzTLEydC8eJpH6eIiIiLtG0LwcGwbZtprfn559Cnj7nvrbfU0lZExJ2UJBP5r7x54eefTUXKokXQoIGpDrudDRvg3nvNZb9cucwXfc2sJ3J7AQHw7bemAvP8eTPd16hRt2/mb1nw3nvQrZv596BB0LKl6+MVERFJQ3fcAVWrmuXOneH5503HjgwZzGmpiIi4j5JkIompWBFmz4YsWWDpUqhQwQwDS+xLe3Q0vPYa1KhhGoeHhcGKFeYxIpI0QUHwww9mmq+4OOje3SSo//wz8e0PHDCVns5L7a++qtksRUTEK82cCcuX37j+0iUz+frMme6PSUTEVzks63aX6r3L2bNnCQ0NJTIykqxZs9odjni7P/4wvcn+/tv8u1o1aNIE7rzTNAhfswZmzDCX+wCaNzf9kLJlsylgES9nWWb45KuvmqHODocZwly/PhQoYPoELl1qmvzHxJjL7B98YLobOxx2Ry9eTucQ3kGvk6QncXHmtPLQocTvdzhMF5B9+zS7pYhIaiT1/EFJMpHbiYqC/v1NB9WYmMS3KVkS3nnH9FPSF3WR1Nu5EwYONBNf3Ezt2iZBFh7uvrgkXdM5hHfQ6yTpyZIl5lrQ7fz2GzzwgKujERFJv5J6/hDgxphEvFOWLKay5bXXzBf2lSvhn39MBUu5cmZIWO3aSo6JpKVSpeC778yl8xkzTK+/I0dMlWaZMiYhXbWq/t+JiIhXO3o0bbcTEZHUUZJMJKny5DFDurp2tTsSEd8RFga9e9sdhYiIiEvky5e224mISOqocb+IiIiIiIgNatY0PcduVhjtcEChQmY7ERFxPSXJREREREREbODvDx99ZJb/myhz/nvkSDXtFxFxFyXJREREREREbNKyJXz/vZnE+VoFC5r1LVvaE5eIiC9STzIREREREREbtWxp5qRZvtw06c+XzwyxVAWZiIh7KUkmIiIiIiJiM39/eOABu6MQEfFtGm4pIiIiIrZo0aIF2bJlo1WrVnaHIiIiIqIkmYiIiIjYo1u3bkycONHuMEREREQAJclERERExCYPPvggWbJksTsMEREREUBJMhERERGvMnz4cKpWrUqWLFnInTs3zZs3Z+fOnWm6j2XLltG0aVPy58+Pw+Hghx9+SHS7Tz75hLCwMIKDgwkPD2f58uVpGoeIiIiIOylJJiIiIuJFli5dSpcuXVi9ejULFizg8uXL1KtXj3PnziW6/YoVK7h06dIN63fs2MGxY8cSfcy5c+eoUKECo0ePvmkc06ZNo0ePHgwYMICNGzdSs2ZNGjZsyIEDBxK2CQ8Pp1y5cjf8HDlyJJm/tYiIiIjrOSzLsuwOIi2dPXuW0NBQIiMjyZo1q93hiIiIiJfw1nOIkydPkjt3bpYuXUqtWrWuuy8+Pp7KlStTokQJpk6dir+/PwC7du2idu3a9OzZkz59+tzy+R0OB7NmzaJ58+bXrb/nnnuoXLkyY8eOTVhXpkwZmjdvzvDhw5Mc/5IlSxg9ejTff/99krb31tdJRERE7JPU8wdVkomIiIh4scjISACyZ89+w31+fn7MmTOHjRs30r59e+Lj4/nrr7+oU6cOzZo1u22C7GZiY2PZsGED9erVu259vXr1WLlyZYqe83bGjBlD2bJlqVq1qkueX0RERERJMhEREREvZVkWvXr14v7776dcuXKJbpM/f34WL17MihUreOKJJ6hTpw5169bl008/TfF+T506RVxcHHny5LlufZ48eW46hDMx9evXp3Xr1syZM4eCBQuybt26m27bpUsXtm3bdsttRERERFIjwO4ARERERCRlunbtyubNm/n9999vuV3hwoWZOHEitWvXpmjRoowbNw6Hw5Hq/f/3OSzLStbzzps3L9UxiIiIiKQVVZKJiIiIeKGXXnqJn376id9++42CBQvectvjx4/z3HPP0bRpU86fP0/Pnj1Tte+cOXPi7+9/Q9XYiRMnbqguExEREfEWSpKJiIiIeBHLsujatSszZ85k8eLFhIWF3XL7U6dOUbduXcqUKZPwmO+++47evXunOIbAwEDCw8NZsGDBdesXLFhAjRo1Uvy8IiIiInbScEsRERERL9KlSxemTJnCjz/+SJYsWRKquUJDQ8mYMeN128bHx9OgQQOKFCnCtGnTCAgIoEyZMixcuJAHH3yQAgUKJFpVFh0dzZ49exL+vW/fPiIiIsiePTuFCxcGoFevXrRr144qVapQvXp1Pv/8cw4cOMALL7zgwt9eRERExHUclmVZdgeRljQtuIiIiKSEt5xD3Kzn1/jx4+nYseMN6xcsWEDNmjUJDg6+bn1ERAQ5cuSgUKFCNzxmyZIlPPjggzes79ChAxMmTEj49yeffMK7777L0aNHKVeuHCNGjKBWrVrJ+4WSyVteJxEREfEcST1/SHdJssjISO644w4OHjyoEycRERFJsrNnz1KoUCHOnDlDaGio3eHITehcT0RERJIrqed56W64ZVRUFECiV0VFREREbicqKkpJMg+mcz0RERFJqdud56W7SrL4+HiOHDlClixZ0mRq8/9yZh919dI+eg3speNvLx1/e+n428vVx9+yLKKiosifPz9+fprbyFPpXM+z6filjo5f6uj4pY6OX+ro+KWOp5znpbtKMj8/v9tOg54WsmbNqj98m+k1sJeOv710/O2l428vVx5/VZB5Pp3reQcdv9TR8UsdHb/U0fFLHR2/1LH7PE+XSUVERERERERExOcpSSYiIiIiIiIiIj5PSbJkCgoKYtCgQQQFBdkdis/Sa2AvHX976fjbS8ffXjr+4g76O0sdHb/U0fFLHR2/1NHxSx0dv9TxlOOX7hr3i4iIiIiIiIiIJJcqyURERERERERExOcpSSYiIiIiIiIiIj5PSTIREREREREREfF5SpKJiIiIiIiIiIjPU5IsEZ988glhYWEEBwcTHh7O8uXLb7n90qVLCQ8PJzg4mKJFi/Lpp5+6KdL0KTnHf+bMmTz88MPkypWLrFmzUr16debNm+fGaNOf5P79O61YsYKAgAAqVqzo2gB9QHJfg5iYGAYMGECRIkUICgqiWLFifPXVV26KNv1J7vGfPHkyFSpUICQkhHz58tGpUyf++ecfN0WbfixbtoymTZuSP39+HA4HP/zww20fo89fSUsp+RsUY/jw4VStWpUsWbKQO3dumjdvzs6dO+0Oy2uMHTuW8uXLkzVr1oTz2V9//dXusLzW8OHDcTgc9OjRw+5QvMLgwYNxOBzX/eTNm9fusLzK4cOH+d///keOHDkICQmhYsWKbNiwwe6wvMadd955w9+gw+GgS5cutsSjJNl/TJs2jR49ejBgwAA2btxIzZo1adiwIQcOHEh0+3379tGoUSNq1qzJxo0b6d+/P926dWPGjBlujjx9SO7xX7ZsGQ8//DBz5sxhw4YNPPjggzRt2pSNGze6OfL0IbnH3ykyMpL27dtTt25dN0WafqXkNXjsscdYtGgR48aNY+fOnXz77beULl3ajVGnH8k9/r///jvt27fn6aefZuvWrUyfPp1169bxzDPPuDly73fu3DkqVKjA6NGjk7S9Pn8lrSX3b1CuWrp0KV26dGH16tUsWLCAy5cvU69ePc6dO2d3aF6hYMGCvP3226xfv57169dTp04dHnnkEbZu3Wp3aF5n3bp1fP7555QvX97uULzKXXfdxdGjRxN+tmzZYndIXuP06dPcd999ZMiQgV9//ZVt27bxwQcfcMcdd9gdmtdYt27ddX9/CxYsAKB169b2BGTJdapVq2a98MIL160rXbq01bdv30S379Onj1W6dOnr1j3//PPWvffe67IY07PkHv/ElC1b1nrjjTfSOjSfkNLj36ZNG+u1116zBg0aZFWoUMGFEaZ/yX0Nfv31Vys0NNT6559/3BFeupfc4//ee+9ZRYsWvW7dqFGjrIIFC7osRl8AWLNmzbrlNvr8FVdKyt+g3NyJEycswFq6dKndoXitbNmyWV9++aXdYXiVqKgoq0SJEtaCBQus2rVrW927d7c7JK+g8/fUefXVV63777/f7jDSle7du1vFihWz4uPjbdm/KsmuERsby4YNG6hXr9516+vVq8fKlSsTfcyqVatu2L5+/fqsX7+eS5cuuSzW9Cglx/+/4uPjiYqKInv27K4IMV1L6fEfP348f/31F4MGDXJ1iOleSl6Dn376iSpVqvDuu+9SoEABSpYsSe/evblw4YI7Qk5XUnL8a9SowaFDh5gzZw6WZXH8+HG+//57Gjdu7I6QfZo+f0U8V2RkJIDOx1IgLi6OqVOncu7cOapXr253OF6lS5cuNG7cmIceesjuULzO7t27yZ8/P2FhYbRt25a9e/faHZLXcJ6Lt27dmty5c1OpUiW++OILu8PyWrGxsUyaNImnnnoKh8NhSwwBtuzVQ506dYq4uDjy5Mlz3fo8efJw7NixRB9z7NixRLe/fPkyp06dIl++fC6LN71JyfH/rw8++IBz587x2GOPuSLEdC0lx3/37t307duX5cuXExCgt5PUSslrsHfvXn7//XeCg4OZNWsWp06donPnzvz777/qS5ZMKTn+NWrUYPLkybRp04aLFy9y+fJlmjVrxscff+yOkH2aPn9FPJNlWfTq1Yv777+fcuXK2R2O19iyZQvVq1fn4sWLZM6cmVmzZlG2bFm7w/IaU6dO5Y8//mDdunV2h+J17rnnHiZOnEjJkiU5fvw4Q4YMoUaNGmzdupUcOXLYHZ7H27t3L2PHjqVXr17079+ftWvX0q1bN4KCgmjfvr3d4XmdH374gTNnztCxY0fbYtC32kT8N2NpWdYts5iJbZ/Yekma5B5/p2+//ZbBgwfz448/kjt3bleFl+4l9fjHxcXxxBNP8MYbb1CyZEl3hecTkvN/ID4+HofDweTJkwkNDQXgww8/pFWrVowZM4aMGTO6PN70JjnHf9u2bXTr1o3XX3+d+vXrc/ToUV555RVeeOEFxo0b545wfZo+f0U8T9euXdm8eTO///673aF4lVKlShEREcGZM2eYMWMGHTp0YOnSpUqUJcHBgwfp3r078+fPJzg42O5wvE7Dhg0Tlu+++26qV69OsWLF+Prrr+nVq5eNkXmH+Ph4qlSpwrBhwwCoVKkSW7duZezYsUqSpcC4ceNo2LAh+fPnty0GJcmukTNnTvz9/W+oGDhx4sQNV6ud8ubNm+j2AQEByrwnU0qOv9O0adN4+umnmT59ukqsUyi5xz8qKor169ezceNGunbtCpgPCcuyCAgIYP78+dSpU8ctsacXKfk/kC9fPgoUKJCQIAMoU6YMlmVx6NAhSpQo4dKY05OUHP/hw4dz33338corrwBQvnx5MmXKRM2aNRkyZIiqmVxIn78inuell17ip59+YtmyZRQsWNDucLxKYGAgxYsXB6BKlSqsW7eOjz76iM8++8zmyDzfhg0bOHHiBOHh4Qnr4uLiWLZsGaNHjyYmJgZ/f38bI/QumTJl4u6772b37t12h+IV8uXLd0Myu0yZMppIKAX279/PwoULmTlzpq1xqCfZNQIDAwkPD0+YTcFpwYIF1KhRI9HHVK9e/Ybt58+fT5UqVciQIYPLYk2PUnL8wVSQdezYkSlTpqgPUCok9/hnzZqVLVu2EBERkfDzwgsvJFwJveeee9wVerqRkv8D9913H0eOHCE6Ojph3a5du/Dz89MXlGRKyfE/f/48fn7Xf5Q6T8SdVU3iGvr8FfEclmXRtWtXZs6cyeLFiwkLC7M7JK9nWRYxMTF2h+EV6tate8M5aZUqVXjyySeJiIhQgiyZYmJi2L59uy70JdF9993Hzp07r1u3a9cuihQpYlNE3mv8+PHkzp3b/u/0dswW4MmmTp1qZciQwRo3bpy1bds2q0ePHlamTJmsv//+27Isy+rbt6/Vrl27hO337t1rhYSEWD179rS2bdtmjRs3zsqQIYP1/fff2/UreLXkHv8pU6ZYAQEB1pgxY6yjR48m/Jw5c8auX8GrJff4/5dmx0m95L4GUVFRVsGCBa1WrVpZW7dutZYuXWqVKFHCeuaZZ+z6Fbxaco//+PHjrYCAAOuTTz6x/vrrL+v333+3qlSpYlWrVs2uX8FrRUVFWRs3brQ2btxoAdaHH35obdy40dq/f79lWfr8Fde73d+g3NyLL75ohYaGWkuWLLnufOz8+fN2h+YV+vXrZy1btszat2+ftXnzZqt///6Wn5+fNX/+fLtD81qa3TLpXn75ZWvJkiXW3r17rdWrV1tNmjSxsmTJknDuI7e2du1aKyAgwBo6dKi1e/dua/LkyVZISIg1adIku0PzKnFxcVbhwoWtV1991e5QLCXJEjFmzBirSJEiVmBgoFW5cuXrpq/u0KGDVbt27eu2X7JkiVWpUiUrMDDQuvPOO62xY8e6OeL0JTnHv3bt2hZww0+HDh3cH3g6kdy//2spSZY2kvsabN++3XrooYesjBkzWgULFrR69eqlLyapkNzjP2rUKKts2bJWxowZrXz58llPPvmkdejQITdH7f1+++23W76f6/NXXO12f4Nyc4kdN8AaP3683aF5haeeeirhcydXrlxW3bp1lSBLJSXJkq5NmzZWvnz5rAwZMlj58+e3WrZsaW3dutXusLzKzz//bJUrV84KCgqySpcubX3++ed2h+R15s2bZwHWzp077Q7FcliWxoOIiIiIiIiIiIhvU08yERERERERERHxeUqSiYiIiIiIiIiIz1OSTEREREREREREfJ6SZCIiIiIiIiIi4vOUJBMREREREREREZ+nJJmIiIiIiIiIiPg8JclERERERERERMTnKUkmIiIiIiIiIiI+T0kyERERERERERHxeUqSiYiIiIiIiIiIz1OSTETSvW+//Zbg4GAOHz6csO6ZZ56hfPnyREZG2hiZiIiIiKTWnj17cDgczJ49m7p16xISEkKpUqVYs2aN3aGJiJdRkkxE0r22bdtSqlQphg8fDsAbb7zBvHnz+PXXXwkNDbU5OhERERFJjU2bNuFwOPjggw947bXX2LRpE4ULF6Zv3752hyYiXibA7gBERFzN4XAwdOhQWrVqRf78+fnoo49Yvnw5BQoUsDs0EREREUmlTZs2ERoayrRp08iVKxcAzZs3Z+zYsTZHJiLeRkkyEfEJTZo0oWzZsrzxxhvMnz+fu+66y+6QRERERCQNbNq0iaZNmyYkyAD27t1L8eLFbYxKRLyRhluKiE+YN28eO3bsIC4ujjx58tgdjoiIiIikkU2bNlG9evXr1m3cuJGKFSvaE5CIeC0lyUQk3fvjjz9o3bo1n332GfXr12fgwIF2hyQiIiIiaSAyMpL9+/dTqVKl69ZHREQoSSYiyabhliKSrv399980btyYvn370q5dO8qWLUvVqlXZsGED4eHhdocnIiIiIqmwadMm/P39qVChQsK6/fv3c/r0aSXJRCTZVEkmIunWv//+S8OGDWnWrBn9+/cHIDw8nKZNmzJgwACboxMRERGR1Nq0aROlS5cmY8aMCes2btzIHXfcwZ133mlfYCLilRyWZVl2ByEiIiIiIiIiImInVZKJiIiIiIiIiIjPU5JMRERERERERER8npJkIiIiIiIiIiLi85QkExERERERERERn6ckmYiIiIiIiIiI+DwlyURERERERERExOcpSSYiIiIiIiIiIj5PSTIREREREREREfF5SpKJiIiIiIiIiIjPU5JMRERERERERER8npJkIiIiIiIiIiLi85QkExERERERERERn/d/NLZFZoBEz4oAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAINCAYAAAD7t1ITAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6cklEQVR4nOzdd3hUZdrH8e+kJ5TQIZBCQu8gYkGqCEixF1ZULGADXAERX9a+FhYb6EqxAcq6gKtiAZQiTRBRShSlSAkkQEIIJSEFEpJ5/3hmQgIBA2TmzEx+n+vKNWeeOTnnHolT7nM/z22z2+12RERERERERERE5Jz8rA5ARERERERERETEGyiRJiIiIiIiIiIiUgpKpImIiIiIiIiIiJSCEmkiIiIiIiIiIiKloESaiIiIiIiIiIhIKSiRJiIiIiIiIiIiUgpKpImIiIiIiIiIiJSCEmkiIiIiIiIiIiKlEGB1AFYoKChg//79VKpUCZvNZnU4IiIi4iXsdjvHjh2jbt26+PnpeqQn0uc8ERERuRCl/ZxXLhNp+/fvJyoqyuowRERExEslJSURGRlpdRhSAn3OExERkYvxV5/zymUirVKlSoD5j1O5cmWLoxERERFvkZGRQVRUVOFnCfE8+pwnIiIiF6K0n/PKZSLNWeZfuXJlfcASERGR86Ypg55Ln/NERETkYvzV5zwt7iEiIiIiIiIiIlIKSqSJiIiIiIiIiIiUghJpIiIiIuL1Jk2aRPPmzenQoYPVoYiIiIgPs9ntdrvVQbhbRkYG4eHhpKena+0M8Wp2u52TJ0+Sn59vdSgif8nf35+AgACtLSVeTZ8hPJ/+jURERORClPYzRLlsNiDiC3Jzc0lOTiY7O9vqUERKLSwsjIiICIKCgqwORURERERE5LwpkSbihQoKCkhISMDf35+6desSFBSkKh/xaHa7ndzcXA4ePEhCQgKNGjXCz0+rC4iIiIiIiHdRIk3EC+Xm5lJQUEBUVBRhYWFWhyNSKqGhoQQGBrJnzx5yc3MJCQmxOiQREREREZHzonIAES+mih7xNvqbFRERERERb6ZvNCIiIiIiIiIiIqWgRJqIiIiIiIiIiEgpKJEmIuWOzWbjyy+/tDoMERERERER8TJKpImIiIiIiIiIiJSCEmki4lZ2u51XX32VuLg4QkNDadOmDZ999lnhY9dccw3XXnstdrsdgKNHjxIdHc1TTz0FQH5+PoMHDyY2NpbQ0FCaNGnCW2+9dcZ5pk2bRosWLQgODiYiIoLhw4cDUL9+fQBuuukmbDZb4f2S/Pjjj7Rt25aQkBAuvfRSvvzyS2w2G/Hx8WX3H0RERERERES8hksTaStXruS6666jbt26pZ5KtWLFCtq3b09ISAhxcXFMnTr1jH0+//xzmjdvTnBwMM2bN2fu3LkuiF7EO2VlZZ315/jx46XeNycnp1T7nq+nn36a6dOnM2XKFP744w9GjhzJXXfdxYoVK7DZbHz00Uf8/PPPvP322wA8/PDD1K5dm+effx6AgoICIiMj+fTTT9m8eTPPPvss//jHP/j0008LzzFlyhSGDRvGgw8+yKZNm/j6669p2LAhAL/88gsA06dPJzk5ufD+6Y4dO8Z1111Hq1at2LBhAy+++CJPPvnkeT9fERHxHfn5sHw5zJplbvPzrY5IRERE3C3AlQfPysqiTZs23Hfffdxyyy1/uX9CQgJ9+/blgQce4D//+Q+rV69m6NCh1KxZs/D316xZw4ABA3jxxRe56aabmDt3LrfffjurVq3i8ssvd+XTEfEKFStWPOtjffv2Zf78+YX3a9WqRXZ2don7du3aleXLlxfer1+/PmlpaWfs56wcK42srCzefPNNli5dypVXXglAXFwcq1at4t1336Vr167Uq1ePd999l7vvvpsDBw7wzTffsHHjRgIDAwEIDAzkhRdeKDxmbGwsP/74I59++im33347AC+99BKPP/44jz32WOF+HTp0AKBmzZoAVKlShTp16pw11k8++QSbzcb7779PSEgIzZs3Z9++fTzwwAOlfr4iIuI7vvgCHnsM9u49NRYZCW+9BTffbF1cIiIi4l4uTaT16dOHPn36lHr/qVOnEh0dzcSJEwFo1qwZ69at4/XXXy9MpE2cOJGePXsyduxYAMaOHcuKFSuYOHEis2bNKvPnICJlZ/PmzRw/fpyePXsWG8/NzaVdu3aF92+77Tbmzp3LuHHjmDJlCo0bNy62/9SpU/nggw/Ys2cPOTk55Obm0rZtWwBSU1PZv38/PXr0uKhYt23bRuvWrQkJCSkcu+yyyy7qmCIi4p2++AJuvRVOv3a0b58Z/+wzJdNERETKC5cm0s7XmjVr6NWrV7Gx3r178+GHH5KXl0dgYCBr1qxh5MiRZ+zjTL4J/Pbbb8TGxlKpUiWrQxELZGZmnvUxf3//YvdTU1PPuq+fX/GZ37t3776ouMBMywSYP38+9erVK/ZYcHBw4XZ2djbr16/H39+f7du3F9vv008/ZeTIkbzxxhtceeWVVKpUiddee421a9cCEBoaetFxgqm0s9lsZ4yJyLkdP36cgwcPEhUVZXUoImUiP99UopX0FmC3g80GI0bADTfAaW+zIiIi4oM8qtlASkoKtWvXLjZWu3ZtTp48WTil7Gz7pKSknPW4J06cICMjo9iPL3v88ceJiopixowZVociFqhQocJZf4pWV/3VvqcnpM623/lwrm2YmJhIw4YNi/0U/dL9+OOP4+fnx7fffsvbb7/N0qVLCx/74Ycf6NixI0OHDqVdu3Y0bNiQnTt3Fj5eqVIl6tevz/fff3/WOAIDA8n/i4VtmjZtym+//caJEycKx9atW3dez1ekvPnmm2+IiYlh0qRJVociUmZ++KH4dM7T2e2QlGT2ExEREd/nUYk04KwVIEXHS9rn9LGixo0bR3h4eOGPr10lP3nyZLH7fn5+pKenc9999/H+++9bFJXImSpVqsTo0aMZOXIkH330ETt37mTjxo1MmjSJjz76CDDVatOmTeOTTz6hZ8+e/N///R/33HMPR44cAaBhw4asW7eOhQsX8ueff/LMM8+c0TDg+eef54033uDtt99m+/btbNiwgX//+9+FjzsTbSkpKYXHPd3AgQMpKCjgwQcfZMuWLSxcuJDXX38dOPM1SETgq6++4sYbbyQ1NZX09PTC8UOHDrFnzx4LIxO5OMnJZbufiIiIeDePSqTVqVPnjMqy1NRUAgICqF69+jn3Ob1KraixY8eSnp5e+JOUlFT2wVvob3/7G6NHjy5MqH377bc88cQTADz66KNs2rTJyvBEinnxxRd59tlnGTduHM2aNaN379588803xMbGcvDgQQYPHszzzz/PJZdcAsBzzz1H3bp1efjhhwHTxfPmm29mwIABXH755Rw6dIihQ4cWO8c999zDxIkTmTx5Mi1atKB///7Fpoi+8cYbLF68mKioqGJrsxVVuXJlvvnmG+Lj42nbti1PPfUUzz77LMAZlX0i5V1SUhL33XcfBQUF3HPPPbz11lsApKWl0aNHDwYNGlQ4tVvE20RElO1+IiIi4t1sdjct+mOz2Zg7dy433njjWfd58skn+eabb9i8eXPh2COPPEJ8fDxr1qwBYMCAARw7dowFCxYU7tOnTx+qVKlS6mYDGRkZhIeHk56eTuXKlS/sCXmIZcuWcfXVV+Pv789vv/1G8+bNAVOld9111zF//ny6du3KsmXLVEXjQ44fP05CQgKxsbFK6rjRJ598wn333Ud6enqZrcVW3uhv1zfdcccdzJ49mw4dOrB69erCLrsJCQm0atWKrKwsPvroIwYNGmRxpBfPlz5D+Kqy/jfKz4f69U1jgZI+NdtspntnQoLWSBMREfFmpf0M4dKKtMzMTOLj44mPjwfMB+r4+HgSExMBUylW9EP1ww8/zJ49exg1ahRbtmxh2rRpfPjhh4wePbpwn8cee4xFixYxfvx4tm7dyvjx41myZAkjRoxw5VPxWP/4xz8Ak3B0JtHAJC6nTJlCcHAwK1asKJZ4FJHS+fjjj1m1ahUJCQl8+eWXPPnkk9x+++1KookUsX79embPno3NZuPdd98tTKIBxMbG8swzzwDw0ksvnbEUgYg38PcHR5ElZ7smOXGikmgiIiLlhUsTaevWraNdu3aFU6dGjRpFu3btCqdHJScnFybVwHzgXrBgAcuXL6dt27a8+OKLvP3229xyyy2F+3Ts2JHZs2czffp0WrduzYwZM5gzZw6XX365K5+KR1qzZg0//fQTQUFBPP3002c8HhUVxaOPPgrA+PHj3R2eiNdLSUnhrrvuolmzZowcOZLbbruN9957z+qwRDzKq6++Cph1BUuaKj1s2DBq1KjB9u3bmTt3rrvDEykTN98Mn30GpzWcxmaD2bPN4yIiIlI+uG1qpyfxlWkZAwcOZNasWdx3331MmzatxH327dvHCy+8wIgRI4pVrIl30/Q48Vb62/U9b7/9NhMmTODLL7+kTZs2Je7z7LPP8uKLL3LNNdewePFiN0dYtnzlM4Qvc+W/UX6+6c65bx8MGwbp6bB0KXTvXqanEREREQuU9jOEEmle+iE4KyuLWrVqkZ2dzc8//0yHDh2sDkncSMkI8Vb62/VNBQUF+Pmdvch9z549xMbGYrfb2blzJ3FxcW6Mrmz5wmcIX+euf6N774WPPoJRo+CNN1x2GhEREXETj1gjTVznm2++ITs7mwYNGnDppZdaHY6IiJRj50qiAcTExHDNNdcA8Pnnn7sjJBGX69/f3M6bZ20cIiIi4l5KpHmpSy65hDFjxvDoo4+WqhvnqlWruO+++/j222/dEJ2IiPi6LVu2MGfOHLKzs0u1/3PPPceyZcsYNWqUiyMTcY+ePSEgAP78E7ZvtzoaERERcRcl0rxU48aNGT9+PI899lip9v/yyy+ZMWPGWddSExEROR9Tp07lb3/7G0OHDi3V/ldddRXdunXDX60NxUeEh0OXLmZ7/nxrYxERERH3USKtnLjzzjsBmDdvXqmrB0REREpit9v57LPPALjtttssjkbEOpreKSIiUv4okeaFPv30U+bPn09WVlapf6dt27ZERUVx/Phxli1b5sLoRETE18XHx7N//37CwsLo0aNHqX/vzz//ZPjw4QwfPtyF0Ym4jzORtmIFZGRYG4uIiIi4hxJpXsZut/Pkk0/Sv39/VqxYUerfs9ls9OvXD4D5mn8g4nLPP/88bdu2tTqMC3Lvvfdy4403Wh2GeDDn+0jPnj3Pq/tqVlYWkyZN4qOPPiI3N9dV4Ym4TaNG0LgxnDwJixZZHY2IiIi4gxJpXmbnzp3s3r2bwMBAunbtevYdV6yA7t2hYkXzKe/VV+nfqxdgvgDZ7XY3RSxS3LFjxxgxYgQxMTGEhobSsWNHfvnll7/8PZvNxpdffun6AMvI6NGj+f77760O44K89dZbzJgxw+owxIM5E2n9+vSBqVOhRQvzfnPllfDVV2f9vTZt2lCzZk0yMzP56aef3BWuiEtpeqeIiEj5okSal1nkuNzZqVMnKlSoUPJOkyZBt26wfDlkZcGOHfDkk1z79ttUDw4mMTGRP/74w20xixQ1ZMgQFi9ezMyZM9m0aRO9evXimmuuYd++fW45f15enlvOU7FiRapXr+6Wc5WV/Px8CgoKCA8Pp0qVKlaHIx7q4MGDrF27lgDgzvnz4ZFHYPNm837z009w443w9NMl/q6fnx89e/YETr2fiXg7ZyJtwQLIz7c2FhEREXE9JdK8jHN9s2uuuabkHb78Epxrz9x/P8THwwcfQMWK+C9fztyqVWnSuDHJycnuCFekmJycHD7//HNeffVVunTpQsOGDXn++eeJjY1lypQpZ/29+vXrA3DTTTdhs9kK7wN88803tG/fnpCQEOLi4njhhRc4efJk4eM2m42pU6dyww03UKFCBV566aXCaZfTpk0jOjqaihUr8sgjj5Cfn8+rr75KnTp1qFWrFi+//PI5n8/y5cu57LLLqFChAlWqVOGqq65iz549wJlTO53TJV9//XUiIiKoXr06w4YNK5bYy83NZcyYMdSrV48KFSpw+eWXs3z58nPG8PzzzxMdHU1wcDB169bl73//e6mPN2PGDKpUqcK8efNo3rw5wcHB7Nmz54ypnXa7nVdffZW4uDhCQ0Np06ZN4ULzAEeOHOHOO++kZs2ahIaG0qhRI6ZPn37OuMV7/fDDD9jtdj6qUYOwb76BwEB4803YtAlGjzY7vfyyqVQrgfP9a+nSpe4KWcSlOnWCypXh4EEoRYG1iIiIeLkAqwOQ0rPb7fz444+AqUg7Q2oqPPCA2R4+HN5+G2w2aNMGmjaF7t3pnJLC1pdfBkdFgPgQux2s6sgaFmb+1v7CyZMnyc/PP2NNpdDQUFatWnXW3/vll1+oVasW06dP59prr8Xf3x+AhQsXctddd/H222/TuXNndu7cyYMPPgjAc889V/j7zz33HOPGjWPChAn4+/szffp0du7cybfffst3333Hzp07ufXWW0lISKBx48asWLGCH3/8kfvvv58ePXpwxRVXlPhcbrzxRh544AFmzZpFbm4uP//8M7Zz/HdYtmwZERERLFu2jB07djBgwADatm3LA47/b++77z52797N7NmzqVu3LnPnzuXaa69l06ZNNGrU6IzjffbZZ0yYMIHZs2fTokULUlJS+PXXXwsfL83xsrOzGTduHB988AHVq1enVq1aZ5zn6aef5osvvmDKlCk0atSIlStXctddd1GzZk26du3KM888w+bNm/n222+pUaMGO3bsICcn56z/HcS73XzzzaRMn07t++4zA59+aqrQAF57DapWhaeeglGj4OqrzQJSRTjfv9avX8+JEycIDg52Y/QiZS8wEHr3hv/9D+bPhxLeMkRERMSX2Muh9PR0O2BPT0+3OpTzsnv3bjtgDwgIsGdlZZ25w0MP2e1gt7dubbcfP37m46+9Zh6vUcNuP3zY9QGLy+Tk5Ng3b95sz8nJOTWYmWn+fa34ycwsdexXXnmlvWvXrvZ9+/bZT548aZ85c6bdZrPZGzdufM7fA+xz584tNta5c2f7K6+8Umxs5syZ9oiIiGK/N2LEiGL7PPfcc/awsDB7RkZG4Vjv3r3t9evXt+fn5xeONWnSxD5u3LgS4zl06JAdsC9fvrzEx5977jl7mzZtCu/fc8899piYGPvJkycLx2677Tb7gAED7Ha73b5jxw67zWaz79u3r9hxevToYR87dmyJ53jjjTfsjRs3tufm5p7xWGmON336dDtgj4+PL7bPPffcY7/hhhvsdrvdnpmZaQ8JCbH/+OOPxfYZPHiw/Y477rDb7Xb7ddddZ7/vvvtKjPF0Jf7tinc5ftxub9DA/L9/2v9bdrvdbs/Pt9t79DCPX3/9GQ8XFBTYa9asaQfO+LvyBt76GaI8seLf6KOPzJ9827ZuO6WIiIiUsdJ+htDUTi/iXJi5Xbt2hIWFFX/wzz/NFE6Ad96Bkq7wP/aYWRA6LY38V18lKyvLxRGLnGnmzJnY7Xbq1atHcHAwb7/9NgMHDiysMnvllVeoWLFi4U9iYuJZj7V+/Xr++c9/Ftv/gQceIDk5mewi1XmXXnrpGb9bv359KlWqVHi/du3aNG/eHD8/v2JjqampJZ67WrVq3HvvvfTu3ZvrrruOt9566y+nTLdo0aLweQJEREQUHn/Dhg3Y7XYaN25c7PmsWLGCnTt3lni82267jZycHOLi4njggQeYO3du4bTW0h4vKCiI1q1bnzXmzZs3c/z4cXr27FnsOB9//HHhcR555BFmz55N27ZtGTNmTGHlrPioDz6AnTshIgL++c8zH/fzM2t1+vvD11/D6tXFHrbZbHTs2JHY2FgOHz7spqClPJg0aRLNmzenQ4cObj93nz6mMDs+HvbudfvpRURExI00tdOL3H777bRt25ajR4+e+eDEiWaF2759oXPnkg8QGAgvvgg330zmv/7Fx6GhPPrss64MWdwpLAwyM607dyk1aNCAFStWkJWVRUZGBhEREQwYMIDY2FgAHn74YW6//fbC/evWrXvWYxUUFPDCCy9w8803n/FY0emjJTXmCAwMLHbfZrOVOFZQUHDW80+fPp2///3vfPfdd8yZM4enn36axYsXlzgV9GzndB6/oKAAf39/1q9fXyzZBqZxQUmioqLYtm0bixcvZsmSJQwdOpTXXnuNFStWlPp4oaGh55yO6oxv/vz51KtXr9hjzil5ffr0Yc+ePcyfP58lS5bQo0cPhg0bxuuvv37W44p3+up//6PjE09QE8z0zSLJ6GKaNIH77jNJt/HjTUKtiDlz5mhKp5S5YcOGMWzYMDIyMggPD3fruWvWNFM616wx0zsfesitpxcRERE3UiLNi9hsNpo0aXLmA+np8PHHZvvxx899kBtuIK1OHWqkpBAyezYokeY7bDY4WydXD1ShQgUqVKjAkSNHWLhwIa+++ipgKr2qVat2xv6BgYHkn9YO7ZJLLmHbtm00bNjQLTGXpF27drRr146xY8dy5ZVX8t///vesibS/Ok5+fj6pqal0PlsyvAShoaFcf/31XH/99QwbNoymTZuyadOmCz7e6ZxNCBITE+natetZ96tZsyb33nsv9957L507d+aJJ55QIs0HHZg6lZo5OWRUqEDlwYPPvfMTT5hE2jffmKrpImulKYkmvqh/f5NImzdPiTQRERFfpkSaL5g+HbKyzLTN7t3Pva+fH5n33kuNf/2Lrtu2YS8owOanGb7iPgsXLsRut9OkSRN27NjBE088QZMmTbjPuXD5WdSvX5/vv/+eq666iuDgYKpWrcqzzz5L//79iYqK4rbbbsPPz4/ffvuNTZs28dJLL7n0eSQkJPDee+9x/fXXU7duXbZt28aff/7JoEGDLuh4jRs35s4772TQoEG88cYbtGvXjrS0NJYuXUqrVq3o27fvGb8zY8YM8vPzufzyywkLC2PmzJmEhoYSExND9erVz/t4JalUqRKjR49m5MiRFBQU0KlTJzIyMvjxxx+pWLEi99xzD88++yzt27enRYsWnDhxgnnz5tGsWbML+u8gnq312rUA7O/fn8qnNQ05Q+PGJrMwb55JqDmS5UXZ7fbC6kkRb9e/vynU/P57yMmB0FCrIxIRERFXUAbFS8THx3PnnXfy/vvvF3/Abgfn2KOPlqpzYt3HHycTaFxQwN7Zs8s+WJFzSE9PL6ycGjRoEJ06dWLRokVnTHs83RtvvMHixYuJioqiXbt2APTu3Zt58+axePFiOnTowBVXXMGbb75JTEyMy59HWFgYW7du5ZZbbqFx48Y8+OCDDB8+nIcuogxh+vTpDBo0iMcff5wmTZpw/fXXs3btWqKiokrcv0qVKrz//vtcddVVtG7dmu+//55vvvmG6tWrX9DxzubFF1/k2WefZdy4cTRr1ozevXvzzTffFE7HDQoKYuzYsbRu3ZouXbrg7+/PbL22+JxjGzdyRVYWBUD1J54o3S85q9b+8x+z/EARQ4cOpVq1anz55ZdlGqeIVVq1gshIk0RbtszqaERERMRVbHa73W51EO7mXDsjPT2dypUrWx1OqUyaNInhw4fTt29f5s+ff+qBTZugdWsICoLUVCjlmiDf1K7Ndamp7LzqKhqsWuWiqMVVjh8/TkJCArGxscXWAhPxdPrb9V4Jd9xB7OzZLAsNpXuRZh7nlJtrmhIcPgwLF0KvXoUPPfDAA3zwwQf84x//4OWXX3ZR1GXPGz9DlDdW/hs98ghMnWpuJ09266lFRETkIpX2M4Qq0rzEhg0bALMmVDHOqo++fUudRAPYffXVANT9+Wc4frxMYhQRER9lt1P1u+8AiD/9fehcgoLgb38z2861PB2claUbN24skxBFPEH//uZ23jwzaUBERER8jxJpXqLERJrdDnPmmO0BA87reLVvuIG9QGheHixeXEZRioiIT9qwgSpHj5IFBN1ww/n97l13mduvvzYVag7O97P169dTDovjxUddfbVZGy0pyUwaEBEREd+jRJoXOHHiBH/88QdwWiItPh527jSf2JyXQEvpyquuYn39+ubOZ5+VTaAiIuKbHO8T3/r5cWmXLuf3u5dfDnXqwLFjsGJF4XDr1q3x8/MjNTWV5OTksoxWxDKhodCjh9meN8/aWERERMQ1lEjzAn/88Qd5eXlUq1aN6OjoUw8410rr1QsqVjyvY0ZFRXGDc5rNV18VqxIQEREpZLcXJtJu+PhjLr300vP7fT+/Uxd7vv66cDgsLKywu6uz6lrEFxSd3ikiIiK+R4k0L+D8gtGuXTtsRbtyLlhgbvv2vbADd+wItWtDejqsXHmRUYqIiE/asgV27IDgYAJvuAF/f//zP8b115vbb74ptnCUc500JdLElzg/lv30Exw8aG0sIiIiUvaUSPMCycnJ+Pv707Zt21ODhw/D2rVmu0+fCzqu3c+PrK5dzZ2FCy8uSLGE1hUSb6O/WS/kfH/o2vW8q58L9egBISGwZw/8/nvhcLdu3ejVqxcxMTFlEKiIZ4iKgjZtTM7Y0aNDREREfIgSaV7gmWeeISsri6effvrU4KJFUFAALVuaT2wXYMWKFQz+9FNzR5/0vEpgYCAA2dnZFkcicn6cf7POv2HxAo73h1c3beLHH3+8sGOEhZlV2KFYg5vBgwezcOFC7rnnnouNUsSjaHqniIiI7wqwOgApneDgYIKDg08NOBNfF1iNBmah58VAAeD3+++wbx/Uq3dRcYp7+Pv7U6VKFVJTUwGz1lCxab8iHsZut5OdnU1qaipVqlS5sOmB4n45OdhXrsQGzEhOpl94+IUfq0cPsyTB99/DqFFlFqKIJ+rfH15+2Xxcy8sDXTsQERHxHUqkeatly8xtz54XfIhq1apRMTqanxMTuQLM9J377y+T8MT16tSpA1CYTBPxBlWqVCn82xUvsGIFtuPHSQQSgoNp0qTJhR/LWZG2cuUZmYXDhw8TFBRExQudOiriYTp0gJo1zRppq1ZB9+5WRyQiIiJlRYk0D7d27VpGjBhB9+7deeWVV8zg7t2QmAgBAaZhwEVo164dC52JtEWLlEjzIjabjYiICGrVqkVeXp7V4Yj8pcDAQFWieRvHNMyFQOs2bQgIuIiPDa1bQ7VqZo3PdevgyisBuPHGG/nqq6/45JNPGDhwYBkELWI9f3/TdOCjj8z0TiXSREREfIcSaR4uPj6en376iapVq54aXLHC3F56KVSocFHHb9euHUu/+ornwFQJ2O2gKYJexd/fX8kJEXENR0fnZZzqsHnB/PxMNuHzz2Hp0sJEWkREBAC/F2lCIOIL+vc/lUh74w2roxEREZGyomYDHu6PP/4AoEWLFqcGnYm0bt0u+vjt2rXjZyDXZoPkZNix46KPKSIiPuDYMdi4EYAfKINEGph10uDU8gRAy5YtgVPvdyK+omdPM3ngzz9h+3aroxEREZGyokSahztnIq1r14s+frt27TgOrLXbix9bRETKtzVrID+fPX5+7KWMEmmdOpnbtWvh5Eng1PubKtLE14SHQ5cuZnv+fGtjERERkbKjRJqHcybSmjdvbgb27YNdu8wUmauuuujjR0ZGMnbsWMKvv94MOKbxiIhIOffDDwAkRkfTvHnzwsqxi9K8OVSuDJmZ4EicORNpu3btIjs7++LPIeJB+vc3t/PmWRuHiIiIlB0l0jzYoUOHOHDgAFAkkbZ2rblt3RoqVbroc9hsNl555RVaDx9uBlSRJiIiUHhhpfNTT/HHH38QFhZ28cf094crrjDbP/4IQM2aNalWrRoAO7S8gPgYZyJtxQrIyLA2FhERESkbSqR5MGc1WkxMDBUrVjSDzkTaZZeV7ck6djRfcBITzY+IiJRfJ06cer/p3Llsj+3sNu1IpAE0adIEgG3btpXtuUQs1qgRNG5sZjIvWmR1NCIiIlIWlEjzYBkZGcTExNCqVatTgz//bG4vv7zMzpOdnc3yX37hSHS0GXB+eRIRkfLpl1/gxAkKatSgoGHDsj12CYm0m2++maFDhxITE1O25xLxAJreKSIi4luUSPNg/fv3Z/fu3Xz11VdmID8f1q0z22WYSNu+fTvdu3fni/37zYASaSIi5duqVQAsyc2lUuXKrHLcLxOXXw42GyQkmG7RwOjRo5k0aRKXlXW1tYgH6NfP3C5YAAUF1sYiIiIiF0+JNC/g5+f4Z9qyxSzQXLEiNG1aZsdv0qQJ/v7+rDxxwgwokSYiUr45qp+XZGaSnZ1dtpVilSubpgNw6uKQiA/r1Mn82R88aIo9RURExLspkeZNnAmuDh3MemZlJCQkhEaNGlGYPlu3DvLyyuz4IiLiZRzf9tcWFFC5cmUiIyPL9vjt25vb9esLh44dO8aGDRuw2+1ley4RiwUFQe/eZlvTO0VERLyfEmke6uTJk0RHR9O5c2eOHDliBl3VaABo2bIlfwLHQ0Lg+HHYtKnMzyEiIl4gORn27qXAZmM90KJFC2w2W9me47RE2vHjxwkPD6d9+/akpaWV7blEPIDWSRMREfEdSqR5qMTERJKSkvjll18IDw83gy5oNODUsmVL7MCOatXMgKZ3ioiUT45qtIM1apCFSaSVudMSaSEhIUQ7Gt78+eefZX8+EYv16WOWBoyPh717rY5GRERELoYSaR5q+/btADRs2NCskZadDb//bh50UUUawFrnlBol0kREyifHRZvfQ0OBU+8PZapNG5NVSE4ubDjQuHFjALZt21b25xOxWM2acMUVZnv+fGtjERERkYujRJqHcibSGjVqZAZ+/9107axdG+rVK/PzOb8oLTh0yAwokSYiUj45KtJW5uQALqpIK9o0Z8MGwDS+AVWkie/S9E4RERHfoESah3J+kShMpMXHm9s2bVxyvgYNGjB16lTGfP65Gdi6FdLTXXIuERHxUHZ7YSKt7g03cMMNN9CqVSvXnOu06Z3OijQl0sRX9etnbr//Hhx5ahEREfFCSqR5qDMq0pyJtLZtXXK+gIAAHnroIS7v3x+c3dl++80l5xIREQ+1cyccOQJBQTw0aRJffvkltWvXds25zpJI09RO8VWtW5uPWDk5sGyZ1dGIiIjIhXJLIm3y5MnExsYSEhJC+/bt+eGHH86677333ovNZjvjp+jUkhkzZpS4z/Hjx93xdNzCmUhzfrHg11/NrYsSacW0a2duN250/blERMRzOKrRaNsWgoJce66zJNJ27NhBQUGBa88tYgGbTdM7RUREfIHLE2lz5sxhxIgRPPXUU2zcuJHOnTvTp08fEhMTS9z/rbfeIjk5ufAnKSmJatWqcdtttxXbr3LlysX2S05OJiQkxNVPxy3sdjsNGjQgMjLSVKQVFJxKpLloaidAUlISH3zwAb8FBJgBJdJERMoXx+v+0QYN2LdvH3ZnAxpXaNfOZBb27YMDB4iKiuKRRx7h5ZdfJi8vz3XnFbFQ0USaK//3EhEREddxeSLtzTffZPDgwQwZMoRmzZoxceJEoqKimDJlSon7h4eHU6dOncKfdevWceTIEe67775i+9lstmL71alTx9VPxW1sNhsLFy4kKSmJunXrmqk2WVkQEgLOCjUX2LBhAw888AAfOZN2SqSJiJQvjtf/mb//TmRkJO+9957rzlWxIjRoYLY3bSIgIIDJkyczevRogoODXXdeEQtdfTWEhkJSEmzaZHU0IiIiciFcmkjLzc1l/fr19OrVq9h4r169+PHHH0t1jA8//JBrrrmGmJiYYuOZmZnExMQQGRlJ//792XiOpM+JEyfIyMgo9uNVnImtVq3AWS3mAk0dHdTm799vBv74A06ccNn5RETEwzjW41yalgacel9wGWcjg99/d+15RDxEaCj06GG2Nb1TRETEO7k0kZaWlkZ+fv4ZCxXXrl2blJSUv/z95ORkvv32W4YMGVJsvGnTpsyYMYOvv/6aWbNmERISwlVXXVW4rtjpxo0bR3h4eOFPVFTUhT8pNzhjKo2LO3Y6xcXFERgYyLbjx8kPD4eTJ2HzZpeeU0REPERKCqSmYvfzY2FyMgDNmzd37TlbtjS3jtKczMxMfv31V7Zs2eLa84pYyNm9c/58a+MQERGRC+OWZgM2m63YfbvdfsZYSWbMmEGVKlW48cYbi41fccUV3HXXXbRp04bOnTvz6aef0rhxY/7973+XeJyxY8eSnp5e+JOUlHTBz8UdnnjiCerVq3fq+bi4Y6dTYGAgDRs2BCC9fn0zqOmdIiLlg+O95kR0NDlAtWrVqFmzpmvP6axIcyTSJk+eTNu2bXn55Zdde14RCzkTaWvWgKP4U0RERLyISxNpNWrUwN/f/4zqs9TU1DOq1E5nt9uZNm0ad999N0F/0TnMz8+PDh06nLUiLTg4mMqVKxf78WQ7d+5k//79p5KNbuzY6ZzGs7tqVTOgRJqISPngeK9JjYgA3DCtE04l0v74AwoKiIuLA2DXrl2uP7f4nEmTJtG8eXM6dOhgdSjnFBVlJhnY7fDtt1ZHIyIiIufLpYm0oKAg2rdvz+LFi4uNL168mI4dO57zd1esWMGOHTsYPHjwX57HbrcTHx9PhOPDv7dLSEgAzFRLjh6FvXvNA84pMC7k/OL0m7+/GVAiTUSkfHBUpP0ZFga4KZHWsCEEB0N2NuzapUSaXJRhw4axefNmfvnlF6tD+UtFu3eKiIiId3H51M5Ro0bxwQcfMG3aNLZs2cLIkSNJTEzk4YcfBsy0y0GDBp3xex9++CGXX345LUtIHr3wwgssXLiQXbt2ER8fz+DBg4mPjy88pjez2+2FibTY2NhTa5RFRkJ4uMvP7/zitMLZkOHXX9WfXUSkPHBUpK0/eRKAJk2auP6cAQHgXIdt06bCRNqBAwfIyspy/flFLOJMpH33HeTlWRuLiIiInB/XtYB0GDBgAIcOHeKf//wnycnJtGzZkgULFhR24UxOTiYxMbHY76Snp/P555/z1ltvlXjMo0eP8uCDD5KSkkJ4eDjt2rVj5cqVXHbZZa5+Oi535MiRwq6i9evXh9WrzQOuXvDZoVevXixdupRmDRtCgwaQmQl79oBzzTQREfE9OTmwbRsAbe+9lycuu4yuXbu659ytWpnq599/p8pNN1GlShWOHj1KQkJCiRfTRHxBhw5QsyYcPAirVkH37lZHJCIiIqXl8kQawNChQxk6dGiJj82YMeOMsfDwcLKzs896vAkTJjBhwoSyCs+jOKvR6tSpQ2hoqFk3BqBFC7ecv06dOtSpU8fcadrULAD9++9KpImI+LLff4eCAqhVi9733EPvUjQEKjOnNRyIi4tjw4YN7Nq1S4k08Vn+/tC3L3z0kZneqUSaiIiI93BL104pPee6MLGxsWbAObXTTRVpxTi/wPz+u/vPLSIi7uNIYtG6NbgziQYlJtJA66SJ73N275w/39o4RERE5Py4pSJNSq9ChQp06dKFdu3amQE3V6QBLFq0iGXLljGkQgUagBJpIiK+zvFecywmho0rV9KsWTNq1qzpnnM7E2l//gknTnDHHXfQoUMH900tFbFIr15mmcBt22D7dmjUyOqIREREpDSUSPMwffv2pW/fvuZOejrs22e2mzVzWwxfffUVkydPpukttyiRJiJSHjgSab9kZdGja1duuOEGvvzyS/ecOyLCNNNJT4ft27n55pvdc14Ri4WHQ5cusHSpqUobMcLqiERERKQ0NLXTk23ZYm7r1oUqVdx2Wmfnzh+dnTu3bFFLKRERX+ZIpMU7Xuvd0rHTyWYza3ICbN3qvvOKeABn985586yNQ0REREpPiTQPk1c0YWXBtE6AZo7qt5V79kCFCpCbCzt2uDUGERFxk/R02LsXgJVpacCpCypu4zzfli3k5+fz66+/8s0332C3290bh4ibORNpK1aA8/qliIiIeDYl0jxIQUEB4eHhREZGkpycbFmjAecXqB27dlHgTOJpeqeIiG8qUv28wbHAv1sr0uDU8gVbt5KXl0fbtm25/vrrOXTokHvjEHGzRo2gcWM4eRIWLbI6GhERESkNJdI8SHJyMjk5OaSkpJhFni2qSKtbty6hoaGcPHmSYzExZlCJNBER3+R4rznZtClJSUmABYm0IlM7Q0JCqFOnDgB79uxxbxwiFlD3ThEREe+iRJoH2b17NwBRUVEEBAScqkhzY6MBAD8/Pxo2bAjA/qpVzaASaSIivsmRSDtcuzYANWrUoHr16u6NoUhFGgUFREdHA0qkSfngnN45fz4UFFgbi4iIiPw1JdI8iPMLQ/369SE7GxyVAbh7rRqgkaMH+9YAR2NXJdJERHyTI5G2u0IFwIJqNIDYWAgMNO99e/cS46iGTkxMdH8sIm7WqRNUrgwHD8Ivv1gdjYiIiPwVJdI8iHNKTVRU1KnF/atVgxo13B7Lq6++yu7du7n+//7PDOzcaZoOiIiIb3FUP9fr1YspU6YwfPhw98cQGAiOSmi2bi1MpKkiTcqDoCDo3dtsq3uniIiI51MizYM4r7xHR0fDn3+awcaNLYmlQYMGxMTE4B8ZCZUqQX6+OneKiPiaIh076/XsycMPP8zf/vY3a2JxTu/cskVTO6XccU7vVCJNRETE8ymR5kE8KZFWyGYrtgi0iIj4EOdanHXrQpUqloZS9L1GFWlS3vTpYz5yxccX5rZFRETEQymR5kHatm1L165dzfo027aZQYsSabm5uTz99NMMGDCAfGcMW7ZYEouIiLhIke7Q//3vf1m9ejW5Vk3jL1KR1q5dO8aPH89zzz1nTSwiblazJlxxhdlW904RERHPFmB1AHLKiy++eOqOc20yixJpgYGBvPXWW2RmZvLvkSOpBapIExHxNY6KtBMNG3LnnXcCkJGRQVBQkPtjcVakbdlCVFQUY8aMcX8MIhbq1w/WrDGJtIcesjoaERERORtVpHkq59ROK7qnATabjYaOhZ/3hISYQSXSRER8iyORllKtGgC1a9emUqVK1sTivHCUmgoZGdbEIGIh5zppS5ZATo61sYiIiMjZKZHmIfLy8sjLyzN3Dh2Cw4fNtrOLmQUaNWoEwO/5+WZg61aw2y2LR0REyphjGYEdAaZAvaGF7zlUrgy1apntHTvYtm0bX3/9tdZJk3KjdWuIjDRJtGXLrI5GREREzkaJNA+xdOlSgoODueaaa05Vo0VFQViYZTE5E2nrjhyBgADIzIR9+yyLR0REylBODjiSVL8ePw6cet23jPP827fz+OOPc8MNN7Bo0SJrYxJxE5tN3TtFRES8gRJpHiIxMRG73U5wcLDHdOx0fqHatmsXNGhgBjW9U0TEN+zYYaqMw8P5LTkZsLgizQRgbnfsUOdOKZeKJtI0CUBERMQzKZHmIZKSkgCIjo62vGOnkzORtn379lPd1JRIExHxDUXW4ty+YwfgWRVp0dHRgBJpUr5cfTWEhkJSEmzaZHU0IiIiUhIl0jxEYmIi4EikeVhF2oEDB8h3frnZssXCiEREpMw4L9o0acIORyLN8oq0Iok0VaRJeRQaapJpYLp3ioiIiOdRIs1DOBNpUVFRlnfsdKpZsyY7d+4kMzMT/xYtzKAq0kREfIPjvcbeqBEzZ87knXfeobHFF3CKTu2MiooCYO/evRYGJOJ+WidNRETEswVYHYAYhVM7IyNh+3YzaPEXGpvNRlxcnLmjqZ0iIr7FUZFma9qUXr160atXL4sD4lRFWmoqUeHhAOzbt4+CggL8/HTtT8qHfv3M7Zo1kJYGNWpYG4+IiIgUp0+lHqCgoKAwkRYbGAjHj0NgIDimtXgEZ3Xc/v2Qnm5tLCIicnHs9mJTOz1GpUpQuzYAEVlZ2Gw2cnNzSUtLszgwEfeJioI2bcz/pt9+a3U0IiIicjol0jzA8ePHuf322+natSt1MjLMYFwcBFhfMLhs2TIGDhzIv6ZMgYgIM6iqNBER73boEBw5AsCqlBT+85//mMYynsAxvTNw927efvttZs2aRVhYmMVBibiXpneKiIh4LiXSPEBYWBgff/wxy5cvJ9C5qLLVndMc9u7dy6xZs1i4cOGpqgVP+bIlIiIXxlmNFh3Nh7NmcffddzNnzhxrY3Iq0nBg+PDh/O1vf6NixYrWxiTiZs5E2nffQV6etbGIiIhIcUqkeZpdu8ytc20yizk7d+7YsaPYlxsREfFiRZraeEzHTqciDQdEyqsOHaBmTcjIgFWrrI5GREREilIizQNkZmaS57zcuHOnuW3QwLqAimjgiGPfvn3k1a9vBpVIExHxbs6KtMaNC6d0NvKQSuiiF20SExP5+uuvWbt2rbUxibiZvz/06WO258+3NhYREREpTok0D/Dcc88RHBzMCy+84HGJtBo1alCpUiXsdjsHKlUyg0qkiYh4N0ci7XhMDAcOHAA8qCKtSCJt1qxZ3HDDDUyePNnamEQsoHXSREREPJMSaR4gMTERu91OlfBwj5vaabPZiHPEstPP8eeyfbtpJSUiIt7JMbVzb4UKANSsWZPw8HArIzrFmdA7eJDYatUAs16nSHnTq5fpO7Vtm65hioiIeBIl0jzAvn37AIirXBmOHQObDWJjLY7qFOf0zt9zcsxAejqkpVkYkYiIXLD8/ML1x7Y5Lop4TDUaQKVKULs2AA0c8SmRJuVReDh06WK2Nb1TRETEcyiR5gH2798PQGxBgRmoVw9CQiyMqLi4uDj8/f1Jy8qCqCgzqEWgRUS80549kJsLISH8euQI4GGJNCic3lkvOxswiTS7KqGlHNL0ThEREc+jRJrFCgoKChNpdRxfGDxlWqfTc889R05ODs8995w6d4qIeDtno4FGjbj3/vtZsGABw4cPtzam0zneB6tnZACQnZ3N0aNHLQxIxBrORNqKFaaDp4iIiFhPiTSLpaWlkZeXh81mo+rhw2bQQxoNOFWsWJHAwEBzR4k0ERHv5kykNWlC3bp16dOnD5dddpm1MZ3OkUgLTEqievXqgKZ3SvnUqJH5OXkSFi+2OhoREREBJdIs51wfrVatWvjv3m0GPSyRVowSaSIi3s3RaIDGja2N41yc64QmJBAZGQkokSbll6Z3ioiIeBYl0iwWGhrKnXfeyQ033OBxHTud7HY79957Lx07duSwozJAiTQRES/lWOPyZGwsL774Iv/5z384efKkxUGdxvk+uGsXzzzzDLNmzaJt27aWhiTWuemmm6hatSq33nqr1aFYwplImz8fnMvpioiIiHVs9nK4em9GRgbh4eGkp6dTuXJlq8M5pV492L8f1q4FD5tm06BBA3bt2sXPH31Eh3vuMV3V0tNNh1EREfEeDRrArl0kffIJ0XfeSVhYGJmZmdg86fV83z6IjAR/fzh+HAICrI6okMd+hvBhy5YtIzMzk48++ojPPvvsL/f3tX+j3FyoWdOskfbTT3D55VZHJCIi4ptK+xlCFWmeIifHJNHAI6d2NnDEtPXECZM8O3YMUlMtjkpERM5LXp7p2gnsdCTOYmNjPSuJBhARAcHBkJ8PSUlWRyMW6969O5UqVbI6DMsEBUHv3mZb0ztFRESsp0SaxY4cOUJeXh4kJJiBypWhWjVrgyqBM5H2Z2IiREebQU3vFBHxLnv2mORUWBhbHV0wY53rkXkSPz+oXx+A9Ph4vv76a77++mtrY/JC+/bt46677qJ69eqEhYXRtm1b1q9fX2bHX7lyJddddx1169bFZrPx5Zdflrjf5MmTiY2NJSQkhPbt2/PDDz+UWQzlhdZJExER8RxKpFls4MCBBAcHs/zDD81AgwYeOV0yzrFezc6dO9VwQETEWznWR6NBAxIcDW48MpEGheuk7fvhB2644QbGjh1rcUDe5ciRI1x11VUEBgby7bffsnnzZt544w2qVKlS4v6rV682F/ZOs3XrVlJSUkr8naysLNq0acM777xz1jjmzJnDiBEjeOqpp9i4cSOdO3emT58+JCYmFu7Tvn17WrZsecbPfmelvtCnj/l4GB9vZj6LiIiIdTxn0ZFyav/+/djtdupkZZkBD5zWCacq0nbt2gWXXAJLliiRJiLibXbuNLcNGpDgqISO87AGN4UcCb5a2dmAunaer/HjxxMVFcX06dMLx+o7qvxOV1BQwLBhw2jUqBGzZ8/G398fgD///JPu3bszcuRIxowZc8bv9enThz59+pwzjjfffJPBgwczZMgQACZOnMjChQuZMmUK48aNAyjTKjlfVbOmWRvtp59M04EHH7Q6IhERkfJLFWkW2+e4rFjz2DEz4KFfaJyJtGIVac7KBhER8Q7O1+2GDc2FETy/Ii08LQ0wi79mZGRYGZFX+frrr7n00ku57bbbqFWrFu3ateP9998vcV8/Pz8WLFjAxo0bGTRoEAUFBezcuZOrr76a66+/vsQkWmnk5uayfv16evXqVWy8V69e/Pjjjxd0zHOZNGkSzZs3p0OHDmV+bE+g6Z0iIiKeQYk0Cx0/fpxDhw4BUMnxRcFTE2lxcXH4+flRsWJFTmiNNBER71RCRZrHJtIccQUmJREeHg6oKu187Nq1iylTptCoUSMWLlzIww8/zN///nc+/vjjEvevW7cuS5cuZfXq1QwcOJCrr76aHj16MHXq1AuOIS0tjfz8fGrXrl1svHbt2medLlqS3r17c9ttt7FgwQIiIyP55ZdfStxv2LBhbN68+ayPeztnIm3JEtOjSkRERKyhqZ0Wcq79ERISQqBzwQsPTaRVqlSJ48ePExgYCNu2mcHt28Fu98g13UREpARFKtJWrVpFQkICjZxVxp7G+X6YkEC9evVIT08nOTmZ5s2bWxuXlygoKODSSy/llVdeAaBdu3b88ccfTJkyhUGDBpX4O9HR0Xz88cd07dqVuLg4PvzwwzLp6Hr6Mex2+3kdd+HChRcdgy9o3RoiI2HvXli2DPr2tToiERGR8sktFWnn061p+fLl2Gy2M362bt1abL/PP/+c5s2bExwcTPPmzZk7d66rn0aZcybS6tWti82x6DMxMdYF9BcCAwPNRmys6aiWlQXncUVZREQsVFAAjumcNGhAs2bN6Nu3L6GhodbGdTbOSrmDB4mtWRNAi8+fh4iIiDOSjs2aNSu2yP/pDhw4wIMPPsh1111HdnY2I0eOvKgYatSogb+//xnVZ6mpqWdUqclfs9k0vVNERMQTuDyRVppuTSXZtm0bycnJhT9Fr5ivWbOGAQMGcPfdd/Prr79y9913c/vtt7N27VpXP50y5VwfrXnt2iYpBeCcNunJgoJOJfyc04RERMSz7dsHJ05AYCBERVkdzV8LD4dq1QBoXakSoETa+bjqqqvY5qwgd/jzzz+JOcsFu7S0NHr06EGzZs344osvWLp0KZ9++imjR4++4BiCgoJo3749ixcvLja+ePFiOnbseMHHLc+KJtLsdmtjERERKa9cnkgr2q2pWbNmTJw4kaioKKZMmXLO36tVqxZ16tQp/HF2kALT8alnz56MHTuWpk2bMnbsWHr06MHEiRNd/GzKVr169bjrrru4sW1bMxARASEhlsZ0Lp9//jlXXXUV//d//3dqyo2zukFERDyb88JH/fosWrqUl156iVWrVlkb019xvNfc1bEjs2fP5pZbbrE4IO8xcuRIfvrpJ1555RV27NjBf//7X9577z2GDRt2xr4FBQVce+21xMTEMGfOHAICAmjWrBlLlixhxowZTJgwocRzZGZmEh8fT3x8PAAJCQnEx8cXu1g6atQoPvjgA6ZNm8aWLVsYOXIkiYmJPPzwwy553r7u6qshNBSSkuD3362ORkREpHxyaSLtYro1tWvXjoiICHr06MGyZcuKPbZmzZozjtm7d++zHvPEiROF3b48qetXp06dmDlzJvdffbUZOEtbek9x7NgxfvzxR9OmXok0ERHvUmR9tK+//ppnnnmG+fPnWxvTX3FM72weGsqAAQNo2LChxQF5jw4dOjB37lxmzZpFy5YtefHFF5k4cSJ33nnnGfv6+fkxbtw4Pv/8c4KCggrHW7VqxZIlS7j11ltLPMe6deto164d7dq1A0zSrF27djz77LOF+wwYMICJEyfyz3/+k7Zt27Jy5UoWLFhw1so4ObfQUJNMA03vFBERsYpLmw1cSLemiIgI3nvvPdq3b8+JEyeYOXMmPXr0YPny5XTp0gWAlJSU8zrmuHHjeOGFF8rgGbmIc300D0+kNWjQAICdO3dCjx5mUIk0ERHvULRjp+O122M7djrpos1F6d+/P/2dcwH/Qs+ePUscb+usmi9Bt27dsJdifuHQoUMZOnRoqeKQv9a/P8yfbxJpY8daHY2IiEj545aunefTralJkyY0adKk8P6VV15JUlISr7/+emEi7XyPOXbsWEaNGlV4PyMjgygPWB/mwIEDVK1alSAvSaTFOb7QJCYmcjI62vzx6MuNiIh3KFKRlvD998Cp13WP5Uj0nfzzT+Z9+SXHjh3j7rvvtjgoEWv162du16yBtDSoUcPaeERERMobl07tLKtuTVdccQXbt28vvF+nTp3zOmZwcDCVK1cu9uMJOnbsSHBwMEcca4t4eiItIiKCkJAQ8vPzSa5QwQyq2YCIiHdwvF7b4+JISEgAvKAizRFfwa5d3HTTTTz44IOlqoAS8WVRUdCmjWk28O23VkcjIiJS/rg0kVZW3Zo2btxIRERE4f0rr7zyjGMuWrTIqzpA2e32wq6dFQ4eNIMenkjz8/Mr/NK1/eRJM5iSAtnZFkYlIiJ/yW4vrEhLCw/n+PHj+Pn5Ee3pnaId62gFJicDcPz4cdLT062MSMQjFO3eKSIiIu7l8q6df9WtaezYsQwaNKhw/4kTJ/Lll1+yfft2/vjjD8aOHcvnn3/O8OHDC/d57LHHWLRoEePHj2fr1q2MHz+eJUuWMGLECFc/nTJz+PBhTpw4AUDg/v1m0MMTaXBqGtD2tDSoUsUMOiobRETEQ6WlwbFjYLOxIz8fgKioKAIDAy0O7C84En22zEzqO6rJ9zvfM0XKMWcibeFCyMuzNhYREZHyxuWJtL/q1pScnFysTXpubi6jR4+mdevWdO7cmVWrVjF//nxuvvnmwn06duzI7NmzmT59Oq1bt2bGjBnMmTOHyy+/3NVPp8w4q9EaVauGLTPTDHp6ZQDQsGHDU522tAi0iIh3cK6PFhnJTsf7j8dP6wTTorBWLQAuqV4dUCJNBKBDB7M2Wno6rF5tdTQiIiLli1uaDZyrW9OMGTOK3R8zZgxjxoz5y2PeeuutZ23H7g2cXwQuqVYNDh+GiAgICbE4qr82YcIEJk6caO4sWQIbNiiRJiLi6ZzrWTZsyK233soll1zCSecUfU8XEwOpqbSoVIkvMBfgRMo7f3/o2xc+/thM7+zWzeqIREREyg+XV6RJyZwVaa0qVTIDXjCtE07rlqqKNBER7+BMpDVoQEhICM2bN6d169bWxlRajiroxkFBgCrSRJy0TpqIiIg1lEizSOHUTuf6NF6SSCvGmUhT504REc+2e7e59YbpnKdzJNIciwqoIk3EoVcvCAiAbdugSHN7ERERcTEl0izSqlUr7r77blo7Fk92flHwdCdOnKBTp07Uq1ePbGcnVVWkiYh4NmcirX59nnjiCV5++WXS0tIsDanUHO+PrSpXZvbs2Tz44IMWByTiGcLDoUsXsz1/vrWxiIiIlCdKpFnkpptu4uOPP6apc100L6lICw4OZvPmzezfv59EZzVdQgIUFFgbmIiInN2ePQDk1avHm2++ydNPP+1da6QBVdLTGTBgAM2bN7c4IBHPoemdIiIi7qdEmtWKVAl4C2ent+05OWa12+PHISXF4qhERKREJ09CUhIAe/39KSgoIDQ0lNq1a1scWCk5K7ad75ciUsiZSFu5EjIyrI1FRESkvFAizSL79+8n98SJwioBb0qkxTnWRtuVlATR0WZQ0ztFRDzT/v0mmRYYyI6sLADq169fvHmMJ3Mm0g4d4pvZs5kyZQp2u93amEQ8RKNG5icvDxYvtjoaERGR8kGJNAvY7XZiY2OpExICx46ZQWdCygs4K9ISEhLUuVNExNM5K7liYkhwXLxxXhDxClWqmMWggCfvuIOhQ4eSnp5ubUwiHkTTO0VERNxLiTQLHDlyhNzcXOo7B+rUgdBQCyM6PyUm0tS5U0TEMxVZQmCX46JHrLd173RUpbWoUAEwVd0iYjgTafPna8laERERd1AizQLJyckAtHR8IfCmaZ1w6gvYrl27VJEmIuLpiiTSEhISAO9NpLWsVAk49T4qItCpE1SuDAcPwi+/WB2NiIiI71MizQIpjoX5W1asaAa8LJEWFxdHVFQU0dHR0KCBGVQiTUTEM5WQSPOqqZ1QmEhr7Oh0rYo0kVOCgqB3b7Ot6Z0iIiKup0SaBZxX0hsGBpoB50LKXqJx48YkJiYyf/58VaSJiHg6Z1ObmBiWLVvG77//Tvfu3a2N6Xw53ifrO+6qIk2kuKLTO0VERMS1lEizgLMirbC9gJcl0opxJtJSUiA729pYRETkTEUq0ipUqECLFi0Idyze7zUc75MReXmAKtJETtenD9hssHEj7NtndTQiIiK+TYk0CzivpNfJzTUDXtSx83T2KlVMRzUAx5QhERHxEPn5kJhotr1sGYFiHIm0GpmZgBJpIqerWRMuv9xsqypNRETEtZRIs0CHDh0YNGgQNY8fNwNRUdYGdAFeeuklIiMjefXVV9W5U0TEU+3fDydPQmAgPyYk8MADD/DRRx9ZHdX5cyTSKmRk8L///penn37a4oBEPI9zeqfWSRMREXEtJdIs8Le//Y2PpkwhOCPDDHhhRVpeXh779u1j586dSqSJiHgq57TO6GjWrlvHBx98YNa39Da1akFICDa7nVsvu4zWrVtbHZGIx3Em0pYsgZwca2MRERHxZUqkWWXvXnNbqRJ421o1QGxsLIDpAOdMpDm/sImIiGfwhY6dYBZ/cl50cjZPEJFiWreGyEiTRFu2zOpoREREfJcSaRZITEwkd8cOcycqynxB8DLFEmnOdXeUSBMR8SxFEmm7HN2Vna/fXscxvXP9F18wadIksrKyLA5IxLPYbJreKSIi4g5KpLnZ8ePHiYmJ4eF+/cyAF07rhFNfxBITE8l3rvGmRJqIiGdxVm/FxBRWpHl7Im3xBx8wfPhwEp1NFESkkDORNn8+2O3WxiIiIuKrlEhzs5SUFABi/f3NgJcm0urVq0dgYCB5eXkcCAszg7t361ObiIgncVzgsBdJpHnl1E4oTKQ1Dg4G4MCBA1ZGI+KRuneHkBDTrPf3362ORkRExDcpkeZmzkRa45AQM+CFHTsB/P39iXF8qdl58qQZzMiAI0csjEpERIpxJNIOV65MTk4ONpuNaC+9gOO88BTjZz66ON9PReSUsDDo0cNsa3qniIiIayiR5mbJyckAxAYEmAFv/UIDXHnllXTp0gVCQ6F2bTOo6Z0iIp4hP9+UpQBJjiroyMhIgoKCrIzqwjneL+s6Lt4okSZSMq2TJiIi4loBVgdQ3jgTaXXz882Al1akAXz88cen7tSvDwcOmETaJZdYFZKIiDglJ0NeHgQE0LZvX44dO8bBgwetjurCOd4vq+fkAEqkiZyNcxneNWsgLQ1q1LA2HhEREV+jijQ3c37wr3X8uBnw4oq0YtS5U0TEszhfj6Ojwd+fihUrem+jAYDISACC8vOpjhJpImcTFQVt2phla7/91upoREREfI8SaW6WnJxMdSDIua6Y44uBN8vPzwfnlzMl0kREPIPz9dixnqXXCw6GWrUAiEKJNJFzKdq9U0RERMqWEmlu1qlTJ4Y6P93Urm2+GHipLVu2EBUVZTrAqSJNRMSz7NljbuvX54knnuChhx7ijz/+sDami+WY3vnOmDGMGzfO4mBEPJdzeud335kZ3iIiIlJ2tEaam91zzz1QpYpZAdbLp3XWqFGDvXv3YrPZyK1blyCAhASrwxIRETh1YaN+ff43bRp79uwx70HeLCoK1q/nquhoaNfO6mhEPNZll5m10dLSYPVq6NbN6ohEPEN+Pvzwg1lGNCICOncGRz8eEZFSU0WaFRxd1HwhkVahQgXsdjt7nV1Id+82i3KIiIi1HIm0k5GRJCUlAXj3Gmlw6n3T+T4qIiXy94e+fc22uneKGF98YSbRdO8OAwea2/r1zbiIyPlQIs2NCgoK2L17NyedVVte3LETwGazFX4p25GbawYzM+HwYQujEhERoDCRlhoWRkFBASEhIdSpU8famC6W430zac0aJk2aREZGhsUBiXgu50oiSqSJmGTZrbfC3r3Fx/ftM+NKponI+VAizY0OHTpEbGwsn02YYAa8vCINTlU37Ny/H5xf0LROmoiItQoKCtdI21lQAED9+vWx2WxWRnXxHIm0fT/9xPDhw0nQcgIiZ9WrFwQEwLZtsGOH1dGIWCc/Hx57rORJM86xESPMfiIipaFEmhslJycDEOecBulDibSEhAR17hQR8RTJyWaF8YAAtjmqtuLi4iwOqgw4EmnOeu4DBw5YF4uIhwsPhy5dzLa6d0p59sMPZ1aiFWW3Q1KS2U9EpDSUSHOjlJQUAKKdFQFePrUTTkukqXOniIhncL4OR0ayy7GemNevjwaF75u1T57Ej1PvqyJSMk3vFDHXlspyPxERJdLcKDk5mQCgprMPuQ9UpLVo0YJOnTrRokWLU4k0TbUREbGWY1on9euTmpoK+EgiLSIC/P0JsNupjRJpIn+lXz9zu2IFaElBKa8iIsp2PxERJdLcKCUlhbqAP0BQENSqZXFEF69nz5788MMPPP/886pIExHxFM7X4fr1+eCDD8jIyODBBx+0NKQyERAAdesCZnqnpnaKnFvjxtCokZnpvXix1dGIWKNzZ4iMPPc+9eqZ/URESkOJNDdKTk4uXNeFyEjw87H//EqkiYh4hiKJNIBKlSpRqVIly8IpU47pndGoIk2kNDS9U8o7f3945plz7xMSAkePuiUcEfEBPpbJ8WwpKSkUTub0gWmdReXm5pLrqBJg9+6S2+KIiIh7nJZI8ylFGg4okSby15yJtPnzTUNfkfJo2zZzGxRUfLx2bahYEXbuNM059u1zf2wi4n2USHOjHj16cNMll5g7PpRIu/766wkNDeXbzZvNQFYWHDpkbVAiIuWZI5GW5O9Pr169GDNmjLXxlCVHIu2Rfv147bXXLA5GxPN16gSVK8PBg/DLL1ZHI+J+R47Ae++Z7c8/h2XL4L//Nbf79sHPP5upnZs3w1VXwfbt1sYrIp4vwOoAypMHHngA4uNhwwaf6NjpFBoaSkFBATv37jVr1+zfb77E1ahhdWgiIuVPQUFhs4GtOTksXryYI0eOWBxUGXK8fzYKCQHnxSkROaugIOjdG/73P1OVdvnlVkck4l5Tp0JmJrRsaRpw2GzFH2/WDFavhp49TRKtUydYuBDatrUkXBHxAqpIc7fERHPrQxVpzk5wCQkJ6twpImK1AwcgNxf8/dnsaNPnEx07nZzvn0lJ1sYh4kWc3Tu1TpqUN8ePw1tvme0xY85MojnFxMAPP5jkWWoqdOsGq1a5K0oR8TZKpLlJfn4+u3fvpsC5bo2vJ9LUcEBExBrO19/ISHY5Lt74VCLNUZGWs30777zzjm9V24m4SJ8+JoGwcaPWgJLy5eOPzfWlqCj429/OvW/t2rB8uenemZ4OvXrBggVuCVNEvIwSaW6yd+9eYmNjOfr772bAh6Z2xsXFAUqkiYh4hCKNBhIc1cG+mEgLPnKEUY8+yo4dOywOSDzFpEmTaN68OR06dLA6FI9Tq9apKZ3z51sbi4i75OfD66+b7VGjIDDwr38nPBy++85UcebkwA03wKxZro1TRLyPEmlucuDAAcKAas4BH0qkOb+g7d69G7sSaSIi1iqSSNu1axfgY4m0mjUhOBg/oB7q3CmnDBs2jM2bN/OLVtQvkbN7p6Z3Snnx1VdmzbOqVWHIkNL/XlgYzJ0LAwfCyZNw550webLr4hQR76NEmpscOHCAes47lSqZ9kk+Ijo6GpvNRnZ2NkerVDGDSqSJiFjD8fprj4kprEhzVg77BJsNIiMBiMK8v4rIX3Mm0pYsMZU2Ir7Mbofx48320KFQseL5/X5gIMycCcOHm2MNGwYvvWS2RUSUSHOTAwcOEOm8U6/euXb1OkFBQdx0003cfffdnIiIMIO7d+udRkTECo5EWnbNmoSGhmKz2Yj2oXU5gcKq7ihUkSZSWq1bmxx0To5ZB0rEl61cCT//DMHB8OijF3YMPz94+2149llz/5ln4PHHTXNsESnf3JJImzx5MrGxsYSEhNC+fXt++OGHs+77xRdf0LNnT2rWrEnlypW58sorWbhwYbF9ZsyYgc1mO+Pn+PHjrn4qF6xYIi0y8ly7eqXPP/+cjz/+mDodOphqgexsOHjQ6rBERMofRyKtQosWpKWlkZGRQXBwsLUxlTVHYlCJNJHSs9k0vVPKj1dfNbf33WeaCFwomw1eeAEmTjT3J0yAwYPNlE8RKb9cnkibM2cOI0aM4KmnnmLjxo107tyZPn36kOjoJHa6lStX0rNnTxYsWMD69evp3r071113HRs3biy2X+XKlUlOTi72ExIS4uqnc8F8PZFWKDgY6tY125reKSLiXnY7ON9fHWtWVjzf+SzeoEhFmqZ2ipRev37mdt48TRwQ37Vpk+m2abOZCrKy8Nhj8NFH4O8PM2bAbbeBB9dwiIiLuTyR9uabbzJ48GCGDBlCs2bNmDhxIlFRUUyZMqXE/SdOnMiYMWPo0KEDjRo14pVXXqFRo0Z88803xfaz2WzUqVOn2I8nK7ZGmo8m0vLy8khLS1PnThERqxw4YD7Z+/n57HsNUJhIi0YVaSLn4+qrISTE5NudjeRFfM1rr5nbW26Bhg3L7riDBsEXX5i6gS+/hL594dixsju+iHgPlybScnNzWb9+Pb169So23qtXL3788cdSHaOgoIBjx45RrVq1YuOZmZnExMQQGRlJ//79z6hYK+rEiRNkZGQU+3G3nj170tHZqdMHv9x89tlnhISEcPvtt4OzO5wSaSIi7uV83Y2M5NkXX+Taa69l/vz5lobkEo7308716/PWW29ZHMz5i42NJS4u7rx/3n77batDFy8XFgY9ephtTe8UX5SYCLNmme0xY8r++NdfD999Z3rHLVtmktNpaWV/HhHxbAGuPHhaWhr5+fnUPm1ieu3atUt9BfmNN94gKyvLJGgcmjZtyowZM2jVqhUZGRm89dZbXHXVVfz66680atTojGOMGzeOF1544eKezEUaMmQITJkCSUk+mUirU6cOBQUFpkPcVVeZQSXSRETcy/m6W78+q1evZunSpdx5552WhuQSjkRalYwMLrnkEouDOX8zZsy4oN+r76z4FrkI/fvD/PkmkTZ2rNXRiJStiRPN+mXdu0OHDq45R7duJol27bWwbh107gyLFhW+NYlIOeDSRJqTzWYrdt9ut58xVpJZs2bx/PPP89VXX1GrVq3C8SuuuIIrrrii8P5VV13FJZdcwr///e8Sr9aOHTuWUaNGFd7PyMggyopXur17za2Pde0EiIuLAyApKYmTUVHmD0uJNBER9yqSSEtwNPaJdVYJ+xLne/jhw6a5TViYtfGcp65du1odgpRjznXS1qwxlTQ1algbj0hZOXIE3nvPbLuiGq2o9u3hhx+gZ0/YuhU6dYLFi6FxY9eeV0Q8g0undtaoUQN/f/8zqs9SU1PPqFI73Zw5cxg8eDCffvop11xzzTn39fPzo0OHDmzfvr3Ex4ODg6lcuXKxH3fKz88nYetWSE01Az5akRYcHEx+fj6poaFmMCHB2qBERMobRyKtICqqsKmP80KHTwkPhwoVAPh43DizPqeIlEpUFLRpY5oNfPed1dGIlJ3JkyErC1q1gt69XX++pk1h9WqTPEtMNMm0DRtcf14RsZ5LE2lBQUG0b9+exYsXFxtfvHgxHTt2POvvzZo1i3vvvZf//ve/9HNeNjsHu91OfHw8ERERFx2zK6SkpHB1s2YA2IODoXp1iyMqe35+foVVD7udg3v2qCWUiIg7ORJphypVIj8/n+DgYI9vxnNBbLbCi1LTX3qJbdu2WRxQ2dm6dSuvvfYa77//Pj/++KMl67qK7yvavVPEF+TkgHNi0pgx5m3CHaKjTWVau3Zw8KCZUrpypXvOLSLWcXnXzlGjRvHBBx8wbdo0tmzZwsiRI0lMTOThhx8GzLTLQYMGFe4/a9YsBg0axBtvvMEVV1xBSkoKKSkppKenF+7zwgsvsHDhQnbt2kV8fDyDBw8mPj6+8JiepmjHTltkpPte2d3MmUjbmpVlnmNOjnlHERER99izB4C9AWblhvr16+Pn5/K3ems4EmmR+Fbnzj59+pCbm8vRo0d599136datG02aNLE6LPEx/fub2+++g7w8a2MRKQsff2wm/0RHw4AB7j13rVpmzbQuXSAjw1TD+WKfHxE5xeVrpA0YMIBDhw7xz3/+k+TkZFq2bMmCBQuIiYkBIDk5uXD6CcC7777LyZMnGTZsGMOGDSscv+eeewoX5z169CgPPvggKSkphIeH065dO1auXMlll13m6qdzQQ4cOEDhZE4fnNbp5Eyk7UhMhLp1Yd8+Ux1RZH07ERFxEbu9sCLtz9xcwEfXR3NyvJ/Ww7cSaXXq1OGpp54qNpafn29RNOKrLrvMrI2WlmampnXrZnVEIhcuPx9ef91sjxoFgYHujyE83CSmb7/dVHreeCPMmAG+2O9HRNzUbGDo0KEMHTq0xMdO71y1fPnyvzzehAkTmDBhQhlE5h7lJZHWuXNnMjIyaNeunalp3rfPVEd4aIJTRMSnpKbC8ePg58fhsDCqVavmm+ujOTka90Ri3md9Re/evZk5cyZ333134Zi/v7+FEYkv8veHvn1NFc+8eUqkiXebOxd27ICqVWHwYOviCA2FL76A+++H//wH7rrLNEAYPty6mETENXx0vodnKZZI88GOnU5/+9vfmDlzJrfddhvUr28G1blTRMQ9nK+39erxyGOPcejQId566y1LQ3KpIlM7fSmR9vPPP/PUU0/RsGFDBg4cyLhx45inhazEBZzTO/XnJd7MbodXXzXbw4ZBxYrWxhMYCB99BI8+au4/+ij8859aNlrE1yiR5gblpSKtGMfUXSXSRETcxPl663z9BQIC3FJ4bo0iibRUZ1dsH7BgwQISExPZsGEDw4cPp3r16ixZssTqsMQH9eoFAQGwbZup5hHxRitWwC+/QEjIqeSV1fz84K234Pnnzf3nnoMRI6CgwMqoRKQs+fAnbM9RnhJpeXl5JCUlER0VZf64lEgTEXEP5+utsyLY1xVZI80XKtJSU1MpKCgo7LJauXJlOnbseM4u5yIXIzzcLI6+dKlZGP2xx6yOSOT8OavR7rvPs5ZlttlMAq1aNfj7301H0SNH4MMPrVnDTUTKlirS3KBHjx40Dgszd3w8kVavXj0aNGhAkrNLnKODnIiIuJgjkZZbty5NmjQp7P7osxxLJdSx2ZjkReumnu63336jRYsWREREUK9ePerVq8fTTz9NVlaW1aFJOdCvn7nV9E7xRr/9Bt9+ayrARo2yOpqSPfoozJxp1iWcORNuuQVycqyOSkQulhJpbnD/oEFUO3HC3PHxRFpUVBQAu5wdxnbv1qIAIiLu4LhwcbBCBf7880/Wrl1LUFCQxUG5UI0aEBSEzW6nnaOKyxsNHjyY2rVrs2rVKjZu3MhLL73Et99+y6WXXsqRI0esDk98nHOdtBUrICPD2lhEztdrr5nbW26Bhg2tjeVc7rrLNEQICYFvvoE+ffT/m4i3UyLNHQ4cMH2ZAwI8q+bYBWJjYwHY4rySnpUFhw5ZGJGISDnhqEhLdFQEO1+PfZaf36kGPnv3WhvLRdi8eTOTJ0/myiuvpHXr1tx3332sW7eOFi1a8KinLPgjPqtxY2jUCPLyYPFiq6MRKb09e2DWLLM9Zoy1sZTGddfBd99BpUomcX311XDwoNVRiciFUiLNxQoKCti3dq25U7euqev1YXFxcQDs2LsXIiLMoKZ3ioi4lt1emEjb5qiAdr4e+zRHlfe3H3zAIS+9aFNS5ZnNZuOVV17hq6++sigqKU/UvVO80cSJpk7h6qvh0kutjqZ0unaF5cuhZk1Yvx46d4akJKujEpELoUSaix08eJC/33ILAPa6dS2OxvWcFRC7du1S504REXc5eNAsumKzsenoUaCcJNIcFWmLZ8xg+/btFgdTev369eMf//gHn376KQ8//DAjR448o2FCeno6VatWtShCKU+cibQFC9RVULzD4cPw/vtm2xuq0Yq65BL44QeIijIdc6+6ytyKiHdR104XK9qx0+ZYP8yXOb+4JSQkQMuW8NNPSqSJiLia83W2bl22O6qAfX5qJxRWpEXiXZ07W7VqxYYNG5g+fXph3HFxcdx+++20bduW/Px8pk+fzgQvbqIg3qNTJ6hcGVJTYd06uOwyqyMSObfJk83qMW3aQK9eVkdz/po0gdWrTexbt5r/BxcuNEk2EfEOqkhzsaKJNF9vNADFK9Lszoo0Te0UEXEtZyKtfn1TEUw5qUgrkkhLTU21Npbz8K9//YvvvvuO5ORkkpOTWbBgAc888ww5OTlMmTKFMWPG8Oeff/LCCy9YHaqUA0FBp5IRmt4pni4nB95+22yPGQM2m7XxXKioKFi5Etq3h7Q06NbNrJ0mIt5BFWkuduDAAeo575SDRFpMTAwDBw4kLi6O/Dp1zB+YKtJERFyrSCKt6p49VKlSpVxVpNUD/vSiirSiateuzbXXXsu1115bOJaTk0N8fDy//fabhZFJedK/P3z2mUmk/fOfVkcjcnYffWRWM4iJgdtuszqai1OzJixdCjfcYNZO690bPv0Urr/e6shE5K8okeZiBw4coIPzTjlIpAUHB/PJJ5+YO999Z26VSBMRcS1n5W/9+vzwn/8AYLfbLQzITRxrpHnb1M6/EhoaypVXXsmVV15pdShSTvTpYyp7Nm6EfftONcQV8ST5+fD662Z71CgIDLQ2nrJQuTJ8+y0MGABffw033wzTp8Pdd1sdmYicixJpLlbepnYWU7++ud2zx3SU89baaxERT1ekIs3JVh5ecx3vq3WBgykp1sZyHmJjYy/o32fEiBH8/e9/d0FEUt7VqgWXX26Wtp0/Hx580OqIRM70xRewcydUqwaDB1sdTdkJCYHPPzfP6eOPYdAgOHIE9HIv4rmUSHOx1JSUU1M7y8nlvZMnT5KUlESAnx9RABkZcPQoqPuYiIhrlJBIKxfq1KHAZiPQbid3716roym1GTNmXNDv1S9v/77iVv37m0TavHlKpInnsdth/HizPXw4VKhgbTxlLSDAVKJVrQpvvQWPPWa6kz73nGoRRDyREmku1qdDB4JnzsRus2GLiLA6HLd46aWXeOGFFxgyZAjv16pl2kDt3q1EmoiIK9jthYm09xct4s1HH+XBBx9k5MiR1sblDgEB2GvXhpQUXhk+3OpoSq1r165WhyByhv794emn4fvvzYLuoaFWRyRyyvLlsH69qd7yopf78+LnBxMmQPXq8Oyz8MILJpk2caJ5TEQ8h/6XdLEBV10FgK12bdMWqRxwdopLSEg4VR2hddJERFwjLQ2yswH45cABtm7dSmZmpsVBuY9/dDQATX2tPEHEzVq3NrOls7NN0kLEkzir0e6/3yzS76tsNnjmGXjnHXP/3/+Ge+6BvDxr4xKR4pRIc7V9+8xtOVofzdkpbteuXcXXSRMRkbLnvFBRty5/Ol5rnRc0ygXn+6sXTe0U8UQ2G/TrZ7bnzbM2FpGifv0VFi40VVmPP251NO4xbBh88omZ8vmf/5gmBDk5VkclIk5KpLlQQUEBBzduNHfKUSLN+QUuMTGRgqgoM6iKNBER1yiyPlpCQgJQPhNp6778kqNHj1obi4iX69/f3M6bZ2aNi3iC114zt7fdBuXp7W3gQPjySzOddd48uPZaSE+3OioRASXSXOrQoUO899xzAOSXk/XRACIiIggODiY/P58j4eFmUIk0ERHXcFSh5UdHk5SUBJTPRNqW7783ldAicsGuvtp8aU9MhN9/tzoaEfMWN3u22X7iCWtjsUK/frBoEVSuDCtXQvfuZvlpEbGWEmkulJqairMOzbmGS3ng5+dHTEwMAHsDHP0sNLVTRMQ1HBcq0qtUwW63ExYWRq1atayNyZ0cibRI4MCBA9bGcgESExOxl1D6Y7fbSUxMtCAiKc/CwqBHD7Ot6Z3iCd58E/Lzzd9l+/ZWR2ONzp3NuoU1a8LGjea+vlqJWEuJNBc6cOBAYSKtPE3thFPVEDtOnjQDqkgTEXENx+trsqOhTWxsLDabzcKA3KxePcB7E2mxsbEcPHjwjPHDhw8Xrjkq4k7O6Z3z51sbh8ihQ/DBB2Z7zBhrY7Fau3awahVER8Off0KnTrBli9VRiZRfSqS5UHlOpN1+++089dRTxHbrZgaOHtWkfhERV3Ak0nJq16Zdu3a0adPG2njcrWhFWkqKtbFcALvdXmLiMzMzk5CQEAsikvLO2XBgzRrTFFjEKpMnmy6ybdtCz55WR2O9xo1h9Wpo2tT01+ncGdatszoqkfIpwOoAfNmBlJRym0i77777Tt2pUcN8Etuzx/RWFxGRsmG3FybSLr31Vjb84x/WxmOFunUBCAWOedFUyFGjRgFgs9l45plnCAsLK3wsPz+ftWvX0rZtW4uik/IsKgratDGdEr/7Du66y+qIpDzKyYG33zbbY8aYrrJivlL+8AP06WOSaN27w9dfm1sRcR9VpLlQemIiFZx3HFNPyqX69c2tpneKiJStQ4cgK8tsl6O1OIsJCSG7gnm3zfeiRWM2btzIxo0bsdvtbNq0qfD+xo0b2bp1K23atGHGjBlWhynllLMqTeukiVWmTzfX4WNiTLdOOaVGDVi61DQHycw0SbWvvrI6KpHyRRVpLnTSkTjKDgsjLDTU2mDcrKCggMTERJKSkugcE2MumSiRJiJStpyvqxER2IODKa8X7I9Xr05YVhZ++/dbHUqpLVu2DDAV3G+99RaVK1e2OCKRU/r3h1deMRVpeXkQGGh1RFKenDwJb7xhth9/HAL0jfUMlSqZdQzvuAO+/BJuuQU+/BDuucfqyETKB1WkuVC3hg0BOFmnjsWRuF96ejqxsbF06dKFPGc1nhJpIiJly1mBVb8+kZGRtGjRolx2egxt1AiAR667zuJIzt/06dOVRBOPc9llpuolPd2sySTiTl98Abt2QfXqcP/9VkfjuUJC4H//g3vvNZ1N770XJk60OCiRckL5fRfq0aQJAJWbNrU4EverWrUqVapU4ejRo6RVrEgEqE+ziEhZc1ygyI2IYP+aNezfv5/q1atbG5MFQhs1gu+/J9JLF9H5/vvv+f7770lNTaWgoKDYY9OmTbMoKinP/P2hb1/4+GMzvdPZO0rE1ex2ePVVsz18OFSocO79y7uAAFOJVrUqTJgAI0eaVR/++U+tKyfiSqpIc6W9e81tOWs04BQbGwtAkr+/GVBFmohI2XK8rh52VDTVrl2bCuXxW4fzfdb5vutFXnjhBXr16sX3339PWloaR44cKfYjYpX+/c3t/PnWxiHly9KlsH49hIbCsGFWR+Md/PzMVNiXXjL3X3rJJCFPuy4jImVIFWkuYrfbydi8mXDAXq9euVy3JjY2lo0bN7I9N5fLQIk0EZGy5nhd3RcUBJy6gFHuOJYQ2LN6NVUzMrxqquTUqVOZMWMGd999t9WhiBTTq5epdtm6FXbsAMeKJSIu5axGu/9+qFnT2li8ic0GTz0F1aqZBOTkyXDkCHz0kdY4FHEFVaS5yNGjR/nxf/8DyucaaQBxcXEAbMrIMAOHD8OxYxZGJCLiYxyJtF35+cCp191yx1GRlrltm9etEZebm0vHjh2tDkPkDOHh0Lmz2VZVmrhDfDwsWmQqrB5/3OpovNMjj8Ann5gk+KxZcOONkJ1tdVQivkeJNBc5cOAAzgmdgeW0QsBZGbFl3z4zcR+0TpqISFmx2wsTaX9kZQFKpNXDvP96kyFDhvDf//7X6jBESuSc3jlvnrVxSPnw2mvm9vbboZx+fSoTd9wBX31lpscuWAC9e8PRo1ZHJeJbNLXTRVJTU2nlvFPO10hLSEiA+vVNffHu3dCypaVxiYj4hMOHITMTgPUHDwKa2lkFOORlywgcP36c9957jyVLltC6dWsCT5uD8+abb1oUmYhJpD3+OKxYARkZ4EWzpsXL7N4Nc+aY7SeesDQUn9C3r6nu698fVq2C7t3hu++gdm2rIxPxDUqkuUjanj1Udd5xfMAvb1q1asXYsWNp1qwZzJ0LGzeqIk1EpKw4X0/r1CG2eXPaHjpEE0e36HKnUiWyAwMJy8sje/t2q6M5L7/99htt27YF4Pfffy/2mE0t18RijRtDo0awfTssXgy33GJ1ROKr3nwT8vPhmmvgkkusjsY3dOpkkuC9e5tps506mf+P69e3OjIR76dEmotk//mnuQ0IIKycXr6LjIzklVdeMXc2bjS3XlYpICLisZyvpzExvP3225aG4gnSK1Ui7PBhTnrZBZtly5ZZHYLIOfXvDxMmmHXSlEgTV0hLgw8+MNtPPmltLL6mTRv44Qfo2dM0DenUyVSqNW9udWQi3k1rpLlIXkICYD7YCxATY26VSBMRKRvO11NdWgYgp1o1s7F3r7WBiPgY5zpp8+dDQYG1sYhvmjwZcnKgXTvo0cPqaHxPo0awerVJnu3bZ5qI/Pyz1VGJeDcl0lzE7vggn+38YF9OJScns3z5cg6EhpoBJdJERMqG4/W0IDoau91ubSweIM/RITsoNdXiSM7fDz/8wF133cWVV17Jvn37AJg5cyarVq2yODIRU8FSuTKkpsK6dVZHI74mOxv+/W+zPWYMaEa7a9SrBytXwmWXmSVWr74avv/e6qhEvJcSaS5yiWMlx+Dy2kHN4cknn6R79+7M/+MPM+BlU25ERDyWI5H2U0oKFStW5MEHH7Q2HovVdiyq069NG4sjOT+ff/45vXv3JjQ0lI0bN3LixAkAjh07dmp5BBELBQVBr15mW907paxNn26mdsbGwq23Wh2Nb6teHZYsMVV/WVmmIcHcuVZHJeKdlEhzkbbVqwMQecUVFkdiLWcHuV+dPZcPHjSv3CIicnEcibQdJ0+SnZ2Nv7+/tfFYrEqLFgBUz8mxOJLz89JLLzF16lTef//9Yh07O3bsyIYNGyyMTOQU5/ROJdKkLJ08CW+8YbYffxwCtHq3y1WqZKZp33wz5Oaa5OX06VZHJeJ9lEhzFecaLeW0Y6dTnKMi7499+yA83AyqKk1E5OLY7YWJtE3HjgGnLlyUW5GR5tYxNdJbbNu2jS5dupwxXrlyZY46L0KJWKxPHzPlbuNGr/tfTDzY559DQoKplLrvPqujKT+Cg2HOHLj/frPu4f33m66pIlJ6SqS5gN1u5/jOnWa7nCfSGjRoAMDOnTtPLYitRJqIyMU5ehQcCbR1jjXB4sr5UgLO99vs7dvJ8qLK54iICHbs2HHG+KpVq8r9v6l4jlq14PLLzfb8+dbGIr7Bbofx4832o49CWJi18ZQ3AQGmU+ro0eb+44/D00+bfxcR+WtKpLlAZmYmGZs3A5DjmOJZXjkTaYmJiRRERZlBNRwQEbk4ztfRWrXYmpgIKJFmc1SkhWVmss9xMcsbPPTQQzz22GOsXbsWm83G/v37+eSTTxg9ejRDhw61OjyRQkW7d4pcrO+/NxWOoaEwbJjV0ZRPNhu8+iqMG2fuv/wyDB0K+fnWxiXiDZRIc4EDiYnUcmyHNW5saSxWq1OnDmFhYRQUFJDu7GCqRJqIyMVxvI7mR0eTkpICaGon1apx3NHu7ajjYpY3GDNmDDfeeCPdu3cnMzOTLl26MGTIEB566CGGDx9udXgihZyJtCVLwMuWIhQP9Oqr5nbIEKhRw9pYyjObDf7v/2DqVLM9dSrceadZP01Ezk6JNBdI37IFwHygdyaPyimbzVZYlZYSHGwGNbVTROTiOBJpmY6q5ypVqlC1alULA/IANhsHHe8zWdu2WRzM+Xn55ZdJS0vj559/5qeffuLgwYO8+OKLVoclUkzr1mYpwuxsWL7c6mjEm23cCIsXg78/jBpldTQC8NBDMGuWmfI5Zw7ccIP5f11ESuaWRNrkyZOJjY0lJCSE9u3b88MPP5xz/xUrVtC+fXtCQkKIi4tj6tSpZ+zz+eef07x5c4KDg2nevDlzPah3r/MD/MHgYJPaL+dGjx7Ne++9R81LLzUDqkgTEbk4jtfRvHr1uPHGG7n22mutjcdDpFesCEBuQoLFkZy/sLAwLr30Ui677DIqOp6HGDfddBNVq1bl1ltvtTqUcs1mg379zLa6d8rFcFaj3X77qSWUxXoDBsA335jptt99Bz17wpEjVkcl4plc3mR4zpw5jBgxgsmTJ3PVVVfx7rvv0qdPHzZv3kx0dPQZ+yckJNC3b18eeOAB/vOf/7B69WqGDh1KzZo1ueWWWwBYs2YNAwYM4MUXX+Smm25i7ty53H777axatYrLnSuhWih31y4AjlasSJTFsXiCQYMGmY0NG8ytEmkiIhfH8Tpa49JLmfvII9bG4kGyq1aFtDTszs7ZHmrUqFG8+OKLVKhQgVF/UY7xplqp8fe//53777+fjz76yOpQyr3+/eHdd00i7Z13dL1Yzl9CAnz6qdl+4glrY5EzXXutqRbs3x9+/BG6dYOFC6FOHasjE/EsLk+kvfnmmwwePJghQ4YAMHHiRBYuXMiUKVMY51zZsIipU6cSHR3NxIkTAWjWrBnr1q3j9ddfL0ykTZw4kZ49ezJ27FgAxo4dy4oVK5g4cSKzZs1y9VP6S/akJACyq1SxNhBP47zkdOCAWVwjNNTScEREvJbzgkRMjKVheJq8WrVg+3YCDxywOpRz2rhxI3l5eYXbcm7du3dnueYSeoSrr4aQEEhMhN9/h1atrI5IvM2bb0JBAfTqBe3aWR2NlOSqq2DFCvNv9Ntv0KmTSa6V96VYRYpy6dTO3Nxc1q9fT69evYqN9+rVix9//LHE31mzZs0Z+/fu3Zt169YVfug82z5nO6a7BTgWfs6tVesv9iwfcnJyWLlyJV8sWwaVKplBR5c5ERG5AI61JjOqVcOuXvWF7HXrAhBy+LDFkZzbsmXLqOK42LZs2bJz/pSFcePGYbPZGDFiRJkcz2nlypVcd9111K1bF5vNxpdfflnifue7xId4rrAw6NHDbKt7p5yvtDT48EOzPWaMtbHIubVuDatXm+TZzp0mmfbHH1ZHJeI5XJpIS0tLIz8/n9q1axcbr127dmGXsdOlpKSUuP/JkydJS0s75z5nO+aJEyfIyMgo9uNKDR2VVtVat3bpebxFcnIyXbt25c677sLurJ7Q9E4RkQtz9CikpwPQ8Y47qFSpEuvWrbM2Jg/RqFs3ANrVrGltIOdh3LhxTJs27YzxadOmMX78+Is+/i+//MJ7771H67/4TLJ69erCC5ZFbd269ayfr7KysmjTpg3vvPPOWY/rXOLjqaeeYuPGjXTu3Jk+ffqQWOSCWvv27WnZsuUZP/v37y/lsxR3cnbv1Dppcr7eecdMSrnkElPdKJ6tQQNYtQpatID9+6FLF1i71uqoRDyDW5oN2E5bQMFut58x9lf7nz5+PsccN24c4eHhhT9RUa5duSxq0CAYOJAWAwe69DzeIjo6moCAAI4fP85x5wR7JdJERC6M4/XTXrMmW5OSyMrKoq6jEqu8q921K9x+O2G33WZ1KKX27rvv0rRp0zPGW7RoUWKzpfORmZnJnXfeyfvvv3/Orq4FBQUMGzaMgQMHkp+fXzj+559/0r17dz7++OMSf69Pnz689NJL3HzzzWc9dtElPpo1a8bEiROJiopiypQphfusX7+e33///Ywf/V17JmfDgTVrTIWRSGlkZZlEGphqNK2v5x3q1oWVK+Hyy+HwYVORumSJ1VGJWM+libQaNWrg7+9/xpXM1NTUMyrKnOrUqVPi/gEBAVSvXv2c+5ztmGPHjiU9Pb3wJ8mxhpnLDBsGn3wCnTu79jxeIiAggBhHJdph59ROx7QkERE5T45E2omICPLz8wkNDSUiIsLamDxFixYwZw489ZTVkZRaSkpKif9+NWvWJDk5+aKOPWzYMPr168c111xzzv38/PxYsGABGzduZNCgQRQUFLBz506uvvpqrr/+esZc4BysC1ni42JMmjSJ5s2b06FDhzI/tpwSFWWmfRUUmM5+IqUxfTocOgRxceBY9lq8RLVqJnl2zTUmIdqvH3z+udVRiVjLpYm0oKAg2rdvz+LFi4uNL168mI4dO5b4O1deeeUZ+y9atIhLL72UwMDAc+5ztmMGBwdTuXLlYj/iXg0aNABgX4Cjv4Uq0kRELozj9fNIeDhgXl/PVeUtni0qKorVq1efMb569eqLqsiaPXs2GzZsKLGxU0nq1q3L0qVLWb16NQMHDuTqq6+mR48eF1UVdyFLfJSkd+/e3HbbbSxYsIDIyEh++eWXEvcbNmwYmzdvPuvjUnY0vVPOx8mT8MYbZvvxxyHA5e3upKxVrGj+f7/lFsjNhdtvP7XenUh55PKpnaNGjeKDDz5g2rRpbNmyhZEjR5KYmMjDDz8MmGqxQYMGFe7/8MMPs2fPHkaNGsWWLVuYNm0aH374IaNHjy7c57HHHmPRokWMHz+erVu3Mn78eJYsWVLmi+hK2WnYsCEAO06eNANKpImIXBjH62dycDBw6kKFeKchQ4YwYsQIpk+fzp49e9izZw/Tpk1j5MiRPPDAAxd0zKSkJB577DH+85//EBISUurfi46O5uOPP2bOnDkEBATw4YcflkmS9nyX+DjdwoULOXjwINnZ2ezdu1cVZx7AmUj77jsoYWk9kWL+9z/z1lWjBtx7r9XRyIUKDjZF34MHm4rUIUPgtdesjkrEGi6/HjBgwAAOHTrEP//5T5KTk2nZsiULFiwonOqXnJxcbMHZ2NhYFixYwMiRI5k0aRJ169bl7bff5pYiNcAdO3Zk9uzZPP300zzzzDM0aNCAOXPmcPnll7v66cgFcn7R23TsmBnQ1E4RkQvjSKTtcqxl5bxQId5pzJgxHD58mKFDh5KbmwtASEgITz75JGPHjr2gY65fv57U1FTat29fOJafn8/KlSt55513OHHiBP7+/mf83oEDB3jwwQe57rrr+OWXXxg5ciT//ve/L+yJcWFLfIh3uOwykxRJS4Mff4SuXa2OSDyV3Q6vvmq2H33UdH4V7+XvD++/D9Wrm3/XMWPM2mmvvKJ176R8cUth7dChQxk6dGiJj82YMeOMsa5du7Jhw4ZzHvPWW2/l1ltvLYvwxA2cibRfUlPNwP79cOKEubQhIiKl57gQsTkrC1BFmrez2WyMHz+eZ555hi1bthAaGkqjRo0Ivoj3xx49erBp06ZiY/fddx9NmzblySefLDGJlpaWRo8ePWjWrBn/+9//2L59O926dSM4OJjXX3/9guIousTHTTfdVDi+ePFibrjhhgs6pngGf3/o2xc+/thM91IiTc5myRKIjzcJtGHDrI5GyoLNBuPHm7XT/u//4F//Msm0yZPNa4NIeaAZ6uIWHTp0YOrUqTRr2tR88srOhsREaNTI6tBERLyLoyItqnNnrq9Th7Zt21oajpSNihUrltmUxUqVKtGyZctiYxUqVKB69epnjIPp2nnttdcSExNTOK2zWbNmLFmyhO7du1OvXj1Gjhx5xu9lZmayY8eOwvsJCQnEx8dTrVo1oqOjAbPEx913382ll17KlVdeyXvvvVdsiQ/xXv37n0qkaXqXnI2zGm3IEFPFJL7jySdNMu2hh+C99+DoUZg5E4KCrI5MxPVsdrvdbnUQ7paRkUF4eDjp6elqPGCFFi1g82ZYtAh69rQ6GhER73H0KFStaraPHTOr/4pblcVniFGjRvHiiy9SoUIFRo0adc5933zzzQs6x+m6detG27ZtmThxYomPL168mM6dO5+xplp8fDzVq1cnKirqjN9Zvnw53bt3P2P8nnvuKTbjYPLkybz66quFS3xMmDCBLl26XNTzORd9znOP9HQzvfPkSdi+HTTLXE63fj1ceqmpUtqxA+rXtzoicYX//Q/uvNOsl9i7t+noWaGC1VGJXJjSfoZQRZq4X/36JpGmddJERM6P83WzRg0l0bzYxo0byXOs0L5hw4azLrxflt1Yly9ffs7He57lwta5Kh67detGaa7HnmuJD/Fe4eHQuTMsWwbz58Njj1kdkXgaZ6XigAFKovmy226DypXh5pth4UJTJzF//qnrfiK+SIk0cZvffvuNjRs30q9iRWqAOneKiJwvx+tmflQUh1JTqVmzZpkmW8Q93nrrrcKrnH+V4BLxZP37m0TavHlKpElxu3aZSiUwC9KLb+vd26yH17cvrFlj1k1cuBAiIqyOTMQ1/KwOQMqPCRMmcO+99xJ/5IgZUCJNROT8OF43E202ateuzc0332xtPHJB2rVrR1paGgBxcXEcOnTI4ohELkz//uZ2xQoz21zE6c03oaDAJFjatLE6GnGHK6+ElSuhTh3YtAk6dTIJVRFfpESauI2zs9y23FwzoKmdIiLnx5FIS3K0xapXr56FwciFqlKlCgkJCQDs3r2bgoICiyMSuTCNG5u+UXl5sHix1dGIpzh4EKZNM9uqRitfWrWC1ashLs4k0Tp1Mkk1EV+jRJq4jTOR9tvRo2ZAFWkiIufHcQFiu2N9rYZa3dsr3XLLLXTt2pXY2FhsNhuXXnopcXFxJf6IeDpnVdq8edbGIZ7jnXcgJwfat4cS+pGIj4uLg1WroGVLSE6GLl3MdE8RX6I10sRtnIm0NcnJZmDfPsjNVY9kEZHSclyA+DU9HTj1uire5b333uPmm29mx44d/P3vf+eBBx6gUqVKVoclckH694cJE8zi4gUF4KfL9OVaVpZJpAE8+SRoGc/yKSLCTPPs188k0a65BubOhV69rI5MpGwokSZu46yc2JSaij0kBNvx47B3r7lsISIif82RSPv5wAFAFWne6rfffqNXr15ce+21rF+/nscee0yJNPFanTpBpUqQmgrr1sFll1kdkVhp2jQ4fNh8vNcynuVb1apmyvfNN8OiRSbp/t//wq23Wh2ZyMXTNSNxm2rVqlGlShUATtSpYwY1vVNEpHTS08HRrOX37GxsNhuxsbEWByUXomizgRUrVpDrXDtUxAsFBZkF5UHTO8u7vDx44w2zPXo0OJbzlHKsQgX45hu47Tbz9zFgALz/vtVRiVw8JdLErZzTkNKrVjUDSqSJiJSO4/Uyr0oVsoDIyEhCQkIsDUkujJoNiK/ROmkC8L//maU8a9aEe++1OhrxFEFBMGsWPPCAmf794IMwfrzVUYlcHE3tFLd65ZVXAAj/739h40Z17hQRKS1H4uVkZCSP3XMPYWFhFgckF8rZbCAiIqKw2YD/WUo3du3a5eboRM5fnz5mLayNG80SuGooXP7Y7fDqq2b773+H0FBr4xHP4u8P774L1avDv/4F//d/Zgrwv/6ldfTEOymRJm7Vy7nC5Pr15lYVaSIipeN4vQxt1oyJEydaGopcHDUbEF9TqxZcfjn89BMsWGAqT6R8WbwYfv0VwsJg6FCroxFPZLPBuHFQrRqMGWMSr4cPw9SpmgYs3keJNLFG/frmVok0EZHScVSkFb5+ile79tprAdRsQHxG//4mkTZvnhJp5ZFzqt4DD5hEicjZPPGEaUTw0EPwwQdw9Cj85z8QHGx1ZCKlpzXSxK0yMzOZOXMmn6xebQaUSBMRKR3H6+X+4GAOHTqE3W63Nh4pE9OnTyc+Pp677rqLjh07sm/fPgBmzpzJqlWrLI5OpPT69TO3S5ZATo61sYh7rVsHS5eaqqKRI62ORrzBkCHw6adm/bTPPoPrroPMTKujEik9JdLErY4fP86gQYN4YtIkM7BvH5w8aW1QIiLewFGRNurtt6lRowa//vqrxQFJWfj888/p3bs3oaGhbNiwgRMnTgBw7NixwnVFRbxBmzZmbbTsbFi+3OpoxJ1ee83c3nEHxMRYG4t4j1tugfnzTWfPxYvhmmvMVE8Rb6BEmrhV9erVqVKlCilAQWAg5OfD3r1WhyUi4tns9sKKtF8zMoBTXZDFu7300ktMnTqV999/n8DAwMLxjh07smHDBgsjEzk/Npu6d5ZHO3eaiiIwU/ZEzsc118D335upnmvXQteusH+/1VGJ/DUl0sStbDYbjRs3xg5k16hhBjW9U0Tk3A4fhmPHANgNREREaE0tH7Ft2za6dOlyxnjlypU5evSo+wMSuQhFE2mafV4+vPEGFBTAtddC69ZWRyPe6PLLYeVKiIiA33+HTp1MglbEkymRJm7XqFEjAA5WrGgG9uyxMBoRES/guOCQEx7OcaBx48aWhiNlJyIigh07dpwxvmrVKuLi4iyISOTCXX01hIRAYiL88YfV0YirpabC9Olme8wYa2MR79ayJaxeDQ0amJUsOnWC336zOiqRs1MiTdzO+QUwyWYzA6pIExE5N8f6aGmOCxBKpPmOhx56iMcee4y1a9dis9nYv38/n3zyCaNHj2bo0KFWhydyXsLCoEcPs63pnb7vnXfg+HHo0AG6dbM6GvF2sbGwapWpbExJMdM8f/zR6qhESqZEmridsyJtm2NBZSXSRET+guN1MsnfHzj1Oireb8yYMdx44410796dzMxMunTpwpAhQ3jooYcYPny41eGJnDetk1Y+ZGaaRBqYajTn9XGRi1GnjmlW0rEjHD1q1lD77juroxI5kxJp4nbOSop459ovmtopInJujkTaVscFCFWk+ZaXX36ZtLQ0fv75Z3766ScOHjzIiy++aHVYIhekb19zu2YNpKVZG4u4zocfwpEj0LAh3HST1dGIL6laFRYtMuvu5eTA9dfDnDlWRyVSnBJp4nbNmjVjwYIFjJ061QyoIk1E5NwcUzsb9erF8OHDadOmjcUBSVkLCwvj0ksv5bLLLqOicw1RES8UHW2mZhUUqJLEV+XlwZtvmu3Ro8FRLC1SZipUgK++ggEDzN/bHXfAu+9aHZXIKQFWByDlT1hYGH369IG9e81AUhKcPAkB+nMUESmR44JD57vvpnPPntbGImXu6NGjfPjhh2zZsgWbzUazZs0YPHgw4eHhVocmckH69zcLhc+bB3fdZXU0UtY+/dQ0lKhVCwYNsjoa8VVBQfDJJ6ZCbepUePhh08T8//5PU4nFeqpIE+tEREBgoEmi7d9vdTQiIp7Jbj9VuVu/vpWRiAusW7eOBg0aMGHCBA4fPkxaWhoTJkygQYMGbNiwwerwRC6Ic520hQtNNYn4DrsdXn3VbP/97xAaam084tv8/WHyZPjHP8z9f/zDrMlnt1sbl4gSaWKJtWvX8sJLL5FVrZoZ0DppIiIlO3gQsrOx22ysS00lIyPD6oikDI0cOZLrr7+e3bt388UXXzB37lwSEhLo378/I0aMsDo8kQty2WVQo4ZZLFxd93zLwoWm2rBCBXjkEaujkfLAZoOXX4bXXzf3X38dhgwxtRgiVlEiTSyxdOlSnn/+eXY763K1TpqISMkc66OlV6hAh06deOaZZywOSMrSunXrePLJJwkosrxBQEAAY8aMYd26dRZGJnLh/P1PNR1Q907f4qxGe/BBcF4PF3GHxx83TS78/GDaNLN+mqMHk4jbKZEmlnB2nNvpvJSgRJqISMkcr4/7g4IAdez0NZUrVyYxMfGM8aSkJCpVqmRBRCJlo18/c6tEmu/45RdYtswsa6yCWbHC/ffD//5n1k/74gvzOnPsmNVRSXmkRJpYolGjRgBsysw0A5raKSJSMkdF2g7HhQcl0nzLgAEDGDx4MHPmzCEpKYm9e/cye/ZshgwZwh133GF1eCIXrFcvk3DZuhV27LA6GikLr71mbu+4w3RnFbHCzTfDggVmevH338M118ChQ1ZHJeWN2iSKJRo2bAjAtuPHzYAq0kRESuZ4fXReeHBeiBDf8Prrr2Oz2Rg0aBAnHcnSwMBAHnnkEf71r39ZHJ3IhatSBTp3NhVM8+fDY49ZHZFcjB074PPPzfYTT1gbi0iPHrB0KfTpAz//DF26wKJFUKcO/PADJCebvnadO5up5iJlTRVpYomwsDAiIyPZ7RxQIk1EpGSOirSdBQUEBwcTFRVlcUBSloKCgnjrrbc4cuQI8fHxbNy4kcOHDzNhwgSCg4OtDk/koji7d2p6p/d74w0oKDBr37VqZXU0IqapyQ8/QL16sHkztGsHkZHQvTsMHGhu69c3U0BFypoSaWKZxo0bn0qkJSaad2cRESnOcaEhAVPN669Lqz5l3LhxTJs2jbCwMFq1akXr1q0JCwtj2rRpjB8/3urwRC6KM5G2YoXWMfJmBw7A9Olme8wYa2MRKap5c1i1ylSiHTwIKSnFH9+3D269Vck0KXtKpIllGjVqxH4g32aDvDxTgysiIqcUFBQm0naj9dF80bvvvkvTpk3PGG/RogVTp061ICKRstO4MTRqZD7mLV5sdTRyod55x3RHvOwyM4VOxJNERYHNVvJjdru5HTEC8vPdFpKUA0qkiWXGjBnD71u24OdcrVTTO0VEiktJgdxc7P7+jHj9dQYNGmR1RFLGUlJSiIiIOGO8Zs2aJOsCk/gATe/0bpmZMGmS2R4z5uwJCxGrONdEOxu7HZKSzH4iZUWJNLFMXFwcTZs2xRYbawaUSBMRKc6xPpotMpLHHn+cG2+80dp4pMxFRUWxevXqM8ZXr15N3bp1LYhIpGz162du58/XKh7e6IMP4MgRU1motyDxRKW95qRrU1KW1LVTrBcTY2737LE2DhERT+O8wOC84CA+Z8iQIYwYMYK8vDyuvvpqAL7//nvGjBnD448/bnF0Ihevc2eoVAlSU2HdOjM9ULxDXh68+abZHj1a3Q/FM5VQ1H1R+4mUhhJpYqnXX3+dBhs3chOoIk1E5HTORgN2O0c3bqRt27bYNK/Gp4wZM4bDhw8zdOhQcnNzAQgJCeHJJ59k7NixFkcncvGCgqB3b/jsMzO9U4k07zFnjpkSV6sWaGUB8VSdO5tunfv2nVoT7XRRUWY/kbKiqZ1iqQ8//JCvfvvN3FEiTUSkOMfUzukrVtCtWzdrYxGXsNlsjB8/noMHD/LTTz/x66+/cvjwYZ599lmrQxMpM8510ubPtzYOKT27HV591Ww/9hiEhFgbj8jZ+PvDW2+Z7bNda3zxRVVUStlSIk0s1axZM3Y772hqp4hIcUU6djZq1EjVaD6sYsWKdOjQgZYtWxIcHGx1OCJlqk8f8wV3wwZTNSKe77vvYNMmqFgRHnnE6mhEzu3mm03Va716xccDHPPv5s49e7WayIVQIk0s1bRpUwrTZ3v2aBVaEZGiHBVpCZjXSxERb1SrFlx+udlesMDaWKR0nNVoDz4IVataG4tIadx8s7n+uGwZ/Pe/5nbNGjO9/Kuv4J13rI5QfIkSaWKppk2bshfIBzhxAg4csDgiEREPkZ8PiYmAqUhr1qyZpeGIiFwM5/TOefOsjUP+2s8/w/LlpppnxAiroxEpPX9/6NYN7rjD3F56Kbz+unls9GjYuNHK6MSXKJEmlmrWrBkngWQ/x5+ipneKiBj79sHJk+TZbOxHFWki4t369TO3S5ZATo61sci5OavRBg40i7SLeLPhw+H66yE3FwYMgGPHrI5IfIESaWKpJk2aALDLOaXTMY1JRKTcc7weJgEFqCJNRLxbmzZm/aLsbFPtJJ5p+3b44guz/cQT1sYiUhZsNpg2zXT23L4dhg2zOiLxBUqkiaUqV65M3bp1KUyf7dplZTgiIp7D8Xq4w27H39+fhg0bWhyQiMiFs9nUvdMbvPGGWZS9Xz9o2dLqaETKRvXqMGsW+PnBzJnw8cdWRyTezqWJtCNHjnD33XcTHh5OeHg4d999N0ePHj3r/nl5eTz55JO0atWKChUqULduXQYNGsT+/fuL7detWzdsNluxn7/97W+ufCriQqtWrWLgs8+aO0qkiYgYjtfDxtdey6RJkwgKCrI4IBGRi1N0nTR10PM8Bw7AjBlme8wYS0MRKXOdOsELL5jtoUNh2zZr4xHv5tJE2sCBA4mPj+e7777ju+++Iz4+nrvvvvus+2dnZ7NhwwaeeeYZNmzYwBdffMH/t3ff4U2VfRjHv+lktoyyyt6rgEyZioAFZDgAQRBRFEVBLAoIrhcnCk5UpqKiLBURZcleMmQVkFEQkL1Hy5AW2vP+8bSFQoG2ND1Jen+uK1dOT06S+yRtevI7z9ixYwdt27a9btsePXpw+PDhxMvo0aOduSviRCVLlsS3XDnzw65d9oYREXEV8Z+HJZo04ZlnnrE5jIjI7WvSBLJkMUPibtlidxq51vDhZu6vO++ERo3sTiOS/gYNMp9D58+b8dIuXrQ7kbgrH2c98LZt25gzZw6rVq3izvj5rseOHUu9evWIiIhIHBvraoGBgcybNy/Jus8//5w6deqwb98+ihUrlrg+W7ZsFCxY0FnxJaOVLm2u1SJNRMRI+DxM+HwUEXFz2bJB06ama+eMGeo66ErOnoURI8zyyy+brrginsbb23TtvOMO2LjRzOT5xRd2pxJ35LQWaStXriQwMDCxiAZQt25dAgMDWbFiRYofJzIyEofDQa5cuZKsnzBhAkFBQVSuXJl+/fpx9ibTb0RHRxMVFZXkIq5j37599P38c/PDgQPmVJiISGYX3yJt/u7dnDp1yuYwIiLpI2H2zhkz7M0hSX31FZw5A+XKmRkORTxVcPCVMdK+/BKmTbM3j7gnpxXSjhw5Qv78+a9bnz9/fo4cOZKix7h48SIDBw6kc+fOBAQEJK7v0qULkyZNYvHixbz++utMnTqVhx566IaPM2TIkMRx2gIDAymqeZxdire3N59OnMg5MANm/PuvzYlERGwWFQUnTgDwUP/+7Ny50+ZAIiLpI6GQtnJl4sec2OzSJfj4Y7Pcr59ptSPiyVq0uDIrbffupru5SGqkupA2ePDg6wb6v/aydu1aABzJtAm2LCvZ9de6dOkSnTp1Ii4ujhEJ7Yzj9ejRg2bNmhESEkKnTp34+eefmT9/PuvXr0/2sQYNGkRkZGTiZf/+/andbXGi4OBgcubMSeLoaBonTUQyu/hunceBs0CFChVsjSMikl6KFYOqVSEuDubMsTuNgJnN8MABKFAAbjKctYhHeecdqFPHtMTs3NkUlEVSKtWFtN69e7Nt27abXkJCQihYsCBHjx697v7Hjx+nQIECN32OS5cu8fDDD7Nnzx7mzZuXpDVacmrUqIGvr+8Nz9j7+/sTEBCQ5CKuw+FwUKFCBRJHR9M4aSKS2cV/Du4GChUqRGBgoL15RETSUcLsnTNn2ptDTGeQoUPNcliYmQxCJDPw8zNF5IAAWLECBg+2O5G4k1RPNhAUFERQUNAtt6tXrx6RkZH89ddf1KlTB4DVq1cTGRlJ/fr1b3i/hCLazp07WbRoEXnz5r3lc23ZsoVLly5RqFChlO+IuJQKFSqwa80a84NapIlIZhf/ObgLqFixor1ZRETSWevW8N57pkXapUvg62t3osxr9mwzg2qOHNCzp91pRDJWqVJmfMCHH4YhQ+Cee6BZM7tTiTtw2hhpFStWpEWLFvTo0YNVq1axatUqevToQevWrZPM2FmhQgWmxY/wd/nyZdq3b8/atWuZMGECsbGxHDlyhCNHjhATEwPArl27eOutt1i7di3//vsvs2bNokOHDlSvXp0GDRo4a3fEydQiTUTkKle1SFMhTUQ8TZ06EBRkulSlYg4ycYKE1mjPPAPXzO0mkil06ABPP21aZz76KCTTqU7kOk4rpIGZWbNKlSqEhoYSGhpK1apV+f7775NsExERQWRkJAAHDhzgt99+48CBA9xxxx0UKlQo8ZIw06efnx8LFiygefPmlC9fnj59+hAaGsr8+fPx1siYbqtChQpXxkhTIU1EMrurWqRpfDQR8TTe3nDffWZZs3faZ/VqWLLEtAgMC7M7jYh9Pv0UQkJMEe2xx8wYjiI3k+qunamRJ08efvjhh5tuY1lW4nKJEiWS/JycokWLsmTJknTJJ67juhZplgUpmJRCRMQjXdUi7VG1SBMRD9SqFYwfbwppw4bZnSZzSmiN1qULFClibxYRO2XNCpMnQ+3aMHeu+Ux6+WW7U4krc2qLNJGUKl++POGnToGXF1y4oDa1IpJ5Xb6cOA/7y6NHU7NmTZsDiYikv9BQ8PGB7ds1PK4dduyA+NF16NfP3iwirqByZRg+3Cy/+iqsXGlvHnFtKqSJS/D29iZ77txQtKhZoSMqEcms9u83xTR/f+576ilyadAaEfFAuXJBo0ZmWbN3ZryPPjIdQFq3NgUEEYEnn4ROnSA2Fh55xIzjKJIcFdLEtZQuba41TpqIZFYJJxJKljStdEVEPFTr1uZa46RlrCNH4LvvzPKAAfZmEXElDgeMGmVm89y7F556yhScRa6lI3RxGTNmzGDGtm3mB7VIE5HMKv5Ewi7LYuPGjTaHERFxnoRC2uLFcPasrVEyleHDIToa6tWDhg3tTiPiWgIDzXhpvr4wdSqMHm13InFFKqSJyzh37hzLDx82P6hFmohkVvEnEmZGRLBw4UKbw4iIOE+5clC2LFy6BPPm2Z0mczh7FkaMMMsDBmhuL5Hk1K4N779vlsPCYNMmW+OIC1IhTVxGSEhI4sydllqkiUhmddWMnSEhIfZmERFxslatzLW6d2aMsWMhMtIUMdu2tTuNiOsKC4P77jOtNzt2hPPn7U4krkSFNHEZ5cqVY6+3NwBxO3fanEZExB5x//wDwC6gskaAFhEPl9C9c+ZMiIuzN4uni4mBjz82y/37axhOkZvx8oJvv4XgYDO7cJ8+dicSV6KPT3EZfn5+eJUpA4D38eMq+4tI5mNZWPGFtJMBARQqVMjmQCIiztWoEeTMCceOwdq1dqfxbJMmwcGDULAgdO1qdxoR15cvH0yYYLpAjxsHEyfanUhchQpp4lKKVavGqYQf9uyxM4qISMY7dQrvc+cAyFa5Mg4NXiMiHs7PD5o3N8szZ9qbxZPFxcGwYWY5LAz8/W2NI+I2GjeG1183y888A/HnOyWTUyFNXMrV46RpwgERyXTiP/cOAWWrVbM3i4hIBkno3qlx0pxn1izYssW0/nvmGbvTiLiX11+Hu+6Cc+fMeGnR0XYnErupkCYupXLlyhzKksX8oAkHRCSzif/c00QDIpKZtGxpuk6tX2+6Hkr6GzrUXD/zDOTKZWsUEbfj42O6eObJYz6nBg60O5HYTYU0cSkPPvggbcPCzA9qkSYimU38516l1q1p166dzWFERDJG/vxw551medYse7N4opUrYdky8PU13TpFJPWKFDGTDwB8+in8/rudacRuKqSJS3E4HFCqlPlBHdBFJLOJb5GWp1YtChYsaHMYEZGM06qVuVb3zvSXMDbao49C4cL2ZhFxZ23aXClGP/44HDhgZxqxkwpp4nrKlgVInLlORCTT2LnTXMd/DoqIZBYJ46TNnw8XL9qbxZNERMCvv5rlfv1sjSLiEd5/H2rUgFOnoHNnuHzZ7kRiBxXSxOWMnDcPAGv3brh0yeY0IiIZ5+LffwOwWKc4RSSTqVbNtJa6cAEWL7Y7jef48EOwLNOSplIlu9OIuD9/f5gyBXLkMF2m33nH7kRiBxXSxOVEZs/OBcArLg7+/dfuOCIiGePsWbKcPg3AHE22IiKZjMOh2TvT2+HDMH68WX75ZXuziHiSMmVg9Giz/PbbKv5nRiqkicsJqVqVxE6dCd2cREQ8XXx39hNA6Vq17M0iImKDqwtplmVvFk8wfDjExED9+tCggd1pRDxL587wxBMQFwddusDx43YnkoykQpq4nJCQEBLKZ7Hbt9uaRUQkw8SfONgJVK5c2d4sIi7kwQcfJHfu3LRv397uKOJkTZpAliywdy9s2WJ3GvcWFQUjR5rlAQPszSLiqT7/HCpUgEOHzOQDOgGQeaiQJi6nWLFi7PX1BSBy7Vqb04iIZIz/Nm0CVEgTuVafPn0Yn9A/TTxatmymmAbq3nm7xoyByEjzJb9NG7vTiHim7NnNeGn+/jBrFnzyid2JJKOokCYux8vLi4tFiwIQrdORIpJJRK5bB8DxwEACAwNtTiPiOu655x5y5sxpdwzJIBon7fbFxFz5Qt+/P3jpG5+I01StCp9+apYHDoQ1a2yNIxlEH6vikvziW2P47dtncxIRkYwRFxEBgFWmjM1JxBOMHDmSqlWrEhAQQEBAAPXq1WP27Nnp+hxLly6lTZs2BAcH43A4+PXXX5PdbsSIEZQsWZIsWbJQs2ZNli1blq45xLO0amWuV66EkyftzeKuJk40Xc0KFTJjN4mIcz3zDLRrB5cuQadOpjWoeDYV0sQlFWvaFIDckZHmtJqIiIfLefQoANmrV7c5iXiCIkWK8P7777N27VrWrl1LkyZNuP/++9lyg5bef/75J5cuXbpu/fbt2zly5Eiy9zl//jzVqlXjiy++uGGOKVOmEBYWxquvvsqGDRto1KgRLVu2ZN9VJ8pq1qxJSEjIdZdDhw6lcq/FExQrZlp4xMXBnDl2p3E/cXEwdKhZDgszXc5ExLkcDvjqKyheHHbvNoU1jZfm2RyWlfne4qioKAIDA4mMjCQgIMDuOJIcy4KAADh3DrZvh/Ll7U4kIuI8UVEQ353z1J495ClRwt48ckPufAyRJ08ehg0bxpNPPplkfVxcHDVq1KBs2bJMnjwZb29vAHbs2MHdd99N3759GXCL0codDgfTpk3jgQceSLL+zjvvpEaNGoxMGPUcqFixIg888ABDhgxJcfbFixfzxRdf8PPPP99yW3d+j8R49VV47z3TsmPSJLvTuJfff4e2bc1h9L59if9aRCQDrFoFDRtCbKwprF3z71bcQEqPIdQiTVyTwwEJ3Zt27rz5tiIi7i7hcy5/fhXRJN3FxsYyefJkzp8/T7169a673cvLi1mzZrFhwwYee+wx4uLi2LVrF02aNKFt27a3LKLdSExMDOvWrSM0NDTJ+tDQUFasWJGmx7yZL7/8kkqVKlG7du10f2zJWAnjpM2ZY7pKScoltEbr2VNFNJGMVrcuvPuuWX7+ec0+7MlUSBPXFV9Iu7h5s81BREScLKGQpvHRJB1t3ryZHDly4O/vT8+ePZk2bRqVKlVKdtvg4GAWLlzIn3/+SefOnWnSpAlNmzZl1KhRaX7+EydOEBsbS4ECBZKsL1CgwA27iyanefPmdOjQgVmzZlGkSBHW3GAk5169erF169Yb3i7uo04dCAqCM2fACTVXj7ViBSxfDr6+8MILdqcRyZz694fQUPjvP+jY0VyL51EhTVzW3D17ANj+++82JxERca6t06cDsO3yZZuTiCcpX7484eHhrFq1imeffZZu3bqxdevWG25frFgxxo8fz5QpU/Dx8eHrr7/G4XDcdo5rH8OyrFQ97h9//MHx48e5cOECBw4cUIuzTMDbG1q2NMuavTPlElqjde0KwcH2ZhHJrLy8YPx4KFDAtEjr29fuROIMKqSJy4ouVgwA7/iCmoiIp/pv0yYA1JFd0pOfnx9lypShVq1aDBkyhGrVqvHZZ5/dcPujR4/y9NNP06ZNGy5cuEDf2zz6DwoKwtvb+7rWZ8eOHbuulZrItRK6d6qQljLbt0P8ORn69bM3i0hmV6AA/PCDGa1o9Gj46Se7E0l6UyFNXFaeO+8015r7XEQ8XNaDBwHIfscd9gYRj2ZZFtHR0cneduLECZo2bUrFihX55ZdfWLhwIT/++CP9buMbuZ+fHzVr1mTevHlJ1s+bN4/69eun+XElcwgNBR8fUyDatcvuNK7vww/N9f33Q8WK9mYREWjWDAYNMstPPQVqG+JZVEgTl1UyfnDiQpcucTEy0uY0IiLOYVkW+aOiACjQsKHNacRTvPLKKyxbtox///2XzZs38+qrr7J48WK6dOly3bZxcXG0aNGC4sWLJ3brrFixIvPnz+fbb7/lk08+SfY5zp07R3h4OOHh4QDs2bOH8PBw9u3bl7jNiy++yFdffcW4cePYtm0bffv2Zd++ffTs2dMp+y2eI1cuaNTILM+caWsUl3foEHz/vVlO49wgIuIEgwdD/fpmcvZOnSAmxu5Ekl587A4gciOFqlXjLJAT2D1/PpXatbM7kohIujsaEUFBywKg1DWzG4qk1dGjR+natSuHDx8mMDCQqlWrMmfOHO69997rtvXy8mLIkCE0atQIPz+/xPVVqlRh/vz55M2bN9nnWLt2Lffcc0/izy+++CIA3bp149tvvwWgY8eOnDx5krfeeovDhw8TEhLCrFmzKF68eDrurXiq1q1h0SLTvbNPH7vTuK7PPjNf0Bs0MF/aRcQ1+PrCxIlwxx3w11/w2mtXxjIU9+awrPij90wkKiqKwMBAIiMjCQgIsDuO3MSOnDkpd+4c855/nnuHD7c7johIulvx2WfUDwvjuLc3+TTZgMvTMYTr03vkOXbsgPLlzZfRkychZ067E7meyEgoVsy0eJk+Hdq2tTuRiFxr2jR46CGzPHs2tGhhbx65sZQeQ6hrp7i08/FTDp3fsMHmJCIiznFi1SpznSePzUlERFxLuXJQpgxcugTXDLUn8caMMUW0ihWvTNAgIq7lwQehVy+z/Nhjpju2uDcV0sSl5aheHYCqWbLYnERExDlyHz8OQIy6uomIXEezd95YdDR8+qlZ7t8fvPTNTsRlffghVKsGx49D164QG2t3Irkd+rgVl1Y2/uip1KVLNicREXGORvnyARCicSBFRK6TUEibNQvi4uzN4momTDAtW4KDoXNnu9OIyM1kyQJTpkD27LBwIQwZYnciuR0qpIlrq1DBXG/fbm8OERFnif98865UyeYgIiKup1EjMzba0aOwbp3daVxHXBwMG2aWw8LA39/WOCKSAuXLw5dfmuX//Q+WLbM3j6SdCmni2sqXN9dHj7I3PNzWKCIi6S3u8mWIiDA/JJw4EBGRRH5+0Ly5WVb3zitmzDDnYQIC4Jln7E4jIinVrZvp2hkXZ1qSnjpldyJJCxXSxLXlzMnp7NkBmPHRRzaHERFJX9+98w789x+x3t5QsqTdcUREXJLGSbve0KHm+tlnTTFNRNzHl19C2bJw4AA88QRYlt2JJLVUSBOXd6FYMQDOrV9vcxIRkfR1fPlyAE7lzg2+vjanERFxTS1bgsMB69fDwYN2p7Hfn3+ai58f9OljdxoRSa2cOc14aX5+8Ntv8MUXdieS1FIhTVyeX9WqAPju2oWlcr2IeJDLf/9trsuWtTmJiIjryp8f6tQxy7Nm2ZvFFSS0Ruva1Uw0ICLup3p1M5MnQL9+sGGDvXkkdVRIE5eXp149AEpGR7Nr1y6b04iIpI9z586R++hRAHLWqmVzGhER16bunca2baYFi8MB/fvbnUZEbkfv3tC2LcTEQMeOcPas3YkkpVRIE5fnXbkyABWAtWvX2htGRCSdhIeHEz+dCjlUSBMRuamEQtr8+XDxor1Z7JTQguX++6/MySUi7snhgHHjoEgR2LkTevWyO5GklApp4vriZ7IrA6xfvdreLCIi6WTt2rUkztOpGTtFRG6qWjUoXBguXIDFi+1OY4+DB+H7783ygAH2ZhGR9JE3L0yaBF5e5u/7u+/sTiQpoUKauL7Chbnk748vcPjPP+1OIyKSLrauXEni0DZqViAiclMOh7p3fvYZXLoEDRtC/MgnIuIBGjaEN980y889BxER9uaRW3NqIe306dN07dqVwMBAAgMD6dq1K2fOnLnpfR5//HEcDkeSS926dZNsEx0dzfPPP09QUBDZs2enbdu2HDhwwIl7IrZyOIiLH4i7X8IRlIiIm2sQFARAdJ48EBhocxoREdd3dSEts80/FRkJo0aZ5ZdftjeLiKS/QYOgSRPT6rZjx8zdhd0dOLWQ1rlzZ8LDw5kzZw5z5swhPDycrl273vJ+LVq04PDhw4mXWddMzxMWFsa0adOYPHkyy5cv59y5c7Ru3ZrY2Fhn7YrYzD9+5s5q/v42JxERSR/d7rwTAP9q1WxOIiLiHpo0gSxZYO9e2LLF7jQZa/RoMxB5pUpw3312pxGR9Obtbbp25ssHGzeamTzFdTmtkLZt2zbmzJnDV199Rb169ahXrx5jx45lxowZRNyiraK/vz8FCxZMvOTJkyfxtsjISL7++ms++ugjmjVrRvXq1fnhhx/YvHkz8+fPd9buiN0Sxg/avt3eHCIi6SXh80zjo4mIpEi2bKaYBpmre2d0NHz6qVnu39+MpSQinic4GMaPN8tffgnTptmbR27MaR/DK1euJDAwkDvjz7gD1K1bl8DAQFasWHHT+y5evJj8+fNTrlw5evTowbFjxxJvW7duHZcuXSI0NDRxXXBwMCEhITd83OjoaKKiopJcxM3Ef9E8tWIFM2fOtDmMiMjtOXjwIJf//tv8oEKaiEiKJXTvzEyHgz/8AIcPm8kWOne2O42IOFOLFqZgDtC9u2mBK67HaYW0I0eOkD9//uvW58+fnyNHjtzwfi1btmTChAksXLiQjz76iDVr1tCkSROio6MTH9fPz4/cuXMnuV+BAgVu+LhDhgxJHKctMDCQokWL3saeiS3iv2g6duxgyHvv2RxGROT2hIWFseP3380PKqSJiKRYq1bmesUKOHnS3iwZIS4Ohg0zy337gp+fvXlExPneeQfq1IEzZ+CRR8wkI+JaUl1IGzx48HWTAVx7Wbt2LQAOh+O6+1uWlez6BB07dqRVq1aEhITQpk0bZs+ezY4dO27ZCulmjzto0CAiIyMTL/v370/FHotLKFsWy+EgN3Bg/XouX75sdyIRkTRbu3IlZRJ+UCFNRCTFihWDqlVNgWnOHLvTON/vv5sZ/AIDoUcPu9OISEbw84PJkyEgAFauhMGD7U4k10p1Ia13795s27btppeQkBAKFizI0aNHr7v/8ePHKVCgQIqfr1ChQhQvXpydO3cCULBgQWJiYjh9+nSS7Y4dO3bDx/X39ycgICDJRdxMlixQsiQAxS9eZNOmTTYHEhFJmwMHDuB78CB+gJUtGxQpYnckERG3cvXsnZ7MsuCDD8zys8+aL9UikjmULAlffWWWhwwBDQfvWlJdSAsKCqJChQo3vWTJkoV69eoRGRnJX3/9lXjf1atXExkZSf369VP8fCdPnmT//v0UKlQIgJo1a+Lr68u8efMStzl8+DB///13qh5X3I8jvtVGBcwYfCIi7mj16tUktEFzlC+vUaNFRFIpoZA2Z45nd3n680/TGsXPD/r0sTuNiGS0Dh3g6adNUf3RRyGZdkpiE6cdvVesWJEWLVrQo0cPVq1axapVq+jRowetW7emfPnyidtVqFCBafHTUZw7d45+/fqxcuVK/v33XxYvXkybNm0ICgriwQcfBCAwMJAnn3ySl156iQULFrBhwwYeffRRqlSpQrNmzZy1O+IKKlYEoBIqpImI+1q1ahWVEn5Qt04RkVSrUweCgsz4QbeYw8ytDR1qrrt1g/g2BSKSyXz6KYSEmCLaY4+Zbu1iP6eeBp8wYQJVqlQhNDSU0NBQqlatyvfff59km4iICCIjIwHw9vZm8+bN3H///ZQrV45u3bpRrlw5Vq5cSc6cORPv88knn/DAAw/w8MMP06BBA7Jly8bvv/+Ot7e3M3dH7Fa5srnCfBEVEXFHq1atonLCDyEhdkYREXFL3t7QsqVZ9tTunVu3mvHRHA546SW704iIXbJmNeOlZc0Kc+demXxE7OWwLMuyO0RGi4qKIjAwkMjISI2X5k7WrIE6dTgCFAKOHj2a7MywIiKu6tKlSwQEBLDi4kWqA0yfDm3b2h1LUkHHEK5P71Hm8OOP0LGj6bCwdavdadLfE0/At9/Cgw/CL7/YnUZE7PbVV2bCEW9vWLYM6tWzO5FnSukxhAZmEfcR37WzILD7r7/Ily+fvXlERFLp0qVLfPjBB4QktKCuXPnmdxARkWSFhoKPD2zbBrt22Z0mfR04ABMmmOUBA+zNIiKu4cknoVMniI2FRx6Ba+ZelAymQpq4jxw5EmfuLHnhAg6Hw+ZAIiKpky1bNnq1aIFvbKxpox//mSYiIqmTKxc0amSWZ860NUq6++wzM4nCXXdB3bp2pxERV+BwwOjRUKoU7N1rWqdlvr6FrkOFNHEvCa03/v7b3hwiImmV8PlVqZJm7BQRuQ0Js3d60jhpZ86YL8ug1mgiklRAAEyZAr6+MHXqlc8KyXg6ghf3Ej8wd/iECTzyyCNcvnzZ5kAiIik3YcIEji9ebH7QRAMiIrelVStzvXgxnD1ra5R0M2qU2ZfKla9MqCAikqBWLXj/fbMcFgabNtkaJ9NSIU3cS3yLtAt//cXkyZPZpE8OEXEThw4d4tFHH2XR55+bFRofTUTktpQrB2XKmG6Q8+bZneb2XbxounUC9O+vRssikrywMLjvPoiONpOunD9vd6LMRx/P4l7iW3CExB9ZLF++3M40IiIptmzZMgBqZMliVqhFmojIbXE4rnTv9IRx0n74AY4cgSJFzGDiIiLJ8fIys/oGB8P27dCnj92JMh8V0sS9VKgAXl4EXLpEQa58MRURcXXLli3DFygZE2NWqEWaiMhtu7qQFhdnb5bbERcHw4aZ5b59wc/P3jwi4try5TOz+zocMG4cTJxod6LMRYU0cS9Zspg2/EBlYOnSpViarkRE3MCyZcsoC3jHxUHOnFC0qN2RRETcXqNG5iP16FFYt87uNGk3fTrs2AGBgWY2PhGRW2ncGF5/3Sw/8wz884+tcTIVFdLE/cS34rjD25tjx46xY8cOmwOJiNzcmTNn2Lx5M4mdOStXNqcQRUTktvj5QfPmZtldZ++0LPjgA7P83HOmMCgikhKvvw533QXnzpnx0qKj7U6UOaiQJu4nflyhxvnyAaZVmoiIK/vzzz+xLItGefKYFRofTUQk3SR073TXQtry5bB6Nfj7a6wjEUkdHx/TxTNvXli/HgYOtDtR5qBCmrif+BZp1by98fX15fDhwzYHEhG5uYTxHOslNDPQ+GgiIummZUvTyHf9ejh40O40qTd0qLnu1g0KFrQ3i4i4nyJFzOQDAJ9+Cr//bmeazEGFNHE/VaoAUCQyksjTp3njjTdsDiQicnMDBw5k5syZVE4YCVst0kRE0k3+/FCnjlmeNcveLKn199+mJZ3DAS+9ZHcaEXFXrVtDWJhZfvxxOHDAzjSeT4U0cT/lyoG/P45z58iq1mgi4gZy5crFfY0akWX/frPijjtszSMi4mmunr3TnXz4obl+6CFziCsiklbvvw81asCpU9C5M1y+bHciz6VCmrgfH5/EVmmEhwMQ587znYtI5rBpk7kuXBiCguzNIiLiYRIKafPmwcWL9mZJqQMHzNhGAP3725tFRNyfvz9MmQI5csCyZfD223Yn8lwqpIl7im/NsePHH6levTo9e/a0N4+IyA2MGTOGQYMGcTChv5Fao4mIpLtq1cx5igsXYPFiu9OkzKefmhYjd98Nd95pdxoR8QRlysDo0Wb57bdh0SJ783gqFdLEPcV/EQ3891/Cw8OZP3++vXlERG5g3LhxvP/++5z780+zolo1ewOJiHggh8O9Zu88ffrKl90BA+zNIiKepXNn6N4dLAsefRSOH7c7kedRIU3cU3whLd+hQ/j4+LBnzx52795tbyYRkWtERkayZs0aAEqcOWNWqkWaiIhTXF1Isyx7s9zKqFFw7pyZe6ZlS7vTiIinGT4cKlSAQ4fM5AMaCSl9qZAm7qlqVQC8Dh6kec2aACxYsMDORCIi11myZAlxcXFUKFMG/4gIs1KFNBERp2jSBLJkgb17YcsWu9Pc2MWL8NlnZnnAANOaTkQkPWXPbsZL8/c3sxl/+qndiTyLCmninnLmhNKlAehYoQIA8+bNszORiMh1Egr8HWvUMN+csmdP/OwSEZH0lS2bKaaBa8/e+f33cPQoFC0KnTrZnUZEPFXVqlcKaAMHQnwnCUkHKqSJ+4pv1dEwIAAwX1g1e6eIuJKEQlqLggXNiqpVwUv/ekVEnMXVx0mLjYVhw8xy377g62tvHhHxbM88A+3awaVLpnAfGWl3Is+go3lxX/GFtOKnTpEzZ05OnTpFeHi4rZFERBIcPXqULfF9i6omDNajbp0iIk7VqpW5XrECTp60N0typk+HnTshd27o0cPuNCLi6RwO+OorKF4cdu82hTVXH0PSHaiQJu4rfuY7r02bePjhh3n00Ufx1Wk9EXER//zzD0FBQdxxxx1k27HDrFQhTUTEqYoVM41/4+Jgzhy70yRlWfDBB2b5uecgRw5784hI5pArF0yeDN7eZty0r7+2O5H787E7gEiaJXwh3baNr9asMSMpioi4iAYNGnD06FGOHz+eWPhPvBYREadp3Ro2bTLdO7t0sTvNFcuWwV9/mUPW55+3O42IZCZ168K775qx0vr0gXr1oHJlu1O5L7VIE/dVpAjkyQOXL7v21Ewikml5eXlRAMyo0l5eUKWK3ZFERDxeQvfOOXPMYaKrSGiN9vjjUKCArVFEJBPq3x9CQ+G//6BjR3MtaaNCmrgvhwOqVzfL69ZhWRbh4eH8888/9uYSkUzv4sWLWAkDUKxda67LlTNTyomIiFPdeSfkzQtnzpix0lzB5s0wa5Y5fO3Xz+40IpIZeXnB+PGmkL9lC4SF2Z3IfamQJu6tVi1zvWYN/fv3p3r16gwfPtzeTCKS6X300UcULlyYL7/88spc47Vr2xtKRCST8PaG++4zy64ye+eHH5rrdu2gTBl7s4hI5lWgAPzwgynqjxkDP/5odyL3pEKauLeEL6Zr1tCoUSMAZsyYcaUliIiIDWbNmsXhw4fNBCgqpImIZLjWrc21KxTS9u+HiRPN8oAB9mYREWnWDAYNMss9epjZPCV1VEgT95bwxXTzZprWr4+/vz979uxh+/bt9uYSkUzr5MmTrFq1CoCWLVqokCYiYoPQUPDxgW3bYNcue7N88okZq61xY/0rEBHXMHgw1K8PUVHwyCMQE2N3IveiQpq4t6JFIX9+iI0lxz//0LhxYwBmzpxpby4RybTmzp1LXFwcVapUoahlwfHj5ttcwkzDIiLidLlyQXxnBew8LDx92nSfAnj5ZftyiIhczdfXtJTNlcvMJvzaa3Ynci8qpIl7cziSdO9sFT9NkwppImKXWbNmAXDfffddaY1WtSpkyWJjKhGRzMcVuneOHAnnz5tJm5s3ty+HiMi1iheHcePM8rBhMHu2vXnciQpp4v6SKaQtW7aMM2fO2JdJRDKl2NhY5syZA1xTSFNfHhGRDBd/WMjixXD2bMY//8WL8NlnZnnAAHP+V0TElTz4IPTqZZYfewwOHbI3j7tQIU3cX8IX1LVrKVWqFBUrViQ2Npa5c+fam0tEMp0///yTEydOkDt3burVq6dCmoiIjcqVMzNkXroE8+dn/PN/9x0cOwbFikHHjhn//CIiKfHhh1CtGpw4AV27Qmys3Ylcnwpp4v4SvqBGREBUFB988AHz58/ngQcesDWWiGQ+wcHB9OvXj549e+Lr7Q3r1pkbVEgTEclwDod93TtjY82XU4AXXzTjEYmIuKIsWWDKFMieHRYuhCFD7E7k+hyWZVl2h8hoUVFRBAYGEhkZSUBAgN1xJD2UKAF795q//HvusTuNiAhs3w4VK0LWrGZKJB8fuxNJOtAxhOvTeyRXW7AAmjWDAgVMlyWvDGpGMHUqtG8PuXPDvn2QI0fGPK+ISFp99x08/rj5nFy8+MqELZlJSo8h1CJNPMNV46SJpNmpU7BhA6xcaVoSHT8Ome9cg6SXhM+jGjVURBMRsUmjRpAzJxw9eqWRsLNZFnzwgVnu1UtFNBFxD926ma6dcXHQuTOcPGl3ItelQpp4hoRC2l9/AbBz50769u3LoEGDbAwlLs+yYPlyePZZKFsW8uY1RY/69aFWLcifH4oWNf9VFiww/1VEbmD69On88ccfxMTEmBXxn0fq1ikiYh8/vyuzZWZU984lS8y5lCxZ4PnnM+Y5RUTSw5dfmq9FBw5A9+5qU3AjKqSJZ6hb11yvWAGWxaFDh/j0008ZPXo0ly5dsjebuB7Lgt9+M0WzRo1g1Cj45x9zW/78ULo0FCpkBlc5eBDGjzf9QsqXh4kTVVCTZA0cOJAWLVowdepUs2LFCnOd8PkkIiK2SJi9M6MKaUOHmusnnjCHFSIi7iJnTjNemp+f+br0xRd2J3JNKqSJZ6hd24zievgw/PsvDRs2JH/+/Jw+fZpFixbZnU5cya5dcO+9cP/9EB5uxq/q3t38pzhzxvT9+OcfM5DKuXOmJdqzz0JgoFnfpQvUqQObN9u9J+JCtm3bxvbt2/Hz86NVq1bmd2fjRnNjgwb2hhMRyeRatjTnxtavN//enWnTJpg924wx9OKLzn0uERFnqF79ymQp/fqZz05JSoU08QxZs5rWRQB//om3tzcPPvggAD///LONwcRlWJZpWXbHHaY45u8PgwaZdstffw1t2phi2dWyZYMmTWDECNMy7d13ISDADLJSq5b5D6P2zgL8+OOPADRt2tQMTLp6tZmyrVgxKFLE5nQiIplbgQLmHBjArFnOfa6EL5/t2kGZMs59LhERZ+nd27Q7iImBTp3g7Fm7E7kWFdLEcyS0+li+HID27dsDMG3aNHXvzOwuXzb/Dbp1My2FGjWCrVvhvfcgT56UPUb27PDKKxARAa1bm/8q/fubkTgvXHBufnFplmUxYcIEAB555BGzMv5zSK3RRERcQ+vW5tqZ3Tv37YNJk8zygAHOex4REWdzOGDcODNc9M6dZuIUuUKFNPEcCV9Y//wTgMaNG5M/f35OnDjB3LlzbQwmtjp3zrQ2GzHC/Ed46y1YtAhKlUrb4xUsaLqBjhhhZmKcPBnuucfM+CmZ0tq1a9m5cydZs2blgQceMCvjP4dUSBMRcQ0JhbR58+DiRec8xyefmHN3TZqYhusiIu4sTx4zPLSXF3z/PXz3nd2JXIcKaeI5Er6wbtkCZ87g4+OT2Drk+++/tzGY2ObsWTMwypw5pvvv1Knw+uvg7X17j+twmHHTFiwwM33+9Zcpph07lj65xa0ktEa7//77yZkzp+nSuWqVuVGFNBERl1CtGhQubBqRL16c/o9/6hSMHWuW1RpNRDxFw4bw5ptm+bnnTOccUSFNPEmBAma2RcuClSsB6Nq1KwULFqSMBqnIfKKioEUL08UuIAAWLoT4cfPSzV13mTnuCxY0owvffTccOZK+zyEub9OmTQB06dLFrNi82RRxc+aEKlVsTCYiIgkcDud27xw5Es6fh6pVITQ0/R9fRMQugwaZlrYXLsDDDzuvVa87cWoh7fTp03Tt2pXAwEACAwPp2rUrZ86cuel9HA5Hspdhw4YlbtO4cePrbu/UqZMzd0XcRcOG5jq+W1WNGjXYv38/77zzjo2hJMNFR0PbtrBiBeTKBfPnQ926znmuypVh6VIzgMD27aYFXGSkc55LXNKCBQtYv349zZs3NysSunXWrXv7rR9FRCTdtGplrmfMSN+5gv77Dz77zCwPGGCKdiIinsLbG374AfLlM20H+vWzO5H9nFpI69y5M+Hh4cyZM4c5c+YQHh5O165db3qfw4cPJ7mMGzcOh8NBu3btkmzXo0ePJNuNHj3ambsi7iKhkLZkCWAKsz4+PjYGkgwXF2cmFViyxLQImj8fatd27nOWLWvGXStQAMLDzRQ3OlWTaTgcDqpXr46vr69ZEf/5k/h5JCIiLqFpU8iSBfbuNXMOpZfvvoPjx6F4cdNaQ0TE0xQqBOPHm+Uvv4Rp0+zNYzenFdK2bdvGnDlz+Oqrr6hXrx716tVj7NixzJgxg4ibdKwtWLBgksv06dO55557KHXNwODZsmVLsl1gYKCzdkXcSZMm5nr1atO+Pl5sbCzz5s3j0KFDNgWTDPPyyzBlipkIYNo0qFkzY563dGmYPdsU75YsgcceS9/T3eJyLly4wNlr5wKPi7sy+E7C55GIiLiEbNmufDSnV/fO2Fj48EOz/OKLkHBORUTE07RoAf37m+Xu3c1JiczKaYW0lStXEhgYyJ133pm4rm7dugQGBrJixYoUPcbRo0eZOXMmTz755HW3TZgwgaCgICpXrky/fv2u/zJzlejoaKKiopJcxEOVLAnFisGlS1e6VwGPPPIIoaGhjE0YBVY808iRV45mx40zp54zUvXqMH26OYr+6Sd4992MfX7JUN999x2FChXi3avf5y1bTLOEbNmgTh37womISLLSe5y0adNg1y4zu10yX1lERDzKO++YQ9wzZ+CRR8zX7szIaYW0I0eOkD9//uvW58+fnyMpHIz7u+++I2fOnDz00ENJ1nfp0oVJkyaxePFiXn/9daZOnXrdNlcbMmRI4jhtgYGBFC1aNHU7I+7D4bhyqnHhwsTVDzzwAABjx47l8uXLNgQTp1uxAvr0McvvvAO36EZ+tePHj7N69WoWLFjA77//ztSpU/n999+ZN28eK1euTF3x/Z57YMQIs/z666awJh7HsixGjx7N+fPnyZEjx5UbFi0y1w0bgp+fPeFEROSGEsZJW7ECTp68vceyLPjgA7Pcqxdkz357jyci4ur8/GDyZDOX28qV8L//2Z3IHqkupA0ePPiGEwIkXNauXQuYcWOuZVlWsuuTM27cOLp06UKWLFmSrO/RowfNmjUjJCSETp068fPPPzN//nzWr1+f7OMMGjSIyMjIxMv+/ftTudfiVu65x1xfVUhr164dQUFBHDx4kJkzZ9oUTJzmyBFo3x4uX4YOHeCVV67bxLIsdu3axYQJExgwYADHjx9PvG3kyJHUrVuXZs2a0bZtW9q3b0/btm0JDQ2lfv36LF++PHHbFStW8PzzzzNu3Dh27tyJlVz3zaeegt69zfKjj8Lff6f7Lou91q5dy8aNG/H390869mfC5466dYqIuKRixczMmnFxMGfO7T3W4sWwdq0Zd+3559MlnoiIyytZEr76yiy//z7Mm2dvHjukehT23r1733KGzBIlSrBp0yaOHj163W3Hjx+nQIECt3yeZcuWERERwZQpU265bY0aNfD19WXnzp3UqFHjutv9/f3x9/e/5eOIh0gopK1bZ2ZPDAzE39+f7t27M3ToUEaNGsX9999vb0ZJP5cumeLZ4cNQqZLp0hlfrI+KimLmzJnMmzePhQsXsveqjvxNmzZNnGWxZMmSFCtWjICAALJly4avry8xMTFER0cTGRlJ4cKFE++3ePFivvjii8SfCxQowN13303r1q1p1aoVefLkMTd8/LEZyXjhQmjXzhxp58yZAS+IZIQxY8YA0KFDhyvveWzslYkGVEgTEXFZrVqZmedmzIAuXdL+OEOHmuvu3c1sdiIimUWHDvD00zBmjOkItHGjmXcts3BYyTanuH3btm2jUqVKrF69mjrx48SsXr2aunXrsn37dsqXL3/T+z/++OP8/fffia3bbubvv/+mSpUqLFmyhLvuuuuW20dFRREYGEhkZCQBAQEp2yFxL2XLwj//wG+/QZs2AOzatYsyZcrgcDj4559/rpvAQtxUWJiZcz4gANasgXLlAPj555959NFHiY6OTtzU19eXWrVqUb16dZ5++mmqVauW6qdbunQpv//+O6tXr2b16tXExMQk3ubt7c26deuuPO6JE2bctAMHoHNnM290ClvkiuuKiooiODiY8+fPs3TpUho1amRuWLcOatUyv4snT5oJL8Tj6BjC9ek9kltZsQIaNIBcucywlmn5uN60CapVAy8v2LHDzDkkIpKZ/PefGS/t778hNNTMu+bltMHDMkZKjyGctpsVK1akRYsW9OjRg1WrVrFq1Sp69OhB69atkxTRKlSowLRr5k6Niorip59+4qmnnrrucXft2sVbb73F2rVr+ffff5k1axYdOnSgevXqNGjQwFm7I+4moTXI/PmJq0qXLk1oaGji2EbiAaZPN0U0YM9bb7Hp4sXEm6pXr050dDQVKlSgf//+zJkzh9OnT7NixQq+/PLLNBXRAO666y6GDRvG0qVLiYyMZOnSpbz22mtUqVKF3LlzExISkrjtT4sWET5wIJa3N0ycCJrswiOMGzeO8+fPU6FCBRo2bHjlhoTPm7vuUhFNRMSF3Xkn5M1rBstO4Rxo10lojda+vYpoIpI5Zc0KU6aY67lzYdgwuxNlHKfWCydMmECVKlUIDQ0lNDSUqlWr8v333yfZJiIigsjIyCTrJk+ejGVZPPLII9c9pp+fHwsWLKB58+aUL1+ePn36EBoayvz58/H29nbm7og7ie+yx+zZSVY/++yzAISHh2dwIEl3Bw9ide8OwMTgYEqFhfH6668n3ly6dGkiIiLYunUrQ4cOpXnz5mRP51GAs2TJQqNGjXj77bfZtGkTERERiZ9Dly9f5oUXXqB67958VrAgAFafPqDfPbdmWRYj4ieTCAsLSzrmZ8LnTYsWNiQTEZGU8vaG++4zy2mZvXPvXjPYNsCAAemXS0TE3VSqBJ9/bpZffdVMQJAZOK1rpytTk/9MICrKnGq8fNm0ty9bFoDY2FhWrFhBw4YNUzzphbiemP/+42SNGhTavp11QD0AX1/at2/PDz/8gJcLtCk+c+YM/fv354cffiD64kV+A1oDp/PlI8uWLWTVYCpu6+DBg4wePZpBgwaRNWtWszIy0nzmxMbCrl2gruMeS8cQrk/vkaTEjz9Cx45QsaIZ0jQ1EkaVaNo0SecHEZFMybLMKDaTJ0Px4rBhA+TObXeqtLG9a6eIrQICIGHcoqtapXl7e9OoUSMV0dzYzz//zKfBwRTavp1zQI/s2Xlp4ED27t3LxIkTXaKIBpArVy7Gjh3L/v37efOtt+gXFMR+IPfx4/xSvDizZs2yO6KkUeHChXnrrbeuFNHATFcUGwsVKqiIJiLiBkJDTS/8bdvM+Y+UOnnyykgNao0mImKGgB492hwC790LPXqY4ponc41vnCLOkNBm/5runQkiIyPZtm1bBgaS9GCtWsWLZ84AsKxDBxYfOsSQIUMoVKiQvcFuICgoiNdff53w/fvZ+OKLxAFd/vuPCqk9/S22u3Tp0o1vTPicSfjcERERl5Yr15VzrjNnpvx+I0bAhQtwxx1w773OSCYi4n4CAsx4ab6+MHUqjBpldyLnUiFNPFfCF9pFi8wRz1Xmz59P0aJF6dKlC5mwd7NbWb16NcuWLTM/REXRfupUfIDL7dvTcsoUt+m2kyVLFlp/9BFWv34AlBoyBA4eBGD48OEsWrTIzniSAu3ataNly5Zs3rw56Q2WBQktDFVIExFxG61ameuUFtL++w+GDzfLAwZoIm4RkavVqgXvv2+W+/Y1sxt7KhXSxHNVrAjFikF0NCxcmOSm6tWrExsby4YNG5gzZ45NAeVmjh49yhNPPEHdunXp3r070RcvwrPP4vj3XyheHJ+xY93yCNb73XehZk04dQoee4ydERH069ePJk2a8MADD7Bjxw67I0oy1qxZw++//87cuXPx9/dPemN4OBw5Atmzw9WzeIqIiEtr3dpcL14MZ8/eevtvv4UTJ8wYQB06ODOZiIh7Cgsz55Wjo804lOfP253IOVRIE8/lcFw51Th9epKb8ubNmziD52uvvaZWaS7k0qVLfPzxx5QrV45vv/0WgPr163P5229h4kQz1dbEiaZPhjvy84MJEyBbNli4kODJk3nmmWfw9vZm+vTphISE8Prrr/Pff//ZnVSuMnjwYAAeffRRypUrl/TGX3811/feC9cW2URExGWVKwdlykBMzK0nDYiNhQ8/NMsvvWTGVxMRkaS8vMxJh+Bg2L4dnn/e7kTOoUKaeLZ27cz1tGlmBs+rvPzyy+TIkYP169czbdo0G8LJtZYuXUq1atV46aWXiIqKombNmqxYsYLv3niD7P37m43+9z+oX9/eoLerfHn49FMAsr/7Lp93787mzZtp0aIFly5d4p133iEkJEStJV3EqlWrmDVrFt7e3rz++uvXb/Dzz+Y64fNGRETcgsNxpVXajBk333bqVNi920zQ3L2787OJiLirfPlMuwEvL/jmG7PsaVRIE892990QFGSmWFqyJMlN+fLlIywsDIA33niD2NhYGwJKgrVr13L33Xezbds2goKCGDt2LH/99Rf1atWCLl3g3DkzKvArr9gdNX089RQ8+CBcugSdO1MxfibPqVOnUqRIEXbv3k379u05ceKE3UkzvYTWaF27dqVMmTJJb9y61Vx8faFNm4wPJyIityWhkDZzJsTFJb+NZcHQoWa5d2/Tk19ERG6scWNIOP/csyf884+tcdKdCmni2Xx8TLECrrQaucpLL71Erly52LJlC5MmTcrgcHK1mjVr0qZNG3r06MGOHTt46qmn8PLygrfegtWrITAQfvjBdO30BA4HjB17pd3zSy/hcDh46KGH2Lp1Ky+99BJvv/02QUFBiXdRF+SMN2/ePP744w98fHx47bXXrt9g6lRzHRpqfkdFRMStNGoEOXPC0aOwbl3y2yxaZG7LmhV69crYfCIi7uq11+Cuu0x7iI4dzbhpnkKFNPF87dub619+MQNcXCVXrlwMGDAAb29v9u7da0O4zOvYsWM888wznDx5EgCHw8Evv/zCmDFjyJ07t9lo6VJ47z2zPGaMmTzCk+TNC999Z5ZHjYLffgMgZ86cfPjhh/Tt2zdx0yVLltC4cWMiIiLsSJppjRw5EoBevXpRunTp6zf46SdznfA5IyIibsXPz5wLgRt370xojda9u+myJCIit+bjY7p15s0L69fDwIF2J0o/KqSJ57vnHsidG44dM4WZa4SFhREeHs6rr75qQ7jMx7Isxo8fT8WKFRkzZgwvvfRS4m0+V4/ce/o0PPqo6Wfx+OPw8MMZHzYjNGsG/fqZ5e7d4cCB6zaxLIu+ffsmjiH3/vvvc/maMf/EOaZMmcLnn3/OG2+8cf2NERGwebM5SmjbNuPDiYhIuri6e+e1wsPhjz/MWD8vvpihsURE3F6RImbyATBDRP/+u51p0o8KaeL5fH3hoYfM8vffX3dz1qxZCQkJyeBQmdPevXtp2bIl3bp149SpU1SrVo3nk5vKxbJMZ/r9+6F0aRg+POPDZqR33oGaNc1Yfl26XDcxhsPhYNq0aTRv3pzo6GgGDRrEnXfeSXh4uD15MxFfX1969+5Nnjx5rr8x4fPk3nshudtFRMQttGxpRlxYtw4OHUp627Bh5vrhh6FUqYzPJiLi7lq3hvihyXn88WTbDbgdFdIkc3j8cXP944+mk/YN/P333wwePFhjUaWz2NhYhg8fTuXKlfnjjz/w9/fnvffeY82aNdSsWfP6O3z3nXmvfHxg4kQzeIkn8/eHyZMhRw7TavKdd67bpHjx4syePZtvv/2W3Llzs379emrXrs1rr73GxYsXbQjt2aZPn070zQZyiI29cnrtiScyJJOIiDhHgQJQp45ZnjXryvp//4UpU8xywuThIiKSeu+/b9oNnDoFnTtf127A7aiQJplDgwZQtiycP39lTKNrnDhxgtq1a/Pmm2/y448/ZnBAzzZ06FBeeOEFzp8/T6NGjdi4cSODBg3C19f3+o23bTNTYgG8+eaVI1tPV6YMjB5tlt9+GxYvvm4Th8NBt27d2Lp1K+3bt+fy5cu8++67zEyuL4qk2YIFC3jggQeoVasW//33X/IbzZ8PBw+almjq1iki4vYSundePU7aJ5+Y8ybNmkGNGvbkEhHxBFe3G1i2zHzdcWcqpEnm4HBcaTUyblyymwQFBfHyyy8D8Nxzz3HkyJGMSufxevbsSfny5Rk5ciSLFy+mfPnyyW94/rwZtP38eTO2Xfz7kWl07mx+T+PiTBfPEyeS3axgwYL89NNPTJ06lSeeeIKHErouo5k9b9f58+fp0aMHAHfddRdZs2ZNfsOEz5EuXcyRgYiIuLWEQtq8eXDxohlt4auvzLoBA+zLJSLiKa5tN7Bokb15bocKaZJ5PPaYGSl2+XLYsSPZTV555RXuuOMOTp06Rc+ePVWUSKNVq1bRp0+fxNcvd+7cbNmyhZ49e+LldYOPHcuCZ5+FrVuhUCGYNAm8vTMwtYv4/HMoX94M0tKtmymq3cBDDz3EuHHjcDgcAJw6dYo777xTLdRuw6BBg9izZw/FihXj/fffT36jkyfh11/Nsrp1ioh4hGrVoHBhuHDBDM3as6dZvuMO0yJNRERuX+fOZn41yzLno48ftztR2qiQJplH4cJmNFkwxYpk+Pn58e233+Lr68v06dP55ptvMjCg+zt79ix9+vShfv36fP7550yaNCnxNu9bFcW++soM3u7tbdr9Fijg5LQuKnt2Mz6cv78ZqCUV7Z4/+OAD1qxZQ+vWrencuTPHjh1zYlDP89tvv/F5/GfDmDFjyHmjsfnGjoWYGKhe3VxERMTtORxQqZJZfvll+Plns7xvH0ybZl8uERFPM3w4VKgAhw/fst2Ay1IhTTKXhOlCxo0zIx0mo1q1arz55psA9OrVi40bN2ZQOPc2a9YsQkJC+Pzzz7Esi27dutG8efOU3XndOkiYvfPdd+Guu5wX1B1UrQqjRpnlwYNh+vQU3e2NN96gX79+eHl5MWnSJCpWrMj48ePVsjIF9u7dy+Pxk5L07dv3xr+7ly7BF1+Y5RdeyJhwIiLidL/8Yrp1Xuv0aTPqxC+/ZHwmERFPlD27mcjF3x9mz4ZPP7U7Ueo5rEz4DSsqKorAwEAiIyMJCAiwO45kJMsybfQ3bTIFm1deSXazuLg4WrduzezZs+nRowdjxozJ2JxgvrDv3WumjDp1yrSAyZLFDG5eqhQUL25On9rs2LFjhIWFJbY+K1GiBGPGjOHee+9N2QMcOgS1a5vrNm1Ml7kbdf/MbPr0Ma0nc+aEv/4yp25SYO3atTz11FOJReDQ0FBGjRpFyZIlnZk2ZSwLjhwx3atPnjTj4fn7Q2AglChhfreTm4TCyVq3bs3MmTOpU6cOy5Ytw8/PL/kNJ00ybdILFDB/nxofLdPRMYTr03skqRUba/4FHTiQ/O0OBxQpAnv2ZM5RJ0REnGHUKDOyj68v/Pmn+Upot5QeQ6iQpgOszGf8eNOGtGBBU6S6wRfhU6dO8c033xAWFnbrbonpZds205dgwQJTOLnRjIEAAQGmW1nz5nDffaYVkw2FtQYNGrBixQq8vLwICwvjrbfeInv27Cm784ULcPfdsHat6U+xYoUpqIhx6RLcey8sWQLlysHq1ZArVwrveomPPvqIwYMHEx0dbV9BGGD7dtNNdf588x5HRt54Wx8fqFXLTDbRrp2ZJi0Dfq/37dvHs88+yxdffHHjgmNcnPmb27TJzCj7xhtOzyWuR8cQrk/vkaTW4sXm386tLFoEjRs7O42ISOZgWdChA0ydas6lr19v/1dBFdJuQgdYmVxMDJQsaVpAffEF9OqVorsl/Kk40vtL/fnzprg3YgT8/XfS27JlMy3P8uUDPz8zjdTx47B7tymyXK18eTNyY7duGTq+2NKlS+nTpw9jx46ldmpOI1gWPPKIadebN68pHJYq5byg7urYMVNY2r/fHL3PmZOqVlA7duzglVdeYfTo0eTNmxeAmJiYG7e4Si9nzpjf6/HjTdfdq3l5mb/BAgVM2+7oaNN3Zvdu8/dwtXLlzID+zzwDuXM7N/OtTJ1q+vcEBJhmCXny2JtHbKFjCNen90hSK6Gx8a1MnGgOXUREJH2cOWM6jO3dCx07ms9jOztdqZB2EzrAEkaMMAW0AgVg1y7zZf4mYmJi6N69O5UqVeKVG3QHTbWoKPj4Y/jsM/MJAqZda2go3H8/NGpkigjJdXOMiYGICDMD6ezZpqVPQus1Pz9TTOvfH8qWTZ+s8U6fPs1rr71GiRIl6N+/f+L6uLi4G8/GmRzLgn79zP77+pr8mX1ctJsJDzevz9mz5rTN5Mlp7v5qWRb33XcfuXPn5sMPPyQ4ODh9s+7da36nx46Fc+fMOh8faNrU/G43aQIVKyZfDLQs00p06VKYORN+/90UjwFy5IAePWDgQMifP12ifv/99/j7+/Pwww/feuPYWNMabfNmeP11eOutdMkg7kfHEK5P75GkllqkiYjYZ9UqaNjQHG6PHQtPPWVflhQfQ1iZUGRkpAVYkZGRdkcRu0RHW1bJkpYFlvXOO7fcfOrUqRZgAdYnn3xye8998aJlffKJZQUFmecHyypd2rI++8yyTp9O22NGRVnW2LGWdeedVx7T4bCsjh0ta+fO28trWdbly5etMWPGWEFBQRZgZc+e3Tp58mTaH/Ddd6/k/O67286XKSxYYFm+vuY169PHsuLi0vQw4eHhlsPhsAArR44c1tChQ63o6Ojbz3fkiGU995xl+fhceW8rV7aszz+3rGPH0vaYUVGWNW6cZVWpcuUxc+SwrLfftqxz524r7g8//GB5eXlZgLVgwYJb32HsWPP8gYGWderUbT23uDcdQ7g+vUeSWpcvW1aRIubQKeHfzdUXh8OyihY124mISPp7/33zeZs1q2X9/bd9OVJ6DKFCmmReEyZc+Wvds+eWm7/66quJxbQPPvggbc+5cKFllS9/5cisfHnL+ukny4qNTdvjJWfZMstq3frKc/j4mALHkSOpfqi4uDhrxowZVuXKlRP3vVKlStaiRYvSnu/zz69ku92iZGYzadKV1+7ll9NcTFu7dq1Vt27dxPe0ZMmS1sSJE63YtPwenjtnCls5clzJds89ljVrVprzXScuzrJmz7asmjWvPEdwsGX9+GOanuPqIlqPHj1uvd+nTl0pfOt3NtPTMYTr03skaTF1qimYXVtMS1g3dardCUVEPFdsrGWFhl45F3/+vD05VEi7CR1giWVZ5gt448bmr7VVq1t+IY+Li7P+97//JRYfBg0alPLCw7FjlvXYY1eOygoUMC1cLl1Khx25gfBwy2rZ8spzZs9uWf/7n2WdPZuiu2/bts1q3Lhx4v7mzp3b+vjjj62YmJi0Z0o41QCW9dpraX+czOyLL668hn37prlYFRsba33zzTdWwYIFE9/jmjVrWvv27UvZA1y+bFlffWUKWgl5atY0xWJniY01xcSE1qRgWffdl6JCuGWZv+Fhw4YltshLURHNsizrqafMc1WsaFm38/svHkHHEK5P75Gk1dSppmXa1YW0okVVRBMRyQhHjpivyWBZTz9tTwYV0m5CB1iSaNu2K93lRo9O0V3ee++9xMLDgw8+aJ29WWEqNtYUzHLnvnJa87nn0t6FMy0WLrSs2rWTFvFGjbplEe+ff/6xfH19LX9/f2vAgAHWqdvpzhYba1mDBl3J8Prr6ddaKTMaMeLKa/nkk6archqdO3fOevvtt62cOXNaZcuWvXWhNC7OsmbMMKeKEjKUKGEKXOnZsvJm/vvPst54w7L8/K60Kn3//ZsWuWJiYqxnnnkm8W+3d+/eKSui/fbblf28nZaY4jF0DOH69B7J7bh82XzcT5xortWdU0Qk48ybd6Vl8JQpGf/8KqTdhA6wJImhQ81fapYslrVxY4ruMn78eMvPz8/Knj27tXnz5uQ32rTJsho0uPIl/I47LGvVqnQMngpxcaYbXOnSV/JUqGBZ06cnFrTWrVt3XZfVCRMmWP/+++/tPfe5c5bVvv2V501rt1hJ6quvLMvLy7ymd99tWSdO3NbDHTt2zFq3bl3izxcvXrQ6depkLVq0yIpLKHquWnWlFSeYAvHHH5tx/+ywbZvZ96vHZFu6NNlNf/vtNwuwHA6H9cknn1zZp5vZs8ey8uUzj/3ii+kaXdyXjiFcn94jERER9/XKK+bwOyDAsnbtytjnTukxhGbt1GxOEhcHrVrBnDlQpAisWAFFi97ybitWrODUqVO0bt06cZ1lWTjOn4c334RPPjFTj2TPDm+/Dc8/b2YvtFNMDIwaZWYcPHkSgFNVqvBmjhwMX7kSgI0bN1K1atX0eb7Nm6FLF3Pt6wsjR8KTT6bPYwvMmgWdOpnZPEuUgAkToH79dHnoUaNG8eyzzwLQuUYNhvn5EbxqlbnR3x9eeMHMoJk7d7o8X5pZFowfb2aBPXHCrOvWDYYNg3z5kmz6/PPP06xZM+6///5bP25kJDRoAFu2mNk6V6yALFmcsAPibnQMkfEefPBBFi9eTNOmTfn5559vub3eIxEREfd1+TLcfbc5/K5TB5YtAz+/jHnulB5DqJCmAywBU1Rq2BC2b4fy5eGPP6B48VQ9xMzff2d1//68FhmJ35EjZuVDD8Gnn6aoMJeRzh86RET37lSaO5cs8R8BPwMbW7TgiS+/pFSpUrf3BDExZr/feAOioyF/fpg61bzGkr62bIE2bWDPHvDyggED4LXXTAH3Nuzdu5fvBg6k2I8/8mhcHD5ALLCtVi2KfP01udKr2JpeTp2CQYNgzBgAYgMD+bp0adpOn07BIkVS91gnT0Lz5rBuHRQqBGvWQOHCTggt7kjHEBlv0aJFnDt3ju+++06FNBERkUxg3z6oVg3OnDHny4cNy5jnTekxhFfGxBFxcXnzmuJZ0aIQEQF168LChSm7r2VhzZ5NyY4deSsiAr8jRziRIwfHxo0zxSMXK6KtW7eOQhUqUPOPPyhrWfzg40Mc0B54e84cSj35JEyfDpcupf7BL1+GH3+EkBB4+WVTRGvVCjZtUhHNWSpXhg0boGtX07ry/fdNMfjrr83rn1qxsTBvHsV79+aNyZN5PL6INtvXl6pAlbVrKVK/PmfOnEnnHblNefLA6NGcmjmTg0FBeEdG8vT69ViVKsGkSea1SYl168zf/7p1EBQEs2eriCZis3vuuYecOXPaHUNEREQySLFiMG6cWf7wQ3NI7kpUSBNJUKyYaT9apQocOQJNm8Kjj8LGjab72LX27oXPPoPKlXHcdx+V/vuPCz4+vAEUO3eOwk8/zVNPPcXGjRszfFcSWJbFunXrmH3VJ09ISAi+vr6ULl2alz75hDYnTuC1ebMpxPj4wOLF8MADEBwMvXvDjBkQFXWzJzFdN996C8qUgY4dYedOKFAAvvkGfv/dLIvzBAaa7o3TpkHJknDwIDz1lGlVOWiQaVF1s0LShQswd6453VO8OISGmvfd4YAHH4SVK7n7zBn6jh1L1apVqVu3Lrly5Uq8+9ixY1mxYgWxsbHO39cb2LFjBy+88AJFO3Sg+IkTvABE+fpS6OxZ6NwZSpeG994zv5vJ/T3v3Ak9e5oi2j//mM+DpUvNqTARNzRkyBBq165Nzpw5yZ8/Pw888AARERHp+hxLly6lTZs2BAcH43A4+PXXX5PdbsSIEZQsWZIsWbJQs2ZNli1blq45RERExPM8+CD06mWWH3sM9u83X1UnTTLXNn71UNdONfmX65w9a1pTjRx5ZV2JEqbAFhhoikrbtpkv3gly5ICnn4aBA1keEcHgwYNZsGBB4s0vvfQSH374YYbEP3PmDMuWLWPevHn8+uuv7N+/n1KlSvHPP//gcDgA2L17NyVKlMDL65pa+v79MHw4fP89HD16Zb23N5QtC+XKmZY/WbOaMaQOHTKFxtOnr2wbFGQ+8V58EfT3lfEuXoQvvzRdaw8cuLI+Z05TFCpSBHLlMt1vT582v8cREUlbIObODY88YsZBK1cuycNblsWZM2fIHT822uHDhylSpAhxcXHkz5+f1q1b06pVKxo1akS+a8Yoc5Ynn3yScQmnrIDatWvz7rvv0qxOHRzDh8PHH5t24QmKFTOtJvPkgfPnYetW8xokaN/edBG1e/w3cUnucgzRokULOnXqRO3atbl8+TKvvvoqmzdvZuvWrWRPpuv3n3/+SZ06dfD19U2yfvv27eTKlYuCBQted5/Zs2fz559/UqNGDdq1a8e0adN44IEHkmwzZcoUunbtyogRI2jQoAGjR4/mq6++YuvWrRQrVgyAmjVrEp1MC9q5c+cSHBwMwOLFi/niiy/UtVNERCQTuXjRnOfeuNEM03z14UKRIqZdy0MPpd/zpfgYwrlzHrgmzeYkKfLXX2a2SV/fK7MCXn3x8rKsRo0sa/hwy0rmd2n58uXWww8/bPn4+Fi///574vq1a9dagwYNsmbMmGGdPHky3eIOHz7cql69uuVwOCwg8ZItWzarXbt2VlRUVMof7NIly5o507KefjrpTJ83uvj7W1abNpb17beWdeFCuu2T3IaYGDNndIcOlpU9+63fwyJFLOvxxy3r559TNQtnRESE9cgjj1iBgYFJfu8Aq2LFitb48ePTbZfOnDljzZ8/33r99detM2fOJK4fOHCg5XA4rNatW1tz5sy5fkbO8+ct65tvLKtJE8vy80t+/729LatFC8tasiTd8opnctdjiGPHjlmAtSSZ3/HY2FirWrVqVvv27a3Lly8nro+IiLAKFix43YzOyQGsadOmXbe+Tp06Vs+ePZOsq1ChgjVw4MBU5V+0aJHVrl27FG3rru+RiIiIXG/48OQP3x0Oc5k6Nf2eK6XHEDZPISjiwmrXhp9+gnPn4M8/zWDuZ8+a1mdly5qZ/PLmveHdGzRoQIMGDThy5EiSljkzZ85kyJAhiT8XLFiQChUqUKZMGfLnz0+vXr0Sz8Bv2rSJrVu3cvbsWaKiooiMjOTQoUPs3buXf//9l5UrVxIUFASYrm0bNmwAoHz58jRu3JjWrVvTtGlTsmbNmrp99/GB++4zFzBdBbduNV3eIiPNqYGAANP6rEoVM05XRk2lIinj6wsPP2wuly+biTQ2bYJjx0zrLH9/8x6WKgUVK5ounfEtFlOjXLlyTJw4kZiYGJYtW8Zvv/3GggUL2LJlC9u2bSPuqi6ly5Yt44knnqBYsWIULVqUokWLkidPHnLkyEH27Nm55557En/3N27cyNSpUzl8+DD79u1jy5YtHDx4MPGx6taty33xv5+9e/fm6aefpmTJksmHzJYNHn/cXM6fh7/+Mi3xzp0zv7dlypi/95v8PYu4u8jISADy5Mlz3W1eXl7MmjWLu+66i8cee4zvv/+ePXv20KRJE9q2bcuAAQPS9JwxMTGsW7eOgQMHJlkfGhrKihUr0vSYN/Pll1/y5Zdf2trNXERERNJPbCwMHZr8bZZlvr6EhcH995tOVBlFhTSRW8mRw8zgl0bXdoepW7cu3bt3Z/ny5ezYsYMjR45w5MgRFi9eDMBjjz2WuO2kSZN4//33b/jYe/fuTSykde7cmYYNG3L33Xcn2wXnthQubC733pu+jysZw8fHdGUMCXHaU/j5+dG0aVOaNm0KwMmTJ1m+fDl169ZN3Gbjxo3s2rWLXbt2JfsYP//8M+3atQNg69atvP3229dtU7RoUe666y7yXlX0KpyayQCyZ4d77jEXkUzCsixefPFFGjZsSMgNPgeCg4NZuHAhd911F507d2blypU0bdqUUaNGpfl5T5w4QWxsLAWuGSezQIECHEmY3ToFmjdvzvr16zl//jxFihRh2rRp1K5d+7rtevXqRa9evRK7ZYiIiIh7W7Ys6Wg117IsMzrRsmXQuHGGxVIhTSSjhYaGEhoaCpgWAjt27GD79u3s2bOH48ePU6hQocRtS5YsSePGjcmRIweBgYEEBARQsGBBihcvTvHixSlfvnzitvXq1aNevXoZvj8iycmbNy/3339/knWdO3cmJCSE/fv3c+DAAQ4cOEBkZCTnzp3j3LlzSb74hoSE8Oyzz1KoUCGCg4OpWLEilSpVSjLJgYikTO/evdm0aRPLly+/6XbFihVj/Pjx3H333ZQqVYqvv/46cWzN23HtY1iWlarH/eOPP247g4iIiLifw4fTd7v0okKaiI0CAwOpXbt2smfWAZ5++mmefvrpDE4l4hx58uShcQpPFVWpUoURI0Y4N5BIJvD888/z22+/sXTpUooUKXLTbY8ePcrTTz9NmzZtWLNmDX379uXzzz9P83MHBQXh7e19XeuzY8eOXddKTURERORaV7UxSZft0ovXrTcREREREXdiWRa9e/fml19+YeHChTceQzDeiRMnaNq0KRUrVky8z48//ki/fv3SnMHPz4+aNWsyb968JOvnzZtH/fr10/y4IiIikjk0amRm57xRQ3aHA4oWNdtlJLVIExEREfEwvXr1YuLEiUyfPp2cOXMmtgoLDAy8bgKauLg4WrRoQfHixZkyZQo+Pj5UrFiR+fPnc88991C4cGH69u173XOcO3eOf/75J/HnPXv2EB4eTp48eShWrBgAL774Il27dqVWrVrUq1ePMWPGsG/fPnr27OnEvRcRERFP4O0Nn30G7dubopllXbktobj26acZO9EAgMOyro6SOSQMQhsZGUlAQIDdcURERMRNuMsxxI3GIPvmm294/PHHr1s/b948GjVqRJYsWZKsDw8PJ2/evBQtWvS6+yxevJh7kpm4o1u3bnz77beJP48YMYKhQ4dy+PBhQkJC+OSTT7jrrrtSt0Op4C7vkYiIiKTML7/ACy8knXigaFFTRHvoofR7npQeQ6iQpgMsERERSSEdQ7g+vUciIiKeJzbWzM55+LAZE61Ro/RviZbSYwh17RQREREREREREZfl7Q0pnLfM6TTZgIiIiIiIiIiISAqokCYiIiIiIiIiIpICTi2kvfvuu9SvX59s2bKRK1euFN3HsiwGDx5McHAwWbNmpXHjxmzZsiXJNtHR0Tz//PMEBQWRPXt22rZty4GrR50TERERERERERFJZ04tpMXExNChQweeffbZFN9n6NChfPzxx3zxxResWbOGggULcu+993L27NnEbcLCwpg2bRqTJ09m+fLlnDt3jtatWxMbG+uM3RAREREREREREcmYWTu//fZbwsLCOHPmzE23syyL4OBgwsLCePnllwHT+qxAgQJ88MEHPPPMM0RGRpIvXz6+//57OnbsCMChQ4coWrQos2bNonnz5rfMo9mcREREJC10DOH69B6JiIhIWqT0GMKlxkjbs2cPR44cITQ0NHGdv78/d999NytWrABg3bp1XLp0Kck2wcHBhISEJG5zrejoaKKiopJcREREREREREREUsOlCmlHjhwBoECBAknWFyhQIPG2I0eO4OfnR+7cuW+4zbWGDBlCYGBg4qVo0aJOSC8iIiIiIiIiIp4s1YW0wYMH43A4bnpZu3btbYVyOBxJfrYs67p117rZNoMGDSIyMjLxsn///tvKJyIiIiIiIiIimY9Pau/Qu3dvOnXqdNNtSpQokaYwBQsWBEyrs0KFCiWuP3bsWGIrtYIFCxITE8Pp06eTtEo7duwY9evXT/Zx/f398ff3T1MmERERERERERERSEMhLSgoiKCgIGdkoWTJkhQsWJB58+ZRvXp1wMz8uWTJEj744AMAatasia+vL/PmzePhhx8G4PDhw/z9998MHTrUKblERERERERERERSXUhLjX379nHq1Cn27dtHbGws4eHhAJQpU4YcOXIAUKFCBYYMGcKDDz6Iw+EgLCyM9957j7Jly1K2bFnee+89smXLRufOnQEIDAzkySef5KWXXiJv3rzkyZOHfv36UaVKFZo1a+bM3RERERERERERkUzMqYW0N954g++++y7x54RWZosWLaJx48YAREREEBkZmbjNgAED+O+//3juuec4ffo0d955J3PnziVnzpyJ23zyySf4+Pjw8MMP899//9G0aVO+/fZbvL29nbk7IiIiIiIiIiKSiTksy7LsDpHRoqKiCAwMJDIykoCAALvjiIiIiJvQMYTr03skIiIiaZHSYwintkhzVQm1w6ioKJuTiIiIiDtJOHbIhOch3YaO80RERCQtUnqclykLaWfPngWgaNGiNicRERERd3T27FkCAwPtjiHJ0HGeiIiI3I5bHedlyq6dcXFxHDp0iJw5c+JwONL98aOioihatCj79+9XlwIb6PW3n94De+n1t5def3s5+/W3LIuzZ88SHByMl5dXuj++3D4d56W/zLbP2l/Ppv31bNpfz+Yqx3mZskWal5cXRYoUcfrzBAQEZIpfZlel199+eg/spdffXnr97eXM118t0VybjvOcJ7Pts/bXs2l/PZv217PZfZynU6kiIiIiIiIiIiIpoEKaiIiIiIiIiIhICqiQ5gT+/v7873//w9/f3+4omZJef/vpPbCXXn976fW3l15/cbbM+DuW2fZZ++vZtL+eTfvr2VxlfzPlZAMiIiIiIiIiIiKppRZpIiIiIiIiIiIiKaBCmoiIiIiIiIiISAqokCYiIiIiIiIiIpICKqSJiIiIiIiIiIikgAppaTRixAhKlixJlixZqFmzJsuWLbvp9kuWLKFmzZpkyZKFUqVKMWrUqAxK6plS8/r/8ssv3HvvveTLl4+AgADq1avHH3/8kYFpPU9qf/8T/Pnnn/j4+HDHHXc4N6CHS+3rHx0dzauvvkrx4sXx9/endOnSjBs3LoPSep7Uvv4TJkygWrVqZMuWjUKFCvHEE09w8uTJDErrWZYuXUqbNm0IDg7G4XDw66+/3vI++v8r6Sktv4PuasiQIdSuXZucOXOSP39+HnjgASIiIuyO5TQjR46katWqBAQEJB4vzp492+5YGWbIkCE4HA7CwsLsjuIUgwcPxuFwJLkULFjQ7lhOdfDgQR599FHy5s1LtmzZuOOOO1i3bp3dsZyiRIkS172/DoeDXr162R3NKS5fvsxrr71GyZIlyZo1K6VKleKtt94iLi7O7mhOc/bsWcLCwihevDhZs2alfv36rFmzxrY8KqSlwZQpUwgLC+PVV19lw4YNNGrUiJYtW7Jv375kt9+zZw/33XcfjRo1YsOGDbzyyiv06dOHqVOnZnByz5Da13/p0qXce++9zJo1i3Xr1nHPPffQpk0bNmzYkMHJPUNqX/8EkZGRPPbYYzRt2jSDknqmtLz+Dz/8MAsWLODrr78mIiKCSZMmUaFChQxM7TlS+/ovX76cxx57jCeffJItW7bw008/sWbNGp566qkMTu4Zzp8/T7Vq1fjiiy9StL3+/0p6S+3voDtbsmQJvXr1YtWqVcybN4/Lly8TGhrK+fPn7Y7mFEWKFOH9999n7dq1rF27liZNmnD//fezZcsWu6M53Zo1axgzZgxVq1a1O4pTVa5cmcOHDydeNm/ebHckpzl9+jQNGjTA19eX2bNns3XrVj766CNy5cpldzSnWLNmTZL3dt68eQB06NDB5mTO8cEHHzBq1Ci++OILtm3bxtChQxk2bBiff/653dGc5qmnnmLevHl8//33bN68mdDQUJo1a8bBgwftCWRJqtWpU8fq2bNnknUVKlSwBg4cmOz2AwYMsCpUqJBk3TPPPGPVrVvXaRk9WWpf/+RUqlTJevPNN9M7WqaQ1te/Y8eO1muvvWb973//s6pVq+bEhJ4tta//7NmzrcDAQOvkyZMZEc/jpfb1HzZsmFWqVKkk64YPH24VKVLEaRkzC8CaNm3aTbfR/19xppT8DnqSY8eOWYC1ZMkSu6NkmNy5c1tfffWV3TGc6uzZs1bZsmWtefPmWXfffbf1wgsv2B3JKTLb8efLL79sNWzY0O4YtnnhhRes0qVLW3FxcXZHcYpWrVpZ3bt3T7LuoYcesh599FGbEjnXhQsXLG9vb2vGjBlJ1lerVs169dVXbcmkFmmpFBMTw7p16wgNDU2yPjQ0lBUrViR7n5UrV163ffPmzVm7di2XLl1yWlZPlJbX/1pxcXGcPXuWPHnyOCOiR0vr6//NN9+wa9cu/ve//zk7okdLy+v/22+/UatWLYYOHUrhwoUpV64c/fr147///suIyB4lLa9//fr1OXDgALNmzcKyLI4ePcrPP/9Mq1atMiJypqf/vyLpJzIyEiBTHD/FxsYyefJkzp8/T7169eyO41S9evWiVatWNGvWzO4oTrdz506Cg4MpWbIknTp1Yvfu3XZHcpqE478OHTqQP39+qlevztixY+2OlSFiYmL44Ycf6N69Ow6Hw+44TtGwYUMWLFjAjh07ANi4cSPLly/nvvvuszmZc1y+fJnY2FiyZMmSZH3WrFlZvny5LZl8bHlWN3bixAliY2MpUKBAkvUFChTgyJEjyd7nyJEjyW5/+fJlTpw4QaFChZyW19Ok5fW/1kcffcT58+d5+OGHnRHRo6Xl9d+5cycDBw5k2bJl+PjoI+d2pOX13717N8uXLydLlixMmzaNEydO8Nxzz3Hq1CmNk5ZKaXn969evz4QJE+jYsSMXL17k8uXLtG3b1qOb3rsS/f8VSR+WZfHiiy/SsGFDQkJC7I7jNJs3b6ZevXpcvHiRHDlyMG3aNCpVqmR3LKeZPHky69evt3WcoYxy5513Mn78eMqVK8fRo0d55513qF+/Plu2bCFv3rx2x0t3u3fvZuTIkbz44ou88sor/PXXX/Tp0wd/f38ee+wxu+M51a+//sqZM2d4/PHH7Y7iNC+//DKRkZFUqFABb29vYmNjeffdd3nkkUfsjuYUOXPmpF69erz99ttUrFiRAgUKMGnSJFavXk3ZsmVtyaQWaWl0bXXbsqybVryT2z659ZIyqX39E0yaNInBgwczZcoU8ufP76x4Hi+lr39sbCydO3fmzTffpFy5chkVz+Ol5vc/Li4Oh8PBhAkTqFOnDvfddx8ff/wx3377rVqlpVFqXv+tW7fSp08f3njjDdatW8ecOXPYs2cPPXv2zIiogv7/iqSH3r17s2nTJiZNmmR3FKcqX7484eHhrFq1imeffZZu3bqxdetWu2M5xf79+3nhhRf44Ycfrmvl4YlatmxJu3btqFKlCs2aNWPmzJkAfPfddzYnc464uDhq1KjBe++9R/Xq1XnmmWfo0aMHI0eOtDua03399de0bNmS4OBgu6M4zZQpU/jhhx+YOHEi69ev57vvvuPDDz/02N9ngO+//x7LsihcuDD+/v4MHz6czp074+3tbUseNQ9JpaCgILy9va9rfXDs2LHrznonKFiwYLLb+/j4eOQZEGdKy+ufYMqUKTz55JP89NNPmaL5ujOk9vU/e/Ysa9euZcOGDfTu3Rsw/9gty8LHx4e5c+fSpEmTDMnuCdLy+1+oUCEKFy5MYGBg4rqKFStiWRYHDhyw7SyOO0rL6z9kyBAaNGhA//79AahatSrZs2enUaNGvPPOO2oR5WT6/yty+55//nl+++03li5dSpEiReyO41R+fn6UKVMGgFq1arFmzRo+++wzRo8ebXOy9Ldu3TqOHTtGzZo1E9fFxsaydOlSvvjiC6Kjo237gpoRsmfPTpUqVdi5c6fdUZyiUKFC17WmrFixosdPtrN3717mz5/PL7/8YncUp+rfvz8DBw6kU6dOAFSpUoW9e/cyZMgQunXrZnM65yhdujRLlizh/PnzREVFUahQITp27EjJkiVtyaMWaank5+dHzZo1E2cCSTBv3jzq16+f7H3q1at33fZz586lVq1a+Pr6Oi2rJ0rL6w+mJdrjjz/OxIkTNTbRbUjt6x8QEMDmzZsJDw9PvPTs2TPxjO+dd96ZUdE9Qlp+/xs0aMChQ4c4d+5c4rodO3bg5eXl8V+I0ltaXv8LFy7g5ZX0X23CF5OEllHiPPr/K5J2lmXRu3dvfvnlFxYuXGjblxU7WZZFdHS03TGcomnTptcdo9WqVYsuXboQHh7u0UU0gOjoaLZt2+axJ7QaNGhAREREknU7duygePHiNiXKGN988w358+f3+O97Nzq+jIuLsylRxsmePTuFChXi9OnT/PHHH9x///32BLFhggO3N3nyZMvX19f6+uuvra1bt1phYWFW9uzZrX///deyLMsaOHCg1bVr18Ttd+/ebWXLls3q27evtXXrVuvrr7+2fH19rZ9//tmuXXBrqX39J06caPn4+Fhffvmldfjw4cTLmTNn7NoFt5ba1/9amW3WpPSW2tf/7NmzVpEiRaz27dtbW7ZssZYsWWKVLVvWeuqpp+zaBbeW2tf/m2++sXx8fKwRI0ZYu3btspYvX27VqlXLqlOnjl274NbOnj1rbdiwwdqwYYMFWB9//LG1YcMGa+/evZZl6f+vON+tfgc9ybPPPmsFBgZaixcvTnL8dOHCBbujOcWgQYOspUuXWnv27LE2bdpkvfLKK5aXl5c1d+5cu6NlGE+etfOll16yFi9ebO3evdtatWqV1bp1aytnzpyJ/789zV9//WX5+PhY7777rrVz505rwoQJVrZs2awffvjB7mhOExsbaxUrVsx6+eWX7Y7idN26dbMKFy5szZgxw9qzZ4/1yy+/WEFBQdaAAQPsjuY0c+bMsWbPnm3t3r3bmjt3rlWtWjWrTp06VkxMjC15VEhLoy+//NIqXry45efnZ9WoUSPJVODdunWz7r777iTbL1682Kpevbrl5+dnlShRwho5cmQGJ/YsqXn97777bgu47tKtW7eMD+4hUvv7fzUV0m5fal//bdu2Wc2aNbOyZs1qFSlSxHrxxRc99otQRkjt6z98+HCrUqVKVtasWa1ChQpZXbp0sQ4cOJDBqT3DokWLbvp5rv+/4my3+h30JMntJ2B98803dkdziu7duyd+tufLl89q2rRppiqiWZZnF9I6duxoFSpUyPL19bWCg4Othx56yNqyZYvdsZzq999/t0JCQix/f3+rQoUK1pgxY+yO5FR//PGHBVgRERF2R3G6qKgo64UXXrCKFStmZcmSxSpVqpT16quvWtHR0XZHc5opU6ZYpUqVsvz8/KyCBQtavXr1srVhjMOy1LdERERERERERETkVjRGmoiIiIiIiIiISAqokCYiIiIiIiIiIpICKqSJiIiIiIiIiIikgAppIiIiIiIiIiIiKaBCmoiIiIiIiIiISAqokCYiIiIiIiIiIpICKqSJiIiIiIiIiIikgAppIiIiIiIiIiIiKaBCmoiIiIiIiIiISAqokCYiIiIiIiIiIpICKqSJiACTJk0iS5YsHDx4MHHdU089RdWqVYmMjLQxmYiIiIjcrn/++QeHw8HMmTNp2rQp2bJlo3z58qxevdruaCLiZlRIExEBOnXqRPny5RkyZAgAb775Jn/88QezZ88mMDDQ5nQiIiIicjs2btyIw+Hgo48+4rXXXmPjxo0UK1aMgQMH2h1NRNyMj90BRERcgcPh4N1336V9+/YEBwfz2WefsWzZMgoXLmx3NBERERG5TRs3biQwMJApU6aQL18+AB544AFGjhxpczIRcTcqpImIxGvdujWVKlXizTffZO7cuVSuXNnuSCIiIiKSDjZu3EibNm0Si2gAu3fvpkyZMjamEhF3pK6dIiLx/vjjD7Zv305sbCwFChSwO46IiIiIpJONGzdSr169JOs2bNjAHXfcYU8gEXFbKqSJiADr16+nQ4cOjB49mubNm/P666/bHUlERERE0kFkZCR79+6levXqSdaHh4erkCYiqaaunSKS6f3777+0atWKgQMH0rVrVypVqkTt2rVZt24dNWvWtDueiIiIiNyGjRs34u3tTbVq1RLX7d27l9OnT6uQJiKpphZpIpKpnTp1ipYtW9K2bVteeeUVAGrWrEmbNm149dVXbU4nIiIiIrdr48aNVKhQgaxZsyau27BhA7ly5aJEiRL2BRMRt+SwLMuyO4SIiIiIiIiIiIirU4s0ERERERERERGRFFAhTUREREREREREJAVUSBMREREREREREUkBFdJERERERERERERSQIU0ERERERERERGRFFAhTUREREREREREJAVUSBMREREREREREUkBFdJERERERERERERSQIU0ERERERERERGRFFAhTUREREREREREJAVUSBMREREREREREUkBFdJERERERERERERS4P8wKK1f+HSb6gAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAINCAYAAAD7t1ITAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADU5UlEQVR4nOzdd3hU1drG4d9k0giQIBBCgEASegcxCiiCShELKtjwoEhROaI0OSL2jnhEEUVFJfAdjqIeQUVFpUhRQaWrdDCQAAmdhJY+3x97JhBqgMysKc99Xblm78nOnicYp7x7rfXaHA6HAxERERERERERETmjINMBREREREREREREfIEKaSIiIiIiIiIiIiWgQpqIiIiIiIiIiEgJqJAmIiIiIiIiIiJSAiqkiYiIiIiIiIiIlIAKaSIiIiIiIiIiIiWgQpqIiIiIiIiIiEgJqJAmIiIiIiIiIiJSAsGmA5hQWFjIjh07KF++PDabzXQcERER8REOh4ODBw9SrVo1goJ0PdIb6X2eiIiInI+Svs8LyELajh07iIuLMx1DREREfFRaWho1atQwHUNOQe/zRERE5EKc7X1eQBbSypcvD1j/OJGRkYbTiIiIiK/IysoiLi6u6L2EeB+9zxMREZHzUdL3eQFZSHMN84+MjNQbLBERETlnmjLovfQ+T0RERC7E2d7naXEPERERERERERGRElAhTUREREREREREpARUSBMRERERERERESmBgFwjTcRXORwO8vPzKSgoMB1FpFSEhIRgt9tNxxARERERESkRFdJEfERubi7p6ekcOXLEdBSRUmOz2ahRowblypUzHUVEREREROSsVEgT8QGFhYWkpKRgt9upVq0aoaGh6hgnPs/hcLB79262bdtG3bp1NTJNRERERES8ngppIj4gNzeXwsJC4uLiiIiIMB1HpNRER0ezZcsW8vLyVEgTERERERGvp2YDIj4kKEj/y4p/0chKERERERHxJfpULiIiIiI+b/z48TRq1IikpCTTUURERMSPqZAmIiIiIj5v4MCBrFmzhiVLlpiOIiIiIn5MhTQR8Ws2m40vv/zSdAwRERERERHxAyqkiYiIiIiIiIiIlIAKaSLiNg6Hg1dffZXExETKlClD8+bN+fzzz4u+17FjR6699locDgcABw4coGbNmjzxxBMAFBQU0K9fPxISEihTpgz169fnzTffPOlxkpOTady4MWFhYcTGxvLQQw8BEB8fD8Att9yCzWYr2j+VRYsW0aJFC8LDw7nkkkv48ssvsdlsrFy5svT+QURERERERMSnubWQtnDhQm688UaqVatW4ulVCxYsoFWrVoSHh5OYmMh777130jHTpk2jUaNGhIWF0ahRI7744gs3pBfxfocPHz7tV3Z2domPPXr0aImOPVdPPvkkkyZN4t1332X16tUMHTqUXr16sWDBAmw2G//3f//H77//zrhx4wAYMGAAMTExPPvsswAUFhZSo0YNPvvsM9asWcPTTz/N448/zmeffVb0GO+++y4DBw7k/vvv588//2TGjBnUqVMHoGidnEmTJpGenn7adXMOHjzIjTfeSNOmTVm+fDkvvPACI0aMOOffV0RE/FtBAcyfD1OnWrcFBaYTiYiIiKcFu/Pkhw8fpnnz5vTp04cePXqc9fiUlBSuu+467rvvPv773//yyy+/8OCDDxIdHV3084sXL+aOO+7ghRde4JZbbuGLL77g9ttv5+eff+ayyy5z568j4nXKlSt32u9dd911fPvtt0X7VapU4ciRI6c8tn379syfP79oPz4+nj179px0nGvkWEkcPnyY119/nR9//JE2bdoAkJiYyM8//8yECRNo37491atXZ8KECdx9993s3LmTr7/+mhUrVhASEgJASEgIzz33XNE5ExISWLRoEZ999hm33347AC+++CKPPPIIgwcPLjrO1bEtOjoagAoVKlC1atXTZv3oo4+w2Wx88MEHhIeH06hRI7Zv3859991X4t9XRET82/TpMHgwbNt27L4aNeDNN6F7d3O5RERExLPcWkjr2rUrXbt2LfHx7733HjVr1mTs2LEANGzYkKVLl/Laa68VFdLGjh1Lp06dGDlyJAAjR45kwYIFjB07lqlTp5b67yAi52fNmjVkZ2fTqVOnYvfn5ubSsmXLov3bbruNL774glGjRvHuu+9Sr169Yse/9957fPjhh2zdupWjR4+Sm5tLixYtANi1axc7duzgmmuuuaCs69evp1mzZoSHhxfdd+mll17QOUVExH9Mnw633gonXk/avt26//PPVUwTEREJFG4tpJ2rxYsX07lz52L3denShYkTJ5KXl0dISAiLFy9m6NChJx3jKr6JBJJDhw6d9nt2u73Y/q5du057bFBQ8VneW7ZsuaBcYE3LBPj222+pXr16se+FhYUVbR85coRly5Zht9vZuHFjseM+++wzhg4dypgxY2jTpg3ly5fn3//+N7/99hsAZcqUueCcYI20s9lsJ90nIucnJSWF7du307Zt25OeX0R8TUGBNRLtVC8LDgfYbDBkCNx0E5zw0isiIiJ+yKsKaRkZGcTExBS7LyYmhvz8fPbs2UNsbOxpj8nIyDjteXNycsjJySnaz8rKKt3gXiA1NZWQkBBiY2MBqwiwaNEiLr/8csPJxJ3Kli1r/NjTca1jmJqaSvv27U973COPPEJQUBDfffcd1113Hddffz1XX301AD/99BNt27blwQcfLDp+8+bNRdvly5cnPj6euXPnctVVV53y/CEhIRScZRGbBg0a8NFHH5GTk1NU5Fu6dGmJf1cRKe7nn3/mnnvuoWnTpnzyySc0atTIdCSR8/bTT8Wnc57I4YC0NOu4Dh08FktEREQM8brLxKcbFXL8/ac65sT7jjdq1CiioqKKvuLi4koxsXn79u2jQ4cO3HnnneTn5wPw0ksvccUVV5yyWYOIJ5QvX57hw4czdOhQ/u///o/NmzezYsUKxo8fz//93/8B1mi15ORkPvroIzp16sRjjz1G79692b9/PwB16tRh6dKl/PDDD2zYsIGnnnrqpIYBzz77LGPGjGHcuHFs3LiR5cuX89ZbbxV931Voy8jIKDrvie666y4KCwu5//77Wbt2LT/88AOvvfYacPLzjYicXe3atSlfvjx//vknV111VbECuIivSU8v3eNERETEt3lVIa1q1aonjSzbtWsXwcHBVKpU6YzHnDhK7XgjR44kMzOz6CstLa30wxvUr18/UlJS2LZtG1mLF8Ndd3H/G2/wA/D1ww+zcuVK0xElQL3wwgs8/fTTjBo1ioYNG9KlSxe+/vprEhIS2L17N/369ePZZ5/l4osvBuCZZ56hWrVqDBgwALC6eHbv3p077riDyy67jL179xYbnQbQu3dvxo4dyzvvvEPjxo254YYbik0RHTNmDLNnzyYuLq7Y2mzHi4yM5Ouvv2blypW0aNGCJ554gqeffhqg2LppInJqW7du5fFOnci59lqoW5e2r75K6vTptGzZkl27dnHvvfcWTfcW8TXOwf6ldpyIiIj4NpvDQwsB2Ww2vvjiC26++ebTHjNixAi+/vpr1qxZU3TfP//5T1auXMnixYsBuOOOOzh48CAzZ84sOqZr165UqFChxM0GsrKyiIqKIjMzk8jIyPP7hbzE7Nmz6dy5M8HBwawbP57aw4bB4cPFjnk7Pp6Bf/+tkTU+LDs7m5SUFBISElTY8ZCPPvqIPn36kJmZWWprscnJ9LftH9667DIe/P13ii0PFRzM7tdfJ/Hxxzl06BATJ06kb9++piKWGn96D+GvSvu/UUEBxMdbjQVO9a7ZZrO6d6akaI00ERERX1bS9xBuHZF26NAhVq5cWTQiKiUlhZUrV5KamgpYI8XuueeeouMHDBjA1q1bGTZsGGvXriU5OZmJEycyfPjwomMGDx7MrFmzGD16NOvWrWP06NHMmTOHIUOGuPNX8UoOh4PHH38cgKd69aL2v/5lFdGuvhq+/ppDd90FwENbtvCb8zgRObX//Oc//Pzzz6SkpPDll18yYsQIbr/9dhXRRM5izYQJDHAW0Q507gzffmu1L8zPJ3r4cN7t0weAF198kby8PLNhRc6D3Q5vvmltn+6a5NixKqKJiIgECrcW0pYuXUrLli2LplMNGzaMli1bFk2ZSk9PLyqqASQkJDBz5kzmz59PixYteOGFFxg3bhw9evQoOqZt27Z88sknTJo0iWbNmjF58mQ+/fRTLrvsMnf+Kl7p559/ZunSpYSHhfHYpk2QlQVt28LMmXDDDZT76CN+ueQSABq+9hrs22c4sYj3ysjIoFevXjRs2JChQ4dy22238f7775uOJeLdjh6lwvDhhAC/xsdT4bvv4Lrr4H//g5tvhtxces6bR2x0NCkpKcyePdt0YpHz0r07fP45nNCEGoD+/a3vi4iISGDw2NROb+Iv0zJuv/12/ve//zGuSxce/uEHCA+HNWsgIaHomJ1paeyuVYsmDgfpt99O7KefGkws50vT38Rf6W/bt+0dMYJKr77KdiBr8WIatm597Jt79kD9+rBvH38NHEjBfffRvHlzY1lLi7+8h/Bn7vxvVFBgdedMT4eff4Z33oFLLoET+uCIiIiID/KKqZ3iPgUFBaxbtw6Aflu3WncOGlSsiAYQExfH9x07AlBl+nS1lBIRkdJx6BDhzg65HzdpUryIBlC5Mjz7LABNvv2W5o0aeTigSOmz26FDB+jZ0/rzDgmBpUvhjz9MJxMRERFPUSHNR9ntdlatWsWG5GQi1q2zRqP961+nPPaBadNwtG2LPT8fnB96RERELoRj4kTKHj3KBqDWyJGnPqh/f6hSBbZssebFYa3vKeIPoqOhWzdrOznZbBYRERHxHBXSfJjNZqPuDz9YO716WVf/T6F8+fLYXEW2CRMgJ8dDCUVExC85HDjeeQeAT2JiuOF0HbnLlIEHHwQg+623uOuuu7j88ss9FFLE/VyNaKdM0dsrERGRQKFCmg/Kzc2loKDAai7w1VfWnQMGnPmHbrwRR7VqVsOBmTPdH1JERPzXwoUEbdgA5crx1Pr1REREnP7Yvn3BZiN88WJW/O9/LF68mLVr13ouq4gbdeliNSDYtw9mzDCdRkRERDxBhTQfNH36dCpXrswnd90F2dlQrx5cfPEZf2bX3r285ezamTdxoidiioiIv5o61bq9/XZsUVFnPjYuDjp3BmBEfDwA3333nRvDiXiO3Q69e1vbenslIiISGFRI80GzZs3iwIEDNHNd0b/zTrDZzvgz0dHRfBcdDYD9+++tbmoiIiLnKi+Pgs8+szZvvbVkP3PbbQB0zc4GrNcxkdI2fvx4GjVqRFJSkkcft08f63bWLEhL8+hDi4iIiAEqpPkYh8PBDz/8wEVAA1e3zjvvPOvP2Ww26nfvzjIgqKAApk1za04RKe7ee+/l5tOtI+XlOnTowJAhQ0zHEG8xdy72/fvZCfT/739L9jPdukFQEDHbtlELWLBgAUePHnVnSglAAwcOZM2aNSxZssSjj1unDrRvDw4HTJ7s0YcWERERA1RI8zGrV69mx44d3BgSYhXEGjeGhg1L9LM33HADrvKZQwt5iAcsXLiQG2+8kWrVqmGz2fjyyy9POmb69Ol06dKFypUrY7PZWLly5VnPu2XLlhIf6y3efPNNJvvoJ6zp06fzwgsvmI4h3sI5Gu1zoOO115bsZ6Kj4corAegdFUV2djY//fSTmwKKeF6/ftbtpElQWGg2i4iIiLiXCmk+xjUdppdzmibXXVfin73yyiuZW6YMAI65c+HIkVLPJ3K8w4cP07x5c95+++0zHnP55ZfzyiuveDDZMXl5eR55nKioKCpUqOCRxyotrn+bihUrUr58ecNpxCsUFlLgvBAzDejatWvJf7Z7dwDuCg8H4AdX12kRP9CjB0RGQkoKLFhgOo2IiIi4kwppPmb+/PkAtDl40LqjS5cS/2xoaCjVu3RhCxCUkwNz5pR6PpHjde3alRdffJHuzg/Qp3L33Xfz9NNP07FjxxKfNyEhAYCWLVtis9no0KFD0fcmTZpEw4YNCQ8Pp0GDBrzzzjtF33ONZPvss8/o0KED4eHh/Pe//y2advnyyy8TExNDhQoVeO6558jPz+df//oXFStWpEaNGiQnJ58x1+eff07Tpk0pU6YMlSpVomPHjhw+fBg4eWpnhw4dGDRoEI8++igVK1akatWqPPvss8XOl5mZyf3330+VKlWIjIzk6quvZtWqVad9/NzcXB566CFiY2MJDw8nPj6eUaNGlfh8zz77LC1atCA5OZnExETCwsJwOBwnTe3Mzc3l0UcfpXr16pQtW5bLLrus6LkJYOvWrdx4441cdNFFlC1blsaNGzNT3YL9w/Ll2PfuJQvISUqicuXKJf9Z54Wfunv20CEpiXhn4wERfxARAT17WttqOiAiIuLfgk0HkJJzOBwsWrSIZkC5gwetd21XXHFO57jq6qv5+ssveRjg66+tdWvE9zgc5kYURkSctbmFu/3+++9ceumlzJkzh8aNGxMaGgrABx98wDPPPMPbb79Ny5YtWbFiBffddx9ly5alt6utGjBixAjGjBnDpEmTCAsLY8GCBfz444/UqFGDhQsX8ssvv9CvXz8WL17MlVdeyW+//cann37KgAED6NSpE3FxcSdlSk9Pp2fPnrz66qvccsstHDx4kJ9++gmHw3Ha3+P//u//GDZsGL/99huLFy/m3nvv5fLLL6dTp044HA6uv/56KlasyMyZM4mKimLChAlcc801bNiwgYoVK550vnHjxjFjxgw+++wzatasSVpaGmnOla9Ler5Nmzbx2WefMW3aNOx2+ylz9+nThy1btvDJJ59QrVo1vvjiC6699lr+/PNP6taty8CBA8nNzWXhwoWULVuWNWvWUK5cuZL/Bxbv9f33AMwB2p9D8RuAxESoVYugrVuZ9/zzUNJpoSI+om9fmDDBWob27bfBxwYhi4iISAmpkOZDsrOzGTBgAPGffgqbNsFVV0FY2Dmd47rrrmPJ8uXWarjff28VZAwXReQ8HDkCpgoThw5B2bJmHtsp2jm1uVKlSlStWrXo/hdeeIExY8YUjYBLSEhgzZo1TJgwoVghbciQISeNkqtYsSLjxo0jKCiI+vXr8+qrr3LkyBEef/xxAEaOHMkrr7zCL7/8wp2naPCRnp5Ofn4+3bt3p1atWgA0bdr0jL9Hs2bNeOaZZwCoW7cub7/9NnPnzqVTp07MmzePP//8k127dhHm/P/8tdde48svv+Tzzz/n/vvvP+l8qamp1K1blyuuuAKbzVaUAyjx+XJzc5kyZUrRv/GJNm/ezNSpU9m2bRvVqlUDYPjw4Xz//fdMmjSJl19+mdTUVHr06FH0+ycmJp7x30F8h+O777AB3wO3XXXVuf2wzQbXXAPJyTB3rgpp4neSkqBJE/jrL5g6Ff75T9OJRERExB00tdOHlClThhdffJH+rg+lnTuf8zlq167NnePHQ0gIbNsGmzeXckqR0jVgwADKlStX9HU6u3fvJi0tjX79+hU7/sUXX2TzCX/nl1xyyUk/37hxY4KCjj0lxsTEFCuE2e12KlWqxK5du075+M2bN+eaa66hadOm3HbbbXzwwQfs37//jL9bs2bNiu3HxsYWnX/ZsmUcOnSISpUqFft9UlJSTvp9XO69915WrlxJ/fr1GTRoUNGaiudyvlq1ap22iAawfPlyHA4H9erVK3aeBQsWFJ1n0KBBvPjii1x++eU888wz/PHHH2f8dxAfsX8//PorAHOCg7n88svP/RzXXGPdzp3LwYMH2erqPi3iB2w2a1QaWPViERER8U8akeZr8vNh0SJr29kB7ZxFREDr1vDTTzBvntW3XXxLRIQ1MszUY3vQ888/z/Dhw896XKGzTdoHH3zAZZddVux7J05RLHuKEXUhISHF9m022ynvKzxNOza73c7s2bNZtGgRs2bN4q233uKJJ57gt99+K1rTrSSP6Tp/YWEhsbGxxdYeczld04KLL76YlJQUvvvuO+bMmcPtt99Ox44d+fzzz0t8vlP92xyvsLAQu93OsmXLTvp3dRU6+/fvT5cuXfj222+ZNWsWo0aNYsyYMTz88MNnPLd4uQULsBUWkh0fz4svvUTE+TwXOAtpjpUrqR0VxSXXXqv188Sv9OoFI0bA0qXwxx9wwvUSERER8QMqpPmQH3/8kVZBQUQdOmS1hjrLtLHTycrKYmt0NE2tk8J995VqTvEAm8349EpPqVKlClWqVCl2n2tNtIKCgqL7YmJiqF69On///Tf/+Mc/PJrRxWazcfnll3P55Zfz9NNPU6tWLb744guGDRt2zue6+OKLycjIIDg4+JwWZY+MjOSOO+7gjjvu4NZbb+Xaa69l3759532+E7Vs2ZKCggJ27dpFu3btTntcXFwcAwYMYMCAAYwcOZIPPvhAhTRft3AhAOHXXstdd911fueIiYFGjbCtWUMbYOHixRQWFhYbDSriy6KjreVnp02zRqWNHWs6kYiIiJQ2FdJ8xP79+7nmmmt4GBgH0LYtnGYh8LNJTU1l4PTpLAQc8+Zh0zpp4iaHDh1i06ZNRfspKSmsXLmSihUrUrNmTQD27dtHamoqO3bsAGD9+vUAVK1atdj6Z8erUqUKZcqU4fvvv6dGjRqEh4cTFRXFs88+y6BBg4iMjKRr167k5OSwdOlS9u/ff17FrHPx22+/MXfuXDp37kyVKlX47bff2L17Nw0bNjyv83Xs2JE2bdpw8803M3r0aOrXr8+OHTuYOXMmN9988ymnp77xxhvExsbSokULgoKC+N///kfVqlWpUKHCeZ3vVOrVq8c//vEP7rnnHsaMGUPLli3Zs2cPP/74I02bNuW6665jyJAhdO3alXr16rF//35+/PHH8/53EC+yYIF12779hZ2nbVtYs4Yrg4OZceAA69ev19+H+JW+fa1C2pQpMHr0OS9nKyIiIl5Ol4B9xIoVKwDo7BqFdI7dOo/XqFEj1pYvz1HAtnMnrF1bCglFTrZ06VJatmxJy5YtARg2bBgtW7bk6aefLjpmxowZtGzZkuuvvx6AO++8k5YtW/Lee++d9rzBwcGMGzeOCRMmUK1aNW666SbAmlL44YcfMnnyZJo2bUr79u2ZPHnyaadWlqbIyEgWLlzIddddR7169XjyyScZM2YMXbt2Pa/z2Ww2Zs6cyZVXXknfvn2pV68ed955J1u2bCEmJuaUP1OuXDlGjx7NJZdcQlJSElu2bGHmzJkEBQWd1/lOZ9KkSdxzzz088sgj1K9fn27duvHbb78VdTMtKChg4MCBNGzYkGuvvZb69evzzjvvnNe/g3iJzEwcK1cC8Imz6H3e2rQB4Brn1NDly5df2PlEvEyXLlC9OuzbBzNmmE4jIiIipc3mcDgcpkN4WlZWFlFRUWRmZhIZGWk6Tom89tpr/Otf/2JPeDiVsrNh/vwLGhXQqVMnRs6Zw9UA77+v6Z1eLjs7m5SUFBISEggPDzcdR6TU6G/bR8ycCddfz0bglsaN+euvv87/XOvWQcOG5AYHUzY/n0HDhjFmzJhSi+puvvgeItB4w3+jJ56Al1+2imrff28kgoiIiJyjkr6H0Ig0H7F8+XJqglVECw62eqxfgNatW7PItbNo0ZkOFRGRQOec1rkQ6/XjgtSrBxddRGh+Ps2xOsqK+Js+fazbWbMgLc1sFhERESldKqT5iOXLl1O0glHTphfcObF169Ysdu0sXnymQ0VEJND9+isAP1MKhbSgIKtzNNAGa+mC03XDFfFVdepYEwccDpg82XQaERERKU0qpPmAgwcPsmHDhmOFtBIuCn4ml112Gb+6dtavh717L/icIiLih/LzcSxdCsBvlEIhDYrWSbsrMZEXX3yRvLy8Cz+niJfp18+6nTQJVCsWERHxHyqk+YCVK1ficDi43NX26QKndQJUrlyZinXqUNRm4Ndfz3S4iIgEqjVrsB05QhawvVy50umw6XwdaxMaysMPP0yY2hqKH+rRAyIjISXlWNNbERER8X0qpPmAunXr8uEHH3BZkPM/VymMSAP4+OOPqXnHHdaOpneKiMip/P47AEuAS1u3xm63X/g5nZ18Wb8eDh268POJeKGICOjZ09qeONFsFhERESk9KqT5gKpVq9LvqqsIO3oUwsKgceNSOW9SUhJlr7nG2tGINJ8QgE12xc/pb9oH/PYbAL9jLQtQKmJioHp1cDjY+PnnzJs3r3TOK+Jl+va1bqdNgwMHjEYRERGRUqJCmq9YssS6bd4cQkNL77yu0W3Ll1sr4opXCgkJAeDIkSOGk4iUrtzcXIDSGeUk7uEckfbwlCkMGTKk9M578cUAjOvTh3vvvbf0ziviRZKSoEkTyM6GqVNNpxEREZHSEGw6gJyZw+EgOTmZLj/+SA2AVq1K9fwvffkljwYFEbJ/P2zZAgkJpXp+KR12u50KFSqwa9cuACIiIrDZbIZTiVyYwsJCdu/eTUREBMHBejnySocOwV9/AVDu6qspV7ly6Z374ovh669pBbydmkpWVhaRkZGld34RL2CzWaPShg2D5GT45z9NJxIREZELpU8uXm7btm3079+f7202q5DWokWpnn/qtGl0KSy0OoIuW6ZCmherWrUqQFExTcQfBAUFUbNmTRWGvdXy5Va7werVoVq10j23c0TaZcHBkJ/P6tWraePs5iniT3r1ghEjYOlS+OMPaNbMdCIRERG5ECqkebnVq1cD0MJuh/x8aNq0VM/fsmVLlq1efayQduutpXp+KT02m43Y2FiqVKlCXl6e6TgipSI0NJSgIK0y4LWc0zoX5uay7v33uf/++0vv3M5CWr2CAsKBv/76S4U08UvR0dCtm7VOWnIyjB1rOpGIiIhcCBXSvNzq1aupCMTk51t3NGlSqudv2bIly//7X2tn+fJSPbe4h91u13pSIuIZzteF73fvJnfDhtI9d/XqUKkS9r17aYhVSBPxV337WoW0KVNg9Gird5SIiIj4Jg0D8HKrV6+maAxafDyUL1+q52/ZsiXLXDvLlqnhgIiIHLNyJQArgIudI8hKjc1WdHGoMSqkyYUbP348jRo1IikpyXSUk3TpYtWO9+2DGTNMpxEREZELoUKalytWSHPDohotW7bkTyAPYO9eSE0t9ccQEREfdPQojvXrAViJ9XpR6pyFtCaokCYXbuDAgaxZs4Ylrk7nXsRuh969re2JE81mERERkQujQpoXKywsZPXq1RSVz0p5fTSAChUqUD0hgaKPL5reKSIiAH/9ha2wkF1AVpky1KtXr/Qfo3FjAG5t0ID3338fh0ZFix/r08e6nTUL0tLMZhEREZHzp0KaF0tNTeXw4cM0c3Wzc0MhDaxRBqtca24tW3bmg0VEJDA4p3WuBJq3aOGetRmdI9JqHz3KTTfdpO6t4tfq1IH27a1VNCZPNp1GREREzpcKaV4sJiaGeXPncnFoqHWHm/qlf/jhh9zzxhvWzqpVbnkMERHxMc7Xg1W4aVonFI1IY+tWyMpyz2OIeJF+/azbSZOgsNBsFhERETk/KqR5sTJlytChVi1CcnKs9k5167rlcS666CKCmje3dv74wy2PISIiPsY5Im1zuXI0c9OFHCpWhGrVAJg3fjzz5893z+OIeIkePSAyElJSYMEC02lERETkfKiQ5u3+/NO6bdgQgoPd9ziuaaOpqZCZ6b7HERER71dYWDQi7d3Fi+nfv7/7Hss5Ku2jxx9n3Lhx7nscES8QEQE9e1rbajogIiLim1RI82Iffvghy6dMsXac68i4y32PPkqGq1CnzmkiIoEtJQUOHYKwMGwNGrhnfTQX5+tbY2DDhg3uexwRL9G3r3U7bRocOGA0ioiIiJwHFdK82LPPPsvq6dOtnYYN3fpYf/75Jyvy8107bn0sERHxcs5pnTRp4t7R0K7HAJoAmzZtoqCgwL2PJ2JYUpL1Z5+dDVOnmk4jIiIi50qFNC91+PBhtm/fTgPXHQ0anOnwC9akSROKVkdTIU1EJLA518v8dP16nnnmGfc+1nGFtJycHLZu3erexxMxzGY7NiotOdlsFhERETl3KqR5qU2bNgF4rJDWtGlTispnKqSJiAS2NWsA+O3QIQ4fPuzex2rUCIBYoAKa3imBoVcvCAmBpUvV50lERMTXqJDmpTZu3EgsUB7Abofatd36eE2aNCleSHM43Pp4IiLixVavtm6wXh/cqlw5qF4dgHrA+vXr3ft4Il4gOhq6dbO2NSpNRETEt6iQ5qU2bNhwbDRaQgKEhbn18Zo0acI6IB+slW+3b3fr44mIiJfKzYWNGwFYgwcKaQD16gFQHxXSJHC4pndOmQI5OWaziIiISMmpkOalNm7cSH3XjpundQLExMQQFR1N0ccXTe8UEQlMmzZBfj5ZwHagoZub3QBQ33rFG9mjB8OHD3f/44l4gS5drMGY+/bBjBmm04iIiEhJeaSQ9s4775CQkEB4eDitWrXip59+Ou2x9957Lzab7aSvxo0bFx0zefLkUx6TnZ3tiV/HIzZu3Oix9dFcWrZsSWpkpLWjQpqISGByTutcAyQkJlK2bFn3P6ZzRFpDm43ExET3P56IF7DboXdva3viRLNZREREpOTcXkj79NNPGTJkCE888QQrVqygXbt2dO3aldTU1FMe/+abb5Kenl70lZaWRsWKFbntttuKHRcZGVnsuPT0dMLDw93963jMxx9/zD9atbJ26tc/88Gl5Pvvv6eraySAc6FpEREJMM7nf4+sj+biep1TowEJMH36WLezZkFamtksIiIiUjJuL6S9/vrr9OvXj/79+9OwYUPGjh1LXFwc77777imPj4qKomrVqkVfS5cuZf/+/fRxvdNwstlsxY6rWrWqu38Vj6pZsyaV9+yxdjw0Is1ms4FrCs/atR55TBER8TLOEWmHa9bk0ksv9cxjOkekFaxfz2uvvsp2rdMpAaJOHWjf3urxNHmy6TQiIiJSEm4tpOXm5rJs2TI6d+5c7P7OnTuzaNGiEp1j4sSJdOzYkVq1ahW7/9ChQ9SqVYsaNWpwww03sGLFilLL7RWOHIGtW61tDxXSgGOFtHXr1LlTRCQQOUekDZowgSeeeMIzjxkfDyEh2HNyGDdiBCtXrvTM44p4gX79rNtJk6Cw0GwWEREROTu3FtL27NlDQUEBMTExxe6PiYkhIyPjrD+fnp7Od999R//+/Yvd36BBAyZPnsyMGTOYOnUq4eHhXH755Wx0dhk7UU5ODllZWcW+vNnixYt5d+hQa6diRahc2SOPe+jQIVr36kUBQFYWpKd75HFFRMRL5OUdm17ZqJHnHjc4GGrXBqAesHnzZs89tohhPXpAZCSkpMD8+abTiIiIyNl4pNmAzWYrtu9wOE6671QmT55MhQoVuPnmm4vd37p1a3r16kXz5s1p164dn332GfXq1eOtt9465XlGjRpFVFRU0VdcXNx5/y6e8OOPPzL//fetHQ+tjwZQtmxZNmzdStHHl3XrPPbYIiLiBTZtgrw8HOXKgadfK53TO+sDf//9t2cfW8SgiAjo2dPaTk42m0VERETOzq2FtMqVK2O3208afbZr166TRqmdyOFwkJyczN13301oaOgZjw0KCiIpKem0I9JGjhxJZmZm0Veal6/mmpKSQh3XjvODhSfYbDYaNGhA0epoWidNRCSwOKd1Ljl0iE4nLMvgds4LR/VQIU0CT9++1u20aXDggNEoIiIichZuLaSFhobSqlUrZs+eXez+2bNn07Zt2zP+7IIFC9i0aRP9XAtHnIHD4WDlypXExsae8vthYWFERkYW+/JmKSkp1Hbt1K59pkNLXcOGDSkah6ZCmohIYHE2GliN9drpURqRJgEsKQmaNIHsbJg61XQaERERORO3T+0cNmwYH374IcnJyaxdu5ahQ4eSmprKgAEDAGu02D333HPSz02cOJHLLruMJk2anPS95557jh9++IG///6blStX0q9fP1auXFl0Tl9nspBWbESapnaKiAQW54i01VivBx7lHJHmKqQ51PBGAojNdmxUmqZ3ioiIeLdgdz/AHXfcwd69e3n++edJT0+nSZMmzJw5s6gLZ3p6OqmpqcV+JjMzk2nTpvHmm2+e8pwHDhzg/vvvJyMjg6ioKFq2bMnChQu59NJL3f3ruF1+fj6pqalGR6R97trRiDQRkcDiLKStAbp7upBWty4ANYH8o0fJyMg47UhzEX/UqxeMGAFLl8Iff0CzZqYTiYiIyKnYHAF4yTcrK4uoqCgyMzO9bppnSkoKjRITOeq6Y/duj3XtBNi0aROt6tYl03XHgQMQFeWxxxcREUMKCqBsWcjJIRH4z08/ccUVV3ju8R0OKFcOjhxhzRdfUOe66866RqoJ3vweQiy+/N/o1lutddIGD4axY02nERERCSwlfQ/hka6dUnIpKSkkunYiI6FSJY8+fkJCAnGNG7PPtTbO+vUefXwRETEkLQ1ycsgGtmJgaqfNBonWK2Cj8HCvLKKJuJtreueUKZCTYzaLiIiInJoKaV6mXbt2zH7vPWundm3rg4UH2e12/vrrLyq6mkFoeqeISGBwXjjZBFSoWJHKHhwNXcS1nMHmzZ5/bBEv0KULVK8O+/bBjBmm04iIiMipqJDmZUJCQqh25Ii14+H10Ypp2NC6VcMBEZHAsGEDAEfj4rjlllvMZHC+7i377DP+85//mMkgPmv8+PE0atSIpKQk01HOm90OvXtb2xMnms0iIiIip6ZCmjdyXYk3WEhzuKb0aESaiEhgcBbSku66iw8//NBMBufUzrSFC3n//ffNZBCfNXDgQNasWcOSJUtMR7kgffpYt7NmWTOuRURExLuokOZlnn/+eTb+8IO1U6eOkQyzZs3ilpEjrR0V0kREAoNrTcz69c1lcF5Aqo21ZqhIIKpTB9q3t/pvTJ5sOo2IiIicSIU0LzN+/HgcmzZZO4ZGpFWpUoWlhw9bO5s3Q16ekRwiIuJBzhFp+YmJZznQjZyve4lA+o4d5ObmmssiYlC/ftbtpElQWGg2i4iIiBSnQpoXOXToEHt27SLedYehQlrdunXZARwBKCiALVuM5BAREQ85ehRHaioANTt2ZIup5/1atXAEBVEWqAKkaV6bBKgePazm7SkpMH++6TQiIiJyPBXSvMiWLVuIA0IBQkOttk0GlC1blmrVq7PJdcfGjUZyiIiIh2zahM3hYB+wB6hu6PWH0FBscXGANb1z69atZnKIGBYRAT17WtvJyWaziIiISHEqpHmRrVu3UjQGLSHBat1kSN26dSkqn6mQJiLi35zro20A6tStS0hIiLksx62TpkKaBLK+fa3badPgwAGjUUREROQ4KqR5kdTU1GOFNIMdOwHq1aunQpqISKBwro+2Aev53yjnGm2JqJAmgS0pCZo0gexsmDrVdBoRERFxUSHNi3hTIa1u3bpscO2okCYi4t+chbT1WM//Rjlf/x6+7jqGDBliNouIQTbbsVFpmt4pIiLiPVRI8yKpqanUce0YLqRdfPHFVG7d2tpRIU1ExL8dN7XTWwpplfbvp0KFCmaziBjWqxeEhMDSpfDHH6bTiIiICKiQ5lUmTpzI9Y0aWTvOqS2mXH311bz6xRfWztatkJtrNI+IiLiRN41Ic73+/f232RwiXiA6Grp1s7Y1Kk1ERMQ7qJDmRcLDwwlPT7d2EhLMhgGIiYFy5aCwUB9oRET81Z49sG8fAC1vvZUGDRqYzRMfb93u3Mnwhx6isLDQaBwR01zTO6dMgZwcs1lEREREhTTvkpUF+/db27Vqmc0CYLOR7yrobdhw5mNFRMQ3uZ7f4+L4v//9j9jYWLN5KlbEUbYsADPGjyfddYFJJEB16QLVq1v17hkzTKcRERERFdK8xM6dO3nqnnusnYsugvLlzQYCunfvzrQ//7R2tE6aiIh/2rTJujU9pdPFZsPmvJhUC2v9UJFAZrdD797W9sSJZrOIiIiICmleY/Pmzaz46itrxzWtxbBq1apRVD5TIU1ExD85C2kHY2IoKCgwHMbJ+ToYD2zdutVkEhGv0KePdTtrFqSlmc0iIiIS6FRI8xKpqakUTeb0hmmdWAtOq5AmIuLnNm8G4IWpU3n88ccNh3E6bkSaCmkiUKcOtG8PDgdMnmw6jYiISGBTIc1LpKamEu/a8ZIRaSqkiYgEAGchbTNQp04ds1lcNCJN5CT9+lm3kyZZfaBERETEDBXSvIS3jkgrajGQlgZHj5qMIyIi7uCc2ulVhTSNSBM5SY8eEBkJKSkwf77pNCIiIoFLhTQv4Y0j0uLj4zkQFMR+1x3OUQsiIuInMjNh717AKqTV9ZaGA8eNSFOzARFLRAT07GltJyebzSIiIhLIVEjzEt44Ii0kJITE2rU1vVNExF85L5DsBPLDw6lWrZrZPC7O18EaQUH8+P33hsOIeI++fa3badPgwAGjUURERAKWCmleYk9qKjGuHS8ZkQZw5513YneNUNCINBER/3LCtM6gIC95WxATA+Hh2AoLic7JMZ1GxGskJUGTJpCdDVOnmk4jIiISmLzkHbNsnjcPAEf58lChgtkwx3n++edpdfvt1s7ff5sNIyIipct5gWQTXjStE8Bmg5o1rW2tkSZSxGY7NipN0ztFRETMUCHNS4SlpwNgq1XLepfkTRITrVuNSBMR8S/O5/VqV1xB9+7dDYc5gXN658cvv8yqVasMhxHxHr16QUgILF0Kf/xhOo0EmoICq9nF1KnWbUGB6UQiIp6nQpq3cF1x96JpnS4HY5yTTjUiTUTEvzindnZ84AF69eplOMwJnK+HG+bMYcWKFWaziHiR6Gjo1s3a1qg08aTp062n5quugrvusm7j4637RUQCiQppXmDmzJl888471o6XNBpwSUlJodENNwDg2LIF8vPNBhIRkdLjGmlcp47ZHKfifD2sBWzbts1sFhEv45reOWUKaBlB8YTp0+HWW+HEp+Pt2637VUwTkUCiQpoXWLx4MVmusfleNiItLi6OnXY7OYAtP//kV08REfFNR48WPadvDw/H4XAYDnQC5+thPCqkiZyoSxeoXh327YMZM0ynEX9XUACDB8OpXiZc9w0ZommeIhI4VEjzAqmpqRSNQ/OyEWnBwcHUjI8nxXWH1kkTEfEPKdYzexZQt00b7yukaUSayGnZ7dC7t7U9caLZLOL/fvrpzNfSHQ5IS7OOExEJBCqkeYFt27YR79rxshFpALVr16aofKZ10kRE/MNxHTvr1K1LUJCXvSVwvh7GAdtTU41GEfFGffpYt7NmWUUMEXdx9kQrteNERHydl71rDky70tKIde142Yg0sAppReUzjUgTEfEPzufzzUAdb1wjLTYWR3AwIUC+CmkiJ6lTB9q3t0YDTZ5sOo34s9jYsx9zLseJiPg6FdK8QND27QQBheHhVismL6MRaSIifsjZsXMzULduXbNZTsVup7BGDQAqZGZy5MgRw4FEvE+/ftbtpElQWGg2i/ivdu2sNfnOJCoK2rb1TB4REdNUSDMsKyuLiq4PB3FxYLOZDXQKGpEmIuKHjp/a6Y0j0oAg5/TOb999lzJlypgNI+KFevSAyEhrycP5802nEX9lt0NS0pmPycyEjh1BA4hFJBCokGZYeno6cc7toJo1jWY5nWbNmnHpnXdaOxqRJiLiH46b2lm7dm2zWU7D5hyRFpmZic0LLzSJmBYRAT17WtvJyWaziP9atw6++cbarlSp+Pfi4uDhh6FcOavZQLNm8Omnns8oIuJJKqQZVr9+fSY++6y1Exd3xmNNSUxM5ElXS6gDB6xe6yIi4rvy83Fs2QJYhbTExESjcU7L9bqoldRFTqtvX+t22jTrbZpIaXI4rEJZfj7ccAPs3Anz5sHHH1u3KSkwbhysXAmXXWaNTLvzTrj3Xjh40HR6ERH3UCHNC4RkZFgbzivvXiki4tgKohqVJiLi29LSsOXlURAcTK9HH6WGt77+OAtpf86cyfTp0w2HEW83fvx4GjVqRNLZ5qD5maQkaNIEsrNh6lTTacTffP45zJkDYWHw5pvWNM8OHayRkB06WPsAtWtbI9KefBKCguD//g9atoTffzeZXkTEPVRI8wauK+1eOiIN4ODBgxyKibF2tE6aiIhvc45Gsycm8vLo0QQHB5vNczrO18W8lBTmzp1rOIx4u4EDB7JmzRqWLFliOopH2WzHRqVpeqeUpkOHYNgwa/uxx+Bsg5dDQuCFF6z1+mrWtD4ytG0LL70EBQVujysi4jEqpBn29ttvk7pokbXjxYW0hx56iOkrV1o7GpEmIuLbnIU0nIv5ey3n62IckKbpnSKn1auXVcRYuhT++MN0GvEXL74I27ZBQgKMGFHyn2vXDlatgjvusApoTz4JV1+tRgQi4j9USDNszpw5lN2/39rx1qk1WAtRF41D04g0ERHf5iyk7QgLY8+ePWaznImzkBYN7NInMJHTio6Gbt2sbY1Kk9Kwbh28/rq1/eabcK6NkytUsKYaT55sNSJYuBCaN4fPPivtpCIinqdCmmF7UlMpan7jxSPSateuTdE4NI1IExHxbc5C2ltff82HH35oNsuZXHQRBeHhADg0Ik3kjFzTO6dMgZwcs1nEt7kaDOTlwfXXw403nt95bDbo3ftYI4IDB6xRan36qBGBiPg2FdJM27YNgIIyZSAqynCY09OINBERP+IspG0BEhISTCY5M5utaLR2xL59ZGdnGw4k4r26dIHq1a3m6jNmmE4jvmzatOINBi6UqxHBE09YT+uTJ6sRgYj4NhXSDMrPz6eMc0qNo3p165XFSx0/Is2Rlga5uUbziIjIBdi6FbAKaYlnWz3asKBatQBrnbQdO3aYDSPixex2a/QPwMSJZrOI7zp0CIYOtbZHjLCKYKUhJMRac23+fGsSzubNcPnl8PLLakQgIr5HhTSDdu7cSTWHAwC7ly/4XLlyZQ6XLcthwOZwHFuoWkREfEt+Pg7naOgteH8hzXZcw4Ftztwicmp9+li3s2Ydawovci5eesmaMBMfb3XqLG1XXmk1Irj9dsjPt0apXXON/l5FxLd4pJD2zjvvkJCQQHh4OK1ateKnn3467bHz58/HZrOd9LVu3bpix02bNo1GjRoRFhZGo0aN+OKLL9z9a5S67du341oVzebF66MB2Gw2atepc2ydtJQUk3FEROR8bduGraCAbOBIuXJUrFjRdKIzc74+PnnPPVxxxRWGw4h4tzp1oH17a42ryZNNpxFfs349jBljbZ9Pg4GSuugi+OQTmDQJypaFBQugWTP43//c83giIqXN7YW0Tz/9lCFDhvDEE0+wYsUK2rVrR9euXUk9S/et9evXk56eXvRVt27dou8tXryYO+64g7vvvptVq1Zx9913c/vtt/Pbb7+5+9cpVTt37iwqpHlzowGXf/7zn5Rp2NDaUSFNRMQ3OUcUpwIJtWtj8+JlBYCi18cye/YQFKSB9CJn06+fdTtpEhQWms0ivqO0GgyUlM0G995rNSK49FKrEcHtt1tNMw4dcu9ji4hcKLe/I3399dfp168f/fv3p2HDhowdO5a4uDjefffdM/5clSpVqFq1atGX3W4v+t7YsWPp1KkTI0eOpEGDBowcOZJrrrmGsWPHuvm3KV033ngj/a+91trxgULaAw88QJ2OHa0dTe0UEfFNvtJowMX1+qhpnSIl0qMHREZa1zznzzedRnzFtGkwe/axBgOeusZSpw78/POxRgSTJlmNCJYs8czji4icD7cW0nJzc1m2bBmdO3cudn/nzp1ZtGjRGX+2ZcuWxMbGcs011zBv3rxi31u8ePFJ5+zSpctpz5mTk0NWVlaxL29h377d2nB2JfN6rrXcVEgTEfFNzufvuCuuoH///mazlISzkHZ4/XrGjRtnOIyI94uIgJ49re3kZLNZxDccPuyeBgMldWIjgk2boG1bGDVKjQhExDu5tZC2Z88eCgoKiImJKXZ/TEwMGRkZp/yZ2NhY3n//faZNm8b06dOpX78+11xzDQsXLiw6JiMj45zOOWrUKKKiooq+4rxp9JdrZU1vynQaubm5pLguT2lqp4iIb3IW0hp27cr1119vNktJOF8fy+bk8P20aYbDiPiGvn2t22nTrClzImfy4ovubTBQUic2Inj8cTUiEBHv5JHFRk5cf8XhcJx2TZb69etz3333cfHFF9OmTRveeecdrr/+el577bXzPufIkSPJzMws+krzkmfjJ4cMOfbuxgdGpO3YsYPuw4YB4NCINBER3+R6/vbybtFFIiPJL1sWAMdZ1lcVEUtSEjRpAtnZMHWq6TTizTzVYKCkXI0IkpOPNSJo3hw+/9xsLhGR47m1kFa5cmXsdvtJI8V27dp10oiyM2ndujUbN24s2q9ateo5nTMsLIzIyMhiX95g2VdfAZAfEQFRUYbTnF2NGjVIc65VZ9u1yxoHLiIiPsWxdSsAKw8cIC8vz3CakimIjQUgdOdOw0lEfIPNdmxUmqZ3yukc32Dguuvc32CgpGw26NMHVqywisL798Ntt1mNNNSIQES8gVsLaaGhobRq1YrZs2cXu3/27Nm0bdu2xOdZsWIFsc430QBt2rQ56ZyzZs06p3Oa5nA4CHYWAwuqVTOcpmSCg4O5KCGBA647nB/GRETER+TnF82RuW7gQAp8ZPEZe61aAFQ6epRD+hQlUiK9ellrTy1dCn/8YTqNeKPp0481GBg3znMNBkqqbl345RcYOdLKlpwMF19s/U2LiJjk9qmdw4YN48MPPyQ5OZm1a9cydOhQUlNTGTBgAGBNu7znnnuKjh87dixffvklGzduZPXq1YwcOZJp06bx0EMPFR0zePBgZs2axejRo1m3bh2jR49mzpw5DBkyxN2/TqnJysqicnY2cOwDgi9ITEykaHU0rZMmIuJbtm/HVlBADhAUG0t4eLjpRCUS7OwuGgekp6ebDSPiI6KjoVs3a1uj0uRExzcYePRRzzcYKKmQEHj5ZZg3z1oJZ+NGaNMGXnlFjQhExBy3F9LuuOMOxo4dy/PPP0+LFi1YuHAhM2fOpJazeJSenk7qcWue5ObmMnz4cJo1a0a7du34+eef+fbbb+nevXvRMW3btuWTTz5h0qRJNGvWjMmTJ/Ppp59y2WWXufvXKTXbt2/H1V4g2FfWqQESEhLY4trROmkiIr7F+bydCsQnJhqNck6cDQdqYK3XKSIl45reOWUK5OSYzSLe5aWXrAHKphsMlFT79tbIyttuswZXjxwJHTtaTRJERDwt2BMP8uCDD/Lggw+e8nuTJ08utv/oo4/y6KOPnvWct956K7feemtpxDNi+/btFLUX8IGOnS4JCQkakSYi4quchbQtWCOMfYbzdTIOFdJEzkWXLlC9OmzfDjNmWEUIkfXrwdXHbexYiIgwGqfELroIPv0Uuna11nabPx+aNYMPPoAePUynE5FA4pGunXKy40ek+ULHTheNSBMR8WHHFdISnNMlfYJzLdGOjRpx5513Gg4j4jvsdujd29qeONFsFvEODgcMGnSswYBr+q+vOL4RwSWXWI0Ibr0V+vdXIwIR8RwV0gzZu3fvsUKaD41IS0pKor3rHZlGpImI+BZfHZFWvToAwRkZ2LxtNWwRL9enj3U7a1ZRrxEJYNOnW38LoaHw5pve12CgpOrWhUWLjjUimDhRjQhExHNUSDPkkUceoXFUlLXjYyPSejzyiLWjEWkiIr7FV0ekOQtp7NsHR4+azSLiY+rUsdaXcjjghBVVJMAc32BgxAjrb8OXuRoR/Pij9TLhakQwejQUFppOJyL+TIU0Uw4exJaZaW37UCENsFYlBesDTVaW0SgiInIOtm4F4Lbhw2nSpInhMOegQgUKnR1G3/jXvwyHEfE9/fpZt5MmqcAQyFwNBmrV8o0GAyXVoYPViKBHD6sRwWOPqRGBiLiXCmmmuBZLLl8eIiPNZjlHG9LTySlf3trRqDQREd+Qn180r+vmIUOoWLGi4UDnwGYjp1IlAJZ89ZXhMCK+p0cP6+1mSoq1QLsEng0bjjUYePNN32kwUFIVK8L//mdN8SxbFubNsxoRTJ9uOpmI+CMV0gx55eGHAcirUsVwknP32GOP8efBg9aOCmkiIr5hxw6rmBYSArGxptOcO+f0zrDdu3E4HIbDiPiWiAjo2dPaTk42m0U8z+Gwulzm5VkdL32twUBJ2WzQt2/xRgQ9esB991nTWkVESosKaQY4HA7WOy8H5vtgIS0hIYGiNgNqOCAi4hucFz6yLrqIv9asMZvlPITUqgVAxZwcDrou5ohIifXta91OmwYHDhiNIh72xRfHGgyMG+e7DQZKqm5d+OUXa4qnzQYffmg1Ili2zHQyEfEXKqQZkJmZSZW8PABCfGmxZ6eEhAS2uHY0Ik1ExDc4n69/37WLd955x2yW8xDsLKRVB9LT082GEfFBSUnQpAlkZ8PUqabTiKccPgxDhljbjz7q+w0GSio0FEaNgrlzrQHNGzZYjQhefVXrBIrIhVMhzYCMjAyqObeD4+KMZjkfiYmJGpEmIuJrjuvYmZiYaDLJ+XFO7awO7HCtMyoiJeaa9gaa3hlIXn75WIOBkSNNp/G8q6461oggL8/qVtqpE2zfbjqZiPgyFdIMSE9PLyqkUa3amQ71SsePSHNoRJqIiG84rpCW4IOjoVVIE7lwvXpZyyQuXWoVF8S/bdgA//63tT12rP81GCgpVyOCDz+0/g1+/NFqRPDFF6aTiYivUiHNgPT0dKq7dqpXP9OhXik+Pr5oRJrj77+tFUxFRMS7+dGINE3tFDk/0dHHFprXqDT/dmKDgZtuMp3ILJsN+vWzGhG0agX79kH37nD//WpEICLnToU0A3x9RFqZMmXIrVoVgKCDB7VirYiIDyh0TsXfgm8X0uJDQ3lk2DDDYUR8l2t655QpkJNjNou4T6A1GCipevVg0SJriqfNBh98YBXWli83nUxEfIkKaQZk7t9/rJDmgyPSAJ599VWyo6KsHa2TJiLi3QoKsG3bBsCBqCiiXM/fviQ2FgBbbi62vXsNhxHxXV26WG8/9+2DGTNMpxF3OHwYhg61tgOpwUBJhYbCK68ca0Swfj20bm1Ng1UjAhEpCRXSDHh+8GBCXTvOkV2+5u677ya8QQNrR+ukiYh4tx07sOXnkwtE1K5tOs35CQ215qUBaI00kfNmt0Pv3tb2xIlms4h7vPwypKYGboOBkrrqKli1yprimZdnFR07d1YjAhE5OxXSTHB9AKhSxfpg4Ktci1VrRJqIiHdzXvDIj43lhZdfNpvlAuRWqQLA+McfN5xExLf16WPdzppldXQU/7FhA7z2mrUdyA0GSqpSJfj8c2uKZ0SENUqtWTP48kvTyUTEm6mQZoLrMocPro/msnfvXjbk5Vk7GpEmIuLdnM/TEQ0b0qVLF7NZLkCes5C2ZvZsHGp0I3Le6tSB9u2tBeknTzadRkqLwwGDBkFuLlx7rRoMlJTNBv37W+ukXXyxNe35llvggQfUiEBETk2FNAPGP/EEADmVKxtOcv7+/PNPXps2zdpRIU1ExLu5nqfj402muGBhzpHQ0Xl5ZGZmGk4j4tv69bNuJ03SulD+4ssv4Ycf1GDgfNWvD4sXW1M8bTZ4/32rEcGKFaaTiYi3USHNw7Kzs9m1cqW148Mj0hITE9ni3HZoaqeIiHdzFtJWHjjA/v37zWa5AMG1agFQHcjIyDAbRsTH9egBkZHWCh3z55tOIxfqyBEYMsTa/te/oG5do3F8VmgojB4Nc+ZYH9XWr4fLLrOmy6rgLCIuKqR5WEZGRlHHzlAfHhlQvXp1tgcHA85CmqbYiIh4LYezkDZm+nT2+nLHS+cFKBXSRC5cRAT07GltJyebzSIXztVgoGZN0DKSF+7qq+GPP6wpnnl5VnGySxf1uhERiwppHpaenl5USLPVqGE0y4Ww2+04atakEAg6cgT27DEdSURETqNg82YAUm02atasaTjNBaheHYBqqJAmUhr69rVup02DAweMRpELsHEj/Pvf1rYaDJSeSpWs/zfef9/6N50zx2pE8NVXppOJiGkqpHlYeno61V07Pjy1E6BG7dqku3a2bjUZRURETqeggCBnk5uc2FhCfblbtLOQphFpcirjx4+nUaNGJCUlmY7iM5KSoEkTyM6GqVNNp5Hz4XDAww8fazBw882mE/kXmw3uu+9YI4K9e61/4wEDrOm0IhKYVEjzsOOndro+EPiqhISEonXS1HBARMRLpacTlJ9PHlDW1xfNcb5uRgO7t20zm0W8zsCBA1mzZg1LliwxHcVn2GzHRqVpeqdvUoMBz3A1IvjXv6z9CRPUiEAkkKmQ5mE7t22jimvHx0ekHd9wQIU0EREv5Xx+TgVqJSYajXLBKlbEERYGwIsPPmg4jIh/6NULQkJg6VJrTSjxHWow4FmhofDqq8caEaxbZzUiGDNGjQhEAo0KaZ6WkUEQUGC3Q+XKptNckG7dutHSNX5chTQREe/kfH7einUBxKfZbNicF6FsWvFZpFRER0O3bta2RqX5FjUYMOOaa6yi8803W40Ihg+3ptXqZUkkcKiQ5mHPPfAAgPVBIMi3//kbNmxIo+uus3ZUSBMR8U7O5+ct+EEhDY4ti+Bc901ELpxreueUKZCTYzaLlIwaDJhVqRJMn25N8SxTBmbPthoRzJhhOpmIeIJvV3J8kfONf5CPr49WJD7eulUhTUTEOzmfn9v16sVVV11lNkspyK5UCYBPxowxnETEf3TpYtWo9+1TIcAXOBwwaJAaDJhms8H991uNCFq2tBoR3HQT/POfakQg4u9USPM015hfPymk/ZSWBkBhSor1qi4iIt7FWUir26kTsbGxZrOUgoKqVQHYsWQJBQUFhtOI+Ae7HXr3trYnTjSbRc7uq6/g++/VYMBbNGhgNSIYPtzaf+89uOQSWLnSaCwRcSMV0jyooKCg6Ap6bnS04TSlY9gbbwAQdOSIdRlGRES8i2vEsGsEsY8rU7s2AFWB3bt3mw0j4kf69LFuZ80C53VS8UJHjsDgwda2Ggx4j7Awa6rt7NkQGwtr11qNCF5/XY0IRPyRCmketGfPHnKcH2jsNWuaDVNKqteuTdG6mpreKSLiXQoLKdy6FYC5mzcbDlM6XEsjxAIZGRlmw4j4kTp1oH17a4LB5Mmm08jpjBqlBgPerGNHqxHBTTdZU28feQS6doX0dNPJRKQ0qZDmQenp6VRzbttr1DCapbQkJiayxbWjQpqIiHdJTycoP5884K1p00ynKR3O6akqpImUvn79rNtJkzSKxhtt3Aivvmptq8GA96pcGb74wpriWaaMNcpTjQhE/IsKaR6UkZFB0cpofrJGWkJCggppIiLeyvm8nAbUck6J9HnVrEtS1VAhTaS09egBkZGQkgLz55tOI8dzOKwpnbm5VnMINRjwbjYbPPAALFsGLVrAnj3WKLUHH1QjAhF/oEKaBx0/Is31QcDXFSukOacPiYiIl3AW0rZijSD2C84RaZHA3tRUs1lE/ExEBPTsaW0nJ5vNIsV99RV8953VYOCtt9RgwFc0bAi//mpN8QR4912rEcGqVWZziciFUSHNg/Zs3UoF146fjEg7fmqnQyPSRES8i/N5eQvWhQ+/UL48uSEhAGSnpBgOI+J/+va1bqdNgwMHjEYRpyNHYMgQa3v4cDUY8DVhYfDaa9YUT1cjgksvhTfe0BRqEV+lQpoHZf/9NwA5oaFQvrzhNKUjPj6+qJBW4CcLWYuI+I3jCml+MyLNZitaZ/RxV5tBESk1SUnQpAlkZ8PUqabTCFgNBrZuVYMBX9epk9WIoFs3a4rusGFqRCDiq1RI86CQPXsAOFKhgtkgpSgiIoLhb70FgD0tzVrAQUREvELepk2AVUiLj483GaVUuQppNn36ECl1NtuxUWkTJ5rNIrBp07EGA2+8AWXLms0jF6ZyZfjyS2uK5/GNCL75xnQyETkXKqR50GO9egEQ2bCh4SSlq3P//gDYDh2CffsMpxERERfXSOHMChUoV66c4TSlyLlOmi7ji7hHr14QEmItlK61nMxxOGDQoGMNBm65xXQiKQ02GwwYYP3/1by51Yjgxhth4EA4etR0OhEpCRXSPGnHDgDsfrI+WpHw8GMfarROmoiIdygsJGznTgCe/PBDw2FKV/ZFFwHw9QcfGE4i4p+io63pZwCTJpnNEshmzLAaDISEwLhxajDgbxo2hN9+s6Z4ArzzjhoRiPgKFdI8yXXl3E86drqsW7eO9LAwa0eFNBER75CRgS03F+x2LrnpJtNpSpWjalUA9q9Zw1FdvhdxC9f0zilTICfHbJZAdOQIDB5sbf/rX1Cvntk84h5hYTBmDPzwA1StCmvWqBGBiC9QIc1DDh8+zNyPPgKgIDracJrStWjRIua7CmgqpImIeAfX83FcHAQHG41S2sKdjROqATudo+5EpHR16WI1md+3zxoZJZ71yitWg4G4ODUYCASdO5/ciOC66yAjw3QyETkVFdI8JCMjA5vzzX6Qn03tTEhIKOrcqUKaiIiXcD4fbwU2+1lXZZtzZHcs1uuriJQ+ux1697a21XTAszZtgtGjre2xY9VgIFBERxdvRPDDDyc3IigogPnzrY668+db+yLieSqkecjOnTtxriJW9AHAXyQmJhYV0hwpKSajiIiIi7OQNm/LFrZu3Wo2S2lzrsupQpqIe/XpY93OmgVpaWazBIrjGwx07qwGA4HmxEYEu3dbjQgeesgqnsXHw1VXwV13Wbfx8TB9uunUIoFHhTQP2blzJ1VdO66F+f1EjRo1SAuy/pTyN20ynEZERODYhY0tWBc8/IrzdbQisFuf7kXcpk4daN/eKu5Mnmw6TWA4vsHAW2+pwUCgcjUiGDrU2h8/3iqebdtW/Ljt2+HWW1VME/E0FdI8ZE9aGhe5dqpWPdOhPsdut5PnnK5qS0uz3m2JiIhROevXA5AWFESNGjUMpyllF11Ent0OwBE/m7Yq4m369bNuJ03S4ufudnyDgeHD1WAg0IWFweuvw8yZEHSaT+2uj11Dhmiap4gneaSQ9s4775CQkEB4eDitWrXip59+Ou2x06dPp1OnTkRHRxMZGUmbNm344Ycfih0zefJkbDbbSV/Z2dnu/lXO25G//wYg126HqCjDaUpfaJ06AAQfOQL79xtOIyIihc4RaUdjYgj2s2YD2GwcKl8egLzUVMNhRPxbjx4QGQkpKdaaTOI+xzcYeOIJ02nEW5Qpc+YitsNhTb0+w0dsESllbi+kffrppwwZMoQnnniCFStW0K5dO7p27Urqad74Lly4kE6dOjFz5kyWLVvGVVddxY033siKFSuKHRcZGUl6enqxr/DwcHf/OufN9Ub/UPnyfjlGu0bduqS7dtRwQETErMJCwpxrhwX527ROp/LOoRqP3HWX4SQi/i0iAnr2tLaTk81m8WfHNxh44w01GJBj0tPPfsy5HCciF87thbTXX3+dfv360b9/fxo2bMjYsWOJi4vj3XffPeXxY8eO5dFHHyUpKYm6devy8ssvU7duXb7++utix9lsNqpWrVrsy5uF7tsHQE7FioaTuMfgwYMp16SJtaNCmoiIWTt3Ys/PJx8o37Ch6TRuERwXB4BNzQZE3K5vX+t22jQ4cMBoFL90YoOB7t1NJxJvUtLltf1sGW4Rr+bWQlpubi7Lli2jc+fOxe7v3LkzixYtKtE5CgsLOXjwIBVPKEAdOnSIWrVqUaNGDW644YaTRqwdLycnh6ysrGJfnjbottsAqNKsmccf2xMaNWpEeRXSRES8g/N5eBtQq3Zto1HcxvWJYccOszlEAkBSEjRpAtnZVudAKV1qMCBn0q4d1Khx5r+LuDjrOBHxDLcW0vbs2UNBQQExMTHF7o+JiSlxu/oxY8Zw+PBhbr/99qL7GjRowOTJk5kxYwZTp04lPDycyy+/nI0bN57yHKNGjSIqKqroK855FdujnGNt7c5F+f1SfLx1q0KaiIhZzufh6KQkevfubTaLm2RfZLXwmffxxzjU5KaYhIQEEhMTz/lr3LhxpqOLl7LZjo1KmzjRbBZ/owYDcjZ2O7z5prV9umLa5Zdbx4mIZ3hk9WHbCf/HOxyOk+47lalTp/Lss8/y1VdfUaVKlaL7W7duTevWrYv2L7/8ci6++GLeeuutU74JHDlyJMOGDSvaz8rK8nwxzTVp3U/H3BYUFLAwJYWrgILNm9HzuIiIQc5CWtmGDSnrp687Qc4LUzlbt5KZmUmFChXMBvIikydPPq+fi3ddEBM5hV69YMQIWLYMVq2C5s1NJ/IPajAgJdG9O3z+uVV03bbt2P0VKljTrT/5xBo5etxHXhFxI7cW0ipXrozdbj9p9NmuXbtOGqV2ok8//ZR+/frxv//9j44dO57x2KCgIJKSkk47Ii0sLIywsLBzC1+Kjh49yqqvvqI1kFe5MiHGkrhPUFAQb339NVcBeZs2qZAmImKSa2SwHxdGQp2/WyyQkZGhQtpx2rdvbzqC+KHoaOjWzVonbdIkGDvWdCLft2kTvPqqta0GA3I23bvDTTdZ3TnT063xGe3awahR8NRT8MgjVnOQAQNMJxXxf26d2hkaGkqrVq2YPXt2sftnz55N27ZtT/tzU6dO5d577+Xjjz/m+uuvP+vjOBwOVq5cSayXXnXPyMggdO9eAIJr1DCcxj1sNhuFzlF+9rQ0a9VUEREx4ujatQDM2rDBcBI3cr7mV4MSLxchIhfGNb1zyhTIyTGbxdc5HNboopwc6NRJDQakZOx26NDB6qTboYO1/8QT8Nhj1vcffND6/1NE3MvtUzuHDRvG3XffzSWXXEKbNm14//33SU1NZYCzVD5y5Ei2b9/Of/7zH8Aqot1zzz28+eabtG7duujNcZkyZYiKigLgueeeo3Xr1tStW5esrCzGjRvHypUrGT9+vLt/nfOyc+dOajm3bdWqGc3iTuH168P69YQcPQr794OfdigVEfF2BX//DcBnS5bQ+SzH+ixnIS0a2HX8PBc5o3Xr1vH1119ToUIFGjduTJMmTYiMjDQdS3xEly5QvTps324tkO/spSXn4euvYeZMNRiQC2ezwcsvw+HD1t/SvfdaI9N69DCdTMR/uXVEGsAdd9zB2LFjef7552nRogULFy5k5syZ1KpllZbS09NJTU0tOn7ChAnk5+czcOBAYmNji74Gu1bhBA4cOMD9999Pw4YN6dy5M9u3b2fhwoVceuml7v51zsvOHTsoWuHNS0fNlYYadetSNCZADQdERMxwOAjftQuAYH/t2AlQqRL5zk+emf488q6Ude3aldzcXA4cOMCECRPo0KED9evXNx1LfITdDq7+JWo6cP6OHj3WYOCRR0D/C8qFstms6dZ9+0JhoTVibeZM06lE/JdHmg08+OCDPPjgg6f83okL4s6fP/+s53vjjTd44403SiGZZ2Q5F98vAOzR0abjuE1CQgJbgKpgrZp68cVmA4mIBKKdOwnOy6MAKN+woek07hMUxMGyZbno0CFydPGmxKpWrcoTJ6xoXlBQYCiN+KI+fazRL7NmQVqatUi+nJtXXrGuOcfFwZNPmk4j/iIoCN5/3+oE+8kn1nThmTPh6qtNJxPxP24fkSaQnZICwMEyZfy6L3FiYiJbXDv6UCMiYobz+XcbEF+3rtEo7nbE1WBgxw6jOXxJly5dmHLCAjp2P35vIqWvTh1o395a4+s8G8QGtM2bYfRoa/v119VgQEqX3Q7/+Y/VGCQnx7pdtMh0KhH/o0KaB+Q5p64e8fM1SI4vpDmcxUMREfEwZyFtC9bzsj+r0rw5AAO1SneJ/f777zzxxBPUqVOHu+66i1GjRvHNN9+YjiU+pl8/63bSJGsamZSMwwGDBh1rMKA1rMQdQkLg00+tv7HDh6FrV1i+3HQqEf+iQpoHhO/fD0BupUqGk7hXYmIit//rX9bO1q1mw4iIBCjXhYytWFPu/VmIc06ZTV07S2zmzJmkpqayfPlyHnroISpVqsScOXNMxxIf06MHREZCSgqUYFUWcVKDAfGU8HD48kto1w6ysqBzZ1i92nQqEf+hQpoH9L3uOgDikpIMJ3GvkJAQEp2T8G2a2ikiYkTO+vWANSItPj7eZBT3c3XCTk83m8MH7Nq1q6gTOkBkZCRt27bl/vvvZ+zYseaCiU+KiLAWMwdITjabxVeowYB4WkQEfPMNJCXB3r3QsSNs3Gg6lYh/UCHNE5xv8O01ahgO4gGuD21btljj10VExKPCncWS+156ifDwcMNp3Ouoc420Zd98g0OvOaf0xx9/0LhxY2JjY6levTrVq1fnySef5PDhw6ajiY/r29e6nTYNDhwwGsUnuBoM1KihBgPiOZGR8P330LQpZGTANddo4pBIaVAhzRNcV8pjY83m8IB5mzdbG1lZelclImKCc0RwbOvWZnN4gOsClS0jgwN6zTmlfv36ERMTw88//8yKFSt48cUX+e6777jkkkvY71x6QuR8JCVBkyaQnQ1Tp5pO492ObzDwxhtqMCCeVbEizJ5tjYJMS7NGpmkgt8iFUSHNzbKzs/lr7lzA/9dIA1iwZAk7XTua3iki4lkOx7FLzf4+rRMIrVULgFhg586dZz44QK1Zs4Z33nmHNm3a0KxZM/r06cPSpUtp3LgxDz/8sOl44sNstmOj0iZONJvF2w0ebDUY6NhRDQbEjJgYmDPHemuwaZP1t7hnj+lUIr5LhTQ327lzJxGZmcCxRZH92fGdO1VIExHxsF27IDubQpuNXwJh7oZzjbQqwM7t281m8VKnGnlms9l4+eWX+eqrrwylEn/Rq5e1cP6yZbBqlek03unrr+Hbb9VgQMyrUQPmzoXq1WHNGqsBgQZzi5wfFdLcbGdGBq4JnTbXosh+LCEhQYU0ERFTnM+72xwO/t62zWwWT4iOpgCwA5laQbnI9ddfz+OPP85nn33GgAEDGDp06Ekj9jIzM7nooosMJRR/ER0N3bpZ25Mmmc3ijY4ehUGDrO1hw6BBA7N5RBITrZFp0dGwYgVcdx0cOmQ6lYjvCTYdwN/t/ftvyrh2AmCNtMTERBY5twv//luVWhERT3IW0rZgPR/7PbudzPBwKmZnc8S1RqfQtGlTli9fzqRJk4oKaImJidx+++20aNGCgoICJk2axBtvvGE4qfiDfv2shgNTpljrgIWFmU7kPUaPVoMB8T4NGlhrpl11FSxebBXDv/0WypQ5+8+KiEWFNDc7tGmTdRscTDk/754GEBsby7bgYMjP5+j69WgtVRERzynYvBk7sBXoGAiFNOBQ+fJUzM4mLzXVdBSv8corrxRt79y5kxUrVrBy5UpWrlzJu+++y6ZNm7Db7Tz33HP00IJNcoE6d7amim3fDjNmwG23mU7kHTZvtjp1Arz+OpQrZzaPyPGaN7e6eXbsCPPmwa23whdfQGio6WQivkEDhtwsxzk6ICtA2vMEBQWRHRMDWCPSRETEcw6vXg3ANrudqlWrGk7jGdnO6Yk2tSA7pZiYGK699loee+wxPvnkE9atW8fBgweZP38+AwcONB1P/IDdDr17W9tqOnDMkCHHGgzceqvpNCInu/RS+OYbayTazJlw112Qn286lYhvUCHNzfLT0gA4WqGC2SAeZEtIACB0xw7DSUREAkuuc52wI1WqYAuQFa3j27QB4B/XXGM4ie8oU6YMbdq04YEHHjAdRfxEnz7W7axZ4HzrG9C+/toqUKjBgHi7K6+EL7+0RqJNm2Z14i0sNJ1KxPtpaqebuTp25lWubDiJ5zw+YQI0bkzY0aNWK5gAKiKKiJhkd36CLaxVy3ASzwmtWRMA2wmL6QeyhISE8yqkDhkyhEGuldFFzkGdOtC+PSxYAJMnw1NPmU5kztGjMHiwta0GA+ILOneGzz6DHj2stQ4jIuDdd1UAFjkTFdLc7PYrr4Tff6dOu3amo3hMfKNGUKUK7NplrbDaooXpSCIi/s/hoNzevQCE1atnOIwHuRr5aGpnkcmTJ5/Xz8XHx5dqDgks/fpZhbRJk+CJJyAoQOe9jB4NKSlqMCC+5aabrCLaP/4BEyZA2bLw2msqpomcjgpp7uZ8Yx9cvbrhIB4WH69CmoiIJ+3eTUheHg6bjYdGjzadxmMOly9PWWDDwoXUdTgCZkrrmbRv3950BAlAPXrAQw9ZRaT58+Hqq00n8ry//1aDAfFdPXtaIyr79Tv29/vcc6ZTiXinAL1W5EGuK+SuK+YBYN++faw6cMDacTZbEBERN3M+39qqV6digDQaAAiqVg2A0H37OHTokOE0IoErIsL6IA6QnGw2iymDB6vBgPi2vn1h3Dhr+/nn4dVXzeYR8VYqpLlRbm4uW379FYCcihUNp/Ecu93ODxs2AMcWvhYRETdzXbgIsOl5ZRITAagK7MzIMBtGjBo/fjyNGjUiKSnJdJSA1bevdTttmrVMbiBRgwHxFw8/DKNGWdsjRsD48WbziHgjFdLcaOfOnUQeOQJASFyc4TSeExUVxe6ICACOrl1rOI2ISGBwPd/+mpFBYSC13HKOvgsH9mzaZDaLGDVw4EDWrFnDkiVLTEcJWElJ0KQJZGfD1Kmm03iOGgyIv3nsMWutQ7CmbE+aZDaPiLdRIc2NdqWm4hqHFhRga6TlOqfakJJiNoiISIA4+NdfACxOTycokFb5Dg8ny24H4KBGQYsYZbMdG5U2caLZLJ706qtqMCD+54UXYMgQa7t/f/j0U6NxRLxKAL3T9rzM9esByLHZoEIFs2E8LKh2bQDCNM1GRMQjCjZvBiA7JsZwEs/LKlMGgCN//204ifdJTU3F4XCcdL/D4SA1NdVAIvF3vXpZ0xuXLYNVq0yncb+//z42DU4NBsSf2GzW3/R990FhofX/9tdfm04l4h1USHOjw84PNfvDwwNuoYRyjRoBEJ6dHXiLZIiIGBCyfbu1EWBrpAEciowEID8tzXAS75OQkMDu3btPun/fvn0kJCQYSCT+LjoaunWztgNhOtiQIVaDgWuuUYMB8T82G7z7LvzjH5Cfb/2Nz5ljOpWIeSqkuVHu1q0AHArAS1M16tdnl2vH+e8gIiJu4nAQuW8fAGUaNjQcxvNyL7oIANvOnYaTeB+Hw4HtFBfzDh06RHh4uIFEEgj69bNup0yxikz+6ptvrBE6ISHw9tsBd91cAoTdDpMnwy23QG4u3HQT/Pyz6VQiZgWbDuDPCp2jA7Kdb/ADSWJiIluAKmB1kmve3GgeERG/tmcPofn5FAIVA/D5tv5VV8Hq1dzSurXpKF5j2LBhANhsNp566ikinE2AAAoKCvjtt99o0aKFoXTi7zp3hurVYft2mDEDbrvNdKLSd/QoDBpkbQ8dqgYD4t+Cg60GIjffDN9/D9ddB3PnWg1GRAKRRqS5UURmJgAF0dGGk3jeFVdcQdMbbrB2tmwxmkVExO85n2d3APH16xuNYkJYzZqARqQdb8WKFaxYsQKHw8Gff/5ZtL9ixQrWrVtH8+bNmTx5sumY4qfsdujd29r216YDrgYD1avDU0+ZTiPifmFhMH06dOgABw9Cly7wxx+mU4mYoRFpbnR9q1awYgWNO3Y0HcXjypQpAw0bWmPeVUgTEXGrwr//JgjYgjUiOOBUrWrdpqebzeFF5s2bB0CfPn148803iXSuIyfiKX36wMsvw6xZkJYGcXGmE5Wev/+GV16xttVgQAJJmTLWKNPOneHXX6FTJ1i4EALwGp4EOI1IcyfnG/rgGjUMBzHEteC1CmkiIm4V5Oy+eNkdd1CtWjXDaTwvq2xZANKWLDGcxPtMmjRJRTQxok4daN8eHA5rfSV/MmQIZGdbDQb8cdqqyJmULw8zZ0KLFrBrl/X/QUqK6VQinqURae7kujIeG2s2hyHfr13LtUDWH3+gt/AiIm7kvGARUrs2BAXeNTKb83U2IiuLI0eOFFsPTGDu3LnMnTuXXbt2UVhYWOx7ycnJhlJJIOjXDxYssLp3PvGEfzw9uRoMBAfDW2+pwYAEposuskabtm8Pa9daxbSffrKmOosEAj94OfNOubm57PnrLwCOVqhgNowhvzibLYTs2GE4iYiIn3ON/HWNBA4w5erWBaASsNM5Ok8szz33HJ07d2bu3Lns2bOH/fv3F/sScacePSAy0hqtMn++6TQXLjsbBg+2tocNs1YxEQlU0dEwZw4kJlr/j3fsaI1QEwkEGpHmJrvS06mamwtAWIB+sCnfpAl88QVlsrPhwAEI0IKiiIi77V22jErAjykpXG06jAG2SpXIBUKB/evXk6D2eUXee+89Jk+ezN133206igSgiAjo2RMmTIDkZLjax5+gXn3VWh9NDQZELNWqWd07r7wS1q2z1k778UeoWNF0MhH30og0N9m7fj3BQCEQFBNjOo4RNRo0YLdrZ+tWk1FERPyXw0G5PXsASHE4DIcxxGZjX2goAAc3bDAcxrvk5ubStm1b0zEkgPXta91Om2ZdV/VVKSkwapS1rQYDIsfEx1sj02JiYNUq6NrV6uop4s9USHOTrPXrAdgXHGwtohCAEhMT2eLaUcMBERH32LWLsIICCoFKLVuaTmNMVpkyAGTr9aaY/v378/HHH5uOIQEsKQmaNLGmRU6dajrN+XM1GLj6ajUYEDlRvXpWMa1iRfj9d7jhBjhyxHQqEfcJzAqPBxz9+28ADpQpQ2XDWUxJTExkAZAE5G/apD82ERF3cBaOtgMJAdx//nBUFGRmkp+WZjqKV8nOzub9999nzpw5NGvWjJCQkGLff/311w0lk0Bhs1mj0oYNg4kT4Z//NJ3o3H37LcyYYV0bf/ttNRgQOZUmTawGBFdfDQsXQvfu8NVXEBZmOplI6dOINDfJc76RPxzALeejo6PZ7hyNd9DZeEFERErXkdWrAUgBEhISzIYxKM+5IEuQVjou5o8//qBFixYEBQXx119/sWLFiqKvlStXmo4nAaJXLwgJgWXLrKlfviQ7GwYNsraHDlWDAZEzadUKZs601kf84Qe4807IyzOdSqT0aZCQu6SnA5AbwCst2mw2DkdHQ3o6BZs3m44jIuKXMletIgJIDwvjygC+eNO8SxdYuZJrmzc3HcWrzJs3z3QEEaKjoVs3a5205GR4803TiUpODQZEzs3ll1sjOK+/Hr78Enr3hilTwG43nUyk9GhEmptEZGUBUFiliuEkZg1yThmpfOiQ4SQiIv4pe906AA5WqmQ4iVmuDtm2nTvNBhGRU+rXz7r9738hJ8dslpI6vsHAmDFQvrzZPCK+4ppr4PPPrenQU6fCAw9AYaHpVCKlR4U0N7nKuU5NqxtuMJzErPJNm1obWvxZRMQtwpwjoPOqVzecxLCqVa1b57+HHPPTTz/Rq1cv2rRpw/bt2wGYMmUKP//8s+FkEkg6d7ZGde3bZ41W8QXHNxi4/XbTaUR8yw03wMcfQ1CQtT7i0KEQqM3Fxf+okOYuGRkABNeoYTiIYbVqWbf790NmptksIiJ+qJpzaMf9L79sOIlZB5xdO3drTc5ipk2bRpcuXShTpgwrVqwgx/n3cvDgQV4O8L8Z8Sy73ZriBdaHam+nBgMiF+6226zp3ADjxsGTT5rNI1JaVEhzF9cV8dhYszkMW799O1mhodbO1q1mw4iI+JvCwqIRv/Y6dcxmMc05Ii3yyBFysrMNh/EeL774Iu+99x4ffPBBsY6dbdu2Zfny5QaTSSDq08e6nTULvLnBrhoMiJSe3r1h/Hhr++WXrS8RX6dCmhvk5eaS7fxgcyQqymwYwxwOBxtyc63tlBTDaURE/ExGBuTmWkM9AnwEdJRzSYUwYM/GjWbDeJH169dz5ZVXnnR/ZGQkBw4c8HwgCWh16kD79tb0rsmTTac5vX//22owUK2aGgyIlIYHH7T+vwJ44gnfajgicioqpLnBnpQUwp2rKYa5pjYGqISEBLY4tw9puo2ISKkqdHZEzggNZf/Bg4bTmGULD+eAc+7V/rVrDafxHrGxsWzatOmk+3/++WcSExMNJJJA52o6MGmSdy4+npJybMTM66+rwYBIaRk+HJ55xtoeMgQ+/NBoHJELokKaG+xfswaALJsNe4C/+oaFhbHP+W9w8M8/DacREfEv+1esAGBddjblA/z1BmBvWBgAhzQircgDDzzA4MGD+e2337DZbOzYsYOPPvqI4cOH8+CDD5qOJwGoRw+IjLQKVvPnm05zsqFD1WBAxF2eecYqqAHcf7/VjEDEF6mQ5gauN/B7XWuDBbhs57o1+ae4Ii4iIucva9UqAPaUL09wcLDhNOYdLFsWgGytyVnk0Ucf5eabb+aqq67i0KFDXHnllfTv358HHniAhx56yHQ8CUAREdCzp7XtWoTcW8ycCV99ZTUYeOstNRgQKW02G7z6Kvzzn9YU73vugS++MJ1K5Nx5pJD2zjvvkJCQQHh4OK1ateKnn3464/ELFiygVatWhIeHk5iYyHvvvXfSMdOmTaNRo0aEhYXRqFEjvvCi/wOznWuBZUZEGE7iHWwJCQCEbN9uOImIiH/J3bABgKNVqhhO4h2OOtclLdi2zXAS7/LSSy+xZ88efv/9d3799Vd2797NCy+8YDqWBLC+fa3badPAW5bqO77BwJAh0KiR0Tgifstmszrh3nMPFBTAHXfA99+bTiVybtxeSPv0008ZMmQITzzxBCtWrKBdu3Z07dqV1NTUUx6fkpLCddddR7t27VixYgWPP/44gwYNYtq0aUXHLF68mDvuuIO7776bVatWcffdd3P77bfz22+/ufvXKZF85xv4QG804BLhfCdSbt8+w0lERPyL3dn2zhEfbzaIl8irVAkA+65dhpN4n4iICC655BIuvfRSypUrZzqOBLikJGjSxCpeTZ1qOo3l3/+GzZutBgNPP206jYh/CwqCiRPhttsgLw9uuQUWLDCdSqTk3D4P5PXXX6dfv370798fgLFjx/LDDz/w7rvvMmrUqJOOf++996hZsyZjx44FoGHDhixdupTXXnuNHj16FJ2jU6dOjBw5EoCRI0eyYMECxo4dy1QveDW2ZWQAkO98Qx/oKl18MQDlc3MhK8taGENERC5YuT17ACjTsKHhJN7h0m7dYMkSOjg7eAaqYcOG8cILL1C2bFmGDRt2xmNff/11D6USOcZms0alDRtmfZj+5z/N5tmy5ViDgTFj1GBAxBOCg+G//4UjR+Dbb+GGG2D2bGjd2nQykbNz64i03Nxcli1bRufOnYvd37lzZxYtWnTKn1m8ePFJx3fp0oWlS5eSl5d3xmNOd86cnByysrKKfblTWef5Hc61wQLd9XfeicNVVNS6NSIipaOggEqHDwNwkfOCRaALdy4lgPOCVqBasWJF0XumFStWnPFLxJRevSAkBJYtA+dyj8YMGWKNjrvqKmuamYh4RmgofP651dzj0CHo2hVWrjSdSuTs3Doibc+ePRQUFBATE1Ps/piYGDJO8yY3IyPjlMfn5+ezZ88eYmNjT3vM6c45atQonnvuuQv4Tc7NpfXrw4YNXH7rrR57TG8WEhIC8fGwd691ya9pU9ORRER83/bthAC5QI2kJNNpvIPrApa3LLpkyLx58065LeJNoqOhWzdrnbTkZHjzTTM5jm8w8PbbajAg4mnh4db/g126wKJF0KkTLFwIGmwv3swjzQZsJ7wiORyOk+472/En3n8u5xw5ciSZmZlFX2nONWXcZsYMOHyY4DvvdO/j+JJatazbLVuMxhAR8RvOxjahdepQX6tiW9q1g4MHrSEuAlgXE5NP0RoxOTmZ0aNHG0gkcky/ftbtf/8LOTmef3w1GBDxDuXKWUXtiy+GPXvgmmusNQtFvJVbC2mVK1fGbrefNFJs165dJ40oc6lateopjw8ODqaSc3rg6Y453TnDwsKIjIws9uV2ERFWeV0AWLRjBwCb5841nERExE+4LkzEx5/x4lRACQ213o1LkQkTJtCgQYOT7m/cuPEpu6KLeFLnzlC9OuzbZ12H9rTXXlODARFvERUFP/wAjRtDerpVTHP3+BeR8+XWQlpoaCitWrVi9uzZxe6fPXs2bdu2PeXPtGnT5qTjZ82axSWXXGJNETzDMac7p5i3uaAAgPxNmwwnERHxE84Raahjp5xBRkYGsbGxJ90fHR1Nenq6gUQix9jt0Lu3tT1xomcfe8sWeOkla1sNBkS8Q+XKMGcO1KljLa19zTUBv+ypeCm3T+0cNmwYH374IcnJyaxdu5ahQ4eSmprKgAEDAGva5T333FN0/IABA9i6dSvDhg1j7dq1JCcnM3HiRIYPH150zODBg5k1axajR49m3bp1jB49mjlz5jBkyBB3/zpynoLr1AEgXM+EIiKlYtVXXwGwWM+rcgZxcXH88ssvJ93/yy+/UK1aNQOJRIrr08e6nTXLs6NPhg5VgwERb1S1KsydCzVrwsaN1pppe/eaTiVSnNsLaXfccQdjx47l+eefp0WLFixcuJCZM2dSy7lmVnp6OqmpqUXHJyQkMHPmTObPn0+LFi144YUXGDduHD169Cg6pm3btnzyySdMmjSJZs2aMXnyZD799FMuu+wyd/86cp4imzUDoEJmpuEkIiL+IXT7dgD2ahiFnEH//v0ZMmQIkyZNYuvWrWzdupXk5GSGDh3KfffdZzqeCHXqQPv24HDA5MmeecyZM+HLL60GA2+9pQYDIt6mZk2rmBYbC3/9ZTUi0MdI8SY2h2sl/wCSlZVFVFQUmZmZnlkvTVgydy5JHTtaO5mZoH93EZELkh4WRmxuLgtGjaL9Y4+ZjhMwfO09hMPh4LHHHmPcuHHk5uYCEB4ezogRI3jaTxeF8rX/RgJTpsA990BCAmzaBEFuvNSfnQ1Nmlhroz3yiLVOmoh4pzVrrEL7nj1w+eXWGmply5pOJf6spO8hPNK1UySheXNcI3Kz1683mkVExOfl5VHFWRSJTkoyHEa8mc1mY/To0ezevZtff/2VVatWsW/fPr8toolv6tHDusaakgLz57v3sY5vMPDMM+59LBG5MI0aWdO+o6Lgl1/g5putYriIaSqkiUdUqlSJNOflxV1LlhhOIyLi2w78+Sd24ChQS8saSAmUK1eOpKQkmjRpQlhYmOk4IsVEREDPntZ2crL7Huf4BgOvvaYGAyK+oGVL+O47ayTanDlw++2Ql2c6lQS6YNMBJDDYbDb2R0XB/v0UbN5sOo6IiE/L+PVXKgDb7XbqlCtnOo54mWHDhvHCCy9QtmxZhg0bdsZjX3/9dQ+lEjmzvn1hwgSYNg3efhsqVCj9x3A1GOjQAe68s/TPLyLu0aYNfPMNdO0KX38NvXrBxx9bnX9FTFAhTTymw733whtvkKAVXUVELkjWqlUA7ImMpI7hLOJ9VqxYQZ7zcv3y5cuxneZ193T3i5iQlGStXfbXXzB1Kvzzn6V7/u++O9Zg4O231WBAxNd06ADTp8NNN8Fnn1kjWSdOdO+aiiKno0KaeIwtIcHa2LLFaA4REV8XuW8fAPk1ahhOIt7ozTffLFogd767F5wSKSU2mzUqbdgw68NxaRbSsrPh4Yet7cGDoXHj0ju3iHhO167wySfW9M7Jk61imgrjYoLqt+I5tWpZtyqkiYhckAbONa6u6NXLcBLxRi1btmTPnj0AJCYmsnfv3rP8hIh36NULQkJg2TJwDrwtFa4GA7GxajAg4uu6d7eKaDYbvPMOjBgBDofpVBJoVEgTj/m7sBCAA6X5zkhEJBC5LkjEx5tMIV6qQoUKpKSkALBlyxYKna+/It4uOhq6dbO2S6vpwJYt8PLL1vaYMWowIOIPevWC996ztv/9b3jhBbN5JPBoaqd4TFi9egBUyM8nf/9+gi+6yHAiERHf5EhJwQbgmjIvcpwePXrQvn17YmNjsdlsXHLJJdhPsyLz33//7eF0ImfWr5/VcOC//4VXX4ULbTI7dCgcPQrt26vBgIg/uf9+OHzYmg7+zDNWV89HHjGdSgKFCmniMbENGrAPqAik//orcV27mo4kIuJzDu7eTdkdO7ABR2NiKGM6kHid999/n+7du7Np0yYGDRrEfffdR3kNwxEf0bkzVK8O27fDjBlw223nfy5XgwG7HcaP1zpKIv5m6FCrmPbUUzB8uFVMGzDAdCoJBCqkiccEBQWRER5Oxexsdi9ZokKaiMh52PbzzzQEDtpslI+LMx1HvNAff/xB586dufbaa1m2bBmDBw9WIU18ht0OvXtb0zEnTjz/QlpODgwaZG0PGaIGAyL+6oknrGLaK69YTUoiIuCee0ynEn+nNdLEozIrVADg8OrVZoOIiPiofUuWAJBepoyGV8gpHd9sYMGCBeTm5hpOJHJu+vSxbmfNgrS08zvHa6/Bpk1qMCDi72w2q/Du6szbpw98/rnZTOL/VEgTj8qpVg2A/M2bDScREfFNR/76C4DMSpUMJxFvpWYD4uvq1LHWNHM4rO5852rrVnjpJWtbDQZE/J/NBmPHQt++UFgIPXvCt9+aTiX+TIU08ajg2rUBCN2xw3ASERHfZHMuDp9bo4bhJOKtXM0GEhISipoNJCYmnvJLxFv162fdTppkfTA+F2owIBJ4goLg/fet/+fz86FHD/jxR9OpxF9pjTTxqMhmzeB//6N6Xp7pKCIiPqlMRgYAwc5OyCInUrMB8Qc9esBDD0FKCsyfD1dfXbKf+/57+OILNRgQCUR2O/znP3DkiNWspFs3a4p427amk4m/USFNPKpZt27w1FPEmw4iIuKjKmdmAlC+RQuzQcSrXXvttQBqNiA+KyLCmp41YQIkJ5eskJaTc2ydpMGD1WBAJBCFhMCnn1pFtNmzoWtXmDcPLr7YdDLxJ5raKZ5Vq5Z1u2cPHDxoNouIiI8pLCgg3uEAIKZNG8NpxBdMmjSJlStX0qtXL9q2bcv27dsBmDJlCj///LPhdCJn1revdTttGhw4cPbj1WBARADCw+HLL6FdO8jKgs6dwbnErEipUCFNPCsqCipWBKBw0ybDYUREfEvQrl2EFRRAUBCVdGlVSmDatGl06dKFMmXKsHz5cnJycgA4ePAgL7/8suF0ImeWlARNmkB2NkydeuZjj28w8NprEBnp/nwi4r0iIuCbb6znkb17oVMn2LjRdCrxFyqkicdtCwsDYOZbbxlOIiLiY1wdj2vWtOYuiJzFiy++yHvvvccHH3xAyHF/M23btmX58uUGk4mcnc12bFTaxIlnPvb4BgM9e7o/m4h4v8hIa93Epk0hIwOuucYquotcKBXSxOP2XnQRAHnr1hlOIiLiW7LXrLE2nB2QRc5m/fr1XHnllSfdHxkZyYGSzJUTMaxXL+u6wbJlsGrVqY85vsHA22+rwYCIHFOxorVWWv36kJZmFdPS002nEl+nQpp4nvMDYEhqquEgIiK+5Yd33gFgjXN6nsjZxMbGsukUSyn8/PPPJCYmGkgkcm6io61Fw8FqOnCiExsMNGniuWwi4htiYmDOHIiPtwb3d+wIu3ebTiW+TIU08biIpk0BiNq713ASERHfErZjBwD5NWsaTiK+4oEHHmDw4MH89ttv2Gw2duzYwUcffcTw4cN58MEHTccTKZF+/azb//7XKpwdb8wYq8FA1apqMCAip1ejBsydC9Wrw5o10KVLyZqYiJxKsOkAEniiW7cGoHp2NkePHqVMmTKGE4mI+IaK+/cDUL5FC7NBxGc8+uijZGZmctVVV5Gdnc2VV15JWFgYw4cP56GHHjIdT6REOne2Pvxu3w4zZsBtt1n3b90KL75obY8ZowYDInJmiYnWyLQrr4QVK+C662DWLChXznQy8TUakSYeF+XsNFcT2Kx10kRESmTv3r3UzM8HIKZNG8NpxJe89NJL7Nmzh99//51ff/2V3bt388ILL5iOJVJidjv07m1tH990YNgwNRgQkXPToIFVTLvoIli82Jo6fvSo6VTia1RIE4+zVatGdlAQwcD2RYtMxxER8Qmb//iDqs7tCC0CJOcoIiKCSy65hEsvvZRyuvQuPqhPH+v2hx/gs8/gscdg+nQIClKDARE5N82aWU1KypeHefPg1lshN9d0KvElmtopnmezsf+ii4jdu5fKmpguIlIiGc4LD1nBwURWqGA2jPiUAwcOMHHiRNauXYvNZqNhw4b069ePqKgo09FESqxOHWjUyFrb6I47jt0fEQEbNqjJgIicm0svhW++gWuvhZkz4a674JNPIFgVEikBjUgTI2IvvxyAVvowKCJSIlkrVwKw76KLzAYRn7J06VJq167NG2+8wb59+9izZw9vvPEGtWvXZvny5abjiZTY9OlWEe1Ehw9bo0mmT/d8JhHxbVdeCV9+CaGhMG2aNfK1sNB0KvEFKqSJGXXqWLebN5vNISLiIxqFhVkbiYlmg4hPGTp0KN26dWPLli1Mnz6dL774gpSUFG644QaGDBliOp5IiRQUwODBp/6ew2HdDhliHScici46d7ami9vtVmfgBx889rwicjoqpIkZtWsDkLd+veEgIiK+4WLnCN74q682G0R8ytKlSxkxYgTBx81VCQ4O5tFHH2Xp0qUGk4mU3E8/wbZtp/++wwFpadZxIiLn6qabYMoUa63FCRPgkUdUTJMzUyFNjMiNiwNg/cyZHNA6aSIiZ+cawasRaXIOIiMjSU1NPen+tLQ0ypcvbyCRyLlLTy/d40RETtSzJ3z4obX9xhvwzDNm84h3UyFNjAht2BCARGDjhg1mw4iIeLmjR4+S73qudI7oFSmJO+64g379+vHpp5+SlpbGtm3b+OSTT+jfvz89e/Y0HU+kRGJjS/c4EZFT6dsXxo2ztl94AUaPNptHvJd6UogZtWqRD0QA25YsIenSS00nEhHxWot++ol2f/9t7WhEmpyD1157DZvNxj333EN+fj4AISEh/POf/+SVV14xnE6kZNq1gxo1YPv2U0+3stms77dr5/lsIuJfHn7YamIyciQ89hiULQsPPWQ6lXgbjUgTM0JC2O+cUrJfa7SIiJzRjiVLCAXyXJ8WRUooNDSUN998k/3797Ny5UpWrFjBvn37eOONNwhzNbAQ8XJ2O7z5prVtsxX/nmt/7FjrOBGRC/XYY/DEE9b2ww/DpElm84j3USFNjDkcEwNA3tq1hpOIiHi3rBUrADhQoYI+Kco5GTVqFMnJyURERNC0aVOaNWtGREQEycnJjNacFfEh3bvD559D9erF769Rw7q/e3czuUTEP73wgtUNGKB/f/j0U6sz8Pz5MHWqdatOwYFLhTQxxuGcnhR8ikWQRUTkGNf6aNlaAEjO0YQJE2jQoMFJ9zdu3Jj33nvPQCKR89e9O2zZAvPmwccfW7cpKSqiiUjps9ng9dfhvvugsBDuugtiYuCqq6ztq66C+HiYPt10UjFBhTQxJqJZMwCidu/Gof7CIiKnVSYtDQBb/fqGk4ivycjIIPYUBdjo6GjS1eJQfJDdDh06WB32OnTQIF0RcR+bDd5911p/sbAQ9u4t/v3t2+HWW1VMC0QqpIkxFZ0NBi656CJycnIMpxER8U65ublEHzgAQPmWLc2GEZ8TFxfHL7/8ctL9v/zyC9WqVTOQSERExLekpJz6ftdYkCFDNM0z0KhrpxgT4hxZEV9QAOHhhtOIiHinlJQU6ji3I1u1MppFfE///v0ZMmQIeXl5XH311QDMnTuXRx99lEceecRwutI1fvx4xo8fT4E+zYiISCn56SfYtu3033c4IC3NOq5DB4/FEsNUSBNznGuksW8fHDgAFSqYTCMi4pXKhIWRGBwM+fnY6tUzHUd8zKOPPsq+fft48MEHyc3NBSA8PJwRI0YwcuRIw+lK18CBAxk4cCBZWVlERUWZjiMiIn6gpKsgaLWEwKKpnWJOuXLWio3ArsWLDYcREfFONe12QvLzITjYWtVW5BzYbDZGjx7N7t27+fXXX1m1ahX79u3j6aefNh1NRETE65W0z5P6QQUWFdLEqD3OK8bv/etfhpOIiHipjRut24QEq5gmch7KlStHUlISTZo0ISwszHQcERERn9CuHdSoYTUeOBWbDeLirOMkcKiQJkY5atcGICw11XASERHvlDp3LgCOunUNJxEREREJLHY7vPmmtX2qYprDAWPHqoNwoFEhTYwq71w4O+bgQTIzMw2nERHxLg6Hgy9few2AfRUrGk4jIiIiEni6d4fPP4fq1U/+XuXKcO21ns8kZqmQJkaFN2sGQD1g/fr1ZsOIiHiZ9PR0ajoXiI+85BLDaUREREQCU/fusGULzJsHH38M331nTencswdGjTKdTjzNrYW0/fv3c/fddxMVFUVUVBR33303Bw4cOO3xeXl5jBgxgqZNm1K2bFmqVavGPffcw44dO4od16FDB2w2W7GvO++8052/iriLswNdPWDt2rVms4iIeJm1a9fimtAZ0qCB0SwiIiIigcxuhw4doGdPaxTa2LHW/a++Cps2mUwmnubWQtpdd93FypUr+f777/n+++9ZuXIld99992mPP3LkCMuXL+epp55i+fLlTJ8+nQ0bNtCtW7eTjr3vvvtIT08v+powYYI7fxVxlzp1AKgMbF2+3GwWEREvs3b1amq7drRGmoiIiIjXuOUW6NwZcnNh8GBrvTQJDG5r/7V27Vq+//57fv31Vy677DIAPvjgA9q0acP69eupX7/+ST8TFRXF7Nmzi9331ltvcemll5KamkrNmjWL7o+IiKBq1aruii+eUrYshypUoNyBAxxascJ0GhERr7Jz6VLCgfygIIKPew0UEREREbNsNhg3Dpo2hZkz4Ztv4MYbTacST3DbiLTFixcTFRVVVEQDaN26NVFRUSxatKjE58nMzMRms1GhQoVi93/00UdUrlyZxo0bM3z4cA4ePHjac+Tk5JCVlVXsS7xHoXNU2g2nKK6KiASyo3/8AcDhKlUg2G3XvkRERETkPNSvD8OGWduDB8PRo2bziGe4rZCWkZFBlSpVTrq/SpUqZGRklOgc2dnZPPbYY9x1111ERkYW3f+Pf/yDqVOnMn/+fJ566immTZtG9+7dT3ueUaNGFa3TFhUVRVxc3Ln/QuI2kc7OnVdqhKGISDHBKSkAFNaufZYjRURERMSEJ5+0OnqmpMC//206jXjCORfSnn322ZMW+j/xa+nSpQDYbLaTft7hcJzy/hPl5eVx5513UlhYyDvvvFPse/fddx8dO3akSZMm3HnnnXz++efMmTOH5adZY2vkyJFkZmYWfaWlpZ3rry3u5Gw4wIYNZnOIiHgRh8PBXUlJAES0aGE2jIiIiIicUrlyMGaMtT1qlFVQE/92zvNEHnroobN2yIyPj+ePP/5g586dJ31v9+7dxMTEnPHn8/LyuP3220lJSeHHH38sNhrtVC6++GJCQkLYuHEjF1988UnfDwsLIyws7IznEIOchbSjf/zB3m3bqFGjhuFAIiLm2Ww2mpUpA0BY48aG04iIiIjI6dx+O0yYAPPmwdCh8OWXphOJO51zIa1y5cpUrlz5rMe1adOGzMxMfv/9dy699FIAfvvtNzIzM2nbtu1pf85VRNu4cSPz5s2jUqVKZ32s1atXk5eXR2xsbMl/EfEezk50BevWMXnSJJ586inDgUREvMTGjdatOnaKiIiIeC2bDd56C1q0gK++gu++g65dTacSd3HbGmkNGzbk2muv5b777uPXX3/l119/5b777uOGG24o1rGzQYMGfPHFFwDk5+dz6623snTpUj766CMKCgrIyMggIyOD3NxcADZv3szzzz/P0qVL2bJlCzNnzuS2226jZcuWXH755e76dcSdEhIoDAqiHJChzp0iIgAsWbyYws2brR0V0kRERES8WuPGMGiQtT1oEOTkmM0j7uO2QhpYnTWbNm1K586d6dy5M82aNWPKlCnFjlm/fj2ZmZkAbNu2jRkzZrBt2zZatGhBbGxs0Zer02doaChz586lS5cu1K9fn0GDBtG5c2fmzJmD3W53568j7hIayhHndN/cv/4yHEZExDu8/+STBOXnkx8cDGqSIyIiIuL1nnkGqlaFTZvg9ddNpxF3OeepneeiYsWK/Pe//z3jMQ6Ho2g7Pj6+2P6pxMXFsWDBglLJJ16kbl1ITyd061YKCwsJCnJrjVdExOvlr10LQE716gTrOVFERETE60VGWp07774bXnwR/vEPqFnTdCopbXpnLl6hjLMjXXxuLtu2bTMbRkTEsOzsbKIyMgCwq9GAiIiIiM/4xz/giivgyBF45BHTacQdVEgTr2B3rptXD1izZo3ZMCIihm3cuJH6zhHaYc2bG04jIiIiIiVls8Hbb0NQEHz+OcyZYzqRlDYV0sQ71KsHQF1USBMRWb16NQ2c27aGDY1mEREREZFz07w5DBxobT/8MDh7J4qfUCFNvIOzkFbPbueqdu0MhxERMeuvv/4qKqRxXKdrEREREfENzz8P0dGwbh2MG2c6jZQmFdLEO9SoAeHh2AsKaFmxouk0IiJG/b18ObGuHRXSRERERHxOhQowerS1/dxzsGOH0ThSilRIE+8QFGR17gRYv95sFhERwx7v0QOAvOhoiIoynEZEREREzkfv3tC6NRw6BMOHm04jpUWFNPEezlEXf/7vf+zZs8dwGBERc5oEBwMQ0qSJ4SQiIiIicr6CgqzGAzYbTJ0KCxaYTiSlQYU08R7OBbV/nTyZRYsWGQ4jImLQunXWbYMGZz5ORERERLxaq1bwwAPW9kMPQV6e2Txy4VRIE+/hLKQ1xFpoW0QkEC1dupTU2bOtHRXSRERERHzeSy9BpUrw11/wzjum08iFUiFNvEejRtYN8Neff5rNIiJiyCeffMKhZcusHRXSRERERHxexYrw8svW9tNPQ0aG2TxyYVRIE+9Rrx4Om42KwI6VK02nERExYu0ff1DHtaNCmoiIiIhf6NcPLrkEsrJgxAjTaeRCqJAm3qNMGfLj4gAI3riRPE0eF5EAlLVqFaFAQXg41KhhOo6IiIiIlAK73Wo8APCf/8Avv5jNI+dPhTTxKsHODnV1CwrYuHGj4TQiIp61f/9+Ltq1y9qpV89q9SQiIiIifuGyy6yRaWA1HigoMJtHzo/eoYtXsTnXSVPDAREJRKtXr8Y1mdPeuLHRLCIiIv/f3n2HR1HubRz/bnpCCSVAEoqA9N57ld5EFJEq+CIWunTFArYoHODQRQULIiggHhWlCNKkB0INVaSH0EyhJCSZ94+BaKQlkGS23J/r2iuzT2Y3984m2dnfPkVE0l9ICOTIAWFhMGuW1WnkQaiQJvbl5sqdncqXp0GDBhaHERHJXHv37k0upGl+NBERERHnkycPvPuuuT16NJw/b20eSTsV0sS+3CykBV66RGBgoMVhREQyV4pCWsmSVkYRERERkQzy0ktQqRL89Re8+qrVaSStVEgT+3KzkMbp0+ZyJiIiLmT0a69RLWtW84p6pImIiIg4pX8uPDB7Nmzdam0eSRsV0sS+5MiBcbMn2tzRo7l27ZrFgUREMk+QhwdesbFgs0Hx4lbHEREREZEMUrcuPPusud2vnxYecCQqpIn9ubngwKpp09i/f7/FYUREMtG+febXwoXBz8/SKCIiIiKSsT78ELJnh+3bYc4cq9NIaqmQJnbHdnN4Z2lg165d1oYREckkoaGh/DRunHmlXDlrw4iIiIhIhgsMhLFjze1XX4VLl6zNI6mjQprYn38U0sLCwiyNIiKSWVauXMmpZcvMKyqkiYiIiLiE/v3NU7+LF81VPMX+qZAm9keFNBFxQWFhYZS9daVs2XvtKiIiIiJOwsPj74UHZs2CHTuszSP3p0Ka2J+bhbSiwIGwMAzDsDaPiEgmCNu5k+R+aCqkiYiIiLiMhg2hSxcwDHPhgaQkqxPJvaiQJvYnMBAjRw7cgcCYGP7880+rE4mIZKgrV64Qc+gQOQHDzQ1KlbI6koiIiIhkov/8B7Jmhc2b4csvrU4j96JCmtgfmw3bzd4Y5dDwThFxfnv37k0e1mkrVgx8fCzNIyIiIiKZKzgY3nzT3B4xAv76y9I4cg8qpIl9Kl8egInPPUfr1q0tDiMikrFSzI+mhQZEREREXNKgQebAhPPn/y6qif1RIU3s081CWmBkJN7e3haHERHJWHv27NFCAyIiIiIuzssLpk41t6dPh927rc0jd6ZCmtinWz0y9uyxNoeISCaYMmUK3SpWNK+oR5qIiIiIy2raFDp2NBcc6NfPXIBA7IsKaWKfbvZI48QJBvXqxV8aIC4iTszNZsP36FHzinqkiYiIiLi0CRPAzw82bIB586xOI/+mQprYp5w5IX9+ALZ/8QW7du2yOJCISAY6cQJiY8HTE4oXtzqNiIiIiFioUCEYPdrcHj4coqOtzSMpqZAm9utmr7TyaOVOEXFeK1asYFzPnuaVEiXMyTFERERExKUNHWp+vhoRAWPHWp1G/kmFNLFf/yikqUeaiDirtWvXcmHtWvOK5kcTEREREcDbG6ZMMbcnT4Z9+6zNI39TIU3sl3qkiYgLCAsLo8KtKyqkiYiIiMhNLVtC+/aQmAgDBmjhAXuhQprYr38U0vbu2UN8fLy1eUREMkBYWBgVb12pVMnCJCIiIiJibyZNAh8f+O03+PZbq9MIqJAm9qx0aQx3d3ICeRMS2Ke+rCLiZCIiIrh45gylbzVUrHiv3UVERETExRQpAqNGmdtDh5rrU4m1VEgT++Xtja1ECcDslRYeHm5tHhGRdBYaGkoZwAMgVy4oUMDiRCIiIiJib0aMMAtqp0/Du+9anUZUSBP7dnN453djx9K1a1eLw4iIpK/t27f/PayzYkWw2ayMIyIiIiJ2yNfXXHAAYOJEOHjQ2jyuToU0sW8VzCm4fQ8dsjiIiEj6u3jxIlVuFc80P5qIiIiI3EXbttC6Ndy4AQMHauEBK6mQJvbt1hvLnTstjSEikhGmTJlCv3r1zCuaH01ERERE7sJmM3uleXnBihWwZInViVyXCmli3ypXBiApPJzm9eoRGhpqcSARkXRkGLjt3m1uq0eaiIiIiNxDsWIwfLi5/corcPWqtXlclQppYt+CgiBfPtwMg+jff2fz5s1WJxIRST8nTkBUFHh6QunS999fRERERFzaa69BoULmaWRIiNVpXJMKaWLfbLbkXmmVgW3btlmbR0QknbzzzjsMbdrUvFKmjNlPX0RERETkHvz8YNIkc3vcODhyxNo8rihDC2mXL1+mR48e+Pv74+/vT48ePfjrr7/ueZtevXphs9lSXGrVqpVin7i4OAYMGEBAQABZsmTh8ccf59SpUxn4SMRSNwtpVTBXuBMRcQYbN24ky60zH82PJiIiIiKp1KEDNGsG8fEweLDVaVxPhhbSunbtSlhYGMuWLWPZsmWEhYXRo0eP+96uZcuWnD17Nvny888/p/j+4MGDWbJkCQsWLGDDhg3ExsbStm1bEhMTM+qhiJWqVAHMHmnh4eHExsZam0dE5CEZhsH27dtJLp9pfjQRERERSSWbDaZONWcHWboUfvzR6kSuJcMKaeHh4SxbtoxPP/2U2rVrU7t2bT755BN++uknDh48eM/bent7ExgYmHzJlStX8veioqKYPXs2EyZMoGnTplSuXJmvvvqKPXv28Ouvv2bUwxEr3eyRVh5wS0pip1bwFBEHd+LECS5cuEClWw3qkSYiIiIiaVCyJAwZYm4PGgTXr1ubx5VkWCFt06ZN+Pv7U7NmzeS2WrVq4e/vz8aNG+952zVr1pA3b15KlChBnz59iIyMTP5eaGgoN27coHnz5sltwcHBlCtX7r73Kw6qSBHInh1voDQa3ikijm/79u3kAB691aAeaSIiIiKSRq+/Dvnzw7Fj5nxpkjkyrJAWERFB3rx5b2vPmzcvERERd71dq1atmDdvHqtXr2bChAls27aNxx57jLi4uOT79fLyImfOnCluly9fvrveb1xcHNHR0Sku4kDc3JJ7pTXMlo0bN25YHEhE5OFs2bKFqreuFC0K/+h5LSIiIiKSGlmzwoQJ5nZICPz5p6VxXEaaC2ljxoy5bTGAf19u9Riy2Wy33d4wjDu23/LMM8/Qpk0bypUrR7t27fjll184dOgQS5cuvWeue91vSEhI8oIH/v7+FCxYMA2PWOzCzULalF69GDFihMVhREQezqZNm6h260r16lZGEREREREH1qkTNG5sDu185RWr07iGNBfS+vfvT3h4+D0v5cqVIzAwkHPnzt12+/Pnz5MvX75U/7ygoCAeeeQRDh8+DEBgYCDx8fFcvnw5xX6RkZF3vd9XX32VqKio5MvJkyfT8IjFLtwspNnCwqzNISKSDooVK0YDX1/zSrVq995ZREREROQubi084OEB338Py5ZZncj5eaT1BgEBAQQEBNx3v9q1axMVFcXWrVupUaMGYA5liYqKok6dOqn+eRcvXuTkyZMEBQUBULVqVTw9PVm5ciWdOnUC4OzZs+zdu5dxdxkU7O3tjbe3d6p/ptihmyt3snMnRmIiNxIT8fLysjaTiMgD+uyzz2D1ajhxQoU0EREREXkoZcvCwIEwcaL5dc8eUAkk42TYHGmlS5emZcuW9OnTh82bN7N582b69OlD27ZtKVmyZPJ+pUqVYsmSJQDExsYybNgwNm3axJ9//smaNWto164dAQEBdOjQAQB/f3969+7N0KFDWbVqFTt37qR79+6UL1+epk2bZtTDEauVKgV+fhAbS8PAQN5++22rE4mIPLjISLOIZrP9/UGBiIiIiMgDeustCAyEw4fNgppknAwrpAHMmzeP8uXL07x5c5o3b06FChWYO3duin0OHjxIVFQUAO7u7uzZs4f27dtTokQJevbsSYkSJdi0aRPZsmVLvs2kSZN44okn6NSpE3Xr1sXPz48ff/wRd3f3jHw4YiUPD6hqTs1d9MIFNm3aZHEgEZEHExkZiXFr9eGSJSF7dmsDiYiIiIjDy54dxo83t999FzSjVcaxGYZhWB0is0VHR+Pv709UVBTZ9QbGcQwbBhMmMAMYmTUrly9fxsMjzaOTRUQs9eijj/L82bO8eu0adO8O//qASeybziHsn54jERFxVYYBDRrAhg3w9NPw7bdWJ3IsqT2HyNAeaSLpqmZNAOq4uREbG8vevXstDiQikjaRkZH88ccflL12zWzQ/GgiIiIikk5sNpg2DdzcYOFC+PVXqxM5JxXSxHHcXLSinGHgAxreKSIOZ8uWLQDUvtWbVoU0EREREUlHFStCv37m9oABEB9vbR5npEKaOI5ChSBfPjwMg8qokCYijmfTpk0EA3kSEsyPCitXtjqSiIiIiDiZt9+GPHngwAGYMsXqNM5HhTRxHDZbcq+0mqiQJiKOZ9OmTVS/daVMGXM1YhERERGRdJQjB3z4obk9diycOWNpHKejQpo4lpvzpLXKnZt27dqRmJhocSARkdSJj49ny5Yt1L7VUKuWlXFERERExIn17Gm+fY6NheHDrU7jXFRIE8dys0da8+zZmThxIu7u7hYHEhFJnR07dnDt2jUa3pofrU4dawOJiIiIiNNyc4Pp082BXV9/DWvXWp3IeaiQJo6l+s1BUceOwfnz1mYREUmDPHny8Prw4VQ1DLOhbl1rA4mIiIiIU6taFV580dzu3x8SEqzN4yxUSBPHkiMHlCwJwPV169i8ebO1eUREUunRRx/lnSefxDMxEXLnhuLFrY4kIiIiIk7u3XchVy7Yu9fsoSYPT4U0cTw35xWa9PTT1K1bl+joaIsDiYik0saN5tc6dcx+9iIiIiIiGSh3bggJMbfffBPOnbM2jzNQIU0cT716ADTx9iYpKYmNt96YiojYqVOnTrF06VLib01OoWGdIiIiIpJJevc2h3lGR8PIkVancXwqpInjadAAgMrx8XgBazVroojYuSVLltC2bVtili0zG7TQgIiIiIhkEnf3v4d1fvHF34Mk5MGokCaOp3hxyJsXz6QkqqNCmojYv/Xr11MYyB0fDx4eUK2a1ZFERERExIXUrGn2TAPo1w8SE63N48hUSBPHY7NB/foA1Ae2bdvG1atXrc0kInIXhmGwfv16kvugVakCvr5WRhIRERERFxQSYq7fFxYGs2ZZncZxqZAmjulmIa2Zjw8JCQls2rTJ4kAiInd25MgRIiIiqO928yVX86OJiIiIiAXy5DFX8QQYPRrOn7c2j6NSIU0c081CWq3ERNyAdevWWZtHROQuVq1aBUBzHx+zQfOjiYiIiIhFXnwRKlaEv/6C116zOo1jUiFNHFPFipAtG343bvDViBF069bN6kQiIne0atUqAoCit4agN2xoaR4RERERcV0eHn8vPDB7Nmzdam0eR6RCmjgmd/fkXh1dChSgRIkSFgcSEbldUlISq1evJrl0Vq6c2adeRERERMQidevCs8+CYZgLDyQlWZ3IsaiQJo7r5vBO1q+3NoeIyF3YbDY2bdrEmAYNzIbGja0NJCIiIiICfPghZM8O27ebPdMk9VRIE8d1841p4urVfPrxx8ydO9fiQCIiKdlsNkqUKEG5WzO5NmpkaR4REREREYDAQBg71tx+9VW4dMnaPI5EhTRxXDVrQpYsuF+8yNQXX2TcuHFWJxIRuV1EBISHg82m+dFERERExG7072/OPHLxIrz+utVpHIcKaeK4vLyS35Q2A/bu3cvZs2etzSQiclNcXBydO3dmxejRZkOFCpA7t7WhRERERERu8vCAadPM7Y8+gh07rM3jKFRIE8fWtCkAHbJnB+DXX3+1Mo2ISLJNmzbxzTffcHb+fLNB86OJiIiIiJ1p2BC6dDEXHujfXwsPpIYKaeLYbhbSql+7hicqpImI/bj1/6iV282X2sceszCNiIiIiMidjR8PWbPCpk3w5ZdWp7F/KqSJYytXDvLmxevGDWoBK1euxDAMq1OJiLBs2TKKA3mvXAFPT/VIExERERG7lD8/vPmmuT1iBPz1l6Vx7J4KaeLYbLbkXmmtPDw4e/Ys+/btsziUiLi6s2fPEhoaSstbDfXrmx/ziYiIiIjYoUGDoFQpOH8e3nrL6jT2TYU0cXw3C2lPZsmCm5sbOzRDoohYbNmyZQB08vc3G1q0sDCNiIiIiMi9eXnB1Knm9rRpsHu3tXnsmQpp4vhamn0+SkZFcX7vXp599lmLA4mIq1u6dCneQM0rV8yGli3vub+IiIiIiNWaNoWOHc0FB/r3NxcgkNupkCaOLygIqlYFINeWLRaHERGB69ev09DNDc+EBPN/VPnyVkcSEREREbmvCRPAzw/Wr4evv7Y6jX1SIU2cQ5s25teffgIgSWv2ioiFfvrpJ/730kvmlRYtzPkcRURERETsXKFCMHq0uT1sGERHW5vHHqmQJs6hbVsAEn75hcZ169KjRw+LA4mISzMMfJYvN7dbt7Y2i4iIiIhIGgwdCsWKQUQEvP221Wnsjwpp4hyqVoV8+fC4ehW3jRtZunQpN27csDqViLigy5cvw/79cPSoOWur5kcTEREREQfi7Q1Tppjbkyebp7byNxXSxDm4uUGrVgA87eNDVFQUGzdutDiUiLiaQ4cOERAQwCc3e8nStClky2ZtKBERERGRNGrVCtq3h4QEGDBACw/8kwpp4jwefxyAju7uAPzwww9WphERF7RkyRKSkpJocOmS2fDEE5bmERERERF5UJMmgY8PrF4NCxdancZ+qJAmzqNlS8iShYArV6gGLF68GENlcxHJRIsXLyY/UDI62lxgoF07qyOJiIiIiDyQIkVg1Chze8gQiI21No+9UCFNnIevb/LqnV08PDh+/DihoaEWhxIRV3HixAm2bdtG+1sNtWpBYKCVkUREREREHsqIEWZB7fRpeO89q9PYBxXSxLl07AhAV29vABYtWmRlGhFxId9//z0AfbJnNxs6dLAujIiIiIhIOvD1hf/+19yeMAEOHrQ0jl1QIU2cS+vW4OtL4JUrDGrYkLp161qdSERcxOLFiykAVIqONhs6d7Y0j4iIiIhIemjXznyrfeMGDByohQdUSBPnkiWL+RcO/LdWLdppfiIRyQTnzp1j/fr1PHOroX59KFjQykgiIiIiIunCZoPJk8HLC1asgJsDMVyWCmnifJ65+VZ23jxISrI2i4i4hCxZsjBnzhwG5c1rNnTpYm0gEREREZF0VKwYDB9ubg8eDFevWhrHUiqkifNp1w5y5IBTpzgzbx4zZ87U6p0ikqGyZs1Krzp1KBgZCe7uyfM1ioiIiIg4i9deg0KF4MQJ+OADq9NYR4U0cT4+Psm90n577jn69u3L9u3bLQ4lIk5v7lzza7NmkCePtVlERERERNKZnx9MnGhujxsHR49am8cqKqSJc+rZE4CngCzAl19+aWkcEXFen3/+ORM+/JDE2bPNhueeszaQiIiIiEgGefJJ83PjuDhziKcrUiFNnFOtWlC8OD6JiXQEFixYQHx8vNWpRMTJGIbBhx9+yG+jRuF+9izkzg3t21sdS0REREQkQ9hsMGUKeHrCTz+ZF1eToYW0y5cv06NHD/z9/fH396dHjx789ddf97yNzWa742X8+PHJ+zRq1Oi273fu3DkjH4o4GpsNevUCoL+nJxcuXGDZsmXWZhIRp7Nz504OHDjAi243X06ffRa8va0NJSIiIiKSgUqVgldeMbcHDYLr163Nk9kytJDWtWtXwsLCWLZsGcuWLSMsLIwePXrc8zZnz55NcZkzZw42m42nnnoqxX59+vRJsd+sWbMy8qGII+rdGzw9qXbjBpXR8E4RSX9fffUVgUDrWwuaPP+8pXlERERERDLDG29AcDD88Qf8o9+TS/DIqDsODw9n2bJlbN68mZo1awLwySefULt2bQ4ePEjJkiXveLvAwMAU1//3v//RuHFjihYtmqLdz8/vtn1FUsiXz1w5b/58+gF9f/yRS5cukStXLquTiYgTiI+P56uvvuJlwN0woHZtKFPG6lgiIiIiIhkua1aYMAG6dIH334cePaBwYatTZY4M65G2adMm/P39k4toALVq1cLf35+NGzem6j7OnTvH0qVL6d27923fmzdvHgEBAZQtW5Zhw4YRExNz1/uJi4sjOjo6xUVcRN++AHSz2cjr6cnu3bstDiQizuL7778n+vx5Btwa1jlwoLWBRJxMhw4dyJkzJx07drQ6ioiIiNzBM89A48bm0M4hQ6xOk3kyrJAWERFB3rx5b2vPmzcvERERqbqPL774gmzZsvHkk0+maO/WrRvz589nzZo1vPHGGyxevPi2ff4pJCQkeZ42f39/ChYsmLYHI46rbl2oUAEfw+DIyJE0atTI6kRip67/a2B/ZGQkERERxMbGWpRI7N2sWbPoCgQkJUHBgvCvKQhE5OEMHDhQ0zKIiIjYMZsNpk4Fd3dYsgSWL7c6UeZIcyFtzJgxd10Q4NZl+/btgLlwwL8ZhnHH9juZM2cO3bp1w8fHJ0V7nz59aNq0KeXKlaNz584sWrSIX3/9lR07dtzxfl599VWioqKSLydPnkzjoxaHZbMlz4LoPWOG682CKCncuHGDsLAwvvjiC4YOHUrLli0pU6YM2bNnv234eOfOnQkKCiJbtmxkzZqV4sWL07RpUwYOHMisWbNISEiw6FGIPUhISCAoMJAht17PBgwwly4SkXTTuHFjsmXLZnUMERERuYeyZf8emDFgAMTFWZsnM6S5kNa/f3/Cw8PveSlXrhyBgYGcO3futtufP3+efPny3ffnrF+/noMHD/J8KiZurlKlCp6enhw+fPiO3/f29iZ79uwpLuJCunaFAgUgIgLj8885cuSI1YnEItWqVaNy5cr06tWLiRMnsnz5csLDw4mJieHq1asp9v1n0f/KlSscOXKEVatWMXXqVEaMGIG7u3vyvv/73//Yvn07xq0J58XpeXh48FWPHpQzDMiSBfr0sTqSSKZat24d7dq1Izg4GJvNxvfff3/bPjNmzKBIkSL4+PhQtWpV1q9fn/lBRUREJMONGWNOUX74MEyaZHWajJfmxQYCAgIICAi47361a9cmKiqKrVu3UqNGDQC2bNlCVFQUderUue/tZ8+eTdWqValYseJ99923bx83btwgKCjo/g9AXI+XFwwbBoMHc2rQIMonJXH89Ok7Dj0Wx2cYBqGhoSxatIh169axfv365KJXjRo1OHHiBBUrVqRChQpUqFCBIkWKUKBAAYKDg1Pcz2+//YZhGMTGxhIREcHZs2c5evQo+/fvJykpKUXP2qFDh3L06FEKFCjA448/TufOnalXr16qe9+KAzIM84wB4MUXIUcOK9OIZLorV65QsWJFnnvuudtWVgf45ptvGDx4MDNmzKBu3brMmjWLVq1asX//fgoVKgRA1apVibvDx9YrVqy47X+yiIiI2K/s2c2VO599Ft55B7p1M2c+cVY2IwO7ULRq1YozZ84wa9YsAF544QUeeeQRfvzxx+R9SpUqRUhICB06dEhui46OJigoiAkTJvDSSy+luM+jR48yb948WrduTUBAAPv372fo0KH4+vqybdu2FL1E7iY6Ohp/f3+ioqLUO81VXLkCjzwCFy/yLFAmJIRRo0ZZnUrS0cWLF5k7dy6ffPIJ+/fvT25fs2YNDRs2BMy//axZs+Lmln7TQ8bHx9O1a1eWLVvGlStXktuLFStGr1696NmzJwUKFEi3nyfW27BhA/l376ZIv37g6wvHjpkfwYlL0DnE7Ww2G0uWLOGJJ55IbqtZsyZVqlRh5syZyW2lS5fmiSeeICQkJNX3vWbNGqZNm8aiRYvuuk9cXFyKglx0dDQFCxbUcyQiIpKJDAMaNIANG6BTJ/jmG6sTpV1qz/PS3CMtLebNm8fAgQNp3rw5AI8//jjTpk1Lsc/BgweJiopK0bZgwQIMw6BLly633aeXlxerVq1i8uTJxMbGUrBgQdq0acNbb72VqiKauKgsWcxeaa++yttA0+nTGTp0KJ6a08ixXLkCu3ZBWJhZvDh+nGuHD3P52DGIiuJ5oN/NXd1uzdvYpAl4eIC7O9k9PJK3+ff2ndr+uW2zwY0bkJBgXm5ue924waKEBIzcuYnz9ibu6lUSr1/H48gR3F9/nRvvvmsWcXPkgMBAKFoUihQxJxOoVs38+EYchmEY9H35ZT7Zu5ciYK4MrCKaSArx8fGEhobe9oFV8+bNU71ye1qEhIQwduzYdL9fERERST2bDaZNgypV4Ntv4YUXoEkTq1NljAztkWav9Gmyi7p6FaNYMWxnzzIIqPbll/To0cPqVHIvcXGwfj0sWwYrVsDeveZHHc7CZoOSJc01o9u2Nb/6+lqdSu5h5cqVzGzenO8Aw9cX259/goaJuxSdQ9zu3z3Szpw5Q/78+fn9999TTOfx/vvv88UXX3Dw4MFU3W+LFi3YsWMHV65cIVeuXCxZsoTq1avftp96pImIiNiPAQPMglrp0mb/By8vqxOlnl30SBOxK35+2MaOhRde4A2gXUgI3bt31zxW9sYwYMsW+PxzWLAA/tVjNS53biKDgynYtCk88ghGgQLM/v57ajZvTrk6dbD5+JgFqn/eX2Ki2Yvs1te7bd/r+0lJ5qqMnp5mD7XUfLXZIDYWLl+Gy5dZMGECpzZsoJq/PzW8vPA7fx4OHDAvM2eaRbT27aF3b3jsMUjHIaiSPiaPG8eUm9u2oUNVRBO5h3+/vqZl5XaA5cuXp2o/b29vvL2905RNREREMsY775jDOsPDYepUGDrU6kTpT4U0cS3PPUfi+PEEHD7MM+HhLFu2jFatWlmdSsAsWC1cCB98ALt3/90eFAQtW/JH8eK8vmIF89esIcv16xwdOZJ8+fJhA56/w0TX9ujwnj2MCwsj9mZxsHmlSnzYoQOVzp6Fn36CU6fM4uGCBfDoo+Zw5F69wMfH2uACwO7duyn7668UBRLy5cNj5EirI4nYpYCAANzd3YmIiEjRHhkZmaqV20VERMRx5chhvqXr3dtcm6tLF3C2NYTU3UFci4cH7jfn6RsAbP7HJMhikaQk+PJLKFUKunY1i2i+vtCjB6xezbH16+kUG8ujr73G/DVr8PDwoGfPnum6YEBmeeONNzh27BgjR47Ez8+PFWFhVH7rLdqcOEH48uWwdSu8/DL4+8PRo+Z24cJmb7WEBKvju7xPxoxh9M1tj/HjIWtWS/OI2CsvLy+qVq3KypUrU7SvXLkyVSu3i4iIiGPr1Qtq1jQH54wYYXWa9Od470RFHlbz5lxt1w53YExkpFnIEWts2QK1a0PPnmbhKHdusy/w6dNcmTmTN1avpnTZsixcuBCbzUaPHj04ePAg06dPJ0+ePFanfyABAQF88MEHHDt2jEGDBuHh4cHPP//MnM8+g+rVYcYMOH0apkyBQoXg3DlzQvuKFc254sQS4fv303zJErIDseXLm2t6i7iw2NhYwsLCCAsLA+DYsWOEhYVx4sQJAIYMGcKnn37KnDlzCA8P55VXXuHEiRO3rcYuIiIizsfNDaZPN2e6mTcP1q2zOlH60mIDmoTWNZ05Y/aAiomB8ePNIXSSeWJiYPhwmDXLvJ41K4webc5MmSULAEeOHKFMmTLcuHGDJk2aMGnSJMqXL29h6Ixx6NAh3nnnHaZOnUqOHDkAuHDhAjlz5sQ9KQk+/hjeegsuXjRv0LmzOdlAQIB1oV3QrhEjqDh+PDfc3PDcswfKlLE6klhE5xCmNWvW0Lhx49vae/bsyeeffw7AjBkzGDduHGfPnqVcuXJMmjSJBg0aZHg2PUciIiL24aWXzLd85cvDjh3mVNL2LLXnECqk6QTLdX3yCbzwAoaXFycXL6ZQ27ZWJ3IN69aZfX2PHTOv9+oFISEQGMj58+dT9DSbNGkShQsX5oknnnCZRSEMw6BRo0ZcuXKFmTNnmivUXb5s9tSbPNnsQZk3r9lzzUHmhnN4p06ZPQIvXSJmxAiyffih1YnEQjqHsH96jkREROzDxYtQogRcumS+lRk40OpE95bacwgN7RTX9fzzXKhTB1t8PPGdOmFcuWJ1IueWkACvvQaNGplFtEcegd9+g88+Iy5nTt58800KFSrE9u3bk2/yyiuv0KFDB5cpogEcPnyYXbt2ERoaSs2aNenbty+XASZOhM2boWxZiIyEjh3NOdSuX7c6snNLSDBnSL10CapUIdu771qdSERERETEIeTODe+/b26/8YY5a40zUCFNXJfNhvHxx0QCxa5d42SbNuB6HTQzR2QktGhh9jwzDHj+edizBxo1YsOGDVSqVIl33nmH69ev8+2331qd1lIlSpTgwIEDdO/eHcMwmDlzJiVLlmT+/PkY1apBaCiMGmVOOPDRR1Cnjjm/nGSI088/Dxs2YGTLZq7j7elpdSQREREREYfx/PNQtSpER5tvY5yBCmni0vKULctP3buTABRau5YbEydaHcn5bN0KlSvD6tXm/GfffAOffEK0YdC3b1/q16/PgQMHCAwMZNGiRXyoYXMEBgYyd+5cfvvtN0qXLs358+fp2rUr7dq142JsrFmQ/OUXc560nTvNV6Zff7U6ttNJmj+f/F98AcCS1q2hWDGLE4mIiIiIOBZ3d3PhAYDPP4dNmyyNky5USBOX9/SMGbyTLRsA7sOHww8/WJzIiSxeDA0bmos7lC4N27ZBp078/PPPlClThpkzZwLQu3dv9u/fz1NPPeVSwzjvp1GjRoSFhfH222/j6enJiRMnyHbzd5UWLcwiWu3aEBUFLVuaCxNI+ti8maRnnwVgqpcXdSdPtjiQiIiIiIhjqlkT/u//zO1+/SAx0do8D0uFNHF52bJlo+TMmcwB3AwDo1Mn51ufN7MZhrka6tNPm3N4tWkDW7aYxTTg5MmTnD59mmLFirF69Wo+/fRTcubMaXFo++Tl5cUbb7xBWFgYc+fOxcvLC4D4+HgOX7tm9vTr3t18NXrxRRg61PFfmay2dy9JbdvikZDA/4Ab775Lvnz5rE4lIiIiIuKwPvgAcuQw+wI4+uf/KqSJAF26dmVuvXr8D7DFxUG7dvCPSe8lDZKSoH9/GDHCLKj174+xZAmnoqKSd+nTpw/Tp09n9+7dNG7c2MKwjqNMmTJUrFgx+fq4ceMoX74870+cyI3Zs+Htt81vTJxoTo4fF2dRUgd34AA0aYLbxYtsA9569FH6DxpkdSoREREREYeWJw+88465PXo0XLhgbZ6HoUKaCGCz2Zg8fTrd3Nw4FBRkzoT42GOwfr3V0RxLQgL06gUzZpiT4f/3vxwZNIimLVtSr149YmNjAXBzc6Nv3774+vpam9dBGYbBtm3biIuLY/To0VSvUYPQ1q1hwQLw8oKFC81i8M3jLakUHg5NmkBkJDuB5sD4mTOTewGKiIiIiMiDe+klqFgRLl+G116zOs2DUyFN5KYKFSoQdvAgJQ4eNOf1iokx56H65RerozmG+HizJ9TcueDuTuLcuYyLi6N8+fKsXr2ayMhItm7danVKp2Cz2fj+++/58ssvyZUrF7t27aJGjRoM376d64sXm4s6rFwJTZvCxYtWx3UMGzZA3bpw5gyHvL1pBjzVuzfNmjWzOpmIiIiIiFPw8Ph74YFPPzWn0HZEKqSJ/EOxYsUgWzb45ReMNm3g2jWzZ8+UKeYwRbmz69fhySdh0SLw8uLIhx9S7T//YeTIkVy/fp0mTZqwZ88eHnvsMauTOg2bzUaPHj0IDw+nc+fOJCUl8Z///IcyAweyd8oUyJXLnJeuQQM4fdrquPZt0SJo1sz8aKxWLWJ++IHKTZsyYcIEq5OJiIiIiDiVunWhRw/z7XW/fubMQI5GhTSROzhx/jytr13jSL165sTtgwbB889r3qk7uXIF2raFpUsxfHz4uG1bSo4YQVhYGDlz5mTOnDmsXLmSRx991OqkTilv3rzMnz+fn376iYIFC3LmzBm869c3hyXnzw/795vFtGPHrI5qfxISzLn8bi2K0a4drFpF1ebNWblyJf7+/lYnFBERERFxOuPGmf1Xtm2DOXOsTpN2KqSJ3MHXX3/NstWrqbB9O2eGDQM3N/MvvF49OHLE6nj2IyrKHP66ahVkzYpt2TKWA0lJSXTp0oUDBw7w3HPPYbPZrE7q9Nq0acO+ffv48ccfKV68OJQpAxs2cL1AAfjjD6hf35xIX0yRkebv7vjxAET36cOO118HPz+Lg4mIiIiIOLfAQBg71tweNQouXbI2T1qpkCZyByNGjKBly5Zcu36dht9/T+y330LOnOZKnpUrw5dfaqjnpUvmHFy//06Sv785J1fDhkydOpWlS5fy9ddfkzdvXqtTupRs2bKlmNNr45kzFD11ij+zZjWHd9avb6437ep++AHKl4fVqyFLFhLmzaPl3r3Url+fxYsXW51ORB7Q9OnTKVOmDNWrV7c6ioiIiNxH//5Qtqw5pfPrr1udJm1USBO5Azc3N7766isKFSrEkSNH6PzZZySEhpqLEMTGQs+e0K2b607kfu4cRqNGsH07F2w2RteqBbVqARAcHEzr1q2tzScAHDhwgEve3lSLjWWHmxtcuIDRuDFs3Gh1NGvExECfPtC+vdkjrXx5jM2b6b18OZs2bcLX15cqVapYnVJEHlC/fv3Yv38/2xx15mIREREX4ukJ06aZ2x99BDt2WJsnLVRIE7mL3Llzs2jRInx8fFi6dCl9Q0Iwfv0V3n0X3N1h/nxz+NyiRVZHzVynTnGtZk1se/ZwFmhgGPwSEUFMTIzVyeRf/u///o/du3dTvlEjGiUlsQ6wRUWR2KQJ/Pqr1fEy12+/QaVK5vJANhsMGwZbt/L24sV8+eWXuLu7s2DBAooUKWJ1UhERERERl9CoEXTubA726t/fcRYeUCFN5B6qV6/O119/jZubG5988gkT/vtfGD3a7NFTtqzZq+Xpp+GppyAiwuq4Ge5SaCjny5TB9/hxTgCts2Th+QkT2LZtG9myZbM6ntxBiRIlWL16NZM+/ZRuuXKxDHC/fp0bLVqYQxyd3cWL8Nxz8Nhj5lxxhQqZQzrHj2f2vHmMGTMGgBkzZtCyZUtrs4qIiIiIuJj//AeyZoVNm2DuXKvTpI4KaSL30aFDB6ZNm0bx4sV58sknzcYaNSA0FN54Azw84LvvzN5pn37qOGX0NNqzcCHXq1cnT0wMR4BJHTrwy5EjDBkyBE9PT6vjyT3YbDZ69+7NrsOHWfbSS3wHeCYlwZNPmj0rnZFhwFdfQalS8PnnZi+0l1+G3buhUSPmzJlDnz59ABg1ahQvvPCCtXlFRERERFxQ/vzw5pvm9ogR8NdflsZJFRXSRFLh5ZdfJiwsjKJFi/7d6O0Nb79tLkBQpQpcvmzOv1S/PuzZY13YjLBzJ+X69iXYMDjq7c2lJUuY9N13BAYGWp1M0iBXrlz8d+ZMSu/ejdGjByQmQrdu7HjpJebMmUNCQoLVEdPH0aPmipw9esCFC1CuHPz+O8yYAf7+AGzcuBHDMOjfvz/vv/++xYFFRERERFzXoEHm59+RkfDWW1anuT8V0kRSyc/PL3l74cKFDB482Cw8VKwIW7bAxIlmn9SNG82VPYcPNxcmcFDr1q2jd+/eJK1fD40bY7twgWtlylD4zz+p8cQTVseTh1C6fHlsn38OffuCYVBl1iz29e5NxYoV+eGHHzAcdUXaGzfggw/MwtnKlWax+/33zd6jtWun2HXWrFnMmzePKVOmYLPZLAosIiIiIiJeXjBlirk9bZo5iMSeqZAmkkZ//vkn3bp1Y/LkybRp04a//vrLHN75yisQHm7Ol5aYaA72LlMGvv/eHGbmIH7//XdatmxJw4YNOTFnDknNmkFUFNSrh+/GjbirF5pzcHODadNIGDYMgAnA0/v30759e+rVq8eKFSscq6C2Zo25mMCrr8L169CkCezda1738uL69euMGzeO+Ph4ANzd3enatauKaCIiIiIidqBZM/OtdFKSufCAPb8VUSFNJI0KFy7M/Pnz8fPzY8WKFVSvXp1t27aZ3yxQwFzFc+lSKFIETp6EDh3g8cfhzz8tzX0vhmGwevVqGjduTL169Vi+fDldbTZ+dnPDIy7OHCa3fHnysDhxEjYbHuPHm722gDHAZHd3Nm7cSIsWLahRowabNm2yNOJ9RURA9+7QuDHs3w8BAfDll2aPtGLFAAgPD6dmzZqMHDmSAQMGWBxYRERERETuZOJE8POD9evteypnFdJEHsBTTz3F77//TqFChThy5Ai1a9fm3Xff/XuOqdatzd4wr70Gnp7w009m77SQEIiLszb8v0RHR1OnTh2aNGnCmjVr8PTw4Ltq1ZhnGOaE9B07wv/+Z/5HE+f06qswdSoAAxMT2ViuHFl8fNi+fTvu7u4Wh7uLhASYPBlKloR58/5eTODgQXNuNJuNpKQkZs6cSdWqVdm9ezd58uTh6aeftjq5iIiIiIjcQaFCMHq0uT1sGERHW5vnblRIE3lAlSpVIiwsjE6dOpGYmMgbb7xBnTp1SExMNHfw84P33oNdu6BRI7h2zSyslStnFtYs7Kt69erV5O3s2bNjGAbe3t4MeOklLnXsSIft281vDhkCCxaYc02Jc+vfHz77DNzcqL13LxeaNGHOlCnUqFEjeZeRI0fy6quvcuLECQuDYi4cULUqDB5svrpWrw5bt5qLCeTKBUBYWBh16tShb9++XLt2jaZNm7J7926aNm1qbXYREREREbmroUPNgSVnz5pr+9kjFdJEHkLOnDlZsGABc+fOJXfu3LRp0+b2HjylS8Pq1TB3LgQFwZEj0K4dtGlj9p7JJPHx8Xz33Xe0b9+e4OBgLl++nPy9jz/+mBNbtjBl/36yLliQPH8WEyaAvfZIkvTXqxd88w14euKzdCnPffyxuQImcOnSJaZOncoHH3xAkSJFaNmyJfPmzePKlSuZly8iAp57DurVM2cgzZkTZs2CzZuhWrXk3b744guqVKnCli1byJYtG5MnT2b58uVaZVZERERExM55e/+98MDkyebsLfZGhTSRh2Sz2ejevTuHDh1ixIgRye0rVqygXbt2rFixgiTDMOdxOngQRo40h3v+8ovZO2348Azrs3r9+nV+/vlnXnjhBYKDg3nqqaf44YcfiIqK4scff0zer8KlS+Rt0QLWrYNs2cyhnP36ZUgmsXMdO5oT9wcGmsOTq1WDH3/E39+fr7/+miZNmpCUlMTy5cvp3r07gYGBPPvss6xfvz7jMl29Cu++a3409fnnZlvv3nDoELzwAobNRlRUVPLuTZs2xdvbm2eeeYYDBw4wcOBA3Nz0ciciIiIi4ghatTKnGU9IgAED7G/hAZvhUMuypY/o6Gj8/f2Jiooie/bsVscRJ9WgQYPk4kLRokXp0qULHTp0oEqVKtiOHDGHTf70k7lzvnzwxhvQp4+59m86WLVqFe3bt0/RYygoKIgePXrQs2dPypQpA/Hx5vDTd981l0cpVw4WL4YSJdIlgziwM2fMZXM2bzavv/CCOftnliwcPXqUr776ii+//JI//vgDgPHjxzPs5gqgFy9e5PTp05QrV+7hClhJSfD11+YcbqdOmW01a8J//wu1ahEeHs7ChQv59ttvCQ4OZsWKFck3PXv2LEFBQQ/+s0XuQucQ9k/PkYiIiOM7dsycZvz6dfj2W8iMqY5Tew6hQppOsCSDHDx4kBkzZvDFF1+k6C1TqFAhWrVqxUcffQQ//2zO83T4sPnNwoVhzBiz99p9hlQahsHp06fZvXs3u3btYseOHTRq1Ih+N3uSnTt3jqCgIIKDg2nfvj1PPPEEjRs3xsPDw7yDnTvNYXK7dpnXe/SAmTMhS5b0PRDiuOLizHn9Jk40rxcrBp98Ys75h/k7uGnTJhYuXEi/fv0odnOVzDlz5tC7d29y5MhB3bp1qVWrFuXLl6dcuXIUKVLk/sW1pCT4/nsYO9YcwglQqBDnhgxheY4crF23jrVr13L05rBTAF9fX44fP06ePHnS+SCIpKRzCPun50hERMQ5jB1rvj0uUADCwyFr1oz9eSqk3YNOsCQzXb16lSVLlrBkyRJ++eUXrl69SoMGDVi7dq25Q3w8E8uWpefJk+S+uaLnhYAAttavT3jVqpSoUIF27doBcO3aNTp06MDx48c5ceJEikUDAJo1a5aiV054eDilSpXCZrP9vdO5c2bvt9mzzYJF7twwfTp06mSufCjyb6tXQ8+ef/cK69QJxo83l9W5g//85z+MGTPmjvOn+fj4sHnzZipWrAjAsmXL2LBhA1mzZsXLzY0iYWHUXr2awHPnADCyZcP22mswaBD/168fn332WfJ9eXp60rx5czp27Ej79u3JmTNnOj9wkdvpHML+6TkSERFxDteuQdmyZu+0ESPMIZ9nz5pTj9evn/7TeauQdg86wRKrXLt2jbVr1+Lu7k6zZs0As9CWJUsWfIF+wCgg9839I4FVxYrRZdkyePRRDMMgW7ZsyQUKd3d3SpUqRYUKFahYsSINGjSgdu3ad/7hJ0+aszXOmgWxsWZbp07mTI758mXgoxan8NdfZu+0WbPMAqynp7k4wciR8Oijt+1+48YNwsLCWL9+PWFhYezZs4fw8HDi4uI4ffo0wcHBAAwbNoyvJkygN/ASUPDm7aOB/wKdfv+dUnXqADBjxgzmzZtH/fr1adCgAXXr1sXf3z/DH7rIP+kcwv7pORIREXEeP/wA7dvf3l6ggPn29skn0+9nqZB2DzrBEnsSHx/Pxo0bOXbsGOfPnyf61CkqbNtGkz17yP3PHj21a8Mzz7ACcC9blkcKF6ZgwYJ4e3vf/c5jYuDHH81B5UuXmrM1gjmB/KRJ5uqHImkRFgavvGIuSABmL8bHHjOHIz/+OOTKddebJiQkcPz4cYoULozb8ePw669ETp9OwJ49uN18KYr28WF92bJsrF6drIUK0atXL811JnZF5xD2T8+RiIiI81i82FwP7d9uDaZatCj9imkqpN2DTrDEISQkmP81PvsMVq40ewHdEhQElSpB+fIQHAw5c5rrBF+7BpGRcPQohIaaRY/ExL9v17ixuUpoy5YaxikPZ/16CAkxV5+9xWaDihWhcmUoWRLy5DEnMrh+3ewFeeKEuXLtjh3m9j/VqgV9+5q9JO9VHBaxmM4h7J+eIxEREeeQmGhOI35rhpl/s9nMnmnHjqXPME8V0u5BJ1jicM6ehfnzzaLF+vXmJPCpVby4WZzo3NlclVMkPR07Zq6sOX8+7NuX+tt5eECNGtC2LTzzDBQtmnEZRdKRziHsn54jERER57BmjdkX5H5++y15PbSHktpzCI+H/1EikuGCgmDIEPNy7ZrZ22zvXrNwcf48XLoE8fHg52cOrStaFEqXhrp17zohvEi6KFIERo82LxERsGED7N8PR46Yv5cxMeDra64GGxRk9lQrU8bsgaYVYkVERERE5C7Onk3f/dKLCmkijsbX15zbTPObib0JDLzzBAYiIplg+vTpTJ8+ncR/TmkgIiIiDiu1UyVn9pTKGtqpLv8iIiKSSjqHsH96jkRERJzDrTnSTp+GO1WurJojze3hf5SIiIiIiIiIiEj6cXeHyZPN7X+vlXfr+n//mz5FtLRQIU1EREREREREROzOk0/CokWQP3/K9gIFzPYnn8z8TJojTURERERERERE7NKTT0L79rB+vbmwQFAQ1K+f+T3RbsnQHmnvvfcederUwc/Pjxw5cqTqNoZhMGbMGIKDg/H19aVRo0bs27cvxT5xcXEMGDCAgIAAsmTJwuOPP86pU6cy4BGIiIiIiIiIiIiV3N2hUSPo0sX8alURDTK4kBYfH8/TTz/Nyy+/nOrbjBs3jokTJzJt2jS2bdtGYGAgzZo1IyYmJnmfwYMHs2TJEhYsWMCGDRuIjY2lbdu2WqVJREREREREREQyTKas2vn5558zePBg/vrrr3vuZxgGwcHBDB48mJEjRwJm77N8+fLx4Ycf8uKLLxIVFUWePHmYO3cuzzzzDABnzpyhYMGC/Pzzz7Ro0eK+ebSak4iIiDwInUPYPz1HIiIi8iAcctXOY8eOERERQfPmzZPbvL29adiwIRs3bgQgNDSUGzdupNgnODiYcuXKJe/zb3FxcURHR6e4iIiIiIiIiIiIpIVdFdIiIiIAyJcvX4r2fPnyJX8vIiICLy8vcubMedd9/i0kJAR/f//kS8GCBTMgvYiIiIiIiIiIOLM0F9LGjBmDzWa752X79u0PFcpms6W4bhjGbW3/dq99Xn31VaKiopIvJ0+efKh8IiIiIiIiIiLiejzSeoP+/fvTuXPne+5TuHDhBwoTGBgImL3OgoKCktsjIyOTe6kFBgYSHx/P5cuXU/RKi4yMpE6dOne8X29vb7y9vR8ok4iIiIiIiIiICDxAIS0gIICAgICMyEKRIkUIDAxk5cqVVK5cGTBX/ly7di0ffvghAFWrVsXT05OVK1fSqVMnAM6ePcvevXsZN25chuQSERERERERERFJcyEtLU6cOMGlS5c4ceIEiYmJhIWFAVCsWDGyZs0KQKlSpQgJCaFDhw7YbDYGDx7M+++/T/HixSlevDjvv/8+fn5+dO3aFQB/f3969+7N0KFDyZ07N7ly5WLYsGGUL1+epk2bZuTDERERERERERERF5ahhbQ333yTL774Ivn6rV5mv/32G40aNQLg4MGDREVFJe8zYsQIrl27Rt++fbl8+TI1a9ZkxYoVZMuWLXmfSZMm4eHhQadOnbh27RpNmjTh888/x93dPSMfjoiIiIiIiIiIuDCbYRiG1SEyW3R0NP7+/kRFRZE9e3ar44iIiIiD0DmE/dNzJCIiIg8itecQaV61U0RERERERERExBWpkCYiIiIiIiIiIpIKKqSJiIiIiIiIiIikQoYuNmCvbk0LFx0dbXESERERcSS3zh1ccIpZh6HzPBEREXkQqT3Pc8lCWkxMDAAFCxa0OImIiIg4opiYGPz9/a2OIXeg8zwRERF5GPc7z3PJVTuTkpI4c+YM2bJlw2azpfv9R0dHU7BgQU6ePKnVoiyg4289PQfW0vG3lo6/tTL6+BuGQUxMDMHBwbi5aYYMe5TR53mOTv+jrKfnwFo6/tbS8beWjv+9pfY8zyV7pLm5uVGgQIEM/znZs2fXL6eFdPytp+fAWjr+1tLxt1ZGHn/1RLNvmXWe5+j0P8p6eg6speNvLR1/a+n4311qzvP0UaqIiIiIiIiIiEgqqJAmIiIiIiIiIiKSCiqkZQBvb2/eeustvL29rY7iknT8rafnwFo6/tbS8beWjr/IvelvxHp6Dqyl428tHX9r6finD5dcbEBERERERERERCSt1CNNREREREREREQkFVRIExERERERERERSQUV0kRERERERERERFJBhTQREREREREREZFUUCHtAc2YMYMiRYrg4+ND1apVWb9+/T33X7t2LVWrVsXHx4eiRYvy0UcfZVJS55SW4//dd9/RrFkz8uTJQ/bs2alduzbLly/PxLTOJ62//7f8/vvveHh4UKlSpYwN6OTSevzj4uIYPXo0jzzyCN7e3jz66KPMmTMnk9I6n7Qe/3nz5lGxYkX8/PwICgriueee4+LFi5mU1rmsW7eOdu3aERwcjM1m4/vvv7/vbfT6K2IKCQmhevXqZMuWjbx58/LEE09w8OBBq2O5rJCQEGw2G4MHD7Y6iss4ffo03bt3J3fu3Pj5+VGpUiVCQ0OtjuUSEhISeP311ylSpAi+vr4ULVqUt99+m6SkJKujOaX7nS8ZhsGYMWMIDg7G19eXRo0asW/fPmvCOigV0h7AN998w+DBgxk9ejQ7d+6kfv36tGrVihMnTtxx/2PHjtG6dWvq16/Pzp07ee211xg4cCCLFy/O5OTOIa3Hf926dTRr1oyff/6Z0NBQGjduTLt27di5c2cmJ3cOaT3+t0RFRfHss8/SpEmTTErqnB7k+Hfq1IlVq1Yxe/ZsDh48yPz58ylVqlQmpnYeaT3+GzZs4Nlnn6V3797s27ePhQsXsm3bNp5//vlMTu4crly5QsWKFZk2bVqq9tfrr8jf1q5dS79+/di8eTMrV64kISGB5s2bc+XKFaujuZxt27bx8ccfU6FCBaujuIzLly9Tt25dPD09+eWXX9i/fz8TJkwgR44cVkdzCR9++CEfffQR06ZNIzw8nHHjxjF+/HimTp1qdTSndL/zpXHjxjFx4kSmTZvGtm3bCAwMpFmzZsTExGRyUgdmSJrVqFHDeOmll1K0lSpVyhg1atQd9x8xYoRRqlSpFG0vvviiUatWrQzL6MzSevzvpEyZMsbYsWPTO5pLeNDj/8wzzxivv/668dZbbxkVK1bMwITOLa3H/5dffjH8/f2NixcvZkY8p5fW4z9+/HijaNGiKdqmTJliFChQIMMyugrAWLJkyT330euvyN1FRkYagLF27Vqro7iUmJgYo3jx4sbKlSuNhg0bGoMGDbI6kksYOXKkUa9ePatjuKw2bdoY//d//5ei7cknnzS6d+9uUSLX8e/zpaSkJCMwMND44IMPktuuX79u+Pv7Gx999JEFCR2TeqSlUXx8PKGhoTRv3jxFe/Pmzdm4ceMdb7Np06bb9m/RogXbt2/nxo0bGZbVGT3I8f+3pKQkYmJiyJUrV0ZEdGoPevw/++wzjh49yltvvZXREZ3agxz/H374gWrVqjFu3Djy589PiRIlGDZsGNeuXcuMyE7lQY5/nTp1OHXqFD///DOGYXDu3DkWLVpEmzZtMiOyy9Prr8jdRUVFAeh8KJP169ePNm3a0LRpU6ujuJRb50NPP/00efPmpXLlynzyySdWx3IZ9erVY9WqVRw6dAiAXbt2sWHDBlq3bm1xMtdz7NgxIiIiUpwfeXt707Bhw1S/nxbwsDqAo7lw4QKJiYnky5cvRXu+fPmIiIi4420iIiLuuH9CQgIXLlwgKCgow/I6mwc5/v82YcIErly5QqdOnTIiolN7kON/+PBhRo0axfr16/Hw0L+ch/Egx/+PP/5gw4YN+Pj4sGTJEi5cuEDfvn25dOmS5klLowc5/nXq1GHevHk888wzXL9+nYSEBB5//HENZcgkev0VuTPDMBgyZAj16tWjXLlyVsdxGQsWLGDHjh1s27bN6igu548//mDmzJkMGTKE1157ja1btzJw4EC8vb159tlnrY7n9EaOHElUVBSlSpXC3d2dxMRE3nvvPbp06WJ1NJdz65z1TudHx48ftyKSQ9K72gdks9lSXDcM47a2++1/p3ZJnbQe/1vmz5/PmDFj+N///kfevHkzKp7TS+3xT0xMpGvXrowdO5YSJUpkVjynl5bf/6SkJGw2G/PmzcPf3x+AiRMn0rFjR6ZPn46vr2+G53U2aTn++/fvZ+DAgbz55pu0aNGCs2fPMnz4cF566SVmz56dGXFdnl5/RW7Xv39/du/ezYYNG6yO4jJOnjzJoEGDWLFiBT4+PlbHcTlJSUlUq1aN999/H4DKlSuzb98+Zs6cqUJaJvjmm2/46quv+PrrrylbtixhYWEMHjyY4OBgevbsaXU8l/Sg76fFpEJaGgUEBODu7n5b74PIyMjbqrq3BAYG3nF/Dw8PcufOnWFZndGDHP9bvvnmG3r37s3ChQvVnf4BpfX4x8TEsH37dnbu3En//v0B80TGMAw8PDxYsWIFjz32WKZkdwYP8vsfFBRE/vz5k4toAKVLl8YwDE6dOkXx4sUzNLMzeZDjHxISQt26dRk+fDgAFSpUIEuWLNSvX593331XPaIymF5/RW43YMAAfvjhB9atW0eBAgWsjuMyQkNDiYyMpGrVqsltiYmJrFu3jmnTphEXF4e7u7uFCZ1bUFAQZcqUSdFWunRpLT6TSYYPH86oUaPo3LkzAOXLl+f48eOEhISokJbJAgMDAbNn2j/PQ1Pzflr+pjnS0sjLy4uqVauycuXKFO0rV66kTp06d7xN7dq1b9t/xYoVVKtWDU9PzwzL6owe5PiD2ROtV69efP3115qb6CGk9fhnz56dPXv2EBYWlnx56aWXKFmyJGFhYdSsWTOzojuFB/n9r1u3LmfOnCE2Nja57dChQ7i5uekNVBo9yPG/evUqbm4pX2pvvVG61TNKMo5ef0X+ZhgG/fv357vvvmP16tUUKVLE6kgupUmTJredE1WrVo1u3boRFhamIloGq1u3LgcPHkzRdujQIR555BGLErmWu50PJSUlWZTIdRUpUoTAwMAU50fx8fGsXbv2nu+n5V+sWOHA0S1YsMDw9PQ0Zs+ebezfv98YPHiwkSVLFuPPP/80DMMwRo0aZfTo0SN5/z/++MPw8/MzXnnlFWP//v3G7NmzDU9PT2PRokVWPQSHltbj//XXXxseHh7G9OnTjbNnzyZf/vrrL6segkNL6/H/N63a+XDSevxjYmKMAgUKGB07djT27dtnrF271ihevLjx/PPPW/UQHFpaj/9nn31meHh4GDNmzDCOHj1qbNiwwahWrZpRo0YNqx6CQ4uJiTF27txp7Ny50wCMiRMnGjt37jSOHz9uGIZef0Xu5eWXXzb8/f2NNWvWpDgfunr1qtXRXJZW7cw8W7duNTw8PIz33nvPOHz4sDFv3jzDz8/P+Oqrr6yO5hJ69uxp5M+f3/jpp5+MY8eOGd99950REBBgjBgxwupoTul+50sffPCB4e/vb3z33XfGnj17jC5duhhBQUFGdHS0xckdhwppD2j69OnGI488Ynh5eRlVqlRJsXR4z549jYYNG6bYf82aNUblypUNLy8vo3DhwsbMmTMzObFzScvxb9iwoQHcdunZs2fmB3cSaf39/ycV0h5eWo9/eHi40bRpU8PX19coUKCAMWTIEL1xeghpPf5TpkwxypQpY/j6+hpBQUFGt27djFOnTmVyaufw22+/3fP/uV5/Re7uTn87gPHZZ59ZHc1lqZCWuX788UejXLlyhre3t1GqVCnj448/tjqSy4iOjjYGDRpkFCpUyPDx8TGKFi1qjB492oiLi7M6mlO63/lSUlKS8dZbbxmBgYGGt7e30aBBA2PPnj3WhnYwNsPQ2BIREREREREREZH70RxpIiIiIiIiIiIiqaBCmoiIiIiIiIiISCqokCYiIiIiIiIiIpIKKqSJiIiIiIiIiIikggppIiIiIiIiIiIiqaBCmoiIiIiIiIiISCqokCYiIiIiIiIiIpIKKqSJiIiIiIiIiIikggppIiIiIiIiIiIiqaBCmoiIiIiIiIiISCqokCYiAsyfPx8fHx9Onz6d3Pb8889ToUIFoqKiLEwmIiIiIg/ryJEj2Gw2li5dSpMmTfDz86NkyZJs2bLF6mgi4mBUSBMRATp37kzJkiUJCQkBYOzYsSxfvpxffvkFf39/i9OJiIiIyMPYtWsXNpuNCRMm8Prrr7Nr1y4KFSrEqFGjrI4mIg7Gw+oAIiL2wGaz8d5779GxY0eCg4OZPHky69evJ3/+/FZHExEREZGHtGvXLvz9/fnmm2/IkycPAE888QQzZ860OJmIOBoV0kREbmrbti1lypRh7NixrFixgrJly1odSURERETSwa5du2jXrl1yEQ3gjz/+oFixYhamEhFHpKGdIiI3LV++nAMHDpCYmEi+fPmsjiMiIiIi6WTXrl3Url07RdvOnTupVKmSNYFExGGpkCYiAuzYsYOnn36aWbNm0aJFC9544w2rI4mIiIhIOoiKiuL48eNUrlw5RXtYWJgKaSKSZhraKSIu788//6RNmzaMGjWKHj16UKZMGapXr05oaChVq1a1Op6IiIiIPIRdu3bh7u5OxYoVk9uOHz/O5cuXVUgTkTRTjzQRcWmXLl2iVatWPP7447z22msAVK1alXbt2jF69GiL04mIiIjIw9q1axelSpXC19c3uW3nzp3kyJGDwoULWxdMRBySzTAMw+oQIiIiIiIiIiIi9k490kRERERERERERFJBhTQREREREREREZFUUCFNREREREREREQkFVRIExERERERERERSQUV0kRERERERERERFJBhTQREREREREREZFUUCFNREREREREREQkFVRIExERERERERERSQUV0kRERERERERERFJBhTQREREREREREZFUUCFNREREREREREQkFVRIExERERERERERSYX/B6cG8KwrRhsjAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAITCAYAAADCazH4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTSElEQVR4nOzdd3hU1drG4d+kQyo1BAgQeu8dUSw0ezmKvYGKYAFEkGMXj4gFAQVFpXhUEI+Ifp6DIhZEiiCQAEqHQCgJoaVC+nx/7J0oUgyQmTUzee7rmmv2TPbs/QwimXn3Wut1OJ1OJyIiIiIiIiIiInJGfqYDiIiIiIiIiIiIeAMV0kREREREREREREpBhTQREREREREREZFSUCFNRERERERERESkFFRIExERERERERERKQUV0kREREREREREREpBhTQREREREREREZFSUCFNRERERERERESkFFRIExERERERERERKQUV0kREREREREREREpBhTQREREREREREZFSUCFNRERERDzKf//7X5o0aUKjRo14//33TccRERERKeFwOp1O0yFERERERAAKCgpo3rw5P/74IxEREbRv356VK1dSuXJl09FERERENCJNRERERDzHqlWraNGiBbVq1SI8PJzLL7+chQsXmo4lIiIiAkCA6QAmFBUVsX//fsLDw3E4HKbjiIiIiJdwOp1kZmZSs2ZN/Px0PfJUlixZwquvvsqaNWtITk5m/vz5XHvttSfsM3XqVF599VWSk5Np0aIFEydOpGfPngDs37+fWrVqlexbu3Zt9u3bV+rz63OeiIiInIvSfs4rl4W0/fv3ExsbazqGiIiIeKk9e/ZQu3Zt0zE8UnZ2Nm3atOGee+7hhhtuOOnnc+fOZdiwYUydOpUePXowbdo0+vfvz8aNG6lTpw6nWnXkTAWx3NxccnNzSx7v27eP5s2bl82bERERkXLn7z7nlctCWnh4OGD94URERBhOIyIiIt4iIyOD2NjYks8ScrL+/fvTv3//0/58woQJDBw4kEGDBgEwceJEFi5cyNtvv824ceOoVavWCSPQ9u7dS5cuXU57vHHjxvH888+f9Lw+54mIiMjZKO3nvHJZSCu+qhkREaEPWCIiInLWNGXw3OTl5bFmzRqeeOKJE57v06cPy5cvB6Bz58789ttv7Nu3j4iICBYsWMAzzzxz2mOOGTOGESNGlDwu/hCsz3kiIiJyLv7uc165LKSJiIiIiPsdOnSIwsJCoqOjT3g+OjqalJQUAAICAnj99de5+OKLKSoqYtSoUVSpUuW0xwwODiY4ONiluUVERESKqZAmIiIiIm711yu9TqfzhOeuvvpqrr76anfHEhEREflbajclIiIiIm5RtWpV/P39S0afFUtNTT1plJqIiIiIJ9KINBEv4nQ6KSgooLCw0HQUkTIRGBiIv7+/6Rgi4iZBQUF06NCBRYsWcd1115U8v2jRIq655hqDyURERERKR4U0ES+Rl5dHcnIyx44dMx1FpMw4HA5q165NWFiY6SgiUkaysrLYvn17yePExEQSEhKoXLkyderUYcSIEdxxxx107NiRbt268e6775KUlMTgwYMNphYREREpHRXSRLxAUVERiYmJ+Pv7U7NmTYKCgtQxTrye0+nk4MGD7N27l0aNGmlkmoiPWL16NRdffHHJ4+KOmnfddRezZs1iwIABHD58mBdeeIHk5GRatmzJggULqFu3rqnIIiIiIqWmQpqIF8jLy6OoqIjY2FgqVqxoOo5ImalWrRq7du0iPz9fhTQRH9GrVy+cTucZ9xkyZAhDhgxxUyIRERGRsqNmAyJexM9P/8uKb9HIShERERER8Sb6Vi4iIiIiIiIiIlIKKqSJiIiIiIiIiIiUggppIiIiIiIiIiIipaBCmoj4NIfDwRdffGE6hoiIuNiUKVNo3rw5nTp1Mh1FREREfJgKaSIiIiLi9YYOHcrGjRv59ddfTUcRERERH6ZCmogXy87OPu0tJyen1PseP368VPueLafTySuvvEL9+vWpUKECbdq04bPPPiv52WWXXUa/fv1wOp0ApKWlUadOHZ588kkACgsLGThwIHFxcVSoUIEmTZowadKkk84zY8YMWrRoQXBwMDExMTz00EMA1KtXD4DrrrsOh8NR8vhUli9fTtu2bQkJCaFjx4588cUXOBwOEhISzvp9i4iIbyoshMWLYc4c676w0HQiERERcTeXFtKWLFnCVVddRc2aNUs9veqnn36iQ4cOhISEUL9+fd55552T9pk3bx7NmzcnODiY5s2bM3/+fBekF/F8YWFhp73dcMMNJ+xbvXr10+7bv3//E/atV6/eKfc7W0899RQzZ87k7bff5vfff2f48OHcfvvt/PTTTzgcDj744ANWrVrF5MmTARg8eDDR0dE899xzABQVFVG7dm0+/fRTNm7cyDPPPMM///lPPv3005JzvP322wwdOpT777+fDRs28H//9380bNgQoGRUwsyZM0lOTj7tKIXMzEyuuuoqWrVqxdq1axk7diyjR48+6/crIiK+6/PPoV49uPhiuPVW675ePet5ERERKT8CXHnw7Oxs2rRpwz333HPSl/pTSUxM5PLLL+e+++7jo48+YtmyZQwZMoRq1aqVvH7FihUMGDCAsWPHct111zF//nxuuukmli5dSpcuXVz5dkTkLGRnZzNhwgR++OEHunXrBkD9+vVZunQp06ZN46KLLqJWrVpMmzaNO+64gwMHDvDVV18RHx9PYGAgAIGBgTz//PMlx4yLi2P58uV8+umn3HTTTQC8+OKLPPbYYzz66KMl+xWvj1OtWjUAoqKiqFGjxmmzfvzxxzgcDt577z1CQkJo3rw5+/bt47777ivbPxQREfFKn38O//gH2AOoS+zbZz3/2Wdw/fVmsomIiIh7ubSQ1r9//5NGupzJO++8Q506dZg4cSIAzZo1Y/Xq1bz22mslhbSJEyfSu3dvxowZA8CYMWP46aefmDhxInPmzCnz9+B1jhyBVasgNhZatDCdRlwsKyvrtD/z9/c/4XFqaupp9/XzO3Fw6q5du84rF8DGjRvJycmhd+/eJzyfl5dHu3btSh7feOONzJ8/n3HjxvH222/TuHHjE/Z/5513eP/999m9ezfHjx8nLy+Ptm3bAtZ72r9/P5deeul5Zd2yZQutW7cmJCSk5LnOnTuf1zFFyqvC7dvZ9fXXOFu1osFFF+FwOExHEjkvhYXw6KMnF9HAes7hgGHD4Jpr4C+/ekVERMQHubSQdrZWrFhBnz59Tniub9++TJ8+nfz8fAIDA1mxYgXDhw8/aZ/i4tup5ObmkpubW/I4IyOjTHN7BKcTJkyAf/4T8vIAONCuHdHffQeVKxsOJ64SGhpqfN/TKSoqAuB///sftWrVOuFnwcHBJdvHjh1jzZo1+Pv7s23bthP2+/TTTxk+fDivv/463bp1Izw8nFdffZWVK1cCUKFChfPOCdZ6bX/9su881TcmETm9zEwO3HAD0YsW0QDIBz6JjaX7Tz9RNy7OdDqRc/bzz7B37+l/7nTCnj3Wfr16uS2WiIiIGOJRzQZSUlKIjo4+4bno6GgKCgo4dOjQGfdJSUk57XHHjRtHZGRkyS02NrbswxuUlZXF8quvhpEjIS+P3JgY8oHo+HjS2rWDM4xaEnGV4nUMk5KSaNiw4Qm3P/8/+Nhjj+Hn58fXX3/N5MmT+eGHH0p+9vPPP9O9e3eGDBlCu3btaNiwITt27Cj5eXh4OPXq1eP7778/bY7AwEAK/2Y16KZNm7J+/foTCu6rV68+l7ctUj7l53OkVy+iFy0CYKfDQSBwy549LGnThv3795vNJ3IekpPLdj8RERHxbh5VSANOOyrkz8+fap8zTR0ZM2YM6enpJbc9e/aUYWLzJv7jH3T973+tB6++Cjt38uJ115EMRCUlkX7PPUbzSfkUHh7OyJEjGT58OB988AE7duwgPj6eKVOm8MEHHwDWaLUZM2bw8ccf07t3b5544gnuuusujh49CkDDhg1ZvXo1CxcuZOvWrTz99NMnNQx47rnneP3115k8eTLbtm1j7dq1vPnmmyU/Ly60paSklBz3r2699VaKioq4//772bRpEwsXLuS1114DTv73RkRO5nz+eSqvXUsW8ESPHlRLT+fghAkUAndkZpL67rumI4qcs5iYst1PREREvJtHFdJq1Khx0siy1NRUAgICqFKlyhn3+esotT8LDg4mIiLihJuvWLF0KZcvXIgfcKBfPxg5kuCQEJ75z394uU0bioDIzz6D5ctNR5VyaOzYsTzzzDOMGzeOZs2a0bdvX7766ivi4uI4ePAgAwcO5LnnnqN9+/YAPPvss9SsWZPBgwcDVhfP66+/ngEDBtClSxcOHz7MkCFDTjjHXXfdxcSJE5k6dSotWrTgyiuvPGGK6Ouvv86iRYuIjY09YW22P4uIiOCrr74iISGBtm3b8uSTT/LMM88AnLBumoicwubNOF55BYDPLr+cZxctIjw8nGrDh5Nx//0AtH3/fcjJMZlS5Jz17Am1a1troZ2Kw2EtTduzp3tziYiIiBkOp5sWAnI4HMyfP59rr732tPuMHj2ar776io0bN5Y89+CDD5KQkMCKFSsAGDBgAJmZmSxYsKBkn/79+xMVFVXqZgMZGRlERkaSnp7u9UW155o357lNmzgWFETFvXvB7lIIsH37dpY0bsy9TidpLVoQtWHD6T8FikfLyckhMTGRuLg4FXbc5OOPP+aee+4hPT29zNZik5Pp77YPuOUW+OQTuOIK+OqrE3/P5ORAo0bWAlNvvgkPPWQuZxnxpc8QvsoV/42Ku3bCqZsOzJunrp0iIiLerrSfIVw6Ii0rK4uEhAQSEhIASExMJCEhgaSkJMCacnnnnXeW7D948GB2797NiBEj2LRpEzNmzGD69OmMHDmyZJ9HH32Ub7/9lvHjx7N582bGjx/Pd999x7Bhw1z5VjzS2jVr6L9pEwD5Dz54QhENrGlxiXffTQ4Q9fvvYBcjReRk//73v1m6dCmJiYl88cUXjB49mptuuklFNJEz2boV59y51va//nXyxZqQEKsJDpDzwgus1Oho8VLXXw+ffQZ/6Z0DWM+d4TqxiIiI+BiXFtJWr15Nu3btSqZTjRgxgnbt2pVMmUpOTi4pqgHExcWxYMECFi9eTNu2bRk7diyTJ0/mhhtuKNmne/fufPLJJ8ycOZPWrVsza9Ys5s6dS5cuXVz5VjzSV888Qxcgz8+PSPuLyl8NevZZZtvb2f/6l9uyiXiblJQUbr/9dpo1a8bw4cO58cYbeVfrOomcUfYrr+BwOllWqRKZ9eufeqd77uFYxYqEHDzI14884t6AImXo+uth1y748UeYPdsagBkeDvv2WdsiIiJSPrhtaqcn8YVpGceOHWNWVBRD8vM52Ls31b799rT7fjF2LNc+8wz4+1stpf4yck08n6a/ia/S320vdvw4xytXpkJODo81b87rv/9+2l2PDhpEpenT+Qpos3s3derUcV/OMuYLnyF8nTv/Gz3xBIwfD127WsvRagUNERER7+URUzvFdVL27mWAvV310UfPuO+1Tz8NHTpAYSF8+qnrw4mIiM9zfvEFFXJy2AW0HDHijPtWeuwxAPoBX8yY4fJsUj5NmTKF5s2b06lTJ7ed89FHITgYfvkFfv7ZbacVERERg1RI81L1d++mSn4+zsqVcfTp8/cvuO02AJwff+ziZCIiUh6kv/ceAHP9/bm+eBX202nWjEO1ahEIpH3wgevDSbk0dOhQNm7cyK+//uq2c8bEwF13Wdvjx7vttCIiImKQCmne6pNPAHDcdBMEBv7t7r+1bEkh4FixAnbudHE4ERHxaVlZhC5ZAsDhSy4hMjLyb18ScscdAHTatYtdu3a5Mp2IWz3+OPj5wYIFsH696TQiIiLiaiqkeaF9e/dS9L//WQ/+1IjhTHIqVeIHezvfLsKJiIicC+d//0tgYSHbgB5DhpTqNWF2Ia0X8O2XX7osm4i7NWwIxYMyNSpNRETE96mQ5oVmPfYYfgcOkBcYCD17luo1HTp04Cd7xECmCmkiInIe0u11zr4ICKBP376le1GzZmRERlIBSFeLQ/Exo0db93PnQmKi2SwiIiLiWiqkeaGA774D4GibNtYKt6XgcDhw9u8PQORvv0FamqviiYiIL8vPJ3LlSgBqPfQQFSpUKN3rHA78L78cgJEtW7oqnYgR7dtD795WX6fXXzedRkRERFxJhTQvs2PHDjoeOQJA1IABf7P3ibrccgubAH+nE+e337ognYiczt133821115rOsY56dWrF8OGDTMdQzzFypU4MjKgShVufe21s3pp6PXXA+DQ7yDxQU88Yd1Pnw6pqWaziIiIiOuokOZlfvjqKy6wt4OvvvqsXnvppZfyjb8/AOmzZ5dxMpGTLVmyhKuuuoqaNWvicDj44osvTtrnueeeo2nTpoSGhlKpUiUuu+wyVtqjXU5n165dOBwOEhISXBPcBSZNmsSsWbNMxzgnn3/+OWPHjjUdQzxFcRGsd2+wf6eU2mWXWa/ZtAmSkso+m4hBF18MHTtCTg68+abpNCIiIuIqKqR5meT58wkGMiIioFGjs3ptaGgoKe3aARDw44/gdLogocgfsrOzadOmDW+99dZp92ncuDFvvfUWGzZsYOnSpdSrV48+ffpw8OBBt2TMz893y3kiIyOJiopyy7nKSvGfTeXKlQkPDzecRjxFxn/+A0BS06Zn/+KoKI7b0zqnnOWoahFP53D8MSrtrbcgM9NsHhEREXENFdK8iNPppEJ8PADHO3WyPrGdpdgBA8h1OAjLyIBt28o6oriL0wnZ2WZuZ1GA7d+/Py+++CLX29O5TuXWW2/lsssuo379+rRo0YIJEyaQkZHB+vXrT/uauLg4ANq1a4fD4aBXr14lP5s5cybNmjUjJCSEpk2bMnXq1JKfFY9k+/TTT+nVqxchISF89NFHJdMuX3rpJaKjo4mKiuL555+noKCAxx9/nMqVK1O7dm1m2Ausn85nn31Gq1atqFChAlWqVOGyyy4jOzsbOHlqZ69evXjkkUcYNWoUlStXpkaNGjz33HMnHC89PZ3777+f6tWrExERwSWXXMK6detOe/68vDweeughYmJiCAkJoV69eowbN67Ux3vuuedo27YtM2bMoH79+gQHB+N0Ok+a2pmXl8eoUaOoVasWoaGhdOnShcWLF5f8fPfu3Vx11VVUqlSJ0NBQWrRowYIFC874Zyde4vBhwjZvBmDG3r3ndIicDh0ACFy1itzc3DKLJuIJrr3Wus6ZlgbvvWc6jYiIiLhCgOkAUnpJSUm0sS9vVrriinM6xkMjR8J//ws//QSLF0PjxmWYUNzm2DEICzNz7qwsCA11yaHz8vJ49913iYyMpE2bNqfdb9WqVXTu3JnvvvuOFi1aEBQUBMB7773Hs88+y1tvvUW7du2Ij4/nvvvuIzQ0lLvuuqvk9aNHj+b1119n5syZBAcH89NPP/HDDz9Qu3ZtlixZwrJlyxg4cCArVqzgwgsvZOXKlcydO5fBgwfTu3dvYmNjT8qUnJzMLbfcwiuvvMJ1111HZmYmP//8M84zFB4/+OADRowYwcqVK1mxYgV33303PXr0oHfv3jidTq644goqV67MggULiIyMZNq0aVx66aVs3bqVypUrn3S8yZMn83//9398+umn1KlThz179rBnzx6AUh9v+/btfPrpp8ybNw//00zbu+eee9i1axeffPIJNWvWZP78+fTr148NGzbQqFEjhg4dSl5eHkuWLCE0NJSNGzcSZurvq5StJUvwAzYC7a+66pwOEXXFFTBjBt2KioiPj6dr165lGlHEJH9/GDUK7rvPajowdGip+0KJiIiIt3CWQ+np6U7AmZ6ebjrKWTmSmurMDQ52OsHpTEg49wM984x1jFtuKbtw4lLHjx93bty40Xn8+HHriaws67+hiVtW1jm9B8A5f/78U/7sq6++coaGhjodDoezZs2azlWrVp3xWImJiU7AGR8ff8LzsbGxztmzZ5/w3NixY53dunU74XUTJ048YZ+77rrLWbduXWdhYWHJc02aNHH27Nmz5HFBQYEzNDTUOWfOnFNmWrNmjRNw7tq165Q/v+uuu5zXXHNNyeOLLrrIecEFF5ywT6dOnZyjR492Op1O5/fff++MiIhw5uTknLBPgwYNnNOmTTvlOR5++GHnJZdc4iwqKjrpZ6U53rPPPusMDAx0pqamnrDPRRdd5Hz00UedTqfTuX37dqfD4XDu27fvhH0uvfRS55gxY5xOp9PZqlUr53PPPXfKjH910t9t8WiZ993ndILzbXAePXr03A5y4IDTCc5CcL41dmyZ5nMHb/0MUZ6Y/m+Uk+N0xsRYvzKnTzcSQURERM5BaT9DaGqnF6m0dy9BubkQEQH2GjPnxJ4GV/DDD1onzVtVrGiNDDNxq1ixzN/OxRdfTEJCAsuXL6dfv37cdNNNpNotzwYPHkxYWFjJ7XQOHjzInj17GDhw4An7v/jii+zYseOEfTt27HjS61u0aIGf3x//JEZHR9OqVauSx/7+/lSpUqUk11+1adOGSy+9lFatWnHjjTfy3nvvcfTo0TO+79atW5/wOCYmpuT4a9asISsriypVqpzwfhITE096P8XuvvtuEhISaNKkCY888gjf/qkzYmmPV7duXapVq3bazGvXrsXpdNK4ceMTjvPTTz+VHOeRRx7hxRdfpEePHjz77LNnnKYr3iX3++8B2Fuv3rmv+Ve9OkeqVsUPSPv66zLLJuIpgoNh+HBr+5VXoKjIbB4REREpW5ra6U2WLbPuu3U7+05pf/LR9u3cCAQfOGCtk6bpnd7H4XDZ9EoTQkNDadiwIQ0bNqRr1640atSI6dOnM2bMGF544QVGjhz5t8cosr+pvPfee3Tp0uWEn/11imLoKf7sAgMDT3jscDhO+VzRab4R+fv7s2jRIpYvX863337Lm2++yZNPPsnKlStL1nQrzTmLj19UVERMTMwJa48VO10Bo3379iQmJvL111/z3XffcdNNN3HZZZfx2Weflfp4p/qz+bOioiL8/f1Zs2bNSX+uxYXOQYMG0bdvX/73v//x7bffMm7cOF5//XUefvjhMx5bPFxWFlGJiQCE9O59XofK79wZFiwgbN06nE4njnNY81PEkz3wAPzrX7BlC3z5JVx3nelEIiIiUlZUSPMSx44dY99HH9EIcHbtyvl85WjSti2rgJ6Ac9kyHCqkiYdxOp0li5BXr16d6tWrn/Dz4jXRCgsLS56Ljo6mVq1a7Ny5k9tuu819Yf/E4XDQo0cPevTowTPPPEPdunWZP38+I0aMOOtjtW/fnpSUFAICAqhXr16pXxcREcGAAQMYMGAA//jHP+jXrx9Hjhw55+P9Vbt27SgsLCQ1NZWePXuedr/Y2FgGDx7M4MGDGTNmDO+9954Kad5uxQr8nU52A62vvPK8DlX5yithwQJaZmeza9eu0xabRbxVRIS1PtpLL8HLL1tNCFQvFhER8Q2a2uklEhISyF+5EgBHp07ndaw2bdrwqz2SJH3hwvPOJnI6WVlZJCQkkJCQAEBiYiIJCQkkJSUBkJ2dzT//+U9++eUXdu/ezdq1axk0aBB79+7lxhtvPO1xq1evToUKFfjmm284cOAA6enpgNV1cty4cUyaNImtW7eyYcMGZs6cyYQJE1z+XleuXMlLL73E6tWrSUpK4vPPP+fgwYM0a9bsnI532WWX0a1bN6699loWLlzIrl27WL58OU899RSrV68+5WveeOMNPvnkEzZv3szWrVv5z3/+Q40aNYiKijqn451K48aNue2227jzzjv5/PPPSUxM5Ndff2X8+PElnTmHDRvGwoULSUxMZO3atfzwww/n/OcgniP/hx8A+BnOu0FAoP36Tv7+HD506HyjiXikRx6xpnmuWmX1eBIRERHfoEKal9iwYgVNix906HBexwoKCuJQo0YAFK1YcX7BRM5g9erVtGvXjnbt2gEwYsQI2rVrxzPPPANY0yE3b97MDTfcQOPGjbnyyis5ePAgP//8My1atDjtcQMCApg8eTLTpk2jZs2aXHPNNYA1pfD9999n1qxZtGrViosuuohZs2a5ZbRLREQES5Ys4fLLL6dx48Y89dRTvP766/Tv3/+cjudwOFiwYAEXXngh9957L40bN+bmm29m165dREdHn/I1YWFhjB8/no4dO9KpUyd27drFggUL8PPzO6fjnc7MmTO58847eeyxx2jSpAlXX301K1euLOlmWlhYyNChQ2nWrBn9+vWjSZMmTJ069Zz+HMRzBNoF115PPnnSKNGz1qIFzqAgIgoL6XiKDrQiviA6Gu6919p++WWzWURERKTsOJzO8rfafEZGBpGRkaSnpxMREWE6TqmMu+IKxixYQEZ4OBEZGed9vBcGD+aZadMocjjwy8iAMyziLubl5OSQmJhIXFwcISEhpuOIlBn93fYSTidUrgxpabBmDbRvf/7H7NQJVq+GuXPhppvO/3hu4o2fIcqLKVOmMGXKFAoLC9m6datH/DfauRMaNbIaDsTHQ9u2RuOIiIjIGZT2c55GpHkJf3tqXHbTpmfesZSaX3YZSYCf02l9kRERETmd7dutIlpwMPypm+15sUdXF65aRTm8picuMHToUDZu3Mivv/5qOkqJ+vX/qBOPH282i4iIiJQNFdK8QE5ODjWTkwGocMEFZXLMrl278ou9nbdkSZkcU0REfJNz1SoAdkREcMhek/B8FdlTvn+aMIH9+/eXyTFFPNHo0db9p59aI9RERETEu6mQ5gV+++032tlX6yMvvrhMjlm7dm0C7Y57fvYXJBERkVNJ/+47ABYePlxmU+X8OnYEoK3Tydo1a8rkmCKeqG1b6NvXmt752mum04iIiMj5UiHNC6z75ZeSRgMO+4tHWbjuX/8CIGD9+jI7poiI+J685csBOFS/PkFBQWVz0FatKPDzozKww+4IKuKrnnjCup8xAw4cMJtFREREzo8KaV7gHy1a4A/kR0ZCjRpld+DiFW/37IGDB8vuuOIyWkdIfI3+TnuBggKi7PloQd27l91xg4I4aneMPa6R0eLjLroIOneG3FyYPNl0GhERETkfKqR5gcg9ewAIbNcOHI4yO25BhQrkxMZaD+Ljy+y4UvYCAwMBOHbsmOEkImUrLy8PAH9/f8NJ5LQ2biSooIAMoE7v3mV66AK7gU7w1q1lelwRT+Nw/DEqbcoUKIMG7CIiImJIgOkAUgq//Wbdt2xZpofNysrimz17uBk4tmwZFfv0KdPjS9nx9/cnKiqK1NRUACpWrIijDIuqIiYUFRVx8OBBKlasSECAfh15qqJffsEPWAO0szttlpXQrl3hxx+pefgwOTk5hISElOnxRTzJNddAkyawZQu8+y6MHGk6kYiIiJwLfXPxcEePHiV13jyaQJkX0qKiothdqRIcPUrmkiVULNOjS1mrYU/rLS6mifgCPz8/6tSpo8KwB0v/4QcqAQkBATzSuHGZHjvcniraAti8eTNti5ccEPFBfn4wahQMHAgTJsDDD0NwsOlUIiIicrZUSPNw69evJ664V3oZF9IAcpo3h2XLCCoe9SYey+FwEBMTQ/Xq1cnPzzcdR6RMBAUF4eenVQY8mf/vvwOQFhdX5lNwHa1bA9DM4WBjQUGZHlvEE912GzzzDOzbBx9+CIMGmU4kIiIiZ0uFNA+3bfVqLip+0KJFmR8/rGdPWLaMSocOWQt2RESU+TmkbPn7+2s9KRFxj6IiIhITAXj6s8/K/vixsRAZSUB6Oq01NEfKgeBgGDECHnsMXn0V7rkH9CtdRETEu2gYgIdLW7YMgPSwMIiKKvPjN73gApKKHyQklPnxRUTEi+3cCdnZEBxMQPPmZX98h+OP0dYbNpT98UU80H33WR/ptm6FL74wnUZERETOlgppns6ecpkVF+eSw7dr14619nbeL7+45BwiIuKdnMUXWFq0AFc1hGjVCoDMFStcc3wRDxMeDg89ZG2//DI4nWbziIiIyNlRIc3DRe7ZA4B/mzYuOX5MTAxbQ0MBSP/pJ5ecQ0REvFPG0qUAfL1/P0VFRS45R279+gAseustsrKyXHIOEU/z8MMQEgKrV8OPP5pOIyIiImdDhTQPlpqaSoOcHAAqXXCBS87hcDjo8eCDAFTet88l5xAREe90zB4ltt7Pz2VNIYLtC0VNgG3btrnkHCKepnp1q3snWKPSRERExHuokObBfv/9d4rbCwS3b++y8/R44AEA/DdvhsJCl51HRES8S8jWrQA47emXLtGkCQCNgK0bN7ruPCIe5rHHrEYDixbB2rV/v7+IiIh4BhXSPNhFrVsTXfygaVPXnah+fahQAXJzYccO151HRES8R3o6ldLSAAh30ahoAGJjyfX3JwhIXbXKdecR8TBxcTBggLU9frzZLCIiIlJ6KqR5ML/iolZMjLUyrYvk5udzOCYGAOf69S47j4iIeBG7i2YS0KhzZ9edx8+PtOrVAchdt8515xHxQKNHW/effQbbt5vNIiIiIqWjQpons6fUFE97cRWHw8F/ExMBSF++3KXnEhER75C/ejUA64GWLVu69lx2w4EAjYqW8zBlyhSaN29Op06dTEcptdatoX9/KCqC114znUZERERKQ4U0D7bwzTcBOBYb69LzBAUFkRptTSI9rmk1IiLCHxdWtoWEEGOPWnaV4NatAYg6cACn0+nSc4nvGjp0KBs3buTXX381HeWsPPGEdT9rFqSkGI0iIiIipaBCmofKz88n3f4gmF+vnuvPZ496CyoeBSciIuVayM6dAAS0aYPD4XDpuaK6dAHgwuho8vLyXHouEU/Tsyd062YtVTtpkuk0IiIi8ndUSPNQiYmJNLKvykd07Ojy84V27QpApUOHICfH5ecTERHPFpaUBMDDU6e6/FyB9tTR+rm5BAcHu/x8Ip7E4fhjrbSpUyE93WweEREROTMV0jzUtq1baWxvO1zZsdMW160bhwE/pxM2b3b5+URExIMdPGjdHA7Xdo0uVrwW6MGDcOSI688n4mGuugqaNYOMDHjnHdNpRERE5ExUSPNQ+1evJhQodDis/ugu1rJVK36ztwsTElx+PhER8WCbNln39epBxYquP19YGM5atQDY/+OPrj+fiIfx8/tjVNrEiZocICIi4slUSPNQ2XYx62hUFAQGuvx89erVY1NAAABpS5e6/HwiIuK5cuLjAVi0bx+ZmZluOee+8HAAPh071i3nE/E0t9wCtWtbDQf+/W/TaUREROR0VEjzUI4tWwA4XqeOW87n5+fHpQ89BEDl1FS3nFNERDxTWnHHzoAAwu0Cl8s1agRAyJ497jmfiIcJCoLHHrO2X30VCgvN5hEREZFTc0shberUqcTFxRESEkKHDh34+eefT7vv3XffjcPhOOnWokWLkn1mzZp1yn1yfGgcfHhyMgB+7libxtboqqsAcGiNNBGRcq3wN2uyf3bdum47Z1ibNgBUOnqUgoICt51XxJMMGgSVKsH27fD556bTiIiIyKm4vJA2d+5chg0bxpNPPkl8fDw9e/akf//+JNndwP5q0qRJJCcnl9z27NlD5cqVufHGG0/YLyIi4oT9kpOTCQkJcfXbcZu7e/QAoPoFF7jvpMVFu507rR7sIiJSLoXt3g2Af6tWbjtnRLt2ANR3Otm7d6/bziviScLC4OGHre2XXwa7gbuIiIh4EJcX0iZMmMDAgQMZNGgQzZo1Y+LEicTGxvL222+fcv/IyEhq1KhRclu9ejVHjx7lnnvuOWE/h8Nxwn41atRw9VtxK79t2wAIbN7cbedMBnKDgqy5BDt2uO28IiLiQdLSiMzOBqCyfVHHHfzsqZ0NgJ07d7rtvCKe5uGHoUIFWLsWvv/edBoRERH5K5cW0vLy8lizZg19+vQ54fk+ffqw3F5/5e9Mnz6dyy67jLp/mV6SlZVF3bp1qV27NldeeSXx9sLIp5Kbm0tGRsYJN49WWAi7dlnbDRu67bQ5ubkk5OVZETZudNt5RUTEg9gdO/cCTTp1ct9569cHoDKwd8MG951XxMNUrWpN8QRrVJqIiIh4FpcW0g4dOkRhYSHR0dEnPB8dHU1KSsrfvj45OZmvv/6aQcWfJmxNmzZl1qxZ/N///R9z5swhJCSEHj16sM0exfVX48aNIzIysuQWGxt77m/KDf47bRrk51Po7w+1arntvHXq1GGbn/VXIm3FCredV0REPMfxNWsA2Ag0a9bMfScODSW9YkUAMs5wcUykPHjsMfD3t0akrV5tOo2IiIj8mVuaDTgcjhMeO53Ok547lVmzZhEVFcW11157wvNdu3bl9ttvp02bNvTs2ZNPP/2Uxo0b8+abb57yOGPGjCE9Pb3ktsfDO4LtWLQIgCMREdanKDfx9/fncPXqABzXlxgRkXLJ+fvvAOQ3akRUVJRbz11gjz6/ICbGrecV8TR168Itt1jb48ebzSIiIiIncmkhrWrVqvj7+580+iw1NfWkUWp/5XQ6mTFjBnfccQdBQUFn3NfPz49OnTqddkRacHAwERERJ9w8mr02TI6BLxIFDRoAEHCaP0sREfFtFe1GA1eMHOn2c1exp5K2DQ93+7lFPM2oUdb9vHmwdavZLOI5Cgth8WKYM8e6Lyw0nUhEpPxxaSEtKCiIDh06sMgeYVVs0aJFdO/e/Yyv/emnn9i+fTsDBw782/M4nU4SEhKI8ZEr2CH791sb9nox7hTcpg0AUQcOqFWUiEh5VLxGpjundRazL+ao4Y0ItGoFV15pfRx77TXTacQTfP451KsHF18Mt95q3derZz0vIiLu4/KpnSNGjOD9999nxowZbNq0ieHDh5OUlMTgwYMBa9rlnXfeedLrpk+fTpcuXWjZsuVJP3v++edZuHAhO3fuJCEhgYEDB5KQkFByTG/mdDqpdPQoACEtWrj9/NW7daMACMnPh+KCnoiIlA/Hj4M9Io2mTd1/fruQlhEfT05OjvvPL+JhRo+27j/4QB/LyrvPP4d//AP27j3x+X37rOdVTBMRcR+XF9IGDBjAxIkTeeGFF2jbti1LlixhwYIFJV04k5OTSUpKOuE16enpzJs377Sj0dLS0rj//vtp1qwZffr0Yd++fSxZsoTOnTu7+u24XGpqKnXsMdpR7du7/fxNWrVie/GDzZvdfn4RETHIHgl2FPguIcH957cLaenx8Wyyu4eKlGcXXAA9ekBeHkycaDqNmFJYCI8+eurJIsXPDRumaZ4iIu7icDrL3/y9jIwMIiMjSU9P97j10lasWEGD7t2pDhAfD23buvX8eXl55F1+OWHffw9vvQVDh7r1/CIiYk7hZ5/hf+ONrASiExOpV6+eewMcPAjVq1MEfDl7NtcVr7buQTz5M4RYfO2/0X//C1ddBeHhkJQEbu4BIh5g8WJrGuff+fFH6NXL1WlERHxXaT9DuKVrp5TeocREq4gGEBfn9vMHBQUR1rGj9UCjAUREypW0lSsB2OHnR506ddwfoGpVjgcE4AccWbPG/ecX8UCXXw4tWkBmJrz9tuk0YkJyctnuJyIi50eFNA9zlb0mXFHlyhAZaSZE8bo4mtopIlKuHLOnc6ZVq4afn4GPCA4HaVWqAJBT3PRApJzz8/tjrbRJk6ylDKV8KW0/NR/puyYi4vFUSPM0O3cC4FfcucyAVRkZAGStXm0sg4iIuJ/DXiMt38CI6GK5tWtbWezfhyICN98MderAgQNW4wEpX3r2LN2U3vnzIS3N1WlERESFNE9T/MWhfn1jETbaK5WGpadDdraxHCIi4l4RKSkABJ2iY7a7+NsXkoIPHDCWQcTTBAbCY49Z26++CgUFZvOIe23cCFlZp/6Zw/HH9uTJ0LgxTJ8ORUXuySYiUh6pkOZhvpk6FYCMqlWNZWjQsSOHih9s336mXUVExFekpRFhzxmr0rWrsRgVmzUDoHJ6OkX6JihnYcqUKTRv3pxOnTqZjuISAwdClSrWNdd580ynEXc5dswakVhQAO3agT1ot0Tt2tbfh4ULoUkTq2fLoEHQtSvYy16KiEgZUyHNgxQUFOC0p9UU1q1rLEeTJk3YZm/n/f67sRwiIuJG26x/+dMqVqTNBRcYixHVpg0A3WvXpkDDbuQsDB06lI0bN/Lrr7+ajuISoaHw8MPW9ssvg9NpNo+4x4gR1oi0GjXgm29g1y6rO+fs2dZ9YiJcfz306QPr18Nrr1kdXn/91Sqm3XOPNSVYRETKjgppHmTPnj0Ul88i7S8SJlSrVo2kwEAAjvroh1EREfmLrVsBiOrYkSZNmhiLUTy1M/rYMYKCgozlEPFEDz0EFStCQgIsWmQ6jbjavHkwbZo1ffPDD6F6dfD3h1694JZbrHt//z/2DwqypgBv2QJ33WU9N2uWNd3zjTcgP9/AmxAR8UEqpHmQXYmJJYU0P4MLPTscDtKqVQMgZ8MGYzlERMSN7BFpNG5sNkfxiOzDh0+/KJBIOVWlCtx3n7X98stms4hr7d5tTdEEq2vrZZeV/rUxMVYBbfly6NABMjKskW1t2sB337kkrohIuaJCmgc5sHEjocUPYmNNRiHP/iLjp65pIiLlQlZ8PAA5BpcWACAykqLISAB2/fST2SwiHmjECAgIsKb1rVplOo24QkEB3Hab1YGzSxd44YVzO063btY6ae+9B1WrwqZN0Ls33HCDNUVURETOjQppHiTTXo8srUIFCAkxmiWoeXMAIlNTjeYQERH3SLe/kc9cutRwEkixfwd+/fbbhpOIeJ46dawiC8D48WaziGu88AIsWwYRETBnjtW19Vz5+1sj27ZuhUcesR5//jk0awbPPQd2jxkRETkLKqR5kHy7Q2Z25cqGk8Btzz0HQER2tqbWiIj4OqeTSoesfs0VDK7RWSy3Rg1rY/dus0FEPNSoUdb9/PmwebPZLFK2Fi+GF1+0tqdNg7Ja7aVSJZg0CeLjrbXVcnLg+eetgtq8eWpeISJyNlRI8yBhR44AkBcTYzgJhNWubY0BB7ALfCIi4qMOHKBiQQGFQNXOnU2nwVGvHgAhKSlmg4h4qObN4eqrreLHq6+aTiNl5dAha7Sh0wn33gs331z252jVCn74AT791FpJZvdu+Mc/rCmfGzeW/flERHyRCmke5M6LLgIg9oILDCexNWpk3RcvQC0iIj7JaXfs3A00sKf2mxTSrBkAUWlpZoOIeLAnnrDuP/wQ9u0zm0XOX3HxbP9+aNIEJk923bkcDrjxRmvNtKefhuBg+P57aN0ahg+H9HTXnVtExBeokOZJ7CksAfXrGw5i+fXoUQAOLFtmOImIiLhS5po1AGwF4gx2jS4W1bo1ADULCkhTMU3klLp1g549IT8f3njDdBo5X1OmwFdfQVAQfPIJhIb+/WvOV2iotR7bxo1wzTVQWAgTJ1rNm2fOhKIi12cQEfFGKqR5kqQk6950xzRbvL022rH16w0nERERV8pYvRqA5LAwQgw3uwEIadoUgHrAbq2TJnJaxaPSpk0D+/qneKF162DkSGv71VehbVv3nr9+ffjiC/jmG2s0XGqqNTquWzd1hhURORUV0jzEpk2bOLpunfWgTh2zYWz59ho1ATt3mg0iIiIuVWSvVp5ds6bhJDb79080sE/LC4icVv/+1ppXWVkwdarpNHIusrOttdByc+HKK+Hhh81l6dsX1q+3inlhYVYRrUsXGDgQDhwwl0tExNOokOYhdv7+O5Xy860HHjIiLbhFCwDCU1MNJxEREVeqnpEBQPNrrjGcxBYVRZ49Mq5lRIThMCKey+GA0aOt7UmT4Phxs3nk7D36qNV5tWZNazqlw2E2T1CQNTpu61a4807ruRkzrOmeEydaU4lFRMo7FdI8RJo9ffJ4QABERZkNY6tkd26LOn4cMjMNpxEREZdwOgmxVyq/5P77DYexORwE2Q1v6miRHpEzGjDAGsR58KBViBHvMXcuTJ9uFc8++giqVjWd6A8xMfDBB7B8OXToABkZViOCtm2txgQiIuWZCmke4viWLQCkRUaavxRlq9emDSVj0bZvNxlFRERcJTnZGsbi5+cxI6KBP5Y52LPHbA4RDxcQAI89Zm2/+ioUFJjNI6WTmAjF1y7++U+4+GKzeU6nWzdYuRLee88q9G3cCJddBjfcALt2mU4nImKGCmkeosj+TZRTrZrZIH/SqFEjistnx4rXbxMREZ/i3LEDgLwaNSj085yPBfk1agCw6+efDScR8Xz33msVOXbtgv/8x3Qa+Tv5+XDrrdYor27d4LnnTCc6M39/GDTImu758MPW488/h2bN4PnnNaVYRMofz/nEXM4F7d8PQFFsrOEkf4iIiGBvhQqAOneKiPiqzIQEAJbs30++By1+kxoUBMDKefMMJxHxfBUrwiOPWNsvvwxOp9k8cmbPPgu//AKRkTB7tjWq0BtUqgSTJ0N8PPTqBTk5VhGwWTOrsKa/dyJSXqiQ5iHCjhwBKFkTxlPcYK9gW1U91UVEfFL62rUAHAgLI8Re4N8ThDZtCkCVY8co0Fw1kb81dCiEhlpdF7/5xnQaOZ3vv7eKnWBNl7SbFHuVVq3ghx+sNd5q14bdu62pnn36WFM/RUR8nQppHqCoqIhahYUAhDVvbjjNifybNLE2tm0zG0RERFwif/NmALLtqZSeIsLuHB0LJCcnmw0j4gUqV4YHHrC2x483m0VO7eBBuOMOa+TWfffBjTeaTnTuHA646Sar4+hTT0FwMHz3HbRpAyNGQHq66YQiIq6jQpoH8PPzo1vNmgBEtWljOM1fFI+QU7MBERGfFJiUBIAzLs5wkhP52Y0PYoG9ajggUirDh0NgIPz0kzV1UDyH0wl33231d2nWDCZONJ2obISGwtix1ki0a66xml288QY0bmx1kVXjZRHxRSqkeYLCwpKuZA5P6pgGrMvMtDYOHIBjx8yGERGRMhdx+DAAFVu2NJzkL2rXBqAicMDubC0iZ1a7Ntx+u7WtUWmeZdIkWLDAGrk1d661rp0vqV8fvvgCvv7aKqKlplpNMLp3h19/NZ1ORKRsqZDmCZKTrcs3/v5gj0zzGJUqUbI6WmKiySQiIlLWMjOJzM0FoErnzobD/EVICBnBwQBk/v674TAi3uPxx61pd198AZs2mU4jAGvXwqhR1vaECdYaY76qXz/YsAFefRXCwmDlSujcGQYOtIprIiK+QIU0D/DFm28CkBkZaRXTPEj9+vXZaW9nb9hgNIuIiJQtpz1t/yBQr3Vrs2FOISMyEoDcHTsMJxHxHs2aWVPsAF55xWwWgawsuPlmyM+Ha6+FBx80ncj1goJg5EjYuhXuvNN6bsYMa6TapEnWn4WIiDdTIc0DHFq3DoAjHjjGOzw8nL32iICja9YYTiMiImWpuJCWHxtL/fr1Dac5WQV7nc5LPayjtYins5uu8/HHJauHiCEPP2z17KpdG6ZPt0YLlhcxMfDBB7BsGbRvbzUgGDYM2rWzun6KiHgrFdI8wd69ABRERxsOcmrpVaoAcFxTa0REfIqfPWW/Zs+ehISEGE5zsipt2wIQFxBgNoiIl+naFS66yBr588YbptOUX7Nnw6xZ4OdnFTUrVzadyIzu3WHVKnj3XahaFX7/HS691Opaunu36XQiImdPhTQPEHzwoLURG2s2yGnk2ws+O7RGmoiIbymeMumBo9GAP34vakiNyFl74gnr/t134cgRs1nKox07YPBga/vpp+HCC83mMc3fH+67z5ru+fDDVnHxs8+sqcgvvADHj5tOKCJSeiqkeYCw9HQAgj30i0xA48YAVExJMZxERETK0tG1awE4UqmS4SSnVmQ34DkYH09hYaHhNCLepW9faNMGsrNhyhTTacqXvDy45RbIzISePeGpp0wn8hyVKsHkyZCQYI2aPH4cnn0WmjeH+fPB6TSdUETk76mQZlh+fj5V7Y5p4U2bGk5zapHt2gFQLTMTiooMpxERkbKSZ7f0W2ivleZpnPaI6PTffydV7d7kb0yZMoXmzZvTqVMn01E8gsPxx1ppkyfDsWNm85QnTz8Nv/5qFY0++gg0O/1krVrBjz/C3LnW+nG7dsH110OfPuo2KyKeT4U0w5KTk6ltb4c3a2Y0y+lc+/DD4O9PYGEhaFSaiIhvyM+nSnY2AJU6djQc5tT869UDoDawV9M75W8MHTqUjRs38uuvv5qO4jFuvBHi4uDQIatrorjet9/+0S11+nSoU8dsHk/mcMBNN8HmzfDkk1a3z+++g9at4bHHrOYEIiKeSIU0w9KPHqWmve3noWukERj4x6eAnTvNZhERkbKxezcBwHEgpn1702lOrVYtioAQIFUNb0TOWkAAjBxpbb/2mtV8QFznwAG4805r+8EH4brrzObxFqGh8OKLsHEjXH01FBTAhAnQpInVrEETYkTE06iQZlirmBiCAafDYfWI9lTF67epkCYi4hOObdgAwE4gzkPX6CQoiHS7m2jmxo2Gw4h4p3vugWrVrO6Ic+eaTuO7iorgrrusYlrLlvD666YTeZ8GDeDLL+Hrr6FxY+vP8p57rK6fGmgqIp5EhTTT9u0DwFG9ujWe2UP9ZE+p2bFokeEkIiJSFo6sWQPAnsBAIiIiDKc5vYzISAByizuMishZqVABhg2ztseP12LurvLGG7BwIYSEwCefWH/ucm769YMNG+DVVyEsDFauhC5dYNAg0HKZIuIJVEgzbe9e67527TPvZ9gue5XUgi1bDCcREZGycPy33wA4Wrmy4SRnlletmrWRlGQ2iIgXe/BBqyDx22+wYIHpNL5n9WoYM8banjgRWrQwGscnBAVZ05K3boU77rAKwNOnWyPVJk3SNGURMUuFNMM+nzwZgBRPb+djT/sJskfQiYiId3PYI7yO16z5N3uaVdy5M/DAAcNJRLxXpUoweLC1PX682Sy+JjMTbr7ZKuzccAPcf7/pRL4lJgb+/W9Ytgzat7caEAwbBu3awQ8/mE4nIuWVCmmGZW/dCkBGeLjhJGdW0b60Fnn4sOEkIiJSFurYl/M73Xyz4SRnVqVdOwAubtjQcBIR7zZ8uDXK5+efraKElI0hQ2DHDqsv13vvWZ0opex17w6rVsG0aVClCvz+O1x6qdWZVgOWRcTdVEgzLPToUQAC4uIMJzmzSh06AFA5NxeOHTOcRkREzovTSZC9tECra64xHObMqrRuDUBMYaHhJCLerWZNa4ocaFRaWfnwQ/joI/Dzg9mzrZF/4jr+/taIv23b4KGHrD/3zz6Dpk3hhRfg+HHTCUWkvFAhzSCn00ml7GwAQhs1MpzmzOq2bctRe9upzp0iIt7twAHIzraGTtSrZzrNmdWqZd3v3282h4gPePxx63/7r76yRvTIudu2zVp7DuC556BHD6NxypVKleDNNyE+Hi66yCqgPfssNG8OX3yhhhoi4noqpBmUkZFBjaIiACI9fFXSunXrUlw+O2p3ehMREe9UfEHkWJUq5Hn6PCR7DbfCPXs4kJJiOIyId2vSBK67ztp+5RWzWbxZXp61Llp2tlXI+ec/TScqn1q3hh9/tLqk1q4Nu3ZZf7/79YPNm02nExFfpkKaQfv27aO4V2eIh6/9EhQURLrd2a1w2zbDaURE5HykxccD8OuhQzi8pJDmn5dHwuLFZrOI+IDRo6372bO1ttS5GjMG1q6FypWtqZ3+/qYTlV8OBwwYYBXOnnzSWgfw22+hVSur62dGxon7FxbC4sUwZ451r1UDRORcuKWQNnXqVOLi4ggJCaFDhw78/PPPp9138eLFOByOk26b/3JZYd68eTRv3pzg4GCaN2/O/PnzXf02ylzK1q2UtBgonrriwS4ZNAiAan/9jSQiIl4lY906AA6GhhIYGGg4zd+oUIFMO2OmhhiInLfOneGSS6CgACZMMJ3G+3z99R9/bjNnWiOhxLzQUHjxRdi4Ea6+2vr7/frr0LgxfPABFBXB559bqxlcfDHceqt1X6+e9byIyNlweSFt7ty5DBs2jCeffJL4+Hh69uxJ//79SfqbS2BbtmwhOTm55NboT2uIrVixggEDBnDHHXewbt067rjjDm666SZWrlzp6rdTpvzs9V6yAgKsf/09Xf361r3WSBMR8Wp59sjirGrVDCcpnYywMACO79hhOImIbygelfbee6CG7KWXnAx33WVtP/SQVbARz9KgAXz5pVXwbNzYWhL07ruhWTO44Qaw++yU2LcP/vEPFdNE5Oy4vJA2YcIEBg4cyKBBg2jWrBkTJ04kNjaWt99++4yvq169OjVq1Ci5+f9pzPTEiRPp3bs3Y8aMoWnTpowZM4ZLL72UiRMnuvjdlK1e9nTO0CZNDCcppQYNADUbEBHxdv72xazC2FjDSUrnePHSAnv2GE4i4ht694Z27axG7G+9ZTqNdygqgjvvhIMHrbW5Xn3VdCI5k379YMMGay3A0FDYuvXU+xU3Jhg2TNM8RaT0XFpIy8vLY82aNfTp0+eE5/v06cPy5cvP+Np27doRExPDpZdeyo8//njCz1asWHHSMfv27XvaY+bm5pKRkXHCzSPs2weAw0vGhK88eBCAvC1brE8TIiLilcLsf88DGzc2nKR0CqOjAfBXswGRMuFw/DEqbfJka9F8ObNXX4XvvoOKFa3F7UNCTCeSvxMUZHWqnTXrzPs5nbBnD5xh9SERkRO4tJB26NAhCgsLibY/ABeLjo4m5TQfhmNiYnj33XeZN28en3/+OU2aNOHSSy9lyZIlJfukpKSc1THHjRtHZGRkyS3WU67AF48t9pJCWlCDBhQAwUVFoC8zIiLeqbCQyllZAES0aWM4TOkUX3AKPnLEcBIR33HDDdZkgyNH4P33TafxbCtXwlNPWduTJ1vTBMV75OeXbr/kZNfmEBHf4ZZmA3/tCOZ0Ok/bJaxJkybcd999tG/fnm7dujF16lSuuOIKXnvttXM+5pgxY0hPTy+57fGQqSHfzpgBwH4/72ie2qBpU4pXtjv2229Gs4iIyDnat48Ap5M8oEb79qbTlEpIXBwAEZ4yolzEBwQEWKN1wFqUvbTFhvImPR1uucVavP6mm+Dee00nkrMVE1O2+4mIuLSCU7VqVfz9/U8aKZaamnrSiLIz6dq1K9vshZEBatSocVbHDA4OJiIi4oSbJ3DYlz3yq1c3nKR0IiIi2Gd3Tju4erXhNCIick4SEwHIjY6meatWhsOUTuXWrQHo7CkjykV8xF13QXS0Na1tzhzTaTyP0wmDB1v/bNarB9OmWdNixbv07GlNADrTf7tataz9RERKw6WFtKCgIDp06MCiRYtOeH7RokV079691MeJj48n5k+XCLp163bSMb/99tuzOqZpBQUFVMvNBSDci8aHH42MBCB7wwbDSURE5Jzs2gVAeKtWHnNh6e+E2Z27Kx87ZjiJiG8JCbEWWQdrUXYtgXuiWbOs9dD8/WH2bIiKMp1IzoW/P0yaZG2frphWVFTy61FE5G+5fE7hiBEjeP/995kxYwabNm1i+PDhJCUlMXjwYMCadnnnnXeW7D9x4kS++OILtm3bxu+//86YMWOYN28eDz30UMk+jz76KN9++y3jx49n8+bNjB8/nu+++45hxZ8EvEBKSgq17O2oFi2MZjkbOTVqAFCkzp0iIt7JHpFGvXpGY5yVWvZvzJQUtVUTKWMPPggREfD77/C//5lO4zm2bIHirx9jx0K3bmbzyPm5/nr47LM/fp0Uq1EDqla11kfr2hX+ph+eiAjghkLagAEDmDhxIi+88AJt27ZlyZIlLFiwgLp16wKQnJxMUlJSyf55eXmMHDmS1q1b07NnT5YuXcr//vc/rr/++pJ9unfvzieffMLMmTNp3bo1s2bNYu7cuXTp0sXVb6fM7N+5k2r2tp8XTVVx2l+8guyOoyIi4l1SV64EYE9AgOEkZ6F6dZx+flBURJKWFhApU5GR1vRFgJdfNpvFU+Tmws03w7FjcMklMGqU6URSFq6/3hp19uOP1gjDH3+0er+tXw8dOsChQ9Z/708/NZ1URDydw+l0Ok2HcLeMjAwiIyNJT083Nq3lm7ffpt+QIeQ6HAQXFnrNgguLnn2W3i+8QFrlykQdPmw6joiInKWdsbHU37uXWX37cvc335iOU2qHK1SgSk4On48Zw/UvvWQshyd8hpAz03+js5ecbA1SzcuDn3+GCy4wncisYcOsqYBVq8K6dVCzpulE4mrZ2XDbbfDll9bjceNg9Giv+YomImWktJ8hvKNdpA/K3LoVgLQKFbzqX+je990HQFR6utW+SEREvEqEfRGkQtOmhpOcnczwcAByi6emikiZiYmxGg+ARqX9979/rKc1a5aKaOVFaCjMm/fHmoFjxsD996ubrYicmgpphoRlZABwzNtWLa1ZEwIDrTVqNL1TRMS75OVR+fhxACLbtjWb5SzlVKkCQNHevYaTiPimxx+3ru3+739QXntK7d8Pd99tbQ8bBldcYTKNuJu/P7zxBrz5Jvj5wfvvW38H0tNNJxMRT6NCmiH97S8wcd62cqmfH9jr2xXs2GE4jIiInJU9e/ADjgO12rc3neasFEVHA+B/4IDhJCK+qVEj+Mc/rO1XXjGbxYTCQrj9djh8GNq108i88uyhh6wpnqGhsGiRNdX5T0t6i4iokGZMcrJ1HxNjNsc5WHXoEAC7fvjBcBIRETkbWb/9BsAuIK5+faNZzpa/3Zgn5MgRw0lEfNfo0db9nDnWouzlyfjx1uLzoaHwyScQHGw6kZh05ZWwZIn1Ve2336BLF1izxnQqEfEUKqSZsn+/de+FCy8cqFABgGMbNxpOIiIiZ+OI/S1gX1AQYWFhhtOcnZAGDQCIzMoynETEd3XoAJddZo3OmjDBdBr3Wb4cnnnG2n7rLWjc2Gwe8Qzt28PKldCqFaSkwIUX/tGMQETKNxXSDPll/nwADgcFGU5y9nKLR9FpwWcREa9y7PffAUjztvU5gfAmTQCokptLgZrdiLhM8ai099+HgwfNZnGHtDS49VareHjrrX80XRABiI2FpUuhXz84dgyuu85qRuF0mk4mIiapkGZAfn4+Fe1mA/61axtOc/Yc9nSg4JQUw0lERORsNPD3B6Bj8UJIXiSyeXMAmoSF4dQ3GBGXufRSa2Ta8ePW6Cxf5nRanRl374b69eHtt62GCyJ/FhEBX30FDzxg/Z0ZNgweeQR0TUek/FIhzYADBw5QPKEzomlTo1nORWiLFgBEHT1qOImIiJyNwD17AKh38cWGk5y94jXSgrOyCCwsNJxGxHc5HPDEE9b2m2+CL8+mnj4d/vMfCAiw1oWLiDCdSDxVQIBVaH3tNev/kbfegmuv9e3/P0Tk9FRIM+DAnj1Utbf9atUymuVcVLY7vVXNzYW8PMNpRESk1IpXD4+LMxrjnFSqBCEh1nbxOqMi4hLXXWd18Tx6FN57z3Qa19i40RpVBPCvf0HnzmbziOdzOOCxx6zia0gI/O9/1rpp+pUkUv6okGbA0U2bAMh3OKBKFcNpzl7tDh04DvgD+Tt3mo4jIiKlcfy4tVoycNgbh104HORVqwbAjp9/NhxGxLf5+8Pjj1vbEyb43nXTnBy4+Wbrn8XevWHkSNOJxJvccAMsXgzVq0N8vNXRc90606lExJ1USDMga+tWAI6GhHjlQgw1YmJIrVgRgNwtWwynERGR0iiyL3xkABn2WmneJik/H4A1X31lOImI77vzToiJgb17YfZs02nK1siRsGGDVQj597/BT9+I5Cx16QK//ALNmln/j1xwAXzzjelUIuIu+rVhQO7u3QBkhYcbTnJu/Pz8qHvhhQCEHTpkOI2IiJTGkbVrAUgEYuvUMRvmHOVUtRZGcO7daziJiO8LDrYWVQd45RUoKjIap8x8+SVMmWJtf/AB1KhhNo94r7g4WLYMLr7YWivtyith2jTTqUTEHVRIMyDq2DEA8rxwWmeJ4vV1EhPN5hARkVJJS0gA4EDFigQEBJgNc46c9jfegNRUw0nEE02ZMoXmzZvTqVMn01F8xuDBEBkJmzZZXQu93d69cO+91vZjj0G/fmbziPerVMkaiXb33VBYaP0/8/jjvlN4FpFTUyHNgL6tWgHQ1Au7ppWoVw+APHuaqoiIeLZce33OTC++iBNgj6SrkJZmNoh4pKFDh7Jx40Z+/fVX01F8RkQEPPigtf3yy+B0ms1zPgoL4bbb4MgR6NABXnrJdCLxFUFBMGMGjB1rPX7tNbjpJmsNPhHxTSqkmZCcbN3HxJjNcR4Wbd8OQOKPPxpOIiIipWIvK5Dvhd2ii1WoXx+A8Oxsw0lEyo9HH7Wmef7yC3hzn4+XXoIlSyAsDD75xCp+iJQVhwOeego+/tj6uzVvnjXl88AB08lExBVUSDPBBwppAQ0bAlApPd1wEhERKY2K9qd5/0aNDCc5d5FNmgBQJS+PgoICw2lEyocaNeCee6ztl182m+VcLV0Kzz1nbb/9NtgfY0XK3K23wnffQeXKsHIldO1qTY0WEd+iQpqbOZ1ONv3wAwDpoaGG05y7qh07AlA9P9/qIS4iIh6tsn3hI6xFC8NJzl1k06YAxAAHdJlfxG1GjrQ6W379NaxbZzrN2Tl61CpuFBXBHXfA7bebTiS+rmdPWLHCKtju2gXdu4Mm8Yj4FhXS3CwtLY3KubnAH1NUvFFsu3Zk2dvZuswiIuLZMjKItEdwdR4wwHCYc+dXsyYAlYDI4GCzYUTKkQYN4MYbre1XXjGb5Ww4nTBoEOzZYxU1irt1irha48ZWMa1HD0hLgz59YNYs06lEpKyokOZmyXv2UM3eDqpb12iW8xFVqRJ7/Ky/Pge1qK+IiGfbtcu6r1KFKnazGK9UqZK1WBMQlpX1NzuLSFkaPdq6/+QT72na/u678PnnEBho5Q4PN51IypOqVa1pnrfcAgUF1hTpp5/27qYdImJRIc3NjmzahB9QAFCt2t/s7dkOhoUBkOFtY/xFRMqb4m+93lxEA2s15xo1rO2UFLNZRMqZdu2sUTVFRfD666bT/L3ffoNhw6ztl1+2OnWKuFtICHz0ETz5pPX4xRet6cX2BCUR8VIqpLlZ5pYtABwNDrYWm/BiWXYhMG/rVsNJRETkTPbYrfaSAgIMJzl/x6OiANjuze0DRbzUE09Y99OnQ2qq2Sxncvw43HyztYxvv35/FNRETPDzswpoM2ZAQADMng2XXQaHD5tOJiLnyrsrOV4oxx4VkOnFjQaKRbZpA0DNvDzDSURE5EyOrl0LwOpDhwwnOX87jx8HYO2CBYaTiJQ/vXpBp05WgWryZNNpTm/ECPj9d4iOhg8+8Ppr1+Ij7rkHvvkGIiOtTrLdusH27aZTici50K8VNyvYuxeA45UqGU5y/nrcdhsANTU2WUTEo/knJQFQGBtrOMn5K7RHQ/upa6eI2zkcf4xKmzIFMjPN5jmVzz+Hd96xtj/8EKpXN5tH5M8uvRSWL4e6dWHbNuja1SqqiYh3USHNzaraRaei4jVevFlcnHXvLSvOioiUU6H2SLSgJk0MJzl/xZ07g44eNZxEpHy69lpo0sTqRPjuu6bTnCgpCQYOtLZHj4bevc3mETmV5s1h5UprdOfhw1Zx7ZNPTKcSkbOhQpqbXdy0KQCtfOE3e/Gi1ampOLOzjUYREZHTcDqpag8bibCn5HuzoDp1AAjzxKEwIuWAnx88/ri1PWGC5yyaXlAAt91mFfg6d4axY00nEjm96GhYvBiuuw7y8qzOni+9pI6eIt5ChTR3S0627u0r6t4sr2JF0u3towkJJqOIiMjpHDlCWFERANGdOxsOc/5CGzYEoJK9VpqIuN/tt1sfZffvh48/Np3GMnasNUUuPBzmzIHAQNOJRM6sYkX4z3/gscesx08+CYMGQX6+2Vwi8vdUSHO3/fut+5gYsznKQFBwMHvtDnAHV60ynEZERE4lY/16AJKBuvaoaG8Wab+HakVFHDt2zHAakfIpOBiGD7e2X3kF7Fq9MT/9ZHVFBJg2DerXN5tHpLT8/eG112DqVGu054wZ0L+/NbJSRDyXCmlulJOTw4F16wDfaDYAcCQiAoCs334znERERE7l0K+/ArA3MJBQH+gYHdqgAQDRwIHiUd4i4nb33w9RUbBlC3z5pbkchw9bUzqLiqyuiLfcYi6LyLl68EH46isIC4Pvv4cePWDXLtOpROR0VEhzo+S9e6laWAhASPFC/V4u226FVLBtm+EkIiJyKsW/bRpddpnRHGXFYTfrCQSq+eljjIgpEREwdKi1/fLLZtZ2cjqt5gL79lkNECZPdn8GkbJy+eXw889QqxZs3Gh19LSvhYmIh9EnUDc6vGkT/kAh4IiONh2nTDjr1gUgYO9ew0lERORUHLt3AxDVrp3hJGUkMBCqVgXUcEDEtEcegZAQWLXKml7pblOnWqPhgoKsddHCwtyfQaQstW1rdfRs2xYOHICLLoL5802nEpG/UiHNjTK2bAHgaGCgNSHeBwQ1aQJA+KFDhpOIiMgpFc8NKe607AuK1xlNSTGbQ6Scq14d7r3X2n75Zfeee/36PxZpf+UV8JVrBSK1asGSJdYItePH4YYbrA656ugp4jlUSHOj4zt3ApDuA2vUFIts0waAqtnZhpOIiMipHLTnhez2oWmQ2fb6nDuWLjWcRERGjrSuDy9cCPHx7jlndjbcfDPk5sIVV1gj40R8SXi4Ndpy6FCrgPbYY9Z2QYHpZCICKqS5Vb49veZYZKThJGWn9gUXAFC5qAg0xUZExLM4nYTaI4aTg4MNhyk727KyAFi3cKHhJCISFwc33WRtv/KKe845fDhs2mQNTp05ExwO95xXxJ0CAuDNN63RaA4HvP02XH21vnKJeAIV0tzJnoJSUKWK4SBlp0bjxlC5svVArWVERDxK0YEDVHQ6KQJiOnc2Hafs2OuMBmhZARGPMHq0df/pp7Bjh2vP9Z//wHvvWYWFjz6CatVcez4RkxwOq3D8+edQoQJ8/TX07AlanlrELBXS3Ki4Y6dfzZqGk5Sx4nV3VEgTEfEoxdM69wO1GzQwG6YM+deuDUCFtDSzQUQEgDZtoF8/KCqC115z3Xl27YL77rO2x4yBSy5x3blEPMm111oNPaKjYd066NIFEhJMpxIpv1RIc6MLGjYEoE3fvoaTlC2nXUjLWLfObBARETnBkTVrAEgOCcHfR5rcAITExQEQrvU5RTzGE09Y9zNnWt0Gy1p+Ptx6K6SnQ7du8NxzZX8OEU/WqRP88gs0bw7798MFF8CCBaZTiZRPKqS5U/GnCntKiq/4zh7D/9t//2s4iYiI/NmxjRsBSI+KMhukjIU3agRAldxcnGpjJuIRLrwQuna1GgBMmlT2x3/+eVixAiIjYfZsCAws+3OIeLp69WDZMrjsMqvpxlVXwdSpplOJlD8qpLmTvUYaNWqYzVHGikekBe3fbzaIiIicoMjuFp0TE2M4Sdmq1Lw5ANFAmqZ3ingEh+OPtdKmToWMjLI79g8/wEsvWdvvvffHqiIi5VFUlDUS7d57renUQ4daXT3tVYRExA1USHOTw4cPk2mP3CqsWtVwmrJVoWlTACKOHDGcRERE/izYvoDjsKdC+orgunUBiAAO2MVCETHv6quhaVNr+uW0aWVzzEOH4PbbwemEQYPgxhvL5rgi3iwwEN5//48C84QJ1v8bx46ZzSVSXqiQ5iYHEhMJt6ef+NeqZThN2Ypq1w6AaP3LLSLiUVqFhQFwwe23G05SxsLDKQgOBqCWD639JuLt/Pxg1Chr+403rGme58PphHvugeRkaNbMNVNGRbyVw2E13fjkEwgOhvnzoVevPyZBiYjrqJDmJmlbtgCQ43BAeLjhNGWrZrduAEQ6nRxPTjacRkREAHA6cezeDUBkmzaGw5Qxh4MA+6JUeFaW4TAi8me33Qa1alnFrw8/PL9jvfkm/Pe/VpHgk0+gYsWyySjiSwYMgO+/hypV4NdfrbUKf//ddCoR36ZCmptkbd8OwNHgYOvygQ+pHBtLqv2eUlasMJxGREQAq8FNTo41RCQ21nSasle87psuvYt4lKAga70mgFdeOfd1m+Lj4fHHre3XX4fWrcsmn4gv6tHD6ujZuDHs3m09/v5706lEfJcKaW6Sa48KyPLBS2kOh4MDISEAHI2PN5xGREQA9i9bBkBaeLhPtrfLsqet7rTfp4h4jvvug0qVYNs2+OKLs399VhbcfDPk5cE118CQIWUeUcTnNGwIy5dDz57WOoX9+sGMGaZTifgmtxTSpk6dSlxcHCEhIXTo0IGff/75tPt+/vnn9O7dm2rVqhEREUG3bt1YuHDhCfvMmjULh8Nx0i0nJ8fVb+WcFdgdLY9HRZkN4iKBTZoAUPN8F8MQEZEycWDlSgC2FxQYTuIaW+yWgL/rkruIxwkLg4cesrZfftla6+xsPPIIbN1qTRGdPt3nJnOIuEyVKrBokTXFuqAABg6EJ5+0unuKSNlxeSFt7ty5DBs2jCeffJL4+Hh69uxJ//79SUpKOuX+S5YsoXfv3ixYsIA1a9Zw8cUXc9VVVxH/l5FOERERJCcnn3ALsUdFeSK/AwcAKKhSxXAS12jaty8ANTy4mCkiUp7kbN4MQGblyoaTuEjNmgAEqWO0iEd6+GGoUAFWr4Yffij96+bMgZkzrVnpH39sFQZEpPSCg631CZ95xnr80ktw663Wag8iUjZcXkibMGECAwcOZNCgQTRr1oyJEycSGxvL22+/fcr9J06cyKhRo+jUqRONGjXipZdeolGjRnz11Vcn7OdwOKhRo8YJN09W1b4M4G9/8Pc5cXHWfWKi2RwiImLZtQuAPB/rFF0syF73LdQemSYinqVaNWs0DMD48aV7zc6d8MAD1vZTT8FFF7kmm4ivczjg+edh1ixrdYe5c+HSS+HQIdPJRHxDgCsPnpeXx5o1a3jiiSdOeL5Pnz4sX768VMcoKioiMzOTyn+5op6VlUXdunUpLCykbdu2jB07lnbt2p3yGLm5ueT+acphhoEP3T3q14f162ljj9zyNYWxsfgDxzZtwvdWgRMR8T4V7JHQ/g0aGE7iGhXt9xV5/LjhJJ4nLi4OxznMhRs2bBiPPPKICxJJefXYY/D229ZUszVroEOH0++bnw+33AKZmXDBBfD00+7LKeKr7roL6tSB66+31k/r2hUWLLCaEojIuXNpIe3QoUMUFhYSHR19wvPR0dGklLLL1uuvv052djY33XRTyXNNmzZl1qxZtGrVioyMDCZNmkSPHj1Yt24djRo1OukY48aN4/nnnz+/N3O+7C80/OXPwlfscjhoABTt2IGzqAiHn/pYiIiYVCktDYDQFi3MBnGRSHttzmoFBRQWFuLv7284keeYNWvWOb2uXr16ZZpDpF49q2nAxx9bHTznzj39vk8/DatWQVSUtX+AS7+liJQfF19sFdGuuAJ27IBu3awmID17mk4m4r3c8ivqr1dFnU5nqa6Uzpkzh+eee44vv/yS6tWrlzzftWtXunbtWvK4R48etG/fnjfffJPJkyefdJwxY8YwYsSIkscZGRnE2lNC3Ka4cOjhU1DPVU37v0cYcGT7dirrMoeIiDHOwkJq5OUBUK1TJ8NpXKNS8+YAVAMOpqRQw0ensJ6LizQfTjzI6NFWYeyzz6wunqe45s2iRX9M/5w+3RpBIyJlp1kz+OUXuPpqWLkSLrvM6uh5222mk4l4J5cOG6patSr+/v4njT5LTU09aZTaX82dO5eBAwfy6aefctlll51xXz8/Pzp16sS2bdtO+fPg4GAiIiJOuLlT2tGjHLPXqvHVZgMVKlUi2R6FlrJiheE0IiLlW+bWrQQDBUCtLl1Mx3EJ/+hoigB/4JDdWEFEPE+rVtZImKIieO21k3+emgp33mltDx5sTUETkbJXvTr8+CPccAPk5cHtt8PYsWffVVdEXFxICwoKokOHDixatOiE5xctWkT37t1P+7o5c+Zw9913M3v2bK644oq/PY/T6SQhIYGYmJjzzuwKqTt3UtH+FyrAh6+YHwwNBSAtIcFsEBGRci6iuJNlbCwVwsPNhnGVgADy7AtjdYKCDIfxHps3b+bVV1/lvffeY/ny5UbWjZXyZ/Ro637WLEhO/uP5oiJrDaeUFGjRAiZMMBJPpNyoUAE+/RRGjbIeP/MM3HOPVVgTkdJz+UJWI0aM4P3332fGjBls2rSJ4cOHk5SUxODBgwFr2uWdxZehsIpod955J6+//jpdu3YlJSWFlJQU0tPTS/Z5/vnnWbhwITt37iQhIYGBAweSkJBQckxPk2ZfKc92OCAszHAa18m0R9vlbtliOImISDlnj4IO8NFGA8VC6tYFIEINB0qtf//+5OXlkZaWxrRp0+jVqxdN7PXmRFzlgguge3fry/obb8DixTBnDjz0EHzzDYSEwCefWF/yRcS1/PysqdTTpoG/P3zwAfTrB0ePmk4m4j1cvkbagAEDOHz4MC+88ALJycm0bNmSBQsWUNf+8JucnExSUlLJ/tOmTaOgoIChQ4cydOjQkufvuuuuksVz09LSuP/++0lJSSEyMpJ27dqxZMkSOnfu7Oq3c06yduwA4GhwMKGGs7hSQe3asGsXfvYXOBERMaT43+G4OKMxXC46GjZs+KOhj/ytGjVq8OSTT57wXGFhoaE0Ul44HNaotGuusaZ3vvrqiT+/805o2dJMNpHy6v77oW5duPFGa8pn9+5WR09f/+ggUhbc0lpxyJAh7Nq1i9zcXNasWcOFF15Y8rNZs2axePHikseLFy/G6XSedPtzB6o33niD3bt3k5ubS2pqKgsXLqRbt27ueCvnJMf+QpMV6stlNAiwV4+tmJpqOImISPm27osvANheUGA2iItl2L9Xdy5fbjiJ9+jbty8ffvjhCc+p46m4Q/HUsVOtx/Tee/D55+7NIyLQty8sXQq1a8PmzdCli9WMQETOzC2FtPKucP9+AHIiIw0nca3aF1wAQJPgYMNJRETKt6KdOwHY7+Nrh21NSwNg058uyMmZrVq1iieffJKGDRty6623Mm7cOP773/+ajiU+rrAQhg8/8z7Dhln7iYh7tW5tFc/atYODB6FXL5g3z3QqEc+mQpobOOwpJ/lVqxpO4lp1e/UC7EWu1f5FRMSYypmZAES0bm04iWv52U2Ggu2Cmvy9BQsWkJSUxNq1a3nooYeoUqUK3333nelY4uN+/hn27j39z51O2LPH2k9E3K9mTViyBK66CnJyrOmer76qr3Qip+PyNdIEqhYVARBQs6bhJC4WG2utXpmTY7Vf8tAuqiIivqwwL4+Y/HwAqnno2qFlJahOHQBC7cKhnF5qaipFRUXUqFEDgIiICLp3737GLuoiZeXPnTrLYj8RKXthYTB/vjV69M03rc6eO3bAW29BgKoGIifQiDQ36Go3VmjXv7/hJC4WGEiBXTw7tHq14TAiIuVTytq1BAH5QI327U3HcamK9orIkTk5hpN4rvXr19OiRQtiYmKoVasWtWrV4qmnniI7O9t0NClHSnttVddgRczy94fJk2HSJKtJyLRpcOWVkJFh/byw8I+uu4sXazq2lF8qpLlDcTex6GizOdzg92PHrHuttyIiYsTBX38FIDkgAH8fXyMtonFjAKoWFlLg440VztXAgQOJjo5m6dKlxMfH8+KLL/L111/TsWNHjh49ajqelBM9e1qLmTscp/65w2FNbOjZ0725ROTUHnkEvvgCKlaEhQvhggvg3XehXj24+GK49Vbrvl49NQqR8kmFNHdISbHu7ekUvuxYtWoA5G/bZjiJiEj5lLF+PQCHIiIMJ3G9qCZNAKgKHCr+XSsn2LhxI1OnTqVbt260bt2ae+65h9WrV9OiRQsefvhh0/GknPD3t0a4wMnFtOLHEyda+4mIZ7j6amvdtBo1YMMGeOCBk9c63LcP/vEPFdOk/FEhzcUy0tPJTUoCIL9yZcNpXK/QXq/G337PIiLiXoH2p9zj1asbTuJ6ATVqUIj1Yebw5s2m43ikU408czgcvPTSS3z55ZeGUkl5dP318NlnUKvWic/Xrm09f/31ZnKJyOl16ADLl59+jbTiZgTquivljZYNdLHUbdtoaG8H1q5tNIs7BDVuDN99R9ihQ6ajiIiUS93sRYY63XST4SRu4O9PfmQk/unp1AkONp3GY1xxxRW0adOGtm3bMnjwYIYPH86XX35J9J+WmEhPT6dSpUoGU0p5dP31cM01VnfO5GRrTbSePTUSTcST7d4NZ1o94c9dd3v1clssEaNUSHOxNPsKeYafHxEVKhhO43oRbdoAUDUry3ASEZFyatcuAIIaNTKbw01C6taF9esJt9foFGjVqhVr165l5syZHLDXaa1fvz433XQTbdu2pbCwkJkzZ/LGG28YTlq2pkyZwpQpUyjUsAiP5u+vL9si3kRdd0VOpkKai2Xt2AFAWlAQvr9aDdTo2hWAWoWFHMvMpGJ4uOFEIiLlTGKidW93tPR5NWrA+vV/rEcqvPzyyyXbBw4cID4+noSEBBISEnj77bfZvn07/v7+PP/889xwww0Gk5atoUOHMnToUDIyMoiMjDQdR0TEJ6jrrsjJVEhzsdzduwHIDA01nMQ9Ips3Jx8IAnatWkXjSy81HUlEpNzITk8neNcuAoC8mjXx7Z6dlowKFYgAEn/5hbi77jIdx+NER0fTr18/+vXrV/Lc8ePHSUhIYL3dmEJEROR0irvu7tv3x5pof+ZwWD9X110pT9RswMUK9u8HIKecXBl1BASQXaUKANU1zUZExK32rlxJAJALBNWtazqOW2w6cgSALUuWGE7iPSpUqEC3bt144IEHTEcREREPd6auu2AV19R1V8objUhzMT97bZKCqlUNJ3GfqLZt4fvvifpLlzAREXGtw2vWAJASHExdv/JxrcxhzyUJ1u+cEnFxcThO9W3nbwwbNoxHHnnEBYlERMSbFXfdffRRsJuDl6hYEdq3N5NLxBQV0lysqr3grX/NmoaTuFG9eta9veC1iIi4R9aGDQCkRUZSPsajQVBsLAAVMzMNJ/Ecs2bNOqfX1Sv+/S0iIvIXf+26W60aPPUUrFwJt90GP/0EAaouSDmhv+ou1ik2FjZsoOOVV5qO4jY5MTGEAMnLl6M1J0VE3KfQbnCTU6OG4STuU7F+fQAic3IMJ/EcF110kekIIiLig/7adbdBA2jbFpYvh7Fj4fnnTSUTca/yMe/DJHtqJ9HRZnO40ZbcXAD2LF1qOImISPkSZK/L6SgvHTuBiEaNAKhSUEBRUZHhNCIiIuVHXBxMm2Ztv/giaLlSKS9USHO1lBTrvhyNDohq1w6A6GPHcJ6qtYuIiLhEhL3wfoXmzQ0ncZ/KzZoBUA04mppqNoyIiEg5c/PNcM89UFRkTfG0P4qI+DQV0lwoKyOD/H37gPLTtRMguksXAGo5nRwuHpEnIiIuVzs/H4BK9gWN8iAoJoYCe/vw5s1Gs4iIiJRHkydD48ZWI4L77rM6eYr4MhXSXOjg1q0E2tvB9mLI5UFIvXrkYC3At/eXX0zHEREpH/LzibEb3NTq0cNwGDfy9yc/KgqAmHLSqVRERMSThIXBnDkQGAiffw7vvms6kYhr6ROnC6XZV8aP+vnhCAkxnMaN/PxIrVABgKNr1hgOIyJSTuzda82rCAnBEVO+Wr1UsLtNhmdnmw3igZKSkk65zILT6SQpKclAIhER8UXt28PLL1vbw4bB778bjSPiUiqkuVDWzp0ApAUHG07ifmmVKgFwfNMmw0lERMqJxETrvm5dcDjMZnG34oY+Wk7gJHFxcRw8ePCk548cOUJcOWpKISIirjdsGPTtCzk5cMst1r2IL1IhzYVyd+0CIDM01GwQA/Ls0RBFdjFRRERc61t7HkWSv7/hJO6Xbo+C3qXlBE7idDpxnKKwmpWVRUh5Gi0vIiIu5+cHH3wA1avDhg3w+OOmE4m4RoDpAL6scP9+oHw1GihWo1s3WLOGbuWoW6mIiEnH7eUEDoWGUsdwFnf7/dAhugPbli6lnukwHmLEiBEAOBwOnn76aSpWrFjys8LCQlauXEnbtm0NpRMREV8VHQ3//jf06wdvvQV9+sBVV5lOJVK2VEhzIYc9xaSgalXDSdyv9gUXwFtvUSUjw3QUEZFyoUJyMgB+DRoYTuJ+fvYo6KCjRw0n8Rzx8fGANSJtw4YNBAUFlfwsKCiINm3aMHLkSFPxRETEh/XtCyNGwIQJcM89sG4d1KplOpVI2VEhzYWq2N3TAsrjvxrF667Y01tFRMS1otLSAAht0cJsEAMC7c7YoZmZhpN4jh9//BGAe+65h0mTJhEREWE4kYiIlCcvvQSLF8PatXDHHbBoEZTD1SfER2mNNBfqULMmAJ3L41hWu4Oac/9+jtijJERExDVyc3OplZcHQNXOnQ2ncb+K9sWbCK1qfJKZM2eqiCYiIm4XHAxz5kBoKPz4I7zyiulEImVHI9Jcqbh7WHE3sfKkWjWOORxUdDrZ+t13dL3jDtOJRER8VtKWLTSyt6PatzeaxYTwRta7r5Kff9rF9cuz77//nu+//57U1FSKiopO+NmMGTMMpRIREV/XuDG8+Sbcey88/TRccgl06WI6lcj504g0V0pJse7L44L7DgcH7YWN0+x1WkRExDVS7G6VmX5+OKpUMZzG/So3awZAFSDzyBGzYTzM888/T58+ffj+++85dOgQR48ePeEmIiLiSnffDTffDIWFcMstkJ5uOpHI+dOINBc5npVFUEoK/sDxyEgqmA5kQEbVqpCdTY7dSU5ERFwjaO9eAA6HhxNeDkdjVaxdmwKsDzWHNm4komdP05E8xjvvvMOsWbO4QyPDRUTEAIcD3nkHfvkFEhNhyBD46CPreRFvpRFpLnJw82b8gSIgxF4EubzJt5ssONRwQETEpbpUrw5A3UsuMZzEED8/8ipVAiDa6TQcxrPk5eXRvXt30zFERKQci4yE2bOtZgOzZ8OHH5pOJHJ+VEhzkTR7FNYRPz8cgYGG05gR0LAhABVSUw0nERHxcTt3AuCoX99wEHMq2k1uQrOyzAbxMIMGDWL27NmmY4iISDnXrRs8/7y1PWQIbNtmNo/I+dDUThfJtr/UpAUHU9VwFlPCWrYEoIomwouIuJb9Owe7e2W5VLweafH6pAJATk4O7777Lt999x2tW7cm8C8X9yZMmGAomYiIlDdPPAHffQeLF1vrpS1fDkFBplOJnD2NSHORHHs6Y2ZoqNkgBlXr3BmAWgUFZGdnG04jIuKbnE4nm77+GoDDkZGG05iTFhwMwO5ffzWcxLOsX7+etm3b4ufnx2+//UZ8fHzJLSEhwXQ8EREpR/z9rWmdlSvDmjXw1FOmE4mcG41Ic5HC/fsByC3HX2rCW7cGoAaQm5cH5bioKCLiKkcOH6Z2Xh4Aoa1aGU5jzobUVHoC25cupa7pMB7kxx9/NB1BRESkRO3aMGMGXHstvPoqXHYZ9OljOpXI2dGINBdxHDgAQH7V8jqxE4iKgogIAII11UZExCWS1q4l3N4OadLEaBaTHDExAAQfPWo4iYiIiJzJNddY66QB3HknaElt8TYqpLlIlYICAALtzpXlksPxx3o9xev3iIhImTpkT2VMDQqCkBDDacwJtDtkV8zMNJzE8/z888/cfvvtdOvWjX379gHw4YcfsnTpUsPJRESkvHrtNWjZEg4cgLvvhqIi04lESk+FNBdpay963PXaa80GMSw7OhqATf/7n+EkIiK+6dhvvwFwNCrKbBDDKtoXbiKOHzecxLPMmzePvn37UqFCBeLj48nNzQUgMzOTl156yXA6EREprypUgDlzrGuAX38NkyebTiRSeiqkuUrxVMbiLmLl1Db70sLWb74xnERExDcVbd8OwHF7amN5Fd6wIQCV8/MNJ/EsL774Iu+88w7vvffeCR07u3fvztq1aw0mExGR8q5lSyhuHj16NMTHm80jUloqpLmKvUYa9ois8iqoaVMAIg4eNJxERMQ3BdvNbUqm0pdTlZs1s+6BY1onrcSWLVu48MILT3o+IiKCtLQ09wcSERH5k8GDrcYDeXlwyy2QnW06kcjfUyHNBXKzsymyC0fZ4eF/s7dvi2rfHoDq2dkUaeK7iEiZq2f/21qeO3YChNepQ569fWjjRqNZPElMTAzb7VGLf7Z06VLq169vIJGIiMgfHA54/32oVQu2bIFHHzWdSOTvqZDmAoc2bcIPKAQq2osfl1fVunYFIM7pJLl41ISIiJSZ5naDgUZ9+xpOYpbD35+CypUBqFpYaDiN53jggQd49NFHWblyJQ6Hg/379/Pxxx8zcuRIhhS3TBMRETGoShX46COrqDZ9Onz6qelEImemQpoLpG3ZAsAhPz8cAQGG05gV2KCBVVAEklatMh1HRMS35OdDUpK1Xc6ndsIfDQcqZmQYTuI5Ro0axbXXXsvFF19MVlYWF154IYMGDeKBBx7goYceMh1PREQEgF694J//tLbvvx927TKZRuTMVEhzgewdOwBICw42nMQDBAVx0B4tcfjXXw2HERHxLc6kJKtffEhIuW9uA/yxLmnxOqUCwL/+9S8OHTrEqlWr+OWXXzh48CBjx441HUtEROQEzz4L3bpBejrcdhsUFJhOJHJqbimkTZ06lbi4OEJCQujQoQM///zzGff/6aef6NChAyEhIdSvX5933nnnpH3mzZtH8+bNCQ4Opnnz5syfP99V8c9ajl0+zwwNNRvEQ6RXqQLA8d9/N5xERMS3fGX3ij8QGgp+ujZ2NCgIgD26cHOSihUr0rFjRzp37kxYWJjpOCIiIicJDITZsyEiApYvhxdeMJ1I5NRcPu9w7ty5DBs2jKlTp9KjRw+mTZtG//792bhxI3Xq1Dlp/8TERC6//HLuu+8+PvroI5YtW8aQIUOoVq0aN9xwAwArVqxgwIABjB07luuuu4758+dz0003sXTpUrp06eLqt/S3Cu21wHIjIw0n8QxVO3eG+fPp27Ch6SgiIj4l115U/3BEBOW7R7Rl3YED9AJ2rlhBeV6hdMSIEYwdO5bQ0FBGjBhxxn0nTJjgplQiIiJ/r149mDbN6uD5r3/BZZfBKZpPixjl8kLahAkTGDhwIIMGDQJg4sSJLFy4kLfffptx48adtP8777xDnTp1mDhxIgDNmjVj9erVvPbaayWFtIkTJ9K7d2/GjBkDwJgxY/jpp5+YOHEic+bMcfVb+lsOe0pJftWqhpN4hip2IS3i0CHTUUREfIqfPQK64BQXpsojhz29NfDoUcNJzIqPjyc/P79kW0RExJvcfDN8+y3MnGlN8Vy3Dux+QiIewaWFtLy8PNasWcMTTzxxwvN9+vRh+fLlp3zNihUr6NOnzwnP9e3bl+nTp5Ofn09gYCArVqxg+PDhJ+1TXHz7q9zcXHJzc0seZ7h4EeIq9mTuwNq1XXoer1G/vnVvrx0nIiJlIzQ1FYCgpk0NJ/EMIXazgWrlvGvnjz/+eMptERERbzF5MixbBlu3wqBBMG+e1dVTxBO4dEGVQ4cOUVhYSHT0iRNOoqOjSUlJOeVrUlJSTrl/QUEBh+wRTafb53THHDduHJGRkSW32FjXTvho1a0b1KhBj3/8w6Xn8RoNGgCQuX49aWlpZrOIiPiIoqIiqmVmAhDZtq3ZMB6iyzXXQPXqNOrY0XQUjzFu3DhmzJhx0vMzZsxg/PjxBhKJiIj8vbAwmDPHWjdt/nx4913TiUT+4JaViR1/KR07nc6Tnvu7/f/6/Nkcc8yYMaSnp5fc9uzZc1b5z9q770JysjUmVUpGpIVnZbEtIcFsFhERH7F//37q2b8fq3XubDiNh7jwQqtj55dfmk7iMaZNm0bTU4xYbNGixSmbOYmIiHiK9u3h5Zet7WHDQL3rxFO4tJBWtWpV/P39TxoplpqaetKIsmI1atQ45f4BAQFUsbs/nm6f0x0zODiYiIiIE27iRpUqkRlgzSJOXbnScBgREd+wa906qtjbAY0aGc0inislJYWYmJiTnq9WrRrJyckGEomIiJTesGHQty/k5FgNCHJyTCcScXEhLSgoiA4dOrBo0aITnl+0aBHdu3c/5Wu6det20v7ffvstHTt2JDAw8Iz7nO6YYt5hu4Np1vr1hpOIiPiGsIMHAcgMDobwcMNpxFPFxsaybNmyk55ftmwZNWvWNJBIRESk9Pz84IMPoHp12LABHn/cdCIRN3TtHDFiBHfccQcdO3akW7duvPvuuyQlJTF48GDAmna5b98+/v3vfwMwePBg3nrrLUaMGMF9993HihUrmD59+gndOB999FEuvPBCxo8fzzXXXMOXX37Jd999x9KlS139duQcHYuJgcOHKdy61XQUERGf0NYeXR3epo3hJOLJBg0axLBhw8jPz+eSSy4B4Pvvv2fUqFE89thjhtOJiIj8veho+Pe/oV8/eOst6N0brr7adCopz1xeSBswYACHDx/mhRdeIDk5mZYtW7JgwQLq1q0LQHJyMklJSSX7x8XFsWDBAoYPH86UKVOoWbMmkydP5oYbbijZp3v37nzyySc89dRTPP300zRo0IC5c+fSpUsXV78dOVcNGsBvvxG0b5/pJCIiviEx0bov7owscgqjRo3iyJEjDBkyhLy8PABCQkIYPXo0Y8aMMZxORESkdPr2hREjYMIEuPdeWLcOatUynUrKK4ezeCX/ciQjI4PIyEjS09O1Xpqb7HrySeq99BLfBwVxaW6u6TgiIl6v4IEHCHj3XRgzBl56yXSccsNbP0NkZWWxadMmKlSoQKNGjQgODjYdyWW89b+RiIicWW4udO8Oa9fCxRfDokXg7286lfiS0n6GcEvXTpEqnToBUCsvj6ysLMNpRES8m9PpZMn06QAciooyG0a8QlhYGJ06daJly5Y+XUQTERHfFRwMc+ZAaCj8+CO88orpRFJeuXxqpwhAeNu2ADQODMSpD/AiIufl0KFD1C0sBCC8fXvDacTTjBgxgrFjxxIaGsqIESPOuO+ECRPclEpEROT8NW5srZN2zz3w9NPWyLSuXU2nkvJGhTRxj9q1ISAAv/x8SEmB2FjTiUREvNaOTZvoZG8HN29uNIt4nvj4ePLz8wFYu3YtDofjlPud7nkRERFPdtddsHAhfPIJ3HorxMdDZKTpVFKeqJAm7hEQAPXqwfbtsHOnCmkiIuchZeVK/IEcPz9CYmJMxxEPM2nSpJJ1PRYvXmw2jIiISBlzOOCdd+CXX6zeS0OGwEcfWc+LuIPWSBO3yaxeHYBlH35oOImIiHfLWrcOgEORkfrUKCdp164dhw4dAqB+/focPnzYcCIREZGyFRkJs2dbzQZmzwZ9xRR3UiFN3GafvTbaru+/N5xERMS7FW7ZAsAxjUaTU4iKiiIxMRGAXbt2UVRUZDiRiIhI2evWDZ5/3toeMgS2bTObR8oPTe0Utwlq2hR+/JGwgwdNRxER8WrBe/cC4GzQwHAS8UQ33HADF110ETExMTgcDjp27Ii/v/8p9925c6eb04mIiJSdJ56A776DxYvhlltg+XIICjKdSnydCmniNpU6dACgRnY2eXl5BOlfOBGRc9K6YkXgj47IIn/27rvvcv3117N9+3YeeeQR7rvvPsLDw03HEhERKXP+/ta0zjZtYM0aePJJePVV06nE16mQJm4TZRfS6gO7d++mUaNGZgOJiHip5vaFiJoXXmg4iXii9evX06dPH/r168eaNWt49NFHVUgTERGfVbs2zJgB114Lr70GvXtDnz6mU4kv0xpp4jYOewpSNWDX+vVmw4iIeKvCQqv7MUDDhmaziEf6c7OBn376iby8PMOJREREXOuaa6x10gDuvBNSU83mEd+mQpq4T3g4aXbDgSOrVhkOIyLinTI3bYK8PAgMhNhY03HEA6nZgIiIlEevvQYtW8KBA3D33aBff+IqmtopbnW0ShWi9u8nZ8MG01FERLzSVxMncitwIDSU6NMsIC/lm5oNiIhIeVShAsyZA506wddfw+TJMGyY6VTii1RIE7eq1q0bzJvHrZ07m44iIuKV8jdtAiCjWjWiDWcRz6RmAyIiUl61bAkTJljTPEeNgosugnbtTKcSX6NCmrhVWLt2MG8egbt2mY4iIuKVgpKSACiqX99wEvFk/fr1A1CzARERKXcGD4Zvv4UvvoBbbrG6eYaGmk4lvkRrpIl7FXfq3LbNbA4RES8VaS8iH9y8ueEk4g1mzpxJQkICt99+O927d2ffvn0AfPjhhyxdutRwOhERkbLncMD770OtWrBlCzz6qOlE4mtUSBP3sjvMZaxdy+7duw2HERHxLtnZ2dTKyQGgsqbISynMmzePvn37UqFCBdauXUtubi4AmZmZvPTSS4bTiYiIuEaVKvDRR1ZRbfp0+PRT04nEl6iQJu5lj0iLyMlh0y+/GA4jIuJdtm/bRkN7O6J9e6NZxDu8+OKLvPPOO7z33nsEBgaWPN+9e3fWrl1rMJmIiIhr9eoF//yntX3//aDVhaSsqJAm7hUeTlpwMABHVq40HEZExLskrVpFKFAIUK+e2TDiFbZs2cKFF1540vMRERGkpaW5P5CIiIgbPfssdOsG6elw661QUGA6kfgCFdLE7dKqVQPg+IYNhpOIiHiXuKIiADIrVYKgIMNpxBvExMSwffv2k55funQp9dWwQkREfFxgIMyeDRERsGIFvPCC6UTiC1RIE7fLj4sDwG/nTsNJRES8S8uQEACiOnQwnES8xQMPPMCjjz7KypUrcTgc7N+/n48//piRI0cyZMgQ0/FERERcrl49mDbN2v7Xv+Cnn4zGER8QYDqAlD/BzZvDzz8TkZJiOoqIiHcpHlnUsOGZ9xOxjRo1ivT0dC6++GJycnK48MILCQ4OZuTIkTz00EOm44mIiLjFzTfDt9/CzJlw++2wbh1Urmw6lXgrjUgTt4vq1AmAmseOcfz4ccNpRES8R3rx4vANGpgNIl7lX//6F4cOHWLVqlX88ssvHDx4kLFjx5qOJSIi4laTJ0PjxrB3LwwaBE6n6UTirVRIE7cLtzvNNQISExPNhhER8RKHDx9m69dfA5AbG2s4jXibihUr0rFjRzp37kxYWJjpOCIiIm4XFgZz5ljrps2fD+++azqReCtN7RS3czRqBEBVoGpMjNkwIiJeYuuWLTS1t4ObNzeaRbxLWloa06dPZ9OmTTgcDpo1a8bAgQOJjIw0HU1ERMSt2reHl1+Gxx6DYcPgggugRQvTqcTbaESauF9YGNSoYW2fopOYiIicbPeaNVQCikBrpEmprV69mgYNGvDGG29w5MgRDh06xBtvvEGDBg1YWzxVWEREpBwZNgz69oWcHLjlFtBqQ3K2VEgTM+xRaWzbZjaHiIiXyPj1VwCOhoVBhQqG04i3GD58OFdffTW7du3i888/Z/78+SQmJnLllVcybNgw0/FERETczs8PPvgAqleHDRvg8cdNJxJvo0KaGJFWrRoACyZNMpxERMQ7FGzcCEBWzZqGk4g3Wb16NaNHjyYg4I/VPAICAhg1ahSrV682mExERMSc6Gj497+t7SlT4P/+z2we8S4qpIkR2fYXwWPr1hlOIiLiHUKSkgBwFo/oFSmFiIgIkuy/O3+2Z88ewsPDDSQSERHxDH37wogR1va998K+fWbziPdQIU2MqNylCwCxubmkpaWZDSMi4uGKioqocvgwABXbtTOcRrzJgAEDGDhwIHPnzmXPnj3s3buXTz75hEGDBnHLLbeYjiciImLUSy9ZDQgOH4Y77oDCQtOJxBuoa6cYUaFVKwAaAtu2baNTp05mA4mIeLD8/Hy6V60KqalU7trVdBzxIq+99hoOh4M777yTgoICAAIDA3nwwQd5+eWXDacTERExKzgY5syximk//givvAJjxphOJZ5OI9LEDLvjXBVgd3y82SwiIh4uOCCAaunpAAQ0b244jXiToKAgJk2axNGjR0lISCA+Pp4jR47wxhtvEBwcbDqeiIiIcY0bw1tvWdtPPw2//GI2j3g+FdLEjNBQjlasCMDRVasMhxER8XBJSZCbC0FBUKeO6TTiRcaNG8eMGTOoWLEirVq1onXr1lSsWJEZM2Ywfvx40/FEREQ8wl13wc03W1M7b70V7OuXIqekQpoYk1mjBgD5dic6ERE5tV2LFgFQ1KAB+PsbTiPeZNq0aTRt2vSk51u0aME777xjIJGIiIjncTjgnXegXj1ITIQHHwSn03Qq8VQqpIkxRfXrAxCVmmo4iYiIZ/tm0iQAdmsqnpyllJQUYmJiTnq+WrVqJCcnG0hUetdddx2VKlXiH//4h+koIiJSDkRGwuzZ1jXLOXPg3/82nUg8lQppYkytSy4B4NYOHQwnERHxbBXtfuz+zZoZTiLeJjY2lmXLlp30/LJly6hZs6aBRKX3yCOP8G99ixERETfq1g2ef97aHjoUtm41m0c8kwppYkyg3bmTzZvNBhER8WB5eXnUsBfqCO/Y0XAa8TaDBg1i2LBhzJw5k927d7N7925mzJjB8OHDue+++0zHO6OLL76Y8PBw0zFERKSceeIJ6NULsrOt9dLy8kwnEk+jQpqY06SJdb91KxQVmc0iIuKhEhMTaWxvR3XqZDSLeJ9Ro0YxcOBAhgwZQv369alfvz4PP/wwjzzyCGPGjDnn4y5ZsoSrrrqKmjVr4nA4+OKLL07aZ+rUqcTFxRESEkKHDh34+eefz+OdiIiIuIe/P3z0EVSuDGvWwJNPmk4knkaFNDEnLo5Cf3/IyeHziRNNpxER8UjbN2yguE+no/gChEgpORwOxo8fz8GDB/nll19Yt24dR44c4Zlnnjmv42ZnZ9OmTRveeuutU/587ty5DBs2jCeffJL4+Hh69uxJ//79SUpKKtmnQ4cOtGzZ8qTb/v37zypLbm4uGRkZJ9xERETOR61aMGOGtf3aa/Dtt2bziGcJMB1AyrGAAA5GRVHj8GGSFy+GESNMJxIR8TgHli/HD8gKDCSsWjXTccRLhYWF0akMRzT279+f/v37n/bnEyZMYODAgQwaNAiAiRMnsnDhQt5++23GjRsHwJo1a8oky7hx43i+eEEbERGRMnLNNTBkCEydCnfeCevXQ/XqplOJJ9CINDEqt25da0PrpImInNKxhAQA0qtXt3qzi3i4vLw81qxZQ58+fU54vk+fPixf/v/t3Xd0VNXexvHvpBMgQwkhNOkQQxGkgxSvGFSKijRRRF9FkS6CIqiABQQFL0qwl6sUuSpcLIAgHaWEElogIB1J6CShpZ73jxO4N4KQAMmemTyftWZlz5kzk2f2QObMb/bZ+/eb/vteeuklEhISLl0OHjx403+HiIjkT++8AzVrwpEj0LOnZiQSmwppYpR3zZoAFMrhaRwiIvnFvZUrA+CX+fdSxNUdP36c9PR0SpYsmWV7yZIliY+Pz/bjtGnThs6dOzN37lzKli1LVFTUFffz9/cnKCgoy0VERORmKFAAZsyAgACYPx8mTTKdSFyBCmliVNFGjQAod/YsSUlJhtOIiLieyunpAJRo1sxwEpGccfxlBKVlWZdtu5pffvmFY8eOce7cOQ4dOnRTT00VERHJrpo1YeJEu/3ii7Bxo9k8Yp4KaWJUwXr1AAgDduj0ThGRy8XG2j+rVbv6fiIuIjg4GG9v78tGnx09evSyUWoiIiLuoHdveOABSE2Fbt3gzBnTicSkXC2knTp1ih49euB0OnE6nfTo0YPTp0//7f6pqam8+OKL1KpVi4IFC1K6dGkee+yxy1ZvatWqFQ6HI8ulW7duuflUJLdkrkBXGtit0r6ISBb79+0jZfNm+0pYmNkwItnk5+dHvXr1WLhwYZbtCxcupGnTpoZSiYiIXD+HAz791F7Nc+dOGDjQdCIxKVcLad27dyc6Opr58+czf/58oqOj6dGjx9/uf+7cOTZs2MArr7zChg0bmDVrFjt37qRDhw6X7durVy/i4uIuXT766KPcfCqSW4oUIaFAAQD89u41HEZExLUs/uYb/M6cIQM0Ik1cypkzZ4iOjiY6czGMvXv3Eh0dzYEDBwAYPHgwn376KZ9//jnbt2/nueee48CBA/Tu3dtgahERketXvDhMnWoX1T7/HP79b9OJxBSf3Hrg7du3M3/+fFavXk2jzHmwPvnkE5o0aUJsbCzVM0ci/S+n03nZt5fvv/8+DRs25MCBA9xyyy2XtgcGBhIaGppb8SUPFW7QAJYvp2ONGqajiIi4lKS1awE45XRSPPNLBxFXsG7dOu68885L1wcPHgxAz549+fLLL+natSsnTpzgtddeIy4ujpo1azJ37lzKX1ytW0RExA21agXDh8Obb8LTT0PDhlChgulUktdybUTaqlWrcDqdl4poAI0bN8bpdOZo6fOEhAQcDgdFihTJsn3atGkEBwdTo0YNhgwZctWJ6pOTk0lMTMxyEdfhdfF0Jc2RJiKShbV9OwBnVXwQF9OqVSssy7rs8uWXX17ap0+fPuzbt4/k5GTWr19PixYtzAUWERG5SUaOhCZNICEBuneHtDTTiSSv5VohLT4+npCQkMu2h4SEZHvp8wsXLjBs2DC6d++eZSnzRx55hBkzZrB06VJeeeUVvv/+ezp27Pi3jzN27NhL87Q5nU7KlSuX8yckuediIe3ihNoiIgJA4YMHAfCpWdNwEhEREREB8PWF6dMhKAhWrYLXXjOdSPJajgtpo0aNumyi/79e1q1bB1y+7Dlkf+nz1NRUunXrRkZGBlOmTMlyW69evWjdujU1a9akW7dufPfdd/z6669s2LDhio/10ksvkZCQcOlyMPODibiIzNN8d8yZQ6yKaSIiACQlJVHu7FkAimiCdhERERGXUaECfPyx3X7jDVi2zGgcyWM5niOtX79+11whs0KFCmzevJkjR45cdtuxY8euufR5amoqXbp0Ye/evSxevDjLaLQruf322/H19WXXrl3cfvvtl93u7++Pv7//VR9DDMockVYhNZX5W7decf48EZH8ZseOHYRntgPr1TOaRURERESy6toVfvkFvvgCHn0UNm2CYsVMp5K8kONCWnBwMMHBwdfcr0mTJiQkJLB27VoaNmwIwJo1a0hISLjq0ucXi2i7du1iyZIlFC9e/Jq/a9u2baSmplKqVKnsPxFxHeXLk+LlRUBGBnFr1sBDD5lOJCJi3O4NG2hw8cqtt5qMIiIiIiJX8N578NtvsHMnPPUUfP+9vaqneLZcmyPt1ltv5Z577qFXr16sXr2a1atX06tXL9q1a5dlxFFYWBizZ88GIC0tjU6dOrFu3TqmTZtGeno68fHxxMfHk5KSAsDu3bt57bXXWLduHfv27WPu3Ll07tyZunXr0qxZs9x6OpKbvL05nVmcPbd+veEwIiKu4R+lSwNwoWhRcDoNpxFxfZGRkYSHh9OgQYNr7ywiInITFCoEM2bY86bNng0ffWQ6keSFXCukgb2yZq1atYiIiCAiIoLatWvz9ddfZ9knNjaWhIQEAA4dOsQPP/zAoUOHqFOnDqVKlbp0ubjSp5+fH4sWLaJNmzZUr16dAQMGEBERwa+//oq3t3duPh3JRSmVKwPgu2uX4SQiIq4h5MQJAALq1jWcRMQ99O3bl5iYGKKiokxHERGRfOT22+Gtt+z2c8/Btm1m80juy/GpnTlRrFgxpk6detV9LMu61K5QoUKW61dSrlw5lmkmP4/jV7curFpFsbi4bC9IISLi0bZvt3/qtE4RERERlzZoECxYYM+Z1q0brF0LBQqYTiW5JVdHpIlkV9E77gCgWloacXFxhtOIiJiVmprKnp9/BiBDC7CIiIiIuDQvL/jXvyAkBLZuhaFDTSeS3KRCmrgE39tuA6CmlxcJp04ZTiMiYtYff/xBeuZ5AY7w8GvsLSIiIiKmlSwJX31ltyMj4YcfzOaR3KNCmriGqlXB15fAjAxuLVTIdBoREaO2b9xIpcy2o0YNo1lEREREJHvatIHnn7fbTzwBf/5pNo/kDhXSxDX4+kK1anZbszOKSD53ZMUKvIGzfn7215siIiIi4hbGjLEXIDh5Enr0gPR004nkZlMhTVxH5qiL9M2bDQcRETHr/IYNACSULg1afEVERETEbfj5wYwZULAgLFkC48aZTiQ3mwpp4jISypYFYObIkddcvVVExJP57d4NaKEBEREREXdUrRpMnmy3X30VVq82m0duLhXSxGUENmwIQNWUFA4dOmQ4jYiIGRcuXCDk5EkACmf+XRQRERER99KzJ3TrZp/a2b27farn0qX2aLWlS3XKpzvzMR1A5CLf2rUBCAeWb95MuXLlzAYSETEgNjaWmpmjcoMaNzacRkRERESuh8MBH35oj0bbuxfKloXz5/97e9myMGkSdOxoLqNcH41IE9dRpQppXl4UBA799pvpNCIiRlSvUIFbvb0BcGR+wSAiIiIi7sfphKefttv/W0QDe0XPTp1g1qy8zyU3RoU0cR2+vpwMDgbgzNq1hsOIiJgRsG8fjvR0KFIEypQxHUdERERErlN6OkyZcuXbLk4LPmiQTvN0NyqkiUtJqVoVAO8dOwwnERExZMsW+2etWlqxU0RERMSNrVgBV5v+27Lg4EF7P3EfKqSJSwmoVw+AYvHxpKssLyL50PLMry2Tq1UznETEvURGRhIeHk6DBg1MRxEREQEgLu7m7ieuQYU0cSlFmzcHoFmRIpw9e9ZwGhGRvHXmzBmSVq0CILV6dcNpRNxL3759iYmJISoqynQUERERAEqVurn7iWtQIU1cinetWgBUPH+eoEKFDKcREclbMTEx1MpsF2rSxGgWEREREbkxzZvbq3P+3WwdDgeUK2fvJ+5DhTRxLZUrg58fnDsH+/aZTiMikqd2rl3LLRev1KxpMoqIiIiI3CBvb5g0yW5fqZhmWfDPf9r7iftQIU1ci48PhIUBcHLZMsNhRETy1qnMmWZPFSpkr9opIiIiIm6tY0f47rsrL8Zevjx06JD3meTGqJAmLic+NBSAGcOGGU4iIpK3rM2bAThToYLZICIiIiJy03TsaJ9wtWQJTJ8Os2fb35nu3w+RkabTSU6pkCYuxz9zta3QY8dISUkxnEZEJO8EHTgAgHedOmaDiIiIiMhN5e0NrVrBww/DAw/AW2/Z2195Rat2uhsV0sTlFGnZEoDalsXOnTsNpxERyRunT5+m0rlzABRt0cJwGhERERHJTU89BQ0bQlISDBliOo3khApp4nIcmSMxKgPb1qwxmkVEJK8UcTq5w+kEoEDDhobTiIiIiEhu8vaGKVPsRQimT4fFi00nkuxSIU1cT4kSnA4MxAs4pr8mIpJf/PknXgkJ9lFV5qIrIiIiIuK56tWDPn3sdt++oJmN3IMKaeKSkipWBCB9wwbDSURE8siWLfbPatXA399sFhERERHJE2+8ASEhsGMHTJxoOo1khwpp4pK8b78dAOe+fViWZTiNiEju+370aADOVa5sOImIiIiI5JUiReDtt+32669D5tpT4sJUSBOXVPzOOwG4KySE9PR0w2lERHJXSkoKyWvXApBcrZrhNCIiIiKSl3r0gObN4dw5GDTIdBq5FhXSxCX5Z060Xe7kSXy89M9URDzb9u3buS1z9G2RzC8SRERERCR/cDjshQe8vWH2bJg713QiuRpVKMQ1Va9uzxF05gzs3Ws6jYhIrtq6di0XlxdwZJ7aLiIiIiL5R82a/x2N1r8/nD9vNI5chQpp4pp8fLBq1ADgj++/NxxGRCR3HVu8GG8gqUABKFXKdBwRERERMWDkSChTBvbsgXHjTKeRv6NCmrisP4ODAfhl/HjDSUREcpe1cSMACZUq2WP7RURERCTfKVwY3n3Xbr/1Fvzxh9k8cmUqpInLCrrjDgDKnjjBuXPnDKcREckdlmVRZN8+AHzq1zcbRsSNRUZGEh4eToMGDUxHERERuW6dOkFEBCQnQ79+kDmNrrgQFdLEZQU1bw5ALWDr1q1mw4iI5JITJ05QOy0NgGJ33WU4jYj76tu3LzExMURFRZmOIiIict0cDpg8Gfz84JdfYNYs04nkr1RIE9d1220AVAK2rVplNouISC4JLlKE2319AfBr1MhwGhERERExrWpVeOEFuz1okL0Gn7gOFdLEdRUtysmgIABOL15sOIyISC6JjcVx4QIUKgRVqphOIyIiIiIuYPhwqFgRDh2C1183nUb+lwpp4tLOVK8OgM+mTYaTiIjkksyFBrjtNvDS27KIiIiIQIEC8N57dnviRNi2zWwe+S8dsYtLC2jaFICShw6RkZFhOI2IyM337fDhACRUrmw4iYiIiIi4knbt4P77IS0N+vbVwgOuQoU0cWnF27QB4N6QENLT0w2nERG5uRITEyl28CAAXrffbjiNiIiIiLiaSZPs0WnLlsG0aabTCKiQJi7Ou2FDAArHxeF77pzhNCIiN9eG9eupm9ku3KKF0SwiIiIi4nrKl4eXX7bbQ4bA6dNG4wgqpImrK17c/ssB/51HSETEQ+z65ReKAaleXlCjhuk4IiIiIuKCnn8eqleHI0fg1VdNpxEV0sTlpdW1x2us+/BDw0lERG6uc8uXA3CsdGnw8zOcRkRERERckb8/REba7chI2LDBbJ78ToU0cXknKlQAYO9332meNBHxKIViYgBI0/xoIiIiInIVd90F3bpBRgb06WP/FDNUSBOXFxwRAUCd9HR27NhhOI2IyM1x6tQpqiYkAFAs8++ciIiIiMjfmTABCheGNWvg889Np8m/VEgTl3dxwYGqwKbM06BERNzdsfh46nvZb8OF7rzTcBoRERERcXWlS8Po0Xb7xRfh+HGzefIrFdLE9RUvzomgIACOL1hgOIyIyM1RLT2dwIwMrEKF7NljRURERESuoX9/qF0bTp6El14ynSZ/UiFN3MLZsDAAvDSrooh4irVrAXDUqwfe3obDiIiIiIg78PGBKVPs9qefwqpVZvPkR7laSDt16hQ9evTA6XTidDrp0aMHp0+fvup9Hn/8cRwOR5ZL48aNs+yTnJxM//79CQ4OpmDBgnTo0IFDhw7l4jMR0wJbtgSgzKFDpKamGk4jInLj0lavthsNGpgNIiIiIiJupVkzeOIJu92nD6Slmc2T3+RqIa179+5ER0czf/585s+fT3R0ND169Ljm/e655x7i4uIuXebOnZvl9kGDBjF79my++eYbVq5cyZkzZ2jXrp1WdPRgxe67D4AGGRls27bNcBoRkRtz4sQJoj/5BIDUOnXMhhERERERtzNuHBQtCtHR8MEHptPkLz659cDbt29n/vz5rF69mkaNGgHwySef0KRJE2JjY6l+lflg/P39CQ0NveJtCQkJfPbZZ3z99de0bt0agKlTp1KuXDl+/fVX2rRpc/OfjBjn1aABGV5elM3IoKTTaTqOiMgN2bBqFS0z275NmxrNIiIiIiLup0QJGDMGnn0WXn4ZOnWCUqVMp8ofcm1E2qpVq3A6nZeKaACNGzfG6XTy+++/X/W+S5cuJSQkhGrVqtGrVy+OHj166bb169eTmppKRETEpW2lS5emZs2af/u4ycnJJCYmZrmImylYEK/bbgPAd/16w2FERG7MwZ9+wg9I8vODChVMxxERERERN9Srlz1LSGIiDB1qOk3+kWuFtPj4eEJCQi7bHhISQnx8/N/e795772XatGksXryYCRMmEBUVxT/+8Q+Sk5MvPa6fnx9FixbNcr+SJUv+7eOOHTv20jxtTqeTcuXK3cAzE2MuzpV3cV4hERE3lbJyJQAnKlcGh8NwGhHPEBkZSXh4OA0076CIiOQT3t72wgMOB0ybBkuWmE6UP+S4kDZq1KjLFgP462XdunUAOK7w4cCyrCtuv6hr1660bduWmjVr0r59e+bNm8fOnTv5+eefr5rrao/70ksvkZCQcOly8ODBHDxjcRXpmQfGu77+mvPnzxtOIyJyfSzLImTXLgB8mjc3nEbEc/Tt25eYmBiioqJMRxEREckz9evbp3cC9O0LKSlm8+QHOZ4jrV+/fnTr1u2q+1SoUIHNmzdz5MiRy247duwYJUuWzPbvK1WqFOXLl2dX5oeO0NBQUlJSOHXqVJZRaUePHqXp38wz4+/vj7+/f7Z/p7gmr8zXt+zRo2xcs4amrVqZDSQich12795NvcwjnJIdOxpOIyIiIiLu7o034NtvYft2+Oc/4YUXTCfybDkekRYcHExYWNhVLwEBATRp0oSEhATWrl176b5r1qwhISHhbwteV3LixAkOHjxIqcxZ8+rVq4evry8LFy68tE9cXBxbt27N0eOK+3FUq0aSry8FgD9mzTIdR0TkumyeO5fyQDrg26yZ6TgiIiIi4uaKFoW337bbo0fDgQNm83i6XJsj7dZbb+Wee+6hV69erF69mtWrV9OrVy/atWuXZcXOsLAwZs+eDcCZM2cYMmQIq1atYt++fSxdupT27dsTHBzMgw8+CIDT6eTJJ5/k+eefZ9GiRWzcuJFHH32UWrVqXVrFUzyUw8HRypUBSF62zHAYEZHrU/3UKQCOlS4NhQoZTiMiIiIinuCxx6B5czh3Dp57znQaz5ZrhTSAadOmUatWLSIiIoiIiKB27dp8/fXXWfaJjY0lISEBAG9vb7Zs2cL9999PtWrV6NmzJ9WqVWPVqlUULlz40n3effddHnjgAbp06UKzZs0IDAzkxx9/xNvbOzefjrgA78zRG8V27sSyLMNpRERyrkZmIS008wsiEREREZEb5XBAZKS9AMGsWTBvnulEnsth5cNqRGJiIk6nk4SEBIKCgkzHkRxI/ukn/Nu3ZzfgvXcvFSpUMB1JRCRnGjaEqCiYPh0efth0GskhHUO4Pr1GIiKSnz3/PEycCJUrw9atEBBgOpH7yO4xRK6OSBO52fxbtCAdqAxEz51rOo6ISI7E7d6NtXGjfUXzeoqIiIjITTZqFJQuDbt3w7hxptN4JhXSxL0EBXG4RAkA0pcuNZtFRCSHlr7zDo60NE4WKAC33GI6joiIiIh4mMKF4d137fbYsXZBTW4uFdLE7RS7/34AHsosqImIuIv0FSsAOFalij2RhYiIiIjITda5M9x9NyQnQ//+kP8m9MpdKqSJ2yl4zz12I/MDqYiIO7Asi5BduwDwbdXKbBgRERER8VgOB0yeDH5+9qID//mP6USeRYU0cT/Nm9s/t2yBkyfNZhERyaZdO3bQICUFgLJduxpOIyIiIiKerFo1GDrUbg8cCGfPms3jSVRIE/cTEkJi6dIA/GfIEMNhRESyJ+abbygKnPX2xq9RI9NxRERERMTDDR8OFSrAwYPw+uum03gOFdLELR0oXx6AtCVLDCcREcmec5krDR+qUAF8fMyGERERERGPFxgI771ntydMgJgYs3k8hQpp4pYK33cfAOUPHCAtLc1wGhGRaytx8chF86OJiIiISB5p3x46dIC0NOjbVwsP3AwqpIlbKtu9OwB1MzLY9NtvhtOIiFydlZZGKy/7LbfMI48YTiMiIiIi+cmkSVCgACxdCjNmmE7j/lRIE7fkXakSxwIC8AH2Tp9uOo6IyFU5tmzB98wZKFyYQhcXTBERERERyQMVKsCIEXZ78GBISDAax+2pkCZu62h4uN1YvNhsEBGRa1m61P7ZvLnmRxMRERGRPDdkiL2S55Ej8OqrptO4NxXSxG0FtG8PQKW9e8nIyDCcRkTk7/3x6acApDZrZjiJiIiIiORH/v4QGWm3J0+G6GijcdyaCmnitso/8QQAddLTSdi713AaEZErO3nsGMUzFxpIqlfPcBoRERERya9at4auXSEjA5591v4pOadCmrgtn/LlsW69FS+gqMrpIuKiNv3rXxQFznh5Ueyuu0zHEREREZF8bMIEKFQIVq+GL74wncY9qZAmbs3RurXdWLTIbBARkb+R9P33AOy55RbNjyYiIiIiRpUpA6NH2+0XX4QTJ8zmcUcqpIl7yyykpcybp3nSRMQlhW7aBIAVEWE4iYhni4yMJDw8nAYNGpiOIiIi4tL694datewi2ksvmU7jflRIE7dmtWhBGuC3bx8x8+aZjiMiksXh2FjqnD8PQMXevQ2nEfFsffv2JSYmhqioKNNRREREXJqvL0yZYrc//dQ+zVOyT4U0cWuOIkXYVbQoAAe//NJsGBGRv9jx4Yf4AYf8/QmqW9d0HBERERERAO64Ax5/HCwL+vSB9HTTidyHCmni9pIaNgQgYMUKw0lERLLyyZy/8VB4uOEkIiIiIiJZjRsHRYrAxo3wwQem07gPFdLE7YU8+igAtY8c4fyZM4bTiIj8V/MLFwCo3KeP4SQiIiIiIlmFhMCYMXZ7xAiIjzebx12okCZur3zXrpx2OCgObP30U9NxRERse/fi2LULfHwo0aWL6TQiIiIiIpd5+mmoXx8SE2HoUNNp3IMKaeL2HL6+bK9QAYAzM2eaDSMictGCBfbPJk0gKMhsFhERERGRK/D2tk/rdDhg6lRYtsx0ItenQpp4hPQ2bQAoGx1tNoiISKYNb7wBQHzt2oaTiIiIiIj8vfr14eIC8336QGqq2TyuToU08QhV+/cnw+Gg6oULcOCA6Tgiks8lnzpF2KFDAJxu0cJwGhERERGRq3vzTShRAmJi4J//NJ3GtamQJh6hZHg4Xk2a2FfmzjUbRkTyve3vv08gcNDbm+qdOpmOIyIiIiJyVUWLwvjxdnv0aDh40GweV6ZCmniOtm3tnz//bDaHiOR7FzLna4ytXh2Hl95qRURERMT1PfYY3HEHnD0Lzz1nOo3r0tG9eIyMe+8FIGX+fNKSkgynEZF8Kz2dqrGxAARotU4RERERcRNeXjBlir0Awfffw/z5phO5JhXSxGNYtWpxyMsLv7Q0Yt9/33QcEcmnDn7/PcXT0zkN1O7Xz3QcEREREZFsq1ULBgyw2/36wYULZvO4IhXSxGN4+/iwrVo1AC5Mm2Y4jYjkV0c+/hiADSEhBBUvbjiNiIiIiEjOjBoFpUvD7t3/nTdN/kuFNPEoPl27AlB1xw5ISTGcRkTyo6rbtwNwvk0bw0lERERERHIuKAgmTrTbY8bYBTX5LxXSxKPU69+fOCAoI4O4qVNNxxGR/CYmBufhw+Dry32TJplOIyIiIiJyXbp0gdatITnZPtXTskwnch0qpIlHKVK8OGtLlwbg5CefGE4jIvlO5mqdtGmDo2hRs1lERERERK6TwwGTJ4OvL8ydC3PmmE7kOlRIE4+T0r49AGXXr4e0NMNpRCTfsCzOffml3dZqnSIiIiLi5qpXh6FD7faAAXD2rNk8rkKFNPE49Z9/nuOAMzWV5AULTMcRkXwied06Ag8c4AKwKzzcdBwRERERkRs2YgSULw8HD8Ibb5hO4xpUSBOPU7FqVaz77wfAX+NPRSSPHHj7bQCWBgRQuW5dw2lERERERG5cYCC8957dnjABMtfVytdUSBOPVKJ/f7vx73/bsyOKiOQmyyJo/nwA4lu2xMtLb68iIiIi4hk6dID27SE1Ffr21cIDOtIXz9SqFZQpA6dPk6pRaSKSy1LXrqVkUhLngMoDB5qOIyIiIiJyU02aBAEBsGQJfPON6TRmqZAmnsnbm7VVqgBweNw4w2FExNPFjR8PwEJ/f5pGRBhOIyIiIiJyc1WsaM+XBjB4MCQkmM1jkgpp4rE21qwJQOmNG+HkScNpRMRjpaRQdO5cAA60aoW3t7fhQCIiIiIiN9/QoVC1KsTHw8iRptOYo0KaeKyW/foRDfhaFme++MJ0HBHxUOk//kjhCxeIA2pfXB9cRERERMTD+PtDZKTdfv99iI42GscYFdLEY4WFhbGkdGkAkqZMMZxGRDyV91dfARDXujXN77zTcBoRERERkdxz993QpQtkZECfPvbP/EaFNPFoBXv1Ih0otWeP1ukVkZvvyBH4+WcAbn/vPa3WKSIiIiIeb+JEKFQIVq2CL780nSbv6YhfPFqH3r35ObN9KnMycBGRm2baNEhPh0aN4NZbTacRydciIyMJDw+nQYMGpqOIiIh4tDJlYNQou/3CC3DihNE4eS5XC2mnTp2iR48eOJ1OnE4nPXr04PTp01e9j8PhuOLl7bffvrRPq1atLru9W7duuflUxE2Fhoayrl49APxnzoQLFwwnEhGPYVmcmjABgM2Zf2dExJy+ffsSExNDVFSU6SgiIiIeb8AAqFnTLqINH246Td7K1UJa9+7diY6OZv78+cyfP5/o6Gh69Ohx1fvExcVluXz++ec4HA4eeuihLPv16tUry34fffRRbj4VcWMNXn6Zk4ULE3j+PHz3nek4IuIpli2j6OHDnAEWh4SYTiMiIiIikmd8feHiVOSffAJr1pjNk5dyrZC2fft25s+fz6effkqTJk1o0qQJn3zyCT/99BOxsbF/e7/Q0NAslzlz5nDnnXdSqVKlLPsFBgZm2c/pdObWUxE31/6BByj2wgv2FRVc5WoyMiApCY4ds3+mpZlOJC4scexYAKYCnZ96ymwYEREREZE81rw59OwJlmUvPJCebjpR3si1QtqqVatwOp00atTo0rbGjRvjdDr5/fffs/UYR44c4eeff+bJJ5+87LZp06YRHBxMjRo1GDJkCElJSX/7OMnJySQmJma5SD7zf/8H3t6wciVs22Y6jZiWmgrr1sF778Fjj0GTJhASAj4+EBRkt4OC7K9ZSpSA+vXh4YdhwgRYsQJSUkw/AzHt0CEKLlwIwLZWrShTpozhQCIiIiIieW/8eChSBDZsgA8/NJ0mb/jk1gPHx8cTcoVTXUJCQoiPj8/WY/zrX/+icOHCdOzYMcv2Rx55hIoVKxIaGsrWrVt56aWX2LRpEwszP9T81dixYxk9enTOn4R4DKtUKY43a0aJ5cu5MG4cAV99ZTqS5LUzZ2DePJgzx15l8RrzNV5y/Lh9Wb8evvnG3la4MEREQLt28OCDoBGx+U5aZCQ+lsVS4N6hQ03HERERERExIiQE3nwT+vaFESOgUycoWdJ0qtyV4xFpo0aN+tsFAS5e1q1bB9gLB/yVZVlX3H4ln3/+OY888ggBAQFZtvfq1YvWrVtTs2ZNunXrxnfffcevv/7Khg0brvg4L730EgkJCZcuBw8ezOGzFnfncDh46cgRAHxmzLBP3RPPZ1mwbh3pTz1FWkgIdOlir7J4+jSngLnAf+rWhX//GzZs4OyuXQRi/2EMBEoAtwH3A8OB1aGh9jtFUhJ8/z088QTpJUuS2q0bLF1q/z7xfCkppH7wAQAzixenTZs2hgOJiIiIiJjzzDNQrx4kJEB++I45xyPS+vXrd80VMitUqMDmzZs5klm4+F/Hjh2jZDbKkytWrCA2NpaZM2dec9/bb78dX19fdu3axe23337Z7f7+/vj7+1/zccSzNR06lLVPPUXDtDQyIiPxurher3iejAz46ScYOxZWr8Y7c/Nu4HtgDrAGqFS1Kp3uuYcHOncGoEBGBuPffx9fX19SUlJITk4mISGB+Ph4NsfFERoRQeN+/WD9ehKmT+fPf/6T8ORkvGfOhJkzOVq2LF7DhhH8zDP2aaLimaZPp0BCAn8CZfr2xdvb+5p3ERERERHxVN7e8MEH0KgRfP01PPkktGxpOlXucVhW7gyh2L59O+Hh4axZs4aGDRsCsGbNGho3bsyOHTuoXr36Ve//+OOPs3Xr1kuj265m69at1KpVi2XLltGiRYtr7p+YmIjT6SQhIYGgoKDsPSFxe2fPnqVfiRJ8cf48KU4nfvHx8JfRjuLezp89y7ohQ6g+axYhR4/aG/38+DEggC+8vSlwzz20aNmSunXrUqNGDQoWLHjdv2vPnj2MHjWKxF9/5Z64OB4FLj7aYX9/TvXuTY133lFBzdNkZGDVqIFjxw4+rFiRdsuXU7ZsWdOpJA/pGML16TUSEREx49ln7XnSatSAjRvtKafdSXaPIXKtkAZw7733cvjwYT7KXCnx6aefpnz58vz444+X9gkLC2Ps2LE8+OCDWcKXKlWKCRMm0Lt37yyPuXv3bqZNm8Z9991HcHAwMTExPP/88xQoUICoqKhsjQzQAVb+9Vz//gyaPJnyYK/Rq5X2PML27dtZ8tJL3PHTT9TOXCrGKlwYR58+MGgQR728KFGiRLZPK8+pP/74g1+mT8f/s8+4/8ABSly8oVo1ePNNrI4dcXjl2toukpfmzIEHHrDnxTtwwF6UQvIVHUO4Pr1GIiIiZpw8CdWr21NMv/02DBliOlHOZPcYIlc/2U2bNo1atWoRERFBREQEtWvX5uuvv86yT2xsLAkJCVm2ffPNN1iWxcMPP3zZY/r5+bFo0SLatGlD9erVGTBgABEREfz66686vUau6Zm+fZmU2U558838sz6vh/rtt98Y2LIlh8LD6TNnDrXT00l0OFjyj3+QuGULvPUWhIYSEhKSa0U0gCpVqtD31Vd5av9+Uv/4g8UdOmAFB8POndC5M0fKl+e5+vWZN28eufjdheQ2y7L/TYH9dZs+oIuIiIiIXFKsmL2KJ8CoUXDokNE4uSZXR6S5Kn1Tmb91a9uWyLlzKQ4wdSo88ojpSHIdPpswgQtDhvAs9jcCqV5e/Hn//ZT78EO8r7BicJ5LTIQJE7AmTMBx9iwAU4EvwsLo++abPPjgg7la3JNcsHw5tGxJmo8PZ7duxXmNKQrEM+kYwvXpNRIRETEnIwNatIDffrNX8Pz2W9OJss8lRqSJuKL+w4fzRdGi9pXXX9eoNDdy/vx5+y/zl1/yxNix9MX+I5Z43334/vEHFWbNco0iGtijlUaPxrF7N0kPP0wG8Cjwnx07WPXQQzSqW5cff/xRI9TcSPro0QB8lpbGgs2bDacREREREXE9Xl4wZYq9AMF338GCBaYT3XwqpEm+06xZM57bvRuKFoXYWMjGyrBiVnR0NG3btmXwP/4BzZvDE0/gdeIEGdWrw+LFBP38M1SsaDrmlZUsSeHp0/GKiiKtfn0KA28DX23axKQOHRg8eLDphJIdS5fivXgxKcDXZcpkmddTRERERET+q3Zt6N/fbvftCxcumM1zs6mQJvmSd9GicLGAoVFpLuvYsWM8/fTTtKpblzZz5zJ59Wr4/XcoWBDefhuvzZvhzjtNx8ye+vXxWbMGvviCjBIlCAN+BUbGxMCff5pOJ1djWWQMHw7AJ0CXF17AR6uxioiIiIj8rdGjoVQp+OMPe+EBT6JCmuRbac8+S3LBgrBjB3z1lek48j9SU1OZNGkSVatUIemTT9gODAC8Abp0sV+zIUPAz89s0Jzy8oLHH8dr1y4YMADLy4siCxZAWBhMmMBLQ4YwYsQIzmbOqSYuYv58vFat4jzwSYkS9OrVy3QiERERERGXFhQEEyfa7TFjYM8es3luJhXSJN/6eeVKRmQWLDKGD4dz5wwnEoA9e/ZQp04dJg8axLeJicwASgFUqwYLF9qn4pYtazjlDXI6YdIkHOvWQePGcOYMDBlC9wkTWD5mDDVq1OCHH34wnVIAMjLIGDECgEjgyVdeoUCBAmYziYiIiIi4ga5d4a677FM7BwwAT5keWoU0ybfat2/P8lq12Ad4xcfDu++ajiRAmeLFeTo+ni3A3YDl72+ffrt5M7RubTrezVW3rr2czaefYhUvTi1gBTB6/3563X8/999/P/v37zedMn/7+mu8Nm4kEfgqNFSj0UREREREssnhgMhI8PWFn38GTxkroEKa5FteXl688uabDM+8njF2LBw5YjRTfmRZFj/++CPp6enw66/4N2jAwJMnCQBo0wbH1q3w8svg7286au7w8oInn8QRGwtPP43lcNATiAXK/vADNcLCeOutt0hJSTGdNP9JSoJhwwD44bbb6DNyJAEBAYZDiYiIiIi4j+rV7Vl5AAYOBE+YxUaFNMnX2rVrx96GDYkCvM6etQs2kmf2799P27Zt6dWhA7saNIC774Zdu+xZKf/9b5g3D6pUMR0zbxQvDh99hGPVKrj9dopgn0q47MIFfnntNY4ePWo4YD40dizEx0Plyjy6Zg29e/c2nUhERERExO28/DKULw/798Obb5pOc+NUSJN8zeFw8Nb48Tx3ccOnn9qrQkquSk9P57333qNueDg1581jJxC2caM9OmvAAHsxgc6d7bHA+U2jRrB2LURGYjmd1AMWX7hA2ddegxMnAHsxBslle/ZgTZhgtydO9NwRkSIiIiIiuSwwECZNstvvvGN/3HNnKqRJvteyZUvKdu3KZ5nXrWefhbQ0o5k82bZt27ijWTMWDhzImnPnGA8EATRsaBeQJk2yl3jJz7y9oU8f+3TPxx7DYVnwySdQvToxgwdT49ZbWbp0qemUnsuy4NlncaSksDU0lMP16plOJCIiIiLi1jp0gHbtIDUV+vZ174UHVEgTAd555x1+bNaMtKAgHJs3w3vvmY7kkb744gu616nDqDVr+BGoClihofDll7BqFahgkVXJkvCvf8Hy5VCzJpw4Qfi77/Kv3bsZcuedPPPMMyQkJJhO6XmmTYMFC7gAPBQfz9Fjx0wnEhERERFxaw6H/TE7IAAWL4aZM00nun4qpIkAZcuW5T8rV+JzceXOV1+F3bvNhvI08fG0/+UX1qel0Qaw/Pxg2DAcO3dCz572aZ1yZc2bw4YNMGECVqFCNAHWAa0+/ph7qlXjxx9/NJ3Qcxw7hjVoEACjgVZPP02dOnVMJhIRERER8QgVK8LwzNX+Bg+GxESzea6XPrmK/K/HH4dWreylRB5/HNLTDQdyb0lJScybOdMuTFapQvDMmfgA1v3349i2zZ7MvXBh0zHdg68vDB6MY8cOePRRAB4Glh09yu4OHXi6Y0ctSHAzDByI48QJNgHTS5Vi3LhxphOJiIiIiHiMoUOhalWIi4ORI02nuT4qpIn8Ly8v3r/9dhIBVq6EiyPUJMfmz5nDhFtuoX63bvD663ZxsmFDWLIEx3/+k39W47zZypSBr7+GDRtIv+su/IBBwNuzZ3Psuec8Yz1pU6ZPhxkzSAOeAiI//pgiRYoYDiUiIiIi4jkCAmDyZLv9/vuwebPZPNdDhTSRvzjk43NpFU9rxAjYssVoHndz5OBBPmnYkOoPPMCo06cpAZwvVw6+/x5Wr7ZH/MmNq1sX719/hQULOFetGk6gxvTp9njpd94h+dQp0wndy7599kIjwOtA9UceoV27dmYziYiIiIh4oIgI6NzZPgHs2WchI8N0opxRIU3kL0aPHs3qW2/lJ8CRkoLVuTOcOWM6lsuzzp1j9aOPkla+PL2ioqgIJBQsSPL771Ngzx7o2NGeYVJurrvvJnD7dpg6FSpVgmPHYOhQEoODWdK+PWnuOvFAXkpLgx49cCQmss7Pjy9KlWLSxfW5RURERETkpps4EQoWhN9/t9dXcycqpIn8RUBAADO++YY+AQEcAhyxsfDMM+69Pm9uOnsW6513OFWsGI2nTaOMZXHMx4eDgwfjPHoU/379wMfHdErP5uUFjzwCO3bAZ59xqmhRSmRkcOdPP3G6eHEODRkC58+bTum6RoywT+UuXJhKv/3GnJ9/pnjx4qZTiYiIiIh4rLJlYdQou/3CC3DypNE4OaJCmsgV1K5dmzc++ohuQBrYcyd9+KHhVC4mMdFeLKBCBRxDh1IsOZkDwIIHHqDIyZOUmzABAgNNp8xffH3h//6PIvHxrOzZkwMOB8FpaZSdMIHEEiVIGTtWoyv/6ttvYfx4u/3ppxSrX5+6deuazSQiIiIikg8MHAg1asDx4/9dzdMdqJAm8jcee+wxaj7zDC9lXrcGDIAlS4xmcgmnTsGoUaSWKWP/tTt+HCpXJuPjj8mIjSVi9mx8tRKnUQ4/P+748kv89u3jo3r12A8EnT2L3/DhpJQpA2+8AadPm45p3rZtZDz+uN28917o0sVsHhERERGRfMTXF6ZMsdsffwxRUWbzZJcKaSJX8c9//pOoFi3YVa8ejrQ0eOgh2LnTdCwzjh2Dl14i45ZbYPRofM+c4Q9fX1I+/xx27MCrVy8qVKtmOqX8j9BbbuGZdevY8v33DClalF2AX2IivPIKlC9vF0KPHTMd04y4ODLuvRevc+dYBPQ4dIjU1FTTqURERERE8pUWLeCxx+yZlJ591l6AwNWpkCZyFQEBASxavJiqK1ZA48b2aKx27fJX8SEuDp5/HqtCBXjrLbzOnGET0AWY+MQTXHjoIc2B5uLadezIyP37mTZiBGc+/tgeP515aq5Vvjw89xz8+afpmHknKYn0e+/F6+BBdgEDS5Zkzs8/4+vrazqZiIiIiEi+M348OJ2wfj189JHpNNfmsKz8N4N6YmIiTqeThIQEgoKCTMcRd3HkCOkNGuB98CCptWrhu3w5FCliOlXuOXgQxo3D+vRTHMnJAEQBbwBHGzZk8pQp1KtXz2hEuU4ZGVhz5rCzZ0+qJyUBYPn54Xj8cXjxRXv1T0+VnExa27b4LFrEUSCiUCG+XLGCOnXqmE4mbkLHEK5Pr5GIiIj7iYyEfv3sglpsLJQsmfcZsnsMoRFpItlVsiR9q1ThCOC7ZQvJd98NZ8+aTnXz7dkDvXpB5coQGYkjOZnfgHuAtsHB3P/ZZ/y2apWKaO7My4v4xo1pU7QoEcAywJGSAh9/jFWtGvToATExplPefMnJpHTogM+iRZwFuhYsyKdLlqiIJiIiIiJiWO/ecPvtkJBgr+LpylRIE8mBIR9/zGMlS3IK8F+3jqQ77rD/p3uC2Fjo2ROqVYNPP4XUVLjzTli0iAkPPED9ESP4Y/du/u///g8vL/3pcHelSpVi+44d/GPsWDoEBdEcmA840tNh6lSoWRM6dYKNG01HvTlSUqBLF/wWLOA80L1gQd5eupT69eubTiYiN0lkZCTh4eE0aNDAdBQRERHJIW9v+OADcDjgq69gxQrTif6eTu3UkH/Jof379/Niq1Z8uG8fRYCTFStSbM0aKFHCdLTrs2EDjB0L339vz/AILPT2pv5//kPRdu0AsCwLh8NhMqXkohMnTjBmzBgmT55MrZQUhgMd/3eHe++FESOgWTNDCW9QUpK9UMjChVgBAXzZsSMNhw+nRo0appOJG9IxhOvTayQiIuK+eve250mrWdP+qJqX0xjr1E6RXFK+fHk+3rSJV+64g6NAsb17ia9ShbPuNHLHsmD5crjnHqhXD777DiyLOUADICI9nTnHj1/aXUU0z1a8eHEmTJjAzp07Ce/Rg2FVq5IWHQ2PPAJeXjBvHtxxB7RqBb/8cqng6g5SDhwgrnp1WLgQChbE8cMPPDFtmopoIiIiIiIuaMwYCA6GrVvhvfdMp7kyFdJErkNQUBD/XLqUac88w34gNDGRwH/8AxYsMB3t6iwLfv7ZLoq0bAm//EI6MBWoCTzocFCxc2c2bdrE448/bjar5Lny5cvz1VdfsWnTJnxuuw2mTiVlyxamFyxIqsMBy5bZxde6dWH6dEhLMx35qrZ+9hknq1ShVFwcp/39YelSuPtu07FERERERORvFCsG48bZ7VGj4M8/jca5IhXSRK6Tt7c3z334IX/OmsWZ2rVxnD4N995L2quvsn/3btPxskpNhRkzoE4daNcOfv8dy8+Pj729qQo84eNDnUceYevWrfz73/+mdu3aphOLQQUKFLjUjjp1iv9LS6OSZfEucBZg0yZ7tFqVKvbXRC626Ebc4cNMb96cak89RWhqKru8vFj77rug+dBERERERFze449D06Zw5gwMHmw6zeVUSBO5QU0ffJBCa9fCE09ARgY+r7/OoapVGf7ww+zbt89suFOnYPx4MipWhO7dYfNmKFQIhg7FsW8fu59/nkdefpn9+/czdepUwsPDzeYVl9OsWTMOHjxInzFjmFi2LOWAEcBRgP37YeBAuOUWGDkSjh0zmvXIkSO80acP0eXK0X3lSvyAdbfcQtFdu4h49lmj2UREREREJHu8vGDKFPvnv//teid+abEBTUIrN5H19dec/7//IzAtjXPAGIeD2HbteLJPH+6++268vb3zJsiOHZwbNw7f6dPxTUkB7MLHZKDr8uXUaN48b3KIR0lLS2POnDl8/PHHrFy4kB6WxaRy5fA/eBCADD8/zrVrR6GhQ6FRI3vJnbwLx7xOnWg8Zw5FgRSHg4PPPkvlyZPzNod4PB1DuD69RiIiIp5h0CCYNAmqVoUtW8DfP3d/X3aPIVRI0wGW3Gx79nD6oYcoEh0NwC5gFLAoOJgnnnqKsWPH5s7vPXMGvv2Wk2+/TbHt2y9t3gS8C6ytWJGuPXvyzDPPEBoamjsZJN84fPgw8+bN48nHH4fZs2H8eIiKunT7weBg4u+/nzLPP0/pW2+9qb/73LlzrFq1ih9++IEmjRvTzemEF1+0ZyQFTletinPWLBw1a97U3ysCOoZwB3qNREREPENiIoSFQVwcjB4NLVrY7VKloHlzuNnjVFRIuwodYEmusyyYPp20gQPxOXECgB3A+qZNeWTuXHA6SUlJYciQIYSFhREWFkaVKlUICQkhICDgbx82NTWVuLg49u3bx/79+9kbE4P3okU84XRSevVqu5gGpAM/AfOqVaPso4/ywIMPUqNGDa2+KbnHshjSogW1Vq6kC3BxlrULwJKAAGLq1OH5RYsgMBCAuLg4ihUrhn82vlb67bff2LZtGzExMURFRREVFYV3aiqdgFGFClE58989RYvap5j27Qs+PrnxLEV0DOEG9BqJiIh4jhkz7FmK/qpsWXu0WseON+93qZB2FTrAkjyTmAiTJ2NNmIDj5El7W4EC8MAD/BEWRqORIzn5l7sUKlSIIkWK8MILL9C/f38A1q5dy5133sn5c+eoCbQE7gTaAAX/985Vq3Khe3d+KVmSRg8+qJFnkueOHz/O7z/9RMbnn1M7KopKFy7890Z/f/uro4gI7n/vPeYeOoRfYCCFChWiYMGC+Pr6kpKSQs2aNfnxxx8v3a1EiRIcP36cIkAL4EHgIYeDwhffvgoWhN69Yfhwe5kfkVykYwjXp9dIRETEc3z/PXTqdPn2i2NEvvvu5hXTVEi7Ch1gSZ5LSoLPPoNPPoGYmCw3HQ4MJNrLi63nznEoI4OT2CPKHu7alQ4tWsCxY5zasIFdP/zArUDhvzx0YtGipLRtS/Azz0CzZpoPSlyHZXFm1SpOf/ABxRctokBcXJabk4GtmZeDwJ/Yq4KWrlCBt15/HU6fhqNHWf7JJ5Q7c4byZ85kXSHnllvsAlrv3vZoNJE8oGMI16fXSERExDOkp0OFCnDo0JVvdzjskWl7996c0zxVSLsKHWCJMZYFa9bAnDnw88/2jIk5fYiCBXE0awYtW0JEBNSrp+KZuD7LgthYe8mdBQuwVq7EkZCQ88epXh1at4Zu3ew1sb20+LTkLR1DuD69RiIiIp5h6VK4885r77dkCbRqdeO/L7vHEJpERiQvORzQuLF9GTsWjh+H6GjYuBEOHrRnTjx1yi46ABQpAsHBdpk9PBxuvRVH1arg62vyWYjknMNhzxQaFgYDBuCwLPuro40bYedO+2umw4fh/Hm4cMH+N16kiH2qZtWqdgGtfn17ZlEREREREfF4fzmh5Yb3u1lUSBMxKTjYHl3TurXpJCJ5y+GASpXsi4iIiIiIyF9k9zv0vP6uXefEiIiIiIiIiIiIS2ne3D456+9mMnI4oFw5e7+8pEKaiIiIiIiIiIi4FG9vmDTJbv+1mHbx+j//eXMWGsgJFdJERERERERERMTldOwI330HZcpk3V62rL29Y8e8z6Q50kRERERERERExCV17Aj33w8rVtgLC5QqZZ/Omdcj0S5SIU1ERERERERERFyWtze0amU6hU2ndoqIiIiIiIiIiGRDrhbS3nzzTZo2bUpgYCBFihTJ1n0sy2LUqFGULl2aAgUK0KpVK7Zt25Zln+TkZPr3709wcDAFCxakQ4cOHDp0KBeegYiIiIiIiIiIiC1XC2kpKSl07tyZZ599Ntv3GT9+PBMnTmTy5MlERUURGhrK3XffTVJS0qV9Bg0axOzZs/nmm29YuXIlZ86coV27dqSnp+fG0xAREREREREREcFhWZaV27/kyy+/ZNCgQZw+ffqq+1mWRenSpRk0aBAvvvgiYI8+K1myJOPGjeOZZ54hISGBEiVK8PXXX9O1a1cADh8+TLly5Zg7dy5t2rS5Zp7ExEScTicJCQkEBQXd8PMTERGR/EHHEK5Pr5GIiIhcj+weQ7jUHGl79+4lPj6eiIiIS9v8/f1p2bIlv//+OwDr168nNTU1yz6lS5emZs2al/b5q+TkZBITE7NcREREREREREREcsKlCmnx8fEAlCxZMsv2kiVLXrotPj4ePz8/ihYt+rf7/NXYsWNxOp2XLuXKlcuF9CIiIiIiIiIi4slyXEgbNWoUDofjqpd169bdUCiHw5HlumVZl237q6vt89JLL5GQkHDpcvDgwRvKJyIiIiIiIiIi+Y9PTu/Qr18/unXrdtV9KlSocF1hQkNDAXvUWalSpS5tP3r06KVRaqGhoaSkpHDq1Kkso9KOHj1K06ZNr/i4/v7++Pv7X1cmERERERERERERuI5CWnBwMMHBwbmRhYoVKxIaGsrChQupW7cuYK/8uWzZMsaNGwdAvXr18PX1ZeHChXTp0gWAuLg4tm7dyvjx43Mll4iIiIiIiIiISI4LaTlx4MABTp48yYEDB0hPTyc6OhqAKlWqUKhQIQDCwsIYO3YsDz74IA6Hg0GDBjFmzBiqVq1K1apVGTNmDIGBgXTv3h0Ap9PJk08+yfPPP0/x4sUpVqwYQ4YMoVatWrRu3To3n46IiIiIiIiIiORjuVpIe/XVV/nXv/516frFUWZLliyhVatWAMTGxpKQkHBpnxdeeIHz58/Tp08fTp06RaNGjViwYAGFCxe+tM+7776Lj48PXbp04fz589x11118+eWXeHt75+bTERERERERERGRfMxhWZZlOkReS0xMxOl0kpCQQFBQkOk4IiIi4iZ0DOH69BqJiIjI9cjuMUSOV+0UERERERERERHJj3L11E5XdXEQXmJiouEkIiIi4k4uHjvkwwH9bkPHeSIiInI9snucly8LaUlJSQCUK1fOcBIRERFxR0lJSTidTtMx5Ap0nCciIiI34lrHeflyjrSMjAwOHz5M4cKFcTgcN/3xExMTKVeuHAcPHtTcHAao/83Ta2CW+t8s9b9Zud3/lmWRlJRE6dKl8fLSDBmuKLeP81yd/gbdOPXhjVH/3Rj1341R/92Y/N5/2T3Oy5cj0ry8vChbtmyu/56goKB8+Y/PVaj/zdNrYJb63yz1v1m52f8aieba8uo4z9Xpb9CNUx/eGPXfjVH/3Rj1343Jz/2XneM8fZUqIiIiIiIiIiKSDSqkiYiIiIiIiIiIZIMKabnA39+fkSNH4u/vbzpKvqT+N0+vgVnqf7PU/2ap/yW/0/+BG6c+vDHqvxuj/rsx6r8bo/7Lnny52ICIiIiIiIiIiEhOaUSaiIiIiIiIiIhINqiQJiIiIiIiIiIikg0qpImIiIiIiIiIiGSDCmkiIiIiIiIiIiLZoELadZoyZQoVK1YkICCAevXqsWLFiqvuv2zZMurVq0dAQACVKlXiww8/zKOknikn/T9r1izuvvtuSpQoQVBQEE2aNOGXX37Jw7SeJ6f//i/67bff8PHxoU6dOrkb0MPltP+Tk5MZMWIE5cuXx9/fn8qVK/P555/nUVrPk9P+nzZtGrfddhuBgYGUKlWKJ554ghMnTuRRWs+yfPly2rdvT+nSpXE4HPznP/+55n30/iv5xdixY2nQoAGFCxcmJCSEBx54gNjYWNOx3NbYsWNxOBwMGjTIdBS38eeff/Loo49SvHhxAgMDqVOnDuvXrzcdyy2kpaXx8ssvU7FiRQoUKEClSpV47bXXyMjIMB3NJV3reMCyLEaNGkXp0qUpUKAArVq1Ytu2bWbCuqCr9V9qaiovvvgitWrVomDBgpQuXZrHHnuMw4cPmwvsglRIuw4zZ85k0KBBjBgxgo0bN9K8eXPuvfdeDhw4cMX99+7dy3333Ufz5s3ZuHEjw4cPZ8CAAXz//fd5nNwz5LT/ly9fzt13383cuXNZv349d955J+3bt2fjxo15nNwz5LT/L0pISOCxxx7jrrvuyqOknul6+r9Lly4sWrSIzz77jNjYWGbMmEFYWFgepvYcOe3/lStX8thjj/Hkk0+ybds2vv32W6KionjqqafyOLlnOHv2LLfddhuTJ0/O1v56/5X8ZNmyZfTt25fVq1ezcOFC0tLSiIiI4OzZs6ajuZ2oqCg+/vhjateubTqK2zh16hTNmjXD19eXefPmERMTw4QJEyhSpIjpaG5h3LhxfPjhh0yePJnt27czfvx43n77bd5//33T0VzStY4Hxo8fz8SJE5k8eTJRUVGEhoZy9913k5SUlMdJXdPV+u/cuXNs2LCBV155hQ0bNjBr1ix27txJhw4dDCR1YZbkWMOGDa3evXtn2RYWFmYNGzbsivu/8MILVlhYWJZtzzzzjNW4ceNcy+jJctr/VxIeHm6NHj36ZkfLF663/7t27Wq9/PLL1siRI63bbrstFxN6tpz2/7x58yyn02mdOHEiL+J5vJz2/9tvv21VqlQpy7b33nvPKlu2bK5lzC8Aa/bs2VfdR++/kp8dPXrUAqxly5aZjuJWkpKSrKpVq1oLFy60WrZsaQ0cONB0JLfw4osvWnfccYfpGG6rbdu21v/93/9l2daxY0fr0UcfNZTIffz1eCAjI8MKDQ213nrrrUvbLly4YDmdTuvDDz80kNC1Zed4au3atRZg7d+/P29CuQGNSMuhlJQU1q9fT0RERJbtERER/P7771e8z6pVqy7bv02bNqxbt47U1NRcy+qJrqf//yojI4OkpCSKFSuWGxE92vX2/xdffMHu3bsZOXJkbkf0aNfT/z/88AP169dn/PjxlClThmrVqjFkyBDOnz+fF5E9yvX0f9OmTTl06BBz587FsiyOHDnCd999R9u2bfMicr6n91/JzxISEgB0vJNDffv2pW3btrRu3dp0FLdy8Xijc+fOhISEULduXT755BPTsdzGHXfcwaJFi9i5cycAmzZtYuXKldx3332Gk7mfvXv3Eh8fn+X939/fn5YtW2b786JklZCQgMPh0AjT/+FjOoC7OX78OOnp6ZQsWTLL9pIlSxIfH3/F+8THx19x/7S0NI4fP06pUqVyLa+nuZ7+/6sJEyZw9uxZunTpkhsRPdr19P+uXbsYNmwYK1aswMdHf3JuxPX0/549e1i5ciUBAQHMnj2b48eP06dPH06ePKl50nLoevq/adOmTJs2ja5du3LhwgXS0tLo0KGDTtXII3r/lfzKsiwGDx7MHXfcQc2aNU3HcRvffPMNGzZsICoqynQUt7Nnzx4++OADBg8ezPDhw1m7di0DBgzA39+fxx57zHQ8l/fiiy+SkJBAWFgY3t7epKen8+abb/Lwww+bjuZ2Lh6TXen9f//+/SYiubULFy4wbNgwunfvTlBQkOk4LkOfaq+Tw+HIct2yrMu2XWv/K22X7Mlp/180Y8YMRo0axZw5cwgJCcmteB4vu/2fnp5O9+7dGT16NNWqVcureB4vJ//+MzIycDgcTJs2DafTCcDEiRPp1KkTkZGRFChQINfzepqc9H9MTAwDBgzg1VdfpU2bNsTFxTF06FB69+7NZ599lhdx8z29/0p+1K9fPzZv3szKlStNR3EbBw8eZODAgSxYsICAgADTcdxORkYG9evXZ8yYMQDUrVuXbdu28cEHH6iQlg0zZ85k6tSpTJ8+nRo1ahAdHc2gQYMoXbo0PXv2NB3PLV3v50X5r9TUVLp160ZGRgZTpkwxHcelqJCWQ8HBwXh7e182+uDo0aOXVb0vCg0NveL+Pj4+FC9ePNeyeqLr6f+LZs6cyZNPPsm3336r4frXKaf9n5SUxLp169i4cSP9+vUD7AMty7Lw8fFhwYIF/OMf/8iT7J7gev79lypVijJlylwqogHceuutWJbFoUOHqFq1aq5m9iTX0/9jx46lWbNmDB06FIDatWtTsGBBmjdvzhtvvKERUblM77+SH/Xv358ffviB5cuXU7ZsWdNx3Mb69es5evQo9erVu7QtPT2d5cuXM3nyZJKTk/H29jaY0LWVKlWK8PDwLNtuvfVWLe6STUOHDmXYsGF069YNgFq1arF//37Gjh2rQloOhYaGAvbItP89zsrO50X5r9TUVLp06cLevXtZvHixRqP9heZIyyE/Pz/q1avHwoULs2xfuHAhTZs2veJ9mjRpctn+CxYsoH79+vj6+uZaVk90Pf0P9ki0xx9/nOnTp2tuohuQ0/4PCgpiy5YtREdHX7r07t2b6tWrEx0dTaNGjfIquke4nn//zZo14/Dhw5w5c+bStp07d+Ll5aUPWDl0Pf1/7tw5vLyyvtVe/CB2cWSU5B69/0p+YlkW/fr1Y9asWSxevJiKFSuajuRW7rrrrsuOWerXr88jjzxCdHS0imjX0KxZM2JjY7Ns27lzJ+XLlzeUyL383fFCRkaGoUTuq2LFioSGhmZ5/09JSWHZsmVX/bwo/3WxiLZr1y5+/fVXffl4JSZWOHB333zzjeXr62t99tlnVkxMjDVo0CCrYMGC1r59+yzLsqxhw4ZZPXr0uLT/nj17rMDAQOu5556zYmJirM8++8zy9fW1vvvuO1NPwa3ltP+nT59u+fj4WJGRkVZcXNyly+nTp009BbeW0/7/K63aeWNy2v9JSUlW2bJlrU6dOlnbtm2zli1bZlWtWtV66qmnTD0Ft5bT/v/iiy8sHx8fa8qUKdbu3butlStXWvXr17caNmxo6im4taSkJGvjxo3Wxo0bLcCaOHGitXHjxkurSOn9V/KzZ5991nI6ndbSpUuzHO+cO3fOdDS3pVU7s2/t2rWWj4+P9eabb1q7du2ypk2bZgUGBlpTp041Hc0t9OzZ0ypTpoz1008/WXv37rVmzZplBQcHWy+88ILpaC7pWscDb731luV0Oq1Zs2ZZW7ZssR5++GGrVKlSVmJiouHkruFq/Zeammp16NDBKlu2rBUdHZ3l/SQ5Odl0dJehQtp1ioyMtMqXL2/5+flZt99+e5alxXv27Gm1bNkyy/5Lly616tata/n5+VkVKlSwPvjggzxO7Fly0v8tW7a0gMsuPXv2zPvgHiKn//7/lwppNy6n/b99+3ardevWVoECBayyZctagwcP1gerG5DT/n/vvfes8PBwq0CBAlapUqWsRx55xDp06FAep/YMS5Ysuerfc73/Sn52pf8bgPXFF1+Yjua2VEjLmR9//NGqWbOm5e/vb4WFhVkff/yx6UhuIzEx0Ro4cKB1yy23WAEBAValSpWsESNGqHDxN651PJCRkWGNHDnSCg0Ntfz9/a0WLVpYW7ZsMRvahVyt//bu3fu37ydLliwxHd1lOCxL55aIiIiIiIiIiIhci+ZIExERERERERERyQYV0kRERERERERERLJBhTQREREREREREZFsUCFNREREREREREQkG1RIExERERERERERyQYV0kRERERERERERLJBhTQREREREREREZFsUCFNREREREREREQkG1RIExERERERERERyQYV0kRERERERERERLJBhTQREREREREREZFsUCFNRASYMWMGAQEB/Pnnn5e2PfXUU9SuXZuEhASDyURERETkRv3xxx84HA5+/vln7rrrLgIDA6levTpr1qwxHU1E3IwKaSIiQLdu3ahevTpjx44FYPTo0fzyyy/MmzcPp9NpOJ2IiIiI3IhNmzbhcDiYMGECL7/8Mps2beKWW25h2LBhpqOJiJvxMR1ARMQVOBwO3nzzTTp16kTp0qWZNGkSK1asoEyZMqajiYiIiMgN2rRpE06nk5kzZ1KiRAkAHnjgAT744APDyUTE3aiQJiKSqV27doSHhzN69GgWLFhAjRo1TEcSERERkZtg06ZNtG/f/lIRDWDPnj1UqVLFYCoRcUc6tVNEJNMvv/zCjh07SE9Pp2TJkqbjiIiIiMhNsmnTJpo0aZJl28aNG6lTp46ZQCLitlRIExEBNmzYQOfOnfnoo49o06YNr7zyiulIIiIiInITJCQksH//furWrZtle3R0tAppIpJjOrVTRPK9ffv20bZtW4YNG0aPHj0IDw+nQYMGrF+/nnr16pmOJyIiIiI3YNOmTXh7e3Pbbbdd2rZ//35OnTqlQpqI5JhGpIlIvnby5EnuvfdeOnTowPDhwwGoV68e7du3Z8SIEYbTiYiIiMiN2rRpE2FhYRQoUODSto0bN1KkSBEqVKhgLpiIuCWHZVmW6RAiIiIiIiIiIiKuTiPSREREREREREREskGFNBERERERERERkWxQIU1ERERERERERCQbVEgTERERERERERHJBhXSREREREREREREskGFNBERERERERERkWxQIU1ERERERERERCQbVEgTERERERERERHJBhXSREREREREREREskGFNBERERERERERkWxQIU1ERERERERERCQb/h/3MxLxHRZ3UwAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAIOCAYAAAB9IyC9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQ5UlEQVR4nOzdd3hUZfrG8e9kUklIKIEQIEDovXdFwEJZwQIq/lQsCyoLriK6IIsFQUUsiLqAWABdG6yCK4qLqCAgSA8oRVogEBKSUBIS0jO/P84kGpoBMvPOJPfnuuaak5mTc+4JITPzzPs+r83hcDgQERERERERERGRC/IxHUBERERERERERMQbqJAmIiIiIiIiIiJSAiqkiYiIiIiIiIiIlIAKaSIiIiIiIiIiIiWgQpqIiIiIiIiIiEgJqJAmIiIiIiIiIiJSAiqkiYiIiIiIiIiIlIAKaSIiIiIiIiIiIiWgQpqIiIiIiIiIiEgJ+JoOYEJBQQFHjhyhYsWK2Gw203FERETESzgcDk6dOkXNmjXx8dHnkZ5Ir/NERETkUpT0dV65LKQdOXKEqKgo0zFERETESx06dIjatWubjiHnoNd5IiIicjn+7HVeuSykVaxYEbB+OKGhoYbTiIiIiLdIS0sjKiqq6LWEuMZXX33FY489RkFBAePGjWP48OEl/l69zhMREZFLUdLXeeWykFY4zD80NFQvsEREROSiacqg6+Tl5TFmzBiWL19OaGgo7du3Z9CgQVSpUqVE36/XeSIiInI5/ux1npp7iIiIiIjHWL9+PS1atKBWrVpUrFiRv/zlLyxdutR0LBERERFAhTQRERERKUUrV65k4MCB1KxZE5vNxhdffHHWPjNnziQ6OprAwEA6dOjAqlWriu47cuQItWrVKvq6du3axMfHuyO6iIiIyJ9SIU1ERERESk1GRgZt2rThX//61znvnz9/PqNHj2bChAls2bKFHj160L9/f+Li4gBrxawzXWiKRXZ2NmlpacUuIiIiIq5SLnukiXgrh8NBXl4e+fn5pqOIlAo/Pz/sdrvpGCJSivr370///v3Pe/+0adMYNmxY0QIC06dPZ+nSpcyaNYspU6ZQq1atYiPQDh8+TJcuXc57vClTpvDss8+W3gMQERERuQAV0kS8RE5ODgkJCZw+fdp0FJFSY7PZqF27NiEhIaajiIgb5OTksGnTJp544olit/fp04c1a9YA0LlzZ3799Vfi4+MJDQ1lyZIlPP300+c95vjx4xkzZkzR14UrbomIiIi4ggppIl6goKCA2NhY7HY7NWvWxN/fXyvGiddzOBwkJydz+PBhGjVqpJFpIuVASkoK+fn5REREFLs9IiKCxMREAHx9fXn11Vfp3bs3BQUFjB07lqpVq573mAEBAQQEBLg0t4iIiEghFdJEvEBOTg4FBQVERUVRoUIF03FESk21atU4cOAAubm5KqSJlCNnfhjkcDiK3XbDDTdwww03uDuWiIiIyJ/SYgMiXsTHR/9lpWzRyEqR8iU8PBy73V40+qxQUlLSWaPURERERDyR3pWLiIiIiFv4+/vToUMHli1bVuz2ZcuW0b17d0OpREREREpOUztFREREpNSkp6ezd+/eoq9jY2OJiYmhSpUq1KlThzFjxjB06FA6duxIt27dePvtt4mLi2PEiBEGU4uIiIiUjAppIiIiIlJqNm7cSO/evYu+LlxR85577mHevHkMGTKEY8eOMWnSJBISEmjZsiVLliyhbt26piKLiIiIlJgKaSJSptlsNhYtWsRNN91kOoqISLnQq1cvHA7HBfcZOXIkI0eOdFMiERERkdKjHmkiIiIiIiIiIiIloEKaiBfLyMg47yUrK6vE+2ZmZpZo34vlcDh46aWXqF+/PkFBQbRp04bPPvus6L5rr72Wfv36FY1cOHnyJHXq1GHChAkA5OfnM2zYMKKjowkKCqJJkya8/vrrZ51nzpw5tGjRgoCAACIjI3nooYcAqFevHgA333wzNput6OtzWbNmDW3btiUwMJCOHTvyxRdfYLPZiImJuejHLSIi7jdjxgyaN29Op06dXHaO/HxYsQI++cS6zs932alERETEQ7m0kLZy5UoGDhxIzZo1sdlsfPHFF3/6PT/++CMdOnQgMDCQ+vXr89Zbb521z+eff07z5s0JCAigefPmLFq0yAXpRTxfSEjIeS+DBw8utm/16tXPu2///v2L7VuvXr1z7nexnnzySebOncusWbPYvn07jz76KHfddRc//vgjNpuN999/n/Xr1/PGG28AMGLECCIiIpg4cSIABQUF1K5dmwULFrBjxw6efvpp/vnPf7JgwYKic8yaNYtRo0bxwAMP8Msvv/Dll1/SsGFDADZs2ADA3LlzSUhIKPr6TKdOnWLgwIG0atWKzZs3M3nyZMaNG3fRj1dERMwZNWoUO3bsOO/f+su1cCHUqwe9e8Mdd1jX9epZt4uIiEj54dIeaRkZGbRp04b77rvvrDf15xIbG8tf/vIX7r//fj788EN++uknRo4cSbVq1Yq+f+3atQwZMoTJkydz8803s2jRIm677TZWr15Nly5dXPlwROQiZGRkMG3aNH744Qe6desGQP369Vm9ejWzZ8+mZ8+e1KpVi9mzZzN06FCOHj3K4sWL2bJlC35+fgD4+fnx7LPPFh0zOjqaNWvWsGDBAm677TYAnnvuOR577DEeeeSRov0KRyNUq1YNgEqVKlGjRo3zZv3oo4+w2Wy88847BAYG0rx5c+Lj47n//vtL94ciIiJeaeFCuOUWOLP1W3y8dftnn8GgQWayiYiIiHu5tJDWv3//s0a6XMhbb71FnTp1mD59OgDNmjVj48aNvPLKK0WFtOnTp3Pdddcxfvx4AMaPH8+PP/7I9OnT+eSTT0r9MXidnTvJ3bEDv+7dITLSdBpxsfT09PPeZ7fbi32dlJR03n19fIoPTj1w4MBl5QLYsWMHWVlZXHfddcVuz8nJoV27dkVf33rrrSxatIgpU6Ywa9YsGjduXGz/t956i3fffZeDBw+SmZlJTk4Obdu2BazHdOTIEa655prLyvrbb7/RunVrAgMDi27r3LnzZR1TpNxKS+P00qX4RUbid8UVYLOZTiRyWfLz4ZFHzi6igXWbzQajR8ONN8IZT70iIiJSBnnUqp1r166lT58+xW7r27cv7733Hrm5ufj5+bF27VoeffTRs/YpLL6dS3Z2NtnZ2UVfp6WllWpuj3DiBNx1FyxZgh+QY7OR/Le/Uetf/9KbmDIsODjY+L7nU1BQAMDXX39NrVq1it0XEBBQtH369Gk2bdqE3W5nz549xfZbsGABjz76KK+++irdunWjYsWKvPzyy6xbtw6AoKCgy84JVr822xn/T/5sxTkROVvi888T9swzVChsHNWjB3z0EURFmQ0mchlWrYLDh89/v8MBhw5Z+/Xq5bZYIiIiYohHLTaQmJhIREREsdsiIiLIy8sjJSXlgvskJiae97hTpkwhLCys6BJV1l7QZ2dD376wZAnY7cQHB+PvcFBr5kzi7rvPdDoppwr7GMbFxdGwYcNilz/+H3zsscfw8fHhm2++4Y033uCHH34oum/VqlV0796dkSNH0q5dOxo2bMi+ffuK7q9YsSL16tXj+++/P28OPz8/8v+kG3TTpk3Ztm1bsYL7xo0bL+Vhi5Rb8RMmUOPJJwnKzycWcAQFWZWF666DY8dMxxO5ZAkJpbufiIiIeDePKqQB5x0V8sfbz7XPmbf90fjx40lNTS26HDp0qBQTm/dTr16wYQOOKlVg40bYtYt/OafH1Xn/fU6qC64YULFiRR5//HEeffRR3n//ffbt28eWLVuYMWMG77//PmCNVpszZw4fffQR1113HU888QT33HMPJ06cAKBhw4Zs3LiRpUuXsnv3bp566qmzmkhPnDiRV199lTfeeIM9e/awefNm3nzzzaL7CwttiYmJRcc90x133EFBQQEPPPAAO3fuZOnSpbzyyivA2X9vRORsmWvWUG3KFADm1KhB/u7d2LZvt0ai/fYb+2+4wXBCkUtX0k4Z6qghIiJSPnhUIa1GjRpnjSxLSkrC19eXqlWrXnCfM0ep/VFAQAChoaHFLmXF/m++ocvPPwOwY+xYaNuWWrVr89ctW/i0cmUAsu+9F3JyDKaU8mry5Mk8/fTTTJkyhWbNmtG3b18WL15MdHQ0ycnJDBs2jIkTJ9K+fXsAnnnmGWrWrMmIESMAaxXPQYMGMWTIELp06cKxY8cYOXJksXPcc889TJ8+nZkzZ9KiRQsGDBhQbIroq6++yrJly4iKiirWm+2PQkNDWbx4MTExMbRt25YJEybw9NNPAxTrmyYi5+BwcHTIEPwdDv4XGMgN27bRsFEjiI7m9L//TT5Qf80aYi7QgkHEk/XoAbVrn79Ths1m1Yx79HBvLhERETHD5nBTIyCbzcaiRYu46aabzrvPuHHjWLx4MTt27Ci67W9/+xsxMTGsXbsWgCFDhnDq1CmWLFlStE///v2pVKlSiRcbSEtLIywsjNTUVK8vqv0UFcUVhw+zvnp1Oh89Wuy+TcuXU/Pqq4kE4p56ijqTJpkJKZctKyuL2NhYoqOjVdhxk48++oj77ruP1NTUUuvFJmfT77b3S37vPaoNH85pYNW779J32LBi969s0YKrduxgc1gY7U+eNJKxNJWl1xBllSv+jQpX7YRzLzrw+edatVNERMTblfQ1hEtHpKWnpxMTE0NMTAwAsbGxxMTEEBcXB1hTLu++++6i/UeMGMHBgwcZM2YMO3fuZM6cObz33ns8/vjjRfs88sgjfPvtt0ydOpVdu3YxdepUvvvuO0aPHu3Kh+KRDqxaRRdn99sqs2addX+H3r351rm6YeC0aZCX5854Il7lgw8+YPXq1cTGxvLFF18wbtw4brvtNhXRRP5E+lNPAbAwKoo+f/3rWfc3njuXXKB9aioxs2e7OZ1I6Rg0CD77DM5YO6fIBSZGiIiISBnj0kLaxo0badeuXdF0qjFjxtCuXbuiKVMJCQlFRTWA6OholixZwooVK2jbti2TJ0/mjTfeYPDgwUX7dO/enU8//ZS5c+fSunVr5s2bx/z58+nSpYsrH4pH2vPYY/gCMVWq0PA8H4O2e+stjtlsVM/IwPGHUXwiUlxiYiJ33XUXzZo149FHH+XWW2/l7bffNh1LxLOtX090QgJ5djv1X3vtnD0Fa3TuzMaGDQE4+dJL7k4o5ciMGTNo3rw5nTp1csnxBw2CAwdg+XL4+GPrunAA5rhx5x6pJiIiImWP26Z2epKyMC0jLyeHxKAgahcUsPmf/6T988+fd9/8MWOwv/Ya9O9vrewpXkfT36Ss0u+2lxsxAmbPhrvugn//+7y7/fbuuzS5/37SgezYWKrWq+e2iKWtLLyGKOvc+W8UHw+NGkFmJnzxBdx4o0tPJyIiIi7kEVM7xXU2z5pF7YICTtlstHriiQvuay9szr50KZyxUIOIiMglyc6GBQus7XvvveCuTYYN42BAACHAVvXrlDKkVi0o7C4yfry6aIiIiJQHKqR5qej16wHY3awZfhUrXnjnhg1xdOoEBQUkzpzphnQiIlLWJc6ZAydOcLpyZejV68I722zEX3EFANVXr3Z9OBE3GjcOqlSBnTth3jzTaURERMTVVEjzRgUFVFuxAoAOL75Yom9Z5OcHQNq777oqlYiIlCMn/vUvAL4KCwO7/U/3b+Hsj9ry0CFIT3dpNhF3CguDJ5+0tp95Bk6fNptHREREXEuFNG+0cSMcOQKhodCnT4m+pbpzemfDhATynSt9ioiIXJLMTOru3AlAhXOs1HkuYVddBfXrQ1YWfPedK9OJuN3IkVC3rvXy7PXXTacRERERV1IhzQvFOlcSdFx9NQQElOh7ug4Zwga7HR/ggF7hiYjIZTg6fz4VHA4OAVc+9FDJvslmg379AMj/3/9cF07EgIAAeO45a/vFF+HYMbN5RERExHVUSPNCxz79FIBNVaqU+Ht8fX3Z17w5ANlffumSXCIiUj4cnTsXgM2RkVSqXLnE35fcti0AB957j4KCAldEEzHmjjugTRtIS4MLLKYuIiIiXk6FNC+TtH8/rTMyAIh+4IGL+t7Q224DoO7evZCTU+rZROT87r33Xm666SbTMS5Jr169GF24LJ2Iw0GEc8GbvL59L+pbQ2+8kTygQV4eu7791gXhRMzx8YGpU63tGTPgwAGjcURERMRFVEjzMttnzcIfOOLvT9XOnS/qezs/8ABHgeCCApK++MIV8USKWblyJQMHDqRmzZrYbDa+OMfv3b333ovNZit26dq16wWPe+DAAWw2GzExMa4J7gKvv/4687x0ObeFCxcyefJk0zHEQ5zeuJGIrCwygeYlndbpFFC9OnsqVQIg7r33Sj+ciGF9+sA111ifVzrX1xAREZEyRoU0L5PzzTcAHG7a1Oo3cxHCq1dnS3g4AAnvv1/q2UTOlJGRQZs2bfiXc3W/8+nXrx8JCQlFlyVLlrgpIeTm5rrlPGFhYVRyFhC8ReHPpkqVKlSsWNFwGvEU6c72ABsqVKBp+/YX/f1pzg+BAlevLtVcIp7AZvt9VNqHH8LWrWbziIiISOlTIc3LROzbB4B/CVfrPFODUaMAaJ2QUGqZxACHAzIyzFwcjhLH7N+/P8899xyDBg264H4BAQHUqFGj6FLlT/r/RUdHA9CuXTtsNhu9evUqum/u3Lk0a9aMwMBAmjZtysyZM4vuKxzJtmDBAnr16kVgYCAffvhh0bTLF154gYiICCpVqsSzzz5LXl4e//jHP6hSpQq1a9dmzpw5F8z12Wef0apVK4KCgqhatSrXXnstGc6p2GdO7ezVqxcPP/wwY8eOpUqVKtSoUYOJEycWO15qaioPPPAA1atXJzQ0lKuvvpqtF3hXlpOTw0MPPURkZCSBgYHUq1ePKVOmlPh4EydOpG3btsyZM4f69esTEBCAw+E4a2pnTk4OY8eOpVatWgQHB9OlSxdWrFhRdP/BgwcZOHAglStXJjg4mBYtWri1OCquVf3XXwG44sknsV3kBzoAVZx/D+ofPao+aVImdegAt99uPV0+8YTpNCIiIlLaVEjzIimHD9M8KwuAenfccUnHaPTggwDYYmIgNbW0oom7nT4NISFmLqdPl/rDWbFiBdWrV6dx48bcf//9JCUlXXD/9c7+TN999x0JCQksXLgQgHfeeYcJEybw/PPPs3PnTl544QWeeuop3j9jBOa4ceN4+OGH2blzJ32dPZ5++OEHjhw5wsqVK5k2bRoTJ05kwIABVK5cmXXr1jFixAhGjBjBoUOHzpkpISGB//u//+Ovf/0rO3fuZMWKFQwaNAjHBQqP77//PsHBwaxbt46XXnqJSZMmsWzZMgAcDgfXX389iYmJLFmyhE2bNtG+fXuuueYajh8/fs7jvfHGG3z55ZcsWLCA3377jQ8//JB69epd1PH27t3LggUL+Pzzz887dfa+++7jp59+4tNPP2Xbtm3ceuut9OvXjz179gAwatQosrOzWblyJb/88gtTp04lJCTkvD8H8SIFBfDjjwDYr776kg4RPWQI+UAdh4Pdy5eXYjgp72bMmEHz5s3p1KmT6Sg89xz4+sL//gc//GA6jYiIiJQqRzmUmprqABypqammo1yUVS++6HCAI9ludzgKCi79QA0bOhzgcHz9demFE5fKzMx07Nixw5GZmWndkJ5u/RuauKSnX9JjAByLFi066/ZPP/3U8dVXXzl++eUXx5dffulo06aNo0WLFo6srKzzHis2NtYBOLZs2VLs9qioKMfHH39c7LbJkyc7unXrVuz7pk+fXmyfe+65x1G3bl1Hfn5+0W1NmjRx9OjRo+jrvLw8R3BwsOOTTz45Z6ZNmzY5AMeBAwfOef8999zjuPHGG4u+7tmzp+PKK68stk+nTp0c48aNczgcDsf333/vCA0NPevn0KBBA8fs2bPPeY6///3vjquvvtpRcI6/DyU53jPPPOPw8/NzJCUlFdunZ8+ejkceecThcDgce/fuddhsNkd8fHyxfa655hrH+PHjHQ6Hw9GqVSvHxIkTz5nxTGf9botHy163zvo7ULGiw5Gbe8nH2R0S4nCA49sHHijFdO7hra8hyhNP+Td66CHrv0uHDg7HH55eRERExEOV9DWEr7kSnlysTvn5AOR26nTR/dH+6HD9+tTeu5eds2fT7C9/Ka144k4VKkB6urlzl6IhQ4YUbbds2ZKOHTtSt25dvv76awYNGsSIESP48MMPi/ZJP8/jTk5O5tChQwwbNoz777+/6Pa8vDzCwsKK7duxY8ezvr9Fixb4+Pw+SDciIoKWLVsWfW2326latep5R8u1adOGa665hlatWtG3b1/69OnDLbfcQuXKlc/72Fu3bl3s68jIyKLjb9q0ifT0dKpWrVpsn8zMTPY5p3if6d577+W6666jSZMm9OvXjwEDBtDHOQ28pMerW7cu1apVO2/mzZs343A4aNy4cbHbs7Ozi4798MMP87e//Y1vv/2Wa6+9lsGDB5/1WMU77Xn7bVoAm4ODae976S8hTrdpAz/9RKPk5NILJ+JhnnoK5s2DTZvgP/+BPzzdiYiIiBdTIc2LBGzcCEDkn/Sb+jPrg4KoDfisWVMKqcQImw2Cg02ncInIyEjq1q1bNE1w0qRJPP7443/6fYW9lt555x26dOlS7D673V7s6+Bz/Oz8/PyKfW2z2c552/l6OtntdpYtW8aaNWv49ttvefPNN5kwYQLr1q0r6ulWknMWHr+goIDIyMhivccKnW/Rgvbt2xMbG8s333zDd999x2233ca1117LZ599VuLjnetn80cFBQXY7XY2bdp01s+1cPrm8OHD6du3L19//TXffvstU6ZM4dVXX+Xvf//7BY8tns/h/P3ZX6cOF7/MwO/ajBgBP/1EPfXrlDKsenX4xz/gmWdgwgS4+Wbw9zedSkRERC6XCmnewuGAtWut7W7dLutQkbfeCv/9L9EpKVa/q1IeYSRyOY4dO8ahQ4eIjIwEoHr16lSvXr3YPv7OdyL5zlGaYI0gq1WrFvv37+fOO+90X+A/sNlsXHHFFVxxxRU8/fTT1K1bl0WLFjFmzJiLPlb79u1JTEzE19e3qM9ZSYSGhjJkyBCGDBnCLbfcQr9+/Th+/PglH+9M7dq1Iz8/n6SkJHr06HHe/aKioor6yo0fP5533nlHhTRv53AQGRcHQMV+/S7vWIXPY5s2QVYWBAZeZjgRzzRmDMycCfv2wdtvw0MPmU4kIiIil0uLDXiJ2FWrIDGRAh8fazmoy9Dqhhs4DPgDyV9/XSr5RM4lPT2dmJiYoqb1sbGxxMTEEOd8M56ens7jjz/O2rVrOXDgACtWrGDgwIGEh4dz8803n/e41atXJygoiP/9738cPXqUVOfCGRMnTmTKlCm8/vrr7N69m19++YW5c+cybdo0lz/WdevW8cILL7Bx40bi4uJYuHAhycnJNGvW7JKOd+2119KtWzduuukmli5dyoEDB1izZg1PPvkkG52jU8/02muv8emnn7Jr1y52797Nf/7zH2rUqEGlSpUu6Xjn0rhxY+68807uvvtuFi5cSGxsLBs2bGDq1KlFK3OOHj2apUuXEhsby+bNm/nhhx8u+ecgniN7926q5uaSAzS+3Dlq9evjqFYNcnNJ+f77Uskn4olCQqwRaQCTJsGpU2bziIiIyOVTIc1L7PvsMwBig4IgKOiyjhVSsSI7nD2jEhcvvuxsIuezceNG2rVrR7t27QAYM2YM7dq14+mnnwas6ZC//PILN954I40bN+aee+6hcePGrF27looVK573uL6+vrzxxhvMnj2bmjVrcuONNwLWlMJ3332XefPm0apVK3r27Mm8efPOO7WyNIWGhrJy5Ur+8pe/0LhxY5588kleffVV+vfvf0nHs9lsLFmyhKuuuoq//vWvNG7cmNtvv50DBw4QERFxzu8JCQlh6tSpdOzYkU6dOnHgwAGWLFmCj4/PJR3vfObOncvdd9/NY489RpMmTbjhhhtYt24dUVFRgDVScNSoUTRr1ox+/frRpEkTZs6ceUk/B/EccQsWAPCrry/1LrcwarOx3Tm1ecPbb19uNBGPNnw4NGoEycnw6qum04iIiMjlsjkcDofpEO6WlpZGWFgYqamphIaGmo5TIku6dOEv69ezoXlzOm3fftnH+7xrVwavW8cvjRvT6rffSiGhuFJWVhaxsbFER0cTqClQUobod9t7bO7Zk/YrV/JVvXoMiI297OOtu/pquixfzrfR0fTZv78UErqHN76GKG888d/os8/g1lut9qZ790KNGqYTiYiIyJlK+hpCI9K8RMW9e62N9pfT3vl3Qb16AVD94MFSOZ6IiJRtIc4PcfLOsertpQi+8koAIuLjS+V4Ip5s8GDo3BkyMmDyZNNpRERE5HKokOYF8vPzqXfiBADVrruuVI4ZPXgw+UBEdjYOrZomIiIXkp1NA2cvwjq33VYqh6w9cCAATXJyOJGUVCrHFPFUNhu89JK1/fbb4FyYWkRERLyQCmleYP/69UQ5Z+BGOd94XK4mHTqAs8eN7SIajYuISDkUE4M9Lw/Cw2l/yy2lcshKHTpwymYjENijfp1SDvTsCX/5C+TlwYQJptOIiIjIpVIhzQsc+vJL6zowEHvlyqVyTB8fH+xdu1pfrF9fKscUEZEyat0667pLF2toTWnw8eFQlSoAHPvuu9I5poiHe/FF67/Qf/6jl18iIiLeSoU0L5DtfKWVVKtW6R64c2frWq/kvEY5XBtEyjj9TnuHY998A0BB4fNGKUlv1AgAW0xMqR5XxFO1agV3321tjx0L+hMoIiLifVRI8wL9atcGoMGNN5bqcfdVrQpA2vff65Wch/Pz8wPg9OnThpOIlK6cnBwA7Ha74SRyIemrVgGwLCWlVI8bfvXVAHQMCirV44p4skmTICAAfvwRnDVqERER8SK+pgPIn7Pt2AFApSuuKNXjBnbqRBYQmp9P1vbtBLZsWarHl9Jjt9upVKkSSc6G3BUqVMBWWtOrRAwpKCggOTmZChUq4OurpyNP5cjIoHZGBgA1+vcv1WPXv+EGeOEFwhMTS/W4Uj7NmDGDGTNmkJ+fbzrKBdWpA3//O7zyCjzxBPTtC/osQURExHvYHOVwXk1aWhphYWGkpqYSGhpqOs6FFRRAxYpw+jTs2gVNmpTaoR0OB1v8/Wmfl8feF16g4fjxpXZsKX0Oh4PExEROnjxpOopIqfHx8SE6Ohp/f3/TUeQ8khYvpvoNN3AUCDt9msDSHD126hQUPg8fOwbOnmmezKteQ5RT3vBvdPw4NGgAJ0/CvHlwzz2mE4mIiEhJX0NoCICH+23ZMpqcPk2e3Y5vgwalemybzcbRiAiIjydt1SpQIc2j2Ww2IiMjqV69Orm5uabjiJQKf39/fHzUZcCTJX7zDdWBPSEhXFnaUzArViS/Vi3s8fEc+t//iLrjjtI9voiHqlLFetk1bhw89RQMGQKBgaZTiYiISEmokObhDv3vfzQBDgYG0sAFU5+ymzeH+Hj8tm8v9WOLa9jtdvWTEhG3yXUuSHOibl2XHP9XoA2w7dNPVUiTcuXvf4c334RDh2DGDHjsMdOJREREpCQ0DMDDZW/ZAsDJyEiXHL+is+9adfWnERGRc6i4fz8APu3bu+T42Q0bAuC7c6dLji/iqYKCrIUHAJ5/Hk6cMJtHRERESkaFNA8XsHcvAPlNm7rk+HUGDAAgIieH/ORkl5xDRES8VF4edZx9GcOvu84lpwjo2BGAykeOuOT4Ip7s7ruhRQuriDZ1quk0IiIiUhIqpHm4as7iVkjnzi45foN27Yjz8wMg/aefXHIOERHxTo5duwh0OMj296ep84OX0hbRuzcA9U6fVv9HKXfsdnjxRWv79detaZ4iIiLi2VRI82DpaWk0yMkBINJFIwF8fHyKRqWFxca65BwiIuKdbDExAAR06kRY5couOUdEr14AVAcObtrkknOIeLLrr4cePSArCyZONJ1GRERE/owKaR5s34oVhAA5QOUOHVx3ojZtrOutW113DhER8T6Fzwtt27rsFLbgYBKcI6MTVq502XlEPJXNBi+9ZG3Pmwda/0lERMSzqZDmwdLXrQPgcHAwON9kuITzDVK+c2EDERERgKQffgDgVHS0S8+TXKUKAOkakSblVNeuMGgQFBTA+PGm08jlys+HFSvgk0+s6/x804lERKQ0qZDmwa5wvrGofe21Lj3P3uBgAPK3bQPnVFIRERHHL78AsCk726XnqezsA9rF+bwnUh698ILVM23xYli1ynQauVQLF0K9etC7N9xxh3Vdr551u4iIlA0qpHmyPXsA8G/Z0qWniejcmVTAH0jdsMGl5xIREe9QcOIEEc7m/7X79HHpuaKuuQaAKlo9WsqxJk1g+HBre+xYcDjM5pGLt3Ah3HILHD5c/Pb4eOt2FdNERMoGFdI8mbOQRqNGLj1NxdBQ9gYEAHDku+9cei4REfEOCd9/D8BhILpdO9eerHFj63r3bteeR8TDPfMMVKgAP/8MX3xhOo1cjPx8eOSRcxdAC28bPVrTPEVEygIV0jyUw+EgcfVqANIiIlx+vmPVqwO/92UTEZHyLXnFCgDiKlbEbre79FwOZyEtb9cu0tPSXHouEU8WGQljxljb48dDXp7ZPFJyq1adPRLtjxwOOHRI03ZFRMoCFdI81JF9+6jh7FcW1Lq1y8+X4xz1Zv/tN5efS0REPF+OcwGa1Fq1XH4uW7165AC+ubns//FHl59PxJP94x8QHg6//QZz5phOIyWVkFC6+4mIiOdSIc1DHXF+XJXm44NfZKTLzxfUoQMAVfTsLiIiQND+/QA4WrRw/cnsdo5UqABAypo1rj+fiAcLDYWnnrK2n3kGMjLM5pGSKenL9ZAQ1+YQERHXUyHNQ510Nv1PDAkBm83l56tx9dUA1MrMxOHi1dlERMTz1UhJASC0Wze3nO9EtWoAZG7d6pbziXiyBx+E6GhITITp002nkZLo0QOCg/98vzvvhGefhdRU12cSERHXUCHNQ+Vs3w5AWo0abjlfg549ybDb8QNyd+xwyzlFRMRDHT9ONWdzpmaDB7vllLn16gFg37vXLeeTsmfGjBk0b96cTp06mY5y2QIC4Pnnre2pU0EL2nq+WbPOP3qw8DPxqCg4dQomTrQKpS+8YH0tIiLeRYU0D+V38CAABfXru+V8gUFBBHfsCIC/3sSIiJRvzg9zqFOHqs4Cl6v5t2oFQOjRo245n5Q9o0aNYseOHWxwjur3dkOGQPv2VqGlsKgmnul//7NW7AQYOhRq1y5+f+3a8PnncOAAfPopNG0KJ07AhAlWQe2llzSFV0TEm7ilkDZz5kyio6MJDAykQ4cOrLrAcjX33nsvNpvtrEuLP/RomTdv3jn3ycrKcsfDcYtKzo8eA51vLNyi8Gdc+AZKRETKp19/ta5btnTbKSt36QJAzVOncDgcbjuviKfy8bFGowHMnAnOtoXiYX79FW67DQoK4L774P33rYLZ8uXw8cfWdWwsDBpk/ZsOGWJ9z4cfQqNGcOwYjBsH9evDtGlw+rTpRyQiIn/G5YW0+fPnM3r0aCZMmMCWLVvo0aMH/fv3Jy4u7pz7v/766yQkJBRdDh06RJUqVbj11luL7RcaGlpsv4SEBAIDA139cNzC4XBQz7liZ9WuXd134ubNAcgoI5/kiojIpdn/1VcAJFWv7rZzRlx5JQBRDgcpR4647bwinuzaa+G66yA39/cFCMRzJCXBwIHWqMGrroK33rKmcdrt0KsX/N//Wdd2e/Hvs9utXmk7dsC8eVYRLSkJHnsMGjSAN96AMjQ+QESkzHF5IW3atGkMGzaM4cOH06xZM6ZPn05UVBSzZs065/5hYWHUqFGj6LJx40ZOnDjBfffdV2w/m81WbL8abuol5g6206ep7uxNU7NnT7ed96eTJwFIWr7cbecUERHPc9r5gcqmzEy3nTOwbl3y/P2xA6Hqwi1SpHBU2scfw+bNZrPI77Ky4OabrdFnDRrAwoXg739xx/D1hXvugV274N13oW5da4GJRx6Bhg2tvmtaA0xExPO4tJCWk5PDpk2b6NOnT7Hb+/Tpw5oSLm//3nvvce2111K3bt1it6enp1O3bl1q167NgAED2LJly3mPkZ2dTVpaWrGLRyvsUVa1KraqVd122spXXAFA7cxMHM4RcSIiUv5EHj8OQCXn84Jb2Gz4NmoEQMDhw+47r4iHa9cO7rjD2n7iCbNZxOJwwP33w5o1UKkSfPUVXM5Ldj8/GDYMdu+2ime1a0N8PIwcCY0bwzvvWKMSRUTEM7i0kJaSkkJ+fj4RERHFbo+IiCAxMfFPvz8hIYFvvvmG4cOHF7u9adOmzJs3jy+//JJPPvmEwMBArrjiCvbs2XPO40yZMoWwsLCiS1RU1KU/KHcoLKQ1bOjW00ZfdRWnAD/g+Lp1bj23iIh4hpyEBKrm5wMQdd117j154QI7agYlUsxzz1nFlmXLrIuY9cILVo8zux3+8x9r8YDS4O8PI0bAnj3w5psQGQlxcfDAA9CkCcydC85JKyIiYpBbFhuwFa757ORwOM667VzmzZtHpUqVuOmmm4rd3rVrV+666y7atGlDjx49WLBgAY0bN+bNN98853HGjx9Pampq0eXQoUOX/Fjc4Yf33gNgXwl+RqUpqEIF9gUEAHBU0ztFRMqlhBUrADhss1GrSRO3njvVOaTjt//9z63nFfF00dHW6CSwGtMXFJjNU5795z/w5JPW9r/+ZfWxK22BgfDQQ7BvH7z2GlSvbi1Y8Ne/QrNmVhHP+XmHiIgY4NJCWnh4OHa7/azRZ0lJSWeNUjuTw+Fgzpw5DB06FP8/aTjg4+NDp06dzjsiLSAggNDQ0GIXT5a3ezcAKSEhbj93cng48Ht/HBERKV+OOVsvxIeElOhDr9K0xznUIvGnn9x6XhFvMGECVKwIW7bA/Pmm05RPGzbA3Xdb26NHW6PHXCkoyDrP/v3w8ssQHm5NXBk6FFq0gE8/VVFVRMQElxbS/P396dChA8vOGIO+bNkyunfvfsHv/fHHH9m7dy/Dhg370/M4HA5iYmKIjIy8rLyeIiQlBQB/N48EAMiKjgbAdp6ipIiIlG05v/wCQKqBRXxCWrcGoIoWGxA5S7Vq1mg0sIpqakLvXocOwQ03WIsMXH89vPKK+84dHAyPP26NSpsyBapUgd9+s1YFbd0aPvtMBTUREXdy+dTOMWPG8O677zJnzhx27tzJo48+SlxcHCOcH+GMHz+euws/2vmD9957jy5dutCyZcuz7nv22WdZunQp+/fvJyYmhmHDhhETE1N0TG9XLT0dgNA2bdx+7oBWrQComJDg9nOLiIh5frGxAOS7uU8nQHjnzgDUzs0lR4veiJxl9Girb1ZsLMyebTpN+ZGeDgMHWitqtmoFn3xi9Udzt5AQa8GJ2FiYNAnCwmD7drj1VmtRii++sBZCEBER13J5IW3IkCFMnz6dSZMm0bZtW1auXMmSJUuKVuFMSEggLi6u2Pekpqby+eefn3c02smTJ3nggQdo1qwZffr0IT4+npUrV9LZ+QLcm6WnpRHlbHpQzcDjqeNsLB2dk6NnYhGRcqhdYCAAHQqXCXSjqh07AlAZOLRtm9vPL+LpgoNh4kRre/Jk8PSF6MuC/Hy4807YutXqVbZ4sTXF1qTQUHjqKThwAJ5+2sqzbRvcfDN07Ahff62X8SIirmRzOMrfn9m0tDTCwsJITU31uH5pO7//nmbXXkse4JubC76+7g2QnQ0VKljjw+PjoWZN955fRETMycuzngNyc613aM4Pvdwp2c+Panl5rH3zTbo99JDbz/9nPPk1hFjK+r9RXh60bGlN7XvySaugJq7zj39Y0zgDAmDFCuja1XSisx0/Dq++Cq+/DhkZ1m2dO1uj1vr0ATe3uxQR8VolfQ3hllU7peSObdwIwFF/f/cX0cB6leDsk4Zz0QMRESknYmOtIlpQEERFGYmQ4hzqkbZ1q5Hzi3g6X1+rTxbAtGmgbhyu8957v/dCmzvXM4toYPVMe/5560/4P/5h/Qlfvx769YMrr4Tvv9cINRGR0qRCmocJOHIEgJOVKhnLUNgXp3DlNhERKR9iv/kGgOPh4eBj5iVChnNV77zffjNyfhFvcNNN0K0bnD4Nzz5rOk3ZtGLF76tyPvOM1djf01WrBi+9ZBXUHn0UAgNhzRq49lro1QtWrjSdUESkbFAhzcN0Cg8HoPn11xvL8MPhwwDsXrzYWAYREXG/pFWrAPglN9dYhrq9ewPQu149YxlEPJ3NBlOnWtvvvmtN85TSs2cPDBpkTaO9/XarkOZNIiKs0Yr79sHf/w7+/lYRrWdPq6imz8pFRC6PCmmexrlamq1+fXMZmjQBIODgQXMZRETE7RzOd+OZdeoYy1CtSxcAKmi+msgF9ehhrSSZnw///KfpNGXH8eMwYACcOAFdusCcOd7bY6xmTXjjDaug9re/gZ+fNc3ziiusaZ/r15tOKCLinVRI8zTOQlpRnzIDQjp0ACD82DFjGURExP1C4uMB8G3RwlyIwue//fvNZRDxElOmWLOwFy6En382ncb75ebCLbdYbYLr1IEvvrD6jXm72rVh5kxrpN3991t99pYutQqFAwfC5s2mE4qIeBcV0jyIw+Hg8OrVABwzuMpUZM+eANTMyaEgK8tYDhERca/I1FQAwpyjwkxwOFcKzTtwgPS0NGM5RLxBixZw773W9tixaih/ORwOGDkSli+HkBBYvBhq1DCdqnTVrQtvv21NBb73XqsI+9VX0KED3HwzaI0XEZGSUSHNg6QkJBCZlwdAcMuWxnLU7tyZU4AvkKgmCiIi5UJ2YiJV8/MBqO3sU2aCrVYt8gDfggIObdhgLIeIt3j2Waup/KpV8PXXptN4r9des/rN+fjAp59C69amE7lO/frWKqQ7d8Jdd1lTV7/4Atq2hVtvhe3bTScUEfFsKqR5kIT167EDmUCgwSbLvn5+HAwIACDZOUJORETKtiPLlwMQb7NRo1Ejc0F8fUn28wPg2JYt5nKI15kxYwbNmzenU6dOpqO4Ve3a8Mgj1vYTT1g90+TiLF4Mjz9ubb/6Khhc88utGjeGf//bKpzdfrtVUPvsM2jVylqldNcu0wlFRDyTCmke5ITzDUNSUJDxrqbHqlYF4HRMjNEcIiLiHifXrQPgSEgINsPPQced7Q1O79hhNId4l1GjRrFjxw42lMORjOPGQeXKVkHkgw9Mp/EuW7daRSOHAx544PeiZHnSrBl88gls2waDB1s/i08/taYO33037N1rOqGIiGdRIc2DZDpXSzsZFmY4CYR37w5AE8M5RETEPdpVrAhAkwEDDCeB0+HhAORpwQGREqlcGSZMsLaffhoyM83m8RaJiVaz/YwMuPpq+Ne/jH+WbVTLltaItC1b4MYboaDAGrHWtCn89a9aA0ZEpJAKaR7EcfAgANnVqxtOAi1uvhmAKsnJhpOIiIhbOIcchLZvbzgI5NeuDYDduYqoiPy5UaOslSYPH4Y33zSdxvNlZlrFokOHrCmOn30Gzlnl5V7btlbPtI0brWmu+flWT7UmTaxRe863LCIi5ZYKaR7ENzERgIKoKMNJsJ4pwVrWR0REyr7CuTsNG5rNAfg1aABASEqK4SQi3iMwECZPtranTIHjx83m8WQFBdaqlevXQ5Uq1sqVlSubTuV5OnSwfjY//wx9+0JeHrzzDjRqZBVuDx82nVBExAwV0jxILWd32CCTTZ6dCurXtzaSk8k/ccJsGBERcS2Hg4ytWwFIqVTJbBYgpEULAKqkpxtOIuJd7rzTahR/8qRVTJNze/ZZWLDAGoG2cKFVGJLz69IF/vc/WL0arrkGcnNh5kzrc5dHHoGEBNMJRUTcS4U0D9I8OBiANgMHGk4CjtBQkpzbiT/9ZDSLiIi41unDhwnOzQXA5hwNZlLUFVcA0CQw0HASEe9it8PUqdb2m29CXJzZPJ7oo49g0iRre/Zs6NnTbB5vcsUV8N13sGIFXHUVZGfDG29A/frw2GOQlPSnhxARKRNUSPMUDsfvr3bq1DGbBbDb7cQHBQGQ8vPPhtOIiIgrJaxaBUC8zUYVZ38ykyo0bQqAT3q6NbRGREqsXz/o1csqcjz9tOk0nmXtWhg2zNoeOxbuu89sHm/Vs6dVTPvuO+jWDbKyYNo0iI62VpA9c1Z+fr61/yefWNfOSTgiIl5LhTRPceIEnD5tbXvAmxiAk1WrAnB62zbDSURExJWOr18PQGJwMDZPWLIuOBicK3eqq7XIxbHZfh+V9sEH8MsvZvN4igMH4KabrALjjTdq6uvlstmsaZ4//WRN++zc2Xor89JLVkHtySetPn0LF0K9etC7N9xxh3Vdr551u4iIt1IhzUNs+PxzAE4GBFjdYj1AjnNknG3fPsNJRETElXJ27AAgNSLCcJLfpTp7tW3/5huzQUS8UOfOcOut1oSHJ54wnca8tDQYONCaeti2LXz4IfjoXVCpsNmshQh+/tlamKB9e0hPh+eft8YGDB589qIE8fFwyy0qpomI99JTiIdI+/VXAI4GBBhO8jtf59SaYOdqoiIiUjbZY2MByKtb13CS3+1z9myLc047FZGL8/zz4OsLS5ZY0+nKq7w8uP12+PVXiIyExYshJMR0qrLHZoPrr4eNG2HRImvRi8zMc+/rcFjXo0drmqeIeCcV0jxEjnPUV4YHrb0d1qEDANXS0gwnERERVwp1dogOcK6W6QlyatYEwKZu6SKXpFEjeOABa3vcuN+LF+XN44/DN99AUBB8+aXHdFAps2w2awrt9OkX3s/hgEOHQJ+ViIg3UiHNQ9gOHQIgp0YNw0l+V7NHDwBq5OWRm5pqOI2IiLhKZEYGAJU6djSc5Hf2evUACNQycCKX7OmnrZaD69eDs4tIuTJrFrz+urX9wQfgQX/iyryjR0u2X0KCa3OIiLiCCmkeIsD5RsHH+cbBE9Ro3pyswn5t+/ebDSMiIq5x4gSVnXNrmg0YYDjM74Kc7QUqaVS0yCWLiLBGZAH885/gnDFdLixbBn//u7X9/PNWTy5xn8jI0t1PRMSTqJDmIcKcI76CmjQxnOR3PnY7gS1bAuCnVdNERMqmwgVlatTAv0oVs1n+IMz5/FMtOxtHeZ2TJlIKHnsMqleHPXvg3XdNp3GPnTutxRby82HoUBg/3nSi8qdHD2sa7YUWgrbZrIUHRES8jQppHsDhcFAtKwv4/Y2Dx2jY0Lreu9dsDhERcY3Cv++Ff+89RHjbtgDUcDg4mZJiNoyIF6tY0ZriCfDss9aKimVZSgoMGACpqXDFFfDOOxcu5ohr2O2/T6s98+df+LXDAXfdZfXyO9/CBCIinkiFNA+QlZ5OTeen7dWcDf49xSlnz7bDP/5oOImIiLjC5gULAPC0j0uC6tYlF7ADiTExhtOIeLf774cGDay+VdOmmU7jOtnZMGiQ1ZEkOtpaPTIgwHSq8mvQIPjsM6hVq/jttWvDggXw5JNWUe2dd6BzZ2skoYiIN1AhzQMEnTiBHcDPjyAP6pEGsNk55TR5zRrDSURExBWyt28HINbX13CSM9jtFDg/zGkUFGQ4jIh38/eHF16wtl9+GcriGh4OBzz4oLUKZGgoLF4M1aqZTiWDBsGBA7B8OXz8sXUdG2tNvZ08Gb791url9+uv1mIQ779vOrGIyJ9TIc0TOFfspHZt8PGsf5Iw5wi5amr2LCJSJoU4l1bzb97ccJKzBdSvD4BvYqLhJCLe75ZbrEJFerpVwChrXnrJKsL4+FijnVq0MJ1ICtnt0KsX/N//Wdd2++/3XXstxMTA1VfD6dNw773WxbmYtIiIR/Ksqk055Shs5F+njtkg5xDRvTsANfPyyC3rTTVERMqhiFOnAKjUsaPhJOdQu7Z1ffiw2RwiZYCPD0ydam2/9dbv64yUBQsXwhNPWNtvvAF9+5rNIxenRg1rZNqkSdbv6fvvW0XfX34xnUxE5NxUSPMA/3vnHQC2e2ChKqJ1a9KxflESf/7ZdBwRESlFWcnJVC8oAKBmjx6G05ztqJ8fAL98843hJCJlw9VXQ79+kJcHEyaYTlM6Nm2yGtYDPPQQjBplNo9cGrsdnnoKfvgBataEXbusvmnvvmtN2xUR8SQqpHkAu3Pd51NhYYaTnM3Hbuews0trigppIiJlSvzKlQAk22yEN2hgOM3ZDubnA3Bs2zbDSUTKjhdftBq8z58PGzeaTnN54uPhhhusFR/79oXXXjOdSC5Xz57WVM9+/SAry1oo4847wTl4WkTEI6iQ5gEqHD8OgN3DFhoodKxyZQBO642MiEiZcnz9egCOVKiAzWYznOZsgQ0bAhCqPp0ipaZNm99HcI0b572jfTIyrCLakSPQvLlVGPS0NVPk0lSrBl9/bRV97Xb45BNo3x62bDGdTETEokKaBwhzTums0KiR4STnllm4ZvXevWaDiIhIqfKNjQUgNTzccJJzC3UugBCemWk4iUjZMmmStZLnDz9Yvam8TUEB3H03bN4M4eHw1VfggRM75DL4+FiF3pUrISrKehvStSvMnOm9xV8RKTtUSDPM4XAQnp0NQJgHrpgG0LBfPwDaVqxoOImIiJSmds6/693uucdwknMLb9sWgEiHg1OpqWbDiJQh9epZ/cTAKlY4WyV6jSeftBYY8PeHRYsgOtp0InGV7t2tkWgDB0JOjtUD77bbQE8JImKSCmmGnUhKIsK5XbV1a6NZzqfeNdcAEHzkiOEkIiJSqpzL9vk1aWI4yLmFNGxIPuAHJGzdajqOSJnyz39ao7i2boWPPzadpuTefx+mTLG2330XrrzSbB5xvapV4b//hWnTwM8PPvsM2rWDDRtMJxOR8kqFNMOStm3DB8gBgurUMR3n3OrXt64PHgRn42cRESkDnFM7PXY4h58fKc6mRyd++cVwGPF0M2bMoHnz5nTq1Ml0FK9QtSo88YS1/eST4Jwg4dFWrbKaz4O16ujQoWbziPvYbPDoo7B6tTWiMjYWrrgCpk/XVE8RcT8V0gzzPXoUgJNBQVYzAE9UuzYFdjvk5pK6Y4fpNCIiUgryMzMpiIsDIK1qVcNpzu9EhQoApO/aZTiJeLpRo0axY8cONmiYSok9/DDUrGl9Vjpzpuk0F7ZvH9x8M+Tmwi23WH3epPzp3Nma6jlokPW78OijcNNN4Fy7TUTELTy0clN+NAwKAqB6mzaGk1yA3c5B52pu8atWGQ4jIiKlIXH9enyA00Bw4chjD1Sra1cArmrQwHASkbKnQgV49llr+7nnPLfv1MmTMGAAHDsGHTta0zs99fNncb1KlazpnW++afXJ+/JLa6rn2rWmk4lIeaGnINMK+44VrozpoZKdDalTY2LMBhERkVKR4hy1E+/vj905fdITVWzaFAC/xETDSUTKpnvvhWbNrBE9U6eaTnO23FyrufyuXVC7tlU0cQ5UlXLMZrMWzFi7Fho0gLg46NEDXnrJ+xbPEBHvo0KaYY7Dh60NDy+kZVSvDkDe7t2Gk4iISGlId/YcOx4aajjJn6hd27oufL4UkVLl6/t78/7p0yE+3micYhwOeOQRWLbMKp59+SVERppOJZ6kfXvYvBmGDLFaOY8bZ41eTE42nUxEyjIV0gz70blM0jYPn9hfUK8eAL7OfjoiIuLd8vfuBeB0jRqGk1zYMWcLhFi1FhBxmRtusBq3Z2bCxImm0/zuX/+CWbOs0UcffWRN3xM5U2gofPIJzJ4NgYHwzTfQti2sXGk6mYiUVSqkGRZ88iQA+RERZoP8iQDn1JqKKSmGk4iISGnwc47wctStazjJhZ0MCQH+MIJbREqdzWZNiQOYMwd27jSbB6xiyOjR1vbUqVZDeZHzsdnggQdg3Tpo0sTqntO7Nzz/vKZ6ikjpUyHNsMqZmQCENGliOMmFVWrfHoCIjAzDSUREpDSEOkdCBzRrZjjJhYW3bQtAzYICMk+fNhtGpAzr3t0qVhUUwPjxZrP8+qs1Va+gAP76V3j8cbN5xHu0bg0bN8LQodbvz5NPQr9+cPSo6WQiUpaokGZQbk4ONfLzAajcsqXhNBdW88orAahWUECmmg6IiHi9mtnZAFT28LlSoc4R0YHAEWdfNxFxjRdesFbD/O9/4aefzGRISrJ6XJ06BT17/j61U6SkQkLggw9g7lyrt96yZdZUzx9+MJ1MRMoKFdIMOrpnDyHO7SoeXkirHB1NdnAwAH6e1IVWREQuXno6lXNzAWj2l78YDnNhtsBAUux2AE6qkCbiUs2awbBh1va4cVazf3fKyrJGxR08CA0bwuefg7+/ezNI2XHvvbBhA7RoAYmJcO218Mwz1qIEIiKXwy2FtJkzZxIdHU1gYCAdOnRg1QUaBq9YsQKbzXbWZdeuXcX2+/zzz2nevDkBAQE0b96cRYsWufphlLoU5xuCVJsNn4oVDae5MJvNVtQnTQsOiIh4udhY67pKFWyVKhmNUhInnAsOnNLK0SIuN3EiBAVZI9K+/NJ953U4rCLe2rVQqRJ89RVUreq+80vZ1Lw5rF9v/W45HDBpklVQO3LEdDIR8WYuL6TNnz+f0aNHM2HCBLZs2UKPHj3o378/cX9SjPntt99ISEgoujRq1KjovrVr1zJkyBCGDh3K1q1bGTp0KLfddhvr1q1z9cMpVaecnVyPBQYaTlJC0dHW9f79ZnOIiMjlKSykFf5d93DpoaEA5Bw4YDaISDlQsyY8+qi1PX485OW557zPPQcffwx2O3z2mdUwXqQ0VKgA774LH34IwcGwYoU11XPpUtPJRMRbubyQNm3aNIYNG8bw4cNp1qwZ06dPJyoqilmzZl3w+6pXr06NGjWKLnbntA6A6dOnc9111zF+/HiaNm3K+PHjueaaa5g+fbqLH03pquxsmpwTHm44ScmkhIUBsPfbbw0nERGRy7Hm448B2Onsk+bpsp3DUhxqLSDiFmPHQpUq1uqd8+a5/nwLFsDTT1vbM2fCNde4/pxS/tx5J2zeDG3aQHKytQiBO4vFIlJ2uLSQlpOTw6ZNm+jTp0+x2/v06cOaNWsu+L3t2rUjMjKSa665huXLlxe7b+3atWcds2/fvuc9ZnZ2NmlpacUunqBl5coANPWSVws7s7IAOL5xo+EkIiJyOXJ/+w2ARC8ZEd3i2msBuKZFC8NJRMqHsDBrtUOwekq5csHc9evhnnus7UcfhQcecN25RBo3hp9/hr/9zfr6xRehVy84dMhoLBHxMi4tpKWkpJCfn09ERESx2yMiIkhMTDzn90RGRvL222/z+eefs3DhQpo0acI111zDypUri/ZJTEy8qGNOmTKFsLCwoktUVNRlPrJSUvjJeq1aZnOUUEjr1gBUTk01nERERC5HoPP50taggeEkJVOxcWMAfI8eNZxEpPwYORLq1rV6Sb3+umvOERcHN9xgLTJw/fXw8suuOY/IHwUGWiMf58+H0FCrH2DbtlZfPhGRknDLYgO2M9asdjgcZ91WqEmTJtx///20b9+ebt26MXPmTK6//npeeeWVSz7m+PHjSU1NLboc8pCPHByHD1sbNWuaDVJC1bp0AaB2Tg75GgMtIuK1Kp88CUCwt4zwKnyeVHdoEbcJCLD6loE1aufYsdI9/qlTMHAgHD0KrVrBJ59Y/dFE3OW226ypnh06wPHj1u/jY49BTo7pZCLi6VxaSAsPD8dut581UiwpKemsEWUX0rVrV/bs2VP0dY0aNS7qmAEBAYSGhha7eIJfnb3G9mZmGk5SMjU6dyYfCAISY2IMpxERkUvhKCgg0jlVv2rHjobTlEzhYgMnduwwnESkfLnjDqufVFoaPP986R03P9/qV7VtG0REwOLF4OEL2EsZ1aCBNSLtkUesr6dNg6uuAq1tIyIX4tJCmr+/Px06dGDZsmXFbl+2bBndu3cv8XG2bNlCZGRk0dfdunU765jffvvtRR3TE1R1Nnn2q1fPbJAS8g0KIsHXF4Cja9caTiMiIpfi+O7dFL5frdmtm9EsJeYckVbx9GnS1V5AxG18fGDqVGt7xozSKy6MG2cVzwIC4L//taaQipgSEADTp8OiRVCpEqxbB+3aWV+LiJyLy6d2jhkzhnfffZc5c+awc+dOHn30UeLi4hgxYgRgTbu8++67i/afPn06X3zxBXv27GH79u2MHz+ezz//nIceeqhon0ceeYRvv/2WqVOnsmvXLqZOncp3333H6NGjXf1wSk3a8eNEOBwAVGvb1myYi5Di/Lgwfds2w0lERORSHP35ZwASfHwIrFTJbJgSCqlfnwLAF0javt10HJFypU8faxXNnBx46qnLP94778Crr1rb778Pzs4hIsbddBPExEDXrnDyJAwaBA8/DF6ywLWIuJHLC2lDhgxh+vTpTJo0ibZt27Jy5UqWLFlCXedHTwkJCcTFxRXtn5OTw+OPP07r1q3p0aMHq1ev5uuvv2bQoEFF+3Tv3p1PP/2UuXPn0rp1a+bNm8f8+fPp4kXPxEe3bcMO5AEVvGREGkB69eoA5P1hqq2IiHgPn4MHATgWFmY4yUXw9SXF2TzphAppIm5ls/0+Ku2jj6xCw6X64QdrEQOAiRNhyJDLTSdSuurWhZUr4fHHra/ffBO6d4e9e83mEhHP4uuOk4wcOZKRhc+aZ5g3b16xr8eOHcvYsWP/9Ji33HILt9xyS2nEM+LEr78CkOzrS6QXdVZt3K8f/PYbV3jJAgkiIlJc04AAAFoOGGA4ycU5ERRE9fR00vVBjojbdegAt98On34K48fDN99c/DF274bBgyEvD/7v/+Dpp0s/p0hp8POzVpDt1QvuucdakKB9e3j3XWuBAhERt6zaKWfL2L0bgNQKFQwnuTjVu3YFIKBwxVEREfEusbHWdXS02RwXKcO54ECOOkCLGPHcc+DrC//7nzWy7GIcPw4DBljT5bp2hTlzrJFuIp7s+uutEZhXXmmtMjtkCIwYAV6yTpyIuJAKaYbkON/IpHtJf5oihW+89u83m0NERC6NlxbSsqtWBaBAH+SIGNGggVVEABg7FgoKSvZ9OTlwyy2wZw/UqQNffAGBgS6LKVKqateG5cvhn/+0ir+zZ1vF4N9+M51MRExSIc2QwjVIfb1smaK8OnWsjfh4Mk+cMBtGREQuWtyPPwKw37ngjbdw1KgBgG9SkuEkIuXXU09BSAhs2gT/+c+f7+9wWD3Rli+3vu+rryAiwvU5RUqTry88/7w1GrNaNdi2zZru/OGHppOJiCkqpBnSOjwcgLb9+xtOcnHsERGccm4nOFd+ExER75Cfk0ONnBwAAps1M5zm4rTq1w+AXk2bGk4iUn5Vrw7/+Ie1PWGCNdrsQqZNg/feAx8fq79aq1auzyjiKn36wNat0Ls3ZGTA0KHw17/C6dOmk4mIu6mQZkpCgnXt/ITdW9h8fDjiHI9/bMMGw2lERORiJGzciD+QA0S0b286zkWp2KgRAPbERMNJRMq3MWOsUWX79sHbb59/vy+//L3oNm2a1W9KxNtFRsKyZdaqszYbzJ0LnTqBFpQWKV9USDPEUVhIi4y88I4e6ISzr1umnjFERLxK8vr1ACT4+WH39zec5iIVrhZ95IjZHCLlXEgIPPOMtT1pktWE/UwxMXDHHdbUzgcfhIcfdmtEEZey263/A99/b42J2LHDKqbNnWv9zotI2adCmgEOh4PkX34BINELlyzKchb/HPv2GU4iIiIX49S2bQCkOFfA9Cb5zsZKBYmJpKemGk4jUr4NHw6NGkFyMrzySvH7EhJg4EBr6ts118Cbb2qFTimbeve2pnr26WOt5PnXv8Ldd0N6uulkIuJqKqQZcOrECcKdH1cUTlXxKvXrAxBYOKpORES8Qv7evQBkVK9uOMnFs0dGkg/4OBwcdX4YJSJm+PnBCy9Y26+8AgsXwiefwNKlcMMNcPgwNGliLUjg52c2q4grVa8O33xj/X+w260FCDp0sApsIlJ2qZBmQMr27fgAeUBwvXqG01y8oObNAaikVTtFRLyK7+HDADi8bMVoAOx2jtntAJzcscNwGBEZPBgaNrQarQ8ebE3l7NcPNm78fYXOypVNpxRxPR8fGD8eVqyAWrVg927o0gVmz9ZUT5GySoU0A07s3AlgvSHw8b5/giodOwIQmZmpZwcRES9SOzcXgAotWxpOcmlOBAUBkL57t+EkIrJoETgHuZ4lPR2cM8lFyo0rr7T6A/7lL5CdDSNGwO23Q1qa6WQiUtq8r4pTBmQ4X3WcdL4h8DZ1rroKgFCA48eNZhERkZKLdn740enWWw0nuTTpYWEA5Bw8aDiJSPmWnw+PPHL++202GD3a2k+kPAkPh8WL4eWXwdcXFiyA9u1h0ybTyUSkNKmQZkDhG4CMihUNJ7k0AZUqWUvUAMTGGs0iIiIllJX1+4qX0dFms1yinKpVAXDExxtOIlK+rVpl9UE7H4cDDh2y9hMpb3x84PHHrd//unVh3z7o3t1aeKNwMk9+vjUV9JNPrGsVnUW8iwppBhQ438hkV6liOMllKHwTpkKaiIhXKIiNtV7BBwdbH5l7IYfzQxzfpCTDSUTKt5KuN6V1qaQ869oVtmyBm26CnBx4+GGrn+AHH0C9etaqn3fcYV3Xq2ct2iEi3kGFNANqOfuiBXnpiACAI85pqTu+/tpwEhERKYmN//kPAHF2uzXvygv51qkDQKAWuxExKjKydPcTKasqV7YKZK+/bq1gu2gR3HPP2SM64+PhlltUTBPxFiqkGdDCORKtbf/+hpNcul1ZWQAc37jRcBIRESmJ09u3A3C0QgXDSS5dyz59AOjqjauOipQhPXpA7drnr8nbbBAVZe0nUt7ZbNZotFWrwLn49FkKp3yqt6CId1AhzYTEROvaiz+mszdsCEDQ0aOGk4iISEkU7NsHQKYXP/dUaNAAAB/NFxMxym63RtjA2cW0wq+nTz9/0UCkPMrMvHCRTL0FRbyHCmkGOArfABQ27PdCIa1bA1BV6zmLiHiFwMLnnvr1zQa5HDVrWtdJSZCXZzaLeJwZM2bQvHlzOnXqZDpKuTBoEHz2GdSqVfz22rWt2wcNMpNLxFOpt6BI2aFCmpvl5uQUrdqZ6sXTa8KdL1Ijc3Jw6M2MiIjHC3P2FavQvLnhJJehWjUKbDYoKOBITIzpNOJhRo0axY4dO9iwYYPpKOXGoEFw4AAsXw4ff2xdx8aqiCZyLuotKFJ2qJDmZkm7dxPg3K7YqJHRLJejZufO5AIBQJLezIiIeDSHw0FkZiYAVTp0MJzmMtjtJDsX7EnUc4+IR7DboVcv+L//s641nVPk3P6styCot6CIt1Ahzc2OO5s9n7TZ8PHiEWl+gYEc8fUFIHn9esNpRETkQk4cOEAV53Zk9+5Gs1yu1MBAADKcPd9ERES8wYV6CxZ6/HEVo0W8gQppbpa+Zw8AxwMC/mRPz5ccEgJA2tathpOIiMiF5O7eDcBJPz+CqlUznObypFesCEBOXJzhJCIiIhfnfL0F/f2t6zffhGPH3J9LRC6OCmlulhkbC8Cp4GDDSS5f4759AegWEWE4iYiIXEjE6dMAVGrb1myQUpBduTIABUeOGE4iIiJy8c7VW/DAAahXD/buhVtugZwcwyFF5IJUSHOzvEOHAMiqVMlskFIQ2qYNALYDB8wGERGRC3N+iEN0tNkcpaDAOaLOlpRkOImIiMilObO3YGQkLF4MISGwYgU89BA4HIZDish5qZDmZj5HjwKQ5+VTa4Df35AVvkETERGPlOdsK0D9+maDlAKfmjUB8HeuQioiIlIWtGwJn34KPj7wzju/91MTEc+jQpqb1XY26A9u2NBwkst3LCwMgBNbthhOIiIiF7Lps88A2HLypNkgpcC/Th0Agk+dMpxERESkdF1/PbzyirX92GOwZInZPCJybiqkuVlTZ/Gpbb9+hpNcvtzatQGonJFBXnq64TQiInI+VdLSAPBp0MBwksvXvHdvANpFRhpOIiIiUvpGj4bhw6GgAG6/HX791XQiETmTCmnulpBgXZeBNwDVmzensHyWuG6d0SwiInJu+Xl51HR2La7WubPhNJcvyNlWoLBVgoiISFlis8GMGVbvtFOnYOBAUFtQEc+iQpobORwOHImJ1hdloJDmY7cT71yrOWXDBsNpRETkXBK2biUYKAAiOnUyHefy1ahhXaelgXM1UhERkbLE3x8++wwaNrRW9Bw0CLKzTacSkUIqpLnRiSNHsDn70+RUqWI2TCk57lx9NENjjkVEPFKyc8Rwoq8v9qAgw2lKQWgouc5+o4c2bjQcRkRExDWqVrVW8gwLg59+ggce0EqeIp5ChTQ3OrZ9OwBZgH/16mbDlJLMiAgACvbuNZxERETOJW3rVgBSQkIMJyklNhtHbTYAEp2PTUREpCxq2hT+8x+w2+GDD2DqVNOJRARUSHOrk7/9BkCKn581+b0McDh71fgfOWI4iYiInEvu7t0ApJeRD3AA0pwj607v22c4iYiIiGtddx288Ya1PX48LFpkNo+IqJDmVpnOF/xpZWFqjVNgs2YAVDpxwnASERE5l7rOeSCBTZsaTlJ6MkJDAcg9dMhwEhEREdcbORIeesjavusu2LLFbB6R8k6FNDfKOXgQ+P0NQFnQbtAgABo7+9WIiIhnaWS3A9D+llsMJyk9uc4+o47ClbBFRETKuNdegz59rHV2brgB9BQoYo4KaW5UuGJnTtWqhpOUngrNmwNYiyg4F1IQEREPEhtrXTun4pcFDmd/TntKiuEkIiIi7uHrC/PnW33TDh+GG2+EzEzTqUTKJxXS3Mg3ORn4/Q1AmRASAoV9dwrfrImIiEfIz87GERdnfVGGCmk+tWoBEKgPcEREpBypVAm++gqqVIENG+C++7SSp4gJKqS5UZSfHwChTZoYTlK6Ep0933Z8/bXhJCIi8kcHVq/Glp9PFkBkpOk4pSawbl0AKqanG04iIiLiXg0awMKF4OdnjVCbNMl0IpHyR4U0N2pYoQIArfv2NZykdO3Jzwfg+MaNhpOIiMgfpaxfD0BiQAD4lJ2n/Ga9ewPQMjzccBIRERH369kTZs2ytidOtApqIuI+ZedVtTco7AhZo4bZHKUsu2ZNa+PAAaM5RESkuIxffwXgeFiY4SSlK7BePQBsR49qTouIiJRLw4bBY49Z2/feC87PzkTEDVRIcxNHfj6OpCTrizJWSPNp2BCAIOdiCiIi4hkK9u0DILOMPe9Q2Gs0J0cL3YiISLk1dSoMGABZWdbiA4cOmU4kUj6okOYmCdu3Y3NOgXRUq2Y4TekKbtECgMp6MyMi4lH84+OtDecIrjIjMJDMwEAADvz8s+EwIiIiZtjt8PHH0KoVJCbCDTeA2oeKuJ4KaW5yYtcu69pmw+bvbzhN6arasSMANbOzcTiLhSIiYl7Y8eMABDZvbjhJ6UtwTuk8unWr4SQiIiLmVKwIixdD9eoQEwNDh0JBgelUImWbCmluku6cXnMiIMBwktJXq2tX8oBA4KSzYCgiImY5HA4iMjMBqNy+veE0pS/duYBPZmys4SQiIiJm1a0LX3wB/v7W9YQJphOJlG0qpLlJprMR/6mgILNBXCAoNJQjdjsAJzZvNpxGREQA8k6dooZz1FaNbt0Mpyl9mc4FFPIOHzacRERExLxu3WDOHGv7xRfh/ffN5hEpy1RIc5N8Z5+azDK2clqhwjdp9Q3nEBERi19hf7TQUCrUqmU2jAvkhYdbG0ePmg0iIiLiIe688/fRaPffD6tXm80jUla5pZA2c+ZMoqOjCQwMpEOHDqxateq8+y5cuJDrrruOatWqERoaSrdu3Vi6dGmxfebNm4fNZjvrkpWV5eqHcumcL/TzqlQxHMQ1/Bs3tjY0xUZExDPs329dR0eDzWY2iys4VyL1O3bMcBARERHPMWkSDB4Mublw8816eybiCi4vpM2fP5/Ro0czYcIEtmzZQo8ePejfvz9xcXHn3H/lypVcd911LFmyhE2bNtG7d28GDhzIli1biu0XGhpKQkJCsUugcwUvT+TrbPjsiIgwnMRF6jvHoukvtYiIRzi1bZu1ER1tNoiL+NauDUBQaqrhJCIiIp7Dx8ea1tm+PaSkwMCBkJZmOpVI2eLr6hNMmzaNYcOGMXz4cACmT5/O0qVLmTVrFlOmTDlr/+nTpxf7+oUXXuC///0vixcvpl27dkW322w2ajg/jfYGtf38AAhr1MhwEtfY73BQH9jz7beUzUcoIuJdfv70U64Dfj56lK6mw7hAkLNAGHr6tOEknic6OhrbJYxCHD16NA8//LALEomIiDsFB8OXX0KnTrB9O/zf/1lfO9tai8hlcmkhLScnh02bNvHEE08Uu71Pnz6sWbOmRMcoKCjg1KlTVDljSmR6ejp169YlPz+ftm3bMnny5GKFtj/Kzs4mOzu76Os0AyX5BsHBALS+7jq3n9sdTlauDEBwUpLhJCIiAhCUmGhtlNERaY2vugqAJmW09+jlmDdv3iV9X7169Uo1h4iImFOrllU8u+oqWLIE/vEPmDbNdCqRssGlhbSUlBTy8/OJOGM6Y0REBImFL/D/xKuvvkpGRga33XZb0W1NmzZl3rx5tGrVirS0NF5//XWuuOIKtm7dSqNzjPiaMmUKzz777OU9mMtV2Ay5jE7trN6lCwA18vLIz8zEXgZXJxUR8SZVTp4EoELLlmaDuEigs+hjS06GvDzwdfkge6/Rs2dP0xFERMQDdOxoTfO87TZ47TVo1sxahEBELo9bFhs4c3qBw+Eo0ZSDTz75hIkTJzJ//nyqV69edHvXrl256667aNOmDT169GDBggU0btyYN99885zHGT9+PKmpqUWXQ4cOXd4DukiOggIchSO1vGg66sWIbNuW01i/UEc3bDAdR0SkXMvPz6dmTg4A4Z06GU7jItWqWY1gHA5ITjadRkRExCPdequ1AAHAyJGwfLnZPCJlgUsLaeHh4djt9rNGnyUlJZ01Su1M8+fPZ9iwYSxYsIBrr732gvv6+PjQqVMn9uzZc877AwICCA0NLXZxp6O7dmHLzQWgIDzcred2F7uvL/HOPnApKqSJiBiVsGMHlZzbEc4Rw2WO3U56hQoA7C9huwiBXbt28fLLL/POO++wZs0aI+0uRETEvZ58Eu64wxrAPXgwnOdts4iUkEsLaf7+/nTo0IFly5YVu33ZsmV07979vN/3ySefcO+99/Lxxx9z/fXX/+l5HA4HMTExREZGXnZmVzixaxcAJ202fMrwlMdjzj416YUrxYmIiBFHf/4ZgGS7HXvFiobTuM6RggIAjup5p8T69+9PTk4OJ0+eZPbs2fTq1YsmTZqYjiUiIi5ks8F770GXLnDiBAwYYF2LyKVxeUORMWPGMHToUDp27Ei3bt14++23iYuLY8SIEYA17TI+Pp4PPvgAsIpod999N6+//jpdu3YtGs0WFBREmLNQ8+yzz9K1a1caNWpEWloab7zxBjExMcyYMcPVD+eSnNq7F4AT/v5FIwTKotMREZCSQr7z8YqIiBlpMTEAJIeEUM1sFJdKDw6G06fJOnDAdBSvUaNGDSZMmFDstvz8fENpRETEXQID4YsvoHNn2L3bmvL5zTfgnFQkIhfB5T3ShgwZwvTp05k0aRJt27Zl5cqVLFmyhLp16wKQkJBAXFxc0f6zZ88mLy+PUaNGERkZWXR55JFHivY5efIkDzzwAM2aNaNPnz7Ex8ezcuVKOnfu7OqHc0myDh4E4FQZHo0G4HA2fq6YkmI2iIhIOVe4Tqe9YUOjOVwtq1IlAAri480G8SJ9+/bl3//+d7Hb7Ha7oTQiIuJONWrA4sUQHAzffw+PPGK1GhWRi+OWJa5GjhzJyJEjz3nfmUu0r1ix4k+P99prr/Haa6+VQjL3yD18GIBMN/dmc7er7rkHvv6atmX8cYqIeLp6zlfFTfr2NZzEtfLDw61GL1psoMTWr1/PnDlzePbZZ+ncuTOtWrWiVatWDBgwwHQ0ERFxgzZt4OOP4aabYNYsayXPv//ddCoR7+KWVTvLO8fRowDkVqliOIlr+TVubG3ExpoNIiJS3hX+HY6OvvB+Xs7mXLjIX41eSmzJkiXExcWxefNmHnroIapWrcp3331nOpaIiLjRDTfA1KnW9ujR8L//GY0j4nXcMiKtvPM9dgwAR/XqhpO4WOEbtmPH4NQpKMMNrkVEPFnWrl0EQpkvpPnVrg1ABa08+aeSkpIoKCigRo0aAISGhtK9e/cLLv4kIiJl1+OPw86dMHcuDBkCa9dC8+amU4l4B41Ic4MoX6teGVY4YqusCg3lVEAAAAdLMEVXRERKX2ZGBjib7x939hArq4IKe3NmZpoN4sG2bdtGixYtiIyMpFatWtSqVYsnn3ySjIwM09FERMQgmw3eegt69IC0NBg4ENTqWqRkVEhzgwYhIQC0vu46w0lc76CP9SuVsn694SQiIuVT/MaNBAJ5QOXWrU3HcakmV10FQCP15jyvYcOGERERwerVq9myZQvPPfcc33zzDR07duSEpsSKiJRr/v6wcKE1gH3/fhg8GHJyTKcS8XwqpLmDs0cazl4uZdnJypUByNyxw3ASEZHyKWXDBgAS/f2xlfE17QPq1AHAduwY5OUZTuOZduzYwcyZM+nWrRutW7fmvvvuY+PGjbRo0YK/q7u0iEi5Fx4OX30FoaGwciWMGKGVPEX+jAppLuYoKChabKA8FNKya9YEwKEFB0REjMj45RcAjpeHUVrh4eDjY73i18qd53SukWc2m40XXniB//73v4ZSiYiIJ2neHObPt55S586FV181nUjEs6mQ5mLH9u/H5hwfm1e1quE0rmdr0ACAwIQEw0lERMqnvD17ADjtbCpfptntpAcFAXBg3TrDYTzH9ddfzz//+U8WLFjAiBEjePTRRzla+KGeU2pqKpWdo8hFRET69YPXXrO2x46FL780m0fEk2nVThc7vnMn4UCazUZoOVjFsoJzqZcqJ0+aDSIiUk75Hz4MgMPZiL+sS8jPpxFwdNs26t10k+k4HqFVq1Zs3ryZuXPnFhXQ6tevz2233Ubbtm3Jz89n7ty5vFb4jklERAT4+9+tlTzfegvuuAPWrIEy3m5V5JKokOZip/buBeC4nx/lYJINVTt1AqBGVhaOggJsPhr0KCLiTmHHjwMQWE7WsE8PDoasLLLj4kxH8Rgvvvhi0fbRo0fZsmULMTExxMTEMGvWLPbu3YvdbufZZ59l8ODBBpOKiIgnsdngjTdgzx74/ntrJc/168tFhyKRi6JCmoudPnAAgDTn1JOyrla3bhQAwUDGgQME169vOpKISLnS2LnAQI1u3QwncY+ssDA4dozcI0dMR/FIERER9OvXj379+hXdlpmZSUxMDNu2bTOYTEREPJGfH/znP9C1K+zeDTfdBMuXQ2Cg6WQinkPDhVws99AhADLLwbROgAqVKmGLigIg+Ix+LCIi4mJZWYSkpgIQecUVhsO4R16VKgDY9JxTYkFBQXTr1o0HH3zQdBQREfFAlStbK3lWrgw//wzDhmklT5E/0og0F3MkJgKQU44a+tqio+HQIYiNhXIyIkJExCMcPGi90g0Otla0LA+c8038nFNaBaKjo7HZbBf9faNHj+bhhx92QSIREfE2jRrBZ59B377w8cfQrBk8+aTpVCKeQYU0F7MfOwaAo3p1w0ncqH59WLnSKqSJiIjbpGzYQDiQX68e9ksopHgj31q1AAhMSzOcxHPMmzfvkr6vXjlZoEJERErm6qthxgx48EF46ilo2hRuucV0KhHzVEhzsdrOXjWhjRsbTuI+v2Rk0ArYsGABnSZMMB1HRKTc2PTZZ/QFtqam0t50GDcJrFsXgIqnTxtO4jl69uxpOoKIiJQRDzxgreQ5fTrcfTfUqwcdO5pOJWKWeqS5WMOQEADa9uljOIn7HA+11if1O3zYcBIRkXLGORI42zlKqzxo1qsXAE0qVTKaQ0REpKx65RXo3x8yM+HGGyE+3nQiEbNUSHO1wubH5WjN4Ipt2gBQVdNsRETcKighAQCfhg0NJ3GfwhFptuRkKCgwnEZERKTssdvh00+heXM4csQqpmkguJRnKqS5kKOgoGixgfJUSKvWuTMAkXl5FOTkGE4jIlJ+VHGu2BnSqpXhJG5U2IM0Px+cfUlFRESkdIWGWit5hofDpk3WNE99fiXllQppLnTy0CFsWVlA+Vq1M7JdO7KwGvAd3bjRdBwRkXIhLy+PWs4PL6qWp+Ylfn6cDgoCIG7DBsNhREREyq7oaFi0CPz94fPP4ZlnTCcSMUOFNBc6vnMnAOmAfzkqpPn6+xPvXGQhed06w2lERMqH+F9/pfCZpnqXLkazuFuC8yPxpF9+MZzE88TFxeFwOM663eFwEBcXZyBRyd18881UrlyZW7REnIiIx7jySnj7bWv7uefgo4/M5hExQYU0F0rbsweA486iUnmS4lxwIF1vakRE3OLozz8DkGy34+Nc6Ka8OFWhAgCZBw6YDeKBoqOjSU5OPuv248ePEx0dbSBRyT388MN88MEHpmOIiMgZ7rkHxo2ztocNg7VrzeYRcTcV0lzotPMFfapzykl5kh0ZCUBISorhJCIi5UPd/HwA8qKiDCdxv0znhze5R44YTuJ5HA4HNpvtrNvT09MJDAw0kKjkevfuTcWKFU3HEBGRc3jhBbjpJsjOtq4PHjSdSMR9fE0HKMtyDx0C4HQ5GxkAcNU998A//kHr4GDTUUREyoUI5/JZkd27G07ifrlVqliv4AsX+BHGjBkDgM1m46mnnqKCc9QeQH5+PuvWraNt27aXfPyVK1fy8ssvs2nTJhISEli0aBE33XRTsX1mzpzJyy+/TEJCAi1atGD69On06NHjks8pIiKew8cH/v1va6rn1q0wcCD89BPo8w8pD1RIc6GChASgfC00UKR+fes6NtZsDhGR8qLw762HT9dziWrVAPDVqp1FtmzZAlgj0n755Rf8/f2L7vP396dNmzY8/vjjl3z8jIwM2rRpw3333cfgwYPPun/+/PmMHj2amTNncsUVVzB79mz69+/Pjh07qFOnDgAdOnQgOzv7rO/99ttvqVmzZomzZGdnFztOWlraJTwiERG5WCEhsHgxdO4Mv/wCd95pLUZgt5tOJuJaKqS5kN05rbHA+QK/XCl8I6dCmoiIWxzfuJEqQG5UFOWtM6fdWXQJTE01nMRzLF++HID77ruP119/nVDn9NfS0r9/f/r373/e+6dNm8awYcMYPnw4ANOnT2fp0qXMmjWLKVOmALBp06ZSyTJlyhSeffbZUjmWiIhcnKgo+O9/oWdPq6j2xBPw8sumU4m4lnqkuVAt5yIDoY0aGU7ifumFxcOkJLI0QkBExOWOb94MwMFy+DFwYN26AIRkZBhO4nnmzp1b6kW0P5OTk8OmTZvo06dPsdv79OnDmjVrSv1848ePJzU1tehyyNlaQ0RE3KNzZ5g719p+5RWYM8dsHhFX04g0F2ro7I3Wrl8/w0ncL7hWLU4AlYGENWuIHjjQdCQRkTLrVGoqUc7FBiK6djWcxv1aXH01PPsszapWNR3FI33//fd8//33JCUlUVBQUOy+OS54t5OSkkJ+fj4RERHFbo+IiCDxIvrY9e3bl82bN5ORkUHt2rVZtGgRnTp1Omu/gIAAAgICLju3iIhcuttvh1274NlnYcQIaNDAGqUmUhZpRJorHT1qXZ/xQrI8sNlsJDhXAzteSlM3RETk3A6vX08AkAtUbNbMdBy3KxyRZktKAofDcBrP8uyzz9KnTx++//57UlJSOHHiRLGLK525Wuj5VhA9n6VLl5KcnMzp06c5fPjwOYtoIiLiOZ5+Gm67DXJzYfBg2LfPdCIR19CINBdxOBxw9Cg2KJeFNICTlStDQgKnt283HUVEpEw7tmEDAIkBAUSVw6mdRc+zOTlw8iSUx0V+zuOtt95i3rx5DB061G3nDA8Px263nzX6LCkp6axRaiIiUnb4+MC8eVab7A0brJU8166FsDDTyURKl0akucipxERszl4tmW7uTeIpsiIjAXBowQEREZfK+PVXAE5UqmQ2iCmBgWQ5p/bFO3vFiSUnJ4fu3bu79Zz+/v506NCBZcuWFbt92bJlbs8iIiLuFRRkLT5Qqxbs3GmNUMvLM51KpHSpkOYix3bsAOA0EFQeV+0EbA0aABB05IjhJCIiZVvB3r0AZDo/wCiPEp29v5J++cVwEs8yfPhwPv7441I/bnp6OjExMcTExAAQGxtLTEwMcXFxAIwZM4Z3332XOXPmsHPnTh599FHi4uIYMWJEqWcRERHPEhlpreBZoQJ8+y2MGWM6kUjp0tROF0nbvRuAY76+VLiIfiBlSVDz5gBUcnEPFhGR8s6/8AOL6GizQQxKCwqC3FxOHzhgOopHycrK4u233+a7776jdevW+DlXFC80bdq0Szruxo0b6d27d9HXY5zvku655x7mzZvHkCFDOHbsGJMmTSIhIYGWLVuyZMkS6jr72YmISNnWrh18+CEMGgRvvgnNmsHf/mY6lUjpUCHNRU47pzOmBgYSZTiLKeHOpsC18/Ks5s/ltKAoIuJq7StVgvh4al15pekoxpyuWBHS0sg9fNh0FI+ybds22rZtC8CvzinAhS6m8f+ZevXqZfWDvYCRI0cycuTISz6HiIh4t5tvhhdegH/+E/7+d2jUCK691nQqkcunQpqL5Bw6BMDpkBDDScxpeM01AATl5UFKCpTTKa4iIq5W2Tnyt3aPHoaTmJNTpQrEx+M4o8F9ebd8+XLTEUREpBx74gmrV9q//w233go//wxNmphOJXJ51CPNRQoSEgDILq+NnwECA60uk2At3SIiIqUvKws0tZOC8HAAfFJSDCcRU2bMmEHz5s3p5BwRLyIi5tls8M470L27tbD2gAFw/LjpVCKXR4U0F/FJTgYgv7yPwnK+qXPs3284iIhI2XR03ToA8oODoWpVw2nMsdesCUDgyZNmg3igVatWcdddd9GtWzfi4+MB+Pe//83q1asNJytdo0aNYseOHWzYsMF0FBER+YOAAFi0COrVg7174ZZbIDfXdCqRS6dCmovUdjbzDW3UyHASs2LS0gBY+cEHhpOIiJRNvy5eDMABm61c96L0j7I6kganpxtO4lk+//xz+vbtS1BQEFu2bCE7OxuAU6dO8cILLxhOJyIi5UX16tZKniEhsHw5jBpltdEW8UYqpLlIA2dvtPb9+xtOYtbx0FAAfLSKmoiIS2Tv3AlAajkejQbQ5rrrAGhR3keCn+G5557jrbfe4p133im2Ymf37t3ZvHmzwWQiIlLetGwJn34KPj7WdM/XXzedSOTSqJDmKkePWtcREWZzGGZ3jsgLTkoynEREpGyyOT+oyK1d22wQwwLr1gXAdvSoPuL+g99++42rrrrqrNtDQ0M5qWmwIiLiZtdfD6+8Ym0/9hgsWWI2j8ilUCHNRRwqpAEQ2qYNAFWdUzxFRKR0BTufb3zLeSuBoufbzEzQ9M4ikZGR7N2796zbV69eTf369Q0kEhGR8m70aBg+HAoK4Pbb4ddfIT8fVqyATz6xrvPzDYcUuQAV0lzg9LFj2E6dAiA9ONhwGrMiunYFoGZuLnnOviwiIlJ6qqWmAhDi/OCi3AoJIcc5dTEhJsZsFg/y4IMP8sgjj7Bu3TpsNhtHjhzho48+4vHHH2fkyJGm44mISDlks8GMGdCrF5w6BVdfDVFR0Ls33HGHdV2vHixcaDqpyLmpkOYCx3bsACALCI6MNBvGsBrt25MN+AFH1q83HUdEpEzJyswkKi8PgGrduhlOY16ic0pn8vbthpN4jrFjx3LTTTfRu3dv0tPTueqqqxg+fDgPPvggDz30kOl4IiJSTvn7w2efQY0akJwMCQnF74+Pt1b3VDFNPJEKaS6Quns3ACl2Ozaf8v0j9vHzI8E5QiBp3TrDaUREypZDGzcSAuQDldu2NZzGvLTAQABOx8YaTuJZnn/+eVJSUli/fj0///wzycnJTJ482XQsEREp5ypVOv99he1OR4/WNE/xPOW7yuMiGfv3A5DqfEFf3mVUrw5ASEqK4SQiImVLDWcvsNNVq2ILCDCcxrwM54rZ2XFxhpN4ngoVKtCxY0c6d+5MiPPnJCIiYtKqVZCYeP77HQ44dMjaT8STuKWQNnPmTKKjowkMDKRDhw6s+pP/CT/++CMdOnQgMDCQ+vXr89Zbb521z+eff07z5s0JCAigefPmLFq0yFXxL1rhC/gMvVAFoMWAAQA0dY5MExGR0lHRuSJyRY1GAyDb+dG240KvysuBMWPGkJGRUbR9oUtZMmPGDJo3b06nTp1MRxERkRI4czrn5e4n4i6+rj7B/PnzGT16NDNnzuSKK65g9uzZ9O/fnx07dlCnTp2z9o+NjeUvf/kL999/Px9++CE//fQTI0eOpFq1agwePBiAtWvXMmTIECZPnszNN9/MokWLuO2221i9ejVdunRx9UP6UwVHjgCQHRZmOImHKFwVTFNtRERK17591nXDhmZzeIiCatVg1y58kpNNRzFqy5Yt5ObmFm2XF6NGjWLUqFGkpaURptdgIiIer6TtxMt523HxQC4vpE2bNo1hw4YxfPhwAKZPn87SpUuZNWsWU6ZMOWv/t956izp16jB9+nQAmjVrxsaNG3nllVeKCmnTp0/nuuuuY/z48QCMHz+eH3/8kenTp/PJJ5+4+iH9KZvzBXx+eLjhJB4iOhqAgn37NJdYRKQUHVqxgijgdGQkFUyH8QC2GjUA8D9xwnASs5YvX37ObREREU/SowfUrm0tLFDYE+2PbDbr/h493J9N5EJcWtfIyclh06ZN9OnTp9jtffr0Yc2aNef8nrVr1561f9++fdm4cWPRp6vn2+d8x8zOziYtLa3YxZVq+1r1ydBGjVx6Hm+RGBQEwNF163Cc6y+kiIhckuPO1ZD3Gc7hKao0awZALbUSKDJlyhTmzJlz1u1z5sxh6tSpBhKJiIhY7HZ4/XVr22Y7+36HA6ZPt/YT8SQuLaSlpKSQn59PREREsdsjIiJIPE//ksTExHPun5eXR4qzWf359jnfMadMmUJYWFjRJSoq6lIfUok0uOEGuOoq2t9+u0vP4y2qdOwIQKTDwdEDB8yGEREpI/Ly8qiVnQ1AuAe0NfAErW64Aa68kqgbbjAdxWPMnj2bpk2bnnV7ixYtztmDVkRExJ0GDYLPPoNatc6+r1Il6NnT7ZFE/pRbZtrZzigvOxyOs277s/3PvP1ijjl+/HhSU1OLLocOHbqo/Bdt4kT48Ufo18+15/ES/hERpDn/bY6cZ9SgiIhcnPjt2ylsIBDRvbvRLB6jQwdraa833jCdxGMkJiYSeY7mMtWqVSNB3ZtFRMQDDBoEBw7A8uXw8cfwzTfQtCmcPAkPPHDuaZ8iJrm0kBYeHo7dbj9rpFhSUtJZI8oK1ahR45z7+/r6UrVq1Qvuc75jBgQEEBoaWuwibmSzkRQcDMCJzZsNhxERKRsSf/oJgGS7HR89r8l5REVF8ZPzd+WPfvrpJ2rWrGkgkYiIyNnsdujVC/7v/6zxKB99BL6+sHAhvP++6XQixbm0kObv70+HDh1YtmxZsduXLVtG9/N8et6tW7ez9v/222/p2LEjfs6eJ+fb53zHFPNOORdeyNyxw3ASEZGyIc25GmOyimhyAcOHD2f06NHMnTuXgwcPcvDgQebMmcOjjz7K/fffbzqeiIjIObVvD5MnW9t//zvs3282j8gfuXzVzjFjxjB06FA6duxIt27dePvtt4mLi2PEiBGANe0yPj6eDz74AIARI0bwr3/9izFjxnD//fezdu1a3nvvvWKrcT7yyCNcddVVTJ06lRtvvJH//ve/fPfdd6xevdrVD0cuUV5UFBw4gI96pImIlIrc334DIMO5UqXIuYwdO5bjx48zcuRIcnJyAAgMDGTcuHFFq5+LiIh4on/8A5Yssbo2DB1qdU/ydXkFQ+TPubxH2pAhQ5g+fTqTJk2ibdu2rFy5kiVLllC3bl0AEhISiIuLK9o/OjqaJUuWsGLFCtq2bcvkyZN54403GDx4cNE+3bt359NPP2Xu3Lm0bt2aefPmMX/+fLqo2bLH8mvcGIAKR48aTiIiUjb4HzwIQEF0tOEk4slsNhtTp04lOTmZn3/+ma1bt3L8+HGefvpp09FEREQuyG6HDz6A0FBYswZefNF0IhGLzeEof6370tLSCAsLIzU1Vf3S3OTg7NnUHTGChPBwIpOTTccREfF6GZ06EbxxI4mvvEKNxx4zHafc0GsIz6d/IxGRsuXDD60Rab6+VkGtUyfTiaSsKulrCA2MFLeoe+21AERmZEBBAfi4ZcFYEZEyK9i56E6NK64wnEQ8zZgxY5g8eTLBwcGMGTPmgvtOmzbNTalEREQuzZ13wldfwfz5cNddsHkzONeyEzFChTRxj7p1rY8QMjMhIQFq1TKdSETEe2VmwuHD1nbDhmaziMfZsmULubm5AGzevBmbzXbO/c53u4iIiCex2WDWLPjpJ9i9Gx5/3PpaxBQV0sQ9fH2hXj3Yu5fTW7dSQYU0EZFLdnDFCuoCecHB+FatajqOeJjXX3+9aDrCihUrzIZxoxkzZjBjxgzy8/NNRxERkVJWuTK8/z5ccw289RZcfz0MGGA6lZRXml8nbrPduVrYinffNZxERMS77Vm6FIBYHx/rY1qRP2jXrh0pKSkA1K9fn2PHjhlO5B6jRo1ix44dbNiwwXQUERFxgauvhsKOBX/9K2gdOzFFhTRxm/QaNQCw7dtnOImIiHfL3rEDgLRq1QwnEU9UqVIlYmNjAThw4AAFBQWGE4mIiJSO55+HVq0gORmGD4fyt3SieAJN7RS38WncGNavJ/jIEdNRRES8mu+BAwDk1atnNId4psGDB9OzZ08iIyOx2Wx07NgRu91+zn3379/v5nQiIiKXLjAQPvoIOna0FiB4+2148EHTqaS8USFN3CakbVv48EPCU1NNRxER8WoVnXMZ/Js2NZxEPNHbb7/NoEGD2Lt3Lw8//DD3338/FStWNB1LRESkVLRqBS++aE3zHDMGeveGxo1Np5LyRIU0cZuIK68EoG5uLlmZmQQGBRlOJCLinaqnpwNQqUMHw0nEE23bto0+ffrQr18/Nm3axCOPPKJCmoiIlCmPPAJffw3ffw933WWt6OnnZzqVlBfqkSZuU7ltW/KAYOCQGgGLiFyS40lJ1HX2vKrh/IBC5I/+uNjAjz/+SI5zsR8REZGywscH5s2zVvPcsAEmTzadSMoTFdLEbWwBAST4+wOQvGaN4TQiIt7p0Jo1+AFZQFDDhqbjiAfSYgMiIlIe1K4Ns2db288/D3qLKe6iqZ3iVtlRUbBvH5EZGaajiIh4pSa+1lN3XlSU9XGsyBm02ICIiJQXt94KQ4fCv/9tTfHcuhXUzUBcTYU0cauG/frBjBlE5+ebjiIi4pUC4+MBCGnd2nAS8VRabEBERMqTN9+ElSshNtbqnTZnjulEUtapkCbuVTgNae9eszlERLzVnj3WtaZ1ygX069cPQIsNiIhImRcWZo1I69kT5s6F66+HwYNNp5KyTHNCxL2cb/yyfv3VcBAREe+0f+lSAFIjIgwnEW8wd+5cYmJiuOuuu+jevTvxzhGN//73v1m9erXhdCIiIqWjRw944glr+4EH4MgRs3mkbFMhTdzqeNWqAOTu3ElOdrbhNCIi3id/504AEkNDDScRb/D555/Tt29fgoKC2Lx5M9nO595Tp07xwgsvGE4nIiJSeiZOhPbt4fhxuO8+0Fo74ioqpIlbVW7XjnygInBwwwbTcUREvMqpEyeo6+wxWaNHD8NpxBs899xzvPXWW7zzzjv4+fkV3d69e3c2b95sMFnpmzFjBs2bN6dTp06mo4iIiAH+/vDRRxAUBN9+CzNmmE4kZZUKaeJWtsBAEv39ATiqKSUiIhfl4KpV+ANZQFjLlqbjiBf47bffuOqqq866PTQ0lJMnT7o/kAuNGjWKHTt2sEEf1ImIlFtNm8Irr1jbY8fC9u1m80jZpEKauN2xypUBSI+JMRtERMTLpKxZA0B8hQrgo6dw+XORkZHsPccCP6tXr6Z+/foGEomIiLjW3/4G/ftDVhbcdReoo5CUNr0KF7fLql0bgILduw0nERHxLlnbtgFwMjzccBLxFg8++CCPPPII69atw2azceTIET766CMef/xxRo4caTqeiIhIqbPZYM4cCA+HmBh4+mnTiaSs8TUdQMofe5MmsGkTgc6Vw0REpGR89u0DICc62nAS8RZjx44lNTWV3r17k5WVxVVXXUVAQACPP/44Dz30kOl4IiIiLlGjBrzzDtx8M7z8sjVCrVcv06mkrNCINHG7kLZtAQg/ccJsEBERLxOamAiAf4sWhpOIN3n++edJSUlh/fr1/PzzzyQnJzN58mTTsURERFzqpptg+HBwOODuu6GMtQYVg1RIE7eLdDY9buLjg0NrEouIlFinSpUAaNi/v9kg4nUqVKhAx44d6dy5MyEhIabjiIiIuMVrr0GDBnDoEIwaZTqNlBWa2iluF9q2LdhsBGRnQ3IyRESYjiQi4vmys7EfOgRAWKdOhsOINzl58iTvvfceO3fuxGaz0axZM4YNG0ZYWJjpaCIiIi4VEgIffghXXgkffwwDBsD//Z/pVOLtNCJN3C8gAOrVs7Z/+81oFBERr7FvnzU3ITQUqlc3nUa8xMaNG2nQoAGvvfYax48fJyUlhddee40GDRqwefNm0/FERERcrmtXeOopa/tvf4O4OLN5xPupkCZGFDRqBEDSqlWGk4iIeIetn30GwMnq1a3lqERK4NFHH+WGG27gwIEDLFy4kEWLFhEbG8uAAQMYPXq06XgiIiJuMWECdOkCqalwzz2gDkNyOVRIEyM2nDoFwKaPPzacRETEOxxZsQKAPSqiyUXYuHEj48aNw9f3924evr6+jB07lo0bNxpMJiIi4j6+vtYUz+BgWLECpk0znUi8mQppYoS9WTMAKiYkGE4iIuId/GJjAcivX99wEvEmoaGhxJ1jDsuhQ4eoWLGigUQiIiJmNGwI06db2//8J2zdajSOeDEV0sSIsM6dAaiRlmY4iYiId6iUnAxAUOvWhpOINxkyZAjDhg1j/vz5HDp0iMOHD/Ppp58yfPhw/k/dlkVEpJwZNgxuvBFyc+HOOyEz03Qi8UZatVOMiOzZE4C6+fmcSEqishpni4icV0FBAbUyMgCo2q2b4TTiTV555RVsNht33303eXl5APj5+fG3v/2NF1980XA6ERER97LZ4J134OefYft2GD/+91FqIiWlEWliREiTJmTYbPgBh3780XQcERGPFr9rF5HO7Ro9ehjNIt7F39+f119/nRMnThATE8OWLVs4fvw4r732GgEBAabjiYiIuF21ajB3rrX9+uuwbJnZPOJ9VEgTM2w24oODATi+dq3hMCIinu3IypUAHLPb8Q0PN5xGvMmUKVOYM2cOFSpUoFWrVrRu3ZoKFSowZ84cpk6dajqeiIiIEf37w6hR1va998KxY0bjiJdRIU2MOemczpnzyy+Gk4iIeLY05+qKR8PCDCcRbzN79myaNm161u0tWrTgrbfeMpBIRETEM7z0EjRtCkeOwIMPgsNhOpF4CxXSxJhKXboA0CYw0HASERHPdm2dOgBE9e5tOIl4m8TERCIjI8+6vVq1aiSUsZWzZ8yYQfPmzenUqZPpKCIi4gUqVICPPgJfX/j8c/jgA9OJxFuokCbGNB44EICIkyfNBhER8XC2vXsBqNihg+Ek4m2ioqL46aefzrr9p59+ombNmgYSuc6oUaPYsWMHGzZsMB1FRES8RPv2MGmStf3QQ7B/v9k84h20aqeY07ixdb17t9kcIiKervDvZOHfTZESGj58OKNHjyY3N5err74agO+//56xY8fy2GOPGU4nIiJi3tixsGQJrF4Nd98NK1ZYo9REzke/HmJO4RvCpCRSDx4krG5ds3lERDxQTnY2uZs2EQxk162L1lmUizF27FiOHz/OyJEjycnJASAwMJBx48Yxfvx4w+lERETMs9vh3/+G1q3hp59g6lSYMMF0KvFkmtop5lSsyFG7HYA9X31lOIyIiGeK27CB4Lw88gH/Fi1MxxEvY7PZmDp1KsnJyfz8889s3bqV48eP8/TTT5uOJiIi4jHq1YMZM6ztiRNBXQLkQlRIE6OOVqoEwMl168wGERHxUEkrVwIQ7++PLSjIcBrxViEhIXTq1ImWLVsSEKBxjSIiIme66y647TbIy7O2MzJMJxJPpUKaGJURFQVA/o4dhpOIiHimjI0bAUgODzecRERERKTsstlg1iyoVctqT/uPf5hOJJ5KhTQxyqdpUwCCDh0ynERExEPt2gVAdr16ZnOIiIiIlHFVqsD771vbs2bB11+bzSOeSYU0MSq0Y0cAqh8/bjiJiIhnCj1yBAC/Vq0MJxEREREp+665Bh591Nr+618hKclsHvE8KqSJUTV79wagXl4ep06eNBtGRMTDOBwOaqWlAVDliisMpxEREREpH154AVq2tIpow4eDw2E6kXgSFdLEqLA2bcgGAoFYZ0NtERGxnDh0iNrOV261rr7acBoRERGR8iEwED76CPz9YfFieOcd04nEk7i0kHbixAmGDh1KWFgYYWFhDB06lJMXGHWUm5vLuHHjaNWqFcHBwdSsWZO7776bI85pLYV69eqFzWYrdrn99ttd+VDEVex2TkdGAlA3K8twGBH5//buOzyqKv/j+HvSCWUogRR6D6H3qoACFoRVlrYgxVVYFHRRUaoC7iqCq+AKqKioP0HFVbCsiIAIUqUGhGBAekkIJUxCS5v7+2NC1khLIJMzmXxez3Of3Ny5c/OZM5PMnW/OPUc8S+mTJwHIKFOGoPLlDacRERERKTwaNIApU1zrTz7pmoBABNxcSOvXrx/R0dEsWbKEJUuWEB0dzYABA665/4ULF9i6dSvPPfccW7duZeHChezZs4fu3btfse+QIUOIi4vLWt5++213PhRxo1KtWgFg/0PBVESk0MucaMC3bl3DQUREREQKn5Ej4Y474MIFePBBSEsznUg8gZ+7Drx7926WLFnChg0baNmyJQDvvPMOrVu3JjY2ltq1a19xH7vdzrJly7Jte+ONN2jRogWHDx+mUqVKWduDg4MJCwtzV3zJT1FRsGgR7N5tOomIiGfJLKSROcOxiIiIiOQfHx/XLJ7168OmTfDPf8LkyaZTiWlu65G2fv167HZ7VhENoFWrVtjtdtatW5fj4zgcDmw2GyVLlsy2ff78+YSEhFC3bl1GjRpFcnLyNY+RkpJCUlJStkU8R0r16gCcWLnSbBAREQ+zdf58AI4UK2Y4iYiIiEjhVKECvPWWa/2f/4T1683mEfPcVkiLj4+nXLlyV2wvV64c8fHxOTrGpUuXGDNmDP369aNEiRJZ2/v3788nn3zCypUree655/jiiy/o0aPHNY8zZcqUrHHa7HY7FStWzP0DErc5k9mz0G/PHtJSUw2nERHxHEWPHAEgWeOjiYiIiBjTp4/r0k6n0/X1Ov14pBDIdSFt0qRJVwz0/8dl8+bNANhstivub1nWVbf/UVpaGn379sXpdDJ79uxstw0ZMoROnTpRr149+vbty+eff87y5cvZunXrVY81duxYHA5H1nIk84OJeIbQ22/HCZQBDmW+dkRECrvkxESqpKcDEKEZO0VERESMmjkTKlWC/ftdY6dJ4ZXrMdJGjBhxwxkyq1Spwo4dOzhx4sQVt508eZLQ0NDr3j8tLY3evXtz4MABVqxYka032tU0adIEf39/9u7dS5MmTa64PTAwkMDAwOseQ8zxKVqUIwEBVExNJX7FCmq0aWM6koiIcQd//JH6wAWgZIMGpuOIiIiIFGp2O3z0EXToAHPnQteucJ0L48SL5bqQFhISQkhIyA33a926NQ6Hg40bN9KiRQsAfv75ZxwOB22uUyi5XETbu3cvP/74I2XKlLnhz9q1axdpaWmEh4fn/IGIRzkZEkLF48e5oB5pIiIAnFqzBoBjxYpR08etk2yLiIiISA7cfjuMHg0vvwxDhkCrVhARYTqV5De3nZnXqVOHu+++myFDhrBhwwY2bNjAkCFDuO+++7LN2BkZGcmiRYsASE9Pp2fPnmzevJn58+eTkZFBfHw88fHxpGaOnbVv3z5eeOEFNm/ezMGDB1m8eDG9evWicePGtG3b1l0PR9zsUrVqAPjGxhpOIiLiGVKiowE4e4Ne3CIiIiKSfyZPhsaN4cwZeOgh17hpUri49V/c8+fPp379+nTp0oUuXbrQoEEDPvroo2z7xMbG4nA4ADh69Chff/01R48epVGjRoSHh2ctl2f6DAgI4IcffuCuu+6idu3aPPHEE3Tp0oXly5fj6+vrzocjbuSXedmS/fhxw0lERDyD/759AKTXrGk4iUjBMGvWLKKiomjevLnpKCIi4sUCAmD+fAgKgqVLYdYs04kkv9ksy7JMh8hvSUlJ2O12HA7HDcdfk/yx79NPqf6Xv3DCZqNcRkaOJqQQEfFmsaVLUzsxkehx42j04oum40gmnUN4Pj1HIiKSH2bNghEjXAW1LVsgKsp0IrlVOT2H0KAr4hEqdOoEQKhlufrIiogUZpZF7bQ0AOr16WM4jIiIiIj80WOPwd13w6VL0L8/ZI5GJYWACmniEQJDQlxzCQO2X381nEZExLDDh+HcOfD3x69OHdNpREREROQPbDbX7J1lykB0NDz/vOlEkl9USBPPcfnDYkyM2RwiIqbt2uX6Wrs2+PubzSIiIiIiVxUeDu+841qfNg1WrTKbR/KHCmniMRzlywMQmzmLq4hIYbVy5kwA9gUFGU4iIiIiItfzwAPw8MNgWTBwIJw9azqRuJsKaeIxdmdOMOBYv95wEhERs2yZPXPjypQxnEREREREbmTGDKhe3TU6x4gRptOIu6mQJh6jzG23AVDe4aAQTiYrIpIl5MQJAIKbNzecRERERERupFgxmDcPfH1h/nz49FPTicSdVEgTj1GxSxcAylsW8Xv2GE4jImJG6sWLVL10CYDwzp0NpxERERGRnGjVCiZMcK0/+igcOWI2j7iPCmniMYLCw0nw9QXg8PffG04jImLGwR9/JBi4CIS1aWM6joiIiIjk0Pjx0KKFa5y0QYPA6TSdSNxBhTTxKJfHA3KsXWs4iYiIGSdWrADgcNGi2Pz8DKcRERERkZzy93dd4hkcDD/+CNOnm04k7qBCmniU81WrAmDbudNwEhERM1K2bAEgMTzccBIRERERya2aNV2TDwCMGwfbtxuNI26gQpp4FP8mTQAodfSo4SQiImZEZM6Z7qxb12wQEREREbkpjzwC3btDair07w+Zw9+Kl1AhTTxKzR49AGji7w+auVNECqGozME02jzyiOEkIiIiInIzbDZ4910IDYVdu2DsWNOJJC+pkCYepWSbNuDjg8/p03DihOk4IiL5Kz0dfv3VtV6vntksIiIiInLTypaFuXNd6zNmwLJlRuNIHlIhTTxLcDDUqOFa37HDbBYRkXyWtnu36xqAokWhUiXTcURERETkFtx7Lzz2mGt98GA4c8ZoHMkjKqSJxzkZFgZA9EcfGU4iIpK/1s6ZA8DBokXBR2/RIiIiIgXdK69A7dpw/Dj87W8awcgb6CxdPM5uPz8AktetM5xERCR/pW3bBkBc6dKGk4iIiIhIXggOhnnzwM8PPv8c1F+k4FMhTTxOUIsWAJSJizOcREQkfwX/9hsAlmbsFBEREfEazZrB5Mmu9REj4MABs3nk1qiQJh4ntFMnAKpdvEhGSorhNCIi+af86dMAFG/XznASEREREclLo0dD27aQnAwDBkBGhulEcrNUSBOPU7F9e84DQcDhFStMxxERyRdJx45RJT0dgApduxpOIyIiIiJ5ydfXdVln8eKwdi1MnWo6kdwsFdLE4/j4+bkG2gbiNUewiBQSB7/5BoB4Hx9K1axpOI2IiIiI5LWqVWHmTNf6xImwebPZPHJzVEgTj3SmfHkALm3caDiJiEj+SFy5EoAjZcqYDSIiIiIibjNgAPTqBenp0L8/nD9vOpHklgpp4pnq1wegmEZhFJFColJiIgDOzL9/IiIiIuJ9bDZ46y2IiIA9e+CZZ0wnktxSIU08UsMHHwSgWVCQ4SQiIvmjqsMBQMuhQw0nERERERF3Kl0aPvzQtf7mm7B4sdk8kjsqpIlHKtG2LQC2/fvh3DnDaURE3CwjA3bscK03bGg2i4iIiIi4XadOMHKka/2hhyAhwWgcyQUV0sQzlS0L4eGu9csfLkVEvNS57dvh4kUoUgQ00YDITZk1axZRUVE0b97cdBQREZEcmTIF6tZ1FdGGDAHLMp1IckKFNPFYx8PCAFg/e7bhJCIi7rU9s29/bECAa250Ecm14cOHExMTw6ZNm0xHERERyZGgIJg/HwIC4Ouv4d13TSeSnFAhTTzWvuLFAUj9+WfDSURE3Cs184N/wuWeuCIiIiJSKDRsCC+95FofORL27jUaR3JAhTTxWEFt2gBQ7tgxw0lERNyr6G+/uVY0PpqIiIhIofPkk9CxI1y4AA8+CGlpphPJ9aiQJh4romtXAKpfvEiqJhwQES9W4fRpAEp17Gg4iYiIiIjkNx8f1yyeJUvCxo3wwguwciV88onra0aG4YCSjQpp4rEi2rThrM1GAHDg229NxxERcYuTv/5KhNMJQJXu3Q2nERERERETKlaEN990rf/zn64eav36ub5WqQILFxqNJ7+jQpp4LJuPD/vtdgBOLV1qOI2IiHsc+vprAA77+1NMY6SJiIiIFFoBAVfffuwY9OypYpqnUCFNPJqjalUAnFu3Gk4iIuIeyatXAxBXrpzhJCIiIiJiSkYG/P3vV7/NslxfR47UZZ6eQIU08Wg+zZoBEHHihOEkIiLuEZWSAkBQq1aGk4iIiIiIKatXw9Gj177dsuDIEdd+YpYKaeLRWg8fDkD1pCSV3kXEK4UeOQJAw4cfNpxEREREREyJi8vb/cR9VEgTjxZQrx4UKQLnz8Nvv5mOIyKSt5KTITbWtd60qdksIiIiImJMTofK1ZC65qmQJp7N1xcaNgTA0jhpIuJlTi5dCpaFs3x50BhpIiIiIoXWbbdBhQpgs117n4oVXfuJWSqkicfbXaQIAGv+/W/DSURE8lbs/PkAbEhPN5xEREREREzy9YXXX3etX6uY9uqrrv3ELBXSxOMllC8PQNE9ewwnERHJW77btwNwsU4dw0lERERExLQePeDzzyHzI3CWy4W1Y8fyP5NcSYU08Xjl7roLgMqJiVhOp+E0IiJ5JyzzbCi4fXvDSURERETEE/ToAQcPwo8/wscfu77Onu26bcIEOHzYaDxBhTQpAKp1704qUMayOLJmjek4IiJ54kJ8PFVTUgCo+uc/G04jIiIiIp7C1xc6dIC//MX1dehQaNvWNQffiBFgWaYTFm4qpInHCyxRgr3BwQAcW7jQcBoRkbxxIPPv2TEfH8Lq1zecRkREREQ8lY8PzJkD/v7wzTegj8VmqZAmBcLJqlUBSFu71nASEZG8cWbZMgAOabZOEREREbmBqCgYPdq1/vjj4HCYzVOYqZAmBYKtZUsASu7daziJiEje8NNEAyIiIiKSC+PHQ82aEBcHY8eaTlN4ubWQlpiYyIABA7Db7djtdgYMGMDZs2eve5/Bgwdjs9myLa1atcq2T0pKCo8//jghISEULVqU7t27c/ToUTc+EjEtrHt3ACLPn4e0NMNpRERuXePMyVMq9+hhOImIiIiIFARBQfD22671t96C9evN5ims3FpI69evH9HR0SxZsoQlS5YQHR3NgAEDbni/u+++m7i4uKxl8eLF2W4fOXIkixYt4tNPP2XNmjWcO3eO++67j4yMDHc9FDGsdrduYLcTkJ4Ou3aZjiMicmsSEwk6dAiAGn37Gg4jIiIiIgVFx44weLBrwoGhQ9XPxAS3FdJ2797NkiVLePfdd2ndujWtW7fmnXfe4b///S+xsbHXvW9gYCBhYWFZS+nSpbNuczgcvPfee7z66qt06tSJxo0bM2/ePH755ReWL1/urocjpvn4QPPmrvWNG81mERG5VZf/jtWoASEhZrOIiIiISIHyr3+5TiF37nStS/5yWyFt/fr12O12WmaObQXQqlUr7HY769atu+59V65cSbly5ahVqxZDhgwhISEh67YtW7aQlpZGly5dsrZFRERQr169ax43JSWFpKSkbIsUQC1aAHBx1SrDQUREbs2+jz8G4Fy9eoaTiIiIiEhBU6YMvPaaa33yZPjtN7N5Chu3FdLi4+Mpd5WZyMqVK0d8fPw173fPPfcwf/58VqxYwauvvsqmTZu44447SElJyTpuQEAApUqVyna/0NDQax53ypQpWeO02e12KlaseAuPTEzZ7ON6ucZ9+aXZICIityh56VIA1qanG04iIiIiIgXRgw9Cp06QkgLDhrku9ZT8ketC2qRJk66YDOCPy+bNmwGw2WxX3N+yrKtuv6xPnz507dqVevXq0a1bN7777jv27NnDt99+e91c1zvu2LFjcTgcWcuRI0dy8YjFUxS/804Aqly4QMYNJq0QEfFYlkWVzJ7Wpe+913AYERERESmIbDbXhANBQfDDDzBvnulEhYdfbu8wYsQI+t5gYOQqVaqwY8cOTpw4ccVtJ0+eJDQ0NMc/Lzw8nMqVK7N3714AwsLCSE1NJTExMVuvtISEBNq0aXPVYwQGBhIYGJjjnymeqcZtt3HEZqOiZfHbF19Q4+GHTUcSEcm1hLVrKed0chGI7N3bdBwRERERKaCqV4fnn4dx4+Cpp+CeezT8bn7IdY+0kJAQIiMjr7sEBQXRunVrHA4HG383MPzPP/+Mw+G4ZsHrak6fPs2RI0cIDw8HoGnTpvj7+7Ns2bKsfeLi4ti5c2eujisFj6+vLwfKlgXg1A16KIqIeKojn38OwK/BwRQvU8ZwGhEREREpyEaNgnr14NQpeOYZ02kKB7eNkVanTh3uvvtuhgwZwoYNG9iwYQNDhgzhvvvuo3bt2ln7RUZGsmjRIgDOnTvHqFGjWL9+PQcPHmTlypV069aNkJAQHnjgAQDsdjsPP/wwTz/9ND/88APbtm3jwQcfpH79+nTq1MldD0c8xKX69QHw3bLFcBIRkZuT+tNPAJysXt1wEhEREREp6Pz9Yc4c16WeH3wAK1aYTuT93FZIA5g/fz7169enS5cudOnShQYNGvDRRx9l2yc2NhaHwwG4ehz98ssv/OlPf6JWrVoMGjSIWrVqsX79eooXL551n+nTp3P//ffTu3dv2rZtS3BwMN988w2+vr7ufDjiAeydOwNQ4fhxw0lERG5O6cyhCvzbtjWcRERERES8QevW8OijrvVhw+DSJbN5vJ3Nsgrf3A5JSUnY7XYcDgclSpQwHUdyIfHoUYpXrIgfcGbbNko3amQ6kohIjmUkJ+MsUQJ/YM+yZdRST+oCR+cQnk/PkYiIFEYOB9SpA3FxMGEC/OMfphMVPDk9h3BrjzSRvFaqQgWOZo6T5ve78fdERAoC3+3b8QculS5NjY4dTccRERERES9ht8Mbb7jWp06FmBizebyZCmlS4FTp1w+AEtu3G04iIpJLa9cCENS+PT4ajkBERERE8lCPHtCtG6SlwdCh4HSaTuSdVEiTgqddO9fXzA+kIiIFxurVrq+33WY2h4iIiIh4HZsNZs6EokVdH5ffecd0Iu+kQpoUPJkDdFs7dpBx5ozhMCIiOeR0cn7ZMgDOZs5ALCIiIiKSlypVghdfdK2PHu0aM03ylgppUuA4Q0M5YLNhsywOLVhgOo6ISI6cWrWKoqmpnAPQRCkiIiIi4iYjRkCzZq4JCEaONJ3G+6iQJgWOj48Pv4WFAXD6668NpxERyZnDH38MwM5ixSgZEmI4jYiIiIh4K19fmDPH9fWzz2DxYtOJvIsKaVIgpTRvDkCRrVsNJxERyRnrp58AOB0VZTiJiIiIiHi7xo3/1xvtscfg/HmjcbyKCmlSIIX26AFAtZMnsVJTDacREbkBy6L8gQMAFL3rLsNhRLzTrFmziIqKonnmP9tEREQKu8mToXJlOHQIJk40ncZ7qJAmBVK9nj05AwRbFke/+cZ0HBGR60rauZOwtDTSgMhBg0zHEfFKw4cPJyYmhk2bNpmOIiIi4hGKFoXZs13r06eDLujKGyqkSYFUpGhRYkqXBiBOEw6IiIc78H//B8CuwEDCqlc3nEZERERECot774U+fcDphKFDIT3ddKKCT4U0KbCSmjQBIGDdOsNJRESuL2jLFgDia9QwnERERERECpsZM6BkSdiyBWbONJ2m4FMhTQqsWkOHAtDA4VBZXUQ8Wu3jxwG4fcIEw0lEREREpLAJC4OpU13rEybA4cNm8xR0KqRJgVXjz3+GUqXwOXfOVVoXEfFEx45BbCz4+BB8992m04iIiIhIIfTII9C2rWv2zuHDwbJMJyq4VEiTgsvHB9q3d63/+KPZLCIi15C+dKlrpWlTV596EREREZF85uMDc+aAvz/897/wxRemExVcKqRJgXa6QQMADn/4oeEkIiJXt+P11wGIzpwgRURERETEhKgoGDPGtf7EE+BwmM1TUKmQJgXaLyEhAITExkJqquE0IiJ/YFlE7N4NQFxUlOEwIiIiIlLYjRsHtWpBXByMHWs6TcGkQpoUaI0ffJCTQLBlEf/NN6bjiIhkc27HDsJSU0kFooYMMR1HRERERAq5oCB46y3X+ltvwfr1ZvMURCqkSYFmL1WKX8qUAeDYvHmG04iIZLf/3XcB2BYUROU6dQynERERERGBjh1h8GDXhANDh+rirtxSIU0KvAstWwIQtG6d4SQiItllZE40EF+3ruEkIiIiIiL/869/QUgI7NzpWpecUyFNCrzQBx8EoGZCAs6kJMNpREQyWRaV9+0DoFi3bobDiIiIiIj8T5kyMH26a/2FF+C338zmKUhUSJMCr1HPnuy32QgADr7/vuk4IiIAnFm5ktIZGZwHGjzyiOk4IiIiIiLZ9O8PnTtDSgoMG+a61FNuTIU0KfD8/f3ZXbEiAM7Fiw2nERFx8c28rHN3WBhly5c3nEZEREREJDubDd580zUBwQ8/gIYdzxkV0sQrtJo0CYAamZdRiYiYZs8ct7HZc88ZTiIiIiIicnXVq8Pzz7vWn3oKTp0ym6cgUCFNvEKZnj3Bzw/27dPF3SJinsMBlydAueces1lERERERK5j1CioV89VRBs1ynQaz6dCmniH4sWhbVsAMnR5p4gYdmrBAkhPx6pVC6pWNR1HREREROSa/P1hzhzXpZ4ffggrVphO5NlUSBOvsSNzDKLdM2aYDSIihd7Rd98F4Fun03ASEREREZEba90aHn3UtT5sGFy6ZDaPJ1MhTbzGycaNAah68CBWSorhNCJSaFkWEdu3u9Z1WaeIiIiIFBAvvQTh4bB3L7z4ouk0nkuFNPEaLYYMIR4oalkcnT/fdBwRKaQc69ZRLjWVC0D94cNNxxERERERyRG7Hd54w7U+dSrExJjN46lUSBOvUdxuZ2tEBACn5s41nEZECquDs2cDsLlYMSrXrm04jYiIiIhIzvXoAd26QVoaDB0KGqnkSiqkiVdJ79oVgIjNm8GyDKcRkcIoeNkyAE63bGk4iYiIiIhI7thsMHMmFC0Ka9fCO++YTuR5VEgTr1L3iSc4D4SmpJC8erXpOCJSyDiPH6f6yZMAhA4dajiNiIiIiEjuVar0vzHSRo+GuDizeTyNCmniVarXq8e6YsUAODxrluE0IlLYHHzjDXyALb6+NLv/ftNxRERERERuyogR0KwZOBwwcqTpNJ5FhTTxOhc7dwag6o4dhpOISGFz+e9OYJ8+BAQEGE4jIiIiInJzfH1hzhzX188+g8WLTSfyHCqkidfp/vbb4OND8K+/wpEjpuOISGGRlIRt+XIA6k2YYDiMiIiIiMitadz4f73RHnsMzp0zGsdjqJAm3qdsWWjTxrX+1Vdms4hI4bFkCaSmQq1aEBlpOo2IiIiIyC2bPBkqV4ZDh2DiRNNpPIMKaeKVrMyxiRLefNNsEBEpNGKmTAHgWPPmrumOREREREQKuKJFYfZs1/qMGbB1q9E4HkGFNPFKGytVAiAkJoa0Q4cMpxERr3fpEhUzx0fbWaOG4TAiIiIiInnn3nuhTx9wOmHoUEhPN53ILBXSxCs1feABNvn54QPsnzbNdBwR8XLH3nmH4k4nh4GWTzxhOo6IiIiISJ6aMQNKloQtW2DmTNNpzFIhTbySn58f+5s3d61/8YXhNCLi7Rxvvw3Az1WqULJ0acNpRERERETyVlgYTJ3qWp8wAQ4fNpvHJBXSxGuFPf44TqD6iROkHzhgOo6IeCkrKYlqMTEABA0ebDaMiIiIiIibPPIItG0L58/D8OFgWaYTmaFCmnitNj17ssHPD4C9L71kOI2IeKtD//43QZbFHpuN9pfnBxcRERER8TI+PjBnDvj7w3//C4X14i8V0sRr+fv7c7RtWwACFi40nEZEvNWFuXMB2F6nDiXsdsNpRERERETcJyoKxoxxrT/xBDgcZvOYoEKaeLWaY8eSDlQ/c4aMnTtNxxERb3P6NLUzZwYu/dhjhsOIiIiIiLjfuHFQqxbExcHYsabT5D+3FtISExMZMGAAdrsdu93OgAEDOHv27HXvY7PZrrq88sorWft06NDhitv79u3rzociBVSjLl0426YNAL7z5hlOIyJe59NP8XU6sRo14g4V0kRERESkEAgKgrfecq2/9RasW2c2T35zayGtX79+REdHs2TJEpYsWUJ0dDQDBgy47n3i4uKyLXPnzsVms/HnP/85235DhgzJtt/bmTOmifyezWYjZNQo1zf/93+Qnm42kIh4l8zLOm2DB2Oz2QyHERERERHJHx07wuDBrgkHhg6F1FTTifKPn7sOvHv3bpYsWcKGDRto2bIlAO+88w6tW7cmNjaW2rVrX/V+YWFh2b7/6quv6NixI9WqVcu2PTg4+Ip9Ra6qa1cICYG4OFK++YbABx4wnUhEvMC5NWsotnUrVkAAtgcfNB1HRERERCRf/etfrkkHdu1yrY8bZzpR/nBbj7T169djt9uzimgArVq1wm63sy6H/f5OnDjBt99+y8MPP3zFbfPnzyckJIS6desyatQokpOTr3mclJQUkpKSsi1SiAQE8EuDBgDse+45w2FExFsczPx7sqJYMShTxnAaEREREZH8VaYMTJ/uWn/hBfjtN7N58ovbeqTFx8dTrly5K7aXK1eO+Pj4HB3jww8/pHjx4vTo0SPb9v79+1O1alXCwsLYuXMnY8eOZfv27Sxbtuyqx5kyZQqTJ0/O/YMQr3H4jjuov2IF1XftIuPkSXzLljUdSTzIpUuX2L17N+fOnePChQukpqYSEBBAUFAQxYoVo1KlSpTVa0Z+79IlKq5eDYCjZ0/DYUREREREzOjf3zWK0rJlMGyY66u3j3iS60LapEmTbliU2rRpE8BVx4uxLCvH48jMnTuX/v37ExQUlG37kCFDstbr1atHzZo1adasGVu3bqVJkyZXHGfs2LE89dRTWd8nJSVRsWLFHGUQ73Dn00+zY+JEGmRksHPsWOq9+67pSGLA4UOH2PHtt5xZuZLGdjv1ixeHgwdxHjqE79atVAKKAs7MJQNwAGfKlaNsmzYQHo6zenU+WLuWMq1b0/DPf6Zy1aoaG6sQ2v/aa1TLyOAw0P4f/zAdR0RERETECJsN3nwT6tWDH36AefPgBkPjF3i5LqSNGDHihjNkVqlShR07dnDixIkrbjt58iShoaE3/DmrV68mNjaWBQsW3HDfJk2a4O/vz969e69aSAsMDCQwMPCGxxHvFRQUxN6OHWmwfDmlPvkE5swBH7fOtSEe4HxiIptmziT5yy8pvXs3tS9e5L6r7BcMNLjGMcoDJCTAl18Cruvh/wqwaBGOZ59lbWAgZ2rUwN6tG41HjqREDv6+ScGXOmsWAJvr1aPHVXpfi4iIiIgUFtWrw/PPu8ZIe+opuOce1zDl3irXhbSQkBBCctAirVu3xuFwsHHjRlq0aAHAzz//jMPhoE2bNje8/3vvvUfTpk1p2LDhDffdtWsXaWlphIeH3/gBSKHV8JVXcDRuTPkLF4j/6CPCBg0yHUncITERvvqK1E8/xfr+ezr84eZ0m434UqWgZk0qtGsHVapAWBjY7a6laFHXjhkZrlleHQ44dcq1HDnChe3bObNxIyFnzmB3OmmXkuIaXXPXLi6+/DIHIyOp8thj0KuX67jidc7//DORx4+TAURo3EUREREREUaNgo8/hp07XesffGA6kfvYLMuy3HXwe+65h+PHj/P2228DMHToUCpXrsw333yTtU9kZCRTpkzhgd/NpJiUlER4eDivvvoqw4YNy3bMffv2MX/+fO69915CQkKIiYnh6aefpkiRImzatAlfX98b5kpKSsJut+NwOChRokQePVopCBZVqsQDR46wu3p16hSWkRALg9RUjsycie3DD6mwezekpWXddNrHh0M1auDXqRPVevWiWKtW8IfLxW9KejoXN2/m0H/+w7llyyi/ezfh6en/u93Hh4tt2nDs9tupPmYMtuLFb/1nikf4pW1b6q9bx/fFitElKUmX9hYyOofwfHqOREREzFi/Htq2BctyXeZ5xx2mE+VOTs8h3Hpt2/z586lfvz5dunShS5cuNGjQgI8++ijbPrGxsTgcjmzbPv30UyzL4i9/+csVxwwICOCHH37grrvuonbt2jzxxBN06dKF5cuX56iIJoVb0WeeAaD2vn2kxsYaTiO3yjpwgN969eJMsWJUfPppKuzY4Sqi1asHkydzduVKSqem0iQ2lgazZlGsQ4e8KaIB+PlRpFUrIl99lWY7dhCemsr+r78mfcoUaNUKnE6KrFlDjZde4nypUuzp2pX0mJi8+dlizpkz1N64EYBLQ4eqiCYiIiIikql1a3j0Udf6sGFw6ZLZPO7i1h5pnkr/qSy8MjIy+K16dWofOuTqb/rKK6YjyU1I27aNIyNGUGnduqzr048Da2vXptUbb1Cxc2eT8Vz27+e7QYOouWYNNX63+WBUFOEzZxLYsaOxaHILXnkFnn2WS7Vr49yyheDLlwJLoaFzCM+n50hERMQchwPq1IG4OJgwAQrSvFwe0SNNxNP4+vpS+403XN/MmeP6LZeCY/NmEm+/Hf8mTaiWWUT7wdeX97t3x7l/P71+/dUzimgA1apxz+rVFD9+nP/r148l/v44gSoxMQTecQfH69SBlStNp5TcSE+HzEkGgkaPVhFNREREROQP7Ha4/JF76lTXcNLeRoU0KXy6doWoKEhKIiPzQ7F4uH37oG9faN6cUqtX4wS+Cgxk7vDhND11ioe++ooKVauaTnlVoeHhDJw/n9vPnuXjSZP4ODiYVCDi11+hY0e4+27YscN0TMmBE2+8AYcOuaYgusHs1SIiIiIihVWPHtCtm2vUnaFDwek0nShvqZAmhY+PD2eGDgXAMWkS1oULhgPJNZ0+TULfvqTXqgULFoDNBgMGsOnDD7nz1Cn+OnMmJUuWNJ0yR4KDg3lw4kR6nD7NvIkTOT94MPj7w/ffYzVqRHzXrnDsmOmYci1OJ5cmTgRgU9u2UKSI4UAiIiIiIp7JZnNdyFGsGKxbB++8YzpR3lIhTQolZ+/eHLbZKJ2Wxu7Ro03HkT9yOkmePp1z5ctTbsEC/JxOzrRsCdu2wf/9Hy0HDqRYsWKmU96UoKAg/jppEkXffx9274ZevbBZFmGLF3OpcmVOjx6dbdZR8Qz7XnuNysnJnAXs48ebjiMiIiIi4tEqVoR//tO1Pnq0a8w0b6FCmhRKIeHhbG7fHgD7nDlYKlx4jPRNm4irXp3iTz1FsZQUdgBT7ryTi198AQ0bmo6Xt6pXJ3XePKY98ABrgaCMDMpMm0ZC+fKkLF9uOp1cZlk4M88CVtWrR63mzQ0HEhERERHxfCNGQLNmrqHJR440nSbvqJAmhVa799/nJFA+NZVob/qtLqguXOB4nz7YWrQg/OBBkoF/RUSQ9OOPjF2+nPLly5tO6BYBAQE8u3Ah9h07eKVuXU4C5U6eJLBzZ47ddRecPm06YqEX+8Yb1HQ4OA/U9bZ+6SIiIiIibuLr65rjz9cXPvsMvv3WdKK8oUKaFFrlqlRhY6dOAETMmYPz/HnDiQqxDRuwGjUi4rPP8AUWBgTw5csv8+Thw7Tr0MF0unxRr359Rv3yC+vee495wcEAlF+6lEs1asCXX5oNV5g5nfg+9xwAP0VFUaNVK8OBREREREQKjsaN/9cb7bHH4Nw5o3HyhAppUqi1+b//44jNRmh6OtGZExBIPkpNhfHjoW1bbHv3crF0aaZ37kyHuDgGjB6Nr6+v6YT5ymaz8ae//pXucXHM6N2b3wIDCTp7Fh54APr3V+80A3ZOmECNpCQcQO25c03HEREREREpcCZPhsqV4fBhyJy/q0BTIU0KtVLh4UQ/8AAA1RcswDp71mygQuTMypUcCg2Fl15yzYfcvz9FfvuNJ5cupXTp0qbjGVWiRAlGLlhAxRMnYMwY8PGBjz/GUbEix2fPNh2v8EhJoXLmpZw/tWpFtZYtDQcSERERESl4ihaFN990rc+YAVu3Go1zy1RIk0Lvzg8+IKFsWewZGdheftl0HK9npaUR3acPxTp2pPLZs5yy2UiZPx/mzYNSpUzH8yiBdjtMmQIbNnCqXDnsFy8SMXw4MU2akJ6QYDqe93vzTYqfOkVGWBjtPv/cdBoRERERkQLrnnugTx9XH4qhQyE93XSim6dCmhR6wcWLU+6991zfvPYaxMaaDeTF4lat4tdy5Wj02WcEACtKlODI4sUE9utnOppna96cc6tW8UmVKmQAUdu2caZCBQ6od5r7nDwJL7wAgO8//kEpL53sQsRTHTlyhA4dOhAVFUWDBg34z3/+YzqSiIiI3KIZM6BkSdiyBWbONJ3m5qmQJgJw333QtSukpXGmf3+wLNOJvIozPZ3VvXph79CBOmfP4gC+6tGDdgkJNL77btPxCoQqkZH03b+fxePHs8fHh3JpaVQdPpzNTZqQcuqU6XheZ1uXLpCYCA0bwuDBpuOIFDp+fn7MmDGDmJgYli9fzpNPPsl5TQokIiJSoIWFwdSprvUJE1xjphVEKqSJANhsZLz2Gqk2G6W3bGHd00+bTuQ9Dh3ifOvW3Pb55wQDm+x2En74gT998QUBgYGm0xUoNpuNbv/8J8X37uWb6tUBaLZtG0lVq8KqVYbTeY9tM2bQODoaJ3Bw7Fjw8zMdSaTQCQ8Pp1GjRgCUK1eO0qVLc+bMGbOhRERE5JY98gi0bQvnz8Pw4QWzD4sKaSKZfGvVYm27dgBUef11EvbsMZyoYLOcTpg7F+rXp/jmzaT6+7OyVy+anjpFzTvuMB2vQAuvVo379u5l1aRJHPH1pey5c9ChAzz5JFy8aDpegXY+MZFizz4LwJqoKKr06WM4kYhn+umnn+jWrRsRERHYbDa+/PLLK/aZPXs2VatWJSgoiKZNm7J69eqb+lmbN2/G6XRSsWLFW0wtIiIipvn4wJw54O8P//0vfPGF6US5p0KayO+0/eYbDgUEEOF0EtO5M1ZBLI97gG2LF7OmTBl4+GFIToY2bQiIiaHDZ5/ho949ecJms9F+4kTCEhJgyBDXxhkzOF25MutnzDCarSBbe9dd1ExL45SPD40WLzYdR8RjnT9/noYNGzLzGgOcLFiwgJEjRzJ+/Hi2bdvGbbfdxj333MPh313D0bRpU+rVq3fFcvz48ax9Tp8+zcCBA5kzZ841s6SkpJCUlJRtEREREc8VFQVjxrjWn3gCHA6zeXLLZhXCSkFSUhJ2ux2Hw0GJEiVMxxEPs+fDD6k+eDC+wI+PP07Hf//bdKQC41xyMot696brkiWUBtJ8fPCfMgWefhp8fU3H827ffUfqwIEEnDpFBvDfunVpu3QpIRERppMVGGunTqXVmDH4AtvGjqXxSy+ZjiQeSOcQV7LZbCxatIj7778/a1vLli1p0qQJb16e6x6oU6cO999/P1OmTMnRcVNSUujcuTNDhgxhwIAB19xv0qRJTJ48+Yrteo5EREQ816VLruGI9+yBRx8FT5hHLafneeqRJvIHtQYNYsPttwNQ74032L1ypdlABcSKTz5hbWgoAzKLaAdKlyZ5xQp49lkV0fLDPfeQtnUrWyIj8QX+tGsX8ZUq8e1LL6lnZQ4cjYmhwrhx+AIb69RREU3kFqSmprJlyxa6dOmSbXuXLl1Yt25djo5hWRaDBw/mjjvuuG4RDWDs2LE4HI6s5ciRIzedXURERPJHUBC89ZZr/c03IYenCB5BhTSRq2i9ZAn7ixenLHDuvvtwpqaajuSxTp06xczbbqNBv37cdfEiqcCegQOpGh9P6fbtTccrVIpWrEjT3bvZ+9JLnPH1pV5GBp3Hj+fD2rU5tG+f6Xiey7JIfvBBKjudHAsIoNFPP5lOJFKgnTp1ioyMDEJDQ7NtDw0NJT4+PkfHWLt2LQsWLODLL7+kUaNGNGrUiF9++eWq+wYGBlKiRIlsi4iIiHi+jh1h8GDX+tChUFA+dquQJnIVPkWKUGrpUi74+tL8/Hl8xo0zHckzxcVx6o47GLFmDSHAsZAQ0teto9aHH7pGjxQjao4dS7EDB4itU4cAYPDevZyuU4fUa3wILfSmT6fOtm04fXzgo48ICAkxnUjEK9hstmzfW5Z1xbZradeuHU6nk+jo6Kylfv367ogpIiIiBv3rXxASArt2udYLAhXSRK6hVKtWBH/2meubV1+FBQvMBvIgKRcuwKxZEBlJ5C+/kG6zcfThhyl/7BjBrVubjidAQMWK1N61i+NTppDs60uTtDQCWrSAadMKzr968oHz++/hmWcA8Jkxg/K9extOJFLwhYSE4Ovre0Xvs4SEhCt6qYmIiEjhVqYMTJ/uWn/hBfjtN7N5ckKFNJHr6dEDRo8GwDlwIJ8//rjhQGYlJiYypU8f9oSEwIgRkJQEzZvjt2ULFd59FwICTEeU37PZiBgzhqL79mF16uQa0XP0aJKqV+fFTp2Ii4szndCor6dM4dx994HTCQ895HpNi8gtCwgIoGnTpixbtizb9mXLltGmTRtDqURERMRT9e8PnTtDSgoMGwaePsSzCmkiN/Lii5zr3Bmf1FQ6z5zJ/GefNZ0o32VkZDBv+nQWRUTwzGefUf/iRdKKFIGZM2H9emjc2HREuQ6fypWxLV0K77+PVbYsJY4eZfwPP7C6UiXeev55UgthD7WvZsyg2bhxlEhP52ilSq5pgnJ4yZmIwLlz57IuuQQ4cOAA0dHRHD58GICnnnqKd999l7lz57J7926efPJJDh8+zLBhwwymFhEREU9ks7kmHAgKgh9+gHnzTCe6PptVCKdz09T1kmuXLnGgVi2qHjlCPLD46af5a0G5gPsWWJbF919/zc5hw3gkPp6SmdtP3H47oZ98AhERJuPJzUhMJOFvf6PMf/6DL3AemFuyJBHTp/PAwIH4+Hj//1cWzZxJw8cfpxpwtFQpIvbswUfjokkO6RzCZeXKlXTs2PGK7YMGDeKDDz4AYPbs2UybNo24uDjq1avH9OnTuT1zVmx30nMkIiJSME2ZAuPGuS73/PVX19hp+Smn5xAqpOkES3LISkwkvk4dwk+c4BTw2UMPMezdd7228JCcmMistm3ptXs31TO3JUREUOr99/Hv0sVoNrl1zs2bOdm3L6GZs3kmAB9UqkSH+fNp0a6d2XBuYlkW748dS8epU6kKJJQoQUhMDD7ly5uOJgWIziE8n54jERGRgiktDZo0gZ07YdAgyPzfXL7J6TmEd1YARNzAVqoU4TExHKtQgRDgwfff5x/t23P+/HnT0fJWRgZ89BHFWrZkTGYRLaloUc6/8QblDh9WEc1L+DRrRujevVycN4/TZcpQDnj28GHq9+zpuszx0iXTEfNUeno6L/fqxX2Xi2h2OyHbtqmIJiIiIiLiIfz94Z13XJd6fvghrFhhOtHVqZAmkhulS1M+Joa4yEhKABPWrCF6wADPHw0xB7avW8d7TZuSXqsWDByIbe9eMkqWJHH0aErEx1N0xAjw9TUdU/KSzUaR/v0pExdH0rRpnC9enCInTsDw4VC1Kpv69GHNd9+ZTpknUt95h5ELF1IOOFGhAmVjY/GpVs10LBHJQ7NmzSIqKormzZubjiIiIiI3qVUrePRR1/qwYZ75/31d2qku/3IzLl3iRI8ehF4uMvTq5RodsUwZs7lyybIsVn/8MSeef5479++n9OUbSpeGUaNcsxgWL24youSnixfhvfdg2jQ4cgSAZGB5eDglx43j9kcfxbcAFVMty8I6dw6fp592/WsLONG4MaErV4L+9stN0jmE59NzJCIiUrA5HFCnDsTFwYQJ8I9/5M/P1aWdIu4UFETot9+6Zq3084P//AerTh2mt2vH9u3bTae7ofOnTrH8kUdYV7w47R58kF6ZRbQTxYoRP24cHDwIY8eqiFbYFCniKp7+9htJ06cTX7IkxYEH4uLo+PjjbCpWjCV9+5J46JDppDe0f/9+JrRoQXKVKv/rHz55MqGbNqmIJiIiIiLiwex2eOMN1/rLL8OuXWbz/JF6pOkDldyqTZvgoYeyfruXAxt69GDAa69RuXJls9l+79IlWL4ca+FCkj74APvvfvX3VKhA8fHjCR8yRJdvyv9YFqc++4y455+nzp49+GVuvgicaduW8qNGQZcuEBxsMmU2CQkJzH32WWp+9BF/djoBcFaogM/cudC5s+F04g10DuH59ByJiIgUfJYF998PX38NbdrA6tXg7nn+NGvndegES/JcSgqOZ54heNYs/DM/vH9ps7Hn3nu5+8UXadCwoZFY1uHDHJo7l4tffEHkwYPYzp3Luu2onx9H77iDulOnUrxRIyP5pOC4uHcvu555hjJLllA1JeV/NwQFkdikCYmtW1P50UfxrV792gdxoz179vDVxIlEfP45fdPT8QWcgGPAAErNmqXelZJndA7h+fQciYiIeIcjRyAqCs6dc82Hdvlyz/BwuO22vO8DokLadegES9zm4EEShg6l3LJlWZu2A5tr1uSvS5Zgc+fg5hkZ8OuvnP/pJ05+/TXB69dTzuHIvk/58vDAA1y4+26C7roLHz+/qx9L5Bosp5P9X3xB9Q0b4PPP4fDhbLefLlqU802bUqpbN4rfey/Uru3eXo7HjvHzmDFY8+bR6nebE1q1ouxbb2EzVMQW76VzCM+n50hERMR7vP46jBzpGqnl99WrChVct/XokXc/S4W069AJlrjdrl3EjxtHqW+/JTAj43/bIyOxOnRg4YkTlO3YkXo9e1I6PDx3x05Ph2PHIDbWtezZAzt2kL5pE34XL2bbNQPY4uPD4Vq1qD9uHLX793d/f1gpPCwLa+dOPh88mArbt9M8I4M/lmZT/fwIaNwYGjRwLZGRUKUKVKoEQUG5+nGOkyeJ+fZbjnzzDc1TU6l67Bhs25Z1e5rNxqn27Ql7+WVsLVve+uMTuQqdQ3g+PUciIiLe4/PPXXP7/ZHN9r/b86qYpkLadegES/LN6dM45s7Fb+FCim7cCJmXfV6WDsT7+JBctCiXSpfGVqwYoZUqEV65MlgWKWfPknDgAJw/T2BiIsEOB8Hnz19zlpBzwFZgX8mSXGjRgmoPPUSHP/2JIkWKuPmBSmGXmprKuqVL2fXee/isXUvtkydpCRS9zn2SixXjUvHipBUvTkbx4gSGhVEuPBxsNtIzMti5cSM+Dge+yckUTU6mwlUKdQC0aUPinXdSavhwCA11zwMUyaRzCM+n50hERMQ7ZGS4/gd/9OjVb7fZXD3TDhzIm4tgVEi7Dp1giRFnzsBPP5G4cCEnly4l9ORJ7H8orOVUKvAbkFG9OvX//GeIiiK1QQMW7d7N7R07Ep7bXm4ieez06dOsWbWKEIeDtsWLw44dpG7eTOx331EVKHaTxz1vs3GiVCnSW7Sg1kMPwe23Q1hYXkYXuS6dQ3g+PUciIiLeYeVK6Njxxvv9+CN06HDrPy+n5xAaIEkkv5QuDfffT6n776cUgGWRFBvL0fXrSdi+nfP79pGSmEiDyEhqVKoEQMK5c3z85ZdYwcGklS5NWkgIgVWqULZOHSpXrUrt2rVdIy0CAUCfxo2NPTyR3ytTpgx/+n0f6549cV66xOkNG9h+5Ain9uzh0q+/wpkz+CYl4Z+cTGR4OHd36uQa/MCy+HbFCpx2O0UiIgirV4+KHTtij4yk2uV+3CIiIiIi4rXi4vJ2v7yiHmn6T6WIiIjkkM4hPJ+eIxEREe/gqT3SNOq4iIiIiBR4s2bNIioqiubNm5uOIiIiInngtttcY6Bd64IUmw0qVnTtl59USBMRERGRAm/48OHExMSwadMm01FEREQkD/j6wuuvu9b/WEy7/P2MGXkz0UBuqJAmIiIiIiIiIiIep0cP+PxzKF8++/YKFVzbfz8sc37RZAMiIiIiIiIiIuKRevSAP/0JVq92TSwQHu66nDO/e6JdpkKaiIiIiIiIiIh4LF/fvJlQIC/o0k4REREREREREZEcUCFNREREREREREQkB1RIExERERERERERyQG3FtJefPFF2rRpQ3BwMCVLlszRfSzLYtKkSURERFCkSBE6dOjArl27su2TkpLC448/TkhICEWLFqV79+4cPXrUDY9ARERERERERETExa2FtNTUVHr16sWjjz6a4/tMmzaN1157jZkzZ7Jp0ybCwsLo3LkzycnJWfuMHDmSRYsW8emnn7JmzRrOnTvHfffdR0ZGhjsehoiIiIiIiIiICDbLsix3/5APPviAkSNHcvbs2evuZ1kWERERjBw5ktGjRwOu3mehoaFMnTqVv/3tbzgcDsqWLctHH31Enz59ADh+/DgVK1Zk8eLF3HXXXVccNyUlhZSUlKzvk5KSqFixIg6HgxIlSuTdAxURERGvlpSUhN1u1zmEB9NzJCIiIjcjp+cQHjVG2oEDB4iPj6dLly5Z2wIDA2nfvj3r1q0DYMuWLaSlpWXbJyIignr16mXt80dTpkzBbrdnLRUrVnTvAxEREREREREREa/jUYW0+Ph4AEJDQ7NtDw0NzbotPj6egIAASpUqdc19/mjs2LE4HI6s5ciRI25ILyIiIiKmzJo1i6ioKJo3b246ioiIiHixXBfSJk2ahM1mu+6yefPmWwpls9myfW9Z1hXb/uh6+wQGBlKiRIlsi4iIiIh4j+HDhxMTE8OmTZtMRxEREREv5pfbO4wYMYK+ffted58qVarcVJiwsDDA1essPDw8a3tCQkJWL7WwsDBSU1NJTEzM1istISGBNm3a3NTPFRERERERERERuZFcF9JCQkIICQlxRxaqVq1KWFgYy5Yto3HjxoBr5s9Vq1YxdepUAJo2bYq/vz/Lli2jd+/eAMTFxbFz506mTZvmllwiIiIiIiIiIiK5LqTlxuHDhzlz5gyHDx8mIyOD6OhoAGrUqEGxYsUAiIyMZMqUKTzwwAPYbDZGjhzJSy+9RM2aNalZsyYvvfQSwcHB9OvXDwC73c7DDz/M008/TZkyZShdujSjRo2ifv36dOrUyZ0PR0RERERERERECjG3FtKef/55Pvzww6zvL/cy+/HHH+nQoQMAsbGxOByOrH2effZZLl68yGOPPUZiYiItW7Zk6dKlFC9ePGuf6dOn4+fnR+/evbl48SJ33nknH3zwAb6+vu58OCIiIiIiIiIiUojZLMuyTIfIbw6Hg5IlS3LkyBFNPCAiIiI5lpSURMWKFTl79ix2u910HLkKneeJiIjIzcjpeZ5be6R5quTkZAAqVqxoOImIiIgURMnJySqkeSid54mIiMituNF5XqHskeZ0Ojl+/DjFixfHZrPl+fEvVzH1n1Az1P7m6TkwS+1vltrfLHe3v2VZJCcnExERgY+PT54fX26du8/zPIn+3mSn9riS2uRKapPs1B5XUptcqbC0SU7P8wpljzQfHx8qVKjg9p9TokQJr36ReTq1v3l6DsxS+5ul9jfLne2vnmieLb/O8zyJ/t5kp/a4ktrkSmqT7NQeV1KbXKkwtElOzvP0r1QREREREREREZEcUCFNREREREREREQkB1RIc4PAwEAmTpxIYGCg6SiFktrfPD0HZqn9zVL7m6X2l8JEr/fs1B5XUptcSW2SndrjSmqTK6lNsiuUkw2IiIiIiIiIiIjklnqkiYiIiIiIiIiI5IAKaSIiIiIiIiIiIjmgQpqIiIiIiIiIiEgOqJAmIiIiIiIiIiKSAyqk3aTZs2dTtWpVgoKCaNq0KatXr77u/qtWraJp06YEBQVRrVo13nrrrXxK6p1y0/4LFy6kc+fOlC1blhIlStC6dWu+//77fEzrfXL7+r9s7dq1+Pn50ahRI/cG9HK5bf+UlBTGjx9P5cqVCQwMpHr16sydOzef0nqf3Lb//PnzadiwIcHBwYSHh/PQQw9x+vTpfErrXX766Se6detGREQENpuNL7/88ob30fuveJspU6bQvHlzihcvTrly5bj//vuJjY01HcujTJkyBZvNxsiRI01HMerYsWM8+OCDlClThuDgYBo1asSWLVtMxzIiPT2dCRMmULVqVYoUKUK1atV44YUXcDqdpqPlmxu9h1qWxaRJk4iIiKBIkSJ06NCBXbt2mQmbT67XJmlpaYwePZr69etTtGhRIiIiGDhwIMePHzcX2M1yc571t7/9DZvNxowZM/ItnydRIe0mLFiwgJEjRzJ+/Hi2bdvGbbfdxj333MPhw4evuv+BAwe49957ue2229i2bRvjxo3jiSee4Isvvsjn5N4ht+3/008/0blzZxYvXsyWLVvo2LEj3bp1Y9u2bfmc3Dvktv0vczgcDBw4kDvvvDOfknqnm2n/3r1788MPP/Dee+8RGxvLJ598QmRkZD6m9h65bf81a9YwcOBAHn74YXbt2sV//vMfNm3axCOPPJLPyb3D+fPnadiwITNnzszR/nr/FW+0atUqhg8fzoYNG1i2bBnp6el06dKF8+fPm47mETZt2sScOXNo0KCB6ShGJSYm0rZtW/z9/fnuu++IiYnh1VdfpWTJkqajGTF16lTeeustZs6cye7du5k2bRqvvPIKb7zxhulo+eZG76HTpk3jtddeY+bMmWzatImwsDA6d+5McnJyPifNP9drkwsXLrB161aee+45tm7dysKFC9mzZw/du3c3kDR/5PQ868svv+Tnn38mIiIin5J5IEtyrUWLFtawYcOybYuMjLTGjBlz1f2fffZZKzIyMtu2v/3tb1arVq3cltGb5bb9ryYqKsqaPHlyXkcrFG62/fv06WNNmDDBmjhxotWwYUM3JvRuuW3/7777zrLb7dbp06fzI57Xy237v/LKK1a1atWybfv3v/9tVahQwW0ZCwvAWrRo0XX30fuvFAYJCQkWYK1atcp0FOOSk5OtmjVrWsuWLbPat29v/f3vfzcdyZjRo0db7dq1Mx3DY3Tt2tX661//mm1bjx49rAcffNBQIrP++B7qdDqtsLAw6+WXX87adunSJctut1tvvfWWgYT5LyfnFRs3brQA69ChQ/kTyqBrtcfRo0et8uXLWzt37rQqV65sTZ8+Pd+zeQL1SMul1NRUtmzZQpcuXbJt79KlC+vWrbvqfdavX3/F/nfddRebN28mLS3NbVm90c20/x85nU6Sk5MpXbq0OyJ6tZtt//fff599+/YxceJEd0f0ajfT/l9//TXNmjVj2rRplC9fnlq1ajFq1CguXryYH5G9ys20f5s2bTh69CiLFy/GsixOnDjB559/TteuXfMjcqGn918pDBwOB4DOa4Dhw4fTtWtXOnXqZDqKcZff/3v16kW5cuVo3Lgx77zzjulYxrRr144ffviBPXv2ALB9+3bWrFnDvffeaziZZzhw4ADx8fHZ3jMDAwNp3759jj9jFQYOhwObzVZoe3Y6nU4GDBjAM888Q926dU3HMcrPdICC5tSpU2RkZBAaGppte2hoKPHx8Ve9T3x8/FX3T09P59SpU4SHh7str7e5mfb/o1dffZXz58/Tu3dvd0T0ajfT/nv37mXMmDGsXr0aPz/9ybkVN9P++/fvZ82aNQQFBbFo0SJOnTrFY489xpkzZzROWi7dTPu3adOG+fPn06dPHy5dukR6ejrdu3cvVJeSmKT3X/F2lmXx1FNP0a5dO+rVq2c6jlGffvopW7duZdOmTaajeIT9+/fz5ptv8tRTTzFu3Dg2btzIE088QWBgIAMHDjQdL9+NHj0ah8NBZGQkvr6+ZGRk8OKLL/KXv/zFdDSPcPk85mrvmYcOHTIRyeNcunSJMWPG0K9fP0qUKGE6jhFTp07Fz8+PJ554wnQU4/Sp9ibZbLZs31uWdcW2G+1/te2SM7lt/8s++eQTJk2axFdffUW5cuXcFc/r5bT9MzIy6NevH5MnT6ZWrVr5Fc/r5eb173Q6sdlszJ8/H7vdDsBrr71Gz549mTVrFkWKFHF7Xm+Tm/aPiYnhiSee4Pnnn+euu+4iLi6OZ555hmHDhvHee+/lR9xCT++/4s1GjBjBjh07WLNmjekoRh05coS///3vLF26lKCgINNxPILT6aRZs2a89NJLADRu3Jhdu3bx5ptvFspC2oIFC5g3bx4ff/wxdevWJTo6mpEjRxIREcGgQYNMx/MYN/sZy9ulpaXRt29fnE4ns2fPNh3HiC1btvD666+zdetWvSZQIS3XQkJC8PX1vaL3QUJCwhUV/MvCwsKuur+fnx9lypRxW1ZvdDPtf9mCBQt4+OGH+c9//qMu/zcpt+2fnJzM5s2b2bZtGyNGjABcJ3aWZeHn58fSpUu544478iW7N7iZ1394eDjly5fPKqIB1KlTB8uyOHr0KDVr1nRrZm9yM+0/ZcoU2rZtyzPPPANAgwYNKFq0KLfddhv//Oc/1SPKzfT+K97s8ccf5+uvv+ann36iQoUKpuMYtWXLFhISEmjatGnWtoyMDH766SdmzpxJSkoKvr6+BhPmv/DwcKKiorJtq1OnTqGdbOWZZ55hzJgx9O3bF4D69etz6NAhpkyZokIarvdLcPVM+/25SU4+Y3m7tLQ0evfuzYEDB1ixYkWh7Y22evVqEhISqFSpUta2jIwMnn76aWbMmMHBgwfNhTNAY6TlUkBAAE2bNmXZsmXZti9btow2bdpc9T6tW7e+Yv+lS5fSrFkz/P393ZbVG91M+4OrJ9rgwYP5+OOPNTbRLcht+5coUYJffvmF6OjorGXYsGHUrl2b6OhoWrZsmV/RvcLNvP7btm3L8ePHOXfuXNa2PXv24OPjU+g/eOXWzbT/hQsX8PHJ/lZ7+cPc5Z5R4j56/xVvZFkWI0aMYOHChaxYsYKqVauajmTcnXfeecX5RrNmzejfvz/R0dGFrogGrvf/2NjYbNv27NlD5cqVDSUy61rvx06n01Aiz1K1alXCwsKyvWempqayatWq637G8naXi2h79+5l+fLlhfqfcAMGDGDHjh3Z/s5GRETwzDPP8P3335uOl/9MzHBQ0H366aeWv7+/9d5771kxMTHWyJEjraJFi1oHDx60LMuyxowZYw0YMCBr//3791vBwcHWk08+acXExFjvvfee5e/vb33++eemHkKBltv2//jjjy0/Pz9r1qxZVlxcXNZy9uxZUw+hQMtt+/+RZu28Nblt/+TkZKtChQpWz549rV27dlmrVq2yatasaT3yyCOmHkKBltv2f//99y0/Pz9r9uzZ1r59+6w1a9ZYzZo1s1q0aGHqIRRoycnJ1rZt26xt27ZZgPXaa69Z27Zty5o9S++/Uhg8+uijlt1ut1auXJntvObChQumo3mUwj5r58aNGy0/Pz/rxRdftPbu3WvNnz/fCg4OtubNm2c6mhGDBg2yypcvb/33v/+1Dhw4YC1cuNAKCQmxnn32WdPR8s2N3kNffvlly263WwsXLrR++eUX6y9/+YsVHh5uJSUlGU7uPtdrk7S0NKt79+5WhQoVrOjo6Gx/b1NSUkxHd4sbvUb+qDDP2qlC2k2aNWuWVblyZSsgIMBq0qRJtinHBw0aZLVv3z7b/itXrrQaN25sBQQEWFWqVLHefPPNfE7sXXLT/u3bt7eAK5ZBgwblf3AvkdvX/++pkHbrctv+u3fvtjp16mQVKVLEqlChgvXUU0/pA9ctyG37//vf/7aioqKsIkWKWOHh4Vb//v2to0eP5nNq7/Djjz9e9++53n+lMLja7wBgvf/++6ajeZTCXkizLMv65ptvrHr16lmBgYFWZGSkNWfOHNORjElKSrL+/ve/W5UqVbKCgoKsatWqWePHj/fagsjV3Og91Ol0WhMnTrTCwsKswMBA6/bbb7d++eUXs6Hd7HptcuDAgWv+vf3xxx9NR3eLG71G/qgwF9JslqVrS0RERERERERERG5EY6SJiIiIiIiIiIjkgAppIiIiIiIiIiIiOaBCmoiIiIiIiIiISA6okCYiIiIiIiIiIpIDKqSJiIiIiIiIiIjkgAppIiIiIiIiIiIiOaBCmoiIiIiIiIiISA6okCYiIiIiIiIiIpIDKqSJiIiIiIiIiIjkgAppIiIiIiIiIiIiOaBCmoiIiIiIiIiISA6okCYiAnzyyScEBQVx7NixrG2PPPIIDRo0wOFwGEwmIiIiIrfqt99+w2az8e2333LnnXcSHBxM7dq1+fnnn01HE5ECRoU0ERGgb9++1K5dmylTpgAwefJkvv/+e7777jvsdrvhdCIiIiJyK7Zv347NZuPVV19lwoQJbN++nUqVKjFmzBjT0USkgPEzHUBExBPYbDZefPFFevbsSUREBK+//jqrV6+mfPnypqOJiIiIyC3avn07drudBQsWULZsWQDuv/9+3nzzTcPJRKSgUSFNRCTTfffdR1RUFJMnT2bp0qXUrVvXdCQRERERyQPbt2+nW7duWUU0gP3791OjRg2DqUSkINKlnSIimb7//nt+/fVXMjIyCA0NNR1HRERERPLI9u3bad26dbZt27Zto1GjRmYCiUiBpUKaiAiwdetWevXqxdtvv81dd93Fc889ZzqSiIiIiOQBh8PBoUOHaNy4cbbt0dHRKqSJSK7p0k4RKfQOHjxI165dGTNmDAMGDCAqKormzZuzZcsWmjZtajqeiIiIiNyC7du34+vrS8OGDbO2HTp0iMTERBXSRCTX1CNNRAq1M2fOcM8999C9e3fGjRsHQNOmTenWrRvjx483nE5EREREbtX27duJjIykSJEiWdu2bdtGyZIlqVKlirlgIlIg2SzLskyHEBERERERERER8XTqkSYiIiIiIiIiIpIDKqSJiIiIiIiIiIjkgAppIiIiIiIiIiIiOaBCmoiIiIiIiIiISA6okCYiIiIiIiIiIpIDKqSJiIiIiIiIiIjkgAppIiIiIiIiIiIiOaBCmoiIiIiIiIiISA6okCYiIiIiIiIiIpIDKqSJiIiIiIiIiIjkgAppIiIiIiIiIiIiOfD/l/rOkXJ5BwoAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAINCAYAAAD7t1ITAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRrUlEQVR4nOzdd3hUZfrG8e9k0kMSSIAUCL33XpcmUl0bFtQVyw92ZcFFYF0VdW24shYUC6KigF0QRVdFEQsIgvSACCIlQAgJECCd9Pn9cSbBQEBKZt6Z5P5c11xzcnJyzh2Mycxz3vd5bQ6Hw4GIiIiIiIiIiIiclY/pACIiIiIiIiIiIt5AhTQREREREREREZFzoEKaiIiIiIiIiIjIOVAhTURERERERERE5ByokCYiIiIiIiIiInIOVEgTERERERERERE5ByqkiYiIiIiIiIiInAMV0kRERERERERERM6Br+kAJhQXF3Pw4EFCQ0Ox2Wym44iIiIiXcDgcZGZmEhsbi4+P7kd6Ir3OExERkQtxrq/zqmQh7eDBg8TFxZmOISIiIl4qMTGRunXrmo4h5dDrPBEREbkYf/Q6r0oW0kJDQwHrHycsLMxwGhEREfEWGRkZxMXFlb6WEM+j13kiIiJyIc71dV6VLKSVDPMPCwvTCywRERE5b5oy6Ln0Ok9EREQuxh+9zlNzDxERERERERERkXOgQpqIiIiIeJTPP/+c5s2b07RpU15//XXTcURERERKVcmpnSIiIiLimQoLC5k8eTLff/89YWFhdOrUiREjRhAREWE6moiIiIgKaSLexOFwUFhYSFFRkekoIhXCz88Pu91uOoaIeJC1a9fSunVr6tSpA8Dw4cNZsmQJN954o+FkIiIiIiqkiXiN/Px8kpOTycnJMR1FpMLYbDbq1q1LtWrVTEcRkQryww8/8PTTT7NhwwaSk5NZtGgRV111VZljXn75ZZ5++mmSk5Np3bo1M2bMoE+fPgAcPHiwtIgGULduXZKSktz5LYiIiIickQppIl6guLiYhIQE7HY7sbGx+Pv7a8U48XoOh4MjR45w4MABmjZtqpFpIpVEdnY27du35/bbb+eaa6457fPz589n4sSJvPzyy/Tu3ZtXX32VYcOGsW3bNurVq4fD4Tjta872Ny8vL4+8vLzSjzMyMirmGxEREREphwppIl4gPz+f4uJi4uLiCA4ONh1HpMLUqlWLvXv3UlBQoEKaSCUxbNgwhg0bdsbPP/vss4wePZoxY8YAMGPGDJYsWcKsWbOYNm0aderUKTMC7cCBA3Tv3v2M55s2bRqPPvpoxX0DIiIiImehVTtFvIiPj/6XlcpFIytFqpb8/Hw2bNjA4MGDy+wfPHgwq1atAqBbt25s3bqVpKQkMjMzWbx4MUOGDDnjOadMmUJ6enrpIzEx0aXfg4iIiFRtGpEmIiIiIm6RmppKUVERUVFRZfZHRUWRkpICgK+vL9OnT2fAgAEUFxdzzz33EBkZecZzBgQEEBAQ4NLcIiIiIiVUSBMRERERtzp1NKrD4Siz74orruCKK65wdywRERGRP6R5YiJSqdlsNj755BPTMUREBKhZsyZ2u7109FmJw4cPnzZKTURERMQTqZAmIiIiIm7h7+9P586dWbp0aZn9S5cupVevXoZSiYiIiJw7FdJExGUcDgdPPfUUjRo1IigoiPbt27Nw4cLSz1166aUMHToUh8MBQFpaGvXq1eOBBx4AoKioiNGjR9OwYUOCgoJo3rw5zz///GnXmTNnDq1btyYgIICYmBjuvPNOABo0aADA1Vdfjc1mK/24PKtWraJDhw4EBgbSpUsXPvnkE2w2G/Hx8RX3DyIiUgVkZWURHx9f+vszISGB+Ph49u/fD8DkyZN5/fXXmTNnDtu3b2fSpEns37+fsWPHGkwtIiIicm7UI03Ei2VnZ5/xc3a7ncDAwHM61sfHh6CgoD88NiQk5LzyPfjgg3z88cfMmjWLpk2b8sMPP3DzzTdTq1Yt+vXrx5tvvknbtm154YUXuOuuuxg7dixRUVE88sgjABQXF1O3bl0WLFhAzZo1WbVqFX/729+IiYnh+uuvB2DWrFlMnjyZ//73vwwbNoz09HR+/PFHANatW0ft2rWZO3cuQ4cOxW63l5szMzOTyy+/nOHDh/Pee++xb98+Jk6ceF7fq4iIWNavX8+AAQNKP548eTIAt956K/PmzWPkyJEcPXqUxx57jOTkZNq0acPixYupX7++qcjnrKgIVqyA5GSIiYE+feAMf1pERESksnK40PLlyx1//vOfHTExMQ7AsWjRoj/8mmXLljk6derkCAgIcDRs2NAxa9as045ZuHCho2XLlg5/f39Hy5YtHR9//PF55UpPT3cAjvT09PP6OhFTTpw44di2bZvjxIkTZfYDZ3wMHz68zLHBwcFnPLZfv35ljq1Zs2a5x52PrKwsR2BgoGPVqlVl9o8ePdpx4403ln68YMECR0BAgGPKlCmO4OBgx44dO8563nHjxjmuueaa0o9jY2MdDzzwwBmPP5ffPbNmzXJERkaW+fedPXu2A3Bs2rTprF8rF+dMP9sinkqvITzXSy+95GjZsqWjWbNmLvlv9NFHDkfdug4HnHzUrWvtFxEREe93rq/zXDq1Mzs7m/bt2/PSSy+d0/EJCQkMHz6cPn36sGnTJu6//34mTJjARx99VHrM6tWrGTlyJKNGjWLz5s2MGjWK66+/njVr1rjq2xCRC7Bt2zZyc3MZNGgQ1apVK3289dZb7N69u/S46667jhEjRjBt2jSmT59Os2bNypznlVdeoUuXLtSqVYtq1aoxe/bs0ulBhw8f5uDBgwwcOPCisu7YsYN27dqVGcHXrVu3izqniIi41/jx49m2bRvr1q2r8HN//DFcey0cOFB2f1KStf/jjyv8kiIiIuKhXDq1c9iwYQwbNuycj3/llVeoV68eM2bMAKBly5asX7+eZ555hmuuuQaAGTNmMGjQIKZMmQLAlClTWL58OTNmzOD999+v8O/BqzgcsHUrqfHxVL/sMnwjIkwnEhfLyso64+dOncZ4+PDhMx7r41O2pr53796LygXWtEyAL774gjp16pT5XEBAQOl2Tk4OGzZswG63s3PnzjLHLViwgEmTJjF9+nR69uxJaGgoTz/9dGnh/PfTUS+Gw+HAZrOdtk9Ezl9xdjapn3xC7QYNoGdP8FE7VvFuRUVw113Wy6xTORxgs8HEiXDllZrmKSIiUhV4VI+01atXM3jw4DL7hgwZwhtvvEFBQQF+fn6sXr2aSZMmnXZMSfGtPHl5eeTl5ZV+nJGRUaG5PcLBg3DDDbBiBTWBTJuNhPHjaffii6aTiQudT88yVx17Jq1atSIgIID9+/fTr1+/Mx73z3/+Ex8fH7788kuGDx/OZZddxiWXXALAihUr6NWrF+PGjSs9/vej2UJDQ2nQoAHffvttmX48v+fn50dRUdFZs7Zo0YJ3332XvLy80iLf+vXrz/l7FRHL9ieeIPqhh6hd8v9cx47w/vvQvLnZYCIXYcWK00ei/Z7DAYmJ1nH9+7stloiIiBjiUbeJU1JSiIqKKrMvKiqKwsJCUlNTz3pMSkrKGc87bdo0wsPDSx9xcXEVH96g4uPHYcAA6xWcvz+HAwIIdTho99JLbBozxnQ8qaJCQ0O5++67mTRpEm+++Sa7d+9m06ZNzJw5kzfffBOwRqvNmTOHd999l0GDBnHfffdx6623cvz4cQCaNGnC+vXrWbJkCb/99hv//ve/T5uy88gjjzB9+nReeOEFdu7cycaNG3nxdwXkkkJbSkpK6XlPddNNN1FcXMzf/vY3tm/fzpIlS3jmmWcAThupJiLl++Wxx2j+wAPUKCrikK8vVKsGmzbBJZfg2LfPdDyRC5acXLHHiYiIiHfzqEIanP6mtWR61e/3l3fM2d7sTpkyhfT09NJHYmJiBSY2b13XrvDbbzji4uCXXwg9epTP2rYFoPUbb3Dgs88MJ5SqaurUqTz00ENMmzaNli1bMmTIED777DMaNmzIkSNHGD16NI888gidOnUC4OGHHyY2NpaxY8cCMHbsWEaMGMHIkSPp3r07R48eLTM6DaxV4GbMmMHLL79M69at+fOf/1xmiuj06dNZunQpcXFxdOzYsdycYWFhfPbZZ8THx9OhQwceeOABHnroIYAyfdNEpHzHNm4k7pFH8AGW1K1LYHIy7NyJo3VrOHiQn7t3x+Gc7i3ibWJiKvY4ERER8W4eNbUzOjr6tJFlhw8fxtfXl8jIyLMec+ootd8LCAgo05OpMtn+xht0372bImDn1Km0aNKEIGDYhg38EB1N32PHyLj1Vjh61GriIeJGNpuNCRMmMGHChHI/f+r/y76+vmUWDgkICGDu3LnMnTu3zHHTpk0r8/Edd9zBHXfcUe41Lr/8ci6//PI/zNqrVy82b95c+vG7776Ln58f9erV+8OvFanqEq69ls4OBxuDgujzyy8Eh4VZ+6dPJ2boUNodOsTaf/2LbtOnG04qcv769IG6da2FBc7UPjMuzjpOREREKj+PGpHWs2dPli5dWmbf119/TZcuXfDz8zvrMb169XJbTk+Sf/fdAKxo2pQWt95aut/Xz4+6n3xCDtDq+HG2/uc/hhKKeIe33nqLlStXkpCQwCeffMK9997L9ddfX2ELGohUVgkffEDnhASKAF55pbSIBtBoyBB+dFYXImfOpLiw0ExIkYtgt8Pzz1vbZ7onOXWqFhoQERGpKlxaSMvKyiI+Pp74+HgAEhISiI+PZ//+/YA15fKWW24pPX7s2LHs27ePyZMns337dubMmcMbb7zB3c5iEcBdd93F119/zZNPPsmvv/7Kk08+yTfffMPEiRNd+a14pN8++ID2aWkUAE3efvu0zzfq04flzqlsPhoFIHJWKSkp3HzzzbRs2ZJJkyZx3XXX8dprr5mOJeLxjt53HwDL4uLo9Lu/6SU6v/UWaUDjvDw2Pvqoe8NJlTJz5kxatWpF165dK/zcI0bAwoVwyiLU+Drndvz0U4VfUkRERDyUzeE40yD1i7ds2bJyV9K79dZbmTdvHrfddht79+5l2bJlpZ9bvnw5kyZN4pdffiE2NpZ77723tF9SiYULF/Lggw+yZ88eGjduzH/+8x9GjBhxzrkyMjIIDw8nPT2dsN/dOfc2PzZrRu+dO1lZrx5/OkMj531r1xLTowf+DgesXg09erg5pVSE3NxcEhISaNiwoXp2SaWin20vl5CAo0kTbMXFbH73XdrfdFO5h33ftSsD1q9nXe3adD10yM0hK1ZleQ1Rmbnyv1FRkbW2U3Ky1ROtuBgGDrRGqv30E3TrVqGXExERETc619cQLi2kearK8CI4Ny2N/Bo1CAPiX3iBDv/4x5kPvu02ePNNGD0aXn/dXRGlAqnYIJWVfra93EMPWXPaBg2Cr78+42F7vvqKRsOGUQQcWbuWaBeMGHKXyvAaorJz93+jW26Bt9+GTp1g7VpN8RQREfFW5/oawqN6pMm52/zf/xIGHLTbaff3v5/94Ntvt54//BByc12eTUREqgCHA95919ou+TtzBo2GDiU+LAw7sGPqVNdnE3Gjp5+G8HDYuBFmzTKdRkRERFxNhTQv1cLZd25/jx74+P7B4qt9+lAYGwsZGfyqXmkiIlIB9n7wAezZQ3FICFx55R8en3vFFQB0SkhwdTQRt4qKgieesLYfeABOWZBaREREKhkV0rxRdjbhK1YA0GPGjD8+3seH76KjAch69VUXBhMRkari4NNPA/BDRAQEB//h8T2efBJsNkK3boUDB1wdT8St7rgDOneGjAz43RpZIiIiUgmpkOaNli2DnByoX9961XYOoiZNAqBNYiL5x4+7MJyIiFR2jqIimmzZAoBvOSt1lis29uSCN19+6aJkImbY7fDKK9aiA+++C99/bzqRiIiIuIoKaV4owTmqrGjQIOsV2zloe+ON7PfxIRDYPnOmC9OJiEhlt3fRImoXFZEJdPznP8/564ouvRSA/W+84aJkIuZ06QIlbWvHjYP8fLN5RERExDVUSPNCxUuWALCuRo1z/hofu52dzZoBkD1/vktyiciZ3XbbbVx11VWmY1yQ/v37M3HiRNMxxIMcfO01ALZERRFyHn+LtsfFARC6di2FeXkuySZi0uOPQ+3a8Ouv8OyzptOIiIiIK6iQ5mUOrF5N4/x8ioCW48ef19cGjBgBQMNff7VWWxNxsR9++IHLL7+c2NhYbDYbn3zyyWnH2Gy2ch9PO/svlWfv3r3YbDbinYtueIPnn3+eefPmmY5xQT7++GOmaqVF+Z2In34CIHfgwPP6uhajRpEO1HA42P7OOy5IJlXZzJkzadWqFV27djWWoUYNeOYZa/uxx2DfPmNRRERExEVUSPMye5zTOrdXq0Z4/frn9bXtJkwgB4gpLGTfZ5+5IJ1IWdnZ2bRv356XXnrpjMckJyeXecyZMwebzcY111zjlowFBQVuuU54eDjVq1d3y7UqSsm/TUREBKGhoYbTiKdI/+03WmZmAtD0rrvO62t9AwP5NTYWgNT33qvwbFK1jR8/nm3btrFu3TqjOW6+Gfr2hRMn4Dz/FxEREREvoEKal/FZvhyAo506nffXhkVFsSUyEoD0hQsrNJdIeYYNG8bjjz/OCOdoyPJER0eXeXz66acMGDCARo0anfFrGjZsCEDHjh2x2Wz079+/9HNz586lZcuWBAYG0qJFC15++eXSz5WMZFuwYAH9+/cnMDCQd955p3Ta5RNPPEFUVBTVq1fn0UcfpbCwkH/9619ERERQt25d5syZc9bvd+HChbRt25agoCAiIyO59NJLyc7OBk6f2tm/f38mTJjAPffcQ0REBNHR0TzyyCNlzpeens7f/vY3ateuTVhYGJdccgmbN28+4/Xz8/O58847iYmJITAwkAYNGjBt2rRzPt8jjzxChw4dmDNnDo0aNSIgIACHw3Ha1M78/Hzuuece6tSpQ0hICN27d2fZsmWln9+3bx+XX345NWrUICQkhNatW7N48eKz/tuJ90h5910AfgkIoF63buf99fn9+gEQvnFjheYS8RQ2G7z8Mvj6wqefgu5dioiIVC6+pgPI+Yk7cACAsMsuu6CvbzFuHEydSrtjxyoylribw2Gt3GpCcPA5L3Jxvg4dOsQXX3zBm2++edbj1q5dS7du3fjmm29o3bo1/v7+AMyePZuHH36Yl156iY4dO7Jp0yb++te/EhISwq233lr69ffeey/Tp09n7ty5BAQEsHz5cr777jvq1q3LDz/8wI8//sjo0aNZvXo1ffv2Zc2aNcyfP5+xY8cyaNAg4px9nn4vOTmZG2+8kaeeeoqrr76azMxMVqxYgeMs06jffPNNJk+ezJo1a1i9ejW33XYbvXv3ZtCgQTgcDi677DIiIiJYvHgx4eHhvPrqqwwcOJDffvuNiIiI0873wgsv8L///Y8FCxZQr149EhMTSUxMBDjn8+3atYsFCxbw0UcfYbfby819++23s3fvXj744ANiY2NZtGgRQ4cO5eeff6Zp06aMHz+e/Px8fvjhB0JCQti2bRvVqlU7639T8R7NDx4EoO65rtZ5itiRI+H992mWlkbBiRP4BQVVZDwRj9C6NUyeDE89Bf/4BwwcaP35FBERkUrAUQWlp6c7AEd6errpKOfl4MaNDgc4isCRceDAhZ1kwwaHAxyO0FCHo6CgYgOKy5w4ccKxbds2x4kTJ6wdWVnWf0cTj6ysC/oeAMeiRYvOesyTTz7pqFGjxsnv8wwSEhIcgGPTpk1l9sfFxTnee++9MvumTp3q6NmzZ5mvmzFjRpljbr31Vkf9+vUdRUVFpfuaN2/u6NOnT+nHhYWFjpCQEMf7779fbqYNGzY4AMfevXvL/fytt97quPLKK0s/7tevn+NPf/pTmWO6du3quPfeex0Oh8Px7bffOsLCwhy5ublljmncuLHj1VdfLfca//jHPxyXXHKJo7i4+LTPncv5Hn74YYefn5/j8OHDZY7p16+f46677nI4HA7Hrl27HDabzZGUlFTmmIEDBzqmTJnicDgcjrZt2zoeeeSRcjOe6rSfbfF8TZpYvws+//yCvryooMCR7vx9svWddyo4nOt562uIqsRT/htlZjoccXHW/y733280ioiIiJyDc30NoamdXiTB2U9mV2AgoXXqXNhJ2reH6tUhMxOHptWIh5kzZw5/+ctfCAwMLN03duxYqlWrVvo4kyNHjpCYmMjo0aPLHP/444+ze/fuMsd26dLltK9v3bo1Pj4nfyVGRUXRtm3b0o/tdjuRkZEcPny43Ou3b9+egQMH0rZtW6677jpmz57N8ePHz/r9tmvXrszHMTExpeffsGEDWVlZREZGlvl+EhISTvt+Stx2223Ex8fTvHlzJkyYwNdff136uXM9X/369alVq9YZM2/cuBGHw0GzZs3KnGf58uWl55kwYQKPP/44vXv35uGHH2bLli1n/XcQ7+FITIRdu8DHB/r0uaBz+Pj68lvNmgAcKWcBEpHKolo1eOEFa/vpp62VPEVERMT7aWqnF+leXAxAyODBF34Su52EevVomJbGj088wZ/0JsY7BQdDVpa5a7vAihUr2LFjB/Pnzy+z/7HHHuPuu+/+w68vdv7/MXv2bLp3717mc6dOUQwJCTnt6/38/Mp8bLPZyt1Xcp1T2e12li5dyqpVq/j666958cUXeeCBB1izZk1pT7dzuWbJ+YuLi4mJiSnTe6zEmRYt6NSpEwkJCXz55Zd88803XH/99Vx66aUsXLjwnM9X3r/N7xUXF2O329mwYcNp/64lhc4xY8YwZMgQvvjiC77++mumTZvG9OnT+cc//nHWc4vnW/f003QDDsbGEhsWdsHnib76apg9mz6+ehkilduVV8Jll8EXX8D48fDNNy7rjiAiIiJuolewXsT+008A1Ln22os6z+66dWm4ZQtBzvOJF7LZ4A8KHt7mjTfeoHPnzrRv377M/tq1a1O7du0y+0p6ohUVFZXui4qKok6dOuzZs4e//OUvrg9cDpvNRu/evenduzcPPfQQ9evXZ9GiRUyePPm8z9WpUydSUlLw9fWlQYMG5/x1YWFhjBw5kpEjR3LttdcydOhQjh07dsHnO1XHjh0pKiri8OHD9DnLiKS4uDjGjh3L2LFjmTJlCrNnz1YhrRIo/OYbALbVrk3sRZyn7vXXw+zZpX/XRCorm80alfbtt/Ddd/DBB3DjjaZTiYiIyMVQIc1b5OXB+vXWdq9eF3WqWtdcA4sX0/jwYRxFRdjO0FBc5GJlZWWxa9eu0o8TEhKIj48nIiKCevXqle7PyMjgww8/ZPr06ed03tq1axMUFMRXX31F3bp1CQwMJDw8nEceeYQJEyYQFhbGsGHDyMvLY/369Rw/fvyCilnnY82aNXz77bcMHjyY2rVrs2bNGo4cOULLli0v6HyXXnopPXv25KqrruLJJ5+kefPmHDx4kMWLF3PVVVeVOz31ueeeIyYmhg4dOuDj48OHH35IdHQ01atXv6DzladZs2b85S9/4ZZbbmH69Ol07NiR1NRUvvvuO9q2bcvw4cOZOHEiw4YNo1mzZhw/fpzvvvvugv8dxLNE79kDQNCgQRd3om7drOmhe/dCcjLExFx8OBEP1agRPPAA/Pvf1gIEw4dDeLjpVCIiInKh1CPNS+z+3/8gP5+8kBDrFdlFaHbtteQA1R0Okr77rmICipRj/fr1dOzYkY4dOwIwefJkOnbsyEMPPVTmuA8++ACHw8GN53ib3tfXlxdeeIFXX32V2NhYrrzySsCaUvj6668zb9482rZtS79+/Zg3b94Zp1ZWpLCwMH744QeGDx9Os2bNePDBB5k+fTrDhg27oPPZbDYWL15M3759+b//+z+aNWvGDTfcwN69e4mKiir3a6pVq8aTTz5Jly5d6Nq1K3v37mXx4sX4+Phc0PnOZO7cudxyyy3885//pHnz5lxxxRWsWbOmdDXToqIixo8fT8uWLRk6dCjNmzfn5ZdfvqB/B/Ec2UlJNMrLA6DRTTdd3MnCwsiItca0bX3rrYuNJuLx/vUvaNoUUlLglD+BIiIi4mVsDofDYTqEu2VkZBAeHk56ejphF9HjxZ2WjxpFv3feYVNEBB2PHr3o820MC6NTZiZr7riD7q+8UgEJxZVyc3NJSEigYcOGZRrxi3g7/Wx7jy3Tp9Pu7rvZZ7dTv7Dwos+3qnFjeu3Zw3f9+3PJ999XQEL38MbXEFWNp/43WroUBg+2BmOuXw/Oe0wiIiLiIc71NYRGpHmJkhU2M5o2rZDzHXOep+jHHyvkfCIiUrmlL1kCwP7Yi+mOdlKhc9XaIC1lKBVk5syZtGrViq5du5qOUq5Bg2DkSCguhr//3XoWERER76NCmpeI3LcPAP9TViO8UH59+wJQe/fuCjmfiIhUbsFbtgCQ36lThZyvxiWXAFD3yJEKOZ/I+PHj2bZtG+vWrTMd5YyefRZCQ2HNGnj9ddNpRERE5EKokOYFCnJzaZydDUDsZZdVyDnrjxwJQKMTJ3CkpVXIOUVEpJJyOGiRkQFA5PDhFXLKBlddBUBcURFHNCpNqojYWJg61dq+7z5QHVlERMT7qJDmBfZ8+SXBQCYQ57yDf7Ea9OgBDRrgA9g2bKiQc4qISCW1ezchJ06Avz8dbr21Qk4ZGhfHPj8/APZ+8kmFnFPEG4wfD+3bw/HjcO+9ptOIiIjI+VIhzQsc+vJLAPaGheHj61txJ+7SxXp29l8TEREp15o11nOnThAQUGGnTY6OBiBz+fIKO6eIp/P1hVmzrO25c2HlSrN5RERE5PyokOYF7Fu3ApDWoEHFntjZ5yZ31aqKPa+4TBVcZFcqOf1Me4cTJatqVlCfzhJ5rVoBUG3Xrgo9r4in69kTxoyxtv/+dygoMJtHREREzp0KaV6gd/XqALS/+eYKPe+vISEAJH/xRYWeVyqen3P6U05OjuEkIhUrPz8fALvdbjiJnM2uDz8EYFMF/3fqfMstAHRz/j0SqUr++1+IjIStW+HFF02nkRJFRbBsGbz/vvVcVGQ6kYiIeJoKnCcoLrNtGwBhPXpU6GkjL70UgIYFBWQmJRFap06Fnl8qjt1up3r16hw+fBiA4OBgbDab4VQiF6e4uJgjR44QHByMb0VOW5cK5SgspKFzoYGgXr0q9NzVSv6u/forFBZac95EqojISHjySWtk2sMPw/XXQ926plNVbR9/DHfdBQcOnNxXty48/zyMGGEul4iIeBa9YvV0WVmwb5+17ZwCU1FqtWpFkt1OnaIi9n7yCW3Hj6/Q80vFinb2EioppolUBj4+PtSrV0+FYQ92YPly4oATQOMKWrGzVIMGEBwMOTmwezc0b16x5xfxcLffDm+8AatXw6RJ4Bz8KQZ8/DFcey2c2nEgKcnav3ChimkiImJRIc3D/frxx7QAsqpVo1pkZIWff3/NmtQ5dIi0776zlpESj2Wz2YiJiaF27doUqJmKVBL+/v74+KjLgCc7+MUXxAG7g4NpExRUsSf38eFQZCRROTmsf/NNujzxRMWeX8TD+fjAK69YbWsXLoSvvoKhQ02nqnqKiqyRaOW17XQ4wGaDiRPhyitBnQhERESFNA936PvvaQHs9PenowvOn9OiBRw6hO/mzS44u7iC3W5XPykRcZu8n34CILVePZecf1dgIFFAhha+kSqqXTuYMAGeew7uvNPqmRYYaDpV1bJiRdnpnKdyOCAx0Tquf3+3xRIREQ+lYQAerujnnwHIctEbmKDevQGonZTkkvOLiIh3C9m509ro0MEl5y9q2RKAAK3cKVXYI49AbKw1w/nJJ02nqXqSkyv2OBERqdxUSPNw1fbuBcDWurVLzl/3iisAaJCbS/7x4y65hoiIeCmHg/rHjgFQ45JLXHKJUOeCA7WPHHHJ+UW8QViYNSINYNo0UF3ZvWJizu24H3+EzEzXZhEREc+nQpqHi01LA6C6c+RYRYvr1o20gADsQMHGjS65hoiIeKeiAweoWVxMEdD4qqtcco06Q4YA0CA/n1zn6qAiF2LmzJm0atWKrl27mo5yQa67DgYNgrw8a4pnef26xDVyc8/tuJkzIS4O7rvPWoRARESqJhXSPFhaYiJ1i4oAqDdsmEuuYbPZqN63LwAhe/a45BoiIuKd7Fu2WM+tWlGtVi2XXKNWhw5kAn5A4g8/uOQaUjWMHz+ebdu2sW7dOtNRLojNBi+9BP7+sGSJtYqkuN6KFWVX4zx1EWmbzXrccQc0awbp6db02wYN4NZbwflrUkREqhAV0jzY/iVLADjk40NYgwauu1Dbttazsx+biIgIAJs2Wc8dXbHcjcXm48OB4GAAUn/80WXXEfEGzZrBvfda23fdpWmErrZ+PVx2GZw4AcOGwfz5UKdO2WPq1rVWVH3lFdi+HT79FPr2hcJCeOstaN8eBg+2ip8aRSgiUjWokObBCp23uA5Wr+7S6zjatAEgQ29gRETkd9JWrADA0a6da6/jHO3ml5Dg0uuIeIMpU6BRI2vq4KOPmk5TeW3dCkOGWMXKfv3go4/g+uth7174/nt47z3rOSHh5Ig1Hx+44gpYvhzWroWRI8Fuh6VLYehQawXWefOs6bkiIlJ5qZDmwTpVqwZAu+uuc+l1fvX3B6Bg0yYcxcUuvZaIiHiPVOdUy7U5OS69TrebbwagS1iYS68j4g2CgqwpngAzZmjCgCvs3Gn1ozt2DLp3h88+s/7dwSqM9e8PN95oPdvt5Z+ja1f44ANrYYiJE6FaNas4d/vt1rTPJ56wzi8iIpWPCmme7LffALC3aOHSy9QfOpQiINLhIHXrVpdeS0REvENhTg71nR24Yy691KXXsrdsaW3s2OHS64h4i2HDrFFQRUXw97+D7nNWnP37YeBASEmxRpB9+SWEhl74+Ro0sFZcTUyEp56ypoampMADD1gLE/zjH7B7d4XFFxERD6BCmifbudN6btrUpZcJjoxkn58fAAe+/NKl1xIREe+Q+N13+AEZQN2ePV17sebNrWfnDSQRsUajhYTAjz9avbjk4iUnW0W0xESrH93XX0ONGhVz7urV4V//gj174O23rd5pOTnW6MJmzeDaa2H16oq5loiImKVCmocqLioixzmWP712bZdfL8XZnyZTf+FFRAQ4/N13AOwLCcHnTHObKkhRo0bWRkoKx/budem1RLxFXBw8/LC1/a9/aZrgxTp61JrOuWuXNYrs228hKqrir+PvDzffbK3V8s031ujC4mKrB1uvXtC7t7Uia1FRxV9bRETcQ4U0D3Vw/XqCHQ4KgRDnYgCulNukCQC+27a5/FoiIuL5cjdsAOB4bKzLr2WPiOCwj/WSJOn7711+PRFvMXEitGoFqalw//2m03ivjAxrMYBffoGYGKvAVbeua69ps1mj3xYvtnqn/d//WUW2VavgmmusgbgzZ0J2tmtziIhIxVMhzUMdWrkSgCQ/P3xLup+6UECXLgBEHDzo8muJiIjnC3A29Skq6V/mYsnOhQaOr1njluuJeAM/P5g1y9p+7TXQ/x7nLzsbLrsM1q+HmjWtIlrjxu7N0Lo1vPEG7Ntn9U6LiLD6pt15J9SrBw8+aPVVExER76BCmofK3LgRgNTq1d1yvShnI+n62dk4Cgvdck0REfFcUUeOABDao4dbrpcZHQ1AwS+/uOV6It6ib1+45RZwOKyFBzQl8Nzl5cHVV8PKlRAebvVEa9XKXJ7oaHj8cWvBg5desgp6x47Bf/4D9evD6NHWqDkREfFsKqR5qGLnymXZrh537lR/wADyfX0JAgrV7FlEpGrLzaV+QQEA9S+7zC2XdDgX1gnYt88t1xPxJk8/bTWz37Tp5Ag1ObuCAhg5EpYutRZtWLwYOnY0ncoSEgLjx1sLFZf0TsvPhzlzoE0bGD7c6uHmcJhOKiIi5VEhzUMFHTgAgK1ZM7dczy8wEH9nLza/Xbvcck0REfFQv/6Kj8MBNWpQq21bt1wyqEMHACJSU91yPRFvUrs2TJtmbT/wgLX6pJxZURHcdht8+ikEBMD//mcVqzyN3Q4jRlgrs5b0TvPxgS+/hEsvhU6d4J13rKKgiIh4DrcU0l5++WUaNmxIYGAgnTt3ZsWKFWc89rbbbsNms532aN26dekx8+bNK/eY3Nxcd3w7bhF5/DgA1ZxvLNyipA/O9u3uu6aIiHiekrlFrVtbHbPdoFbv3gDEnTiBo7jYLdcU8SZ//St07Wo1zr/7btNpPFfJFNj33gNfX1i4EC65xHSqP9azp5X1t9+s3mnBwRAfD6NGQcOG8NRTkJZmOqWIiIAbCmnz589n4sSJPPDAA2zatIk+ffowbNgw9u/fX+7xzz//PMnJyaWPxMREIiIiuO6668ocFxYWVua45ORkAgMDXf3tuIWjqKh0Sk3tP/3JbdfNbdQIgGStmCYiUqUlLVkCQJ5zuqU7xPbqRTEQCmQmJLjtuiLewm63pnXabFaR6LvvTCfyPA4H/POfMHu2NbLrnXfgz382ner8NG4ML74IiYlW77ToaEhKgnvvhbg4mDQJ9u41nVJEpGpzeSHt2WefZfTo0YwZM4aWLVsyY8YM4uLimHWGBg/h4eFER0eXPtavX8/x48e5/fbbyxxns9nKHBftbFJcGdgOHCDA4cDh50ds9+5uu278iRMApDpXDBURkaopaelSAFZnZLjtmn6hofg4+4KGaXqnSLk6d4Zx46ztceOsvlpy0iOPwHPPWduvv271SPNWERFw//1W0WzuXKt3WlYWzJgBTZrADTdYK5GKiIj7ubSQlp+fz4YNGxg8eHCZ/YMHD2bVqlXndI433niDSy+9lPr165fZn5WVRf369albty5//vOf2bRp0xnPkZeXR0ZGRpmHR9u5EwBbo0bY/PzcdtlaffsCUC87W9NqRESqsGhnISvM3U2FnCOj2bPHvdeVSmHmzJm0atWKrl27mo7iUo8/bvVM27EDpk83ncZzPP00PPaYtf3CC3DKPXivFRBg9XvbsgW++goGDbJ6wM2fb0317dcPPvsM9NJdRMR9XFpIS01NpaioiKioqDL7o6KiSElJ+cOvT05O5ssvv2TMmDFl9rdo0YJ58+bxv//9j/fff5/AwEB69+7NTmcB6lTTpk0jPDy89BEXF3fh35Q7lLyBaNLErZetO2AARUA4cCg+3q3XFhERz5B7/Dh1CwsBqHvKjTCXUyFNLsL48ePZtm0b69atMx3FpapXP1lAmzpV0/zAmvJ6zz3W9hNPwD/+YTaPK9hsMGQIfP211TvtllusHnA//ABXXAGtWsGrr4JzgomIiLiQWxYbsJ3SqNjhcJy2rzzz5s2jevXqXHXVVWX29+jRg5tvvpn27dvTp08fFixYQLNmzXjxxRfLPc+UKVNIT08vfSQmJl7w9+IOy998E4Ct2dluvW5AWBj7nSPgktV4Q0SkSkr87jt8gDSgVqtWbr32z86/eyvfesut1xXxNn/5C/TvbxVN7rrLdBqz3nrr5HTX+++HKVPM5nGH9u3hzTetIuq990J4uDVCcexYqFfPmuJ6+LDplCIilZdLC2k1a9bEbrefNvrs8OHDp41SO5XD4WDOnDmMGjUKf3//sx7r4+ND165dzzgiLSAggLCwsDIPT2Z3LsRwvHp1t1/7cEQEAJlr17r92iIiYl6qs/XCgZAQbD5uud9WKrt2bQCCDh1y63VFvI3NBi+/bI1I+t//rEdV9NFHJ6dwTphgTXutSurUgf/+11qYYMYMaNAAUlPh0Uetgtodd1gFNhERqVgufYXs7+9P586dWepsWlxi6dKl9PqDvivLly9n165djB49+g+v43A4iI+PJyYm5qLyeorwY8cACGzZ0u3XzinpRffrr26/toiImJe3eTMAaX9ww8sVwjt2BKB2Vpbbry3ibVq2hLvvtrYnTAA3T2Qw7ssv4cYbrd5g//d/1iID5zDhpVIKDbVGJu7cebJ3Wl4evPYatGhhTf1cvtxa1fRURUWwbBm8/771XFTk7vQiIt7H5beaJ0+ezOuvv86cOXPYvn07kyZNYv/+/YwdOxawpl3ecsstp33dG2+8Qffu3WnTps1pn3v00UdZsmQJe/bsIT4+ntGjRxMfH196Tm8X7WxuUKNTJ7df27dtWwBCDxxw+7VFRMQ8X2d/skI39+kEiOrZE4DYoiJOpKe7/foi3ubBB62RR/v2wX/+YzqN+yxbBiNGQEGBtTLna6+BmwfQeiRfX7j+elizxuqdduWVVnHxs8+sqcBdu8IHH4CzDSYff2yNYhswAG66yXpu0MDaLyIiZ+byPzkjR45kxowZPPbYY3To0IEffviBxYsXl67CmZyczH7nVMYS6enpfPTRR2ccjZaWlsbf/vY3WrZsyeDBg0lKSuKHH36gW7durv52XC7twAFqOW8XRTvfULhTo8suA6C13e72a4uIiHkdg4MBaDBkiNuvXaNFC3IAO5C0erXbry/ibUJCrBUqAZ55BrZvN5vHHdasgcsvh9xc+POf4e23QS9by7LZoE8f+OQTa5LJ2LEQGAgbNlij+Bo3tqbEXnstnHrvPCnJ2q9imojImdkcjvIG+VZuGRkZhIeHk56e7nH90rYvWEDLkSM5brNRw8Q61unp1nJQAGlpVvdSERGpGhwO629ARgZs3QqtW7s9wq6gIJrk5rLmscfo/u9/u/36f8STX0OIpar9N3I4rKl7n39ujSj69tvKO8Vx82ZrZFVaGlxyCXzxhVUgkj925Ii1uulLL1nbZ2OzQd26kJCgIqWIVC3n+hpCg6A9TNqmTQAcCgoyEyA8HGJjre2qcFtTREROSkmximg+PmBgaiecXGgnZ+tWI9cX8TY2mzUqLTAQvv/e6nVVGe3YAYMGWUW0Xr3g009VRDsftWrBQw/B/v0ne+udicNhLWCwYoV7somIeBsV0jxMtdRUALINNHkukRUXB8DeL780lkFERNzvwLffApAXEwMBAUYyFDlbP9TMzDRyfRFv1LCh1S8NYPJka4JBZZKQAAMHWiOpOna0RqJVq2Y6lXcKDIRzbcOcnOzaLCIi3kqFNA/TNiQEgM7XXGMswzrnamn7T1ltVUREKrfdzhsoP+fnG8vQ46abAGjr7NUmIufm7ruheXM4dAg8cFb0BTt4EC691Ord1bIlLFlysguJXJiYmIo9TkSkqlEhzdMkJFjPDRuay9CsGQAB+/aZyyAiIm7ncE7pz3GOTDaiUSPrefducxlEvFBAAMycaW3PnAkbN5rNUxGOHLGKaHv2WL8avvnGmqIoF6dPH6sH2tl66dntYPCeioiIR1MhzcM4PKCQFta5MwA1jh41lkFERNwvODERAJ+WLc2FcP79c+zbRxVcD0nkogwcaK3KWFwMf/87FBWZTnTh0tJgyBCrZW/dutYiCiVtfOXi2O3w/PPW9pmKaUVF1r//HXdYrTNFROQkFdI8iKO4mOyffwbgiMHGD9F9+gAQl5dHoW5FiYhUGbXT0gAI69rVWIYC51wi2/HjHN+/31gOEW81fTqEhsLatfD666bTXJisLBg+HDZtgtq1rZFoDRqYTlW5jBgBCxdCnTpl98fFwTvvwLhx1sevvQZt2lhTakVExKJCmgc5vH07JeWz6h06GMsR06MH+UAQkLR2rbEcIiLiPifS0ogrLAQgdsAAYzn8IiI47hwicXjdOmM5RLxVTAw8/ri1PWUKHD5sNs/5ys2FK6+E1auhRg1YutTq/SYVb8QI2LvXWu31vfes54QE+MtfrOnB339vTalNTIShQ+H//s8aKSgiUtWpkOZBDv30EwApdjt+oaHGcvj4+3PA3x+Aw1r3WkSkStj//ffYgUwgsk0bo1kOBwYCcHzzZqM5RLzVuHHQoQMcPw733ms6zbkrKIDrroPvvrNW5fzqK2jXznSqys1uh/79rSnB/ftbH5fo3x+2bIG77rKmgM6dC61bw+efGworIuIhVEjzIJm//AJAqgesVJYaEQFAdny82SAiIuIWqStXApAYEoLNx+zLgwznkny5O3YYzSHirXx9YdYsq/gxbx54w33RoiK4+WarSBMYaD1362Y6lYSEwIwZ1s9Q06bWKqqXXw6jRsGxY6bTiYiYoUKaB8nbuROATGcRy6S6/fsD0K1GDbNBRETELTqFhAAQ0bOn4SSQGxUFgGPvXrNBRLxYjx7w179a2+PGWaO9PFVxsZV1wQLw84NFi6BfP9Op5Pd694bNm+Huu8HHx+qj1qqV9d9KRKSqUSHNg9icq6UVREcbTgKxzlcvwQcOGE4iIiLuEORs7B/dt6/hJOCoXx8A/5QUw0lEvNsTT0DNmrB1K7zwguk05XM4YOJEa9qg3Q4ffGD14xLPExQETz8Nq1ZBy5Zw6JDVZ+2GG+DIEdPpRETcR4U0DxLg7AZrq1fPcBKgWTPr2TlKTkREKrmSaZQe0NU7sGlTAEKPHzecRMS7RUbCU09Z2w8/DJ54f/TBB+HFF63tuXOtwox4tu7dYeNGazELux3mz7d6py1YYBVGRUQqOxXSPEhd51+eMMNNngEKnGuMF+3aRcGJE2bDiIiIy2Vv2QJATp06hpNARMeOAMQVFxtOIt5k5syZtGrViq5du5qO4lFuvdWalpedDZMmmU5T1rRp1qg5gJdftvpuiXcIDLT+261ZA23bWiPSRo6Ea6+1RqqJiFRmKqR5kHrOQlr7yy83nATs9eqRA9iLi0n68UfTcURExIUyExMJyckBIN8DRkU3GTgQgIgTJyA/33Aa8Rbjx49n27ZtrFu3znQUj+LjYxWp7HZYuNBaCdMTvPgi3H+/tf300/D3v5vNIxemc2dYvx4eesha5OLjj63eae++q9FpIlJ5qZDmKfLyTt6+iYszmwXw8fXlQGAgAEdWrTKcRkREXOmgc0m/wzYb1T3gbxC1akFAgPUuLCnJdBoRr9euHdx1l7U9fjyYnmwwZw5MmGBtP/SQ1cBevJe/Pzz6KKxbBx06WKt53nwzXHmltcqniEhlo0Kahyh2NnkmKMhqaOEBjjpXD82JjzcbREREXOqYcwRPcrVqhpM4+fiAc2Rc0Z49hsOIVA6PPAKxsbBnDzz5pLkc8+efXE108mQrl1QOHTrA2rUwdaq1+upnn1m90+bN0+g0EalcVEjzEBs/+QSARB8fsNnMhnHKLZnes2uX2SAiIuJS+b/8AkBGrVqGk5y0LTsbgJXvvms4iUjlEBoKM2ZY2//9r5n1pD77zBqpVFwMf/sbPPOMx7zslQri52ctILFxI3TpAmlpcPvtcNllkJhoOp2ISMVQIc1D5DhXSzvinE7pCXxbtACgmsZki4hUavaEBAAKnQvNeIJjoaEAFGpEmkiFufZaGDLE6ijyj3+4d5TQt9/CdddBYSH85S9W3zYV0SqvNm1g9WqraBsQAF9+aY1Omz1bo9NExPupkOYhSt4o5NSsaTjJSWFdugBQOz3dcBIREXGl0MOHAfBv1cpwkpOK69YFwFc3c0QqjM0GL71kFTaWLIGPPnLPdVetsvpl5eXBVVdZU/3sdvdcW8zx9YV774VNm6BHD8jMtEYiDh4Me/eaTicicuFUSPMQdmcz5eI6dQwnOSmmb18A6hQWkp+RYTiNiIi4SnRWFgDVnTdQPIFv48YAhKSmGk4iUrk0aQL33WdtT5xoFTdcaeNGGD4csrOtAsoHH1gFFqk6WraElSth+nQIDIRvvoG2ba1RicXFptOJiJw/FdI8RNDRowD4NmxoOMlJtVq3piA4GB/At2QxBBERqVyysohyvpNpeOmlhsOcVM05Oq6Gs8gnIhXn3nuhcWNrUdxHH3XddbZts6aSpqdDnz6waJE1Gk6qHrvdWlxiyxbrZyEry1pBduBA2L3bdDoRkfOjQpqHqOG8HRjSsqXhJCfZfHzwc+bx0YIDIiKVU0kPsshIgj1oVHSNtm0BiCoowKEhCyIVKigIXnzR2p4xwypuVLTdu+HSSyE11Wo6//nnEBxc8dcR79K0KSxbBi+8YP08LFsG7drB889rdJqIeA8V0jyAo7iY6Px8ACI6dDAb5lRNmljPulUkIlI5ldwoKfl97yFqd+wIQDXguJrpiFS4YcPgmmugqAj+/veKLWIcOGCNNEpOtprOf/UVhIVV3PnFu/n4WItd/PwzDBgAOTnWNOO+feG330ynExH5YyqkeYDcQ4cIdW7X7tTJaJZTpVSrBsD2L74wnERERFxh2//+B8BhD3uXG1CjBhl+fgAUOFcVFZGK9dxzEBJiLQbw5psVc85Dh6wi2r591uijpUshMrJizi2VS6NGVr+0WbOgWjX48Udo3x6eecYq8IqIeCoV0jxA0JEj1kbNmgTUqGE2zCl2O9enzt682XASERFxhSM//QTANufIaE8S5mwvEFVYaDiJSOUUF3eyR9q//gXOlr0X7Ngxa0GB336DevWsIkl09MXnlMrLxwfGjoWtW2HQIMjNtX4We/e2euyJiHgiFdI8QUkj/3r1zOYoR5hzak1NrdopIlIphaakAODvbO7vUerWtZ4PHDCbQ6QSmzDBmn559Cjcf/+Fnycz05ouumWLVTz79luPfGkrHqp+fViyBF5/3ZoGvGYNdOwI06aB7qWIiKdRIc0DFJY0eo6LMxukHFG9egFQp7CQ/Jwcw2lERKSiRTlXxazeubPhJOVwFtIK1CNNxGX8/KypdQCzZ4NzkOp5ycmByy+HtWshIsKazulhbRfFC9hsMHo0/PILDB8O+flWcbdHD6ufmoiIp1AhzQMsf/ddANYdPmw4yelqtW9PLuAHJK1ebTqOiIhUoOzUVOo4G9HE9OljOM3p1h48CMCq+fMNJxGp3P70J7jtNnA4YNy48xsBlJdnLVqwfLk1kujrr60RbiIXqm5da5XXN9+E6tVhwwbo3BkeewwKCkynExFRIc0jBDin1ZzwwE6sNrudpIAAAFLXrDGcRkREKtKBFSsAyLDZqNG0qeE0pyt0NlcKOnbMcBKRyu+pp6BGDdi06eQItT9SWAg33WStyhkUBF98YRU8RC6WzQa33GL1SbvySquA9vDD0LWr9TMqImKSCmkeICQtDQD/Ro3MBjmDY9WrA5C9ZYvZICIiUqGOrV0LwMGgIOtdi4cJbtYMgOqZmYaTiFR+tWpZ/agAHnwQkpPPfnxxMfzf/8HHH4O/P3z6qTWyTaQixcTAokXw3nvW6q+bN0O3bvDQQ9bUTxERE1RI8wA1nL3HqjVvbjhJ+U7ExgLg2LXLcBIREalIOc6mM2k1axpOUr7qzvlhtfLzcThXkRYR1xkzxipSZGTAP/955uMcDrjzTnj7bbDbYcECa8VFEVew2eDGG63eaddea42EnDrVGv24fr3pdCJSFamQZpijuJjazkYU1Vu3NpymfG2vvBKAfh64GIKIiFy4/s7f680vu8xwkvLVdq4cXQPIcPZLExHXsdutaZ0+PvD++9bKm6dyOODee63jbDarmOZ8qSjiUlFR8OGH1qNWLdi6Fbp3h/vug9xc0+lEpCpRIc2wYwkJBDu3a3foYDLKGdXo0gUAn4QEw0lERKQi2Z2rRtfo2tVwkvIFR0dTMqnzsJriiLhFp04wfry1PX68tSLnsmVWYW3ZMqvh+9NPW59/7TVrpJCIO117rdU77cYbrSnGTz4JHTuC1kUTEXdRIc2w1M2bAThus+EfHm44zRk0bmw9795t3YYUEZHKoWTKfpMmZnOcxWHngjdpW7caTiJSdUydao3+2bHD6lE1YIC1qMCAAfDII9Yxzz1nTQUVMaFmTatv2iefQHQ0/Por9O4Nd98NJ06YTicilZ0KaYYFHj0KQFZYmOEkZ9GwIQ6bDbKyOLJtm+k0IiJSAQqysyl2jjTO8+Cp+4VRUQDUyM42nESk6ggPPznSLCOj/GPq1XNfHpEzufJKq3faLbdY9/unT4f27WHlStPJRKQyUyHNsPq+vgDE9ehhOMlZBARw0Mf6UTm4YoXhMCIiUhGSf/oJH4eDbMDfg98RNx84EIAmgYGGk4hUHUVFsHDhmT9vs8HEidZxIqZFRMCbb8Lnn0OdOrBzJ/TtC3fdBboHIyKuoEKaaUlJ1nOdOmZz/IEjoaEAZKhHjYhIpZC6di0ASQEB2Hw8+OVA3brW84EDZnOIVCErVpz9fzmHAxITreNEPMVll1mj00aPtn5GX3gB2raF778/eUxRUdmefyoGi8iF8OBXzlVD4f791kZsrNkgfyDTObWmcMcOw0lERKQi5Dh7jh3z1P6cJZyFtMK9e83mEKlCkpMr9jgRdwkPh9dfhyVLrOnHCQlwySUwbhy8+y40aFC251+DBvDxx6ZTi4i3USHNsPWffgrAuoMHDSc5u+L69QHwLSn8iYiIVyvavRuAE9HRhpOc3da0NAB2LltmNIdIVRITU7HHibjb4MHw888wdqz18axZcPPNp4+0TEqyVgFVMU1EzocKaYaFZWYC4OPBjZ4B/Fu1AiA8NdVwEhERqQgBztYCjoYNDSc5u6CmTQGolZdnOIlI1dGnjzUY1GYr//M2G8TFWceJeKqwMKuA9vXXYLeXf4zDYT2r55+InA8V0gyLdL4xCG3RwnCSs6vRuTMAUerYKSJSKYQfOwZAUMuWhpOcXa2OHQGo6XCQpZs5chYzZ86kVatWdO3a1XQUr2e3w/PPW9unFtNKPp4x48zFCRFP4ud39iKZev6JyPlSIc2gvKwsahUXAxDZrp3hNGcX86c/ARBVXEz24cOG04iIyMWKPnECOHmjxFOF1a9PjnP70MaNRrOIZxs/fjzbtm1j3bp1pqNUCiNGWCt3nroeVt261v4RI8zkEjlf6vknIhVNhTSDDv/8Mz5AARDRvLnpOGcV3qABRc6G1CGHDhlOIyIiFyU9nRrO+SyNLrnEcJg/YLNxxM8PgIxt2wyHEalaRoyAvXutVQ/fe896TkhQEU28i3r+iUhFc0sh7eWXX6Zhw4YEBgbSuXNnVpxl3OyyZcuw2WynPX799dcyx3300Ue0atWKgIAAWrVqxaJFi1z9bVS4Yz//DMARux2bF4yNtzv71OBsUC0iIl4qIcF6rlUL/4gIs1nOQVpICADZu3YZTiJS9djt0L8/3Hij9ewFL1lFyvijnn9gfV49/0TkXLm8kDZ//nwmTpzIAw88wKZNm+jTpw/Dhg1j/x+s/rhjxw6Sk5NLH01LijjA6tWrGTlyJKNGjWLz5s2MGjWK66+/njVr1rj626lQWTt2AHAsONhwknPUuLH1rEKaiIh3KymkefhCAyVynCOiC7RytIiInKez9fwr0aTJ2QttIiK/5/JC2rPPPsvo0aMZM2YMLVu2ZMaMGcTFxTFr1qyzfl3t2rWJjo4ufdh/d/trxowZDBo0iClTptCiRQumTJnCwIEDmTFjhou/m4pVKz/f2ji1+YSH2uvrC8BmrQ8tIuLVNn/yCQD7nb/XPV1Qo0YA1NG7HBERuQBn6vlXsyb4+MCyZXDXXSdX8RQRORuXFtLy8/PZsGEDgwcPLrN/8ODBrFq16qxf27FjR2JiYhg4cCDff/99mc+tXr36tHMOGTLkjOfMy8sjIyOjzMMTNHNOVWkzaJDhJOcm0dmjpsA5kk5ERLxTenw8ALucC954ug7DhwPQrFo1w0lERMRbldfzLyUF3nrLGo320kvw4IOmU4qIN3DprejU1FSKioqIiooqsz8qKoqUlJRyvyYmJobXXnuNzp07k5eXx9tvv83AgQNZtmwZffv2BSAlJeW8zjlt2jQeffTRCviOKtjBg9azl4xIC2vfHoBIDylEiojIhQly/r20l0zZ93QlHaC1pJqIiFyEkp5/v/eXv0BWFowdC088AaGhcN99RuKJiJdwy5wO2ylTMRwOx2n7SjRv3pzmv1vBsmfPniQmJvLMM8+UFtLO95xTpkxh8uTJpR9nZGQQFxd33t9HRSvcv9/6D+AlhbRa3boBEFtQQGFeHr4BAYYTiYjIhYhITwcguHVrw0nOUWwsAEUHDqA+5yIiUtHuuAMyM+Ff/4IpUyAsDMaNM51KRDyVS6d21qxZE7vdftpIscOHD582ouxsevTowc6dO0s/jo6OPq9zBgQEEBYWVubhCfY5p6Ju95IRXtFdulAABAAH1683HUdERC6Ao7iY2Lw8AGo6b5B4uiRn05qsnTtxqIGNiIi4wN13w7//bW2PH29N+RQRKY9LC2n+/v507tyZpUuXltm/dOlSevXqdc7n2bRpEzEl0zqwRqmdes6vv/76vM5pmsPhoHZBAQAhzZoZTnNufPz9SXb2STuydq3hNCIiciFSt24lCCgCYrt3Nx3nnNRo1QqAcCBT0ztFRMRFHn3UWnQA4PbbQWusiUh5XD61c/LkyYwaNYouXbrQs2dPXnvtNfbv38/YsWMBa9plUlISbzlL/jNmzKBBgwa0bt2a/Px83nnnHT766CM++uij0nPedddd9O3blyeffJIrr7ySTz/9lG+++YaVK1e6+tupMGn791PDuV3L2XvMGxwNC6Pe0aNk/fyz6SgiInIBDv30E7WAg3Y7cV7SvD84KoosoBpwZMsWwpxTPUVERCqSzQbPPmtN85wzB264AT77DIYMMZ1MRDyJywtpI0eO5OjRozz22GMkJyfTpk0bFi9eTP369QFITk5m//79pcfn5+dz9913k5SURFBQEK1bt+aLL75guHPFLoBevXrxwQcf8OCDD/Lvf/+bxo0bM3/+fLp7yZ11gCObN1MDyLDZCKtVy3Scc5ZduzYcPYrPvn2mo4iIyAU4sW0bAKnVqmG+W+g5stlI9fOjWkEB6b/+CkOHmk4kIiKVlI8PvPaaVUz78EO4+mr4+mv4059MJxMRT+GWxQbGjRvHuDN0a5w3b16Zj++55x7uueeePzzntddey7XXXlsR8YzI2L4dgCP+/nhGx7Zz0/maa+Dxx+lTt67pKCIicgG6RkYC0OJ3N6i8QXpICKSlkbNrl+koIiJSydnt8M47kJ0NixfDZZfBd99B586mk4mIJ3BpjzQ5sxzn4gnpXjKtpkRQyQpvCQlmg4iIyIVx/v4OcvYd8xY54eEAFGhEtIiIuIG/PyxcCP36QUaGNb3TOahbRKo4FdIMKXS+EThRo8YfHOlhGja0nvfsMZtDREQuTMmNkJLf516ioKQNghYbEBERNwkKsnqkdesGR4/CpZfqbZCIqJBmTJzdDkBIkyaGk5yfAueUzuKkJHKOHzecRkREztdh56rLh4KDDSc5P2HNmwNQz7l6tIiIiDuEhsKXX0KbNta9nIEDISnJdCoRMUmFNEOahoYC0MHLetT4xcaSjfWDc3D1atNxRETkPBSeOEFkTg4AxQ0amA1znkr+XjYODDScREREqpqICFi6FJo0gb17rZFpR46YTiUipqiQZkrJ1JToaLM5zpfNRrLzTczR9esNhxERkfORvGYNdiAHiGrXznSc8xMbaz1raqeIiBgQHQ3ffANxcfDrr1bPtPR006lExAQV0gwpOnjQ2oiJMRvkAhyvXh2AnF9+MRtERETOyxHntM6D/v74OFsMeA3n38vipCQcDofhMCIiUhXVr28V02rXhk2brNU8s7NNpxIRd1MhzQBHcTG5zmbPyV74ZiDX+WbGsXu34SQiInI+srduBeCYcwVMb1KyOI9PVhYZJTejRERE3KxZM2uaZ/Xq8OOPcPXVkJdnOpWIuJMKaQakJyUR4tyu3qKF0SwXpFEjAAI1vUZExKsU7doFwImoKMNJzl9Q7dpkObdTf/7ZaBYREana2rWDr76CkBCrqHbDDVBYaDqViLiLCmkGHHWOCMgEgmrVMhvmAgS1bAlAuFbtFBHxKv7OZca8baGBEqnOFTvTt283nERERKq67t3hs88gIAA++QRuvx2Ki02nEhF3UCHNgIwdOwA46nxD4G0iOncGoI7GMIuIeJXIjAwAglq1MpzkwqSFWOO5c9RaQEREPMCAAbBwIfj6wjvvwJ13ghd27hGR86RCmgHZzjcA6cHBhpNcmPr9+wNQvbhYS9WIiHiR5s4bOJ2uucZwkgtzwtnbrWDfPsNJRERELH/+s1VEs9lg1iy47z4V00QqOxXSDChITAQgxwubPQPYq1eHmjWtD5yLJoiIiIfLyoIjRwDwb97ccJgLU1DSDkE9OkVExIOMHAmzZ1vbTz0F06aZzSMirqVCmgEO5xuAgshIw0kuQsOG1rMKaSIi3qHk93VEBHjpjRxiYwHwcxYERUREPMXo0fDcc9b2Aw/Aiy+azSMirqNCmgH1nFNrwpo1M5zkwu12jlf+6f33DScREZFzsfmTTwA4GBhoNshFiGzTBoD6/v6Gk4iIiJxu4kR45BFre8IEmDfPYBgRcRkV0gxo4myW3GHYMMNJLlySsxh4QiuniYh4hbRNmwDYZ7MZTnLhWg8aBECcj16+iIiIZ3roIZg82doePdpajEBEKhe9EjWhpLdLdLTZHBfBp0kTAIIPHTKcREREzolzameec3qkVyrJrh5pIiLioWw2eOYZGDMGiovhppvgyy9NpxKRiqRCmgHFBw9aGzExZoNchBDn9JpIrdopIuIVgpzFJ1vjxoaTXISSv5uZmRSmpRmNIiIiciY2G7zyCtxwAxQUwIgRsHy56VQiUlFUSHOzvKwsfI4eBSAtKMhwmgtXq1s3AGLz8ykuKjKcRkRE/kgNZ+Gp5EaIVwoNJdu5uX/tWqNRREREzsZuh7fegssvh9xc63ndOtOpRKQiqJDmZqm//AJAARDeqJHZMBchuls3ioFg4NCWLabjiIjIWTiKi4nNywMgsksXw2kuTqqzR2fGb78ZTiIiInJ2fn6wYAFccglkZsLQobB1q+lUInKxVEhzs+PO5vypdjs2u91wmgvnGxxMijP/4TVrDKcREZGzSd2+nRCgGIjt2dN0nIuS7hzNnbNnj+EkIiIifywwED79FHr0gGPHYNAg2LXLdCoRuRgqpLlZ1s6dAKQFBBhOcvGOhIYC4NCbGRERj5b1888ApNjtBISFGU5zcXKcf3vy9+83nEREROTcVKsGixdDu3aQkgKXXgqJiaZTiciFUiHNzfL27QMg0/lGwJu1vfJKADp4+ZsyEZHKrqHzOdrLR6MB5EdEAODQyp0iIuJFatSAr7+GZs1g3z6rmHb4sOlUInIhVEhzs+KkJADyatQwnOTi+ZT0eEtIMBtERETOzjly2MeLe3OWcNSuDYBPaqrhJCIiIucnKgq++Qbq1YPffoPBg+H4cdOpROR8qZDmZj6HDgFQ7Hwj4NUaOsc4qJAmIuLZSn5Pl/ze9mL2OnUACNQ7DxER8UJxcfDttxAdDZs3w/DhkJVlOpWInA8V0tysnrM3WvWWLQ0nuXgHnd/LwVWrDCcREZGz2fr55wDsLCoynOTi1WzTBjj591RERMTbNGkCS5dCRAT89BNceSXk5ppOJSLnSoU0N2vofOHffsgQw0kunl/z5gDUzssjT7dRREQ8VqhzGuSJ6GjDSS5ei/79AYgxG0NEROSitGkDX31lLUTw3Xdw/fVQUGA6lYicCxXS3C0lxXqO8f63ADXbtCEX8AUOrlljOo6IiJSjMDeXOoWFANTq1s1wmgpQUgw8dAiKi81mERERuQhdu8Lnn0NgIHz2Gdx6K1SCweMilZ4KaW7kKC4+ucpYJRgVYLPbOejvD8DR9esNpxERkfKkrF+PL5AHRHXsaDrOxSvpMVpQQIGWOxMRES/Xrx98/DH4+cH778Pf/w4Oh+lUInI2KqS50bE9e7Dl5wNQEBlpOE3FOBYeDkD21q2Gk4iISHkOO0cMH/Tzw8fX13CaChAQwDGbDYCE1asNhxEREbl4w4bBu++Cjw/Mng13361imognUyHNjY46i03HbTb8QkMNp6kYJ6KiACjavdtwEhERKU+W82/PUeeNj8rguHM0dObOnYaTiCtdffXV1KhRg2uvvdZ0FBERl7vuOnj9dWv72Wdh6lSzeUTkzFRIc6PM334D4JjzDUBlUNygAQD+SUlmg4iISLmKncWmnJIpkZVARnAwACf27jUbRFxqwoQJvPXWW6ZjiIi4ze23w/PPW9sPPwzPPWc2j4iUT4U0N8rZswc4+QagMghq1QqAmBMnDCcREZHyRGRkAOBw3vioDE6EhQFQkJhoOIm40oABAwitJCP4RUTO1YQJ8Pjj1vbkySdHqYmI51AhzY0KnS/4T1Si6TVdr78egMbOfjUiIuJZ2lWrBkDf224zG6QCFdSsaW2UrIQtbvfDDz9w+eWXExsbi81m45NPPjntmJdffpmGDRsSGBhI586dWbFihfuDioh4ofvvh3vusbb/9jeYP99sHhEpS4U0d3K+4C99A1AJ2Bo1sjYOH4bsbLNhRETkdAkJwO9+X1cGzv6cvkePGg5SdWVnZ9O+fXteeumlcj8/f/58Jk6cyAMPPMCmTZvo06cPw4YNY//+/aXHdO7cmTZt2pz2OHjwoLu+DRERj2SzwX//C2PHWosO3HwzfP656VQiUqISLN/lPfycL/htMTGGk1SgGjWgenVIS4O9e6F1a8OBRESkVE7OyVFbDRuazVKBfOPiAAhKTzecpOoaNmwYw4YNO+Pnn332WUaPHs2YMWMAmDFjBkuWLGHWrFlMmzYNgA0bNlRIlry8PPLy8ko/znBOZxYR8WY2G8ycCVlZ8M47cO218OWXMGCA6WQiohFpblQ/IACAiEpWbNrva9Vj1y1YYDiJiIj83q5vvgEg29fXuvFRSdRy/h2tV4kW76lM8vPz2bBhA4MHDy6zf/DgwaxatarCrzdt2jTCw8NLH3HOQquIiLfz8YG5c+GqqyAvDy6/HH76yXQqEVEhzY3i7HYA2gwaZDhJxTroLBBm//yz4SQiIvJ7R9evByDRz8+6tV1JNOvbF4DaRUWGk0h5UlNTKSoqIso5BbdEVFQUKefR127IkCFcd911LF68mLp167Ju3bpyj5syZQrp6emlj0QtQiEilYivL3zwAQwaZHXSGTYMtmwxnUqkatPUTncqefF4ygtLb5cXEwNJSaV9eERExDOc2LYNgPRKNBoNgOho6zk1FQoLrXcZ4nFspxRvHQ7HafvOZsmSJed0XEBAAAHOm3oiIpVRQAAsWgSDB8OqVVZRbcUKaNbMdDKRqkkj0tyk6MQJOH7c+qDkDUAlYWvcGIBArZ4mIuJZ9uwBILcy9eYEqFkTh48POBzkJyWZTiOnqFmzJna7/bTRZ4cPHz5tlJqIiJybkBD44gvo2NFa5+3SS2HfPtOpRKomFdLcJMU5/rYAcFSvbjRLRQt29qqpkZZmNoiIiJQRmJwMgI/zhkelYbdzxLm5a+VKo1HkdP7+/nTu3JmlS5eW2b906VJ69eplKJWIiPerXh2WLIEWLSAx0SqmaSyDiPupkOYmaTt2AHDUxwebs1daZRHZpQsAsbm5OIqLDacREZES1Z03OIIq2SI3AMecU/mydu0ynKRqysrKIj4+nvj4eAASEhKIj49n//79AEyePJnXX3+dOXPmsH37diZNmsT+/fsZO3aswdQiIt6vVi345htrMe5du6xpnseOmU4lUrWoqYibZDun16QFBFC5JnZCrPPuciiQ+ttv1GzRwmwgERHBUVxMTG4ucPKGR2WSVa0anDhB7t69pqNUSevXr2fAgAGlH0+ePBmAW2+9lXnz5jFy5EiOHj3KY489RnJyMm3atGHx4sXUr1/fVGQRkUqjTh2rmPanP8HWrTB0KHz7LYSGmk4mUjWokOYmuc4J7FkhIYaTVLyA8HCO+PpSq7CQ3O3brbHGIiJiVM6BA4Q7t2N69jSaxRXywsPhyBGKDh40HaVK6t+/Pw6H46zHjBs3jnHjxrkpEcycOZOZM2dSpNVcRaQKaNTIKqb17Qvr1sHll8OXX0JQkOlkIpWfW6Z2vvzyyzRs2JDAwEA6d+7MihUrznjsxx9/zKBBg6hVqxZhYWH07NnztFWb5s2bh81mO+2R67zz7olKXujnhof/wZHeqVb37gDULSgwnERERABCDh+2NqKjCaxsq3YChTVrAmA7dMhwEvEU48ePZ9u2baxbt850FBERt2jVyuqZFhYGy5fDtddCfr7pVCKVn8sLafPnz2fixIk88MADbNq0iT59+jBs2LDSHhqn+uGHHxg0aBCLFy9mw4YNDBgwgMsvv5xNmzaVOS4sLIzk5OQyj8DAQFd/OxfM5nxDU/LCv9Jp2NB6dk5hFRERwxISrOdGjczmcBGbcyVS/6NHDScRERExp3NnazXPoCBYvBhuvhk0MFfEtVw+tfPZZ59l9OjRjBkzBoAZM2awZMkSZs2axbRp0047fsaMGWU+fuKJJ/j000/57LPP6NixY+l+m81GdLT3dBvzc3aAtFXWZd+dhTTHnj3YDEcRERFOFtJKbnRUMn5xcQAEZWYaTiIiImLWn/4En3xiTe/88EOoVg1efx0cDlixApKTISYG+vSBSrbunYgRLi2k5efns2HDBu67774y+wcPHsyqVavO6RzFxcVkZmYSERFRZn9WVhb169enqKiIDh06MHXq1DKFtt/Ly8sjLy+v9OOMjIzz/E4uXj3naLnISrhyGsDW7GzaAJs+/phOr71mOo6ISJW34s036QNszsigvekwLlCrbVsA4vz8DCfxPA0bNsRmO//bWhMnTmTChAkuSCQiIq42eDB88AFcdx3MnQuHDsGWLXDgwMlj6taF55+HESPM5RSpDFxaSEtNTaWoqIioU0ZhRUVFkZKSck7nmD59OtnZ2Vx//fWl+1q0aMG8efNo27YtGRkZPP/88/Tu3ZvNmzfTtGnT084xbdo0Hn300Yv7Zi5SyQv9NpdcYjSHqxQ3aABARHq62SAiIgJAkPPvbFatWoaTuEaTP/0JgJrqzXmaefPmXdDXNXD+LRcREe909dVWEe2WW6xpnqdKSrL6qC1cqGKayMVwy6qdp94VdTgc53Sn9P333+eRRx7h008/pXbt2qX7e/ToQY8ePUo/7t27N506deLFF1/khRdeOO08U6ZMKV2WHawRaXHOKSFuU9IMuZJO7azVrRsAsYWFFObl4RsQYDiRiEjVFumc8hjavjKOR+Pk39P0dDhxQsuU/U6/fv1MRxAREUNuugkmTIC0tNM/53CAzQYTJ8KVV2qap8iFculiAzVr1sRut582+uzw4cOnjVI71fz58xk9ejQLFizg0ksvPeuxPj4+dO3alZ07d5b7+YCAAMLCwso83Kk4Px9HSTPkSlpIi+rUiXzAH0hev950HBGRKq0wL49Y50itkhsdlU716jj8/QHIO8MCRiIiIlXNihXlF9FKOByQmGgdJyIXxqWFNH9/fzp37szSpUvL7F+6dCm9evU649e9//773Hbbbbz33ntcdtllf3gdh8NBfHw8Mc4VvDzN4V9+weZwUAQU16hhOo5L+Pj5keycvpqqZedFRIxK3rCBAKAAiOrc2XQc17DZOFhcDMBvP/xgOIz3+PXXX3n66aeZPXs2q1atMtI3VkREXCc5uWKPE5HTubSQBjB58mRef/115syZw/bt25k0aRL79+9n7NixgDXt8pZbbik9/v333+eWW25h+vTp9OjRg5SUFFJSUkj/Xe+tRx99lCVLlrBnzx7i4+MZPXo08fHxpef0NGk7dgBwzMcHn0rcFDnVOdIvc8sWw0lERKq2I2vXApDs51ep/+6kOdsIZO/ebTiJ9xg2bBj5+fmkpaXx6quv0r9/f5o3b246VoWYOXMmrVq1omvXrqajiIgYc65jSzx0DIqIV3B5j7SRI0dy9OhRHnvsMZKTk2nTpg2LFy+mfv36ACQnJ7P/d1MyXn31VQoLCxk/fjzjx48v3X/rrbeWNs9NS0vjb3/7GykpKYSHh9OxY0d++OEHunno9JUs5wv84/7+VM6Wz5ac2rXh6FEKzzDFVkRE3KPkhsbR0FDqGc7iStmhoZCdTd6+faajeI3o6GgeeOCBMvuKiooMpalYJa8dMzIyCA8PNx1HRMSIPn2s1TmTkqxpnKey2azP9+nj/mwilYVbFhsYN24c48aNK/dzp64stWzZsj8833PPPcdzzz1XAcnc44TzBX5WcLDhJK7l16wZbN9ObF6e6SgiIlVaTedCAwXuXljHzfKqV4eUFIo1P+WcDRkyhLfffptRo0aV7rOr27SISKVht8Pzz1urc9pspxfTHA6YMUMLDYhcDJdP7RQoSkoC4EQlvzva48YbAWjhbP4sIiJmtHauYNlt5EjDSVyruJY1ztvnyBHDSbzH2rVreeCBB2jSpAk33XQT06ZN4/PPPzcdS0REKtCIEbBwIdSpU/7n1R5T5OKokOYOhw4BUBgRYTiIizVqZD0nJJjNISJS1ZX8Hm7Y0GwOF7NFRwPgf7blyaSMxYsXs3//fjZu3Midd95JZGQk33zzjelYIiJSwUaMgL174fvv4b33rOeHH7Y+N3YsbNhgNJ6IV3PL1M6qzvfoUWsjKspsEFcrecN28CDFOTn4VPKprCIinsqRkIANKn0hzb9uXQCCs7IMJ/F8hw8fpri4mGhn8TEsLIxevXqddRV1ERHxbnY79O9/8uO+fWHjRvjsM6vQtn491KrMTbxFXEQj0tygfmAgAJGtWhlO4mKRkWT7WD9Su7/91nAYEZGqKefYMWzOlgLZlfwGTq02bQCoW4lXJr1YW7ZsoXXr1sTExFCnTh3q1KnDgw8+SHZ2tuloIiLiZj4+8Pbb0LQp7N8PN9wAhYWmU4l4HxXS3CDO2TOszcCBhpO4mM1GkvN7PaaxwiIiRhxcvRqATCDEuUJ2ZdXYOZoqsqDAcBLPNXr0aKKioli5ciWbNm3i8ccf58svv6RLly4cP37cdDwREXGz8HBYtAhCQuC772DKFNOJRLyPCmnu4OyRVumndgJpNWoAcGLbNsNJRESqpmPr1wOQHBhoLddVmZX8Xc3IgNxcs1k81LZt23j55Zfp2bMn7dq14/bbb2f9+vW0bt2af/zjH6bjiYiIAa1bw7x51vYzz8D8+UbjiHgdFdJcrLigAEfJamJVoJCWGxMDQPGePYaTiIhUTTm//AKcvLFRqVWvjsM5Ejo/MdFwGM9U3sgzm83GE088waeffmoolWvMnDmTVq1a0bVrV9NRREQ83rXXwr33Wtv/93+wdavZPCLeRIU0Fzv622/YiosBKKwCb2pszpU7gw4eNJxERKRqcjhvZOTGxhpO4gY2G8lFRQD8tnKl4TCe47LLLuP+++9nwYIFjB07lkmTJnGoZHS8U3p6OjUq2euS8ePHs23bNtatW2c6ioiIV/jPf2DQIMjJgauvBi2CLXJutGqnix3/9VdqAUdtNiKDgkzHcbng1q1h4UKqq++KiIgRgc4bGSU3Niq79IAAYnNyyE5IMB3FY7Rt25aNGzcyd+7c0gJao0aNuP766+nQoQNFRUXMnTuX5557znBSERExyW6H99+Hzp1h1y74y1+sFT19NNxG5KxUSHOxzN27ATju70+k4SzuUKNTJwCic3NxOBzYKnt/HhERD1NyIyPYuaJlZZcdEgI5OeTt22c6isf473//W7p96NAhNm3aRHx8PPHx8cyaNYtdu3Zht9t59NFHueaaawwmFRER0yIjrcUHevWCxYvh0Ueth4icmQppLpbrfGGfWQVGowHE9u4NQA0gNyWFQGfPNBERcQOHg/rOqY41q0ifqNzq1eHIEYrUUqBcUVFRDB06lKFDh5buO3HiBPHx8WzZssVgMhER8RQdO8Jrr8Ett8Bjj1kj1K64wnQqEc+lQZsuVnDgAAAnwsIMJ3GPwMhIqF3b2k5ONpxGRKSKOX6c4IICAOr362c4jHsURVrjvW0lC/vIHwoKCqJnz57ccccdpqOIiIiHGDUKShZzHjUKduwwm0fEk2lEmos5nL1JCiIiDCdxo4YN4fBhSEgA51RPERFxg5IVk2NiIDjYbBY3sUVHA+B37JjhJJ6jYcOGF9RaYeLEiUyYMMEFiURExBtMnw7x8bBihbX4wJo1EBpqOpWI51EhzcV8U1MBcERFGU7iRg0bwpo15O3YQYDpLCIiVUj+jh34g/V7uIrwda5OGpSZaTiJ55g3b94FfV2DBg0qNIeIiHgXPz9YsMCa2rl9O9x+O3z4IajttUhZKqS5WP3AQAAiW7Y0nMR91qam0g1Y/e679L//ftNxRESqjJVvvcUlwIa0NDqbDuMmtdu2BSDO399wEs/Rr4pM6xURkYoXHQ0LF0K/fvDRR/DUU3DvvaZTiXgW9UhzsXoB1pistpdeajiJ+xTUrQtAsHNaq4iIuIePc4Gb7Fq1DCdxnybORW5qORdZEBERkYvTsye8+KK1ff/9sHSp2TwinkaFNFcrKSZVoamd1ZyjAyIzMgwnERGpWqodPgyAb7NmhpO4Ucnf16NHwbnQgoiIiFycv/0NRo+G4mK44Qar/bWIWFRIcyFHcTEO55uaqlRIq9WtGwB1Cgoo0psaERG3qensExbavr3hJG4UGYnDx3o5U6DVoqu0mTNn0qpVK7p27Wo6ioiI17PZ4KWXoGtXOHYMRoyAnBzTqUQ8gwppLpSWkIDNWUjKr17dbBg3iurShUIgEEjetMl0HBGRKqEgN5c6hYUA1O7e3XAaN7LbOeLc3L1qldEoYtb48ePZtm0b69atMx1FRKRSCAy0+qTVqmWt5nnHHeBwmE4lYp4KaS50bPt2ANJsNvyr0LrB9sBAkn2tdSyOrFljOI2ISNVwcO1a/IA8oHaHDobTuFeac6GBrN27DSfxPPv378dRzrseh8PB/v37DSQSERFvEhdnreRpt8M771ij1ESqOhXSXChz1y4Ajvn5GU7ifkedhcPMLVsMJxERqRqOrF0LQLK/PzbfqrUod1ZwMAC5zsUW5KSGDRty5MiR0/YfO3aMhg0bGkgkIiLepn9/ePppa3vyZFixwmgcEeNUSHOhHGdHxoygIMNJ3M+ncWMAYvPyDCcREakaItLSAMiNiTEbxIATYWEAFCYlGU7ieRwOBzab7bT9WVlZBAYGGkgkIiLeaOJEuOkmKCyEa68F/cmVqqxq3bJ2s4IDBwA4UYWmdZZod9VVsH49Tex201FERKqERs7nFsOHG81hQmFkJOzdCyUL/AiTJ08GwGaz8e9//5tg56g9gKKiItasWUOHKjYFWERELpzNBrNnw9atsGULXHMNLF8OAQGmk4m4nwppLuRISQEgv0YNw0kMKJkusmeP2RwiIlVFybr0VXG6nnNlbN+jRw0H8RybnIv9OBwOfv75Z/ydfeQA/P39ad++PXfffbepeCIi4oWCg2HRIujSBdasgQkT4NVXTacScT8V0lzInpoKgKN2bcNJDHC+kSvctUs/ZCIibpC/Ywf+AI0a/dGhlY7dOZ01MCPDcBLP8f333wNw++238/zzzxPmnP4qIiJyMRo1gvfeg+HD4bXXoGtXGDPGdCoR91KPNBeq7+w9EtGypeEk7pceEQGAz8GDnEhPN5xGRKTyO75xIwAJhnOYULttWwDqaX7JaebOnasimoiIVKihQ2HqVGt7/HhwrnckUmVosJALlbygbzdokOEk7hfWtCk5QDCQtHo1TYYONR1JRKTSSj94kCiHA4Ca3boZTuN+zfr0AaB2cbHhJJ7p22+/5dtvv+Xw4cMUn/JvNGfOHEOpRETEm02ZAuvXwyefWP3SNmyAqjgRS6omjUhzpUOHrGdn75aqxObjQ7KzkHh03TrDaUREKrfk1asBSLPZCI2LM5zGgJK/s0eOgIppZTz66KMMHjyYb7/9ltTUVI4fP17mISIiciF8fODNN6FFCzhwAK6/HgoKTKcScQ+NSHMRR3ExHDqEDapkIQ3gePXqcOgQOb/8YjqKiEildmz9egBSgoKobjaKGSW3wIuKKDh0CD9nzzSBV155hXnz5jFq1CjTUUREpJIJC7MWH+jWzVrB85574LnnTKcScT2NSHOR9MREbHl5AJyoor1Jcp1vZBxauVNExKVyt20DIC0y0nASQ/z8OGazAbB3zRrDYTxLfn4+vXr1Mh1DREQqqRYtrJFpADNmWAsRiFR2KqS5yPFffwUgAwhyNt6vcpwrd/ofPGg4iIhIJZdgLTGQX6eO4SDmHPfzAyBr927DSTzLmDFjeK+KvKuZOXMmrVq1omvXrqajiIhUKVdfDfffb22PGQPx8UbjiLicpna6SMbOnYD1wr5qjkeDwFatYNEiqh87ZjqKiEilFpySAoC9SRPDSczJDAqC/HxO7N1rOopHyc3N5bXXXuObb76hXbt2+DkLjiWeffZZQ8kq3vjx4xk/fjwZGRmEh4ebjiMiUqU89pi14MCSJTBihLUQQVUdTyKVnwppLpLjHB2QHhhoOIk50T17AtDIcA4Rkcquid0OQK0quGJniRNhYZCeTv6BA6ajeJQtW7bQoUMHALZu3VrmczbndFgREZGLZbdb0zq7doU9e+Cmm+CLL6z9IpWNCmkukp+YCEBOaKjhJObU7dMHgOATJyAzE6rwv4WIiMs4HNTMyACg2dChhsOYk1+jBiQm4ihZMVsA+P77701HEBGRKiIiAj7+GHr2tEamPfQQ/Oc/plOJVDz1SHMRh3OaTX716maDmBQWdnI8r3OEnoiIVLAjRyAnB2w2qF/fdBpjHM6VO31TUw0nERERqbrat4c33rC2n3jCWtVTpLJRIc1FfI4cAaC4Vi3DScxyNLImdmaq46SIiEtkbdkCgKNuXfD3N5zGHLtzpeiA9HTDSTzPihUruPnmm+nZsydJSUkAvP3226xcudJwMhERqYxuvBEmTbK2b7kFtm83m0ekoqmQ5iL1nb3RIlq2NJzErLXOkQHr5883nEREpHLauHAhAD9nZRlOYlatNm0AqBcQYDiJZ/noo48YMmQIQUFBbNq0iby8PAAyMzN54oknDKcTEZHK6sknoV8/yMqyVvV0dqEQqRRUSHORkkJau0GDDCcxK7dOHQB8tIqaiIhLFPz2GwBZVXwEdIt+/QCIVgP9Mh5//HFeeeUVZs+eXWbFzl69erFx40aDyUREpDLz84MFC6BuXdixwxqZVlxsOpVIxVAhzVVKmh1HRZnNYZi9WTMAqjl7xomISMXy3b8fgKJ69QwnMazk7+2hQ+BwmM3iQXbs2EHfvn1P2x8WFkZaWpr7A4mISJVRuzZ89JHVeeLTT2HaNNOJRCqGCmkuUqxCGgChHToAlK4oJyIiFSvM2ZPTr4q3Eij9e5uXR+GxY2azeJCYmBh27dp12v6VK1fSyNnHVERExFW6dYOXX7a2//1v+PJLs3lEKoIKaS6QdegQPjk51nZIiOE0ZtXu2ROAOoWFFDj/TUREpOJEOXujhXfqZDiJYUFBlNyySVy/3mgUT3LHHXdw1113sWbNGmw2GwcPHuTdd9/l7rvvZty4cabjiYhIFTB6NNxxhzVg/KabYPdu04lELo4KaS5wzLksSQ4QUsVHpEV17Egu4AskrV5tOo6ISKVy4tgxYp0NR6J79zacxrzjvr4AZJYzAququueee7jqqqsYMGAAWVlZ9O3blzFjxnDHHXdw5513mo4nIiJVxPPPQ48ekJZmLT6QnW06kciFUyHNBdKdjZ+P+vpi86na/8Q+vr4kOVdQS12zxnAaEZHKJWnlSgDSgeqNG5sN4wHSg4IAyNYCN2X85z//ITU1lbVr1/LTTz9x5MgRpk6dajqWiIhUIQEBsHCh1Ynh559hzBi1NBXv5ZYqz8svv0zDhg0JDAykc+fOrFix4qzHL1++nM6dOxMYGEijRo145ZVXTjvmo48+olWrVgQEBNCqVSsWLVrkqvjnLSchAYB0ZwGpqnM0bAhA7IkThpOIiFQu4ampAGRGRVX5GzcAOdWqAZCfmGg4iecJDg6mS5cudOvWjWrOfycRERF3qlMHPvwQfH3hgw/guedMJxK5ML6uvsD8+fOZOHEiL7/8Mr179+bVV19l2LBhbNu2jXrlrDCWkJDA8OHD+etf/8o777zDjz/+yLhx46hVqxbXXHMNAKtXr2bkyJFMnTqVq6++mkWLFnH99dezcuVKunfv7upv6Q/lOVdQyw4NNZzEMzQZOhR+/VWFNBGRClYrPR2AuuWsylgV5deoAcnJOJKTTUcxavLkyUydOpWQkBAmT5581mOfffZZN6USERGBPn3g2WdhwgS45x7o2BEGDDCdSuT8uLyQ9uyzzzJ69GjGjBkDwIwZM1iyZAmzZs1iWjnr377yyivUq1ePGTNmANCyZUvWr1/PM888U1pImzFjBoMGDWLKlCkATJkyheXLlzNjxgzef/99V39Lf6jY+QI+r3p1s0E8Rcl0I3WVFBGpWCW/VzWtE4DiWrUA8HGuZFpVbdq0iYKCgtLtqmLmzJnMnDmToqIi01FEROQs7rwT1q2Dt9+GkSNhwwaIizOdSuTcubSQlp+fz4YNG7jvvvvK7B88eDCrVq0q92tWr17N4MGDy+wbMmQIb7zxBgUFBfj5+bF69WomTZp02jElxTfTbM4X8MU1axpO4hkcjRphA3K2biXYdBgRkUokMz6eUMDRuDE202E8gC06GoCAtDSzQQz7/vvvy92u7MaPH8/48ePJyMggPDzcdBwRETkDmw1eecXqlRYfDyNGwIoVEBhoOpnIuXFpQ5XU1FSKioqIOmXlyqioKFJSUsr9mpSUlHKPLywsJNXZC+ZMx5zpnHl5eWRkZJR5uFJ952+AiJYtXXodb7Hfzw+A4l27KNZdYhGRCnN07VoANmdlGU7iGWq1bg1APb0SLzVt2jTmzJlz2v45c+bw5JNPGkgkIiICwcGwaBFERMD69TB+vBYfEO/hls7ENlvZ++QOh+O0fX90/Kn7z+ec06ZNIzw8vPQR5+Jxow2uvx6uuIJ2N9zg0ut4i9hevSgCqgGHtmwxHUdEpFIoOHGCOs7pe1G9ehlO4xlaXXEF/PnPxNx4o+koHuPVV1+lRYsWp+1v3bp1uYs5iYiIuEuDBtaiAz4+MGcOvPqq6UQi58alhbSaNWtit9tPGyl2+PDh00aUlYiOji73eF9fXyIjI896zJnOOWXKFNLT00sfia5ezetf/4JPP4VLLnHtdbyEX0gIyb7WLOJDZ5jSKyIi5+fgmjX4AblAVKdOpuN4hvbt4bPP4D//MZ3EY6SkpBATE3Pa/lq1apFcxRdlEBER8wYNgieesLYnTIDVq83mETkXLi2k+fv707lzZ5YuXVpm/9KlS+l1hrvnPXv2PO34r7/+mi5duuDnnCJ4pmPOdM6AgADCwsLKPMS9jjhXMM2oQk2PRURc6YjzlWaSvz8+vi5fO0i8VFxcHD/++ONp+3/88UdiY2MNJBIRESnrnnvg2muhoACuuQbO0LFJxGO4/JX35MmTGTVqFF26dKFnz5689tpr7N+/n7FjxwLWaLGkpCTeeustAMaOHctLL73E5MmT+etf/8rq1at54403yqzGedddd9G3b1+efPJJrrzySj799FO++eYbVq5c6epvRy5QVlQUHD9O4Y4dpqOIiFQK2c6p8kdr1EBrdsqZjBkzhokTJ1JQUMAlzpHy3377Lffccw///Oc/DacTERGxFh+YMwe2bbMe110H334L/v6mk4mUz+WFtJEjR3L06FEee+wxkpOTadOmDYsXL6Z+/foAJCcns3///tLjGzZsyOLFi5k0aRIzZ84kNjaWF154gWuuuab0mF69evHBBx/w4IMP8u9//5vGjRszf/58unfv7upvRy6Qo1Ej+PVX/Fw9rVZEpIoo3rkTgFyNKpKzuOeeezh27Bjjxo0jPz8fgMDAQO69916mTJliOJ2IiIglNNRafKBrV1i5Ev75T3jxRdOpRMpncziq3toYJcuip6ena5qnm6z517/o/swzbAkJoZ1WlxMRuWg/xcTQIyWFH667jr4LFpiOU2V462uIrKwstm/fTlBQEE2bNiUgIMB0JJfx1v9GIiIC//sfXHmltf3mm3DLLWbzSNVyrq8h3LJqp0jdfv0AaOqjHzkRkYrQwjnfoU7fvoaTiDeoVq0aXbt2pU2bNpW6iCYiIt7tiivgoYes7TvugI0bzeYRKY+6E4tblLzRC8rMhMxMa+yuiIhcGIeD6qmpADQePNhwGPE0kydPZurUqYSEhDB58uSzHvvss8+6KZWIiMi5efhh2LABvvgCrr7a2q5Z03QqkZNUSBP3CAuzfvulpsLu3dChg+lEIiLeKyUFcnLAxwcaNDCdRjzMpk2bKCgoAGDjxo3YbLZyjzvTfhEREZN8fOCdd6BLF+ut4w03wFdfgRYpF0+hH0Vxm4L69fFLTeXw6tXUViFNROSCHV27lkigqE4d7FrSSk7x/PPPl/b1WLZsmdkwIiIiF6B6dfjkE+je3VrB84EH4MknTacSsahhlbjN+mPHANj66aeGk4iIeLdf/vc/ALZkZxtOIp6oY8eOpDqn/jZq1IijR48aTiQiInL+2rSBuXOt7aeegg8/NJtHpIQKaeI2BfXqAWBPSDCcRETEuxXu2AFAVnS04STiiapXr06C82/t3r17KS4uNpxIRETkwlx/Pdx9t7V9++2wdavZPCKgqZ3iRn4tWsDy5VQ7fNh0FBERr+afmAiAo1Ejw0nEE11zzTX069ePmJgYbDYbXbp0wW63l3vsnj173JxORETk/EybBps2WVM8r74a1q2zpn6KmKJCmrhNWMeOANTOzDScRETEu5Ws2BnUpo3hJOKJXnvtNUaMGMGuXbuYMGECf/3rXwnVatkiIuKlfH3hgw+gc2fYtQtGjYJPP7UWJRAxQYU0cZuYPn0AiC0q4kR6OkHh4YYTiYh4H4fDQcyJEwBEdO1qOI14oi1btjB48GCGDh3Khg0buOuuu1RIExERr1azJnz8MfTuDZ9/DlOnwsMPm04lVZVquOI2NVq0IAuwAwdWrDAdR0TEKx3bs4dIhwOAWOcNCpHf+/1iA8uXLyc/P99wIhERkYvXuTO88oq1/cgjVkFNxAQV0sRtbD4+JAUFAXBszRrDaUREvNPBlSsBOOzjQ1CtWobTiCfSYgMiIlJZ3XYbjBtnbd98M+zcaTSOVFGa2iluFdCmDaxbRxPnaAoRETk/dZzTOosaNDAbRDxWVV1sYObMmcycOZOioiLTUURExIWeew42b4Yff4SrroI1a6BaNdOppCpRIU3cqsGgQbBuHZHHjpmOIiLilSKcvz9jevc2nEQ8VVVdbGD8+PGMHz+ejIwMwtWHVUSk0vL3hw8/tKZ6btsGt98OCxaAzWY6mVQVKqSJezVtaj1rDK6IyIUp+f3ZrJnZHOLRhg4dCqDFBkREpFKKiYGFC6F/f+v56afhn/+EFSsgOdn6fJ8+cIYB2SIXRT3SxK0KnFORsuPjjeYQEfFWx509JvPq1zecRLzB3LlziY+P5+abb6ZXr14kJSUB8Pbbb7PS2W9PRETEG/XqBTNmWNv33QfR0TBgANx0k/XcoIG10qdIRVMhTdwqzdkYOyg1ldy0NLNhRES8UNGvvwKwR7dY5Rx89NFHDBkyhKCgIDZu3EheXh4AmZmZPPHEE4bTiYiIXJy//90qmjkc4FywulRSElx7rYppUvFUSBO3qtmyJWlYP3gHli83nEZExLuk79tHTediLXX69zcbRrzC448/ziuvvMLs2bPx8/Mr3d+rVy82btxoMJmIiMjFKy6G334r/3Ml69tNnAhah0Yqkgpp4lY2Hx8OBgcDcPSnnwynERHxLgeXLQMgxceHsNhYs2HEK+zYsYO+ffuetj8sLIw0jQwXEREvt2KFNfLsTBwOSEy0jhOpKCqkidsdd07vPLF5s+EkIiLe5fjatQAkq3G8nKOYmBh27dp12v6VK1fSqFEjA4lEREQqTnJyxR4nci5USBO3K3A2yPbZs8dwEhER75K/dSsAmVFRhpOIt7jjjju46667WLNmDTabjYMHD/Luu+9y9913M27cONPxRERELkpMTMUeJ3IufE0HkKrHr1Ur+OEHQlNSTEcREfEqfvv2AVDcpInhJOIt7rnnHtLT0xkwYAC5ubn07duXgIAA7r77bu68807T8URERC5Knz5Qt641vbOkJ9rv2WzW5/v0cX82qbw0Ik3crnq3bgBEZ2YaTiIi4l1qHDkCQGC7doaTiDf5z3/+Q2pqKmvXruWnn37iyJEjTJ061XQsERGRi2a3w/PPW9s22+mfdzhgxgzrOJGKokKauF29gQMBiCkuxqFimojIuXE4aOZ8hdhw8GDDYcTbBAcH06VLF7p160a1atVMxxEREakwI0bAwoVQp87pn7PbwdlZSKTCaGqnuF1ovXoQGQlHj2LbvRs6dDAdSUTE8x0+jG92NthsRPXqZTqNeJG0tDTeeOMNtm/fjs1mo2XLlowePZrw8HDT0URERCrEiBFw5ZXW6pzJyRAdDS++CIsWwV/+Ahs3QnCw6ZRSWWhEmpjRtKn1vHOn2RwiIt7it9+s5/r1ISDAbBbxGuvXr6dx48Y899xzHDt2jNTUVJ577jkaN27Mxo0bTccTERGpMHY79O8PN94IAwbA7NkQGws7dsA//2k6nVQmKqSJEZnOZVMSvv7acBIREe+w75tvAMgqb96CyBlMmjSJK664gr179/Lxxx+zaNEiEhIS+POf/8zEiRNNxxMREXGZyEh4801r+5VX4H//M5tHKg8V0sSIjc7eaInff284iYiId9izZAkAGzMyDCcRb7J+/XruvfdefH1PdvPw9fXlnnvuYf369QaTiYiIuN6ll54cjTZ6tDXtU+RiqZAmRgS0aQNA+OHDhpOIiHiHwP37AXA0a2Y4iXiTsLAw9jt/dn4vMTGR0NBQA4lERETc6z//gfbtITUVbr8diotNJxJvp0KaGBHRvTsAsVlZhpOIiHiHyGPHAKjWsaPhJOJNRo4cyejRo5k/fz6JiYkcOHCADz74gDFjxnDjjTeajiciIuJyAQHw3nsQGAhLlsBLL5lOJN5Oq3aKEXX69weglsPBsYQEIho2NBtIRMSDFRUUEJeXB0Dt3r0NpxFv8swzz2Cz2bjlllsoLCwEwM/Pj7///e/897//NZxORETEPVq1gmeegTvvhHvusRYjaNvWdCrxVhqRJkaEREdzyMf68UtatsxsGBERD3dw7VqCgHwgtmdP03HEi/j7+/P8889z/Phx4uPj2bRpE8eOHeO5554jQKu/iohIFTJuHAwfDnl5cNNNkJtrOpF4KxXSxJgUZ2+WtHXrDCcREfFsh1auBOCAvz92FT/kPEybNo05c+YQHBxM27ZtadeuHcHBwcyZM4cnn3zSdDwRERG3sdlgzhyoXRu2boX77jOdSLyVCmliTGZ0NAAFW7caTiIi4tmyNm0CIDUiwnAS8TavvvoqLVq0OG1/69ateeWVVwwkEhERMScqCubOtbaff97qmSZyvlRIE2PqDxkCQI8aNQwnERHxbF3DwwGI7dvXcBLxNikpKcTExJy2v1atWiQnJxtIJCIiYtbw4TB+vLV9221w5IjROOKFVEgTY+IuvRSA4P37DScREfFsIUlJANS95BLDScTbxMXF8eOPP562/8cffyQ2NtZAIhEREfOefhpatoSUFBgzBhwO04nEm6iQJuaUTDXZsQOKi81mERHxZL/9Zj03bWo2h3idMWPGMHHiRObOncu+ffvYt28fc+bMYdKkSfz1r381HU9ERMSIoCB47z3w94f//Q9ee810IvEmvqYDSBXWsCHFvr74nDjB0fh4Ijt1Mp1IRMTj5GVk4Ld7Nz5AUdOm2E0HEq9yzz33cOzYMcaNG0d+fj4AgYGB3HvvvUyZMsVwOhEREXM6dIAnnoC774ZJk6Bfv5NjPUTORiPSxBxfX3b7WD+C+9TlUUSkXAeWL8enuJh0wKdOHdNxxMvYbDaefPJJjhw5wk8//cTmzZs5duwYDz30kOloIiIixk2aBAMHwokT8Je/gPOek8hZqZAmRqVGRgKQtWGD4SQiIp7p6MqVACQGB2Pz0Z9tuTDVqlWja9eutGnThoCAANNxREREPIKPD7z5JkREwMaNoPtMci70ilyMOtGgAQC2X381G0RExEPlxscDcCwqymwQERERkUqoTh14/XVr+6mnYNkyo3HEC6iQJkb5tWkDQKhzRToRESnLd9cuAAobNzacRMSzzZw5k1atWtG1a1fTUURExMtcffXJ1TtHjYLjx00nEk+mQpoYVaNnTwBiMjIMJxER8UzVDx0CILBDB7NBRDzc+PHj2bZtG+vWrTMdRUREvNBzz0GTJnDgANxxh1VUEymPCmliVNyllwIQVVxM+r59htOIiHgWR3ExcdnZANTs08dwGhEREZHKq1o1eO898PWFDz+Et94ynUg8lQppYlR4XBzJzubZB7791nAaERHPcmjTJkKBAqD+JZeYjiMiIiJSqXXtCo8+am3feSfs3m02j3gmlxbSjh8/zqhRowgPDyc8PJxRo0aRlpZ2xuMLCgq49957adu2LSEhIcTGxnLLLbdw8ODBMsf1798fm81W5nHDDTe48lsRFyqZrtRcY2dFRMqolZoKQF7dugRUq2Y4jYiIiEjld++90KcPZGXBzTdDYaHpROJpXFpIu+mmm4iPj+err77iq6++Ij4+nlGjRp3x+JycHDZu3Mi///1vNm7cyMcff8xvv/3GFVdccdqxf/3rX0lOTi59vPrqq678VsSFavToAZxsqC0iIhb7zp0AVOvc2XASERERkarBboe334bwcPjpJ3j8cdOJxNP4uurE27dv56uvvuKnn36ie/fuAMyePZuePXuyY8cOmjdvftrXhIeHs3Tp0jL7XnzxRbp168b+/fupV69e6f7g4GCio6NdFV/cqUUL6/nXX83mEBHxNCW/F0t+T4qIiIiIy9WvD7NmwU03wdSpMHgw9OplOpV4CpeNSFu9ejXh4eGlRTSAHj16EB4ezqpVq875PP/f3n2HR1Hu7x9/bzqBZCkhDQKEGkINoQuCCgEUUBEVUcRzBEVBBCuIHtHvUUQPigpiQ48iKr8D6LGAVGlKL6EEQodQQg1JaEnIzu+PhRwRhASyeTab+3VdczGZnZ29Z3bZnf3sM8+Tnp6OzWajbNmyFy2fPHkyISEh1KtXj2eeeYbMzMy/3EZWVhYZGRkXTeI+TpwviB5etMhwEhER97J71iwAjoaEGE4iIiIiUrLcd5/z0k6HA+6/H1RGkAtcVkhLTU0lNDT0kuWhoaGkpqbmaxtnz55l2LBh9O7dm+Dg4Lzl999/P9988w0LFizgpZdeYtq0afTo0eMvtzNq1Ki8ftrsdjtRUVEF3yFxmTNVqwJQ7vhxck6fNpxGRMR9+O/cCUBquXKGk4iIiIiUPOPGQbVqsHs3PPGE6TTiLgpcSBs5cuQlHf3/eVq1ahUANpvtkvtblnXZ5X+Wk5NDr169cDgcfPDBBxfd1r9/fzp06ED9+vXp1asXU6dOZe7cuaxZs+ay2xo+fDjp6el5U0pKSkF3W1woPD6ek4AvkLJwoek4IiJuIfPAASIcDgCiOnQwnEZERESk5LHb4auvwMsLvvwSvv3WdCJxBwXuI23QoEFXHSGzWrVqrF+/nkOHDl1y25EjRwgLC7vi/XNycrjnnnvYtWsX8+fPv6g12uU0adIEX19ftm3bRpMmTS653d/fH39//ytuQ8yxeXuTEhhI3dOnObxoEdW7dDEdSUTEuJQ5c4gFDnl5EXa+5a6IiIiIFK0bboARI5x9pQ0Y4Owr7Q/dt0sJVOBCWkhICCH56KulVatWpKens2LFCpo3bw7A8uXLSU9Pp/UVeum7UETbtm0bv/76KxUqVLjqY23atImcnBwiIiLyvyPiVo6HhsLu3ZxZu9Z0FBERt3D8fH+iB4KDufLPTyIiIiLiSi+9BLNnw/Ll0KcPzJ/vHN1TSiaX9ZFWt25dOnfuTP/+/Vm2bBnLli2jf//+dO3a9aIRO2NiYvjuu+8AOHfuHD179mTVqlVMnjyZ3NxcUlNTSU1NJTs7G4AdO3bw6quvsmrVKnbv3s2MGTO4++67iYuL44YbbnDV7oiLnatRAwCf7dsNJxERcQ85GzcCkBkZaTiJiIiISMnm6wuTJ0OZMrBoEbz1lulEYpLLCmngHFmzQYMGJCQkkJCQQMOGDZk0adJF6yQnJ5Oeng7Avn37+OGHH9i3bx+NGzcmIiIib7ow0qefnx/z5s2jU6dO1KlTh8GDB5OQkMDcuXPxVkm42PJv1AiAcvkciEJExNMF7NoFgPWHH59ERERExIwaNeC995zzL70E57uGlxKowJd2FkT58uX56quvrriOZVl589WqVbvo78uJiopioTqk9zghbdvC229T5dQpLIcDm5dLa7wiIm4v7NgxAMo0a2Y4iYiIiIgAPPQQzJgBU6dC796wdi2ULm06lRQ1VSvELVTt2BHLx4dgwLZ/v+k4IiJmZWURnZsLQEzPnobDiIiIiAiAzQYffQSVKsG2bTB0qOlEYoIKaeIWfEuXxlarlvOPTZvMhhERMS05GVtuLpQtS+maNU2nEREREZHzypeHSZOcRbVPPoHvvzedSIqaCmniPurVc/57voNtEZES68L7YL16zrM0EREREXEbN90Ezz7rnO/XDw4cMJtHipYKaeI2UoKDAdgwZYrhJCIiZiV+/TUAKXa74SQiIiIicjn/938QFwfHjjn7TnM4TCeSoqJCmriNPUFBAHhv2WI4iYiIWVlr1wKwzc/PcBIRERERuRw/P5g8GUqVgjlz4N13TSeSoqJCmriN0JtuAqDKyZNY5zvZFhEpicKOHAEgqGVLw0lERERE5K/UrQtvv+2cHzYM1q83m0eKhgpp4jaq3nIL2UAZIHXFCtNxRESMyDpxgqicHAAqd+pkOI2IiIiIXMmjj0K3bpCdDb17w5kzphOJq6mQJm7Dv0wZdvv7A3BgzhzDaUREzNgzaxZewDGbjfCGDU3HEREREZErsNlg4kQIC4NNm+D5500nEldTIU3cypHQUABOLV9uOImIiBnHFi4EYG9QEDYvfUyLiIiIuLuKFeHf/3bOv/8+zJxpNI64mM7Qxa1k16wJgHdysuEkIiJmZK9bB0BG5cpmg4iIiIhIvnXuDIMHO+f/9jc4fNhsHnEdFdLErQQ0bQpA2NGjhpOIiJhRdt8+AKx69QwnEREREZGCGD0a6teHQ4fg4YfBskwnEldQIU3cStwDDwBQMzsbHA7DaUREil4jHx8Amv/tb4aTiIiIiEhBBATA5Mng5wc//QQffmg6kbiCCmniVgLq1QN/f+dQJ7t2mY4jIlK0Tp3Ke+8LbNbMcBgRERERKaiGDZ0t0wCeego2bzabRwqfCmniXry9ISbGOb9xo9ksIiJFLSnJ+W9oKISEmM0iIiIiItdk8GBISICzZ6F3b8jKMp1ICpMKaeJ2dgYGArD0008NJxERKVorzg/3lGK3mw0iIiIiItfMy8s5imeFCrBuHbz0kulEUphUSBO3szcoCADHhg2Gk4iIFK3TK1YAsLNUKcNJREREROR6RETAxInO+bfegnnzzOaRwqNCmridwObNAQg9dMhwEhGRohV0vn80W4MGhpOIiIiIyPW6/XZ45BHnfN++cPy42TxSOFRIE7cT3qkTANXOnuXcqVOG04iIFJ2otDQA7DfeaDiJiIiIiBSGt9+G2rVh/35nUc2yTCeS66VCmridyq1akQb4AntnzTIdR0SkSGRs306ow4EDqHrbbabjiIiIiEghKF0avv4afHxg2jRn32lSvKmQJm7Hy9ubXef7STsyd67hNCIiRWPPDz8AsNvHh7KVKhlOIyIiIiKFJT4e/u//nPNPPAHbt5vNI9dHhTRxSyeqVAEgZ9Uqw0lERIpGxuLFABysWNFwEhEREREpbM8+C+3awalT8MADkJNjOpFcKxXSxC3ZGjcGIOLIEbNBRESKSPmUFADO1K5tOImIiIiIFDZvb5g0CcqWheXL/9dCTYofFdLELd34xBMA1MjMVG+MIlIi1M3OBuCmIUPMBhERERERl4iKgo8+cs6/9hosWWI2j1wbFdLELXk3bAheXnDsGBw8aDqOiIhrZWfD5s0AeMfFGQ4jIiIiIq5yzz3Qty84HM5LPNPTTSeSglIhTdxTqVJQpw4AjrVrDYcREXEtKykJzp1ztvU/30ekiIiIiHim996D6GjYswcGDTKdRgpKhTRxW0m+vgD89sEHhpOIiLjWsvNt/HeUKQM2m+E0IiIiIuJKwcEwebKz37SvvoKvvzadSApChTRxW6mhoQD4bNpkOImIiGtdGKF4b7lyhpOIiIiISFFo1Qpeesk5/9hjsHu30ThSACqkidsq3bo1AKGpqYaTiIi4VtDOncD/RiwWEREREc83YoSzoJaRAQ8+CLm5phNJfqiQJm6r8m23AVAtK4usEyfMhhERcRXLokpaGgAhN91kOIyIe0hJSaF9+/bExsbSsGFD/vOf/5iOJCIiUuh8fJyXdgYFweLFMHq06USSHyqkiduKbNqUYzYb3sCun382HUdExCUOr19PBcsiF6jevbvpOCJuwcfHh7Fjx5KUlMTcuXMZOnQop06dMh1LRESk0FWvDuPGOedffhlWrDCbR65OhTRxWzYvL/bY7QAcnTfPcBoREddI+eknAHb7+RFYoYLhNCLuISIigsbnL3UODQ2lfPnyHD9+3GwoERERF+nTB+691zmI+/33w8mTphPJlaiQJm4tIzoaAMeaNYaTiIi4RuZvvwFwKCzMcBKR/Fu0aBHdunUjMjISm83G999/f8k6H3zwAdHR0QQEBBAfH8/ixYuv6bFWrVqFw+EgKirqOlOLiIi4J5sNJkyAqCjYvh2GDDGdSK5EhTRxawGtWgFQMyPDcBIREdeodvQoAJYGGpBi5NSpUzRq1IhxF65F+ZMpU6YwZMgQRowYwdq1a2nbti1dunRh7969eevEx8dTv379S6YDBw7krXPs2DEefPBBPv7447/MkpWVRUZGxkWTiIhIcVOuHEya5CyqTZwI06ebTiR/xWZZlmU6RFHLyMjAbreTnp5OcHCw6ThyJUlJUK8eBAY6hzLx9jadSESkcNWsCTt2wJw50KGD6TRyFTqHuJTNZuO7777jjjvuyFvWokULmjRpwoQJE/KW1a1blzvuuINRo0bla7tZWVl07NiR/v3706dPn79cb+TIkbzyyiuXLNdzJCIixdHw4fDGG1C+PKxfD5UqmU5UcuT3PE8t0sS91akDpUvD6dOQnGw6jYhI4TpxwllEA4iLMxpFpLBkZ2ezevVqEhISLlqekJDA77//nq9tWJbFQw89xM0333zFIhrA8OHDSU9Pz5tSUlKuObuIiIhpr7wC8fFw/Dj07QsOh+lE8mcqpIl78/aG85c7nVy40GwWEZFCdupCn1HVqoEGGhAPcfToUXJzcwn7U79/YWFhpKam5msbv/32G1OmTOH777+ncePGNG7cmA0bNlx2XX9/f4KDgy+aREREiis/P5g82XlR1rx58M47phPJn6mQJm5v6blzACR+9pnhJCIihWvtxIkArLbZDCcRKXy2P72uLcu6ZNlfadOmDQ6Hg3Xr1uVNDRo0cEVMERERt1Onzv8KaC+8AOvWGY0jf6JCmri9s7GxANi3bTOcRESkcPkmJgKQdn6EYhFPEBISgre39yWtzw4fPnxJKzURERG5vP794fbbITsbevd29nYk7kGFNHF74bfdBkB0ejrW+dZpIiKeIOz86IRlbrzRcBKRwuPn50d8fDxz5sy5aPmcOXNo3bq1oVQiIiLFi80Gn34K4eGweTM895zpRHKBCmni9mrceisngdJAyty5puOIiBSKUwcOUC07G4Bqd91lOI1IwZw8eTLvkkuAXbt2sW7dOvbu3QvAU089xaeffspnn33G5s2bGTp0KHv37mXAgAEGU4uIiBQvISHwxRfO+fHj4eefzeYRJxXSxO35lSrFjjJlADjw44+G04iIFI6d06YBsM/bm/D69Q2nESmYVatWERcXR9z50Wafeuop4uLi+Mc//gHAvffey9ixY3n11Vdp3LgxixYtYsaMGVStWtVkbBERkWInIQGGDnXO//3vcOiQ2TwCPqYDiOTH8eho2LCBnGXLTEcRESkUafPmAZBSsSKVDWcRKaj27dtjWdYV13n88cd5/PHHiygRjB8/nvHjx5Obm1tkjykiIlIUXn8d5s6FDRucxbSffnJe+ilmqEWaFAvezZsDYN+xw3ASEZHCcWGggQsDqojI9Rk4cCBJSUmsXLnSdBQREZFCFRAAX38N/v4wYwZ88IHpRCWbSwtpaWlp9OnTB7vdjt1up0+fPpw4ceKK93nooYew2WwXTS1btrxonaysLJ544glCQkIoXbo03bt3Z9++fS7cEzEt6s47Aah79izol2YR8QD1srIAqNi5s+EkIiIiIuLu6teHt95yzj/zjLN12oIF8M03zn/1NbnouLSQ1rt3b9atW8cvv/zCL7/8wrp16+jTp89V79e5c2cOHjyYN82YMeOi24cMGcJ3333Ht99+y5IlSzh58iRdu3ZVU34PFt25M5QujW9WFmzdajqOiMj1SUsj+OBBAOo/9JDZLCIiIiJSLAwaBJ07w9mzEB8PN90EvXs7/61WDaZPN52wZHBZIW3z5s388ssvfPrpp7Rq1YpWrVrxySef8NNPP5GcnHzF+/r7+xMeHp43lS9fPu+29PR0Jk6cyJgxY+jQoQNxcXF89dVXbNiwgbka0dFzeXtD48bO+VWrjEYREbluFy49q14dKlY0m0VEREREigWbDXr2dM7n5Fx82/79zttUTHM9lxXSli5dit1up0WLFnnLWrZsid1u5/fff7/ifRcsWEBoaCi1a9emf//+HD58OO+21atXk5OTQ0JCQt6yyMhI6tev/5fbzcrKIiMj46JJih9HfDwAh376yXASEZHrk/rf/wLgON//o4iIiIjI1eTmwsiRl7/twhhAQ4boMk9Xc1khLTU1ldDQ0EuWh4aGkpqa+pf369KlC5MnT2b+/PmMGTOGlStXcvPNN5N1vi+Z1NRU/Pz8KFeu3EX3CwsL+8vtjho1Kq+fNrvdTlRU1HXsmZiy5HzJ/difLvUVESlu9n/3HQDzT540nEREREREiovFi+FK3cNbFqSkONcT1ylwIW3kyJGXDAbw52nV+UvvbJcZj9WyrMsuv+Dee+/ltttuo379+nTr1o2ZM2eydetWfv755yvmutJ2hw8fTnp6et6UkpJSgD0WdxFxfsCBWidPci4z03AaEZFrZFlUO3QIgHIaaEBERERE8ul8F7uFtp5cG5+C3mHQoEH06tXriutUq1aN9evXc+j8F4U/OnLkCGFhYfl+vIiICKpWrcq2bdsACA8PJzs7m7S0tItapR0+fJjWrVtfdhv+/v74+/vn+zHFPdW4+WYO2WyEWRZbp02jtjroFpFiKHXpUsIdDrKBOvfeazqOiMcYP34848eP1+BTIiLisSIiCnc9uTYFbpEWEhJCTEzMFaeAgABatWpFeno6K1asyLvv8uXLSU9P/8uC1+UcO3aMlJQUIs6/EuLj4/H19WXOnDl56xw8eJCNGzcWaLtS/Hh5e7MjJASAI+onTUSKqb1TpwKwtVQpypx/TxOR6zdw4ECSkpJYeWEwDxEREQ/Tti1UruwcdOBybDaIinKuJ67jsj7S6tatS+fOnenfvz/Lli1j2bJl9O/fn65du1KnTp289WJiYvjufF8xJ0+e5JlnnmHp0qXs3r2bBQsW0K1bN0JCQrjz/GV9drudhx9+mKeffpp58+axdu1aHnjgARo0aECHDh1ctTviJk41aACAj0buFJFiKmvRIgCOVK9uOImIiIiIFCfe3vDuu875yxXTLAvGjnWuJ67jskIawOTJk2nQoAEJCQkkJCTQsGFDJk2adNE6ycnJpKenA+Dt7c2GDRu4/fbbqV27Nn379qV27dosXbqUoKCgvPu888473HHHHdxzzz3ccMMNBAYG8uOPP+KtV4vHs3fqBEDU/v2Gk4iIXJtyW7cC4K1W1CIiIiJSQD16wNSpUKnSpbf5+EBsbNFnKmlslnVhkNSSIyMjA7vdTnp6OsHBwabjSAGkpaQQXKUK3sCxxEQqNGxoOpKISL7lnDpFbpkyBAA7Zs6khgYbKHZ0DuH+9ByJiEhJkJvrHJ3z4EEID4e33oKZM6FNG1i4ELxc2mzKM+X3HKLAgw2ImFQuKoojkZFUPHCAMps2gQppIlKM2DZsIAA4XaoU0R07mo4jIiIiIsWUtze0b/+/v2vUcLZGW7IEPvkEHn3UWDSPpxqlFDsVu3UDwH/tWsNJREQKxuf8ADyB7dvjpe4IRERERKSQVKkCr7/unH/uOThwwGweT6ZCmhQ/LVs6/1261GwOEZGCWrLE+a+GUhIRERGRQjZwILRoARkZMGiQ6TSeS4U0KXbONW0KQM6yZZw7dcpwGhGRfLIsMn/5BYCsZs0MhxERERERT+Pt7bys08cHvvvOOUnhUyFNih2vunU5arPhe+4cO//zH9NxRETy5fDy5QRlZpIFnG3QwHQcEY8zfvx4YmNjaaZCtYiIlGANGsDzzzvnBw6EEyeMxvFIKqRJsePl7U1yxYoAHJk+3XAaEZH82TVpEgCbS5fGHhZmOI2I5xk4cCBJSUmsXLnSdBQRERGjXnwRatd2jug5bJjpNJ5HhTQplk43aQJAwKpVhpOIiOTPuQULADhap47ZICIiIiLi0QIC4OOPnfMffQSLF5vN42lUSJNiKeTOOwGokZqKlZtrOI2IyNWF79gBQECHDoaTiIiIiIina9cO+vd3zvfvD2fPms3jSVRIk2Kpbu/enATKWhZ7fv7ZdBwRkStK37GDGllZANTq29dwGhEREREpCd58E8LDITkZXn/ddBrPoUKaFEsBZcqwpWxZAPZPmWI2jIjIVWz74gsAtvv6EhYbaziNiIiIiJQEZcvCuHHO+TfegI0bjcbxGCqkSbGV3rAhAH7LlxtOIiJyZdnz5wOwPzracBIRERERKUl69IDbb4ecHOclnuoZ6fqpkCbFVoPHHweg6dmzYFmG04iI/LVW584BUOfhhw0nEREREZGSxGaD8eMhKAiWLYMJE0wnKv5USJNiK7RbN/D1xbZ/P+zebTqOiMjlpadjW7kSgPD77jMcRkRERERKmkqVYPRo5/zw4ZCSYjZPcadCmhRfgYHQtKlzfsECo1FERP7S4sXgcEDNmhAVZTqNiIiIiJRAjz4KN9wAJ0/C44/roq7roUKaFGv7atUCYO2YMYaTiIhc3so33wT+934lIiIiIlLUvLzg44/B1xd++gn+8x/TiYovFdKkWEupXRuASlu2qKQuIm7Jvno1ANvUGk3EpcaPH09sbCzNmjUzHUVERMQtxcbCiBHO+SeegOPHzeYprlRIk2Kt/iOPcAYIzc1l39y5puOIiFwkc/duap4+DUDNfv0MpxHxbAMHDiQpKYmV5/skFBERkUsNGwZ168Lhw/Dss6bTFE8qpEmxFlSxIpvsdgD2fPaZ4TQiIhfb8tFHeAHbfH2JUisZERERETHM3x8++cQ5/9lnMH++2TzFkQppUuylnx9wwHfxYsNJREQudnbGDAD2nb8MXURERETEtBtucA44APDII3DmjNk8xY0KaVLshdx7LwC1DxzAkZNjOI2IyP9EJCcD4Nepk+EkIiIiIiL/M2oUVKoEO3bAq6+aTlO8qJAmxV5snz6cAMpaFtumTDEdR0QEgCPr11MzKwsHUOeRR0zHERERERHJExwMH3zgnH/rLUhMNJunOFEhTYo934AAksPDAfDT5Z0i4ibO/vADAFsCAwmpU8dwGhERERGRi3XvDj17Qm4u9Ovn/FeuToU08QjNhg0DIHr7dsNJREScojZtAiBmyBCzQURERERE/sJ774HdDqtWOefl6lRIE4/gdeutzpnFiyEz02wYEZHcXJg9G/jD+5OIiIiIiJuJiIB//cs5/+KLsHu30TjFggpp4hlq1YIaNSAnh7Rp00ynEZESLn3ePDh+3PnzXosWpuOIiIiIiPylhx+Gdu3g9GkYMAAsy3Qi96ZCmniMNef7SUu6UE4XETEkcfRoANaHh4OPj+E0IiIiIiJ/zWaDjz8Gf3+YNQu+/tp0IvemQpp4jLM33QRA9JYtWA6H4TQiUpKVX7kSgOPNmxtOIiIiIiJydbVrwz/+4ZwfMgSOHjUax62pkCYeo+HgwZwBInNz2fXTT6bjiEgJlbZ9O7Hn+2qsNWiQ4TQiIiIiIvnz7LPQoIGziPbUU6bTuC8V0sRjlKlYkfUhIQCkfPyx4TQiUlJtfu89vICt/v5UUos0kSIzfvx4YmNjadasmekoIiIixZKvL3zyifNSz0mT8sbOkj9RIU08ypl27QAI/u03w0lEpKSyzreIPdCokeEkIiXLwIEDSUpKYuX5S6tFRESk4Fq0gMGDnfOPPgqnTpnN445USBOPEj1wIAD1T5zgxJ49htOISEmTe/Ys9c6PGW7v08dsGBERERGRa/DPf0KVKrB7N7z8suk07keFNPEoVW+6ie1+fvgCW8aMMR1HREqYpA8/pKxlcdhmo36/fqbjiIiIiIgUWJky8OGHzvl33oHVq83mcTcqpInHOdWxIwCNdu0ynERESppaSUkAHGreHN+AAMNpRERERESuTZcucN994HBAv36Qk2M6kftQIU08TqNXXgGg1Pz5cOaM4TQiUmJYFgEzZwLQ4KWXDIcREREREbk+Y8dC+fKwbp2zZZo4qZAmnqdJE+cF3adPw5w5ptOISEmxZg3s2welS8Mtt5hOIyIiIiJyXUJD4e23nfMvvwzbt5vN4y5USBPPY7NxpksXADb93/8ZDiMiJcW6kSMBONO+PeiyThERERHxAA8+CB06wNmzMGAAWJbpROapkCYeaUtMDACRq1eTc/q04TQiUhIEnm8Bu7ZKFcNJREREREQKh83mHHigVCmYNw+++MJ0IvNUSBOP1PDxxzlis1HOslg/bpzpOCLi4Xb+9BO1s7LIBuo9/7zpOCIiIiIihaZGDTjfFTlPPQWHDpnNY5oKaeKRvP38SK5TB4BTn39uOI2IeLp9b70FwOrQUOxVqxpOIyIiIiJSuIYOhbg4SEuDIUNMpzFLhTTxWKX+9jcAGiQnk3PqlOE0IuKpLIeDqkuXApDTo4fhNCIiIiIihc/HBz75BLy84Ntv4eefTScyR4U08VgNBw8m1cuLcpZF4ujRpuOIiIfaPGkSVXNyOAXEvfyy6TgiIiIiIi4RH++8tBPgsccgM9NsHlNUSBOP5RsQwOaGDQHI+fe/zYYREY916L33AEiMiiIoPNxwGhERERER13nlFYiOhpQUePFF02nMUCFNPFrY0KEAxO/fj5WRYTiNiHgch4PGyckA+PTpYziMiIiIiIhrBQbCRx85599/H5YvN5vHBJcW0tLS0ujTpw92ux273U6fPn04ceLEFe9js9kuO711viNngPbt219ye69evVy5K1JM1X3gAc7VqIGfw4Ht++9NxxERT7NoEeVOncIRHEzc8OGm04iIiIiIuFzHjvDgg2BZ0K8fZGebTlS0XFpI6927N+vWreOXX37hl19+Yd26dfS5yi/2Bw8evGj67LPPsNls3HXXXRet179//4vW++hCSVTkD2xeXvg8+KDzj8mTzYYREc/z2WcAeN1zD75lyhgOI1KyjR8/ntjYWJo1a2Y6ioiIiMcbMwZCQmDjRvhDu6cSwWZZluWKDW/evJnY2FiWLVtGixYtAFi2bBmtWrViy5Yt1KlTJ1/bueOOO8jMzGTevHl5y9q3b0/jxo0ZO3bsNWXLyMjAbreTnp5OcHDwNW1DipHt26FWLSwvL9JWr6Z848amE4mIB8jct4/StWrhdfYsLF0KLVuajiRFQOcQ7k/PkYiISNH4+mu4/37w94fERMhnmcdt5fccwmUt0pYuXYrdbs8rogG0bNkSu93O77//nq9tHDp0iJ9//pmHH374ktsmT55MSEgI9erV45lnniHzCsNFZGVlkZGRcdEkJUjNmmyvXBmbw8GG832miYhcr7XPPYfX2bPsL1sW/vBZJyIiIiJSEtx3H3TuDFlZ8Mgj4HCYTlQ0fFy14dTUVEJDQy9ZHhoaSmpqar628cUXXxAUFESPHj0uWn7//fcTHR1NeHg4GzduZPjw4SQmJjJnzpzLbmfUqFG88sorBd8J8Rip3btT84MPqLV4MeeysvDx9zcdSdyBZcHx42Ru2sTBNWvISUsjNyMDx9mz2AIC8CldGt/y5QmLi8MeGwsVK4KXxmgRsCyLCuf7Xdzerh2VbDazgUREREREipjNBhMmQL16sGgRTJwI/fubTuV6BS6kjRw58qpFqZUrVwLOgQP+zLKsyy6/nM8++4z777+fgICAi5b3/8MzU79+fWrVqkXTpk1Zs2YNTZo0uWQ7w4cP56mnnsr7OyMjg6ioqHxlEM/Q7PXXOT5hApG5uSx77TVavvqq6UhS1CyLffPnc+Cbb3CsXk1Dh4PAnTvh5EmCgKD8bKNUKbJq1WLtuXPQpAmVevemckICNm9vF4cXd5P0zTfUO3OGbKDhm2+ajiMiIiIiYkS1avDaazB0KDz7LHTtChERplO5VoELaYMGDbrqCJnVqlVj/fr1HDp06JLbjhw5QlhY2FUfZ/HixSQnJzNlypSrrtukSRN8fX3Ztm3bZQtp/v7++KsFUonmb7ezvEkTbly9GsdHH4EKaSVCZmoqG954A37+mehdu6icm0vly6yXXa4cySdPcsbXl2wfH3K9vfHOzcUnN5fA7GxqlS5NqfR0OHMG//XraQmQlARffcUxLy+2VaqEo2tX6j3/PPaqVYt4L8WE1Ndfpx6wrkoVmteubTqOiIiIiIgxTzzh7C9t5Urn/NSpphO5VoELaSEhIYSEhFx1vVatWpGens6KFSto3rw5AMuXLyc9PZ3WrVtf9f4TJ04kPj6eRo0aXXXdTZs2kZOTQ4Snlz3lulT95z+hSxeaHz7Mnt9/p2o+XodSDOXkwI8/cmzcOEr9+it/fJazgI1BQRypWZMqXbsSe999EB2NX0AADfKz3V272PnDD2ybOpVyW7ZQLz2dCg4HFVJSYMIEsidM4HCTJoQOHQp33QWlSrluP8WYzP37abZpEwCBTzxhOI2IiIiIiFne3vDJJxAfD9Omwfffwx13mE7lOi4btROgS5cuHDhwgI8++giARx55hKpVq/Ljjz/mrRMTE8OoUaO4884785ZlZGQQERHBmDFjGDBgwEXb3LFjB5MnT+bWW28lJCSEpKQknn76aUqVKsXKlSvxzsclVhrNqeTaWK4c9U+cYF6rVtySz0EvpHjY8ssvBHz1FdXmzoU/tIZN8fFhe+PGBN5xB7H9+xN0mb4br9WZ9HS2fPUVJ775hiorV1IjO/t/N5Yty4FbbuFQ9+407tMn35e0i/tb0KMH7b/7jp1+fkSfPq1Le0sYnUO4Pz1HIiIiZrzwAowaBZGRzgt47HbTiQrG+Kid4BxZs0GDBiQkJJCQkEDDhg2ZNGnSReskJyeTnp5+0bJvv/0Wy7K47777Ltmmn58f8+bNo1OnTtSpU4fBgweTkJDA3Llz81VEk5Lt1Pn+9ZqsWIHj5EnDaeR6ORwOlowezW/ly1O7SxeqTZ7sLKKFhcFzz5H6009UzsrippUraTFiRKEW0QBK2e3EDRzITUuWUCMri4Pz5sHLL0OVKnDiBJHTphHXty/Ly5ZlwYgRnMvJKdTHFwMcDmrMnAnA/h49VEQTERERETnvpZegZk04cACGDzedxnVc2iLNXemXypIrNzub05UqEXT0KHz4ITz6qOlIcg2ys7JYNHw45T78kPgzZ/KWrw8NpcZbb1H6vvvA19dcwNxccmfPZu3jjxO3ezcXSi2bfH3Z26sXN02YQEDp0ubyybX76Sfo1o3swEByd++mVMWKphNJEdM5hPvTcyQiImLOr7/CzTc755csgRtuMJunINyiRZqIu/H28yPoxRedf7zzDjgcZgNJwVgWK19/neTgYDq88w7xZ86QBSxv2JBDixbR8NAhSj/4oNkiGoC3N95dutB01y5OrFrF8hYtOAXUy8mhy6RJ7C5bliVPPw0l73eM4m/sWAD8HntMRTQRERERkT+56SZ4+GHnfL9+kJVlNo8rqJAmJc/f/w7BwZCczPFvvjGdRvJrxQro0IFmI0bQIDubkzYby2+8kazNm2mRmEhY27amE15Whfh4Wixbhte+fazo3p10m42Yc+do8/bb0LQpzJypgloxcWLBApg3D7y8YNAg03FERERERNzSW285e9vZssXZZ5qnUSFNSp6gIA7dfjsAuwYMwFKrNLe2fto0Upo3hxYtYP588PNjc+fO2HbupMXChQTHxJiOmC+lKlWi+X//S8DBgyR264ZVpgysWQO33sqRuDhWfvaZ6YhyFUm9ewOQeuONUK2a2TAiIiIiIm6qXDl4/33n/OuvOwce8CQqpEmJ5PvMM2QB8SdPsvLNN03Hkcs4snMnMxo2JKZnT6JWrsTy8oK//Q22bqXuzJmULqaFDP+wMBr98AO2nTvh6aex/PyomJhIk4cf5pfq1dm5fLnpiHIZm6ZMofXBgwCcefppw2lERERERNxbz57QrRvk5ED//p7Vq5IKaVIilW/YkJWNGwPg+9prapXmRnKys/nlgQc4V7Mmt27YgB+QGBnJsfnz4bPPoGpV0xELR8WK8K9/kbl8OWtq1MAb6LxrFxVatmRWQgJnMzNNJ5Q/ODZ0KAArqlQhumtXw2lERERERNybzQbjx0OZMvD7786x/jyFCmlSYtX98kvOAnEnT/Lbq6+ajiPAmk8/ZWPZsnSePJkIyyLF35+k0aNptH8/Ie3amY7nEsGNG9Nk+3Z2/fvfbAsKwg50mjOHPSEhLH/7bdPxBFg/ZQptzrdGC7vQRl1ERERERK4oKgreeMM5P2wY7NtnNk9hUSFNSqwKDRqwplkzAEq/+Sa5584ZTlSCZWZy8uGHady/P3FnznAKWHHnnUQeP07sc8+ZTlckovv2pWZaGqsee4zjXl7Uyc6mxdNPk3bXXXDsmOl4JVr6k0/iBayOiqJq9+6m44iIiIiIFBuPPQatWkFmJgwc6BnjrKmQJiVavS+/5AwQd+YMS0pIwcbt/Pwz1KtHmc8+wwtYXqMGORs20Hz6dLwDA02nK1I2b2+afvABvjt2sKx+fQDKTZ8OderA5597xqdOMbPivfdoe+gQDiB0wgTTcUREREREihUvL/jkE/D1hR9+gGnTTCe6fiqkSYlmj4lhzflLBmM+/RSysgwnKjmObtrE0mrVoGtXSEmB6GisX36hxfbtlD1fRCqpgqpVo+WGDViLF0P9+s4WaX//OxsrVGD3jBmm45UclkXF0aMBWBEbS9RttxkOJCIiIiJS/NSrB8OHO+cHDYK0NLN5rpcKaVLiNfl//4+z5coRlpn5vzF6xWUsh4PfH3kE7wYNaLVnD7mA9fTTsGEDtk6dTMdzK7Y2bWDNGnjrLc56e1M/LY3I227j91tu4dzJk6bjeb7vviP6wAFy/f2pM2WK6TQiIiIiIsXWCy9ATAwcOgTF/WIwFdKkxCsVGkrAhU7d/+//4PBhs4E82IFFi0gMDaX1J59QzrLYHBBA8pdfYvvXv6B0adPx3JOvLzzzDEcWLmRpSAh+QOv589kfEsL2Tz81nc5znTwJQ4YA4P3ss5Qr4a0kRYqD8ePHExsbS7Pz/Z+KiIiI+/D3d17iCfDpp7BggdE418VmWSWv052MjAzsdjvp6ekEBwebjiPuwOGAZs1gzRqSW7SgzrJlphN5FEdWFsvuuYe4H36gFHAaWNq5MzdOn45vqVKm4xUblsPBgsGDifngAyLOv3WvadiQejNn4h8ZaTidZ1nXqRONZ8+GatVg0yYoYf31yV/TOYT703MkIiLivh57DD78EGrVgsREcKevg/k9h1CLNBEALy/O/OtfOIA6y5ez6MIF3HL9Vq3iRO3atD5fRFtpt3Nw1ixumTlTRbQCsnl5cdO4cXht2cLM6tVxAE3Wrye3dm2YNEmDERSS5RMnUm/2bAAyXntNRTQRERERkULyxhsQGQnbtsE//2k6zbVRIU3kvFI33cTyFi0AqP7mmxzevt1womLu1Cl46ilo0YLye/eS4ePDvD59iD92jBoJCabTFWthtWvTZccOFr72GjsDAwk8dQoefBASEkCv2+ty6sQJAh9/HF9gXXQ0wb17m44kIiIiIuIx7HYYP945/+absH692TzXQoU0kT+InzmTFD8/KjscrElIoARe+Vwotowdy+GKFeGdd5yXzfbuTdC+fdzy5Zd4eXubjucxbnrhBaLT0uD11yEgAObOJbtOHZIfegiys03HK5YWdepEg+xs0ry8qDlrluk4IiIiIiIe5447oEcPOHcO+vWD3FzTiQpGhTSRP/ArV47sceMA6LxrF/OfeMJwouLl1K5drIqJIWboUELPnOGE3Q4zZsDkydjCwkzH80g2Pz/nWNIbN7Kvbl38HA7qfPEFKaGhpP38s+l4xcrif/2LjitWALDnuecoU6uW4UQiIiIiIp7p/fedrdNWroTzX8GLDRXSRP6kRv/+LGvTBoD48ePZrGLE1VkW6596iuyaNWmanEwu8Evdupxbtw66dDGdrmSoUYNyK1bwdZcuHAGi0tOxd+3K1ltuwUpLM53O7e1LTKTa88/jA6ypXZvGo0aZjiQiIiIi4rEiI52XdgKMGAF79pjNUxAqpIlcRvO5c9lctixlAe/evSEry3Qkt3Vs+XI2RUTQ8J13KOdwkOTry8r33qNzUhIh1aqZjleilC5Tht4zZrBvzhy+L1cOL6D2/PmkhYdzePx4DUbwVxwOjnXtSpTDwV5/f+ovWWI6kYiIiIiIx+vXD9q2dXav/dhjxefrigppIpfh5e9P+IIFnPL3p3ZGhvN/eHH5X11UcnLgjTcIuuEG6h06xBngp7ZtqXr4MC11SaxRcR06cNuhQ0zu14+tNhvls7MJHTQIunUrXj/1FJXhw2m0bx/Z3t54T5+OX8WKphOJiIiIiHg8Ly/4+GPw84OZM+Hbb00nyh8V0kT+QrlGjSj944/g7Q1ffQUjR5qO5Das+fOhcWMYPhy/3FxW2u1smz6drosWUbpsWdPxBPD19eX+Tz7BlpjIpOhoHD4+8PPPUK8e1pgxzp49BT78MK9Nud8XX1Dp1lsNBxIRERERKTliYuCll5zzTz4Jx46ZzZMfKqSJXEnHjs4v2gCvvsrPd91lNo9hJzZuZFWtWthuuQWSkiAkBL74gmZpaTS8807T8eQyajVoQJ+dO/FKTIQ2beDUKWzPPMOusDCOlPBRKec/9RSOxx93/vHqq3D//WYDiYiIiIiUQM89B/Xrw5Ej8PTTptNcnQppIlfTrx97H3gAgC7TpzOnd2/DgYpe7pkzrOjZE98GDWi6fTu5QFrv3pCcDA8+CDab6YhyNbGxsHAhGf/6F2lA9PHjlO/cmVU33kj28eOm0xW5Bc88ww3vvIOXZbGjbVt48UXTkURERERESiQ/P/jkE+fXyi++gLlzTSe6MhXSRPKhypdfsiw+Hi/glm++YWbPnqYjFQnL4WD1Cy+QUrYszadNozSwtlQp1nz0EeUmT4by5U1HlILw8iL46afZ+8svzK5QAW+g6eLFHAsNZfmAAThyckwnLBILnn6a1mPG4A+sjo4mes4cFYNFRERERAxq2RIGDXLOP/oonD5tNs+VqJAmkh82Gy1WrGBZ8+Z4AV2mTWNOu3Y4cnNNJ3OZ1GnTSCpXjvhRo6iWnc1hm41Z991H/bQ0mj3yiOl4ch0adepEh8OHmT10KHu8vYnIzaXFRx+xw25nz0cfeezAGpZlMadnT9q8/TZ+wMrq1YnbvBkvf3/T0URERERESrzXXoOoKNi50727KFchTSSfbF5etFy2jGVt2gDQcdEiFkVHc8rTLotLSoIePQjv2ZN6GRmcAua0aoXv7t10+vprfFV08AheXl4kvP02IYcOMadTJ9KAWmfOUHXAAGffgCtXmo5YqM5lZTGvcWM6TpuGD7CiTh3iVUQTEREREXEbQUHwwQfO+bffhjVrzOb5KyqkiRSEzUbLxYtZ+tBDnAPap6RwrnlzZ19hxdzmKVNYU6sWVv368N134OXF/ttuI23FCjr+/jvlqlQxHVFcoHSFCnT85RfObdnCzrvucnZQMG8eNG/Oluho1o4fj1XcW6ilpHC2TRs6rF8PwO9dutAsKQkvPz/DwURERERE5I+6doV774XcXOjXD86dM53oUiqkiVyDVp9/TvI773C6dGnsO3ZAkybO0T0dDtPRCsSyLJaPG8fS8HDq9upFk+3bsVkW9OgBGzZQ6aefqNysmemYUgQq1qlD9alTnUXhvn2xvL2J2b2buEGDWFOuHL/985/kuuOn2JVYFkyZAo0aUWbVKrL9/Vn5zDO0njEDm5c+/kRERERE3NG770K5crB2LYwdazrNpfRNQuQa1RsyhMCtW6FDB2dPiI89RlK5cmz99lvT0a7qVFoac/v1I7F0aVo88QStDh3CASytWpXdP/4I06Y5R3mUkqdaNfj3vzm4YAFL6tYlB4hPT+eGl15iW2Ags+6+m+P79plOeVV7585lTWgo9OoFaWnQtCl+GzfS7K23TEcTEREREZErCAuDMWOc8//4h7PPNHeiQprI9YiMhFmzYOxYTvv4EJuRQc377mN5rVrsnz/fdLpLbd3KyaFDyahQgQ4TJ9L4zBmygeUxMaT88gutdu+mWteuplOKG4hs04Y2SUkcX7GC3+PiOAXE5OTQaepUiIri6EMPQWKi6ZiXOLpmDb83bEh4x440OXqULJsN6x//gN9+g5o1TccTEREREZF8eOghuPlmOHPGOYqnO/U2Y7OKfec3BZeRkYHdbic9PZ3g4GDTccRDHFi1ip133UWbvXsByAXWVauGfcQIaj78MNhsRZ7JsizWz57N2a+/pkVyMixfnnfbIW9vdnbsSL133yW4du0izybFy+n9+9kwdCiV/vtfKmdn/++GBg3YFB/PmW7diLv9dry9vYs+nGWxd9o0Ul96icZbtnCh57PlFSoQ+u23RHfoUPSZxGPpHML96TkSERHxDNu3Q4MGcPYsfP658+KZgwchIgLatoXC/uqR33MIFdJ0giWFbO3nn3P6uee44ejRvGUHg4KIePJJ6NkTGjZ0aVHtxNGjrJ80icwpU4hcu5a4PxY9vL2hUydOdO9OcN++eAUEuCyHeCbr3DmOf/UVFX76CX78Ef7w+trk48OuevUoc8891Ovbl4qVKrk2THIyTJ3KwfffJ+LQobzFK4OCsEaOpNnQodgMFLDFs+kcwv3pORIREfEco0fDsGHOr9B/rF5VruzsS61Hj8J7LBXSrkAnWFIU1n75JUdefZVWO3YQ9Ifl5ypVYn25cvjcfDNV774be/PmzpESr4XDAXv3woYNrP/yS07NmkW9zEz+/KreVq4cIU88QbnHH3decC5SGNLSyPj0U/a/9Ra1jxzhjz8InQY2BAZi3XADLQcMcP6UVL36tf9sdO4cmWvXsnfaNM7OmkWD48fxO9/6E+As8FvlypR+5hlaDB6sApq4jM4h3J+eIxEREc/x//6fcxTPP7twuj91auEV01RIuwKdYElROrR9O0ELFhA4YwbMnOlsl/oH54D9gYFklC9PVoUKVG3Rgop16oC/P0czMtixZw85mZk40tNxZGRgO3yYgKNHCc7MpLaPD96nT1/ymBleXuyMisLWrRu1hw6lVPXqRbS3UlJlHzzItvfeI2vaNKrt3En53NxL1rECAtiWm8uJoCBOly+PFRaGT9myeAUF4RUURHSVKoSXLw/Z2ZzYtYvtixbhd+wYZdLSqHTyJP5/3qCPD3TowNmuXTnUqhVVmzQpkn2Vkk3nEO5Pz5GIiIhnyM11Xs75V2Od2WzOlmm7dhXOZZ4qpF2BTrDEmFOnSPr0U3Z8/jlhW7dS+8wZyl7vNv38oG5dMqpUYVuFClS5/34q3nRT4V8wLpJflsWJZcvYPWkS1Q4epGxKCmzadEkRuaBOAsl+fhysUYPIXr1oMngwlC1bKJFF8kvnEO5Pz5GIiIhnWLAAbrrp6uv9+iu0b3/9j5ffcwif638oEcm30qWJffJJYp98EoD0EydYt2QJRxcu5PTWrdgOH6ZtzZqUdTggJ4fUlBR2b91Krp8fuYGBWKVKQcWK+EZHUyYmhqg2bSjXrBn4+hIMxJvdOxEnm42yrVrRuFWr/y3LzeXk+vXsmDePU8nJnNu9Gys1Fdvp03ifPYtPVhYRUVFUqVkT/Pw44+fHvE2bICICv2rVqNC2LTVuvpn48uXN7ZeIiIiIiBSZgwcLd73CokKaiEH2smVp3LUrdO162dvDz08ixZ63N2Xi4mgUF5ev1UsBl/9fISIiIiIiJUFEROGuV1i8ivbhRERERERERERErqxtW2cfaH81jpjNBlFRzvWKkgppIiIiIiIiIiLiVry94d13nfN/LqZd+Hvs2KLvHlyFNBEREREp9saPH09sbCzNmjUzHUVEREQKSY8eMHUqVKp08fLKlZ3Le/Qo+kwatVOjOYmIiEg+6RzC/ek5EhER8Ty5ubB4sXNggYgI5+Wchd0STaN2ioiIiIiIiIhIseftDe3bm07hpEs7RURERERERERE8kGFNBERERERERERkXxwaSHttddeo3Xr1gQGBlK2bNl83ceyLEaOHElkZCSlSpWiffv2bNq06aJ1srKyeOKJJwgJCaF06dJ0796dffv2uWAPREREREREREREnFxaSMvOzubuu+/msccey/d93nzzTd5++23GjRvHypUrCQ8Pp2PHjmRmZuatM2TIEL777ju+/fZblixZwsmTJ+natSu5ubmu2A0REREREREREZGiGbXz3//+N0OGDOHEiRNXXM+yLCIjIxkyZAjPP/884Gx9FhYWxujRo3n00UdJT0+nYsWKTJo0iXvvvReAAwcOEBUVxYwZM+jUqdNV82g0JxEREbkWOodwf3qORERE5Frk9xzCrfpI27VrF6mpqSQkJOQt8/f3p127dvz+++8ArF69mpycnIvWiYyMpH79+nnr/FlWVhYZGRkXTSIiIiIiIiIiIgXhVoW01NRUAMLCwi5aHhYWlndbamoqfn5+lCtX7i/X+bNRo0Zht9vzpqioKBekFxERERERERERT1bgQtrIkSOx2WxXnFatWnVdoWw220V/W5Z1ybI/u9I6w4cPJz09PW9KSUm5rnwiIiIiIiIiIlLy+BT0DoMGDaJXr15XXKdatWrXFCY8PBxwtjqLiIjIW3748OG8Vmrh4eFkZ2eTlpZ2Uau0w4cP07p168tu19/fH39//2vKJCIiIiIiIiIiAtdQSAsJCSEkJMQVWYiOjiY8PJw5c+YQFxcHOEf+XLhwIaNHjwYgPj4eX19f5syZwz333APAwYMH2bhxI2+++aZLcomIiIiIiIiIiBS4kFYQe/fu5fjx4+zdu5fc3FzWrVsHQM2aNSlTpgwAMTExjBo1ijvvvBObzcaQIUN4/fXXqVWrFrVq1eL1118nMDCQ3r17A2C323n44Yd5+umnqVChAuXLl+eZZ56hQYMGdOjQwZW7IyIiIiIiIiIiJZhLC2n/+Mc/+OKLL/L+vtDK7Ndff6V9+/YAJCcnk56enrfOc889x5kzZ3j88cdJS0ujRYsWzJ49m6CgoLx13nnnHXx8fLjnnns4c+YMt9xyC//+97/x9vZ25e6IiIiIiIiIiEgJZrMsyzIdoqhlZGRgt9tJT08nODjYdBwREREpJnQO4f70HImIiMi1yO85hEtbpLmrC7XDjIwMw0lERESkOLlw7lACf4csNnSeJyIiItciv+d5JbKQlpmZCUBUVJThJCIiIlIcZWZmYrfbTceQy9B5noiIiFyPq53nlchLOx0OBwcOHCAoKAibzVbo28/IyCAqKoqUlBRdUmCAjr95eg7M0vE3S8ffLFcff8uyyMzMJDIyEi8vr0Lfvlw/V5/nmVIS31tK2j5rfz2b9tezaX89Q37P80pkizQvLy8qV67s8scJDg72qBdVcaPjb56eA7N0/M3S8TfLlcdfLdHcW1Gd55lSEt9bSto+a389m/bXs2l/i7/8nOfpp1QREREREREREZF8UCFNREREREREREQkH1RIcwF/f39efvll/P39TUcpkXT8zdNzYJaOv1k6/mbp+IunKomv7ZK2z9pfz6b99Wza35KlRA42ICIiIiIiIiIiUlBqkSYiIiIiIiIiIpIPKqSJiIiIiIiIiIjkgwppIiIiIiIiIiIi+aBCmoiIiIiIiIiISD6okHaNPvjgA6KjowkICCA+Pp7Fixdfcf2FCxcSHx9PQEAA1atX58MPPyyipJ6pIMd/+vTpdOzYkYoVKxIcHEyrVq2YNWtWEab1PAV9/V/w22+/4ePjQ+PGjV0b0MMV9PhnZWUxYsQIqlatir+/PzVq1OCzzz4rorSep6DHf/LkyTRq1IjAwEAiIiL429/+xrFjx4oorWdZtGgR3bp1IzIyEpvNxvfff3/V++jzV4q7UaNG0axZM4KCgggNDeWOO+4gOTnZdKwiM2rUKGw2G0OGDDEdxWX279/PAw88QIUKFQgMDKRx48asXr3adCyXOHfuHC+++CLR0dGUKlWK6tWr8+qrr+JwOExHKxRX+5yyLIuRI0cSGRlJqVKlaN++PZs2bTITthBcaX9zcnJ4/vnnadCgAaVLlyYyMpIHH3yQAwcOmAt8nQpyHvLoo49is9kYO3ZskeUrbPnZ382bN9O9e3fsdjtBQUG0bNmSvXv3Fn3YIqZC2jWYMmUKQ4YMYcSIEaxdu5a2bdvSpUuXv3zB7Nq1i1tvvZW2bduydu1aXnjhBQYPHsy0adOKOLlnKOjxX7RoER07dmTGjBmsXr2am266iW7durF27doiTu4ZCnr8L0hPT+fBBx/klltuKaKknulajv8999zDvHnzmDhxIsnJyXzzzTfExMQUYWrPUdDjv2TJEh588EEefvhhNm3axH/+8x9WrlxJv379iji5Zzh16hSNGjVi3Lhx+Vpfn7/iCRYuXMjAgQNZtmwZc+bM4dy5cyQkJHDq1CnT0Vxu5cqVfPzxxzRs2NB0FJdJS0vjhhtuwNfXl5kzZ5KUlMSYMWMoW7as6WguMXr0aD788EPGjRvH5s2befPNN3nrrbd4//33TUcrFFf7nHrzzTd5++23GTduHCtXriQ8PJyOHTuSmZlZxEkLx5X29/Tp06xZs4aXXnqJNWvWMH36dLZu3Ur37t0NJC0c+T0P+f7771m+fDmRkZFFlMw1rra/O3bsoE2bNsTExLBgwQISExN56aWXCAgIKOKkBlhSYM2bN7cGDBhw0bKYmBhr2LBhl13/ueees2JiYi5a9uijj1otW7Z0WUZPVtDjfzmxsbHWK6+8UtjRSoRrPf733nuv9eKLL1ovv/yy1ahRIxcm9GwFPf4zZ8607Ha7dezYsaKI5/EKevzfeustq3r16hcte++996zKlSu7LGNJAVjffffdFdfR5694osOHD1uAtXDhQtNRXCozM9OqVauWNWfOHKtdu3bWk08+aTqSSzz//PNWmzZtTMcoMrfddpv197///aJlPXr0sB544AFDiVznz59TDofDCg8Pt9544428ZWfPnrXsdrv14YcfGkhYuPLzubxixQoLsPbs2VM0oVzor/Z33759VqVKlayNGzdaVatWtd55550iz+YKl9vfe++91yP/7+aHWqQVUHZ2NqtXryYhIeGi5QkJCfz++++Xvc/SpUsvWb9Tp06sWrWKnJwcl2X1RNdy/P/M4XCQmZlJ+fLlXRHRo13r8f/888/ZsWMHL7/8sqsjerRrOf4//PADTZs25c0336RSpUrUrl2bZ555hjNnzhRFZI9yLce/devW7Nu3jxkzZmBZFocOHWLq1KncdtttRRG5xNPnr3ii9PR0AI8/jxk4cCC33XYbHTp0MB3FpS58Tt99992EhoYSFxfHJ598YjqWy7Rp04Z58+axdetWABITE1myZAm33nqr4WSut2vXLlJTUy/6XPL396ddu3b5/h5T3KWnp2Oz2Ty2xaXD4aBPnz48++yz1KtXz3Qcl3I4HPz888/Url2bTp06ERoaSosWLfLV7YYnUCGtgI4ePUpubi5hYWEXLQ8LCyM1NfWy90lNTb3s+ufOnePo0aMuy+qJruX4/9mYMWM4deoU99xzjysierRrOf7btm1j2LBhTJ48GR8fn6KI6bGu5fjv3LmTJUuWsHHjRr777jvGjh3L1KlTGThwYFFE9ijXcvxbt27N5MmTuffee/Hz8yM8PJyyZct6zCUs7k6fv+JpLMviqaeeok2bNtSvX990HJf59ttvWbNmDaNGjTIdxeV27tzJhAkTqFWrFrNmzWLAgAEMHjyYL7/80nQ0l3j++ee57777iImJwdfXl7i4OIYMGcJ9991nOprLXThXuJ7vMcXZ2bNnGTZsGL179yY4ONh0HJcYPXo0Pj4+DB482HQUlzt8+DAnT57kjTfeoHPnzsyePZs777yTHj16sHDhQtPxXE7faq+RzWa76G/Lsi5ZdrX1L7dc8qegx/+Cb775hpEjR/Lf//6X0NBQV8XzePk9/rm5ufTu3ZtXXnmF2rVrF1U8j1eQ17/D4cBmszF58mTsdjsAb7/9Nj179mT8+PGUKlXK5Xk9TUGOf1JSEoMHD+Yf//gHnTp14uDBgzz77LMMGDCAiRMnFkXcEk+fv+JJBg0axPr161myZInpKC6TkpLCk08+yezZs0tEPzsOh4OmTZvy+uuvAxAXF8emTZuYMGECDz74oOF0hW/KlCl89dVXfP3119SrV49169YxZMgQIiMj6du3r+l4ReJav8cUZzk5OfTq1QuHw8EHH3xgOo5LrF69mnfffZc1a9Z4/PMJ5A0QcvvttzN06FAAGjduzO+//86HH35Iu3btTMZzORXSCigkJARvb+9LfjU4fPjwJb8uXBAeHn7Z9X18fKhQoYLLsnqiazn+F0yZMoWHH36Y//znPx5/mYCrFPT4Z2ZmsmrVKtauXcugQYMA55uuZVn4+Pgwe/Zsbr755iLJ7gmu5fUfERFBpUqV8opoAHXr1sWyLPbt20etWrVcmtmTXMvxHzVqFDfccAPPPvssAA0bNqR06dK0bduWf/7zn0RERLg8d0mmz1/xJE888QQ//PADixYtonLlyqbjuMzq1as5fPgw8fHxectyc3NZtGgR48aNIysrC29vb4MJC1dERASxsbEXLatbt67HDory7LPPMmzYMHr16gVAgwYN2LNnD6NGjfL4Qlp4eDjgbJn2x8///HyPKc5ycnK455572LVrF/Pnz/fY1miLFy/m8OHDVKlSJW9Zbm4uTz/9NGPHjmX37t3mwrlASEgIPj4+l33/8uQfey7QpZ0F5OfnR3x8PHPmzLlo+Zw5c2jduvVl79OqVatL1p89ezZNmzbF19fXZVk90bUcf3C2RHvooYf4+uuv1TfRdSjo8Q8ODmbDhg2sW7cubxowYAB16tRh3bp1tGjRoqiie4Rref3fcMMNHDhwgJMnT+Yt27p1K15eXh79RcwVruX4nz59Gi+viz9qL3wBvNAySlxHn7/iCSzLYtCgQUyfPp358+cTHR1tOpJL3XLLLZecOzRt2pT777+fdevWeVQRDZyf08nJyRct27p1K1WrVjWUyLX+6nPxQusWTxYdHU14ePhFn0vZ2dksXLjwit9jirMLRbRt27Yxd+5cj/4Rq0+fPqxfv/6i967IyEieffZZZs2aZTpeofPz86NZs2Yl6v3rIiZGOCjuvv32W8vX19eaOHGilZSUZA0ZMsQqXbq0tXv3bsuyLGvYsGFWnz598tbfuXOnFRgYaA0dOtRKSkqyJk6caPn6+lpTp041tQvFWkGP/9dff235+PhY48ePtw4ePJg3nThxwtQuFGsFPf5/plE7r09Bj39mZqZVuXJlq2fPntamTZushQsXWrVq1bL69etnaheKtYIe/88//9zy8fGxPvjgA2vHjh3WkiVLrKZNm1rNmzc3tQvFWmZmprV27Vpr7dq1FmC9/fbb1tq1a/NG/9Lnr3iixx57zLLb7daCBQsuOo85ffq06WhFxpNH7VyxYoXl4+Njvfbaa9a2bdusyZMnW4GBgdZXX31lOppL9O3b16pUqZL1008/Wbt27bKmT59uhYSEWM8995zpaIXiap9Tb7zxhmW3263p06dbGzZssO677z4rIiLCysjIMJz82lxpf3Nycqzu3btblStXttatW3fR+1dWVpbp6Nfkas/vnxX3UTuvtr/Tp0+3fH19rY8//tjatm2b9f7771ve3t7W4sWLDSd3PRXSrtH48eOtqlWrWn5+flaTJk0uGoK8b9++Vrt27S5af8GCBVZcXJzl5+dnVatWzZowYUIRJ/YsBTn+7dq1s4BLpr59+xZ9cA9R0Nf/H6mQdv0Kevw3b95sdejQwSpVqpRVuXJl66mnnipRX8AKW0GP/3vvvWfFxsZapUqVsiIiIqz777/f2rdvXxGn9gy//vrrFd/P9fkrnuhyr3nA+vzzz01HKzKeXEizLMv68ccfrfr161v+/v5WTEyM9fHHH5uO5DIZGRnWk08+aVWpUsUKCAiwqlevbo0YMaLYFlb+7GqfUw6Hw3r55Zet8PBwy9/f37rxxhutDRs2mA19Ha60v7t27frL969ff/3VdPRrcrXn98+KeyEtP/s7ceJEq2bNmlZAQIDVqFEj6/vvvzcXuAjZLEvXloiIiIiIiIiIiFyN+kgTERERERERERHJBxXSRERERERERERE8kGFNBERERERERERkXxQIU1ERERERERERCQfVEgTERERERERERHJBxXSRERERERERERE8kGFNBERERERERERkXxQIU1ERERERERERCQfVEgTERERERERERHJBxXSRERERERERERE8kGFNBER4JtvviEgIID9+/fnLevXrx8NGzYkPT3dYDIRERERuV7bt2/HZrPx888/c8sttxAYGEidOnVYvny56WgiUsyokCYiAvTq1Ys6deowatQoAF555RVmzZrFzJkzsdvthtOJiIiIyPVITEzEZrMxZswYXnzxRRITE6lSpQrDhg0zHU1Eihkf0wFERNyBzWbjtddeo2fPnkRGRvLuu++yePFiKlWqZDqaiIiIiFynxMRE7HY7U6ZMoWLFigDccccdTJgwwXAyESluVEgTETmva9euxMbG8sorrzB79mzq1atnOpKIiIiIFILExES6deuWV0QD2LlzJzVr1jSYSkSKI13aKSJy3qxZs9iyZQu5ubmEhYWZjiMiIiIihSQxMZFWrVpdtGzt2rU0btzYTCARKbZUSBMRAdasWcPdd9/NRx99RKdOnXjppZdMRxIRERGRQpCens6ePXuIi4u7aPm6detUSBORAtOlnSJS4u3evZvbbruNYcOG0adPH2JjY2nWrBmrV68mPj7edDwRERERuQ6JiYl4e3vTqFGjvGV79uwhLS1NhTQRKTC1SBOREu348eN06dKF7t2788ILLwAQHx9Pt27dGDFihOF0IiIiInK9EhMTiYmJoVSpUnnL1q5dS9myZalWrZq5YCJSLNksy7JMhxAREREREREREXF3apEmIiIiIiIiIiKSDyqkiYiIiIiIiIiI5IMKaSIiIiIiIiIiIvmgQpqIiIiIiIiIiEg+qJAmIiIiIiIiIiKSDyqkiYiIiIiIiIiI5IMKaSIiIiIiIiIiIvmgQpqIiIiIiIiIiEg+qJAmIiIiIiIiIiKSDyqkiYiIiIiIiIiI5IMKaSIiIiIiIiIiIvmgQpqIiIiIiIiIiEg+/H/69P7/u9/0JQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = figure(figsize=(15,6))\n", + "g(x) = sin(sin(3π*x) + 5*sin(π*x))\n", + "# @manipulate for n=1:2:37\n", + "for n=1:2:17\n", + " display(\n", + " withfig(fig) do\n", + " subplot(1,2,1)\n", + " plot(x, g.(x), \"k--\")\n", + " b = sinecoef.(g, 1:n)\n", + " plot(x, [sinesum(b, x) for x in x], \"r-\")\n", + " xlabel(L\"x\")\n", + " legend([\"exact g\", \"$n-term sine series\"])\n", + " \n", + " subplot(1,2,2)\n", + " semilogy(1:2:n, abs.(b[1:2:n]), \"bo-\")\n", + " xlabel(L\"n\")\n", + " ylabel(L\"coefficient $|b_n|$\")\n", + " end\n", + " )\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supplementary material\n", + "\n", + "The following material goes a bit beyond 18.06 (see e.g. 18.303), but it is provided as a supplement.\n", + "\n", + "## Solving the heat/diffusion equation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we have the heat equation $\\frac{\\partial^2 u}{\\partial x^2} = \\frac{\\partial u}{\\partial t}$, with Dirichlet boundary conditions $u(0,t) = u(1,t) = 0$, and initial condition $u(x,0) = f(x)$, we can solve the equation by expanding $u(x,t)$ in a Fourier sine series. From class:\n", + "\n", + "* $u(x,t) = \\sum_{n=0}^\\infty b_n \\sin(n\\pi x) e^{-(n\\pi)^2 t}$\n", + "\n", + "where $b_n$ are the sine-series coefficients of the initial condition $f(x)$.\n", + "\n", + "Let's plot this for different times $t$ for the $f(x) = 0.5 - |x - 0.5|$ from above, using 199 terms in the series:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "
    \n", + "

    The WebIO Jupyter extension was not detected. See the\n", + "\n", + " WebIO Jupyter integration documentation\n", + "\n", + "for more information.\n", + "

    \n" + ], + "text/plain": [ + "WebIO._IJuliaInit()" + ] + }, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3056eef4-4c36-4cb6-9165-5fce75530c0b" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "using Interact" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "time t" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 1001, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "4430851863692151783", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/61f613675da75f539731913573998184b30434d8-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/58abda19fb319e300ad7b22e44bebba074b4bb4d-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/624890bd43acdf6da9d12dfb47a1c50d9dc9f836-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.0\",\"0.001\",\"0.002\",\"0.003\",\"0.004\",\"0.005\",\"0.006\",\"0.007\",\"0.008\",\"0.009\",\"0.01\",\"0.011\",\"0.012\",\"0.013\",\"0.014\",\"0.015\",\"0.016\",\"0.017\",\"0.018\",\"0.019\",\"0.02\",\"0.021\",\"0.022\",\"0.023\",\"0.024\",\"0.025\",\"0.026\",\"0.027\",\"0.028\",\"0.029\",\"0.03\",\"0.031\",\"0.032\",\"0.033\",\"0.034\",\"0.035\",\"0.036\",\"0.037\",\"0.038\",\"0.039\",\"0.04\",\"0.041\",\"0.042\",\"0.043\",\"0.044\",\"0.045\",\"0.046\",\"0.047\",\"0.048\",\"0.049\",\"0.05\",\"0.051\",\"0.052\",\"0.053\",\"0.054\",\"0.055\",\"0.056\",\"0.057\",\"0.058\",\"0.059\",\"0.06\",\"0.061\",\"0.062\",\"0.063\",\"0.064\",\"0.065\",\"0.066\",\"0.067\",\"0.068\",\"0.069\",\"0.07\",\"0.071\",\"0.072\",\"0.073\",\"0.074\",\"0.075\",\"0.076\",\"0.077\",\"0.078\",\"0.079\",\"0.08\",\"0.081\",\"0.082\",\"0.083\",\"0.084\",\"0.085\",\"0.086\",\"0.087\",\"0.088\",\"0.089\",\"0.09\",\"0.091\",\"0.092\",\"0.093\",\"0.094\",\"0.095\",\"0.096\",\"0.097\",\"0.098\",\"0.099\",\"0.1\",\"0.101\",\"0.102\",\"0.103\",\"0.104\",\"0.105\",\"0.106\",\"0.107\",\"0.108\",\"0.109\",\"0.11\",\"0.111\",\"0.112\",\"0.113\",\"0.114\",\"0.115\",\"0.116\",\"0.117\",\"0.118\",\"0.119\",\"0.12\",\"0.121\",\"0.122\",\"0.123\",\"0.124\",\"0.125\",\"0.126\",\"0.127\",\"0.128\",\"0.129\",\"0.13\",\"0.131\",\"0.132\",\"0.133\",\"0.134\",\"0.135\",\"0.136\",\"0.137\",\"0.138\",\"0.139\",\"0.14\",\"0.141\",\"0.142\",\"0.143\",\"0.144\",\"0.145\",\"0.146\",\"0.147\",\"0.148\",\"0.149\",\"0.15\",\"0.151\",\"0.152\",\"0.153\",\"0.154\",\"0.155\",\"0.156\",\"0.157\",\"0.158\",\"0.159\",\"0.16\",\"0.161\",\"0.162\",\"0.163\",\"0.164\",\"0.165\",\"0.166\",\"0.167\",\"0.168\",\"0.169\",\"0.17\",\"0.171\",\"0.172\",\"0.173\",\"0.174\",\"0.175\",\"0.176\",\"0.177\",\"0.178\",\"0.179\",\"0.18\",\"0.181\",\"0.182\",\"0.183\",\"0.184\",\"0.185\",\"0.186\",\"0.187\",\"0.188\",\"0.189\",\"0.19\",\"0.191\",\"0.192\",\"0.193\",\"0.194\",\"0.195\",\"0.196\",\"0.197\",\"0.198\",\"0.199\",\"0.2\",\"0.201\",\"0.202\",\"0.203\",\"0.204\",\"0.205\",\"0.206\",\"0.207\",\"0.208\",\"0.209\",\"0.21\",\"0.211\",\"0.212\",\"0.213\",\"0.214\",\"0.215\",\"0.216\",\"0.217\",\"0.218\",\"0.219\",\"0.22\",\"0.221\",\"0.222\",\"0.223\",\"0.224\",\"0.225\",\"0.226\",\"0.227\",\"0.228\",\"0.229\",\"0.23\",\"0.231\",\"0.232\",\"0.233\",\"0.234\",\"0.235\",\"0.236\",\"0.237\",\"0.238\",\"0.239\",\"0.24\",\"0.241\",\"0.242\",\"0.243\",\"0.244\",\"0.245\",\"0.246\",\"0.247\",\"0.248\",\"0.249\",\"0.25\",\"0.251\",\"0.252\",\"0.253\",\"0.254\",\"0.255\",\"0.256\",\"0.257\",\"0.258\",\"0.259\",\"0.26\",\"0.261\",\"0.262\",\"0.263\",\"0.264\",\"0.265\",\"0.266\",\"0.267\",\"0.268\",\"0.269\",\"0.27\",\"0.271\",\"0.272\",\"0.273\",\"0.274\",\"0.275\",\"0.276\",\"0.277\",\"0.278\",\"0.279\",\"0.28\",\"0.281\",\"0.282\",\"0.283\",\"0.284\",\"0.285\",\"0.286\",\"0.287\",\"0.288\",\"0.289\",\"0.29\",\"0.291\",\"0.292\",\"0.293\",\"0.294\",\"0.295\",\"0.296\",\"0.297\",\"0.298\",\"0.299\",\"0.3\",\"0.301\",\"0.302\",\"0.303\",\"0.304\",\"0.305\",\"0.306\",\"0.307\",\"0.308\",\"0.309\",\"0.31\",\"0.311\",\"0.312\",\"0.313\",\"0.314\",\"0.315\",\"0.316\",\"0.317\",\"0.318\",\"0.319\",\"0.32\",\"0.321\",\"0.322\",\"0.323\",\"0.324\",\"0.325\",\"0.326\",\"0.327\",\"0.328\",\"0.329\",\"0.33\",\"0.331\",\"0.332\",\"0.333\",\"0.334\",\"0.335\",\"0.336\",\"0.337\",\"0.338\",\"0.339\",\"0.34\",\"0.341\",\"0.342\",\"0.343\",\"0.344\",\"0.345\",\"0.346\",\"0.347\",\"0.348\",\"0.349\",\"0.35\",\"0.351\",\"0.352\",\"0.353\",\"0.354\",\"0.355\",\"0.356\",\"0.357\",\"0.358\",\"0.359\",\"0.36\",\"0.361\",\"0.362\",\"0.363\",\"0.364\",\"0.365\",\"0.366\",\"0.367\",\"0.368\",\"0.369\",\"0.37\",\"0.371\",\"0.372\",\"0.373\",\"0.374\",\"0.375\",\"0.376\",\"0.377\",\"0.378\",\"0.379\",\"0.38\",\"0.381\",\"0.382\",\"0.383\",\"0.384\",\"0.385\",\"0.386\",\"0.387\",\"0.388\",\"0.389\",\"0.39\",\"0.391\",\"0.392\",\"0.393\",\"0.394\",\"0.395\",\"0.396\",\"0.397\",\"0.398\",\"0.399\",\"0.4\",\"0.401\",\"0.402\",\"0.403\",\"0.404\",\"0.405\",\"0.406\",\"0.407\",\"0.408\",\"0.409\",\"0.41\",\"0.411\",\"0.412\",\"0.413\",\"0.414\",\"0.415\",\"0.416\",\"0.417\",\"0.418\",\"0.419\",\"0.42\",\"0.421\",\"0.422\",\"0.423\",\"0.424\",\"0.425\",\"0.426\",\"0.427\",\"0.428\",\"0.429\",\"0.43\",\"0.431\",\"0.432\",\"0.433\",\"0.434\",\"0.435\",\"0.436\",\"0.437\",\"0.438\",\"0.439\",\"0.44\",\"0.441\",\"0.442\",\"0.443\",\"0.444\",\"0.445\",\"0.446\",\"0.447\",\"0.448\",\"0.449\",\"0.45\",\"0.451\",\"0.452\",\"0.453\",\"0.454\",\"0.455\",\"0.456\",\"0.457\",\"0.458\",\"0.459\",\"0.46\",\"0.461\",\"0.462\",\"0.463\",\"0.464\",\"0.465\",\"0.466\",\"0.467\",\"0.468\",\"0.469\",\"0.47\",\"0.471\",\"0.472\",\"0.473\",\"0.474\",\"0.475\",\"0.476\",\"0.477\",\"0.478\",\"0.479\",\"0.48\",\"0.481\",\"0.482\",\"0.483\",\"0.484\",\"0.485\",\"0.486\",\"0.487\",\"0.488\",\"0.489\",\"0.49\",\"0.491\",\"0.492\",\"0.493\",\"0.494\",\"0.495\",\"0.496\",\"0.497\",\"0.498\",\"0.499\",\"0.5\",\"0.501\",\"0.502\",\"0.503\",\"0.504\",\"0.505\",\"0.506\",\"0.507\",\"0.508\",\"0.509\",\"0.51\",\"0.511\",\"0.512\",\"0.513\",\"0.514\",\"0.515\",\"0.516\",\"0.517\",\"0.518\",\"0.519\",\"0.52\",\"0.521\",\"0.522\",\"0.523\",\"0.524\",\"0.525\",\"0.526\",\"0.527\",\"0.528\",\"0.529\",\"0.53\",\"0.531\",\"0.532\",\"0.533\",\"0.534\",\"0.535\",\"0.536\",\"0.537\",\"0.538\",\"0.539\",\"0.54\",\"0.541\",\"0.542\",\"0.543\",\"0.544\",\"0.545\",\"0.546\",\"0.547\",\"0.548\",\"0.549\",\"0.55\",\"0.551\",\"0.552\",\"0.553\",\"0.554\",\"0.555\",\"0.556\",\"0.557\",\"0.558\",\"0.559\",\"0.56\",\"0.561\",\"0.562\",\"0.563\",\"0.564\",\"0.565\",\"0.566\",\"0.567\",\"0.568\",\"0.569\",\"0.57\",\"0.571\",\"0.572\",\"0.573\",\"0.574\",\"0.575\",\"0.576\",\"0.577\",\"0.578\",\"0.579\",\"0.58\",\"0.581\",\"0.582\",\"0.583\",\"0.584\",\"0.585\",\"0.586\",\"0.587\",\"0.588\",\"0.589\",\"0.59\",\"0.591\",\"0.592\",\"0.593\",\"0.594\",\"0.595\",\"0.596\",\"0.597\",\"0.598\",\"0.599\",\"0.6\",\"0.601\",\"0.602\",\"0.603\",\"0.604\",\"0.605\",\"0.606\",\"0.607\",\"0.608\",\"0.609\",\"0.61\",\"0.611\",\"0.612\",\"0.613\",\"0.614\",\"0.615\",\"0.616\",\"0.617\",\"0.618\",\"0.619\",\"0.62\",\"0.621\",\"0.622\",\"0.623\",\"0.624\",\"0.625\",\"0.626\",\"0.627\",\"0.628\",\"0.629\",\"0.63\",\"0.631\",\"0.632\",\"0.633\",\"0.634\",\"0.635\",\"0.636\",\"0.637\",\"0.638\",\"0.639\",\"0.64\",\"0.641\",\"0.642\",\"0.643\",\"0.644\",\"0.645\",\"0.646\",\"0.647\",\"0.648\",\"0.649\",\"0.65\",\"0.651\",\"0.652\",\"0.653\",\"0.654\",\"0.655\",\"0.656\",\"0.657\",\"0.658\",\"0.659\",\"0.66\",\"0.661\",\"0.662\",\"0.663\",\"0.664\",\"0.665\",\"0.666\",\"0.667\",\"0.668\",\"0.669\",\"0.67\",\"0.671\",\"0.672\",\"0.673\",\"0.674\",\"0.675\",\"0.676\",\"0.677\",\"0.678\",\"0.679\",\"0.68\",\"0.681\",\"0.682\",\"0.683\",\"0.684\",\"0.685\",\"0.686\",\"0.687\",\"0.688\",\"0.689\",\"0.69\",\"0.691\",\"0.692\",\"0.693\",\"0.694\",\"0.695\",\"0.696\",\"0.697\",\"0.698\",\"0.699\",\"0.7\",\"0.701\",\"0.702\",\"0.703\",\"0.704\",\"0.705\",\"0.706\",\"0.707\",\"0.708\",\"0.709\",\"0.71\",\"0.711\",\"0.712\",\"0.713\",\"0.714\",\"0.715\",\"0.716\",\"0.717\",\"0.718\",\"0.719\",\"0.72\",\"0.721\",\"0.722\",\"0.723\",\"0.724\",\"0.725\",\"0.726\",\"0.727\",\"0.728\",\"0.729\",\"0.73\",\"0.731\",\"0.732\",\"0.733\",\"0.734\",\"0.735\",\"0.736\",\"0.737\",\"0.738\",\"0.739\",\"0.74\",\"0.741\",\"0.742\",\"0.743\",\"0.744\",\"0.745\",\"0.746\",\"0.747\",\"0.748\",\"0.749\",\"0.75\",\"0.751\",\"0.752\",\"0.753\",\"0.754\",\"0.755\",\"0.756\",\"0.757\",\"0.758\",\"0.759\",\"0.76\",\"0.761\",\"0.762\",\"0.763\",\"0.764\",\"0.765\",\"0.766\",\"0.767\",\"0.768\",\"0.769\",\"0.77\",\"0.771\",\"0.772\",\"0.773\",\"0.774\",\"0.775\",\"0.776\",\"0.777\",\"0.778\",\"0.779\",\"0.78\",\"0.781\",\"0.782\",\"0.783\",\"0.784\",\"0.785\",\"0.786\",\"0.787\",\"0.788\",\"0.789\",\"0.79\",\"0.791\",\"0.792\",\"0.793\",\"0.794\",\"0.795\",\"0.796\",\"0.797\",\"0.798\",\"0.799\",\"0.8\",\"0.801\",\"0.802\",\"0.803\",\"0.804\",\"0.805\",\"0.806\",\"0.807\",\"0.808\",\"0.809\",\"0.81\",\"0.811\",\"0.812\",\"0.813\",\"0.814\",\"0.815\",\"0.816\",\"0.817\",\"0.818\",\"0.819\",\"0.82\",\"0.821\",\"0.822\",\"0.823\",\"0.824\",\"0.825\",\"0.826\",\"0.827\",\"0.828\",\"0.829\",\"0.83\",\"0.831\",\"0.832\",\"0.833\",\"0.834\",\"0.835\",\"0.836\",\"0.837\",\"0.838\",\"0.839\",\"0.84\",\"0.841\",\"0.842\",\"0.843\",\"0.844\",\"0.845\",\"0.846\",\"0.847\",\"0.848\",\"0.849\",\"0.85\",\"0.851\",\"0.852\",\"0.853\",\"0.854\",\"0.855\",\"0.856\",\"0.857\",\"0.858\",\"0.859\",\"0.86\",\"0.861\",\"0.862\",\"0.863\",\"0.864\",\"0.865\",\"0.866\",\"0.867\",\"0.868\",\"0.869\",\"0.87\",\"0.871\",\"0.872\",\"0.873\",\"0.874\",\"0.875\",\"0.876\",\"0.877\",\"0.878\",\"0.879\",\"0.88\",\"0.881\",\"0.882\",\"0.883\",\"0.884\",\"0.885\",\"0.886\",\"0.887\",\"0.888\",\"0.889\",\"0.89\",\"0.891\",\"0.892\",\"0.893\",\"0.894\",\"0.895\",\"0.896\",\"0.897\",\"0.898\",\"0.899\",\"0.9\",\"0.901\",\"0.902\",\"0.903\",\"0.904\",\"0.905\",\"0.906\",\"0.907\",\"0.908\",\"0.909\",\"0.91\",\"0.911\",\"0.912\",\"0.913\",\"0.914\",\"0.915\",\"0.916\",\"0.917\",\"0.918\",\"0.919\",\"0.92\",\"0.921\",\"0.922\",\"0.923\",\"0.924\",\"0.925\",\"0.926\",\"0.927\",\"0.928\",\"0.929\",\"0.93\",\"0.931\",\"0.932\",\"0.933\",\"0.934\",\"0.935\",\"0.936\",\"0.937\",\"0.938\",\"0.939\",\"0.94\",\"0.941\",\"0.942\",\"0.943\",\"0.944\",\"0.945\",\"0.946\",\"0.947\",\"0.948\",\"0.949\",\"0.95\",\"0.951\",\"0.952\",\"0.953\",\"0.954\",\"0.955\",\"0.956\",\"0.957\",\"0.958\",\"0.959\",\"0.96\",\"0.961\",\"0.962\",\"0.963\",\"0.964\",\"0.965\",\"0.966\",\"0.967\",\"0.968\",\"0.969\",\"0.97\",\"0.971\",\"0.972\",\"0.973\",\"0.974\",\"0.975\",\"0.976\",\"0.977\",\"0.978\",\"0.979\",\"0.98\",\"0.981\",\"0.982\",\"0.983\",\"0.984\",\"0.985\",\"0.986\",\"0.987\",\"0.988\",\"0.989\",\"0.99\",\"0.991\",\"0.992\",\"0.993\",\"0.994\",\"0.995\",\"0.996\",\"0.997\",\"0.998\",\"0.999\",\"1.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"4430851863692151783\",\"id\":\"4270320945376692275\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"4430851863692151783\",\"id\":\"10601152972552331713\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"4430851863692151783\",\"id\":\"4270320945376692275\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"4430851863692151783\",\"id\":\"10601152972552331713\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "4270320945376692275", + "sync": false, + "value": 0 + }, + "index": { + "id": "10601152972552331713", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "325680927518375629", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "12158599737003205960", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "325680927518375629", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 1001, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{Observables.AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing), \"index\" => (Observable{Any} with 2 listeners. Value:\n", + "1, nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/pVyN2/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x0000000138076770, Task (runnable) @0x0000000138076770), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.0\\\",\\\"0.001\\\",\\\"0.002\\\",\\\"0.003\\\",\\\"0.004\\\",\\\"0.005\\\",\\\"0.006\\\",\\\"0.007\\\",\\\"0.008\\\",\\\"0.009\\\",\\\"0.01\\\",\\\"0.011\\\",\\\"0.012\\\",\\\"0.013\\\",\\\"0.014\\\",\\\"0.015\\\",\\\"0.016\\\",\\\"0.017\\\",\\\"0.018\\\",\\\"0.019\\\",\\\"0.02\\\",\\\"0.021\\\",\\\"0.022\\\",\\\"0.023\\\",\\\"0.024\\\",\\\"0.025\\\",\\\"0.026\\\",\\\"0.027\\\",\\\"0.028\\\",\\\"0.029\\\",\\\"0.03\\\",\\\"0.031\\\",\\\"0.032\\\",\\\"0.033\\\",\\\"0.034\\\",\\\"0.035\\\",\\\"0.036\\\",\\\"0.037\\\",\\\"0.038\\\",\\\"0.039\\\",\\\"0.04\\\",\\\"0.041\\\",\\\"0.042\\\",\\\"0.043\\\",\\\"0.044\\\",\\\"0.045\\\",\\\"0.046\\\",\\\"0.047\\\",\\\"0.048\\\",\\\"0.049\\\",\\\"0.05\\\",\\\"0.051\\\",\\\"0.052\\\",\\\"0.053\\\",\\\"0.054\\\",\\\"0.055\\\",\\\"0.056\\\",\\\"0.057\\\",\\\"0.058\\\",\\\"0.059\\\",\\\"0.06\\\",\\\"0.061\\\",\\\"0.062\\\",\\\"0.063\\\",\\\"0.064\\\",\\\"0.065\\\",\\\"0.066\\\",\\\"0.067\\\",\\\"0.068\\\",\\\"0.069\\\",\\\"0.07\\\",\\\"0.071\\\",\\\"0.072\\\",\\\"0.073\\\",\\\"0.074\\\",\\\"0.075\\\",\\\"0.076\\\",\\\"0.077\\\",\\\"0.078\\\",\\\"0.079\\\",\\\"0.08\\\",\\\"0.081\\\",\\\"0.082\\\",\\\"0.083\\\",\\\"0.084\\\",\\\"0.085\\\",\\\"0.086\\\",\\\"0.087\\\",\\\"0.088\\\",\\\"0.089\\\",\\\"0.09\\\",\\\"0.091\\\",\\\"0.092\\\",\\\"0.093\\\",\\\"0.094\\\",\\\"0.095\\\",\\\"0.096\\\",\\\"0.097\\\",\\\"0.098\\\",\\\"0.099\\\",\\\"0.1\\\",\\\"0.101\\\",\\\"0.102\\\",\\\"0.103\\\",\\\"0.104\\\",\\\"0.105\\\",\\\"0.106\\\",\\\"0.107\\\",\\\"0.108\\\",\\\"0.109\\\",\\\"0.11\\\",\\\"0.111\\\",\\\"0.112\\\",\\\"0.113\\\",\\\"0.114\\\",\\\"0.115\\\",\\\"0.116\\\",\\\"0.117\\\",\\\"0.118\\\",\\\"0.119\\\",\\\"0.12\\\",\\\"0.121\\\",\\\"0.122\\\",\\\"0.123\\\",\\\"0.124\\\",\\\"0.125\\\",\\\"0.126\\\",\\\"0.127\\\",\\\"0.128\\\",\\\"0.129\\\",\\\"0.13\\\",\\\"0.131\\\",\\\"0.132\\\",\\\"0.133\\\",\\\"0.134\\\",\\\"0.135\\\",\\\"0.136\\\",\\\"0.137\\\",\\\"0.138\\\",\\\"0.139\\\",\\\"0.14\\\",\\\"0.141\\\",\\\"0.142\\\",\\\"0.143\\\",\\\"0.144\\\",\\\"0.145\\\",\\\"0.146\\\",\\\"0.147\\\",\\\"0.148\\\",\\\"0.149\\\",\\\"0.15\\\",\\\"0.151\\\",\\\"0.152\\\",\\\"0.153\\\",\\\"0.154\\\",\\\"0.155\\\",\\\"0.156\\\",\\\"0.157\\\",\\\"0.158\\\",\\\"0.159\\\",\\\"0.16\\\",\\\"0.161\\\",\\\"0.162\\\",\\\"0.163\\\",\\\"0.164\\\",\\\"0.165\\\",\\\"0.166\\\",\\\"0.167\\\",\\\"0.168\\\",\\\"0.169\\\",\\\"0.17\\\",\\\"0.171\\\",\\\"0.172\\\",\\\"0.173\\\",\\\"0.174\\\",\\\"0.175\\\",\\\"0.176\\\",\\\"0.177\\\",\\\"0.178\\\",\\\"0.179\\\",\\\"0.18\\\",\\\"0.181\\\",\\\"0.182\\\",\\\"0.183\\\",\\\"0.184\\\",\\\"0.185\\\",\\\"0.186\\\",\\\"0.187\\\",\\\"0.188\\\",\\\"0.189\\\",\\\"0.19\\\",\\\"0.191\\\",\\\"0.192\\\",\\\"0.193\\\",\\\"0.194\\\",\\\"0.195\\\",\\\"0.196\\\",\\\"0.197\\\",\\\"0.198\\\",\\\"0.199\\\",\\\"0.2\\\",\\\"0.201\\\",\\\"0.202\\\",\\\"0.203\\\",\\\"0.204\\\",\\\"0.205\\\",\\\"0.206\\\",\\\"0.207\\\",\\\"0.208\\\",\\\"0.209\\\",\\\"0.21\\\",\\\"0.211\\\",\\\"0.212\\\",\\\"0.213\\\",\\\"0.214\\\",\\\"0.215\\\",\\\"0.216\\\",\\\"0.217\\\",\\\"0.218\\\",\\\"0.219\\\",\\\"0.22\\\",\\\"0.221\\\",\\\"0.222\\\",\\\"0.223\\\",\\\"0.224\\\",\\\"0.225\\\",\\\"0.226\\\",\\\"0.227\\\",\\\"0.228\\\",\\\"0.229\\\",\\\"0.23\\\",\\\"0.231\\\",\\\"0.232\\\",\\\"0.233\\\",\\\"0.234\\\",\\\"0.235\\\",\\\"0.236\\\",\\\"0.237\\\",\\\"0.238\\\",\\\"0.239\\\",\\\"0.24\\\",\\\"0.241\\\",\\\"0.242\\\",\\\"0.243\\\",\\\"0.244\\\",\\\"0.245\\\",\\\"0.246\\\",\\\"0.247\\\",\\\"0.248\\\",\\\"0.249\\\",\\\"0.25\\\",\\\"0.251\\\",\\\"0.252\\\",\\\"0.253\\\",\\\"0.254\\\",\\\"0.255\\\",\\\"0.256\\\",\\\"0.257\\\",\\\"0.258\\\",\\\"0.259\\\",\\\"0.26\\\",\\\"0.261\\\",\\\"0.262\\\",\\\"0.263\\\",\\\"0.264\\\",\\\"0.265\\\",\\\"0.266\\\",\\\"0.267\\\",\\\"0.268\\\",\\\"0.269\\\",\\\"0.27\\\",\\\"0.271\\\",\\\"0.272\\\",\\\"0.273\\\",\\\"0.274\\\",\\\"0.275\\\",\\\"0.276\\\",\\\"0.277\\\",\\\"0.278\\\",\\\"0.279\\\",\\\"0.28\\\",\\\"0.281\\\",\\\"0.282\\\",\\\"0.283\\\",\\\"0.284\\\",\\\"0.285\\\",\\\"0.286\\\",\\\"0.287\\\",\\\"0.288\\\",\\\"0.289\\\",\\\"0.29\\\",\\\"0.291\\\",\\\"0.292\\\",\\\"0.293\\\",\\\"0.294\\\",\\\"0.295\\\",\\\"0.296\\\",\\\"0.297\\\",\\\"0.298\\\",\\\"0.299\\\",\\\"0.3\\\",\\\"0.301\\\",\\\"0.302\\\",\\\"0.303\\\",\\\"0.304\\\",\\\"0.305\\\",\\\"0.306\\\",\\\"0.307\\\",\\\"0.308\\\",\\\"0.309\\\",\\\"0.31\\\",\\\"0.311\\\",\\\"0.312\\\",\\\"0.313\\\",\\\"0.314\\\",\\\"0.315\\\",\\\"0.316\\\",\\\"0.317\\\",\\\"0.318\\\",\\\"0.319\\\",\\\"0.32\\\",\\\"0.321\\\",\\\"0.322\\\",\\\"0.323\\\",\\\"0.324\\\",\\\"0.325\\\",\\\"0.326\\\",\\\"0.327\\\",\\\"0.328\\\",\\\"0.329\\\",\\\"0.33\\\",\\\"0.331\\\",\\\"0.332\\\",\\\"0.333\\\",\\\"0.334\\\",\\\"0.335\\\",\\\"0.336\\\",\\\"0.337\\\",\\\"0.338\\\",\\\"0.339\\\",\\\"0.34\\\",\\\"0.341\\\",\\\"0.342\\\",\\\"0.343\\\",\\\"0.344\\\",\\\"0.345\\\",\\\"0.346\\\",\\\"0.347\\\",\\\"0.348\\\",\\\"0.349\\\",\\\"0.35\\\",\\\"0.351\\\",\\\"0.352\\\",\\\"0.353\\\",\\\"0.354\\\",\\\"0.355\\\",\\\"0.356\\\",\\\"0.357\\\",\\\"0.358\\\",\\\"0.359\\\",\\\"0.36\\\",\\\"0.361\\\",\\\"0.362\\\",\\\"0.363\\\",\\\"0.364\\\",\\\"0.365\\\",\\\"0.366\\\",\\\"0.367\\\",\\\"0.368\\\",\\\"0.369\\\",\\\"0.37\\\",\\\"0.371\\\",\\\"0.372\\\",\\\"0.373\\\",\\\"0.374\\\",\\\"0.375\\\",\\\"0.376\\\",\\\"0.377\\\",\\\"0.378\\\",\\\"0.379\\\",\\\"0.38\\\",\\\"0.381\\\",\\\"0.382\\\",\\\"0.383\\\",\\\"0.384\\\",\\\"0.385\\\",\\\"0.386\\\",\\\"0.387\\\",\\\"0.388\\\",\\\"0.389\\\",\\\"0.39\\\",\\\"0.391\\\",\\\"0.392\\\",\\\"0.393\\\",\\\"0.394\\\",\\\"0.395\\\",\\\"0.396\\\",\\\"0.397\\\",\\\"0.398\\\",\\\"0.399\\\",\\\"0.4\\\",\\\"0.401\\\",\\\"0.402\\\",\\\"0.403\\\",\\\"0.404\\\",\\\"0.405\\\",\\\"0.406\\\",\\\"0.407\\\",\\\"0.408\\\",\\\"0.409\\\",\\\"0.41\\\",\\\"0.411\\\",\\\"0.412\\\",\\\"0.413\\\",\\\"0.414\\\",\\\"0.415\\\",\\\"0.416\\\",\\\"0.417\\\",\\\"0.418\\\",\\\"0.419\\\",\\\"0.42\\\",\\\"0.421\\\",\\\"0.422\\\",\\\"0.423\\\",\\\"0.424\\\",\\\"0.425\\\",\\\"0.426\\\",\\\"0.427\\\",\\\"0.428\\\",\\\"0.429\\\",\\\"0.43\\\",\\\"0.431\\\",\\\"0.432\\\",\\\"0.433\\\",\\\"0.434\\\",\\\"0.435\\\",\\\"0.436\\\",\\\"0.437\\\",\\\"0.438\\\",\\\"0.439\\\",\\\"0.44\\\",\\\"0.441\\\",\\\"0.442\\\",\\\"0.443\\\",\\\"0.444\\\",\\\"0.445\\\",\\\"0.446\\\",\\\"0.447\\\",\\\"0.448\\\",\\\"0.449\\\",\\\"0.45\\\",\\\"0.451\\\",\\\"0.452\\\",\\\"0.453\\\",\\\"0.454\\\",\\\"0.455\\\",\\\"0.456\\\",\\\"0.457\\\",\\\"0.458\\\",\\\"0.459\\\",\\\"0.46\\\",\\\"0.461\\\",\\\"0.462\\\",\\\"0.463\\\",\\\"0.464\\\",\\\"0.465\\\",\\\"0.466\\\",\\\"0.467\\\",\\\"0.468\\\",\\\"0.469\\\",\\\"0.47\\\",\\\"0.471\\\",\\\"0.472\\\",\\\"0.473\\\",\\\"0.474\\\",\\\"0.475\\\",\\\"0.476\\\",\\\"0.477\\\",\\\"0.478\\\",\\\"0.479\\\",\\\"0.48\\\",\\\"0.481\\\",\\\"0.482\\\",\\\"0.483\\\",\\\"0.484\\\",\\\"0.485\\\",\\\"0.486\\\",\\\"0.487\\\",\\\"0.488\\\",\\\"0.489\\\",\\\"0.49\\\",\\\"0.491\\\",\\\"0.492\\\",\\\"0.493\\\",\\\"0.494\\\",\\\"0.495\\\",\\\"0.496\\\",\\\"0.497\\\",\\\"0.498\\\",\\\"0.499\\\",\\\"0.5\\\",\\\"0.501\\\",\\\"0.502\\\",\\\"0.503\\\",\\\"0.504\\\",\\\"0.505\\\",\\\"0.506\\\",\\\"0.507\\\",\\\"0.508\\\",\\\"0.509\\\",\\\"0.51\\\",\\\"0.511\\\",\\\"0.512\\\",\\\"0.513\\\",\\\"0.514\\\",\\\"0.515\\\",\\\"0.516\\\",\\\"0.517\\\",\\\"0.518\\\",\\\"0.519\\\",\\\"0.52\\\",\\\"0.521\\\",\\\"0.522\\\",\\\"0.523\\\",\\\"0.524\\\",\\\"0.525\\\",\\\"0.526\\\",\\\"0.527\\\",\\\"0.528\\\",\\\"0.529\\\",\\\"0.53\\\",\\\"0.531\\\",\\\"0.532\\\",\\\"0.533\\\",\\\"0.534\\\",\\\"0.535\\\",\\\"0.536\\\",\\\"0.537\\\",\\\"0.538\\\",\\\"0.539\\\",\\\"0.54\\\",\\\"0.541\\\",\\\"0.542\\\",\\\"0.543\\\",\\\"0.544\\\",\\\"0.545\\\",\\\"0.546\\\",\\\"0.547\\\",\\\"0.548\\\",\\\"0.549\\\",\\\"0.55\\\",\\\"0.551\\\",\\\"0.552\\\",\\\"0.553\\\",\\\"0.554\\\",\\\"0.555\\\",\\\"0.556\\\",\\\"0.557\\\",\\\"0.558\\\",\\\"0.559\\\",\\\"0.56\\\",\\\"0.561\\\",\\\"0.562\\\",\\\"0.563\\\",\\\"0.564\\\",\\\"0.565\\\",\\\"0.566\\\",\\\"0.567\\\",\\\"0.568\\\",\\\"0.569\\\",\\\"0.57\\\",\\\"0.571\\\",\\\"0.572\\\",\\\"0.573\\\",\\\"0.574\\\",\\\"0.575\\\",\\\"0.576\\\",\\\"0.577\\\",\\\"0.578\\\",\\\"0.579\\\",\\\"0.58\\\",\\\"0.581\\\",\\\"0.582\\\",\\\"0.583\\\",\\\"0.584\\\",\\\"0.585\\\",\\\"0.586\\\",\\\"0.587\\\",\\\"0.588\\\",\\\"0.589\\\",\\\"0.59\\\",\\\"0.591\\\",\\\"0.592\\\",\\\"0.593\\\",\\\"0.594\\\",\\\"0.595\\\",\\\"0.596\\\",\\\"0.597\\\",\\\"0.598\\\",\\\"0.599\\\",\\\"0.6\\\",\\\"0.601\\\",\\\"0.602\\\",\\\"0.603\\\",\\\"0.604\\\",\\\"0.605\\\",\\\"0.606\\\",\\\"0.607\\\",\\\"0.608\\\",\\\"0.609\\\",\\\"0.61\\\",\\\"0.611\\\",\\\"0.612\\\",\\\"0.613\\\",\\\"0.614\\\",\\\"0.615\\\",\\\"0.616\\\",\\\"0.617\\\",\\\"0.618\\\",\\\"0.619\\\",\\\"0.62\\\",\\\"0.621\\\",\\\"0.622\\\",\\\"0.623\\\",\\\"0.624\\\",\\\"0.625\\\",\\\"0.626\\\",\\\"0.627\\\",\\\"0.628\\\",\\\"0.629\\\",\\\"0.63\\\",\\\"0.631\\\",\\\"0.632\\\",\\\"0.633\\\",\\\"0.634\\\",\\\"0.635\\\",\\\"0.636\\\",\\\"0.637\\\",\\\"0.638\\\",\\\"0.639\\\",\\\"0.64\\\",\\\"0.641\\\",\\\"0.642\\\",\\\"0.643\\\",\\\"0.644\\\",\\\"0.645\\\",\\\"0.646\\\",\\\"0.647\\\",\\\"0.648\\\",\\\"0.649\\\",\\\"0.65\\\",\\\"0.651\\\",\\\"0.652\\\",\\\"0.653\\\",\\\"0.654\\\",\\\"0.655\\\",\\\"0.656\\\",\\\"0.657\\\",\\\"0.658\\\",\\\"0.659\\\",\\\"0.66\\\",\\\"0.661\\\",\\\"0.662\\\",\\\"0.663\\\",\\\"0.664\\\",\\\"0.665\\\",\\\"0.666\\\",\\\"0.667\\\",\\\"0.668\\\",\\\"0.669\\\",\\\"0.67\\\",\\\"0.671\\\",\\\"0.672\\\",\\\"0.673\\\",\\\"0.674\\\",\\\"0.675\\\",\\\"0.676\\\",\\\"0.677\\\",\\\"0.678\\\",\\\"0.679\\\",\\\"0.68\\\",\\\"0.681\\\",\\\"0.682\\\",\\\"0.683\\\",\\\"0.684\\\",\\\"0.685\\\",\\\"0.686\\\",\\\"0.687\\\",\\\"0.688\\\",\\\"0.689\\\",\\\"0.69\\\",\\\"0.691\\\",\\\"0.692\\\",\\\"0.693\\\",\\\"0.694\\\",\\\"0.695\\\",\\\"0.696\\\",\\\"0.697\\\",\\\"0.698\\\",\\\"0.699\\\",\\\"0.7\\\",\\\"0.701\\\",\\\"0.702\\\",\\\"0.703\\\",\\\"0.704\\\",\\\"0.705\\\",\\\"0.706\\\",\\\"0.707\\\",\\\"0.708\\\",\\\"0.709\\\",\\\"0.71\\\",\\\"0.711\\\",\\\"0.712\\\",\\\"0.713\\\",\\\"0.714\\\",\\\"0.715\\\",\\\"0.716\\\",\\\"0.717\\\",\\\"0.718\\\",\\\"0.719\\\",\\\"0.72\\\",\\\"0.721\\\",\\\"0.722\\\",\\\"0.723\\\",\\\"0.724\\\",\\\"0.725\\\",\\\"0.726\\\",\\\"0.727\\\",\\\"0.728\\\",\\\"0.729\\\",\\\"0.73\\\",\\\"0.731\\\",\\\"0.732\\\",\\\"0.733\\\",\\\"0.734\\\",\\\"0.735\\\",\\\"0.736\\\",\\\"0.737\\\",\\\"0.738\\\",\\\"0.739\\\",\\\"0.74\\\",\\\"0.741\\\",\\\"0.742\\\",\\\"0.743\\\",\\\"0.744\\\",\\\"0.745\\\",\\\"0.746\\\",\\\"0.747\\\",\\\"0.748\\\",\\\"0.749\\\",\\\"0.75\\\",\\\"0.751\\\",\\\"0.752\\\",\\\"0.753\\\",\\\"0.754\\\",\\\"0.755\\\",\\\"0.756\\\",\\\"0.757\\\",\\\"0.758\\\",\\\"0.759\\\",\\\"0.76\\\",\\\"0.761\\\",\\\"0.762\\\",\\\"0.763\\\",\\\"0.764\\\",\\\"0.765\\\",\\\"0.766\\\",\\\"0.767\\\",\\\"0.768\\\",\\\"0.769\\\",\\\"0.77\\\",\\\"0.771\\\",\\\"0.772\\\",\\\"0.773\\\",\\\"0.774\\\",\\\"0.775\\\",\\\"0.776\\\",\\\"0.777\\\",\\\"0.778\\\",\\\"0.779\\\",\\\"0.78\\\",\\\"0.781\\\",\\\"0.782\\\",\\\"0.783\\\",\\\"0.784\\\",\\\"0.785\\\",\\\"0.786\\\",\\\"0.787\\\",\\\"0.788\\\",\\\"0.789\\\",\\\"0.79\\\",\\\"0.791\\\",\\\"0.792\\\",\\\"0.793\\\",\\\"0.794\\\",\\\"0.795\\\",\\\"0.796\\\",\\\"0.797\\\",\\\"0.798\\\",\\\"0.799\\\",\\\"0.8\\\",\\\"0.801\\\",\\\"0.802\\\",\\\"0.803\\\",\\\"0.804\\\",\\\"0.805\\\",\\\"0.806\\\",\\\"0.807\\\",\\\"0.808\\\",\\\"0.809\\\",\\\"0.81\\\",\\\"0.811\\\",\\\"0.812\\\",\\\"0.813\\\",\\\"0.814\\\",\\\"0.815\\\",\\\"0.816\\\",\\\"0.817\\\",\\\"0.818\\\",\\\"0.819\\\",\\\"0.82\\\",\\\"0.821\\\",\\\"0.822\\\",\\\"0.823\\\",\\\"0.824\\\",\\\"0.825\\\",\\\"0.826\\\",\\\"0.827\\\",\\\"0.828\\\",\\\"0.829\\\",\\\"0.83\\\",\\\"0.831\\\",\\\"0.832\\\",\\\"0.833\\\",\\\"0.834\\\",\\\"0.835\\\",\\\"0.836\\\",\\\"0.837\\\",\\\"0.838\\\",\\\"0.839\\\",\\\"0.84\\\",\\\"0.841\\\",\\\"0.842\\\",\\\"0.843\\\",\\\"0.844\\\",\\\"0.845\\\",\\\"0.846\\\",\\\"0.847\\\",\\\"0.848\\\",\\\"0.849\\\",\\\"0.85\\\",\\\"0.851\\\",\\\"0.852\\\",\\\"0.853\\\",\\\"0.854\\\",\\\"0.855\\\",\\\"0.856\\\",\\\"0.857\\\",\\\"0.858\\\",\\\"0.859\\\",\\\"0.86\\\",\\\"0.861\\\",\\\"0.862\\\",\\\"0.863\\\",\\\"0.864\\\",\\\"0.865\\\",\\\"0.866\\\",\\\"0.867\\\",\\\"0.868\\\",\\\"0.869\\\",\\\"0.87\\\",\\\"0.871\\\",\\\"0.872\\\",\\\"0.873\\\",\\\"0.874\\\",\\\"0.875\\\",\\\"0.876\\\",\\\"0.877\\\",\\\"0.878\\\",\\\"0.879\\\",\\\"0.88\\\",\\\"0.881\\\",\\\"0.882\\\",\\\"0.883\\\",\\\"0.884\\\",\\\"0.885\\\",\\\"0.886\\\",\\\"0.887\\\",\\\"0.888\\\",\\\"0.889\\\",\\\"0.89\\\",\\\"0.891\\\",\\\"0.892\\\",\\\"0.893\\\",\\\"0.894\\\",\\\"0.895\\\",\\\"0.896\\\",\\\"0.897\\\",\\\"0.898\\\",\\\"0.899\\\",\\\"0.9\\\",\\\"0.901\\\",\\\"0.902\\\",\\\"0.903\\\",\\\"0.904\\\",\\\"0.905\\\",\\\"0.906\\\",\\\"0.907\\\",\\\"0.908\\\",\\\"0.909\\\",\\\"0.91\\\",\\\"0.911\\\",\\\"0.912\\\",\\\"0.913\\\",\\\"0.914\\\",\\\"0.915\\\",\\\"0.916\\\",\\\"0.917\\\",\\\"0.918\\\",\\\"0.919\\\",\\\"0.92\\\",\\\"0.921\\\",\\\"0.922\\\",\\\"0.923\\\",\\\"0.924\\\",\\\"0.925\\\",\\\"0.926\\\",\\\"0.927\\\",\\\"0.928\\\",\\\"0.929\\\",\\\"0.93\\\",\\\"0.931\\\",\\\"0.932\\\",\\\"0.933\\\",\\\"0.934\\\",\\\"0.935\\\",\\\"0.936\\\",\\\"0.937\\\",\\\"0.938\\\",\\\"0.939\\\",\\\"0.94\\\",\\\"0.941\\\",\\\"0.942\\\",\\\"0.943\\\",\\\"0.944\\\",\\\"0.945\\\",\\\"0.946\\\",\\\"0.947\\\",\\\"0.948\\\",\\\"0.949\\\",\\\"0.95\\\",\\\"0.951\\\",\\\"0.952\\\",\\\"0.953\\\",\\\"0.954\\\",\\\"0.955\\\",\\\"0.956\\\",\\\"0.957\\\",\\\"0.958\\\",\\\"0.959\\\",\\\"0.96\\\",\\\"0.961\\\",\\\"0.962\\\",\\\"0.963\\\",\\\"0.964\\\",\\\"0.965\\\",\\\"0.966\\\",\\\"0.967\\\",\\\"0.968\\\",\\\"0.969\\\",\\\"0.97\\\",\\\"0.971\\\",\\\"0.972\\\",\\\"0.973\\\",\\\"0.974\\\",\\\"0.975\\\",\\\"0.976\\\",\\\"0.977\\\",\\\"0.978\\\",\\\"0.979\\\",\\\"0.98\\\",\\\"0.981\\\",\\\"0.982\\\",\\\"0.983\\\",\\\"0.984\\\",\\\"0.985\\\",\\\"0.986\\\",\\\"0.987\\\",\\\"0.988\\\",\\\"0.989\\\",\\\"0.99\\\",\\\"0.991\\\",\\\"0.992\\\",\\\"0.993\\\",\\\"0.994\\\",\\\"0.995\\\",\\\"0.996\\\",\\\"0.997\\\",\\\"0.998\\\",\\\"0.999\\\",\\\"1.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"4430851863692151783\\\",\\\"id\\\":\\\"4270320945376692275\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"4430851863692151783\\\",\\\"id\\\":\\\"10601152972552331713\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"4430851863692151783\\\",\\\"id\\\":\\\"4270320945376692275\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"4430851863692151783\\\",\\\"id\\\":\\\"10601152972552331713\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable{Node{WebIO.DOM}} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Figure(PyObject
    )], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 9, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3056eef4-4c36-4cb6-9165-5fce75530c0b" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "fig = figure()\n", + "@manipulate for t in slider(0:0.001:1, value=0.0, label=\"time t\")\n", + " withfig(fig) do\n", + " b = @. sinecoef(f, 1:199) * exp(-((1:199)*π)^2 * t)\n", + " plot(x, [sinesum(b, x) for x in x])\n", + " xlabel(L\"x\")\n", + " title(\"diffusion solution at time $t\")\n", + " ylim(0,0.5)\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that the sharp kink (the slope discontinuity) \"diffuses away\" almost immediately, because that sharp kink is created by the high-frequency sine-series terms that decay very rapidly. After a short while, in fact, the solution just looks like $\\sin(\\pi x)$, because it is dominated by the $n=1$ term in the series." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solving the wave equation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we have the *wave* equation $\\frac{\\partial^2 u}{\\partial x^2} = \\frac{\\partial^2 u}{\\partial t^2}$, with Dirichlet boundary conditions $u(0,t) = u(1,t) = 0$, and initial conditions $u(x,0) = f(x)$ and $\\dot{u}(x,0) = 0$, we can also solve the equation by expanding $u(x,t)$ in a Fourier sine series. From class:\n", + "\n", + "* $u(x,t) = \\sum_{n=0}^\\infty b_n \\sin(n\\pi x) \\cos{n\\pi t}$\n", + "\n", + "where $b_n$ are the sine-series coefficients of the initial condition $f(x)$.\n", + "\n", + "Let's again plot this for different times $t$ for the $f(x) = 0.5 - |x - 0.5|$ from above, using 199 terms in the series:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.webio.node+json": { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + { + "children": [ + "time t" + ], + "instanceArgs": { + "namespace": "html", + "tag": "label" + }, + "nodeType": "DOM", + "props": { + "className": "interact ", + "style": { + "padding": "5px 10px 0px 10px" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-left" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "input" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", + "orient": "horizontal", + "type": "range" + }, + "className": "slider slider is-fullwidth", + "max": 1001, + "min": 1, + "step": 1, + "style": {} + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-center" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "p" + }, + "nodeType": "DOM", + "props": { + "attributes": { + "data-bind": "text: formatted_val" + } + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row-right" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + ], + "instanceArgs": { + "handlers": { + "changes": [ + "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" + ], + "index": [ + "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" + ] + }, + "id": "5137706702446347545", + "imports": { + "data": [ + { + "name": "knockout", + "type": "js", + "url": "/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js" + }, + { + "name": "knockout_punches", + "type": "js", + "url": "/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js" + }, + { + "name": null, + "type": "js", + "url": "/assetserver/61f613675da75f539731913573998184b30434d8-all.js" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/58abda19fb319e300ad7b22e44bebba074b4bb4d-style.css" + }, + { + "name": null, + "type": "css", + "url": "/assetserver/624890bd43acdf6da9d12dfb47a1c50d9dc9f836-bulma_confined.min.css" + } + ], + "type": "async_block" + }, + "mount_callbacks": [ + "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init: function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n });\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n });\n ko.applyBindingsToNode(\n element,\n {\n value: stringified,\n valueUpdate: allBindings.get('valueUpdate'),\n },\n context,\n );\n }\n };\n var json_data = {\"formatted_vals\":[\"0.0\",\"0.01\",\"0.02\",\"0.03\",\"0.04\",\"0.05\",\"0.06\",\"0.07\",\"0.08\",\"0.09\",\"0.1\",\"0.11\",\"0.12\",\"0.13\",\"0.14\",\"0.15\",\"0.16\",\"0.17\",\"0.18\",\"0.19\",\"0.2\",\"0.21\",\"0.22\",\"0.23\",\"0.24\",\"0.25\",\"0.26\",\"0.27\",\"0.28\",\"0.29\",\"0.3\",\"0.31\",\"0.32\",\"0.33\",\"0.34\",\"0.35\",\"0.36\",\"0.37\",\"0.38\",\"0.39\",\"0.4\",\"0.41\",\"0.42\",\"0.43\",\"0.44\",\"0.45\",\"0.46\",\"0.47\",\"0.48\",\"0.49\",\"0.5\",\"0.51\",\"0.52\",\"0.53\",\"0.54\",\"0.55\",\"0.56\",\"0.57\",\"0.58\",\"0.59\",\"0.6\",\"0.61\",\"0.62\",\"0.63\",\"0.64\",\"0.65\",\"0.66\",\"0.67\",\"0.68\",\"0.69\",\"0.7\",\"0.71\",\"0.72\",\"0.73\",\"0.74\",\"0.75\",\"0.76\",\"0.77\",\"0.78\",\"0.79\",\"0.8\",\"0.81\",\"0.82\",\"0.83\",\"0.84\",\"0.85\",\"0.86\",\"0.87\",\"0.88\",\"0.89\",\"0.9\",\"0.91\",\"0.92\",\"0.93\",\"0.94\",\"0.95\",\"0.96\",\"0.97\",\"0.98\",\"0.99\",\"1.0\",\"1.01\",\"1.02\",\"1.03\",\"1.04\",\"1.05\",\"1.06\",\"1.07\",\"1.08\",\"1.09\",\"1.1\",\"1.11\",\"1.12\",\"1.13\",\"1.14\",\"1.15\",\"1.16\",\"1.17\",\"1.18\",\"1.19\",\"1.2\",\"1.21\",\"1.22\",\"1.23\",\"1.24\",\"1.25\",\"1.26\",\"1.27\",\"1.28\",\"1.29\",\"1.3\",\"1.31\",\"1.32\",\"1.33\",\"1.34\",\"1.35\",\"1.36\",\"1.37\",\"1.38\",\"1.39\",\"1.4\",\"1.41\",\"1.42\",\"1.43\",\"1.44\",\"1.45\",\"1.46\",\"1.47\",\"1.48\",\"1.49\",\"1.5\",\"1.51\",\"1.52\",\"1.53\",\"1.54\",\"1.55\",\"1.56\",\"1.57\",\"1.58\",\"1.59\",\"1.6\",\"1.61\",\"1.62\",\"1.63\",\"1.64\",\"1.65\",\"1.66\",\"1.67\",\"1.68\",\"1.69\",\"1.7\",\"1.71\",\"1.72\",\"1.73\",\"1.74\",\"1.75\",\"1.76\",\"1.77\",\"1.78\",\"1.79\",\"1.8\",\"1.81\",\"1.82\",\"1.83\",\"1.84\",\"1.85\",\"1.86\",\"1.87\",\"1.88\",\"1.89\",\"1.9\",\"1.91\",\"1.92\",\"1.93\",\"1.94\",\"1.95\",\"1.96\",\"1.97\",\"1.98\",\"1.99\",\"2.0\",\"2.01\",\"2.02\",\"2.03\",\"2.04\",\"2.05\",\"2.06\",\"2.07\",\"2.08\",\"2.09\",\"2.1\",\"2.11\",\"2.12\",\"2.13\",\"2.14\",\"2.15\",\"2.16\",\"2.17\",\"2.18\",\"2.19\",\"2.2\",\"2.21\",\"2.22\",\"2.23\",\"2.24\",\"2.25\",\"2.26\",\"2.27\",\"2.28\",\"2.29\",\"2.3\",\"2.31\",\"2.32\",\"2.33\",\"2.34\",\"2.35\",\"2.36\",\"2.37\",\"2.38\",\"2.39\",\"2.4\",\"2.41\",\"2.42\",\"2.43\",\"2.44\",\"2.45\",\"2.46\",\"2.47\",\"2.48\",\"2.49\",\"2.5\",\"2.51\",\"2.52\",\"2.53\",\"2.54\",\"2.55\",\"2.56\",\"2.57\",\"2.58\",\"2.59\",\"2.6\",\"2.61\",\"2.62\",\"2.63\",\"2.64\",\"2.65\",\"2.66\",\"2.67\",\"2.68\",\"2.69\",\"2.7\",\"2.71\",\"2.72\",\"2.73\",\"2.74\",\"2.75\",\"2.76\",\"2.77\",\"2.78\",\"2.79\",\"2.8\",\"2.81\",\"2.82\",\"2.83\",\"2.84\",\"2.85\",\"2.86\",\"2.87\",\"2.88\",\"2.89\",\"2.9\",\"2.91\",\"2.92\",\"2.93\",\"2.94\",\"2.95\",\"2.96\",\"2.97\",\"2.98\",\"2.99\",\"3.0\",\"3.01\",\"3.02\",\"3.03\",\"3.04\",\"3.05\",\"3.06\",\"3.07\",\"3.08\",\"3.09\",\"3.1\",\"3.11\",\"3.12\",\"3.13\",\"3.14\",\"3.15\",\"3.16\",\"3.17\",\"3.18\",\"3.19\",\"3.2\",\"3.21\",\"3.22\",\"3.23\",\"3.24\",\"3.25\",\"3.26\",\"3.27\",\"3.28\",\"3.29\",\"3.3\",\"3.31\",\"3.32\",\"3.33\",\"3.34\",\"3.35\",\"3.36\",\"3.37\",\"3.38\",\"3.39\",\"3.4\",\"3.41\",\"3.42\",\"3.43\",\"3.44\",\"3.45\",\"3.46\",\"3.47\",\"3.48\",\"3.49\",\"3.5\",\"3.51\",\"3.52\",\"3.53\",\"3.54\",\"3.55\",\"3.56\",\"3.57\",\"3.58\",\"3.59\",\"3.6\",\"3.61\",\"3.62\",\"3.63\",\"3.64\",\"3.65\",\"3.66\",\"3.67\",\"3.68\",\"3.69\",\"3.7\",\"3.71\",\"3.72\",\"3.73\",\"3.74\",\"3.75\",\"3.76\",\"3.77\",\"3.78\",\"3.79\",\"3.8\",\"3.81\",\"3.82\",\"3.83\",\"3.84\",\"3.85\",\"3.86\",\"3.87\",\"3.88\",\"3.89\",\"3.9\",\"3.91\",\"3.92\",\"3.93\",\"3.94\",\"3.95\",\"3.96\",\"3.97\",\"3.98\",\"3.99\",\"4.0\",\"4.01\",\"4.02\",\"4.03\",\"4.04\",\"4.05\",\"4.06\",\"4.07\",\"4.08\",\"4.09\",\"4.1\",\"4.11\",\"4.12\",\"4.13\",\"4.14\",\"4.15\",\"4.16\",\"4.17\",\"4.18\",\"4.19\",\"4.2\",\"4.21\",\"4.22\",\"4.23\",\"4.24\",\"4.25\",\"4.26\",\"4.27\",\"4.28\",\"4.29\",\"4.3\",\"4.31\",\"4.32\",\"4.33\",\"4.34\",\"4.35\",\"4.36\",\"4.37\",\"4.38\",\"4.39\",\"4.4\",\"4.41\",\"4.42\",\"4.43\",\"4.44\",\"4.45\",\"4.46\",\"4.47\",\"4.48\",\"4.49\",\"4.5\",\"4.51\",\"4.52\",\"4.53\",\"4.54\",\"4.55\",\"4.56\",\"4.57\",\"4.58\",\"4.59\",\"4.6\",\"4.61\",\"4.62\",\"4.63\",\"4.64\",\"4.65\",\"4.66\",\"4.67\",\"4.68\",\"4.69\",\"4.7\",\"4.71\",\"4.72\",\"4.73\",\"4.74\",\"4.75\",\"4.76\",\"4.77\",\"4.78\",\"4.79\",\"4.8\",\"4.81\",\"4.82\",\"4.83\",\"4.84\",\"4.85\",\"4.86\",\"4.87\",\"4.88\",\"4.89\",\"4.9\",\"4.91\",\"4.92\",\"4.93\",\"4.94\",\"4.95\",\"4.96\",\"4.97\",\"4.98\",\"4.99\",\"5.0\",\"5.01\",\"5.02\",\"5.03\",\"5.04\",\"5.05\",\"5.06\",\"5.07\",\"5.08\",\"5.09\",\"5.1\",\"5.11\",\"5.12\",\"5.13\",\"5.14\",\"5.15\",\"5.16\",\"5.17\",\"5.18\",\"5.19\",\"5.2\",\"5.21\",\"5.22\",\"5.23\",\"5.24\",\"5.25\",\"5.26\",\"5.27\",\"5.28\",\"5.29\",\"5.3\",\"5.31\",\"5.32\",\"5.33\",\"5.34\",\"5.35\",\"5.36\",\"5.37\",\"5.38\",\"5.39\",\"5.4\",\"5.41\",\"5.42\",\"5.43\",\"5.44\",\"5.45\",\"5.46\",\"5.47\",\"5.48\",\"5.49\",\"5.5\",\"5.51\",\"5.52\",\"5.53\",\"5.54\",\"5.55\",\"5.56\",\"5.57\",\"5.58\",\"5.59\",\"5.6\",\"5.61\",\"5.62\",\"5.63\",\"5.64\",\"5.65\",\"5.66\",\"5.67\",\"5.68\",\"5.69\",\"5.7\",\"5.71\",\"5.72\",\"5.73\",\"5.74\",\"5.75\",\"5.76\",\"5.77\",\"5.78\",\"5.79\",\"5.8\",\"5.81\",\"5.82\",\"5.83\",\"5.84\",\"5.85\",\"5.86\",\"5.87\",\"5.88\",\"5.89\",\"5.9\",\"5.91\",\"5.92\",\"5.93\",\"5.94\",\"5.95\",\"5.96\",\"5.97\",\"5.98\",\"5.99\",\"6.0\",\"6.01\",\"6.02\",\"6.03\",\"6.04\",\"6.05\",\"6.06\",\"6.07\",\"6.08\",\"6.09\",\"6.1\",\"6.11\",\"6.12\",\"6.13\",\"6.14\",\"6.15\",\"6.16\",\"6.17\",\"6.18\",\"6.19\",\"6.2\",\"6.21\",\"6.22\",\"6.23\",\"6.24\",\"6.25\",\"6.26\",\"6.27\",\"6.28\",\"6.29\",\"6.3\",\"6.31\",\"6.32\",\"6.33\",\"6.34\",\"6.35\",\"6.36\",\"6.37\",\"6.38\",\"6.39\",\"6.4\",\"6.41\",\"6.42\",\"6.43\",\"6.44\",\"6.45\",\"6.46\",\"6.47\",\"6.48\",\"6.49\",\"6.5\",\"6.51\",\"6.52\",\"6.53\",\"6.54\",\"6.55\",\"6.56\",\"6.57\",\"6.58\",\"6.59\",\"6.6\",\"6.61\",\"6.62\",\"6.63\",\"6.64\",\"6.65\",\"6.66\",\"6.67\",\"6.68\",\"6.69\",\"6.7\",\"6.71\",\"6.72\",\"6.73\",\"6.74\",\"6.75\",\"6.76\",\"6.77\",\"6.78\",\"6.79\",\"6.8\",\"6.81\",\"6.82\",\"6.83\",\"6.84\",\"6.85\",\"6.86\",\"6.87\",\"6.88\",\"6.89\",\"6.9\",\"6.91\",\"6.92\",\"6.93\",\"6.94\",\"6.95\",\"6.96\",\"6.97\",\"6.98\",\"6.99\",\"7.0\",\"7.01\",\"7.02\",\"7.03\",\"7.04\",\"7.05\",\"7.06\",\"7.07\",\"7.08\",\"7.09\",\"7.1\",\"7.11\",\"7.12\",\"7.13\",\"7.14\",\"7.15\",\"7.16\",\"7.17\",\"7.18\",\"7.19\",\"7.2\",\"7.21\",\"7.22\",\"7.23\",\"7.24\",\"7.25\",\"7.26\",\"7.27\",\"7.28\",\"7.29\",\"7.3\",\"7.31\",\"7.32\",\"7.33\",\"7.34\",\"7.35\",\"7.36\",\"7.37\",\"7.38\",\"7.39\",\"7.4\",\"7.41\",\"7.42\",\"7.43\",\"7.44\",\"7.45\",\"7.46\",\"7.47\",\"7.48\",\"7.49\",\"7.5\",\"7.51\",\"7.52\",\"7.53\",\"7.54\",\"7.55\",\"7.56\",\"7.57\",\"7.58\",\"7.59\",\"7.6\",\"7.61\",\"7.62\",\"7.63\",\"7.64\",\"7.65\",\"7.66\",\"7.67\",\"7.68\",\"7.69\",\"7.7\",\"7.71\",\"7.72\",\"7.73\",\"7.74\",\"7.75\",\"7.76\",\"7.77\",\"7.78\",\"7.79\",\"7.8\",\"7.81\",\"7.82\",\"7.83\",\"7.84\",\"7.85\",\"7.86\",\"7.87\",\"7.88\",\"7.89\",\"7.9\",\"7.91\",\"7.92\",\"7.93\",\"7.94\",\"7.95\",\"7.96\",\"7.97\",\"7.98\",\"7.99\",\"8.0\",\"8.01\",\"8.02\",\"8.03\",\"8.04\",\"8.05\",\"8.06\",\"8.07\",\"8.08\",\"8.09\",\"8.1\",\"8.11\",\"8.12\",\"8.13\",\"8.14\",\"8.15\",\"8.16\",\"8.17\",\"8.18\",\"8.19\",\"8.2\",\"8.21\",\"8.22\",\"8.23\",\"8.24\",\"8.25\",\"8.26\",\"8.27\",\"8.28\",\"8.29\",\"8.3\",\"8.31\",\"8.32\",\"8.33\",\"8.34\",\"8.35\",\"8.36\",\"8.37\",\"8.38\",\"8.39\",\"8.4\",\"8.41\",\"8.42\",\"8.43\",\"8.44\",\"8.45\",\"8.46\",\"8.47\",\"8.48\",\"8.49\",\"8.5\",\"8.51\",\"8.52\",\"8.53\",\"8.54\",\"8.55\",\"8.56\",\"8.57\",\"8.58\",\"8.59\",\"8.6\",\"8.61\",\"8.62\",\"8.63\",\"8.64\",\"8.65\",\"8.66\",\"8.67\",\"8.68\",\"8.69\",\"8.7\",\"8.71\",\"8.72\",\"8.73\",\"8.74\",\"8.75\",\"8.76\",\"8.77\",\"8.78\",\"8.79\",\"8.8\",\"8.81\",\"8.82\",\"8.83\",\"8.84\",\"8.85\",\"8.86\",\"8.87\",\"8.88\",\"8.89\",\"8.9\",\"8.91\",\"8.92\",\"8.93\",\"8.94\",\"8.95\",\"8.96\",\"8.97\",\"8.98\",\"8.99\",\"9.0\",\"9.01\",\"9.02\",\"9.03\",\"9.04\",\"9.05\",\"9.06\",\"9.07\",\"9.08\",\"9.09\",\"9.1\",\"9.11\",\"9.12\",\"9.13\",\"9.14\",\"9.15\",\"9.16\",\"9.17\",\"9.18\",\"9.19\",\"9.2\",\"9.21\",\"9.22\",\"9.23\",\"9.24\",\"9.25\",\"9.26\",\"9.27\",\"9.28\",\"9.29\",\"9.3\",\"9.31\",\"9.32\",\"9.33\",\"9.34\",\"9.35\",\"9.36\",\"9.37\",\"9.38\",\"9.39\",\"9.4\",\"9.41\",\"9.42\",\"9.43\",\"9.44\",\"9.45\",\"9.46\",\"9.47\",\"9.48\",\"9.49\",\"9.5\",\"9.51\",\"9.52\",\"9.53\",\"9.54\",\"9.55\",\"9.56\",\"9.57\",\"9.58\",\"9.59\",\"9.6\",\"9.61\",\"9.62\",\"9.63\",\"9.64\",\"9.65\",\"9.66\",\"9.67\",\"9.68\",\"9.69\",\"9.7\",\"9.71\",\"9.72\",\"9.73\",\"9.74\",\"9.75\",\"9.76\",\"9.77\",\"9.78\",\"9.79\",\"9.8\",\"9.81\",\"9.82\",\"9.83\",\"9.84\",\"9.85\",\"9.86\",\"9.87\",\"9.88\",\"9.89\",\"9.9\",\"9.91\",\"9.92\",\"9.93\",\"9.94\",\"9.95\",\"9.96\",\"9.97\",\"9.98\",\"9.99\",\"10.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"5137706702446347545\",\"id\":\"11605487678637687901\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"5137706702446347545\",\"id\":\"125607022472079391\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-(1)];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"5137706702446347545\",\"id\":\"11605487678637687901\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"5137706702446347545\",\"id\":\"125607022472079391\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" + ], + "observables": { + "changes": { + "id": "11605487678637687901", + "sync": false, + "value": 0 + }, + "index": { + "id": "125607022472079391", + "sync": true, + "value": 1 + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "field interact-widget" + }, + "type": "node" + }, + { + "children": [ + { + "children": [], + "instanceArgs": { + "id": "532084827946023801", + "name": "obs-node" + }, + "nodeType": "ObservableNode", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "handlers": {}, + "id": "6819473965084848805", + "imports": { + "data": [], + "type": "async_block" + }, + "mount_callbacks": [], + "observables": { + "obs-node": { + "id": "532084827946023801", + "sync": false, + "value": { + "children": [ + { + "children": [], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "setInnerHtml": "" + }, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": { + "className": "interact-flex-row interact-widget" + }, + "type": "node" + } + } + }, + "systemjs_options": null + }, + "nodeType": "Scope", + "props": {}, + "type": "node" + } + ], + "instanceArgs": { + "namespace": "html", + "tag": "div" + }, + "nodeType": "DOM", + "props": {}, + "type": "node" + }, + "text/html": [ + "\n", + " \n", + "\n" + ], + "text/plain": [ + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Scope(Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :label), Any[\"time t\"], Dict{Symbol, Any}(:className => \"interact \", :style => Dict{Any, Any}(:padding => \"5px 10px 0px 10px\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-left\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :input), Any[], Dict{Symbol, Any}(:max => 1001, :min => 1, :attributes => Dict{Any, Any}(:type => \"range\", Symbol(\"data-bind\") => \"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\", \"orient\" => \"horizontal\"), :step => 1, :className => \"slider slider is-fullwidth\", :style => Dict{Any, Any}()))], Dict{Symbol, Any}(:className => \"interact-flex-row-center\")), Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{WebIO.DOM}(WebIO.DOM(:html, :p), Any[], Dict{Symbol, Any}(:attributes => Dict(\"data-bind\" => \"text: formatted_val\")))], Dict{Symbol, Any}(:className => \"interact-flex-row-right\"))], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\")), Dict{String, Tuple{Observables.AbstractObservable, Union{Nothing, Bool}}}(\"changes\" => (Observable{Int64} with 1 listeners. Value:\n", + "0, nothing), \"index\" => (Observable{Any} with 2 listeners. Value:\n", + "1, nothing)), Set{String}(), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/stevenj/.julia/packages/Knockout/3gjS1/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/InteractBase/o1I6G/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/stevenj/.julia/packages/Interact/pVyN2/src/../assets/bulma_confined.min.css\")], Dict{Any, Any}(\"changes\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")], \"index\" => Any[WebIO.JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), WebIO.ConnectionPool(Channel{Any}(32), Set{AbstractConnection}(), Condition(Base.InvasiveLinkedList{Task}(Task (runnable) @0x00000001363a3dc0, Task (runnable) @0x00000001363a3dc0), Base.AlwaysLockedST(1))), WebIO.JSString[WebIO.JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init: function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n });\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n });\\n ko.applyBindingsToNode(\\n element,\\n {\\n value: stringified,\\n valueUpdate: allBindings.get('valueUpdate'),\\n },\\n context,\\n );\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.0\\\",\\\"0.01\\\",\\\"0.02\\\",\\\"0.03\\\",\\\"0.04\\\",\\\"0.05\\\",\\\"0.06\\\",\\\"0.07\\\",\\\"0.08\\\",\\\"0.09\\\",\\\"0.1\\\",\\\"0.11\\\",\\\"0.12\\\",\\\"0.13\\\",\\\"0.14\\\",\\\"0.15\\\",\\\"0.16\\\",\\\"0.17\\\",\\\"0.18\\\",\\\"0.19\\\",\\\"0.2\\\",\\\"0.21\\\",\\\"0.22\\\",\\\"0.23\\\",\\\"0.24\\\",\\\"0.25\\\",\\\"0.26\\\",\\\"0.27\\\",\\\"0.28\\\",\\\"0.29\\\",\\\"0.3\\\",\\\"0.31\\\",\\\"0.32\\\",\\\"0.33\\\",\\\"0.34\\\",\\\"0.35\\\",\\\"0.36\\\",\\\"0.37\\\",\\\"0.38\\\",\\\"0.39\\\",\\\"0.4\\\",\\\"0.41\\\",\\\"0.42\\\",\\\"0.43\\\",\\\"0.44\\\",\\\"0.45\\\",\\\"0.46\\\",\\\"0.47\\\",\\\"0.48\\\",\\\"0.49\\\",\\\"0.5\\\",\\\"0.51\\\",\\\"0.52\\\",\\\"0.53\\\",\\\"0.54\\\",\\\"0.55\\\",\\\"0.56\\\",\\\"0.57\\\",\\\"0.58\\\",\\\"0.59\\\",\\\"0.6\\\",\\\"0.61\\\",\\\"0.62\\\",\\\"0.63\\\",\\\"0.64\\\",\\\"0.65\\\",\\\"0.66\\\",\\\"0.67\\\",\\\"0.68\\\",\\\"0.69\\\",\\\"0.7\\\",\\\"0.71\\\",\\\"0.72\\\",\\\"0.73\\\",\\\"0.74\\\",\\\"0.75\\\",\\\"0.76\\\",\\\"0.77\\\",\\\"0.78\\\",\\\"0.79\\\",\\\"0.8\\\",\\\"0.81\\\",\\\"0.82\\\",\\\"0.83\\\",\\\"0.84\\\",\\\"0.85\\\",\\\"0.86\\\",\\\"0.87\\\",\\\"0.88\\\",\\\"0.89\\\",\\\"0.9\\\",\\\"0.91\\\",\\\"0.92\\\",\\\"0.93\\\",\\\"0.94\\\",\\\"0.95\\\",\\\"0.96\\\",\\\"0.97\\\",\\\"0.98\\\",\\\"0.99\\\",\\\"1.0\\\",\\\"1.01\\\",\\\"1.02\\\",\\\"1.03\\\",\\\"1.04\\\",\\\"1.05\\\",\\\"1.06\\\",\\\"1.07\\\",\\\"1.08\\\",\\\"1.09\\\",\\\"1.1\\\",\\\"1.11\\\",\\\"1.12\\\",\\\"1.13\\\",\\\"1.14\\\",\\\"1.15\\\",\\\"1.16\\\",\\\"1.17\\\",\\\"1.18\\\",\\\"1.19\\\",\\\"1.2\\\",\\\"1.21\\\",\\\"1.22\\\",\\\"1.23\\\",\\\"1.24\\\",\\\"1.25\\\",\\\"1.26\\\",\\\"1.27\\\",\\\"1.28\\\",\\\"1.29\\\",\\\"1.3\\\",\\\"1.31\\\",\\\"1.32\\\",\\\"1.33\\\",\\\"1.34\\\",\\\"1.35\\\",\\\"1.36\\\",\\\"1.37\\\",\\\"1.38\\\",\\\"1.39\\\",\\\"1.4\\\",\\\"1.41\\\",\\\"1.42\\\",\\\"1.43\\\",\\\"1.44\\\",\\\"1.45\\\",\\\"1.46\\\",\\\"1.47\\\",\\\"1.48\\\",\\\"1.49\\\",\\\"1.5\\\",\\\"1.51\\\",\\\"1.52\\\",\\\"1.53\\\",\\\"1.54\\\",\\\"1.55\\\",\\\"1.56\\\",\\\"1.57\\\",\\\"1.58\\\",\\\"1.59\\\",\\\"1.6\\\",\\\"1.61\\\",\\\"1.62\\\",\\\"1.63\\\",\\\"1.64\\\",\\\"1.65\\\",\\\"1.66\\\",\\\"1.67\\\",\\\"1.68\\\",\\\"1.69\\\",\\\"1.7\\\",\\\"1.71\\\",\\\"1.72\\\",\\\"1.73\\\",\\\"1.74\\\",\\\"1.75\\\",\\\"1.76\\\",\\\"1.77\\\",\\\"1.78\\\",\\\"1.79\\\",\\\"1.8\\\",\\\"1.81\\\",\\\"1.82\\\",\\\"1.83\\\",\\\"1.84\\\",\\\"1.85\\\",\\\"1.86\\\",\\\"1.87\\\",\\\"1.88\\\",\\\"1.89\\\",\\\"1.9\\\",\\\"1.91\\\",\\\"1.92\\\",\\\"1.93\\\",\\\"1.94\\\",\\\"1.95\\\",\\\"1.96\\\",\\\"1.97\\\",\\\"1.98\\\",\\\"1.99\\\",\\\"2.0\\\",\\\"2.01\\\",\\\"2.02\\\",\\\"2.03\\\",\\\"2.04\\\",\\\"2.05\\\",\\\"2.06\\\",\\\"2.07\\\",\\\"2.08\\\",\\\"2.09\\\",\\\"2.1\\\",\\\"2.11\\\",\\\"2.12\\\",\\\"2.13\\\",\\\"2.14\\\",\\\"2.15\\\",\\\"2.16\\\",\\\"2.17\\\",\\\"2.18\\\",\\\"2.19\\\",\\\"2.2\\\",\\\"2.21\\\",\\\"2.22\\\",\\\"2.23\\\",\\\"2.24\\\",\\\"2.25\\\",\\\"2.26\\\",\\\"2.27\\\",\\\"2.28\\\",\\\"2.29\\\",\\\"2.3\\\",\\\"2.31\\\",\\\"2.32\\\",\\\"2.33\\\",\\\"2.34\\\",\\\"2.35\\\",\\\"2.36\\\",\\\"2.37\\\",\\\"2.38\\\",\\\"2.39\\\",\\\"2.4\\\",\\\"2.41\\\",\\\"2.42\\\",\\\"2.43\\\",\\\"2.44\\\",\\\"2.45\\\",\\\"2.46\\\",\\\"2.47\\\",\\\"2.48\\\",\\\"2.49\\\",\\\"2.5\\\",\\\"2.51\\\",\\\"2.52\\\",\\\"2.53\\\",\\\"2.54\\\",\\\"2.55\\\",\\\"2.56\\\",\\\"2.57\\\",\\\"2.58\\\",\\\"2.59\\\",\\\"2.6\\\",\\\"2.61\\\",\\\"2.62\\\",\\\"2.63\\\",\\\"2.64\\\",\\\"2.65\\\",\\\"2.66\\\",\\\"2.67\\\",\\\"2.68\\\",\\\"2.69\\\",\\\"2.7\\\",\\\"2.71\\\",\\\"2.72\\\",\\\"2.73\\\",\\\"2.74\\\",\\\"2.75\\\",\\\"2.76\\\",\\\"2.77\\\",\\\"2.78\\\",\\\"2.79\\\",\\\"2.8\\\",\\\"2.81\\\",\\\"2.82\\\",\\\"2.83\\\",\\\"2.84\\\",\\\"2.85\\\",\\\"2.86\\\",\\\"2.87\\\",\\\"2.88\\\",\\\"2.89\\\",\\\"2.9\\\",\\\"2.91\\\",\\\"2.92\\\",\\\"2.93\\\",\\\"2.94\\\",\\\"2.95\\\",\\\"2.96\\\",\\\"2.97\\\",\\\"2.98\\\",\\\"2.99\\\",\\\"3.0\\\",\\\"3.01\\\",\\\"3.02\\\",\\\"3.03\\\",\\\"3.04\\\",\\\"3.05\\\",\\\"3.06\\\",\\\"3.07\\\",\\\"3.08\\\",\\\"3.09\\\",\\\"3.1\\\",\\\"3.11\\\",\\\"3.12\\\",\\\"3.13\\\",\\\"3.14\\\",\\\"3.15\\\",\\\"3.16\\\",\\\"3.17\\\",\\\"3.18\\\",\\\"3.19\\\",\\\"3.2\\\",\\\"3.21\\\",\\\"3.22\\\",\\\"3.23\\\",\\\"3.24\\\",\\\"3.25\\\",\\\"3.26\\\",\\\"3.27\\\",\\\"3.28\\\",\\\"3.29\\\",\\\"3.3\\\",\\\"3.31\\\",\\\"3.32\\\",\\\"3.33\\\",\\\"3.34\\\",\\\"3.35\\\",\\\"3.36\\\",\\\"3.37\\\",\\\"3.38\\\",\\\"3.39\\\",\\\"3.4\\\",\\\"3.41\\\",\\\"3.42\\\",\\\"3.43\\\",\\\"3.44\\\",\\\"3.45\\\",\\\"3.46\\\",\\\"3.47\\\",\\\"3.48\\\",\\\"3.49\\\",\\\"3.5\\\",\\\"3.51\\\",\\\"3.52\\\",\\\"3.53\\\",\\\"3.54\\\",\\\"3.55\\\",\\\"3.56\\\",\\\"3.57\\\",\\\"3.58\\\",\\\"3.59\\\",\\\"3.6\\\",\\\"3.61\\\",\\\"3.62\\\",\\\"3.63\\\",\\\"3.64\\\",\\\"3.65\\\",\\\"3.66\\\",\\\"3.67\\\",\\\"3.68\\\",\\\"3.69\\\",\\\"3.7\\\",\\\"3.71\\\",\\\"3.72\\\",\\\"3.73\\\",\\\"3.74\\\",\\\"3.75\\\",\\\"3.76\\\",\\\"3.77\\\",\\\"3.78\\\",\\\"3.79\\\",\\\"3.8\\\",\\\"3.81\\\",\\\"3.82\\\",\\\"3.83\\\",\\\"3.84\\\",\\\"3.85\\\",\\\"3.86\\\",\\\"3.87\\\",\\\"3.88\\\",\\\"3.89\\\",\\\"3.9\\\",\\\"3.91\\\",\\\"3.92\\\",\\\"3.93\\\",\\\"3.94\\\",\\\"3.95\\\",\\\"3.96\\\",\\\"3.97\\\",\\\"3.98\\\",\\\"3.99\\\",\\\"4.0\\\",\\\"4.01\\\",\\\"4.02\\\",\\\"4.03\\\",\\\"4.04\\\",\\\"4.05\\\",\\\"4.06\\\",\\\"4.07\\\",\\\"4.08\\\",\\\"4.09\\\",\\\"4.1\\\",\\\"4.11\\\",\\\"4.12\\\",\\\"4.13\\\",\\\"4.14\\\",\\\"4.15\\\",\\\"4.16\\\",\\\"4.17\\\",\\\"4.18\\\",\\\"4.19\\\",\\\"4.2\\\",\\\"4.21\\\",\\\"4.22\\\",\\\"4.23\\\",\\\"4.24\\\",\\\"4.25\\\",\\\"4.26\\\",\\\"4.27\\\",\\\"4.28\\\",\\\"4.29\\\",\\\"4.3\\\",\\\"4.31\\\",\\\"4.32\\\",\\\"4.33\\\",\\\"4.34\\\",\\\"4.35\\\",\\\"4.36\\\",\\\"4.37\\\",\\\"4.38\\\",\\\"4.39\\\",\\\"4.4\\\",\\\"4.41\\\",\\\"4.42\\\",\\\"4.43\\\",\\\"4.44\\\",\\\"4.45\\\",\\\"4.46\\\",\\\"4.47\\\",\\\"4.48\\\",\\\"4.49\\\",\\\"4.5\\\",\\\"4.51\\\",\\\"4.52\\\",\\\"4.53\\\",\\\"4.54\\\",\\\"4.55\\\",\\\"4.56\\\",\\\"4.57\\\",\\\"4.58\\\",\\\"4.59\\\",\\\"4.6\\\",\\\"4.61\\\",\\\"4.62\\\",\\\"4.63\\\",\\\"4.64\\\",\\\"4.65\\\",\\\"4.66\\\",\\\"4.67\\\",\\\"4.68\\\",\\\"4.69\\\",\\\"4.7\\\",\\\"4.71\\\",\\\"4.72\\\",\\\"4.73\\\",\\\"4.74\\\",\\\"4.75\\\",\\\"4.76\\\",\\\"4.77\\\",\\\"4.78\\\",\\\"4.79\\\",\\\"4.8\\\",\\\"4.81\\\",\\\"4.82\\\",\\\"4.83\\\",\\\"4.84\\\",\\\"4.85\\\",\\\"4.86\\\",\\\"4.87\\\",\\\"4.88\\\",\\\"4.89\\\",\\\"4.9\\\",\\\"4.91\\\",\\\"4.92\\\",\\\"4.93\\\",\\\"4.94\\\",\\\"4.95\\\",\\\"4.96\\\",\\\"4.97\\\",\\\"4.98\\\",\\\"4.99\\\",\\\"5.0\\\",\\\"5.01\\\",\\\"5.02\\\",\\\"5.03\\\",\\\"5.04\\\",\\\"5.05\\\",\\\"5.06\\\",\\\"5.07\\\",\\\"5.08\\\",\\\"5.09\\\",\\\"5.1\\\",\\\"5.11\\\",\\\"5.12\\\",\\\"5.13\\\",\\\"5.14\\\",\\\"5.15\\\",\\\"5.16\\\",\\\"5.17\\\",\\\"5.18\\\",\\\"5.19\\\",\\\"5.2\\\",\\\"5.21\\\",\\\"5.22\\\",\\\"5.23\\\",\\\"5.24\\\",\\\"5.25\\\",\\\"5.26\\\",\\\"5.27\\\",\\\"5.28\\\",\\\"5.29\\\",\\\"5.3\\\",\\\"5.31\\\",\\\"5.32\\\",\\\"5.33\\\",\\\"5.34\\\",\\\"5.35\\\",\\\"5.36\\\",\\\"5.37\\\",\\\"5.38\\\",\\\"5.39\\\",\\\"5.4\\\",\\\"5.41\\\",\\\"5.42\\\",\\\"5.43\\\",\\\"5.44\\\",\\\"5.45\\\",\\\"5.46\\\",\\\"5.47\\\",\\\"5.48\\\",\\\"5.49\\\",\\\"5.5\\\",\\\"5.51\\\",\\\"5.52\\\",\\\"5.53\\\",\\\"5.54\\\",\\\"5.55\\\",\\\"5.56\\\",\\\"5.57\\\",\\\"5.58\\\",\\\"5.59\\\",\\\"5.6\\\",\\\"5.61\\\",\\\"5.62\\\",\\\"5.63\\\",\\\"5.64\\\",\\\"5.65\\\",\\\"5.66\\\",\\\"5.67\\\",\\\"5.68\\\",\\\"5.69\\\",\\\"5.7\\\",\\\"5.71\\\",\\\"5.72\\\",\\\"5.73\\\",\\\"5.74\\\",\\\"5.75\\\",\\\"5.76\\\",\\\"5.77\\\",\\\"5.78\\\",\\\"5.79\\\",\\\"5.8\\\",\\\"5.81\\\",\\\"5.82\\\",\\\"5.83\\\",\\\"5.84\\\",\\\"5.85\\\",\\\"5.86\\\",\\\"5.87\\\",\\\"5.88\\\",\\\"5.89\\\",\\\"5.9\\\",\\\"5.91\\\",\\\"5.92\\\",\\\"5.93\\\",\\\"5.94\\\",\\\"5.95\\\",\\\"5.96\\\",\\\"5.97\\\",\\\"5.98\\\",\\\"5.99\\\",\\\"6.0\\\",\\\"6.01\\\",\\\"6.02\\\",\\\"6.03\\\",\\\"6.04\\\",\\\"6.05\\\",\\\"6.06\\\",\\\"6.07\\\",\\\"6.08\\\",\\\"6.09\\\",\\\"6.1\\\",\\\"6.11\\\",\\\"6.12\\\",\\\"6.13\\\",\\\"6.14\\\",\\\"6.15\\\",\\\"6.16\\\",\\\"6.17\\\",\\\"6.18\\\",\\\"6.19\\\",\\\"6.2\\\",\\\"6.21\\\",\\\"6.22\\\",\\\"6.23\\\",\\\"6.24\\\",\\\"6.25\\\",\\\"6.26\\\",\\\"6.27\\\",\\\"6.28\\\",\\\"6.29\\\",\\\"6.3\\\",\\\"6.31\\\",\\\"6.32\\\",\\\"6.33\\\",\\\"6.34\\\",\\\"6.35\\\",\\\"6.36\\\",\\\"6.37\\\",\\\"6.38\\\",\\\"6.39\\\",\\\"6.4\\\",\\\"6.41\\\",\\\"6.42\\\",\\\"6.43\\\",\\\"6.44\\\",\\\"6.45\\\",\\\"6.46\\\",\\\"6.47\\\",\\\"6.48\\\",\\\"6.49\\\",\\\"6.5\\\",\\\"6.51\\\",\\\"6.52\\\",\\\"6.53\\\",\\\"6.54\\\",\\\"6.55\\\",\\\"6.56\\\",\\\"6.57\\\",\\\"6.58\\\",\\\"6.59\\\",\\\"6.6\\\",\\\"6.61\\\",\\\"6.62\\\",\\\"6.63\\\",\\\"6.64\\\",\\\"6.65\\\",\\\"6.66\\\",\\\"6.67\\\",\\\"6.68\\\",\\\"6.69\\\",\\\"6.7\\\",\\\"6.71\\\",\\\"6.72\\\",\\\"6.73\\\",\\\"6.74\\\",\\\"6.75\\\",\\\"6.76\\\",\\\"6.77\\\",\\\"6.78\\\",\\\"6.79\\\",\\\"6.8\\\",\\\"6.81\\\",\\\"6.82\\\",\\\"6.83\\\",\\\"6.84\\\",\\\"6.85\\\",\\\"6.86\\\",\\\"6.87\\\",\\\"6.88\\\",\\\"6.89\\\",\\\"6.9\\\",\\\"6.91\\\",\\\"6.92\\\",\\\"6.93\\\",\\\"6.94\\\",\\\"6.95\\\",\\\"6.96\\\",\\\"6.97\\\",\\\"6.98\\\",\\\"6.99\\\",\\\"7.0\\\",\\\"7.01\\\",\\\"7.02\\\",\\\"7.03\\\",\\\"7.04\\\",\\\"7.05\\\",\\\"7.06\\\",\\\"7.07\\\",\\\"7.08\\\",\\\"7.09\\\",\\\"7.1\\\",\\\"7.11\\\",\\\"7.12\\\",\\\"7.13\\\",\\\"7.14\\\",\\\"7.15\\\",\\\"7.16\\\",\\\"7.17\\\",\\\"7.18\\\",\\\"7.19\\\",\\\"7.2\\\",\\\"7.21\\\",\\\"7.22\\\",\\\"7.23\\\",\\\"7.24\\\",\\\"7.25\\\",\\\"7.26\\\",\\\"7.27\\\",\\\"7.28\\\",\\\"7.29\\\",\\\"7.3\\\",\\\"7.31\\\",\\\"7.32\\\",\\\"7.33\\\",\\\"7.34\\\",\\\"7.35\\\",\\\"7.36\\\",\\\"7.37\\\",\\\"7.38\\\",\\\"7.39\\\",\\\"7.4\\\",\\\"7.41\\\",\\\"7.42\\\",\\\"7.43\\\",\\\"7.44\\\",\\\"7.45\\\",\\\"7.46\\\",\\\"7.47\\\",\\\"7.48\\\",\\\"7.49\\\",\\\"7.5\\\",\\\"7.51\\\",\\\"7.52\\\",\\\"7.53\\\",\\\"7.54\\\",\\\"7.55\\\",\\\"7.56\\\",\\\"7.57\\\",\\\"7.58\\\",\\\"7.59\\\",\\\"7.6\\\",\\\"7.61\\\",\\\"7.62\\\",\\\"7.63\\\",\\\"7.64\\\",\\\"7.65\\\",\\\"7.66\\\",\\\"7.67\\\",\\\"7.68\\\",\\\"7.69\\\",\\\"7.7\\\",\\\"7.71\\\",\\\"7.72\\\",\\\"7.73\\\",\\\"7.74\\\",\\\"7.75\\\",\\\"7.76\\\",\\\"7.77\\\",\\\"7.78\\\",\\\"7.79\\\",\\\"7.8\\\",\\\"7.81\\\",\\\"7.82\\\",\\\"7.83\\\",\\\"7.84\\\",\\\"7.85\\\",\\\"7.86\\\",\\\"7.87\\\",\\\"7.88\\\",\\\"7.89\\\",\\\"7.9\\\",\\\"7.91\\\",\\\"7.92\\\",\\\"7.93\\\",\\\"7.94\\\",\\\"7.95\\\",\\\"7.96\\\",\\\"7.97\\\",\\\"7.98\\\",\\\"7.99\\\",\\\"8.0\\\",\\\"8.01\\\",\\\"8.02\\\",\\\"8.03\\\",\\\"8.04\\\",\\\"8.05\\\",\\\"8.06\\\",\\\"8.07\\\",\\\"8.08\\\",\\\"8.09\\\",\\\"8.1\\\",\\\"8.11\\\",\\\"8.12\\\",\\\"8.13\\\",\\\"8.14\\\",\\\"8.15\\\",\\\"8.16\\\",\\\"8.17\\\",\\\"8.18\\\",\\\"8.19\\\",\\\"8.2\\\",\\\"8.21\\\",\\\"8.22\\\",\\\"8.23\\\",\\\"8.24\\\",\\\"8.25\\\",\\\"8.26\\\",\\\"8.27\\\",\\\"8.28\\\",\\\"8.29\\\",\\\"8.3\\\",\\\"8.31\\\",\\\"8.32\\\",\\\"8.33\\\",\\\"8.34\\\",\\\"8.35\\\",\\\"8.36\\\",\\\"8.37\\\",\\\"8.38\\\",\\\"8.39\\\",\\\"8.4\\\",\\\"8.41\\\",\\\"8.42\\\",\\\"8.43\\\",\\\"8.44\\\",\\\"8.45\\\",\\\"8.46\\\",\\\"8.47\\\",\\\"8.48\\\",\\\"8.49\\\",\\\"8.5\\\",\\\"8.51\\\",\\\"8.52\\\",\\\"8.53\\\",\\\"8.54\\\",\\\"8.55\\\",\\\"8.56\\\",\\\"8.57\\\",\\\"8.58\\\",\\\"8.59\\\",\\\"8.6\\\",\\\"8.61\\\",\\\"8.62\\\",\\\"8.63\\\",\\\"8.64\\\",\\\"8.65\\\",\\\"8.66\\\",\\\"8.67\\\",\\\"8.68\\\",\\\"8.69\\\",\\\"8.7\\\",\\\"8.71\\\",\\\"8.72\\\",\\\"8.73\\\",\\\"8.74\\\",\\\"8.75\\\",\\\"8.76\\\",\\\"8.77\\\",\\\"8.78\\\",\\\"8.79\\\",\\\"8.8\\\",\\\"8.81\\\",\\\"8.82\\\",\\\"8.83\\\",\\\"8.84\\\",\\\"8.85\\\",\\\"8.86\\\",\\\"8.87\\\",\\\"8.88\\\",\\\"8.89\\\",\\\"8.9\\\",\\\"8.91\\\",\\\"8.92\\\",\\\"8.93\\\",\\\"8.94\\\",\\\"8.95\\\",\\\"8.96\\\",\\\"8.97\\\",\\\"8.98\\\",\\\"8.99\\\",\\\"9.0\\\",\\\"9.01\\\",\\\"9.02\\\",\\\"9.03\\\",\\\"9.04\\\",\\\"9.05\\\",\\\"9.06\\\",\\\"9.07\\\",\\\"9.08\\\",\\\"9.09\\\",\\\"9.1\\\",\\\"9.11\\\",\\\"9.12\\\",\\\"9.13\\\",\\\"9.14\\\",\\\"9.15\\\",\\\"9.16\\\",\\\"9.17\\\",\\\"9.18\\\",\\\"9.19\\\",\\\"9.2\\\",\\\"9.21\\\",\\\"9.22\\\",\\\"9.23\\\",\\\"9.24\\\",\\\"9.25\\\",\\\"9.26\\\",\\\"9.27\\\",\\\"9.28\\\",\\\"9.29\\\",\\\"9.3\\\",\\\"9.31\\\",\\\"9.32\\\",\\\"9.33\\\",\\\"9.34\\\",\\\"9.35\\\",\\\"9.36\\\",\\\"9.37\\\",\\\"9.38\\\",\\\"9.39\\\",\\\"9.4\\\",\\\"9.41\\\",\\\"9.42\\\",\\\"9.43\\\",\\\"9.44\\\",\\\"9.45\\\",\\\"9.46\\\",\\\"9.47\\\",\\\"9.48\\\",\\\"9.49\\\",\\\"9.5\\\",\\\"9.51\\\",\\\"9.52\\\",\\\"9.53\\\",\\\"9.54\\\",\\\"9.55\\\",\\\"9.56\\\",\\\"9.57\\\",\\\"9.58\\\",\\\"9.59\\\",\\\"9.6\\\",\\\"9.61\\\",\\\"9.62\\\",\\\"9.63\\\",\\\"9.64\\\",\\\"9.65\\\",\\\"9.66\\\",\\\"9.67\\\",\\\"9.68\\\",\\\"9.69\\\",\\\"9.7\\\",\\\"9.71\\\",\\\"9.72\\\",\\\"9.73\\\",\\\"9.74\\\",\\\"9.75\\\",\\\"9.76\\\",\\\"9.77\\\",\\\"9.78\\\",\\\"9.79\\\",\\\"9.8\\\",\\\"9.81\\\",\\\"9.82\\\",\\\"9.83\\\",\\\"9.84\\\",\\\"9.85\\\",\\\"9.86\\\",\\\"9.87\\\",\\\"9.88\\\",\\\"9.89\\\",\\\"9.9\\\",\\\"9.91\\\",\\\"9.92\\\",\\\"9.93\\\",\\\"9.94\\\",\\\"9.95\\\",\\\"9.96\\\",\\\"9.97\\\",\\\"9.98\\\",\\\"9.99\\\",\\\"10.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"5137706702446347545\\\",\\\"id\\\":\\\"11605487678637687901\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"5137706702446347545\\\",\\\"id\\\":\\\"125607022472079391\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-(1)];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"5137706702446347545\\\",\\\"id\\\":\\\"11605487678637687901\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"5137706702446347545\\\",\\\"id\\\":\\\"125607022472079391\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fd07f05e6f0e773c7ed9fa68e01084e25cfd3f7d-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fdfc8cc31c1ce53af7d64368e908ef5535b56da7-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol, Any}(:className => \"field interact-widget\")), Observable{Node{WebIO.DOM}} with 0 listeners. Value:\n", + "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Figure(PyObject
    )], Dict{Symbol, Any}(:className => \"interact-flex-row interact-widget\"))], Dict{Symbol, Any}())" + ] + }, + "execution_count": 10, + "metadata": { + "application/vnd.webio.node+json": { + "kernelId": "3056eef4-4c36-4cb6-9165-5fce75530c0b" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "fig = figure()\n", + "@manipulate for t in slider(0:0.01:10, value=0.0, label=\"time t\")\n", + " withfig(fig) do\n", + " b = @. sinecoef(f, 1:199) * cos(((1:199)*π) * t)\n", + " plot(x, [sinesum(b, x) for x in x])\n", + " xlabel(L\"x\")\n", + " title(\"wave solution at time $t\")\n", + " ylim(-0.5,0.5)\n", + " grid()\n", + " end\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have an oscillating wave, which bounced up and down between two triangle shapes.\n", + "\n", + "(This may seem unrealistic to you: if you actually stretch a string into a triangle shape and let it go, it doesn't retain the sharp kinks seen here. That is due to an effect called *dispersion* that we are not including in the wave equation...yet.)" + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": "9a942117391f4b368073bb531985a5e2", + "lastKernelId": "3056eef4-4c36-4cb6-9165-5fce75530c0b" + }, + "kernelspec": { + "display_name": "Julia 1.7.1", + "language": "julia", + "name": "julia-1.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.7.1" + }, + "widgets": { + "state": { + "0f715249-d955-4474-8ebb-de15454b4eef": { + "views": [ + { + "cell_index": 12 + } + ] + }, + "5b9b0707-6132-41e0-a916-593e94d9d59b": { + "views": [ + { + "cell_index": 17 + } + ] + }, + "92b6fa17-c0dc-40e6-9e22-9b13eca47f26": { + "views": [ + { + "cell_index": 21 + } + ] + }, + "9cdae58e-7be2-481c-a6a6-2fce5b60e8be": { + "views": [ + { + "cell_index": 14 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/lectures/Singular.ipynb b/notes/Singular.ipynb similarity index 96% rename from lectures/Singular.ipynb rename to notes/Singular.ipynb index 03490858..bc2a9093 100644 --- a/lectures/Singular.ipynb +++ b/notes/Singular.ipynb @@ -50,7 +50,7 @@ { "data": { "text/plain": [ - "4×4 Array{Int64,2}:\n", + "4×4 Matrix{Int64}:\n", " 2 -1 0 3\n", " 4 -1 1 8\n", " 6 1 4 15\n", @@ -170,20 +170,20 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Int64,2}:\n", + "4×4 Matrix{Int64}:\n", " 2 -1 0 3\n", " 4 -2 1 8\n", " 6 -3 4 17\n", " 2 -1 0 3" ] }, - "execution_count": 6, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -201,20 +201,20 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4×4 Array{Int64,2}:\n", + "4×4 Matrix{Int64}:\n", " 2 -1 0 3\n", " 4 -2 0 6\n", " 6 -3 0 9\n", " 2 -1 0 3" ] }, - "execution_count": 7, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -268,7 +268,7 @@ { "data": { "text/plain": [ - "4×4 Array{Int64,2}:\n", + "4×4 Matrix{Int64}:\n", " 0 -1 0 3\n", " 0 -2 0 8\n", " 0 -3 0 17\n", @@ -304,16 +304,20 @@ } ], "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, "kernelspec": { - "display_name": "Julia 0.6.3", + "display_name": "Julia 1.7.1", "language": "julia", - "name": "julia-0.6" + "name": "julia-1.7" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", - "version": "0.6.3" + "version": "1.7.1" } }, "nbformat": 4, diff --git a/notes/Statistics-and-PCA.ipynb b/notes/Statistics-and-PCA.ipynb new file mode 100644 index 00000000..56fbd2c1 --- /dev/null +++ b/notes/Statistics-and-PCA.ipynb @@ -0,0 +1,1104 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "using PyPlot, Statistics, LinearAlgebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Mean and variance\n", + "\n", + "Suppose we have a black box (a **distribution**) that generates data points $x_k$ (**samples**) $k = 1,2,\\ldots$ If we have $m$ data points, the **sample mean µ** is simply the average:\n", + "\n", + "$$\n", + "\\mu = \\frac{1}{m}\\sum_{k=1}^m x_k\n", + "$$\n", + "\n", + "In the limit $m \\to \\infty$, we get the mean of the underlying distribution from which the samples are generated.\n", + "\n", + "The **sample variance S²** is the mean-square deviation from the mean:\n", + "\n", + "$$\n", + "\\operatorname{Var}(x) = S^2 = \\frac{1}{m-1}\\sum_{k=1}^m (x_k - \\mu)^2\n", + "$$\n", + "\n", + "where the denominator $m-1$ is [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction). The limit $m\\to\\infty$ of the sample variance gives the variance of the underlying distribution, and by using $m-1$ instead of $m$ in the denominator it turns out that we get a better estimate of variance when $m$ is not huge.\n", + "\n", + "For example, the `randn()` function in Julia draws samples from a [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution): a Gaussian or \"bell curve\" with mean zero and variance 1:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmo0lEQVR4nO3dfXRU1b3G8WdIQmKExGIkIZJAEMvLQlsNFUMb0VYi0PpCfUGtKa1AxagUslwWpHcZdEl8oYgWeSmi2IrAahWr99KsTKtEaoIikkoBuaUGooYRgpiJUJMhOfeP3Jm8zGSYJGccZ+f7WStL5py999n7N2eSxzNnEodlWZYAAAAM0ifSEwAAALAbAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYJzYSE8gEpqbm1VTU6P+/fvL4XBEejoAACAElmWpvr5e6enp6tMn+DWaXhlwampqlJGREelpAACAbvjoo480ePDgoG16ZcDp37+/pJYCJSUl2TKmx+NRaWmp8vLyFBcXZ8uYvQ01tAd1tAd17DlqaA/q2MrtdisjI8P3czyYXhlwvG9LJSUl2RpwEhMTlZSU1OtPwO6ihvagjvagjj1HDe1BHf2FcnsJNxkDAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOF9JwFmxYoWysrKUkJCg7Oxsbdu2LWj7srIyZWdnKyEhQcOGDdOqVas6bbtx40Y5HA5dd911Ns8aAABEq7AHnE2bNmnu3LlauHChdu3apdzcXE2ePFnV1dUB21dVVWnKlCnKzc3Vrl27dP/992vOnDl66aWX/NoeOnRI9957r3Jzc8O9DAAAEEXCHnCWLl2qGTNmaObMmRo1apSWLVumjIwMrVy5MmD7VatWKTMzU8uWLdOoUaM0c+ZM3X777VqyZEm7dk1NTfrJT36iRYsWadiwYeFeBgAAiCKx4Ry8sbFRO3fu1Pz589ttz8vLU3l5ecA+FRUVysvLa7ftqquu0tq1a+XxeBQXFydJevDBB3XOOedoxowZp33Lq6GhQQ0NDb7HbrdbkuTxeOTxeLq8rkC849g1Xm9EDe1BHe1BHXuOGtqDOrbqSg3CGnBqa2vV1NSk1NTUdttTU1PlcrkC9nG5XAHbnzp1SrW1tRo0aJDeeustrV27VpWVlSHNo7i4WIsWLfLbXlpaqsTExNAWEyKn02nreL0RNbQHdbQHdew5amgP6iidPHky5LZhDTheDoej3WPLsvy2na69d3t9fb1uu+02rVmzRikpKSEdf8GCBSosLPQ9drvdysjIUF5enpKSkkJdRlAej0dOp1MTJ070XWVC11BDe1BHe1DHnqOG9qCOrbzvwIQirAEnJSVFMTExfldrjhw54neVxistLS1g+9jYWJ199tnas2ePDh48qKuvvtq3v7m5WZIUGxur/fv367zzzmvXPz4+XvHx8X7HiouLs/1kCceYvQ01tAd1tAd17DlqaA/qqC6tP6w3Gfft21fZ2dl+l9WcTqfGjx8fsE9OTo5f+9LSUo0dO1ZxcXEaOXKkdu/ercrKSt/XNddcoyuuuEKVlZXKyMgI23oAAEB0CPtbVIWFhcrPz9fYsWOVk5Oj3/3ud6qurtbs2bMltbx99Mknn+j3v/+9JGn27Nlavny5CgsLNWvWLFVUVGjt2rXasGGDJCkhIUFjxoxpd4yzzjpLkvy2AwCA3insAWfatGk6duyYHnzwQR0+fFhjxozRli1bNGTIEEnS4cOH2/1OnKysLG3ZskXz5s3T008/rfT0dD311FO6/vrrwz1VAABgiK/kJuOCggIVFBQE3Ldu3Tq/bRMmTNB7770X8viBxgAAAL0Xf4sKAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADDOVxJwVqxYoaysLCUkJCg7O1vbtm0L2r6srEzZ2dlKSEjQsGHDtGrVqnb716xZo9zcXH3jG9/QN77xDV155ZV65513wrkEAAAQRcIecDZt2qS5c+dq4cKF2rVrl3JzczV58mRVV1cHbF9VVaUpU6YoNzdXu3bt0v333685c+bopZde8rXZunWrbrnlFr3xxhuqqKhQZmam8vLy9Mknn4R7OQAAIAqEPeAsXbpUM2bM0MyZMzVq1CgtW7ZMGRkZWrlyZcD2q1atUmZmppYtW6ZRo0Zp5syZuv3227VkyRJfm/Xr16ugoEDf/va3NXLkSK1Zs0bNzc3629/+Fu7lAACAKBAbzsEbGxu1c+dOzZ8/v932vLw8lZeXB+xTUVGhvLy8dtuuuuoqrV27Vh6PR3FxcX59Tp48KY/HowEDBgQcs6GhQQ0NDb7HbrdbkuTxeOTxeLq0ps54x7FrvN6IGtqDOtqDOvYcNbQHdWzVlRqENeDU1taqqalJqamp7banpqbK5XIF7ONyuQK2P3XqlGprazVo0CC/PvPnz9e5556rK6+8MuCYxcXFWrRokd/20tJSJSYmhrqckDidTlvH642ooT2ooz2oY89RQ3tQx5YLGqEKa8Dxcjgc7R5bluW37XTtA22XpMcee0wbNmzQ1q1blZCQEHC8BQsWqLCw0PfY7XYrIyNDeXl5SkpKCnkdwXg8HjmdTk2cODHgVSacHjW0B3W0B3XsOWpoD+rYyvsOTCjCGnBSUlIUExPjd7XmyJEjfldpvNLS0gK2j42N1dlnn91u+5IlS7R48WL99a9/1YUXXtjpPOLj4xUfH++3PS4uzvaTJRxj9jbU0B7U0R7UseeooT2oo7q0/rDeZNy3b19lZ2f7XVZzOp0aP358wD45OTl+7UtLSzV27Nh2C3v88cf10EMPqaSkRGPHjrV/8gAAIGqF/VNUhYWFeuaZZ/Tss89q3759mjdvnqqrqzV79mxJLW8f/fSnP/W1nz17tg4dOqTCwkLt27dPzz77rNauXat7773X1+axxx7Tr3/9az377LMaOnSoXC6XXC6Xvvjii3AvBwAARIGw34Mzbdo0HTt2TA8++KAOHz6sMWPGaMuWLRoyZIgk6fDhw+1+J05WVpa2bNmiefPm6emnn1Z6erqeeuopXX/99b42K1asUGNjo2644YZ2x3rggQdUVFQU7iUBAICvua/kJuOCggIVFBQE3Ldu3Tq/bRMmTNB7773X6XgHDx60aWYAAMBE/C0qAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4X0nAWbFihbKyspSQkKDs7Gxt27YtaPuysjJlZ2crISFBw4YN06pVq/zavPTSSxo9erTi4+M1evRobd68OVzTBwAAUSY23AfYtGmT5s6dqxUrVui73/2uVq9ercmTJ2vv3r3KzMz0a19VVaUpU6Zo1qxZeuGFF/TWW2+poKBA55xzjq6//npJUkVFhaZNm6aHHnpIU6dO1ebNm3XTTTfp73//u8aNGxfuJQX38cfSwYPS+edLgwfbN+a//hV8zFDadGf8tvuk0I/RccyPP5Zee006fFi65BLpzDMDjpNQWyvH1q3SqFGt/f71L+nQIemdd6Thw1safvObnY7R6fHLy1v2jR/fvo+3bb9+0hdf+P/Xu/bO+nvHaLvfW6t+/aSqqvbbO47T9vhVVdKxY9LZZ0tZWS3HP3FC+utfW/6dnS1lZEj/+79Sbq70ne/4rzc1tXVeO3ZI69dL9fXS2LEtX941tV2Dt50k/eQnreN69732mtTQIMXHS1dfLQ0a1L5mbevc9nwpL29dT9u6BXp+AtUr0Jgdz0Fv7Y8dk44fl778Uho2TPrss8DnSaA5dnzezj9f8niUsnu3dM45LWvvuNZgz39PXoPeOQSrrZ2v8UiMg+BMqPPXYQ1WmF1yySXW7Nmz220bOXKkNX/+/IDt77vvPmvkyJHttt1xxx3WpZde6nt80003WZMmTWrX5qqrrrJuvvnmkOZUV1dnSbLq6upCah+KxsZG67277rKa+/SxLMmy+vSxrGee6fnAzzzTMlawMUNp053x2+5zOFq+QjlGxzGnT2/5d8evDuN4Vq+2mtseY/r01nE6+wo0l0DH947rXYu3T9u2nX21XXvH/t4x2u73tulsrLb/DmWNwb6mT/dbr2f1auuVV16xTuXnh1a3QM/P9Omd7+tsvLZrCbR+b90CPT+BatCxPoHOwUC1D7bezs7pjs+Pw+E7F5tPd851nEPH8+N0TjenjjWy8zXeFd0Yp7Gx0XrllVesxsbG7h2zNwpQ56iro13nXABd+fntsCzLCld4amxsVGJiov74xz9q6tSpvu2//OUvVVlZqbKyMr8+l112mS666CI9+eSTvm3eKzQnT55UXFycMjMzNW/ePM2bN8/X5oknntCyZct06NAhvzEbGhrU0NDge+x2u5WRkaHa2lolJSXZstZTBw8qYcQIOdqU04qJ0al//av76fXjjxU7fLgczc2djxlKm+6ML/nta6vTYwQaU5KjkykEO16wfp3OJcTjW3366NS2bYrNze10jUGP2aePTh04EHDeXRonwNy62l8Oh995t/1Xv9KlixcHHduKidGpP/1JsVOn+tdH0qk1axQ7a1bI8wtlLZbD0TLfUM+PYPv6tLzDHmrtrZgYqbm5Xa2663SvE9/50Y3XYMDjqX0dbHmNd+X7UjfH8Xg8cjqdmjhxouLi4kI/Xm/VSZ2/3LdPpXv3Rkcd7TrnOuF2u5WSkqK6urrT/vwO61tUtbW1ampqUmrbS+aSUlNT5XK5AvZxuVwB2586dUq1tbUaNGhQp206G7O4uFiLFi3y215aWqrExMSuLKlTKbt367sdvnE6mpr09vr1OnbBBd0fs8M3vo5jhtKmO+M7JL99oRwj4JhB5hDseKH+YG07l1CP72hu1gfPPKMLuhlMHM3NIdXptON0u2eb/gHOu9T33jvt2I6mJn20erWGdTLu0TVrlN7VuZyujfe6RIj9gu7rYt0dTU1dan+6sYI9/97zozuvwYDH6+T4PXmNd+X7Uk/HcTqdIR+rN+uszjs3bZIuuCAq6mjXOdeZkydPhtw2rFdwampqdO6556q8vFw5OTm+7Q8//LD+8Ic/6IMPPvDr881vflM///nPtWDBAt+2t956S9/73vd0+PBhpaWlqW/fvnr++ed1yy23+NqsX79eM2bM0Jdffuk3JldwujG+uIIT9JhcwQk4F67gtM6NKzhcwekyruCcVleu4IT1HpyGhgYrJibGevnll9ttnzNnjnXZZZcF7JObm2vNmTOn3baXX37Zio2N9b3/mJGRYS1durRdm6VLl1qZmZkhzSus9+DExLT8P2pMjH334JxuzFDadGf8tvscjtb3VE93jI5jdnYfR4dxPKtXW01tjzF9eus4nX0Fmkug47e9x6PjPTinO0Yo9+B0vIeks/tqAt2Dc7rjB/vy3oPTZr0h3YPTtm7duQen430iHZ+vzu5v8d4H0/H5CVQD770n3n19+rSO6Z1/KPdQdWwfbI5t7hvo9B6cQK+Tzs6vUHT2Ouustna+xruiG+NE3b0jXwcB6hx1dbTrnAvga3MPjiSNGzdO2dnZWrFihW/b6NGjde2116q4uNiv/a9+9Su99tpr2rt3r2/bnXfeqcrKSlVUVEiSpk2bpvr6em3ZssXXZvLkyTrrrLO0YcOG087J7XYrOTk5tAQYIo/Hoy1btmjKhRcq7tChlk/72PkpqgMHgo8ZSpvujN92nxT6MTqO+fHH0n//t+RytXySp18/v3E8Ho9e//3v9YMhQxQ7cmRrvwMHWj6Z9u67LZ+O6dOnpW+AMYIe///PH+Xk+H+K6sCBlk/bnDjh/1/v2jvr7x2j7X5vrc48s2Xubbd3HKft8Q8ebP3U0dChLcf/4gvp9ddbPgmVnd3S58AB6bvfbf8pqv9fryc1teVcnDJFcZWV0oYNrX2zs1vX1PFTVN7Xzi23+H+K6n/+p+XTSQkJ0g9/2PIpqrY1a1vntudLRUXretrWLdDzE6hegcbseA56a+/9FFVDQ0vtPv888HkSaI4dn7fhw+XxePT2+vUa9/3vK66x0X+twZ7/nrwGvXMIVls7X+NhHMf3fXHKlK//lYevkw51jso62nXOddCln9+2xapObNy40YqLi7PWrl1r7d2715o7d6515plnWgcPHrQsy7Lmz59v5efn+9p/+OGHVmJiojVv3jxr79691tq1a624uDjrT3/6k6/NW2+9ZcXExFiPPPKItW/fPuuRRx6xYmNjre3bt4c0p3BdwYmqhP01RA3tQR3tQR17jhragzq26srP77D/Hpxp06bp2LFjevDBB3X48GGNGTNGW7Zs0ZAhQyRJhw8fVnV1ta99VlaWtmzZonnz5unpp59Wenq6nnrqKd/vwJGk8ePHa+PGjfr1r3+t//qv/9J5552nTZs2Rf534AAAgK+FsAccSSooKFBBQUHAfevWrfPbNmHCBL333ntBx7zhhht0ww032DE9AABgGP4WFQAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgnLAGnOPHjys/P1/JyclKTk5Wfn6+Pv/886B9LMtSUVGR0tPTdcYZZ+jyyy/Xnj17fPs/++wz3XPPPRoxYoQSExOVmZmpOXPmqK6uLpxLAQAAUSSsAefWW29VZWWlSkpKVFJSosrKSuXn5wft89hjj2np0qVavny5duzYobS0NE2cOFH19fWSpJqaGtXU1GjJkiXavXu31q1bp5KSEs2YMSOcSwEAAFEkNlwD79u3TyUlJdq+fbvGjRsnSVqzZo1ycnK0f/9+jRgxwq+PZVlatmyZFi5cqB//+MeSpOeff16pqal68cUXdccdd2jMmDF66aWXfH3OO+88Pfzww7rtttt06tQpxcaGbUkAACBKhO0KTkVFhZKTk33hRpIuvfRSJScnq7y8PGCfqqoquVwu5eXl+bbFx8drwoQJnfaRpLq6OiUlJRFuAACApDBewXG5XBo4cKDf9oEDB8rlcnXaR5JSU1PbbU9NTdWhQ4cC9jl27Jgeeugh3XHHHZ3OpaGhQQ0NDb7HbrdbkuTxeOTxeIIvJETecewarzeihvagjvagjj1HDe1BHVt1pQZdDjhFRUVatGhR0DY7duyQJDkcDr99lmUF3N5Wx/2d9XG73frhD3+o0aNH64EHHuh0vOLi4oBzLi0tVWJiYtC5dJXT6bR1vN6IGtqDOtqDOvYcNbQHdZROnjwZctsuB5y7775bN998c9A2Q4cO1fvvv69PP/3Ub9/Ro0f9rtB4paWlSWq5kjNo0CDf9iNHjvj1qa+v16RJk9SvXz9t3rxZcXFxnc5nwYIFKiws9D12u93KyMhQXl6ekpKSgq4lVB6PR06nUxMnTgw6F3SOGtqDOtqDOvYcNbQHdWzlfQcmFF0OOCkpKUpJSTltu5ycHNXV1emdd97RJZdcIkl6++23VVdXp/Hjxwfsk5WVpbS0NDmdTl100UWSpMbGRpWVlenRRx/1tXO73brqqqsUHx+vV199VQkJCUHnEh8fr/j4eL/tcXFxtp8s4Rizt6GG9qCO9qCOPUcN7UEd1aX1h+0m41GjRmnSpEmaNWuWtm/fru3bt2vWrFn60Y9+1O4TVCNHjtTmzZsltbw1NXfuXC1evFibN2/WP//5T/3sZz9TYmKibr31VkktV27y8vJ04sQJrV27Vm63Wy6XSy6XS01NTeFaDgAAiCJh/djR+vXrNWfOHN+noq655hotX768XZv9+/e3+yV99913n/7zn/+ooKBAx48f17hx41RaWqr+/ftLknbu3Km3335bkjR8+PB2Y1VVVWno0KFhXBEAAIgGYQ04AwYM0AsvvBC0jWVZ7R47HA4VFRWpqKgoYPvLL7/crw8AAEBb/C0qAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGCcsAac48ePKz8/X8nJyUpOTlZ+fr4+//zzoH0sy1JRUZHS09N1xhln6PLLL9eePXs6bTt58mQ5HA698sor9i8AAABEpbAGnFtvvVWVlZUqKSlRSUmJKisrlZ+fH7TPY489pqVLl2r58uXasWOH0tLSNHHiRNXX1/u1XbZsmRwOR7imDwAAolRsuAbet2+fSkpKtH37do0bN06StGbNGuXk5Gj//v0aMWKEXx/LsrRs2TItXLhQP/7xjyVJzz//vFJTU/Xiiy/qjjvu8LX9xz/+oaVLl2rHjh0aNGhQuJYBAACiUNgCTkVFhZKTk33hRpIuvfRSJScnq7y8PGDAqaqqksvlUl5enm9bfHy8JkyYoPLycl/AOXnypG655RYtX75caWlpp51LQ0ODGhoafI/dbrckyePxyOPxdHuNbXnHsWu83oga2oM62oM69hw1tAd1bNWVGoQt4LhcLg0cONBv+8CBA+VyuTrtI0mpqanttqempurQoUO+x/PmzdP48eN17bXXhjSX4uJiLVq0yG97aWmpEhMTQxojVE6n09bxeiNqaA/qaA/q2HPU0B7UseUCR6i6HHCKiooChoW2duzYIUkB74+xLOu098103N+2z6uvvqrXX39du3btCnnOCxYsUGFhoe+x2+1WRkaG8vLylJSUFPI4wXg8HjmdTk2cOFFxcXG2jNnbUEN7UEd7UMeeo4b2oI6tvO/AhKLLAefuu+/WzTffHLTN0KFD9f777+vTTz/123f06FG/KzRe3rebXC5Xu/tqjhw54uvz+uuv69///rfOOuusdn2vv/565ebmauvWrX7jxsfHKz4+3m97XFyc7SdLOMbsbaihPaijPahjz1FDe1BHdWn9XQ44KSkpSklJOW27nJwc1dXV6Z133tEll1wiSXr77bdVV1en8ePHB+yTlZWltLQ0OZ1OXXTRRZKkxsZGlZWV6dFHH5UkzZ8/XzNnzmzX74ILLtATTzyhq6++uqvLAQAABgrbPTijRo3SpEmTNGvWLK1evVqS9Itf/EI/+tGP2t1gPHLkSBUXF2vq1KlyOByaO3euFi9erPPPP1/nn3++Fi9erMTERN16662SWq7yBLqxODMzU1lZWeFaDgAAiCJhCziStH79es2ZM8f3qahrrrlGy5cvb9dm//79qqur8z2+77779J///EcFBQU6fvy4xo0bp9LSUvXv3z+cUwUAAAYJa8AZMGCAXnjhhaBtLMtq99jhcKioqEhFRUUhH6fjGAAAoHfjb1EBAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcWIjPYFIsCxLkuR2u20b0+Px6OTJk3K73YqLi7Nt3N6EGtqDOtqDOvYcNbQHdWzl/bnt/TkeTK8MOPX19ZKkjIyMCM8EAAB0VX19vZKTk4O2cVihxCDDNDc3q6amRv3795fD4bBlTLfbrYyMDH300UdKSkqyZczehhragzragzr2HDW0B3VsZVmW6uvrlZ6erj59gt9l0yuv4PTp00eDBw8Oy9hJSUm9/gTsKWpoD+poD+rYc9TQHtSxxemu3HhxkzEAADAOAQcAABiHgGOT+Ph4PfDAA4qPj4/0VKIWNbQHdbQHdew5amgP6tg9vfImYwAAYDau4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCjs0OHjyoGTNmKCsrS2eccYbOO+88PfDAA2psbIz01KLOww8/rPHjxysxMVFnnXVWpKcTFVasWKGsrCwlJCQoOztb27Zti/SUos6bb76pq6++Wunp6XI4HHrllVciPaWoU1xcrO985zvq37+/Bg4cqOuuu0779++P9LSiysqVK3XhhRf6frlfTk6O/vKXv0R6WlGFgGOzDz74QM3NzVq9erX27NmjJ554QqtWrdL9998f6alFncbGRt1444268847Iz2VqLBp0ybNnTtXCxcu1K5du5Sbm6vJkyeruro60lOLKidOnNC3vvUtLV++PNJTiVplZWW66667tH37djmdTp06dUp5eXk6ceJEpKcWNQYPHqxHHnlE7777rt599119//vf17XXXqs9e/ZEempRg4+JfwUef/xxrVy5Uh9++GGkpxKV1q1bp7lz5+rzzz+P9FS+1saNG6eLL75YK1eu9G0bNWqUrrvuOhUXF0dwZtHL4XBo8+bNuu666yI9lah29OhRDRw4UGVlZbrssssiPZ2oNWDAAD3++OOaMWNGpKcSFbiC8xWoq6vTgAEDIj0NGKyxsVE7d+5UXl5eu+15eXkqLy+P0KyAFnV1dZLE98Fuampq0saNG3XixAnl5OREejpRo1f+sc2v0r///W/99re/1W9+85tITwUGq62tVVNTk1JTU9ttT01NlcvlitCsgJa//lxYWKjvfe97GjNmTKSnE1V2796tnJwcffnll+rXr582b96s0aNHR3paUYMrOCEqKiqSw+EI+vXuu++261NTU6NJkybpxhtv1MyZMyM086+X7tQRoXM4HO0eW5bltw34Kt199916//33tWHDhkhPJeqMGDFClZWV2r59u+68805Nnz5de/fujfS0ogZXcEJ099136+abbw7aZujQob5/19TU6IorrlBOTo5+97vfhXl20aOrdURoUlJSFBMT43e15siRI35XdYCvyj333KNXX31Vb775pgYPHhzp6USdvn37avjw4ZKksWPHaseOHXryySe1evXqCM8sOhBwQpSSkqKUlJSQ2n7yySe64oorlJ2dreeee059+nChzKsrdUTo+vbtq+zsbDmdTk2dOtW33el06tprr43gzNAbWZale+65R5s3b9bWrVuVlZUV6SkZwbIsNTQ0RHoaUYOAY7OamhpdfvnlyszM1JIlS3T06FHfvrS0tAjOLPpUV1frs88+U3V1tZqamlRZWSlJGj58uPr16xfZyX0NFRYWKj8/X2PHjvVdOayurtbs2bMjPbWo8sUXX+jAgQO+x1VVVaqsrNSAAQOUmZkZwZlFj7vuuksvvvii/vznP6t///6+K4vJyck644wzIjy76HD//fdr8uTJysjIUH19vTZu3KitW7eqpKQk0lOLHhZs9dxzz1mSAn6ha6ZPnx6wjm+88Uakp/a19fTTT1tDhgyx+vbta1188cVWWVlZpKcUdd54442A59306dMjPbWo0dn3wOeeey7SU4sat99+u++1fM4551g/+MEPrNLS0khPK6rwe3AAAIBxuDkEAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOP8H/Wx8qF0HQGSAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = randn(100) # 100 gaussian random numbers:\n", + "plot(x, x * 0, \"r.\")\n", + "grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is more informative to plot a [histogram](https://en.wikipedia.org/wiki/Histogram):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGdCAYAAADXIOPgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAj2klEQVR4nO3de3BU9R338c8ayMol2RIiu8kQIMWg1YCtwUYollsIpgIiVmzpUGipAwIZ8wBFLtMaOpowtAItVKpTBhDE0E4bsIPyEEYJZTKMkMpwsWXQBgkla4rG3QTTDcbz/GHdpwvhssku57eb92vmzLjn/Hbz/QGyH77nnN9xWJZlCQAAwDC32F0AAABAWwgpAADASIQUAABgJEIKAAAwEiEFAAAYiZACAACMREgBAABGIqQAAAAjdbG7gPb4/PPPdf78eSUlJcnhcNhdDgAAuAGWZamxsVHp6em65Zbr90liMqScP39eGRkZdpcBAADaoba2Vn379r3uuJgMKUlJSZK+mGRycrLN1QAAgBvh9/uVkZER/B6/npgMKV+e4klOTiakAAAQY270Ug0unAUAAEYipAAAACMRUgAAgJEIKQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARiKkAAAAIxFSAACAkQgpAADASIQUAABgJEIKAAAwUhe7CwDQuQxYsvuKfWdWPmRDJQBMR0gBEDEEEACRxOkeAABgJEIKAAAwEiEFAAAYKayQsmHDBg0ZMkTJyclKTk7WsGHD9MYbbwSPW5al4uJipaenq1u3bho1apROnjwZ8hmBQECFhYVKTU1Vjx49NGnSJJ07dy4yswEAAHEjrJDSt29frVy5UkeOHNGRI0c0ZswYPfzww8EgsmrVKq1evVrr16/X4cOH5fF4NG7cODU2NgY/o6ioSOXl5SorK9PBgwfV1NSkCRMmqLW1NbIzAwAAMS2skDJx4kR95zvf0aBBgzRo0CA999xz6tmzpw4dOiTLsrR27VotX75cU6ZMUXZ2trZs2aJPP/1U27dvlyT5fD5t3LhRzz//vPLy8vSNb3xD27Zt0/Hjx7Vv376oTBAAAMSmdl+T0traqrKyMl28eFHDhg1TTU2NvF6v8vPzg2OcTqdGjhypqqoqSVJ1dbUuXboUMiY9PV3Z2dnBMW0JBALy+/0hGwAAiG9hr5Ny/PhxDRs2TP/5z3/Us2dPlZeX66677gqGDLfbHTLe7Xbrgw8+kCR5vV4lJiaqV69eV4zxer1X/ZmlpaVasWJFuKUCiBGXr6/C2ioApHZ0Uu644w4dPXpUhw4d0pNPPqkZM2bo3XffDR53OBwh4y3LumLf5a43ZunSpfL5fMGttrY23LIBAECMCbuTkpiYqNtvv12SNHToUB0+fFi//vWv9fTTT0v6oluSlpYWHF9fXx/srng8HrW0tKihoSGkm1JfX6/hw4df9Wc6nU45nc5wSwWAK9C1AWJHh9dJsSxLgUBAmZmZ8ng8qqioCB5raWlRZWVlMIDk5OSoa9euIWPq6up04sSJa4YUALjcgCW7r9gAxJewOinLli1TQUGBMjIy1NjYqLKyMu3fv1979uyRw+FQUVGRSkpKlJWVpaysLJWUlKh79+6aNm2aJMnlcmnWrFlauHChevfurZSUFC1atEiDBw9WXl5eVCYIAABiU1gh5cMPP9T06dNVV1cnl8ulIUOGaM+ePRo3bpwkafHixWpubtbcuXPV0NCg3Nxc7d27V0lJScHPWLNmjbp06aKpU6equblZY8eO1ebNm5WQkBDZmQHo9OiuALEtrJCycePGax53OBwqLi5WcXHxVcfceuutWrdundatWxfOjwYAAJ0Mz+4BAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABgp7Gf3AICpWLwNiC+EFADGaSts8CBAoPPhdA8AADASIQUAABiJkAIAAIxESAEAAEYipAAAACNxdw+AqIrF24Ivr5k7iwB7EFIAxIRYDDsAOobTPQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARiKkAAAAIxFSAACAkQgpAADASIQUAABgJEIKAAAwEiEFAAAYiZACAACMREgBAABGIqQAAAAjdbG7AACw04Alu+0uAcBV0EkBAABGIqQAAAAjEVIAAICRuCYFwA1p69qNMysfsqESAJ0FnRQAAGAkOikA2o07YwBEE50UAABgJEIKAAAwEiEFAAAYiZACAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIYYWU0tJS3XfffUpKSlKfPn00efJknTp1KmTMzJkz5XA4Qrb7778/ZEwgEFBhYaFSU1PVo0cPTZo0SefOnev4bAAAQNwIK6RUVlZq3rx5OnTokCoqKvTZZ58pPz9fFy9eDBn34IMPqq6uLri9/vrrIceLiopUXl6usrIyHTx4UE1NTZowYYJaW1s7PiMAABAXwloWf8+ePSGvN23apD59+qi6ulrf/va3g/udTqc8Hk+bn+Hz+bRx40Zt3bpVeXl5kqRt27YpIyND+/bt0/jx48OdA4AO4uGB18avD2CPDl2T4vP5JEkpKSkh+/fv368+ffpo0KBBeuKJJ1RfXx88Vl1drUuXLik/Pz+4Lz09XdnZ2aqqqupIOQAAII60+wGDlmVpwYIFGjFihLKzs4P7CwoK9Nhjj6l///6qqanRz372M40ZM0bV1dVyOp3yer1KTExUr169Qj7P7XbL6/W2+bMCgYACgUDwtd/vb2/ZAAAgRrQ7pMyfP1/Hjh3TwYMHQ/Y//vjjwf/Ozs7W0KFD1b9/f+3evVtTpky56udZliWHw9HmsdLSUq1YsaK9pQIAgBjUrtM9hYWFeu211/TWW2+pb9++1xyblpam/v376/Tp05Ikj8ejlpYWNTQ0hIyrr6+X2+1u8zOWLl0qn88X3Gpra9tTNgAAiCFhdVIsy1JhYaHKy8u1f/9+ZWZmXvc9H330kWpra5WWliZJysnJUdeuXVVRUaGpU6dKkurq6nTixAmtWrWqzc9wOp1yOp3hlAqgg9q6WBQAbqawQsq8efO0fft27dq1S0lJScFrSFwul7p166ampiYVFxfr0UcfVVpams6cOaNly5YpNTVVjzzySHDsrFmztHDhQvXu3VspKSlatGiRBg8eHLzbBwAAIKyQsmHDBknSqFGjQvZv2rRJM2fOVEJCgo4fP66XX35Zn3zyidLS0jR69Gjt2LFDSUlJwfFr1qxRly5dNHXqVDU3N2vs2LHavHmzEhISOj4jAAAQFxyWZVl2FxEuv98vl8sln8+n5ORku8sBYh6ndsLHOilA+ML9/ubZPQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARiKkAAAAI7X7AYMAgP+vrbVmWEsF6Bg6KQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARiKkAAAAIxFSAACAkQgpAADASIQUAABgJEIKAAAwEs/uAYB2aOtZPQAii04KAAAwEiEFAAAYiZACAACMxDUpQCfE9RQAYgGdFAAAYCRCCgAAMBKnewDARpefejuz8iGbKgHMQycFAAAYiU4KAEQJXRKgY+ikAAAAIxFSAACAkQgpAADASIQUAABgJEIKAAAwEiEFAAAYiZACAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABiJkAIAAIzUxe4CAETWgCW7Q16fWfmQTZUAQMfQSQEAAEYipAAAACOFFVJKS0t13333KSkpSX369NHkyZN16tSpkDGWZam4uFjp6enq1q2bRo0apZMnT4aMCQQCKiwsVGpqqnr06KFJkybp3LlzHZ8NAACIG2GFlMrKSs2bN0+HDh1SRUWFPvvsM+Xn5+vixYvBMatWrdLq1au1fv16HT58WB6PR+PGjVNjY2NwTFFRkcrLy1VWVqaDBw+qqalJEyZMUGtra+RmBgAAYlpYF87u2bMn5PWmTZvUp08fVVdX69vf/rYsy9LatWu1fPlyTZkyRZK0ZcsWud1ubd++XbNnz5bP59PGjRu1detW5eXlSZK2bdumjIwM7du3T+PHj4/Q1AAAQCzr0N09Pp9PkpSSkiJJqqmpkdfrVX5+fnCM0+nUyJEjVVVVpdmzZ6u6ulqXLl0KGZOenq7s7GxVVVW1GVICgYACgUDwtd/v70jZQKdy+d0+ABAr2n3hrGVZWrBggUaMGKHs7GxJktfrlSS53e6QsW63O3jM6/UqMTFRvXr1uuqYy5WWlsrlcgW3jIyM9pYNAABiRLtDyvz583Xs2DG9+uqrVxxzOBwhry3LumLf5a41ZunSpfL5fMGttra2vWUDAIAY0a7TPYWFhXrttdd04MAB9e3bN7jf4/FI+qJbkpaWFtxfX18f7K54PB61tLSooaEhpJtSX1+v4cOHt/nznE6nnE5ne0oF4goLtQHoTMLqpFiWpfnz5+vPf/6z3nzzTWVmZoYcz8zMlMfjUUVFRXBfS0uLKisrgwEkJydHXbt2DRlTV1enEydOXDWkAACAziesTsq8efO0fft27dq1S0lJScFrSFwul7p16yaHw6GioiKVlJQoKytLWVlZKikpUffu3TVt2rTg2FmzZmnhwoXq3bu3UlJStGjRIg0ePDh4tw8AxKMbuYi5rTF0zNBZhRVSNmzYIEkaNWpUyP5NmzZp5syZkqTFixerublZc+fOVUNDg3Jzc7V3714lJSUFx69Zs0ZdunTR1KlT1dzcrLFjx2rz5s1KSEjo2GwAAEDccFiWZdldRLj8fr9cLpd8Pp+Sk5PtLge4aW7kmhRuOY4/dFIQL8L9/ubZPQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARiKkAAAAIxFSAACAkQgpAADASO16CjIAM7C6LIB4RicFAAAYiZACAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABiJkAIAAIxESAEAAEYipAAAACPxgEEAiDFtPVjyzMqHbKgEiC46KQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARuIWZAAwXFu3HAOdAZ0UAABgJEIKAAAwEiEFAAAYiZACAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABiJkAIAAIxESAEAAEYipAAAACMRUgAAgJEIKQAAwEhhh5QDBw5o4sSJSk9Pl8Ph0M6dO0OOz5w5Uw6HI2S7//77Q8YEAgEVFhYqNTVVPXr00KRJk3Tu3LkOTQQAAMSXsEPKxYsXdc8992j9+vVXHfPggw+qrq4uuL3++ushx4uKilReXq6ysjIdPHhQTU1NmjBhglpbW8OfAQAAiEtdwn1DQUGBCgoKrjnG6XTK4/G0eczn82njxo3aunWr8vLyJEnbtm1TRkaG9u3bp/Hjx4dbEgAAiENRuSZl//796tOnjwYNGqQnnnhC9fX1wWPV1dW6dOmS8vPzg/vS09OVnZ2tqqqqNj8vEAjI7/eHbAAAIL5FPKQUFBTolVde0Ztvvqnnn39ehw8f1pgxYxQIBCRJXq9XiYmJ6tWrV8j73G63vF5vm59ZWloql8sV3DIyMiJdNgAAMEzYp3uu5/HHHw/+d3Z2toYOHar+/ftr9+7dmjJlylXfZ1mWHA5Hm8eWLl2qBQsWBF/7/X6CCgAAcS7qtyCnpaWpf//+On36tCTJ4/GopaVFDQ0NIePq6+vldrvb/Ayn06nk5OSQDQAAxLeId1Iu99FHH6m2tlZpaWmSpJycHHXt2lUVFRWaOnWqJKmurk4nTpzQqlWrol0OEDMGLNltdwkAYKuwQ0pTU5Pee++94OuamhodPXpUKSkpSklJUXFxsR599FGlpaXpzJkzWrZsmVJTU/XII49Iklwul2bNmqWFCxeqd+/eSklJ0aJFizR48ODg3T5AZ0QoAYBQYYeUI0eOaPTo0cHXX14rMmPGDG3YsEHHjx/Xyy+/rE8++URpaWkaPXq0duzYoaSkpOB71qxZoy5dumjq1Klqbm7W2LFjtXnzZiUkJERgSgAAIB44LMuy7C4iXH6/Xy6XSz6fj+tTEDfopKAjzqx8yO4SgOsK9/ubZ/cAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABiJkAIAAIxESAEAAEYipAAAACMRUgAAgJEIKQAAwEiEFAAAYKSwn4IMAIhNbT3EkgcTwmSEFACIUzxZG7GO0z0AAMBIdFKAm+Dyf9HSYgeA6yOkAEAc4NQO4hGnewAAgJEIKQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjMQtyIANuF0UAK6PTgoAADASIQUAABiJkAIAAIxESAEAAEYipAAAACMRUgAAgJEIKQAAwEiEFAAAYCRCCgAAMBIhBQAAGImQAgAAjERIAQAARuIBg0CE8fBAAIgMQgoAdGKXh+ozKx+yqRLgSpzuAQAARiKkAAAAIxFSAACAkQgpAADASIQUAABgJEIKAAAwEiEFAAAYiZACAACMFHZIOXDggCZOnKj09HQ5HA7t3Lkz5LhlWSouLlZ6erq6deumUaNG6eTJkyFjAoGACgsLlZqaqh49emjSpEk6d+5chyYCAADiS9gh5eLFi7rnnnu0fv36No+vWrVKq1ev1vr163X48GF5PB6NGzdOjY2NwTFFRUUqLy9XWVmZDh48qKamJk2YMEGtra3tnwkAAIgrYS+LX1BQoIKCgjaPWZaltWvXavny5ZoyZYokacuWLXK73dq+fbtmz54tn8+njRs3auvWrcrLy5Mkbdu2TRkZGdq3b5/Gjx/fgekAAIB4EdFrUmpqauT1epWfnx/c53Q6NXLkSFVVVUmSqqurdenSpZAx6enpys7ODo65XCAQkN/vD9kAAEB8i2hI8Xq9kiS32x2y3+12B495vV4lJiaqV69eVx1zudLSUrlcruCWkZERybIBAICBonJ3j8PhCHltWdYV+y53rTFLly6Vz+cLbrW1tRGrFQAAmCmiIcXj8UjSFR2R+vr6YHfF4/GopaVFDQ0NVx1zOafTqeTk5JANAADEt4iGlMzMTHk8HlVUVAT3tbS0qLKyUsOHD5ck5eTkqGvXriFj6urqdOLEieAYAACAsO/uaWpq0nvvvRd8XVNTo6NHjyolJUX9+vVTUVGRSkpKlJWVpaysLJWUlKh79+6aNm2aJMnlcmnWrFlauHChevfurZSUFC1atEiDBw8O3u0DAAAQdkg5cuSIRo8eHXy9YMECSdKMGTO0efNmLV68WM3NzZo7d64aGhqUm5urvXv3KikpKfieNWvWqEuXLpo6daqam5s1duxYbd68WQkJCRGYEgAAiAcOy7Isu4sIl9/vl8vlks/n4/oUGGfAkt12lwC025mVD9ldAuJYuN/fPLsHAAAYiZACAACMREgBAABGIqQAAAAjhX13D4BQXCgLANFBJwUAABiJkAIAAIxESAEAAEYipAAAACNx4SxwDZdfFMtqnABw89BJAQAARqKTAgC4JjqKsAshBQgDa6IAwM3D6R4AAGAkQgoAADASp3sAAEGc0oRJ6KQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABiJW5ABAGFp6zZllspHNNBJAQAARqKTAvwXi1gBgFnopAAAACMRUgAAgJEIKQAAwEiEFAAAYCRCCgAAMBIhBQAAGIlbkAEAHXb5Lfws7oZIoJMCAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASIQUAABiJxdwQl1hYCgBiHyEFABBxl/9DQeIfCwgfp3sAAICRCCkAAMBIhBQAAGAkQgoAADBSxENKcXGxHA5HyObxeILHLctScXGx0tPT1a1bN40aNUonT56MdBkAACDGRaWTcvfdd6uuri64HT9+PHhs1apVWr16tdavX6/Dhw/L4/Fo3LhxamxsjEYpAAAgRkUlpHTp0kUejye43XbbbZK+6KKsXbtWy5cv15QpU5Sdna0tW7bo008/1fbt26NRCgAAiFFRWSfl9OnTSk9Pl9PpVG5urkpKSvTVr35VNTU18nq9ys/PD451Op0aOXKkqqqqNHv27DY/LxAIKBAIBF/7/f5olI0Y1dZ6DDcyhjUbAMBsEQ8pubm5evnllzVo0CB9+OGHevbZZzV8+HCdPHlSXq9XkuR2u0Pe43a79cEHH1z1M0tLS7VixYpIlwoAuIlYCRrhivjpnoKCAj366KMaPHiw8vLytHv3F38ot2zZEhzjcDhC3mNZ1hX7/tfSpUvl8/mCW21tbaTLBgAAhon6svg9evTQ4MGDdfr0aU2ePFmS5PV6lZaWFhxTX19/RXflfzmdTjmdzmiXik7mRk4TAQDsE/V1UgKBgP7+978rLS1NmZmZ8ng8qqioCB5vaWlRZWWlhg8fHu1SAABADIl4J2XRokWaOHGi+vXrp/r6ej377LPy+/2aMWOGHA6HioqKVFJSoqysLGVlZamkpETdu3fXtGnTIl0KAACIYREPKefOndP3v/99XbhwQbfddpvuv/9+HTp0SP3795ckLV68WM3NzZo7d64aGhqUm5urvXv3KikpKdKlAACAGOawLMuyu4hw+f1+uVwu+Xw+JScn210ObMa1JUBs4u6ezifc72+e3QMAAIxESAEAAEYipAAAACNFfZ0UAADawuMqcD10UgAAgJEIKQAAwEic7gEAGONGlhTglFDnQScFAAAYiZACAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADASi7kh5tzIYk8AgNhHJwUAABiJTgqMRtcEADovOikAAMBIhBQAAGAkQgoAADASIQUAABiJkAIAAIxESAEAAEbiFmTcNJffTnxm5UM2VQIAiAWEFBiFdVEAAF/idA8AADASIQUAABiJkAIAAIzENSmwDdefAACuhZACAIgp3CnYeRBSAAAxra2uLMElPhBSAABxjyATmwgpAABcBaeW7MXdPQAAwEh0UhAV3LkDAOgoOikAAMBIdFJwXTfSFeE8LQAg0uikAAAAI9FJQURwDQoAk/B3UnwgpAAAoPYHG25Tjh5O9wAAACPRSQEAdEqcEjIfIaWTo00JADfuRoINS/BHDqd7AACAkeikdCK0NgEAscTWkPLCCy/ol7/8perq6nT33Xdr7dq1euCBB+wsqdMjyAAATGFbSNmxY4eKior0wgsv6Fvf+pZefPFFFRQU6N1331W/fv3sKuumi9ZqroQNAECsc1iWZdnxg3Nzc3Xvvfdqw4YNwX1f+9rXNHnyZJWWll7zvX6/Xy6XSz6fT8nJydEuNWIiFRzaCi2EEgAw1438Y7M9f4/H2gW54X5/29JJaWlpUXV1tZYsWRKyPz8/X1VVVVeMDwQCCgQCwdc+n0/SF5ONhuxn/m/I6xMrxkfkcyKl3//5Y1Q+FwAQHZd/X0Xq+yGa3wft/e67li9/HW60P2JLSLlw4YJaW1vldrtD9rvdbnm93ivGl5aWasWKFVfsz8jIiFqN/8u19qb8GABAnIrF75Fo1tzY2CiXy3XdcbZeOOtwOEJeW5Z1xT5JWrp0qRYsWBB8/fnnn+vjjz9W79692xx/PX6/XxkZGaqtrY2p00Xt0ZnmKnWu+XamuUrMN551prlKnXu+SUlJamxsVHp6+g2915aQkpqaqoSEhCu6JvX19Vd0VyTJ6XTK6XSG7PvKV77S4TqSk5M7xR8QqXPNVepc8+1Mc5WYbzzrTHOVOu98b6SD8iVbFnNLTExUTk6OKioqQvZXVFRo+PDhdpQEAAAMY9vpngULFmj69OkaOnSohg0bppdeeklnz57VnDlz7CoJAAAYxLaQ8vjjj+ujjz7SL37xC9XV1Sk7O1uvv/66+vfvH/Wf7XQ69cwzz1xxCikedaa5Sp1rvp1prhLzjWedaa4S8w2HbeukAAAAXAsPGAQAAEYipAAAACMRUgAAgJEIKQAAwEiElP8KBAL6+te/LofDoaNHj9pdTlRMmjRJ/fr106233qq0tDRNnz5d58+ft7usqDhz5oxmzZqlzMxMdevWTQMHDtQzzzyjlpYWu0uLmueee07Dhw9X9+7dI7LYoWleeOEFZWZm6tZbb1VOTo7++te/2l1SVBw4cEATJ05Uenq6HA6Hdu7caXdJUVNaWqr77rtPSUlJ6tOnjyZPnqxTp07ZXVbUbNiwQUOGDAkuajZs2DC98cYbdpd1U5SWlsrhcKioqCis9xFS/mvx4sU3vExvrBo9erT+8Ic/6NSpU/rTn/6k999/X9/97nftLisq/vGPf+jzzz/Xiy++qJMnT2rNmjX63e9+p2XLltldWtS0tLToscce05NPPml3KRG3Y8cOFRUVafny5XrnnXf0wAMPqKCgQGfPnrW7tIi7ePGi7rnnHq1fv97uUqKusrJS8+bN06FDh1RRUaHPPvtM+fn5unjxot2lRUXfvn21cuVKHTlyREeOHNGYMWP08MMP6+TJk3aXFlWHDx/WSy+9pCFDhoT/ZgvW66+/bt15553WyZMnLUnWO++8Y3dJN8WuXbssh8NhtbS02F3KTbFq1SorMzPT7jKibtOmTZbL5bK7jIj65je/ac2ZMydk35133mktWbLEpopuDklWeXm53WXcNPX19ZYkq7Ky0u5SbppevXpZv//97+0uI2oaGxutrKwsq6Kiwho5cqT11FNPhfX+Tt9J+fDDD/XEE09o69at6t69u93l3DQff/yxXnnlFQ0fPlxdu3a1u5ybwufzKSUlxe4yEKaWlhZVV1crPz8/ZH9+fr6qqqpsqgrR4PP5JKlT/H/a2tqqsrIyXbx4UcOGDbO7nKiZN2+eHnroIeXl5bXr/Z06pFiWpZkzZ2rOnDkaOnSo3eXcFE8//bR69Oih3r176+zZs9q1a5fdJd0U77//vtatW8djF2LQhQsX1NraesXDR91u9xUPKUXssixLCxYs0IgRI5SdnW13OVFz/Phx9ezZU06nU3PmzFF5ebnuuusuu8uKirKyMv3tb39TaWlpuz8jLkNKcXGxHA7HNbcjR45o3bp18vv9Wrp0qd0lt9uNzvVLP/3pT/XOO+9o7969SkhI0A9/+ENZMbTocLjzlaTz58/rwQcf1GOPPaaf/OQnNlXePu2Zb7xyOBwhry3LumIfYtf8+fN17Ngxvfrqq3aXElV33HGHjh49qkOHDunJJ5/UjBkz9O6779pdVsTV1tbqqaee0rZt23Trrbe2+3Picln8Cxcu6MKFC9ccM2DAAH3ve9/TX/7yl5C/6FpbW5WQkKAf/OAH2rJlS7RL7bAbnWtbf0jOnTunjIwMVVVVxUy7Mdz5nj9/XqNHj1Zubq42b96sW26JrVzent/fzZs3q6ioSJ988kmUq7s5Wlpa1L17d/3xj3/UI488Etz/1FNP6ejRo6qsrLSxuuhyOBwqLy/X5MmT7S4lqgoLC7Vz504dOHBAmZmZdpdzU+Xl5WngwIF68cUX7S4lonbu3KlHHnlECQkJwX2tra1yOBy65ZZbFAgEQo5djW0PGIym1NRUpaamXnfcb37zGz377LPB1+fPn9f48eO1Y8cO5ebmRrPEiLnRubbly3waCAQiWVJUhTPff/3rXxo9erRycnK0adOmmAsoUsd+f+NFYmKicnJyVFFRERJSKioq9PDDD9tYGTrKsiwVFhaqvLxc+/fv73QBRfri1yCW/g6+UWPHjtXx48dD9v3oRz/SnXfeqaeffvqGAooUpyHlRvXr1y/kdc+ePSVJAwcOVN++fe0oKWrefvttvf322xoxYoR69eqlf/7zn/r5z3+ugQMHxkwXJRznz5/XqFGj1K9fP/3qV7/Sv//97+Axj8djY2XRc/bsWX388cc6e/asWltbg+v93H777cE/27FqwYIFmj59uoYOHaphw4bppZde0tmzZ+PyGqOmpia99957wdc1NTU6evSoUlJSrvg7K9bNmzdP27dv165du5SUlBS8xsjlcqlbt242Vxd5y5YtU0FBgTIyMtTY2KiysjLt379fe/bssbu0iEtKSrri2qIvr4cM65qjiN5rFONqamri9hbkY8eOWaNHj7ZSUlIsp9NpDRgwwJozZ4517tw5u0uLik2bNlmS2tzi1YwZM9qc71tvvWV3aRHx29/+1urfv7+VmJho3XvvvXF7m+pbb73V5u/jjBkz7C4t4q72/+imTZvsLi0qfvzjHwf/DN92223W2LFjrb1799pd1k3TnluQ4/KaFAAAEPti7yQ9AADoFAgpAADASIQUAABgJEIKAAAwEiEFAAAYiZACAACMREgBAABGIqQAAAAjEVIAAICRCCkAAMBIhBQAAGAkQgoAADDS/wOawyifaHtMEQAAAABJRU5ErkJggg==", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = randn(10000)\n", + "hist(x, bins=100);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The mean is the **center** of this peak and the square root $S$ of the variance is a measure of the **width** of this peak.\n", + "\n", + "The mean of those 10000 samples is a pretty good estimate for the true mean (= 0) of the underlying normal distribution:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.004847893500037312" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The sample variance is:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0092267528416228" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum((x.-mean(x)).^2)/(length(x)-1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or (equivalently but more efficient) the function `var` from the [`Statistics` standard library](https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics) in Julia:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0092267528416228" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "which is a pretty good estimate for the true variance (= 1).\n", + "\n", + "If we looked at more points, we would get better estimates:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0006185283563578413, 0.999645039441104)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xbig = randn(10^7)\n", + "mean(xbig), var(xbig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mean and variance in linear algebra\n", + "\n", + "If we define the vector $o = (1,1,\\ldots)$ to be the vector of $m$ 1's, with $o^T o = m$, then the mean of $x$ is:\n", + "\n", + "$$\n", + "\\mu = \\frac{o^T x}{o^T o}\n", + "$$\n", + "\n", + "which is simply the coefficient in the **projection $o\\frac{o^Tx}{o^To} = o\\mu$ of x onto the line spanned by o**. And the sample variance is\n", + "\n", + "$$\n", + "\\operatorname{Var}(x) = \\frac{\\Vert x - \\mu o \\Vert^2}{m-1} = \\frac{\\left\\Vert \\left(I - \\frac{o o^T}{o^T o} \\right) x \\right\\Vert^2}{m-1}\n", + "$$\n", + "\n", + "is the **length² of the projection of x orthogonal to o** divided by $m-1$.\n", + "\n", + "In fact, the $m-1$ denominator is closely related to the fact that this orthogonal projection has an $m-1$ dimensional column space (the complement of the line spanned by $o$): after you subtract off the mean, there are only $m-1$ degrees of freedom left. (This is just a handwaving argument, but can be made precise; for more careful derivations of this denominator, see e.g. [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction) on Wikipedia or [this 18.06 notebook](http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring18/lectures/Sample%20Variance%20division%20by%20n-1.ipynb).)\n", + "\n", + "### Julia mean and variance by projection:\n", + "\n", + "You can create a vector `o` of $$m$$ 1's in Julia simply via [`ones(m)`](https://docs.julialang.org/en/v1/base/arrays/#Base.ones), which means we could compute the mean and variance via:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10000-element Vector{Float64}:\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " ⋮\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "o = ones(length(x))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mean $\\mu = o^T x / o^T o$ via projection:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.004847893500037312" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "μ = o'x / o'o" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.004847893500037312" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean(x) # same answer:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Variance via projection $\\Vert (I - oo^T / o^T o) x\\Vert^2 / (m-1)$:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0092267528416228" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm((I - o*o'/o'o)*x)^2 / (o'o - 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0092267528416228" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var(x) # same answer:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One thing to be careful of whenever we perform projections is the parentheses: we could accidentally do a *lot* of unnecessary work!\n", + "\n", + "In particular:\n", + "\n", + "* Computing $(oo^T)x$ first forms an $m \\times m$ matrix $oo^T$, and then multiples it by a vector $x$. This requires $\\Theta(m^2)$ arithmetic operations and storage for $m^2 numbers$ (the matrix).\n", + "\n", + "* Computing $o(o^Tx)$ gives the same result, but only does a dot product $o^T x$ followed by a scalar–vector multiplication (scaling $o$), which requires $\\Theta(m)$ arithmetic operations and storage for $m$ numbers (the vector).\n", + "\n", + "Here, $m = 10^4$, so parenthesizing in the wrong way above means we took about 10000× more memory and time than we had to! It's *much* more efficent to compute the projection via:\n", + "$$\n", + "\\left(I - \\frac{oo^T}{o^T o}\\right) x = x - o\\frac{o^T x}{o^T o}\n", + "$$\n", + "giving the variance as:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0092267528416228" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "norm(x - o*(o'x)/o'o)^2 / (o'o - 1) # same answer, much faster" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Covariance and Correlation\n", + "\n", + "A key question in statistics is whether/how two sets of data are **correlated**. If you have two variables $x$ and $y$, do they tend to \"move together\"?\n", + "\n", + "An intuitive measure for this is: **when x is greater/less than its mean, is y *also* greater/less than its mean?** Translated into math, this leads to the **covariance**:\n", + "\n", + "$$\n", + "\\operatorname{Covar}(x,y) = \\frac{1}{m-1}\\sum_{k=1}^m (x_k - \\operatorname{mean}(x)) (y_k - \\operatorname{mean}(y)) = \\frac{(Px)^T (Py)}{m-1} = \\frac{x^T P y}{m-1}\n", + "$$\n", + "\n", + "where $P = I - \\frac{oo^T}{o^T o}$ is the projection operator from above that subtracts the mean from a vector (i.e. it projects vectors onto the subspace of vectors with zero mean). (In the last step we used the facts that $P^T = P$ and $P^2 = P$.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For example, here are plots of two very correlated vectors x and y of data and a third data set z that is just independent random numbers" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3hcV5n+e+dO00gaNct1bNmO5ZJupzg9jgMpQLLABkJYWIqSmNBh2aUsS92l7ML+AgskNii0JcDSWwhpJoX02E51kYtsjVwlWXWkqff3x7nn3HPv3D4zmpF93ufRo+lz55Zz3vN+7/d9kqIoCgQEBAQEBAQEqoBAtTdAQEBAQEBA4OSFICICAgICAgICVYMgIgICAgICAgJVgyAiAgICAgICAlWDICICAgICAgICVYMgIgICAgICAgJVgyAiAgICAgICAlWDICICAgICAgICVUOw2htgh0KhgIMHD6KxsRGSJFV7cwQEBAQEBARcQFEUjI2NYf78+QgE7DWPmiYiBw8exMKFC6u9GQICAgICAgI+0NfXh0QiYfuamiYijY2NAMgPicfjVd4aAQEBAQEBATcYHR3FwoUL2Txuh5omIjQcE4/HBREREBAQEBCYYXBjqxBmVQEBAQEBAYGqQRARAQEBAQEBgapBEBEBAQEBAQGBqkEQEQEBAQEBAYGqQRARAQEBAQEBgapBEBEBAQEBAQGBqkEQEQEBAQEBAYGqQRARAQEBAQEBgapBEBEBAQEBAQGBqkEQEQEBAQEBAYGqQRARAQEBgWlEcjSJzfs2IzmarPamCAjUBGq614yAgIDAiYTuLd249Y+3oqAUEJAC2PS6Teha01XtzRIQqCqEIiIgICAwDUiOJhkJAYCCUsCGP24QyojASQ9BRAQEBASmAT2DPYyEUOSVPHYP7a7SFgkI1AYEEREQEBCYBnS2dUKCviW6LMlY1rqsSlskIFAbEEREQEBAYBqQiCfwjrPewe7LkoyNr9uIRDxRxa0SEKg+BBEREBAQmCZckLgAALCkeQl6P9wrjKoCAhBEREBAQGDakC1kAQBhOSyUEAEBFYKICAgICEwTMvmM7r+AgIAgIgICAgLThmyeKCKCiAgIaBBEREBAQGCaIBQRAYFiCCIiICAgME0QRERAoBgVJSJf/vKXcd5556GxsRGzZ8/G61//euzcubOSXykgICBQs6BmVUFEBAQ0VJSIPPzww3jf+96HJ598Evfffz9yuRyuuuoqTExMVPJrBQQEBGoSQhEREChGRZve3Xvvvbr73//+9zF79mw899xzuOyyyyr51QICAgI1B2pWzSt55At5yAG5ylskIFB9TGv33ZGREQBAa2ur6fPpdBrpdJrdHx0dnZbtEhAQEJgO8EpItpAVRERAANNoVlUUBR/96EdxySWX4PTTTzd9zZe//GU0NTWxv4ULF07X5gkICAhUHJmCRkREeEZAgGDaiMj73/9+vPDCC/jpT39q+ZpPfvKTGBkZYX99fX3TtXkCAgICFQcNzQCCiAgIUExLaOYDH/gAfv/73+ORRx5BImFd1jgSiSASiUzHJgkICAhMO3jyIYiIgABBRYmIoij4wAc+gN/85jf461//iiVLllTy6wQEBARqGjR9FxBERECAoqJE5H3vex/uvvtu/O53v0NjYyMOHz4MAGhqakJdXV0lv1pAQECg5iAUEQGBYlTUI3LHHXdgZGQE69atw7x589jfz3/+80p+rYCAgEBNQhARAYFiVDw0IyAgICBAIMyqAgLFEL1mBAQEBKYJQhERECiGICICAgIC0wRhVhUQKIYgIgICAgLTBKGICAgUQxARAQEBgWmC8IgICBRDEBEBAQGBaYJQRAQEiiGIiICAgMA0QRARAYFiCCIiICAgME0QZlUBgWIIIiIgICAwTRCKiIAfJEeT2LxvM5KjyWpvSkUwLU3vBAQEBASEWVXAO7q3dOOWP9wCBQoCUgCbXrcJXWu6qr1ZZYVQRAQEBASmCUIREfCC5GgSt/7xViggVcoLSgEb/rjhhFNGBBEREBAQmCYIIiLgBT2DPSgoBd1jeSWP3UO7Xb1/poR0BBEREBAQmAbkC3m2sgUEERFwRmdbJwKSfpqWJRnLWpc5vrd7Szc6bu/A+h+tR8ftHeje0l2pzSwZgogICJxAmCkroJMRRuIhiIiAExLxBD609kPsvizJ2Pi6jUjEE7bvS44mccsfbmFqSq2HdAQRERA4QTCTVkAnI/jUXUAQEQF3uKzjMnZ75/t3ujKq9gz26NQ3wFtIZ7ohiIiAwAkAamqbKSsgJ5yIyo5QRAT8YCIzwW7PaZjj6j2dbZ2QIOkecxvSqQYEEREQOAFQqqmtlnCiKjt86i4giIiAO0xkNSJiPIeskIgncMmiS9h9tyGdakEQEQGBEwAzbQVkhRNN2eEhFBEBP+AVES/nzIL4AgDAefPPQ++He2u69oggIicBTkSZW0CPRDyBSxddyu7X+grICieSsmOEICICfpDKpthto8/IDuOZcQBAfbi+5scBUVn1BEf3lm62wjxRq/IJEIxlxtjth9/5MC5edHEVt8YfaLoiT0ZmorJjBmFWFfADP6EZQCMiU7mpsm9TuSEUkRMYJ7LMLaDHZHYSLxx5gd1vijZVcWv8IxFP4Parb2f3A1JgRio7ZhCKiDmEYmsPPjTjRxFJ59Jl36ZyQxCRExgnsswtoMe2w9uQV/LsPj94zTTcePqN7PYf3vKHE0bBE2bVYpyoxuRyQigiAjMapVTlE5hZeLr/ad19fvDyg2quUvkVXDwan/bvrxSEIqKHUGzdgb+WvZwzgogI1AQS8QQ+vPbD7P5MNTAKOOPpg3oiwhvcvKLaq9R0XiMiM2EQdQtBRPQQiq07+A3NjKWJZ4y/nmoVgojUMJJJYPNm8t8v1ibWstv3vf2+E0bmFtDjmf5nAADBAPGf+w3N1MIqlVdETiQiIsyqegjF1h38hGYURRGKiEDp6O4GOjqA9evJ/26fi9LB1CC7HY+UJnMLU1lt4vjkcfQM9QAgNQMA/6GZWlil8hP0TBhE3UIoInok4gl87aqvsfsnkjG5nPCjiKTzaeYZE2ZVAV9IJoFbbwUK6nxQKAAbNvhTRoYmh9jtmSzXC1jj2YPPAgBOaTkFC5sWAvB/rGthlXqihmaEWbUYN6y6gd2+87V3CsXWBH48IlQNAWbGNSSISA2ip0cjIRT5PLDbx6J0cFJTRGayXC9gDWpUPW/BeYiFYgD8H+tEPIFNr9vE7ldjlXqihmaEIlIMnnQaCbAAga6gmcvQDE9E8koeuUKu7NtVTogjX4Po7AQkfbVuyDKwzMeitByKSC3I9QLWeOYg8YecP/981IfqAZSWNfPu1e9m5eL/55r/mfZV6omqiFDiQcmiICL648uPVQIa/IRmeCIC1H54RhCRGkQiAbz+9dp9WQY2biSPewWviMxkuV7AHIqi4Kn+pwAQRYQSkVLCcLlCjrUQrw/Xl76RHnGiKiJ0EqHHSBAR/bEWRMQcfsyqRUSkxjNnBBGpUXR0aLcffBDo8rkoLYciUgtyvYA5+sf6cXj8MGRJxuq5q0sOzQD6QWsyN1nyNpby/ScSEaHEoyHcoLt/MoM/1oKIFENRFF9N74xEpNavI0FEahTHjmm383nr1zmBz5opZZX8rtXvYre//3ffF6ayGgFN2z199umoD9czBaOU0Aw/aFVjAKsFRaQSGWJ0NUuPkSAi+mN9fOp4FbekNjGVm2LqJOA/NFPrREQ0vatR8ESkv9//55Qra2Yyq62MmyIzs4/JiQhmVFXTdssRmuEHLf64TxeqrYhUqlGkUESKIRQRexgXFG5DM7SYGYXwiNQoar0mBk9EDh709xmKolgSEa/F0vgLotYd2CcTmFF1wfkANCNkKYpItRWJan5/JTPE6GpWEBENwiNiD2OI9URVRE5KIjITamKUQxEZTY/qGqFRIvLtbwOLFnkrlsaf2IKI1AYKSoERkfMWqIoIDc2U4BHRKSInmUekkhlilHjwZlVFUezecsJDKCL28KuICLNqjSM5msQtf7ilpmtiKEp5iAifMQOQkzqZBD7wAfIdgPtiafzEJohIbeDR/Y9iND2KqBzFae2nAShPaKbaoZFqKiKVzBAzhmYUKLqFwskIoYjYw7igEGbVEwQ9gz068w9QezUxxsaANEdg/RIR44WdyqbQ06OREAo3xdL4E9tL4yWByqB7Szeu+OEVAICp/BR+9PyPAJQnNFNtj0g1S7wn4gl85rLPsPvlzBBjZtWQlhJtObGUo9HUDABPescyY57a3J8MMC4oRB2REwQzoSYGr4YAJSgiKb0iksqm0NlZ/Do3xdJEaKZ2QH0MPKGmql45QjM6RSJfBUWkyorMtZ3Xstsb1mwoW4aYURHhH9OhXI2mZgCMx3d4arg6G1KjKFdoRigiNYZEPIHPXf45dl+W5JqriUGJSCRC/h86VFzy3Q3MFJF584AglyvltliaMKvWDux8DCdE1kyVzbL8d/aO9Jbtc1lBs7CNIlLORlMzAMaVugjP6OHbrJoVHpGaxzvOfgcAIBQIoffDvTVXE4MSkVWrSKn3fB44etT759CLmipAqWwKvb1ATuURgQCwZ4+7YmlCEakd2Kl65Q7NVMUjUuWCavxvfunoS2X7XEo6wnIYoUBI9xhDORtNzQAYJ0hBRPQwXsfCI3ICgUqj2UIWc+rnVHlrikGJyLx5wBx18/yEZ6hZdX7jfACEiOzYoT1fKAChkLvPEkSkdmBX6ZautqdyU8gX/Bkhq00ESlFEypGWz6tAfaN9ZQsX8EQkLId1jzGUs9HUDIBRERFFzfQoUkR81hERRKQGwcdoS1k5VgqUiLS3AwsWkNt+iAhdXSyMa63heSICeKgjwjdeqmFDWSXrw9RS7ZmuNV1oj7UDAO556z1M1eONkH5JRC0pIl6+v1xp+cbvLJcqQmX1UCBkTUQSCWDtWu1+IOC/0dQMgFBE7FHkEfFoVq0L1gEQZtWaBC+NGiWsWoAZEfFT1IwqItT/YkZE3BKcmaCIVLI+TK3VnlEUha3UV7WvYo9Hg1HWOdevYZUftGZKZdVyFiIzfueLR170/BlmcKWIAPqUuY9/3H+jqRkA4RGxh19FhI7Xs2KzAAhFpGZBVZGZQkTKoYhMZCcYEaEhmROFiFSyImYlP9svJrITbHXUVtfGHpckqWSfSNUVER+hmXIWIjMqSS8eLQ8RoZOILRHJ54Ht27X7J6hJlUIoIvYo8ogUvHlEKBERZtUaxclARGj6rpkicuGF5P+JUuK9khUxK/nZfkGPbVgOM+JBUWoKb9U9Ij4Ukc62TqYEUfhNy6ffSVXTchERSjpCsk1oZv9+YIr7zS+Vzyxbi6CkU5ZkAMDxSeER4UGv4XgkDkAoIiccZgoRmU98pqUpIk2aR2RggNSeWL/e2+fWekGzStaHqcXaM/TYttW1QTKYGykx8ZvCOxMVkUQ8gQsSF7D7paTl0+88a+5ZAEhophyl2Ol1Y6uIvPwy+d/SQv5v315a++0aB61TM6eBuPKHpoQiwoMuAJujzQC8e0SYIiI8IrUJSkRKKfxUKXjxiNgVYKQeERqaAQAEp7BoEVhhM7eKSK2HZhLxBP7xzH9k9yVIZasPk4gn8JG1H2H3a6H2DD22rXWtRc9Rw6rf0EyteUTckgBKFluiLSWl5dPffNacsyBLMkbSI2UJwzFFxM6s+sor5P9VVwF1dUQd2bu35O+uVdBzbW7DXAAiNGMEXUzQjuduFJFMPlMUthWKSI1ipigidqEZuwKMBaXAZE7dhBlKYeVKzYTvVhGp9dAMADRFm9jt02afVtb6MOfMP4fd3rpha9VrzzBFJNZW9FypoZlqKyL85FxQCq7Ptz3H9wAgRKYUkkh/c1OkCStmrQBQnvCMK7MqJSJnnEEKCQEndHiGks55DfMACCJihB9FhJ/T6PggPCI1ilolIqkU+QP0ROT4cWCSW5w6FWAcnhpmJcDb69sRkdUyrSoR4QmOmwVnrSsiAPD8kefZ7d7h3rJ2Nj06oVWUo3JnNUEHbDNFpJyhmXQ+XeSPqTSMMrIbMjSRmcDh8cMAyO/2W0MF0HwxdaE6nDH7DADlSeF1ZValoZlTTwVOP53cPpGJSE4QETvQxQQlIm4KmtEaItFglKmjQhGpUdQqEeHLuzc2Ak1NQEz1IvLqhVMBRnpBN4Qb9IZGAxFJpYDhYeftqnUioigKXjjyArs/nhlnE1M5cGTiCLvttrphJUHNqq3RCoRmDKun6Y4vG7/fzSC697g+fFGOEvfRYJQRkXIqIpZm1UJBy5g57bSTg4hQRaSREJFaMKvWUr0geg231BHPkJvQDB2rG8INiAajAAQRqVnUOhFpbycFFiVJM6zyPhGzAoz0/Zs3A9t79R4CnoisWgVEo0Cbquq7Cc/UekGz/rF+DE0OQZZkLGgkLGvX4K6yfT6viNQCEZmu0Aww/ZkzfhQRYwZTKde1jojMUYlIGWqJOJpVDxwgK4NwGFi6VCMiVCU5AWGmiJRTyfSKWqsXxBSRSDMAb6GZhnADIkGihIvQTI1iJhARCjOfSCIBnHtu8fvf/GbiGfm7m7SsCgCoC6pEJDyBlSv1n+vGsKpTRJTaU0SoGrJy1ko2eZzIRMTOrFpqaMaPIlFO+Pl+6g+hGMuMWbzSGSw0E9RCM9sHtpdMwB3NqpRwrFhBOlNSIrJzJ5Cp/jlXCdBjTc2qeSVf0rErBbVaLwjgPCJCETmxMNOJCAAMDJD/X/sa8Oc/659TomSiqg+QiUoukMkp1pRi/Wt4w6qTHFnrZlVKRM6ccyaWty4HcGITET5914hSQzNFisg0Z874UUT2DOmJSLkUkY7mDjSEG5DJZ9Az1OP7MwEXZlVqVD31VPI/kQDicdKlclf5zuVaAj3WLXUtbNKslk+kFusF+fGImBERkb5bo2BEJDszicixY8C+fcACJLFh+WbEjQSijlzMwSyZqJQMISILFqdYSId+7u+T9nJkQSnoZP5aJCLUqHrWnLOwvE0lIkMnPhGxTd8tQ4l3YGYqIuUiIgEpgNNnE2Wi1PAMXc1aekQoETntNPJfkrTbJ6hPhB7riBxh53K1fCK1WC+oyCPiITTTGG5kSQpCEalRzHRF5OmngXejG/vRgYbr1+PCmzpws8QRiDq1qmobubhzk4SIzF2oyfULFgCIJ/EHxV6OnMxOsgwcoDY9IjpFRCUiPYOlrWB51BoRoaEZO49IObJmzO5XGpQI0RCTFyJCq6uWcl1TBaguRBqGlcuw6qiI8BkzFDViWK2UgZMe20gwgpYomWyrpYgYu1qXsxaRH+QKOXZ+lBqaER6RGsVMIiJmZtXt9yexCbdCBiEQUqGAjdIGLAqoA4WqiHS0k4kqM04mp/b52uSUSABo7YEi2cuRRom/1hSRqdwUdg7sBECqYVIisntod0lpnBQTmQndPqgFIuImfbdsoZlpNKsWlAJb9dEiTk7fn81nsX94PwCw1Wu5FBGAIyKvWFQOdAlbs6qiFIdmgJowrFbSwElJJ6+IVDOFt2tNF1bPXQ0AuGbZNVWtF8QvJFhBM59mVaGI1ChmEhExU0SO/q2HkRCKQCGPZ3+2G5//PIAYWTE3RcjFPTFMJqeW2QZFZKgTUOzlSOM+qjUi8sqxV5BX8mira8O8hnlY2LQQETmCbCGL/SP7S/58Xg0Bqk9EFEWpqEekmmZVft/SAnVO379/ZD/ySh51wTpGQmktBT8wEpHTnz0AAHhx9+PFlQM9wNas2tcHTEyQbpTLuFBAlRWRShs4WWgmWBtEBNCIb16pbml9GlqVIKEx0gjAZR0R1ewrPCIzADORiBw8SBZOigL8aVcnCoYmX5BltF+4DJ/4BBCKk4u5f1cbCgVgdIgQkaZZBkVkNIG6x7/MHgtIgSI5staJyPOHVX/I3LMgSRICUoARqXIYVmuNiIxlxtgxMPWIOIRmnGT2appV+QGTrgKdiAg1qi5tWcoG7JJCM1zWDJJJnPHxrwMA9rUAO1sMlQNdQlEU+9AMVTyWL9daYwOaR2TPHq3S4TSi0gZOM0Xk+FR1a4lQj8poerSq20EXEvXhena+eA3NCI9IjaPmiIjaNEY+RAY4nojMIyn2yGRIpkxPD/DKaAJ/ky7RXhQIABs3AokEwmGgNUEUkccfakV/P5BXPSLRRoMiAmDy+WvZY1+/6utFcqTR9FhrTe+YP2T2mewxZlg9AYkILWYWDUaZj4EHC82YmFXdyOx0cqgLks+uliJCO446EhHVH3JK6yloCJV+XesUkZ4e/G65AmqROvV9QPeZXOVAl+BX16ZmVbOwDADMng3MmkVWH7TY2TSikgZOPgxXCx4RiuGpYQClqWrlAL1+60P1rBO019CMSN+tcdQUEeGaxjy8vwPvRreOiITDGjE5eBB46ilye1ZsUv8ZXRqBCKuKyHOPtuGhhwBkVeNfXpucmptJXy1ENOZvHHSAGaCIHNEUEYoTmYjYhWUA69CMW5mdDlrUIDedHhEq1YcCIddmVaqInNJySlmua56IJOc34NbrACo+FgLAhuuA5Lx6T5/JnzOmiogVEZEk9z4Ruw6YPpGIJ3Dn6+5k9wMoVkz9gt8nteIRmcxOsnOwlhSRkKwSEWFWPbFQM0TE0DRGRgEbsQGzM/rBhPeJPP00EEQWnVNaSXNM6Ced0RxZNRcmWvG5z4EREV6ulyQ1PBMdYY+NTI3AiFomInxp9zPnnByKiJ1RFbAOzbiV2emgRYnIdK6mmFQfjLhezTFFhCMiJRU047JmesLjKBhGyXwA2B3x5r/hJxDb0AwNxfBw4xOx64BZIl6/4vXs9scv/njZDJx8GK5WPCJUDQFKO4fKgXIoIsKsWuOgA9ZEZmLam3rpYNI0Jog8mo7pJweeiDz1FLAK2xE0lodWkSvkMJJWCUWqDb290IhITj85LVgAnSLCX4gUtZw1c3DsIAYnByFLMk5t11aTLIW3xCJUgL7PDFB9ImKXugtYh2bcyuxFish0ekS4uhKeiUjrKSV7RBRF0SkinW2dCKD00AR/zhSZVa0yZiiciIhTB8wSwfdsCgTKN2Xwq/Ra8Yjw3z2aHq1quXkzj4jfgmZeulhXAyc9EVGgTHvlSB1MmsbkIEPq1A90lIjs3Qts2wasxlb95+zXskP4gkANQRJ3LVJEVBn3jJakIxGhJzY9qWvphKZqyIpZK9j2ARoR2T+8v+TVgFERqbbM6aiIWIRmEvEE/v2Kf2f3zYzJ/EQ8ExQRRVHKGprJFrKsZk5dsI7Ullh4GyR1PpIU+ApN0JVsMBCEJEn6iaW/HxgbA2SZjAdGOBERpw6YJYInIuUMV9DjGpbDkCSJFe2qFUWkoBSmvc8SD50iooZmCkrBceFsVtAMqG1V5KQlInXBurIUPyoZiQSwaJHuoe/N/pRWf10FJSL33ANks8BFUZWI0PdyRIReyE2RJpyzOkgezJLJaefelE7Gvf23HTgvcj9773B6uGgT6f7xUlRnukD9IXxYBgDaY+2IR+JQoBSV//YKSkRkSQZQA4qIala19IjYZM1cufRKdvtXb/5VkczOS7/V9Ii4VUQOjR/CZG4SASnAyrED/q9pflFCv7/ryAJ8bjN57DW7gK4Vb/H8uXzqLgA9EaFhmc5OYggzgoZr+vo05YSHWQdMWdanAZcAnoiUM1zBZ8wAqLnQDFBdn4jOIxLQMqmcxl+z0AxQ2ym8Jy0RkSSpNnwiO3YQEhEIYKiDFNJpM4k/06JmL6i2kItiKhF5/evJf46IUOm+KdyKRx9VH1QVkV07jkPhZNyAUsCrI79i7zUNzRj6HdSiInLWnLN0j0uSVDafCCUi8xvJQag2EXFSRHiTp7GgGz/I0/OfBz/pzwRFhJLMjqYOhOVwydc0/S4JmmqB7duRUOdfRQJw5Ij5m23Ap+7y/zP5DPD44+RFS5aYv/lX2vWJM84o9n+EQvqUX4Bl0JUDlVJE+BoiQG0QEWN5+WpmzpgpIoCzT4QnIsFAkC2ghCJSo6gJIvKTn5D/11yDx678LADgymM/JdIqB6qIAICEApZPGIjIoUNAmlzY9EKuU9o0xVYlIuHgcUgGGXc8osVB7cyqtUhErBQRoHyGVUpEqBxfbSLCPCIOWTNAsSrCD/JmiolZHY9a9ojw/hCAyNGA/5U77w+RqMrwyiuoVw95KgTg8GHzN9uArmKLiMj+vcAXv0hedO+9xSSD+j8ozPwfX/oSye2fPZvcb2zUZdCVCp0iUsaJ2UoRSWVTVVu915IiQq/P+pDmEQGcxx++oBmAGZE5I4gIqkhEFAW4+25y+x/+Ac+2X4shtKB16hDw8MO6l/JEZCn2IpIeAyIR4JJL1BxcEOkWmnQ/p6kVzFtG03dDChRDIbTjUe0+fyHSbMAjx2tTEZnKTWHHsR0ASCjGiHJ04S0oBRxLkSpztUJEnBSRaDDKwo5GssGv+MwIBh+399LrpVygE1BYDruqY8L7Q4DSr2kahmJ+o0IB2L4d9eoidCKMkhQRurJlRGTHy2QcAMh/I8mw8n/0qCbs/fuBO9X02o0byf+xMWC0fBPo4YnpUUTikTg7b6tlWDV+bzUzZ2hoJhaKMVUD8BaaATAjMmcqSkQeeeQRXHfddZg/fz4kScJvf/vbSn6dZ1SdiDz5JHGf1tcDf/d3ODwUxi/wJvIcVUpU8ESEGVXPOINIsh0d5L4anqET1YKWNmzaRMLFlIg0zc9AOk1z5iuyjEciZ7P7lIjw2YA//rnBI1IjBc2+9OiXUFDL3F/QfUFRca5yZM4MpgaZOWxBIzkItU5EJEmy7DfjqIhwigQtllYVj4jb0Mzx8hIRY3l39PUBqRRiBTIRTIRgS0SsqtbyfWb4/xlZ//4ik2lnJ2CWqfKXv5D/n/scUUPWryfqaHOztt1lQsVCMwZFJCAFqm5YrSVFhIVmwvWQJMlVCm8mn2Hjk1EROWmJyMTEBM466yx861vfquTX+EbVicj//i/5/4Y3APX1OHYMuBtvJY/98pfAlHbitLZqPrZ1TSoRWbOG/DcQESrdt9a1oqsL6O0FvncHmZjkaEob2GbPRmFPL/ZHtAlteGoYfX2KLhsQYbJ/grlmALWhiCRHk/j3R7QMELPiXOUIzdCwTGtdKzOBVpuIOKXvApph1ZjC60RE+Im4GgMYPzn5Cc2Ui4iwirWqObR+PrnGJsKwDM3YVa21NKsaiYjRZJpIQFtNQDOlfvWrwG23AT/8Ibn/ZbVNAzWvc+n8paJiZlWDIgJU3ydiJCJV9YhkNY8IAFdFzfjrnY4BM6HfTEWJyLXXXot///d/xxvf+MZKfo1vVJWIZLPA//0fuf0P/wCA9Jl5FJci1baQSKt/+hN7+V13kYUPACwdUYnIamJutVJEqIcgkQAuv4hL3z10iLx+eBjyogUINWq+kLySx4s7J/RqcIic3IWJZgC1QUR6BntYmiWFsThXZxtJhTwyccTU++IGlIjMrp/tKZe/knBSRABt8CryiEy5IyKRYISFRqZTEaH71q0iQo+3URFJZVO+Oi/TcBVTRFQiEphNyEHKQhFxqlpbZFYdIRNcRoZGLmTZ3GRKVxObNxOC8a//Sh6/804trPPii+T/woXk/wxSRPi0+2oTEWNoplayZgC4Gn/oXMYXzZsJ/WZqyiOSTqcxOjqq+6skqkpE7ruPNI6ZPRt41asAECKiIICBq24ir1H9I3q/moI12AIAOLrAnIjwiggFlepT2RSUgQHyYCYDDA1BrtPv54n8sH5bVUWkY04zgNogIp1tnSyeTGEsNBWPxDG3YS4A/+GZWiMiBaXgWOIdgP/QDDc5VEUR8WBWHZ4aZr9nactSAGAFzQAP3Ye50uhFoRm1v8tPHlhJPjME9D5VTEScqtbSVWxIDgF9fQh/5gsAgEwsQvwemzcTsmFlMk0kgHXryP8NG4rTdam3pMyKSDqX1p0zY+mxshX54o81BStqNlkdjwhVROi1XlWPSMagiLgIzRj9IYAwq3rGl7/8ZTQ1NbG/hZTdVwhVJSLf/S75/9rXAkFS64N23s3eoIZn/vAH4A9/wIHHk0yhmIdDmIOjyCOAHaEzyIOGWiJsouKke3oy55U8srwcfOgQlIieiHz/boN6ECH7Z9EckkVRC3VEEvEETputlcOWJdm00FRnK1FFfrPjN75al9caERlNj7IJz1YRKTE0o/OIVKH7rhtFhBpVZ9fPZgQkIkeYsc/VdW0ojT71lz8C0Br+pbcRRWRflviqUmGgf9uhoqKlTsSYKSKDI0BHB8IvE5N1Jl4PnHKKRjLcYPduTQmhoN6SMisi9Pynv02B4p7gOYBX3yiq3fiOEqCFcbIfa0kRcROa4YuZUZz0ZlWv+OQnP4mRkRH211dGedEMVSMi3/428Lvfkds//CHQ3Y1sFjiuLgLil5xJCodks8D11+PCmzpws0TizdSougMrsfR0suotUkRS1ooIoMrLFIcOIR8kxCOgkCf+vHkYgBaWXrC4NrNmaLnyr77qq+j9cK9pDwwavvnSo1+y7DZrB0ZEYrVBROixrQ/V6wZwIyxDMy7NqrWkiFiFhoxGVcBjfSCT0uiT37sDgLqKVBQEdhAi0pM9m70tHjxcVLQ0EU/gyiVasThGjEcBbN6M7DES3gjv3gcoCsJq1CgzMuSqFLuun52ZgZV6S+iipExjJw3LzG+cz663ck3ORrMqUP3QDFVEFjWR/VgrdUSAMigiJ6tHxCsikQji8bjur5KoChFJJoEPfEC7r9YFOP4iGYwkCWid7Nd8HACkQgEbpQ1YFEgyIhJZu1pbQFEi0tcH5POm0n1IDiEYIMoLT0Sy/QeQk8hAH8upHxgdxpvfrLW9SOVqs44IVThe0/ka05LbydEk/nbgb+y+VbdZO9A+M3Ma5tQEEXHjDwHchWbMJng+NFENj4gXsypVRIx9X1xf1yapsVMBQlyjwShw+DBCEyPII4DdWa1OTUPoqGnR0sXNiwEAp7WfRojxVjC1JXMbia2G1K9jRESGYyn2on52fzEYWHlvCVVEyhSaoURkXuM8xCNkPC7X5FyLZlXqEaFEZDQzsxQRYw0RQHhEah5VISI9Paay6vg2Mhi1tQHy3uLXBAp5PPuz3fjQpYSILHvzGu3J+fPJYJTLAYcOmXpEAM4nwhGRsUNaRdbMMTKISXXD+NznNPP+RFZPRPJKvqrNoAASLqCDlVXfDzeGVifUWmjGLOxmBrPQjKIorj0iXrrflhNe0ndpVd1ZsVm6x2mYxnHCNFEWpkIkBFEXqmNG1ZFZpyCr1AFZQsykcAqJ5uIxY1y9TkJyiCghnNqSVb+GEhAdEbEpxW7Zz+5qzsDKe0uoIpJMFtcf8QFKROY2zGVy/3QoItWoI1JQCszUXguKCF/QDPBmVhUeEQ7j4+PYtm0btm3bBgDYt28ftm3bhgNlTC0rBYyIZKeRiFj0hThUTwaj9naYS6+BANovXIb2pCFjBiAeE1UeyfTuYSejcbJiq2SOiIwcVY9Ftg6ZYVIU7LzLhrFqldp/Syogo5ALghIRgEzo1UT/WD8AcpHSCqBGlKNzaq0RESuSaYRZaGY8M65Ts5zSd6vqEXFQRLq3dONnL/8MAHD7k7frQm6uFxiJBHDzzbqHJtcSgh8NRplRdWyhKg1mVHJnkTlDSV8qmypSW2iabmjxUkCWNSISi9h6Q2z72fEGVooFC8j4kk5rprMSwIhI/VxNESmTgdPMrFpNj8hYeowtXJgiUgN1ROi47Tc0c9J7RJ599lmsXr0aq9VJ86Mf/ShWr16Nz3zmM5X8WteoiiKSSACrVmn3VVk1CTKYtLejuHYAQMo2p1LAvn3k/tln6z9XDc8M7SOrOAlS0QStU0TaCekYHThInpxqAqaaAQDNc8iqYNkyAMFJ0Naj/OdV27BKwysL4gu0UtwGJOIJfOyij7H7VoZWO9QaESklNGNcZTqZVf0oIlYFvdzCjSJCU2UpFCi6kJun65oS/phaRXaU7N+oHGWKyItZ9XpViwJaVVel35fKpooWE5SIhJetAHp7Ef4pSd3PSPaqhZ0dxBShEDBvHrldBp+IThGJVEgRqZHQDL0+InKEVWqeqWZVM0XkpCUi69atg6IoRX8/+MEPKvm1rlE1syrtI/P1rzNZlS5e2mmlclo74M9/JqPRyAhL80UiAbS06D+TEpE+Uryrpa4FckBfLUlHRNRiaANH1RoB6TgjIvc/OoxkUlVEwtq+aYpqRKTaPpH+UaKIOJGKG069AQApAW9laLUDT0Toyq0WzKp2qbuApojwoRnj4O5kVvXqEbEr6OUWfIl3qwHUKVXW03VNWyl86Uvku/oI0edDMw8cVBWRLKeImBQ1o983mZ0k1+jnPseeywYJWQ43NAGJBMKXXE4eL2Rtw5yJhFarDCBih2M/uzL6RGh597kNcyvnEakRsyo1qrbUtZRd/fEKRVHKZ1aVhVm1plEVIqIo2gDxd3/HRpQiIgKQ5665hnTfDAa1FU4yWdwcSyUig4fJQGq2YtYRkXPOAQAMj6pfnI4TVQSAEhnG7t3qqiusXQx846VqExGmiDQusH0dq5AJZ9JixGR2kg1EM00Roasonmy4ISJ8SiVPBJw8QU4FvdzCqo4I//2dbZ0sg4OCD7m5vq6PHCHhF0kC3v524KKLMEn83LrQzKNDpyIUAuJ16j61CM3oFBEAWLuW/F+8GJnPfApAcWVVwLllwvLl2u0zz3TRz66MKby8IkIn53IrImYFzarhEaGpu83R5rKrP14xlZtiYSI/Bc1EaGYGoSpEZHAQmFRXmNyyxoyIMJk7PFXUjbeoORZVRAbJ4GO2Yma+AY6ITGbIChtpLTQj1Q1j2TLigQ03kH0Tlet1jZdqhYg4kYtSZEmqhoTlMJoiTTVBRJw671KYhWYoEaGTuJnSwSYHOaojcU5GNyeVwi3MQjOAfp8n4gl861qtbYQx5Oa6Ay9VQ848k/RQuOkmTFEikikAR8nx34GVOP98oEklIk6hmcncJCFOlAisXIlsg34y8dJNVbXYAYavtQyDlTGFt5JmVdM6ImqvmeOTx4vOp0qDKSLRlrKrP17BX7deSrwLs+oMBD3A00pE1FofmDuXdM81PBxSjaQ6mftnF6D7bIsCRhRUERkhab+miogqtfOhmfGAelJntNDMqtXDSCRIbDqxVM0EUBogSRIjI9VufEfNqm6JiJ8UVD4sI0lSTRAR14oIDc2YEBFabdatIsI/bgU3lW7dgJV4l+2//w2r3sBu7/3QXl3IzfUC469/Jf/XrSP/3/QmTNKsmZ5eAMCx+g6kUI8rrgCaYpzZ2yY0w7aXLhQWLrTsNcP/Zits3ardPnKEFES2DYOVKTSjKIqpIjIdZlUFiu+2DH5BiUhztFlHZquRIUjDMhE5wkLsXkIzuoJmIn23tlEVRYQODrT2B0iU5Z57yO3Pfhb4r40GmRsFbLgOSPJlVYyONfXz9uZI+XZ+EKeI5cnhTkUCZNUUj2NEHQNuuC6O//i3ZgBAfdswe8/cheSCCOTIvqK1SGpFEXEMzajkK1fIed5mnogA7qTRSqOU9F1jurOTRyQUCGnqiUPmTCKewHvOfQ+778cYDOgNjGE5zMiNcRClK9XGcCPLcKBwfV1TReRy4tfAnDmYSswBAEQf2AwAeClHjKrr1gFtjfaKCE/6UtmURkQSiaJeM7Iks9/mhYgoCvDsLocwWJkUkfHMODtH5jTMKX/6rkkdkUgwwkj0dPtEaDioOdrMSFdBKZheJ27h17xtNKoC/uuIiIJmNQ5+wJo21kuJiDpY6PvIkIHmE/9pInMHgN2z1MNl1hxr0SJ0rwa+dAE5SX+747dFZsFYhvzGVGsjkTvmzcOoOgbMb2nCpec1AwBG0tpKpH0BGcyVtF4erBUi4lYRAbxfiLVIRNym7/K9hSjcEBE+fVeSJE+hrQsSFwAAwoGwL2MwoF8l230/nQz53jIUrojI0aPMjIrLLmMPT3UQYhs9QvbVlvSpCIeBiy4C2lu00GbhsJ6I8O3XAXXfUiKwcCFbxYblMJJJ4K9/daewDQ5qHzOHcCQ8vcchDFYmRYSqIQ3hBjSEG8qviJjUEQGqZ1jlQzOxUKzkSrKlmLeNRlWgDB6RvFBEahL0YOUKuembXGgMRiUiZnUCCgMWMvc9T1o2x0pmBnDrdYCivs2Y0ggAsSniM5lQB1SeiMQjcVYnhG+F3TqXXBDZidpRRLL5LBsknYgIv9ryKk3WIhFx0/AOsA/NJBo1ImIk4MbJwQsRocSmgIJnJaTo+4P2308nQzo58qArd1siwvtD2rR9OTmbTIJ16ul9CHNxwQVAXR3Q3qRlzeST+tCMsaePlSLyykshViU1nXI+n6gacsopWta/PGxv1mWKyKFDpE2EAW5X6XxYBkD503dNFBGA84lMs2GVN6tKkuTea2SCUs3bpoqIKPF+YoI/yNMWnjGEZnIm87k8kcCbOt+p3acy94rzLJtj9Qz2oGA4mkazYGySfFmqSe07M38+RlTBIB6Js/Tc4alhNkE1tZP9MjWqJyLVrCNyePwwFCgIBUJor2+3fW0wEGTb7NUnQonInHqyFKVEpFqmr3whzwZLt1kzZqGZBXEtnGWc4OmqiQ5eXlJ4KRHJFXK+FUajb8BJETEjInQQtp1AKBFZt07Xx2UK5BqJqtflV/EJfLSJrGTrqQE4DEjH9IqIcfzo7Z/UpIxEgl0v9/wxrC088uR8OtDvTERWr9aEjtThBD689sPsNQEpoA+DtbcD4TCRV/v7dZ/nZZVuJCKVypqpGUUkPQxAI0KlEK9SzdvGqqqAf7Oq8IjUOIKBIBvopp2ILFoERQG+QLqBs2KrNOpyxfLzAZDVuBuZu7OtEwHD2G80C8bGyYWfalAvfE4RaYo2MUUkk88ws118ZBsAYGK4HrlceRSRUoteUaMq34jLDnQy9Xoh0j4ztaKIjKRHWEofHSytYBea4X01xvCMMZPBjyIC+Dczu1ZEOI+IEa5CM6pR9YHs5bo+LskDZNKhRERGAdf/iWSoMXIXAoLpFDCufb7xu/7+umPAqDqBcYoIclxZY5WI7N3vjYj09QGXLLqEveYbV39DPz4EAqYpvF5X6VZEpJK9ZoDqERFeEQFK+72lmreNVVWB0hURQURqGHaDVqkTpim40MyPfgQ89hhQXw88aYi60JNGlmRXMncinsCm9NWgrVWKVkkAYmPkM1P1qmPfEJppCDewiX34+98BOjoQ+L+NAIAVU304cMCZiOi6hJqgHEWv+KqqbuD3QrQLzVTDSU+LmTWGG3VZF2YwC81Qqbu9vp2936h0GGs7eCnzzqsvfslaORURSyJy7Bjw8ssAgLfeeZmuj8uhfuKPquPGeqlAMtToPh0JqTm+XObM3qQ+NNMaIguOQrwJaGxEpqDujwJ33FQiMmeBdyLCqz2mCp0JEfG6SufLuwOoWK8Zo7G+NUqIyLMHny3v2OsA3iMClPZ7E/EE3nzam9l9r+Zt29CMSN898WA1aJVjwizC5CSrTfDKRAc+9CHy8Gc/C5x/vj7qQgd+LyvLrgWvw0Wq4FK0SgJQP6z2wqhTB9J581jWTDwSR0AKsDLuI5/+Z6BQwLg6br4m8wj6nkiyi8GMiBR1CTXssnIVvXJrVKUoNxEBquORcZu6C9iHZlrrWk0VE0Bf4h0oQRHxGbrz6hHxZVZ95BHy/NIzcEzRN8xjdUT4w6tmqNF9OhRWLxouc2ZXr/672oJEtUu1EUJA98eiRLEi0tJmTkQmJoCdO8nt1au1saGvTz85Hho/VPxm6hPhDKteV+mWikgF03cBoG+UkKfvb/t++cZeF+DTd4HSf+9Zc84CACyML/Rs3q6IWVUoIrULs0GrXBNmEVSZIBupx+mXtmBETU5pMunZRk8aTyvLjg7QccZMLYgNqZUfw+qL+NCMSkCYYTVCVvyUiDRmFQw9vdtSEbHsEsrtsnIVvWLl3Ru9ERGvzdvsiEg1wjNuU3cBTdJN59PIF/K699sRET59F/DnEQFKCM3ktRLv/HYYv58pImETs6pT990//pH8P/fcoj4uuSA5r0M58kQOMh59G8lQo/tshBb74YhI82w9EWkKkR5OwQ61GSWtIyIVKyJW59ILLxCbx9y55E+niHC/zZSImCgiiXgC1y67lt13WqXz5d2B8ptVzQqaJUeTuG/Pfex+2cZeF6CKYTk8IoB2zkqS5Nm8bZu+a3Ft5Qo5tk+FWXWGwYyIlGvCLIIalulJL4LCrUze+97iUAY9oTytLDs6tBWdWR2RQcJ8UnRRNm+ezqwKaP1khtXHJ9Rxsz4DpF/cieAUGTTZxaDGYg48nrTuEqrCqTS3WyTHvIVmaHjBy4qgoBRwLEXK3dYKEXGbugvoV1KpbApTuSlGFNwoIvT88aKI8GEg36EZl1k7zCPiVRHp7gbUXlcNv/gBHvoHbbUdCABSmEweb8jdi3XYjMXoxRX/24VkUtunI2FSYCrHZc4MjOq/qzlMnosuIxMQvV6GjpFzKJGAIxHhwzKAxi0GBoChFEdExtwpIgCwvI3Ui1/SvMRxlW6liIxnxstS9dTMrNoz2MN8UBRlGXtdwFIR8emJoQsfP92rzRQRp9AMf77z14Uwq84AmA1a5aoSWQR1UNiPDt3Dxgkb0Ni0p5UlT0RyBg9DLofYgEpEZHUQmT9f84jkyRuZItKmVp2likgGuHHzexDcR8hU7vOfBW64gQx469fjwps6cLOkl1CNNdcS8QQ2vW4Tuy9B8lX0ajpCM8NTw0z1oUSEqkFAlRURh9RdQK0Dop7DE9kJZsQLSAHEI3FrRcQQGvHiESlLaCbvLjQzmnH2iEzmJpkaBMC0aM9lP9mABUgiHCaNresayfcczXXgYaxDPxLs+mT9e0Kqj2qnpog896KeiFywRu3ZoLIHer4MD5LJ5NOfBiMiqbQ7ItLSwpoE49Cgtko/OHaw+M0W/WbofswVco7XjxURAcpj7jczq1Zs7HVAJp9h5y8dA0v1xNB97aeqM1NEzLJmLOYEekxCgZBu0SQ8IjMAZkQkEU/gxtNvZPf9VomkoAbOZ35FiMgB6CtBmrX15gcM18bIpiZMqmGX6K69+ueOHkVMHe8mFHIjXRdGWp1bm4bJxcKISJ5cCOPnnw0AqMuQqE9IHddzjz1CmvGp2yYVCrgTZFCn+I//KM407lrThRVtKwAAN6++2VfRK7eddyn8EJEj42SSaY42s4u62mXeqVnVjSIiSZKu8R0lMS3RFgSkAAu5lFMR4T/L7/7hS7zbfb+brBlAr9KYFe2RCnksw26sWEE4dV5Svyer9dmh1yedFNJ15Jyf2KsRkRd36ifmzLjaw0m9ACgxU3JhRCLAu94FhALkXHriaXdERJI0fnFsxCE0oyoihd4DOvM4nRT5ooVmKCgFdg1QIhKRI4yMlyM8Y6aIJOIJvO2Mt7H7pY69bsHXTqJh6lI9InRfl6SIhN17RMz8IYDwiMwIWMm4i+IaWXj+Pc/7mjABvYHzpXuImqAsXARZ7R9nViQV0LNo16pIdzemZDJI1r3nA3q36MGDiKkfk8qRCWOUu8AaB8jAwohIFMCSJZhoJkuwuHruB9VxPGdy5sgKGdQpWi3mSzphhYP2mR9mUBSFpe86lXen8NrOHij2h1BUk4h4UUQArvFdZqLI6OrWrDqdHhFFUTQi4qSI2GTN8BOm7rru7NTy5FUUJBm7sQzLlpHJl64aAwr5Xv76ZL6bCGHjNDSTzQK79+uzZiYn1NTThN4jggIpaBYOA/PnkHPp/s3F51I2C7z4IrlNiQigEZHBce3aHU2PFlfJVV8YGDmO69aPM/M4PY6j6VG9WmTAYGoQeYU8T68BSZLKmsJrlb67bsk6AMAFCy7wXaHXKygRiUfirLdLqYoI3dd5Je9ZITRVRBzSd62IiPCIzAA0hMyJyMFxTe50qtlgBaOBcxGIInLDRzvQ22tZJBWAfuB1dRKrX6Zz/fNu0UOHNCKiDlr0AqvPAPJhMvE2R5oBgGTTrFnD9ks0SwZwSkSysgSj0y8HMqi//vXk/n33wRT0e/1cGAOpAWTyGUiQMK9xnqv3+FFEapGIePGIAPoUXisiYlytGc2q0+kR4d/jqIioJLp3V2ORv0qSJK2oGT9hJhJaXxkAkGX87IqN6EcCnZ368/HlbdGi65OuTjNhciHRomZPPw1koB8/sll18jKEZpAPszZTHQlyLr3wUqboN2zfTprbxePAkiXa45SIDE/qiYDRJ5IcjWMEhDQsRB8zjw+NacfbbqVPwzKzYrNYSAAobwqvVUEzOuHGo/GKKyEUNHRJU3eB0hUR/pz1Gp5hBc089JqxVESER6T2YaWI8HFXv02PjEpwB4gi0ictQiJhWSQVgIGIuFldql+mIyK8+YRXRAxEpGkKpBw0DGbV1avZfvl5w8eRg6wpIrdtADZpfg9FCmADNmKiOYF//mfy2AMPFFeOVRRFIyI+YpbUHzKnYY5jLQ0KP0Rk5wDJmzRe1LWgiLgmIiahGdeKSNCgiEyDR4Q/H5wUkQOHyTn0mY/HTVPFLQ2rVBH5xCeA3l78OExYRmen/juWLa4ruj4pscvI5NjXjRIi8sADAMIGIiKpv4WGZug1zBGRljg5l5RABp/5jN6wTsMyZ5+t5/uUiIwZiIDRJ9LTo4WAF4L4RPJ5YH9S+43b9w3DCkZ/CEW5UngLSoHtE6Mi4qaCaLlhNKoCZcia4a4Zr+EZSuq9FDRzUkSmclNVqX/kBoKIuCAixj4SbtHZqQ0iEgpsQJh7/iKbdxHwJ66rSa+zE0pA0hMR3nxy6BDqDUSExonjaTAiogvNrF7NfnvvipuwGL0YXrAGAJBbdxlZKt58MwDgxTXvwF3owuWXA2vXAs3NwPAw8Oyz+s0cz4wzV3wpRMRtWAbwnr7bvaUbn/nrZwAAf9n9F10dg1ogIm7SdwHz0AxV95zMqtXwiPCKhDF9l//+ZBI4SM2a6UbTVHFLIrJjB/n/hjcAiQR6esjdZcu0VassyTpjMgUldlkpg7wENE8dBhRFR0TqAmTySoVA8vIbyX1NEQlh8WL9b4Scwfe/r6+9Y/SHULAy73lCBGgWmtEn0tkJ9IG8mI47ANCzT7sGLr5ypIjAUVgRkXKl8PLnhzHDz00F0XLDmLoLlCFrhlNBvCoifuqIOBERBUrVm5VaQRAROmBl9QMWNUQC/hWRRAK46SZyezaOIoIMClIA8851nkQ9h2YSCWQ2foc1vYvmAHzxi9qSjgvNZPIZ5Ao5Lc7OExGJrICHo9CFZpYurEc/EhgB6e3CTmhV6g7sJSP6unWE/7zqVeRpY3iGH8D8hGaoP8SLZOulxDutIUPJkrF54EwNzdCBllatNCMiiqIU1xEJufeI8ITdzyRCvzsUCLEJ1oyI9PQAiKiTQ5pMFsbMM1MiMjLCznOsWIFsloReAL0iYpb6DhhSokNAnTKJwf3jePJJMCLSGmlnz/NyCruGOUUkl9aICEDU01tvJYTqySfJU/S1FPQj0wr5/YubFwMoDs0kEkB2LlnwLMIByDJw6aUAQtpxVMLDRQSOwkkRKZWI8Nd+UWhGVUSm8xozVUTKlDUD+FdEyhKaKaHx53RBEBGTAWssPaaTHv0SEQDMlHrbtSQsE1gwHwiFbN5B4Dk0A2DqbTex23VZ6N2iXGgGIBcGC82kyfMA0HyYTFjDjSEU5sxmv335YjUlciKo3yZ1ydZxfBskFHDFFeThq64i/++7D7q67zoiMs2KiJuL0KmGTE0oIi7Nql5DM148GmYoOTSTKzYvmn3/smUKENYTEWPmmWkHXlqmdN48oKkJvb2EwNTVAfPna99ByZcRfEr00TB5zW83HkEuB9Q1kYljbpx4ilIhoDBfIyK8WZUqIpPjeiICEDJy4YXAU0+R+x/7mD7sRBWRrEyuI5qBZpY5c0AhL/671X3o7QU+/3kAQW5CjA6blg4Aisu7U5TLrMofT2OI1U0p83LD2GcGKEPWTLa8iojf0AxP9Go1hVcQERMiYryodSmAHkFXNtedpe+66wT+xHU76eku7jzU4LWKQ4cQyYENpKlsCiNTJqGZfWQAGmkKYzI7yZSBU5ep5r8RQ2XVFStQCEfRiHGc27QbZ5xBHn71q8n/VY93Q+Hqvo/+4n/ZJvlRRLzWEAG8TaZORdfoRT3dRCRXyLFVm9tVjV3WjFn6Lv+5Xiur5gt53SDnKzRjUvLb7Ni1zkkBAZUsZgjhMGaemXbgpWGZlSsBQBeWkSRt4rBSRCRJYvv0YIwoH/f/mFwvtEv1giZCRCZDwFjzQvZeM7PqrJZiIgLoFQpj2IkQEQUIke+jRMToEUmlgGePEkVkZf0BJBJE9UGQO3eiI6alA4DiqqoU5TKr8hV0JUMmk1O9jErA2GcGKF9lVWB6FBGrlHY5oIUahSJSozAjIkUXtU9F5PhxYNcucntFndZ11w08h2a490QDYUI3HnpIc8sePAgJQEwmg+xEdsI8NLOTKDfDUUm3T17aqk5IqiLyyGMqEQkGcUjtqXDj8q3ME7N4MXDpkiTuVG6FxNV9H7n9K+wz/bBzP6EZqzLhZjAWXTM2D6yWIvKtp7/Fbq/ZtMZV/w03WTNWRMTOo2EG4771FZrJ6cu7A+ZhNTYxKBKQqUcgANyolf0BYBGaoYqISkSoEtDZCd13WBERQJsYjjeTCSvbTwyrdU3ke9rrtdDMsah2jqazZH/ICGP+fPIYNatKQXIuyTIhHUbwqkU8DjS2akSMVko1Lp62bgX2q4pIpHcnkEwikQDibdpxkuqGTUsHAJU3q1plzADVUUTMQjO8+uPH5FlK1kw5PSJA7afwCiJiMmDx/hDAPxF5+mnyf9kyoH5A67rrBjyDdh2aoQNpOEZMckNDwLZtZCRT+2LwE5Aua2ZoCEin0fQSWSYOBzKacztYj3/7tHqq5MkgcffPcmyVtlUh4ZnL41t023PDWT2QoQ9zjIa0+6UoIm7LuwPeS7x3renC7BhZ2f7xpj/q6hhUg4gkR5P4p/v+id1323+DDmJ2oRl+gOQVCbpKdVtZ1WjoLkkRcQjNsEkw3QhAQqEAPPGE/rNMiQhVRFYQFYEqIkYiQsmPGeg+HW9rBgDMwRFIEiBFVCIS04hIEpoiMpUj+2Pu7BAL19JzacN7MyxV+NOfLsqKL1It5i0h160ECae0ngKg2CPyzDPABSByrJRMMidsIKIdx3/oGjEtHQDYmFXLrIgYM2YAbb9UxazKKyLqb1Wg+FLFy5E1Y9p912NoBqj9FF5BRFwoInSQdWpxbwSN865dC63ng8vQDH/CeA3NRINR4hoFSHjm6FGijAQCiEXI701lU1rWDK1O1teH5heIhDOpZFglz4jUoKUhF4giokg57N5Nah3ce5QQkRWprbrtWXV9JwqGcs2jUe3++JQPRcRjVVXAe/quoigYTg8DAE5tP1X3XDWIiN/eR14Lmpk1IXO774xkvSSPiENohk2C6Tgi6ksffVT/WaYeEZvQDKCRMjtFhBU1m0tWy3NxGKeeCkzmyffQujOTQWBPutismpinqT30XIrEMixVOJEgWfF2BQ/nLCRELCo1Mq+UURHZ/dck/gP/qj2gxnimuAnx+OSw5e+sqiJSI+m7sVCMhWn9eGL8Zs3kCjk2vpiWeLcyq2ZdKCLCI1KbcBuacWpxbwbqD7ngAmhEpIKhGXqy1wXrtLSVBx/UMgVmzzZVROJqSWM8+CDiY9p30TBIY7ReW6WpRARyFsuWkfTcpzKEiDT0bGUl3wHggjfMwzi0C0kBsPXCv2f3d+5Ou9qPFKPpUTYAVsqsCpDVCB0IjKmy1SAifpsF0tWU29CMMXUXcO8RMRKRUgqaOSoidFLINOKNbyQ3H3tM/1lFBc1yOY15lCE006eQ/3NwBK+8Ahyf0BORVAh4eURjDzm1rcKiBZpR3epc6uqCbcHDtvnkNwWVRlbUb2hySLePhp8pViOVfB5T3ER0+Lh5mfd0Ls3Ol4plzdgoIrWSvitJUkkKkN+sGf5aKpsiUuNl3gURMQvNqBMwHfwPD6UcW9wboShaaGbtWrDOu26IiKIovkq86wbSK68kDz76qJajOH++LpOChWZi6sX3pz9BVoB4jizHqPrQHGvQVmmUiEg5PP00GSxfxBnISzKkgQHdTmnc/jTiGMcIGnEMsyABePglbnCU0477kQcNRTRHm3UXqBO8lngfSA0AIKs1fkUCVIeIJOIJfGjth9h9t/036LaPpkeZ+uVKEXFQJMxglK5LSd91+v7BcU0RUcvY4MkniTpHUZSWv28fqZteVwcsXFiUust/h1XWDKDt00d3k/03B0egKAqm1N5M7RJtjAdsOUZCM4qiIA+yP2g1VcD+XLIreNgyR60hkm1ES7SF7S+qYhw/Dvz1YCfyhuF9KqK/PzA+bPobaVVhWZKLjmu56oiYkV6KWlFEAP8KUK6Q09Xs8KKIUAU+IAV014Lf9F3AX1HH6YQgIupBm8pNsROHKiKLmghp6D824dji3og9e4DBQSASAc46ZZx4MABXoRnjwOQrNHPqqcDcucDkJGlOBwDz5ukmIBaaaVBX/Q8+CABoDpDXUELWEG5gq7Trr1NXdIEc3v524PvfB9KIYmC2GsLYqoVnRn/yewDAn/A6fBMfBACcFuGC+XLGcT/y8BOWAbxfhDQk1RZrK3L0V8usesVikhe9atYq1/036LGmxxGwL2hmrCHC33Za0ZVDEXGbvru7j0wKcr4R69YBbW3kNN/CWZSKFhi8PyQQwL595BqOxUg2L+CcNQNoK9QBlazMxWGSiaKaR9vHSH+WVAh4+QCZtPkJqWOhsyLihIY2QgKUqTgkSWKqBfWJPPss0I8EPt2+SaskK0mY/J//1n0O3+iNx8bnNgIg4b8l31iiM0aXK33XjHRSVEMRsSIifomX8XrxoojwVVX58UeYVU9g6Dp1qkyUEpHOVrJUijakHA1kRtCwzOrVQPiIWtmwqYnY3h1gnDA9Z80Eo2QAoqrIb35D/huICAvNNM8hz6fIZNKkXoxUgaCrwEQC6EgQRWTpshxSKUK4AOAvR9QSkNxsIP+REJHf43p8F7cggxAaIlwsO5h23I88/KTuAj6IiFo4zKxeR7WICF1RzWmY4/r300mT7rfGcCNL46OrfjNFRBeacWn0LYtHxEYR4VeUe/vJedsYjiMQAC6+mDzOh2eKiIhFxgxN3QXchWbo9TMSJpNlB3oxN7yLPd8+RH7DZAgYGFAwPq4/V5Z2uFNE7FDfQkhAboJMkvMbSRoO9YlQJbb3yi7gve8ld97xDky95U26z5nIq6EZzvyWHE3iS49+ib3GaIwul1nVzI9EMd2KiKIopr1mAP/Ey3i9+FFEjGqsMKuewAjLYV2nTkVRGBGhMXgpMoFvfEP/vk98wrpPDKAZVS+4AJ7CMoD/VMiigZT6RCbVz5s/3zxrplXfPK5ZLcrEKyIUdF9d8Sr9Nj0HUvp98nFVEdm9G/X7X0EWQdyLa3AEc/FL3IARfoyX07jjDvv9yMNPMTPAe4l3XhExgk4e0236cjNJGkEHMrrf+IqsZlkzdmZVrx6RUtJ3nRSRviNkUmitJ5PipZeSx3nDKl3JFikiBqMqDcvw3+Ema+bas7cDAObhCB4Nr2bvazhCJrR8AICcxb59QIabUE9ZXDoRiTaR358ea4SigPlE6Lj1zDPkdeefD+DMM8mdgYGi8z8nD2PyW3rzW8+Pv8FqB1HwxuhpTd8tgyKSHE1i877NthlmE9kJ1mm4SBHxSbyM14sfRcQYfnZbR0SYVWcg+E6d45lxDE0OsYNFiUgqm2LXM0XW4RopV8YM4H6gKpKWqSJCYQzN0IJm7RwTqKtDcwsZ2Jgiwl0QlIiMTuh7FmwFGYyl51Ui8oc/AACOrroc43IzAODOwPswyo87wTSrxOoGfmqIAN7Td2tREfFDROixpttqRkTcmlUdPSLlTN918IjQPjPtqrpIichjj2k+riKzqkXqLq/GucmaoUSktecv2vvCZOJuCMYQSx7RXhxKYd8+oP+Iti8WL9R62Pg9l+QY+f35iThGR4F5DeR6paEZSkTOOw/amNPbWzQ5BqLHEf2Q3vzW+en/ZkUP2fdxxuhpMauqE26ukCupSVv3lm503N6B9T9aj47bOyxr71A1JBQI6ZrMAf6JV1FoZhoUETqem6UaC7PqDABPROiqoq2ujcl0qWwKzz1HXksjK7/8pS5BRIepKVK+AzAQER81RADvoRlmtlu4EFi+XHtBOIxYUEvpZKGZuYu115x5JppVHwElIg2hYkUk3pTThau24WwAQPRoHzAwAPyehGUWvOd6lgFwd+9FGG3hLvRAHlufz7v6bQBJYwXAfoNb+PaIzHAiYlxRORERO7PqZHbSdlIoa/qugyJydIRMCvPbyGp19WriQR0aArYTocLaI2KRMcN/hxuPyATXpWFCFTkaEEao/xBk6icLTmLfPmDfftpnJoRIxH3M3wq0zwwyjejr44jI+CH095NuDYGA2n2B1pPfvx+TGXKMqAlfiY7AaH5LDBfwqpZz2H2jMZoqTalsqqQGam4UEcC/KkJ7RtG0d7vaO7w/xOgJ8+sRKQrNlEERsTtfurd0Y2iK+BCv/t+ri0iX8IjMAJgRkQXxBdqgk5lgROR97yOD3t69GtkwYutWopi0t6vjwCuvkCeamlxtT5FHxG9oBgAr4wgAt9yC2K69AEi6H/3cpgVLtdd0djJ5kk4uvNRHB4loLKerd5CS4xiZrS4vH3pI08mvu07LAFgoYaRR32dH+dFGV7+te0s3Hup9CADwiQc/4aqyKIVXIkKzZmbFZhU9N6OISMgdEaEEw8ysSkmtAsX2PCyLWdWlIjI0QSaFRXPIqiAcVkOg0HwiOiIyMECc4wAj5n5DM6w2C9cehbaMaahrgtSXJH2eAKaI7O8j+yIA/bnv91ziC7r19ek9IlQNOe00oL4e2uJnbAxTx48B0FKMFTmHVEg/8UKWMaeVvGfDmg1Fxmi+fHhRZ2MPcKOIAP59Il5q75il7lLEw/48IkWhmXIoIhahGUq6KMxIl/CIzACYEZH5jXo/BSUil14KvOY15PYvf2n+ebw/RLqrWzOLfuUrrgqQ+A3NsMlKLeOOZBJ4+GHtBYUCYveSzBi+AFLDo09pr/nJT9C0fZ/uc81CM7lCrqjeQdPlqmH1S18iKQlnnAEsWaJ9UDKJ0Ul97YL193/AMX/XeKEZO+I6wUuJd4ALzdh4RKpGRGT3RMQoM5sREf6z7TwigP2qrizpuyYl3un3Z/IZFJQCBgaAjESIyJL5mvHb6BPRFTSjakhHBxCLIZPRUnd1oRk3WTO0bP6laxkLp0Skvr4ZSCa15pKUiPSTcyUIfXM3v+cSX9Ctr0/vEdH5QwCyappLsmom+3sBECJCwy+/O/1m7YMlCdi4EcdAjuUFCy8oCoNGghG23aWEZ+wUEf74+1VEOts6bUNMPKwyZoAyZs14ISJWHhGL0Iwb0iU8IjMAPBGhPoT5DRoRGU+nmOl+zRrghhvI7V/8wjw8Q4nIq1YmSV9vCkVxLkACE7Oqn6wZgCz7DBsYS5P7tOZAY6gBgX/+F902Nv/6T7r3mJlVWaVIvt6B2okXzz9P/l9/vX4De3r0HhEAObmgLU8t4LeyKIVbnwPFieIRsQvN8Kt+qmaYeUT4icJu/1VaEaHbt3MnWOfdtkZtdX7JJeQ/JSL0nJ3MTSK/XVUk1bDMvn0kIlFfr6XuAsBU3kUdEaqSLppH2Ex3t6aIpPKmRKSvnzwQDJSHiDBFxBiaGTuk94dQqOGZycMkey8WiiEWIOrsiwqn+q1fD3R14ViKKCe0XL0R5UjhNVPfKHShGZ+KSCKewLtXv5vdt6u9Y0dEfHtESjGrOigiBaWAfEELabspeCjqiMwAWCki9EQ4PjEBRQEWLADmzAFe+1pSH6SnB3jppeLPo6m7F8/uKYrBuimc4Tc0U2S26+wsalxRnyOrBEpE4lK0aBubU3ryYkZEcopJfHjNGv19AxEpLDsFYwYikpaBzLc2kdnBon6+38qiFHR/GIsMWcFN1syMICI2oRk5ILPfQkmEmeoiSZIrRanSHhG6fTt3AojQisCaInLhhUSgOHAA+NnPgOFj2jk7vku9SG1SdwFvikgqmyLs+93vxvi6iwAADS/vAoaHOSJCPCL9h8m5EpbLFJpJ60MzVBE5ljqGp58jX64jIqphdfIoGdvqgnVoijQDAAJjO7XXqdfesQmViNSbE5FypPDaKSKSJEGWiNpUSubMefO1nbDtPdssa+9Ype4C/n9rKem79FqyKqYI6PdLIp7Al9ZrKddmpEuEZmYArDwivCICAOeoHq7GRuCaa8htY3jm6FFN9m1c06kf6QDnAiQovY4IW9GZNK6I3fg2AFpopinWWkRWmjMG8mLS78B0QqdeGAqqjKgYn90MRd0dYfXtk0Eg/OufAUuXWtbPT8QTuP3q29l9t5VFKYyraidUQxFxSjMsJWuGgici/PN0kLSK27tRlOjgSQfuTKGEEu/c5BQMBBkJ1YhIcbvzhgYtDfymm4DOpWHIUNPy9+gVEbOMGfr5gLs6InyW0Pg168k2HCVhx7qCev2EUhgfB17ZSa7faKj8isgLLwBTQ7PYAmEkdwThMImKMqiKyNSxQ+z3tTUQRaRe2qu9bs8eKNmse0WkhBReO48IUJ5aIryHxSyllaIiikiZCprxsFOKrl9BFn2N4UbTgofCrDoDQLNCrDwiU3k9EQG08IyRiHzhC9rtVa9OYDDB5f2adbAygfGk9VVZlcJg5IhdcRUAjeHHG1qLyErzbR/Rfa6pImIkIskk8LGP6R+77TadwkG/MygF0VTXDAD4F/kL+qoFFvXzbziV7HAJEvZ9aJ+ryqIUOp+Di5XJdCsibtIM/RCRaDCqi5NbEZEiRcTwHW5kXTp40sG8pIJm3OTEKzJ2ikgyqSWnAYBSkJCfVK/r/SrzsOi6S+GqjgjXv4dioo5cEw3qKRFLE4XxdU0khX1omDwRDZdHEeE9Ilu3Aos7ApAmiA8EjQeRyQA/+hH3BhqaGSKpxXWhOrTGmgEATZE+7XW5HCb2bGf7wUoRKUcKr1mGFo9y1BLhjxFNbTWDWeddCt8eEXWcoSTal1nVoo4IULxf6DUcj8RNF2gifXcGwNQj0jgf9QPk5M1JEwAUHRG57jogFAJGXkniz/+yGX1PJPH5zwPf/rb2mkghhbo+terid79r3sHKBGXNmgF0Rg7TPHkDWWl6w1t0r7HziDD0OIehWAG1aBMideQz+4PtBktZ8fsATq4M12Nh00LjO2whB2Q2sDldiJl8hq1+piNrxm2aoR8iIkmSbjAzDrRWRMQ4OVCFzW5VRz+DEZEy9ZoB9IrMrl1gHhE6SQCmdiggoxpWaWVjm9RdwFsdEZ0iQitaUiKi/vQbMhuxAElAVjupRsqjiAyntNAMQH53dkg1uzQQ1UPH5SkRGSbZYHXBOjRFiSISjKrZRGp23bEdpDJyNBgtCg1QlKPfjFkYjkc5FBH+GFmVs+efs1VEfFZWpdecF0WE9vrJ5fWLPRquAor3Cz13jeM7hTCrzgDQiXYkPcK8E/P/+DBiZ51LXiAp+MfgRp0FoqkJ+OTsbuxHB679r/WYf1EHDnxOv5K9Eg8ihklMzVlEJnuXJUTLZlY1gfFEbaKddzmyYrwgrbJmdDDxoxjDUKyAWiTOJpsD8pyi5lz0fVzlaX1nYR9wa9aiakhACpgOTOUmIrsGdrky4vohIoD+eDspIlaNyNzsOyMRKVevGf77x9NT6NmtsNAMr4iYnX7IqEXNQgopAKRmj9BaI8ZuC17qiPCeGEpE6tXLlKbvToUULMNuQCYPRMoUmhmd0kIzDGNqmn4jISI6Lq96RKZGSZ2JumAdO04jUSBV16oWPAKO7X0RAAnLGGtqUJTTrFpJRYQPzdC+WmagRMQsfdd3ZVWVeNBrzq0i0r2lGz97+WcAgK898TWdOipJkuV+oeejldFaeERmACgR2Xt8LwpKAQEpgDnv/WfEMtoS6z9D78O8vLZKPfRMEp/pv5W12pZRwEZsQALaa64HKeqVu/b6Yq+IDUpO3/VARPjBnMI4AZvVESkiIiZ+FGMYioWDInE22QwEm/D+0CYo/CzyxS/i279LYNEizTby01+lTLffLVwTEdUf0hJtKTLIAuUnIg/se6DoMTMjrl8iwq9qHUMz+eL0XcBd92K6+qQr7XL1mgG039zbN0XUSYlcl7xHhJ5+/GnUMU9VOsMgHiRJwsaNQJ8qkNx4o96O5KX7Li/70w6/DVlyjVNFZCIsYTeWMUWEj/ED/s4lRVGQymuhGYYxvSKiWwNQsyqXqUIXIMNRoL9hBauvcixJFFyrsAxQJrOqS49IKdcZf4zsFBEamqlE1gwlN24UETdlCqzOGfr5QhGZwaAT7a5BchHODbVAzisIFjRTZSZU0IULDj/aw0gIRRB5fOrNuyHLgIQCrgOJETe81ZDG6oBSs2bcFGSiMCMiTCVR4cojAhSFeIxhKF1oRp1sIrE07sx2Yc+D+1nxg7F9A/jABzSpvVAAvvJf9heaE9yEFwB7fwhQXiLy+52/x1ce+4ruMSsjrm8iErYmIvQ8mSmKyO7eKeYPCUgBxI4M6TKturqAXbtIN14AaB0jk8d4GMDzz2Poa92sBxxQbEdykzVjalaloZk3/QMxhKuX6/bz/w79SAAB8gCf9cDf97Kv0vk0y1gL5AghkGXg7GUqEWk8WLwGiMWA2bMxqfKgupCmiAxHgR5pOYtTHTvWC8DaqAqUyaxqkzUDcIpIKaEZlx4RN3VExtJjnsrN02vFiyLipkyBVcjKaewXHpEZADrR9g73AgDmxxcwBYMOKuPhgC7MMPfSThQM7oYcZLz+Y8vQ2ws88+1nMBdHSIrN5Zd72p5SS7z7Cs1wCMkh3Uqav808IlbkSFdYRA8zRWTRUjIIP3ckAXz2swCAyN13Iaro00ELsr306ASviohZxgygDZylEJHkaBLf2/I9vOWXb4ECBZcsIkUw2mPtpo53frv9hmaiwWjRvnNrVvXkEVHTQsvpEaHbs7dvSvOHIAJp8eKiTKtTTgE+/WlgAZJI7CeFzMbDIPVxPr4B8wp67w0fwvASmskWsuy6pKSk4Yqrgd5e1F3/BgDA5JmnkTdRRaQM6bt8OGTv9gbG+d/7dkJELnj1IXMr2uLFmFTb3JD0XXLdj0SArRMrNCIyTDxydopIOcyqrrNmpiE0Y5e+S3+rAsW0h4sVikIzLhQRN2UKnEIzToqIICI1DEpEaNfJ+U0LSd1oaHHfbf/wr7rJdd55CUy06ZvYvXTNP2PeeQkkEsA5/SQsg2uuYZ/lFpUMzRgNaGaKCKBfHbhWRBxABwPeI7JoCRmQnn8eZF8tXYrwxDDeirt17w1Epic0Y1feHShdEaEZMrf84RZM5iaxatYq/M+1/wOAnH9WKcmlhmaMagjApe9mDem7FkTAjSJCQzOVUET292uKSHx4UtesjZc2brkFODfeg0Z1E2jBsUAhTzwbHPgQhpfuu4D2m3Xt1xMJxBaTMMf+gyqZVj0iRw+aKyJ5Ja8rUGUHOvnXh+rRsUhmnJ+Wec9EDplb0To6MKUSkWgwqlNEnptYgbF5amgmQyZlO0WknHVErM7nsigiLs2qQ5PEO2N2ftcF6xg58PJ7WWhGJTfpfLpI7TAiEU9g0+s2sfsBKVCkjloqIuo1bLVQE+m7MwDGHPMFxyaBdBpKLMYUkbq3GFSN3l40DvZCkSSMnH4xAODsySe0eILafbaouqgLGAfEkrNmOLgJzQDahALoT+5SiAhTRMKaIrKggyMigQAyXbcBAN6HbwMqMZRl4F23lses6iSRVjI0Y8yQAUg4kE5kdqsmNxkdZqAreDsi4qiIuPGIlDF91xjCoNvTd2hSqyFiHE85aaO+HrjyPZ2oVw/RmPpxOcjYF1jGfCTGEIabfRyWwyx7gf5mHRGBtl8fe4oSEbIhL70Y0mWl+yllTsMhfMYQoBU1ox14i7B4sSE0oyoiUWAXlqNndA7Q0IBj6uVV8dCMg1mV7ptKp+9uem4Te926H64rSp2XJMmXOdcYmuEfs0PXmi4sbl4MAPjFm35RpI5ajT/MrGoVmhFm1dqHkYjMf4H0Wkm+9eMIZcnVW9fzmP5Nv/oVAEC6/HI03fNTono8/DDwwAOkSuiLL5KRjjam8QA6INLBppJEhCccPOiEUh+q18mFtgXNHGDmEZmX4IgIgJ9E3o1JRLEa2/CmBU8AIKr7+ReXpoi4LfPuFJophYhYxYBpptZkzrrDbamhmYAUKEoJtkzftVAkps0jYqHIHDzKKSJGImLI0PrHTyUwlCWK5XiYkJAN2IiP/08C+/eb25jc7GNJkop8IixrRlVL2DkaVImbSkSQC+uy0nki4nZ/0cmQN+oCWpn3IxNHzNUVY2hmkpxnw1FgN5ahZ7cEdHbimCr40MZ4ZihH+q7VuUZR9vTd9HDR88nRJG77023svlXqvB8FyKiIAO5TeOm5sKR5SdFzVqEZkb57AqCIiDy/D5AkPLjwnUhliESf+ttD+jf94hfk/w03AAsXgrngPvUp4PdqWOaSS4DW4pWoE+hFSpm420HKSZ4ze84pNGPcNyWFZvj0XXUAap9HLoz+fuDYMeArm1pxN94KAPgX/CfWYTPGticdXeFOKJdHpBQiYhUDXjmL1LcoKAVL0umXiPSPkpj/C0deKCqW5jZ9lykiFgNprpBj+6MsdUQsiNBoSvOIFBGR//ovXei0qbGAxXkiuT8YPg+L0YsdF3XhttvMbUx8+X8nH5KxqJlREWGr0rCqiKhmVakQ1lVz5bNo3J5PdDI0KiKz62cjIAVQUAqsDoUORkXk8DAA4HhURhpRQpA6O3FMvbzceERKSt91a1Ytl0fERBFx28PKjwJEr5XGSCMbM92m8Nr5PawImqMiIsyqtY+i0MwogCuuwD0vLcLx7AIAQGrrM0BaHf0OHCCd7SQJeOMbyWOf/CTRhJ99Fvjc58hjl13ma3voCUsvgHKaVQNSQPe8ExExVvezLGjmAqMZzqyqDkBSMI2lS8nzX/oSyXr4UcP7AADn9P8Om7Ee7/1qB1JPPAJg+uqIVCI0k4gn8K1rv8Xu0wwZ3oxmNdm7SS01IjmaxON9j7P7xhWf24JmTvuO32ZqgvRzfpiVeOe/H8EpIEImlMYMgL//e2DVKvKcQUk6+pu/Ya5a+GtreDn6kcBTTxHCawb+tzmRPV2/GViHZs5YkyLZ7KoicsH5IR35kQMyC/O4VkQyxTVU6GfNqZ8DQN9Zm8HgEWnqI2RlRD2denoALF/OFJGKe0SmocS7LjRjYlZ128PKjwLEj8VORN4IWyJipYi4Td8VHpHaRZEiMgY8vOSd+MUvgJEskTxTuUng/vvJC9SwDC65RGvfOXs28OEPk9vDw+T/f/xHUd8UN6AnMb3gyxmaAfQnq1nWDKBlPwDQSZVl8YhwRCSdS+Oss8jz3/wm+X/V24gsTHOSAigg9affFG27F7hO362gIgJoPSECCLBS9RE5wkqxW62a/CgiPYM9zIBNwa/4itJ3LTqiOvlr6IAvQfKs4vGwMqvm0xoRWRl5GgBQnw7g0L/8P+ADHyDP/eAHOjKS/dFPWaXTgmp0tus36YmIUEUkM4F8Ic/2i5GItM1NkfDPreT6PW1FsWnd6/lkFZoBNPL84pEXi9/Y0aGFZjIFNO8hrSwmQnkgkPOniExH+m4pHhEHs2oinsD7z38/u2+VOu9HAeLTadnY40IR4dVFs7HO0SMiCprNXBiJyNx8PV53l6p0ZMlzE2Fg4odqOIaGZd70Jv0H3XST/r5F3xQn+A3N+CEiVooITWXee3yvTtK3LGjmAswjEmlik006rxGRQoGE+m+9oqfovZMymWQqnb5b6awZWjypNdbKStXrOtyaECVFUXwREacVH1NEcvYeEbrPrfYdv4IrxWRoZWCcHCe/WQqmcGnkHgDA7vRq7EwtBN7yFuLPevFFYNs28oZcDnMf+wUjIggTxcKu3yT9bWE5bFrIjgfziGQndBVWWWiGI72JBJDoME/fpd8HeFdEjKGZ7i3deOko6TL8rt+9q7hfUUMDJqNEfakbHEVTD9eYJzKKl18GDjQuwri6692YVWtZEcnkM7pz0Mqseu48Uj17zbw1lqnzvjwiXJjciyLCv8ZLaEZ4RE4A1IXq2Io0kgMy578Z44qqUWbVwToERP78O2DvXuAJYqLE3/+9/oOOmsRm7ZZhFqAno5fQTK6QQ14hJrVSiUhyNIk/7/4zu89L+uXyiNABOJ1L49gx7TX5PPDA/uJ63RMhqWjbvYC2tq9maAawrllgt2riv8sLEaHpgFT+N674itJ3HQqaWa3ozIiIl/1DS/lPZc0npzmt5PvPDT6KcIQcny2ZKwipaGkB/u7vyAt/8APy/8EHIQ8NICSr53Z43LHfpJtiZhR8vxkalpGgkUljyIvuC2M2EP+YV49IPMw1/HNRkRMApqLk2q07ehzhHT2sFD2iwxgeBs5+F/GzhfJAPB+03AZKgqZyU76JQqUVEV4NAazTd6kCurxtuWXqvB8FSBea8aCI8Oqi2bnoZFYVHpEZjIAUQH2QDB7zx4DQu9+pVWRXicjRUD2CEyOaKfXii1mjKAYX/VbcwKiIuLkY/cS4JUim7bHtJH3HgmY2MAvNDAyncccd+te9/ZMJDH11EysqV4CEA6deCKCyZtWCUmCKhVNoxu/KgnX6NPS1sFs1eTm2RnSt6ULvh3ux+R2bi1Z8XtN3rfYdHfRjoZjnlWx3N6lHtn49MD5pPjk1N5DtWRt8hKXivvP0fRqpeOc7yf+77wYyGeCnPwUAzLpsHQBg6cpxx36TXhQn3qzK+0NobxbjfqX7ohxEhIVm+IZ/Lk2Xk2EyNkX7DwN79qCZHk7Vd3M8RhYX7RPA0cf38EVrdeDDQn7DM1ZhQIpSS7wbi4+l82lTfwRbeFhc70BpWTN1QW+KCE/qzXr9OJlV3RQ081IhdrogiAgAdHej4Tg5ceePAbOP78SFF6rPZcigM7RUJRN/+Qv5bwzLAK76rbiBn9AMf5K7VUTikbjpyW4n6ZfDI9IU1UIzx4bSpk17Xzi3i+w7AIcxB3vCxDTs16zqZlUyPDXMBnQnRaSgFFwXoeJBiycVlVu32T56PkiQivqVuEEinsC6xeuKVnxezapWAynfGZlun5tzNpkEbr2V1iVTgCB5z+BR/fcf30MmkHQQGFWfOuuJX2uz5FVXkYZ2AwPAr38N/Ib4iRpeTVLnldC44yXoppgZBW9WNRpV+c+gx5LuC7Nj5zs0w5EBt6bLyaAa3nxmG5DLoSmtXvvRYfI/RqTJ9hTwvqt69EVruQ6UITmkZTL5DM84dt8tsaAZPS78fjIzrDp5wgCfHhE+NONBEXEiFE5mVaeCZmbvrQUIIqKOhhF1Xm2eBHDbbagbJIPclZeTE6JujoFFZi0OpkO/FTdgdUSoWdXFxegnxm3lD7GT9P3WEckX8jrHP53s6hrT1iLS29+OdF0T5uMwskP6TA+vcKOI0NVRQ7jBdPUK+Kv9wMMyNONCEYkGo5YdUf2AJyJ86rBVifdye0R6erTiqKzWBoDkfv3kNLaLnDdTQWBMfapxStFCnsEg8La3kdsf/CAwOgosXIiGcy4i73exavdSMI6vI0JX3jwRKVJECuVTRHhVkYJerzS8LEEyNV1OBsjOrnucGH6boE5aUXWCrleJyASwDMSnVSgAT97SDYXKViozKSWFlz/XLEMzJZZ455sw0nHULDzDiIjFwgPgsmYy3hURr1kzTkSk1IJmQG2GZwQR6elB91kF7G8md+9ZDnSfmUdhFxnkLj5PlWG3v6B/3yc+YW1Ctem34galhGa8DKRWxcwAa0nfryLC5/TzdUSC0bS1iBSNYuRK4sOJThJzXSXNqnRQsjKqAmUgIlPePSJ+a4g4gX5nKpvSydZWdTzceER4ouokAesimUHt+1cu03//SB/5nClOEYln9b2f8I53kP/UcPTa16IhSq4f/tyzgqfQTMg8NENh5RGppFm1a00X/vPV/wkAWLd4XZHpUlEUTEGtkzJC+wKRz5Dqhsn/Bk0RWY5dAEjPnjuVWyEZyunHZfIb/SgiducaRamKCCWI9aF6VorAzLDqJjRTSmVVr1kzfJjTDH7Nqvx+rsUU3pOeiCTnN+DW68ByRRUJ2HAdsL2xHvPmAfNmaWZVHXyYUN3CaFZ1M0j5ISJWigiFmaTvt44IHbBCgRAickSXvmsnIjVuIMXN6uXDum33CjeVVWnGjN2gxE8mJSkiPjwi5SYi/ITJe148e0S4Qd9L2fJEQkvZhqx9/9IO7TMKBWBu33by/UGtXHvj+z+qJ/qnn87a3QMANm1Cw//9lm23E3H2UqeFT9+1IyKZfAb5Qr6sZlW79N2OJvL7qWmdR7aQRUHtFh6l6m89Oc8/+6URbN4MvPdjxGzfPgF0qopIJ4q7jCOfR2OBXAe+iAh3rlWqxDud0OvD9WzBZaaIsGveThHx6BHhs9y8Zs3wYU4zODW9szp/A1KAvVcoIjWInvA4Coa9kA8Ah1sncO653GBtJCI+TKhuweqIRLyHZrwQkWw+W+Ssd4JfRYT3h0iSpEvfBaxFpLpr1+GoPBfZYF637V7hpteMU8YMQC5oug9muiLCExF+cDJ6Gdx6RGKhmO69bs7bM85Qb6iKSEAJ6kKL25+dwEVTz5DvX30mRhcQtSr+RkOqfDJJCg1SFAqErKgwZlEY4SdrhveI8BMHPxlM5iZ9hWaSo0ls3re56Po0C81QUDJktnLnjx3NlmlqIgXQEB3GunXAlKwpIpSI7MFSFOlasox4A7lG/JhV+RW5VQi0XB4RnSJSqkfE5W81msvL6hFxaHpnNz7WcgrvSU9EOts6ETDsBkmRgaFlOOccToY9tbNkE6ob5At5NnB5Cc04pW/x2DdMeuk8c/CZorLfTvBLRPjOu4C2EnKczGUZTy1+CyOClays6mZQAkpL4aVm1VpSRCZzk7rUXaMPxY9HBHC3f557jvyvV2u2Kzn9CvnIHb9Ci/q96VlNGAN5XZEi0NNTVF01nC0gJJHz1Sk844fIW4Vm+M9IZVOezaq0Q/P6H60vuj6tQjP8Y2YTJh0fJAUIq4JJ8ywyflGl4FhK84jMxREsah7F3+PXKHIl3XknGuOEEJaiiITlsKXnyY1HxIqsAdB5d2jRRtvQjBuPiMvfyl8npWTNmCEc8OcRAWo7hfekJyKJeAKb5t4MWVUfZUnG3Gc2AqMJvSLS1liyCdUN+JPESx0RtwMpvXgprBo9WYEOpgoUx7bWPIwrOaaIuIhXHlz3VkZEYt6TdQB4M6tWkoiwgmY+smYqqYjYmTUdK6tycW1KVAF3BPrZZ8n/N99E9qWSjWDvXu35+fd0s1BCKpuyLHFulTrfoC4knFaznrJmuPRd+tt5IhKQArqqtV7Sd40dmo3Xp11ohj5mRrrYOZSXGLFoihEyTBcJxyZUIhIi+/Yr6+/Dv+PT5MWf+5y2f6+80rVvwowsONUQAZwVETuyBrgLzUxmJ9k5XU6PCP1MWZIRkkOuuldTuFZEPDa9A2q7zPtJT0QAoGt4KXpvBzb3vxov39KLw38mJOOccwzGsxJNqG7AT5R0YCmnR8Sp7LcT+InGiypSRERkfWjGDrOuORfjIXKq1t31Y8+VagF3Jd7dOOiBEolIiVkz5QQ/aNFB2mxycPKIsLh2qB6SJHlK4aVEZM356nmQj+Cee9Qne3qw8ugjCKunGT0+gIkiYJE6Hw2T37hnaI/tdnjJmjEraNYQ0tfj4c83L2ZVp5ogdoqIm9BMHReHbv6v/wFgoojMIl6TG+99J+qRwmasw84bPwOcfz5548MPu/JNWJEFp6qqgL0i4kTWAENoRm1XYQzN0PMpGAja+uXobx2aHHK1YDOG+dy2lwA0JccxfZcjaLwPyc7jVMtl3gURAYB9+5AYBdbNvQBHdyegKGRcmztXb0ybDtCTJBTQcvXLmTXjtuaAFXQrXg/xWyqLUpnUiyJy5lmSpoh857tccQP3cKOIOJV3pyiHImIZmjFZNXmZJL2AX/1TgmSriLjwiADuy3OPjpImhwuQxIoptTlfTiMi49/6AQDg+dxaAGBdZWVJNlcuDK7n7tVaA7jrf3a9bQjSjyJiVUcE0C9gvHhEOts6IRmCIfT6zOazRRl1PCg5mchOFJEZFrqd0oyszZNkQTIyQvYrU0TS5BoPpCagALgPr8adGyXg8svJGx95xNE3YUcWrCr48rBTRNwUcNOFZiwUEaqAtta12qbF/3HXHwGQfegmlG00PvtRRCjZNcKMoPGf60YREUSkVtHbS/4vXsxWaOeSFgRFqXiVBj/pMOd4GUMzTmW/nVANRWRJqA+ZEBl4Yln46uFTCx4RRVGcS7xPoyIiB2T2W6h3xWyV6sUjAsC1IrJlC/BudGM/OhD5NOm43JSfwubNQGo0B/l/fwAA2DbrDbrvsSrEB4Cplsk4dGXPnUKQ5UzfBfTjhhePSCKewOtXvp49H5AC7PrkJ3270AxQvHBiigg3lDSph3N47Cgy+QxTDNr/tpW9RgLwRXwG992VxNRalYg8/LBjv5kdAzssyYJVTyEedoqIHVmjYKEZG7Oqm+s9OZrEx+7/GLvvJpRt9OuV06xqNva4LWYpzKo1CK5QoEZElixhROScc8j/6SYi/IDIX4xONRmcKuvxsCv77QReXi6JiHhQRLK7X2a32UDqMX3ak0ekQqEZfnXsRRGpFBEBtPObKjV2ikheyZuSYpa+qyoFblMvdzyQxCbcChkFpNWISkfuMG6c+j52ffZ/UTd0EENohnLhVbr3mYUljHBb9pzCS9YMX9BsPFucNcO/ZjI36Tl9d3b9bHb7u9d9l12fNOQSkSOmYZ5oMMrUTqNSwc4h7pKlJd5HpAxTA2UE0GI4BYPIo310N/7jrxdDCQSAvXvRmCLKihURebLvyaLHKFmwaq7Iw47MJuIJvPWMt+o+17iY4rOZrMyq9Hq3U0C9nkeASWimjGZVM6WIvoc//mYQZtUaA9/fomORgtze/eQJE0WErn4mc5OezJl+wRMKfgXltg6C28nKquy3EwJSgK1G/BARFprxoIikFi9gt+voV3pMn3Yjj7pVRFxn/BhAVYdQIFQkvVbDrApwRERVauw8Ivy28LAKzTjtn2OPazUq1GgAInngB3g3zrr9XQCAZozgDfl7de9zqn8DeA9B+qojYqOI+DWrAkDfaB+7zU+edqm7AOniTFURo0+ErdITi5mPpilL9s9wbpyFZWbVtRXtt7wkYzeW4d+/GcdzhdVkG/YdBEC6dBvVgYHUAP77yf/WPcYrO67Mqg5ZM+fOJwN0XbDOdDHF17axDM248IT5CWUXhWYqkb5rEppxCisKs2oNIZkEbrlFKy09WzmMYHYKSiCA0XgCu0hBwSJFBHDHaEsFP+l4KQ5VycnKCD+N74rSdz0oIpOziXoQygPBAojV1mP6tJMioihKxRUR3h9SlCJbBbMq4E4R4VeuZoOpcfB0G1K8b18nCiqppYpIJEeOL907ASi44Oef1r3PLCxhhNuy5xR+QjOpbMo0awawCM24rKx6YESrh7LnuGaytTOqUtDnjJkzbIEzfxHz0TT/lagWw1PDmlG1cY7O9KvIMt6DjegH2W8Pg4Rn/rbrUQDAU/1PFfkmPv3Qp3F86jjOmnMWVs8lxOU7r/kOIwuuzKoOWTN0f03mJjGvYV7R87xHxDI04yJLjp5HFDyhskJRaMaDIsITKDOYFTRzKmZGYWVW1UUHqoSTjogYyw0sRi8AIN2ewJYXyUHu6ADa28nz/ME1dnSsBMxCM4DzpMfeJ08fEZkujwi90ApZMtjnIOOH6be432A4ExG+umilPCJW/hBAL+UbMR1EhKo1Zt8RkAK2jnvj4OmmhfvwMPBY7wL0qRMcVURC8xcV1a2oS+uVSDeKCEBCkO88+50AgPef/37bEKSnrBnOwE7JQbnMqgDQN6IpInwIwC51l4JlzliEZuqCdcxH07R4JQASaugd7gUAtMfadabfJ+7uxfcUbb89jMuRjAN3NW1nj1HfxDP9z2DTc5uw8TnSrPJ/rv0fLGlZAkA/VrhRRJzCe/wCxiw8pEvfjTgoIg7Xe9eaLkZm7n/7/Y6hbMusmQoVNHNTzIzfHn7M1UUHvOcAlA0nHRExlhugREQy8YcAxTUBKg2eTXupUlkNRaQUIkIHGjeKyL4k2e/5bCOSWIAQ8vjxB572xODpYJAr5Ey3m8bIw3K4aFIxohyKiNX22Skifou52cFIRKxWqXaZM1aKiN3+2bIFOAfPoQN9QDiM9Ic/AACoW7IMBcOwFFX09914RCgWNJKwnpPHyss+pr8zr+TZfisKzZil77owq46mR3Urd14RcQrNAHAMzfDjQ0O4gYUdKOFpr1dXYCpZWXRRQjdePoZLsLOVtMLgkVfyWPu9tdjwxw0AgLUL1uLSjksxt34uAODw+GH2Wk/puw6KCGBeMdW0sqrRI+IyXR/QzguzRYQRllkzFWp656aYGVDsEdF3v/aVA1A2TAsR+c53voMlS5YgGo3inHPOwaOPPjodX2sKY7mBJSBVRiMriv0hFNNpWDV2WqXZLbUUmvHTgZcOFjReayzxboeeXvUCztbhUVwKALio8KinVj/8fjFb1fOrI6cOt5VQRGrZrArYZ874Sd999lngVqiS95vehPSZpwIAwg1xfG/tJuRAzvscZDx94x2698bD7hQRQJu0nTqn+qkjAgBHxo8AcBeacaOIUDWEEoTe4V52nbkJzdDtsAzNcAqvJElsku4ZIiXd22PtuvcZx8vjaEUsuxIBE7scX5/o2YPPIjmaxNwGEyLipaCZlSLCjRtmPWTM0ndH0iM6Quq2gCHgbbyqZNaM2X5xU8wMKPaI6Lpfq6hgCzVbVJyI/PznP8eHP/xh/Ou//iu2bt2KSy+9FNdeey0O8H0hphlUeXzvezVFZGquNRGZzloiRjbtdtJjJ7/P7rRe4KfxnVVopqAUHAnNrHkqAczGGBG5FI9ibMx9fNOpDbZbfwjgn4hYlXcHqpO+C2iDJVNELCYHu9CWH0XkpSfG8FbcTe7ccgsbHPPpCG57pguL0Yt12IzF6MWr//dWBCUtbdyLIuKUZkrhZR+H5BCbEKxi+rEgF5rxYFal/pDT2k9DRI4gV8ixx9yEZqzKvFsZGmnYgikiBiICaOPlx9Qs1p1jr8amPwCyovlvjKCZJXMaSD+bIxNH2HN0MretI+JBETElIiahmYJS0BE0L4qIF4O6kfR58oj46L7r1yPS2Vn8mgq2ULNFxYnIf//3f6Orqws333wzVq1ahdtvvx0LFy7EHXfc4fzmCiKRAG6/HTitvhcA8L9/W4I9qgrKh2aA6VVEjPFFt8WhZlpoxktb6oZm9QLOaYrIhXgCb7kh5zq+KQdk2+6TbuPFQOmhmdZoa9FzVVdEbAqa8Y+bbR8/6APuPCILH/spGjCBicRy4LLL2L5MT0RQKAD9SOBhrEM/EsjngVBA2y63HhH+tW6JiFsib0zXtQzN5LxVVqUZMx3NHVjashSAVhWWKSJ2RMQiNGN1DlFFpCg0Y0AiAXz+80BLC/CH0cvRtRXovWc5Nr9jM566+SnLzBJbRcSNWdWFR8SshwwfmuFbD/BhHDfdtim8mOuNfj0/ioiX7rtePSJ0+8IGXlzBFmqOqCgRyWQyeO6553DVVfo6AFdddRUef/zxoten02mMjo7q/iqJUAg4u7kXAPDjxxYDABYtAloN80S1QjOAu0Hd7H2VRDnNqoCz3En3+wXnxPA/D56GfFMLGjCBUzNbPcU37cIL06GIsNBMDSkixtCMlSJiV+bda/ru0BDw+oHvAgCkW28FJImdA7NaImYtY1AX0n67m6wZCirLOxERL3VEgOJBv1xmVap+LIwvZCmi1CfixiPiGJoxKiLq/qHH0EwRYb8pBrzrXWCLgcQzO7Gu8Qyct+A8yyKJpkTES0Ezv4oIF5qRJMnUsOrlmvdirjeq05X2iHhO31V/A61gfPrpFW+h5oiKEpGBgQHk83nMmTNH9/icOXNw+PDhotd/+ctfRlNTE/tbuHBhJTcPKBRQf4zUEOnFYgCkk7hxZc1XUqw0jCeV20lvWj0iAW8ekXwhzwZGOiAEA0Em6Tr9NnpxtjTEsG59APKlFwMg4Rnd9zjEN+0Ml1QRmVVnX94dKINZtQY9Ik7fYbXvsvksm2jdpu/23vFnnIdnkUEIsdveAUBbabbGI2YtY1Af1gbZSioibvexMRRjVdDMa2VVqogsalqEU1pOAaCpFSw0Y5e+G3YIzRgUH6qIUFgpIhS33QYMSLPxClaRB77zHSCZtCySOKdeC81QfwYraFYmj4jRrKooSpFKZzSs5gt5RkrKrYgYSR+viDiZpv1kzTi9h8IYmvn978njN9xQ8RZqjpgWs6rR/Kcoiqkh8JOf/CRGRkbYX19fX9FryopDh4BMBjnI6IdWNMu4sq6qInIChGb4QZFODJIkub64i4x2l1wCALjMQESc4pt2Pgcm01ZSESkxa6aSRITCSi63UpP4a8KYvmu6f7q7sfrTryWvQxb43e8A6DMpDC1j0NWl/+2V9Ii4zUziiUdYDhepHaz6anaCXSdeFZFTWgkRoYqIq9BMxDw0Y6mIqAsDCjtFBCDX1zXXAEegVn/9zGdYXNSsSCL1iGTyGTbxuwrNlKCITOYmmXGWnpO8YRUg1yJ9jbETthlYlp8LRcR4vdJ9XlAKjsq2L7OqxbE1gjerTk0Bf/kLefz6623fNi2oKBGZNWsWZFkuUj+OHj1apJIAQCQSQTwe1/1VFGpp9wNYhDw0M5xxZT0TQjNu5blywGtBMzoJhOWwbvBxK3cWXZyXEmn46obHoJY3QyDgHN+0IyJ+PCJeezbUctYMhVePCD02ASnA9otlDQg1X1BSj5kEMNZvzKQwNrrmt8uPImLmI+DhtbEgr4iYFZ+ix5MnQF6yZhY1LdJCM0M+QjNZfWhmKm/vEaFwUkQA4J9uTOJyPKI9YBMXjQaj7DtoeMZVaMahX5FOETEcWz6pgJ7fxtAMDcvEI3FT744RbKxyo4gYQzOcCmUXnskX8ux3VcSsStN381N46CEgpTaUP3tW9SuaVZSIhMNhnHPOObj//vt1j99///246KKLKvnV7rCPpO7SsAyFcWU9nVkzRnZbi6EZr4qIsfMuhWtFxEiyzj0XiEZRNz6AN6zaCYAYj7u6YJtGYzfZ10rWTCafQb6Q1z1XC0TEyiPCk0SqclquZh9+2DJf0Km2RKlEZDI3aasqet3H/H4zqztDn+dX605m1YJSYKGZhU0LWWhmz/E9UBTFXWVVqzoiFr2o+GtSguSKiK9b0IMADCEGm7goH54BPCoiFosdO0WEhtDrgnWQAyTGZwzNsFCsQ6dtCrqtrrJmDONVRI6wMLSdYVWnLj7+rOkYZucR8ZK+S8My/734G5A6FlW9olnFQzMf/ehH8b3vfQ933XUXtm/fjo985CM4cOAA3vOe91T6q52hKiKJixcXxaT5lTWfildpzITQjNc6IlYrOd+KSDgMrF0LAHjTXBKe2bsXjmUCy62I+M6aMZGC7fq5TEf6LoVT+q5xRWcmJZvun/37kfvYx4s+NwcZh+qXOa6SdaEZD2ZV/rVWLeuB0rJm7IgIv1p3UkSOTRxDJp+BBAkLGhego7kDASmAVDaFw+OHK5K+yysirXWtbOK2w9GmTuQNUwc9jmYwGla9KCJW454uayZtrojwx8jYb8ZLDRF+W12ZVQ3GZ0mSbP1pFPz8En31taZjmG2Jd6eCZupvmMxN4Q9/ABYgiRv+9hGt1HgVK5pVnIjceOONuP322/GFL3wBZ599Nh555BHcc8896OjoqPRXO0MlIsuvXlIUk+YxraGZvH5APBGyZiyJiEtFxDRuqoZnzs8QItL7mHOZQFsiUmFFRFEU+9AML98aVk1ewwZeUKoiYlZHQ3fOJpPA//0fcNllCB7ux2HM0RUr24CN2DmRcFwl+1VEQnLINEzCQ1EUz1kz/O81IyL0ePKTJM0q4cGfS9QfMq9xHkJyCGE5jI4mMk7uOb6npKwZK6LFExE3YRkA2DGewK3YxMiIAuCf8DXsnDCPi1oSERtFxKnEu50iwqfuUjRHmgFox8NLDRF+W72k7/L72k0Kb6qPhOBiGTVsaTKGmZZ4t1NEOIWYntsDx9M4eBA4M9oDyWierVJFs2kxq773ve9Fb28v0uk0nnvuOVx22WXT8bXOUIkIFi8uiknz4LttukFyNInN+zYXdaV0A+OAWMuhGbcFzUpVREzNWCoRWdhLiEj0+accywTape9Ss6obqdYPERnPjCOvkJCLWWiG91gYV021YFZ18oiYKiLPPElWdTfeCBw4gHzrLJyD53TFyn4od2HZMudVsl+zKuCcwpstZJlxsVxExKiIhOWwqUGfP5f4jBkKZlgd2lOW0Izx99F9AzgbVSk6O4EfBLrQgV7sxHJIAKJSxtIozkIz4/rQTCkFzeyyZvjUXQpmVqWhmUoqIibqk5sU3tSeHQCAGP+TDWOYp6Z3BoU48vBjAIBDx8h4kriidiqanXS9ZnRQPSJYvNj2ZV4UkW89/S0s+n+LsP5H64u6UrqB39CMVQy4EvDsETGUd6dwrYjkTBSRCy8EAgGE+3vxb5H/xNez7y9+o+GispJHM/kMG+TdrHj8EBEalgnLYUsJ1crDUhMeEYesGf5z2GD5x9/pyGFg5Dga6xX0x4GHFys41KyFQel+NwtfGLfLiyLCv96KiPC/ya3Z261HhE6KVr/LTBFZGNfKFvApvJUOzbhVRGjZ98PyQnwVJNz23sCdmNWSN309U0QmfIRm/HhEzEIz1KyaJq/1EooFvPXGMiN9bhSRiQVk/9fzP9kwhrluemfSSCb6HdJSYWCYnO/rrzOYrKtY0ezkJSL5PCkaAjgSEbd1RJKjSXzwzx9kqyvaldKLMmIcME7o0IxXRYQnWY2NgFpn5gvpj2M+DiMdadR3NLzwQt1FZRWa+dbT32K3z954tiN59ENEmFE12mLZy8YqhXdaFRGPHhGzQZ/tH8PoIuXzUJZ/A/hwB/DO9cBHOoDVZF+7NasGA0HbCcwMTpkz/G+yIgxG8L/XrAqmccI3qyHCf18mn9FlzFDQzJmeoR42/pSr1wygN6u6VUQArez7G3/+FhyXWtCR34efvfNe09caQzOsjki5mt4ZjqtpaMZoVvUQigW8KSKmoRk3ikgLOa46RcRADFw3vTNpJBPNkPuTmTQkCbi26W/kiaVLq17R7OQlIgcPArkcKa86f77tS90qIj2DPbrGT4DWc8EtjJOOU3Eoq/dVEl4LmjEiEi6jRySZ1Igk3a5MCnjySeDb3yYPPPEEsHMnC5Pm08VEJDmaxD/f/8/svhvy6EsRsamqSlHTioiLrBkKNokEdS/FgXgAu677b9COafy+pvvSiQjFI3HHpoRGuFVEaKNJN9CFZkLWigiFK0Vk1FoR2XZ4G3vMTffd8cy4rniWVZ0UXhGZXT/b8nPNkEgAr3tzDIPXvQsA0P7L79D6ZjqwfjOG0IxbRcSsCBg/ZgxPDetew3xLdmZVj4qIp4JmZqEZNx4Rei3RoX7JkiJi4LrpnUkjmVBBne6DU1AUYP+P1BTsK6+sekWzk5eI0LDMokVaGUcLuCUinW3FB5/2XHALI5t2KpcNkPxzemJOq0fEZR0RugopW9YMQBi/YYAKKHlgYoJ0M7z+eiCfx963f5aFSX9xd/Fk2jPYg4KiXzk4kcdSQjN2xZPMFJGCUmDfU5GsGcMK2W8dEbPQTOa8NdoLZRn/fuZHYWzbSve1W7Oql4wZCrdExEsNHrdZMxRWtSrMFJGFTRwRUT0iuwZ3AXBWhKhaUlAKumNlZXjmw6X0uvaKZV+/DQBwLf6Mr71vb1Gyhx+zKr+/qLeKB3/tZQtZ3W+lKh1/XJgi4tes6qPpnS4040YRMRKRgweLVA270IzuWk4kAK5WlyIF8P+ynyR3ZLL/J/+iEpEa8GyevESEM6o6wW0dkXkN84qc8WsTa3WVBp1Q1PTORWiGn8hrMjSjtmA3ekTcxl1N49udnTA2JclBxuQClfR98YtQJAlLn/k5zihsU19A9s3R49pg0NnWWdQ91Ik8lqSImGTMUNDfxxNeft/UQmXVvpE+nVrEmnSFikMz2Xr1s887D2Mv9uKulz8EFPTHjO5rt2ZVr/4Q/j1WRMRPVpJbsyqFF4+IzqyqKiJUaW0MN9qqNvz38oZVq9DMr1/5Nbv9ub9+zrOnDQCS0WX4C65GAAq+hE9hXiGpS/agROToxFEUlIInRQQwV4ONixc+PGMWmqEhKPo6Lw3vAE4R8RuaceMRoZ136c9Np4GjR3WvsTOr6s65XA4YHGR3B9dei9/l3kzuBKdQj3GswXPkviAiVQQlIkuWOL7UrSLSO9yLvJJHRI7gm9d8EwDweN/jeLj3Ydeb5Sc0w6/wa5KIOKXv+lFEqGNO1qeCbhtQSd+ZZ+LI+psAAF/DP2EdNqMhR4jDkUFtfyXiCbztjLex+3zDLiuUoojYhmZMBqtKH1u3oZmn+58GADzW95jOhE1lcNPQzKA6iL7qVXhwZwL54wm0vPSv7HUSJLav3SoiBaXgORuNTkKOiogHo7eTWdX4WU4ekYnsBFMM+NBMfbieTeSAMxELSAG2Pbxh1YzMJ0eTuO2e29h9BYpnTxtAxMldIGrwW/Bz7EcH3pHvxvPPk+ep9ySv5DGYGvSsiJhdZ8bHeMOqWUo5VUSK6ohUwCPiO2uGknr+p+3fr3sNPV8KSoEVPjRdqO3fT8iIitaXHoWcUxfJwTQuwJMIIYdcooNEBaoMQURcKCJuiciOAZJ+tWLWCnxg7Qew4ZwNAICu33fhL7v/4uoCN8rEbkIz9OQOBoK+5VUvKHtBM6+9Zii4piRd63txF7rwzDPa07vf9nnkIeFVeAibsR7/lPsO+ZxGvc9hxawVAIDXLHuNrmGXFbzItBReFBF+sKLnQ0AKVOTYujGrJkeT+MG2H7D7vLfDNn33OFl1YvVq1tdi/aKr2eveesZb2b52UkReOvoSAODlYy97zkbz4hFxC6fQTDAQ1JEPJ0VkKjcFBQoicqQoe4WqIoC71GXeJwKQ65Req/xv9BOWNMPKhiTei++w+zIK2IgNuP1jSbzwAvDYIyG0Rkla/OHxw94VERM1mH4GVaD5FF6z0AxVY2nvn4p6RHxmzRSFZgBtnlLBEzS6X0zTd3eRUB5OPRVob0dgfBTn5V4gjwWnsE4iYZngFdVXQ4CTmYi4TN0F3GfNUCKyctZKAMCXr/wyGsON2HN8D675yTWuBlCjTOwmNDOdRlWgjCXeS/GIUKgFYE65nCgYPBH5/X1RXdClPqv2pckNgsex1DEAwBlzzrAPo6mu1/BxMqH5zZqxgp0iUhes82zSdAM3ioidCds2fXd0GACgnL0a96oJFavP134bT8ztFJHkaBK/3fFbdt9rNhrLmknbZ834Dc2YZc0A5uTMCOPjiXgCAUk/LPNhQjceGaaIqKEZXXoyN1l1tnUWfZdXTxsAzBvvgQw9oQkijwt3dOM1ZyXxhfWbMbafTPhHJo6w691uf8sBmYVMjWqwoijs2qOkjVdEWGjGJH0XAA6OHWTvd1vi3W1/qVwhxzwtnrNmeCJCw84GRcQsZGWavtvTQ/6vWIGxS64FAFyVUz0hwTQ+tlZV6WsgLAOczESkgorIyjZCRCayE7o0OjcDaCmhmWkjIlKZCpq57N/gps31eeeR/5SIDA4Cz/9S3xMjqvKmqZEB3XtdFTPjigOF3/EuV9vNw5VZ1UYRqdSxLSrxbkIE7CYsowyeTAL7dquKiFQAGhvRk1+K3l5SmX/FadqkSK8XwF4RKTUbrRpmVUA/ETmZVSl4fwgFr4i48cgYa4nw5xN/HiXiCWx63SamKrgJS5rCxK8FAF/A59CHhdiM9bh0YicA4JUDh131mgGsq6vmCjl2PtBMH94jYlrtVw6x8WPv8b3k++WIY38WCq/qLWARmnGriKxeTR40EhGDIsI3yitK3wWgLOvEN/eQbtd/H36QPS298CS5IYhIFZHLaamfEeeaBK6JyKBeEfE6gPKlpo0l3u0mvVpXREoOzbjoLEyJyM6dwMgI8N3vAi9n9T0xGBGp008KlIhY1lEwFAcKq8pKJu2+5H+pHpFKHVs5IOsmf7PvScQTuPN1d7L7ASnAJiyeJFKu9v++rioiMoCzz8a995FjcOmlgCJrv+3IxBEWsrKbnEpduVciNOPkETG+xq0iwmfMUNDMGcBfaIaeTxE5UrQfu9Z0offDvdj8js2uwpKmMPi1IMsYOns9FIApkvPU9VjP9h2uCpoB1rVE+LGQEhEzj4jxuFBVhHYzbou1uVYZ3S6a+GuXP5etagTxYH6rLFjlaGNoRpY0pSjzyGZM7d/DnjNTRB7qX47/euEq5CBj+VgPe3oqnyFZNSZpvtXAyUlEvv51LS1q7VrHjoN09ZPJZ2wnX2NoxusAalZq2qkLJTD9RMSrR4RK4n7MqvlCnl38dquXWbM0ceupp0gpkX4k8OS7NmnflyMX8OEJ/eDjqIgYigOF1WzCzJT7bsylekQqeWz5lbvV99yy5ham9N11/V1swqJEJD0e07haXlVEZGCsU/OHXH118Ypw5yBZKdtNTqWu3KuRNQOYh6uMKFJE4sWKSLlCM1a/LxFPYN3idd6VEB6cXwu9vch/8tO6sOhclYgUcrtdFTQDrMPS/HjBFBETj4gxZEYNq1QRcesPAdyHkdlvM5A+V4pIivyG+iyASy4hDxoUEUmSEFJ7NWXffANSZ67UvsPEI/L5uzsxgmY8hksQ4Ybrfc0gakgFwr1+cPIRkWQS+NSntPsuOg7yA4qVKjKQGmAT2vK25QC0AZQyWD5LwAxmpabdhGbcKAblhBdFJFfIsX1WVOLdhSLCX7hOWQ1UFfm3fyOHs70dOOc7XcBNJHumZ/Y1AIDepH4woB4RSyJikJ4ZEXFuVMrgShExGaymg4jw57fdKvWMOWcA0GowANr1MDJQr3G1vDqBBIAX5NV44AHy8NVXFxdE2zGwQxfzt1IOSlm5VyJrhp/krNL6+evR6ncZCYqpIsKFZtzAKjRT8fYPXMOu9os6UeAm4jkqEXn8UJqNG6UqIgEpgFl15Jo19YiE9ESEjj97jmuKiFu4Nata7WtXZlU1ZBwLRoHTTycP7t+vr5eUTCKUIfsvKwOTMnlOR3wyGSgqgelRs5n+hNfirtUAFejP2QB0n29OjquBk4+ImJS+deo4yB9kKyKyc4Cs7BY1LdINUl1ruvDe894LAHjn2e+0HUDNSk3XcmjGTUEzvpaBsRSzG0VE1xrb4fedfz75/zTJNMWGDUA0Cra6OC1G0kmPHZ/iU+ydFZFEAvjHf2R3w4oqjcK8t4YZPJlVp1kRoUTEKTNnRRvJLqLnOqBNwksSMW1xVSCfkZGB9353NTLqqfv008XS9I6BHbrzyG6V7HflXonQzK9e+RW7/Zq7X2NqQncTmpEkSUdGzDwiv9nxG3b7B9t+4Gh4twrNTNdCBQCQSCDw3U1QVAJPici2w5o/6+d3+1REuL5ExmZ2gHllVUAjpJVURKzUNVdm1XGyWIk1tmkptePjwNCQ9qKeHoTUYScbACbVy7VO4kjF3r2QCgWMoQGHQVK/fxs/B7deBxYrKwSADamf+WrMWgmcfETEzFjl0HFQkiStiZXF6scYluFx+mzCbulkZAWzUtO1GJrxooh897nvstvLv7VcN4i6ubj5PgrGMJcRhto/aKICzBpS4bOtnwxAijzFVJNUNsW+Y/tz7dbC2EJtpRq+4UYA7s2qBaXAVmy1rIhE5IhtzJymOdNwCqAdn0XzYqwkz5w8GVAzsoRXcCp77XveAxweJL+NqoQ7BnboVple+8i4gWNohmbNyO72cXI0iQ/e+0F238qEblZbxQw8SeFriNDv2vDHDey+m1ofVqGZ6WiIqUNXF6T9+4HOTuYRQbMWavjQ+yPkeuNa1fNwUkQickSrD6I2swPM03eB0kIzbosvWhmfXSkiqWEAQKx5FlBXp1VG5cMznZ0IqevorAyk1NMqxpMu1R9C1BByne1uLaoliLxS8JyqXSmcfETExFjlpuOgk2HVmDHDg65yaOVEK5idxFbOcbP31RoR2T+8H5948BPsvnHAdiN3upWVk0li/eHxiU+oY9uZZwKBAGJHj6s/YAp33EGMlbd+SJVG8iFcd1VjUXlqBpruDSB8mIRy3BKRsfQYq9fgNX2XX2FZjNclg57bTucPVUT4bBd6PQSVGNuuj11HBs7RQBQ5cKW681oLcup72DGwQ0dEnXwDfkCJCK0hYYTXidpt/Q03iojxOWNoxk+tD6qIGEMz0zU+6JBIAB/5CObQ9VtjP3uqkAlj/Bv6VvX8xWeliPBhPGPFVMAmNKO+1mt5d8B98UXL0IwLRWRiihyvWItKQDo6yH+eiCQSCDc2AyCK46R6edVFONKl+kMOxjQjamB4OQKKtwrS04mTj4gARcYqNx0HnWqJGDNmeLglImayXi2GZtw0vRtLj+HGX95omzXkRRFxSrOzjbjFYsCKFSxrBkGynwsF4Ce/PaZ+0SwAkrVliCciu8iKyi0Rof6QaDBqO9nZmVWPHYpajdclgykiDiSAKiJHJo6wgZ9eD3176pHJENPwmijZV+MGdUOWgVic/LbV80h64p7je9jEEQwEHVUvP+AzTfhQIYXX68etCV2XvmthVgU0ItIUaSoydPvJGKK/t6qhGR433YTZWXXf0l5DuTAWBfqx4r/1rer5i89KEaHjRVgOF1VMBaxDM3yDP8BnaMZnhp8rRSSjVlZtV5uwUve9sahZhFyv2YCmiOjGFVUR2RMgROTOO4H9LyawKbUekjocBwrAxua3lWZQLiNOTiIC6IxVbuBaEbEhIoOTg7b9aswGRKd22MA0mtFU2CkiydEkfvbSz3D+987HU/1PFT3PD6KuFBGXg6hjxG3NGo6IcIbJmBqzTmn+EFPLEDcYhPeS21adQY1wkzED2KfvvrAlajVelwy3ikg8Emflxml4hoW1XiCfccEFQLiHmAHl5lCR8BiqI7/nlJZTUB+qR66QwyvHXgFQmbAMQCYs+tvMwjPUrOyWWLrN4okFvSkiZv4QPxlDxhLv0z0+FKG5Ge2vuwEyv1DIRXHnh16BZOPXs1qEsdBMMFLUVTdfyLNrpih912CW96OIOJ0jVqTWlUckrxYmm60eWzNFBNCbVVWPiFnq7rYJQkSuvx5IIImur2/G29Sy++9/Cuj66P+WX171iZOXiHiEHRFJ59Is7mhGROKROJMF+0b7LL/DbMCo5cqqxm3q3tKNjts7cNOvbsKOgR2Ih+P410v/1XIQLaci4hhxW73alIhI9SoRmdBqiBRZhtJp0gkTAEIhVkcEcDd5ucmYAewVEdqwj8LBX+0J9HvdnD9Gwyo9Pi9uJcfnwguB8A4yEAbicpHwyLcsp9fK84fJ6FiJsAyFlU+ke0s3fvT8jwAA33zqm65Lx7vJ4vEamjHLmHH7XTxYaMboEamWIgJAvvlWtPNrsHwE1wzebfJC7eKz8sfxZlVjV11esbYKzVBUxKxaStaMQn5nbL5KSK2IyBR5XbYxpikiJsXMdijLIcvA7NlgkvEKNRI9HkF5B5ESIYiIS9h14N09tBsFpaBbMRrhJjxjRijcNFhj73NptisVZopIcjSJW/94qy6ePZGdwHvOfY/lIOpGEXFLRACHiNuaNagzEBFZBm58l14RkSQTyxBNoYvFgDVrWPou4I6IuMmYARya3hmIiIO/2hN4s6oTGBEZ3IlsPsvOga1PkevjshVHEDpKRrtsUCoSHnmFixGRI8+7/n6/MEvhpecsDR96bfrmlMXjNjRDjbutUeuqu14yhqxCM1XxiFBccgnmZrXjW5/LQfrRD/WvMVx8bBFmY1alx5UqInR8liAV/d6i0IzP9F07FdQyNOOkiCgKUgFyLcXmLyaPWYRmwpNkvMxccxXziLDxMZUC+shitwedmDdPXZypkvF8NTLZH0d5B5ESIYiIS9gpInxYxirrwAsR4U9iN6GZWihoZmeqsxpE3fRv8CorW0bczj5bU0TkHB54KIfeXqDzLEJEXnsFISINDcA732l4L/WHLFkCrFrlmYiw0EwJisiKU7Rj69Jf7RpuQzOAPnOGX33298YQCADnBLZqdVZMVDz+XC0iItOsiJSr6ZsV3Cgi3Vu6sfs4+b6fvPgTT838rFBzoRkAkCTMndXB7tLMKnzxi8RVDgCvf71u9WBl1DfziIxnxpEr5HT+EONYbAzNuO0zw2+LAsXWG2dlDHZURI4dw4RKKuoTavqZmSKSyyE0Tj4je9WVSNWRRWFdWr3o9pCwaKa+GYNow4IF6vtUyXj+BJnyDzaivINIiRBExCXcEhEruCEidmbVWgzN8BekH1OdGwOYF0XEFi0tiC7QBsK1F08hkQCOTRB/wOqVs9DUBIyNAVu3Gt7LE5GVKyErYA50IxFJjiaxed9m3araTZ8ZwF4RaW/Rju1DD7nyV7uGW7MqoA/N0GMTgAzkQzjzTKBux1YtvdCEPPOTIr1edg0Sl38lFRGzxnflavpmBaf0XarIUHhVZKxgDM1U3ayqYk5AM+JGc8BgxxpSXHLtWvLgAf3Y6Ji+y3lEAEIyrVJ3gfKYVQH7hZNVBpaTIpLfvw9p6veoV7eTEpHjx4FRlUDv3IlQjigy2cQ8TC4hRCI2pEodalhmaNZyAJJGRACgqwvzf3kvAODgopbyDiIlQhARl7DLmmEZMyapuxTTEpqZbo8IN0BQUx0F34/ECm5S4so5iEbPXMNu0302MEkUkTkN7bj8cvLcQw8Z3kilUVURAYCwOtnyx4V6ZNb/aL2u0/Lxo+SYt+TsKxnaKSKZlHZsg9Y1x3yBJ9lOkyBVRHqGerRsF6UegIQLLwTwt7+xgktm5yxPtikRoarEdCsifs5ZL3BSRCqlyBhDM9M9PpgimcTch59ldyN5oOXA88R7tVIdN3fs0FURdVPQLCyH2XUzMjVimboL6D0iEqQiYmIH/tz0Y653UkQmzXrGNDYCrerihaoiWzmir+SRWkzO1bojao0qlYgcaiBGVR0RAbCg8xwAwGD6eFGV42pCEBGXsFNEqHGvVEXEjE27yprJTa/0apU107WmC/MbSerZb9/yW0dTHV1l2JGssikiAAJrzkFY3WQ62fNVVa+4gjy3ebPhjYbQDACE1VUJ3XajR4bVTLnjqzh+17cBAC3fvss279ZOEZka1yaRY8dc/2RXePnYywCAZw8+qyNQZljcvBihQAhTuSns2PEYAEBKk217e6Yb+NOfWGgmmys+rnz4cVnrMp0iYWfoLBVWZtV3nv1O5tF4+uan/TV9s4AuxGriEamUIsOHZnSNNKupiPT0YC6XOR3JAQFFNUuecgph1xMTQL9WZ8RNQTMAuhReq9RdQB+aaalrgRxw36OBTy23G68sQzPqvs/kM8gXiisyp/r2stu69xrDM1u2aKHPfAaTCVJzJHZQHRTUGiL7ZHMi0hJtYfvt0Nghy98x3RBExCWsiIiiKOULzZicxDMlNENBB43FTYsdP6fcZlVHcJkzTBHhiMj69eS5Rx8FsvzupkRk8WJCRsJhRmjooGS5uv3PT2BIHf9bJhXbvFs7RYQnIgMDKBuSo0n8ZrtWQtyqSihFMBBkE+WWfyOT9oLUUdyLV+OCu24BALZiyyEPpU+fJcaHZqLBKJY0L2HPTUdoxkhEjqWOQYGCgBTA2XPPLut3OikipTbzswINzeQKOaTz6WlfqJiisxNzuGaTkTyQh2qWDIUIGQGIKqLCqekdq79Cy7ynR1yHZryEZdg2u8iccaqsyr+Gx8RBQjTqFEMtHWpY5RURSvTzWUzOJT6XuiNDpBS8qohsz5kTEUmS2GLx4NhBy98x3RBExCVYaMaQNXNo/BDGMmOQJVnXrtsISkT6RvuKJiwKs+yXWgzN2BU08zLoubmwy7qa42qJTI0RKZN6RGbFZuH004G2NrIwe+YZ7n28IhIMAp2dulUJYLG6RQDLhoDj6mFpmYRtyhyviFBnPj22qdHKKCI9gz22RefMsKKenMtb1QKQsSxwNR6ApG4zb+bN9uzQvdfog+LJeyVDM1aN7+iqcHb9bE8rZDdwY1YtpZmfFfhJeDwzXhsekUQCczf8E7sbyQH/HOfMknx4RoUbjwigV0TsQjMN4QamfnnJmGHb7KXukYVHhH8Nj9RhskCtDxiuAaqI9PaSsBUfmilkkQqSa64uB+DJJxkR2TpBGq8aiQgALIiTBwURmYFgikhOr4hQNeSU1lNspeX5jfMRkALI5DM4OnHU9DVmJ3EtZs3YNb3zQhymXRGZOxd1Cjnlp3a8BEVRmCLSHmtHIAAWnmE+kfFxTYKgzVS4zBk6KCbiCXz6sk/rvu5fznovEmMSjlNFZAq2KXP8PqPkjB7b8eHKKCJ+wgMrCiT7Z+s8cr/ecBqEeCKypEP3nHHFqCMiVVBEDo0TIjKvYV7Zv9PsOjaD32Z+VpADMtu/Y+mx2vCIAJj75nez24/kXo3/N9qFFB1OzYiIC48IAF2Zd7vQTEAKMPWkUoqIVaq0HJDZ7zEzrKaOElIQM46bfGhm3z5gZAQh1SifzWe1ujxZAPfeCxw+DAB4YsBcEQHAFJH+sf7iJ6sEQURcwqqOiJuwDEAm7wWN5KywCs+YVladQaGZbD6LvEJmobIpImWWlaM0/LHjJYykR9j20hVSkU+EGlVbWrQueitXFhERALh00aW67xoKZoFzz2WKSOskbFPm+N9IByt6bMeOa8+VUxHxEx5YsfhcAECfujtiWaAgycB//Rcgy/r05rntuvcaU0mnSxExy5oBNEXEqv5PKXBb0KwSoIbVscxYbaTvApjTMIfdzgeaAQB7qTXCjoh48YjYhGYAjbT4UUTcNL6zKx5nZ1hNDZLzMGbcbj40o6bzhdReM9lCVmsKmgVwNykQV5jVjoMT5HeaEpEGEZqZsbDyiNg1uzOChmf2D+83fd626Z0bs+o0Sa9WRISPfXpRRApKwTI3v6yKCIBolBDKqZ7tTA1pCDcwEkd9Io8/DkxNQe8PoVi1ChETIjKYGmSfBwA/e+lnmGxp0BSRZafbpsyFAiGmTtBjSvdpfqoyigjgPTywovNC3f26LLDrnzYCH/sY0NuL4ANa2pGRQNuGZqqgiBweJyvISigiuvRdm4JmlQD1idRMaAbEKEn3Q2OMHGtbIiJzJd65jo9GjwhfXdUuNANoZCAc8E4MXWX52ZA+yxTebBapUTJ2xOoa9c/xoZktWwAA4RbiC8nkM3pFZJB8xtRCooY0NQH1JrtBhGZmMKyIyLbD2wCQGLMTnAyrpmZV/mK0QC0UNAP0TN/Ntuhy8y1WGWUnIjGyUph65QUc20eyRfjCRitWAHPnEhLy5JPQ+0MoTEIzgGZ8ffXSV6OjqQMj6RH8OrwHNKrSsmU7KVRiAUmSigYrs8qq5c6aAbyFB2gtEYrNmdch8VmVvCQSkK64wrJPiG1opgol3lloprECoRmTBcV0gWXOcKGZaisikiQx5ampnhzrPTRrdYV6TvX3s2uEKSJbntF16M1sIQYuY2hGlzVjQkS6t3SzhWP31m7PxePc1D2yq2JrqYj097NiZrE6fdE1RkSOHiWrIwChNqIyZvOcIhLWxsfhdmt/CCBCMzMaZnVEurd049EDjwIA/uWBf3E8sZ2IyFR+ZodmeCJlVWGWhy4332KVUe7VXN0UYRBTxw5h4G1vAED8IRSSZAjPmBGRFSs0InJckydoe/HscDvesPQdAIBvLDoE2n27ZTwP/PWv9ttnGKymi4h4QVusDbMUbpKtn4UGg6Js5m3KF/KMmNDfOSs2i61o7VS/UlENj0ithWaq7REBtOrC9Y3kWDMi0tICzFFDNztJOQR2Dt37J12H3sx9fwZgH5oxekTKUTzOTeM729CMlSLS18d6xhR5W1paSD0RgKTzAQi1EzKXLWTZZ8WWrWJvGZTJotiJiAhFZAbCqIgYT2yntEeAIyKj9h4RfuXiJjRTCwXNAO+kgc/NnxZFJJlEtIdowZNBYCBKHOezAvpZlIZnfv1rYPIVEyISiyFMB6W+fezhh58lpOSP/zcL33gXISLPzCb7qC4fIOGc+++33UTjYMVWT7koWtQK8eUOzfjB4iHtXBsZiBWVRzFTRHiySc/V7i3drE/Iz176WVlKnJuBmhStsmYq7RGxM6tWAlQRqaXQTPeWbrxw5AUAwEvBHwOru7XQDFAUnmFjn2GWSgcU3fO69N2suUekHMXjPGX5mYVmrBSRAwcYESka5yRJU0XyeSAQQKidEDadIsJl25z+5//Cu9EtiMiJCCMR8XNinyihGSdFxIsE7HRxl9Vo19ODqMqdpoLAgHrNz8rqS5VSxeGll4Cd9/WSO7xHBEC4jgx0mSTx+ySTwENPqK0tJ9ugDC1FoFczr7aGVcnViYjYKCKnnkpujo+r/pUqIZkEOvbzjtRYUXkUsz4h/EowGoxWrMS5GaoRmqmqIsKVea8Fs6rxWAMKcN0G7DjIHWsDEWFqsCGrOhMkEqOX9N1yFI/zkr5rGppxoYiYLrgoEQGIGhshv03nEXn0CfYSCQo2YgNWNZpfR5SIjGfGi66HakEQEZcwZs10tnWynHQKpxPbMTTjkDVj1fVxugcaqzoiflZeThd3WRWRzk7WgXcqCBxTx6pZXDOuZBL4NMvCVbAERPE4XMcpIgDC9WRiy6gDaU8PgDp9J9/mra9nrw/VNyLZJJFB1qKgGVA8WPFEZNkyrbx7NVWR3S+nce4g53XJ1heVRzELzdDzIxgIIhgIVrzpHA9KRMYz46yypaIoFTWr8uRjeHK47J9vB0ZEMmO24YLpgtmxRiCPvondyFNOayQi9Bxq5zJcJAnpS4lZ2kv6bjmKx7lp0ukra8aJiPCLoDVrtP3ChWbqMvq5IYg8Vsjm11FDuIFdD7Wiiggi4hJGRWR+43x2sQPuTmxKRAZSA6al4s0mcn4wo6mmRtSaIuJlO5wUkbISkUQC0bUXAzAoInM0ktHTo4WjW3AcTSArhl2ZxbqPCjeQwS9zmJCKzk4AMVURSZGBs2PH+awCa+/oAXR8WEH3atiqInaKyOzZwCzVV1tNn8jK4G6sGuAGvmysqDyKWSE+4yBd6aZzPPhrlXalHUmPsG2qRGjmrq13sds3/fqmioWdzGAWmqmmR8TsWKMgI3d0mVbV3UoRGR3W3nPxxcgsJQsHr+m7pRaPc2VW9ZM1c+CA1nnXLNuHU0RG2pbo0prZ+JjTL4pzkFF3hvV1VGvhGUFEXIInIoqiYOuhrRjNjCIWiuG+t93n6sRujjYzJto30lf0vKkiwsWWzcIziqKwSbzaBc381PxwUkTKHd+Onnom+dzWBkZEeLNqZycQUK8KpoZgDpaeridC4SbSjCpzlEj7iQQQjGuKSCAAfOR9+3WyckECNlwHJDf/znL77BSRpeEkro1uxgIkq6qINB3agRWD3APBdFF5FDOTtXGQrlSJczNEghE2kVA5mvpDmiJNZVcT/XjIyglmVq2R0IzZsZ799EZgNKEZVikR6ekh7e7pyh95UggQAHp7LUu8H58cwaEh+/TdUorHeWnS6SlrxkER2f4nrSFewze/hP7fEZ/N/mQWKXpsv/gVto9ykLEBG9F2lvVvpDWtBBGZYaAndl4hzv8/7ybO7atOuQqvPuXVrk9su/CMadM7rv6AmWHVzABYaTh6RDyQBie5s+zpu+o+mjptpaaIcOm7iQSwaRO5pikRwZIlRTXIWC7/yHFgYgIjI0AupHlEPvYxILHqFZYxQ5EPALtf+KsmuxjAD1a5Qo7t47fmfolbv9SBu3rXYz860PiL6VtdG/HSL3fg4Q6AVoaXrvgssFq/PWaKiNkgXYkS51Yw+kQq6Q+ZzrCTGagCNJoZZddWtc2qxmO9WiHHmhlWFy0ColEgkwF6ezUyGwDwlreQ1ySTyKTJmGD0iAxNDGN3L1FE/np/PXs9rT9SKtw06fSVNdPba0lEDj2TxPKHv8vuyyhg2bNkIfOne9NIq5mWdW97J9Dbi/wDm7FU6sVd6LI0qwJcCu9obaTwCiLiEvwJksqmcE/PPQCA1yx7jafPsSMidmZVwDyFly8iVnUi4kcRsZE7dZ1Dy7Sao4PB1NJFOEaJSF2r7jVdXaR+0OkNveSBjsVFnxOOkYE+IwP4yU/w15/vBiJkNYbULKRSQOd4BAED35ALwLJ9I8CLL9pu32R2UrdP7sh9BAF1YpNRwPnf21CWwdUPtm99Du99LUAtUmYmUzOPiNUgXe4S51YwEpFK+kOmM+xkBhqaoLVtgNpI3+WPNe1zxxSRQECrJ7JjB0JUeZUBvOMdwGySlpoePQ5AI7sTg83kPXIOqCcxy699qR5DX+vW1R+x63ztBk6hGUVRbGu2sGubV0S+/W1gZEQjIlte0L3n8KM9kKEfRCJ5dQUQ0Yymx4/GgEQCh1asQ5+SQDDIdpcpRGhmhiIkhxhDPzByAE8mnwQAXNt5rafPWRR3VkT4ASMgBZicacbE6XskSNNWvdGyoJkPRcQuNz9b0ErGl1sRmZzdggFqVt17uOh1iQRwyQKiiOzILCl6nq34ZQAbNmDNP5MiQijIwFQTDh0CEkM5bPoDIKuyiCzJ2Nh7BhKjAO64w5RI8IoITzJjeb0ZjbVQn2Y8/zwwEXgZBcPIYVztmyoiVQ4RGFN4aWimEorIdIadzEBDM7SpI1D9gmZGLF1K/lul8Ib6yGo9E5GByy9nz2UmyPGjxKB/Xz257gCgjpCUWVPjaPmXW3X1R+w6X7uBU2jGaVHIrm2qiCSTwAc/CACYUK2Asbt/odvGuZd2Im+YpgMFdQXAEZFkL/ls6reZN08LMZuBEZFxQURmHOhk+Nsdv4UCBWfMPsPzwGJXS8RqxWjX+I4f3N0UESsHHOuIlCl9lzf0lpuIjOVSrOJp+1+fMX3tyjAhIk8dMSEik2SCzajj3/E6QhRihRYAEg4dAjAwgK6tQK/yIS30MKUWHtq40XSVxisibGDLB7XBR0Vesm6eV0l8d5OCK4aSxUqPYbVv6hGpsmnSMjRTAUUEmN6wkxE0NEMbbNJMpVpCkSIC6InINqIaZme3A+EwU0vSKXL8KNldvlwCpvQVSTtzRyAZs3RsOl+7gZMi4tTiokgR4ZzxrKBZWtFt47zzEvjsvE3IQfN//CL/NvJkVO2blAtjRSd5nhIRu7AMoHlERGhmBoJOhr/c/ksAwGs6vYVlAIfQjMVAbVaTgaIanTXL6RGxM6vSzwtIgbKpPXQ/UUlSUoCWPz5o+trZKUJENvcuwYS+1yHCIyQMk6bptCpPmqN6iSgRAYDErKVEjh4F8Mtfah9iskrjByveqPoszmGvySOAjas3WjbPqxRSKeDBHx/EytEU7vyjZLvaN6t/U+00Utb4booM4JSIVCJjhmK6wk5G0NDMsRRRRKrtDzGDIxHZsg0AkJ3dpnsuM0UuRjp2JBJAs6E0+js+dSopBsbDpvO1Gzj52ej4LUuyaQG7IkWks5NtIwvN5AO6bZycBL421IXF6MW9H9+MY0/3ovMf15EnI+Q8jgbr2FDgloiI0MwMBs1Nf+noSwCAa5d5C8sA1kSkoBSKyl9TWPXtAKpLRPJKXlfbxFcdEReKSCwUK5vaQ/ct9TO0TgLy1m3aFUyhKAj19wIAducX44kn9E+H20gAlioig+pPbm8iVQ8PHQIUmtpCc2753GAKwyqNH6x4ItImHWeveSd+gJ83TN/qmuK73wXmj5HUypvHO21X+2YVgasdmplOj0i1QUMz9BqqBX+IEbRY8fHj5A+ARkSeew7hXnKNZlviuufSGXIe8aUN4pFm3We//SPLgYsv1h6QZdvO127gmOHnUL6gSBFJJIA3vQkAR0Ru+6BuGx9/HEingcK8BK7+8jrMOy+BK9eR3x1sUJUhSVOL/RARq/pU0wlBRDyADw/EI3FctPAiz59BiUjfSJ/OVW8XX7QLzVSDiPDqBF/bxFdlVTtFpAKlqel+okSE9Uz505/0LzxyBNLUFAqQcACL8PDD+qdZ1oxKRI7ECFGaO5uMAFNTQOGIgYjwucEUhlWamSIi5cI4RdGWjfWYmPb03e5u4MMfBlaCEJEDsVW2q32z0Ew1zlUe8bAhNFNBj0i1wddNAWrPHwIADQ1aexnmE1m+nKgEU1MIqcMjK/FOFRF1QcYTESXFKSL5EA72hfWKyBNP2Ha+dgOnrBmn0LRp+q5qlEm1EAUr9ro36N7zoCrWXnml9nPY+KsqIvkp7fvcEhF6zmcLWZ2huVoQRMQDeCJy1SlX+eofMb9xPgJSAOl8WmcksyMitRqaAfThGT/Su1tFpFyg+4l+X3uDai3/wx/0L1Sb3aVaE8giXNSrjjerTqAOn4r9EwBgdn0bmpvJawrHDESE5gbTEUWSilZpZmbVqKFYUQf2l1TQzGtGYzIJ3KqWxKBE5OfPr7R9v136brVDM9PlEakmjAW9ajE0A5gYVmMxVsArpK5x2LjX0QFEIsiovWb47t2Z0WbtQzP12LoVarljFRHttX7h1qxqta9N03ePEg/PRJRMxcaxjiciFCxZAGQ7psZiTGh1S0TCcpjVT6qF8IwgIh7AF8nxE5YByElEZTE+PENPYjNTmV1ophqDO799ZiW8y6WIVIKIGPfTrLlqoPqBB4gJguLZZwEA8kJyrJ5+Wv80T0TqMQl5Folbz4rNwrx5AKBAPm4gIgBZlX30o+T2m95UtEozM6vW5/QVdTuwH4ODlqVIbNHtI6ORjyitwnYAwCvKSlvfn2mJdx8eonKCz5qZzE6yZnuV9IhUCzQ0Q1GLighg4RNRWzkzReTYEXJDloHly5FWVUheERkf5BSRbD1eeWoMOMxlw5VBQiy1L5apInKE/LaURK5xfo4ZHmbDkJ6IGPxy+XQdXlCzft0SEaC2fCKCiHgA31vmmmXX+P4cM5+IXXyx1kIzVopIuT0ilfAUGPfTrLlLSCGlqSngG98gy//ubuBDHyKvf+Fp/FNzNzIZ4MkntffRQXAyRPbFggSRB9pibZg3D2jEGAI59Xi1cb0yAODss8l/dTXEw0wRiedUArp6NQBCRAoFLq7uElTZ8JrRyHnqmCLSE1hp6/uzK/Fe9ayZzCjzh0TkCCuIdSLBqIjUokcEMFFEkkng5ZcBcIrIwT7tJF25koVD6SJmfJyrJQIAmQYce8LAkgcHUSrcVoF29IiYKCIpkLGCX3T99a/kGl2+HFi4UHtLUQPFbB0eeghQFG9EZEG8dqqrCiLiEt1buvHAvgfY/T/3/Nn3Z1Ei8uC+B5lXwW6QNou3U9QUESml++40KSJFRCTWro2Gn/oUueJvvplc1QAkRcFXRzZgAZK68AwdDEYD5PPCDYfVzyOKyCyoK7BYjPzxoC49NfzDw0wRac2pUswb3wgAWCyRjr9eF3kuvLKmSCTIyrUBY0iAjHTv+X8rbH1/dum71TarjkyNaEbVxnnTlvY+nQjLYd2EVauhGaqIPPusyjV6eti1p/OI0JN05UqWqUZ/3/btAKaatQ/N1CPzMheWAcpCRJyyZhxDM2aKyNGjKEjAlEIIOz/WmYVlABRbArIxPPQQMDoKlt3nShFpUKurjlU/hVcQERcobmGNkvpG0E6cdzx7Bzpu70D3lm5bNcFsdUlRDSIiSVrqZsmKiE3ctZJmVYr2bAhFTlQDZCWPZditexk9JiMBsv0HVD9IERHhwzIUlIj09QFZPbnkByv6+1uof+gNxMg2TzmIEDKefSJmXtlAwDmjUVHIwm0FdgIA8u1z8PYPtti+x66gWdUVkfToCe0PoeANq7UamtlOIn3YupWECn/6rHaSMkUkAO0k5RURdRHz8svQ1xHJ1qPtePmJiFMdEcfQjFERUS+sSS4S74qIGEsZ5OrwyCPAfrI+QXNz8drHDCI0M8NQzr4RydEk/rLnL+w+bYZFwzQzITQDmDe+mwmKiHHbZo1k2QrMCkpAxm4sw5NPkrx+ABgbUctLqxNuPjZM/o+1ORORuXOJea5QIGSE3z4TRSSaA8bbFgGnngpEowhAwUL0eVZEEgngs58FFiCJdSDN81pbgaYm+/cdOEBWW6fLJCwjn7rS8bv4DqEUtVJHZDQ9yjJmTkR/CAXvE6nF0EwyCfznf2r3CwXg7Z9MYOirpNkTU0RmtTBDd2HFctZIkpLdV16BThGJBRuwHLvInaA6y5czNONQR8QyNGNURMbHgclJVlWVf83Bg4SkSRJwxRX6zzEqImEphrEx4Pe/J/fdqCGAICIzDuXsG9Ez2AMF+okvr+Sx7ziR6c0mcbvQTLVqM5gVNfNTOdPu4p6W0EzHqmKZQJK0bp9q/QFlfgKZDPDUU8RO8sPvke2ekMl+mIqRAmdjR1woIoEAsHgxud3bC0DLZBkfNsuaAcaXryHbpWYU+M2cefNYN/ajA5tBmuddP9CNj3zE5IVcas3zz5OHLm4jRITVerCBWUGzWgnNnCyKCO8TqcXQjFWo8IVzSbOn0CbipM5EOHP8KVqV48gYiUO8/DKAtMamWxvq0QlVEaF+rDKaVa3Sdz1nzVB/SGOUPU/nmYceIi9ZswZo1bfCKvKIzGsnn/vjH5P7bokI9YiI0MwMQTn7RliRmla18ZrZJG5WHIqCTVZydRQRU4+IH7OqTWXVSoZmZi1aqbXbBcj/736XEITNm4HeXkg3d+Hyy8nTX/4ycM45wHNPq2ZVWUZGBqYi5NictcKFIgLofCJ8JsuNf2+uiOTOVCurlkJEkkms+PqtrImWjAI2YgPu7U7irru4lF5Dak3g+2RCOCvqnoiYpZxXu8R7U0TLmuE9IicqdKGZGiQitmV1EgmELiB1mvhzKF2nqQHh3b0AihWR2S0cEbngAvJ/OsyqXrNmKBGZQ8Z+fsH1gGpHNIZlgOLQzOIF5H27VBFoJioitdV8oIbRtaYLVy+7GruHdmNZ6zLfJZspqbn5DzcDIJk4G1+3ka1e7EIzteIR4bfJ1CPiJ323SopIe6ydpNBefTUxxC1bptX14NyYVOG97z71c04PYwpAWg6wqqoSAjhtaTN6ckAb1IHPgYiMPr8Pt35bWxkqGfJhE+lJTGY1IhK6oJiIeF7k9fQU9d8IgvhfurrIb10oJdGLW1mnXxQKuPZ3G7AAV2NpWiUiq1Y5flUth2bGMmNsFXgiKyJ8aKYWPSK0rM6GDUQJAYAbb9QuO7NziB8Dw7v2YPzsdURUnKcpIommENrpQmDtWuBb3yqvR8QpNGOxKOQVEUVRIFEiMrsZwEE2zimKtT8EKA7NLOuoA+9y80pEjowfQa6Qq2ovIqGIeEC5+kZ0renCJy7+BADg6mVXo2tNl+0gXWtZM4B54zs/CoadEbcSUn5RHZEYV2xs3TrTEtDJJPCTn+gfy6TIds9dAgyqPKkt1oqAFNApIpm4PRFJvbJPL09nyfalspMYHVZ7SeSAhsvWkOdLUUQ6O6FAnyFC/S8Upyg9GglRISt5vBG/QuuguuRyMpWgNrvvUiICkBApcGJ7RPjQTC16RACyBujtJVV7AeIbT6vzvJmqRtWIYB4I7NzFzK6t9c3sNR1R8ppDmIupuYvJg9OgiLAx3EERUaCQ64LWEJnVDEBbcD36KBlzQiHgkkuKP8eoiCycG8Ps2dp9t0Rkdv1syJIMBQpTCKsFQUSqhOtXXA8AeKb/GRSUgq1s7So0UyUiUrIiMs2VVelgApD9aqy3YAazWHYhS45JIaI1vJtVR0hHYyMwRyZEZDhoqCFCoRKRluF9+t5cObLvMoVJjO0nRtZsrgH1S9Va2KUoIokEti+6SrsvSdj50Y3oh0a+elDcdhwAvokPa3VRLr7YsRIaM1jXUIn3SDDCrqV9w8STJUIz1UciAXzlK+R/f792apmZ9CmxjeQB7NxJwjIAVi3RyPGsNBk3dmE5dg6o1980pO86LcT4xydzk1pV1VYyBtWH69HdTdZDAEmo++lPrbeDIhaqw/r12n23RWQDUoCd/9UOzwgiUiWcO/9cxEIxDE4O4uWjL9vXEanB0EzZPCLTXFk1IAXYhTwrNstVDQnTtFdFXfEjj8EG8mRbkAz8kgTMDxGWMAgLRUQ1q0b69+F1r9MelvJk3+WUHMYOk0yqMczXXlCiWbUwxZHZhQvR8KEu3W/rRwI/x1vYfSUg40mcp7dXu6iEVosl3gFNFaFZcCd0aGYGpO9SRCLAJ4hIjC9/magidOWvQEG+QGI3lASE8wB27KC1z3DGco2I1A+NASCkeusBlYgcPw7k9N3CPW+jU/qugwcqLIdZUczJrEZEUs2kmqpciOHWW/VJfGaXmTE0EwvFEOIeuvlmdxWTgdrxiQgiUiWE5BAuXki6Qz68/2Fb2do2a6ZKmQh0mygRURSl7IpIpSYu+nm014ITaCyb97P+26e0iXZgLhkEWQM9AO0BQkSO5B3MqocP45T5WoGjDe/WPmN0hAwO4yGurKJKRBaiD0PH9KXfHaEoWDz0nHb/wAEkYkPYtEl7SJKA8y5Uf+g73oGff7UXn8RXUUTXHCqhmRY0q3JoBtCHZwJSALP/f3tvHh5Fme9v392dfScJEEJIQkgggICsHpYBVBBExt/MKCqDCmciigqyyIwLvhKVEWd0lHEBQRGX8YzOIKIiKjAQxIOHRUAQMBIhhASQPQshW3e9f1RXpXpNb0l3J899XbmSrq7qevpJ91Of+q7RHZzsHdwEetaMNXl5kJoqX3hffBG+/d/Gq+uxknq2bIETJ80N74zAzz9T+IP8+erbO1R9j/Vn5Qv8EXLYWaRJOXG3FLEVyk1Tk1kzDj7fOp3OMmBVESJxZpdNXZRLBQetXTNXqiItXMeuVkwG6Bwr+3EKigs8rovlC4QQ8SOjM0cD8ofAWfZLMLhmtEIikC0i0DhXanyICyi+bHMiDbff2ihEzneQF/zk+sYFop1RFiKlNQ7OkZgo+3AA3fFidXPhwcb/Y1Wd/BpXojMbj0tNRQoJIYx6DGdOuTx+AH7+mZiGcmoI50oHWdCwZw95efDEE/LDUaMg5/wO+cHtt/PtiTSOkINJ5yi9wT6BWOIdLIVI+6j2GPQGv42luQn0OiLWREQ0WkUefxx+PaHx+9S9Zz3XXQfjbpLXiXCTDhoaqPpeblJzrF1jUcjHk/exsr8sRL77PgS1C6WX7hlXg1WdrX8WKbxKjEisvC0pLgprA629r5m1ReTS2UiPKiYDar+lv+/4u1pc0x8IIeJHFCGy9fhWp9YEZ03v/C1ElDtebf8En1lEmukO2hMhApbxrNoL7blE+T0kKVNgMhFbJy96xVUOzqHTqVaR8JONpd537dSrc1Klk+sk1Gnr1YSEIKXKMR0dao5bNOJrku9ka8j39ONKP3Nao7mr1u23yw8L/+9iYx7g4MHs3y+7a76dtsKmtoqzGu92m94FgGtGSeGF1h0fAsHlmlG48UbNA1PjBVfS1Zt/y2tgqF7+/g09+W9S4nbxt5/u1ewL9/0aDsXFsn8/SEm+iRNRbpoaTA02BS7BtcrByvei+FJxY4xItLwtPjKKCM2hjr5m1haRrmlRjtOgnVBaUUpBcYH6WCmu6Q/LiBAifmRQ6iAiQyI5V32O707JFwmnlVUDMGtGsYgo49Dr9LYliJ3gD4uIUg/GmzmzECKx8lwkV5pdJeXlGCT576PlDoJVQRUiMeeK1U1VVRCmly8aF83XjohES/eBrqtnAavSLll0fMdAdIMHyRvN4qR3b+jUCa6q2SVv79YNKSlZ7eoZNcvKJGTVNdiaQCzxDpYWkdYcHwLB55oBq0LDJo21Sm9e+wyKa0a+dC3iSd5LvMa28rUeTnUyUlMDNVE+EiKGxihQe+tVU66ZlXtWqtkpN39wMyuT5Biw6kh5/Th5PJorV+Twsf/8x/HXzDpYtUtKpI3ruIn7BMBxcU1PKoZ7ixAifiTMEMbwdDlO5OvjXwPBmzWjvdt1p4lYS2fNrNyzkqOX5Faf737/rsemSAshEil/mZMumHvCmNVBBbGcOOMkhF2TOQONJUfCzZaVi+Z/ad8z/2dxmM7DzBnjTll07GYQkSPMdUnMFhGdDm64AYawU94+ZAgnT8KFC/LC1rMnTlOcrbEXI9LUQt0StCUhEuh1ROxhGRiuA6P5psZg/hyFyOtERHWjBTb3goTeykBhMEF2p6sAKKk2CxEvq6tqBYCrMW1KgeJdhZb9ykySifuuraI0DqrD5Td88Ht5nZs7V64l6OhrZtAbLDrBR4VG2biOm7hPAHxbMdxbhBDxM6MzRgONd47O6og4rbXRwnc81gXNPHWjOLOI+Pq9WTcvlJA8NkUqi5KExC+h8tiTz5pbX5oXvHMkc8pZGIdZiHS8IguRCRPkPjDxFZcAuGQWIoO/XWkZeeZJ5ozJhG6vLEQORQwkYpi5LklxsXqneMMNcA3m+JBrrlGtIT16YGEydgVr10y9sR6j2UoUCFkz0LpriIClayYYYkTANjBcESL6UPPaZ7aIhGsSYNIqYMVnYDBfzgwmWH6kB3HmtPQdP8sKf+cX3llELISIk0rQylxrCxRfM8FOvzI9FCVCtVlrXfwlipgYmDat6bFo40SU75Mb9wny/j6sGO4tQoj4mVGZoyweB5trRrnQeCoaWtIi4svmhdpF6ZQkpwsmnbwkb3BTiGRKshCZOBFyOEKk+d9sMn87o+pNlpFnngiRn3/GUFVBDeGcbd9LLkqWkyM/Z3bPjB0jqRaRC9lDVCHSt6+L59Bg7ZrRtj4PGNdMK48RCUbXDFgGhsfFyGvf5oJ6PvoIImI06bvaY/YbKL7j/9hivJPiJXC7fpTaLfs8skWk4KPzLmWSOEKn0zmtJVJRWwFAVV0VpaVw772aisnnchq/0GYMJsgmkWrlu1EfxbRpEBdHk2jd396sj3kD8iieU8yWqVsonlNM3gAXTCnNgBAifmZw6mCLRSJoXTPNYRHxcbCqL02RWiHyS72cFphcck4uAqARIhcuNFaKtMEsRLpyjJgYOWPlCDlEWJU7CDfqLSPPPHHNmMXGPq6mXQfzIjbIHCdids+0rz5OR85QTwhf/tJfFSL9+rl4Dg3WrhnlcwoBJESEayZgUe7uw0Pk71lSh3p+9zuYfKcsbI9KvTCZ3RMSwOuvk9ZjMKN/qietAk7HdlfrcShCpJ103qVMEmc4any3cs9KDp+Ty7zevfZu/v71SstMloo0+GwFes0l99X1kBbdieKTZktqfRQzZ7o2Du364+3/1lcVw71BCBE/Ex4SzrAuw9THTrNmTIGXNWMvRsQdWtIi4ktTpLYvg2JlSbpwBSoqVCFyQS+bhE87qp5sLmqWyEWyksrp0AHCs9K4XG+ZaVN7z58s7a1ai8gZy2Azh+xuDFRtr5RPGWiOEzGLFHbK1pDv6ceXBRFq112fWEQ0Zmt3Yoh8TVvNmlHSNIMNaxffsJHyOlFa35Xe/EA1EeiALw+aa+2YM74SBueosSaKEEnmfJOZJE1h78bJ2uVrkky8VHQfxFmZX/bmsbxnMXEhcm2THufgpLEDG7eYU9/qovnmG9fGoXXN+DqY3x8IIRIAjMpodM9crrts87y9VEgFvzW909uPEXF3HNovtqQpKagtkObLL5qvTJFaMy2AToJ2V5BrVJuFSE20LCgcumdiYqiNl1VBnxjZPTN0KEQ3WLqP4m+fZHlcejoA0VRTU+qiSeS7xkBVtQ+flUWEHXJ8yA6u4csv4UdzjztPhIj1ZzYQaoiApUVE+3lrjXxS+In699j3xvqtRoQ3WFvWGpSbsYZwfqQXy5kBgGHJ3yg9Icn9GIDkoTksXy7vqgiRoTnnXI6fcITFjZM5EvXIj9vtunxDU2zNL9Nv70LFnvEAbOkKW3/sCKFmIVIf5XIhMq1rJpjcbo4QQiQAqKqrUv++//P7bRYMe82fFPxVrdKmjoiHFV6VL7aEZFEuXmvK9/UXzVemSK0QaVdnwCBhIUTq45sQIkB5ouyeyQ2Xhciv+lWQWm9ZATIx1ur9h4dzOV6+m9efON70QE0m2LMHsLKI9O8v/y4pgbNnGy0iYUM4e1YuitSunetNtLQ4ihHx96K5o2yH+vfIt0cG5cXZFUorSnl4w8PqY3/WiPAGa0GrWiKM8ufr78zGiJ6xbOT8h5vk/He9HrKyuOce6NNHdpECpIR6EaxqFh1hyNbU2jX/ViNRc264A71V7WE9BupPZ5OQAJs2wdq1mieLrwVgSyacoYOFEHG1EJlFsGqQud3sIYSInymtKOWFb19QH9vL5HCUNSNJUuC4ZjzoMwOWTei07hnFLQOB+0XTCpFkk/l9aISIZDY9nHTSxuF8TCYAWfpiAK6XNhHdYHmnbu9/q1RGjfjFBSFSVAQVFdQZIjhEr0aLSFycnBIDsjXEbDXRD71GPbRHD2yqPbqC9Z1sIJR3L60oZdnuZerjYL04u4IvA7P9ifXnSF0DjfL37TiZfMQtAPRa/pD8XHq62vmtZ89Gi4jHdURWrJBf87rrCD8q1/6ofeE5NRI1rVxi2brG3Q06AxNZDhVpjB0L119vFYB6TBYiO9KgLDTBQoi4UogMGteeUH2ohZs4WGlWIfLnP/+ZYcOGERUVRYJSZldggSsLhiPXTL2pXi1I43ch4qVFBOw3SAvkL5qFENGZMxQ0QiSkY9MWkVMRskUk3ShbRLoe/lzNmlGw9781pslCJPq8C0LELDCOxl6NkZBGiwg0umfeeQeuXIG4OCpSuqtP79jhegMtLdYWkUBwzbSWi7MrBFKNCG+wsYiYb1ZGDg9TU3yX6GXLT2iR2ZfYpbE3U7duVkLEFXecUvyjpARefVVu3GI+LtycrVNr1Rng1oONr/vTrJ+4sEl2+Y4ZI2+zqI9yMYvk8gjqDdDu9xUQJrvj9cYolwqRQaNAC9SbNHdpViFSV1fHpEmTuP/++5vzNEGNKwuGI9eMPzMRHNYRcdMiYtAb1PevDQBrrqqqvkQrRJLCzEGQGiESkda0EDmul4VISs0xkCQMX64n0iprxt7/Vp8pC5HECteFyA/hcnCqhRBRAlY//hiAmr6D+fDfjZ9HSXK9gZYW6wtIILhmWsvF2RUCqUaENziyiPTpFaam+P7r+DWWZoRvvlHVs4UQaWiAykrnJ9QW/8jIgFmzLJ5W6pfUWd0bVUXIn6swQxjtQ7L4P3MNwrFj5d+W9VF0DDkmd9yt/K9SUjPkte7Tj6JdKkQGjd+vQF4f3aFZhchTTz3F3Llz6dOnT3OeJqhxZcFw5JrRCpGzlz3oCe8FvsqaAfuZM8EmRNS+NRohEp3RtBApMspCJKn8GOzdC6dPE2YMtdjHbkp3d1mIdKg5jrGpJrzmYNRdJll0qK4ZaLSImF/kdMY1HjfQ0uLINeNPi0hruTi7SqDUiPAGRzEi4YbwxgJelMLPPzcepFHP3bpBDZFU68zriLN8d+viHwoa36RqEbnr943P6/VUPrsQkDOVtm6VNU+3bo1NtsGyPsrvyuVtW2p+pNYkr3Vd01xf61SLSCsIVAUIKJt3bW0ttZqiCxUVFX4cTcuRNyCPcdnjKLpQRHZits3C6Mg18/a+t9W/M/+eyYqJK1pssQnRWRU08yIGIDwknCsNVywsIoEQU9AUWrdSUpy5SmdJidpuPL5b00LkcI28UsWePwaffw6AlNwV+KnxPJo4GoXono0pvBcuWFk5tGgCVbddkUWHxb79+8sLrdn0HNcvC/0/LddiV/3WWhy5Zvz9/2zqu9baSItLC+r36MgiYtFv5cgRW5eLWT1nZ8vv/ZyURDrVsnsmK8ty39JS+TW+/95WhAA8/DC89BIYjY1C5NcTYPUh2LcPXn6ZyokDYeVCYsNj2bhR3kdxy2hJS4O0zhJdD1XBKNhVcVhNZ3fnpktYRJqRxYsXEx8fr/500fj6WjvOMjns9e0orSjlsf88pj5u6cA7YRGxsogkmf9vhw+ri2JSjlwvwJkQ+aEiHRM6Qmqr4d13AbgU27txh4YwVr1l+zUN6eZiUbOiIqisRAoLo6xKrithYRGJiYGUxlLniY/eS8FdK91uoGWN1nWnTcUOhDu4QCjgJHAN5XOkCBBljbAQ55YNamTM6jk1VY5bdRiwqnXFzJ1rOwCDAWbPVk0Z4aOubxzH0KHyPsXFVNbKLp/YsFg2bZI3K24ZGy5fJuOXWrpelGOUlDXUnbVOWXv8Lex9hdtCJD8/H51O5/Rnt1KXwE0ee+wxysvL1Z8TFq0Y2y72Kqv6O/DOUfddTy0iYBkjEkgXLkdYxIh0yJT/UCx6CQl06iLP0ZkzsqnWHmXnwinDnB9r9n+s3acp3NEQYT9Gw1zULJGLFO5yYjl8Qc7I0tXVcZRu3KNbSbt2mudLSy2VksnEr/5xHye+LXWrgZY12rmpN9UHhGtGEHyoN2FGJxYR6wY1GvVszuS1L0QcuWIUUaNV4WY/UFi0nP5S21BrURCwsk4WIuHEcuiQbGS87joHb+rMGQCuPWEZ8RodGu3KlACN8xLIN2ru4LZrZubMmdxxxx1O98k0V4x0l/DwcMLDnXQrbaNY3xVAY+CdVoy0ZOCdTbBqW7eIdMiE0FCoN4vF5GTat5fXNJNJXntSUy2Pr66Wf47RlS7ISqOyWz8u1WsqfjZEqDEaWqvEyn/F8jsSaMclXpu6g/P1Y20FQ2kpvPmm+tCAiWXSfehPjmt8MXMBKAuMRjpdLqLTaM8tBtqCS/XG+oBxzQiCC+tAfWUN1LpFAVktjxsnf1Gysy2+LN26wfnDdoTIkSP2XTEffCD7L61eBzQ3TcZaGGi2iOzZQ6W5z0xtpWx1HDQIS8Gv5ZdfALj2UjveotGc6c53Q1l/A/lGzR3cFiLJyckkW9h2Bc2NPddMWlwa9w+6n9d2vQa0fOCdTUEzL2NEIMizZqLbQ6dOcowIQHIyBgN07CgbHE6dshUiikvluK4rSNvkByNGoPs+EtXj3RBhE6NRWgr/N30lf+ASAF8xjvumv8G4cXmW6+aPP9r4zkOwUjWKWdvboBArtHNTZ6wLCguXIPBwlL5rYRFRUCwXVmRnNxY1s/Bj5uRYxEcB8md/6FCHvkj1pqmhFnr3lv0+5eVUlsnp9+VnZSHi0C0DjRaR+jQwC5GIkAibjC5ntDaLSLPGiJSUlLBv3z5KSkowGo3s27ePffv2UVVV1fTBAhVHTe8GpcrBh4NTB7d4VHxzx4gowqaqripgC07ZZM1oS5CaxXons3HDXpyI0jm3Q1hjJdXY95aRP/Tbxp2METYxGiXbS3ldulet5ahHYpkku1PsnkCDESuR4cSs7Q3a2i/1pvqAqCMiCD4cBavaC+B2hE0tEYW0NLnltYILn32LpnehoWr/g6rjsmXxbKlcT8heoKqKWYh0jk8jJ1HugB2qD3VrnWvzMSLu8OSTT9K/f38WLlxIVVUV/fv3p3///h7HkLRV7LlmoLGRVbfEbi0eeOer7rtg3yKypXgLANtKtpGxJCMgS3G7I0S2bLGN8zh3DjpTythaTVlGk4kBW1aoD3vmRNi4XHI4ggFLk3IIRtLrrOKDNm+Wf5uj8hswsHyAnYVWm1foaVCIFTqdziLt3NM6M4K2jaP0XbsWEQc4FCIAYebXuf9+lz77WtdMaSmUpchxIopF5Ep5LBERMGyYw5dQhQgdO6odoCvrKt1a5xRhZrLnWgpCmlWIvP3220iSZPMzevTo5jxtq8OeawagvEZORtd2FG3pMTWHRaS0opTVh1arzwdqKW6LXjOR7ewKESUD/cUX5fhSbZXSs2dlUaHH0n0SWdu4uMRG2loQ2g/LwWRlxjWi5/VNGktHfT2sWSP//c9/8vbULWRSzIEhDhZatSiD7wSt9iLiaeVdQdvGoUXEOkbECVohIlkLkQMH5N+//a1Ln33lvLv31pKRAQs/k4XI8ULz2lQbS00N/OMfTl7EHCNS2iGCbSXb1M2urnMr96zkkx/lhoYfHvwwIG/S3CWg0ncF9nHkmlEsIgkRCS08oua1iBw5f0QtXa8QiKW4lf9Lu4h28nxYCZHSUizaeptMllVKz56FI+RgsvoaRpoaH9t1ZaSloX9jBZKhMep+F4NY9HYay5bJho1zH2yCCxfkIJVbb2VX9GjKSKMlw7u0FxHhmhF4gnXWjNMYEQdkZsIFnfzBbziliRG5cqWxUt9VV7n0Wsp5v/pPLSaT3M0aQGqQxQV1coyI02rEZovIkUTJ7XWutKKUe9fdqx5nrzdZMCKESBDgyDVTXus/i4jD7rs+sIjkJOXY7BOIpbiVRSkpymz2tRIiTuosAbIQKSOND66zjNGIfOQJdX+HF+68PHTFxSi9zgfp99KeMzzwgJw2+PndH8r73XorGAxqjJ7DwmfNgLaomQhWFXiCalXzIkYkLAxCU+TvqPGsxiLy44/y3UFSkkUtHafj0ZvPa5DXqoP0poZwasPNN4m1shBxWo3YLERy2ue63XLA32UbmgshRIIAR66ZQLSIeHLHa20RSY1NtXidQC3Fre2AWVpRailEcFpnCWgM4C8aZRmjETlpsrq/0/lMS5PrIAwZQoipnv9mlTwuavl/rAXgzHVyqr0St9qiFhGta0bUERF4gI1FxIMYEYC4rrIQMVzSCBHFLXPVVU22mC4thfXr4f13zUIkRB5HA6Hspy+VynDMFhGniWdmIZKW1svtlgOttV+SECJBgNY1I2lusf0pRBzWEfHENWNlETl28Rg1DTWE6cPYeOfGgO2TceSCHCl/+NxhOdBs28uNT957L2lfreT55xs3WQflK+KgfXssYjS0VgOXLtwzZgBwH8vRYWIcX5FAOaV05lDCMNtztRBai4ioIyLwBGtrsN2CZi6Q2F0WIqF11VBj7tH1ww/ybyu3jNJ8V3GtKMVXb7oJin6U16pu3etUI+Ye3UAqFQNNbWzTyTfmGBE6dHC7H1Br7ZcUUL1mBPZRvowSEkbJqPZ5UV0zEf5zzXjbfResUuKAvaf3AtCnYx/GdHOWB+c/SitK2XJsi/rYJJm4r34N4+IgrQI1IGTusXHk56dRWQlffGFZX8CRONBerF0SIrffjmnOXLIqjjGWjdyO7JZZrbuNW7vL9xr+cM1oLXnCNSPwBGtrsFri3Y1gVYC0nnHUE0IoDXLmTOfOjRYRTVPWlSsbi63qdDBiBGzbpnmhBvm83XvVUlAsu1/67hrIUjlphuf/HMMdQ5yIkIaGxsydDh3ksbnZD6g19ksSFpEgwLpKpUIguGZs2rz7IFh17ylZiAzoNMDrcTYXdgNq9VCUqN1gRPdzEb16yQ8vXbJ8DUUcWLtLLCwiBheESFQU+mlTAZjHi/w/5Ij6rMduJy1NjlNxdK7mxCJGRLhmBB5gnb7rqUWkW7auMYVX+TJYWUSsK75LkpUIATDKa9XFilrViJk4ZqDqmhkxOMZ58s358/IL63RybIqHtLZ+SUKIBAHWfTsU/Jm+q7WIGE1GdYHw5I5XeX/K3Y5iEemf0t8XQ20W7PpqTZB9QbtBdhTn5soPf/zR8jVcsYi4LOzM7plxbCCGy5wOS+PmRUMAKC9v7HXjrxgR4ZoReIJ1iXflZsWdYFWwU0vk4sVG34tZiDiq+G4RPmK2iIRGNNY8ondv1TUTe+aS84EoNUSSkyFEOCQUhBAJApQFHRrvCCRJCgiLSIOpQb3IgJcxIg1WQqRT4AoRu77apKmkXbatUGpPiDQ0yNm1YCtEQvQh6vy6bEHo2RO6d1cfdqgrw/TmW0Cj4ImJgYgWNEiIrBmBtziqI+KuRUTb+O5yyXk4eFB+oksXiJdv5KqrbY8zGOCvf21MatNL5vOGaIRIWBiV4bJaif3xmPOBaOJDBI0ISRYE6HV6tcGdYqK8XH8Zo2QE/BSsqiloplxkwMMYEU21wlOVpzhddRq9Tk/fjn2bONK/2PXV/m6RTeMte0JEcRPrdJCYiA2RIZFU1lW6LkRKSy0a2OmRkGbcBzeO49w5eRwtGR8Coo6IwHscuWbcjRGJjYWqsCSog3OF54muMX8B+/ShtBS2b4dZsyyPUe4l8vLgjjvkr/XR0HDyNlm2o6gz1lFnkN20sfsLYYqTgSgWESFELBBCJEgIM4RR01Cj3hkobhmDzuCXxkfaOiLKRSZUH4pBb3B2mF20FhHFGtIjqUdQNHSyCTSz03hLK0RMJjmlV3FTt2tn30IbGeqmELFTtERnkosZnK2Qx9PSvSrtpe8K14zAHRwFq7prEQEwJiTBGag4dh4qTgKw33QV/TMaXTKpqbBxo6wXtM13la91bZFlYD1AZW2l+nfspq/lmwJHgSJCiNhFuGaCBG3fDrAMVNU1kQPfHGhdM95eZLQWESVQNZDdMu7SrZssNqqroaxM3tZUOq1iWXJZiNgpWmLUyTEq/kjdBeGaEXiPVswaTUa1mJe7MSIAuvayEr9Sek4NVP3bV1dZxIX88gvExTnudmCvL1ZlnSxEIuohZM8+214OWjR9ZgSNCCESJFibKBUh4o/UXbASIl5eZLR1RIIhUNVdQkNlMQJQWCj/bkocKPOriLwmseqi24CBxZlyjIo/UnfBUjwL14zAE7QWEa07xBOLSHiqHCPScPq8mrr7vdTHYh+nFVGx3ym8qkQ+IEYxklj3ctBy9Kj5hdwXUq0ZIUSCBOvocaWGiD/iQ8CyoJnPLCINrVOIgG2ciLN02pV7VvLzxZ8BWLB5getNrcxddMv+ITe4e6Ysj7o6/1RVhcbPbFVdlbpNuGYE7qC9AdO6Q9yNEQGIyZCFSPtfDsDFi5j0Bn4k12IfpxVRcWAROSZ/qWO1HTjsKZqVK+FDc+uFF15wbDVpgwghEiQ4c834g+awiJy5fIajF+U7htbkmgFbIeLIIqI0tVJwu6lVWhqpvx9Ndbs06urkGz+/WUTMFxFFNINwzQjcw8Iiorn4K+uPOyTmyEKkW9X3ABTpcqglQk3PbbIiKralBgAqO7YDIFaTSINeb6lolCIlCpLURGe8toUQIkGCtWvGnzVEwLKgma8sIoo1JD0+ncRIO6kkQYyrQsQXTa10Ohg8WP57507/W0QqaisAOfvLkwuIoO2iLfGuzZjxJC6uQy/5C6A3FyL83ngVAwbATz+pbZ7Ia6KThHWpAYDKONndaGER6dDBMg7EXpGSpvxAbQghRIIEa9dMa7SIKAtNa3PLgOtCxFdNrYbItczYtcuPFhHz3awiRCJDIv0SWC0IXrRN77zJmAHYtNeykmlh6FWsXi0bLhwFp1qjDaxXUIJVY4eNhs8+k1PhTp+WY7YUlHLyWpryA7UhhBAJEqy7UKrBqn62iPgyRkShNQqRHj3k32VlUFnpOEbEV02t7FlE/JU1owgREagqcBftDZinxcxA9oDMXGgpRPY19CE01MEBDtDeNCkNSJX03di49jBxIixaJO+8cKHc16GwEB5/XN7mjh+oDSHspEGCdRdKvwer2ilo5umFxjrwrLXFh4B8k9Sxo5weWFjoXBz4oqmVIkQOHYIw87rd4nVErC0iIlBV4CZal7Sn5d1B9oycl9pZbNsvXUVRkXtaQHvuelM9YYawRotIWKz8xL33wquvwuHDMGeO3LDm8mXZ7PL223DsmGWREoEQIsFCoLpm6k31XnXehbZhEQHZPfPLL7J7pikrhbsdOa3p1Ele50pLobbW+bmaC+UionXNCATuoA1W9cYikpMDkj6Ei6YE2nGJK0RQrO/mtmdEe9NU21BLmCFMzQqLDTcLkZAQ+NvfYMIEeOedxoMnTpRrjGRkuD3+1o5wzQQJDl0zgVRHxFPXjObLnRyV3Go6SlqjxIkcPtwycRuKVQTktTG+hT8qwjUj8BYLi4g5LsOT1F2lzM4lEgA4QjbLVhjcNkpoRZAyHsU1ExMW07ijuZGeBY88IrJkHCCESJAQaK4ZuzEiPrCI9E/p32oDGhUhsnMn1JubKDenu0QJWFXO09LTKlwzAm/xlUUEII+VZFIMQB8Okof7dTwMeoMav6W4imxcM2A/G0ZkyThECJEgwbrngr9dMxYFzbzMmtEuLNntWm8UuSJEvv1W/h0dDZHNeG3WWkRaOj4EbC0iwjUjcBdfxYgodTwULa7D8zoe1pkzqhAJ1wgROy0XRJaMY4QQCRLUGJFWWEdk7eG16t+vf/e665VEgwxFiFy+LP9u7piNQYMa/w4JaXmrsHWMiHDNCNzFZxYRH9bxsC43oGbNaC0iVi0XRJaMc4QQCRKsXTP+toj4qo5IaUUpj21+TH3sdiXRICI9HSI01+LmtlLExzfWVNq3z3kvruZAuWAYJSMgXDMC97FX4t2TGBFfWiisy7zbtYiA2nLB5WppbRghRIIE6zsD5eLv72BVCYnq+mrAswuNLyqJBgt6fWM9EWh+i0hpqZylo+CsF1dzoHxmFYRrRuAu9preeWQR8aGFwrrxnV2LiPa8rlZLa8MIIRIkaF0zilsGIC48zi/j0V5klDsCTy40vqokGizkanpsNbcQOXLEdltLxstZXzCEa0bgLnZLvHsSIwI+s1BYW0Rs0ncFbiOESJCgbXqnuGViw2L91rtDe17ljsATi4ivKokGCy0pRPwdL6dcRBSERUTgLsq6Z5JMaiyap1kzgE8sFNaN75QbMYv0XYFbtIqCZkajkXolH7KVkhyWTEZ0BmFSGOWXy8mIziAlJoWamhq/jMfYYCQjWi7ME6WLIiM6gzhDnEfjmdJrCtenX09JeQnp8el+fV/NSWhoKLm5Bs3j5j2fYo2+7z7ZEtLS8XLCIiLwFu1n6HK9HOXtUYyID7FufOfUNSNwiaAWIpIkcfr0aS5duuTvoTQ7N3e8mWsTriU+Ih5DuYHXh79OqCGUY8eO+WU8kiTx+vDXAQgxhNCQ00B72ns1nva058rZKxw765/31BIYjQnodClIko6//EW2TjRnDFteHowbJ7tjWrqqtE2MiAhWFbiJ1qp2uU4WIl5ZRHyANn23tqFWLakgXDOeE9RCRBEhHTp0ICoqqtUWwgKIqIzg/JXzJEclExESgbHCSFRoFF3bdfXLeCRJovqsHKQaoguhQWogPT5dfBkdIEkSFRXVdOx4hv/+b3jrrU5I5lIG48Y1r0BIS/NPrJxwzQi8RStmlVgMvwsRTfqu4pYB4ZrxhqAVIkajURUhSUlJTR8Q5ITWhUI9GEINGEIMEAKhYaFERPjP3K0L0SEhYdKZQIKIiAgiwoX53RH19ZEkJMDNN5/hgw86UF1tUINHW2NQvXDNCLxFG4sWMK4ZTbCqGh8XEum3eL3WQNAGqyoxIVFRUX4eScugM9cElJDUugwGvcHZIc2OYoFS0m+ts18ElsiaMYqwMEhOlj+/rbnYonDNCLxFp9OpF/hAs4jUGmsd1xARuEXQXzlasztGi/I+JUnCaDILEZ1/hYg1beV/4SlhYZCaqkOnk/u+tPZii9YXDOGaEXiCImhVi4in6bs+Qs2aaahtTN0VgapeIWxJQYI9i4i/TYE6LIWHsIg0TWIidO4M774LWVmtV4SAbYyIcM0IPCHUEMqVhiuBYxHRBKva7bwrcBtx5QgStG4Q1SLiI9dMZmYmS5Ys8XhMCq4Kkfz8fK6++mqn+xQXF6PT6di3b5/b4/KW0aNHM2fOnGZ7/ZAQuTNuaxYhYMciIlwzAg9QLSJ1ARIjoknfFa4Z3yAsIkGCahGRJEzIMRm+cs3s2rWL6Ohoj8ek4KoQmT9/PrNmzVIfT5s2jUuXLrF27Vq3x9AcrFmzhtDmLvLRBhAl3gW+QLGsBYxFRJs1I2qI+AQhRIIENUYEiQZTA+A7i0h7D0t82lhEXDSwxcTEEBMTuKbMxMREfw+hVSCyZgS+QBG0ihDxd4yIhWtGWER8gnDNmCktlVsQNHdDsLNnz5KSksKzzz6rbtuxYwdhYWFs2LDB4XGKtcHTYNX8/HzS09MJDw8nNTWVhx56SH3O2jWj0+l48803+e1vf0tUVBQ5OTl8+umnNq+pWEQ+fOtD7rj+DlWYrF27Fp1Ox2uvvabuO27cOB577DF1LIprJj8/n3feeYdPPvkEnU6HTqejoKBAPe7o0aNce+21REVF0a9fP7799lun79OVsW/dupUhQ4YQHh5Op06dePTRR2loaFCft3bNLF26lJycHCIiIujYsSO33nqr+pwkSfz1r38lKyuLyMhI+vXrx+rVq52Osa1gU0dEuGYEHqAIWiVYNVAsItr0XWER8Y5WJUQkCS5fdv9n6VK5Rfp118m/ly51/zUkybUxtm/fnrfeeov8/Hx2795NVVUVd955Jw888AA33HCDw+NGDBrByJyRXJ1xNYO7DmZkzkg6J3dWrQu9e/d2eOzq1at56aWXWL58OUeOHGHt2rX06dPH6TifeuopbrvtNvbv38+ECROYMmUKFy5csNhHER4Dhw7kaOFRzp8/D8gX+uTkZLZu3QpAQ0MD27dvZ9SoUTbnmT9/Prfddhvjx4/n1KlTnDp1imHDhqnPL1iwgPnz57Nv3z66d+/O5MmTLUSDu2MvKytjwoQJDB48mO+//55ly5axcuVKFi1aZPe1du/ezUMPPcTTTz9NYWEhX375JSNHjlSff+KJJ1i1ahXLli3j4MGDzJ07lzvvvFN9720Za9eMsIgIPMHaNeP3GBF7FhEhRLyiVblmqqvBW4u/yQQPPij/uENVFbgaZjFhwgSmT5/OlClTGDx4MBERETz33HNOj/nw4w85eu4o0aHRXGm4gkkykZOYQ0SovLg7i2koKSkhJSWFMWPGEBoaSnp6OkOGDHF6vmnTpjF58mQAnn32WV555RV27tzJ+PHj1X0Ui0i33G7Et4tn69at3HLLLRQUFPDwww/z0ksvAXIMSk1NDSNGjLA5T0xMDJGRkdTW1pKSkmLz/Pz587npppsAWWD07t2boqIicrXd49wY+9KlS+nSpQuvvvoqOp2O3NxcTp48ySOPPMKTTz6J3qpLXElJCdHR0UycOJHY2FgyMjLo378/AJcvX+bFF19k8+bNDB06FICsrCy++eYbli9fbld4tSVE+q7AFyiCtqZB7j/lb4uIRfquTnTe9QWtyiISTLzwwgs0NDTwr3/9i/fff7/JCqnp6el06dqF9Kx0Omd2pkvXLvTo3oPs7Gyys7PJyMhweOykSZO4cuUKWVlZTJ8+nY8//rhJq0Lfvn3Vv6Ojo4mNjeXMmTN299XpdAz8r4EUFBRw6dIlDh48yIwZMzAajRw+fJiCggIGDBjgUVyIdhydOnUCcDgOV8Z++PBhhg4dahHfMnz4cKqqqii145cbO3YsGRkZZGVlcdddd/H+++9TXS2Xtj906BA1NTWMHTtWtUzFxMTw7rvv8vPPP7v9XlsbwjUj8AXWnyN/CxF7Bc1E+q53tCqLSFSUbJlwh7Iy6NlTtoQoGAxw6JBc78Gdc7vD0aNHOXnyJCaTiePHj1tcPO0xbOAwjh8/brFNm6WSkZHBwYMH7R7bpUsXCgsL2bhxI5s2beKBBx7g+eefZ+vWrQ4tKdbbdTodJu0kYRmsOnjYYNZ9sI5t27bRr18/EhISGDlyJFu3bqWgoIDRo0c7fX+O0I5DTWG2Goc7Y5ckySbIVjL71ewVZIuNjWXPnj0UFBSwYcMGnnzySfLz89m1a5f6mp9//jmdrT4s4eH+NR8HAiJYVeALrF18gRSsaqyX4/WEa8Y7WpUQ0elcd48odO9uv1V69+7NM0aAuro6pkyZwu23305ubi55eXkcOHCAjh07OjzmXx//i6JzRRj0BowmIzp0XNXxKvX5ptJNIyMjufnmm7n55pt58MEHyc3N5cCBAwwYMMDj96FN3x0yfAh/+f/+wurVq1XRMWrUKDZt2sT27duZPXu2w9cJCwvDaDR6PA536NWrFx999JGFINm+fTuxsbE2YkIhJCSEMWPGMGbMGBYuXEhCQgKbN29m7NixhIeHU1JS0ubdMPYQ6bsCXxCoFpE6Yx3V9bJ1VLhmvKNVCRFPaelW6QsWLKC8vJyXX36ZmJgYvvjiC/Ly8li3bp3DYzIyM6iNrVUfh+hDyE5xrUnJ22+/jdFo5JprriEqKor33nuPyMhIp+4cV9BaEHr06kFSUhLvv/8+n3zyCSBnnzz88MMAduNDFDIzM/nqq68oLCwkKSmJ+Ph4r8bljAceeIAlS5Ywa9YsZs6cSWFhIQsXLmTevHk28SEA69at4+jRo4wcOZJ27dqxfv16TCYTPXr0IDY2lvnz5zN37lxMJhMjRoygoqKC7du3ExMTw9SpU5vtfQQDwiIi8AU2FpFACVYVWTM+QwgRMy3VKr2goIAlS5awZcsW4uLiAHjvvffo27cvy5Yt4/7777d7nHXxMHfKuyckJPDcc88xb948jEYjffr04bPPPvO6a7F2THq9nlGjRrF27Vp+9atfAXKsRnx8PFlZWep7tcf06dMpKChg0KBBVFVVsWXLFjIzM70amyM6d+7M+vXr+eMf/0i/fv1ITEwkLy+PJ554wu7+CQkJrFmzhvz8fGpqasjJyeGf//ynmqX0zDPP0KFDBxYvXszRo0dJSEhgwIABPP74480y/mBC+xkN1Yf6vUmjIDgJVIuIqCPiO3SS5GriactTUVFBfHw85eXlNheympoajh07RteuXZsM9GwNVNVV8eO5H9XH0aHR9Gzf048jgp/O/0RFbQUAceFxdE9qRn9WK6GtfW7Dngmj3lRPXHgc5Y+W+3s4giBk4v9M5PMjn6uP9963l6tTrvbbeD4+/DG/+9fvGJo2lNKKUk5UnGDnPTsZ3Hmw38YUiDi7flsjsmaCBGuLSKDdXYqGdwJ7KHezIj5E4CkBZxHRBKuq3XeFRcQrxNUjSLDO6PBVnxlvsHDNCCEisIPi3xfxIQJPCbgYETtN70T6rneIq0eQEIgWEa04EkJEYA/l7lXUEBF4irUFJFAsIhW1FWrfLxGs6h3i6hEkBLpFxFooCQQgXDMC77F2zfi9jojZInL+ynl1m7CIeIcQIkGCdWdbYRERBAPK3atwzQg8xdo1EygWEaWGSFRoVECsx8GMuHoECdYWEXfSd5sLESMiaArlIiJcMwJPCdQYEQXhlvEecfUIEmxiRALBNSMsIoImEBYRgbcEWtaM9flFxoz3iKtHkGATIxIApkBhERE0hYgREXiL1iKi1+n9vvZZx6gIi4j3iKtHkBCIwapa7DWMEwhE1ozAW7QWEX+7ZeyNQQSqeo8QIkFCc6bvZmZmsmTJEreP89Q1k5+fz9VXX+10n+LiYnQ6Hfv27XN7XN4yevRo5syZ0+LnbY2odUQMwjUj8AytRcTfbhmwYxERrhmv8X/Eo8AlmtMismvXLqLdbVuM566Z+fPnM2vWLPXxtGnTuHTpEmvXrnV7DM3BmjVrmuxmLHAN1TUjLCICD7GwiPg5dRdEsGpzIIRIEKFDh4TcGsiXFpH27dt7Nh4PLSIxMTHExASuOTMxMdHfQ2g1qK4ZESMi8JBAs4iE6EMs1mIhRLxHuGYUSkthyxb5dzPy7rvvkpSURG1trcX2W265hbvvvtvpsdoLv7sWkfz8fNLT0wkPDyc1NZWHHnpIfc7aNaPT6XjzzTf57W9/S1RUFDk5OXz66ae24zFbRD5860OGDxqubl+7di06nY7XXntN3TZu3Dgee+wxdSyKayY/P5933nmHTz75BJ1Oh06no6CgQD3u6NGjXHvttURFRdGvXz++/fZbp+/TlbFv3bqVIUOGEB4eTqdOnXj00UdpaGhQn7d2zSxdupScnBwiIiLo2LEjt956q/qcJEn89a9/JSsri8jISPr168fq1audjrEt0WCU57XOWOfnkQiClUCLEdHpdBaCSLhmvKd1CRFJgsuX3f9ZuhQyMuC66+TfS5e6/xouNjGeNGkSRqPR4uJ47tw51q1bx3//9387PK53796MyB7ByJyRjMwZSWxsrGpZiImJUdvS22P16tW89NJLLF++nCNHjrB27Vr69OnjdJxPPfUUt912G/v372fChAlMmTKFCxcuWOyjCKOBQwdy+NBhzp07B8gX+uTkZLZu3QpAQ0MD27dvZ9SoUTbnmT9/Prfddhvjx4/n1KlTnDp1imHDhqnPL1iwgPnz57Nv3z66d+/O5MmTLUSDu2MvKytjwoQJDB48mO+//55ly5axcuVKFi1aZPe1du/ezUMPPcTTTz9NYWEhX375JSNHjlSff+KJJ1i1ahXLli3j4MGDzJ07lzvvvFN9722ZlXtWsrl4MwB/3/F3Vu5Z6ecRCYIR7UU/ECwiYOkiEhYR72ldrpnqavDW5G8ywYMPyj/uUFUFLsRZREZG8vvf/55Vq1YxadIkAN5//33S0tIYPXq0w+PWr1/P/pP7aTA1EGoIJTc51+J5ZzENJSUlpKSkMGbMGEJDQ0lPT2fIkCFOxzlt2jQmT54MwLPPPssrr7zCzp07GT9+vLqPYhHpltuNxKREtm7dyi233EJBQQEPP/wwL730EiDHoNTU1DBixAib88TExBAZGUltbS0pKSk2z8+fP5+bbroJkAVG7969KSoqIjc312ZfV8a+dOlSunTpwquvvopOpyM3N5eTJ0/yyCOP8OSTT6LXW2rzkpISoqOjmThxIrGxsWRkZNC/f38ALl++zIsvvsjmzZsZOnQoAFlZWXzzzTcsX77crvBqK5RWlHLvunvVxxIS9627j3HZ40iLS/PjyATBhtY1EwgxImBpmREWEe9pXRaRIGH69Ols2LCBsrIyAFatWsW0adOcpsBmZGSQkZVBl65d6JrVlezsbIufjIwMh8dOmjSJK1eukJWVxfTp0/n444+btCr07dtX/Ts6OprY2FjOnDljd1+dTseIESMoKCjg0qVLHDx4kBkzZmA0Gjl8+DAFBQUMGDDAo7gQ7Tg6deoE4HAcroz98OHDDB061GKuhw8fTlVVFaV23HJjx44lIyODrKws7rrrLt5//32qq+XSzocOHaKmpoaxY8daWKfeffddfv75Z7ffa2viyPkjmCSTxTajZKToQpGfRiQIVrSuGWERaZ20LotIVJRsmXCHsjLo2VO2hCgYDHDoEHTu7N65XaR///7069ePd999l3HjxnHgwAE+++wzp8f07t2bY8XHANkSYS1aMjIyOHjwoN1ju3TpQmFhIRs3bmTTpk088MADPP/882zdutWhJcV6u06nw2Qy2WxTGDVqFG+tfItt27bRr18/EhISGDlyJFu3bqWgoMCptccZ2nEo57MehztjlyTJZu4ks1vNnhCMjY1lz549FBQUsGHDBp588kny8/PZtWuX+pqff/45na0+K+HhgXHn5i9yknLQ6/QWYsSgM5CdmO3HUQmCEQuLSADEiIDlOEQdEe9pXUJEp3PJPWJB9+6wYgXcdx8YjbIIWb5c3t6M3HPPPbz00kuUlZUxZswYunTp4nT/9evXc/D0QWobaokLjyMjwdIC0lS6aWRkJDfffDM333wzDz74ILm5uRw4cIABAwZ4/B606bujRo/i4XkPs3r1alV0jBo1ik2bNrF9+3Zmz57t8HXCwsIwGo0ej8MdevXqxUcffWQhSLZv305sbKyNmFAICQlhzJgxjBkzhoULF5KQkMDmzZsZO3Ys4eHhlJSUtGk3jD3S4tJYMXEF9627D6NkxKAzsHzicuGWEbhNwFtEhGvGa1qXEPGUvDwYNw6KiiA7G9Kaf7GcMmUK8+fP54033uDdd99tcv+MjAyqIqu40nCFpMgkurbr6vK53n77bYxGI9dccw1RUVG89957REZGOnXnuILWgtCnTx+SkpJ4//33+eSTTwA5++Thhx8GsBsfopCZmclXX31FYWEhSUlJxMfHezUuZzzwwAMsWbKEWbNmMXPmTAoLC1m4cCHz5s2ziQ8BWLduHUePHmXkyJG0a9eO9evXYzKZ6NGjB7GxscyfP5+5c+diMpkYMWIEFRUVbN++nZiYGKZOndps7yMYyBuQx7jscRRdKCI7MVuIEIFHBHyMiHDNeI0QIgppaS0iQBTi4uK45ZZb+Pzzz/nNb37j0jHKhd/dGiIJCQk899xzzJs3D6PRSJ8+ffjss89ISkpyd9iW49FYRAx6A6NGjWLt2rX86le/AuRYjfj4eLKysoiLi3P4OtOnT6egoIBBgwZRVVXFli1byMzM9GpsjujcuTPr16/nj3/8I/369SMxMZG8vDyeeOIJu/snJCSwZs0a8vPzqampIScnh3/+859qltIzzzxDhw4dWLx4MUePHiUhIYEBAwbw+OOPN8v4g420uDQhQAReEYgWEZG+61t0kuRi3qmbFBcX88wzz7B582ZOnz5Namoqd955JwsWLCAszLUPU0VFBfHx8ZSXl9tcyGpqajh27Bhdu3YlIiI4y0ePHTuWnj178vLLL7u0/6Gzh6iur6ZDdAfS49ObeXRNc676HMWXigEY2Gmg6DfjAq3hcysQtCRfHPmCCf8zAYDbet/Gh7d+6OcRwai3R/H18a8B+PHBH+mR3MPPIwo8nF2/rWk2i8iPP/6IyWRi+fLlZGdn88MPPzB9+nQuX77MCy+80FynDQouXLjAhg0b2Lx5M6+++qpLx5y9fJbqejlb48zlM0SGRNI+2rOKqL5Gr9MLESIQCJqFQCtoBiJ919c0mxAZP368Rc2JrKwsCgsLWbZsWZsXIgMGDODixYv85S9/oUePppV0nbGO4+XHLbYdLz9OfES8X02VimvGnfLuAoFA4A6BVuIdRPqur2nRGJHy8nKnfTxqa2stSp9XVFS0xLBanOLiYrf2r2mosbu9tqHWv0JEYwWpM9YFzCIhEAhaD9p1JRAtItFh7jcMFVjSYreyP//8M6+88gozZsxwuM/ixYuJj49Xf5pKaW0rRITYjyXwdwR5ZW0lAA2mBvb/sp+zl8/6dTwCgaD1EYjBqsraGx0aLSzCPsDtGczPz1ebkzn62b17t8UxJ0+eZPz48UyaNIl77rnH4Ws/9thjlJeXqz8nTpxw/x21QsIMYWTEW6baZsRn+PVLWWes42y1pfA4Xn5cNDcTCAQ+JRDTd5W1V8SH+Aa3XTMzZ87kjjvucLqPNvXy5MmTXHvttQwdOpQVK1Y4PS48PLzNV6R0RPvo9sRHxFPbUEt4SLjf7wwC1V0kEAhaFwFpETG7ZkR8iG9wW4gkJyeTnJzs0r5lZWVce+21DBw4kFWrVtktGCVwnTBDWMB8EQPVXSQQCFoXgVziXVhEfEOzKYOTJ08yevRounTpwgsvvMDZs2c5ffo0p0+fbq5TClqQQHQXCQSC1kdAWkTMN1wNpgZKK2ybZQrco9myZjZs2EBRURFFRUWkWVUsbaYaaoIWJtDcRQKBoPURiDEih84eAmD/L/vJWJLBiokryBuQ5+dRBS/NZhGZNm0akiTZ/REEH9OmTbNbij7MEEZseKwQIQKBoFkINItIaUUp64+sVx+bJBP3rbtPWEa8QPSaEbjE3//+dyEiBQJBixNoMSJHzh9BwnItNEpGii4Uib5KHiKEiMAlmrMjrkAgEDgi0CwiOUk56HV6TJJJ3WbQGchOzPbjqIIbkcZiprSilC3HtjS7ea24uNhu7ZXRo0c32zkzMzN59tln+cMf/kBsbCzp6ek2qdQHDhzguuuuIzIykqSkJO69916qqqrU561dM6tXr6ZPnz7q/mPGjOHy5cvq86tWraJnz55ERESQm5vL0qVLm+39CQSC1kuglXhPi0tjxcQVGHRyF3SDzsDyicuFNcQLWpVFRJIktTGcO7zz/TvM+mIWJsmEXqfnlRtfYWq/qW69RlRolEuN37p06cKpU6fUx6dPn2bMmDGMHDnS4TE33ngj27Ztc/q6WtFgj7/97W8888wzPP7446xevZr777+fkSNHkpubS3V1NePHj+e//uu/2LVrF2fOnOGee+5h5syZvP322zavderUKSZPnsxf//pXfvvb31JZWcm2bdtU180bb7zBwoULefXVV+nfvz979+5l+vTpREdHM3Wqe/MqEAjaNhZN7wIkWDVvQB7jssdRdKGI7MRsIUK8RCcFsOPfWRthe+3UL9ddJmZxjD+GStVjVW73HKipqWH06NG0b9+eTz75xGGdlbKyMq5cueL0tbKzHZsFMzMz+dWvfsV7770HyIItJSWFp556ihkzZvDGG2/wyCOPcOLECaKj5fewfv16fv3rX3Py5Ek6duzItGnTuHTpEmvXrmXPnj0MHDiQ4uJiMjIybM6Xnp7OX/7yFyZPnqxuW7RoEevXr2f79u1Nzktrxt7nViAQOCfk6RCMkpEvpnzB+OzxTR8g8DvOrt/WtCqLSLCRl5dHZWUlGzdudFrsrXPnzl6fq2/fvurfOp2OlJQUzpw5A8Dhw4fp16+fKkIAhg8fjslkorCwkI4dO1q8Vr9+/bj++uvp06cP48aN44YbbuDWW2+lXbt2nD17lhMnTpCXl8f06dPVYxoaGkSciUAg8IgQfQhGo5GKmtbZCLWt06qESFRoFFWPOXdRWFNWUUbPpT1tAo8OPXCIznGuC4Co0Ci3zrto0SK+/PJLdu7cSWys8+p8vnDNhIaGWjzW6XSYTPJ7liTJoVvJ3naDwcDGjRvZvn07GzZs4JVXXmHBggXs2LGDqCh5Ht544w2uueYam+MEAoHAHVbuWUmtUe7KPnnNZCrrKkXNjlZGqxIiOp3ObfdI9+TurJi4gvvW3YdRMqqBR92TuzfTKOGjjz7i6aef5osvvqBbt25N7v/mm2826Zrxhl69evHOO+9w+fJl1Sryv//7v+j1erp3tz8POp2O4cOHM3z4cJ588kkyMjL4+OOPmTdvHp07d+bo0aNMmTKl2cYsEAhaP6UVpdy77l71sVKzY1z2OBGX0YpoVULEU1oy8OiHH37g7rvv5pFHHqF3795qyfuwsDASExPtHuML14wzpkyZwsKFC5k6dSr5+fmcPXuWWbNmcdddd9m4ZQB27NjBf/7zH2644QY6dOjAjh07OHv2LD179gTkDs0PPfQQcXFx3HjjjdTW1rJ7924uXrzIvHnzmvW9CASC1sOR80csrNUgana0RoQQMZMWl9YiH+zdu3dTXV3NokWLWLRokbp91KhRFBQUNPv57REVFcVXX33F7NmzGTx4MFFRUdxyyy28+OKLdvePi4vj66+/ZsmSJVRUVJCRkcHf/vY3brzxRgDuueceoqKieP755/nTn/5EdHQ0ffr0Yc6cOS34rgQCQbAjana0DVpV1oxAEOiIz61A4B4r96y0cZ2LGJHAR2TNCAQCgaBVIGp2tH6EEBEIBAJBQNNSrnOBfxAl3gUCgUAgEPgNIUQEAoFAIBD4DSFEBAKBQCAQ+I2gFyJKdVCBIBgQn1eBQCCwJGiDVcPCwtDr9Zw8eZL27dsTFhbmUvdbgcAfSJJEXV0dZ8+eRa/XExbm/3bmAoFAEAgErRDR6/V07dqVU6dOcfLkSX8PRyBwA4RiKAAACJtJREFUiaioKNLT0502ORQIBIK2RNAKEZCtIunp6TQ0NGA0Gv09HIHAKQaDgZCQEGG5EwgEAg1BLURAbr4WGhpq011WIBAIBAJB4CPswwKBQCAQCPyGECICgUAgEAj8hhAiAoFAIBAI/EZAx4gojYErKir8PBKBQCAQCASuoly3leu4MwJaiFRWVgLQpUsXP49EIBAIBAKBu1RWVhIfH+90H53kilzxEyaTiZMnTxIbG+vzlMeKigq6dOnCiRMniIuL8+lrCywRc91yiLluOcRctxxirlsOX821JElUVlaSmpraZN2kgLaI6PV60tKat/VzXFyc+GC3EGKuWw4x1y2HmOuWQ8x1y+GLuW7KEqIgglUFAoFAIBD4DSFEBAKBQCAQ+I02K0TCw8NZuHAh4eHh/h5Kq0fMdcsh5rrlEHPdcoi5bjn8MdcBHawqEAgEAoGgddNmLSICgUAgEAj8jxAiAoFAIBAI/IYQIgKBQCAQCPyGECICgUAgEAj8RpsUIkuXLqVr165EREQwcOBAtm3b5u8hBT2LFy9m8ODBxMbG0qFDB37zm99QWFhosY8kSeTn55OamkpkZCSjR4/m4MGDfhpx62Hx4sXodDrmzJmjbhNz7TvKysq48847SUpKIioqiquvvprvvvtOfV7MtW9oaGjgiSeeoGvXrkRGRpKVlcXTTz+NyWRS9xFz7Rlff/01v/71r0lNTUWn07F27VqL512Z19raWmbNmkVycjLR0dHcfPPNlJaW+maAUhvjgw8+kEJDQ6U33nhDOnTokDR79mwpOjpaOn78uL+HFtSMGzdOWrVqlfTDDz9I+/btk2666SYpPT1dqqqqUvd57rnnpNjYWOmjjz6SDhw4IN1+++1Sp06dpIqKCj+OPLjZuXOnlJmZKfXt21eaPXu2ul3MtW+4cOGClJGRIU2bNk3asWOHdOzYMWnTpk1SUVGRuo+Ya9+waNEiKSkpSVq3bp107Ngx6d///rcUExMjLVmyRN1HzLVnrF+/XlqwYIH00UcfSYD08ccfWzzvyrzOmDFD6ty5s7Rx40Zpz5490rXXXiv169dPamho8Hp8bU6IDBkyRJoxY4bFttzcXOnRRx/104haJ2fOnJEAaevWrZIkSZLJZJJSUlKk5557Tt2npqZGio+Pl15//XV/DTOoqayslHJycqSNGzdKo0aNUoWImGvf8cgjj0gjRoxw+LyYa99x0003SX/4wx8stv3ud7+T7rzzTkmSxFz7Cmsh4sq8Xrp0SQoNDZU++OADdZ+ysjJJr9dLX375pddjalOumbq6Or777jtuuOEGi+033HAD27dv99OoWifl5eUAJCYmAnDs2DFOnz5tMffh4eGMGjVKzL2HPPjgg9x0002MGTPGYruYa9/x6aefMmjQICZNmkSHDh3o378/b7zxhvq8mGvfMWLECP7zn//w008/AfD999/zzTffMGHCBEDMdXPhyrx+99131NfXW+yTmprKVVdd5ZO5D+imd77m3LlzGI1GOnbsaLG9Y8eOnD592k+jan1IksS8efMYMWIEV111FYA6v/bm/vjx4y0+xmDngw8+YM+ePezatcvmOTHXvuPo0aMsW7aMefPm8fjjj7Nz504eeughwsPDufvuu8Vc+5BHHnmE8vJycnNzMRgMGI1G/vznPzN58mRAfK6bC1fm9fTp04SFhdGuXTubfXxx7WxTQkRBp9NZPJYkyWabwHNmzpzJ/v37+eabb2yeE3PvPSdOnGD27Nls2LCBiIgIh/uJufYek8nEoEGDePbZZwHo378/Bw8eZNmyZdx9993qfmKuvefDDz/kH//4B//zP/9D79692bdvH3PmzCE1NZWpU6eq+4m5bh48mVdfzX2bcs0kJydjMBhsFNyZM2ds1KDAM2bNmsWnn37Kli1bSEtLU7enpKQAiLn3Ad999x1nzpxh4MCBhISEEBISwtatW3n55ZcJCQlR51PMtfd06tSJXr16WWzr2bMnJSUlgPhc+5I//vGPPProo9xxxx306dOHu+66i7lz57J48WJAzHVz4cq8pqSkUFdXx8WLFx3u4w1tSoiEhYUxcOBANm7caLF948aNDBs2zE+jah1IksTMmTNZs2YNmzdvpmvXrhbPd+3alZSUFIu5r6urY+vWrWLu3eT666/nwIED7Nu3T/0ZNGgQU6ZMYd++fWRlZYm59hHDhw+3SUP/6aefyMjIAMTn2pdUV1ej11tekgwGg5q+K+a6eXBlXgcOHEhoaKjFPqdOneKHH37wzdx7He4aZCjpuytXrpQOHTokzZkzR4qOjpaKi4v9PbSg5v7775fi4+OlgoIC6dSpU+pPdXW1us9zzz0nxcfHS2vWrJEOHDggTZ48WaTe+Qht1owkibn2FTt37pRCQkKkP//5z9KRI0ek999/X4qKipL+8Y9/qPuIufYNU6dOlTp37qym765Zs0ZKTk6W/vSnP6n7iLn2jMrKSmnv3r3S3r17JUB68cUXpb1796plK1yZ1xkzZkhpaWnSpk2bpD179kjXXXedSN/1htdee03KyMiQwsLCpAEDBqgppgLPAez+rFq1St3HZDJJCxculFJSUqTw8HBp5MiR0oEDB/w36FaEtRARc+07PvvsM+mqq66SwsPDpdzcXGnFihUWz4u59g0VFRXS7NmzpfT0dCkiIkLKysqSFixYINXW1qr7iLn2jC1btthdn6dOnSpJkmvzeuXKFWnmzJlSYmKiFBkZKU2cOFEqKSnxyfh0kiRJ3ttVBAKBQCAQCNynTcWICAQCgUAgCCyEEBEIBAKBQOA3hBARCAQCgUDgN4QQEQgEAoFA4DeEEBEIBAKBQOA3hBARCAQCgUDgN4QQEQgEAoFA4DeEEBEIBAKBQOA3hBARCAQCgUDgN4QQEQgEAoFA4DeEEBEIBAKBQOA3hBARCAQCgUDgN/5/6//YHsDkc5AAAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "θ = range(0,4π,length=100)\n", + "x = @. sin(θ + randn()*0.1) * (1 + 0.3*randn())\n", + "y = @. sin(θ + randn()*0.1) * (1 + 0.3*randn())\n", + "z = randn(100)\n", + "plot(x, \"b.-\")\n", + "plot(y, \"r.-\")\n", + "plot(z, \"g.-\")\n", + "legend([\"x = sin with noise\",\"y = sin with noise\",\"z = noise\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All three have mean nearly zero:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-0.043997529467936246, -0.02138613818877366, 0.13625706217021702)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean(x),mean(y),mean(z)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But the covariance of x and y is totally different from the covariance of x and z:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "covar (generic function with 1 method)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# A simple covariance function. See https://github.com/JuliaStats/StatsBase.jl for\n", + "# better statistical functions in Julia.\n", + "covar(x,y) = dot(x .- mean(x), y .- mean(y)) / (length(x) - 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.49167750557613343, 0.022123022470670186)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "covar(x,y), covar(x,z)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variance and covariance have the units of the data squared. I can make the covariance of x and y smaller simply by dividing y by 10, which doesn't see like a good measure of how correlated they are.\n", + "\n", + "Often, it is nicer to work with a dimensionless quantity *independent* of the vector lengths, the **correlation**:\n", + "\n", + "$$\n", + "\\operatorname{Cor}(x,y) = \\frac{\\operatorname{Covar}(x,y)}{\\sqrt{\\operatorname{Var}(x) \\operatorname{Var}(y)}} = \\frac{(Px)^T (Py)}{\\Vert Px \\Vert \\; \\Vert Py \\Vert}\n", + "$$\n", + "\n", + "This is just the dot product of the vectors (after subtracting their means) divided by their lengths.\n", + "\n", + "It turns out that Julia's Statistics module has a built-in function `cor` that computes precisely this:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9083413856130808" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "covar(x,y) / sqrt(covar(x,x) * covar(y,y)) # correlation, manually computed" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9083413856130808" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cor(x,y)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.02974364653143366" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cor(x,z)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "30.539005520157996" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs(cor(x,y)/cor(x,z))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we've scaled out the overall length of the vectors, we can sensibly compare the correlation of x,y with the correlation of x,z, and we see that the former are more than 10x the correlation of the latter in this sample" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another way of seeing this is to plot $y$ vs $x$ or $z$ vs $x$:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAFiCAYAAAAQvxn5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWBElEQVR4nO3deXgUVbo/8G8nZGNJMIQkBAJBUBZFlgAqmzCOjBEUdMAfo0BYFGFYBnHk4syVnYe5gIoLARVNRBAYFxjUCxrHgMwVYhaREXBBCQlrwtYRhIQk5/dHTXW6O713ddfS38/z9NOkurrrdJOuvHXOe95jEkIIEBERERlUmNoNICIiIgokBjtERERkaAx2iIiIyNAY7BAREZGhMdghIiIiQ2OwQ0RERIbGYIeIiIgMjcEOERERGRqDHSIiIjI0BjtEREQaNGHCBKSlpfn03HfeeQerV69WtD2ytLQ0TJgwISCvHSgMdoiIiAwmkMGOHjHYISIiUkhtbS2qqqocPvbrr78GuTUkY7BDRKRRJpPJ6a2kpMThc7755huYTCa88cYbDR7buXMnTCYTduzYAQCoqKjAlClTkJqaiqioKLRs2RL9+/fHZ5995nVbp06diujoaBQVFVm21dXV4e6770ZSUhJOnz7t9WsuXLgQJpOpwfacnJwGn0FaWhqGDx+OXbt2oVevXoiJiUHnzp3x5ptvNnj+yZMnLe87MjISKSkpGDVqFM6ePWvZp7S0FGPHjkViYiKioqLQpUsXPPfcc6irq7PsU1JSApPJhBUrVmDp0qVo3749oqKikJeXZ2l7cXExRo0ahRtuuAEdOnQAAAghkJWVhR49eiAmJgY33HADRo0ahZ9//tntZ7JmzRoMGjQIiYmJaNKkCbp164YVK1bg+vXrln0GDx6Mjz/+GMePH7f5nZFVV1dj6dKl6Ny5s+X/feLEiaioqLA51vXr1zF37lwkJyejcePGGDBgAL766iu3bdSiRmo3gIiIHNu3b5/Nz1evXsW4ceNQW1uL+Ph4h8/p3r07evbsiezsbEyePNnmsZycHCQmJuK+++4DAIwbNw7FxcVYtmwZbr75Zly6dAnFxcU4f/68121dvXo18vPz8fDDD6OoqAjNmzfHokWLsHv3buzatQutWrWy7CvnoTgL2Hz1zTff4KmnnsK8efOQlJSE9evXY/LkyejYsSMGDRoEQAp0+vTpg+vXr+Mvf/kLbrvtNpw/fx6ffPIJLl68iKSkJFRUVKBfv36orq7GkiVLkJaWho8++gh//vOf8dNPPyErK8vmuC+99BJuvvlmrFq1CrGxsbjpppuwf/9+AMBDDz2EMWPGYOrUqbhy5QoA4IknnkBOTg5mzZqF//mf/8GFCxewePFi9OvXD9988w2SkpKcvseffvoJjzzyCNq3b4/IyEh88803WLZsGb777jtLYJeVlYUpU6bgp59+wrZt22yeX1dXhxEjRmDv3r2YO3cu+vXrh+PHj2PBggUYPHgwCgsLERMTAwB4/PHHsWHDBvz5z3/GPffcg2+//RYPPfQQfvnlF2X+w4JJEBGR5tXU1IgRI0aIpk2biqKiIpf7vvTSSwKA+P777y3bLly4IKKiosRTTz1l2da0aVMxe/Zsxdr4448/itjYWDFy5Ejx2WefibCwMPHf//3fDfbr0KGD6NChg9vXW7BggXD0Zyo7O1sAEMeOHbNsa9eunYiOjhbHjx+3bLt69aqIj48XTzzxhGXbpEmTREREhDh8+LDT486bN08AEPn5+Tbbp02bJkwmk+VzPXbsmAAgOnToIKqrqx22ff78+Tbb9+3bJwCI5557zmZ7WVmZiImJEXPnzrVsy8zMFO3atXPaztraWnH9+nWxYcMGER4eLi5cuGB5bNiwYQ6fu3nzZgFAvP/++zbbCwoKBACRlZUlhBDiyJEjAoB48sknbfbbtGmTACAyMzOdtkuLOIxFRKQDM2bMwMcff4x3330XvXr1crnvo48+iqioKOTk5Fi2bd68GVVVVZg4caJlW9++fZGTk4OlS5di//79NkMhvujYsSNef/11bN++HcOHD8fAgQOxcOHCBvsdPXoUR48e9etYjvTo0QNt27a1/BwdHY2bb74Zx48ft2zbuXMnhgwZgi5dujh9nc8//xxdu3ZF3759bbZPmDABQgh8/vnnNtsfeOABREREOHyt3//+9zY/f/TRRzCZTBg7dixqamost+TkZHTv3h27d+92+R6//vprPPDAA2jRogXCw8MRERGB8ePHo7a2Fj/88IPL58rHb968Oe6//36b4/fo0QPJycmW4+fl5QGQfpesPfzww2jUSH+DQgx2iIg0bunSpVi3bh1effVV3HvvvW73j4+PxwMPPIANGzagtrYWgDSE1bdvX9xyyy2W/bZu3YrMzEysX78ed955J+Lj4zF+/HicOXPG57YOGzYMSUlJuHbtGubMmYPw8HCfX8tbLVq0aLAtKioKV69etfxcUVGBNm3auHyd8+fP2wy7yVJSUiyPW3O0r7PHzp49CyEEkpKSEBERYXPbv38/zp075/S1SktLMXDgQJw8eRIvvvgi9u7di4KCAqxZswYAbN6nM2fPnsWlS5cQGRnZ4PhnzpyxHF9+j8nJyTbPb9SokcPPWev0F54REYWQnJwcPPvss1i4cCEmTZrk8fMmTpyId999F7m5uWjbti0KCgqwdu1am30SEhKwevVqrF69GqWlpdixYwfmzZuH8vJy7Nq1y6f2Tp06Fb/88gtuueUWzJo1CwMHDsQNN9zg02tFR0cDAKqqqhAVFWXZ7iogcKdly5Y4ceKEy31atGjhMKH61KlTAKTPzZqjJGpnjyUkJMBkMmHv3r0270nmaJts+/btuHLlCj744AO0a9fOsv3AgQNOn2MvISEBLVq0cPr/26xZMwD1geOZM2fQunVry+M1NTU+5XSpjT07REQatWvXLjz++OOYNGkSFixY4NVzhw4ditatWyM7OxvZ2dmIjo7GH/7wB6f7t23bFjNmzMA999yD4uJin9q7fv16bNy4Ea+88gp27NiBS5cu2QybeUtOZD548KDN9g8//NDn18zIyEBeXh6+//57p/vcfffdOHz4cIPPYcOGDTCZTBgyZIjPxx8+fDiEEDh58iR69+7d4NatWzenz5UDJ+uASAiB119/vcG+9j1a1sc/f/48amtrHR6/U6dOAKQZXQCwadMmm+f//e9/R01NjdfvW23s2SEi0qBjx45h9OjRuPHGGzFx4kTL7B5Zz549XfYChIeHY/z48Xj++ecRGxuLhx56CHFxcZbHzWYzhgwZgkceeQSdO3dGs2bNUFBQgF27duGhhx6y7Ld48WIsXrwY//znP3HXXXc5Pd6///1vzJo1C5mZmZYA54033sCoUaOwevVqzJ4927Jvx44dAcBt3s59992H+Ph4TJ48GYsXL0ajRo2Qk5ODsrIyl89zZfHixdi5cycGDRqEv/zlL+jWrRsuXbqEXbt2Yc6cOejcuTOefPJJbNiwAcOGDcPixYvRrl07fPzxx8jKysK0adNw8803+3z8/v37Y8qUKZg4cSIKCwsxaNAgNGnSBKdPn8a//vUvdOvWDdOmTXP43HvuuQeRkZH4wx/+gLlz5+LatWtYu3YtLl682GDfbt264YMPPsDatWuRnp6OsLAw9O7dG2PGjMGmTZtw33334U9/+hP69u2LiIgInDhxAnl5eRgxYgQefPBBdOnSBWPHjsXq1asRERGB3/72t/j2228tM850R938aCIiciQvL08AcHqznonkzA8//GDZPzc31+axa9euialTp4rbbrtNxMbGipiYGNGpUyexYMECceXKFct+8qyivLw8p8e5fPmy6Ny5s+jatavNc4UQYvr06SIiIsJmZlO7du1czjKy9tVXX4l+/fqJJk2aiNatW4sFCxaI9evXO5yNNWzYsAbPv+uuu8Rdd91ls62srExMmjRJJCcni4iICJGSkiIefvhhcfbsWcs+x48fF4888oho0aKFiIiIEJ06dRIrV64UtbW1ln3k2VgrV65scFz5c6uoqHD4vt58801x++23iyZNmoiYmBjRoUMHMX78eFFYWGjZx9FsrA8//FB0795dREdHi9atW4unn35a7Ny5s8H/0YULF8SoUaNE8+bNhclkspnVdv36dbFq1SrL6zRt2lR07txZPPHEE+LHH3+07FdVVSWeeuopkZiYKKKjo8Udd9wh9u3bJ9q1a6e72VgmIYRQIcYiIiIiCgrm7BAREZGhMdghIiIiQ2OwQ0RERIbGYIeIiIgMjcEOERERGRqDHSIiIjI0FhUkInKjrq4Op06dQrNmzVwuDUBEgSOEwC+//IKUlBSEhXnXV8Ngh4jIjVOnTiE1NVXtZhARgLKyMreLudpjsENE5Ia8OGJZWZk+S+UTGUBlZSVSU1Mt30dvMNghInJDHrqKjY1lsEOkMl+GkpmgTERERIbGYIeIiIgMjcEOERERGRqDHSIiIjI0BjtERERkaAx2iIiINKqwEPjNb6R78h2DHSIiIo3asAHIywPeflvtlugb6+wQERFpyPHjwLlzgMkEbN0qbduyBcjMBIQAEhKAdu3UbaPeMNghIiLSkLS0+n/L9fMqKoD09PrtQgS1SbrHYSwiIiIN2bgRaPSfrgg5qJHvGzWSHifvsGeHiIhIQx59FOjSxbYnR5afD/TqFfw26R17doiIiDQqLMz2nnzDj4+IiEhjEhOB5GSpd2fdOuk+OVnaTt7jMBYREZHGtGkDlJQAkZFSkvKUKUB1NRAVpXbL9InBDhERkQZZBzYmEwMdf3AYi4gMb/ny5ejTpw+aNWuGxMREjBw5Et9//73azSKiIGGwQ0SGt2fPHkyfPh379+9Hbm4uampqMHToUFy5ckXtphFREJiEYGkiIgotFRUVSExMxJ49ezBo0CC3+1dWViIuLg5msxmxsbFBaCER2fPne8ieHSIfTZgwAWnWpU698M4772D16tWKtkeWlpaGCRMmBOS1jcJsNgMA4uPjHT5eVVWFyspKmxsR6ReDHSIVBDLYIdeEEJgzZw4GDBiAW2+91eE+y5cvR1xcnOWWmpoa5FYSkZIY7FBIqa2tRVVVlcPHfv311yC3htQwY8YMHDx4EJs3b3a6zzPPPAOz2Wy5lZWVBbGFRKQ0BjsasXfvXphMJocn4A0bNsBkMqGgoMDhc7/55huYTCa88cYbDR7buXMnTCYTduzYAUDKVZgyZQpSU1MRFRWFli1bon///vjss8+8bvPUqVMRHR2NoqIiy7a6ujrcfffdSEpKwunTp71+TQA4efKkpY2RkZFISUnBqFGjcPbsWcs+paWlGDt2LBITExEVFYUuXbrgueeeQ11dnWWfkpISmEwmrFixAkuXLkX79u0RFRWFvLw8LFy4ECaTCcXFxRg1ahRuuOEGdOjQAYB05Z+VlYUePXogJiYGN9xwA0aNGoWff/7ZbdvXrFmDQYMGITExEU2aNEG3bt2wYsUKXL9+3bLP4MGD8fHHH+P48eMwmUyWm6y6uhpLly5F586dLf9HEydOREVFhc2xrl+/jrlz5yI5ORmNGzfGgAED8NVXX/n0mYeKmTNnYseOHcjLy0ObNm2c7hcVFYXY2FibGxHpmCDN6Nmzp+jfv3+D7X369BF9+vTx6bkPP/ywSExMFNevXxdCCPG73/1OtGzZUrz22mti9+7dYvv27WL+/Pliy5YtXrf36tWrokePHuLGG28UFy9eFEIIMX/+fBEWFiY+/fRTm33btWsn2rVr5/Y1T5w4IVq1aiUSEhLE888/Lz777DOxdetWMWnSJHHkyBEhhBDl5eWidevWomXLlmLdunVi165dYsaMGQKAmDZtmuW1jh07JgCI1q1biyFDhoj33ntPfPrpp+LYsWNiwYIFAoBo166d+K//+i+Rm5srtm/fLoQQ4vHHHxcRERHiqaeeErt27RLvvPOO6Ny5s0hKShJnzpyxvH5mZmaD9/Tkk0+KtWvXil27donPP/9cvPDCCyIhIUFMnDjRss+hQ4dE//79RXJysti3b5/lJoQQtbW14t577xVNmjQRixYtErm5uWL9+vWidevWomvXruLXX3+1Ob7JZBJPP/20+PTTT8Xzzz8vWrduLWJjY0VmZqbbzzqU1NXVienTp4uUlBTxww8/eP18s9ksAAiz2RyA1hGRJ/z5HjLY0ZDs7GwBQHz99deWbV999ZUAIN566y2Xz33ppZcEAPH9999btl24cEFERUWJp556yrKtadOmYvbs2Yq1+ccffxSxsbFi5MiR4rPPPhNhYWHiv//7vxvs16FDB9GhQwe3rzdp0iQREREhDh8+7HSfefPmCQAiPz/fZvu0adOEyWSyfAZysNOhQwdRXV1ts68c7MyfP99m+759+wQA8dxzz9lsLysrEzExMWLu3LmWbY6CHWu1tbXi+vXrYsOGDSI8PFxcuHDB8tiwYcMcPnfz5s0CgHj//fdtthcUFAgAIisrSwghxJEjRwQA8eSTT9rst2nTJgGAwY6dadOmibi4OLF7925x+vRpy806eHSFwQ6R+hjsGMS1a9dEYmKieOyxxyzbxo0bJ1q2bCmuXbvm8rnnz58XUVFR4plnnrFsW7NmjQAgvv32W8u23/zmN6J58+ZiyZIlYt++fQ2CAF9s3bpVABDR0dHirrvuEjU1NT6/VqtWrcTQoUNd7tO3b1/RtWvXBtvz8/MFALF27VohRH2wYx8QCFEf7HzzzTc22//6178Kk8kkzp49K65fv25zu+OOO0Tfvn0t+zoKdoqLi8X9998v4uPjBQCb2/79+y37OQt2Hn30UdG8eXNRXV3d4PjJycni4YcfFkIIkZWVJQCIwsJCm+dfv35dNGrUiMGOHfv/C/mWnZ3t0fMZ7BCpz5/vIXN2NCQqKgpPPPEE3nnnHVy6dAkVFRX4+9//jsceewxRbuqEx8fH44EHHsCGDRtQW1sLAMjJyUHfvn1xyy23WPbbunUrMjMzsX79etx5552Ij4/H+PHjcebMGZ/bPWzYMCQlJeHatWuYM2cOwsPDfX6tiooKl7kUAHD+/Hm0atWqwfaUlBTL49Yc7evssbNnz0IIgaSkJERERNjc9u/fj3Pnzjl9rdLSUgwcOBAnT57Eiy++iL1796KgoABr1qwBAFy9etXl+5KPf+nSJURGRjY4/pkzZyzHl99jcnKyzfMbNWqEFi1auD1OqBHShV2DG6foE4UGro2lMdOmTcPf/vY3vPnmm7h27RpqamowdepUj547ceJEvPvuu8jNzUXbtm1RUFCAtWvX2uyTkJCA1atXY/Xq1SgtLcWOHTswb948lJeXY9euXT61eerUqfjll19wyy23YNasWRg4cCBuuOEGn16rZcuWOHHihMt9WrRo4TD5+dSpUwCk92jNOvnXnv1jCQkJMJlM2Lt3r8MA01XQuX37dly5cgUffPAB2rVrZ9l+4MABp8+xl5CQgBYtWjj9v2jWrBkAWAKaM2fOoHXr1pbHa2pqGgR7REShjj07GtOqVSuMHj0aWVlZWLduHe6//360bdvWo+cOHToUrVu3RnZ2NrKzsxEdHY0//OEPTvdv27YtZsyYgXvuuQfFxcU+tXf9+vXYuHEjXnnlFezYsQOXLl3CxIkTfXotAMjIyEBeXp7LdYvuvvtuHD58uEGb5VlrQ4YM8fn4w4cPhxACJ0+eRO/evRvcunXr5vS5cuBkHRAJIfD666832DcqKsphT8/w4cNx/vx51NbWOjx+p06dAEgzugBg06ZNNs//+9//jpqaGq/fN1GgFRYCv/mNdE8UdMqNppFS5NwTAOKzzz7z6rnPPPOMiIqKEi1bthSPPPKIzWOXLl0SPXv2FCtXrhQffvih2L17t1i5cqWIjo622XfRokUiPDxc7N692+WxDh48KGJiYmzyQ9577z0BQLzwwgs2+3qaoCzPxkpMTBSrV68W//znP8X7778vHn/88QazsZKTk8Vrr70mPvnkEzFr1ixhMpnEH//4R8tryTk7K1eubHAcOWenoqKiwWNTpkwRjRs3Fk8//bT48MMPxeeffy42bdokpk2bZkkQFqJhzs6RI0dEZGSkGDx4sPjf//1f8cEHH4h77rlH3HTTTQKAyMvLa3D8rKwskZ+fLwoKCoQQQtTU1IiMjAwRHx8vFi1aJHbu3Ck+++wzkZOTIzIzM8UHH3xgeY2xY8cKk8kk5s6da5mNlZKSwtlYAcCcHf/NnCkEIMSsWWq3hPSKCcoGlJaWJrp06eL183744QdLoJSbm2vz2LVr18TUqVPFbbfdJmJjY0VMTIzo1KmTWLBggbhy5YplP/kPsfUfZ3uXL18WnTt3Fl27drV5rhBCTJ8+XURERNjMlvJ06rkQ0synSZMmieTkZBERESFSUlLEww8/LM6ePWvZ5/jx4+KRRx4RLVq0EBEREaJTp05i5cqVora21rKPr8GOEEK8+eab4vbbbxdNmjQRMTExokOHDmL8+PE2CcGOEpQ//PBD0b17dxEdHS1at24tnn76abFz584Gn+eFCxfEqFGjRPPmzYXJZBLW1x3Xr18Xq1atsrxO06ZNRefOncUTTzwhfvzxR8t+VVVV4qmnnhKJiYkiOjpa3HHHHWLfvn2iXbt2DHYUxmDHNyUlQhQWClFUJERiohTsJCZKPxcWSo/7oqBAiCFDpHsKHf58D7kQqAYdPHgQ3bt3x5o1a/DHP/5R7eYQhTwuBOob65Q4kwkQov5e5stfoFmzgJdflu5ffNH/dpI+cCFQg/jpp5/w+eefY8qUKWjVqhVnihCRYtTImdm4EWj0n2kwclAj3zdqJD3uqePHgaIioLgY2LpV2rZli/RzUZH0OJEzDHY0ZMmSJbjnnntw+fJlvPvuu2jcuLHaTSIig9iwAcjLA95+O3jHfPRRID/f8WP5+dLjnkpLA3r3BtLTAXnllIoK6efevaXHPcFE6dDEYEdDcnJyUFtbi2+//Rb9+/dXuzlEpHNa6g0JC7O995ZSvURqBH2kPtbZISIyKOveDjl/Ru4NkQU6azMxEUhOBlJTgcmTgTfeAMrKpO3eePRRoEsX27bL8vOBXr2cP/f4ceDcOekzsA76MjOl95+QAFiVxjKMwkJg7lxgxQqp9yuUMdghIjKojRuBCROAmhrHvSE5OYFvQ5s2QEkJEBkpBRtTpgDV1YCbovAuhYUBdXX19+5oIehTg3UvVqgHOxzGIiIyKCVzZtxxlQsTFVUfZJhMvgc6ci9Rejqwbp10n5zsvpdIyURprdPS0KWWhFzPTl1dHU6dOoVmzZq5XEaAiAJDCIFffvkFKSkpCPM1gYO85klviD/DHsHoRfC1l8ifITC9CdVeLHdCLtg5deoUUlNT1W4GUcgrKytzu+gr+c+bnBlvAxY1cmGsAxtfeom8HQLTGy0MXWpRyBUVNJvNaN68OcrKylgcjEgFlZWVSE1NxaVLlxAXF6d2czyi96KCVVX1vSFC2PaGWAcsGRlAebkUCO3c6T5gCVTRwEA4cQLo06dh0FdQIPUYGUlxseNerKIiffdi+fM9DLmeHXnoKjY2VpcnLSKj4DBy8LjqDfFn2ENPvQiBSJT2RTBnSBm9F8sbHDAnIgph/iTvBjMBWglKJUr7Ixh1fnxN5DaykOvZISKiekol77IXwblg5zZppRdLSxjsEBERAN8CFqWKBhqZGjOk/E3kNhoOYxERhTh/hj3kXoT8fOCJJ6T7khLjJf36w5uhQq7dFRgMdoiIQpy/AYsWcmF8EazAwpvcJq7dFRgcxiIiopAc9lBjOQVHQ4WhunZXMDHYISIKUaG4UKRagYWr3CbrOresehwYDHaIiEJUKC4UqdZyCq5mSOmpXpFeMWeHiCiEhPpCkWouCuost0lv9Yr0iD07REQhJNQXitT6oqCsVxQY7NkhIgohSvZsBHOadCCOFRZme+8Pf9vHqseBxWCHiCiEKDlkEsxp0koeKxCBhb/tY72iwOIwFhFRiPJlyCSYs5kCdSylllNQun2hOP0/WBjsEBGFGH+WeAhmzk8gj6VEYBHq+U96wmEsIqIQ48+QSTBnM6k5c8oTWm8f1WPPDhFRCPK1ZyOYs5m0PnNK6+2jeuzZISIysEDOmFJyNpOWjuULrbcv1PG/hchfXKaYNCwQM6aCOU1a61Oytd4+kpiECK30qcrKSsTFxcFsNiM2Nlbt5pARzJoFvPyydP/ii2q3RvP0+B3UW5utZwllZADl5dIf3507lZsxVVVVP5tJCN9mM2nxWL4IdvtCcU0zwL/vIXN2iHzBZYpJw4IxSyiY06S1PiU72O0LxTXN/MVgh8gXnHNKGsaFJT2jpx4SXl/5h8EOkS/414Q0jLOEPKOnHhJeX/mHCcpEvuAyxaQTwZ4lpPV8fb2u+u6ups/ixdr+3NXGYIfIX5xzShqk1iyhYK6X5Yu0NKkXJz1d6hkB6ntIeve27UHREnfXVxUV2v7c1cZhLCJf+VNznyjAlFr/yRN6yicxwgi0vJaZPPvryBHtf+5q49RzIn9ofU6sBunxO6jHNgeTnEMi/1uI+nuZlv7SFBc7zmcqKtJ2PtOJE0CfPvXXV1On1j+mh8/dX5x6TqQWrc+JJQoCvfaW+LLqu5rse+uaNAEmTtTf564GJhkQEZFf9Javr+eqx1FR9T1pY8fq63NXE3t2iIhIMVrtLbGvqROsfKZg0ernrhXs2SEiIr9pvbfEfpaYdQ+JVkegPZnGr/XPXSsY7BAZjdYLnajgiy++wP3334+UlBSYTCZs375d7SYZjpxPkp8PPPGEdF9SIm1Xi15r6sg8mcavxc9dixjsEGmJEoGK1gudqODKlSvo3r07XnnlFbWbYmha6y3RY00dXwI0rX3uWsScHSIt8bV+vZ4KnaggIyMDGRkZajeDAsjROld6nCXGZSECg8EOUbDZn5WVCFR4hlRUVVUVqqqqLD9XVlaq2BryhKPrBD2uEabHAE0POIxFZC0Y+S72w0xK9LW7Wzhn40Yl34HhLV++HHFxcZZbamqq2k0iB7wZ8tHqqi72pxy9TePXC439txOpLFD5Lq7OykuW+B+o8AypqGeeeQZms9lyKysrU7tJZEUOEDy5TtD6bCVXpxytBmh6xGEsomDku3gyzOSIL33tnhbccJTkQACAqKgoRDHLU7PkAGHoUODzz10P+QRzjTBPuTvlXL/OZfeUxmCHSIl8F3eBg7uB+Mceky475YVtfKkM5u3CpL4mQxOpwFGAcOCAFNCMHdtwf+vrBK2t6uLJKefaNW0FaHrHzjEiJfJd3A1/uRtmkpNhW7b0va/dk4Ibei884qPLly/jwIEDOHDgAADg2LFjOHDgAEpLS9VtGHnM2ZCVfaCj1pCPN+l+npxy9DidXNMlvkSIMZvNAoAwm81qN4W0pKhICOl8Y3srKnL+nJISIQoLpX0SE6X9ExOlnwsLpccdHSMsTLo3maT7jRsbPr+gQIjvv1f+fVq/N/n48r18CzA1voN5eXkCQINbZmamR8/neUN9GzcK0aiR468pIMSNNwqxbp0QffoIkZwsRFlZcNs3c6bUjlmzPNvfl1NOIBQUCDFkiHTvL28/A2/58z3UXbCzZ88eMXz4cNGqVSsBQGzbts2r5/OkRQ7JZx77AMDVmcfbwKGsTDoL9+kjnZXVCDxc/cVo1Eh6PMD0+B3UY5uVouQfQ385CxD27ROirk7ap65OiGvXgtMeb693HL0X+dpHvg92sONvgOLPZ+Atf76HusvZkSuhTpw4Eb///e/Vbg4ZhZzvUlcHlJdLw0lhYa6HkbwtiGGfKdmkCTBxYnALauix8AipSoupXfY5+PJXCgjukI8/6X7yKSc+XjoFNGoEXLgQnCRkJedk6KXEl+5ydjIyMrB06VI89NBDajeFjOL4ceDsWWDbNtugY9s2abuzPBZ3eTidOkkD2Bs21N9nZEi5MYCUbKDmdHHOayUntJrapbVp5N6m+1nntMjXPr/5DfDDD8DddwdvTSsll9HQTYkv5TqYgg8cxiJ/FRT4N5zkqi9a7h/u3t323rq/WI2+bPvhNPskhwCPW+jxO6jHNvtDA6ldTl27FvwhK1dfCW9yb+RTwoQJwRv6cUTp0exg5R+F1DCWt1j2nVzasEG6l/vDvR1Osp/unZUFnDwJ/Pvf9Zc033wj3R88KN2//bZUICQ5WZ2CGu4Kj2hx3IKCytUILSD9+qpFjWnknnwlnJW3cjRklJNTf1pRY+gnUKPZnpb4UoPhg53ly5dj0aJFajeDtMTR2ScuDrh4seG+7r759oHD1KnS9gkTGu4rn70uXgSGD6/frkZBDfu/GGfOcCFRsnD1xxCQ6tsUFxv7V8PTvBZ35a0c5bRYC1a6njNKBCjelvhSg0kILaQO+cZkMmHbtm0YOXKk030c9eykpqbCbDYjNjY2CK0kzbE+48hF/OzJ3/yiIu8uczZtqr8kdkc+q2lhKQdHn4n9Z6PQqaKyshJxcXG6+g7qsc3+Ki52HuwE6FdDU7z5SlRV1V+vCGF7veLNKQHw/pTjqxMngD59GgYoBQW+5Q25+gyU4s/30PCZiVFRUYiNjbW5UYhzlFFnbeJE3zMfXSUt23OWhKxGZS7dZBlSsMhX6+3bN8xhD4VfDW++Eq4KALo7Jag1T8CTGqTe0HoRRN0NY12+fBlHjx61/CxXQo2Pj0fbtm1VbBnphqs++sJCabsSlybOeo2cbZepkTPDKelkx3qE9uuvQ+9XIxBfCfshoxYtgBtvVG/oR2vLaASS7oKdwsJCDBkyxPLznDlzAACZmZnICeZAJxmD/dlHiUsT+ZI4KQk4dkwKmqqqgOhoICJCulQ+e9b2rBaMxUg9peUsQwoq+6+AUr8aeluD1t/37Syn5V//koIdrn8VeLoLdgYPHgwdpxmRVgQyo876kri6WgpwLl8GmjaVZl/J263PalqozKWHLENShdK/GnqZ8KfU+/Zk5XWj96yoTdcJyr4IxURDciLQGXXeXL66ymIMZiJzELIM9fgd1GOblebvr4Z152VGhlSoPDER2LlT27O6gpF4S55hgjKRLwKdUeduJXRr7qoxB2vGltazDEk1/v5q+Fq1V+2VtPmVMAYGO0RKUqLOPpdvIAPydcKfN9cMRM7oLmeHSNOUWBkwNVXK78nLAxo3Zs4MGYI3s5u0lK9PxsBghwhQbnqItyuhW6utBT74QEoQuO8+aVuTJlJyw9mzPMOTYbib3aSFfH0yFvaXEwGe9ZXbJw84SibwJ/cmLQ3o108KtuSkhnPnfFuKmEiDPF21XCs1LtXOFyLlMNih0OVtfo19QOQuQPK2NKo/Z3ielUkHPK3aq5V8feYLGQeDHQpdnkwPcRQQvf22NFVcDj7sAyRPL1/t+XOG51mZAsRRHO1PbO3t7KZgL6egxBwD0h7m7FDo8iS/xlHywMWLwNix9dsdJRO4qyDmjiclW5nFSUHgqABgMIoCBrLGpasUPeYLGRODHQpdnk4PsQ+I7DlKQPa1NKo3Z3ielSlAHMXRmzYBfftK/37nHek+kLG1J1WHfeUqWPNnjgFpF4MdIsB5T4qrgMieEqsienOG51mZAsRRHH3+vG2HJhD42FrJ5RQ87QjlmrjGxGCHQps3PSn2gZBcP17pBTM9PcPzrEwB4iiOdkRPsbUvHaFcE9c4mKBMoc2T6SHWCcdDhtRvv+22hgnIas2KCnYWJxmaq1x5R3r0ADp1ClhzFOHNZEdf5xiQdrFnh8hdT4qjYn8tW0q9QADwu98BrVpJz1uxIrjLOXOlcgowR70b9j0dhYXaX8Hcm47QQOYLkToY7BC546j/+9w52zN7YaE6s6J4VqYAcRRHl5RIj7VqBURESFOxZXqaCOjJ8JSS+UKkPgY7RO64SwSuqakPfNSYFcWzMgWAozj6xx+lROV+/RruX16u/YmA7AgNXRzgJ3LHXbE/rdS2J0PRQlFs+wKAnTo5DnSsaflX3tMKzmQ8DHYodCjx18NRArBWatuTofhaFDuQQZJ1XO+M1n/lva3gTMbAYIdChz9LKlRXAy1aAJ07A82aSdvCwqTVyIuKgNOn67dZ3xN5QYmlCgK5coiruF4OIIi0iDk7ZGxKLalw553S/fnz9dvq6upnZwG+JQO4qlvvy36ka57UgikoaPgroMbKIXKZKVmXLsCFC8x/IW1isEPGptSSCtZJyvbkimqjRgEHDwL/9V/AmjVSHR53feSeLjIUjMWISHWucuHl4MLRr0AwVw6xTvIdPx546y3gxAlg1y7pMQ4LkRaxr52MTank4QEDnJeIzcmRHo+Kkv4S5eVJr+vsrO/pWAWXXw45roaJmjeX7h39CgQzR946yXfGDOCrr6SfU1NDO9DRQkK5ltqhNezZIWNTakkF60tne/KCQUVFDccQDh0C1q4FXnqp/nLc08twLvQZ0uxrwFy8KN07+hUI9sohrHbQkFY6X7XSDq1hzw6RJzZuBMLDXe+Tni79JQLq/yKNHw/s2wc8+GD9pZanl+Gc0h6SrJcqmDix4ePufgWYIx88Wul81Uo7NE2EGLPZLAAIs9msdlMoGEpKhPj4YyFatBCiUSMhpL8VQsTFSdtLSqT9CgqEGDJEunemqKj++da3JUtsX9vZbcwYIQoLpWM6e62iIs+Oab+fjujxOxjsNl+7JkRdnfTvwkLPfgXKyoRIThaiTx8h1q2T7pOTpe0UGNb/HyaT7b18C6V2BJo/30PG/mRsaWnAsGHSLCrr5GKzWdouDxV5M1/X/tL5vvs8WzVxyxapXzktzfup6rxcDyn2tWAA978CLJjnXKDyWLTS+aqVdmgZz5xkbO6qoD30EPDxx571/Sq5FPLw4Z69FpdfDnne/AqwYJ5jgao9pJV6osFuhy6ToAPQ06RpeuxCJz+5G17ypu/Xenyhrk76WQhprKBxY+k5Q4YI0bq182M1aiTExo3OX8vTY+qUHr+DardZjV8BT0Z2taykRBoCLCoSIjFR+uolJko/y6PJSpBHmsPCbO/djTQr/fn62g5fzJwpvfasWcq/tiscxiJyZckS9/t42vdrf+l85ozUC1ReDjRpIm0/dAj4n/9xfiz5UsvTy3Beroc8f38FfLkSD2QlZqW4el9padKosaN5A/JoshJ87XxV+vMNdCew7pOgAxB8aZraV2ikgrIyKUHZkx4ebxOAPekdsv9Zx8nFStDjd1CPbbbm6ZV4sHpDlOLqfW3c6HzegNy56i1nvTGe9rwF+vMNZA+gFpKg/fkess4OGV+bNsBHH9Uv+eCKfQ18d1yVvA0PB5o2BW6+GZg0CVi/Hjh5kvk2FBS+LCGhh9JOnr6vQNQeclbDxtO6Q4H+fANZ/8jVqU4uIq9lDHYoNLRpI/XpxscDhw83fPyGG6SqbTfcAFy+XD9byh1XZ9SvvgJuuQWIjJTOPE88IS0oymEoCgJf/rDq4Q+aL+9LLtBoX6jRE0quO6aHz9eZYBeuVBpzdig0yPNyN2yw3W6/VPPVq1JAsnGj94PQjuYGM9+GVOLLdGStzC5yxZv3dfq0dK3RubPveSxK5v7o4fP1hB4rYeioqRTy/J3vGBUFJCUBjRvXb5PPknIt/qtXpfstW6SzmCeZd5weThrk7x9Wrf5Bc/W+evQAOnWq//mTT6Rrl7vv9r32UKBq2Gj183VFz6c6HX3MFPKcTV/wJAiSpxJYz5qKjXV/pnF06WZ/PFZzI43z5g+rnv6g2b+vwkJgzZqGs4a2bpV+Li6WJlB6Q+neGD19vvb0fKpjzg5pmycD5p6sfOdooP+XX9xnAzoaSHd0PK6MqAtZWVlYuXIlTp8+jVtuuQWrV6/GwIED1W5WwMh/WFNTgcmTgTfeAMrKXP9hlf+gyalmU6ZoL9VMfl+JiVIh9H/8AzhyRPo65+Q0/MoqlQTsT+6PTA+fryt6PdUx2CFt8yQbUT5zu8oadJUZ6IqceadkliKpYuvWrZg9ezaysrLQv39/vPrqq8jIyMDhw4fRtm1btZsXEL7+YdX6HzT5fUVHAwcPut/f3yRgX4JGV7T++RqRSQjPY9yysjKkpqYGsj0BV1lZibi4OJjNZsTGxqrdHHJn06b6IMUZebq4/bRx+1/t4mLHUwlatJBmYR092vCxjRul7EbrHiNPj0cNrF69GhkZGejcuXPQv4O33347evXqhbVr11q2denSBSNHjsTy5ctdPpfnDW3y5PRgrajI91lDVVX1QaMQ+uqNMQp/vode5ex07twZzz77LK5cueLVQYh85mrAPDxcuvc2a9B+oP+jjxwHOgAwdmx9oMOV9vw2Z84c3HvvvQ22V1dXo6CgIGDHra6uRlFREYYOHWqzfejQofjyyy8b7F9VVYXKykqbG2mPq9MDoGwSMCdW6ptXvwK5ubn49NNPcdNNNyE7OztQbSJyzP7M9dZbjvezzxqUE4pPn3acGdimjesFQ+VgxlWWYqdOOlwZTx2//e1vAQAnT560bLt48SLuuOOOgB3z3LlzqK2tRVJSks32pKQknHGQsbp8+XLExcVZbnrv0Q4F9qeHFi30mQRMgeFVsNOvXz/k5+fjb3/7G+bPn4+ePXti9+7dAWoa0X84m74QH2+7n7PLNzmheOpU4P33HU8l8GbKhaPLRT0sJKQBJpMJ8+bNAwBkZGTgxIkTlse8GFH36/jWhBANtgHAM888A7PZbLmVlZUFvG3kG2enh/x8fc4aosDwKUF5/PjxGD16NJYvX45hw4Zh6NChWLlyJTp27Kh0+4gaZln+7nfA558D8+bVD6A3ayZlD549Kw2mO0ooPnECePllqf9ZTih21BftbMqFfZZiVpa0/MPZs0xa9sEjjzyCQYMG4YsvvkBERITDoEMpCQkJCA8Pb9CLU15e3qC3BwCioqIQxXEKXfAkCZvDTuTz0l1XrlwRe/fuFbNnzxZhYWEiKipKzJkzR1RWVvr6kkGh9wX9SDhe2c9+RTpPbvar7pWVCZGcLESfPkKsWyfdJydL22XWK+1pYWU8nTGZTOLo0aOW7+DChQtF+/btxVdffSXCwsICeuy+ffuKadOm2Wzr0qWLmDdvntvn8ryhT84W7tT7sUKVP99Dr4ax1q1bh8mTJ+O2225DXFwcfvvb3+L//u//MH36dGRlZeHAgQPo2rUrCpm3QIEgFwZcsqThY/bJwp4kDNsXC/SkYpZ1lmKgSqsa2LJly9DYqoL1ggULkJmZiWHDhgX82HPmzMH69evx5ptv4siRI3jyySdRWlqKqVOnBvzY5D9fCqgHc3SZI9ka501k1KZNGzFq1CixatUq8a9//Utcc7B+/LJly8Qtt9ziddQVLLxC0zFPemuKiur3X7LE+X6NGgmxcaP/bSoqct8OsuHoO7hkyRIRFxcX8GOvWbNGtGvXTkRGRopevXqJPXv2ePQ8njfUN3Om9NWaNcv1fiUlQhQWSl/BxETpOYmJ0s+FhQ07dP0RzGORf99Dr+rseOLs2bNISUlBbW2tki+rGNbL0DFPimpYF9JwVlfHfj9/yMewz/NR6vUNSI/fQT222QisU+8yMqTVXhITgZ07nafFWad+KVESq7AQmDsXWLGiYYF2pY9FrgWtzo4nEhMT8fnnnyv9sjaysrLQvn17REdHIz09HXv37g3o8UgjXM2Y6tq14dzSxERp/inQcHVzpeh5oRuiAPJ33V7AtxXHlR5dloenVq1q+H44kq0jivczBdiWLVtERESEeP3118Xhw4fFn/70J9GkSRNx/Phxj57P7midk4eNwsJs7wsLpeRhe0ePCpGUJCUbr10rRHp6w6Rjf1knLdfVOW4HWejxO6jHNqvN02EnVzZulEacvR2J9nd02dHwVEyMdD9mjO3wlBIj2Uxu9kzQEpS14Pnnn8fkyZPx2GOPoUuXLli9ejVSU1NtSsCTwWzYIC3nsGGD856UpCTHc0s7dJD6wvPzpTo7BQXKF9xgaVUiAPVzCKxXHN+yRfq5qEh63Bv+rjjuawVl6x6l8nJp29Wr0v2WLdLj9u/Hn2rNTG4OPF0tBCqXfJeLksmclXwHpLLvVVVVlp9Z9l2HnnsOuHQJeP55YPz4+qIaRUXSGfX9910HLyy4QRQUnqzbG4wVx/1duNN63WBn5PydsjLfjsW1hYNLVz073pZ8B1j23S0lBtYDcbz/+z/pjLNpE/Dvf0vbDh6Ufn73XeDLL+svh+QzBRGpKhA5LJ6mxVmfWjypIuGKuzW3rN+Pp8eyP/X5ko9EfgjAsFrAnDx5UgAQX375pc32pUuXik6dOjl8zrVr14TZbLbcysrKOPZuTYmBdV+O16aN6wFqT6aZc66nLukx/0WPbVZLIKoxeJIWp/SpTH4fzuqVepuT07q1bft8zUdy9Nqhku/jz/dQV8NY3pZ8B1j23aFg9586W7rhr38FLlwA5s8H7r/f9jnTpgHu8rDsL4dknOtJpDpvhp3ccTYSHchTmdyjFB8PHD5se3xPTzFy+1atklaWsW5f587A9u3A8OENn5ef73nlCut8H/up8VRPV8FOZGQk0tPTkZubiwcffNCyPTc3FyNGjFCxZToTyIF1d8ez9umn0v0DD0j9vtZnpawsoH9/YOxY56/rqJ88J8fPxhKRP/zNl/FGIE9l8vBUeTnQt6/0c2amFFx4mpPj6NRXXt6w/Je3gSHzfXwQgJ6mgJKnnr/xxhvi8OHDYvbs2aJJkyaixMPhC3ZHC+X6T705nifDUvbDUJ4+j1WLdUWP30E9tllNwarGEKxTmS/vx5NT1ksvOV+Or6BAqpTRu3fDISrr1wilZfn8+R7q8iPxteS7EDxpWQR7mQNXSzfY32RffSXV0YmJEeLee4WIjnb9LWewowt6/A7qsc2hQqsrtrgKxADplCiE80BKzkFylIcU7OtVrQipOjsA8Mc//hElJSWoqqpCUVERBg0apHaT9Muf4hDeuO8+9/s0agQsXlw/ZaFPH+DiRanAxa5dwLVrtvtbD2OxajFRSAvWqcxT7mZ0yafEf/8buPtu6ZRXWgrk5kqTTq1nrr39trTto4+kISx/6w+FIo38WlDQBXuZA+ulG5zJzwcOHaqvzQ4AsbG281ntNWoknQmULhRIRAGlVNULPa3YIucVtWhR3z7rBOO0NGmuxtix0nWe7OJFadv99zfMA9JakKdV/HhClX1xiDVrgE6dACf1ihQ5Xn6+dBbq2tX2MfkM8L//C+zYIf17x476sqsDBri+jBk7loUCiVTgT8CiVNVgf2vqBJJ1ILZ2rTRbKikJ+OAD4OzZhpWmlyxxvYxfWFh9j4+egjwtUHzVc63j6sVOzJoFvPyydP/ii4E7TlVVw+kNM2e6f15REVcXNwg9fgf12OZg8Pa04csq5npXVSUVfJenrFdXA9HR9Y87Wy3dEfvTnaPXNvJ1nz/fQ11NPSeF+TJ/sbAQmDsXWLHCt6IOUVHSnNQ9e4DKSs/7Xl3NZ/W3TUTkMX+mPQe76oUWOKoRZL0chX0FjfBwoLbW99cmxxjshDJfzjxKVbDq1Mmz/cLDgbfequ+rli9jpkypv4xZsYJVtYiCxJ+AxdUf+VAqk/Xoo0CXLg3r7QDAhx9KgeOlS0BKirTt5ElpLWQOUfmOOTuhzNOFbJReytj+2K689Vb91ALr1cVLS4Fvv1W2TUQ6FOzl7fxZ/4qziBqyTzBOSpI6rSsrgWPHpNsvv0jbtJCHpFfs2Qllri4vsrPrzzyB6Ht2dWxr8fGOt4difziRA8FeLsDVV9ebZQ6UXE5CTb6OorsambcfjrLO8SHfsGeHJPa5Mx9/XP/vQCxl7OrYgPSNT0oCunVz/JxAt4lIwwLR2eoLX6Y9+zOLKNi9WJ4cz9dZZVqeRWZE7NkJdYmJQMuW0m3kSOnypKZGqmxVXCwFEPLUb38v5RwdWz7LDRsmrYr33Xf1Qcv27dL8zNrahhmPSl1eEumQ2h2b/qx/5Sr9zp1g92I5O55Sa1MxwTh4GOyEujZtpLNkRYW0tK985rxwwfbMWVQk3SvZ9yyf9aKjgYMHpW3WZ+4776zf19WZ2yj94UQe8ifRV4nJi/4ELIB3f+SDveilJ8dTO9gk73EYizwbElKygpV137A8D9OXISlW1aIQ5U+ir1LF/KznC/jSK+HpkFRamhSUpadLAQVQH1j07u14ZXF/eHK8oUPr9+couj4w2NErJQevPTlzKjnAbH+29fXMzUFvIo/yZrSS42PN06Ar2Ol5ro4XHi5VOT5wwPnzQ3VWmdZxGEuvAjV47WpIyFHfs6d94o76ht9+G/jyS6n8qjzrytshKQ56U4jyJm9GK8MuvgxJBTs9z9XxamuBZ591vaQDaRODHT0J5OC1rxmHngZdjs62Fy9KwdL48dLPvmY8EoUgb/JmtFLMz9+gK9jpefbHk6sb27cxLEx6b7/+ylOWVjHY0ZNAXp55c+b0JehydLa1tmQJcPfdQKtW0vv0NuORKAR52rGplcmLvgZd/sz+8oWz4735JnDffQ33LygAevbkKUvLuBConmzaVH+msCefKYIxWGzdh+tsFTtHv1bFxe6LCDp7LhmGHr+DemyzPfnrp/Zaus5OA+7aEexFLx0d79AhbXyGocqf7yETlPVEyVrr/iQ4BypjkNMYiAJGa5MXvS1I6O/sL285Op7WPkPyHIex9MrfwWt/Epx97RNPTARatACuXpUGt715LhH5xd/aOEoJ9pCUkvz5DJWob0S+Y8+O3vhzaeFo/unatVJviq/zT725PGvTBvh//68+0JEvm7ypNU9EPgt274gjeq8Y4etn6E19o2AvixEK2LOjN/5cWjhKcL5+HRg3rn67p/ky3lyeWSc0v/de/fG7dAFGjJDW4Sov18elHRH5LVQqRvg6gTbYy2KEAgY7euTrmWLjRulb5mjuZHg4sHCh9O10N31d7o99/31pSQd3QZejIEsIaXmKw4eln69dM+4Zj4hCkjcTaIO9LEao4fhBKHn0USnQcUSuluVJ7XX5smPrVs/6cx0lNMvkpGQGOkRkMN7M5Qj2shihhsGO0VkP/hYWAu3bO9+3USNg8WLHg8X+1JtXchYZEZFOeHPqC/ayGKGGw1hGZz34KwRw7Ji0yvi1aw33zc+XavU4Giz2taCh3Df73Xe22+XiFadP+/rOiIh0w90EWq0UfjQqBjvBEOw5h9aDv++8I22zngIQGSkFO/YFAY8ccT5Y7GvpU2d9r/Jzhw9nEUEiMixfptoHe1mMUMBgJxiCnVrvKMC4eLH+35WV0r190DJ2rOteG18uO6yDJHvBXJSHiFQVqnVmvJlAq+caRFrHnJ1A8SfHxV/Wg7+uhIdL+779tvRvwLPBYm9q6zBfh0iXlK714k2dmUALdh0bT2vz6L0GkZaxZydQArlopzuuBn+t9ewJdOokXWZ17eq+18bfyw72zRLphhId0lqdTq3lOjahUoMo2BjsBIqvOS5KcxRYyNsKCxt+210FJPb9sb16AU8/DZw54/rSwzpI+u1vgVdekV6DfbNEmqJ0cKLUNZ8SQ2BaDbwoODiMFShqD99YLyuxfLkUYDVqBEyfDnTuXH/mkYfWzpwBWrZ0vwyFdX/s228De/a475e27pu9fBn45Rdp2Qj2zRJpitK1XpSaTq3EEBjr2IQ29uwEgxrDN/a9MLNnAzExwJo1tvvZX2adPeu618aXyyNHz3nvPWkojJdUREHlqpdE6Q5pf6ZTK90To5XOdlIHg51AUiu13tHZLDra8cwo+2+7o14bf+vtqJm/REQ2XOWrBLLWi7fXfEqfNrRexyZUZ6sFC4exAkmt1Hpnfb7uhtYGDHA/g8yXfmmWBiVSlS+TQ72ZdOmK9Yi6qxFye4E8bSj13pSc1eVuqI4rofuHPTuBFqzUem/7fB1dZjm6lCov97/ejtYvqYgMzpteEqU7pL2pM2MtEKcNpd+bv7O6vDlta3kGmR4w2DEKT89mrr7tjga1rV/T/pLDl1wkTj8nCjpv8lV8DU5c8feaT6nThhLvTclcIk9O24WFnEGmBAY7RuHp2czVt93VpVTz5tJjRUXA9eveXx6xNCipaNmyZfj4449x4MABREZG4tKlS2o3Kai87SXRSq2XQJw2/H1vSuYSuTtt19TU9+Iw3dE/DHaMwpuzmS/f9osXbV/72jXvLo8CcblI5KHq6mqMHj0ad955J9544w21m6MqPXWuavG0oeSsLnen7SNHgjeDzOgJ0kxQNiL77LsnnvA8qy0xEYiLc/64nBnoaf1za748h0gBixYtwpNPPolu3bqp3RTV+JoorDatnTYCVULNUdJ0MMu1aWk5j0Bgz46RnD4tXQJ17AjMmiX1+R465LhSsjNt2ki1dr791vH+TCimEFBVVYWqqirLz5Xy4rk6psVeEr1TopfM06G6QPTIhVJVaQY7RvLJJ9LZq08fKVDp3RvIyAB+/dW732DrSyk99XkTKWT58uVYtGiR2s1QnFZycfROyVwid0FoINMdQ6kEGoex9M5RAY233qoPds6dk7Z5Wxddr33eFDIWLlwIk8nk8lboY1GSZ555Bmaz2XIrKytTuPXax7ouzlmXUEtPB5o0Ad5/3/cSaq6G6gJZri2USqCxZ0fvHIXm1nzNamOfN2ncjBkzMGbMGJf7pPm44FFUVBSiQvx3Xem6LkZLgJV/PTZsAHbvlq41+/UL7LEAZXvkQqkEGoMdvZLPHIsXSzdHtXEc8eY3mH3epGEJCQlISEhQuxmGEsgcDiMVxTNirovRMxYY7OiNHOQkJkpnjm7d6vtSHTH6bzCRB0pLS3HhwgWUlpaitrYWBw4cAAB07NgRTZs2VbdxGqJ0DocRgwLAWLkuoVICjcGOnnz4ofTbWFEhrWAOSGeOvn2lf5tM0jdMDmxatABuvNHYv8FEHpg/fz7eeusty889e/YEAOTl5WHw4MEqtUp7/Kkh42iYykhBgTUjraAeKhkLukpQXrZsGfr164fGjRujefPmajcneOQk5AcekM4UAHD1qnRfXg6MHSv9WwjbZOL8fOWz2pi1SDqUk5MDIUSDGwMdW/7UdXFUp8WoCbDBrH8TDFqrZRQIuurZCckqqMePezZ7qlEjIDtbCnwcheZK/QYbaeCdiJzyZATc3TDVgAHOR9mNkgDLTAF90FXPjmGqoHraO1JY6FmgA0hnDrmHx5fAxlWbHE1v37JF+rmoSHqciAzBm6oTaWnSNU96en2ns7MqF44qBOsZq3Poi656dnyhyUqonvaObNgg3bu6ZJDzdALZJqMOvBNRA97kcHiSu2LUBNhQyXUxCsMHO5qphOrptARH+8XFSQtxOtKli7S8w4wZwEsveTe05GmbjJSNR0RueToC7mmdFqMGBazOoR+qdygGsgoqoKFKqJ729zraz1mg06IFsGsX8P/+H7Bvn/cruFkfq7xc2lZe3rBNRsvGIyILpeYcuBqmCoUEWNI21Xt2AlkFFdBQJVRPe0cc7WdtwgRpcc9jx4D166WA6L33pMe8LWBhfSx7znpsmI1HZCj+zjkw6jAVGYvqwU7IVEH1tL/X1X6FhdJ2uZbOyJHSdl/zaAYMkAIaObHZWk6O9LiMZzQiw1Cy2B9zV0gPVA92vGGYKqie9o7Y72fdD6xEHo2rHjPr2j0Az2hEBqL0nAPmrpDWqZ6z44358+ejZ8+eWLBgAS5fvoyePXuiZ8+efuX0BJWncxU92U+JPJqNG4HwcMePhYc3rPjlaOCdRQaJdMeoxf6InDEJEVpzhisrKxEXFwez2YzY2NjgN6Cqqr53RAjnvSOe7FdcLAVC9j1ARUWeV+uSX8Oep68xaxbw8svS/YsvenZMCmmqfwd9oMc2u+PvV58o2Pz5HupqGMsQPO3v9WQ/JfNovEk8NurqfkQhiHMOKBToahiL/kMeOjpzRsqj8Wf9K1/KgHpTNpWINIkVgD3DkXpjYM+OHlnPFbUeOvIlM9CXxGMWGSTSPc458AyXAzQGBjt64WjoaO1aoE8faaq6P0NH3k6l8HQaPRFpGmdROcaReuNhsKMXjuaKXr8OjBtXv91RrnlhITB3LrBiRWAuSzjgT0QGw+UAjYc5O3phPU3c/lsWHg4sWeJ49XHrPlglccCfiAyKU/ONh1PP9US+xHBFCNs+2IwMab2rxERg505l+2A9nUZPZEWP30E9tpn8w6n52sOp56FiyRLg2WcdP2adGBysPlgO+BORwXGk3hg4jKUnEyZIK507Yl01mX2wRER+4Ui9sbBnR0/atAE++gi4807XlxuuZkv16AF06hSU5hIR6RWn5hsLe3a0wtPKVW3aeHe5ERZme19YqHyyMhGRATlaDpD0iT07WuFp5SpPLzfkPtjERGDYMOAf/wCOHJGGs1gwgoiIQgiDHTX5WrnKk8RgOSiKjgYOHrR9jAUjiIgohDDYUVOgZ01FRdku7WD/mlzagYiIQgBzdtQUjFlTjz4qzdRyxHoGFxERkUEx2FFTsAMR+2RlIiKiEMC/eloRyECEBSOIiCiEMWdHbXIgkpoKTJ4MvPEGUFambCDCghFERBTCGOyoLViBCJd2ICKiEMVgRwsYiBAREQUMc3aIiIjI0EKuZ0f8Z2p3ZWWlyi0hCk3yd0+wmCURBUnIBTvnz58HAKSmpqrcEqLQdv78ecTFxandDCIKASEX7MTHxwMASktLDXmiraysRGpqKsrKyhAbG6t2cwLC6O/R6O/PbDajbdu2lu8iEVGghVywE/afOjZxcXGG/EMii42NNfT7A4z/Ho3+/sJY3JKIgoRnGyIiIjI0BjtERERkaCEX7ERFRWHBggWIMmgtG6O/P8D475Hvj4hIWSbB+Z9ERC5VVlYiLi4OZrPZ0HlUWldYCMydC6xYAfTurXZrKNj8+R6GXM8OERHp04YNQF4e8PbbareE9CbkZmMREZF+HD8OnDsnraSzdau0bcsWIDMTEAJISADatVO3jaR9DHaIiEiz0tLq/20ySfcVFUB6ev12JmOQOxzGIiIizdq4EWj0n8tyOaiR7xs1kh4ncidkg52SkhJMnjwZ7du3R0xMDDp06IAFCxagurpa7aYpZtmyZejXrx8aN26M5s2bq90cRWRlZaF9+/aIjo5Geno69u7dq3aTFPPFF1/g/vvvR0pKCkwmE7Zv3652kxS1fPly9OnTB82aNUNiYiJGjhyJ77//Xu1mkcY9+iiQn+/4sfx86XEid0I22Pnuu+9QV1eHV199FYcOHcILL7yAdevW4S9/+YvaTVNMdXU1Ro8ejWnTpqndFEVs3boVs2fPxl//+ld8/fXXGDhwIDIyMlBaWqp20xRx5coVdO/eHa+88oraTQmIPXv2YPr06di/fz9yc3NRU1ODoUOH4sqVK2o3jXRCLrrN4tuOFRYCv/mNdE92BFmsWLFCtG/fXu1mKC47O1vExcWp3Qy/9e3bV0ydOtVmW+fOncW8efNUalHgABDbtm1TuxkBVV5eLgCIPXv2BPQ4x44dE5MmTRJpaWkiOjpa3HjjjWL+/PmiqqrK49cwm80CgDCbzQFsKTlTViZEcrIQffoIsW6ddJ+cLG2nejNnCgEIMWuW2i0JDH++h0xQtmI2m7k4oUZVV1ejqKgI8+bNs9k+dOhQfPnllyq1ivxhNpsBIODfOete3I4dO+Lbb7/F448/jitXrmDVqlUBPTYpo00boKQEiIyUkpSnTAGqqwHWpeRsNU8x2PmPn376CS+//DKee+45tZtCDpw7dw61tbVISkqy2Z6UlIQzZ86o1CrylRACc+bMwYABA3DrrbcG9Fj33nsv7r33XsvPN954I77//nusXbuWwY6OWAc2JpN+Ap1AF0LkbDXPGG7kc+HChTCZTC5vhXYDmqdOncK9996L0aNH47HHHlOp5Z7x5f0ZiUn+Nv+HEKLBNtK+GTNm4ODBg9i8ebMqx3fXi1tVVYXKykqbG5EvAl0IkbPVPGO4np0ZM2ZgzJgxLvdJswqFT506hSFDhuDOO+/Ea6+9FuDW+c/b92cUCQkJCA8Pb9CLU15e3qC3h7Rt5syZ2LFjB7744gu0adMm6Mf3pBd3+fLlWLRoURBbRUYSzKGlRx8FunSx7cmR5ecDvXopcxy9M1ywk5CQgISEBI/2PXnyJIYMGYL09HRkZ2cjTAcp/t68PyOJjIxEeno6cnNz8eCDD1q25+bmYsSIESq2jDwlhMDMmTOxbds27N69G+3bt/fr9RYuXOg2ICkoKEBvq7EDT3txn3nmGcyZM8fyc2VlJVJTU/1qr1ZwfanAU2toKSwMqKurv6d6hgt2PHXq1CkMHjwYbdu2xapVq1BRUWF5LDk5WcWWKae0tBQXLlxAaWkpamtrceDAAQBAx44d0bRpU3Ub54M5c+Zg3Lhx6N27t6UnrrS0FFOnTlW7aYq4fPkyjh49avn52LFjOHDgAOLj49G2bVsVW6aM6dOn45133sE//vEPNGvWzNJLFxcXh5iYGK9fL5C9uFFRUYZdld16WIXBTmBs3AhMmADU1DgeWsrJUfZ4iYlAcjKQmgpMngy88QZQViZtp/9QemqYXmRnZwsADm9GkZmZ6fD95eXlqd00n61Zs0a0a9dOREZGil69egV82nIw5eXlOfz/yszMVLtpinD2fcvOzg74sU+cOCFuuukmMWbMGFFTU+P18/U+9bykRIjCQiGKioRITJSmJycmSj8XFkqPk7KKiqTP2f5WVBSY4127JkRdnfTvujrpZ6Px53toEoJ52kRkXKdOncJdd92Ftm3bYsOGDQgPD7c85mkvbmVlJeLi4mA2mxEbGxuopgaMdQ6/yST92ZXvZfxLoKziYmnYyn5oqaiIeTS+8ud7GLLDWEQUGj799FMcPXoUR48ebZAQHSrXesEeViEOLWkNe3aIiNzQe88OUN/TYI89DYFTVVVfCFEIFkL0lz/fQ+1PPyIiIsX4s74U117yTlRU/RCingohGhGDHSKiECAPq6SnA+vWSffJyd4NqwS6QB5RoHAYi4jIDSMMYwG+DatYF8jLyADKy6UAaedOrr1EwcUEZSIicsuX9aW49hIZAYexiIjIKa69REbAnh0iInKKay+REbBnh4iIPOLPTC4iNfFXloiIXFJiJheRmjiMRURELrVpA5SU1M/kmjKFBfJIX9izQ7qwefNmREdH4+TJk5Ztjz32GG677TaYzWYVW0YUGlggj/SMwQ7pwpgxY9CpUycsX74cALBo0SJ88skn2LlzJ+Li4lRuHRERaRmHsUgXTCYTli1bhlGjRiElJQUvvvgi9u7di9atW6vdNCIi0jhWUCZd6dWrFw4dOoRPP/0Ud911l9rNoRBhlArKRHrGhUApJHzyySf47rvvUFtbi6SkJLWbQ0REOsFgh3ShuLgYo0ePxquvvorf/e53ePbZZ9VuEhER6QRzdkjzSkpKMGzYMMybNw/jxo1D165d0adPHxQVFSHdUVlXIiIiK8zZIU27cOEC+vfvj0GDBuHVV1+1bB8xYgSqqqqwa9cuFVtHocJsNqN58+YoKytjzg6RSiorK5GamopLly55PQuXwQ4RkRs///wzOnTooHYziAjATz/9hBtvvNGr53AYi4jIjfj4eABAaWmpYes6yVfNRu294vvTP7PZjLZt21q+j95gsENE5EbYf1a+jIuLM+wfEllsbKyh3yPfn/6F+bASLWdjERERkaEx2CEiIiJDY7BDRORGVFQUFixYgCgDr35p9PfI96d//rxHzsYiIiIiQ2PPDhERERkagx0iIiIyNAY7REREZGgMdoiIiMjQGOwQEXmhpKQEkydPRvv27RETE4MOHTpgwYIFqK6uVrtpilm2bBn69euHxo0bo3nz5mo3x29ZWVlo3749oqOjkZ6ejr1796rdJEV98cUXuP/++5GSkgKTyYTt27er3STFLF++HH369EGzZs2QmJiIkSNH4vvvv/f6dRjsEBF54bvvvkNdXR1effVVHDp0CC+88ALWrVuHv/zlL2o3TTHV1dUYPXo0pk2bpnZT/LZ161bMnj0bf/3rX/H1119j4MCByMjIQGlpqdpNU8yVK1fQvXt3vPLKK2o3RXF79uzB9OnTsX//fuTm5qKmpgZDhw7FlStXvHodTj0nIvLTypUrsXbtWvz8889qN0VROTk5mD17Ni5duqR2U3x2++23o1evXli7dq1lW5cuXTBy5EgsX75cxZYFhslkwrZt2zBy5Ei1mxIQFRUVSExMxJ49ezBo0CCPn8eeHSIiP5nNZp8WJ6TAqq6uRlFREYYOHWqzfejQofjyyy9VahX5w2w2A4DX3zcGO0REfvjpp5/w8ssvY+rUqWo3heycO3cOtbW1SEpKstmelJSEM2fOqNQq8pUQAnPmzMGAAQNw6623evVcBjtERAAWLlwIk8nk8lZYWGjznFOnTuHee+/F6NGj8dhjj6nUcs/48v6MwmQy2fwshGiwjbRvxowZOHjwIDZv3uz1cxsFoD1ERLozY8YMjBkzxuU+aWlpln+fOnUKQ4YMwZ133onXXnstwK3zn7fvzwgSEhIQHh7eoBenvLy8QW8PadvMmTOxY8cOfPHFF2jTpo3Xz2ewQ0QE6Q9jQkKCR/uePHkSQ4YMQXp6OrKzsxEWpv1Ocm/en1FERkYiPT0dubm5ePDBBy3bc3NzMWLECBVbRp4SQmDmzJnYtm0bdu/ejfbt2/v0Ogx2iIi8cOrUKQwePBht27bFqlWrUFFRYXksOTlZxZYpp7S0FBcuXEBpaSlqa2tx4MABAEDHjh3RtGlTdRvnpTlz5mDcuHHo3bu3pReutLTUUDlWly9fxtGjRy0/Hzt2DAcOHEB8fDzatm2rYsv8N336dLzzzjv4xz/+gWbNmll66eLi4hATE+Px63DqORGRF3JycjBx4kSHjxnldDphwgS89dZbDbbn5eVh8ODBwW+Qn7KysrBixQqcPn0at956K1544QWvpi1r3e7duzFkyJAG2zMzM5GTkxP8BinIWW5VdnY2JkyY4PnrMNghIiIiI9P+QDMRERGRHxjsEBERkaEx2CEiIiJDY7BDREREhsZgh4iIiAyNwQ4REREZGoMdIiIiMjQGO0RERGRoDHaIiIjI0BjsEBERkaEx2CEiIsPavHkzoqOjcfLkScu2xx57DLfddhvMZrOKLaNg4tpYRERkWEII9OjRAwMHDsQrr7yCRYsWYf369di/fz9at26tdvMoSBqp3QAiIqJAMZlMWLZsGUaNGoWUlBS8+OKL2Lt3LwOdEMOeHSIiMrxevXrh0KFD+PTTT3HXXXep3RwKMubsEBGRoX3yySf47rvvUFtbi6SkJLWbQypgzw4RERlWcXExBg8ejDVr1mDLli1o3Lgx3n33XbWbRUHGnB0iIjKkkpISDBs2DPPmzcO4cePQtWtX9OnTB0VFRUhPT1e7eRRE7NkhIiLDuXDhAvr3749Bgwbh1VdftWwfMWIEqqqqsGvXLhVbR8HGYIeIiIgMjQnKREREZGgMdoiIiMjQGOwQERGRoTHYISIiIkNjsENERESGxmCHiIiIDI3BDhERERkagx0iIiIyNAY7REREZGgMdoiIiMjQGOwQERGRoTHYISIiIkP7/6W+zhOjC0glAAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(-2.0, 2.0)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subplot(1,2,1)\n", + "plot(x, y, \"r*\")\n", + "axis(\"square\")\n", + "title(\"y vs. x: correlated\")\n", + "xlabel(L\"x\")\n", + "ylabel(L\"y\")\n", + "xlim(-2, 2)\n", + "\n", + "subplot(1,2,2)\n", + "plot(x, z, \"b*\")\n", + "axis(\"square\")\n", + "title(\"z vs. x: uncorrelated\")\n", + "xlabel(L\"x\")\n", + "ylabel(L\"z\")\n", + "xlim(-2, 2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multidimensional data\n", + "\n", + "Instead of measuring *one* number per sample, we might be performing *many* measurements of $n$ different quantities, giving us an $m \\times n$ *matrix* $X$ of \"multidimensional\" samples (one per row).\n", + "\n", + "## Example: Fossil tooth data\n", + "\n", + "A nice example was presented in [this AMS article](https://mathvoices.ams.org/featurecolumn/2021/08/01/principal-component-analysis/), taken in turn from [this review article](https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202). Scientists had collected fossil teeth from species of an early mammal-like genus called [*Kuehneotherium*](https://en.wikipedia.org/wiki/Kuehneotherium) from the Triassic/Jurassic periods:\n", + "\n", + "![image.png](https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2021/07/wall-cover.png?w=602&ssl=1)\n", + "\n", + "Almost the only parts of *Kuehneotherium* that survived are teeth, and for each tooth scientists made $n = 9$ **measurements**:\n", + "\n", + "![image-2.png](https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2021/07/tooth-parameters.png?w=718&ssl=1)\n", + "\n", + "They measured $m = 88$ teeth (**samples**), and some key questions are:\n", + "\n", + "* How are the different measurements **correlated** with one another?\n", + "* Which measurements … or **combinations of measurements** … are the most important in explaining the variations in the data?\n", + "* How can you **visualize** this 9-dimensional dataset?\n", + "* How can you use this data to help **classify** the teeth into different groups (e.g. species)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The covariance and correlation matrices\n", + "\n", + "If we have a bunch of data sets, we might want the covariance or correlation of *every* pair of data sets. Since these are basically dot products, asking for *all* of the dot products is the same as asking for a **matrix multiplication**.\n", + "\n", + "In particular, suppose that $X$ is the $m \\times n$ matrix whose **columns** are $n$ different datasets of length $m$ samples each. First, we need to subtract off the means of each column to form a new matrix $A$:\n", + "\n", + "$$\n", + "A = P X\n", + "$$\n", + "\n", + "where $P$ is the projection matrix from above that subtracts the mean, applied to **each column** of $X$\n", + "\n", + "Given $A$, we can compute **all** of the covariances simply by computing the **covariance matrix S**\n", + "\n", + "$$\n", + "S = \\frac{A^T A}{m-1}\n", + "$$\n", + "\n", + "since $A^T A$ computes all of the dot products of all of the columns of $A$ with one another. The diagonal entries of $S$ are the variances of each dataset, and the off-diagonal elements are the covariances.\n", + "\n", + "Alternatively, we can compute the **correlation matrix** $C = \\hat{A}^T \\hat{A}$, where $\\hat{A}$ is simply the matrix $A$ scaled so that each column has unit length. i.e. $\\hat{A} = AD$, where $D$ is a diagonal matrix whose entries are the inverse of the length of each row, i.e. $D$ is the inverse of the diagonal entries of $A^TA$.\n", + "\n", + "Let's look in more detail at the two correlated vectors $x$ and $y$ from above:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6mklEQVR4nO3dfXCU5b3/8c+9QB6AZEUSkkUgATFgMU1jUIlWWuqUGltPq44/rD2InXM8tT2MIxxPD8Fplc5osGMt0/HpWJ9a2/7Krw067ZF64AxPeqA2eAKNCCglkAgbIRQ2PMRE2Pv3R5o9edjd7Ca7ez+9XzM7w95cd/bKzbL3d7/XdX0vwzRNUwAAAB7ls7oDAAAAViIYAgAAnkYwBAAAPI1gCAAAeBrBEAAA8DSCIQAA4GkEQwAAwNNGW90BuwuHwzp69Kjy8vJkGIbV3QEAAAkwTVOnT5/W5MmT5fPFz/0QDA3h6NGjmjp1qtXdAAAAw9Da2qopU6bEbUMwNIS8vDxJPRczPz/f4t4ASFY4HNbu3bslSRUVFUN+QwTgDh0dHZo6dWrkPh4PwdAQeofG8vPzCYYABwqHwxo/fryknv/HBEOAtyQyxYVPBQAA4GmOCoa2bdumm2++WZMnT5ZhGHrttdfitt+yZYsMwxj02LdvX2Y6DAAAbM9Rw2Rnz55VRUWFvvnNb+q2225L+Lz9+/f3G+IqLCxMR/cA2JBhGJo4cWLkzwAwkKOCoZqaGtXU1CR93qRJk3TRRRcl1Larq0tdXV2R5x0dHUm/HgD7MAxDpaWlVncDgI05aphsuCorKxUIBHTDDTdo8+bNcdvW1dXJ7/dHHiyrBwDA3VwdDAUCAT333HOqr6/XunXrNGvWLN1www3atm1bzHNqa2sVCoUij9bW1gz2GEA6hMNhhcNhq7sBwKYcNUyWrFmzZmnWrFmR59XV1WptbdXjjz+u+fPnRz0nOztb2dnZmeoigDQLh8NqbGyU1JMlZmk9gIE896kwb948ffDBB1Z3AwAA2ITngqHGxkYFAgGruwEAAGzCUcNkZ86c0YEDByLPm5ubtWvXLl188cWaNm2aamtrdeTIEf385z+XJK1Zs0alpaWaM2eOuru79Ytf/EL19fWqr6+36lcAAAA246hgaOfOnVqwYEHk+fLlyyVJS5Ys0csvv6xgMKiWlpbI33d3d+uBBx7QkSNHlJubqzlz5uj111/XTTfdlPG+AwAAezJM0zSt7oSddXR0yO/3KxQKsTcZ4EBMoLZOMNSp5vazml4wTgF/rtXdgcckc/92VGYIAOAMaxtaVLuuSWFT8hlS3a3lWnTVNKu7BUTFVyQArjdhwgRNmDDB6m54RjDUGQmEJClsSivXvatgqNPajgExkBkC4Go+n08zZsywuhue0tx+NhII9bpgmjrUfo7hMtgSmSEAQEpNLxgn34A9cUcZhkoLxlrTIWAIBEMAgJQK+HNVd2u5Rhk9EdEow9Cjt15BVgi2xTAZAFdjNZk1Fl01TfPLCnWo/ZxKC8YSCMHWCIYAAGkR8OcSBMER+IoEAAA8jWAIAAB4GsEQAADwNIIhAADgaQRDAADA01hNBsD1/H6/1V0AYGMEQwBczefzaebMmVZ3A4CNMUwGAAA8jWAIAAB4GsNkAFwtHA5r9+7dkqSKigq24wAwCMEQANcLh8NWdwGAjfEVCQAAeBrBEAAA8DSCIQAA4GkEQwAAwNMIhgAAgKexmgyA6+Xl5VndBQA2RjAEwNV8Pp/Kysqs7gYAG2OYDAAAeBrBEAAALhMMdWr7X9oVDHVa3RVHYJgMgKuFw2E1NTVJksrLy9mOA663tqFFteuaFDYlnyHV3VquRVdNs7pbtsanAgDXO3/+vM6fP291N+BgTsm0BEOdkUBIksKmtHLdu7bvt9XIDAEAEIeTMi3N7WcjgVCvC6apQ+3nFPDnWtMpByAzBABADE7LtEwvGCef0f/YKMNQacFYazrkEARDAADEEC/TYkcBf67qbi3XKKMnIhplGHr01ivICg2BYTIAAGLozbT0DYjsnmlZdNU0zS8r1KH2cyotGEsglAAyQwAA10nVhGenZloC/lxVXzrR9v20CzJDAFxv7Fj7fotH6qV6wjOZFvczTNM0h27mXR0dHfL7/QqFQsrPz7e6OwCQsGCoU83tZzW9YJxnbuDBUKeuW71p0LDWWysWeOYaoEcy928yQwDgQk5aDp5KLC3HcDBnCABcxmnLwVOJpeUYDoIhAK7Wux1HU1OTwuGw1d3JCKctB08lp054hrUYJgPget3d3VZ3IaOcuBw8lZjwjGSRGQIAlyE7wtLyTHHKnm1DITMEAC5EdmR4vLgCb7jcNEmfYAgAXCrgz7XVDd3ugYabbu7pFmuS/vyyQlv+2w6FYAgAkHZ2DzTcdnNPN7eVMGDOEAAgrZyw1N/LK/CGw20lDAiGALheTk6OcnJyrO6GZzkh0HDbzT3d3DZJn2EyAK7m8/k0Z84cq7vhaU5Y6t97c1+57l1dME3H39wzwU2T9AmGAABp5ZRAw00390yx2yT94SIYAgCXstPqLacEGm65uSM5jpoztG3bNt18882aPHmyDMPQa6+9NuQ5W7duVVVVlXJycjRjxgw9++yz6e8oANsIh8Pas2eP9uzZ45ntOKSe1VvXrd6kO3/6tq5bvUlrG1qs7hKFEGFbjgqGzp49q4qKCj355JMJtW9ubtZNN92k66+/Xo2NjVq5cqXuu+8+1dfXp7mnAOzk448/1scff2x1NzLGCau3ADtx1DBZTU2NampqEm7/7LPPatq0aVqzZo0k6fLLL9fOnTv1+OOP67bbbot6TldXl7q6uiLPOzo6RtRnAMg0t9WAAdLNUZmhZO3YsUMLFy7sd+xLX/qSdu7cqU8++STqOXV1dfL7/ZHH1KlTM9FVAEgZty8Tj7Yfllv2yII1HJUZSlZbW5uKior6HSsqKtL58+fV3t6uQCAw6Jza2lotX7488ryjo4OACICjOGX1ViIGTgKPVslakq2rWyM2u0zyd3UwJEmG0f/rkWmaUY/3ys7OVnZ2dtr7BQDp5JTVW/EMDHz+7cbZeuyNff3mQtXWN0l9ahixjYZz2GmLFlcPkxUXF6utra3fsWPHjmn06NGaOHGiRb0CgOQNZxjIyau3ok0Cf+wP+wbNhQpLtq9ujcHsNsnf1Zmh6upq/f73v+93bMOGDZo7d67GjBljUa8AZFpWVpbVXRgRO32DzpRok8DDkgxDMvsc90n9MkOSu+ZHuZXdJvk7KjN05swZ7dq1S7t27ZLUs3R+165damnpqZ9RW1uru+66K9L+3nvv1eHDh7V8+XLt3btXL774ol544QU98MADVnQfgAV8Pp/Ky8tVXl4un89RH3mS7PcNOlNiTQJfUTO7335YdbeVu2qPLK+w2yR/R2WGdu7cqQULFkSe9050XrJkiV5++WUFg8FIYCRJ06dP1/r167Vs2TI99dRTmjx5sn7yk5/EXFYPAHZjt2/QmRJrEviiq6bp7yomD5oL5fT5UV5jt0n+hmma5tDNvKujo0N+v1+hUEj5+flWdweAxwRDnbpu9aZBw0BvrVjgiZt+MNRJkONi6fz3Teb+7bycMQAkIRwOa+/evdq7d68jt+Po/Qbt1WEgJ08Cx9Ds8u/rqGEyABiOc+ecvbLIDcvkATsjGAIAB2A3dSB9GCYDACAJbP3hPmSGAABIkBdrPnkBmSEAABLg1ZpPXkAwBABAAuLVfIKzMUwGwPVGj+ajDiPXWzWZrT/ch8wQAFfz+XyqqKhQRUWFI7fjgH14veaTm/F1CQCABFHzyZ0IhgAASAI1n9yHYAiAq4XDYR04cECSNHPmTIbKAAxCMATA9U6fPm11FzAMwVCnmtvPanrBODIxSCuCIQCA7VDcEJlEvhgAYCsUN0SmEQwBAGyF4obINIIhAICt9BY37MuuxQ3ZtNUdCIYAALbilOKGaxtadN3qTbrzp2/rutWbtLahxeouYZiYQA3A9VhO7zx2L24Ya17T/LJC2/UVQyMYAuBqPp9PlZWVVncDw2Dn4obx5jXZtc+Ija9LAAAkyUnzmjA0giEAcLh0TuJN9Gd7bSKxU+Y1ITEMkwFwtXA4rIMHD0qSZsyY4br5Q+ksTpjoz/ZqgUS7z2tC4tz1qQAAUYRCIYVCIau7kXLpLE6Y6M/2eoHEgD9X1ZdOJBByOIIhAHCodBYnTPRnUyARbkAwBAAOlc5JvIn+bCYSW8dr87TSiWAIABwqnZN4E/3ZTCS2BgUfU8swTdMcupl3dXR0yO/3KxQKKT8/3+ruAEhSOBxWY2OjJKmystJ1E6ilngxBuibxJvqz09kH9BcMdeq61Zv6DU+OMgy9tWIB176PZO7frCYDAIdLZ3HCRH+2nQskug0FH1PPfV+RAABwMeZppR7BEABX8/l8qqqqUlVVlSuHyOA9zNNKPYbJAABwGAo+phbBEAAADsQ8rdQhGALgauFwWIcOHZIklZaWMlQGYBA+FQC43smTJ3Xy5EmruwHApgiGAAAJoeIx3IphMgDAkLy6Mz28gcwQACCudO9MT8YJViMzBACIK50Vj8k4wQ7IDAEA4kpXxeN0Z5yARBEMAQDiSlfF43gZJyCTGCYD4Go+n0+VlZWRP2N40lHxuDfjNHD3dfbYQqbxyQDA9Xw+H4FQCgT8uaq+dGLKqh6zxxbsgswQAMAy7LEFOyAYAuBqpmnq8OHDkqSSkhIZhjHEGcg09tiC1cgbA3A10zR14sQJnThxQqZpDn0CAM8hGAIAAJ5GMAQAFnBy1WUn9x2IhjlDAJBhTq667OS+A7E4LjP09NNPa/r06crJyVFVVZXefPPNmG23bNkiwzAGPfbt25fBHgPA/3Jy1WUn9x2Ix1HB0Nq1a3X//ffrwQcfVGNjo66//nrV1NSopaUl7nn79+9XMBiMPC677LIM9RgA+nNy1WUn9x2Ix1HB0BNPPKF/+Id/0D/+4z/q8ssv15o1azR16lQ988wzcc+bNGmSiouLI49Ro0ZlqMcA0F+69vnKBCf3HYjHMcFQd3e33nnnHS1cuLDf8YULF2r79u1xz62srFQgENANN9ygzZs3x23b1dWljo6Ofg8AzuXz+VRRUaGKigpbVKF2ctXlgX33GdJ3a2Y5ou9WYsK5/TlmAnV7e7suXLigoqKifseLiorU1tYW9ZxAIKDnnntOVVVV6urq0iuvvKIbbrhBW7Zs0fz586OeU1dXp1WrVqW8/wCsM3q0vT7qnFx1edFV03Tq3Cda/Yd9CpvSY3/Yp4tyxwx7EnUw1Knm9rOaXjAu49chE6/NhHNnMEyHVCE7evSoLrnkEm3fvl3V1dWR44888oheeeWVhCdF33zzzTIMQ7/73e+i/n1XV5e6uroizzs6OjR16lSFQiHl5+eP7JcAAIcLhjp13epNgzZXfWvFgqQDCisDhUy8diqvFZLX0dEhv9+f0P3b+pxxggoKCjRq1KhBWaBjx44NyhbFM2/ePH3wwQcx/z47O1v5+fn9HgCcyzRNtbS0qKWlhQrUKZCqSdRWrkzL1Gsz4dw5HBMMZWVlqaqqShs3bux3fOPGjbr22msT/jmNjY0KBAKp7h4AmzJNU8ePH9fx48cJhlIgVZOorQwUMvXaTDh3DscEQ5K0fPlyPf/883rxxRe1d+9eLVu2TC0tLbr33nslSbW1tbrrrrsi7desWaPXXntNH3zwgfbs2aPa2lrV19dr6dKlVv0KAOBoqZoAbmWgkKnXdvJkea+x16zCISxatEgnTpzQD37wAwWDQV1xxRVav369SkpKJEnBYLBfzaHu7m498MADOnLkiHJzczVnzhy9/vrruummm6z6FQBAkrUTh0cqFRPAewOFleve1QXTHDJQSOX1Sva1R8LJk+W9xDETqK2SzAQsAPYTDofV2NgoqafMhh2W17PC6H8FQ51DBgrpul6JvDacK5n7t6MyQwDgdLEm784vK/TkDTngz437e8e6XrOL83S2+8KIMkVDvTa8g2AIADIo3uRdbsyDxbpeX3t6u0wya0gR6/PFAOAhrDBKTrTrJUmmBUvy4V4EQwBczefzqby8XOXl5baYLxRthdF3a2apuf3siG7obt3yYdAWIFHaULsHI8UwGQDXy8rKsroL/fRdYfTnD0/psb9tbTHcIR+3T8jue73GZvl0y9PbB1V1JrOGkbD+axIAeFDAn6vSgrF67I19I6qEbGUl50wK+HNVfelEVUydQO0epByZIQCuZpqmjhw5Ikm65JJLZBhRJqBYJNbk4HcOndTF4xOrqePFCdnU7kGqEQwBcDXTNPXRRx9JkiZPnmyrYKh3cnDfYMaQdN+vGxMe8or2M7wwbMSyeKQSw2QAYJFYk4OTGfJy2pYPbp3oDWcjMwQAFuo75HPibJeW/qqx398nMuTllGEjt0/0hnMRDAGAxXqHfIKhzmEPedl92IjK27AzhskAwCacNuSVjHgTvQGrkRkCABtxypBXsrw60RvOQGYIAGymt6aOWwIhyd1ZLzgfmSEArubz+fSpT30q8mdYx61ZLzgfwRAA18vNdf9NNxjqVHN7YoUarWT3id7wJoIhAHA4lqwDI0POGICrmaapo0eP6ujRozJNc+gTHCbe3mQUOAQSQ2YIgKuZpqlgMChJKi4uttV2HKkQa8n6S//drOffbCZbBCSAzBAAOFjvkvW+fIb0023Nrt/JHkgVgiEAcLBoS9b/4bPTNXBAkAKHQGwMkwGATQx3RdjAJeuS9MJbzRQ4BBJEMATAdfoGFUV52VZ3JyEjXRE2cMl63a3lWrnuXV0wTQocAkMgGALgKgODike+NkdlNv+kS8cmphQ4BBLHnCEArhEtqHjw1XfVfuZjazs2hHRtYurGbT2AdCAYAuAa0YMKaczFUzV79uyEl9Vnuj5PtBVhdp3jQ+0iuJHNk8cAkLhoO6OP9vl0+bRCjRuXWHbEimrOvSvC7D7Hh0rXcCvDdGNJ1hTq6OiQ3+9XKBRSfn6+1d0BMIS1DS2DgopEb9jBUKeuW71p0Cqst1YsyEhgEgx1pnyOT6r2LLP62gDJSub+TWYIgKsMnDhcnJ+jjz76SJI0adKkuENl8ebuZOKGn+pNTFOZybH62gDpRDAEwHX6BhXhcFgffvihJKmwsDBuMBRtmM2uc3eGkuoVam66NsBATKAGgL+JVs3ZjnN3EpHqFWpuujbAQGSGAKAPt9TnSUcmxy3XBhiIzBAADOCG+jzpyuS44doAA5EZAgCXIpMDJIZgCABcLNUr1EYiVcv8gVQjGALgedyk04+CjbAzgiEArmYYhsrKyiJ/HihTN+lgqFPvHD4p0zQ1t/RiTwVd6diIFkglgiEArmYYhvLy8qL+XaZu0msbWrSivkm9C7sMSatv805mhIKNsDtWkwHwrHTtFt9Xb8DV92VMSbX1TZ7Z7NRJG9HCmwiGALiaaZo6fvy4jh8/rt6tGHt3Xh+XNSrtN+loAZckhaWUBl12RsFG2B3DZABczTRNtbS0SJImTpyo/7eztd8coVsqL9FrjUfTtlt8tOKHUs83US9lRljmDzsjGALgGdHmCL3WeFTrvlOtc93htNyke7MiK9Y16W+JKRmS6m4r91xAYKdl/kBfBEMAPCPWHKFz3WFVXzoxba/bmxX5n8MnZZpSVekEggLARgiGAHiGlTuvB/y5+vKnCYAAO2ICNQDPYCIvgGjIDAHwFCbyAhiIYAiA5zCRF0BfBEMAXM0wDM2cOTPyZwAYKOk5Q3fffbe2bduWjr4AQMoZhiG/3y+/308wBCCqpIOh06dPa+HChbrsssv06KOP6siRI+noV0xPP/20pk+frpycHFVVVenNN9+M237r1q2qqqpSTk6OZsyYoWeffTZDPQUAAE6QdDBUX1+vI0eOaOnSpfrNb36j0tJS1dTU6Le//a0++eSTdPQxYu3atbr//vv14IMPqrGxUddff71qamoi1WUHam5u1k033aTrr79ejY2NWrlype677z7V19entZ8A7MM0TZ04cUInTpyIbMcBAH0Z5gg/HRobG/Xiiy/q+eef1/jx4/X3f//3+s53vqPLLrssVX2MuOaaa3TllVfqmWeeiRy7/PLL9bWvfU11dXWD2v/bv/2bfve732nv3r2RY/fee692796tHTt2JPSaHR0d8vv9OnnypPLz86O28fn+N6YMh8Nxfx5tR9bWNM24NzQ7tDUMIzIcQ9vk20rx3xPJtjVNU42NjZKkioqKfv+Ww/25kv3+b9C2B58R7m8rJfYZ0Xv/DoVCMe/fvUY0gToYDGrDhg3asGGDRo0apZtuukl79uzRpz71Kf3whz/UsmXLRvLj++nu7tY777yjFStW9Du+cOFCbd++Peo5O3bs0MKFC/sd+9KXvqQXXnhBn3zyicaMGTPonK6uLnV1dUWed3R0SJJ2796t8ePHD2rv9/sjkzN728X6R8rLy1NZWVnkeVNTk86fPx+17dixY3X55ZdHnu/Zs0fd3d1R2+bk5GjOnDmR53v37tXHH38ctW1WVpbKy8sjz/fv369z56JvFjl69GhVVFREnh84cECnT5+O2tbn86mysjLy/ODBgwqFQlHbSlJVVVXkz4cOHdLJkydjtq2srIx80Bw+fFgnTpyI2baiokKjR/e8rVtbW3X8+PGYbcvLy5WVlSVJOnLkiD766KOYbT/1qU8pN7dn9VEwGFQwGIzZdvbs2Ro3bpwk6dixY/rwww9jti0rK1NeXp4kqb29PWaWU5Jmzpwpv98vSfrrX/+qQ4cOxWw7Y8YMTZgwQZJ06tQpHTx4MGbb0tJSTZzYU325o6NDBw4ciNl22rRpKiwslCSdOXNG77//fsy2U6ZMUVFRkSTp3Llz2rdvX8y2gUBAkydPliR1dnbqvffei9m2qKhIU6ZMkdTzudDU1BSzbWFhYaTt+fPn1djYGDMYmjhxokpLSyX1fND2BlDRTJgwQTNmzIg8j9eWz4gefEb8Lz4jemTiMyJRSQ+TffLJJ6qvr9dXvvIVlZSU6De/+Y2WLVumYDCon/3sZ9qwYYNeeeUV/eAHP0j2R8fV3t6uCxcuRC5cr6KiIrW1tUU9p62tLWr78+fPq729Peo5dXV1kcmWfr9fU6dOTc0vAAAAbCnpYbKCggKFw2F9/etf1z333KPPfOYzg9qcPHlSV155pZqbm1PVTx09elSXXHKJtm/frurq6sjxRx55RK+88krUiLKsrEzf/OY3VVtbGzn23//93/rsZz+rYDCo4uLiQedEywxNnTqVYTKbtCUF7v62UnLDZI2HT+hPh/6qq0svVsXUCYPaMkzmrbZ8Rri/rWSDYbIf//jHuv3225WTkxOzzYQJE1IaCEk9QdioUaMGZYGOHTs2KPvTq7i4OGr70aNHR1J+A2VnZys7O3vQcZ/PF/NDdGC7RNE2+bYD/0PQ1n1tpcTfE//y/3ap/n/+d0XrbVdeoh/9n8/0a9P3AzbR/8fJ9IG29mprh/cwbdPbVkruPZHQz0v2hMWLF8cNhNIlKytLVVVV2rhxY7/jGzdu1LXXXhv1nOrq6kHtN2zYoLlz50adLwTAOXa3nuwXCElS/f8c0e7W2HNLACAaR23Uunz5cj3//PN68cUXtXfvXi1btkwtLS269957JUm1tbW66667Iu3vvfdeHT58WMuXL9fevXv14osv6oUXXtADDzxg1a8AIEX+dOivUY/vPJRcMBQMdWr7X9oVDHWmolsAHMhR23EsWrRIJ06c0A9+8AMFg0FdccUVWr9+vUpKSiT1zODvO9N++vTpWr9+vZYtW6annnpKkydP1k9+8hPddtttVv0KAFLk6tKLox6fWzp43lDvyq+Bafi1DS2qXdeksCn5DKnu1nItumpaejoMwLZGXGfI7ZKZgAX3CIY61dx+VtMLxrGhZwx2uEaJzBmKJRjq1HWrNync5xNwlGHorRUL+DcHXCBjdYYANyJbMDS7XKMf/Z/P6K7qEu08dFJzSycMWk0WT3P72X6BkCRdME0daj9HMAR4DMEQ0Ecw1Bm5yUtS2JRWrntX88sKuUH+TbRrVFvfpHHZo1VVMiHj16liavwgyDRNnTp1SpJ00UUXRYbKpheMk8/QoMxQacHYdHYXgA05agI1kG7xsgXoEe0ahSUt/VWjrlu9SWsbWmw1Kdk0TR08eFAHDx7st8w+4M9V3a3lGvW34GiUYejRW68g6AU8iMwQ0AfZgqFFu0a9wqa0or5Jxt/+3u7DjIuumqb5ZYU61H5OpQVjCYQAjyIzBPRBtmBoA6/RQKY0aJjRDhmiWAL+XFVfOpF/Y8DDyAwBA5AtGFrvNXrn0End9+vGqFmiXlZPSg6GOrX7w1O65KLMF4sF4AwEQ0AUAX8uQdAQAv5cfaUiV2e7z2vlund1wTTlU09mqG9sZOUw49qGFq2o362P2w7KZ0iP51yir19TaklfANgXwRCAERmYSdv2/vFIcGTlMGO0VW8PvvquPj+7iEAXQD8EQwBGrG8mzS7DjNQRApAogiEAKWeHYcbeVW8XTEOj/ZMkSaMMHysDAQzCajIArtS76m20z6dRufnKGutX3W3llgdpAOyHzBAA20j1fmd2GbIDYG8EQwBsIV37nRXn52isuiV1yzRzBu1cDwAMkwGwXKw94VJRrNE0TR04cEAHDhzotx0HAPQiGAJgOfaEA2AlgiEAlhuXNSrq8bFZfEQBSD8+aYAE2GkXdqeKdw3Pdl+Ies657nC6uwUATKAGhpKuib1eMtQ17K0J1HeozMptPAB4C5khII50Tuz1ikSuYW9NoFF/W+ll5TYeALyHzBAQB1s6jFyi19AuNYFSXesIgP0RDAFxWDV846YbcjLXMB3beBiGoWnTpkX+HA9DooA3MUwGxGHF8M3ahhZdt3qT7vzp27pu9SatbWhJ22tlgtVDYIZhqLCwUIWFhXGDIYZEAe8iMwQMIZPDN7FuyPPLCh2dIbLLEFg8DIkC3kUwBCQgU7uwu/mGbNVO9qZp6syZM5Kk8ePHx8wOsaIN8C6GyQAb6b0h98UNeWRM09T777+v999/P+52HFYP5wGwDpkhYIRSOdm594a8ct27umCa3JAzzAnDeQBSj2AIGIF0rD7y8g3ZDqvorBrOA2AdgiFgmNI52dmLN2SWtQOwCnOGgGFip/XUYVk7ACsRDAHDxGTn1CGwBGAlgiFgmFh9lDoElgCsxJwhYAS8PNk5ldK5is4wDE2ZMiXyZwAYyDDjFd6AOjo65Pf7FQqFlJ+fb3V3AFcLhjoJLAGkRDL3bzJDAGzDi6voAFiPOUMARiQY6tT2v7TbduWXaZo6e/aszp49G7cCNQDvIjMEYNicUBvINE3t27dPklRZWcm8IQCDkBkCMCzUBgLgFgRDSAu7D51g5KgNBMAtGCZDyjlh6AQj11sbqG9ARG0gAE5EZggpxdBJZlmZgRuq6CTZQQBOQWYIKRVv6IQl06llhwxcrKKTdugbACSKzBBSim0VMsNOGbiAP1fVl07slxGyS98AIBEEQ0gp9uvKDDtPXrZb3wzDUCAQUCAQYFk9gKgYJkPKsV9X+tl58rLd+mYYhiZPnmzJawNwBjJDSIuBQydILTtn4OzcNwCIho1ah8BGrbAzO29saqe+dXb2zFfKzbXXNQKQPmzUCniEnTc2tUvfwuGw3nvvPUk923H4fCTEAfTHpwI8izo4AACJzBA8ijo4AIBejskMnTx5UosXL5bf75ff79fixYt16tSpuOfcfffdMgyj32PevHmZ6TBsizo4I0dWDYCbOCYzdOedd+rDDz/UG2+8IUn6p3/6Jy1evFi///3v455344036qWXXoo8z8rKSms/YX9UyR4ZsmoA3MYRwdDevXv1xhtv6I9//KOuueYaSdJPf/pTVVdXa//+/Zo1a1bMc7Ozs1VcXJyprsIB4tXBCYY61dx+VtMLxhEYRRErqza/rJDrBcCxHDFMtmPHDvn9/kggJEnz5s2T3+/X9u3b4567ZcsWTZo0SWVlZbrnnnt07NixuO27urrU0dHR7wF3iVUHZ9v7x3Xd6k2686dv67rVm7S2ocXintqP3apLA0AqOCIz1NbWpkmTJg06PmnSJLW1tcU8r6amRrfffrtKSkrU3Nys733ve/rCF76gd955R9nZ2VHPqaur06pVq1LWd9jTwCrZknTd6k1kPIZgt+rSiTAMQ0VFRZE/A8BAlmaGHn744UETnAc+du7cKSn6h5hpmnE/3BYtWqQvf/nLuuKKK3TzzTfrD3/4g95//329/vrrMc+pra1VKBSKPFpbW0f+i8KW+lbJJuORGCdWlzYMQ1OmTNGUKVMIhgBEZWlmaOnSpbrjjjvitiktLdWf//xnffTRR4P+7vjx45FvfIkIBAIqKSnRBx98ELNNdnZ2zKwR3MuJGQ+rsPccALexNBgqKChQQUHBkO2qq6sVCoX0pz/9SVdffbUk6e2331YoFNK1116b8OudOHFCra2tCgQCw+4z3Kk347Fy3bu6YJqOyHhYyS7VpRPV3d0tidWkAKJzzN5kNTU1Onr0qP793/9dUs/S+pKSkn5L62fPnq26ujrdcsstOnPmjB5++GHddtttCgQCOnTokFauXKmWlhbt3btXeXl5Cb0ue5N5i53202JlW2qEw2E1NjZKYjsOwEtcuTfZL3/5S913331auHChJOnv/u7v9OSTT/Zrs3//foVCIUnSqFGj1NTUpJ///Oc6deqUAoGAFixYoLVr1yYcCMF77JLxoJYPAGSOYzJDViEzhEwLhjr7rWyTeuYvvbVigaWBmlMzVWSGAG9yZWYIiCXWTdqpN287VsgmUwXAzQiG4GixbtKZunmnI+Cy28o2qk4DcDvyxXCsWDfp3a0nM7IR69qGlrRUrLZbLR9qMAFwOzJDcKxYN+mGQyfTPsyU7myJnWr52C1TBQCpRmbIQsFQp7b/pT3lGQuv6L1J9zXKMHRV6YSox1N5885EtqRvhWwr2S1TlSzDMFRYWKjCwkIqUAOIisyQRZiQOnKxCiVWTJ2Q9gKKXsuW2ClTlSzDMDRtGv+3AMTG0vohpGNpvV2XTjtVrEKJ6S6guLahZVDARUALAPbA0nqbs+PSaSeLVSgx3QUUnZwt8Zrz589LkkaP5iMPwGB8MljAa0MsbmaXitWILRwOa/fu3ZIougggOj4VLOD0CakAALgJmSGLMMQCAIA9EAxZiCEWazl1uw4AQGoRDMGTnFzagCAOAFKLYAie4+S9tuwUxBGUAXALgiF4jlNLG9gpiLNTUAYAI8VqMnhOrG087F7awC4bpsYKyuy6rYxhGJo4caImTpzIdhwAoiIYguc4tbSBXYI4uwRliTIMQ6WlpSotLSUYAhAVw2TwJCeWNoi1F1um+07RUABuQzAEz0pnaYN0TS62QxBnl6AsGeFwWJKoPg0gKoIhIMXSPbnYDvWp7BCUJSocDquxsVES23EAiI5PBThCMNSp7X9pt+0k3V5Om1w8EgF/rqovnWjrQAgAEkFmCLbnpGXcTl22DwBeRmYItua0TItdVnwBABJHMARbc9oybqcu2wcAL2OYDLbmxGXc0SYXs3UFANgXwRBszYnLuKX+K76cNOcJALyIYAi256Rl3APZaT8xL5swYYLVXQBgYwRDcAQ71NYZDlaXWc/n82nGjBlWdwOAjTGBGkgjVpcBgP0RDAFpxOoyALA/hsmANHPynCc3YDsOAEMhGAIywKlzngDAC/iKBAAAPI1gCI7nlE1cAQD2xDAZHI2ChgCAkSIzBNtINsPjtE1cAQD2RGYItjCcDA8FDQEAqUBmCJYbboaHgoZIlN/vl9/vt7obAGyKYAiWi5fhiYeChkiEz+fTzJkzNXPmTGoMAYiKYTJYrjfD0zcgSjTDQ0FDAMBI8TUJlhtphifgz1X1pRMJhAAAw0JmCLZAhgfpEg6HtXv3bklSRUUFQ2UABiEYgm2wZQXSJRwOW90FADbGVyQAAOBpBEMYkXiFEtkmAwDgBAyTYdjiFUpkmwwAgFOQGcKwxCuUyDYZAAAnITOEYYlXKNGUyTYZAADHIBhC0oKhTp040xW3UOJwiygC6ZCXl2d1FwDYGMEQktJ3LpAhyTAk0xxcKLHu1nKtXPeuLpgm22QkKRjqVHP7WU0vGMc1SwGfz6eysjKruwHAxhwTDD3yyCN6/fXXtWvXLmVlZenUqVNDnmOaplatWqXnnntOJ0+e1DXXXKOnnnpKc+bMSX+HXWjgXCBTks+UnryzUleWTOh346aI4vAw8RwAMs8xE6i7u7t1++2369vf/nbC5/zwhz/UE088oSeffFINDQ0qLi7WF7/4RZ0+fTqNPXWvaPOEwpIuHpcdNdhhm4zkMPEcAKzhmMzQqlWrJEkvv/xyQu1N09SaNWv04IMP6tZbb5Uk/exnP1NRUZF+9atf6Vvf+lbU87q6utTV1RV53tHRMbKOu8hINlTF0OJNSiegHL5wOKympiZJUnl5OdtxABjEtZ8Kzc3Namtr08KFCyPHsrOz9bnPfU7bt2+PeV5dXZ38fn/kMXXq1Ex01xFGuqEq4usNNvsi2EyN8+fP6/z581Z3A4BNOSYzlKy2tjZJUlFRUb/jRUVFOnz4cMzzamtrtXz58sjzjo4OywOiTE2oTeR1vDgXKFPXvzfYZOI5AGSWpcHQww8/HBn+iqWhoUFz584d9msYRv+v2qZpDjrWV3Z2trKzs4f9eqmWqQm1ybyOlzZUzfSEZi8GmwBgNUuDoaVLl+qOO+6I26a0tHRYP7u4uFhST4YoEAhEjh87dmxQtsiuYk2onV9WmNKbZKZex2msui5eCjYBwA4sDYYKCgpUUFCQlp89ffp0FRcXa+PGjaqsrJTUsyJt69ateuyxx9LymqmWqQm1Vk3ctXs9HSY0A4A3OGbOUEtLi/7617+qpaVFFy5c0K5duyRJM2fO1Pjx4yVJs2fPVl1dnW655RYZhqH7779fjz76qC677DJddtllevTRRzV27FjdeeedFv4micvU6i0rVok5oZ4Oq+cAwBscs5rs+9//viorK/XQQw/pzJkzqqysVGVlpXbu3Blps3//foVCocjz7373u7r//vv1ne98R3PnztWRI0e0YcMGx5Tmz9TqrUyvEnNKPZ2B18VnSN+tmUVWyIHGjh2rsWMJYgFEZ5imaQ7dzLs6Ojrk9/sVCoWUn59vSR+Coc6MTKjN1Ots/0u77vzp24OO/9975qn60olpe93h+vetf9HqP+zrqbht0ywWAKC/ZO7fjhkm87JMTajN1Os4afgpGOrUY2/0BEISk8sBwI0cM0wG93BS8cZ4k6gBAO5AZgiWcEo9HSdlsRBdOBzWnj17JElz5sxhOw4Ag/CpAMs4YSNXJ2WxEFt3d7e6u7ut7gYAmyIzBAzBKVksAMDwEAwBCaAqNAC4F8NkAADA0wiGAACApxEMAQ4WDHVq+1/abVe9GwCchDlDgEM5YX83u8jJybG6CwBsjGAIcKBY+7tRGXswn8+nOXPmWN0NADbGMBngQFTGBoDUIRgCHKi3MnZfVMYGgOEhGAIciMrYievdjmPPnj0Kh8NWdweADTFnCCkTDHWquf2spheM46acAVTGTtzHH39sdRcA2BjBEFKClU3WoDI2AIwcw2QYsVgrm6h9AwBwAoIhjBgrmwAATkYwhBGLtrLJJ+nE2S6yQwAA2yMYwogNXNlkSDIlLf1Vo65bvUlrG1os7R8AAPEQDCElFl01TW+tWKAnv14pw+gJhiTmD8EesrKylJWVZXU3ANgUq8mQMgF/ri4eH3v+UDpWPbGcH0Px+XwqLy+3uhsAbIxgCCnVO3+ob0CUrsrILOcHAKQCw2RIqUxVRmY5PwAgVcgMIeUyURk53nJ+hsvQVzgc1v79+yVJs2bNks/Hd0AA/REMIS3SXRk5k8NxcL5z56h5BSA2viLBkdioFACQKmSG4FhsVAoASAWCITgaG5UCAEaKYTIAAOBpBEMAAMDTCIbgWsFQp7b/pZ3aQ9Do0aM1ejSzAgBEx6cDXInq1Ojl8/lUUVFhdTcA2BiZIbgO1akBAMkgGHI5Lw4VxatODQDAQAyTuZhXh4qoTo2+wuGwDhw4IEmaOXMm23EAGIRPBZfy8lAR1akx0OnTp3X69GmruwHApsgMuZTXNzKlOjUAIFEEQy7FUBHVqQEAiWGYzKUYKgIAIDFkhlyMoSIAAIZGMORyDBUBABAfwRAA12M5PYB4CIYAuJrP51NlZaXV3QBgY3xdAgAAnkYwBAAAPI1hMgCuFg6HdfDgQUnSjBkzmD8EYBCCIQCuFwqFrO4CABvjKxIAAPA0xwRDjzzyiK699lqNHTtWF110UULn3H333TIMo99j3rx56e0oAABwFMcEQ93d3br99tv17W9/O6nzbrzxRgWDwchj/fr1aeohAABwIsfMGVq1apUk6eWXX07qvOzsbBUXFyfcvqurS11dXZHnHR0dSb0eAABwFsdkhoZry5YtmjRpksrKynTPPffo2LFjcdvX1dXJ7/dHHlOnTs1QTwEAgBUckxkajpqaGt1+++0qKSlRc3Ozvve97+kLX/iC3nnnHWVnZ0c9p7a2VsuXL488D4VCmjZtGhkiwKHC4bDOnDkjqSfTy9J6wBt679umaQ7d2LTQQw89ZEqK+2hoaOh3zksvvWT6/f5hvd7Ro0fNMWPGmPX19Qmf09raOmQfefDgwYMHDx72fLS2tg55r7c0M7R06VLdcccdcduUlpam7PUCgYBKSkr0wQcfJHzO5MmT1draqry8PBmGMeI+dHR0aOrUqWptbVV+fv6If55bcZ0Sw3VKDNdpaFyjxHCdEmOH62Sapk6fPq3JkycP2dbSYKigoEAFBQUZe70TJ06otbVVgUAg4XN8Pp+mTJmS8r7k5+fzHykBXKfEcJ0Sw3UaGtcoMVynxFh9nfx+f0LtHDN43tLSol27dqmlpUUXLlzQrl27tGvXrshcAEmaPXu2Xn31VUnSmTNn9MADD2jHjh06dOiQtmzZoptvvlkFBQW65ZZbrPo1AACAzThmAvX3v/99/exnP4s8r6yslCRt3rxZn//85yVJ+/fvj5TdHzVqlJqamvTzn/9cp06dUiAQ0IIFC7R27Vrl5eVlvP8AAMCeHBMMvfzyy0PWGDL7zBjPzc3Vf/7nf6a5V8nLzs7WQw89FHM1G3pwnRLDdUoM12loXKPEcJ0S47TrZJhmImvOAAAA3Mkxc4YAAADSgWAIAAB4GsEQAADwNIIhAADgaQRDGfDII4/o2muv1dixY3XRRRcldM7dd98twzD6PebNm5fejlpsONfJNE09/PDDmjx5snJzc/X5z39ee/bsSW9HLXTy5EktXrw4spHw4sWLderUqbjneOG99PTTT2v69OnKyclRVVWV3nzzzbjtt27dqqqqKuXk5GjGjBl69tlnM9RTayVznbZs2TLofWMYhvbt25fBHmfWtm3bdPPNN2vy5MkyDEOvvfbakOd48b2U7HVywnuJYCgDuru7dfvtt+vb3/52UufdeOONCgaDkcf69evT1EN7GM51+uEPf6gnnnhCTz75pBoaGlRcXKwvfvGLOn36dBp7ap0777xTu3bt0htvvKE33nhDu3bt0uLFi4c8z83vpbVr1+r+++/Xgw8+qMbGRl1//fWqqalRS0tL1PbNzc266aabdP3116uxsVErV67Ufffdp/r6+gz3PLOSvU699u/f3++9c9lll2Wox5l39uxZVVRU6Mknn0yovVffS8lep162fi8Na8dTDEsym8wuWbLE/OpXv5rW/thVotcpHA6bxcXF5urVqyPHPv74Y9Pv95vPPvtsGntojffee8+UZP7xj3+MHNuxY4cpydy3b1/M89z+Xrr66qvNe++9t9+x2bNnmytWrIja/rvf/a45e/bsfse+9a1vmfPmzUtbH+0g2eu0efNmU5J58uTJDPTOfiSZr776atw2Xn0v9ZXIdXLCe4nMkI1t2bJFkyZNUllZme655x4dO3bM6i7ZSnNzs9ra2rRw4cLIsezsbH3uc5/T9u3bLexZeuzYsUN+v1/XXHNN5Ni8efPk9/uH/H3d+l7q7u7WO++80+89IEkLFy6MeU127NgxqP2XvvQl7dy5U5988kna+mql4VynXpWVlQoEArrhhhu0efPmdHbTcbz4XhoJO7+XCIZsqqamRr/85S+1adMm/ehHP1JDQ4O+8IUvqKury+qu2UZbW5skqaioqN/xoqKiyN+5SVtbmyZNmjTo+KRJk+L+vm5+L7W3t+vChQtJvQfa2tqitj9//rza29vT1lcrDec6BQIBPffcc6qvr9e6des0a9Ys3XDDDdq2bVsmuuwIXnwvDYcT3kuO2Y7Dbh5++GGtWrUqbpuGhgbNnTt3WD9/0aJFkT9fccUVmjt3rkpKSvT666/r1ltvHdbPtEK6r5MkGYbR77lpmoOO2Vmi10ga/LtKQ/++bnkvxZPseyBa+2jH3SaZ6zRr1izNmjUr8ry6ulqtra16/PHHNX/+/LT200m8+l5KhhPeSwRDw7R06VLdcccdcduUlpam7PUCgYBKSkr0wQcfpOxnZkI6r1NxcbGknm9ngUAgcvzYsWODvq3ZWaLX6M9//rM++uijQX93/PjxpH5fp76XoikoKNCoUaMGZTfivQeKi4ujth89erQmTpyYtr5aaTjXKZp58+bpF7/4Raq751hefC+lit3eSwRDw1RQUKCCgoKMvd6JEyfU2tra76bvBOm8TtOnT1dxcbE2btyoyspKST1zI7Zu3arHHnssLa+ZDoleo+rqaoVCIf3pT3/S1VdfLUl6++23FQqFdO211yb8ek59L0WTlZWlqqoqbdy4Ubfcckvk+MaNG/XVr3416jnV1dX6/e9/3+/Yhg0bNHfuXI0ZMyat/bXKcK5TNI2Nja5436SKF99LqWK795KVs7e94vDhw2ZjY6O5atUqc/z48WZjY6PZ2Nhonj59OtJm1qxZ5rp160zTNM3Tp0+b//Iv/2Ju377dbG5uNjdv3mxWV1ebl1xyidnR0WHVr5F2yV4n0zTN1atXm36/31y3bp3Z1NRkfv3rXzcDgYBrr9ONN95ofvrTnzZ37Nhh7tixwywvLze/8pWv9GvjtffSr3/9a3PMmDHmCy+8YL733nvm/fffb44bN848dOiQaZqmuWLFCnPx4sWR9gcPHjTHjh1rLlu2zHzvvffMF154wRwzZoz529/+1qpfISOSvU4//vGPzVdffdV8//33zXfffddcsWKFKcmsr6+36ldIu9OnT0c+dySZTzzxhNnY2GgePnzYNE3eS72SvU5OeC8RDGXAkiVLTEmDHps3b460kWS+9NJLpmma5rlz58yFCxeahYWF5pgxY8xp06aZS5YsMVtaWqz5BTIk2etkmj3L6x966CGzuLjYzM7ONufPn282NTVlvvMZcuLECfMb3/iGmZeXZ+bl5Znf+MY3Bi1X9eJ76amnnjJLSkrMrKws88orrzS3bt0a+bslS5aYn/vc5/q137Jli1lZWWlmZWWZpaWl5jPPPJPhHlsjmev02GOPmZdeeqmZk5NjTpgwwfzsZz9rvv766xb0OnN6l4APfCxZssQ0Td5LvZK9Tk54Lxmm+bfZXgAAAB7E0noAAOBpBEMAAMDTCIYAAICnEQwBAABPIxgCAACeRjAEAAA8jWAIAAB4GsEQAADwNIIhAADgaQRDAADA0wiGAACApxEMAfCU48ePq7i4WI8++mjk2Ntvv62srCxt2LDBwp4BsAobtQLwnPXr1+trX/uatm/frtmzZ6uyslJf/vKXtWbNGqu7BsACBEMAPOmf//mf9V//9V+66qqrtHv3bjU0NCgnJ8fqbgGwAMEQAE/q7OzUFVdcodbWVu3cuVOf/vSnre4SAIswZwiAJx08eFBHjx5VOBzW4cOHre4OAAuRGQLgOd3d3br66qv1mc98RrNnz9YTTzyhpqYmFRUVWd01ABYgGALgOf/6r/+q3/72t9q9e7fGjx+vBQsWKC8vT//xH/9hddcAWIBhMgCesmXLFq1Zs0avvPKK8vPz5fP59Morr+itt97SM888Y3X3AFiAzBAAAPA0MkMAAMDTCIYAAICnEQwBAABPIxgCAACeRjAEAAA8jWAIAAB4GsEQAADwNIIhAADgaQRDAADA0wiGAACApxEMAQAAT/v/+ypWhH4pyN8AAAAASUVORK5CYII=", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "PyObject " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(x,y, \".\")\n", + "xlabel(\"x\")\n", + "ylabel(\"y\")\n", + "axhline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", + "axvline(0, linestyle=\"--\", color=\"k\", alpha=0.2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correlation matrix is:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100×2 Matrix{Float64}:\n", + " 0.124222 -0.219352\n", + " 0.0227809 0.249823\n", + " 0.315317 0.40813\n", + " 0.61338 0.229378\n", + " 0.433094 0.408413\n", + " 0.468822 0.295106\n", + " 0.74303 0.489606\n", + " 0.799446 0.989201\n", + " 0.896713 1.1552\n", + " 1.61708 0.988133\n", + " 1.05142 0.907034\n", + " 1.32902 1.21532\n", + " 1.28214 0.725336\n", + " ⋮ \n", + " -1.05845 -0.923803\n", + " -1.06265 -1.22041\n", + " -0.841951 -1.32533\n", + " -0.885835 -1.24612\n", + " -0.880041 -0.564796\n", + " -0.742061 -0.0509618\n", + " -0.516617 -0.534554\n", + " -0.525201 -0.2277\n", + " -0.755918 -0.486642\n", + " -0.194772 -0.0799946\n", + " -0.0997921 -0.281965\n", + " 0.0947852 -0.0374883" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = [x.-mean(x) y.-mean(y)] # columns are x and y with means subtracted" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Matrix{Float64}:\n", + " 0.560422 0.491678\n", + " 0.491678 0.522814" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "S = A' * A / (length(x)-1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, since there are only two datasets, $S$ is just a $2 \\times 2$ matrix." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Principal Components Analysis and the SVD\n", + "\n", + "A key question in analyizing data analysis is to figure out **which variables are responsible for most of the variation in the data**. These may not be the variables you measured, but may instead be some **linear combination of the measured variables**!\n", + "\n", + "Mathematically, this corresponds to **\"diagonalizing\" the covariance (or correlation) matrix**. This process of diagonalizing the covariance matrix is called [principal component analysis](https://en.wikipedia.org/wiki/Principal_component_analysis), or **PCA**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using the SVD basis\n", + "\n", + "Suppose that the take the SVD of $A$:\n", + "\n", + "$$\n", + "A = U \\Sigma V^T\n", + "$$\n", + "\n", + "Let's assume that $A$ is a \"tall\" matrix (lots of samples $m$) with full column rank $r=n$ (the datasets aren't redundant). Then (for the \"thin\" SVD) $U$ is an $m \\times n$ matrix with orthonormal columns forming a basis for $C(A)$, $\\Sigma$ is an $n \\times n$ diagonal matrix of the singular values $\\sigma_1,\\ldots,\\sigma_n$, and $V$ is an $n \\times n$ unitary matrix with orthonormal columns.\n", + "\n", + "The claim is that $V$ is the **right basis** in which look at the statistics of the different datasets $A$. $V$ represents an $n \\times n$ \"rotation\" that we can use to make new linear combination of the columns, i.e. we **write each row in the V basis** to form a new $m \\times n$ matrix:\n", + "\n", + "$$\n", + "B = A V = U \\Sigma V^T V = U \\Sigma\n", + "$$\n", + "\n", + "The covariance of *this* matrix (which is the *same data in a new coordinate system*) is\n", + "\n", + "$$\n", + "S_B = \\frac{B^T B}{m-1} = \\frac{\\Sigma^T U^T U \\Sigma}{m-1} = \\frac{\\Sigma^2}{m-1}\n", + "$$\n", + "\n", + "Since $\\Sigma^T \\Sigma = \\Sigma^2$ is a **diagonal matrix** of the *squares* $\\sigma_k^2$ of the singular values $\\sigma_k$, we find:\n", + "\n", + "* In the $V$ basis, the different datasets become *uncorrelated* ($S_B$ is *diagonal*).\n", + "* The squares $\\sigma_k^2$ of the singular values are the variances of the *uncorrelated components of the data* (the eigenvalues of $S_B$).\n", + "* The right singular vectors $V$ tell you *what linear combinations* of the datasets give you *uncorrelated* variables.\n", + "\n", + "Let's try it:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}\n", + "U factor:\n", + "100×2 Matrix{Float64}:\n", + " 0.00618941 0.110215\n", + " -0.0187483 -0.0741125\n", + " -0.050436 -0.0340296\n", + " -0.0594114 0.117395\n", + " -0.0588439 0.00274283\n", + " -0.0536211 0.0507735\n", + " -0.0864845 0.0733496\n", + " -0.124751 -0.0714615\n", + " -0.143058 -0.0950001\n", + " -0.182912 0.184808\n", + " -0.137065 0.0341293\n", + " -0.17797 0.0207631\n", + " -0.141041 0.165431\n", + " ⋮ \n", + " 0.138715 -0.0308745\n", + " 0.159347 0.0642684\n", + " 0.150821 0.167468\n", + " 0.148516 0.127972\n", + " 0.101397 -0.0917824\n", + " 0.0563457 -0.215694\n", + " 0.0734399 0.0121358\n", + " 0.0530159 -0.0903411\n", + " 0.0871993 -0.0783474\n", + " 0.0193561 -0.0349498\n", + " 0.0264368 0.0604605\n", + " -0.00418104 0.0418593\n", + "singular values:\n", + "2-element Vector{Float64}:\n", + " 1.0166882449559171\n", + " 0.22266815661458467\n", + "Vt factor:\n", + "2×2 Matrix{Float64}:\n", + " -0.720492 -0.693464\n", + " 0.693464 -0.720492" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U, σ, V = svd(A / sqrt(length(x)-1))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Vector{Float64}:\n", + " 1.033654987431543\n", + " 0.049581107970137206" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "σ.^2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conveniently, the convention for the SVD is to sort the singular values in descending order $\\sigma_1 \\ge \\sigma_2 \\ge \\cdots$. So, the **first** singular value/vector represents *most* of the variation in the data, and so on." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 adjoint(::Matrix{Float64}) with eltype Float64:\n", + " -0.720492 0.693464\n", + " -0.693464 -0.720492" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "V" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIq0lEQVR4nO3de3xU9Z3/8feZQC5cMlwCSZBLQOQiYIyAErEo0qJYrYhrsbgs7nbZqlWr1G1Be1H3J2DXKtvipVrXe5Uq4NrKWuhyU0ENNCCIgEgwCEEIjZMIIRHm/P44ZELIJJlJZubMOef1fDzy8MzkOzPf4yEzn/l+P9/P1zBN0xQAAIBH+ezuAAAAgJ0IhgAAgKcRDAEAAE8jGAIAAJ5GMAQAADyNYAgAAHgawRAAAPC0dnZ3INkFg0Ht379fnTt3lmEYdncHAABEwDRNVVVVqVevXvL5mh/7IRhqwf79+9WnTx+7uwEAAFph79696t27d7NtCIZa0LlzZ0nW/8zMzEybewOgOcFgUJs3b5Yk5efnt/htEIB7VVZWqk+fPqHP8eYQDLWgbmosMzOTYAhIcsFgUJ06dZJk/c0SDAGIJMWFdwoAAOBpBEMAAMDTmCYD4BqGYah79+6hYwCIhKNGhtauXaurrrpKvXr1kmEYev3115ttv3r1ahmG0ehn+/btiekwgIQyDEN5eXnKy8sjGAIQMUeNDB05ckT5+fn653/+Z1177bURP27Hjh0Nkp979OgRj+4BAAAHclQwNGnSJE2aNCnqx/Xs2VNdunSJfYcAJJ1gMChJrCQDEDFPvFsUFBQoNzdXEyZM0KpVq5ptW1NTo8rKygY/AJwhGAyquLhYxcXFoaAIAFri6mAoNzdXTz75pBYvXqwlS5Zo8ODBmjBhgtauXdvkY+bNmye/3x/6ofo0AADuZpimadrdidYwDENLly7V5MmTo3rcVVddJcMw9MYbb4T9fU1NjWpqakK36ypYBgIBii4CSa5uZEiyRoSZKgO8q7KyUn6/P6LPb8+9U4wZM0affPJJk79PS0sLVZum6jQAAO7nuWCouLhYubm5dncDAAAkCUetJvvqq6+0a9eu0O2SkhJt2rRJ3bp1U9++fTVnzhzt27dPzz//vCRpwYIFysvL07Bhw1RbW6sXX3xRixcv1uLFi+06BQBwjLJAtUrKj6h/Vkfl+jPs7g4QN44KhjZs2KDx48eHbs+aNUuSNGPGDD377LMqKytTaWlp6Pe1tbW66667tG/fPmVkZGjYsGF68803dcUVVyS87wDgJIuKSjVnyRYFTclnSPOmjNDU0X3t7hYQF45NoE6UaBKwANgrGAxqz549kqS8vDwSqFupLFCtsfNXKnjKp0OKYeid2eMZIYJjRPP57aiRIQBojs/n04ABA+zuhuOVlB9pEAhJ0gnT1J7yowRDcCW+NgEAGuif1VG+07Z2SzEM5WV1sKdDQJwRDAEAGsj1Z2jelBFKObnZbYphaO6U4YwKwbWYJgPgGhRdjJ2po/tq3KAe2lN+VHlZHQiE4GoEQwCAsHL9GQRB8AS+NgEAAE8jGAIAAJ5GMAQAADyNYAgAAHgawRAAAPA0VpMBcBW/3293FwA4DMEQANfw+XwaOHCg3d0A4DBMkwEAAE8jGAIAAJ7GNBkA1wgGg9q8ebMkKT8/n+04AESEYAiAqwSDQbu7AMBh+NoEAAA8jWAIAAB4GsEQAADwNIIhAADgaQRDAADA01hNBsBVOnfubHcXADgMwRAA1/D5fBo0aJDd3QDgMEyTAQAATyMYAgAgRsoC1Vr3abnKAtV2dwVRYJoMgGsEg0Ft2bJFkjRixAi240BCLSoq1ZwlWxQ0JZ8hzZsyQlNH97W7W4gA7xQAXOX48eM6fvy43d1AgiTLSExZoDoUCElS0JTuXrLV9n4hMowMAQAcKZlGYkrKj4QCoTonTFN7yo8q159hS58QOUaGAACOk2wjMf2zOspnNLwvxTCUl9XBlv4gOgRDAADHaW4kxg65/gzNmzJCKYYVEaUYhuZOGc6okEMwTQYAcJy6kZhTAyK7R2Kmju6rcYN6aE/5UeVldSAQchBGhgAAtmltAnSyjsTk+jNUeGZ32/uB6DAyBMBVOnQgR8Mp2poAzUgMYsUwTdNsuZl3VVZWyu/3KxAIKDMz0+7uAIDKAtUqKT+i/lkdHRsAlAWqNXb+ykbTXO/MHu/Yc0Jyiebzm5EhAHCQZFpO3hYsRUcyIWcIABwi2ZaTtwVL0ZFMCIYAuEbddhxbtmxRMBi0uzsxl2zLydsiWROg4U1MkwFwldraWru7EDfJuJy8LUiARrJgZAgAHMKNoyksRY9MsuzB5laMDAGAg3h9NMUNK+mi5Zak+WRGMAQADpPrz0h4IJAMQYgXg4KmkubHDerhmWAwEQiGAADNSoYgxKtBASUIEoOcIQBAk5JlOb+bVtJFgxIEiUEwBMBV0tPTlZ6ebnc3XCNZghCvBgVuTJpPRkyTAXANn8+nYcOG2d0NV0mW5fx1QcHdS7bqhGl6KijwetJ8IhAMAQCalExBiJeDAjuS5r2EYAgAHCbRK7uSKQghKEA8EAwBcI1gMKiPP/5YkjR06FD5fO5Li7RrZRdBCNzMfe8UADzt2LFjOnbsmN3diItkWdkFuI2jgqG1a9fqqquuUq9evWQYhl5//fUWH7NmzRqNHDlS6enpGjBggJ544on4dxQA4iBZVnYBbuOoYOjIkSPKz8/XwoULI2pfUlKiK664Qt/4xjdUXFysu+++W7fffrsWL14c554CQOw5dXn56ftqsc8Wko2jcoYmTZqkSZMmRdz+iSeeUN++fbVgwQJJVg7Bhg0b9NBDD+naa6+NUy8BID6SaWVXc05N8F6781CDHKdrCs7Q0uJ9ntpSwy7JsIWKUzgqGIrW+vXrNXHixAb3XXbZZXr66af19ddfq3379o0eU1NTo5qamtDtysrKuPcTACKVTCu7wjk1wbtuEKtuZi9oSov/ti/U1itbatghGbZQcRJHTZNF68CBA8rOzm5wX3Z2to4fP67y8vKwj5k3b578fn/op0+fPonoKgCPi2bqKNefocIzuyddAHF6grep+kCoKeQ8xR6J9tFzdTAkSYbRcILdNM2w99eZM2eOAoFA6Gfv3r1x7yOA2ElNTVVqaqrd3YjKoqJSjZ2/UtOeel9j56/UoqJSu7vUKuESvFvihJwnpyHRPnqunibLycnRgQMHGtx38OBBtWvXTt27dw/7mLS0NKWlpSWiewBizOfzacSIEXZ3Iypu2o093NYdhiTj5H0phqHJBb30evH+pM55crpk2ULFSVwdDBUWFupPf/pTg/uWL1+uUaNGhc0XAoBEa+5bvNOChKYSvE/PcbrrssFJm/PkBk5JtE8mjgqGvvrqK+3atSt0u6SkRJs2bVK3bt3Ut29fzZkzR/v27dPzzz8vSbrpppu0cOFCzZo1SzNnztT69ev19NNP6+WXX7brFACgAbd9i28qwfvUD2KqWcdfsifaJxtHBUMbNmzQ+PHjQ7dnzZolSZoxY4aeffZZlZWVqbS0fq69f//+WrZsme688049+uij6tWrl37zm9+wrB5wqWAwqB07dkiSBg8e7IjtONz4LZ5gJzlwHSJnmHUZxQirsrJSfr9fgUBAmZmZdncHQDOCwaCKi4slSQUFBY4IhuqUBar5Fg/EUDSf344aGQIAt+JbPGAf53xtAgCgGWzzgdZiZAgA4HhUXEZbMDIEAHA0Ki6jrQiGAACORsVltBXTZABcpV073ta8xm21mpB4jAwBcA2fz6f8/Hzl5+c7alk92qauVlPKyT0n3VCrCYnFVygAgONRcRltQTAEAHAFajWhtQiGALhGMBgM7V84cOBApsoARIRgCICrVFVV2d0FTysLVKuk/Ij6Z3VklAaOQTAEAIgJCh/CqRhDBgC0GYUP4WQEQwCANqPwIZyMYAgA0GZ1hQ9PZVfhQzZsRbQIhgAAbZYshQ8XFZVq7PyVmvbU+xo7f6UWFZUm9PXhTCRQA3AVltPbx+7Ch03lLY0b1IOVbWgWwRAA1/D5fCooKLC7G55mZ+HD5vKWCIbQHL5CAQBcIZnyluAsBEMAkKRinQjc0vM5PfE4WfKW4DxMkwFwjWAwqN27d0uSBgwY4Oj8oVgXMGzp+dxSMNHuvCU4k3PfKQAgjEAgoEAgYHc32iTWBQxbej63FUzM9Weo8MzuBEKIGMEQACSZWBcwbOn5KJgIryMYAoAkE+tE4Jaej8Tj1nF6jhXqEQwBQJKJdSJwS89H4nH0KO7oLoZpmmbLzbyrsrJSfr9fgUBAmZmZdncHQDOCwaCKi4slSQUFBY5OoJaskYdYJgK39Hyxfj23KgtUa+z8lQ2mFlMMQ+/MHs//tyQSzec3q8kAIEnFuoBhS89nZ8FEJ6G4o/s4+2sTAAAJRo6V+xAMAXANn8+nkSNHauTIkY6fIkPyIsfKfZgmAwAgShR3dBeCIQAAWoEcK/cgGALgGsFgUHv27JEk5eXlMVUGICK8UwBwlYqKClVUVNjdDQAOQjAEAB5D5WSgIabJAMBD3LI7PRBLjAwBgEfEend6RpjgFowMAYBHxLJyMiNMcBNGhgDAI2JVOTnWI0yA3QiGAMAjYlU5ubkRJsCJmCYD4Bo+n08FBQWhYzQWi8rJdSNMp+/azt5ccCreLQC4is/nIxBqQa4/Q4Vndm919WT25oLbMDIEAIgae3PBTQiGALiGaZr67LPPJEn9+vWTYRgtPAJtwd5ccAvGkgG4hmmaOnz4sA4fPizTNFt+AACIYAgAAHgcwRAAxFmyVmpO1n4BiUbOEADEUbJWak7WfgF2YGQIAOIkWSs1J2u/ALsQDAFAnCRrpeZk7RdgF4IhAIiTWO0FFmvJ2i/ALo4Lhh577DH1799f6enpGjlypN5+++0m265evVqGYTT62b59ewJ7DCBRfD6f8vPzlZ+fnxRVqJO1UnNdv+oCIp+hpOhXopA4jtM5KoF60aJFuuOOO/TYY49p7Nix+t3vfqdJkyZp27Zt6tu36cS/HTt2KDMzM3S7R48eieguABu0a5dcb2vJXKm5rhRTa0oylQWqVVJ+RP2zOsbtnOLxGiSOIxzDdFBlsgsuuEDnnXeeHn/88dB9Q4cO1eTJkzVv3rxG7VevXq3x48eroqJCXbp0ieg1ampqVFNTE7pdWVmpPn36KBAINAioAMCpygLVGjt/ZaONVt+ZPT6ioCMRAUU8XqOt5w1nqayslN/vj+jz2/5x5AjV1tZq48aNmjhxYoP7J06cqHXr1jX72IKCAuXm5mrChAlatWpVs23nzZsnv98f+unTp0+b+w4gMUzTVGlpqUpLS6lA3Yy2JFAnYiVavF6DxHE0xTHBUHl5uU6cOKHs7OwG92dnZ+vAgQNhH5Obm6snn3xSixcv1pIlSzR48GBNmDBBa9eubfJ15syZo0AgEPrZu3dvTM8DQPyYpqlDhw7p0KFDBEPNaEsCdSICini9BonjaEpyTa5H4PSNF03TbHIzxsGDB2vw4MGh24WFhdq7d68eeughjRs3Luxj0tLSlJaWFrsOA0CSqUugvnvJVp0wzagSu+sCitOnmmIZUMTrNdpy3nA3xwRDWVlZSklJaTQKdPDgwUajRc0ZM2aMXnzxxVh3DwDCSkSicWu0NrE7moCitecez6AlmRPaYR/HBEOpqakaOXKkVqxYoWuuuSZ0/4oVK3T11VdH/DzFxcXKzc2NRxcBoIFkX7mU689oVTAQSUDR1nOPZ9DS2vOGezkmGJKkWbNmafr06Ro1apQKCwv15JNPqrS0VDfddJMkK99n3759ev755yVJCxYsUF5enoYNG6ba2lq9+OKLWrx4sRYvXmznaQDwgKaSgMcN6uGKD+LmAopw5z5n8RZ1TGunkf26RjUK5Yb/V0h+jgqGpk6dqsOHD+v+++9XWVmZhg8frmXLlqlfv36SpLKyMpWWloba19bW6q677tK+ffuUkZGhYcOG6c0339QVV1xh1ykA8IjmkoDd/gEf7tyDkm79Q3FSjpABjqozZIdo6hQAsFcwGFRxcbEkq6SGnVWovVzTJty5n8or/x9gL1fWGQKAlvh8Po0YMUIjRoywfTuO07fi8BnSv1yU16rnctr2Eaef++mo7YNkw8hQCxgZAtAWZYFqPfNuiZ5aWyJT0ScTJ3sSdnPKAtXauKdCt79S7MkRMtiLkSEASCK/f9sKhKToqiknotpzPOX6M3Rlfq+k3KwWOJWjEqgBoDmmaWrfvn2SpDPOOKPJgqyJ1FQi9cY9FerWqfkaPG5Jwqa2D5IdwRAA1zBNU1988YUkqVevXkkRDIWrpmxIoamj5qa+ElHtOVFYJo9kxjQZAMRRo0Tqk/dHMvV1+mPtnmJyWiI3EClGhgAgzk6dJjp8pEa3/qG4we+bm/pKlikmJydyAy0hGAKABKibJioLVEc99WX3FJPbq2kDTJMBQAIl29RXJJpL5AbcgJEhAEiwZJn6ipSbErmBcBgZAgAb5PozVHhm96QPhCRnjmYB0WBkCIBr+Hw+nX322aFjxI7TRrOAaBAMAXCVjAx3fUiXBapVUt58ccZEsTuRG4gXgiEASFIsZwcSg3FkAK5hmqb279+v/fv3y+l7UDe3LxnFD4HYYmQIgGuYpqmysjJJUk5OTlJsx9FaTS1nf+bdEv3+7RJGi4AYYmQIAJJQ3XL2U/kM6am1JY7dxR5IVgRDAJCEwi1n//5F/XX65B/FD4G2Y5oMABIomtVhpy9nl6Sn3ymh+CEQYwRDAFwrmZalS61bHXb6cvZ5U0bo7iVbdcI0KX4IxAjBEABXWlRUqnte/yhpEo1jtdkpxQ+B2CNnCIDrlH91THcvDb8s3S6x3OzUSVt5AE5AMATANQzD0JAhQ9SuW28FzYZLsSINPOJVwyfc6jA7832oVQTUY5oMgGsYhqGOHTvq7L4+pfiMqBON41nxuW51WDLk+1DZGmjIMJ1epjXOKisr5ff7FQgElJmZaXd3AERoUVFpo8CjuQ/8skC1xs5f2SiAemf2+JgGLGWB6jbn+7QlMTxR5wnYLZrPb0aGALiGaZo6ePCgJOm7o/pElWjcXE5PLIOEtm522tZRnUSdJ+AkBEMAXMM0TX3++eeSpB49ekQVeNTl9CRzDZ9YrEhzwnkCiUYCNQAofMXnZKvhE4sVaU44TyDRGBkCgJOSvYZPrEZ1kv08gURjZAgATpHMNXxiOaqTzOcJJBojQwDgIIzqALFHMAQADtPWFWmtkWz7vAGxRDAEwNP4kG8ZRRrhdgRDAFzDMAwNGjQodNySeH3IlwWqtfGzCpmmqVF53RwdZMVqg1kgmREMAXANwzDUuXPniNrG60N+UVGpZi/eoroFX4ak+dc6dySFIo3wAlaTAfCkWO4iX6cuwDr1aU1JcxZvceyGqMm2wSwQDwRDAFzDNE0dOnRIhw4dUnPbLpYFqvX3I7U6fSKtrR/y4QIsSQpKbQqy7ESRRngB02QAXMM0TZWWlkqSunfvHjZv6NQ8IUPWj6nYfMiHK4ooWd86nTySwnJ+uB3BEADPOD1PyJSVOP3b6ws0Mq9rmz/k60ZRZi/ZorqBKUPSvGtHOD6AsGM5P5AoBEMAPCPcNFbQlLp3SovZB33dKMrfPquQaSomQRaA+CIYAuAZidqxPdefoW+fQwAEOAUJ1AA8g2RgAOEwMgTAU0gGBnA6giEAnkMyMIBTEQwBcA3DMDRw4MDQMQBEIuqcoRtvvFFr166NR18AoE0Mw5Df75ff7ycYAhCxqIOhqqoqTZw4UWeddZbmzp2rffv2xaNfAAAACRF1MLR48WLt27dPt956q1599VXl5eVp0qRJeu211/T111/Ho48AEBHTNHX48GEdPny42e04AOBUrVpa3717d/3oRz9ScXGxPvjgAw0cOFDTp09Xr169dOedd+qTTz6JdT8BoEWmaWrPnj3as2cPwRCAiLWpzlBZWZmWL1+u5cuXKyUlRVdccYU++ugjnX322XrkkUdi1ccGHnvsMfXv31/p6ekaOXKk3n777Wbbr1mzRiNHjlR6eroGDBigJ554Ii79AgAAzhT1arKvv/5ab7zxhp555hktX75c55xzju68807dcMMN6ty5syTplVde0c0336w777wzpp1dtGiR7rjjDj322GMaO3asfve732nSpEnatm2b+vbt26h9SUmJrrjiCs2cOVMvvvii3n33Xd1yyy3q0aOHrr322qheOxgMKhgMhv2dz+dr0K45tG1bW9M0m/3GnwxtDcMIJe/SNvq2UvP/Jppre+rfaTAYjNnzhpNsfxu0tfAe4f62UnR/y5EwzCjHkrOyshQMBvW9731PM2fO1LnnntuoTUVFhc477zyVlJRE1ZmWXHDBBTrvvPP0+OOPh+4bOnSoJk+erHnz5jVq/9Of/lRvvPGGPv7449B9N910kzZv3qz169eHfY2amhrV1NSEbldWVqpPnz5avXq1OnXq1Ki93+8PLeWVpOLi4iYvUufOnTVo0KDQ7c2bN+v48eNh23bo0EFDhw4N3d6yZYtqa2vDtk1PT9ewYcNCtz/66CMdO3YsbNvU1FSNGDEidPvjjz/W0aNHw7Zt166d8vPzQ7d37typqqqqsG19Pp8KCgpCt3ft2qVAIBC2rSSNHDkydLx7925VVFQ02bagoCD0RrNnzx4dPny4ybb5+flq186K8UtLS3Xo0KEm244YMUKpqamSpM8//1xffPFFk23PPvtsZWRYdWn279+vsrKyJtsOGTJEHTt2lCR98cUX+vzzz5tsO2jQoNCXiEOHDoV2XA9n4MCB8vv9kqTDhw9rz549TbYdMGCAunbtKsn6e9y9e3eTbfPy8tS9e3dJUiAQ0K5du5ps27dvX/Xo0UOStZhi586dTbbt3bu3srOzJUlHjhzR9u3bm2ybm5urXr16SZKqq6u1bdu2JttmZ2erd+/ekqTa2lpt2bIl9Lvt+7/Uync2aEDVQU2c8V1l5+aGvigdP35cmzdvbvJ5u3fvrry8PEnWG21xcXGTbbt27aoBAwaEbm/cuLHJtrxHWHiPqMd7hCXe7xGVlZXy+/0KBALKzMxssr3UimmyRx55RPv379ejjz4aNhCSrDeKWAdCtbW12rhxoyZOnNjg/okTJ2rdunVhH7N+/fpG7S+77DJt2LChyWTvefPmhZbm+v1+9enTJzYnACCuHlmxQz9+7UP9z7ZDeqRUWjBrgRTddz0AHhX1yJBd9u/frzPOOEPvvvuuLrzwwtD9c+fO1XPPPacdO3Y0esygQYN044036u677w7dt27dOo0dO1b79+9Xbm5uo8c0NTJUUVHRZGSZbMPEbm7LELj720rRT2dt3luhyY+tk2kG9fUX1jfc9j37640l9+rcXcXSyfZMk7m/Le8R7m8rRfa3HM3IkOMqUJ8+D2iaZrNzg+Hah7u/TlpamtLS0hrd7/P5Gvxjb0okbWjb+rbRzAXT1pltpej//WzYUirDOPmYk/81fCna2LWfzh0wQDo5Uh3uecsC1SopP6L+WR0bbNGRDP/eaRt922T4N0zb+LaVovs3EdHzxfTZ4igrK0spKSk6cOBAg/sPHjwYmnM8XU5OTtj27dq1C81/AnC43bt1/szvnpwSM9SuS47adcmRZGjUvm3Snj3SKfknp1pUVKqx81dq2lPva+z8lVpU1HQ+BgD3ckwwlJqaqpEjR2rFihUN7l+xYkWDabNTFRYWNmq/fPlyjRo1Su3bt49bX4GmlAWqte7TcpUFqu3uSkLE/Xw//lg680zlH9ilazsdkWEYSknvpJT0TvqHkb2V//nJhMy//U2aMKFR3+Ys2aLgyZH5oCndvWSrZ64NgHqOmiabNWuWpk+frlGjRqmwsFBPPvmkSktLddNNN0mS5syZo3379un555+XZK0cW7hwoWbNmqWZM2dq/fr1evrpp/Xyyy/beRrwqEVFpaEPX58hzZsyQlNHNy4J4RZxP9/iYum886zj55/Xr6dP1T/trdCGPRUalddV+X2slTKqrZVSU6WVK6V/+AfptdckSSXlR0KBUJ0Tpqk95UfZ0R7wGEcFQ1OnTtXhw4d1//33q6ysTMOHD9eyZcvUr18/SVYRyFOXHfbv31/Lli3TnXfeqUcffVS9evXSb37zm6hrDAFt1dQoxLhBPVz5wRvufOcs3qIhOZ3rg5S2WLdOGjvWOl68WJoyRZJ0Tu8u6nuyAkYon7B9e+nYMSk93Wr7/e9LTz+t/lkd5TPUICBKMQzlZXVoe/8AOIpjVpPZJZpsdKAp6z4t17Sn3m90/8szx6jwTPflrzV1voYhzZ8yQuMG9QibtByR//s/6ZvftI7feku67LLQr06tD3Rq7RlJ0tGj0snaLrrzTunhh7WoqFR3L9mqE6apFMPQ3CnDXT1aB3iJq1eTAU7ktVGIcOcrWTnOsxdvkXHyd1FPn/3pT9J3vmMdr10rfeMbkXeqQwcpEJD8fumRR6TMTE29916NG9RDe8qPKi+rgytH6QC0zDEJ1ICT5fozNG/KCKWcXDpaNwrh1g/fuvMN9wZjSq1LWn7llfpAqKgoukCoTmamVFed+L77pIcfVq4/Q4VndnfttQDQMkaGgASZOrqvp0Yhpo7uqyE5nU8WQ2y6XURJy7//vTRzpnW8ZYs0fHjU/WlQT+jAASknR/rxj6VOnaR/+7eonw+AexAMAQmU689wfRB0qvw+XTV/yohQXo5P1sjQqbFRi9OFjzwizZplHe/cKZ11VtT9CLuyrbRU6ttX+sEPrIBo2rSonxeAOxAMAYir00fE1u481ChpuckA8f77pV/+0jr+7DMreIlSkyv5Zo9X7iefWMHVDTdYydVXX93KswTgZARDAOLu1BGxiKcL77pL+vWvreOyMmtaqxWarSc0cKA17TZihDR5srR8ufStb7XqdQA4F8EQgIRrcbpw5kwrT0iyEp67dYvoeQ3DUF5eXuhYimAl3/Dh0oYN0qhR0sSJ0jvv1NcwAuAJrCYDkFy++936QCgQiDgQkqwAqHv37urevXsoGIpoJd/IkdZSfUm66CJr+w4AnkHRxRZQdBFIoIkTpbr9BI8ckTp0aHJX+WiVBapbnppbvry+iONHH0lnn93q1wNgL4ouAnCeUaOkjRut42PHpLS0qPc3M01TlZWVkqTMzMzQ6JAU4Uq+iROlJUus7T2GDZN27ZLOPLPNpwYguTFNBsBepmkFHHWBUG2tlJbWql3lTdPUrl27tGvXLrV60Puaa6QXXrCOBw6UPv+8dc8DwDEIhgDYxzStnKDdu63bx49bG6uq+VVgcfeP/yg9/rh13KePdPBg/F8TgG0IhgDYIxiUfD7pyy+t2ydOSCkpoV93TE0J+7AOqQl627rpJuk//9M6zs6WKioS87oAEo5gCLBJWaBa6z4tj2xfLrc5NfDp0kVlFUe0ruTvDf5fHKk9EfahR2uDieih5a67pJ//3Dru1k2qqkrcawNIGBKoARtEmxjsKl9/LaWmWscDBmjRy6s058FVjf5ftFgfKFHuv1+qrJT+67+sjV6PHpUyvLOlCuAFjAwBCdaaxGDXqKmpD4RGjlTZ37ZqztLw/y8iqg+UKAsWSDfeaB136GAleQNwDUaGgARrdnsIN2/ievSotf+XZG15sXy5Sj4tb/b/RcRbd8RIszWNnnnGym96/XUpLc0a4WrHWyjgBvwlAwmWiOmfWBUqjJnKSsnvt46vu0764x8lRfb/IqL6QCcZhqG+JzdzPbXGUCQimrpculQaP15avdpa9Xb8eIOkbwDOxDQZkGDxnv5ZVFSqsfNXatpT72vs/JVaVFQak+dttb//vT4Q+td/DQVCUuz/XxiGoR49eqhHjx5RBUNRTV2uWiWdc4513K6dtSoOgKMxMgTYIF7TP019qI8b1MOeEaIDB6TcXOv4xz+WHnqoUZNET4WFE/XU5aZNUr9+0t699SNEUY5EAUgeBEOATaKZ/olUUuUjlZZaAYMk3Xef9ItfNNk0Vv8vTNPUV199JUnq1KlTxKNDUU9dGob02WdS587WHmo9e1qFGQmIAEdimgxwkboP9VPZshx91676QOjhh5sNhGLJNE3t3LlTO3fujGo7jlZN1xlGfd2h8nJpyJC2dB2AjRgZApJMW5Kf6z7U716yVSdM057l6Fu3SiNGWMdPPWXlCTlAq6brDKO+gOTOnVJhobR+ffw7CyCmCIaAJBKLYoy25uBs2CCNHm0dv/yydP31bX7KRK6Ma9V0nc9nLbNv31567z3piiukZcvi00EAcUEwBCSJWCY/xyMfqUVvvy2NG2cdv/GGdNVVbX5Kx1TqbtfOKsSYmir97/9K3/ueFQwCcARyhoAkYesu7W31l7/UB0J//WtMAiHHVepu316qPtm3V16Rbr7Z3v4AiBjBEJAkkib5OVpLl0qXX24dv/uuNGFCTJ7WkcFherp0cjWbnnhCmj3b3v4AiAjBEJAkkmovrki98II0ZYp1/Le/SRdeGLOndmxw2LGjtW2HJD34oPTAA7Z2B0DLyBkCkkgyFCCM2BNP1E8FbdsmDR0a06dvzco4wzDUu3fv0LFt/H7p0CGpRw/pZz+z6hHdfrt9/QHQLMOMphiHB1VWVsrv9ysQCCgzM9Pu7gDJ4T//U/rJT6zjTz+VBgyI20uVBaqdERyGU1Ym9eplHT/9tPQv/2JvfwAPiebzm5EhANH5+c+l//f/rOPPP5fOOCOuL2fLyrhYyc2V9uyR8vKk739f6tRJ+u537e4VgNOQMwQgcj/6UX0g9MUXEQdCZYFqrfu0PO4rwUzT1JEjR3TkyJGoKlDHVb9+0o4d1vHUqdKbb9rbHwCNMDIEIDI33ig995x1XFEhdekS0cMSWSvINE1t375dklRQUGBv3tCpBg2SNm+W8vOlK6+UVq6Uxo+3u1cATmJkCEDLJk+uD4SqqiIOhBxXKyiezjlHev996/jSS+uPAdiOYAiulKhpGU+45BLpf/7HOj561Mp7iZAjawXF0/nnS6tWWcdjxlijRQBsxzQZXMcxWzg4QX6+9OGH1nFNjbXdRBTqagWdGhA5olZQPF1yiZU39O1vS+eeK23fLg0ebHevAE9jZAiuwrRM5JodPTNNqW/f+kDo66+jDoSk5gtJenr07oorpFdftY6HDLFWnAGwDSNDcJXmpmUcuzw7DpodPTNNayrs6MmprOPHpZSUVr9WuEKSjN5J+od/kJ55Rvrnf5b695f27auvSQQgoRgZgqs4dguHBGp29CwYlHw+KxBq3146caJNgVCdXH+GCs/sHhoRYvTupBtvlH77W+v4jDOk8nJbuwN4FcEQXMWR+3slWJOjZ19U1Qc+2dlWjpAv9m8R8UyqNgxDubm5ys3NTZ5l9S259VZp7lzruEeP+n3NACQM02RwHUft72WD8EnNUt6os60bQ4dKH30kxSmYiGdStWEY6uXEqaY5c6TKSmn+fKlrV2vn+44d7e4V4BmMDMGVTp2WQUONR8+kucv+S7lVh61d57dti1sgFP71Gb2TJM2bJ91yi3XcqZN07Ji9/QE8hI1aW8BGrXCrskC19nx+WHmF51qB0Le/Lf35z4l9/TiM3lVXW7lHGRkODa5uuEH6wx+s49paK3cLQNTYqBVAi3JVq9zhfawbN9wgvfhiYl8/DhuwBoNBbdu2TZK1HYcvDjlPcffSS1IgYNUiSk21yhq0460aiCcHvlMAzpDUdXTKy+u31Lj55oQHQmjBn/9sTVlK1shQMGhvfwCX4+sGEAdJXUenrKy+ns1Pf2ol7SL5vPuulcy+fbu1yi8YjGsuF+BljAwBMZbUdXT27KkPhB54IK6BUFKPjDnFtm1WmQPJWl1GiicQF4wMATGWtFWwd+ywtn6QpN/8Rrrttri9VFKPjDmJYVgjeWlpUnW11Lu39PnnjBABMcbIEBBj4apg+yQdPlJj3yjJhx/WB0L//d9xDYSSemTMiQyjfpn9/v3W5rkAYsoxwVBFRYWmT58uv98vv9+v6dOn68sWKrXeeOONMgyjwc+YMWMS02F41ul1dAxJpqRb/1CssfNXalFRaWI79P779R+gf/yjtRdWHMWzwrRn+XzWHnGStGWLdPHF9vYHcBnHBEPTpk3Tpk2b9NZbb+mtt97Spk2bNH369BYfd/nll6usrCz0s2zZsgT0Fl43dXRfvTN7vBZ+r0CGYQVDkg2jJKtXS3VfAN58U7ruuri/pJ37wxmGoezsbGVnZztnO45IpaRYy+wlae1a6eqr7e0P4CKOyBn6+OOP9dZbb+m9997TBRdcIEl66qmnVFhYqB07dmjw4MFNPjYtLU05OTmJ6ioQkuvPULdONuYPLVtmFVKUpFWrpEsuie/rnVQ3Mnb3kq06YZoJrTBtGIZ69+4d99exTbt21p5xaWnSG29IM2ZIzz1nd68Ax3NEMLR+/Xr5/f5QICRJY8aMkd/v17p165oNhlavXq2ePXuqS5cuuvjii/XAAw+oZ8+eTbavqalRTU1N6HZlZWVsTgKeFM99uJr16qvSd79rHb/3nnTK304isD9cHKWmSkePSh06SM8/L/n9VkI8gFZzxDTZgQMHwgYwPXv21IEDB5p83KRJk/TSSy9p5cqV+vWvf62ioiJdeumlDYKd082bNy+Ul+T3+9WnT5+YnAO8yZZ9uJ59tj4Q2rQp4YFQHbv2h6utrVVtbW1CXzPhMjKkqirr+Le/lX72M3v7AzicrSND9957r+67775m2xQVFUlS2Pl/0zSbzQuYOnVq6Hj48OEaNWqU+vXrpzfffFNTpkwJ+5g5c+Zo1qxZoduVlZUERGiThI6S/Pa30u23S5LKNm5VSads9Q9Ue2ZkJhgMasuWLZIcvB1HpDp1kv7+d6lbN6tmVGam9JOf2N0rwJFsDYZuvfVWXX/99c22ycvL04cffqgvvvii0e8OHTqk7LqCZBHIzc1Vv3799MknnzTZJi0tTWlpaRE/JxCJeOzD1cjcudI990iSFi37m+a8ukdBcw91ftysa1fpiy+swow//anUubO1vQqAqNgaDGVlZSkrK6vFdoWFhQoEAvrggw90/vnnS5Lef/99BQIBXVi3f08EDh8+rL179yo3N7fVfQaS0uzZ0oMPSpLKduzRnGe2NqrzM25Qj4SMEJUFqlVSfkT9szp6ZkTKVj17WoUYe/eWbrnFGjGKYKUtgHqOGEMeOnSoLr/8cs2cOVPvvfee3nvvPc2cOVNXXnllg+TpIUOGaOnSpZKkr776SnfddZfWr1+vPXv2aPXq1brqqquUlZWla665xq5TgYOF214iKbacuOWWUCCkQ4dUktLRtjo/i4pKNXb+Sk176n17aip51RlnSJ9+ah3/0z9JS5bY2x/AYRyxmkySXnrpJd1+++2aOHGiJOk73/mOFi5c2KDNjh07FAgEJEkpKSnasmWLnn/+eX355ZfKzc3V+PHjtWjRInXu3Dnh/YezhdteQlJctpyIamRl2jTp5Zet4y+/lPx+9W9fbcsKtqYqTydqRMrzBgyw9jI7+2zp2mult96SLrvM7l4BjuCYYKhbt2568cUXm21jnrKJYUZGhv7yl7/Eu1vwgHAf8nOWbJFpNi6m2NYP/qj29Pr2t61aQpL01VfWRp6yr85P0u7J5iVDh0p/+5t03nnS5ZdLa9ZI48bZ3Ssg6TkmGALsEu5D/vTbUts/+KMaWbnwQmn9euu4ulpKT2/wazvq/NhWUwkNFRRI774rjR1rbdvxwQfS6NF29wpIao7IGYJ9kiInxmZhN141rD3HTtXWD/6I9vQyTevbf10gVFvbKBCqk+g6P7bUVDqNYRjq0aOHevTo4b7tOKJx4YXSX/9qHZ9/vrR1q739AZIcI0NoUlRTNi7W1LSTpJhORbU4smKaUk6OdPCgdfvrr63tGZKI3ZWnDcNQ377e+zca1oQJ1pYd3/mONGKEtHOndNZZdvcKSEqGeWqiDRqprKyU3+9XIBBQZmam3d1JmLJAtcbOX9nog/md2eM9m/9RFqhu9CEf7r62WFRU2ijAmjq6rxQMWvtR1e1cfuKEtZM50JJXXpG+9z3r+LPPJIJFeEQ0n9/J9bUSSYNk2MbCFU6MdTHFsCMrJ07UjwB16GAlS3t5CqgFx08GjO2SbNTMNtdfb/2bmTlT6tdPKiuzRhgBhPDVEmGFy5MhGTYxGuT6HD9eHwj16UMg1IJgMKjNmzdr8+bNCgaDdncnefzrv0qPPGId5+ZKhw/b2x8gyRAMIaxkSIb1vNpaqX176zg/XyotJRBC691xh1S3F2RWllRZaWt3gGTCODKaZHcyrKdVV1tTYpJ0ySXSqlW2dgcu8YtfWEHQr38t+f3SkSP1/84ADyMYQrMSssGoS7V6j66vvrI23JSkyZOlk1vMADHx0ENWQPTUU1ahzmPHrOR8wMMIhoA4aHVZgooKqVs36/jGG6Vnnolpv9hEFZKkJ5+0tm959VWrTtWpU7KAB5EzBMRYU5WkWyxcefBgfSD0ox/FPBCyYxNVinYmsT/+UTq516NSU61Vi4BHEQwBMdZkWYIJV0r//d/hH/T551J2tnX8859LCxbEtE+tDtDagB3sHeAvf5FGjbKO27Wz6lkBHkQwBMRY2LIEwaDydm62ljj/4Q8Nf7l7t7VsXpJ+9Svp/vtj3qeItvqIITuCL8mqQN29e3d1797d29txRKOoyNrxXpJSUqxK5231u99JZ5zROLj6znekGTPa/vxAjBEMATHWqCyBTM39y2+VW3XY+qCZPl1assRq/PHH0plnWsePPy79+7/HpU+JrhuV6OCrjmEYysvLU15eHsFQNHbtkrp2tY67dm17QHTddVJ5ecNVkBUV1kjUDTe07bmBOCAYAuJg6ui+emf2eL38L6P0zhs/19Qtf63/pWlKU6dao0Bnn23d98IL0k03xa0/ia4bRdFOhzGM+kKMgUB9gB7O6tVWAnZzAVO3btLllzccBX31Vev+CRNi0mUgltibrAVe3ZsMMfL731vbIJzOMOo/TJYska65psmniOUKsFjvpdacJvdZi7O6ytM+9m6LXjBoTZVJ0siR0oYNDX//xhvStddaldH/9Cfpyiubfq4//lH6t3+TvvjCWrp/8cXSeedZ08DTp1t/A6WlVjHI6dPjdkrwrmg+vwmGWkAwhFY7dkzq39/6MGjuz+ztt6WLLgr7q1Yv0U8SiQy+JCsQKi4uliQVFBQQELXGqXvhffOb0ooV1vEf/yhNm2YFTIZhBUvvv990VfTqamtRwLPPSqNHW/uiFRVZAZFkPW79eun22637gRiL5vObdwrgNDFbDv744y0HQj6fdNll0gcfhO2HHUnIsdRgnzU4Q0qKVXdIkv76Vyv/5/nnrQ1fT5yw/j0Hg1YAs2ZN08+TkSFNmSK99JL08svSoEFWAGUY9dNyc+ZY1bABm1F0EThFzEZiqqqs6YCWBl6DQWsE6ZvflNaulc49N/Sr5pKQCS4QV+3bW/8u09Ol116zfk6XkiL9x39Y28U05YYbpKuukj76SPrHf6y/f8sW6bbbrLy588+PefeBaDEyBJwU05GYBQsi3wgzGJSOHpUuvVQqKQndTRIybJWWJs2f3/TvT5yQVq5sforr0kutpOkdO6wpNskaERozxgq27r+f1WVICowMASfFbCTm8GHpwQejK2BnGNb2CEfrl57XrQA7PQmZUSEkxLx50t13N98mJUV64AHp9deb/v3+/Q3v697d2iAWSCKMDAEnxWwk5sEHrW+9kUhJsfKGpk2zphKGDWvw69AS/Zlj9M7s8Zr6t//ViV69tO6Tgw1HrChmh1gxTelnP2s5EJKs0aH/+R9p27b49wuII4Ih4KSY1OLZv1/6r/9qeZ+nlBQrL+MHP5A+/VR67jlp6NAm+1WXhLz0zEIdP3hIC3/+VP0WFxSzQyzNnm2N9kSqXTtrFAlwMKbJgFNMHd1X4wb1aP1y8P/4j+YDIZ/PSkq97TarvkpOTsRPXRao1o//b6869R+pq7et0bq8c3X3kq26LGe3ulDMLqRrXSVltM7y5Q3rYLXk+HGruOL991ulJAAHYmQIOE2rl4Pv3i099VT4YMgwJL/f+sDYt89KTI0iEJLqc5peP/sSTdq5TqnHv9YJ05TvpT9Yy55TUqR77rFW9zS3wsfFfD6fBgwYoAEDBlBjqLWWLZNuvtka8WkX4fdlw7BWhgEOxbsFECu//GXDAnR1x9nZ0iOPWEHQPfdIXbq06unrcpr+OvB8GWZQ4z8tUu+qcnXe8F79suUHHpDuvbdNpwGPy82VHn1U2rnTymUzjJaDohMnpKeflg4cSEwfgRgjGAJi4aOPrOJyx49bU2GSVXH397+XPvtM+tGPpI4d2/QSdTlNx1PT9ZdBF+qabav1qG+HjLpidkAs9e9v5bJt3Vq/7UbdVh3hBIPSww8npm9AjBEMAbFwzz31ORZDhkivvGLtBP7971v1WmKkbnXZ2XfdrMs+26j8FUsaFrPzuGAwqI0bN2rjxo2hPcrQRmefLS1dalVJr5t+DRcUnTghLVxoJfQDDkMwBMRCZqa1/9Kf/2x9k546tflv0W2Q68/Q2f84Wcbpxewk6Te/sZZFb90qTZ7MtAViZ/Roa3uOVavq9xc7PS+rpsYKiACHYaPWFrBRKyJS92fU1KaVSAg2ak0Q05TefFP66U+tGkOnrj7z+6XPP5c6dbK3j/A8NmoF4qDZDVzrNp8EvMAwrDyiLVusTVj79av/XSBgraoEHIRgCIjAoqJSjZ2/UtOeer++2CHgdT6fVdZh507pySetlZOSVTri+HF7+wZEgWAIntXsSM9p7WK2gSvgRu3bSzNnSnv2WCvK5syJvEYRkAT41wpPWlRUGgpwfIY0b8oITR3dN2zbmG3gCrhderp055129wKIGiND8JxoR3pitoErEsLv98vv99vdDQAOQjAEz2lupCecmGzgioTw+XwaOHCgBg4cyEoyABFjmgyeUzfSc2pA1NJIT5s3cAUAJC2+OsFzWjvS0+oNXAEASY2RIXgSIz3uFAwGtXnzZklSfn4+U2UAIkIwBM/K9WcQBLkQe5IBiBZfmwAAgKcRDMHRmiqcGGlBRQAAmCaDYzVVODGagooAADAyBEdqqnDi5r0VbJ0BAIgKwRAcqanCiUV7KqIqqAgAANNkcKSOqSkyDMk8rXDi6LyuURdUhLt07tzZ7i4AcBhGhuA4i4pKdc1j6xoFQnOnDFd+n65snSHvJpD7fD4NGjRIgwYNosYQgIgxMgRHOT1XSLIi+iW3FCq/T1dJFFQkgRwAosNXJzhKuFyhoKSjtQ0L7Xl164ymEsu9NkIEANFwTDD0wAMP6MILL1SHDh3UpUuXiB5jmqbuvfde9erVSxkZGbrkkkv00UcfxbejiKu6TVZPRU5QvaYSy72SQF63HcfmzZupRA0gYo4Jhmpra3Xdddfp5ptvjvgxv/rVr/Twww9r4cKFKioqUk5Ojr71rW+pqqoqjj1FPLV2k1WvIFiUjh8/ruPHj9vdDQAO4picofvuu0+S9Oyzz0bU3jRNLViwQPfcc4+mTJkiSXruueeUnZ2tP/zhD/rBD34Qr656TlmgWiXlR9Q/q2PMgpLmntMtOUHx+P9WFyzevWSrTpgmwSIARMAxwVC0SkpKdODAAU2cODF0X1pami6++GKtW7euyWCopqZGNTU1oduVlZVx76uTxSNZN5LndPomq/FMcnZLsAgAieKYabJoHThwQJKUnZ3d4P7s7OzQ78KZN2+e/H5/6KdPnz5x7aeTxSNZ1wsJwIk4R68mkANAa9gaDN17770yDKPZnw0bNrTpNQyjYQKFaZqN7jvVnDlzFAgEQj979+5t0+u7WTySdeOdAJwM9Xe8nuQMAMnG1mmyW2+9Vddff32zbfLy8lr13Dk5OZKsEaLc3NzQ/QcPHmw0WnSqtLQ0paWlteo1vaYuWTeW1Z7j8Zx1kqX+TjzPEQAQPVtHhrKysjRkyJBmf9LT01v13P3791dOTo5WrFgRuq+2tlZr1qzRhRdeGKtT8LR4rOyK12qxZJp+O/0cfYb0k0mDmdKKkQ4dOqhDBwJLAJFzTAJ1aWmp/v73v6u0tFQnTpzQpk2bJEkDBw5Up06dJElDhgzRvHnzdM0118gwDN1xxx2aO3euzjrrLJ111lmaO3euOnTooGnTptl4Ju4Sj2TdeDxnc1NTdgQhU0f31ZdHv9b8/92uoCk9+L/b1SWjPZWi28jn82no0KF2dwOAwzgmGPrFL36h5557LnS7oKBAkrRq1SpdcsklkqQdO3YoEAiE2vzkJz9RdXW1brnlFlVUVOiCCy7Q8uXL2cgxxuKxsivWz5lsU1NlgWo9+NZ21XWnbqRq3KAejBABQIIZpmmaLTfzrsrKSvn9fgUCAWVmZtrdHbTBoqLSRvV37BqJWfdpuaY99X6j+1+eOUaFZ3a3oUcA4C7RfH47ZmQIaKtkqr+TbCNVbhEMBkNb7gwbNoyd6wFEhHcKeEqy1N9hW5H4qa2tVW1trd3dAOAgjAwBNkmmkSoA8DKCIcBGTt9WBADcgGkyAADgaQRDAADA0wiGAA9Khj3aACBZkDMEeEyy7NEWL63dwgeAdxEMAR7S1B5tbql87fP5NGzYMLu7AcBhmCYDPKS5PdoAwKsIhgAPqat8fSoqXwPwOoIhwEPcXvm6bjuOjz76SMFg0O7uAHAIcobgGmWBapWUH1H/rI6u+XCPB7dXvj527JjdXQDgMARDcAW3r5CKNSpfA0A9psngeE2tkKKGDgAgEgRDcDxWSAEA2oJgCI4XboWUT1KHVP55AwBaxqcFHO/0FVKSFJR0zWPrtKio1L6OAQAcgWAIrjB1dF8tuaVQp8RD5A55VGpqqlJTU+3uBgAHYTUZXONI7QmZTeQOxWLlFEv3k5/P59OIESPs7gYAhyEYgmvU5Q6dmkwdq+rKLN0HAPdimgyuEa/qyizdBwB3Y2QIrhKP6srNLd1nuiy5BINB7dixQ5I0ePBg+Xx83wPQMoIhuE6sqyvHc/oNsXf0KPWlAESHr01AC9y+uSkAeB0jQ0AE3L65KQB4GcEQECE2NwUAd2KaDAAAeBrBEAAA8DSCIaANygLVWvdpOTWHkki7du3Urh0ZAAAixzsG0EpUpU4+Pp9P+fn5dncDgMMwMgS0AlWpAcA9CIaQcG6YWmquKjUAwFmYJkNCuWVqiarUySkYDGrXrl2SpIEDB7IdB4CI8E6BhHHT1BJVqZNXVVWVqqqq7O4GAAdhZAgJ47YNT6lKDQDuQDCEhHHj1BJVqQHA+ZgmQ8IwtQQASEaMDCGhmFoCACQbgiEkHFNLAIBkQjAEwFVYTg8gWgRDAFzD5/OpoKDA7m4AcBi+QgEAAE8jGAIAAJ7GNBkA1wgGg9q9e7ckacCAAeQPAYgIwRAAVwkEAnZ3AYDD8LUJAAB4GsEQAADwNIIhAADgaQRDAADA0wiGAACAp7GarAWmaUqSKisrbe4JgJYEg0F99dVXkqy/WZbWA95V97ld9zneHIKhFlRVVUmS+vTpY3NPAABAtKqqquT3+5ttY5iRhEweFgwGtX//fnXu3FmGYdjdnbiorKxUnz59tHfvXmVmZtrdnbjjfN3Na+cree+cOV93i9X5mqapqqoq9erVq8VRYkaGWuDz+dS7d2+7u5EQmZmZnvhDq8P5upvXzlfy3jlzvu4Wi/NtaUSoDhPqAADA0wiGAACApxEMQWlpafrlL3+ptLQ0u7uSEJyvu3ntfCXvnTPn6252nC8J1AAAwNMYGQIAAJ5GMAQAADyNYAgAAHgawRAAAPA0giEPeuCBB3ThhReqQ4cO6tKlS0SPufHGG2UYRoOfMWPGxLejMdSaczZNU/fee6969eqljIwMXXLJJfroo4/i29EYqaio0PTp0+X3++X3+zV9+nR9+eWXzT7GSdf4scceU//+/ZWenq6RI0fq7bffbrb9mjVrNHLkSKWnp2vAgAF64oknEtTT2IjmfFevXt3oOhqGoe3btyewx623du1aXXXVVerVq5cMw9Drr7/e4mOcfn2jPWcnX+N58+Zp9OjR6ty5s3r27KnJkydrx44dLT4u3teYYMiDamtrdd111+nmm2+O6nGXX365ysrKQj/Lli2LUw9jrzXn/Ktf/UoPP/ywFi5cqKKiIuXk5Ohb3/pWaL+6ZDZt2jRt2rRJb731lt566y1t2rRJ06dPb/FxTrjGixYt0h133KF77rlHxcXF+sY3vqFJkyaptLQ0bPuSkhJdccUV+sY3vqHi4mLdfffduv3227V48eIE97x1oj3fOjt27GhwLc8666wE9bhtjhw5ovz8fC1cuDCi9k6/vlL051zHidd4zZo1+uEPf6j33ntPK1as0PHjxzVx4kQdOXKkycck5Bqb8KxnnnnG9Pv9EbWdMWOGefXVV8e1P4kQ6TkHg0EzJyfHnD9/fui+Y8eOmX6/33ziiSfi2MO227ZtmynJfO+990L3rV+/3pRkbt++vcnHOeUan3/++eZNN93U4L4hQ4aYs2fPDtv+Jz/5iTlkyJAG9/3gBz8wx4wZE7c+xlK057tq1SpTkllRUZGA3sWXJHPp0qXNtnH69T1dJOfspmt88OBBU5K5Zs2aJtsk4hozMoSIrV69Wj179tSgQYM0c+ZMHTx40O4uxU1JSYkOHDigiRMnhu5LS0vTxRdfrHXr1tnYs5atX79efr9fF1xwQei+MWPGyO/3t9j3ZL/GtbW12rhxY4PrIkkTJ05s8tzWr1/fqP1ll12mDRs26Ouvv45bX2OhNedbp6CgQLm5uZowYYJWrVoVz27aysnXt63ccI0DgYAkqVu3bk22ScQ1JhhCRCZNmqSXXnpJK1eu1K9//WsVFRXp0ksvVU1Njd1di4sDBw5IkrKzsxvcn52dHfpdsjpw4IB69uzZ6P6ePXs223cnXOPy8nKdOHEiquty4MCBsO2PHz+u8vLyuPU1Flpzvrm5uXryySe1ePFiLVmyRIMHD9aECRO0du3aRHQ54Zx8fVvLLdfYNE3NmjVLF110kYYPH95ku0RcY3atd4l7771X9913X7NtioqKNGrUqFY9/9SpU0PHw4cP16hRo9SvXz+9+eabmjJlSques63ifc6SZBhGg9umaTa6L1EiPV+pcb+llvuejNe4KdFel3Dtw92frKI538GDB2vw4MGh24WFhdq7d68eeughjRs3Lq79tIvTr2+03HKNb731Vn344Yd65513Wmwb72tMMOQSt956q66//vpm2+Tl5cXs9XJzc9WvXz998sknMXvOaMXznHNyciRZ30hyc3ND9x88eLDRN5REifR8P/zwQ33xxReNfnfo0KGo+p4M1/h0WVlZSklJaTQq0tx1ycnJCdu+Xbt26t69e9z6GgutOd9wxowZoxdffDHW3UsKTr6+seS0a3zbbbfpjTfe0Nq1a9W7d+9m2ybiGhMMuURWVpaysrIS9nqHDx/W3r17GwQKiRbPc+7fv79ycnK0YsUKFRQUSLLyN9asWaMHH3wwLq/ZkkjPt7CwUIFAQB988IHOP/98SdL777+vQCCgCy+8MOLXS4ZrfLrU1FSNHDlSK1as0DXXXBO6f8WKFbr66qvDPqawsFB/+tOfGty3fPlyjRo1Su3bt49rf9uqNecbTnFxcVJdx1hy8vWNJadcY9M0ddttt2np0qVavXq1+vfv3+JjEnKNY5aKDcf47LPPzOLiYvO+++4zO3XqZBYXF5vFxcVmVVVVqM3gwYPNJUuWmKZpmlVVVeaPf/xjc926dWZJSYm5atUqs7Cw0DzjjDPMyspKu04jKtGes2ma5vz5802/328uWbLE3LJli/m9733PzM3NdcQ5X3755eY555xjrl+/3ly/fr05YsQI88orr2zQxqnX+JVXXjHbt29vPv300+a2bdvMO+64w+zYsaO5Z88e0zRNc/bs2eb06dND7Xfv3m126NDBvPPOO81t27aZTz/9tNm+fXvztddes+sUohLt+T7yyCPm0qVLzZ07d5pbt241Z8+ebUoyFy9ebNcpRKWqqir09ynJfPjhh83i4mLzs88+M03TfdfXNKM/Zydf45tvvtn0+/3m6tWrzbKystDP0aNHQ23suMYEQx40Y8YMU1Kjn1WrVoXaSDKfeeYZ0zRN8+jRo+bEiRPNHj16mO3btzf79u1rzpgxwywtLbXnBFoh2nM2TWt5/S9/+UszJyfHTEtLM8eNG2du2bIl8Z1vhcOHD5s33HCD2blzZ7Nz587mDTfc0GgZrpOv8aOPPmr269fPTE1NNc8777wGy3JnzJhhXnzxxQ3ar1692iwoKDBTU1PNvLw88/HHH09wj9smmvN98MEHzTPPPNNMT083u3btal500UXmm2++aUOvW6du2fjpPzNmzDBN053XN9pzdvI1Dneep7/32nGNjZOdAwAA8CSW1gMAAE8jGAIAAJ5GMAQAADyNYAgAAHgawRAAAPA0giEAAOBpBEMAAMDTCIYAAICnEQwBAABPIxgCAACeRjAEAAA8jWAIgKccOnRIOTk5mjt3bui+999/X6mpqVq+fLmNPQNgFzZqBeA5y5Yt0+TJk7Vu3ToNGTJEBQUF+va3v60FCxbY3TUANiAYAuBJP/zhD/XXv/5Vo0eP1ubNm1VUVKT09HS7uwXABgRDADypurpaw4cP1969e7Vhwwadc845dncJgE3IGQLgSbt379b+/fsVDAb12Wef2d0dADZiZAiA59TW1ur888/XueeeqyFDhujhhx/Wli1blJ2dbXfXANiAYAiA5/z7v/+7XnvtNW3evFmdOnXS+PHj1blzZ/35z3+2u2sAbMA0GQBPWb16tRYsWKAXXnhBmZmZ8vl8euGFF/TOO+/o8ccft7t7AGzAyBAAAPA0RoYAAICnEQwBAABPIxgCAACeRjAEAAA8jWAIAAB4GsEQAADwNIIhAADgaQRDAADA0wiGAACApxEMAQAATyMYAgAAnvb/AWtDKiLg/6r8AAAAAElFTkSuQmCC", + "text/plain": [ + "Figure(PyObject
    )" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(-1.5937757824796952, 1.7699783509492324, -1.4891141000001884, 1.5795839675613146)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plot(x.-mean(x),y.-mean(y), \".\")\n", + "xlabel(\"x\")\n", + "ylabel(\"y\")\n", + "axhline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", + "axvline(0, linestyle=\"--\", color=\"k\", alpha=0.2)\n", + "arrow(0,0, V[:,1]..., head_width=0.1, color=\"r\")\n", + "arrow(0,0, V[:,2]..., head_width=0.1, color=\"r\")\n", + "text(V[1,1]+0.1,V[2,1]-0.1, \"v₁\", color=\"r\")\n", + "text(V[1,2]+0.1,V[2,2], \"v₂\", color=\"r\")\n", + "axis(\"equal\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## PCA on the fossil-tooth data\n", + "\n", + "Back to our *Kuehneotherium* example, scientists found that **95.5% of the variation** in the data could be attributed to just the **two largest singular values**.\n", + "\n", + "Therefore, if they **projected** the data onto the corresponding $v_1, v_2$ basis, they now have a **two-dimensional dataset** that contains *almost all* of the original information (equivalently a \"rank-2 approximation\" of $A$).\n", + "\n", + "Furthermore, plotting the data on these $v_1, v_2$ axes allowed them to not only visualize the data but also to identify **clusters** corresponding to particular species and subgroups. For reference, the original 9 axes (9 measurements) are shown as red arrows projected onto this plane:\n", + "\n", + "![image](https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2021/07/cadami.png?w=761&ssl=1)\n", + "\n", + "## More cool PCA applications\n", + "\n", + "* The [eigen-walker](https://www.biomotionlab.ca/Demos/BMLwalker.html) uses PCA to analyze variations in human gaits.\n", + "* [eigen-faces](https://en.wikipedia.org/wiki/Eigenface) use PCA to analyze facial variations.\n", + "\n", + "If you google \"PCA example\" or \"principal components analysis\" you will find lots of other examples and tutorials." + ] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Julia 1.8.0", + "language": "julia", + "name": "julia-1.8" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Transposes.ipynb b/notes/Transposes.ipynb similarity index 100% rename from lectures/Transposes.ipynb rename to notes/Transposes.ipynb diff --git a/lectures/circuit.png b/notes/circuit.png similarity index 100% rename from lectures/circuit.png rename to notes/circuit.png diff --git a/lectures/cookie-strang-book.jpg b/notes/cookie-strang-book.jpg similarity index 100% rename from lectures/cookie-strang-book.jpg rename to notes/cookie-strang-book.jpg diff --git a/lectures/cyclic-springs.png b/notes/cyclic-springs.png similarity index 100% rename from lectures/cyclic-springs.png rename to notes/cyclic-springs.png diff --git a/lectures/eigshow.jl b/notes/eigshow.jl similarity index 100% rename from lectures/eigshow.jl rename to notes/eigshow.jl diff --git a/lectures/jordan-vectors.lyx b/notes/jordan-vectors.lyx similarity index 74% rename from lectures/jordan-vectors.lyx rename to notes/jordan-vectors.lyx index 8965f0fc..50858a1f 100644 --- a/lectures/jordan-vectors.lyx +++ b/notes/jordan-vectors.lyx @@ -1,5 +1,5 @@ -#LyX 2.2 created this file. For more info see http://www.lyx.org/ -\lyxformat 508 +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 \begin_document \begin_header \save_transient_properties true @@ -11,11 +11,11 @@ \date{Created Spring 2009; updated \today} \end_preamble \use_default_options false -\maintain_unincluded_children false +\maintain_unincluded_children no \language english \language_package default -\inputencoding auto -\fontencoding global +\inputencoding auto-legacy +\fontencoding auto \font_roman "times" "default" \font_sans "default" "default" \font_typewriter "default" "default" @@ -23,9 +23,13 @@ \font_default_family default \use_non_tex_fonts false \font_sc false -\font_osf false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures false \graphics default \default_output_format default \output_sync 0 @@ -55,6 +59,9 @@ \suppress_date false \justification true \use_refstyle 0 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 \index Index \shortcut idx \color #008000 @@ -63,21 +70,30 @@ \tocdepth 3 \paragraph_separation indent \paragraph_indentation default -\quotes_language english +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 \papercolumns 2 \papersides 2 \paperpagestyle default +\tablestyle default \tracking_changes false \output_changes false +\change_bars false +\postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Title -A useful basis for defective matrices: +A useful basis for defective matrices: + \begin_inset Newline newline \end_inset @@ -87,7 +103,8 @@ Jordan vectors and the Jordan form \begin_layout Author S. G. - Johnson, MIT 18.06 + Johnson, + MIT 18.06 \end_layout \begin_layout Abstract @@ -124,14 +141,14 @@ Jordan chains \end_inset ). - In these notes, instead, I omit most of the formal derivations and instead - focus on the + In these notes, + instead, + I omit most of the formal derivations and instead focus on the \emph on consequences \emph default of the Jordan vectors for how we understand matrices. - What happens to our traditional eigenvector-based pictures of things like - + What happens to our traditional eigenvector-based pictures of things like \begin_inset Formula $A^{n}$ \end_inset @@ -143,11 +160,14 @@ consequences \begin_inset Formula $A$ \end_inset - fails? The answer, for any matrix function + fails? + The answer, + for any matrix function \begin_inset Formula $f(A)$ \end_inset -, turns out to involve the +, + turns out to involve the \emph on derivative \emph default @@ -163,7 +183,8 @@ Introduction \end_layout \begin_layout Standard -So far in the eigenproblem portion of 18.06, our strategy has been simple: +So far in the eigenproblem portion of 18.06, + our strategy has been simple: find the eigenvalues \begin_inset Formula $\lambda_{i}$ \end_inset @@ -176,7 +197,8 @@ So far in the eigenproblem portion of 18.06, our strategy has been simple: \begin_inset Formula $A$ \end_inset -, expand any vector of interest +, + expand any vector of interest \begin_inset Formula $\vec{u}$ \end_inset @@ -184,7 +206,8 @@ So far in the eigenproblem portion of 18.06, our strategy has been simple: \begin_inset Formula $\vec{u}=c_{1}\vec{x}_{1}+\cdots+c_{n}\vec{x}_{n})$ \end_inset -, and then any operation with +, + and then any operation with \begin_inset Formula $A$ \end_inset @@ -193,7 +216,8 @@ So far in the eigenproblem portion of 18.06, our strategy has been simple: \end_inset acting on each eigenvector. - So, + So, + \begin_inset Formula $A^{k}$ \end_inset @@ -201,7 +225,8 @@ So far in the eigenproblem portion of 18.06, our strategy has been simple: \begin_inset Formula $\lambda_{i}^{k}$ \end_inset -, +, + \begin_inset Formula $e^{At}$ \end_inset @@ -209,8 +234,10 @@ So far in the eigenproblem portion of 18.06, our strategy has been simple: \begin_inset Formula $e^{\lambda_{i}t}$ \end_inset -, and so on. - But this relied on one key assumption: we require the +, + and so on. + But this relied on one key assumption: + we require the \begin_inset Formula $n\times n$ \end_inset @@ -239,7 +266,8 @@ diagonalizable \end_layout \begin_layout Standard -Many important cases are always diagonalizable: matrices with +Many important cases are always diagonalizable: + matrices with \begin_inset Formula $n$ \end_inset @@ -247,8 +275,9 @@ Many important cases are always diagonalizable: matrices with \begin_inset Formula $\lambda_{i}$ \end_inset -, real symmetric or orthogonal matrices, and complex Hermitian or unitary - matrices. +, + real symmetric or orthogonal matrices, + and complex Hermitian or unitary matrices. But there are rare cases where \begin_inset Formula $A$ \end_inset @@ -261,12 +290,14 @@ not \begin_inset Formula $n$ \end_inset - eigenvectors: such matrices are called + eigenvectors: + such matrices are called \series bold defective \series default . - For example, consider the matrix + For example, + consider the matrix \begin_inset Formula \[ A=\left(\begin{array}{cc} @@ -281,24 +312,31 @@ This matrix has a characteristic polynomial \begin_inset Formula $\lambda^{2}-2\lambda+1$ \end_inset -, with a repeated root (a single eigenvalue) +, + with a repeated root (a single eigenvalue) \begin_inset Formula $\lambda_{1}=1$ \end_inset . - (Equivalently, since + (Equivalently, + since \begin_inset Formula $A$ \end_inset - is upper triangular, we can read the determinant of + is upper triangular, + we can read the determinant of \begin_inset Formula $A-\lambda I$ \end_inset -, and hence the eigenvalues, off the diagonal.) However, it only has a +, + and hence the eigenvalues, + off the diagonal.) However, + it only has a \emph on single \emph default - indepenent eigenvector, because + indepenent eigenvector, + because \begin_inset Formula \[ A-I=\left(\begin{array}{cc} @@ -309,7 +347,8 @@ A-I=\left(\begin{array}{cc} \end_inset -is obviously rank 1, and has a one-dimensional nullspace spanned by +is obviously rank 1, + and has a one-dimensional nullspace spanned by \begin_inset Formula $\vec{x}_{1}=(1,0)$ \end_inset @@ -317,13 +356,14 @@ is obviously rank 1, and has a one-dimensional nullspace spanned by \end_layout \begin_layout Standard -Defective matrices arise rarely in practice, and usually only when one arranges - for them intentionally, so we have not worried about them up to now. - But it is important to have some idea of what happens when you have a defective - matrix. - Partially for computational purposes, but also to understand conceptually - what is possible. - For example, what will be the result of +Defective matrices arise rarely in practice, + and usually only when one arranges for them intentionally, + so we have not worried about them up to now. + But it is important to have some idea of what happens when you have a defective matrix. + Partially for computational purposes, + but also to understand conceptually what is possible. + For example, + what will be the result of \begin_inset Formula \[ A^{k}\left(\begin{array}{c} @@ -341,7 +381,8 @@ for the defective matrix \begin_inset Formula $A$ \end_inset - above, since + above, + since \begin_inset Formula $(1,2)$ \end_inset @@ -349,7 +390,9 @@ for the defective matrix \begin_inset Formula $A$ \end_inset -? For diagonalizable matrices, this would grow as +? + For diagonalizable matrices, + this would grow as \begin_inset Formula $\lambda^{k}$ \end_inset @@ -357,39 +400,44 @@ for the defective matrix \begin_inset Formula $e^{\lambda t}$ \end_inset -, respectively, but what about defective matrices? Although matrices in - real applications are rarely +, + respectively, + but what about defective matrices? + Although matrices in real applications are rarely \emph on exactly \emph default - defective, it sometimes happens (often by design!) that they are + defective, + it sometimes happens (often by design!) that they are \emph on nearly \emph default -defective, and we can think of exactly defective matrices as a limiting - case. +defective, + and we can think of exactly defective matrices as a limiting case. (The book \emph on Spectra and Pseudospectra \emph default - by Trefethen & Embree is a much more detailed dive into the fascinating - world of nearly defective matrices.) + by Trefethen & Embree is a much more detailed dive into the fascinating world of nearly defective matrices.) \end_layout \begin_layout Standard The textbook ( \emph on Intro. - to Linear Algebra, 5th ed. + to Linear Algebra, + 5th ed. \emph default - by Strang) covers the defective case only briefly, in section 8.3, with - something called the + by Strang) covers the defective case only briefly, + in section 8.3, + with something called the \series bold Jordan form \series default - of the matrix, a generalization of diagonalization, but in this section - we will focus more on the + of the matrix, + a generalization of diagonalization, + but in this section we will focus more on the \begin_inset Quotes eld \end_inset @@ -398,11 +446,11 @@ Jordan vectors \end_inset than on the Jordan factorization. - For a diagonalizable matrix, the fundamental vectors are the eigenvectors, - which are useful in their own right and give the diagonalization of the - matrix as a side-effect. - For a defective matrix, to get a complete basis we need to supplement the - eigenvectors with something called + For a diagonalizable matrix, + the fundamental vectors are the eigenvectors, + which are useful in their own right and give the diagonalization of the matrix as a side-effect. + For a defective matrix, + to get a complete basis we need to supplement the eigenvectors with something called \series bold Jordan vectors \series default @@ -411,9 +459,11 @@ Jordan vectors generalized eigenvectors \series default . - Jordan vectors are useful in their own right, just like eigenvectors, and - also give the Jordan form. - Here, we'll focus mainly on the + Jordan vectors are useful in their own right, + just like eigenvectors, + and also give the Jordan form. + Here, + we'll focus mainly on the \emph on consequences \emph default @@ -431,7 +481,8 @@ Defining \end_layout \begin_layout Standard -In the example above, we had a +In the example above, + we had a \begin_inset Formula $2\times2$ \end_inset @@ -449,21 +500,25 @@ In the example above, we had a \end_inset . - Of course, we could pick another vector at random, as long as it is independent - of + Of course, + we could pick another vector at random, + as long as it is independent of \begin_inset Formula $\vec{x}_{1}$ \end_inset -, but we'd like it to have something to do with +, + but we'd like it to have something to do with \begin_inset Formula $A$ \end_inset -, in order to help us with computations just like eigenvectors. +, + in order to help us with computations just like eigenvectors. The key thing is to look at \begin_inset Formula $A-I$ \end_inset - above, and to notice that + above, + and to notice that \begin_inset Formula $(A-I)^{2}=0$ \end_inset @@ -472,7 +527,8 @@ In the example above, we had a \series bold nilpotent \series default - if some power is the zero matrix.) So, the nullspace of + if some power is the zero matrix.) So, + the nullspace of \begin_inset Formula $(A-I)^{2}$ \end_inset @@ -485,11 +541,13 @@ extra \end_inset basis vector beyond the eigenvector. - But this extra vector must still be related to the eigenvector! If + But this extra vector must still be related to the eigenvector! + If \begin_inset Formula $\vec{y}\in N[(A-I)^{2}]$ \end_inset -, then +, + then \begin_inset Formula $(A-I)\vec{y}$ \end_inset @@ -497,7 +555,8 @@ extra \begin_inset Formula $N(A-I)$ \end_inset -, which means that +, + which means that \begin_inset Formula $(A-I)\vec{y}$ \end_inset @@ -505,7 +564,8 @@ extra \begin_inset Formula $\vec{x}_{1}$ \end_inset -! We just need to find a new +! + We just need to find a new \series bold \begin_inset Quotes eld @@ -541,11 +601,13 @@ generalized eigenvector \end_inset -Notice that, since +Notice that, + since \begin_inset Formula $\vec{x}_{1}\in N(A-I)$ \end_inset -, we can add any multiple of +, + we can add any multiple of \begin_inset Formula $\vec{x}_{1}$ \end_inset @@ -553,7 +615,8 @@ Notice that, since \begin_inset Formula $\vec{j}_{1}$ \end_inset - and still have a solution, so we can use Gram-Schmidt to get a + and still have a solution, + so we can use Gram-Schmidt to get a \emph on unique \emph default @@ -570,7 +633,8 @@ unique \begin_inset Formula $2\times2$ \end_inset - equation is easy enough for us to solve by inspection, obtaining + equation is easy enough for us to solve by inspection, + obtaining \begin_inset Formula $\vec{j}_{1}=(0,1)$ \end_inset @@ -583,11 +647,13 @@ orthonormal \begin_inset Formula $\mathbb{R}^{2}$ \end_inset -, and our basis has some simple relationship to +, + and our basis has some simple relationship to \begin_inset Formula $A$ \end_inset -! +! + \end_layout \begin_layout Standard @@ -595,7 +661,8 @@ Before we talk about how to \emph on use \emph default - these Jordan vectors, let's give a more general definition. + these Jordan vectors, + let's give a more general definition. Suppose that \begin_inset Formula $\lambda_{i}$ \end_inset @@ -608,11 +675,15 @@ use \begin_inset Formula $\det(A-\lambda_{i}I)$ \end_inset -, but with only a single (ordinary) eigenvector +, + but with only a single (ordinary) eigenvector \begin_inset Formula $\vec{x}_{i}$ \end_inset -, satisfying, as usual: +, + satisfying, + as usual: + \begin_inset Formula \[ (A-\lambda_{i}I)\vec{x}_{i}=0. @@ -624,7 +695,8 @@ If \begin_inset Formula $\lambda_{i}$ \end_inset - is a double root, we will need a second vector to complete our basis. + is a double root, + we will need a second vector to complete our basis. Remarkably, \begin_inset Foot status collapsed @@ -654,12 +726,14 @@ always \begin_inset Formula $N([A-\lambda_{i}I]^{2})$ \end_inset - is two-dimensional, just as for the + is two-dimensional, + just as for the \begin_inset Formula $2\times2$ \end_inset example above. - Hence, we can + Hence, + we can \emph on always \emph default @@ -667,7 +741,8 @@ always \begin_inset Formula $\vec{j}_{i}$ \end_inset - satisfying: + satisfying: + \begin_inset Formula \[ \boxed{(A-\lambda_{i}I)\vec{j}_{i}=\vec{x}_{i},\qquad\vec{j}_{i}\perp\vec{x}_{i}}. @@ -675,7 +750,8 @@ always \end_inset -Again, we can choose +Again, + we can choose \begin_inset Formula $\vec{j}_{i}$ \end_inset @@ -683,13 +759,16 @@ Again, we can choose \begin_inset Formula $\vec{x}_{i}$ \end_inset - via Gram-Schmidt—this is not strictly necessary, but gives a convenient - orthogonal basis. - (That is, the complete solution is always of the form + via Gram-Schmidt— +this is not strictly necessary, + but gives a convenient orthogonal basis. + (That is, + the complete solution is always of the form \begin_inset Formula $\vec{x}_{p}+c\vec{x}_{i}$ \end_inset -, a particular solution +, + a particular solution \begin_inset Formula $\vec{x}_{p}$ \end_inset @@ -764,7 +843,8 @@ A more general notation is to use \begin_inset Formula $\lambda_{i}$ \end_inset - is a triple root, we would find a third vector + is a triple root, + we would find a third vector \begin_inset Formula $\vec{x}_{i}^{(3)}$ \end_inset @@ -776,8 +856,10 @@ A more general notation is to use \begin_inset Formula $(A-\lambda_{i}I)\vec{x}_{i}^{(3)}=\vec{x}_{i}^{(2)}$ \end_inset -, and so on. - In general, if +, + and so on. + In general, + if \begin_inset Formula $\lambda_{i}$ \end_inset @@ -785,7 +867,8 @@ A more general notation is to use \begin_inset Formula $m$ \end_inset --times repeated root, then +-times repeated root, + then \begin_inset Formula $N([A-\lambda_{i}]^{m})$ \end_inset @@ -793,8 +876,7 @@ A more general notation is to use \begin_inset Formula $m$ \end_inset --dimensiohnal we will always be able to find an orthogonal sequence (a Jordan - chain) of Jordan vectors +-dimensiohnal we will always be able to find an orthogonal sequence (a Jordan chain) of Jordan vectors \begin_inset Formula $\vec{x}_{i}^{(j)}$ \end_inset @@ -811,9 +893,11 @@ A more general notation is to use \end_inset . - Even more generally, you might have cases with e.g. - a triple root and two ordinary eigenvectors, where you need only one generalize -d eigenvector, or an + Even more generally, + you might have cases with e.g. + a triple root and two ordinary eigenvectors, + where you need only one generalized eigenvector, + or an \begin_inset Formula $m$ \end_inset @@ -826,13 +910,17 @@ d eigenvector, or an \end_inset Jordan vectors. - However, cases with more than a double root are extremely rare in practice. - Defective matrices are rare enough to begin with, so here we'll stick with - the most common defective matrix, one with a double root + However, + cases with more than a double root are extremely rare in practice. + Defective matrices are rare enough to begin with, + so here we'll stick with the most common defective matrix, + one with a double root \begin_inset Formula $\lambda_{i}$ \end_inset -: hence, one ordinary eigenvector +: + hence, + one ordinary eigenvector \begin_inset Formula $\vec{x}_{i}$ \end_inset @@ -856,7 +944,8 @@ Using an eigenvector \begin_inset Formula $\vec{x}_{i}$ \end_inset - is easy: multiplying by + is easy: + multiplying by \begin_inset Formula $A$ \end_inset @@ -869,7 +958,8 @@ Using an eigenvector \begin_inset Formula $\vec{j}_{i}$ \end_inset -? The key is in the definition +? + The key is in the definition \family roman \series medium \shape up @@ -887,8 +977,7 @@ A\vec{j}_{i}=\lambda_{i}\vec{j}_{i}+\vec{x}_{i}. \end_inset -It will turn out that this has a simple consequence for more complicated - expressions like +It will turn out that this has a simple consequence for more complicated expressions like \begin_inset Formula $A^{k}$ \end_inset @@ -896,7 +985,8 @@ It will turn out that this has a simple consequence for more complicated \begin_inset Formula $e^{At}$ \end_inset -, but that's probably not obvious yet. +, + but that's probably not obvious yet. Let's try multiplying by \begin_inset Formula $A^{2}$ \end_inset @@ -925,8 +1015,9 @@ It will turn out that this has a simple consequence for more complicated \end_inset - From this, it's not hard to see the general pattern (which can be formally - proved by induction): + From this, + it's not hard to see the general pattern (which can be formally proved by induction): + \begin_inset Formula \[ \boxed{A^{k}\vec{j}_{i}=\lambda_{i}^{k}\vec{j}_{i}+k\lambda_{i}^{k-1}\vec{x}_{i}}. @@ -939,8 +1030,7 @@ Notice that the coefficient in the second term is exactly \end_inset . - This is the clue we need to get the general formula to apply any function - + This is the clue we need to get the general formula to apply any function \begin_inset Formula $f(A)$ \end_inset @@ -948,7 +1038,8 @@ Notice that the coefficient in the second term is exactly \begin_inset Formula $A$ \end_inset - to the eigenvector and the Jordan vector: + to the eigenvector and the Jordan vector: + \begin_inset Formula \[ f(A)\vec{x}_{i}=f(\lambda_{i})\vec{x}_{i}, @@ -968,8 +1059,9 @@ Multiplying by a function of the matrix multiplies \begin_inset Formula $\vec{j}_{i}$ \end_inset - by the same function of the eigenvalue, just as for an eigenvector, but - + by the same function of the eigenvalue, + just as for an eigenvector, + but \family default \series default \shape default @@ -993,7 +1085,9 @@ derivative \end_inset . - So, for example: + So, + for example: + \begin_inset Formula \[ \boxed{e^{At}\vec{j}_{i}=e^{\lambda_{i}t}\vec{j}_{i}+te^{\lambda_{i}t}\vec{x}_{i}}. @@ -1001,8 +1095,7 @@ derivative \end_inset - We can show this explicitly by considering what happens when we apply our - formula for + We can show this explicitly by considering what happens when we apply our formula for \begin_inset Formula $A^{k}$ \end_inset @@ -1019,16 +1112,18 @@ e^{At}\vec{j}_{i}=\sum_{k=0}^{\infty}\frac{A^{k}t^{k}}{k!}\vec{j}_{i}=\sum_{k=0} \end_inset -In general, that's how we show the formula for +In general, + that's how we show the formula for \begin_inset Formula $f(A)$ \end_inset - above: we Taylor expand each term, and the + above: + we Taylor expand each term, + and the \begin_inset Formula $A^{k}$ \end_inset - formula means that each term in the Taylor expansion has corresponding - term multiplying + formula means that each term in the Taylor expansion has corresponding term multiplying \begin_inset Formula $\vec{j}_{i}$ \end_inset @@ -1048,25 +1143,26 @@ More than double roots \end_layout \begin_layout Standard -In the rare case of two Jordan vectors from a triple root, you will have - a Jordan vector +In the rare case of two Jordan vectors from a triple root, + you will have a Jordan vector \begin_inset Formula $\vec{x}_{i}^{(3)}$ \end_inset and get a -\begin_inset Formula $f(A)\vec{x}_{i}^{(3)}=f(\lambda)\vec{x}_{i}^{(3)}+f'(\lambda)\vec{j}_{i}+f''(\lambda)\vec{x}_{i}$ +\begin_inset Formula $f(A)\vec{x}_{i}^{(3)}=f(\lambda)\vec{x}_{i}^{(3)}+f'(\lambda)\vec{j}_{i}+\frac{f''(\lambda)}{2}\vec{x}_{i}$ \end_inset -, where the -\begin_inset Formula $f''$ +, + where the +\begin_inset Formula $\frac{f''}{2}$ \end_inset term will give you -\begin_inset Formula $k(k-1)\lambda_{i}^{k-2}$ +\begin_inset Formula $\frac{k(k-1)}{2}\lambda_{i}^{k-2}$ \end_inset and -\begin_inset Formula $t^{2}e^{\lambda_{i}t}$ +\begin_inset Formula $\frac{t^{2}}{2}e^{\lambda_{i}t}$ \end_inset for @@ -1078,12 +1174,11 @@ In the rare case of two Jordan vectors from a triple root, you will have \end_inset respectively. - A quadruple root with one eigenvector and three Jordan vectors will give - you -\begin_inset Formula $f'''$ + A quadruple root with one eigenvector and three Jordan vectors will give you +\begin_inset Formula $\frac{f'''}{3!}$ \end_inset - terms (that is, + terms (hence \begin_inset Formula $k^{3}$ \end_inset @@ -1091,9 +1186,12 @@ In the rare case of two Jordan vectors from a triple root, you will have \begin_inset Formula $t^{3}$ \end_inset - terms), and so on. - The theory is quite pretty, but doesn't arise often in practice so I will - skip it; it is straightforward to work it out on your own if you are interested. + terms), + and so on, + very much like a Taylor series. + The theory is quite pretty, + but doesn't arise often in practice so I will skip it; + it is straightforward to work it out on your own if you are interested. \end_layout \begin_layout Subsection @@ -1112,7 +1210,8 @@ Let's try this for our example \end{array}\right)$ \end_inset - from above, which has an eigenvector + from above, + which has an eigenvector \begin_inset Formula $\vec{x}_{1}=(1,0)$ \end_inset @@ -1138,12 +1237,13 @@ Let's try this for our example \end_inset . - As usual, our first step is to write + As usual, + our first step is to write \begin_inset Formula $\vec{u}_{0}$ \end_inset - in the basis of the eigenvectors...except that now we also include the generalized - eigenvectors to get a complete basis: + in the basis of the eigenvectors...except that now we also include the generalized eigenvectors to get a complete basis: + \begin_inset Formula \[ \vec{u}_{0}=\left(\begin{array}{c} @@ -1154,11 +1254,14 @@ Let's try this for our example \end_inset -Now, computing +Now, + computing \begin_inset Formula $A^{k}\vec{u}_{0}$ \end_inset - is easy, from our formula above: + is easy, + from our formula above: + \begin_inset Formula \begin{eqnarray*} A^{k}\vec{u}_{0} & = & A^{k}\vec{x}_{1}+2A^{k}\vec{j}_{1}=\lambda_{1}^{k}\vec{x}_{1}+2\lambda_{1}^{k}\vec{j}_{1}+2k\lambda_{1}^{k-1}\vec{x}_{1}\\ @@ -1176,7 +1279,8 @@ A^{k}\vec{u}_{0} & = & A^{k}\vec{x}_{1}+2A^{k}\vec{j}_{1}=\lambda_{1}^{k}\vec{x} \end_inset -For example, this is the solution to the recurrence +For example, + this is the solution to the recurrence \begin_inset Formula $\vec{u}_{k+1}=A\vec{u}_{k}$ \end_inset @@ -1189,7 +1293,9 @@ For example, this is the solution to the recurrence \begin_inset Formula $|\lambda_{1}|=1\leq1$ \end_inset -, the solution still blows up, but it blows up +, + the solution still blows up, + but it blows up \emph on linearly \emph default @@ -1205,7 +1311,8 @@ Consider instead \begin_inset Formula $e^{At}\vec{u}_{0}$ \end_inset -, which is the solution to the system of ODEs +, + which is the solution to the system of ODEs \begin_inset Formula $\frac{d\vec{u}(t)}{dt}=A\vec{u}(t)$ \end_inset @@ -1214,7 +1321,8 @@ Consider instead \end_inset . - In this case, we get: + In this case, + we get: \begin_inset Formula \begin{eqnarray*} e^{At}\vec{u}_{0} & = & e^{At}\vec{x}_{1}+2e^{At}\vec{j}_{1}=e^{\lambda_{1}t}\vec{x}_{1}+2e^{\lambda_{1}t}\vec{j}_{1}+2te^{\lambda_{1}t}\vec{x}_{1}\\ @@ -1232,11 +1340,13 @@ e^{At}\vec{u}_{0} & = & e^{At}\vec{x}_{1}+2e^{At}\vec{j}_{1}=e^{\lambda_{1}t}\ve \end_inset -In this case, the solution blows up exponentially since +In this case, + the solution blows up exponentially since \begin_inset Formula $\lambda_{1}=1>0$ \end_inset -, but we have an +, + but we have an \emph on additional \emph default @@ -1248,15 +1358,14 @@ t \end_layout \begin_layout Standard -Those of you who have taken 18.03 are probably familiar with these terms - multiplied by +Those of you who have taken 18.03 are probably familiar with these terms multiplied by \begin_inset Formula $t$ \end_inset in the case of a repeated root. - In 18.03, it is presented simply as a guess for the solution that turns - out to work, but here we see that it is part of a more general pattern - of Jordan vectors for defective matrices. + In 18.03, + it is presented simply as a guess for the solution that turns out to work, + but here we see that it is part of a more general pattern of Jordan vectors for defective matrices. \end_layout \begin_layout Section @@ -1268,11 +1377,13 @@ For a diagonalizable matrix \begin_inset Formula $A$ \end_inset -, we made a matrix +, + we made a matrix \begin_inset Formula $S$ \end_inset - out of the eigenvectors, and saw that multiplying by + out of the eigenvectors, + and saw that multiplying by \begin_inset Formula $A$ \end_inset @@ -1284,7 +1395,8 @@ For a diagonalizable matrix \begin_inset Formula $\Lambda=S^{-1}AS$ \end_inset - is the diagonal matrix of eigenvalues, the + is the diagonal matrix of eigenvalues, + the \emph on diagonalization \emph default @@ -1293,11 +1405,13 @@ diagonalization \end_inset . - Equivalently, + Equivalently, + \begin_inset Formula $AS=\Lambda S$ \end_inset -: +: + \begin_inset Formula $A$ \end_inset @@ -1306,11 +1420,14 @@ diagonalization \end_inset by the corresponding eigenvalue. - Now, we will do exactly the same steps for a defective matrix + Now, + we will do exactly the same steps for a defective matrix \begin_inset Formula $A$ \end_inset -, using the basis of eigenvectors and Jordan vectors, and obtain the +, + using the basis of eigenvectors and Jordan vectors, + and obtain the \series bold Jordan form \series default @@ -1330,7 +1447,8 @@ Let's consider a simple case of a \begin_inset Formula $4\times4$ \end_inset - first, in which there is only + first, + in which there is only \emph on one \emph default @@ -1346,7 +1464,8 @@ one \begin_inset Formula $\vec{j}_{2}$ \end_inset -, and the other two eigenvalues +, + and the other two eigenvalues \begin_inset Formula $\lambda_{1}$ \end_inset @@ -1368,7 +1487,8 @@ one \end_inset from this basis of four vectors (3 eigenvectors and 1 Jordan vector). - Now, consider what happends when we multiply + Now, + consider what happends when we multiply \begin_inset Formula $A$ \end_inset @@ -1376,7 +1496,8 @@ one \begin_inset Formula $M$ \end_inset -: +: + \begin_inset Formula \begin{eqnarray*} AM & = & (\lambda_{1}\vec{x}_{1},\lambda_{2}\vec{x}_{2},\lambda_{2}\vec{j}_{2}+\vec{x}_{2},\lambda_{3}\vec{x}_{3}).\\ @@ -1390,7 +1511,8 @@ AM & = & (\lambda_{1}\vec{x}_{1},\lambda_{2}\vec{x}_{2},\lambda_{2}\vec{j}_{2}+\ \end_inset -That is, +That is, + \begin_inset Formula $A=MJM^{-1}$ \end_inset @@ -1402,14 +1524,15 @@ That is, \emph on almost \emph default - diagonal: it has + diagonal: + it has \begin_inset Formula $\lambda's$ \end_inset - along the diagonal, but it + along the diagonal, + but it \emph on -also has 1's above the diagonal for the columns corresponding to generalized - eigenvectors +also has 1's above the diagonal for the columns corresponding to generalized eigenvectors \emph default . This is exactly the Jordan form of the matrix @@ -1421,7 +1544,9 @@ also has 1's above the diagonal for the columns corresponding to generalized \begin_inset Formula $J$ \end_inset -, of course, has the same eigenvalues as +, + of course, + has the same eigenvalues as \begin_inset Formula $A$ \end_inset @@ -1433,7 +1558,8 @@ also has 1's above the diagonal for the columns corresponding to generalized \begin_inset Formula $J$ \end_inset - are similar, but + are similar, + but \begin_inset Formula $J$ \end_inset @@ -1465,17 +1591,21 @@ Jordan block \end_layout \begin_layout Standard -The generalization of this, when you perhaps have more than one repeated - root, and perhaps the multiplicity of the root is greater than 2, is fairly - obvious, and leads immediately to the formula given without proof in section - 6.6 of the textbook. - What I want to emphasize here, however, is not so much the formal theorem - that a Jordan form exists, but how to +The generalization of this, + when you perhaps have more than one repeated root, + and perhaps the multiplicity of the root is greater than 2, + is fairly obvious, + and leads immediately to the formula given without proof in section 6.6 of the textbook. + What I want to emphasize here, + however, + is not so much the formal theorem that a Jordan form exists, + but how to \emph on use \emph default - it via the Jordan vectors: in particular, that generalized eigenvectors - give us + it via the Jordan vectors: + in particular, + that generalized eigenvectors give us \emph on linearly growing \emph default @@ -1495,17 +1625,20 @@ linearly growing \begin_inset Formula $e^{At}$ \end_inset -, respectively. +, + respectively. \end_layout \begin_layout Standard -Computationally, the Jordan form is famously problematic, because with any - slight random perturbation to +Computationally, + the Jordan form is famously problematic, + because with any slight random perturbation to \begin_inset Formula $A$ \end_inset (e.g. - roundoff errors) the matrix typically becomes diagonalizable, and the + roundoff errors) the matrix typically becomes diagonalizable, + and the \begin_inset Formula $2\times2$ \end_inset @@ -1518,7 +1651,8 @@ Computationally, the Jordan form is famously problematic, because with any \begin_inset Formula $X$ \end_inset - of eigenvectors, but it is + of eigenvectors, + but it is \emph on nearly singular \emph default @@ -1530,17 +1664,19 @@ ill conditioned \begin_inset Quotes erd \end_inset -): for a +): + for a \series bold -nearly defective matrix, the eigenvectors are +nearly defective matrix, + the eigenvectors are \emph on almost \emph default linearly dependent \series default . - This makes eigenvectors a problematic way of looking at nearly defective - matrices as well, because they are so sensitive to errors. + This makes eigenvectors a problematic way of looking at nearly defective matrices as well, + because they are so sensitive to errors. Finding an \emph on approximate @@ -1553,8 +1689,10 @@ nearly \series bold Wilkinson problem \series default - in numerical linear algebra, and has a number of tricky solutions. - Alternatively, there are approaches like + in numerical linear algebra, + and has a number of tricky solutions. + Alternatively, + there are approaches like \begin_inset Quotes eld \end_inset @@ -1562,8 +1700,8 @@ Schur factorization \begin_inset Quotes erd \end_inset - or the SVD that lead to nice orthonormal bases for any matrix, but aren't - nearly as simple to use as eigenvectors. + or the SVD that lead to nice orthonormal bases for any matrix, + but aren't nearly as simple to use as eigenvectors. \end_layout \end_body diff --git a/lectures/jordan-vectors.pdf b/notes/jordan-vectors.pdf similarity index 58% rename from lectures/jordan-vectors.pdf rename to notes/jordan-vectors.pdf index 1bc2aca3..98c22c36 100644 Binary files a/lectures/jordan-vectors.pdf and b/notes/jordan-vectors.pdf differ diff --git a/notes/rank-r and full svds.ipynb b/notes/rank-r and full svds.ipynb new file mode 100644 index 00000000..18b752bc --- /dev/null +++ b/notes/rank-r and full svds.ipynb @@ -0,0 +1,588 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "using LinearAlgebra" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "rankrsvd (generic function with 1 method)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "function fullsvd(A) \n", + " U,s,V = svd(A, full = true) # compute svd\n", + " Σ = zeros(size(A)) # container for Σ \n", + " for i=1:length(s)\n", + " Σ[i,i] = s[i] # place singular values in Σ\n", + " end # a practical svd would never store all these zeros\n", + " display(U);display(Σ);display(V) # display the answer\n", + " return(U,Σ,V) # return the answer\n", + "end\n", + "\n", + "\n", + "function rankrsvd(A) \n", + " U,s,V = svd(A, full = true) # compute svd\n", + " r = sum(s.>1e-8) # rank = how many positive?\n", + " U₁ = U[:,1:r]\n", + " Σᵣ = Diagonal(s[1:r]) # Diagonal matrix of singular values\n", + " V₁ = V[:,1:r]\n", + " display(U₁);display(Σᵣ);display(V₁) # display the answer\n", + " return(U₁,Σᵣ,V₁) # return the answer\n", + "end" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. random 2x2 matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " 0.259439 0.075927\n", + " 0.898109 0.918728" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(2,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " -0.18222 -0.983258\n", + " -0.983258 0.18222 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " 1.30643 0.0 \n", + " 0.0 0.13025" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Adjoint{Float64,Array{Float64,2}}:\n", + " -0.712128 -0.70205 \n", + " -0.70205 0.712128" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fullsvd(A);" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " -0.18222 -0.983258\n", + " -0.983258 0.18222 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Diagonal{Float64,Array{Float64,1}}:\n", + " 1.30643 ⋅ \n", + " ⋅ 0.13025" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " -0.712128 -0.70205 \n", + " -0.70205 0.712128" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rankrsvd(A);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. random 3x2 matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×2 Array{Float64,2}:\n", + " 0.464581 0.051883\n", + " 0.9702 0.533329\n", + " 0.601868 0.413574" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(3,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×3 Array{Float64,2}:\n", + " -0.311792 0.90137 0.300529\n", + " -0.794641 -0.0739732 -0.602555\n", + " -0.520894 -0.426685 0.73933 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "3×2 Array{Float64,2}:\n", + " 1.39313 0.0 \n", + " 0.0 0.191691\n", + " 0.0 0.0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Adjoint{Float64,Array{Float64,2}}:\n", + " -0.882421 0.47046 \n", + " -0.47046 -0.882421" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fullsvd(A);" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3×2 Array{Float64,2}:\n", + " -0.311792 0.90137 \n", + " -0.794641 -0.0739732\n", + " -0.520894 -0.426685 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Diagonal{Float64,Array{Float64,1}}:\n", + " 1.39313 ⋅ \n", + " ⋅ 0.191691" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " -0.882421 0.47046 \n", + " -0.47046 -0.882421" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rankrsvd(A);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. random 2x3 matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×3 Array{Float64,2}:\n", + " 0.0451975 0.242917 0.405185\n", + " 0.477637 0.8663 0.725397" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(2,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " -0.337277 -0.941405\n", + " -0.941405 0.337277" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×3 Array{Float64,2}:\n", + " 1.30125 0.0 0.0\n", + " 0.0 0.191821 0.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "3×3 Adjoint{Float64,Array{Float64,2}}:\n", + " -0.357268 0.618008 -0.700304\n", + " -0.689699 0.331038 0.643994\n", + " -0.629821 -0.713078 -0.30797 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fullsvd(A);" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2×2 Array{Float64,2}:\n", + " -0.337277 -0.941405\n", + " -0.941405 0.337277" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "2×2 Diagonal{Float64,Array{Float64,1}}:\n", + " 1.30125 ⋅ \n", + " ⋅ 0.191821" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "3×2 Array{Float64,2}:\n", + " -0.357268 0.618008\n", + " -0.689699 0.331038\n", + " -0.629821 -0.713078" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rankrsvd(A);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. rank 3, 7x10 matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7×10 Array{Float64,2}:\n", + " 0.409585 0.550866 0.729917 0.396048 … 0.491844 0.870667 0.327258\n", + " 0.824315 0.457974 0.887333 0.932895 0.34797 1.19361 0.266938\n", + " 0.897034 0.338666 0.678985 0.943025 0.418739 1.0996 0.258406\n", + " 0.862495 0.661816 0.926009 0.816466 0.771865 1.33408 0.463019\n", + " 0.878864 0.887087 1.42046 0.99785 0.602456 1.66596 0.472172\n", + " 0.765583 0.423397 0.731421 0.800129 … 0.446203 1.06758 0.287248\n", + " 0.710849 0.713791 1.12556 0.793167 0.511149 1.33563 0.388595" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = rand(7,3)*rand(3,10) # this should be rank 3" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7×7 Array{Float64,2}:\n", + " -0.277937 -0.522311 -0.0744039 … 0.466151 -0.560653 0.264395 \n", + " -0.34423 0.518096 -0.0720404 -0.227442 -0.460716 -0.319634 \n", + " -0.335511 0.428918 0.464644 0.604044 0.0486161 -0.0705107 \n", + " -0.436358 -0.497343 0.506287 -0.350516 0.117976 -0.410459 \n", + " -0.487624 0.0167782 -0.553854 -0.204899 -0.105282 -0.000703896\n", + " -0.327734 0.157075 0.264594 … -0.34661 0.116364 0.806582 \n", + " -0.395088 -0.0499189 -0.374552 0.284817 0.657649 -0.0625039 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "7×10 Array{Float64,2}:\n", + " 6.92226 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", + " 0.0 0.755198 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.683053 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 5.91088e-16 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0\n", + " 0.0 0.0 0.0 0.0 8.21229e-17 0.0 0.0 0.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "10×10 Adjoint{Float64,Array{Float64,2}}:\n", + " -0.294011 0.35548 0.312083 … 0.0465244 0.0514862 0.039223 \n", + " -0.2263 -0.249712 -0.334077 0.181558 0.595424 0.0233641\n", + " -0.363646 -0.0109916 -0.510499 -0.0359443 -0.220601 0.140677 \n", + " -0.312911 0.500153 0.171036 -0.359502 -0.207792 0.0736223\n", + " -0.237955 -0.64866 0.255552 -0.601864 -0.131402 -0.104849 \n", + " -0.251608 0.0397458 -0.437401 … 0.164673 -0.485916 -0.221939 \n", + " -0.477004 -0.0809271 0.436915 0.478804 0.100636 0.0399163\n", + " -0.198741 -0.299539 0.17074 0.373694 -0.353637 -0.236875 \n", + " -0.475836 0.133415 -0.153594 -0.275708 0.389516 -0.22132 \n", + " -0.137166 -0.156822 -0.0295032 0.00811763 -0.103379 0.897647 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fullsvd(A);" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7×3 Array{Float64,2}:\n", + " -0.277937 -0.522311 -0.0744039\n", + " -0.34423 0.518096 -0.0720404\n", + " -0.335511 0.428918 0.464644 \n", + " -0.436358 -0.497343 0.506287 \n", + " -0.487624 0.0167782 -0.553854 \n", + " -0.327734 0.157075 0.264594 \n", + " -0.395088 -0.0499189 -0.374552 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "3×3 Diagonal{Float64,Array{Float64,1}}:\n", + " 6.92226 ⋅ ⋅ \n", + " ⋅ 0.755198 ⋅ \n", + " ⋅ ⋅ 0.683053" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "10×3 Array{Float64,2}:\n", + " -0.294011 0.35548 0.312083 \n", + " -0.2263 -0.249712 -0.334077 \n", + " -0.363646 -0.0109916 -0.510499 \n", + " -0.312911 0.500153 0.171036 \n", + " -0.237955 -0.64866 0.255552 \n", + " -0.251608 0.0397458 -0.437401 \n", + " -0.477004 -0.0809271 0.436915 \n", + " -0.198741 -0.299539 0.17074 \n", + " -0.475836 0.133415 -0.153594 \n", + " -0.137166 -0.156822 -0.0295032" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rankrsvd(A);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "@webio": { + "lastCommId": null, + "lastKernelId": null + }, + "kernelspec": { + "display_name": "Julia 1.3.0", + "language": "julia", + "name": "julia-1.3" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.3.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/strang.jpg b/notes/strang.jpg similarity index 100% rename from strang.jpg rename to notes/strang.jpg diff --git a/notes/svd-practice.lyx b/notes/svd-practice.lyx new file mode 100644 index 00000000..66f49461 --- /dev/null +++ b/notes/svd-practice.lyx @@ -0,0 +1,1904 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language english +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 2 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1in +\topmargin 1in +\rightmargin 1in +\bottommargin 1in +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +SVD review problems for 18.06 +\end_layout + +\begin_layout Author +Steven G. + Johnson, MIT Applied Mathematics +\end_layout + +\begin_layout Section +SVD variants +\end_layout + +\begin_layout Standard +One of the confusing things about the SVD is that there are a few different + conventions for the sizes of the various matrices, and this can make it + more difficult to compare exam and homework questions from different textbooks, + semesters, and instructors. + If +\begin_inset Formula $A$ +\end_inset + + is an +\begin_inset Formula $m\times n$ +\end_inset + + matrix (of real numbers) of rank +\begin_inset Formula $r$ +\end_inset + +, then the main variants of the SVD +\begin_inset Formula $A=U\Sigma V^{T}$ +\end_inset + + are: +\end_layout + +\begin_layout Enumerate +The +\series bold + +\begin_inset Quotes eld +\end_inset + +full +\begin_inset Quotes erd +\end_inset + + SVD +\series default +: +\begin_inset Formula $U$ +\end_inset + + is +\begin_inset Formula $m\times m$ +\end_inset + + and +\begin_inset Formula $V$ +\end_inset + + is +\begin_inset Formula $n\times n$ +\end_inset + + (i.e. + both are +\emph on +unitary +\emph default +), and +\begin_inset Formula $\Sigma$ +\end_inset + + is +\begin_inset Formula $m\times n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +The +\series bold + +\begin_inset Quotes eld +\end_inset + +compact +\begin_inset Quotes erd +\end_inset + + SVD +\series default +: +\begin_inset Formula $U$ +\end_inset + + is +\begin_inset Formula $m\times r$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + is +\begin_inset Formula $n\times r$ +\end_inset + +, and +\begin_inset Formula $\Sigma$ +\end_inset + + is +\begin_inset Formula $r\times r$ +\end_inset + +. + (Sometimes denoted +\begin_inset Formula $\hat{U}\hat{\Sigma}\hat{V}^{T}$ +\end_inset + + to distinguish it from the full SVD.) +\end_layout + +\begin_layout Enumerate +The +\series bold + +\begin_inset Quotes eld +\end_inset + +thin +\begin_inset Quotes erd +\end_inset + + SVD +\series default +: +\begin_inset Formula $\Sigma$ +\end_inset + + is +\begin_inset Formula $m\times m$ +\end_inset + + or +\begin_inset Formula $n\times n$ +\end_inset + +, +\series bold +whichever is smaller +\series default +. + Hence, there are two cases: +\end_layout + +\begin_deeper +\begin_layout Enumerate +A is +\begin_inset Quotes eld +\end_inset + +tall +\begin_inset Quotes erd +\end_inset + + ( +\begin_inset Formula $m\ge n$ +\end_inset + +): +\begin_inset Formula $U$ +\end_inset + + is +\begin_inset Formula $m\times n$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + is +\begin_inset Formula $n\times n$ +\end_inset + +, +\begin_inset Formula $\Sigma$ +\end_inset + + is +\begin_inset Formula $n\times n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +A is +\begin_inset Quotes eld +\end_inset + +wide +\begin_inset Quotes erd +\end_inset + + ( +\begin_inset Formula $m\le n$ +\end_inset + +): +\begin_inset Formula $U$ +\end_inset + + is +\begin_inset Formula $m\times m$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + is +\begin_inset Formula $n\times m$ +\end_inset + +, +\begin_inset Formula $\Sigma$ +\end_inset + + is +\begin_inset Formula $m\times m$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +For example, suppose that +\begin_inset Formula $A$ +\end_inset + + is a +\begin_inset Formula $4\times3$ +\end_inset + + matrix with rank +\begin_inset Formula $2$ +\end_inset + +. + Then the three variants would look like: +\end_layout + +\begin_layout Enumerate + +\series bold +full +\series default +: +\begin_inset Formula $A=\underbrace{\left(\begin{array}{cccc} +u_{1} & u_{2} & u_{3} & u_{4}\end{array}\right)}_{U=4\times4\text{ unitary}}\underbrace{\left(\begin{array}{ccc} +\sigma_{1}\\ + & \sigma_{2}\\ + & & 0\\ + & & 0 +\end{array}\right)}_{\Sigma=4\times3}\underbrace{\left(\begin{array}{ccc} +v_{1} & v_{2} & v_{3}\end{array}\right)^{T}}_{(V=3\times3\text{ unitary})^{T}}.$ +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +compact +\series default +: +\begin_inset Formula $A=\underbrace{\left(\begin{array}{cc} +u_{1} & u_{2}\end{array}\right)}_{U=4\times2}\underbrace{\left(\begin{array}{cc} +\sigma_{1}\\ + & \sigma_{2} +\end{array}\right)}_{\Sigma=2\times2}\underbrace{\left(\begin{array}{cc} +v_{1} & v_{2}\end{array}\right)^{T}}_{(V=3\times2)^{T}}.$ +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +thin +\series default +: +\begin_inset Formula $A=\underbrace{\left(\begin{array}{ccc} +u_{1} & u_{2} & u_{3}\end{array}\right)}_{U=4\times3}\underbrace{\left(\begin{array}{ccc} +\sigma_{1}\\ + & \sigma_{2}\\ + & & 0 +\end{array}\right)}_{\Sigma=3\times3}\underbrace{\left(\begin{array}{ccc} +v_{1} & v_{2} & v_{3}\end{array}\right)^{T}}_{(V=3\times3\text{ unitary})^{T}}.$ +\end_inset + + +\end_layout + +\begin_layout Standard +Computer software for the SVD tends to return either the +\begin_inset Quotes eld +\end_inset + +thin +\begin_inset Quotes erd +\end_inset + + or +\begin_inset Quotes eld +\end_inset + +full +\begin_inset Quotes erd +\end_inset + + forms of the SVD, with the latter being smaller and hence more efficient. + (The +\begin_inset Quotes eld +\end_inset + +compact +\begin_inset Quotes erd +\end_inset + + form would be even smaller yet, but it is difficult for a computer with + finite precision to distinguish singular values that are very small from + actual zeros, i.e. +\begin_inset space ~ +\end_inset + +roundoff errors make it hard to reliably shrink the thin to the compact + form.) +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Subsection +Important features of +\emph on +all +\emph default + SVD variants +\end_layout + +\begin_layout Standard + +\emph on +Every +\emph default + variant of the SVD has a number of important features in common: +\end_layout + +\begin_layout Enumerate +Columns of +\begin_inset Formula $U$ +\end_inset + + ( +\begin_inset Quotes eld +\end_inset + +left +\begin_inset Quotes erd +\end_inset + + singular vectors +\begin_inset Formula $u_{1},u_{2},\ldots$ +\end_inset + +) are +\series bold +orthonormal +\series default + vectors in +\begin_inset space ~ +\end_inset + + +\begin_inset Formula $\mathbb{R}^{m}$ +\end_inset + +, and columns of +\begin_inset Formula $V$ +\end_inset + + ( +\begin_inset Quotes eld +\end_inset + +right +\begin_inset Quotes erd +\end_inset + + singular vectors +\begin_inset Formula $v_{1},v_{2},\ldots$ +\end_inset + +) are +\series bold +orthonormal +\series default + vectors in +\begin_inset space ~ +\end_inset + + +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +The +\series bold +rank +\series default + of +\begin_inset Formula $A$ +\end_inset + + is equal to the number of singular values +\begin_inset Formula $\sigma_{k}>0$ +\end_inset + +, which lie on the +\series bold +diagonal +\series default + of +\begin_inset Formula $\Sigma$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +The +\series bold +first +\begin_inset Formula $r$ +\end_inset + + columns +\series default + +\begin_inset Formula $u_{1},\ldots,u_{r}$ +\end_inset + + of +\begin_inset Formula $U$ +\end_inset + + (sometimes denoted +\begin_inset Formula $\hat{U}$ +\end_inset + +) are an orthonormal basis for +\begin_inset Formula $C(A)$ +\end_inset + +. + The +\series bold +first +\begin_inset Formula $r$ +\end_inset + + columns +\series default + +\begin_inset Formula $v_{1},\ldots,v_{r}$ +\end_inset + + of +\begin_inset Formula $V$ +\end_inset + + (sometimes denoted +\begin_inset Formula $\hat{V}$ +\end_inset + +) are an orthonormal basis for +\begin_inset Formula $C(A^{T})$ +\end_inset + +. + This gives: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $A=U\Sigma V^{T}=\sigma_{1}u_{1}v_{1}^{T}+\sigma_{2}u_{2}v_{2}^{T}+\cdots+\sigma_{r}u_{r}v_{r}^{T}$ +\end_inset + +. + (Any other singular vectors are multiplied by 0's.) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + sends these +\begin_inset Formula $r$ +\end_inset + + orthonormal +\begin_inset Quotes eld +\end_inset + +input +\begin_inset Quotes erd +\end_inset + + vectors +\begin_inset Formula $v_{k}$ +\end_inset + + into orthogonal +\begin_inset Quotes eld +\end_inset + +outputs +\begin_inset Quotes erd +\end_inset + + parallel to +\begin_inset Formula $u_{k}$ +\end_inset + +: +\begin_inset Formula $Av_{k}=\sigma_{k}u_{k}$ +\end_inset + +. + (This makes it an especially +\series bold +\emph on +nice +\emph default + orthonormal basis +\series default + for understanding +\begin_inset Formula $A$ +\end_inset + +, because the orthogonality is +\emph on +preserved +\emph default + by +\begin_inset Formula $A$ +\end_inset + +.) +\end_layout + +\end_deeper +\begin_layout Enumerate +You can get a low-rank +\series bold +approximation +\series default + for +\begin_inset Formula $A$ +\end_inset + + (in some sense the +\begin_inset Quotes eld +\end_inset + +best +\begin_inset Quotes erd +\end_inset + + possible low-rank approximation) by simply +\series bold +dropping +\series default + smaller singular values, i.e. + just setting those +\begin_inset Formula $\sigma_{k}$ +\end_inset + + terms to +\series bold +zero +\series default +. + (For convenience, the singular values are conventionally sorted in descending + order +\begin_inset Formula $\sigma_{1}\ge\sigma_{2}\ge\cdots\ge\sigma_{r}$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +The only difference between the variants is whether there are +\begin_inset Quotes eld +\end_inset + +extra +\begin_inset Quotes erd +\end_inset + + columns in +\begin_inset Formula $U$ +\end_inset + + and +\begin_inset Formula $V$ +\end_inset + +. + Any additional columns beyond the +\begin_inset Formula $r$ +\end_inset + +-th must be +\emph on +orthogonal +\emph default + to +\begin_inset Formula $C(A)$ +\end_inset + + (for +\begin_inset Formula $U$ +\end_inset + +) or +\begin_inset Formula $C(A^{T})$ +\end_inset + + (for +\begin_inset Formula $V$ +\end_inset + +), and hence must be in +\begin_inset Formula $C(A)^{\perp}=N(A^{T})$ +\end_inset + + or +\begin_inset Formula $C(A^{T})^{\perp}=N(A)$ +\end_inset + +, respectively: +\end_layout + +\begin_layout Enumerate +Any additional columns of +\begin_inset Formula $U$ +\end_inset + + (beyond +\begin_inset Formula $u_{r}$ +\end_inset + +) are in +\begin_inset Formula $N(A^{T})$ +\end_inset + +. + If +\begin_inset Formula $U$ +\end_inset + + is +\begin_inset Formula $m\times m$ +\end_inset + + (square/unitary), then these additional +\begin_inset Formula $m-r$ +\end_inset + + columns are an orthonormal +\emph on +basis +\emph default + for +\begin_inset Formula $N(A^{T})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Any additional columns of +\begin_inset Formula $V$ +\end_inset + + (beyond +\begin_inset Formula $v_{r}$ +\end_inset + +) are in +\begin_inset Formula $N(A)$ +\end_inset + +. + If +\begin_inset Formula $V$ +\end_inset + + is +\begin_inset Formula $n\times n$ +\end_inset + + (square/unitary), then these additional +\begin_inset Formula $n-r$ +\end_inset + + columns are an orthonormal +\emph on +basis +\emph default + for +\begin_inset Formula $N(A)$ +\end_inset + +. +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +\begin_inset Quotes eld +\end_inset + +Thin +\begin_inset Quotes erd +\end_inset + + SVD practice problems +\end_layout + +\begin_layout Standard +The following practice problems from previous exams are adapted to the +\begin_inset Quotes eld +\end_inset + +thin +\begin_inset Quotes erd +\end_inset + + SVD. +\end_layout + +\begin_layout Subsection* +Spring 2019 quiz 2, problem 1 +\end_layout + +\begin_layout Standard +A random +\begin_inset Formula $4\times3$ +\end_inset + + matrix +\begin_inset Formula $A$ +\end_inset + + has a thin SVD computed with Julia. + The singular values are (to 3 digits): +\begin_inset Formula +\[ +\sigma_{1},\sigma_{2},\sigma_{3}=2.07,0.996,0.485 +\] + +\end_inset + +and the corresponding singular vectors are the columns of +\begin_inset Formula +\[ +U=\left(\begin{array}{ccc} +-0.534 & 0.697 & 0.397\\ +-0.325 & -0.691 & 0.539\\ +-0.650 & -0.156 & -0.108\\ +-0.431 & -0.108 & -0.735 +\end{array}\right),\qquad V=\left(\begin{array}{ccc} +-0.392 & 0.466 & 0.793\\ +-0.730 & 0.367 & -0.577\\ +-0.560 & -0.805 & 0.197 +\end{array}\right). +\] + +\end_inset + + +\series bold +Questions: +\end_layout + +\begin_layout Enumerate +Is +\begin_inset Formula $A^{T}A$ +\end_inset + + invertible? Why or why not? +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $y$ +\end_inset + + is a vector perpendicular to +\series bold +every +\series default + column of +\begin_inset Formula $A$ +\end_inset + +, find and circle vectors in +\begin_inset Formula $U$ +\end_inset + + and/or +\begin_inset Formula $V$ +\end_inset + + above that must +\series bold +also +\series default + be +\begin_inset Formula $\perp y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Is +\begin_inset Formula $AA^{T}$ +\end_inset + + invertible? Why or why not? +\end_layout + +\begin_layout Enumerate +How many solutions to +\begin_inset Formula $Ax=b$ +\end_inset + + are likely to exist for a randomly generated +\begin_inset Formula $b$ +\end_inset + + such as +\begin_inset Formula $b=\left(\begin{array}{c} +1.26\\ +-0.649\\ +-1.87\\ +-1.67 +\end{array}\right)$ +\end_inset + +. + Explain briefly. +\end_layout + +\begin_layout Enumerate +What is the dimension of the +\series bold +orthogonal complement +\series default + of the +\series bold +row space +\series default + of +\begin_inset Formula $A$ +\end_inset + +? +\end_layout + +\begin_layout Standard + +\series bold +Solutions: +\end_layout + +\begin_layout Enumerate + +\series bold +Yes +\series default +. + +\begin_inset Formula $A$ +\end_inset + + has 3 nonzero singular values, so it is +\series bold +rank 3 +\series default + and hence +\series bold +full column rank +\series default +. + We saw in class that +\begin_inset Formula $A^{T}A$ +\end_inset + + and +\begin_inset Formula $A$ +\end_inset + + have the +\series bold +same rank +\series default +, so +\begin_inset Formula $A^{T}A$ +\end_inset + + is a +\begin_inset Formula $3\times3$ +\end_inset + + matrix of rank 3 and hence must be invertible. +\begin_inset Newline newline +\end_inset + + +\begin_inset Newline newline +\end_inset + +In fact, we can explicitly write +\begin_inset Formula $(A^{T}A)^{-1}$ +\end_inset + + in terms of the SVD above, since +\begin_inset Formula +\[ +A^{T}A=(U\Sigma V^{T})^{T}U\Sigma V^{T}=V\Sigma^{T}\cancelto{I}{U^{T}U}\Sigma V^{T}=V\underbrace{\left(\begin{array}{ccc} +\sigma_{1}^{2}\\ + & \sigma_{2}^{2}\\ + & & \sigma_{3}^{2} +\end{array}\right)}_{\Sigma^{T}\Sigma=\Sigma^{2}}V^{T}, +\] + +\end_inset + +using the orthonormal columns of +\begin_inset Formula $U$ +\end_inset + +. + Since +\begin_inset Formula $V$ +\end_inset + + is a +\emph on +square +\emph default + matrix with orthonormal columns, it is +\emph on +unitary +\emph default + ( +\begin_inset Formula $V^{T}=V^{-1}$ +\end_inset + +), while diagonal matrices like +\begin_inset Formula $\Sigma^{2}$ +\end_inset + + are easy to invert, and thus the inverse is: +\begin_inset Formula +\[ +(A^{T}A)^{-1}=(V^{T})^{-1}\Sigma^{-2}V^{-1}=V\underbrace{\left(\begin{array}{ccc} +\sigma_{1}^{-2}\\ + & \sigma_{2}^{-2}\\ + & & \sigma_{3}^{-2} +\end{array}\right)}_{\Sigma^{-2}}V^{T}\:. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $y$ +\end_inset + + is in +\begin_inset Formula $C(A)^{\perp}$ +\end_inset + +, and the first +\begin_inset Formula $r=3$ +\end_inset + + columns of +\begin_inset Formula $U$ +\end_inset + + (i.e. + all the columns in this case) are a +\series bold +basis +\series default + for +\begin_inset Formula $C(A)$ +\end_inset + +, so +\begin_inset Formula $y$ +\end_inset + + must be +\series bold +orthogonal to all three columns of +\begin_inset Formula $U$ +\end_inset + + +\series default +. + (Equivalently, +\begin_inset Formula $U^{T}y=\vec{0}$ +\end_inset + +.) +\end_layout + +\begin_layout Enumerate + +\series bold +No +\series default +. + As in the first part, +\begin_inset Formula $\operatorname{rank}(AA^{T})=\operatorname{rank}(A^{T})=\operatorname{rank}(A)=3$ +\end_inset + +, so +\begin_inset Formula $AA^{T}$ +\end_inset + + is a +\begin_inset Formula $4\times4$ +\end_inset + + matrix with rank +\begin_inset space ~ +\end_inset + + +\begin_inset Formula $3$ +\end_inset + + and hence is singular/non-invertible. +\end_layout + +\begin_layout Enumerate + +\series bold +None +\series default +. + +\begin_inset Formula $A$ +\end_inset + + is a +\begin_inset Formula $4\times3$ +\end_inset + + matrix with rank +\begin_inset Formula $3$ +\end_inset + +, so +\begin_inset Formula $C(A)$ +\end_inset + + is a 3d subspace of +\begin_inset Formula $\mathbb{R}^{4}$ +\end_inset + + — it's vanishingly unlikely that a vector +\begin_inset Formula $b$ +\end_inset + + with independently chosen random entries will lie in this subspace. +\end_layout + +\begin_layout Enumerate + +\series bold +0 +\series default +. + +\begin_inset Formula $A$ +\end_inset + + is a +\begin_inset Formula $4\times3$ +\end_inset + + matrix with rank +\begin_inset Formula $3$ +\end_inset + +, so its row space +\begin_inset Formula $C(A^{T})$ +\end_inset + + is a +\begin_inset Formula $3$ +\end_inset + +-dimensional subspace of +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + , hence +\begin_inset Formula $C(A^{T})=\mathbb{R}^{3}$ +\end_inset + + and its complement is the 0-dimensional subspace +\begin_inset Formula $\{\vec{0}\}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection* +Spring 2019 practice exam 2, problem 9 +\end_layout + +\begin_layout Standard +Suppose we are given the thin SVD of an +\begin_inset Formula $m\times n$ +\end_inset + + matrix +\begin_inset Formula $A$ +\end_inset + + on a computer. + +\series bold + Questions: +\end_layout + +\begin_layout Enumerate +How would you obtain the rank +\begin_inset Formula $r$ +\end_inset + +? +\end_layout + +\begin_layout Enumerate +How would you check if +\begin_inset Formula $A^{T}A$ +\end_inset + + is invertible? +\end_layout + +\begin_layout Enumerate +How would you check, given a vector +\begin_inset Formula $b$ +\end_inset + +, if +\begin_inset Formula $Ax=b$ +\end_inset + + has a solution? +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $Ax=b$ +\end_inset + + has at least one solution, how could use use the thin SVD to obtain a solution + +\begin_inset Formula $x$ +\end_inset + +? +\end_layout + +\begin_layout Standard + +\series bold +Solutions: +\end_layout + +\begin_layout Enumerate +The rank +\begin_inset Formula $r$ +\end_inset + + is the number of (nonzero) singular values +\begin_inset Formula $\sigma_{k}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Newline newline +\end_inset + +(Of course, roundoff errors on a compute throw a wrench into this on a real + computer. + If +\begin_inset Formula $\sigma_{1}$ +\end_inset + + is the biggest singular value, we might treat any singular values +\begin_inset Formula $\lesssim10^{-15}\sigma_{1}$ +\end_inset + + as being indistinguishable from zero.) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{T}A$ +\end_inset + + is invertible if +\begin_inset Formula $\operatorname{rank}(A^{T}A)=\operatorname{rank}(A)=r$ +\end_inset + + is equal to +\begin_inset Formula $n$ +\end_inset + +, i.e. + if +\begin_inset Formula $A$ +\end_inset + + is +\series bold +full column rank +\series default +. +\end_layout + +\begin_layout Enumerate +We need to check whether +\begin_inset Formula $b\in C(A)$ +\end_inset + +. + If we let +\begin_inset Formula $\hat{U}$ +\end_inset + + denote the first +\begin_inset Formula $r$ +\end_inset + + columns of +\begin_inset Formula $U$ +\end_inset + +, then these are an +\series bold +orthonormal basis +\series default +for +\begin_inset Formula $C(A)$ +\end_inset + + and hence projection onto +\begin_inset Formula $C(A)$ +\end_inset + + is given by +\begin_inset Formula $\hat{U}\hat{U}^{T}$ +\end_inset + +. + So, +\begin_inset Formula $Ax=b$ +\end_inset + + is solvable if +\begin_inset Formula $\boxed{\hat{U}\hat{U}^{T}b=b}$ +\end_inset + +. + (On a real computer we would check approximate equality up to many digits, + due to roundoff errors.) +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $Ax=b$ +\end_inset + + is solvable, then we can write +\begin_inset Formula +\[ +b=\hat{U}\underbrace{\hat{U}^{T}b}_{c}=c_{1}u_{1}+c_{2}u_{2}+\cdots+c_{r}u_{r} +\] + +\end_inset + + in the basis of the first +\begin_inset Formula $r$ +\end_inset + + left singular vectors (from the previous part, where +\begin_inset Formula $c=\hat{U}^{T}b$ +\end_inset + + are the coefficients obtained via dot products). + We can look for a particular solution +\begin_inset Formula $x$ +\end_inset + + expressed in the +\begin_inset Formula $(v_{1}\cdots v_{r})=\hat{V}$ +\end_inset + + basis for +\begin_inset Formula $C(A^{T})$ +\end_inset + +: +\begin_inset Formula +\[ +x=\hat{V}\underbrace{\hat{V}^{T}x}_{y}=y_{1}v_{1}+y_{2}v_{2}+\cdots+y_{r}v_{r}. +\] + +\end_inset + +Then +\begin_inset Formula +\[ +Ax=\underbrace{\sigma_{1}y_{1}}_{c_{1}}u_{1}+\underbrace{\sigma_{2}y_{2}}_{c_{2}}u_{2}+\cdots+\underbrace{\sigma_{r}y_{r}}_{c_{r}}u_{r}=b +\] + +\end_inset + + since +\begin_inset Formula $Av_{k}=\sigma_{k}u_{k}$ +\end_inset + +, so by inspection we have +\begin_inset Formula $y_{k}=c_{k}/\sigma_{k}$ +\end_inset + +, i.e. + +\begin_inset Formula +\[ +\boxed{x=\sigma_{1}^{-1}v_{1}\underbrace{u_{1}^{T}b}_{c_{1}}+\cdots+\sigma_{r}^{-1}v_{r}\underbrace{u_{r}^{T}b}_{c_{r}}=\hat{V}\hat{\Sigma}^{-1}\hat{U}^{T}b}, +\] + +\end_inset + +where +\begin_inset Formula $\hat{\Sigma}$ +\end_inset + + is the +\begin_inset Formula $r\times r$ +\end_inset + + diagonal matrix of the first +\begin_inset Formula $r$ +\end_inset + + singular values (ala the compact SVD). +\begin_inset Newline newline +\end_inset + + +\begin_inset Newline newline +\end_inset + +In fact, +\begin_inset Formula $\hat{V}\hat{\Sigma}^{-1}\hat{U}^{T}$ +\end_inset + + is something called the +\begin_inset Quotes eld +\end_inset + +pseudo-inverse +\begin_inset Quotes erd +\end_inset + + of +\begin_inset Formula $A$ +\end_inset + +, oddly denoted +\begin_inset Formula $A^{+}$ +\end_inset + +, which generally gives a least-squares solution. + When +\begin_inset Formula $b\in C(A)$ +\end_inset + +, the least-squares solution is an +\emph on +exact +\emph default +solution, which is why this works. + But 18.06 doesn't always cover the pseudo-inverse. + +\series bold +Probably this problem is too hard for a real exam +\series default + unless the pseudo-inverse was covered in lecture. +\end_layout + +\begin_layout Subsection* +Spring 2019 practice exam 2, problem 11 +\end_layout + +\begin_layout Standard + +\series bold +Questions: +\end_layout + +\begin_layout Enumerate +Use +\begin_inset Formula $Q^{T}Q=I$ +\end_inset + + to show that +\begin_inset Formula $\det Q=\pm1$ +\end_inset + + for a (real) unitary matrix +\begin_inset Formula $Q$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Show that +\begin_inset Formula $\det(A)$ +\end_inset + + is +\begin_inset Formula $\pm$ +\end_inset + + the product of its singular values for a non-singular +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Solutions: +\end_layout + +\begin_layout Enumerate +Using the properties of determinants, +\begin_inset Formula $\det(Q^{T}Q)=\underbrace{\det(Q^{T})}_{=\det Q}\det(Q)=(\det Q)^{2}=\det I=1$ +\end_inset + +, and the only real numbers whose square +\begin_inset Formula $=1$ +\end_inset + + are +\begin_inset Formula $\det Q=\pm1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $A$ +\end_inset + + is a square non-singular +\begin_inset Formula $m\times m$ +\end_inset + + matrix, then its SVD is +\begin_inset Formula +\[ +A=\underbrace{U}_{m\times m}\underbrace{\Sigma}_{m\times m}\underbrace{V^{T}}_{m\times m} +\] + +\end_inset + + (and all of the SVD variants are the same!). + Since +\begin_inset Formula $U$ +\end_inset + + and +\begin_inset Formula $V$ +\end_inset + + are square matrices with orthonormal columns, they are unitary, so +\begin_inset Formula +\[ +\det A=\cancelto{\pm1}{\det(U)}\det(\Sigma)\cancelto{\pm1}{\det(V^{T})}=\pm\det\Sigma, +\] + +\end_inset + +and +\begin_inset Formula $\det\Sigma$ +\end_inset + + (being the determinant of a diagonal matrix) is simply the product of the + diagonal entries, i.e. + the product of the singular values. +\end_layout + +\begin_layout Subsection* +Spring 2019 practice exam 2, problem 12 +\end_layout + +\begin_layout Standard + +\series bold +Question: +\series default + Describe how you can use the thin SVD +\begin_inset Formula $A=U\Sigma V^{T}$ +\end_inset + + to obtain the projection matrix onto the column space of an +\begin_inset Formula $m\times n$ +\end_inset + + matrix +\begin_inset Formula $A$ +\end_inset + +? +\end_layout + +\begin_layout Standard + +\series bold +Solution +\series default +: The first +\begin_inset Formula $r$ +\end_inset + + columns of +\begin_inset Formula $U$ +\end_inset + +, where +\begin_inset Formula $r$ +\end_inset + + is the number of singular values ( +\begin_inset Formula $>0$ +\end_inset + +) from the diagonal of +\begin_inset Formula $\Sigma$ +\end_inset + +, are an orthonormal basis for +\begin_inset Formula $C(A)$ +\end_inset + +. + Denote the first +\begin_inset Formula $r$ +\end_inset + + columns by +\begin_inset Formula $\hat{U}$ +\end_inset + +. + Therefore, the projection matrix onto +\begin_inset Formula $C(A)=\hat{U}\hat{U}^{T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +(There is some ambiguity in the rank-0 case. + What does a matrix +\begin_inset Formula $\hat{U}$ +\end_inset + + with zero columns mean? In this case the projection is simply the +\begin_inset Formula $m\times m$ +\end_inset + + matrix of zeros, however, since +\begin_inset Formula $C(A)$ +\end_inset + + is +\begin_inset Formula $0$ +\end_inset + +-dimensional.) +\end_layout + +\begin_layout Subsection* +Spring 2019 practice exam 2, problem 13 +\end_layout + +\begin_layout Standard + +\series bold +Question: +\series default + Describe the solution to the least-squares problem of minimizing +\begin_inset Formula $\Vert Ax-b\Vert$ +\end_inset + + for an arbitrary +\begin_inset Formula $b$ +\end_inset + + (not necessarily in the column space of +\begin_inset Formula $A$ +\end_inset + +), in terms of the thin SVD +\begin_inset Formula $A=U\Sigma V^{T}$ +\end_inset + + of the +\begin_inset Formula $m\times n$ +\end_inset + + matrix +\begin_inset Formula $A$ +\end_inset + +. + For simplicity, assume that +\begin_inset Formula $A$ +\end_inset + + has full column rank (independent columns). +\end_layout + +\begin_layout Standard + +\series bold +Solution: +\series default + We are told that +\begin_inset Formula $A$ +\end_inset + + has full column rank, i.e. + rank +\begin_inset Formula $r=n$ +\end_inset + +, which means that it is a +\begin_inset Quotes eld +\end_inset + +tall +\begin_inset Quotes erd +\end_inset + + matrix ( +\begin_inset Formula $m\ge n$ +\end_inset + +), there are +\begin_inset Formula $n$ +\end_inset + + singular values, and the thin SVD is +\begin_inset Formula +\[ +\underbrace{A}_{m\times n}=\underbrace{U}_{m\times n}\underbrace{\left(\begin{array}{ccc} +\sigma_{1}\\ + & \ddots\\ + & & \sigma_{r} +\end{array}\right)}_{\Sigma=m\times m}\underbrace{V^{T}}_{n\times n}. +\] + +\end_inset + +Note, in particular, that the columns of +\begin_inset Formula $U$ +\end_inset + + are an orthonormal basis for +\begin_inset Formula $C(A)$ +\end_inset + + and +\begin_inset Formula $V$ +\end_inset + + is a +\emph on +square +\emph default + unitary ( +\begin_inset Formula $V^{T}=V^{-1}$ +\end_inset + +) matrix. + There are various ways to proceed, but one option is just to simplify the + usual normal-equations formula for the least-squares solution: +\begin_inset Formula +\begin{align*} +\hat{x} & =(A^{T}A)^{-1}A^{T}b\\ + & =\left[(U\Sigma V^{T})^{T}U\Sigma V^{T}\right]^{-1}(U\Sigma V^{T})^{T}b\\ + & =\left[V\cancelto{\Sigma}{\Sigma^{T}}\cancelto{I}{U^{T}U}\Sigma V^{T}\right]^{-1}V\Sigma U^{T}b\\ + & =\left[V\Sigma^{2}V^{T}\right]^{-1}V\Sigma U^{T}b\\ + & =\cancelto{V}{(V^{T})^{-1}}\Sigma^{-2}\cancelto{I}{V^{-1}V}\Sigma U^{T}b\\ + & =V\Sigma^{-1}U^{T}b=\boxed{V\underbrace{\left(\begin{array}{ccc} +\sigma_{1}^{-1}\\ + & \ddots\\ + & & \sigma_{r}^{-1} +\end{array}\right)}_{\Sigma^{-1}}U^{T}b}. +\end{align*} + +\end_inset + +That is, we would take the dot products +\begin_inset Formula $U^{T}b$ +\end_inset + +, then divide by the singular values, then multiply by +\begin_inset Formula $V$ +\end_inset + +. + Crucially, this derivation relies on +\begin_inset Formula $V$ +\end_inset + + being square, so that we could write +\begin_inset Formula $\left[V\Sigma^{2}V^{T}\right]^{-1}$ +\end_inset + + as a product of the inverses in reverse order. +\end_layout + +\begin_layout Itemize +Related to a comment for a previous problem above, +\begin_inset Formula $V\Sigma^{-1}U^{T}$ +\end_inset + + is based on something called the +\begin_inset Quotes eld +\end_inset + +pseudo-inverse +\begin_inset Quotes erd +\end_inset + + of +\begin_inset Formula $A$ +\end_inset + +, oddly denoted +\begin_inset Formula $A^{+}$ +\end_inset + +, which generally gives a least-squares solution from an SVD. + But 18.06 doesn't always cover the pseudo-inverse. + +\series bold +Probably this problem is too hard for a real exam +\series default +, since it is basically trying to teach you the pseudo-inverse. +\end_layout + +\end_body +\end_document diff --git a/notes/svd-practice.pdf b/notes/svd-practice.pdf new file mode 100644 index 00000000..9f47f317 Binary files /dev/null and b/notes/svd-practice.pdf differ diff --git a/notes/where-to-go-after.pdf b/notes/where-to-go-after.pdf new file mode 100644 index 00000000..5d333201 Binary files /dev/null and b/notes/where-to-go-after.pdf differ diff --git a/psets/Exam 1 practice problems.ipynb b/psets/Exam 1 practice problems.ipynb deleted file mode 100644 index 05861bf0..00000000 --- a/psets/Exam 1 practice problems.ipynb +++ /dev/null @@ -1,360 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exam 1 will likely consist of problems that may be like the sample ones below in spirit, the problems in the psets, and material in the lectures. The number of problems will of course be fewer for a 50 minute exam. Also familiarizing yourselves with these sort of problems will, no doubt, make the exam itself easier." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1a). The rowspace of $\\begin{pmatrix} 1 & -1 & 0 \\\\ 0 & 1 & -1 \\\\ 0 & 0 & 0 \\end{pmatrix}$\n", - "may be described as a plane through the origin. What is the normal to this plane?\n", - "
    \n", - "(This problem can be done by inspection and common sense.)\n", - "
    1b) Also describe the nullspace.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2a. Suppose $A=LU$ where $A,L,$ and $U$ are nxn invertible. Write the solution to $Ax=b$ in terms of $b$ and possibly\n", - "$L$,$U$,$L^{-1}$ and $U^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2b. Suppose $A = QR$ is square, where $Q$ is orthogonal and $R$ is upper triangular and invertible. Write the solution to $Ax=b$ in terms of $b$ and possibly\n", - "$Q$,$Q^T$,and $R$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2c. Suppose $A=U\\Sigma V^T$ is the rank $r$ svd for a rectangular $A$ and $b=Uw$. Write down a solution to $Ax=b$ \n", - "in terms of $b$ and possibly $U$,$U^T$,$\\Sigma$,$\\Sigma^{-1}$, $V$, or $V^T$ and $w$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3a. How many parameters are needed to represent the $n \\times n$ identity matrix on a computer?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3b. How many parameters are needed to represent the matrix $vv^T+$Diagonal($v$) on a computer, where $v \\in R^n$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3c. How many parameters are needed to represent the $\\Sigma$ in the rank-r svd?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3d. How many parameters are needed to represent the $L$ in a unit $n$ by $n$ lower triangular matrix?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4). Am I necessarily a vector space? Why or why not? (Argue that all real linear combinations are in the space, or zero or some other linear combination is not in the space.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4a. In $R^3$ the xy-plane together with the z axis?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4b. All differentiable functions $y(x)$ that satisfy $y'(x)=y(x)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4c. Given any two matrices $A$ and $B$, all vectors $x$ such that $Ax=0$ and $Bx=0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4d. Given any two matrix $A$ and $B$, all vectors $x$ such that either $Ax=0$ or $Bx=0$ (or both)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4e. All polynomials in $x$ whose value at $x=2019$ is $0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4f. All 10x10 matrices whose diagonal elements add to $0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "5). Factor $\\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$ into an upper triangular $U$ times a unit lower triangular $L$. When is this impossible? Write the three parameters in $U$ and the one parameter in $L$ in terms of $a,b,c,d$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "6). Suppose a rank-1 matrix is written in terms of the rank r svd, as $A=uσv^T$, where $\\sigma>0$ is a scalar.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "6a. What is the sum of squares of the entries in the first column of $A$ in terms of entries in $u$,$v$ and $\\sigma$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "6b. In simplest form, what is the sum of squares of all the entries of $A$ in terms of possibly $u$,$v$, and $\\sigma?$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "7). Suppose $U = [U_1 | U_2]$ is a square $U$ matrix from the full SVD of an mxn A, what is $U_1^T U_2$? \n", - "\n", - "Pick from one of the five multiple choices that follow and explain your answer.
    \n", - "a) The rxr identity. b) The rxr zero matrix. c) the mxm identity. d)the mxm zero matrix. (e) None of the choices." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "8). The computation below computes the svd of a random 5x5 matrix." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -0.407359 0.877398 -0.0817975 0.00658491 0.239785\n", - " -0.555299 -0.0178959 0.27982 0.0143706 -0.782827\n", - " -0.366645 -0.2444 0.719571 -0.131027 0.520471\n", - " -0.294181 -0.205395 -0.176267 0.9013 0.166912\n", - " -0.552024 -0.357679 -0.60511 -0.412603 0.175886" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 2.80606080624294 \n", - " 1.0051247466049922 \n", - " 0.6517342346324352 \n", - " 0.5541492663920499 \n", - " 0.11013230563631918" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "5×5 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.544144 -0.359453 0.334992 -0.622418 -0.274 \n", - " -0.53116 -0.451453 0.0495585 0.708475 0.0983147\n", - " -0.22817 -0.0543589 -0.282816 -0.307714 0.877673 \n", - " -0.498334 0.403714 -0.690143 -0.0216603 -0.334531 \n", - " -0.348392 0.707844 0.573621 0.124506 0.181761 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using LinearAlgebra\n", - "A = rand(5,5)\n", - "U,s,V = svd(A)\n", - "display(U)\n", - "display(s)\n", - "display(V)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Circle the numbers in the above that would figure in the best rank 3 approximation of $A$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "9). If you multiply through the block matrices $\\Sigma$ and $V^T$ that appear in the full SVD as below,
    \n", - "$\\begin{pmatrix} \\Sigma_r & 0 \\\\ 0 & 0 \\end{pmatrix}\n", - "\\begin{pmatrix} V_1^T \\\\ V_2^T \\end{pmatrix}$\n", - "the\n", - "answer is (pick your multiple choice which is the best answer and briefly explain):
    \n", - "a) $\\Sigma_r V_1^T $
    \n", - "b)$\\ [\\Sigma_r V_1^T \\ \\ 0]$
    \n", - "c) $\\begin{pmatrix}\\Sigma_r V_1^T \\\\ 0 \\end{pmatrix}$
    \n", - "d) $\\begin{pmatrix} \\Sigma_r V_1^T & 0 \\\\ 0 & 0 \\end{pmatrix}$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "10). Suppose $v$ and $w$ are perpendicular in $R^n$. What is $\\|v+w\\|^2$ in terms of $\\|v\\|^2$ and $\\|w\\|^2$?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "11). Set up a matrix least squares problem if we are interested in taking $n$ data points $(x_i,y_i)$ and we wish to find the best function $f(x)=c_1 e^x + c_2 e^{-x}$ through the data points." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "12) Suppose a square $A$ has an LU factorization $A=LU$ where $L$ and $U$ are invertible. If $A=QR$, what is $r_{11}$ in terms of possibly elements of $L$ and $U$?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/Exam 2 Practice .ipynb b/psets/Exam 2 Practice .ipynb deleted file mode 100644 index f7519e13..00000000 --- a/psets/Exam 2 Practice .ipynb +++ /dev/null @@ -1,215 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I realized we didn't schedule a HW7 during spring break on purpose given that it's no fun to work\n", - "on a homework during the break, but we do have an exam coming up. Therefore here are some questions that might resemble test questions or may just be good study guides for the exam. Also please look over the homeworks." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1a) Under what size conditions does Trace(AB) = Trace(BA)?
    \n", - "1b) Under what size conditions does Trace(ABC) = Trace(BCA)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2a. Find a basis for all polynomials of the form $a+bx+cx^2+dx^3$ whose integral on $[0,1]$ is 0.
    \n", - "2b. Find a basis for all polynomials that are a derivative of polynomials of the form $a+bx+cx^2+dx^3$
    \n", - "2c. Find a basis for all polynomials that are of the form $a+b(x+1)+c(x+1)^2+d(x+1)^3$
    \n", - "2d. Find a basis for all polynomials of the form $a+bx+cx^2+dx^3$ whose value at 1 is 0." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3). How many parameters are needed to specify a linear transformation from 10x10x10 arrays to $R^2$? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4). Compute the gradient of $f(x)=x^Tx + sum(x) $ without the use of indices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " (5a). Remembering that df(x) = f'(x) dx for scalar functions, what is dh.(A) in terms of f'.(A) and dA?\n", - "(Here the dot denotes elementwise function application and A is a matrix.)
    \n", - "(5b). (Challenging?) If g(A) = h.(A*x -b), where x and b are held fixed, h is a scalar function, compute dg in terms of dA. This is \n", - "a linear transformation from the matrix dA to the vector dg.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6). True or false:
    \n", - "a) det(2A) = 2 det(A) for all n
    \n", - "b) det(-A) = -det(A) if the size n is odd
    \n", - "c) det(A+B) = det(A) + det(B) since determinants are multilinear
    \n", - "d) det(inv(A)) = 1/det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7). Give an example of a matrix A where the rows of A are not a basis for the rowspace.\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(8). Suppose we have 𝐴=[𝑢 v 𝑤][ 𝑥 y z]𝑇 without any assumptions whatsoever on the vectors u,v,w,x,y,z other than is required by block notation.
    \n", - "(A) What are the possible ranks of 𝐴 assuming 𝐴 is 𝑚×𝑛 ?
    \n", - "(B) Under what conditions is the rank of 𝐴 3?
    \n", - "(C) Under what conditions is the rank of 𝐴 1?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9). Suppose we are given the full SVD of an mxn matrix A on a computer.
    \n", - "9a. How would you obtain the rank r?
    \n", - "9b. How would you check if $A^TA$ is invertible?
    \n", - "9c. How would you check, given a vector $b$, if $Ax=b$ has a solution?
    \n", - "9d. If Ax=b has at least one solution, how would you obtain the solution $x$?
    \n", - "9e. What is the complete solution to Ax=b, assuming at least one solution?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10). Suppose you have two non-colinear vectors in $R^3$. How might you use the full svd to compute the direction of the cross product of these two vectors?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Remember that the determinant of a product of square matrices is the product of the determinants.
    \n", - "(11a.) Use Q'Q=I to show that det(Q)=±1 for an orthogonal matrix Q.
    \n", - "(11b.) Show that det(A) is ±(the product of the n singular values) assuming $A$ is non-singular." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(12). Describe how you can use the compact svd to obtain the projection matrix onto the column space of a matrix $A$? Are there any conditions on A?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(13). Describe the solution to the least squares problem Ax≈b when b is not necessasrily in the column space of A in terms of the compact SVD. You may assume that A has independent columns." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(14). A vector space V has two bases: $b_1,b_2,b_3,b_4$ and $d_1,d_2,d_3,d_4$.
    \n", - "14a. What is the dimension of $V$?
    \n", - "14b. Suppose $[b_1,b_2,b_3,b_4] = [d_1,d_2,d_3,d_4] \\begin{pmatrix} 1 &&& \\\\ x &1&& \\\\ y &&1& \\\\ z &&& 1 \\end{pmatrix}$. What is $d_1+d_2+d_3+d_4$ in terms of the b's?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The question below appeared on last year's quiz 2 as problem 4. Parts c and d were considered challenging.\n", - "The solutions are posted [here](https://web.mit.edu/18.06/www/Spring18/quiz2solutions.pdf)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "15) Let d(A) be a scalar function of 3 × 2 matrices A with the following properties:
    \n", - "α) If you interchange the two columns of A, d(A) flips sign.
    \n", - "β) d(A) is linear in each of the columns of A.
    \n", - "γ) d(A) is non-zero for at least one 3 × 2 A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15a.) What is d(2A) in terms of d(A)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15b.) Give an example d(A) that satisfies the three requirements of this question
    " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15c.) We recall that the determinant of square matrices is linear in each column and\n", - "each row of the square matrix. Can property β be extended to rows and columns of 3 × 2\n", - "matrices A to create a d(A) with the three requirements of this question? If yes, give an\n", - "example, if not, why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15d.) If we discard property γ to allow the “zero” function, the set of all functions\n", - "d(A) satisfying α and β form a three dimensional vector space. Describe explicitly this vector\n", - "space of functions in terms of the elements of A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "16a) Under what size conditions does Trace(AB) = Trace(BA)?
    \n", - "16b) Under what size conditions does Trace(ABC) = Trace(BCA)?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/Exam 3 Practice .ipynb b/psets/Exam 3 Practice .ipynb deleted file mode 100644 index 832453ec..00000000 --- a/psets/Exam 3 Practice .ipynb +++ /dev/null @@ -1,461 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exam 3 practice\n", - "\n", - "Do go over homeworks and notes as well.\n", - "\n", - "We will perform Julia computations for you. You will not need the computer to solve any problems. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1) Let $E_n$ by the symmetric tridiagonal ones matrix. For example" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Float64,2}:\n", - " 1.0 0.0 -1.0 1.0 0.0 -1.0 1.0\n", - " 0.0 0.0 1.0 -1.0 0.0 1.0 -1.0\n", - " -1.0 1.0 0.0 0.0 0.0 0.0 0.0\n", - " 1.0 -1.0 0.0 1.0 0.0 -1.0 1.0\n", - " 0.0 0.0 0.0 0.0 0.0 1.0 -1.0\n", - " -1.0 1.0 0.0 -1.0 1.0 0.0 0.0\n", - " 1.0 -1.0 0.0 1.0 -1.0 0.0 1.0" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "E(n) = SymTridiagonal(ones(Int,n),ones(Int,n-1),ones(Int,n-1))\n", - "\n", - "E(n) = Tridiagonal(ones(Int,n-1),ones(Int,n),ones(Int,n-1))\n", - "inv(E(7))" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×9 Array{Float64,2}:\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN\n", - " NaN NaN NaN NaN NaN NaN NaN NaN NaN" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(9)^(-1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1a) When n=5, column 1 plus column 4 is the \"ones\" vector. Find two other columns that add to the ones vector.\n", - "What is the determinant of $E_5$? and provide one eigenvalue and corresponding eigenvector of $E_5$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) Is $E_5$ diagonalizible? Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1c) Is the cofactor matrix of $E_n$ symmetric for all n? Why or why not?" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×6 SymTridiagonal{Int64,Array{Int64,1}}:\n", - " 1 1 ⋅ ⋅ ⋅ ⋅\n", - " 1 1 1 ⋅ ⋅ ⋅\n", - " ⋅ 1 1 1 ⋅ ⋅\n", - " ⋅ ⋅ 1 1 1 ⋅\n", - " ⋅ ⋅ ⋅ 1 1 1\n", - " ⋅ ⋅ ⋅ ⋅ 1 1" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1d) What is the determinant of $E_6$? What is the volume of the image of the unit cube:
    \n", - " $\\{ E_6x, x\\in R^6, 0 \\le x_i \\le 1 \\}$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8×8 SymTridiagonal{Int64,Array{Int64,1}}:\n", - " 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅\n", - " 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅\n", - " ⋅ 1 1 1 ⋅ ⋅ ⋅ ⋅\n", - " ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅\n", - " ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅\n", - " ⋅ ⋅ ⋅ ⋅ 1 1 1 ⋅\n", - " ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1\n", - " ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(8)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1e) It turns out that for $n=2,5,8,11,14$ $E_n$ is singular. Find an eigenvector of $E_n$ for all such $n$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1f) What is the sum of the eigenvalues of $E_n$ for all n?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When n=7, we can compute $E_n^2$:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Int64,2}:\n", - " 2 2 1 0 0 0 0\n", - " 2 3 2 1 0 0 0\n", - " 1 2 3 2 1 0 0\n", - " 0 1 2 3 2 1 0\n", - " 0 0 1 2 3 2 1\n", - " 0 0 0 1 2 3 2\n", - " 0 0 0 0 1 2 2" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(7)^2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1g) What is the sum of the squares of the eigenvalues of $E_8$? Generalize for all n. Explain." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Int64,2}:\n", - " 1 0 -1 1 0 -1 1\n", - " 0 0 1 -1 0 1 -1\n", - " -1 1 0 0 0 0 0\n", - " 1 -1 0 1 0 -1 1\n", - " 0 0 0 0 0 1 -1\n", - " -1 1 0 -1 1 0 0\n", - " 1 -1 0 1 -1 0 1" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "inv(E(7))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1h) Use the above computation to say what is the sum of the reciprocals of the eigenvalues of $E_7$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2a) What is the determinant of $A = \\left(\\begin{array}{rrrrr}1&0&0&0&0\\\\- a&1&0&0&0\\\\0&- b&1&0&0\\\\0&0&- c&1&0\\\\0&0&0&- d&1\\end{array}\\right)$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b) What are the eigenvalues of $A$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) Give an example (by picking a,b,c,d) where $A$ is diagonalizible, and another example where it is not." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2d) What is the first column of the inverse of $A$ using determinants and cofactors? (This question should not require much pencil and paper work.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) Let P be the permutation matrix\n", - "$$ \\begin{pmatrix} . &1 & . & .\\\\ . & . & 1 & . \\\\ . & . & . & 1 \\\\ 1 & . & . & .\\end{pmatrix}.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3a) What is $P^4$? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3b) It turns out $P$ has four distinct eigenvalues. Use your answer to (3a) to say what they are. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3c) Does $P$ have four distinct singular values?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3d) Find an eigenvector of $P$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3e) Compute det(P$\\pm$I)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) A matrix can be factored as $A=X\\Lambda X^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4a) This matrix is i)definitely, ii)possibly, iii)definitely not invertible. (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4b) This matrix i)definitely ii)possible, iii) definitely not diagonalizible (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4c) Find an eigen factorization for $(A-I)(A-2I)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4d) Find a factorization for $(𝐴−\\lambda_1 I)\\ldots(𝐴−\\lambda_n𝐼)$ and then put this matrix in simplest form ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4e) Suppose the largest eigenvalue has absolute value less than 1. Then the matrix\n", - "$A-I$ is i) definitely ii) possibly iii)definitely not invetible. (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4f) Suppose the largest eigenvalue has absolute value exactly 1. Then the matrix\n", - "$A-I$ is i) definitely ii) possibly iii)definitely not invetible. (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5) The image of the unit cicle for a certain 2x2 symmetric matrix is an ellipse with semiaxes\n", - " 1806 and 2019. What are all the possibilities for the eigenvalues of this matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6) True or false. A matrix with real eigenvalues and eigenvectors must be symmetric. Explain?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7) A matrix is symmetric and orthogonal. What are the possible eigenvalues?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(8) A matrix is a projection matrix and orthogonal. What are the possible matrices?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9) A matrix has all of its eigenvalues $0$. The set of matrices similar is i)infinite ii)possibly finite iii)must be finite. (Pick the best answer)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10) True or false. The absolute value of the eigenvalues of a matrix $A$ always describe the semi-axes of\n", - "the image of the unit ball under $A$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(11) Suppose that all the nonzero eigenvalues of $A$ are distinct, and the dimension of the nullspace of $A$ is equal to the number of $0$ eigenvalues. Why is $A$ diagonalizible?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(12) A matrix has all eigenvalues real and negative. What can you say about the matrix exp(At) as $t\\rightarrow \\infty$?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "@webio": { - "lastCommId": null, - "lastKernelId": null - }, - "kernelspec": { - "display_name": "Julia 1.1.0", - "language": "julia", - "name": "julia-1.1" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.1.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/Exam3Practice-sol.ipynb b/psets/Exam3Practice-sol.ipynb deleted file mode 100644 index d82cf036..00000000 --- a/psets/Exam3Practice-sol.ipynb +++ /dev/null @@ -1,668 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exam 3 practice problems - Solutions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1\n", - "\n", - "Let $E_n$ by the symmetric tridiagonal ones matrix. For example" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Tridiagonal{Int64,Array{Int64,1}}:\n", - " 1 1 ⋅ ⋅ ⋅\n", - " 1 1 1 ⋅ ⋅\n", - " ⋅ 1 1 1 ⋅\n", - " ⋅ ⋅ 1 1 1\n", - " ⋅ ⋅ ⋅ 1 1" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "E(n) = Tridiagonal(ones(Int,n-1),ones(Int,n),ones(Int,n-1))\n", - "\n", - "E(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1a) When n=5, column 1 plus column 4 is the \"ones\" vector. Find two other columns that add to the ones vector.\n", - "What is the determinant of $E_5$? and provide one eigenvalue and corresponding eigenvector of $E_5$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) Is $E_5$ diagonalizible? Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1c) Is the cofactor matrix of $E_n$ symmetric for all n? Why or why not?" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×6 Tridiagonal{Int64,Array{Int64,1}}:\n", - " 1 1 ⋅ ⋅ ⋅ ⋅\n", - " 1 1 1 ⋅ ⋅ ⋅\n", - " ⋅ 1 1 1 ⋅ ⋅\n", - " ⋅ ⋅ 1 1 1 ⋅\n", - " ⋅ ⋅ ⋅ 1 1 1\n", - " ⋅ ⋅ ⋅ ⋅ 1 1" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1d) What is the determinant of $E_6$? What is the volume of the image of the unit cube:
    \n", - " $\\{ E_6x, x\\in R^6, 0 \\le x_i \\le 1 \\}$" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8×8 Tridiagonal{Int64,Array{Int64,1}}:\n", - " 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅\n", - " 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅\n", - " ⋅ 1 1 1 ⋅ ⋅ ⋅ ⋅\n", - " ⋅ ⋅ 1 1 1 ⋅ ⋅ ⋅\n", - " ⋅ ⋅ ⋅ 1 1 1 ⋅ ⋅\n", - " ⋅ ⋅ ⋅ ⋅ 1 1 1 ⋅\n", - " ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1\n", - " ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(8)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1e) It turns out that for $n=2,5,8,11,14$ $E_n$ is singular. Find an eigenvector of $E_n$ for all such $n$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1f) What is the sum of the eigenvalues of $E_n$ for all n?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When n=7, we can compute $E_n^2$:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Int64,2}:\n", - " 2 2 1 0 0 0 0\n", - " 2 3 2 1 0 0 0\n", - " 1 2 3 2 1 0 0\n", - " 0 1 2 3 2 1 0\n", - " 0 0 1 2 3 2 1\n", - " 0 0 0 1 2 3 2\n", - " 0 0 0 0 1 2 2" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "E(7)^2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1g) What is the sum of the squares of the eigenvalues of $E_8$? Generalize for all n. Explain." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Float64,2}:\n", - " 1.0 0.0 -1.0 1.0 0.0 -1.0 1.0\n", - " 0.0 0.0 1.0 -1.0 0.0 1.0 -1.0\n", - " -1.0 1.0 0.0 0.0 0.0 0.0 0.0\n", - " 1.0 -1.0 0.0 1.0 0.0 -1.0 1.0\n", - " 0.0 0.0 0.0 0.0 0.0 1.0 -1.0\n", - " -1.0 1.0 0.0 -1.0 1.0 0.0 0.0\n", - " 1.0 -1.0 0.0 1.0 -1.0 0.0 1.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "inv(E(7))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1h) Use the above computation to say what is the sum of the reciprocals of the eigenvalues of $E_7$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "(1a) Column 1 plus column 4 gives the ones vector. Column 2 plus column 5 also gives the ones vector. Let $v_i$ be the $i$-th column of $E_5$. Then\n", - "$$v_1+v_4 = v_2+v_5$$\n", - "\n", - "This means that there is a linear dependence between the columns of $E_5$. This in turn means that the rank of $E_5$ must be less than 5. $E_5$ is therefore a singular matrix and so $\\det E_5 = 0$.\n", - "\n", - "If $E_5$ is singular then it must have at least one zero eigenvalue $\\lambda = 0$. The corresponding eigenvector will be in the nullspace of $E_5$. Using the linear dependence between the columns, we can deduce that an eigenvector for the zero eigenvalue will be\n", - "$$\\begin{pmatrix} 1 \\\\ -1 \\\\ 0 \\\\ 1 \\\\ -1 \\end{pmatrix}$$\n", - "\n", - "(1b) $E_5$ is a symmetric matrix. We learnt in class that every symmetric matrix is diagonalizable. Therefore $E_5$ is diagonalizable.\n", - "\n", - "(1c) The cofactor matrix $C$ of a matrix $A$ has components\n", - "$$C_{ij} = (-1)^{i+j} \\det M_{ij}$$\n", - "Where $M_{ij}$ is the matrix obtained by removing the $i$-th row and $j$-th column from $A$. if $A$ is a symmetric matrix, then $M_{ij} = M_{ji}^T$ (try this out for a few simple cases). This means that\n", - "\\begin{align}\n", - "C_{ji} &= (-1)^{j+i} \\det M_{ji}\\\\\n", - " &= (-1)^{i+j} \\det M_{ij}^T \\\\\n", - " &= (-1)^{i+j} \\det M_{ij} = C_{ij}\n", - "\\end{align}\n", - "and so the cofactor matrix of any symmetric matrix is also symmetric.\n", - "\n", - "(1d) We can calculate the determinant of $E_6$ using the cofactor expansion\n", - "\\begin{align}\n", - "\\det E_6 &= \\begin{vmatrix} 1 & 1 & & & &\\\\1 & 1 & 1 & & &\\\\ & 1 & 1 & 1 & & \\\\& & 1 & 1 & 1 & \\\\ & & & 1 & 1 & 1 \\\\ & & & & 1 & 1 \\end{vmatrix}\\\\\n", - "&= \\begin{vmatrix} 1 & 1 & & &\\\\ 1 & 1 & 1 & & \\\\ & 1 & 1 & 1 & \\\\ & & 1 & 1 & 1 \\\\ & & & 1 & 1 \\end{vmatrix} - \\begin{vmatrix} 1 & 1 & & &\\\\ & 1 & 1 & & \\\\& 1 & 1 & 1 & \\\\ & & 1 & 1 & 1 \\\\ & & & 1 & 1 \\end{vmatrix}\\\\\n", - "&= \\det E_5 + \\begin{vmatrix} & 1 & & \\\\ & 1 & 1 & \\\\ & 1 & 1 & 1 \\\\ & & 1 & 1 \\end{vmatrix} - \\begin{vmatrix} 1 & 1 & & \\\\ 1 & 1 & 1 & \\\\ & 1 & 1 & 1 \\\\ & & 1 & 1 \\end{vmatrix}\\\\\n", - "&= - \\begin{vmatrix} 1 & 1 & \\\\ 1 & 1 & 1 \\\\ & 1 & 1 \\end{vmatrix} + \\begin{vmatrix} 1 & 1 & \\\\ & 1 & 1 \\\\ & 1 & 1 \\end{vmatrix}\\\\\n", - "&= - \\begin{vmatrix} 1 & 1 \\\\ 1 & 1 \\end{vmatrix} + \\begin{vmatrix} 1 & 1 \\\\ & 1 \\end{vmatrix}\\\\\n", - "&= 1\n", - "\\end{align}\n", - "\n", - "This means that $E_6$ is volume preserving, and so the volume of the image of the unit cube will be the same as the volume of the original cube, i.e. 1.\n", - "\n", - "(1e) If $E_n$ is singular for $n=2,5,8,11,14$, then each of these matrices will have a zero eigenvalue $\\lambda = 0$. The corresponding eigenvector will be in the nullspace of each matrix:\n", - "\n", - "* For $n=2$, we have \n", - "$$E_2 = \\begin{pmatrix} 1 & 1 \\\\ 1 & 1 \\end{pmatrix}$$\n", - "We can immediately identify that \n", - "$$v = \\begin{pmatrix} 1 \\\\ -1 \\end{pmatrix}$$\n", - "is in the nullspace\n", - "\n", - "* For $n=5$, we already found that\n", - "$$ v = \\begin{pmatrix} 1 \\\\ -1 \\\\ 0 \\\\ 1 \\\\ -1 \\end{pmatrix}$$ \n", - "is an eigenvector for $\\lambda = 0$\n", - "\n", - "* For $n=8$, we notice that the sum of columns 1, 4 and 7 is the ones vector. The sum of columns 2, 5 and 8 is also the ones vector. This means that\n", - "$$ v = \\begin{pmatrix} 1 \\\\ -1 \\\\ 0 \\\\ 1 \\\\ -1 \\\\ 0 \\\\ 1 \\\\ -1 \\end{pmatrix}$$ \n", - "\n", - "* We can now start to spot a pattern. Any matrix $E_n$ where $n = 3k+2$ for an integer $k$ will be singular. For $n=11$ an eigenvector for the zero eigenvalue is $ v = ( 1 , -1 , 0 , 1 , -1 , 0 , 1 , -1 , 0 , 1 , -1)^T$ \n", - "For $n=14$ an eigenvector for the zero eigenvalue is $ v = ( 1 , -1 , 0 , 1 , -1 , 0 , 1 , -1 , 0 , 1 , -1 , 0 , 1 , -1)^T$\n", - "\n", - "(1f) The sum of the eigenvalues of a matrix is always equal to the trace of the matrix. The trace of $E_n$ is $n$, and so\n", - "$$\\boxed{\\sum_{i=1}^n \\lambda_i = n}$$\n", - "\n", - "(1g) The eigenvalues of the square of a matrix are the squares of the eigenvalues of the original matrix. This means that the sum of the squares of the eigenvalues of $E_8$ is equal to the trace of $E_8^2$. The pattern along the diagonal of $E_8$ will be the same as for $E_7$ - the entries in the corners will both be 2, while every other element on the diagonal will be 3. We can therefore deduce that\n", - "$$\\boxed{\\sum_{i=1}^8 \\lambda_i^2 = 6\\times 3 + 2 + 2 = 22}$$\n", - "\n", - "(1h) The eigenvalues of the inverse of a matrix are the reciprocals of the eigenvalues of the original matrix. THe sum of the reciprocals of the eigenvalues of $E_7$ will therefore be given by the trace of $E_7^{-1}$. Hence\n", - "$$\\boxed{\\sum_{i=1}^7 \\lambda_i^{-1} = 3}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2\n", - "\n", - "(2a) What is the determinant of $A = \\left(\\begin{array}{rrrrr}1&0&0&0&0\\\\- a&1&0&0&0\\\\0&- b&1&0&0\\\\0&0&- c&1&0\\\\0&0&0&- d&1\\end{array}\\right)$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b) What are the eigenvalues of $A$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) Give an example (by picking a,b,c,d) where $A$ is diagonalizible, and another example where it is not." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2d) What is the first column of the inverse of $A$ using determinants and cofactors? (This question should not require much pencil and paper work.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "(2a) $A$ is a triangular matrix. The determinant of $A$ is therefore the product of its diagonal entries. Hence\n", - "$$\\boxed{\\det A = 1}$$\n", - "\n", - "(2b) The eigenvalues of a triangular matrix are the entries along the diagonal. Since the entries along the diagonal of $A$ are all 1, the eigenvalues of $A$ are all equal to 1.\n", - "\n", - "(2c) When $a=b=c=d=0$, $A=I$ which is diagonal and therefore certainly diagonalisable. However, if we set $a=b=c=0$, but $d=-1$, then $A$ only has four independent eigenvectors (try writing out the equations and you'll soon see there are only four possible independent eigenvectors)\n", - "\n", - "(2d) In order to find the first colun of $A^{-1}$, we recall that\n", - "$$A^{-1} = \\frac{1}{\\det A} C^T,$$\n", - "where $C$ is the matrix of cofactors. We therefore need the cofactors of the form $C_{1j}$. These can be calculated (this does not require much work!) to be\n", - "\\begin{align}\n", - "C_{11} &= 1\\\\\n", - "C_{12} &= a\\\\\n", - "C_{13} &= ab \\\\\n", - "C_{14} &= abc \\\\\n", - "C_{15} & = abcd\n", - "\\end{align}\n", - "And so the first column of $A^{-1}$ is given by the vector\n", - "$$\\begin{pmatrix} 1 \\\\ a \\\\ ab \\\\ abc \\\\ abcd \\end{pmatrix}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3\n", - "\n", - "(3) Let P be the permutation matrix\n", - "$$ \\begin{pmatrix} . &1 & . & .\\\\ . & . & 1 & . \\\\ . & . & . & 1 \\\\ 1 & . & . & .\\end{pmatrix}.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3a) What is $P^4$? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3b) It turns out $P$ has four distinct eigenvalues. Use your answer to (3a) to say what they are. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3c) Does $P$ have four distinct singular values?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3d) Find an eigenvector of $P$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3e) Compute det(P$\\pm$I)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "(3a) $P^4 = I$\n", - "\n", - "(3b) If $P$ has four distinct eigenvalues, then they are the four distinct numbers for which $\\lambda^4 = 1$ (Since the identity matrix only has the eigenvalue 1). These four numbers are\n", - "$$\\boxed{\\lambda = \\pm 1, \\pm i}$$\n", - "\n", - "(3c) The singular values of $P$ are all equal to $1$. This is the case for any orthogonal matrix.\n", - "\n", - "(3d) The vector $v = (1,1,1,1)^T$ is an eigenvector of $P$ with eigenvalue $\\lambda = 1$, $v = (1,-1,1,-1)^T$ for $\\lambda = -1$, $v= (-i,1,i,-1)^T$ for $\\lambda = i$, and $v= (i,1,-i,-1)^T$ for $\\lambda = -i$\n", - "\n", - "(3e) $\\det (P-\\lambda I) = 0$, whenever $\\lambda$ is an eigenvalue of $P$. Since $\\lambda = \\pm 1$ are eigenvalues of $P$, $\\det (P \\pm I ) = 0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4\n", - "\n", - "(4) A matrix can be factored as $A=X\\Lambda X^{-1}$, where $\\Lambda$ is diagonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4a) This matrix is i)definitely, ii)possibly, iii)definitely not invertible. (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4b) This matrix i)definitely ii)possible, iii) definitely not diagonalizible (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4c) Find an eigen factorization for $(A-I)(A-2I)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4d) Find a factorization for $(𝐴−\\lambda_1 I)\\ldots(𝐴−\\lambda_n𝐼)$ and then put this matrix in simplest form ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4e) Suppose the largest eigenvalue has absolute value less than 1. Then the matrix\n", - "$A-I$ is i) definitely ii) possibly iii)definitely not invetible. (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4f) Suppose the largest eigenvalue has absolute value exactly 1. Then the matrix\n", - "$A-I$ is i) definitely ii) possibly iii)definitely not invetible. (pick one)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "(4a) This matrix is possibly invertible. \n", - "\n", - "(4b) This matrix is definitely diagonalizable.\n", - "\n", - "(4c) Suppose that $v$ is an eigenvector of $A$ with eigenvalue $\\lambda$. Then $Av = \\lambda v$. We can then see that $v$ is an eigenvector of $(A-I)(A-2I)$ as follows:\n", - "$$ (A-I)(A-2I)v = (A-I)(Av - 2v) = (A-I)(\\lambda - 2)v = (\\lambda-1)(\\lambda - 2)v.$$\n", - "Therefore $A$ and $(A-I)(A-2I)$ have the same eigenvectors, and the eigenvectors are related by $\\lambda \\to (\\lambda-1)(\\lambda - 2)$, so that\n", - "$$ (A-I)(A-2I) = X((\\Lambda-I)(\\Lambda-2I))X^{-1}$$\n", - "\n", - "(4d) $(𝐴−\\lambda_1 I)\\ldots(𝐴−\\lambda_n I)$ has the same eigenvectors as $A$ via the same argument as part (c). However, the corresponding eigenvalues will now all be 0. This means that\n", - "$$(𝐴−\\lambda_1 I)\\ldots(𝐴−\\lambda_n𝐼) = X\\mathbf{0}X^{-1} = \\mathbf{0}$$\n", - "where $\\mathbf{0}$ is the zero matrix.\n", - "\n", - "(4e) If the largest eigenvalue of $A$ has magnitude less than 1 then $\\lambda = 1$ cannot be an eigenvalue. Therefore $\\det (A-I) \\neq =0$ and so $A-I$ is definitely invertible.\n", - "\n", - "(4f) If the largest eigenvalue of $A$ has absolute value exactly 1, then $A-I$ is possibly invertible. For example, if $A = -I$, then all of the eigenvalues of $A$ have absolute value equal to 1, but $-2I$ is certainly invertible." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5\n", - "\n", - "(5) The image of the unit cicle for a certain 2x2 symmetric matrix is an ellipse with semiaxes\n", - " 1806 and 2019. What are all the possibilities for the eigenvalues of this matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "This means the singular values are 1806 and 2019 which are the absolute values of the real eigenvalues.\n", - "Thus the eigenvalues can be $\\pm 1806$ and $\\pm 2019$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6\n", - "\n", - "(6) True or false. A matrix with real eigenvalues and eigenvectors must be symmetric. Explain?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "This is false. For example, any upper triangular real matrix will have real eigenvalues (the entries along its diagonal), but will certainly not be symmetric." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7\n", - "\n", - "(7) A matrix is symmetric and orthogonal. What are the possible eigenvalues?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Suppose the matrix $A$ is orthogonal and symmetric. Then $A^TA=I$ and $A=A^T$. This means that \n", - "$$A^TA = A^2 = I$$\n", - "The eigenvalues of the identity matrix are all equal to 1. But since $A^2=I$, this must mean that the possible eigenvalues of $A$ are the square roots of 1, i.e.\n", - "$$\\boxed{\\lambda = \\pm 1}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 8\n", - "\n", - "(8) A matrix is a projection matrix and orthogonal. What are the possible matrices?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "A projection matrix is symmetric and satisfies $P^2=P=P^T$. If it is orthogonal $P^TP=I$.\n", - "Combining these we see that $P=I$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 9\n", - "\n", - "(9) A matrix has all of its eigenvalues $0$. The set of matrices similar is i)infinite ii)possibly finite iii)must be finite. (Pick the best answer)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "The answer is possibly finite. The zero matrix has all of its eigenvalues $0$. However the only matrix similar to the zero matrix is the zero matrix itself. To show this, suppose that $A$ is a matrix similar to the zero matrix, so that $0=XAX^{-1}$. However, we can invert this equation to yield that $A=X^{-1}0X = 0$, and so $A=0$. \n", - "\n", - "On the contrary, there are infinitely many matrices of the form\n", - "$$\\begin{pmatrix} 0 & a \\\\ 0 & 0 \\end{pmatrix}$$\n", - "for each $a\\in\\mathbb{R}$. Each of these matrices has two 0 eigenvalues. These matrices are all similar to the matrix \n", - "$$\\begin{pmatrix} 0 & 1 \\\\ 0 & 0 \\end{pmatrix},$$\n", - "since we can write\n", - "$$\\begin{pmatrix} 0 & a \\\\ 0 & 0 \\end{pmatrix} = \\begin{pmatrix} a & 0 \\\\ 0 & 1 \\end{pmatrix}\\begin{pmatrix} 0 & 1 \\\\ 0 & 0 \\end{pmatrix}\\begin{pmatrix} 1/a & 0 \\\\ 0 & 1 \\end{pmatrix}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 10\n", - "\n", - "(10) True or false. The absolute value of the eigenvalues of a matrix $A$ always describe the semi-axes of\n", - "the image of the unit ball under $A$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "This is false. Only the product of the absolute value of the eigenvalues must equal the product of the semi-axes." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 11\n", - "\n", - "Suppose that all the nonzero eigenvalues of $A$ are distinct, and the dimension of the nullspace of $A$ is equal to the number of $0$ eigenvalues. Why is $A$ diagonalizible?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Vectors in the nullspace are also eigenvectors corresponding to $\\lambda = 0$. Suppose $A$ is $n\\times n$. with $m$ $0$ eigenvalues. There are then $m$ distinct eigenvectors for this eigenvalue. Since the remaining $n-m$ eigenvalues are distinct, there will be another $n-m$ distinct eigenvectors. So $A$ necessarily has $n$ distinct eigenvectors and so $A$ is diagonalisable. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 12\n", - "\n", - "(12) A matrix has all eigenvalues real and negative. What can you say about the matrix exp(At) as $t\\rightarrow \\infty$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Suppose $A$ has an eigenvalue $\\lambda$ with eigenvector $v$. Then $Av = \\lambda v$ and $exp(At)v = exp(\\lambda t)v$, and so $exp(At)$ has the same eigenvectors as $A$ with eigenvalues $exp(\\lambda t)$. If all of the $\\lambda$ are real and negative, then all of the eigenvalues of $exp(At)$ go to $0$ as $t\\to \\infty$. If $A$ has distinct eigenvectors, then we can say that $exp(At)$ tends to the zero matrix as $t\\to\\infty$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "@webio": { - "lastCommId": null, - "lastKernelId": null - }, - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/FFT.ipynb b/psets/FFT.ipynb deleted file mode 100644 index b9defed7..00000000 --- a/psets/FFT.ipynb +++ /dev/null @@ -1,3055 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "using FFTW" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\n", - " \n", - "\n" - ], - "text/plain": [ - "HTML{String}(\"\\n\\n Unable to load WebIO. Please make sure WebIO works for your Jupyter client.\\n \\n\\n\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using Interact" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "using Plots" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Fast Fourier Transform (FFT)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Fourier Transform in some form or another, shows up everywhere -- in continuous math, discrete math, everywhere." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Discrete Fourier Transform" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With matrices:\n", - "\n", - "$n \\times n$ Fourier matrix: \n", - "\n", - "$$F_n = [e^{-2\\pi i j k/n}]_{0 \\le j < n, 0 \\le k < n}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$F_2 = \\begin{bmatrix} 1 & 1 \\\\ 1 & -1 \\end{bmatrix}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fourier transform: Given data $x \\in \\mathbf{C}^n$, $y = F_n x$ is the Fourier transform. Of course, it is not done this way! The matrix has a lot of structure and can be done in $n \\log_2 n$ steps." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " 1.0-0.0im 1.0-0.0im 1.0-0.0im 1.0-0.0im\n", - " 1.0-0.0im 0.0-1.0im -1.0-0.0im -0.0+1.0im\n", - " 1.0-0.0im -1.0-0.0im 1.0+0.0im -1.0-0.0im\n", - " 1.0-0.0im -0.0+1.0im -1.0-0.0im 0.0-1.0im" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 4; round.([exp(-2π * im * j * k / n) for j=0:3, k=0:3])" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "F (generic function with 1 method)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(n) = fft(Matrix(I,n,n), 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "n" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 10, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-11de6504-cee0-4713-ae30-919d9604339a", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/63630a7ccdf5bd5d44a8feb7a4d460731215c312-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/80b07db3456327364d1ddf7241edced2116b96b7-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/f6aed912610be690301640e34f5afbde68442a99-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\",\"id\":\"ob_04\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\",\"id\":\"ob_03\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\",\"id\":\"ob_04\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\",\"id\":\"ob_03\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_04", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_03", - "sync": true, - "value": 5 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_10", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-6e6c50b8-b2c7-4c40-b4bd-218d44375cdd", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_10", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "
    5×5 Array{Complex{Float64},2}:\n 1.0+0.0im        1.0+0.0im             1.0+0.0im             1.0+0.0im             1.0+0.0im     \n 1.0+0.0im   0.309017-0.951057im  -0.809017-0.587785im  -0.809017+0.587785im   0.309017+0.951057im\n 1.0+0.0im  -0.809017-0.587785im   0.309017+0.951057im   0.309017-0.951057im  -0.809017+0.587785im\n 1.0+0.0im  -0.809017+0.587785im   0.309017-0.951057im   0.309017+0.951057im  -0.809017-0.587785im\n 1.0+0.0im   0.309017+0.951057im  -0.809017+0.587785im  -0.809017-0.587785im   0.309017-0.951057im
    " - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>10,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Int64} with 2 listeners. Value:\n", - "5, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"1\\\",\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\\\",\\\"id\\\":\\\"ob_03\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\\\",\\\"id\\\":\\\"ob_04\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-11de6504-cee0-4713-ae30-919d9604339a\\\",\\\"id\\\":\\\"ob_03\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[Complex{Float64}[1.0+0.0im 1.0+0.0im … 1.0+0.0im 1.0+0.0im; 1.0+0.0im 0.309017-0.951057im … -0.809017+0.587785im 0.309017+0.951057im; … ; 1.0+0.0im -0.809017+0.587785im … 0.309017+0.951057im -0.809017-0.587785im; 1.0+0.0im 0.309017+0.951057im … -0.809017-0.587785im 0.309017-0.951057im]], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 7, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ff0b2550-d4f2-44da-a29b-2973471c31af" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for n in 1:10\n", - " F(n)\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im 1.0+0.0im \n", - " 1.0+0.0im -0.5-0.866025im -0.5+0.866025im\n", - " 1.0+0.0im -0.5+0.866025im -0.5-0.866025im" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im\n", - " 1.0+0.0im 0.0-1.0im -1.0+0.0im 0.0+1.0im\n", - " 1.0+0.0im -1.0+0.0im 1.0+0.0im -1.0+0.0im\n", - " 1.0+0.0im 0.0+1.0im -1.0+0.0im 0.0-1.0im" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(4)" - ] - }, - { - "cell_type": "code", - "execution_count": 200, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "i" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 6, - "min": 2, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/63630a7ccdf5bd5d44a8feb7a4d460731215c312-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/80b07db3456327364d1ddf7241edced2116b96b7-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/f6aed912610be690301640e34f5afbde68442a99-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"2\",\"3\",\"4\",\"5\",\"6\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\",\"id\":\"ob_52\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\",\"id\":\"ob_51\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\",\"id\":\"ob_52\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\",\"id\":\"ob_51\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_52", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_51", - "sync": true, - "value": 4 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_58", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-9cc8477e-477b-4fea-9f7b-b84cafc09b67", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_58", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n-0.5\n\n\n0.0\n\n\n0.5\n\n\n1.0\n\n\n-1.0\n\n\n-0.5\n\n\n0.0\n\n\n0.5\n\n\n1.0\n\n\n\n" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"i\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>6,:min=>2,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Int64} with 2 listeners. Value:\n", - "4, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\\\",\\\"id\\\":\\\"ob_52\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\\\",\\\"id\\\":\\\"ob_51\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\\\",\\\"id\\\":\\\"ob_52\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-deb12614-9a50-4851-bcde-0db09e71f78d\\\",\\\"id\\\":\\\"ob_51\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[Plot{Plots.GRBackend() n=1}], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 200, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ff0b2550-d4f2-44da-a29b-2973471c31af" - } - }, - "output_type": "execute_result" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 50]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 50]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 50]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 48]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 48]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 48]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 46]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 46]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 46]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 43]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 43]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 43]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 40]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 40]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 40]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 37]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 37]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 37]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 36]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 36]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 36]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 29]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 29]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 29]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 24]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 24]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 24]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 20]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 20]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 20]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 16]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 16]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 16]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - }, - { - "ename": "BoundsError", - "evalue": "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 11]", - "output_type": "error", - "traceback": [ - "KERNEL EXCEPTION", - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 11]", - "", - "Stacktrace:", - " [1] throw_boundserror(::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}) at ./abstractarray.jl:484", - " [2] checkbounds at ./abstractarray.jl:449 [inlined]", - " [3] _getindex at ./multidimensional.jl:641 [inlined]", - " [4] getindex at ./abstractarray.jl:927 [inlined]", - " [5] (::getfield(Main, Symbol(\"##15#16\")))(::Int64) at ./In[14]:4", - " [6] (::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152", - " [7] (::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})(::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136", - " [8] #setindex!#1(::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87", - " [9] #setindex! at ./none:0 [inlined]", - " [10] setexcludinghandlers at /Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103 [inlined]", - " [11] set_nosync(::Observable{Int64}, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336", - " [12] dispatch(::Scope, ::String, ::Int64) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344", - " [13] dispatch_command(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107", - " [14] dispatch(::WebIO.IJuliaConnection, ::Dict{String,Any}) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75", - " [15] (::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})(::IJulia.Msg) at /Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21", - " [16] comm_msg(::ZMQ.Socket, ::IJulia.Msg) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134", - " [17] #invokelatest#1 at ./essentials.jl:742 [inlined]", - " [18] invokelatest at ./essentials.jl:741 [inlined]", - " [19] eventloop(::ZMQ.Socket) at /Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8", - " [20] (::getfield(IJulia, Symbol(\"##15#18\")))() at ./task.jl:259" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "BoundsError: attempt to access 7×7 Array{Complex{Float64},2} at index [Base.Slice(Base.OneTo(7)), 11]\n", - "Stacktrace:\n", - " [1] \u001b[1mthrow_boundserror\u001b[22m\u001b[1m(\u001b[22m::Array{Complex{Float64},2}, ::Tuple{Base.Slice{Base.OneTo{Int64}},Int64}\u001b[1m)\u001b[22m at \u001b[1m./abstractarray.jl:484\u001b[22m\n", - " [2] \u001b[1mcheckbounds\u001b[22m at \u001b[1m./abstractarray.jl:449\u001b[22m [inlined]\n", - " [3] \u001b[1m_getindex\u001b[22m at \u001b[1m./multidimensional.jl:641\u001b[22m [inlined]\n", - " [4] \u001b[1mgetindex\u001b[22m at \u001b[1m./abstractarray.jl:927\u001b[22m [inlined]\n", - " [5] \u001b[1m(::getfield(Main, Symbol(\"##15#16\")))\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m./In[14]:4\u001b[22m\n", - " [6] \u001b[1m(::getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:152\u001b[22m\n", - " [7] \u001b[1m(::getfield(Observables, Symbol(\"#g#15\")){getfield(Observables, Symbol(\"##16#17\")){getfield(Main, Symbol(\"##15#16\")),Observable{Any}},Tuple{Widget{:slider,Int64}}})\u001b[22m\u001b[1m(\u001b[22m::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:136\u001b[22m\n", - " [8] \u001b[1m#setindex!#1\u001b[22m\u001b[1m(\u001b[22m::getfield(WebIO, Symbol(\"##39#40\")), ::Function, ::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:87\u001b[22m\n", - " [9] \u001b[1m#setindex!\u001b[22m at \u001b[1m./none:0\u001b[22m [inlined]\n", - " [10] \u001b[1msetexcludinghandlers\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/Observables/qCJWB/src/Observables.jl:103\u001b[22m [inlined]\n", - " [11] \u001b[1mset_nosync\u001b[22m\u001b[1m(\u001b[22m::Observable{Int64}, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:336\u001b[22m\n", - " [12] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::Scope, ::String, ::Int64\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/scope.jl:344\u001b[22m\n", - " [13] \u001b[1mdispatch_command\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:107\u001b[22m\n", - " [14] \u001b[1mdispatch\u001b[22m\u001b[1m(\u001b[22m::WebIO.IJuliaConnection, ::Dict{String,Any}\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/connection.jl:75\u001b[22m\n", - " [15] \u001b[1m(::getfield(WebIO, Symbol(\"##84#85\")){WebIO.IJuliaConnection})\u001b[22m\u001b[1m(\u001b[22m::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/WebIO/7G1ZY/src/providers/ijulia.jl:21\u001b[22m\n", - " [16] \u001b[1mcomm_msg\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket, ::IJulia.Msg\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/comm_manager.jl:134\u001b[22m\n", - " [17] \u001b[1m#invokelatest#1\u001b[22m at \u001b[1m./essentials.jl:742\u001b[22m [inlined]\n", - " [18] \u001b[1minvokelatest\u001b[22m at \u001b[1m./essentials.jl:741\u001b[22m [inlined]\n", - " [19] \u001b[1meventloop\u001b[22m\u001b[1m(\u001b[22m::ZMQ.Socket\u001b[1m)\u001b[22m at \u001b[1m/Users/alanedelman/.julia/packages/IJulia/gI2uA/src/eventloop.jl:8\u001b[22m\n", - " [20] \u001b[1m(::getfield(IJulia, Symbol(\"##15#18\")))\u001b[22m\u001b[1m(\u001b[22m\u001b[1m)\u001b[22m at \u001b[1m./task.jl:259\u001b[22m" - ] - } - ], - "source": [ - "n=7\n", - "@manipulate for i=2:(n-1)\n", - "plot() \n", - " FF = F(n)[:,i]\n", - " plot!([real.(FF);1], [imag.(FF);0]) \n", - " plot!(aspect_ratio=1,legend=false)\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 201, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "i" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 2, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/63630a7ccdf5bd5d44a8feb7a4d460731215c312-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/80b07db3456327364d1ddf7241edced2116b96b7-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/f6aed912610be690301640e34f5afbde68442a99-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\",\"51\",\"52\",\"53\",\"54\",\"55\",\"56\",\"57\",\"58\",\"59\",\"60\",\"61\",\"62\",\"63\",\"64\",\"65\",\"66\",\"67\",\"68\",\"69\",\"70\",\"71\",\"72\",\"73\",\"74\",\"75\",\"76\",\"77\",\"78\",\"79\",\"80\",\"81\",\"82\",\"83\",\"84\",\"85\",\"86\",\"87\",\"88\",\"89\",\"90\",\"91\",\"92\",\"93\",\"94\",\"95\",\"96\",\"97\",\"98\",\"99\",\"100\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\",\"id\":\"ob_60\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\",\"id\":\"ob_59\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\",\"id\":\"ob_60\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\",\"id\":\"ob_59\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_60", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_59", - "sync": true, - "value": 51 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_66", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-e59c62a2-ad44-423a-8cd9-00fd8372cac5", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_66", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n-1.0\n\n\n-0.5\n\n\n0.0\n\n\n0.5\n\n\n1.0\n\n\n-1.0\n\n\n-0.5\n\n\n0.0\n\n\n0.5\n\n\n1.0\n\n\n\n" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"i\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>2,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Int64} with 2 listeners. Value:\n", - "51, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\",\\\"51\\\",\\\"52\\\",\\\"53\\\",\\\"54\\\",\\\"55\\\",\\\"56\\\",\\\"57\\\",\\\"58\\\",\\\"59\\\",\\\"60\\\",\\\"61\\\",\\\"62\\\",\\\"63\\\",\\\"64\\\",\\\"65\\\",\\\"66\\\",\\\"67\\\",\\\"68\\\",\\\"69\\\",\\\"70\\\",\\\"71\\\",\\\"72\\\",\\\"73\\\",\\\"74\\\",\\\"75\\\",\\\"76\\\",\\\"77\\\",\\\"78\\\",\\\"79\\\",\\\"80\\\",\\\"81\\\",\\\"82\\\",\\\"83\\\",\\\"84\\\",\\\"85\\\",\\\"86\\\",\\\"87\\\",\\\"88\\\",\\\"89\\\",\\\"90\\\",\\\"91\\\",\\\"92\\\",\\\"93\\\",\\\"94\\\",\\\"95\\\",\\\"96\\\",\\\"97\\\",\\\"98\\\",\\\"99\\\",\\\"100\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\\\",\\\"id\\\":\\\"ob_60\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\\\",\\\"id\\\":\\\"ob_59\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\\\",\\\"id\\\":\\\"ob_60\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-176ee7ba-d415-4cb7-b56d-ad898e841252\\\",\\\"id\\\":\\\"ob_59\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[Plot{Plots.GRBackend() n=1}], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 201, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ff0b2550-d4f2-44da-a29b-2973471c31af" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "n=101\n", - "@manipulate for i=2:n-1\n", - "plot() \n", - " FF = F(n)[:,i]\n", - " plot!([real.(FF);1], [imag.(FF);0]) \n", - " plot!(aspect_ratio=1,legend=false)\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "n" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 50, - "min": 2, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/63630a7ccdf5bd5d44a8feb7a4d460731215c312-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/80b07db3456327364d1ddf7241edced2116b96b7-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/f6aed912610be690301640e34f5afbde68442a99-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\",\"id\":\"ob_28\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\",\"id\":\"ob_27\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\",\"id\":\"ob_28\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\",\"id\":\"ob_27\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_28", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_27", - "sync": true, - "value": 26 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_34", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-7a14f8fc-a493-4194-9916-5bf656f7af41", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_34", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n-1.0\n\n\n-0.5\n\n\n0.0\n\n\n0.5\n\n\n1.0\n\n\n-1.0\n\n\n-0.5\n\n\n0.0\n\n\n0.5\n\n\n1.0\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"n\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>50,:min=>2,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Int64} with 2 listeners. Value:\n", - "26, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/alanedelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/alanedelman/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"2\\\",\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\\\",\\\"id\\\":\\\"ob_28\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\\\",\\\"id\\\":\\\"ob_27\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\\\",\\\"id\\\":\\\"ob_28\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-a680afa7-7c66-42fb-88bc-deee9c3ad667\\\",\\\"id\\\":\\\"ob_27\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/a8d465714ca0b50fcacaa7d87d7fe7277251eb7a-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/fadafe50514ba2741549559683e093f56983d17e-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[Plot{Plots.GRBackend() n=26}], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 13, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "ff0b2550-d4f2-44da-a29b-2973471c31af" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for n=2:50\n", - " plot()\n", - " for i=1:n\n", - " FF = F(n)[:,i]\n", - " plot!(real(FF), imag(FF))\n", - " end\n", - " plot!(aspect_ratio=1,legend=false)\n", - " end " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "i" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 100, - "min": 3, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/f07383ad7ba5d9e293900fdc7e5e611110d6ff32-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/306cc87ce82e45c3e5eb81524cb970ae2bab3932-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/69078235d89420aa60ec07ae908cfcc65b6ecf85-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/98bc206151bf33944d9780fd349511e9eae784a0-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/13615fa9690b1c4388c3fe14db802e442333ebc4-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"23\",\"24\",\"25\",\"26\",\"27\",\"28\",\"29\",\"30\",\"31\",\"32\",\"33\",\"34\",\"35\",\"36\",\"37\",\"38\",\"39\",\"40\",\"41\",\"42\",\"43\",\"44\",\"45\",\"46\",\"47\",\"48\",\"49\",\"50\",\"51\",\"52\",\"53\",\"54\",\"55\",\"56\",\"57\",\"58\",\"59\",\"60\",\"61\",\"62\",\"63\",\"64\",\"65\",\"66\",\"67\",\"68\",\"69\",\"70\",\"71\",\"72\",\"73\",\"74\",\"75\",\"76\",\"77\",\"78\",\"79\",\"80\",\"81\",\"82\",\"83\",\"84\",\"85\",\"86\",\"87\",\"88\",\"89\",\"90\",\"91\",\"92\",\"93\",\"94\",\"95\",\"96\",\"97\",\"98\",\"99\",\"100\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\",\"id\":\"ob_66\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\",\"id\":\"ob_65\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\",\"id\":\"ob_66\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\",\"id\":\"ob_65\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/f07383ad7ba5d9e293900fdc7e5e611110d6ff32-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/306cc87ce82e45c3e5eb81524cb970ae2bab3932-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_66", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_65", - "sync": true, - "value": 51 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_72", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-e25a77f4-6de4-48eb-a2cc-5531fa52e883", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_72", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"i\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>100,:min=>3,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Int64} with 2 listeners. Value:\n", - "51, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/edelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/edelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/edelman/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/edelman/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/edelman/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"3\\\",\\\"4\\\",\\\"5\\\",\\\"6\\\",\\\"7\\\",\\\"8\\\",\\\"9\\\",\\\"10\\\",\\\"11\\\",\\\"12\\\",\\\"13\\\",\\\"14\\\",\\\"15\\\",\\\"16\\\",\\\"17\\\",\\\"18\\\",\\\"19\\\",\\\"20\\\",\\\"21\\\",\\\"22\\\",\\\"23\\\",\\\"24\\\",\\\"25\\\",\\\"26\\\",\\\"27\\\",\\\"28\\\",\\\"29\\\",\\\"30\\\",\\\"31\\\",\\\"32\\\",\\\"33\\\",\\\"34\\\",\\\"35\\\",\\\"36\\\",\\\"37\\\",\\\"38\\\",\\\"39\\\",\\\"40\\\",\\\"41\\\",\\\"42\\\",\\\"43\\\",\\\"44\\\",\\\"45\\\",\\\"46\\\",\\\"47\\\",\\\"48\\\",\\\"49\\\",\\\"50\\\",\\\"51\\\",\\\"52\\\",\\\"53\\\",\\\"54\\\",\\\"55\\\",\\\"56\\\",\\\"57\\\",\\\"58\\\",\\\"59\\\",\\\"60\\\",\\\"61\\\",\\\"62\\\",\\\"63\\\",\\\"64\\\",\\\"65\\\",\\\"66\\\",\\\"67\\\",\\\"68\\\",\\\"69\\\",\\\"70\\\",\\\"71\\\",\\\"72\\\",\\\"73\\\",\\\"74\\\",\\\"75\\\",\\\"76\\\",\\\"77\\\",\\\"78\\\",\\\"79\\\",\\\"80\\\",\\\"81\\\",\\\"82\\\",\\\"83\\\",\\\"84\\\",\\\"85\\\",\\\"86\\\",\\\"87\\\",\\\"88\\\",\\\"89\\\",\\\"90\\\",\\\"91\\\",\\\"92\\\",\\\"93\\\",\\\"94\\\",\\\"95\\\",\\\"96\\\",\\\"97\\\",\\\"98\\\",\\\"99\\\",\\\"100\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\\\",\\\"id\\\":\\\"ob_66\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\\\",\\\"id\\\":\\\"ob_65\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\\\",\\\"id\\\":\\\"ob_66\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-c8036ba8-d0ac-46c2-a285-542313cb709f\\\",\\\"id\\\":\\\"ob_65\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/f07383ad7ba5d9e293900fdc7e5e611110d6ff32-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/306cc87ce82e45c3e5eb81524cb970ae2bab3932-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[Plot{Plots.PyPlotBackend() n=1}], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 15, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "02470bc6-2c70-446c-b7dc-45dc17a02c40" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Taylor series using the FFT:" - ] - }, - { - "cell_type": "code", - "execution_count": 207, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16-element Array{Complex{Float64},1}:\n", - " 1.0 + 0.0im \n", - " 0.9238795325112867 - 0.3826834323650898im\n", - " 0.7071067811865476 - 0.7071067811865476im\n", - " 0.3826834323650898 - 0.9238795325112867im\n", - " 0.0 - 1.0im \n", - " -0.3826834323650898 - 0.9238795325112867im\n", - " -0.7071067811865476 - 0.7071067811865476im\n", - " -0.9238795325112867 - 0.3826834323650898im\n", - " -1.0 + 0.0im \n", - " -0.9238795325112867 + 0.3826834323650898im\n", - " -0.7071067811865476 + 0.7071067811865476im\n", - " -0.3826834323650898 + 0.9238795325112867im\n", - " 0.0 + 1.0im \n", - " 0.3826834323650898 + 0.9238795325112867im\n", - " 0.7071067811865476 + 0.7071067811865476im\n", - " 0.9238795325112867 + 0.3826834323650898im" - ] - }, - "execution_count": 207, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F16 = F(16)\n", - "r = F16[:, 2] # 8 roots of unity" - ] - }, - { - "cell_type": "code", - "execution_count": 208, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16-element Array{Complex{Float64},1}:\n", - " 0.0 + 0.0im\n", - " 1.0000000000000027 + 0.0im\n", - " 0.0 + 0.0im\n", - " -0.16666666666666669 + 0.0im\n", - " 0.0 + 0.0im\n", - " 0.008333333333333276 + 0.0im\n", - " 0.0 + 0.0im\n", - " -0.0001984126984126422 + 0.0im\n", - " 0.0 + 0.0im\n", - " 2.7557319223769916e-6 + 0.0im\n", - " 0.0 + 0.0im\n", - " -2.5052108415524188e-8 + 0.0im\n", - " 0.0 + 0.0im\n", - " 1.6059042984295502e-10 + 0.0im\n", - " 0.0 + 0.0im\n", - " -7.646105970593453e-13 + 0.0im" - ] - }, - "execution_count": 208, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "e = exp(1)\n", - "ifft(sin.(r))" - ] - }, - { - "cell_type": "code", - "execution_count": 205, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Float64,1}:\n", - " 1.0 \n", - " 0.5 \n", - " 0.16666666666666666 \n", - " 0.041666666666666664 \n", - " 0.008333333333333333 \n", - " 0.001388888888888889 \n", - " 0.0001984126984126984" - ] - }, - "execution_count": 205, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "1 ./cumprod(1:7)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The main point of the $n \\log n$ algorithm: $F_8$ is essentially made up of $F_4$s." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im\n", - " 1.0+0.0im 0.0-1.0im -1.0+0.0im 0.0+1.0im\n", - " 1.0+0.0im -1.0+0.0im 1.0+0.0im -1.0+0.0im\n", - " 1.0+0.0im 0.0+1.0im -1.0+0.0im 0.0-1.0im" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(4)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8×8 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im … 1.0+0.0im 1.0+0.0im \n", - " 1.0+0.0im 0.707107-0.707107im 0.0+1.0im 0.707107+0.707107im\n", - " 1.0+0.0im 0.0-1.0im -1.0+0.0im 0.0+1.0im \n", - " 1.0+0.0im -0.707107-0.707107im 0.0-1.0im -0.707107+0.707107im\n", - " 1.0+0.0im -1.0+0.0im 1.0+0.0im -1.0+0.0im \n", - " 1.0+0.0im -0.707107+0.707107im … 0.0+1.0im -0.707107-0.707107im\n", - " 1.0+0.0im 0.0+1.0im -1.0+0.0im 0.0-1.0im \n", - " 1.0+0.0im 0.707107+0.707107im 0.0-1.0im 0.707107-0.707107im" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(8)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$F_8[:, \\mathrm{even columns, odd columns}] = \\begin{bmatrix} F_4 & D_4 F_4 \\\\ F_4 & -D_4 F_4 \\end{bmatrix}$$\n", - "\n", - "The $D_4$s are called **twiddle factors**." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im\n", - " 1.0+0.0im 0.0-1.0im -1.0+0.0im 0.0+1.0im\n", - " 1.0+0.0im -1.0+0.0im 1.0+0.0im -1.0+0.0im\n", - " 1.0+0.0im 0.0+1.0im -1.0+0.0im 0.0-1.0im" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F4 = F(4)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "true" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F8[:, [1, 3, 5, 7, 2, 4, 6, 8]][1:4, 1:4] == F(4)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "true" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F8[:, [1, 3, 5, 7, 2, 4, 6, 8]][5:8, 1:4] == F(4)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im \n", - " 0.0+0.0im 0.707107-0.707107im 0.0+0.0im 0.0+0.0im \n", - " 0.0+0.0im 0.0+0.0im 0.0-1.0im 0.0+0.0im \n", - " 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.707107-0.707107im" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F8[:, [1, 3, 5, 7, 2, 4, 6, 8]][1:4, 5:8] * inv(F4)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Complex{Float64},2}:\n", - " -1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im \n", - " 0.0+0.0im -0.707107+0.707107im 0.0+0.0im 0.0+0.0im \n", - " 0.0+0.0im 0.0+0.0im 0.0+1.0im 0.0+0.0im \n", - " 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.707107+0.707107im" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(F8[:, [1, 3, 5, 7, 2, 4, 6, 8]][5:8, 5:8]) * inv(F4)" - ] - }, - { - "cell_type": "code", - "execution_count": 209, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×9 Array{Complex{Float64},2}:\n", - " 1.0+0.0im 1.0+0.0im … 1.0+0.0im \n", - " 1.0+0.0im 0.766044-0.642788im 0.766044+0.642788im\n", - " 1.0+0.0im 0.173648-0.984808im 0.173648+0.984808im\n", - " 1.0+0.0im -0.5-0.866025im -0.5+0.866025im\n", - " 1.0+0.0im -0.939693-0.34202im -0.939693+0.34202im \n", - " 1.0+0.0im -0.939693+0.34202im … -0.939693-0.34202im \n", - " 1.0+0.0im -0.5+0.866025im -0.5-0.866025im\n", - " 1.0+0.0im 0.173648+0.984808im 0.173648-0.984808im\n", - " 1.0+0.0im 0.766044+0.642788im 0.766044-0.642788im" - ] - }, - "execution_count": 209, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F9 = F(9)" - ] - }, - { - "cell_type": "code", - "execution_count": 210, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9-element Array{Float64,1}:\n", - " 3.000000000000001 \n", - " 3.0000000000000004\n", - " 3.0 \n", - " 3.0 \n", - " 3.0 \n", - " 3.0 \n", - " 3.0 \n", - " 3.0 \n", - " 3.0 " - ] - }, - "execution_count": 210, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(F9)" - ] - }, - { - "cell_type": "code", - "execution_count": 211, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×9 Array{Complex{Float64},2}:\n", - " 0.333333+0.0im 0.333333+0.0im … 0.333333+0.0im \n", - " 0.333333+0.0im 0.255348-0.214263im 0.255348+0.214263im\n", - " 0.333333+0.0im 0.0578827-0.328269im 0.0578827+0.328269im\n", - " 0.333333+0.0im -0.166667-0.288675im -0.166667+0.288675im\n", - " 0.333333+0.0im -0.313231-0.114007im -0.313231+0.114007im\n", - " 0.333333+0.0im -0.313231+0.114007im … -0.313231-0.114007im\n", - " 0.333333+0.0im -0.166667+0.288675im -0.166667-0.288675im\n", - " 0.333333+0.0im 0.0578827+0.328269im 0.0578827-0.328269im\n", - " 0.333333+0.0im 0.255348+0.214263im 0.255348-0.214263im" - ] - }, - "execution_count": 211, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U = F9 /3" - ] - }, - { - "cell_type": "code", - "execution_count": 212, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9-element Array{Float64,1}:\n", - " 1.0000000000000002\n", - " 1.0000000000000002\n", - " 1.0000000000000002\n", - " 1.0 \n", - " 1.0 \n", - " 0.9999999999999999\n", - " 0.9999999999999999\n", - " 0.9999999999999999\n", - " 0.9999999999999999" - ] - }, - "execution_count": 212, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(U)" - ] - }, - { - "cell_type": "code", - "execution_count": 214, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×9 Array{Complex{Float64},2}:\n", - " -0.0+0.0im -0.0+0.0im -0.0-0.0im … 0.0+0.0im 0.0-0.0im 0.0+0.0im\n", - " -0.0-0.0im -0.0+0.0im -0.0-0.0im 0.0+0.0im -0.0+0.0im 0.0-0.0im\n", - " -0.0+0.0im -0.0+0.0im -0.0+0.0im 0.0+0.0im -0.0-0.0im 0.0-0.0im\n", - " 0.0+0.0im 0.0-0.0im 0.0-0.0im 0.0-0.0im -0.0+0.0im 0.0-0.0im\n", - " 0.0-0.0im -0.0+0.0im -0.0+0.0im 0.0-0.0im -0.0-0.0im -0.0-0.0im\n", - " 0.0+0.0im -0.0+0.0im -0.0-0.0im … 0.0+0.0im 0.0+0.0im -0.0-0.0im\n", - " 0.0-0.0im 0.0-0.0im 0.0-0.0im 0.0+0.0im 0.0+0.0im -0.0-0.0im\n", - " 0.0+0.0im -0.0-0.0im -0.0+0.0im 0.0-0.0im 0.0+0.0im -0.0-0.0im\n", - " 0.0-0.0im 0.0+0.0im 0.0+0.0im -0.0+0.0im -0.0+0.0im -0.0+0.0im" - ] - }, - "execution_count": 214, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "round.(U'U - I, digits=3)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "inv( F(n) ) === F(n)' /n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Decimation in time or in frequency\"" - ] - }, - { - "cell_type": "code", - "execution_count": 216, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7-element Array{Float64,1}:\n", - " 0.6717298008081531 \n", - " 0.014357361990954345\n", - " 0.039527773555082316\n", - " 0.4167459240196358 \n", - " 0.3102124881897677 \n", - " 0.2984453299460128 \n", - " 0.25814845173708945 " - ] - }, - "execution_count": 216, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X = randn(7,7)\n", - "A = X*Diagonal(rand(7))*inv(X)\n", - "eigvals(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 157, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Float64,2}:\n", - " -1.76372 -2.14744 -0.940061 -3.06001 0.301288 2.35299 1.38224\n", - " -6.57196 -4.67556 -2.12314 -7.50232 -0.21246 6.25122 4.16472\n", - " -3.4987 -2.71328 -0.578862 -3.62177 -0.150788 3.24728 1.97447\n", - " -3.00391 -2.60671 -0.827443 -2.58486 0.321929 2.62692 2.14141\n", - " 2.68134 2.17996 0.93986 3.14188 0.543476 -2.54784 -1.67706\n", - " -11.1669 -9.40423 -3.59005 -12.7354 0.494962 11.0714 7.22144\n", - " -3.07029 -2.501 -1.06779 -3.46178 -0.0469495 2.86081 2.44993" - ] - }, - "execution_count": 157, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A" - ] - }, - { - "cell_type": "code", - "execution_count": 241, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×7 Array{Float64,2}:\n", - " 0.672 -0.072 0.078 0.139 0.043 2.128 0.122\n", - " -0.0 0.417 0.042 0.019 0.047 0.312 0.137\n", - " 0.0 -0.0 0.31 0.002 0.0 -0.038 0.047\n", - " -0.0 -0.0 -0.001 0.298 0.062 0.669 0.303\n", - " -0.0 0.0 0.0 0.0 0.258 0.603 -0.138\n", - " -0.0 -0.0 0.0 0.0 -0.0 0.04 -0.001\n", - " 0.0 0.0 -0.0 -0.0 0.0 -0.0 0.014" - ] - }, - "execution_count": 241, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Q,R = qr(A)\n", - "A = R*Q\n", - "round.(A,digits=3)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "@webio": { - "lastCommId": "a104387bcc3a46998d95d4232335d56b", - "lastKernelId": "ff0b2550-d4f2-44da-a29b-2973471c31af" - }, - "kernelspec": { - "display_name": "Julia 1.1.0", - "language": "julia", - "name": "julia-1.1" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.1.0" - }, - "widgets": { - "state": { - "7af8e045-8015-45d6-93c9-dd5e365f6bea": { - "views": [ - { - "cell_index": 9 - } - ] - }, - "8e4ab1af-4fb7-4039-9b54-c3c1e791648d": { - "views": [ - { - "cell_index": 11 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/psets/README.md b/psets/README.md deleted file mode 100644 index e69de29b..00000000 diff --git a/psets/Sample Variance division by n-1.ipynb b/psets/Sample Variance division by n-1.ipynb deleted file mode 100644 index 1b3632a1..00000000 --- a/psets/Sample Variance division by n-1.ipynb +++ /dev/null @@ -1,437 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 0. The normal distribution" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.4408106770596617" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "randn()" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.9012911518994019" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "randn()" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.2505464003852211" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "randn()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "using Plots" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Plots.PyPlotBackend()" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pyplot()" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAYAAAByNR6YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4FOX6PvB7S5JND2mEQEKRKiEGQgfpFjpSrATRIHgQ9BxFQPDw5ec5HhUVRVBDE0SKVEUpAlJC7yAtoQZCYEMKKZtsNtvm90dkw5tGSzLZ7P25Li+ZZ2d272RTnsy8874KSZIkEBEREVG5UcodgIiIiKi6YYNFREREVM4qtMHS6/U4fvw49Hp9Rb4MERERUZVSoQ1WfHw8IiMjER8fX5Ev4zCysrLkjkBF8D2pmvi+VE18X6omvi8Vg5cI7YjFYpE7AhXB96Rq4vtSNfF9qZr4vlQMNlhERERE5YwNFhEREVE5U8sdgIiI6EHk5+fj/PnzMJvNckepFrKysuDt7S13jCpPpVKhbt268PHxua/92WAREZHduHz5MiIiIpCTkyN3FHJQb7zxBmJiYqBUln0RkA0WERHZBavViujoaPj7+2Pz5s1wc3OTOxI5EKPRiN27d2Py5MkAgHnz5pW5PxssIiKyC1qtFrGxsVi+fDk6d+4sdxxyQO3btwcATJo0CTNmzCjzciEHuRMRkV1ITU0FADz22GMyJyFH1qVLFwDAtWvXytyPZ7CIiMguWK1WAIBaXfirKzExEWlpaeX+Wv7+/ggNDS335yX75+zsDODe84exwSIiu6HVaqHVau+5n1qthq+vbyUkIjklJiaiSdNmMOSV/3JsGlc3nI+Ps7smS6FQQKfTwcPDA3369MHs2bPL7Yzf3c99t+nTpyMnJwdffPFFsWN+++037NmzB59//nmpz7tr1y4YjUY8/fTT5ZKzqmCDRUR2QavVIjg4+L72dXF1wwU7/OVIDyYtLa2guYpeDAQ1K78nTo6DYeFIpKWlVcrXkNlsFs7KlZdNmzaV+3M+qAEDBmDAgAFl7rNr1y7k5OSUe4NlsVigUqnK9TkfRLF39OLFi3j11VeRlpYGHx8fLF68GI8//niJB6empiIsLAxPPvkk1qxZU+Fhichx2c5cRcUAoS1L3zE5DvmV+MuRqoCgZkDdMr4mKpBCocCnn36KdevWISUlBdOmTcNrr70GADh69CjGjx+P3NxcaDQafPXVV+jUqROuXr2K1q1b4+2338a2bdswePBgZGVl4fz589DpdIiPj0erVq3wwQcf4L333sPVq1cxaNAgzJw5EwAwc+ZMrFixAmazGU5OTpg9ezbatWtXLFu9evWwYcMGBAYGCs1LUlIS+vfvj0WLFuHixYv45z//iZSUFBiNRowZMwZjx44FAKxbtw5TpkxBjRo10KdPnzI/Dzdv3kT//v1x+fJlBAUFYc2aNfD19cXixYuxYcMGrFmzBhcvXsTIkSORk5MDq9WKgQMHYujQoYiJiYHVasWff/6JwYMHY9q0afjpp58wY8YMKBQKhISEYN68eahduzaMRiPGjRuHXbt2ISAgAE888QRSUlKwZs0aLF68GD///DMCAwNx7tw5zJ49GwcOHCj1c6VQKPC///0Pv/zyC9LS0jBv3jxs374df/zxB4xGI1atWoXmzZs/9NdGsQZrzJgxGD16NEaOHIk1a9YgOjoaBw4cKPHgsWPHok+fPtDpdA8dgIjogYS2lO2XKVFJNBoNDh06hLi4OLRt2xZRUVGwWq0YPHgw5s+fj2eeeQZ79+7F0KFDcenSJQBAeno6GjZsiGnTpgEouMx29OhRHD16FB4eHmjVqhUmT56MzZs3w2w2o379+njzzTfRuHFjREVF4d133wUAHDx4ENHR0Thz5kyp+QIDA3Hy5EkAwNmzZ9G3b1+8++67sFgsePnll/HTTz+hadOm0Ov1aN++Pdq3b486dergjTfewP79+9GkSRPMmDGjzM/BoUOHcOTIEfj6+uLFF1/E3Llz8cEHHwj7zJkzB3379sWUKVMAALdv34avry/efPNN4RLjmTNn8P777+PYsWOoXbs2Pv74Y4wePRobN27E3LlzkZiYiHPnzsFsNqNbt26oU6eO7TX27t2LEydOoFGjRgCAhg0blvm58vLywuHDh7F69WoMHDgQq1atwieffIIZM2bg448/xvLly+/x7pdOaLBSUlJw/PhxbN26FQAwZMgQjBs3DlevXkW9evWEA5ctW4aaNWuidevW2LBhw0MHICK6n7FVcXFxpT6mlCwINd5C0/xraGI8CI/OjZEZux6nU67B7FMTkrOmxOM4kJnKwyuvvAIAaNasGdRqNZKTk5GRkQFnZ2c888wzAIDOnTsjMDAQp06dQq1ataDRaPDSSy8Jz/PMM8/YZlQPDw/HE088ARcXF7i4uKBJkya4cuUKGjdujBMnTuDjjz9Geno61Go1zp07B6PRaBt8XZqbN29i0KBB+OGHH9CiRQucO3cOZ8+exYsvvmjbR6fT4dy5c0hKSkKrVq3QpEkTAMDo0aMxadKkUp+7d+/etnGPHTp0wOnTp4vt06VLF7z//vvIzc1F165d0atXrxKfa+fOnejXrx9q164NoOBkzn//+19IkoSdO3ciKioKarUaarUaL730Evbs2WM7tnPnzrbmCsA9P1cvvPACAKBVq1ZQKpXo27cvACAyMhLr1q0r8/N5L0KDdf36dQQHB9uuBSsUCoSGhiIxMVFosG7evImZM2ciNjb2vi4N5uTkIDs727Z95wuGiOhBxlYBQJA1C011R9EkPxFNDNfQJP8aGudfh0YyFu4UWR+4dqjgPwA3dHk4n56D82k5Bf9P1+HS7VzAWWOXA5mpatFoCht4lUoFs9kMSZKgUCiK7Xun5u7uXuzxos9T0vMajUYMGTIEu3btQmRkJLKzs+Ht7X3PBkun06Ffv374v//7P/To0QMAIEkS/P39bWe37rZ+/fr7/OhLzl7SMkZDhgxBx44dsW3bNsyZMwdff/11iePEin7u7v53aZ/XO+4egH8/n6s7uVUqldCXlPYxPIhilwiLBpckqdhBb7zxBmbMmFHsToLSdO3aVdieOHFimZ0wlSwjI0PuCFQE35NHFx8fX/CP0sZWSRK6Wy4iOuN3RCjT4K3/Ekh8sNeo7emK2p6u6FEvwFazSApczcxB5u8/wH3gSCjcvB7ho6D78ajfL1lZWeWUpOI1bdoU+fn52LFjB3r06IH9+/cjJSUFLVq0sM3n9TAMBgNMJhNCQkIAALNnz77nMWazGUOHDsXQoUMxfPhwW71JkyZwc3PDkiVLMGLECADApUuX4Ovriw4dOiA6OhoXLlxA48aNsWDBgofOfMfFixfRoEEDjBgxAm3btkXHjh0BFFymu3Hjhm2/nj174rPPPkNycjKCgoIQExODnj17QqFQoHv37li6dCmef/55mM1mrFy5stQ/0B7mc/UgsrKycPv2bdt20TuXhQYrJCQESUlJtjsaJEnC9evXi/11d+DAAURHRwMoODuVl5eHZ555Blu2bCkxRGxsLCIiImzbPIP18HjredXD9+TR2BaZLTq2SpLQOfcvTEhZhkjDecAVAJzK7XVVCgmP1XAHLh5E7tfHkdesE/TNO0Nydi1xf15OLB+P8v1S6oLEyaVfPn4o5fB8zs7OWLt2Ld5++23bIPfVq1fD3d39kRosLy8vfPTRR2jbti1CQ0PveYceAOzbtw9//vknbt26hVWrVgEouLvvo48+wu+//45//etf+OKLL2CxWBAQEIBly5ahdu3amDdvHvr37w8/Pz8MHTr0oTPfsXr1aixbtgzOzs6QJAkxMTEAgOeeew4//fQTIiIibIPcP/nkE9vA/DuD3AHgzTffxF9//YXmzZujTp06aNWqFfLy8srtc/UgvL29y/x6VkhFTlF169YNI0eOtA1y/+KLL3Dw4MFSn+DuOwSKOn78OCIjI3Hs2DG0atXqET4MAgoHBFLVwffk0d35OYGph2wNVrvcM5iQshTt9Wcf6LnSVN6Iz9cgM+EvNGoSjgbWdDih7MkA75aVb8K8Y1ex8OQ15JrE4+x1XqSq5FG/X4r+TuE8WI5Jp9PB09MT+fn5GDBgAIYNG4ZRo0ZV2uvfb29T7BLh3LlzMXLkSPzvf/+Dl5cXfvzxRwBAnz598NFHH6F169YVl5qIHFqE/jzeT1mKLrnFx4TcTad0xXmXujivqYvzLqG2f6erfYCDK4BNS4CW8+AUEobHjDfQJP/a3+O1CsZt1TUll/i83i5OeL9jI0R3fALfO3fCj07tkKdwrvR5kej+hIaG4nx8HGdydzC9evVCfn4+DAYDevXqhZEjR8odqUTFGqwmTZqUOC1DaROW3TnbRUT0sMICPPFe3lL0SrhQ6j7XrO6YveMQ9g74ATfqdQPKGOh6h0nphHhNPcRr6gF3XV1ys+Sh6bH5GJH4I55rVhtKiGNNfaHHVOM2jLYcwbcBQ7G0ZkPkP+THRhUrNDSUjZCDOXTokNwR7gsXeyYi2ZjTbsJr1zJsfrkjellKbq5uOPljUq230C23P1aevYEbSp/7aq7Kole54rg1AP/cehq93N7C716dStwvwJKJ6ckLsFf/NV5qXgco4aYfIqKSsMEiIlkYzh/HrS/GQ5NY8jirW2pffBg0Bl0azsNy32dhrqAfVxeVgRgbMhlPP/YNtngWnw0bAIIkHWb0ag6vPSshGXkui4jujWsRElGFKW0CUdf4g/A4sgEKyVrssXSVF771H4affHvDoKy8u43jNPUxKvRDhOddxHspy9Aj51ixfTRXTyFlzkT4R0+Dytuv0rIRkf1hg0VEFaKkCURVCgWmd22KkU8UHzOTCVfEBA7DIt9+0KtKniqhMpxybYRX605HpD4OE1KWonPuKeFxU+J5JH02Flndo2D2Kz7/DgdHExHABouIKkjRxZm9pDx8b1iFLpbLxfbdcDEZEyO+gS6gQyWnLN0xt2Z4qd7HeCr7EGYlfgZPhcn2mEqfBc2vX+PtP05jy5UU4Tje3k+O4urVqxg8eDBiY2Ph6ekpd5wqh2OwiKhihbZEvaCaWG9aUmJzNSu/OcZu+gs6RcnrBcptm1c7DNI/hWtZ4lxLbk5qLOjfEmPf/xyYcrBgHq/oxTDk6Stk2gByHCdPnrStifcgxo8fj5EjR+Kpp54SZs1fvXo1/vGPf+D06dPo0qULmjZtihYtWmD06NHIzy8YU2gwGBAZGVlstvyUlBSEhYWV+HpLly7FihUrbM3Vu+++i59//hkAsHLlSrRs2RJhYWFo0aLFfc+i/t5772HFihUP/LFXRWywiKhCtTcn4LeECWhovCHUDQonjK/9Hr4wPoGqfm/eBasPBqw8iMPK4melPjD+iZnqWDiHhAFBzWRIR9XNlClTHmo5udmzZ2P+/PmwWCzC7Oa//vorBg0aBI1Ggzlz5iA+Ph4nT55EVlYWvvzySwAFa/K98sor+Oqrr4TnXL9+Pfr371/i6126dMm2GPSNGzewefNm2+LJderUwebNm3HmzBns3bsXs2bNwr59++75MUyaNAnTp0+H1Vp8fKa9YYNFRBXmxea1sdzwI2pYdEI9Re2D5+v9D7/6dJMn2EO4nWfCS64jscqnZ7HHhmXtwIprU+FnzZEhmQOSrLDkZFbKf9J9/KI/cuQIevTogdatW6NVq1ZYu3YtYmNj8dhjj9nWqnvrrbfwj3/8AwAwffp0PP/88+jTpw/CwsIwYMAA2xmnxMREnD17Fl26dCnxtcp63rS0NIwaNQqffPKJbfyjyWTCvn370L17dzRq1Ajh4eEAChYzbtOmDa5cuWJ77pdeeqnYmoO//vornnvuOdtz3XH48GG0a1d41+0PP/yAoUOH2tYz7tSpE4KCggAULCnTtGlTJCQkwGg0omHDhnBzc0NERAQiIiKgUCgwbNgwAEBgYCDq16+P7du33/PzXtVxDBYRlTvJaoHHkY34vFcYAPEX1FlNfbwe8iFuOgfKE+4RGBVqvBf8Di64hGLKrcXCBKVt9XH4XaHF634eMiZ0DIp8PbQfvlgpr1Xrvz9D5eFT6uOZmZkYM2YMNm7ciFq1aiEtLQ2RkZE4dOgQRo0ahVdffRUjRozA/v37hUm89+zZg5MnT6JmzZoYO3Yspk6diu+++w6xsbFo3759qa/XtWvXEp/XarUiIiICrVu3xvz58+Hh4YHmzZtj586d6NixI5ydnYXnyc3NxYIFC/DZZ58Vfqy1asHZ2Rnx8fFo2rQpdDod4uPj0aZNG/zxxx8YP348YmNjERwcjFWrVmHq1Km2Y3ft2oUJEyaUmPncuXM4cOAA5s2bB2dnZyxYsAATJkzA0aNHAQAKhQKLFi2y7d+xY0ds374dTz31VKmfB3vABouIypVkNiF90X/hFld8tuWtnu0wvvZ7st4l+MgUCsz1H4wrzrUx+8YXcLcabA+FSJn45fl2MCVfAcD1Vx3B/v37ceXKFfTu3dtWkyQJ58+fx+TJk9G7d2+88cYbOHLkCDSawnGG/fr1Q82aNQEAo0ePxvPPPw8ASEpKsp35KU1pz5uUlFRs37vPQN1hMpnwwgsv4Omnn8bAgQOFx4KCgpCUlISmTZti8+bNePbZZ6FQKPDss89i8ODBWLFihW0B6xo1atiOKy13UlISBg4ciJiYmGJ3FZcmKCgIu3fvvq99qzI2WET0wEqb3wqSBM99a+B65USxh771H4LPAkdAUlSPkQnbvNphkPMMLEr8D+qYUm11D2c1rDt/gikiEk7B9WVMSJVBkiSEh4eX2BBkZ2cjISEB7u7uSElJQaNGjUp9njuX1tzc3ITxU59++qlt4Phnn32GZ555Bjqd7r6eV5IkbNmyBTNmzLDVTCYTnn/+edSqVQuzZs0qdozBYICra8EfQL/88gtef/1122NRUVEYMWIEGjdujD59+gjHFc0NADdv3kSvXr3w4Ycf2i4B3o+7M9gzNlhE9EBKmt/qjgntG+Kddo8JNSNUmFR7PNaUMHbJ3sVr6qN/gy8xP/F/aJ0Xb6srTfm4OWcyMnq/Cau7d4nHcr6s6qFjx464ePEiduzYgR49egAouAvw8ccfR3R0NF5++WX06tULw4cPx9GjR+HnVzBB7caNG5GSkoLAwEAsXLgQvXr1AgCEh4dj7dq1tuefPHkyJk+eLLxmWc97t8OHD6NZs2bw8Ci4bG02m/Hiiy/C19cX8+bNszV1d1gsFly5cgVhYWEwGo04cOAAlixZYns8LCwMVqsV3377LTZs2CAcGx4ejvj4eHTs2BFAwc+Jnj17YtKkSXj11VfL/ByqVCoYDAZbzri4ODzxxBNlHmMP2GAR0QMpOr/VHS+bjuKd/N+EffUmM0Z4vY5D1bC5uiNNXQMv1vsYc5I+x7O6g7a6Sp+F1LkfYsjqw9AZzcWO43xZD09ycUOt//5cKa+ldPMq8/EaNWrg999/x/vvv49//etfMJlMCA0NRb9+/XD79m38+9//hlKpxJgxYzBixAhbY9KzZ09ER0cjISEBDRo0wI8//ggA6Ny5MxITE3H79m34+voWe705c+aU+rxFG6ZffvkFgwYNsm2vXLkS69atQ3h4OFq2LPje7dSpE7799lsAwN69e9GuXTt4e3vjjz/+QOfOneHk5CQ8Z1RUFJKSkqBWi+3D0KFDsWTJEtsZr2nTpiExMRGzZs2ynSl755138NprrxX7mHr06IE2bdogISEBkiRh+/btmDJlSpmfd3vABouIHk5oS6BuwQ/p7rqj+DhR/IvWIikwdvMpHHq5ngzhKle+0hnj60zA8jNvoo2qcA6sZv6emDvuDbyqGQ6T4q4ft8lxMCwcibS0NDZYD0OhLHPgeWVr3bo1du7cWaw+btw427+LnomqWbMmfvrpp2LHODk5YezYsVi4cCHef//9Ep+zrOe92++//y7keuWVV/DKK6+U+nF8//33tte8M7VDUSNHjkRubm6xet++fTF9+nQkJSWhTp06mD9/PubPn1/i63Tr1s02wB0Atm7davv3li1b0K5dO4SEhJSa015Uj8EQRCSbFnmX8H3SZ1AXuVtwan5rbE9ILeWo6segdMHr+q64nCH+8nnScgWfqfcCoREFDWndlpwvi8r0zjvvwN3d/ZGf5+zZswgMvL+7dQ0GA7p162a7VBkTE4OhQ4cW28/Pz6/EPwqUSiXmzp2Lq1evPlLmrKws4c5Ge8YzWET00EKMyVic+P+EO+kAYI7/MCxLcCrlqOorEy6I+vUY1r/eGwFSYaM1LGsHbjoF4Iuaw2VMR1XF9OnTy3zcxcUFY8eOrZwwf9NoNHjzzTcf6Tlat279yDnuTFRaHfAMFhE9FB9JjyXXpiPQnCnU13l3w2eBUTKlkt/17DyM1AyHXuEi1N9JW4mXbm+RKRURVTY2WET0wFxUSizMW15s+Zt97uGYEPw2UGSwraM5paqNsSETYSnyI/Z/2u/QTXe0lKOIqDphg0VED0ay4qunw9DWmiiUz7uEYnTIBzApHe/SYEm2e7bF1FriJRc1rIhJ+gwtLDdlSmXfVCoVAMBoNMqchByZXl+w8HvROyyL4hgsInogHsf+QP/GtYRastoXUXWnI1vFZWLutsy3N+qYUjEubbWt5m41YLFhKQZ6aso4kkpSr149aDQafPTRR5g2bVqx5V+IKpLZbMbly5fxwQcfwNPTE40bNy5zfzZYRASgjNnZ7+Iatx+e5/YKNZ3SFSPqTofWKaAi49mtzwKjEGxKxeCsXbZaoJSDJYMiocjXyxfMDnl7e2P9+vUYOHAgNm/eLHccclDdunXDjh074OLiUuZ+bLCIqMzZ2e94MtQPSwdFCuOrTFBhTMgHiNNwSZhSKRSYEPw2appvo1PuKVu5ka8HjLErILXrCIWSozXu19NPP43k5GRcvXoVFotF7jjVQlZWFry9S15xgAoplUoEBgYiKCgIyvv4nmWDRUSlzs5+Rw0pF1/pv4VSyhHqk4LHYY9H8f1JZFI6YXTIB1iXMAlN8gvHrjknX0bOrrXw7HH/67RRwZms6rCUSlVR2qzx9GjYYBFRobtmZ7eRJHx+/WPULNJcfencHatr9KrEcPYtW+WBqLrT8duVCQgy37bVMzcsRoJFA7Nf7RKP45qFRPaJDRYRlenljC14RndIqO28moqvm3eTJ5Ad0zoFYHydCViZMAXKv6+0KqwW3P7pM/RecQAGs7XYMVyzkMg+scEiolI9ln8d05PF9cTSrS54b9sZIMyx57p6WAfdW+A74+MY53LOVmvo64Fp73yAKZoB4s5cs5DIbnFkJRGVyMlqwjdJX8JVEucces/QHql6zkP0KGYaW+CvW1lCLcp8FE/XyC9cr5BrFhLZNTZYRFSiCSnLEG64LNR+rNEH2y0ljxWi+2eCCuP/OAU9xIkKP7/5DQJNt0s5iojsCRssIiqmY85feDN9nVC74BKC/wa9JlOi6ichU49pLn2Emq9Fh5k3voZCKj4Wi4jsCxssIhL4mHX4+sZXUEKy1fIVaoyvPQEGJWcfL08r1a2wybODUOuaewLR6b/JlIiIygsbLCIqJEn4VDsHtczpQvmzwFdxzrWBTKGqMYUCk4LHIVktzkE0OeVHNDMkyBSKiMoDGywisnnefAJ9s/cLtd3uEVjgN6CUI+hRZaq98M/a78KKwrsyXSQzZid9Do1kkjEZET0KNlhEBACo5+2Gj/I3CbUMlSferf1PSAr+qKhI+zyewFy/54Rak/zrmGLcKlMiInpU/KlJRIDVgtnPhsMd4vQL7wePxy0nP5lCOZYvAofjtEa8DPua6RC61/OXKRERPQo2WEQE97+2IyJIXOx1aY1nsMWrQylHUHkzKp3wdp0JyFM4C/UvnwqDIk8nUyoielhssIgcXP6VM3A7HSvULjvXxkdBo2RK5LguuYQU+7wHuLnAa/86SJJUylFEVBWxwSJyYJLZhIyV30Bx15QMRoUa4+tMQB6nZJDF0hrPYqtnO6HmcuM88k7ElnIEEVVFbLCIHJhu51qYbyUKtc8Dh+O0a0OZEhEUioKxb+oaQjnz17mw5uXKFIqIHhQbLCIHZU5Phm7rCqH2lzIY8/wGyZSI7rit9saHtd4UatbsDGRv+lGmRET0oNhgETmozHXfQzLl27atkoQPXAbAqlDJmIru+MOzA7arGgm1nL0bYLx+UaZERPQg1HIHIKKKpdVqodVqhZpz4jn4nD0k1Jacuo7TnYIrMxqVRaHANJe+6JT9JTTqv5teyYqM1XMQ+M+ZUCjZCBNVZWywiKoxrVaL4GCxaXJVq7AjqhN8vFxttZTcfHy+/yLQqbITUlkSlb6YffgK3u9YeCbLlHgeuQf+gEenvjImI6J74SVComrMduYqKgaYegiYegj//Od01LmruQKA/+ibI9toliEh3UvM8QSYvcTJRrM2LIJFlyFTIiK6H2ywiBxBaEugbks0rumLN0wHhIf2uofjV00bmYLRvRgtEnTtxLUgpbwcZP22UKZERHQ/eImQyFFIEj7Wfg8nWGwlo0JdcLda8l4Zg9G9nMo0oV29cGiunrLV9Ef+xI0a9WAKKlhex9/fH6GhoXJFJKIi2GAROYihWTvQXn9WqMX4DcZllxCZEtE96dIAAMOHD0eAmzN2jegMLxcn28OpK77Gs8v3w2SVoHF1w/n4ODZZRFUELxESOQAfSY+pyYuEWqJTIGYHDJMpEd2XnIIGC1ExSP3XHszwFOcoa+zngVHvfQ5EL4YhT4+0tDQZQhJRSdhgETmAifl/wt+SJdT+XetNGLgcjn34ewzdTw3fwCnNY8JD/zTtRu3AWjIFI6LSsMEiquYianrjFfMxobbZswN2eHJgu72xKlSYEjwWVihsNTcpHx/lb5IxFRGVhA0WUXVmteCTHo9DeddiznqFC6YHjZIxFD2Kv1wbY2mNZ4Xa05Z4PFU/QKZERFQSNlhE1Zjr+UMIC/QSajMDX8ZN50CZElF5mFFzBFJVPkLt/3VrBpiMMiUioqLYYBFVU5asdLif3CbUzruEYqHfgFKOIHuRpfLAf4NeE2ohXq5wP71TpkREVBQbLKJqKvO3BVDetZgzAExGEV7UAAAgAElEQVSpNRZmBWdnqQ7WeXfHfrcWQs3t7B6Ybl2XKRER3Y0NFlE1ZEw8j7xj4tmMVT49cdi9uUyJqNwpFJga/A+YULjos0KyImvDojIOIqLKwgaLqJqRJAmZ6xcItSxo8HHN10o5guzVJZcQzPMX58YynN6P/MtnZEpERHewwSKqZgxnD8F4+bRQm+3cBbfV3jIloor0rf8wpMNNqGX9tgCSJJVyBBFVBjZYRNWIZLEUWwQ4KTsPi53ayZSIKppO5Y6vnbsJNeO1eOSd3CNPICICwLUIieyWVquFVqsVapoLh+CVIg5ynrH/IvKHOoGqr2VOrfF6ymrU93G31bI2LIJriw5QqPneE8mBDRaRHdJqtQgODhZq7k4q7H71SXi5u9hqp25l4dfz2qKHUzVjUqjxyb6LmNc3wlazpGuRs28jPLsOKuNIIqoobLCI7JDtzFVUTME6dQBG5+9AoGmXsN/HUgdIOFjJ6UgOmy/dgikgFE6pibaabssyuLfpBaWbh4zJiBwTx2AR2bO/FwEODK6LN80HhId2eERiv3tEKQdSdaSL7C1sW/U6ZP+5UqY0RI6NZ7CIqoF3U5fDTSqcVNQCJf5X8zVAu1/GVFTZTqfr0S60OTSJZ2013a5fcNWnPqweBUvr+Pv7IzQ0VK6IRA6DDRaRnWtsuIYXM8QlcVb59MR5TV0AbLAcgi4NADB8+HDU83HDjuGd4KQquEChsJqx6+N38K+tBXNjaVzdcD4+jk0WUQXjJUIiOzf51o9QwWrb1itc8GXgKzImokqXU9BgISoGV9/aiaWaDsLDg5vVQfPJvwLRi2HI0yMtLU2GkESOhQ0WkR1rb07AUzlHhNo8/0G45eQnUyKS1d9j8r5uMB46pautrISEqcr9QM2mMoYjcixssIjslALAv41bhFqqygcxfoPlCURVxm21N77zHyrUnsz9C90sl2RKROR42GAR2amBTWoh3HpTqH0V+BJyVW6lHEGOZIHfAGjV4pnMqcYtUCpkCkTkYNhgEdkjiwkTOzYSSpeca2NFjadlCkRVjUGpweeBw4VaU2sKhjWrLVMiIsfCBovIDrnGH0SIl6tQ+6TmSJgVvDGYCq316Y5zLvWE2oQODQGzUZ5ARA6EDRaRnbHm6uB+eqdQO+z2OLZ6ckFnElkVKvwv6DWhFuShgdu5fTIlInIcbLCI7Ez2thVQGg1C7T81XwcUHFxDxcV6tMLuIjP6u53dDYsuU6ZERI6BDRaRHTFnpCJnz+9C7Xevzjjp1kSmRGQP/hv0OqwobMCVpnzotv0sYyKi6o8NFpEd0W1bAVhMtm0jVPis5ggZE5E9iNPUx1qf7kItZ/9GmDNTZUpEVP2xwSKyE+b0ZOQeFOe9WuEUiWvOtWRKRPbky4BXYISqsGA2QbeNC0ETVRQ2WER2InvLcsBqsW0bzBbMceoiYyKyJzecA/GzupVQyz34B8y3b8mUiKh6Y4NFZAdMqTegP/qnUFt6+jqSlV4yJSJ7NNu5KwzmwiYdFjN0W1fIF4ioGuOkOUR2QLdlGWAtXNBZUjvh26MJwJMyhiK7k6z0wtLTSRjVsq6tlnNoKxJrNYfFs/j6lf7+/ggNDa3MiETVBhssoirOlJwI/TFx3it9kw5I02+QKRHZLV0avjt6Ba+E1YGrU8F4LIVkxY6P38W7284U213j6obz8XFssogeAhssoiou+4+lgCTZthUurtA356kregg5aUjVG/GjuQnedCpc+Hnw43XwbetPcVkZULhvchwMC0ciLS2NDRbRQyg2BuvixYvo2LEjGjdujLZt2+LcuXPFDvrll18QHh6OiIgING/eHFOnToV01y8AIiofxptXkHdyt1Dz6DIQksZdpkRUHXzvPwS5So1tWwUJ/1L/BdRtWfhfUDMZExLZv2IN1pgxYzB69GhcuHABEydORHR0dLGDevXqhZMnT+LkyZM4ceIEtm3bht9//73YfkT04LRaLY4fP47jx4/j+oo5wmNWJw2u+DZCXFycTOmoOritcMcPvv2FWv/sPWhiuCZTIqLqR2iwUlJScPz4cQwfXrAC+5AhQ5CQkICrV68KB3l6ekKpLDjUYDAgPz/ftk1ED0+r1SI4OBiRkZEY2bs7XK6LZ5Bn7j6DVh07275HiR7WPL/nkK10s20rIeHdlGUyJiKqXoSu6Pr16wgODoZaXTA0S6FQIDQ0FImJicUO3L9/P8LDwxEYGIiePXuib9++pb5ITk4OsrOzbf/l5+eX84dBVD1otdqCf0TF4L3h4gztGXDFwl4/AFMPAQOnV344qlYy1Z6Y7zdIqPXRHUDzvMsyJSKqXooNclcUWTC2tLFVHTt2xKlTp5CamorBgwdjz5496NKl5EkPu3btKmxPnDgRkyZNetjMDisjI0PuCFREeb8nWVlZAICWtf3RM++i8FhM4DDkBHQo2NDGl+vrkmNa6DcA0bd/g48lx1Z7L3U5Xg/9t207KysLt2/fLpfX48+wqonvS/nw9fUVtoUGKyQkBElJSTCbzVCr1ZAkCdevXy/zDpKAgAD07dsXq1evLrXBio2NRURE4WruLi4ucHFxeZSPw2EVfQNJfuX5nnh7ewMAJhh3CPU0lTcW+/Yrt9chAgCdyh0xfoMxOWWJrfaU7jAi9Bdw8u9tb2/vcv0a58+wqonvS/kTLhEGBgaiZcuWWLp0KQBg7dq1qFevHurVqyccdP78eVj/nvRQp9Nhw4YNCA8PL/VFPDw84OXlZfuPzRVR6doG+6CLRbxM853/UOhVrjIloupskW8/pKvEFQHeS+VYLKJHVWxk+ty5czF37lw0btwYn376KRYuXAgA6NOnD44ePQoAWL16NcLCwvDEE0+gQ4cO6NWrF0aNGlW5yYmqI0nChA6NhNItdQ385PusTIGoutOrXPG9/xCh1i3nOFpbeEch0aMoNgarSZMmOHDgQLEdN23aZPv3hx9+iA8//LBikxE5IKfky+hQRzxVP8d/GAx3zVlEVN5+9O2DN9J/RU1z4VicCcYdeFHGTET2jnMrEFURkiTB46S4oPNNtT9W1HhGpkTkKAxKDb71HyrUOlkSijX7RHT/2GARVRGGuKNwShWnRPkm4HnkK51lSkSOZHmNZ3FT7S/UJnRoKCzTRET3jw0WURUgSRKyNy8RaolOgVjl00umRORo8pXOmB3wvFBrG1wDzjcvlnIEEZWFDRZRFWA4dxim6+IvslkBL8GkdJIpETmilT69kOgUKNTcT+3gWrNED4ENFpHMJEmCbusKoZag8MVan+4yJSJHZVI64ZsAcWi7U2oi8i+eLOUIIioNGywimeVfOAHjNXFm9m+cu8KiUMmUiBzZWp/uxc5iZW9ZLlMaIvvFBotIZkV/eV3L0uNXdekT9xJVJLNCjW/9hwk14+XTyL98WqZERPaJDRaRjPIvnYLxyhmh9u2RBJh59opktManJ24qxNndeRaL6MEUm2iUiCpP9lbxl5bFzRtr4m4Ag2QKRATAqHTCd05P4r/GjbZa/oUTOLXlV5gDiq9N6+/vX+aatUSOiA0WkUzyE84h/4I4eFgf1gUm6yqZEhEVWplfF+P1+ajpXrh27Inv/oORvx0vtq/G1Q3n4+PYZBHdhQ0WkUyKXnJRevkir1FrmdIQiQw5mZh7IgHTujS11XrWD0CLyb/gtCq4cMfkOBgWjkRaWhobLKK7sMEiqiRarRZarRYAoE5Lgm/8UeHxrMbtEXfhkhzRiEq09HQS3urSCn7Q22pvq0/ijdC+MqYisg9ssIgqgVarRXBw4V/9C/u1xNOPFd4Kn6bPR4fX/gWD2SpHPKIS5ZktmOfcER8YC9fIfFZ3EE0NCYjX1JcxGVHVx7sIiSrBnTNXiIpBs8nrheYKAOb59INh0gFg4PTKD0dUhh+d2iFT5SHU3k7lOEGie2GDRVSZQlvibae/hFKGyhNLGowC6rYE/HhWgKqWXIULFvgOEGp9s/ehYf51mRIR2Qc2WESVqJE1BX2y9wu1hb4DkKtykykR0b0t8uuPbGXh16gSEsbxLBZRmdhgEVWi8cbdUKJw4dwspTsW+fWTMRHRvWWrPLDIt79QG5S1G/Xyb8qUiKjqY4NFVEnq+bhhgFlcbmSRXz9kFxnfQlQVLfAbgBylq21bBSveSlsjYyKiqo0NFlElGd+mAVR3nb3KUbpioe9AGRMR3b9MtReW1Ogj1IZk7kAda4ZMiYiqNjZYRJVAqbuNwU1rCbUfffsgU+0pUyKiBzfPfxDyFM62bSdYMNa4R8ZERFUXGyyiSuB+JhZqZeG3W57CGfP9uOAg2Zd0tQ+W1XhWqD1vPoEgD5dSjiByXGywiCqYOSMVmsvi+m1LfXsjXe0jUyKihxfjPxgGhZNt2wUW/COS04sQFcUGi6iC6XashsJqsW0bFE6I8RssYyKih3fLyQ8rfZ4Sai+H1YEyTydTIqKqiQ0WUQWyZKUj98BmofZzjaeR4uQrUyKiR/ed/xAYFYUrrWnUKrid5VgsoruxwSKqQLpd6wCzybZthArf+Q+RMRHRo7vpHIg13j2EmubCYVhys2VKRFT1sMEiqiDWXB1y920UaqvVEdA6BciUiKj8fBswDOa7foUozUbk7F4vYyKiqoUNFlEF0e3+FZLRYNu2WCV87/ykjImIyk+icxDWe3cRajm718NqyJUpEVHVwgaLqAJYDXrk7BH/ml9/QYtrSo69ourjW/9hwraUl4PcfZtkSkNUtbDBIqoAufs3QtLnCLXvjibIlIaoYlzUhGKzqplQ0+1aB8mYL1MioqqDDRZROZNMRuh2rhNq+SGP43x6TilHENmvOc7iZUKrLgO5h7bIlIao6mCDRVTOcg9thVUnrs+W26KbPGGIKtgpVW3EXksTarodayBZzDIlIqoa1PfehYjul2QxQ7d9lVBzadIKZv86MiUiqnhzjlxB17r+tm1LRgri1i6CoWGksJ9arYavL8chkmNgg0VUjvTHdsGSkSLUPHu9AOgspRxBZOd0aTh4IwOHb2agbXANWzllw4/ouXQ0rFLhri6ubrgQH4fQ0FAZghJVLjZYRI8gOTkZV69eLdiQrPDd+KPwTWUKCMW5bDPi4uPliEdU8XIKLg/O8eyDJThgKzf09UDviQuxUR1WUEiOQ/7CkUhLS2ODRQ6BDRbRQ9JqtWjevLltu3fDmpjXN0LYZ9SCX7Djw/mVHY2o0u0MehZnLLcQZrhiq43DUWwMHQ4oFDImI5IHB7kTPSStVlvwj6gYYMpBjO/fW3j8rDIIO17eAEw9BAycXvkBiSqTQoE5RebFCjNcQfecYzIFIpIXGyyiRxXaEt38JLSwaoXynOARQL1WQN2WgF99mcIRVZ7NXh1wybm2UBufugqQpFKOIKq+2GARlYNxaauF7cvOtbHJq6NMaYjkYVWo8J3/UKHWJi8O7fRnZUpEJB82WESPqK3larFfIN/5D4VVoZIpEZF8fvHphqQiC5qPT11Vyt5E1RcbLKJHNM64W9i+4eSPX7y7ypSGSF5mhRoxfoOFWtfcEwi33JApEZE82GARPYIWgV7obrkk1GL8BsOkdJIpEZH8VtZ4CqkqH6FW9A8RouqODRbRI3irtTh4PVXlg59rPC1TGqKqwaB0wXy/gUKttyUOjXzdZUpEVPnYYBE9JFVmCno3rCnUFvgNgEHpIlMioqrjJ98+yFSKDdVbrRvIlIao8rHBInpIbmdiobxrAsUspTuW+PaVMRFR1ZGjcsNiv35CbWCTICh1t2VKRFS52GARPQRzejI0CX8JtcW+/ZCjcpMpEVHV84Nvf+gVhWd01Uol3M9yLBY5BjZYRA9Bt2MNFJLVtq1XuGChX38ZExFVPRlqbyz1FVc40Fw6BktWukyJiCoPGyyiB2TJSkfuoS1CbXmNZ5Ch9pYpEVHVNc9vEPIVhcveKqwW6HatkzERUeVgg0X0gHS71gFmk207HyrM9R9cxhFEjuuWkx9W+/QUarn7NsKSmy1TIqLKwQaL6AFYc3XI3bdRqK1Wt0Syk59MiYiqvu/9h8KCwhtCJKMBObvXy5iIqOKxwSJ6ALrdv0IyGmzbFquEGOfOMiYiqvoSnYOwXt1CqOXsXg+rIVemREQVjw0W0X2yGvTI2SP+1b3+ghbXlL4yJSKyH986dRG2pbwc5O7bJFMaoorHBovoPuXu3whJnyPUvjuaIFMaIvtyQRWIPy7dEmq6XesgGfNlSkRUsdT33oWIJJMRup3inU/5IY/jfPqWUo4goqLmHL2CZ+9a/cCqy0D8mgXIa9pB2M/f3x+hoaGVHY+oXLHBIroPuYe2wqrLEGstugL4Sp5ARPZGl4a/bmVj97U0dKnrbytn/bkKT0aNh9kq2WoaVzecj49jk0V2jQ0WUQm0Wi20Wm3BhtUCv81LobrrcWOthjidmlPisURUgpw0AMDsGoPQBXtt5TpernhuwvdY7dSyoJAcB8PCkUhLS2ODRXaNDRZREVqtFsHBwbbtIU2D8fUz4h1Qr8xejoM3vq3saER272Ctp3DEmo42eXG22ljpMNaGvgqrQlXGkUT2hYPciYqwnbmKioFiygG89Wx34fGjyhAcfHUzMHB65YcjsncKBeYEDBNKDY030Dv7gEyBiCoGGyyi0oS2xLO+BjSS0oTy7DqvAfVaAX71ZQpGZN92eLTGWY34/TMubTUgSaUcQWR/2GARlUaSMD51lVA6q6mPHR6tZQpEVE0oFJjjL57FCjNcQfecYzIFIip/bLCIStHNcgktDFeE2hz/YYBCUcoRRHS/Nnl1xGXn2kJtfOoqnsWiaoMNFlEpxhl3C9tXnIOxyaujTGmIqherQoXv/IcKtTZ5cWhnvSZTIqLyxQaLqARtg32K/aD/zn8o73IiKke/eHfFDSd/oTbeGCtTGqLyxQaLqATj2jQQtm84+WOddzd5whBVUyalE773GyLUulouIzzQS6ZEROWHDRZREer0G+heL0CoxfgNhknpJFMiouprZY2nkKryEWpF/8AhskdssIiKcDu9S9hOVfng5xpPyxOGqJozKF0w32+gUOvdsCZUmbdKOYLIPrDBIrqLKTkRLonnhNoCvwEwKF1kSkRU/f3k2weZSneh5n6GY7HIvrHBIrqLbvsqKFB4m3iW0h1LfPvKmIio+stRuWGxXz+h5pJwCuY0rUyJiB4dGyyiv5nTtNAf2yHUFvv2Q47KTaZERI7jB9/+0CsKzxQrJCt021eVcQRR1cYGi+hvuj9XAlarbTsXzljo11/GRESOI0PtjaW+vYVa7uFtMGekyJSI6NGwwSICYM5IQe6RP4XaT05tkKH2likRkeOZ6/ccDFAXFixm6Lavli8Q0SNgg0WEgrFXsJht2wazBfOcOGs7UWVKcfLFCqdIoZZ78A9YstJlSkT08NhgkcOzZKUj9+AWobb8TBJSlZ4yJSJyXN87dYbRUnipHmYTdDvXyheI6CGxwSKHp9uxBjCbbNuSUoXvjyXImIjIcWmV3lh97oZQy92/EZacTJkSET0cNljk0Cy6TOTu3yTUDA0jkZyTL1MiIvruaAIkReGvJ8mYj5yd62RMRPTg2GCRQ8vZtQ6S6a5mSqlEblhX+QIRERKz82BoECHUcvb+DmuuTqZERA9Ofe9diKoPrVYLrbZg8kKFQQ+/2F+FvzLy6kfg7PVkecIRkc1ptxC0wQnbxL9Sfh4urvweuRG9bPv4+/sjNDRUrohEZWKDRQ5Dq9UiODjYtv1u+8fwr3YNbdsWq4Snp83C1Uy9HPGICAB0aQCAIaPGYs6z4RjYpJbtIdPhLej6jynIMVoAABpXN5yPj2OTRVUSLxGSw7hz5gpRMfCcEovX24UJj//m/ASuvrUTGDi98sMRUYGcggYLUTGYHfFf4SEfjRNGvvMJMPUQEL0Yhjw90tLSZAhJdG9ssMjxhLbESPdEeMMglGfXHQPUbQn41ZcpGBHZhLbE+QbPYpNnB6H8huUwXEOaAUHNZApGdH+KNVgXL15Ex44d0bhxY7Rt2xbnzp0rdtDKlSvRsmVLhIWFoUWLFpg9e3alhCUqD25SPkalrxdqG7064qKGlxmIqppvAl4Qtn0tOkTd3ixTGqL7V6zBGjNmDEaPHo0LFy5g4sSJiI6OLnZQnTp1sHnzZpw5cwZ79+7FrFmzsG/fvkoJTPSookxH4GsR70b6xv+FUvYmIjmddX0M2zzaCLUx6eugkUylHEFUNQgNVkpKCo4fP47hw4cDAIYMGYKEhARcvXpVOKhTp04ICgoCAHh7e6Np06ZISODEjFT1aVRKjDbtF2rbPNvinGsDmRIR0b0UPYsVaM7Ei6ZjMqUhuj9Cg3X9+nUEBwdDrS64uVChUCA0NBSJiYmlPsG5c+dw4MAB9OjRo9R9cnJykJ2dbfsvP5+TOJI8Xgqrg0ApR6jx7BVR1XbSrQl2u4vzYv3DtBfOKoVMiYjurdg0DQqF+AUrSVKpByclJWHgwIGIiYkRbn8vqmtXceLGiRMnYtKkSQ+a1eFlZGTIHcGuZd9Oxz8ixQHsse4tcdKtsUyJiOh+zQp4EV1yT9q2g6VsDG1WG1lZWbh9+7aMyewff7eUD19fX2FbaLBCQkKQlJQEs9kMtVoNSZJw/fr1EucYuXnzJnr16oUPP/wQw4YNK/NFY2NjERFR+NeHi4sLXFxcHuXjcFhF30C6f4Gpl+DlqRFqswJ49orIHhx2b44DbmHooD9jq73Vuj40nh78uVgO+Dksf8IlwsDAQLRs2RJLly4FAKxduxb16tVDvXr1hIO0Wi169uyJSZMm4dVXX73ni3h4eMDLy8v2H5srqmySxQz3M7FCbb9bCxxxby5TIiJ6ULMCXhS2Q73doEn4S6Y0RGUrdhfh3LlzMXfuXDRu3BiffvopFi5cCADo06cPjh49CgCYNm0aEhMTMWvWLERERCAiIgKLFi2q3ORED0B/dAdUuZlCrejAWSKq2va5h+OYaxOh5nZ6FySrRaZERKUrNgarSZMmOHDgQLEdN23aZPv3/PnzMX/+/IpNRlROJIsF2dtWCLWjrk2xzz1cpkRE9FAUCswKeBFLEv+fraTOTkPe8Vi4tS79RisiOXAmd6r29Ee3w5KmFWqzAl4AFLwDicje7PSIxClNQ6GWvWUZJAvPYlHVwgaLqjXJYkb21uVC7aSyNnZ5RMqUiIgeiUKBr4uMxTKn3oD++E6ZAhGVjA0WVWv6I3/Ckp4s1L507s6zV0R2bJtnW5xSilMD6bYs51ksqlLYYFG1JZlNyN4inr06rs3ELlUjmRIRUblQKDDTubtQMqfdhP7odpkCERXHBouqrdzD22DJSBFqXx68xLNXRNXAdlVjnEzOEmrZW1dAsphlSkQkYoNF1ZJkNkK37WehZgwIxe7EdJkSEVG5UigK/mC6iyVdC/2RP2UKRCRig0XVUu7BrcXOXuVG9JIpDRFVhF3X0mDyDxFq2VtXQDKbZEpEVIgNFlU7kskI3Z/i2SvnBmEwBT0mUyIiqihF/3Cy3L6F3MPbZEpDVKjYRKNE9kir1UKrLZjryjX+ADwz04THbzVsh7j4eDmiEVEFMtZqCOf6j8OYcM5W0237Ge5tn4JC7SRjMnJ0bLDI7mm1WgQHF9yy7aJSYu/IJ+HpUbio8/7rt/FC3+flikdEFSguPh5ODdujxl0NliUjBXGrF8DQpJ2t5u/vj9DQUDkikoNig0V2786ZK0TF4OWgfAQZNwmPz2w8AZhaDzizGVg/vdLzEVEF0BWcpR4+fDgAYM3QNmhX29f2cM6fP+PJqLdgtEgAAI2rG87Hx7HJokrDMVhUbWhCwvCWVVxHc697OA41eA6o2xLwqy9TMiIqdzl/DwOIigGmHsKXj70rPBzs6YqX3p0FTD0ERC+GIU+PtLS0Ep6IqGKwwaJqY7jpCGqaM4TazICXZUpDRJUitCVQtyUOPDYE+91aCA+Nsx6AS0hzIKiZTOHIkbHBomrBVa3CWNMeobbbPQJH3JvLlIiIKtvMQPEPqiDzbbyc8YdMacjRscGiamFEeAgCpFyh9mXgKzKlISI5HHIPw173cKH2VtoaaCTOi0WVjw0W2T+TEW9G1hNKOz1a4bhbU3nyEJFsig4LqGnOwHDTEZnSkCNjg0V2z+38Qfi7uQi1mQE8e0XkiI64N8du9wihNta0B65qlUyJyFGxwSK7ZjXo4XZ2t1D706M1Tro1likREcmt6PCAACkXI8JDStmbqGKwwSK7lrPnNyjz9ULtq0DeOUjkyI67NcVOj1ZC7c3IelCY8mVKRI6IDRbZLWteLnJ2rhVq2zzb4pRrI5kSEVFVUXSYgL+bC1zjD5SyN1H5Y4NFdku3YzWsep1Q+5LzXhERgJNujfGnR2uh5nZ2d7GfGUQVhQ0W2SVLVjpyYn8RaptUj+Os62MyJSKiqqboWCyl0YDsP1fJlIYcDRssskvZ21ZAMhaOp7BYJXzu0lPGRERU1ZxxbYjfvToLtZw962HJ5JI5VPHYYJHdMafeRO7+zUJt1bkbuKQMkCkREVVVMwKjYL77V53JiOwty+QLRA6DDRbZnazNSwCrxbYtKdX46tBlGRMRUVV11SUYK9TiHYW5h7bAdOu6TInIUbDBIrtiTLqMvOO7hJq+aQdocwzyBCKiKm+WczfkmQr/KIPViuzNS+QLRA6BDRbZlawNi4RthcYN+rCuMqUhIntwS+mFhSevCbW8k3tgTLwgUyJyBGq5AxCVRavVQqvVAgCckq+gRvxR4XFds844l3CtpEOJiGy+P5qAMe2bwslitNWSVnyDzKdeF/bz9/dHaGhoZcejaogNFlVZWq0WwcHBtu31z7dDjVo+tu1bufl4ctRE5JktJR1ORFRAl4ZsoxkzYk9jaucmtrKz9hLeGfQU9l6/batpXN1wPj6OTRY9Ml4ipCrrzpkrRMXgmUmL0equ5goAZvkOQd6k/cDA6ZUfjgh8hr4AACAASURBVIjsR07BtAyLH38fyQpP4aHJQwcCUw4CUw8B0YthyNMjLY3TONCjY4NFVZ4qJBwTpb1C7apzLax4LBqo2xLwqy9TMiKyJ4bQ1pgZ9KpQe8J6E31q5BX8LAlqJlMyqo7YYFGVN8T8Fxrni7dUfxH4CswKXuEmogezqkYvXHauLdQmpvwElcShBlS+2GBRleaiUuJd406hdkbTAL95PSlTIiKyZxaFCjMCo4TaY8YbeD7jT5kSUXXFBouqtBHhIagtZQm1zwJHQFLwS5eIHs4mr474S9NQqL2buhwaySRTIqqO+FuKqiyF0YDxbRoItf1uLbDLo1UpRxAR3QeFAp/UHCmUgsy3MdJ0UJ48VC2xwaIqy+3sHtRwdRZqn9YcASgUMiUioupin8cT2O0eIdTeMu6BtwvHdlL5YINFVZJFlwG3OPHOwc2eHXDCralMiYiouvms5ghh2wcGvBnJu5KpfLDBoiope8tyKMyF4yEsUOLzwOEyJiKi6uaUayP87tVJqEVH1IVSny1TIqpO2GBRlWNOvYnc/ZuE2hqfHrio4czKRFS+Pg+MgvmuX4WuTiq4/7VdxkRUXbDBoionc/18wFo4J40BaswMeEnGRERUXSW41MbPNZ4SappLR2G8cUWmRFRdsMGiKsVw4QQMZw4ItcVO7XDTOVCmRERU3X0d8BL0ChfbtkKSkPXrXEiSJGMqsndssKjKkKwWZP0yV6il6fPxjXNXmRIRkSO45eSH7/yHCrX8i3/BcIbTNtDDY4NFVUbuwS0waa8KtS8OXIJOoZElDxE5jrn+g3BD4S3UMtfPg2Q2ypSI7B0bLKoSrHm5yN70o1Az+wTh57M3ZEpERI7EoNTgE2dxLJYlTYucPb/LlIjsHWdUI1lotVpotVrbtvuxzXDPEZfEOVszDBaOgSCiSrJe3QKvXV2AyFo+tlr2lmVwa9MTKg+fMo4kKo5nsKjSabVaBAcHIzIyEpGRkRjS40k4nYoV9tl6OQX9xr4vU0IickgKBabHxgslyaBH9qafZApE9owNFlU625mrqBhg6iFMiR4NZ1Xhl6IRKvynxcfAwOnyBCQih3XyVhYMDcQldHIPbIbpZoJMiche8RIhySe0JTr4q9D7apxQXuzXH1eDegG3UmUKRkSO7IRnA7RXnYXC8vdqEpIV15d8gcynXretherv74/QUE5+TKXjGSySjVKy4v+SFwi1dJUXZgW8IFMiInJoujQAwPOvj8HMfeIffs7JlzFpWG/b0IYmTZshMTFRjpRkJ9hgkWxeMB9Hc4N42v2LwOHIVnnIlIiIHFpOQYOFqBjE9FyMmwov4eF/D3wKTlP2AdGLYcjTIy0tTYaQZC/YYJEsPJ3VmGgU1/uKd6mLFTWelikREdHfQlvCUK8dPgl+Qyg3kNIx0uMGENRMpmBkT9hgkSzGtWkAfylXqH0UFA2LQiVTIiIi0XrvLjju2kSovZP6M3yL/OwiKgkbLKp0Kl06oiPqCrVtnm2xx6OlTImIiIqTFEpMDxol1LytuXgvf4dMiciesMGiSud+7A+4qAu/9Ez/v707D2+qTNsAfp8sTfe9BUobAsUCri2FgoyCyyzIyDgzRVFZRxQQHD9gtLjhMiCLgAiyVYZVGGQEZUcEF0BkEUpFKJQCrW0hXULXdEmb5Hx/IIVDwAXSvGl6/66L6zLPeZNzh2PJ03NO3hdqTGzxlMBERETXdsS3Iz4NUq6HOsB6CB3CeK8o/Tw2WORStVnfwzv3uKK2LOxhZOtaC0pERPTzprQYghrJq+GxGjJe79kB4EoT9DPYYJHLyHYbytd/oKiVqAMwO+JxQYmIiH6ZURuBBeHJilpPfTi8zmUKSkRNARsscpmqfZ+h/twZRW1m5ACUc1oGInJzC8P/DqMmTFHz/24z5DqLoETk7thgkUvYKkpQvmmJopapisSqkN6CEhER/Xo1Km9MaTFEUdNUlqBi5xpBicjdscEilyhb/wHkWuVXm9/weojTMhBRk7E+qBcO+XRU1Cq/+B/qC/MEJSJ3xgaLGl1tZhpq0r5W1D45eR57NbFiAhER3QBZUuHlqFGwXvnRabOi9H9zIPOGd7oKGyxqVHJ9Hco+nquo2b28MXEPbw4loqbnpHdbLNLerajVnfkB1d99cZ1nUHPFBosaVcWOj2A1nVfUzJ17w1RdJygREdHNmeV1P/IrahS18g2LYKuqEJSI3JFGdADyHEajEUajseGxurwIoTvXQLpiTH2EHkes/NYgETVdNZIXJnx9Akv/0rmhZq8qR/mmxQh9fKzAZORO2GCRUxiNRkRFRSlqa/7eFT1iQhseW+129HlvNU6aFrk6HhGRU+3MLkZxcAwiyi7f4F69fzvOBelR36JtQy08PBx6vV5ERBKMDRY5RcOZq0ELAX0CkuvT0cPyiWLMIt29ODliEnBsG7DhTdeHJCJyhkoTAKDPzA/x1aB74O91+aO06L+z8NB/v0W9/eJN794+vsg8eYJNVjPEe7DIufQJCG4diwnWnYpyvjYCs9qPAdokAGFtr/NkIqImwHyxwSr422zM8H9YsalDmD+e+dc7wKsHgGHLUFtTDZPJJCIlCcYGi5zu5cLlCLMpb/ac0GokalTeghIRETUCfQKWtR+JH7zbKcpj6ncjplUroGUnQcHIHbDBIqfqavsRT5Z9rqhtC7gbOwOSBCUiImo8NkmNV1qNhv2Kr/P4yHWYZFzIxaCbOTZY5DRalYQplk2Kmlnlg9dbDReUiIio8aX7xmFFaB9F7QHzYfzZdlxQInIHbLDIaZ7pbEAHe5GiNjPiSRRowwUlIiJyjXciB6FQE6qovWXZBn8vLgfWXLHBIqdQVZZgTJJy6Ztj3u2wNKyvoERERK5TqfbDmy2fVtRayJV48e5bBCUi0dhg0U2TZRkBBzfBR3v5NzU7JLzcajQXcyaiZmNz4D34yr+zojb0Lj00pnxBiUgkNlh002rS90B3Trm24IrQPkj3jROUiIhIAEnCa62eRa3k1VBSSRIC9q+HbLMKDEYisMGim2KrKEHZWuVizoWaELwTOUhQIiIicXK9WmJ2RH9FTVtyHpU7PhKUiERhg0U3TJZllK6ZDftVC5y+1fIZVKr9BKUiIhIrNexvyNTFKGoVn69GXV6WoEQkAhssumHVB3eg9vgBRW2L+lZsCrxHUCIiIvHqVVqMaz0W1is/Yu02lKyaDrm+Tlwwcik2WHRDrCWFKPtkoaJWXG3BK959AUm6zrOIiJqHoz634H1tT0XNWpCL8q3LBSUiV2ODRb+ZbLejdPW7kC3Vivr4ncdRIvHSIBERAMzx6oWjheWKmvnrT2A584OgRORKml8eQqRk3rMRlqzvFbWa2M7Ykb1dUCIiIvdjldQY+/kP2DG4J1Sy/WJRllGwdDJK+j4PWatrGBseHg69Xi8oKTUGhzNYWVlZ6NGjB+Li4pCUlISMjAyHJ3333Xfo0aMHfH190a9fP5cEJXGMRiPS0tKQlpaG77/ajrKN/1Fst/kF43AgJ9MjIlKoNOFUSRUm7z6hKKvNpdj+ytNITExs+NOhYyfk5uYKCkqNwaHBGjFiBIYPH45Tp04hJSUFw4YNc3hSq1at8N5772HWrFkuCUniGI1GREVFITExEUlduiA39Q1IV83n8uSKHXhi6FOCEhIRuSmzCQCw6LbxOKBqo9g08I4Y3Df+Q+DVA8CwZaitqYbJZBKRkhqJosEqKipCWloaBg4cCABITk5GdnY2cnJyFE+Kjo5GUlISdDodyLMZjcaL/zFoIUa9MA0JLYMV25dou+HbIduAR950fTgioibAru+McbGvoUrlrajPsG5FcOv2QMtOgpJRY1I0WHl5eYiKioJGc/HWLEmSoNfrb/q0pdlsRkVFRcMfi8VyU69Hrndr65YYU79LUTvj1RpT2r8AtEkAwtoKSkZE5P5yvVpiYgvlmf4W1hJMLFh4nWdQU+dwk7t01VfsZVm+6Z306tVL8TglJQXjx4+/6ddtbkpLS12+z/LycnipJcy2rIOXfPnSoA0qjG09BrVX/UZGRETXtiqkN/5UuR/3m9Maan8t343PvFtiCy7+e1tSUuLyXCI+WzxRaGio4rGiwYqJiUF+fj6sVis0Gg1kWUZeXt5Nf7Nh165diI+Pb3is0+l4efEGXX0AG1tQUBDGdW+PjvYiRX1+eDKO+HZ0aRYioiZNkpAS9Tx2nB6NYHtVQ3ly7WYc9PVCUFCQy/+Nv0TUfj2Z4hJhZGQkEhISsHLlSgDAunXrYDAYYDAYbmon/v7+CAwMbPjD5qrp0BT9iJGdlZf/jnu3xayIJwQlIiJqugq0YZjQaqSiFopqTHvwNsAJV4zIfTh8izA1NRWpqamIi4vD1KlTsXjxYgBAnz59cOjQIQDAmTNnEB0djXHjxmHr1q2Ijo7G/PnzXZucGp3dUovAvR9Drbp82bhO0mBM67GoV2kFJiMiarrWB/XC5sDfKWp/aBcJ79OHBSWixuBwD1aHDh2wb98+h4Fbt25t+O/Y2Fjk5+c3bjISrnx9KjSVyvsBZkY8iZPevKGdiOiGSRJebfUsulUdR4StrKHsf2gL6h/4M7QRrQWGI2fhUjl0TVUHd6Jq3zZF7ZBPRywM/7ugREREnqNEE4TxUc8paqp6C0qWToJcx2/aewI2WOSg3piDso/fV9SqocXY1mNhl9RiQhEReZgdgd2wJvj3ilr9+WyUrpsnKBE5ExssUrDXVuPC0kmQ65W/QY3XPYIcXZSgVEREnmlCqxHIVEUqatUHPkfVgc8FJSJnYYNFDWRZRuma2bAWKe+v+/BoLtZr7xSUiojIc9WovDHSuz+q6pRLkJWunYu682cFpSJnYINFDaq+2YSaI8rZ2uvDWuOt3ZmCEhEReb7TqgikfHFcWayvQ8nSt2Gvrbr2k8jtscEiAEDdj5koW/+Boib5+KO85xOw2OyCUhERNQ8bTxWgukM3Rc1afA6lq2c5ZUUVcj2HaRqo+TAajTAajZBqqxG6ZS7UtqtOUXf/G47nFwpKR0TUvBzyj8XdYfnQXjjXUKv5/huc/O881HTqAQAIDw+/6dVVyDXYYDVTRqMRUVFRkAAs/UtnPNg2QrF93qGzmDp7oJhwRETNSaUJADBg8BBEB3hj25M9EOx9eTJn3f6NGPDCazhSUA5vH19knjzBJqsJ4CXCZspoNAIARj8z1qG52q9qg+m9lgOvHgAeeVNAOiKiZsR8scHCoIXIf34X/i94qGKzl1qFBY//CcHDUlFbUw2TyeT6jPSbscFqxu6ODsULvicUtSJNMEa3/zdshi5AmwQgjLO2ExG5hD4BaJOAL2Mfx9zwRxWbWsvlmBN0FNJ1nkruhw1WM6WqrsDc3ndCjcs3T9qgwnPRL6JIy1XViYhEmhE5APt8b1fU7redxj+7thOUiH4rNljNkGyzIXDPR4j00ynqMyIHYJ8f57siIhLNJqkxOjoFhZoQRX1c9/bQGk8LSkW/BRusZqh88xJ4FeYoal/4d8G88H5iAhERkYNibQiei34Rtis+qtUqCUF71sBaWiQwGf0abLCaGfO3W2H+ap2ilq+NwJjWYyFL/N+BiMid7Pe7A+9EKr/RraqtgumD12Gv4SSk7oyfqM1I7YlDKFs7V1GrgxrPRr+EMk2goFRERPRzFoQnY4d/V0XNaszBhWVvQ75q/kJyH2ywmom6c2dxYdlkwK6clf0V3cNI940TlIqIiH6JLKkwNnocsqRwRd2SmYayj+dypnc3xYlGPdClGdovUVWXI2TrAqgt1Ypx7x88gzUPJLo6HhER/Ublan8M8RmEDaapiPC9/AWlqv2fQR3WEoF/eFxgOroWNlge5tIM7Zf4adVY2y8J4ZHKS4AbMo2Yvu808ICrExIR0Y3IU4XgqY1HsHHAPZCuuDRYsWUZNGEt4dv5PnHhyAEbLA/TcOZq0EKoY+7EvNr/4nZblmLMQZUe//LuBhlHBSQkIqIblV5YjgzD73Drmd2QrpjH8MLK6ThTWIL6FoaGGtctFIv3YHmqmHj82+sgHryquTrrFYWnb5kMS2isoGBERHRDflqzsPfzr2DibuUqHJLdBqyfi+QH70ViYiISExPRoWMn5ObmikhKYIPlsYbXf4vBpdsUtRJ1AIbo30CpJkhQKiIiumFXrFm46KE1WKZNUmwO8fHCiqGPIOSVL4Fhy7huoWBssDzQQ+1bYELddkWtVtJimP415OiirvMsIiJqEvQJgKEz3rzlFez076LY1FYuwWL7RuhatBcUji5hg+VhNMW5mPOnOxzqY1uPxSHfWwUkIiKixnBpOZ0fvJXrE3atOYFZlk+5MLRgbLA8iNVkRPBXH8Jbo1bUp0QOxuagewWlIiKixlKt9sE/9K/jnFY5R1Zf6zGk9LhFUCoC2GB5DFuZCaaFr0JVq1w6YVXInzCfawwSEXmsQm0YhurfQKXKR1F/rms7+GR8IygVscHyALbyCyieNx5W03lFfZdfAl5rNRKQeKKYiMiTnfQ2YGTMS7Be9bEecGgrKnetF5SqeWOD1cQ1NFfF5xT1E6oWF3/YJE51RkTUHOz274yXo0Y51Ms/XQjz7g0CEjVvbLCaMFtFCYrnvQRrUb6ifqa0CgO9B8Os9hWUjIiIRPgo5E94u8VQh3rZJwtg3rPR9YGaMTZYTZStsvSn5ipPUbcGhKH/uu9QpAoQlIyIiERaGJ6MKV6/d6iXrZsP8zebBSRqnnj9qAmyVZZdbK4KlTP0asKjYLpvEAon/VdQMiIicgfzvXpC9fV8jO8Rp6iXrZ2L3Pw81MZ1a6hpNBqEhoa6OqLHY4PVhBQUFODHk8cQ8vliaMoKFdusAaEw9RqE4z+ev86ziYio2ag0Ye532VBBwotXTdcQuH8DJk2ajNXHL95eovPxxamTJ7huoZOxwWoijEYj7kmMx5rkrogIV17++7GsGo8u3gXjpNWC0hERkVv5aVmdOR1TIHmV4YW6rxSb3/n9bbD/+RWsueALy+KhMJlMbLCcjA1WE1GQfQYf/b0rOl3dXEkheCxqHIz/F3yxcGwbsOFN1wckIiL3o0/A7DYJUBW1xLhi5S/h71g2AmGPYI2gaJ6ODVYTYKuqQPCOxYiIUDZXudpI9DdMwXmvyMtF40kXpyMiInc3K+IJqGDHmOLL7ZQKMt6xbIC9E9eobQz8FqGbs5VfgGneS9CWGhX1PG0k+hsm49yVzRUREdG1SBJmRgzAnPDHFGUVZMz4w+3wzjwgKJjnYoPlxurPZ6No1hjUnz+rqOdrI9Df8DbyvVoISkZERE2OJGF65EDMDX9UUVZJEgIPbEDZxsWQ7XZB4TwPGyw3VZuZhqI5/4KtrFhRPycFob9hMvK8WgpKRkRETZYkYVrkIMwLT3bYZP7yY5SsmAK5vk5AMM/DBssNVe3fDlPqBMi11Yp6dlkVHvP5B3LZXBER0Y2SJEyNHIL3Ivo7bKpJ34Pi+S/BZi4XEMyz8CZ3N2A0GmE0GgFZhl/6Dvj98LXDmHL/CDyS+iVK/8XJ4IiI6CZJEmZGDkR+hQVTqj+BVn35fEtddgaK3xuLsBEToY1oLTBk08YGSzCj0YioqCh4qSXM+P3t+FtHx29zbDplxNjPd8Bi47VxIiJynjXazji/8TWs6Hc3NLb6hrrVdB7GGf9E+f2DUB/ZBgAQHh7OubJ+A14iFMxoNCJYp8WqEU9cs7map70HoxNSYXn4dQHpiIjIo1WasCf3Ah5a/jXOVdYoNqks1fDZPB9vPN4HiYmJ6NCxE3Jzc6/zQnQ1NliCqSpL8OljSeiuvaCoW6HCS61GYWrceMiGRCCsraCERETksX6a8f1knxl4pMUE/KBqpdjsrVFjQZ94jByZgtqaaphMJhEpmyReIhTIknMSodsWIDzUX1E3q3zwbHQKvg7oIigZERE1K/oEFLZJQD9bEubnv4MHzYcUm1/VfQ/9/Z0Au01QwKaHZ7AEkGUZ5r1bUDz3RahqqxTbCjShSDZMZXNFREQuV632wTD9a/gw5CGHbYPu1CN4xxLYyngW69dgg+Vi9mozSpa9jbKP3wes9YptGToD+rabiQyfdoLSERFRc2eT1Hil1bOY1OIfDtu8CrNROH00ajIOCkjWtLDBciFLzkkUzhiNmu+/cdi2Sx2L5LbTUKANF5CMiIjoCpKE1PC/Y2T0eNRKWsUme1U5LnzwOso2LIJ81YkCuoz3YLmAbLfD/PU6lG9eds3r1/85koO373kDVrWv68MRERFdx5age3BOG4EFORMRLSsnHzV/tQ6lRw+gvOfjsAdcnqOR0zlcxAarkVyaPFSqNSNw71rozp1yGGP38kFGm254a/bLwL1qASmJiIh+XrpvB/S298f0MxPxUHvlGrjaC/nw+mgKxn9xHJuzCgEA3j6+yDx5otk3WWywGsGlyUO7tw7B+73vhM7f22HMwXOleO6zXTCa1wtISERE9OuVm80YviUdQ55OwQS/Y9Dh8tWYQJ0WC/rE43eaLnirrC1qFz8Nk8nU7Bss3oPVCIznzmFc91isSU5Cy6uaKzskzNb2wmNx78H4f7uAR94UE5KIiOg3Wt4iGX9p9y7OeDkuoTPQegibAnfhllA/AcncDxssJ6svPofgHf/B2G7toZKU2wo1IXiyzUTMiHsBNkMXoE0CJxAlIqImJcOnHf7c7l2sDbrfYVtHexG2PH43fE7ug9zM58ziJUInka11qNz5MSp2fgSva3yrYpdfAsZEj4VJEyIgHRERkfNUqX0xNnoc9vrfhbfPL4CvbGnY5qNVAwc3oajgFEIeex5e0bECk4rDM1hOUHsqHYXTnkXFZx86zG1lhQqTI4dgUJs32VwREZFHWRv8IPrEzkKGzuCwrT43E0Uz/4myT1Nht9Q4PtnDscG6CbbKMpSsfAem+S/BWnzOYXueFIzkttOwIKIfZIl/1URE5HnO6GLwSLsZWHGN2d8h22He9SkKpzyDmqPfuj6cQLxEeANkux1VB7ajfNNiyNVmx+2SCosOn8W79y5ClW9HAQmJiIhcp1alw6tRo7ClpgUmG+chNkR5o7utzIQLS/4NS3QnVCY9DLt/iMfPl8UG6zc6f/Qgajf9B17FudfcXh8eje9b3IWJ7z0P9NS5OB0REZE439YE4o+r9uLZxHZ4rmtbeGuUczzq8k/Alv0D3t1/BqtOFuP4iQyPbbLYYP1K9mozjOsXo37/FnipHC/3lVvqMW1vFlYd2w67LCAgERGRaGYT6mwyZnd4ERsC9Xjbsgk9bWcVQ3y1Grx2bwckd4pC+fHvADZYzZPdUgPz7g2o/Got5GozNNdortZr7sC/fXuj+C8BwF8AHNsGbHjT5VmJiIjcgj4BOW0SMEB+EH8t34XXCxYjwlamGNIpPADYvgjFOYcR1GcIvNp0EBS2cbDBug65zgLz3s2o/OJ/sJvLrzkmx6sVXm01Erv9Oys3GE+6ICEREZGbkySsD74PXwV0wfjCFRhQ+hlUUF7msWSmoSgzDd63dUPgQ4M9ZloHNlhXka11qNr3GSp2fAR7Rck1x9RBjfkR/TAv/FHUqnifFRER0c8pV/vjlahR+Dj4AUwxzsdttdkOY2qPH0Dt8QPwib8Xgb0HQtuyjYCkzsMG6yfn8/NQtncb/I5+CXVV2XXHbc4qwPS7JuNs5B9cmI6IiKjpO+LbEX9uNwsDTy/CP0s/QQs/x5MUNel7UJ3+DSzt7kLVnQ8ipF2HJnkjfLNvsGSbFee/2oDslbNhCPa97rgdZ4swc/9pHC+uBBLCXZiQiIjIc9gkNZZbYrFm2W4MviMGo7q0Q5ivl2KMBBneZ9OhOZ2GtaeK0G/6Eujv6HydV3RPzbbBslWWomrfNlTt3Qq53HTd5mq3OhbTvR5A+p0xgIo3rxMREd00swm1Vjs+uP1lrIq4Ff+o348RdXsRjFrFMI1Khcc6toS85FWYbusO/3v7QheXAEmSrvPC7qNZNViyLKPux0xU7dmA6vQ9gM163bEHfG/D9MiBOOB3++Uib14nIiJyHn0CqtokYC66Y4XtaTxzYT2evrAR/nbl0jqSLKP22D7UHtsHTWQM/O/tC9+uv4fK+/pXnkRrFg2WXF+H6iO7YN6zEfV5WT879ohPHKZHDsQev3igCXTIREREnqBC7Y+ZkQOxJLQvRpo+xT9KNsFHrnMYZy3KQ9m6+SjZuBi17RJQ07E7bEGRAOBWs8N7dINlLSlE4edrYDvyNVSW6p8de9hYhvfbjsYXbfuzsSIiIhKkVBOEKS2H4j9hj2BU5rvoX3cIATrHdkVVb4Fv5n74Zu7H7lwTln+fi28KqnDixAm3aLI8tsGq3LUe5etTAVm+7orWtVYbNmQasfxoHn4oqgBencPmioiIyA0Ua0PwlvlWzPhwBpKH/AtD/M8jTi6+5tie+nD01Ifjh6IKlOSeYYPVWOzVlQ3N1bXkScFYoe2KNX6dUdrND/DjzetERETuqKrehhUtkrFCH48eVUcxtGQL/lh5AGrYHcbeERmIqhPfAvfcLyCpkkc2WLLNCkgqQLYp6rv94rEs9GF8EdAFdumKBSh58zoREZF7kyR8638XvvW/C1F1RRhU+hmeKN2OMFuFcpjdsfES4XpXz5o0dUAIgvo+BVmtwYXqOizRdsN97edjgGEidgR2UzZXRERE1KSc94rEtBaD0S1uKca0HosjPnGohwppxjJU3/o70fEAeOgZLAAIuD8ZWYFtkNilK/DqVEAXIzoSEREROZFF5YV1wQ9gXfADQE4a8L/uODw+WHQsAB56BquB5Nlvj4iIiH7iZl9SYwdCRERE5GRssIiIiIicjA0WERERkZOxwSIiIiJyMjZYRERERE7GBouIiIjIydhgERERETmZQ4OVlZWFHj16IC4uDklJScjIyLjmEydNmoTY2FjExsZiwoQJjR6UiIiIqKlwaLBGjBiB4cOHSP2WIAAABaVJREFU49SpU0hJScGwYcMcnrR7926sXr0aR48eRUZGBrZt24bt27e7JDARERGRu1M0WEVFRUhLS8PAgQMBAMnJycjOzkZOTo7iSWvWrMHQoUPh5+cHnU6Hp556CqtXr3ZZaCIiIiJ3pliLMC8vD1FRUdBoLpYlSYJer0dubi4MBkPDuNzcXPTq1avhscFgwNq1a6+7E7PZjIqKy6td63Q66HQ6Z72HX1Zw4ue3X8gWM07kvvmeXTdO5L75Xm5+nMh98z3f/DiR++Z7dt24XzvGhSRZluVLDw4fPozBgwfj+PHjDQO6du2KmTNnomfPng21vn37YvDgwXj00UcBAFu2bMHMmTPx5ZdfKl48LS0NiYmJDjtNSUnB+PHjnf5mrpafn4+k7nfDUlP9y4MlFSDbXT9O5L75nl03TuS++V5ufpzIffM93/w4kfvme3bdOAA6H18c3L8P0dHRv2q8M4WGhioeK85gxcTEID8/H1arFRqNBrIsIy8vD3q9XvEkvV6vuGz4448/Ooy50q5duxAfH9/w2FVnsEJDQ3Hq5AmYTKZfHGuxWH5VJmeP+y1ji4uLERER4fKMIt+zu4/7tcdEZMbmePyc/bPSGBndfVxjvKaof8Ma4zXdfdxvGetJny3h4eE/24+4kqLBioyMREJCAlauXImhQ4di3bp1MBgMisuDAPDoo4/iueeew6hRo6DRaLBkyRJMmjTpujvx9/dHYGBgo7yBX6LX693mL/tmlZSUOHTIJBaPiXvicXFPPC7uicelcTh8izA1NRWpqamIi4vD1KlTsXjxYgBAnz59cOjQIQDAfffdh8ceewx33HEHOnXqhD/+8Y/o3bu3a5MTERERuSnFPVjOdukerMOHD6Nz586NtZtmg79luB8eE/fE4+KeeFzcE49L4+BM7kREREROxgaribBYLJg2bRosFovoKPQTHhP3xOPinnhc3BOPS+PhJcImoqKiAkFBQSgvLxf2hQFS4jFxTzwu7onHxT3xuDQensEiIiIicjI2WEREREROpvnlITeupqYGAHDihHtNX98Umc1mAEB6ejr8/f0FpyGAx8Rd8bi4Jx4X98Tj4lwdO3aEr68vgEa+B2vVqlUNC0cTERERebIr7zlv1AbLZDJh+/btMBgM8PHxaazdEBEREQnnsjNYRERERM0Rb3InIiIicjI2WEREREROxgarCaitrcVf//pXxMXFIT4+Hr1790ZOTo7oWATg+eefh8FggCRJOHbsmOg4zV5WVhZ69OiBuLg4JCUlISMjQ3QkAn9O3BE/VxofG6wmYvjw4cjMzER6ejoefvhhDB8+XHQkAtCvXz988803aNOmjegoBGDEiBEYPnw4Tp06hZSUFAwbNkx0JAJ/TtwVP1caFxusJsDb2xt9+vSBJEkAgO7du+Ps2bOCUxEA9OzZE9HR0aJjEICioiKkpaU1TA2TnJyM7Oxs/lbuBvhz4n74udL42GA1QXPmzEHfvn1FxyByK3l5eYiKioJGc3H+ZEmSoNfrkZubKzgZkfvj54rzNepM7uR8kydPRlZWFhYuXCg6CpHbufTb+CWchYbol/FzpXHwDJabWrFiBeLj4xEfH4+lS5cCAGbMmIFPPvkE27Zta5jIjFzrWseF3ENMTAzy8/NhtVoBXGyu8vLyoNfrBScjcl/8XGk8PIPlpgYPHozBgwc3PH733XexevVq7Ny5E8HBwQKTNW9XHxdyH5GRkUhISMDKlSsxdOhQrFu3DgaDAQaDQXQ0IrfEz5XGxZncm4D8/HzExMSgXbt2CAgIAADodDocOHBAcDIaPXo0NmzYgIKCAoSHh8Pf3x+nT58WHavZyszMxNChQ3HhwgUEBgZi+fLluO2220THavb4c+J++LnS+NhgERERETkZ78EiIiIicjI2WEREREROxgaLiIiIyMn+Hz6taMEsrZ/rAAAAAElFTkSuQmCC" - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = -2.5:.1:2.5; N = 1_000_000\n", - "histogram(randn(N), bins=x, normalized=true, label=\"normalized histogram\")\n", - "plot!(x,exp.(-x.^2/2)./√(2π), linewidth=3, label=\"exp(-x²/2)/√(2π)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1.3429369941805908e-5, 0.9999799972744179)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "N = 100_000_000\n", - "x = randn(N)\n", - "sum(x)/N, sum(x.^2)/N σ²" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1.2607419023385073e-5, 1.000060923953871)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = randn(N)\n", - "sum(x)/N, sum(x.^2)/N" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(5.105633150334836e-5, 0.9999638965369215)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = randn(N)\n", - "sum(x)/N, sum(x.^2)/N" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-0.00021861216321156037, 0.9999782960223332)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = randn(N)\n", - "sum(x)/N, sum(x.^2)/N" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-3.2452654789061673e-6, 1.0000202384290602)" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = randn(N)\n", - "sum(x)/N, sum(x.^2)/N" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-0.0002076851882014109, 1.0003853536632483)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = randn(N)\n", - "sum(x)/N, sum(x.^2)/N" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The formula for [sample variance](https://en.wikipedia.org/wiki/Variance#Sample_variance):\n", - " $$s_n^2 = \\frac{1}{n-1}\\sum (x_i-\\bar{x})^2$$\n", - " has that funny $n-1$ in the denominator.\n", - " \n", - "The n-1 is referred to as [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction).\n", - "The usual explanation involves vague terms such as [degrees of freedom](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics%29) which always sounded flaky to me." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Let us first check the n-1 by experiment" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "using Statistics, LinearAlgebra" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "f (generic function with 1 method)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function f(n)\n", - " x = randn(n)\n", - " norm(x.-mean(x))^2\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10.007691156448987" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n=11\n", - "mean([f(n) for i=1:1_000_000])" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.0019685835344765" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n=5\n", - "mean([f(n) for i=1:1_000_000])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. A few facts about randn" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "randn(n) is an n-vector of independent standard normals.\n", - "\n", - "If Q is any orthgonal matrix, $Q*$randn(n) is also an n-vector of independent standard normals.\n", - "There is no mathematical way to distinguish randn(n) from $Q*$randn(n). This is because the\n", - "probability function is proportional to $e^{-\\|x\\|^2/2}$, i.e., it only depends on the length of x, not\n", - "the direction.\n", - "\n", - "Also the expected value of randn(1)^2 is 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Linear Algebra makes n-1 easy to understand" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Consider the projection matrix $P=I-1/n$. The matrix-vector product $Px$ computes x-mean(x)." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Rational{Int64},2}:\n", - " 3//4 -1//4 -1//4 -1//4\n", - " -1//4 3//4 -1//4 -1//4\n", - " -1//4 -1//4 3//4 -1//4\n", - " -1//4 -1//4 -1//4 3//4" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# example \n", - "n = 4\n", - "P = Matrix(I,n,n) .- 1//n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we write the eigendecomposition $P=Q\\Lambda Q'$, then $\\Lambda$ has one diagonal entry (say the first) $0$ and the\n", - "rest $1$.\n", - "
    \n", - "Therefore if x=randn(n) so is Qx as a random variable, and $$\\|PQx\\|^2 = \\|Q\\Lambda x\\|^2 = \\|\\Lambda x\\|^2=x_2^2 +\\ldots+x_n^2 $$ which is obviously n-1 in expectation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "@webio": { - "lastCommId": null, - "lastKernelId": null - }, - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/corners.png b/psets/corners.png deleted file mode 100644 index 340451f0..00000000 Binary files a/psets/corners.png and /dev/null differ diff --git a/psets/downloadicon.png b/psets/downloadicon.png deleted file mode 100644 index 3afad21e..00000000 Binary files a/psets/downloadicon.png and /dev/null differ diff --git a/psets/edges.png b/psets/edges.png deleted file mode 100644 index 7e68d5a2..00000000 Binary files a/psets/edges.png and /dev/null differ diff --git a/psets/final.pdf b/psets/final.pdf deleted file mode 100644 index b84b41aa..00000000 Binary files a/psets/final.pdf and /dev/null differ diff --git a/psets/finalpractice.ipynb b/psets/finalpractice.ipynb deleted file mode 100644 index 1d8877ed..00000000 --- a/psets/finalpractice.ipynb +++ /dev/null @@ -1,361 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Additional practice problems for 18.06 final" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 1\n", - "\n", - "Give a brief and convincing argument. (Not an example.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1a) The square of a symmetric matrix is symmetric." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) The square of a projection matrix is a projection matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1c) The square of a matrix with positive entries has positive entries." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1d) The square of a positive definite matrix is positive definite." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1d) The square of a positive Markov matrix is a positive Markov matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1e) The square of an orthogonal matrix is orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 2\n", - "\n", - "Find a $2\\times 2$ matrix that is Markov and Positive Definite." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 3\n", - "\n", - "Am I a vector space? Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3a) All nxn matrices with determinant 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3b) Given a fixed $n\\times n$ matrix $A$, the set of linear tranformations of the form $f(X) = AX + XA$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3c) The set consisting of nxn matrices A that are either positive definite, or -A is positive definite, or A is the zero matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3d) The set of nxn matrices of the form $A-A^T$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3e) Matrix Polynomials of the form $P(X) = A + BX + CX^2$, where $X$ is an indeterminate (symbolic) $n\\times n$ matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 4\n", - "\n", - "Suppose $Q$ is an orthogonal eigenvector matrix of some symmetric matrix $S$, and $x$ is the sum of the columns of $Q$. What is $x^TSx$ in terms of the eigenvalues of $S$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 5\n", - "\n", - "Set up a matrix least squares problem if we are interested in taking $n$ data points $(x_i,y_i)$ and we wish to find the best function $f(x)=c_1 \\sin(x) + c_2 \\cos(x)$ through the data points.\n", - "Write the solution to the least squares problem in terms of the compact SVD of your matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 6\n", - "\n", - "Find a basis for the following vector spaces:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6a) Polynomials of degree at most 4 whose 2nd and 3rd derivatives at 0 are 0." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6b) 2x2 matrices for which trace($A^TX$)=0 where $A$ is the $2\\times 2$ \"ones\" matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 7\n", - "\n", - "One definition of a symmetric matrix $S$ is that $S_{ij}=S_{ji}$ for all pairs $(i,j)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are six permutations of three indices $ijk$: $ijk$,$ikj$,$jik$, etc. Find a basis for all symmetric $2\\times 2 \\times 2$ arrays, where symmetric is defined such that $S_{ijk} = S_{ikj} = S_{jik} = ... $ (Six items all equal.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 8\n", - "\n", - "What is the dimension of the vector space of linear transformations from $2\\times 2\\times 2$ matrices to polynomials of degree 9?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 9\n", - "\n", - "Let $x$ be a vector from $R^n$. The vandermonde matrix $V$ is defined as\n", - "$V_{ij} = x_i^{j-1}$. \n", - "\n", - "(9a) Is the set of $2019\\times 2019$ vandermonde matrices a vector space?
    \n", - "\n", - "(9b) How many parameters are needed to represent an $n\\times n$ vandermonde matrix on a computer?
    \n", - "\n", - "(9c) Suppose $V$ is an invertible vandermonde for a vector $x$ in $\\mathbb{R}^n$. Let $y$ be a vector in $\\mathbb{R}^n$. The vector $c$ that satisfies $Vc=y$ are the coefficients of some polynomial. This polynomial goes through which $n$ points?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9d) Can a 2x2 vandermonde be positive Markov?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9e) Can a 2x2 vandermonde be positive definite?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 10\n", - "\n", - "Compute the gradient of $f(x)=x^𝑇x+w^Tx$ without the use of indices, where $x$ and $w$ are in $\\mathbb{R}^n$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 11\n", - "\n", - "Compute the gradient of $f(A)= trace(A^T A) + trace(W^T A)$, where the matrices are $n \\times n$. The answer should be in the form of an $n\\times n$ matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 12\n", - "\n", - "Explain the following: If $A$ is a two by two rotation through a positive acute angle $\\theta$, then $A$ can not have real eigenvalues." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 13\n", - "\n", - "Compute $d(A^3)$ in terms of $A$ and $dA$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 14\n", - "\n", - "What is the eigenvector with negative eigenvalue of the reflection matrix $I-2xx^T/x^Tx$? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 15\n", - "\n", - "What is the trace of a rank one projection matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 16\n", - "\n", - "The number of nonzero eigenvalues of a symmetric matrix is always (a) greather than or equal to the rank (b) less than or equal to the rank (c) equal to the rank. Pick the best answer and explain." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 17\n", - "\n", - "A markov matrix has second eigenvalue $\\lambda_2 = \\left(\\frac{1}{1000}\\right)^{\\frac{1}{1806}}$ and all other eigenvalues much smaller. After 1806 transition steps, approximately how many digits of the steady state might you expect to see?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 18\n", - "\n", - "A symmetric matrix has eigenvalues $1,2,3,4,5$. Give a direct argument (without using the 7 equivalent properties of positive definite matrices) that $x^T S x>0$ if $x$ is not $0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 19\n", - "\n", - "Find a diagonal similarity transformation that proves that the matrix $\\begin{pmatrix} 1 & 5 \\\\ 0 & 1 \\end{pmatrix}$ is similar to $\\begin{pmatrix} 1 & 10 \\\\ 0 & 1 \\end{pmatrix}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 20\n", - "\n", - "Suppose that $A = QBQ^T$ where $Q$ is orthogonal but $A$ and $B$ need not be symmetric." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(20a) Are $A$ and $B$ necessarily similar?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(20b) Do $A$ and $B$ necessarily have the same singular values?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(21) If $A$ is positive definite and $X$ is non-singular, is $X^TAX$ necessarily positive definite? Explain briefly." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(22) Are the matrices similar to a positive Markov matrices necessarily positive Markov?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/finalpracticesol.ipynb b/psets/finalpracticesol.ipynb deleted file mode 100644 index c5043a82..00000000 --- a/psets/finalpracticesol.ipynb +++ /dev/null @@ -1,696 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Solutions to practice problems for 18.06 final" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 1\n", - "\n", - "Give a brief and convincing argument. (Not an example.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1a) The square of a symmetric matrix is symmetric." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) The square of a projection matrix is a projection matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1c) The square of a matrix with positive entries has positive entries." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1d) The square of a positive definite matrix is positive definite." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1e) The square of a positive Markov matrix is a positive Markov matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1f) The square of an orthogonal matrix is orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "(1a) If $A$ is symmetric then $A=A^T$. We also recall the rule that $(AB)^T = B^TA^T$. So \n", - "$$(A^2)^T = (AA)^T = A^TA^T = A^2,$$\n", - "and so $A^2$ is also symmetric.\n", - "\n", - "(1b) A matrix $P$ is a projection matrix if it is symmetric and $P^2=P$. We showed in part (a) that the square of a symmetric matrix is also symmetric. We also need to show that $(P^2)^2 = P^2$. But since $P$ is a projection, both sides of this equality are $P$. So $P^2$ is also a projection matrix.\n", - "\n", - "(1c) Suppose every entry of a matrix $A$ is positive. Every entry of $A^2$ is obtained by taking the dot product of a column and row of $A$. Since every entry of $A$ is positive, each entry of $A^2$ is obtained by taking sums and products of positive numbers. And so every entry of $A^2$ will be positive. \n", - "\n", - "(1d) Suppose $A$ is positive definite. Then all of the eigenvalues $\\lambda$ of $A$ are real and positive. The eigenvalues of $A^2$ are $\\lambda^2$ which are also necessarily positive. And so $A^2$ is positive definite.\n", - "\n", - "(1e) A matrix $A$ is a positive Markov matrix precisely when all its entries are positive and $\\mathbf{1} A=\\mathbf{1}$, where $\\mathbf{1}$ denotes the all ones row vector of the appropriate size. We have shown that the square of a matrix with only positive entries has only positive entries. As $\\mathbf{1} A^2=(\\mathbf{1} A) A=\\mathbf{1} A=\\mathbf{1}$, we conclude that the square of a positive Markov matrix is a positive Markov matrix.\n", - "\n", - "(1f) An orthogonal matrix obeys $Q^TQ = I$. Now \n", - "$$(Q^2)^TQ^2 = Q^TQ^TQQ = Q^T(Q^TQ)Q = Q^TQ = I,$$\n", - "and so $Q^2$ is also an orthogonal matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 2\n", - "\n", - "Find a $2\\times 2$ matrix that is Markov and Positive Definite." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "The symmetric matrix $$A = \\begin{pmatrix} 1-p & p \\\\ p & 1-p \\end{pmatrix}$$ has eigenvalues $1$ and $1-2p$. For $0 \\le p<1/2$ the two eigenvalues are positive and the Matrix is Markov. For example take $p=1/4$, or even $p=0$ to get the identity (which is Markov but not positive Markov.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 3\n", - "\n", - "Am I a vector space? Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3a) All nxn matrices with determinant 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3b) Given a fixed $n\\times n$ matrix $A$, the set of linear tranformations of the form $f(X) = AX + XA$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3c) The set consisting of nxn matrices A that are either positive definite, or -A is positive definite, or A is the zero matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3d) The set of nxn matrices of the form $A-A^T$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3e) Matrix Polynomials of the form $P(X) = A + BX + CX^2$, where $X$ is an indeterminate (symbolic) $n\\times n$ matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "(a) This is **not** a vector space. If $A$ is a matrix with $\\det A = 1$, then $cA$ has determinant $c^n\\det A = c^n \\neq 1$ generally.\n", - "\n", - "(b) This is a vector space. Consider two such transformations in this set, $f_1(X) = AX+XA$ and $f_2(X) = BX + XB$. Consider an arbitrary linear combination of these two transformations $g(X) = af_1(X) + bf_2(X)$, where $a,b\\in\\mathbb{R}$. Then\n", - "$$g(X) = a(AX+XA)+b(BX+XB) = (aA+bB)X+X(aA+bB),$$\n", - "which is a linear transformation of the correct form.\n", - "\n", - "(c) This is **not** a vector space. Consider the two matrices $A=\\begin{pmatrix} 1 & 0 \\\\ 0 & 2 \\end{pmatrix}$ and $B = \\begin{pmatrix} -2 & 0 \\\\ 0 & -1 \\end{pmatrix}$. Then $A$ and $-B$ have eigenvalues 1,2, so they belong to this set. However $A+B = \\begin{pmatrix} -1 & 0 \\\\ 0 & 1 \\end{pmatrix}$ which has eigenvalues $\\pm 1$ and so does not belong to this set.\n", - "\n", - "(d) This is a vector space. Let $C = A-A^T$ and $D = B-B^T$ be two matrices in this set. Consider an arbitrary linear combination, where $\\lambda,\\mu \\in \\mathbb{R}$:\n", - "$$\\lambda C + \\mu D = \\lambda (A-A^T)+\\mu(B-B^T) = (\\lambda A + \\mu B) - (\\lambda A^T + \\mu B^T) = (\\lambda A + \\mu B) - (\\lambda A + \\mu B)^T$$\n", - "which is a matrix of the required form.\n", - "\n", - "(e) This is a vector space. Take two such matrix polynomials $P_1(X) = A+BX+CX^2$ and $P_2(X) = D+EX+FX^2$, and form a linear combination $P(X) = a P_1(X) + bP_2(X)$ where $a,b\\in\\mathbb{R}$, then\n", - "$$P(X) = a(A+BX+CX^2) + b (D+EX+FX^2) = (aA+bD) + (aB+bE)X+(aC+bF)X^2,$$\n", - "which is a matrix polynomial of the required form." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 4\n", - "\n", - "Suppose $Q$ is an orthogonal eigenvector matrix of some symmetric matrix $S$, and $x$ is the sum of the columns of $Q$. What is $x^TSx$ in terms of the eigenvalues of $S$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "Let $e$ be the \"ones vector\", so we have$x=Qe$. Using the eigenfactorization $S=Q\\Lambda Q^T$, we see that\n", - "$x^T S x=e^T \\Lambda e$ which is the sum of the eigenvalues." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 5\n", - "\n", - "Set up a matrix least squares problem if we are interested in taking $n$ data points $(x_i,y_i)$ and we wish to find the best function $f(x)=c_1 \\sin(x) + c_2 \\cos(x)$ through the data points.\n", - "Write the solution to the least squares problem in terms of the compact SVD of your matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "Let \n", - "$$A = \\begin{pmatrix} \\sin{x_1} & \\cos{x_1} \\\\ \\sin{x_2} & \\cos{x_2} \\\\ \\vdots & \\vdots \\\\ \\sin{x_n} & \\cos{x_n} \\end{pmatrix}, \\;\\; b = \\begin{pmatrix} y_1 \\\\ y_2 \\\\ \\vdots \\\\ y_n \\end{pmatrix}, \\;\\; x = \\begin{pmatrix} c_1 \\\\ c_2 \\end{pmatrix}$$\n", - "\n", - "We want to then find $\\hat{x}$ which is the least squares solution to $Ax = b$, in the sense that it minimizes the least squares error $\\Vert A\\hat{x} -b \\Vert^2$. Recall that if $A=U\\Sigma V^T$ is the compact SVD of a matrix $A$, then the least squares solution is given by \n", - "$$\\boxed{\\hat{x} = V\\Sigma^{-1} U^Tb}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 6\n", - "\n", - "Find a basis for the following vector spaces:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6a) Polynomials of degree at most 4 whose 2nd and 3rd derivatives at 0 are 0." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6b) 2x2 matrices for which trace($A^TX$)=0 where $A$ is the $2\\times 2$ \"ones\" matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "(a) Consider the most general polynomial of degree at most 4 \n", - "$$p(x) = ax^4+bx^3+cx^2+dx+e$$\n", - "Then\n", - "\\begin{align*}\n", - "p''(x) &= 12ax^2+6bx+2c\\\\\n", - "p'''(x) &= 24ax+6b\n", - "\\end{align*}\n", - "We can then see that the second and the third derivatives vanish at zero if and only $b=c=0$. So a basis for this vector spaces would be the set\n", - "$$\\boxed{\\{x^4,x,1\\}}$$\n", - "\n", - "(b) Let $X=\\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$, then trace$(A^TX) = a+b+c+d$. The space of matrices for which trace$(A^TX) = 0 $ therefore depends on three parameters, e.g. we can choose any values for $a,b,c$ independently, but the value of $d$ will be fixed by this restriction. This vector space has dimension three, with a possible basis\n", - "$$\\boxed{\\left\\{ \\begin{pmatrix} 1 & 0 \\\\ 0 & -1 \\end{pmatrix}, \\begin{pmatrix} 0 & 1 \\\\ 0 & -1 \\end{pmatrix}, \\begin{pmatrix} 0 & 0 \\\\ 1 & -1 \\end{pmatrix}\\right\\}}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 7\n", - "\n", - "One definition of a symmetric matrix $S$ is that $S_{ij}=S_{ji}$ for all pairs $(i,j)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are six permutations of three indices $ijk$: $ijk$,$ikj$,$jik$, etc. Find a basis for all symmetric $2\\times 2 \\times 2$ arrays, where symmetric is defined such that $S_{ijk} = S_{ikj} = S_{jik} = ... $ (Six items all equal.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "For $2\\times 2 \\times 2$ arrays, symmetry imposes the restriction that $S_{121} = S_{112} = S_{211}$ and $S_{122}=S_{212}=S_{221}$, while $S_{111}$ and $S_{222}$ are arbitrary. Symmetric $2\\times 2 \\times 2$ arrays therefore depend on four independent parameters, and so a basis will contain four independent arrays obeying the symmetry condition. A possible basis contains the four arrays with the following:\n", - "* $S_{111} = 1$, all other entries 0\n", - "* $S_{222} = 1$, all other entries 0\n", - "* $S_{121} = S_{112} = S_{211} =1$, all other entries 0\n", - "* $S_{122}=S_{212}=S_{221} =1$, all other entries 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 8\n", - "\n", - "What is the dimension of the vector space of linear transformations from $2\\times 2\\times 2$ arrays to polynomials of degree 9?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "$2\\times 2\\times 2$ arrays form a $2^3 = 8$ dimensional vector space, while polynomials of degree at most 9 form a 10 dimensional vector space. In order to specify a linear transformation between these two vector spaces, we have to specify which polynomial of degree 9 we will send each of the eight elements in any basis of $2\\times 2\\times 2$ arrays. We will therefore need $8\\times 10 = 80$ parameters to specify such a linear transformation, so the vector space of these linear transformations is an $80$ dimensional vector space. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 9\n", - "\n", - "Let $x$ be a vector from $R^n$. The vandermonde matrix $V$ is defined as\n", - "$V_{ij} = x_i^{j-1}$. \n", - "\n", - "(9a) Is the set of $2019\\times 2019$ vandermonde matrices a vector space?
    \n", - "\n", - "(9b) How many parameters are needed to represent an $n\\times n$ vandermonde matrix on a computer?
    \n", - "\n", - "(9c) Suppose $V$ is an invertible vandermonde for a vector $x$ in $\\mathbb{R}^n$. Let $y$ be a vector in $\\mathbb{R}^n$. The vector $c$ that satisfies $Vc=y$ are the coefficients of some polynomial. This polynomial goes through which $n$ points?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9d) Can a 2x2 vandermonde be positive Markov?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9e) Can a 2x2 vandermonde be positive definite?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution \n", - "\n", - "(a) This is not a vector space. The first column of a Vandermonde matrix is a column of ones by definition. Therefore if we have a Vandermonde matrix and multiply by any constant that is not 1, we will obtain a matrix that cannot be a Vandermonde matrix.\n", - "\n", - "(b) In order to represent a Vandermonde matrix, we must know the components of the vector $x\\in\\mathbb{R}^n$. We will therefore need $n$ parameters (the components of $x$).\n", - "\n", - "(c) The equation $Vc=y$ is a system of $n$ equations of the form\n", - "$$c_1+c_2x_i+c_3x_i^2+ ... + c_nx_i^{n-1} = y_i$$\n", - "for $i=1,..,n$. Therefore the components of $c$ are the coefficients of a polynomial $y = c_1+c_2x+...+c_nx^{n-1}$ which passes through each of the $n$ points $(x_i,y_i)$.\n", - "\n", - "(d) This is not possible. The first column of a Vandermonde matrix is a column of ones, so this violates the requirement that the columns of a Markov matrix sum to 1.\n", - "\n", - "(e) Yes, this is possible. For example\n", - "$$V = \\begin{pmatrix} 1 & 1 \\\\ 1 & 2 \\end{pmatrix}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 10\n", - "\n", - "Compute the gradient of $f(x)=x^𝑇x+w^Tx$ without the use of indices, where $x$ and $w$ are in $\\mathbb{R}^n$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "Solution 1: We recall the technique is to identify $df$ as $dx^T(gradient)=(gradient)^Tdx$.
    \n", - "$$df = d(x^Tx+w^Tx)=dx^Tx + x^T dx +w^Tdx = dx^T(2x+w).$$\n", - "So the gradient is $2x+w$.\n", - "\n", - "Solution 2: We can expand $f(x+dx)$ as follows:\n", - "\\begin{align}\n", - "f(x+dx) &= (x+dx)^T(x+dx) + w^T(x+dx)\\\\\n", - " &= x^Tx+(dx)^Tx+x^Tdx + (dx)^Tdx + w^Tx + w^Tdx\\\\\n", - " &= x^Tx + 2x^T dx + (dx)^Tdx + w^Tx + w^Tdx \\\\\n", - " &= x^Tx + w^Tx + (2x^T+w^T)dx + (dx)^Tdx \\\\\n", - " &= f(x) + (\\nabla f)^T dx + (dx)^Tdx \n", - "\\end{align}\n", - "and so \n", - "$$\\boxed{\\nabla f = 2x+w}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 11\n", - "\n", - "Compute the gradient of $f(A)= trace(A^T A) + trace(W^T A)$, where the matrices are $n \\times n$. The answer should be in the form of an $n\\times n$ matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution \n", - "Solution 1: We recall that the technique is to identify $df$ as $trace(dA^T(gradient))=trace((gradient)^TdA)$.
    \n", - "$$df = trace(dA^T A) + trace(A^T dA) + trace(W^T dA) = trace(dA^T(2A+W)).$$\n", - "So the gradient is $2A+W$.\n", - "\n", - "Solution 2: We can expand $f(A+dA)$ as follows:\n", - "\\begin{align}\n", - "f(A+dA) &= trace((A+dA)^T(A+dA)) + trace(W^T(A+dA)) \\\\\n", - " &= trace(A^TA + (dA)^TA + A^TdA + (dA)^TdA) + trace(W^TA+W^TdA)\\\\\n", - " &= trace(A^TA) + trace(W^TA) + trace((dA)^TA + A^TdA + W^TdA) + trace((dA)^TdA) \\\\\n", - " &= f(A) + trace((2A + W)^TdA) + trace((dA)^TdA) \\\\\n", - "\\end{align}\n", - "and so \n", - "$$\\boxed{\\nabla f = 2A+W}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 12\n", - "\n", - "Explain the following: If $A$ is a two by two rotation through a positive acute angle $\\theta$, then $A$ can not have real eigenvalues." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "If the matrix $A$ is a rotation matrix then every vector gets rotated by $\\theta$. If $A$ had real eigenvalues, then the eigenvalue equation $Ax=\\lambda x$ implies that any vector in the direction of $x$ will have its direction preserved - multiplying by $A$ would just scale it by the eigenvalue. But this is inconsistent with every vector being rotated. Therefore $A$ cannot have real eigenvalues." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 13\n", - "\n", - "Compute $d(A^3)$ in terms of $A$ and $dA$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution \n", - "\n", - "Solution 1: From the product rule , $d(A^3) = Ad(A^2) + dA A^2$. Using the product rule\n", - "again, we have $d(A^2)=AdA + dA A$. Putting both together gives \n", - "$$\\boxed{d(A^3) = (dA)A^2+A(dA)A + A^2(dA)}$$.\n", - "(More conveniently one can apply directly the product rule in the form\n", - "$d(A*A*A)=dA*A *A + A*dA*A + A*A*dA$, which extends to any number of multiplicands).\n", - "\n", - "\n", - "Solution 2: Let $f(A) = A^3$. Then \n", - "\\begin{align}\n", - "f(A+dA) &= (A+dA)^3\\\\\n", - " &= A^3+((dA)A^2+A(dA)A + A^2(dA)) + \\text{terms involving (dA)^2 or higher}\n", - "\\end{align}\n", - "and so \n", - "$$\\boxed{d(A^3) = (dA)A^2+A(dA)A + A^2(dA)}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 14\n", - "\n", - "What is the eigenvector with negative eigenvalue of the reflection matrix $I-2xx^T/x^Tx$? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution \n", - "\n", - "To figure this out it's a good idea to first think about what a reflection matrix does. Everything orthogonal to the vector $x$ is unchanged by multiplying by the reflection matrix, while everything in the direction of $x$ gets multiplied by $-1$ - so $x$ is an eigenvector with eigenvalue $-1$. \n", - "\n", - "To see this symbolically, lets multiply $R = I-2xx^T/x^Tx$ by $x$\n", - "$$(I-2xx^T/x^Tx)x = x - 2x(x^Tx)/x^Tx = x-2x = -x$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 15\n", - "\n", - "What is the trace of a rank one projection matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "Let $P$ be a rank one projection matrix. The only possible eigenvalues for a projection matrix are $0$ and $1$. If $P$ is rank 1, then it has a $n-1$ dimensional nullspace, and so must have $n-1$ zero eigenvalues; and therefore exactly one eigenvalue equal to 1. Since the trace of a matrix is the sum of the eigenvalues, the trace of $P$ is $1$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 16\n", - "\n", - "The number of nonzero eigenvalues of a symmetric matrix is always (a) greather than or equal to the rank (b) less than or equal to the rank (c) equal to the rank. Pick the best answer and explain." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "Every symmetric matrix is diagonalizable, therefore every eigenvalue has a distinct eigenvector (even if the eigenvalues are repeated). There will be $n$ eigenvectors - each zero eigenvalue will therefore correspond to a distinct vector in the (n-r) dimensional nullspace, and each nonzer oeigenvalue will correspond to a distinct vector in the r dimensional column space. Therefore the number of nonzero eigenvalues is always exactly equal to the rank of a symmetric matrix. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 17\n", - "\n", - "A markov matrix has second eigenvalue $\\lambda_2 = \\left(\\frac{1}{1000}\\right)^{\\frac{1}{1806}}$ and all other eigenvalues much smaller. After 1806 transition steps, approximately how many digits of the steady state might you expect to see?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "For a Markov matrix $M$ and any vector $v$, we can write\n", - "\\begin{align}\n", - "M^nv &= c_1\\lambda_1^n v_1 + c_2\\lambda_2^n v_2 + ...\\\\\n", - "&= c_1 v_1 + c_2\\left(\\frac{1}{1000}\\right)^{\\frac{n}{1806}} v_2 + ...\n", - "\\end{align}\n", - "So after $n=1806$ transition steps we have\n", - "\\begin{align}\n", - "M^{1806}v = c_1 v_1 + c_2\\left(\\frac{1}{1000}\\right) v_2 + ...\n", - "\\end{align}\n", - "Assuming the components of $v_1$ and $v_2$ and the constants $c_1$ and $c_2$ are approximately the same size, we would obtain the first three digits of the steady state." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 18\n", - "\n", - "A symmetric matrix has eigenvalues $1,2,3,4,5$. Give a direct argument (without using the 7 equivalent properties of positive definite matrices) that $x^T Sx>0$ if $x$ is not $0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "Since $S$ is symmetric, we know that it is diagonalizable we can write $S = Q\\Sigma Q^T$, where $Q$ is an orthogonal matrix. Since all the eigenvalues are positive, we can write $\\Sigma = M^2$, where $M$ is a diagonal matrix whose elements are the square roots of the eigenvalues. Then\n", - "$$x^TSx = x^TQM^2Q^Tx = (MQ^Tx)^T(MQ^Tx) \\geq 0$$\n", - "Since $Q$ is square orthogonal (and therefore full rank), $Q^Tx$ can only be zero when $x=0$. Similarly $M$ is diagonal with strictly positive entries on the diagonal, and so $MQ^Tx$ can only be zero when $x=0$. Therefore \n", - "$$x^TSx = (MQ^Tx)^T(MQ^Tx) > 0$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 19\n", - "\n", - "Find a diagonal similarity transformation that proves that the matrix $\\begin{pmatrix} 1 & 5 \\\\ 0 & 1 \\end{pmatrix}$ is similar to $\\begin{pmatrix} 1 & 10 \\\\ 0 & 1 \\end{pmatrix}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "\n", - "One can look for a $t$ such that\n", - "$$\\begin{pmatrix} 1 & 0 \\\\ 0 & 1/t \\end{pmatrix}\n", - "\\begin{pmatrix} 1 & 5 \\\\ 0 & 1 \\end{pmatrix}\n", - "\\begin{pmatrix} 1 & 0 \\\\ 0 & t \\end{pmatrix} =\n", - "\\begin{pmatrix} 1 & 10 \\\\ 0 & 1 \\end{pmatrix}.$$\n", - "It is readily seen that $t=2$ so\n", - "$$\\begin{pmatrix} 1 & 0 \\\\ 0 & 1/2 \\end{pmatrix}\n", - "\\begin{pmatrix} 1 & 5 \\\\ 0 & 1 \\end{pmatrix}\n", - "\\begin{pmatrix} 1 & 0 \\\\ 0 & 2 \\end{pmatrix} =\n", - "\\begin{pmatrix} 1 & 10 \\\\ 0 & 1 \\end{pmatrix}.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 20\n", - "\n", - "Suppose that $A = QBQ^T$ where $Q$ is orthogonal but $A$ and $B$ need not be symmetric." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(20a) Are $A$ and $B$ necessarily similar?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(20b) Do $A$ and $B$ necessarily have the same singular values?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "(a) $A$ and $B$ are similar whenever you have $A=XBX^{-1}$ for some matrix $X$. In this case $X=Q$ is orthogonal, and so $X^{-1}=Q^T$.\n", - "\n", - "(b) $A$ and $B$ necessarily have the same singular values. Suppose $B$ has a svd $B = U\\Sigma V^T$. Then\n", - "$$A = QBQ^T = QU\\Sigma V^TQ^T = (QU)\\Sigma(QV)^T$$\n", - "which is in svd form. So $A$ and $B$ have the same singular values." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 21\n", - "\n", - "If $A$ is positive definite and $X$ is non-singular, is $X^TAX$ necessarily positive definite? Explain briefly." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution \n", - "\n", - "If $A$ is positive definite then $x^TAx >0$ for any $x\\neq 0$. Now consider \n", - "$$x^TX^TAXx = (Xx)^T A (Xx) = y^T A y \\geq 0 $$\n", - "for all $y$, where $y = Xx$. However, since $X$ is non-singular, $y=0$ if and only if $x=0$. And so \n", - "$$x^TX^TAXx >0$$\n", - "for all $x\\neq 0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Problem 22\n", - "\n", - "Are the matrices similar to positive Markov matrices necessarily positive Markov?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solution\n", - "\n", - "No. Consider the matrix\n", - "$$M = \\begin{pmatrix} 0.5 & 0.5 \\\\ 0.5 & 0.5 \\end{pmatrix}.$$\n", - "This is a positive Markov matrix with eigenvalues $1$ and $0$. Hence this matrix is similar to the diagonal matrix\n", - "$$D = \\begin{pmatrix} 1 & 0 \\\\ 0 & 0 \\end{pmatrix},$$\n", - "which is certainly not positive Markov, since three of its entries are equal to 0. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.3", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/finalsol.pdf b/psets/finalsol.pdf deleted file mode 100644 index c86dd017..00000000 Binary files a/psets/finalsol.pdf and /dev/null differ diff --git a/psets/graph.png b/psets/graph.png deleted file mode 100644 index a62a6048..00000000 Binary files a/psets/graph.png and /dev/null differ diff --git a/psets/loops.png b/psets/loops.png deleted file mode 100644 index 53d4890c..00000000 Binary files a/psets/loops.png and /dev/null differ diff --git a/psets/menuicon.png b/psets/menuicon.png deleted file mode 100644 index d4faabd7..00000000 Binary files a/psets/menuicon.png and /dev/null differ diff --git a/psets/midterm_1_practice_problems.ipynb b/psets/midterm_1_practice_problems.ipynb deleted file mode 100644 index d6d505b3..00000000 --- a/psets/midterm_1_practice_problems.ipynb +++ /dev/null @@ -1,502 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Practice problems - midterm 1\n", - "\n", - "Exam 1 will likely consist of problems that may be like the sample ones below in spirit, the problems in the psets, and material in the lectures. The number of problems will of course be fewer for a 50 minute exam. Also familiarizing yourselves with these sort of problems will, no doubt, make the exam itself easier." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1.\n", - "\n", - "a) The rowspace of $\\begin{pmatrix} 1 & -1 & 0 \\\\ 0 & 1 & -1 \\\\ 0 & 0 & 0 \\end{pmatrix}$\n", - "may be described as a plane through the origin. What is the normal to this plane?\n", - "
    \n", - "(This problem can be done by inspection and common sense.)\n", - "
    b) Also describe the nullspace." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "a) The row space of this matrix is the set of all vectors that can be written as a linear combination of its rows. In this case, the row space is the set of all vectors of the form\n", - "$$\\begin{pmatrix} x \\\\ y \\\\ z \\end{pmatrix} = a\\begin{pmatrix} 1 \\\\ -1 \\\\ 0 \\end{pmatrix} + b \\begin{pmatrix} 0 \\\\ 1 \\\\ -1 \\end{pmatrix}$$\n", - "for scalars $a,b\\in\\mathbb{R}$. This gives three equations $x=a, y=b-a$ and $z=-b$ in terms of the two scalars. We can eliminate these two scalars and write a relationship between the three components:\n", - "$$x+y+z = 0.$$\n", - "We notice that this is the equation of a plane through the origin, with the normal $\\begin{pmatrix} 1 \\\\ 1 \\\\ 1 \\end{pmatrix}$.\n", - "\n", - "b) The nullspace is the set of all vectors $v = \\begin{pmatrix} v_1 \\\\ v_2 \\\\ v_3 \\end{pmatrix} $ for which\n", - "$$\\begin{pmatrix} 1 & -1 & 0 \\\\ 0 & 1 & -1 \\\\ 0 & 0 & 0 \\end{pmatrix}v = 0$$\n", - "This matrix equation implies that $v_1=v_2=v_3$, so the nullspace of the matrix is the set of all vectors of the form\n", - "$$c\\begin{pmatrix} 1 \\\\ 1 \\\\ 1\\end{pmatrix}$$ \n", - "for any real number $c$. This is a line in $\\mathbb{R}^3$, and in fact is parallel to the normal we found in part a). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2.\n", - "\n", - "a) Suppose $A=LU$ where $A,L,$ and $U$ are nxn invertible. Write the solution to $Ax=b$ in terms of $b$ and possibly\n", - "$L$,$U$,$L^{-1}$ and $U^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "b) Suppose $A = QR$ is square, where $Q$ is orthogonal and $R$ is upper triangular and invertible. Write the solution to $Ax=b$ in terms of $b$ and possibly\n", - "$Q$,$Q^T$,and $R$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "c) Suppose $A=U\\Sigma V^T$ is the rank $r$ svd for a rectangular $A$ and $b=Uw$. Write down a solution to $Ax=b$ \n", - "in terms of $b$ and possibly $U$,$U^T$,$\\Sigma$,$\\Sigma^{-1}$, $V$, or $V^T$ and $w$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "a) If $Ax = b$, then $LUx = b$. Since $L$ and $U$ are invertible, we can write the solution as \n", - "$$\\boxed{x = (LU)^{-1}b = U^{-1}L^{-1} b}$$\n", - "b) If $Ax = b$, then $QRx = b$. $R$ is invertible and $Q$ is (square) orthogonal so that $Q^{-1}=Q^T$. We can therefore write the solution as \n", - "$$\\boxed{x = (QR)^{-1}b = R^{-1}Q^{-1}b = R^{-1}Q^T b}$$\n", - "c) If $Ax = b$, then $U\\Sigma V^Tx = Uw$. We can multiply both sides by $U^T$ to obtain $\\Sigma V^T x = w$. We can then multiply both sides by $\\Sigma^{-1}$ to obtain $V^Tx = \\Sigma^{-1}w$. Since $A$ is rectangular matrix, $V$ is not necessarily square, and so may not be invertible. However, we know that $b$ is in the column space of $U$, and therefore in the column space of $A$, so this system definitely has a solution. By inspection, we can see that a possible solution is $\\boxed{x=V\\Sigma^{-1} w}$, since $V^T(V\\Sigma^{-1} w)=\\Sigma^{-1}w$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3.\n", - "\n", - "a) How many parameters are needed to represent the $n \\times n$ identity matrix on a computer?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "b) How many parameters are needed to represent the matrix $vv^T+$Diagonal($v$) on a computer, where $v \\in \\mathbb{R}^n$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "c) How many parameters are needed to represent the $\\Sigma$ in the rank-r svd?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "d) How many parameters are needed to represent the $L$ in a unit $n$ by $n$ lower triangular matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "a) Only one parameter is needed to represent the $n\\times n$ identity matrix. It only has ones on the diagonal. The only piece of information we need to store is the dimensions of the matrix. But since the identity matrix is always square, this can be stored in a single parameter.\n", - "\n", - "b) A matrix of this form is uniquely determined by the vector $v\\in \\mathbb{R}^n$. It therefore depends on $n$ parameters (the components of $v$).\n", - "\n", - "c) In general, $r$ parameters are needed to represent the $\\Sigma$ in the SVD. It is a diagonal matrix, so we only need to store the $r$ singular values, which lie along its diagonal.\n", - "\n", - "d) The $L$ in the $LU$ factorization is a lower triangular matrix. Every element along the diagonal is equal to $1$. We therefore only need to store the elements in the matrix that lie below the main diagonal. A $n\\times n$ matrix has $n^2$ components, there are $n$ elements on the diagonal, and therefore there are\n", - "$$\\boxed{\\frac{n^2-n}{2}}$$\n", - "components in the matrix below the main diagonal, i.e. there are $(n^2-n)/2$ parameters. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4.\n", - "\n", - "Am I necessarily a vector space? Why or why not? (Argue that all real linear combinations are in the space, or zero or some other linear combination is not in the space.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a) In $R^3$ the xy-plane together with the z axis?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "b) All differentiable functions $y(x)$ that satisfy $y'(x)=y(x)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "c) Given any two matrices $A$ and $B$, all vectors $x$ such that $Ax=0$ and $Bx=0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "d) Given any two matrix $A$ and $B$, all vectors $x$ such that either $Ax=0$ or $Bx=0$ (or both)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "e) All polynomials in $x$ whose value at $x=2019$ is $0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "f) All 10x10 matrices whose diagonal elements add to $0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "a) This is **not** a vector space. Consider the vectors $v_1 = \\begin{pmatrix} 1 \\\\ 1 \\\\ 0 \\end{pmatrix}$ and $v_2 = \\begin{pmatrix} 0\\\\ 0 \\\\ 1 \\end{pmatrix}$. Then $v_1$ lies in the $xy$-plane, and $v_2$ is on the $z$-axis. However, their sum $v_1+v_2 = \\begin{pmatrix} 1 \\\\ 1 \\\\ 1 \\end{pmatrix}$ which is neither in the $xy$-plane noe on the $z$-axis.\n", - "\n", - "b) This is a vector space. Take two functions $y_1(x)$ and $y_2(x)$ for which $y_1'(x)=y_1(x)$ and $y_2(x)$. Then consider the new function $f(x) = ay_1(x)+by_2(x)$, where $a,b\\in\\mathbb{R}$ are scalars. Then\n", - "$$f'(x) = ay_1'(x)+by_2'(x) = ay_1(x)+by_2(x) = f(x)$$\n", - "\n", - "c) This is a vector space. Consider two vectors $x_1$ and $x_2$ for which $Ax_1=0, Bx_1=0, Ax_2 = 0$ and $Bx_2 = 0$. Then $A(ax_1+bx_2) = aAx_1+bAx_2 =0$ and $B(ax_1+bx_2) = aBx_1+bBx_2 = 0$.\n", - "\n", - "d) This is generally **not** a vector space. Consider a vector $x_1$ for which $Ax_1 = 0$ but $Bx_1\\neq0$, and another vector $x_2$ for which $Bx_2=0$ but $Ax_2\\neq 0$. Then\n", - "\\begin{align*}\n", - "A(ax_1+bx_2)= aAx_1 + bAx_2 = bAx_2 \\neq 0 \\\\\n", - "B(ax_1+bx_2)= aBx_1 + bBx_2 = aBx_1 \\neq 0\n", - "\\end{align*}\n", - "and so arbitrary linear combinations do not satisfy either condition.\n", - "\n", - "e) This is a vector space. Consider two function $f(x)$ and $g(x)$ for which $f(2019)=g(2019)=0$. Consider the new function $h(x) = af(x)+bg(x)$. Then $h(2019) = af(2019)+bg(2019) = 0$, and so $h(x)$ is also in the space.\n", - "\n", - "f) This is a vector space. Consider two $10\\times 10$ matrices $A$ and $B$, with components $A_{ij}$ and $B_{ij}$ for which $\\sum_{i=1}^{10} A_{ii} = \\sum_{i=1}^{10} B_{ii} = 0$. Consider the new matrix $C=aA+bB$ which has components $C_{ij} = aA_{ij}+bB_{ij}$. Then \n", - "$$\\sum_{i=1}^{10} C_{ii} = \\sum_{i=1}^{10} (aA_{ii}+bB_{ii}) = a \\sum_{i=1}^{10} A_{ii} + b\\sum_{i=1}^{10} B_{ii} = 0$$\n", - "so $C$ is also in the space. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5.\n", - "\n", - "Factor $\\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$ into an upper triangular $U$ times a unit lower triangular $L$. When is this impossible? Write the three parameters in $U$ and the one parameter in $L$ in terms of $a,b,c,d$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "We saw this on pset 1. We have $$A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} = \\begin{pmatrix} 1 & 0 \\\\ x & 1 \\end{pmatrix}\\begin{pmatrix} u & v \\\\ 0 & w \\end{pmatrix}$$\n", - "Multiplying out the two matrices on the right hand yields:\n", - "$$\\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} = \\begin{pmatrix} u & v \\\\ ux & vx+w\\end{pmatrix}$$\n", - "This gives us four equations:\n", - "\\begin{align*}\n", - "u &= a\\\\\n", - "v &= b\\\\\n", - "ux &= c\\\\\n", - "vx+w &= d.\n", - "\\end{align*}\n", - "The first two equations immediately tell us that $u=a$ and $v=b$. We can solve the third to tell us that $x = c/a$, and then substituting into the fourth tells us that $w = d-bc/a$. We have thus found the LU factorization:\n", - "$$\\boxed{A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} = \\begin{pmatrix} 1 & 0 \\\\ c/a & 1 \\end{pmatrix}\\begin{pmatrix} a & b \\\\ 0 & d-bc/a \\end{pmatrix}}$$\n", - "\n", - "This exists provided that $\\boxed{a\\neq 0}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6.\n", - "\n", - "Suppose a rank-1 matrix is written in terms of the rank r svd, as $A=uσv^T$, where $\\sigma>0$ is a scalar.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a) What is the sum of squares of the entries in the first column of $A$ in terms of entries in $u$,$v$ and $\\sigma$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "b) In simplest form, what is the sum of squares of all the entries of $A$ in terms of possibly $u$,$v$, and $\\sigma?$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "Suppose $A$ is a $m\\times n$ matrix, with $A = u\\sigma v^T$. Then $A$ has components $A_{ij} = \\sigma u_iv_j$. \n", - "a) The sum of squares of the entries in the first column of $A$ is then\n", - "$$\\sum_{i=1}^m A_{i1}^2 = \\sigma^2v_1^2\\sum_{i=1}^m u_i^2 = \\sigma^2v_1^2\\Vert u \\Vert^2$$\n", - "\n", - "b) The sum of squares of all the entries of $A$ is\n", - "$$\\sum_{j=1}^n \\sum_{i=1}^m A_{ij}^2 = \\sigma^2\\Vert u \\Vert^2 \\sum_{j=1}^n v_j^2 = \\sigma^2\\Vert u \\Vert^2\\Vert v \\Vert^2$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7\n", - "\n", - "Suppose $U = [U_1 | U_2]$ is a square $U$ matrix from the full SVD of an mxn A, what is $U_1^T U_2$? \n", - "\n", - "Pick from one of the four multiple choices that follow and explain your answer.
    \n", - "a) The rxr identity. b) The rxr zero matrix. c) the mxm identity. d)the mxm zero matrix. e) none of the choices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "If $U$ is a square matrix, then we saw on pset 2 that it must be $m\\times m$. $U_1$ will then be $m\\times r$, and $U_2$ will be $m\\times (m-r)$. Since the columns of $U_1$ and $U_2$ are all mutually orthogonal, $U_1^TU_2$ will be a zero matrix. It will have dimensions $r\\times (m-r)$. So the correct answer is e)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 8.\n", - "\n", - "The computation below computes the svd of a random 5x5 matrix." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Float64,2}:\n", - " -0.54508 0.372748 0.441066 -0.406584 -0.45177 \n", - " -0.383209 -0.18862 -0.669183 0.23708 -0.559965 \n", - " -0.454786 0.352484 0.150352 0.735638 0.324278 \n", - " -0.462471 0.0358319 -0.425429 -0.484084 0.607873 \n", - " -0.367871 -0.836632 0.392504 0.0546038 0.0876234" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 2.4561346182560286 \n", - " 0.9480288634718752 \n", - " 0.5286559187859439 \n", - " 0.2551801492474602 \n", - " 0.04315896131157771" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "5×5 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.379804 -0.236369 -0.804333 0.0485018 -0.388039 \n", - " -0.216729 -0.782325 0.323154 0.479952 0.0788237\n", - " -0.619317 -0.0314431 0.429187 -0.564884 -0.334906 \n", - " -0.427201 -0.0108674 -0.218996 -0.203307 0.853281 \n", - " -0.49267 0.575318 0.12829 0.63786 -0.0544258" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using LinearAlgebra\n", - "A = rand(5,5)\n", - "U,s,V = svd(A)\n", - "display(U)\n", - "display(s)\n", - "display(V)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Circle the numbers in the above that would figure in the best rank 3 approximation of $A$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "In the best rank 3 approximation to $A$, we would use the first three columns of both $U$ and $V$, in addition to the first three singular values in $s$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 9.\n", - "\n", - "If you multiply through the block matrices $\\Sigma$ and $V^T$ that appear in the full SVD as below,
    \n", - "$\\begin{pmatrix} \\Sigma_r & 0 \\\\ 0 & 0 \\end{pmatrix}\n", - "\\begin{pmatrix} V_1^T \\\\ V_2^T \\end{pmatrix}$\n", - "the\n", - "answer is (pick your multiple choice which is the best answer and briefly explain):
    \n", - "a) $\\Sigma_r V_1^T $
    \n", - "b)$\\ [\\Sigma_r V_1^T \\ \\ 0]$
    \n", - "c) $\\begin{pmatrix}\\Sigma_r V_1^T \\\\ 0 \\end{pmatrix}$
    \n", - "d) $\\begin{pmatrix} \\Sigma_r V_1^T & 0 \\\\ 0 & 0 \\end{pmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "The correct answer must have the same number of rows as $\\begin{pmatrix} \\Sigma_r & 0 \\\\ 0 & 0 \\end{pmatrix}$, and the same number of columns as $\\begin{pmatrix} V_1^T \\\\ V_2^T \\end{pmatrix}$. The only option for which this is true is c). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 10.\n", - "\n", - "Suppose $v$ and $w$ are perpendicular in $R^n$. What is $\\|v+w\\|^2$ in terms of $\\|v\\|^2$ and $\\|w\\|^2$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "If $v$ and $w$ are perpendicular, then $v^Tw = w^T v=0$. Then\n", - "\\begin{align*}\n", - "\\Vert v +w \\Vert^2 &= (v+w)^T(v+w)\\\\\n", - "&= v^Tv+w^Tv+v^Tw+w^Tw\\\\\n", - "&= v^Tv+w^Tw\\\\\n", - "&= \\Vert v\\Vert^2 + \\Vert w \\Vert^2.\n", - "\\end{align*}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 11.\n", - "\n", - "Set up a matrix least squares problem if we are interested in taking $n$ data points $(x_i,y_i)$ and we wish to find the best function $f(x)=c_1 e^x + c_2 e^{-x}$ through the data points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "We wish to find the constants $c_1$ and $c_2$ that satisfy:\n", - "\\begin{align*}\n", - "y_1 &= c_1 e^{x_1}+ c_2e^{-x_1}\\\\\n", - "y_2 &= c_1 e^{x_2}+ c_2e^{-x_2}\\\\\n", - "&...\\\\\n", - "y_n &= c_1 e^{x_n}+ c_2e^{-x_n}\n", - "\\end{align*}\n", - "This is equivalent to a linear system $Ax= b$, where\n", - "$$A = \\begin{pmatrix} e^{x_1} & e^{-x_1} \\\\ e^{x_2} & e^{-x_2} \\\\ \\vdots & \\vdots \\\\ e^{x_n} & e^{-x_n}\\end{pmatrix}, \\;\\; x = \\begin{pmatrix} c_1 \\\\ c_2 \\end{pmatrix} \\;\\;\\; \\text{and} \\;\\;\\; b = \\begin{pmatrix} y_1 \\\\ y_2 \\\\ \\vdots \\\\ y_n \\end{pmatrix}$$\n", - "In general, there will not be an exact solution for $x$. However, we can use $QR$ to find a least squares solution $\\hat{x}$ which minimizes the least squares error $\\Vert Ax-b \\Vert^2$. If $A=QR$, then this least squares solution is given by \n", - "$$\\hat{x} = R^{-1}Q^T b.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 12\n", - "\n", - "Suppose a square $A$ has an LU factorization $A=LU$ where $L$ and $U$ are invertible. If $A=QR$, what is $r_{11}$ in terms of possibly elements of $L$ and $U$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "If $A=LU$, then the first column of $A$ (call this vector $a_1$) is the first column of $L$ (call this vector $l_1$), multiplied by the upper left element of $U$ (call this element $u_{11}$), i.e.\n", - "$$a_1 = u_{11}l_1.$$\n", - "\n", - "Now $r_{11}$ (The upper left element of $R$) is the magnitude of the first column of $A$ (since all the columns of $Q$ are normalized), and so\n", - "$$r_{11} = \\Vert a_1 \\Vert = \\vert u_{11}\\vert \\Vert l_1 \\Vert$$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.3", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/midterm_2_practice_problems_solns.ipynb b/psets/midterm_2_practice_problems_solns.ipynb deleted file mode 100644 index 88a41c0e..00000000 --- a/psets/midterm_2_practice_problems_solns.ipynb +++ /dev/null @@ -1,448 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Solutions to midterm 2 practice problems - DRAFT" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1\n", - "\n", - "1a) Under what size conditions does Trace(AB) = Trace(BA)?
    \n", - "1b) Under what size conditions does Trace(ABC) = Trace(BCA)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "1a) This formula holds provided that $AB$ and $BA$ are both valid matrix products. If $A$ is $m\\times n$, then this necessarily requires that $B$ is $n\\times m$.
    \n", - "\n", - "1b) This formula holds provided that $A(BC)$ and $(BC)A$ are both valid matrix products. If $A$ is $m\\times n$, then this necessarily requires that $BC$ is $n\\times m$. In turn, this means that $B$ is $n\\times p$ and $C$ is $p\\times m$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2\n", - "\n", - "2a. Find a basis for all polynomials of the form $a+bx+cx^2+dx^3$ whose integral on $[0,1]$ is 0.
    \n", - "2b. Find a basis for all polynomials that are a derivative of polynomials of the form $a+bx+cx^2+dx^3$
    \n", - "2c. Find a basis for all polynomials that are of the form $a+b(x+1)+c(x+1)^2+d(x+1)^3$
    \n", - "2d. Find a basis for all polynomials of the form $a+bx+cx^2+dx^3$ whose value at 1 is 0." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "2a. We firstly find that \n", - "$$\\int_0^1 (a+bx+cx^2 +dx^3) dx = 0 \\implies a+b/2+c/3+d/4 = 0.$$\n", - "Notice that we are only free to select three of the coefficients of such a polynomial; the fourth coefficient will be uniquely selected by the requirement that the polynomial integrates to 0. These polynomials form a three dimensional vector space. A possible basis is then the set $\\{1-4x^3,2x-4x^3,3x^2-4x^3\\}$. This is certainly linearly independent, and by construction it spans this subspace of polynomials.
    \n", - "\n", - "2b. The derivative of a cubic polynomial $a+bx+cx^2+dx^3$ is $b + 2cx+3dx^2$, i.e. a quadratic. Polynomials of degree at most two are a three dimensional vector space with basis $\\{1,x,x^2\\}$.
    \n", - "\n", - "2c. Polynomials of this form are just cubics that have been shifted to the left. A possible basis is $\\{1,(x+1),(x+1)^2,(x+1)^3\\}$. Another possible basis is just the standard basis $\\{1,x,x^2,x^3\\}$.
    \n", - "\n", - "2d. The restriction that these polynomials vanish at $x=1$ requires that $a+b+c+d = 0$. Such polynomials will form a three dimensional vector subspace, with a possible basis being $\\{1-x^3,x-x^3,x^2-x^3\\}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3\n", - "\n", - "(3). How many parameters are needed to specify a linear transformation from 10x10x10 arrays to $R^2$? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "To uniquely specify a linear transformation between two vector spaces, we need to know how the linear transformation acts on any basis for the input vector space. The space of $10\\times 10 \\times 10$ arrays is a $10^3$ dimensional vector space, so we need to know how the linear transformation acts on each of the $10^3$ basis elements in some basis. Since the linear transformation outputs vectors in $\\mathbb{R}^2$, we will need two parameters for each of the basis elements in the input space. This means we will need a total of $\\boxed{2\\times 10^3}$ parameters to specify this linear transformation." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4\n", - "\n", - "(4). Compute the gradient of $f(x)=x^Tx + sum(x) $ without the use of indices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "We can compute the gradient of $f(x)$ by evaluating $f(x+dx)$:\n", - "\\begin{align*}\n", - "f(x+dx) &= (x+dx)^T(x+dx) + sum(x+dx) \\\\\n", - "&= x^Tx + 2x^T dx + dx^Tdx + sum(x) + sum(dx)\\\\\n", - "&= f(x) + \\left(2x^T + \\begin{pmatrix} 1 \\\\ \\vdots \\\\ 1 \\end{pmatrix}^T\\right) dx +...\n", - "\\end{align*}\n", - "We can therefore identify that\n", - "$$\\boxed{\\nabla f = 2x + \\begin{pmatrix} 1 \\\\ \\vdots \\\\ 1 \\end{pmatrix} } $$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5\n", - "\n", - "(5a). Remembering that df(x) = f'(x) dx for scalar functions, what is dh.(A) in terms of f'.(A) and dA?\n", - "(Here the dot denotes elementwise function application and A is a matrix.)
    \n", - "(5b). (Challenging?) If g(A) = h.(A*x -b), where x and b are held fixed, h is a scalar function, compute dg in terms of dA. This is \n", - "a linear transformation from the matrix dA to the vector dg." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "(a) Let $h$ be an arbitrary, differentiable scalar function. $h.A$ is a matrix obtained by apply $h$ to each of the components of $A$. Now the $ij$-th component of $h.(A+dA)$ is $h(A_{ij}+dA_{ij})$, and \n", - "$$h(A_{ij}+dA_{ij}) = h(A_{ij})+h'(A_{ij})dA_{ij}.$$\n", - "The $ij$-th component of $dh.A$ is therefore $h'(A_{ij})dA_{ij}$, and so\n", - "$$dh.A = (h'.A).*dA$$
    \n", - "\n", - "(b) Let B = Ax - b. Then the above implies that \n", - "$$dg.A = (h'.B).*dB = (h'.(Ax-b)).*(dA x)$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6\n", - "\n", - "(6). True or false:
    \n", - "a) det(2A) = 2 det(A) for all n
    \n", - "b) det(-A) = -det(A) if the size n is odd
    \n", - "c) det(A+B) = det(A) + det(B) since determinants are multilinear
    \n", - "d) det(inv(A)) = 1/det(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "a) False. The determinant of a diagonal matrix is the product of the entries along the diagonal. The determinant of the $3\\times 3$ identity matrix $I_3$ is therefore 1, but the determinant of $2I_3$ is $2^3 = 8$, for example.
    \n", - "\n", - "b) This is true. The determinant is linear in each row. Multiplying a matrix $A$ by $-1$ is equivalent to multiplying each row by $-1$. We will therefore have that $\\det(-A) = (-)^n \\det (A)$, and so the result holds for all odd $n$.\n", - "\n", - "c) This is false. For example:\n", - "$$A = \\begin{pmatrix} 1 & 0 \\\\ 0 & 0 \\end{pmatrix}, \\;\\; B = \\begin{pmatrix} 0 & 0 \\\\ 0 & 1 \\end{pmatrix}$$\n", - "Then $\\vert A \\vert = \\vert B \\vert = 0$, but $A+B = I_2$, and $\\det(I_2) = 1$. \n", - "\n", - "d) True. We know that $\\det(AB)=\\det(A)\\det(B)$. We also know that $\\det(I) = 1$, where $I$ is the $n\\times n$ identity matrix. Therefore \n", - "$$1 = \\det(I) = \\det(A^{-1} A) = \\det(A^{-1})\\det(A)$$\n", - "and so \n", - "$$\\boxed{\\det(A^{-1}) = 1/\\det(A)}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7\n", - "\n", - "(7). Give an example of a matrix A where the rows of A are not a basis for the rowspace.\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Any example where the rows are not linearly independent will work. For example,\n", - "$$A = \\begin{pmatrix} 1 & 1 \\\\ 1 & 1 \\end{pmatrix}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 8\n", - "\n", - "(8). Suppose we have 𝐴=[𝑢 v 𝑤][ 𝑥 y z]𝑇 without any assumptions whatsoever on the vectors u,v,w,x,y,z other than is required by block notation.
    \n", - "(A) What are the possible ranks of 𝐴 assuming 𝐴 is 𝑚×𝑛 ?
    \n", - "(B) Under what conditions is the rank of 𝐴 3?
    \n", - "(C) Under what conditions is the rank of 𝐴 1?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "(a) $A$ can have rank less than or equal to 3.
    \n", - "\n", - "(b) In order for $A$ to be rank 3, the vectors $u,v,w$ must all be linearly independent and so must $x,y,z$.
    \n", - "\n", - "(c) In order for $A$ to be rank 1, either the vectors $u,v,w$ must be collinear, or the vectors $x,y,z$ must be collinear, or both. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 9\n", - "\n", - "(9). Suppose we are given the full SVD of an mxn matrix A on a computer.
    \n", - "9a. How would you obtain the rank r?
    \n", - "9b. How would you check if $A^TA$ is invertible?
    \n", - "9c. How would you check, given a vector $b$, if $Ax=b$ has a solution?
    \n", - "9d. If Ax=b has at least one solution, how would you obtain the solution $x$?
    \n", - "9e. What is the complete solution to Ax=b, assuming at least one solution?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "a) The rank $r$ is the number of non zero singular values.
    \n", - "b) $A^TA$ is invertible provided that the rank is equal to the number of columns in $A$.
    \n", - "c) $Ax = b$ has a solution provided that $U_1U_1^T b = b$, where $A=U\\Sigma V^T$.
    \n", - "d) If $Ax =b$ is solvable, then $x = V_1\\Sigma_r^{-1} U_1^T b$ is always a solution.
    \n", - "e) Let $x_0$ be any particular solution, and let $y_1, ... y_{n-r}$ be the last $n-r$ vectors of $V$ (which are a basis for $N(A)$). Then the complete solution is \n", - "$$x = x_0 + c_1 y_1 + c_2y_2+...+c_{n-r} y_{n-r}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 10\n", - "\n", - "(10). Suppose you have two non-colinear vectors in $\\mathbb{R}^3$. How might you use the full svd to compute the cross product of these two vectors?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Consider two non-colinear vectors $a$ and $b$ in $\\mathbb{R}^3$. Let $u = a\\times b$. In particular, $u$ is mutually orthogonal to both $a$ and $b$. If we let $A$ be a matrix whose columns are the vectors $a$ and $b$, we can then compute the full svd $A=U\\Sigma V^T$. The third column of $U$ is then a basis for $N(A^T)$, which is orthogonoal to $C(A)$. Therefore the third column of $u$ is orthogonal to both $a$ and $b$, and is therefore in the same direction as $u=a\\times b$.\n", - "\n", - "We are almost ready in our class to figure\n", - " out the magnitude of the cross product. It is exactly $\\sigma_1 \\sigma_2$. If $U\\Sigma V^T$ is the compact svd with $U$ 3x2, then\n", - "$\\Sigma V^T$ describes the same parallelogram, and its determinant is the area. \n", - "\n", - "The sign is always tricky." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 11\n", - "\n", - "Remember that the determinant of a product of square matrices is the product of the determinants.
    \n", - "(11a.) Use Q'Q=I to show that det(Q)=±1 for an orthogonal matrix Q.
    \n", - "(11b.) Show that det(A) is ±(the product of the n singular values) assuming $A$ is non-singular." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "(a) We can prove this as follows:\n", - "\\begin{align*}\n", - "Q^TQ = I &\\implies \\det(Q^TQ) = 1\\\\\n", - " &\\implies \\det(Q^T)\\det(Q) = 1\\\\\n", - " &\\implies (\\det(Q))^2 = 1\\\\\n", - " &\\implies \\det(Q) = \\pm 1.\n", - "\\end{align*}\n", - "\n", - "(b) Let $A = U\\Sigma V^T$ be the compact svd for $A$. Then $U$ and $V$ are orthogonal matrices. Then \n", - "$$\\det(A) = \\det(U\\Sigma V^T) = \\det(U)\\det(\\Sigma)\\det(V^T) = \\pm \\det(\\Sigma).$$\n", - "But $\\Sigma$ is a diagonal matrix, and so its determinant is the product of its diagonal entries, i.e. the singular values. This means that det(A) is ±(the product of the n singular values). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 12\n", - "\n", - "(12). Describe how you can use the compact svd to obtain the projection matrix onto the column space of a matrix $A$? Are there any conditions on A?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "To project onto the column space of $A=U \\Sigma V^T$, we recall that the columns of $U$ in the compact svd are an orthonormal basis for $C(A)$. Therefore the matrix $UU^T$ is always a projection matrix onto the column space of $A$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 13\n", - "\n", - "(13). Describe the solution to the least squares problem Ax≈b when b is not necessasrily in the column space of A in terms of the compact SVD. You may assume that A has independent columns." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "The least squares solution to $Ax = b$ is given by the solution to the normal equations $A^TA\\hat{x}=A^Tb$. If $A$ has independent columns, then $A^TA$ is invertible. Let $A=U\\Sigma V^T$ be the compact svd for $A$. Then the least squares solution is\n", - "\\begin{align*}\n", - "\\hat{x} &= (A^TA)^{-1} A^T b\\\\\n", - " &= ((U\\Sigma V^T)^T U\\Sigma V^T)^{-1} (U\\Sigma V^T)^T b\\\\\n", - " &= (V\\Sigma^2 V^T)^{-1} V\\Sigma U^T b\\\\\n", - " &= V\\Sigma^{-2} V^TV\\Sigma U^T b\\\\\n", - " \\implies \\hat{x} &= V\\Sigma^{-1}U^T b.\n", - "\\end{align*}\n", - "\n", - "The problem is now solved. We could go further and compute $A\\hat{x}$ and see $A\\hat{x} = (U\\Sigma V^T) (V\\Sigma^{-1}U^T) b = UU^Tb$.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 14\n", - "\n", - "(14). A vector space V has two bases: $b_1,b_2,b_3,b_4$ and $d_1,d_2,d_3,d_4$.
    \n", - "14a. What is the dimension of $V$?
    \n", - "14b. Suppose $[b_1,b_2,b_3,b_4] = [d_1,d_2,d_3,d_4] \\begin{pmatrix} 1 &&& \\\\ x &1&& \\\\ y &&1& \\\\ z &&& 1 \\end{pmatrix}$. What is $d_1+d_2+d_3+d_4$ in terms of the b's?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "(a) $V$ has four elements in its bases, and so the dimension of $V$ is 4.\n", - "(b) The given relationship between $b_1,b_2,b_3,b_4$ and $d_1,d_2,d_3,d_4$ tells us that $b_2=d_2$, $b_3=d_3$, $b_4=d_4$, and $b_1 = d_1+xd_2+yd_3+zd_4$. We can invert this fourth equation to deduce that \n", - "$$d_1 = b_1 - xb_2-yb_3-zb_4.$$\n", - "So finally we can write that\n", - "$$\\boxed{d_1+d_2+d_3+d_4 = b_1+(1-x)b_2+(1-y)b_3 + (1-z)b_4}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 15\n", - "\n", - "15) Let d(A) be a scalar function of 3 × 2 matrices A with the following properties:
    \n", - "α) If you interchange the two columns of A, d(A) flips sign.
    \n", - "β) d(A) is linear in each of the columns of A.
    \n", - "γ) d(A) is non-zero for at least one 3 × 2 A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15a.) What is d(2A) in terms of d(A)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15b.) Give an example d(A) that satisfies the three requirements of this question
    " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15c.) We recall that the determinant of square matrices is linear in each column and\n", - "each row of the square matrix. Can property β be extended to rows and columns of 3 × 2\n", - "matrices A to create a d(A) with the three requirements of this question? If yes, give an\n", - "example, if not, why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(15d.) If we discard property γ to allow the “zero” function, the set of all functions\n", - "d(A) satisfying α and β form a three dimensional vector space. Describe explicitly this vector\n", - "space of functions in terms of the elements of A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "This question appeared on last year's quiz 2 as problem 4. Parts c and d were considered challenging.\n", - "\n", - "The solutions are posted [here](https://web.mit.edu/18.06/www/Spring18/quiz2solutions.pdf).\n", - "\n", - "This problem was no doubt challenging for an exam though quite a few students solved it.\n", - "\n", - "A key fact is that if you take $A$ and augment it with $\\begin{pmatrix} c_1 \\\\ c_2 \\\\ c_3 \\end{pmatrix}$ then the determinant of the augmented matrix satisfies the required properties of the first two columns. This is true for any value of $c_1,c_2,c_3$.\n", - "\n", - "To show we have all solutions one can check that if set $c_3$ to be\n", - "$D(\\begin{pmatrix} 1 & 0 \\\\ 0 & 1 \\\\ 0 & 0 \\end{pmatrix})$, $c_2=-D(\\begin{pmatrix} 1 & 0 \\\\ 0 & 0 \\\\ 0 & 1 \\end{pmatrix})$ and\n", - "$c_3=D(\\begin{pmatrix} 0 & 0 \\\\ 1 & 0 \\\\ 0 & 1 \\end{pmatrix})$, then\n", - "one can derive that $D(A)$ is the determinant of the augmented matrix,\n", - "hence we have all possible functions.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/perceptron.ipynb b/psets/perceptron.ipynb deleted file mode 100644 index dbe1a06b..00000000 --- a/psets/perceptron.ipynb +++ /dev/null @@ -1,113 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Perceptron\n", - "data (x) is an n vector whose elements are d vectors (n data points in Rᵈ)
    \n", - "labels (y) is an n vector of +1,-1" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "perceptron (generic function with 4 methods)" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "function perceptron(x::Vector, y::Vector, τ=100 )\n", - " θ,θ₀ = zeros(d),0\n", - " for t=1:τ, i=1:n \n", - " if y[i]*(θ'x[i]+θ₀) ≤ 0 \n", - " θ += y[i]*x[i]\n", - " θ₀ += y[i]\n", - " end\n", - " end\n", - " θ,θ₀\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra\n", - "# Example Data\n", - "n = 100\n", - "d = 5\n", - "y = rand([-1,1],n); # n random ±1\n", - "x = [ [y[i]*rand();randn(d-1);] for i∈1:n] # random data with first component pointing in the direction of the label\n", - "Q,= qr(randn(d,d)) # a random rotation \n", - "x = [Q*x[i] for i∈1:n]; # rotate the data set" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "([-7.02686, 27.7585, 9.63108, -6.97683, 5.95082], -1)" - ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "θ,θ₀ = perceptron(x,y)" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "true" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "all([ sign(θ'x[i]+θ₀)==y[i] for i∈1:n]) # did we train perfectly?" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset0.ipynb b/psets/pset0.ipynb deleted file mode 100644 index e2910661..00000000 --- a/psets/pset0.ipynb +++ /dev/null @@ -1,224 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## IMPORTANT: How you download this file in Step 2 below matters more than it should. \n", - "\n", - "1. Half the story only: Use the download button \n", - "![DownloadIcon](downloadicon.png) in the upper right BUT **right click**, don't just click.
    \n", - "2. Choose \"Save Link As...\" or \"Download Linked File As..\" (View from chrome, other browsers similar):
    \n", - "\n", - "![MenuIcon](menuicon.png)\n", - " \n", - "\n", - "This saves it as an .ipynb file and not some other extension. Even better yet, if you get in the habit of OPTION-click (MAC) or ALT-Click (Linux and Windows I think) on the download icon, it will just work automagically. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 0\n", - "\n", - "## due Sunday 2/10 at 4:55pm\n", - "\n", - "This required but non-graded homework will take you through the entire workflow hopefully stress-free :\n", - "\n", - "\n", - "1. log into juliabox and add 1+1 in julia\n", - "2. download this pset as ipynb\n", - "3. upload the pset into juliabox\n", - "4. do some problems\n", - "5. save as a pdf\n", - "6. submit to gradescope\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. log into juliabox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a. Click on [http://www.juliabox.com](http://www.juliabox.com) ==> log in ==> launch (launch takes a little while)
    \n", - "b. New ==> Julia 1.0.3
    \n", - "c. Type 1+1 and ShiftEnter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. download this ipynb file" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We strongly recommend viewing this file on nbviewer:
    \n", - "[https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset00.ipynb](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset00.ipynb)\n", - "and you can then click the \"download\" icon on the upper right. The file will be an ugly text .ipynb file which you can now use the browser \"save\" button to save on your computer or you can use the \"save link as\" to directly download." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. upload this pset into juliabox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "drag the .ipynb file into juliabox and open it up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4 Do these problems." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4a. Type your name." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "My name is. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4b. Type your 18.06 section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "My 18.06 section is" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4c. Tell us why you are taking 18.06. What are you hoping to learn? What excites you about linear algebra?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I am taking 18.06 because" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4d. Type and excute the commands on page 1 of the [VMLS Julia Companion](http://vmls-book.stanford.edu/vmls-julia-companion.pdf)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "∫" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5. save as pdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Jupyter File --> Print Preview --> Browser File --> Print --> save as pdf works best" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 6. Submit to gradescope" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "tell gradescope on which pdf page(s) to find 4a, 4b, 4c, 4d
    \n", - "\n", - "gradescope has extensive help on submitting homeworks" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset00.ipynb b/psets/pset00.ipynb deleted file mode 100644 index d1828688..00000000 --- a/psets/pset00.ipynb +++ /dev/null @@ -1,229 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## IMPORTANT: How you download this file in Step 2 below matters more than it should. \n", - "\n", - "1. Half the story only: Use the download button \n", - "![DownloadIcon](downloadicon.png) in the upper right BUT **right click**, don't just click.
    \n", - "2. Choose \"Save Link As...\" or \"Download Linked File As..\" (View from chrome, other browsers similar):
    \n", - "\n", - "![MenuIcon](menuicon.png)\n", - " \n", - "\n", - "This saves it as an .ipynb file and not some other extension. Even better yet, if you get in the habit of OPTION-click (MAC) or ALT-Click (Linux and Windows I think) on the download icon, it will just work automagically. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 0\n", - "\n", - "## due Sunday 2/10 at 4:55pm\n", - "\n", - "This required but non-graded homework will take you through the entire workflow hopefully stress-free :\n", - "\n", - "\n", - "1. log into juliabox and add 1+1 in julia\n", - "2. download this pset as ipynb\n", - "3. upload the pset into juliabox\n", - "4. do some problems\n", - "5. save as a pdf\n", - "6. submit to gradescope\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. log into juliabox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a. Click on [http://www.juliabox.com](http://www.juliabox.com) ==> log in ==> launch (launch takes a little while)
    \n", - "b. New ==> Julia 1.0.3
    \n", - "c. Type 1+1 and ShiftEnter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. download this ipynb file" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We strongly recommend viewing this file on nbviewer:
    \n", - "[https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset00.ipynb](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset00.ipynb)\n", - "and you can then click the \"download\" icon on the upper right. The file will be an ugly text .ipynb file which you can now use the browser \"save\" button to save on your computer or you can use the \"save link as\" to directly download." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. upload this pset into juliabox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "drag the .ipynb file into juliabox and open it up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4 Do these problems." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4a. Type your name." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "My name is. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4b. Type your 18.06 section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "My 18.06 section is" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4c. Tell us why you are taking 18.06. What are you hoping to learn? What excites you about linear algebra?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I am taking 18.06 because" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4d. Type and excute the commands on page 1 of the [VMLS Julia Companion](http://vmls-book.stanford.edu/vmls-julia-companion.pdf)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5. save as pdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Jupyter File --> Print Preview --> Browser File --> Print --> save as pdf works best" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 6. Submit to gradescope" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "tell gradescope on which pdf page(s) to find 4a, 4b, 4c, 4d
    \n", - "\n", - "gradescope has extensive help on submitting homeworks" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset1.ipynb b/psets/pset1.ipynb deleted file mode 100644 index d686b14a..00000000 --- a/psets/pset1.ipynb +++ /dev/null @@ -1,552 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring 2019 pset 1\n", - "\n", - "## due Wednesday 2/13 at 10:55am by submitting pdf through Gradescope\n", - "\n", - "(Added note: Many have noticed that just printing to pdf with the browser print button may be the easiest).\n", - "\n", - "This problem set is in the form of a [Julia](http://julialang.org/) *notebook* (using the [Jupyter](http://jupyter.org/)/[IJulia](https://github.com/JuliaLang/IJulia.jl) browser-based interface to interactive programming). We will be using the Julia language throughout the term for mathematical and computational explorations. Jupyter (an amalgam of Julia/Python/R)\n", - "is a language agnostic notbeook interface widely used for simple calculations . \n", - "\n", - "You can run this notebook without installing anything by logging in at [JuliaBox](https://juliabox.com/). Just download the notebook file (a `.ipynb` file) by clicking the download icon at the upper right, then drag it onto the JuliaBox dashboard to upload it there. (We will be using Julia version 1.0 or later). (Avoid the json format by downloading the link or at least having the ipynb extension.)\n", - "\n", - "Some of the problems are pencil-and-paper (we just happen to use the notebook to describe them), and some of them require you to run the code in the notebook to see what happens and then explain it. To **run the code** in an input cell, **just click on the cell and then type shift-return**; see also the \"Help\" menu in the notebook. When we say, check, we are asking you to run the code, but not necessarily write anything.\n", - "\n", - "When you submit your pset, you may handwrite or type, but submit **clearly labeled PDFs**. (An app like Tiny Scanner for your phone makes it easier to scan black-and-white documents into legible PDF files using a cell-phone camera.) For printing a notebook to PDF, you may find that the Jupyter Download-as-PDF or printing *Print Preview* (in the *File* menu at the top of the notebook interface) produces a nicer file than directly printing from your browser." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1 (10 points)\n", - "\n", - "Warm up problem. On a clock, 12 unit vectors point to each hour, uniformly spaced. What is the sum of all of these vectors? Why?\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2 (10 points)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Warm up problem. On the [neural net, matrix times vector, diagram](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4ebab5b6c8_79_6) that we saw in class, if there are p nodes (circles) on the left and q nodes on the right, then how many connections are there in terms of p and q? (In the diagram example there were 15.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## In the next series of problems we will take a big tour of important ideas, but only in the 2x2 case. Later on we will discuss the generalizations to larger matrices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3 (10 points)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What is the formula for the inverse of the 2x2 matrix\n", - " $\\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$? (Answer is on Strang p. 84) On what conditions for a,b,c,d does the inverse exist?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4 (10 points)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A worked matrix factorization problem is at the end of this notebook.\n", - "\n", - "This is called the 2 x 2 LU factorization: Given $A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$, find a factorization of $A$ in the form $ \\begin{pmatrix} 1 & 0 \\\\ x & 1 \\end{pmatrix}\\begin{pmatrix} u & v \\\\ 0 & w \\end{pmatrix}$.\n", - "\n", - "(Write down x,u,v,w in terms of a,b,c,d.) On what conditions for a,b,c,d does the LU factorization exist? (This answer is different from that of Problem 3.)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "\\[\\left[ \\begin{array}{rr}a&b\\\\c&d\\end{array}\\right]\\]" - ], - "text/plain": [ - "2×2 Array{Sym,2}:\n", - " a b\n", - " c d" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5 (10 points)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A 2x2 rotation matrix has the form $ \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$. Remembering $\\sin^2 \\theta + \\cos^2 \\theta =1$, what is \n", - "$ \\begin{pmatrix} \\cos \\theta & \\sin \\theta \\\\ -\\sin \\theta & \\cos \\theta \\end{pmatrix}$\n", - "$ \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$?\n", - "
    \n", - "\n", - "This is called the 2x2 QR factorization: Given $A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$, find a factorization of $A$ in the form $ \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}\\begin{pmatrix} u & v \\\\ 0 & w \\end{pmatrix}$. The matrix $Q = \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$ is known as a 2x2 rotation matrix. (Hint1: what are the polar coordinates for the point(a,c)?? You should be able to write a formula for $u,\\cos \\theta,\\sin \\theta$ from a and c using only division and square roots. (at least if a and c are not both 0). Hint 2, use what we just mentioned about rotation matrices.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6 (10 points)\n", - "The 2x2 singular value decomposition: An SVD has the form \n", - "$A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$\n", - "= (rotation 1)(diagonal with non-negative entries)(rotation 2)\n", - "= $ \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$\n", - "$ \\begin{pmatrix} \\sigma_1 & 0 \\\\ 0 & \\sigma_2 \\end{pmatrix}$\n", - "$ \\begin{pmatrix} \\cos \\phi & \\sin \\phi \\\\ -\\sin \\phi & \\cos \\phi \\end{pmatrix}$. We will see in this class that the SVD is very important in data science, biology, and so many fields.\n", - "\n", - "Compute $A$ if $\\theta=\\pi/6$ and $\\phi=\\pi/3$ and $\\sigma_1=\\sigma_2=1$.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Check your work numerically\n", - " θ = π/6\n", - " ϕ = π/3\n", - " σ₁ = σ₂ = 1\n", - "[cos(θ) -sin(θ);sin(θ) cos(θ)] * [1 0;0 1] * [cos(ϕ) sin(ϕ);-sin(ϕ) cos(ϕ)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next Problems investigate structured matrices" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "n = 5\n", - "D = rand(1:9, n, n) # Create a random n x n matrix with the digits 1 through 9" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Put your cursor and click on the cell above and use **control-enter** to run the cell a few times without moving to another cell. If we asked how many numbers are stored in this n by n matrix you would say $n^2$." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Diagonal{Int64,Array{Int64,1}}:\n", - " 9 ⋅ ⋅ ⋅ ⋅\n", - " ⋅ 4 ⋅ ⋅ ⋅\n", - " ⋅ ⋅ 3 ⋅ ⋅\n", - " ⋅ ⋅ ⋅ 4 ⋅\n", - " ⋅ ⋅ ⋅ ⋅ 7" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "n = 5\n", - "D = Diagonal(rand(1:9, n)) # Create a random n x n digonal matrix with the digits 1 through 9" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While this is an n by n matrix, the number of parameters is n (which is what Julia stores in memory.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7 (10 points): As a function of n, how many parameters are there in an n by n (upper) Bidigonal Matrix?" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Bidiagonal{Int64,Array{Int64,1}}:\n", - " 5 1 ⋅ ⋅ ⋅\n", - " ⋅ 2 5 ⋅ ⋅\n", - " ⋅ ⋅ 1 4 ⋅\n", - " ⋅ ⋅ ⋅ 4 3\n", - " ⋅ ⋅ ⋅ ⋅ 6" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = Bidiagonal(rand(1:9,n), rand(1:9,n-1), :U)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 8 (10 points): As a function of n, how many (independent) parameters are there in an n by n Symmetric Tridiagonal Matrix? Why is the answer the same as for the bidiagonal?" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 SymTridiagonal{Int64,Array{Int64,1}}:\n", - " 6 9 ⋅ ⋅ ⋅\n", - " 9 8 8 ⋅ ⋅\n", - " ⋅ 8 2 6 ⋅\n", - " ⋅ ⋅ 6 1 3\n", - " ⋅ ⋅ ⋅ 3 6" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "S = SymTridiagonal(rand(1:9,n), rand(1:9,n-1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 9 (10 points) A symmetric \"rank 1\" matrix has the form $A_{ij} = v_i v_j$ where $v$ is a vector. Why does such a matrix really have only $n$ parameters?" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 2 3 4 5\n", - " 2 4 6 8 10\n", - " 3 6 9 12 15\n", - " 4 8 12 16 20\n", - " 5 10 15 20 25" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Example\n", - "v = [1,2,3,4,5]\n", - "[vi*vj for vi∈v, vj∈v] " - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[4, 1, 9, 3, 7]\n" - ] - }, - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 16 4 36 12 28\n", - " 4 1 9 3 7\n", - " 36 9 81 27 63\n", - " 12 3 27 9 21\n", - " 28 7 63 21 49" - ] - }, - "execution_count": 160, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v = rand(1:9,n)\n", - "println(v)\n", - "[vi*vj for vi∈v, vj∈v] " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 10 (10 points) A general \"rank 1\" matrix has the form $A_{ij}=v_iw_j$ where $v$ and $w$ are vectors of size $m$ and $n$ respectively. Think of a reason why this matrix really has only $m+n-1$ parameters.\n", - "(If it helps, you can assume \"generically\" that the (1,1) entry is not 0.)" - ] - }, - { - "cell_type": "code", - "execution_count": 166, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[9, 5, 6]\n", - "[2, 2, 1, 1]\n" - ] - }, - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " 18 18 9 9\n", - " 10 10 5 5\n", - " 12 12 6 6" - ] - }, - "execution_count": 166, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v = rand(1:9,3)\n", - "w = rand(1:9,4)\n", - "println(v)\n", - "println(w)\n", - "[vi*wj for vi∈v, wj∈w]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sample 2x2 Matrix Factorization Problem" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A 2x2 symmetric $A$ has the form $A = \\begin{pmatrix} x & y \\\\ y & z \\end{pmatrix}$. Find a factorization of $A$ in the form $ \\begin{pmatrix} 1 & 0 \\\\ a & 1 \\end{pmatrix}\n", - " \\begin{pmatrix} d_1 & 0 \\\\ 0 & d_2 \\end{pmatrix}\n", - " \\begin{pmatrix} 1 & a \\\\ 0 & 1 \\end{pmatrix}$. (Solve for $a,d_1,d_2$ in terms of x,y, and z). When does this factorization not exist?\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution: we can multiply out\n", - "$A = \\begin{pmatrix} x & y \\\\ y & z \\end{pmatrix}$=$ \\begin{pmatrix} 1 & 0 \\\\ a & 1 \\end{pmatrix}\n", - " \\begin{pmatrix} d_1 & 0 \\\\ 0 & d_2 \\end{pmatrix}\n", - " \\begin{pmatrix} 1 & a \\\\ 0 & 1 \\end{pmatrix}$ to get\n", - "$ \\begin{pmatrix} 1 & 0 \\\\ a & 1 \\end{pmatrix}\n", - "\\begin{pmatrix} d_1 & d_1 a \\\\ 0 & d_2 \\end{pmatrix} =\n", - "\\begin{pmatrix} d_1 & d_1 a \\\\ d_1 a & d_1 a^2 + d_2 \\end{pmatrix}. $
    \n", - "We immediately see from the (1,1) entry that $d_1=x$.
    \n", - "From the (1,2) or (2,1) entry we see that $d_1a=y$ or $a=y/d_1=y/x$.\n", - "There is one entry left, the (2,2) entry which tells us that $z=d_1 a^2 + d_2$ or $d_2 = z-d_1 a^2 = z - y^2/x$.
    \n", - "\n", - "In summary $a=y/x, d_1=x$ and $d_2 = z-y^2/x$. We have thus concluded that the following factorization always holds **unless x=0**:
    \n", - "$\\begin{pmatrix} x & y \\\\ y & z \\end{pmatrix} = \\begin{pmatrix} 1 & 0 \\\\ y/x & 1 \\end{pmatrix}\n", - " \\begin{pmatrix} x & 0 \\\\ 0 & z-y^2/x \\end{pmatrix}\n", - " \\begin{pmatrix} 1 & y/x \\\\ 0 & 1 \\end{pmatrix}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While not at all required by this problem, if you like you can check your work with some numbers. This won't be possible during an exam, but it's nice to do right now." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.804518 0.603452\n", - " 0.603452 0.496319" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.804518 0.603452\n", - " 0.603452 0.496319" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x,y,z = rand(3)\n", - "a = y/x\n", - "d₁ = x\n", - "d₂ = z - y^2/x\n", - "display([x y;y z])\n", - "display( [1 0;a 1] * [d₁ 0;0 d₂] * [1 a;0 1] )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can use [control enter] a few times in the cell above to test as many cases that would convince you that you are right." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset10.ipynb b/psets/pset10.ipynb deleted file mode 100644 index 55e414a7..00000000 --- a/psets/pset10.ipynb +++ /dev/null @@ -1,507 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "18.06 Spring2019 pset 10
    \n", - "due Friday 5/10 at 11:59pm " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Comment about Markov Matrix definition: Strang's book glosses over this issue, but on page 474 he says that a Markov matrix has positive elements and columns add to 1. Many authors including this [wikipedia page](https://en.wikipedia.org/wiki/Stochastic_matrix) say that a Markov matrix is allowed 0's. Also Strang focuses on left stochastic matrices, some authors use right stochastic matrices where rows add to 1.\n", - "\n", - "While this inconsistency is enough to drive anyone crazy, I will say positive Markov matrix when I wish to imply all entries are positive from now on. Positive Markov matrices have one eigenvalue 1 and the rest have absolute value less than 1. General Markov matrices can have more than one eigenvalue with absolute value 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1) (GS prob 1, page 480) What is the steady state eigenvector of" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.9 0.15\n", - " 0.1 0.85" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [.9 .15\n", - " .1 .85]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This you should do by hand and can check if you like with Julia." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra\n", - "λ,X = eigen(A)\n", - "X[:,1]/sum(X[:,1])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2) Show that the square of a positive Markov matrix is a positive Markov matrix. Also show that the square of a general Markov matrix is also Markov. (Hint: there is an easy way and a more difficult way.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) What can you say about the steady state of a symmetric positive Markov matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) Show that if $M$ is positive definite , so is $M^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5a) We have mentioned that the image of the unit ball under A is an ellipsoid. This means that the set of all y=Ax such that ||x||=1 is an ellipsoid. Show that if A is square and invertible, the equation of this ellipsoid is\n", - "$$y^T(AA^T)^{-1}y=1.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5b) Turning this around if $M$ is positive definite, the equation $y^T M y=1$ is an ellipsoid. Show that it has semi-axes equal to the sqrts of the reciprocals of the eigenvalues of $M$ and the directions are the eigenvectors.\n", - "(Might be useful to see page 355 of GS)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(This shows up in many areas including the axes of inertia in physics. History has classified this as an eigen-fact,\n", - "but you all know that this is really about the SVD of A, as the ellipsoid is most directly related to multiplying the unit sphere by $\\Sigma$)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6) For which values of $c$ is the matrix below positive definite?
    \n", - "\\begin{pmatrix} c & 1 & 1 \\\\ 1 & c & 1 \\\\ 1 & 1 & c \\end{pmatrix}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If Interact happens to work you can try, if you like, playing with this in julia:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "using Interact, LinearAlgebra" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "c" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 451, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/f07383ad7ba5d9e293900fdc7e5e611110d6ff32-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/306cc87ce82e45c3e5eb81524cb970ae2bab3932-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/69078235d89420aa60ec07ae908cfcc65b6ecf85-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/98bc206151bf33944d9780fd349511e9eae784a0-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/13615fa9690b1c4388c3fe14db802e442333ebc4-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"0.5\",\"0.51\",\"0.52\",\"0.53\",\"0.54\",\"0.55\",\"0.56\",\"0.57\",\"0.58\",\"0.59\",\"0.6\",\"0.61\",\"0.62\",\"0.63\",\"0.64\",\"0.65\",\"0.66\",\"0.67\",\"0.68\",\"0.69\",\"0.7\",\"0.71\",\"0.72\",\"0.73\",\"0.74\",\"0.75\",\"0.76\",\"0.77\",\"0.78\",\"0.79\",\"0.8\",\"0.81\",\"0.82\",\"0.83\",\"0.84\",\"0.85\",\"0.86\",\"0.87\",\"0.88\",\"0.89\",\"0.9\",\"0.91\",\"0.92\",\"0.93\",\"0.94\",\"0.95\",\"0.96\",\"0.97\",\"0.98\",\"0.99\",\"1.0\",\"1.01\",\"1.02\",\"1.03\",\"1.04\",\"1.05\",\"1.06\",\"1.07\",\"1.08\",\"1.09\",\"1.1\",\"1.11\",\"1.12\",\"1.13\",\"1.14\",\"1.15\",\"1.16\",\"1.17\",\"1.18\",\"1.19\",\"1.2\",\"1.21\",\"1.22\",\"1.23\",\"1.24\",\"1.25\",\"1.26\",\"1.27\",\"1.28\",\"1.29\",\"1.3\",\"1.31\",\"1.32\",\"1.33\",\"1.34\",\"1.35\",\"1.36\",\"1.37\",\"1.38\",\"1.39\",\"1.4\",\"1.41\",\"1.42\",\"1.43\",\"1.44\",\"1.45\",\"1.46\",\"1.47\",\"1.48\",\"1.49\",\"1.5\",\"1.51\",\"1.52\",\"1.53\",\"1.54\",\"1.55\",\"1.56\",\"1.57\",\"1.58\",\"1.59\",\"1.6\",\"1.61\",\"1.62\",\"1.63\",\"1.64\",\"1.65\",\"1.66\",\"1.67\",\"1.68\",\"1.69\",\"1.7\",\"1.71\",\"1.72\",\"1.73\",\"1.74\",\"1.75\",\"1.76\",\"1.77\",\"1.78\",\"1.79\",\"1.8\",\"1.81\",\"1.82\",\"1.83\",\"1.84\",\"1.85\",\"1.86\",\"1.87\",\"1.88\",\"1.89\",\"1.9\",\"1.91\",\"1.92\",\"1.93\",\"1.94\",\"1.95\",\"1.96\",\"1.97\",\"1.98\",\"1.99\",\"2.0\",\"2.01\",\"2.02\",\"2.03\",\"2.04\",\"2.05\",\"2.06\",\"2.07\",\"2.08\",\"2.09\",\"2.1\",\"2.11\",\"2.12\",\"2.13\",\"2.14\",\"2.15\",\"2.16\",\"2.17\",\"2.18\",\"2.19\",\"2.2\",\"2.21\",\"2.22\",\"2.23\",\"2.24\",\"2.25\",\"2.26\",\"2.27\",\"2.28\",\"2.29\",\"2.3\",\"2.31\",\"2.32\",\"2.33\",\"2.34\",\"2.35\",\"2.36\",\"2.37\",\"2.38\",\"2.39\",\"2.4\",\"2.41\",\"2.42\",\"2.43\",\"2.44\",\"2.45\",\"2.46\",\"2.47\",\"2.48\",\"2.49\",\"2.5\",\"2.51\",\"2.52\",\"2.53\",\"2.54\",\"2.55\",\"2.56\",\"2.57\",\"2.58\",\"2.59\",\"2.6\",\"2.61\",\"2.62\",\"2.63\",\"2.64\",\"2.65\",\"2.66\",\"2.67\",\"2.68\",\"2.69\",\"2.7\",\"2.71\",\"2.72\",\"2.73\",\"2.74\",\"2.75\",\"2.76\",\"2.77\",\"2.78\",\"2.79\",\"2.8\",\"2.81\",\"2.82\",\"2.83\",\"2.84\",\"2.85\",\"2.86\",\"2.87\",\"2.88\",\"2.89\",\"2.9\",\"2.91\",\"2.92\",\"2.93\",\"2.94\",\"2.95\",\"2.96\",\"2.97\",\"2.98\",\"2.99\",\"3.0\",\"3.01\",\"3.02\",\"3.03\",\"3.04\",\"3.05\",\"3.06\",\"3.07\",\"3.08\",\"3.09\",\"3.1\",\"3.11\",\"3.12\",\"3.13\",\"3.14\",\"3.15\",\"3.16\",\"3.17\",\"3.18\",\"3.19\",\"3.2\",\"3.21\",\"3.22\",\"3.23\",\"3.24\",\"3.25\",\"3.26\",\"3.27\",\"3.28\",\"3.29\",\"3.3\",\"3.31\",\"3.32\",\"3.33\",\"3.34\",\"3.35\",\"3.36\",\"3.37\",\"3.38\",\"3.39\",\"3.4\",\"3.41\",\"3.42\",\"3.43\",\"3.44\",\"3.45\",\"3.46\",\"3.47\",\"3.48\",\"3.49\",\"3.5\",\"3.51\",\"3.52\",\"3.53\",\"3.54\",\"3.55\",\"3.56\",\"3.57\",\"3.58\",\"3.59\",\"3.6\",\"3.61\",\"3.62\",\"3.63\",\"3.64\",\"3.65\",\"3.66\",\"3.67\",\"3.68\",\"3.69\",\"3.7\",\"3.71\",\"3.72\",\"3.73\",\"3.74\",\"3.75\",\"3.76\",\"3.77\",\"3.78\",\"3.79\",\"3.8\",\"3.81\",\"3.82\",\"3.83\",\"3.84\",\"3.85\",\"3.86\",\"3.87\",\"3.88\",\"3.89\",\"3.9\",\"3.91\",\"3.92\",\"3.93\",\"3.94\",\"3.95\",\"3.96\",\"3.97\",\"3.98\",\"3.99\",\"4.0\",\"4.01\",\"4.02\",\"4.03\",\"4.04\",\"4.05\",\"4.06\",\"4.07\",\"4.08\",\"4.09\",\"4.1\",\"4.11\",\"4.12\",\"4.13\",\"4.14\",\"4.15\",\"4.16\",\"4.17\",\"4.18\",\"4.19\",\"4.2\",\"4.21\",\"4.22\",\"4.23\",\"4.24\",\"4.25\",\"4.26\",\"4.27\",\"4.28\",\"4.29\",\"4.3\",\"4.31\",\"4.32\",\"4.33\",\"4.34\",\"4.35\",\"4.36\",\"4.37\",\"4.38\",\"4.39\",\"4.4\",\"4.41\",\"4.42\",\"4.43\",\"4.44\",\"4.45\",\"4.46\",\"4.47\",\"4.48\",\"4.49\",\"4.5\",\"4.51\",\"4.52\",\"4.53\",\"4.54\",\"4.55\",\"4.56\",\"4.57\",\"4.58\",\"4.59\",\"4.6\",\"4.61\",\"4.62\",\"4.63\",\"4.64\",\"4.65\",\"4.66\",\"4.67\",\"4.68\",\"4.69\",\"4.7\",\"4.71\",\"4.72\",\"4.73\",\"4.74\",\"4.75\",\"4.76\",\"4.77\",\"4.78\",\"4.79\",\"4.8\",\"4.81\",\"4.82\",\"4.83\",\"4.84\",\"4.85\",\"4.86\",\"4.87\",\"4.88\",\"4.89\",\"4.9\",\"4.91\",\"4.92\",\"4.93\",\"4.94\",\"4.95\",\"4.96\",\"4.97\",\"4.98\",\"4.99\",\"5.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\",\"id\":\"ob_03\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\",\"id\":\"ob_02\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\",\"id\":\"ob_03\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\",\"id\":\"ob_02\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/f07383ad7ba5d9e293900fdc7e5e611110d6ff32-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/306cc87ce82e45c3e5eb81524cb970ae2bab3932-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_03", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_02", - "sync": true, - "value": 226 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_09", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-2834bdda-a4ea-4e26-a0ed-1abc157f5bfe", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_09", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "
    3-element Array{Float64,1}:\n 1.75\n 1.75\n 4.75
    " - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"c\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>451,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "226, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/edelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/edelman/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/edelman/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/edelman/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/edelman/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.5\\\",\\\"0.51\\\",\\\"0.52\\\",\\\"0.53\\\",\\\"0.54\\\",\\\"0.55\\\",\\\"0.56\\\",\\\"0.57\\\",\\\"0.58\\\",\\\"0.59\\\",\\\"0.6\\\",\\\"0.61\\\",\\\"0.62\\\",\\\"0.63\\\",\\\"0.64\\\",\\\"0.65\\\",\\\"0.66\\\",\\\"0.67\\\",\\\"0.68\\\",\\\"0.69\\\",\\\"0.7\\\",\\\"0.71\\\",\\\"0.72\\\",\\\"0.73\\\",\\\"0.74\\\",\\\"0.75\\\",\\\"0.76\\\",\\\"0.77\\\",\\\"0.78\\\",\\\"0.79\\\",\\\"0.8\\\",\\\"0.81\\\",\\\"0.82\\\",\\\"0.83\\\",\\\"0.84\\\",\\\"0.85\\\",\\\"0.86\\\",\\\"0.87\\\",\\\"0.88\\\",\\\"0.89\\\",\\\"0.9\\\",\\\"0.91\\\",\\\"0.92\\\",\\\"0.93\\\",\\\"0.94\\\",\\\"0.95\\\",\\\"0.96\\\",\\\"0.97\\\",\\\"0.98\\\",\\\"0.99\\\",\\\"1.0\\\",\\\"1.01\\\",\\\"1.02\\\",\\\"1.03\\\",\\\"1.04\\\",\\\"1.05\\\",\\\"1.06\\\",\\\"1.07\\\",\\\"1.08\\\",\\\"1.09\\\",\\\"1.1\\\",\\\"1.11\\\",\\\"1.12\\\",\\\"1.13\\\",\\\"1.14\\\",\\\"1.15\\\",\\\"1.16\\\",\\\"1.17\\\",\\\"1.18\\\",\\\"1.19\\\",\\\"1.2\\\",\\\"1.21\\\",\\\"1.22\\\",\\\"1.23\\\",\\\"1.24\\\",\\\"1.25\\\",\\\"1.26\\\",\\\"1.27\\\",\\\"1.28\\\",\\\"1.29\\\",\\\"1.3\\\",\\\"1.31\\\",\\\"1.32\\\",\\\"1.33\\\",\\\"1.34\\\",\\\"1.35\\\",\\\"1.36\\\",\\\"1.37\\\",\\\"1.38\\\",\\\"1.39\\\",\\\"1.4\\\",\\\"1.41\\\",\\\"1.42\\\",\\\"1.43\\\",\\\"1.44\\\",\\\"1.45\\\",\\\"1.46\\\",\\\"1.47\\\",\\\"1.48\\\",\\\"1.49\\\",\\\"1.5\\\",\\\"1.51\\\",\\\"1.52\\\",\\\"1.53\\\",\\\"1.54\\\",\\\"1.55\\\",\\\"1.56\\\",\\\"1.57\\\",\\\"1.58\\\",\\\"1.59\\\",\\\"1.6\\\",\\\"1.61\\\",\\\"1.62\\\",\\\"1.63\\\",\\\"1.64\\\",\\\"1.65\\\",\\\"1.66\\\",\\\"1.67\\\",\\\"1.68\\\",\\\"1.69\\\",\\\"1.7\\\",\\\"1.71\\\",\\\"1.72\\\",\\\"1.73\\\",\\\"1.74\\\",\\\"1.75\\\",\\\"1.76\\\",\\\"1.77\\\",\\\"1.78\\\",\\\"1.79\\\",\\\"1.8\\\",\\\"1.81\\\",\\\"1.82\\\",\\\"1.83\\\",\\\"1.84\\\",\\\"1.85\\\",\\\"1.86\\\",\\\"1.87\\\",\\\"1.88\\\",\\\"1.89\\\",\\\"1.9\\\",\\\"1.91\\\",\\\"1.92\\\",\\\"1.93\\\",\\\"1.94\\\",\\\"1.95\\\",\\\"1.96\\\",\\\"1.97\\\",\\\"1.98\\\",\\\"1.99\\\",\\\"2.0\\\",\\\"2.01\\\",\\\"2.02\\\",\\\"2.03\\\",\\\"2.04\\\",\\\"2.05\\\",\\\"2.06\\\",\\\"2.07\\\",\\\"2.08\\\",\\\"2.09\\\",\\\"2.1\\\",\\\"2.11\\\",\\\"2.12\\\",\\\"2.13\\\",\\\"2.14\\\",\\\"2.15\\\",\\\"2.16\\\",\\\"2.17\\\",\\\"2.18\\\",\\\"2.19\\\",\\\"2.2\\\",\\\"2.21\\\",\\\"2.22\\\",\\\"2.23\\\",\\\"2.24\\\",\\\"2.25\\\",\\\"2.26\\\",\\\"2.27\\\",\\\"2.28\\\",\\\"2.29\\\",\\\"2.3\\\",\\\"2.31\\\",\\\"2.32\\\",\\\"2.33\\\",\\\"2.34\\\",\\\"2.35\\\",\\\"2.36\\\",\\\"2.37\\\",\\\"2.38\\\",\\\"2.39\\\",\\\"2.4\\\",\\\"2.41\\\",\\\"2.42\\\",\\\"2.43\\\",\\\"2.44\\\",\\\"2.45\\\",\\\"2.46\\\",\\\"2.47\\\",\\\"2.48\\\",\\\"2.49\\\",\\\"2.5\\\",\\\"2.51\\\",\\\"2.52\\\",\\\"2.53\\\",\\\"2.54\\\",\\\"2.55\\\",\\\"2.56\\\",\\\"2.57\\\",\\\"2.58\\\",\\\"2.59\\\",\\\"2.6\\\",\\\"2.61\\\",\\\"2.62\\\",\\\"2.63\\\",\\\"2.64\\\",\\\"2.65\\\",\\\"2.66\\\",\\\"2.67\\\",\\\"2.68\\\",\\\"2.69\\\",\\\"2.7\\\",\\\"2.71\\\",\\\"2.72\\\",\\\"2.73\\\",\\\"2.74\\\",\\\"2.75\\\",\\\"2.76\\\",\\\"2.77\\\",\\\"2.78\\\",\\\"2.79\\\",\\\"2.8\\\",\\\"2.81\\\",\\\"2.82\\\",\\\"2.83\\\",\\\"2.84\\\",\\\"2.85\\\",\\\"2.86\\\",\\\"2.87\\\",\\\"2.88\\\",\\\"2.89\\\",\\\"2.9\\\",\\\"2.91\\\",\\\"2.92\\\",\\\"2.93\\\",\\\"2.94\\\",\\\"2.95\\\",\\\"2.96\\\",\\\"2.97\\\",\\\"2.98\\\",\\\"2.99\\\",\\\"3.0\\\",\\\"3.01\\\",\\\"3.02\\\",\\\"3.03\\\",\\\"3.04\\\",\\\"3.05\\\",\\\"3.06\\\",\\\"3.07\\\",\\\"3.08\\\",\\\"3.09\\\",\\\"3.1\\\",\\\"3.11\\\",\\\"3.12\\\",\\\"3.13\\\",\\\"3.14\\\",\\\"3.15\\\",\\\"3.16\\\",\\\"3.17\\\",\\\"3.18\\\",\\\"3.19\\\",\\\"3.2\\\",\\\"3.21\\\",\\\"3.22\\\",\\\"3.23\\\",\\\"3.24\\\",\\\"3.25\\\",\\\"3.26\\\",\\\"3.27\\\",\\\"3.28\\\",\\\"3.29\\\",\\\"3.3\\\",\\\"3.31\\\",\\\"3.32\\\",\\\"3.33\\\",\\\"3.34\\\",\\\"3.35\\\",\\\"3.36\\\",\\\"3.37\\\",\\\"3.38\\\",\\\"3.39\\\",\\\"3.4\\\",\\\"3.41\\\",\\\"3.42\\\",\\\"3.43\\\",\\\"3.44\\\",\\\"3.45\\\",\\\"3.46\\\",\\\"3.47\\\",\\\"3.48\\\",\\\"3.49\\\",\\\"3.5\\\",\\\"3.51\\\",\\\"3.52\\\",\\\"3.53\\\",\\\"3.54\\\",\\\"3.55\\\",\\\"3.56\\\",\\\"3.57\\\",\\\"3.58\\\",\\\"3.59\\\",\\\"3.6\\\",\\\"3.61\\\",\\\"3.62\\\",\\\"3.63\\\",\\\"3.64\\\",\\\"3.65\\\",\\\"3.66\\\",\\\"3.67\\\",\\\"3.68\\\",\\\"3.69\\\",\\\"3.7\\\",\\\"3.71\\\",\\\"3.72\\\",\\\"3.73\\\",\\\"3.74\\\",\\\"3.75\\\",\\\"3.76\\\",\\\"3.77\\\",\\\"3.78\\\",\\\"3.79\\\",\\\"3.8\\\",\\\"3.81\\\",\\\"3.82\\\",\\\"3.83\\\",\\\"3.84\\\",\\\"3.85\\\",\\\"3.86\\\",\\\"3.87\\\",\\\"3.88\\\",\\\"3.89\\\",\\\"3.9\\\",\\\"3.91\\\",\\\"3.92\\\",\\\"3.93\\\",\\\"3.94\\\",\\\"3.95\\\",\\\"3.96\\\",\\\"3.97\\\",\\\"3.98\\\",\\\"3.99\\\",\\\"4.0\\\",\\\"4.01\\\",\\\"4.02\\\",\\\"4.03\\\",\\\"4.04\\\",\\\"4.05\\\",\\\"4.06\\\",\\\"4.07\\\",\\\"4.08\\\",\\\"4.09\\\",\\\"4.1\\\",\\\"4.11\\\",\\\"4.12\\\",\\\"4.13\\\",\\\"4.14\\\",\\\"4.15\\\",\\\"4.16\\\",\\\"4.17\\\",\\\"4.18\\\",\\\"4.19\\\",\\\"4.2\\\",\\\"4.21\\\",\\\"4.22\\\",\\\"4.23\\\",\\\"4.24\\\",\\\"4.25\\\",\\\"4.26\\\",\\\"4.27\\\",\\\"4.28\\\",\\\"4.29\\\",\\\"4.3\\\",\\\"4.31\\\",\\\"4.32\\\",\\\"4.33\\\",\\\"4.34\\\",\\\"4.35\\\",\\\"4.36\\\",\\\"4.37\\\",\\\"4.38\\\",\\\"4.39\\\",\\\"4.4\\\",\\\"4.41\\\",\\\"4.42\\\",\\\"4.43\\\",\\\"4.44\\\",\\\"4.45\\\",\\\"4.46\\\",\\\"4.47\\\",\\\"4.48\\\",\\\"4.49\\\",\\\"4.5\\\",\\\"4.51\\\",\\\"4.52\\\",\\\"4.53\\\",\\\"4.54\\\",\\\"4.55\\\",\\\"4.56\\\",\\\"4.57\\\",\\\"4.58\\\",\\\"4.59\\\",\\\"4.6\\\",\\\"4.61\\\",\\\"4.62\\\",\\\"4.63\\\",\\\"4.64\\\",\\\"4.65\\\",\\\"4.66\\\",\\\"4.67\\\",\\\"4.68\\\",\\\"4.69\\\",\\\"4.7\\\",\\\"4.71\\\",\\\"4.72\\\",\\\"4.73\\\",\\\"4.74\\\",\\\"4.75\\\",\\\"4.76\\\",\\\"4.77\\\",\\\"4.78\\\",\\\"4.79\\\",\\\"4.8\\\",\\\"4.81\\\",\\\"4.82\\\",\\\"4.83\\\",\\\"4.84\\\",\\\"4.85\\\",\\\"4.86\\\",\\\"4.87\\\",\\\"4.88\\\",\\\"4.89\\\",\\\"4.9\\\",\\\"4.91\\\",\\\"4.92\\\",\\\"4.93\\\",\\\"4.94\\\",\\\"4.95\\\",\\\"4.96\\\",\\\"4.97\\\",\\\"4.98\\\",\\\"4.99\\\",\\\"5.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\\\",\\\"id\\\":\\\"ob_03\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\\\",\\\"id\\\":\\\"ob_03\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-91d1ad8d-5531-46e8-998f-6c9ae1df7709\\\",\\\"id\\\":\\\"ob_02\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/f07383ad7ba5d9e293900fdc7e5e611110d6ff32-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/306cc87ce82e45c3e5eb81524cb970ae2bab3932-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[[1.75, 1.75, 4.75]], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 14, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "1643e1b4-886e-40e9-b931-19377167b270" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for c=.5:.01:5\n", - " round.( eigvals( [c 1 1 ;1 c 1;1 1 c]) , digits=3)\n", - "end\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The eigenvalues of this 3x3 matrix is readily found by first geting the eigenvalues of the 3x3 ones matrix and then doing what? This method requires almost no pencil and paper, and more importantly helps you understand why the eigenvalues are what they are." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7) In class and in the textbook, positive-definiteness was defined only for symmetric matrices. However, it can be extended to arbitrary square matrices as follows.\n", - "\n", - "The matrix $A$ is positive-definite if $A + A^T$ is positive-definite (in the sense defined in class and in the book: $A + A^T$ has positive eigenvalues, or equivalently $x^T(A+A^T)x \\gt 0$ for all $x \\ne 0$, or equivalently $A^T + A = B^T B$ where $B$ has full column rank).\n", - "Show that if $A + A^T$ is positive definite, then the eigenvalues of $A$ have positive real parts.\n", - "\n", - "(Hint: consider an eigenvector $Ax = \\lambda x$. How can you use this in one of the positive-definite conditions for $A+A^T$ above?)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(8) Suppose a symmetric positive definite matrix $A$ has a unique largest eigenvalue. While pure mathematicians would say that $A^{2019}$ has full rank, applied folks would say that it is very likely rank $1$ for all intents and purposes. Explain this with words or a Julia example (2019 may be too large on a computer). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9) Consider the function $f(x, y) = x^3 − 12xy + 8y^3$. Show that the gradient vanishes at exactly two points,\n", - "(0,0) and (2,1). One of these is a saddle point, and one a local minimum. Which ones and why?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10) Use the full svd to derive the so called \"polar factorization\" of a matrix: Every square matrix $A$ can be factored into $QS$ where $Q$ is orthogonal and $S$ is positive semi-definite. If $A$ is invertible further show $S$ is positive definite. (Hint: if $A=U\\Sigma V^T$, the orthogonal matrix $Q$ will be $UV^T$. What do we need to complete the story.) (Hint: if you don't yet see the answer, the polar decomposition is on page 394 of Strang.) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "@webio": { - "lastCommId": "f761ed0e5fd04cabb75da92d7c0e74ec", - "lastKernelId": "1643e1b4-886e-40e9-b931-19377167b270" - }, - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset10sol.ipynb b/psets/pset10sol.ipynb deleted file mode 100644 index 5136a67d..00000000 --- a/psets/pset10sol.ipynb +++ /dev/null @@ -1,613 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 10 Solutions\n", - "\n", - "due Friday 5/10 at 11:59pm " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1\n", - "(1) (GS prob 1, page 480) What is the steady state eigenvector of" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.9 0.15\n", - " 0.1 0.85" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [.9 .15\n", - " .1 .85]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "$A$ has eigenvalue $1$ with corresponding (steady state) eigenvector $(.6,.4)$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This you should do by hand and can check if you like with Julia." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 0.6000000000000001 \n", - " 0.39999999999999997" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "λ,X = eigen(A)\n", - "X[:,1]/sum(X[:,1])\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2\n", - "\n", - "Show that the square of a positive Markov matrix is a positive Markov matrix. Also show that the square of a general Markov matrix is also Markov. (Hint: there is an easy way and a more difficult way.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "A matrix $A$ is a positive (resp. general) Markov matrix precisely when all its entries are positive (resp. non-negative) and $\\mathbf{1} A=\\mathbf{1}$, where $\\mathbf{1}$ denotes the all ones vector of the appropriate size. Clearly, the product of two matrices with only positive (resp. non-negative) entries has only positive (resp. non-negative) entries. As $\\mathbf{1} A^2=(\\mathbf{1} A) A=\\mathbf{1} A=\\mathbf{1}$, we conclude that the square of a positive (resp. non-negative) Markov matrix is a positive (resp. non-negative) Markov matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3\n", - "\n", - "What can you say about the steady state of a symmetric positive Markov matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "If $A$ is a symmetric Markov matrix, then each row has sum $1$, and so $A$ has eigenvalue $1$ with corresponding eigenvector $\\mathbf{1}$. As a positive Markov matrix has a unique eigenvalue $1$ of maximum magnitude, the steady state eigenvector is then $\\frac{1}{n} \\mathbf{1}$, where $A$ is $n \\times n$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4\n", - "\n", - "Show that if $M$ is positive definite , so is $M^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "By definition, $M$ is symmetric, say of dimension $n \\times n$, and has eigenvalues $\\lambda_1,\\ldots,\\lambda_n >0$. $M^{-1}$ exists, as $M$ does not have eigenvalue $0$. $M^{-1}$ is symmetric as $(M^{-1})^T=(M^T)^{-1}=M^{-1}$. Lastly, $M^{-1}$ has eigenvalues $\\lambda_1^{-1},\\ldots,\\lambda_n^{-1}>0$. Therefore, $M^{-1}$ is positive definite." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5\n", - "\n", - "(5a) We have mentioned that the image of the unit ball under A is an ellipsoid. This means that the set of all y=Ax such that ||x||=1 is an ellipsoid. Show that if A is square and invertible, the equation of this ellipsoid is\n", - "$$y^T(AA^T)^{-1}y=1.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5b) Turning this around if $M$ is positive definite, the equation $y^T M y$ is an ellipsoid. Show that it has semi-axes equal to the reciprocals of the eigenvalues of $M$ and the directions are the eigenvectors." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "a) $y$ lies on the ellipsoid precisely when $1^2=||A^{-1}y||^2=(A^{-1} y)^T (A^{-1} y)=y^T (A^T)^{-1} A^{-1} y=y^T (AA^T)^{-1} y$.\n", - "\n", - "b) As $M$ is positive definite, say of dimension $n \\times n$, it has positive real eigenvalues $\\lambda_1,\\ldots,\\lambda_n$ with corresponding orthonormal eigenvectors $v_1,\\ldots,v_n$. For each $v_i$, the ellipsoid has a semi-axis $\\alpha_i v_i$, where $\\alpha_i$ is a real scalar such that $\\alpha_i v_i$ lies on the ellipsoid, and therefore satisfies $1=(\\alpha_i v_i)^T M (\\alpha_i v_i)=\\alpha_i^2 \\lambda_i$. The semi-axes of the ellipsoid are then given by $\\frac{1}{\\sqrt{\\lambda_i}} v_i$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6\n", - "\n", - "For which values of $c$ is the matrix below positive definite?
    \n", - "\\begin{pmatrix} c & 1 & 1 \\\\ 1 & c & 1 \\\\ 1 & 1 & c \\end{pmatrix}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "As the above matrix is equal to $J+(c-1)I$, where $J$ is the all ones matrix, it has eigenvalues $c+2$ with multiplicity $1$ and $c-1$ with multiplicity $2$, and is therefore positive definite precisely when $c>1$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If Interact happens to work you can try, if you like, playing with this in julia:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "using Interact, LinearAlgebra" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.webio.node+json": { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - { - "children": [ - "c" - ], - "instanceArgs": { - "namespace": "html", - "tag": "label" - }, - "nodeType": "DOM", - "props": { - "className": "interact ", - "style": { - "padding": "5px 10px 0px 10px" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-left" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "input" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}", - "orient": "horizontal", - "type": "range" - }, - "className": "slider slider is-fullwidth", - "max": 451, - "min": 1, - "step": 1, - "style": {} - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-center" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "p" - }, - "nodeType": "DOM", - "props": { - "attributes": { - "data-bind": "text: formatted_val" - } - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row-right" - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - ], - "instanceArgs": { - "handlers": { - "changes": [ - "(function (val){return (val!=this.model[\"changes\"]()) ? (this.valueFromJulia[\"changes\"]=true, this.model[\"changes\"](val)) : undefined})" - ], - "index": [ - "(function (val){return (val!=this.model[\"index\"]()) ? (this.valueFromJulia[\"index\"]=true, this.model[\"index\"](val)) : undefined})" - ] - }, - "id": "knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c", - "imports": { - "data": [ - { - "name": "knockout", - "type": "js", - "url": "/assetserver/8e7940505acfe7b727ec174e5e36f6e3d1cffc23-knockout.js" - }, - { - "name": "knockout_punches", - "type": "js", - "url": "/assetserver/b4b1d93188d47145d68e3293d67e191fa3a89177-knockout_punches.js" - }, - { - "name": null, - "type": "js", - "url": "/assetserver/38b9c9bb0d356a4507a55e4db73705688e2a7e3e-all.js" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/35acab0d323affcdf433c7370e6206b43c2fbd50-style.css" - }, - { - "name": null, - "type": "css", - "url": "/assetserver/75bd3ded6f445039f58928c7e52e97cb64f8f103-bulma_confined.min.css" - } - ], - "type": "async_block" - }, - "mount_callbacks": [ - "function () {\n var handler = (function (ko, koPunches) {\n ko.punches.enableAll();\n ko.bindingHandlers.numericValue = {\n init : function(element, valueAccessor, allBindings, data, context) {\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\n stringified.subscribe(function(value) {\n var val = parseFloat(value);\n if (!isNaN(val)) {\n valueAccessor()(val);\n }\n })\n valueAccessor().subscribe(function(value) {\n var str = JSON.stringify(value);\n if ((str == \"0\") && ([\"-0\", \"-0.\"].indexOf(stringified()) >= 0))\n return;\n if ([\"null\", \"\"].indexOf(str) >= 0)\n return;\n stringified(str);\n })\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\n }\n };\n var json_data = {\"formatted_vals\":[\"0.5\",\"0.51\",\"0.52\",\"0.53\",\"0.54\",\"0.55\",\"0.56\",\"0.57\",\"0.58\",\"0.59\",\"0.6\",\"0.61\",\"0.62\",\"0.63\",\"0.64\",\"0.65\",\"0.66\",\"0.67\",\"0.68\",\"0.69\",\"0.7\",\"0.71\",\"0.72\",\"0.73\",\"0.74\",\"0.75\",\"0.76\",\"0.77\",\"0.78\",\"0.79\",\"0.8\",\"0.81\",\"0.82\",\"0.83\",\"0.84\",\"0.85\",\"0.86\",\"0.87\",\"0.88\",\"0.89\",\"0.9\",\"0.91\",\"0.92\",\"0.93\",\"0.94\",\"0.95\",\"0.96\",\"0.97\",\"0.98\",\"0.99\",\"1.0\",\"1.01\",\"1.02\",\"1.03\",\"1.04\",\"1.05\",\"1.06\",\"1.07\",\"1.08\",\"1.09\",\"1.1\",\"1.11\",\"1.12\",\"1.13\",\"1.14\",\"1.15\",\"1.16\",\"1.17\",\"1.18\",\"1.19\",\"1.2\",\"1.21\",\"1.22\",\"1.23\",\"1.24\",\"1.25\",\"1.26\",\"1.27\",\"1.28\",\"1.29\",\"1.3\",\"1.31\",\"1.32\",\"1.33\",\"1.34\",\"1.35\",\"1.36\",\"1.37\",\"1.38\",\"1.39\",\"1.4\",\"1.41\",\"1.42\",\"1.43\",\"1.44\",\"1.45\",\"1.46\",\"1.47\",\"1.48\",\"1.49\",\"1.5\",\"1.51\",\"1.52\",\"1.53\",\"1.54\",\"1.55\",\"1.56\",\"1.57\",\"1.58\",\"1.59\",\"1.6\",\"1.61\",\"1.62\",\"1.63\",\"1.64\",\"1.65\",\"1.66\",\"1.67\",\"1.68\",\"1.69\",\"1.7\",\"1.71\",\"1.72\",\"1.73\",\"1.74\",\"1.75\",\"1.76\",\"1.77\",\"1.78\",\"1.79\",\"1.8\",\"1.81\",\"1.82\",\"1.83\",\"1.84\",\"1.85\",\"1.86\",\"1.87\",\"1.88\",\"1.89\",\"1.9\",\"1.91\",\"1.92\",\"1.93\",\"1.94\",\"1.95\",\"1.96\",\"1.97\",\"1.98\",\"1.99\",\"2.0\",\"2.01\",\"2.02\",\"2.03\",\"2.04\",\"2.05\",\"2.06\",\"2.07\",\"2.08\",\"2.09\",\"2.1\",\"2.11\",\"2.12\",\"2.13\",\"2.14\",\"2.15\",\"2.16\",\"2.17\",\"2.18\",\"2.19\",\"2.2\",\"2.21\",\"2.22\",\"2.23\",\"2.24\",\"2.25\",\"2.26\",\"2.27\",\"2.28\",\"2.29\",\"2.3\",\"2.31\",\"2.32\",\"2.33\",\"2.34\",\"2.35\",\"2.36\",\"2.37\",\"2.38\",\"2.39\",\"2.4\",\"2.41\",\"2.42\",\"2.43\",\"2.44\",\"2.45\",\"2.46\",\"2.47\",\"2.48\",\"2.49\",\"2.5\",\"2.51\",\"2.52\",\"2.53\",\"2.54\",\"2.55\",\"2.56\",\"2.57\",\"2.58\",\"2.59\",\"2.6\",\"2.61\",\"2.62\",\"2.63\",\"2.64\",\"2.65\",\"2.66\",\"2.67\",\"2.68\",\"2.69\",\"2.7\",\"2.71\",\"2.72\",\"2.73\",\"2.74\",\"2.75\",\"2.76\",\"2.77\",\"2.78\",\"2.79\",\"2.8\",\"2.81\",\"2.82\",\"2.83\",\"2.84\",\"2.85\",\"2.86\",\"2.87\",\"2.88\",\"2.89\",\"2.9\",\"2.91\",\"2.92\",\"2.93\",\"2.94\",\"2.95\",\"2.96\",\"2.97\",\"2.98\",\"2.99\",\"3.0\",\"3.01\",\"3.02\",\"3.03\",\"3.04\",\"3.05\",\"3.06\",\"3.07\",\"3.08\",\"3.09\",\"3.1\",\"3.11\",\"3.12\",\"3.13\",\"3.14\",\"3.15\",\"3.16\",\"3.17\",\"3.18\",\"3.19\",\"3.2\",\"3.21\",\"3.22\",\"3.23\",\"3.24\",\"3.25\",\"3.26\",\"3.27\",\"3.28\",\"3.29\",\"3.3\",\"3.31\",\"3.32\",\"3.33\",\"3.34\",\"3.35\",\"3.36\",\"3.37\",\"3.38\",\"3.39\",\"3.4\",\"3.41\",\"3.42\",\"3.43\",\"3.44\",\"3.45\",\"3.46\",\"3.47\",\"3.48\",\"3.49\",\"3.5\",\"3.51\",\"3.52\",\"3.53\",\"3.54\",\"3.55\",\"3.56\",\"3.57\",\"3.58\",\"3.59\",\"3.6\",\"3.61\",\"3.62\",\"3.63\",\"3.64\",\"3.65\",\"3.66\",\"3.67\",\"3.68\",\"3.69\",\"3.7\",\"3.71\",\"3.72\",\"3.73\",\"3.74\",\"3.75\",\"3.76\",\"3.77\",\"3.78\",\"3.79\",\"3.8\",\"3.81\",\"3.82\",\"3.83\",\"3.84\",\"3.85\",\"3.86\",\"3.87\",\"3.88\",\"3.89\",\"3.9\",\"3.91\",\"3.92\",\"3.93\",\"3.94\",\"3.95\",\"3.96\",\"3.97\",\"3.98\",\"3.99\",\"4.0\",\"4.01\",\"4.02\",\"4.03\",\"4.04\",\"4.05\",\"4.06\",\"4.07\",\"4.08\",\"4.09\",\"4.1\",\"4.11\",\"4.12\",\"4.13\",\"4.14\",\"4.15\",\"4.16\",\"4.17\",\"4.18\",\"4.19\",\"4.2\",\"4.21\",\"4.22\",\"4.23\",\"4.24\",\"4.25\",\"4.26\",\"4.27\",\"4.28\",\"4.29\",\"4.3\",\"4.31\",\"4.32\",\"4.33\",\"4.34\",\"4.35\",\"4.36\",\"4.37\",\"4.38\",\"4.39\",\"4.4\",\"4.41\",\"4.42\",\"4.43\",\"4.44\",\"4.45\",\"4.46\",\"4.47\",\"4.48\",\"4.49\",\"4.5\",\"4.51\",\"4.52\",\"4.53\",\"4.54\",\"4.55\",\"4.56\",\"4.57\",\"4.58\",\"4.59\",\"4.6\",\"4.61\",\"4.62\",\"4.63\",\"4.64\",\"4.65\",\"4.66\",\"4.67\",\"4.68\",\"4.69\",\"4.7\",\"4.71\",\"4.72\",\"4.73\",\"4.74\",\"4.75\",\"4.76\",\"4.77\",\"4.78\",\"4.79\",\"4.8\",\"4.81\",\"4.82\",\"4.83\",\"4.84\",\"4.85\",\"4.86\",\"4.87\",\"4.88\",\"4.89\",\"4.9\",\"4.91\",\"4.92\",\"4.93\",\"4.94\",\"4.95\",\"4.96\",\"4.97\",\"4.98\",\"4.99\",\"5.0\"],\"changes\":WebIO.getval({\"name\":\"changes\",\"scope\":\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\",\"id\":\"ob_21\",\"type\":\"observable\"}),\"index\":WebIO.getval({\"name\":\"index\",\"scope\":\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\",\"id\":\"ob_20\",\"type\":\"observable\"})};\n var self = this;\n function AppViewModel() {\n for (var key in json_data) {\n var el = json_data[key];\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\n }\n \n [this[\"formatted_val\"]=ko.computed( function(){\n return this.formatted_vals()[parseInt(this.index())-1];\n }\n,this)]\n [this[\"changes\"].subscribe((function (val){!(this.valueFromJulia[\"changes\"]) ? (WebIO.setval({\"name\":\"changes\",\"scope\":\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\",\"id\":\"ob_21\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"changes\"]=false}),self),this[\"index\"].subscribe((function (val){!(this.valueFromJulia[\"index\"]) ? (WebIO.setval({\"name\":\"index\",\"scope\":\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\",\"id\":\"ob_20\",\"type\":\"observable\"},val)) : undefined; return this.valueFromJulia[\"index\"]=false}),self)]\n \n }\n self.model = new AppViewModel();\n self.valueFromJulia = {};\n for (var key in json_data) {\n self.valueFromJulia[key] = false;\n }\n ko.applyBindings(self.model, self.dom);\n}\n);\n (WebIO.importBlock({\"data\":[{\"name\":\"knockout\",\"type\":\"js\",\"url\":\"/assetserver/8e7940505acfe7b727ec174e5e36f6e3d1cffc23-knockout.js\"},{\"name\":\"knockout_punches\",\"type\":\"js\",\"url\":\"/assetserver/b4b1d93188d47145d68e3293d67e191fa3a89177-knockout_punches.js\"}],\"type\":\"async_block\"})).then((imports) => handler.apply(this, imports));\n}\n" - ], - "observables": { - "changes": { - "id": "ob_21", - "sync": false, - "value": 0 - }, - "index": { - "id": "ob_20", - "sync": true, - "value": 226 - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "field interact-widget" - }, - "type": "node" - }, - { - "children": [ - { - "children": [], - "instanceArgs": { - "id": "ob_27", - "name": "obs-node" - }, - "nodeType": "ObservableNode", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "handlers": {}, - "id": "scope-b1f430e6-d043-42e0-a484-90b2c745bb09", - "imports": { - "data": [], - "type": "async_block" - }, - "mount_callbacks": [], - "observables": { - "obs-node": { - "id": "ob_27", - "sync": false, - "value": { - "children": [ - { - "children": [], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "setInnerHtml": "
    3-element Array{Float64,1}:\n 1.75\n 1.75\n 4.75
    " - }, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": { - "className": "interact-flex-row interact-widget" - }, - "type": "node" - } - } - }, - "systemjs_options": null - }, - "nodeType": "Scope", - "props": {}, - "type": "node" - } - ], - "instanceArgs": { - "namespace": "html", - "tag": "div" - }, - "nodeType": "DOM", - "props": {}, - "type": "node" - }, - "text/html": [ - "\n", - " \n", - "\n" - ], - "text/plain": [ - "Node{WebIO.DOM}(WebIO.DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Scope(\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\", Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :label), Any[\"c\"], Dict{Symbol,Any}(:className=>\"interact \",:style=>Dict{Any,Any}(:padding=>\"5px 10px 0px 10px\")), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row-left\"), 2), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :input), Any[], Dict{Symbol,Any}(:max=>451,:min=>1,:attributes=>Dict{Any,Any}(:type=>\"range\",Symbol(\"data-bind\")=>\"numericValue: index, valueUpdate: 'input', event: {change: function (){this.changes(this.changes()+1)}}\",\"orient\"=>\"horizontal\"),:step=>1,:className=>\"slider slider is-fullwidth\",:style=>Dict{Any,Any}()), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-center\"), 1), Node{DOM}(DOM(:html, :div), Any[Node{DOM}(DOM(:html, :p), Any[], Dict{Symbol,Any}(:attributes=>Dict(\"data-bind\"=>\"text: formatted_val\")), 0)], Dict{Symbol,Any}(:className=>\"interact-flex-row-right\"), 1)], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 7), Dict{String,Tuple{Observables.AbstractObservable,Union{Nothing, Bool}}}(\"changes\"=>(Observable{Int64} with 1 listeners. Value:\n", - "0, nothing),\"index\"=>(Observable{Any} with 2 listeners. Value:\n", - "226, nothing)), Set(String[]), nothing, Asset[Asset(\"js\", \"knockout\", \"/Users/samturton/.julia/packages/Knockout/JE2Yq/src/../assets/knockout.js\"), Asset(\"js\", \"knockout_punches\", \"/Users/samturton/.julia/packages/Knockout/JE2Yq/src/../assets/knockout_punches.js\"), Asset(\"js\", nothing, \"/Users/samturton/.julia/packages/InteractBase/R8JgH/src/../assets/all.js\"), Asset(\"css\", nothing, \"/Users/samturton/.julia/packages/InteractBase/R8JgH/src/../assets/style.css\"), Asset(\"css\", nothing, \"/Users/samturton/.julia/packages/Interact/0klKX/src/../assets/bulma_confined.min.css\")], Dict{Any,Any}(\"changes\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"changes\\\"]()) ? (this.valueFromJulia[\\\"changes\\\"]=true, this.model[\\\"changes\\\"](val)) : undefined})\")],\"index\"=>Any[JSString(\"(function (val){return (val!=this.model[\\\"index\\\"]()) ? (this.valueFromJulia[\\\"index\\\"]=true, this.model[\\\"index\\\"](val)) : undefined})\")]), ConnectionPool(Channel{Any}(sz_max:9223372036854775807,sz_curr:0), Set(AbstractConnection[]), Channel{AbstractConnection}(sz_max:32,sz_curr:0)), WebIO.JSString[JSString(\"function () {\\n var handler = (function (ko, koPunches) {\\n ko.punches.enableAll();\\n ko.bindingHandlers.numericValue = {\\n init : function(element, valueAccessor, allBindings, data, context) {\\n var stringified = ko.observable(ko.unwrap(valueAccessor()));\\n stringified.subscribe(function(value) {\\n var val = parseFloat(value);\\n if (!isNaN(val)) {\\n valueAccessor()(val);\\n }\\n })\\n valueAccessor().subscribe(function(value) {\\n var str = JSON.stringify(value);\\n if ((str == \\\"0\\\") && ([\\\"-0\\\", \\\"-0.\\\"].indexOf(stringified()) >= 0))\\n return;\\n if ([\\\"null\\\", \\\"\\\"].indexOf(str) >= 0)\\n return;\\n stringified(str);\\n })\\n ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);\\n }\\n };\\n var json_data = {\\\"formatted_vals\\\":[\\\"0.5\\\",\\\"0.51\\\",\\\"0.52\\\",\\\"0.53\\\",\\\"0.54\\\",\\\"0.55\\\",\\\"0.56\\\",\\\"0.57\\\",\\\"0.58\\\",\\\"0.59\\\",\\\"0.6\\\",\\\"0.61\\\",\\\"0.62\\\",\\\"0.63\\\",\\\"0.64\\\",\\\"0.65\\\",\\\"0.66\\\",\\\"0.67\\\",\\\"0.68\\\",\\\"0.69\\\",\\\"0.7\\\",\\\"0.71\\\",\\\"0.72\\\",\\\"0.73\\\",\\\"0.74\\\",\\\"0.75\\\",\\\"0.76\\\",\\\"0.77\\\",\\\"0.78\\\",\\\"0.79\\\",\\\"0.8\\\",\\\"0.81\\\",\\\"0.82\\\",\\\"0.83\\\",\\\"0.84\\\",\\\"0.85\\\",\\\"0.86\\\",\\\"0.87\\\",\\\"0.88\\\",\\\"0.89\\\",\\\"0.9\\\",\\\"0.91\\\",\\\"0.92\\\",\\\"0.93\\\",\\\"0.94\\\",\\\"0.95\\\",\\\"0.96\\\",\\\"0.97\\\",\\\"0.98\\\",\\\"0.99\\\",\\\"1.0\\\",\\\"1.01\\\",\\\"1.02\\\",\\\"1.03\\\",\\\"1.04\\\",\\\"1.05\\\",\\\"1.06\\\",\\\"1.07\\\",\\\"1.08\\\",\\\"1.09\\\",\\\"1.1\\\",\\\"1.11\\\",\\\"1.12\\\",\\\"1.13\\\",\\\"1.14\\\",\\\"1.15\\\",\\\"1.16\\\",\\\"1.17\\\",\\\"1.18\\\",\\\"1.19\\\",\\\"1.2\\\",\\\"1.21\\\",\\\"1.22\\\",\\\"1.23\\\",\\\"1.24\\\",\\\"1.25\\\",\\\"1.26\\\",\\\"1.27\\\",\\\"1.28\\\",\\\"1.29\\\",\\\"1.3\\\",\\\"1.31\\\",\\\"1.32\\\",\\\"1.33\\\",\\\"1.34\\\",\\\"1.35\\\",\\\"1.36\\\",\\\"1.37\\\",\\\"1.38\\\",\\\"1.39\\\",\\\"1.4\\\",\\\"1.41\\\",\\\"1.42\\\",\\\"1.43\\\",\\\"1.44\\\",\\\"1.45\\\",\\\"1.46\\\",\\\"1.47\\\",\\\"1.48\\\",\\\"1.49\\\",\\\"1.5\\\",\\\"1.51\\\",\\\"1.52\\\",\\\"1.53\\\",\\\"1.54\\\",\\\"1.55\\\",\\\"1.56\\\",\\\"1.57\\\",\\\"1.58\\\",\\\"1.59\\\",\\\"1.6\\\",\\\"1.61\\\",\\\"1.62\\\",\\\"1.63\\\",\\\"1.64\\\",\\\"1.65\\\",\\\"1.66\\\",\\\"1.67\\\",\\\"1.68\\\",\\\"1.69\\\",\\\"1.7\\\",\\\"1.71\\\",\\\"1.72\\\",\\\"1.73\\\",\\\"1.74\\\",\\\"1.75\\\",\\\"1.76\\\",\\\"1.77\\\",\\\"1.78\\\",\\\"1.79\\\",\\\"1.8\\\",\\\"1.81\\\",\\\"1.82\\\",\\\"1.83\\\",\\\"1.84\\\",\\\"1.85\\\",\\\"1.86\\\",\\\"1.87\\\",\\\"1.88\\\",\\\"1.89\\\",\\\"1.9\\\",\\\"1.91\\\",\\\"1.92\\\",\\\"1.93\\\",\\\"1.94\\\",\\\"1.95\\\",\\\"1.96\\\",\\\"1.97\\\",\\\"1.98\\\",\\\"1.99\\\",\\\"2.0\\\",\\\"2.01\\\",\\\"2.02\\\",\\\"2.03\\\",\\\"2.04\\\",\\\"2.05\\\",\\\"2.06\\\",\\\"2.07\\\",\\\"2.08\\\",\\\"2.09\\\",\\\"2.1\\\",\\\"2.11\\\",\\\"2.12\\\",\\\"2.13\\\",\\\"2.14\\\",\\\"2.15\\\",\\\"2.16\\\",\\\"2.17\\\",\\\"2.18\\\",\\\"2.19\\\",\\\"2.2\\\",\\\"2.21\\\",\\\"2.22\\\",\\\"2.23\\\",\\\"2.24\\\",\\\"2.25\\\",\\\"2.26\\\",\\\"2.27\\\",\\\"2.28\\\",\\\"2.29\\\",\\\"2.3\\\",\\\"2.31\\\",\\\"2.32\\\",\\\"2.33\\\",\\\"2.34\\\",\\\"2.35\\\",\\\"2.36\\\",\\\"2.37\\\",\\\"2.38\\\",\\\"2.39\\\",\\\"2.4\\\",\\\"2.41\\\",\\\"2.42\\\",\\\"2.43\\\",\\\"2.44\\\",\\\"2.45\\\",\\\"2.46\\\",\\\"2.47\\\",\\\"2.48\\\",\\\"2.49\\\",\\\"2.5\\\",\\\"2.51\\\",\\\"2.52\\\",\\\"2.53\\\",\\\"2.54\\\",\\\"2.55\\\",\\\"2.56\\\",\\\"2.57\\\",\\\"2.58\\\",\\\"2.59\\\",\\\"2.6\\\",\\\"2.61\\\",\\\"2.62\\\",\\\"2.63\\\",\\\"2.64\\\",\\\"2.65\\\",\\\"2.66\\\",\\\"2.67\\\",\\\"2.68\\\",\\\"2.69\\\",\\\"2.7\\\",\\\"2.71\\\",\\\"2.72\\\",\\\"2.73\\\",\\\"2.74\\\",\\\"2.75\\\",\\\"2.76\\\",\\\"2.77\\\",\\\"2.78\\\",\\\"2.79\\\",\\\"2.8\\\",\\\"2.81\\\",\\\"2.82\\\",\\\"2.83\\\",\\\"2.84\\\",\\\"2.85\\\",\\\"2.86\\\",\\\"2.87\\\",\\\"2.88\\\",\\\"2.89\\\",\\\"2.9\\\",\\\"2.91\\\",\\\"2.92\\\",\\\"2.93\\\",\\\"2.94\\\",\\\"2.95\\\",\\\"2.96\\\",\\\"2.97\\\",\\\"2.98\\\",\\\"2.99\\\",\\\"3.0\\\",\\\"3.01\\\",\\\"3.02\\\",\\\"3.03\\\",\\\"3.04\\\",\\\"3.05\\\",\\\"3.06\\\",\\\"3.07\\\",\\\"3.08\\\",\\\"3.09\\\",\\\"3.1\\\",\\\"3.11\\\",\\\"3.12\\\",\\\"3.13\\\",\\\"3.14\\\",\\\"3.15\\\",\\\"3.16\\\",\\\"3.17\\\",\\\"3.18\\\",\\\"3.19\\\",\\\"3.2\\\",\\\"3.21\\\",\\\"3.22\\\",\\\"3.23\\\",\\\"3.24\\\",\\\"3.25\\\",\\\"3.26\\\",\\\"3.27\\\",\\\"3.28\\\",\\\"3.29\\\",\\\"3.3\\\",\\\"3.31\\\",\\\"3.32\\\",\\\"3.33\\\",\\\"3.34\\\",\\\"3.35\\\",\\\"3.36\\\",\\\"3.37\\\",\\\"3.38\\\",\\\"3.39\\\",\\\"3.4\\\",\\\"3.41\\\",\\\"3.42\\\",\\\"3.43\\\",\\\"3.44\\\",\\\"3.45\\\",\\\"3.46\\\",\\\"3.47\\\",\\\"3.48\\\",\\\"3.49\\\",\\\"3.5\\\",\\\"3.51\\\",\\\"3.52\\\",\\\"3.53\\\",\\\"3.54\\\",\\\"3.55\\\",\\\"3.56\\\",\\\"3.57\\\",\\\"3.58\\\",\\\"3.59\\\",\\\"3.6\\\",\\\"3.61\\\",\\\"3.62\\\",\\\"3.63\\\",\\\"3.64\\\",\\\"3.65\\\",\\\"3.66\\\",\\\"3.67\\\",\\\"3.68\\\",\\\"3.69\\\",\\\"3.7\\\",\\\"3.71\\\",\\\"3.72\\\",\\\"3.73\\\",\\\"3.74\\\",\\\"3.75\\\",\\\"3.76\\\",\\\"3.77\\\",\\\"3.78\\\",\\\"3.79\\\",\\\"3.8\\\",\\\"3.81\\\",\\\"3.82\\\",\\\"3.83\\\",\\\"3.84\\\",\\\"3.85\\\",\\\"3.86\\\",\\\"3.87\\\",\\\"3.88\\\",\\\"3.89\\\",\\\"3.9\\\",\\\"3.91\\\",\\\"3.92\\\",\\\"3.93\\\",\\\"3.94\\\",\\\"3.95\\\",\\\"3.96\\\",\\\"3.97\\\",\\\"3.98\\\",\\\"3.99\\\",\\\"4.0\\\",\\\"4.01\\\",\\\"4.02\\\",\\\"4.03\\\",\\\"4.04\\\",\\\"4.05\\\",\\\"4.06\\\",\\\"4.07\\\",\\\"4.08\\\",\\\"4.09\\\",\\\"4.1\\\",\\\"4.11\\\",\\\"4.12\\\",\\\"4.13\\\",\\\"4.14\\\",\\\"4.15\\\",\\\"4.16\\\",\\\"4.17\\\",\\\"4.18\\\",\\\"4.19\\\",\\\"4.2\\\",\\\"4.21\\\",\\\"4.22\\\",\\\"4.23\\\",\\\"4.24\\\",\\\"4.25\\\",\\\"4.26\\\",\\\"4.27\\\",\\\"4.28\\\",\\\"4.29\\\",\\\"4.3\\\",\\\"4.31\\\",\\\"4.32\\\",\\\"4.33\\\",\\\"4.34\\\",\\\"4.35\\\",\\\"4.36\\\",\\\"4.37\\\",\\\"4.38\\\",\\\"4.39\\\",\\\"4.4\\\",\\\"4.41\\\",\\\"4.42\\\",\\\"4.43\\\",\\\"4.44\\\",\\\"4.45\\\",\\\"4.46\\\",\\\"4.47\\\",\\\"4.48\\\",\\\"4.49\\\",\\\"4.5\\\",\\\"4.51\\\",\\\"4.52\\\",\\\"4.53\\\",\\\"4.54\\\",\\\"4.55\\\",\\\"4.56\\\",\\\"4.57\\\",\\\"4.58\\\",\\\"4.59\\\",\\\"4.6\\\",\\\"4.61\\\",\\\"4.62\\\",\\\"4.63\\\",\\\"4.64\\\",\\\"4.65\\\",\\\"4.66\\\",\\\"4.67\\\",\\\"4.68\\\",\\\"4.69\\\",\\\"4.7\\\",\\\"4.71\\\",\\\"4.72\\\",\\\"4.73\\\",\\\"4.74\\\",\\\"4.75\\\",\\\"4.76\\\",\\\"4.77\\\",\\\"4.78\\\",\\\"4.79\\\",\\\"4.8\\\",\\\"4.81\\\",\\\"4.82\\\",\\\"4.83\\\",\\\"4.84\\\",\\\"4.85\\\",\\\"4.86\\\",\\\"4.87\\\",\\\"4.88\\\",\\\"4.89\\\",\\\"4.9\\\",\\\"4.91\\\",\\\"4.92\\\",\\\"4.93\\\",\\\"4.94\\\",\\\"4.95\\\",\\\"4.96\\\",\\\"4.97\\\",\\\"4.98\\\",\\\"4.99\\\",\\\"5.0\\\"],\\\"changes\\\":WebIO.getval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\\\",\\\"id\\\":\\\"ob_21\\\",\\\"type\\\":\\\"observable\\\"}),\\\"index\\\":WebIO.getval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"})};\\n var self = this;\\n function AppViewModel() {\\n for (var key in json_data) {\\n var el = json_data[key];\\n this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);\\n }\\n \\n [this[\\\"formatted_val\\\"]=ko.computed( function(){\\n return this.formatted_vals()[parseInt(this.index())-1];\\n }\\n,this)]\\n [this[\\\"changes\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"changes\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"changes\\\",\\\"scope\\\":\\\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\\\",\\\"id\\\":\\\"ob_21\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"changes\\\"]=false}),self),this[\\\"index\\\"].subscribe((function (val){!(this.valueFromJulia[\\\"index\\\"]) ? (WebIO.setval({\\\"name\\\":\\\"index\\\",\\\"scope\\\":\\\"knockout-component-deb41bcd-7f40-4749-9a3e-6cf5a1e7575c\\\",\\\"id\\\":\\\"ob_20\\\",\\\"type\\\":\\\"observable\\\"},val)) : undefined; return this.valueFromJulia[\\\"index\\\"]=false}),self)]\\n \\n }\\n self.model = new AppViewModel();\\n self.valueFromJulia = {};\\n for (var key in json_data) {\\n self.valueFromJulia[key] = false;\\n }\\n ko.applyBindings(self.model, self.dom);\\n}\\n);\\n (WebIO.importBlock({\\\"data\\\":[{\\\"name\\\":\\\"knockout\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/8e7940505acfe7b727ec174e5e36f6e3d1cffc23-knockout.js\\\"},{\\\"name\\\":\\\"knockout_punches\\\",\\\"type\\\":\\\"js\\\",\\\"url\\\":\\\"/assetserver/b4b1d93188d47145d68e3293d67e191fa3a89177-knockout_punches.js\\\"}],\\\"type\\\":\\\"async_block\\\"})).then((imports) => handler.apply(this, imports));\\n}\\n\")])], Dict{Symbol,Any}(:className=>\"field interact-widget\"), 1), Observable{Any} with 0 listeners. Value:\n", - "Node{DOM}(DOM(:html, :div), Any[[1.75, 1.75, 4.75]], Dict{Symbol,Any}(:className=>\"interact-flex-row interact-widget\"), 1)], Dict{Symbol,Any}(), 2)" - ] - }, - "execution_count": 9, - "metadata": { - "application/vnd.webio.node+json": { - "kernelId": "9a83eff5-9ee7-4442-8b49-bde1aa5069e5" - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "@manipulate for c=.5:.01:5\n", - " round.( eigvals( [c 1 1 ;1 c 1;1 1 c]) , digits=3)\n", - "end\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The eigenvalues of this 3x3 matrix is readily found by first geting the eigenvalues of the 3x3 ones matrix and then doing what? This method requires almost no pencil and paper, and more importantly helps you understand why the eigenvalues are what they are." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7\n", - "\n", - "In class and in the textbook, positive-definiteness was defined only for Hermitian matrices. However, it can be extended to arbitrary square matrices as follows:\n", - "\n", - "The matrix $A$ is positive-definite if $A + A^H$ is positive-definite (in the sense defined in class and in the book: $A + A^H$ has positive eigenvalues, or equivalently $x^H(A+A^H)x \\gt 0$ for all $x \\ne 0$, or equivalently $A^H + A = B^H B$ where $B$ has full column rank).\n", - "Show that if $A + A^H$ is positive definite, then the eigenvalues of $A$ have positive real parts.\n", - "\n", - "(Hint: consider an eigenvector $Ax = \\lambda x$. How can you use this in one of the positive-definite conditions for $A+A^H$ above?)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Solution\n", - "Consider an eigenvalue $\\lambda$ of $A$ with corresponding eigenvector $x$ of unit norm. We have $x^H A x=\\lambda x^H x=\\lambda$ and $x^H A^H x=(x^H A x)^H=\\overline{\\lambda}$. As $0\n", - "\n", - "This is called the 2x2 QR factorization: Given $A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$, find a factorization of $A$ in the form $ \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}\\begin{pmatrix} u & v \\\\ 0 & w \\end{pmatrix}$. The matrix $Q = \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$ is known as a 2x2 rotation matrix. (Hint1: what are the polar coordinates for the point(a,c)?? You should be able to write a formula for $u,\\cos \\theta,\\sin \\theta$ from a and c using only division and square roots. (at least if a and c are not both 0). Hint 2, use what we just mentioned about rotation matrices.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "Firstly we multiply out \n", - "\\begin{align*}\n", - "\\begin{pmatrix} \\cos \\theta & \\sin \\theta \\\\ -\\sin \\theta & \\cos \\theta \\end{pmatrix} \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix} \n", - "&= \\begin{pmatrix} \\cos^2{\\theta}+\\sin^2{\\theta} & -\\sin{\\theta}\\cos{\\theta}+\\sin{\\theta}\\cos{\\theta}\\\\ - \\sin{\\theta}\\cos{\\theta}+\\sin{\\theta}\\cos{\\theta} & \\cos^2{\\theta}+\\sin^2{\\theta} \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} 1 & 0 \\\\ 0 & 1 \\end{pmatrix}\n", - "\\end{align*}\n", - "We have just shown that if $Q = \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$, then $Q^{-1} = \\begin{pmatrix} \\cos \\theta & \\sin \\theta \\\\ -\\sin \\theta & \\cos \\theta \\end{pmatrix}$.\n", - "
    \n", - "\n", - "To perform the QR factorization, we want to find $u,v,w,\\theta$ such that\n", - "$$\\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} = \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}\\begin{pmatrix} u & v \\\\ 0 & w \\end{pmatrix}.$$\n", - "Comparing the first column of both sides of the equation, we obtain $a=u\\cos{\\theta}$ and $c = u\\sin{\\theta}$. But these are just the polar equations for the point $(a,c)$, and so:\n", - "\\begin{align*}\n", - "u&=\\sqrt{a^2+c^2}\\\\\n", - "\\cos{\\theta} &= \\frac{a}{\\sqrt{a^2+c^2}}\\\\\n", - "\\sin{\\theta} &= \\frac{c}{\\sqrt{a^2+c^2}}.\n", - "\\end{align*}\n", - "\n", - "Next we notice that \n", - "\\begin{align*}\n", - "\\begin{pmatrix} b \\\\ d \\end{pmatrix} &= \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}\\begin{pmatrix} v \\\\ w \\end{pmatrix} \\\\\n", - "&= Q\\begin{pmatrix} v \\\\ w \\end{pmatrix}\n", - "\\end{align*}\n", - "and so \n", - "\\begin{align*}\n", - "\\begin{pmatrix} v \\\\ w \\end{pmatrix} &= Q^{-1} \\begin{pmatrix} b \\\\ d \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} \\cos \\theta & \\sin \\theta \\\\ -\\sin \\theta & \\cos \\theta \\end{pmatrix}\\begin{pmatrix} b \\\\ d \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} a/u & c/u \\\\ -c/u & a/u \\end{pmatrix}\\begin{pmatrix} b \\\\ d \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} \\frac{ab+cd}{\\sqrt{a^2+c^2}} \\\\ \\frac{ad-bc}{\\sqrt{a^2+c^2}} \\end{pmatrix} \n", - "\\end{align*}\n", - "\n", - "These expressions all hold provided that both $a$ and $c$ are not identically 0. We can double check the calculation using Julia:" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.805679 0.139147\n", - " 0.49966 0.66488 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.805679 0.139147\n", - " 0.49966 0.66488 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "A = rand(2,2)\n", - "a,c,b,d = A\n", - "u = sqrt(a^2+c^2)\n", - "v = (a*b+c*d)/u\n", - "w = (a*d-b*c)/u\n", - "display(A)\n", - "display( [a/u -c/u;c/u a/u]*[u v; 0 w])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6 (10 points)\n", - "The 2x2 singular value decomposition: An SVD has the form \n", - "$A = \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix}$\n", - "= (rotation 1)(diagonal with non-negative entries)(rotation 2)\n", - "= $ \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix}$\n", - "$ \\begin{pmatrix} \\sigma_1 & 0 \\\\ 0 & \\sigma_2 \\end{pmatrix}$\n", - "$ \\begin{pmatrix} \\cos \\phi & \\sin \\phi \\\\ -\\sin \\phi & \\cos \\phi \\end{pmatrix}$. We will see in this class that the SVD is very important in data science, biology, and so many fields.\n", - "\n", - "Compute $A$ if $\\theta=\\pi/6$ and $\\phi=\\pi/3$ and $\\sigma_1=\\sigma_2=1$.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "\\begin{align*}\n", - "A &= \\begin{pmatrix} \\cos \\theta & -\\sin \\theta \\\\ \\sin \\theta & \\cos \\theta \\end{pmatrix} \\begin{pmatrix} \\sigma_1 & 0 \\\\ 0 & \\sigma_2 \\end{pmatrix} \\begin{pmatrix} \\cos \\phi & \\sin \\phi \\\\ -\\sin \\phi & \\cos \\phi \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} \\sqrt{3}/2 & -1/2 \\\\ 1/2 & \\sqrt{3}/2 \\end{pmatrix}\\begin{pmatrix} 1 & 0 \\\\ 0 & 1 \\end{pmatrix}\\begin{pmatrix} 1/2 & \\sqrt{3}/2 \\\\ -\\sqrt{3}/2 & 1/2 \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} \\sqrt{3}/2 & -1/2 \\\\ 1/2 & \\sqrt{3}/2 \\end{pmatrix}\\begin{pmatrix} 1/2 & \\sqrt{3}/2 \\\\ -\\sqrt{3}/2 & 1/2 \\end{pmatrix}\\\\\n", - "&= \\begin{pmatrix} \\sqrt{3}/2 & 1/2 \\\\ -1/2 & \\sqrt{3}/2 \\end{pmatrix}\n", - "\\end{align*}" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.866025 0.5 \n", - " -0.5 0.866025" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.866025 0.5 \n", - " -0.5 0.866025" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Check your work numerically\n", - " θ = π/6\n", - " ϕ = π/3\n", - " σ₁ = σ₂ = 1\n", - "display([cos(θ) -sin(θ);sin(θ) cos(θ)] * [1 0;0 1] * [cos(ϕ) sin(ϕ);-sin(ϕ) cos(ϕ)])\n", - "display([sqrt(3)/2 1/2;-1/2 sqrt(3)/2])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next Problems investigate structured matrices" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 6 6 3 8 3\n", - " 7 8 9 7 7\n", - " 1 9 3 6 1\n", - " 8 5 2 7 9\n", - " 7 3 5 5 6" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 5\n", - "D = rand(1:9, n, n) # Create a random n x n matrix with the digits 1 through 9" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Put your cursor and click on the cell above and use **control-enter** to run the cell a few times without moving to another cell. If we asked how many numbers are stored in this n by n matrix you would say $n^2$." - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Diagonal{Int64,Array{Int64,1}}:\n", - " 2 ⋅ ⋅ ⋅ ⋅\n", - " ⋅ 5 ⋅ ⋅ ⋅\n", - " ⋅ ⋅ 8 ⋅ ⋅\n", - " ⋅ ⋅ ⋅ 4 ⋅\n", - " ⋅ ⋅ ⋅ ⋅ 7" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "n = 5\n", - "D = Diagonal(rand(1:9, n)) # Create a random n x n digonal matrix with the digits 1 through 9" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While this is an n by n matrix, the number of parameters is n (which is what Julia stores in memory.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7 (10 points): As a function of $n$, how many parameters are there in an $n$ by $n$ (upper) Bidiagonal Matrix?" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Bidiagonal{Int64,Array{Int64,1}}:\n", - " 7 2 ⋅ ⋅ ⋅\n", - " ⋅ 9 5 ⋅ ⋅\n", - " ⋅ ⋅ 2 6 ⋅\n", - " ⋅ ⋅ ⋅ 1 9\n", - " ⋅ ⋅ ⋅ ⋅ 8" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = Bidiagonal(rand(1:9,n), rand(1:9,n-1), :U)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "There are $n$ entries along the diagonal, and $n-1$ entries along the upper diagonal. Therefore the upper bidiagonal matrix has $\\boxed{2n-1}$ parameters. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 8 (10 points): As a function of $n$, how many (independent) parameters are there in an $n$ by $n$ Symmetric Tridiagonal Matrix? Why is the answer the same as for the bidiagonal?" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 SymTridiagonal{Int64,Array{Int64,1}}:\n", - " 3 8 ⋅ ⋅ ⋅\n", - " 8 9 8 ⋅ ⋅\n", - " ⋅ 8 8 9 ⋅\n", - " ⋅ ⋅ 9 1 2\n", - " ⋅ ⋅ ⋅ 2 3" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "S = SymTridiagonal(rand(1:9,n), rand(1:9,n-1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "There are $n$ entries along the diagonal, and $n-1$ entries along each the upper and lower diagonals. However, since $S$ is symmetric, the lower and upper diagonals are identical and so there are still only $\\boxed{2n-1}$ independent parameters." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 9 (10 points) A symmetric \"rank 1\" matrix has the form $A_{ij} = v_i v_j$ where $v$ is a vector. Why does such a matrix really have only $n$ parameters?" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 2 3 4 5\n", - " 2 4 6 8 10\n", - " 3 6 9 12 15\n", - " 4 8 12 16 20\n", - " 5 10 15 20 25" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Example\n", - "v = [1,2,3,4,5]\n", - "[vi*vj for vi∈v, vj∈v] " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[5, 4, 9, 7, 9]\n" - ] - }, - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 25 20 45 35 45\n", - " 20 16 36 28 36\n", - " 45 36 81 63 81\n", - " 35 28 63 49 63\n", - " 45 36 81 63 81" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v = rand(1:9,n)\n", - "println(v)\n", - "[vi*vj for vi∈v, vj∈v] " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Every component of $A$ is just the product of two of the components of the vector $v$, which has length $n$. Since $v$ only depends on $n$ independent parameters, the matrix $A$ will also only depend on $n$ independent parameters." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 10 (10 points) A general \"rank 1\" matrix has the form $A_{ij}=v_iw_j$ where $v$ and $w$ are vectors of size $m$ and $n$ respectively. Think of a reason why this matrix really has only $m+n-1$ parameters.\n", - "(If it helps, you can assume \"generically\" that the (1,1) entry is not 0.)" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[3, 8, 1]\n", - "[5, 6, 3, 4]\n" - ] - }, - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " 15 18 9 12\n", - " 40 48 24 32\n", - " 5 6 3 4" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v = rand(1:9,3)\n", - "w = rand(1:9,4)\n", - "println(v)\n", - "println(w)\n", - "[vi*wj for vi∈v, wj∈w]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "Following the reasoning from Problem 9, you might first think that $A$ should depend on $m+n$ parameters. However, consider the case where $m=n=1$. Then $A$ is just a $1\\times 1$ matrix. So $A$ only contains a single entry, and so can only depend on one independent parameter. But $m+n=2$....\n", - "\n", - "Instead, we can think as follows. Writing the components of $A$ as $A_{ij}=v_iw_j$ for some vector $v$ of length $m$, and a vector $w$ of length $n$, is **not** unique. For example, choosing $v/2$ and $2w$ would give the same matrix $A$. Assume without loss of generality then that the first component of $v$ is *nonzero*. Then consider the transformation $v\\to\\frac{v}{v_1}$ and $w\\to v_1 w$. These will still give rise to the same matrix $A$, but now the first component of $v$ is always just 1. This shows that we can always write $A_{ij} = v_iw_j$ where the first component of $v$ is always just 1, so $v$ has $m-1$ independent parameters, $w$ has $n$ parameters, and so $A$ depends only on $n+m-1$ parameters. \n", - "\n", - "Another way to see this is as follows:\n", - "$$A_{ij} = v_i w_j = \\frac{(v_i w_1)(v_1 w_j)}{v_1w_1}=\\frac{A_{i1}A_{1j}}{A_{11}}.$$\n", - "From this identity, we see that it is sufficient just to know the first row and the first column of the matrix $A$ in order to construct the entire matrix. The first column and row depend only on $n+m-1$ parameters (since they overlap on the entry $A_{11}\\neq 0$), and so the matrix $A$ only depends on $n+m-1$ independent parameters. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.1.0", - "language": "julia", - "name": "julia-1.1" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.1.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset2.ipynb b/psets/pset2.ipynb deleted file mode 100644 index 1ec16966..00000000 --- a/psets/pset2.ipynb +++ /dev/null @@ -1,904 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 2 \n", - "## due Wednesday 2/20 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note about pedagogical style: Your professor tends to use the technique of \"foreshadowing.\" This means that you may see a notion in the homework that we believe you are ready to attack at this point in the class, but the bigger picture emerges later. It is well known that most students learn best this way. Of course if you start googling around, you can see the bigger picture earlier, at least with some other author's notation or point of view. I can't and wouldn't stop you, but rest assured you will see concepts over and over again in expanding waves in this class.

    \n", - "If you need to know where we are heading, I am planning to cover all of the results (but not the methods in) Strang's chapters 2 and 3 by leading up to the SVD (singular value decomposition) without any mention of pivot variables, free variables, or eigenvalues. This means you are less likely to understand how to hand compute the various concepts, and more likely to understand them conceptually. This gives us time to also show you some applications. It is indeed an experiment, which is why I welcome feedback, positive and negative, during my many, office hours, but I honestly feel in my heart that I am providing a valuable approach.\n", - "

    \n", - "The problem sets are meant to be learning experiences, and perhaps more challenging than you are familiar with. This is not going to be the style of class where you find a similar problem in the lecture notes and just repeat. You may have to reach back into the 18.02 prerequisites for this class. You may learn a lot by working with other students in the class. There is a lot to be learned [at the math learning center](https://math.mit.edu/learningcenter/), in recitations, during the TAs office hours, and my numerous office hours. No promises that 18.06 is easy, only that you will learn a lot!\n", - "\n", - "All questions are 10 points, problem 10 will be a freebie if you execute it. (Coming soon)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Warmup questions (10 points, -1 for wrong answers until 0 is reached)\n", - " Reminder: in mathematical contexts the distinction between an n-vector and an nx1 single column matrix tends to be blurred. On computers this can and does cause problems. In the following, we will blur the distinction. For these problems, some of you will know how to do it from the prerequisites, some will ask your friends or your recitation instructor, but in any event you will strengthen your general feel for linear algebra.
    \n", - " Some places worth looking for answers are Strang Section 1.2, page 194, VMLS page 58. The definition of a [normal](https://en.wikipedia.org/wiki/Normal_(geometry)), the definition of a [gradient](https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivative-and-gradient-articles/a/the-gradient), the definition of a [plane](http://mathworld.wolfram.com/Plane.html) and the definition of a [hyperplane](http://mathworld.wolfram.com/Hyperplane.html) which generalizes a plane. Also ||v|| = sqrt(vᵀv), is the length of a vector v, sometimes pronounced the norm of v, or the magnitude of v. \n", - " \n", - " \n", - " \n", - " \n", - " 1a. If vᵀw=0 we say that v and w are a) perpendicular b) orthogonal c) at right angles d) all the above.\n", - " 1b. The equation 2x+3y+4z = 0 describes a a) line b) plane through 0 c) plane not through 0 d) sphere\n", - " 1c. A normal to your answer in 1b is __________?\n", - " 1d. The equation 2x+3y+4z = 2019 describes a a) line b) plane through 0 c) plane not through 0 d) sphere\n", - " 1e. A normal to your answer in 1d is __________?\n", - " 1f. The equation x²+y²+z²=1 describes a a) line b) plane through 0 c) plane not through 0 d) sphere\n", - " 1g. A normal to your answer in 1f is __________? (Hint: ok to use intuition from two or three dimensions)\n", - " 1h. Calculate the gradient of f(x,y,z) = 2x+3y+4z\n", - " 1i. Calculate the gradient of f(x,y,z) = x²+y²+z² \n", - " 1j. The inequality 2x+3y+4z > 0 describes a region of 3 dimensional space. Describe that region:_____\n", - " 1k. The inequality 2x+3y+4z < 2019 describes a region of 3 dimensional space. Describe that region:_____\n", - " 1l. Using vector language in Rⁿ, (no elements or indices) write an equation that describes every v on the hyperplane through 0 with given normal vector w (not 0). \n", - " 1m. Give an example of a hyperplane parallel to the hyperplane in 1l above that does not go through 0.\n", - " 1n. Suppose given a nonzero w that we consider the hyperplane of all v for which wᵀv=1. Find the unique vector v (in terms of w) that is on this hyperplane in the direction w. (It is helpful to define ||w|| as the length of w.) \n", - "\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. (Real) Vector Spaces (10 points) (Strang page 123, Lecture 2 slides)\n", - "\n", - "a) If $v$ is a vector in any vector space, what is the complete list of vectors that must also be in this vector space?\n", - "\n", - "b) Must a vector space contain a zero vector? Why?\n", - "\n", - "c) What is the zero vector in $R^4$? in $R^{2,3}$? What is the zero function? What is the zero (differential) operator from functions to functions? (Hint: The zero operator takes in an arbitrary function and returns....)\n", - "\n", - "d) State in words the difference between the zero function and the zero operator, as they seem so similar." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Am I a vector space? (The basic question here is whether every linear combination is in the space. If there is no zero, then I'm for sure not a vector space.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a) All vectors in $R^n$ whose entries sum to 0.\n", - "\n", - "b) All matrices in $R^{m,n}$ whose entries when squared sum to 1.\n", - "\n", - "c) Cubic polynomials of the form $f(x) = a + bx + cx^2 + dx^3$, where $a,b,c,d$ are abitrary, possibly 0.\n", - "\n", - "d) All linear functions of the form $f(x) = mx +b$, where $f(17)=0$. ($m$ or $b$ may possibly be 0)\n", - "\n", - "e) All linear functions of the form $f(x) = mx +b$, where $f(0)=17$.($m$ or $b$ may possibly be 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Nullspace\n", - "\n", - "A fact you are supposed to already know about matrices is that $M(cv+dw) = cMv+dMw$, if $M$ is any matrix, $c$ and $d$ are any scalars, and $v$ and $w$ are any vectors. \n", - "\n", - "Suppose for some particular rectangular matrix $M$, we have $Mv=0$ and $Mw=0$ for some particular vectors $v$ and $w$. Is it true that if $x$ is a linear combination of $v$ and $w$ then $Mx$ is also 0? Why?\n", - "\n", - "The set of vectors $x$ for which $Mx=0$ is known as the nullspace of $M$. For an mxn matrix, we point out two extremes among the typically infinitely many possibilities: it could be the zero vector in $R^n$ or it could be all of $R^n$. (We will see there are usually lots of possibilities in between.)\n", - "\n", - "What is the nullspace of the $n$ by $n$ identity matrix? The $n$ by $n$ zero matrix? The $m$ by $n$ matrix of all ones?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Column Space\n", - "\n", - "The column space of a matrix $M$ is the set of all vectors $y$ which can be written in the form $Mx$ for some vector $x$. Why is the column space a vector space?\n", - "\n", - "What is the column space of the $n$ by $n$ identity matrix? The $n$ by $n$ zero matrix? The $m$ by $n$ matrix of all ones?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. Using the SVD\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Julia if you are given an m x n matrix $A$, Julia returns a matrix $U$, a vector $s$ and a Matrix $V$ for which A = U * Diagonal(s) * V' (up to floating point roundoff errors)
    \n", - "\n", - "If m >n, $U$ is m by n, Diagonal(s) is n by n, and $V$ is n by n.
    \n", - "If m < n $U$ is m by m, Diagonal(s) is m by m, and $V$ is n by m.\n", - "\n", - "You can remember this because the result is m by n, and the Diagonal(s) is always square whose size is the smaller of m and n.\n", - "\n", - "Here are some examples:
    \n", - "(Don't forget to execute the using LinearAlgebra) or else svd won't be a known function\n" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(4, 4)(4, 4)(5, 4)\n" - ] - } - ], - "source": [ - "A = rand(4,5)\n", - "U,s,V = svd(A)\n", - "println( size(U), size(Diagonal(s)), size(V))" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5, 4)(4, 4)(4, 4)\n" - ] - } - ], - "source": [ - "A = rand(5,4)\n", - "U,s,V = svd(A)\n", - "println( size(U), size(Diagonal(s)), size(V))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What are the sizes of $U$, $Diagonal(s)$ and $V$ for
    \n", - " a) A 10x10 matrix?
    \n", - " b) A 10x20 matrix?
    \n", - " c) A 20x10 matrix?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7. It is possible to solve Ax=b for an invertible A using the svd. It's slightly less efficient than LU but usually quite reasonably accurate, even at least as accurate as LU." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is an example from Svetlana's problems posted in Piazza:\n", - "\n", - "x + 2y + 3z =1
    \n", - "y + z = 2
    \n", - "3x + y - z =3\n", - "\n", - "Solution:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 2 3\n", - " 0 1 1\n", - " 3 1 -1" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Form the Matrix\n", - "A = [1 2 3 ; 0 1 1;3 1 -1]" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Int64,1}:\n", - " 1\n", - " 2\n", - " 3" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# For the right hand side b\n", - "b = [1, 2, 3]" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -0.9999999999999999\n", - " 4.000000000000002 \n", - " -1.9999999999999993" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U,s,V = svd(A)\n", - "V*((U'b)./s)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Don't let floating point fool you, the answer given is -1,4,-2. Check that the solution is right. Explain mathematically why V*((U'b)./s) gives the right answer." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "On an exam, you will not be expected to compute an SVD using eigenvalues or a computer. The SVD story will unfold during the course of the semester." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 8. Suppose $W$ is an unknown 2x2 matrix, and we want to approximately find a $W$ that best fits $Wxᵢ=yᵢ$ where x₁,x₂,x₃,y₁,y₂,y₃ are each known 2 vectors? How would you find $W$ using QR?\n", - "Hint: this is tricky because the unknowns are the four elements in $W$. I think this problem is hard." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " ## 9. A Permutation of n \n", - " is a rearrangement of the numbers 1 through n. Here is a random permutation of 1:5" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Int64,1}:\n", - " 5\n", - " 4\n", - " 2\n", - " 1\n", - " 3" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using Random\n", - "p = randperm(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A Permutation matrix is row reordering of the identity matrix" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 0 0 0 0\n", - " 0 1 0 0 0\n", - " 0 0 1 0 0\n", - " 0 0 0 1 0\n", - " 0 0 0 0 1" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ident = Matrix{Int64}(I,5,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 0 0 0 0 1\n", - " 0 0 0 1 0\n", - " 0 1 0 0 0\n", - " 1 0 0 0 0\n", - " 0 0 1 0 0" - ] - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ident[p,:]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What is closest to the number of parameters that are needed for an n x n permutation matrix?\n", - " a) n^2 b) n c)n! d)n^n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 10. a Julia application of linear algebra\n", - "Understanding this code is not required for this class, but is an extra for those interested. All of you might want to look just a little and execute the lines though." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " The signed distance to a hyperplane is one of those standard machine learning (and elsewhere!) codes. In one commonly used notation, hyperplanes are written as the set of x for which θᵀx + θ₀ = 0 where θ is in Rⁿ and θ₀ is in R. The formula for the distance of a point p to this hyperplane is
    \n", - " distance = (θᵀp +θ₀ )/||θ||" - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "d (generic function with 3 methods)" - ] - }, - "execution_count": 163, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "# Formula in Julia looks a lot like the math\n", - "d(p,θ,θ₀) = (θ'p .+ θ₀)/norm(θ)\n", - "\n", - "# If you would like to annotate with types, this is also allowed\n", - "# this says p and θ must be vectors and θ₀ a number\n", - "d(p::Vector, θ::Vector, θ₀::Number) = (θ'p .+ θ₀)/norm(θ)" - ] - }, - { - "cell_type": "code", - "execution_count": 164, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6736808399014581" - ] - }, - "execution_count": 164, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 7\n", - "d( rand(n), rand(n), rand() )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python is a very popular language these days. It is really nice to have lots of friends who know the same language. Python suffers, however, from the two language problem: that efficient machine learning code tends to use C or C++, and even numpy tends to mix metaphors being sort of python like and sort of something different. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Are we above or below the hyperplane?" - ] - }, - { - "cell_type": "code", - "execution_count": 165, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "which_side (generic function with 1 method)" - ] - }, - "execution_count": 165, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "which_side(p,θ,θ₀) = d(p,θ,θ₀)<0 ? \"I'm below\" : \"I'm above\" # Ternary operator" - ] - }, - { - "cell_type": "code", - "execution_count": 166, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"I'm below\"" - ] - }, - "execution_count": 166, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "which_side(randn(n), rand(n), rand() )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What if we have a matrix of 5 data points, each column is in R^n?" - ] - }, - { - "cell_type": "code", - "execution_count": 167, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×5 Array{Float64,2}:\n", - " -0.0135899 -1.85682 -1.4147 -1.73322 -0.29654 \n", - " -0.0583988 0.39595 -0.748555 -0.760963 0.468719\n", - " 0.898581 1.31427 -0.790358 -0.1995 0.90457 \n", - " -0.0752133 0.334317 -0.557758 -2.391 0.729908\n", - " 0.432025 1.12397 -1.70417 1.31616 1.78537 \n", - " -0.494314 -2.58893 0.245257 -1.75916 0.439534\n", - " -1.50217 -1.00493 -1.25288 -0.790197 1.21259 " - ] - }, - "execution_count": 167, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "P = randn(n,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 168, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×5 Array{Float64,2}:\n", - " -0.0509957 -1.44167 -1.57092 -2.49945 1.62281" - ] - }, - "execution_count": 168, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "distances = d( P, rand(n), rand() ) # Code evaluates five distances" - ] - }, - { - "cell_type": "code", - "execution_count": 169, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×5 Array{Float64,2}:\n", - " -1.0 -1.0 -1.0 -1.0 1.0" - ] - }, - "execution_count": 169, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sign.(distances) # elementwise sign function tells you above or below" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Carrying around a θ and θ₀ separately seems silly. How likely are you to remember that this is a pair next month? Let's wrap them together:" - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [], - "source": [ - "struct Hyperplane\n", - " θ :: Vector\n", - " θ₀ :: Number\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Hyperplane([0.754178, 0.452019, 0.854368], 0.7806995443589713)" - ] - }, - "execution_count": 171, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "h = Hyperplane( rand(3), rand() )" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hyperplane\n", - " θ: Array{Float64}((3,)) [0.754178, 0.452019, 0.854368]\n", - " θ₀: Float64 0.7806995443589713\n" - ] - } - ], - "source": [ - "dump(h) # see what's inside" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's make it easy to write the more natural distance to a hyperplane function" - ] - }, - { - "cell_type": "code", - "execution_count": 173, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "d (generic function with 3 methods)" - ] - }, - "execution_count": 173, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d(p::Vector, h::Hyperplane ) = d(p,h.θ,h.θ₀)" - ] - }, - { - "cell_type": "code", - "execution_count": 174, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.7457277112775967" - ] - }, - "execution_count": 174, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "h = Hyperplane( rand(n), rand() )\n", - "d( randn(n), h)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This professor encourages good coding, where mathemtical abstractions are wrapped with their names rather than being isolated as greek letters." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's generate a vector of 10 hyperplanes:" - ] - }, - { - "cell_type": "code", - "execution_count": 175, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Hyperplane,1}:\n", - " Hyperplane([0.639999, 0.381686, 0.451886], 0.1268770727445261) \n", - " Hyperplane([0.782602, 0.790227, 0.132017], 0.06124709194394651)\n", - " Hyperplane([0.638825, 0.459649, 0.0769363], 0.9779856818512844)\n", - " Hyperplane([0.601499, 0.857207, 0.776075], 0.35331470556440636)\n", - " Hyperplane([0.500564, 0.459139, 0.621231], 0.8541667481679043) \n", - " Hyperplane([0.527508, 0.95329, 0.435191], 0.054942045856016586)\n", - " Hyperplane([0.838488, 0.390493, 0.190962], 0.39390438127219274)\n", - " Hyperplane([0.275477, 0.896726, 0.339034], 0.4137173415074926) \n", - " Hyperplane([0.166933, 0.977787, 0.0165396], 0.8839908695144154)\n", - " Hyperplane([0.0228206, 0.547961, 0.996911], 0.7564915268371468)" - ] - }, - "execution_count": 175, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hyperplanes = [Hyperplane( rand(3), rand() ) for i=1:10 ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice this is 10-element vector whose elements are hyperplanes !!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see if a random point is above or below these hyperplanes." - ] - }, - { - "cell_type": "code", - "execution_count": 176, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 0.13038386350675657\n", - " 0.7420231369911667 \n", - " 0.22137717632262296" - ] - }, - "execution_count": 176, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = randn(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Float64,1}:\n", - " 0.6811138314488024\n", - " 0.6954398194536037\n", - " 1.7949674760014023\n", - " 0.9510484436008779\n", - " 1.518376859487798 \n", - " 0.7905034014117159\n", - " 0.8843732377089485\n", - " 1.1930979743272325\n", - " 1.648023020172752 \n", - " 1.2187964026961917" - ] - }, - "execution_count": 178, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d.( [p] , hyperplanes)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "or maybe more readable" - ] - }, - { - "cell_type": "code", - "execution_count": 179, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Float64,1}:\n", - " 0.6811138314488024\n", - " 0.6954398194536037\n", - " 1.7949674760014023\n", - " 0.9510484436008779\n", - " 1.518376859487798 \n", - " 0.7905034014117159\n", - " 0.8843732377089485\n", - " 1.1930979743272325\n", - " 1.648023020172752 \n", - " 1.2187964026961917" - ] - }, - "execution_count": 179, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[ d(p, h) for h ∈ hyperplanes ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For those really into 6.036, feel free to take a look at a (very short) sample [perceptron training implementation](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/perceptron.ipynb). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset2sol.ipynb b/psets/pset2sol.ipynb deleted file mode 100644 index 6ab9d4e8..00000000 --- a/psets/pset2sol.ipynb +++ /dev/null @@ -1,1063 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 2 \n", - "## due Wednesday 2/20 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note about pedagogical style: Your professor tends to use the technique of \"foreshadowing.\" This means that you may see a notion in the homework that we believe you are ready to attack at this point in the class, but the bigger picture emerges later. It is well known that most students learn best this way. Of course if you start googling around, you can see the bigger picture earlier, at least with some other author's notation or point of view. I can't and wouldn't stop you, but rest assured you will see concepts over and over again in expanding waves in this class.

    \n", - "If you need to know where we are heading, I am planning to cover all of the results (but not the methods in) Strang's chapters 2 and 3 by leading up to the SVD (singular value decomposition) without any mention of pivot variables, free variables, or eigenvalues. This means you are less likely to understand how to hand compute the various concepts, and more likely to understand them conceptually. This gives us time to also show you some applications. It is indeed an experiment, which is why I welcome feedback, positive and negative, during my many, office hours, but I honestly feel in my heart that I am providing a valuable approach.\n", - "

    \n", - "The problem sets are meant to be learning experiences, and perhaps more challenging than you are familiar with. This is not going to be the style of class where you find a similar problem in the lecture notes and just repeat. You may have to reach back into the 18.02 prerequisites for this class. You may learn a lot by working with other students in the class. There is a lot to be learned [at the math learning center](https://math.mit.edu/learningcenter/), in recitations, during the TAs office hours, and my numerous office hours. No promises that 18.06 is easy, only that you will learn a lot!\n", - "\n", - "All questions are 10 points, problem 10 will be a freebie if you execute it. (Coming soon)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Warmup questions (10 points, -1 for wrong answers until 0 is reached)\n", - " Reminder: in mathematical contexts the distinction between an n-vector and an nx1 single column matrix tends to be blurred. On computers this can and does cause problems. In the following, we will blur the distinction. For these problems, some of you will know how to do it from the prerequisites, some will ask your friends or your recitation instructor, but in any event you will strengthen your general feel for linear algebra.
    \n", - " Some places worth looking for answers are Strang Section 1.2, page 194, VMLS page 58. The definition of a [normal](https://en.wikipedia.org/wiki/Normal_(geometry)), the definition of a [gradient](https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivative-and-gradient-articles/a/the-gradient), the definition of a [plane](http://mathworld.wolfram.com/Plane.html) and the definition of a [hyperplane](http://mathworld.wolfram.com/Hyperplane.html) which generalizes a plane. Also ||v|| = sqrt(vᵀv), is the length of a vector v, sometimes pronounced the norm of v, or the magnitude of v. \n", - " \n", - " \n", - " \n", - " \n", - " 1a. If vᵀw=0 we say that v and w are a) perpendicular b) orthogonal c) at right angles d) all the above.\n", - " 1b. The equation 2x+3y+4z = 0 describes a a) line b) plane through 0 c) plane not through 0 d) sphere\n", - " 1c. A normal to your answer in 1b is __________?\n", - " 1d. The equation 2x+3y+4z = 2019 describes a a) line b) plane through 0 c) plane not through 0 d) sphere\n", - " 1e. A normal to your answer in 1d is __________?\n", - " 1f. The equation x²+y²+z²=1 describes a a) line b) plane through 0 c) plane not through 0 d) sphere\n", - " 1g. A normal to your answer in 1f is __________? (Hint: ok to use intuition from two or three dimensions)\n", - " 1h. Calculate the gradient of f(x,y,z) = 2x+3y+4z\n", - " 1i. Calculate the gradient of f(x,y,z) = x²+y²+z² \n", - " 1j. The inequality 2x+3y+4z > 0 describes a region of 3 dimensional space. Describe that region:_____\n", - " 1k. The inequality 2x+3y+4z < 2019 describes a region of 3 dimensional space. Describe that region:_____\n", - " 1l. Using vector language in Rⁿ, (no elements or indices) write an equation that describes every v on the hyperplane through 0 with given normal vector w (not 0). \n", - " 1m. Give an example of a hyperplane parallel to the hyperplane in 1l above that does not go through 0.\n", - " 1n. Suppose given a nonzero w that we consider the hyperplane of all v for which wᵀv=1. Find the unique vector v (in terms of w) that is on this hyperplane in the direction w. (It is helpful to define ||w|| as the length of w.) \n", - "\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "1a. d) all the above.\n", - "\n", - "1b. b) plane through $0$.\n", - "\n", - "1c. $(2,3,4)$.\n", - "\n", - "1d. c) plane not through $0$.\n", - "\n", - "1e. $(2,3,4)$.\n", - "\n", - "1f. d) sphere\n", - "\n", - "1g. $(x,y,z)$.\n", - "\n", - "1h. $(2,3,4)$.\n", - "\n", - "1i. $(2x,2y,2z)$ \n", - "\n", - "1j. The plane $2x+3y+4z = 0$ divides $\\mathbb{R}^3$ into two half spaces. The region $2x+3y+4z > 0$ is the half space containing the point $(2,3,4)$.\n", - "\n", - "1k. The plane $2x+3y+4z = 2019$ divides $\\mathbb{R}^3$ into two half spaces. The region 2x+3y+4z < 2019 is the half space containing the point $(0,0,0)$.\n", - "\n", - "1l. $w^T v = 0$. \n", - "\n", - "1m. Any $w^Tv = c$ where $c \\ne 0$.\n", - "\n", - "1n. $v = \\frac{w}{w^Tw}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. (Real) Vector Spaces (10 points) (Strang page 123, Lecture 2 slides)\n", - "\n", - "a) If $v$ is a vector in any vector space, what is the complete list of vectors that must also be in this vector space?\n", - "\n", - "b) Must a vector space contain a zero vector? Why?\n", - "\n", - "c) What is the zero vector in $R^4$? in $R^{2,3}$? What is the zero function? What is the zero (differential) operator from functions to functions? (Hint: The zero operator takes in an arbitrary function and returns....)\n", - "\n", - "d) State in words the difference between the zero function and the zero operator, as they seem so similar." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "a) The set of all $cv$ where $c \\in \\mathbb{R}$ is the complete list of vectors that must also be in this vector space.\n", - "\n", - "b) This is by definition of a vector space. Alternatively, $0v = 0$.\n", - "\n", - "c) The zero in $\\mathbb{R}^4$ is $(0,0,0,0)$. The zero in $\\mathbb{R}^{2,3}$ is $\\begin{pmatrix} 0 & 0 & 0 \\\\ 0 & 0 & 0 \\end{pmatrix}$. Given some domain $D$, the zero function is the function $z(x) = 0$ for every $x \\in D$. The zero operator $Z$ is the operator which takes a function $f$ and maps it to the zero function $z$.\n", - "\n", - "d) The zero function maps to the point $0$ whereas the zero operator maps to the zero function." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Am I a vector space? (The basic question here is whether every linear combination is in the space. If there is no zero, then I'm for sure not a vector space.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a) All vectors in $R^n$ whose entries sum to 0.\n", - "\n", - "b) All matrices in $R^{m,n}$ whose entries when squared sum to 1.\n", - "\n", - "c) Cubic polynomials of the form $f(x) = a + bx + cx^2 + dx^3$, where $a,b,c,d$ are arbitrary, possibly 0.\n", - "\n", - "d) All linear functions of the form $f(x) = mx +b$, where $f(17)=0$. ($m$ or $b$ may possibly be 0)\n", - "\n", - "e) All linear functions of the form $f(x) = mx +b$, where $f(0)=17$.($m$ or $b$ may possibly be 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "a) This is a vector space. If $(a_1,\\ldots,a_n), (b_1,\\ldots,b_n) \\in \\mathbb{R}^n$ such that\n", - "$$ a_1 + \\cdots + a_n = 0, \\quad b_1 + \\cdots + b_n = 0 $$\n", - "then for any $c,d \\in \\mathbb{R}$ we have\n", - "$$ c(a_1,\\ldots,a_n) + d(b_1,\\ldots,b_n) = (ca_1 + db_1,\\ldots,ca_n + db_n) $$\n", - "where\n", - "$$ ca_1 + db_1 + \\cdots + ca_n + db_n = c(a_1 + \\cdots + a_n) + d(b_1 + \\cdots + b_n) = 0. $$\n", - "\n", - "b) This is not a vector space. Indeed, the zero matrix is not in this space since the squared sum of the entries is $0$.\n", - "\n", - "c) This is a vector space. If $f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$ and $f_2(x) = a_2 + b_2 x + c_2 x^2 + d_1 x^3$, then for any $e_1,e_2 \\in \\mathbb{R}$ we have\n", - "$$ e_1 f_1(x) + e_2 f_2(x) = (e_1 a_1 + e_2 a_2) + (e_1 b_1 + e_2 b_2) x + (e_1 c_1 + e_2 c_2) x^2 + (e_1 d_1 + e_2 d_2) x^3. $$\n", - "\n", - "d) This is a vector space. If $f(x) = mx + b$ and $g(x) = nx + c$, then for any $d,e \\in \\mathbb{R}$ we have\n", - "$$ d f(x) + e g(x) = (dm + en)x + (db + ec). $$\n", - "Furthermore, if $f(17) = 0$ and $g(17) = 0$, then\n", - "$$ d f(17) + e g(17) = 0. $$\n", - "\n", - "e) This is not a vector space. Indeed, the zero function $z$ satisfies $z(0) = 0 \\ne 17$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Nullspace\n", - "\n", - "A fact you are supposed to already know about matrices is that $M(cv+dw) = cMv+dMw$, if $M$ is any matrix, $c$ and $d$ are any scalars, and $v$ and $w$ are any vectors. \n", - "\n", - "Suppose for some particular rectangular matrix $M$, we have $Mv=0$ and $Mw=0$ for some particular vectors $v$ and $w$. Is it true that if $x$ is a linear combination of $v$ and $w$ then $Mx$ is also 0? Why?\n", - "\n", - "The set of vectors $x$ for which $Mx=0$ is known as the nullspace of $M$. For an mxn matrix, we point out two extremes among the typically infinitely many possibilities: it could be the zero vector in $R^n$ or it could be all of $R^n$. (We will see there are usually lots of possibilities in between.)\n", - "\n", - "What is the nullspace of the $n$ by $n$ identity matrix? The $n$ by $n$ zero matrix? The $m$ by $n$ matrix of all ones?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "True. If $x$ is a linear combination of $v,w$, we may write $x = cv + dw$ for some $c,d \\in \\mathbb{R}$. Then\n", - "$$ Mx = M(cv + dw) = c Mv + d Mw = 0. $$\n", - "\n", - "Suppose $I$ is the $n\\times n$ identity matrix. Then the only vector which satisfies $Ix = 0$ is $x = 0$. Thus the null space of $I$ is $\\{0\\}$.\n", - "\n", - "Suppose $Z$ is the $n\\times n$ zero matrix. Then every vector $x \\in \\mathbb{R}^n$ satisfies $Zx = 0$. Thus the null space of $Z$ is $\\mathbb{R}^n$.\n", - "\n", - "Let $A$ be the $m\\times n$ matrix of all $1$s. Then\n", - "$$ A = \\begin{pmatrix} 1 & \\cdots & 1 \\\\ \\vdots & \\ddots & \\vdots \\\\ 1 & \\cdots & 1 \\end{pmatrix} \\begin{pmatrix} x_1 \\\\ \\vdots \\\\ x_n \\end{pmatrix} = \\begin{pmatrix} 0 \\\\ \\vdots \\\\ 0 \\end{pmatrix} $$\n", - "exactly when \n", - "$$ x_1 + \\cdots + x_n = 0. $$\n", - "Thus the null space of $A$ is $\\{(x_1,\\ldots,x_n) \\in \\mathbb{R}^n: x_1 + \\cdots + x_n = 0 \\}$. This is the hyperplane through the origin with normal vector $(1,\\ldots,1)$.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Column Space\n", - "\n", - "The column space of a matrix $M$ is the set of all vectors $y$ which can be written in the form $Mx$ for some vector $x$. Why is the column space a vector space?\n", - "\n", - "What is the column space of the $n$ by $n$ identity matrix? The $n$ by $n$ zero matrix? The $m$ by $n$ matrix of all ones?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "If $y_1,y_2$ are in the column space of $M$, then $y_1 = Mx_1, y_2 = Mx_2$. Then for any $c,d \\in \\mathbb{R}$ we have\n", - "$$ cy_1 + dy_2 = cMx_1 + dMx_2 = M(cx_1 + dx_2) $$\n", - "so that $cy_1 + dy_2$ is in the column space of $M$. This shows the column space is a vector space.\n", - "\n", - "Suppose $I$ is the $n\\times n$ identity matrix. Then for each $x \\in \\mathbb{R}^n$, we have $x = Ix$. Thus the column space of $I$ is $\\mathbb{R}^n$.\n", - "\n", - "Suppose $Z$ is the $n\\times n$ zero matrix. Then $0 = Zx$ for every $x \\in \\mathbb{R}^n$. Thus the column space of $Z$ is $\\{0\\}$.\n", - "\n", - "Suppose $A$ is the $m\\times n$ matrix of all $1$s. Then\n", - "$$ A = \\begin{pmatrix} 1 & \\cdots & 1 \\\\ \\vdots & \\ddots & \\vdots \\\\ 1 & \\cdots & 1 \\end{pmatrix} \\begin{pmatrix} x_1 \\\\ \\vdots \\\\ x_n \\end{pmatrix} = \\begin{pmatrix} x_1 + \\cdots + x_n \\\\ \\vdots \\\\ x_1 + \\cdots + x_n \\end{pmatrix}. $$\n", - "Thus the column space of $A$ is $\\{(c,\\ldots,c): c \\in \\mathbb{R} \\}$. This is the line in the direction of $(1,\\ldots,1)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. Using the SVD\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Julia if you are given an m x n matrix $A$, Julia returns a matrix $U$, a vector $s$ and a Matrix $V$ for which A = U * Diagonal(s) * V' (up to floating point roundoff errors)
    \n", - "\n", - "If m >n, $U$ is m by n, Diagonal(s) is n by n, and $V$ is n by n.
    \n", - "If m < n $U$ is m by m, Diagonal(s) is m by m, and $V$ is n by m.\n", - "\n", - "You can remember this because the result is m by n, and the Diagonal(s) is always square whose size is the smaller of m and n.\n", - "\n", - "Here are some examples:
    \n", - "(Don't forget to execute the using LinearAlgebra) or else svd won't be a known function\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(4, 4)(4, 4)(5, 4)\n" - ] - } - ], - "source": [ - "A = rand(4,5)\n", - "U,s,V = svd(A)\n", - "println( size(U), size(Diagonal(s)), size(V))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5, 4)(4, 4)(4, 4)\n" - ] - } - ], - "source": [ - "A = rand(5,4)\n", - "U,s,V = svd(A)\n", - "println( size(U), size(Diagonal(s)), size(V))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What are the sizes of $U$, $Diagonal(s)$ and $V$ for
    \n", - " a) A 10x10 matrix?
    \n", - " b) A 10x20 matrix?
    \n", - " c) A 20x10 matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "If $A$ is $10\\times 10$, then $U$ is $10\\times 10$, $D$ is $10\\times 10$, and $V$ is $10\\times 10$.\n", - "\n", - "If $A$ is $10\\times 20$, then $U$ is $10\\times 10$, $D$ is $10\\times 10$, and $V$ is $10\\times 20$.\n", - "\n", - "If $A$ is $20\\times 10$, then $U$ is $20\\times 10$, $D$ is $10\\times 10$, and $V$ is $10\\times 10$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7. It is possible to solve Ax=b for an invertible A using the svd. It's slightly less efficient than LU but usually quite reasonably accurate, even at least as accurate as LU." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is an example from Svetlana's problems posted in Piazza:\n", - "\n", - "x + 2y + 3z =1
    \n", - "y + z = 2
    \n", - "3x + y - z =3\n", - "\n", - "Solution:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 2 3\n", - " 0 1 1\n", - " 3 1 -1" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Form the Matrix\n", - "A = [1 2 3 ; 0 1 1;3 1 -1]" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Int64,1}:\n", - " 1\n", - " 2\n", - " 3" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# For the right hand side b\n", - "b = [1, 2, 3]" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -0.9999999999999999\n", - " 4.000000000000002 \n", - " -1.9999999999999993" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U,s,V = svd(A)\n", - "V*((U'b)./s)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Don't let floating point fool you, the answer given is -1,4,-2. Check that the solution is right. Explain mathematically why V*((U'b)./s) gives the right answer." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "On an exam, you will not be expected to compute an SVD using eigenvalues or a computer. The SVD story will unfold during the course of the semester." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "For a square matrix $A$ with SVD $UDV$, the matrices $U,V$ are orthogonal.\n", - "\n", - "We have\n", - "$$ UDVx = Ax = b \\quad \\implies \\quad x = V^T D^{-1} U^Tb $$\n", - "which corresponds to the given command." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 8. Suppose $W$ is an unknown 2x2 matrix, and we want to approximately find a $W$ that best fits $Wxᵢ=yᵢ$ where x₁,x₂,x₃,y₁,y₂,y₃ are each known 2 vectors? How would you find $W$ using QR?\n", - "Hint: this is tricky because the unknowns are the four elements in $W$. I think this problem is hard." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "Write $x_i = (x_{i1}, x_{i2})$ and $y_i = (y_{i1},y_{i2})$. We want to find $W = \\begin{pmatrix} w_{11} & w_{12} \\\\ w_{21} & w_{22} \\end{pmatrix}$ that best approximates\n", - "$$ y_i = Wx_i, \\quad \\quad i = 1,2,3 $$\n", - "which we may expand out as\n", - "$$ y_{ij} = w_{j1} x_{i1} + w_{j2} x_{i2}, \\quad \\quad i = 1,2,3; j = 1,2 $$\n", - "in the sense of least squares; that is we want $W$ to minimize\n", - "$$ \\sum_{i=1}^3 \\sum_{j=1}^2 (y_{ij} - w_{j1} x_{i1} - w_{j2} x_{i2})^2. $$\n", - "\n", - "We may express these equations as a single matrix equation\n", - "$$ Y = Xw $$\n", - "where\n", - "$$ Y = \\begin{pmatrix} y_{11} \\\\ y_{21} \\\\ y_{31} \\\\ y_{12} \\\\ y_{22} \\\\ y_{32} \\end{pmatrix}, \\quad X = \\begin{pmatrix} x_{11} & x_{12} & 0 & 0 \\\\ x_{21} & x_{22} & 0 & 0 \\\\ x_{31} & x_{32} & 0 & 0 \\\\ 0 & 0 & x_{11} & x_{12} \\\\ 0 & 0 & x_{21} & x_{22} \\\\ 0 & 0 & x_{31} & x_{32} \\end{pmatrix}, \\quad w = \\begin{pmatrix} w_{11} \\\\ w_{12} \\\\ w_{21} \\\\ w_{22} \\end{pmatrix} $$\n", - "If we factorize $X = QR$ where $Q^T Q = I$ and $R$ is upper triangular with positive entires, then we know that the best fitting $w$ is given by\n", - "$$ w = \\begin{pmatrix} w_{11} \\\\ w_{12} \\\\ w_{21} \\\\ w_{22} \\end{pmatrix} = R^{-1} Q^T Y.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " ## 9. A Permutation of n \n", - " is a rearrangement of the numbers 1 through n. Here is a random permutation of 1:5" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Int64,1}:\n", - " 5\n", - " 4\n", - " 2\n", - " 1\n", - " 3" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using Random\n", - "p = randperm(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A Permutation matrix is row reordering of the identity matrix" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 0 0 0 0\n", - " 0 1 0 0 0\n", - " 0 0 1 0 0\n", - " 0 0 0 1 0\n", - " 0 0 0 0 1" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ident = Matrix{Int64}(I,5,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 0 0 0 0 1\n", - " 0 0 0 1 0\n", - " 0 1 0 0 0\n", - " 1 0 0 0 0\n", - " 0 0 1 0 0" - ] - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ident[p,:]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What is closest to the number of parameters that are needed for an n x n permutation matrix?\n", - " a) n^2 b) n c)n! d)n^n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "The closest number of parameters of $n$, given by (b).\n", - "\n", - "Note that each permutation matrix has a single $1$ in each column and row. So each permutation matrix may be parametrized by an $n$-vector $(m_1,\\ldots,m_n)$ where the $i$th number $m_i$ gives the column index of the $1$ in the $i$th row." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 10. a Julia application of linear algebra\n", - "Understanding this code is not required for this class, but is an extra for those interested. All of you might want to look just a little and execute the lines though." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " The signed distance to a hyperplane is one of those standard machine learning (and elsewhere!) codes. In one commonly used notation, hyperplanes are written as the set of x for which θᵀx + θ₀ = 0 where θ is in Rⁿ and θ₀ is in R. The formula for the distance of a point p to this hyperplane is
    \n", - " distance = (θᵀp +θ₀ )/||θ||" - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "d (generic function with 3 methods)" - ] - }, - "execution_count": 163, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "# Formula in Julia looks a lot like the math\n", - "d(p,θ,θ₀) = (θ'p .+ θ₀)/norm(θ)\n", - "\n", - "# If you would like to annotate with types, this is also allowed\n", - "# this says p and θ must be vectors and θ₀ a number\n", - "d(p::Vector, θ::Vector, θ₀::Number) = (θ'p .+ θ₀)/norm(θ)" - ] - }, - { - "cell_type": "code", - "execution_count": 164, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6736808399014581" - ] - }, - "execution_count": 164, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n = 7\n", - "d( rand(n), rand(n), rand() )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python is a very popular language these days. It is really nice to have lots of friends who know the same language. Python suffers, however, from the two language problem: that efficient machine learning code tends to use C or C++, and even numpy tends to mix metaphors being sort of python like and sort of something different. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Are we above or below the hyperplane?" - ] - }, - { - "cell_type": "code", - "execution_count": 165, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "which_side (generic function with 1 method)" - ] - }, - "execution_count": 165, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "which_side(p,θ,θ₀) = d(p,θ,θ₀)<0 ? \"I'm below\" : \"I'm above\" # Ternary operator" - ] - }, - { - "cell_type": "code", - "execution_count": 166, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"I'm below\"" - ] - }, - "execution_count": 166, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "which_side(randn(n), rand(n), rand() )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What if we have a matrix of 5 data points, each column is in R^n?" - ] - }, - { - "cell_type": "code", - "execution_count": 167, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7×5 Array{Float64,2}:\n", - " -0.0135899 -1.85682 -1.4147 -1.73322 -0.29654 \n", - " -0.0583988 0.39595 -0.748555 -0.760963 0.468719\n", - " 0.898581 1.31427 -0.790358 -0.1995 0.90457 \n", - " -0.0752133 0.334317 -0.557758 -2.391 0.729908\n", - " 0.432025 1.12397 -1.70417 1.31616 1.78537 \n", - " -0.494314 -2.58893 0.245257 -1.75916 0.439534\n", - " -1.50217 -1.00493 -1.25288 -0.790197 1.21259 " - ] - }, - "execution_count": 167, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "P = randn(n,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 168, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×5 Array{Float64,2}:\n", - " -0.0509957 -1.44167 -1.57092 -2.49945 1.62281" - ] - }, - "execution_count": 168, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "distances = d( P, rand(n), rand() ) # Code evaluates five distances" - ] - }, - { - "cell_type": "code", - "execution_count": 169, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×5 Array{Float64,2}:\n", - " -1.0 -1.0 -1.0 -1.0 1.0" - ] - }, - "execution_count": 169, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sign.(distances) # elementwise sign function tells you above or below" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Carrying around a θ and θ₀ separately seems silly. How likely are you to remember that this is a pair next month? Let's wrap them together:" - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [], - "source": [ - "struct Hyperplane\n", - " θ :: Vector\n", - " θ₀ :: Number\n", - "end" - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Hyperplane([0.754178, 0.452019, 0.854368], 0.7806995443589713)" - ] - }, - "execution_count": 171, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "h = Hyperplane( rand(3), rand() )" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hyperplane\n", - " θ: Array{Float64}((3,)) [0.754178, 0.452019, 0.854368]\n", - " θ₀: Float64 0.7806995443589713\n" - ] - } - ], - "source": [ - "dump(h) # see what's inside" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's make it easy to write the more natural distance to a hyperplane function" - ] - }, - { - "cell_type": "code", - "execution_count": 173, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "d (generic function with 3 methods)" - ] - }, - "execution_count": 173, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d(p::Vector, h::Hyperplane ) = d(p,h.θ,h.θ₀)" - ] - }, - { - "cell_type": "code", - "execution_count": 174, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.7457277112775967" - ] - }, - "execution_count": 174, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "h = Hyperplane( rand(n), rand() )\n", - "d( randn(n), h)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This professor encourages good coding, where mathemtical abstractions are wrapped with their names rather than being isolated as greek letters." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's generate a vector of 10 hyperplanes:" - ] - }, - { - "cell_type": "code", - "execution_count": 175, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Hyperplane,1}:\n", - " Hyperplane([0.639999, 0.381686, 0.451886], 0.1268770727445261) \n", - " Hyperplane([0.782602, 0.790227, 0.132017], 0.06124709194394651)\n", - " Hyperplane([0.638825, 0.459649, 0.0769363], 0.9779856818512844)\n", - " Hyperplane([0.601499, 0.857207, 0.776075], 0.35331470556440636)\n", - " Hyperplane([0.500564, 0.459139, 0.621231], 0.8541667481679043) \n", - " Hyperplane([0.527508, 0.95329, 0.435191], 0.054942045856016586)\n", - " Hyperplane([0.838488, 0.390493, 0.190962], 0.39390438127219274)\n", - " Hyperplane([0.275477, 0.896726, 0.339034], 0.4137173415074926) \n", - " Hyperplane([0.166933, 0.977787, 0.0165396], 0.8839908695144154)\n", - " Hyperplane([0.0228206, 0.547961, 0.996911], 0.7564915268371468)" - ] - }, - "execution_count": 175, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hyperplanes = [Hyperplane( rand(3), rand() ) for i=1:10 ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice this is 10-element vector whose elements are hyperplanes !!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see if a random point is above or below these hyperplanes." - ] - }, - { - "cell_type": "code", - "execution_count": 176, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 0.13038386350675657\n", - " 0.7420231369911667 \n", - " 0.22137717632262296" - ] - }, - "execution_count": 176, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "p = randn(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Float64,1}:\n", - " 0.6811138314488024\n", - " 0.6954398194536037\n", - " 1.7949674760014023\n", - " 0.9510484436008779\n", - " 1.518376859487798 \n", - " 0.7905034014117159\n", - " 0.8843732377089485\n", - " 1.1930979743272325\n", - " 1.648023020172752 \n", - " 1.2187964026961917" - ] - }, - "execution_count": 178, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d.( [p] , hyperplanes)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "or maybe more readable" - ] - }, - { - "cell_type": "code", - "execution_count": 179, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10-element Array{Float64,1}:\n", - " 0.6811138314488024\n", - " 0.6954398194536037\n", - " 1.7949674760014023\n", - " 0.9510484436008779\n", - " 1.518376859487798 \n", - " 0.7905034014117159\n", - " 0.8843732377089485\n", - " 1.1930979743272325\n", - " 1.648023020172752 \n", - " 1.2187964026961917" - ] - }, - "execution_count": 179, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[ d(p, h) for h ∈ hyperplanes ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For those really into 6.036, feel free to take a look at a (very short) sample [perceptron training implementation](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/perceptron.ipynb). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 0.6.4", - "language": "julia", - "name": "julia-0.6" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "0.6.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset3.ipynb b/psets/pset3.ipynb deleted file mode 100644 index 3e00bf84..00000000 --- a/psets/pset3.ipynb +++ /dev/null @@ -1,317 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 short pset 3 \n", - "## due Wednesday 2/27 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This problem set is completely based on lectures and your ingenuity. No foreshadowing. You can optionally not use Juliabox at all, though using Julia may enhance the experience. This entire set can be done with pencil and paper if you prefer. There should be no mention of AAᵀ,AᵀA or eigenvalues. You should not google or use wikipedia, just what you learned in lecture." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Consider the matrix A defined below." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 4 2\n", - " 2 8 4\n", - " -1 -4 -2" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 4 2;2 8 4;-1 -4 -2]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You should be able to describe the column space of A without any fancy svd's, just by common sense.
    1a. Please describe the column space." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This matrix can be expressed as an outer product, A=xyᵀ.
    1b. Find an x and y such that A=xyᵀ. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Without a computer you should be able to write down a compact (rank r format) svd of A.
    1c. What is U, Σ, and V? Write an exact answer not a decimal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you wish to check your work, or are not sure what an exact answer would look like, one option (nothing required here!) is to execute the Julia code, but you will get decimals which you will have to think a bit about to recognize as exact numbers." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra\n", - "r = rank(A)\n", - "U,s,V = svd(A)\n", - "display(U[:,1:r])\n", - "display(s[1:r])\n", - "display(V[:,1:r])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Suppose we have the matrices U,Σ, and V as follows:\n", - "(Note dividing a matrix by √10 means divide every entry by the square root of 10). Suppose A=UΣVᵀ." - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.707107 -0.707107\n", - " 0.707107 0.707107" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U = [1 -3;3 1] / √10\n", - "Σ = [√45 0; 0 √5]\n", - "V = [1 -1;1 1] / √2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2a. Is A invertible? (Do not multiply through) Why or why not?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2b. What is the column space of A?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2c. What is the nullspace of A?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2d. In factored form (no need to multiply out) write the rank 1 approximation to A corresponding to the [image compression notebook](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/Compressing%20an%20Image%20with%20the%20svd.ipynb) we saw in class." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2e. Find an SVD of the matrix A*V without multiplying out A*V" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2f. Find an SVD of the matrix A\\*V\\*V (you can multiply out V*V using pencil and paper)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can optionally check your work using Julia." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Let A be an arbitrary mxn matrix.\n", - "\n", - "3a. Are the singular values of 2A always double that of A? If yes, why? If not give a counterexample." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3b. Are the singular values of -2A always -2 those of A? If yes, why? If not give a counterexample. (Be careful.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4a. Let A=[1 2 3]. \n", - "\n", - "Describe the nullspace of A precisely as which geometric object with what normal?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4b. Let A=[1 2 3]ᵀ. What is the nullspace of A?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset3sol.ipynb b/psets/pset3sol.ipynb deleted file mode 100644 index 4a961a6c..00000000 --- a/psets/pset3sol.ipynb +++ /dev/null @@ -1,366 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 short pset 3 solutions\n", - "## due Wednesday 2/27 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This problem set is completely based on lectures and your ingenuity. No foreshadowing. You can optionally not use Juliabox at all, though using Julia may enhance the experience. This entire set can be done with pencil and paper if you prefer. There should be no mention of AAᵀ,AᵀA or eigenvalues. You should not google or use wikipedia, just what you learned in lecture." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1 \n", - "\n", - "Consider the matrix A defined below." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 4 2\n", - " 2 8 4\n", - " -1 -4 -2" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 4 2;2 8 4;-1 -4 -2]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You should be able to describe the column space of A without any fancy svd's, just by common sense.
    1a. Please describe the column space." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This matrix can be expressed as an outer product, A=xyᵀ.
    1b. Find an x and y such that A=xyᵀ. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Without a computer you should be able to write down a compact (rank r format) svd of A.
    1c. What is U, Σ, and V? Write an exact answer not a decimal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you wish to check your work, or are not sure what an exact answer would look like, one option (nothing required here!) is to execute the Julia code, but you will get decimals which you will have to think a bit about to recognize as exact numbers." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×1 Array{Float64,2}:\n", - " -0.40824829046386313\n", - " -0.8164965809277259 \n", - " 0.40824829046386296" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "1-element Array{Float64,1}:\n", - " 11.22497216032183" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×1 Array{Float64,2}:\n", - " -0.21821789023599225\n", - " -0.8728715609439696 \n", - " -0.43643578047198484" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using LinearAlgebra\n", - "r = rank(A)\n", - "U,s,V = svd(A)\n", - "display(U[:,1:r])\n", - "display(s[1:r])\n", - "display(V[:,1:r])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "1a. Notice that the second column is 4 times the first column and the third column is 2 times the first column. Thus, the column space is the set of all real multiples of the vector \n", - "\n", - "$$v=\\begin{pmatrix}1\\\\2\\\\-1\\end{pmatrix}$$\n", - "\n", - "in $\\mathbb{R}^3$.\n", - "\n", - "1b. With $v$ as in part 1a, the matrix is\n", - "\n", - "$$A=\\begin{pmatrix}1&4&2\\\\2&8&4\\\\-1&-4&-2\\end{pmatrix}=\\begin{pmatrix}v&4v&2v\\end{pmatrix}=v\\begin{pmatrix}1&4&2\\end{pmatrix}.$$\n", - "\n", - "Therefore, $A=xy^T$, where\n", - "\n", - "$$x=v=\\begin{pmatrix}1\\\\2\\\\-1\\end{pmatrix}, \\hspace{2cm} y=\\begin{pmatrix}1\\\\4\\\\2\\end{pmatrix}.$$\n", - "\n", - "1c. By part 1a, the rank of $A$ is $r=1$. By part 1b, we know $A=xy^T=x \\begin{pmatrix}1\\end{pmatrix} y^T$, which looks like an SVD, but $x$ and $y$ are not *orthogonal* $3\\times 1$ matrices. To fix this, we can divide $x$ and $y$ by their norms:\n", - "\n", - "$$A=\\left(\\frac{x}{|x|}\\right) \\begin{pmatrix}|x||y|\\end{pmatrix} \\left(\\frac{y}{|y|}\\right)^T.$$\n", - "\n", - "Thus, our answer is\n", - "$$U=\\frac{x}{|x|}=\\frac{1}{\\sqrt{6}}\\begin{pmatrix}1\\\\2\\\\-1\\end{pmatrix},$$\n", - "\n", - "$$\\Sigma=\\begin{pmatrix}|x||y|\\end{pmatrix}=\\begin{pmatrix}\\sqrt{6}\\sqrt{21}\\end{pmatrix}=\\begin{pmatrix}3\\sqrt{14}\\end{pmatrix},$$\n", - "\n", - "$$V=\\frac{y}{|y|}=\\frac{1}{\\sqrt{21}}\\begin{pmatrix}1\\\\4\\\\2\\end{pmatrix}.$$\n", - "\n", - "Note that the $U$ and $V$ we give here are actually the negatives of the $U$ and $V$ given in the output of the Julia code above, but both are valid SVDs." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2. Suppose we have the matrices U,Σ, and V as follows: (Note dividing by √10 means divide every entry by the square root of 10). Suppose A=UΣVᵀ." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 0.707107 -0.707107\n", - " 0.707107 0.707107" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U = [1 -3;3 1] / √10\n", - "Σ = [√45 0; 0 √5]\n", - "V = [1 -1;1 1] / √2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2a. Is A invertible? (Do not multiply through) Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2b. What is the column space of A?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2c. What is the nullspace of A?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2d. In factored form (no need to multiply out) write the rank 1 approximation to A corresponding to the [image compression notebook](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/Compressing%20an%20Image%20with%20the%20svd.ipynb) we saw in class." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2e. Find an SVD of the matrix A*V without multiplying out A*V" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2f. Find an SVD of the matrix A*V*V (you can multiply out V*V using pencil and paper)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can optionally check your work using Julia." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "2a. $A$ is invertible. Because $U$ and $V^T$ are orthogonal square matrices, they are invertible (their inverses are $U^T$ and $V$ respectively). The matrix $\\Sigma$ is invertible because it is a diagonal square matrix with nonzero entries on the diagonal. Therefore, $A^{-1}=(U\\Sigma V^T)^{-1}=V\\Sigma^{-1}U^T$.\n", - "\n", - "2b. The column space of $A$ is all of $\\mathbb{R}^2$. To see this, recall\n", - "\n", - "$$\\operatorname{col}(A)=\\{Ax~:~x \\in \\mathbb{R}^2\\}.$$\n", - "\n", - "For any $y \\in \\mathbb{R}^2$, we have $y=A(A^{-1}y)$, so $y \\in \\operatorname{col}(A)$.\n", - "\n", - "2c. The nullspace of $A$ is just the zero vector. If $Ax=0$, then $x=A^{-1}0=0$.\n", - "\n", - "2d. To get the rank 1 approximation to $A$, we keep the larger singular value and throw away the smaller:\n", - "\n", - "$$\\text{rank 1 approx.}=\\begin{pmatrix}1/\\sqrt{10}\\\\3/\\sqrt{10}\\end{pmatrix}\\begin{pmatrix}\\sqrt{45}\\end{pmatrix}\\begin{pmatrix}1/\\sqrt{2}\\\\1/\\sqrt{2}\\end{pmatrix}^T.$$\n", - "\n", - "2e. We have $AV=U\\Sigma V^TV=U \\Sigma I_2$, where $I_2$ is the $2\\times 2$ identity matrix. $I_2$ is orthogonal, so $U\\Sigma I_2^T$ is an SVD for $AV$.\n", - "\n", - "2f. We have $AVV=U\\Sigma I_2 V=U\\Sigma V=U\\Sigma(V^T)^T$. This is an SVD for $AVV$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3. Let A be an arbitrary mxn matrix.\n", - "\n", - "3a. Are the singular values of 2A always double that of A? If yes, why? If not give a counterexample." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3b. Are the singular values of -2A always -2 those of A? If yes, why? If not give a counterexample. (Be careful.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution\n", - "\n", - "3a. Yes. If $A=U\\Sigma V^T$, then $2A=U(2\\Sigma)V^T$. If the diagonal entries of $\\Sigma$ are $\\sigma_1 \\ge \\sigma_2 \\ge \\cdots \\ge \\sigma_r > 0$, then the diagonal entries of $2\\Sigma$ are $2\\sigma_1 \\ge 2\\sigma_2 \\ge \\cdots \\ge 2\\sigma_r > 0$.\n", - "\n", - "3b. No. The reason is that singular values are always positive. For a counterexample, let\n", - "\n", - "$$A=I_2=\\begin{pmatrix}1&0\\\\0&1\\end{pmatrix}.$$\n", - "\n", - "The singular values of $A$ are $1$ and $1$. As for $-2A$, we have\n", - "\n", - "$$-2A=\\begin{pmatrix}-2&0\\\\0&-2\\end{pmatrix}=\\begin{pmatrix}-1&0\\\\0&-1\\end{pmatrix}\\begin{pmatrix}2&0\\\\0&2\\end{pmatrix}\\begin{pmatrix}1&0\\\\0&1\\end{pmatrix}^T.$$\n", - "\n", - "Thus, the singular values of $-2A$ are $2$ and $2$. Really, any nonzero matrix $A$ works as a counterexample." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4a. Let A=[1 2 3]. Describe the nullspace of A precisely as which geometric object with what normal?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4b. Let A=[1 2 3]ᵀ. What is the nullspace of A?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "4a. The nullspace of $A$ is the set\n", - "$$\\operatorname{null}(A)=\\{x \\in \\mathbb{R}^3~:~Ax=0\\}=\\{(x,y,z) \\in \\mathbb{R}^3~:~x+2y+3z=0\\}.$$\n", - "Thus, we see that the nullspace is the plane in $\\mathbb{R}^3$ containing the point $(0,0,0)$ and with normal vector \n", - "$$n=\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}.$$\n", - "\n", - "4b. The nullspace of $A$ is the set\n", - "$$\\operatorname{null}(A)=\\{x \\in \\mathbb{R}~:~Ax=0\\}=\\left\\{x \\in \\mathbb{R}~:~\\begin{pmatrix}x\\\\2x\\\\3x\\end{pmatrix}=\\begin{pmatrix}0\\\\0\\\\0\\end{pmatrix}\\right\\}=\\{0\\}.$$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.3", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset4.ipynb b/psets/pset4.ipynb deleted file mode 100644 index 0ee86a69..00000000 --- a/psets/pset4.ipynb +++ /dev/null @@ -1,471 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 4\n", - "## due Friday 3/8 at 10:55am\n", - "\n", - "(pset 5 will be due Wednesday 3/13)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1) Let A=UΣVᵀ be the compact svd of A. Write the projection matrix onto the column space of A in simplest terms using possibly U,Σ, or V. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2) Let A be the matrix below with the full SVD (Note: numbers with an e-16 or e-15 may be considered to be 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 3 1\n", - " 3 8 2\n", - " 2 4 0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 3 1;3 8 2;2 4 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -0.31854 -0.369631 -0.872872\n", - " -0.848437 -0.299463 0.436436\n", - " -0.422713 0.879599 -0.218218" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 10.335397940329974 \n", - " 1.0860706307708408 \n", - " 5.333338897353784e-16" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.358891 0.452251 0.816497\n", - " -0.912783 0.0127012 -0.408248\n", - " -0.195001 -0.8918 0.408248" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using LinearAlgebra\n", - "U,s,V =svd(A, full=true)\n", - "display(U)\n", - "display(s)\n", - "display(V)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A) argue that (b₁,b₂,b₃) is the column space if 4b₁-2b₂+b₃=0 (you can use Julia or eyeball and approximate the right numbers to two digits or so)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "B) What combinations of rows of A gives the zero row?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "C) Eyeballing the numbers some more, what combination of columns of A gives the zero column?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# D) What value of i would have made the answer to A and B easier? \n", - "# Type it in and execute.\n", - "i = \n", - "U[:,i]/U[i,i]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) In the below we practice finding the general solution to Ax=b, in the context of a floating point computation. You should be able to eyeball the solutions and write nice numbers, assuming that reasonable rounding and approximate guessing will work out." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " 1 3 1 2\n", - " 2 6 4 8\n", - " 0 0 2 4" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 3 1 2;2 6 4 8; 0 0 2 4]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -0.297548 -0.494771 0.816497\n", - " -0.903516 -0.130351 -0.408248\n", - " -0.308421 0.859191 0.408248" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 12.117224233268539 \n", - " 2.858824387871658 \n", - " 1.7206525645354256e-15" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4×4 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.173685 -0.26426 -0.948683 -1.7461e-16\n", - " -0.521055 -0.792781 0.316228 5.1856e-17\n", - " -0.373721 0.245628 3.05311e-16 -0.894427 \n", - " -0.747441 0.491255 6.10623e-16 0.447214 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# using LinearAlgebra\n", - "U,s,V =svd(A, full=true)\n", - "display(U)\n", - "display(s)\n", - "display(V)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suppose we calculate (and we ignore floating point effects)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -0.5 \n", - " 1.9999999999999978\n", - " 2.9999999999999987" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U*U'*[-.5, 2, 3] #Careful this is the full U" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A) what does the above say about whether Ax=b has a solution?
    \n", - "B) \n", - "Find the right r in the below. Fill it in and execute.
    \n", - "C) What does the below say about the solution to Ax=b?
    D)Convert these decimals to a simple fraction and check by hand." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "r = \n", - "(V[:,1:r]*((U[:,1:r]'*[-.5,2,3])./s[1:r]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "E) Write down the general solution to Ax=b by eyeballing the information in the svd." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) (based on p1. on p175 of GS) Use the svd to show A) that v₁,v₂,v₃ are independent but B) v₁,v₂,v₃,v₄ are dependent." - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 1 1\n", - " 0 1 1\n", - " 0 0 1" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v₁ = [1,0,0]\n", - "v₂ = [1,1,0]\n", - "v₃ = [1,1,1]\n", - "v₄ = [2,3,4]\n", - "A = [v₁ v₂ v₃]" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 2.246979603717467 \n", - " 0.8019377358048381\n", - " 0.5549581320873711" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "ename": "LoadError", - "evalue": "syntax: extra token \"v\" after end of expression", - "output_type": "error", - "traceback": [ - "syntax: extra token \"v\" after end of expression", - "" - ] - } - ], - "source": [ - "B = [ ] #fill in the right values (Note you can copy-past subscripts or\n", - "type v\\_1)\n", - "svdvals(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5) From GS Problem 16 (page 176)\n", - "
    \n", - "Find a basis for each of these subspaces of R⁴.
    \n", - " (A) All vectors whose components are equal.
    \n", - " (B) All vectors whose components add to 0.
    \n", - " (C) All vectors that are perpendicular to (1,1,0,0) and (1,0,1,1)
    \n", - " (D) The column space of I₄. The nullspace of I₄.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6). From GS Problem 24 (page 177) True of False (with a reason based on the SVD)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(A) If the columns of a matrix are dependent, so are the rows.
    \n", - "(B) The column space of a 2x2 matrix is the same as its row space.
    \n", - "(C) The column space of a 2x2 matrix has the same dimension as the row space.
    \n", - "(D) The columns of a matrix are a basis for the column space." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7). If A=QR, where R is non-singular, A) what is the projection P onto the column space of A in terms of possibly Q and R.
    \n", - "B) Write P$^T$ in terms of P.
    \n", - "C) Write P$^2$ in terms of P." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(8) (GS p217 problem 26) If an m by m matrix has $A^2=A$ and is rank m prove that A=I. (Hint: for any vector x, let w solve Aw=x. Now show Ax=x.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9) (A projection matrix is a symmetric matrix such that $P^2=P$.)\n", - "\n", - "If P is a projection matrix, then show that I-P is as well." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10) We will do an in class demo of recognizing digits (software a bit involved for a hw, but it would have been fun.) Here is the math." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suppose in 784 dimensional space, we have a 1000 vectors collected in a 784x1000 matrix called apples. We have another 1000 vectors collected in a 784x1000 matrix called oranges. Each matrix has rank 784, but the best rank 50 approximation is very good for both the apples and oranges matrix.
    \n", - "\n", - "(Note: much of science and engineering is about learning to deal with the inexact. We all find the exact so much more comforting, so this problem might take you out of your comfort zone, but only a little.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(A) What is the size of the U matrix for the exact compact SVD for the apples (or the oranges) matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(B) Suppose a new vector comes along and we want to decide if it's best classified as an apple or as an orange." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Would projecting it onto the column space of either U help? Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(C) Consider the dot product of the new vector with the first column of the apple U and the orange U. We now have two numbers. What might you hope is true, if the dot product of the orange is much larger than that of the apple?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " (D) Let's consider taking the first k columns of the apple U and also the first k columns of the orange U. Consider ||Uᵀ * (new vector)|| for the apple and orange. What might you expect as k goes from 1 to 784." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset4sol.ipynb b/psets/pset4sol.ipynb deleted file mode 100644 index fbc0cf63..00000000 --- a/psets/pset4sol.ipynb +++ /dev/null @@ -1,674 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 4 - Solutions\n", - "## due Friday 3/8 at 10:55am\n", - "\n", - "(pset 5 will be due Wednesday 3/14)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(1)** Let A=UΣVᵀ be the compact svd of A. Write the projection matrix onto the column space of A in simplest terms using possibly U,Σ, or V. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**: In the compact svd, $\\text{col}(U)=\\text{col}(A)$. As $U$ is an orthogonal matrix (square or \"Tall-Skinny\"), the projection onto the column space of $U$ is given by $UU^{\\intercal}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(2)** Let A be the matrix below with the full SVD (Note: numbers with an e-16 or e-15 may be considered to be 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 3 1\n", - " 3 8 2\n", - " 2 4 0" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 3 1;3 8 2;2 4 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -0.31854 -0.369631 -0.872872\n", - " -0.848437 -0.299463 0.436436\n", - " -0.422713 0.879599 -0.218218" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 10.335397940329974 \n", - " 1.0860706307708408 \n", - " 5.333338897353784e-16" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.358891 0.452251 0.816497\n", - " -0.912783 0.0127012 -0.408248\n", - " -0.195001 -0.8918 0.408248" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using LinearAlgebra\n", - "U,s,V =svd(A, full=true)\n", - "display(U)\n", - "display(s)\n", - "display(V)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A) argue that (b₁,b₂,b₃) is the column space if 4b₁-2b₂+b₃=0 (you can use Julia or eyeball and approximate the right numbers to two digits or so)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "B) What combinations of rows of A gives the zero row?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "C) Eyeballing the numbers some more, what combination of columns of A gives the zero column?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**:\n", - "\n", - "A) As $A$ has $2$ positive singular values, we conclude that $A$ is of rank $2$ and therefore that $\\text{col}(A)$ is the space of dimension $2$ spanned by the first two columns of $U$. Such a space is simply a plane through the origin in $\\mathbb{R}^3$ and so exhibiting a single vector $n \\in \\mathbb{R}^3$ that is orthogonal to $\\text{col}(A)$ suffices to describe $\\text{col}(A)$. As $U$ is an orthogonal matrix, the third column of $U$ is orthogonal to the space spanned by the first two columns, and so, since $(4,-2,1)$ is parrallel to the third column of $U$, $n=(4,-2,1)$ is normal to $\\text{col}(A)$. Therefore \n", - "\n", - "$$\\text{col}(A)=\\{(b_1,b_2,b_3)|(b_1,b_2,b_3) \\cdot (4,-2,1)=0\\}=\\{(b_1,b_2,b_3)|4b_1-2b_2+b_3=0\\}$$.\n", - "\n", - "B) Writing $A_1,A_2,A_3$ for the rows of $A$, we have that $c_1 A_1+ c_2 A_2 + c_3 A_3 =0$ precisely when $(c_1,c_2,c_3) \\in \\text{null}(A^{\\intercal})$. As $\\text{null}(A^{\\intercal})$ is spanned by the third column of $U$, we have that $c_1 A_1+ c_2 A_2 + c_3 A_3 =0$ precisely when $(c_1,c_2,c_3)=\\alpha(4,-2,1)$ for some $\\alpha \\in \\mathbb{R}$.\n", - "\n", - "C) Analagously to part (B), if we write $K_1,K_2,K_3$ for the columns of $A$, we have that $c_1 K_1+ c_2 K_2 + c_3 K_3 =0$ precisely when $(c_1,c_2,c_3) \\in \\text{null}(A)$. As $\\text{null}(A)$ is spanned by the third column of $V^{\\intercal}$, we have that $c_1 K_1+ c_2 K_2 + c_3 K_3 =0$ precisely when $(c_1,c_2,c_3)=\\alpha(2,-1,1)$ for some $\\alpha \\in \\mathbb{R}$." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 3.999999999999992\n", - " -1.999999999999997\n", - " 1.0 " - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# D) What value of i would have made the answer to A and B easier? \n", - "# Type it in and execute.\n", - "i = 3\n", - "U[:,i]/U[i,i]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "we therefore see that the third column is certainly parallel to $(4,-2,1)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(3)** In the below we practice finding the general solution to Ax=b, in the context of a floating point computation. You should be able to eyeball the solutions and write nice numbers, assuming that reasonable rounding and approximate guessing will work out." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " 1 3 1 2\n", - " 2 6 4 8\n", - " 0 0 2 4" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [1 3 1 2;2 6 4 8; 0 0 2 4]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Float64,2}:\n", - " -0.297548 -0.494771 0.816497\n", - " -0.903516 -0.130351 -0.408248\n", - " -0.308421 0.859191 0.408248" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 12.117224233268539 \n", - " 2.858824387871658 \n", - " 1.7206525645354256e-15" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4×4 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.173685 -0.26426 -0.948683 -1.7461e-16\n", - " -0.521055 -0.792781 0.316228 5.1856e-17\n", - " -0.373721 0.245628 3.05311e-16 -0.894427 \n", - " -0.747441 0.491255 6.10623e-16 0.447214 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# using LinearAlgebra\n", - "U,s,V =svd(A, full=true)\n", - "display(U)\n", - "display(s)\n", - "display(V)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suppose we calculate (and we ignore floating point effects)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -0.5 \n", - " 1.9999999999999978\n", - " 2.9999999999999987" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U*U'*[-.5, 2, 3] #Careful this is the full U" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A) what does the above say about whether Ax=b has a solution?
    \n", - "B) \n", - "Find the right r in the below. Fill it in and execute.
    \n", - "C) What does the below say about the solution to Ax=b?
    D)Convert these decimals to a simple fraction and check by hand." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -0.1999999999999994\n", - " -0.6000000000000001\n", - " 0.2999999999999999\n", - " 0.5999999999999998" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "r =2 \n", - "(V[:,1:r]*((U[:,1:r]'*[-.5,2,3])./s[1:r]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "E) Write down the general solution to Ax=b by eyeballing the information in the svd." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:**\n", - "\n", - "A) In the full SVD, $U$ is a square orthogonal matrix and so $UU^{\\intercal}=I$, therefore the above calculation says nothing about whether or not $Ax=b$ has a solution.\n", - "\n", - "B) As $A$ has two positive singular values, it has rank $r=2$.\n", - "\n", - "C) Writing $U_1$ for the first two columns of $A$, we see that $Ax=b$ has at least one solution precisely when $U_1 U_1^{\\intercal} b=b$. By direct (Julia) calculation, $U_1 U_1^{\\intercal} b=b$ holds, and so $Ax=b$ has at least one solution. In particular, if $A$ has (compact) SVD $A=U_1 \\Sigma_r V_1^{\\intercal}$, then $x=V_1 \\Sigma_r^{-1} U_1^{\\intercal}b$ is clearly a solution, as $Ax=U_1 \\Sigma_r V_1^{\\intercal}V_1 \\Sigma_r^{-1} U_1^{\\intercal}b=U_1 \\Sigma_r \\Sigma_r^{-1} U_1^{\\intercal}b=U_1 U_1^{\\intercal}b=b$. Given that $V_1 \\Sigma_r^{-1} U_1^{\\intercal}b$ is precisely what is being computed below, we see that $x=\\frac{1}{10}(-2,-6,3,6)$ is a solution.\n", - "\n", - "D) $$Ax=\\frac{1}{10}\\left[\\begin{array}{cccc}\n", - " 1 & 3 & 1 & 2\\\\\n", - " 2 & 6 & 4 & 8\\\\\n", - " 0 & 0 & 2 & 4\\end{array}\\right] \n", - " \\left[\\begin{array}{c}\n", - " -2\\\\\n", - " -6\\\\\n", - " 3\\\\\n", - " 6\\end{array}\\right]=\n", - " \\frac{1}{10}\\left[\\begin{array}{c}\n", - " -5\\\\\n", - " 20\\\\\n", - " 30\\end{array}\\right]=\n", - " \\left[\\begin{array}{c}\n", - " -.5\\\\\n", - " 2\\\\\n", - " 3\\end{array}\\right].$$\n", - " \n", - "E) Writing $s=\\frac{1}{10}(-2,-6,3,6)$ for the particular solution obtained above, the set of all solutions of $Ax=b$ is given by $\\{s+n|n\\in \\text{null}(A)\\}$. As the nullspace of $A$ is spanned by the columns of $V_2$, where $V_2$ is precisely the last two columns of $V$, we conclude that the set of all solutions of $Ax=b$ is precisely $\\{s+\\alpha p +\\beta q|\\alpha,\\beta \\in \\mathbb{R}\\}$ where $p=(-3,1,0,0)$ and $q=(0,0,-2,1)$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(4)** (based on p1. on p175 of GS) Use the svd to show A) that v₁,v₂,v₃ are independent but B) v₁,v₂,v₃,v₄ are dependent." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 1 1\n", - " 0 1 1\n", - " 0 0 1" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "v₁ = [1,0,0]\n", - "v₂ = [1,1,0]\n", - "v₃ = [1,1,1]\n", - "v₄ = [2,3,4]\n", - "A = [v₁ v₂ v₃]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 2.246979603717467 \n", - " 0.8019377358048381\n", - " 0.5549581320873711" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svdvals(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 5.737738647419861 \n", - " 1.3222083275870498\n", - " 0.5745610083915811" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "B = [v₁ v₂ v₃ v₄] #fill in the right values (Note you can copy-past subscripts or type v\\_1)\n", - "svdvals(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:**\n", - "\n", - "For an $m \\times n$ matrix $T$, write $T_1,\\ldots,T_n$ where $T_i$ is the vector consisting of all entries in column $i$ of $T$. Then $T_1,\\ldots,T_n$ are linearly independent if and only if the only $c_1,\\ldots,c_n \\in \\mathbb{R}$ such that $c_1 T_1+\\cdots+c_n T_n=0$ is $c_1=\\cdots=c_n=0$. This occurs if and only if the nullspace of $T$ consists only of the zero vector. \n", - "\n", - "A)$A$ has $3$ positive singular values, and so it has rank $3$. $A$ has $3$ columns, and so its nullspace consists only of the zero vector, which by the above implies that the columns of $A$ are independent. As the columns of $A$ are precisely $v_1,v_2,v_3$ we are done.\n", - "\n", - "B)$B$ also has $3$ positive singular values, and so its rank is also $3$. However, $B$ has $4$ columns, and so its nullspace does not consist of only the zero vector, which by the above implies that the columns of $B$ are dependent. As the columns of $B$ are precisely $v_1,v_2,v_3,v_4$ we are done." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(5)** From GS Problem 16 (page 176)\n", - "
    \n", - "Find a basis for each of these subspaces of R⁴.
    \n", - " (A) All vectors whose components are equal.
    \n", - " (B) All vectors whose components add to 0.
    \n", - " (C) All vectors that are perpendicular to (1,1,0,0) and (1,0,1,1)
    \n", - " (D) The column space of I₄. The nullspace of I₄.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:**\n", - "\n", - "A) This subspace consists of all vectors of the form $(x,x,x,x) \\in \\mathbb{R}^4$, which is a $1$-dimensional subspace of $\\mathbb{R}^4$ for which a valid basis is the single vector $(1,1,1,1)$.\n", - "\n", - "B) This subspace consists of all vectors of the form $(a,b,c,d) \\in \\mathbb{R}^4$ such that $(a,b,c,d) \\cdot (1,1,1,1) =0$, which is a $3$-dimensional subspace of $\\mathbb{R}^3$, specifically a hyperplane through the origin (and, in fact, has a rather neat relationship to the subspace in part (a), as these two subspaces are orthogonal to each other and, together, in a certain sense, give the entire space $\\mathbb{R}^4$, which is an idea we will explore soon in class, but for now, foreshadowing!). A valid basis would then be any three vectors that are linearly independent and are all orthogonal to $(1,1,1,1)$, for example the three vectors $(1,0,0,-1),(0,1,0,-1),(0,0,1,-1)$.\n", - "\n", - "C) This subspace consists of all vectors of the form $(a,b,c,d) \\in \\mathbb{R}^4$ such that $(a,b,c,d) \\cdot (1,1,0,0) =0$, and $(a,b,c,d) \\cdot (1,0,1,1)=0$. As $(1,1,0,0)$ and $(1,0,1,1)$ are linearly independent, the subspace in this question is of dimension $2$, and so a valid basis would be any two linearly independent vectors that are orthogonal to both $(1,1,0,0)$ and $(1,0,1,1)$, for example the two vectors $(1,-1,-1,0)$ and $(0,0,1,-1)$.\n", - "\n", - "D) As $I_4$ is invertible, its column space is all of $\\mathbb{R}^4$ and so an example of a basis would be the four vectors $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$. Similarly, due to the fact that $I_4$ is invertible, the nullspace of $I_4$ consists exclusively of the zero vector, and so the basis of the nullspace is the empty basis (to be clear, a basis is a set of vectors, the empty basis is a set that has no elements at all; in particular, the empty basis is not a set that consists of only the zero vector)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(6).** From GS Problem 24 (page 177) True of False (with a reason based on the SVD)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(A) If the columns of a matrix are dependent, so are the rows.
    \n", - "(B) The column space of a 2x2 matrix is the same as its row space.
    \n", - "(C) The column space of a 2x2 matrix has the same dimension as the row space.
    \n", - "(D) The columns of a matrix are a basis for the column space." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:**\n", - "\n", - "A)False. Consider a matrix $A$ with (compact) SVD $U_1 \\Sigma_r V_1^{\\intercal}$. Its columns are dependent precisely when $\\text{null}(A)$ is non-trivial (we say $\\text{null}(A)$ is non-trivial when it contains at least one vector other than the zero vector). Similarly, the rows of $A$ are dependent precisely when $\\text{null}(A^{\\intercal})$ is non-trivial. If $A$ is $m \\times n$ and has rank $r$, then $\\text{null}(A)$ is non-trivial precisely when $rr$ columns, and so the columns of $A$ cannot be a basis of the column space of $A$, as they cannot be linearly independent (though, of course, the columns of any matrix $A$ do span the column space of $A$, by definition)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(7).** If A=QR, where R is non-singular, A) what is the projection P onto the column space of A in terms of possibly Q and R.
    \n", - "B) Write P$^T$ in terms of P.
    \n", - "C) Write P$^2$ in terms of P." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:**\n", - "\n", - "A) If $R$ is invertible, then $\\text{col}(A)=\\text{col}(Q)$. As $Q$ is an orthogonal matrix, the desired projection is simply $QQ^{\\intercal}$.\n", - "\n", - "B) $P^{\\intercal}=\\left(QQ^{\\intercal}\\right)^{\\intercal}=\\left(Q^{\\intercal}\\right)^{\\intercal} Q^{\\intercal}=QQ^{\\intercal}=P$.\n", - "\n", - "C) $P^2=\\left(QQ^{\\intercal}\\right)^2=\\left(QQ^{\\intercal}\\right)\\left(QQ^{\\intercal}\\right)=Q\\left(Q^{\\intercal}Q\\right)Q^{\\intercal}=QQ^{\\intercal}=P$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(8)** (GS p217 problem 26) If an m by m matrix has $A^2=A$ and is rank m prove that A=I. (Hint: for any vector x, let w solve Aw=x. Now show Ax=x.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:** $A$ is an $m \\times m$ matrix of rank $m$, which immediately implies that $A$ is invertible. We then have $I=AA^{-1}=A^2 A^{-1}=A$. \n", - "\n", - "Altneratively, suppose that $A$ is a $m\\times m$ rank $m$ matrix for which $A^2=A$. Since $A$ has full column and row rank, the equation $Aw=x$ has a unique solution for all $x$. Multiplying both sides of the equation by $A$ yields\n", - "$$A^2w=Ax \\implies Aw = Ax \\implies x = Ax.$$\n", - "If this is true for all $x$, then $\\boxed{A=I}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(9)** (A projection matrix is a symmetric matrix such that $P^2=P$.)\n", - "\n", - "If P is a projection matrix, then show that I-P is as well." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:** If $P$ is a projection matrix, we have $(I-P)^2=I^2-IP-PI+P^2=I-2P+P=I-P$ and $(I-P)^{\\intercal}=I^{\\intercal}-P^{\\intercal}=I-P$, which implies that $I-P$ is a projection matrix." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(10)** We will do an in class demo of recognizing digits (software a bit involved for a hw, but it would have been fun.) Here is the math." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suppose in 784 dimensional space, we have a 1000 vectors collected in a 784x1000 matrix called apples. We have another 1000 vectors collected in a 784x1000 matrix called oranges. Each matrix has rank 784, but the best rank 50 approximation is very good for both the apples and oranges matrix.
    \n", - "\n", - "(Note: much of science and engineering is about learning to deal with the inexact. We all find the exact so much more comforting, so this problem might take you out of your comfort zone, but only a little.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(A) What is the size of the U matrix for the exact compact SVD for the apples (or the oranges) matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(B) Suppose a new vector comes along and we want to decide if it's best classified as an apple or as an orange." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Would projecting it onto the column space of either U help? Why or why not?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(C) Consider the dot product of the new vector with the first column of the apple U and the orange U. We now have two numbers. What might you hope is true, if the dot product of the orange is much larger than that of the apple?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " (D) Let's consider taking the first k columns of the apple U and also the first k columns of the orange U. Consider ||Uᵀ * (new vector)|| for the apple and orange. What might you expect as k goes from 1 to 784." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution:**\n", - "\n", - "Let $A$ and $O$ denote, respectively, the apple matrix and the orange matrix. Let $A$ have a (compact) SVD $U_A \\Sigma_A V_A^{\\intercal}$ and $O$ have a (compact) SVD $U_O \\Sigma_O V_O^{\\intercal}$.\n", - "\n", - "A) As both $A$ and $O$ have rank $r=784$ and dimensions $m \\times n$ where $m=784$ and $n=1000$, we conclude that both $U_A$ and $U_O$ have dimension $m \\times r$ which is $784 \\times 784$.\n", - "\n", - "B) By part (A), each such $U$ is $784 \\times 784$, which immediately implies that the column space of each such $U$ is all of $\\mathbb{R}^{784}$ (as the $784$ columns of $U$ form a basis of the column space of $U$, the column space must have dimension $784$; the column space of $U$ must be contained in $\\mathbb{R}^{784}$ and so the column space of $U$ is all of $\\mathbb{R}^{784}$). Therefore, projecting onto the column space of either $U$ would be of no help, as such a projection is merely the identity (projecting any $v \\in \\mathbb{R}^{784}$ onto $\\mathbb{R}^{784}$ yields the same $v$).\n", - "\n", - "C) Let $u_A$ and $u_O$ denote respectively the first column of $U_A$ and $U_O$. The first column of $U_A$ corresponds to the largest singular value of $A$ and the first column of $U_O$ corresponds to the largest singular value of $O$, and so, if, for some vector $v$, $|v \\cdot u_O| \\gg |v \\cdot u_A|$, then one might hope $v$ is more orange-ish. If, instead, $|v \\cdot u_O| \\gg |v \\cdot u_A|$, then one might hope $v$ is more apple-y.\n", - "\n", - "D) Let $U_{A,k}$ and $U_{O,k}$ denote, respectively, the first $k$ columns of $U_A$ and $U_O$. Then, for a vector $v \\in \\mathbb{R}^{784}$, $U_{A,k}^{\\intercal} v$ is a vector $w \\in \\mathbb{R}^k$, where the $i^{\\text{th}}$ entry of $w$ is simply the dot product of the $i^{\\text{th}}$ column of $U_{A,k}$ with $v$, and so $\\lVert U_{A,k}^{\\intercal} v \\rVert$ is simply the square root of the sum of the squares of all of these dot products.\n", - "\n", - "Now fix some vector $v \\in \\mathbb{R}^{784}$ and consider $\\lVert U_{A,k}^{\\intercal} v \\rVert$ and $\\lVert U_{O,k}^{\\intercal} v \\rVert$ as $k$ goes from $1$ to $784$. \n", - "\n", - "First, we consider what happens as $k$ goes from $1$ to, say, $50$, as by the problem statement the rank $50$ approximation to $U_A$ and $U_O$ is quite good. If $v$ really is an apple, then, by the same logic in part (C), one would expect that $\\lVert U_{A,k}^{\\intercal} v \\rVert$ would tend to be larger than $\\lVert U_{O,k}^{\\intercal} v \\rVert$, and that this would tend to be more true as $k$ increases (but is still smaller than $50$), as we are considering dot products of $v$ with singular vectors that correspond to large singular values. Therefore, as $k$ goes from $1$ to $50$, the observation $\\lVert U_{A,k}^{\\intercal} v \\rVert \\gg \\lVert U_{O,k}^{\\intercal} v \\rVert$ becomes increasingly better evidence of the apple-y-ness of $v$, and the observation $\\lVert U_{A,k}^{\\intercal} v \\rVert \\ll \\lVert U_{O,k}^{\\intercal} v \\rVert$ becomes increasingly better evidence of the orange-osity of $v$.\n", - "\n", - "At the other extreme, when $k=784$, then\n", - "$\\lVert U_{A,784}^{\\intercal} v \\rVert = \\lVert U_{O,784}^{\\intercal} v \\rVert=\\lVert v \\rVert$, as $U_{A,784}=U_A$ and $U_{O,784}=U_O$ and $U_A$ and $U_O$ are orthogonal matrices, and applying an orthogonal matrix to a vector does not change the magnitude of that vector. \n", - "\n", - "One would expect that observations of $\\lVert U_{A,k}^{\\intercal} v \\rVert$ and $\\lVert U_{O,k}^{\\intercal} v \\rVert$ gives less useful approximation as $k$ goes from $50$ to $784$, due to the fact that, if the rank $50$ approximation to each of $U_A$ and $U_O$ are good, then all singular values of $U_A$ an $U_O$ after the first $50$ must be quite small, and so one would expect that a dot product of $v$ with a singular vector corresponding to small singular value would have very little to do with apple-icty, orange-itude, or anything else. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.3", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset5.ipynb b/psets/pset5.ipynb deleted file mode 100644 index 749b44f0..00000000 --- a/psets/pset5.ipynb +++ /dev/null @@ -1,516 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 18.06 Spring2019 pset 5 \n", - "## due Wednesday 3/13 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1) Warmup: this should perhaps be second nature by now:\n", - "\n", - "(A) If r=m=n, (square), Ax=b has ________ solution(s).
    \n", - "(B) If m>r=n, (tall skinny, full column rank), Ax=b has _____ or ______ solution(s)
    \n", - "(C) If m=r\n", - "(D) If r\n", - "(A) dim(col(A))?
    \n", - "(B) dim(row(A))+dim(null(A))?
    \n", - "(C) the sum of the dimensions of the four fundamental subspaces?
    \n", - "(D) dim(col(A)) + dim(row(A))?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) Consider the vector space Poly4 of polynomials of the form $P(x)=a+bx+cx^2+dx^3+ex^4$.\n", - "The operator $d/dx$ takes $P(x)$ to $P'(x)$.
    \n", - "(A) What kinds of functions should\n", - "we say live in the nullspace of $d/dx$?
    (B) What kinds of functions are in the analog\n", - "of the column space? (If the column space is {Av} for column vectors, then perhaps it should\n", - "be {P' for P in Poly4}.)
    (C) What should we call the rank of $d/dx$ acting on Poly4? \n", - "
    (D)\n", - "If P(x) is in the \"column space\", what is the analog of the solution to Ax=b?
    (E) are there 0,1, or infinitely\n", - "many solutions?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) This is GS p. 179 problem 39 with hints. (no need to see the original)
    \n", - " Suppose A is 5 by 4 with rank 4.
    \n", - "(A) The columns of A are necessarily/possibly/never independent? (circle the best answer)
    \n", - " (B) The columns of A necessarily/possibly/never for a basis for $R^5$
    \n", - " (C) Suppose there is a vector $b$ which makes $[A \\ b]$ an invertible square matrix. Then the\n", - " columns of $[A \\ b]$ are necessarily/possibly/never independent?
    \n", - " (D) Under the assumption in (C), $Ax=b$ can not be solved. Why not?
    \n", - " (E) What is the possible rank of $[A \\ b]$ if $[A \\ b]$ is not invertible? Why?
    \n", - " (F) Show that if $[A \\ b]$ is singular (not invertible) that Ax=b must be solvable." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5) This is exactly GS p. 191 problem 17. This problem is completely doable by eyeballing and pencil and paper, but you may use Julia if you like.
    \n", - "Describe the four subspace of $R^3$ associated with
    \n" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 1 0\n", - " 0 0 1\n", - " 0 0 0" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# (5A)\n", - "A = [ 0 1 0;0 0 1;0 0 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 1 0\n", - " 0 1 1\n", - " 0 0 1" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# and (5B)\n", - "I + A\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6) Suppose we have $A=[u \\ w][v \\ x]^T$ without any assumptions whatsoever on the vectors u,v,w,x other than is required by block notation.
    \n", - "(A) What are the possible ranks of $A$ assuming $A$ is $m \\times n$?
    \n", - "(B) Under what conditions is the rank of $A$ 0?
    \n", - "(C) Under what conditions is the rank of $A$ 1?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7) Write the unique matrices $U_1$ and $U_{-1}$ that makes these equalities: (the row vector contain functions of x)
    \n", - "(A) $[1 \\ \\ (x+1) \\ \\ (x+1)^2 \\ \\ (x+1)^3 \\ \\ (x+1)^4] \\ = \\ [1 \\ \\ x \\ \\ x^2 \\ \\ x^3 \\ \\ x^4] \\ U_{1}$
    \n", - "(B) $[1 \\ \\ (x-1) \\ \\ (x-1)^2 \\ \\ (x-1)^3 \\ \\ (x-1)^4] \\ = \\ [1 \\ \\ x \\ \\ x^2 \\ \\ x^3 \\ \\ x^4] \\ U_{-1}$
    \n", - "(C) Suppose $p(x)$ is a polynomial of degree at most 4 written as $a+bx+cx^2+dx^3+ex^4$ the polynomial whose coefficients are represented by $$U_1 \\begin{pmatrix} a \\\\ b \\\\ c \\\\ d \\\\ e \\end{pmatrix}$$ is (choose one)
    \n", - " a) $p(2x)$ b) $p(x+1)$ c)$p(x-1)$ d)$p(x^2)$
    \n", - " (D) argue without any calculation or mention of the entries of $U_1$ and $U_{-1}$ that $U_1$ and $U_{-1}$ must be inverses of each other. (Remark: Isn't that cool that you can understand an inverse rather than compute it? ) \\br\n", - " (E) What is the polynomial obtained by applying $U_1^3$ to a vector of coefficients? (no computation please, just brain power)
    \n", - " a) $p(x+3)$ b) $p(x-3)$ c) $p(x)^3$ d)$p(x^3)$\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(8) (Exact Copy of Strang p.178 problem 29) What subspace of 3x3 matrices is spanned (take all combinations) by
    \n", - "(A) The invertible matrices?
    \n", - "(B) The rank one matrices?
    \n", - "(C) The identity matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9) (A) Are the six three by three permutation matrices linearly dependent or linearly independent? \n", - "(B) Do they span the nine dimensional space of 3x3 matrices or a subspace (if so, what dimension?)\n", - "You can do this with pencil and paper or optionally if you like code you can use the Julia code to help you:\n", - "(explanations of all the syntax are provided) (C) Describe the subspace of 3x3 matrices spanned by the permutation matrices.\n", - "\n", - "Note: learning Julia is not required for this course. You can optionally ignore the Julia for this problem,\n", - "execute the Julia without understanding it, or try to understand the syntax. Your choice depending on your interests and background. The minimial time solution may be the second choice for many of you (look at the output without trying to fully\n", - "understand the syntax. The maximal time: do it by hand, and learn julia syntax, would be the maximal education opportunity.)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 0 0\n", - " 0 1 0\n", - " 0 0 1" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 0 0\n", - " 0 0 1\n", - " 0 1 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 1 0\n", - " 1 0 0\n", - " 0 0 1" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 1 0\n", - " 0 0 1\n", - " 1 0 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 0 1\n", - " 1 0 0\n", - " 0 1 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 0 1\n", - " 0 1 0\n", - " 1 0 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# The following code displays the permutation matrices for your convenience\n", - "Permutations = [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] # all permutations of 1:3 in 6 vector of 3 vectors\n", - "Identity = [1 0 0;0 1 0;0 0 1] # 3x3 identity matrix\n", - "PermutationMatrices = [Identity[p,:] for p in Permutations] # 6 vector of PermutationMatrices\n", - "display.(PermutationMatrices); # Apply the display function elementwise just to see the Permutation Matrices" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×6 Array{Int64,2}:\n", - " 1 1 0 0 0 0\n", - " 0 0 1 0 1 0\n", - " 0 0 0 1 0 1\n", - " 0 0 1 1 0 0\n", - " 1 0 0 0 0 1\n", - " 0 1 0 0 1 0\n", - " 0 0 0 0 1 1\n", - " 0 1 0 1 0 0\n", - " 1 0 1 0 0 0" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Compute a 9x6 matrix of squashed permutation matrices\n", - "#vec flattens a 3x3 matrix to a 9 vector and hcat stores this in a matrix. The three dots are called splat, and collect the arguments.\n", - "A = hcat(vec.(PermutationMatrices)...)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Compute the rank of the above 9x6 matrix\n", - "using LinearAlgebra\n", - "rank(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×6 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.408248 5.42288e-17 0.816497 -0.0 0.0 -0.408248\n", - " -0.408248 0.70636 -3.20494e-17 0.0638053 0.404538 0.408248\n", - " -0.408248 -0.270989 1.60247e-16 0.62547 -0.449465 0.408248\n", - " -0.408248 -0.345017 -0.408248 0.254573 0.562278 -0.408248\n", - " -0.408248 0.345017 -0.408248 -0.254573 -0.562278 -0.408248\n", - " -0.408248 -0.435371 1.60247e-16 -0.689276 0.0449263 0.408248" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Compute the full SVD, to identify the nullspace vector\n", - "U,s,V = svd(A,full=true)\n", - "V" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10) Suppose y₁(x),y₂(x),y₃(x),y₄(x) are four non-zero polynomials of degree at most 2. (This means\n", - "the functions have the form ax²+bx+c, where at least one of the coefficients is nonzero.) \n", - "What possibilities are there in the dimension of the vector space spanned by y₁(x),y₂(x),y₃(x),y₄(x)?\n", - "Give examples for each possibility and explain briefly why no other dimension can happen." - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×9 Array{Float64,2}:\n", - " -0.333333 0.407817 0.471405 … 0.316793 -0.19664 -0.100651 \n", - " -0.333333 0.0427396 -0.235702 -0.234431 -0.0898219 -0.584161 \n", - " -0.333333 -0.450557 -0.235702 -0.292684 -0.564301 0.0775894\n", - " -0.333333 -0.355651 -0.235702 0.198654 0.439449 0.339693 \n", - " -0.333333 -0.251361 0.471405 -0.352571 0.546267 -0.143816 \n", - " -0.333333 0.607013 -0.235702 … -0.410823 0.0717885 0.517934 \n", - " -0.333333 -0.0521659 -0.235702 0.645255 0.0180334 0.0662264\n", - " -0.333333 0.208622 -0.235702 0.0940301 0.124851 -0.417283 \n", - " -0.333333 -0.156456 0.471405 0.0357774 -0.349627 0.244467 " - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "U" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 2 10 30\n", - " 40 1 1\n", - " 0 31 11" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(PermutationMatrices.*[1, 1, 10, 0, 30, 0] )" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 3 7 11\n", - " 8 7 6\n", - " 10 7 4" - ] - }, - "execution_count": 83, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "([1 2 3 4 5 6] * PermutationMatrices)[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1-element Array{Int64,1}:\n", - " 91" - ] - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[1 2 3 4 5 6] *[1, 2, 3, 4, 5, 6]" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×6 Array{Int64,2}:\n", - " 1 2 3 4 5 6" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[1 2 3 4 5 6]" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 2 2 2\n", - " 1 3 2\n", - " 3 1 2" - ] - }, - "execution_count": 98, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum( PermutationMatrices[i]*(rand(0:2)) for i=1:6)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset5sol.ipynb b/psets/pset5sol.ipynb deleted file mode 100644 index 1beb135e..00000000 --- a/psets/pset5sol.ipynb +++ /dev/null @@ -1,597 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 18.06 Spring2019 pset 5 - SOLUTIONS" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(1)** Warmup: this should perhaps be second nature by now:\n", - "\n", - "(A) If r=m=n, (square), Ax=b has ________ solution(s).
    \n", - "(B) If m>r=n, (tall skinny, full column rank), Ax=b has _____ or ______ solution(s)
    \n", - "(C) If m=r\n", - "(D) If r\n", - "(B) If $m>r=n$, (tall skinny, full column rank), $Ax=b$ has $\\boxed{0}$ or $\\boxed{1}$ solution.
    \n", - "(C) If $m=r < n$, $Ax=b$ has $\\boxed{\\text{infinitely many}}$ solutions.
    \n", - "(D) If $r\n", - "(A) dim(col(A))?
    \n", - "(B) dim(row(A))+dim(null(A))?
    \n", - "(C) the sum of the dimensions of the four fundamental subspaces?
    \n", - "(D) dim(col(A)) + dim(row(A))?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "For the solution, recall the Fundamental Theorem of Linear Algebra: dim (col ( A )) = dim (row ( A )) = r and dim (\\nul ( A )) = $n-r$ and \\dim (\\nul ( A^T )) = $m-r$.\n", - "\n", - "\n", - "(A) dim(col(A)) can be at most $\\min(m,n)$.
    \n", - "(B) dim(row(A))+dim(nul(A)) = dim(col(A))+dim(nul(A)) = $n$.
    \n", - "(C) The sum of the dimensions of the four fundamental subspaces is $r+r+(n-r)+(m-r) = n+m$.
    \n", - "(D) dim(col(A)) + dim(row(A)) = $r+r = 2r$.\n", - "\n", - "\t" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(3)** Consider the vector space Poly4 of polynomials of the form $P(x)=a+bx+cx^2+dx^3+ex^4$.\n", - "The operator $d/dx$ takes $P(x)$ to $P'(x)$.
    \n", - "(A) What kinds of functions should\n", - "we say live in the nullspace of $d/dx$?
    (B) What kinds of functions are in the analog\n", - "of the column space? (If the column space is {Av} for column vectors, then perhaps it should\n", - "be {P' for P in Poly4}.)
    (C) What should we call the rank of $d/dx$ acting on Poly4? \n", - "
    (D)\n", - "If P(x) is in the \"column space\", what is the analog of the solution to Ax=b?
    (E) are there 0,1, or infinitely\n", - "many solutions?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) The nullspace consists of all polynomials $P(x)$ such that the operator sends $P(x)$ to zero, i.e. $\\frac{d}{dx} P(x) = 0$. The only polynomials that have zero derivative are constants, so nul$(\\frac{d}{dx}) = \\left\\{ P(x) = a \\mid a \\in \\mathbb{R} \\right\\}$.
    \n", - "\n", - "(B) col$(\\frac{d}{dx}) = \\left\\{ \\frac{d}{dx} P(x) \\mid P(x) \\in \\mathrm{Poly}4 \\right\\} = \\left\\{ P(x) = a + bx + cx^2 + dx^3 \\mid a, b, c, d \\in \\mathbb{R} \\right\\} = \\mathrm{Poly}3$, because we can only obtain polynomials of degree at most three by differentiating polynomials of degree four, and we can get any polynomial of degree three this way.
    \n", - "\n", - "(C) Since column space of $\\frac{d}{dx}$ is generated by monomials $1$, $x$, $x^2$ and $x^3$, and since they are linearly independent, they form a basis for the column space. Therefore, the dimension of the column space, which is rank of the operator, is four.
    \n", - "\n", - "(D) We can rewrite the equation in the form $\\frac{d}{dx} Q(x) = P(x)$, where we write $P(x)$ for a function in the column space and $Q(x)$ for a solution that we are trying to find. So we see that we have an easy differential equation, so by the Fundamental Theorem of Calculus, we have that $Q(x) = \\int_{0}^{x} P(t) dt + const$.
    \n", - "\n", - "(E) If $P(x)$ is in the column space (that is, if $\\deg P(x) \\leq 3$), then there are infinitely many solutions, because adding a constant to a solution yields another solution. If $P(x)$ is not in the column space, then there are no solutions." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(4)** This is GS p. 179 problem 39 with hints. (no need to see the original)
    \n", - " Suppose A is 5 by 4 with rank 4.
    \n", - "(A) The columns of A are necessarily/possibly/never independent? (circle the best answer)
    \n", - " (B) The columns of A necessarily/possibly/never for a basis for $R^5$
    \n", - " (C) Suppose there is a vector $b$ which makes $[A \\ b]$ an invertible square matrix. Then the\n", - " columns of $[A \\ b]$ are necessarily/possibly/never independent?
    \n", - " (D) Under the assumption in (C), $Ax=b$ can not be solved. Why not?
    \n", - " (E) What is the possible rank of $[A \\ b]$ if $[A \\ b]$ is not invertible? Why?
    \n", - " (F) Show that if $[A \\ b]$ is singular (not invertible) that Ax=b must be solvable." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A)The columns of $A$ are **necessarily** independent, because the dimension of the column space is four by assumption, and there are exactly four columns.
    \n", - "\n", - "(B) The columns of $A$ are **never** a basis for $\\mathbb{R}^5$, because four vectors cannot span a five-dimensional space.
    \n", - "\n", - "(C) Since the matrix $B = \\left[A \\, b\\right]$ is invertible, the system $Bx = b$ always has exactly one solution, and that only happens when the columns of $B$ are independent. So the columns of $\\left[A \\, b\\right]$ are **necessarily** independent.
    \n", - "\n", - "(D) Since $b$ is linearly independent from the columns of $A$, it does not lie in the linear span of those, which means that $b$ is not in the column space of $A$. Hence the system $Ax = b$ never has a solution.
    \n", - "\n", - "(E) By assumption, rank of $A$ is four, so rank of $\\left[A \\, b\\right]$ is at least four. If the matrix is not invertible, it means that the columns of $\\left[A \\, b\\right]$ are linearly dependent. This only happens when $b$ lies in the column space of $A$, so by adding $b$, we get the same column space, and hence rank of $\\left[A \\, b\\right]$ is still four.
    \n", - "\n", - "(F) By previous argument, $b$ lies in the column space of $A$, hence $Ax = b$ is necessarily solvable.
    " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(5)** This is exactly GS p. 191 problem 17. This problem is completely doable by eyeballing and pencil and paper, but you may use Julia if you like.
    \n", - "Describe the four subspace of $R^3$ associated with
    \n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 1 0\n", - " 0 0 1\n", - " 0 0 0" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# (5A)\n", - "A = [ 0 1 0;0 0 1;0 0 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 1 0\n", - " 0 1 1\n", - " 0 0 1" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# and (5B)\n", - "using LinearAlgebra\n", - "I + A\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "Let us introduce the following notation:\n", - "$$ e_1 = \\begin{pmatrix} 1\\\\0\\\\0 \\end{pmatrix} \\mbox{, }\n", - " e_2 = \\begin{pmatrix} 0\\\\1\\\\0 \\end{pmatrix} \\mbox{, }\n", - " e_3 = \\begin{pmatrix} 0\\\\0\\\\1 \\end{pmatrix}\n", - " \\mbox{.}$$\n", - "\n", - "(A) $\\text{col}(A) = \\text{Span}\\left( e_1, e_2 \\right)$, so it the the $xy$-plane; \n", - "\n", - "$\\text{nul}(A) = \\text{Span}(e_1)$;\n", - "\n", - "$\\text{row}(A) = \\text{Span}(e_2, e_3)$;\n", - "\n", - "$\\text{nul}(A^T) = \\text{Span}(e_3)$.\n", - "\n", - "\n", - "(B) $\\text{col}(A) = \\text{Span}(e_1, e_1+e_2, e_2+e_3) = \\text{Span}(e_1,e_2,e_3) = \\mathbb{R}^3$;\n", - "\n", - "$\\text{nul}(A) = 0$;\n", - "\n", - "$\\text{row}(A) = \\text{Span}(e_1+e_2,e_2+e_3,e_3) = \\text{Span}(e_1,e_2,e_3) = \\mathbb{R}^3$;\n", - "\n", - "$\\text{nul}(A^T) = 0$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(6)** Suppose we have $A=[u \\ w][v \\ x]^T$ without any assumptions whatsoever on the vectors u,v,w,x other than is required by block notation.
    \n", - "(A) What are the possible ranks of $A$ assuming $A$ is $m \\times n$?
    \n", - "(B) Under what conditions is the rank of $A$ 0?
    \n", - "(C) Under what conditions is the rank of $A$ 1?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "First, let's multiply $A$ out: $A = uv^T + wx^T$. From the dimensions of $A$, we can see that $u$ and $w$ are $m$-vectors and $v$ and $x$ are $n$-vectors. Let us write $A$ in block notation, writing $u$ and $w$ as single blocks and $v$ and $x$ in components:\n", - "$$ A = u \\begin{pmatrix} v_1 & \\cdots & v_n \\end{pmatrix} + w \\begin{pmatrix} x_1 & \\cdots & x_n \\end{pmatrix} = \n", - " \\begin{pmatrix} v_1u + x_1w & \\cdots &\n", - " v_nu + x_nw \\end{pmatrix}\n", - " \\mbox{.} $$\n", - " \n", - "\n", - "(A) $A$ can be of rank 0, 1 or 2, because every column of $A$ is a linear combination of $u$ and $w$.\n", - " \n", - "(B) The rank of $A$ is zero exactly when $A$ is itself zero, so for each $i$, we need to have $v_iu = -x_iw$. So if for at least one $i$ the coefficients $v_i$ and $x_i$ are both nonzero, then $u$ is parallel $w$, that is. In addition, if both $u$ and $w$ are nonzero, then we can write $w = \\lambda u$ for some $\\lambda \\in \\mathbb{R}$ and conclude that the ratio $\\frac{v_i}{x_i}$ should be independent of $i$ and equal to $-\\lambda$, that is $v$ is parallel to $x$.\n", - " \n", - "To sum up, $A$ has zero rank in one of the following cases:\n", - "\n", - "* $v = 0$ and either $w = 0$ or $x = 0$;\n", - "* $u = 0$ and either $w = 0$ or $x = 0$;\n", - "* When all four vectors are nonzero, $u$ and $w$ are parallel and $v$ and $x$ are parallel, and there exists a nonzero constant $\\lambda \\in \\mathbb{R} \\setminus \\{0\\}$ such that $w = \\lambda u$ and $v = - \\lambda x$.\n", - "\n", - " \n", - "(C) The matrix $A$ is rank one when it can be written as a product $A = yz^T$ of a column vector by a row vector. Similarly to part (b), by writing in components we can get the following cases:\n", - "* $u = 0$ or $v = 0$ and both $w$ and $x$ are nonzero;\n", - "* both $u$ and $v$ are nonzero, and either $w$ or $x$ is zero;\n", - "* when all four vectors are nonzero, either $u$ and $w$ are parallel or $v$ and $x$ are parallel.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(7)** Write the unique matrices $U_1$ and $U_{-1}$ that makes these equalities: (the row vector contain functions of x)
    \n", - "(A) $[1 \\ \\ (x+1) \\ \\ (x+1)^2 \\ \\ (x+1)^3 \\ \\ (x+1)^4] \\ = \\ [1 \\ \\ x \\ \\ x^2 \\ \\ x^3 \\ \\ x^4] \\ U_{1}$
    \n", - "(B) $[1 \\ \\ (x-1) \\ \\ (x-1)^2 \\ \\ (x-1)^3 \\ \\ (x-1)^4] \\ = \\ [1 \\ \\ x \\ \\ x^2 \\ \\ x^3 \\ \\ x^4] \\ U_{-1}$
    \n", - "(C) Suppose $p(x)$ is a polynomial of degree at most 4 written as $a+bx+cx^2+dx^3+ex^4$ the polynomial whose coefficients are represented by $$U_1 \\begin{pmatrix} a \\\\ b \\\\ c \\\\ d \\\\ e \\end{pmatrix}$$ is (choose one)
    \n", - " a) $p(2x)$ b) $p(x+1)$ c)$p(x-1)$ d)$p(x^2)$
    \n", - " (D) argue without any calculation or mention of the entries of $U_1$ and $U_{-1}$ that $U_1$ and $U_{-1}$ must be inverses of each other. (Remark: Isn't that cool that you can understand an inverse rather than compute it? ) \\br\n", - " (E) What is the polynomial obtained by applying $U_1^3$ to a vector of coefficients? (no computation please, just brain power)
    \n", - " a) $p(x+3)$ b) $p(x-3)$ c) $p(x)^3$ d)$p(x^3)$\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) \\begin{align*}&\\begin{pmatrix} 1 & x+1 & (x+1)^2 & (x+1)^3 & (x+1)^4 \\end{pmatrix} \\\\\n", - " &= \\begin{pmatrix} 1 & x+1 & x^2 + 2x + 1 & x^3 + 3x^2 + 3x + 1 & x^4 + 4x^3 + 6x^2 + 4x + 1 \\end{pmatrix} \\\\\n", - " &= \\begin{pmatrix} 1 & x & x^2 & x^3 & x^4 \\end{pmatrix}\n", - " \\begin{pmatrix}\n", - " 1&1&1&1&1 \\\\\n", - " &1&2&3&4 \\\\\n", - " &&1&3&6 \\\\\n", - " &&&1&4 \\\\\n", - " &&&&1 \\\\\n", - " \\end{pmatrix}\\end{align*}.\n", - " \n", - "(B) \\begin{align*}&\\begin{pmatrix} 1 & x-1 & (x-1)^2 & (x-1)^3 & (x-1)^4 \\end{pmatrix} \\\\\n", - " &= \\begin{pmatrix} 1 & x-1 & x^2 - 2x + 1 & x^3 - 3x^2 + 3x - 1 & x^4 - 4x^3 + 6x^2 - 4x + 1 \\end{pmatrix} \\\\\n", - " &= \\begin{pmatrix} 1 & x & x^2 & x^3 & x^4 \\end{pmatrix}\n", - " \\begin{pmatrix}\n", - " 1&-1&1&-1&1 \\\\\n", - " &1&-2&3&-4 \\\\\n", - " &&1&-3&6 \\\\\n", - " &&&1&-4 \\\\\n", - " &&&&1 \\\\\n", - " \\end{pmatrix}\\end{align*}.\n", - " \n", - "(C) Note that\n", - " $$ p(x) = \\begin{pmatrix} 1 & x & x^2 & x^3 & x^4 \\end{pmatrix} \\begin{pmatrix} a\\\\b\\\\c\\\\d\\\\e \\end{pmatrix}\n", - " \\mbox{,} $$\n", - "then the new polynomial is:\n", - " $$ \\begin{pmatrix} 1 & x & x^2 & x^3 & x^4 \\end{pmatrix} U_1\n", - " \\begin{pmatrix} a\\\\b\\\\c\\\\d\\\\e \\end{pmatrix} = \n", - " \\begin{pmatrix} 1 & x+1 & (x+1)^2 & (x+1)^3 & (x+1)^4 \\end{pmatrix}\n", - " \\begin{pmatrix} a\\\\b\\\\c\\\\d\\\\e \\end{pmatrix}\n", - " \\mbox{.} $$\n", - "Hence, by performing matrix multiplication, we get the answer $\\boxed{p(x+1)}$.\n", - " \n", - "(D) $U_1$ and $U_{-1}$ can both be viewed as linear transformations of the space $\\mathrm{Poly}4$ when we multiply the vector of coefficients by $U_1$ or $U_{-1}$ as in part (c). The former, $U_1$, takes a polynomial $p(x)$ and produces $p(x+1)$, while the latter, takes $p(x)$ and transforms it to $p(x-1)$. These operations are inverses of each other, and therefore, the corresponding matrices are inverses of each other.\n", - " \n", - "(E) Applying $U_1$ thrice corresponds to performing the operation $p(x) \\mapsto p(x+1)$ thrice, therefore the answer is $\\boxed{p(x+3)}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(8)** (Exact Copy of Strang p.178 problem 29) What subspace of 3x3 matrices is spanned (take all combinations) by
    \n", - "(A) The invertible matrices?
    \n", - "(B) The rank one matrices?
    \n", - "(C) The identity matrix?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution** \n", - "\n", - "(A) Invertible matrices contain the following diagonal matrices: $M_1 = \\text{diag}(2,1,1)$, $M_2 = \\text{diag}(1,2,1)$, $M_3 = \\text{diag}(1,1,2)$ and $I = \\text{diag}(1,1,1)$. By taking linear combinations $M_i - I$, we get that the following three diagonal matrices are spanned: $\\text{diag}(1,0,0)$, $\\text{diag}(0,1,0)$ and $\\text{diag}(0,0,1)$. Moreover, note that matrices $M_{ij}$, $i\\neq j$ that have ones on the diagonal, one on the $(i,j)$-th position and zeroes everywhere else, are invertible. So matrices $M_{ij} - I$ are also linearly spanned by invertible matrices. So we got that all matrix units -- matrices with 1 in one place and 0 everywhere else -- are spanned by invertible matrices, but they form a basis of the space of all $3\\times3$ matrices, so invertible matrices span all matrices.\n", - " \n", - "(B) Matrix units are rank one, so again, all matrices are spanned.\n", - " \n", - "(C) One nonzero element always spans a line. Matrices that are spanned by $I$ are called \\textit{scalar matrices}." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(9)**\n", - "(A) Are the six three by three permutation matrices linearly dependent or linearly independent? \n", - "(B) Do they span the nine dimensional space of 3x3 matrices or a subspace (if so, what dimension?)\n", - "You can do this with pencil and paper or optionally if you like code you can use the Julia code to help you:\n", - "(explanations of all the syntax are provided) (C) Describe the subspace of 3x3 matrices spanned by the permutation matrices.\n", - "\n", - "Note: learning Julia is not required for this course. You can optionally ignore the Julia for this problem,\n", - "execute the Julia without understanding it, or try to understand the syntax. Your choice depending on your interests and background. The minimial time solution may be the second choice for many of you (look at the output without trying to fully\n", - "understand the syntax. The maximal time: do it by hand, and learn julia syntax, would be the maximal education opportunity.)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 0 0\n", - " 0 1 0\n", - " 0 0 1" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 0 0\n", - " 0 0 1\n", - " 0 1 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 1 0\n", - " 1 0 0\n", - " 0 0 1" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 1 0\n", - " 0 0 1\n", - " 1 0 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 0 1\n", - " 1 0 0\n", - " 0 1 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 0 0 1\n", - " 0 1 0\n", - " 1 0 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# The following code displays the permutation matrices for your convenience\n", - "Permutations = [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] # all permutations of 1:3 in 6 vector of 3 vectors\n", - "Identity = [1 0 0;0 1 0;0 0 1] # 3x3 identity matrix\n", - "PermutationMatrices = [Identity[p,:] for p in Permutations] # 6 vector of PermutationMatrices\n", - "display.(PermutationMatrices); # Apply the display function elementwise just to see the Permutation Matrices" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9×6 Array{Int64,2}:\n", - " 1 1 0 0 0 0\n", - " 0 0 1 0 1 0\n", - " 0 0 0 1 0 1\n", - " 0 0 1 1 0 0\n", - " 1 0 0 0 0 1\n", - " 0 1 0 0 1 0\n", - " 0 0 0 0 1 1\n", - " 0 1 0 1 0 0\n", - " 1 0 1 0 0 0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Compute a 9x6 matrix of squashed permutation matrices\n", - "#vec flattens a 3x3 matrix to a 9 vector and hcat stores this in a matrix. The three dots are called splat, and collect the arguments.\n", - "A = hcat(vec.(PermutationMatrices)...)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Compute the rank of the above 9x6 matrix\n", - "using LinearAlgebra\n", - "rank(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×6 Adjoint{Float64,Array{Float64,2}}:\n", - " -0.408248 4.61882e-17 0.0 -0.0 0.816497 -0.408248\n", - " -0.408248 0.71506 0.362882 0.153858 -1.60247e-17 0.408248\n", - " -0.408248 -0.484619 -0.225347 0.617276 1.66112e-16 0.408248\n", - " -0.408248 -0.316804 0.63191 -0.018032 -0.408248 -0.408248\n", - " -0.408248 0.316804 -0.63191 0.018032 -0.408248 -0.408248\n", - " -0.408248 -0.230441 -0.137535 -0.771134 1.38357e-16 0.408248" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Compute the full SVD, to identify the nullspace vector\n", - "U,s,V = svd(A,full=true)\n", - "V" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) They are linearly dependent with the following nontrivial relation:\n", - " $$ \\begin{pmatrix} 1&& \\\\ &1& \\\\ &&1 \\end{pmatrix} +\n", - " \\begin{pmatrix} &1&\\\\&&1\\\\1&& \\end{pmatrix} +\n", - " \\begin{pmatrix} &&1\\\\1&&\\\\&1& \\end{pmatrix} =\n", - " \\begin{pmatrix} &&1\\\\&1&\\\\1&& \\end{pmatrix} +\n", - " \\begin{pmatrix} 1&&\\\\&&1\\\\&1& \\end{pmatrix} +\n", - " \\begin{pmatrix} &1&\\\\1&&\\\\&&1 \\end{pmatrix}\n", - " \\mbox{.} $$\n", - "\n", - "(B) Since there are only six of them, they span a proper subspace. The dimension of this subspace is 5, because we can write a linear combination of any five of those and check that the condition on the coefficients implies that the coefficients are all zero. For example:\n", - " $$\n", - " a\\begin{pmatrix} 1&&\\\\&1&\\\\&&1 \\end{pmatrix} +\n", - " b\\begin{pmatrix} &1&\\\\&&1\\\\1&& \\end{pmatrix} +\n", - " c\\begin{pmatrix} &&1\\\\1&&\\\\&1& \\end{pmatrix} +\n", - " d\\begin{pmatrix} &&1\\\\&1&\\\\1&& \\end{pmatrix} +\n", - " e\\begin{pmatrix} 1&&\\\\&&1\\\\&1& \\end{pmatrix} =\n", - " 0 $$\n", - "implies that $b = c = 0$, and since $b+e = b+d = 0$, we also get $b = c = d = e = 0$. Then $a+e = 0$ implies that $a = b = c = d = e = 0$, and this gives us that the five chosen matrices are linearly independent and hence span a 5-dimensional subspace.\n", - " \n", - "(C) The matrices in the linear span of permutation matrices can alternatively be described by the following conditions:\n", - "* The sums of the elements in each row are equal. This gives us two independent conditions: 1st row sum = 2nd row sum, and 2nd row sum = 3rd row sum;\n", - "* the sums of elements in each column are equal. This also gives two independent condition.;\n", - "\n", - "These four independent conditions then imply another fact about these matrices, which is that the sums of elements in a row and a column are equal. To see this notice that the sum of all elements in the matrix can be equivalently expressed as three times the column sum, or three times the row sum. And so the row sum and the column sum give the same value." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(10)** Suppose y₁(x),y₂(x),y₃(x),y₄(x) are four non-zero polynomials of degree at most 2. (This means\n", - "the functions have the form ax²+bx+c, where at least one of the coefficients is nonzero.) \n", - "What possibilities are there in the dimension of the vector space spanned by y₁(x),y₂(x),y₃(x),y₄(x)?\n", - "Give examples for each possibility and explain briefly why no other dimension can happen." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "The space of polynomials of degree at most two $\\mathrm{Poly}2$ is three-dimensional, so an offhand upper bound on the dimension is three. Since all the polynomials are nonzero, then the lower bound on the dimension is one. We will prove that in fact every dimension of 1, 2 and 3 can occur by providing examples.\n", - "\n", - "* A dimension one space can be $\\text{Span} (1,1,1,1)$.\n", - "* A dimension two space can be $\\text{Span} (1,1,1,x)$.\n", - "* A dimension three space can be $\\text{Span} (1,1,x,x^2)$\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.3", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset6.ipynb b/psets/pset6.ipynb deleted file mode 100644 index 16dabb4e..00000000 --- a/psets/pset6.ipynb +++ /dev/null @@ -1,280 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 18.06 Spring2019 pset 6 \n", - "## due Wednesday 3/20 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1) Suppose an mxn matrix A has rank r. What are the ranks of\n", - "\n", - "(A) $A^T$?\n", - "(B) $AA^T$ ?\n", - " (C) $AA^T + \\lambda I$? ($\\lambda>0$)\n", - "(D) $A^TAA^TA$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2) (Easy) Without indices show that trace(ABC) = trace(BCA) using trace(XY)=trace(YX) whenever the matrix products make sense." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) A reflector is defined as a matrix of the form $Q = I -2 uu^T$ where $\\|u\\|=1$. (A) Show that a reflector is orthogonal by showing that Q is symmetric and $Q^2=I$. (B) Explain briefly why this makes $Q$ orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) GS p203 13. Put bases for the subspaces V and W in the columns of matrices A and B. Show that V and\n", - " W are orthogonal subspaces if and only $A^TB$ is the zero matrix. To be clear
    (A) Show that if V and W\n", - " are orthogonal then $A^TB$ iz zero,
    (B)and if $A^TB$ is the zero matrixm then V and W are orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5) GS p204 23 : If a subspace $S$ is contained in a subspace $V$, then $S^\\perp$ contains $V^\\perp$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6) GS p.407 Which of these transformations are not linear? The input is $v=(v_1,v_2)$:
    \n", - "(a) $T(v)=(v_2,v_1)$
    \n", - "(b) $T(v)=(v_1,v_1)$
    \n", - "(c) $T(v)=(0,v_1)$
    \n", - "(d) $T(v)=(0,1)$
    \n", - "(e) $T(v) = v_2 - v_1 $
    \n", - "(f) $T(v)=v_1v_2$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7) Which of the these transformations is a linear transformation of $ n \\times n$ matrices $X$: \n", - "(Any matrices A and B are fixed n by n matrices.)
    \n", - "(a) $T(X) = X^T$
    \n", - "(b) $T(X) = X^TX$
    \n", - "(c) $T(X) = A.*X$
    \n", - "(d) $T(X) = BXA^T$
    \n", - "(e) $T(X) = AXA$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(8) Suppose for polynomials of the form $P(x) = a+bx+cx^2 +dx^3$, we say that $P_1 \\perp P_2$ when\n", - " $\\int_0^1 P_1(t) P_2(t) dt$ =0. (a) Explain why this is a natural genaralization of dot product.\n", - " (b) Describe the polynomials that are orthogonal to the constants $P(x)=a$. (c) What is the dimensionality\n", - " of the set of functions of the form a+bx+cx^2 that are orthogonal to the constants." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(9) Consider the graph and associated matrix from Strang's book p.453. You will not need to own the book, nor be familiar with circuits to do this problem.\n", - "![graph](graph.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A graph is a collection of n vertices (called nodes) and m directed line segments called edges. The information in a graph can be tabulated in matrix form. Row i of A corresponds to edge i, there is -1 in the outgoing vertex and a +1 for the incoming. For example edge 6 goes from node 3 to node 4, so there is a -1 in the (6,3) entry and a +1 in the (6,4) entry.\n", - "\n", - "From a column viewpoint, column j has a +1 for all incoming edges, and a -1 for all outgoing edges.\n", - "\n", - "From an imformation view, there is no difference between the picture on the left, and the matrix A.\n", - "\n", - "\n", - "Here is A in Julia, it's rank and rows 1,2,and 4." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×4 Array{Int64,2}:\n", - " -1 1 0 0\n", - " -1 0 1 0\n", - " 0 -1 1 0\n", - " -1 0 0 1\n", - " 0 -1 0 1\n", - " 0 0 -1 1" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [-1 1 0 0\n", - " -1 0 1 0\n", - " 0 -1 1 0\n", - " -1 0 0 1\n", - " 0 -1 0 1\n", - " 0 0 -1 1]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "rank(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " -1 1 0 0\n", - " -1 0 1 0\n", - " -1 0 0 1" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A[ [1,2,4], :]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(A) Argue that the rows above are independent without a computer.
    \n", - "(B) Find a nullspace vector for the matrix A and argue that the rank of A must therefore be 3." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(C) There are four conditions, one at each node, that one can check for a vector $b$ in $R^6$ to be in the left\n", - " nullspace. If you speak the language of electrical current, say something about current \"in\" and current \"out\" at each node if $b$ is in the left-nullspace. Otherwise just write the four equations." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![loops](loops.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A loop is defined as a path that traverses each node no more than once. It can be encoded as vector of ±1 where +1 means the loop follows the edge in the direction of the arrow, and -1 is the opposite. The three loops encoded as vectors appear above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(D) These three vectors are a basis for the __(fill in the blank) __space of A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(E) Use the result of (D) to find three conditions that are equivalent to the four conditions in (C). (No worries if you haven't seen this before, but this is the rigorous approach\n", - "to loop currents that you may have seen in a physics or EE class. Loop currents are a basis\n", - "for a fundamental space and therefore are more efficient than examining every node.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(F) Suppose v is in $R^4$, the result of $Av$ is physically known as the voltage drop vector. Argue that all voltage drop vectors are orthogonal to the three loop vectors above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10) Draw your own (connected) graph with five or more nodes and enough loops,
    \n", - "(A) draw the \"A\" matrix with one +1 and one -1 in each row
    \n", - "(B) argue that the rank of A is n-1
    \n", - "(C) investigate loop vectors, i think there should be m-r = m-(n-1) independent ones. Can you find a basis for the right fundamental subspace with m-(n-1) independent vectors?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Note: \"connected\" means that every node can get to every other node by following\n", - "edges in the + or - direction)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset6sol.ipynb b/psets/pset6sol.ipynb deleted file mode 100644 index f09089cd..00000000 --- a/psets/pset6sol.ipynb +++ /dev/null @@ -1,445 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 18.06 Spring2019 pset 6 \n", - "## due Wednesday 3/20 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(1)** Suppose an mxn matrix A has rank r. What are the ranks of\n", - "\n", - "(A) $A^T$?\n", - "(B) $AA^T$ ?\n", - "(C) $AA^T + \\lambda I$? ($\\lambda>0$)\n", - "(D) $A^TAA^TA$?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) rank($A^T$)=dim(row($A^T$))=dim(col($A$))=rank($A$)=$r$.
    \n", - "\n", - "(B) Let $A=U\\Sigma V^T$ be a full SVD.
    \n", - "Then, $AA^T=(U\\Sigma V^T)(U\\Sigma V^T)^T=U\\Sigma V^TV\\Sigma^T U^T=U\\Sigma \\Sigma^T U^T=U\\Sigma^2 U^T$
    \n", - "Thus, $U\\Sigma^2 U^T$ is a SVD of $AA^T$. If $\\Sigma$ has $r$ positive singular values then so will $\\Sigma^2$. Therefore, the rank of $AA^T$ is $r$.
    \n", - "\n", - "(C) Since $I_m=UU^T$, the equation above yields $AA^T+\\lambda I=U\\Sigma^2 U^T+\\lambda I=U[\\Sigma^2+\\lambda I_m] U^T$.
    \n", - "Since $\\Sigma^2+\\lambda I=\\text{diag}[\\sigma_1^2+\\lambda, \\cdots,\\sigma^2_r+\\lambda, \\lambda, \\cdots,\\lambda]$, the rank is $m$.
    \n", - "\n", - "(D) $A^TAA^TA=(U\\Sigma V^T)^T(U\\Sigma V^T)(U\\Sigma V^T)^T(U\\Sigma V^T)=V\\Sigma^T U^T U\\Sigma V^TV\\Sigma^T U^T U\\Sigma V^T=V\\Sigma^T\\Sigma\\Sigma^T\\Sigma V^T=V\\Sigma^4 V^T$.
    \n", - "$\\Sigma^2$ has $r$ positive singular values as like $\\Sigma$. Therefore, the rank is $r$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(2)** (Easy) Without indices show that trace(ABC) = trace(BCA) using trace(XY)=trace(YX) whenever the matrix products make sense." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "trace(ABC)=trace(A[BC])=trace([BC]A)=trace(BCA)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(3)** A reflector is defined as a matrix of the form $Q = I -2 uu^T$ where $\\|u\\|=1$. (A) Show that a reflector is orthogonal by showing that Q is symmetric and $Q^2=I$. (B) Explain briefly why this makes $Q$ orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) Firstly we have that\n", - "$$Q^T=(I-2uu^T)^T=I^T-(2uu^T)^T=I-2(u^T)^Tu^T=I-2uu^T=Q.$$\n", - "Hence, $Q$ is symmetric.
    \n", - "\n", - "Secondly we have that\n", - "$$Q^2=(I-2uu^T)^2=I^2-2uu^T-2uu^T+4(uu^T)(uu^T)=I-4uu^T+4u (u^Tu) u^T.$$\n", - "\n", - "We can now use the fact that $u^Tu=\\|u\\|^2=1$, to obtain that $Q^2=I-4uu^T+4u (u^Tu) u^T=I-4uu^T+4uu^T=I$.
    \n", - "\n", - "(B) $I=Q^2=QQ=QQ^T=Q^TQ$, and so $Q$ is orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(4)** GS p203 13. Put bases for the subspaces V and W in the columns of matrices A and B. Show that V and\n", - " W are orthogonal subspaces if and only $A^TB$ is the zero matrix. To be clear
    \n", - " (A) Show that if V and W are orthogonal then $A^TB$ iz zero,
    \n", - " (B)and if $A^TB$ is the zero matrixm then V and W are orthogonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) Set $A=[v_1,\\cdots,v_m]$ and $B=[w_1,\\cdots,w_n]$.
    \n", - "Then, the $(i,j)$-entry of $A^TB$ is $v_i^Tw_j=0$, because $V$ and $W$ are orthogonal. Namely, $A^TB=0$.
    \n", - "\n", - "(B) Since the $(i,j)$-entry of $A^TB$ is $v_i^Tw_j$, $A^TB=0$ implies $v_i^Tw_j=0$ for all $i,j$.
    \n", - "Given any vectors $v\\in V$ and $w\\in W$, there exist some constants $a_i,b_j$ such that $v=\\sum_{i=1}^ma_iv_i$ and $w=\\sum_{j=1}^nb_jw_j$. This follows from the fact that $\\{v_1,\\cdots,v_m\\}$ and $\\{w_1,\\cdots,w_n\\}$ are bases for $V$ and $W$, respectively.
    \n", - "\n", - "Therefore, $v^Tw=(\\sum_i a_iv_i)^T(\\sum_j b_jw_j)=\\sum_i\\sum_j a_ib_j v_i^Tw_j=\\sum_i\\sum_j a_ib_j\\times 0=0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(5)** GS p204 23 : If a subspace $S$ is contained in a subspace $V$, then $S^\\perp$ contains $V^\\perp$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution** \n", - "\n", - "Given any $w\\in V^\\perp$, we have $w^Tv=0$ for all $v\\in V$.
    \n", - "Since $S\\subset V$, we have $w^Ts=0$ for all $s\\in S$, namely $w\\in S^\\perp$.
    \n", - "In short, every vector in $V^\\perp$ belongs to $S^\\perp$. Thus, $V^\\perp \\subset S^\\perp$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(6)** GS p.407 Which of these transformations are not linear? The input is $v=(v_1,v_2)$:
    \n", - "(a) $T(v)=(v_2,v_1)$
    \n", - "(b) $T(v)=(v_1,v_1)$
    \n", - "(c) $T(v)=(0,v_1)$
    \n", - "(d) $T(v)=(0,1)$
    \n", - "(e) $T(v) = v_2 - v_1 $
    \n", - "(f) $T(v)=v_1v_2$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "Answer: (d), (f).
    \n", - "\n", - "(d) is not linear because of $T(0)\\neq 0$.
    \n", - "(f) is not linear because $T(1,1)=1$ but $T(2,2)=4$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(7)** Which of the these transformations is a linear transformation of $ n \\times n$ matrices $X$: \n", - "(Any matrices A and B are fixed n by n matrices.)
    \n", - "(a) $T(X) = X^T$
    \n", - "(b) $T(X) = X^TX$
    \n", - "(c) $T(X) = A.*X$
    \n", - "(d) $T(X) = BXA^T$
    \n", - "(e) $T(X) = AXA$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "Answer: (a), (c), (d), (e).\n", - "\n", - "(d) is not linear becasue $T(I)=I$ but $T(2I)=4I$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(8)** Suppose for polynomials of the form $P(x) = a+bx+cx^2 +dx^3$, we say that $P_1 \\perp P_2$ when\n", - " $\\int_0^1 P_1(t) P_2(t) dt$ =0. (a) Explain why this is a natural genaralization of dot product.\n", - " (b) Describe the polynomials that are orthogonal to the constants $P(x)=a$. (c) What is the dimensionality\n", - " of the set of functions of the form a+bx+cx^2 that are orthogonal constants." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) It is commutative $\\int_0^1 P(t)Q(t) dt=\\int^1_0 Q(t)P(t) dt$,
    \n", - "and bilinear $\\int_0^1 P(t)(aQ(t)+bR(t))dt=a\\int_0^1 P(t)Q(t) dt+b\\int^1_0 P(t)R(t) dt$.
    \n", - "In addition, $\\int_0^1 P^2(t) dt \\geq 0$ and the equality holds only if $P(t)=0$.
    \n", - "\n", - "(B) For the constant function $Q(x)=M$, the orthogonal polynomial $P(x)$ satisfies $0=\\int_0^1 MP(t)dt=M\\int_0^1 P(t)dt$.
    \n", - "Namely, the polynomials $P(x)=a+bx+cx^2+dx^3$ satisfying $0=a+\\frac12 b+\\frac13 c+\\frac14 d$.
    \n", - "\n", - "(C) The set is $\\{a+bx+cx^2: 0=a+\\frac12 b+\\frac13 c \\}=\\{ b(x-\\frac12)+c(x^2-\\frac13): b,c \\in \\mathbb{R} \\}$.
    \n", - "Hence, $\\{x-\\frac12,x^2-\\frac13\\}$ form a basis. So, its dimension is $2$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(9)** Consider the graph and associated matrix from Strang's book p.453. You will not need to own the book, nor be familiar with circuits to do this problem.\n", - "![graph](graph.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A graph is a collection of n vertices (called nodes) and m directed line segments called edges. The information in a graph can be tabulated in matrix form. Row i of A corresponds to edge i, there is -1 in the outgoing vertex and a +1 for the incoming. For example edge 6 goes from node 3 to node 4, so there is a -1 in the (6,3) entry and a +1 in the (6,4) entry.\n", - "\n", - "From a column viewpoint, column j has a +1 for all incoming edges, and a -1 for all outgoing edges.\n", - "\n", - "From an imformation view, there is no difference between the picture on the left, and the matrix A.\n", - "\n", - "\n", - "Here is A in Julia, it's rank and rows 1,2,and 4." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6×4 Array{Int64,2}:\n", - " -1 1 0 0\n", - " -1 0 1 0\n", - " 0 -1 1 0\n", - " -1 0 0 1\n", - " 0 -1 0 1\n", - " 0 0 -1 1" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [-1 1 0 0\n", - " -1 0 1 0\n", - " 0 -1 1 0\n", - " -1 0 0 1\n", - " 0 -1 0 1\n", - " 0 0 -1 1]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "rank(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×4 Array{Int64,2}:\n", - " -1 1 0 0\n", - " -1 0 1 0\n", - " -1 0 0 1" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A[ [1,2,4], :]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(A) Argue that the rows above are independent without a computer.
    \n", - "(B) Find a nullspace vector for the matrix A and argue that the rank of A must therefore be 3." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(C) There are four conditions, one at each node, that one can check for a vector $b$ in $R^6$ to be in the left\n", - " nullspace. If you speak the language of electrical current, say something about current \"in\" and current \"out\" at each node if $b$ is in the left-nullspace. Otherwise just write the four equations." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![loops](loops.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A loop is defined as a path that traverses each node no more than once. It can be encoded as vector of ±1 where +1 means the loop follows the edge in the direction of the arrow, and -1 is the opposite. The three loops encoded as vectors appear above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(D) These three vectors are a basis for the __(fill in the blank) __space of A." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(E) Use the result of (D) to find three conditions that are equivalent to the four conditions in (C). (No worries if you haven't seen this before, but this is the rigorous approach\n", - "to loop currents that you may have seen in a physics or EE class. Loop currents are a basis\n", - "for a fundamental space and therefore are more efficient than examining every node.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(F) Suppose v is in $R^4$, the result of $Av$ is physically known as the voltage drop vector. Argue that all voltage drop vectors are orthogonal to the three loop vectors above." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) Let $v_1,v_2,v_4$ be the row vectors above. Suppose $0=c_1v_1+c_2v_2+c_4v_4$.
    \n", - "Then we can see immediately that $c_1=c_2=c_4=0$. This shows that they are linearly independent.
    \n", - "\n", - "(B) We can easily check $(1\\, 1\\, 1\\, 1)^T \\in \\text{null}(A)$. Thus, $0<\\text{dim}(\\text{null}(A))=n-r=4-r$.
    \n", - "However, the result of (A) implies $r \\geq 3$. Hence, $r=3$.
    \n", - "\n", - "(C) The four conditions are that \n", - "$$\\boxed{0=-b_1-b_2-b_4, \\;\\; 0=b_1-b_3-b_5, \\;\\; 0=b_2+b_3-b_6, \\;\\; 0=b_4+b_5+b_6.}$$\n", - "This follows from the fact that the left null space is the orthogonal complement of the column space.\n", - "\n", - "(D) These three vectors are a basis for the the left null space of $A$.
    \n", - "\n", - "(E) Let us denote the three loop vectors above by $l_1,l_2,l_3$. Then, $b=c_1l_1+c_2l_2+c_3l_3$ for some constant $c_1,c_2,c_3$. Since only three of the columns of $A$ are linearly independent, only three of the four conditions in (C) are independent. For example we could use the conditions \n", - "$$\\boxed{0=-b_1-b_2-b_4, \\;\\; 0=b_1-b_3-b_5, \\;\\; 0=b_2+b_3-b_6.}$$\n", - "The fourth condition given in (C) is in fact implied by these three conditions\n", - "\n", - "(F) We recall that a loop vector $l$ belongs to the left null space of $A$. Hence, $l^TA=0$.
    \n", - "Therefore, $0=(l^TA)v=l^T(Av)$, namely any voltage drop vector $Av$ is orthogonal to a loop vector $l$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(10)** Draw your own (connected) graph with five or more nodes and enough loops,
    \n", - "(A) draw the \"A\" matrix with one +1 and one -1 in each row
    \n", - "(B) argue that the rank of A is n-1
    \n", - "(C) write down the n-1 loop vectors for your graph, and argue they form a basis for \n", - " some fundamental subspace." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Note: \"connected\" means that every node can get to every other node by following\n", - "edges in the + or - direction)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Solution**\n", - "\n", - "(A) Example: ![q10graph](q10graph.png)\n", - "\n", - "(B) In the example above, the first four row vectors are independent. Hence, $r\\geq 4$.
    \n", - "On the other hand, $(1\\,1\\,1\\,1\\,1)^T\\in \\text{null}(A)$ implies $0<\\text{dim}(\\text{null}(A))=n-r=5-r$.
    \n", - "Therefore, $r=4=5-1=n-1$.
    \n", - "\n", - "In general case, we draw a path from the node i to the node n. We remind that each row vector is defined by an edge.
    \n", - "So, we can obtain the vector $v_i$ whose i-th entry is $+1$, n-th entry is $-1$, and others are $0$ by adding or subtracting the row vectors of the edges in the path.
    \n", - "These vectors $v_1,\\cdots,v_{n-1}$ are independent, and thus $r \\geq n-1$.
    \n", - "On the other hand, $(1\\, \\cdots, 1)^T$ belongs to the null space, and so $r\n", - "\n", - "(C) In the example, one can draw loop vectors of the four trangles.
    \n", - "Namely \n", - "$$\\boxed{l_1=\\begin{pmatrix} 1 \\\\ -1\\\\ 0\\\\ 0\\\\ 1\\\\0\\\\0\\\\0\\end{pmatrix}, \\;\\;\n", - "l_2=\\begin{pmatrix} 0\\\\ 1\\\\-1\\\\0\\\\0\\\\1\\\\0\\\\0 \\end{pmatrix}, \\;\\;\n", - "l_3=\\begin{pmatrix} 0\\\\ 0\\\\1\\\\-1\\\\0\\\\0\\\\1\\\\0\\end{pmatrix}, \\;\\;\n", - "l_4=\\begin{pmatrix} -1\\\\0\\\\0\\\\1\\\\0\\\\0\\\\0\\\\1 \\end{pmatrix}.} $$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.3", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset7.ipynb b/psets/pset7.ipynb deleted file mode 100644 index 2c6c77bd..00000000 --- a/psets/pset7.ipynb +++ /dev/null @@ -1,211 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 18.06 Spring2019 pset 7\n", - "## due Friday 4/12 at 10:55am" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1) If P is a projection matrix. What are the possible values of det(P)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2) A Hadamard matrix H is a matrix with entries ±1 and orthogonal columns. What is the determinant of H as a function of n?\n", - "(Hadamard matrices are conjectured to exist for every n that is a multiple of 4, but nobody knows if there is such a matrix even for n=668)\n", - "(See [mathoverflow](https://mathoverflow.net/questions/85201/status-of-hadamard-matrix-conjecture) for example.) If you stumble on a Hadamard matrix of size 668 please let us know. (Extremely unlikely don't waste much time looking and definitely not juliabox cycles.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There is a simple recursive construction for powers of 2, if you would like to play with some easy Hadamard matrices in Julia: (you are not expected to understand the Julia syntax but if you are curious you can\n", - "look up the [ternary operator](https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation-1) ( a compact if then else) and the [Kronecker product](https://en.wikipedia.org/wiki/Kronecker_product). " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "H (generic function with 1 method)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "A = [1 1;1 -1]\n", - "H(k) = k==1 ? A : kron( H(k-1), A) # Creates a 2ᵏ by 2ᵏ Hadamard matrix" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4×4 Array{Int64,2}:\n", - " 1 1 1 1\n", - " 1 -1 1 -1\n", - " 1 1 -1 -1\n", - " 1 -1 -1 1" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "H(2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) Find a 3x3 matrix with entries 0 and 1 with determinant -2,-1,0, and 1,2. (Okay to use rand(0:1,3,3) if it helps but don't forget using LinearAlgebra)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) What is the pattern in the formula for the determinant of S(n) given by the Julia code below? You may see it by inspecting, but ultimately you should figure it out by math." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "S (generic function with 1 method)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# using LinearAlgebra\n", - "S(n) = SymTridiagonal( fill(3,n), fill(1,n-1))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 SymTridiagonal{Int64,Array{Int64,1}}:\n", - " 3 1 ⋅ ⋅ ⋅\n", - " 1 3 1 ⋅ ⋅\n", - " ⋅ 1 3 1 ⋅\n", - " ⋅ ⋅ 1 3 1\n", - " ⋅ ⋅ ⋅ 1 3" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "S(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6-element Array{Int64,1}:\n", - " 3\n", - " 8\n", - " 21\n", - " 55\n", - " 144\n", - " 377" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[det(S(n)) for n=1:6]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5) If you know all 16 cofactors of a 4x4 invertible matrix A, how would you find A?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6) A square matrix is said to be upper-[Hessenberg](https://en.wikipedia.org/wiki/Hessenberg_matrix) if it has non-zeros in the upper triangle and the diagonal below the main diagonal. If A is square upper Hessenberg, does the determinant of A depend on the entry in the top right? If so, how? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7) What is $\\partial(\\det(A))/\\partial(A_{11})$ Hint: use the cofactor expansion?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset7sol.ipynb b/psets/pset7sol.ipynb deleted file mode 100644 index 88d24557..00000000 --- a/psets/pset7sol.ipynb +++ /dev/null @@ -1,367 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 7 - Solutions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1\n", - "\n", - "If P is a projection matrix. What are the possible values of det(P)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "If $P$ is a projection matrix, then we know that $P^T = P$ and that $P^2=P$. We can then take the determinant of both sides of the second equation to obtain that \n", - "$$\\det P^2 = \\det P \\implies (\\det P)(\\det P) = \\det P \\implies (\\det P)^2 = \\det P$$\n", - "There are then two possible values for $\\det P$:\n", - "* $\\det P=1$, when $P$ has rank $n$. In this case $P$ is invertble. The condition $P^2 = P$ then implies that $\\boxed{P=I}$\n", - "* $\\det P=0$, when $P$ has rank $ (Formula 1) The nxn determinant formula for the volume of a simplex containing the origin and n other points in $R^n$ and
    (Formula 2) From (1b) the formula for a generalized cone.
    We are asking you to use these two formulas to find
    \n", - "an $n+1$ by $n+1$ determinant formula for the volume of a simplex in $R^n$ with $n+1$ given vertices in general position (no assumption of the origin)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2a) How many row exchanges would turn this \"4-cycle\" permutation matrix into I:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\\begin{pmatrix} 0 & 1 & 0 & 0 \\\\\n", - " 0 & 0 & 1 & 0 \\\\\n", - " 0 & 0 & 0 & 1 \\\\\n", - " 1 & 0 & 0 & 0\n", - " \\end{pmatrix}.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b)There are 12 edge pieces on a Rubik's cube: ![cubie](edges.png) An edge piece always has two colored stickers on the two visible faces.
    There are also 8 corner pieces ![corners.](corners.png) The corners always have three colored stickers on the three visible faces." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Imagine numbering the edge pieces on a solved cube from 1 to 12. Propose a method to encode the position with a 12x12 permutation matrix when the puzzle has evolved. (You may also start to think, but no need to write anything\n", - "down, how you can do the same with corner pieces numbered 1 to 8 using an 8x8 permutation matrix.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) A move is defined as a quarter turn of a face. (A half turn is thus two moves.) Use the result in (2a) and what you know about determinants to prove that if you start with a solved cube and apply $k$ moves to return to the solved state, then $k$ must be even." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2d) Argue that if you plucked out two edge pieces, interchanged them, and put them back in, the cube would be unsolvable. (Hint: Argue that the determinants are the same for the 12x12 and 8x8 permutation matrices for the edges and the corners. Therefore if the edge determinant tells us that we need an odd number of moves to solve the cube, \n", - "the corner would tell us we simultaneously need an even number, which is impossible.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2e) Does the same argument work for the eight corner pieces (you'll need an 8x8 permutation matrix)? (A corner piece has three exposed color faces.) Explain briefly?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2f) Does the same argument work if you would interchange the two colored stickers on any one edge?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2g) Does the same argument work if you would permute the three colored stickers on any one corner?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3) The following code generates 7 random 5×5 \"anti-symmetric\" (or \"skew-symmetric\") matrices, and prints their determinants. This is a square matrix $A$ with $A^T=−A$. Explain what you observe using the properties of determinants.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra\n", - "n = 5 # you can try changing this too if you want\n", - "\n", - "for i = 1:7\n", - " A = randn(n,n) # a random n×n matrix\n", - " A -= A' # make it skew-symmetric by subtracting its transpose\n", - "\n", - " println(round(det(A),digits=13)) # print determinant, rounded to 13 digits\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Note: this problem only asks you write up n=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(4) Consider the image of the unit circle in the plane: $\\{Ax:\\|x\\|=1,x\\in R^2 \\}$. The image is an ellipse. What is the area of the ellipse?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5) Julia has a \"cumsum\" operator that computes the cumulative sum." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×10 Adjoint{Int64,Array{Int64,1}}:\n", - " 1 3 6 10 15 21 28 36 45 55" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cumsum(1:10)'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An algorithm for the cumulative sum of the vector x is\n", - "x[1]=y[1]
    \n", - "for i=2:n
    \n", - " y[i] = y[i-1] + x[i]
    \n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5a) It is possible to write y = cumsum(x) with linear algebra: y = Lx for some unit lower triangualr matrix L. What is this L? (If you forgot what unit lower triangular means it does not matter, but it means the diagonals are all 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5b) Should you use the matrix L on a computer to compute the cumsum?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5c) (Tricky?) Somehow find a way to use the result in (5a) to compute the determinant of the matrix\n", - "$$A_{ij}=\\min(i,j)$$\n", - "
    \n", - "Hint: It might help to ask what each column is a cumsum of, but it's not the only way." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 1 1 1 1\n", - " 1 2 2 2 2\n", - " 1 2 3 3 3\n", - " 1 2 3 4 4\n", - " 1 2 3 4 5" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n=5\n", - "A = [min(i,j) for i=1:n,j=1:n]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice (no need to write anything) that having the matrix is still useful even if you would not use it on a computer." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(6) If $\\det A = -1$, does that mean that $A$ is orthogonal? Explain why or provide a counterexample if it is false." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(7) Find a 2x2 matrix A with |det(A)|<1 but some entry in $A^n$ goes to infinity as n goes to infinity.\n", - "Here $A^n$ denotes multiplication of $A$ n times." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset8sol.ipynb b/psets/pset8sol.ipynb deleted file mode 100644 index 02012a45..00000000 --- a/psets/pset8sol.ipynb +++ /dev/null @@ -1,445 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 18.06 Spring2019 pset 8 - Solutions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1\n", - "\n", - "(1a) Suppose we are given three points on the $z=1$ plane: $(x_1,y_1,1)$,\n", - "$(x_2,y_2,1)$,$(x_3,y_3,1)$ give a formula for the signed volume of the tetrahedron that connects the origin to these three points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) A general formula that you may have seen for generalized cones, pyramids and cones is that the volume in 3d is always one third the base times the height. I found a [writeup](https://math.vanderbilt.edu/schectex/courses/Sp09_Math150B/miscdocs/cones.pdf) you can quickly look at. Use this formula to get the area of a triangle given three vertices in the plane.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1c) Generalize. Suppose you are given $n+1$ points in $R^n$. By going up one dimension, you can add the origin and get a simplex in $R^{n+1}$\n", - "along in the hyperplane with last element $1$. The generalization of half base length times height from precollege, and one third base area times height from (1b) is $\\frac{1}{n+1}$ the volume of the base times the height.\n", - "Find a determinantal formula for the signed volume of the tetrahedron in $R^n$ with $n+1$ given vertices (not the origin)," - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "(1a) The signed volume is given by\n", - "$$ \\frac{1}{3!} \\begin{vmatrix} x_1 & y_1 & 1 \\\\ x_2 & y_2 & 1 \\\\ x_3 & y_3 & 1 \\end{vmatrix}. $$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) Let $T$ be the triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$. Then the tetrahedron with vertices $(x_1,y_1,1), (x_2,y_2,1), (x_3,y_3,1), (0,0,0)$ is a generalized cone with base $T$ shifted up to the $z = 1$ plane and height $h = 1$. If $V$ is the volume of this tetrahedron, then we have the formula\n", - "$$ V = \\frac{1}{3} \\mathrm{Area}(T) \\times h = \\frac{1}{3} \\mathrm{Area}(T). $$\n", - "By solving for $\\mathrm{Area}(T)$, and using the formula for $V$ from the previous problem, we have\n", - "$$ \\mathrm{Area}(T) = \\frac{1}{2} \\left| ~\\begin{vmatrix} x_1 & y_1 & 1 \\\\ x_2 & y_2 & 1 \\\\ x_3 & y_3 & 1 \\end{vmatrix}~ \\right|. $$\n", - "Note the absolute value, since the quantity inside is signed." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1c) Let $T$ be the $n$-simplex with vertices given by vectors $\\vec{v}_1,\\ldots,\\vec{v}_{n+1}$ in $R^n$. Given $\\vec{x} = (x_1,\\ldots,x_n) \\in R^n$, let $(\\vec{x},1)$ be the vector $(x_1,\\ldots,x_n,1)$ in $R^{n+1}$. Then the signed volume of the $(n+1)$-simplex $S$ with vertices $(\\vec{v}_1,1),\\ldots,(\\vec{v}_{n+1},1), \\vec{0}$ is related to the signed volume of $T$ by the formula\n", - "$$ \\mathrm{vol}(S) = \\frac{1}{n+1} \\mathrm{vol}(T).$$\n", - "Then\n", - "$$ \\mathrm{vol}(T) = \\frac{1}{n!} \\begin{vmatrix} \\vec{v}_1^T & 1 \\\\ \\vdots & \\vdots \\\\ \\vec{v}_{n+1}^T & 1 \\end{vmatrix}. $$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2\n", - "\n", - "(2a) How many row exchanges would turn this \"4-cycle\" permutation matrix into I:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\\begin{pmatrix} 0 & 1 & 0 & 0 \\\\\n", - " 0 & 0 & 1 & 0 \\\\\n", - " 0 & 0 & 0 & 1 \\\\\n", - " 1 & 0 & 0 & 0\n", - " \\end{pmatrix}.$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b)There are 12 edge pieces on a Rubik's cube: ![cubie](edges.png) An edge piece always has two colored stickers on the two visible faces.
    There are also 8 corner pieces ![corners.](corners.png) The corners always have three colored stickers on the three visible faces.\n", - "\n", - "Imagine numbering the edge pieces on a solved cube from 1 to 12. Propose a method to encode the position with a 12x12 permutation matrix when the puzzle has evolved. (You may also start to think, but no need to write anything\n", - "down, how you can do the same with corner pieces numbered 1 to 8 using an 8x8 permutation matrix.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) A move is defined as a quarter turn of a face. (A half turn is thus two moves.) Use the result in (2a) and what you know about determinants to prove that if you start with a solved cube and apply $k$ moves to return to the solved state, then $k$ must be even." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2d) Argue that if you plucked out two edge pieces, interchanged them, and put them back in, the cube would be unsolvable. (Hint: Argue that the determinants are the same for the 12x12 and 8x8 permutation matrices for the edges and the corners. Therefore if the edge determinant tells us that we need an odd number of moves to solve the cube, \n", - "the corner would tell us we simultaneously need an even number, which is impossible.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2e) Does the same argument work for the eight corner pieces (you'll need an 8x8 permutation matrix)? (A corner piece has three exposed color faces.) Explain briefly?\n", - "\n", - "(2f) Does the same argument work if you would interchange the two colored stickers on any one edge?\n", - "\n", - "(2g) Does the same argument work if you would permute the three colored stickers on any one corner?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "(2a) We show that three row exchanges is the minimal required to reach the identity. Since the determinant of this matrix is $-1$ and the identity is $1$, we require an odd number of row exchanges by parity. Note that the $1$ in each row is off-diagonal, thus each row needs to be exchanged with another. This reasoning implies that one row exchange is not sufficient to get the identity. Therefore we need at least $3$ row exchanges. If we flip rows $3$ and $4$, then rows $2$ and $3$, then rows $1$ and $2$, this gives the identity. Thus three is the minimal number of row exchanges." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b) The solved position of an edge can be defined in terms of its position relative to the center faces. Therefore, once the puzzle is shuffled, we may encode the position with a $12 \\times 12$ permutation matrix $(P_{i,j})$ where $P_{i,j} = 1$ if edge $i$ is in the solved position of edge $j$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) Let $P$ be the permutation matrix from the previous part. A move corresponds to taking four distinct rows $i_1,i_2,i_3,i_4$ and moving row $i_1$ to row $i_2$, row $i_2$ to row $i_3$, row $i_3$ to row $i_4$, and row $i_4$ to row $i_1$. This changes the determinant by a sign. Therefore, if we start with a solved cube and apply $k$ moves to return to the solved state, then the resulting determinant is $(-1)^k = 1$. Therefore $k$ must be even." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2d) Note that just as a move rotates $4$ edges, a move also rotates $4$ corners. Therefore, the $8\\times 8$ permutation matrix corresponding to the corner positions also flips the determinant sign each move. In particular, since both corner and edge matrices start with determinant $1$ and change sign with a move, we have that the determinants of both matrices remain the same. If we remove two edge pieces, interchange them, and put them back in then this changes the sign of the determinant of the edge matrix. However, the corner matrix remains unchanged, thus the two matrices will have determinants of opposite sign. Since each move flips the sign of the determinants, we can never return to a solved position." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2e) Yes, flipping two corner pieces flips the sign of the corner determinant but preserves the sign of the edge determinant." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2f) No, our matrices do not keep track of orientation of an edge, only the position. So interchanging the colored stickers would not change either determinants.\n", - "\n", - "In fact if you consider the 24x24 permutation matrix of the edge stickers, the argument would in fact work." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2g) No, our matrices do not keep track of orientation of an corner, only the position. So permuting the colored stickers would not change either determinants." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3\n", - "\n", - "(3) The following code generates 7 random 5×5 \"anti-symmetric\" (or \"skew-symmetric\") matrices, and prints their determinants. This is a square matrix $A$ with $A^T=−A$. Explain what you observe using the properties of determinants.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.0\n", - "0.0\n", - "-0.0\n", - "-0.0\n", - "0.0\n", - "-0.0\n", - "0.0\n" - ] - } - ], - "source": [ - "using LinearAlgebra\n", - "n = 5 # you can try changing this too if you want\n", - "\n", - "for i = 1:7\n", - " A = randn(n,n) # a random m×m matrix\n", - " A -= A' # make it skew-symmetric by subtracting its transpose\n", - "\n", - " println(round(det(A),digits=13)) # print determinant, rounded to 13 digits\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Note: this problem only asks you write up n=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "If $A$ is a $5\\times 5$ matrix and $c$ is a constant, then\n", - "$$ \\det(cA) = c^5 \\det (A).$$\n", - "Therefore, if $A^T = -A$, then\n", - "$$\\det(A) = \\det(A^T) = \\det(-A) = (-1)^5 \\det(A) = -\\det(A)$$\n", - "which implies $\\det(A) = 0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4\n", - "\n", - "(4) Consider the image of the unit circle in the plane: $\\{Ax:\\|x\\|=1,x\\in R^2 \\}$. The image is an ellipse. What is the area of the ellipse?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "The linear transformation $A$ scales area by $|\\det(A)|$. Since $\\{x:\\|x\\| = 1, x \\in R^2\\}$ has area $\\pi$, we have $\\{Ax:\\|x\\|=1,x\\in R^2\\}$ has area $|\\det(A)|\\pi$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5\n", - "\n", - "(5) Julia has a \"cumsum\" operator that computes the cumulative sum." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×10 Adjoint{Int64,Array{Int64,1}}:\n", - " 1 3 6 10 15 21 28 36 45 55" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cumsum(1:10)'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An algorithm for the cumulative sum of the vector x is\n", - "x[1]=y[1]
    \n", - "for i=2:n
    \n", - " y[i] = y[i-1] + x[i]
    \n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5a) It is possible to write y = cumsum(x) with linear algebra: y = Lx for some unit lower triangualr matrix L. What is this L? (If you forgot what unit lower triangular means it does not matter, but it means the diagonals are all 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5b) Should you use the matrix L on a computer to compute the cumsum?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5c) (Tricky?) Somehow find a way to use the result in (5a) to compute the determinant of the matrix\n", - "$$A_{ij}=\\min(i,j)$$\n", - "
    \n", - "Hint: It might help to ask what each column is a cumsum of, but it's not the only way." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5×5 Array{Int64,2}:\n", - " 1 1 1 1 1\n", - " 1 2 2 2 2\n", - " 1 2 3 3 3\n", - " 1 2 3 4 4\n", - " 1 2 3 4 5" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n=5\n", - "A = [min(i,j) for i=1:n,j=1:n]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice (no need to write anything) that having the matrix is still useful even if you would not use it on a computer." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "(5a) Yes, take $L$ to be the unit lower triangular matrix with all entries $1$ along and below the diagonal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5b) No, this gives $O(n^2)$ operations versus the $O(n)$ recursive algorithm." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(5c) Consider\n", - "$$ L^T = \\begin{pmatrix} 1 & 1 & 1 & \\cdots & 1 \\\\ 0 & 1 & 1 & \\cdots & 1 \\\\ 0 & 0 & 1 & \\cdots & 1 \\\\ \\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\ 0 & 0 & 0 & \\cdots & 1 \\end{pmatrix}. $$\n", - "The cumulative sum of the $i$th vector is given by $(1,2,3,\\ldots,i-1,i,i,\\ldots,i)$. Thus, $LL^T = A$. This implies\n", - "$$ \\det(A) = \\det(L) \\det(LL^T) = 1. $$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6\n", - "\n", - "(6) If $\\det A = -1$, does that mean that $A$ is orthogonal? Explain why or provide a counterexample if it is false." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "It is not the case that $\\det A = -1$ implies $A$ is orthogonal. Consider\n", - "$$A = \\begin{pmatrix} 1 & 1 \\\\ 0 & -1 \\end{pmatrix}.$$\n", - "The determinant of this matrix is $-1$, but the second column vector is not a unit vector." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7\n", - "\n", - "(7) Find a 2x2 matrix A with |det(A)|<1 but some entry in $A^n$ goes to infinity as n goes to infinity.\n", - "Here $A^n$ denotes multiplication of $A$ n times." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solution \n", - "\n", - "Let\n", - "$$ A = \\begin{pmatrix} 2 & 0 \\\\ 0 & 0 \\end{pmatrix}.$$\n", - "Then\n", - "$$ A^n = \\begin{pmatrix} 2^n & 0 \\\\ 0 & 0 \\end{pmatrix}.$$\n", - "However, $\\det(A) = 0$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset9.ipynb b/psets/pset9.ipynb deleted file mode 100644 index 716e5e7d..00000000 --- a/psets/pset9.ipynb +++ /dev/null @@ -1,428 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 18.06 Spring2019 pset 9 \n", - "## due Friday 4/26 at 11:59pm\n", - "\n", - "Moving to Friday night seems to be very popular so this and pset 10 will be Friday night sets,\n", - "but please do not wait until Friday to start. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1a) $A$ is diagonalizable if it can be written $X\\Lambda X^{-1}$ for some invertible matrix $X$. The eigenvalues go on the diagonal of $\\Lambda$ (in any order) and the corresponding eigenvectors are the columns of $X$.\n", - "\n", - "(GS p314 6.2 p1)\n", - "Factor the following matrices into $A = X\\Lambda X^{-1}$:\n", - "\n", - "$A = \\begin{bmatrix} 1 & 2 \\\\ 0 & 3 \\end{bmatrix}$ and\n", - "$A = \\begin{bmatrix} 1 & 1 \\\\ 3 & 3 \\end{bmatrix}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) If $A=X \\Lambda X^{-1}$ then $A^3=( \\ )( \\ )( \\ )$ and $A^{-1}=( \\ )( \\ )( \\ )$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Optional) Check your work: " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra\n", - "A = [1 2; 0 3]\n", - "Λ,X = eigen(A)\n", - "display(Λ) # Eigenvalues in machine picked order\n", - "display(X) # Eigenvectors normalized to unit vectors" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Λ,X = eigen(A^3)\n", - "display(Λ) \n", - "display(X) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Λ,X = eigen(inv(A))\n", - "display(Λ) \n", - "display(X) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2). Find the pattern. (We are not asking for an explanation. We want you to experiment and observe.)
    \n", - "(2a) When n=3, if you generate random real matrices which of the following seem to be possible:
    \n", - "$[ \\ ]$ All complex eigenvalues, $[ \\ ]$ All real eigenvalues, $ [ \\ ]$ 2 Real, One Complex, $ [ \\ ]$ 2 Complex, One Real" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "howmany = 10 # if you like change 10 to anything\n", - "n = 3 \n", - "for i = 1:howmany\n", - " display(eigvals(randn(n,n))) # random n x n\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b) When n=4, if you generate random real matrices what possibilities emerge for how many real and complex eigenvalues:\n", - "(Note four real eigenvalues can happen, but it seems a bit rarer.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "howmany = 20 \n", - "n = 4 \n", - "for i = 1:howmany\n", - " display(eigvals(randn(n,n))) \n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) What do you observe if the matrix is symmetric or antisymmetric? Try n=3,4,5. (You may interpret as 0\n", - " floating point numbers with an e-16 (meaning $10^{-16}$, E for exponent) or less.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "howmany = 5 \n", - "n = 4 \n", - "for i = 1:howmany\n", - " A = randn(n,n)\n", - " A += A' # This means add A' (same as Aᵀ) to A making A symmetric\n", - " display(eigvals(A)) \n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3a) (GS p.314 p4) True or false: If the columns of X (eigenvectors of A) are linearly independent then
    \n", - "(a) A is invertible?
    \n", - "(b) A is diagonalizable
    \n", - "(c) X is invertible?
    \n", - "(d) X is diagonalizable\n", - "\n", - "(3b) (GS p. 315 p11) True or false: If the eigenvalues of $A$ are $2,2,5$ then the matrix is certainly
    \n", - "(a) invertible
    \n", - "(b) diagonalizable
    \n", - "(c) not diagonalizable.\n", - "\n", - "(3c) (GS p. 315 p. 12) True or false: If the only eigenvectors of $A$ are multiples of (1,4) then A has
    \n", - "(a) no inverse
    \n", - "(b) a repeated eigenvalue
    \n", - "(c) no diagonalization $X \\Lambda X^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4) If a matrix has eigenvalue 1, must it have singular value 1? If a matrix has eigenvalue 0, must it have fewer than n positive singular values?\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "5) Supose rank(A) = n-1 and x is an eigenvector with eigenvalue 0. How might the information in x find itself inside the SVD?\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "6) Construct for every n=2,3,... a non-zero matrix A that has all eigenvalues 0, but has (n-1) singular values 1. Is A diagonalizible?
    \n", - "(Possible Hint: Permuting the rows or columns\n", - "of a matrix does not influence the singular values.)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "7) (Finally doing what was avoided all year!) Write an expression for $A^TA$ in terms of the svd of A. Use this to relate the singular values of $A$ to the eigenvalues of $A^TA$. Do the same for $AA^T$.\n", - "\n", - "We admit this is straightforward, so why did we avoid it? From a practical perspective this can be numerically \n", - "unstable as an algorithm. From a mathematical perspective, by getting too caught up with eigendecompositions,\n", - "one loses perspective of all the utility of the SVD that we have seen all semester." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "8) Find two matrices (or argue that is impossible) for which $AB-BA=I$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "9) We recall that for complex numbers, the [absolute value](https://en.wikipedia.org/wiki/Absolute_value#Complex_numbers), $|z|$ is the sqrt of the real part squared plus the imaginary part.\n", - "\n", - "Find a pattern (as an experimentalist, without proof) for the absolute values of eigenvalues of orthognal matrices." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "using LinearAlgebra\n", - "n = 5\n", - "Q, = qr(randn(n,n)) # Q stored in a clever factorized form\n", - "λ = eigvals(Matrix(Q))\n", - "abs.(λ)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(10) The Tribonacci numbers are defined in analogy to the Fibonacci numbers:\n", - "$T_1=T_2=0$, $\\ T_3=1$, \n", - "$T_n=T_{n-1}+T_{n-2}+T_{n-3}$ (for $n>3$)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Inefficient but straightforward computation \n", - "T(n) = n>3 ? T(n-1)+T(n-2)+T(n-3) : n==3 ? 1 : 0 \n", - "[T(n) for n=1:15]'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Not required: but if you want to understand the Julia it says if n>3, use the recurrence, if n=3 return 1, otherwise 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let $u_k = \\begin{pmatrix} T_{k+2} \\\\ T_{k+1} \\\\ T_k \\end{pmatrix}$. Find a matrix A that relates $u_{k+1}$ to $u_k$\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "M = [ 1 2 3; 4 5 6; 7 8 9] # Template for a 3x3 matrix\n", - "A = # Write the correct numbers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Verify numerically that the largest eigenvalue of $A$ is" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.8392867552141612" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ϕ = (1+∛(19+3*√33)+∛(19-3*√33))/3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and the other two eigenvalues have absolute value less than 1." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "abs.(eigvals(A))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Explain why T(31)/T(30) should be about ϕ" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.839286755221798" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "T(31)/T(30)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using Julia, expand u₁ in an eigenvector basis obtaining the coefficients c. \n", - "(Two of which are complex, and one may have roundoff as an imaginary part.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Λ,X = eigen(A) # Λ is a vector of eigenvalues in Julia for efficiency\n", - "c = X\\[1,0,0] # Solve Xc = [1,0,0]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "real(c[1]*X[1,1]*ϕ^15),T(18)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " A student wishes to approximate the 18th Tribonacci number. \n", - "Explain why the above expression is correct, including the role played by c[1], X[1,1], 15, and 18." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "T(18) - real(c[1]*X[1,1]*ϕ^15) # error" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "2 * real(c[2]*X[1,2]*Λ[2]^15 )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above formula is the exact error to the student's approximation. Explain." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/pset9sol.ipynb b/psets/pset9sol.ipynb deleted file mode 100644 index ea0c889f..00000000 --- a/psets/pset9sol.ipynb +++ /dev/null @@ -1,1438 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 18.06 Spring2019 pset 9 \n", - "## due Friday 4/26 at 11:59pm\n", - "\n", - "Moving to Friday night seems to be very popular so this and pset 10 will be Friday night sets,\n", - "but please do not wait until Friday to start. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 1\n", - "\n", - "(1a) $A$ is diagonalizable if it can be written $X\\Lambda X^{-1}$ for some invertible matrix $X$. The eigenvalues go on the diagonal of $\\Lambda$ (in any order) and the corresponding eigenvectors are the columns of $X$.\n", - "\n", - "(GS p314 6.2 p1)\n", - "Factor the following matrices into $A = X\\Lambda X^{-1}$:\n", - "\n", - "$A = \\begin{bmatrix} 1 & 2 \\\\ 0 & 3 \\end{bmatrix}$ and\n", - "$A = \\begin{bmatrix} 1 & 1 \\\\ 3 & 3 \\end{bmatrix}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "(i) The matrix $A=\\begin{pmatrix}1&2\\\\0&3\\end{pmatrix}$ is upper triangular, so its eigenvalues are the entries on the diagonal, i.e., $1$ and $3$. For $v=\\begin{pmatrix}a\\\\b\\end{pmatrix}$, \n", - "\n", - "$$Av=\\begin{pmatrix}a+2b\\\\3b\\end{pmatrix}.$$\n", - "\n", - "If $Av=v$, then $3b=b$, so $b=0$. Thus, an eigenvector for the eigenvalue $1$ is $\\begin{pmatrix}1\\\\0\\end{pmatrix}$. If $Av=3v$, then $a+2b=3a$, so $a=b$. Thus, an eigenvector for the eigenvalue $3$ is $\\begin{pmatrix}1\\\\1\\end{pmatrix}$. Putting the eigenvalues and eigenvectors into the matrices \n", - "\n", - "$$\\Lambda=\\begin{pmatrix}1&0\\\\0&3\\end{pmatrix},~~\\text{and}~~X=\\begin{pmatrix}1&1\\\\0&1\\end{pmatrix}$$\n", - "\n", - "gives $A=X\\Lambda X^{-1}$.\n", - "\n", - "(ii) The characteristic polynomial for $A=\\begin{pmatrix}1&1\\\\3&3\\end{pmatrix}$ is\n", - "\n", - "$$p(x)=\\det\\begin{pmatrix}1-x&1\\\\3&3-x\\end{pmatrix}=(1-x)(3-x)-3=x^2-4x=x(x-4).$$\n", - "\n", - "The eigenvalues are the roots of this polynomial, namely $0$ and $4$ (note that we can also see that $0$ is an eigenvalue because the columns of $A$ are linearly dependent). As before, if $v=\\begin{pmatrix}a\\\\b\\end{pmatrix}$,\n", - "\n", - "$$Av=\\begin{pmatrix}a+b\\\\3a+3b\\end{pmatrix}.$$\n", - "\n", - "We see that $Av=0$ if and only if $a=-b$. Thus, an eigenvector for the eigenvalue $0$ is $\\begin{pmatrix}1\\\\-1\\end{pmatrix}$. If $Av=4v$, then $a+b=4a$, so $b=3a$. Thus, an eigenvector for the eigenvalue $4$ is $\\begin{pmatrix}1\\\\3\\end{pmatrix}$. Putting the eigenvalues and eigenvectors into \n", - "\n", - "$$\\Lambda=\\begin{pmatrix}0&0\\\\0&4\\end{pmatrix},~~\\text{and}~~X=\\begin{pmatrix}1&1\\\\-1&3\\end{pmatrix}$$\n", - "\n", - "gives $A=X\\Lambda X^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(1b) If $A=X \\Lambda X^{-1}$ then $A^3=( \\ )( \\ )( \\ )$ and $A^{-1}=( \\ )( \\ )( \\ )$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "Compute\n", - "\n", - "$$A^3=X\\Lambda X^{-1}X\\Lambda X^{-1}X\\Lambda X^{-1}=X\\Lambda\\Lambda\\Lambda X^{-1}=X \\Lambda^3 X^{-1}.$$\n", - "\n", - "Assume $A$ is invertible. We have $\\Lambda=X^{-1}AX$, so $\\Lambda$ is invertible because it is the product of invertible matrices. Thus, set $B=X\\Lambda^{-1}X^{-1}$ and compute\n", - "\n", - "$$AB=X\\Lambda X^{-1}X\\Lambda^{-1}X^{-1}=X\\Lambda\\Lambda^{-1}X^{-1}=XX^{-1}=I.$$\n", - "\n", - "This proves that $A^{-1}=B=X\\Lambda^{-1}X^{-1}$.\n", - "\n", - "Note that in general, $A^n=X\\Lambda^n X^{-1}$ for any integer $n$ (also assuming $A$ is invertible if $n<0$)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Optional) Check your work: " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.0\n", - " 3.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.0 0.707107\n", - " 0.0 0.707107" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "using LinearAlgebra\n", - "A = [1 2; 0 3]\n", - "Λ,X = eigen(A)\n", - "display(Λ) # Eigenvalues in machine picked order\n", - "display(X) # Eigenvectors normalized to unit vectors" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.0\n", - " 27.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.0 0.707107\n", - " 0.0 0.707107" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "Λ,X = eigen(A^3)\n", - "display(Λ) \n", - "display(X) " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2-element Array{Float64,1}:\n", - " 1.0 \n", - " 0.3333333333333333" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "2×2 Array{Float64,2}:\n", - " 1.0 0.707107\n", - " 0.0 0.707107" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "Λ,X = eigen(inv(A))\n", - "display(Λ) \n", - "display(X) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 2\n", - "\n", - "Find the pattern. (We are not asking for an explanation. We want you to experiment and observe.)
    \n", - "(2a) When n=3, if you generate random real matrices which of the following seem to be possible:
    \n", - "$[ \\ ]$ All complex eigenvalues, $[ \\ ]$ All real eigenvalues, $ [ \\ ]$ 2 Real, One Complex, $ [ \\ ]$ 2 Complex, One Real" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "The possibilities are: all real eigenvalues; and 2 complex, 1 real.\n", - "\n", - "An example of all real eigenvalues is\n", - "\n", - "$$\\begin{pmatrix}1&0&0\\\\0&1&0\\\\0&0&1\\end{pmatrix},$$\n", - "\n", - "whose only eigenvalue is $1$.\n", - "\n", - "An example of 2 complex, 1 real is\n", - "\n", - "$$\\begin{pmatrix}0&-1&0\\\\1&0&0\\\\0&0&1\\end{pmatrix},$$\n", - "\n", - "whose eigenvalues are $i$, $-i$, and $1$.\n", - "\n", - "This makes sense because the eigenvalues are the roots of a cubic polynomial, and cubic polynomials can either have all real roots, or 2 complex roots and 1 real root." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " -1.0326565316917389 + 0.0im \n", - " 0.6748820354452995 + 0.6727656200935755im\n", - " 0.6748820354452995 - 0.6727656200935755im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " -2.266604422992689 + 0.0im \n", - " 0.35457475308031694 + 1.7051102618405212im\n", - " 0.35457475308031694 - 1.7051102618405212im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " -0.3141903037361268 + 0.5122022872233882im\n", - " -0.3141903037361268 - 0.5122022872233882im\n", - " -1.1860629033747003 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " -0.7770609747976158 + 0.0im \n", - " 0.1362058736113101 + 0.9694457536053633im\n", - " 0.1362058736113101 - 0.9694457536053633im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " 0.7214103017519602 + 1.1537456995985798im\n", - " 0.7214103017519602 - 1.1537456995985798im\n", - " -0.8389780038090663 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " 0.54985917981346 + 0.0im \n", - " -0.3643513153847361 + 1.0539143828625936im\n", - " -0.3643513153847361 - 1.0539143828625936im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " 0.11092292929223922 + 1.0061703385932412im\n", - " 0.11092292929223922 - 1.0061703385932412im\n", - " 0.42147542922943043 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " 0.11471880160861044 + 1.4004543555978073im\n", - " 0.11471880160861044 - 1.4004543555978073im\n", - " 0.46926868637691466 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -0.1984249946348733\n", - " 1.6459164857606743\n", - " 1.1119815491262333" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " -2.2468027521279437\n", - " 0.7315762093315911\n", - " 1.6060024423068209" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "howmany = 10 # if you like change 10 to anything\n", - "n = 3 \n", - "for i = 1:howmany\n", - " display(eigvals(randn(n,n))) # random n x n\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2b) When n=4, if you generate random real matrices what possibilities emerge for how many real and complex eigenvalues:\n", - "(Note four real eigenvalues can happen, but it seems a bit rarer.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "For this, when we ask how many real or complex eigenvalues, we mean with multiplicity. This way, a $4 \\times 4$ matrix will always have 4 total eigenvalues.\n", - "\n", - "The possibilities are: all real; 2 complex, 2 real; and all complex.\n", - "\n", - "An example of all real is again the identity\n", - "\n", - "$$\\begin{pmatrix}1&0&0&0\\\\0&1&0&0\\\\0&0&1&0\\\\0&0&0&1\\end{pmatrix}.$$\n", - "\n", - "An example of 2 complex, 2 real is\n", - "\n", - "$$\\begin{pmatrix}0&-1&0&0\\\\1&0&0&0\\\\0&0&1&0\\\\0&0&0&1\\end{pmatrix},$$\n", - "\n", - "whose eigenvalues are $i$, $-i$, and $1$ with multiplicity 2.\n", - "\n", - "An example of all complex is\n", - "\n", - "$$\\begin{pmatrix}0&-1&0&0\\\\1&0&0&0\\\\0&0&0&-1\\\\0&0&1&0\\end{pmatrix},$$\n", - "\n", - "whose eigenvalues are $i$ and $-i$, both with multiplicity 2.\n", - "\n", - "(These examples were chosen because they are block diagonal. The eigenvalues of block diagonal matrices are just the eigenvalues of the blocks, and the $2 \\times 2$ $90^{\\circ}$ rotation matrix $\\begin{pmatrix}0&-1\\\\1&0\\end{pmatrix}$ has eigenvalues $i$ and $-i$.)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " 1.560590175803797 + 0.0im \n", - " -0.983470317806491 + 1.6004504952058682im\n", - " -0.983470317806491 - 1.6004504952058682im\n", - " -1.4974930433589766 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " 1.781366984879747 \n", - " 0.34154201040846444\n", - " -2.695458982236387 \n", - " -1.6376825271876745 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -3.7595515040572054 + 0.0im \n", - " -0.009836252346407032 + 0.9178009133895911im\n", - " -0.009836252346407032 - 0.9178009133895911im\n", - " 1.6731582374462488 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -0.8605521411312727 + 0.0im \n", - " -0.18112370487116083 + 0.916680392854106im\n", - " -0.18112370487116083 - 0.916680392854106im\n", - " 0.7524322528454063 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " 0.1776257849143505 + 0.6153772958793717im\n", - " 0.1776257849143505 - 0.6153772958793717im\n", - " 1.3573167748250454 + 0.573282835303293im \n", - " 1.3573167748250454 - 0.573282835303293im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " 2.7882092060243506 + 0.0im \n", - " -0.5042420558358356 + 0.0im \n", - " 0.8566738479869862 + 0.8539761447900258im\n", - " 0.8566738479869862 - 0.8539761447900258im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -2.5583881342066968 + 0.0im \n", - " 1.2085478232261706 + 0.566454296322378im\n", - " 1.2085478232261706 - 0.566454296322378im\n", - " -0.5672572382845301 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -1.1945805620881451 + 0.8744630704225174im\n", - " -1.1945805620881451 - 0.8744630704225174im\n", - " 2.435771733106273 + 0.0im \n", - " 1.6683747751531255 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " 1.1413085721625742 + 1.3024506153320938im\n", - " 1.1413085721625742 - 1.3024506153320938im\n", - " -0.597759510194639 + 0.0im \n", - " -2.5603416709187736 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " 2.6005101270991724\n", - " 0.7588751274631581\n", - " -1.6312801560076378\n", - " -0.929811902678773 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " 0.40087100962577127 + 0.6687290326171628im\n", - " 0.40087100962577127 - 0.6687290326171628im\n", - " -0.7258665002621363 + 0.6389799407819325im\n", - " -0.7258665002621363 - 0.6389799407819325im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -2.7140457832386717 + 0.0im \n", - " 0.18728234751982387 + 0.12554189996880621im\n", - " 0.18728234751982387 - 0.12554189996880621im\n", - " -0.9501013477859107 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -1.1497412238686227 + 0.0im \n", - " 0.3643545596533507 + 0.0im \n", - " 1.6897924378492708 + 1.509601719882982im\n", - " 1.6897924378492708 - 1.509601719882982im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " 3.027046410750918 + 0.0im \n", - " -0.36138449990046223 + 1.3664106227167587im\n", - " -0.36138449990046223 - 1.3664106227167587im\n", - " 0.5661404293396619 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -1.8394645481858496 + 0.0im \n", - " 0.7895661101330409 + 0.9944327410575493im\n", - " 0.7895661101330409 - 0.9944327410575493im\n", - " 0.8160446029161094 + 0.0im " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -1.2643016699210379\n", - " -0.8410158801763042\n", - " -0.4141691486387531\n", - " 0.4843963394875232" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -0.885493779142659 + 0.0im \n", - " 0.6933733604465229 + 0.0im \n", - " 0.1061350876033248 + 2.218126934263994im\n", - " 0.1061350876033248 - 2.218126934263994im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -2.1030202480414952\n", - " -0.8751756978742045\n", - " 1.2548671098233837\n", - " 0.7109565510500513" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -0.14972625824255384 + 0.8698827483385227im \n", - " -0.14972625824255384 - 0.8698827483385227im \n", - " -0.013393506842766014 + 0.26625342412377806im\n", - " -0.013393506842766014 - 0.26625342412377806im" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Complex{Float64},1}:\n", - " -1.8065121423080175 + 0.0im \n", - " -0.6611989566331753 + 0.0im \n", - " 1.0093584125178536 + 0.4408991075589041im\n", - " 1.0093584125178536 - 0.4408991075589041im" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "howmany = 20 \n", - "n = 4 \n", - "for i = 1:howmany\n", - " display(eigvals(randn(n,n))) \n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(2c) What do you observe if the matrix is symmetric or antisymmetric? Try n=3,4,5. (You may interpret as 0\n", - " floating point numbers with an e-16 (meaning $10^{-16}$, E for exponent) or less.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "If $A$ is a symmetric matrix, then all of its eigenvalues are real. If $A$ is an antisymmetric matrix, then all of its eigenvalues are imaginary.\n", - "\n", - "The problem does not ask for a proof, but here is one if you are curious. If $M$ is any matrix with complex number entries, then denote $M^*$ to be the conjugate transpose of $M$. That is, the $i,j$-entry of $M^*$ is the complex conjugate of the $j,i$-entry of $M$. Just like transpose, this has the property that $(M_1M_2)^*=M_2^*M_1^*$. Also, if $x=(x_1,x_2,\\dots,x_n)$ is a vector of complex numbers, then \n", - "\n", - "$$x^*x=\\overline{x_1}x_1+\\overline{x_2}x_2+\\cdots+\\overline{x_n}x_n=|x_1|^2+|x_2|^2+\\cdots+|x_n|^2.$$\n", - "\n", - "The important thing here is that if $x$ is not the zero vector, then $x^*x>0$. Now, if $A$ is a real symmetric matrix and $x$ is an eigenvector for $A$ with eigenvalue $\\lambda$, then\n", - "\n", - "$$\\lambda x^*x=x^*Ax=x^*A^*x=(Ax)^*x=(\\lambda x)^*x=\\overline{\\lambda}x^*x.$$\n", - "\n", - "Divide $x^*x$ from both sides to get $\\lambda=\\overline{\\lambda}$. Therefore, $\\lambda$ is real.\n", - "\n", - "If $A$ is a real antisymmetric matrix with $x$ and $\\lambda$ as before, then\n", - "\n", - "$$\\lambda x^*x=x^*Ax=-x^*A^*x=-(Ax)^*x=-(\\lambda x)^*x=-\\overline{\\lambda}x^*x.$$\n", - "\n", - "Like before, we get $\\lambda=-\\overline{\\lambda}$, meaning $\\lambda$ is imaginary." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -4.902972236533854 \n", - " -0.6286676691682798\n", - " 1.3213847276733686\n", - " 4.914903605080317 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -6.988829218343527 \n", - " -2.8755027636050765\n", - " 1.5161605686106587\n", - " 2.5779576875042447" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -0.8413222960416971 \n", - " 0.16186523375286438\n", - " 1.41310254932645 \n", - " 4.013188592206044 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -2.768430079454699 \n", - " -1.2509975472592465 \n", - " 0.47969069346733456\n", - " 2.772779106923938 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "4-element Array{Float64,1}:\n", - " -3.46252181517286 \n", - " -2.2496796074128413 \n", - " -0.20583001253204872\n", - " 1.8597540937537025 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "howmany = 5 \n", - "n = 4 \n", - "for i = 1:howmany\n", - " A = randn(n,n)\n", - " A += A' # This means add A' (same as Aᵀ) to A making A symmetric\n", - " display(eigvals(A)) \n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 3\n", - "\n", - "(3a) (GS p.314 p4) True or false: If the columns of X (eigenvectors of A) are linearly independent then
    \n", - "(a) A is invertible?
    \n", - "(b) A is diagonalizable
    \n", - "(c) X is invertible?
    \n", - "(d) X is diagonalizable" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "(a) False (e.g., $A=\\begin{pmatrix}0&0\\\\0&0\\end{pmatrix}$, $X=\\begin{pmatrix}1&0\\\\0&1\\end{pmatrix}$)\n", - "\n", - "(b) True\n", - "\n", - "(c) True\n", - "\n", - "(d) False (e.g., $A=\\begin{pmatrix}1&-2\\\\0&-1\\end{pmatrix}$, $X=\\begin{pmatrix}1&1\\\\0&1\\end{pmatrix}$)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3b) (GS p. 315 p11) True or false: If the eigenvalues of $A$ are $2,2,5$ then the matrix is certainly
    \n", - "(a) invertible
    \n", - "(b) diagonalizable
    \n", - "(c) not diagonalizable." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "(a) True\n", - "\n", - "(b) False (e.g., $A=\\begin{pmatrix}2&1&0\\\\0&2&0\\\\0&0&5\\end{pmatrix}$)\n", - "\n", - "(c) False (e.g., $A=\\begin{pmatrix}2&0&0\\\\0&2&0\\\\0&0&5\\end{pmatrix}$)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(3c) (GS p. 315 p. 12) True or false: If the only eigenvectors of $A$ are multiples of (1,4) then A has
    \n", - "(a) no inverse
    \n", - "(b) a repeated eigenvalue
    \n", - "(c) no diagonalization $X \\Lambda X^{-1}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "(a) False (e.g., $A=\\begin{pmatrix}0&1\\\\-16&8\\end{pmatrix}$)\n", - "\n", - "(b) True\n", - "\n", - "(c) True" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 4\n", - "\n", - "(4) If a matrix has eigenvalue 1, must it have singular value 1? If a matrix has eigenvalue 0, must it have fewer than n positive singular values?\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "(i) If a matrix has eigenvalue $1$, it might not have singular value $1$. An example is $A=\\begin{pmatrix}0&1\\\\0&1\\end{pmatrix}$, which has eigenvalues $0$ and $1$. But, it has compact SVD\n", - "\n", - "$$A=\\begin{pmatrix}1\\\\1\\end{pmatrix}\\begin{pmatrix}0&1\\end{pmatrix}=\\begin{pmatrix}1/\\sqrt{2}\\\\1/\\sqrt{2}\\end{pmatrix}\\begin{pmatrix}\\sqrt{2}\\end{pmatrix}\\begin{pmatrix}0\\\\1\\end{pmatrix}^T,$$\n", - "\n", - "so its singular values are $\\sqrt{2}$ and $0$.\n", - "\n", - "(ii) If a matrix has eigenvalue $0$, then $Av=0$ for some nonzero vector $v$. This means $A$ has nontrivial null space, so 0 is a singular value for $A$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 5\n", - "\n", - "5) Supose rank(A) = n-1 and x is an eigenvector with eigenvalue 0. How might the information in x find itself inside the SVD?\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "If the rank of $A$ is $n-1$, then its null space is $1$-dimensional. The null space is the column space of $V_2$ in the full SVD for $A$, and in this case, $V_2$ is just the last column of $V$. The eigenvector $x$ is in the null space, so $x$ is just a scalar multiple of the last column of $V$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 6\n", - "\n", - "6) Construct for every n=2,3,... a non-zero matrix A that has all eigenvalues 0, but has (n-1) singular values 1. Is A diagonalizible?\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "Let $A$ be the $n \\times n$ matrix with $0$s down the diagonal and $1$s just above the diagonal:\n", - "\n", - "$$A=\\begin{pmatrix}0&1&0&0&\\cdots\\\\0&0&1&0&\\cdots\\\\0&0&0&1&\\cdots\\\\0&0&0&0&\\cdots\\\\\\vdots&\\vdots&\\vdots&\\vdots&\\ddots\\end{pmatrix}.$$\n", - "\n", - "A full SVD for $A$ is as follows. Let $U=I_n$ be the $n \\times n$ identity, let $\\Sigma$ be the diagonal $n \\times n$ matrix whose diagonal has $n-1$ $1$s followed by $0$, and $V^T$ be $A$ itself. For example, when $n=5$, the SVD is\n", - "\n", - "$$\\begin{pmatrix}0&1&0&0&0\\\\0&0&1&0&0\\\\0&0&0&1&0\\\\0&0&0&0&1\\\\0&0&0&0&0\\end{pmatrix}=\\begin{pmatrix}1&0&0&0&0\\\\0&1&0&0&0\\\\0&0&1&0&0\\\\0&0&0&1&0\\\\0&0&0&0&1\\end{pmatrix}\\begin{pmatrix}1&0&0&0&0\\\\0&1&0&0&0\\\\0&0&1&0&0\\\\0&0&0&1&0\\\\0&0&0&0&0\\end{pmatrix}\\begin{pmatrix}0&1&0&0&0\\\\0&0&1&0&0\\\\0&0&0&1&0\\\\0&0&0&0&1\\\\0&0&0&0&0\\end{pmatrix}.$$\n", - "\n", - "From this, we see that $A$ has $n-1$ singular values $1$.\n", - "\n", - "Now, we will show that no matter what answer you give for the first part of this problem, $A$ is not diagonalizable. If $A$ had $n$ linearly independent eigenvectors, then they would all be in the null space of $A$ because $0$ is the only eigenvalue. But, this would force $A$ to be the $0$ matrix, which we know is impossible because $A$ has at least one nonzero singular value." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 7\n", - "\n", - "7) (Finally doing what was avoided all year!) Write an expression for $A^TA$ in terms of the svd of A. Use this to relate the singular values of $A$ to the eigenvalues of $A^TA$. Do the same for $AA^T$.\n", - "\n", - "We admit this is straightforward, so why did we avoid it? From a practical perspective this can be numerically \n", - "unstable as an algorithm. From a mathematical perspective, by getting too caught up with eigendecompositions,\n", - "one loses perspective of all the utility of the SVD that we have seen all semester." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "Let $A$ be an $m \\times n$ matrix. For this problem, we are going to assume $n \\le m$; the logic is very similar for $n \\ge m$. Let $A=U\\Sigma V^T$ be a full SVD for $A$. Compute\n", - "\n", - "$$A^TA=(V\\Sigma^T U^T)(U \\Sigma V^T)=V \\Sigma^T\\Sigma V^{-1}.$$\n", - "\n", - "The matrix $\\Sigma^T\\Sigma$ is simply a diagonal $n \\times n$ matrix whose diagonal entries are the squares of the $n$ singular values of $A$:\n", - "\n", - "$$\\Sigma^T\\Sigma=\\begin{pmatrix}\\sigma_1^2&0&0&\\cdots&0\\\\0&\\sigma_2^2&0&\\cdots&0\\\\0&0&\\sigma_3^2&\\cdots&0\\\\\\vdots&\\vdots&\\vdots&\\ddots&\\vdots\\\\0&0&0&\\cdots&\\sigma_n^2\\end{pmatrix}.$$\n", - "\n", - "This expression for $A^TA$ shows that $A^TA$ is diagonalizable and that its $n$ eigenvalues are $\\sigma_1^2,\\sigma_2^2,\\dots,\\sigma_n^2$.\n", - "\n", - "For $AA^T$, we have\n", - "\n", - "$$AA^T=(U\\Sigma V^T)(V \\Sigma^T U^T)=U \\Sigma\\Sigma^T U^{-1}.$$\n", - "\n", - "The matrix $\\Sigma \\Sigma^T$ is a diagonal $m \\times m$ matrix whose diagonal entries are the squares of the $n$ singular values of $A$ followed by $m-n$ $0$s:\n", - "\n", - "$$\\Sigma\\Sigma^T=\\begin{pmatrix}\n", - "\\sigma_1^2&0&0&\\cdots&0&0&\\cdots&0\\\\\n", - "0&\\sigma_2^2&0&\\cdots&0&0&\\cdots&0\\\\\n", - "0&0&\\sigma_3^2&\\cdots&0&0&\\cdots&0\\\\\n", - "\\vdots&\\vdots&\\vdots&\\ddots&\\vdots&\\vdots&\\ddots&\\vdots\\\\\n", - "0&0&0&\\cdots&\\sigma_n^2&0&\\cdots&0\\\\\n", - "0&0&0&\\cdots&0&0&\\cdots&0\\\\\n", - "\\vdots&\\vdots&\\vdots&\\ddots&\\vdots&\\vdots&\\ddots&\\vdots\\\\\n", - "0&0&0&\\cdots&0&0&\\cdots&0\n", - "\\end{pmatrix}.$$\n", - "\n", - "Thus, the $m$ eigenvalues of $AA^T$ are $\\sigma_1^2,\\sigma_2^2,\\dots,\\sigma_n^2,0,\\dots,0$.\n", - "\n", - "As a final note, we see that the singular values of $A$ are the square roots of the eigenvalues of $A^TA$ if $n \\le m$. Doing the same in the case where $n \\ge m$, we would see that the singular values of $A$ are the square roots of the eigenvalues of $AA^T$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 8\n", - "\n", - "8) Find two matrices (or argue that is impossible) for which $AB-BA=I$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "If $A$ and $B$ are square $n \\times n$ matrices, then compute the trace\n", - "\n", - "$$\\operatorname{Tr}(AB-BA)=\\operatorname{Tr}(AB)-\\operatorname{Tr}(BA)=\\operatorname{Tr}(AB)-\\operatorname{Tr}(AB)=0.$$\n", - "\n", - "But, $\\operatorname{Tr}(I)=n$, so $AB-BA=I$ is possible only in the case $n=0$ (Yes, $0 \\times 0$ matrices are a thing! In fact, $AB-BA=I$, where $A=B=I=\\begin{pmatrix}\\end{pmatrix}$).\n", - "\n", - "For a proof using eigenvalues instead of trace, assume for the sake of contradiction that $n \\ge 1$ and there exist matrices $A$ and $B$ such that $AB-BA=I$. Suppose $\\lambda$ is an eigenvalue of $BA$ with a corresponding eigenvector $v$. Then,\n", - "\n", - "$$ABv=(BA+I)v=\\lambda v+v=(\\lambda+1)v.$$\n", - "\n", - "Therefore, $\\lambda+1$ is an eigenvector for $AB$. Now, there must exist some $\\lambda_0$ that is an eigenvalue for $BA$ but not for $AB$, otherwise $\\lambda+k$ would be an eigenvalue for $AB$ for any chosen eigenvalue $\\lambda$ of $AB$ and every positive integer $k$. Let $v_0$ be an eigenvector for $BA$ with eigenvalue $\\lambda_0$. We have\n", - "\n", - "$$(AB)(Av_0)=A(BAv_0)=\\lambda_0(Av_0).$$\n", - "\n", - "But, $\\lambda_0$ is not an eigenvalue for $AB$, so the only way this is possible is if $Av_0=0$. Furthermore,\n", - "\n", - "$$\\lambda_0v_0=BAv_0=B0=0,$$\n", - "\n", - "so $\\lambda_0=0$. However, because $Av_0=0$, $A$ is a singular matrix, so $AB$ is also singular. This means $AB$ has $0=\\lambda_0$ as an eigenvalue, a contradiction. This finishes the proof.\n", - "\n", - "(If you are wondering where we used the fact that $n \\ge 1$, it is in the fact that $\\lambda_0$ exists. If $n=0$, $BA$ doesn't have any eigenvalues at all, so there is no contradiction!)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 9\n", - "\n", - "9) We recall that for complex numbers, the [absolute value](https://en.wikipedia.org/wiki/Absolute_value#Complex_numbers), $|z|$ is the sqrt of the real part squared plus the imaginary part.\n", - "\n", - "Find a pattern (as an experimentalist, without proof) for the absolute values of eigenvalues of orthognal matrices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "If $A$ is an orthogonal square matrix and $\\lambda$ is an eigenvalue of $A$, then $|\\lambda|=1$.\n", - "\n", - "For a proof if you are curious, recall the conjugate transpose notation $M^*$ from the solution to problem 2c above. If $x$ is an eigenvector for $A$ with eigenvalue $\\lambda$, then\n", - "\n", - "$$x^*x=x^*A^TAx=x^*A^*Ax=(Ax)^*(Ax)=(\\lambda x)^*(\\lambda x)=\\overline{\\lambda}\\lambda x^*x=|\\lambda|^2x^*x.$$\n", - "\n", - "Divide $x^*x$ from both sides to get $|\\lambda|^2=1$, or $|\\lambda|=1$." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5-element Array{Float64,1}:\n", - " 1.0000000000000002\n", - " 0.9999999999999994\n", - " 0.9999999999999994\n", - " 1.0000000000000007\n", - " 1.0000000000000007" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using LinearAlgebra\n", - "n = 5\n", - "Q, = qr(randn(n,n)) # Q stored in a clever factorized form\n", - "λ = eigvals(Matrix(Q))\n", - "abs.(λ)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem 10\n", - "\n", - "(10) The Tribonacci numbers are defined in analogy to the Fibonacci numbers:\n", - "$T_1=T_2=0$, $\\ T_3=1$, \n", - "$T_n=T_{n-1}+T_{n-2}+T_{n-3}$ (for $n>3$)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1×15 Adjoint{Int64,Array{Int64,1}}:\n", - " 0 0 1 1 2 4 7 13 24 44 81 149 274 504 927" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Inefficient but straightforward computation \n", - "T(n) = n>3 ? T(n-1)+T(n-2)+T(n-3) : n==3 ? 1 : 0 \n", - "[T(n) for n=1:15]'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(Not required: but if you want to understand the Julia it says if n>3, use the recurrence, if n=3 return 1, otherwise 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let $u_k = \\begin{pmatrix} T_{k+2} \\\\ T_{k+1} \\\\ T_k \\end{pmatrix}$. Find a matrix A that relates $u_{k+1}$ to $u_k$\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3×3 Array{Int64,2}:\n", - " 1 1 1\n", - " 1 0 0\n", - " 0 1 0" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = [ 1 1 1; 1 0 0; 0 1 0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Verify numerically that the largest eigenvalue of $A$ is" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.8392867552141612" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ϕ = (1+∛(19+3*√33)+∛(19-3*√33))/3" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " 1.839286755214161 + 0.0im \n", - " -0.41964337760708065 + 0.6062907292071997im\n", - " -0.41964337760708065 - 0.6062907292071997im" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eigvals(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and the other two eigenvalues have absolute value less than 1." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Float64,1}:\n", - " 1.839286755214161 \n", - " 0.7373527057603281\n", - " 0.7373527057603281" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "abs.(eigvals(A))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Explain why T(31)/T(30) should be about ϕ" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.839286755221798" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "T(31)/T(30)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(May be interesting to compare [last year's solution](https://github.com/mitmath/1806/raw/spring18/psets/Pset8%20Solutions.pdf))\n", - "Solution:\n", - "First, notice that \n", - "\n", - "$$u_{k+1}=A^ku_1=A^k\\begin{pmatrix}1\\\\0\\\\0\\end{pmatrix}.$$\n", - "\n", - "Let $\\alpha$ denote one of the eigenvalues of $A$ that is not $\\varphi$. The third eigenvalue is then $\\overline{\\alpha}$. Let $v_{\\varphi}$, $v_{\\alpha}$, and $v_{\\overline{\\alpha}}$ be any chosen eigenvectors for $\\varphi$, $\\alpha$, and $\\overline{\\alpha}$ respectively. Because the three eigenvalues of $A$ are distinct, these eigenvectors must be linearly independent. Therefore, for some complex numbers $c_1,c_2,c_3$, we have\n", - "\n", - "$$\\begin{pmatrix}1\\\\0\\\\0\\end{pmatrix}=c_1v_{\\varphi}+c_2v_{\\alpha}+c_3v_{\\overline{\\alpha}}.$$\n", - "\n", - "Now,\n", - "\n", - "$$u_{k+1}=A^k\\begin{pmatrix}1\\\\0\\\\0\\end{pmatrix}=\\varphi^k(c_1v_{\\varphi})+\\alpha^k(c_2v_{\\alpha})+\\overline{\\alpha}^k(c_3v_{\\overline{\\alpha}})$$.\n", - "\n", - "Because we saw that $|\\alpha|<1$, we know $\\alpha^k$ and $\\overline{\\alpha}^k$ get smaller and smaller as $k$ increases. On the other hand, the vector $u_k$ gets larger and larger. This means that $c_1 \\neq 0$. So, for large $k$, we have an approximation\n", - "\n", - "$$u_{k+1} \\approx \\varphi^k(c_1v_{\\varphi}),$$\n", - "\n", - "and looking at the entries in $u_{k+1}$ tells us that $T(k+1) \\approx \\varphi T(k)$. In the above Julia output, it looks like this is already a good approximation for $k=30$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using Julia, expand u₁ in an eigenvector basis obtaining the coefficients c. \n", - "(Two of which are complex, and one may have roundoff as an imaginary part.)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3-element Array{Complex{Float64},1}:\n", - " -0.7272617676223453 + 2.4480415638808602e-17im\n", - " -0.12395935590945975 + 0.4618502490960845im \n", - " -0.12395935590945978 - 0.46185024909608463im " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Λ,X = eigen(A) # Λ is a vector of eigenvalues in Julia for efficiency\n", - "c = X\\[1,0,0] # Solve Xc = [1,0,0]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(5767.998305699344, 5768)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "real(c[1]*X[1,1]*ϕ^15),T(18)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " A student wishes to approximate the 18th Tribonacci number. \n", - "Explain why the above expression is correct, including the role played by c[1], X[1,1], 15, and 18." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "Looking at the first entries of both sides of the approximation \n", - "\n", - "$$u_{k+1} \\approx \\varphi^k c_1 v_{\\varphi}$$\n", - "\n", - "with $k=15$, we get \n", - "\n", - "$$T(18) \\approx \\varphi^{15} c_1 (v_{\\varphi})_1.$$\n", - "\n", - "In the Julia code, c[1] is the number $c_1$, X[1,1] is the number $(v_{\\varphi})_1$, $15=k$, and $18=(k+1)+2$." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0016943006557994522" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "T(18) - real(c[1]*X[1,1]*ϕ^15) # error" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0016943006593527162" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2 * real(c[2]*X[1,2]*Λ[2]^15 )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above formula is the exact error to the student's approximation. Explain." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solution:\n", - "The full equation from which we got our approximation was \n", - "\n", - "$$u_{k+1}=\\varphi^k(c_1v_{\\varphi})+\\alpha^k(c_2v_{\\alpha})+\\overline{\\alpha}^k(c_3v_{\\overline{\\alpha}})$$.\n", - "\n", - "The error is therefore\n", - "\n", - "$$u_{k+1}-\\varphi^k(c_1v_{\\varphi})=\\alpha^k(c_2v_{\\alpha})+\\overline{\\alpha}^k(c_3v_{\\overline{\\alpha}})$$.\n", - "\n", - "Now, notice that the entries of $v_{\\overline{\\alpha}}$ could have been chosen to be the complex conjugates of the entries of $v_{\\alpha}$ (to see this, take complex conjugates of both sides of $Av_{\\alpha}=\\alpha v_{\\alpha}$). Now, because the entries of $u_{k+1}$ are real, this forces $c_3=\\overline{c_2}$. Taking the first entry in the above equation and putting this all together, we have\n", - "\n", - "$$T(18)-\\varphi^{15}c_1(v_{\\varphi})_1=\\alpha^{15} c_2 (v_\\alpha)_1+\\overline{\\alpha}^{15} \\overline{c_2} \\overline{(v_\\alpha)_1}=\\alpha^{15} c_2 (v_\\alpha)_1+\\overline{\\alpha^{15} c_2 (v_\\alpha)_1}=2\\operatorname{Re}(\\alpha^{15} c_2 (v_\\alpha)_1),$$\n", - "\n", - "where $\\operatorname{Re}$ means take the real part. In the Julia code, c[2] is the number $c_2$, X[1,2] is the number $(v_\\alpha)_1$, and Λ[2] is $\\alpha$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Julia 1.0.0", - "language": "julia", - "name": "julia-1.0" - }, - "language_info": { - "file_extension": ".jl", - "mimetype": "application/julia", - "name": "julia", - "version": "1.0.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/psets/q10graph.png b/psets/q10graph.png deleted file mode 100644 index d43cf589..00000000 Binary files a/psets/q10graph.png and /dev/null differ diff --git a/psets/quiz1-1806-S19.pdf b/psets/quiz1-1806-S19.pdf deleted file mode 100644 index 28d0e406..00000000 Binary files a/psets/quiz1-1806-S19.pdf and /dev/null differ diff --git a/psets/quiz1_solns.pdf b/psets/quiz1_solns.pdf deleted file mode 100644 index 14a60f81..00000000 Binary files a/psets/quiz1_solns.pdf and /dev/null differ diff --git a/psets/quiz2-1806-S19.pdf b/psets/quiz2-1806-S19.pdf deleted file mode 100644 index d31517a6..00000000 Binary files a/psets/quiz2-1806-S19.pdf and /dev/null differ diff --git a/psets/quiz2-1806-S19_solns.pdf b/psets/quiz2-1806-S19_solns.pdf deleted file mode 100644 index a8154b2e..00000000 Binary files a/psets/quiz2-1806-S19_solns.pdf and /dev/null differ diff --git a/psets/quiz3-1806-sol.pdf b/psets/quiz3-1806-sol.pdf deleted file mode 100644 index fdf065c9..00000000 Binary files a/psets/quiz3-1806-sol.pdf and /dev/null differ diff --git a/psets/quiz3-1806.pdf b/psets/quiz3-1806.pdf deleted file mode 100644 index b642a5f1..00000000 Binary files a/psets/quiz3-1806.pdf and /dev/null differ diff --git a/psets/tmpP4gF8B/tikzpicture.pdf b/psets/tmpP4gF8B/tikzpicture.pdf deleted file mode 100644 index 4a9ab9ed..00000000 Binary files a/psets/tmpP4gF8B/tikzpicture.pdf and /dev/null differ diff --git a/psets/tmpP4gF8B/tikzpicture.tex b/psets/tmpP4gF8B/tikzpicture.tex deleted file mode 100644 index 6b92526c..00000000 --- a/psets/tmpP4gF8B/tikzpicture.tex +++ /dev/null @@ -1,47 +0,0 @@ -\documentclass[tikz]{standalone} -\usepackage{fontspec} -\setmainfont{Latin Modern Math} -\usetikzlibrary{graphs} -\usetikzlibrary{graphdrawing} - -% from: https://tex.stackexchange.com/questions/453132/fresh-install-of-tl2018-no-tikz-graph-drawing-libraries-found -\usepackage{luacode} -\begin{luacode*} - function pgf_lookup_and_require(name) - local sep = package.config:sub(1,1) - local function lookup(name) - local sub = name:gsub('%.',sep) - if kpse.find_file(sub, 'lua') then - require(name) - elseif kpse.find_file(sub, 'clua') then - collectgarbage('stop') - require(name) - collectgarbage('restart') - else - return false - end - return true - end - return - lookup('pgf.gd.' .. name .. '.library') or - lookup('pgf.gd.' .. name) or - lookup(name .. '.library') or - lookup(name) - end -\end{luacode*} - -\usegdlibrary{layered} -\begin{document} -\begin{tikzpicture}[] -\graph [layered layout, ] { -1/"1" [], -2/"2" [], -3/"3" [], -4/"4" [], -; -1 -> [,] 2; -2 -> [,] 3; -}; - -\end{tikzpicture} -\end{document} diff --git a/recitation-materials/Andrew/week1.pdf b/recitation-materials/Andrew/week1.pdf deleted file mode 100644 index 11d2a25f..00000000 Binary files a/recitation-materials/Andrew/week1.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week10.pdf b/recitation-materials/Andrew/week10.pdf deleted file mode 100644 index 9a5608d0..00000000 Binary files a/recitation-materials/Andrew/week10.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week10sol.pdf b/recitation-materials/Andrew/week10sol.pdf deleted file mode 100644 index 52885bc4..00000000 Binary files a/recitation-materials/Andrew/week10sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week11.pdf b/recitation-materials/Andrew/week11.pdf deleted file mode 100644 index 74b0ddf2..00000000 Binary files a/recitation-materials/Andrew/week11.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week11sol.pdf b/recitation-materials/Andrew/week11sol.pdf deleted file mode 100644 index b8a694fc..00000000 Binary files a/recitation-materials/Andrew/week11sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week12.pdf b/recitation-materials/Andrew/week12.pdf deleted file mode 100644 index 5fa35426..00000000 Binary files a/recitation-materials/Andrew/week12.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week12sol.pdf b/recitation-materials/Andrew/week12sol.pdf deleted file mode 100644 index b1b5dfbc..00000000 Binary files a/recitation-materials/Andrew/week12sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week1sol.pdf b/recitation-materials/Andrew/week1sol.pdf deleted file mode 100644 index 2463f70e..00000000 Binary files a/recitation-materials/Andrew/week1sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week2.pdf b/recitation-materials/Andrew/week2.pdf deleted file mode 100644 index 876c355e..00000000 Binary files a/recitation-materials/Andrew/week2.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week2sol.pdf b/recitation-materials/Andrew/week2sol.pdf deleted file mode 100644 index 828f046f..00000000 Binary files a/recitation-materials/Andrew/week2sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week3.pdf b/recitation-materials/Andrew/week3.pdf deleted file mode 100644 index 820118be..00000000 Binary files a/recitation-materials/Andrew/week3.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week3sol.pdf b/recitation-materials/Andrew/week3sol.pdf deleted file mode 100644 index 9e87273a..00000000 Binary files a/recitation-materials/Andrew/week3sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week4.pdf b/recitation-materials/Andrew/week4.pdf deleted file mode 100644 index 56e37689..00000000 Binary files a/recitation-materials/Andrew/week4.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week4sol.pdf b/recitation-materials/Andrew/week4sol.pdf deleted file mode 100644 index e19ac307..00000000 Binary files a/recitation-materials/Andrew/week4sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week5.pdf b/recitation-materials/Andrew/week5.pdf deleted file mode 100644 index 4f7f5742..00000000 Binary files a/recitation-materials/Andrew/week5.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week5sol.pdf b/recitation-materials/Andrew/week5sol.pdf deleted file mode 100644 index ab5e4eb7..00000000 Binary files a/recitation-materials/Andrew/week5sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week6.pdf b/recitation-materials/Andrew/week6.pdf deleted file mode 100644 index ff3d33c6..00000000 Binary files a/recitation-materials/Andrew/week6.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week6sol.pdf b/recitation-materials/Andrew/week6sol.pdf deleted file mode 100644 index f16ee3d4..00000000 Binary files a/recitation-materials/Andrew/week6sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week7.pdf b/recitation-materials/Andrew/week7.pdf deleted file mode 100644 index f953d786..00000000 Binary files a/recitation-materials/Andrew/week7.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week7sol.pdf b/recitation-materials/Andrew/week7sol.pdf deleted file mode 100644 index cf48f5c3..00000000 Binary files a/recitation-materials/Andrew/week7sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week8.pdf b/recitation-materials/Andrew/week8.pdf deleted file mode 100644 index 9af82de2..00000000 Binary files a/recitation-materials/Andrew/week8.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week8sol.pdf b/recitation-materials/Andrew/week8sol.pdf deleted file mode 100644 index 27c590f5..00000000 Binary files a/recitation-materials/Andrew/week8sol.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week9.pdf b/recitation-materials/Andrew/week9.pdf deleted file mode 100644 index cc077442..00000000 Binary files a/recitation-materials/Andrew/week9.pdf and /dev/null differ diff --git a/recitation-materials/Andrew/week9sol.pdf b/recitation-materials/Andrew/week9sol.pdf deleted file mode 100644 index d634799a..00000000 Binary files a/recitation-materials/Andrew/week9sol.pdf and /dev/null differ diff --git a/recitation-materials/Cam/empty b/recitation-materials/Cam/empty deleted file mode 100644 index 2774d951..00000000 --- a/recitation-materials/Cam/empty +++ /dev/null @@ -1 +0,0 @@ -## empty diff --git a/recitation-materials/Kyeongsu/Week 10.pdf b/recitation-materials/Kyeongsu/Week 10.pdf deleted file mode 100644 index f80dcfc7..00000000 Binary files a/recitation-materials/Kyeongsu/Week 10.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 11.pdf b/recitation-materials/Kyeongsu/Week 11.pdf deleted file mode 100644 index f205dcea..00000000 Binary files a/recitation-materials/Kyeongsu/Week 11.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 4.pdf b/recitation-materials/Kyeongsu/Week 4.pdf deleted file mode 100644 index 4002b3c1..00000000 Binary files a/recitation-materials/Kyeongsu/Week 4.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 5.pdf b/recitation-materials/Kyeongsu/Week 5.pdf deleted file mode 100644 index e3846885..00000000 Binary files a/recitation-materials/Kyeongsu/Week 5.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 6.pdf b/recitation-materials/Kyeongsu/Week 6.pdf deleted file mode 100644 index 29d5f378..00000000 Binary files a/recitation-materials/Kyeongsu/Week 6.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 7.pdf b/recitation-materials/Kyeongsu/Week 7.pdf deleted file mode 100644 index 3edd0d00..00000000 Binary files a/recitation-materials/Kyeongsu/Week 7.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 8.pdf b/recitation-materials/Kyeongsu/Week 8.pdf deleted file mode 100644 index 91297edb..00000000 Binary files a/recitation-materials/Kyeongsu/Week 8.pdf and /dev/null differ diff --git a/recitation-materials/Kyeongsu/Week 9.pdf b/recitation-materials/Kyeongsu/Week 9.pdf deleted file mode 100644 index 863f32d5..00000000 Binary files a/recitation-materials/Kyeongsu/Week 9.pdf and /dev/null differ diff --git a/recitation-materials/Linear_algebra_101.pdf b/recitation-materials/Linear_algebra_101.pdf deleted file mode 100644 index d0a2ebf3..00000000 Binary files a/recitation-materials/Linear_algebra_101.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_1.pdf b/recitation-materials/Sam/rec_1.pdf deleted file mode 100644 index 035890a4..00000000 Binary files a/recitation-materials/Sam/rec_1.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_10.pdf b/recitation-materials/Sam/rec_10.pdf deleted file mode 100644 index caf20827..00000000 Binary files a/recitation-materials/Sam/rec_10.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_10sol.pdf b/recitation-materials/Sam/rec_10sol.pdf deleted file mode 100644 index 84494f56..00000000 Binary files a/recitation-materials/Sam/rec_10sol.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_11_problems.pdf b/recitation-materials/Sam/rec_11_problems.pdf deleted file mode 100644 index e1c87113..00000000 Binary files a/recitation-materials/Sam/rec_11_problems.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_11_review_sheet.pdf b/recitation-materials/Sam/rec_11_review_sheet.pdf deleted file mode 100644 index 96854fec..00000000 Binary files a/recitation-materials/Sam/rec_11_review_sheet.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_2.pdf b/recitation-materials/Sam/rec_2.pdf deleted file mode 100644 index 7c581307..00000000 Binary files a/recitation-materials/Sam/rec_2.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_2_solns.pdf b/recitation-materials/Sam/rec_2_solns.pdf deleted file mode 100644 index c473950a..00000000 Binary files a/recitation-materials/Sam/rec_2_solns.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_3.pdf b/recitation-materials/Sam/rec_3.pdf deleted file mode 100644 index 76c29442..00000000 Binary files a/recitation-materials/Sam/rec_3.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_3_solns.pdf b/recitation-materials/Sam/rec_3_solns.pdf deleted file mode 100644 index 4cd3a40b..00000000 Binary files a/recitation-materials/Sam/rec_3_solns.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_4.pdf b/recitation-materials/Sam/rec_4.pdf deleted file mode 100644 index 4f7f5742..00000000 Binary files a/recitation-materials/Sam/rec_4.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_4_solns.pdf b/recitation-materials/Sam/rec_4_solns.pdf deleted file mode 100644 index ab5e4eb7..00000000 Binary files a/recitation-materials/Sam/rec_4_solns.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_5.pdf b/recitation-materials/Sam/rec_5.pdf deleted file mode 100644 index caded8a1..00000000 Binary files a/recitation-materials/Sam/rec_5.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_5_soln.pdf b/recitation-materials/Sam/rec_5_soln.pdf deleted file mode 100644 index c90cf5e7..00000000 Binary files a/recitation-materials/Sam/rec_5_soln.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_6.pdf b/recitation-materials/Sam/rec_6.pdf deleted file mode 100644 index 89b557f5..00000000 Binary files a/recitation-materials/Sam/rec_6.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_6_solns.pdf b/recitation-materials/Sam/rec_6_solns.pdf deleted file mode 100644 index f24b9244..00000000 Binary files a/recitation-materials/Sam/rec_6_solns.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_7.pdf b/recitation-materials/Sam/rec_7.pdf deleted file mode 100644 index 4cc5020f..00000000 Binary files a/recitation-materials/Sam/rec_7.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_7_soln.pdf b/recitation-materials/Sam/rec_7_soln.pdf deleted file mode 100644 index 27c590f5..00000000 Binary files a/recitation-materials/Sam/rec_7_soln.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_8.pdf b/recitation-materials/Sam/rec_8.pdf deleted file mode 100644 index 9bdbae75..00000000 Binary files a/recitation-materials/Sam/rec_8.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_8_soln.pdf b/recitation-materials/Sam/rec_8_soln.pdf deleted file mode 100644 index 0b65f3d9..00000000 Binary files a/recitation-materials/Sam/rec_8_soln.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_9.pdf b/recitation-materials/Sam/rec_9.pdf deleted file mode 100644 index 322b140e..00000000 Binary files a/recitation-materials/Sam/rec_9.pdf and /dev/null differ diff --git a/recitation-materials/Sam/rec_9sol .pdf b/recitation-materials/Sam/rec_9sol .pdf deleted file mode 100644 index ccb942e9..00000000 Binary files a/recitation-materials/Sam/rec_9sol .pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 1 sol.pdf b/recitation-materials/Sveta/rec 1 sol.pdf deleted file mode 100644 index b106ced5..00000000 Binary files a/recitation-materials/Sveta/rec 1 sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 1.pdf b/recitation-materials/Sveta/rec 1.pdf deleted file mode 100644 index 1175865b..00000000 Binary files a/recitation-materials/Sveta/rec 1.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 10 sol.pdf b/recitation-materials/Sveta/rec 10 sol.pdf deleted file mode 100644 index cbd7dac4..00000000 Binary files a/recitation-materials/Sveta/rec 10 sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 10.pdf b/recitation-materials/Sveta/rec 10.pdf deleted file mode 100644 index 1d60e6f8..00000000 Binary files a/recitation-materials/Sveta/rec 10.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 2 sol.pdf b/recitation-materials/Sveta/rec 2 sol.pdf deleted file mode 100644 index d5ee0c3b..00000000 Binary files a/recitation-materials/Sveta/rec 2 sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 2.pdf b/recitation-materials/Sveta/rec 2.pdf deleted file mode 100644 index db5f91e9..00000000 Binary files a/recitation-materials/Sveta/rec 2.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 3 sol.pdf b/recitation-materials/Sveta/rec 3 sol.pdf deleted file mode 100644 index f85cd7dc..00000000 Binary files a/recitation-materials/Sveta/rec 3 sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 3.pdf b/recitation-materials/Sveta/rec 3.pdf deleted file mode 100644 index d621053d..00000000 Binary files a/recitation-materials/Sveta/rec 3.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 4 sol.pdf b/recitation-materials/Sveta/rec 4 sol.pdf deleted file mode 100644 index 475b8e26..00000000 Binary files a/recitation-materials/Sveta/rec 4 sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 4.pdf b/recitation-materials/Sveta/rec 4.pdf deleted file mode 100644 index 34c2910c..00000000 Binary files a/recitation-materials/Sveta/rec 4.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 8 sol.pdf b/recitation-materials/Sveta/rec 8 sol.pdf deleted file mode 100644 index ac69d653..00000000 Binary files a/recitation-materials/Sveta/rec 8 sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec 8.pdf b/recitation-materials/Sveta/rec 8.pdf deleted file mode 100644 index d1987f59..00000000 Binary files a/recitation-materials/Sveta/rec 8.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec_6.pdf b/recitation-materials/Sveta/rec_6.pdf deleted file mode 100644 index fdc372fa..00000000 Binary files a/recitation-materials/Sveta/rec_6.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/rec_6_sol.pdf b/recitation-materials/Sveta/rec_6_sol.pdf deleted file mode 100644 index b4a172f3..00000000 Binary files a/recitation-materials/Sveta/rec_6_sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week10.pdf b/recitation-materials/Sveta/week10.pdf deleted file mode 100644 index 9a5608d0..00000000 Binary files a/recitation-materials/Sveta/week10.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week10sol.pdf b/recitation-materials/Sveta/week10sol.pdf deleted file mode 100644 index 52885bc4..00000000 Binary files a/recitation-materials/Sveta/week10sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week12.pdf b/recitation-materials/Sveta/week12.pdf deleted file mode 100644 index 5fa35426..00000000 Binary files a/recitation-materials/Sveta/week12.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week12sol.pdf b/recitation-materials/Sveta/week12sol.pdf deleted file mode 100644 index b1b5dfbc..00000000 Binary files a/recitation-materials/Sveta/week12sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week5.pdf b/recitation-materials/Sveta/week5.pdf deleted file mode 100644 index 4f7f5742..00000000 Binary files a/recitation-materials/Sveta/week5.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week5sol.pdf b/recitation-materials/Sveta/week5sol.pdf deleted file mode 100644 index ab5e4eb7..00000000 Binary files a/recitation-materials/Sveta/week5sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week9.pdf b/recitation-materials/Sveta/week9.pdf deleted file mode 100644 index cc077442..00000000 Binary files a/recitation-materials/Sveta/week9.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/week9sol.pdf b/recitation-materials/Sveta/week9sol.pdf deleted file mode 100644 index d634799a..00000000 Binary files a/recitation-materials/Sveta/week9sol.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/wk2extra.pdf b/recitation-materials/Sveta/wk2extra.pdf deleted file mode 100644 index c8030026..00000000 Binary files a/recitation-materials/Sveta/wk2extra.pdf and /dev/null differ diff --git a/recitation-materials/Sveta/wk3session.pdf b/recitation-materials/Sveta/wk3session.pdf deleted file mode 100644 index 791c354a..00000000 Binary files a/recitation-materials/Sveta/wk3session.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R1.pdf b/recitation-materials/Zach/18.06R1.pdf deleted file mode 100644 index 3f899dce..00000000 Binary files a/recitation-materials/Zach/18.06R1.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R10.pdf b/recitation-materials/Zach/18.06R10.pdf deleted file mode 100644 index aaf93212..00000000 Binary files a/recitation-materials/Zach/18.06R10.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R11.pdf b/recitation-materials/Zach/18.06R11.pdf deleted file mode 100644 index 7ffaca3a..00000000 Binary files a/recitation-materials/Zach/18.06R11.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R2.pdf b/recitation-materials/Zach/18.06R2.pdf deleted file mode 100644 index d44683fd..00000000 Binary files a/recitation-materials/Zach/18.06R2.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R3.pdf b/recitation-materials/Zach/18.06R3.pdf deleted file mode 100644 index 139d5945..00000000 Binary files a/recitation-materials/Zach/18.06R3.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R4.pdf b/recitation-materials/Zach/18.06R4.pdf deleted file mode 100644 index 9a05f79b..00000000 Binary files a/recitation-materials/Zach/18.06R4.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R5.pdf b/recitation-materials/Zach/18.06R5.pdf deleted file mode 100644 index 77ab8b53..00000000 Binary files a/recitation-materials/Zach/18.06R5.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R6.pdf b/recitation-materials/Zach/18.06R6.pdf deleted file mode 100644 index 21c2bf2b..00000000 Binary files a/recitation-materials/Zach/18.06R6.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R7.pdf b/recitation-materials/Zach/18.06R7.pdf deleted file mode 100644 index a62d5efa..00000000 Binary files a/recitation-materials/Zach/18.06R7.pdf and /dev/null differ diff --git a/recitation-materials/Zach/18.06R9.pdf b/recitation-materials/Zach/18.06R9.pdf deleted file mode 100644 index 216fdd81..00000000 Binary files a/recitation-materials/Zach/18.06R9.pdf and /dev/null differ diff --git a/recitation-materials/wk3session.pdf b/recitation-materials/wk3session.pdf deleted file mode 100644 index 21dd9911..00000000 Binary files a/recitation-materials/wk3session.pdf and /dev/null differ diff --git a/summaries.md b/summaries.md deleted file mode 100644 index 5ca4b2a8..00000000 --- a/summaries.md +++ /dev/null @@ -1,134 +0,0 @@ - -| [18.06 front page](http://web.mit.edu/18.06) | -[juliabox](http://www.juliabox.com) | -[piazza](https://piazza.com/class/jrpkrwivp6x6v8) | -[gradescope](https://www.gradescope.com/courses/40389) | -[Julia](https://julialang.org/) | -[VMLS text](http://vmls-book.stanford.edu/vmls.pdf) | -[VMLS Julia Companion](http://vmls-book.stanford.edu/vmls-julia-companion.pdf) | - -You can change sections on [Stellar](https://learning-modules.mit.edu/class/index.html?uuid=/course/18/sp19/18.06#dashboard) until full. -Further questions please direct to Theresa Cummings (tcumming at mit dot .edu) -We will not use Stellar for much this semester. - -# Spring 2019 18.06 Syllabus
    - -This semester we are modernizing the class after several decades. We will keep the best, but the needs of machine learning, data science, statistics, engineering, and computation make linear algebra a critical subject. So as not to convey the wrong impression, this modernization is as valuable for science and the non computer-science subjects as well. - -Hand computation helps us understand, when possible, but computers do the work, -and not everything, not even small problems, are readily done by hand. Neural networks, matrix and vector differentiation are hot. The Singular Value Decomposition takes a life of its own. Eigenvalues are losing their place in line, but still key. By spending less time on hand computation, we can spend more time on big concepts and abstractions like vector spaces and linear transformations. This may be your first math class that does this. We hope you enjoy the intellectual activity to follow. - -Some high schools teach a few matrix operations. You might understandably think that linear algebra is the topic that manipulates tables of numbers. In the real world, most matrices are not even represented as tables of numbers. You will grow to learn that so much of the fabric of mathematics, science, and engineering, and computation is best understood with linear algebra. -If you come back in 5 years and said, "wow Linear Algebra prepared me more than I could have imagined while I was taking the class," we would be most pleased. - -|Problem Set | Solutions | Due Date | -|-|-|-| -[HW0 Practice Workflow](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset0.ipynb) || February 10, 4:55pm | -[HW1](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset1.ipynb) | [HW1 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset1sol.ipynb) | February 13, 10:55am | -[HW2](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset2.ipynb)|[HW2 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset2sol.ipynb) | February 20, 10:55am| -[HW3](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset3.ipynb) | [HW3 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset3sol.ipynb)| February 27, 10:55am | -[Practice Quiz 1](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/Exam%201%20practice%20problems.ipynb)| [Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/midterm_1_practice_problems.ipynb) -[HW4](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset4.ipynb)|[HW4 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset4sol.ipynb)| Extended due date: March 8, 10:55am -[Quiz 1](https://github.com/mitmath/1806/raw/master/psets/quiz1-1806-S19.pdf) | [Quiz 1 Solutions](https://github.com/mitmath/1806/raw/master/psets/quiz1_solns.pdf) | -[HW5](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset5.ipynb) |[HW5 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset5sol.ipynb)| March 13, 10:55am| -[HW6](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset6.ipynb) |[HW6 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset6sol.ipynb)| March 20, 10:55am| -[Practice Quiz 2](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/Exam%202%20Practice%20.ipynb)|[Quiz2 practice solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/midterm_2_practice_problems_solns.ipynb)| | -[Quiz 2](https://github.com/mitmath/1806/raw/master/psets/quiz2-1806-S19.pdf) | [Quiz 2 Solutions](https://github.com/mitmath/1806/raw/master/psets/quiz2-1806-S19_solns.pdf) | -[HW7](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset7.ipynb) |[HW7 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset7sol.ipynb)| April 12, 11:59pm| -[HW8 ](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset8.ipynb) |[HW8 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset8sol.ipynb) | Extended to April 19 11:59 pm| -[HW9 ](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset9.ipynb) |[HW9 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset9sol.ipynb)| April 26, 11:59pm| -[Practice Quiz 3 ](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/Exam%203%20Practice%20.ipynb)| [Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/Exam3Practice-sol.ipynb)| -[Quiz 3](https://github.com/mitmath/1806/raw/master/psets/quiz3-1806.pdf) | [Quiz 3 Solutions](https://github.com/mitmath/1806/raw/master/psets/quiz3-1806-sol.pdf) | -[HW10](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset10.ipynb)|[HW10 Solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset10sol.ipynb)| May 10, 11:59pm | -[Final exam practice problems](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/finalpractice.ipynb)|[Final practice solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/finalpracticesol.ipynb)| | -[Final exam](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/final.pdf)|[Final solutions](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/finalsol.pdf)| | -[Sam's Inventory of past exams](https://github.com/mitmath/1806/raw/master/examinventory.pdf)| - -||||| -|-|-|-|-| -|Final | May 21 9am-12pm | Johnson ice rink | Covers the semester up to Lecture 35 on May 6 (Exams 1,2 and 3, pos definite and Markov Matrices, all hws) - -|Recitation Materials| -|--| -|[Linear Algebra 101](https://github.com/mitmath/1806/raw/master/recitation-materials/Linear_algebra_101.pdf)| -|[week 3 review session](https://github.com/mitmath/1806/raw/master/recitation-materials/wk3session.pdf)| -| [Andrew's recitation](https://github.com/mitmath/1806/tree/master/recitation-materials/Andrew) | -| [Kyeongsu's recitation](https://github.com/mitmath/1806/tree/master/recitation-materials/Kyeongsu) | -| [Sam's recitation](https://github.com/mitmath/1806/tree/master/recitation-materials/Sam) | -| [Sveta's recitation](https://github.com/mitmath/1806/tree/master/recitation-materials/Sveta) | -| [Zach's recitation](https://github.com/mitmath/1806/tree/master/recitation-materials/Zach) - - - -|#|Day| Date | Topic | Reading| HW | -|-|-|------|------|-----|--| -|0||| Prereqs: 18.02 | We assume familiarity with the very basics, or that you can pick it up as you go (many students have): Strang Chapter 1, [VMLS](http://vmls-book.stanford.edu/vmls.pdf) 1.1-1.4, 2.1, 3.1, 6.1, 10.1 | [HW0](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset0.ipynb) is a practice class workflow. It is to be handed in by Sunday 2/10 at 4:55pm, but will not be graded. Video of HW0 workflow by Jonathan Edelman who didn't quite make it to the last step WARNING: How you download matters. "Save LINK as" seems to always work when you download. -|0||| Not a Pre-req | We assume no familiarity with computing or Julia. Some homework problems will use Julia (kind of) as a calculator. This is not a programming class. On occasion, Julia programming may be demonstrated if it helps understand linear algebra, but Julia syntax will never be tested. Tests will be traditional paper and pencil. | - |1| W|2/6| A modern (personal) view of Linear Algebra: Head in the Clouds; Feet on the Ground | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit?usp=sharing)| [HW1](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset1.ipynb) released 2/7. A sample solution to a 2x2 factorization problem has been added to the end. | -| 2 | F | 2/8 |Linear Combinations, Vector Spaces, Elementwise Operations e.g. nonlinear neural net | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4f6d86d03d_1_0) Linear Combinations are mentioned already on page 1 of Strang. Vector Spaces are on page 123. |Optional Julia Tutorial 5pm-7pm Prof. Steven Johnson 32-141| -| 3 | M | 2/11 |Transpose, Inverse, Block Matrices | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4f6d86d03d_210_0)
    • A. Transpose: 109-113 of Strang, Section 6.3.1 of VMLS.
    • B. Inverses: 83-85,89-90 of Strang, Chapters 11.1,11.2 of VMLS.
    • C. Orthogonal Matrices: 233-235 of Strang, and 189 of VMLS.
    • D. Block Matrices: 74 of Strang, bottom of page 179 of VMLS.
    | -| 4 | W | 2/13 |LU,QR|[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4f8407bb15_279_0)
    • A. LU factorization: page 563 of Strang has a table of factorizations, Section 2.6 of Strang has more computation than we will do right now (we are not doing pivots and elimination), VMLS almost mentions LU on page 208, but kind of doesn't
    • B. QR factorization: Strang mentions QR a bit too quickly on page 239, VMLS in Section 10.4
    | [HW1](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset1.ipynb) due | -| 5 | F | 2/15 | QR Applications| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4f8407bb15_357_0) QR is mentioned in Strang 239| [HW2](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset2.ipynb) released 2/14.| -| 6 | T | 2/19 (Pres Day+1) |SVD overview, rank r format, and column space | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4fba4ef7dd_77_0)
  • The SVD: Strang mentions the SVD in Chapter 7. I find the definition in terms of AᵀA a mixed bag. It's straightforward if you know eigenvalues, but the SVD's true identity is lost in the eigenworld. I will not follow the eigenworld approach.
  • | -| 7 | W | 2/20 | rank k approximation, [Image Compression](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/Compressing%20an%20Image%20with%20the%20svd.ipynb), Nullspace, Column Space |[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4fba4ef7dd_248_50)|HW2 due | -| 8 | F | 2/22 | SVD full form | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g4fba4ef7dd_325_1) [HW3](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/psets/pset3.ipynb) released 2/21. -| 9 | M | 2/25 |review| -| 10 | W | 2/27 | guest lecturer [Sam Turton](https://math.mit.edu/directory/profile.php?pid=1732) projections| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g523a8d570c_37_0) Section 4.2 of Strang|shorter HW 3 due| -| 11 | F | 3/1 | **Exam 1** Walker, during lecture hour (ends 11:55am as another class is entering for an exam and we must be respectful), closed book, includes material up to Friday 2/22, grades visible probably in 24 hours, no exam makeup (paper alternative - once per semester for emergencies, grade approximate cutoffs available monday) | -| 12 | M | 3/4 | Linear Independence, Span, Basis| [Slides ](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g523a8d570c_37_5)Section 3.4 of Strang, 5.1-5.3 of VMLS | -| 13 | W | 3/6 | The Complete Solution to Ax=b| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g51fe9f1957_24_0)Section 3.3 of Strang |HW 4 due| -| 14 | F | 3/8 (add date) |Intuition on what a Matrix is deep down, the Four Fundamental Subspaces, Orthonormal Bases| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g51fe9f1957_59_76) Section 3.5, 4.4 of Strang | -| 15 | M | 3/11 | Orthonormal Subspaces | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g51fe9f1957_59_121) Section 4.1 of Strang | -| 16 | W | 3/13 | Completion of Chapters 1 through 4 of Strang based on SVD rather than elimination. Note: only the svd has been assumed and everything else was proved in this class.| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5283288fb6_268_5)|HW 5 due| -| 17 | F | 3/15 | Linear Transformations and Matrix Calculus | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5283288fb6_268_0) Section 8.1 of Strang | -| 18 | M | 3/18 | Linear Transformations and Matrix Calculus Continued | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g54c2f1d34e_123_0) | -| 19 | W | 3/20 | Determinants |[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5446ee59a2_262_0) 5.1 of Strang |HW 6 due| -| 20 | F | 3/22 (Spring Break next week) | Guest Lecturer [Zachary Remscrim](https://math.mit.edu/directory/profile.php?pid=1952): Permutations and Cofactors | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5446ee59a2_347_0) 5.2 of Strang| -| 21 | M | 4/1 | Applications of Determinants| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g55faa85cad_78_3) -| 22 | W | 4/3 |review||| -| 23 | F | 4/5 | **Exam 2** (includes material up to Friday March 22) | -| 24 | M | 4/8 | Cofactors and Cramer's Rule | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g57c9828bc0_13_43) Strang 5.2, 5.3 -| 25 | W | 4/10 |Inverses and Volumes| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g57e4cd3ac9_0_48) Strang 5.2,5.3 -| 26 | F | 4/12 (CPW. Pats Day next Monday) | Hypercubes, Maps, and Jacobians |[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g57e4cd3ac9_0_73) Completion up to Chapter 5 of Strang|HW 7 Due| -| 27 | W | 4/17 |Eigenvalues |[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5810e9ab8b_417_0) [Interactive Eigenvectors](https://nbviewer.jupyter.org/github/mitmath/1806/blob/master/materials/Action%20of%20a%20matrix%20and%20eigenvectors.ipynb) Strang 6.1| -| 28 | F | 4/19 | Hand Computation of Eigenvalues/Eigenvectors Special Cases |[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5122562dff_73_0)Strang 6.2|HW 8 due| -| 29 | M | 4/22 |Diagonalizing|[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5122562dff_15_15) Strang 6.2| -| 30 | W | 4/24 (Drop date tomorrow) | Differential Equations: Guest Lecture David Sanders |[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g56d1fbeb37_69_0) Strang 6.3| -| 31 | F | 4/26 |Symmetric Matrices and Diagonalizing | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g56e77651a0_283_0) Strang 6.4,|HW9 Due| -| 32 | M | 4/29 |Markov Matrices|[Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g56e77651a0_283_53) Strang 10.3| -| 33 | W | 5/1 |review| -| 34 | F | 5/3 |**Exam 3** covers material up to Lecture 31 | -| 35 | M | 5/6 |Positive Definite Matrices | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5724e911eb_244_0) Strang 6.5 | -| 36 | W | 5/8 |Semidef + Why divide by n-1 in sample variance?| [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5724e911eb_334_41) [why n-1 in sample variance notebook?](https://nbviewer.jupyter.org/github/stevengj/1806/blob/spring18/lectures/Sample%20Variance%20division%20by%20n-1.ipynb)| -| 37 | F | 5/10 | Statistics and Principal Components | [Slides](https://docs.google.com/presentation/d/1znZ9IuK7Th3bjMRttfuCbWT1gSQmwKLtLx-XLlbjp8k/edit#slide=id.g5724e911eb_332_0) Strang 7.2 and Parts of 12| HW 10 Due| -| 38 | M | 5/13 | Complex Matrices and the Discrete Fourier Transform | Strang Chapter 9 | -| 39 | W | 5/15 | Linear Transformations of Corgis and more fun and some of Strang Chapter 11 | - - - - - -# Spring 2019 [18.06](https://web.mit.edu/18.06/www/) Lecture Summaries
    - [Prof. Alan Edelman](http://math.mit.edu/~edelman) - - -I have replaced summaries with lecture slides. -It is unlikely that old videos or other notes will be enough to learn this semester's 18.06. We recommend attending lectures but will post class slides as a guide. - -(You can also look at summaries from [Fall 2017](https://github.com/stevengj/1806/blob/fall17/summaries.md) and [Spring 2018](https://github.com/stevengj/1806/blob/spring18/summaries.md) but this is not the same class.) - - -Further Topics we will cover are: -
      -
    • Matrix Calculus, gradients
    • -
    • Bases
    • -
    • Least Squares
    • -
    • Applications
    • -
    • Determinants
    • -
    • Eigenvalues
    • -
    • Markov Matrices
    • -
    • Positive Definite Matrices
    • -
    • Linear Transformations
    • -
    - -